MODUL

Penggunaan Script MATLAB

Konversi Data Induksi Polarisasi Domain Waktu Ke Domain Frekuensi (Debye Decomposition)

Oleh:

Dimas Putra Rachmawan NRP. 5017211041

Dosen Pembimbing:

- Dr. Ir. Dwa Desa Warnana, M.Si.
 NIP. 19591010 198803 1 002
- 2. Dr. Ir. Amien Widodo, S.Si, M.Si NIP. 19760123 200003 1 001

Daftar Isi

Daftar Isi	i
Keterangan	iii
I. Synthetic Validation	
II. Fitur Utama	3
Konversi TDIP Ke FDIP	3
III. Daftar Script dan Kegunaannya	7
1. Konversi TDIP ke FDIP	7
2. Synthetic Validation	7
Daftar Pustaka	8

Halaman ini sengaja dikosongkan

Keterangan

Script ini berupa script MATLAB yang beberapa variabelnya perlu disesuaikan. Hal-hal yang perlu disesuaikan dijelaskan pada modul ini dan diberi tanda sebagai berikut:

warna biru : variabel yang nilainya perlu disesuaikan

warna hijau : function yang perlu dipilih (ubah function yang digunakan)

warna kuning : nilai yang perlu disesuaikan

Penyesuaian-penyesuaian ini HANYA perlu dilakukan pada script Konversi_TDIP_FDIP.m.

Halaman ini sengaja dikosongkan

I. Synthetic Validation

Synthetic validation terdiri dari 2 hal yaitu accuracy of the TD to FD conversion dan validation of error propagation. Terdapat 10 tipe synthetic validation yang diuji, yang dibuat dengan function, yaitu:

No.	Synthetic Validation	Function
1.	Comparison Expected and Estimates Phase to	Accuracy.m
	Relaxation Time	
2.	Comparison Data Fit and Reqularization Strength to	Accuracy.m
	Relaxation Time	
3.	Noise Realizations of the Input Transient	Creating_Reference_Variances.m
4.	Scatter of the Sample Model Parameter m ₄₀	Creating_Reference_Variances.m
5.	Scatter of the Obtained FD Estimates	Creating_Reference_Variances,m
6.	Covariance Matrix C _M	Creating_Reference_Variances,m
7.	Reference Covariance Matrix from the Monte Carlo	Creating_Reference_Variances.m
	Analysis	
8.	Covariance Matrix C _E	Creating_Reference_Variances.m
9.	Error Propagation Scheme for the Magnitude Z	Validation_Error_Propagation.m
10.	Error Propagation Scheme for the Phase φ	Validation_Error_Propagation.m

Kesepuluh synthetic validation ini ditunjukkan pada gambar 1.1; 1.2; 1.3; 1.4.

Gambar 1.1. Synthetic Validation (a) Comparison Expected and Estimates Phase to Relaxation Time; (b) Comparison Data Fit and Regularization Strength to Relaxation Time.

Gambar 1.2. Synthetic Validation (a) Noise Realizations of the Input Transient; (b) Scatter of the Sample Model Parameter m_{40} ; (c) Scatter of the Obtained FD Estimates.

Gambar 1.3. Synthetic Validation (a) Covariance Matrix C_M ; (b) Reference Covariance Matrix from the Monte Carlo Analysis; (c) Covariance Matrix C_E .

Gambar 1.4. Synthetic Validation (a) Error Propagation Scheme for the Magnitude Z; (b) Error Propagation Scheme for the Phase φ.

II. Fitur Utama

Konversi TDIP Ke FDIP

Fitur konversi TDIP ke FDIP akan menampilkan 5 sub-gambar :

- (a) resistivitas (p) pada frekuensi tinggi (fac);
- (b) fase (φ) pada frekuensi tinggi (fac);
- (c) komponen imajiner konduktivitas (σ'') pada frekuensi tinggi (f_{ac});
- (d) percent frequency effect (PFE); dan
- (e) metal factor (MF).

Fitur utama dari script MATLAB ini adalah melakukan konversi data induksi polarisasi (IP) domain waktu (TD) ke dalam bentuk tomografi resistivitas kompleks domain frekuensi (FD) menggunakan pendekatan *Debye Decomposition* (DD). Tujuan konversi ini adalah untuk memperoleh parameter spektral IP pada frekuensi tinggi (f_{ac}), seperti resistivitas kompleks, fase IP, dan komponen konduktivitas imajiner. Alur inversi ditunjukkan pada gambar 2.1.

