Control of Generation

- Optimal dispatch and scheduling of generation establishes the best operation point with respect to economics
- The operating point must be implemented via generation control
 - local generator control for each individual generator
 - energy control center for the control of a large utility and the flow of power across interconnections to other utilities
 - regional control over several utilities and the Independent Power Produces, IPP's
 - ISO Independent System Operator
 - RTO Regional Transmission System Operator

Overview of Control Problem

- Many generators supply power to the transmission system
 - consumer loads are constantly changing the power level
 - some control means needed to allocate the load changes to the generators
 - a governor on each unit maintains mechanical speed (electrical frequency)
 - supplementary control acts to allocate generation
 - influences the power output
 - control signal usually originates at a remote control center

Generator Model

- Definition of important terms,
 - ω = rotational speed
 - α = rotational acceleration
 - δ = phase angle of a rotating machine
 - T_{net} = net accelerating torque in a machine
 - T_{mech} = mechanical torque exerted on the machine by the turbine

mechanical*

electrical

energy

turbine T_{mech} T_{elec} generator

- $T_{\rm elec}$ = electrical torque exerted on the machine by the generator
- P_{net} = net accelerating power
- P_{mech} = mechanical power input
- P_{elec} = electrical power output
- I = moment of inertia for the machine
- M = angular momentum of the machine
 - all quantities, except for the phase angle, are expressed in per unit on the machine base and/or the standard system frequency base
 - steady-state and nominal values have a "0" subscript added

Generator Model

- Basic relationships
 - acceleration principle: $T_{not} = I \alpha$
 - momentum principle: $M = \omega I$
 - power equation: $P_{net} = \omega T_{net} = \omega (I \alpha) = M \alpha$
- Phase angle deviation
 - general shaft equation: $\omega = \omega_0 + \alpha t$ $\delta = \delta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$
 - deviation from nominal: $\frac{d}{dt}(\Delta \delta) = \Delta \omega = \alpha t$
 - relationship to torque: $T_{net} = T_{mech} T_{elec} = I \alpha = I \frac{d^2}{d\ell^2} (\Delta \delta)$
 - deviation of power: $P_{net} = P_{mech} P_{elec} = \omega T_{net} = \omega T_{\frac{d^2}{dt^2}}(\Delta \delta)$
 - the resulting swing eq.: $P_{mech} P_{elec} = M \frac{d^2}{dt^2} (\Delta \delta) = M \frac{d}{dt} (\Delta \omega)$

Generator Model

Laplace transform of the dynamic power equation

$$\begin{split} T_{mech0} &= T_{elec0} \\ T_{net} &= T_{mech0} - T_{elec0} + \Delta T_{mech} - \Delta T_{elec} = \Delta T_{mech} - \Delta T_{elec} \\ P_{net} &= \omega \, T_{net} = \omega \, \Delta T_{mech} - \omega \Delta T_{elec} = \Delta P_{mech} - \Delta P_{elec} \\ \Delta P_{mech} &- \Delta P_{elec} = M \, \frac{\mathrm{d}}{\mathrm{d}t} \big(\Delta \omega \big) \\ \Delta P_{mech} &- \Delta P_{elec} = M \, s \, \big(\Delta \omega \big) \end{split}$$

Block diagram model

Load Model

- Electrical loads consist of a variety of devices
 - purely resistive devices
 - power electronics
 - motor loads
 - motor loads dominate the mix of loads
- Motors exhibit a variable power-frequency characteristic
 - model of the effect of a frequency change on net load drawn $\Delta P_{L(freq)} = D \cdot \Delta \omega$
 - D is expressed as a percentage change in load per percentage change in frequency on the motor's power base
 - the value of D must be converted to the system power base for system studies

