- 8.1 પ્રસ્તાવના
- 8.2 વાયુઓની વર્તણૂક
- 8.3 ઍવોગેડ્રો અંક
- 8.4 આદર્શ વાયુ અવસ્થા સમીકરણ અને તેના વિવિધ સ્વરૂપો
- 8.5 વાયુનો ગતિવાદ, આદર્શ વાયુનું અશું મોડેલ : પૂર્વ ધારણાઓ
- 8.6 આદર્શ વાયુનું દબાણ અને વાયુના અશુઓની rms ઝડપ
- 8.7 ગતિ-ઊર્જા અને તાપમાન
- 8.8 ઊર્જાના સમવિભાજનનો નિયમ તથા મુક્તતાના અંશો
- 8.9 સરેરાશ મુક્ત પથ
 - સારાંશ
 - સ્વાધ્યાય

8.1 પ્રસ્તાવના (Introduction)

વિદ્યાર્થીમિત્રો, બોઇલ, ન્યૂટન અને બીજા વૈજ્ઞાનિકોએ વાયુ સૂક્ષ્મ અણુઓનો બનેલો છે તેવું ધારીને વાયુઓની વર્તણૂક સમજાવવા પ્રયત્ન કર્યો. કોઈ પણ ભૌતિક પદાર્થની રચનામાં તેના ઘટકકણો એવા પરમાણુઓ, અણુઓ કે આયનો સતત ગિત કરતા હોય છે. ઘન પદાર્થમાં તેના ઘટકકણો એકબીજાની ખૂબ જ નજીક નજીક આવેલા હોય છે અને તેઓ તેમના મધ્યમાન સ્થાનની આસપાસ કંપન કરતા હોય છે. પ્રવાહી પદાર્થના ઘટકકણો વચ્ચેનું અંતર, ઘન પદાર્થના ઘટકકણો વચ્ચેના અંતર કરતાં વધુ હોય છે. વાયુ પદાર્થના ઘટકકણો વચ્ચેનું અંતર ઘન કે પ્રવાહીની સરખામણીમાં ખૂબ જ વધુ હોય છે. વાયુના ઘટકકણો વચ્ચે લાગતા આંતરિક બળોની સરખામણીમાં અવગણી શકાય તેવા હોય છે. આથી વાયુના ઘટકકણો મુક્ત રીતે કોઈ પણ દિશામાં સતત અને અસ્તવ્યસ્ત ગિત કરતાં હોય છે.

પદાર્થનાં આ ત્રણેય સ્વરૂપો પૈકી વાયુઓની તેના ઘટકક્શોના અનુસંધાનમાં વર્તણૂક સમજવી સહેલી છે, જેનો વાયુના ગતિવાદમાં અભ્યાસ કરવામાં આવે છે. વાયુનો ગતિવાદ અવલોકનો પર આધારિત પૂર્વધારણાઓ પર સ્થપાયેલ છે.

વાયુ સાથે દબાશ, તાપમાન, કદ, આંતરિક ઊર્જા જેવી ભૌતિક રાશિઓ સંકળાયેલી હોય છે. આ રાશિઓ તંત્રમાં સૂક્ષ્મ સ્તરે બનતી ઘટનાઓની સરેરાશ સંયુક્ત અસરરૂપે મળતી હોવાથી આ ભૌતિક રાશિઓને સ્થૂળ રાશિઓ (Macroscopic Quantities) કહે છે. સ્થૂળ રાશિઓ સીધેસીધી માપી શકાય છે અથવા માપી શકાય તેવી બીજી સ્થૂળ રાશિઓની મદદથી ગણી શકાય છે. દા.ત., વાયુનું દબાણ સીધેસીધું માપી શકાય છે, જ્યારે વાયુની આંતરિક ઊર્જા, તેના દબાણ, કદ અને તાપમાન જેવી સ્થૂળ રાશિઓની મદદથી ગણી શકાય છે. જ્યારે તંત્ર અને તેની સાથે સંકળાયેલી ઘટનાઓનું વર્ણન સ્થૂળ રાશિઓના સંદર્ભમાં કરવામાં આવે છે ત્યારે તેને સ્થૂળ વર્ણન કહે છે.

વાયુતંત્રમાં સૂક્ષ્મ સ્તરે તેના ઘટકક્શો વચ્ચે થતી આંતરક્રિયાઓ અને તેના પરિશામે થતી ઘટનાઓ પરથી સ્થૂળ રાશિઓની અને તેમની વચ્ચેના આંતર-સંબંધોની સમજૂતી મેળવી શકાય છે. દા.ત., વાયુનું દબાશ, તેના

અશુઓની અસ્તવ્યસ્ત ગતિ, તેમના પાત્રની દીવાલો સાથે થતા સંઘાત અને તેમના વેગમાનના ફેરફારોના સંદર્ભમાં સમજી શકાય છે. આમ, સૂક્ષ્મ સ્તરે ઘટકક્શો સાથે સંકળાયેલી રાશિઓ જેવી કે અશુની ઝડપ, વેગમાન, તેની ગતિ-ઊર્જા વગેરેને સૂક્ષ્મ રાશિઓ (microscopic quantities) કહે છે. જ્યારે તંત્ર અને તેની સાથે સંકળાયેલી ઘટનાઓનું વર્શન સૂક્ષ્મ રાશિઓના સંદર્ભમાં કરવામાં આવે ત્યારે તેને સૂક્ષ્મ વર્શન કહે છે.

વાયુના ગતિવાદમાં તંત્રના ઘટક કશોને ન્યૂટનના ગતિના નિયમો (classical Mechanics) રીતે અંકશાસ્ત્રીય રીતે સરેરાશો મેળવીને ગાણિતીય યોજના વડે સૂક્ષ્મ રાશિઓ પરથી તંત્રની સ્થૂળ રાશિઓ મેળવી શકાય છે.

વાયુનો ગતિવાદ વાયુના દબાશ, તાપમાન અને કદ ઉપરાંત તે વાયુઓના શ્યાનતા, વહન, પ્રસરણ અને વિશિષ્ટ ઉષ્મા જેવા ગુણધર્મો વિશે પણ માહિતી પૂરી પાડે છે.

8.2 વાયુઓની વર્તણૂક (Behaviour of Gases)

પ્રયોગો દ્વારા જાણી શકાયું છે કે, વાયુઓની ઘનતા ખૂબ ઓછી હોય ત્યારે, તેમના થર્મોડાયનેમિક ચલ જેવા કે દબાણ, કદ અને તાપમાન વચ્ચે સરળ આંતર સંબંધો અસ્તિત્વ ધરાવે છે.

8.2.1 બોઇલનો નિયમ (Boyle's law)

અચળ તાપમાને પૂરતી ઓછી ઘનતાવાળા નિશ્ચિત જથ્થાના (દળના) વાયુનું દબાણ તેના કદના વ્યસ્ત પ્રમાણમાં હોય છે. એટલે કે,

$$P \propto \frac{1}{V}$$
 (8.2.1)

(અચળ તાપમાન, અચળ દળ)

વરાળ માટે, ત્રણ તાપમાનનાં મૂલ્યો માટે, પ્રાયોગિક રીતે મેળવેલ P → V ના વક્કો (સળંગ રેખાઓ) અને બૉઇલના નિયમનો ઉપયોગ કરીને મેળવેલ વક્કો (ત્રુટક રેખાઓ) આકૃતિ 8.1

આકૃતિ 8.1માં વરાળ માટે, દબાણ વિરુદ્ધ કદના પ્રાયોગિક રીતે મેળવેલ વક્કો (સળંગ રેખાઓ) અને બૉઇલના નિયમનો ઉપયોગ કરીને મેળવેલ વક્કો (ત્રુટક રેખાઓ) દર્શાવ્યા છે. પ્રાયોગિક રીતે મેળવેલ વક્રો ઊંચા તાપમાન અને નીચે દબાણ માટે બૉઇલના નિયમ વડે મેળવેલ વક્રોને મળતા આવે છે.

8.2.2 ચાર્લ્સનો નિયમ (Charle's law)

અચળ દબાણે, પૂરતી ઓછી ઘનતા વાળા નિશ્ચિત જથ્થાના (દળના) વાયુનું કદ તેના નિરપેક્ષ તાપમાન (absolute temperature)ના સમપ્રમાણમાં હોય છે. એટલે કે.

$$\therefore \frac{V}{T} =$$
અરાળ (8.2.4)

 CO_2 વાયુ માટે દબાશના ત્રણ મૂલ્યો માટે $T \to V$ ના પ્રાયોગિક વકો (સળંગ રેખાઓ) અને ચાર્લ્સના નિયમ વડે મેળવેલ વકો (ત્રુટક રેખાઓ) આકૃતિ 8.2

આકૃતિ 8.2 પરથી લખી શકાય કે, અચળ દબાણે પૂરતી ઓછી ઘનતાવાળો નિશ્ચિત જથ્થા (દળ)નો વાયુ ચાર્લ્સના નિયમને અનુસરે છે.

ગૅલ્યુસેકનો નિયમ : આપેલ કદ માટે પૂરતી ઓછી ઘનતાવાળા નિશ્ચિત જથ્થાના વાયુનું દબાણ તેના નિરપેક્ષ તાપમાનના સમપ્રમાણમાં હોય છે. એટલે કે,

$$P ∝ T$$
 (અચળ કદ, અચળ જથ્થો)
$$∴ \frac{P}{T} = અચળ$$
 (8.2.5)

8.3 ઍવોગેડ્રો અંક

જો P, V અને T એકસરખા હોય, તો બધા જ વાયુઓ માટે અશુઓની સંખ્યા (N) પણ એક સરખી હોય છે, જે ઍવોગેડ્રોનો અધિતર્ક છે. એટલે કે, "આપેલ અચળ તાપમાન અને દબાણ માટે એકમ કદ દીઠ અશુઓની સંખ્યા દરેક વાયુઓ માટે એક સરખી હોય છે."

