# Exercícios – 10

## **Transístores MOS**

1- A fig. 1 mostra quatro circuitos com transístores MOS. Para cada um deles, indique se os transístores poderão estar em condução ou se estão cortados.



2- Na fig. 2 todos os transístores têm uma tensão de limiar  $V_T = 0.4V$ . Indique a região de funcionamento de cada um deles.



Fig. 2

3- Na fig. 3 todos os transístores têm uma tensão de limiar  $V_T = -0.4V$ . Indique a região de funcionamento de cada um deles.



Fig. 3

4- No circuito da fig. 4, os parâmetros do transístor são  $V_T = 0.8V$  e  $k_n = 0.25 \text{mA/V}^2$ . Determine os valores de  $V_{DS}$  e  $I_{DS}$ .



Fig. 4

- **5-** No circuito da fig. 5, os parâmetros do transístor são  $V_T = 0.8V$  e  $k_n = 0.5 mA/V^2$ . Determine os valores de  $V_{GS}$ ,  $V_{DS}$  e  $I_{DS}$ .
- **6-** No circuito da fig. 6, os parâmetros do transístor são  $V_T = -0.8V$  e  $k_p = 0.2mA/V^2$ . Determine os valores de  $V_S$  e  $V_{SD}$ .



7- No circuito da fig. 7, ambos os transístores são caracterizados por  $V_T = 0.4V$  e  $k'_n = 0.12mA/V^2$ . As razões geométricas são  $(W/L)_1 = 30$  e  $(W/L)_2 = 15$ . Determine os valores de  $V_{GSI}$ ,  $V_0$  e  $I_D$ .



- **8-** O circuito da fig. 8 inclui uma lâmpada ligada no dreno de um MOSFET e um botão de pressão ligado na porta.
- a) Explique o funcionamento do circuito.
- **b**) Supondo que o  $V_T$  do transístor é 4V, durante quanto tempo ficará a lâmpada acesa depois que o botão de pressão é libertado.



**9-** O circuito da fig. 9 é usado para ligar e desligar o díodo LED, actuando na tensão  $V_I$ . Considere que os parâmetros do transístor são  $V_T = 0.6V$  e  $k'_n = 0.08mA/V^2$ . Suponha ainda que a tensão de condução do LED é de 1.6V.

Determine os valores da razão geométrica do transístor (W/L) e da resistência  $R_D$  de forma a ter  $I_D$  = 12mA e  $V_{DS} = 0.15V$  com  $V_I = 5V$ .



- **10-** No circuito da fig. 10 considere, para ambos os transístores,  $V_T = 0.6V$  e  $k'_n = 0.12mA/V^2$ .
- *a*) O circuito realiza uma função lógica Booleana  $V_0 = f(V_I, V_2)$ . Considerando o nível lógico **1** representado por uma tensão de 5V e o nível lógico **0** por uma tensão de valor inferior a  $V_T$ , identifique a função f.
- **b**) Calcule as razões geométricas dos transístores de forma a ter  $V_0 = 0.15V$  quando  $V_1 = V_2 = 5V$ . Assuma  $(W/L)_1 = (W/L)_2$ .
- c) Com o valor de  $(W/L)_1 = (W/L)_2$  obtido na alínea anterior, determine  $V_0$  para  $V_1 = 5V$  e  $V_2 = 0.2V$ .
- **11-** No circuito da fig. 11 considere, para ambos os transístores,  $V_T = 2V$  e  $k_n = 0.5 \text{mA/V}^2$ . O circuito está alimentado com uma tensão de 10V e inclui dois botões de pressão,  $S_I$  e  $S_2$ , que estabelecem a ligação entre os contactos respectivos, quando premidos.



Assumindo que as tensões nos drenos de  $M_1$  e  $M_2$  são as indicadas na figura, diga o que acontece quando **a**)  $S_1$  é premido momentaneamente.

- **b**)  $S_2$  é premido momentaneamente.
- **12-** Qual deverá ser a razão geométrica, W/L, que um transístor NMOS com  $V_T = 0.4V$  e  $k'_n = 100\mu\text{A/V}^2$  deverá ter para apresentar um valor de transcondutância de pequeno sinal,  $g_m$ , de 0.5mA/V a uma corrente de dreno de 0.5mA? Qual deverá ser o valor de  $V_{GS}$  de polarização?
- **13-** Considere o circuito amplificador da fig. 12 em que o transístor é caracterizado por  $V_T = 0.4V$ ,  $k_n = 0.5mA/V^2$  e  $V_A = 50V$ . Para as frequências do sinal  $v_i$  assuma que o condensador de acoplamento  $C_{CI}$  é um curto-circuito. Determine:
- a) A corrente de dreno,  $I_{DS}$ .
- **b**) Os parâmetros do modelo de pequeno sinal,  $g_m$  e  $r_o$ .
- c) O ganho em tensão do amplificador,  $A_v \equiv v_o/v_i$ .
- **d**) A resistência de entrada,  $R_{in}$ , (vista pela fonte de tensão  $v_i$ ) e a resistência de saída,  $R_o$ , do amplificador (vista no nó de saída  $v_o$ ).



