LOGIC AND THEORETICAL FOUNDATION OF COMPUTER SCIENCE

LATFOCS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

Winter Semester 2019

Kiel University Dependable Systems Group

NORMAL FORMS

 $\, \bigcirc \,$ truth tables are exponentially large

- truth tables are exponentially large
- proofs are hard to find

- truth tables are exponentially large
- proofs are hard to find
- but a decision procedure for satisfiability is essential!

- truth tables are exponentially large
- proofs are hard to find
- but a decision procedure for satisfiability is essential!
- let's restrict ourselves to a subset of formula we can handle better

Definition

○ *C* clause: *C* disjunction of literals

Definition

- *C* clause: *C* disjunction of literals
- $\bigcirc \varphi$ formula in CNF: φ is conjunction of clauses

Definition

- *C* clause: *C* disjunction of literals
- \bigcirc φ formula in CNF: φ is conjunction of clauses

EXAMPLE

$$(p_1 \lor p_3 \lor \neg p_4) \land (p_2 \lor \neg p_3) \land (\neg p_1 \lor p_2 \lor \neg p_4)$$

Definition

- *C* clause: *C* disjunction of literals
- \bigcirc φ formula in CNF: φ is conjunction of clauses

EXAMPLE

Definition

- *C* clause: *C* disjunction of literals
- \bigcirc φ formula in CNF: φ is conjunction of clauses

EXAMPLE

$$\underbrace{\begin{pmatrix} L_1 & L_2 & L_3 \\ p_1 & \sqrt{p_3} & \sqrt{\neg p_4} \end{pmatrix}}_{C_1} \wedge \underbrace{\begin{pmatrix} L_4 & L_2 \\ p_2 & \sqrt{\neg p_3} \end{pmatrix}}_{C_2} \wedge \underbrace{\begin{pmatrix} L_1 & L_4 & L_3 \\ \neg p_1 & \sqrt{p_2} & \sqrt{\neg p_4} \end{pmatrix}}_{C_3}$$

 $\bigcirc \varphi$ in CNF if there exist clauses C_1, \ldots, C_n with $\varphi = \bigwedge_{i \in [n]} C_i$ for $n \in \mathbb{N}_0$

- $\bigcirc \varphi$ in CNF if there exist clauses C_1, \ldots, C_n with $\varphi = \bigwedge_{i \in [n]} C_i$ for $n \in \mathbb{N}_0$
- conjunction true iff all clauses valuates to true, i.e. φ valuates to true iff $\forall i \in [n] : C_i$ valuates to true

- φ in CNF if there exist clauses C_1, \ldots, C_n with $\varphi = \bigwedge_{i \in [n]} C_i$ for $n \in \mathbb{N}_0$
- conjunction true iff all clauses valuates to true, i.e. φ valuates to true iff $\forall i \in [n] : C_i$ valuates to true
- O Notice: C_1, \ldots, C_n are not independent but we can start to have a look at them separately

- φ in CNF if there exist clauses C_1, \ldots, C_n with $\varphi = \bigwedge_{i \in [n]} C_i$ for $n \in \mathbb{N}_0$
- conjunction true iff all clauses valuates to true, i.e. φ valuates to true iff $\forall i \in [n] : C_i$ valuates to true
- O Notice: C_1, \ldots, C_n are not independent but we can start to have a look at them separately
- clauses are disjunction which valuate to true if at least one literal is true

$$\underbrace{\begin{pmatrix} L_1 & L_2 & L_3 \\ p_1 & \sqrt{p_3} & \sqrt{\neg p_4} \end{pmatrix}}_{C_1} \wedge \underbrace{\begin{pmatrix} L_4 & L_2 \\ p_2 & \sqrt{\neg p_3} \end{pmatrix}}_{C_2} \wedge \underbrace{\begin{pmatrix} L_1 & L_4 & L_3 \\ \neg p_1 & \sqrt{p_2} & \sqrt{\neg p_4} \end{pmatrix}}_{C_3}$$

Valuation:

1. assume a valuation β with $\beta(p_1)$ = true

$$\underbrace{\begin{pmatrix} L_1 & L_2 & L_3 \\ p_1 & \sqrt{p_3} & \sqrt{\neg p_4} \end{pmatrix}}_{C_1} \wedge \underbrace{\begin{pmatrix} L_4 & L_2 \\ p_2 & \sqrt{\neg p_3} \end{pmatrix}}_{C_2} \wedge \underbrace{\begin{pmatrix} L_1 & L_4 & L_3 \\ \neg p_1 & \sqrt{p_2} & \sqrt{\neg p_4} \end{pmatrix}}_{C_3}$$

Valuation:

- 1. assume a valuation β with $\beta(p_1) = \text{true}$
- 2. \rightarrow C_1 valuates to true, $\neg p_1$ in C_3 valuates to false

$$\underbrace{\begin{pmatrix} L_1 & L_2 & L_3 \\ p_1 & \sqrt{p_3} & \sqrt{\neg p_4} \end{pmatrix}}_{C_1} \wedge \underbrace{\begin{pmatrix} L_4 & L_2 \\ p_2 & \sqrt{\neg p_3} \end{pmatrix}}_{C_2} \wedge \underbrace{\begin{pmatrix} L_1 & L_4 & L_3 \\ \neg p_1 & \sqrt{p_2} & \sqrt{\neg p_4} \end{pmatrix}}_{C_3}$$

Valuation:

- 1. assume a valuation β with $\beta(p_1) = \text{true}$
- 2. $\sim C_1$ valuates to true, $\neg p_1$ in C_3 valuates to false
- 3. assume $\beta(p_2) = \text{false}$

$$\underbrace{\begin{pmatrix} L_1 & L_2 & L_3 \\ p_1 & \sqrt{p_3} & \sqrt{\neg p_4} \end{pmatrix}}_{C_1} \wedge \underbrace{\begin{pmatrix} L_4 & L_2 \\ p_2 & \sqrt{\neg p_3} \end{pmatrix}}_{C_2} \wedge \underbrace{\begin{pmatrix} L_1 & L_4 & L_3 \\ \neg p_1 & \sqrt{p_2} & \sqrt{\neg p_4} \end{pmatrix}}_{C_3}$$

Valuation:

- 1. assume a valuation β with $\beta(p_1) = \text{true}$
- 2. $\sim C_1$ valuates to true, $\neg p_1$ in C_3 valuates to false
- 3. assume $\beta(p_2) = \text{false}$
- 4. $\sim C_2$ only valuates to true if $\beta(\neg p_3) = \text{true}$, thus $\beta(p_3) = \text{false}$

$$\underbrace{\begin{pmatrix} L_1 & L_2 & L_3 & L_4 & L_2 \\ p_1 & \sqrt{p_3} & \sqrt{\neg p_4} \end{pmatrix}}_{C_1} \wedge \underbrace{\begin{pmatrix} L_4 & L_2 & L_4 & L_4 & L_4 \\ p_2 & \sqrt{\neg p_3} \end{pmatrix}}_{C_2} \wedge \underbrace{\begin{pmatrix} L_1 & L_4 & L_3 \\ \neg p_1 & \sqrt{p_2} & \sqrt{\neg p_4} \end{pmatrix}}_{C_3}$$

Valuation:

- 1. assume a valuation β with $\beta(p_1)$ = true
- 2. $\rightarrow C_1$ valuates to true, $\neg p_1$ in C_3 valuates to false
- 3. assume $\beta(p_2) = \text{false}$
- 4. \rightsquigarrow C_2 only valuates to true if $\beta(\neg p_3) = \text{true}$, thus $\beta(p_3) = \text{false}$
- 5. for C_3 valuating to true, $\neg p_4$ has to valuate to true, thus $\beta(p_4) = \text{false}$

LaTFoC

$$\underbrace{(p_1 \vee p_2)}_{C_1} \wedge \underbrace{(\neg p_1 \vee p_2)}_{C_2} \wedge \underbrace{(p_1 \vee \neg p_2)}_{C_3} \wedge \underbrace{(\neg p_1 \vee \neg p_2)}_{C_4}$$

$$\underbrace{(p_1 \vee p_2)}_{C_1} \wedge \underbrace{(\neg p_1 \vee p_2)}_{C_2} \wedge \underbrace{(p_1 \vee \neg p_2)}_{C_3} \wedge \underbrace{(\neg p_1 \vee \neg p_2)}_{C_4}$$

1. assume a valuation β with $\beta(p_1)=$ true

$$\underbrace{(p_1 \vee p_2)}_{C_1} \wedge \underbrace{(\neg p_1 \vee p_2)}_{C_2} \wedge \underbrace{(p_1 \vee \neg p_2)}_{C_3} \wedge \underbrace{(\neg p_1 \vee \neg p_2)}_{C_4}$$

- 1. assume a valuation β with $\beta(p_1) = \text{true}$
- 2. \rightarrow valuation of C_1 , C_3 true

$$\underbrace{(p_1 \vee p_2)}_{C_1} \wedge \underbrace{(\neg p_1 \vee p_2)}_{C_2} \wedge \underbrace{(p_1 \vee \neg p_2)}_{C_3} \wedge \underbrace{(\neg p_1 \vee \neg p_2)}_{C_4}$$

- 1. assume a valuation β with $\beta(p_1) = \text{true}$
- 2. \rightarrow valuation of C_1 , C_3 true
- 3. for C_2 valuating to true, p_2 needs to valuate to true

$$\underbrace{(p_1 \vee p_2)}_{C_1} \wedge \underbrace{(\neg p_1 \vee p_2)}_{C_2} \wedge \underbrace{(p_1 \vee \neg p_2)}_{C_3} \wedge \underbrace{(\neg p_1 \vee \neg p_2)}_{C_4}$$

- 1. assume a valuation β with $\beta(p_1) = \text{true}$
- 2. \rightarrow valuation of C_1 , C_3 true
- 3. for C_2 valuating to true, p_2 needs to valuate to true
- 4. but for C_4 valuating to true, p_2 needs to valuate to false

$$\underbrace{(p_1 \vee p_2)}_{C_1} \wedge \underbrace{(\neg p_1 \vee p_2)}_{C_2} \wedge \underbrace{(p_1 \vee \neg p_2)}_{C_3} \wedge \underbrace{(\neg p_1 \vee \neg p_2)}_{C_4}$$

- 1. assume a valuation β with $\beta(p_1) = \text{true}$
- 2. \rightarrow valuation of C_1 , C_3 true
- 3. for C_2 valuating to true, p_2 needs to valuate to true
- 4. but for C_4 valuating to true, p_2 needs to valuate to false
- 5. \rightarrow we have a problem if p_1 valuates to true (only assumption we made)

$$\underbrace{(p_1 \vee p_2)}_{C_1} \wedge \underbrace{(\neg p_1 \vee p_2)}_{C_2} \wedge \underbrace{(p_1 \vee \neg p_2)}_{C_3} \wedge \underbrace{(\neg p_1 \vee \neg p_2)}_{C_4}$$

1. assume a valuation β with $\beta(p_1)=$ false

$$\underbrace{(p_1 \vee p_2)}_{C_1} \wedge \underbrace{(\neg p_1 \vee p_2)}_{C_2} \wedge \underbrace{(p_1 \vee \neg p_2)}_{C_3} \wedge \underbrace{(\neg p_1 \vee \neg p_2)}_{C_4}$$

- 1. assume a valuation β with $\beta(p_1)$ = false
- 2. \rightarrow valuation of C_2 , C_4 true

$$\underbrace{(p_1 \vee p_2)}_{C_1} \wedge \underbrace{(\neg p_1 \vee p_2)}_{C_2} \wedge \underbrace{(p_1 \vee \neg p_2)}_{C_3} \wedge \underbrace{(\neg p_1 \vee \neg p_2)}_{C_4}$$

- 1. assume a valuation β with $\beta(p_1)$ = false
- **2**. \rightarrow valuation of C_2 , C_4 true
- 3. for C_1 valuating to true, p_2 needs to valuate to true

$$\underbrace{(p_1 \vee p_2)}_{C_1} \wedge \underbrace{(\neg p_1 \vee p_2)}_{C_2} \wedge \underbrace{(p_1 \vee \neg p_2)}_{C_3} \wedge \underbrace{(\neg p_1 \vee \neg p_2)}_{C_4}$$

- 1. assume a valuation β with $\beta(p_1)$ = false
- 2. \rightarrow valuation of C_2 , C_4 true
- 3. for C_1 valuating to true, p_2 needs to valuate to true
- 4. but for C_3 valuating to true, p_2 needs to valuate to false

$$\underbrace{(p_1 \vee p_2)}_{C_1} \wedge \underbrace{(\neg p_1 \vee p_2)}_{C_2} \wedge \underbrace{(p_1 \vee \neg p_2)}_{C_3} \wedge \underbrace{(\neg p_1 \vee \neg p_2)}_{C_4}$$

