EA614 - Análise de Sinais

Tópico 7 - Amostragem

Levy Boccato Renan Del Buono Brotto

11 de outubro de 2024

Conteúdo

1	Introdução	2
2	Amostragem Ideal	2
	2.1 Teorema da Amostragem (Nyquist-Shannon)	Ę
	2.2 Processo de Reconstrução	6
3	Resumo da Amostragem Ideal e Processamento Digital de Sinais	7
	3.1 Filtros Discretos no Tempo	Ç
	3.2 Exercício de fixação	ę
4	Perspectivas Mais Realistas de Amostragem	11
	4.1 Filtro Anti-Aliasing	11
	4.2 Segurador de Ordem Zero	
	4.3 Superamostragem	

1 Introdução

Neste tópico, vamos abordar um dos conceitos mais importantes para o tratamento de sinais reais (analógicos) por meio de sistemas de computação digital (discretos): o processo de amostragem. Inicialmente, veremos uma abordagem idealizada desse processo, a qual se mostra pertinente por facilitar a análise das consequências da amostragem e as condições necessárias para a reconstrução do sinal. Posteriormente, entenderemos como o processo empregado na prática pode ser descrito com naturalidade usando os resultados da amostragem ideal como base.

2 Amostragem Ideal

Esta forma de amostragem realiza o produto de x(t) por um trem de impulsos (função pente), fornecendo como resultado um sinal "periódico" com impulsos cujas áreas correspondem às amplitudes de x(t) nos instantes de amostragem.

$$x_a(t) = x(t) \left[\sum_{k=-\infty}^{\infty} \delta(t - kT_s) \right] = \sum_{k=-\infty}^{\infty} x(kT_s)\delta(t - kT_s)$$

Passando para o domínio da frequência:

$$X_a(j\omega) = \frac{1}{2\pi} [X(j\omega) * \mathcal{F}\{p(t)\}]$$

Ora, no tópico anterior, vimos que a transformada de Fourier do trem de impulsos é

$$P(j\omega) = \frac{2\pi}{T_s} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s), \ \omega_s = 2\pi/T_s.$$

Então,

$$X_a(j\omega) = \frac{1}{2\pi} \left[X(j\omega) * \frac{2\pi}{T_s} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s) \right]$$

Dado que $h(t) * \delta(t - t_0) = h(t - t_0)$, concluímos que:

$$X_a(j\omega) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s))$$
 (1)

Amostragem Ideal

Note que:

- $X_a(j\omega)$ é periódico com período $\omega_s = 2\pi/T_s$;
- quanto menor o valor de T_s , mais próximas entre si estarão as amostras no tempo e mais espaçadas as réplicas do espectro de x(t) na frequência. No limite de $T_s \to 0$, o sinal amostrado será o próprio sinal contínuo.

A partir do sinal amostrado $x_a(t)$, é possível recuperar, sem perdas, o sinal completo x(t) aplicando um filtro passa-baixas ideal sobre $x_a(t)$, o qual irá capturar a componente espectral centrada em $\omega = 0$ e eliminar as demais réplicas.

A recuperação do sinal original só é possível se as componentes espectrais em $X_a(j\omega)$ não estiverem sobrepostas. O fenômeno denominado <u>aliasing</u> ocorre se o tempo entre amostras for muito grande, ou seja, se a frequência de amostragem ω_s for pequena em comparação com a velocidade de variação do sinal (*i.e.*, em relação a ω_m).

Para evitar aliasing, a condição a ser respeitada é que $\omega_s - \omega_m > \omega_m$.

