Pattern Popularity and Separable Permutations

Cheyne Homberger

Howard University September 12th, 2014

Definition

An permutation of length n is a bijection from the set $[n] = \{1, 2, \dots n\}$ to itself. The one-line notation for a permutation π is

$$\pi = \pi(1)\pi(2)\dots\pi(n).$$

The set of all permutations of length n is denoted \mathfrak{S}_n .

Definition

An permutation of length n is a bijection from the set $[n] = \{1, 2, \dots n\}$ to itself. The one-line notation for a permutation π is

$$\pi = \pi(1)\pi(2)\dots\pi(n).$$

The set of all permutations of length n is denoted \mathfrak{S}_n .

Examples

▶ The sequence $\pi = 5172643$ is a permutation of length 7.

Definition

An permutation of length n is a bijection from the set $[n] = \{1, 2, \dots n\}$ to itself. The one-line notation for a permutation π is

$$\pi = \pi(1)\pi(2)\dots\pi(n).$$

The set of all permutations of length n is denoted \mathfrak{S}_n .

- ▶ The sequence $\pi = 5172643$ is a permutation of length 7.
- The six permutations of length 3 are

$$\mathfrak{S}_3 = \{123, 132, 213, 231, 312, 321\}.$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

Definition

$$\{(1,\pi(1)),(2,\pi(2)),\cdots(n,\pi(n))\}\subset \mathbb{R}^2$$

$$\pi = 35142$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

$$\pi = 35142$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

$$\pi = 35142$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

$$\pi = 35142$$

Definition

$$\{(1, \pi(1)), (2, \pi(2)), \cdots (n, \pi(n))\} \subset \mathbb{R}^2$$

$$\pi = 35142$$

Definition

$$\{(1,\pi(1)),(2,\pi(2)),\cdots(n,\pi(n))\}\subset \mathbb{R}^2$$

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Example

~

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

$$\pi = 35142$$

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

Let A and B be two sets of n points in \mathbb{R}^2 , each with the property that no two points lie on the same horizontal or vertical line. Say that A is order isomorphic to B (denoted $A \sim B$) if A can be transformed into B by stretching, contracting, and translating the axes horizontally and vertically.

Definition

For a permutation $\pi=\pi_1\pi_2\dots\pi_n$, the reverse, the complement, and the inverse of π are denoted π^r , π^c , and π^{-1} , and defined as follows:

$$(\pi^r)_i=\pi_{n+1-i}, \quad (\pi^c)_i=n+1-\pi_i, ext{ and}$$

$$(\pi^{-1})_{\pi_j}=j.$$

Definition

For a permutation $\pi=\pi_1\pi_2\dots\pi_n$, the reverse, the complement, and the inverse of π are denoted π^r , π^c , and π^{-1} , and defined as follows:

$$(\pi^r)_i=\pi_{n+1-i}, \quad (\pi^c)_i=n+1-\pi_i, \ \ ext{and}$$
 $(\pi^{-1})_{\pi_j}=j.$

Definition

For a permutation $\pi=\pi_1\pi_2\dots\pi_n$, the reverse, the complement, and the inverse of π are denoted π^r , π^c , and π^{-1} , and defined as follows:

$$(\pi^r)_i=\pi_{n+1-i}, \quad (\pi^c)_i=n+1-\pi_i, ext{ and}$$

$$(\pi^{-1})_{\pi_j}=j.$$

Definition

For a permutation $\pi = \pi_1 \pi_2 \dots \pi_n$, the reverse, the complement, and the inverse of π are denoted π^r , π^c , and π^{-1} , and defined as follows:

$$(\pi^r)_i=\pi_{n+1-i}, \quad (\pi^c)_i=n+1-\pi_i, \ \ ext{and}$$

$$(\pi^{-1})_{\pi_j}=j.$$

Definition

For a permutation $\pi = \pi_1 \pi_2 \dots \pi_n$, the reverse, the complement, and the inverse of π are denoted π^r , π^c , and π^{-1} , and defined as follows:

