P L A I N

TRIGONOMETRY

Rendered Easy and Familiar,

By CALCULATIONS in ARITHMETICK only:

WITHITS

APPLICATION and Use

In ascertaining all Kinds of Heights, Depths, and Distances,

INTHE

HEAVENS, as well as on the EARTH and SEAS;

WHETHER OF

Towers, Forts, Trees, Pyramids, Columns, Wells, Ships, Hills, Clouds, Thunder and Lightning, Atmosphere, Sun, Moon, Mountains in the Moon, Shadows of Earth and Moon, Beginning and End of Eclipses, &c.

In which is also shewn,

A Curious Trigonometrical Method of discovering the Places where BEEs hive in large Woods, in order to obtain, more readily, the falutary Produce of those little Insects.

By the Rev. Mr. TURNER, late of Magdalen-Hall, Oxford,
Author of The View of the Earth;—View of the Heavens;—System of Gauging;—
and Chronologer Perpetual.

Cuncta Trigonus babet, satagitque docta Mathesis, Ille aperit clausum, quicquid Olympus babet.

Within the grand Triangle lies unveil'd, What Sages sought for, and what Heaven conceal'd.

LONDON.

Printed for S. CROWDER, in Pater-noster-Row; and S. GAMIDGE,
Bookseller, in Worcester. MDCCLXV.

GENTLEMEN,

Whose Genius may incline, or Employment lead them to the Study of the

MATHEMATICKS.

GENTLEMEN,

RIGONOMETRY has always been look'd on as one of the most useful Branches of Mathematical Learning. Navigation, Surveying, Astronomy, &c. stand wholly upon this Bass. But the common Method of answering these Problems being by large Tables of Sines, Tangents, and Secants, renders it not only expensive by the purchase of them; but often precarious in the Solution, by the Mistakes of the Press. I have therefore, for the Use of the Young Mathematician, (from a Consideration of what has been published on this curious Subject) composed the present System, by which any of the Cases in Right or Oblique Plain Triangles may be answered on the Spot, by an easy Calculation in Arithmetick only. The great Advantages resulting from this Method to Gentlemen in the Army or Navy, as well as to those in their private Studies at Home, must immediately appear; as it will be found to answer the most necesfary Problems as expeditiously as Logarithms; and at the same Time wholly deliver you from those voluminous Tables and the inartificial Fatigues of carrying them always with you.---Should this little Treatise be so happy as to meet your Approbation, it will give a particular Pleasure to,

Your most humble Servant,

The AUTHOR.

P L A I N

TRIGONOMETRY.

RIGONOMETRY is that Part of Mathematicks, which is employed in calculating the Sides and finding the Angles of any Triangle required; it is of the greatest Use in Life, as nothing in Navigation, Astronomy, &c. can be done without it; and depends on the Knowledge of the following Observations.

(1st.) Every Triangle consists of Six Parts; that is, of Three Sides and Three Angles, as in the Figure ABC; the Three Sides are, AB, AC, CB, and the Three Angles, A, B, C.

Note. Sometimes an Angle is expressed by Three Letters; in that Case, the Middle Letter denotes the Angular Point. Thus, ABC expresses the Angle B; BAC the Angle A; and ACB the Angle C.

(2d.) The Sides of all plain Triangles are measured by a Line of equal Parts, as of Inches,—Feet,—Yards,—or Leagues.

Thus, The Side AB is 36 Leagues.—The Side AC 25 Leagues.—And the Side BC is 30 Leagues.

(3d.) The Angles are measured by the Arch of a Circle described upon the Angular Point, and contained between the Two Legs that form the Angle.

Note. Every Circle is divided into 360 equal Parts, called *Degrees*; each of which are divided into 60 more, called *Minutes*: And the Number of Degrees contained between the Two Legs, that constitute the Angle, is the *Measure* of that Angle. Thus, The Angle A is 45 *Degrees*.—The Angle B, 47.—The Angle C, 88.

(4th.) If the Arch of a Circle intercepted between the Two Legs be exactly 90 Degrees, the Angle is called a Right Angle, and the Legs are perpendicular to one another.

(5th.) If the Arch of the Circle be less than 90 Degrees, the Angle is said to be Acute.

Note. What an Acute Angle wants of 90 Degrees, is called the Complement of that Angle. Thus, Suppose the Angle A was 40 Degrees; then its Complement is 50 Degrees; for 40 added to 50 make 90, as observed before.

(6th.) If the Arch of a circle be more than 90 Degrees, the Angle is said to be Obtuse; and so continues to 180 Degrees, where the Angle vanishes, the Lines becoming Strait.

Note. What an Obtuse Angle wants of 180 Degrees, is also called the Complement of that Angle to a Semicircle.

(7th.) The Three Angles of every plain Triangle, being taken together, make 180 Degrees (equal to a Semicircle), and this they always do, let the Triangle be drawn however you please.

Thus, If the Semicircle D be drawn with the same Radius, or opening of the Dividers, as the little Circles on the Angles A, B, C, are; you will find, by taking off the several Arches, and applying them to the Semicircle, that they will just fill it up, and thereby make 180 Degrees; because every Semicircle contains that Number of Degrees.

Hence it is evident, that if one Angle be a Right One, the other Two will be Acute; and taken together, be equal to one Right Angle, or just 90 Degrees.

Hence also, if Two Angles of any Triangle are known, the Third is easily found, being only the Degrees the other Two Angles want of 180.

(8th.) If a Triangle has one Right Angle, it is called a Right Angled Triangle: Thus ABC is a Right Angle Triangle, Right-angled at B.—In all Right. Angle Triangles, the longest Leg is called the Hypothenuse;—the Leg on which it stands, the Base;—and the other Leg, the Perpendicular.

(9th.) If neither of the Angles is a Right One, then it is called an Oblique Angled Triangle; as the Triangle CDE is an Oblique Triangle.

(10th.) If

(10th.) If the Angles of one Triangle are equal to the Angles of another Triangle, the Sides of the former are proportional to the Sides of the latter.

Thus, If in the Triangle ABC, you draw the Line ED parallel to CB, the smaller Triangle ADE will be similar to, i. e. will have the same Angles with the larger Triangle ABC.—It will therefore always hold, as

AB: AD:: BC: DE.

Or, as AB: BC:: AD: DE.

Or, as AD: DE:: AB: AC.

Or, as AD: DE:: Ef:fC, &c.

(11th.) In all Triangles the greatest Side is opposite to the greatest Angle; and on the contrary, the greatest Angle is opposite the greatest Side.—If Two Sides are equal, the opposite Angles are equal.—If all the Sides are equal, then all the Angles are equal to each other.

