Introduction to complexity theory

Why Computational Efficiency Still Matters?

- Computers execute tasks extremely fast, but <u>real-world problems</u> can be <u>too large to handle</u>.
- As computers advance, we <u>attempt to solve bigger problems</u>, keeping us <u>limited by capacity</u>.
- Early computers were large, but had far less computational power than modern smartphones.
- Despite advancements, <u>computational and memory constraints remain.</u>

Hence, we need to analyze the efficiency of our program using "Complexity Theory"

Importance of Program Efficiency

- Efficient programming is crucial due to limited computational resources.
- In classroom settings, we almost never encounter this issue because the inputs to our problems are <u>quite small</u>.
- As a result, even an inefficient program can process them very fast (in computer terms).
- However, real-world problems involve <u>massive inputs</u>, making <u>efficiency critical</u>.
- Poorly optimized programs can lead to
 - Unacceptable execution times
 - High memory consumption

Example – Matrix Multiplication Complexity

• Matrix multiplication: C = A × B, where C's elements are computed using row-column multiplication.

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix} \begin{bmatrix} b_1 & b_2 & b_3 \\ b_4 & b_5 & b_6 \\ b_7 & b_8 & b_9 \end{bmatrix} = \begin{bmatrix} c_1 & c_2 & c_3 \\ c_4 & c_5 & c_6 \\ c_7 & c_8 & c_9 \end{bmatrix}$$

Example – Matrix Multiplication Complexity

• Matrix multiplication: C = A × B, where C's elements are computed using row-column multiplication.

- If A and B are 3 × 3 matrices:
 - Each C element requires 3 multiplications, C has 9 elements
 - \circ Total multiplications = 3 × 9 = 27
 - At 2 GHz CPU speed (~1 operation per nanosecond), takes ~27 nanoseconds.
 - \circ 27 × 10^{\(\delta\)} seconds = 27 nanoseconds.

Example – Matrix Multiplication Complexity

Matrix multiplication: C = A × B, where C's elements are computed using row-column multiplication.

- If A and B are 10,000 × 10,000 matrices:
 - Each C element requires 10,000 multiplications.
 - Total multiplications = 10⁴×10⁴×10⁴=10¹²
 - At 2 GHz CPU speed (~1 operation per nanosecond), takes ~16.67 minutes.
 - 1012* 10^-9 seconds = 1000 seconds = 16.67 minutes
- Larger matrices drastically increase execution time.

Example – Memory Consumption Issue

- Memory efficiency is crucial to avoid excessive resource usage.
- For example:
 - Bangladesh NID database has 50 million entries (~5×10^7).
 - Each name: 20 characters \rightarrow 100 MB total (5 X 10⁷ X 20=10⁹ bytes).
 - If additional data is stored, memory usage can exceed 1 GB.
- Problem: A simple program that loads the entire file into memory consumes at least 100 MB and could exceed 1 GB.
- Concern: Personal computers have 8-16 GB RAM
 - —a single inefficient program can severely impact performance.

Understanding Time & Space Complexity

- CPU time and memory space are scarce resources that must be used efficiently.
- Two key measures of efficiency:
 - Time Complexity → How execution time grows with input size.
 - Space Complexity → How much memory the program consumes.
- Performance varies based on input, but we focus on the worst-case scenario:
 - Worst-case complexity determines
 - 1) maximum resource needs and 2) execution time limits.
- While best-case and average-case complexities exist, this book focuses only on worst-case complexity.

Improving Worst-Case Performance of a Program

- Small modifications can drastically improve performance.
- **Example:** Searching in the NID database
 - Naïve approach: Load the entire file into memory
 - High memory usage (~1 GB).
 - o **Optimized approach**: Read one line at a time, compare, then discard if not a match
 - Only 20 bytes needed.
 - Performance gain: Stops searching early if a match is found,
 - reducing execution time.
- Most performance improvements require clever algorithms and data structures.
- Data Structures & Algorithms (DSA) are core areas of computer science for this reason.

