```
In [1]: #Importing Required Libraries
   import pandas as pd
   import matplotlib.pyplot as plt
   %matplotlib inline
   import seaborn as sns
   import numpy as np

#Reading the dataset
   df = pd.read_csv(r'New credit card data.csv')

df.drop(df.index[0], inplace = True)
   df = df.astype(int)
   df.head(3)
```

Out[1]:

	X1	X2	Х3	X4	X5	X6	X7	X8	Х9	X10	 X15	X16	X17	X18	X19	X20	X21	X22	X
1	20000	2	2	1	24	2	2	-1	-1	-2	 0	0	0	0	689	0	0	0	
2	120000	2	2	2	26	-1	2	0	0	0	 3272	3455	3261	0	1000	1000	1000	0	20
3	90000	2	2	2	34	0	0	0	0	0	 14331	14948	15549	1518	1500	1000	1000	1000	50

3 rows × 24 columns

Exploratory data analysis

X1: LIMIT_BAL: Amount of given credit in NT dollars (includes individual and family/supplementary credit

X2: SEX: Gender (1=male, 2=female)

X3: EDUCATION: (1=graduate school, 2=university, 3=high school, 4=others, 5=unknown, 6=unknown)

X4: MARRIAGE: Marital status (1=married, 2=single, 3=others)

X5: AGE: Age in years

X6: PAY_1: Repayment status in September, 2005 (-1=pay duly, 1=payment delay for one month, 2=payment delay for two months, ... 8=payment delay for eight months, 9=payment delay for nine months and above)

X7: PAY_2: Repayment status in August, 2005 (scale same as above)

X8: PAY_3: Repayment status in July, 2005 (scale same as above)

X9: PAY_4: Repayment status in June, 2005 (scale same as above)

X10: PAY 5: Repayment status in May, 2005 (scale same as above)

X11: PAY_6: Repayment status in April, 2005 (scale same as above)

X12: BILL AMT1: Amount of bill statement in September, 2005 (NT dollar)

X13: BILL_AMT2: Amount of bill statement in August, 2005 (NT dollar)

X14: BILL_AMT3: Amount of bill statement in July, 2005 (NT dollar)

X15: BILL_AMT4: Amount of bill statement in June, 2005 (NT dollar)

X16: BILL_AMT5: Amount of bill statement in May, 2005 (NT dollar)

X17: BILL_AMT6: Amount of bill statement in April, 2005 (NT dollar)

X18: PAY_AMT1: Amount of previous payment in September, 2005 (NT dollar)

X19: PAY_AMT2: Amount of previous payment in August, 2005 (NT dollar)

X20: PAY_AMT3: Amount of previous payment in July, 2005 (NT dollar)

X21: PAY_AMT4: Amount of previous payment in June, 2005 (NT dollar)

X22: PAY_AMT5: Amount of previous payment in May, 2005 (NT dollar)

X23: PAY_AMT6: Amount of previous payment in April, 2005 (NT dollar)

Y: default.payment.next.month: Default payment (1=yes, 0=no)

In [2]: #Plotting Histogram
fig = plt.figure(figsize = (15,20))
ax = fig.gca()
df.hist(ax = ax)
plt.show()

<ipython-input-2-195ecd9c3abb>:4: UserWarning: To output multiple subplots, the figure co
ntaining the passed axes is being cleared
 df.hist(ax = ax)


```
In [3]: df.info
Out[3]: <bound method DataFrame.info of
                                                             X1 X2 X3 X4 X5 X6 X7 X8 X9
                                                                                                       X10
         X15
                  X16
                          X17
          1
                   20000
                             2
                                 2
                                      1
                                          24
                                                2
                                                     2
                                                        -1
                                                             -1
                                                                   -2
                                                                                  0
                                                                                           0
                                                                                                   0
                                                                        . . .
         2
                  120000
                             2
                                 2
                                      2
                                          26
                                               -1
                                                     2
                                                         0
                                                              0
                                                                    0
                                                                                       3455
                                                                                               3261
                                                                        . . .
                                                                               3272
                                      2
          3
                   90000
                             2
                                 2
                                                0
                                                     0
                                                              0
                                                                              14331
                                                                                      14948
                                                                                              15549
                                          34
                                                         0
                                                                    0
                                                                        . . .
          4
                   50000
                             2
                                 2
                                      1
                                          37
                                                         0
                                                                                      28959
                                                                                              29547
                                                0
                                                     0
                                                              0
                                                                              28314
                                                                    0
                                                                        . . .
          5
                   50000
                             1
                                 2
                                      1
                                          57
                                               -1
                                                    0
                                                        -1
                                                              0
                                                                              20940
                                                                                      19146
                                                                                              19131
                                                                    0
                                                                                . . .
                                                                                        . . .
          . . .
                                                                        . . .
                                 3
                                      1
          29996
                  220000
                             1
                                          39
                                                0
                                                    0
                                                         0
                                                              0
                                                                    0
                                                                             88004
                                                                                      31237
                                                                                              15980
                                                                        . . .
                                      2
                                               -1
          29997
                  150000
                             1
                                 3
                                          43
                                                    -1
                                                        -1
                                                             -1
                                                                    0
                                                                        . . .
                                                                               8979
                                                                                       5190
          29998
                   30000
                                 2
                                      2
                                          37
                                                    3
                                                         2
                                                             -1
                                                                                      20582
                                                                                              19357
                             1
                                                4
                                                                    0
                                                                             20878
                                                                        . . .
          29999
                   80000
                                 3
                                      1
                                          41
                                                         0
                                                              0
                                                                             52774
                                                                                      11855
                                                                                              48944
                             1
                                                1
                                                    -1
                                                                    0
          30000
                   50000
                             1
                                 2
                                      1
                                          46
                                                0
                                                     0
                                                         0
                                                              0
                                                                    0
                                                                              36535
                                                                                      32428
                                                                                              15313
                                                                        . . .
                    X18
                                     X20
                                            X21
                                                    X22
                                                            X23
                             X19
                                                                 Υ
         1
                       0
                             689
                                       0
                                              0
                                                       0
                                                              0
                                                                 1
          2
                           1000
                                    1000
                                           1000
                                                       0
                                                          2000
                                                                 1
                       0
          3
                   1518
                           1500
                                    1000
                                           1000
                                                   1000
                                                          5000
                                                                 0
          4
                                    1200
                   2000
                           2019
                                           1100
                                                   1069
                                                          1000
                                                                 0
          5
                   2000
                          36681
                                   10000
                                           9000
                                                     689
                                                            679
                                                                 0
                                                     . . .
                    . . .
                                     . . .
                                            . . .
          29996
                          20000
                                    5003
                                           3047
                                                   5000
                                                          1000
                                                                 0
                   8500
          29997
                   1837
                           3526
                                    8998
                                            129
                                                       0
                                                              0
                                                                 0
          29998
                                   22000
                                           4200
                                                   2000
                                                          3100
                                                                  1
                       0
                               0
          29999
                  85900
                           3409
                                    1178
                                           1926
                                                  52964
                                                          1804
                                                                 1
          30000
                   2078
                           1800
                                    1430
                                           1000
                                                   1000
                                                          1000
                                                                 1
          [30000 rows x 24 columns]>
```