(12th.) In all Triangles, every Side is in proportion to its opposite Angle, and every Angle to its opposite Side: And further, as the Angle opposite to one Side, is to the Angle opposite the other Side, so are the Sides themselves to one another; and the contrary, the Sides to the Angles.

Every Triangle, as I observed before, consists of Six Parts—Three Sides and Three Angles. If any Three of the Six Parts (excepting the Three Angles) are given, any one, or every one of the rest may be found, without the painful Deductions and voluminous Tables of Logarithms, Sines, Tangents, and Secants, by the following Rules and Axioms *.

* This Method will be found as exact, as that by the Logarithms, if you carry on the Operation to Three or Four Decimal Places; but for common Purposes, One or Two Decimal Places will be near enough. You must also remember to reduce the Minutes of the Angles to Decimals of a Degree, which is easily done, by allowing One tenth for every Six Minutes.—Or you may turn the Minutes into Decimals thus: As 60, the Minutes in one Degree, : are to the Minutes given, :: so are 10, 100, 1000, &c. to the Decimal required.

Of Right Angled TRIANGLES.

HERE are generally reckoned by Writers on this Subject Seven Cases; but by this Method they are all reduced to Four; the Solutions of which depend on the following Axioms.

AXIOM I. Divide 4 Times the Square of the Complement of the Angle, whose opposite Side is either given or sought, by 300 added to 3 Times the said Complement; this Quotient added to the said Angle, will give you an Artiscial Number, called sometimes the Natural Radius*, which will ever bear the same Proportion to the Hypothenuse, as that Angle bears to its opposite Side.—In Angles under 45 Degrees, the Artiscial Number may be sound easier thus: Divide 3 Times the Square of the Angle itself, whose opposite side is given or sought, by 1000; the Quotient added to 57.3 †, a fixed Number, that Sum will be the Artiscial Number required.—This is to be used, when the Angles and a Side are given, to find another Side.

AXIOM II. The Square of both the Legs, i.e. the Square of the Base and Perpendicular added together, is equal to the Square of the Hypothenuse; whose Root is the Hypothenuse itself.—This is made use of, when the Base and Perpendicular are given, to find the Hypothenuse.

AXIOM III. The Sum of the Hypothenuse and One of the Legs multiplied by their Difference, the Square Root of that Product will be the other Leg required.—This comes into use, when the Hypothenuse and One Leg is given, to find the other Leg.

AXIOM IV. Half the Longer of the Two Legs, added to the Hypothenuse, is always in Proportion to 86 ‡, as the Shorter Leg is to its opposite Angle.—This is useful, when the Sides are given, to find the Angles.

Note. These 4 Axioms will answer all the Cases of Right and Oblique Angled Triangles, except the last Case in Obliques, which will require some further Assistance, and will be shown when we come to treat of that Case.

^{*} The Natural Radius is only turning the Right Angle, = 90 Degrees, into an artificial Number, which shall always bear the same Proportion to the Hypothenuse, as the given Angle does to its opposite Leg.

^{† 57.3} is the Radius of a Circle whose Circumference is 360. † 86 = Radius and Half of a Circle whose Circumference is 360.

CASEI.

The Acute Angles, and one Leg given; to find the Hypothenuse and the other Leg.

(1st.) Find the Natural Radius by Axiom I.

(3d.) Find the Perpendicular by Axiom III.

96 To Hypothenuse
78 Add the Base
174 Sum multiply
18 by Difference
1392
174

Extract the Root 3132(55.9 † Perpendicular

105)632 525 1109)10700 9981 719

Answer, { Hypothenuse, 95.9 +, or 96. Perpendicular, 55.9 +, or 56.

CASE

CASE II.

The Hypothenuse and Angles given, to find the Two Legs.

(1st.) Find the Natural Radius by Axiom I.

(2d.) Find the Perpendicular by Axiom I.

(3d.) Find the Base by Axiom III.

Jo To Hypothenuse

Jo Add Perpendicular

Sum multiplied by

Jo The Difference

Extract the Root 6080(77.9 + Base

Answer, { Perpendicular, 56. Base, 77.9 +, or 78.

CASE III.

The Hypothenuse and One Leg given, to find the Angles and the other Leg.

$$\frac{3}{5} \left\{ \begin{array}{l} \text{Base AB} = 78 \\ \text{Hypoth. AC} = 96 \end{array} \right\} \stackrel{\text{T}}{=} \left\{ \begin{array}{l} \text{Perpendic. CB} \\ \text{and} \\ \text{Angles A & C.} \end{array} \right.$$

(1st.) Find the Perpendicular by Axiom III.

(2d.) Find the Angle by Axiom IV.

Answer, { The Angle, 35° 41' nearly. The Perpendicular, 55.9 +, or 56.

CASE.

CASEIV.

The Two Legs given; to find the Hypothenuse and the Angles.

(1st.) Find the Hypothenuse by Axiom II.

Extract the Root 9220(96 The Hypothenuse

To Hypothenuse 96 Add half longer Leg 39

10

Answer, { The Hypothenuse, 96. The Angle, 35°.674, 35° 41' nearly.

Note. Thus all the Cases of Right Angled Triangles, are easily and readily answered: and by the same Rules, and with the like Ease may the Oblique Angled Triangles be answered, as will evidently appear in the following Cases.

REARERAE REARESTEE REAREST

Of Oblique TRIANGLES.

In the Solution of an Oblique Triangle, it is necessary, by this Method, to divide it into Two Right Angled Triangles, by means of a Perpendicular, which must always fall upon the End of a given Side, and opposite to a given Angle.

By this means the *Perpendicular* will sometimes fall within, and sometimes without the Triangle: When it falls within, it falls upon some Part of the Base, or longest Side; but when it falls without, it falls upon one of the shorter Sides continued. In either Case, there are Two Right Angled Triangles made, and the Angles, or Sides sought, are sound as if they were Parts of a Right Angle, by the foregoing Axioms; but it requires Two or Three Operations.

CASE

CASE.

Two Angles, and a Side opposite to one of them, given; to find the other two Sides.

CASE II.

Two Sides, and an Angle opposite to One of them, being given; to find the rest.

