米越智慧物联云平台数据接口协议

作者: 王少能 版本: V1.2

概述:

米越物联网平台基于完全自主知识产权开发,实现由穿戴类的终端设备到物联网基站,再到 云平台,实现完整的数据采集,传输,存储,交互等功能。

实时可靠消息接口:通过 NSQ 消息队列将设备和平台产生的数据实时推送给用户。如:刷卡,运动量,计步,温湿度等等数据,硬件平台接收到的同时会通过该消息队列推送给用户。

查询类消息接口:通过 HTTP 接口用户主动查询相关的数据,如设备的状态信息,相关的统计信息,算法计算的结果信息等等。

位置信息接口:用户端通过建立 UDP server,定位引擎会将平台下需要定位设备的位置信息通过 UDP 数据包实时传输至该用户的 udp server(该接口主要应用在医疗,商场等场景)

目录

米赳	智慧	慧物联云平台数据接口协议	1
─:	nsq	η数据接口格式 (实时消息) :	5
	1:	概述	5
	2:	运动量数据	5
		电量计	
	4:	耳温枪	7
	5:	手环激活时间数据	7
		手环计步数据	
	7:	小标签及信标区域检测数据	8
	8:	点评数据	8
	9:	身高体重测量数据	8
	10:	: 手环心率数据	9
		: 米越环境传感器数据	
	12:	: 垃圾车数据	9
	13:	: 刷卡或者标签检测数据	10
	14	: 温湿度传感器数据	10
	15	: 儿童体测等游戏设备	11
		15.1: 正常数据	11
		15.2:报警数据	
	16:	:智能轮椅磁控锁上报及控制接口。	
		16.1:事件上报接口 16.2:开锁接口	11
二:		位引擎	
		概述	
		数据格式:	
		第三方接口说明	
三:		备查询及管理接口(非实时 http 接口)	
		硬件信息 错误! 未定	
		睡眠时间错误! 未定	
		运动状态错误! 未定	
	4、	亲密度 错误! 未定	义书签。
	5、	设备录入(扫描条码)错误! 未定	义书签。

一: nsq 数据接口格式(实时消息):

1: 概述

服务器: ip_host(详询技术支持人员)

端口: 4150

topic: 每家合作客户动态生成一条唯一的 token (发布)

topic: d1837a88546463c6af2cbfb8412946d4(测试用,米越办公室环境,具体详询技术支持人员)

数据组成:

数据类型+消息生成时间戳+消息序列号+数据主体+CRC16

数据类型:

CoulometerType = 0x1121(电量计) (体温计) ThermometerType = 0x1122(运动量) SportsType = 0x1123(刷卡数据) CheckinType = 0x1124(手环激活时间数据) LocationType = 0x1125(计步数据) = 0x1126 StepsType (小标签或者信标数据接口) = 0x1127MiuetagType (手表类设备老师点评数据) EvaluateType = 0x1128(身高体重测量类设备数据) HztHwType = 0x1129(心率手环产生的心率数据) = 0x1130HeartRateType (医疗垃圾车状态及事件数据) YxWasteType = 0x1221 = 0x1222智能轮椅磁控锁事件上报) YxWheelType TemhumSensorType = 0x1311(基站提供的温湿度传感器数据) FiveSensorType = 0x1312(米越环境传感器数据,甲醛,CO2,PM2.5,PM10,TVOC) TblNormalType = 0x1411 (校园体测设备正常数据) TblAlarmType = 0x1412 (校园体测设备报警数据)

2: 运动量数据

该数据来自手环,实时获取手环佩戴者的活动量变化信息。手环每分钟产生一个运动量值,该值为运动传感器检测到的运动数据的差值积分所得,能比较敏感检测到各种活动变化,动作变化,不同活动之间的区别,如睡眠,运动等。相对于现有运动手环的活动模型检测,如计步,跑步等,学校学生,尤其是幼儿园学生,大多数活动状态为无规则的活动,通过运动量,结合课程安排以及具体的位置信息,能比较充分的了解个体的活动情况。

