CHAPITRE

24

RELATIONS DE COMPARAISONS SUR LES SUITES

24.1 LES RELATIONS DE COMPARAISONS

§1 Définitions

Définition 1

Soient $u = (u_n)$ et $v = (v_n)$ deux suites numériques.

• On dit que la suite (u_n) est **dominé** par la suite (v_n) lorsqu'il existe un entier n_0 et un réel k tel que

$$\forall n \in \mathbb{N}, n \ge n_0 \implies |u_n| \le k|v_n|.$$

On écrit $u_n = \mathcal{O}(v_n)$, qui se lit « u_n est un grand O de v_n ».

• On dit que la suite (u_n) est **négligeable** devant la suite (v_n) lorsque

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \implies |u_n| \leq \varepsilon |v_n|.$$

On écrit $u_n = o(v_n)$, qui se lit « u_n est un petit O de v_n ».

• On dit que la suite (u_n) est **équivalente** à la suite (v_n) lorsque

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_0 \implies |u_n - v_n| \le \varepsilon |v_n|.$$

On écrit $u_n \sim v_n$, qui se lit « u_n est équivalente à v_n ».

Théorème 2

Deux suites (u_n) et (v_n) sont **équivalentes** si, et seulement si

$$u_n - v_n = o(v_n).$$

On peut aussi écrire $u_n = v_n + o(v_n)$.

Notation

On note $\mathcal{O}(v)$ ou $\mathcal{O}(v_n)$ l'ensemble des suites dominées par la suite (v_n) . Cette notation est celle de Landau. Pour exprimer cette relation, on devrait écrire $u \in \mathcal{O}(v)$. En fait, l'usage est d'écrire abusivement $u = \mathcal{O}(v)$ ou $u_n = \mathcal{O}(v_n)$. On doit lire « u_n est grand \mathcal{O} de v_n » et non « u_n égale grand \mathcal{O} de v_n ».

Ces notations traduisent une appartenance et non une égalité. Par exemple $n^2 = \mathcal{O}(n^3)$ et $n^2 + 1 = \mathcal{O}(n^3)$ mais $n^2 \neq n^2 + 1$.

Notation

On note o(v) ou $o(v_n)$ l'ensemble des suites négligeables devant la suite (v_n) . Cette notation est encore une notation de Landau. Là encore, au lieu d'écrire $u \in o(v)$, on écrit abusivement u = o(v) ou $u_n = o(v_n)$. On doit lire « u_n est petit o de v_n ».

Exemples 3

1. La suite $(2n^2 - 3n + 4)$ est dominée par la suite (n^2) car pour $n \ge 1$,

$$|2n^2 - 3n + 4| \le 2|n^2| + 3|n| + 4 \le 9n^2.$$

2. Si à partir d'un certain rang on a $|u_n| \le |v_n|$, alors $u_n = \mathcal{O}(v_n)$.

▲ La réciproque est fausse comme le montre l'exemple précédent.

- 3. La relation $u_n = \mathcal{O}(1)$ signifie que la suite (u_n) est bornée. Plus généralement, si $u_n = \mathcal{O}(v_n)$ et si la suite (v_n) est bornée, alors (u_n) est bornée.
- **4.** Pour toute suite (u_n) et tout scalaire $\lambda \neq 0$, on a $u_n = \mathcal{O}(\lambda u_n)$.
- **5.** Si $u_n = \mathcal{O}(v_n)$ et (v_n) converge vers 0, alors (u_n) converge vers 0.

Exemples 4

- La relation u_n = o(1) signifie que (u_n) tend vers 0.
 Plus généralement, si u_n = o(v_n) et si la suite (v_n) est bornée, alors (u_n) converge vers 0.
- **2.** Si (ω_n) est une suite qui tend vers 0, alors $(\omega_n u_n) = o(u_n)$.
- **3.** Pour toutes suites (u_n) , (v_n) et tout scalaire $\lambda \neq 0$, la relation $u_n = o(\lambda v_n)$ est équivalente à $u_n = o(v_n)$.

