

Accelerating Machine Learning Inference with Probabilistic Predicates

Jetic Gū CMPT 843

Overview

- Focus: Query Optimisation
- Architecture: Relational Data Platforms with UDFs
- Core Ideas:
 - Observation: expensive UDFs can seriously influence performance
 - Propose: probabilistic predicates using fast ML methods to filter data before feeding into the UDF layer

- UDF: user defined functions
 - Example: ML function for object detection
 - Input: Video data/Image data in the database
 - Output: Object type (cheese), Object Attributes (colour=Yellow)
- Using UDF in queries are more frequent nowadays

Serien

- Objective: get something within the DB
- Pipeline:

C A SIMPle

- UDFs are more general. Multiple feature extraction steps and inference stages will be needed in practice
- Objective: return pictures with Yellow Cheese

Pipeline:

- Sloooooooooow execution of UDFs
- Why? Because this entire chain of UDFs are run on ALL entries
- Traditional query optimisation techniques such as predicate pushdown are NOT useful here

Probabilistic Predicates

- PPs are binary classifiers
- Get rid of highly unlikely entries before running through the UDFs.
- PPs are much more lightweight and error tolerant: high precision on negatives, low recall is OK.

COUCE

No Probabilistic Predicates

Query Optimiser cannot help, super slow execution chain

Probabilistic Predicates

Incorrect, but that's OK

Comparison

- UDF
 - High execution cost
 - Long chain of execution
 - High precision
 - Give highly precise results
 - Training is costly

- PP
 - Very low execution cost
 - One time fast execution
 - High negative precision
 - Quickly eliminate highly unlikely entries
 - Cheap Training

Comparison

Comparison

	System	Features	Classifians/Pagrassans	Materialization Cost (sec)	Quary prodicate	Selectivity
	System	reatures	Classifiers/Regressors	Materialization Cost (sec)	Query predicate	Selectivity
Online	Ads recommendations [42]	Bag-of-words	Collaborative Regressor	$10^{-2} - 10^{-1}$	1 binary	1-in-hundreds
	Video recommendations [16]	Browse history	Bayesian Regressor	$10^{-1} - 10^{1}$	1 binary	1-in-thousands
	Credit card fraud [47]	Physical loc. etc.	Neural Network	$10^{-2} - 10^{-1}$	1 binary	1-in-thousands
Offline	Video tagging [24]	Keypoints	SVM w/ RBF kernel	$10^{-1} - 10^{1}$	n categorical	1-in-thousands
	Spam filtering [6]	Bag-of-word	Naive Bayes Classifier	$10^{-2} - 10^{-1}$	1 binary	1-in-several
	Image tagging [37, 55]	Keypoints	Collaborative Regressor	$10^{-1} - 10^{1}$	n categorical	1-in-thousands

- PP runs 10 times faster than UDF chain, filtering out 60% of entries
- That's 2x speed up!

Let's get technical

Different PPs

- Computational Models, use model selection techniques at inference time
 - linear support vector machine
 - kernel density estimator
 - deep neural networks
- Define and train one PP per simple clause $PP_p = D, m, r[a]$
 - Each PP has a reduction rate r[a], where target accuracy is a.
 - Pre-sampling different a values, achieved using training data D. m indicates the computational model type.
 - Dimension reduction techniques are used to speed up

Reduction Rate and Target Accuracy

• The output of a PP is a probability distribution:

$$P(\text{rejected} | e, p) \in [0,1]$$

- ullet Essentially, how likely the PP thinks this entry e will not satisfy the predicate p
- Activation threshold t: if $P(\mathbf{reject}) \ge t$, filter it out
- By adjusting the activation threshold (how much we want to trust the PP to throw things out), we can get r[a]

Choosing Simple Clauses to Define PP

- Inferred from historical queries
- Define and train one PP per simple clause
 - Use query optimiser to assemble PPs

 Convert complex query expression to logical expressions using PPs (not strict it's just filtering here)

Complex predicate	Implied logical expr. over PPs			
$(p \lor q) \land \neg r \land \mathcal{P}_{rem}$ omitted, and that's OK	$\Rightarrow p \lor q \Rightarrow PP_{p \lor q} \Rightarrow PP_{p} \lor PP_{q}$ $\Rightarrow \neg r \Rightarrow PP_{\neg r}$ $\Rightarrow PP_{(p \lor q) \land \neg r} \Rightarrow (PP_{p} \lor PP_{q}) \land PP_{\neg r}$ $\Rightarrow PP_{(p \land \neg r) \lor (q \land \neg r)} \Rightarrow PP_{p \land \neg r} \lor PP_{q \land \neg r} \Rightarrow$ $(PP_{p} \land PPP_{\neg r}) \lor (PP_{q} \land PPP_{\neg r})$			

