MATH 5301 Elementary Analysis - Homework 2

Jonas Wagner

2021, September 08

Problem 1

For a function $f:A\to B$, show the following for any $X\subset A,Y,Z\supset B$

- **1a)** $X \subset f^{-1}(f(X))$
- **1b)** $f(f^{-1}(Y)) \subset Y$
- 1c) $f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z)$
- **1d)** $f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z)$

Show that:

2a)
$$A \cap \bigcup_{\lambda \in \Lambda} A_{\lambda} = \bigcup_{\lambda \in \Lambda} (A_{\lambda} \cap A)$$

Let $\Lambda := \{1, 2, \dots, n\},\$

$$A \cap \bigcup_{\lambda \in \Lambda} A_{\lambda} = A \cap (A_1 \cup A_2 \cup \dots \cup A_n)$$
$$= (A \cap A_1) \cup (A \cap A_2) \cup \dots \cup (A \cap A_n)$$
$$= \bigcup_{\lambda \in \Lambda} (A_{\lambda} \cap A)$$

Therefore,

$$A \cap \bigcup_{\lambda \in \Lambda} A_{\lambda} = \bigcup_{\lambda \in \Lambda} (A_{\lambda} \cap A)$$

2b)
$$\left(\bigcap_{\lambda \in \Lambda} A_{\lambda}\right) \cup \left(\bigcap_{\lambda \in \Lambda} B_{\lambda}\right) \subseteq \bigcap_{\lambda \in \Lambda} (A_{\lambda} \cup B_{\lambda})$$

Let $\Lambda_A := \{1, 2, \dots, n\}$ and $\Lambda_B := \{1, 2, \dots, m\}$,

$$\bigcap_{\lambda \in \Lambda} (A_{\lambda} \cup B_{\lambda}) = (A_1 \cup B_1) \cap (A_1 \cup B_2) \cap \dots \cap (A_1 \cup B_m) \cap (A_2 \cup B_1) \cap \dots \cap (A_n \cup B_m)$$

$$= (A_1 \cup (B_1 \cap B_2 \cap \dots \cap B_m)) \cap \dots \cap (A_n \cup (B_1 \cap B_2 \cap \dots \cap B_m))$$

$$= (A_1 \cap A_2) \cup (A_1 \cap A_3) \cup \dots \cup (A_2 \cap A_3) \dots \cup (A_{n-1} \cap A_n)$$

$$\cup (A_1 \cap B_1) \cup \dots \cup (A_1 \cap B_m) \cup \dots \cup (A_n \cap B_m)$$

$$\cup (B_1 \cap B_2) \cup \dots \cup (B_1 \cap B_m) \cup \dots \cup (B_{m-1} \cap B_m)$$

$$= \left(\bigcap_{\lambda \in \Lambda} A_{\lambda}\right) \cup \left(\bigcap_{\lambda \in \Lambda} B_{\lambda}\right) \cup (A_1 \cap B_1) \cup \dots \cup (A_1 \cap B_m) \cup \dots \cup (A_n \cap B_m)$$

Therefore,

$$\left(\bigcap_{\lambda \in \Lambda} A_{\lambda}\right) \cup \left(\bigcap_{\lambda \in \Lambda} B_{\lambda}\right) \subseteq \left(\bigcap_{\lambda \in \Lambda} A_{\lambda}\right) \cup \left(\bigcap_{\lambda \in \Lambda} B_{\lambda}\right) \cup (A_{1} \cap B_{1}) \cup \cdots \cup (A_{1} \cap B_{m}) \cup \cdots \cup (A_{n} \cap B_{m})$$

Problem: Which of these are equivalence relations?

Solution: a, c, & d

(The following explain why)

3a)

for $a, b \in \mathbb{R}$, let $a\mathcal{R}b$ if $a - b \in \mathbb{Q}$

i) Reflective:

$$x\mathcal{R}x = x - x = 0 \in \mathbb{Q}$$

ii) Symetric:

$$x\mathcal{R}y \implies y\mathcal{R}x$$
$$x\mathcal{R}y = x - y \in \mathbb{Q} \implies y - x \in \mathbb{Q}$$

Since x - y = -(y - x), (x - y) and (y - x) will both be either rational or not rational, this is true.

iii) Transitive:

$$x\mathcal{R}y \wedge y\mathcal{R}z \implies x\mathcal{R}z$$

$$(x - y \in \mathbb{Q}) \wedge (y - z \in \mathbb{Q}) \implies (x - z \in \mathbb{Q})$$

$$\left(\frac{x_a}{x_b} - \frac{y_a}{y_b} \in \mathbb{Q}\right) \wedge \left(\frac{y_a}{y_b} - \frac{z_a}{z_b} \in \mathbb{Q}\right) \implies \left(\frac{x_a}{x_b} - \frac{z_a}{z_b} \in \mathbb{Q}\right)$$

This also means that:

$$(x_a y_b - x_b y_a \in \mathbb{N}) \wedge (x_b y_b \neq 0 \in N) \wedge (y_a z_b - y_b z_a \in \mathbb{N}) \wedge (y_b z_b \neq 0 \in N)$$

$$\implies (x_a z_b - x_b z_a \in \mathbb{N}) \wedge (x_b z_b \neq 0 \in N)$$

Since this statments indicates that $x_b, y_b, z_b \neq 0$ and that $x_a y_b - x_b y_a, y_a z_b - y_b z_b \in \mathbb{N}$, the following will always be true as well: $x_a z_b - x_b z_a$. Therefore, the relation is transitive.

3b)

for $a, b \in \mathbb{R}$, let $a\mathcal{R}b$ if $a - b \notin \mathbb{Q}$

i) Reflective:

The relationship is NOT reflective:

$$a\mathcal{R}b = a - b \notin \mathbb{Q}$$

 $x\mathcal{R}x = x - x = 0 \in \mathbb{Q}$

3c)

for $a,b \in \mathbb{R}$, let $a\mathcal{R}b$ if a-b is a square root of a rational number.

$$a\mathcal{R}b = (a-b)^2 \in \mathbb{Q}$$

i) Reflective:

$$a\mathcal{R}b = (a-b)^2 \in \mathbb{Q}$$

 $x\mathcal{R}x = (x-x)^2 = 0^2 = 0 \in \mathbb{Q}$

ii) Symetric:

$$x\mathcal{R}y \implies y\mathcal{R}x$$
$$(x-y)^2 \in \mathbb{Q} \implies (y-x)^2 \in \mathbb{Q}$$
$$(x-y)^2 = (y-x)^2 : x\mathcal{R}y \implies y\mathcal{R}x$$

iii) Transative:

$$x\mathcal{R}y \wedge y\mathcal{R}z \implies x\mathcal{R}z$$

$$\left((x-y)^2 \in \mathbb{Q}\right) \wedge \left((y-z)^2 \in \mathbb{Q}\right) \implies \left((x-z)^2 \in \mathbb{Q}\right)$$

$$\left(x^2 - 2xy + y^2 \in \mathbb{Q}\right) \wedge \left(y^2 - 2yz + z^2 \in \mathbb{Q}\right) \implies \left(x^2 - 2xz + z^2 \in \mathbb{Q}\right)$$

$$(x^2 \in \mathbb{Q}) \wedge (y^2 \in \mathbb{Q}) \wedge (z^2 \in \mathbb{Q}) \wedge (-2xy \in \mathbb{Q}) \wedge (-2yz \in \mathbb{Q}) \implies (x^2 \in \mathbb{Q}) \wedge (z^2 \in \mathbb{Q}) \wedge (-2xz \in \mathbb{Q})$$

$$(xy \in \mathbb{Q}) \wedge (yz \in \mathbb{Q}) \implies (xz \in \mathbb{Q})$$

Which is clearly transitive, so $a\mathcal{R}b = (a-b)^2 \in \mathbb{Q}$ is transitive.

3d)

Let $X = \mathbb{Z} \times \mathbb{N}$, $x = (x_1, x_2)$ and $y = (y_1, y_2)$ are in \mathcal{R} if $x_1y_2 = x_2y_1$. i.e.

$$a_1, b_1 \in \mathbb{Z}, a_2, b_2 \in \mathbb{N},$$

$$a_1b_2 = a_2b_1 \implies (a_1, a_2)\mathcal{R}(b_1, b_2)$$

i) Reflective:

$$a_1b_2 = a_2b_1 \implies (a_1, a_2)\mathcal{R}(b_1, b_2)$$

 $x_1x_2 = x_2x_1 \implies (x_1, x_2)\mathcal{R}(x_1, x_2)$

ii) Symetric:

$$x\mathcal{R}y \implies y\mathcal{R}x$$
$$(x_1y_2 = x_2y_1 \implies (x_1, x_2)\mathcal{R}(y_1, y_2)) \implies (y_1x_2 = y_2x_1 \implies (y_1, y_2)\mathcal{R}(x_1, x_2))$$

iii) Transative:

$$x\mathcal{R}y \wedge y\mathcal{R}z \implies x\mathcal{R}z$$

$$(x_1y_2 = x_2y_1 \implies (x_1, x_2)\mathcal{R}(y_1, y_2)) \wedge (y_1z_2 = y_2z_1 \implies (y_1, y_2)\mathcal{R}(z_1, z_2)) \implies (x_1z_2 = x_2z_1 \implies (x_1, x_2)\mathcal{R}(z_1, z_2))$$

$$(x_1y_2 = x_2y_1) \wedge (y_1z_2 = y_2z_1) \implies (x_1z_2 = x_2z_1)$$

Which is clearly transitive, so $(a_1, a_2)\mathcal{R}(b_1, b_2)$ is transitive, and therefore an equivalence relation.

For the relation $(x,y) \succeq (a,b)$ if $(x \ge a)$ and $(y \ge b)$ on the set of ordered pairs of $\{1,2,3\} \times \{1,2,3\}$. i.e. $x,a \in \{1,2,3\}$ and $y,b \in \{1,2,3\}$,

$$(x \ge a) \land (y \ge b) \implies (x,y) \succeq (a,b)$$

4a) Show that the above relation is an order relation.

An ordered relation requires (i) reflexitivity, (ii) anti-symmetry, and (iii) transivity.

i) Reflective:

$$(x \ge a) \land (y \ge b) \implies (x, y) \succeq (a, b)$$

 $(x \ge x) \land (y \ge y) \implies (x, y) \succeq (x, y)$

ii) Anti-Symmetry:

$$((x,y) \succeq (a,b)) \land ((a,b) \succeq (x,y)) \implies (x,y) = (a,b)$$
$$((x \ge a) \land (y \ge b)) \land ((a \ge x) \land (b \ge y)) \implies (x,y) = (a,b)$$
$$((x \ge a) \land (a \ge x)) \land ((b \ge y) \land (y \ge b)) \implies (x,y) = (a,b)$$

iii) Transivity

$$(x,y)\mathcal{R}(a,b)\wedge(a,b)\mathcal{R}(\alpha,\beta) \implies (x,y)\mathcal{R}(\alpha,\beta)$$

$$((x\geq a)\wedge(y\geq b))\wedge((a\geq \alpha)\wedge(b\geq \beta)) \implies (x\geq \alpha)\wedge(y\geq \beta)$$

$$((x\geq a)\wedge(a\geq \alpha))\wedge((y\geq b)\wedge(b\geq \beta)) \implies (x\geq \alpha)\wedge(y\geq \beta)$$

$$(x\geq a\geq \alpha)\wedge(y\geq b\geq \beta) \implies (x\geq \alpha)\wedge(y\geq \beta)$$

Therefore, the relation $(x,y) \succeq (a,b)$ is an order relation.

- 4b) Can you make it the total order?
- 4c) How many different total orderings can be constructed?

Provide and example of $f:\mathbb{Z}\to\mathbb{N}$ such that

5a) f is surjective, but not injective

$$y = f(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

5b) f is injective, but not surjective

$$y = f(x) = \begin{cases} x^2 & x \ge 0 \\ x^2 + 1 & x < 0 \end{cases}$$

5c) f is surjective and injective (bijective)

$$y = f(x) = \begin{cases} 2x & x \ge 0 \\ -2x - 1 & x < 0 \end{cases}$$

5d) f is niether surjective nor injective

$$y = f(x) = 0$$

Problem: Is the following statement correct?

Theorem 1. If the relation \mathbb{R} on A is symmetric and transistive, then it is reflexive. Proof: For any $a \in A$ let $b \in A$ is such that $a\mathcal{R}b$. Then by symmetry $b\mathcal{R}a$. Then by symmetry $a\mathcal{R}a$.

Solution: No. Specifically, the final statement of the proof states to use symmetry to conclude that it is reflexive, but it actually requires the transivity property to make that conclusion.

The following is a proposed corrected statement:

Theorem 1. If the relation \mathcal{R} is symetric and transistive on A, then Rel is also reflexive on A. Proof: Let $a \in A$ and $b \in A$ be selected so that $a\mathcal{R}b$ Since \mathcal{R} is symetric:

$$a\mathcal{R}b \implies b\mathcal{R}a$$

Since \mathcal{R} is transitive:

$$(a\mathcal{R}b) \wedge (b\mathcal{R}a) \implies a\mathcal{R}a$$

Therefore, \mathcal{R} is also reflexive.