Contents

1	Akhdefo:	1	
2	Background of Akh-Defo:	3	
3	Recommended Citation:		
4	4 Updates:		
5	Usage:	9	
6	User Guide	11	
7	Akhdefo Functions Summary 7.1 Preprocessing functions to unzip and sort images	13 13 13 13 13 14 14 14 14	
8	akhdefo_functions.unzip8.1Parameters8.2Returns	17 17 17	
9	akhdefo_functions.copyImage_Data9.1Parameters9.2Returns	19 19 19	
10	0 akhdefo_functions.copyUDM2_Mask_Data 10.1 Parameters	21 21 21	
11	akhdefo_functions.Filter_PreProcess 11.1 Parameters	23 23 23	
12	2 akhdefo_functions.Crop_to_AOI 12.1 Parameters		

13		27
	13.1 Parameters 13.2 Returns	
14	akhdefo_functions.Coregistration 14.1 Parameters	29
	14.2 Returns	30
15	,	31
	15.1 Parameters 15.2 Returns	
16	•	33
		33 33
17	akhdefo_functions.stackprep	35
		35 36
10		
18	18.1 Parameters	
	18.2 Returns	
19	1	39 39
		40
20		41
	20.1 Parameters	
21		43
	21.1 Parameters 21.2 Returns	
22		45
	22.1 Parameters	45
	22.2 Returns	
23	akhdefo_functions.Akhdefo_inversion 23.1 Parameters	47 47
	23.2 Returns	47
24	akhdefo_functions.utm_to_latlon 24.1 Parameters	49
	24.2 Returns	49
25	$akhde fo_functions. Mean Products_plot_ts$	51
	25.1 Parameters 25.2 Returns	51 52
26		53
	26.1 Parameters 26.2 Returns	53 53

27	akhd	khdefo_functions.binary_mask 5				
	27.1	Parameters	55			
	27.2	Returns	55			
28 Indices and tables						

Akhdefo:

Computer Vision for Slope Stability: Land Deformation Monitoring Using Optical Satellite Imagery

2 Chapter 1. Akhdefo:

Background of Akh-Defo:

AKh-Defo is combination of two different words 1) Akh in Kurdish language means land, earth or soil (origion of the word is from Kurdish badini dailect) 2) Defo is short of English word deformation.

Recommended Citation:

Muhammad M, Williams-Jones G, Stead D, Tortini R, Falorni G and Donati D (2022) Applications of ImageBased Computer Vision for Remote Surveillance of Slope Instability.Front. Earth Sci. 10:909078. doi: 10.3389/feart.2022.909078

Updates:

- \bullet Akhde
fo version one is deprecated please use Akhde
fo version 2.
- Akhdefo now can run on the cloud for real-time processing
- Akhdefo now consist of 12 Modules that performs end to end python-based GIS and Image Processing and Custumized Figure generation

Usage:

• download anaconda environment file

Please visit the GITHUB homepage to download the file

• download python package requirement text

Please visit the GITHUB homepage to download the file

• Create new python Anaconda environment using the below command

 $\verb|conda| \verb|env| \verb|create| - f | \verb|akhdefov2.yml| \\$

• Install required python packages using below command

pip install -r pip_req.txt

• Now install Akhdefo using the below command

pip install akhdefo-functions

10 Chapter 5. Usage:

User Guide

• Under construction will be released soon!

Akhdefo Functions Summary

7.1 Preprocessing functions to unzip and sort images

```
from akhdefo_functions import copyImage_Data, copyUDM2_Mask_Data , unzip
```

7.2 Import Module to mosaic and crop raster to Area of Interest using shapefile

```
from akhdefo_functions import Mosaic, Crop_to_AOI
```

7.3 Import Module to filter rasters

```
from akhdefo_functions import Filter_PreProcess
```

7.4 Import Module to calculate triplet raster velocities

```
from akhdefo_functions import DynamicChangeDetection
```

7.5 Import Modules for plotting

```
from akhdefo_functions import akhdefo_viewer
from akhdefo_functions import plot_stackNetwork
from akhdefo_functions import Akhdefo_resample
from akhdefo_functions import Akhdefo_inversion
```

7.6 Import Module to process stacked triplet velocities and collect velocity candidate points

from akhdefo_functions import stackprep'

