axially symmetric photon field:

x^{μ}
$x^0 = t$.
$x^1 = x$.
$x^2 = y$.
$x^3 = z.$
$g_{\mu u}$
$g_{00} = 1 + 8mB(-\frac{1}{2}(z-t)\sqrt{2})\ln(\frac{\sqrt{y^2+x^2}}{\alpha}).$
$g_{01} = 0.$
$g_{02} = 0.$
$g_{03} = -8mB(-\frac{1}{2}(z-t)\sqrt{2})\ln(\frac{\sqrt{y^2+x^2}}{\alpha}).$
$g_{10} = 0.$
$g_{11} = -1.$
$g_{12} = 0.$ $g_{13} = 0.$
$g_{20} = 0.$
$g_{21} = 0.$
$g_{22} = -1.$
$g_{23} = 0.$
$g_{30} = -8mB(-\frac{1}{2}(z-t)\sqrt{2})\ln(\frac{\sqrt{y^2+x^2}}{\alpha}).$
_ ~
$g_{31} = 0.$
$g_{32} = 0.$
$g_{33} = -1 + 8mB(-\frac{1}{2}(z-t)\sqrt{2})\ln(\frac{\sqrt{y^2 + x^2}}{\alpha}).$
_
$\sqrt{-\det(g_{\mu\nu})}$
$\sqrt{}=1.$
·
$g^{\mu u}$
$1 \qquad \sqrt{2 + m^2}$
$g^{00} = 1 - 8mB(-\frac{1}{2}(z-t)\sqrt{2})\ln(\frac{\sqrt{y^2 + x^2}}{\alpha}).$
$g^{01} = 0.$
$g^{02} = 0.$
$g^{03} = -8mB(-\frac{1}{2}(z-t)\sqrt{2})\ln(\frac{\sqrt{y^2+x^2}}{\alpha}).$
_
$g^{10} = 0.$
$g^{11} = -1.$
$g^{12} = 0.$
$g^{13} = 0.$ $g^{20} = 0.$
$g^{23} = 0.$ $g^{21} = 0.$
$g^{-2} = 0.$ $g^{22} = -1.$
$g = -1.$ $q^{23} = 0.$
$g^{30} = -8mB(-\frac{1}{2}(z-t)\sqrt{2})\ln(\frac{\sqrt{y^2+x^2}}{\alpha}).$
$g^{31} = 0.$
$g^{32} = 0.$
$g^{33} = -1 - 8mB(-\frac{1}{2}(z-t)\sqrt{2})\ln(\frac{\sqrt{y^2+x^2}}{\alpha}).$
$g = -1 - 8mB(-\frac{1}{2}(z-t)\sqrt{2}) \operatorname{in}(\frac{1}{\alpha}).$
$\Gamma^{\sigma}_{\mu u}$
$\Gamma_{00}^{0} = 2m \ln(\frac{\sqrt{y^2 + x^2}}{\alpha}) \sqrt{2}B'(-\frac{1}{2}(z - t)\sqrt{2}).$
$\Gamma_{01}^0 = 4 \frac{mB(-\frac{1}{2}(z-t)\sqrt{2})x}{y^2 + x^2}.$
$\Gamma_{02}^0 = 4 \frac{myB(-\frac{1}{2}(z-t)\sqrt{2})}{y^2 + x^2}.$
$\Gamma_{03}^0 = -2m \ln(\frac{\sqrt{y^2 + x^2}}{2}) \sqrt{2}B'(-\frac{1}{2}(z-t)\sqrt{2}).$
α Z
$\Gamma_{10}^0 = 4 \frac{mB(-\frac{1}{2}(z-t)\sqrt{2})x}{y^2 + x^2}.$
$\Gamma^0_{11} = 0.$
$\Gamma_{12}^{0} = 0.$
- · · · · · · · · · · · · · · · · · · ·
$\Gamma_{13}^0 = -4 \frac{mB(-\frac{1}{2}(z-t)\sqrt{2})x}{y^2 + x^2}.$
$\Gamma_{20}^0 = 4 \frac{myB(-\frac{1}{2}(z-t)\sqrt{2})}{y^2 + x^2}.$
