$\begin{array}{c} {\rm CSC~4780} \\ {\rm Fall~2022} \end{array} \\ {\rm Homework~10~-~Mice~Analysis} \end{array} \\$

Ryan Taylor rtaylor80@student.gsu.edu

November 6, 2022

1 Contingency Table

Gene	No Cancer	Has Cancer	Total
J	93	37	130
K	34	5	39
\mathbf{R}	20	1	21
	147	43	190

2 Conditional Proportions

Gene	No Cancer	Has Cancer	Total
J	71.54%	28.46%	130
K	87.18%	12.82%	39
R	95.24%	4.76%	21
	77.37%	22.63%	190

3 Expected counts if the gene and cancer were independent

Gene	No Cancer	Has Cancer	Total
J	100.6	29.4	130
K	30.17	8.8	39
\mathbf{R}	16.3	4.8	21
	147	43	190

4 Chi-Squared

 $X^2 = 8.497206532327557$

5 Degrees of Freedom

Degrees of Freedom = 2

6 P-Value

p = 0.014284171167428195

7 Conclusion

Since the p-value is less than 0.05, it can be concluded that the gene and cancer are likely not independent.