UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO - UERJ PROFESSOR: ALEXANDRE ASSEMANY

CURSO: GEOMETRIA ANALÍTICA COM CÁLCULO VETORIAL - 1ª LISTA

- 1. Supondo $\|\vec{a}\|=2$, $\|\vec{b}\|=3$ e $\theta=ang(\vec{a},\vec{b})=30^{\circ}$, calcule:
- a) $\|\vec{a} + \vec{b}\|$
- b) $\|\vec{a} \vec{b}\|$
- c) $||3\vec{a}-2\vec{b}||$
- 2. Dados os pontos A = (2,2,-1) e B = (3,-2,6), determine:
- a) O versor de \overrightarrow{AB}
- b) Um vetor paralelo, mas de sentido contrário a \overrightarrow{AB}
- 3. Dados $\vec{v}_1 = \vec{i} + 2\vec{j} \vec{k}$, $\vec{v}_2 = 2\vec{i} \vec{j}$ e $\vec{v}_3 = \vec{i} 3\vec{j} + 4\vec{k}$, determine o vetor unitário de sentido oposto ao vetor $\vec{v} = 2\vec{v}_1 \vec{v}_2 + \vec{v}_3$.
- 4. Verifique, justificando, se os vetores abaixo são colineares:
- a) $\vec{v} = (-2,4,1), \vec{u} = (4,-8,-2)$
- b) $\vec{v} = (-7,2,3), \vec{u} = (14,4,6)$
- c) $\vec{v} = (4,3,1), \vec{u} = (8,5,-2)$
- 5. Determine os vetores de norma 14 e paralelos ao vetor resultante da adição de $\vec{v}_1 = 2\vec{i} + \vec{j} 3\vec{k}$ e $\vec{v}_2 = 4\vec{i} 3\vec{j} + 6\vec{k}$.
- 6. Dadas as duas coordenadas x = 4 e y = -12 de um vetor $\vec{a} \in \mathbb{R}^3$, calcule a terceira coordenada z de modo que $||\vec{a}|| = 13$.
- 7. Se \vec{u} e \vec{v} são perpendiculares e tem norma 5 e 12, respectivamente, calcule:
- a) $\|\vec{u} + \vec{v}\|$
- b) $\|\vec{u} \vec{v}\|$

Explique o fenômeno que ocorre em a) e b).

- 8. Dados os vetores $\vec{u}=(3,4)$ e $\vec{v}=(-1,0)$, encontre as coordenadas do vetor $\vec{w}=(2,-5)$, escrito na base $[\vec{u},\vec{v}]$.
- 9. Dados os vetores $\vec{u}=(3,2)$, $\vec{v}=(2,4)$ e $\vec{w}=(1,3)$, exprimir \vec{w} como a combinação linear de \vec{u} e \vec{v} .
- 10. Dados os vetores $\vec{a}=(3,-2,1)$, $\vec{b}=(-1,1,-2)$, $\vec{c}=(2,1,-3)$, determine as coordenas do vetor $\vec{w}=(11,-6,5)$ na base $\{\vec{a}\ ,\vec{b}\ ,\vec{c}\}$.

