Ramez Elmasri e Shamkant B. Navathe 6° Ed (2010)

Banco de Dados

Linguagens de consulta Álgebra Relacional

FACOM - UFMS

Vanessa Borges

vanessa.a.borges@ufms.br

Álgebra relacional

- Fornece um conjunto básico de operações
- Fundamento formal para operações realizadas no modelo relacional
- Base para implementar estratégias de processamento de consultas, incluindo a otimização de consultas
- Alguns de seus conceitos são incorporados na linguagem de consulta padrão SQL

Álgebra relacional

- Maneira teórica de se manipular um BD relacional
- Linguagem de consulta procedural:
 - Usuários especificam os dados necessários e como obtê-los
- Consiste de um conjunto de operações:
 - entrada: uma ou duas relações
 - saída: uma nova relação resultado
- AR é fechada, ou seja, toda operação gera uma nova relação

Álgebra Relacional: operações básicas

- Operações unárias
 - Projeção (π) e Seleção(σ)
- Operações binárias sob conjunto
 - União(∪), Intersecção(∩) e diferença(-)
 - Produto cartesiano(x)
- Operações binárias
 - Junção (⋈) e Divisão (/)
- Outras operações
 - Renomeamento(p)

Operações unárias: PROJEÇÃO

 Produz uma nova relação contendo um subconjunto vertical da relação argumento sem duplicações.

π Lista_atributos (relação argumento)

- Lista de atributos
- Os atributos são separados por vírgula

- Relação
- Resultado de alguma operação da álgebra relacional

Operações unárias: PROJEÇÃO

Liste o nome e o salário de todos os funcionários

SQL: SELECT DISTINCT pnome, salario FROM funcionario;

AR: $\pi_{pnome, salario}$ (funcionario)

FUNCIONARIO

pnome	minicial	unome	<u>cpf</u>	datanasc	endereco	sexo	salario	cpf_supervisor	dnr
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	12345678	1
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Housto, TX	М	40000	888665555	5
John	В	Smith	12345678	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Ramesh	К	Narayan	666884444	1962-09-15	975 Fire, Oak Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
Robert	F	Scott	943775543	2042-06-21	2365 Newcastle Rd, Bellaire, TX	М	58000	888665555	1
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	943775543	4
Vanessa	В	Borg	911887776	1965-01-17	3321 Castle, Spring, TX	NULL	10000	943775543	4
Asdrubal	В	Asd	123456789	1965-01-18	3321 Castle, Spring, TX	М	5000	NULL	4

Operações unárias: PROJEÇÃO

Liste o nome e o salário de todos os funcionários

Número de tuplas: menor ou igual ao número de tuplas da relação argumento

 $\pi_{pnome, salario}$ (funcionario)

- Utilizada para escolher um subconjunto de tuplas de uma relação que satisfaça a condição de seleção
 - Filtro que mantém apenas as tuplas que satisfazem a condição qualificadora
 - A relação resultante possui os mesmos atributos da relação argumento

σ condição_seleção (relação argumento)

- Pode envolver operadores de comparação $(=,>,<,\geq,\neq)$
- Pode combinar condições usando-se (AND, OR, NOT)

- Relação
- Resultado de alguma operação da álgebra relacional

FUNCIONARIO

pnome	minicial	unome	<u>cpf</u>	datanasc	endereco	sexo	salario	cpf_supervisor	dnr
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	12345678	1
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Housto, TX	Μ	40000	888665555	5
John	В	Smith	12345678	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire, Oak Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
Robert	F	Scott	943775543	2042-06-21	2365 Newcastle Rd, Bellaire, TX	М	58000	888665555	1
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	943775543	4
Vanessa	В	Borg	911887776	1965-01-17	3321 Castle, Spring, TX	NULL	10000	943775543	4
Asdrubal	В	Asd	123456789	1965-01-18	3321 Castle, Spring, TX	М	5000	NULL	4

Liste os funcionários que são do departamento 5

SQL: **SELECT DISTINCT** * **FROM** funcionario WHERE dnr = 5;

AR: $\sigma_{dnr=5}$ (funcionario)

