M.S. Math Bootcamp: Linear Algebra

Noah Kochanski

Department of Statistics University of Michigan

August 19, 2024

Reminder: Resource Access

You can access the slides in the orientation materials folder shared with you.

Outline

- 1. Products and Conventions
- 2. Special Matrices
- 3. Practice: Matrices
- 4. Vector Spaces
- 5. Linear Combinations & Bases
- 6. Practice: Vector Spaces
- 7. Linear Transformations
- 8. Some Famous Decompositions
- 9. Application: Least Squares

Acknowledgements

This material was adapted from the following references

- Treil's Linear Algebra Done Wrong, 2017
- Strang's *Introduction to Linear Algebra*, 3rd ed.
- Golub & Van Loan's *Matrix Computations*, 4th ed.
- Previous iterations of this bootcamp offered by PhD students in the department.

Please don't distribute these slides.

Products and Conventions

• The most common vector space you'll work with is \mathbb{R}^n

- The most common vector space you'll work with is \mathbb{R}^n .
- By convention, a vector $\vec{x} \in \mathbb{R}^n$ is considered to be oriented as a column vector:

$$\vec{x} = \begin{bmatrix} | \ \vec{x} \\ | \end{bmatrix}$$

- The most common vector space you'll work with is \mathbb{R}^n .
- By convention, a vector $\vec{x} \in \mathbb{R}^n$ is considered to be oriented as a column vector:

$$\vec{x} = \begin{bmatrix} | \ \vec{x} \\ | \end{bmatrix}$$

• Often, vector notation is omitted and we just write x instead of \vec{x} .

• A transpose operation swaps rows and columns.

- A *transpose* operation swaps rows and columns.
- A transpose is denoted by a T in the exponent.

- A transpose operation swaps rows and columns.
- A tranpose is denoted by a T in the exponent.
- Accordingly, $x^T \in \mathbb{R}^n$ is considered to be a *row vector*

$$\mathbf{x}^{\top} = \begin{bmatrix} -- & \mathbf{x}^{T} & -- \end{bmatrix}$$

Dot Product

The dot product of two vectors $u, v \in \mathbb{R}^n$ is the number

$$u \cdot v = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

Dot Product

The dot product of two vectors $u, v \in \mathbb{R}^n$ is the number

$$u \cdot v = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

We may also write the dot product of two vectors $u, v \in \mathbb{R}^n$ as

$$u^{ op}v = egin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} egin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

This works for reasons we'll describe later (matrix multiplication).

Compute the dot product between vectors

$$u = [-2, 4, 5]^{\top}$$

 $v = [5, 10, -6]^{\top}$.

Do the same for the dot product between u and itself.

Compute the dot product between vectors

$$u = [-2, 4, 5]^{\top}$$

 $v = [5, 10, -6]^{\top}$.

The dot product is -10 + 40 - 30 = 0.

Do the same for the dot product between u and itself.

Compute the dot product between vectors

$$u = [-2, 4, 5]^{\top}$$

 $v = [5, 10, -6]^{\top}$.

The dot product is -10 + 40 - 30 = 0. When the dot product between two vectors is 0, the vectors are said to be *orthogonal*.

Do the same for the dot product between u and itself.

Compute the dot product between vectors

$$u = [-2, 4, 5]^{\top}$$

 $v = [5, 10, -6]^{\top}$.

Do the same for the dot product between u and itself. The dot product is 4 + 16 + 25 = 45.

Compute the dot product between vectors

$$u = [-2, 4, 5]^{\top}$$

 $v = [5, 10, -6]^{\top}$.

Do the same for the dot product between u and itself. The dot product is 4 + 16 + 25 = 45. It's fact that $u \cdot u = ||u||_2^2$

The dot product is 4 + 16 + 25 = 45. It's fact that $u \cdot u = ||u||_2^2$, so the norm of the vector u is $\sqrt{45}$.

An $m \times n$ matrix is a rectangular array with m rows and n columns.

$$A = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

The notation a_{ij} is used to denote the element in row i, column j of the matrix A.

An $m \times n$ matrix is a rectangular array with m rows and n columns.

$$A = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

The notation a_{ij} is used to denote the element in row i, column j of the matrix A.

The set of all $m \times n$ real-valued matrices is denoted $\mathbb{R}^{m \times n}$.

It usually is counterproductive to write down every single element of n $m \times n$ matrix A.

We often will choose (depending on the situation) to write A in terms of its rows or columns.

$$A = egin{bmatrix} | & | & \cdots & | \ a_1 & a_2 & \cdots & a_n \ | & | & dots & | \end{bmatrix}$$

It usually is counterproductive to write down every single element of n $m \times n$ matrix C.

We often will choose (depending on the situation) to write C in terms of its rows or columns.

$$C = egin{bmatrix} -- & c_1^T & -- \ -- & c_2^T & -- \ dots & dots & dots \ -- & c_m^T & -- \end{bmatrix}$$

Matrix Transpose

• The transpose of a matrix swaps rows and columns, so $A \in \mathbb{R}^{m \times n}$ implies $A^T \in \mathbb{R}^{n \times m}$.

Matrix Transpose

- The transpose of a matrix swaps rows and columns, so $A \in \mathbb{R}^{m \times n}$ implies $A^T \in \mathbb{R}^{n \times m}$.
- More explicitly, we have

$$A = egin{bmatrix} | & | & \cdots & | \ a_1 & a_2 & \cdots & a_n \ | & | & dots & | \end{bmatrix}$$

and

$$A^{T} = \begin{bmatrix} -- & a_{1}^{T} & -- \\ -- & a_{2}^{T} & -- \\ \vdots & \vdots & \vdots \\ -- & a_{n}^{T} & -- \end{bmatrix}$$

Matrix-Vector Products

An $m \times n$ matrix A and a vector $b \in \mathbb{R}^n$ can be multiplied together. The multiplication operation is defined as

$$A \cdot b = A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} b_1 a_{11} \\ b_1 a_{21} \\ \vdots \\ b_1 a_{m1} \end{bmatrix} + \begin{bmatrix} b_2 a_{12} \\ b_2 a_{22} \\ \vdots \\ b_2 a_{m2} \end{bmatrix} + \begin{bmatrix} b_n a_{1n} \\ b_n a_{2n} \\ \vdots \\ b_n a_{mn} \end{bmatrix}$$

Matrix-Vector Products

We can write (more succinctly)

$$A \cdot b = egin{bmatrix} | & | & \cdots & | \ ec{a_1} & ec{a_2} & \cdots & ec{a_n} \ | & | & ec{b_1} \end{bmatrix} \cdot egin{bmatrix} b_1 \ dots \ b_n \end{bmatrix} = b_1 ec{a_1} + b_2 ec{a_2} + \cdots + b_n ec{a_n} \ | & | & | & | \end{pmatrix}$$

Compute

$$\begin{bmatrix} 4 & -1 & 3 & 2 \\ 0 & 1 & 0 & 1 \\ -2 & 10 & 4 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$

Compute

$$\begin{bmatrix} 4 & -1 & 3 & 2 \\ 0 & 1 & 0 & 1 \\ -2 & 10 & 4 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
$$= 1 \begin{bmatrix} 4 \\ 0 \\ -2 \end{bmatrix} + 2 \begin{bmatrix} -1 \\ 1 \\ 10 \end{bmatrix} + 3 \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix} + 4 \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$