Remarque

On notera que la relation $u_n \sim v_n$ ne signifie nullement que la différence $u_n - v_n$ tende vers 0; cette différence peut même être non bornée, comme le montre l'exemple $n^2 + n \sim n^2$.

§2 Caractérisations des relations de comparaisons

Proposition 5

Caractérisation de la relation \mathcal{O}

On a $u_n = \mathcal{O}(v_n)$ si et seulement si il existe une suite (μ_n) et un rang n_0 tels que

$$\forall n \geq n_0, u_n = \mu_n v_n$$

 (μ_n) est bornée.

Proposition 6

Caractérisation de la relation o

On a $u_n = o(v_n)$ si, et seulement si il existe une suite (μ_n) et un rang n_0 tels que

$$\forall n \geq n_0, u_n = \mu_n v_n$$

$$\lim_{n\to+\infty}\mu_n=0.$$

Proposition 7

Caractérisation de la relation ~

On a $u_n \sim v_n$ si et seulement si il existe une suite (μ_n) et un rang n_0 tels que

$$\forall n \geq n_0, u_n = v_n \mu_n$$

$$\lim_{n\to+\infty}\mu_n=1.$$

Exemples 8

1.
$$n = o(n^2)$$
 car $n = \frac{1}{n}n^2$ et $\frac{1}{n} \to 0$.
On a donc également $n^2 + n \sim n^2$ car $n^2 + n - n^2 = n = o(n^2)$.

2.
$$e^n = o(e^{3n})$$
 car $e^n = e^{-2n} e^{3n}$ et $e^{-2n} \to 0$.

3. On a
$$3n^2 + 3n - 4 = o(n^3)$$
 car $3n^2 + 3n - 4 = n^3 \left(\frac{3}{n} + \frac{3}{n^2} - \frac{4}{n^3}\right)$ et $\frac{3}{n} + \frac{3}{n^2} - \frac{4}{n^3} \to 0$.

4.
$$\frac{1}{n^2} = o\left(\frac{1}{n}\right)$$
.

$$5. \ \frac{1}{(n+1)!} = o\left(\frac{1}{n!}\right).$$

Lorsque (v_n) ne s'annule pas (à partir d'un certain rang), la comparaison se lit sur le rapport u_n/v_n .

Théorème 9

Soient (u_n) et (v_n) deux suites numériques qui ne s'annulent pas. On a alors les équivalences suivantes.

- 1. On a $u_n = \mathcal{O}(v_n)$ si, et seulement si la suite (u_n/v_n) est bornée.
- 2. On a $u_n = o(v_n)$ si, et seulement si la suite (u_n/v_n) tend vers 0.
- **3.** On a $u_n \sim v_n$ si, et seulement si la suite (u_n/v_n) tend vers 1.

§3 Comparaison des suites de référence

Proposition 10

Si la suite (v_n) tend vers $\pm \infty$ et si la suite (u_n) est bornée, alors $u_n = o(v_n)$.

Proposition 11

Soit $a, b \in \mathbb{R}$, alors

$$a^{n} = o(b^{n}) \iff |a| < |b| \text{ ou } a = b = 0;$$

$$n^{a} = o(n^{b}) \iff a < b;$$

$$(\ln n)^{a} = o((\ln n)^{b}) \iff a < b.$$

Proposition 12

Soit $\alpha > 0$, $\beta > 0$ et a > 1.

1.
$$(\ln n)^{\alpha} = o(n^{\beta})$$
.

2.
$$n^{\beta} = o(a^n)$$
. En particulier $n^{\beta} = o(e^{\alpha n})$.

3.
$$a^n = o(n!)$$
.

4.
$$n! = o(n^n)$$
.

Remarque

Si (u_n) et (v_n) divergent vers $+\infty$, $u_n = o(v_n)$ signifie que (v_n) tend «plus vite» que (u_n) vers $+\infty$. Si (u_n) et (v_n) tendent vers (v_n) signifie que (v_n) tend «plus vite» que (v_n) vers (v_n)

§4 Calculs avec la notation de Landau

Définition 13

Soit (u_n) , (v_n) , (w_n) trois suites. L'écriture

$$u_n = v_n + \mathcal{O}(w_n)$$

signifie $u_n - v_n = \mathcal{O}(w_n)$.

