

Prüfung

Digitale Signalverarbeitung

30.08.2019

Name	:	
Vorname	:	
Matrikelnummer	:	
Studiengang	:	
Klausurnummer		

Aufgabe	Punkte	
Kurzfragen	/10	
1	/13	
2	/7	
3	/10	
4	/10	
Σ	/50	
Note		

NAME:	MATRIKELNUMMER:	Seite 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		DC10C 2

Aufgabe 1: Filterentwurf

(13 Punkte)

Sie sollen ein Hochpassfilter für ein Sensorsignal, welches Sie mit einer Abtastrate von 16 kHz aufgenommen haben, entwerfen. Die Grenzfrequenz (Englisch: cut-off frequency) des Hochpassfilters soll bei $f_c = f_p = 6$ kHz liegen. Das Filter soll als IIR-Filter nach dem Butterworth-Entwurf mit der Filterimpulsantwort $h_{\rm HP}(n)$ realisiert werden und die folgende Spezifikation erfüllen:

$$R_p = 3 dB$$
 $\delta_{st} = 0.3$ $\Delta \Omega = \Omega_p - \Omega_{st} = 0.4\pi$

- a) Zeichnen Sie das Toleranzschema des Hochpassfilters und tragen Sie alle relevanten Größen und deren Zahlenwerte darin ein. Achten Sie auf die vollständige Beschriftung des Diagramms!
- b) Bestimmen Sie die Sperrdämpfung d_{st} .

Zum Entwurf des Hochpassfilters soll zunächst von einem zeitdiskreten Tiefpassfilter nach dem Butterworth-Entwurf mit den folgenden Spezifikationen ausgegangen werden:

$$\delta_{p,\text{TP}} = \delta_p \qquad \delta_{st,\text{TP}} = \delta_{st}$$

- c) Bestimmen Sie zunächst eine geeignete normierte Grenzfrequenz $\Omega_{c,TP}$ für Ihr Tiefpassfilter und verwenden Sie anschließend für den Butterworth-Entwurf im zeitkontinuierlichen Bereich die bilineare Transformation mit $\omega' = \omega_{p,TP}$.
- d) Bestimmen Sie die notwendige ganzzahlige Filterordnung N exakt.
- e) Bestimmen Sie die z-Transformierte $H_{TP}(z)$ der Impulsantwort des Tiefpassfilters so, dass gilt: $|H_{TP}(z=1)| \stackrel{!}{=} 1$. Bestimmen Sie dafür zunächst die Pollagen in der s-Ebene.
- f) Geben Sie nun die z-Transformierte $H_{\rm HP}(z)$ der Impulsantwort des zeitdiskreten Hochpassfilters aus dem ersten Aufgabenteil an, die Sie durch Transformation ihres Tiefpasses erhalten.
- g) Was müssten Sie an ihrem Filterentwurf verändern, falls in einer neuen Spezifikation eine frequenzunabhängige Gruppenlaufzeit gefordert wird?

Aufgabe 2: Pol-Nullstellen-Diagramm

(7 Punkte)

Gegeben sei nachstehendes Pol-Nullstellen-Diagramm eines nicht-kausalen LTI-Systems:

$$z_{0,1} = 0.5 + 0.5j$$

$$z_{0,2} = 0.5 - 0.5j$$

$$z_{\infty,1} = -0.5$$

Das Eingangssignal des Systems sei als x(n) und das Ausgangssignal als y(n) bezeichnet.

- a) Geben Sie zunächst an, welche Charakteristik ein solches System aufweisen würde (Allpass, Tiefpass, Hochpass oder Bandpass). Geben Sie eine kurze Begründung ihrer Antwort an.
- b) Bestimmen Sie die Übertragungsfunktion H(z) des Systems, so dass gilt: H(z=1)=1.
- c) Geben Sie alle möglichen Konvergenzgebiete des nicht-kausalen Systems an und bestimmen Sie für diese jeweils die Impulsantwort h(n) des Systems.

Aufgabe 3: Schnelle Fourier-Transformation

(10 Punkte)

Gegeben ist die untenstehende Visualisierung der schnellen Fouriertransformation (FFT) mit der Länge 8.

- a) Ergänzen Sie die Faktoren an den Multiplikatoren und geben Sie ihre Werte an.
- b) Die FFT berechnet den Ausgangs-Datenvektor schrittweise *in-place*, d.h. der Eingangs-Datenvektor wird mit jeder Stufe überschrieben. Tragen Sie für den Eingangsvektor $\mathbf{x}=[\mathbf{x}(0),\,\mathbf{x}(1),\,\dots,\,\mathbf{x}(7)]=[2,\,-1,\,1,\,-1,\,2,\,-1,\,1,\,-1]$ die Zwischenergebnisse nach der ersten und zweiten FFT-Stufe in die Grafik ein. Geben Sie den Ausgangs-Datenvektor $\mathbf{X}=[\mathbf{X}(0),\,\dots,\,\mathbf{X}(7)]$ nach der dritten FFT-Stufe an.
- c) Ist das erhaltene Spektrum gemischtwertig, ausschließlich reellwertig oder ausschließlich imaginärwertig? Warum? Erläutern Sie kurz.
- d) Geben Sie für den Eingangsvektor $\mathbf{x}_2 = [1, 0, 0, 0, 0, 0, 0, 0]$ den Ausgangs-Datenvektor $\mathbf{X}_2 = [X_2(0), \dots, X_2(7)]$ an.
- e) Geben Sie für den Eingangsvektor $\mathbf{x}_3=[3, -1, 1, -1, 2, -1, 1, -1]$ den Ausgangs-Datenvektor $\mathbf{X}_3=[X_3(0), \dots, X_3(7)]$ an.

Aufgabe 4: Abtastratenwandlung

(10 Punkte)

Auf ihrem Computer ist eine Aufnahme von 10 Sekunden mit 16 Bit pro Abtastwert PCM-codiert abgespeichert. Die Aufnahme nimmt auf dem Speichermedium 3.200.000 Bit ein.

a) Geben Sie die Abtastrate f_s an, mit der das Signal abgespeichert wurde.

Mit einer Abtastratenwandlung soll die Aufnahme nun auf $f_s'' = 80$ kHz gewandelt werden.

- b) Nennen Sie das teilerfremde Abtastratenverhältnis $r=\frac{p}{q}$ für die Abtastratenwandlung.
- c) Nennen Sie die normierte Grenzfrequenz Ω_c des Filters $H(z=e^{j\Omega'})$, welches als gemeinsames ideales Antialiasing-Filter für die Expansion und Dezimation genutzt werden kann.
- d) Zeichnen Sie das Blockschaltbild der effizienteren Berechnung der Abtastratenwandlung in der kausalen Polyphasendarstellung *ohne* Verwendung von Kommutatoren.
- e) Bestimmen Sie alle benötigten Polyphasenkomponenten $R_i(z)$. Die Impulsantwort h(n) des genutzten Tiefpassfilters sei gleich Null für n < 0 sowie n > 15, und sonst gegeben mit:

h(r)	i)	-0,1	-0,05	0,1	0,01	-0,05	-0,1	0,2	0,45	0,45	0,2	-0,1	-0,05	0,01	0,1	-0,05	-0,1