CAT: Termodinámica

Ejercicio 1.1: una máquina térmica trabaja con 3 moles de un gas ideal monoatómico (c_p=5R/2; c_v=3R/2; R=8,314 J/mol K). Desde el estado A (T_A=600K, P_A= 200kPa) se dilata a temperatura constante hasta duplicar su volumen en el estado B. Desde el estado B se lo dilata adiabáticamente hasta el estado C, en el que la presión es de 74kPa. Luego se comprime el gas a volumen constante hasta volver a la presión inicial (estado D), y por último se lo comprime a presión constante hasta alcanzar el estado inicial. Suponga que el proceso se llevó a cabo de manera reversible. Si las siguientes figuras son esquemas de la transformación en el plano P-T, indique las dos afirmaciones correctas

Ejercicio 1.2: El recipiente adiabático de la figura es de 20\ell. Está cerrado por una tapa de masa M=1.8 kg v superficie S=0.04m². Entre la tapa v el recipiente no hav

masa M=1,8 kg y superficie S=0,04m². Entre la tapa y el recipiente no hay rozamiento. El recipiente contiene 0,3 moles de un gas ideal monoatómico (c_P=5R/2; c_V=3R/2; R= 8,314 J/mol K \equiv 0,082 ℓ atm/molK) a temperatura T= 800K. El gas está en equilibrio con el entorno, que se halla a presión P_{EXT}=101.500Pa. Se entregan al gas 48 cal en forma de calor. Entonces, si T, U, T', U' se refieren a la temperatura y la energía del gas antes y después de la inyección de calor, respectivamente, Δ S es la variación de entropía del gas, Δ y el cambio de altura de la tapa, marque las dos aseveraciones correctas

1	$\Delta y \approx -2 \text{cm}, T' \approx 768 \text{K}$	6	Δy ≈ 0,08cm, T' ≈ 832K
2	∆y≈ 0,08cm, T'≈ 4062K	7	Proceso reversible, pero datos insuficientes para calcular T'
3	$\Delta y \approx 2$ cm, T' ≈ 832 K	8	T' no puede calcularse porque el proceso es irreversible
4	$T' > T y \Delta S = 0$	9	P'= P y U' > U
5	T' < T y ΔS > 0	10	T'= T y U' = U porque el proceso es adiabático

Ejercicio 1.3: La figura muestra dos ciclos termodinámicos ABCA, efectuados por dos máquinas térmicas, (1) y (2). Ambas operan con 3 moles de un gas ideal monoatómico ($c_V = 3R/2$; $c_P = 5R/2$; R =8,314 J/mol·K). Las figuras (a) y esquemas muestran de las transformaciones del ciclo (1) al plano P \mathcal{V} , en tanto que las figuras (b) y (d) se refieren al ciclo (2). Marque las dos opciones correctas

1	La figura (a) es correcta	6	La máquina (1) es frigorífica y la (2) es calorífica
2	La figura (b) es correcta	7	En ambos procesos AB no hay intercambio de calor
3	La figura (c) es correcta	8	$ Q_{ABCA}^{(1)} > Q_{ABCA}^{(2)} $
4	La figura (d) es correcta	9	$ Q_{ABCA}^{(1)} = Q_{ABCA}^{(2)} $
5	$U_{ABCA}^{(1)} < 0 \text{ y } U_{ABCA}^{(2)} > 0$	10	$\left W_{ABCA}^{(1)} \right = \left W_{ABCA}^{(2)} \right $

Ejercicio 1.4: Las paredes de una cámara al vacío tienen 4cm de espesor: e_A =3 cm de material A (en el lado interior de la cámara) y e_B =1 cm de aislante térmico B. La superficie total de paredes es de 2 m². En un cierto instante t_0 , en el interior de la cámara un bloque de 500g de hielo de agua se halla en equilibrio con 1ℓ de agua líquida. La temperatura exterior es de 349K, $λ_A$ =0,6W/m K, $λ_B$ =0,2W/mK. Si T_{AB} es la temperatura de la unión A-B en el instante t_0 , M la masa de hielo fundida en t_0 +1minuto, indique las dos aseveraciones correctas (C_{HIELO} = 0.5 cal/g °C, C_{I} = 80 cal/g)