$$(\pi^r)_i=\pi_{n+1-i}, \quad (\pi^c)_i=n+1-\pi_i, ext{ and}$$

$$(\pi^{-1})_{\pi_j}=j.$$

 $\pi=61\ 84\ 31\ 35\ 39\ 28\ 9\ 54\ 6\ 4\ 74\ 71\ 68\ 85\ 98\ 38\ 97\ 45\ 12\ 27\ 57\ 89\ 30\ 5\ 55\ 11\ 58$ 13\ 42\ 32\ 14\ 53\ 2\ 51\ 20\ 56\ 80\ 10\ 43\ 95\ 17\ 50\ 8\ 16\ 15\ 70\ 63\ 81\ 64\ 24\ 52\ 76\ 47 7\ 60\ 49\ 82\ 1\ 25\ 75\ 40\ 34\ 83\ 90\ 46\ 100\ 69\ 65\ 93\ 86\ 22\ 96\ 21\ 92\ 3\ 79\ 29\ 41 44\ 66\ 94\ 59\ 87\ 37\ 73\ 36\ 72\ 67\ 78\ 19\ 33\ 88\ 62\ 99\ 23\ 91\ 26\ 48\ 18\ 77

Permutation Patterns

Definition

Let $\pi=\pi(1)\pi(2)\cdots\pi(n)$ and $\sigma=\sigma(1)\sigma(2)\cdots\sigma(k)$ be two permutations. π contains σ as a pattern (written $\sigma\prec\pi$) if there is some subsequence $\pi(i_1)\pi(i_2)\dots\pi(i_k)$ which is order isomorphic to the entries of σ (i.e., $\pi(i_j)<\pi(i_k)$ if and only if $\sigma(j)<\sigma(k)$).

Permutation Patterns

Definition

Let $\pi = \pi(1)\pi(2)\cdots\pi(n)$ and $\sigma = \sigma(1)\sigma(2)\cdots\sigma(k)$ be two permutations. π contains σ as a pattern (written $\sigma \prec \pi$) if there is some subsequence $\pi(i_1)\pi(i_2)\dots\pi(i_k)$ which is order isomorphic to the entries of σ (i.e., $\pi(i_j) < \pi(i_k)$ if and only if $\sigma(j) < \sigma(k)$).

Permutation Patterns

Definition

Let $\pi = \pi(1)\pi(2)\cdots\pi(n)$ and $\sigma = \sigma(1)\sigma(2)\cdots\sigma(k)$ be two permutations. π contains σ as a pattern (written $\sigma \prec \pi$) if there is some subsequence $\pi(i_1)\pi(i_2)\dots\pi(i_k)$ which is order isomorphic to the entries of σ (i.e., $\pi(i_j) < \pi(i_k)$ if and only if $\sigma(j) < \sigma(k)$).

Permutation Patters

Example

The pattern 12 is contained in all permutations *except* for the decreasing ones:

 $12 \not\prec n \dots 321$.

Permutation Patters

Example

The pattern 12 is contained in all permutations *except* for the decreasing ones:

$$12 \not\prec n \dots 321$$
.

Definition

If a permutation π does not contain a pattern σ , we say that π avoids σ . The set of all permutations which avoid a given pattern (or set of patterns) σ is denoted

$$Av(\sigma)$$
.

Definition

A permutation class is a set $\mathcal C$ of permutations for which, if $\pi \in \mathcal C$ and $\sigma \prec \pi$, then $\sigma \in \mathcal C$. Let $\mathcal C_n$ denote the set of permutations of length n in $\mathcal C$.

Definition

A permutation class is a set $\mathcal C$ of permutations for which, if $\pi \in \mathcal C$ and $\sigma \prec \pi$, then $\sigma \in \mathcal C$. Let $\mathcal C_n$ denote the set of permutations of length n in $\mathcal C$.

Definition

The enumeration of a class C is the sequence $|C_1|, |C_2|, |C_3|, \ldots$

Definition

A permutation class is a set $\mathcal C$ of permutations for which, if $\pi \in \mathcal C$ and $\sigma \prec \pi$, then $\sigma \in \mathcal C$. Let $\mathcal C_n$ denote the set of permutations of length n in $\mathcal C$.