- 11. Responda e justifique, conhecendo A = (3,-1,2), B = (1,2,-1), C = (-1,1,-3) e D = (3,-5,3):
- a) ABCD pode ser um trapézio retângulo?
- b) ABCD pode ser um trapézio isósceles?
- c) ABCD pode ser um triângulo equilátero?
- d) ABCD pode ser uma figura espacial? Caso afirmativo, qual é a figura?
- 12. No triângulo ABC, os vértices são A = (1,2), B = (-2,3) e C = (0,5). Responda:
- a) Qual é a natureza do triângulo quanto aos seus lados?
- b) Qual é a natureza do triângulo quanto aos seus ângulos?
- c) Qual é o comprimento da altura deste triângulo? E da mediana?
- d) Quais são as coordenadas do pontos médios dos lados \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{BC} ?
- 13. No triângulo PQR, encontre o ângulo interno do vértice P e diga porque P, Q e R podem ser vértices de um triângulo, sendo P = (1,1,1), Q = (0,-2,0) e R = (1,-1,3).
- 14. Qual é a condição para que um ponto P(x,y) esteja equidistante dos pontos A = (1,1) e B = (3,4)?
- 15. Dados $\vec{u} = (1, -1, 0)$, $\vec{v} = (3, -1, 1)$, $\vec{w} = (2, 2, 1)$, $\vec{z} = (4, -3, 1)$, determine o vetor \vec{a} , tal que $(\vec{a} + \vec{u})$ // \vec{v} e $(\vec{a} + \vec{w})$ // \vec{z} .
- 16. Seja ABCD um paralelogramo, em que I é o encontro das diagonais. Diga se são verdadeiras ou falsas as afirmações, justificando:
- a) $\overrightarrow{AB} = \overrightarrow{CD}$
- b) $\|\overrightarrow{AB}\| = \|\overrightarrow{CD}\|$
- c) $\|\overline{AB}\| + \|\overline{BC}\| = \|\overline{AC}\|$
- d) $\|\overrightarrow{AB} + \overrightarrow{BC}\| = \|\overrightarrow{AC}\|$
- e) $\|\overrightarrow{DC} + \overrightarrow{AD}\| = 2\|\overrightarrow{IC}\|$
- f) $\|\overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DA}\| = 0$
- 17. Se ABCDEF é um hexágono regular de lado R e centro em (0,0), responda:
- a) $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} = \overrightarrow{DA}$?
- b) $\|\overline{AB}\| + \|\overline{BC}\| + \|\overline{OD}\| = 3R$?
- c) $\|\overrightarrow{AE} + \overrightarrow{EF}\| = R$?
- d) $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{FE} + \overrightarrow{ED}$?
- e) Quais são as coordenadas dos vértices, sabendo que um deles é o ponto A = (-2,0)?
- f) A partir da informação da letra e), descubra qual é a medida de R.
- 18. Mostre no \mathbb{R}^2 , que $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos(\theta)$.
- 19. Mostre no \mathbb{R}^2 , que $\det A = ||\vec{u}|| ||\vec{v}|| sen(\theta)$, em que A é a matriz cujos elemento são as coordenadas de $\vec{u} \, e \, \vec{v}$.
- 20. Mostre que, se $\vec{u} = \frac{\vec{v}}{\|\vec{v}\|}$, então \vec{u} é unitário e tem a mesma direção e sentido que \vec{v} .

- 21. Se $\overline{AC} = (-1,5,0)$ e $\overline{BD} = (-3,3,2)$ são as diagonais de um paralelogramo ABCD, calcule a área do mesmo.
- 22. Encontre $\|proj_{w}^{t}\|$, sabendo que $\vec{w} = (2, -3, -6)$ e $\vec{t} = 3\vec{i} 4\vec{j} 4\vec{k}$.
- 23. Dados os vetores $\vec{u} = (2,1,3)$, $\vec{v} = (-4,0,-6)$ e $\vec{w} = (4,-1,2)$, encontre \vec{y} perpendicular a $\vec{u} e \vec{v}$, tal que $\vec{y} \cdot \vec{w} = 8$.
- 24. Seja \vec{n} ortogonal ao eixo OX e \vec{d} =(3,0,-1) . Encontre as coordenadas de \vec{n} sabendo que $||\vec{d}\times\vec{n}||=6\sqrt{14}$ e $\vec{d}\cdot\vec{n}=-4$.
- 25. Qual é o valor de x de modo que o volume do paralelepípedo gerado por $\vec{t} = 3\vec{i} 4\vec{j} 4\vec{k}$, $\vec{i} + \vec{j} 3\vec{k}$

$$\vec{v} = \vec{i} - \vec{j}$$
 e seja unitário?

