Introduction

- Constructs parse tree for an input string beginning at the leaves (the bottom) and working towards the root (the top)
- Example: id*id

Shift-reduce parser

- The general idea is to shift some symbols of input to the stack until a reduction can be applied
- At each reduction step, a specific substring matching the body of a production is replaced by the nonterminal at the head of the production
- The key decisions during bottom-up parsing are about when to reduce and about what production to apply
- A reduction is a reverse of a step in a derivation
- The goal of a bottom-up parser is to construct a derivation in reverse:
 - E=>T=>T*F=>T*id=>F*id=>id*id

Handle pruning

• A Handle is a substring that matches the body of a production and whose reduction represents one step along the reverse of a rightmost derivation

Right sentential form	Handle	Reducing production
id*id	id	F->id
F*id	F	T->F
T*id	id	F->id
T*F	T*F	E->T*F

Shift reduce parsing

- A stack is used to hold grammar symbols
- Handle always appear on top of the stack
- Initial configuration:

```
Stack Input 
$ w$
```

Acceptance configuration

```
Stack Input
$S
```

Shift reduce parsing (cont.)

- Basic operations:
 - Shift
 - Reduce
 - Accept
 - Error
- Example: id*id

Stack	Input	Action
\$	id*id\$	shift
\$id	*id\$	reduce by F->id
\$F	*id\$	reduce by T->F
\$T	*id\$	shift
\$T*	id\$	shift
\$T*id	\$	reduce by F->id
\$T*F	\$	reduce by T->T*F
\$ T	\$	reduce by E->T
\$E	\$	accept

Handle will appear on top of the stack

Stack	Input
\$αβγ	yz\$
\$ α β B	yz\$
$\alpha \beta$ By	z\$

Stack	Input
\$ α γ \$ α Bxy	xyz\$ z\$

Conflicts during shift reduce parsing

- Two kind of conflicts
 - Shift/reduce conflict
 - Reduce/reduce conflict
- Example:

```
stmt --> If expr then stmt
If expr then stmt else stmt
other
```

Stack Input
... if expr then stmt else ...\$

Reduce/reduce conflict

```
stmt -> id(parameter_list)
stmt -> expr:=expr
parameter_list->parameter_list, parameter
parameter_list->parameter
parameter->id
expr->id(expr_list)
expr->id
expr_list->expr_list, expr
                                                               Input
                                   Stack
expr_list->expr
                             ... id(id
                                                              ,id) ...$
```

LR Parsing

- The most prevalent type of bottom-up parsers
- LR(k), mostly interested on parsers with k<=1
- Why LR parsers?
 - Table driven
 - Can be constructed to recognize all programming language constructs
 - Most general non-backtracking shift-reduce parsing method
 - Can detect a syntactic error as soon as it is possible to do so
 - Class of grammars for which we can construct LR parsers are superset of those which we can construct LL parsers

States of an LR parser

- States represent set of items
- An LR(0) item of G is a production of G with the dot at some position of the body:
 - For A->XYZ we have following items
 - A->.XYZ
 - A->X.YZ
 - A->XY.Z
 - A->XYZ.
 - In a state having A->.XYZ we hope to see a string derivable from XYZ next on the input.
 - What about A->X.YZ?

Constructing canonical LR(0) item sets

- Augmented grammar:
 - G with addition of a production: S'->S
- Closure of item sets:
 - If I is a set of items, closure(I) is a set of items constructed from I by the following rules:
 - Add every item in I to closure(I)
 - If A-> α .B β is in closure(I) and B-> γ is a production then add the item B->. γ to clsoure(I).
- Example:

```
I0=closure({[E'->.E]}
E'->.E
E->.E+T
E->.T
T->.T*F
T->.F
F->.(E)
F->.id
```

Constructing canonical LR(0) item sets (cont.)

• Goto (I,X) where I is an item set and X is a grammar symbol is closure of set of all items [A-> α X. β] where [A-> α .X β] is in I

Example

Closure algorithm

```
SetOfItems CLOSURE(I) {
 J=I:
 repeat
      for (each item A-> \alpha.B\beta in J)
            for (each production B->\gamma of G)
                   if (B->.\gamma \text{ is not in } J)
                          add B->.\gamma to J;
 until no more items are added to J on one round;
 return J;
```

GOTO algorithm

```
SetOfItems GOTO(I,X) { 
 J=empty; 
 if (A-> \alpha.X \beta is in I) 
 add CLOSURE(A-> \alphaX. \beta ) to J; 
 return J; 
 }
```

Canonical LR(0) items

```
Void items(G') {
   C= CLOSURE({[S'->.S]});
   repeat
      for (each set of items I in C)
          for (each grammar symbol X)
          if (GOTO(I,X) is not empty and not in C)
            add GOTO(I,X) to C;
   until no new set of items are added to C on a round;
}
```