- 1. assume a valuation β with $\beta(p_1)$ = false
- 2. \rightarrow valuation of C_2 , C_4 true
- 3. for C_1 valuating to true, p_2 needs to valuate to true
- 4. but for C_3 valuating to true, p_2 needs to valuate to false
- 5. \sim also problem if p_1 valuates to false (formula is contradiction)

Lemma

Disjunction of literals $L_1 \lor \cdots \lor L_m$ valid iff there exist $i, j \in [m]$ with $L_i = \neg L_j$

Lemma

Disjunction of literals $L_1 \lor \cdots \lor L_m$ valid iff there exist $i, j \in [m]$ with $L_i = \neg L_j$

Proof of \leftarrow :

 \bigcirc assume there exist $i, j \in [m]$ with $L_i = \neg L_j$, choose them

Lemma

Disjunction of literals $L_1 \lor \cdots \lor L_m$ valid iff there exist $i, j \in [m]$ with $L_i = \neg L_j$

Proof of \leftarrow :

- \bigcirc assume there exist $i, j \in [m]$ with $L_i = \neg L_j$, choose them
- $\bigcirc \text{ thus } L_1 \vee \cdots \vee L_m = \\ L_1 \vee L_{i-1} \vee \neg L_j \vee L_{i+1} \vee \cdots \vee L_{j-1} \vee L_j \vee L_{j+1} \vee \cdots \vee L_m$

Lemma

Disjunction of literals $L_1 \lor \cdots \lor L_m$ valid iff there exist $i, j \in [m]$ with $L_i = \neg L_j$

Proof of \leftarrow :

- assume there exist $i, j \in [m]$ with $L_i = \neg L_j$, choose them
- $\bigcirc \text{ thus } L_1 \vee \cdots \vee L_m = \\ L_1 \vee L_{i-1} \vee \neg L_j \vee L_{i+1} \vee \cdots \vee L_{j-1} \vee L_j \vee L_{j+1} \vee \cdots \vee L_m$
- $\bigcirc L_1 \vee \cdots \vee L_m = L_j \vee \neg L_j \vee L_1 \vee L_{i-1} \vee L_{i+1} \vee \cdots \vee L_{j-1} \vee L_{j+1} \vee \cdots \vee L_m$

Lemma

Disjunction of literals $L_1 \lor \cdots \lor L_m$ valid iff there exist $i, j \in [m]$ with $L_i = \neg L_j$

Proof of \leftarrow :

- assume there exist $i, j \in [m]$ with $L_i = \neg L_j$, choose them
- $\bigcirc \text{ thus } L_1 \vee \cdots \vee L_m = L_1 \vee L_{i-1} \vee \neg L_j \vee L_{i+1} \vee \cdots \vee L_{j-1} \vee L_j \vee L_{j+1} \vee \cdots \vee L_m$
- $\bigcirc \ L_1 \vee \cdots \vee L_m = \\ L_j \vee \neg L_j \vee L_1 \vee L_{i-1} \vee L_{i+1} \vee \cdots \vee L_{j-1} \vee L_{j+1} \vee \cdots \vee L_m$
- \bigcirc $L_i \lor \neg L_j$ is valid, i.e. true under all valuation

Validity of Disjunctions

Lemma

Disjunction of literals $L_1 \lor \cdots \lor L_m$ valid iff there exist $i, j \in [m]$ with $L_i = \neg L_j$

Proof of \leftarrow :

- \bigcirc assume there exist $i, j \in [m]$ with $L_i = \neg L_j$, choose them
- $\bigcirc \text{ thus } L_1 \vee \cdots \vee L_m = L_1 \vee L_{i-1} \vee \neg L_j \vee L_{i+1} \vee \cdots \vee L_{j-1} \vee L_j \vee L_{j+1} \vee \cdots \vee L_m$
- $\bigcirc L_1 \vee \cdots \vee L_m = \\ L_j \vee \neg L_j \vee L_1 \vee L_{i-1} \vee L_{i+1} \vee \cdots \vee L_{j-1} \vee L_{j+1} \vee \cdots \vee L_m$
- \bigcirc $L_i \lor \neg L_i$ is valid, i.e. true under all valuation
- disjunction valid if at least one literal true under all valuations

Validity of Disjunctions

Lemma

Disjunction of literals $L_1 \lor \cdots \lor L_m$ valid iff there exist $i, j \in [m]$ with $L_i = \neg L_j$

Proof of \leftarrow :

- \bigcirc assume there exist $i, j \in [m]$ with $L_i = \neg L_j$, choose them
- $\bigcirc \text{ thus } L_1 \vee \cdots \vee L_m = L_1 \vee L_{i-1} \vee \neg L_j \vee L_{i+1} \vee \cdots \vee L_{j-1} \vee L_j \vee L_{j+1} \vee \cdots \vee L_m$
- $\bigcirc L_1 \vee \cdots \vee L_m = L_j \vee \neg L_j \vee L_1 \vee L_{i-1} \vee L_{i+1} \vee \cdots \vee L_{j-1} \vee L_{j+1} \vee \cdots \vee L_m$
- \bigcirc $L_i \lor \neg L_i$ is valid, i.e. true under all valuation
- disjunction valid if at least one literal true under all valuations
- thus disjuntion valid

Lemma

Disjunction of literals $L_1 \lor \cdots \lor L_m$ valid iff there exist $i, j \in [m]$ with $L_i = \neg L_j$

Lemma

Disjunction of literals $L_1 \lor \cdots \lor L_m$ valid iff there exist $i, j \in [m]$ with $L_i = \neg L_j$

Proof of \rightarrow by contraposition:

○ assume there does not exist $i, j \in [m]$ with $L_i = \neg L_j$

Lemma

Disjunction of literals $L_1 \lor \cdots \lor L_m$ valid iff there exist $i, j \in [m]$ with $L_i = \neg L_j$

- assume there does not exist $i, j \in [m]$ with $L_i = \neg L_j$
- \bigcirc we have to prove: $L_1 \lor \cdots \lor L_m$ not valid, i.e. false under at least one valuation

Lemma

Disjunction of literals $L_1 \lor \cdots \lor L_m$ valid iff there exist $i, j \in [m]$ with $L_i = \neg L_j$

- assume there does not exist $i, j \in [m]$ with $L_i = \neg L_j$
- \bigcirc we have to prove: $L_1 \lor \cdots \lor L_m$ not valid, i.e. false under at least one valuation
- \bigcirc consider valuation β which assigns

