Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра электропривода

КУРСОВОЙ ПРОЕКТ

по электрическим машинам

«Проектирование асинхронного двигателя с короткозамкнутым ротором»

Вариант 31

Студент Кондратьев С.Е.

Группа АСМР-19-1

Руководитель Шишлин Д.И.

к.т.н, доцент

КУРСОВОЙ ПРОЕКТ

По дисциплине ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

(наименование учебной дисциплины согласно учебному плану)

Студент группы: АСМР-19-1

Кондратьев С.Е.

Тема: Проектирование асинхронного двигателя с короткозамкнутым ротором

2. Исходные данные к проекту: Вариант 31;

Номинальная мощность P = 55 кВт;

Число фаз -3;

Номинальное напряжение $U_{\rm H}$ = 380 В (U_{Φ} = 220 В);

Частота питающего напряжения – 50 Гц;

Синхронная скорость 3000 об/мин;

Способ охлаждения – самовентиляция ІСО 141;

Режим работы – длительный.

Базовая модель двигатель серии 4A225M2, конструктивное исполнение IM1001, исполнение по защите IP44, класс нагревостойкости изоляции F.

3. Содержание пояснительной записки:

Определение главных размеров; расчет обмотки, электромагнитных нагрузок, числа пазов статора; определение размеров зубцовой зоны статора и воздушного зазора; расчет обмотки, пазов и ярма ротора; расчет намагничивающего тока; расчет параметров рабочего режима двигателя; расчет потерь в стали и механических потерь; расчет рабочих и пусковых характеристик; тепловой расчет двигателя – определение превышений температур.

Перечень графического материала: чертеж общего вида асинхронного двигателя

4. Срок сдачи законченного проекта

28 декабря

2021 г.

Руководитель проекта: к.т.н, доцент

/ Шишлин Д.И./

Дата выдачи задания:

7 сентября 2021 г.

Аннотация

С.49. Ил.6. Табл.2. Литература 3 назв.

Основной задачей проектирования асинхронного двигателя, как и любой электрической машины, является выбор оптимальных параметров (главные размеры, расчет потерь, тепловой и вентиляционный расчеты и др.) проектируемой машины. Ниже представлен расчет параметров асинхронного двигателя. Также собраны в таблицу данные расчета рабочих характеристик асинхронного двигателя и данные расчета пусковых характеристик.

Оглавление

Введение	5
1 Выбор главных размеров	<i>6</i>
2 Определение Z_1 , w_1 и сечения провода обмотки статора	8
3 Расчёт размеров зубцовой зоны статора и воздушного зазора	11
4 Расчёт ротора	13
5 Расчёт намагничивающего тока	16
6 Параметры рабочего режима	20
7 Расчёт потерь	25
8 Расчёт рабочих и пусковых характеристик	29
9 Тепловой расчет и расчет вентиляции	44
Заключение	48
Список используемой литературы	49

Введение

Асинхронный двигатель является преобразователем электрической энергии в механическую и составляет основу большинства механизмов, использующихся во всех отраслях народного хозяйства.

В настоящее время асинхронные двигатели потребляют более 70% вырабатываемой электрической энергии, на их изготовление расходуется большое количество дефицитных материалов: обмоточные меди, изоляции, электрической стали и других затрат.

На ремонт и обслуживание асинхронных двигателей в эксплуатации средства составляют более 5% затрат из обслуживания всего установленного оборудования.

Поэтому создание высокоэкономичных и надежных асинхронных двигателей является важнейшей задачей, Серия 4А подходит в качестве прототипа при проектировании.

1 Выбор главных размеров

Число пар полюсов

$$p = \frac{60 \cdot f}{n_1} = \frac{60 \cdot 50}{3000} = 1$$

где n_1 — синхронная частота вращения, об/мин; f— частота питания, Γ ц.

Высота оси вращения h=225 мм. Диаметр $D_a=0,392$ м. Внутренний диаметр статора. $K_D=0.52$

$$D = K_D \cdot D_a = 0,52 \cdot 0,392 = 0,204$$
, M.

(Базовый двигатель 4А80В2 с однослойной обмоткой).

Полюсное деление

$$\tau = \frac{\pi \cdot D}{2 \cdot p} = \frac{\pi \cdot D}{2} = 0.32$$
, M.

Расчётная мощность

$$P' = P_2 \frac{k_E}{\eta \cdot \cos \varphi} = 65810 \text{ , BT,}$$

где P_2 — мощность на валу двигателя, B_7 ; k_E — отношение ЭДС обмотки статора к номинальному напряжению. k_E = 0,98; η = 0,90 и $\cos \varphi$ = 0,91. Электромагнитные нагрузки A = 40000 A/м, B_δ =0,74 Тл. Обмоточный коэффициент для однослойной обмотки k_{o61} = 0,95.

Расчётная длина магнитопровода (зазора):

$$l_{\delta} = \frac{P'}{k_{B} \cdot D^{2} \cdot \Omega \cdot k_{o\delta1} \cdot A \cdot B_{\delta}} = \frac{65810}{1.11 \cdot 0,204^{2} \cdot 314,159 \cdot 0,95 \cdot 40000 \cdot 0,74} = 0,161, \text{ m.}$$

Синхронная угловая частота двигателя определяется по формуле:

$$\Omega = \frac{2 \cdot \pi \cdot f}{p} = \frac{2\pi \cdot 50}{1} = 314,159$$
, рад/с.

Отношение

$$\lambda = \frac{l_{\delta}}{\tau} = \frac{0.161}{0.32} = 0.504$$
.

Значение λ находится в допустимых пределах и изменение h не требуется.

2 Определение Z_1 , w_1 и сечения провода обмотки статора

Предельные значения $t_{1\text{max}} = 18$ мм; $t_{1\text{min}} = 16$ мм. Число пазов статора

$$Z_{1\min} = \frac{\pi \cdot D}{t_{1\max}} = \frac{\pi \cdot 0,204}{0,018} = 35,577;$$

$$Z_{1\text{max}} = \frac{\pi \cdot D}{t_{1\text{min}}} = \frac{\pi \cdot 0,204}{0,016} = 40,024.$$

Принимаем Z_1 =36, тогда

$$q = \frac{Z_1}{2 \cdot p \cdot m} = \frac{36}{2 \cdot 1 \cdot 3} = 6$$
.

Зубцовое деление статора (окончательно)

$$t_1 = \frac{\pi \cdot D}{2 \cdot p \cdot m \cdot q} = \frac{\pi \cdot 0,204}{2 \cdot 1 \cdot 3 \cdot 3} = 0,018, \text{ M}.$$

Число (целое) эффективных проводников в пазу (предварительно при условии a=1) (нет параллельных ветвей).

$$I_{1H} = \frac{P_2}{m \cdot U_{1H} \cdot \cos \varphi \cdot \eta} = \frac{55000}{3 \cdot 220 \cdot 0,91 \cdot 0,90} = 101,75$$
, A.

$$u \, \text{'}\Pi = \frac{\pi \cdot D \cdot A}{I1\mu \cdot Z1} = \frac{\pi \cdot 0,204 \cdot 40000}{36} = 6,993.$$

Принимаем a = 2.

$$u_n = a \cdot u' = 14$$
.

Окончательные значения числа витков фазы, линейной нагрузки и магнитного потока.

$$w_1 = \frac{u_n \cdot Z_1}{2 \cdot a \cdot m} = 42$$
;

$$A = \frac{2 \cdot I_{1n} \cdot w_1 \cdot m}{\pi \cdot D} = 4,004 \cdot 10^4, \text{ A/m};$$

$$\Phi = \frac{k_E \cdot U_{1n}}{4 \cdot k_R \cdot w_1 \cdot k_{ool} \cdot f_1} = 0,024, \text{ B6}.$$

Индукция в воздушном зазоре

$$B_{\delta} = \frac{p \cdot \Phi}{D \cdot l_{\delta}} = 0,739$$
, Тл.

A и B_δ находятся в допустимых пределах.

Плотность тока в обмотке статора (предварительно) $AJ_1 = 185 \cdot 10^9$

$$J_1 = \frac{AJ_1}{A} = 4,625 \cdot 10^6$$
, A/M².

