Machine Learning

What is Computer?

To automate a <u>Task</u> at large <u>Scale</u>

What is Machine Learning?

To automate a Decision Making Task at large Scale

Machine Learning Process

Experience

DATA

Geographical

Transport

Cultural

Natural

Scientific

Types of Data

Financial

Task

ALGORITHM

Performance Metrics

TESTING

Machine Learning Tasks

Algorithms: PCA, t-SNE

Performance Metrics: Explained

Variance, No. of components

Algorithms: KMeans, DBSCAN, Hierarchal

Performance Metrics: SSE, MSE, Silhouette

Score, Adjusted Rand Index

Dimension Reduction

Algorithms: Apriori, FP Growth

Performance Metrics: Support,

Confidence, Lift, Leverage, Conviction

Clustering

Machine Learning

Association

Algorithms: Linear Regression, Polynomial,

Decision Trees, Random Forest,

XGBoost, Neural Networks

Performance Metrics: SSE,

MSE, R2, Adjusted R2,

Residual

Regression

Algorithms: Logistic Regression, KNN, SVM
Decision Trees, Random Forest,
XGBoost, Neural Networks

Classification

Performance Metrics: Accuracy, Recall, Precision, F1 score, AUC

Machine Learning Tasks

Machine Learning Algorithms

Supervised Learning

Types of Supervised Learning

Explanatory

Response

Independent

Dependent

Predictors

Label

X				

DATA

Predictors?

Size, shape, type of object etc.

Label?

Color: Red & Green

Training Data

Testing Data

Testing Data - Labels

Train Test Split in sklearn

```
sklearn.model_selection. train_test_split (*arrays, **options)
```

```
>>> import numpy as np
>>> from sklearn.model selection import train test split
>>> X, y = np.arange(10).reshape((5, 2)), range(5)
>>> X
array([[0, 1],
      [2, 3],
       [4, 5],
      [6, 7],
      [8, 9]])
>>> list(y)
[0, 1, 2, 3, 4]
>>> X train, X test, y train, y test = train test split(
       X, y, test size=0.33, random state=42)
>>> X train
array([[4, 5],
      [0, 1],
```

https://scikitlearn.org/stable/modul es/generated/sklearn. model_selection.train_ test_split.html

[6, 7]])

[8, 9]])

>>> y_train
[2, 0, 3]
>>> X test

>>> y test

[1, 4]

array([[2, 3],

Cross validation (CV) is one of the technique used to test the effectiveness of a machine learning models against different combinations of data

DATA SCIENCE & MACHINE LEARNING COURSE

https://www.facebook.com/diceanalytics/ https://pk.linkedin.com/company/diceanalytics

Regression

Regression

Predicting continuous numerical values.

 Algorithms: Multi-Linear regression, Polynomial Regression, Decision Trees, Random Forest, XGBoost.

• Examples :

- House Price Prediction
- Drink Quality Prediction
- Air Quality Prediction
- Income Prediction

Independent variable (x)

Regression

Linear Regression

Linear Regression fits a straight line through data.

Same Equation

$$y_i = W_1X_i + W_2 + \varepsilon_i$$

Error Functions

Absolute Error

Squared Error

Absolute Error

$$Error = \sum_{i=1}^{m} |y - \hat{y}|$$

Absolute Error

Square Error

$$Error = \sum_{i=1}^{m} (y - \hat{y})^2$$

Square Error

Absolute Error vs Square Error

Error A =
$$|1-3| + |3-2| + |4-4| + |3-5| = 2 + 1 + 0 + 2 = 5$$

Error B =
$$|1-2.3| + |3-1.3| + |4-3.3| + |3-4.3| = 1.3 + 1.7 + 0.7 + 1.3 = 5$$

Absolute Error vs Square Error

Gradient Descent

ERROR FUNCTION

$$SS_E = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

ERROR FUNCTION CHANGES WITH A LEARNING RATE

Multi-Linear Regression

When you have one predictor variable, the equation of the line is

$$y = mx + b$$

Multi-Linear Regression

Adding a predictor variable to go to two predictor variables means that the predicting equation is:

$$y = m_1 x_1 + m_2 x_2 + b$$

Linear Regression in sklearn

class sklearn.linear_model. LinearRegression (fit_intercept=True, normalize=False, copy_X=True, n_jobs=None)

