- 1. Optimal assignment of binary codes
 - a. Was implementing binary code checker last time
 - i. Previous lecture notes contain entire problem from start to finish
 - ii. This section describes the binary code assignment portion we didn't get to in lecture
 - b. Drew naïve implementation of FSM, then minimized it
 - i. Minimized version below

Drosant State	Next	State	Output			
Present State	x = 0	x = 1	x = 0	x =1		
i	*	*	1	1		
*	0*	1*	1	1		
0*	00*	~(00*)	1	1		
1*	~(00*)	~(00*)	1	1		
00*	i	i	0	0		
~(00*)	i	i	0	1		

State table

- c. Will need $\lceil \log_2 6 \rceil = 3$ flip flops to represent 6 states
- d. Can assign binary codes for states randomly
 - i. Random assignment works
 - ii. However, careful assignment reduces the combinational logic
- e. Rule of thumb for state binary code assignments
 - i. Try to assign adjacent (Hamming distance of 1) code words to a state and the state that follows it
 - ii. If two states have the same next state, assign those states code words adjacent to next state
 - iii. Creating a K-map helps immensely with this process
 - iv. Initial state i will always be all 0s
- f. Assign using the rules above
 - i. Place i at 000, will always do this
 - ii. Place * next to i at 010 since * is the successor to i
 - iii. Place 0* and 1* adjacent to * at 110 and 011 respectively
 - iv. 00* needs to be adjacent to i and 0*, which leaves 100 as the only place
 - v. Would like \sim (00*) to be adjacent to 0*, 1*, and i, but that isn't possible
 - 1. These are rules of thumb, not fixed laws
 - vi. Can place \sim (00*) at 001 to be adjacent to i and 1*, though
- g. Note that there may potentially be more than one valid code assignment that minimizes distance

Binary Code		AB									
		00	01	11	10						
C	0	i	*	0*	00*						
С	1	~(00*)	1*								

2. Debugging an FSM

- a. Generally, much more efficient to put in effort to get it right to begin with
 - i. Students tend to jump straight to coding without planning program layout
 - ii. Might work for smaller programs you write for classes... doesn't necessarily work in industry
 - iii. Same idea here—put in time drawing FSM right to begin with, save time later
 - iv. Nothing wrong with drawing a naïve FSM enumerating all states
 - 1. Once you've got that down, then minimize
 - 2. Trick is making sure that you draw that naïve FSM right to begin with
- b. One good way of seeing if your FSM you drew was right is to give a stream of inputs into your FSM
 - i. Starting from your initial state i, give inputs and track your progression through your diagram
 - ii. See what states you land at, and if those are what you expect
 - iii. Also see what outputs you get, and if those are what you expect as well
- c. Examples
 - i. With the BCD checker (both naïve and simplified) pass in 4 bit inputs and check output stream
 - 1. Outputs should be all 1s until you receive 4th bit
 - 2. On 4th bit, output 0 if input stream is 0-9 when interpreted as binary number
 - ii. With the vending machine below, give a dime, then a dime, then a quarter
 - 1. Vending machine shouldn't vend before enough money inserted
 - 2. Change should be appropriate once enough money is inserted into machine

3. More complicated FSMs

- a. Design a vending machine that only takes dimes and quarters
 - i. Merchandise is dispensed (z = 1) when the sum of the inputs ≥ 30 cents
 - ii. Machine does not give change, no matter how much extra money gets deposited
- b. $x_1 = quarter, x_2 = dime$
 - i. Two input, single output z
 - a. State transition table will look somewhat different than you've seen before
 - ii. Assume that it is not possible to input both quarters and dimes simultaneously
 - a. How does that make sense physically?
 - iii. No coin input results in no impact on machine
 - a. What kind of vending machine eats your money if you don't deposit it fast enough?
- c. Will use a Mealy model
 - i. Provides for simpler logic in the end for this case
 - ii. As usual, though, a Moore model could provide simpler logic in certain cases

- d. First, create state transition diagram
 - i. Inputs are (x_1, x_2) for (quarter, dime)

- e. Next, minimize the number of states using the Partition Minimization Procedure
 - i. $P_1 = (i, 10, 20, 25)$
 - ii. $P_2 = (i) (10) (20, 25)$
 - 1. 20 and 25 have same k-successors (i for both) so they stay together
- f. Draw new state transition diagram, with new state called 20+

- g. Assign code words next
 - i. $\lceil \log_2 3 \rceil = 2$ flip flops
 - ii. S_i starts in 00
 - iii. No way to place all adjacent states 1 Hamming distance away
 - 2. Do the best we can, though

Binary Code		\boldsymbol{A}			
		0	1		
В	0	i	20+		
D	1	10			
_		•			

- h. Next, create state transition table
 - i. Don't have to create state table since this is simple enough
 - ii. Will do the same as BCD checker and add empty rows to the table for don't cares

Dunnant	Dinom	Presen	Inp	uts	Next	State	Output	
Present State	Binary Code	Α	В	X 1	X2	A'	B'	Output z
i	00	0	0	0	0	0	0	0
i	00	0	0	0	1	0	1	0
i	00	0	0	1	0	1	0	0
		0	0	1	1	d	d	d
10	01	0	1	0	0	0	1	0
10	01	0	1	0	1	1	0	0
10	01	0	1	1	0	0	0	1
		0	1	1	1	d	d	d
20+	10	1	0	0	0	1	0	0
20+	10	1	0	0	1	0	0	1
20+	10	1	0	1	0	0	0	1
		1	0	1	1	d	d	d
		1	1	0	0	d	d	d
		1	1	0	1	d	d	d
		1	1	1	0	d	d	d
		1	1	1	1	d	d	d

- i. Finally, create K-maps from table above
 - i. Be careful when entering values into K-map!
 - 1. For example, (A, B, x_1 , x_2) = 0011 is missing since we can't have (x_1 , x_2) = (1, 1)
 - 2. Make those inputs don't cares like normal
 - 3. We added extra rows to the binary code table
 - a. This way, we know exactly where the don't cares go

A'		AB B'				AB				Z	AB						
		00	01	11	10			00	01	11	10			00	01	11	10
	00	0	0	d	1)		00	0	[1	d	0		00	0	0	d	0
26. 26	01	0	1	d)	0	24. 24	01	1	0	d	0	24 24	01	0	0	d	1
x_1x_2	11	d	d	d	d	x_1x_2	11	d	d	d	d	x_1x_2	11	d	d	d	d
	10	1	0	d	0		10	0	0	d	0		10	0	1	d	<u>1</u> J
A' = A	$4\overline{x_1}$	7 +	Bx_2	+ Ā	$\bar{B}x_1$	$B' = B\overline{x_1}\overline{x_2} + \bar{A}\bar{B}x_2$						z =	Ax_2	2 + .	Bx_1	+ A:	x_1