: (示例数据: 11235c50e3a400076005f7628b56b166ec44470642d65c50e3a100000ae9)

数据类	消息生	序列号	基站地	手环 ID	运动量产	运动量	CRC16
型	成时间		址		生时间戳	值	
	戳						
2 字节	4	4 字节	6 字节	6字节	4字节	2 字节	2 字节

当前运动量数据为每分钟产生一个 2 字节大小的运动量值。运动量开始时间为签到时间,见位置及签到数据介绍。运动量的产生时间戳该运动量产生的绝对时间。从而产生一整天完整的运动量计数。

3: 电量计

配合电量检测设备,实时获取被检测设备的工作时间,电源,电流,电量等会信息,了解设备的各种使用状态

数	消	序	基	电	电	数	电	压	电	流	功率	电	量	标	CRC16
据	息	列	站	量	量	据	(1	/)	(n	ıA)	(0.1W)	(0.001	KWh)	签	
类	生	号	地	计	计	时								地	
型	成		址	ID	状	间				//				址	
	时				态	戳	7								
	间					/			X	1					
	戳				-	17	X			'					
2	4	4	6	6	1	4	2 🖥	z节	2 字	2节	2 字节	4 字章	j	6	2 字节
字	字	字	字	字	字	字								字	
节	节	节	节	节	节	节								节	

电量计状态组成:

COULOMETER_STATE_UNPLUG = 1, //1 电源插头拔出

COULOMETER_STATE_NOT_WORK, //2 没有设备接入电量计

COULOMETER_STATE_WORK, //3 设备开始接入电量计

COULOMETER_STATE_CHANGE_VOLTAGE, //4 电源电压变化

COULOMETER STATE CHANGE CURRENT, //5 电流变化

COULOMETER_STATE_CHANGE_POWER, //6 功率变化

COULOMETER_STATE_CHANGE_COULOMETER, //7 电量变化

COULOMETER STATE NORMAL //8 数据正常更新,1 分钟更新一次。

4: 耳温枪

配合手环使用,将耳温枪测量得到的体温数据通过米越物联网平台,实时传输至云端。使用流程: 1: 打开耳温枪 2: 耳温枪碰触手环 3: 耳温枪测量耳温或者额温 4: 耳温枪将测量的体温数据自动传输至云平台。

: (示例数据: 1122 5c50e3a4 0000000a ec4222b99a1f aabbccddeeff feb403958717 816a 5af4f47a 07d9)

数据类	消息生	序列号	基站地	耳温枪	手环 ID	体温数	测量时	CRC16
型	成时间		址	ID		据	间	
	戳						X_{λ}	
2 字节	4 字节	4字节	6 字节	6 字节	6	2	4	2

每个数据包中存在一个手环的体温测量数据。

体温数据解析: data & 0x8000 如果为 1 则表示额温, 0 表示耳温。剩余 15bit 表示具体的温度值*10.

如: 0x816a 表示额温, 36.2℃。

5: 手环激活时间数据

米越手环默认工作方式为每日下午 7点 (该时间可以配置)自动关机,每日早上进园检测到有效激活信号(刷卡器,信标,门禁,耳温枪等等)之后,激活工作,同时会向平台上传一条激活数据,包含手环激活的时间。

(示例数据: 11255c50e3a40005e297f7628b56b166e5e9c7d6a8590000005c451af90b25)

数据类型	消息成敗	想生	序列号	基站地址	手环 ID	保留	签到标志	时间戳	CRC16
2 字节			4	6 字节	6 字节	2	1	4	2

签到标志解释:

0: 表示签到数据。每天入园第一次被系统检测到的时间。

6: 手环计步数据

手环在实际使用过程中,基于每天的签到时间为起点,每分钟产生一个记步数,表示该分钟内的计步统计数据。

数据格式如下: (示例数据:

11265c50e3a400076007f7628b56b166ec44470642d65c50e36500000ab2)