Taxa de Nyquist:
$$\begin{cases} \omega_s = 2\omega_m \\ T_s = \pi/\omega_m \end{cases}$$

O sinal $x_a(t)$ ainda é analógico (tempo contínuo). Podemos, porém, trazer as amostras coletadas para o contexto discreto construindo a sequência:

$$x[n] = x(nT_s), \ n \in \mathbb{Z}$$

$$x_a(t) = \sum_{n=-\infty}^{\infty} x(nT_s)\delta(t - nT_s)$$

Aplicando a transformada de Fourier:

$$X_a(j\omega) = \sum_{n=-\infty}^{\infty} x(nT_s) \mathcal{F}\{\delta(t-nT_s)\} = \sum_{n=-\infty}^{\infty} x(nT_s) e^{-j\omega T_s n}$$

Fazendo a seguinte mudança de notação:

$$x(nT_s) = x[n], \ \omega T_s = \Omega \quad \text{e} \ X_a(j\omega) = X(e^{j\Omega})$$

obtemos

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$
(2)

Esta é a famosa expressão da Transformada de Fourier de Sinais Discretos.

Comentários:

- Percebemos que $\mathcal{F}\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$ é, na verdade, um caso particular da transformada de Fourier que estudamos no contexto de sinais contínuos. Isto ocorre porque $X(e^{j\Omega})$ surge a partir da transformada de um sinal formado por impulsos cujas áreas são as amostras de x(t) (portanto, ele é discreto no tempo). Sendo assim, o resultado obtido, denotado por $X(e^{j\Omega})$, é um espectro usual de Fourier, de modo que todas as propriedades estudadas anteriormente para $\mathcal{F}\{\cdot\}$ são válidas para a transformada de Fourier de sinais discretos.
- A variável Ω é igual à frequência em radianos por segundo normalizada pelo intervalo (período de amostragem) T_s . Ela é dada em radianos ou, conforme sugerido por alguns autores, radianos/amostra.

Relação entre os eixos de frequência

Observamos o surgimento de réplicas espectrais e de um espectro periódico por conta do processo de amostragem; isto nos levou a um espectro (discreto) periódico $(X(e^{j\Omega}))$, fato já esperado por conta da ambiguidade de frequências e da periodicidade de $e^{j\Omega n}$ em Ω (período 2π).

2.1 Teorema da Amostragem (Nyquist-Shannon)

Seja x(t) um sinal a tempo contínuo e limitado em banda com $X(j\omega)=0$ para $|\omega|\geq \omega_m$. Então, x(t) é única e perfeitamente representado por suas amostras $x[n]=x(nT_s),\ n=0,\pm 1,\pm 2,\cdots$, desde que $\omega_s=2\pi/T_s>2\omega_m$.

Por quê estritamente maior ?

Amostrador
$$\begin{array}{c|c}
x_1(t) & x_1[n] \\
\hline
x_2(t) & x_2[n]
\end{array}$$

$$x_1(t) = \cos(2\pi(f_s/2)t + \theta)$$
. Amostrando com $\omega_s = 2\pi f_s$:

$$x_1[n] = \cos(2\pi(f_s/2)n/f_s + \theta) = \cos(\pi n + \theta) = \cos(\pi n).\cos(\theta)$$

 $x_2(t) = \cos(2\pi(f_s/2)t) \cdot \cos(\theta)$. Amostrando com $\omega_s = 2\pi f_s$:

$$x_2[n] = \cos(2\pi (f_s/2)n/f_s).\cos(\theta) = \cos(\pi n).\cos(\theta)$$

Ora, $x_1(t) \neq x_2(t)$, mas $x_1[n] = x_2[n]$. Portanto **não** sabemos dizer qual sinal analógico $(x_1(t)$ ou $x_2(t)$, ambos com frequência $f_s/2$), gerou o sinal discreto. Isto demonstra que $f_s/2$ não é bem representada na amostragem.

2.2 Processo de Reconstrução

Vamos olhar com mais calma para a reconstrução de x(t) a partir da sequência de amostras x[n]. Como $\omega_s > 2\omega_m$, necessariamente $\omega_m < \omega_s/2$. Sendo assim, não há ocorrência de aliasing e um FPB ideal com frequência de corte igual a $\omega_s/2$ garante a recuperação, pois em sua faixa de passagem haverá apenas uma componente sem distorções proporcional a $X(j\omega)$.