In [4]: df.describe()

Out[4]:

	X1	X2	Х3	X4	X5	Х6	X7	
count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	3
mean	167484.322667	1.603733	1.853133	1.551867	35.485500	-0.016700	-0.133767	
std	129747.661567	0.489129	0.790349	0.521970	9.217904	1.123802	1.197186	
min	10000.000000	1.000000	0.000000	0.000000	21.000000	-2.000000	-2.000000	
25%	50000.000000	1.000000	1.000000	1.000000	28.000000	-1.000000	-1.000000	
50%	140000.000000	2.000000	2.000000	2.000000	34.000000	0.000000	0.000000	
75%	240000.000000	2.000000	2.000000	2.000000	41.000000	0.000000	0.000000	
max	1000000.000000	2.000000	6.000000	3.000000	79.000000	8.000000	8.000000	

8 rows × 24 columns

```
In [5]: df.isnull().sum()
Out[5]: X1
                0
                0
        Χ2
        Х3
                0
        Χ4
                0
        X5
                0
        Х6
                0
                0
        Χ7
        X8
                0
        Х9
        X10
        X11
                0
        X12
                0
        X13
                0
        X14
                0
        X15
        X16
        X17
                0
        X18
                0
        X19
                0
        X20
                0
        X21
        X22
                0
        X23
                0
        Υ
                0
        dtype: int64
```

In [6]: # Payment delay description df[['X6', 'X7', 'X8', 'X9', 'X10', 'X11']].describe()

Out[6]:

	X6	X7	X8	Х9	X10	X11
count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000
mean	-0.016700	-0.133767	-0.166200	-0.220667	-0.266200	-0.291100
std	1.123802	1.197186	1.196868	1.169139	1.133187	1.149988
min	-2.000000	-2.000000	-2.000000	-2.000000	-2.000000	-2.000000
25%	-1.000000	-1.000000	-1.000000	-1.000000	-1.000000	-1.000000
50%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
75%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
max	8.000000	8.000000	8.000000	8.000000	8.000000	8.000000

In [7]: # Bill Statement description
df[['X12', 'X13', 'X14', 'X15', 'X16', 'X17']].describe()

Out[7]:

	X12	X13	X14	X15	X16	X17
count	30000.000000	30000.000000	3.000000e+04	30000.000000	30000.000000	30000.000000
mean	51223.330900	49179.075167	4.701315e+04	43262.948967	40311.400967	38871.760400
std	73635.860576	71173.768783	6.934939e+04	64332.856134	60797.155770	59554.107537
min	-165580.000000	-69777.000000	-1.572640e+05	-170000.000000	-81334.000000	-339603.000000
25%	3558.750000	2984.750000	2.666250e+03	2326.750000	1763.000000	1256.000000
50%	22381.500000	21200.000000	2.008850e+04	19052.000000	18104.500000	17071.000000
75%	67091.000000	64006.250000	6.016475e+04	54506.000000	50190.500000	49198.250000
max	964511.000000	983931.000000	1.664089e+06	891586.000000	927171.000000	961664.000000

In [8]: #Previous Payment Description
df[['X18', 'X19', 'X20', 'X21', 'X22', 'X23']].describe()

Out[8]:

	X18	X19	X20	X21	X22	X23
count	30000.000000	3.000000e+04	30000.00000	30000.000000	30000.000000	30000.000000
mean	5663.580500	5.921163e+03	5225.68150	4826.076867	4799.387633	5215.502567
std	16563.280354	2.304087e+04	17606.96147	15666.159744	15278.305679	17777.465775
min	0.000000	0.000000e+00	0.00000	0.000000	0.000000	0.000000
25%	1000.000000	8.330000e+02	390.00000	296.000000	252.500000	117.750000
50%	2100.000000	2.009000e+03	1800.00000	1500.000000	1500.000000	1500.000000
75%	5006.000000	5.000000e+03	4505.00000	4013.250000	4031.500000	4000.000000
max	873552.000000	1.684259e+06	896040.00000	621000.000000	426529.000000	528666.000000

In [9]: # Getting a general idea of the default probability
df.Y.sum() / len(df.Y)