Gambar 2.1. Alur Inversi.

Terdapat beberapa parameter yang perlu diatur untuk konversi dan inversi, yaitu

Variabel	Arti	Script
SETUP.TAU	Nilai waktu relaksasi konstan ($ au$)	N_tau = <mark>20</mark> ;

		tau = logspace(log10(<mark>0.005</mark>), log10(<mark>1</mark>), N_tau)
SETUP.T_GATE	Nilai time gates	t_gate = [<mark>0.02, 0.04, 0.08, 0.16</mark>]
SETUP.ETA	Nilai chargeabilitas (η)	<pre>eta = table2array(data(:,</pre>
SETUP.FREKUENSI	Nilai frekuensi (f)	f_dc = <mark>0.1</mark> f_ac = <mark>1</mark>

Debye decomposition (DD) merupakan model semi-fenomenologis yang dirancang untuk menggambarkan berbagai respons relaksasi listrik melalui superposisi dari respons-respons Debye tunggal. Model ini diadaptasi dan *forward operator* FD-nya dimodifikasi sesuai dengan pendekatan yang dikembangkan oleh Nordsiek & Weller, 2008:

$$\hat{Z}(\omega) = R_0 - \sum_{k=1}^{M} \gamma_k \left(1 - \frac{1}{1 + i\omega \tau_k} \right)$$
 (2.1)

Parameter γ_k , yang memiliki satuan resistansi, digunakan untuk mengatur kontribusi masing-masing komponen Debye dalam superposisi. Dengan menetapkan γ_k sebagai parameter penskalaan, pendekatan ini menyimpang dari formulasi Nordsiek & Weller, 2008 dan mengurangi potensi kesalahan yang saling berkorelasi antara komponen Debye. Grafik yang memplot γ_k terhadap waktu relaksasi τ_k menghasilkan *Relaxation Time Distribution* (RTD).

Nilai γ_k diperkirakan melalui inversi transien TD terukur pada grid yang terdiri dari waktuwaktu relaksasi τ_k yang sudah ditentukan sebelumnya (Tarasov & Titov, 2007).

$$\eta(t) = \frac{1}{R_0} \sum_{k=1}^{M} \gamma_k \ exp(-\frac{t}{\tau_v}) \tag{2.2}$$

Tujuan dari DD (*Debye decomposition*) adalah untuk memecah sinyal TD (*Time-Domain*) yang terukur menjadi RTD (*Relaxation Time Distribution*). Nilai diskrit dari sinyal TD yang telah dinormalisasi tidak digunakan sebagai data, karena kesalahan pada nilai-nilai tersebut saling berkorelasi akibat pembagian dengan besaran yang terukur, V_0 . Sebagai gantinya, pendekatan lain dipilih (Hase dkk., 2023).

$$\boldsymbol{d} = \boldsymbol{R}_0(\boldsymbol{\eta}_1, \dots, \boldsymbol{\eta}_i, \dots, \boldsymbol{\eta}_N)^{\mathrm{T}}$$
 (2.3)

langkah waktu diskrit

$$\boldsymbol{t} = (\boldsymbol{t}_1, \dots, \boldsymbol{t}_i, \dots, \boldsymbol{t}_N)^{\mathrm{T}} \tag{2.4}$$

