The Signature of Semantic Structures

D. Gueorguiev 10/2/2021

Let us have the compound particle V_{comp} represented by its elementary particle sequence and semantic tree $stree(V_{comp})$:

$$stree(V_{comp}) = \\ V_1 \\ V_2 \\ V_5 \\ V_6 \\ V_3 \\ V_4 \\ V_7 \\ V_8 \\ V_9$$

The property tree for each V-particle V_k , k=1..9 are given with the algebraic notation discussed in Semantic Tree Operations.

 $ptree(V_k) = \sum_{\pmb{k} \in \mathfrak{T}(V_k), i \in \mathfrak{p}(V_k)} (\pmb{k}, P_i)$. Here \pmb{k} denotes the path $(k_{l_1}, k_{l_2}, \dots, k_{l_h})$ constructed by branching consecutively along the k_{l_1} -th branch from the top level, then the k_{l_2} -th branch from the lower level and finally k_{l_h} -th branch from the h-th level. The set $\mathfrak{T}(V_k)$ denotes the set of all paths from the root to a leaf in the property tree of V_k . The set $\mathfrak{p}(V_k)$ denotes the indices of the vertices in the property tree of V_k .

Expressing the property tree of V_1 with the algebraic notation discussed earlier:

$$ptree(V_1) = \sum_{k_j \in \mathfrak{T}(V_1), i \in \mathfrak{p}(V_1)} (k_j, P_j)$$

Similarly, $ptree(V_2)$ is given with

$$ptree(V_2) = (1, P_0) + (k_1, P_1) + (k_2, P_2) + (k_3, P_3) + (k_4, P_4) + (k_5, P_5) + (k_3k_1, P_6) + (k_3k_2, P_7) + (k_5k_1, P_8) + (k_5k_2, P_9) + (k_3k_1k_1, P_{10})$$

Here P_0 is $text(V_2)$.

Now if we expand the property trees for each V-particle in the semantic tree for the composite particle V_{comp} we will have a larger augmented property tree. This augmented property tree represents the semantic structure of V_{comp} and can be recorded in a matrix form which is the semantic signature of V_{comp} . The semantic signature matrix of V_{comp} will have the following structure:

$$ssig(V_{comp}) = [\mathbf{p}_0 \ \mathbf{a}_{0,1} \ \mathbf{p}_1 \ \mathbf{p}_0 \ \mathbf{a}_{0,2} \ \mathbf{p}_2 \ \mathbf{p}_0 \ \mathbf{a}_{0,3} \ \mathbf{p}_3 \ \dots \ \mathbf{p}_p \ \mathbf{a}_{p,q} \ \mathbf{p}_q]$$

The last matrix can be rewritten in block matrix notation:

$$ssig(V_{comp}) = [\mathbf{B}_1 \ \mathbf{B}_2 \ \mathbf{B}_3 \ \dots \ \mathbf{B}_q]$$

$$\mathbf{B}_{1} = \begin{bmatrix} \mathbf{p}_{0} \ \mathbf{a}_{0,1} \ \mathbf{p}_{1} \end{bmatrix}, \mathbf{B}_{2} = \begin{bmatrix} \mathbf{p}_{0} \ \mathbf{a}_{0,2} \ \mathbf{p}_{2} \end{bmatrix}, \mathbf{B}_{3} = \begin{bmatrix} \mathbf{p}_{0} \ \mathbf{a}_{0,2} \ \mathbf{p}_{3} \end{bmatrix}, \dots, \mathbf{B}_{q} = \begin{bmatrix} \mathbf{p}_{p} \ \mathbf{a}_{p,q} \ \mathbf{p}_{q} \end{bmatrix}$$

Here the block matrix \mathbf{B}_1 fully describes the property P_1 including how it is connected to the property tree $ptree(V_1)$. Similarly, \mathbf{B}_2 and \mathbf{B}_3 fully describes the properties P_2 and P_3 and their connectivity to $ptree(V_1)$. Finally, \mathbf{B}_q fully describes the property P_q and its connectivity to $ptree(V_9)$. From now on we will denote the block matrices \mathbf{B}_i as semantic elements of V_{comp} .

