Simple Linear Regression

Instructor: Junghye Lee

Department of Industrial Engineering junghyelee@unist.ac.kr

Contents

- 1 Introduction
- 2 Fitting the Simple Linear Regression Model
- 3 Statistical Inference on Coefficients

Introduction

Example

David Beckham: 1.83m Victoria Beckham: 1.68m

Brad Pitt: 1.83m Angelina Jolie: 1.70m

George Bush :1.81m Laura Bush: ?

- To predict height of the wife in a couple, based on the husband's height
 - **Response** (outcome or dependent) **variable** (Y): height of the wife
 - **Predictor** (explanatory or independent) **variable** (X): height of the husband

Regression Analysis

- **Regression analysis** is a statistical methodology to estimate the relationship of a response variable (i.e., dependent variable) to a set of predictor variables (i.e., independent, explanatory variables, factors).
- When there is just one predictor variable, we will use **simple linear regression**. When there are two or more predictor variables, we use **multiple linear regression**.
- When it is not clear which variable represents a response and which is a predictor, correlation analysis is used to study the strength of the relationship.

Simple Linear Regression

Independent variable Dependent variable

- Why simple? Because the number of "independent variable" is one.
- Dependent variable should be continuous according to the definition of regression, but independent variable can be any type.
- However, we assume \mathbf{x} is continuous here.

Multiple Linear Regression

History

- The earliest form of linear regression was the method of least squares, which was published by *Legendre* in 1805, and by *Gauss* in 1809.
- The method was extended by *Francis Galton* in the 19th century to describe a biological phenomenon.
- This work was extended by Karl Pearson and Udny Yule to a more general statistical context around 20th century.

Probabilistic Model

• We denote the n observed values of the **predictor variable** X as

$$x_1, x_2, \ldots, x_n$$

• We denote the corresponding n observed values of the response variable Y as

$$y_1, y_2, \dots, y_n$$

• In summary, we have paired dataset $D = \{x_i, y_i\}_{i=1}^n$.

Notations of the Simple Linear Regression

 y_i : Observed value of the **random variable** Y_i depends on x_i

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$
 $(i = 1, 2, ..., n)$

 (x_i) is given so not a random variable.)

 ϵ_i : random error with $E(\epsilon_i) = 0$ and $Var(\epsilon_i) = \sigma^2$

Unknown Mean of
$$Y_i \to E(Y_i) = \mu_i = \beta_0 + \beta_1 x_i$$

True Regression Line

Unknown Intercept

Simple Linear Regression

4 Assumptions for Statistical Inference

For Y_i

- Linear function of the predictor variable
- Have a common variance σ^2 , same for all values of x.

For ϵ_i

- Normally distributed
- Independent

Comments

- Linear not in x, but in the parameters β_0 and β_1
- Predictor variable is not set as predetermined fixed values, is random along with Y.
- The model can be considered as a conditional model.
- Example: Height and Weight of the children Height (X) given Weight (Y) predict

$$E(Y|X=x) = \beta_0 + \beta_1 x$$

Conditional expectation of Y given X = x

2 Fitting the Simple Linear Regression Model

Example

• Tires Tread Wear vs. Mileage

(Statistics and Data Analysis; Tamhane and Dunlop; Prentice Hall)

Mileage (in 1000 miles)	Groove Depth (in mils)	
0	394.33	
4	329.50	
8	291.00	
12	255.17	
16	229.33	
20	204.83	
24	179.00	
28	163.83	
32	150.33	

Least Squares (LS) Fit

Fitting line
$$y = \beta_0 + \beta_1 x$$

Residual
$$r_i = y_i - (\beta_0 + \beta_1 x_i)$$
 $(i = 1, 2, ..., n)$

Objective function
$$Q = \sum_{i=1}^n r_i^2 = \sum_{i=1}^n [y_i - (\beta_0 + \beta_1 x_i)]^2$$
 Sum of squared error (SSE)

LS Estimate

The "best" fitting straight line in the sense of minimizing Q: LS estimate

• One way to find the LS estimate \hat{eta}_0 and \hat{eta}_1

$$\frac{\partial Q}{\partial \beta_0} = -2\sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_i)] = 0$$

$$\frac{\partial Q}{\partial \beta_1} = -2\sum_{i=1}^{n} x_i [y_i - (\beta_0 + \beta_1 x_i)] = 0$$

 Setting these partial derivatives equal to zero and simplifying, we get

$$\beta_0 n + \beta_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i$$

$$\beta_0 \sum_{i=1}^n x_i + \beta_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i$$

LS Estimate

Solve the equations and we get

$$\hat{\beta}_{0} = \frac{\left(\sum_{i=1}^{n} x_{i}^{2}\right) \left(\sum_{i=1}^{n} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} x_{i} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$\hat{\beta}_{1} = \frac{n\left(\sum_{i=1}^{n} x_{i} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

LS Estimate

• To simplify, we introduce

$$S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i=1}^{n} x_i y_i - \frac{1}{n} (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)$$

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} (\sum_{i=1}^{n} x_i)^2$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} y_i^2 - \frac{1}{n} (\sum_{i=1}^{n} y_i)^2$$

$$\hat{S}_{xy} = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} y_i^2 - \frac{1}{n} (\sum_{i=1}^{n} y_i)^2$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} \qquad \hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$$

• The resulting equation $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ is known as the least squares line, which is an estimate of the true regression line.

