Technical Report: A Systematic Mapping Study of Machine Learning for Software Traceability

1. Extracted Data

1.1 Extracted Data for RQ1

Index	Title	Author	Subject	Year	Venue	Publication type
S1	An extended knowledge representation learning approach for context-based traceability link recovery	Guoshuai Zhao Tong Li Zhen Yang	Researcher	2020	International Conference on Software Engineering and Knowledge Engineering (SEKE)	Conference
S2	An Improved Approach to Traceability Recovery Based on Word Embeddings	Teng Zhao Qinghua Cao Qing Sun	Student	2017	Asia-Pacific Software Engineering Conference (APSEC)	Conference
S 3	An information theoretic approach for extracting and tracing non-functional requirements	Anas Mahmoud	Researcher	2015	International Requirements Engineering Conference (RE Conference)	Conference
S4	Application of reinforcement learning to requirements engineering requirements tracing	Hakim Sultanov Jane Huffman Hayes	Researcher	2013	International Requirements Engineering Conference (RE Conference)	Conference
S5	ATLaS: A Framework for Traceability Links Recovery Combining Information Retrieval and Semi-Supervised Techniques	Emma Effa Bella Stephen Creff Marie-Pierre Gervais Reda Bendraou	Student	2019	The Enterprise Computing Conference (EDOC)	Conference
S6	Traceability recovery between bug reports and test cases-a Mozilla Firefox case study	Guilherme Gadelha Franklin Ramalho Tiago Massoni	Researcher	2021	Automated Software Engineering (ASE)	Journal
S7	Automatic traceability link recovery via active learning	Tianbao Du Guohua Shen Zhiqiu Huang Yaoshen Yu Dexiang Wu	Student	2020	Frontiers of Information Technology & Electronic Engineering (FRONT INFORM TECH EL)	Journal
S8	Automatic Traceability Maintenance via Machine Learning Classification	Chris Mills Javier Escobar-Avila Sonia Haiduc	Researcher	2018	International Conference on Software Maintenance and Evolution (ICSME)	Conference
S 9	Automating traceability link recovery through classification	Chris Mills	Researcher	2017	European Software Engineering	Conference

					Conference (ESEC)	
S10	Clustering for Traceability Managing in System Specifications	Manel Mezghani Juyeon Kang Eun-Bee Kang Florence Sedes	Researcher	2019	International Requirements Engineering Conference (RE Conference)	Conference
S11	Combining Machine Learning and Logical Reasoning to Improve Requirements Traceability Recovery	Tong Li Shiheng Wang David Lillis Zhen Yang	Researcher	2020	Applied Sciences (APPS)	Journal
S12	Detecting, classifying, and tracing non-functional software requirements	Anas Mahmoud Grant Williams	Researcher	2016	Requirements Engineering (RE)	Journal
S13	Enhancing Automated Requirements Traceability by Resolving Polysemy	Wentao Wang Nan Niu Hui Liu Zhendong Niu	Researcher	2018	International Requirements Engineering Conference (RE Conference)	Conference
S14	A Machine Learning Approach for Determining the Validity of Traceability Links	Chris Mills Sonia Haiduc	Researcher	2017	International Conference on Software Engineering (ICSE)	Conference
S15	Enhancing Unsupervised Requirements Traceability with Sequential Semantics	Lei Chen Dandan Wang Junjie Wang Qing Wang	Researcher	2019	Asia-Pacific Software Engineering Conference (APSEC)	Conference
S16	Estimating the number of remaining links in traceability recovery	Davide Falessi Massimiliano Di Penta Gerardo Canfora Giovanni Cantone	Researcher	2017	Empirical Software Engineering (ESE)	Journal
S17	Evaluation of Textual Similarity Techniques in Code Level Traceability	Viktor Csuvik Andras Kicsi Laszlo Vidacs	Student	2019	International Conference on Computational Science and Its Applications (ICCSA)	Conference
S18	Improving the effectiveness of traceability link recovery using hierarchical bayesian networks	Kevin Moran David N. Palacio Carlos Bernal-Cardenas Daniel McCrystal Denys Poshyvanyk Chris Shenefiel Jeff Johnson	Practitioner	2020	International Conference on Software Engineering (ICSE)	Conference
S19	Traceability Link Recovery between Requirements and Models using an Evolutionary Algorithm Guided by a Learning to Rank Algorithm: Train control and management case	Ana C. Marcen Raul Lapena Oscar Pastor Carlos Cetina	Researcher	2020	Journal of Systems and Software (JSS)	Journal
S20	Information retrieval versus deep learning approaches for generating traceability links in bilingual projects	Jinfeng Lin Yalin Liu Jane Cleland-Huang	Researcher	2022	Empirical Software Engineering (ESE)	Journal