- 26. Dado o quadrilátero de vértices A = (-2,6), B = (4,4), C = (6,-6) e D = (2,-8):
- a) Mostre que o segmento que une os pontos médios de lados adjacentes do quadrilátero formam um paralelogramo
- b) Mostre que o segmento que une os pontos médios de $\overline{AD}e\,\overline{BC}$ corta o segmento que une os pontos médios de $\overline{AB}e\,\overline{CD}$
- 27. O segmento que une A = (-2,-1) e B = (3,3) é prolongado até C, sendo $\overline{BC} = 3\overline{AB}$. Determine as coordenadas de C.

28. Sejam
$$\vec{u} = \left(\frac{3}{5}, 0, \frac{4}{5}\right), \vec{v} = \left(\frac{-4}{5}, 0, \frac{3}{5}\right), \vec{w} = (0, -1, 0)$$
:

- a) Mostre que \vec{u} , \vec{v} e \vec{w} formam uma base ortonormal
- b) Calcule as coordenadas dos vetores da base canônica em relação à base $\beta = [\vec{u}, \vec{v}, \vec{w}]$
- 29. Usando o produto vetorial, encontre t de modo que (2, 0, t) e (t, 0, 2) sejam paralelos.
- 30. Encontre $\alpha \in \mathbb{R}$ para que a projeção de (1, α) sobre (2, -1) seja unitária.
- 31. Obtenha o ponto simétrico do ponto P = (2, 1, 0) em relação ao ponto M = (0, 1, 2).
- 32. Determine os vértices de um triângulo, sendo conhecidos o baricentro $G = \left(4, \frac{1}{3}, 2\right)$, e os pontos médios de dois lados, $M = \left(3, 1, \frac{1}{2}\right)$ e N = (0,-1,2).
- 33. Dois vetores $\vec{a}=(2,-3,6)$ e $\vec{b}=(-1,2,-2)$ tem a mesma origem. Calcule as coordenadas do vetor \vec{c} sobre a bissetriz do ângulo formado pelos vetores $\vec{a}\,e\,\vec{b}$, sabendo que $||\vec{c}\,||=3\sqrt{42}$.

- 34. Os vetores $\vec{a} e \vec{b}$ formam um Ângulo $\theta = \frac{\pi}{6}$. Calcule o ângulo entre os vetores $\vec{p} = \vec{a} + \vec{b}$ e $\vec{q} = \vec{a} - \vec{b}$, sabendo que $||\vec{a}|| = \sqrt{3}$ e $||\vec{b}|| = 1$.
- 35. Num paralelogramo ABCD sabe-se que A = (1,3,-2) e que as diagonais são $\overline{AC} = (1,2,-3)$ e $\overline{BD} = (-2,0,1)$. Calcule as coordenadas dos outros três vértices.
- 36. Os vetores $\vec{v}_1, \vec{v}_2 = \vec{v}_3$ são ortogonais dois a dois. Sabe-se que $||\vec{v}_1|| = ||\vec{v}_2|| = 1$ e que $\|\vec{v}_3\| = \sqrt{2}$. Calcule a norma do vetor $\vec{v} = \vec{v}_1 + \vec{v}_2 + \vec{v}_3$.
- 37. A área de um triângulo ABC é igual a $\sqrt{6}$. Sabe-se que A = (2, 1, 0), B = (-1, 2, 1) e que o vértice C pertence ao eixo OY. Calcule as coordenadas de C.
- 38. Determine sobre o eixo OX um ponto P, tal que o volume do tetraedro PABC seja o dobro do volume do tetraedro POBC. Dados: O = (0, 0, 0), A = (1, 0, 0), B = (0, 1, 0) e C = (0, 0, 0)(0,0,1).
- 39. Na figura abaixo $\overrightarrow{DC} = 2\overrightarrow{AD}$. Exprima \overrightarrow{BD} em função de \overrightarrow{BA} e \overrightarrow{BC} .

