Identificação Automática de Espécies de Pássaros

Felipe Felix (f^2) July 24, 2017

IME-USP

Introdução

Processo de classificação:

- 1. O canto do pássaro é gravado no campo;
- 2. O áudio é pré-processado para melhorar a qualidade do sinal;
- 3. Extrai-se as características do sinal de áudio;
- 4. Então, utiliza-se as características em algoritmos de aprendizagem de máquina para produzir um procedimento de decisão para novas gravações.
 - · Framework clássico de aprendizagem supervisionada.

Formulação probabilística do problema

- Dado um sinal de áudio $\mathcal S$ contendo um canto de pássaro, precisamos escolher uma classe $\hat b$ de um conjunto finito de classes $\mathcal B$ que melhor representa a espécie que produz aquele canto.
- Seja \bar{X} o vetor de características derivado de \mathcal{S} , queremos determinar a classe $\hat{b} \in \mathcal{B}$ tal que:

$$\hat{b} = \underset{b \in \mathcal{B}}{\arg \max} P(b \mid \bar{X}) \tag{1}$$

Formulação probabilística do problema

· Pelo Teorema de Bayes:

$$\hat{b} = \underset{b \in \mathcal{B}}{\arg \max} \frac{P(\hat{X} \mid b)P(b)}{P(\hat{X})}$$
 (2)

- · Sabemos que $\sum_{b \in \mathcal{B}} P(b \mid \bar{X}) = 1$. Então $P(\bar{X}) = \sum_{b \in \mathcal{B}} P(\bar{X} \mid b) P(b)$.
- · Então a probabilidade desejada é:

$$P(b \mid \bar{X}) = \frac{P(\bar{X} \mid b)P(b)}{\sum_{b \in \mathcal{B}} P(\bar{X} \mid b)P(b)}$$
(3)

 Como o denominador da Eq. 3 é o mesmo para todas as classes, a solução é dada pela classe

$$\hat{b} = \arg\max_{b \in \mathcal{B}} P(\hat{X} \mid b) P(b) \tag{4}$$

Dataset

- Espécies de pássaros de uma região geográfica comum: Sul da Costa Atlântica Brasileira.
- · Dataset principal: 1619 gravações de 73 espécies de pássaros.
- Gravações baixadas do Xeno-Canto¹.
- Dataset secundário: derivado do principal. As gravações do dataset principal foram divididas em pulsos.
- · Pulso: Intervalo pequeno de som com altas amplitudes.

4

¹http://www.xeno-canto.org/

Extração de características

- Framework Marsyas²;
- 50+ features;

²http://marsyas.info/doc/sourceDoc/html/index.html

Experimentos

- 5-fold cross-validation: os resultados são obtidos de 5 repetições aleatórias;
- Os experimentos variam em três dimensões: sinal completo ou uso dos pulsos; uso de diferentes classificadores; número de classes.

	Number of considered species				
Classifier	3	5	8	12	20
Naïve Bayes	61.5	50.7	27.0	25.3	25.4
kNN (k = 3)	61.4	53.4	41.5	33.1	33.0
J4.8	50.6	41.7	29.4	28.2	26.9
MLP	69.6	69.6	55.0	48.8	47.4
SMO (Polynomial)	73.2	73.2	57.3	47.2	46.4
SMO (Pearson)	67.6	59.5	51.8	42.3	42.7

TABLE II F-MEASURE ON THE PULSES DATASET (%)

	Number of considered species				
Classifier	3	5	8	12	20
Naïve Bayes	45.9	32.9	27.4	24.8	17.6
kNN (k=3)	93.4	88.1	83.8	81.9	77.3
J4.8	87.4	76.9	74.1	67.3	60.2
MLP	94.6	88.4	82.4	76.2	68.3
SMO (Polynomial)	85.5	75.0	72.2	65.8	59.6
SMO (Pearson)	95.1	89.3	85.7	82.9	78.2

TABLE III F-Measure on the full audio dataset – random classes (%)

	Number of considered species			
Classifier	3	5	8	
Naïve Bayes	68.9	59.2	39.0	
kNN (k = 3)	80.9	66.2	42.2	
J4.8	60.4	51.8	36.9	
MLP	88.6	71.4	65.3	
SMO (Polynomial)	87.5	75.2	60.9	
SMO (Pearson)	60.0	65.0	42.9	

	Number of considered species			
Classifier	3	5	8	
Naïve Bayes	53.1	33.6	33.8	
$kNN \ (k=3)$	95.1	78.3	87.2	
J4.8	86.4	69.9	72.8	
MLP	96.4	83.1	87.4	
SMO (Polynomial)	94.4	69.9	76.3	
SMO (Pearson)	95.4	78.5	89.7	

Referências

[1] Lopes, Marcelo T., et al. "Automatic bird species identification for large number of species." Multimedia (ISM), 2011 IEEE International Symposium on. IEEE, 2011.