1	$\phi_A = \phi_B$ porque $\lambda_A/e_A = \lambda_B/e_B$	6	Si se intercambian los aislantes, T _{AB} no se modifica
2	$T_{AB} = T_{EXT} (\lambda_A + \lambda_B) / 2$	7	Mientras se funde el hielo, T _{AGUA} =constante
3	Т _{АВ} = 248К у ф _А =ф _В	8	M≈273 g
4	$T_{AB} = (T_{EXT} + T_{INT}) (\lambda_A/e_A + \lambda_B/e_B) / 2$	9	M≈33 g
5	M < 273 g	10	En t_0 +1minuto se fundió todo el hielo \Rightarrow M =500g

CAT: CE, V y Gauss

Ejercicio 2.1: Un anillo de radio R, cargado con densidad lineal de carga λ uniforme, se halla enfrentado a un plano "infinito" cargado con densidad de carga σ uniforme, como se muestra en la figura. La distancia entre el plano y la espira es D, y se sabe que el campo eléctrico sobre el eje de revolución del anillo se anula a una distancia D/2 del plano. Los puntos A y B se hallan ambos sobre el eje de revolución del anillo, ambos a distancia D/4 del plano del

anillo, uno por encina y el otro por debajo. W_{AB} es el trabajo que realiza el campo eléctrico cuando se transporta una carga +Q desde A hasta B. Indique las dos opciones correctas

	$\lambda = \sigma \left(R^2 + \frac{D^2}{4}\right)^{3/2} / 2RD$	6	$\lambda = 2\sigma \left(R^2 + \frac{D^2}{4}\right)^{3/2}$
2	$\lambda = -2\sigma \left(R^2 + \frac{D^2}{4}\right)^{3/2} / RD$	7	$\lambda = 2\sigma \left(R^2 + \frac{D^2}{4}\right)^{1/2}$
3	$\lambda = -2\sigma$	8	W _{AB} no depende del anillo y sólo depende del plano
4	$\lambda = -2\sigma/\varepsilon_0$	9	$W_{AB} = Q\sigma D/4\epsilon 0$ sólo si $\sigma > 0$
5	Por simetría, W _{AB} = 0	10	$W_{AB} = Q\sigma D/4\epsilon 0$ cualesquiera sean los signos de λ y σ

Ejercicio 2.2: un anillo de radio R, ubicado en el plano XY y con centro en el origen de coordenadas, está cargado con densidad lineal de carga $\lambda = \lambda_0 \cos \phi$ (con $\lambda_0 > 0$ y el ángulo ϕ medido positivamente en sentido antihorario a partir del semieje positivo de las X). Las flechas en los gráficos representan la dirección y el sentido del vector campo electrostático E en el origen (la ausencia de flecha indica |E| = 0) V_A y V_B son los potenciales de los puntos A y B de coordenadas (2R; 0; 0) y (3R; 0; 0), respectivamente, D y F son dos puntos de coordenadas (0; 0; 2R) y (0; 0; 3R), respectivamente, y W_{DF} el trabajo del CE para transportar una carga de prueba desde D hasta F. En estas condiciones, indique las dos opciones que son correctas

1	E es nulo a lo largo del eje Y	6	E es nulo a lo largo del eje Z
2	$W_{DF} = 0$	7	La figura (a) es correcta
3	$W_{DF} > 0$	8	La figura (b) es correcta
4	E es nulo en todo punto porque Q _{ANILLO} =0	9	La figura (c) es correcta
5	V es nulo en todo punto porque Q _{ANILLO} =0	10	La figura (d) es correcta

Ejercicio 2.3: se coloca un dipolo frente a un plano infinito cargado uniformemente con densidad de carga +σ como esquematiza la figura. Entonces es cierto que (dos opciones son correctas)

+c

1	El dipolo se desplaza verticalmente sin girar.	6	El dipolo gira y se aleja del plano.
2	El dipolo gira y luego permanece en reposo.	7	El dipolo se aleja del plano sin girar.
3	El dipolo gira y luego se desplaza verticalmente.	8	El dipolo permanece en reposo.
4	La fuerza sobre el dipolo es independiente de la	9	El CE y el potencial son ambos
	densidad de carga σ.		constantes.
5	El potencial en la posición de la carga negativa	10	El CE en la posición de la carga negativa
	es menor que el potencial en la posición de la		es menor que el CE en la posición de la
	carga positiva.		carga positiva.

