1. —ユークリッド空間の直積位相—

 $(\mathbb{R}^n, \mathcal{O}_{d_n})$ は $(\mathbb{R}^n, \mathcal{O}_{d_1}^n)$ と同値であることを示せ。

距離関数 d_1, d_n は次のような関数である。

$$d_1: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
 $(x, y) \mapsto \sqrt{(x - y)^2} = |x - y| \quad (1)$

$$d_1 : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \qquad (x, y) \mapsto \sqrt{(x - y)^2} = |x - y| \qquad (1)$$
$$d_n : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \qquad ((x_1, \dots, x_n), (y_1, \dots, y_n)) \mapsto \sqrt{\sum_{i=1}^n (x_i - y_i)^2} \qquad (2)$$

位相 $\mathcal{O}_{d_1}, \mathcal{O}_{d_n}$ はそれぞれの距離関数より導入される位相である。

 $\mathcal{O}_{d_1}^n = \mathcal{O}_{d_1} imes \cdots imes \mathcal{O}_{d_1}$ は \mathcal{O}_{d_1} の開集合の直積を要素とする。

 $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$ とする。ある ε に対して、 $x\in\mathbb{R}^n$ の ε -近傍 $N_{d_n}(x,\varepsilon)$ と

 $x_i \in \mathbb{R}$ の ε -近傍 $N_{d_1}(x_i, \varepsilon)$ において次のような包含関係が成り立つ。

$$N_{d_n}(x,\varepsilon) \subset N_{d_1}(x_1,\varepsilon) \times \cdots \times N_{d_1}(x_n,\varepsilon)$$
 (3)

 $N_{d_n}(x,\varepsilon)$ は中心 x で半径 ε の球の内部であり、 $N_{d_1}(x_i,\varepsilon)$ は開区間 $(x_i-\varepsilon,x_i+\varepsilon)$ を指す。

また、 $N_{d_n}(x,\varepsilon)$ の半径を広げ $N_{d_n}(x,\sqrt{n}\varepsilon)$ とすると次のような包含関係が成り 立つ。

$$N_{d_1}(x_1,\varepsilon) \times \cdots \times N_{d_1}(x_n,\varepsilon) \subset N_{d_n}(x,\sqrt{n}\varepsilon)$$
 (4)

2 つをまとめると次のようになる。

$$N_{d_n}(x,\varepsilon) \subset N_{d_1}(x_1,\varepsilon) \times \cdots \times N_{d_1}(x_n,\varepsilon) \subset N_{d_n}(x,\sqrt{n}\varepsilon)$$
 (5)

 $U \subset \mathbb{R}^n$ について任意の U の点の近傍が U に含まれる時 U は開集合である。上の 包含関係より次の関係がわかる。

$$U$$
 は $(\mathbb{R}^n, \mathcal{O}_{d_n})$ で開集合 $\Rightarrow U$ は $(\mathbb{R}^n, \mathcal{O}_{d_1}^n)$ で開集合 (6)

$$\Rightarrow U$$
 は ($\mathbb{R}^n, \mathcal{O}_{d_n}$) で開集合 (7)

よって、 $(\mathbb{R}^n, \mathcal{O}_{d_1}^n)$ と $(\mathbb{R}^n, \mathcal{O}_{d_n})$ の開集合が一致する事がわかる。

2. —連続単射写像—

 $f: \mathbb{R} \to \mathbb{R}$ を連続写像とする。この時、 $F: \mathbb{R} \to \mathbb{R}^2$ を $F: x \mapsto (x, f(x))$ とする と、F は単射な連続写像であることを示せ。

 $x,y\in\mathbb{R}$ が $x\neq y$ とする。 $x\neq y$ であれば $(x,f(x))\neq (y,f(y))$ であるので、写像 F は単射である。

射影 p_i を次のように定める。

$$p_1: \mathbb{R}^2 \to \mathbb{R}, \ (a,b) \mapsto a, \qquad p_2: \mathbb{R}^2 \to \mathbb{R}, \ (a,b) \mapsto b$$
 (8)

これらの射影と F の合成は次のように連続写像となる。

$$p_1 \circ F = \mathrm{id}_{\mathbb{R}}, \qquad p_2 \circ F = f \tag{9}$$

 \mathbb{R}^2 の開集合は開集合 $U_1,U_2\subset\mathbb{R}$ の積 $U_1\times U_2$ を開基とする。写像 F が連続写像 であるためには、 $F^{-1}(U_1\times U_2)$ が開集合であることを示せばよい。

$$F^{-1}(U_1 \times U_2) = F^{-1}(p_1^{-1}(U_1) \cap p_2^{-1}(U_2))$$
(10)

$$=F^{-1}(p_1^{-1}(U_1))\cap F^{-1}(p_2^{-1}(U_2)) \tag{11}$$

$$= (p_1 \circ F)^{-1}(U_1) \cap (p_2 \circ F)^{-1}(U_2) \tag{12}$$

$$= \mathrm{id}_{\mathbb{R}}^{-1}(U_1) \cap f^{-1}(U_2) \tag{13}$$

 $\mathrm{id}_{\mathbb{R}}^{-1}(U_1),\ f^{-1}(U_2)$ はそれぞれ開集合であるので、 $F^{-1}(U_1\times U_2)$ は開集合となり、F は連続写像であることがわかる。

3. —直積位相—

X,Y を位相空間とし、 $X\times Y$ に直積位相を与えておく。 $X\times Y$ に対して B が $(x,y)\in X\times Y$ の近傍であるとは、ある $x\in X$ の開集合 U と $y\in Y$ の開集合 V が存在して、 $U\times V\subset B\subset X\times Y$ となることを示せ。

......

B が $(x,y) \in X \times Y$ の近傍であれば、 $(x,y) \in O \subset B \subset X \times Y$ となる開集合 O が存在する。

 $X \times Y$ に直積位相が入っているため、開集合 O は開基 $U \times V$ が存在し $(x,y) \in U \times V \subset O$ を満たす。この U,V はそれぞれ X,Y の開集合であり、 $x \in U \subset X, y \in V \subset Y$ である。

つまり、次のような関係がある。

$$(x,y) \in U \times V \subset O \subset B \subset X \times Y \qquad (x \in U, y \in V)$$
 (14)