પ્રમાશિત તાપમાન (273 K) અને દબાશે (1 atm), 22.4 લિટર કદમાં રહેલા વાયુના જથ્થાનું દ્રવ્યમાન (દળ), તેના અશુભાર (ગ્રામમાં) જેટલું હોય છે. વાયુના આ જથ્થાને મોલ કહે છે. (આપેલ તાપમાન અને દબાશે એકસરખા કદમાં રહેલા વાયુના અશુઓની સંખ્યા એકસરખી હોય છે,

તેવું ઍવોગેડ્રોએ રાસાયણિક પ્રક્રિયાઓ પરથી ધાર્યું હતું, આ અધિતર્કનું સમાધાન વાયુના ગતિવાદમાં થાય છે.)

1 મોલ પદાર્થ (વાયુ) માં રહેલા ઘટકક્શો (પરમાશુઓ કે અશુઓ) ની સંખ્યાને ઍવોગેડ્રો અંક (N_A) કહે છે, જેનું મૂલ્ય $N_A=6.023\times 10^{23}~\text{mol}^{-1}$.

આધુનિક વ્યાખ્યા મુજબ 12.0 g કાર્બનમાં રહેલા પરમાશુઓની સંખ્યાને ઍવોગ્નેડ્રો અંક કહે છે.

જો વાયુપાત્રમાં આપેલ વાયુના કુલ N અશુઓ હોય, તો

આપેલ વાયુની મોલ સંખ્યા
$$\mu=rac{N}{N_{\Lambda}}$$
 (8.3.1)

બીજી રીતે વિચારીએ તો, જો વાયુપાત્રમાંના વાયુનું કુલ દળ M હોય તેમજ 1 મોલ વાયુનું દળ (એટલે કે વાયુનો અશુભાર કે પરમાશુભાર) M_0 હોય, તો

વાયુની મોલ સંખ્યા
$$\mu = \frac{M}{M_0}$$
 (8.3.2)

8.4 આદર્શ વાયુ અવસ્થા સમીકરણ અને તેના વિવિધ સ્વરૂપો (Ideal gas state equation and its different forms)

જો આપણે બૉઇલના નિયમ અને ચાર્લ્સના નિયમનો સમન્વય કરીએ તો,

$$\frac{PV}{T} = K$$
 (અચળ) (8.4.1)

(વાયુના નિશ્ચિત જથ્થા માટે)

જે દર્શાવે છે કે, જો આપેલ વાયુનું દબાજ અને તાપમાન અચળ રાખીને વાયુનો જથ્થો જુદો જુદો લેવામાં આવે, તો વાયુનું કદ તેના જથ્થાના સમપ્રમાણમાં હોય છે. આમ સમીકરણ (8.4.1)માં જમણી બાજુનો અચળાંક વાયુના જથ્થા પર આધાર રાખે છે. જો વાયુના જથ્થાને મોલમાં દર્શાવીએ તો

$$\frac{PV}{T} = \mu R$$

અથવા $PV = \mu RT$ (8.4.2)
જયાં, $\mu = \text{મોલ સંખ્યા}$

$$R = સાર્વત્રિક વાયુ નિયતાંક (universal gas contant)$$

$$= 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$$

જે વાયુ દબાણ અને તાપમાનનાં બધાં જ મૂલ્યો માટે PV = μRT સમીકરણનું સંપૂર્ણપણે પાલન કરતો હોય, તેવા (કાલ્પનિક) વાયુને આદર્શ વાયુ કહે છે. વ્યવહારમાં એક પણ વાયુ દરેક સંજોગોમાં આદર્શ વાયુ નથી.

સ્થૂળ ભૌતિક રાશિઓ P, V અને T નાં મૂલ્યોની મદદથી સમીકરણ (8.4.2) વડે વાયુની થર્મોડાયનેમિક અવસ્થા નક્કી કરી શકાતી હોવાથી, સમીકરણ (8.4.2)ને આદર્શ વાયુનું અવસ્થા સમીકરણ કહે છે.

જો આપણે સમીકરણ (8.4.2)માં $\mu=rac{N}{N_A}$

મૂકીએ તો

$$PV = \frac{N}{N_A} RT \tag{8.4.3}$$

સમીકરણ (8.4.3)માં

$$rac{
m R}{
m N_A} = k_{_{
m B}}$$
 લઈએ તો
$$m R = N_{_{
m A}} k_{_{
m B}} \eqno(8.4.4)$$

જ્યાં $k_{\rm B}=$ બૉલ્ટ્ઝમાનનો અચળાંક (Boltzmann's Constant) = $1.38\times 10^{-23}~{\rm J~K^{-1}}$

જે એક અશુ માટે વ્યાખ્યાયિત કરવામાં આવે છે.

$$\therefore PV = k_{_{\rm R}}NT \tag{8.4.5}$$

અથવા
$$P = k_B \frac{N}{V} T = k_B n T$$
 (8.4.6)

જ્યાં $n=rac{N}{V}=$ વાયુના અણુઓની સંખ્યા ઘનતા $= \mbox{ પાત્રના એકમ કદ દીઠ વાયુના અણુઓની સંખ્યા}$

આ ઉપરાંત, સમીકરણ (8.3.2) અને (8.4.5) પરથી

$$PV = \frac{M}{M_0} RT$$

$$\therefore P = \frac{M}{V} \frac{RT}{M_0} = \frac{\rho RT}{M_0}$$
(8.4.7)

જ્યાં,
$$\rho = \frac{M}{V}$$
 = વાયુની દળ ઘનતા

ઓછા દબાણ અને ઊંચા તાપમાને વાસ્તવિક વાયુઓ આદર્શ-વાયુની જેમ વર્તે છે. આકૃતિ 8.3

આકૃતિ 8.3માં વાસ્તવિક વાયુની વર્તણૂક જુદાં-જુદાં ત્રણ તાપમાન માટે દર્શાવી છે, જે આદર્શ વાયુ કરતાં જુદા પડે છે. આકૃતિ પરથી સ્પષ્ટ થાય છે કે નીચા દબાણ અને

ઊંચા તાપમાને વાસ્તવિક વાયુ, આદર્શવાયુની જેમ વર્તે છે. આદર્શવાયુ એ ખરેખર તો એક સૈદ્ધાંતિક મૉડેલ છે.

વાયુના કદમાં થતા ફેરફાર દરમિયાન થતું કાર્ય :

પ્રકરણ 6માં આપણે F-xના આલેખ પરથી કાર્ય મેળવ્યું. આ પદ્ધતિનો ઉપયોગ કરી વાયુની બાબતમાં P-V આલેખનો ઉપયોગ કરી વાયુના કદમાં થતા ફેરફાર દરમિયાન થતું કાર્ય મેળવી શકાય છે. આ રીતે કાર્ય માટે

$$\mathbf{W} = \int\limits_{v_i}^{v_f} \mathbf{P} \ d\mathbf{V}$$
 સૂત્ર આપણને મળે છે. આ વિશેનો

વિગતવાર અભ્યાસ થર્મોડાઇનેમિક્સના પ્રકરણમાં ભવિષ્યમાં કરીશું.

ઉદાહરણ 1: એક ઓરડાના ભોંયતિળયાનું ક્ષેત્રફળ 20 m^2 છે તથા તેની દીવાલો 3 m ઊંચી છે. ઓરડામાં હવાનું દબાણ 1 atm તથા તાપમાન 27°C છે, તો ઓરડામાં રહેલી હવાનું દળ શોધો. એક મોલ હવાનું દળ 29 g લો. $1 \text{ atm} = 1.01 \times 10^5 \text{ N} \text{ m}^{-2} = 1.01 \times 10^5 \text{ Pa}$, તથા $R = 8.31 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$

ઉંકેલ :
$$P = 1$$
 atm = 1.01×10^5 N m⁻²
V = ઓરડાનું કદ = $20 \times 3 = 60$ m³
R = 8.31 J mol⁻¹ K⁻¹
T = 27 °C = $273 + 27 = 300$ K
આદર્શ-વાયુ અવસ્થા સમીકરણ મુજબ

$$\therefore \mu = \frac{PV}{RT}$$

$$= \frac{1.01 \times 10^5 \times 60}{8.31 \times 300}$$

 $PV = \mu RT$

$$\mu = 2.43 \times 10^3$$
 મોલ (1) આથી હવાનું દળ

$$m = 29 \ \mu = 29 \times 2.43 \times 10^3$$

= 70.5 × 10³ g
∴ $m = 70.5 \ \text{kg}$ (2)

જે ઓરડામાં રહેલી હવાનું દળ છે.

