Mining Social Network Graphs

Debapriyo Majumdar Data Mining – Fall 2014 Indian Statistical Institute Kolkata

November 13, 17, 2014

Social Network

No introduction required

Really?

We still need to understand a few properties

Social Network

- A collection of entities
 - Typically people, but could be something else too
- At least one relationship between entities of the network
 - For example: friends
 - Sometimes boolean: two people are either friends or they are not
 - May have a degree
 - **Discrete** degree: friends, family, acquaintances, or none
 - Degree real number: the fraction of the average day that two people spend talking to each other
- An assumption of nonrandomness or locality
 - Hard to formalize
 - Intuition: that relationships tend to cluster
 - If entity A is related to both B and C, then the probability that B and C are related is higher than average (random)

Social Network as a Graph

- Check for the non-randomness criterion
- In a random graph (*V,E*) of 7 nodes and 9 edges, if *XY* is an edge, *YZ* is an edge, what is the probability that *XZ* is an edge?
 - For a large random graph, it would be close to $|E|/(|V|C_2) = 9/21 \sim 0.43$
 - Small graph: XY and YZ are already edges, so compute within the rest
 - So the probability is $(|E|-2)/(|V|C_2-2) = 7/19 = 0.37$
- Now let's compute what is the probability for this graph in particular

Social Network as a Graph

- For each X, check possible YZ and check if YZ is an edge or not
- Example: if X = A, $YZ = \{BC\}$, it is an edge

<i>X</i> =	<i>YZ</i> =	Yes/Total
A	BC	1/1
В	AC, AD, CD	1/3
C	AB	1/1
D	BE,BG,BF,EF, EG,FG	2/6

<i>X</i> =	YZ=	Yes/Total
E	DF	1/1
F	DE,DG,EG	2/3
G	DF	1/1
Total		9/16 ~ 0.56

Types of Social (or Professional) Networks

- Of course, the "social network". But also several other types
- Telephone network
- Nodes are phone numbers
- AB is an edge if A and B talked over phone within the last one week, or month, or ever
- Edges could be weighted by the number of times phone calls were made, or total time of conversation

Types of Social (or Professional) Networks

- Email network: nodes are email addresses
- AB is an edge if A and B sent mails to each other within the last one week, or month, or ever
 - One directional edges would allow spammers to have edges
- Edges could be weighted
- Other networks: collaboration network authors of papers, jointly written papers or not
- Also networks exhibiting locality property

Clustering of Social Network Graphs

- Locality property → there are clusters
- Clusters are communities
 - People of the same institute, or company
 - People in a photography club
 - Set of people with "Something in common" between them
- Need to define a distance between points (nodes)
- In graphs with weighted edges, different distances exist
- For graphs with "friends" or "not friends" relationship
 - Distance is 0 (friends) or 1 (not friends)
 - Or 1 (friends) and infinity (not friends)
 - Both of these violate the triangle inequality
 - Fix triangle inequality: distance = 1 (friends) and 1.5 or 2 (not friends) or length of shortest path

Traditional Clustering

- Intuitively, two communities
- Traditional clustering depends on the distance
 - Likely to put two nodes with small distance in the same cluster
 - Social network graphs would have cross-community edges
 - Severe merging of communities likely
- May join B and D (and hence the two communities) with not so low probability

Betweenness of an Edge

- Betweenness of an edge AB: #of pairs of nodes (X,Y) such that AB lies on the shortest path between X and Y
 - There can be more than one shortest paths between X and Y
 - Credit AB the fraction of those paths which include the edge AB
- High score of betweenness means?
 - The edge runs "between" two communities
- Betweenness gives a better measure
 - Edges such as BD get a higher score than edges such as AB
- Not a distance measure, may not satisfy triangle inequality. Doesn't matter!