Load Model

- Block diagram modeling
 - basic frequency dependent load

$$\Delta\omega \longrightarrow D \longrightarrow \Delta P_{L(freq)}$$

rotating mass and load as seen by prime mover output

 \bullet the net change in the electrical power load, $P_{\rm elec}$, is

$$\Delta P_{elec} = \Delta P_L + D \Delta \omega$$

■ where \(\Delta P_L\) is the non-frequency-sensitive load change

Prime-Mover Model

The prime mover drives the generating unit

steam turbine

hydroturbine

 Modeling must account for control system characteristics

e.g., boiler and steam supply

Model of the non-reheat turbine

 relates the steam valve position to the output power

 "charging time" time constant, T_{CH}

• per unit change in valve position from nominal, $\Delta P_{\rm valve}$

rotating

Prime-mover model

Prime-mover-generator-load model

- The governor compensates for changes in the shaft speed
 - changes in load will eventually lead to a change in shaft speed
 - change in shaft speed is also seen as a change in system frequency
 - simplest type of control is the isochronous governor

- The isochronous governor
 - to force frequency errors to zero requires the use of an integration of the speed error
 - the isochronous governor can not be used when two or more generators are electrically connected to the same system
 - fighting between generator governors for system frequency
 - problems with load distribution between generators
- A load reference control provides settings for both the frequency and the desired output power
 - a new input, the load reference signal, controls the desired power output
 - feedback loop contains a gain R that determines a speed-droop characteristic

- Load reference control
 - the speed-droop function handles the load sharing between generators
 - there will always be a unique frequency at which the system loading will be shared among the generators
 - the gain R is equivalent to the per unit change in frequency for a 1.0 p.u. change in power: $R = \frac{\Delta \omega}{\Delta P}$ pure the steam valve shaft

• Simplification of the block diagram model

Governor Characteristics

Speed-droop characteristic

Allocation of unit outputs with governor droop

Governor Characteristics

Speed-changer settings

Complete Generator Model

Block diagram of governor, prime mover, rotating mass, and

transfer function of generator

$$\frac{\Delta\omega(s)}{\Delta P_L(s)} = \left[\frac{\frac{-1}{Ms+D}}{1 + \frac{1}{R} \left(\frac{1}{1+sT_G}\right) \left(\frac{1}{1+sT_{CH}}\right) \left(\frac{1}{Ms+D}\right)} \right]$$

Complete Generator Model

- Steady state behaviors
 - final value of the transfer function
 - using Laplace method

$$\Delta\omega|_{t=\infty} = \lim_{s\to 0} \left[s \ \Delta\omega(s)\right] = \Delta P_L \left[\frac{\frac{-1}{D}}{1 + \left(\frac{1}{R}\right)\left(\frac{1}{D}\right)}\right] = \frac{-\Delta P_L}{R^{-1} + D}$$

for several generators connected within the system

$$\Delta\omega = \frac{-\Delta P_L}{\frac{1}{R_{G1}} + \frac{1}{R_{G2}} + \dots + D}$$

- The power flow across a tie-line can be modeled using a linear load flow approach
 - steady-state or nominal flow quantity: $P_{\text{tie flow}} = \frac{1}{X_{\text{res}}} (\delta_1 \delta_2)$
 - deviation from the nominal tie-line flow

$$\begin{split} P_{\text{tie flow}} + \Delta P_{\text{tie flow}} &= \frac{1}{X_{\text{tie}}} \big[\big(\delta_1 + \Delta \delta_1 \big) - \big(\delta_2 + \Delta \delta_2 \big) \big] = \frac{1}{X_{\text{tie}}} \big(\delta_1 - \delta_2 + \big(\Delta \delta_1 - \Delta \delta_2 \big) \big) \\ \Delta P_{\text{tie flow}} &= \frac{1}{X_{\text{tie}}} \big(\Delta \delta_1 - \Delta \delta_2 \big) \end{split}$$