Linear Search

```
Function linearSearch (S, x) {
    L = length(S)
    for (i = 0; i < L; i = i + 1) {
        if (S[i] == x) then return i
    }
    return -1</pre>
```


Binary Search [data sorted in ascending]

- •Binary Search is a searching algorithms which works on sorted array
- At every iteration it finds the middle element of the array using

$$mid = \frac{(low + high)}{2}$$

- If middle element is equal to the key, search stops.
- If the middle element is greater than the key, search continues in the first half. Otherwise search continues in the second half.
- •It has best case complexity of O(1), average and worst case complexity of $O(\log n)$

Binary Search [data sorted in ascending]

```
Function binarySearch (S, x) {
      Length = length(S)
      L = 0
      H = Length - 1
      while (L <= H) {
            M = (L + H) / 2
            if (S[M] == x) then return M
            else {
                  if (S[M] \subset X) then L = M + 1
                  else H = M - 1
      return -1
```

```
Function binarySearch (S, x) {
     Length = length(S)
    L = 0
    H = Length - 1
    while (L <= H) {
         M = (L + H) / 2
         if (S[M] == x) then return M
         else {
              if (S[M] \subset X) then L = M + 1
              else H = M - 1
     return -1
                                                     0
                                                                       2
                                                                                3
                                                                                                         6
                                                                                                 5
                                                                              45
                                                                                       50
                                                                                                        95
                                                                                                              L=0, H=6, M= (0+6)/2=3
                                 Search 50
                                                    L=0
                                                                       2
                                                                              M=3
                                                                                        4
                                                                                                 5
                                                                                                       H=6
                                 50 > 45
                                                                              45
                                                                                       50
                                                                                                        95
                                                                                                              L=4 (update), H=6
                                 Take 2<sup>nd</sup> half
                                                                               3
                                                                                      L=4
                                                     0
                                                                       2
                                                                                               M=5
                                                                                                       H=6
                                 50 < 71
                                                                              45
                                                                                       50
                                                                                                        95
                                                                                                              L=4, H=6, M=(4+6)/2=5
                                                    11
                                                                     18
                                 Take 1st half
                                                                                       L=4
                                                                       2
                                                                               3
                                                     0
                                                                                      M=4
                                 Update right, H
                                                                              45
                                                                                       50
                                                                                                        95
                                                                                                                L=4, H=4 (update),
                                                    11
                                                                     18
                                                                                       L=4
                                                     0
                                                                       2
                                                                               3
                                                                                      M=4
                                  50 found at
                                                    11
                                                                      18
                                                                              45
                                                                                       50
                                                                                                        95
                                                                                                                L=4, H=4, M=(4+4)/2=4
                                  position 4
                                                                                                                      (Found)
                                                                                     done
                                                                                                                                    ΙU
```

Comparing Linear Search vs. Binary Search

Linear Search: O(N)

- Directly checks <u>each element.</u>
- Example: If N=1024, it takes 1024 comparisons.

Binary Search: O(log₂N)

- Cuts the <u>search space in half</u> each step.
- **Example:** If N=1024, it only takes **10 comparisons** $(\log_2 1024 = \log_2 2^{10} = 10)$.

Key Takeaway:

- Binary search is exponentially faster than linear search for large inputs.
- Choosing the right algorithm can drastically improve performance.

Understanding Asymptotic Complexity

- Asymptotic complexity describes how a program's <u>resource usage grows</u> with <u>input size N.</u>
- **Example:** If complexity is O(N^2), the actual time/space usage is **C** · **N^2** for some constant C.
 - The constant C depends on:
 - Code implementation details.
 - CPU architecture and operation costs.
 - Data size and structure.
- Key takeaway: We focus on how complexity scales rather than exact execution time.

Example – Linear Search Complexity

Function linearSearch (S, x) {
 L = length(S)
 for (i = 0; i < L; i = i + 1) {
 if (S[i] == x) then return i
 }
 return -1</pre>

- Operations in worst-case for input size N:
 - 1) Compute length \rightarrow 1 operation.
 - 2) Increment loop index \rightarrow **N** additions.
 - 3) Compare index with length \rightarrow **N** comparisons.
 - 4) Load and compare elements \rightarrow N+ N = 2N operations.
 - 5) Return statement \rightarrow 1 operation.
- Total: 1+ N + N + 2N+ 1 = 4N+2 operations.
- If another implementation takes 3N+2,
 - It's better, but constant differences don't matter much.

