Supply and Demand breakdown of driven Inflation through Sign Restrictions

Pablo Barrio, Benjamin Pipaud, Pierre Rouillard

ENSAE

January 12, 2024

Table of Contents

Introduction

Introduction
•OO

Shapiro classification method

Sheremirov's classification method

Proposed classification rule

Prime objectives

Introduction

► Decompose YoY% inflation in **France** into two components : **Supply** or **Demand** driven (Shapiro (2022))

▶ Decompose both into **Persistent** and **Transitory** components (Sheremirov (2022))

Data

Original papers: price and quantity indexes for Personal Consumption Expenditures by type of product

We lack similar data and have to use a proxy for the quantity series :

- ▶ price indexes : HICP series (COICOP classification)
- quantity indexes : deflated turnover series (NACE Rev.2 classification)
 - ► Match as many COICOP sectors to a corresponding turnover series
 - ▶ Matched on average around 80% of overall inflation

Table of Contents

Introduction

Shapiro classification method

Sheremirov's classification method

Proposed classification rule

Supply and Demand Curves

▶ Aggregate demand and supply curves for each sector i, with $\sigma_i > 0$ and $\delta_i > 0$:

Supply: $Q_i = \sigma_i.P_i + \alpha_i$

Demand: $P_i = -\delta_i Q_i + \beta_i$

Theoretical results

- ► Theoretical framework derived from Jump and Kohler (2022)
- Shocks defined as:

Supply shock:
$$\varepsilon_t^s = \Delta \alpha_i = \Delta Q_{i,t} - \sigma_i \Delta P_{i,t}$$

Demand shock: $\varepsilon_t^d = \Delta \beta_i = \Delta P_{i,t} + \delta_i \Delta Q_{i,t}$

$$\Rightarrow \Delta Q_{i,t} = \frac{1}{1 + \delta_i} (\varepsilon_t^s + \sigma_i . \varepsilon_t^d)$$

$$\Rightarrow \Delta P_{i,t} = \frac{1}{\sigma_i (1 + \delta_i)} (\sigma_i . \varepsilon_t^d - \delta_i . \varepsilon_t^s)$$

▶ Assuming $\sigma_i > 0$ and $\delta_i > 0$ — expected comovents :

 $\begin{cases} \textbf{Supply shock} \ \ \varepsilon^s > 0 & : \ \Delta^+ Q \quad \& \quad \Delta^- P \quad \textbf{Negative comovement} \\ \textbf{Demand shock} \ \ \varepsilon^d > 0 & : \ \Delta^+ Q \quad \& \quad \Delta^+ P \quad \textbf{Positive comovement} \end{cases}$

SVAR - Sign Restrictions

► Structural VAR for sector (i):

$$A^i \begin{bmatrix} \Delta Q_{i,t} \\ \Delta P_{i,t} \end{bmatrix} \\ = \mu + \sum_{j=1}^p A^i_j \begin{bmatrix} \Delta Q_{i,t-j} \\ \Delta P_{i,t-j} \end{bmatrix} + \begin{bmatrix} \varepsilon^s_{i,t} \\ \varepsilon^d_{i,t} \end{bmatrix}$$

- ► Assuming A^i satisfies $A^i \equiv \begin{pmatrix} 1 & -\alpha \\ \beta & 1 \end{pmatrix}$, $\alpha, \beta > 0$ we get :

$$\begin{cases} \nu^s & \propto \varepsilon^s + \alpha.\varepsilon^d \\ \nu^d & \propto -\beta.\varepsilon^s + \varepsilon^d \end{cases}$$

This leads to:

$$\begin{cases} \varepsilon^s > 0 \;,\; \varepsilon^d > 0 \quad \Rightarrow \nu^s > 0 \\ \varepsilon^s < 0 \;,\; \varepsilon^d < 0 \quad \Rightarrow \nu^s < 0 \\ \varepsilon^s < 0 \;,\; \varepsilon^d > 0 \quad \Rightarrow \nu^d > 0 \\ \varepsilon^s > 0 \;,\; \varepsilon^d < 0 \quad \Rightarrow \nu^d < 0 \end{cases}$$

And we can infer :

$$\begin{cases} \nu^s>0 & \& \quad \nu^d<0 \Rightarrow \varepsilon^s>0 \quad + \text{ Supply shock} \\ \nu^s<0 & \& \quad \nu^d>0 \Rightarrow \varepsilon^s<0 \quad - \text{ Suppply shock} \\ \nu^s>0 & \& \quad \nu^d>0 \Rightarrow \varepsilon^d>0 \quad + \text{ Demand shock} \\ \nu^s<0 & \& \quad \nu^d<0 \Rightarrow \varepsilon^d<0 \quad - \text{ Demand shock} \end{cases}$$

 \Rightarrow Assuming $A \equiv \begin{pmatrix} a_{11} > 0 & a_{12} < 0 \\ a_{21} > 0 & a_{22} > 0 \end{pmatrix}$ ensures expected structural shocks' effects on the covariates are replicated in the model.