Out[9]: 0.2212

```
In [10]: plt.figure(figsize=(15,8))
                        sns.heatmap(df.corr(),annot=True)
                       plt.show()
                                                                                                                                                                                                                                            - 1.0
                           X1 - 1 0.025-0.22-0.11 0.14 0.27 0.3 0.29 0.27 0.25 0.24 0.29 0.28 0.28 0.29 0.3 0.29 0.2 0.18 0.21 0.2 0.22 0.22 0.15
                                 0.025 1 0.0140.0310.0910.0580.0710.066-0.06-0.0550.0440.0340.0310.0250.0220.0170.0170.0070.007400140.0086.00270.00170.00270.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.00170.001
                           X3 -0.22 0.014 1 -0.14 0.18 0.11 0.12 0.11 0.11 0.0980.0820.0240.0190.013.000450076.00910.037-0.03 -0.04-0.038-0.04-0.0370.028
                                 -0.11-0.031-0.14 1 -0.41 0.02 0.0240.0330.0330.0360.0340.0230.0220.0250.0230.0250.0210.0060.0080.0080.00350.0130.00142.00660.02
                                                                                                                                                                                                                                            - 0.8
                                 0.14-0.0910.18 -0.41 1 -0.039-0.05-0.053-0.05-0.0540.0490.0560.0540.0540.0510.0490.0480.0260.0220.0290.0210.0230.0190.014
                           X6 -0.27-0.058 0.11 0.02-0.039 1 0.67 0.57 0.54 0.51 0.47 0.19 0.19 0.18 0.18 0.18 0.18-0.079-0.07-0.0710.0640.0580.059 0.32
                           X7 - -0.3 -0.071 0.12 0.024 -0.05 0.67 1 0.77 0.66 0.62 0.58 0.23 0.24 0.22 0.22 0.22 0.22 0.22 0.0810.0590.0560.0470.0370.037 0.26
                                                                                                                                                                                                                                            - 0.6
                                 -0.29-0.066 0.11 0.0330.053 0.57 0.77 1 0.78 0.69 0.63 0.21 0.24 0.23 0.23 0.23 0.220.00130.0670.0530.0460.0360.036
                           X9 -0.27 -0.06 0.11 0.033 -0.05 0.54 0.66 0.78 1 0.82 0.72 0.2 0.23 0.24 0.25 0.24 0.240.0094.00190.0690.0430.0340.027
                         X10 -0.25-0.0550.0980.0360.054 0.51 0.62 0.69 0.82 1 0.82 0.21 0.23 0.24 0.27 0.27 0.260.0060.0030.0030.00910.0580.0330.023
                                                                                                                                                                                                                                            - 0.4
                                 -0.24-0.0440.0820.0340.049 0.47 0.58 0.63 0.72 0.82 1 0.21 0.23 0.24 0.27 0.29 0.290.0018.0050200580.0190.0460.025 0.19
                          X12 -0.29-0.0340.0240.0230.056 0.19 0.23 0.21 0.2 0.21 0.21 1 0.95 0.89 0.86 0.83 0.8 0.14 0.099 0.16 0.16 0.17 0.18 -0.02
                          X13 -0.28-0.0310.0190.0220.054 0.19 0.24 0.24 0.23 0.23 0.23 0.95 1 0.93 0.89 0.86 0.83 0.28 0.1 0.15 0.15 0.16 0.17-0.01-
                                 -0.28-0.0250.0130.0250.054 0.18 0.22 0.23 0.24 0.24 0.24 <mark>0.89 0.93 1 0.92 0.88 0.85</mark> 0.24 0.32 0.13 0.14 0.18 0.18-0.01
                                                                                                                                                                                                                                            - 0.2
                          X15 -0.29-0.020.00048.0230.051 0.18 0.22 0.23 0.25 0.27 0.27 0.86 0.89 0.92 1 0.94 0.9 0.23 0.21 0.3 0.13 0.16 0.18 -0.01
                                  0.3 -0.0170.00740.0250.049 0.18 0.22 0.23 0.24 0.27 0.29 0.83 0.86 0.88 0.94 1 0.95 0.22 0.18 0.25 0.29 0.14 0.160.006
                                  0.29-0.0170.00940.0210.048 0.18 0.22 0.22 0.24 0.26 0.29 0.8 0.83 0.85 0.9 0.95 1
                                                                                                                                                                     0.2 0.17 0.23 0.25 0.31 0.12-0.005
                                                                                                                                                                                                                                             0.0
                                  0.2-0.00024.0370.0060.0260.0790.0810.00130.0094.0060.00150.14 0.28 0.24 0.23 0.22 0.2 1 0.29 0.25 0.2 0.15 0.19-0.073
                                  0.18-0.00140.030.008D.022-0.07-0.0590.0670.0019.0032.00520.099 0.1 0.32 0.21 0.18 0.17 0.29 1 0.24 0.18 0.18 0.16-0.059
                                  0.21-0.00860.040.00350.0290.0710.0560.0530.0650.0090.00580.16 0.15 0.13 0.3 0.25 0.23 0.25 0.24 1 0.22 0.16 0.16-0.056
                                  0.2-0.00220.0380.0130.021-0.0640.0470.0460.0430.0580.019 0.16 0.15 0.14 0.13 0.29 0.25 0.2 0.18 0.22 1 0.15 0.16-0.05
In [11]:
                       #Defining data into X and Y
                       X = df.drop(['Y'], axis = 1)
                       y = df['Y']
In [12]: # Checking if data is balanced
                        print('Y = 1: {}%'.format(100*y.mean()))
                       print('Y = 0: {}%'.format(100 - 100*y.mean()))
                        Y = 1: 22.12\%
                        Y = 0: 77.88\%
In [13]: #Countplot for 'Y'
                        sns.countplot('Y', data=df)
                       plt.show()
                               20000
                               15000
                               10000
                                 5000
                                       0
                                                                                                                             1
```

```
In [14]: | y.value_counts()
```