7.7 Python module to coregister satallite images

from akhdefo_functions import Coregistration

7.8 python module to process and calculate timestamp linear deformation rates

from akhdefo_functions import Time_Series

7.9 python module to plot timeseries profile for selected points

from akhdefo_functions import akhdefo_ts_plot

akhdefo_functions.unzip (page 17)(zipdir, dst_dir)	This program unzips all the zip products into one folder
akhdefo_functions.copyImage_Data (page 19)([])	This program copy all the raster images.
akhdefo_functions.copyUDM2_Mask_Data (page 21)([])	This program copy all raster masks.
$akhdefo_functions.Filter_PreProcess \ (page 23)([])$	This program prepare and uses filters to balanace raster image brightness
$akhdefo_functions.Crop_to_AOI \ (page \ 25)([])$	This program used to clip multiple raster files
$akhde fo_functions.Mosaic (page 27)([])$	This program mosiacs raster images in geotif format as well grab dates the satellite image taken for further processing.
$akhde fo_functions. Coregistration \ (page 29)([])$	This program coregisteres multiple rasters using both structural similarity index and feature match- ing techniques.
$akhde fo_functions.DynamicChange Detection \\ (page 31)([])$	This program calculates optical flow velocity from triplets of daily optical satellite images.
$akhde fo_functions.plot_stackNetwork \ (page 33)([])$	This Program plots temporal network of triplets to be stacked for calculating Annual Mean Velocity from stacked optical images.
akhdefo_functions.stackprep (page 35)([])	This program collects velocity candiate points for time-series analysis.
$akhdefo_functions.Time_Series (page 37)([])$	This program uses candiate velocity points from stackprep function and performs linear interpola- tion in time-domain to calibrate stacked velocity.
$akhde fo_functions.akhde fo_ts_plot \ (page 39)([])$	This program used for analysis time-series velocity profiles
akhdefo_functions.rasterClip (page 41)(rasterpath,)	This program used to clip single raster file.
$akhdefo_functions.akhdefo_viewer \ (page 43)([])$	This program used for plotting raster products.
$akhde fo_functions.Akhde fo_resample \\ (page 45)([])$	This program performs raster resampling for rasters
$akhdefo_functions.Akhdefo_inversion \ (page 47)([])$	This program calculates 3D displacement velocity (East-West,North-South and vertical) using combined optical and InSAR products
akhdefo_functions.utm_to_latlon (page 49)(easting,)	This program converts geographic projection of shapefiles from UTM to LATLONG
$akhde fo_functions.Mean Products_plot_ts \ (page 51)([])$	This program used to plot shapefile data
$akhdefo_functions.Auto_Variogram \ (page 53)([])$	This program automatically selects best variogram model which later can be used to interpolate datapoints.
akhdefo_functions.binary_mask (page 55)(raster_path,)	Function that generates a binary mask from a vector file (shp)

$akhde fo_functions.unzip$

akhdefo_functions.unzip(zipdir, dst_dir)

This program unzips all the zip products into one folder

8.1 Parameters

zipdir
 [str] path to directory contains all the zipfiles

dst_dir
 [str] path to destination folder to copy all unzipped products.

8.2 Returns

unzip folder

$akhde fo_functions.copy Image_Data$

akhdefo_functions.copyImage_Data(path_to_unzipped_folders='', Path_to_raster_tifs='')
This program copy all the raster images.

9.1 Parameters

 $path_to_unzipped_folders: str$

Path_to_raster_tifs : str

9.2 Returns

rasters

$akhde fo_functions.copy UDM2_Mask_Data$

 ${\tt akhdefo_functions.copyUDM2_Mask_Data(\it path_to_unzipped_folders='', Path_to_UDM2raster_tifs='')} \\ {\tt This\ program\ copy\ all\ raster\ masks.}}$

10.1 Parameters

$path_to_unzipped_folders$

[str] file extension must end with udm2_clip.tif

 $Path_to_UDM2raster_tifs: str$

10.2 Returns

rasters

$akhde fo_functions. Filter_PreProcess$

 $akhdefo_functions.Filter_PreProcess(unfiltered_folderPath='',\ UDM2_maskfolderPath='',\ outpath_dir='',\ Udm_Mask_Option=False)$

This program prepare and uses filters to balanace raster image brightness

11.1 Parameters

 $unfiltered_folderPath: str$ $UDM2_maskfolderPath: str$

 $outpath_dir : str$

Udm_Mask_Option

[bool] False if True the program uses planetlabs imagery unusable pixel mask to ignore and mask bad image pixels

11.2 Returns

geotif rasters

Filtered geotif rasters

Figures

plotted filtered rasters and mask for bad pixels

$akhde fo_functions. Crop_to_AOI$

 $\label{eq:continuous_akhdefo_functions.Crop_to_AOI} akhdefo_functions.Crop_to_AOI(Path_to_WorkingDir='',\ Path_to_AOI_shapefile='',\ output_CroppedDir='')$

This program used to clip multiple raster files

12.1 Parameters

$Path_to_WorkingDir$

[str] path to raster working directory

$Path_to_AOI_shape file$

[str] path to Area of interest in shapefile format

$output_CroppedDir$

[str] path to save cropped raster files

12.2 Returns

cropped raster files

akhdefo_functions.Mosaic

akhdefo_functions.Mosaic(Path_to_WorkingDir='', output_MosaicDir='', img_mode=0)

This program mosiacs raster images in geotif format as well grab dates the satellite image taken for further processing. The current version only supports Planet Labs SurfaceReflectance products.