Площадь поперечного сечения эффективного проводника (предварительно)

$$q_{9\phi} = \frac{I_{1H}}{a \cdot J1} = 11, \text{ MM}^2.$$

Принимаем $n_{\text{эл}} = 10$

$$q_{3\pi} = \frac{q_{3\phi}}{n_{3\pi}} = 1,1, \text{ MM}^2.$$

Обмоточный провод ПЭТВ: $d_{\scriptscriptstyle ЭЛ}=1,18$ мм; $d_{\scriptscriptstyle ИЗ}=1,26$ мм; $q_{\scriptscriptstyle ЭЛ}=1,094$ мм².

$$q_{3\phi} = q_{3\pi} \cdot n_{3\pi} = 10,94$$
, mm².

Плотность тока статора (окончательно)

$$J_1 = \frac{I_{1_H}}{a \cdot q_{_{2_N}} \cdot n_{_{3_N}}} = 4,65 \cdot 10^6, \text{ A/mm}^2.$$

3 Расчёт размеров зубцовой зоны статора и воздушного зазора

Паз статора определяем с соотношением размеров, обеспечивающим параллельность боковых граней зубцов. B_{z1} =1,6 Тл, B_a =1,4 Тл, k_c = 0,97.

$$b_{z1} = \frac{B_{\delta} \cdot t_1 \cdot l_{\delta}}{B_{z1} \cdot l_{cm1} \cdot k_c} = 8$$
, MM;

$$h_a = \frac{\Phi}{2B_a \cdot l_{cm1} \cdot k_c} = 55, \text{ MM}.$$

Размеры паза в штампе принимаем $b_{\rm m}$ = 4 мм; $h_{\rm m}$ = 1 мм, где $h_{\rm m}$ высота шлица паза; $b_{\rm m}$ ширина шлица паза.

$$h_n = \frac{D_a - D}{2} - h_a = 39$$
, MM;

$$b_1 = \frac{\pi \cdot (D + 2h_n)}{Z_1} - b_{z1} = 16$$
, MM;

$$b_2 = \frac{\pi \cdot (D + 2h_n - b_{III}) - Z_1 \cdot b_{Z1}}{Z_1 - \pi} = 10$$
, MM;

$$h_1 = h_{II.K} = h_n - \left(h_{uu} + \frac{b_2 - b_{uu}}{2}\right) = 35$$
, MM.

Размеры паза свету с учётом припуска на сборку

$$b_1' = b_1 - \Delta b_{II} = 16 - 0, 2 = 15, 8$$
, mm;

$$b_2' = b_2 - \triangle h_{II} = 10 - 0, 2 = 9, 8$$
, mm;

$$h_1' = h_1 - \Delta h_{II} = 35 - 0, 2 = 34, 8$$
, MM,

где b'_{π} и h'_{π} — размеры паза "в свету", полученные при расчете заполнения паза проводниками обмотки и изоляцией.

Площадь поперечного сечения паза для размещения проводников

$$S'_{n} = \frac{b'_{1} + b'_{2}}{2} h'_{1} - S_{u_{3}} - S_{np} = \frac{12, 6 + 8, 6}{2} \cdot 11, 3 - 21, 2 - 0 = 399, 8, \text{ MM}^{2}.$$

Площадь поперечного сечения прокладок и корпусной изоляции в пазу $S_{np} \!\! = \!\! 0,$

$$Su3 = bu3 \cdot (2 \cdot h_n + b_1 + b_2) = 0.35 \cdot (2 \cdot 16 + 10 + 35) = 41,298$$
, mm².

Односторонняя толщина изоляции в пазу $b_{\mbox{\tiny H3}} = 0{,}35$ мм. Коэффициент заполнения паза

$$k_{3} = \frac{d_{u3}^{2} \cdot u_{n} \cdot n_{37}}{S_{n}^{\prime}} = \frac{\left(0,49 \cdot 10^{-3}\right)^{2} \cdot 144 \cdot 2}{399,796} = 0,556.$$

 ${\rm k_3}$ находится в допустимых пределах. Уточнение размеров паза не требуется.

4 Расчёт ротора

Воздушный зазор δ =1,2 мм. Число пазов ротора Z_2 = 28. Внешний диаметр

$$D_2 = D - 2 \cdot \delta = 0,201$$
, M.

Длина магнитопровода ротора $L_2 = L_1 = 0,161$ м. Зубцовое деление

$$t_{z2} = \frac{\pi D_2}{Z_2} = \frac{\pi \cdot 0,201}{28} = 23$$
, MM.

Внутренний диаметр ротора равен диаметру вала, так как сердечник ротора непосредственно насаживается на вал ($k_{\rm B}=0.23$)

$$D_{j} = D_{B} = k_{B} \cdot D_{A} = 0,23 \cdot 0,392 = 0,09$$
, mm.

Ток в стержне ротора

$$I_2 = k_i \cdot I_1 \cdot v_1 = 0,928 \cdot 105 \cdot 8,55 = 807,326$$
, A,

где $k_i = 0, 2 + 0, 8 \cdot \cos \varphi = 0,928$.

$$v_i = \frac{2 \cdot m_1 \cdot w_1 \cdot k_{o\bar{o}1}}{Z_2} = \frac{2 \cdot 3 \cdot 42 \cdot 0,95}{28} = 8,55.$$

Площадь поперечного сечения стержня (предварительно)

$$q_c = \frac{I_2}{J_2} = \frac{807,326}{3,3\cdot10^6} = 244,6, \text{ MM}^2.$$

Плотность тока в литой клетке принимаем $J_2=3,3\cdot 10^6~{\rm A/m^2}.$ Паз ротора принимаем $b_{\rm III}=1,5~{\rm MM},~h_{\rm III}=0,7~{\rm MM},~h_{\rm III}'=0,3~{\rm MM}.$

При $B_{z2} = 1.8$ Тл

$$b_{z2\partial on} = \frac{B_{\delta} \cdot t_2 \cdot l\delta}{B_{z2} \cdot l_{cm2} \cdot k_c} = 10$$
, MM.

Размеры паза

$$b_1 = \frac{\pi (D_2 + 2h_{uu} - 2h_{uu}) - Z_2 \cdot b_{z2}}{Z_2 + \pi} = 11,789$$
, MM;

$$b_2 = \sqrt{\frac{b_1^2 \left(\frac{Z_2}{\pi} + \frac{\pi}{2}\right) - q_c \cdot 4}{\frac{Z_2}{\pi} - \frac{\pi}{2}}} = \sqrt{\frac{11,789 \cdot \left(\frac{28}{\pi} + \frac{\pi}{2}\right) - 244,6 \cdot 4}{\frac{28}{\pi} - \frac{\pi}{2}}} = 8,073, \text{ mm};$$

$$h_1 = (b_1 - b_2) \cdot \frac{Z2}{2 \cdot \pi} = (12 - 8) \cdot \frac{28}{2 \cdot \pi} = 16,561$$
, MM.

Принимаем $b_1 = 12$ мм, $b_2 = 8$ мм, $h_1 = 17$ мм. Полная высота паза:

$$h_{n2} = h_{uu} + h_{uu} + \frac{b_1}{2} + h1 + \frac{b_2}{2} = 0,3 + 0,7 + \frac{12}{2} + 16,561 + \frac{8}{2} = 28$$
, MM.

Принимаем $h_{\pi 2} = 28$. Сечение стержня

$$q_c = \left(\frac{\pi}{8}\right) \cdot \left(b_1^2 + b_2^2\right) + 0.5\left(b_1 + b_2\right)h_1 = 251,681$$
, mm².

