Department of Mathematics and Computing

Mathematics I

Tutorial Sheet-1

1. Find the first four non-zero terms of the Taylor series generated by the function f(x).

(i)
$$f(x) = \sqrt{3 + x^2}$$
 at $x = -1$ (ii) $f(x) = \frac{1}{1 - x}$ at $x = 2$ (iii) $f(x) = \frac{1}{1 + x}$ at $x = 3$

(iv)
$$f(x) = \frac{1}{x}$$
 at $x = a > 0$ (v) $f(x) = \frac{1}{1 + x^2}$ at $x = -2$ (vi) $f(x) = \sin(x^2)$ at $x = 1$

(vii)
$$f(x) = \tan(x)$$
 at $x = 1$ (viii) $f(x) = e^{-2x}$ at $x = \frac{1}{2}$ (ix) $f(x) = \cosh(x)$ at $x = 1$

2. Find the Maclaurin series for the following functions.

(i)
$$f(x) = \frac{1}{1 - 2x}$$
 (ii) $f(x) = \frac{1}{1 + x^3}$ (iii) $f(x) = \sin(\pi x)$ (iv) $f(x) = \sin^2(x)$

(v)
$$f(x) = \cos(x^{5/2})$$
 (vi) $f(x) = \cos(\sqrt{5x})$ (vii) $f(x) = e^{\pi x/2}$ (viii) $f(x) = e^{-x^2}$

(ix)
$$f(x) = \log(1+x)$$
 (x) $f(x) = \frac{1}{1+x^2}$ (xi) $f(x) = \sinh(x)$

3. (i) Calculate e with an error of 10^{-6} .

(ii) For what values of x can we replace $\sin(x)$ by $x - \frac{x^3}{3!}$ with an error of magnitude no greater than $3 \cdot 10^{-4}$?

(iii) For approximately what values of x can you replace $\sin(x)$ by $x - \frac{x^3}{6}$ with an error of magnitude no greater than $5 \cdot 10^{-4}$? Give reasons for your answer.

(iv) How close is the approximation $\sin(x) = x$ when $|x| < 10^{-3}$? For which of these values of x is $x < \sin(x)$?

(v) The estimate $\sqrt{1+x} \approx 1 + \frac{x}{2}$ is used when x is small. Estimate the error when |x| < 0.01.

(vi) The approximation $e^x \approx 1 + x + \frac{x^2}{2}$ is used when x is small. Use the Remainder Estimation Theorem to estimate the error when |x| < 0.1.

(vii) Estimate the error in the approximation $\sinh(x) \approx x + \frac{x^3}{3!}$ when |x| < 0.5. (Hint: Use R_4 not R_3 .)

(viii) When $0 \le h \le 0.01$, show that e^h may be replaced by 1 + h with an error of magnitude no greater than 0.

(ix) For what values of x can you replace $\ln(1+x)$ by x with an error of magnitude no greater than 1% of the value of x?

4. Find the limits (if they exist):

(i)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x-y)}{x-y}$$
 (ii) $\lim_{(x,y)\to(1,-1)} \frac{x^3+y^3}{x+y}$ (iii) $\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2}$ (iv) $\lim_{(x,y)\to(0,0)} \frac{x^4}{x^4+y^2}$

5. Examine the following functions for continuity at (0,0). The expressions below give the values at $(x,y) \neq (0,0)$. At (0,0), the value should be taken as zero:

1

$$(x,y) \neq (0,0)$$
. At $(0,0)$, the value should be taken as zero:
(i) $\frac{x^3y}{x^6+y^2}$ (ii) $xy\frac{x^2-y^2}{x^2+y^2}$ (iii) $||x|-|y||-|x|-|y|$ (iv) $\frac{x^3y}{x^4+y^2}$

6. Examine the following functions for the existence of partial derivatives at (0,0). The expressions below give the values at $(x,y) \neq (0,0)$. At (0,0), the value should be taken as zero:

(i)
$$xy \frac{x^2 - y^2}{x^2 + y^2}$$
 (ii) $\frac{\sin^2(x+y)}{|x| + |y|}$ (iii) $\frac{xy}{x^2 + y^2}$ (iv) $|x| + |y|$ (v) $\frac{\sin(x^3 + y^4)}{x^2 + y^2}$

7. (i) Compute the partial derivatives at (0,0) for

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

(ii) Determine the differentiability of the function f defined by

$$f(x,y) = \begin{cases} \frac{x^3y}{x^4 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$$

- 8. Let $u = \frac{y}{x}$, $v = x^2 + y^2$, w = w(u, v).
 - (i) Express the partial derivatives w_x and w_y in terms of w_u and w_v (and x and y).
 - (ii) Express $xw_x + yw_y$ in terms of w_u and w_v and write the coefficients as functions of u and v.
 - (iii) Find $xw_x + yw_y$ in case $w = v^5$.
- 9. Consider the curve of points (x, y, z) satisfying $x^5 + yz = 3$ and $xy^2 + yz^2 + zx^2 = 7$. Use the method of total differentials to find $\frac{dx}{dy}$ at (x, y, z) = (1, 1, 2).
- 10. Analyze the following functions for local maxima, local minima, and saddle points:

(i)
$$f(x,y) = (x^2 - y^2) e^{-(x^2 + y^2)/2}$$
 (ii) $f(x,y) = x^3 - 3xy^2$ (iii) $f(x,y) = 2xy - x^2 - 2y^2 + 3x + 4y^2$

(iv)
$$f(x,y) = 2x^2 + 3xy + 4y^2 - 5x + 2y$$
 (v) $f(x,y) = x^3 + y^3 - 3xy$

11. Find the absolute maximum and the absolute minimum of

$$f(x,y) = (x^2 - 4x)\cos y \text{ for } 1 \le x \le 3, \frac{-\pi}{4} \le y \le \frac{\pi}{4}.$$

- 12. The temperature at the point (x, y, z) in 3-space is given by T(x, y, z) = 400xyz. Find the highest temperature on the unit sphere $x^2 + y^2 + z^2 = 1$.
- 13. Maximize f(x, y, z) = xyz subject to the constraints x + y + z = 40 and x + y = z.
- 14. Minimize $f(x,y,z) = x^2 + y^2 + z^2$ subject to the constraints x + 2y + 3z = 6 and x + 3y + 4z = 9.
- 15. A company manufactures stainless steel right circular cylindrical molasses storage tanks that are 25 ft high with a radius of 5 ft. How sensitive are the tanks' volumes to small variations in height and radius?
- 16. Find the minimum distance from the cone $z = \sqrt{x^2 + y^2}$ to the point (-6, 4, 0).
- 17. Find the dimension of the rectangular box of maximum volume that can be inscribed inside the sphere $x^2 + y^2 + z^2 = 4$.
- 18. Find the point on the plane x + 2y + 3z = 13 closest to the point (1, 1, 1).
- 19. Use Taylor's formula for f(x, y) at the origin to find quadratic and cubic approximations of f near the origin.

(i)
$$f(x,y) = e^x \cos y$$
 (ii) $f(x,y) = e^{x^2 - y}$ (iii) $f(x,y) = \frac{3}{1 - 2x - y}$ (iv) $f(x,y) = xe^y$

20. Use Taylor's formula to find a quadratic approximation of $f(x, y) = \cos x \cos y$ at the origin. Estimate the error in the approximation if $|x| \le 0.1$ and $|y| \le 0.1$.