- ullet where $\Delta {oldsymbol{\mathcal{S}}}$ must be in radians for $\Delta P_{
 m tie}$ to be in per unit
- using the relationship for speed and $\Delta \delta$: $\Delta \delta = \frac{\omega_0}{s} \cdot \Delta \omega$

then
$$\Delta P_{\text{tie flow}} = \frac{\omega_0}{s} \frac{(\Delta \omega_1 - \Delta \omega_2)}{X_{\text{rie}}} = \frac{T}{s} (\Delta \omega_1 - \Delta \omega_2)$$

• where $T = 377 / X_{tie}$ for a 60-Hz system

Simplified control for two interconnected areas

- Consider two areas each with a generator
 - the two areas are connected with a single transmission line
 - the line flow appears as a load in one area and an equal but negative load in the other area
 - the flow is dictated by the relative phase angle across the line, which is determined by the relative speeds deviations
 - let there be a load change ΔP_{L1} in area 1
 - to analyze the steady-state frequency deviation, the tie-flow deviation and generator outputs must be examined

 after the transients have decayed, the frequency will be constant and equal to the same value in both areas

$$\begin{split} \Delta \omega_{\mathrm{l}} &= \Delta \omega_{\mathrm{2}} = \Delta \omega \quad \rightarrow \quad \frac{\mathrm{d}(\Delta \omega_{\mathrm{l}})}{\mathrm{d}t} = \frac{\mathrm{d}(\Delta \omega_{\mathrm{2}})}{\mathrm{d}t} = 0 \\ \Delta P_{\mathrm{mech-l}} - \Delta P_{\mathrm{tie}} - \Delta P_{L1} &= \Delta \omega \cdot D_{\mathrm{l}} \qquad \Delta P_{\mathrm{mech-l}} = \frac{-\Delta \omega}{R_{\mathrm{l}}} \\ \Delta P_{\mathrm{mech-2}} + \Delta P_{\mathrm{tie}} &= \Delta \omega \cdot D_{\mathrm{2}} \qquad \Delta P_{\mathrm{mech-2}} = \frac{-\Delta \omega}{R_{\mathrm{2}}} \end{split}$$

applying substitutions yields

$$\begin{split} -\Delta P_{\mathrm{tie}} - \Delta P_{L1} &= \Delta \omega \bigg(D_1 + \frac{1}{R_1} \bigg) \\ + \Delta P_{\mathrm{tie}} &= \Delta \omega \bigg(D_2 + \frac{1}{R_2} \bigg) \end{split}$$

additional simplification yields

$$\Delta\omega = \frac{-\Delta P_{L1}}{\frac{1}{R_1} + \frac{1}{R_2} + D_1 + D_2}$$

$$\Delta P_{\rm tie} = \frac{-\Delta P_{L1}\!\!\left(D_2 + \frac{1}{R_2}\right)}{\frac{1}{R_1} + \frac{1}{R_2} + D_1 + D_2}$$

- Notes
 - the new tie flow is determined by the net change in load and generation in each area, but not influenced by the tie stiffness
 - the tie stiffness determines the phase angle across the tie

- Example
 - consider two areas, each with a generator, motor loads, and a single tie-line connecting the two areas.
 - area 1: $R_1 = 0.01$ pu, $D_1 = 0.8$ pu, Base MVA = 500
 - area 2: $R_2 = 0.02$ pu, $D_2 = 1.0$ pu, Base MVA = 500
 - a load change of 100 MW (0.2 pu) occurs in area 1
 - find the new steady-state frequency and net tie flow change

$$\Delta \omega = \frac{-\Delta P_{L1}}{\frac{1}{R_1} + \frac{1}{R_2} + D_1 + D_2} = \frac{-0.2}{\frac{1}{0.01} + \frac{1}{0.02} + 0.8 + 1.0} = -0.001318$$

$$f_{new} = 60 + (-0.001318)(60) = 59.92$$
 Hz

$$\Delta P_{tie} = \Delta \omega \left(\frac{1}{R_2} + D_2\right) = (-0.001318) \left(\frac{1}{0.02} + 1\right) = 0.06719 \text{ pu} = 33.6 \text{ MW}$$

