Iterative network guided cMapping and validation

Supplementary Material and Methods - Supplementary Code: CONNECTION_SCORES

This document describes functions, scripts and data objects used in the software enclosed to the paper entitled *A semi-supervised approach for refining transcriptional signatures of drug response and repositioning predictions*, by Francesco Iorio et al, submitted as research paper to PLoS ONE.

Copyright (c) 2014 – 2019, EMBL - European Bioinformatics Institute
Author: Francesco Iorio (iorio@ebi.ac.uk)
Distributed under the GPLv3 License.
See accompanying file LICENSE.txt or copy at http://www.gnu.org/licenses/gpl-3.0.html
Paper website: http://www.ebi.ac.uk/~iorio/PLoS_ONE_Submission

April 30, 2014

CS

Connection scores to multiple ranked lists and statistical significance

Description

This function computes connections scores of a signature generated with one among the functions

DeriveSingleSignature, DeriveConsistentSignature, DeriveInconsistentSignature, DeriveMSTSignature

(all contained in ITERATIVE_CMAPPING_library.R) to multiple ranked lists of genes (sorted according to their differential expression, in decreasing order), by computing also statistical significance

Empirical p-values are computed by simulating a null model through permutation of the ranked lists, by using the est_emp_Cs function.

Usage

CS(signature, RANKED_LISTS, show_progress = TRUE)

Arguments

signature A signature of genes generated as described above

RANKED_LISTS A data frame where each column contains a genome-wide ranked lists of genes

or probe-sets compatible with the input signature. This data frame should have

more than one column.

show_progress A boolean parameter specifying whether a progress bar should be visualised or

not (default = TRUE)

Value

A list of numerical vectors containing for all the columns of RANKED_LISTS (i.e. for each inputted ranked list):

CS The obtained connection score

cMap_CS

Pval The p-value of the obtained connection score

adjP

The p-value of the obtained connection score after correction for multiple hypothesys testing

NCS The normalised connection score, computed as described in [1]

Author(s)

Francesco Iorio (iorio@ebi.ac.uk)
Copyright (c) 2014 - 2019, EMBL - European Bioinformatics Institute
Distributed under the GPLv3 License
See accompanying file LICENSE.txt or copy at http://www.gnu.org/licenses/gpl-3.0.html
Paper website: http://www.ebi.ac.uk/~iorio/PLoS_ONE_Submission

Refer ences

[1] Lamb,J. et al. (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 313, 1929. [2] Iorio,F. et al. (2010) Discovery of drug mode of action and drug repositioning from transcriptional responses. Proceedings of the National Academy of Sciences, 107, 14621.

See Also

est_emp_Cs

Examples

loading functions and data objects needed to perform iterative connectivity mapping source('CODE/ITERATIVE_CMAPPING_library.R')

generating the optimal signature of digoxin (a cardiac glycoside), as described in [2]
digoxinSig<-DeriveSingleSignature(seed='digoxin')</pre>

querying the prototype ranked lists of digoxin and digoxigenin, digitoxigenin,
and ouabain (other cardiac glycosides) with the optimal signature of digoxin
CS(digoxinSig,DRUG_PRLs[,c('digoxin','digoxigenin','digitoxigenin','ouabain')])

cMap_CS

Connection scores computation

Description

This function computes connections scores of a genome-wide ranked lists of genes (sorted according to their differential expression, in decreasing order) and a signature composed by two sets of genes (up-regulated and down-regulated respoctively), as described in [1,2], by means of unweighted GSEA [3]

Usage

```
cMap_CS(ranked_list, opsig1, returnRS = FALSE)
```

cMap_CS 3

Arguments

ranked_list A string vector containing a genome-wide ranked list of genes sorting according

to their differential expression, in decreasing order

opsig1 A list composed by two string vectors (UP and DOWN) containing the up-regulated

(resp. down-regulated) genes of the signature

returnRS A boolean parameter specifying if the individual enrichment scores (for the two

parts of the signatures), together with the two corresponding obtained running

sums should be returned or not (default = FALSE)

Value

The obtained connection score or (if returnRS == TRUE) a structure containing the following objects:

TES The obtained connection score

ESUP The enrichment score of the up regulated part of the input signature (i.e. opsig1\$UP)

ESDOWN The enrichment score of the up-regulated part of the input signature (i.e. opsig1\$DOWN)

RSUP A numerical vector with the obtained running sum for the up-regulated part of

the input signature (i.e. opsig1\$UP)

RDOWN A numerical vector with the obtained running sum for the up-regulated part of

the input signature (i.e. opsig1\$DOWN)

Author(s)

Francesco Iorio (iorio@ebi.ac.uk)

Copyright (c) 2014 - 2019, EMBL - European Bioinformatics Institute

Distributed under the GPLv3 License

See accompanying file LICENSE.txt or copy at http://www.gnu.org/licenses/gpl-3.0.html

Paper website: http://www.ebi.ac.uk/~iorio/PLoS_ONE_Submission

Refer ences

[1] Lamb,J. (2007) The Connectivity Map: a new tool for biomedical research. Nature Reviews Cancer, 7, 54-60.

