(Towards) **Deep Rule Learning**

Johannes Fürnkranz

Johannes Kepler University, Linz Institute for Applied Knowledge Processing Computational Data Analytics Group

juffi@faw.jku.at

Joint Work with Florian Beck

The Sucess of Deep Learning

Hypothesis:

Most of the success of deep learning is due to the fact that it allows to learn **deep structures** in which auxiliary concepts develop which will facilitate the learning process

Problem:

No state-of-the-art rule learning algorithm is able to learn such structured, purely declarative rule bases

Example: Parity / XOR

- Consider the parity / XOR problem
 - n + r binary attributes sampled with an equal distribution of 0/1
 - n relevant binary attributes (the first n w.l.o.g.)
 - r irrelevant binary attributes
- Target concept:
 - is there an even number of 1's in the relevant attributes?

Encoding Parity with a Flat Rule Set

Most rule learning algorithms learn flat theories

- n-bit parity needs 2ⁿ⁻¹ flat rules
- each rule encoding one positive case in the truth table

```
parity: - x1, x2, x3, x4, not x5.
parity: - x1, x2, not x3, not x4, not x5.
parity: - x1, not x2, x3, not x4, not x5.
parity: - x1, not x2, not x3, x4, not x5.
parity: - not x1, x2, not x3, x4, not x5.
parity: - not x1, x2, x3, not x4, not x5.
parity :- not x1, not x2, x3, x4, not x5.
parity: - not x1, not x2, not x2, not x4, not x5.
parity: - x1, x2, x3, not x4,
                                    x5.
parity:- x1, x2, not x3, x4, x5.
parity: - x1, not x2, x3, x4, x5.
parity: - not x1, x2, x3, x4, x5.
parity: - not x1, not x2, not x3, x4, x5.
parity: - not x1, not x2, x3, not x4, x5.
parity: - not x1, x2, not x3, not x4,
                                    x5.
parity: - x1, not x2, not x4,
                                    x5.
```

DNF formula with 2^{n-1} literals, each having n variables

Network View of a Flat Rule Set

Flat Rule Sets can be converted into a network using a single
 AND and a single OR layer (analogous to Sum-Product Networks)

- Each node in the hidden layer corresponds to one rule
 - typically it is a local pattern, covering part of the target

Encoding Parity with a Structured Rule Base

But structured concepts are often more interpretable

• in parity we need only O(n) rules with intermediate concepts

```
parity45 :- x4, x5.
parity45 :- not x4, not x5.

parity345 :- x3, not parity45.
parity345 :- not x3, parity45.

parity2345 :- x2, not parity345.
parity2345 :- not x2, parity345.

parity :- x1, not parity2345.
parity :- not x1, parity2345.
```

Network View of a Structured Rule Base

This is encodes a deep network structure

Why is it good to learn structured rule bases?

- Expressivity? It does not necessarily increase expressivity
 - any structured rule base can be converted into an equivalent DNF expression, i.e., a flat set of rules
 - but this is also true for NNs → universal approximation theorem (one layer is sufficient; Hornik et al. 1989)
 - in both cases the number of terms (size of hidden layers, conjuncts in the DNF) is unbounded

Learning Efficiency

- the hope is that deeper structures might be easier to learn
- possibly contain fewer "parameters" that need to the found

Explicit encoding of the decision function

 Note that conventional rule learning algorithms rely on additional mechanisms for tie breaking if more than one (or no) rule fires

Some Research Questions

 Representation: How to represent deep rule sets to allow for efficient and effective reasoning and learning

Learning efficiency: Are deep rule structures easier to learn than shallow DNF rule sets?

Restructuring: Can we structure an existing (shallow) rule sets into a comprehensible deep rule sets?

Learning: How can we learn deep rule sets?