ઉદાહરણ 2:20 L કદ ધરાવતા એક વાયુપાત્રમાં 2.5×10^5 N m⁻² દબાણે ઑક્સિજન વાયુ ભરેલો હોય, તો વાયુપાત્રમાં રહેલા ઑક્સિજન વાયુનું દળ શોધો. વાયુપાત્રમાં ઑક્સિજનનું તાપમાન 27 °C છે તથા ઑક્સિજનનો અણુભાર 32 g mol^{-1} છે.

$$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$$

ઉંકેલ :
$$M_{O_2}$$
 = ઑક્સિજનનો અશુભાર
= 32 g mol⁻¹
= 32 × 10⁻³ kg mol⁻¹
P = 2.5 × 10⁵ N m⁻²
V = 20 L = 20 × 10⁻³ m³

આદર્શવાયુ અવસ્થા-સમીકરણ મુજબ

$$PV = \mu RT$$

$$\therefore \ \mu = \frac{PV}{RT}$$

∴
$$\frac{m_{\rm O_2}}{{\rm M_{\rm O_2}}} = \mu = \frac{{\rm PV}}{{\rm RT}}$$
∴ $m_{\rm O_2} =$ ઑક્સિજનનું દળ
$$= {\rm M_{\rm O_2}} \times \frac{{\rm PV}}{{\rm RT}}$$

$$= \frac{32 \times 10^{-3} \times 2.5 \times 10^5 \times 20 \times 10^{-3}}{8.31 \times 300}$$

$$= 0.064$$

= 64 × 10⁻³ kg

 $m_{O_2} = 64 \text{ g}$

ઉદાહરણ 3: એક ગૅસ સિલિન્ડરમાં 15 kg ગૅસ, 10^7 N m⁻² દબાણે ભરેલો છે. આ સિલિન્ડરમાંથી ગૅસ લીક થાય છે. એક તબક્કે ગૅસનું દબાણ 3×10^6 N m⁻² માલૂમ પડે છે, તો કેટલો ગૅસ લીક થઈ ગયો હશે ? અહીંયાં તાપમાન અચળ ધારો.

Geometric P₁ =
$$10^7$$
 N m⁻²
P₂ = 3×10^6 N m⁻²
M₁ = 15 kg
M₂ = ?

અચળ કદ અને તાપમાન માટે આદર્શ-વાયુ અવસ્થા સમીકરણ પરથી,

Figure 3.5 kg
$$P_{1}V = \mu_{1}RT$$

$$P_{2}V = \mu_{2}RT$$

$$\therefore \frac{P_{1}}{P_{2}} = \frac{\mu_{1}}{\mu_{2}} = \frac{M_{1}}{M_{2}}$$

$$\therefore M_{2} = \frac{P_{2}}{P_{1}} \times M_{1} = \frac{3 \times 10^{6} \times 15}{10^{7}}$$

$$= 4.5 \text{ kg}$$

આમ, 15 kg માંથી 4.5 kg ગૅસ રહ્યો હોવાથી 15 – 4.5 = 11.5 kg ગૅસ લીક થયો હશે.

ઉદાહરણ 4 : શિયાળામાં 7 °C તાપમાને તમારા ક્લાસરૂમમાં રહેલી હવાનું દળ, ઉનાળામાં 37 °C તાપમાને રહેલી હવાના દળ કરતાં કેટલા ગણું હશે ?

(દબાણ અચળ ધારો.)

ઉકેલ :
$$T_1 = 7 + 273 = 280 \text{ K}$$
 $T_2 = 37 + 273 = 310 \text{ K}$
આદર્શ-વાયુ અવસ્થા-સમીકરણ પરથી,
 $PV = \mu_1 R T_1$
 $PV = \mu_2 R T_2$
∴ $\mu_1 T_1 = \mu_2 T_2$
∴ $\frac{\mu_1}{\mu_2} = \frac{T_2}{T_1}$

$$\therefore \frac{\mu_1}{\mu_2} = \frac{M_1}{M_2} = \frac{T_2}{T_1} = \frac{310}{280} = 1.1$$

આમ, ઉનાળા કરતાં શિયાળામાં હવાનું દળ 1.1 ગણું હશે.

ઉદાહરણ 5 : બૂચ (cork)થી બંધ કરેલી એક શીશીમાં 7 °C તાપમાને હવાનું દબાશ 1 atm છે. આ બૂચ 1.3 atm જેટલું દબાશ સહન કરી શકે તે રીતે શીશી પર ફિટ કરેલું છે, તો શીશીને ઓછામાં ઓછા કેટલા તાપમાન સુધી તપાવીએ, તો બૂચ ઊખડી જાય ? શીશીનું તાપીય વિસ્તરણ અવગશો.

ઉકેલ :
$$P_1 = 1$$
 atm
$$P_2 = 1.3 \text{ atm}$$

$$V = અચળ$$

$$T_1 = 7 \text{ °C} = 280 \text{ K}$$

$$T_2 = ?$$

આદર્શવાયુ અવસ્થા-સમીકરણ મુજબ

$$P_{1}V = \mu RT_{1}$$
$$P_{2}V = \mu RT_{2}$$

$$\therefore \ \frac{P_1}{P_2} = \frac{T_1}{T_2}$$

$$\therefore T_2 = \frac{P_2}{P_1} T_1 = \frac{1.3 \times 280}{1}$$

$$T_2 = 364 \text{ K}$$

$$T_2 = 364 - 273 = 91 \, ^{\circ}\text{C}$$

ઉદાહરણ 6 : 0 °C તાપમાને અને 1 atm દબાણે એક મોલ આદર્શવાયુનું કદ શોધો.

ઉકેલ :
$$T = 0$$
 °C = $0 + 273 = 273$ K $\mu = 1$ મોલ $P = 1$ atm = 1.01×10^5 N m⁻² R = 8.31 J mol⁻¹ K⁻¹ V = ?

આદર્શવાયુ અવસ્થા-સમીકરણ મુજબ, $PV = \mu RT$

$$\therefore V = \frac{\mu RT}{P} = \frac{1 \times 8.31 \times 273}{1.01 \times 10^5}$$
$$= 0.0224$$

$$\therefore$$
 V = 22.4 × 10⁻³ m³ = 22.4 L

8.5 વાયુનો ગતિવાદ (Kinetic Theory of Gases)

અત્યાર સુધી આપશે આદર્શ વાયુની સ્થૂળ વ્યાખ્યા, તેની સ્થૂળ રાશિઓ જેવી કે કદ, દબાણ, તાપમાન વગેરે વચ્ચેના આંતર-સંબંધ દ્વારા આપી. હકીકતમાં ગતિવાદ મુજબ આ ગણતરીઓ વાયુના ઘટકકણો સાથે સંકળાયેલી સૂક્ષ્મ રાશિઓ જેવી કે અણુની ઝડપ, વેગમાન, તેની ગતિ-ઊર્જા વગેરેને અનુલક્ષીને આપવામાં આવે છે. આ ગણતરીઓ પરથી સ્થૂળ રાશિઓ સમજી શકાય, જે માટે વિજ્ઞાનીઓએ આદર્શવાયુ માટેનું વૈચારિક મૉડેલ ઉપજાવી કાઢ્યું જે પૂર્વધારણાઓ પર આધારિત છે. આમ, આદર્શવાયુ માટે કરવામાં આવેલી પૂર્વધારણાઓ આદર્શવાયુની સૂક્ષ્મ વર્ણન પર આધારિત વ્યાખ્યા પૂરી પાડે છે. આ પૂર્વધારણાઓ વડે રચાતું વૈચારિક માળખું આદર્શવાયુનું અશુમૉડેલ (Molecular Model of Ideal Gas) કહેવાય છે.

8.5.1 આદર્શ વાયુનું અશુમાંડેલ : પૂર્વધારણાઓ (Molecular Model of an Ideal Gas : Postulates)

(1) વાયુ સૂક્ષ્મ કશોનો બનેલો છે. આ કશોને વાયુના અશુઓ (Molecules) કહે છે.

વાયુના અશુઓ એક-પરમાણ્વિક, દ્વિ-પરમાણ્વિક કે બહુ પરમાણ્વિક હોઈ શકે છે. જો વાયુ કોઈ એક જ તત્ત્વ (Element) કે સંયોજન (Compound)નો બનેલો હોય તથા રાસાયણિક દેષ્ટિએ સ્થિર હોય, તો તેના બધા જ અશુઓ એકસમાન હોય છે.

- (2) વાયુના અશુઓ આંતરિક બંધારણ વિનાના સંપૂર્ણ દેઢ ગોળાઓ/ક્શો (Rigid spheres) ગણી શકાય છે.
- (3) વાયુના અશુઓ સતત અસ્તવ્યસ્ત ગતિ (Incessant random motion) કરે છે.

આ ગતિ દરમિયાન અશુઓ એકબીજા સાથે તેમજ વાયુપાત્રની દીવાલ સાથે સ્થિતિસ્થાપક અથડામણ અનુભવે છે.

(4) વાયુના અશુઓ ન્યૂટનના ગતિના નિયમોને અનુસરે છે.

અણુઓની અસ્તવ્યસ્ત ગતિ દરમિયાન બે ક્રમિક અથડામણો વચ્ચે અણુઓ ન્યૂટનના ગતિના પહેલા નિયમ અનુસાર સુરેખપથ પર મુક્ત રીતે અચળ ઝડપે ગતિ કરતાં હોય છે. અથડામણ દરમિયાન ન્યૂટનના ગતિના બીજા અને ત્રીજા નિયમ અનુસાર વાયુના અણુઓની ગતિની ઝડપ અને દિશા બદલાય છે.

(5) વાયુ ઘણી મોટી સંખ્યામાં અણુઓ ધરાવે છે.

અશુઓની સંખ્યા ઘણી મોટી છે, તેમ કહેવાનો મતલબ એ કે આપણે દરેક અણુની વ્યક્તિગત ગતિનો અભ્યાસ કરી શકતા નથી. વળી, અણુઓની સંખ્યા ખૂબ મોટી ધારીએ, તો ઘણી મોટી સંખ્યામાં અશુઓ વચ્ચે અથડામણો થાય અને તેમની ગતિની અસ્તવ્યસ્તતા જળવાઈ રહે.

