Theorem 7.29 Suppose $f: X \to Y$ is a continuous bijection where X is compact and Y is Hausdorff. Then f is a homeomorphism.

proof We know already that f is bijective, and that it is continuous. In showing that f is a homeomorphism, it remains to be shown that $f^{-1}: Y \to X$ is continuous.

To show that f^{-1} is continuous, let U be open in X. Noting that $(f^{-1})^{-1} = f$, consider f(U). We need to show that f(U) is open in Y.

Since f is continuous and surjective, and since X is compact, it follows by Theorem 7.15 that Y is compact.

Since U is open and X is open in X, it follows by Theorem 2.15 that X-U is a closed map.

Since X is compact and Y is Hausdorff, and since f is continuous from X to Y, we know by Theorem 7.24 that f is closed.

Because f is closed, and since X-U is closed, it follows by definition of a closed map that f(X-U) is closed. By properties of functions, f(X-U)=f(x)-f(U), hence f(X)-f(U) is closed. Furthermore, since f is bijective, it is surjective, and by definition of surjectivity, f(X)=Y. Substituting, we have f(X)-f(U)=Y-f(U), hence Y-f(U) is closed.

Since Y - f(U) is closed, and since Y is open in Y, it follows by Theorem 2.15 that $f(U) = (f^{-1})^{-1}(U)$ is open.

Since U was an arbitrary open set in the codomain of f^{-1} , and since its inverse image is open in the domain of f^{-1} , it follows that all open sets in X are mapped to by open sets in Y under f^{-1} . So by definition of a continuous map, f^{-1} is continuous.

Since $f: X \to Y$ is a continuous bijection whose inverse is also continuous, it follows by definition of a homeomorphism that f is a homeomorphism.

exersize 6.7 If A and B are compact subsets f X, then $A \cup B$ is compact. Suggest and prove a generalization.

generalization Given a finite collection of compact subsets $\{S_i\}_{i < n}$ of X for some $n \in \mathbb{N}$, the union $\bigcup_{i=1}^n S_i$ is also compact.

proof

Let C be an open cover for $\bigcup_{i=1}^n S_i$. Let S_j be an arbitrary member of $\{S_i\}_{i< n}$. Notice that since each $S_j \subseteq \bigcup_{i=1}^n S_i$, and since by definition of a subcover, $\bigcup_{i=1}^n S_i \subseteq_{U \in \mathcal{C}} U$, it follows by the transitivity of subsets that $S_j \subseteq_{U \in \mathcal{C}} U$. Hence C forms an open cover for S_j as well. Since C forms a cover for S_j , and since C is open, we know by definition of compactness and the construction of S_j as a member of a collection of compact sets that C has a finite subcover for S_j , call it C_j . Since S_j was arbitrary, it follows that for each element S_k of $\{S_i\}_{i< n}$ there is some finite subcover $C_k \subseteq C$ that covers S_k . For convenience, let the union of the elements of all such C_k be denoted as U_k . Let S be the union of all such C_k . Then since each S_k is a subset of its corresponding U_k , it follows from a theorem in foundations that $\bigcup_{i=1}^n S_i \subseteq \bigcup_{i\in A} U_i = \bigcup_{C\in S} C$. Hence by definition of a cover, S forms a cover for $\bigcup_{i=1}^n S_i$. Furthermore, since the union of a finite collection of finite sets is finite, S is finite. So we have a finite subcover for C of $\bigcup_{i=1}^n S_i$. Since C was an arbitrary open cover for $\bigcup_{i=1}^n S_i$, it follows that each open cover for $\bigcup_{i=1}^n S_i$ has a finite subcover. Hence by definition of compactness, $\bigcup_{i=1}^n S_i$ is compact.