FUNCIONARIO

pnome	minicial	unome	<u>cpf</u>	datanasc	endereco	sexo	salario	cpf_supervisor	dnr
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	12345678	1
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Housto, TX	M	40000	888665555	5
John	В	Smith	12345678	1965-01-09	731 Fondren, Houston, TX	M	30000	333445555	5
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire, Oak Humble, TX	M	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
Robert	F	Scott	943775543	2042-06-21	2365 Newcastle Rd, Bellaire, TX	M	58000	888665555	1
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	943775543	4
Vanessa	В	Borg	911887776	1965-01-17	3321 Castle, Spring, TX	NULL	10000	943775543	4
Asdrubal	В	Asd	123456789	1965-01-18	3321 Castle, Spring, TX	М	5000	NULL	4

Liste os funcionários que são do departamento 5

$\sigma_{dnr=5}$ (funcionario)

FUNCIONARIO

pnome	minicial	unome	<u>cpf</u>	datanasc	endereco	sexo	salario	cpf_supervisor	dnr
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Housto, TX	М	40000	888665555	5
John	В	Smith	12345678	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire, Oak Humble, TX	М	38000	333445555	5
Joyce	А	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

Grau: mesmo grau da relação

argumento

Número de tuplas: menor ou igual ao número de tuplas da relação argumento

Composição de operações

• Exemplo:

Operação_2(Operação_1(relação_A))

• Sequência: de dentro para fora

- Liste o nome completo de todos os funcionários que com salario superior a 10000 do sexo
 Feminino.
 - Primeiro passo

σ salario>10000 AND sexo='F' (funcionario)

Segundo passo

π pnome, minicial, unome (expressão do primeiro passo)

Liste o nome completo de todos os funcionários que com salario superior a 10000 do sexo
 Feminino.

 $\pi_{\text{pnome, minicial, unome}}$ ($\sigma_{\text{salario}>10000 \text{ AND sexo='F'}}$ (funcionario))

SQL:

SELECT DISTINCT pnome, minicial, unome

FROM funcionario **WHERE** salario > 10000 **AND** sexo='F';

• Liste o nome completo de todos os funcionários que com salario superior a 10000 do sexo Feminino.

Se inverter a ordem das operações está correto?

 $\pi_{\text{pnome, minicial, unome}}$ ($\sigma_{\text{salario}>10000 \text{ AND sexo='F'}}$ (functionario))

 $\sigma_{\text{salario}>10000 \text{ AND sexo='F'}} (\pi_{\text{pnome, minicial, unome}} (\text{funcionario}))$

• Liste o nome completo de todos os funcionários que com salario superior a 10000 do sexo Feminino.

Se inverter a ordem das operações está correto?

 π pnome, minicial, unome (σ salario>10000 AND sexo=´F´ (funcionario))

Características adicionais: ATRIBUIÇÃO

- Associa uma relação argumento a uma relação intermediária
- Permite o uso da relação intermediárias em expressões subsequentes

Relação de atribuição ← Relação argumento

Características adicionais: ATRIBUIÇÃO

Liste o nome completo de todos os funcionários que com salario superior a 10000 do sexo
 Feminino.

$$\pi_{\text{pnome, minicial, unome}}$$
 ($\sigma_{\text{salario}>10000 \text{ AND sexo='F'}}$ (funcionario))

$$R1 \leftarrow \sigma_{\text{salario}>10000 \text{ AND sexo}='F'}$$
 (funcionario)
Rfinal $\leftarrow \pi_{\text{pnome, minicial, unome}}$ (R1)

Características adicionais: ATRIBUIÇÃO

Atribuição como renomeamento de relação e atributos

```
R1 \leftarrow \sigma_{\text{salario}>10000 \text{ AND sexo}=\acute{F}} (funcionario)

Rfinal (nome, meio, sobrenome) \leftarrow \pi_{\text{pnome, minicial, unome}} (R1)
```

Observações

• Geralmente utilizada para expressar consultas complexas

Operações sobre conjuntos

- Operações binárias sob conjunto
 - União(∪), Intersecção(∩) e diferença(-)
 - Produto cartesiano(x)

- Características:
 - Atuam a partir de relações compatíveis
 - Eliminam tuplas duplicadas da relação

Duas relações são compatíveis quando:

- Possuem o mesmo grau ou número de atributos
- Seus atributos possuem os mesmos domínios

Operações sobre conjuntos: UNIÃO

 O resultado dessa operação, indicada por R U S, é uma relação que inclui todas as tuplas que estão em R ou em S ou tanto em R quanto em S. As tuplas duplicadas são eliminadas.

