Colle 13A : Limites/continuité et anneaux/corps

Question de cours :

Donner les définitions d'un anneau, d'un corps et d'une algèbre.

Exercice 1:

Soit $(A, +, \times)$ un anneau. On définit le centre C de A par :

$$C = \{ x \in A \mid \forall a \in A, a \times x = x \times a \}$$

Montrer que C est un sous-anneau de A.

Exercice 2:

Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ continue. On suppose que $x \mapsto \frac{f(x)}{x}$ admet une limite finie $\ell < 1$ en $+\infty$. Montrer que f admet un point fixe.

Exercice 3 : Soit $f:[a,b] \to \mathbb{R}$ continue et $x_0 \in [a,b]$ tel que :

$$f(x_0) < \sup_{[a,x_0]} (f)$$

Montrer qu'il existe $u < x_0$ tel que $\sup_{[a,u]} (f) = \sup_{[a,x_0]} (f)$.

Valentin Messina

Aux Lazaristes - Maths Sup

Colle 13B : Limites/continuité et anneaux/corps

Question de cours :

Théorème de Heine.

Exercice 1:

Soit A un anneau tel que pour tout $x \in A, x^3 = x$.

- 1. Montrer que, pour tout $x \in A$, $6x = 0_A$.
- 2. Soit $B = \{x \in A \mid 2x = 0_A\}$ et $C = \{x \in A \mid 3x = 0_A\}$. Montrer que A = B + C.

Exercice 2:

Soit $f:\mathbb{R}\to\mathbb{R}$ admettant une limite finie en 0 et vérifiant :

$$\forall x \in \mathbb{R}, \quad f(x) = f\left(\frac{x}{2}\right)$$

Montrer que f est constante.

Exercice 3:

Soit $f:[a,b]\to\mathbb{R}$ uniformément continue. Montrer que f est bornée.

Colle 13C: Limites/continuité et anneaux/corps

Question de cours :

Théorème des bornes atteintes.

Exercice 1:

Soit $(A, +, \times)$ un anneau intègre et fini.

1. Soit $a \in A$ non nul. Montrer que l'application

$$\begin{array}{cccc} \varphi_a & : & A & \to & A \\ & x & \mapsto & ax \end{array}$$

est bijective.

2. En déduire que A est un corps.

Exercice 2:

Soit $f:[a,b]\to\mathbb{R}$ et $g:[a,b]\to\mathbb{R}$ deux fonctions continues telles que :

$$\forall x \in [a, b], \quad |f(x)| = |g(x)| \neq 0$$

Montrer que f = g ou f = -g.

Exercice 3:

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ continue de limite nulle en $+\infty$. Montrer que f est uniformément continue.