

Secure Energy Trading using Blockchain and Smart Contracts

VJTI, Mumbai –September 2019

Contributors: Mohd Adil Sheikh (masheikh_p17@ee.vjti.ac.in), Vaishali Kamuni, and Asfia Urooj Advisor: Dr. Dhiren Patel, Dr. Navdeep M. Singh, and Dr. Sushama R. Wagh.

- Energy trading between EV and CS secure?
- Aggregator trustworthy?
- Energy provided by CS is reliable to pay for it?

Problem Statement: (1) EVs selecting CS with

- (i) optimal distance
- (ii) availability of ports
- (iii) minimum cost
- (2) Securing energy information and transaction details using blockchain through smart contracts

- Smart contract \longrightarrow validates \longrightarrow possible proposed scenarios.
- Contract --> satisfied --> transaction is succeeded

Cost Function for Charging

Assumed as pre-defined values SOC required to EVs nominal rate of charge by the CS the nominal value the time period of EV waiting at CS/ rate of charge the desired SOC required by the EVs charging port status price per SOC

Objective: Forms the P2P network Data mining and verification Blockchain Secured using Blockchain Technology

- Transparency between two parties.
- A decentralized network.
- Secure energy trading between EV and CS.
- System immutable.

Representation of Problem Formulation

Updated Cost function with possible scenarios

Penalty factor *P*,

Reward factor *R*,

Time of arrival

SOC provided by CS

 $C_{left} = \left| SOC_{des}^{i} - SOC_{prov}^{i} \right| \le SOC_{threshold}$

Actual arrival time Threshold value of delay

Charge not provided Threshold value of charge

→ Initial distance to CS→ Average speed

 $P = K \times delay \quad R = Q \times C_{left}$ Where, K and Q are scalar factors

 $C_P = \beta + \frac{1}{\sum_{t=0}^k \alpha_k} \left[\left(SOC_{des}^i \times P_{SOC} \right) + \left(X_{req}^i - X_{nom}^j \right)^2 \right] + P - R$

Selection of CS with proposed Blockchain framework

No. of CS	Distance			Ports								Cost Function	Selected CS		
	EV_1	EV_2	EV_3	P_1	P_2	P_3	P_4	P_5	EV_1	EV_2	EV_3		EV_1	EV_2	EV_3
CS_1	0	0	1	0	1	1	1	1			4	$C(P_{T_1})$			CS_1
CS_2	1	1	0	0	0	0	0	0	0	0		$C(P_{T_2})$			
CS_3	0	0	1	0	1	0	1	1			3	$C(P_{T_2})$			
CS_4	1	0	0	0	1	1	1	0	3			$C(P_{T_4})$			
CS_5	0	1	1	0	1	0	1	1		3	3	$C(P_{T_5})$		CS_5	
CS_6	0	1	0	0	1	0	0	0		1		$C(P_{T_6})$			
CS_7	1	0	0	1	1	1	1	1	5			$C(P_{T_7})$	CS_7		
CS_8	1	0	0	0	1	1	1	1	4			$C(P_{T_8})$			
CS_9	0	0	0	1	1	1	1	0	4			$C(P_{T_9})$			
CS_{10}	0	0	0	1	0	1	1	0	3			$C(P_{T_{10}})$			

Conclusions

- Proposed a blockchain and smart contract based secure EV charging scheme
- The integrity of the system **†**
- Security of information exchange II

References

- G. Liang, S. R. Weller, F. Luo, J. Zhao, and Z. Y. Dong, "Distributed blockchain-based data protection framework for modern power systems against cyber attacks," IEEE Transactions on Smart Grid, pp. 1–1, 2018.
- S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system," 2008.

Publications

Poster is based on the following papers presented at:

- 1. U. Asfia, V. Kamuni, A. Sheikh, S.Wagh, and D. Patel "Energy Trading of Electric Vehicles using Blockchain and Smart Contracts" 17th European Control Conference (ECC'19), Italy, 2019.
- 2. V. Kamuni, U. Asfia, S. Sutavani, A. Sheikh, and D. Patel "Secure Energy Market against Cyber Attacks using Blockchain" 6th International Conference on Control, Decision and Information Technologies (CODIT), Paris, France, 2019