Ejercicio 2.4: La carga puntual q > 0 de la figura se halla en equilibrio en un punto p entre dos

placas infinitas cargadas con densidades de carga 3σ (σ >0) la de la izquierda (en z=0) y -2σ la de la derecha (en z=L). El equilibrio se logra mediante dos resortes de igual constante elástica (k_R) e igual longitud (ℓ_0). La distancia entre las placas es L=2 ℓ_0 y d es la distancia del punto p a la placa de la izquierda. En estas condiciones, si F representa el módulo de la fuerza sobre la carga puntual, V(p) el potencial en la posición de la carga puntual, δx la deformación del resorte de la derecha, dos

de las siguientes sentencias son verdaderas. Indique cuáles son

1	$\delta x = \frac{3\sigma q}{2k_R \varepsilon_0}$	6	$\vec{E} = \frac{5\sigma q}{4k_R \varepsilon_0} \hat{e}_z$
2	$\delta x = \frac{5\sigma q}{4k_R \varepsilon_0}$	7	$V(p) = \frac{5\sigma}{2\varepsilon_0}d$
3	$F = \frac{\sigma}{2\varepsilon_0} q + 2k_R \delta x$	8	V(p) < V(0)
4	$F = \frac{3\sigma}{2\varepsilon_0} + 2k_R \delta x$	9	El resorte derecho está estirado y el izquierdo comprimido.
5	$\vec{E} = \frac{\vec{\sigma}}{2\varepsilon_0} \left(-\hat{e}_z \right)$	10	La distancia de la carga a la placa izquierda es d=L/2

CAT: Dieléctricos

Ejercicio 3.1: la configuración de la figura consiste en un alambre infinito cargado con densidad lineal de carga $\lambda = +2\mu\text{C/m}$, rodeado de una cáscara cilíndrica dieléctrica de constante relativa ϵ_r =15, también infinita, de radios interior R_a=1m y exterior R_b=1,5m. El alambre coincide con el eje del cilindro. El las regiones R<Ra y R>Rb el medio es el vacío. Entonces, si R_c=2m, R_d=3m y V representa el potencial electrostático, indique las dos opciones correctas

1	El CE dentro del cilindro es nulo	6	V(Rb) < V(Ra)
2	El CE para R < Ra es nulo	7	$V(\infty) = 0$
3	El CE para R > Rb es nulo	8	E(Ra <r<rb) (r<ra)<="" 15="" =="" e="" td=""></r<rb)>
4	E (R>Rb) = 15 E(Ra <r<rb)< td=""><td>9</td><td>D(Ra<r<rb) 15="" =="" d(r<ra)<="" td=""></r<rb)></td></r<rb)<>	9	D(Ra <r<rb) 15="" =="" d(r<ra)<="" td=""></r<rb)>
5	V(Rc) = V(Rd) = 0	10	D(R <ra)> D(Ra<r<rb)< td=""></r<rb)<></ra)>

Ejercicio 3.2: la figura muestra una región del espacio de espesor ℓ , en la que existe un dieléctrico de permitividad $\epsilon_1=\epsilon_{r1}\epsilon_0$. El campo eléctrico en esa región tiene módulo E_1 (y en el gráfico se muestra el vector E_1). A la derecha, hay una región de espesor 2ℓ , campo de módulo E_2 y permitividad $\epsilon_2 > \epsilon_1$. Si W_{BG} representa el trabajo entre que realiza la fuerza eléctrica cuando se lleva una carga q > 0 desde B hasta G, D_1 , P_1 son los módulos de los vectores desplazamiento y polarización en la región con ϵ_1 , D_2 , P_2 son los módulos de los

vectores desplazamiento y polarización en la región con ϵ_2 , dos sentencias son verdaderas. Indíquelas.

1	$\sigma_P(A) = (\varepsilon_{r1} - \varepsilon_0)E_1$	6	$E_1 = E_2 y P_1 < P_2$
2	$\sigma_P(A) = -\sigma_P(G)$	7	$D_1 = D_2 \ y \ E_1 > E_2$
3	$W_{BG} = 2\varepsilon_2 \ell E_2 q / \varepsilon_1$	8	$D_1 = D_2 y P_1 > P_2$
4	$W_{BG} = -2\varepsilon_1 \ell E_1 q / \varepsilon_2$	9	El potencial del punto A es mayor que el del punto G
5	$W_{BG} = 2\varepsilon_1 \ell E_1 q / \varepsilon_2$	10	En la región ε1, el CE en A es menor que el CE en B

Ejercicio 3.3: la carga puntual q > 0 de la figura se halla en vacío, y está rodeada de una región de permitividad $ε_1$. El límite de esta región está formado por una semicircunferencia de radio R y paredes rectas. La carga q está ubicada en el centro de la semicircunferencia, y los puntos A, B, C y G en la frontera de los dieléctricos. Los subíndices 0 y 1 se refieren a las regiones de los dieléctricos, $α[\vec{E}]$ al ángulo que forma el vector CE, y las cantidades sin flechas encima son los módulos de los vectores. Dos sentencias son verdaderas, indique cuáles son