- Example
 - change in the prime movers

$$\Delta P_{mech1} = -\Delta \omega / R_1 = 0.001318 / 0.01 = 0.1318$$
 (65.88 MW)
 $\Delta P_{mech2} = -\Delta \omega / R_2 = 0.001318 / 0.02 = 0.0659$ (32.94 MW)

change in the motor loads

$$\Delta P_{L1(motor)} = \Delta \omega \ D_1 = -0.001318 \cdot 0.8 = -0.001054 \quad (-0.527 \text{ MW})$$

$$\Delta P_{L2(motor)} = \Delta \omega \ D_2 = -0.001318 \cdot 1.0 = -0.001318 \quad (-0.659 \text{ MW})$$

change in tie flow

$$\Delta P_{tie} = \Delta P_{mech2} - \Delta P_{L2(motor)} = 0.0672$$
 (33.6 MW)

change in apparent loading

$$\Delta P_{L1} = \Delta P_{mech1} - \Delta P_{L1(motor)} + \Delta P_{tle} = 0.200$$
 (100 MW)

- Automatic Generation Control (AGC) is a control system that has three major objectives
 - hold the system frequency at or very close to a specified nominal value (e.g., 60 Hz)
 - maintain the correct value of interchange power between control areas
 - enforce contracts for shipping or receiving power along the tielines to neighboring utilities
 - maintain each generating unit's operating point at the most economic value

Supplementary control action

- Tie-line control
 - two utilities will interconnect their systems for several reasons
 - buy and sell power with neighboring systems whose operating costs make the transactions profitable
 - improvement to overall reliability for events like the sudden loss of a generating unit
 - provide a common frequency reference for frequency restoration
 - define tie flows and tie flow changes
 - ullet total actual net interchange: $P_{
 m net\ int}$
 - + for power leaving the system; for power entering the system
 - ullet scheduled or desired value of interchange: $P_{
 m net\ int\ sched}$
 - change in tie flow: $\Delta P_{\text{net int}} = P_{\text{net int}} P_{\text{net int sched}}$

- Tie-line control
 - interconnections present a challenging control problem
 - consider a two-area system
 - both areas have equal load and generator characteristics (R₁ = R₂, D₁ = D₂)
 - assume that area 1 sends 100 MW to area 2 under an interchange agreement between the system operators of the two areas
 - let area 2 experience a sudden load increase of 30 MW, then both areas see a 15 MW increase in generation (because R₁ = R₂) and the tie flow increases from 100 to 115 MW
 - the 30 MW load increase is satisfied by a 15 MW increase in generation #2 plus a 15 MW increase in tie flow into area 2
 - this is fine, except that area 1 contracted to sell only 100 MW
 - generation costs have increased without anyone to bill
 - a control scheme is needed to hold the system to the contract

- Tie-line control
 - such a control system must use two pieces of information
 - the system frequency
 - the net power flow across the tie line
 - a few possible network conditions include
 - if the frequency decreases and net interchange power leaving the system increases, a load increase has occurred outside the area
 - if the frequency decreases and net interchange power leaving the system decreases, a load increase has occurred inside the area
 - define a control area
 - part of an interconnected system within which the load and generation will be controlled
 - all tie-lines that cross a control area boundary must be metered

- Tie-line control
 - control scheme actions

Δω	$\Delta P_{net\;int}$	ΔP_{L1}	ΔP_{I2}	Resulting control action
-	-	+	0	increase P _{gen} in area 1
+	+	-	0	decrease P _{gen} in area 1
-	+	0	+	increase P _{gen} in area 2
+	_	0	_	decrease P _{gen} in area 2