Rule Sets

- are typically not declarative, require some sort of tie breaking
- two main approaches
 - weighted rules / probabilistic rules

$$egin{aligned} \overline{m{r}_1(0.8):a\wedge b
ightarrow x} & \qquad \qquad & \qquad \text{max: } y \text{ (0.9)} \\ m{r}_2(0.9):b\wedge c
ightarrow y & \qquad & \qquad & \text{sum: } x \text{ (0.7+0.8 > 0.9)} \\ m{d}: & \qquad \rightarrow z & \qquad & \qquad & \qquad & \end{aligned}$$

- ullet decision lists $\mathcal{D}=(oldsymbol{r}_2,oldsymbol{r}_1,oldsymbol{r}_3,oldsymbol{d})$
 - sort the rules according to some criterion
 - e.g., order in which they are learned
 - e.g., order according to weight (effectively equivalent to using weighted max)
 - use the first rule that fires

Declarative Version of Weighted Rule Sets

Tie Breaking with Majority vote

$$a \wedge b \rightarrow h_1$$

$$b \wedge c \rightarrow h_2$$

$$c \wedge d \rightarrow h_3$$

$$h_1 \wedge h_3 \rightarrow x$$

$$h_1 \wedge \neg h_2 \rightarrow x$$

$$h_3 \wedge \neg h_2 \rightarrow x$$

$$h_3 \wedge \neg h_2 \rightarrow x$$

$$h_2 \wedge \neg h_1 \rightarrow y$$

$$h_2 \wedge \neg h_3 \rightarrow y$$

$$\neg h_1 \wedge \neg h_2 \wedge \neg h_3 \rightarrow z$$

Declarative Version of Decision List

- A decision list is a decision graph, where not satisfied condition takes you to the start of the next rule
- Example of a decision list with 4 rules with 4, 2, 2, 1 conditions

Declarative Version of Decision List

In our example

$$b \wedge c \rightarrow h_2$$

$$h_2 \rightarrow y$$

$$\neg h_2 \wedge a \wedge b \rightarrow h_1$$

$$h_1 \rightarrow x$$

$$\neg h_1 \wedge \neg h_2 \wedge c \wedge d \rightarrow h_3$$

$$h_3 \rightarrow x$$

$$\neg h_1 \wedge \neg h_2 \wedge \neg h_3 \rightarrow z$$

NAND Representation

- Like any other Boolean function, AND/OR networks can be represented in a uniform way with single node types (NAND)
- Example:

NAND Representation

 Like any other Boolean function, AND/OR networks can be represented in a uniform way with single node types (NAND)

Example:

NAND Representation and Boolean Matrix Multiplication

 The NAND representation also allows for an effective representation as matrix multiplication

(orange/¬: negation, green/@: binary matrix multiplication)

Some Research Questions

 Representation: How to represent deep rule sets to allow for efficient and effective reasoning and learning

Learning efficiency: Are deep rule structures easier to learn than shallow DNF rule sets?

Restructuring: Can we structure an existing (shallow) rule sets into a comprehensible deep rule sets?

Learning: How can we learn deep rule sets?

Does a Deep Structure help?

- To answer this empirically, we need to compare a powerful shallow rule learner with a powerful deep rule learner
 - But we do not have a powerful deep rule learner... (yet)
- Instead, we use a simple optimization algorithm to learn both, deep and shallow representations
 - 1)Fix a network architecture
 - Shallow, single layer network RNC: [20]
 - Deep 3-layer network DRNC(3): [32, 8, 2]
 - Deep 5-layer network DRNC(5): [32, 16, 8, 4, 2]
 - 2)Initialize Boolean weights probabilistically
 - 3)Use stochastic local search to find best weight "flip" on a mini-batch of data until convergence
 - 4)Optimize finally on whole training set

Results on Artificial Datasets

- 20 artificial datasets with 10 Boolean inputs, 1 Boolean output
 - generated from a randomly initialized (deep) Boolean network

seed %(+)	DRNC(5)	DRNC(3)	RNC	RIPPER	CART
Ø Accuracy	0.9467	0.9502	0.9386	0.9591	0.9644
Ø Rank	1.775	1.725	2.5		

 DRNC(3) [DRNC(5)] outperforms RNC on a significance level of more than 95% [90%]

Run-times (Artificial Datasets)