Compute

$$\begin{bmatrix} 4 & -1 & 3 & 2 \\ 0 & 1 & 0 & 1 \\ -2 & 10 & 4 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
$$= 1 \begin{bmatrix} 4 \\ 0 \\ -2 \end{bmatrix} + 2 \begin{bmatrix} -1 \\ 1 \\ 10 \end{bmatrix} + 3 \begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix} + 4 \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 19 \\ 6 \\ 26 \end{bmatrix}$$

What's wrong with

$$\begin{bmatrix} 1 & -9 & 3 \\ -3 & 1 & \\ 9 & -2 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ -3 \\ 1 \\ 5 \end{bmatrix}$$

Matrix-Vector Product

We've already seen

$$A \cdot b = egin{bmatrix} | & | & \cdots & | \ ec{a_1} & ec{a_2} & \cdots & ec{a_n} \ | & | & ec{b_1} \end{bmatrix} \cdot egin{bmatrix} b_1 \ dots \ b_n \end{bmatrix} = b_1 ec{a_1} + b_2 ec{a_2} + \cdots + b_n ec{a_n} \ | & ec{a_2} + \cdots + b_n ec{a_n} \ | & ec{a_2} + \cdots + a_n ec{a_n} \ | & ec{a_n} + a_n ec{a_n} + a_n ec{a_n} \ | & ec{a_n} + a_n ec{a_n} + a_n ec{a_n} + a_n ec{a_n} \ | & ec{a_n} + a_n ec{a_n} + a_n ec{a_n} + a_n ec{a_n} + a_n ec{a_n} \ | & ec{a_n} + a_n ec{$$

Matrix-Vector Product

We've already seen

$$A \cdot b = egin{bmatrix} | & | & \cdots & | \ ec{a_1} & ec{a_2} & \cdots & ec{a_n} \ | & | & ec{b_1} \end{bmatrix} \cdot egin{bmatrix} b_1 \ ec{b_n} \end{bmatrix} = b_1 ec{a_1} + b_2 ec{a_2} + \cdots + b_n ec{a_n} \ | & ec{a_2} + \cdots + a_n ec{a_n} \end{bmatrix}$$

We can also compute

$$A^T \cdot c = egin{bmatrix} -- & a_1' & -- \ -- & a_2^T & -- \ dots & dots & dots \ -- & a_n^T & -- \end{bmatrix} \cdot egin{bmatrix} c_1 \ dots \ c_n \end{bmatrix} = egin{bmatrix} a_1' c \ a_2^T c \ dots \ a_n^T c \end{bmatrix}$$

Compute

$$\begin{bmatrix} -4 & 1 & 6 \\ -5 & 3 & 1 \\ 3 & -2 & -1 \end{bmatrix} \begin{bmatrix} -2 \\ 2 \\ -1 \end{bmatrix}$$

using the dot product method.

Compute

$$\begin{bmatrix} -4 & 1 & 6 \\ -5 & 3 & 1 \\ 3 & -2 & -1 \end{bmatrix} \begin{bmatrix} -2 \\ 2 \\ -1 \end{bmatrix}$$

using the dot product method.

We get

$$\begin{bmatrix} 8+2-6\\10+6-1\\-6-4+1 \end{bmatrix} = \begin{bmatrix} 4\\15\\-9 \end{bmatrix}$$

Matrix-Matrix Products

Suppose $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times k}$. Then $AB \in \mathbb{R}^{m \times k}$ is given by

$$A \cdot egin{bmatrix} | & | & \cdots & | \ ec{b}_1 & ec{b}_2 & \cdots & ec{b}_k \ | & | & ec{ec{b}}_k & | \end{bmatrix} = egin{bmatrix} | & | & \cdots & | \ Aec{b}_1 & Aec{b}_2 & \cdots & Aec{b}_k \ | & | & ec{ec{b}}_k \end{bmatrix}$$

Matrix-Matrix Products

Suppose $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times k}$. Then $AB \in \mathbb{R}^{m \times k}$ is given by

$$egin{aligned} egin{aligned} A \cdot egin{bmatrix} ert & ert & \cdots & ert \ ec{b}_1 & ec{b}_2 & \cdots & ec{b}_k \ ert & ert & ert & ert \end{aligned} = egin{bmatrix} ert & ert & ert & ert \ Aec{b}_1 & Aec{b}_2 & \cdots & Aec{b}_k \ ert & ert & ert & ert \end{aligned}$$

If we have A given to us in row form, then

$$A \cdot B = \begin{bmatrix} -- & a_1^T & -- \\ -- & a_2^T & -- \\ \vdots & \vdots & \vdots \\ -- & a_n^T & -- \end{bmatrix} \begin{bmatrix} \begin{vmatrix} & & & & & & & \\ \vec{b_1} & \vec{b_2} & \cdots & \vec{b_k} \\ & & & & & & \end{vmatrix} = \begin{bmatrix} a_1^T b_1 & a_1^T b_2 & \cdots & a_1^T b_k \\ a_2^T b_1 & a_2^T b_2 & \cdots & a_2^T b_k \\ a_m^T b_1 & a_1^T b_2 & \cdots & a_m^T b_k \end{bmatrix}$$

Special Matrices

Identity Matrix

The *identity matrix* I_n (or sometimes just I when the dimension is clear) is

```
\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}
```

Invertible Matrices

Definition: A matrix $A \in \mathbb{R}^{n \times n}$ is invertible if there exists a matrix A^{-1} such that $AA^{-1} = A^{-1}A = I$.

Let $A \in \mathbb{R}^{2\times 3}$ be given by

$$\begin{bmatrix} -2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

Find a matrix $B \in \mathbb{R}^{3\times 2}$ such that $AB = I_2$.

Let $A \in \mathbb{R}^{2\times 3}$ be given by

$$\begin{bmatrix} -2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

Find a matrix $B \in \mathbb{R}^{3\times 2}$ such that $AB = I_2$.

The matrix

$$B = \begin{bmatrix} -2 & -2 \\ -3 & -4 \\ 5 & 7 \end{bmatrix}$$

works.

Let $A \in \mathbb{R}^{2\times 3}$ be given by

$$\begin{bmatrix} -2 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

Find a matrix $B \in \mathbb{R}^{3\times 2}$ such that $AB = I_2$.

The matrix

$$B = \begin{bmatrix} -2 & -2 \\ -3 & -4 \\ 5 & 7 \end{bmatrix}$$

works. In this example, the matrix B is a *right inverse* of A.

Permutation Matrices

Matrices of the form

$$P = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

are permutation matrices.

Permutation Matrices

Matrices of the form

$$P = egin{bmatrix} 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

are permutation matrices.

Such matrices can permute the rows or columns of a matrix.

Let

$$A = \begin{bmatrix} -4 & 1 & 6 \\ -5 & 3 & 1 \\ 3 & -2 & -1 \end{bmatrix}$$

and

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

.

Compute the products AP and PA to examine the effect of multiplying by a permutation matrix.

Let

$$A = \begin{bmatrix} -4 & 1 & 6 \\ -5 & 3 & 1 \\ 3 & -2 & -1 \end{bmatrix}, P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

.

$$AP = \begin{bmatrix} 1 & -4 & 6 \\ 3 & -5 & 1 \\ -2 & 3 & -1 \end{bmatrix}$$

Let

$$A = \begin{bmatrix} -4 & 1 & 6 \\ -5 & 3 & 1 \\ 3 & -2 & -1 \end{bmatrix}, P = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

.

$$AP = \begin{bmatrix} 1 & -4 & 6 \\ 3 & -5 & 1 \\ -2 & 3 & -1 \end{bmatrix}, PA = \begin{bmatrix} -5 & 3 & 1 \\ -4 & 1 & 6 \\ 3 & -2 & -1 \end{bmatrix}$$

Banded Matrices

- Some matrices have special structure, e.g. zeros in patterns.
- Banded matrices only have nonzero entries in their diagonals and several bands away from the diagonal.

