Subbases

Definition: Subbasis

Let (X, \mathscr{T}) be a topological space and let $S \subset 2^X$. To say that S is a *subbasis* for \mathscr{T} means that the set \mathcal{B} consisting of all finite intersections of subsets of S is a basis for \mathscr{T} .

Theorem

Let $\mathcal T$ be the standard topology on $\mathbb R$ and let:

$$\mathcal{S} = \{(-\infty, b) \mid b \in \mathbb{R}\} \cup \{(a, \infty) \mid a \in \mathbb{R}\}\$$

S is a subbasis for \mathcal{T} .

Proof. Since all of the sets in S are open, all finite intersections are also open. In particular, for all $a,b\in\mathbb{R}$ such that a< b:

$$(-\infty, b) \cap (a, \infty) = (a, b)$$

But the (a,b) are known to be a basis of \mathscr{T} . Furthermore, adding more open sets to a basis just results in a finer basis.

Therefore, S is a subbasis of \mathcal{T} .