Relação argumento 1 U Relação argumento 2

Operações sobre conjuntos: UNIÃO

ALUNO

Pn	Un
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

PROFESSOR

Pnome	Unome
João	Silva
Ricardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

ALUNO U PROFESSOR

Pn	Un
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto
João	Silva
Ricardo	Braga
Francisco	Leme

AR: ALUNO **U** PROFESSOR

SQL:

SELECT Pn, Un **FROM** aluno

UNION

SELECT Pnome, Unome **FROM** professor;

Banco de Dados

Operações sobre conjuntos: INTERSECÇÃO

 O resultado dessa operação, indicada por R ∩ S, é uma relação que inclui todas as tuplas que estão tanto em R quanto em S.

Relação argumento 1 ∩ Relação argumento 2

Operações sobre conjuntos: INTERSECÇÃO

ALUNO

Pn	Un
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

PROFESSOR

Pnome	Unome
João	Silva
Ricardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

Pn	Un
Susana	Yao
Ronaldo	Lima

AR: ALUNO ∩ PROFESSOR

SQL:

SELECT Pn, Un FROM aluno
INTERSECT
SELECT Pnome, Unome FROM professor;

Operações sobre conjuntos: DIFERENÇA

 Realiza uma operação a partir de duas relações R e S compatíveis resultando em uma relação que contém todas as tuplas pertencentes a R que não pertencem a S.

Relação argumento 1 – Relação argumento 2

Operações sobre conjuntos: DIFERENÇA

ALUNO

Pn	Un
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

PROFESSOR

Pnome	Unome
João	Silva
Ricardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

ALUNO - PROFESSOR

Pn	Un
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

AR: ALUNO - PROFESSOR

SQL:

SELECT Pn, Un **FROM** aluno

EXCEPT

SELECT Pnome, Unome **FROM** professor;

Banco de Dados

Operações sobre conjuntos: DIFERENÇA

PROFESSOR

Pnome	Unome
João	Silva
Ricardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

ALUNO

Pn	Un
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

PROFESSOR - ALUNO

Pn	Un
João	Silva
Ricardo	Braga
Francisco	Leme

AR: PROFESSOR-ALUNO

SQL:

SELECT Pnome **AS** Pn, Unome **AS** Un **FROM** professor

EXCEPT

SELECT Pn, Un FROM aluno

Banco de Dados

Operações sobre conjuntos: PRODUTO CARTESIANO

- Combina tuplas de duas relações (quaisquer)
- Tuplas da relação resultante
 - Todas as combinações de tuplas possíveis entre as relações participantes

Relação argumento 1 X Relação argumento 2

Operações sobre conjuntos: PRODUTO CARTESIANO

PROJETO

projnome	projnumero	projlocal	dnum
Projeto 1	1	Bellaire	5
Projeto 2	2	Sugarland	5
Projeto 3	3	Houston	5
Automatizacao	10	Stanford	4
Reorganizacao	20	Houston	1
Novos_Beneficios	30	Stanford	4

DEPARTAMENTO

dnome	dnumero	cpf_gerente	data_inicio_gerente
Pesquisa	3	333445555	22/05/1988
Administracao	4	987654321	01/01/1995
Sede_administrativa	1	888665555	19/06/1981
Inovacao	7	333445555	30/06/1980
Computacao	5	333445555	30/06/1990

