Estructuras Discretas

Tarea 2

Fecha de entrega: Viernes 3 de noviembre del 2017

Profesor: Karla Vargas Ayudantes: Diana Montes y Pedro Cervantes

IMPORTANTE: Resuelve de manera ordenada los siguientes ejercicios. Indica claramente el número de pregunta que estás resolviendo, dónde empieza y dónde termina. Escribe de manera ordenada las preguntas, empieza por la 1, luego la 2, etc. Se penalizarán las tareas que no se entreguen con letra clara o con preguntas desordenadas.

1. Demuestre que cada una de las siguientes fórmulas se cumple para cada $n \in \mathbb{N}$.

a)
$$\sum_{i=1}^{n} (2i-1)^3 = n^2(2n^2-1)$$
. b) $\sum_{i=0}^{n} \frac{i}{2^i} = 2 - \frac{n+2}{2^n}$.

- 2. Demuestre cada una de las siguientes desigualdades para los valores de $n \in \mathbb{N}$ especificados.
 - a) $(1+\frac{1}{n})^n < n$ para cada $n \in \mathbb{N}$ tal que $n \geq 3$.
 - b) $7n < 2^n$ para cada $n \in \mathbb{N}$ tal que $n \ge 6$.
- 3. Demuestre que

$$\prod_{i=2}^{n} \left(1 - \frac{1}{i^2} \right) = \left(1 - \frac{1}{2^2} \right) \times \dots \times \left(1 - \frac{1}{n^2} \right) = \frac{n+1}{2n}.$$

Para cada $n \in \mathbb{N}$ tal que $n \geq 2$.

- 4. Sea $\{r_i\}_{i\in\mathbb{N}^\times}$ la sucesión definida por $r_1=1,$ y $r_{n+1}=4r_n+7$ para cada $n\in\mathbb{N}.$ Demuestre que $r_n=\frac{1}{3}(10\cdot 4^{n-1}-7)$ para cada $n\in\mathbb{N}^\times.$
- 5. Sea $\{b_i\}_{i\in\mathbb{N}}$ la sucesión definida por $d_0=2,\ d_1=3,\ \mathrm{y}\ d_n=d_{n-1}\cdot d_{n-2}$ para cada $n\in\mathbb{N}$ tal que $n\geq 3$. Encuentre una fórmula explícita para d_n , y demuestre por inducción que su fórmula funciona.
- 6. Sea spar(n) la función definida como $spar(n) = 2 + 4 + 6 + \cdots + 2n$. Defina una implementación recursiva llamada f(n) para la función spar(n). Demuestre que f(n) = n(n+1).
- 7. Una cadena de caracteres es palíndroma si es de la forma ww^R donde w^R es w escrita de atrás hacia adelante, por ejemplo 0110,abbbba,holaaloh.

Defina al conjunto de las cadenas palíndromas recursivamente, y demuestre mediante inducción estructural, que todas las cadenas palíndromas definidas tienen un número par de símbolos. Observación: a pesar de que la cadena anitalavalatina es un palíndromo, no cumple con la estructura ww^R .

8. La función snoc en listas se define como sigue

snoc
$$c[x_1,...,x_n] = [x_1,...,x_n,c]$$

- a) De una implementación recursiva para snoc.
- b) Demuestre, usando la definición recursiva, que:

snoc
$$c(xs \downarrow ys) = xs \downarrow (\text{snoc } c \ ys)$$

9. Considere la siguiente función misteriosa mist

$$mist [] ys = ys$$

$$mist (x : xs) ys = mist xs (x : ys)$$

- a) ¿Qué hace la función mist?
- b) Muestre que rev xs = mist xs[], con rev la operación reversa sobre cadenas definidas cómo sigue:

$$rev [] = []$$

$$rev(a:ls) = rev ls [a]$$

- 10. Sea A una fórmula de la lógica proposicional cuyos únicos conectivos son \land, \lor, \lnot . Definimos la fórmula dual de A, denotada como A_D , intercambiando \land por \lor , \lor por \land y reemplazando a cada variable p por su negación $\lnot p$. Por ejemplo, $A = (r \lor q) \land \lnot p$, $A_D = (\lnot r \land \lnot q) \lor \lnot \lnot p$
 - a) Defina recursivamente una función dual tal que dual $(A) = A_D$.
 - b) Muestre que $\neg A \equiv A_D$ mediante inducción sobre las fórmulas.
- 11. Resuelva los siguientes incisos para árboles binarios
 - a) Defina recursivamente una función hmi(T) que devuelve la hoja más a la izquiera en un árbol binario.
 - b) La distancia entre la raíz r de un árbol binario T hacía algún otro nodo p, es el número de aristas (líneas) que hay entre ambos nodos y la altura o profundidad de un árbol se define como la máxima distancia entre la raíz y alguna hoja más 1. Demuestre que el número máximo de hojas en un árbol de altura n es 2^{n-1} .
 - c) De una definición recursiva que devuelva en una lista recorrido en post-orden de los árboles binarios. Si se tiene el siguiente árbol T, el resultado de el recorrido es el siguiente:

 $\operatorname{post-order}(T) = [A, C, E, D, B, H, I, G, F]$