Mas o que a filtragem passa-baixas realiza no domínio do tempo?

$$x_r(t) = x_a(t) * h_{\text{FPB}}(t),$$

onde

$$h_{\text{FPB}}(t) = \mathcal{F}^{-1} \left\{ H_{\text{FPB}}(j\omega) \right\} = \frac{\sin(\omega_s t/2)}{\omega_s t/2}.$$

Sendo assim,

$$x_{r}(t) = x_{a}(t) * h_{\text{FPB}}(t)$$

$$= \sum_{k=-\infty}^{\infty} x[k]\delta(t - kT_{s}) * h_{\text{FPB}}(t)$$

$$= \sum_{k=-\infty}^{\infty} x[k]h_{\text{FPB}}(t - kT_{s})$$

$$= \sum_{k=-\infty}^{\infty} x[k] \frac{\operatorname{sen}(\omega_{s}(t - kT_{s})/2)}{\omega_{s}(t - kT_{s})/2}, \quad \forall t \in \mathbb{R}, \quad \omega_{s} = 2\pi/T_{s}.$$

$$(3)$$

Nos instantes $t = nT_s$, n inteiro,

$$h_{\text{FPB}}(t - kT_s) = \frac{\sin(\omega_s (nT_s - kT_s)/2)}{\omega_s (nT_s - kT_s)/2} = \frac{\sin(\omega_s mT_s/2)}{\omega_s mT_s/2} = \frac{\sin(\pi m)}{\pi m} = \begin{cases} 1, & \text{caso } m = 0 \\ 0, & \text{caso } m \neq 0 \end{cases},$$

para m = n - k.

Como $x_r(t) = \sum_{k=-\infty}^{\infty} x[k]h_{\text{FPB}}(t-kT_s)$ (convolução), concluímos que nos instantes $t=nT_s$, $x_r(nT_s) = x[n]$ (as demais amostras da sequência x[n] não interferem, pois $h_{\text{FPB}}(kT_s)$ é zero para $k \neq 0$). Ou seja, o sinal que reconstruímos de acordo a **fórmula de interpolação** possui exatamente os mesmos valores que o sinal contínuo original nos instantes de amostragem (e isso independe do período de amostragem). Além disso, com as garantias dadas pelo teorema da amostragem, a interpolação realizada em (3) é perfeita.

3 Resumo da Amostragem Ideal e Processamento Digital de Sinais

Figura A - Esquema base para o processamento digital de sinais.

O sistema da figura A mistura elementos de processamento/filtragem a tempo contínuo com sequências e sistemas a tempo discreto. Vamos, então, encontrar algumas relações de equivalência.

$$x[n] = x(nT_s) \Longleftrightarrow X(e^{j\Omega}) = \frac{1}{T_s} \sum_{k} X\left(j\left(\frac{\Omega}{T_s} - \frac{2\pi k}{T_s}\right)\right) = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} X(j(\omega - k\omega_s)).$$

Quando x[n] passa pelo filtro (h[n]), obtemos $y[n] \iff Y(e^{j\Omega})$. A saída do conversor D/C é dada pela fórmula de interpolação:

$$y(t) = \sum_{n=-\infty}^{\infty} y[n]h_{\text{FPB}}(t - nT_s).$$

No domínio da frequência,

$$Y(j\omega) = \sum_{n=-\infty}^{\infty} y[n] H_{\text{FPB}}(j\omega) e^{-j\omega n T_s}$$

$$= H_{\text{FPB}}(j\omega) \sum_{n=-\infty}^{\infty} y[n] e^{-j\omega n T_s}$$

$$= H_{\text{FPB}}(j\omega) Y(e^{j\Omega}) = \begin{cases} T_s . Y(e^{j\omega T_s}), & |\omega| < \omega_s / 2 = \pi / T_s \\ 0, & \text{caso contrário} \end{cases}$$

$$(4)$$

O ajuste no eixo de frequências $\Omega = \omega T_s$ equivale a gerar o trem de impulsos a partir das amostras. Caso especial: $h[n] \iff H(e^{j\Omega})$ é um sistema LIT. Então,

$$Y(e^{j\Omega}) = X(e^{j\Omega}).H(e^{j\Omega}).$$

Combinando esta expressão com a anterior, vemos que:

$$Y(j\omega) = H_{\text{FPB}}(j\omega).H(e^{j\omega T_s}).X(e^{j\omega T_s})$$

Substituindo a expressão de $X(e^{j\omega T_s})$:

$$Y(j\omega) = H_{\text{FPB}}(j\omega).H(e^{j\omega T_s}).\left[\frac{1}{T_s}\sum_{k=-\infty}^{\infty}X(j(\omega-2\pi k/T_s))\right].$$