数据类	消息生	序列号	基站地	手环 ID	步数生成	每分钟	CRC16
型	成时间		址		绝对时间	步数	
	戳						
2	4 字节	4字节	6 字节	6	4	2	2

字段定义:

计步 index:已签到时间为基准的分钟索引值

7: 小标签及信标区域检测数据

当手环进入小标签或者信标的信号覆盖范围之内时,会发送进入区域事件信息; 手环离开小标签或者信标的信号覆盖范围区域时,会发送离开区域事件《手环超过 10s 未检测到小标签或者信标的信号,判定为离开事件发生,并上报离开区域的时间信息》。

数据格式如下(示例数据:

11275c50e3a40005eb81e1d21ced1e90d5be3027e3c0545c451af4e1cdfbe465180ead)

数据类	消息生	序列号	基站地	手环 ID	事件类	时间戳	标签 ID	CRC16
型	成时间		址		型			
2	4	4	6 字节	6	1	4	6	2

字段定义:

事件类型:

1字节: 高 4bit 标签或者信标类型 (5: 普通区域检测信标, 6: 微型小标签, 8: 门禁联动类设备。其他暂时保留),低 4bit 手环的进出状态(3 手环进入标签或者信标覆盖范围,4 手环离开标签或者信标的范围)

8: 点评数据

当老师手表上选择相关的点评功能之后,靠近学生手环,将自动生成一条点评数据记录。数据格式如下:

数据类型	消息	序列	基站	老 师	点 评	点 评	点 评	手 环	CRC16
'	生成	号	地址	手 表	类型	参数	时间	ID	
	时间			ID					
2 (0x1128)	4	4	6	6	2	2	4	6	2

9: 身高体重测量数据

当学生自助测量身高体重时,手环刷身高体重仪上的刷卡器,身高体重仪会自动将学生的测量数据上传平台。

数据类	消息	序列	基站	身 高	手 环	测量	身 高	体 重	CRC16
型	生 成	号	地址	体 重	ID	时间	数据	数据	
	时间			仪ID					
2	4	4	6	6	6	4	2	2	2
(0x1129									

10: 手环心率数据

心率手环佩戴之后,会自动采集心率数据,实时通过该接口传输。

数据类型	消息生	序列号	基站地	手环地	心率值	心率采	心率采	CRC16
	成时间		址	址		样间隔	样时间	
2(0x1130)	4	4	6	6	1	2	4	2

11: 米越环境传感器数据

米越环境传感器工作之后,根据配置的采样间隔,实时传输环境数据到平台。

数据类型	消	序	基	设	PM2.5	PM10	CO2	甲	TVOC	采	CRC16
	息	列	站	备				醛		样	
	生	号	地	地		Y١				时	
	成		址 🚤	址		4				间	
	时									点	
	间										
2(0x1312)	4	4	6	6	2	2	2	2	2	4	2

12: 垃圾车数据

实时获取医疗垃圾车的各种位置及状态数据。该数据为客户定制数据设备提供数据类型,实时反馈医疗废弃物收集车的各种操作,行为,状态以及位置等信息。实现医疗环境下最后一道流程的闭环管理。

(示例数据: 1221 5c50e3a4 00000001 f7628b56b166 d3dab77db41d 04 5b28e28a 0016 02 05f0)

数据类	消息	序列	基站	医疗垃	事件类	事件时	标签ID	垃圾车	CRC16
型	生 成	号	地址	圾车ID	型	间戳		j] ID	
	时间								
2	4	4	6 字节	6	1	4	2	1	2

字段定义:

事件类型:

0x01: 按键信息,按键按下的事件检测到之后,上报该事件

0x02: 马达锁锁上之后上报该事件

0x03: 检测开关检测到门打开之后上报该事件

0x04: 检测开关检测到门关上之后

Oxf0: 离开垃圾垃圾收集区域或者卸货区域未关门报警事件

垃圾门 ID 定义:

0x1: 垃圾车上盖的门 0x2: 垃圾车侧边的门

13: 刷卡或者标签检测数据

配合手环使用,获取手环佩戴者的各种刷卡,考勤,签到等信息。该功能同时可以结合现有的设备,如门禁,灯光等,实现数据对接或者平台整合等统一功能。

(示例数据: 1124 5c50e3a4 00000001 f7628b56b166 f3a7da7fe8fc 06 5b2a2340 e1c16f4aa032 0927)

数据类	消息生	序列号	基站地	手环 ID	数据	刷卡时	刷卡器	CRC16
型	成时间		址		index	间戳	或者标	
							签 ID	
2	4	4	6 字节	6	1	4	6	2

数据 index: 1 字节大小,每次刷卡或者被标签检测到之后自动加 1,255 之后自动从 0 开始刷卡时间戳:刷卡或者被标签检测到的时间点。

14: 温湿度传感器数据

获取基站所处位置的温湿度等环境数据(基站默认温湿度数据采样间隔为 5 分钟一次),了解所关注区域的环境信息等。对于现有基站设备,可以同时支持外置传感器设备,获取其他各种环境信息,如一氧化碳,二氧化碳,PM10,PM2.5 等各种环境参数。

(数据示例: 1311 5c50e3a4 00000001 dd600bcf4a57 5b36f1b8 012102fd 0637)

数据类型	消息生成	序列号	基站 ID	数据生成	数据内容	CRC16
	时间			时间		
2	4	4	6	4	4	2

数据类型: 1311 表示温湿度数据类型

基站 ID: 传感器所在的基站地址 数据生成时间: 该数据生成的时间

数据内容: 前两字节为温度数据, 后两字节为湿度数据

15 : 儿童体测等游戏设备 (设备包括平衡木,吊杆等)(获取该设备的各种工作状态数据,测量者的身份位置数据,并通过米越物联网平台,实时传输至云端)

15.1: 正常数据 (示例数据: 1411 5c50e3a4 00000001 f7628b56b166 ec9caf061c31

00000000000000 0005 e861264b5c98 5b3ddbcc 003b 0001 00000000000 07dd)

数据	消	序列	基	读卡	设备	模式	手环	游戏	游戏	游戏	保留	CRC16
类型	息	号	站	器 ID	ID	类型	ID	开始	时长	得分	字段	
	生		地					时间				
	成		址									
	时										777	
	间											
2	4	4	6	6	8	1	6	2	2	2	6	2

15.2:报警数据(示例数据: 1412 5c50e3a4 00000001 f7628b56b166 ec9caf061c31

1122334455667788 0001 fffffffff f0b0f)

数据类	消息生	序列号	基站地	读卡器	游戏设	异常数	保留字	CRC16
型	成时间		址	ID 🤦	备ID	据	段	
2	4	4	6	6	8	2	6	2

16: 智能轮椅磁控锁上报及控制接口。

16.1: 事件上报接口(当磁控锁头被磁控锁锁上之后,会主动上报上锁事件),

NSQ 事件接口如下: 1222 00000001 f7628b56b166 db6b6780afd9 5bb86de1 e6a4ca0fe35f 00 09f0

数据类	消息生	序列号	基站地	锁主体	上锁时	锁头 (标	保留字	CRC16
型	成时间		址	ID	间	签)ID	段	
2	4	4	6	6	4	6	1	2

16.2: 开锁接口,通过该接口主动开锁。

示例接口:

POST:http://120.27.161.132:8085/hw/wheelchair/lock?lockid=d538c5eba25c&action=unlock lockid 为锁主体 ID, action 为操作类型,暂时只支持 unlock 开锁动作。

二:定位引擎

1: 概述

基于米越智慧物联网基站及终端手环,将定位信息实时传输至云平台定位引擎,从而实时获取终端设备在场景内的各种位置信息,该终端设备可以是:设备资产标签,手环,医疗垃圾车,智能电量检测插座,手环,耳温枪等等一些列支持米越终端无线协议的终端产品。该定位引擎的定位精度根据不同的场景需要,可以实现区域范围内人员密度分布,人员统计,实时位置查找,位置相关服务提供等。按照定位引擎区域布设规范下,可以实现 1-3 米的定位精度要求,定位时间间隔 1-10s 可调。