- [2] Lamb,J. et al. (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 313, 1929.
- [3] Subramanian, A. et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102, 15545.

Examples

```
## loading the prototype ranked lists for all the drugs in the connectivity map[1,2] dataset
load('DATA/DRUG_PRLs.ro')

## selecting the PRL of metformin
rankedList<-DRUG_PRLs[,'metformin']

## generating a random signature
signature<-list(UP=DRUG_PRLs[sample(1:5000,250),1],DOWN=DRUG_PRLs[sample(17000:22000,250),1])</pre>
```

4 combine_2CS

computing the connection score of the ranked list to the signature
cMap_CS(rankedList, signature)

combine_2CS	ning connection score sets obtained with two different signa-
-------------	---

Description

This function combines the connection score sets obtained by using two different signatures by qurying with the a set of genome-wide ranked lists of genes, through the function CS

Usage

```
combine_2CS(CS1, CS2, printToFile = FALSE, fn = "")
```

Arguments

1 Samonto	
CS1	A list of numerical vectors outputted by the CS function when using the first signature as input
CS2	A list of numerical vectors outputted by the CS function when using the second signature as input
printToFile	A boolean parameter specifying if the output of this function should be stored in a tab delimited txt file (default = FALSE). If TRUE then a file, whose name is speficied in the fn parameter is created in the ~/OUTPUT directory (where ~ is the working directory)
fn	A string containing the file storing the results. This parameter is ignored if

Details

For usage examples see the pipeline described at http://www.ebi.ac.uk/~iorio/PLoS_ONE_Submission/iterativeCmappingPL/IterativeCmappingPipeline.html

Value

A data frame containing a row for each queryied ranked list of genes (corresponding to column names). With the following columns:

cons S CS	Connection scores obtained with the first signature
cons S pvalue	Empirical p-values of connection scores obtained with the first signature
cons S fdr	False discovery rate for connection scores obtained with the first signature
incons S NCS	Normalised connection scores obtained with the first signature
incons S CS	Connection scores obtained with the second signature
incons S pvalue	
	Empirical p-values of connection scores obtained with the second signature
incons S fdr	False discovery rate for connection scores obtained with the second signature
incons S NCS	Normalised connection scores obtained with the second signature
avg NCS	Normlised connection scores averaged across the two signatures

combine_3CS 5

Author(s)

Francesco Iorio (iorio@ebi.ac.uk)

Copyright (c) 2014 - 2019, EMBL - European Bioinformatics Institute

Distributed under the GPLv3 License

See accompanying file LICENSE.txt or copy at http://www.gnu.org/licenses/gpl-3.0.html

Paper website: http://www.ebi.ac.uk/~iorio/PLoS_ONE_Submission

combine_3CS	Combining connection score sets obtained with three different signa- tures on a user defined sub-sets of ranke lists

Description

This function combines the connection score sets obtained by using two different signatures by qurying with the a set of genome-wide ranked lists of genes, through the function CS

Usage

```
combine_3CS(CS1, CS2, CS3, previousNeighBr = "", printToFile = FALSE, fn = "")
```

Arguments

8	
CS1	A list of numerical vectors outputted by the CS function when using the first signature as input
CS2	A list of numerical vectors outputted by the CS function when using the second signature as input
CS3	A list of numerical vectors outputted by the CS function when using the third signature as input
previousNeighBr	•
	A string list containing the names of the ranked lists the analysis should focus on

A boolean parameter specifying if the output of this function should be stored printToFile

in a tab delimited txt file (default = FALSE). If TRUE then a file, whose name is speficied in the fn parameter is created in the ~/OUTPUT directory (where ~ is

the working directory)

fn A string containing the file storing the results. This parameter is ignored if

printToFile = FALSE

Details

6 est_emp_Cs

Value

A data frame containing a row for each queryied ranked list of genes (corresponding to column names). With the following columns:

P/PI cons S NCS

Normalised connection scores obtained with the first signature

P/PI incons S NCS

Normalised connection scores obtained with the second signature

MST S NCS Normalised connection scores obtained with the third signature avg NCS Normlised connection scores averaged across the three signatures

Author(s)

Francesco Iorio (iorio@ebi.ac.uk)