Se x(t) tem banda limitada, de modo que $X(j\omega)=0$ para $|\omega|>\omega_s/2$, então o filtro ideal de reconstrução cancela o fator $1/T_s$ e seleciona somente a componente em banda base (k=0) da equação acima. Ou seja,

$$Y(j\omega) = \begin{cases} H(e^{j\omega T_s}).X(j\omega), & |\omega| < \omega_s/2\\ 0, & \text{caso contrário} \end{cases}$$

Sendo assim, $Y(j\omega) = H_{\text{efetivo}}(j\omega).X(j\omega)$, onde

$$H_{\text{efetivo}}(j\omega) = \begin{cases} H(e^{j\omega T_s}), & |\omega| < \omega_s/2\\ 0, & \text{caso contrário} \end{cases}$$

Isso significa que o sistema inteiro – que inclui uma passagem ao domínio discreto – é equivalente a um sistema LIT cuja resposta em frequência efetiva é dada pela relação obtida acima. A importância do processo de amostragem e desta equivalência deve ser ressaltada: é possível obter efeitos desejados no sinal analógico x(t) por meio do processamento a tempo discreto de amostras deste sinal.

3.1 Filtros Discretos no Tempo

a) FPB Ideal

b) FPA Ideal

c) FPF Ideal

d) FRF Ideal

3.2 Exercício de fixação

Um sinal x(t) limitado a 10 kHz é amostrado a uma taxa de 40000 amostras/s, gerando a sequência x[n]. Esboce a resposta de amplitude de um filtro discreto passa-baixas que, atuando sobre x[n], produz uma limitação de faixa equivalente à de um filtro analógico passa-baixas ideal com frequência de corte igual a 8 kHz.

Processo de amostragem com $\omega_s=2\pi.40$ k:

Passando para o eixo de frequências $\Omega = \omega T_s$:

Qual frequência Ω está associada à frequência analógica $f=8~\mathrm{kHz?}$

$$\Omega = \omega T_s = 2\pi f \frac{1}{f_s} \to \Omega = 2\pi \frac{8.10^3}{40.10^3} = \frac{2\pi}{5}.$$

Então, se utilizarmos um FPB ideal discreto com resposta em frequência

o resultado será equivalente a filtrar x(t) com um FPB ideal analógico com corte em 8 kHz.

Perspectivas Mais Realistas de Amostragem 4

4.1 Filtro Anti-Aliasing

Taxas de amostragem menores tendem a reduzir a carga de processamento computacional, pois há menos amostras a processar. Se a entrada não é limitada em banda (e.g., se o sinal x(t)) tem duração finita no tempo, o espectro tende a ser infinito) ou a frequência de Nyquist já é muito elevada, pré-filtragem pode ser muito importante.

Mesmo que o sinal seja limitado em banda, ruído aditivo de banda larga pode inserir conteúdo de alta frequência que, caso ignorado, produzirá aliasing.

Todos esses fatores motivam o uso de um filtro anti-aliasing.

Ideal:
$$H(j\omega) = \begin{cases} 1, & |\omega| < \omega_c < \omega_s/2 \\ 0, & |\omega| \ge \omega_c \end{cases}$$

Exemplo: sinais de fala poderiam ser limitados, com perdas suportáveis, a 20 kHz.

Como já discutido, preparar um filtro analógico ideal é praticamente inviável.