40. Dados os vetores $\vec{e}_1 = \left(\frac{\sqrt{2}}{2}, \frac{-\sqrt{2}}{2}, 0\right)$ e $\vec{e}_2 = \left(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3}, \frac{-\sqrt{3}}{3}\right)$ determine uma base ortonormal $\beta = [\vec{e}_1, \vec{e}_2, \vec{e}_3]$

RESPOSTAS

1) a)
$$\sqrt{13+6\sqrt{3}}$$
 b) $\sqrt{13-6\sqrt{3}}$ c) $6\sqrt{2-\sqrt{3}}$

b)
$$\sqrt{13-6\sqrt{3}}$$

c)
$$6\sqrt{2-\sqrt{3}}$$

2) a)
$$\frac{1}{\sqrt{66}}(1,-4,7)$$

b)
$$k(1,-4,7), k \in \mathbb{R}_{-}$$

2) a)
$$\frac{1}{\sqrt{66}}(1,-4,7)$$
 b) $k(1,-4,7), k \in \mathbb{R}_{-}$ **3)** $\left(\frac{-1}{3},\frac{-2}{3},\frac{-2}{3}\right)$

- **5)** + (12,-4,6) **6)** + 6
- **7)** a) 13
- b) 13

8)
$$\vec{w} = \frac{-5}{4}\vec{u} - \frac{23}{4}\vec{v}$$
 9) $\vec{w} = \frac{-1}{4}\vec{u} + \frac{7}{8}\vec{v}$ 10) $\vec{w} = 2\vec{a} - 3\vec{b} + \vec{c}$

9)
$$\vec{w} = \frac{-1}{4} \vec{u} + \frac{7}{8} \vec{v}$$

10)
$$\vec{w} = 2\vec{a} - 3\vec{b} + \vec{a}$$

- 11) a) Não. Pode ser trapézio, mas não retângulo
- b)Não
- c) Não
- d) Não

12) a) Isósceles b) Acutângulo c) $h=2\sqrt{2}$ = mediana

d)
$$N = \left(\frac{-1}{2}, \frac{5}{2}\right)$$
, $M = (-1,4)$, $P = \left(\frac{1}{2}, \frac{7}{2}\right)$ 13) $\arccos\left(\frac{\sqrt{22}}{11}\right)$ 14) $4x + 6y = 23$

15) (-10,4,-3) **16)** a) F b) V c) F d) V e) V f) V **17)** a) F b) V c) V d) V e) (2,0), (-1, $-\sqrt{3}$), $(1, -\sqrt{3})$, $(1, \sqrt{3})$, $(-1, \sqrt{3})$

f) 2 u.c. **21**) $\sqrt{62}u.a.$ **22**) 6 u.c. **23**) (3,0,-2) **24**) $(0, \pm 6,4)$ **25**) -3 ou -5

27) (18,15) **28)** b) $\left(\frac{3}{5}, -\frac{4}{5}, 0\right)$, (0,0,-1), $\left(\frac{4}{5}, \frac{3}{5}, 0\right)$ **29)** ± 2

30)
$$\frac{2\sqrt{5}-5}{\sqrt{5}}$$
 ou $\frac{2\sqrt{5}+5}{\sqrt{5}}$

30) $\frac{2\sqrt{5}-5}{\sqrt{5}}$ ou $\frac{2\sqrt{5}+5}{\sqrt{5}}$ **31)** (-2,1,4) **32)** A = (12,3,2), B = (-6,-1,-1), C = (6,-1,5)

33) \pm (-3,15,12) **34)** $\arccos\left(\frac{2}{\sqrt{7}}\right)$ **35)** A = (5,5,-5), B = (4,4,-4), C = (2,4,-3) **36)** 2

37) (0,3,0) ou $(0,\frac{1}{5},0)$ 38) (-1,0,0) ou $(\frac{1}{3},0,0)$ 39) $\overrightarrow{BD} = \frac{\overrightarrow{BC}}{3} + \frac{2}{3}\overrightarrow{BA}$

40)
$$\vec{e}_3 = \left(\frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{6}, \frac{\sqrt{6}}{3}\right)$$