(6) વાયુના અણુઓનું કદ વાયુના (વાયુપાત્રના) કદની સરખામણીમાં અવગણી શકાય તેવું (નજીવું) હોય છે.

એટલે કે અશુઓ વચ્ચેના સરેરાશ અંતરની સરખામશીમાં અશુનો વ્યાસ ખૂબ જ નાનો હોય છે, જેથી અશુઓ વચ્ચેની આંતરક્રિયાઓ અવગણી શકાય છે.

- (7) જ્યારે વાયુના બે અશુઓ એકબીજાની ખૂબ જ નજીક આવે છે કે અથડાય છે, ત્યારે જ તેમની વચ્ચે (ગણનાપાત્ર) આંતર-અશુબળો લાગે છે.
- (8) અણુની અણુ સાથે તેમજ અણુઓની પાત્રની દીવાલ સાથે થતી અથડામણો સ્થિતિસ્થાપક હોય છે. અથડામણ દરમિયાનનો સમયગાળો બે ક્રમિક અથડામણો (સંઘાત) વચ્ચેના સમયગાળાની સરખામણીમાં નજીવો હોય છે.

સ્થિતિસ્થાપક અથડામણ દરમિયાન ગતિ-ઊર્જાનું સંરક્ષણ થાય છે.

ઉદાહરણ 7: આપેલ દ્રવ્યમાનના પાણીના કદ કરતાં તેટલા જ દ્રવ્યમાનના પાણીની વરાળનું કદ આશરે 10^3 ગણું વધારે હોય, તો પાણીની વરાળમાં રહેલા અશુઓ વચ્ચેનું સરેરાશ અંતર શોધો. પાણીના અશુની ત્રિજયા $R=2\mathring{A}$ લો.

ઉકેલ : આપેલ દ્રવ્યમાનના પાણીના કદ કરતાં તેટલા જ દ્રવ્યમાનના પાણીની વરાળનું કદ 10³ ગણું વધારે હોવાથી, પાણીની વરાળના અણુઓને મળતી કદની ત્રિજ્યા (અશુઓને ગોળાકાર ધારતાં, તેમજ જગ્યા પણ

ગોળાકાર ધારતાં, $V = \frac{4}{3}\pi R^3 \Rightarrow R \propto V^{\frac{1}{3}}$ પ્રમાણે)

∴ R ∝
$$(10^3)^{\frac{1}{3}} = 10$$
 ગણી વધુ હોય છે.

આમ, પાણીની વરાળના દરેક અણુઓને મળતી કુલ ત્રિજ્યા (જગ્યા)

- = 10 × પાણીના અશુની ત્રિજ્યા
- $= 10 \times 2 \stackrel{\circ}{A}$
- =20 Å

આથી, પાસપાસે રહેલા પાણીની વરાળના બે અણુઓ વચ્ચેનું સરેરાશ અંતર $2 \times 20 = 40~{
m \AA}$

8.6 આદર્શ વાયુનું દબાણ (Pressure of an Ideal Gas) અને વાયુના અશુઓની rms ઝડપ (and rms speed of gas molecules)

આકૃતિ 8.4માં દર્શાવ્યા મુજબ ધારો કે l લંબાઇની દરેક બાજુઓવાળા સમઘન પાત્રમાં એક આદર્શ વાયુ ભરેલો છે અને સમઘન આકૃતિમાં દર્શાવ્યા મુજબ વાયુનો એક અશુ કે જેનો વેગ (v_x, v_y, v_z) છે, તે સમઘનની YZ સમતલને સમાંતર સપાટી, કે જેનું ક્ષેત્રફળ

 $A=l^2$ છે, સાથે અથડાય છે. અથડામણ સ્થિતિસ્થાપક હોવાથી વેગના Y અને Z દિશામાંના ઘટકો બદલાતા નથી, પરંતુ ફક્ત X દિશામાંના ઘટકની દિશા બદલાય છે. આમ, અથડામણ બાદ અણુનો વેગ $(-v_x\,,\,v_v\,,\,v_z)$ છે.

∴ અણુના વેગમાનમાં થતો ફેરફાર =

પાત્રની દીવાલ સાથે વાયુના અશુની સ્થિતિસ્થાપક અથડામણ આકૃતિ 8.4

આથી, વેગમાન સંરક્ષણના નિયમ મુજબ પાત્રની દીવાલને મળેલું વેગમાન = $+2mv_{_{r}}$

પાત્રની દીવાલ પર લાગતું બળ (અને દબાણ) મેળવવા માટે, એકમસમયમાં દીવાલને મળતું વેગમાન શોધવું પડે. v_x જેટલો વેગ ધરાવતા જે અશુઓ દીવાલથી $\Delta d = v_x.\Delta t$ જેટલા અંતરે હશે, તે જ અશુઓ Δt સમયમાં દીવાલ સાથે અથડાઈ શકશે.

આમ, પાત્રની દીવાલ નજીકના $Av_x\Delta t$ જેટલા કદમાં રહેલા અશુઓ જ Δt સમયમાં દીવાલ સાથે અથડાશે. પરંતુ આ અશુઓમાંથી સરેરાશ અડધા અશુઓ દીવાલ તરફ ગતિ કરતા હશે અને અડધા અશુઓ દીવાલથી વિરુદ્ધ દિશામાં ગતિ કરતા હશે. આમ, (v_x, v_y, v_z) વેગ ધરાવતાં અને Δt સમયમાં દીવાલ સાથે અથડાતા અશુઓની સંખ્યા

$$\frac{1}{2} nAv_x \Delta t$$
 થશે.

જ્યાં n= એકમ કદમાં રહેલા અશુઓની સંખ્યા આ અશુઓ વડે Δt સમયમાં દીવાલને પ્રાપ્ત થયેલ કુલ વેગમાન

$$p_{1} = (2mv_{x}) \left(\frac{1}{2}nAv_{x}\Delta t\right)$$
 (8.6.1)

$$p_1 = nm A v_x^2 \Delta t$$
 (8.6.2) આથી Δt સમય દરમિયાન પાત્રની દીવાલ પર લાગતું કુલ બળ $F = \frac{p_1}{\Delta t}$.

આથી પાત્રની દિવાલ પર એકમ ક્ષેત્રફળ દીઠ લાગતું દબાણ

$$P = \frac{F}{A} = \frac{p_1}{\Delta t \cdot A} = nmv_x^2 \qquad (8.6.3)$$

ખરેખર તો વાયુના દરેક અશુનો વેગ એકસરખો હોતો નથી. આથી સમીકરણ (8.6.3) ફ્રક્ત v_x વેગ ધરાવતા તથા એકમ કદમાં રહેલા n અશુઓના સમૂહ વડે દીવાલ પર લાગતું દબાશ દર્શાવે છે.

આથી v_x^2 નું સરેરાશ મૂલ્ય લેતાં મળતું કુલ દબાશ $P = nm < v_x^2 >$ (8.6.4)

∴
$$P = \rho < v_x^2 >$$
 (8.6.5)

જ્યાં, $< v_x^2 > = v_x^2$ નું સરેરાશ મૂલ્ય,

તથા nm=
ho= વાયુની ઘનતા

વાયુ (સમદિગધર્મી) હોવાથી, વાયુના અશુઓ દરેક દિશામાં જુદા-જુદા વેગથી ગતિ કરતા હશે તથા દરેક દિશામાં તેમના સરેરાશ વર્ગિત વેગનાં મૂલ્યો સમાન હશે. એટલે કે,

$$\langle v_x^2 \rangle = \langle v_y^2 \rangle = \langle v_z^2 \rangle$$
 (8.6.6)
 $eq \langle v^2 \rangle = \langle v_x^2 \rangle + \langle v_y^2 \rangle + \langle v_z^2 \rangle$
 $= 3 \langle v_x^2 \rangle = 3 \langle v_y^2 \rangle = 3 \langle v_z^2 \rangle$

$$\therefore < v_x^2 > = < v_y^2 > = < v_z^2 > = \frac{1}{3} < v^2 >$$

જ્યાં < v^2 > = વાયુના અશુઓનો સરેરાશ વર્ગિત વેગ

સમીકરણ (8.6.7)નો ઉપયોગ સમીકરણ (8.6.5)માં કરતાં

$$\therefore P = \left(\begin{array}{c} \frac{1}{3} \end{array} \right) \rho < v^2 > \tag{8.6.8}$$

સમીકરણ (8.6.5) અને (8.6.8) આદર્શ વાયુના દબાણનું મૂલ્ય આપે છે.

 v_{rms} : સરેરાશ વર્ગિત ઝડપ $< v^2 >$ ના વર્ગમૂળને v_{rms} (root mean squared speed) કહે છે. આ એક ખાસ પ્રકારની આણ્વિક ઝડપ છે. સમીકરણ (8.6.8) પરથી

$$v_{rms} = \sqrt{\frac{3P}{\rho}} \tag{8.6.9}$$

બે સ્પષ્ટતાઓ :

(1) આપણે વાયુપાત્રને સમઘન ધાર્યું છે, પરંતુ વાસ્તવમાં આકારનું કોઈ મહત્ત્વ નથી. કોઈ પણ આકારના પાત્ર માટે આપણે અતિ સૂક્ષ્મ સપાટીખંડ (સપાટ) ધારી શકીએ અને આગળ સમજાવ્યા મુજબ ગણતરી કરી શકીએ. સમીકરણ (8.6.8)માં A અને Δt બંને આવતા નથી. પાસ્કલના નિયમ મુજબ ઉષ્મીય અને યાંત્રિક સંતુલનમાં રહેલા વાયુ માટે દરેક જગ્યાએ દબાણ એકસરખું હોય છે.