S21	Issue Link Label Recovery and Prediction for Open Source Software	Alexander Nicholson Jin L.C. Guo	Student	2021	International Requirements Engineering Conference (RE Conference)	Conference Workshop
S22	Large Scale Evaluation of Natural Language Processing Based Test-to-Code Traceability Approaches	Andras Kicsi Viktor Csuvik Laszlo Vidacs	Researcher	2021	IEEE Access (IEEE ACCESS)	Journal
S23	Leveraging Historical Associations between Requirements and Source Code to Identify Impacted Classes	Davide Falessi Justin Roll Jin L.C. Guo Jane Cleland-Huang	Researcher	2020	IEEE Transactions on Software Engineering (IEEE T SOFTWARE ENG)	Journal
S24	On the effect of incompleteness to check requirement-to-method traces	Mouna Hammoudi Christoph Mayr-Dorn Atif Mashkoor Alexander Egyed	Researcher	2021	ACM Symposium On Applied Computing (SAC)	Conference
S25	On the relationship between similar requirements and similar software	Muhammad Abbas Alessio Ferrari Anas Shatnawi Eduard Enoiu Mehrdad Saadatmand Daniel Sundmark	Practitioner	2022	Requirements Engineering (RE)	Journal
S26	Tracing with Less Data: Active Learning for Classification-Based Traceability Link Recovery	Chris Mills Javier Escobar-Avila Aditya Bhattacharya Grigoriy Kondyukov Shayok Chakraborty Sonia Haiduc	Researcher	2019	International Conference on Software Maintenance and Evolution (ICSME)	Conference
\$27	Semantically Enhanced Software Traceability Using Deep Learning Techniques	Jin L.C. Guo Jinghui Cheng Jane Cleland-Huang	Student	2017	International Conference on Software Engineering (ICSE)	Conference
S28	Semi-Automated Feature Traceability with Embedded Annotations	Hadil Abukwaik Andreas Burger Berima Kweku Andam Thorsten Berger	Researcher	2018	International Conference on Software Maintenance and Evolution (ICSME)	Conference
S29	Source Code Level Word Embeddings in Aiding Semantic Test-to-Code Traceability	Viktor Csuvik Andras Kicsi Laszlo Vidacs	Student	2019	ICSE Workshop on Software and Systems Traceability (SST)	Conference Workshop
S30	Tackling the term-mismatch problem in automated trace retrieval	Jin L.C. Guo Marek Gibiec Jane Cleland-Huang	Student	2017	Empirical Software Engineering (ESE)	Journal
S31	TCTracer: Establishing test-to-code traceability links using dynamic and static techniques	Robert White Jens Krinke	Practitioner	2022	Empirical Software Engineering (ESE)	Journal
S32	Toward accurate link between code and software documentation	Yingkui Cao Yanzhen Zou	Researcher	2018	Science China Information Sciences	Journal

		Yuxiang Luo			(SCIS)	
		Bing Xie				
		Junfeng Zhao				
					ICSE Workshop on	
	Towards feature-aware retrieval of refinement	Patrick Rempel			Traceability in	Conference
S33		Patrick Mader	Student	2013	Emerging Forms of	Workshop
	traces	Tobias Kuschke			Software	vvorksnop
					Engineering (TEFSE)	
		Jinfeng Lin			International	
	Tarabilla Tarabanan Carabina an	Yalin Liu			Conference on	
S34	Traceability Transformed_ Generating more	Qingkai Zeng	Researcher	2021		Conference
	Accurate Links with Pre-Trained BERT Models	Meng Jiang			Software	
		Jane Cleland-Huang			Engineering (ICSE)	
					International	
	Tananda da a consensa da alcalificación de				Conference on	
S35	Towards the automatic classification of traceability links	Chris Mills Research	Researcher	Researcher 2017	Automated Software	Conference
					Engineering (ASE	
					Conference)	
					International Journal	
	Tracing Requirements as a Problem of Machine	Zeheng Li	0	0040	of Software	
S36	Learning	LiGuo Huang	Student	2018	Engineering &	Journal
					Applications (IJSEA)	
		Michael Rath			Internación de la	
		Jacob Rendall		er 2018	International	Conference
S37	Traceability in the wild: automatically augmenting	Jin L.C. Guo	Researcher		Conference on	
	incomplete trace links	Jane Cleland-Huang			Software	
		Patrick Mader			Engineering (ICSE)	
			i e	•		

1.2 Extracted Data for RQ2

Index	Title	ML Models	Stage
S1	An extended knowledge representation learning approach for context-based traceability link recovery	Decision Tree (DT) GBDT Naive Bayes (NB) SVM	link generation stage
S2	An Improved Approach to Traceability Recovery Based on Word Embeddings	Word2vec Ranking SVM	preprocessing stage link generation stage
S3	An information theoretic approach for extracting and tracing non-functional requirements	Hierarchical Agglomerative Clustering (HAC)	preprocessing stage
S4	Application of reinforcement learning to requirements engineering requirements tracing	Reinforcement Learning	link generation stage
S5	ATLaS: A Framework for Traceability Links Recovery Combining Information Retrieval and Semi-Supervised Techniques	Word2vec GloVe Label spreading	preprocessing stage
S6	Traceability recovery between bug reports and test cases-a Mozilla Firefox case study	GloVe	preprocessing stage
S7	Automatic traceability link recovery via	Active Learning	link generation stage

	active learning		
\$8	Automatic Traceability Maintenance via Machine Learning Classification	K nearest neighbors (KNN) Naive Bayes (NB) Logistic Regression (LR) SVM Random Forest (RF)	link generation stage
\$9	Automating traceability link recovery through classification	Decision Tree (DT) Random Forest (RF) K nearest neighbors (KNN) Naive Bayes (NB)	link generation stage
\$10	Clustering for Traceability Managing in System Specifications	K-means	link generation stage
S11	Combining Machine Learning and Logical Reasoning to Improve Requirements Traceability Recovery	Doc2vec Decision Tree (DT) K nearest neighbors (KNN) Random Forest (RF) GBDT	preprocessing stage link generation stage
S12	Detecting, classifying, and tracing non- functional software requirements	Hierarchical Agglomerative Clustering (HAC) K-medoids	preprocessing stage
\$13	Enhancing Automated Requirements Traceability by Resolving Polysemy	FNN Word2vec	preprocessing stage
S14	A Machine Learning Approach for Determining the Validity of Traceability Links	Random Forest (RF)	link generation stage
S15	Enhancing Unsupervised Requirements Traceability with Sequential Semantics	Word2vec Doc2vec	preprocessing stage
S16	Estimating the number of remaining links in traceability recovery	Decision Tree (DT) Bagging K nearest neighbors (KNN) Logit Boost Naive Bayes (NB)	link generation stage
\$17	Evaluation of Textual Similarity Techniques in Code Level Traceability	Doc2vec	preprocessing stage
\$18	Improving the effectiveness of traceability link recovery using hierarchical bayesian networks	Hierarchical Bayesian Network (HBN)	link generation stage
S19	Traceability Link Recovery between Requirements and Models using an Evolutionary Algorithm Guided by a Learning to Rank Algorithm: Train control and management case	FNN RNN RankBoost	link generation stage
\$20	Information retrieval versus deep learning approaches for generating traceability links in bilingual projects	Word2vec FastText BERT	preprocessing stage
S21	Issue Link Label Recovery and Prediction for Open Source Software	FastText Logistic Regression (LR) Random Forest (RF) Neural Network (NN)	preprocessing stage link generation stage

