République Islamique de Mauritanie Ministère de l'Education Nationale Direction des Examens et Concours Service des Examens

Baccalauréat 2015

Session Complémentaire

Honneur – Fraternité – Justice

Série : Sciences de la Nature Epreuve: Mathématiques Durée: 4 heures Coefficient: 6

Exercice 1 (3 points)

On considère la suite (U_n) définie pour tout $n \in \mathbb{N}$ par $U_n = \frac{5^n}{2^n}$.

Soit $\mathbf{S}_n = \mathbf{U}_0 + \mathbf{U}_1 + \mathbf{U}_2 + \dots + \mathbf{U}_n \;\; \text{et} \;\; \mathbf{V}_n = \ln \mathbf{U}_n \;.$

Parmi les réponses proposées pour chaque question ci-après, une seule réponse est exacte.

N°	Question	Réponse A	Réponse B	Réponse C	
1	La suite (U_n) est:	Arithmétique	Géométrique	Ni l'une ni l'autre	(0,5pt)
2	La suite (U _n) est:	Convergente vers 0	Convergente vers $\frac{5}{2}$	Divergente	(0,5pt)
3	La suite (U _n) est:	Croissante	Décroissante	Non monotone	(0,5pt)
4	La somme S_n est égale à :	$S_{n} = \frac{3}{2} \left(1 - \left(\frac{5}{2} \right)^{n} \right)$	$S_n = \frac{2}{3} \left(\left(\frac{5}{2} \right)^{n+1} - 1 \right)$	$S_{n} = \frac{1 + \left(\frac{5}{2}\right)^{n}}{\frac{3}{2}}$	(0,5pt)
5	Le plus petit entier naturel n tel que $U_n \ge 2015$ est	n=8	n=9	n = 10	(0,5pt)
6	La suite (V _n) est:	Arithmétique	Géométrique	Ni l'une ni l'autre	(0,5pt)

Recopie sur la feuille de réponse et complète le tableau ci-contre en choisissant la bonne réponse. Aucune justification n'est demandée :

Question n°	1	2	3	4	5	6
Réponse						

Exercice 2 (5 points)

1) On considère les équations suivantes dans C:

 $E_1: z^2 - 6z + 25 = 0$ $E_2: z^2 - 8z + 25 = 0$

a) Résoudre \mathbf{E}_1 . On note \mathbf{z}_1 et \mathbf{z}_2 ses solutions avec $\mathbf{Im}(\mathbf{z}_1) > \mathbf{0}$.

b Résoudre \mathbf{E}_2 . On note \mathbf{z}_3 et \mathbf{z}_4 ses solutions avec $\mathbf{Im}(\mathbf{z}_3) > \mathbf{0}$.

c) Ecrire sous forme trigonométrique les nombres $\mathbf{z}_1 + \mathbf{z}_3$ et $\mathbf{z}_1 \times \mathbf{z}_3$. (0,75 pt)

2) Le plan complexe est rapporté à un repère orthonormé $(\mathbf{O}; \vec{\mathbf{u}}, \vec{\mathbf{v}})$.

Pour tout nombre complexe z tel que $z \ne 3 + 4i$ on pose : $f(z) = \frac{z - 4 - 3i}{z - 3 - 4i}$.

On considère les points A, B et C d'affixes respectives $z_A = 3 + 4i$, $z_B = 4 + 3i$ et $z_C = 4 + 4i$.

a) Placer les points A, B et C dans le repère.

b) Calculer et mettre sous forme algébrique le nombre complexe f(4+4i). Interpréter graphiquement.

c) Déterminer et représenter, dans le repère $(\mathbf{O}; \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}})$, les ensembles de points \mathbf{M} du plan d'affixe \mathbf{z} dans chacun des cas suivants :

 Γ_1 tel que $|\mathbf{f}(\mathbf{z})| = 1$. (0,5 pt)

 Γ_2 tel que $\mathbf{f}(\mathbf{z})$ soit imaginaire pur. (0,5 pt)

(0,5 pt)

(0,75 pt)

Exercice 3 (6 points)

- 1) On considère la fonction numérique g définie par : $g(x) = (2x+1)e^x + 1$. (0,5 pt)a) Justifier que $\lim g(x) = +\infty$ et $\lim g(x) = 1$.
- b) Calculer g'(x) et dresser le tableau de variation de g. (0.75 pt)
- c) En déduire que pour tout réel x; g(x) > 0. (0,25 pt)
- 2) On considère la fonction numérique f définie par : $f(x) = x + 2 + (2x-1)e^x$

Soit (C) sa courbe représentative dans un repère orthonormé $(\mathbf{O}; \mathbf{i}, \mathbf{j})$.

