

Emotion Recognition for Multiple Context Awareness

Dingkang Yang*, Shuai Huang*, Shunli Wang, Yang Liu, Peng Zhai, Liuzhen Su, Mingcheng Li, Lihua Zhang

Academy for Engineering and Technology, Fudan University, Shanghai, China

Introduction

- Background: Context-Aware Emotion Recognition (CAER) is a crucial yet challenging task that aims to perceive the emotional states of the target person with the assistance of context information.
- Motivation: Existing CAER methods lack reliable context semantics to mitigate uncertainty in expressing emotions and fail to model multiple context representations complementarily.
- Contributions: We present a CAER framework from a psychological and sociological perspective, which incorporates four context information. We propose a fusion module that focuses on the interactions among diverse contexts and adaptively assigns higher weights to beneficial contexts. We release HECO, a new dataset for emotion recognition in context.

Performance

Discrete Classification Results

<u> </u>	T 1[20]		l T	3.50 3 3.54	Ours	- C - I	77	71	l T		Ours
Category	Kosti et al.[30]	Zhang et al.[72]] Lee <i>et al.</i> [31]	Mittal et al.[4	1 L_{disc} L_{comb}	Category	Kosti et al.[30]	Zhang et al.[72]	Lee <i>et al.</i> [31] [Mittal et al.[4	$1]_{L_{disc} L_{comb}}$
Peace	22.35	30.68	19.55	35.72	$25.5 \ \ 26.24$	Affection	26.47	47.52	22.36	38.55	41.61 37.66
Esteem	17.86	12.05	15.38	25.75	$21.98 \ 20.29$	Anticipation	57.31	63.2	52.85	60.73	62.75 63.31
Engagement	86.69	87.31	73.71	86.23	74.69 75.23	Confidence	80.33	74.83	72.68	68.12	$72.22 \ 74.42$
Happiness	58.92	72.9	53.73	80.45	83.58 85.25	Pleasure	46.72	48.37	34.12	67.31	67.26 67.68
Excitement	78.05	72.68	70.42	80.75	85.64 86.56	Surprise	22.38	8.44	17.46	19.6	25.31 27.03
Sympathy	15.23	19.45	14.89	16.74	24.7 25.87	Doubt/Confusion	31.88	19.67	26.07	38.43	$23.44 \ 24.96$
Disconnection	20.64	23.17	22.01	28.73	27.64 28.95	Fatigue	8.87	12.93	6.29	19.35	32.35 33.58
Embarrassment	3.05	1.58	1.88	10.31	9.63 10.57	Yearning	9.22	9.86	4.84	15.08	$10.88 \ 11.12$
Disapproval	16.14	12.64	15.37	18.55	23.41 23.52	Aversion	7.44	6.81	3.26	11.33	13.19 15.28
Annoyance	15.26	12.33	14.42	24.68	28.98 29.02	Anger	11.24	11.27	12.88	14.69	15.47 17.84
Sensitivity	9.05	4.74	6.94	13.94	22.53 24.89	Sadness	18.69	23.9	17.75	40.26	46.75 47.8
Disquietment	19.57	17.66	10.84	22.14	$19.36\ 21.17$	Fear	15.7	6.15	7.47	16.99	36.06 36.68
Pain	9.46	8.22	8.16	14.68	18.26 19.27	Suffering	17.67	23.71	14.85	48.05	$45.37 \ 46.74$
						A D	07.02	00.16	99.05	25.00	26 97 97 79

Performance on EMOTIC

l ———					Oura	Category F	Kosti <i>et al.</i> [3	30] Zhang <i>et al.</i> [72]	Lee et al.[31]	Mittal et al.[41] Ours
Category	Kosti et al. [30]	Zhang et al.[72	Lee et al.[31]	Mittal et al.[41]	T T	Anger	57.65	51.92	45.18	68.85	70.5
						Happy	71.32	63.37	56.59	72.31	72.3
Surprise	28.45	34.87	24.27	38.37	$38.04 \ 38.12$	Neutral	43.1	40.26	39.32	50.34	52.5
Excitement	42.16	45.74	37.97	48.59	53.2 55.04	Sad	61.24	58.15	52.96	70.8	71.4
Happiness	62.82	63.26	55.81	66.53	67.26 69.16	mAP	58.33	53.43	48.51	65.58	66.7
Peace	51.64	54.17	47.57	55.97	57.23 57.31	Dor	form	anna a	n Cro		'allz
Disgust	45.37	49.43	41.74	50.48	52.28 54.95	I ei	10111	nance o		oup 🗤	ain
Anger	40.76	45.22	38.39	51.29	53.04 53.43			Method	Accuracy	•	
Fear	32.74	35.67	30.51	40.81	$40.08 \ 40.27$			Fine-tuned VGGN	<u> </u>	:	
Sadness	22.53	27.28	20.92	32.65	34.17 36.94			Fine-tuned ResN	[et[4]]		
$\overline{\text{mAP}}$	40.81	44.46	37.15	48.09	49.41 50.65			CAER-Net-S[6] 73.51		
	10.01	11.10	01110	10.00	10.11 00.00			Ours	79.57		

