Number Theory

Ikhan Choi

July 22, 2022

Contents

Ι	Quadratic reciprocity	2
1	Quadratic residue1.1 Legendre symbol1.2 Gauss sum	3 3
2	Binary quadratic forms 2.1 Representation problems	5 5
3	Class groups	6
II	Multiplicative number theory	7
4	Arithmetic functions	8
5	Dirichlet's theorem	9
6	Prime number theorem	10
II	Quadratic Diophantine equations	11
7	Pell's equation 7.1 Continued fraction	12 12
8	<i>p</i>-adic numbers8.1 Hensel lemma	13 13
9	Local-global principle 9.1 Hasse-Minkowski theorem	14 14
IV	Elliptic curves	15
10	Elliptic curves over $\mathbb C$	16
11	Elliptic curves over \mathbb{Q} 11.1 Finitely generatedness	17 17
	11.2 Integral solutions	17
12	Elliptic curves over \mathbb{F}_p	18

Part I Quadratic reciprocity

Quadratic residue

1.1 Legendre symbol

1.1.

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} \quad (p \neq 2).$$

$$\left(\frac{2}{p}\right) = 1 \text{ if and only if } p \equiv \pm 1 \pmod{8} \quad (p \neq 2).$$

$$\left(\frac{3}{p}\right) = 1 \text{ if and only if } p \equiv \pm 1 \pmod{12} \quad (p \neq 2).$$

$$\left(\frac{5}{p}\right) = 1 \text{ if and only if } p \equiv \pm 1 \pmod{5} \quad (p \neq 2).$$

1.2.

$$x^2 \equiv 0, 1 \pmod{3,4}$$

 $x^2 \equiv 0, 1, 4 \pmod{5,8}$
 $x^2 \equiv 0, 1, 3, 4 \pmod{6}$
 $x^2 \equiv 0, 1, 2, 4 \pmod{7}$
 $x^2 \equiv 0, 1, 4, 7 \pmod{9}$
 $x^2 \equiv 0, 1, 4, 9 \pmod{12}$

1.2 Gauss sum

Higher order sides: At least a prime divisor of f with a congruence (e.g. 4k+3) Quantratic sides: Every prime divisor of f must satisfy a congruence (e.g. 4k+1)

Exercises

- **1.3** (Dirichlet theorems by quadratic reciprocity). (a) For $f(x) \in \mathbb{Z}[x]$, there exist infinitely many primes p such that $p \mid f(x)$ for some x.
 - (b) There are infinitely many primes p such that $p \equiv 1 \pmod{4}$.

Problems

- 1. Show that if $\frac{x^2+y^2+z^2}{xy+yz+zx}$ is an integer, then it is not divided by three. 2. There is no non-trivial integral solution of $x^4-y^4=z^2$.

Binary quadratic forms

2.1 Representation problems

Class groups

3.1 (Heegner number). There are only nine numbers

$$-1, -2, -3, -7, -11, -19, -43, -67, -163.$$

Exercises

3.2 (Mordell equation with no solutions). (a) $y^2 = x^3 + 7$ has no integral solutions.

3.3 (Mordell equation with solutions). (a) $y^2 = x^3 - 2$ has only two solutions.

Part II Multiplicative number theory

Arithmetic functions

Dirichlet's theorem

Prime number theorem

Part III Quadratic Diophantine equations

Pell's equation

7.1 Continued fraction

Diophantine approximation, Thue theorem

p-adic numbers

8.1 Hensel lemma

Local-global principle

9.1 Hasse-Minkowski theorem

Part IV Elliptic curves

Elliptic curves over $\ensuremath{\mathbb{C}}$

Elliptic curves over $\mathbb Q$

11.1 Finitely generatedness

Mordell-Weil, Mazur torsion

11.2 Integral solutions

Nagell-Lutz, Siegel, Baker's bound

Elliptic curves over \mathbb{F}_p