Banded Matrices

- Some matrices have special structure, e.g. zeros in patterns.
- Banded matrices only have nonzero entries in their diagonals and several bands away from the diagonal.
- A tridiagonal matrix looks like

```
\begin{bmatrix} a & b & 0 & 0 & 0 & \cdots & 0 \\ c & d & e & 0 & 0 & \cdots & 0 \\ 0 & f & g & h & 0 & \cdots & 0 \\ 0 & 0 & i & j & k & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & v & w & x \\ 0 & 0 & \cdots & 0 & 0 & y & z \end{bmatrix}
```

```
\begin{bmatrix} a & b & 0 & 0 & 0 & \cdots & 0 \\ c & d & e & 0 & 0 & \cdots & 0 \\ 0 & f & g & h & 0 & \cdots & 0 \\ 0 & 0 & i & j & k & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & v & w & x \\ 0 & 0 & \cdots & 0 & 0 & y & z \end{bmatrix}
```

How many operations are required to multiply an $n \times n$ tridiagonal matrix and an n-dimensional vector?

```
\begin{bmatrix} a & b & 0 & 0 & 0 & \cdots & 0 \\ c & d & e & 0 & 0 & \cdots & 0 \\ 0 & f & g & h & 0 & \cdots & 0 \\ 0 & 0 & i & j & k & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & v & w & x \\ 0 & 0 & \cdots & 0 & 0 & y & z \end{bmatrix}
```

How many operations are required to multiply an $n \times n$ tridiagonal matrix and an n-dimensional vector? 2 + 2 + 3(n-2)

Orthogonal Matrices

An orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ satisfies

$$Q^TQ = QQ^T = I_n$$

Orthogonal Matrices

An orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ satisfies

$$Q^TQ = QQ^T = I_n$$

Question: Is an orthogonal matrix invertible? Why or why not?

• We measure the "size" of real numbers with absolute value.

- We measure the "size" of real numbers with absolute value.
- A norm generalizes this idea to higher-dimensional sets. Precisely, a norm is a function

$$d:V\to [0,\infty)$$

that associates a nonnegative number to every element in a set V (the function d must satisfy certain conditions).

We have the following norms for \mathbb{R}^n :

•
$$||x||_2 = \sqrt{x_1^2 + \cdots + x_n^2}$$

We have the following norms for \mathbb{R}^n :

•
$$||x||_2 = \sqrt{x_1^2 + \cdots + x_n^2}$$

•
$$||x||_1 = |x_1| + \cdots + |x_n|$$

We have the following norms for \mathbb{R}^n :

•
$$||x||_2 = \sqrt{x_1^2 + \cdots + x_n^2}$$

•
$$||x||_1 = |x_1| + \cdots + |x_n|$$

$$\bullet ||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$$

We have the following norms for matrices in $\mathbb{R}^{m \times n}$:

•
$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$
, the Frobenius norm.

We have the following norms for matrices in $\mathbb{R}^{m \times n}$:

- $||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$, the Frobenius norm.
- $||A||_1 = \max_{1 \le j \le n} \sum_i |a_{ij}|$, the maximum (absolute) column sum.
- $||A||_{\infty} = \max_{1 \le i \le m} \sum_{i} |a_{ij}|$, the maximum (absolute) row sum.
- There are a variety of operator norms for matrices that are outside our scope for now.

Practice: Matrices

Vector Spaces

What Is Linear Algebra?

- The subject is usually involves an abstract algebra, which (informally) is a set of objects which is closed under some operations.
- The subject is *linear* in that we usually consider linear expressions and functions.

Vector Space

Definition A vector space V on \mathbb{R} is a set of objects (called *vectors*) endowed with two operations '+' and '·' that satisfy the following:

1. For two elements $v, w \in$, the "sum" $v + w \in V$.

Vector Space

Definition A vector space V on \mathbb{R} is a set of objects (called *vectors*) endowed with two operations '+' and '.' that satisfy the following:

- 1. For two elements $v, w \in$, the "sum" $v + w \in V$.
- 2. For any $\alpha \in \mathbb{R}$, the "product" $\alpha v \in V$.

Vector Space

Definition Additionally, the operations on the vector space V must satisfy the following *axioms* for every $u, v, w \in V$ and $\alpha, \beta \in \mathbb{R}$:

- 1. Commutativity: v + w = w + v for all $v, w \in V$.
- 2. Associativity: (u + v) + w = u + (v + w) for all $u, v, w \in V$.
- 3. Zero: There exists a vector, denoted $\vec{0}$, such that $v + \vec{0} = v$ for all $v \in V$.
- 4. Additive inverse: For every $v \in V$ there exists a vector $w \in V$ such that v + w = 0. We denote w by -v.

Vector Space (cont'd)

Definition Additionally, the operations on the vector space V must satisfy the following *axioms* for every $u, v, w \in V$ and $\alpha, \beta \in \mathbb{R}$:

- 5. $1 \cdot v = v$ for all $v \in V$.
- 6. $(\alpha\beta) \cdot \mathbf{v} = \alpha \cdot (\beta \cdot \mathbf{v})$ for all $\alpha, \beta \in \mathbb{R}$, $\mathbf{v} \in \mathbf{V}$.
- 7. $\alpha \cdot (u + v) = \alpha \cdot u + \alpha \cdot v$ for all $\alpha \in \mathbb{R}, v \in V$
- 8. $(\alpha + \beta) \cdot \mathbf{v} = \alpha \cdot \mathbf{v} + \beta \cdot \mathbf{v}$ for all $\alpha, \beta \in \mathbb{R}, \mathbf{v} \in \mathbf{V}$.

Vector Space (cont'd)

Definition Additionally, the operations on the vector space V must satisfy the following *axioms* for every $u, v, w \in V$ and $\alpha, \beta \in \mathbb{R}$:

- 5. $1 \cdot v = v$ for all $v \in V$.
- 6. $(\alpha\beta) \cdot \mathbf{v} = \alpha \cdot (\beta \cdot \mathbf{v})$ for all $\alpha, \beta \in \mathbb{R}$, $\mathbf{v} \in \mathbf{V}$.
- 7. $\alpha \cdot (u + v) = \alpha \cdot u + \alpha \cdot v$ for all $\alpha \in \mathbb{R}$, $v \in V$
- 8. $(\alpha + \beta) \cdot \mathbf{v} = \alpha \cdot \mathbf{v} + \beta \cdot \mathbf{v}$ for all $\alpha, \beta \in \mathbb{R}$, $\mathbf{v} \in \mathbf{V}$.

So Abstract!

What are these "vectors" and "operations"? Can we get a real example?

The Intuitive Example

An intuitive first example is the set \mathbb{R} , endowed with the usual $+, \cdot$ operations between real numbers.

Is it clear to you that all the properties stated above hold?