PROJETO X DEPARTAMENTO

projnome	projnumero	projlocal	dnum	dnome	dnumero	cpf_gerente	data_inicio_gerente
Projeto 1	1	Bellaire	5	Pesquisa	3	333445555	22/05/1988
Projeto 1	1	Bellaire	5	Administracao	4	987654321	01/01/1995
Projeto 1	1	Bellaire	5	Sede_administrativa	1	888665555	19/06/1981
Projeto 1	1	Bellaire	5	Inovacao	7	333445555	30/06/1980
Projeto 1	1	Bellaire	5	Computacao	5	333445555	30/06/1990
Projeto 2	2	Sugarland	5	Pesquisa	3	333445555	22/05/1988
Projeto 2	2	Sugarland	5	Administracao	4	987654321	01/01/1995
Projeto 2	2	Sugarland	5	Sede_administrativa	1	888665555	19/06/1981
Projeto 2	2	Sugarland	5	Inovacao	7	333445555	30/06/1980
Projeto 2	2	Sugarland	5	Computacao	5	333445555	30/06/1990
Projeto 3	3	Houston	5	Pesquisa	3	333445555	22/05/1988
Projeto 3	3	Houston	5	Administracao	4	987654321	01/01/1995
Projeto 3	3	Houston	5	Sede_administrativa	1	888665555	19/06/1981
Projeto 3	3	Houston	5	Inovacao	7	333445555	30/06/1980
Projeto 3	3	Houston	5	Computacao	5	333445555	30/06/1990
Automatizacao	10	Stanford	4	Pesquisa	3	333445555	22/05/1988
Automatizacao	10	Stanford	4	Administracao	4	987654321	01/01/1995
Automatizacao	10	Stanford	4	Sede_administrativa	1	888665555	19/06/1981
Automatizacao	10	Stanford	4	Inovacao	7	333445555	30/06/1980
Automatizacao	10	Stanford	4	Computacao	5	333445555	30/06/1990

Produto cartesiano: Projeto X Departamento

PROJETO X DEPARTAMENTO

Grau: número de atributos de projeto + número de atributos de departamento

projnome	projnumero	projlocal	dnum	dnome	dnumero	cpf_gerente	data_inicio_gerente
Projeto 1	1	Bellaire	5	Pesquisa	3	333445555	22/05/1988
Projeto 1	1	Bellaire	5	Administracao	4	987654321	01/01/1995
Projeto 1	1	Bellaire	5	Sede_administrativa	1	888665555	19/06/1981
Projeto 1	1	Bellaire	5	Inovacao	7	333445555	30/06/1980
Projeto 1	1	Bellaire	5	Computacao	5	333445555	30/06/1990
Projeto 2	2	Sugarland	5	Pesquisa	3	333445555	22/05/1988
Projeto 2	2	Sugarland	5	Administracao	4	987654321	01/01/1995
Projeto 2	2	Sugarland	5	Sede_administrativa	1	888665555	19/06/1981
Projeto 2	2	Sugarland	5	Inovacao	7	333445555	30/06/1980
Projeto 2	2	Sugarland	5	Computacao	5	333445555	30/06/1990
Projeto 3	3	Houston	5	Pesquisa	3	333445555	22/05/1988
Projeto 3	3	Houston	5	Administracao	4	987654321	01/01/1995
Projeto 3	3	Houston	5	Sede_administrativa	1	888665555	19/06/1981
Projeto 3	3	Houston	5	Inovacao	7	333445555	30/06/1980
Projeto 3	3	Houston	5	Computacao	5	333445555	30/06/1990
Automatizacao	10	Stanford	4	Pesquisa	3	333445555	22/05/1988
Automatizacao	10	Stanford	4	Administracao	4	987654321	01/01/1995
Automatizacao	10	Stanford	4	Sede_administrativa	1	888665555	19/06/1981
Automatizacao	10	Stanford	4	Inovacao	7	333445555	30/06/1980
Automatizacao	10	Stanford	4	Computacao	5	333445555	30/06/1990
	•••						

Número de tuplas: número de tuplas de projeto * número de tuplas de departamento

Álgebra Relacional: operações básicas

- Operações binárias
 - Junção (⋈) e Divisão (/)
- Outras operações
 - Renomeamento(p)

Operações binárias: JUNÇÃO (JOIN)

- Concatena tuplas relacionadas de duas relações em tuplas únicas
- Simplifica consultas que requerem produto cartesiano
 - forma um produto cartesiano dos argumentos
 - faz uma seleção **forçando igualdade sobre os atributos** que aparecem em ambos argumentos

Operações binárias: JUNÇÃO CONDICIONAL (JOIN)

- Concatenação
 - dos atributos especificados na condição de junção

Relação argumento 1 M condição_junção Relação argumento 2

Operações binária: JUNÇÃO CONDICIONAL (JOIN)

 $R\bowtie_{R.A=S.A}S$

Operações binária: JUNÇÃO CONDICIONAL (JOIN)

