

Insect Science and Its Application

The International Journal of Tropical Insect Science

Sponsored by the International Centre of Insect Physiology and Ecology (ICIPE), and the African Association of Insect Scientists (AAIS)

Editor-in-Chief: Thomas R. Odhiambo

Associate Editor: K. N. Saxena

Senior Scientific Editor: Serah W. Mwanyoky

The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya

Editorial Advisory Board

F. T. Abushama, Kuwait, State of Kuwait

H. C. Agarwal, Delhi, India

J. Allen, Saskatoon, Canada

J. K. O. Ampofo, Arusha, Tanzania

A. B. Attygalle, Ithaca, New York, USA

J. L. Auclair, Montreal, Canada

R. Galun, Jerusalem, Israel

I. Fagoonee, Reduit, Mauritius

K. M. Harris, London, UK

T. Hidaka, Kyoto, Japan

H. Hirumi, Nairobi, Kenya

A. G. Ibrahim, Serdang, Selangor, Malaysia

R. Kumar, Port Harcourt, Nigeria

V. M. Labeyrie, Paris, France

A. Mansingh, Kingston, Jamaica

F. G. Maxwell, College Station, Texas, USA

A. I. Mohyuddin, Rawalpindi, Pakistan

J. Mouchet, Paris, France

R. W. Mwangi, Nairobi, Kenya

L. M. Schoonhoven, Wageningen, The Netherlands

P. Singh, Auckland, New Zealand

K. Slama, Praha, Czechoslovakia

G. L. Teetes, College Station, Texas, USA

S. A. Toye, Ibadan, Nigeria

H. F. van Emden, Reading, UK

A. van Huis, Wageningen, The Netherlands

S. Yagi, Tsukuba, Ibaraki, Japan

PUBLISHED BIMONTHLY

Annual Subscription

For libraries, university departments, government laboratories, industrial and other multiple reader institutions US\$ 210.00 (1991); 2-year rate (1991-1992) US\$ 410.00 (including postage and insurance), private individuals US\$ 80.00 (1991); 2-year rate US\$ 150.00 (1991-1992).

Specially Reduced Rates for Individuals: In the interest of maximizing the dissemination of the research results published in this important international journal we have established a two-tier price structure. Any individual whose institution takes out a library subscription may purchase a second or additional subscriptions for personal use at a much reduced rate of US\$ 70.00 (1991); 2-year rate (1991-1992) US\$ 140.00. Members of the International Centre of Insect Physiology and Ecology (ICIPE) and the African Association of Insect Scientists (AAIS) may purchase a subscription at the special rate of US\$ 20.00 (1991); 2-year rate (1991-1992) US\$ 40.00.

Application forms for membership of the AAIS (registration fee US\$ 20.00; annual membership fee US\$ 20.00) may be obtained from: Hon. Secretary, African Association of Insect Scientists, P.O. Box 59862, Nairobi, Kenya.

Prices are subject to amendment without notice

Copyright © 1991—ICIPE Science Press, The International Centre of Insect Physiology and Ecology

It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. By submitting a manuscript, the authors agree that the copyright for their article is transferred to the publisher if and when the article is accepted for publication. However, assignment of copyright is not required from authors who work for organizations which do not permit such assignment. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints, photographic reproductions, microform or any other reproductions of similar nature and translations. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical photocopying, recording or otherwise, without permission in writing from the copyright holder.

Photocopying information for users in the USA

The Item-fee Code for this publication indicates that authorization to photocopy items for internal or personal use is granted by the copyright holder for libraries and other users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided the stated fee for copying beyond that permitted by Section 107 or 108 of the U.S. Copyright Law, is paid. The appropriate remittance of \$3.00 per copy per article is paid directly to the Copyright Clearance Center Inc., 27 Congress Street, Salem, MA 01970.

Permission for other use

The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works or for resale. Specific written permission must be obtained from the publisher of such copying.