A Real Example

The set \mathbb{R}^n , endowed with the operations $+, \cdot$, is a vector space, with the operations defined as:

$$u+v=\begin{bmatrix} u_1+v_1\\ \vdots\\ u_n+v_n\end{bmatrix}$$

and

$$\alpha \cdot \mathbf{v} = \begin{bmatrix} \alpha \mathbf{v}_1 \\ \vdots \\ \alpha \mathbf{v}_n \end{bmatrix}$$

A Tough Example

The set of strictly positive real numbers \mathbb{R}_+ is a vector space, with operations defined as

$$u + v = uv$$

and

$$\alpha \mathbf{v} = \mathbf{v}^{\alpha}$$

$\mathsf{Try} \; \mathsf{It}$

The set of strictly positive real numbers \mathbb{R}_+ is a vector space, with operations defined as

$$u + v = uv$$

and

$$\alpha \mathbf{v} = \mathbf{v}^{\alpha}$$

Try It: Verify that the above is a vector space.

Let u, v be any members of the set \mathbb{R}_+ .

- 1. Commutativity: u + v = uv = vu = v+u
- 2. Associativity: (u + v) + w = uvw = u + (v + w)
- 3. Zero Vector: The number $1 \in \mathbb{R}_+$ works.
- 4. For every $v \in \mathbb{R}^n$, define -v as $\frac{1}{v}$.

5.
$$1 \cdot v = v^1 = v$$

6.
$$(\alpha\beta) \cdot \mathbf{v} = \mathbf{v}^{\alpha\beta} = (\mathbf{v}^{\beta})^{\alpha} = \alpha \cdot (\beta \cdot \mathbf{v}).$$

7.
$$\alpha \cdot (\mathbf{u} + \mathbf{v}) = (\mathbf{u}\mathbf{v})^{\alpha} = \mathbf{u}^{\alpha}\mathbf{v}^{\alpha} = \alpha \cdot \mathbf{u} + \alpha \cdot \mathbf{v}$$
.

8.
$$(\alpha + \beta) \cdot \mathbf{v} = \mathbf{v}^{\alpha + \beta} = \mathbf{v} \alpha \mathbf{v}^{\beta} = \alpha \cdot \mathbf{v} + \beta \cdot \mathbf{v}$$
.

Other Examples of Vector Spaces

The set of continuous functions on an interval [a, b] is a vector space with, with operations

$$f + g, \alpha \cdot f$$

defined as usual.

Linear Combinations & Bases

Linear Combination

Let V be a vector space on \mathbb{R} with operations $+,\cdot$, and let $v_1,\ldots,v_p\in V$.

A linear combination of the vectors v_1, \ldots, v_p is a sum

$$\alpha_1 \cdot \mathbf{v}_1 + \alpha_2 \cdot \mathbf{v}_2 + \cdots + \alpha_p \mathbf{v}_p$$

for any scalars $\alpha_1, \ldots, \alpha_p \in \mathbb{R}$.

Span

The *span* of a set of vectors is the set of all possible linear combinations of those vectors.

$$\operatorname{span}(\mathbf{v}_1,\ldots,\mathbf{v}_p) = \{\alpha_1\mathbf{v}_1 + \cdots + \alpha_p\mathbf{v}_p \mid \alpha_1,\ldots,\alpha_p \in \mathbb{R}\}$$

1. In words, what is

$$\operatorname{span}\left(\begin{bmatrix}1\\1\end{bmatrix}\right)$$
?

2. Show that any vector y in

$$\operatorname{span}\left(\begin{bmatrix}1\\-2\\3\end{bmatrix},\begin{bmatrix}0\\5\\-1\end{bmatrix},\begin{bmatrix}3\\1\\0\end{bmatrix}\right)$$

can be written as y = Ax for some matrix A and some vector x.

1. In words, what is

$$\operatorname{span}\left(\begin{bmatrix}1\\1\end{bmatrix}\right)$$
?

Using the definition, we have

$$\operatorname{span}\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \left\{\alpha \cdot \begin{bmatrix}1\\1\end{bmatrix} \mid \alpha \in \mathbb{R}\right\}$$

1. In words, what is

$$\operatorname{span}\left(\begin{bmatrix}1\\1\end{bmatrix}\right)$$
?

Using the definition, we have

$$\operatorname{span}\begin{pmatrix} 1\\1 \end{pmatrix} = \left\{ \alpha \cdot \begin{bmatrix} 1\\1 \end{bmatrix} \mid \alpha \in \mathbb{R} \right\}$$
$$= \left\{ \begin{bmatrix} \alpha\\\alpha \end{bmatrix} \mid \alpha \in \mathbb{R} \right\}$$

1. In words, what is

$$\operatorname{span}\left(\begin{bmatrix}1\\1\end{bmatrix}\right)$$
?

Using the definition, we have

$$\operatorname{span}\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \left\{\alpha \cdot \begin{bmatrix}1\\1\end{bmatrix} \mid \alpha \in \mathbb{R}\right\}$$
$$= \left\{\begin{bmatrix}\alpha\\\alpha\end{bmatrix} \mid \alpha \in \mathbb{R}\right\}$$

= {all vectors in \mathbb{R}^2 with the same first and second entry}

2. Show that any vector y in

$$\operatorname{span}\left(\begin{bmatrix}1\\-2\\3\end{bmatrix},\begin{bmatrix}0\\5\\-1\end{bmatrix},\begin{bmatrix}3\\1\\0\end{bmatrix}\right)$$

can be written as y = Ax for some matrix A and some vector x.

2. Show that any vector y in

$$\operatorname{span}\left(\begin{bmatrix}1\\-2\\3\end{bmatrix},\begin{bmatrix}0\\5\\-1\end{bmatrix},\begin{bmatrix}3\\1\\0\end{bmatrix}\right)$$

can be written as y = Ax for some matrix A and some vector x. We have

$$\operatorname{span}\left(\begin{bmatrix}1\\-2\\3\end{bmatrix},\begin{bmatrix}0\\5\\-1\end{bmatrix},\begin{bmatrix}3\\1\\0\end{bmatrix}\right) = \left\{\alpha_1\begin{bmatrix}1\\-2\\3\end{bmatrix} + \alpha_2\begin{bmatrix}0\\5\\-1\end{bmatrix} + \alpha_3\begin{bmatrix}3\\1\\0\end{bmatrix} \middle| \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}\right\}$$

2. Show that any vector y in

$$\operatorname{span}\left(\begin{bmatrix}1\\-2\\3\end{bmatrix},\begin{bmatrix}0\\5\\-1\end{bmatrix},\begin{bmatrix}3\\1\\0\end{bmatrix}\right)$$

can be written as y = Ax for some matrix A and some vector x. We have

$$\operatorname{span}\left(\begin{bmatrix} 1\\ -2\\ 3 \end{bmatrix}, \begin{bmatrix} 0\\ 5\\ -1 \end{bmatrix}, \begin{bmatrix} 3\\ 1\\ 0 \end{bmatrix}\right) = \left\{\alpha_1 \begin{bmatrix} 1\\ -2\\ 3 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0\\ 5\\ -1 \end{bmatrix} + \alpha_3 \begin{bmatrix} 3\\ 1\\ 0 \end{bmatrix} \middle| \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R} \right\}$$
$$= \left\{\begin{bmatrix} 1 & 0 & 3\\ -2 & 5 & 1\\ 3 & -1 & 0 \end{bmatrix} \begin{bmatrix} \alpha_1\\ \alpha_2\\ \alpha_3 \end{bmatrix} \middle| \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R} \right\}$$

A set of vectors $v_1, \ldots, v_p \in V$ is a *basis* for V if the following holds.