Definition

The enumeration of a class C is the sequence $|C_1|, |C_2|, |C_3|, \ldots$

Example

 $\mathsf{Av}(\sigma)$ is a permutation class for any pattern (or set of patterns) $\sigma.$

Definition

A permutation class is a set \mathcal{C} of permutations for which, if $\pi \in \mathcal{C}$ and $\sigma \prec \pi$, then $\sigma \in \mathcal{C}$. Let \mathcal{C}_n denote the set of permutations of length n in \mathcal{C} .

Definition

The enumeration of a class $\mathcal C$ is the sequence $|\mathcal C_1|, |\mathcal C_2|, |\mathcal C_3|, \dots$

Example

 $\mathsf{Av}(\sigma)$ is a permutation class for any pattern (or set of patterns) σ .

Theorem (Marcus and Tardos, 2004)

Every proper permutation class has a finite exponential growth rate. That is, for any proper class C, there exists a real number s such that

$$\limsup_{n\to\infty}\sqrt[n]{|\mathcal{C}_n|}=s.$$

This number s is the growth rate of the class.

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

$$C(x) = xC(x)^2 + 1$$

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \ge 0} c_n x^n$.

Question

What does a 132-avoiding permutation look like?

$$0 = xC(x)^2 - C(x) + 1$$

 $C(x) = xC(x)^2 + 1$

$$0 = xC(x)^{-} - C(x) + 1$$

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

$$C(x) = xC(x)^{2} + 1$$

 $0 = xC(x)^{2} - C(x) + 1$
 $C(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$

Definition

Let c_n be the number of permutations of length n which avoid the pattern 132, and $C(x) = \sum_{n \geq 0} c_n x^n$.

Question

$$C(x) = xC(x)^{2} + 1$$

$$0 = xC(x)^{2} - C(x) + 1$$

$$C(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$

$$c_{n} = \frac{1}{n + 1} {2n \choose n}$$

\sim					
Q	116	25	tı	0	n

Question

Question

Question

Question

Question

Question

Question

Question

Av(132)

Av(132)

Av(132)

Av(132)

Av(132)

Av(132)

Av(132)

Av(132)

 $\mathsf{Av}(132) \mapsto \mathsf{Av}(123)$

Av(123)

$$|Av_n(123)| = |Av_n(132)|$$

$$|\operatorname{Av}_n(123)| = |\operatorname{Av}_n(132)| = \frac{1}{n+1} {2n \choose n}.$$

$$|\operatorname{Av}_n(123)| = |\operatorname{Av}_n(132)| = \frac{1}{n+1} {2n \choose n}.$$

$$|Av_n(1324) = ???|$$

Patterns

Patterns

Patterns

Patterns

Patterns

Patterns

Random Data

Random Data

$$\begin{array}{c|cc}
\nu_{12} & \nu_{21} & \mathsf{Avg} \\
2803 & 2147 & 2475
\end{array}$$

Random Data

ν_{123}	ν_{132}	ν_{213}	ν_{231}	ν_{312}	ν_{321}	Avg
35357	30063	31414	22321	23348	19197	26950

Patterns as Random Variables

Theorem (Bóna 2007)

For a (uniformly) randomly selected permutation of length n, the random variables ν_σ are asymptotically normal as n approaches infinity.

Theorem (Janson, Nakamura, Zeilberger 2013)

For a randomly selected permutation of length n and two patterns σ and ρ , the random variables ν_{σ} and ν_{ρ} are asymptotically jointly normally distributed as $n \to \infty$.

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_k$, we have

$$\nu_{\sigma}(\mathfrak{S}_n) = \frac{n!}{k!} \binom{n}{k}.$$

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_k$, we have

$$\nu_{\sigma}(\mathfrak{S}_n) = \frac{n!}{k!} \binom{n}{k}.$$

Question

How does this change when we replace \mathfrak{S}_n with a proper permutation class?