Side AB 560 Bide C Side AC 410 Side BC. (3d.) Find the Angle DAC. To Hyp. CA 410 Add Ferp. AD 198 Fix'd Num. Side CD (1st.) Find the Side AD. As 608 — 86 — 106 86 Hyp. BA Nat. Rad. As 63.6 636 45 848 2800 608)9116(14.9+, or 15° LA 2240 608 93.6)25200.0(396 AD 3036 1908 2432 6120 6040 5724 5472 3960 568 3816 144 (4th.) Find Side BD. To Hypoth BA 560 Add Perpend. DA 396 (2d.) Find CD. To Hypoth. CA 410 Sum 956 Multiply by Differ. 164 Add Perpend. AD 396 3824 5736 **9**56 Sum 806 Multiply by Difference 14 3224 806 Extract the Root 156784(395.9 + or 396 BD Extract the Root 11284(166 CD 69)667 621 206)1284 785)4685 1236 7909)75900 4719

Then from BD = 396Take — CD = 106 Hence we find by Inspection,
The Angle ACD = 75
The Angle ACB = 105

Remains — BC = 290 Required.

and The Angle BAC == 30° Required.

^{**} In this, and several of the following Cases and Problems, the Operation for finding the Natural Radius is omitted, for Want of Room.

CASE III.

Two Sides, with the Angle comprehended by them, given; to find the rest.

(1st.) Find the Perpendicular CD.

(2d.) Find the Part AD.

To Hypoth. AC 410
Add Perpend. CD 205

Sum 615

Multiply by Differ. 205

3075
12300

Extract the Root 126075(355 Base AD 9...

65)360
325

705)3575
3525

From AB = 560
Take AD = 355
Remains BD = 205

(3d.) Find the Side BC.

BD fquar'd 205 205 CD fquar'd 205 1025 1025 4100

To Square of DB 42025 42025 Add Square of CD 42025

Add Square of CD 42025

Extract the Root 84050(289.9 +, or 290 BC

4

48\440
384

569)5650
5121

5789)52900
52101

(4th.) Find the Angle B.

The Angle A == 30, added to Angle B == 45, and then subtracted from 180, leaves 105 for Angle C.

Answer, { The Side BC 290 The Angle B 45° The Angle C 105°.

CASE

CASE.IV.

The Three Sides given; to find the three Angles.

In all Triangles, as the Base or greater Side is to the Sum of the other Two Sides; so is the Difference of the Sides to the Difference of the Segments of the Base; which Half Difference, added to Half the Base, the Sum will be the Greater Segment, upon which the Perpendicular falls: But if subtracted from half the Base, the Remainder will be the Less Segment: So will the Oblique Triangle be reduced to two Right Angled ones, and may be answered after the same Manner as before.

(1st.) Find the Segments of the Base.

As 560 — 700 — 120

14000
770

560)84000(150 Difference

To \(\frac{1}{2}\) Base 280
Add \(\frac{1}{2}\) Diff. 75

2800

2800

From \(\frac{1}{2}\) Base 280
Subtract \(\frac{1}{2}\) Diff. 75

(3d.) Find the Angle at A.

(2d.) Find the Perpendicular CD.

Less Seg. DB 205

(4th.) Find the Angle at B.

292

Then the Angle A = 30°, added to B = 45°, and subtracted from 180°, leaves 105° for the Angle C, which were the Angles required.

The

The Use of TRIGONOMETRY

Exhibited in the Solutions of a Number of interesting Problems; many of which every Day occur; are of the greatest Utility in the Army, Navy, &c. and cannot be answer'd without it.

PROBLEMI.

To take the Height of any accessible Object at one Station.

First, with a Quadrant, by looking through the Sights to the Top of the Tower, find the Quantity of the Angle A, which suppose 52° 30'; then measure the Distance AB, which suppose to be 85 Feet; from hence you may proceed to find the Height, by Case I. of Right Angled Triangles.

(2d.) Find the Perpendicular BC.

To Hypothenuse 139.44
Add Base 85.

(1st.) Find the Hypothenuse AC.

Sum 224.44
Multiply by Difference 54.44

89776
89776
112220

37.5)5229.20.(139.44 + Hyp. Extract the Root 12218.5136(110.537 Perpendic.

375

1479

21)22

200

21 2205)11851 11025 22103)82636 66309 221067)1632700 1547469

Answer, 110.537 +, or 110 Feet, and above \(\frac{1}{2}\): The Height Required.

Note; That in this, and all such Cases, you must add the Height of your Eye, or Instrument to the Altitude before found.

PROBLEMI.

To measure an Inaccessible Altitude.

Let AB, in the following Figure, be a Church, Tower, or Fort, whose Height is required; but by Reason of a River, or some other Obstacle, it is inaccessible; that is, you cannot come to the Foot of it, by Reason of the Water, &c.

First, with a Quadrant, take the Angle of Altitude at C, which suppose 26° 30'. Then measure in a Right Line towards the Tower to D, any Distance, suppose 75 Feet, and at D observe again the Angle of Altitude, which let be 51° 30'.

Then; the two Visual Lines CB and DB, with the Distance DC, make the Oblique Triangle CBD, in which are given—All the Angles and Side CD. The Angles BCD being 26° 30′, and the Complement of ADB 51° 30′ to 180, is the Obtuse Angle BDC 128° 30′. Consequently, the third Angle CBD, at the Top, is = 25°.

(1st.) Find the Perpendicular DE in Right Angled Triangle ABD.

Triangle DBC.

Nat. Rad.: Op. Side DC:: Ang. C: Perp. DE

As 59.4 — 75 — 26.5 — 33.46

(3d.) Find the Height AB in the
Right Angled Triangle ABD.

Nat. Rad.: Op. Side BD:: Ang. D: Height
As 65.7 — 79.19 — 51.5 — 62 AB

(2d.) Find the Visual Line BD in Triangle ABD.

Triangle BDE.

Ang. B: Op. Side DE: N. Rad.: Side BD

As 25 — 33.46 — 59.17 — 79.19

(4th.) Find the Distance AD in the Triangle ABD.

N. Rad : Op. Side BD :: Ang. ABD : Dist. AD

As 61.7 — 79.19

As 61.7 — 79.19

Answer, { 62 Feet the Height. 49.41, or 49½ Feet the Distance from the second Station.

Note. The Line BD is the Length of a Scaling Ladder, which would reach from the Station at D over the Foss or Ditch, to the Top of the Tower at B.

PROBLEM

PROBLEM III.

To measure the Depth of a Well, or the Height of an Object from the Top of it.

First, look through the Sights of the Quadrant to the Bottom of the opposite Side the Well at C, so you will have the Angle CBD; next, take the Breadth AB at the Top, which is equal to CD at the Bottom: Then, by Case I. of Right Angle Triangles, you may easily find the Depth BD required.

Suppose the Angle at B, by Observation, to be 18° 30', and the Breadth at the Top 6 Feet; what's the Depth.

Natural Rad. 58.32675 but 58.3 is enough.

(1st.) Find the Hypothenuse BC.

As 18.5 — 6 — 58.3 6

18.5)349.8.(18.9 + the Line BC
185

1648
.1480

1680
1665

(2d.) Find the Depth BD.