Out[14]: 0 23364 1 6636

Name: Y, dtype: int64

Balancing the dataset using SMOTE

```
In [15]: # SMOTE
          from imblearn.over_sampling import SMOTE
          os = SMOTE(sampling_strategy = 0.9, random_state=1)
          X_os, y_os = os.fit_resample(X, y)
In [16]: # Resampled data
           df os = pd.DataFrame(X os, columns = X.columns)
          df_os['Y'] = y_os
          df_os.head(3)
Out[16]:
                  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 ...
                                                                  X15
                                                                         X16
                                                                                X17
                                                                                      X18
                                                                                            X19
                                                                                                  X20
                                                                                                        X21
                                                                                                             X22
               20000
                        2
                            2
                                   24
                                        2
                                            2
                                                -1
                                                         -2
                                                                    0
                                                                           0
                                                                                  0
                                                                                            689
                                                                                                    0
                                                                                                          0
                                                                                                                0
            0
                                1
                                                    -1
                                                                                        0
                                                                                                 1000
                                                                                                       1000
              120000
                        2
                            2
                                2
                                            2
                                                0
                                                    0
                                                          0
                                                                 3272
                                                                        3455
                                                                               3261
                                                                                           1000
                                                                                                                0
                                                                                                                  20
                                   26
                                        -1
                                                                                        0
                            2
                                2
               90000
                                   34
                                        0
                                            0
                                                0
                                                    0
                                                          0
                                                                14331 14948
                                                                              15549 1518
                                                                                           1500
                                                                                                 1000
                                                                                                       1000
                                                                                                             1000
                                                                                                                  50
           3 rows × 24 columns
In [17]:
          print('Y = 1: {}%'.format(100*y_os.mean()))
          print('Y = 0: {}%'.format(100 - 100*y_os.mean()))
           Y = 1: 47.36770967087923%
           Y = 0: 52.63229032912077\%
In [18]: | X_os=df_os.drop(['Y'], axis = 1)
          X_os
Out[18]:
                      X1 X2 X3 X4 X5 X6 X7
                                                  X8 X9 X10 ...
                                                                       X14
                                                                               X15
                                                                                       X16
                                                                                               X17
                                                                                                     X18
                                                                                                            X19
                                                                                                                   X
                    20000
                                                                       689
                                                                                                            689
                0
                            2
                                2
                                    1
                                       24
                                            2
                                                2
                                                    -1
                                                        -1
                                                             -2
                                                                                 0
                                                                                         0
                                                                                                 0
                                                                                                       0
                   120000
                                2
                                    2
                                                2
                                                                      2682
                                                                              3272
                1
                                       26
                                                     0
                                                        0
                                                              0
                                                                                      3455
                                                                                              3261
                                                                                                       0
                                                                                                           1000
                                                                                                                  10
                                            -1
                    90000
                                2
                                    2
                                       34
                                            0
                                                0
                                                     0
                                                              0
                                                                     13559
                                                                             14331
                                                                                      14948
                                                                                             15549
                                                                                                    1518
                                                                                                           1500
                                                                                                                  10
                2
                                                        0
                3
                    50000
                            2
                                2
                                    1
                                       37
                                            0
                                                0
                                                    0
                                                        0
                                                              0
                                                                     49291
                                                                             28314
                                                                                      28959
                                                                                             29547
                                                                                                    2000
                                                                                                           2019
                                                                                                                  12
                                2
                    50000
                                       57
                                            -1
                                                0
                                                        0
                                                              0
                                                                     35835
                                                                             20940
                                                                                      19146
                                                                                             19131
                                                                                                    2000
                                                                                                          36681
                                                                                                                 100
                   273256
                                    2
                                                                    177319
                                                                            168629
                                                                                    308684
                                                                                                    7996
                                                                                                                  68
            44386
                            2
                                       27
                                            0
                                                0
                                                     0
                                                        0
                                                              0
                                                                                            219119
                                                                                                           7546
                                1
            44387
                    50000
                                2
                                    1
                                       29
                                            0
                                                0
                                                     0
                                                        0
                                                              0
                                                                     24009
                                                                             11976
                                                                                      8568
                                                                                              5483
                                                                                                    2729
                                                                                                           2523
                                                                                                                   8
            44388
                    50000
                            2
                                    2
                                       31
                                            2
                                                2
                                                     1
                                                        2
                                                              2 ...
                                                                     12634
                                                                             12135
                                                                                      13055
                                                                                             12702
                                                                                                     309
                                                                                                           1364
                                1
            44389
                                            2
                                                2
                                                     2
                                                         2
                                                              2
                                                                     71569
                                                                             68345
                                                                                                    3647
                    70000
                                3
                                       57
                                                                                      72083
                                                                                             70151
                                                                                                           2639
            44390
                    30000
                                       28
                                                2
                                                    0
                                                        0
                                                                     19683
                                                                             19764
                                                                                      20014
                                                                                             20218 1336
                                                                                                           1378
                                2
                                            1
                                                              0
                                                                ...
           44391 rows × 23 columns
```

```
In [19]: y_os
Out[19]: 0
                  1
         1
                  1
         2
                  0
         3
                  0
         4
                  0
         44386
                  1
         44387
                  1
         44388
                  1
         44389
         44390
         Name: Y, Length: 44391, dtype: int32
In [20]: y_os.value_counts()
Out[20]: 0
              23364
              21027
         Name: Y, dtype: int64
In [21]: |print(df_os.shape)
         (44391, 24)
In [22]: #Standardising the Values
         from sklearn.preprocessing import StandardScaler
         sc=StandardScaler()
         df_os=sc.fit_transform(df_os)
         df_os
Out[22]: array([[-1.07320263, 0.97338902, 0.30230937, ..., -0.30664477,
                 -0.28226256, 1.05410759],
                [-0.27857153, 0.97338902, 0.30230937, ..., -0.30664477,
                 -0.15680221, 1.05410759],
                [-0.51696086, 0.97338902, 0.30230937, ..., -0.23250596,
                  0.0313883 , -0.94866976],
                [-0.8348133, 0.97338902, -1.04777264, ..., -0.30664477,
                 -0.21614496, 1.05410759],
                [-0.67588708, -1.02733849, 1.65239138, ..., -0.28907387,
                 -0.13340386, 1.05410759],
                [-0.99373952, 0.97338902, 0.30230937, ..., -0.25304241,
                 -0.24506357, 1.05410759]])
```