(2) ઉપરની ગણતરીમાં આપણે અઘુઓ વચ્ચેની અથડામણો ગણતરીમાં લીધી નથી. Δt સમયમાં દીવાલ સાથે અથડાતા અઘુઓની સંખ્યા $\frac{1}{2}$ $nAv_x\Delta t$ છે. સંતુલન સ્થિતિમાં વાયુના અઘુઓ એકબીજા સાથે અસ્તવ્યસ્ત રીતે અથડાતાં હોય છે. જયારે $(v_x\,,v_y\,,v_z)$ વેગ ધરાવતો અઘુ બીજા કોઈ અન્ય વેગ ધરાવતાં અઘુ સાથે અથડાય છે, ત્યારે બીજો અઘુ $(v_x\,,v_y\,,v_z)$ વેગ ધારણ કરે છે અને પહેલા અઘુનો વેગ બદલાય છે. આમ, કોઈ પણ અથડામણ દરમિયાન $< v_x^2 >$ (એટલે કે $< v^2 >$) નું મૂલ્ય બદલાતું નથી. આમ, વાયુના અઘુઓની આંતરિક અથડામણોની અસર દબાણ P (સમીકરણ 8.6.8) પર થતી નથી.

8.7 ગતિઊર્જા અને તાપમાન (Kinetic Energy and Temperature)

સમીકરણ (8.6.8) પરથી આપણે લખી શકીએ કે,

$$PV = \frac{1}{3} \ nVm < v^2 > \tag{8.7.1}$$

:.
$$PV = \frac{2}{3} N \cdot \frac{1}{2} m < v^2 >$$
 (8.7.2)

જ્યાં N=nV= આપેલ વાયુના અશુઓની સંખ્યા,

અને $\frac{1}{2}$ $m < v^2 > =$ વાયુના અણુઓની સરેરાશ રેખીય ગતિ-ઊર્જા

આદર્શ વાયુની ઊર્જા, કુલ ગતિ-ઊર્જા જેટલી હોય છે. એટલે કે,

$$E = N \frac{1}{2} m < v^2 > \tag{8.7.3}$$

સમીકરણ (8.7.2) અને (8.7.3) પરથી,

$$PV = \frac{2}{3} E$$
 (8.7.4)

સમીકરણ (8.7.4) ને આદર્શ વાયુના સમીકરણ (8.4.5) $_{(\mathrm{P}}\mathrm{V}=k_{\mathrm{B}}\mathrm{NT}) \ \mathrm{સાથે} \ \ \mathrm{Azખાવતi},$

$$\frac{2}{3} E = k_{\rm B} NT$$

$$\therefore E = \frac{3}{2} k_{\rm B} NT$$
(8.7.5)

સમીકરણ (8.7.3) અને (8.7.5) પરથી,

$$\frac{E}{N} = \frac{1}{2} m < v^2 > = \frac{3}{2} k_B T$$
 (8.7.6)

$$v_{rms} = \sqrt{\frac{3K_BT}{m}}$$

આમ, વાયુના અશુની સરેરાશ ગતિ-ઊર્જા, વાયુના નિરપેક્ષ તાપમાનના સમપ્રમાણમાં હોય છે તથા તે વાયુનાં દબાણ, કદ કે પ્રકાર (પ્રકૃતિ) પર આધાર રાખતી નથી.

આ અગત્યનું પરિશામ વાયુના તાપમાન (જે સ્થૂળ રાશિ છે અને તે તંત્રમાં સૂક્ષ્મ સ્તરે બનતી ઘટનાઓની સરેરાશ સંયુક્ત અસર રૂપે જોવા મળે છે) ને વાયુના અશુઓની સરેરાશ ગતિ-ઊર્જા સાથે સાંકળે છે. સમીકરણ (8.7.5) દર્શાવે છે કે (આદર્શ) વાયુની આંતરિક ઊર્જા ફક્ત તેના તાપમાન પર આધાર રાખે છે, જ્યારે તે દબાણ અને કદ પર આધાર રાખતી નથી. તાપમાનના આ અર્થઘટન પરથી કહી શકાય કે (આદર્શ) વાયુનો ગતિવાદ, આદર્શ વાયુના સમીકરણ અને વાયુ માટેનાં બીજાં સમીકરણોનું સમાધાન કરે છે.

8.8 ઊર્જાના સમવિભાજનનો નિયમ તથા મુક્તતાના અંશો (Law of Equipartition of Energy and Degrees of Freedom)

આપેલો અશુ જેટલી સ્વતંત્ર પ્રકારની ગતિ ધરાવી શકે તેને તે વાયુ તંત્રની મુક્તતાના અંશો (degress of freedom) કહેવાય છે.

વાયુ પાત્રમાં વાયુના દરેક અશુની સરેરાશ ગતિ-ઊર્જા $<E>=\frac{1}{2}m< v_x^2>+\frac{1}{2}m< v_y^2>+\frac{1}{2}m< v_z^2> \\ <E>=\frac{3}{2}\,k_{\rm B}{\rm T}$ જેટલી હોય છે. (8.8.1)

પરંતુ વાયુ સમિંદિગધર્મી (isotropic) હોવાથી $\therefore < v_x^2 > = < v_y^2 > = < v_z^2 > = \frac{1}{3} < v^2 >$

$$\therefore$$
 < E > = $\frac{3}{2}m < v_{\chi}^2 > = \frac{3}{2}k_{\rm B}T$ (8.8.2)

$$\therefore \frac{1}{2}m < v_X^2 > = \frac{1}{2}k_{\rm B}T \tag{8.8.3}$$

આમ, વાયુપાત્રમાં વાયુના અશુઓ જેટલી સ્વતંત્ર રીતે (સ્વતંત્ર પ્રકારની અને દિશામાં) ગતિ કરી શકે, તે દરેક ગતિ સાથે ઊર્જા $\frac{1}{2} k_{\mathrm{B}} \mathrm{T}$ હોય છે.

સમીકરણ (8.8.1) માં દર્શાવ્યા મુજબ વાયુના અણુઓ x, y અને z દિશામાં સ્વતંત્ર રીતે રેખીય ગતિ કરી શકે છે. જો વાયુ દ્વિ-પરમાણ્વિક અશુઓનો બનેલો હોય, તો અશુઓને રેખીય ગતિ ઉપરાંત ચાકગતિ અને કંપન (પોતાના સ્થાનની આસપાસ પરમાણુઓનું આંદોલન) ગતિ પણ હોઈ શકે છે. આ અશુઓની ચાકગતિ બે સ્વતંત્ર દિશામાં હોઈ શકે :

- (1) અશુમાંના બે પરમાશુઓને જોડતી રેખાને લંબ રૂપે રહેલ એક અક્ષને અનુલક્ષીને અને
- (2) આ રેખા તેમજ ઉપર્યુક્ત અક્ષને લંબરૂપે રહેલ બીજા અક્ષને અનુલક્ષીને (જુઓ આકૃતિ 8.5).

દ્ધિ-પરમાણ્વિક અણુની બે સ્વતંત્ર દિશાઓમાં ચાકગતિ આકૃતિ 8.5

આ ઉપરાંત દ્વિ-પરમાષ્ટ્રિવક અશુના પરમાશુઓ તેમને જોડતી રેખા પર પોતાના સ્થાનની આસપાસ કંપન (આવર્ત-દોલનો) પણ કરતાં હોય. (જુઓ આકૃતિ 8.6.)

હિ-પરમાણ્વિક અશુના પરમાશુઓનું તેમને જોડતી રેખા (y) પર તેમના સ્થાનની આસપાસ કંપન

આકૃતિ 8.6

આ કંપન (આવર્તદોલનો) દરમિયાન પરમાશુઓને સ્થિતિ-ઊર્જા અને ગતિ-ઊર્જા હોય છે.

એક પરમાણ્વીય અશુની મુક્તતાના અંશો \$\ \pm \scale \text{3} હોય છે, જ્યારે દ્ધિ-પરમાણ્વિક અશુની (દા.ત., CO) મુક્તતાના અંશો 7 હોય છે. જો દ્ધિ-પરમાણ્વિક અશુને rigid rotator (ચાકગતિ કરી શકે તેવો દઢ અશુ) તરીકે લેવામાં આવે (દા.ત., સામાન્ય તાપમાને O_2), તો તેની મુક્તતાના અંશો 5 હોય છે. ઊર્જાના સમવિભાજનના નિયમ અનુસાર આ દરેક મુક્તતાના અંશ સાથે સંકળાયેલી ઊર્જા $\frac{1}{2} k_{\rm B} {
m T}$ જેટલી હોય છે. (જ્યાં, $k_{\rm B}$ = બૉલ્ટ્ઝમાનનો અચળાંક).

ઉદાહરણ 8 : 27 °C તાપમાને 200 g ઑક્સિજનની ઉષ્મીય ગતિ સાથે સંકળાયેલી ઊર્જા શોધો. (ઑક્સિજનના અદ્યુને rigid rotator ગણો.)

6ક્લ : ઑક્સિજન દ્વિ-પરમાણ્વિક rigid rotator હોવાથી તેની મુક્તતાના અંશો 5 છે. દરેક મુક્તતાના અંશ સાથે સંકળાયેલી ઉષ્મીય ઊર્જા $\frac{1}{2}\,k_{_{\rm B}}{
m T}$ હોય છે.