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_k$, we have

$$\nu_{\sigma}(\mathfrak{S}_n) = \frac{n!}{k!} \binom{n}{k}.$$

Question

How does this change when we replace \mathfrak{S}_n with a proper permutation class?

Fact

In \mathfrak{S}_n , the number of occurrences of a specific pattern depends only on the length of the pattern. That is, for a pattern $\sigma \in \mathfrak{S}_k$, we have

$$\nu_{\sigma}(\mathfrak{S}_n) = \frac{n!}{k!} \binom{n}{k}.$$

Question

How does this change when we replace \mathfrak{S}_n with a proper permutation class?

Connections Between Classes

Av(123) and Av(132)

Previous Results

Theorem (Bóna 2010)

In Av_n 132, the pattern 123 is the least common, 321 is the most common, and $\nu_{213}=\nu_{231}=\nu_{312}.$

Av 132								
length	123	132	213	231	312	321		
3	1	0	1	1	1	1		
4	10	0	11	11	11	13		
5	68	0	81	81	81	109		
6	392	0	500	500	500	748		
7	2063	0	2794	2794	2794	4570		

Av 132							
	length	123	132	213	231	312	321
	3	1	0	1	1	1	1
	4	10	0	11	11	11	13
	5	68	0	81	81	81	109
	6	392	0	500	500	500	748
	7	2063	0	2794	2794	2794	4570

7	2063	0	2794	2794	2794	4570
			4 100			
			Av 123			
length	123	132	213	231	312	321
3	0	1	1	1	1	1

Av 132							
	length	123	132	213	231	312	321
	3	1	0	1	1	1	1
	4	10	0	11	11	11	13
	5	68	0	81	81	81	109
	6	392	0	500	500	500	748
	7	2063	0	2794	2794	2794	4570
				Av 123			
	longth	100	122	212	221	212	221

			Av 12.
lanath	123	132	213

length	123	132	213	231	312	321
3	0	1	1	1	1	1
4	0	9	9	11	11	16

			Av 132			
length	123	132	213	231	312	321
3	1	0	1	1	1	1
4	10	0	11	11	11	13
5	68	0	81	81	81	109
6	392	0	500	500	500	748
7	2063	0	2794	2794	2794	4570
			Av 123			
length	123	132	213	231	312	321
3	0	1	1	1	1	1
4	0	9	9	11	11	16
5	0	57	57	81	81	144

Patterns Within Av(123)

Theorem (H 2012)

The total nuber of 231 (and 312) patterns is identical within the sets $Av_n(123)$ and $Av_n(132)$.

Patterns Within Av(123)

Theorem (H 2012)

The total nuber of 231 (and 312) patterns is identical within the sets ${\rm Av}_n(123)$ and ${\rm Av}_n(132)$.

Further, within $Av_n(123)$,

$$\begin{split} \nu_{132} &= \nu_{213} \sim \sqrt{\frac{n}{\pi}} 4^n, \\ \nu_{231} &= \nu_{312} \sim \frac{n}{2} 4^n, \\ \text{and} \quad \nu_{321} \sim \frac{8}{3} \sqrt{\frac{n^3}{\pi}} 4^n. \end{split}$$

Sketch of Proof: Patterns in Av(123)

$$\nu_{132}$$
 ν_{213} ν_{231} ν_{312} ν_{321}

Sketch of Proof: Patterns in Av(123)

$$v_{132} + v_{213} + v_{231} + v_{312} + v_{321} = \binom{n}{3} c_n$$

(Both sides count the number of length three patterns)

$$2\nu_{132} + 2\nu_{213} + \nu_{231} + \nu_{312} = (n-2)\nu_{12}$$

(Count triples containing a 12 pattern \dots)

$$\boxed{\nu_{132} = \nu_{213} \quad \nu_{231} = \nu_{312} \quad \nu_{321}}$$

(Since Av(123) is closed under inversion)