Плотность тока в стержне

$$J_2 = \frac{I_2}{q_c} = \frac{810,013}{251,681 \cdot 10^{-6}} = 3,208 \cdot 10^{-6}, \text{ A/m}^2.$$

Короткозамыкающие кольца. Площадь поперечного сечения

$$q_{\kappa n} = \frac{I_{\kappa n}}{J_{\kappa n}} = 1000 \text{ , MM}^2;$$

$$I_{\kappa n} = \frac{I_2}{\Lambda} = 3605$$
, A,

где

$$\Delta = 2 \sin \frac{\alpha \cdot z}{2} = 2 \sin \frac{\pi \cdot p}{Z_2} = 0,224;$$

$$J_{KJI} = 0.85 J_2 = 2.727 \cdot 10^6 \text{ A/m}^2.$$

Размеры замыкающих колец:

$$b_{KJ} = 1,25 \cdot h_{II2} = 35 \text{ mm};$$

$$a_{KJ} = \frac{q_{KJ}}{b_{KJ}} = 37,779 \text{ MM};$$

$$q_{KJ} = b_{KJ} \cdot a_{KJ} = 1322 \text{ MM}^2;$$

$$D_{K,CD} = D_2 - b_{KJ} = 166,44 \text{ MM}^2.$$

5 Расчёт намагничивающего тока

Магнитное напряжение воздушного зазора

$$F_{\delta} = \frac{2}{\mu_0} \cdot B_{\delta} \cdot k_{\delta} \cdot \delta = 1551, A,$$

где B_{δ} — индукция в воздушном зазоре, Тл, рассчитанная по окончательно принятому числу витков в фазе обмотки $w_{\rm l}$ и обмоточному коэффициенту $k_{o\!6\!1}$ определенному для принятой в машине обмотки. δ — воздушный зазор, м; k_{δ} — коэффициент воздушного зазора:

$$k_{\delta} = \frac{t_1}{t_1 - \gamma \cdot \delta} = 1,099,$$

 μ_0 — магнитная проницаемость: $\mu_0 = 4 \cdot 10^{-7}$, $\Gamma \text{H/M}$.

При

$$\gamma = \frac{\left(\frac{b_{u1}}{\delta}\right)^2}{5 + \frac{b_{u1}}{\delta}} = 1,333$$

Значения индукций в зубьях:

$$B_{Z1} = \frac{B_{\delta} \cdot t_1 \cdot l_{\delta}}{b_{z_1} \cdot t_{cm_1} \cdot k_c} = 1,6, \text{ T}\pi;$$

$$B_{Z2} = \frac{B_{\delta} \cdot t_2 \cdot l_{\delta}}{b_{\tau_2} \cdot t_{cm_2} \cdot k_c} = 1,8, \text{ Tn};$$

 $t_{\scriptscriptstyle 1}$ и $t_{\scriptscriptstyle 2}-$ ширина зубца ротора, м.

Индукция в ярме статора и ярме ротора:

$$B_a = \frac{\Phi}{2 \cdot h_a \cdot t_{cm1} \cdot k_c} = 1,4, \text{ T}\pi;$$

$$B_{j} = \frac{\Phi}{2 \cdot h'_{j} \cdot t_{cm2} \cdot k_{c}} = 1,139, \text{ Tn};$$

где k_c — коэффициент заполнения сердечника ротора сталью; $h_j^{'}$ — расчетная высота ярма ротора, м.

Расчетная высота ярма ротора при 2p = 2 и 2p = 4 определяется

$$h'_{j} = \frac{2+p}{3,2\cdot 2} \cdot \left(\frac{D_{2}}{2} - h_{\Pi 2}\right) - \frac{2}{3} \cdot d_{k2} \cdot m_{k2} = 68,175$$
, MM.

Магнитные напряжения зубцовых зон статора и ротора

$$F_{Z1} = 2 \cdot h_{z1} \cdot H_{z1} = 65,616$$
, A;

$$F_{z2} = 2 \cdot h_{z2} \cdot H_{z2} = 82,688 \,\text{A}.$$

Где h_{z1} u h_{z2} — расчетная высота зубца статора: $h_{z1}=h_{H1}=0,039$ мм; $h_{z2}=h_{H2}-0,1\cdot b_2=27$, мм.

 $H_{z2}-$ расчетная напряженность поля в зубце, А.

Напряженность поля в зубце определяют по кривым намагничивания для зубцов принятой при проектировании марки стали.

Для стали 2013 $H_{z_1}=850$ А/м при $B_{Z_1}=1,6$ Тл; $H_{z_2}=1520$ А/м при $B_{Z_2}=1,8$ Тл.

Коэффициент насыщения зубцовой зоны

$$k_Z = 1 + \frac{F_{Z1} + F_{Z2}}{F_s} = 1,096$$

Полученное значение k_Z позволяет предварительно оценить правильность выбранных размерных соотношений и обмоточных данных проектируемой машины.

Магнитные напряжения ярм статора и ротора

$$F_a = L_a \cdot H_a = 211,44 \text{ A};$$

 Γ де L_a — длина средней магнитной силовой линии в ярме статора:

$$L_a = \frac{\pi \cdot (D_a - h_a)}{2 \cdot p} = 529 \text{ MM};$$

где h_a — высота ярма статора, м.

 $H_a -$ напряженность поля при индукции B_a по кривой намагничивания для ярма, принятой при проектировании стали.

Для стали 2013 $H_a = 400$ А/м при $B_a = 1,4$ Тл.

Для стали 2013 $H_j = 1290$ А/м при $B_j = 1,73$ Тл.

$$F_j = L_j \cdot H_j = 238,701 \,\mathrm{A};$$

Где H_j — напряженность поля в ярме при индукции B_j по кривой намагничивания для ярма принятой при проектировании стали. Индукция в ярме ротора, Тл; L_j —длина силовых линий в ярме:

$$L_j = \frac{\pi \cdot (D_j + h_j)}{2 \cdot p} = 185$$
, MM;

 $h_{\scriptscriptstyle j}$ — высота ярма ротора:

$$h_j = \frac{D_2 - D_j}{2} - h_{II2} = 28$$
, MM.

Магнитное напряжение на пару полюсов

 $F_{_{\it U}}-$ суммарное магнитное напряжение магнитной цепи (на пару полюсов)

$$F_{II} = F_{\delta} + F_{Z1} + F_{Z2} + F_a + F_j = 2150 \text{ A}.$$

Коэффициент насыщения магнитной цепи

$$k_{\mu} = \frac{F_{II}}{F_{\delta}} = 1,386$$
.

Намагничивающий ток

$$I_{\mu} = \frac{p \cdot F_{II}}{0.9 \cdot m \cdot w_1 \cdot k_{o61}} = 19,957$$
, A.

Относительное значение

$$I_{\mu^*} = \frac{I_{\mu}}{I_{1_H}} = 0,196$$
.

6 Параметры рабочего режима

Активное сопротивление фазы обмотки статора

$$r_1 = \rho_{115} \cdot \frac{L_1}{q_{90} \cdot a} = 0,06 \,\text{OM}.$$

Для класса нагревостойкости изоляции F расчетная величина $\mathcal{G}_1 = 115^{\circ}C$. Для меди $\rho_{115} = \frac{10^{-6}}{41} \, \mathrm{Om} \cdot \mathrm{m}$. Где L_1 — общая длина эффективных проводников фазы обмотки: $L_1 = l_{cp1} \cdot w_1 = 53,626 \, \mathrm{m}$.

При
$$l_{cp1}=1,277\,$$
 м; $l_{\Pi 1}=l_{1}=0,161\,$ м; $K_{\Pi}=1,2$;

$$l_{\pi} = K_{\pi} \cdot b_{KT} + 2 \cdot B = 0,477 \text{ M}.$$

 $q_{_{9\phi}}$ — площадь поперечного сечения эффективного проводника, м. Длина вылета лобовой части катушки

$$L_{_{BMI}} = K_{_{BMI}} \cdot b_{_{KT}} + B = 0,109 \text{ M},$$

где $K_{\text{выл}} = 0,26$; $b_{\text{KT}} - \text{средняя}$ ширина катушки:

$$b_{KT} = \frac{\pi \cdot (D + h_{\Pi 1})}{2 \cdot p} \cdot \beta_1 = 0.381 \,\mathrm{M}.$$

 β_1 — укорочение шага обмотки ротора; $K_{\text{выл}}$ — коэффициент, значение которого берут из таблицы в зависимости от числа полюсов машины и наличия изоляции в лобовых частях; B — длины вылета прямолинейной части катушек из паза от торца сердечника до начала отгиба лобовой части: $B = 0,01\,\text{M}$.