DRNC(3) and DRNC(5) converge faster than RNC

Results on Real-World (UCI) Datasets

dataset	%(+)	DRNC(5)	DRNC(3)	RNC	RIPPER	CART
car-evaluation	0.7002	0.8999	0.9022	0.8565	0.9838	0.9821
connect-4	0.6565	0.7728	0.7712	0.7597	0.7475	0.8195
kr-vs-kp	0.5222	0.9671	0.9643	0.9725	0.9837	0.989
monk-1	0.5000	1	0.9982	0.9910	0.9478	0.8939
monk-2	0.3428	0.7321	0.7421	0.7139	0.6872	0.7869
monk-3	0.5199	0.9693	0.9603	0.9567	0.9386	0.9729
mushroom	0.784	1	0.978	0.993	0.9992	1
tic-tac-toe	0.6534	0.8956	0.9196	0.9541	1	0.9217
vote	0.6138	0.9655	0.9288	0.9264	0.9011	0.9287
Ø Rank		1.556	2	2.444		

 DRNC(5) has the best performance on these real-world datasets, followed by DRNC(3)

Some Research Questions

 Representation: How to represent deep rule sets to allow for efficient and effective reasoning and learning

Learning efficiency: Are deep rule structures easier to learn than shallow DNF rule sets?

Restructuring: Can we structure an existing (shallow) rule sets into a comprehensive deep rule sets?

Learning: How can we learn deep rule sets?

Binary Decision Diagrams

- Binary Decision Diagrams (BDDs) are a special case of decision graphs
- form a (binary) DAG instead of a tree
 - there might be different paths to the same decision node
 - these correspond to disjunctions
- Rule Extraction from a BDD
 - Every path from root to leaf forms a conjunctive rule with target class as head
 - Every interior node with multiple incoming edges forms a disjunctive intermediate concept
 - e.g. the left c-node in the BDD to the right forms the the concept a XOR b

a XOR b

Structuring Rule Sets with BDDs

- Inspired by multi-level logic optimization in electronic design automation
- Idea:
 - Take DNF description of positive class (or shallow rule set)
 - Convert DNF to BDD
 - Extract structured, deep rule set from BDD:
 - For each "join" node with, define a rule for each incoming path, starting from the root or another "join" node → disjunctive concepts
 - (optional) Detect overlapping conditions/paths → conjunctive concepts
 - (optional) Simplify rules with algebraic and boolean optimization

Example Domain: Car Sale

- I buy a car if the price is o.k. and the technical specs. are o.k.
- the price is o.k. if both the sales price and the maintenance costs are o.k.
- the technical specs. are o.k. if the car is comfortable and safe
- the car is comfortable if at least two of the following three are satisfied
 - has 4 doors
 - can seat 5 persons
 - has a luggage boot

Original dataset: Bohanec, Marko & Rajkovic, Vladislav. (1989). Knowledge-based explanation in multi-attribute decision making. Produktivnost.

Example Domain: Car Sale

Deep rule set

car :- price, tech.

price :- buying.

price :- maint.

tech :- comfort.

tech :- safety.

comfort :- doors, persons.

comfort :- doors, lug_boot.

comfort :- persons, lug_boot.

Original dataset: Bohanec, Marko & Rajkovic, Vladislav. (1989). Knowledge-based explanation in multi-attribute decision making. Produktivnost.

Example Domain: Car Sale

Shallow rule set

```
car :- buying, doors, persons.
car :- buying, doors, lug_boot.
car :- buying, persons, lug_boot.
car :- buying, safety.
car :- maint, doors, persons.
car :- maint, doors, lug_boot.
car :- maint, persons, lug_boot.
car :- maint, safety.
```

Original dataset: Bohanec, Marko & Rajkovic, Vladislav. (1989). Knowledge-based explanation in multi-attribute decision making. Produktivnost.

Example Domain: Car Sales

buving

persons

maint

safety

doors

lug\ boot

- Start with the flat rule set
- construct a BDD from this rule set

car :- c2, lug boot.