 ΔP_{L1} = Load change in area 1 ΔP_{L2} = Load change in area 2

- Tie-line control
 - for the first row of the control response table, it is required that

$$\Delta P_{gen1} = \Delta P_{L1}$$

$$\Delta P_{gen2} = 0$$

- the required change is known as the area control error (ACE)
- the equations for the ACE for each area

$$ACE_1 = -\Delta P_{\text{net int 1}} - B_1 \Delta \omega$$
$$ACE_2 = -\Delta P_{\text{net int 2}} - B_2 \Delta \omega$$

• B_1 and B_2 are the frequency bias factors, and are set accordingly

$$B_{1} = \frac{1}{R_{1}} + D_{1}$$

$$B_{2} = \frac{1}{R_{2}} + D_{2}$$

- Tie-line control
 - combining the ACE functions with the tie flow equations results in

$$ACE_{1} = \frac{\Delta P_{L1} \left(\frac{1}{R_{2}} + D_{2}\right)}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + D_{1} + D_{2}} - \left(\frac{1}{R_{1}} + D_{1}\right) \frac{-\Delta P_{L1}}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + D_{1} + D_{2}} = \Delta P_{L1}$$

$$ACE_{2} = \frac{\Delta P_{L1} \left(\frac{1}{R_{2}} + D_{2} \right)}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + D_{1} + D_{2}} - \left(\frac{1}{R_{2}} + D_{2} \right) \frac{-\Delta P_{L1}}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + D_{1} + D_{2}} = 0$$

Tie-line bias supplementary control for two areas

- A typical control area contains many generators
 - the individual outputs must be set according to economics
 - the solution of the economic dispatch must be coupled to the generation control system
 - the input consist of the total generation required for the area
 - in order to satisfy the load demand and maintain contractual power flows across the tie lines
 - the output is the power distribution across the outputs of all the generators within the control area
 - continuously varying system load demand
 - a particular total generation value will not exist for a very long time

- Economic generator control
 - it is impossible to simply specify a total generation, calculate the economic dispatch schedule, and give the control system the output schedule for each generator
 - unless such a calculation can be made very quickly
 - for digital control system it is desirable to perform the economic dispatch calculation at intervals of 1 to 15 minutes
 - independent of the calculation schedule
 - the allocation of generation must be made instantly whenever the required area total generation changes
 - the allocation control of generation must run continuously
 - a rule must be provided to indicate the generation allocation for values of total generation other than that used in the economic dispatch

- The allocation of individual generators over a range of total generation values
 - accomplished using base points and participation factors
 - for period k, the economic dispatch sets the base-point generation values for the total generation value measured at the start of the period
 - the base-point generation for the *i*th unit, $P_{i \, \text{base}}$ is the most economic output for the particular total generation value
 - the participation factor, pf_p, sets the rate of change of the ith unit's power output with respect to a change in total generation
 - the base points and participation factors are used as follows

$$\begin{split} P_{i\,\text{scheluded}}(t) &= P_{i\,\text{base}}(k) + p f_i \cdot \Delta P_{\text{total}}(t) \\ \Delta P_{\text{total}}(t) &= P_{\text{actual}}(t) - \sum_{i \in \mathcal{V} \text{gap}} P_{i\,\text{base}}(k) \end{split}$$

- Base points and participation factors
 - participation factors are determined from a generator's cost function
 - assume that both the first and second derivatives exist for the cost function
 - the change in the system's incremental cost as a function of the change in power output on the ith generator

$$\Delta \lambda_i = \Delta \lambda_{\text{system}} \cong F_i''(P_i^0) \cdot \Delta P_i$$

 the change in system incremental cost equaling the unit's incremental cost is true for all generating units

$$\frac{\Delta \lambda}{F_1'''} = \Delta P_1$$
, $\frac{\Delta \lambda}{F_2'''} = \Delta P_2$, $\cdots \frac{\Delta \lambda}{F_N'''} = \Delta P_N$

