Visão Computacional

Fundamentos de Imagens Digitais

Prof. Dr. Claiton de Oliveira DACOM-UTFPR-CP

Principais Etapas de um Sistema de Visão Computacional

Aquisição de imagens

As imagens digitais são formadas a partir de dados captados por sensores:

- Um dispositivo de aquisição de imagens permite a entrada de energia de uma fonte de iluminação que atinge os sensores sensíveis a cada tipo de energia;
 - o a fonte de iluminação pode emitir luz visível, raio x, radar, infravermelho, ultrassom
- A saída dos sensores é uma forma de onda de tensão contínua;
- Uma quantidade discreta de dados é obtida de cada sensor através da digitalização¹ de sua resposta

¹conversão dos dados contínuos para o formato digital

Amostragem e Quantização

- Amostragem: obtenção de um conjunto discreto e finito de amostras dos dados contínuos fornecidos pelo sensor na forma de uma matriz bidimensional MxN;
 - o define a quantidade de pixels da matriz
- Quantização: obtenção de um conjunto discreto e finito de níveis de intensidade (brilho) para cada amostra (pixel) obtida a partir dos dados contínuos fornecidos pelo sensor

Imagem Digital

Uma imagem digital se refere a uma imagem formada por um número inteiro e finito de pixels, onde cada pixel contém um valor inteiro que representa o nível de intensidade (brilho) do pixel

Uma imagem digital pode ser definida através de uma função f(x, y), onde:

- x e y são números inteiros que representam as coordenadas espaciais;
- o valor de f é um número inteiro que representa o nível de intensidade ou brilho em cada coordenada x, y

Uma imagem digital pode ser representada como uma \mathbf{matriz} com M linhas e N colunas, que pode ser:

- de intensidade visual (através da utilização de cor);
- de intensidade numérica (cada número representa um nível de intensidade ou brilho).
- cada elemento da matriz é chamado de pixel

Considere uma imagem digital representada por uma matriz numérica de MxN pixels

f(0,0)	f(0,1)	f(0,2)	f(0,3)	f(0,4) ou f(0,N-1)
f(1,0)	f(1,1)	f(1,2)	f(1,3)	f(1,4) ou $f(1,N-1)$
f(2,0)	f(2,1)	f(2,2)	f(2,3)	f(2,4) ou f(2,N-1)
f(3,0)	f(3,1)	f(3,3)	f(3,3)	f(3,4) ou $f(M-1,N-1)$

X

Pixels com intensidades numéricas

212	208	220	205	214	212	202	217	213	208	197	198	200	223	214	201	197	200	204	205
218	216	223	207	224	228	211	212	218	209	220	206	220	196	195	207	211	206	206	205
221	215	210	226	211	205	214	217	211	189	183	163	129	102	144	198	179	158	156	182
217	219	211	223	217	223	225	203	137	100	96	70	47	37		102	78	45	106	
223	225	225	215	230	210	155	111		80	49		66	94		56		73	132	88
220	215	225	227	211	143	94	88	76	60	43	46	62	78	42	36	67	103		67
234	238	217	199	133	82	74	61	81	51	85	77	51	65	38	14	35	42	100	
236	228	196	144	95	64	60	87	56	76	75	32	70		104	59	66	94	120	68
212	178	113		56	77	76	69	53	43	36	50	78	61	45	54	86			
141	84	70		58	84	66	38	69	89	87	81	104		88	52	96	89	120	117
68	70		100	83	85	104	B2	84	80	67			69	38	49	88	123	122	87
75	96	126		83	112	90		79	82	84	70	64	70	80	73	83			
126	142	144	128	161	155	124	95		86	86			72	82		40	54		92
105	94	118	83	132	87	49	57	π	103	81	83	86	98	75	89	127	122	70	90

A quantidade de níveis de intensidade L de uma imagem digital é uma potência de 2:

$$L = 2^{k}$$

(k = quantidade de bits)

- Os níveis de intensidade são números inteiros no intervalo [0, L-1]
 - Este intervalo é chamado de escala;
 - Na escala de cinza com 256 níveis: 0 é preto e 255 é branco
 - neste caso, são necessários 8 bits para representar os valores de intensidade

Resolução de intensidade ou profundidade

- Refere-se a quantidade de bits utilizados para quantizar os níveis de intensidade
 - Exemplo:
 - uma imagem de 8 níveis de intensidade possui 3 bits de resolução de intensidade
 - uma imagem de **256** níveis de intensidade possui 8 bits de resolução de intensidade
 - uma imagem de **65536** níveis de intensidade possui **16** bits de resolução de intensidade

Vizinhança

- A vizinhança de um pixel refere-se aos pixels adjacentes (vizinhos) a um pixel central em uma determinada região da imagem
- É geralmente utilizada para:
 - Filtragem Espacial: suavização e realce de imagens
 - Segmentação de imagens: dividir a imagem em regiões de interesse
 - O Detecção de bordas: localizar bordas e contornos em uma imagem

Vizinhança

- O tipo da vizinhança é determinado pelo número de pixels ao redor do pixel central, que geralmente pode ser do tipo:
 - o Vizinhança-4
 - Inclui os pixels acima, abaixo, à esquerda e à direita do pixel central.
 - Vizinhança-8
 - Inclui os pixels na vizinhança-4 mais os pixels diagonais ao pixel central.

Vizinhança-8

Referência

Rafael C. Gonzalez, Richard E. Woods Pearson Education - 2018 - 1022 p.

Gonzalez, R.C. and Woods, R.E. (2018) Digital Image Processing. 4th Edition, Pearson Education, New York, 1022 p.