Breakdown - baseline Shapiro

For a given country:

- ► Estimate sector-specific VAR models (lag selection via AIC criterion)
- ► Classify each month as demand or supply driven according to aforementioned rule

Compute MoM% overall inflation from individual classified inflation rates :

$$\pi_{t,t-1} = \sum_{i} \mathbb{1}_{i,sup}(t)\omega_{i,y_t}\pi_{i,t,t-1} + \sum_{i} \mathbb{1}_{i,dem}(t)\omega_{i,y_t}\pi_{i,t,t-1}$$
$$\pi_{t,t-1} = \pi_{t,t-1}^{sup} + \pi_{t,t-1}^{dem}$$

YoY% classified inflation :

$$\begin{cases} \pi^{sup}_{t,t-12} &= \sum_{k=0}^{11} \pi^{sup}_{t-k,t-k-1} \\ \pi^{dem}_{t,t-12} &= \sum_{k=0}^{11} \pi^{dem}_{t-k,t-k-1} \end{cases}$$

Shapiro classification method Sheremirov's classification method Proposed classification rule 000000 ● 0 000 0000

France classification with baseline Shapiro

Figure: Inflation breakdown in France using Shapiro Baseline Method

Shapiro - Alternative classifications

Also implement alternative classifications tackling different issues:

- ► Measurement errors:
 - Smoothed-error: rolling sum of residuals
 - ► Probability Classification
- ▶ Model Misspecification (VAR lag). We solve this problem with:
 - ► AIC
 - ▶ BIC

Table of Contents

Introduction

Shapiro classification method

Sheremirov's classification method

Proposed classification rule

Persistent vs Transitory components

New Classification Rule:

$$\mathbb{1}_{i,dem}(t) = \begin{cases} 1 & \text{if } (\pi_{i,t} - \tilde{\pi}_i).(c_{i,t} - \tilde{c}_i) > 0\\ 0 & \text{otherwise} \end{cases}$$

$$\mathbb{1}_{i,sup}(t) = 1 - \mathbb{1}_{i,dem}(t)$$

Classify the shock at month t as:

Persistent Demand:
$$\mathbb{1}_{i,dem}^{pers}(t) = \begin{cases} 1 & \text{if } \sum_{k=0}^{11} \mathbb{1}_{i,dem}(t-k) \ge 11 \\ 0 & \text{otherwise} \end{cases}$$
Persistent Supply:
$$\mathbb{1}_{i,sup}^{pers}(t) = \begin{cases} 1 & \text{if } \sum_{k=0}^{11} \mathbb{1}_{i,sup}(t-k) \ge 11 \\ 0 & \text{otherwise} \end{cases}$$

If neither condition is verified, month t is classified as **Transitory demand** or **Transitory supply**.

Sheremirov Classification

Figure: HICP Sheremirov Classification

Table of Contents

Introduction

Shapiro classification method

Sheremirov's classification method

Proposed classification rule

Our own Classification

Compute $\mathbb{1}_{i,sup}(t)$ and $\mathbb{1}_{i,dem}(t)$ using baseline Shapiro

Persistent demand

$$\mathbb{1}_{i,dem}^{pers}(t) = \begin{cases} 1 & \text{if } \mathbb{1}_{i,dem}(t) + \sum_{k=1}^{3} \{\mathbb{1}_{i,dem}(t-k) + \mathbb{1}_{i,dem}(t+k)\} \ge 6 \\ 0 & \text{otherwise} \end{cases}$$

Persistent supply

$$\mathbbm{1}_{i,sup}^{pers}(t) = \begin{cases} 1 & \text{if } \mathbbm{1}_{i,sup}(t) + \sum_{k=1}^{3} \{\mathbbm{1}_{i,sup}(t-k) + \mathbbm{1}_{i,sup}(t+k)\} \geq 6\\ 0 & \text{otherwise} \end{cases}$$

⇒ In the 7-month window at least 6 have been classified as demand/supply

Our own Classification

Ambiguous demand

 \Rightarrow For month t=T-2 checks if in the range: previous 3 months + current month + next T-(T-2)=2 available months — at least 3+(T-(T-2))=5 were classified as demand

$$\mathbb{1}^{abg}_{i,dem}(t) = \begin{cases} 1 & \text{if } t \in [T-2,T] \text{ and } : \\ \mathbb{1}_{i,dem}(t) + \sum_{k=1}^{3} \mathbb{1}_{i,dem}(t-k) + \mathbb{1}_{t \neq T} \sum_{k=1}^{T-t} \mathbb{1}_{i,dem}(t+k) \geq 3 + (T-t) \\ i.e \text{ almost satisfies pers. but some date '} t + k \text{ 'is unobserved} \\ 0 & \text{otherwise} \end{cases}$$

Same for Ambiguous supply

Our own Classification

Figure: Proposed HICP classification for France

Table of contents

Introduction

Shapiro classification method

Sheremirov's classification method

Proposed classification rule

1.00

0.95

0.90

0.85

0.80

- 0.75

Demand Results Comparison

1.00

0.95

0.90

0.85

0.80

Supply Results Comparison

apiro classification method Sheremirov's classification method Proposed classification rul

Our own Classification: analysis

Figure: Proposed HICP classification for France

Our own Classification: comparison with FCE

Figure: Comaprison between real FCE of households growth and persistent demand in our classification

References

- Decomposing Supply and Demand Driven Inflation, Adam Hale Shapiro, Federal Reserve Bank of San Francisco Working Paper Series (2022)
- ► A History of aggregate demand and supply shocks for the United Kingdom, 1900 to 2016, Jump, R. C., and K. Kohler, *Explorations in Economic History* (2022)
- Are the Demand and Supply Channels of Inflation Persistent? Evidence from a Novel Decomposition of PCE Inflation, Viacheslav Sheremirov, Current Policy Perspectives, Federal Reserve Bank of Boston (2022)
- ► The role of demand and supply in underlying inflation decomposing HICPX inflation into components, Eduardo Gonalves and Gerrit Koester, *ECB Economic Bulletin*, (2022)

Thanks!

<DEPLOYED APP>