Importante lembrar

- Tuplas nas quais atributos de junção possuem valor NULL, ou para os quais a condição de junção é FALSA, não aparecem no resultado da operação JOIN
- Se **nenhuma combinação de tuplas satisfaz a condição de junção**, o resultado da operação JOIN é uma **relação vazia** (sem tuplas)

JUNÇÃO: PROJETO ⋈ DEPARTAMENTO

PROJETO

projnome	projnumero	projlocal	dnum
ProdutoX	1	Bellaire	5
ProdutoY	2	Sugarland	5
ProdutoZ	3	Houston	5
Automatizacao	10	Stanford	4
Reorganizacao	20	Houston	1
Novos_Beneficios	30	Stanford	4

DEPARTAMENTO

dnome	<u>dnumero</u>	cpf_gerente	data_inicio_gerente
Pesquisa	3	333445555	22/05/1988
Administracao	4	987654321	01/01/1995
Sede_administrativa	1	888665555	19/06/1981
Inovacao	7	333445555	30/06/1980
Computacao	5	333445555	30/06/1990

PROJETO JOIN DEPARTAMENTO

projnome	projnumero	projlocal	dnum	dnome	dnumero	cpf_gerente	data_inicio_gerente
ProdutoX	1	Bellaire	5	Computacao	5	333445555	30/06/1990
ProdutoY	2	Sugarland	5	Computacao	5	333445555	30/06/1990
ProdutoZ	3	Houston	5	Computacao	5	333445555	30/06/1990
Automatizacao	10	Stanfford	4	Administracao	4	987654321	01/01/1995
Reorganizacao	20	Houston	1	Sede_administrativa	1	888665555	19/06/1981
Novos_Beneficios	30	Stanfford	4	Administracao	4	987654321	01/01/1995

Projeto ⋈ dnum=dnumero Departamento

SQL:

SELECT * FROM projeto
INNER JOIN departamento ON (dnum=dnumero);

Operações binárias: JUNÇÃO NATURAL

- JUNÇÃO NATURAL: {*}
 - O par de atributos da junção possuem o mesmo nome
 - Na relação resultante apenas um atributo de cada par será mantido
 - Se não há atributos de mesmo nome nas duas relações então a JUNÇÃO NATURAL é degenerada para um PRODUTO CARTESIANO

	R	
Α	В	С
1	а	X
2	b	У
3	а	У
4	С	У

Operações binárias: JUNÇÃO NATURAL

DEPARTAMENTO

dnome	dnumero	cpf_gerente	data_inicio_gerente
Pesquisa	3	333445555	22/05/1988
Administracao	4	987654321	01/01/1995
Sede_administrativa	1	888665555	19/06/1981
Inovacao	7	333445555	30/06/1980
Computacao	5	333445555	30/06/1990

DEI IO_LOCALIZACOLS	
<u>dnumero</u>	<u>dlocal</u>
1	Houston
4	Stanford
5	Bellaire
5	Sugarland
5	Houston

DEPARTAMENTO NATURAL JOIN DEPTO_LOCALIZACOES

dnome	dnumero	cpf_gerente	data_inicio_gerente	dlocal
1	Sede_administrativa	888665555	19/06/1981	Houston
4	Administracao	987654321	01/01/1995	Stanford
5	Computacao	333445555	30/06/1990	Bellaire
5	Computacao	333445555	30/06/1990	Sugarland
5	Computacao	333445555	30/06/1990	Houston

departamento * depto_localizacoes

SQL:

SELECT * FROM departamento NATURAL JOIN dep_localizacoes;

- Há três formas de realizar o renomeamento
 - Renomear tanto a relação quanto seus atributos
 - Renomear apenas a relação
 - Renomear apenas os atributos

Renomear tanto a relação quanto seus atributos

ρ S_(a1, a2, a3, ..., an) (relação)

Novo nome da relação

Nome antigo da relação

Novos nomes dos atributos

• Exemplo:

AR: ρ dep_(numero, nome, gerente, inicio_gerente) (departamento)

SQL: SELECT

dnumero AS numero, dnome AS nome, cpf_gerente AS gerente, data_inicio_gerente AS inicio_gerente FROM departamento AS dep;

Renomear apenas os atributos

ρ_(a1, a2, a3, ..., an) (relação)

Novos nomes dos atributos

Nome antigo da relação

• Exemplo:

AR: $\rho_{\text{(numero, nome, gerente, inicio_gerente)}}$ (departamento)

SQL: SELECT

dnumero AS numero,
dnome AS nome,
cpf_gerente AS gerente,
data_inicio_gerente AS inicio_gerente
FROM departamento;

Renomear apenas a relação

• Exemplo:

AR:

 ρ funcionario_supervisor (fucionario) OU ρ (funcionario_supervisor, funcionario)

SQL: SELECT * **FROM** funcionario **AS** funcionario_supervisor;

- Considere duas instâncias de relação A e B
 - A tem (exatamente) dois campos x e y
 - B tem apenas um campo y, com o mesmo domínio de y em A

- Definimos a operação divisão A/B como:
 - O conjunto de todos os valores x (no formato de tuplas unárias) tais que, para todo valor y em (uma tupla de) B, há uma tupla (x,y) em A

Relação argumento 1 ÷ Relação argumento 2

Simplificação das tabelas para exemplificar a divisão

Encontre o nome dos departamentos que controlam TODOS os projetos localizados em Stanford

 $RD \leftarrow \pi_{dnome,projnumero}$ (departamento $\bowtie_{dnumero=dnum}$ projeto)

RP (projnumero) $\leftarrow \pi_{\text{projnumero}}(\sigma_{\text{projlocal='Stanford'}}(\text{projeto}))$

$\mathsf{R}\mathsf{D}$

dnome	projnumero
Computacao	10
Computacao	11
Computacao	20
Administracao	10
Administracao	30
Sede_administrativa	20
Sede administrativa	30

RP	
----	--

projnumero
10
30

DEPARTAMENTO (<u>dnumero</u>, dnome, cpf_gerente, data_inicio_gerente) PROJETO (<u>projnumero</u>, projnome, projlocal, <u>dnum</u>)

Encontre o nome dos departamentos que controlam TODOS os projetos localizados em Stanford

rojnumero
10
11
20
10
30
20
30
)

RD ÷ RP	
dnome	

Encontre o nome dos departamentos que controlam TODOS os projetos localizados em Stanford

RD	
dnome	projnumero
Computacao	10
Computacao	11
Computacao	20
Administracao	10
Administracao	30
Sede_administrativa	20
Sede_administrativa	30

Encontre o nome dos departamentos que controlam TODOS os projetos localizados em Stanford

RD	
dnome	projnumero
Computacao	10
Computacao	11
Computacao	20
Administracao	10
Administracao	30
Sede_administrativa	20
Sede_administrativa	30

RD ÷ RP
dnome
Administracao

Conjunto completo de operações

- Qualquer uma das outras operações da álgebra relacional podem ser expressas por uma sequência de operações desse conjunto
 - Projeção (π) e Seleção(σ), União(∪), Diferença(-), Produto cartesiano(x)
- Exemplos:
 - $R \cap S \equiv (R \cup S) ((R S) \cup (S R)) \text{ ou } R (R S)$
 - R \bowtie < condição > S \equiv σ < condição > (R x S)

• Exemplos: $R \cap S \equiv R - (R - S)$

• Exemplos: $R \cap S \equiv R - (R - S)$

• Exemplos: $R \cap S \equiv R - (R - S)$

Operações de álgebra relacional.