For every $v \in V$, there exists a unique set of coefficients $\alpha_1, \ldots, \alpha_p$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_p \mathbf{v}_p$$

A set of vectors $v_1, \ldots, v_p \in V$ is a *basis* for V if the following holds.

For every $v \in V$, there exists a unique set of coefficients $\alpha_1, \ldots, \alpha_p$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_p \mathbf{v}_p$$

A set of vectors $v_1, \ldots, v_p \in V$ is a *basis* for V if the following holds.

For every $v \in V$, there exists a unique set of coefficients $\alpha_1, \ldots, \alpha_p$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_p \mathbf{v}_p$$

The numbers $\alpha_1, \ldots, \alpha_p$ are the *coordinates* of v with respect to basis $\{v_1, \ldots, v_p\}$.

A set of vectors $v_1, \ldots, v_p \in V$ is a *basis* for V if the following holds.

For every $v \in V$, there exists a unique set of coefficients $\alpha_1, \ldots, \alpha_p$ such that

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_p \mathbf{v}_p$$

The numbers $\alpha_1, \ldots, \alpha_p$ are the coordinates of v with respect to basis $\{v_1, \ldots, v_p\}$.

If a set of vectors $v_1, \ldots, v_p \in V$ is a *basis* for V, then clearly $\operatorname{span}(v_1, \ldots, v_p) = V$.

Example

ullet Consider the vector space ${\mathbb R}$ with the usual operations.

Example

- Consider the vector space \mathbb{R} with the usual operations.
- The number $1 \in \mathbb{R}$ is a basis.

Example

- Consider the vector space \mathbb{R} with the usual operations.
- The number $1 \in \mathbb{R}$ is a basis.
- *Proof:* For every $v \in \mathbb{R}$, we can write $v = \alpha \cdot 1$ by taking $\alpha = v$. Moreover, this representation is unique.

```
Is the set of vectors \{1,2\} a basis for \mathbb{R}?
Is the set of vectors \{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}1\\1\end{bmatrix}\} a basis for \mathbb{R}^2?
```

Is the set of vectors $\left\{ \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ a basis for \mathbb{R}^2 ?

Standard Basis Vectors

The standard basis vectors for \mathbb{R}^n are denoted e_1, \ldots, e_n with

$$e_i = egin{bmatrix} 0 \ dots \ 0 \ 1 \ 0 \ dots \ 0 \end{bmatrix},$$

the vector of all 0's except for a 1 in the *i*th position.

Linear Independence & Dependence

A set of vectors $v_1, \ldots, v_p \in V$ is *linearly dependent* if and only if one of the vectors can be written as a linear combination of the other vectors, i.e.

$$\mathbf{v}_{k} = \beta_{1} \cdot \mathbf{v}_{1} + \cdots + \beta_{k-1} \cdot \mathbf{v}_{k-1} + \beta_{k+1} \cdot \mathbf{v}_{k+1} + \cdots + \beta_{p} \cdot \mathbf{v}_{p}$$

for some k and some cofficients $\beta_1, \ldots, \beta_{k-1}, \beta_{k+1}, \cdots, \beta_p$.

A set of vectors v_1, \ldots, v_p is linearly independent if and only if the set is not linearly dependent.

Why Do We Care?

Linear (in)dependence is an important concept because it informs us if there is any **redundancy** in a set of vectors.

A linearly dependent set is redundant. It contains at least one vector we don't "need" (informally).

Is the set of vectors

$$\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 2\\4 \end{bmatrix} \right\}$$

linearly independent?

Is the set of vectors

$$\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 2\\4 \end{bmatrix} \right\}$$

linearly independent? No. We clearly have

$$\begin{bmatrix} 2 \\ 4 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 0 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

This reveals to us that

$$\operatorname{span}\left(\begin{bmatrix}1\\2\end{bmatrix},\begin{bmatrix}2\\1\end{bmatrix},\begin{bmatrix}2\\4\end{bmatrix}\right) = \operatorname{span}\left(\begin{bmatrix}1\\2\end{bmatrix},\begin{bmatrix}2\\1\end{bmatrix}\right)$$

Practice: Vector Spaces

Linear Transformations

Functions on Vector Spaces

We're now going to study functions on vector spaces! This is the heart of linear algebra.

Let V, W be vector spaces. A *transformation* is a function $T: V \to W$.

Linear Transformations

A transformation $T: V \to W$ is *linear* if the following two conditions hold:

- T(u+v) = T(u) + T(v) for all $u, v \in V$.
- $T(\alpha v) = \alpha T(v)$ for all $\alpha \in \mathbb{R}, v \in V$.

Let
$$V=\mathbb{R}^2$$
, $W=\mathbb{R}^2$, and

$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} -x \\ y \end{bmatrix}$$

Let $V=\mathbb{R}^2$, $W=\mathbb{R}^2$, and

$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} -x \\ y \end{bmatrix}$$

Show that T is a linear transformation.

We have

$$T(u+v) = T(\begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}) = \begin{bmatrix} -u_1 - v_1 \\ u_2 + v_2 \end{bmatrix} = \begin{bmatrix} -u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} -v_1 \\ v_2 \end{bmatrix} = T(u) + T(v)$$

Let $V=\mathbb{R}^2$, $W=\mathbb{R}^2$, and

$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} -x \\ y \end{bmatrix}$$

Show that T is a linear transformation.

$$T(u+v) = T(\begin{bmatrix} u_1+v_1 \ u_2+v_2 \end{bmatrix}) = \begin{bmatrix} -u_1-v_1 \ u_2+v_2 \end{bmatrix} = \begin{bmatrix} -u_1 \ u_2 \end{bmatrix} + \begin{bmatrix} -v_1 \ v_2 \end{bmatrix} = T(u)+T(v)$$

$$T(\alpha \mathbf{v}) = \begin{bmatrix} -\alpha \mathbf{v}_1 \\ \alpha \mathbf{v}_2 \end{bmatrix} = \alpha \begin{bmatrix} -\mathbf{v}_1 \\ \mathbf{v}_2 \end{bmatrix} = \alpha T(\mathbf{v})$$

Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ acts on the standard basis vectors via

$$T(e_1) = egin{bmatrix} 3 \\ 7 \end{bmatrix}, \, T(e_2) = egin{bmatrix} -2 \\ 4 \end{bmatrix}$$

Compute $T(\begin{bmatrix} 2 \\ 0 \end{bmatrix})$.

Compute $T(\begin{bmatrix} -3 \\ 2 \end{bmatrix})$.

Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ acts on the standard basis vectors via

$$T(e_1) = egin{bmatrix} 3 \\ 7 \end{bmatrix}, T(e_2) = egin{bmatrix} -2 \\ 4 \end{bmatrix}$$

Compute $T(\begin{bmatrix} 2 \\ 0 \end{bmatrix})$.

Compute $T(\begin{bmatrix} -3 \\ 2 \end{bmatrix})$.

Hint: rewrite $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} -3 \\ 2 \end{bmatrix}$ as linear combinations of e_1 and e_2 before applying T.

109 / 177

Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ acts on the standard basis vectors via

$$T(e_1) = egin{bmatrix} 3 \\ 7 \end{bmatrix}, T(e_2) = egin{bmatrix} -2 \\ 4 \end{bmatrix}$$

Compute
$$T(\begin{bmatrix} 2 \\ 0 \end{bmatrix})$$
.