The Girvan – Newman Algorithm

- Step 1 BFS: Start at a node *X*, perform a BFS with *X* as root
- Observe: level of node Y = length of shortest path from X to Y
- Edges between level are called "DAG" edges
 - Each DAG edge is part of at least one shortest path from X
- Step 2 Labeling: Label each node Y by the number of shortest paths from X to Y

Calculate betweenness of edges

The Girvan – Newman Algorithm

Step 3 (credit)sharing:

- Each leaf node gets credit 1
- Each non-leaf node gets 1 + sum(credits of the DAG edges to the level below)
- Credit of DAG edges: Let Y_i (i=1, ..., k) be parents of Z, $p_i = label(Y_i)$ $credit(Y_i, Z) = \frac{credit(Z) \times p_i}{(p_1 + \cdots + p_k)}$
- Intuition: a DAG edge Y_iZ gets the share of credit of Z proportional to the #of shortest paths from X to Z going through Y_iZ

Finally: Repeat Steps 1, 2 and 3 with each node as root. For each edge, betweenness = sum credits obtained in all iterations / 2

Calculate betweenness of edges

Computation in practice

- Complexity: *n* nodes, *e* edges
 - BFS starting at each node: O(e)
 - Do it for n nodes
 - Total: O(ne) time
 - Very expensive
- Method in practice
 - Choose a random subset W of the nodes
 - Compute credit of each edge starting at each node in W
 - Sum and compute betweenness
 - A reasonable approximation

- Keep adding edges (among existing ones) starting from lowest betweenness
- Gradually join small components to build large connected components

- Keep adding edges (among existing ones) starting from lowest betweenness
- Gradually join small components to build large connected components

- Keep adding edges (among existing ones) starting from lowest betweenness
- Gradually join small components to build large connected components

- Keep adding edges (among existing ones) starting from lowest betweenness
- Gradually join small components to build large connected components

- Keep adding edges (among existing ones) starting from lowest betweenness
- Gradually join small components to build large connected components

- Keep adding edges (among existing ones) starting from lowest betweenness
- Gradually join small components to build large connected components

Method 2:

- Start from all existing edges. The graph may look like one big component.
- Keep removing edges starting from highest betweenness
- Gradually split large components to arrive at communities

Method 2:

- Start from all existing edges. The graph may look like one big component.
- Keep removing edges starting from highest betweenness
- Gradually split large components to arrive at communities

Method 2:

- Start from all existing edges. The graph may look like one big component.
- Keep removing edges starting from highest betweenness
- Gradually split large components to arrive at communities

At some point, removing the edge with highest betweenness would split the graph into separate components

- For a fixed threshold of betweenness, both methods would ultimately produce the same clustering
- However, a suitable threshold is not known beforehand
- Method 1 vs Method 2
 - Method 2 is likely to take less number of operations. Why?
 - Inter-community edges are less than intra-community edges

Triangles in Social Network Graph

- Number of triangles in a social network graph is expected to be much larger than a random graph with the same size
 - The locality property
- Counting the number of triangles
 - How much the graph looks like a social network
 - Age of community
 - A new community forms
 - Members bring in their *like minded* friends
 - Such new members are expected to eventually connect to other members directly

Triangle Counting Algorithm

Graph
$$(V, E)$$
; $|V| = n$, $|E| = m$

- Step 1: Compute degree of each node
 - Examine each edge
 - Add degree 1 to each of the two nodes
 - Takes O(m) time
- Step 2: A hash table $(v_i, v_j) \rightarrow 1$
 - So that, given two nodes, we can determine if they have an edge between them
 - Construction takes O(m) time
 - Each query $\sim_{\text{expected}} O(1)$ time, with a proper hash function
- Step 3: An index $v \rightarrow$ list of nodes adjacent to v
 - Construction takes O(m) time, querying takes O(1) time

Counting Heavy Hitter Triangles

- *Heavy hitter* node: a node with degree $\geq \sqrt{m}$
- Note: there are at most $2\sqrt{m}$ heavy hitter nodes
 - More than $2\sqrt{m}$ nodes \rightarrow total degree > 2m (but |E| = m)
- Heavy hitter triangle: triangle with all 3 heavy hitter nodes
- Number of possible heavy hitter triangles: at most $^{2\sqrt{m}}C_3 \sim O(m^{3/2})$
- For each possible triangle, use hash table (step 2) to check if all three edges exist
- Takes $O(m^{3/2})$ time