Performance on HECO

Performance on CAER-S

Continuous Regression Results

Method	Dataset	Valence	Arousal	Dominance	e mER	Dataset	Valence	Arousal	Dominance	mER
Kosti et al.[30] (L_{cont})		1.0	1.5	0.8	1.1	HECO	0.9	1.3	0.8	1.0
Kosti $et \ al.[30](L_{comb})$		0.9	1.2	0.9	1.0		0.9	1.2	0.6	0.9
Zhang et al. $[72](L_{cont})$ Zhang et al. $[72](L_{comb})$		0.8	1.6	1.2	1.2		0.9	1.1	1.0	1.0
Zhang et al. $[72](L_{comb})$		0.7	1.0	1.0	0.9		0.6	1.1	0.7	0.8
$\mathbf{Ours}(L_{cont})$		0.6	1.3	0.8	0.9		0.8	1.0	0.6	0.8
$\underline{\hspace{1cm}\mathbf{Ours}(L_{comb})}$		0.8	0.9	0.7	0.8		0.7	0.8	0.6	0.7

Performance on EMOTIC and HECO

Method

Overview of the Proposed Method

- Context 1 is the agent-centric multimodal emotion recognition.
- Context 2 adopts the channel and spatial attention modules to obtain the emotion semantics of the scene context.
- Context 3 explores the emotion transmission among agents.
- Context 4 aggregates the emotion cues from the interactions between surrounding agents and objects.

Visualization

Multimodal Attention

Emotion Semantic Capture of Scene

> Interesting visual examples of each context branch reveal different aspects of the emotional phenomenon.

> Cross-context and adaptive attention demonstrates the complementary recognition ability of the proposed contexts.

Emotion Co-occurrence

Dataset

The dataset contains 9,385 images and 19,781 annotated agents. Eight categories: Surprise,

Discrete Emotion Categories Excitement, Peace, Happiness, Disgust, Anger, Fear, and Sadness.

Different Scores of Valence, Arousal, and Dominance

Ablation Study

	Dataset							Dataset						
Model Design	EMO	TIC	Group	Walk	HEC	CO	Model Design	EMO	OTIC	Grou	pWalk	$^{ m HE}$	CO	
	mAP	mER	mAP	mER	mAP	mER	-	mAP	mER	mAP	mER	mAP	mER	
Full (ours)	37.73	0.8	66.72	-	50.65	0.7	$C_3 \text{ (GCNs) [28]}$	35.25	1.2	63.94	-	48.84	1.1	
$\overline{C_1}$	22.51	1.6	44.76	-	37.27	1.4	C_3 (Depth) [32]	36.39	1.0	65.19	-	49.02	0.9	
$C_1 + C_2$	29.23	1.1	54.42	-	41.93	1.0	Concatenation [52]	30.47	1.2	59.87	-	43.6	1.1	
$C_1 + C_3$	27.56	1.3	57.36	-	39.62	1.1	Multiplication [41]	36.52	0.9	65.24	-	50.22	0.7	
$C_1 + C_4$	26.29	1.2	52.09	-	37.93	1.2	ARF (phase 1)	36.27	0.9	65.33	-	49.73	0.8	
$C_1 + C_2 + C_3$	36.18	0.8	64.34	-	48.07	0.8	ARF (phase 2)	34.65	1.0	64.13	-	47.51	0.9	
$C_1 + C_2 + C_4$	34.93	0.9	60.27	-	47.25	0.8	C_1 (OpenFace [1]+OpenPose [5])	37.45	0.8	66.39	-	50.28	0.8	
$C_1 + C_3 + C_4$	33.45	1.0	62.61	-	44.23	0.9	C_4 (R-FCN [13]+HOI-Net [33])	37.52	0.9	66.45	-	50.34	0.7	
$\overline{C_2 \text{ (Mask Face)}}$	35.57	1.0	64.34	-	47.71	1.0	VGG19 [56] (C_1, C_2) +Res101 [22] (C_3, C_4)	37.76	0.9	66.68	-	50.87	0.7	
C_2 (Mask Body)	37.02	0.9	65.12	-	49.46	0.8	Res34[22] (C_1, C_2) +Res152 [22] (C_3, C_4)	36.83	0.8	65.85	-	50.24	0.8	

We analyse the effect of context branches, masking strategies, fusion strategies, detectors, and the CNN backbones on model performance through several ablation studies.

Conclusions

- ➤ We explore emotion-rich representations from contexts at the visual level to advance the development of effective visual-only driven emotion recognition applications.
- > Numerous qualitative and quantitative analyses clearly demonstrate the superiority of our method.