Example - Tires Tread Wear vs. Mileage

 Find the equation of the line for the tire tread wear data and we have

$$\sum_{i=1}^{n} x_i = 144, \quad \sum_{i=1}^{n} y_i = 2197.32,$$

$$\sum_{i=1}^{n} x_i^2 = 3264, \quad \sum_{i=1}^{n} y_i^2 = 589887.08,$$

$$\sum_{i=1}^{n} x_i y_i = 28167.72$$

and n=9. From these we calculate $\bar{x}=16$, $\bar{y}=244.15$,

$$S_{xy} = \sum_{i=1}^{n} x_i y_i - \frac{1}{n} (\sum_{i=1}^{n} x_i) (\sum_{i=1}^{n} y_i)$$

$$= 28167.72 - \frac{1}{9} (144 * 2197.32) = -6989.40$$

$$S_{xx} = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} (\sum_{i=1}^{n} x_i)^2 = 3264 - \frac{1}{9} (144)^2 = 960$$

Example - Tires Tread Wear vs. Mileage

The slope and intercept estimates are

$$\hat{\beta}_1 = \frac{-6989.40}{960} = -7.281$$
 and $\hat{\beta}_0 = 244.15 + 7.291 * 16 = 360.64$

Therefore, the equation of the LS line is

$$y = -7.281x + 360.64$$

There is a loss of 7.281 mils in the tire groove depth for every 1000 miles of driving.

• Given a particular x = 25, we can find

$$y = -7.281 * 25 + 360.64 = 178.62$$
 mils

which means the mean groove depth for all tires driven for 25,000 mils is estimated to be 178.62 miles.

Goodness of Fit of the LS Line

Coefficient of Determination and Correlation

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i \ (i = 1, 2, ..., n)$$

The residuals:

$$\epsilon_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i) \ (i = 1, 2, ..., n)$$

are used to evaluate the goodness of fit of the LS line.

Goodness of Fit of the LS Line

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \underbrace{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}_{SSR} + \underbrace{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}_{SSE} + \underbrace{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}_{0} + \underbrace{\sum_{i=1}^{n} (y_i - \hat{y}_i)$$

• We define:

$$SST = SSR + SSE$$

• The ratio:

Coefficient of determination
$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

Note: Total sum of squares (SST)

Regression sum of squares (SSR)

Error sum of squares (SSE)

Example - Tires Tread Wear vs. Mileage

• For the tire tread wear data, calculate \mathbb{R}^2 using the results from example, and we have

$$SST = S_{yy} = \sum_{i=1}^{n} y_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} y_i^2 \right)$$
$$= 589887.08 - \frac{1}{9} (2197.32)^2 = 53418.73$$

Next calculate

$$SSR = SST - SSE = 53418.73 - 2531.53 = 50887.20$$

• Therefore

$$R^2 = \frac{50887.20}{53418.73} = 0.953$$

Example - Tires Tread Wear vs. Mileage

The Pearson correlation is

$$r = -\sqrt{0.953} = -0.976$$

where the sign of r follows from the sign of $\hat{\beta}_1 = -7.281$ since 95.3% of the variation in tread wear is accounted for by linear regression on mileage, the relationship between the two is strongly linear with a negative slope.

• Consider the linear model: $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$ where ϵ_i is drawn from a normal population with mean 0 and standard deviation σ , the likelihood function for Y is:

$$L = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left[\frac{-\sum (y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2}\right]$$

Maximum Likelihood Estimators (MLE)

• Thus, the log-likelihood for the data is:

$$\log L = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln(\sigma^2) - \sum \frac{(y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2}$$

Solving

$$\frac{\partial \log L}{\partial \beta_0} = 0, \frac{\partial \log L}{\partial \beta_1} = 0, \frac{\partial \log L}{\partial \sigma^2} = 0$$