Why Ignore Constant Factors in Complexity?

- Compilers <u>optimize execution</u>, making <u>small differences negligible</u>.
- <u>Different CPU operations</u> have <u>varying execution costs</u>, making <u>exact timing unpredictable</u>.
- Hardware improvements make constant factor differences irrelevant over time.

Key takeaway: What matters is how complexity grows with input size
 rather than small efficiency differences.

Comparing Sorting Algorithm Efficiency

- Selection Sort: O(n^2), runs in (n(n+1))/2 time.
- **Bubble Sort:** O(n^2), similar growth as selection sort.
- **Merge Sort:** O(nlogn) significantly faster for large inputs.

Comparing Sorting Algorithm Efficiency

- Selection Sort: O(n^2), runs in (n(n+1))/2 time.
- Bubble Sort: O(n^2), similar growth as selection sort.
- Merge Sort: O(nlogn) significantly faster for large inputs.

Key Takeaways:

- For small inputs, all three perform similarly.
- ✓ As **N** grows, merge sort outperforms both selection and bubble sort.
- Constant factors are negligible; the dominant term determines efficiency.

Input Size	Bubble Sort	Selection Sort	Merge Sort
8	64	28	24
16	256	136	64
32	1024	528	160
64	4096	2080	384
128	16384	8256	896
256	65536	32896	2048
512	262144	131328	4608
1024	1048576	524800	10240

Space Complexity of Bubble, Selection, and Merge Sort

- Bubble Sort and Selection Sort are in-place sorting algorithms.
 - They only require <u>a small, constant amount of extra</u> memory for swaps.
 - Therefore, their **space complexity** is **O(n)**.
- Merge Sort, though also an in-place algorithm, requires extra memory for temporary subarrays during the merging process.
 - The space needed for the subarrays is proportional to the input size.
 - Thus, the space complexity of Merge Sort is also O(n).
- All three sorting algorithms have O(n) space complexity
 - Despite the different mechanisms used in the algorithms,
 - The additional memory used is proportional to the input size,

Understanding Big-O Notation

What is Big-O Notation?

- It describes the worst-case time or space complexity of an algorithm as input size N grows to infinity.
- It helps compare algorithms by focusing on their growth rate, ignoring
 - 1) constant factors (Multiplicative & Additive)
 - 2) lower-order terms
- Example1 (constant factors): O(N)
 - \circ Linear search algorithm takes T(N) = 4N + 2 operations in the worst case.
 - Multiplicative constants (4) are ignored because they don't affect growth rate.
 - Additive constants (+2) are insignificant for large N.
- Example2 (lower-order terms):
 - If time complexity is an^3 + bn^2 + cn + d,
 - we write O(N^3) because N^3 dominates for large N.

Understanding Big-O Notation

- Ignores lower-order terms:
 - 3x³+5x²+10x+6 and 3x³ have same time complexity
 - 5x^2 is 2nd lowest
 - 10x has the lowest

How to Read Big-O Notation

- **O(1)**→ "Order 1" (Constant time)
- O(logN)→ "Order log N" (Logarithmic time)
- O(N) → "Order N" (Linear time)
- O(NlogN)→ "Order N log N" (Log-linear time)
- O(N^2) → "Order N squared" (Quadratic time)
- O(N^3) → "Order N cubed" (Cubic time)
- O(2[^]N)→ "Order 2 to the power of N" (Exponential time)
- O(N!)→ "Order N factorial" (Factorial time)

- Bubble/Selection Sort → O(N^2)(quadratic).
- Merge Sort → O(NlogN) (log-linear).

