### The Matrix of a Linear Transformation

In the last lecture we introduced the idea of a linear transformation:



We have seen that every matrix multiplication is a linear transformation from vectors to vectors. But, are there any other possible linear transformations from vectors to vectors? No.

In other words, the reverse statement is also true:

every linear transformation from vectors to vectors is a matrix multiplication.



We'll now prove this fact. We'll do it **constructively**, meaning we'll actually show how to find the matrix corresponding to any given linear transformation T.

**Theorem.** Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a linear transformation. There there is a unique matrix A such that:

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all  $\mathbf{x} \in \mathbb{R}^n$ .

In fact, *A* is the  $m \times n$  matrix whose *j*th column is the vector  $T(\mathbf{e_j})$ , where  $\mathbf{e_j}$  is the *j*the column of the identity matrix in  $\mathbb{R}^n$ :

$$A = [T(\mathbf{e_1}) \dots T(\mathbf{e_n})].$$

*A* is called the *standard matrix* of *T*.

**Proof.** Write

$$x=\mathit{I} x=\left[e_1\dots e_n\right]x$$

$$= x_1 \mathbf{e_1} + \cdots + x_n \mathbf{e_n}.$$

Because *T* is linear, we have:

$$T(\mathbf{x}) = T(x_1\mathbf{e_1} + \dots + x_n\mathbf{e_n})$$

$$= x_1 T(\mathbf{e_1}) + \cdots + x_n T(\mathbf{e_n})$$

$$= [T(\mathbf{e_1}) \dots T(\mathbf{e_n})] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = A\mathbf{x}.$$

The term *linear transformation* focuses on a **property** of the mapping, while the term *matrix multiplication* focuses on how such a mapping is **implemented**.

For example, we find the standard matrix of a linear tranformation of  $\mathbb{R}^2 \to \mathbb{R}^2$  by asking what the transformation does to the columns of I.

transformation does to the columns of I. Now, in  $\mathbb{R}^2$ ,  $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ . So:

$$\boldsymbol{e_1} = \left[ \begin{array}{c} 1 \\ 0 \end{array} \right] \ \text{ and } \ \boldsymbol{e_2} = \left[ \begin{array}{c} 0 \\ 1 \end{array} \right]$$

So to find the matrix of any given linear transformation, we only have to know what that transformation does to these two points:



This is a **hugely** powerful tool.

Let's say we start from some given linear transformation; we can use this idea to find the matrix that implements that linear transformation.

For example, let's consider rotation about the origin as a kind of transformation.

Is it a **linear** transformation?

Recall that a for a transformation to be linear, it must be true that  $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ .



OK, so it is linear. let's see how to compute the linear transformation that is a rotation.

**Example.** Let  $T: \mathbb{R}^2 \to \mathbb{R}^2$  be the transformation that rotates each point in  $\mathbb{R}^2$  about the origin through an angle  $\varphi$ , with counterclockwise rotation for a positive angle. Find the standard matrix A of this transformation.

**Solution.** The columns of I are  $\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$  and  $\mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ .

Referring to the diagram below, we can see that  $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$  rotates into  $\begin{bmatrix} \cos \varphi \\ \sin \varphi \end{bmatrix}$ , and  $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$  rotates into

$$\left[\begin{array}{c} -\sin\varphi \\ \cos\varphi \end{array}\right].$$



So by the Theorem above,

$$A = \left[ \begin{array}{cc} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{array} \right].$$

To demonstrate the use of a rotation matrix, let's rotate the following shape:



The variable note is a array of 26 vectors in  $\mathbb{R}^2$  that define its shape.

In other words, it is a  $2 \times 26$  matrix.

To rotate note we need to multiply each column of note by the rotation matrix A.

In Python matrix multiplication is performed using the @ operator.

That is, if A and B are matrices,

A @ F

will multiply A by every column of B, and the resulting vectors will be formed into a matrix.

```
[8]: dm.plotSetup()
    angle = 90
    phi = (angle/180) * np.pi
    A = np.array(
        [[np.cos(phi), -np.sin(phi)],
        [np.sin(phi), np.cos(phi)]])
    rnote = A @ note
    dm.plotShape(rnote)
```



## Geometric Linear Transformations of $\mathbb{R}^2$

Let's use our understanding of how to constuct linear transformations to look at some specific linear transformations of  $\mathbb{R}^2$  to  $\mathbb{R}^2$ .

First, let's recall the linear transformation

$$T(\mathbf{x}) = r\mathbf{x}$$
.

With r > 1, this is a dilation. It moves every vector further from the origin.

Let's say the dilation is by a factor of 2.5.

To construct the matrix A that implements this transformation, we ask: where do  $e_1$  and  $e_2$  go?



```
Under the action of A, \mathbf{e_1} goes to \begin{bmatrix} 2.5 \\ 0 \end{bmatrix} and \mathbf{e_2} goes to \begin{bmatrix} 0 \\ 2.5 \end{bmatrix}. So the matrix A must be \begin{bmatrix} 2.5 & 0 \\ 0 & 2.5 \end{bmatrix}. Let's test this out:
```



```
[11]: dm.plotSetup(-7,7,-7, 7)
    dm.plotShape(note)
    dm.plotShape(A @ note, 'r')
```



# Question Time! Q8.1

OK, now let's reflect through the  $x_1$  axis. Where do  $e_1$  and  $e_2$  go?



