

Факультет программной инженерии и компьютерной техники
Методы расчёта глобальной освещённости

Лабораторная работа №1: Расчёт глобального освещения на примере фотометрического шара

Вариант №6

Преподаватель: Потемин Игорь Станиславович

Выполнил: студент: Кульбако Артемий Юрьевич, Р34115

Задание

Вариант 06

<u>Фотометрический шар:</u> R = 1300 mm

R = 1300 mr Kd = 0.98 Задача 1: расчет освещенности в заданных точках внутренней поверхности фотометрического шара

Источник:

Тип: конический (15°)

Положение: (0, 0, -100) Направление: (0, 0, -1)

Световой поток: 130 Ватт

Спектр:

равноэнергетический белый

(380 - 780 hm)

Определить:

освещенность в точках

(-R, 0, 0) (0, -R, 0) (0, 0, R)

Вариант 06

Z

-R

Фотометрический шар:

R = 1300 mm

Kd = 0.98

Задача 2: расчет коэффициента отражения части поверхности фотометрического шара

Источник:

Тип: конический (15°)

Положение: (0, 0, -100) Направление: (0, 0, -1) Световой поток: 130 Ватт

Спектр:

равноэнергетический белый

(380 - 780 hm)

Исследуемая часть поверхности шара:

Kd' = 0.3 S' = 0.15 * S *Исходные данные:* Радиус фотометрического шара, коэффициент диффузного отражения внутренней поверхности шара, световой поток точечного источника света внутри шара, координаты точек в которых следует рассчитать освещенность, площадь участка с искомым коэффициентом отражения.

Цель работы: Овладеть навыками расчета освещенности на внутренней поверхности фотометрического шара и расчета коэффициента отражения части поверхности фотометрического шара как аналитически, так и с помощью компьютерного моделирования с использованием комплекса программ Lumicept.

Задачи:

- 1. Расчет освещенности внутренней поверхности фотометрического шара
 - Провести аналитический расчет освещенности в заданных точках внутренней поверхности фотометрического шара.
 - Сформировать сцену фотометрического шара и провести компьютерное моделирование процесса измерения освещенности в заданных точках с помощью программного комплекса Lumicept с использованием скрипта Python. Моделирование (виртуальное измерение) провести как методом прямой трассировки, используя модель фотоприемника Plane illuminance observer, так методом двунаправленной трассировки Path Tracing.
 - Сравнить значения освещенности, полученные в результате виртуального измерения с соответствующими значениями, полученными аналитически.
- 2. Расчет коэффициента отражения части поверхности фотометрического шара
 - Сформировать сцену фотометрического шара, состоящего из двух частей в соответствии с индивидуальным заданием.
 - Провести моделирование процесса измерения освещенности поверхности шара в заданных точках, используя модель фотоприемника Plane illuminance observer. Определить суммарный (средний) коэффициент диффузного отражения Kd_{Σ} . Вычислить коэффициент диффузного отражения Kd' исследуемой части шара.
 - Определить погрешность "измерения", сравнивая плаченное значение Kd', с его истинным значением, указанным в индивидуальном задании.

Отчет представить в электронном виде: Формат MS Word или PowerPoint, эскиз схемы с указанием заданных точек. Для подготовки эскиза можно использовать скриншоты из Lumicept. Результаты моделирования представить в виде таблицы. К отчету приложить файлы скриптов (*.py) и сцен (*.iof).

Выполнение

Сначала мною была вручную создана необходимая сцена с использованием GUI Lumicept, а после воссоздана с помощью написанного мною же скрипта на Python (скрипт приложен отдельным файлом).

Рисунок 1 - Сцена 2-ой части задания в viewport

Далее была создана таблица для аналитических расчётов, куда внесены данные, полученные с PlaneObserver-ов и камер методом Path Tracing.

Рисунок 2 - Пример захвата освещённости

	Исходные	данные	Результаты измерения освещённости в Lumicept					
$E = \frac{Kd \cdot F_0}{4\pi R^2 (1 - Kd)}$	R, m	1,3	Точка на сфере	Освещённость				
	F0, W	130	<i>X_Y_Z</i>	E_obs, W/m2	E_pt, W/m2			
	Kd	0,98	(-R_0_0)	301,4110	302,0680			
	t, сек	300	(OR_O)	300,8760	300,4450			
расчёт	E, W/m2	299,9459	(0_0_R)	300,9630	301,3620			
observer	E, W/m2	301,0833						
	ошибка %	0,3792						
path tracing	E, W/m2	301,2917						
	ошибка %	0,4487						

Таблица 1 - Задание 1

	Исходные д	анные для пос	троения сц	ены					
R (M)	S (M2)	Δ	S' (M2)	h (м)	Kd'	Kd	F0 (W)	z cutting plane (м)	t (сек)
1,3	21,2372	0,1500	3,1856	0,3900	0,3000	0,9800	130,0000	0,9100	240,0000
		S'	$= \Delta \cdot S$	$h = \Delta 2R$					
Результат виртуального измерения освещённости в Lumicept					$E = \frac{Kd \cdot F_0}{4\pi R^2 (1 - Kd_{\Sigma})}$				
Точка на сфере	Освещённость (imaps)			E =	4 702/1				
X_Y_Z	E, W/m2				$4\pi R^2(1$	$-Kd_{\Sigma}$			
(-R_0_0)	49,1652								
(0R_0)	49,5221								
(O_O_R)	49,5651								
	49,4175								
	Спельний КА г	оверхности ш	ana coctog	шего из 2 и	астей				
VAF	среднии ка г	юверхности ш	ара, состол	щего из 2 ч	acien		1		
<i>Kd∑</i> 0,8786	$Kd_{\Sigma} = \frac{S'}{S} (Kd' -$	– <i>Kd</i>)+ <i>Kd</i>							
V-I	×								
-	исследуемой части шара								
Кd'изм	Kd'	Ошибка, %							
0,3040	0,3000	0,0133							

Таблица 2 - Задание 2

Были использованы следующие формулы:

$$E=rac{KdF_0}{4\pi R^2(1-Kd)}$$
 - освещённость (Вт/м2), где Кd - коэффициент диффузного отражения, F0 - световой поток источника света (Вт)

$$Kd_{\Sigma}=rac{S'(Kd'-Kd)}{S}+Kd$$
 - коэффициент диффузного отражения поверхности, исследуемой части шара, где S' - исследуемая площадь шара (м2)

Вывод

Как можно видеть из таблицы, аналитические расчёты оказались верными - расхождение с Lumicept в худшем случае составило всего 1.5%. В ходе выполнения лабораторной работы были получены навыки расчёта освещённости на внутренней поверхности фотометрического шара и расчёта коэффициента отражения части поверхности, которые в будущем можно будет использовать для решения соответствующей задачи в своих программах.