- 1 (constant running time):
 - Instructions are executed once or a few times
- logN (logarithmic)
 - A big problem is solved by <u>cutting the original problem in smaller sizes</u>, by a <u>constant</u>
 <u>fraction at each step</u>
 - Shortcut: the number that is used for division or multiplication will be the base of log
- N (linear)
 - A small amount of processing is done on <u>each input element</u>
- N logN
 - A problem is solved by <u>dividing it into smaller problems</u>, <u>solving them independently</u> and <u>combining the solution</u>

- N² (quadratic)
 - Typical for algorithms that process all pairs of data items (double nested loops)
- N³ (cubic)
 - Processing of triples of data (triple nested loops)
- N^K (polynomial), 2^N (exponential)
 - Few exponential algorithms are appropriate for practical use

Complexity	Description	Examples
		Arithmetic operations (+, -, *, /, %)
1	Constant algorithm does not depend on the input size. Execute one instruction a fixed number of times	Comparison operators (<, >, ==, !=) Variable declaration Assignment statement
		Invoking a method or function
log N	Logarithmic algorithm gets slightly slower as N grows. Whenever N doubles, the running time increases by a constant.	Bits in binary representation of N Binary search Insert, delete into heap or BST
N	Linear algorithm is optimal if you need to process N inputs. Whenever N doubles, then so does the running time.	Iterate over N elements Allocate array of size N Concatenate two string of length N
N log N	Linearithmic algorithm scales to huge problems. Whenever N doubles, the running time more (but not much more) than doubles.	Quicksort Mergesort FFT
N ²	Quadratic algorithm practical for use only on relatively small problems. Whenever N doubles, the running time increases fourfold.	All pairs of N elements Allocate N-by-N array
N ³	Cubic algorithm is practical for use on only small problems. Whenever N doubles, the running time increases eightfold.	All triples of N elements N-by-N matrix multiplication
2 ^N	Exponential algorithm is not usually appropriate for practical use. Whenever N doubles, the running time squares!	Number of N-bit integers All subsets of N elements Discs moved in Towers of Hanoi
N!	Factorial algorithm is worse than exponential. Whenever N increases by 1, the running time increases by a factor of N	All permutations of N elements

Multi-Parameter Complexity [examples in analysis 11, 12]

- When input has multiple attributes, complexity depends on all relevant factors.
- Example: Traversing a graph with N vertices and M edges → O(N+M).
- Key takeaway: Some problems require expressing complexity in terms of multiple input sizes.
 - We will see details in the graph

Code:

a = b;

Time complexity: ?

Space complexity: ?

Code:

a = b;

Time complexity: O(1)

Space complexity: O(1) — Since it's a simple value assignment

Code:

```
sum = 0;
for (i=1; i <=n; i++)
    sum += n;</pre>
```

Time complexity: ?
Space complexity: ?

Code:

```
sum = 0; O(1)
for (i=1; i <=n; i++) // O(n)
    sum += n; O(1)</pre>
```

Time complexity: $O(1) + O(n) \times O(1) = O(1) + O(n) = O(n)$ Space complexity: O(1) — The loop runs O(n) times, but no extra space is used apart from a few variables, making it constant space.

Code:

```
sum1 = 0;
for (i=1; i<=n; i++)
   for (j=1; j \le n; j++)
         sum1++;
Time Complexity: ?
Space complexity:??
```

Code:

```
sum1 = 0; O(1)
for (i=1; i \le n; i++) O(n)
   for (j=1; j <= n; j++) O(n)
          sum1++; O(1)
Time complexity: O(1) + O(n) \times O(n) = O(n^2)
Space complexity: O(1) - only a few integer variables
are used, requiring constant space.
```

Code:

```
sum1 = 0;
for (i=1; i<=n; i++)
   for (j=1; j \le 2*n; j++)
         sum1++;
Time complexity:??
Space complexity:??
```

```
sum1 = 0; O(1)
for (i=1; i \le n; i++) O(n)
   for (j=1; j \le 2*n; j++) O(2n)= O(n)
          sum1++; O(1)
Time complexity: O(1) + O(n) \times O(n) = O(n^2)
Space complexity: O(1)
```

Code:

Time complexity: ?

