Group 1.2 - Position Prediction

Workflow so far

What we have achieved so far - Design

Milestone 1 (15.5.)

- Grundliegende Software-Architektur festgelegt
- Grundliegendes Software-Design festgelegt
- ► Ein Grundgerüst der Applikation ist fertiggestellt: Es sind folgende Ansichten funktional umgesetzt:
 - ► Offline-Karten (eine Kartenumgebung wird angezeigt, Navigation möglich)
 - ► Diverse UI-Elemente (mindestens Eingabefeld, Button)
- ► Die Positionsdaten für die Vorhersage werden von der *Movebank*-API bezogen.

- ► Es wird eine Vorhersage mittels eines einfachen Vorhersagemodells berechnet.
- Es existiert eine funktionale Visualisierung des Vorhersage-Ergebnisses.
- ► Es existiert eine Möglichkeit, eine Cesium Ansicht von der Applikation aus aufzurufen.

What we have achieved so far - Software Architecture

Request Prediction (User Interaction)

Parameter choice (Settings)

- Algorithm
- Algorithm Parameters
- Visualisation Parameters

Activity

- obtain Adapter
- link Mapview
- handle Errors
- Communication with User

WorkflowController

- 1.) Data Fetch
- 2.) Call Algo
- 3.) Determine Visualisation
- 4.) Set Visualisation Properties (colour, etc)
- 5.) Hand abstract Visualisation to Adapter

CesiumAdapter Cesium Control Cesium Library OSMDroidAdapter OSMDroid Control OSMDroid Library

Benefits:

- Easier to write: Controller doesn't care about Algo or Map implementation
- ► Easier to integrate (call from anywhere)
- Highly extensible (could subclass controllers?)
- ► Same code for visualisation of past and predicted locations (assumption: never want to see data without a prediction → AnimalTracker)

What we have achieved so far - Software Architecture

Request Prediction (User Interaction)

Parameter choice (Settings)

- Algorithm
- Algorithm Parameters
- Visualisation Parameters

Activity

- obtain Adapter
- link Mapview
- handle Errors
- Communication with User

WorkflowController

- 1.) Data Fetch
- 2.) Call Algo
- 3.) Determine Visualisation
- 4.) Set Visualisation Properties (colour, etc)
- 5.) Hand abstract Visualisation to Adapter

CesiumAdapter Cesium Control Cesium Library OSMDroidAdapter
OSMDroid Control

OSMDroid Library

Challenges:

- Separation of Concerns, D.R.Y.
- ► How to model data in a general but still meaningful, usable, maintainable way?
 - ► e.g. Types

 Locations > SingleTrajectory,

 SingleTrajectoryVis,

 AlgParams

What we have achieved so far - Software Architecture

Request Prediction (User Interaction)

Parameter choice (Settings)

- Algorithm
- Algorithm Parameters
- Visualisation Parameters

Activity

- obtain Adapter
- link Mapview
- handle Errors
- Communication with User

WorkflowController

- 1.) Data Fetch
- 2.) Call Algo
- 3.) Determine Visualisation
- 4.) Set Visualisation Properties (colour, etc)
- 5.) Hand abstract Visualisation to Adapter

CesiumAdapter Cesium Control Cesium Library OSMD void A doubou

OSMDroidAdapter OSMDroid Control OSMDroid Library

- OSMDroidAdapter: Convert data to OSM-specific Types and call the right drawing methods.
- ► OSMDroidMap: Library specific code
 - ▶ enable features
 - draw stuff
 - ► handle events
 - make undocumented library functions usable

Next steps - Software Architecture

How to integrate...

- ... error handling? (throw where, catch where?)
- ▶ ... user communication? (error messages, progress bars...)
- ► Achieve higher generality in WorkflowController
- ▶ ... see project timeline.

What we have achieved so far - Movebank

Milestone 1 (15.5.)

- ► Grundliegende Software-Architektur festgelegt
- ► Grundliegendes Software-Design festgelegt
- ► Ein Grundgerüst der Applikation ist fertiggestellt: Es sind folgende Ansichten funktional umgesetzt:
 - ► Offline-Karten (eine Kartenumgebung wird angezeigt, Navigation möglich)
 - ▶ Diverse UI-Elemente (mindestens Eingabefeld, Button)
- Die Positionsdaten für die Vorhersage werden von der Movebank-API bezogen.

What we have achieved so far - Database

- ► CSV-Files from the Movebank are parsed and the data is put into the Database.
- ► Data can be accessed using SQL queries

What we have achieved so far - Algorithms I

- ► Es wird eine Vorhersage mittels eines einfachen Vorhersagemodells berechnet.
- ► Es existiert eine funktionale Visualisierung des Vorhersage-Ergebnisses.
- Es existiert eine Möglichkeit, eine Cesium Ansicht von der Applikation aus aufzurufen.
- Der Aufbau des User-Interfaces ist festgelegt (nicht-funktionale Mockups).

What we have achieved so far - Algorithms II

AlgorithmExtrapolationExtended

- (+) Good if the variance of the angles is not too big
- (+) Later datapoints are weighted more
- (+) Fast
- (+) Easy to understand
- () Not very accurate
- () Early data gets ignored

What we have achieved so far - Algorithms III

AlgorithmSimilarTrajectory

- (+) Good if the measuring frequency is high
- (+) Earlier datapoints are important for the result
- (+) Multiple trajectories can be found
- (+) Easy to understand
- () Frequency is not always high \Rightarrow Wrong result
- () Higher complexity than the other algorithm
- () (Currently) only works with the same time span between datapoints

What we have achieved so far - Visualization (OSM) I

- ► Es wird eine Vorhersage mittels eines einfachen Vorhersagemodells berechnet.
- ► Es existiert eine funktionale Visualisierung des Vorhersage-Ergebnisses.
- Es existiert eine Möglichkeit, eine Cesium Ansicht von der Applikation aus aufzurufen.
- ► Der Aufbau des User-Interfaces ist festgelegt (nicht-funktionale Mockups).

What we have achieved so far - Visualization (OSM) I

Next steps - Visualization (OSM) II

- ► Design suitable visualizations for different types of prediction output (trajectories, clouds, ...)
- ► Improve visualisation readability
 - On low zoom levels: cluster points without losing information (cf Example)
 - ► (Idea) Visualise time (e.g. map to point opacity)
 - ► (Idea) Visualise speed (e.g. map to line segment colour)
 - ▶ ..
- ► Speed improvements
- ► Alternative map tile sources

Next Steps - Visualisation Readability (Example)

Low zoom levels leave out information:

What we have achieved so far - Visualization (Cesium)

- ► Es wird eine Vorhersage mittels eines einfachen Vorhersagemodells berechnet.
- Es existiert eine funktionale Visualisierung des Vorhersage-Ergebnisses.
- ► Es existiert eine Möglichkeit, eine Cesium Ansicht von der Applikation aus aufzurufen.
- Der Aufbau des User-Interfaces ist festgelegt (nicht-funktionale Mockups).