Abstract Algebra: Homework 4

Huize Shi - A92122910

February 8, 2018

Section 6

22.

Subgroup diagram of \mathbb{Z}_{12}

23.

Subgroup diagram of \mathbb{Z}_{36}

24.

Subgroup diagram of \mathbb{Z}_8

26.

$$<0>: \frac{8}{\gcd(0,8)} = 1$$

$$<1>: \frac{8}{\gcd(1,8)} = 8$$

$$<2>: \frac{8}{\gcd(2,8)} = 4$$

$$<3>=<1>: \frac{8}{\gcd(3,8)} = 8$$

$$<4>: \frac{8}{\gcd(4,8)} = 2$$

$$<5>=<1>: \frac{8}{\gcd(5,8)} = 8$$

$$<6>=<2>: \frac{8}{\gcd(5,8)} = 4$$

$$<7>=<1>: \frac{8}{\gcd(7,8)} = 8$$

All subgroups of \mathbb{Z}_8 : <0>,<1>,<2>,<4>

29.

All subgroups of \mathbb{Z}_{17} : <0>, <1>. 17 is prime therefore all number from 1 to 16 are prime to 17. This means the only subgroups are <0> and <1>

45.

Proof. Let r and s be positive integers. Show that $\{nr + ms \mid n, m \in \mathbb{Z}\}$ is a subgroup of \mathbb{Z}

Closure:

$$(n_1r + m_1s) + (n_2r + m_2s)$$

= $n_1r + n_2r + m_1s + m_2s$
= $(n_1 + n_2)r + (m_1 + m_2)s$

Hence show the set is closed under addition.

Identity:

$$(0r + 0s) = 0$$

Hence shown 0 is in the set.

Inverse: $\forall \{nr + ms \mid n, m \in \mathbb{Z}\}\$, let the inverse be defined as $\{(-n)r + (-m)s \mid n, m \in \mathbb{Z}\}\$.

$$(nr + ms) + ((-n)r + (-m)s)$$

$$= nr - nr + ms - ms$$

$$= 0$$

Hence shown that $\{nr + ms \mid n, m \in \mathbb{Z}\}$ is a subgroup of \mathbb{Z} .

50.

Proof. Since a is of order 2, $a^2 = a * a = e$. Consider the following:

$$(xax^{-1})^{2}$$

$$=(xax^{-1})(xax^{-1})$$

$$=xa(x^{-1}x)ax^{-1}$$

$$=x((ae)a)x^{-1}$$

$$=xx^{-1}$$

$$=e$$

It is evident that $xax^{-1} \neq e$ because it would imply that a = e which is of order 1. Since a is the unique element that has order 2, and $(xax^{-1})^2 = e$, this imply that $xax^{-1} = a$, because no other element when raised to the second power would evaluates to e. Therefore the following holds:

$$xax^{-1} = a$$

$$xa(x^{-1}x) = ax$$

$$xae = ax$$

$$xa = ax$$

51.

Generators of \mathbb{Z}_{pq} are defined as integers that are less than pq and are relatively prime to pq. Since there are (p-1) number of multiples of q, and (q-1) number of multiples of p, there are (pq-1)-(p-1)-(q-1) number of integers that are less than pq and relatively prime to pq.

$$(pq-1) - (p-1) - (q-1)$$

= $pq - 1 - p + 1 - q + 1$
= $pq - p - q + 1$
= $(p-1)(q-1)$

There are (p-1)(q-1) number of positive integers that generates \mathbb{Z}_{pq} .

52.

Let p be a prime number and r an integer ≥ 1 . There are $p^{r-1}-1$ factors of p^r . There are p^r-1 number s less than p^r . The number of coprime integers less than p^r is as follows:

$$(p^{r}-1) - (p^{r-1}-1)$$

$$=p^{r}-1-p^{r-1}+1$$

$$=p^{r}-p^{r-1}$$

$$=p^{r-1}(p-1)$$

There are $p^{r-1}(p-1)$ number of generators of the cyclic group \mathbb{Z}_{p^r} where p is a prime number and r is an integer ≥ 1 .

55.

Proof. Cyclic group $C \leq G$ is the smallest possible subgroups. This means that if there exist a nontrivial proper subgroup, it must be a cyclic group of G. Given \mathbb{Z}_p where p is a prime number. All p-1 numbers less than p are coprime to p. this means that all p-1 generators generates G which means that there are no proper nontrivial subgroup of \mathbb{Z}_p if p is a prime number.

56.

a. Let $H = \langle a \rangle$ and $K = \langle b \rangle$. Since |H| = r and |k| = s, we know that because G is abelian $(ab)^{rs} = (a^r)^s (b^s)^r = e$. Guessing that $\langle ab \rangle$ generates the cyclic subgroup of order rs.

Identity:

$$(ab)^n = e$$
$$a^n b^n = e$$
$$a^n = b^{-n} = c$$

Since c is in H and K, it generates subgroup of H with some order that divides r, and also generates subgroup of K with some order that divides s. However, since r and s are coprimes, the following is implied:

$$(|\langle c \rangle| = 1) \Rightarrow (\langle c \rangle = e) \Rightarrow (c = e)$$

Hence we know $a^n = b^{-n} = e$, this means that since $a^n \in H$ and $b^n \in K$, this means n must be divisible by both r and s. Hence we know n = rs. This means that $\langle ab \rangle$ is the subgroup of order rs.

b. Let m = gcd(r, s), n = mp and p is prime to r and that rp = rs/m is the LCM(r, s). This means that $|\langle a \rangle| = r \wedge |\langle b^m \rangle| = p$. Since r and q are coprimes, by part a, we know that ab^d generates the cyclic subgroup of order the LCM of r and s.