Extract the Root 321-21(17.89 the Depth AB

Answer, { 17.89+, or 18 Feet, the Depth required.

PROBLEM.

To measure the Distance of any Object.

Suppose yourself standing at B, and a great Way off, as at A, you see a Fort or Castle, &c. or any other Object, whose Distance you would find from the Place where you now stand.

First, a Theodolite, or Semicircle, being placed at B, lay the Index, with its Sights, on the Diameter, where the Degrees begin, and through them view the Castle, &c. at A. The Instrument remaining fix'd in this Position, move the Index to 90 Degrees, (that being a Right Angle) and view some Mark at a Distance, (the farther off the better) as at C.—Next measuring the Distance from B to C, which suppose 73 Yards, remove your Instrument, and set it up at C. Then, with the Index laid upon the Beginning of the Degrees, as before, turn the Instrument about, till you can see your first Station at B, where fasten it; then turn the Index till you can see the Object A, and observe what Degrees are cut, as suppose 61° 45', which is the Quantity of the Angle where you stand; whose Complement to 90° is the Angle A.

Now, here are given all the Angles, and one Side of a Right Angled Triangle, to find either of the other Sides, which will be the Distance required.

(2d.) Find the Distance from B.

To Hypoth. AC 154.2
Add Side BC 73

Sum 227.2

Multiply by Differ. 81.2

4544
2272
18176

-28.15

(1st.) Find the Distance from C.

Ang. A: Op. Side BC:: N. Rad.: Dist.CA As 28.25 - 73 - 59.7 - 154.2

yards
Ans. {135.8+, or 136 Dist. from B. 154.2, or 154‡ Dist. from C.

Extract the Root i8448.64(135.8+, Dist. from B

23)84 69 265)1548 1325 2708)22364 21664

PROBLEM V.

To take the Distances of several inaccessible Objects, as Forts, Churches, in a Town, or Squadron of Ships at Sea, and to delineate them upon Paper.

First, make choice of two Places, from either of which you may conveniently see all the Objects; which two Places let be A and B in the following Figure.—This being done, set up your Instrument at A, laying the Index on the Diameter, and turn the whole Instrument about, till, through the Sights, you see your second Station B. Then, fixing the Instrument, direct your Sights to the several Objects, C, D, E, and F; noting down the Degrees cut at each Observation, which suppose to be as in the Table.

Then, remove the Instrument to B, laying the Index on the Diameter, and turn it about, till, through the Sights, you see your former Station at A; then direct your Sights to every one of the Objects at C, D, &c. setting down the Degrees at each Observation, as in the Table. Also measure the Stationary Distance, and set that down.

	С	D	E	F
ist Station	1 5	23	36	59
2d Station	51	31	2.2	13
Stationary Distance 150 Yards				

First, upon a Piece of Paper draw the Line AB; and from a Scale of equal Parts, take off, with your Dividers, the Stationary Distance = 150, and set it from A to B, so will A represent your first Station, and B the second. Then lay the Center of the Protractor upon the Point A, with its Diameter upon

the Line AB; keeping it fast, make Marks by the Edge at 11, 23, 36, 59, and draw Lines from the Point A through each of those Marks. Then upon B place the Center of your Protractor, its Diameter lying upon the Line AB; make Marks by the Side at 13, 22, 31, 51. Then draw Lines from the Point B through each of these Marks, and where the Lines cut the former correspondent Lines there will be found the Places repesenting these Objects. Then any of these Lines being taken in a Pair of Dividers, and applied to the Scale you laid your Stationary Distance down by, will give you their Distances, either from your Stations or from one another.

The Distance of any of these Objects from either Station, &c. may be found by Calculation; one Side and the Angles being given: But I shall omit that, on purpose to exercise the Learner's Genius, and proceed.

PROBLEM

PROBLEM.

To take the Distance, upon level Ground, of any inaccessible Tree, Fort, &c. or Breadth of a River, by a Common Square.

Suppose there is a River, as A B C, whose Breadth you want to know.—First, upon the Bank, at A, set up a Stick, AD, which suppose to be 5 Feet, or 60 Inches high; then fixing your Square on the Top, at D, look by the Side of it till you see the Edge of the opposite Shore C, and fasten it, as it may not go from that Position. This done, extend a Thread from D, by the other Side of the Square till it touch the Ground at E. Then measure the Distance EA, which suppose 15 Inches, (or 1 Foot 3 Inches) and you may find AC (by Reason of similar Triangles) thus.

Dist. EA: Side DA:: Side DA: Dist. AC

As 15 — 60 — 60 — 240 Inches,
which, reduc'd to Feet, give 20 for the Breadth of the River sought.

Note. There are various Ways of taking Heights and Distances; but the best is to take the Angles for Heights by a Quadrant; and the Angles for Distances by a Semicircle or Theodolite; and calculate by the foregoing Axioms. In all Heights the Triangle stands upright; but in Distances, it is supposed to lie stat or horizontal.

I shall here shew the Learner, how to take the Breadth of a River, or a small Distance, without any Instrument whatever; which is thus. Standing upon the Bank, bring down the Edge of your Hat, till it appears to touch the opposite Side, then steady your Head by laying your Hand under your Chin, and turn yourself towards some level Ground, observing where the Edge of your Hat glances upon it; for then, the Distance from you to that Place, is equal to the Breadth of the River, or Distance required.

PROBLEM VII.

To find, from the Top of a Fort, or Tower, how far any Tree, Ship, &c. is from you.

Let A be the Top of a Tower or Castle standing by the Sea-side; and let C be a Ship at Sea, or lying at Anchor, and you would know how far that Ship is off the Castle-wall.

With your *Quadrant* or *Semicircle*, direct your Sights from the Top of the *Tower* to the Place where the *Ship* is, and take the Angle, which we will suppose to be 55 Degrees. Then the *Castle-wall* being known before to be 143 Feet high, you may easily find the *Distance* of the *Ship* from the *Wall* in this Manner.

(1st.) Find the Side AC.

(2d.) Find the Base BC.

Ang. C: Height Wall:: Nat. Rad.: AC

As 35 — 143 — 61 — 249.2 N. Rad.: AC: Ang. A: Dist BC

As 67 — 249.2 — 55 — 204.56

By this Method you may easily discover if a Fleet of Ships, or one single Ship, at Sea, makes towards you or not. For having observed from the Top of the Fort the Angle from thence to the Ship, and noted it down, rest a little Time, and observe again: Then, if the Angle be bigger than before, the Ship is departing from you; but if less she is making towards you.

PROBLEM VIII.

To take the Perpendicular Height of a Hill or Mountain, and also the Horizontal Line, or Base, on which it stands.

