1 Information Theory

1.1 Entropy and Probability Distributions

a) The marginal distribution of X =

$$\{(\frac{1}{8} + \frac{1}{16} + \frac{1}{16} + \frac{1}{4}), (\frac{1}{16} + \frac{1}{8} + \frac{1}{16} + 0), (\frac{1}{32} + \frac{1}{32} + \frac{1}{16} + 0), (\frac{1}{32} + \frac{1}{32} + \frac{1}{16} + 0)\}$$

$$= \{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\}$$

The marginal distribution of Y =

$$\{(\frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{32}), (\frac{1}{16} + \frac{1}{8} + \frac{1}{32} + \frac{1}{32}), (\frac{1}{16} + \frac{1}{16} + \frac{1}{16} + \frac{1}{16}), (\frac{1}{4} + 0 + 0 + 0)\}$$

$$= \{\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\}$$

b) The Entropy of X, H(X) =

$$= -\frac{1}{2}log_2\frac{1}{2} - \frac{1}{4}log_2\frac{1}{4} - \frac{1}{8}log_2\frac{1}{8} - \frac{1}{8}log_2\frac{1}{8}$$
$$= .5 + .5 + .375 + .375$$
$$= 1.75 \ bits$$

The Entropy of Y, H(Y) =

$$= 4 * \left(-\frac{1}{4}log_2\frac{1}{4}\right)$$
$$= 4 * .5$$
$$= 2 bits$$

c) $H(X|Y) = \sum_{i=1}^{4} p(Y=i)H(X|Y=i)$ $= \frac{1}{4}H(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}) + \frac{1}{4}H(\frac{1}{4}, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}) + \frac{1}{4}H(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}) + \frac{1}{4}H(1, 0, 0, 0)$ $= \frac{1}{4} * \frac{7}{4} + \frac{1}{4} * \frac{7}{4} + \frac{1}{4} * 2 + \frac{1}{4} * 0$ $= 1.375 \ bits$

$$H(Y|X) = H(X|Y) - H(X) + H(Y)$$
$$= 1.375 - 1.75 + 2$$

$$= 1.625 \ bits$$

$$H(X,Y) = H(Y|X) + H(X)$$

= 1.625 + 1.75
= 3.375 bits

d) The mutual information I(X;Y)

$$I(X;Y) = H(X) - H(X|Y)$$
 (1)
= 1.75 - 1.375
= 0.375 bits

If we calculate I(X;Y) as follows:

$$I(X;Y) = H(Y) - H(Y|X)$$
 (2)
= 2 - 1.625
= 0.375 bits

So, (1) and (2) are generating the same value which authenticates the validity of the symmetry property of the mutual information.

2 N -gram Language Models

2.1 Language Model Training

- a) see ngram_LM.py
- b) With the unigrams it is impossible to tell the genre sice we have no words which give us any context. In the bigrams we have 'the world', but with world as the only word which could give us a context it is still impossible to tell the genre. See Table 1 and 2 down below.
- c) The Type Token ratio for both n is 7.65% since the two extra tokens do not change the ratio in a meaningful way.
- d) see ngram_LM.py
- e) Our implementation fullfills the test for both n.
- f) See Table 3 down below.

unigram	count			
the	734066			
of	360504			
to	330708			
and	326187			
in	250687			
a	228170			
that	154963			
is	14967			
S	121474			
for	104848			
it	85982			
as	80903			
be	74177			
with	73328			
on	69736			

Table 1: Unigran	ns for part b)			
$_{ m bigram}$	count			
of the	82750			
in the	65399			
to the	32188			
and the	27717			
on the	20190			
it is	19828			
to be	18774			
that the	15456			
for the	17383			
the us	16979			
the world	16123			
with the	15745			
by the	14295			
of a	13571			
at the	13429			

Table 2: Bigrams for part b)

word	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.
blue	collar	eyes	and	throat		bond	sky	water	ribbon	or
natural	resources	gas	resource	disasters	selection	and	environment	capital	disaster	to
green	energy	economy	revolution	growth	light	jobs	and	technologies	investment	
artificial	intelligence	islands	and	life		hyper	sweeteners	smile	photosynthesis	island
white	house	and		men	collar	man	women	americans	paper	people
global	economy	financial	warming	economic	growth	trade	governance	gdp	climate	imbalance
black	sea	and	market		hole	swan	hair	eyes	holes	carbo
domestic	demand	and	political	consumption	politics	investment	policy	economic	market	savings

Table 3: solution for part f)

2.2 Language Model Smoothing and Evaluation

- a) The smoothing technique was applied to probability distribution in order to prevent zero-valued probabilities caused by unseen n-grams in the training corpus. The smoothing method was implemented in *estimate_smoothed_prob* function.
- b) A test_smoothed_prob function was written with a view to check whether the probability mass of the distribution sums up to 1 when Lidstone smoothing is applied with α =0.5. The test demonstrates that the probability mass of the smoothed distribution sums up to 1 with a precision 10^{-7} in both unigram and bigram distributions.
- c) We applied bigram LM to assessment of translation hypotheses. Method *score_sentence* calculates average value of probability logarithms of sentence bigrams. The value can be interpreted as average word surprisal and estimates fluency of the sentence. Translation hypothesis with the lowest score is supposed to be the most appropriate.

According to the score values we found out that hypothesis #2 "Yesterday I was at home" should be preferred as the most fluent translation for German sentence "Gestern war ich zu Hause.".

Such kind of estimator assess how frequent are the bigrams that occur in the sentence. This approach gives understanding whether the sentence is similar to natural speech, so it can be useful in such tasks as:

- Evaluation of word order like in the example given.
- Spelling correction, as the model can suppose what word should stay in the beginning of the phrase or in collocations, for example.
- Word prediction.

However, there are restrictions of both the approach in general and using bigram LM in particular:

- Firstly, bigram model does not give the full view of the language. It
 considers closely neighboring words only, but words at a greater distance
 might be highly correlating. That relation of distant tokens is not assessed
 and it may cause inaccuracies.
- Considering the machine translation task, the approach does not allow evaluating word choice. In other words, hypotheses including different variants of translation of the same word cannot be estimated regarding the context. As a result, the translation may contain the variant which is more

- common in the training corpus, but unsuitable for the topic. (However, we should note, that n-gram models could be very useful in case of choosing from synonymic variants.)
- N-gram language model may be trained on the corpus majoring in one topic (for example, medicine), so cannot be accurate on the texts with another topic (geology), because different fields have n-gram distributions that differ to some extent.