$$\nu_{213}(p) = \binom{2}{2}$$

$$\nu_{213}(p) = \binom{2}{2} + \binom{2}{2}$$

$$v_{213}(p) = \binom{2}{2} + \binom{2}{2} + \binom{3}{2}$$

$$u_{213}(p) = \binom{2}{2} + \binom{2}{2} + \binom{3}{2} + \binom{1}{2}$$

$$v_{213}(p) = {2 \choose 2} + {2 \choose 2} + {3 \choose 2} + {1 \choose 2} = 5$$

$$v_{213}(p) = {2 \choose 2} + {2 \choose 2} + {3 \choose 2} + {1 \choose 2} = 5$$

$$v_{213}(p) = {2 \choose 2} + {2 \choose 2} + {3 \choose 2} + {1 \choose 2} = 5$$

$$v_{213}(p) = {2 \choose 2} + {2 \choose 2} + {3 \choose 2} + {1 \choose 2} = 5$$

$$v_{213}(p) = {2 \choose 2} + {2 \choose 2} + {3 \choose 2} + {1 \choose 2} = 5$$

Let $h_{n,k}$ denote the total number of peaks at height k in all Dyck paths of semilength n. Let $H(x,u) = \sum_{n,k>0} h_{n,k} x^n u^k$.

$$v_{213}(p) = \binom{2}{2} + \binom{2}{2} + \binom{3}{2} + \binom{1}{2} = 5$$

Let $h_{n,k}$ denote the total number of peaks at height k in all Dyck paths of semilength n. Let $H(x,u) = \sum_{n,k>0} h_{n,k} x^n u^k$.

$$H(x, u) =$$

Let $h_{n,k}$ denote the total number of peaks at height k in all Dyck paths of semilength n. Let $H(x, u) = \sum_{n,k \ge 0} h_{n,k} x^n u^k$.

$$H(x, u) = ux(H(x, u) + 1)C(x) + xC(x)H(x, u)$$

Let $h_{n,k}$ denote the total number of peaks at height k in all Dyck paths of semilength n. Let $H(x,u) = \sum_{n,k \geq 0} h_{n,k} x^n u^k$.

$$H(x, u) = \frac{uxC(x)}{1 - uxC(x) - xC(x)}.$$

Let $h_{n,k}$ denote the total number of peaks at height k in all Dyck paths of semilength n. Let $H(x, u) = \sum_{n,k \ge 0} h_{n,k} x^n u^k$.

$$H(x, u) = \frac{uxC(x)}{1 - uxC(x) - xC(x)}.$$

$$\sum_{n\geq 0} \nu_{213}(\mathsf{Av}_n^*(123)) x^n = \sum_{n\geq 0} \binom{k}{2} h_{n-1,k} x^n$$

Let $h_{n,k}$ denote the total number of peaks at height k in all Dyck paths of semilength n. Let $H(x,u) = \sum_{n,k \ge 0} h_{n,k} x^n u^k$.

$$H(x, u) = \frac{uxC(x)}{1 - uxC(x) - xC(x)}.$$

$$\sum_{n\geq 0} \nu_{213}(\mathsf{Av}_n^*(123)) x^n = \sum_{n\geq 0} \binom{k}{2} h_{n-1,k} x^n$$

$$\sum_{n\geq 0} \nu_{213}(\mathsf{Av}_n^*(123)) x^n = \frac{x \partial_u^2 H(x) \big|_{u=1}}{2}$$

Let $h_{n,k}$ denote the total number of peaks at height k in all Dyck paths of semilength n. Let $H(x, u) = \sum_{n,k>0} h_{n,k} x^n u^k$.

$$H(x, u) = \frac{uxC(x)}{1 - uxC(x) - xC(x)}.$$

$$\sum_{n\geq 0} \nu_{213}(\mathsf{Av}_n^*(123))x^n = \sum_{n\geq 0} \binom{k}{2} h_{n-1,k}x^n$$

$$\sum_{n\geq 0} \nu_{213}(\mathsf{Av}_n^*(123))x^n = \frac{x\partial_u^2 H(x)\big|_{u=1}}{2}$$

$$= \frac{x^3C(x)}{(1 - 4x)^{3/2}}$$

Let $h_{n,k}$ denote the total number of peaks at height k in all Dyck paths of semilength n. Let $H(x, u) = \sum_{n,k>0} h_{n,k} x^n u^k$.