Proses ini menggunakan pengukuran yang tidak saling berkorelasi untuk melakukan inversi. Dalam domain model, masalah inversi didiskritisasi menggunakan grid yang terdiri dari M waktu relaksasi τ_k yang telah ditentukan sebelumnya dan disusun secara logaritmik dengan basis log_{10} . Penting untuk memastikan bahwa diskritisasi domain model mencakup rentang parameter yang cukup luas dan menyediakan derajat kebebasan yang memadai. langkah waktu pertama dan terakhir dari transient yang didiskritisasi masing-masing dinyatakan sebagai t_1 dan t_N , rentang waktu relaksasi au_k ditentukan dalam interval $au_k \in$ $[\mathbf{10}^{log_{10}(t_1)-1.5}, \mathbf{10}^{log_{10}(t_N)+1.5}]$, yang memperluas cakupan diskritisasi domain model sebesar 1,5 dekade ke kiri dan ke kanan dari rentang waktu yang diukur. Jumlah waktu relaksasi M ditentukan berdasarkan jumlah dekade yang dicakup oleh diskritisasi domain model, sehingga kepadatan diskretisasi tetap konsisten untuk transient yang diukur dengan sampel yang berbeda. Untuk setiap dekade dalam τ_{k} , digunakan 25 waktu relaksasi untuk diskritisasi domain model, yang 5 lebih banyak dari 20 waktu per dekade yang direkomendasikan oleh Weigand & Kemna, 2016. Hal ini dilakukan untuk memastikan derajat kebebasan yang cukup. Untuk menangani rentang nilai yang luas dalam γ_k dan membatasi hasil inversi agar tidak menghasilkan nilai yang berkaitan dengan $\gamma_k < 0$, logaritma natural dari γ_k digunakan sebagai parameter model.

$$\boldsymbol{m} = \left(\boldsymbol{ln}(\frac{\gamma_1}{\gamma_0}), \dots, \boldsymbol{ln}(\frac{\gamma_k}{\gamma_0}), \dots, \boldsymbol{ln}(\frac{\gamma_M}{\gamma_0})\right)^T$$
(2.5)

Perhatikan bahwa pembagian dengan $\gamma_0=1\Omega$ diperlukan untuk memastikan bahwa argumen dari fungsi $ln(\cdot)$ tidak berdimensi. Untuk menyederhanakan notasi, hal ini dinyatakan secara implisit sebagai $ln\left(\frac{\gamma_k}{\gamma_0}\right)=ln(\gamma_k)$ mulai dari sini. Forward operator TD pada metode DD kemudian dimodifikasi sebagai berikut.

$$\hat{\mathbf{Z}}(t) = \sum_{k=1}^{M} exp\left(ln(\gamma_k) - \frac{t}{\tau_k}\right)$$
 (2.6)

menghasilkan forward operator TD diskrit (Kumar dkk., 2019).

$$f_{i}(\boldsymbol{m},t_{i}) = \sum_{k=1}^{M} G_{ik} exp(\boldsymbol{m}_{k})$$
 (2.7)

dengan

$$G_{ik} = exp\left(-\frac{t_i}{\tau_k}\right) \tag{2.8}$$

Tomografi resistivitas kompleks ditunjukkan pada gambar 2.2

Gambar 2.2 Tomografi Resistivitas Kompleks a) Resistivitas (ρ) pada Frekuensi 1 Hz; b) Fase IP (φ) pada Frekuensi 1 Hz; c) Komponen Imajiner Konduktivitas (σ'') pada Frekuensi 1 Hz; d) Percent frequency effect (PFE); e) Metal factor (MF).

Halaman ini sengaja dikosongkan

III. Daftar Script dan Kegunaannya

Script MATLAB dapat diunduh di https://github.com/Lerch3/ConversionTDIPtoFDIP-DebyeDecomposition

1. Konversi TDIP ke FDIP		
1.a.	Konversi_TDIP_FDIP.m	Membuat tomografi resistivitas kompleks

2. Synthetic Validation		
2.a.	Accuracy.m	Membuat skema akurasi konversi TDIP ke FDIP
2.b.	Creating_Reference_Variances.m	Membuat model scatter dan covariance matrix
2.c.	Validation_Error_Propagation.m	Membuat skema propagasi ketidakpastian

Daftar Pustaka

- Hase, J., Gurin, G., Titov, K., & Kemna, A. (2023). Conversion of Induced Polarization Data and Their Uncertainty from Time Domain to Frequency Domain Using Debye Decomposition. *Minerals*, *13*(7), 955. https://doi.org/10.3390/min13070955
- Kumar, I., Kumar, B. V. L., Babu, R. V, Dash, J. K., & Chaturvedi, A. K. (2019). Relaxation time distribution approach of mineral discrimination from time domain-induced polarisation data. *Exploration Geophysics*, *50*(4), 337–350.
- Nordsiek, S., & Weller, A. (2008). A new approach to fitting induced-polarization spectra. *Geophysics*, 73(6), F235–F245.
- Tarasov, A., & Titov, K. (2007). Relaxation time distribution from time domain induced polarization measurements. *Geophysical Journal International*, *170*(1), 31–43.