		ZeroR	
S22	Large Scale Evaluation of Natural Language Processing Based Test-to-Code Traceability Approaches	Doc2vec	preprocessing stage
S23	Leveraging Historical Associations between Requirements and Source Code to Identify Impacted Classes	Decision Tree (DT) Random Forest (RF) Logistic Regression (LR) Naive Bayes (NB) Bagging	link generation stage
S24	On the effect of incompleteness to check requirement-to-method traces	Decision Tree (DT) Random Forest (RF) Naive Bayes (NB) K nearest neighbors (KNN)	link generation stage
S25	On the relationship between similar requirements and similar software	Doc2vec FastText BERT Universal Sentence Encoder (USE)	preprocessing stage
S26	Tracing with Less Data: Active Learning for Classification-Based Traceability Link Recovery	Active Learning Random Forest (RF)	link generation stage
S27	Semantically Enhanced Software Traceability Using Deep Learning Techniques	Word2vec RNN LSTM Bi-LSTM GRU Bi-GRU	preprocessing stage
S28	Semi-Automated Feature Traceability with Embedded Annotations	SVM K nearest neighbors (KNN) Decision Tree (DT)	link generation stage
S29	Source Code Level Word Embeddings in Aiding Semantic Test-to-Code Traceability	Doc2vec	preprocessing stage
S30	Tackling the term-mismatch problem in automated trace retrieval	Decision Tree (DT) Naive Bayes (NB)	link generation stage
S31	TCTracer: Establishing test-to-code traceability links using dynamic and static techniques	FNN	link generation stage
S32	Toward accurate link between code and software documentation	Word2vec GBDT	preprocessing stage link generation stage
S33	Towards feature-aware retrieval of refinement traces	Graph Clustering	link refinement stage
S34	Traceability Transformed_ Generating more Accurate Links with Pre-Trained BERT Models	BERT LSTM Bi-GRU	preprocessing stage
S35	Towards the automatic classification of traceability links	Decision Tree (DT) Random Forest (RF) K nearest neighbors (KNN) Naive Bayes (NB)	link generation stage
S36	Tracing Requirements as a Problem of	SVM	link generation stage

	Machine Learning	Single-link clustering	preprocessing stage
\$37	Traceability in the wild: automatically	Naive Bayes (NB)	
	augmenting incomplete trace links	Decision Tree (DT)	link generation stage
		Random Forest (RF)	

1.3 Extracted Data for RQ3

Index	Source Artifact (number)	Target Artifact (number)	Datasets (true link number)	Evidence Level
S1	Use Case	Code	eTour	Level 1: Evaluation conducted in
21	Ose Case	Code	erour	academic context (0.6)
	High lavel requirement	Low lovel requirement	CM1-NASA	
	High-level requirement Use case	Low-level requirement Code	GANNT	Level 1: Evaluation conducted in
S2	Use case Use case		eTOUR	
		Interaction Diagrams Test Case	iTrust	academic context (0.6)
	Use case	rest Case	EasyClinic	
			SmartTrip *	Level 2: Evaluation conducted in
S3	Requirement	Code	SafeDrink *	
			BlueWallet *	industry context (1.0)
C4	Requirement	Use case	Pine	Level 1: Evaluation conducted in
S4	Requirement	Design	CM1SUB	academic context (0.6)
CE.	High lovel requirements	Docina	ARC-IT	Level 2: Evaluation conducted in
S5	High-level requirements	Design	ARC-II	industry context (1.0)
CC	Dura Daraset	T+ C	Ma-illa Finafan	Level 1: Evaluation conducted in
S6	Bug Report	Test Case	Mozilla Firefox	academic context (0.6)
	High-level requirement	Low-level requirement	eAnci	
	Use Case	Code	SMOS	Level 1. Evelvetice endowed in
S7	Test Case	Use Case	MODIS	Level 1: Evaluation conducted in
	Test Case	Code	EasyClinic	academic context (0.6)
	Interaction Diagram	Test Case	eTour	
	High-level requirement	Low-level requirement	a A nai	
	Use Case	Code	eAnci SMOS	
	Test Case	Use Case	MODIS	Level 1: Evaluation conducted in
S8	Test Case	Code		academic context (0.6)
	Interaction Diagram	Test Case	EasyClinic eTour	academic context (0.0)
	Interaction Diagram	Code	iTrust	
	Interaction Diagram	Use Case	must	
	High-level requirement	Low-level requirement	eAnci	
	Use Case	Code	SMOS	
	Test Case	Use Case	EasyClinic	Level 1: Evaluation conducted in
S9	Test Case	Code	eTour	academic context (0.6)
	Interaction Diagram	Test Case	iTrust	academic context (0.0)
	Interaction Diagram	Code	CM-1	
	Interaction Diagra	Use Case	OIA1-T	
S10	Requirement	Requirement	Dataset1 *	Level 1: Evaluation conducted in
310	Requirement	Kequirement	Dataset2 *	academic context (0.6)
			eTour	Level 1: Evaluation conducted in
S11	Use Case	Code	SMOS	academic context (0.6)
			Albergate	academic context (0.0)

			eAnci	
S12	Requirement	Code	SmartTrip * SafeDrink * BlueWallet *	Level 2: Evaluation conducted in industry context (1.0)
S13	Requirement Requirement	Requirement Design	AIRFLOW ANY23 DASHBUILDER DROOLS IMMUTANT JBTM MODIS CM-1	Level 1: Evaluation conducted in academic context (0.6)
S14	Use Case	Code	eAnci eTour SMOS	Level 1: Evaluation conducted in academic context (0.6)
\$15	Requirement Use Case Use Case Use Case	Requirement Code Test Case Interaction Diagram	GANNT CM1-NASA eTour iTrust EasyClinic	Level 1: Evaluation conducted in academic context (0.6)
S16	Requirement Use Case Use Case Use Case Use Case Test Case Test Case Interaction Diagram Interaction Diagram Interaction Diagram Interaction Diagram Code Code	Requirement Code Use Case Test Case Interaction Diagram Test Case Code Interaction Diagram Code Test Case Use Case Code	Selex SI eTour EasyClinic	Level 2: Evaluation conducted in industry context (1.0)
S17	Test Case	Code	Commons Lang Commons Math JfreeChart MONDRIAN	Level 1: Evaluation conducted in academic context (0.6)
\$18	Requirement Requirement Use Case	Code Test Case Code	Albergate EBT LibEST eTour SMOS iTrust	Level 2: Evaluation conducted in industry context (1.0)
S19	Requirement	Model	CAF	Level 2: Evaluation conducted in industry context (1.0)
S20	Commit	Issue	Arthas bk-cmdb Canal Druid	Level 1: Evaluation conducted in academic context (0.6)