 $32~g~{\rm O_2}$ માં 6.02×10^{23} અશુઓ હોય છે, આથી $200~g~{\rm O_2}$ માં અશુઓની સંખ્યા

$$= \frac{6.02 \times 10^{23} \times 200}{32}$$

 $= 3.76 \times 10^{24}$

 \therefore 200 g O $_2$ ની કુલ ઉષ્મીય ઊર્જા

$$= 3.76 \times 10^{24} \times \frac{5}{2} k_{\rm B} T$$

$$= 3.76 \times 10^{24} \times \left(\frac{5 \times 1.38 \times 10^{-23} \times 300}{2} \right)$$

$$= 3.8 \times 10^4 \text{ J}$$

8.8.1 ઊર્જાના સમવિભાજનના નિયમ વડે વાયુની વિશિષ્ટ ઉષ્મા નક્કી કરવી (Estimation of the specific heat of a gas from the law of equipartition of energy)

વિદ્યાર્થીમિત્રો, વાયુના અશુઓ જેટલી સ્વતંત્ર પ્રકારની ગિત કરી શકે તેને તે વાયુના અશુઓની મુક્તતાના અંશ કહે છે. આ દરેક મુક્તતાના અંશ સાથે સંકળાયેલ ઊર્જા $\frac{1}{2} k_{\rm B} T$ જેટલી હોય છે. એટલે કે જો વાયુના અશુઓની મુક્તતાના અંશો f હોય તો વાયુના અશુઓ જુદી જુદી f રીતે ઊર્જાનો સંગ્રહ કરી શકે. જો આપેલ વાયુના અશુઓની મુક્તતાના અંશ f હોય, તો વાયુના દરેક અશુ દીઠ સરેરાશ ઉષ્પીય ઊર્જા.

$$\mathbf{E}_{avg} = f \times \frac{1}{2} k_{B} \mathbf{T} = \frac{f}{2} k_{B} \mathbf{T}$$

જો આદર્શ વાયુના મોલની સંખ્યા μ હોય તો તેમાં રહેલા અશુઓની સંખ્યા μN_A થાય. આથી, μ મોલ આદર્શ વાયુની આંતરિક ઊર્જા,

$$E_{int} = \mu N_A E_{avg}$$

$$= \mu N_A \frac{f}{2} k_B T$$

$$= \frac{f}{2} \mu N_A k_B T$$

$$\therefore E_{int} = \frac{f}{2} \mu RT \qquad (8.8.4)$$

જ્યાં $\mathbf{R} = \mathbf{N}_{\mathrm{A}} \mathbf{k}_{\mathrm{B}} = \mathbf{H}$ વિત્રિક વાયુ નિયતાંક

સમીકરણ (8.8.4) દર્શાવે છે કે આપેલ જથ્થાના આદર્શ વાયુની આંતરિક ઊર્જા \mathbf{E}_{int} , તે વાયુના તાપમાન પર આધાર રાખે છે.

આપેલ પદાર્થના એકમ દળ દીઠ તેના તાપમાનમાં એક એકમ જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે પદાર્થના દ્રવ્યની વિશિષ્ટ ઉષ્મા કહે છે. વાયુઓ માટે એકમ દળ તરીકે એક મોલ જથ્થો લેવામાં આવે છે. આથી,

વાયુના એક મોલ દીઠ તેના તાપમાનમાં 1 કેલ્વિન (કે 1 °C) જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે વાયુની મોલર વિશિષ્ટ ઉષ્મા કહે છે.

વાયુના તાપમાનમાં ફેરફાર કરવા માટેની અનેક રીતો પૈકી બે રીતો અગત્યની છે :

- (i) અચળ કંદે વિશિષ્ટ ઉષ્મા (C_v) : એક મોલ વાયુનું કંદ અચળ રાખીને તેના તાપમાનમાં 1 K જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે વાયુની અચળ કંદે વિશિષ્ટ ઉષ્મા C_v કંહે છે.
- (ii) અચળ દબાયે વિશિષ્ટ ઉષ્મા (C_p) : એક મોલ વાયુનું દબાણ અચળ રાખીને તેના તાપમાનમાં 1 K જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે વાયુની અચળ દબાણે વિશિષ્ટ ઉષ્મા C_p કહે છે.

આગળ ઉપર આપણે વિશિષ્ટ ઉષ્માનો વધુ અભ્યાસ કરીશું.

8.9 સરેરાશ મુક્તપથ (Mean Free path)

આકૃતિ 8.7 માં વાયુના કોઈ એક અશુનો ગતિપથ દર્શાવ્યો છે. આ અશુના માર્ગમાં બીજો કોઈ અશુ આવે, ત્યારે તેમની વચ્ચે અથડામણ (સંઘાત) થતાં આ અશુની ગતિની ઝડપ અને દિશા બદલાય છે. આ અથડામણ બાદ બીજી અથડામણ ન થાય, ત્યાં સુધી આ અશુ અચળ ઝડપે સુરેખપથ પર ગતિ કરે છે. વાયુઓમાં NTP સરેરાશ મુક્ત ગતિ પથ 1000 Å ના ક્રમનો હોય છે.

અણુ-અણુ વચ્ચેની બે ક્રમિક અથડામણો વચ્ચેના સમયગાળામાં વાયુનો અણુ અચળ ઝડપે જેટલું સુરેખ અંતર કાપે તે અંતરને તે અણુનો મુક્તપથ (free path) કહે છે. વાયુના અશુએ કાપેલા મુક્તપથોના સરેરાશ મૂલ્યને સરેરાશ મુક્તપથ (mean free path) કહે છે.

વાયુના કોઈ એક અશુનો ગતિપથ આકૃતિ 8.7

ત વ્યાસના 2d વ્યાસનો સંઘાત ગોળો વાયુના અણુઓ (b)

d ત્રિજ્યા અને $ar{v}_I$ લંબાઈનો કાલ્પનિક નળાકાર (c) આકૃતિ 8.8

 $\bar{v} t$

આકૃતિ 8.8(a)માં દર્શાવ્યા મુજબ ધારો કે વાયુના અશુઓ d વ્યાસના ગોળાઓ છે. આથી બે અશુઓ એકબીજાથી d અંતરે આવે, ત્યારે તેમની વચ્ચે અથડામણ થશે.

ધારો કે d વ્યાસનો એક અશુ સરેરાશ વેગ $\frac{1}{v}$ થી ગિત કરે છે અને બાકીના બધા અશુઓ સ્થિર છે. આ અશુ બીજા કોઈ અશુથી d જેટલા અંતરે આવશે ત્યારે તેમની વચ્ચે અથડામણ થશે. t સમયમાં આવી અથડામણોની સંખ્યા ગણવા માટે આકૃતિ 8.8(b)માં દર્શાવ્યા મુજબ અશુના કેન્દ્રની આસપાસ અસરકારક d જેટલી ત્રિજયાનો (2d વ્યાસનો) એક કાલ્પનિક "સંઘાત ગોળો" દોરો.

t સમયમાં આ ગોળો π d^2 જેટલા આડછેદ ક્ષેત્રફળ અને \overline{v} t જેટલી લંબાઈવાળો નળાકાર (કાલ્પનિક) રચશે. (જુઓ આકૃતિ 8.8 (c)) એટલે કે આ અશુ t સમયમાં $\pi d^2 \overline{v}$ t જેટલા કદના કાલ્પનિક નળાકારમાંથી પસાર થશે. જો એકમ કદ દીઠ અશુઓની સંખ્યા n હોય, તો $\pi d^2 \overline{v}$ t કદના નળાકારમાં કુલ $n\pi$ $d^2 \overline{v}$ t જેટલા અશુઓ હશે. આથી આપશે વિચારેલ અશુ t સમયમાં કુલ $n\pi$ $d^2 \overline{v}$ t જેટલી અથડામશો અનુભવશે.

સરેરાશ મુક્ત પથ \overline{l} એ બે ક્રમિક અથડામણો વચ્ચેનું સરેરાશ અંતર છે.

∴ સરેરાશ મુક્તપથ =

 $\frac{(t \ \text{સમયમાં } \overline{\nu} \ \text{જેટલી ઝડપે અશુએ કાપેલ અંતર)}}{t \ \text{સમયમાં થતી કુલ અથડામણો}}$

$$\therefore \ \overline{l} = \frac{\overline{vt}}{n\pi d^2 \overline{vt}}$$
 (8.9.1)

$$\therefore \ \overline{l} = \frac{1}{n\pi d^2} \tag{8.9.2}$$

આ સૂત્રની તારવણીમાં આપણે બીજા અશુઓને સ્થિર ધાર્યા છે. ખરેખર તો વાયુના બધા અશુઓ ગતિ કરતા હોય છે અને તેમની અથડામણનો દર, સમીકરણ (8.9.1)માં તેમના સરેરાશ સાપેક્ષ વેગ < v_r > નો ઉપયોગ કરીને મેળવીએ તો

[સરેરાશ મુક્તપથ]
$$\bar{l} = \frac{1}{\sqrt{2}n\pi d^2}$$
 (8.9.3)

ઉદાહરણ 9: સામાન્ય તાપમાને અને દબાશે એક ઘન મીટર દીઠ નાઇટ્રોજન વાયુના અશુઓની સંખ્યા 2.7×10^{25} હોય, તો નાઇટ્રોજનના અશુઓનો સરેરાશ મુક્તપથ શોધો.