Lemma

Disjunction of literals $L_1 \lor \cdots \lor L_m$ valid iff there exist $i, j \in [m]$ with $L_i = \neg L_j$

- assume there does not exist $i, j \in [m]$ with $L_i = \neg L_j$
- \bigcirc we have to prove: $L_1 \lor \cdots \lor L_m$ not valid, i.e. false under at least one valuation
- \bigcirc consider valuation β which assigns
 - true to all literals L with $L = p_i$ for an atom p_i

Lemma

Disjunction of literals $L_1 \vee \cdots \vee L_m$ valid iff there exist $i, j \in [m]$ with $L_i = \neg L_j$

- assume there does not exist $i, j \in [m]$ with $L_i = \neg L_j$
- \bigcirc we have to prove: $L_1 \lor \cdots \lor L_m$ not valid, i.e. false under at least one valuation
- \bigcirc consider valuation β which assigns
 - true to all literals L with $L = p_i$ for an atom p_i
 - false to all literals *L* with $L = \neg p_i$ for an atom p_i

Lemma

Disjunction of literals $L_1 \vee \cdots \vee L_m$ valid iff there exist $i, j \in [m]$ with $L_i = \neg L_j$

- assume there does not exist $i, j \in [m]$ with $L_i = \neg L_j$
- \bigcirc we have to prove: $L_1 \lor \cdots \lor L_m$ not valid, i.e. false under at least one valuation
- \bigcirc consider valuation β which assigns
 - true to all literals L with $L = p_i$ for an atom p_i
 - false to all literals L with $L = \neg p_i$ for an atom p_i
- thus disjuntion valuates to false

 conjunction valuates to true iff all conjuncts evaluates to true

- conjunction valuates to true iff all conjuncts evaluates to true
- a CNF evaluates to true iff all clauses evaluates to true

- conjunction valuates to true iff all conjuncts evaluates to true
- a CNF evaluates to true iff all clauses evaluates to true
- a CNF is valid iff it always evaluates to true

- conjunction valuates to true iff all conjuncts evaluates to true
- a CNF evaluates to true iff all clauses evaluates to true
- a CNF is valid iff it always evaluates to true
- a CNF is valid iff all clauses always evaluates to true

- conjunction valuates to true iff all conjuncts evaluates to true
- a CNF evaluates to true iff all clauses evaluates to true
- a CNF is valid iff it always evaluates to true
- a CNF is valid iff all clauses always evaluates to true
- a CNF is valid iff all clauses are valid

- conjunction valuates to true iff all conjuncts evaluates to true
- a CNF evaluates to true iff all clauses evaluates to true
- a CNF is valid iff it always evaluates to true
- a CNF is valid iff all clauses always evaluates to true
- o a CNF is valid iff all clauses are valid
- validity check of a CNF: test all clauses for validity

- conjunction valuates to true iff all conjuncts evaluates to true
- a CNF evaluates to true iff all clauses evaluates to true
- a CNF is valid iff it always evaluates to true
- a CNF is valid iff all clauses always evaluates to true
- o a CNF is valid iff all clauses are valid
- validity check of a CNF: test all clauses for validity
- notice: high costs

- conjunction valuates to true iff all conjuncts evaluates to true
- a CNF evaluates to true iff all clauses evaluates to true
- a CNF is valid iff it always evaluates to true
- a CNF is valid iff all clauses always evaluates to true
- o a CNF is valid iff all clauses are valid
- validity check of a CNF: test all clauses for validity
- notice: high costs
- and how to get a CNF from an arbitrary formula?

Naïve algorithm for Transforming into CNF

Algorithm 1 Naïve algorithm for CNF

```
Input: propositional logic formula \varphi with atoms p_1, \ldots, p_n and
     the truth table
 1: for \ell = 1 to 2^n do
     \varphi' = \text{true}
        if \varphi evaluates in \ell^{\text{th}} line to false then
 3:
           C_{\ell} = \text{false}
 4:
           for i = 1 to n do
 5:
              if p_i evaluates to true in \ell^{th} line then
 6:
                 append \vee \neg p_i to C_\ell
 7:
              else
 8:
                 append \forall p_i to C_\ell
 9:
        append \wedge C_{\ell} to \varphi'
10:
```

Example for naïve algorithm

Notice: the algorithm is based on the completeness proof of the propositional logic!

Consider $\varphi = p_1 \rightarrow (p_2 \land (p_3 \rightarrow \neg p_2))$ with the truth table

p_1	p_2	<i>p</i> ₃	φ
false	false	false	true
false	false	true	true
false	true	false	true
false	true	true	true
true	false	false	false
true	false	true	false
true	true	false	true
true	true	true	false

Example for naïve algorithm

Notice: the algorithm is based on the completeness proof of the propositional logic!

Consider $\varphi = p_1 \rightarrow (p_2 \land (p_3 \rightarrow \neg p_2))$ with the truth table

p_1	p_2	p_3	φ	
false	false	false	true	
false	false	true	true	
false	true	false	true	
false	true	true	true	
true	false	false	false	$\neg p_1 \lor p_2 \lor p_3$
true	false	true	false	$\neg p_1 \lor p_2 \lor \neg p_3$
true	true	false	true	
true	true	true	false	$\neg p_1 \lor \neg p_2 \lor \neg p_3$

Example for naïve algorithm

Notice: the algorithm is based on the completeness proof of the propositional logic!

Consider $\varphi = p_1 \rightarrow (p_2 \land (p_3 \rightarrow \neg p_2))$ with the truth table

p_1	p_2	p_3	φ	
false	false	false	true	
false	false	true	true	
false	true	false	true	
false	true	true	true	
true	false	false	false	$\neg p_1 \lor p_2 \lor p_3$
true	false	true	false	$\neg p_1 \lor p_2 \lor \neg p_3$
true	true	false	true	
true	true	true	false	$\neg p_1 \lor \neg p_2 \lor \neg p_3$

thus:
$$\varphi \equiv (\neg p_1 \lor p_2 \lor p_3) \land (\neg p_1 \lor p_2 \lor \neg p_3)$$

 $\land (\neg p_1 \lor \neg p_2 \lor \neg p_3)$

 $\, \bigcirc \,$ formula in CNF can be fast and easily checked for validity

- o formula in CNF can be fast and easily checked for validity
- every formula in a class of equivalent formulae is valid if one is valid

- O formula in CNF can be fast and easily checked for validity
- every formula in a class of equivalent formulae is valid if one is valid
- it is *enough* to find an equivalent formula in CNF and check its validity