9 1 3
T() 0
$\Gamma^0_{21} = 0.$
$\Gamma_{21}^0 = 0.$ $\Gamma_{22}^0 = 0.$
$\Gamma_{22}^0 = 0.$
$\Gamma_{22}^{0} = 0.$ $\Gamma_{23}^{0} = -4 \frac{myB(-\frac{1}{2}(z-t)\sqrt{2})}{y^2 + x^2}.$
$\Gamma_{22}^0 = 0.$
$\Gamma_{22}^{0} = 0.$ $\Gamma_{23}^{0} = -4 \frac{myB(-\frac{1}{2}(z-t)\sqrt{2})}{y^2 + x^2}.$ $\Gamma_{30}^{0} = -2m\ln(\frac{\sqrt{y^2 + x^2}}{\alpha})\sqrt{2}B'(-\frac{1}{2}(z-t)\sqrt{2}).$
$\Gamma_{22}^{0} = 0.$ $\Gamma_{23}^{0} = -4 \frac{myB(-\frac{1}{2}(z-t)\sqrt{2})}{y^2 + x^2}.$
$\Gamma_{22}^{0} = 0.$ $\Gamma_{23}^{0} = -4 \frac{myB(-\frac{1}{2}(z-t)\sqrt{2})}{y^2 + x^2}.$ $\Gamma_{30}^{0} = -2m\ln(\frac{\sqrt{y^2 + x^2}}{\alpha})\sqrt{2}B'(-\frac{1}{2}(z-t)\sqrt{2}).$ $\Gamma_{31}^{0} = -4 \frac{mB(-\frac{1}{2}(z-t)\sqrt{2})x}{y^2 + x^2}.$
$\Gamma_{22}^{0} = 0.$ $\Gamma_{23}^{0} = -4 \frac{myB(-\frac{1}{2}(z-t)\sqrt{2})}{y^2 + x^2}.$ $\Gamma_{30}^{0} = -2m\ln(\frac{\sqrt{y^2 + x^2}}{\alpha})\sqrt{2}B'(-\frac{1}{2}(z-t)\sqrt{2}).$ $\Gamma_{31}^{0} = -4 \frac{mB(-\frac{1}{2}(z-t)\sqrt{2})x}{y^2 + x^2}.$ $\Gamma_{32}^{0} = -4 \frac{myB(-\frac{1}{2}(z-t)\sqrt{2})}{y^2 + x^2}.$
$\Gamma_{22}^{0} = 0.$ $\Gamma_{23}^{0} = -4 \frac{myB(-\frac{1}{2}(z-t)\sqrt{2})}{y^2 + x^2}.$ $\Gamma_{30}^{0} = -2m\ln(\frac{\sqrt{y^2 + x^2}}{\alpha})\sqrt{2}B'(-\frac{1}{2}(z-t)\sqrt{2}).$ $\Gamma_{31}^{0} = -4 \frac{mB(-\frac{1}{2}(z-t)\sqrt{2})x}{y^2 + x^2}.$

1

```
\begin{split} &\Gamma_{00}^{1}=4\frac{mB(-\frac{1}{2}(z-t)\sqrt{2})x}{y^{2}+x^{2}}.\\ &\Gamma_{01}^{1}=0.\\ &\Gamma_{02}^{1}=0.\\ &\Gamma_{03}^{1}=-4\frac{mB(-\frac{1}{2}(z-t)\sqrt{2})x}{y^{2}+x^{2}}.\\ &\Gamma_{10}^{1}=0.\\ &\Gamma_{11}^{1}=0.\\ &\Gamma_{11}^{1}=0.\\ &\Gamma_{13}^{1}=0.\\ &\Gamma_{20}^{1}=0.\\ &\Gamma_{21}^{1}=0.\\ &\Gamma_{23}^{1}=0.\\ &\Gamma_{23}^{1}=0.\\ &\Gamma_{31}^{1}=0.\\ &\Gamma_{31}^{1}=0.\\ &\Gamma_{31}^{1}=0.\\ &\Gamma_{31}^{1}=0.\\ &\Gamma_{31}^{1}=0.\\ &\Gamma_{31}^{1}=0.\\ &\Gamma_{31}^{1}=0.\\ &\Gamma_{31}^{1}=0.\\ &\Gamma_{32}^{1}=0.\\ &\Gamma_{32}^{1}=0.\\ &\Gamma_{33}^{1}=0.\\ &\Gamma_{33}^{1}=0.\\ &\Gamma_{34}^{1}=0.\\ &\Gamma_{35}^{1}=0.\\ &\Gamma_{35}^{1}=0