Copyright (c) 2014 - 2019, EMBL - European Bioinformatics Institute

Distributed under the GPLv3 License

See accompanying file LICENSE.txt or copy at http://www.gnu.org/licenses/gpl-3.0.html

Paper website: http://www.ebi.ac.uk/~iorio/PLoS_ONE_Submission

est_emp_Cs

Connection score null model simulation by ranked list permutation

Description

This function estimates an empirical null distribution of connection scores for a signature of a given size and a set of genome-wide ranked lists of genes. Given the tri-modal nature of the modeled distribution [1], this function returns a 3-gaussian mixture distribution that can be used to estimate connection scores p-values

Usage

```
est_emp_Cs(signature, nt, RANKED_LISTS, show_progress = TRUE)
```

Arguments

signature A list composed by two string vectors (UP and DOWN) containing the up-regulated

(resp. down-regulated) genes of the signature

nt An integer specifying the number of permutations of the ranked lists to be per-

formed

RANKED_LISTS A data frame where each column contains a genome-wide ranked lists of genes

or probe-sets compatible with the input signature. This data frame should have

more than one column.

show_progress A boolean parameter specifying whether a progress bar should be visualised or

not (default = TRUE)

Value

A list of class mixEM

getDrugName 7

Author(s)

Francesco Iorio (iorio@ebi.ac.uk)
Copyright (c) 2014 - 2019, EMBL - European Bioinformatics Institute
Distributed under the GPLv3 License
See accompanying file LICENSE.txt or copy at http://www.gnu.org/licenses/gpl-3.0.html
Paper website: http://www.ebi.ac.uk/~iorio/PLoS ONE Submission

Refer ences

[1] Lamb,J. et al. (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 313, 1929.

[2] Iorio,F. et al. (2010) Discovery of drug mode of action and drug repositioning from transcriptional responses. Proceedings of the National Academy of Sciences, 107, 14621.

Examples

```
## loading prototype ranked lists for the connectivity map [1] drugs
load('DATA/DRUG_PRLs.ro')
## loading functions and data objects needed to perform iterative connectivity mapping
source('CODE/ITERATIVE_CMAPPING_library.R')
## generating optimal signature for tamoxifen [2]
tamoxifenSig<-DeriveSingleSignature(seed='tamoxifen')</pre>
## converting signature format
tamoxifenSig<-list(UP=as.character(tamoxifenSig$seedUPreg$ProbeSets),</pre>
                   DOWN=as.character(tamoxifenSig$seedDOWNreg$ProbeSets))
## estimating connection scores null distribution for the tamoxifen siganture
## by executing 10000 permutation of the drug prototype ranked lists
tamoxifenNull<-est_emp_Cs(tamoxifenSig,nt=10000,DRUG_PRLs)</pre>
## visualising an histogram with the simulated connection scores
hist(tamoxifenNull$x,100)
## visualising the parameters of the 3-guassian distributions in the mixture model
summary(tamoxifenNull)
```

 ${\tt getDrugName}$

Drug name from internal identifiers

Description

This function returns the name of the drug whose internal identifier is given in input

Usage

```
getDrugName(id)
```

8 getDrugTarget

Arguments

id

A string specifying the internal identifier of the drug under consideration

Value

A string specifying the name of the drug

Author(s)

Francesco Iorio (iorio@ebi.ac.uk)

Copyright (c) 2014 - 2019, EMBL - European Bioinformatics Institute

Distributed under the GPLv3 License

See accompanying file LICENSE.txt or copy at http://www.gnu.org/licenses/gpl-3.0.html

Paper website: http://www.ebi.ac.uk/~iorio/PLoS_ONE_Submission

getDrugTarget

Drug target from internal identifiers

Description

This function returns the target of the drug whose internal identifier is given in input

Usage

getDrugTarget(id)

Arguments

id

A string specifying the internal identifier of the drug under consideration

Value

A string specifying the target of the drug

Author(s)

Francesco Iorio (iorio@ebi.ac.uk)

Copyright (c) 2014 - 2019, EMBL - European Bioinformatics Institute

Distributed under the GPLv3 License

See accompanying file LICENSE.txt or copy at http://www.gnu.org/licenses/gpl-3.0.html

Paper website: http://www.ebi.ac.uk/~iorio/PLoS_ONE_Submission

pnormmix 9

pnormmix

Connection scores empirical p-value computation

Description

This fuction computes the empirical p-value of a connection score, given an empirical null distribution described as a 3-gaussian mixture model (generated by est_emp_Cs)

Usage

```
pnormmix(x, mixture)
```

Arguments

x The connection score whose significance should be evaluated

mixture A list of class mixEM generated by est_emp_Cs by giving in input the same

signature and ranked list used to generate x

Author(s)