Exemple 14

Avec $u_n = n^3 + n$ et $v_n = n^3$, on obtient

$$n^3 + n = n^3 + \mathcal{O}(n^2),$$

 $\operatorname{car} u_n - v_n = n = \mathcal{O}(n^2).$

Définition 15

Soit $(u_n), (v_n), (w_n)$ trois suites. L'écriture

$$u_n = v_n + o(w_n)$$

signifie $u_n - v_n = o(w_n)$.

Exemple 16

Avec $u_n = n^3 + n$ et $v_n = n^3$, on obtient

$$n^3 + n = n^3 + o(n^2)$$

$$\operatorname{car} u_n - v_n = n = o(n^2).$$

24.2 CALCULS AVEC LES RELATIONS DE COMPARAISONS

§1 Propriétés des relations de comparaisons

Proposition 17

1. La relation O est réflexive.

$$u_n = \mathcal{O}\left(u_n\right).$$

2. La relation O est transitive.

$$\left. \begin{array}{l} u_n = \mathcal{O}(v_n) \\ v_n = \mathcal{O}(w_n) \end{array} \right\} \implies u_n = \mathcal{O}(w_n).$$

Proposition 18

Soient (u_n) , (v_n) , (a_n) , (b_n) quatre suites.

1. Si
$$u_n = \mathcal{O}(a_n)$$
 et $v_n = \mathcal{O}(a_n)$ alors $u_n + v_n = \mathcal{O}(a_n)$.

2. Si
$$u_n = \mathcal{O}(a_n)$$
 et $v_n = \mathcal{O}(b_n)$ alors $u_n v_n = \mathcal{O}(a_n b_n)$.

3. Si
$$u_n = \mathcal{O}(a_n)$$
 alors pour tout $\lambda \in \mathbb{R}$, $\lambda u_n = \mathcal{O}(a_n)$.

Remarque

On peut résumer les résultats sous la forme

$$\mathcal{O}(a_n) + \mathcal{O}(a_n) = \mathcal{O}(a_n), \qquad \qquad \mathcal{O}(a_n)\mathcal{O}(b_n) = \mathcal{O}(a_nb_n), \qquad \qquad \lambda\mathcal{O}(a_n) = \mathcal{O}(a_n).$$

Proposition 19

Soient (u_n) , (v_n) , (a_n) , (b_n) quatre suites.

1. Si
$$u_n = o(a_n)$$
 et $v_n = o(a_n)$ alors $u_n + v_n = o(a_n)$.

2. Si
$$u_n = o(a_n)$$
 et $v_n = o(b_n)$ alors $u_n v_n = o(a_n b_n)$.

3. Si
$$u_n = o(a_n)$$
 alors pour tout $\lambda \in \mathbb{R}$, $\lambda u_n = o(a_n)$.

On peut résumer les résultats sous la forme

$$o(a_n) + o(a_n) = o(a_n), \qquad o(a_n)o(b_n) = o(a_nb_n), \qquad \lambda o(a_n) = o(a_n).$$

Exemple 20 💙

Soient $a_0, a_1, \dots, a_{k-1}, a_k$ des réels tels que $a_k \neq 0$. Alors

$$a_0 + a_1 n + \dots + a_{k-1} n^{k-1} + a_k n^k \sim a_k n^k$$
.

En effet,

$$1 = o(n^k),$$
 $n = o(n^k),$... $n^{k-1} = o(n^k)$

donc
$$a_0 + a_1 n + \dots + a_{k-1} n^{k-1} = o(a_k n^k).$$

Par exemple $2n + 1 \sim 2n$ ou $8n^3 - 200n^2 + 9n - 3 \sim 8n^3$.