Space complexity:??

```
sum = 0; O(1)
for (j=1; j \le n; j++) O(n)
                                              O(n)^* O(n) = O(n^2)
    for (i=1; i <= j; i++) O(n)
                  Sum++; O(1)
for (k=0; k< n; k++) O(n)
                                               O(n)^* O(1) = O(n)
    s = k; O(1)
Time complexity: O(1) + O(n^2) + O(n) = O(n^2)
Space complexity: O(1)
```

```
sum1 = 0; O(1)
n = 100; O(1)
for (k=1; k \le n; k \le 2) //k starts at 1 and doubles each time
                        //(runs for half of n time) = O(log_n)
       for (j=1; j \le n; j++)//j runs from 1 to n = O(n)
           Sum1++; O(1)
Time complexity: O(1) + O(1) + O(\log_2 n) \times O(n) = O(n\log_2 n)
Space complexity: O(1)
```

Code:

 $\log_2(100) = 6.67 = \text{approx } 7$

```
Code:
a=0
N=5
i=N
while (i>0):
    a = a + i;
    i = i/2
Time complexity: ??
Space complexity:??
```

```
a=0
N=5
i=N
while (i>0):
    a = a + i; O(1)
    i = i/2 //i starts at N and is halved each time = O(log<sub>2</sub>n)
Time complexity: O(log_2n) \times O(1) = O(log_2n)
Space complexity: O(1)
```

```
sum1 = 0;
n = 100;
for (i=n; i>=1; i=i/2)
       for (k=1; k \le n; k \ge 2)
          Sum1 = Sum1 + i;
Time complexity: ??
Space complexity:??
```

```
sum1 = 0;
n = 5;
for (i=0; i <= n; i=i+1)
       for (k=0; k<=i*n; k=k+1)
          Sum1 = Sum1 + i;
for (i=0; i \le n+n; i=i+1)
        Sum1 = Sum1 + i
Time complexity: ???
Space complexity:??
```

```
sum1 = 0; o(1)
n = 5; O(1)
                                                  O(n)^* O(n^2) = O(n^3)
for (i=0; i \le n; i=i+1) O(n)
       for (k=0; k<=i*n; k=k+1) O(n²), max value of i is n
           Sum1 = Sum1 + i ; O(1)
for (i=0; i \le n+n; i=i+1) O(2n) = O(n)
         Sum1 = Sum1 + i ; O(1)
Time complexity: O(1) + O(1) + O(n^3) + O(n) = O(n^3)
Space complexity: O(1)
```

```
sum1 = 0;
n = 100;
m = 10;
for (i=n; i>=1; i=i-1):
        for (k=1; k \le m; k=k+2):
            Sum1 = Sum1 + i + k;
for (i=1; i <= m; i=i+1):
            print(i);
Time complexity: ??
Space complexity:???
```

```
sum1 = 0;
n = 100;
m = 10;
for (i=n; i>=1; i=i-1): O(n)
          for (k=1; k \le m; k=k+2) : O(m/2) = O(m)
               Sum1 = Sum1 + i + k ; O(1)
for (i=1; i \le m; i=i+1): O(m)
               print(i) ; O(1)
Time complexity: O(n) \times O(m) \times O(1) + O(m) \times O(1)
                 = O(n \times m) + O(m)
                 = O(n \times m)
Space complexity: O(1)
```

```
arr=[];
    counter=0;
    N=100, M=40;
    for (i=1; i \le N; i=i+1):
        arr.append(i)
    for (i=1; i \le M; i=i+1):
        counter+=1
Time complexity: ????
Space complexity:???
```

```
arr=[]; O(1)
    counter=0; O(1)
    N=100, M=40; O(2)
    for (i=1; i \le N; i=i+1): O(N)
        arr.append(i) O(1)
    for (i=1; i \le M; i=i+1): O(M)
        counter+=1 O(1)
Time complexity: O(1)+O(1)+O(2) + O(N) \times O(1) + O(M) \times O(1)
                = O(4) + O(N) + O(M)
                = O(N) + O(M)
                = O(N+M)
```

```
arr=[];
    counter=0;
    N=100, M=100;
    for (i=1; i \le N; i=i+1):
        arr.append(i)
    for (i=1; i \le M; i=i+1):
        counter+=1
Space complexity: ????
```

```
arr=[];
    counter=0;
    N=100, M=100;
    for (i=1; i \le N; i=i+1):
        arr.append(i) O(N) because N number of elements are being inserted.
                               So, space requirement is N
    for (i=1; i \le M; i=i+1): O(1): Space needed for local variables only
        counter+=1
Space complexity: O(N)
```

```
int i, j, k = 0;
for (i = n / 2; i <= n; i++) {
    for (j = 2; j <= n; j = j * 2) {
        k = k + n / 2;
    }
}
Time complexity: ???</pre>
```

```
int i, j, k = 0; O(1)
for (i = n / 2; i \le n; i++) \{ O(n/2)=O(n) \}
    for (j = 2; j \le n; j = j * 2) \{ O(log_2n) \}
         k = k + n / 2; 0(1)
Time complexity: O(n) \times O(\log_2 n) \times O(1) = O(n\log_2 n)
```

```
Code:
int i, j;
if (condition) {
                         // Suppose condition is true in some cases
  for (i = 0; i < n; i++) {
     a[i] = i + 2;
else {
  for (i = 0; i < n; i++) {
     for (j = 0; j < n; j++) {
        a[i] = a[j] + 1;
```