1	$E_0(B) = \varepsilon_{r_1} E_1(B) \text{ y } E_0(G) = \sqrt{2} \varepsilon_{r_1} E_1(G)$	6	$D_0(G) = D_1(G) \ y \ E_0(G) = E_1(G)$
2	$P_1(A) = D_1(A) - \varepsilon_1 E_1(A)$	7	$\alpha[\vec{E}_0(G)] = 37^0 \ y \ \alpha[\vec{E}_1(G)] < 37^0$
3	$\sigma_{P1}(A) = \sigma_{P0}(A)$	8	$\alpha[\vec{E}_0(G)] = 45^0 \ y \ \alpha[\vec{E}_1(G)] = arctg(\varepsilon_{r_1})$
4	$D_0(A) < D_1(B) \ y \ E_0(C) = E_1(B)$	9	$\alpha[\vec{E}_0(G)] = 45^0 \ y \ \alpha[\vec{E}_1(G)] = arctg(\varepsilon_1)$
5	$D_0(A) = D_1(B) y E_0(C) > E_1(B)$	10	$\alpha\left[\vec{E}_1(G)\right] < \alpha\left[\vec{E}_0(G)\right]$ si ε 1 < ε 0.

Ejercicio 3.4: la distribución de cargas de la figura consiste en un anillo circular de radio R y densidad lineal de carga λ > 0 (constante). A una altura h por sobre el plano del anillo (en el punto \mathbf{G} =(0; 0; h)) el medio cambia de permitividad ($ε_2 < ε_1$).

Si A y B son dos puntos sobre el eje Z, E_1 , D_1 , P_1 son los módulos de los vectores CE, desplazamiento y polarización en la región con ε_1 , E_2 , D_2 , P_2 son los módulos de los vectores CE, desplazamiento y polarización en la región con ε_2 , W_{AB} representa el trabajo entre que realiza la fuerza

eléctrica cuando se transporta una carga q > 0 desde A hasta B (separados una distancia ℓ), dos sentencias son verdaderas. Indíquelas.

1	$D_1(G) = D_2(G) \ y \ E_1(G) < E_2(G)$	6	$E_1(G) = E_2(G) \ y \ P_1(G) < P_2(G)$
2	$D_1(G) > D_2(G) y E_1(G) = E_2(G)$	7	$E_1(G) < E_2(G) \ y \ P_1(G) = P_2(G)$
3	$D_1(G) = D_2(G) \ y \ P_1(G) > P_2(G)$	8	$P_1(G) = (\varepsilon_1 - \varepsilon_0)E_1$
4	$W_{AB} = 2\varepsilon_2 \ell E_2 q / \varepsilon_1$	9	El potencial del punto A es menor que el del punto B
5	$W_{AB} = -2\varepsilon_1 \ell E_2 q / \varepsilon_2$	10	D(G) es nulo porque no hay cargas libres

CAT: Capacitores

Ejercicio 4.1: Un capacitor plano tiene placas de área A separadas una distancia d. Entre las placas hay vacío y está conectado a una batería de potencial V. Se duplica la distancia interplacas y se cambia todo el dieléctrico por otro de permitividad relativa ε' $_{r}$. Entonces, si E y D son los módulos de los vectores campo eléctrico y desplazamiento, respectivamente, y las variables primadas corresponden al capacitor con el nuevo dieléctrico, es cierto que (dos opciones son correctas)

1	La capacidad del capacitor aumenta sólo si ε'r > 2			
2	La energía del capacitor aumenta si $\varepsilon'_r>2 y$ se introdujo con la batería desconectada			
3	Se reduce la capacidad del capacitor a la cuarta parte colocando un dieléctrico de ϵ'_r =1/2			
4	La energía del capacitor aumenta si $\epsilon'_r > 2 $ y se introdujo con la batería conectada			
5	Si ε' _r > 2 y se introdujo con la batería desconectada, la carga en las placas aumenta			
6	La energía del capacitor permanece invariable cualquiera sea el valor de εr			
7	Si ε'r se introduce con la batería desconectada, E' es mayor que E			
8	Si ε' _r se introduce con la batería conectada, E' es igual a E			
9	Si ϵ'_r se introduce con la batería desconectada, $E' = E / \epsilon'_r$			
10	Si ϵ'_r se introduce con la batería desconectada, D' = ϵ'_r D			