We know $\begin{bmatrix} 2 \\ 0 \end{bmatrix} = 2e_1 + 0e_2$. By linearity, we have

$$T(2e_1 + 0e_2) = 2T(e_1) + 0T(e_2) = \begin{bmatrix} 6 \\ 14 \end{bmatrix}$$

Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ acts on the standard basis vectors via

$$T(e_1) = egin{bmatrix} 3 \\ 7 \end{bmatrix}, T(e_2) = egin{bmatrix} -2 \\ 4 \end{bmatrix}$$

Compute $T(\begin{vmatrix} x \\ y \end{vmatrix})$ for arbitrary x, y.

Suppose that $\mathcal{T}:\mathbb{R}^2 o \mathbb{R}^2$ acts on the standard basis vectors via

$$T(e_1) = \begin{bmatrix} 3 \\ 7 \end{bmatrix}, T(e_2) = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

Compute
$$T(\begin{bmatrix} x \\ y \end{bmatrix})$$
 for arbitrary x, y .

Suppose that $\mathcal{T}:\mathbb{R}^2 o \mathbb{R}^2$ acts on the standard basis vectors via

$$T(e_1) = \begin{bmatrix} 3 \\ 7 \end{bmatrix}, T(e_2) = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

Compute $T(\begin{bmatrix} x \\ y \end{bmatrix})$ for arbitrary x, y. Clearly, we have

$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = T(xe_1 + ye_2)$$

Suppose that $\mathcal{T}:\mathbb{R}^2 o \mathbb{R}^2$ acts on the standard basis vectors via

$$T(e_1) = \begin{bmatrix} 3 \\ 7 \end{bmatrix}, T(e_2) = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

Compute $T(\begin{bmatrix} x \\ y \end{bmatrix})$ for arbitrary x, y. Clearly, we have

$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = T(xe_1 + ye_2) = xT(e_1) + yT(e_2)$$

Suppose that $\mathcal{T}:\mathbb{R}^2 o \mathbb{R}^2$ acts on the standard basis vectors via

$$T(e_1) = \begin{bmatrix} 3 \\ 7 \end{bmatrix}, T(e_2) = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

Compute $T(\begin{bmatrix} x \\ y \end{bmatrix})$ for arbitrary x, y. Clearly, we have

$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = T(xe_1 + ye_2) = xT(e_1) + yT(e_2) = x\begin{bmatrix} 3 \\ 7 \end{bmatrix} + y\begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

Suppose that $T:\mathbb{R}^2 \to \mathbb{R}^2$ acts on the standard basis vectors via

$$T(e_1) = \begin{bmatrix} 3 \\ 7 \end{bmatrix}, T(e_2) = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

Compute $T(\begin{vmatrix} x \\ y \end{vmatrix})$ for arbitrary x, y. Clearly, we have

$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = T(xe_1 + ye_2) = xT(e_1) + yT(e_2) = x\begin{bmatrix} 3 \\ 7 \end{bmatrix} + y\begin{bmatrix} -2 \\ 4 \end{bmatrix}$$

Using what we know about matrix multiplication, this is the same as Clearly, we have

$$\begin{bmatrix} 3 & -2 \\ 7 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Discussion

Something really deep just happened...we turned a linear transformation into a matrix!

Matrices Are Linear Transformations

Suppose we have a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$, and we know

$$T(e_1) = a_1$$
 $T(e_2) = a_2$
 \vdots
 $T(e_n) = a_n$

Then for an $x \in \mathbb{R}^n$, we know T(x).

Matrices Are Linear Transformations

The result of T(x) will be given by

$$T(x_1e_1 + \cdots + x_ne_n) = x_1 \begin{bmatrix} | \\ a_1 \\ | \end{bmatrix} + \cdots + x_n \begin{bmatrix} | \\ a_n \\ | \end{bmatrix}$$
$$= \begin{bmatrix} | & \cdots & | \\ a_1 & \cdots & a_n \\ | & \cdots & | \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
$$= Ax$$

Change of Basis

Consider two different bases for \mathbb{R}^2 , given by

$$egin{align} B_1 &= \left\{ egin{bmatrix} 1 \ 0 \end{bmatrix}, egin{bmatrix} 0 \ 1 \end{bmatrix}
ight\} \ B_2 &= \left\{ egin{bmatrix} 1 \ 1 \end{bmatrix}, egin{bmatrix} 0 \ 1 \end{bmatrix}
ight\} \end{aligned}$$

Change of Basis - Try It

Consider two different bases for \mathbb{R}^2 , given by

$$B_1 = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

$$B_2 = \{ egin{bmatrix} 1 \ 1 \end{bmatrix}, egin{bmatrix} 0 \ 1 \end{bmatrix} \}$$

Consider a linear transformation
$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} 2x \\ -3y \end{bmatrix}$$
.

Find the matrix for this linear transformation with respect to the bases B_1 , B_2

Change of Basis - Try It

Consider two different bases for \mathbb{R}^2 , given by

$$B_1 = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

$$B_2 = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

Consider a linear transformation $T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} 2x \\ -3y \end{bmatrix}$.

Find the matrix for this linear transformation with respect to the bases B_1 , B_2 .

The two matrices should be

$$\begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ -3 & -3 \end{bmatrix}$$

Special Matrix = Special Function

- We've learned that a matrix represents a linear transformation (with respect to some basis).
- It shouldn't surprise you to learn that matrices with "special" properties are really just representing special types of functions.

Square Matrices

A matrix $A \in \mathbb{R}^{m \times n}$ represents a mapping $T : \mathbb{R}^n \to \mathbb{R}^m$.

Accordingly, square matrices $A \in \mathbb{R}^{n \times n}$ simply represent a mapping $T : \mathbb{R}^n \to \mathbb{R}^n$

Invertible Matrices

Definition: A matrix $A \in \mathbb{R}^{n \times n}$ is *invertible* if there exists a matrix A^{-1} such that $AA^{-1} = A^{-1}A = I$.

Intuition: A matrix A is invertible if the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ it represents is invertible (bijective)

Orthogonal Matrices

Definition: An orthogonal matrix $O \in \mathbb{R}^n$ satisfies $O^\top O = OO^\top = I_n$.

Orthogonal Matrices

Definition: An orthogonal matrix $O \in \mathbb{R}^n$ satisfies $O^{\top}O = OO^{\top} = I_n$. In other words, $O^T = O^{-1}$.

Geometric Intuition: the linear transformation O corresponds to a rotation or reflection. In these cases, it turns out that the transpose "undoes" the rotation or reflection.

Consider the transformation

$$T(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} 0 \\ y \end{bmatrix}$$

.

Would you expect the matrix that represents this matrix to be invertible? Why or why not?

Thoughts on Invertibility

 Hopefully you've been convinced that the columns of a matrix are important. This is why we started writing matrix in column form early.

Thoughts on Invertibility

- Hopefully you've been convinced that the columns of a matrix are important. This is why we started writing matrix in column form early.
- In particular, the columns of a square matrix being *linearly* independent or *linearly* dependent is directly tied to the invertibility of a matrix. You'll show this on the worksheet

Some (Informal) Vocabulary

• The *dimension* of a vector space V is the number of items in a basis of the V. We denote the $\dim V$.

Some (Informal) Vocabulary

- The *dimension* of a vector space V is the number of items in a basis of the V. We denote the $\dim V$.
- The *range* of a linear transformation $T: V \to W$ is $\{Tv \mid v \in V\} \subseteq W$.