- O formula in CNF can be fast and easily checked for validity
- every formula in a class of equivalent formulae is valid if one is valid
- it is *enough* to find an equivalent formula in CNF and check its validity
- the previous algorithm needs the truth table which to build is exponential

- O formula in CNF can be fast and easily checked for validity
- every formula in a class of equivalent formulae is valid if one is valid
- it is *enough* to find an equivalent formula in CNF and check its validity
- the previous algorithm needs the truth table which to build is exponential
- there does not exist the equivalent CNF for a formula (not unique)

- O formula in CNF can be fast and easily checked for validity
- every formula in a class of equivalent formulae is valid if one is valid
- it is *enough* to find an equivalent formula in CNF and check its validity
- the previous algorithm needs the truth table which to build is exponential
- there does not exist the equivalent CNF for a formula (not unique)
- \circ different measures: number of conjuncts, overall length, etc

Stepwise Approach to Build an Algorithm

- we will build a deterministic algorithm
- we will use the structure of formulae
- w.l.o.g. we will assume that the formulae are implication free (preprocessing)
- w.l.o.g. we will assume that the formulae are in negation normal form (preprocessing)

Preprocessing: implication freedom

With the equivalence $\varphi \to \psi \equiv \neg \varphi \lor \psi$ we can calculate an implication free, equivalent formula.

Preprocessing: implication freedom

With the equivalence $\varphi \to \psi \equiv \neg \varphi \lor \psi$ we can calculate an implication free, equivalent formula.

Algorithm 2 ImplFree

Input: propositional logic formula φ

```
1: if \varphi is a literal then
```

$$\varphi$$
: return φ

3: if
$$\varphi = \neg \psi$$
 then

4: **return**
$$\neg$$
 ImplFree(ψ)

5: **if**
$$\varphi = \psi_1 \vee \psi_2$$
 then

6: **return** ImplFree(
$$\psi_1$$
) \vee ImplFree(ψ_2)

7: **if**
$$\varphi = \psi_1 \wedge \psi_2$$
 then

8: **return** ImplFree(
$$\psi_1$$
) \wedge ImplFree(ψ_2)

9: **if**
$$\varphi = \psi_1 \rightarrow \psi_2$$
 then

10:

o: **return**
$$\neg$$
 ImplFree(ψ_1) \lor ImplFree(ψ_2)

Example

Notice that the algorithm ImplFree has to be applied recursively!

Example

Notice that the algorithm ImplFree has to be applied recursively!

$$\begin{split} & \operatorname{ImplFree}((p \vee (q \to r)) \to (s \to (p \to t))) \\ &= \neg \operatorname{ImplFree}(p \vee (q \to r)) \vee \operatorname{ImplFree}(s \to (p \to t)) \\ &= \neg (p \vee \operatorname{ImplFree}(q \to r)) \vee (\neg s \vee \operatorname{ImplFree}(p \to t)) \\ &= \neg (p \vee (\neg q \vee r)) \vee (\neg s \vee (\neg p \vee t)) \\ &= (\neg p \wedge (\neg q \vee r)) \vee (\neg s \vee \neg p \vee t) \end{split}$$

NNF-Algorithm

Algorithm 3 NNF

Input: implication-free, propositional logic formula ϕ

- 1: **if** φ is a literal **then**
- 2: return φ
- 3: **if** $\varphi = \neg \neg \psi$ **then**
- 4: return ψ
- 5: **if** $\varphi = \psi_1 \circ \psi_2$ for $\circ \in \{\land, \lor\}$ **then**
- 6: **return** NNF(ψ_1) \circ NNF(ψ_2)
- 7: **if** $\varphi = \neg(\psi_1 \land \psi_2)$ **then**
- 8: **return** NNF($\neg \psi_1$) \vee NNF($\neg \psi_2$)
- 9: **if** $\varphi = \psi_1 \vee \psi_2$ **then**
- 10: **return** NNF($\neg \psi_1$) \wedge NNF($\neg \psi_2$)

Negation Normal Form

If we have a CNF for φ can we compute efficiently a CNF for $\neg \varphi$?

Negation Normal Form

If we have a CNF for φ can we compute efficiently a CNF for $\neg \varphi$?

 $\, \bigcirc \,$ nobody knows the answer

On the way to produce a CNF

 \bigcirc by NNF(ImplFree(φ)) we can now assume that our algorithm gets an implication-free formula in negation normal form

- \bigcirc by NNF(ImplFree(φ)) we can now assume that our algorithm gets an implication-free formula in negation normal form
- O how to transform the rest?

- \bigcirc by NNF(ImplFree(φ)) we can now assume that our algorithm gets an implication-free formula in negation normal form
- o how to transform the rest?
- \bigcirc reminder: CNF $C_1 \land \cdots \land C_n$ with $C_i = \ell_{i1} \lor \cdots \lor \ell_{im_i}$

- \bigcirc by NNF(ImplFree(φ)) we can now assume that our algorithm gets an implication-free formula in negation normal form
- how to transform the rest?
- \bigcirc reminder: CNF $C_1 \land \cdots \land C_n$ with $C_i = \ell_{i1} \lor \cdots \lor \ell_{im_i}$
- \bigcirc thus if the input formula φ is a conjunction of φ_1 and φ_2 we only need to transform them and concatenate them with an \land in between

- \bigcirc by NNF(ImplFree(φ)) we can now assume that our algorithm gets an implication-free formula in negation normal form
- how to transform the rest?
- \bigcirc reminder: CNF $C_1 \land \cdots \land C_n$ with $C_i = \ell_{i1} \lor \cdots \lor \ell_{im_i}$
- \bigcirc thus if the input formula φ is a conjunction of φ_1 and φ_2 we only need to transform them and concatenate them with an \land in between
- how to transform a disjunction into a semantically equivalent conjunction

Transforming a DNF into a CNF

its similar to transform a product of sums into a sum of products:

$$(a + b) \cdot (c + d) = a \cdot c + a \cdot d + b \cdot c + b \cdot d$$

Transforming a DNF into a CNF

its similar to transform a product of sums into a sum of products:

$$(a \wedge b) \vee (c \wedge d) = (a \vee c) \wedge (a \vee d) \wedge (b \vee c) \wedge (b \vee d)$$

resp.