Let ABD be the Hill.—First, set up a Mark on the Top at B, equal to the Height of the Quadrant or Instrument that is used at the Bottom, from whence you intend to make your Observation. Then by looking through the Sights to B take the Quantity of the Angle at A, which we will suppose to be 50°. Next measure the Hill from A to B, which let be 546 Feet. This being done, you may easily find the Perpendicular BC, or Part of the Base AC, by Case II. of Right Angles.

For the Perpendicular BC.

For the Side AC.

Now, as the Hill descends, you may go on the opposite Side, and make the like Observations, viz. set up the Instrument at D, and take the Angle D, 40°, and measure the Side DB, 651 Feet, then you may find the Side CD in the same manner you did AC. Thus,

If to the Part AC = 531.1 Feet, be added the Part CD = 499 Feet, the Sum 850.1 Feet will be the whole Length of the Herizontal Line AD requir'd.

The Perpendiculer Height DC is = 418.7 as above.

PROBLEMENT.

To take the Height and Distance of a Cloud.

Suppose it was requir'd to find the Height of the Cloud C.

Let a Person standing at A, look through the Quadrant to the Cloud at C, so will the Thread cut the Angle at A. At the same Time let another Person, making the like Observation at B, take the Angle B. Then measure the Distance between the two Stations. By this means you will have one Side and all the Angles of an Obsique Angle Triangle given, from whence you may easily obtain the rest, and particularly the Perpendicular CD, which will be the Height of the Cloud requir'd.

EXAMPLE. Suppose the Angle at A, by Observation, be 42°, the Angle B 36°, and the Distance AB 78 Yards: I demand the Height of the Cloud.

Triangle ABE *. (2d.) Find the Hypothenuse CB in

N. Rad.: Op. Side AB:: Ang. A: Perp. BE

As 62.6 — 78 — 42 — 52.1

Ang. BCE: Op. Side BE:: N. Rad.: Hyp. BC

As 78 — 52.2

(3d.) Find the Perpendicular CD in Triangle CDB.

N. Rad.: Op. Side BC:: Ang DBA: Perp. CD

As 61.1 — 53.2 — 36 — 31.3

Answer, 31.3 Yards, the Height requir'd.

The Figure on the Right Hand is only that on the Left set in a different Position, to shew in a more natural or easy Manner, how the Perpendicular salls from the End of the given Side AB, upon the Side AC produc'd to E.

PROBLE M

PROBLEM X.

To find how far a Hill of any given Height can be seen at Sea, or upon level Ground.

How far, for Instance, can the Pike of Teneriff be seen at Sea, whose Height is about four Miles.

The Circumference of the Earth is supposed by Mathematicians to be divided into 360 equal Parts, called Degrees; and our countryman, Mr. Norwood, has found, by measuring from the Tower of London to the Middle of the City of York, in the Year 1635, that one of those Degrees, upon the Earth's Surface, contains 69½ Miles; according to which Measure, we find the Earth's Circumference to be 25020 Miles—its Diameter 7964—and its Semidiameter 3982.

Then in the Triangle ABC, Right Angled at B, we have the Side CB = the Earth's Semidiameter 3982.—Also the Line AC = the Semidiameter and Height of the Mountain together = 3986.—To find AB, the Distance from the Hill to the visible Horizon.

This Mountain can be seen 178.5 Miles at Sea.

PROBLEM XI.

The Distance run at Sea, and the Course, given; to find the Disserence of Latitude and Departure from the Meridian.

Suppose a Ship from A, in the Latitude of 50° North, sails away, SW by S. 52 Miles, to C: I demand the Latitude she is in, and also her Departure from the Meridian.

(1st.) For the Departure.

Note. That in all Cases of Sailing, we suppose the Top of the Book North, and Bottom South; the Right Hand East, Left Hand West.—The Distance run is the Hypothenuse; the Dissertance of Latitude is the Perpendicular; the Departure the Base. The Angle at the Perpendicular is the Course, and the other its Complement.

PROBLEM XII.

To take the Distance of any Cape, Fort, or Island, from a Ship at Sea.

Sailing W. S. W. I saw, at some Distance, a Point of Land, which I set, and find it bears from me W. by N. and having sailed 6 Leagues surther, I find it then bears from me N. W. by W. I would know how far this Land is from me.

Nat. Rad. 60.7 is enough.

(1st.) Find the Perpend. BD in Triangle ABD.

(2d.) Find the Distance CB in Triangle BCD.

Answer, 26.13 Miles, the Distance requir'd.

PROBLEM XIII.

To take the Height of a Tree, Fort, Obelisk, Pyramid, or any Object, by a common Stick only, when the Sun or Moon shines upon it.

Take a Stick of any Length, suppose 8 Feet; set it upright upon the Ground, as at CB in the Figure below. Mark the End of its Shadow at A, and measure its Length from B to A, which suppose to be 15.5 Feet. Then measure the Length of the Shadow of the Pillar or Obelisk BD, which suppose to be 200 Feet. This being done, you may easily find the Height: For (by Reason of like Triangles) it will always hold,—as the Length of the Shadow of the Stick AB in the small Triangle, is to its Height CB; so is the Length of the Shadow of the Obelisk BD in the great Triangle, to DE the Height thereof.

In this Manner the Heights of the Pyramids in Egypt have been taken. Those stupendous Buildings are supposed to have been erected by the Children of Israel, when in Bondage, for Sepulchers for the Egyptian Kings. They are the greatest Pieces of Antiquity now in Existence. There are several smaller Ones, but the largest, which is justly esteemed one of the Wonders of the World, is 500 Feet in Perpendicular Height;—700 Feet is measured obliquely from the Bottom to the Top;—and its Base covers about 11 Acres of Ground.

PROBLEM XIV.

To take the Height of any accessible Object by a Bason of Water, or common Looking-glass.

Travelling along the Road, I see a fine May-pole, whose Height I would gladly know; but having no Mathematical Instrument with me, I procure a Basion of Water, which I set upon the Ground, at some Distance from the Pole, as at A; then I go backwards, till I see the Top of the Pole in the Middle of the Water, as at B. This done, I measure the Distance from my Station at B to the Basion at A, which suppose 72 Inches; and also measure from the Basion to the Bottom of the Pole at D, and find it 175 Inches. Next I measure the Height of the Eye from the Ground, which suppose 60 Inches. Then say, by the Rule of Three,

The same Thing may be obtain'd by a Looking-glass, laid truly Horizontal, or level on the Ground, by walking back till you can see the Top of the Building, &c. in the Middle of it, as was done by the Water.

PROBLEM XV.

To take the Distance of the Sun, Moon, or any of the Heavenly Bodies.