Some (Informal) Vocabulary

- The *dimension* of a vector space *V* is the number of items in a basis of the *V*. We denote the dim *V*.
- The *range* of a linear transformation $T: V \to W$ is $\{Tv \mid v \in V\} \subseteq W$.
- The *null space* of a linear transformation $T: V \to W$ is $\{v \in V | Tv = 0\} \subseteq V$.

Some (Informal) Observations

Again, now let T be linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ for ease.

• We have range(T) $\subseteq \mathbb{R}^n$ is a vector space, and $\text{null}(T) \subseteq \mathbb{R}^n$ is a vector space.

Some (Informal) Observations

Again, now let T be linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ for ease.

- We have range(T) $\subseteq \mathbb{R}^n$ is a vector space, and $\text{null}(T) \subseteq \mathbb{R}^n$ is a vector space.
- A matrix A (corresponding to T) is invertible if and only if $\dim(\text{null}(T)) = 0$.

Some (Informal) Observations

Again, now let T be linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ for ease.

- We have range(T) $\subseteq \mathbb{R}^n$ is a vector space, and $\text{null}(T) \subseteq \mathbb{R}^n$ is a vector space.
- A matrix A (corresponding to T) is invertible if and only if $\dim(\text{null}(T)) = 0$.
- A matrix A (corresponding to T) is invertible if and only if $\dim(\operatorname{range}(T)) = n$.

1. Consider the invertible matrix

$$A = I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- . How many vectors are in the null space of A? What are they?
- 2. Consider the non-invertible matrix

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

. How many vectors are in the null space of A? What are they?

1. Consider the invertible matrix

$$A = I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

. How many vectors are in the null space of A? What are they? The null space of A is exactly

$$\operatorname{null}(A) = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$

2. Consider the non-invertible matrix

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

. How many vectors are in the null space of A? What are they? The null space of A is exactly

$$\operatorname{null}(A) = \left\{ \begin{bmatrix} 0 \\ \alpha \end{bmatrix} | \alpha \in \mathbb{R} \right\}$$

so there are infinitely many vectors in the null space.

Some Famous Decompositions

The determinant is a function

$$\det: \mathbb{R}^{n \times n} \to \mathbb{R}$$

The determinant is a function

$$\det: \mathbb{R}^{n \times n} \to \mathbb{R}$$

The function \det is uniqueley defined by three key geometric properties.

1. We have $\det(I_n) = 1$.

- 1. We have $\det(I_n) = 1$.
- 2. The function det is multilinear, i.e. linear in every column argument. This means

$$\det\left(\begin{bmatrix} \begin{vmatrix} & \cdots & & & & & & \\ a_1 & \cdots & \alpha b + c & \cdots & a_n \\ & & & & \end{vmatrix}\right) = \alpha \det\left(\begin{bmatrix} \begin{vmatrix} & \cdots & & & & \\ a_1 & \cdots & b & \cdots & a_n \\ & & & & \end{vmatrix}\right) + \det\left(\begin{bmatrix} \begin{vmatrix} & \cdots & & & & \\ a_1 & \cdots & c & \cdots & a_n \\ & & & & \end{vmatrix}\right)\right)$$

Determinant¹

- 1. We have $\det(I_n) = 1$.
- 2. The function det is multilinear, i.e. linear in every column argument. This means

$$\det\left(\begin{bmatrix} \begin{vmatrix} & \cdots & & & & & & \\ a_1 & \cdots & \alpha b + c & \cdots & a_n \\ & & & & \end{vmatrix}\right) = \alpha \det\left(\begin{bmatrix} \begin{vmatrix} & \cdots & & & & \\ a_1 & \cdots & b & \cdots & a_n \\ & & & & \end{vmatrix}\right) + \det\left(\begin{bmatrix} \begin{vmatrix} & \cdots & & & & \\ a_1 & \cdots & c & \cdots & a_n \\ & & & & \end{vmatrix}\right)\right)$$

3. If any two columns of the matrix are identical, its determinant is zero.

Calculating The Determinant

• Determinants for 2×2 matrices have an easy formula,

$$\det\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$$

Calculating The Determinant

• Determinants for 2×2 matrices have an easy formula,

$$\det\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$$

• For 3×3 matrices a formula exists; for 4×4 and beyond you need to use the cofactor method.

Calculating The Determinant

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - (a_{31}a_{22}a_{13} + a_{32}a_{23}a_{11} + a_{33}a_{21}a_{12})$$

A eigenvector of a matrix $A \in \mathbb{R}^{n \times n}$ with associated eigenvalue λ satisfies the equation

$$Ax = \lambda x$$

A eigenvector of a matrix $A \in \mathbb{R}^{n \times n}$ with associated eigenvalue λ satisfies the equation

$$Ax = \lambda x$$

Note: the zero vector with eigenvalue 0 always satisfies this equation; so typically, when we speak of eigenvectors and eigenvalues, we insist that the eigenvector is a non-zero vector.

A eigenvector of a matrix $A \in \mathbb{R}^{n \times n}$ with associated eigenvalue λ satisfies the equation

$$Ax = \lambda x$$

Suppose q_1, \ldots, q_n are eigenvectors of A with eigenvalues $\lambda_1, \ldots, \lambda_n$.

A eigenvector of a matrix $A \in \mathbb{R}^{n \times n}$ with associated eigenvalue λ satisfies the equation

$$Ax = \lambda x$$

Suppose q_1, \ldots, q_n are eigenvectors of A with eigenvalues $\lambda_1, \ldots, \lambda_n$.

$$A\begin{bmatrix} | & | & \cdots & | \\ q_1 & q_2 & \cdots & q_n \\ | & | & \vdots & | \end{bmatrix}$$

A eigenvector of a matrix $A \in \mathbb{R}^{n \times n}$ with associated eigenvalue λ satisfies the equation

$$Ax = \lambda x$$

Suppose q_1, \ldots, q_n are eigenvectors of A with eigenvalues $\lambda_1, \ldots, \lambda_n$.

$$A egin{bmatrix} | & | & \cdots & | \ q_1 & q_2 & \cdots & q_n \ | & | & dots & | \end{bmatrix} = egin{bmatrix} | & | & \cdots & | \ Aq_1 & Aq_2 & \cdots & Aq_n \ | & | & dots & | \end{bmatrix} = egin{bmatrix} | & | & dots & d$$

A eigenvector of a matrix $A \in \mathbb{R}^{n \times n}$ with associated eigenvalue λ satisfies the equation

$$Ax = \lambda x$$

Suppose q_1, \ldots, q_n are eigenvectors of A with eigenvalues $\lambda_1, \ldots, \lambda_n$.

$$A \begin{bmatrix} | & | & \cdots & | \\ q_1 & q_2 & \cdots & q_n \\ | & | & \vdots & | \end{bmatrix} = \begin{bmatrix} | & | & \cdots & | \\ Aq_1 & Aq_2 & \cdots & Aq_n \\ | & | & \vdots & | \end{bmatrix} = \begin{bmatrix} | & | & \cdots & | \\ \lambda_1q_1 & \lambda_2q_2 & \cdots & \lambda_nq_n \\ | & | & \vdots & | \end{bmatrix}$$

A eigenvector of a matrix $A \in \mathbb{R}^{n \times n}$ with associated eigenvalue λ satisfies the equation

$$Ax = \lambda x$$

Suppose q_1, \ldots, q_n are eigenvectors of A with eigenvalues $\lambda_1, \ldots, \lambda_n$.

$$\begin{bmatrix} | & | & \cdots & | \\ \lambda_1 q_1 & \lambda_2 q_2 & \cdots & \lambda_n q_n \\ | & | & \vdots & | \end{bmatrix} = \begin{bmatrix} | & | & \cdots & | \\ q_1 & q_2 & \cdots & q_n \\ | & | & \vdots & | \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{bmatrix}_{55/177}$$

Eigenvector Decomposition

If we let

$$Q = \begin{bmatrix} | & | & \cdots & | \\ q_1 & q_2 & \cdots & q_n \\ | & | & \vdots & | \end{bmatrix}, \Lambda = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ 0 & 0 & \lambda_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$
(1)

then the above work implies

$$AQ = Q\Lambda$$

and so

$$A = Q \Lambda Q^{-1}$$

Eigenvector Decomposition

$$AQ = Q\Lambda$$

and so

$$A = Q \Lambda Q^{-1}$$

The above is the eigenvector decomposition of the matrix A. This only holds if Q is invertible, i.e. if the eigenvectors are linearly independent.