Icoursel

```
>>> import numpy as np
>>> from sklearn.linear_model import LinearRegression
>>> X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
>>> # y = 1 * x_0 + 2 * x_1 + 3
>>> y = np.dot(X, np.array([1, 2])) + 3
>>> reg = LinearRegression().fit(X, y)
>>> reg.score(X, y)
1.0
>>> reg.coef_
array([1., 2.])
>>> reg.intercept_
3.0000...
>>> reg.predict(np.array([[3, 5]]))
array([16.])
```

https://scikit-

<u>learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html</u>

Linear Regression Visually

http://setosa.io/ev/ordinary-least-squares-regression/

Feature Scaling

Which size of shirt should Hamza choose?

Our Training Set

Feature Scaling

Feature scaling is a method used to normalize the range of independent variables or features of data.

Feature Scaling – Min Max Scaler

	Hamza	Abdullah	Fatima	
Weight	140 lb	175 lb	115 lb	
Weight - Scaled	0.42	1	0	
Height	5.9 ft	6.1 ft	5.2 ft	
Height - Scaled	0.77	1	0	

Feature Scaling

Which size of shirt should Hamza choose?

Our Training Set

Feature Scaling in scikit learn

```
>>> import numpy as np
>>> X train = np.array([[ 1., -1., 2.],
                       [ 2., 0., 0.],
                       [ 0., 1., -1.]])
>>> X scaled = preprocessing.scale(X train)
>>> X scaled
array([[ 0. ..., -1.22..., 1.33...],
      [ 1.22..., 0. ..., -0.26...],
      [-1.22..., 1.22..., -1.06...]])
>>> X train = np.array([[ 1., -1., 2.],
                       [ 2., 0., 0.],
                       [ 0., 1., -1.]])
>>> min max scaler = preprocessing.MinMaxScaler()
>>> X train minmax = min max scaler.fit transform(X train)
>>> X train minmax
array([[0.5 , 0. , 1. ], [1. , 0.5 , 0.33333333],
       [0. , 1. , 0.
```

>>> from sklearn import preprocessing

https://scikit-learn.org/stable/modules/preprocessing.html

R2 Score

SSE Sum of Squared Error

Independent variable (X)

SSR Sum of Squared Regression

Independent Variable (X)

R2 Score

Total Variation is given by Total Sum of Square (SST).

Total Variation

Explained Variation

Unexplained Variation

$$SST = SSR + SSE$$

$$SST = \sum (Y_i - \overline{Y})^2$$

$$SSR = \sum_{i} (\hat{Y}_{i} - \overline{Y})^{2}$$

$$SST = \sum (Y_i - \overline{Y})^2 \quad SSR = \sum (\hat{Y}_i - \overline{Y})^2 \quad SSE = \sum (Y_i - \hat{Y}_i)^2$$

R2 Score

- R-squared is a statistical measure of how close the data are to the fitted regression line.
- It is the percentage of the response variable variation that is explained by a linear model.
- R-squared is always between 0 and 100%:
- 0% indicates that the model explains none of the variability of the response data around its mean.
- 100% indicates that the model explains all the variability of the response data around its mean.

$$R^2 = \frac{SSR}{SST}$$

R2 Score in sklearn

sklearn.metrics. r2_score (y_true, y_pred, sample_weight=None, multioutput='uniform_average')

```
>>> from sklearn.metrics import r2_score
>>> y true = [3, -0.5, 2, 7]
>>> y pred = [2.5, 0.0, 2, 8]
>>> r2 score(y true, y pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2 score(y true, y pred,
             multioutput='variance weighted')
0.938...
>>> y_true = [1, 2, 3]
>>> y_pred = [1, 2, 3]
>>> r2 score(y true, y pred)
1.0
>>> y true = [1, 2, 3]
>>> y pred = [2, 2, 2]
>>> r2 score(y true, y pred)
0.0
>>> y true = [1, 2, 3]
>>> y pred = [3, 2, 1]
>>> r2 score(y true, y pred)
-3.0
```

https://scikitlearn.org/stable/modules/generate d/sklearn.metrics.r2_score.html

Limitations of R²

- You cannot use R-squared to determine whether the coefficient estimates and predictions are biased, which is why you must assess the residual plots.
- R-squared does not indicate if a regression model provides an adequate fit to your data.

