

Introdução a Sistemas Inteligentes

Modelo Árvore de Decisão

Prof^a. Suzana Mota

Modelos de Machine Learning

Um modelo é uma representação matemática encapsulada em formato computacional que captura padrões a partir de um conjunto de dados.

Essa representação é utilizada para realizar previsões, classificações ou tomar decisões com base em novos dados

Modelos de Machine Learning

- **Análise de Risco de Crédito:** Qual o limite que você pode possuir no cartão de crédito?
- **Recomendação de Produtos:** Comprou este item? Então você vai se interessar por este outro
- **Previsão de Demanda:** Quantos itens devo comprar para nao deixar faltar no estoque?
- **Perfil de Cliente:** Qual a probabilidade deste perfil de cliente comprar tal coisa? Ou cancelar a assinatura?
- Detecção de Fraude: Este cliente é um potencial fraudador?

Árvores de Decisão Decision Tree

Árvore de Decisão

Uma árvore de decisão funciona como um conjunto de regras hierárquicas, onde as decisões são feitas em "nós" e as saídas são dadas nas "folhas".

Árvore de Decisão

Devo ir naquela festa de Haloween?

Como funciona

Divisão Recursiva dos Dados: A árvore é construída ao dividir repetidamente os dados em subconjuntos com base nas características que melhor separam as classes. Nós Internos: Cada nó interno representa uma pergunta ou condição sobre uma característica (por exemplo, "Possui filhos?").

Ramos: Cada ramo a partir de um nó é uma possível resposta à pergunta (por exemplo, "Sim" ou "Não").

Folhas: As folhas representam a previsão final de classe ou valor.

Vantagens

Interpretabilidade: Fácil de visualizar e entender.

Não Requer Normalização de Dados: Pode lidar com dados sem a necessidade de normalizá-los

Resistente a Dados
Faltantes: Pode funcionar
bem mesmo com alguns
dados ausentes.

Desvantagens

Propensão ao Overfitting:
Árvores muito profundas
podem se ajustar
excessivamente aos dados de
treino.

Suscetível a Pequenas Variações nos Dados:

Pequenas mudanças nos dados podem gerar uma árvore completamente diferente.

Interpretabilidade

As árvores de decisão são fáceis de visualizar, permitindo que os usuários entendam com bastante clareza como as predições do modelo são feitas.

As árvores podem mostrar quais /características são mais importantes (Yes para a decisão, ajudando na interpretação dos dados.

Etapas de Treinamento

Configurações de ambiente

Conhecimento dos Dados

Pré-Processamento

Treinar Modelo

Avaliar Modelo

- ☐ Instalar
 Bibliotecas
- ImportarBibliotecas
- ☐ Ler dados
 ☐ Fazer análise
 exploratória
 para conhecer
 os dados
- Tratar dados ausentes
- Separar labels e features(x e y)
- Discretizar dados
- Dividir dados: treinamento e teste
- DefinirModelo deMachineLearning aser usado
- Treinar modelo (.fit)
- Obter métricas

- Oferecer dados de testes e observar as predições do modelo
- Obter métricas
- AvaliarModelo

Treinando o Modelo

https://github.com/suzanasvm/SistemasInteligentes/tree/main/datasets

Utilize um dos datasets e faça o treinamento do Modelo, usando

imports

Configurações de ambiente

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import LabelEncoder
```

#biblioteca para criarmos o modelo
from sklearn.tree import DecisionTreeClassifier

Lendo os dados

df.set index('Id', inplace=True)

Conhecimento dos Dados

```
url_dados =
'https://raw.githubusercontent.com/suzanasvm/SistemasIntelige
ntes/refs/heads/main/datasets/iris/iris.csv'

df = pd.read csv(url dados)
```

Conhecendo os dados

Conhecimento dos Dados

Mostra o Tamanho do Dataframe df.shape

Mostra as 5 primeiras linhas
df.head()

Mostra uma visão estatística dos dados df.describe()

Conta os valores nulos em todas as colunas
df.isnull().sum()

Separar labels e Features (X e y):

```
X = df.drop('Species', axis=1)
y = df['Species']
```

Discretizar Dados

```
label_encoder = LabelEncoder()
y = label encoder.fit transform(y)
```

Dividir Dados: Treinamento e Teste

```
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.3, random_state=42)
```

Instanciando o modelo:

decision_tree = DecisionTreeClassifier(random_state=42)

Treinar o modelo:

decision_tree_model = decision_tree.fit(X_train, y_train)

Qual a taxa de acerto do modelo:

acuracia_treinamento = decision_tree.score(X_train, y_train)
print(f"Acurácia do modelo nos dados de treinamento:
{acuracia treinamento * 100:.2f}%")

Obtendo predições nos dados de Teste

```
predito_ArvoreDecisao = decision_tree.predict(X_test)
predito_ArvoreDecisao
```

Qual a taxa de acerto do modelo com esses dados novos(dados de teste):

```
acuracia_teste = accuracy_score(y_test,
predito_ArvoreDecisao)
print(f"Acurácia do modelo de Árvores de Decisão:
{acuracia teste * 100:.2f}%")
```

Quais features foram mais importantes?

```
importances = decision_tree.feature_importances_
feature_names = X.columns
importances_df = pd.DataFrame(importances,
index=feature_names,
columns=['Importance']).sort_values(by='Importance',
ascending=False)
```

print("\nImportância das características:")

print(importances df)

Vamos plotar a árvore de Decisão

```
import matplotlib.pyplot as plt
from sklearn.tree import plot tree
import numpy as np
# Definir o tamanho da figura
plt.figure(figsize=(25, 20))
# Plotar a árvore de decisão
plot tree (decision tree,
         feature names=X.columns,
         class names=['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'],
         filled= True,
        rounded= True,
         fontsize= 12)
plt.title('Árvore de Decisão')
colors = ['#ff9999', '#66b3ff', '#99ff99']
class names = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']
handles = [plt.Line2D([0], [0], marker='o', color='w', markerfacecolor=color, markersize= 10) for color in
colors
plt.legend(handles, class names, title= "Classes", loc="upper left", fontsize=12)
plt.show()
```

Interpretabilidade do Modelo