Statement: Every semantic particle, primitive or composite, can be represented as a sequence of *semantic elements*.

Definition: Semantic distance between two semantic elements B_1 and B_2

The semantic element B_1 represents two properties - P_i and P_j connected through association link $A_{i,j}$. The properties P_i and P_j are represented by their property signatures \mathbf{p}_i and \mathbf{p}_j . The association link $A_{i,j}$ is represented with its association matrix $\mathbf{a}_{i,j}$ and semantic significance vector $\mathbf{w}_{i,j}$. (Note: Sometimes for clarity all vectors in a block matrix representing semantic element will be denoted with the vector symbol $\overrightarrow{}$ when clear distinction needs to be made.) Similarly the semantic element B_2 represents the properties P_k and P_l connected through association link $A_{k,l}$. As before the properties P_k and P_l are represented by their property signatures \mathbf{p}_k and \mathbf{p}_l . The association link $A_{k,l}$ is represented with its association matrix $\mathbf{a}_{k,l}$ and semantic significance vector $\mathbf{w}_{k,l}$.

Let \mathbf{B}_1 denotes the matrix of the first semantic element B_1 given with $\mathbf{B}_1 = \begin{bmatrix} \mathbf{p}_i & \mathbf{a}_{i,j} & \mathbf{p}_j \end{bmatrix}$ Let \mathbf{B}_2 denotes the matrix of the second semantic element B_2 given with $\mathbf{B}_2 = \begin{bmatrix} \mathbf{p}_k & \mathbf{a}_{k,l} & \mathbf{p}_l \end{bmatrix}$ Then the semantic distance between the two is given with:

$$sdist(B_1, B_2) = sdist(P_i, P_k) + sdist(A_{i,j}, A_{k,l}) + sdist(P_j, P_l)$$

where

$$sdist(P_i, P_k) = |\mathbf{p}_i - \mathbf{p}_k|, \quad sdist(P_j, P_l) = |\mathbf{p}_j - \mathbf{p}_l|$$

 $sdist(A_{i,j}, A_{k,l}) = |\mathbf{w}_{i,j} - \mathbf{w}_{k,l}| \times sdist(\mathbf{a}_{i,j}, \mathbf{a}_{k,l})$

Definition: The semantic distance of two semantic matrices $\bf a$ and $\bf b$ which have the same number of columns is given with:

$$sdist(\mathbf{a}, \mathbf{b}) = \sum_{i=1}^{n} |\vec{\mathbf{a}}_i - \vec{\mathbf{b}}_i| \text{ where } \mathbf{a} = [\vec{\mathbf{a}}_1 \ \vec{\mathbf{a}}_2 \ ... \ \vec{\mathbf{a}}_n] \text{ and } \mathbf{B} = [\vec{\mathbf{b}}_1 \ \vec{\mathbf{b}}_2 \ ... \ \vec{\mathbf{b}}_n].$$

In the block matrix for $ssig(V_{comp})$ \mathbf{p}_0 denotes the signature column vector of the property P_0 , $\mathbf{a}_{0,1}$ denotes the association matrix of the arc between property P_0 and property P_1 , $\mathbf{a}_{p,q}$ denotes the association matrix of the arc between property P_p and P_q . Let us denote the number of rows of $ssig(V_{comp})$ by N and the number of columns by M.