- We obtain the MLEs of the three unknown model parameters β_0,β_1,σ^2
- The MLEs of the model parameters β_0 and β_1 are the same as the LSEs both unbiased
- The MLE of the error variance, however, is biased:

$$\widehat{\sigma}^2 = \frac{\sum_{i=1}^n \epsilon_i^2}{n} = \frac{SSE}{n}$$

$$\stackrel{\text{PDF of estimate Unbiased Estimator}}{\stackrel{\text{EfA}=A}{\longrightarrow} \widehat{A}}$$

$$\stackrel{\text{PDF of estimate Estimator}}{\stackrel{\text{PDF of estimate Estimator}}{\longrightarrow} \widehat{A}}$$

Unbiased Estimator of σ^2

• An unbiased estimate of σ^2 is given by

$$\hat{\sigma}^2 = s^2 = \frac{\sum_{i=1}^n \epsilon_i^2}{n-2} = \frac{SSE}{n-2}$$

- Find the estimate of σ^2 for the tread wear data using the results from Example
- We have SSE = 2351.3 and n 2 = 7, therefore

$$s^2 = \frac{2351.53}{7} = 361.65$$

which has 7 d.f..

• The estimate of σ is $s = \sqrt{361.65} = 19.02$ miles.

3 Statistical Inference on Coefficients

Statistical Inference on β_0 and β_1

- Under the normal error assumption
- Point estimators: $\hat{\beta}_0$ and $\hat{\beta}_1$
- Sampling distributions of $\hat{\beta}_0$ and $\hat{\beta}_1$:

for your homework

$$\hat{\beta}_0 \sim N\left(\beta_0, \sigma^2 \frac{\sum x_i^2}{nS_{xx}}\right), \qquad SE(\hat{\beta}_0) = s\sqrt{\frac{\sum x_i^2}{nS_{xx}}}$$

$$\hat{\beta}_1 \sim N\left(\beta_1, \sigma^2 \frac{S_{xx}}{S_{xx}}\right), \qquad SE(\hat{\beta}_1) = \frac{s}{\sqrt{S_{xx}}}$$

Statistical Inference on β_0 and β_1

• Pivotal Quantities (P.Q.'s):

$$\frac{\hat{\beta}_0 - \beta_0}{SE(\hat{\beta}_0)} \sim t_{n-2}, \qquad \frac{\hat{\beta}_1 - \beta_1}{SE(\hat{\beta}_1)} \sim t_{n-2}$$

• Confidence Intervals (Cl's):

$$\hat{\beta}_0 \pm t_{n-2,\frac{\alpha}{2}} SE(\hat{\beta}_0), \qquad \hat{\beta}_1 \pm t_{n-2,\frac{\alpha}{2}} SE(\hat{\beta}_1)$$

Statistical Inference on β_0 and β_1

Hypothesis tests:

General form: H_0 : $\beta_1 = c$, H_a : $\beta_1 \neq c$

Our interest:

$$H_0: \beta_1 = 0$$

$$H_a$$
: $\beta_1 \neq 0$

- At the significance level α , we reject H_0 in favor of H_a if and only if $|t_0| \geq t_{n-2,\frac{\alpha}{2}}$
- The first test is used to show whether there is a linear relationship between x and y.

Analysis of Variance (ANOVA)

• Another test to show whether there is a linear relationship between \boldsymbol{x} and \boldsymbol{y}

$$H_0: \beta_1 = 0, \qquad H_a: \beta_1 \neq 0$$

• Mean square: a sum of squares divided by its d.f.

$$MSR = \frac{SSR}{1}$$
, $MSE = \frac{SSE}{n-2}$

$$\frac{MSR}{MSE} = \frac{SSR}{s^2} = \frac{\widehat{\beta}_1^2 S_{xx}}{s^2} = \left(\frac{\widehat{\beta}_1}{s/\sqrt{S_{xx}}}\right)^2 = \left(\frac{\widehat{\beta}_1}{SE(\widehat{\beta}_1)}\right)^2 = t_0^2 \sim F_{1,n-2}$$

- $SSR = \Sigma_i (\hat{y}_i \bar{y})^2$
- How can we represent \hat{y}_i , \bar{y} with $\hat{\beta}_0$ and $\hat{\beta}_1$?
- It tests the model (simple linear regression) significance.

Analysis of Variance (ANOVA)

ANOVA Table

Source of Variation (Source)	Sum of Squares (SS)	Degrees of Freedom (d.f.)	Mean Square (MS)	F
Regression	SSR	1	MSR = SSR/1	MSR/MSE
Error	SSE	n – 2	MSE = SSE/n-2	
Total	SST	n – 1		

• Example

Source	SS	d.f.	MS	F
Regression	50,887.20	1	50,887.20	140.71
Error	2531.53	7	361.25	vs. $F_{1,7}$
Total	53,418.73	8	Si	gnificance level $lpha$

Questions?