INF281 Exercise 09

1. BLOSUM

BLOSUM uses several thousand blocks to calculate the probabilities of accepted mutation. Use the following definitions and Block1 & Block2 to solve the problems.

 f_{ab} : Frequencies of an observed pair a and b.

T: Total number of pairs from all blocks.

The number of pairs can be calculated as 1/2wm(m-1).

$$p_a: p_a = f_{aa} + \sum_{e \neq a} f_{ae}/2$$

 $e_{aa}:p_ap_a$

 $e_{ab}: p_a p_b + p_b p_a = 2p_a p_b$

Block1 Block2 CAGC GGA GTAC GTA CAGC

(a) Count the occurrences of all pairs.

	A	G	С	Τ
A				
G				
С				
Т				

- (b) Calculate T.
- (c) Calculate f_{AA} and f_{AG} .
- (d) Calculate p_A and p_G .
- (e) Calculate e_{AA} and e_{AG} .
- (f) Calculate f_{AA}/e_{AA} and f_{AG}/e_{AG} .

2. PPM (Position probability matrix)

PWM (position weight matrix) is a popular method to find sequenced patterns. It can be generated from PPM (position probability matrix) and PFM (position frequency matrix).

Seq1 CAA

Seq2 CAG

Seq3 GAC

Seq4 ATT

(a) Create a PFM from Seq1, Seq2, Seq3, and Seq4.

	1	2	3
A			
G			
С			
Т			

(b) Create a PPM from Seq1, Seq2, Seq3, and Seq4.

	1	2	3
A			
G			
С			
Т			

3. Sequence profile

A sequence profile is similar to PWM, but it uses a scoring scheme. Use the following definitions to calculate the profile values.

$$Prof_{ra}: \frac{1}{m_r} \sum_{b \in M} R_{ba} F_{rb}$$

 F_{rb} : The number of occurrences of b at position r

 R_{ba} : Pairwise score between b and a

 m_r : The number of residues without gaps at position r

Scoring matrix:

	Α	G	С	Т
A	2	1	-3	-2
G	1	3	-2	-1
С	-3	-2	4	1
Т	-2	-1	1	2

Seq1 GT

Seq2 -G

Seq3 CA

(a) Calculate the profile values of position 1.

A1:

G1:

C1:

T1:

(b) Calculate the profile values of position 2.

A2:

G2:

C2:

T2:

(c) Make a profile matrix.

	1	2
Α		
G		
С		
Т		

4. Profile search

A sequence profile can take gap penalties into account. Calculate the score of the alignment between the DNA profile below and a DNA segment.

A DNA profile of length 4

	A	G	C	T	Gap
1	5	-5	-2	-1	10
2	-2	3	4	-7	10
3	1	2	1	-1	5
4	-3	3	-2	7	10

- P1, P2, P3, P4: profile blocks at positions 1 4
- Gap penalty (for segments): 4

(a) Profile search on segment D1

Profile:	P1	P2	Р3	P4
D1:	A	С	G	Т

(b) Profile search on segment D2

Profile:	P1	P2	-	Р3	P4
D2:	A	С	С	G	Т

(c) Profile search on segment D3

Profile:	P1	P2	Р3	P4
D3:	A	-	G	Т

(d) Profile search on segment D4

Profile:	P1	P2	-	P3	P4
D4:	-	A	С	G	Т