REGLAS DE DERIVACIÓN Y DERIVADAS INMEDIATAS

Función

	FullCion	Derivada respecto de x
	ax	a
	a^x	$a^x ln(a)$
	x^m	$m \cdot x^{m-1}$
	e^x	e^x
	ln(x)	$\frac{1}{x}$
	$log_a(x)$	$rac{1}{xln(a)}$
	sin(x)	cos(x)
	cos(x)	-sin(x)
	tg(x)	$\frac{1}{\cos^2(x)} = \sec^2(x) = 1 + tg^2(x)$
	cotg(x)	$\frac{-1}{\sin^2(x)} = -\csc^2(x) = -1 - \cot^2(x)$
	sec(x)	$\frac{\sin(x)}{\cos^2(x)} = \sec(x)tg(x)$
	cosec(x)	$\frac{-cos(x)}{sin^2(x)} = -cosec(x)cotg(x)$
	arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$
	arccos(x)	$\frac{-1}{\sqrt{1-x^2}}$
	arctg(x)	$\frac{1}{1+x^2}$
	arccotg(x)	$\frac{-1}{1+x^2}$
	arcsec(x)	$\frac{1}{x\sqrt{x^2-1}}$
	arcsec(x)	$\frac{1}{x\sqrt{x^2-1}}$
	$cosh(x) = \frac{e^x + e^{-x}}{2}$	$\frac{e^x - e^{-x}}{2} = \sinh(x)$
	$sinh(x) = \frac{e^x - e^{-x}}{2}$	$\frac{e^x + e^{-x}}{2} = \cosh(x)$

Derivada respecto de x

$f = f(x), g = g(x), \frac{\partial}{\partial x}f(x) = f', \frac{\partial}{\partial x}g(x) = g'$		
$\frac{\partial}{\partial x}(f+g) = f' + g'$		
$\frac{\partial}{\partial x}(f \cdot g) = f' \cdot g + f \cdot g'$		
$\frac{\partial}{\partial x}(\frac{f}{g}) = \frac{f' \cdot g - g' \cdot f}{g^2}$		
$\frac{\partial}{\partial x}(f^g) = (g'ln(f) + \frac{1}{f}f'g)f^g$		

Nota: Cuando x sea una función f(x), en la derivada escribimos f(x) en vez de x y multiplicamos el resultado por f'(x) Por ejemplo, la derivada de $sin(x^2)$ es $cos(x^2) \cdot 2x$