Suppose it was requir'd to find the Distance of the Sun, in Diameters of his Body from us.

With a Quadrant nicely graduated, take the Altitude of the lower and upper Limb in Degrees and Minutes, and subtract the one from the other; the Remainder will give the Diameter of the Sun, which we will suppose, in this Case, to be 32 Minutes.

Then have we given in the Triangle ABC, Right Angled at B,—the Angle at A = 16', and the Side CB = .5 = Half the Diameter of the Sun, whose whole Diameter we will call 1; to find the Distance, or Side AC.

.26)2865(110 Diameters; and so far is the Sun of its own Breadths from us in the

26 Winter, but in Summer, the Angle being a little smaller, he must,

consequently, be a little further from us.

26 26 -----

Having found the Distance of any Heavenly Body in its own Diameters from us; you may easily tell its Distance in Miles, if you first know the Diameter of that Body in Miles. For, the Distance in Diameters, multiply'd by the Miles in one Diameter, gives the Distance sought.

For the Use of the Learner, I have here subjon'd a Table of the Diameters of all the Planets in English Miles; whose Distances he may calculate at his Leisure.

Sun 800.000—Mercury 2460—Venus 7906—Earth 7964—Mars 4444 Jupiter 81.155—Saturn 67.870—Moon 2175.

In this Manner we can tell the apparent Distance of any of the Heavenly Bodies: For the Sun appearing about 1 Foot in Diameter, his apparent Distance can be only 110 Feet, or 37 Yards. The apparent Distance of the Moon is nearly the same.

PROBLEM XVI.

To find the Distance of the Moon from the Earth another Way.

As the Places of all the *Heavenly Bodies* are computed from the *Center* of the *Earth*, but we are obliged to view them from the *Superfices*, they must therefore appear something lower in the Heavens than they really are.

Thus, suppose, for Instance, the p to be at L in the visible Horizon; an Observer at G will see her in the Line GN, but an Eye in the Center will see her in the Line HR.—The former is her apparent Place, known by Observation with exact Instruments; the latter her true Place, and known by Calculation from Astronomical Tables of her Motion. The Difference between these two Places is the Measure of the Angle GLH, which is called the Horizontal Parallax. This Angle has been found, when the p was at a mean Distance, to be 57 Minutes nearly.

Then in the Triangle HGL, Right Angled at G, we have the Angle at L = 57', the Side GH = the Earth's Semidiameter given; to find HL, which is done thus.

Ang L: Semid. GH:: N. Rad.

As .95 - 1 - 57.3

G L DN

.95)57.30(60 Semidiameters: which multiply'd by the Earth's Semidiameter=4000
570 nearly, you have 240000 Miles the Distance of the Moon sought.

30

When the D is at her least or greatest Distance from the Earth, she will be about 3 Semidiameters of the Earth nearer or farther off, than at her mean Distance.

In like Manner may the Distance of any of the *Planets*, Comets, or other cælestial Phænomenon be determined, by obtaining its Parallax in the Horizon.

NOTE. To find the Distance of any Place to which the Sun, Moon, or any Star is vertical, i. e. over its Head, or in its Zenith. See my Geography, p. 30.

PROBLEM XVII.

To measure the Height of a Mountain in the Moon.

The Moon is supposed to be composed of Land and Water as our Earth is; consequently there must be some Unevennesses, or Inequalities, of Hills and Vallies as here. This indeed is confirmed by viewing her through a good Telescope; for then we find, that the Line, which seperates the Light from the Dark Parts on her Surface is not even or regular, but tooth'd and jagg'd with innumerable Breaks; and even in the dark Parts, near the Borders of the lucid Surface, there are seen some small Spots enlighten'd by the Sun, which are very visible when the D is three or four Days old, and which can be nothing else but the Tops of Mountains or Rocks; since it is impossible for the Sun's Rays to fall upon those Parts only, unless they were higher t' an the Rest of the Surface.

The Lunar Mountains are found to be higher, in Proportion to the Body of the 1 than any Hills upon our Globe.—The Manner of calculating their Heights is this.

Let EGD be the Surface of the D and ECD the Diameter of the Circle bounding Light and Darkness. A the Top of a Hill within the dark Part, when it first begins to be illuminated by a Ray of Light coming from the Sun at S. Then observe with a

Telescope the Proportion of the Right Line AE, (i. e. the Distance of the Point A from the lucid Part) to the Diameter (or Semidiameter) of the DED, for that being ascertain'd, you have in the Triangle AEC, Right Angled at E, (where the Ray of Light touches the D) the two Sides AE and CE, to find the Hypothenuse AC, from which subtracting BC = EC, there will remain AB the Height of the Mountain.

Ricciolus, on viewing the D when about four Days old, observ'd the Top of a Hill called Saint Catherine, near the N. Part of Mount Taurus, (see my Astronomy) to be illuminated, and that it was then distant from the Surface about 1 of the Moon's Semidiameter. Now as the Semidiameter of the DECis about 1088 Miles, the Line AE being 1 of it, must be = 136 Miles. Consequently, if the of EC and of AE be added together, and then the Root of it be extracted, it will give the Line AC, from which subtracting the Moon's Semidiameter BC or CE, the Remainder, which is 8 Miles will be the Height of the Mountain sought.

PROBLEM XVIII.

To measure the Height of the Atmosphere.

The Atmosphere is that Circle of vaporous Air surrounding the Earth, which being illuminated by the Sun's Rays makes the Brightness and Glory of the Firmament we behold, whilst the Sun continues above the Horizon. And, after the Sun is gone down, the Atmosphere, which is higher than we are, will still continue to be illuminated by those Rays passing by the Earth over our Heads; but this Brightness grows less and less as the Sun descends lower, till he arrives at 18° below the Horizon; when all the Parts of the Air above fall out of his Rays, and, consequently, become dark.

To make this plainer; suppose the inner Circle ADL represents the Earth, and the Circle CBM the Atmosphere. Suppose a Person standing upon the Earth at A whose sensible Horizon is AN. Also let SB be a Ray of Light coming from the Sun, touching the Earth at D, which falls upon the distant Part of the Air, in the Horizon at B, at which time Twilight ceases. This has been found to happen when the Sun is des-

cended 18° below the western Horizon in the Evening; and also when he is approached within 18° of the eastern Horizon in the Morning.

Now as the Arch' AD is 18°, we have, by drawing the Line EB, two equal Triangles, from either of which we may find the Height of the Atmosphere requir'd.—For in the Triangle ABE, Right Angled at A, we have given the Side AE the Earth's Semidiameter, and the Angle AEB = 9° = half the Arch of the Sun's Descent below the Horizon, and the Angle ABE = 81°, to find the Hypothenuse EB, from which if you subtract the Semidiameter of the Earth, the Remainder will be the Height of the Atmosphere.