Exemple 21

Soient b_1, b_2, \dots, b_k des réels tels que $0 < b_1 < b_2 < \dots < b_k$. Alors

$$b_1^n + b_2^n + \dots + b_k^n \sim b_k^n.$$

En effet,

$$b_1^n = o(b_k^n),$$
 $b_2^n = o(b_k^n),$... $b_{k-1}^n = o(b_k^n)$

donc $b_1^n + b_2^n + \dots + b_{k-1}^n = o(b_k^n)$. Par exemple $2^n + 5^n \sim 5^n$.

Exemple 22

Soient $\alpha_1, \alpha_2, \dots, \alpha_k$ des réels tels que $0 < \alpha_1 < \alpha_2 < \dots < \alpha_k$. Alors

$$\frac{1}{n^{\alpha_1}} + \frac{1}{n^{\alpha_2}} + \dots + \frac{1}{n^{\alpha_k}} \sim \frac{1}{n^{\alpha_1}}.$$

En effet, pour tout $\alpha > \alpha_1$, $\frac{1}{n^{\alpha}} = o\left(\frac{1}{n^{\alpha_1}}\right)$, donc $\frac{1}{n^{\alpha_2}} + \dots + \frac{1}{n^{\alpha_k}} = o\left(\frac{1}{n^{\alpha_1}}\right)$. Par exemple $\frac{1}{n} + \frac{1}{n^2} + \frac{1}{n^{25}} \sim \frac{1}{n}$.

Exemple 23

Si $u_n \to +\infty$ et si (v_n) est bornée, alors $u_n + v_n \sim u_n$.

Proposition 24

Soient (u_n) , (v_n) , (w_n) , (a_n) , (b_n) des suites.

1. Si
$$u_n = o(v_n)$$
 alors $u_n = \mathcal{O}(v_n)$.

2. Si
$$u_n = o(v_n)$$
 et $v_n = \mathcal{O}(w_n)$ alors $u_n = o(w_n)$.

3. Si
$$u_n = \mathcal{O}(v_n)$$
 et $v_n = o(w_n)$ alors $u_n = o(w_n)$.

4. Si
$$u_n = o(v_n)$$
 et $v_n = o(w_n)$ alors $u_n = o(w_n)$. Autrement dit, la relation o est transitive.

5. Si
$$u_n = o(a_n)$$
 et $v_n = \mathcal{O}(b_n)$ alors $u_n v_n = o(a_n b_n)$.

6. Soit
$$\lambda \in \mathbb{R}$$
, $\lambda \neq 0$.

Si
$$u_n = \mathcal{O}(a_n)$$
 alors $u_n = \mathcal{O}(\lambda a_n)$ et $\lambda u_n = \mathcal{O}(a_n)$.

Si
$$u_n = o(a_n)$$
 alors $u_n = o(\lambda a_n)$ et $\lambda u_n = o(a_n)$.

Théorème 25

Dans l'ensemble des suites réelles, la relation ~ est une relation d'équivalence.

1. La relation
$$\sim$$
 est réflexive

$$u_n \sim u_n$$
.

$$u_n \sim v_n \implies v_n \sim u_n$$
.

3. La relation \sim est transitive

$$u_n \sim v_n \ et \ v_n \sim w_n \implies u_n \sim w_n$$
.

Théorème 26

Soient $(u_n), (v_n), (w_n)$ trois suites.

- 1. Si $u_n \sim v_n$, alors $u_n = \mathcal{O}(v_n)$.
- **2.** Si $u_n \sim v_n$ et $v_n = \mathcal{O}(w_n)$ alors $u_n = \mathcal{O}(w_n)$.
- 3. Si $u_n \sim v_n$ et $v_n = o(w_n)$ alors $u_n = o(w_n)$.
- **4.** Si $u_n = \mathcal{O}(v_n)$ et $v_n \sim w_n$ alors $u_n = \mathcal{O}(w_n)$.
- 5. Si $u_n = o(v_n)$ et $v_n \sim w_n$ alors $u_n = o(w_n)$.