Time complexity: ???

```
Code:
int i, j;
        // O(1)
if (condition) { // Suppose condition is true in some cases
  for (i = 0; i < n; i++) \{ // O(n) \}
    a[i] = i + 2; // O(1)
else {
  for (i = 0; i < n; i++) { // O(n)}
     for (j = 0; j < n; j++) \{ // O(n) \}
       a[i] = a[j] + 1; // O(1)
Time complexity: O(n) + O(n^2) = O(n^2)
```

• Ignoring Constants:

- Asymptotic complexity ignores constant multipliers and additive factors.
- However, constant coefficients of <u>different powers of N may matter</u> in real-world applications.

Estimating Resource Requirements

- Used to estimate the <u>time and space costs</u> of a program for large input sizes.
- Helps in selecting the most efficient implementation.

- Example: Space Complexity Limitation
 - Two implementations have C₁ * n log₂n and C₂ * n log₂n same time complexity (Same).
 - Assume:
 - RAM size = 32GB
 - Understanding the Input Size:
 - The maximum input size is 512M (512 million) = 512M = 229 entries.
 - Each entry is 1 byte, so storing all entries would take 2²⁹ bytes (≈ 512MB)

Computing Memory Requirement for Processing:

- The time complexity given is n log₂n.
- For $n = 2^{29}$, we compute: $n \log_2 n = (2^2) \times (30)$
- Here, log₂(2²९) = 29, so we assume an additional small factor (≈ 30) for overhead.
- Approximate: $2^{29} \times 30 \approx 2^{30} \times 15$
- Since 2³⁰ bytes = 1GB, Memory requirement is 15GB

- Example: Space Complexity Limitation
 - Two implementations have C₁ * n log₂n and C₂ * n log₂n time complexity (Same).
 - Assume:
 - RAM size = 32GB
 - Max input size = 512M ($\approx 2^{29}$) entries of 1 byte each
 - $n \log_2 n = 2^{29} * 30 \approx 15GB$
 - Impact of Constants (C₁ and C₂):
 - If $C_1 = 2$, the required space is = 2×15 GB=30 GB
 - This fits within the available 32GB RAM
 - If C₂ = 3, the required space is = 3×15GB=45 GB
 - This exceeds the available 32GB RAM, making execution impossible

- Time vs. Space Tradeoff
 - o **Optimization dilemma:** <u>Faster execution</u> often requires <u>more space</u>, and vice versa.
 - <u>Faster execution</u> often requires <u>more memory</u> due to <u>additional data storage or complex operations.</u>
 - Reducing memory usage can slow down execution due to less efficient algorithms or extra resource management steps.
 - Real-world impact: Some problems require balancing time and space efficiency based on <u>constraints</u>.

The End