Относительное значение

$$r_{1*} = r_1 \cdot \frac{I_{1H}}{U_{1H}} = 0,028.$$

Активное сопротивление фазы алюминиевой обмотки ротора

$$r_2 = r_c + \frac{2 \cdot r_{\kappa n}}{\Lambda^2} = 5,9 \cdot 10^{-5} \,\text{OM}.$$

 Π ри $k_r = 1$

$$r_c = \rho_{115} \cdot \frac{l_2}{q_c} \cdot k_r = 3{,}129 \cdot 10^{-5} \text{ Om};$$

$$r_{\kappa n} = \rho_{115} \cdot \frac{\pi \cdot D_{\kappa n.cp}}{Z_2 \cdot q_{\kappa n}} = 6,947 \cdot 10^{-7} \text{ Om},$$

где для литой алюминиевой обмотки ротора $\rho_{115} = \frac{10^{-6}}{20,5}\,\mathrm{Om}\cdot\mathrm{m}.$ $D_{\kappa_{n.cp}}$ — средний диаметр замыкающих колец:

$$D_{\kappa n.cp} = D_2 - h_{\kappa n} = 168 \,\mathrm{MM};$$

 q_c — сечение стержня, м²; k_r = 1 — коэффициент увеличения активного сопротивления стержня от действия эффекта вытеснения тока; $q_{\kappa n}$ — площадь поперечного сечения замыкающего кольца, м²; ρ_{115} — удельное сопротивление материала стержня и замыкающих колец, при расчетной температуре.

Приводим r_2 к числу витков обмотки статора

$$r_2 = r_2 \cdot \frac{4 \cdot m \cdot (w_1 \cdot k_{o61})^2}{Z_2} = 0,04$$
 OM.

Относительное значение

$$r_{2*}' = r_2' \cdot \frac{I_{1H}}{U_{1H}} = 0,019$$
.

Индуктивное сопротивление фазы обмотки статора

$$x_1 = 15,8 \cdot \frac{f_1}{100} \cdot \left(\frac{w_1}{100}\right)^2 \cdot \frac{l_{\delta}'}{p \cdot q} \cdot (\lambda_{\Pi 1} + \lambda_{\Pi 1} + \lambda_{\Pi 1}) = 0,219 \text{ Om},$$

где

$$\lambda_{II1} = \frac{h_3}{3 \cdot b} \cdot k_{\beta} + \left(\frac{h_2}{b} + \frac{3 \cdot h_1}{b + 2 \cdot b_{III}} + \frac{h_{III}}{b_{III}}\right) \cdot k_{\beta}' = 1,78;$$

При $h_3 \approx h_{_{II.K}} = 34,495 \text{ мм}; \ b = b_1 = 13 \text{ мм}; \ h_2 = 0;$

$$h_1 = 0.5 \cdot (b_1 - b_{III}) = 4.5$$
 MM;

$$k_{\beta} = 1$$
; $k_{\beta}^{'} = 1$; $l_{\delta}^{'} = l_{\delta} = 0.161$ M.

Коэффициент магнитной проводимости лобового рассеяния

$$\lambda_{J11} = 0.34 \cdot \frac{q}{l_{s}} \cdot (l_{s} - 0.64 \cdot \beta \cdot \tau) = 1.385,$$

Коэффициент магнитной проводимости дифференциального рассеяния для обмоток статора и фазного ротора

$$\lambda_{\mathcal{I}1} = \frac{t_1}{12 \cdot \delta \cdot k_{\mathcal{S}}} \cdot \xi = 0,61;$$

$$\xi = 2 \cdot k_{c\kappa}' \cdot k_{\beta} - k_{oo1}^2 \cdot \left(\frac{t_2}{t_1}\right)^2 \cdot \left(1 + \beta_{c\kappa}^2\right) = 0,543.$$

Для $\beta_{c\kappa}=0$ и $\frac{t_2}{t_1}=1,271$, $k_{c\kappa}^{'}=1$. Относительное значение

$$x_{1*} = x_1 \cdot \frac{I_{1n}}{U_{1n}} = 0,101.$$

Индуктивное сопротивление фазы ротора

$$x_2 = 7,9 \cdot f_1 \cdot l_{\delta} \cdot (\lambda_{H2} + \lambda_{H2} + \lambda_{H2}) \cdot 10^{-6} = 370,985 \cdot 10^{-6} \text{, Om;}$$

где

$$\lambda_{II2} = \left\lceil \frac{h_1}{3 \cdot b} \cdot \left(1 - \frac{\pi \cdot b^2}{2 \cdot b} \right) + 0,66 - \frac{b_{III}}{2 \cdot b} \right\rceil \cdot k_{II} + \frac{h_{III}}{b_{III}} + 1,12 \cdot \frac{h_{III}^{'} \cdot 10^6}{I_2} = 1,848$$

при $h_1 = h_{I\!I} - h_{I\!I\!I} - h_{I\!I\!I} - 0,1 \cdot b_2 \approx h_{I\!I} - 0,5 \cdot b_1 = 21 - 0,5 \cdot 7,6 = 17,2$ мм; $b_{I\!I\!I} = 1$ мм; $b = b_1 = 7,6$ мм; $h_{I\!I\!I} = 0,5$; мм; $h_{I\!I\!I} = 1$ мм; $q_c = 90,986$ мм²; $k_{I\!I} = 1$ (для рабочего режима).

Коэффициент магнитной проводимости лобового рассеяния

$$\lambda_{\pi 2} = \frac{2, 3 \cdot D_{\kappa \pi. cp}}{Z_2 \cdot l_{\delta}' \cdot \Delta^2} \cdot \lg \frac{4, 7 \cdot D_{\kappa \pi. cp}}{a_{\kappa \pi} + 2 \cdot b_{\kappa \pi}} = 1,454,$$

 $D_{\kappa_{n}.cp}$ — средний диаметр замыкающих колец, м; q_c — сечение стержня, м²; Δ — коэффициент приведения токов в кольце к току в стержне; a_{κ_n} и b_{κ_n} — средние высота и ширина колец.

Коэффициент магнитной проводимости дифференциального рассеяния обмотки, короткозамкнутого ротора

$$\lambda_{II2} = \frac{t_2}{12 \cdot \delta \cdot k_{\delta}} \cdot \xi = 1,428;$$

$$\xi = 1 + \frac{1}{5} \cdot \left(\frac{\pi \cdot p}{Z_2}\right)^2 - \frac{\Delta_z}{1 - \left(\frac{p}{Z_2}\right)^2} \approx 1,$$

T.K.
$$\triangle_z \approx 0$$
, $\frac{1}{5} \cdot \left(\frac{\pi \cdot p}{Z_2}\right)^2 \approx 0$;

$$\sum \lambda_2 = \lambda_{\Pi 2} + \lambda_{\Pi 2} + \lambda_{\Pi 2} = 4,73.$$

Приводим x_2 к числу витков обмотки статора

$$x_{2}' = x_{2} \cdot \frac{4 \cdot m \cdot (w_{1} \cdot k_{o\delta 1})^{2}}{Z_{2}} = 0,206 \text{ Om.}$$

Относительное значение

$$x_{2*}' = x_2' \cdot \frac{I_{1H}}{U_{1H}} = 0,095.$$

7 Расчёт потерь

Основные потери в стали

$$P_{CT.OCH} = \rho_{1,0/5,0} \cdot \left(\frac{f_1}{50}\right)^{\beta} \cdot \left(k_{Aa} \cdot B_a^2 \cdot m_a + k_{Az} \cdot B_{Z1}^2 \cdot m_{z1}\right) = 741,992, \text{ BT,}$$

где $\rho_{1,0/5,0}=2,55\,\mathrm{Bt/kr}$ — удельные потери; B_a и B_{Z1} — индукция в ярме и средняя индукция в зубцах статора, Тл; m_a , m_{z1} — масса стали ярма и зубцов статора:

$$m_a = \pi \cdot (D_a - h_a) \cdot h_a \cdot l_{cml} \cdot k_c \cdot \gamma_c = 71,637$$
 KT;

$$m_{z1} = h_{z1} \cdot b_{z1cp} \cdot Z_1 \cdot l_{cm1} \cdot k_c \cdot \gamma_c = 14,393 \text{ K}\Gamma,$$

где h_a — высота ярма статора:

$$h_a = 0.5 \cdot (D_a - D) - h_{III} = 0.055$$
 MM;

 h_{z1} — расчетная высота зубца статора, м; b_{z1cp} — средняя ширина зубца статора, м: γ_c — удельная масса стали; в расчетах принимают $\gamma_c = 7.8 \cdot 10^3$ кг/м³; $\beta = 1.5$ — показатель степени, учитывающий зависимость потерь в стали от частоты перемагничивания; $k_{\jmath Ja}$ и $k_{\jmath Jz}$ — коэффициенты, учитывающие влияние на потери в стали неравномерности распределения потока по сечениям участков магнитопровода и технологических факторов: $k_{\jmath Jz} = 1.8$, $k_{\jmath Ja} = 1.6$.

