Application of the Bees Algorithm to Fuzzy Clustering

D.T. Pham, H. AL-Jabbouli, M. Mahmuddin, S. Otri and A. Haj Darwish

Carlos Henrique Maciel Sobral Timóteo

Roteiro

- Definições
- Algoritmo Fuzzy C-Médias (FCM)
- Abelhas na Natureza
- Algoritmo das Abelhas
- Algoritmo Proposto Bees Algorithm with FCM
- Resultados Experimentais
- Conclusão

Definições

- O Algoritmo das Abelhas é usado para otimizar o desempenho do FCM melhorando o resultado da clusterização.
- Resultados Experimentais mostram que o algoritmo proposto fornece uma melhoria significativa ao FCM e ao FCM combinado com o Algoritmo Genético (GA).

Definições

- Clusterização está relacionada com o particionamento de um conjunto de dados em grupos homogêneos.
- A clusterização tradicional também chamada de Clusterização Direta utiliza limitares rígidos na separação dos clusters.
- Clusterização Fuzzy usa a lógica fuzzy para criar grupos sobrepostos de dados.

Clusterização Fuzzy

- Os dados podem pertencer a mais de 1 cluster ao mesmo tempo com graus de possibilidade ou valores da função de pertinência diferentes.
- A Função de Pertinência de um cluster varia de 1 a 0. Na Clusterização Direta os valores podem ser 0 ou 1, somente.

Clusterização Fuzzy

- O algoritmo mais popular para Clusterização Fuzzy. Introduzido e desenvolvido por Dunn e melhorado por Bezdek.
- Baseado na minimização de uma função objetivo.
- Essa função indica a soma das distâncias de cada centro de cluster para os pontos de dados naquele cluster. Dessa forma, com a minimização dessas distâncias, quanto menor o valor de Jm, melhor a clusterização.

$$J_{m} = \sum_{i=1}^{N} \sum_{j=1}^{C} u_{ij}^{m} \|x_{i} - c_{j}\|^{2}$$

Onde,

m é o grau de fuzzyficação de qualquer número real maior que 1;

uij é o grau de pertinência de xi no cluster j;

cj é o centro do cluster j;

N é o número de dados;

xi é o valor d-dimensional medido;

||*|| é uma norma expressando a similaridade entre o dado mensurado e o centro.

1- Initialise
$$U = [u_{ij}]$$

At k-step: calculate the centres vectors

$$C^{(k)} = \left[c_j\right]_{\text{with } U^{(k)}}$$

Where:

K is the iteration step

 σ is a termination criterion between 0 and 1

$$c_{j} = \frac{\sum_{i=1}^{N} u_{ij}^{m}.x_{i}}{\sum_{i=1}^{N} u_{ij}^{m}}$$
 Média ponderada com todos os pontos

3- Update $U^{(k)}$, $U^{(k+1)}$

$$U_{ij} = \frac{1}{\sum_{k=1}^{c} \left(\frac{\|x_i - c_j\|}{\|x_i - c_k\|} \right)^{\frac{2}{m-1}}}$$
 Limites: [0..1]

otherwise go to step 2.

Conclusões do FCM

- O K-Médias é o mais famoso por conta da sua simplicidade e sua baixa complexidade comparada com outros algoritmos.
- Tanto o FCM quanto o K-Médias tendem a convergir para um mínimo local.
- O algoritmo das abelhas é combinado para resolver esse problema da convergência em mínimos locais.

Abelhas na Natureza

- Baseado no comportamento de procura por alimento das abelhas na natureza.
- A busca têm os seguintes elementos:
 - Scout Bees: Responsável pela busca de caminho de flores promissoras;
 - Waggle Dance: Dança para comunicação entre as abelhas;
 - Dancer: Scout Bee que percorreu um caminho e fornece informações para a colméia;
 - Followers Bees: Abelhas que seguem a scout bee após a dança para coletar o alimento.

Abelhas na Natureza

- Caminhos com maior quantia de néctar ou pólen que podem ser coletados com menor esforço tendem a ser visitadas por mais abelhas.
- A dança da abelha informa 3 informações: a direção, a distância da colméia e a pontuação de qualidade do caminho. A avaliação dos diferentes caminhos observam a qualidade do alimento que ele fornece e a quantidade de energia necessária para buscar o alimento.