Detection of Outliers

```
In [24]: # Isolation forest
    from sklearn.ensemble import IsolationForest
    ifc = IsolationForest(random_state = 1)
    ifc.fit(df_os)
    ifc_pred = ifc.predict(df_os)
In [25]: ifc_pred[ifc_pred == 1] = 0
    ifc_pred[ifc_pred == -1] = 1
```

```
In [26]: | from sklearn.metrics import accuracy_score
         from sklearn.metrics import recall score
         from sklearn.metrics import precision score
         from sklearn.metrics import f1_score
         print('Accuracy :\t', accuracy_score(y_os, ifc_pred))
         print('Recall :\t', recall_score(y_os, ifc_pred))
         print('Precision :\t', precision_score(y_os, ifc_pred))
         print('F1-score :\t', f1_score(y_os, ifc_pred))
         Accuracy :
                          0.508684192741772
         Recall
                         0.08013506444095686
         Precision:
                          0.4057307970142066
         F1-score :
                         0.13383637807783955
In [27]: # Constructing the confusion matrix.
         from sklearn.metrics import confusion_matrix
        confusion_matrix(y_os, ifc_pred)
Out[27]: array([[20896,
                         2468],
                [19342, 1685]], dtype=int64)
In [28]: |#local Outlier Factor
         from sklearn.neighbors import LocalOutlierFactor
         lof = LocalOutlierFactor(n_neighbors=20, algorithm='auto',
                                                       leaf size=30, metric='minkowski',
                                                       p=2, metric_params=None)
         clf= LocalOutlierFactor()
         lof_pred = clf.fit_predict(X_os)
         from sklearn.metrics import accuracy_score
         from sklearn.metrics import recall_score
         from sklearn.metrics import precision score
         from sklearn.metrics import f1_score
         print('Accuracy :\t', accuracy_score(y_os, lof_pred))
         Accuracy :
                          0.4022662251357257
In [29]: # Remove outliers using Isolation Forest
         df os = pd.DataFrame(df os, columns = df.columns)
         df_no_outliers = df_os.copy()
         df_no_outliers['ifc'] = ifc_pred
In [30]: # Filter outliers
         df no outliers = df_no_outliers[df_no_outliers['ifc'] == 0]
         df_no_outliers.drop(['ifc'], axis = 1, inplace = True)
```

```
In [31]: df_no_outliers.head(3)
Out[31]:
                                          X2
                                                        X3
                                                                      X4
                                                                                                                 X7
                                                                                                                               X8
                                                                                                                                             X9
                             X1
                                                                                    X5
                                                                                                  X6
                                                                                                                                                          X10
                0 -1.073203
                                   0.973389
                                                0.302309
                                                             -0.894165
                                                                          -1.291334
                                                                                           1.646442
                                                                                                         1.625821
                                                                                                                      -0.793507
                                                                                                                                     -0.748569
                                                                                                                                                   -1.575255
                    -0.278572 0.973389
                                                0.302309
                                                                            -1.065086
                                                              1.042924
                                                                                         -1.022273
                                                                                                         1.625821
                                                                                                                       0.026031
                                                                                                                                      0.077959
                                                                                                                                                    0.122686
                    -0.516961 0.973389
                                                0.302309
                                                              1.042924
                                                                          -0.160093 -0.132701 -0.013684
                                                                                                                       0.026031
                                                                                                                                      0.077959
                                                                                                                                                    0.122686
               3 rows × 24 columns
In [32]:
             print(df_no_outliers.shape)
               (40238, 24)
In [33]: |plt.figure(figsize=(20,10))
               sns.heatmap(df_no_outliers.corr(),annot=True)
Out[33]:
               <matplotlib.axes. subplots.AxesSubplot at 0x1dc7b0fabb0>
                Z - 1 0.082 -0.22 -0.073 0.13 -0.32 -0.37 -0.36 -0.34 -0.33 -0.31 0.1 0.079 0.073 <u>0.076 0.078 0.077 0.12 0.13</u>
                    0.082 1 0.041 0.039 -0.08 -0.1 -0.1 -0.1 -0.089 -0.084 -0.07 -0.0033-0.00480.000420.0072 0.012 0.015 0.021 0.039 0.041 0.04 0.027 0.024
                   -0.22 0.041 1 -0.091 0.17 0.078 0.11
                                                              0.1 0.089 0.074 0.069 0.068 0.062 0.05 0.037 0.032 0.015 0.0059 0.013 0.021 0.029 0.021 0.096
                   -0.073 0.039 -0.091 1
                                        0.38 -0.034 -0.021 -0.0081 -0.01 -0.0063-0.0049 -0.011 -0.011 -0.01 -0.013 -0.013 -0.014 -0.024 -0.024 -0.022 -0.024 -0.014 -0.019 -0.21
                                                                                                                                                             0.8
                                  -0.38 1
                                             -0.042 -0.057 -0.062 -0.057 -0.063 -0.056 -0.056 0.016 0.0096 0.0082 0.0032 0.0022 0.0031 -0.016 0.0041 -0.0037 -0.011 -0.0058 -0.014
                                               1
                                                                                                            -0.076 -0.073 -0.066 -0.055 -0.048 -0.051
                    -0.32
                                   -0.034 -0.042
                    -0.37
                                   -0.021 -0.057
                                                    1
                                                        0.77
                                                                                                                                                             - 0.6
                                                         1
                                                              1
                                                              0.81
                                                                    1
                                                                        0.81
                                                              0.71
                                                                   0.81
                                                                         1
                                                                                                                                                             0.4
                                                                                                        0.79
                                                                              0.95
                                                                                             0.95
                                                                                                   0.9
                                                                                                        0.87
                                                                             0.91
                                                                                   0.95
                                                                                                                                                             - 0.2
                                                                             0.86
                                                                                   0.9
                                                                                        0.95
                                                                                                   0.95
                                                                                                        0.92
                                                                                             0.95
                                                                                   0.83
                                                                                        0.87
                                                                                             0.92
                                                                                                  0.96
                    0.12 0.021 -0.015 0.024 -0.016 -0.076 -0.069 0.046 0.033 0.026 0.028
                                                                            0.18
                                                                                                             1
                         0.039 -0.0059 0.024 0.0041 -0.073 -0.043 -0.065 0.051 0.036 0.026
                                                                                   0.16
                                                                                                                   1
                         0.041 -0.013 0.022 -0.0037 -0.066 -0.032 -0.026 -0.052 0.059 0.044
                                                                                                                        1
                         0.04 -0.021 0.024 -0.011 -0.055 -0.018 -0.01 -0.0074 -0.032 0.07 0.16
                                                                                                                             1
                                                                                                                                  0.091 0.091
                        0.027 -0.029 0.014 -0.0058 -0.048 -0.016 -0.0069 0.0016 -0.0019 -0.025 0.14
                                                                                                        0.28
                                                                                                                  0.09
                                                                                                                                  1
```