Поверхностные потери в роторе

$$P_{IIOB2} = p_{nos2} \cdot (t_2 - b_{III2}) \cdot Z_2 \cdot l_{cm2} = 15,224 \text{ BT};$$

При

$$p_{nog2} = 0.5 \cdot k_{o2} \cdot \left(\frac{Z_1 \cdot n_1}{10000}\right)^{1.5} \cdot (B_{02} \cdot t_1)^2 = 320,791 \,\mathrm{BT},$$

где $k_{o2} = 1,5$.

$$B_{02} = \beta_{02} \cdot k_{\delta} \cdot B_{\delta} = 0.195 \text{ Tm},$$

где для
$$\frac{b_{III}}{\delta} = \frac{1.5}{0.4} = 3,333$$
, $\beta_{02} = 0,24$.

Пульсационные потери в зубцах ротора

$$P_{\Pi V / 12} = 0.11 \cdot \left(\frac{Z_1 \cdot n_1}{1000}\right)^2 \cdot m_{z2} = 169,46 \text{ BT};$$

 m_{z2} — масса стали зубцов ротора:

$$m_{z2} = Z_2 \cdot h_{z2} \cdot b_{z2} \cdot l_{cm2} \cdot k_{c2} = 9,172$$
 Kg.

Амплитуда пульсаций индукции в среднем сечении зубцов для зубцов ротора

$$B_{\Pi Y \Pi 2} = \frac{\gamma \cdot \delta}{2 \cdot t_2} \cdot B_{Z2} = 0.12 \text{ Tm};$$

 $B_{\rm Z2}-$ средняя индукция в зубцах ротора, Тл; при $\gamma=1,68$.

Сумма добавочных потерь в стали

$$P_{CT.DOE} = P_{DOB2} + P_{DVJ12} = 184,683 \,\mathrm{Bt}.$$

Полные потери в стали

$$P_{CT} = P_{CT,OCH} + P_{CT,JOE} = 926,675 \,\mathrm{BT}.$$

Обычно $P_{CT.ДОБ}$ приблизительно в 5–8 раз меньше, чем $P_{CT.OCH}$.

Механические потери

$$P_{MEX} = K_{\rm T} \cdot \left(\frac{n_1}{10}\right)^2 \cdot D_a^4 = 1 \cdot \left(\frac{3000}{10}\right)^2 \cdot 0,392^4 = 2125 \text{ BT},$$

Для двигателей с 2p=2 коэффициент $K_{\rm T}=1$.

Добавочные потери при номинальном режиме

$$P_{\text{ДОБ.H}} = 0,005 \cdot P_{\text{1H}} = 0,005 \cdot \frac{P_{2H}}{\eta} = 0,005 \cdot \frac{55000}{0,9} = 305,556 \text{ BT};$$

где η — коэффициент полезного действия двигателя.

Холостой ход двигателя: Ток холостого хода двигателя

$$I_{x.x} \approx \sqrt{I_{x.x.a}^2 + I_{\mu}^2} = 20,51 \text{ A};$$

При определении активной составляющей тока холостого хода принимают, что потери на трение и вентиляцию и потери в стали при холостом ходе двигателя такие же, как и при номинальном режиме. Тогда

$$I_{x.x.a} = \frac{P_{CT} + P_{MEX} + P_{91x.x}}{m \cdot U_{1H}} = 4,732 \text{ A};$$

Электрические потери в статоре при холостом ходе приближенно принимаются равными:

$$P_{{}_{91x.x}} \approx 3 \cdot I_{{}_{\mu}}^2 \cdot r_1 = 71,422 \text{ BT;}$$

Реактивная составляющая тока холостого хода:

$$I_{x.x.b} \approx I_{\mu}$$
.

Коэффициент мощности при холостом ходе

$$\cos \varphi_{x.x} = \frac{I_{x.x.a}}{I_{x.x}} = 0,231.$$

8 Расчёт рабочих и пусковых характеристик

Найдём расчетное сопротивление r_{12} и сопротивление взаимной индуктивности x_{12} :

$$r_{12} \approx \frac{P_{cm.ocn}}{m \cdot I_u^2} = 0,621, \text{ OM};$$

$$x_{12} \cong \frac{U_{1n}}{I_{n}} - x_{1} = 10,805$$
, Om.

Комплексный коэффициент c_1 находим по приближённой формуле, так как $|\gamma| < 1^\circ$:

$$\gamma = arctg \frac{r_1 x_{12} - r_{12} x_1}{r_{12} (r_1 + r_{12}) + x_{12} (x_1 + x_{12})} = 0,004^{\circ};$$

$$c_1 = 1 + \frac{x_1}{x_{12}} = 1,02$$
.

Активная составляющая тока синхронного холостого хода:

$$I_{0a} = \frac{P_{cm.ocn} + 3 \cdot I_{\mu}^{2} \cdot r_{1}}{3 \cdot U_{1a}} = 1,232$$
, A.

Найдём расчетные величины, обозначенные в формуляре a, a', b и b'. Формулы для их определения зависят от принятого (точного или приближенного) метода расчета c_1 . Если $|\gamma| < 1^\circ$, то можно использовать приближенный метод:

$$a' = c_1^2 = 1,041$$
, Om;

$$b'=0$$
, Om;

$$a = c_1 \cdot r_1 = 0,061$$
, Om;

$$b = c_1 \cdot (x_1 + c_1 \cdot x'_2) = 0,437$$
, Om.

Потери, не меняющиеся при изменении скольжения:

$$P_{cm} + P_{mex} = 3052$$
 BT.

Принимаем $s_{_H} \approx r'_{_2} = 0,019$ и рассчитываем рабочие характеристики, задаваясь $s = 0,005;\ 0,0075;\ 0,01;\ 0,0125;\ 0,015;\ 0,0175;\ 0,019$. Результаты расчёта сведены в таблицу 1, по которой уточняется скольжение $s_{_{\rm H}}$. Номинальные данные спроектированного двигателя: $P_{2_{\rm H}} = 55 \, {\rm kBt}$, $U_{1_{\rm H}} = 220 \, {\rm B}$, $I_{1_{\rm H}} = 101.75 \, {\rm A}$, $\cos \phi_{_{\rm H}} = 0,91,\ \eta_{_{\rm H}} = 0,90$.

Таблица 1 – Результат расчета рабочих характеристик АД

	Ед.из		Скольжение						
Формула	М	0,005	0,0075	0,01	0,0125	0,015	0,0175	$S_{\rm H} =$	
								0,019	
$a' \cdot r_2' / s$	Ом	8,328	5,552	4,164	3,3312	2,776	2,3794	2,1915	
$a \cdot r_2 / s$	ОМ	0,320	3,332	4,104	3,3312	2,770	3	8	
$b' \cdot r_2 / s$	Ом	0	0	0	0	0	0	0	
	0	0.200	5 (12	4.225	2 2022	2.027	2,4404	2,2525	
$R = a + a \cdot r_2 / s$	Ом	8,389	5,613	4,225	3,3922	2,837	3	8	
$X = b + b \cdot r_2 / s$	Ом	0,437	0,437	0,437	0,437	0,437	0,437	0,437	
	0	8,4003	5,6299	4,2475	3,4202	2,8704	2,4792	2,2945	
$Z = \sqrt{R^2 + X^2}$	Ом	7	9	4	3	6	5	8	