- Use query optimiser to
 - Determine for each PP, which CM m to use, within what target accuracy range a to reduce overall r[a]
 - Determine the execution order

$$(PP_p \land PP_{\neg r}) \lor (PP_q \land PP_{\neg r})$$

- 3 subproblems.
 - different allocations of the query's accuracy budget to individual PPs

$$PP_{p}(r) = \begin{bmatrix} (a = 100\%, r = 0, m = \text{None}) \\ (a = 95\%, r = 15\%, m = \text{rule}_{p}) \\ (a = 90\%, r = 20\%, m = \text{SVM}_{p}) \\ (a = 85\%, r = 40\%, m = \text{NN}_{p}) \end{bmatrix}$$

$$PP_{\neg r}(r) = \begin{bmatrix} (a = 100\%, r = 0, m = \text{None}) \\ (a = 95\%, r = 10\%, m = \text{rule}_{p}) \\ (a = 90\%, r = 15\%, m = \text{SVM}_{p}) \\ (a = 85\%, r = 50\%, m = \text{NN}_{p}) \end{bmatrix}$$

Given accuracy target, use dynamic programming to maximise reduction rate.

$$PP_{(PP_p \land PP_{\neg r}) \lor (PP_q \land PP_{\neg r})}(r)[a \ge A] = ?$$

$$(PP_p \land PP_{\neg r}) \lor (PP_q \land PP_{\neg r})$$

- 3 subproblems.
 - different allocations of the query's accuracy budget to individual PPs
 - 2. different orderings of PPs within a conjunction or disjunction

to reduce the execution cost here

$$(PP_p \land PP_{\neg r}) \lor (PP_q \land PP_{\neg r})$$

- 3 subproblems.
 - different allocations of the query's accuracy budget to individual PPs
 - 2. different orderings of PPs within a conjunction or disjunction
 - compute the cost and reduction rate of the resulting plan for query optimiser to work on

PP Experiments

Dataset	Approach	Avg. data reduction \overline{r} for accuracy a			
Dataset	прргоасп	$\overline{r[1]}$	r[0.99]	r[0.9]	
	PCA+KDE	0.47	0.56	0.64	
UCF101	PCA + SVM	0.35	0.45	0.54	
	Raw + SVM	0.35	0.47	0.59	
COCO	DNN	0.28	0.50	0.83	
	SVM		0.31		
ImageNet	DNN	0.71	0.84	0.96	
ImageNet	SVM		0.39		
	DNN trained on COCO	0.25	0.49	0.82	

• Individual PP evaluation (recognising objects on images)

Oeriments

PP Experiments

Dataset	Approach	PP cost to		Optimality for a	
		Train (per	Test	a = 1	a = 0.9
		1K rows)			
UCF101	PCA+KDE	148	3ms	0.55	0.77
LSHTC	FH + SVM	18	1ms	0.29	0.87
COCO	DNN*	1108	10ms	0.28	0.83

- Individual PP evaluation (recognising objects on images)
- The latency to train and test PPs of different types

oeil ments

End2End Experiments

Evaluating TRAF20 query set on 100 GB online data

Aperimen

End2End Experiments

ID	PP cons.	#PPs	PP inf.	Sub.UDF	Selectivity	Reduction
4	27S	1	2ms	23ms	0.67	11%
8	68s	2	5ms	55ms	0.41	20%
20	155S	4	12ms	85ms	0.01	60%
Avg.	79s	2.5	6ms	52ms	0.20	59%

- Evaluating TRAF20 query set on 100 GB online data
- Training and inference overhead for deploying PPs in online machine learning query processing.
- ID indicates the individual query they used for this analysis

seil menits

- Most query optimisation: optimally ordering the existing predicates in the query
- When predicates rely on columns generated by user- defined operators, shows that performance-optimal ordering of the UDFs and predicates is NP-hard.
- Approximate predicates use the same relation as the query predicates and are not for blobs
- PP
 - trained without any knowledge of the inference modules that are used in a query
 - can be applied on non-relational datasets

Thank you.