Focus 5. Equilibrium Overview

Topic 5A. Vapor Pressure

- 5A. I The Origin of Vapor Pressure
- 5A.2 Volatility and Intermolecular Forces
- 5A.3 The Variation of Vapor Pressure with Temperature
- 5A.4 Boiling

Phase

- Phase: a specific physical state of matter
 - Solid, liquid, and gas
 - Carbon: diamond and graphite
- Phase transition

Vapor Pressure

- Vapor pressure: the pressure exerted by its vapor when the vapor is in dynamic equilibrium with the condensed phase
 - Dependent on the molecular structure
 - Dependent on temperature, T
 - Independent of the amount of liquids and solids

TABLE 5A.1	Vapor Pressures at 25 °C	
Substance	Vapor pressure <i>P</i> /Torr	
benzene	94.6	
ethanol	58.9	
mercury	0.0017	
methanol	122.7	
toluene	29.1	
water*	23.8	

Equilibrium

- Thermodynamic (see Topic 4J)
 - Condensed and vapor phases are in equilibrium when there is no Gibbs energy change
- Kinetic (see Topic 7D)
 - The rates of evaporation and condensation are equal
 - Dynamic equilibrium

$$H_2O(l) \leftrightarrow H_2O(g)$$

Volatility and Intermolecular Forces

- Higher vapor pressure
 - > lower intermolecular forces between the molecules of a liquid
- Dimethyl ether (CH₃–O–CH₃; gas) vs. ethanol (CH₃–CH₂–OH; liquid, hydrogen bonding)

1 Dimethyl ether, C₂H₆O

2 Ethanol, C₂H₆O

Vapor Pressure vs. Temperature

Temperature dependence of vapor pressure

TABLE 5A.2 Vapor Pressure of Water		
Temperature/°C	Vapor pressure P/Torr	
0	4.58	
10	9.21	
20	17.54	
21	18.65	
22	19.83	
23	21.07	
24	22.38	
25	23.76	
30	31.83	
37*	47.08	
40	55.34	
60	149.44	
80	355.26	
100	760.00	

Vapor Pressure vs. Temperature

Clausius-Clapeyron equation

$$\ln \frac{P_2}{P_1} = -\frac{\Delta H_{\text{vap}}^{\circ}}{R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$

$$\ln P = \ln P_1 + \frac{\Delta H_{\text{vap}}^{\circ}}{RT_1} - \frac{\frac{B/T}{\Delta H_{\text{vap}}^{\circ}}}{RT}$$

$$\ln P = A - \frac{B}{T}$$

Boiling

- Boiling: vapor pressure of liquid = external pressure
 → rapid vaporization occurs throughout the entire liquid
- Normal boiling point, T_b : when external pressure is I atm
- Higher external pressure \rightarrow higher $T_{\rm b}$

Freezing

- Freezing (melting): solidification of a liquid (liquefaction of a solid)
- Freezing (melting) point, : T at which liquid freeze (solid melts)
- Normal freezing point, T_f : T at which liquid begins to freeze at 1 atm
- T_f increases with pressure for most substances (exception: H_2O)

Topic 5B. Phase Equilibria in One-Component Systms

- 5B.I One-Component Phase Diagram
- 5B.2 Critical Properties

Phase Diagram

 Phase diagram: a map that shows which phase is the most stable at certain pressures and temperatures

Phase Diagram

- Phase boundary: curves separating region on a phase diagram
 → Represents a set of P and T values for which 2 phases coexist in dynamic equilibrium
- Triple point: point where three phase boundaries intersect
 → a single value of P and T for which 3 phases coexist in dynamic equilibrium

Phase Diagram

Critical Properties

- Critical point: terminus of liquid-gas phase boundary
- Critical temperature, critical pressure

TABLE 5B.1 Critical Temperatures and Pressures of Selected Substances			
Substance	Critical temperature/ °C	Critical pressure P_c /atm	
Не	-268 (5.2 K)	2.3	
Ne	-229	27	
Ar	-123	48	
Kr	-64	54	
Xe	17	58	
H_2	-240	13	
O_2	-118	50	
H_2O	374	218	
N_2	-147	34	
NH_3	132	111	
CO_2	31	73	
$\mathrm{CH_4}$	-83	46	
C_6H_6	289	49	

Critical Properties

Critical Properties

Supercritical fluid