Limitations of R²

Every time you add a predictor to a model, the R-squared increases, even if due to chance alone. It never decreases.
 Consequently, a model with more terms may appear to have a better fit simply because it has more terms.

Adjusted R²

- It is a modified version of R-squared that has been adjusted for the number of predictors in the model.
- It increases only if the new term improves the model more than would be expected by chance.
- It decreases when a predictor improves the model by less than expected by chance.
- It can be negative, but it's usually not. It is always lower than the R-squared.

Adjusted
$$R^2 = 1 - \frac{(1 - R^2)(N - 1)}{N - p - 1}$$

N: is the number of points in your data sample. p: is the number of predictors

Residuals (ϵ_i)

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

- Residuals represent variation left unexplained by our model.
- The vertical distance between the observed data point and the regression line (predicted outcome):

$$\varepsilon_i = Y_i - \hat{Y}_i$$

Residuals Plots highlight poor model fit.

Only Residuals plotted against Predictor.

There shouldn't be any patterns in Residual Plots!

• Regression fit of a data. What patterns are there?

Residual Plot. What does it tell?

• Another Regression fit. Sounds perfect?

Residual Plot tells a different story!

Residual Plots in yellowbricks

```
from sklearn.model selection import train test split
# Load the data
df = load data('concrete')
# Identify the feature and target columns
feature names = [
    'cement', 'slag', 'ash', 'water', 'splast', 'coarse', 'fine', 'age'
target name = 'strength'
# Separate the instance data from the target data
X = df[feature names]
y = df[target name]
# Create the train and test data
X train, X test, y train, y test = train test split(X, y, test size=0.2)
from sklearn.linear_model import Ridge
from yellowbrick.regressor import ResidualsPlot
# Instantiate the linear model and visualizer
ridge = Ridge()
visualizer = ResidualsPlot(ridge)
visualizer.fit(X train, y train) # Fit the training data to the model
visualizer.score(X_test, y_test) # Evaluate the model on the test data
visualizer.poof()
                                  # Draw/show/poof the data
```

https://www.scikityb.org/en/latest/api/regr essor/residuals.html

Multivariable Regression (Model Selection)

Recursive Feature Elimination with Scikit Learn

step	variables included	removed	R^2
FULL	kid_score ~ mom_hs + mom_iq + mom_work + mom_age		0.2098
STEP I	kid_score ~ mom_iq + mom_work + mom_age	[-mom_hs]	0.2027
	kid_score ~ mom_hs + mom_work + mom_age	[-mom_iq]	0.0541
	kid_score ~ mom_hs + mom_iq + mom_age	[-mom_work]	0.2095
	kid_score ~ mom_hs + mom_iq + mom_work	[-mom_age]	0.2109
STEP 2	kid_score ~ mom_iq + mom_work	[-mom_hs]	0.2024
	kid_score ~ mom_hs + mom_work	[-mom_iq]	0.0546
	kid_score ~ mom_hs + mom_iq	[-mom_work]	0.2105

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html

Linear Regression - Limitations

- Applying a model estimate to values outside the realm of the original data is called *Extrapolation*.
- Linear Regression is not used for extrapolation

Linear Regression - Limitations

- Relationship between Response and Explanatory Variable must be linear.
- Check using Scatterplot or Residual Plot.

Linear Regression - Limitations

- Remove the Outlier to see the effect.
- In this case, the Outlier makes it appear as if there is a linear relation when actually there is not.

- There are two types of Outliers:
- <u>Leverage Points</u>: Outliers that fall horizontally away from centre of the cloud but don't influence the slop of regression line.
- Influential Points: Outliers that actually influence the slop of regression line. To check, remove this point and see the effect on regression line.

• What type of Outlier is this?