Ejercicio 4.2: Dos placas plano paralelas de área A=0,2m², separadas d=4mm, se hallan en vacío conectadas a una fuente de 50V. Se desconecta la fuente y se rellena la mitad del área de las placas con un dieléctrico de constante relativa $ε_{r1}$ = 10 y la otra mitad con $ε_{r2}$ =30, como muestra la figura. Si las cantidades primadas se refieren a la nueva configuración, el subíndice 0 a la configuración inicial y los subíndices 1 y

2 a los dieléctricos respectivos, indique las dos sentencias correctas

1	El vector polarización vale lo mismo en ambos dieléctricos
<u> </u>	-
2	El vector desplazamiento vale lo mismo en ambos dieléctricos
3	La capacidad del sistema disminuye porque en el nuevo arreglo los capacitores están en paralelo
4	La capacidad del sistema aumenta en un factor 20
5	La diferencia de potencial entre las placas se reduce en un factor 40
6	La diferencia de potencial permanece invariable
7	La carga neta se mantiene constante y se distribuye por igual entre C'1 y C'2
8	La carga neta del capacitor C' aumenta en un factor 20
9	Q'= Q0 = Q'1 = Q'2
10	La carga neta del capacitor permanece invariable

Ejercicio 4.3: La fuente de la figura entrega 12 V. El interior del capacitor C₂ está lleno de un dieléctrico de constante relativa ε_R =2, y el espacio interplacas de los otros es vacío. Los cuatro capacitores tienen la misma capacidad, C=2 μF. Inicialmente están todos descargados. Se piensan diferentes procesos:

- en el proceso (1), con la llave K₁ cerrada y K₂ abierta,
- en el proceso (2), con la llave K₁ cerrada y K₂ abierta,

 en el proceso (2), con la llave K₁ cerrada y K₂ abierta,
 se cargan los capacitores C₁ y C₂ y se retira el dieléctrico (con la fuente conectada)
 - en el proceso (3), con la llave K₁ cerrada y K₂ abierta, se cargan los capacitores C₁ y C₂ y se retira el dieléctrico (con la fuente desconectada)
- en el proceso (4), una vez cargados C₁ y C₂, se abre la llave K₁ y se cierra la llave K₂, sin realizar ninguna acción sobre el dieléctrico.

Indique cuáles son las dos opciones son correctas

1	En el proceso (1) Q _{C2} > Q _{C1} porque C2 tiene un dieléctrico
2	En el proceso (1) $V_{C2} > V_{C1}$ porque C2 tiene un dieléctrico
3	En el proceso (2) la energía disminuye 24 μ J
4	En el proceso (2) la carga de C2 permanece invariable
5	En el proceso (3) la energía aumenta 72 μ J
6	En el proceso (3) la energía disminuye 72 μ J
7	En el proceso (4) carga Q' _{C2} de C2 es de 4μC
8	En el proceso (4) carga Q'c₂ de C2 es de 8μC
9	En el proceso (4) carga Q'_{C_3} = 8 μ C y Q'_{C_4} = 4 μ C
10	En el proceso (4) la energía del sistema disminuye

Ejercicio 4.4: Dos capacitores, dimensionalmente idénticos (igual área de placas, igual distancia entre placas), se hallan completamente cargados conectados en paralelo a una batería de 24V, $C_1=2\mu F$ y $C_2=4\mu F$. El interior de C_1 es vacío y el de C_2 está completamente lleno con un dieléctrico de permitividad $\varepsilon = \varepsilon_r \varepsilon_0$. Indique las dos sentencias correctas

1	$Q_1 = Q_2 = 144 \mu C$	6	$D_1 > D_2$
2	$Q_1 = 48 \mu C > Q_2$	7	$E_1=E_2$
3	$Q_2 = 96\mu C > Q_1$	8	$E_1 > E_2$
4	$ \sigma_{P1} = 2 \sigma_{P2} $	9	$D_1 > P_1 > 0$
5	$D_1 = D_2$	10	$D_1 = P_1 = 0$

CAT: Conceptos generales

Ejercicio 5.1: del siguiente conjunto de afirmaciones sólo dos son correctas. Marque cuáles son

1	El potencial en el interior de un conductor es nulo porque el CE en esa región es nulo.
2	El segundo principio de la Termodinámica asegura que es imposible que fluya calor de los cuerpos
	fríos a los cuerpos calientes.
3	El CE es conservativo porque su integral a lo largo de una línea cerrada es nula.
4	El teorema de Gauss es válido sólo en configuraciones de simetría definida.
5	Dos capacitores iguales en serie almacenan cuatro veces la energía que almacenan esos dos
	capacitores conectados en paralelo a la misma fuente.
6	El vector desplazamiento en vacío es nulo, al igual que el vector polarización.
7	El vector polarización es una medida de la cantidad de dipolos por unidad de volumen.
8	El flujo de CE de una esfera de radio R cargada, tiene el mismo valor a 2R y a 4R.
9	Si la carga neta de una configuración de cargas es nula entonces el CE es nulo.
10	Si la carga neta de una configuración de cargas es nula entonces el potencial de la configuración
	es nulo.