米越自身定位引擎同时支持三边定位算法,两点线性匹配算法,信号干扰补偿算法,运动模型补偿算法,低频触发器信号补偿及融合算法,实现完整场景内的较可靠的定位实现。同时 米越智慧平台同时兼任第三方定位引擎,实现无缝数据对接等工作。

客户只需提供 UDP 服务器的 IP 与端口号。定位引擎会推送定位数据至该地址

2: 数据格式:

示例数据(

数	数	协	序	终	建	楼	X/	Y	Z	定	定位误	位	运	当	终	消	数
据	据	议	列	端	筑	层	轴	轴	轴	位	差(±)	置	动	前	端	息	据
类	长	版	号	mac	物	信	信	信	信	数		保	状	心	数	时	校
型	度	本		地	HD	息	息	息	息	据		留	态	率	据	间	验
		号	×	址	>.					源		字		状	保	戳	CRC
			\ \ \	17								段		态	留		
		<		-/-	V										字		
			\X												段		
2	2		4	6	4	4	3	3	3	1	2	8	2	2	8	4	2

数据类型: 201c 基于第三方定位引擎后端, 201d 基于米越定位引擎后端。

数据长度: 该条定位数据的长度,不包含数据类型,长度以及 CRC16 字段

协议版本号: 该数据协议的当前版本号, 当前版本为 0x10.

序列号:该协议的序列号,为32位无符号整形,每产生一条消息,该字段自增1次。

终端 mac 地址: 该条定位信息所对应手环等终端设备的物理地址。

建筑物 ID: 建筑物地址及位置编号。该字段为有符号 32 位整形,可以为负,根据平台配置情况。

楼层信息:该条定位引擎所对应的楼层编号。该字段为有符号 32 位整形,可以为负,根据平台配置情况。

X 轴信息:相对于原点的 x 轴方向信息,高 2 字节为有符号整数,最低 1 字节暂时保留。单

位为米。

Y 轴信息:相对于原点的 y 轴方向信息,高 2 字节为有符号整数,最低 1 字节暂时保留。单位为米。

Z 轴信息:相对于原点的 z 轴方向信息,高 2 字节为有符号整数,最低 1 字节暂时保留。单位为米。

定位数据源:表征定位数据产生的来源信息。

0x1: 基于单点的 RSSI 距离计算得到。

0x2: 基于两点的 RSSI 距离计算得到。

0x3: 基于 3 点或以上 RSSI 距离计算得到。

0x11: 基于低频触发器区域监测信息得到。

0x21: 基于多点方向角计算得到。

不同的数据源具有不同的置信度及数据精度,响应速度等特性。

定位误差: 该条定位信息的误差精度。

位置保留字段: RFU

运动信息:表示佩戴者当前的运动状态。高字节表示检测到的运动类型:走路,跑步等。低字节表示佩戴者活动剧烈程度,活动越剧烈该值越大。

心率字段: 暂时保留

终端数据保留字段: RFU

消息时间戳: 该条定位信息产生的时间戳信息。

数据校验: 16bitCRC 校验字段,除自身外以上所有数据的循环累加和。

3: 第三方接口说明

针对第三方定位引擎格式定义(201c):(存在一定差异,具体详询米越相关技术支持人员) x 轴信息(+ 进制格式): 000200 表示离圆点的 x 轴 2 米距离。十进制表示。如: 003200,表示距离圆点 x 方向 32 米位置。最后一字节表示小数部分,暂时不用。

针对米越定位引擎格式定义(201d):

x 轴信息(十六进制格式): 000200 表示离圆点的 x 轴 2 米距离。十进制表示。如: 003200, 表示距离圆点 x 方向 50 米位置。最后一字节表示小数部分,暂时不用。

y 轴信息: 同上

z 轴信息: 同上