		T		
			Emmagee	
			Nacos	
			NCNN	
			Pegasus	
			QMUI Android	
			QMUI IOS	
			Rax	
			San	
			Weui	
			xLua	
			Konlpy	
			Cica	
			Aws-berline	
			AMBARI	Level 1: Evaluation conducted in
S21	Issue	Issue	FLEX	
			HIVE	academic context (0.6)
			ArgoUML	
			Commons Lang	
			Commons Math	
			Gson	Level 1: Evaluation conducted in
S22	Test Case	Code	JfreeChart	academic context (0.6)
			Joda-Time	academic context (0.0)
			MONDRIAN	
			PMD	
			Accumulo	
S23	Requirement	Code	lgnite	Level 1: Evaluation conducted in
	·		Isis	academic context (0.6)
			Tika	
			Chess	
S24	Requirement	Code	Gantt	Level 2: Evaluation conducted in
324	Requirement	Code	iTrust	industry context (1.0)
			JHotDraw	
	Requirement	Requirement	A *	Level 2: Evaluation conducted in
S25	Requirement	Code	B *	industry context (1.0)
	High-level requirement	Low-level requirement		
	Use Case	Code	eAnci	
	Test Case	Use Case	SMOS	
S26	Test Case	Code	MODIS	Level 1: Evaluation conducted in
	Interaction Diagram	Test Case	EasyClinic	academic context (0.6)
		Code	eTour	
	Interaction Diagram		iTrust	
	Interaction Diagram	Use Case		1 105 1 2
S27	Requirement	Design	PTC	Level 2: Evaluation conducted in
		_		industry context (1.0)
S28	Code	Code	Clafer Tools	Level 1: Evaluation conducted in
		3333	0.0.0.	academic context (0.6)
			Commons Lang	
000	T O		Commons Math	Level 1: Evaluation conducted in
S29	Test Case	Code	JfreeChart	academic context (0.6)
			MONDRIAN	
		l		

\$30	Regulatory code	Requirement	Care2x CCHIT ClearHealth Physician iTrust Trial Implementations PatientOS PracticeOne Lauesen WorldVistA	Level 1: Evaluation conducted in academic context (0.6)
\$31	Test Case	Code	Apache Ant Commons IO Commons Lang JfreeChart Gson	Level 1: Evaluation conducted in academic context (0.6)
S32	Code	Software documentation	Lucene	Level 1: Evaluation conducted in academic context (0.6)
S33	Requirement Use Case Feature	Use Case Test Case Use Case	CM-1 EasyClinic Waterloo	Level 2: Evaluation conducted in industry context (1.0)
S34	Commit	Issue	CodeSearchNet Pgcli Flask Keras	Level 1: Evaluation conducted in academic context (0.6)
\$35	Requirement Use Case Test Case Interaction Diagram Interaction Diagram Test Case Interaction Diagram	Requiremen Code Code Test Case Use Case Use Case Code	CM-1 eAnci eTour SMOS iTrust EasyClinic	Level 1: Evaluation conducted in academic context (0.6)
S36	Requirement	Use case	Pine	Level 1: Evaluation conducted in academic context (0.6)
\$37	Commit	Issue	Maven Derby Infinispan Groovy Pig Drools	Level 1: Evaluation conducted in academic context (0.6)

^{*} present that author uses a pseudonym of the name of dataset for confidentiality agreements

1.4 Extracted Data for RQ4

Index	Title	Measures	Evidence Level
	An extended knowledge representation learning	Precision	
S1	An extended knowledge representation learning approach for context-based traceability link recovery	Recall	Level 3: Evidence obtained from academic studies (0.6).
		F-Measure	
S2	An Improved Approach to Traceability Recovery	Precision	Level 3: Evidence obtained from academic studies (0.6).

