#### Announcements



- We'll be working through Chapter 2 the next several classes
- If you didn't complete HW1, it isn't too late to still do for most of the credit!
- HW2 will be available today after class. Due 10am on Friday.
- Tutoring is starting up on Sunday
  - Sun-Thur 7:30-9:30pm in the Physics hearth
- Polling: rembold-class.ddns.net

# Astronomy Picture of the Day





### Review Question



#### A light-year is approximately:

- A. 8 min
- B. 365 d
- C. 5 AU
- D.  $9.45 \times 10^{15} \, \text{m}$

Hint: the speed of light is  $3 \times 10^8 \, \text{m/s}$ .

### Review Question



A light-year is approximately:

- A. 8 min
- B. 365 d
- C. 5 AU
- D.  $9.45 \times 10^{15} \, \text{m}$

Hint: the speed of light is  $3 \times 10^8 \, \text{m/s}$ .

### A View from Earth





### A View from Earth





### A View from Earth





#### Constellation Details



- Stars may only appear to be next to one another
  - In reality they may be (and likely are) separated by light-years and parsecs of space
- Stars are so far away that we lose depth perception
  - Think far away headlights at night
- Our eyes could not tell the difference between space as we know it and us living in a huge dark bubble with holes in it to let in light
- Thus we commonly refer to the Celestial Sphere

## The Celestial Sphere



- Aligned with Earth's sphere
  - North and South poles align
  - Equator Aligns
- Equator does not align with the Solar System's disk, because Earth is tilted
  - The ecliptic is the path the Sun (and planets) follow through our sky.
- Like the Earth, positions are denoted with latitude and longitude!
  - Commonly called Declination and Right Ascension, respectively.

# Orientation and Vocabulary





# Orientation and Vocabulary





# From Our Perspective





## How Things Move: As we see it



- Furthest away: Stars
  - Move along parallel to the Celestial equator
- Closing in: Solar System Objects
  - Move along parallel (and near to) the ecliptic
- Other Objects: Milky Way
  - Galactic plane does not line up with Solar System
  - We see the Milky Way oriented in the sky at yet another angle ( $\approx$ 63 $^{\circ}$  from the Celestial equator)
  - Motion follow that of the stars, parallel to the Celestial equator

## Making Measurements



With everything on a sphere, how do we make measurements?

## Making Measurements



With everything on a sphere, how do we make measurements?

- With angles! (commonly called angular distance)
  - Using your outstretched arm:
    - ullet Pinky width  $=1^\circ$
    - 3 middle finger width  $= 5^{\circ}$
    - Fist width  $= 10^{\circ}$
    - ullet Spread hand width  $=20^\circ$  to  $25^\circ$
  - We often need to break degrees into smaller increments:
    - ullet 60 arc-minute  $=60'=1^\circ$
    - 60 arc-second = 60'' = 1'
  - Longitude angles sometimes given in hours
    - Earth rotates 360° in 24 h
    - Thus  $1 \, \text{h} \approx 15^{\circ}$
  - Angular size related to physical size by the distance away (via trig)

#### Arc-Time



#### Example

Convert 39°47′32″ to its decimal representation.



#### Example

Convert 39°47′32" to its decimal representation.

$$32'' \times \frac{1'}{60''} = 0.533'$$

$$47' + 0.533' = 47.533'$$

$$47.533' \times \frac{1^{\circ}}{60'} = 0.7922^{\circ}$$

$$39^{\circ} + 0.7922^{\circ} = 39.7922^{\circ}$$



As long as the angular sizes are small, we can relate angular size and physical size via:

$$\frac{\text{Angular Size}}{360^{\circ}} = \frac{\text{Physical Size}}{2\pi(\text{Distance Away})}$$

#### Example

Given that, how far away is the back of the room from the circle on the front board?

#### Clarification



#### Don't Get Confused!

Angular distances are the same using either the Celestial coordinate system or the local coordinate system

- Celestial System:
  - Celestial Latitude (Declination)
  - Celestial Longitude (Right Ascension)
  - Think in terms of the globe
- Local System
  - Direction you are looking (Azimuth)
    - Determined by compass usually
  - Angular distance above horizon (Altitude)
    - Can determine with a sextant or estimate with your hands

## **Understanding Check**



Supposed I asked you for the angular diameter of a circle drawn at the front of the room. The students in the front row would measure an angular distance that is the students in the back row.

- A. larger than
- B. smaller than
- C. equal to
- D. opposite to

# **Understanding Check**



Supposed I asked you for the angular diameter of a circle drawn at the front of the room. The students in the front row would measure an angular distance that is the students in the back row.

- A. larger than
- B. smaller than
- C. equal to
- D. opposite to

### Celestial Sphere Demonstrations



#### Example

- How long is the sun up today here on the 45th parallel?
- How long is the sun up today up in Alaska on the 65th parallel?
- How high will the sun rise in the sky for us on December 10th?
- What time will Orion rise on October 31?
- What altitude and azimuth will Vega have at midnight tonight?