$$H(x, u) = \frac{uxC(x)}{1 - uxC(x) - xC(x)}.$$

$$\sum_{n \ge 0} \nu_{213}(Av_n^*(123))x^n = \sum_{n \ge 0} {k \choose 2} h_{n-1,k}x^n$$

$$\sum_{n \ge 0} \nu_{213}(Av_n^*(123))x^n = \frac{x\partial_u^2 H(x)|_{u=1}}{2}$$

$$= \frac{x^3C(x)}{(1 - 4x)^{3/2}}$$

$$= x^3 + 7x^4 + 38x^5 + 187^6 + \dots$$

Let $h_{n,k}$ denote the total number of peaks at height k in all Dyck paths of semilength n. Let $H(x,u) = \sum_{n,k \geq 0} h_{n,k} x^n u^k$.

$$H(x, u) = \frac{uxC(x)}{1 - uxC(x) - xC(x)}.$$

$$\sum_{n \ge 0} \nu_{213}(\mathsf{Av}_n^*(123))x^n = \sum_{n \ge 0} \binom{k}{2} h_{n-1,k} x^n$$

$$\sum_{n \ge 0} \nu_{213}(\mathsf{Av}_n^*(123))x^n = \frac{x \partial_u^2 H(x)\big|_{u=1}}{2}$$

$$= \frac{x^3 C(x)}{(1 - 4x)^{3/2}}$$

$$= x^3 + 7x^4 + 38x^5 + 187^6 + \dots$$

Results

$$\nu_{231}(\mathsf{Av}_n\,123) = \nu_{231}(\mathsf{Av}_n\,132)$$

Results

$$\nu_{213} = \frac{n+2}{4} \binom{2n}{n} - 3 \cdot 2^{2n-3}$$

$$u_{231} = (2n-1) \binom{2n-3}{n-2} - (2n+1) \binom{2n-1}{n-1} + (n+4) \cdot 2^{2n-3}$$

$$\nu_{321} = \frac{1}{6} \binom{2n+5}{n+1} \binom{n+4}{2} - \frac{5}{3} \binom{2n+3}{n} \binom{n+3}{2} + \frac{17}{3} \binom{2n+1}{n-1} \binom{n+2}{2} - 6 \binom{2n-1}{n-2} \binom{n+1}{2} - (n+1) \cdot 4^{n-1}.$$

Connections Within Classes

Av(132) and the Separables

Theorem (Bóna 2010)

Within the class Av(132):

$$\nu_{213} = \nu_{231} = \nu_{312}$$
.

Theorem (Bóna 2010)

Within the class Av(132):

$$\nu_{213}=\nu_{231}=\nu_{312}.$$

Theorem (Rudolph 2013)

If two patterns have the same structure, then they are equipopular within Av(132).

Theorem (Bóna 2010)

Within the class Av(132):

$$\nu_{213}=\nu_{231}=\nu_{312}.$$

Theorem (Rudolph 2013)

If two patterns have the same structure, then they are equipopular within Av(132).

Theorem (Chua, Sankar 2013)

If two patterns are equipopular in Av(132), then they have the same structure.

Theorem (Bóna 2010)

Within the class Av(132):

$$\nu_{213} = \nu_{231} = \nu_{312}$$
.

Theorem (Rudolph 2013)

If two patterns have the same structure, then they are equipopular within Av(132).

Theorem (Chua, Sankar 2013)

If two patterns are equipopular in Av(132), then they have the same structure.

Corollary

The equipopularity classes within $\operatorname{Av}(132)$ are in bijection with the set of integer partitions.

Definition

The *separable permutations* are those which avoid both 2413 and 3142. We denote the class Av(2413, 3142) by S.

Definition

The separable permutations are those which avoid both 2413 and 3142. We denote the class Av(2413, 3142) by S.

Theorem (Albert, Pantone, H 2014)

Two patterns are equipopular in the separables if and only if they *have* the same structure.