Francesco Iorio (iorio@ebi.ac.uk)

Copyright (c) 2014 - 2019, EMBL - European Bioinformatics Institute

Distributed under the GPLv3 License

See accompanying file LICENSE.txt or copy at http://www.gnu.org/licenses/gpl-3.0.html

Paper website: http://www.ebi.ac.uk/~iorio/PLoS_ONE_Submission

Refer ences

- [1] Lamb,J. et al. (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science, 313, 1929.
- [2] Iorio,F. et al. (2010) Discovery of drug mode of action and drug repositioning from transcriptional responses. Proceedings of the National Academy of Sciences, 107, 14621.

See Also

```
est_emp_Cs
```

Examples

```
## loading prototype ranked lists for the connectivity map [1] drugs
load('DATA/DRUG_PRLs.ro')
```

 $\hbox{\it \#\# loading functions and data objects needed to perform iterative connectivity mapping source('CODE/ITERATIVE_CMAPPING_library.R')}$

generating optimal signature for valproic acid (a histone deacetylase inhibitor) [2]
vaSig<-DeriveSingleSignature(seed='valproic_acid')</pre>

qES

```
## estimating connection scores null distribution for the valproic acid siganture
## by executing 10000 permutation of the drug prototype ranked lists
vaNull<-est_emp_Cs(vaSig,nt=10000,DRUG_PRLs)</pre>
```

computing the connection score of the prototype ranked list of trichostatin A
(another histone deacetylase inhibitor) to the valproic acid optimal signature
cs<-cMap_CS(DRUG_PRLs[,'trichostatin_A'],vaSig)</pre>

computing empirical p-value of the obtained connection score
pnormmix(cs,vaNull)

qES

Quick Enrichment Score

Description

This function performs unweighted gene set enrichment analysis (GSEA) [1] by querying a genomewide ranked list of genes with an input gene signature. It also visualise the obtained running sum.

Usage

```
qES(RANKEDLIST, REGULON, display = TRUE, returnRS = FALSE)
```

Arguments

RANKEDLIST	A string vector containing a genome-wide ranked list of genes sorting according to their differential expression, in decreasing order
REGULON	A signature of genes (i.e. a subset of the genes contained in RANKEDLIST)
display	A boolean parameter specifying if the obtained running sum should be visualised or not (default = $TRUE$)
returnRS	A boolean parameter specifying if the obtained running sum should be returned as vector of doubles (default = FALSE)

Value

The obtained enrichment score or (if returnRS == TRUE) a structure containing the following objects:

ES	The obtained enrichment score
RS	A numerical vector with same length of RANKEDLIST containing the obtained running sum
POSITION	The index position of the genes in REGULON along the list contained in RANKEDLIST
PEAK	The index position at which the running sum in RS reaches the maximal divergence from zero

qES

Author(s)

Francesco Iorio (iorio@ebi.ac.uk)
Copyright (c) 2014 - 2019, EMBL - European Bioinformatics Institute
Distributed under the GPLv3 License
See accompanying file LICENSE.txt or copy at http://www.gnu.org/licenses/gpl-3.0.html
Paper website: http://www.ebi.ac.uk/~iorio/PLoS_ONE_Submission

Refer ences

- [1] Subramanian, A. et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102, 15545.
- [2] Garnett, M.J. et al. (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature, 483, 570-575.

Examples

```
## Loading the genome wide ranked lists of the GDSC [2] cell lines,
## where the genes are sorted according to their basal expression statistics
load('DATA/GDSC_basal_ELstats_rankedLists.ro')

## select a ranked list
rankedList<-gdsc_basal_ELstats_rankedLists[,1]

## selecting a random gene signature
signature<-gdsc_basal_ELstats_rankedLists[sample(1:5000,200),1]

## computing the enrichment score and visualising the obtained running sum
qES(rankedList,signature)</pre>
```

Index

```
*Topic GSEA
     cMap_CS, \frac{2}{}
     est_emp_Cs, 6
     pnormmix, 9
     qES, 10
*Topic connection scores
     cMap_CS, 2
     combine_2CS, 4
     combine_3CS, 5
     CS, 1
     est_emp_Cs, 6
     pnormmix, 9
     qES, 10
*Topic significance
     est_emp_Cs, 6
     pnormmix, 9
cMap_CS, 2
combine_2CS, 4
combine_3CS, 5
CS, 1
\texttt{est\_emp\_Cs}, \textcolor{red}{6}
getDrugName, 7
{\tt getDrugTarget}, {\color{red} 8}
pnormmix, 9
qES, 10
```