Xi0 Xi1 Xi2 Xi3 Xi4 Xi5 Xi6 Xi7

X20 X21

```
In [34]: #Standardising the Values
         from sklearn.preprocessing import RobustScaler
         rsc=RobustScaler()
         df_no_outliers=rsc.fit_transform(df_no_outliers)
         df_no_outliers
Out[34]: array([[-0.53333333, 0.
                                             0.
                                                       , ..., -0.39333568,
                  -0.37175619,
                                1.
                                          ],
                                             0.
                 [ 0.13333333, 0.
                                                       , ..., -0.39333568,
                  0.31795844, 1.
                                          ],
                 [-0.06666667,
                                             0.
                               0.
                                                       , ..., -0.04072638,
                   1.35253039,
                               0.
                                          ],
                 . . . ,
                                          , -1.
                 [-0.33333333, 0.
                                                       , ..., -0.39333568,
                 -0.00827658, 1.
                                          ],
                           , -1.
                 [-0.2
                                            1.
                                                       , ..., -0.30976728,
                  0.44659022, 1.
                                          ],
                 [-0.4666667, 0.
                                             0.
                                                       , ..., -0.13839915,
                 -0.1672558 , 1.
                                          ]])
In [62]: #Redifining dataframe after Smote
         df_no_outliers = pd.DataFrame(df_no_outliers, columns = df.columns)
         X_os_no1= df_no_outliers.drop(['Y'], axis = 1)
         y_os_no = df_no_outliers['Y']
         y_os_no
Out[62]: 0
                  1.0
         1
                  1.0
         2
                  0.0
         3
                  0.0
         4
                  0.0
                  . . .
         40233
                  1.0
         40234
                  1.0
         40235
                  1.0
         40236
                  1.0
                  1.0
         40237
         Name: Y, Length: 40238, dtype: float64
```

```
X1
                             X2
                                  X3 X4
                                                 X5
                                                      X6
                                                          X7
                                                               X8
                                                                    X9
                                                                        X10 ...
                                                                                      X14
                                                                                                X15
                                                                                                          X16
               0 -0.533333
                             0.0
                                  0.0
                                      0.0
                                           -0.769231
                                                     2.0
                                                          2.0
                                                               -1.0
                                                                    -1.0
                                                                         -2.0
                                                                                 -0.374931
                                                                                           -0.397036
                                                                                                     -0.408193
                                                                                                                -0.38
                   0.133333
                             0.0
                                  0.0
                                      1.0
                                           -0.615385
                                                     -1.0
                                                          2.0
                                                               0.0
                                                                    0.0
                                                                         0.0
                                                                                 -0.332782
                                                                                           -0.323064
                                                                                                     -0.321440
                                                                                                                -0.30
                  -0.066667
                             0.0
                                  0.0
                                      1.0
                                           0.000000
                                                     0.0
                                                          0.0
                                                               0.0
                                                                    0.0
                                                                         0.0
                                                                                 -0.102750
                                                                                           -0.073045
                                                                                                     -0.032856
                                                                                                                0.01
                                                                                  0.652927
                  -0.333333
                             0.0
                                  0.0
                                           0.230769
                                                               0.0
                                                                    0.0
                                                                         0.0
                                                                                                                0.37
                                     0.0
                                                     0.0
                                                          0.0
                                                                                            0.243078
                                                                                                      0.318954
                  -0.333333
                            -1.0
                                  0.0
                                      0.0
                                           1.769231
                                                     -1.0
                                                          0.0
                                                               -1.0
                                                                    0.0
                                                                         0.0
                                                                                  0.368353
                                                                                            0.076369
                                                                                                      0.072554
                                                                                                                0.10
           40233
                  -0.533333
                            -1.0
                                  0.0
                                      1.0
                                           -0.538462
                                                      1.0
                                                          -2.0
                                                               -2.0
                                                                    -2.0
                                                                         -2.0
                                                                                 -0.389502
                                                                                           -0.397036
                                                                                                     -0.408193
                                                                                                                -0.38
                  -0.333333
                                           -0.384615
                            -1.0
                                  0.0
                                      0.0
                                                     0.0
                                                          0.0
                                                               0.0
                                                                    0.0
                                                                         0.0
                                                                                  0.118252
                                                                                           -0.126287
                                                                                                     -0.193055
                                                                                                                -0.24
           40235 -0.333333
                                           -0.230769
                                                     2.0
                                                          2.0
                                                               1.0
                                                                    2.0
                                                                         2.0
                                                                                 -0.122312 -0.122692
                                                                                                                -0.0
                             0.0
                                 -1.0
                                      1.0
                                                                                                     -0.080388
           40236
                 -0.200000
                            -1.0
                                  1.0
                                      0.0
                                           1.769231
                                                     2.0
                                                          2.0
                                                               2.0
                                                                    2.0
                                                                         2.0
                                                                                  1.124073
                                                                                            1.148086
                                                                                                      1.401778
                                                                                                                1.41
           40237 -0.466667
                             0.0
                                  0.0 0.0 -0.461538
                                                     1.0
                                                          2.0
                                                               0.0
                                                                    0.0
                                                                         0.0 ...
                                                                                  0.026763
                                                                                            0.049782
                                                                                                      0.094349
                                                                                                                0.13
          40238 rows × 23 columns
In [37]: df_no_outliers['Y'].value_counts()
Out[37]: 0.0
                   20896
                  19342
          1.0
          Name: Y, dtype: int64
          Removing Insignificant Variables
In [83]:
          #PCA
          from sklearn.model_selection import train_test_split
          X_os_no_train, X_os_no_test, y_os_no_train, y_os_no_test = train_test_split(X_os_no1,y_os_no
          from sklearn.decomposition import PCA
          X os no_train_PCA= X_os_no_train.copy()
          pca = PCA()
          X_os_no_train = pca.fit_transform(X_os_no_train_PCA)
          X_os_no_test = pca.transform(X_os_no_test)
In [84]: explained_variance = pca.explained_variance_ratio_
          explained_variance
Out[84]: array([0.21137073, 0.15302731, 0.13433436, 0.11340517, 0.09224196,
                   0.08273505, 0.07515502, 0.052341 , 0.01582784, 0.01197054,
                   0.01042398, 0.01015898, 0.00680291, 0.00627985, 0.00531618,
```

0.0046952 , 0.00442909, 0.00376427, 0.0032072 , 0.00119221,

0.00060948, 0.00038723, 0.00032446])

In [63]: X_os_no1

Out[63]:

```
In [85]: #Logistic Regression after PCA
'''Model Assumptions:
Target variable is binary
Predictive features are interval (continuous) or categorical
Features are independent of one another
Sample size is adequate
'''

from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(random_state = 0)
lr.fit(X_os_no_train, y_os_no_train)
y_predlr = lr.predict(X_os_no_test)
```

[[4638 1654] [1777 4003]] 0.7157886017229954 0.7076188792646279 0.692560553633218 0.7000087435516307

```
In [87]: #Random Forest after PCA

from sklearn.ensemble import RandomForestClassifier
    classifier = RandomForestClassifier(n_estimators = 50)
    classifier.fit(X_os_no_train, y_os_no_train)

y_predRF= classifier.predict(X_os_no_test)

from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
    result = confusion_matrix(y_os_no_test, y_predRF)
    print("Confusion Matrix:")
    print(result)
    result1 = classification_report(y_os_no_test, y_predRF)
    print("Classification Report:",)
    print (result1)
    result2 = accuracy_score(y_os_no_test,y_predRF)
    print("Accuracy:",result2)
```

Confusion Matrix:

[[5217 1075]

[1418 4362]]

Classification Report:

	precision	recall	f1-score	support
0.0	0.79	0.83	0.81	6292
1.0	0.80	0.75	0.78	5780
accuracy			0.79	12072
macro avg	0.79	0.79	0.79	12072
weighted avg	0.79	0.79	0.79	12072

Accuracy: 0.7934890656063618

```
In [88]: #Splitting cleaned dataset into train and test
```

from sklearn.model_selection import train_test_split
X_os_no1_train,X_os_no1_test,y_os_no_train,y_os_no_test=train_test_split(X_os_no1,y_os_no,

```
In [89]: #Logistic Regression
   import statsmodels.api as sm

model = sm.Logit(y_os_no_train, X_os_no1_train).fit()
   predictions = model.predict(X_os_no1_train)

print_model = model.summary()
   print(print_model)
```

Optimization terminated successfully.

