Biodegradable Polymers Non-resistant to environmental degradation and have functional group Similar to functional group of Biopolymers. Examples: Poly-\beta-hydroxy butyrate-cop \beta-hydroxy valerate (PHBv). NYLON-2-NYLON-6.

Types of Rubber

(i) Natural Rubber: Linear POLYMER OF ISOPPENE (2-mettiyl-1, 3-butadiene)

Vulcanisoltion of rubber: ROW RUBBER + SULPHUR

Stiffened rubber

Synthetic Rubber: Homopolymer of 1. 3-butadiene Derivative. Example: Buna-S. Buna-N Neoprene

Copolymerization: A mixture of more than one polymeric Species undergoing Polymerization.

Example: $n-CH_2 = CH - CH = CH_2$

 $(CH_2-CH=CH-CH_2-CH-CH_2)_n$

Very large molecules having high molecular mass. $(10^3 - 10^7 U)$

Based on Source

Based on Structure

Natural Polymers: Found in Plants and animals.

Examples: Proteins, Cellulose.

Semi-Synthetic Polymers:

These are Cellulose Derivative.

Examples: Cellulose Nitrate.

SYNTHETIC POLYMER: Man-made

Polymer.

Examples: Polythene. Buna-s. Nylon-6.6.

Linear: Long and Straight chains Examples: Fibres and Plastics.

Branched: Linear chains with branches.

Examples: Amylopectin, glycogen.

Cross linked or Network Polymer:

Strong covalent bonds between various Linear Polymer chains.

Examples: Bakelite. Melamine.

Based on Polymerization

Classification

Molecular mass of polymers

- · Expressed as an average
- · Determined By Physical and chemical method.

Neoprene:

Polymerisation $nCH_2 = CH - C = CH_2$ (CH, --- CH = C--- CH,)n

Polymers of Commercial Importance

(1) Polypropene used for Manufacturing of Ropes.and Toys. (2) Baklite is use for

Making Electrical Switches

Teflon: CatalySt $nCF_2 = CF_2$ pressure Tetrafluoromethane

Addition Polymer: Repeated Addition of Monomers containing Double or Triple bond.

Homopolyner: formed by polymerisation of Single monomeric

Species E.g. Polythene

Copolymer: If Two Different Monomers. are used, then it is known as copohymers.

Condensation polymer: Repeated Condensation between two differnt bi-functional or Tri-functional monomers forms condensation polymer.

Examples: Terylene, nylon 6

Melamine - formaldehyde Polymer

atpstar

Preparation

Nylon-6: Homopolymer of Caprolactan

Polyesters

Terylene (dacron)

Phenol

Nylon-6.6: Copolymer of Adipic Acid and Hexamethylene Diammine. nHOOC - (CH₂)₄ - COOH + <math>nH₂N - (CH₂)₆ - NH₂

Polyamides

Elastomer:

Rubber Like Solids with Elastic properties. Examples: Buna-S. Buna-N

Thermoplastic polymer:

Linear or Slightly branched chain capable of repeated Softening on heating.

Examples: Polythene. Polystyrene.

Fibers:

Thread forming Solids. Examples: Nylone 6.6. Terylene.

Thermosetting Polymer:

Cross linked or heavily branched molecules which on excessive heating cross link in mould and become infusible.

Examples: Bakelite

TYPES of Polymerization Re

Addition/Chain Growth: Governed by free Radical Mechanism. Steps Involved:

(a) Chain Initiation: C_6H_5 $-C_6H_5$ $2C_6H_5 \longrightarrow C \longrightarrow 2\dot{C}_6H_5 + CO_2$

(b) Chain Propagating Step:

$$C_{6}H_{5} - CH_{2} - \dot{C}H_{2} + \dot{C}H_{2} = \dot{C}H_{2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$C_{6}H_{5} - CH_{2} - CH_{2} - CH_{2} - \dot{C}H_{2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$C_{6}H_{5} - (CH_{2} - CH_{2})_{n} - CH_{2} - \dot{C}H_{2}$$

(c) Chain Termination Step:

$$2[C_{6}H_{5}-(CH_{2}-CH_{2})_{n}-CH_{2}-\dot{C}H_{2}] \longrightarrow$$

$$C_{6}H_{5}-(CH_{2}CH_{2})_{n}-CH_{2}CH_{2}-CH_{2}-(CH_{2}CH_{2})_{n}-C_{6}H_{5}$$

Condensation Step Growth: Involves Stepwise Intermolecular Condensation:

$$N-HOCH_2-CH_2OH+$$
 $O-CH_2-CH_2-CH_2OH+$

Terylene or Dacran

Thermosetting Resin Bakelite: Phenol formaldehyde resin. OH^-

© 08047484847

Terylene

