12.7 NAND / NOR (universal gates)

NAND

 $\textbf{A} \textbf{\textit{NAND}} \ \text{gate is the opposite (the NOT, hence the "N") of an AND gate, outputting 0 if all inputs are 1s; else the output is 1. \\$

A NAND gate is a universal gate

NAND gates are popular due to having a simpler CMOS transistor circuit implementation than AND gates: Recall that an AND gate is built from a NAND transistor circuit followed by a NOT circuit.

Furthermore, NAND gates are popular due to being a universal gate. A *universal gate* is a single gate type that can implement any combinational circuit. NAND can implement NOT, AND, and OR, as shown below, and is thus universal.

PARTICIPATION ACTIVITY	12.7.3: Universal gates.	
1) A NAND ga O True O Fals		
2) A NAND gargate. O True O Fals		
4) Inverting th	ne inputs of a NAND gate	

produces an OR gate.	
O True	
O False	

Converting to NAND gates

NAND being a universal gate enables chip makers to pre-fabricate a chip consisting of millions of NAND gates. Any circuit of NAND gates can be implemented simply by adding wires. Pre-fabricating the chip with AND, OR, and NOT gates would involve complexities like deciding how many of each gate to pre-fabricate, and where to place each gate type. Using NAND is much simpler.

A chip with pre-fabricated gates is sometimes called a gate-array ASIC. ASIC is short for Application-Specific Integrated Circuit.

Converting an AND/OR/NOT circuit to a NAND-only circuit enables implementation using fewer transistors as well as enables $implementation \ on \ a \ gate-array \ ASIC. \ The \ conversion \ can \ be \ done \ simply \ by \ replacing \ each \ AND, OR, \ and \ NOT \ gate \ by \ the \ equivalent$ structure of NAND gates, then removing double-inversions.

→ 3, 4		
O 4, 5		

NOR

A $\it NOR$ gate is the opposite of an OR gate, outputting 0 if any of the inputs are 1s; else the output is 1.

A discussion analogous to the above NAND discussion exists for NOR. Such discussion is omitted here. Briefly, NOR's transistor structure is simpler than OR's. NOR is also a universal gate. NOT: (a + a)' = a'a' (NOR with inputs tied together). OR: ((a + b)')' = (a + b)'' = a + b (NOR followed by NOT). AND: (a' + b')' = a'b'' = ab (NOR with each input NOTed).

Figure 12.7.2: NOR truth table and gate.

а	b	f	
0	0 1 0 1	1	, —
0	1	0	") >>>—
1	0	0	b —
1	1	0	

PARTICIPATION 12.7.7: NOR gates.	
1) 0 NOR 0 = ? O 1 O 0	
2) 1 NOR 1 = ? O 1 O 0	
3) 0 NOR 1 NOR 1=? O 1 O 0	
4) A NOR gate is a universal gate. O True O False	
5) An AND gate is a universal gate. O True O False	
A NOT gate is a universal gate. O True O False	

Provide feedback on this section