• For all of the above, we assumed we knew eigenvalues/eigenvectors. How do we find them in the first place?

- For all of the above, we assumed we knew eigenvalues/eigenvectors.
 How do we find them in the first place?
- We'll use the following facts for a non-zero eigenvector v:

$$Av = \lambda v \implies Av - \lambda v = 0$$

 $\implies (A - \lambda I)v = 0$

and so the matrix $A - \lambda I$ is not invertible.

- For all of the above, we assumed we knew eigenvalues/eigenvectors.
 How do we find them in the first place?
- We'll use the following facts for a non-zero eigenvector *v*:

$$Av = \lambda v \implies Av - \lambda v = 0$$

 $\implies (A - \lambda I)v = 0$

and so the matrix $A - \lambda I$ is not invertible.

• Why? It has a nonzero vector v in its null space.

- For all of the above, we assumed we knew eigenvalues/eigenvectors. How do we find them in the first place?
- We'll use the following facts for a non-zero eigenvector *v*:

$$Av = \lambda v \implies Av - \lambda v = 0$$

 $\implies (A - \lambda I)v = 0$

and so the matrix $A - \lambda I$ is not invertible.

- Why? It has a nonzero vector v in its null space.
- Accordingly, $det(A \lambda I) = 0$.

The Characteristic Polynomial

The characteristic polynomial of a matrix A is defined to be

$$p_{\mathcal{C}}(\lambda) = \det(A - \lambda I).$$

Finding the roots of this polynomial (i.e. the numbers λ such that $p_C(\lambda) = 0$ yields the eigenvalues of A.

Singular Value Decomposition

If $A \in \mathbb{R}^{m \times n}$, then there exists orthogonal

$$U = \begin{bmatrix} | & | & \cdots & | \\ u_1 & u_2 & \cdots & u_m \\ | & | & \vdots & | \end{bmatrix} \in \mathbb{R}^{m \times m}, V = \begin{bmatrix} | & | & \cdots & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & \vdots & | \end{bmatrix} \in \mathbb{R}^{n \times n}$$

and values $\sigma_1, \ldots, \sigma_p$ (where $p = \min\{n, m\}$) such that

$$A = U egin{bmatrix} \sigma_1 & 0 & 0 & \cdots & 0 \ 0 & \sigma_2 & 0 & \cdots & 0 \ dots & dots & dots & dots \ 0 & 0 & 0 & \cdots & \sigma_p \ 0 & 0 & 0 & \cdots & 0 \ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} V^T = U \Sigma V^T$$

Challenge Problem

Given an SVD of the matrix $A \in \mathbb{R}^{n \times n}$, $A = U \Sigma V^T$, find an eigenvector decomposition of the matrix $A^T A$. That is, find matrices Q, Λ such that

$$A^T A = Q \Lambda Q^{-1}$$

You can use the fact that for an orthogonal matrix, the transpose is the same as the inverse.

Application: Least Squares

Problem Setup

• We are given n observations of predictors $x_i \in \mathbb{R}^p$, and response $y_i \in \mathbb{R}$ for i = 1, ..., n.

Problem Setup

- We are given *n* observations of *predictors* $x_i \in \mathbb{R}^p$, and *response* $y_i \in \mathbb{R}$ for i = 1, ..., n.
- Goal: find $\beta \in \mathbb{R}^p$ that minimizes the quantity

$$\sum_{i=1}^n |\beta^\top x_i - y_i|^2$$

• Rewrite the *n* response values y_1, \ldots, y_n into a single vector $y \in \mathbb{R}^n$.

- Rewrite the *n* response values y_1, \ldots, y_n into a single vector $y \in \mathbb{R}^n$.
- Rewrite all of the predictors x_i as rows in a matrix X given by

$$X = \begin{bmatrix} --- & x_1^\top & --- \\ --- & x_2^\top & --- \\ \vdots & \vdots & \vdots \\ --- & x_n^\top & --- \end{bmatrix} \in \mathbb{R}^{n \times p}$$

- Rewrite the *n* response values y_1, \ldots, y_n into a single vector $y \in \mathbb{R}^n$.
- Rewrite all of the predictors x_i as rows in a matrix X given by

$$X = \begin{bmatrix} --- & x_1^\top & --- \\ --- & x_2^\top & --- \\ \vdots & \vdots & \vdots \\ --- & x_n^\top & --- \end{bmatrix} \in \mathbb{R}^{n \times p}$$

• Try It: Write the problem on the previous slide in matrix notation.

- Rewrite the *n* response values y_1, \ldots, y_n into a single vector $y \in \mathbb{R}^n$.
- Rewrite all of the predictors x_i as rows in a matrix X given by

$$X = \begin{bmatrix} --- & x_1^\top & --- \\ --- & x_2^\top & --- \\ \vdots & \vdots & \vdots \\ --- & x_n^\top & --- \end{bmatrix} \in \mathbb{R}^{n \times p}$$

• The problem can be rewritten as

$$\min_{eta \in \mathbb{R}^p} ||Xeta - y||_2^2 = (Xeta - y)^{\top} (Xeta - y)$$

• We want to solve the problem

$$\min_{eta \in \mathbb{R}^p} (Xeta - y)^{ op} (Xeta - y)$$

• We want to solve the problem

$$\min_{eta \in \mathbb{R}^p} (Xeta - y)^{\top} (Xeta - y)$$

• This quantity is

$$\beta^{\top} X^{\top} X \beta - 2 y^{\top} X \beta + y^{\top} y.$$

We want to solve the problem

$$\min_{\beta \in \mathbb{R}^p} (X\beta - y)^{\top} (X\beta - y)$$

This quantity is

$$\beta^{\top} X^{\top} X \beta - 2 y^{\top} X \beta + y^{\top} y.$$

• Try It: compute the gradient of this quantity with respect to β .

• We want to solve the problem

$$\min_{\beta \in \mathbb{R}^p} (X\beta - y)^{\top} (X\beta - y)$$

This quantity is

$$\beta^{\top} X^{\top} X \beta - 2 y^{\top} X \beta + y^{\top} y.$$

• The gradient with respect to β is

$$2X^{\top}X\beta - 2X^{\top}y$$
.

Set To Zero, Solve

• We set the gradient to zero, and solve for β :

$$0 = 2X^{\top}X\beta - 2X^{\top}y$$
$$2X^{\top}y = 2X^{\top}X\beta$$
$$(X^{\top}X)^{-1}X^{\top}y = (X^{\top}X)^{-1}X^{\top}X\beta$$

which implies

$$\beta = (X^\top X)^{-1} X^\top y.$$

The End