Ejercicio 5.2: del siguiente conjunto de afirmaciones sólo dos son correctas. Marque cuáles son

1	El trabajo invertido para armar una configuración de cargas es una medida de la energía
	contenida en el CE de la configuración.
2	El potencial electrostático de toda configuración de cargas es nulo en el infinito.
3	Si la diferencia de potencial entre dos puntos es nula entonces la fuerza que hay que realizar para
	transportar una carga entre esos dos puntos es nula en toda la trayectoria.
4	El flujo del CE generado por una distribución finita de cargas disminuye a cero al infinito.
5	$\Delta U_{ ext{INTERNA}}$ de un proceso termodinámico es una medida del calor intercambiado en ese proceso.
6	Si la carga neta de una configuración de cargas es nula entonces el potencial de la configuración
	es nulo.
7	La capacidad máxima que adquiere un capacitor depende del potencial al que se lo conecta.
8	El potencial electrostático es una medida del trabajo necesario para transportar una carga
	unidad.
9	Dos resistencias térmicas iguales en paralelo transportan la cuarta parte de la potencia calorífica
	que transportarían conectadas en serie entre las mismas fuentes.
10	El vector polarización en vacío es nulo, al igual que el vector desplazamiento.

Ejercicio 5.3: del siguiente conjunto de afirmaciones sólo dos son correctas. Marque cuáles son

1	En un proceso isotérmico no se intercambia temperatura, por esa razón la temperatura
	permanece constante.
2	$\Delta U_{ ext{INTERNA}}$ de un GI es independiente de la transformación y de los estados final e inicial.
3	Una carga en un CE se acelera de manera proporcional a la intensidad del campo.
4	Dadas dos muestras de igual masa y calores específicos c1 y c2>c1, la de menor calor específico
	tiene mayor equivalente en agua.
5	El flujo de campo eléctrico se duplica si se duplica el área de la superficie que encierra las cargas.
6	Para todo ciclo reversible se verifica ΔS_{CICLO} <0.
7	Si la carga neta de una configuración de cargas es nula entonces el CE es nulo.
8	Dos capacitores iguales en paralelo almacenan la cuarta parte de la energía que almacenan esos
	dos capacitores conectados en serie a la misma fuente.
9	En un dado proceso la variación de entropía de un sistema puede ser negativa, sea que el proceso
	es reversible o irreversible.

En el seno de un dieléctrico, los vectores D y P tienen igual dirección pero pueden tener sentidos

Ejercicio 5.4: del siguiente conjunto de afirmaciones sólo dos son correctas. Marque cuáles son

opuestos

1	Si a un gas ideal se le entregan igual cantidad de calor y trabajo, se duplica el valor de la energía
'	
	interna de ese gas.
2	El teorema de Gauss sirve siempre para calcular el flujo de campo eléctrico a través de una
	superficie cerrada, independientemente de las simetrías.
3	El rendimiento de una máquina térmica calorífica real, cíclica, puede aumentarse disminuyendo
	la temperatura del foco frío.
4	El potencial electrostático tiene significado físico, y el campo eléctrico es una medida del
	potencial por unidad de longitud.
5	Dado un dipolo eléctrico, existe al menos una recta a lo largo de la cual el potencial eléctrico del
	dipolo es constante.
6	Dos máquinas ideales de Carnot tiene igual rendimiento sólo si operan entre los mismos focos
	caloríficos.
7	El potencial eléctrico de una configuración de cargas es una medida del flujo de CE de esa
	configuración, porque si Q=0 son cero el flujo y el potencial.
8	La resistencia térmica es una medida de la temperatura que debe entregarse a una sustancia para
	que incremente 1 cal su contenido energético.
9	Una máquina de Carnot calorífica, de rendimiento η, tiene eficiencia e=1/η si se invierte el ciclo y
	se la trasforma en frigorífica.
10	