Interessante: o projeto do filtro anti-aliasing pode ser facilitado se amostrarmos o sinal a uma taxa maior do que a de Nyquist, uma técnica denominada oversampling. Esta ideia, combinada com técnicas digitais de ajuste de amostragem (interpolação e decimação), permite que se trabalhe com a taxa desejada (volume de dados menor) e que o filtro anti-aliasing seja mais simples.

4.2Segurador de Ordem Zero

A chave C_1 fecha em $t = nT_s$, quando o capacitor carrega/descarrega até atingir o valor da amostra do sinal. Em $t=nT_s+\epsilon,\,C_1$ abre e C_2 fecha, de modo que o valor coletado da amostra é preservado.

Seja $h_0(t)$

Podemos escrever o sinal amostrado como:

$$x_{as}(t) = \sum_{k=-\infty}^{\infty} x(kT_s).h_0(t - kT_s).$$

Contudo, $\sum_{k} h_0(t - kT_s) = h_0(t) * \sum_{k} \delta(t - kT_s)$. Então,

$$x_{as}(t) = h_0(t) * \underbrace{\left[\sum_{k} x(kT_s)\delta(t - kT_s)\right]}_{\text{A mostrage m ideal}} = h_0(t) * x_a(t).$$

No domínio da frequência, $X_{as}(j\omega)=X_a(j\omega).\mathcal{F}\{h_0(t)\}=X_a(j\omega).\tau\mathrm{Sa}(\omega\tau/2).e^{-j\omega\tau/2}$

- $X_{as}(j\omega)$ é igual a $X_a(j\omega)$, exceto pelo fator multiplicativo dado pelo sampling.
- $X_{as}(j\omega)$ possui versões deslocadas de $X(j\omega)$, mas não é periódico, pois cada componente é multiplicada por um ganho proporcional a Sa(·).

Como podemos recuperar x(t) a partir das amostras?

$$X(j\omega) = X_{as}(j\omega).H_{eq}(j\omega)$$

$$= \left[\frac{1}{T_s} \sum_{k} X(j(\omega - 2\pi k/T_s))\right].e^{-j\omega\tau/2}.\tau \operatorname{Sa}(\omega\tau/2).H_{eq}(j\omega).$$

O filtro $h_{eq}(t) \iff H_{eq}(j\omega)$ deve:

- capturar a componente espectral centrada em $\omega = 0$;
- corrigir o ganho introduzido pelo sampling.

Assim,
$$H_{eq}(j\omega) = \frac{1}{e^{-j\omega\tau/2}.\tau \operatorname{Sa}(\omega\tau/2)}.T_s, |\omega| < \omega_s/2.$$

Aplicando este filtro sobre o sinal amostrado,

recuperamos x(t).

4.3 Superamostragem

Considere $f_s = 44100$ Hz.

Pelo mapeamento de frequências, $\Omega_{max} = 4410. \frac{2\pi}{44100} = \frac{2\pi}{10}.$

Na reconstrução, a frequência 2π se torna $2\pi(44100)$:

2024

Agora, considere $f_s = 2.44100 = 88200 \text{ Hz}.$

Na reconstrução, a frequência 2π vira $2\pi f_s = 88200.2\pi$:

Ocorrem menos distorções na faixa de frequências de interesse (onde temos o espectro de frequências do sinal original) com uma frequência de amostragem f_s mais elevada. Como não há conteúdo espectral entre 4410 e 88200 Hz, podemos utilizar um filtro passa-baixas mais simples para a conversão D/C. Ou seja, a superamostragem (oversampling) simplifica o projeto do filtro de reconstrução.

E o anti-aliasing?

Se amostrarmos a 40 kHz, para não haver *aliasing*, o pré-filtro de anti-*aliasing* teria de ser ideal. Se, porém, amostrarmos a 176.400 Hz

Para não acontecer aliasing na região de 20 kHz, a cauda da réplica situada em $f_s = 176400$ Hz não pode atingir 20 kHz. Logo, se usarmos um <u>FPB barato</u> que deixe passar o conteúdo de $X(j\omega)$ até 156400 Hz, ainda assim ficamos com a faixa de 0 a 20 kHz intacta, podendo recuperar o sinal original.