### Respostas

- **1- a)** *on* **b)** *off* **c)** *off* **d)** *on*.
- 2- a) saturação; b) linear; c) corte.
- **3- a)** corte; **b)** saturação; **c)** linear.
- **4-**  $V_{DS} = 1.88V$ ,  $I_{DS} = 2.12mA$ .
- **5-**  $V_{GS} = 2.05V$ ,  $V_{DS} = 5.35V$ ,  $I_{DS} = 0.775mA$ .
- **6-**  $V_S = 2.21V \text{ e } V_{SD} = 5.21V.$
- **7-**  $V_{GSI} = 2.14V$ ,  $V_0 = 2.86V$ ,  $I_D = 5.45mA$ .

**8- a**) Sem actuar no botão de pressão a tensão na porta do MOSFET será 0V, este estará off e portanto a lâmpada estará apagada. Quando o botão de pressão é premido a tensão na porta do MOSFET sobe até 15V, ligando o transístor e portanto acendendo a lâmpada. Quando o botão é depois libertado, o condensador mantém a tensão na porta do MOSFET inicialmente em 15V, mas depois vai descarregando através da resistência. Quando a tensão no condensador cair abaixo da tensão de limiar do transístor (4V), este corta e a lâmpada apaga. **b**) 2.05seg.

**9-** 
$$(W/L) = 231, R_D = 271 \Omega$$
.

**10- a)** 
$$V_0 = \overline{V_1 \vee V_2}$$
, **b)**  $(W/L)_{1,2} = 0.623$ ; **c)**  $V_0 = 0.297V$ .

- **11- a**) Antes de premir  $S_I$ , temos  $M_I$  off (porque tem na porta uma tensão de  $0.13V < V_T$ ) e  $M_2$  on (porque tem na porta uma tensão de  $10V > V_T$ ). Isto acontece porque não há queda de tensão nas resistências de 100k, uma vez que não há corrente nas portas dos transístores. Premir  $S_I$  não altera a tensão na porta de  $M_2$  (nem muito menos a tensão na porta de  $M_I$ ), e portanto não altera nada no circuito.
- **b**) Premir  $S_2$  faz subir a tensão na porta de  $M_1$  para 10V.  $M_1$  fica portanto on fazendo a tensão no seu dreno baixar para o valor 0.13V (como o circuito de  $M_1$  é igual ao de  $M_2$ , a tensão no dreno de  $M_1$  tem de ser a mesma quando este transístor fica on). Como  $V_{DS1} = V_{GS2} = 0.13V < V_T$ ,  $M_2$  fica off. Em resumo, a ligação momentânea de  $S_2$  faz com que o circuito mude de estado: de  $M_1$  off  $/M_2$  on para  $M_1$  on  $/M_2$  off. Por ter dois estados estáveis, este circuito é chamado de biestável.

**12-** 
$$(W/L) = 2.5, V_{GS} = 2.4V.$$

**13- a)** 
$$I_{DS} = 0.18mA$$
; **b)**  $g_m = 0.6mA/V$ ;  $r_o = 278k\Omega$ ; **c)**  $A_v = -5.29V/V$ ; **d)**  $R_{in} = 46k\Omega$ ;  $R_o = 9.65k\Omega$ .

#### **Fontes**

- **1-** Problemas 14 (alineas *a* e *b*) e 15 (alineas *c* e *d*) de [1];
- **2-** Exercício 3.5 de [2];
- **3-** Exercício 3.6 de [2];
- **4-** Exercício 3.27-a) de [2];
- **5-** Exercício 3.26 de [2];
- **6-** Exercício 3.31 de [2];
- **7-** Exercício 3.46-b) de [2];
- **8** Problema 31 de [1]:
- 9- Exercício 3.51 de [2];
- **10-** Exercício 3.53 de [2];
- 11- Adaptação do problema 30 de [1];
- 12- Adaptado do exercício 4.1 de [2];
- 13- Exemplo 4.3 (pg. 218) de [2].

#### Referências

- [1] Insulated gate field-effect transistors igfet.pdf.
- [2] Neamen, Microelectronics Circuit Analysis and Design,  $\mathbf{4}^{\text{th}}$  edition.