Thus, Ang. B: Earth's Semidr. AE:: N. Rad.: Hypoth. EB

As 81 ______ 4000 _____ 81.99 _____ 4048
4000 Earth's Semidiameter subtract

48 Height of the Atmosphere required.

PROBLEM XIX.

To measure the Distance of a Cloud, from which issues Lightnings and Thunder.

Take a small Ball of Lead, Ivory, or any other matter, and affix it to the End of a fine Thread. Then measure from the Center of the Ball, along the Thread, exactly 39.2 Inches, where make a Loop. This done, suspend it by

that Loop to the Ceiling of the Room, or to any other Place where it may hang freely, and vibrate backwards and forwards like a Pendulum, as in this Figure. Now the Property of this little Instrument is, that each Vibration, whether it passes through a larger or a smaller Space, will be performed in one Second of Time.

Being thus prepar'd, take the Ball in your Hand, and drawing it aside from its perpendicular Direction AB, to any Distance, sup-

pose to C, hold it there till you see the flash of Lightning pass by, at which Moment let it go, and count the Number of Vibrations till you hear the Stroke of the Thunder. Then these Vibrations multiplied by 1142, (the Number of Feet, Sound uniformly passes thro' in each Second) the Product will be the Height of the Cloud in Feet, if it be nearly over the Place where you are; or its Distance from you in any other Situation.

Thus, suppose the String is found to make 8 Vibrations between the Lightning and the Thunder; then $8 \times 1142 = 9136$ Feet, which, divided by 5280 (the Feet in 1 Mile) gives 14 Mile nearly; and so far is that alarming Tempest from you.

In this Manner you may continue to measure the Distance of the Cloud all the Time it passes from your Zenith to the Horizon, and by that Means be acquainted with the Danger it seems to threaten the Neighbourhood, as well as the Extent of the visible Hemisphere of Clouds.

The Distance also of a Ship at Sea, or a Fort, may be estimated in the same Manner, by counting the Vibrations from the Flash of the Powder to the Report of the Gun.

PROBLEM XX.

To calculate the Length of the Earth's or Moon's Shadow.

The Angle of the Cone ACD of the Earth's Shadow in the annex'd Figure, is equal to the Sun's apparent Diameter *, which, at a mean Distance from us, is about 32 Minutes.—Hence, in the Triangle ACB, Right Angled at B, we have the Angle ACB = 16 Minutes, the apparent Semidiameter of the Sun, and AB the Semidiameter of the Earth == 1; to find AC or BC the Length of the Shadow, which is done thus.

110

Thus, when the Sun is at a mean Distance from us, the Shadow of the Earth reaches about 215 Semidiameters beyond it: But when the Sun is at his greatest or least Distance, the Shadow will be lengthened or shortened 3 or 4 Semidiameters, more or less.

Hence, you may also determine the Height of the Moon's Shadow: For, as the Moon is never at any great Distance from the Earth, the apparent Semidiameter of the Sun must be nearly the same there as here. Consequently, the Moon's Shadow must contain the same Number of Semidiameters of the Moon, as the Earth's Shadow does Semidiameters of the Earth: Which Semidiameters, multiply'd by the Miles in the Semidiameter of the Moon or Earth, will give the Length of the Shadow respectively in Miles.

* The Semiangle of the Cone of the Earth's Shadow BCD, is equal to the apparent Semidiameter of the Sun view'd from the Top of the Shadow, which Angle is always equal (in the Shadow of every Planet) to the apparent Semidiameter of the Sun SBF, lessen'd by his Horizontal Parallax BSD at that Planet. But as the Horizontal Parallax of the Sun, i. e. the Angle under which the Earth is seen from thence, is scarcely to Seconds, it may be omitted, as is done in the above Calculation.

PROBLEM XXI.

To calculate the Diameter of the Earth's Shadow at the Distance of the Moon; and also, the Diameter of the Moon's Shadow at the Earth.

In the following Figure let S represent the Sun, E the Center of the Earth,

M the Moon, EC the Cone of the Earth's Shadow (at a mean) = 215 Semidiameters of the Earth: Then MC will be the Cone of the Earth's Shadow reaching beyond the Moon, whose Length is thus found.

From EC the Cone of the Earth's Shadow = 215
Subtract EM the Dist. of the Moon in Earth's Semid. = 60*

Remains MC the Shad. of the Earth beyond the Moon = 155

Then, by Reason of similar Triangles, it will always hold;

As the Length of the whole Shadow

Is to the Diameter of the Earth

So is the Length of the Shadow beyond the Moon

To the Diameter of the Shadow at the Moon

cd.

215)1234420(5741 Miles == cd, the Diameter of the Earth's Shadow at the Distance of the Moon.

By this Problem also may be found the Diameter of the Moon's Shadow at the Surface of the Earth, and, consequently, how much of the Earth is involv'd in that Shadow in an Eclipse of the Sun. For the Length of the Moon's Shadow is found to be about 60 Semidiameters of the Earth, which is nearly the Moon's mean Distance from us; her Shadow, in that State, must, therefore, reach

as tar as the Center of the Earth.—But as the Moon is, sometimes, almost 4 Semidiameters of the Earth nearer, the Shadow must reach 4 Semidiameters beyond the Center of the Earth; and when the Moon (as she sometimes is) is 4 Semidiameters further from us, the Shadow will then not reach the Earth at all. In such Case, the Sun, though centrally eclips'd, will not be totally covered by the Moon; but an Annulus, or Ring of Light, will appear round the Border of that Luminary, as happen'd April 1st, 1764.

^{*} The Method of finding the Distance of the Moon, in Semidiameters of the Earth, is shewn at Problem XVI.

PROBLEM XXII.

To calculate the Beginning, End, and total Duration of an Eclipse.

Having, from Astronomical Tables, obtain'd the Time of the Middle of the Eclipse, which suppose to be December 21 Day, 11 Hours, 49 Minutes, with the Latitude of the Moon at that Time, = 40 Minutes, you may then proceed to find the Beginning, End, and total Duration, as follows.