Use of LR(0) automaton

• Example: id*id

Line	Stack	Symbols	Input	Action
(1)	0	\$	id*id\$	Shift to 5
(2)	05	\$id	*id\$	Reduce by F->id
(3)	03	\$F	*id\$	Reduce by T->F
(4)	02	\$T	*id\$	Shift to 7
(5)	027	\$T*	id\$	Shift to 5
(6)	0275	\$T*id	\$	Reduce by F->id
(7)	02710	\$T*F	\$	Reduce by T->T*F
(8)	02	\$T	\$	Reduce by E->T
(9)	01	\$E	\$	accept

LR-Parsing model

LR parsing algorithm

```
let a be the first symbol of w$;
while(1) { /*repeat forever */
  let s be the state on top of the stack;
 if (ACTION[s,a] = shift t) {
       push t onto the stack;
       let a be the next input symbol;
  } else if (ACTION[s,a] = reduce A->\beta) {
       pop |\beta| symbols of the stack;
       let state t now be on top of the stack;
       push GOTO[t,A] onto the stack;
        output the production A -> \beta;
  } else if (ACTION[s,a]=accept) break; /* parsing is done */
  else call error-recovery routine;
```

Example

STATE	ACTON					GOTO			
	id	+	*	()	\$	E	T	F
0	S ₅			S ₄			1	2	3
1		S 6				Acc			
2		R2	S ₇		R2	R2			
3		R 4	R ₇		R4	R4			
4	S ₅			S ₄			8	2	3
5		R 6	R 6		R6	R6			
6	S ₅			S ₄				9	3
7	S ₅			S ₄					10
8		S 6			S11				
9		Rı	S ₇		Rı	R1			
10		R ₃	R ₃		R ₃	R ₃			
11		R5	R5		R ₅	R ₅			

(0) E' -> E

(1) E -> E + T

(2) E -> T

(3) T -> T * F

(4) T-> F

(5) F -> (E)

(6) F->id

id*id+id?

Line	Stac k	Symbol s	Input	Action
(1)	0		id*id+id\$	Shift to 5
(2)	05	id	*id+id\$	Reduce by F->id
(3)	03	F	*id+id\$	Reduce by T->F
(4)	02	T	*id+id\$	Shift to 7
(5)	027	T*	id+id\$	Shift to 5
(6)	0275	T*id	+id\$	Reduce by F->id
(7)	02710	T*F	+id\$	Reduce by T- >T*F
(8)	02	T	+id\$	Reduce by E->T
(9)	01	E	+id\$	Shift
(10)	016	E+	id\$	Shift
(11)	0165	E+id	\$	Reduce by F->id
(12)	0163	E+F	\$	Reduce by T->F
(13)	0169	E+T`	\$	Reduce by E->E+T
(14)	01	Е	\$	accept

Constructing SLR parsing table

Method

- Construct C={I0,I1, ..., In}, the collection of LR(0) items for G'
- State i is constructed from state Ii:
 - If $[A->\alpha.a\beta]$ is in Ii and Goto(Ii,a)=Ij, then set ACTION[i,a] to "shift j"
 - If $[A->\alpha]$ is in Ii, then set ACTION[i,a] to "reduce $A->\alpha$ " for all a in follow(A)
 - If {S'->.S] is in Ii, then set ACTION[I,\$] to "Accept"
- If any conflicts appears then we say that the grammar is not SLR(1).
- If GOTO(Ii,A) = Ij then GOTO[i,A]=j
- All entries not defined by above rules are made "error"
- The initial state of the parser is the one constructed from the set of items containing [S'->.S]

Example grammar which is not SLR(1)

$$S \rightarrow L=R \mid R$$

 $L \rightarrow R \mid id$

$$R \rightarrow L$$

$$S \rightarrow .L=R$$

$$S->.R$$

$$L -> .*R$$

I3

$$S \rightarrow R$$
.

I5

$$L \rightarrow id$$

I7

$$L -> R$$
.

$$S \rightarrow L = R$$

$$R \rightarrow L$$
.

I4

I6

$$S->L\neq .R$$

$$L->/*R$$

I8

$$R \rightarrow L$$
.

$$S \rightarrow L=R$$
.