§2 Propriétés conservées par la relation d'équivalence

Théorème 27

Soient (u_n) et (v_n) deux suites réelles. On suppose que $u_n \sim v_n$, alors u_n et v_n sont de même signe à partir d'un certain rang, c'est-à-dire

$$\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n_0 \implies \operatorname{sgn}(u_n) = \operatorname{sgn}(v_n).$$

Théorème 28

Soient (u_n) et (v_n) deux suites. On suppose que $u_n \sim v_n$, et que (v_n) admet une limite $\ell \in \mathbb{R} \cup \{\pm \infty\}$, alors (u_n) tend aussi vers ℓ .

La réciproque est (heureusement) fausse comme le montre l'exemple $\lim_{n\to\infty} n^2 = \lim_{n\to\infty} n^3$.

Soient (u_n) une suite réelle et $\ell \in \mathbb{R}$, $\ell \neq 0$. Alors

$$u_n \sim \ell \iff \lim_{n \to +\infty} u_n = \ell.$$

Ce résultat bien sûr totalement est faux avec $\ell=0$. En effet, $u_n\sim 0$ signifie que la suite (u_n) est nulle à partir d'un certain rang.

§3 Opérations sur les équivalents

Théorème 29

Règles de calcul

Soient $(u_n), (v_n), (a_n), (b_n)$ quatre suites réelles. On suppose $u_n \sim v_n$ et $a_n \sim b_n$, alors

- 1. $u_n a_n \sim v_n b_n$
- 2. Si (b_n) est non nulle à partir d'un certain rang, alors (a_n) également et

$$\frac{u_n}{a_n} \sim \frac{v_n}{b_n}.$$

3. Soit $\alpha \in \mathbb{R}$. Si (u_n) est à valeurs > 0 à partir d'un certain rang, alors (v_n) également et

$$u_n^{\alpha} \sim v_n^{\alpha}$$
.

Par contre les relations $u_n \sim v_n$ et $a_n \sim b_n$ n'entraînent pas $u_n + a_n \sim v_n + b_n$ comme le montre l'exemple,

$$u_n = 1$$
 $v_n = 1$ $a_n = -1 + \frac{1}{n}$ $b_n = -1 + \frac{1}{n^2}$ $\frac{1}{n} \approx \frac{1}{n^2}$.

La propriété

$$u_n \sim v_n \implies u_n^{\alpha} \sim v_n^{\alpha}$$

Revient à composer (à gauche) chaque membre par l'application $x \mapsto x^{\alpha}$.

Ce résultat a un caractère exceptionnel car la relation d'équivalence n'est en général pas compatible avec la composition. Par exemple, on a

$$2n\pi + \frac{\pi}{2} \sim 2n\pi$$

mais les suites de termes généraux

$$\sin\left(2n\pi + \frac{\pi}{2}\right) = 1 \quad et \quad \sin\left(2n\pi\right) = 0$$

ne sont pas équivalentes.

§4 Suites extraites et relations de comparaisons

Proposition 30

Soient (u_n) et (v_n) deux suites et $\varphi : \mathbb{N} \to \mathbb{N}$ une application strictement croissante.

- 1. Si $u_n \sim v_n$, alors $u_{\varphi(n)} \sim v_{\varphi(n)}$.
- **2.** Si $u_n = \mathcal{O}(v_n)$, alors $u_{\varphi(n)} = \mathcal{O}\left(v_{\varphi(n)}\right)$
- 3. Si $u_n = o(v_n)$, alors $u_{\varphi(n)} = o(v_{\varphi(n)})$.

En particulier, si $u_n \sim v_n$, alors $u_{n+1} \sim v_{n+1}$. La proposition précédente signifie que les relations de comparaisons sont compatible avec la composition à *droite* par l'application φ .

§5 Équivalence par encadrement

Proposition 31

Equivalence par encadrement

Soient (a_n) , (b_n) , (u_n) trois suites à valeurs réelles. On suppose que $a_n \sim b_n$ et qu'à partir d'un certain rang

$$a_n \leq u_n \leq b_n$$
.