Current function value: 0.553757

Iterations 6

Logit Regression Results

========	=======	=======	=======		========	========
Dep. Variabl	e:		Y No.	Observations	:	28166
Model:		L	ogit Df I	Residuals:		28143
Method:			MLE Df I	Model:		22
Date:	S	at, 17 Oct	2020 Psei	udo R-squ.:		0.2003
Time:		20:5	1:40 Log	-Likelihood:		-15597.
converged:			True LL-I	Null:		-19504.
Covariance T	ype:	nonro	bust LLR	p-value:		0.000
========	coef	======= std err	:======:: 7	 P> z	[0.025	0.975]
				· / -		
X1	-0.1701	0.022	-7.740	0.000	-0.213	-0.127
X2	-0.8892	0.024	-36.497	0.000	-0.937	-0.841
X3	-0.5464	0.021	-25.550	0.000	-0.588	-0.504
X4	-0.9875	0.026	-38.413	0.000	-1.038	-0.937
X5	-0.0877	0.022	-3.932	0.000	-0.131	-0.044
X6	0.5522	0.017	31.699	0.000	0.518	0.586
X7	0.1226	0.020	6.005	0.000	0.083	0.163
X8	0.0459	0.023	2.020	0.043	0.001	0.090
X9	0.0514	0.025	2.050	0.040	0.002	0.101
X10	0.0488	0.027	1.830	0.067	-0.003	0.101
X11	0.0047	0.022	0.214	0.831	-0.038	0.048
X12	-0.5442	0.063	-8.702	0.000	-0.667	-0.422
X13	0.2206	0.086	2.563	0.010	0.052	0.389
X14	0.1984	0.078	2.551	0.011	0.046	0.351
X15	0.1195	0.076	1.568	0.117	-0.030	0.269
X16	-0.3481	0.088	-3.943	0.000	-0.521	-0.175
X17	0.1926	0.070	2.737	0.006	0.055	0.330
X18	-0.1144	0.011	-10.730	0.000	-0.135	-0.093
X19	-0.1006	0.011	-9.282	0.000	-0.122	-0.079
X20	-0.0412	0.008	-5.337	0.000	-0.056	-0.026
X21	-0.0218	0.008	-2.586	0.010	-0.038	-0.005
X22	-0.0427	0.007	-5.708	0.000	-0.057	-0.028
X23	-0.0225	0.005	-4.184	0.000	-0.033	-0.012

```
In [51]: from sklearn.linear_model import LogisticRegression
         from sklearn import metrics
         from sklearn.metrics import classification_report
         #Build the model
         clf = LogisticRegression()
         # Train the classifier
         clf.fit(X_os_no_train, y_os_no_train)
         #test the model
         y_os_no_pred = clf.predict(X_os_no_test)
         #classification report
         cr = (classification_report(y_os_no_test, y_os_no_pred))
In [66]: from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
         confm = confusion_matrix(y_os_no_test, y_os_no_pred)
         accuracy= accuracy_score(y_os_no_test, y_os_no_pred)
         pre = precision_score(y_os_no_test, y_os_no_pred)
         recall = recall_score(y_os_no_test, y_os_no_pred)
         f1_score = f1_score(y_os_no_test, y_os_no_pred)
         print("Confusion Matrix: \n", confm)
         print("Accuracy:", accuracy)
         print("Precision: ", pre)
         print("Recall: ", recall)
         print("F1 Score: ", f1_score)
         Confusion Matrix:
          [[4631 1661]
          [2034 3746]]
         Accuracy: 0.6939198144466534
         Precision: 0.6928056223414093
         Recall: 0.6480968858131488
         F1 Score: 0.6697059086439617
In [67]: #Dropping Insignificant Variables
         df_reg= df_no_outliers.drop(['X10','X11','X15'], axis = 1)
         X_reg= df_reg.drop(['Y'], axis = 1)
         y_reg = df_reg['Y']
         y_reg
Out[67]: 0
                  1.0
                  1.0
         1
         2
                  0.0
         3
                  0.0
         4
                  0.0
                  . . .
         40233
                  1.0
         40234
                 1.0
         40235
                  1.0
         40236
                 1.0
         40237
                  1.0
         Name: Y, Length: 40238, dtype: float64
```

In [68]: X_reg Out[68]: **X1 X2** X3 X4 **X5 X6 X7 X8 X9** X12 X13 X14 X16 **0** -0.533333 0.0 0.0 0.0 -0.769231 2.0 2.0 -1.0 -1.0 -0.303331 -0.324320 -0.374931 -0.408193 -0. 0.133333 0.0 0.0 1.0 -0.615385 -1.0 2.0 0.0 0.0 -0.327969 -0.352710 -0.332782 -0.321440 -0. **2** -0.066667 0.0 0.0 1.0 0.000000 0.0 0.0 0.0 0.0 0.203575 -0.099084 -0.102750 -0.032856 0. -0.333333 0.0 0.0 0.0 0.230769 0.0 0.0 0.0 0.0 0.558865 0.606129 0.652927 0. 0.318954 -0.333333 -1.0 0.0 0.0 1.769231 -1.0 0.0 -1.0 0.0 -0.209179 -0.271377 0.368353 0.072554 0. 40233 -0.533333 -1.0 0.0 1.0 -0.538462 1.0 -2.0 -2.0 -2.0 -0.381650 -0.388273 -0.389502 -0.408193 -0. 40234 -0.333333 -0.384615 0.592971 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.522900 0.118252 -0.193055 -0. **40235** -0.333333 -0.230769 2.0 2.0 2.0 -0.142748 -0.145863 -0.122312 -0.080388 -0. 0.0 -1.0 1.0 1.0 40236 -0.200000 -1.0 1.0 0.0 1.769231 2.0 2.0 2.0 2.0 0.999680 1.072333 1.124073 1.401778 1. **40237** -0.466667 0.0 0.0 0.0 -0.461538 1.0 2.0 0.0 0.0 -0.021096 -0.001443 0.026763 0.094349 0.

40238 rows × 20 columns

```
0.2963766 , ..., -0.36512904,
[-0.1721172 ,
              0.96660914,
 -0.10846244,
              1.03939564],
[-0.43606785,
              0.96660914, 0.2963766, ..., -0.23598758,
 0.23117265, -0.96209755,
. . . ,
              0.96660914, -1.07611753, ..., -0.36512904,
[-0.78800204,
 -0.21556071, 1.03939564],
[-0.61203494, -1.03454432, 1.66887072, ..., -0.33452251,
 -0.06623448, 1.03939564],
[-0.96396913,
              0.96660914, 0.2963766, ..., -0.27175976,
 -0.2677513 , 1.03939564]])
```

```
In [70]: #Splitting new cleaned dataset into train and test
from sklearn.model_selection import train_test_split
X_reg_train,X_reg_test,y_reg_train,y_reg_test=train_test_split(X_reg,y_reg,test_size=0.30,)
```

In [71]: #Logistic Regression after removing insignificant variable import statsmodels.api as sm model = sm.Logit(y_reg_train, X_reg_train).fit() predictions = model.predict(X_reg_train) print_model = model.summary() print(print_model)

Optimization terminated successfully.

