Interrogation sur le chapitre Intégration

Quelles sont, parmi les fonctions suivantes, les primitives de la fonction $t\mapsto \frac{u'(t)}{u(t)}$?

$$igsqcup t\mapsto -\ln(u(t)) \qquad igsqcup t\mapsto -rac{1}{u^2(t)} \qquad igsqcup ext{aucune} \qquad igsqcup t\mapsto rac{1}{u^2(t)} \qquad igsqcup t\mapsto \ln(-u(t))$$

$$\qquad \qquad t\mapsto -rac{1}{u^2(t)}$$

$$igcap t\mapsto \ln(-u(t))$$

Question 2 Donner l'intégrale qui vaut Arctan(2) - Arctan(1)

Question 3 Donner le bon argument : $\int_{2}^{0} f(t) dt$ est définie car f est

$$C^1$$
 sur $[0,2]$

$$\mathbb{C}^1$$
 sur $[0,2]$ définie sur $[0,2]$ definie sur $[0,2]$ continue sur $[0,2]$

Question 4 On note $A = \int_{2}^{-3} \frac{1}{1+t^2} dt$. Comme pour tout $t \in \mathbb{R}$, $0 \leqslant \frac{1}{1+t^2} \leqslant 1$, on a

$$A \leq 5$$

$$A \leq 3$$

$$\neg A \geqslant -5$$

Question 5 On note $F(x) = \int_1^x f(t) dt$ avec f continue sur \mathbb{R} . Quelle réponse est la plus précise ? Sur \mathbb{R} , F est ...

$$oxedge$$
 dérivable et croissante $oxedge$ de classe \mathcal{C}^1

$$\square$$
 de classe \mathcal{C}^1

Question 6 $\frac{1}{n}\sum_{k=0}^{\infty}\frac{1}{(1+\frac{k}{n})^2}$ est une somme de Riemann pour la fonction f(x)=

Question 7 $x \mapsto \int_{a}^{1} \cos(t) dt$ est :

$$\square$$
 une primitive de $x\mapsto \cos(x)$

Question 8 $u \mapsto \int_{1}^{u} \operatorname{Arctan}(1) dt$ est:

$$oxed{ }$$
 mal définie $oxed{ }$ une primitive de $x\mapsto \operatorname{Arctan}(x)$

Question 9 $x \mapsto \int_{1}^{x} e^{t^2} dt$ est :

$$oxed{ }$$
 une fonction affine $oxed{ }$ une primitive de $x\mapsto e^{x^2}$

Question 10 $x \mapsto \int_0^t \sqrt{x} dt$ est :

$$oxed{ }$$
 une fonction affine $oxed{ }$ une primitive de $x\mapsto \sqrt{x}$

Soit f une fonction continue sur [a, b] avec a < b, alors

$$\left| \int_a^b f(t) \, \mathrm{d}t \right| \leqslant \int_a^b |f(t)| \, \mathrm{d}t$$

Question 12 Pour $(a,b) \in (\mathbb{R}_+^*)^2$, $\int_a^b \ln(t) dt = ...$

 $egin{bmatrix} \left[rac{1}{t}
ight]_a^b & \left[\ln(\ln(t)) - \ln(t)
ight]_a^b & \left[t\ln(t) - t
ight]_a^b & \left[\frac{\ln(t)}{t}
ight]_a^b \end{bmatrix}$

Question 13 Pour $(a,b) \in (\mathbb{R}_+^*)^2$, $\int_a^b \frac{1}{t^5} dt = ...$