АКТУАЛЬНЫЕ ВОПРОСЫ НАУКИ И ОБРАЗОВАНИЯ

ТЕЗИСЫ

Всероссийской молодёжной научно-практической конференции 25-27 апреля 2013 г. г. Уфа

Уфа РИЦ БашГУ 2013

Редакционная коллегия:

канд. хим. наук В.Ю.Гуськов (отв. редактор); канд. юр. наук, доцент З.И. Сагитдинова; канд. биол. наук А.М. Фёдорова; канд. полит. наук Э.Н. Ямалова; канд. фил. наук А.О. Хужахметов; канд. фил. наук Г.У. Калимуллина; канд. фил. наук, Ю.А. Кошеварова; аспиранты: Кутушев Г.З.; Токтамышева Ю.С.;

Бикмеев Д.М.; Иткулова Ю.А.; Хаернасова Э.Ф.;

Егоров А.С.; Габдрахманова Л.А.

Актуальные вопросы науки и образования: тезисы Всероссийской молодежной научно-практической конференции (25-27 A43 2013 г., г. Уфа) / отв. ред. В.Ю. Гуськов. – Уфа: РИЦ БашГУ, 2013. – 858 c.

ISBN 978-5-7477-3214-8

В сборнике представлены материалы Всероссийской молодежной научнопрактической конференции «Актуальные вопросы науки и образования», прошедшей 25-27 апреля 2013 г. в Уфе.

> УДК 001+371 ББК 72+74.04

ISBN 978-5-7477-3214-8

© БашГУ, 2013

СОДЕРЖАНИЕ

Теоретическая и экспериментальная физика	4
Математические методы в естествознании и технологиях	87
Науки о жизни	178
Химия и химические технологии	247
Актуальные проблемы развития государства и права	384
Социально-философские проблемы современности	405
Актуальные проблемы экономического развития	442
Филология	529
Проблемы теории языка, переводоведения и методики иноязычного образования	583
Психологическая наука и практика современности	622
История: актуальные направления исследований	660
Территориальные аспекты развития природы и общества	707
Круглый стол по инновационным технологиям в педагогическом образовании	775
Круглый стол по актуальным проблемам стран-членов ШОС и БРИКС	794
Круглый стол, посвященный году охраны окружающей среды	821

Тимербаев Г. Г. Иванов А. Н.,

Филиал ФГБОУ ВПО «Уфимский государственный нефтяной технический университет» в г. Стерлитамаке

Научный руководитель: к.т.н., доц. Исламутдинова А. А., асс. Калимуллин Л. И.

ПРОБЛЕМЫ УТИЛИЗАЦИИ ДИСТИЛЛЕРНОЙ ЖИДКОСТИ

Широко известно, что на стерлитамакском предприятии ОАО «Сода» под сбор отходов производства выделяются земельные участки (шламонакопители) для хранения дистиллерной жидкости. В связи с этим остро встаёт проблема её утилизации, так как площадь, отводимая под шламонакопители ограниченна. К тому же открытое хранение этих отходов угрожает окружающей флоре и фауне.

Данная проблема частично разрешена самим предприятием. ОАО «Сода» реализует хлорид кальция, выделенный из дистиплерной жидкости, в муниципалитеты как средство борьбы с гололёдом на автомагистралях. Но в связи с тем, что данный продукт является опасным для экологии (например, в Москве и Подмосковье из-за применения этой соли в качестве антигололёдного реагента ежегодно погибает около 250 тысяч деревьев), предложенный метод переработки является ограниченно применимым. К тому же использование хлористого кальция на дорогах и тротуарах ведёт, во-первых, к коррозии кузова автомобиля, во-вторых — к порче обуви и износу автомобильных шин. Вследствие вышесказанных проблем спрос на хлорид кальция в последнее время резко снизился. К тому же он находит применение только в холодное время года. Несмотря на подобное применение отходов производства соды, при существующем объёме производства, который составляет приблизительно 9-10 тонн дистиллерной жидкости (или 1 тонна в перерасчёте на чистый хлористый кальций) на 1 тонну кальцинированной соды, количество хранимой дистиллерной жидкости в специальных резервуарах продолжает увеличиваться. В силу того что метод утилизации, предложенный самим предприятием, не позволяет решить данную угрозу для экологии, требуется найти более рациональное и приемлемое решение с экологической и экономической точки зрения.