			T
	Based on Word Embeddings	Recall	
		F-Measure	
		MAP	
		MRR	
		Running Time	
S3	An information theoretic approach for extracting and	Precision	Level 3: Evidence obtained from academic studies (0.6).
33	tracing non-functional requirements	Recall	Level 3. Evidence obtained from academic studies (0.6).
		Precision	
S4	Application of reinforcement learning to	Recall	Level 3: Evidence obtained from academic studies (0.6).
	requirements engineering requirements tracing	F-Measure	
	ATLaS: A Framework for Traceability Links Recovery	Precision	
S5	Combining Information Retrieval and Semi-	Recall	Level 4: Evidence obtained from industrial studies (0.6).
	Supervised Techniques	F-Measure	(4.0)
	Caparriosa realinques	Recall	
	Traceability recovery between bug reports and test	Precision	
S6	cases-a Mozilla Firefox case study	F-Measure	Level 4: Evidence obtained from industrial studies (0.6).
	cases-a iviozilia fileiox case study		
		REI	
	[<u> </u>	Precision	
S7	Automatic traceability link recovery via active learning	Recall	Level 3: Evidence obtained from academic studies (0.6).
		F-Measure	
	Automatic Traceability Maintenance via Machine	Precision	
S8		Recall	Level 3: Evidence obtained from academic studies (0.6).
	Learning Classification	F-Measure	
co	Automating traceability link recovery through	Recall (TPR)	Loyal 2: Evidance obtained from production attailer (0.0)
S9	classification	FPR	Level 3: Evidence obtained from academic studies (0.6).
S10	Clustering for Traceability Managing in System	Precision	Level 3: Evidence obtained from academic studies (0.6).
210	Specifications	Precision	Level 3. Evidence obtained from academic studies (0.6).
	Combining Machine Learning and Levis-LD	Precision	
S11	Combining Machine Learning and Logical Reasoning	Recall	Level 3: Evidence obtained from academic studies (0.6).
	to Improve Requirements Traceability Recovery	F-Measure	
	Detecting, classifying, and tracing non-functional	Precision	
S12	software requirements	Recall	Level 3: Evidence obtained from academic studies (0.6).
		Precision	
S13	Enhancing Automated Requirements Traceability by	Recall	Level 3: Evidence obtained from academic studies (0.6).
	Resolving Polysemy	F-Measure	(0.0).
	Enhancing software model encoding for feature		
S14	location approaches based on machine learning	TP	Level 3: Evidence obtained from academic studies (0.6).
314	-	FP	Level 3. Evidence obtained from addieffile studies (0.0).
	techniques	Draginian	
64.5	Enhancing Unsupervised Requirements Traceability	Precision	
S15	with Sequential Semantics	Recall	Level 3: Evidence obtained from academic studies (0.6).
		F-Measure	
S16	Estimating the number of remaining links in	MRE	Level 3: Evidence obtained from academic studies (0.6).
	traceability recovery	MAE	
S17	Evaluation of Textual Similarity Techniques in Code	Precision	Level 3: Evidence obtained from academic studies (0.6).
	Level Traceability		
	Improving the effectiveness of traceability link	Precision	
S18		Recall	Level 4: Evidence obtained from industrial studies (0.6).
	recovery using hierarchical bayesian networks	Average Precision (AP)	
		· '	<u> </u>

S19	Traceability Link Recovery between Requirements and Models using an Evolutionary Algorithm Guided by a Learning to Rank Algorithm: Train control and management case	Recall Precision F-Measure Matthews Correlation Coefficient	Level 4: Evidence obtained from industrial studies (0.6).
S20	Information retrieval versus deep learning approaches for generating traceability links in bilingual projects	Average Precision (AP) F-Measure	Level 3: Evidence obtained from academic studies (0.6).
S21	Issue Link Label Recovery and Prediction for Open Source Software	F-Measure	Level 4: Evidence obtained from industrial studies (0.6).
S22	Large Scale Evaluation of Natural Language Processing Based Test-to-Code Traceability Approaches	Precision	Level 3: Evidence obtained from academic studies (0.6).
S23	Leveraging Historical Associations between Requirements and Source Code to Identify Impacted Classes	Precision Recall F-Measure	Level 3: Evidence obtained from academic studies (0.6).
S24	On the effect of incompleteness to check requirement-to-method traces	Precision Recall F-Measure	Level 4: Evidence obtained from industrial studies (0.6).
S25	On the relationship between similar requirements and similar software	None	Level 3: Evidence obtained from academic studies (0.6).
S26	Tracing with Less Data: Active Learning for Classification-Based Traceability Link Recovery	F-Measure	Level 3: Evidence obtained from academic studies (0.6).
S27	Semantically Enhanced Software Traceability Using Deep Learning Techniques	Precision Recall MAP	Level 3: Evidence obtained from academic studies (0.6).
S28	Semi-Automated Feature Traceability with Embedded Annotations	Precision Recall F-Measure	Level 4: Evidence obtained from industrial studies (0.6).
S29	Source Code Level Word Embeddings in Aiding Semantic Test-to-Code Traceability	Precision	Level 3: Evidence obtained from academic studies (0.6).
S30	Tackling the term-mismatch problem in automated trace retrieval	Precision Recall F-Measure MAP	Level 3: Evidence obtained from academic studies (0.6).
S31	TCTracer: Establishing test-to-code traceability links using dynamic and static techniques	Precision Recall F-Measure MAP AUC	Level 3: Evidence obtained from academic studies (0.6).
S32	Toward accurate link between code and software documentation	Precision Recall F-Measure TNR	Level 3: Evidence obtained from academic studies (0.6).
S33	Towards feature-aware retrieval of refinement traces	Precision Recall Average Precision (AP)	Level 4: Evidence obtained from industrial studies (0.6).
S34	Traceability Transformed: Generating more Accurate	F-Measure	Level 3: Evidence obtained from academic studies (0.6).

	Links with Pre-Trained BERT Models	MAP	
		MRR	
		Precision	
		Running Time	
S35	Towards the automatic classification of traceability	Recall	Level 3: Evidence obtained from academic studies (0.6).
333	links	FPR	Level 3. Evidence obtained from academic studies (0.0).
	Tracing Requirements as a Problem of Machine	Recall	
S36	Learning	Precision	Level 3: Evidence obtained from academic studies (0.6).
	Learning	F-Measure	
	Traceability in the wild: automatically augmenting	Precision	
S37	incomplete trace links	Recall	Level 3: Evidence obtained from academic studies (0.6).
	incomplete trace links	F-Measure	