Alors ces trois suites sont équivalentes:

$$u_n \sim a_n$$
 et $u_n \sim b_n$.

§6 Quelques équivalents classiques

Proposition 32

Soit (u_n) une suite réelle de limite nulle. Alors a

$$1. \sin(u_n) \sim u_n,$$

2.
$$\cos(u_n) - 1 \sim -\frac{u_n^2}{2}$$
,

3.
$$tan(u_n) \sim u_n$$

4.
$$\ln(1+u_n) \sim u_n$$
,

5.
$$e^{u_n} - 1 \sim u_n$$

6.
$$\sqrt{1+u_n}-1\sim \frac{1}{2}u_n$$
.

^a Ces équivalents sont généralement faux sans l'hypothèse $u_n \to 0$.

Proposition 33

Formule de Stirling

$$n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}.$$

Exemple 34

Étudier la limite de

$$a_n = \frac{(n^3 + 9)\sin\left(\frac{1}{n} + \frac{1}{n^2}\right)}{\sqrt{n} - 5n^2 + \cos\left(\frac{n}{3}\pi\right)}.$$

Exemple 35

Trouver un équivalent simple de

$$a_n = (-1)^n \frac{\ln(1+1/n^2)}{\sqrt{\sin(1/n)}} (n+42).$$

CHAPITRE

24

COMPLÉMENTS

24.3 Cours sous forme d'exercices

Théorème 36

Soient (u_n) et (v_n) deux suites numériques qui ne s'annulent pas. On a alors les équivalences suivantes.

- 1. On a $u_n = \mathcal{O}(v_n)$ si, et seulement si la suite (u_n/v_n) est bornée.
- **2.** On a $u_n = o(v_n)$ si, et seulement si la suite (u_n/v_n) tend vers 0.
- 3. On a $u_n \sim v_n$ si, et seulement si la suite (u_n/v_n) tend vers 1.

Test 37

Les suites (u_n) , (v_n) , (w_n) , (a_n) , (b_n) désignant des suites numériques qui ne s'annulent pas. Utiliser la caractérisation 36 des relations o, \mathcal{O} , \sim pour démontrer les propriétés suivantes.

- 1. Montrer que $3n^2 5n + 6 = o(5n^3)$.
- **2.** Montrer que $2n^2 3n + 4 = O(n^2)$.
- 3. Montrer que $4n^3 5n^2 + 8n 9 \sim 4n^3 + n^2 2$.
- **4.** Montrer que $3^n + n^2 2^n \sim 3^n$.
- 5. Montrer

$$\sqrt{4n^2+1} = \mathcal{O}(n), \qquad \sqrt{4n^2+1} = o(n^2), \qquad \sqrt{4n^2+1} \sim 2n.$$

- **6.** La relation \mathcal{O} est elle réflexive? Est elle symétrique? Est elle transitive?
- **7.** La relation *o* est elle réflexive? Est elle symétrique? Est elle transitive?
- **8.** La relation ~ est elle réflexive? Est elle symétrique? Est elle transitive?

- **9.** Montrer que si $u_n = o(v_n)$, alors $u_n = O(v_n)$. La réciproque est-elle vraie?
- **10.** Montrer que si $u_n \sim v_n$, alors $u_n = O(v_n)$. La réciproque est-elle vraie?
- 11. Montrer que si $u_n = \mathcal{O}(a_n)$ et $v_n = \mathcal{O}(a_n)$ alors $u_n + v_n = \mathcal{O}(a_n)$.
- **12.** Montrer que si $u_n = o(a_n)$ et $v_n = o(a_n)$ alors $u_n + v_n = o(a_n)$.
- **13.** Montrer que si $u_n = \mathcal{O}(a_n)$ et $v_n = o(b_n)$ alors $u_n v_n = o\left(a_n b_n\right)$.
- **14.** Classer les suites suivantes de manière à ce que chacune d'entre elles soit négligeable devant les suivantes.