(નાઇટ્રોજન અશુનો વ્યાસ = 3.2×10^{-10} m)

ઉકેલ :

 $n = 2.7 \times 10^{25} \text{ molecule m}^{-3}$ $d = 3.2 \times 10^{-10} \text{ m}$

$$\therefore$$
 સરેરાશ મુક્તપથ $ar{l}=rac{1}{\sqrt{2}n\pi d^2}$

$$\therefore \ \bar{l} = \frac{1}{1.41 \times 2.7 \times 10^{25} \times 3.14 \times (3.2 \times 10^{-10})^2}$$

$$\therefore \bar{l} = 8.17 \times 10^{-8} \,\mathrm{m}$$

ઉદાહરણ 10 : આર્ગન વાયુના અશુની ત્રિજ્યા 1.78~Å હોય, તો 0~C તાપમાને અને 1~atm દબાશે આર્ગન વાયુના અશુઓનો સરેરાશ મુક્તપથ શોધો. $k_{\text{R}}=1.38\times 10^{-23}~\text{J}~\text{K}^{-1}$

ઉકેલ :

અહીંયાં, r=1.78 Å $=1.78\times 10^{-10}$ m $d=2r=3.56\times 10^{-10}$ m T=0 °C =237 K P=1 atm $=1.01\times 10^5$ N m $^{-2}$ સમીકરણ (8.4.6) પરથી, $P=nk_{\rm p}T$

$$\therefore n = \frac{P}{k_B T}$$

આથી આર્ગન વાયુના અણુનો સરેરાશ મુક્તપથ

$$\therefore \ \bar{l} = \frac{1}{\sqrt{2}n\pi d^2} = \frac{k_{\rm B}T}{\sqrt{2}\pi P d^2}$$

$$\therefore \ \bar{l} = \frac{1.38 \times 10^{-23} \times 273}{1.414 \times 3.14 \times 1.01 \times 10^5 \times (3.56 \times 10^{-10})^2}$$

$$\therefore \ \bar{l} = 6.65 \times 10^{-8} \,\mathrm{m}$$

સારાંશ

- 1. જયારે વાયુતંત્ર અને તેની સાથે સંકળાયેલ ઘટનાઓનું વર્શન સ્થૂળ રાશિઓ (જેવી કે દબાશ, તાપમાન, કદ વગેરે)ના સંદર્ભમાં કરવામાં આવે ત્યારે તેને સ્થૂળ વર્શન કહે છે.
- 2. **ગૅલ્યુસેકનો નિયમ :** આપેલ કદ માટે પૂરતી ઓછી ઘનતાવાળા નિશ્ચિત જથ્થાના વાયુનું દબાશ તેના નિરપેક્ષ તાપમાનના સમપ્રમાણમાં હોય છે.
- 3. **ઍવોગેડ્રોનો અધિતર્ક (નિયમ) :** એકસરખાં તાપમાન અને દબાણે એકમ કદમાં રહેલા વાયુના અશુઓની સંખ્યા એકસરખી હોય છે.
- 4. પ્રમાશિત તાપમાન (273 K) અને દબાશે (1 atm), 22.4 લિટર કદમાં રહેલા વાયુના જથ્થાનું દ્રવ્યમાન તેના (ગ્રામમાં) અશુભાર જેટલું હોય છે. વાયુના આ જથ્થાને 1 mole કહે છે.
- 5. **આદર્શ વાયુ**: જે વાયુ દરેક તાપમાન અને દબાશે સમીકરણ $PV = \mu RT$ નું સંપૂર્શપશે પાલન કરે, તેને આદર્શ વાયુ કહે છે. (વાસ્તવમાં કોઈ વાયુ આદર્શ વાયુ નથી.)
- 6. બોઇલનો નિયમ : અચળ તાપમાને પૂરતી ઓછી ઘનતાવાળા નિશ્ચિત જથ્થા (દળ)ના વાયુનું દબાણ તેના કદના વ્યસ્ત પ્રમાણમાં બદલાય છે.
- 7. **ચાર્લ્સનો નિયમ :** અચળ દબાણે, પૂરતી ઓછી ઘનતાવાળા નિશ્ચિત જથ્થાના વાયુનું કદ તેના નિરપેક્ષ તાપમાનના સમપ્રમાણમાં બદલાય છે.
- 8. વાયુના અશુઓની સરેરાશ ગતિ-ઊર્જા વાયુના નિરપેક્ષ તાપમાનના સમપ્રમાણમાં હોય છે તથા તે વાયુનાં દબાણ, કદ કે પ્રકાર (પ્રકૃતિ) પર આધાર રાખતી નથી.
- 9. વાયુની આંતરિક ઊર્જા ફક્ત તેના **તાપમાન** પર આધાર રાખે છે, જ્યારે તે દબાણ અને કદ પર આધાર રાખતી નથી.
- 10. વાયુપાત્રમાં વાયુના અશુઓ જેટલી સ્વતંત્ર રીતે (સ્વતંત્ર પ્રકારની અને સ્વતંત્ર દિશામાં ગિત કરી શકે, તેને તે **વાયુતંત્રની મુક્તતાના અંશો** કહે છે. આ દરેક ગિત સાથે તેમની $\Im \sqrt{\frac{1}{2}} k_{\rm B}$ સંકળાયેલ હોય છે.
- 11. **મુક્તપથ :** અશુ-અશુ વચ્ચેની બે ક્રમિક અથડામશો વચ્ચેના સમયગાળામાં વાયુનો અશુ અચળ ઝડપે જેટલું સુરેખ અંતર કાપે તે અંતરને તે અશુનો મુક્તપથ કહે છે.
- 12. **સરેરાશ મુક્તપથ :** વાયુના અશુએ કાપેલા મુક્તપથોના સરેરાશ મૂલ્યને સરેરાશ મુક્તપથ કહે છે.
- 13. વાયુના એક મોલ દીઠ તેના તાપમાનમાં 1 કેલ્વિન (કે 1 °C) જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે વાયુની **મોલર વિશિષ્ટ ઉષ્મા** કહે છે.
- 14. અચળ કદે વિશિષ્ટ ઉષ્મા (C_v) : એક મોલ વાયુનું કદ અચળ રાખીને તેના તાપમાનમાં $1 \ \mathrm{K}$ જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે વાયુની અચળ કદે વિશિષ્ટ ઉષ્મા C_v કહે છે.
- 15. અચળ દબાણે વિશિષ્ટ ઉષ્મા (C_p) : એક મોલ વાયુનું કદ અચળ રાખીને તેના તાપમાનમાં 1 K જેટલો ફેરફાર કરવા માટે જરૂરી ઉષ્માના જથ્થાને તે વાયુની અચળ દબાણે વિશિષ્ટ ઉષ્મા C_p કહે છે.

સ્વાધ્યાય

નીચેનાં વિધાનો માટે આપેલા વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો :

- 1. જો વાયુનું કદ તેના મૂળ કદથી ચાર ગણું કરવું હોય, તો
 - (A) તેનું તાપમાન 4 ગણું કરવું જોઈએ.
 - (B) અચળ દબાણે તેનું તાપમાન 4 ગણું કરવું જોઈએ.
 - (C) તેનું દબાણ ચોથા ભાગનું કરવું જોઈએ.
 - (D) તેનું દબાણ ચાર ગણું કરવું જોઈએ.

2.	એક વાયુપાત્રમાં 2 kg હવા ભરેલી છે. તેનું દબાણ 10^5 Pa છે. જો આ પાત્રમાં 2 kg જેટલી વધારાની હવા અચળ તાપમાને ભરવામાં આવે તો, હવાનું દબાણ થશે.				
3.	(A) 10 ⁵ Pa વાયુ નિયતાંકનો SI એ		(C) $2 \times 10^5 \text{ Pa}$	(D) 10 ⁷ Pa	
	(A) cal mol ⁻¹	(B) J mol ⁻¹	(C) J mol ⁻¹ K ⁻¹	(D) J mol ⁻¹ K	
4.	એક આદર્શ વાયુનું કદ V , દબાણ P અને તાપમાન T છે. દરેક અશુનું દળ m છે, તો વાયુની ઘનતાનું સૂત્ર થશે.				
	(A) $mk_{\rm B}$ T	(B) $\frac{P}{k_BT}$	(C) $\frac{P}{k_B TV}$	(D) $\frac{Pm}{k_BT}$	
			(જ્યાં, $k_{_{ m B}}=$ બૉલ્ટ્ર	ઝમાનનો અચળાંક)	
5.	એક વાયુનું નિરપેક્ષ તાપમાન 3 ગણું કરવામાં આવે, તો તેના અણુઓની rms ઝડપ v_{rms} થશે.				
	(A) 3 ગણી	(B) 9 ગણી	(C) $\frac{1}{3}$ ગણી	(D) √3 ગણી	
6.	એક તાપમાને O_2 અશુ (અશુભાર = 32 g) ની સરેરાશ ગતિ-ઊર્જા $0.048~eV$ છે. આ જ તાપમાને N_2 (અશુભાર = 28 g) અશુની સરેરાશ ગતિ-ઊર્જા eV હશે.				
7.	(A) 0.048 (B) 0.042 (C) 0.056 (D) 0.42 એક વાયુપાત્રમાં $1 \text{ mole } O_2$ (અશુભાર = 32 g) વાયુ ભર્યો છે. તેનાં તાપમાન અને દબાશ અનુક્રમે T અને P છે. હવે બીજા સમાન કદ ધરાવતાં પાત્રમાં 1 mole He (પરમાશુભાર = 4 g) વાયુ $2T$ તાપમાને ભરવામાં આવે, તો તે વાયુનું દબાશ હશે.				
	(A) P	(B) 2P	(C) 4 P	(D) $\frac{P}{2}$	
8.	ક્લોરિન વાયુના એક નમૂનામાં 300 K તાપમાને સરેરાશ ગતિ-ઊર્જા (અશુ દીઠ) = 6.21×10^{-21} J અને $v_{rms} = 325$ m s $^{-1}$ છે. તો 600 K તાપમાને આ રાશિઓનાં મૂલ્યો કેટલાં હશે ?				
	(A) 12.42×10^{-21} J, (C) 12.42×10^{-21} J,		(B) 6.21×10^{-21} J, (D) 12.42×10^{-21} J		
9.	એક ખુલ્લા મોઢાવાળા પાત્રમાં $60~^{\circ}$ C તાપમાને હવા ભરેલી છે. આ પાત્રને T તાપમા સુધી ગરમ કરતાં પાત્રમાંથી $\frac{1}{4}$ ભાગની હવા બહાર નીકળી જાય છે, તો $T=$				
	(A) 80 °C	(B) 444 °C	(C) 333 °C	(D) 171 °C	
10.	એક બંધ ઓરડીમાં પંખો ચાલુ રાખવામાં આવે, તો ઓરડી				
11.	(A) ઠંડી થાય. (C) નું તાપમાન જળવા વાયુના અશુઓ વચ્ચે ઉદ	્ભવતું આંતર-અશુબળ,			
	આંતર-અશુબળો (A) કરતાં વધારે	હાય છ.	(B) જેટલું		
	(C) ની સરખામણીમાં અ	વગણી શકાય તેવું			
12.	આપેલ પદાર્થના એકમ	_	=	ફેરફાર કરવા માટે	
	જરૂરી ઉખ્માના જથ્થાને તે પદાર્થના દ્રવ્યની કહે છે.				
	(A) વિશિષ્ટ ઉષ્મા		(B) ગતિ ઊર્જા		
	(C) ઉષ્મા ઊર્જા		(D) આંતરિક ઊર્જા		