- a) Montrer que $\lim f(x) = -\infty et$ $\lim f(x) = +\infty$. (0,5 pt)
- b) Calculer et interpréter graphiquement $\lim_{x\to+\infty} \frac{f(x)}{x}$. (0,25 pt)
- c) Montrer que la droite \mathbf{D} d'équation $\mathbf{y} = \mathbf{x} + \mathbf{2}$ est une asymptote oblique à (C) au voisinage de -∞ puis déterminer leurs positions relatives. (0,5 pt)
- 3) Ecrire f'(x) en fonction de g(x) et dresser le tableau de variation de f. (0,75 pt)
- 4.a) Montrer que \mathbf{f} réalise une bijection de \mathbb{R} sur un intervalle \mathbf{J} que l'on déterminera. (0,5 pt)
- b) Montrer que l'équation f(x) = 0 admet une unique solution α puis vérifier que $-0.86 < \alpha < -0.85$. (0,5 pt)
- 5.a) Montrer qu'il existe un unique point A en lequel la tangente T à (C) est parallèle à l'asymptote oblique. Préciser les coordonnées de A et donner l'équation de T.
- b) Construire la courbe (C), la tangente T et l'asymptote D. (0,5 pt)(0.25 pt)
- c) Discuter graphiquement suivant les valeurs de m le nombre de solutions de l'équation $(2x-1)e^{x}-m+2=0$.

Exercice 4 (6 points)

Partie A

Soit g la fonction définie sur $0;+\infty$ par $g(x) = 2x^2 + \ln x$.

- 1.a) Calculer $\lim_{x\to 0^+} g(x)$ et $\lim_{x\to +\infty} g(x)$.
- b) Calculer la dérivée g'(x) et dresser le tableau de variation de g.
- (0.5 pt)2.a) Montrer que g réalise une bijection de]0;+∞ sur un intervalle J à déterminer.
- b) Démontre que l'équation g(x) = 0 admet une unique solution α telle que $0.54 < \alpha < 0.55$. (0.5 pt)(0,25 pt)
- c) En déduire le signe de g(x) sur $0;+\infty$.

Partie B

On considère la fonction f définie sur $]0;+\infty[$ par : $f(x) = 2x - \frac{1 + \ln x}{x}$.

On appelle (C) la courbe représentative de f dans un repère orthonormé ($O; \vec{i}, \vec{j}$) d'unité 2cm.

- 1.a) Justifier que $\lim f(x) = +\infty$ et en donner une interprétation géométrique.
- b) Calculer $\lim f(x)$ et $\lim (f(x)-2x)$. En déduire que (C) admet une asymptote oblique (Δ) en $+\infty$.
- c) Etudier la position relative de (C) et (Δ) .
- 2.a) Calculer f'(x) puis vérifier que $f'(x) = \frac{g(x)}{x^2}$.
- b) Dresser le tableau de variation de f.
- c) Vérifier que $f(\alpha) = \frac{4\alpha^2 1}{\alpha}$ et en donner une valeur approchée.
- 3.a) Donner une équation de la tangent (T) à (C) au point d'abscisse $x_0 = \frac{1}{2}$. (0,25 pt)
- b) Tracer (C), (Δ) et (T) dans le repère ($0; \vec{i}, \vec{j}$) d'unité 2cm.
- 4.a) Donner une primitive F de f sur $]0;+\infty[$.
- b) Calculer l'aire, en unité d'aire, du domaine plan limité par la courbe (C), l'axe des abscisses, et les droites d'équations $x = \frac{1}{a}$ et x = 1.

Fin.

(0,5 pt)

(0,25 pt)

(0,5 pt)(0,5 pt)

(0,25 pt)

(0,25 pt)