$$\frac{1}{n^2} n^n \sqrt{n} \quad n! \quad 0.5^n \quad 8n^2 \quad 23n \ln(n)$$

$$\frac{1}{n} 2e^n \quad 9n^5 \quad 4321 \ln(n) \quad \frac{1}{\sqrt{n}} \quad 42n \quad 10^n \quad \ln(n)^3$$

- **15.** Montrer que si $v_n = o(u_n)$, alors $u_n + v_n \sim u_n$.
- 16. Utiliser la propriété précédente pour montrer que

$$8n^{5} - n^{2} + 1000n \sim 8n^{5}$$
$$0.5^{n} + \frac{1}{\sqrt{n}} + \frac{5}{n} - \frac{18}{n^{2}} \sim \frac{1}{\sqrt{n}}$$
$$n! - n^{5} + 10^{n} \sim n!$$

- 17. On suppose que $u_n \sim v_n$ et que (v_n) admet une limite ℓ (finie ou infinie). Montrer que (u_n) tend aussi vers ℓ .
- **18.** On suppose que $a_n \sim b_n$ et que $u_n \sim v_n$. Montrer

$$a_n u_n \sim b_n v_n$$

$$\frac{a_n}{u_n} \sim \frac{b_n}{v_n}.$$

19. Soit $\alpha \in \mathbb{R}$. On suppose que $u_n \sim v_n$ et que ces deux suites sont à valeurs réelles strictement positives. Montrer que

$$u_n^{\alpha} \sim v_n^{\alpha}$$
.

- **20.** Montrer sur un contre exemple que $a_n \sim b_n$ et $u_n \sim v_n$ n'entraine pas $a_n + u_n \sim b_n + v_n$ en général.
- 21. Déterminer un «équivalent simple» des suites suivantes:

$$u_n = \frac{3n^3 - e^n + 28n\ln(n)}{n! - 10^n + n^{34}} \qquad v_n = \left(3n^2 - 2n + 5\right) \frac{2^n - 3^n + 5^n}{5n^2 + n\sin(n) - 23}.$$

24.4 UN PEU D'INFORMATIQUE

§1 Les relations Ω et Θ

Les relations Ω et Θ ne sont pas au programme de mathématiques.

Elle sont toutefois utilisées en informatique. Dans ce cas, on utilise plutôt la notation fonctionnelle pour les suites (U(n)) au lieu de u_n) et les suites sont le plus souvent à valeurs strictement positives.

Définition 38

Étant données deux fonctions $f, g : \mathbb{N} \to]0, +\infty[$, la relation

$$f(n) = \Theta(g(n))$$

signifie qu'il existe deux constantes $c_1 > 0$ et $c_2 > 0$ et $n_0 \in \mathbb{N}$ tels que

$$\forall n \in \mathbb{N}, n \geq n_0 \implies 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n).$$

On dit que g(n) est une **borne asymptotiquement approchée** de f(n) ou que g(n) et f(n) sont semblables.

Cette relation est parfois notée $f(n) \approx g(n)$.

Exemple 39

- 1. $4n^3 2n^2 + 3 = \Theta(n^3)$.
- **2.** $3n^2 2n \ln n = \Theta(n^2)$.
- $3. \frac{1}{8}n\ln n + 4n = \Theta(n\ln n).$

Proposition 40

Les assertions suivantes sont équivalentes

- 1. $f(n) = \Theta(g(n))$.
- **2.** $g(n) = \Theta(f(n))$.
- 3. $f(n) = \mathcal{O}(g(n))$ et $g(n) = \mathcal{O}(f(n))$.

Définition 41

Étant données deux fonctions $f, g : \mathbb{N} \to]0, +\infty[$, la relation

$$f(n) = \Omega(g(n))$$

signifie qu'il existe une constante c > 0 et $n_0 \in \mathbb{N}$ tels que

$$\forall n \in \mathbb{N}, n \ge n_0 \implies 0 \le cg(n) \le f(n).$$

On dit que g(n) est un **minorant asymptotique** de f(n).

Cela revient à dire que $f(n) = \mathcal{O}(g(n))$.