Current function value: 0.554359

Iterations 6

Logit Regression Results

========	=======================================								
Dep. Variab	ole:			Observations:		28166			
Model:		Lo	U	esiduals:		28146			
Method:				odel:		19			
Date:	Sa	t, 17 Oct 2		do R-squ.:		0.1994			
Time:			_	Likelihood:		-15614.			
converged:			True LL-N			-19504.			
Covariance		nonrol		p-value:		0.000			
=======	coef	std err		P> z	[0.025	0.975]			
x1	-0.1394	0.016	-8.451	0.000	-0.172	-0.107			
x2	-0.4049	0.014	-29.117	0.000	-0.432	-0.378			
x3	-0.3855	0.015	-24.905	0.000	-0.416	-0.355			
x4	-0.5545	0.016	-35.745	0.000	-0.585	-0.524			
x5	-0.0798	0.016	-5.140	0.000	-0.110	-0.049			
хб	0.5819	0.019	30.857	0.000	0.545	0.619			
x7	0.1574	0.024	6.521	0.000	0.110	0.205			
x8	0.0572	0.026	2.169	0.030	0.006	0.109			
x9	0.1090	0.023	4.649	0.000	0.063	0.155			
x10	-0.5283	0.059	-8.921	0.000	-0.644	-0.412			
x11	0.1861	0.080	2.312	0.021	0.028	0.344			
x12	0.2258	0.063	3.560	0.000	0.101	0.350			
x13	-0.2310	0.074	-3.102	0.002	-0.377	-0.085			
x14	0.1584	0.067	2.371	0.018	0.027	0.289			
x15	-0.2425	0.022	-10.852	0.000	-0.286	-0.199			
x16	-0.2216	0.023	-9.526	0.000	-0.267	-0.176			
x17	-0.0824	0.016	-5.165	0.000	-0.114	-0.051			
x18	-0.0641	0.017	-3.831	0.000	-0.097	-0.031			
x19	-0.1164	0.020	-5.806	0.000	-0.156	-0.077			
x20	-0.0728	0.016	-4.507	0.000	-0.105	-0.041			

```
In [72]: from sklearn.linear_model import LogisticRegression
         from sklearn import metrics
         from sklearn.metrics import classification_report
         #Build the model
         clf = LogisticRegression()
         # Train the classifier
         clf.fit(X_reg_train, y_reg_train)
         #test the model
         y_reg_pred = clf.predict(X_reg_test)
         #classification report
         cr = (classification_report(y_reg_test, y_reg_pred))
In [73]: from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score
         confm = confusion_matrix(y_reg_test, y_reg_pred)
         accuracy= accuracy_score(y_reg_test, y_reg_pred)
         pre = precision_score(y_reg_test, y_reg_pred)
         recall = recall_score(y_reg_test, y_reg_pred)
         f1_score = f1_score(y_reg_test, y_reg_pred)
         print("Confusion Matrix: \n", confm)
         print("Accuracy:", accuracy)
         print("Precision: ", pre)
         print("Recall: ", recall)
         print("F1 Score: ", f1_score)
         Confusion Matrix:
          [[4637 1655]
          [1777 4003]]
         Accuracy: 0.7157057654075547
```

Building Predictive Models

Precision: 0.7074938140685755 Recall: 0.692560553633218 F1 Score: 0.6999475432767968

```
In [76]: | from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
         result = confusion_matrix(y_reg_test, y_predrf)
         print("Confusion Matrix:")
         print(result)
         result1 = classification_report(y_reg_test, y_predrf)
         print("Classification Report:",)
         print (result1)
         result2 = accuracy_score(y_reg_test, y_predrf)
         print("Accuracy:", result2)
         Confusion Matrix:
         [[5383 909]
          [1247 4533]]
         Classification Report:
                                   recall f1-score
                        precision
                                                         support
                  0.0
                             0.81
                                       0.86
                                                 0.83
                                                            6292
                   1.0
                             0.83
                                       0.78
                                                            5780
                                                 0.81
                                                 0.82
                                                           12072
             accuracy
            macro avg
                             0.82
                                       0.82
                                                 0.82
                                                           12072
         weighted avg
                                       0.82
                                                 0.82
                                                           12072
                             0.82
         Accuracy: 0.8214049039098741
In [77]: #SVC
         from sklearn import svm
         clf = svm.SVC()
         clf.fit(X_reg_train, y_reg_train)
Out[77]: SVC()
In [78]: | predictions = clf.predict(X_reg_test)
         print("Size of training set: ", X_reg_test.shape)
         print(predictions.shape)
         Size of training set: (12072, 20)
         (12072,)
In [79]: from sklearn.metrics import classification_report,confusion_matrix
         print(confusion_matrix(y_reg_test,predictions))
         [[5036 1256]
          [1708 4072]]
In [80]: | print(classification_report(y_reg_test,predictions))
         from sklearn.metrics import accuracy_score
         accuracy_score(y_reg_test, predictions)
                        precision
                                     recall f1-score
                                                         support
                  0.0
                             0.75
                                       0.80
                                                 0.77
                                                            6292
                   1.0
                             0.76
                                       0.70
                                                 0.73
                                                            5780
                                                 0.75
                                                           12072
             accuracy
            macro avg
                             0.76
                                       0.75
                                                 0.75
                                                           12072
                             0.76
                                       0.75
                                                 0.75
                                                           12072
         weighted avg
```

Out[80]: 0.7544731610337972

```
In [81]: #K Nearest Neighbours
         from sklearn.neighbors import KNeighborsClassifier
         model = KNeighborsClassifier()
         # fit the model with the training data
         model.fit(X_reg_train, y_reg_train)
         # Number of Neighbors used to predict the target
         print('\nThe number of neighbors used to predict the target : ',model.n_neighbors)
         y_predKNN= model.predict(X_reg_test)
         result = confusion_matrix(y_reg_test, y_predKNN)
         print("Confusion Matrix:")
         print(result)
         result1 = classification_report(y_reg_test, y_predKNN)
         print("Classification Report:",)
         print (result1)
         result2 = accuracy_score(y_reg_test,y_predKNN)
         print("Accuracy:", result2)
         The number of neighbors used to predict the target : 5
         Confusion Matrix:
         [[4667 1625]
         [1407 4373]]
         Classification Report:
                       precision recall f1-score support
                  0.0
                            0.77
                                      0.74
                                                0.75
                                                          6292
                  1.0
                            0.73
                                      0.76
                                                0.74
                                                          5780
```

0.75

0.75

0.75

0.75

0.75

12072

12072

12072

Accuracy: 0.7488402915838304

0.75

0.75

accuracy

macro avg

weighted avg