13.1 Parameters

Path_to_WorkingDir : str output_MosaicDir : str

img_mode

[int] if img_mode=0 the the programs mosaics only the raster images. if img_mode=1 the program mosiacs only mask rasters

13.2 Returns

Mosaiced raster images

$akhde fo_functions. Coregistration\\$

 $\begin{tabular}{ll} {\bf akhdefo_functions.Coregistration} (input_Folder='',\ output_folder='',\ grid_res=20,\ min_reliability=60,\ window_size=(64,\ 64),\ path_figures='',\ showFig=False,\ no_data=[0,\ 0],\ single_ref_path='') \end{tabular}$

This program coregisters multiple rasters using both structural similarity index and feature matching techniques. This program is written based on arosics python library.

14.1 Parameters

input_Folder: str

Path to input raster folders

grid_res: int

min_reliability: int

structural simialrity index threshold to differentiate deformation from raster shift (min=20, max=100)

window_size: tuple

window size for pixel search

showFig: bool

True to display results or False to not displat results

no₋data: list

No data values to be ignored for both reference and target image

single_ref_path: str

provide path to raster if interested to coregister all rasters to a single reference, ignore this option the program uses subsequent rasters as reference.

output_folder: str

returns coregistred and georeferenced raster in geotif format

path_figures: str

returns figure with plotted displaced pixels in raster coordinate system units

14.2 Returns

coregistred rasters

$akhde fo_functions. Dynamic Change Detection\\$

```
\label{eq:continuous} \begin{tabular}{ll} akhdefo\_functions. DynamicChangeDetection($Path\_working\_Directory=''$, $Path\_UDM2\_folder=''$, $Path\_to\_DEMFile=''$, $Coh\_Thresh=0.75$, $vel\_thresh=0.063$, $udm\_mask\_option=False$, $cmap='jet'$, $Median\_Filter=False$, $Set\_fig\_MinMax=False$, $show\_figure=False$, $plot\_option='origional'$, $xres=10$, $yres=10$) $$
```

This program calculates optical flow velocity from triplets of daily optical satellite images. Final Timeseris products will be a shapefile format using Time_Series function after stackprep step.

15.1 Parameters

Path_working_Directory: str
Path_UDM2_folder: str
Path_to_DEMFile: str
Coh_Thresh: float
vel_thresh: float
udm_mask_option: bool
cmap: str
Median_Filter: bool
Set_fig_MinMax: bool
show_figure: bool
plot_option
 [str] origional, resampled
xres: int
yres: int

15.2 Returns

Rasters

velocity in X direction (EW) Velocity in Y direction (NS) $\,$

Figures

Initial Timesereis Figures (those figures are only intermediate products needs calibration)

$akhde fo_functions.plot_stack Network$

```
 \begin{tabular}{ll} akhdefo\_functions.plot\_stackNetwork(src\_folder='', output\_folder='', cmap='tab20', \\ date\_plot\_interval=(5, 30), marker\_size=15) \end{tabular}
```

This Program plots temporal network of triplets to be stacked for calculating Annual Mean Velocity from stacked optical images.

16.1 Parameters

src_folder

 $[\mathrm{str}]$ path to georeferenced_folder

output_folder

[str] path to output folder to save output Figure plot

cmap

[str] colormap for the plot default is tab20

date_plot_interval

[list] minumum and maximum plot x axis interval dates for the plot

marker_size

[float] size of plotted points default is 15

16.2 Returns

Figure

akhdefo_functions.stackprep

17.1 Parameters

```
path_to_flowxnFolder
     [str] path to folder include east-west velocity files
path_toFlowynFolder
     [str] path to folder include north-south velocity files
dem
     [str] path to digital elevation model file will be used to geocode the products
print_list
     [bool] print list of temporal processed dates default is False
start\_date
    [str] YYYYMMDD
end_{-}date
     [str] YYYYMMDD
output\_stackedFolder: str
VEL_scale
     [str] month or year) at this stage you can ignore this option; will be removed from future versions
xres: float
yres: float
Velocity_shapeFile: bool
    set to True if need to generate points for temporal deformation analysis
Resampling: bool
```