The item-fee for this publication is 0191-9040/91 \$3.00+0.00

ICIPE SCIENCE PRESS
P. O. Box 72913, Nairobi, Kenya, East Africa

CONTENTS OF VOLUME 11

VOLUME 11 NUMBER 1

A. T. SHOWLER, T. E. REAGAN and R. M. KNAUS	1	<i>Mini Review Article</i> Sugar-cane weed community interactions with arthropods and pathogens
R. T. GAHUKAR	13	<i>Research Articles</i> Field screening of pearl millet cultivars in relation to insects and diseases
J. SRIKANTH and N. H. LAKKUNDI	21	Seasonal population fluctuations of cowpea aphid <i>Aphis</i> <i>craccivora</i> Koch and its predatory coccinellids
C. ANENE and C. G. VAJIME	27	Parasites, parasitoids and predators of <i>Oedaleus</i> <i>senegalensis</i> Krauss (Orthoptera: Acrididae) in Nigeria
J. H. NDERITU, H. Y. KAYUMBO and J. M. MUEKE	35	Beanfly infestation on common beans (<i>Phaseolus</i> <i>vulgaris</i> L.) in Kenya
T. O. EZULIKE and R. I. EGWUATU	43	Determination of damage threshold of green spider mite, <i>Mononychellus tanajoa</i> (Bondar) on cassava
O. KOUL and M. B. ISMAN	47	Antifeedant and growth inhibitory effects of sweetflag, <i>Acorus calamus</i> L. oil on <i>Peridroma saucia</i> (Lepidoptera: Noctuidae)
Z. R. KHAN and R. C. SAXENA	55	Purification of Biotype I population of brown planthopper <i>Nilaparvata lugens</i> (Homoptera: Delphacidae)
T. O. EZULIKE and R. I. EGWUATU	63	The influence of green spider mite, <i>Mononychellus</i> <i>tanajoa</i> (Bondar) infestation on some biochemical components of cassava leaves
G. SINGH and S. SIDHU	69	Effect of juvenile hormone analogues on the reproduction and longevity of mustard aphid, <i>Lipaphis</i> <i>erysimi</i> (Kalt.)
J. SINGH, Z. S. DHALIWAL S. S. SANDHU and A. S. SIDHU	73	Temporal changes in the dispersion of populations of three homopterous insect pests of upland cotton
S. M. WALADDE, S. A. OCHIENG' and H. M. KAHORO	79	Responses of <i>Chilo partellus</i> larvae to host plant materials: Behaviour and electrophysiological bioassay
Y. SCHLEIN, M. J. MUTINGA, R. L. JACOBSON and J. B. KADDU	91	Evaluation of food dye marking in the study of sandfly behaviour in Baringo District, Kenya
J. H. NDERITU, H. Y. KAYUMBO and J. M. MUEKE	97	Effect of date of sowing on beanfly infestation of the bean crop
Book Review	103	
Obituary	105	
Publisher's Announcement	107	Special Issues
AAIS Announcement	108	
Instructions to Authors	i	
Author checklist	iv	