OPERAÇÃO	FINALIDADE	NOTAÇÃO
SELEÇÃO	Seleciona todas as tuplas que satisfazem a condição de seleção de uma relação R.	σ _{<condição seleção=""></condição>} (R)
PROJEÇÃO	Produz uma nova relação com apenas alguns dos atributos de R, e remove tuplas duplicadas.	π _{⊲ista atributos⊳} (R)
JUNÇÃO THETA	Produz todas as combinações de tuplas de $R_{_1}$ e $R_{_2}$ que satisfazem a condição de junção.	R ₁
EQUIJUNÇÃO	Produz todas as combinações de tuplas de $R_{\rm 1}$ e $R_{\rm 2}$ que satisfazem uma condição de junção apenas com comparações de igualdade.	$R_1 \bowtie_{\operatorname{coondiglie} junglices} R_2$, OR $R_1 \bowtie_{\operatorname{(catributes junglie 1>), (catributes junglie 2>)}} R_2$
JUNÇÃO NATURAL	O mesmo que EQUIJOIN, exoeto que atributos de junção de R_2 não são incluídos na relação resultante; se os atributos de junção tiverem os mesmos nomes, eles nem sequer precisam ser especificados.	$R_1\star_{<{\rm condição jungão}}R_2$, OR $R_1\star_{<{\rm catributes jungão 1>}, (<{\rm catributes jungão 2>})}R_2$ OR $R_1\star R_2$
UNIÃO	Produz uma relação que inclui todas as tuplas em R_1 ou R_2 ou tanto R_1 quanto R_2 ; R_1 e R_2 precisam ser compatíveis na união.	$R_1 \cup R_2$
INTERSECÇÃO	Produz uma relação que inclui todas as tuplas em R_1 e R_2 ; R_1 e R_2 precisam ser compatíveis na união.	$R_1 \cap R_2$
DIFERENÇA	Produz uma relação que inclui todas as tuplas em R_1 que não estão em R_2 ; R_1 e R_2 precisam ser compatíveis na união.	$R_1 - R_2$
PRODUTO CARTESIANO	Produz uma relação que tem os atributos de $R_1^{}$ e $R_2^{}$ e inclui como tuplas todas as possíveis combinações de tuplas de $R_1^{}$ e $R_2^{}$.	$R_1 \times R_2$
DIVISÃO	Produz uma relação $R(X)$ que inclui todas as tuplas $t[X]$ em $R_1(Z)$ que aparecem em R_1 em combinação com toda tupla de $R_2(Y)$, onde $Z = X \cup Y$.	$R_1(Z) \div R_2(Y)$

Funções de agregação

- Funções de agregação matemáticas sobre coleções de valores de banco de dados
 - Média, Soma, Máximo, Mínimo, Conta (contar tuplas ou valores)

 ${\mathcal F}$ Funções_agregação (relação argumento)

Lista de funções denotada por um par <função> atributo>

- Exemplo:
 - Liste o maior e o menor salario dos funcionários da empresa

AR: $\mathcal{F}_{\mathsf{MAX}}$ salario, MIN salario (funcionario)

SQL: **SELECT MAX(**salario**)**, **MIN(**salario**) FROM** funcionario;

Funções de agregação e agrupamento

- O agrupamento pode ser utilizado com as funções de agregação
 - A relação resultante tem os atributos de agrupamento mais um atributo para cada elemento na lista de funções

Atributos_agrupamento ${\mathcal F}$ Funções_agregação (relação argumento)

- Lista de atributos de agrupamento
- Os atributos são separados por vírgula

Lista de funções denotada por um par <função> atributo>

- Exemplo:
 - Liste o maior e o menor salario dos funcionários da empresa por departamento

AR: dnr ${\mathcal F}_{\mathsf{MAX}}$ salario, MIN salario (funcionario)

SQL: **SELECT MAX(**salario**)**, **MIN(**salario**) FROM** funcionario **GROUP BY** dnr;

Operações binárias: JUNÇÃO EXTERNA

• Junções externas podem ser utilizadas quando queremos manter todas as tuplas de R, S ou de ambas no resultado do JOIN, independentemente de existirem tuplas correspondentes na outra relação.

- Operações de OUTER JOIN (junções externas)
 - R 🔀 condição_junção S: Junção externa à esquerda (LEFT OUTER JOIN)
 - R 💢 condição junção S: Junção externa à direita (RIGHT OUTER JOIN)
 - R 💢 condição_junção S: Junção externa total (FULL OUTER JOIN)

Operações Binária: JUNÇÃO EXTERNA

- Por exemplo, considere a consulta:
 - Obter a lista de nomes de todos os funcionários e o nome dos departamentos que gerenciam.
 Se gerenciarem algum departamento. Se não gerenciarem nenhum departamento, indicar com um valor null.
 - LEFT OUTER JOIN

```
TEMP \leftarrow (FUNCIONARIO \longrightarrow Cpf=Cpf_gerente DEPARTAMENTO)

RESULTADO \leftarrow \uppi Pnome, Minicial, Unome, Dnome (TEMP)
```

SELECT pnome, minicial, unome, dnome **FROM** funcionario f **LEFT OUTER JOIN** departamento d **ON** (f.cpf=d.cpf gerente);

Resumo