Продолжение таблицы 1

$I_2^" = U_{1H} / Z$	A	26,189	39,076	51,794	64,323	76,642	88,736	95,878
$I_2 - O_{1H} / Z$	A	3	5	7	1	8	7	3
		0,9986	0,9969	0,9946	0.0010	0,9883	0,9843	0.0015
$\cos \varphi_2' = R / Z$	_	5	8	9	0,9918	4	4	0,9817
$\sin \alpha' - V/Z$		0,0520	0,0776	0,1028	0,1277	0,1522	0,1762	0,1904
$\sin \varphi_2' = X / Z$	_	2	2	8	7	4	6	5
	٨	27,385	40,190	52,751	65,027	76,981	88,579	95,355
$I_{1a} = I_{0a} + I_2'' \cos \varphi_2'$	A	8	6	8	9	4	3	4
'	٨	21,319	22,990	25,285	28,175	31,625	25 509	38,216
$I_{1p} = I_{0p} + I_2'' \sin \varphi_2'$	A	4	1	8	5	1	35,598	9
$I = I^2 + I^2$	٨	34,705	46,301		70,869	83,224	95,464	102,72
$I_1 = \sqrt{I_{1a}^2 + I_{1p}^2}$	A	9	5	58,499	5	3	7	9
I' - a I"	Α.	26,713		52,830	65,609	78,175	90,511	97,795
$I_2' = c_1 \cdot I_2''$	A	1	39,858	6	6	6	4	8
$D = 2II I 10^{-3}$	кВ	18,074	26,525	34,816	42,918	50,807	58,462	62,934
$P_1 = 3U_{1H}I_{1a} \cdot 10^{-3}$	T	7	8	2	4	7	3	6
$P_{_{91}} = 3I_{_1}^2 r_{_1} \cdot 10^{-3}$	кВ	0,2168	0,3858	0,6159	0,9040	1,2467	1,6404	1,8995
$I_{91} - 3I_1I_1 \cdot 10$	Т	1	9	8	5	3	3	7
$P_{92} = 3I_2^{'2}r_2^{'} \cdot 10^{-3}$	кВ	0,0856	0,1906	0,3349	0,5165	0,7333	0,9830	1,1476
$I_{32} - 3I_2 I_2$	T	3	4	3	5	7	8	8
	кВ	0,0355	0,0632		0,1482	0,2044	0,2689	0,3114
$P_{\partial o \delta} = P_{\partial o \delta. u} \cdot (I_1 / I_{1u})$	Т	5	7	0,101	3	2	7	6
$\sum P = P_{cm} + P_{mex} +$	кВ	3,3899		4,1039	4,6208	5,2365	5,9444	6,4107
$+P_{\mathfrak{I}}+P_{\mathfrak{I}}+P_{\mathfrak{I}}+P_{\partial 0 \delta}$	Т	9	3,6918	1	3	2	8	2
$P_2 = P_1 - \sum P$	кВ	14,684		30,712	38,297	45,571	52,517	56,523
	Т	7	22,834	3	6	2	9	9
$\eta = 1 - \sum P / P_1$	_	0,8124	0,8608	0,8821	0,8923	0,8969	0,8983	0,8981
	_	5	2	3	3	3	2	4
l .		1		1	1		1	

Окончание таблицы 1

	0,7890	0,8680	0,9017	0,9175	0,9249	0,9278	0,9282
$cos \varphi = I_{1a} / I -$	83	19	57	72	87	75	26

Построение рабочих характеристик приведено на рисунках 1–4.

Рисунок 1-3ависимость $\cos \phi$ от P_1

Рисунок $2-3 \mbox{ависимость} \ I_1 \mbox{ ot } P_1$

Рисунок 3 – Зависимость η от P_1

Расчёт пусковых характеристик. Рассчитываем точки характеристик, соответствующие скольжениям $s=1;\ 0.8;\ 0.5;\ 0.2;\ 0.1.$ Данные расчёта точек сведены в таблицу 2. Подробный расчёт приведён для скольжения s=1.

Таблица 2 – Данные расчёта пусковых характеристик АД

	Ед.из			Скольх	кение ѕ		
Расчетная формула	М	1	0,8	0,5	Sкр=0, 24	0,2	0,1
ξ	_	1,972	1,764	1,444	0,831	0,831	0,624
φ	_	0,86	0,59	0,27	0,54	0,54	0,135
$k_r = q_c / q_r$	_	1,592	1,394	1,169	1,358	1,358	1,079
$K_R = \frac{1 + r_c(k_r - 1)}{r_2'}$	_	1,4	1,266	1,114	1,242	1,242	1,054
$r_{2\xi} = K_R r_2'$	Ом	0,793	0,717	0,631	0,704	0,704	0,597
$k_{_{ m \it I\!\!\! /}}$		0,75	0,82	0,9	0,95	0,95	0,98

Окончание таблицы 2

$K_X = \sum \lambda_{2\xi} / \sum \lambda_2$	_	0,782	0,801	0,824	0,838	0,838	0,847
$x_{2\xi} = K_X x_2'$	Ом	1,116	2,372	2,439	2,481	2,481	2,506
$x_{2\xi_{Hac}}' = \frac{x_2' \sum_{\lambda_{2\xi_{Hac}}} \lambda_{2\xi_{Hac}}}{\sum_{\lambda_2} \lambda_2}$	Ом	1,633	1,643	1,654	1,667	1,667	1,696
$x_{1nac} = \sum \lambda_{1nac} / \sum \lambda_{1}$	Ом	0,631	0,633	0,638	0,642	0,642	0,672
$c_{1\Pi.nac} = 1 + x_{1nac} / x_{12n}$	_	1,005	1,005	1,0051	1,0051	1,0051	1,005
$a_{II} = r_1 + c_{1II.nac} \dot{r_{2\xi}} / s$	Ом	1,902	2,006	2,374	4,641	4,641	7,105
$b_{\Pi} = \frac{x_{1 \text{nac}} + c_{1 \Pi. \text{nac}} r_{2\xi}'}{s}$	Ом	2,273	2,274	2,3	2,317	2,317	2,377
$I_{2}' = \frac{U_{1H}}{\sqrt{a_{II}^{2} + b_{II}^{2}}}$	A	128,21 7	125,3	114,95	73,257	73,257	50,72
$I_{1} = \frac{I_{2} \sqrt{a_{II}^{2} + (b_{II} + x_{12n})^{2}}}{c_{1n} x_{12n}}$	A	104,65	102,43	94,547	63,731	63,731	48,19
$I_{1*} = \frac{I_1}{I_{1H}}$	_	6,51	6,1	5,49	5,21	5,01	4,4
$M_* = \left(\frac{I_2'}{I'_{2H}}\right)^2 K_R \frac{S_H}{S}$	_	1,71	1,8	2,01	2,326	2,291	2,052

Построение пусковых характеристик приведено на рисунках 5, 6.

Параметры находятся с учётом вытеснения тока $\vartheta_{\it pacu}$ =115°C . Вычислим ξ — приведенную высоту стержня

$$\xi = 63,61h_c\sqrt{s} = 1,756$$
,

где h_c – высота стержня в пазу

$$h_c = h_n - (h_u + h'_u) = 21,5$$
, MM.

Для ξ = 1,756 ϕ =0,55 , ϕ ' = $k_{\rm A}$ =0,85 , где $k_{\rm A}$ — коэффициент демпфирования.

В расчетах условно принимают, что при действии эффекта вытеснения ток ротора распределен равномерно, но не по всему сечению стержня, а лишь по его верхней части, ограниченной высотой $h_{\rm r}$, имеющей сечение $q_{\rm r}$

$$h_r = \frac{h_c}{1 + \varphi} = 18$$
, MM;

$$qr = \frac{\pi b_2^2}{8} + \frac{b_2 + b_r}{2} (h_r - \frac{b_2}{2}) = 181,827, \text{ MM}^2;$$

$$br = b_2 - \frac{b_2 - b_1}{h_1} (h_r - \frac{b_2}{2}) = 9{,}222$$
, MM.

Коэффициент k_r показывает, на сколько увеличилось активное сопротивление пазовой части стержня $r_{c\xi}$ при неравномерной плотности тока в нем по сравнению с его сопротивлением r_c при одинаковой плотности по всему сечению стержня

$$k_r = \frac{q_c}{q_r} = 1,042$$
.

Коэффициент общего увеличения сопротивления фазы ротора под влиянием эффекта вытеснения тока

$$K_R = 1 + \frac{r_c}{r_2}(k_r - 1) = 1,028$$
.

Приведённое активное сопротивление ротора с учётом действия эффекта вытеснения тока:

$$r'_{2\varepsilon} = K_R \cdot r'_2 = 1,028 \cdot 2,362 = 2,428$$
, Om.

Индуктивное сопротивление обмотки ротора $x'_{2\xi}$ при $\phi' = k_{\mu} = 0.93$. Для его расчёта найдём сначала коэффициент магнитной проводимости пазового рассеяния обмотки короткозамкнутого ротора

$$\lambda_{n2\xi} = \left[\frac{h_1}{3b} \left(1 - \frac{\pi b^2}{8q_c} \right)^2 + 0,66 - \frac{b_u}{2b} \right] k_o + \frac{b_u}{h_u} + 1,12 \frac{h'_u \cdot 10^6}{I_2} = 3,504.$$

при s=1 предварительно принимаем

$$\frac{I_{2n}}{I_{2n}}\approx 6.5;$$

 K_{x} — изменение индуктивного сопротивления фазы обмотки ротора от действия эффекта вытеснения тока

$$K_x = \frac{\lambda_{n2\xi} + \lambda_{n2} + \lambda_{o2}}{\lambda_{n2} + \lambda_{n2} + \lambda_{o2}} = \frac{\sum \lambda_{2\xi}}{\sum \lambda_2} = 1,249;$$

$$x'_{2\xi} = x'_2 K_x = 0.257$$
, Om.

Ток ротора без учёта влияния насыщения, принимая $c_{\scriptscriptstyle 1n}=1$

$$I'_{2} = \frac{U_{1n}}{\sqrt{\left(r_{1} + \frac{r'_{2\xi}}{s}\right)^{2} + \left(x_{1} + x'_{2\xi}\right)^{2}}} = 451,04, A.$$

Учёт влияния насыщения на параметры. Принимаем для s=1 коэффициент насыщения $k_{\text{нас}}=1,35$ и $I_1\approx I'_2$ и приводим расчёт для $k_{\text{nac}}I_1=1,35\cdot 451,04=608,904$ А. Для меньших sk_{nac} снижают до 1,1.

Средняя МДС обмотки, отнесенную к одному пазу обмотки статора

$$Fn.cp = 0, 7 \frac{k_{nac} I_1 u_n}{a} \left(k'_{\beta} + k_y k_{o61} \frac{Z_1}{Z_2} \right) = 6628, A,$$

где I_1 — ток статора, соответствующий расчетному режиму, без учета насыщения; а — число параллельных ветвей обмотки статора; $u_{\pi 1}$ — число эффективных проводников в пазу статора; k'_{β} — коэффициент, учитывающий уменьшение МДС паза; k_y — коэффициент укорочения шага обмотки.

Фиктивная индукция потока рассеяния в воздушном зазоре

$$B_{\phi\delta} = \frac{F_{n.cp}}{1,6\delta C_N} \cdot 10^{-6} = 3,023, \text{ Tm},$$

где коэффициент

$$C_N = 0,64 + 2,5 \cdot \sqrt{\frac{\delta}{t_1 + t_2}} = 1,142$$

при $B_{\phi\delta}$ =3,023 Тл; κ_{δ} =0,75 .

Значение дополнительного эквивалентного раскрытия пазов статора

$$c_1 = (t_1 - b_{u1}) \cdot (1 - \kappa_{\delta}) = 3,447$$
, MM.

Для полузакрытого паза высота клиновой части паза

$$h' = 0.5 \cdot (b_2 - b_{uu}) = 2$$
, MM;

$$\Delta \lambda_{n1nac} = \frac{h_{u1} + 0,58h'}{b_{u1}} \cdot \frac{c_1}{c_1 + b_{u1}} = 0,25.$$

Коэффициент магнитной проводимости пазового рассеяния обмотки статора с учетом влияния насыщения

$$\lambda_{n1\mu ac} = \lambda_{n1} - \Delta \lambda_{n1\mu ac} = 1,53$$
,

где λ_{n1} – проводимость, рассчитанная без учета насыщения.

Коэффициент магнитной проводимости дифференциального рассеяния обмотки статора с учетом влияния насыщения:

$$\lambda_{\partial 1 \mu ac} = \lambda_{\partial 1} \kappa_{\delta} = 0,458$$
.

Индуктивное сопротивление фазы обмотки статора с учетом влияния насыщения:

$$x_{1_{nac}} = x_1 \cdot \frac{\sum \lambda_{1_{nac}}}{\sum \lambda_1} = 0,203$$
, OM;

$$\sum \lambda_{1_{HAC}} = \lambda_{n1_{HAC}} + \lambda_{\partial 1_{HAC}} + \lambda_{\pi 1} = 5,426$$
.

Коэффициент магнитной проводимости пазового рассеяния ротора с учетом влияния насыщения и вытеснения тока

$$\Delta \lambda_{n2nac} = \frac{h_{u2}}{b_{u2}} \cdot \frac{c_2}{c_2 + b_{u2}} = 0,297,$$

где c_2 – дополнительное раскрытие:

$$c_2 = (t_2 - b_{yy}) \cdot (1 - \kappa_{\delta}) = 2,625$$
, MM.

Коэффициент магнитной проводимости пазового рассеяния при насыщении для ротора

$$\lambda_{n2Hac} = \lambda_{n2\xi} - \Delta \lambda_{n2Hac} = 2,73$$
.

Коэффициент магнитной проводимости дифференциального рассеяния ротора с учетом влияния насыщения

$$\lambda_{\partial 2\mu ac} = \lambda_{\partial 2} \kappa_{\delta} = 1,071$$
.

Приведенное индуктивное сопротивление фазы обмотки ротора с учетом влияния вытеснения тока и насыщения

$$x'_{2\xi\mu\alpha c} = x'_{2} \cdot \frac{\sum \lambda_{2\xi\mu\alpha c}}{\sum \lambda_{2}} = 0,229$$
, Om;

$$\sum \lambda_{2\xi nac} = \lambda_{2\xi nac} + \lambda_{\partial 2nac} + \lambda_{n2} = 5,255$$
 .

Сопротивление взаимной индукции обмоток в пусковом режиме

$$x_{12n} = x_{12} \cdot \frac{Fu}{F_s} = 14,973$$
, Om.

Расчёт токов и моментов, где для упрощения расчетных формул в отличие от обозначений в расчете рабочих характеристик принято:

$$c_{1nhac} = 1 + \frac{x_{1nac}}{x_{12n}} = 1,014$$
;

$$a_n = r_1 + c_{1nnac} \cdot \frac{r'_{2\xi}}{s} = 0.109$$
, OM;

$$b_n = c_{1nnac} \cdot x'_{2\xi_{nac}} + x_{1nac} = 0,435$$
, Om.

Ток в обмотке ротора

$$I'_2 = \frac{U_{1n}}{\sqrt{a_n^2 + b_n^2}} = 490,439, A;$$

$$I_1 = I'_2 \cdot \frac{\sqrt{a_n^2 + (b_n + x_{12n})^2}}{c_{1nnac} x_{12n}} = 497,94$$
, A.

Характеризующие пусковые данные машины кратность тока и момента при заданном s

$$I_{n*} = \frac{I_{1n}}{I_{1n}} = 4,894$$
;

$$M_{n^*} = \left(\frac{I'_{2n}}{I'_{2n}}\right)^2 \cdot K_R \cdot \frac{S_n}{S_n} = 2,026.$$

Относительные значения подходят.

Критическое скольжение определяется после расчета всех точек пусковых характеристик по средним значениям сопротивлений $x_{1\text{нас}}$ и $x_{2\xi\text{наc}}$, соответствующим скольжениям s=0,5-0,2:

$$s_{\kappa p} = \frac{r'_{2}}{\frac{x_{1 \mu a c}}{c_{1 n \mu a c}} + x'_{2 \xi \mu a c}} = 0,244.$$

Максимальный момент двигателя вначале определяют по приближенному значению критического скольжения

$$M_{\rm max} = 2,326.$$

Кратности пускового момента и пускового тока спроектированного двигателя удовлетворяют ГОСТ 19523–74.

9 Тепловой расчет и расчет вентиляции

Превышение температуры внутренней поверхности сердечника статора над температурой воздуха внутри двигателя:

$$\Delta \theta_{nos1} = K \cdot \frac{P'_{9.n1} + P_{cm.ocn}}{\pi \cdot D \cdot l_1 \cdot \alpha_1} = 15,725, \, ^{\circ}\text{C},$$

где коэффициент, учитывающий, что часть потерь в сердечнике статора и в пазовой части обмотки передается через станину непосредственно в окружающую среду K=0,22. Потери в пазовой части $P'_{3,n1}$:

$$P'_{9.n1} = k_p \cdot P_{91} \cdot \frac{2 \cdot l_1}{l_{cp1}} = 514,041, \text{ BT},$$

где из таблицы 1 для s_H находим P_{91} =1900 Вт, коэффициент теплоотдачи с поверхности α_1 =170 Вт/(м²-оС); коэффициент увеличения потерь k_ρ = 1,07.

Перепад температуры в изоляции пазовой части обмотки статора:

$$\Delta \mathcal{G}_{u_{3.n1}} = \frac{P'_{3.n1}}{Z_1 \cdot \Pi_{n1} \cdot l_1} \left(\frac{b_{u_{3.n1}}}{\lambda_{_{9K6}}} + \frac{b_1 + b_2}{16 \cdot \lambda'_{_{9K6}}} \right) = 3,361 \, ^{\circ}\text{C},$$

где расчетный периметр поперечного сечения паза статора:

$$\Pi_{n1} = 100 \text{ MM}.$$

Перепад температуры по толщине изоляции лобовых частей:

$$\Delta \mathcal{G}_{u_{3..n}1} = \frac{P'_{9..n1}}{2 \cdot Z_1 \cdot \Pi_{n1} \cdot l_1} \left(\frac{b_{u_{3..n}1}}{\lambda_{9KB}} + \frac{h_{\Pi 1}}{12 \cdot \lambda'_{9KB}} \right) = 1,291 \, ^{\circ}\text{C},$$

где потери в лобовых частях катушек Р'элл1:

$$P'_{9.\pi 1} = k_p \cdot P_{91} \cdot \frac{2 \cdot l_{\pi 1}}{l_{cp}} = 1519, \text{ BT.}$$

Периметр условной поверхности охлаждения лобовой части одной катушки $\Pi_{n1} = \Pi_{n1} = 100\,$ мм; односторонняя толщина изоляции лобовой части катушки при отсутствии изоляции в лобовых частях $b_{\text{из.}n1} = 0$.

Превышение температуры наружной поверхности лобовых частей над температурой воздуха внутри машины:

$$\Delta \mathcal{G}_{noe.nl} = \frac{K \cdot P'_{_{\mathfrak{I}.nl}}}{2 \cdot \pi \cdot D \cdot l_{_{6bl,l}} \cdot \alpha_{_{1}}} = 4,765, \, ^{\circ}\mathrm{C}.$$

Среднее превышение температуры обмотки статора над температурой воздуха внутри машины:

$$\Delta \mathcal{G}'_{1} = \frac{\left(\Delta \mathcal{G}_{nog1} + \Delta \mathcal{G}_{u3.n1}\right) \cdot 2 \cdot l_{1}}{l_{cp1}} + \frac{\left(\Delta \mathcal{G}_{nog.n1} + \Delta \mathcal{G}_{u3.n1}\right) \cdot 2 \cdot l_{1}}{l_{cp1}} = 9,35 \, ^{\circ}\text{C}.$$

Превышение температуры воздуха внутри машины над температурой окружающей среды:

$$\Delta \theta_{s} = \frac{\sum P'_{s}}{S_{son} \cdot \alpha_{s}} = 77,021, \, ^{\circ}\text{C},$$

где $\sum P'_{s}$ — сумма потерь, отводимых в воздух внутри двигателя и $\sum P'$ — сумма всех потерь в двигателе при номинальном режиме и расчетной температуре:

$$\sum P'_{g} = \sum P' - (1 - K) \cdot (P'_{g,n1} + P_{cm,och}) - 0,9 \cdot P_{mex} = 3732, BT$$

$$\sum P' = \sum P + (k_p - 1)(P_{21} + P_{22}) = 6624$$
, BT.

Эквивалентная поверхность охлаждения корпуса:

$$S_{\kappa op} = (\pi \cdot D_a + 8 \cdot \Pi_p) \cdot (l_1 + 2 \cdot l_{gbl3.71}) = 1,864, \text{ M}^2.$$

Условный периметр поперечного сечения ребер корпуса двигателя $\Pi_p = 0.56 \text{ m}^2$, коэффициент подогрева воздуха $\alpha_B = 26 \text{ BT/(}\text{m}^{2 \cdot 0}\text{C}\text{)}.$

Среднее превышение температуры обмотки статора над температурой окружающей среды:

$$\triangle \mathcal{G}_1 = \triangle \mathcal{G}'_1 + \triangle \mathcal{G}_s = 86,371$$
, °C.

Значение находится в допустимых пределах.

Расчет вентиляции, требуемой для охлаждения расход воздуха:

$$Q_{e} = \frac{k_{m} \cdot \sum P'_{e}}{1100 \cdot \Delta g_{e}} = 0,453, \text{ M}^{3}/\text{c},$$

где k_m – коэффициент, учитывающий изменение условий охлаждения по длине поверхности корпуса, обдуваемого наружным вентилятором:

$$k_m = m \cdot \sqrt{\frac{n_1}{100} \cdot D_a} = 3 \cdot \sqrt{\frac{3000}{100} \cdot 0,392} = 10,288.$$

Расход воздуха, обеспечиваемый наружным вентилятором:

$$Q'_{g} = 0.6 \cdot D_{a}^{3} \cdot \frac{n_{1}}{100} = 0.6 \cdot 0.392^{3} \cdot \frac{3000}{100} = 1.084, \text{ m}^{3}/\text{c}.$$

Расход воздуха Q'_{B} должен быть больше требуемого для охлаждения машины Q_{B} :

$$Q'_{\epsilon} > Q_{\epsilon}$$
.

Заключение

В курсовом проекте проведен расчет асинхронного двигателя в соответствии с техническим заданием.

Спроектированный асинхронный двигатель удовлетворяет требованиям ГОСТ по энергетическим показателям $\cos \varphi_H = 0.91$; КПД = 0.90. Получены следующие параметры: $M^*_{\Pi} = 2.026$; $I^*_{\Pi} = 4.894$; $s_H = 0.019$; $s_{KP} = 0.244$; $\Delta Q_1 = 86.371$. Постоянная Арнольда C_A получилась как у базового двигателя:

$$C_A = \frac{2}{\pi B_\delta A k_{o61} k_B \alpha_\delta} = \frac{l_\delta D^2 \omega}{P'} = \frac{0.161 \cdot 0.204 \cdot 42}{2632} = 4.28 \cdot 10^{-5} , \text{ m}^3/(\text{c}\cdot\text{Bt}).$$

По пусковым характеристикам видно, что кратности пускового момента и пускового тока спроектированного двигателя удовлетворяют ГОСТ 19523-74.

Превышение температуры обмотки статора над температурой окружающей среды не превосходит 100 °C. Вентилятор обеспечивает необходимый расход воздуха.

Спроектированный двигатель отвечает поставленным в техническом задании требованиям.

Список источников

- 1. Проектирование электрических машин: Учеб. для вузов / И.П. Копылов, Ф.А. Горяинов, Б.К. Клоков, В.П. Морозкин, Б.Ф. Токарев; Под ред. И.П. Копылова. М.: Энергия, 1980. 496 с.
- 2. Проектирование электрических машин: Учеб. для вузов / И.П. Копылов, Б.К. Клоков, В.П. Морозкин, Б.Ф. Токарев; Под ред. И.П. Копылова. 3-е изд., перераб. и доп. М.: Высш. шк., 2002. 757 с.
- 3. Справочник. Асинхронные двигатели серии 4A /A.Э. Кравчик, М.М. Шлаф, В.И. Афонин, Е.А. Соболенская. М: Энергоиздат, 1982. 504 с.