13.	આપેલ જથ્થાના આદર્શ વાયુની આંતરિક રાખે છે.	ઊર્જા, તે વાયુના	પર આધાર			
	(A) દબાણ (B) તાપમાન	(C) 85	(D) эчы н гэ			
14.	NTP વાયુઓમાં સરેરાશ મુક્ત ગૃતિપથ					
	(A) 1 Å (B) 10 Å	(C) 10^3 Å	(D) 10 ⁵ Å			
15.	વાયુના અશુઓનું કદ વાયુના (વાયુ પાત્રના)					
		(B) અવગણી શકાય તે				
	(C) ઘશું વધારે	(D) બમણું				
16.	જો વાયુના અશુઓની મુક્તતાના અંશો f હોય	• •	જદી જદી			
	રીતે ઊર્જાનો સંગ્રહ કરી શકે.					
	(A) $2f$ (B) f	(C) f / 2	(D) f^2			
17						
17.	આપેલ અચળ તાપમાન અને દબાણ માટે એકમ	કદ દાઠ વાયુના અશુઅ	ાના સબ્યા			
	(A) દરેક વાયુ માટે જુદી-જુદી હોય છે. (B) વાયુના અશુઓનાં કદ પ્રમાણે બદલાય છે.					
	(C) વાયુના અશુભારના સમપ્રમાણમાં હોય છે					
	(D) દરેક વાયુ માટે સરખી હોય છે.	•				
19	્છ) ઇરક વાયુ વાટ વારવા હાય છે. . વાયુપાત્રમાં વાયુના અણુઓની આંતરિક અથડામણોના કારણે વાયુનું દબાણ					
10.	· · ·	0.0				
	(A) બદલાતું નથી.	(B) સતત બદલાયા ક	· ·			
	(C) ધીમે-ધીમે વધે છે.	(D) ધીમે-ધીમે ઘટતું `	જાય છ.			
19.	CO વાયુની મુક્તતાના અંશો હોય છ					
	(A) 3 (B) 5	(C) 7	(D) 9			
20.	વાયુના અશુઓની સરેરાશ ગતિ-ઊર્જા					
	(A) વાયુના નિરપેક્ષ તાપમાનના સમપ્રમાણમાં હોય છે.					
	(B) વાયુના દબાણ પર આધાર રાખે છે.					
	(C) વાયુના કદ પર આધાર રાખે છે.					
21	(D) વાયુના પ્રકાર પર આધાર રાખે છે. Ar, Ne, He વગેરે નિષ્ક્રિય વાયુઓની મુક્તત	பட பட்ளி வி	المنامة المالات المالات			
41.	Ai, Ne, He पंगर निष्युप पायुगाना मुक्तत	ાળા અસા હા	ય છે. (અદ્યુપ figiti			
	(A) 3 (B) 5	(C) 7	(D) 9			
22.	સામાન્ય તાપમાને ઑક્સિજન O ₂ ની મુક્તતાન	• •				
	(A) 3 (B) 5	(C) 7	(D) 9			
23.	બે ક્રમિક અથડામણો વચ્ચેના વાયુના અશુઅ	• •	, ,			
	કહે છે.	•				
	(A) મુક્તતાના અંશો	(B) મુક્તપથ				
	(C) જનમાર્ગ	(D) સરેરાશ મુક્તપથ				
જવાબો						
	1. (B) 2. (C) 3. (C) 4. (1)	D) 5. (D) 6	(A)			
	7. (B) 8. (D) 9. (D) 10. (
	13. (B) 14. (C) 15. (B) 16. (
	19. (C) 20. (A) 21. (A) 22. (
નીચે	આપેલા પ્રશ્નોના જવાબ ટૂંકમાં આપો :					
1.	વાયુનો ગતિવાદ કઈ સ્થૂળ રાશિઓનું અર્થઘટન સમજાવે છે ?					
		હોય છે ?				

- 3. કયા તાપમાન અને દબાણ માટે વાસ્તવિક વાયુ આદર્શવાયુ તરીકે વર્તે છે ?
- 4. આદર્શ વાયુનું અશુમૉડેલ શેના પર આધારિત છે ?
- આદર્શ વાયુનું દબાણ શોધવા માટે વાયુપાત્ર કેવા આકારનું હોવું જોઈએ ?
- વાયુના અણુઓની સ્થિતિસ્થાપક અથડામણ દરમિયાન શેનું સંરક્ષણ થાય છે?
- **7.** વાયુના અણુઓની સરેરાશ ગતિ-ઊર્જા શેના પર આધાર રાખતી નથી ?
- 8. સ્થૂળ રાશિઓ કઈ-કઈ છે ?
- 9. સૂક્ષ્મ રાશિઓ કઈ-કઈ છે ?
- 10. વાયુના અશુઓની મુક્તતાના અંશો વ્યાખ્યાયિત કરો.
- 11. અચળ કદે વાયુની વિશિષ્ટ ઉષ્માની વ્યાખ્યા આપો.
- 12. અચળ દબાણે વાયુની વિશિષ્ટ ઉષ્માની વ્યાખ્યા આપો.

નીચેના પ્રશ્નોના જવાબ આપો :

- આદર્શ વાયુ માટેનું અવસ્થા-સમીકરણ લખો તથા તેનાં વિવિધ સ્વરૂપો સમજાવો.
- બૉઇલનો નિયમ લખો તથા આલેખ દ્વારા સમજાવો.
- વાયુના તાપમાનનું ગત્યાત્મક અર્થઘટન આપો.

અથવા

વાયુના તાપમાનનું અર્થઘટન વાયુના અશુઓની ગતિ-ઊર્જાના રૂપમાં સમજાવો.

- 4. વાયુપાત્રમાં રહેલા વાયુના અશુઓ વડે Δt સમયમાં વાયુપાત્રની દીવાલને પ્રાપ્ત થયેલ કુલ વેગમાન માટેનું સમીકરણ મેળવો.
- 5. વાયુપાત્રમાં રહેલા વાયુના અશુઓ વડે Δt સમયમાં વાયુપાત્રની દીવાલને પ્રાપ્ત થયેલ કુલ વેગમાન $P_1 = nmAv_x^2\Delta t$ હોય, તો વાયુપાત્રમાં રહેલા વાયુના દબાણ માટેનું સમીકરણ મેળવો.
- આદર્શ વાયુની સરેરાશ ઉષ્મીય ઊર્જા અને આંતરિક ઊર્જા તેના તાપમાનના સંદર્ભમાં સમજાવો.

નીચેના દાખલાઓ ગણો :

- કોઈ એક વાયુના ચોક્ક્સ જથ્થાનું 3 atm દબાશે કદ 12 L છે. અચળ તાપમાને વાયુનું દબાશ કેટલું કરવામાં આવે, તો તેનું કદ ઘટીને 9 L થાય ? [જવાબ : 4 atm]
- 2. 27 m³ કદવાળા એક ઓરડામાં 27 °C તાપમાને અને 1 atm દબાણે રહેલી હવાના અશુઓની સંખ્યા શોધો. ($k_{\rm B}=1.38\times 10^{-23}~{
 m J~K^{-1}}$) [જવાબ : 6.58×10^{26} અશુઓ]
- 27 °C તાપમાને હિલિયમ પરમાશુની સરેરાશ સુરેખ ગતિ-ઊર્જા શોધો.

$$(k_{\rm B} = 1.38 \times 10^{-23} \text{ J K}^{-1})$$
 [8414: 6.21 × 10⁻²¹ J]

4. કયા તાપમાને ઑક્સિજન વાયુના અશુનો v_{rms} , 27 °C તાપમાને હાઇડ્રોજન વાયુના v_{rms} જેટલો થશે ? ($m_{O_2}=32~{
m g~mol^{-1}},~m_{H_2}=2~{
m g~mol^{-1}}$) [જવાબ: 4800 K]