Relationship of $\Delta\lambda$ and ΔP_i

- Base points and participation factors
 - the total change in generation must equal the change in the total system demand, and is the sum of all the individual unit changes

$$\Delta P_D = \Delta P_1 + \Delta P_2 + \dots + \Delta P_N$$

$$= \Delta \lambda \cdot \sum_{i \in \text{all gen}} \frac{1}{F_i''}$$

the participation factor for each generating unit is then found

as
$$pf_{i} = \frac{\Delta P_{i}}{\Delta P_{D}} = \frac{\frac{1}{F_{i}''}}{\sum_{i \in \text{all gen}} \frac{1}{F_{i}''}}$$

- Example
 - Consider a three generator system
 - the cost functions for the three generators

$$F_1(P_1) = 561 + 7.92P_1 + 0.001562P_1^2$$

$$F_2(P_2) = 310 + 7.85P_2 + 0.00194P_2^2$$

$$F_3(P_3) = 78 + 7.97P_3 + 0.00482P_3^2$$

- an economic dispatch has been conducted for a total load demand of 850 MW
 - the system's incremental cost is \$ 9.148 / MWh
 - the dispatch is: P₁ = 393.2 MW, P₂ = 334.6 MW, & P₃ = 122.2 MW
- calculate the participation factors for the current dispatch,
 and calculate the dispatch for a new total load of 900 MW

- Example
 - participation factors

$$pf_1 = \frac{\Delta P_1}{\Delta P_D} = \frac{(0.003124)^{-1}}{(0.003124)^{-1} + (0.00388)^{-1} + (0.00964)^{-1}} = \frac{320.10}{681.57} = 0.47$$

$$pf_2 = \frac{\Delta P_2}{\Delta P_D} = \frac{(0.00388)^{-1}}{681.57} = 0.38$$

$$pf_3 = \frac{\Delta P_3}{\Delta P_D} = \frac{(0.00964)^{-1}}{681.57} = 0.15$$

new dispatch

$$\Delta P_D = 900 - 850 = 50$$

 $P_1 = P_{1 \text{base}} + p f_1 \cdot \Delta P_D = 393.2 + (0.47)(50) = 416.7$
 $P_2 = 334.6 + (0.38)(50) = 353.6$
 $P_3 = 122.2 + (0.15)(50) = 129.7$

- Automatic generator control implementation
 - the AGC schemes are usually centrally located at a control center
 - system measurements, taken at the major substations, other information and data are telemetered to the control center
 - unit megawatt power output for each committed generating unit
 - megawatt power flow over each tie line to neighboring systems
 - system frequency
 - control actions are determined in a digital computer
 - control signals are transmitted to the generation units at remote generation stations over the same communication channels
 - raise / lower pulse signals change a generating unit's load reference point up or down

- Automatic generator control implementation
 - the basic reset control loop for a generating unit consists of an integrator with gain K
 - the integrator insures that the steady-state control error goes to zero
 - the scheduled power value is the control input
 - a function of the system frequency deviation, net interchange error, and the unit's deviation from its scheduled economic output

- Automatic generator control implementation
 - the basic generating unit's power output control loop

implementation via telemetry

- The AGC calculation
 - the input to the AGC combines the inputs of the various tieflows errors with the frequency deviation
 - · the resultang is the area control error

- The AGC calculation
 - the control must also drive the generating units to obey the economic dispatch in addition to pushing the frequency and tie flow errors to zero
 - the sum of the unit output errors is added to the ACE to form a composite error signal
 - the generation allocation calculation is placed between the ACE and the governor control / unit control loop

- Automatic generator control implementation
 - · a typical layout

- Automatic generator control implementation
 - good design requirements
 - the ACE signal should be kept moderate in size
 - the ACE is influenced by random load variations
 - the standard deviation of the ACE should be small
 - the ACE should not be allowed to drift
 - the integral of the ACE should span an appropriate, but small time period
 - drift has the effect of creating system time errors or inadvertent interchange errors
 - the control action should be kept to a minimum
 - many errors are simple random load changes that should not cause any control action
 - chasing these random variations only wears out the unit's speed-changing hardware