1.5 The information of Datasets and the studied papers which used the datasets

Dataset	True link		Source Link	Freq	Primary researches		
Name	(Number)	(Number)	True IIIK	(Total)	Source Link	rieq	Filliary researches
	Use Case (58)	Code (116)	336	(174)			[04] [00] [07] [00] [00]
	Use Case (58)	Code (116)	308 (174)			[S1] [S2] [S7] [S8] [S9]	
eTour	Use Case (58)	Code (116)	385	(174)	http://www.coest.org/	12	[S11] [S14] [S15] [S16] [S18] [S26]
	Use Case (58)	Code (116)	366	(174)			[S35]
	Use Case (Unclear)	Code (Unclear)	365	Unclear			[333]
	Use Case (30)	Code (47)	93	(77)			
	Use Case (30)	Test Case (63)	63	(93)			
	Use Case (30)	Test Case (47)	63	(77)			
	Use Case (30)	Interaction Diagram (20)	26	(50)			
	Use Case (30)	Use Case (30)	53	(60)			[S2] [S7] [S8] [S9] [S15] [S16] [S33] [S35] [S26]
	Test Case (63)	Test Case (63)	578	(126)			
	Test Case (63)	Code (47)	204	(110)			
	Test Case (Unclear)	Use Case (Unclear)	63	Unclear			
EasyClinic	Interaction Diagram (20)	Use Case (30)	26	(50)	http://www.coest.org/	10	
	Interaction Diagram (20)	Test Case (63)	83	(83)			
	Interaction Diagram (20)	Code (47)	69	(67)			
	Interaction Diagram (20)	Interaction Diagram (20)	59	(40)			
	Code (47)	Code (47)	69	(94)			
	Code (47)	Test Case (63)	202	(110)			
	Use Case (131)	Code (367)	534	(498)			
	Requirement (131)	Code (367)	399	(498)			[S2] [S8] [S9] [S15]
iTrust	Requirement (131)	Code (332)	535	(463)	http://www.coest.org/	10	[S18] [S24] [S26]
	Requirement (34)	Code (4913)	307	(4947)			[\$35] [\$30]
	Use Case (Unclear)	Code (Unclear)	58	Unclear			
SMOS	Use Case (67)	Code (100)	1045	(167)	http://www.coest.org/	0	[S7] [S8] [S9] [S11]
SMOS	Use Case (67)	Code (100)	1044	(167)	nup://www.coest.org/	8	[S14] [S18] [S35]

							[S26]
	High-level requirement (235)	Low-level design document (220)	Unclear	(455)			
CM-1	High-level requirement (22)	Low-level requirement (53)	45	(75)	http://www.coest.org/	8	[S2] [S4] [S9] [S13]
	Requirement (22)	Design (46)	46	(68)			[\$15] [\$33] [\$35]
	Requirement (22)	Design (53)	45	(75)			
	Requirement (Unclear)	Use Case (Unclear)	Unclear	Unclear			
- A:	Use Case (140)	Code (55)	567	(195)	http://www.good.org/	7	[S7] [S8] [S9] [S11]
eAnci	Use Case (Unclear)	Code (Unclear)	554	Unclear	http://www.coest.org/	7	[S14] [S35] [S26]
Commons	Test Case (2473)	Code (596)	Unclear	(3069)	https://github.com/apache	4	[S17] [S22] [S29]
Lang	Test Case (3061)	Code (3111)	163	(6172)	/commons-lang	4	[S31]
16	Test Case (2239)	Code (953)	Unclear	(3192)	https://github.com/jfree/jfr	4	[S17] [S22] [S29]
JfreeChart	Test Case (2244)	Code (9053)	432	(11297)	eechart	4	[S31]
MODIS	High-level requirement (19)	Low-level requirement (49)	41	(68)	http://promise.site.uottawa.	4	[S7] [S8] [S13] [S26]
MONDRIAN	Test Case (1546)	Code (1626)	Unclear	(3172)	https://github.com/pentah o/mondrian	3	[S17] [S22] [S29]
Commons Math	Test Case (3493)	Code (2033)	Unclear	(5526)	https://github.com/apache /commons-math	3	[S17] [S22] [S29]
Albergate	Use Case (17)	Code (55)	54	(72)	http://www.coest.org/	2	[S11] [S18]
Albergate	Requirement (55)	Code (17)	53	(72)	Tittp://www.coest.org/	2	[311] [310]
Gson	Test Case (924)	Code (757)	Unclear	(1681)	https://github.com/google	2	[S22] [S31]
03011	Test Case (1006)	Code (635)	55	(1641)	/gson		[322] [331]
GANNT	High-level requirement (17)	Low-level requirement (69)	68	(86)	http://www.coest.org/	2	[S15] [S2]
COLUT	Code (453)	Requirement (958)	534	(1411)	http://www.aaataaat	0	[000]
CCHIT	Requirement (Unclear)	Requirement (Unclear)	1046	Unclear	http://www.coest.org/	2	[\$30]
FDT	Requirement (40)	Test Case (25)	51	(65)	http://www.coest.org/	1	[010]
EBT	Requirement (40)	Code (50)	98	(90)	nttp://www.coest.org/	1	[S18]
LibEST	Requirement (59)	Code (11)	204	(70)	http://sarec.nd.edu/coest/d	1	[S18]
LIDLOT	Requirement (59)	Test Case (18)	352	(77)	atasets.html	1	[310]
Selex SI	Requirement (Unclear)	Requirement (Unclear)	138	(2500)	http://www.finmeccanica.c om/en/home	1	[S16]
AMBARI	Issue (Unclear)	Issue (Unclear)	942	(1512)	http://ambari.apache.org	1	[S21]
FLEX	Issue (Unclear)	Issue (Unclear)	247	(362)	http://flex.apache.org	1	[S21]
HIVE	Issue (Unclear)	Issue (Unclear)	5811	(6730)	http://hive.apache.org	1	[S21]
Chess	Requirement (8)	Code (752)	563	(760)	https://github.com/warpwe /java-chess	1	[S24]
Gantt	Requirement (18)	Code (5013)	343	(5031)	https://sourceforge.net/pro jects/ganttproject	1	[S24]
JHotDraw	Requirement (21)	Code (6520)	439	(6541)	https://sourceforge.net/pro jects/jhotdraw	1	[\$24]
CodeSearch Net	Commit (Unclear)	Issue (Unclear)	Unclear	Unclear	https://github.com/github/ CodeSearchNet	1	[\$34]
Pgcli	Commit (531)	Issue (522)	530	(1053)	https://parada.com/	1	[S34]
Flask	Commit (752)	Issue (739)	753	(1491)	https://zenodo.org/record/	1	[S34]
Keras	Commit (551)	Issue (550)	51	(1101)	4511291#.YB3tjyj0mbg	1	[S34]

