Discrete Mathematics, 2016 Spring - Worksheet 5

September 21,2016

Instructor: Zsolt Pajor-Gyulai, CIMS

In all of the above problems explain your answer in full English sentences.

- 1. Rewrite the following sentences using the quantifier notation.
 - (a) Every integer is a prime.

 $\forall x \in \mathbb{Z}, x \text{ is a prime.}$

(b) There is an integer whose square is 2.

 $\exists x \in \mathbb{Z} \text{ such that } x^2 = 2.$

(c) All integers are divisible by 5.

 $\forall x \in \mathbb{Z}, 5|x.$

(d) Some integer is divisible by 7.

 $\exists x \in \mathbb{Z} \text{ such that } 7|x.$

(e) For every integer x, there is an integer y such that xy = 1.

 $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \text{ such that } xy = 1.$

(f) There is an integer x and an integer y such that x/y = 10.

 $\exists x \in \mathbb{Z}, \exists y \in \mathbb{Z} \text{ such that } x/y = 10.$

(g) There is an integer that, when multiplied by any integer, always gives the result 0.

 $\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, xy = 0.$

(h) No matter what integer you choose, there is always another integer that is larger.

 $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \text{ such that } y > x.$

2. Write the negation of each of the sentences in the previous problem, first with quantifiers and then in plain English. In the firs way, move the \neg symbol as far to the right as possible.

(a) Every integer is a prime.

$$\exists x \in \mathbb{Z}, \neg (x \text{ is a prime}).$$

(b) There is an integer whose square is 2.

$$\forall x \in \mathbb{Z}, \neg(x^2 = 2).$$

(c) All integers are divisible by 5.

$$\exists x \in \mathbb{Z}, \neg(5|x).$$

(d) Some integer is divisible by 7.

$$\forall x \in \mathbb{Z}, \neg (7|x).$$

(e) For every integer x, there is an integer y such that xy = 1.

$$\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, \neg (xy = 1).$$

(f) There is an integer x and an integer y such that x/y = 10.

$$\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, \neg (x/y = 10).$$

(g) There is an integer that, when multiplied by any integer, always gives the result 0.

$$\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, \neg (xy = 0).$$

(h) No matter what integer you choose, there is always another integer that is larger.

$$\exists x \in \mathbb{Z}, \forall y \in \mathbb{Z}, \neg (y > x).$$

- 3. Label each of the following sentences about integers as either true or false. (No need to prove them)
 - (a) $\forall x, \forall y, xy = 0$ FALSE
 - (b) $\forall x, \exists y, xy = 0 \text{ TRUE, y=0}$
 - (c) $\exists x, \forall y, xy = 0 \text{ TRUE, } x=0$
 - (d) $\exists x, \exists y, xy = 0$ TRUE
- 4. Let $A = \{1, 2, 3, 4, 5\}$ and let $B = \{4, 5, 6, 7\}$. Compute
 - (a) $A \cup B = \{1, 2, 3, 4, 5, 6, 7\}$
 - (b) $A \cap B = \{4, 5\}$
 - (c) $A B = \{1, 2, 3\}$
 - (d) $B A = \{6, 7\}$
 - (e) $A\Delta B = \{1, 2, 3, 6, 7\}$
 - (f) $A \times B = \{(1,4), (1,5), (1,6), (1,7), (2,4), (2,5), (2,6), (2,7), (3,4), (3,5), (3,6), (3,7), (4,4), (4,5), (4,6), (4,7), (5,4), (5,5), (5,6), (5,7)\}$

(g)
$$B \times A = \{(4,1), (4,2), (4,3), (4,4), (4,5), (5,1), (5,2), (5,3), (5,4), (5,5), (6,1), (6,2), (6,3), (6,4), (6,5), (7,1), (7,2), (7,3), (7,4), (7,5)\}$$

5. Prove the following theorems and illustrate them with a Venn-diagram (you can look at p57 for what this means).(First DeMorgan's Law)

Theorem 1. Let A, B, and C sets. Then

$$A - (B \cup C) = (A - B) \cap (A - C)$$

Proof.

$$A - (B \cup C) = \{x \in A : x \notin B \cup C\} = \{x \in A : \neg((x \in B) \lor (x \in C))\} =$$

$$= \{x \in A : \neg(x \in B) \land \neg(x \in A)\} =$$

$$= \{x \in A : \neg(x \in B)\} \cap \{x \in A : \neg(x \in C)\} = (A - B) \cap (A - C)$$

where the DeMorgan law for the Boolean operators was used to obtain the second equality.

- 6. Let A and B be sets with |A| = 10 and |B| = 7.
 - (a) Calculate $|A \cap B| + |A \cup B|$. Since $|A \cup B| = |A| + |B| - |A \cup B|$, the answer is 10 + 7 = 17.
 - (b) Find an upper bound y and a lower bound x for $|A \cup B|$, that are sharp. That is

$$x \le |A \cup B| \le y$$
.

To show that your answer is sharp, find sets such that $|A \cup B| = x$ and $|A \cup B| = y$ exactly.

$$10 = |A| \le |A \cup B| \le |A| + |B| = 17$$

The lower bound is sharp as shown by the example $B \subseteq A$, while the upper bound is sharp as shown by the example $A \cap B = \emptyset$.

Remark. In general, one has the bounds

$$\max(|A|, |B|) < |A \cup B| < |A| + |B|$$

7. Prove the following proposition:

Proposition 1. Let n be an integer. Then

$$2^{0} + 2^{1} + \dots + 2^{n-1} = 2^{n} - 1$$

Solution is on the last slide.