Министерство образования Республики Беларусь Учреждение образования «Брестский Государственный технический университет» Кафедра ИИТ

Лабораторная работа №1 По дисциплине «Основы машинного обучения» Тема: «Знакомство с анализом данных: предварительная обработка и визуализация»

Выполнил: Студент 3 курса Группы АС-65 Ракецкий П. П. Проверил: Крощенко А. А. Цель: получить практические навыки работы с данными с использованием библиотек Pandas для манипуляции и Matplotlib для визуализации. Научиться выполнять основные шаги предварительной обработки данных, такие как очистка, нормализация и работа с различными типами признаков.

Вариант 4

Задание 1. Загрузите данные и выведите информацию о типах столбцов.

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
# Загрузка встроенного датасета iris из seaborn
df = sns.load dataset('iris')
# Переименуем колонки для соответствия вашему коду
df = df.rename(columns={
      'sepal length': 'sepal.length',
      'sepal width': 'sepal.width',
     'petal_length': 'petal.length',
     'petal width': 'petal.width',
     'species': 'variety'
})
print("Первые 5 строк данных:")
print(df.head())
print("\n" + "="*50)
# 1. Проверка пропущенных значений
print("Пропущенных значений:")
print(df.isnull().sum())
print("\n" + "="*50)
Первые 5 строк данных:
sepal.length sepal.width petal.length petal.width variety

    5.1
    3.5
    1.4
    0.2
    setosa

    4.9
    3.0
    1.4
    0.2
    setosa

    4.7
    3.2
    1.3
    0.2
    setosa

    4.6
    3.1
    1.5
    0.2
    setosa

    5.0
    3.6
    1.4
    0.2
    setosa

3
4
Пропущенных значений:
sepal.length 0
sepal.width
              0
petal.length 0
petal.width
               0
variety
dtype: int64
```

Задание 2. Преобразуйте целевую переменную quality в категориальную: "плохое" (<=4), "среднее" (5-6), "хорошее" (>=7).

```
# 2. Количество образцов каждого вида print("Количество образцов каждого вида:") counts = {} # пустой словарь для подсчёта for item in df['variety']:
```

Задание 3. Обработать пропущенные значения (например, заполнить средним значением или удалить строки/столбцы).

```
# 3. Парные диаграммы рассеяния sns.pairplot(df, hue='variety') plt.suptitle("Парные диаграммы рассеяния для Iris dataset", y=1.02) plt.show()
```


Задание 4. Проверьте корреляцию между fixed acidity и pH. Визуализируйте эту зависимость на диаграмме рассеяния.

```
# 4. Средние значения
mean = df.groupby('variety').mean()
print("Средние значения по видам:")
print(mean)
print("\n" + "="*50)
```

print("\n" + "="*50)									
Средние значения по видам:									
	sepal.length	sepal.width	petal.length	petal.width					
variety									
setosa	5.006	3.428	1.462	0.246					
versicolor	5.936	2.770	4.260	1.326					
virginica	6.588	2.974	5.552	2.026					

Задание 5. Найдите признак с наибольшим количеством выбросов, используя "ящик с усами" (box plot).

```
# 5. Ящик с усами plt.figure(figsize=(10, 6)) sns.boxplot(x='variety', y='petal.length', data=df) plt.title("Распределение длины лепестка по видам") plt.show()
```


Задание 6. Выполните стандартизацию всех числовых признаков.

```
# 6. Стандартизация данных features = ['sepal.length', 'sepal.width', 'petal.length', 'petal.width'] scaler = StandardScaler() df_scaled = df.copy() df_scaled[features] = scaler.fit_transform(df[features]) print("Данные после стандартизации:") print(df scaled.head())
```

Да	Данные после стандартизации:							
	sepal.length	sepal.width	petal.length	petal.width	variety			
0	-0.900681	1.019004	-1.340227	-1.315444	setosa			
1	-1.143017	-0.131979	-1.340227	-1.315444	setosa			
2	-1.385353	0.328414	-1.397064	-1.315444	setosa			
3	-1.506521	0.098217	-1.283389	-1.315444	setosa			
4	-1.021849	1.249201	-1.340227	-1.315444	setosa			

Вывод: получили практические навыки работы с данными с использованием библиотек Pandas для манипуляции и Matplotlib для визуализации. Научились выполнять основные шаги предварительной обработки данных, такие как очистка, нормализация и работа с различными типами признаков.