TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2020

Variational Auto-Encoders (VAEs)

Posterior Collapse

 β -VAEs

Encoder Autonomy

\mathbf{VAE}

$$P_{\Psi}(y,z) = \text{Pop}(y)P_{\Psi}(z|y)$$
 The sampling distribution on y,z
$$z = z_{\Psi}(y,\epsilon) \quad \epsilon \text{ parameter independent noise}$$

VAE:
$$\Psi^*, \Phi^* = \underset{\Psi, \Phi}{\operatorname{argmin}} \left(E_{y,z} \ln \frac{P_{\Psi}(z|y)}{\hat{P}_{\Phi}(z)} \right) + \left(E_{y,z} - \ln \hat{P}_{\Phi}(y|z) \right)$$

\mathbf{VAE}

$$P_{\Psi}(y,z) = \operatorname{Pop}(y)P_{\Psi}(z|y)$$

$$VAE: \quad \Psi^*, \Phi^* = \underset{\Psi,\Phi}{\operatorname{argmin}} \left(E_{y,z} \ln \frac{P_{\Psi}(z|y)}{\hat{P}_{\Phi}(z)} \right) + \left(E_{y,z} - \ln \hat{P}_{\Phi}(y|z) \right)$$

$$= \underset{\Psi,\Phi}{\operatorname{argmin}} \hat{I}_{\Psi,\Phi}(y,z) + \hat{H}_{\Psi,\Phi}(y|z)$$

$$I_{\Psi}(y,z) \leq \hat{I}_{\Psi,\Phi}(y,z) \qquad H_{\Psi}(y|z) \leq \hat{H}_{\Psi,\Phi}(y|z)$$

$$H(y) = I_{\Psi}(y,z) + H_{\Psi}(y|z)$$

Inequalities hold with equality under universal expressiveness.

Posterior (Encoder) Collapse

$$\Psi^*, \Phi^* = \underset{\Psi, \Phi}{\operatorname{argmin}} \hat{I}_{\Psi, \Phi}(y, z) + \hat{H}_{\Psi, \Phi}(y|z)$$

Consider a trivial encoder with $P_{\Psi}(z^*|y) = 1$ and $\hat{P}_{\Phi}(z^*) = 1$ for a fixed value z^* independent of y yielding $\hat{I}_{\Psi,\Phi}(y,z) = 0$.

Under universal expressiveness we have $\hat{P}_{\Phi^*}(y|z) = \text{Pop}(y)$ yielding $\hat{H}_{\Psi,\Phi}(y|z) = H(y)$.

Therefore, under universal expressiveness there exists an optimal solution where the posterior (encoder) $P_{\Psi}(z|y)$ collapses.

The β -VAE

$$P_{\Psi}(y,z) = \text{Pop}(y)P_{\Psi}(z|y)$$
 The sampling distribution on y, z

VAE:
$$\Psi^*, \Phi^* = \underset{\Psi, \Phi}{\operatorname{argmin}} \hat{I}_{\Psi, \Phi}(y, z) + \hat{H}_{\Psi, \Phi}(y|z)$$

$$\beta$$
-VAE: $\Psi^*, \Phi^* = \underset{\Psi, \Phi}{\operatorname{argmin}} \beta \hat{I}_{\Psi, \Phi}(y, z) + \hat{H}_{\Psi, \Phi}(y|z)$

RDA:
$$\Psi^*, \Phi^* = \underset{\Psi, \Phi}{\operatorname{argmin}} \hat{I}_{\Psi, \Phi}(y, z) + \frac{\lambda}{\lambda} \operatorname{Dist}_{\Phi}(y|z)$$

The β -VAE introduces a rate-distortion tradeoff parameter into the VAE. $\beta < 1$ may avoid posterior collapse. $\beta > 1$ may improve interpretability.

The Universality Theorem for β -VAEs

β-VAE:
$$\Psi^*, \Phi^* = \underset{\Psi,\Phi}{\operatorname{argmin}} \beta \left(E_{y,z} \ln \frac{P_{\Psi}(z|y)}{\hat{P}_{\Phi}(z)} \right) + \left(E_{y,z} - \ln \hat{P}_{\Phi}(y|z) \right)$$

$$I_{\Psi}(y,z) \leq \hat{I}_{\Psi,\Phi}(y,z) \qquad H_{\Psi}(y|z) \leq \hat{H}_{\Psi,\Phi}(y|z)$$

$$H(y) = I_{\Psi}(y,z) + H_{\Psi}(y|z)$$

Assuming universalty, optimizing $\hat{P}_{\Phi}(z)$ while holding $P_{\Psi}(z|y)$ and $\hat{P}_{\Phi}(y|z)$ fixed drives the first inequality to equality.

Optimizing $\hat{P}_{\Phi}(y|z)$ while holding $P_{\Psi}(z|y)$ and $\hat{P}_{\Phi}(z)$ fixed drives the second inequality to equality.

Encoder Autonomy

Assuming universality, optimizing Φ for any fixed value of Ψ yields the population distribution on y.

This implies that we can add any loss on Ψ alone and the universality theorem still holds.

VAE:
$$\Psi^*, \Phi^* = \underset{\Psi, \Phi}{\operatorname{argmin}} \quad \beta \ \hat{I}_{\Psi, \Phi}(y, z) + \hat{H}_{\Psi, \Phi}(y|z) + \mathcal{L}(\Psi)$$

$$I_{\Psi}(y, z) \leq \hat{I}_{\Psi, \Phi}(y, z) \qquad H_{\Psi}(y|z) \leq \hat{H}_{\Psi, \Phi}(y|z)$$

$$H(y) = I_{\Psi}(y, z) + H_{\Psi}(y|z)$$

\mathbf{END}