$$b \lor (c \land d) = (b \lor c) \land (b \lor d)$$

DNF to CNF

Algorithm 4 DNF2CNF

Input: $\varphi = \psi_1 \vee \psi_2$ and ψ_1, ψ_2 in CNF

1: **if** ψ_1 is $\chi_1 \wedge \chi_2$ **then**

2: **return** DNF2CNF($\chi_1 \lor \psi_2$) \land DNF2CNF($\chi_2 \lor \psi_2$)

3: **else if** $\psi_2 = \chi_1 \wedge \chi_2$ **then**

4: **return** DNF2CNF($\psi_1 \vee \chi_1$) \wedge DNF2CNF($\psi_1 \vee \chi_2$)

5: else

6: **return** $\psi_1 \vee \psi_2$

The CNF-Algorithm

Now we are able to present the algorithm:

Algorithm 5 CNF

Input: φ implication-free and in NNF

- 1: **if** φ literal **then**
- 2: return φ
- 3: **else if** $\varphi = \psi_1 \wedge \psi_2$ **then**
- 4: **return** $CNF(\varphi_1) \wedge CNF(\varphi_2)$
- 5: **else if** $\varphi = \psi_1 \vee \psi_2$ **then**
- 6: **return** DNF2CNF(CNF($\varphi_1 \lor \text{CNF}(\varphi_2)$

 transforming an arbitrary formula into a CNF is not efficiently possible

- transforming an arbitrary formula into a CNF is not efficiently possible
- if we have a CNF, validity and satisfiability can be checked more easily than for arbitrary formulae

- transforming an arbitrary formula into a CNF is not efficiently possible
- if we have a CNF, validity and satisfiability can be checked more easily than for arbitrary formulae
- the real word is not build in CNF:/

- transforming an arbitrary formula into a CNF is not efficiently possible
- if we have a CNF, validity and satisfiability can be checked more easily than for arbitrary formulae
- the real word is not build in CNF:/
- how are we thinking?

- transforming an arbitrary formula into a CNF is not efficiently possible
- if we have a CNF, validity and satisfiability can be checked more easily than for arbitrary formulae
- the real word is not build in CNF:/
- how are we thinking?
- often in implications!

- transforming an arbitrary formula into a CNF is not efficiently possible
- if we have a CNF, validity and satisfiability can be checked more easily than for arbitrary formulae
- the real word is not build in CNF:/
- o how are we thinking?
- often in implications!
- ... not all implications are easy to handle

Motivation for restricted implications

disjunctions in conclusions are often problematic in normal life:

- if Paula comes to the party Tom and Max are not coming both $(p \rightarrow \neg t \lor \neg m)$
- Tom is allergic to peanuts.
- Max will bring a barbecue.
- Paula cannot decide wether she comes before the very last minute.

Motivation for restricted implications

disjunctions in conclusions are often problematic in normal life:

- if Paula comes to the party Tom and Max are not coming both $(p \rightarrow \neg t \lor \neg m)$
- Tom is allergic to peanuts.
- Max will bring a barbecue.
- Paula cannot decide wether she comes before the very last minute.

well... do we have to organise a barbecue on our own? can we prepare something with peanuts?

Motivation for restricted implications

disjunctions in conclusions are often problematic in normal life:

- if Paula comes to the party Tom and Max are not coming both $(p \rightarrow \neg t \lor \neg m)$
- Tom is allergic to peanuts.
- Max will bring a barbecue.
- Paula cannot decide wether she comes before the very last minute.

well... do we have to organise a barbecue on our own? can we prepare something with peanuts?

 things are easier if we only have one positive atom as a conclusion

If we now restrict the premise also to a conjunction of positive atoms we get something nice

$$p_1 \wedge \cdots \wedge p_n \rightarrow q \equiv \neg p_1 \vee \cdots \vee \neg p_n \vee q$$

If we now restrict the premise also to a conjunction of positive atoms we get something nice

$$p_1 \wedge \cdots \wedge p_n \rightarrow q \equiv \neg p_1 \vee \cdots \vee \neg p_n \vee q$$

Definition

○ Clause $C = (\ell_1 \lor \dots \ell_n)$ of literals ℓ_i , $i \in [n]$, $n \in \mathbb{N}$ is a Horn Clause iff there exists exactly one $i \in [n]$ such that ℓ_i is a positive atom.

If we now restrict the premise also to a conjunction of positive atoms we get something nice

$$p_1 \wedge \cdots \wedge p_n \rightarrow q \equiv \neg p_1 \vee \cdots \vee \neg p_n \vee q$$

Definition

- Clause $C = (\ell_1 \lor \dots \ell_n)$ of literals ℓ_i , $i \in [n]$, $n \in \mathbb{N}$ is a Horn Clause iff there exists exactly one $i \in [n]$ such that ℓ_i is a positive atom.
- Horn formula: conjunction of Horn clauses (named after american mathematician Alfred Horn (1918-2001))

If we now restrict the premise also to a conjunction of positive atoms we get something nice

$$p_1 \wedge \cdots \wedge p_n \rightarrow q \equiv \neg p_1 \vee \cdots \vee \neg p_n \vee q$$

Definition

- Clause $C = (\ell_1 \vee \dots \ell_n)$ of literals $\ell_i, i \in [n], n \in \mathbb{N}$ is a Horn Clause iff there exists exactly one $i \in [n]$ such that ℓ_i is a positive atom.
- Horn formula: conjunction of Horn clauses (named after american mathematician Alfred Horn (1918-2001))
- these clauses are very important in logic programming

for Horn formulae there exists a very easy algorithm deciding whether the formula is satisfiable or not:

for Horn formulae there exists a very easy algorithm deciding whether the formula is satisfiable or not:

 \bigcirc for easier descriptions of tautologies and contradictions we introduce \top for true and \bot for false as special atoms

for Horn formulae there exists a very easy algorithm deciding whether the formula is satisfiable or not:

- \bigcirc for easier descriptions of tautologies and contradictions we introduce \top for true and \bot for false as special atoms
- \bigcirc \top \rightarrow p means p is always true

for Horn formulae there exists a very easy algorithm deciding whether the formula is satisfiable or not:

- \bigcirc for easier descriptions of tautologies and contradictions we introduce \top for true and \bot for false as special atoms
- \bigcirc $\top \rightarrow p$ means p is always true
- \bigcirc $\psi \rightarrow \bot$ means if ψ holds we have a contradiction

Satisfiability of Horn Formulae - Algorithm

Algorithm 6 Horn-SAT

Input: φ Horn formula

- 1: mark all occurrences of ⊤
- 2: **while** $(\exists p_1 \land \dots \land p_{k_i} \rightarrow q \text{ and } \forall j \in [k_i] : p_j \text{ marked and } q \text{ unmarked})$ **do**
- 3: mark q
- 4: **if** (\perp marked) **then**
- 5: return UNSAT
- 6: return SAT

Theorem

The algorithm Horn-SAT is correct, complete and the while loop is executed at most n + 1 times for the number of atoms $n \in \mathbb{N}$ in the formula.