                                                \begin{split} &\Gamma_{00}^2 = 4 \frac{myB(-\frac{1}{2}(z-t)\sqrt{2})}{y^2 + x^2}. \\ &\Gamma_{01}^2 = 0. \\ &\Gamma_{02}^2 = 0. \\ &\Gamma_{03}^2 = -4 \frac{myB(-\frac{1}{2}(z-t)\sqrt{2})}{y^2 + x^2}. \\ &\Gamma_{10}^2 = 0. \\ &\Gamma_{11}^2 = 0. \\ &\Gamma_{12}^2 = 0. \\ &\Gamma_{13}^2 = 0. \\ &\Gamma_{20}^2 = 0. \\ &\Gamma_{21}^2 = 0. \\ &\Gamma_{21}^2 = 0. \\ &\Gamma_{22}^2 = 0. \\ &\Gamma_{23}^2 = 0. \\ &\Gamma_{23}^2 = 0. \\ \end{split}
                                                \Gamma_{23}^{2} = 0.
\Gamma_{30}^{2} = -4 \frac{myB(-\frac{1}{2}(z-t)\sqrt{2})}{y^{2} + x^{2}}.
\Gamma_{31}^{2} = 0.
\Gamma_{32}^{2} = 0.
\Gamma_{33}^{2} = 4 \frac{myB(-\frac{1}{2}(z-t)\sqrt{2})}{y^{2} + x^{2}}.
        \Gamma_{00}^{3} = 2m \ln(\frac{\sqrt{y^2 + x^2}}{\alpha})\sqrt{2}B'(-\frac{1}{2}(z - t)\sqrt{2}).
\Gamma_{01}^{3} = 4\frac{mB(-\frac{1}{2}(z - t)\sqrt{2})x}{y^2 + x^2}.
\Gamma_{02}^{3} = 4\frac{myB(-\frac{1}{2}(z - t)\sqrt{2})}{y^2 + x^2}.
\Gamma_{03}^{3} = -2m \ln(\frac{\sqrt{y^2 + x^2}}{\alpha})\sqrt{2}B'(-\frac{1}{2}(z - t)\sqrt{2}).
\Gamma_{10}^{3} = 4\frac{mB(-\frac{1}{2}(z - t)\sqrt{2})x}{y^2 + x^2}.
\Gamma_{11}^{3} = 0.
\Gamma_{12}^{3} = 0.
\Gamma_{13}^{3} = -4\frac{mB(-\frac{1}{2}(z - t)\sqrt{2})x}{y^2 + x^2}.
\Gamma_{20}^{3} = 4\frac{myB(-\frac{1}{2}(z - t)\sqrt{2})x}{y^2 + x^2}.
\Gamma_{21}^{3} = 0.
\Gamma_{22}^{3} = 0.
\Gamma_{23}^{3} = -4\frac{myB(-\frac{1}{2}(z - t)\sqrt{2})}{y^2 + x^2}.
\Gamma_{30}^{3} = -2m \ln(\frac{\sqrt{y^2 + x^2}}{\alpha})\sqrt{2}B'(-\frac{1}{2}(z - t)\sqrt{2}).
\Gamma_{31}^{3} = -4\frac{mB(-\frac{1}{2}(z - t)\sqrt{2})x}{y^2 + x^2}.
\Gamma_{32}^{3} = -4\frac{mB(-\frac{1}{2}(z - t)\sqrt{2})x}{y^2 + x^2}.
\Gamma_{33}^{3} = -4\frac{myB(-\frac{1}{2}(z - t)\sqrt{2})x}{y^2 + x^2}.