if True reduce number of measurement points but faster processing

17.2 Returns

ESRI Shapefile

This file include candiate velocity points for timeseries analysis

akhdefo_functions.Time_Series

```
 akhdefo\_functions.Time\_Series (stacked\_raster\_EW='', stacked\_raster\_NS='', velocity\_points='', \\ dates\_name='', output\_folder='', outputFilename='', \\ rasteriz\_mean\_products=True, std=1, VEL\_Scale='year', \\ velocity\_mode='mean', master\_reference=False)
```

This program uses candiate velocity points from stackprep function and performs linear interpolation in time-domain to calibrate stacked velocity. Additionally produces corrected timeseries velocity(daily) in a shapefile.

18.1 Parameters

```
stacked\_raster\_EW: str\\ stacked\_raster\_NS: str
```

$\mathbf{velocity_points}$

[str] Velcity Candidate points

dates_name

[str] text file include name of each date in format YYYYMMDD

 $output_folder: str$ outputFilename: str

VEL_Scale

[str] year , month or empty to calculate velocity within provided dataset date range

velocity_mode

[str] mean or linear

master_reference

[bool] True if calculate TS to a single reference date, False if calculate TS to subsequent Reference dates

18.2 Returns

Time-series shape file of velocity and direction EW, NS, and 2D(resultant Velocity and direction)

$akhde fo_functions. akhde fo_ts_plot$

```
akhdefo\_ts\_plot(path\_to\_shapefile='', dem\_path='', point\_size=1.0, opacity=0.75, \\ cmap='turbo', Set\_fig\_MinMax=True, MinMaxRange=[-50, 50], \\ color\_field='VEL', user\_data\_points='', path\_saveData\_points='', \\ save\_plot=False, Fiq\_outputDir='', VEL\_Scale='year')
```

This program used for analysis time-series velocity profiles

19.1 Parameters

$user_data_points$

[str] provide path to csv. file contains x and y coordinate for points of interest you can generate this file by providing path to path_saveData_points (POI.csv). This is useful to save mouse click positions to repeat the plots for different datasets for example if you plot several TS profiles for EW velocity product, you can recreate TS for the same exact position by saving POI.csv with path_saveData_points and then use that as input for the another plot such as NS velocity product via setting user_datapoints=POI.csv

path_to_shapefile

[str] type path to timeseries shapefile in stack_data/TS folder

dem_path

[str] path to dem raster in geotif fromat

point_size

[float] size of the sactter plot points

opacity

[float] transparency of the scater overlay

cmap

[str] Matplotlib colormap options example RdYlBu_r, jet, turbo, hsv, etc

$\mathbf{Set_fig_MinMax}$

[bool] True or False

MinMaxRange

[list] [-50,50] Normalize plot colormap range if Set_fig_MinMax=True

color_field

[str] VEL ,VEL_2D, VEL_N, VEL_E, VELDir_MEA

$path_saveData_points$

[str] optional, provide directory path if you want to save profile data. the data will be saved under POI.csv file

save_plot: bool

True or False

$Fig_outputDir$

[str]

if save_plot=True then you save your profile plots in interactive html file and jpg image

${\bf VEL_Scale}$

[str] year or month projects the velocity into provided time-scale

19.2 Returns

Interactive Figures

$akhde fo_functions. raster Clip\\$

akhdefo_functions.rasterClip(rasterpath, aoi, outfilename)
This program used to clip single raster file.

20.1 Parameters

rasterpath

[str] path to raster file in geotif format

aoi

[str] path to Area of interest in shapefile format

outfilename

[str] path to output raster file in geotif format .tif

20.2 Returns

clipped raster

akhdefo_functions.akhdefo_viewer

```
 \begin{tabular}{ll} {\bf akhdefo\_viewer}(Path\_to\_DEMFile='',\ rasterfile='',\ cbar\_label='Velocity(mm/year)', \\ title='Akhdefo-Viewer',\ pixel\_resolution\_meter=3.125, \\ outputfolder='',\ alpha=0.8,\ unit=1,\ cmap='jet', \\ noDATA\_Mask=False,\ Normalize=True,\ SetDates\_Filename=False, \\ Set\_fiq\_MinMax=False) \end{tabular}
```

This program used for plotting raster products.