Reflection through the  $x_1$  axis



```
[14]: dm.plotSetup()
    dm.plotShape(note)
    dm.plotShape(A @ note,'r')
```



What about reflection through the  $x_2$  axis?

Reflection through the  $x_2$  axis



```
[16]: dm.plotSetup()
    dm.plotShape(note)
    dm.plotShape(A @ note,'r')
```



What about reflection through the line  $x_1 = x_2$ ?

Reflection through the line  $x_1 = x_2$ 



```
[18]: dm.plotSetup()
    dm.plotShape(note)
    dm.plotShape(A @ note,'r')
```



What about reflection through the line  $x_1 = -x_2$ ?

Reflection through the line  $x_1 = -x_2$ 



```
[20]: dm.plotSetup()
    dm.plotShape(note)
    dm.plotShape(A @ note,'r')
```



What about reflection through the origin?

Reflection through the origin



```
[22]: dm.plotSetup()
    dm.plotShape(note)
    dm.plotShape(A @ note,'r')
```



Horizontal Contraction



```
[24]: dm.plotSetup()
    dm.plotShape(note)
    dm.plotShape(A @ note,'r')
```



Horizontal Expansion



Vertical Shear



```
[27]: dm.plotSetup()
    dm.plotShape(note)
    dm.plotShape(A @ note,'r')
```



#### **Question 8.2**

Now let's look at a particular kind of transformation called a **projection**. Imagine we took any given point and 'dropped' it onto the  $x_1$ -axis.

Projection onto the  $x_1$  axis



What happens to the **shape** of the point set?

```
[29]: dm.plotSetup()
        dm.plotShape(note)
        dm.plotShape(A @ note, 'r')
```



Projection onto the  $x_2$  axis



```
[31]: dm.plotSetup()
    dm.plotShape(note)
    dm.plotShape(A @ note,'r')
```



#### **Existence and Uniqueness**

Notice that some of these transformations map multiple inputs to the same output, and some are incapable of generating certain outputs.

For example, the **projections** above can send multiple different points to the same point.

We need some terminology to understand these properties of linear transformations.

**Definition.** A mapping  $T: \mathbb{R}^n \to \mathbb{R}^m$  is said to be **onto**  $\mathbb{R}^m$  if each **b** in  $\mathbb{R}^m$  is the image of *at least one* **x** in  $\mathbb{R}^n$ .

Informally, *T* is onto if every element of its codomain is in its range.

Another (important) way of thinking about this is that *T* is onto if there is a solution **x** of

$$T(\mathbf{x}) = \mathbf{b}$$

for all possible b.

This is asking an **existence** question about a solution of the equation  $T(\mathbf{x}) = \mathbf{b}$  for all  $\mathbf{b}$ .



#### **Question Time! Q8.3**

**Definition.** A mapping  $T : \mathbb{R}^n \to \mathbb{R}^m$  is said to be **one-to-one** if each **b** in  $\mathbb{R}^m$  is the image of *at most one* **x** in  $\mathbb{R}^n$ .

If T is one-to-one, then for each  $\mathbf{b}$ , the equation  $T(\mathbf{x}) = \mathbf{b}$  has either a unique solution, or none at all. This is asking an **existence** question about a solution of the equation  $T(\mathbf{x}) = \mathbf{b}$  for all  $\mathbf{b}$ .



Let's examine the relationship between these ideas and some previous definitions.

If  $A\mathbf{x} = \mathbf{b}$  is consistent for all  $\mathbf{b}$ , is  $T(\mathbf{x}) = A\mathbf{x}$  onto? one-to-one?

 $T(\mathbf{x})$  is onto.  $T(\mathbf{x})$  may or may not be one-to-one. If the system has multiple solutions for some  $\mathbf{b}$ ,  $T(\mathbf{x})$  is not one-to-one.

If A**x** = **b** is consistent and has a unique solution for all **b**, is T(**x**) = A**x** onto? one-to-one? Yes to both.

If  $A\mathbf{x} = \mathbf{b}$  is not consistent for all  $\mathbf{b}$ , is  $T(\mathbf{x}) = A\mathbf{x}$  onto? one-to-one?

 $T(\mathbf{x})$  is **not** onto.  $T(\mathbf{x})$  may or may not be one-to-one.

If  $T(\mathbf{x}) = A\mathbf{x}$  is onto, is  $A\mathbf{x} = \mathbf{b}$  consistent for all  $\mathbf{b}$ ? is the solution unique for all  $\mathbf{b}$ ?

If  $T(\mathbf{x}) = A\mathbf{x}$  is one-to-one, is  $A\mathbf{x} = \mathbf{b}$  consistent for all  $\mathbf{b}$ ? is the solution unique for all  $\mathbf{b}$ ?