Для решения возникшей проблемы нами рассматривается принципиально новый безопасный для окружающей среды промышленный способ утилизации дистиллерной жидкости с целью получения и извлечения β-силиката кальция (волластонита).

По данным сайта Wikipedia.org, годовое мировое производство волластонита оценивается примерно в 600-1000 тыс. т. Месторождения волластонита разрабатываются в различных уголках планеты. Производство синтетического волластонита ограничено и осуществляется лишь в отдельных странах: США, Дании, Италии и Германии.

На мировом рынке 1 тонна руды волластонита стоит 60-80 долларов. После обогащения стоимость 1 тонны волластонитового концентрата возрастает до 200-600 долларов. На территории России волластонитовая руда в промышленных масштабах добывается только в Горном Алтае рудник «Веселый» с. Сейка. Наиболее известные месторождения — Синюхинское и Майское. Таким образом, продавая волластонит на российском рынке, можно не только компенсировать затраты на производство и утилизацию продукта, но и получить экономическую выгоду.

Этот минерал находит широкое применение во всех отраслях промышленности. Волластонит применяется в качестве добавки-наполнителя в пластмассах, в цветной металлургии, в шинной, асбоцементной и лакокрасочной промышленности, в производстве керамики. Используется волластонит и в автомобилестроении, он входит в состав наполнителя для ряда важных узлов автомобиля: тормозных колодок, подшипников скольжения, применяется в антикоррозийных покрытиях. Волластонит входил в теплоизоляционную общивку космического корабля «Буран». Незаменим этот минерал при герметизации подземных сооружений, так как позволяет формировать такую структуру производимого герметика, которая пропускает воздух, но задерживает воду.

В лабораторных условиях было испытано получение силиката кальция из дистиллерной жидкости и жидкого стекла (силиката натрия) по уравнению реакции:

 $CaCl_2 + Na_2SiO_3 = CaSiO_3 + 2NaCl$

Обобщая выше сказанное, предлагаемое нами методика промышленной утилизации является экологически безопасным, экономически рентабельным и нетребовательным к сырью.

Список литературы

- 1. Акатьева Л.В. Синтез и физико-химические свойства ксонотлита и волластонита : дис. канд. хим. наук / Ин-т общей и неорг. химии им. Н.С. Курнакова РАН. М., 2003. 233 с.
- 2. Гладун В.Д., Холькин А.И., Акатьева Л.В. Перспективы создания производства синтетического волластонита в России // Химическая технология. 2007. Т. 8, № 5. 201 204.
- 3. Гладун В.Д., Акатьева Л.В., Андреева Н.Н., Холькин А.И. Получение и применение синтетического волластонита из природного и техногенного сырья //Химическая технология. 2004 № 9.

4. М.Р. Туктарова, Ф.Р. Опарина, А.А. Исламутдинова. Утилизация дистиплерной жидкости с получением волластонита. Сборник материалов 63-ей научно-технической конференции студентов, аспирантов и молодых ученых: сб. матер. конф. – Кн. 2, Уфа: Изд-во УГНТУ, 2012, с. 372

Научное издание

АКТУАЛЬНЫЕ ВОПРОСЫ НАУКИ И ОБРАЗОВАНИЯ

ТЕЗИСЫ Всероссийской молодёжной научно-практической конференции 25-27 апреля 2013 г. г. Уфа

Редактор Е.В. Полякова Корректор А.И. Николаева

Лицензия на издательскую деятельность ЛР № 021319 от 05.01.99 г.

Подписано в печать 23.04.2013 г. Формат 60х84/16. Усл. печ.л. 49,87. Уч.-изд.л. 123,55. Изд. № 67

Редакционно-издательский центр Башкирского государственного университета 450076, РБ, г. Уфа, ул. Заки Валиди, 32.