Counting other Triangles

- Consider an ordering of nodes $v_i << v_i$ if
 - Either degree(v_i) < degree(v_i), and
 - If $degree(v_i) = degree(v_j)$ then i < j
- For each edge (v_i, v_j)
 - If both nodes are heavy hitters, skip (already done)
 - Suppose v_i is not a heavy hitter
 - Find nodes $w_1, w_2, ..., w_k$ which are adjacent to v_i (using node \rightarrow adjacent nodes index, step 3) [Takes O(k) time]
 - For each w_l , l = 1, ..., k check if edge $v_j w_l$ exist, in O(1) time, total O(k) time
 - Count the triangle $\{v_i v_j w_l\}$ if and only if
 - Edge $v_i w_l$ exists
 - Also $v_i \ll w_l$
 - Total time for each edge (v_i, v_j) is $O(\sqrt{m})$
 - There are m edges, total time is $O(m^{3/2})$ time

Optimality

Worst case scenario

- If *G* is a complete graph
- Number of triangles = ${}^{m}C_{3} \sim O(m^{3/2})$
- Cannot even enumerate all triangles in less than $O(m^{3/2})$
- Hence it is the lower bound for computing all triangles

If G is sparse

- Consider a complete graph G'with n nodes, m edges
- Note that $m = {}^{n}C_2 = O(n^2)$
- Construct G from G' by adding a chain of length n^2
- The number of triangles remain the same, $O(m^{3/2})$
- The number of edges remain of the same order O(m)
- G is quite sparse, lowering edge to node ratio
- Still cannot compute the triangles in less than $O(m^{3/2})$ time

Directed Graphs in (Social) Networks

- Set of nodes V and directed edges (arcs) $u \rightarrow v$
- The web: pages link to other pages
- Persons made calls to other persons
- Twitter, Google+: people follow other people
- All undirected graphs can be considered as directed
 - Think of each edge as bidirectional

Paths and Neighborhoods

- Path of length k: a sequence of nodes $v_0, v_1, ..., v_k$ from v_0 to v_k so that $v_i \rightarrow v_{i+1}$ is an arc for i = 0, ..., k-1
- Neighborhood N(v,d) of radius d for a node v: set of all nodes w such that there is a path from v to w of length $\leq d$
- For a set of nodes V, $N(V,d) := \{w \mid \text{there is a path of length} \le d \text{ from some } v \text{ in } V \text{ to } w\}$
- Neighborhood profile of a node v: sequence of sizes of its neighborhoods of radius d = 1, 2, ...; that is

$$|N(v,1)|, |N(v,2)|, |N(v,3)|, \dots$$

Neighborhood Profile

Neighborhood profile of B

$$N("B",1) = 4$$

$$N("B",2) = 7$$

Neighborhood profile of A

$$N("A",1) = 3$$

$$N("A",2) = 4$$

$$N("A",3) = 7$$

Diameter of a Graph

- Diameter of a graph G(V,E): the smallest integer d such that for any two nodes v, w in V, there is a path of length at most d from v to w
 - Only makes sense for strongly connected graphs
 - Can reach any node from any node
- The web graph: not strongly connected
 - But there is a large strongly connected component
- The six degrees of separation conjecture
 - The diameter of the graph of the people in the world is six

Diameter and Neighborhood Profile

- Neighborhood profile of a node v $|N(v,1)|, |N(v,2)|, |N(v,3)|, \dots |V| = N(v,k) \text{ for some } k$
- Denote this k as d(v)
- If G is a complete graph, d(v) = 1
- Diameter of G is $\max_{v} \{d(v)\}$

Reference

• *Mining of Massive Datasets*, by Leskovec, Rajaraman and Ullman, Chapter 10