Definition

Given two permutations π and σ , their direct sum $(\pi \oplus \sigma)$ and skew sum $(\pi \ominus \sigma)$ are defined as follows:

Alternate Definition

The separable permutations are those which can be constructed via arbitrary skew and direct sums of the permutation 1.

Alternate Definition

The separable permutations are those which can be constructed via arbitrary skew and direct sums of the permutation 1.

Example

The permutation $\pi=215643798$ is separable, since

$$\pi = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

$$\pi = 215643798 = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

$$\pi = 215643798 = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

$$\pi = 215643798 = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

$$\pi = 215643798 = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

$$\pi = 215643798 = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

$$\pi = 215643798 = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

$$\pi = 215643798 = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

 \oplus

$$\pi = 215643798 = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

$$\pi = 215643798 = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

$$\pi = 215643798 = \Big(1\ominus 1\Big) \oplus \Big((1\oplus 1)\ominus 1\ominus 1\Big) \oplus 1 \oplus \Big(1\ominus 1\Big).$$

Tree Containment

Equipopularity

Question

If two patterns are equipopular, how are their trees related?

Equipopularity

Question

If two patterns are equipopular, how are their trees related?

Question

What tree transformations preserve equipopularity?

Strategy

Part 1

Find the operations on trees which preserve popularity.

Strategy

Part 1

Find the operations on trees which preserve popularity.

Part 2

Show that equipopularity implies that their trees are related by one of these operations.

Symmetries

Permutation Tree

Symmetries

Permutation	Tree
Complementation	Flip signs

Symmetries

Permutation	Tree
Complementation	, , ,
Reversal	Reversal and sign flip

Symmetries

Permutation	Tree
Complementation	
Reversal	Reversal and sign flip
Inverse	Reverse children of \ominus nodes

Symmetries

Permutation	Tree
Complementation	Flip signs
Reversal	Reversal and sign flip
Inverse	Reverse children of \ominus nodes

Fact

If two permutations (trees) are related by any of the above symmetries, then they are equipopular.

Theorem (Albert, Pantone, H 2014)

Theorem (Albert, Pantone, H 2014)

Theorem (Albert, Pantone, H 2014)

Theorem (Albert, Pantone, H 2014)

Theorem (Albert, Pantone, H 2014)

Preserving Popularity - Rotation

Preserving Popularity

Theorem (Albert, Pantone, H 2014)

The following operations preserve popularity:

- Reversal
- Complementation
- Inversion
- Shuffling
- Rotation

Canonical Representatives

Canonical Representatives

The Other Direction

Theorem (Albert, Pantone, H 2014)

If two patterns are equipopular, one can be transformed into the other by the above operations.

The Other Direction

Theorem (Albert, Pantone, H 2014)

If two patterns are equipopular, one can be transformed into the other by the above operations.

Corollary

The set of equipopularity classes for patterns of length n are in bijection with the set of partitions of the integer n-1.

Idea # 1

Given any arbitrary pattern, we can factor its popularity generating function into the popularity generating functions for monotone runs.

Idea # 1

Given any arbitrary pattern, we can factor its popularity generating function into the popularity generating functions for monotone runs.

Idea #2

Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

Idea #2

Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

How?

Idea #2

Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

How?

Recursively build a bivariate popularity generating function for all monotone patterns.

Idea #2

Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

How?

- Recursively build a bivariate popularity generating function for all monotone patterns.
- Notice (or let Sage tell you) that these are related to the Gegenbauer polynomials, a family of orthogonal polynomials.

Idea #2

Given a product of monotone popularity generating functions, we can uniquely factor into its component parts, and thus recover the lengths of each monotone pattern.

How?

- Recursively build a bivariate popularity generating function for all monotone patterns.
- Notice (or let Sage tell you) that these are related to the Gegenbauer polynomials, a family of orthogonal polynomials.
- Use the orthogonality of these polynomials to uniquely factor any product.

What else?

 $Similar\ results\ within\ other\ classes?$

What else?

Similar results within other classes? Similar connections between classes?

What else?

Similar results within other classes? Similar connections between classes? Beyond averages: equidistribution?