- O algoritmo requer um número de parâmetros a ser configurados como:
 - (n) Número de Scout Bees
 - (m) Número de regiões selecionadas para busca na vizinhança
 - (e) Número de regiões elite fora de m
 - (nep) Número de abelhas recrutadas para as regiões elite
 - (m-e) Número de abelhas recrutadas para as outras regiões
 - (nsp) Lugares selecionados
 - Critério de Parada.

- Initialise the solution population (each initial solution, or 'bee', being a set of randomly placed cluster centres).
- 2. Evaluate the fitness of the population.
- While (stopping criterion is not met)// forming new population.
- 4. Select sites for neighbourhood search.
- Recruit bees for selected sites (more bees for the best e sites) and evaluate fitnesses.
- 6. Select the fittest bee from each site.
- Assign remaining bees to search randomly and evaluate their fitnesses.
- 8. End While.

Conclusão do Algoritmo das Abelhas

• Nós utilizamos o algoritmo das abelhas para encontrar o valor mínimo para J_m .

$$J_{m} = \sum_{i=1}^{N} \sum_{j=1}^{C} u_{ij}^{m} \|x_{i} - c_{j}\|^{2}$$

- O algoritmo das abelhas é capaz de localizar eficientemente soluções próximas da ótima.
- Uma colônia de abelhas pode se espalhar por longas distâncias com o objetivo de exploitation (busca em largura) por alimento, ao mesmo tempo.

Algoritmo Proposto – Bees Algorithm with FCM

- 1. Read data from the file.
- 3. Fill array A using formula u_{ij} and evaluate the fitness of the population using Eq. (1).
- 4. While (stopping criterion is not met)
- 5. Select sites for neighbourhood search.
- 6. Recruit bees for selected sites (more bees for the best e sites) and fill array A using formula u_{ij} and evaluate the fitness using Eq. (1).
- 7. Select the fittest bee from each site.
- 8. Assign remaining bees to search randomly then fill array A using formula u_{ij} and evaluate their fitnesses using Eq. (1). \longrightarrow J_m
- 9. End While.

$$U_{ij} = \frac{1}{\sum_{k=1}^{c} \left(\frac{\left\| x_{i} - c_{j} \right\|}{\left\| x_{i} - c_{k} \right\|} \right)^{\frac{2}{m-1}}}$$

Algoritmo Proposto – Bees Algorithm with FCM

- O array A contém o valor da função de pertinência para todos os dados.
- A cada iteração a população de abelhas na busca vai aumentando.
- Esse algoritmo otimizado e simples não diminui o custo computacional e a complexidade do FCM, mas evita a queda em mínimos locais, através da busca randômica.

Resultados Experimentais

Algorithm	Parameters	Value
FCM	Maximum number of iterations	1000
	Crossover probability, μ_c	0.8
GA	Mutation probability, μ_{m}	0.001
	Population size, P	100
	Number of scout bees	21
	Number of sites selected for neighbourhood search	8
Daga	Number of elite bees	2
Bees Algorithm	Number of bees recruited for the elite sites	5
	Number of bees recruited for the other selected sites	2
	Number of iterations	300

Resultados Experimentais

Os algoritmos
foram executados 10
vezes, os valores
mínimo, máximo e
médio de Jm foram
coletados.

Da ta set	Algori thm	Mean	Min	Max
Iris	FCM	61.72	60.58	65.81
	GA	65.54	63.34	69.23
	Bees	60.58	60.58	60.58
Ctrl Charts	FCM	530.99	530.99	530.99
	GA	802.08	791.23	819.28
	Bees	549.08	546.87	552.15
Wood Defects	FCM	64077395.11	59195094.2 9	66225010.4 9
	GA	168035.20	157508.00	174784.00
	Bees	165132.52	153866.53	173523.00
Crude Oil	FCM	1330.43	1242.30	1560.57
	GA	1252.61	1238.25	1286.04
)il	Bees	1239.50	1237.24	1241.56

Resultados Experimentais

Table 3				
Data sets	used	in	the	experiments

Data Set	# of Object	# of Feature	# of Class	
ris	150	4	3	
Control Charts	1500	60	6	
ood efects	232	17	13	
Crude il	59	5	3	

Conclusão

- Combinando o algoritmo das abelhas com o FCM foi melhorado o resultado da clusterização fuzzy comparado com o FCM na maioria dos casos e com o GA combinado ao FCM.
- Um dos principais conceitos sobre o algoritmo proposto é que ele requer um longo tempo computacional, assim como o FCM.

FIM

Dúvidas?

Obrigado.