ARC-IT	Requirement (2395)	System Functions (802)	2395	(3197)	https://local.iteris.com/arc- it/index.html	1	[S5]
Commons IO	Test Case (994)	Code (1246)	97	(2240)	https://commons.apache.o rg/proper/commons-io/	1	[S31]
Apache Ant	Test Case (1830)	Code (10477)	79	(12307)	https://ant.apache.org/	1	[S31]
Mozilla Firefox	Bug Report (34)	Test Case (113)	514	(147)	https:// github.com/ guilhermemg/trace- links-tc-br	1	[S6]
Arthas	Commit (122)	Issue (167)	167	(289)		1	[S20]
bk-cmdb	Commit (895)	Issue (1178)	1179	(2073)		1	[S20]
Canal	Commit (232)	Issue (273)	273	(505)		1	[S20]
Druid	Commit (1092)	Issue (1161)	1161	(2253)		1	[S20]
Emmagee	Commit (31)	Issue (32)	32	(63)		1	[S20]
Nacos	Commit (132)	Issue (161)	161	(293)		1	[S20]
NCNN	Commit (97)	Issue (99)	99	(196)		1	[S20]
Pegasus	Commit (160)	Issue (160)	160	(320)		1	[S20]
QMUI Android	Commit (70)	Issue (71)	71	(141)	https://doi.org/10.5281/ze nodo.3713256	1	[\$20]
QMUI IOS	Commit (32)	Issue (35)	35	(67)		1	[S20]
Rax	Commit (560)	Issue (571)	571	(1131)		1	[S20]
San	Commit (186)	Issue (275)	275	(461)		1	[S20]
Weui	Commit (154)	Issue (159)	159	(313)		1	[S20]
xLua	Commit (52)	Issue (52)	52	(104)		1	[S20]
Konlpy	Commit (32)	Issue (33)	33	(65)		1	[S20]
Cica	Commit (25)	Issue (27)	27	(52)		1	[S20]
Aws-berline	Commit (74)	Issue (74)	74	(148)		1	[S20]
DASHBUILDE R	Requirement (Unclear)	Requirement (Unclear)	Unclear	(85)	https://issues.jboss.org/bro wse/DASHBUILDE	1	[S13]
Maven	Commit (8205)	Issue (4728)	Unclear	(12933)	https://issues.apache.org/ji ra/browse/MNG	1	[S37]
Derby	Commit (4468)	Issue (3608)	Unclear	(8076)	https://issues.apache.org/ji ra/browse/DERBY	1	[S37]
Groovy	Commit (1754)	Issue (2709)	Unclear	(4463)	https://issues.apache.org/ji ra/browse/GROOVY	1	[S37]
JBTM	Requirement (Unclear)	Requirement (Unclear)	Unclear	(1575)	https://issues. jboss.org/browse/JBTM	1	[S13]
Accumulo	Requirement (145)	Code (593)	3412	(738)	http://isis.apache.org	1	[S23]
Ignite	Requirement (41)	Code (668)	15569	(709)	https://ignite.apache.org/	1	[S23]
Isis	Requirement (252)	Code (2424)	11850	(2676)	http://isis.apache.org	1	[S23]
Tika	Requirement (49)	Code (72)	248	(121)	http://tika.apache.org	1	[S23]
Care2x	Requirement (Unclear)	Requirement (Unclear)	44	Unclear	http://www.care2x.org	1	[S30]
ClearHealth	Requirement (Unclear)	Requirement (Unclear)	44	Unclear	e http://www.clear- health.com	1	[\$30]
Physician	Requirement (Unclear)	Requirement (Unclear)	147	Unclear	hmss.org/content/files/CTC _use_Case.pdf	1	[\$30]
Trial Implementati ons	Requirement (Unclear)	Requirement (Unclear)	100	Unclear	http://healthit.hhs.gov	1	[\$30]

PatientOS	Requirement (Unclear)	Requirement (Unclear)	90	Unclear	http://www.patientos.org	1	[\$30]
PracticeOne	Requirement (Unclear)	Requirement (Unclear)	34	Unclear	http://www.practiceone.co m	1	[S30]
WorldVistA	Requirement (Unclear)	Requirement (Unclear)	66	Unclear	http:/worldvista.org	1	[S30]
Pine	Requirement (49)	Use case (51)	250	(100)		2	[24] [226]
Pille	Requirement (49)	Use case (51)	246	(100)		2	[S4] [S36]
SafeDrink *	Functional requirement (170)	Code (173)	Unclear	(343)		2	[S3] [S12]
SmartTrip *	Functional requirement (214)	Code (266)	Unclear	(480)		2	[S3] [S12]
BlueWallet *	Functional requirements (184)	Code (374)	Unclear	(558)		2	[S3] [S12]
Drools	Requirement (Unclear)	Requirement (Unclear)	Unclear	(486)		2	[S13] [S37]
Dioois	Commit (3735)	Issue (3992)	Unclear	(7727)		2	[313] [337]
Lauesen	Requirement (Unclear)	Requirement (Unclear)	116	Unclear		1	[S30]
Joda-Time	Test Case (3779)	Code (522)	Unclear	(4301)		1	[S22]
PTC	Requirement (1651)	Design (466)	1387	(2117)		1	[S27]
Lucene	Code (5097)	Software documentation (1899)	2137	(6996)		1	[S32]
A * B *	Requirement (112)	Requirement (142)	Unclear	(254)		1	[\$25]
ArgoUML	Test Case (554)	Code (2404)	Unclear	(2958)		1	[S22]
Waterloo	Feature (Unclear)	Use Case (Unclear)	Unclear	Unclear		1	[S33]
PMD	Test Case (825)	Code (1608)	Unclear	(2433)		1	[S22]
Clafer Tools	Feature annotation (14000)	Code (Unclear)	Unclear	Unclear		1	[S28]
AIRFLOW	Requirement (Unclear)	Requirement (Unclear)	Unclear	(629)		1	[S13]
ANY23	Requirement (Unclear)	Requirement (Unclear)	Unclear	(182)		1	[S13]
Pig	Commit (4839)	Issue (2012)	Unclear	(6851)		1	[S37]
Infinispan	Commit (4778)	Issue (2058)	Unclear	(6836)		1	[S37]
IMMUTANT	Requirement (Unclear)	Requirement (Unclear)	Unclear	(404)		1	[S13]
CAF	Requirement (Unclear)	Model (Unclear)	Unclear	Unclear		1	[S19]
Dataset1 *	Requirement (762)	Requirement (521)	367	(1283)		1	[S10]
Dataset2 *	Requirement (2060)	Requirement (4188)	817	(6248)		1	[S10]