21.1 Parameters

Path_to_DEMFile

[str] provide path to digital elevation raster file to be used as shaded base Map

rasterfile

[str] provide path to raster file to be plotted

title

[str] provide your desired title for the plot

pixel_resolution_meter

[float] provide pixel resolution of the digital elevation raster to draw proper figure scalebar

outputfolder

[str] provide path to outure folder to save the plot

outputfileName

[str] provide name for the output plot including the desired extension such as .jpg, .pmg, .pdf, etc..

alpha

[float] transparency level for the plotted raster relative to hillshaded basemap

unit

[int] conversion unit default is 1 (no conversion) if your data is in meter such as velocity in meter/year set unit to 2 to convert to mm/year

$noDATA_MAsk$

[bool] set to True if you do not want to plot zero values of your dataset

21.2 Returns

Figure

$akhde fo_functions. Akhde fo_re sample$

 $akhdefo_functions. Akhdefo_resample(input_raster='', output_raster='', xres=3.125, yres=3.125, SavFig=False, convert_units=False)$

This program performs raster resampling for rasters

22.1 Parameters

$input_raster$

[str] path to input raster

$output_raster$

[str] path to output raster

xres

[float] horizontal resolution

yres

[float] vertical resolution

SavFig

[bool] True to save output plot False to ignore exporting plot

convert units

[bool] if True converts raster value units from m to mm

22.2 Returns

Raster geotif

akhdefo_functions.Akhdefo_inversion

 $akhdefo_inversion(horizontal_InSAR='', \ Vertical_InSAR='', \ EW_Akhdefo='', \ NS_Akhdefo='', \ demFile='', \ output_folder='')$

This program calculates 3D displacement velocity (East-West,North-South and vertical) using combined optical and InSAR products

23.1 Parameters

horizontal_InSAR

[str] path to East Velocity InSAR product in geotif format

${\bf Vertical_InSAR}$

[str] path to Vertical Velocity InSAR product in geotif format

EW_Akhdefo

[str] path to east-west velocity akhdefo(optical) product in geotif format

$NS_Akhdefo$

[str] path to north-south velocity akhdefo(optical) product in geotif format

$\operatorname{demFil}\epsilon$

[str] path to DEM raster in geotif format

$output_folder$

[str] path to save raster products

23.2 Returns

Three geotif rasters

3D-Velocity (D3D in mm/year) raster Plunge raster in degrees Trend raster in degrees

$akhde fo_functions.utm_to_latlon$

akhdefo_functions.utm_to_latlon(easting, northing, zone_number, zone_letter)

This program converts geographic projection of shapefiles from UTM to LATLONG

24.1 Parameters

easting: Geopandas column with Easting

northing: Geopandas column with Northing

zone_number: int zone_letter: N or S

24.2 Returns

[lon , lat]: List

$akhde fo_functions. Mean Products_plot_ts$

```
 akhdefo\_functions. MeanProducts\_plot\_ts(path\_to\_shapefile='', dem\_path='', out\_folder='Figs\_analysis', \\ color\_field='', Set\_fig\_MinMax=False, MinMaxRange=[-100, \\ 100], opacity=0.5, cmap='jet', point\_size=1, \\ cbar\_label='mm/year', batch\_plot=False, dates\_list='') \\
```

This program used to plot shapefile data

25.1 Parameters

```
path_to_shapefile: str

dem_path: str

out_folder: str

color_field
    [str] geopandas column name

Set_fig_MinMax: bool

MinMaxRange: list

opacity: float

cmap: str

point_size: str

cbar_label
    [str] mm/year or degrees, etc.. based on unit of the data column name in the color_field
```

25.2 Returns

Figure

$akhde fo_functions. Auto_Variogram$

 $\verb|akhdefo_functions.Auto_Variogram|(path_to_shapefile='', column_attribute='', latlon=False)|$

This program automatically selects best variogram model which later can be used to interpolate datapoints.

26.1 Parameters

path_to_shapefile : str type path to shapefile to include data (point data) the shapefile attribute must have x, y or lat, lon columns

$column_attribute$

[str] Name of shapefile field attribute include data

26.2 Returns

 str

name of best variogram model also figure for plotted variogram models

$akhde fo_functions.binary_mask$

akhdefo_functions.binary_mask(raster_path, shape_path, output_path, file_name)
Function that generates a binary mask from a vector file (shp)

27.1 Parameters

```
raster_path = path to the .tif;
shape_path = path to the shapefile or GeoJson.
output_path = Path to save the binary mask.
file_name = Name of the file.
```

27.2 Returns

Raster Binary Mask in tif format

Indices and tables

- \bullet genindex
- \bullet modindex
- \bullet search