From a Scale of equal Parts, of any Size, take off the Semidiameter of the the Earth's Shadow, which, at the Diftance of the D (at a Mean) is about 42'; and, setting one Foot in C, describe the inner shaded Circle, to express that Part of the Cone of the Earth's Shadow cut off at that Place where the D passes thro' in that Eclipse.—With the Sum of the Semidiameter of the D = 16', and Earth's Shadow = 42', (which together = 58') taken from the same equal Parts describe the outer Circle.—Draw the

Line FL through the Center, to represent the Ecliptic, or Path of the Earth's Shadow; cross it, at Right Angles, with the dotted Line PQ, to express the Poles of the Ecliptic.—Then with a Line of Chords, or a Protractor, set off 5½° from P, upon the outer Circle, towards the Right Hand, because the Latitude of the D is North ascending, to express the Angle of the Moon's Path with the Ecliptic, and draw the Line OR.—Take the Latitude of the D = 40', from the same Scale of equal Parts, and set it from C to M upon the Line CO.—Then draw a Line through M, at Right Angles to CO, and that Line will represent the Path of the D during the Eclipse.—Next, with the Semidiameter of the D = 16', taken from the equal Parts, describe, on the three Points B, M, and E, severally, the three little Circles; so will the Circle at B represent the D at the Biginning, that at M the Middle, and that at E, the End of the Eclipse.

Now, from the Center C, draw two Lines to B and E; then in the Right Angled Triangle CMB, Right Angled at M, we have given CM the Latitude of the D = 40, and CB = CE the Sum of the Semidiameters of the Moon and and Earth's Shadow = 58; to find MB = ME, the Motion of Half Duration of the Eclipse.

From Square of 58 = 3364
Take Square of 40 = 1600

Extract the Root 1764(42 Minutes, = the Motion of Half the Duration. And because the Moon passes

16 over 31 of these Minutes (at a mean Rate) in one Hour, we have this Proportion. ——If 31 Min.: 1 Hour:: 42 Min.: 1 Hour 21 Min. which

82)164 subtracted from, and added to, the Middle, will give the Beginning and End.

164

Middle of the Eclipse Dec. 21 11 49
Half Duration subtract and add 1 21

Beginning 21 10 28 End 21 13 10

Total Duration 2 42

Note. The Middle of an Eclipse, with the Lat. of the Moon, may be easily had from my Aftronomy.

PROBLEM XXIII.

To take the Distance of an inaccessible Object without the Help of any Instrument.

Suppose E, in the following Figure, to be a Fort, whose Distance you want to know, and you cannot approach it, on Account of some Moat, Ditch, or River, lying between you and the Object.

First, at some Distance from the Ditch or River, set up a Stick, as at C; then advance, in a Right Line, towards E, any Number of Yards, suppose 50, and set up another Stick at A; next, move, in a Line perpendicular to CE, from A to B, any Distance, suppose 66 Yards, and set up another Stick at B; then return back to C, where you began, and remove from thence, in a Line perpendicular to CE, till you see the Stick at B and the Object E in a Right Line, and set up another Stick in that Place at D, measuring the Distance from C to D, which suppose 76 Yards. Then it will always hold;—

Note. If, in the third Term, you had us'd the Distance AB = 66 Yards, you would have obtain'd the Distance from A to E = 330.

PROBLEM XXIV.

To find, by a new Method, where the Bees hive in large and extensive Woods, in Order to obtain their Honey.

Take a Plate or small Piece of Board, on which is spread a little Honey or Treacle, and set it down on a Rock or Stump of a Tree within the Wood. This the Bees will soon find out if any are near, for it is generally believ'd they smell Things of that Nature at the Distance of a Mile, or surther. Whilst these little Creatures are feeding, secure two or three of them in a Box, or something convenient. Then let one of them go, observing carefully, by a Pocket Compass, the Course he takes; for Bees, after they rise in the Air, sly directly in a strait Line to the Tree where their Hive is.

Suppose, for Example, the first Bee is found to fly directly West; then you may be sure the Tree is some where in that Line from your present Station. But, in order to know how far, you must make an Offset, either North or South, as large as you can, which in this case we will suppose to be 100 Rods or Perches (the larger the better) to the South. Here you must let go another Bee, observing his Course as before, (for this Bee, being loaded like the other, will fly directly to the Hive) which Course we will suppose to be N. W. by W. —56° 15' towards the West, it only remains now to find where these two Courses or Lines intersect or meet with each other, for there you will find the Tree in which the Honey is.

This may be easily done.—For in the Right Angle Angled Triangle ABC, are given the Right Angle B, the Course of the first Bee, the Angle at A, the Course of the second Bee, and the Distance AB; to find BC, or AC, the Distance of the Tree from either Station.

Formerly, they found the *Honey* by surprizing the Bees, and following them, one after another, till they found out the Hive; but since this Trigonometrical Method has been us'd, the Searchers discover that Booty in a few Hours, which before requir'd many Days.

CONCLUSION.

CONCLUSION.

HESE few Problems are sufficient to point out the great Use of this Branch of Learning. The Advantages resulting from it to Society are very great;—almost infinite.—Nothing however posited in the Heavens;—nothing upon the Earth or Seas;—but its Distance and Dimensions may be ascertained by it.—It is no Wonder then, that Pythagoras, a learned Philosopher of Samos, when he had discover'd that samous Proposition (47th of 1st Book of Euclid) which is the Foundation of this Science, should, in Gratitude, sacrifice an Hecatomb, i. e. 100 Oxen, to the Muses, for inspiring him with such an useful Invention, which he judg'd beyond the Power of buman Abilities to discover.

Thus by one plain Geometrical Figure, having three Sides and three Angles, and affisted by the Rule of Three, you see what amazing Truths may be discover'd. This illustrates not only the old Motto,—Tria sunt omnia—but alo proves the Truth of Mine in the Title-page.

Cuncta Trigonus habet, satagit quæ docta Mathesis, Ille aperit clausum quicquid Olympus habet.

Which may be English'd thus;

In Heaven the latent Science lay conceal'd.
Till the Triangle came, and Truth reveal'd.

FINIS.

Just Publish'd, by the same AUTHOR.

- A View of the Earth; being a Short but Comprehensive System of Modern Geography: Illustrated with a new Sett of Maps, &c. and a curious Geographical Clock, which points the Hour at any Kingdom or Nation upon the Earth at one View.
- A Curious Astronomical Machine, call'd the Chronologer Perpetual; which exhibits the Year, Month, Day of the Month, Day of the Week, Sun's Rising, Sun's Setting, and Day break, in a Manner new, and serves for ever.
- A View of the Heavens; being an Easy Introduction to Modern Astronomy: Exhibiting the Number, Order, Distances, and Periods of all the Planets and their Moons, composing our System; with the Length of the Year, Day, and Variety of Seasons, to the Inhabitants of each Planet. Adorn'd with Copperplates of the System, Course of a Solar Spot over the Sun's Disk, A Map of the Moon, &c. and a curious Astronomical Clock, which shews the Hours of the Night by the Stars. Address'd to the Ladies and Gentlemen of Great Britain and Ireland.