Theorem

The algorithm Horn-SAT is correct, complete and the while loop is executed at most n + 1 times for the number of atoms $n \in \mathbb{N}$ in the formula.

Theorem

The algorithm Horn-SAT is correct, complete and the while loop is executed at most n + 1 times for the number of atoms $n \in \mathbb{N}$ in the formula.

Proof:

 the condition of the while-loop guarantees that the body of the while-loop is only executed if an atom is marked

Theorem

The algorithm Horn-SAT is correct, complete and the while loop is executed at most n + 1 times for the number of atoms $n \in \mathbb{N}$ in the formula.

- the condition of the while-loop guarantees that the body of the while-loop is only executed if an atom is marked
- \bigcirc there are only n atoms to mark

Theorem

The algorithm Horn-SAT is correct, complete and the while loop is executed at most n+1 times for the number of atoms $n \in \mathbb{N}$ in the formula.

- the condition of the while-loop guarantees that the body of the while-loop is only executed if an atom is marked
- \bigcirc there are only *n* atoms to mark
- \bigcirc thus the while-conditions is checked at most n+1 times

Theorem

The algorithm Horn-SAT is correct, complete and the while loop is executed at most n+1 times for the number of atoms $n \in \mathbb{N}$ in the formula.

- the condition of the while-loop guarantees that the body of the while-loop is only executed if an atom is marked
- \bigcirc there are only *n* atoms to mark
- \bigcirc thus the while-conditions is checked at most n+1 times
- $\bigcirc \rightarrow$ termination (and roughly a run-time)

Proof of Soundness

 \odot idea for marking: marking a variable $\hat{=}$ variable has to be true in all valuation satisfying the formula

Proof of Soundness

 \odot idea for marking: marking a variable $\hat{=}$ variable has to be true in all valuation satisfying the formula

Claim: At any time the marked variables need to evaluate to true in all valuations in which φ evaluated to true.

Proof of Soundness

Claim: At any time the marked variables need to evaluate to true in all valuations in which φ evaluated to true.

Proof by induction on the numbers of while-loop executions:

- O Base Case: no execution of the while loop
- thus only ⊥ is marked with true
- \bigcirc T needs to be true by definition

Poof of Soundness Cont

O Induction Hypothesis: after the k^{th} iteration of the while-loop all marked atoms need to be true in all valuations in which φ is true for one arbitrary but fixed $k \in \mathbb{N}_0$

- Induction Hypothesis: after the k^{th} iteration of the while-loop all marked atoms need to be true in all valuations in which φ is true for one arbitrary but fixed $k \in \mathbb{N}_0$
- \bigcirc Assume the while-loop to be executed k+1 times

- O Induction Hypothesis: after the k^{th} iteration of the while-loop all marked atoms need to be true in all valuations in which φ is true for one arbitrary but fixed $k \in \mathbb{N}_0$
- \bigcirc Assume the while-loop to be executed k+1 times
- thus there exist a $p_1 \wedge \cdots \wedge p_{k_i} \rightarrow q$ with all p_j marked and q unmarked which triggers the $(k+1)^{\text{th}}$ execution

- Induction Hypothesis: after the k^{th} iteration of the while-loop all marked atoms need to be true in all valuations in which φ is true for one arbitrary but fixed $k \in \mathbb{N}_0$
- \bigcirc Assume the while-loop to be executed k+1 times
- thus there exist a $p_1 \wedge \cdots \wedge p_{k_i} \rightarrow q$ with all p_j marked and q unmarked which triggers the $(k+1)^{\text{th}}$ execution
- \bigcirc IH \Rightarrow in any valuation in which φ is true all these p_j have to be true

- O Induction Hypothesis: after the k^{th} iteration of the while-loop all marked atoms need to be true in all valuations in which φ is true for one arbitrary but fixed $k \in \mathbb{N}_0$
- \bigcirc Assume the while-loop to be executed k+1 times
- thus there exist a $p_1 \wedge \cdots \wedge p_{k_i} \rightarrow q$ with all p_j marked and q unmarked which triggers the $(k+1)^{\text{th}}$ execution
- \bigcirc IH \Rightarrow in any valuation in which φ is true all these p_j have to be true
- Oby truth table q has to be true in these valuation since otherwise the implication (conjunct of φ) would be false and thus also φ

 \bigcirc \bot marked means there exists an implication which leads to false

- \bigcirc \bot marked means there exists an implication which leads to false
- O the while-condition ensure that the premise is true

- \bigcirc \bot marked means there exists an implication which leads to false
- the while-condition ensure that the premise is true
- thus the implication is false and so the conjunct

- \bigcirc \bot marked means there exists an implication which leads to false
- the while-condition ensure that the premise is true
- thus the implication is false and so the conjunct
- \bigcirc thus φ is not satisfiable

 \bigcirc if \bot is not marked assign to all marked atoms true and to all other false

- $\bigcirc\,$ if \bot is not marked assign to all marked atoms true and to all other false
- \bigcirc Suppose: φ is not true

- \bigcirc if \bot is not marked assign to all marked atoms true and to all other false
- \bigcirc Suppose: φ is not true
 - $\, \bullet \,$ one of the conjuncts is false

- \bigcirc if \bot is not marked assign to all marked atoms true and to all other false
- \bigcirc Suppose: φ is not true
 - o one of the conjuncts is false
 - Horn clause means conjunct is implication

- \bigcirc if \bot is not marked assign to all marked atoms true and to all other false
- \bigcirc Suppose: φ is not true
 - o one of the conjuncts is false
 - Horn clause means conjunct is implication
 - implication only false if premise true and conclusion false

- \bigcirc if \bot is not marked assign to all marked atoms true and to all other false
- \bigcirc Suppose: φ is not true
 - o one of the conjuncts is false
 - Horn clause means conjunct is implication
 - implication only false if premise true and conclusion false
 - while-statement: premise true implies to mark the conclusion

- \bigcirc if \bot is not marked assign to all marked atoms true and to all other false
- \bigcirc Suppose: φ is not true
 - o one of the conjuncts is false
 - Horn clause means conjunct is implication
 - o implication only false if premise true and conclusion false
 - while-statement: premise true implies to mark the conclusion
 - thus: conclusion cannot be false