\Gamma_{33}^{3} = 2m \ln(\frac{\sqrt{y^2 + x^2}}{\alpha})\sqrt{2}B'(-\frac{1}{2}(z - t)\sqrt{2}).
R_{\mu\nu}
R_{\mu\nu}
R_{00} = 0.
R_{01} = 0.
R_{02} = 0.
R_{03} = 0.
R_{10} = 0.
                                                                     R_{11} = 0.
R_{12} = 0.
R_{13} = 0.
R_{20} = 0.
R_{21} = 0.
R_{22} = 0.
R_{30} = 0.
R_{31} = 0.
R_{32} = 0.
R_{33} = 0.
```

$$\begin{split} \boxed{R^{\mu}_{\ \nu}} \\ R^0_{\ 0} &= 0. \\ R^0_{\ 1} &= 0. \\ R^0_{\ 2} &= 0. \\ R^0_{\ 3} &= 0. \\ R^1_{\ 0} &= 0. \\ R^1_{\ 1} &= 0. \\ R^1_{\ 2} &= 0. \\ R^2_{\ 2} &= 0. \\ R^2_{\ 1} &= 0. \\ R^2_{\ 1} &= 0. \\ R^2_{\ 3} &= 0. \\ R^3_{\ 3} &= 0. \\ R^3_{\ 1} &= 0. \\ R^3_{\ 1} &= 0. \\ R^3_{\ 3} &= 0. \\ R^3_{\ 3} &= 0. \end{split}$$
R = 0. $G^{\mu}_{\ \nu}$ $G^{0}_{\ 0} = 0.$ $G^{0}_{\ 1} = 0.$ $G^{0}_{\ 2} = 0.$ $G^{0}_{\ 3} = 0.$ $G^{1}_{\ 0} = 0.$ $G^{1}_{\ 1} = 0.$ $G^{1}_{\ 1} = 0.$ $G^{1}_{\ 2} = 0.$ $G^{2}_{\ 1} = 0.$ $G^{2}_{\ 1} = 0.$ $G^{2}_{\ 1} = 0.$ $G^{2}_{\ 3} = 0.$ $G^{3}_{\ 0} = 0.$ $G^{3}_{\ 1} = 0.$ $G^{3}_{\ 2} = 0.$ $G^{3}_{\ 3} = 0.$ $oxed{G}$ G=0. $G^{\mu}_{\nu:\mu} = 0$ $G^{\mu}_{0:\mu} = 0.$ $G^{\mu}_{1:\mu} = 0.$ $G^{\mu}_{2:\mu} = 0.$ $G^{\mu}_{3:\mu} = 0.$

 $g^{\mu\nu} \Gamma^{0}_{\mu\nu} = 64m^{2}B(-\frac{1}{2}(z-t)\sqrt{2})\ln(\frac{\sqrt{y^{2}+x^{2}}}{\alpha})^{2}\sqrt{2}B'(-\frac{1}{2}(z-t)\sqrt{2}).$ $g^{\mu\nu} \Gamma^{1}_{\mu\nu} = 128\frac{m^{2}B(-\frac{1}{2}(z-t)\sqrt{2})^{2}\ln(\frac{\sqrt{y^{2}+x^{2}}}{\alpha})x}{y^{2}+x^{2}}.$ $g^{\mu\nu} \Gamma^{2}_{\mu\nu} = 128\frac{m^{2}yB(-\frac{1}{2}(z-t)\sqrt{2})^{2}\ln(\frac{\sqrt{y^{2}+x^{2}}}{\alpha})}{y^{2}+x^{2}}.$ $g^{\mu\nu} \Gamma^{3}_{\mu\nu} = 64m^{2}B(-\frac{1}{2}(z-t)\sqrt{2})\ln(\frac{\sqrt{y^{2}+x^{2}}}{\alpha})^{2}\sqrt{2}B'(-\frac{1}{2}(z-t)\sqrt{2}).$

 $g^{\mu\nu} \, \Gamma^{\lambda}_{\mu\nu} = 0?$