Extract intermediate concepts from "join" nodes

Graph: BDD Interface University of Utah, http://formal.cs.utah.edu:8080/pbl/BDD.php

persons

Experiments Artificial Datasets

- 10 Boolean inputs,1 Boolean output
- Number of rules R, concepts C, and vertices V for the ground truth and our learner "LORD".
- |X| denote values for DNF, and |X'| denote values for BDD

	Ground truth						Lord						
seed	R	R'	C	C'	V	V'	R	R'	C	C'	V	V'	
5	8	20	0	7	29	18	13	20	0	6	52	19	
16	17	27	0	4	49	25	18	26	0	4	51	26	
19	4	8	0	1	9	10	5	6	0	1	11	7	
24	15	46	0	12	59	45	18	39	0	11	72	36	
36	21	62	0	16	85	53	25	61	0	12	99	62	
44	16	28	0	5	48	28	25	31	0	5	75	28	

Generally we get

- more intermediate subconcepts (obviously...)
- fewer nodes (more compact concepts)
- more rules (for defining the subconcepts)

`												
70	18	41	0	7	78	46	26	56	0	13	113	51
81	20	43	0	11	84	39	28	34	0	10	121	33
82	4	5	0	1	8	6	4	8	0	2	8	6
85	3	3	0	0	8	6	3	3	0	0	8	6
89	12	48	0	11	47	41	19	41	0	11	72	36
107	17	47	0	10	70	41	32	32	0	7	132	33
112	18	37	0	8	67	33	33	41	0	10	126	36
118	14	32	0	8	51	27	16	32	0	6	59	30
Ø	13.95	29.45	0	6.60	51.15	28.40	17.65	29.45	0	6.55	65.70	27.60

Experiments on Mushroom Data

- Mushroom dataset from UCI repository
- Graph only shows part of generated BDD with two "join" nodes

Rule learner	R	R'	C	C'	V	V'
$q_{\rm Lap}$ learner	7	57	0	12	35	46
$h_{\rm Lap}$ learner	11	13	0	1	13	13
Lord	8	12	0	2	10	10

- Many new concepts
- but restructured rule sets are neither more compact nor easier to interpret

Some Research Questions

 Representation: How to represent deep rule sets to allow for efficient and effective reasoning and learning

Learning efficiency: Are deep rule structures easier to learn than shallow DNF rule sets?

Restructuring: Can we structure an existing (shallow) rule sets into a comprehensible deep rule sets?

Learning: How can we learn deep rule sets?

Some Research Questions

Exercise, left to the reader...

Learning: How can we learn deep rule sets?

Conclusions

- There is some evidence that deep rule sets could facilitate rule learning
 - but no conclusive answer yet
- There is some evidence that structuring rule sets could yield more compact concept descriptions
 - again, needs confirmation on challenging real-world tasks
 - → Deep Rule Learning is a promising topic for further research
 - Challenges:
 - Efficient learning algorithms for training intermediate concepts
 - Learning bias for compact structured rule sets
 - Are structured rule sets more interpretable than unstructured rule sets?

References

Beck F., Fürnkranz J.: An Empirical Investigation into Deep and Shallow Rule Learning. Frontiers in Artificial Intelligence 4, 2021. doi:10.3389/frai.2021.689398

Machine Learning and Artificial Intelligence

- Beck F., Fürnkranz J.: Beyond DNF: First Steps towards Deep Rule Learning, in *Proceedings of the* 21st Conference Information Technologies -- Applications and Theory (ITAT), series CEUR Workshop Proceedings, vol. 2962, CEUR-WS.org, pp. 61--68, 2021.
- Beck F., Fürnkranz J.; Huynh, V.Q.P.: Structuring Rule Sets Using Binary Decision Diagrams, in Proceedings of the 5th International Joint Conference on Rules and Reasoning (RuleML+RR), Springer-Verlag, 2021.
- Beck F., Fürnkranz J.: An Investigation into Mini-Batch Rule Learning, in Proceedings of the 2nd Workshop on Deep Continuous-Discrete Machine Learning (DeCoDeML), 2020.
- Fürnkranz J., Hüllermeier E., Loza Mencía E., Rapp M.: Learning Structured Declarative Rule Sets A Challenge for Deep Discrete Learning, in *Proceedings of the 2nd Workshop on Deep Continuous-Discrete Machine Learning (DeCoDeML)*, 2020.