- \bigcirc if \bot is not marked assign to all marked atoms true and to all other false
- \bigcirc Suppose: φ is not true
 - o one of the conjuncts is false
 - Horn clause means conjunct is implication
 - implication only false if premise true and conclusion false
 - while-statement: premise true implies to mark the conclusion
 - thus: conclusion cannot be false
- \odot φ true

○ Idea of Horn-SAT algorithm: markings are a constraint

- Idea of Horn-SAT algorithm: markings are a constraint
- we save with the marking knowledge about which atoms have to be set to true for the formula being evaluated to true

$$p \land (q \lor r) \leadsto p$$
 needs to be true

- Idea of Horn-SAT algorithm: markings are a constraint
- we save with the marking knowledge about which atoms have to be set to true for the formula being evaluated to true

$$p \wedge (q \vee r) \leadsto p$$
 needs to be true

on the other hand

$$\neg p \land (q \lor r) \leadsto p$$
 needs to be false

- Idea of Horn-SAT algorithm: markings are a constraint
- we save with the marking knowledge about which atoms have to be set to true for the formula being evaluated to true

$$p \wedge (q \vee r) \leadsto p$$
 needs to be true

○ on the other hand

$$\neg p \land (q \lor r) \leadsto p$$
 needs to be false

 and even more generalised: in a conjunction each conjunct needs to be true

- Idea of Horn-SAT algorithm: markings are a constraint
- we save with the marking knowledge about which atoms have to be set to true for the formula being evaluated to true

$$p \wedge (q \vee r) \leadsto p$$
 needs to be true

○ on the other hand

$$\neg p \land (q \lor r) \leadsto p$$
 needs to be false

- and even more generalised: in a conjunction each conjunct needs to be true
- we capture these marking generalisation in the following algorithm

A linear solver: Translating formula into adequate fragment

$$\bigcirc T(p) = p$$

$$\bigcirc T(\neg \varphi) = \neg T(\varphi)$$

$$\bigcirc T(\varphi_1 \land \varphi_2) = T(\varphi_1) \land T(\varphi_2)$$

$$\bigcirc T(\varphi_1 \vee \varphi_2) = \neg (\neg T(\varphi_1) \wedge \neg T(\varphi_2))$$

$$\bigcirc T(\varphi_1 \to \varphi_2) = \neg (T(\varphi_1) \land \neg T(\varphi_2))$$

A linear solver: Translating formula into adequate fragment

$$\bigcirc T(p) = p$$

$$\bigcirc T(\neg \varphi) = \neg T(\varphi)$$

$$\bigcirc T(\varphi_1 \land \varphi_2) = T(\varphi_1) \land T(\varphi_2)$$

$$\bigcirc T(\varphi_1 \to \varphi_2) = \neg (T(\varphi_1) \land \neg T(\varphi_2))$$

after applying T a formula only contains atoms, \neg and \land

A linear solver: Example

$$\varphi = p \land (q \to \neg p)$$

A linear solver: Example

$$\varphi = p \land (q \rightarrow \neg p)$$

we have to transform it

$$T(\varphi) = T(p) \wedge T(q \to \neg p)$$

$$= p \wedge \neg (T(q) \wedge \neg T(\neg p))$$

$$= p \wedge \neg (q \wedge \neg (\neg T(p)))$$

$$= p \wedge \neg (q \wedge \neg (\neg p))$$

directed acyclic graph (DAG) for $p \land \neg(q \land \neg(\neg p))$

we now analyse the graph:

Thus the formula is satisfiable

A linear solver: Forcing Laws

directed acyclic graph (DAG) for $\neg(\neg p \land \neg(\neg(q \land \neg r)))$

A linear solver: Counter-Example

we now analyse the graph:

The linearity comes to the costs of not being able to solve this

problem!

LaTRo

○ Examining the linear approach:

- Examining the linear approach:
 - all nodes in the DAG marked (each edge once taken) ⇒
 marking of the atoms is a satisfying marking of the formula

- Examining the linear approach:
 - all nodes in the DAG marked (each edge once taken) ⇒
 marking of the atoms is a satisfying marking of the formula
 - all nodes in the DAG marked but a true marking was overwritten with a false or v.v. ⇒ the formula is unsatisfiable

- O Examining the linear approach:
 - 1. all nodes in the DAG marked (each edge once taken) \Rightarrow marking of the atoms is a satisfying marking of the formula
 - all nodes in the DAG marked but a true marking was overwritten with a false or v.v. ⇒ the formula is unsatisfiable
- O Problem: not all nodes marked (as seen in the example)

 we run the linear solver and get a not completely marked DAG

- we run the linear solver and get a not completely marked DAG
- for each remaining node:

- we run the linear solver and get a not completely marked DAG
- for each remaining node:
 - o pick one

- we run the linear solver and get a not completely marked DAG
- for each remaining node:
 - o pick one
 - mark this node temporarily with true and propagate

- we run the linear solver and get a not completely marked DAG
- of for each remaining node:
 - o pick one
 - mark this node temporarily with true and propagate
 - if you find contradictions, you know that the node cannot be marked with true

- we run the linear solver and get a not completely marked DAG
- of for each remaining node:
 - o pick one
 - mark this node temporarily with true and propagate
 - if you find contradictions, you know that the node cannot be marked with true
 - mark this node also with false and propagate

- we run the linear solver and get a not completely marked DAG
- for each remaining node:
 - o pick one
 - mark this node temporarily with true and propagate
 - if you find contradictions, you know that the node cannot be marked with true
 - o mark this node also with false and propagate
 - o if you find contradictions, you can output UNSAT

- we run the linear solver and get a not completely marked DAG
- for each remaining node:
 - o pick one
 - o mark this node temporarily with true and propagate
 - if you find contradictions, you know that the node cannot be marked with true
 - o mark this node also with false and propagate
 - if you find contradictions, you can output UNSAT
 - if not search for nodes with the same temporary marking in the true and the false case and turn them to permanent markings

- we run the linear solver and get a not completely marked DAG
- for each remaining node:
 - o pick one
 - mark this node temporarily with true and propagate
 - if you find contradictions, you know that the node cannot be marked with true
 - mark this node **also** with false and propagate
 - o if you find contradictions, you can output UNSAT
 - if not search for nodes with the same temporary marking in the true and the false case and turn them to permanent markings
 - delete the temporary markings