^{*} present that author uses a pseudonym of the name of dataset for confidentiality agreements

2. Search process record

Database	Number of searches	Number of repetitions in each database	Number of each database (After deleting repetitions)	Number of repetitions in all databases	Total number (After deleting repetitions)
ACM	96	1	69		56
Springer	210	0	171	227	132
Science Direct	136	20	113	221	80
El	674	38	596		457

IEEE	324	67	243	240
Total	1440	126	1192	965

Excute inclusion/exclusion criteria

Database	apply criteria (ISC1-ISC3, ESC1-ESC4)	apply criteria(ISC4-ISC5, ESC5-ESC6) in title, abstract, keywords	apply criteria(ISC4-ISC5, ESC5-ESC6) in full article	Snowballing	final
ACM					
Springer					
Science					
Direct	625	184	35	3	38
EI					
IEEE					
Total					

1.6 Search records

Digital Libraries:

Database Website	
ACM https://dl.acm.org/	
Springer	https://www.springer.com/
Science Direct https://www.sciencedirect.com/	
El https://www.engineeringvillage.com/	
IEEE https://ieeexplore.ieee.org/	

Search terms:

P1	software traceability	I1	machine learning		
P2	software trace	12	ML		
Р3	software tracing	13	supervised learning		
P4	traceability link recovery	14	unsupervised learning		
		15	semi-supervised learning		
		16	reinforcement learning		

(1) ACM

	Anywhere
(P1 OR P2 OR P3 OR P4)	
AND	96
(I1 OR I2 OR I3 OR I4 OR I5 OR I6)	

Advanced search:

("software traceability" OR "software trace" OR "software tracing" OR "traceability link recovery") AND ("machine learning" OR "ML" OR "supervised learning" OR "unsupervised learning" OR "semi-supervised learning" OR "reinforcement learning")

Screenshot of search process in ACM:

(2) Spinger

	Keywords+Title+Abstract	
(P1 OR P2 OR P3 OR P4)		
AND	210	
(I1 OR I2 OR I3 OR I4 OR I5 OR I6)		

Advanced search:

("software traceability" OR "software trace" OR "software tracing" OR "traceability link recovery") AND ("machine learning" OR "ML" OR "supervised learning" OR "unsupervised learning" OR "semi-supervised learning" OR "reinforcement learning")

Screenshot of search process in Springer:

(3) Science Direct

	Title+Abstract+Keywords
(P1 OR P2 OR P3 OR P4) AND (I1)	63
(P1 OR P2 OR P3 OR P4) AND (I2)	59
(P1 OR P2 OR P3 OR P4) AND (I3)	7
(P1 OR P2 OR P3 OR P4) AND (I4)	2
(P1 OR P2 OR P3 OR P4) AND (I5)	1
(P1 OR P2 OR P3 OR P4) AND (I6)	4
Total	136

■ Advanced search((P1 OR P2 OR P3 OR P4) AND (I1)):

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (machine learning)

Screenshot of search process in Scienct Direct:

■ Advanced search((P1 OR P2 OR P3 OR P4) AND (I2)):

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (ML)

Screenshot of search process in Scienct Direct:

■ Advanced search((P1 OR P2 OR P3 OR P4) AND (I3)):

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (supervised learning)

Screenshot of search process in Scienct Direct:

■ Advanced search((P1 OR P2 OR P3 OR P4) AND (I4)):

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (unsupervised learning)

Screenshot of search process in Scienct Direct:

■ Advanced search((P1 OR P2 OR P3 OR P4) AND (I5)):

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (semi-supervised learning)

Screenshot of search process in Scienct Direct:

■ Advanced search((P1 OR P2 OR P3 OR P4) AND (I6)):

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (reinforcement learning)

Screenshot of search process in Scienct Direct:

(4) EI

	Subject/Title/Abstract		
(P1 OR P2 OR P3 OR P4)			
AND	674		
(I1 OR I2 OR I3 OR I4 OR I5 OR I6)			

Expert search:

(software traceability OR software trace OR software tracing OR traceability link recovery) AND (machine learning OR ML OR supervised learning OR unsupervised learning OR semi-supervised learning OR reinforcement learning)

Screenshot of search process in EI:

(5) IEEE

	Title	Abstract	Index terms
(P1 OR P2 OR P3 OR P4)			
AND	2	159	163
(I1 OR I2 OR I3 OR I4 OR I5 OR I6)			
Total		324	

Command Search(Title):

("Document Title":software traceability OR "Document Title":software trace OR "Document Title":software tracing OR "Document Title":traceability link recovery) AND ("Document Title":machine learning OR "Document Title":ML OR "Document Title":supervised learning OR "Document Title":semi-supervised learning OR "Document Title":reinforcement learning)

Screenshot of search process in IEEE:

Command Search(Abstract):

("Abstract":software traceability OR "Abstract":software trace OR "Abstract":software tracing OR "Abstract":traceability link recovery) AND ("Abstract":machine learning OR "Abstract":ML OR "Abstract":supervised learning OR "Abstract":unsupervised learning OR "Abstract":semi-supervised learning OR "Abstract":reinforcement learning)

Screenshot of search process in IEEE:

Command Search(Index Terms):

("Index Terms":software traceability OR "Index Terms":software trace OR "Index Terms":software tracing OR "Index Terms":software traceability link recovery) AND ("Index Terms":machine learning OR "Index Terms":ML OR "Index Terms":supervised learning OR "Index Terms":semi-supervised learning OR "Index Terms":reinforcement learning)

Screenshot of search process in IEEE:

