

For more Subjects

https://www.studymedia.in/fe/notes

Total No.	of Questions	: 9]
-----------	--------------	------

PA-4292

SEAT No.:	
-----------	--

[Total No. of Pages: 4

[5924]-1

F.E.

ENGINEERING MATHEMATICS - II (2019 Pattern) (Semester - II) (107008)

Time: 2½ *Hours*] [*Max. Marks*: 70

Instructions to the candidates:

- 1) Question No. 1 is compulsory.
- 2) Solve Q.No.2 or Q.No.3, Q.No.4 or Q.No.5, Q.No.6 or Q.No.7, Q.No.8 or Q.No.9.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Electronic pocket calculator is allowed.
- 6) Assume suitable data, if necessary.
- Q1) Write the correct option for the following multiple choice questions.

a)
$$\int_{0}^{\pi/2} \sin^5 x \, dx =$$
 [2]

i) $\frac{15}{8}$

ii) 0

iii) $\frac{8}{15}$

- iv) $\frac{8}{15} \frac{\pi}{2}$
- b) To evaluate integration $\int_0^a \int_{\sqrt{a^2-y^2}}^{y+a} f(x,y) dx dy$ we should first evaluate the

inner integral with respect to

[2]

i) *y*

ii) x

iii) xy

iv) y then x

P.T.O.

c) The general form of equation of sphere is [2]
$$x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$$
 for which centre and radius are given by

i)
$$c(u,v,w)$$
; $r = \sqrt{u^2 + v^2 + w^2 - d}$

ii)
$$c(-u,-v,-w)$$
; $r = \sqrt{u^2 + v^2 + w^2 + d}$

iii)
$$c(u,v,w)$$
; $r = \sqrt{u^2 + v^2 + w^2 + d}$

iv)
$$c(-u,-v,-w)$$
; $r = \sqrt{u^2 + v^2 + w^2 - d}$

d) The curve
$$x = t^2$$
, $y = t - \frac{t^3}{3}$ is [2]

- i) symmetric about X-axis
- ii) symmetric about Y-axis
- iii) symmetric about both the axes
- iv) none of these

e)
$$\iiint dx \, dy \, dz$$
 represents [1]

i) volume

ii) centre of gravity

iii) Area

iv) Moment of inertia.

f) Total number of loops for the curve
$$r = a \sin 5\theta$$
 are [1]

i) 2

ii) .

iii) 4

iv) 5

Q2) a) If
$$I_n = \int_0^{\pi/4} \tan^n \theta d\theta$$
 then show that $I_n = \frac{1}{n-1} - I_{n-2}$ [5]

b) Evaluate
$$\int_{0}^{\infty} \sqrt{x} e^{-x^{3}} dx$$
. [5]

c) Prove that
$$\int_0^\infty \frac{e^{-ax} \sin x}{x} dx = \cot^{-1} a$$
 [5]

OR

Q3) a) If
$$I_n = \int_0^{\pi/2} x^n \cos x \, dx$$
, then prove that $I_n = \left(\frac{\pi}{2}\right)^n - n(n-1)I_{n-2}$. [5]

b) Evaluate
$$\int_{0}^{1} x^{3} (1 - \sqrt{x})^{5} dx$$
. [5]

c) Prove that
$$\int_{0}^{\infty} e^{-x^{2}-2bx} dx = \frac{\sqrt{\pi}}{2} e^{b^{2}} [1 - erf(b)]$$
 [5]

Q4) a) Trace the curve :
$$y^3 = x^2 (2a - y)$$
. [5]

b) Trace the curve :
$$r = a \cos 3\theta$$
. [5]

c) Find the length of the upper arc of one loop of Lemiscale $r^2 = a^2 \cos 2\theta$ [5]

OR

Q5) a) Trace the curve :
$$ay^2 = x^2(a - x)$$
. [5]

b) Trace the curve :
$$r = a(\sqrt{2} + \sin \theta)$$
. [5]

c) Trace the curve :
$$\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3} = 1$$
. [5]

Q6) a) Show that the plane
$$2x-2y+z+12=0$$
 touches the sphere [5]
$$x^2+y^2+z^2-2x-4y+2z-3=0.$$
 Also find the point of contact.

- b) Find the equation of right circular cone having its vertex at the origin and passing through the circle: $x^2 + z^2 = 25$, y = 4. [5]
- c) Find the equation of right circular cylinder of radius 3 whose axis is the line $\frac{x-1}{2} = \frac{y-3}{2} = \frac{z-5}{-1}$. [5]

- **Q7**) a) Show that the spheres $x^2 + y^2 + z^2 = 25$ and $x^2 + y^2 + z^2 18x 24y 40z + 225 = 0$ touch externally and also find their point of contact. [5]
 - b) Find the equation of right circular cone whose vertex is at (0, 0, 10) and whose intersection with the XoY plane is a circle of radius 5. [5]
 - c) Find the equation of right circular cylinder of radius 2 whose axis passes through (1, 2, 3) and has direction ratios 2, -3, 6. [5]
- **Q8**) a) Change the order of integration and evaluate $\int_{0}^{\infty} \int_{y}^{\infty} \frac{e^{-x}}{x} dx dy.$ [5]
 - b) Find the area of one loop of the curve $r = a \cos 2\theta$. [5]
 - c) Find the x-co-ordinate of the centre of gravity of the area bounded by $y^2 = x$ and x + y = 2. Given that $A = \frac{9}{2}$ is the area of the region bounded by the given curves. [5]

OR

- **Q9**) a) Evaluate $\iint x^2 y^2 dxdy$ over positive quadrant of $x^2 + y^2 = a^2$, using polar transformations. [5]
 - b) Prove that volume bounded by cylinders $y^2 = x$, $x^2 = y$ and planes z = 0, x + y + z = 2 is $\frac{11}{30}$. [5]
 - c) Find the x-co-ordinate of the centre of gravity of one loop of $r = a \sin 2\theta$, (in first quadrant). Given that the area of loop is $A = \frac{\pi a^2}{8}$. [5]