Action

Shift 6

Reduce R->L

More powerful LR parsers

- Canonical-LR or just LR method
 - Use lookahead symbols for items: LR(1) items
 - Results in a large collection of items
- LALR: lookaheads are introduced in LR(0) items

Canonical LR(1) items

- In LR(1) items each item is in the form: [A-> α . β ,a]
- An LR(1) item [A-> α . β ,a] is valid for a viable prefix γ if there is a derivation S=> δ Aw=> $\delta\alpha\beta$ w, where
 - $\Gamma = \delta \alpha$
 - Either a is the first symbol of w, or w is Eand a is \$
- Example:
 - S>BB
 - B->aB|b

Item [B->a.B,a] is valid for γ =aaa and w=ab

Constructing LR(1) sets of items

```
SetOfItems Closure(I) {
   repeat
              for (each item [A->\alpha.B\beta,a] in I)
                            for (each production B->y in G')
                                           for (each terminal b in First(\beta a))
                                                         add [B->.\gamma, b] to set I;
   until no more items are added to I;
   return I;
SetOfItems Goto(I,X) {
   initialize J to be the empty set;
   for (each item [A->\alpha.X\beta,a] in I)
              add item [A->\alphaX.\beta,a] to set J;
   return closure(J);
void items(G'){
   initialize C to Closure({[S'->.S,$]});
   repeat
              for (each set of items I in C)
                            for (each grammar symbol X)
                                           if (Goto(I,X) is not empty and not in C)
                                                          add Goto(I,X) to C;
   until no new sets of items are added to C;
```

Example

S'->S

S->CC

C->cC

C->d

Canonical LR(1) parsing table

Method

- Construct C={I0,I1, ..., In}, the collection of LR(1) items for G'
- State i is constructed from state Ii:
 - If $[A->\alpha.a\beta, b]$ is in Ii and Goto(Ii,a)=Ij, then set ACTION[i,a] to "shift j"
 - If [A-> α ., a] is in Ii, then set ACTION[i,a] to "reduce A-> α "
 - If {S'->.S,\$] is in Ii, then set ACTION[I,\$] to "Accept"
- If any conflicts appears then we say that the grammar is not LR(1).
- If GOTO(Ii,A) = Ij then GOTO[i,A]=j
- All entries not defined by above rules are made "error"
- The initial state of the parser is the one constructed from the set of items containing [S'->.S,\$]

Example

S'->SS->CC

C->cC C->d

LALR Parsing Table

• For the previous example we had:

- State merges cant produce Shift-Reduce conflicts. Why?
- But it may produce reduce-reduce conflict

Example of RR conflict in state merging

```
S'->S
```

 $S \rightarrow aAd \mid bBd \mid aBe \mid bAe$

 $A \rightarrow c$

 $B \rightarrow c$

An easy but space-consuming LALR table construction

• Method:

- 1. Construct $C=\{I0,I1,...,In\}$ the collection of LR(1) items.
- 2. For each core among the set of LR(1) items, find all sets having that core, and replace these sets by their union.
- 3. Let C'={J0,J1,...,Jm} be the resulting sets. The parsing actions for state i, is constructed from Ji as before. If there is a conflict grammar is not LALR(1).
- 4. If J is the union of one or more sets of LR(1) items, that is J = I1 UI2...IIk then the cores of Goto(I1,X), ..., Goto(Ik,X) are the same and is a state like K, then we set Goto(J,X) =k.
- This method is not efficient, a more efficient one is discussed in the book

Compaction of LR parsing table

- Many rows of action tables are identical
 - Store those rows separately and have pointers to them from different states
 - Make lists of (terminal-symbol, action) for each state
 - Implement Goto table by having a link list for each nonterinal in the form (current state, next state)

Using ambiguous grammars

$$E \rightarrow E * E$$

$$E \rightarrow (E)$$

I0: E'->.E	I1: E'->E.	I2: E->(.E)
E->.E+E	$E \rightarrow E + E$	E->.E+E
E->.E*E	E->E.*E	E->.E*E
E->.(E)		E->.(E)
E->.id		E->.id

12. E < :4	I4: E->E+.E	I5: E->E*.E
I3: E->.id	E->.E+E	E->(.E)
	E->.E*E	E->.E+E
	E->.(E)	E->.E*E
	E->.id	E->.(E)
		E->.id

	id	+	*	()	\$	E
О	S ₃			S2			1
1		S ₄	S ₅			Acc	
2	S ₃		S2				6
3		R ₄	R ₄		R4	R4	
4	S ₃			S ₂			7
5	S ₃			S ₂			8
6		S ₄	S ₅				
7		Rı	S ₅		Rı	Rı	
8		R ₂	R ₂		R2	R2	
9		R ₃	R ₃		R ₃	R ₃	

ACTON

GO TO

I6: E->(E.) E->E.+E

STATE

I7: E->E+E.

Ľ->Ľ.+Ľ F₋\F *F $E \rightarrow E + E$

E->E.*E

E->E.*E

I8: E->E*E.

I9: E - > (E).

E->E.+E

E->E.*E