The semantic signature matrix $ssig(V_{comp})$ can be decomposed as a sum of two intrinsic structural matrices – property signature matrix $psig(V_{comp})$ and connectivity signature matrix $csig(V_{comp})$:

$$ssig(V_{comp}) = psig(V_{comp}) + csig(V_{comp})$$

$$psig(V_{comp}) = [\mathbf{p}_0 \ 0 \ \mathbf{p}_1 \ \mathbf{p}_0 \ 0 \ \mathbf{p}_2 \ \mathbf{p}_0 \ 0 \ \mathbf{p}_3 \ \dots \ \mathbf{p}_p \ 0 \ \mathbf{p}_q]$$

$$csig(V_{comp}) = [0 \ \mathbf{a}_{0,1} \ 0 \ 0 \ \mathbf{a}_{0,2} \ 0 \ 0 \ \mathbf{a}_{0,3} \ 0 \ \dots \ 0 \ \mathbf{a}_{p,q} \ 0]$$

Let us denote by $psig(P_1, V_{comp})$ the augmented semantic property signature of property P_1 with respect to V_{comp} . It is given with:

$$psig(P_0, V_{comp}) = [\mathbf{p}_0 \ 0 \ 0 \ \mathbf{p}_0 \ 0 \ 0 \ \mathbf{p}_0 \ 0 \ 0 \ \dots \ 0 \ 0]$$

Similarly,

$$psig(P_1, V_{comp}) = [0 \ 0 \ \mathbf{p}_1 \ 0 \ 0 \ 0 \ 0 \ 0 \ \dots \ 0 \ 0]$$

$$psig(P_q, V_{comp}) = [0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ \dots \ 0 \ \mathbf{p}_q]$$

Then obviously:

$$psig(V_{comp}) = \sum_{k \in \mathbb{S}(V_{comp})} \sum_{i \in \mathbb{p}(V_k)} psig(P_i, V_{comp})$$

Here $\mathbb{S}(V_{comp})$ denotes the set of the indices of all semantic particles which the composite V_{comp} is composed from.

Another way to partition the signature matrix into block matrices is:

$$ssig(V_{comp}) = [V_1 A_{1,2} V_2 A_{1,3} V_3 ... A_{6,8} V_8 A_{6,9} V_9]$$

The block matrix V_1 represents the property tree of the particle V_1 and it is given by:

$$\mathbf{V}_1 = \begin{bmatrix} \mathbf{p}_0 & \mathbf{a}_{0,1} & \mathbf{p}_1 & \mathbf{p}_0 & \mathbf{a}_{0,2} & \mathbf{p}_2 & \mathbf{p}_0 & \mathbf{a}_{0,3} & \mathbf{p}_3 & \dots & \mathbf{p}_0 & \mathbf{a}_{0,k} & \mathbf{p}_k \end{bmatrix}$$

The block matrix $\mathbf{A}_{1,2}$ describes the connection between the particles V_1 and V_2 connecting the root property \mathbf{p}_0 of V_1 and the root property \mathbf{p}_{k+1} of V_2 . It is given with:

$$\mathbf{A}_{1,2} = \left[\mathbf{p}_0 \ \mathbf{a}_{0,k+1} \ \mathbf{p}_{k+1} \right] / \text{TODO: expand it} - \text{the matrix structure is more complicated!}$$

Properties of the signature matrix

Here are some interesting properties of $ssig(V_{comp})$:

The number of rows N in $ssig(V_{comp})$ is 3 × the number of arcs in the augmented property tree of V_{comp} .

The rank of

TO DO: finish the property section

Asymptotic closeness of semantic structures

Let us have two semantic structures S1 and S2.

$$\begin{split} ssig(S_1) &= \begin{bmatrix} \mathbf{V}_{k_1} \, \mathbf{A}_{k_1,k_2} \, \mathbf{V}_{k_2} \, \mathbf{A}_{k_1,k_3} \, \mathbf{V}_{k_3} \, \dots \, \mathbf{A}_{k_p,k_q} \, \mathbf{V}_{k_q} \end{bmatrix} \\ ssig(S_2) &= \begin{bmatrix} \mathbf{V}_{l_1} \, \mathbf{A}_{l_1,l_2} \, \mathbf{V}_{l_2} \, \mathbf{A}_{l_1,l_3} \, \mathbf{V}_{l_3} \, \dots \, \mathbf{A}_{l_r,l_s} \, \mathbf{V}_{l_s} \end{bmatrix} \end{split}$$

Uniform asymptotic closeness *K*-level uniform asymptotic closeness