

Ensemble Learning Techniques

What is **Ensemble Learning?**

Agenda

- Ensemble Learning
- Boosting
- Gradient Boosting and XGBoost
- Overfitting/Underfitting
- How to address Overfitting/Underfitting

What is **Ensemble Learning?**

Ensemble Learning

- Ensemble methods is a machine learning technique that combines several base models in order to produce one optimal predictive model.
- The process of generating models from data is called learning or training and the learned model can be called as hypothesis or learner.
- This type of machine learning algorithm helps in improving the overall performance of the model.
- The learning algorithms which construct a set of classifiers are known as Ensemble methods.

Ensemble Learning

Single Model Prediction vs Ensemble Learner

Why Ensemble Methods?

- INTERNSHIPSTUDIO
- A diverse set of models in comparison to single models are likely to make better decisions.
- A decision tree basically works on several rules and provides a predictive output, where the rules are the nodes and their decisions will be their children and the leaf nodes will constitute the ultimate decision. The example of a decision tree below about a bank loan decision.

One classifier is not enough!

- Performance
 - None of the classifiers is perfect
 - Complementary
 - Examples which are not correctly classified by one classifier may be correctly classified by the other classifiers
- Potential Improvements
 - Utilize the complementary property

An EXAMPLE

Name	Age	Male?	Height > 55"	
Alice	14	0	1	/
Bob	10	1	1	
Carol	13	0	1	
Dave	8	1	0	/
Erin	11	0	0	X
Frank	9	1	1	×
Gena	8	0	0	/

$$x = \begin{bmatrix} age \\ 1_{[gender=male]} \end{bmatrix}$$

$$\begin{array}{c}
age \\
1_{[gender=male]}
\end{array} \qquad y = \begin{cases}
1 & height > 55" \\
0 & height \le 55"
\end{cases}$$

Ensembles of Classifiers

Combine the classifiers to improve the performance

Ensembles of Classifiers

- Two ways to combine the classification results from different classifiers to produce the final output
 - Unweighted voting
 - Weighted voting

Example: Weather Forecast

Reality		•••	•••			·:	•••
1		X	•••	X			
2	X			X			
3			X		X	*	
4			X		X		<u>:</u>
5		X	•••			X	
Combine			•••				•••

Type of Ensemble methods:

The three most popular methods for combining the predictions from different models are:

- **Bagging** Building multiple models (typically of the same type) from different subsamples of the training dataset.
- **Boosting**. Building multiple models (typically of the same type) each of which learns to fix the prediction errors of a prior model in the chain.
- Building multiple models (typically of differing types) and simple statistics (like calculating the mean) are used to combine predictions.

Bias and Variance

- Bias is an error that occurs due to incorrect assumptions in our algorithm; a high bias indicates our model is too simple/underfit.
- Variance is the error that is caused due to sensitivity of the model to very small fluctuations in the data set; a high variance indicates our model is highly complex/overfit.
- An ideal ML model should have a proper balance between bias and variance.

Ensemble methods

- Ensemble methods that minimize variance
 - Bagging
 - Random Forests
- Ensemble methods that minimize bias
 - Functional Gradient Descent
 - Boosting
 - Ensemble Selection

- Q.1 What is Ensemble Learning?
- Q.2 What is the need of ensemble learning in ml?
- Q.3 Why only one classifier is not enough in Machine Learning?
- Q.4 What are the types of Ensemble Methods?