	Chương 1	Chương 2	Chương 3
Lê Huỳnh Trúc Vy	1-4	1-3	1, 2
Trần Mỹ Yên	5-8	4,5,8	3, 4
Thái Minh Khang	9-12	6,7	5, 6, 7
Lê Quốc Thái	13-16	9-11	8, 9, 10

Hạn chót: Thứ 5 (18/9)

CHUONG 1

- 1. Goal/reward alignment: How do we specify a robust objective function? Whose objectives are used?
- 2. Instrumental convergence: All intelligent agents will pursue common subgoals like the need for more power to get better at reaching its objectives. How will this need be balanced with human's needs?
- 3. What are the LLMs? Percepts? Actions? Objectives?
- 4. How do Large Language Models fit into the AI Framework in this Course? think like a human? act like a human? think rationally? act rationally?
- 5. What do LLMs do? Do LLMs act rationally? Ask a chatbot if it acts rational
 - Is an intelligent agent
- 6. Would a modern LLM pass the Turing Test?
- Would you be fooled?
- Why does it or does it not pass your test?
- What does this mean for artificial general intelligence (AGI) or narrow AI?
- 7. How do we currently test the performance of LLMs?
- 8. How do you think LLMs will affect the value of being able to write assays as taught in high school?
- 9. LLMs write computer code. What does this mean for the value of learning to code?
- 10. When should students be allowed to use the following tools? Give reasons for your decision.
 - A pocket calculator
 - LLMs (to answer homework questions and write assays)
 - LLMs to write or support writing code
- 11. How are LLMs affected by:
 - Robustness: Black swan vs. adversarial robustness

- Monitoring AI
- What about liability?
- Goal/reward alignment
- Reward hacking
- AGI and instrumental convergence
- 12. Should the use of LLMs be regulated? How? What about copyright?
- 13. How do LLMs reason and what are the limits?
- 14. How do we make sure that LLMs generate factually correct output?
- 15. How do we fairly compensate the people who create the data that is used to train LLMs?
- 16. How do we use LLMs in learning, so human learning is not compromised?

CHUONG 2

- 1. If we have two cars and one provides more (expected) utility. Which car is rational?
- 2. Can a rational self-driving car be involved in an accident?
- 3. How would a self-driving car explore and learn?
- 4. What does bounded rationality mean for a self-driving car?

Environment for a Self-Driving Car

		ly observable: The agent's sensors vays show the whole state.	vs.	perc	ially observable: The agent only seives part of the state and needs to ember or infer the test.
8	Det a) b)	Percepts are 100% reliable Changes in the environment are completely determined by the current state of the environment and the agent's action.	vs.	Stoc a)	Chastic: Percepts are unreliable (noise distribution, sensor failure probability, etc.). This is called a stochastic sensor model. The transition function is stochastic leading to transition probabilities and a Markov process.
Known: The agent knows the transition function.		vs.	Unknown: The needs to learn the transition function by trying actions.		
Check what applies and explain what it means for a self-driving car.					

- 6. Example: Solving a puzzle. What action gets me closer to the solution?
- 7. Design a structured representation for the state of a self-driving car.
 - a) What fluents should it contain?
 - b) What actions can cause transitions?
 - c) Draw a small transition diagram.
- 8. What Type of Intelligent Agent is a Self-Driving Car?

- 9. Does it collect utility over time? How would the utility for each state be defined?
- 10. Does it have a goal state?
- 11. Does it store state information. How would they be defined (atomic/factored)?
- 12. Does it use simple rules based on the current percepts?

CHUONG 3

- 1. How do we find the optimal solution (sequence of actions/states)?
- 2. In how many ways can we order/arrange n objects?
- 3. What is the State Space Size?
- 4. What is the Search Complexity?
- 5. What relaxations are used in these two cases?
- 6. What is the cost that needs to be estimated?
- 7. What would be a heuristic value for these boards:

- 8. How do you calculate the heuristic value?9. Is the heuristic admissible?
- 10. Does the heuristic use relaxation?