VOLUME 11 NUMBER 2*Research Articles*

O. AJAYI	109	Possibilities for integrated control of the millet stem borer, <i>Acigona ignefusalis</i> Hampson (Lepidoptera: Pyralidae) in Nigeria
T. K. MUKIAMA and R. W. MWANGI	119	Population and cytogenetic observations on <i>Anopheles arabiensis</i> Patton of Mwea Irrigation Scheme, Kenya
J. P. R. OCHIENG'-ODERO	133	New strategies for quality assessment and control of insects produced in artificial rearing systems
T. G. OKORIE and J. OKEKE	143	Comparative studies on the blowfly, <i>Lucilia caesar</i> (Diptera, Calliphoridae) reared from three media prepared from local materials, and the standard Snyder's medium
M. F. IVBIJARO	149	The efficacy of seed oils of <i>Azadirachta indica</i> A. Juss and <i>Piper guineense</i> Schum and Thonn on the control of <i>Callosobruchus maculatus</i> F.
T. G. OKORIE, O. O. SIYANBOLA and V. O. EBOCHUO	153	Neemseed powder, as a protectant for dried <i>Tilapia</i> fish against <i>Dermestes maculatus</i> Degeer infestation
M. H. IDRIS	159	Action of juvenile hormone and ecdysone in the metamorphic endocrine centres
M. MANI, A. KRISHNAMOORTHY and S. P. SINGH	167	The impact of the predator, <i>Cryptolaemus montrouzieri</i> Mulsant, on pesticide-resistant populations of the striped mealybug, <i>Ferrisia virgata</i> (Ckll.) on guava in India
F. K. EWETE and R. A. OLAGBAJU	171	The development of <i>Aspavia armigera</i> Fabricius (Hemiptera: Pentatomidae) and its status as a pest of cowpea and rice
L. E. WONGO	179	Factors of resistance in sorghum against <i>Sitotroga cerealella</i> (Oliv.) and <i>Sitophilus oryzae</i> (L.)
E.-D. N. UMEH	189	<i>Exochomus troberti</i> Mulsant (Coleoptera: Coccinellidae): A predator of cassava mealybug, <i>Phenacoccus manihoti</i> Mat-Ferr (Homoptera: Pseudococcidae) in southeastern Nigeria
L. D. McCOMIE and G. DHANARAJAN	197	Respiratory rate and energy utilization by <i>Macrotermes carbonaris</i> (Hagen) (Isoptera, Termitidae, Macrotermitinae) in Penang, Malaysia
R. T. GAHKAR	205	Preliminary comparison of spike development stages for insecticide application against <i>Heliocheilus albipunctella</i> de Joannis in pearl millet
J. ALLOTEY and L. GOSWAMI	209	Comparative biology of two phycitid moths, <i>Plodia interpunctella</i> (Hubn.) and <i>Ephestia cautella</i> (Wlk.) on some selected food media
S. FIREMPONG and H. MAGALIT	217	Spatial distribution of <i>Maruca testulalis</i> larvae on cowpea, and a sequential sampling plan for estimating larval densities
K. Y. MUMCUOGLU, J. MILLER and R. GALUN	223	Susceptibility of the human head and body louse (<i>Pediculus humanus</i>) (Anoplura: Pediculidae) to insecticides
G. N. MBATA	277	Some aspects of the biology of <i>Callosobruchus subinnotatus</i> (Pic) (Coleoptera: Pediculidae) a pest of stored bambara groundnuts

O. O. DIPEOLU	235	Expression and quantification of degrees of resistance by rabbits to infestation with <i>Rhipicephalus sanguineus</i> (L.), <i>Dermacentor variabilis</i> (Say) and <i>Amblyomma maculatum</i> Koch, (Acari, Ixodidae)
G. N. MBATA	245	Studies on the intraspecific larval interaction in a laboratory culture of <i>Plodia interpunctella</i> (Hubner) (Lepidoptera: Pyralidae) on two food media
Book Reviews	253	
<i>Instructions to Authors</i>	i	
<i>Author checklist</i>	iv	

VOLUME 11 NUMBER 3

T. R. ODHIAMBO	257	Preface
T. R. ODHIAMBO	259	Keynote Address
J. K. GASHUMBA	265	Speciation and subspeciation in <i>Nannomonas</i> trypanosomes and their epidemiological significance
J. H. P. NYEKO, O. K. OLE-MOIYOI, P. A. O. MAJIWA, L. H. OTIENO and P. M. OCIBA	271	Characterization of trypanosome isolates from cattle in Uganda using species-specific DNA probes reveals predominance of mixed infections
L. H. OTIENO, N. DARJI and P. ONYANGO	281	Electrophoretic analysis of <i>Trypanosoma brucei</i> sub-group stocks from cattle, tsetse and patients from Lambwe Valley, Western Kenya
D. B. MBULAMBERI	289	Recent epidemic outbreaks of human trypanosomiasis in Uganda
S. G. A. LEAK, C. COLLARDELLE, L. COULIBALY, P. DUMONT, A. FERON, P. HECKER, G. D. D'IEREN, P. JEANNIN, M. MINENGU, S. MINJA, W. MULATU, G. NANKODABA, G. ORDNER, G. J. ROWLANDS, B. SAUVEROCHE, G. TIKUBET and J. C. M. TRAIL	293	Relationships between tsetse challenge and trypanosome prevalence in trypanotolerant and susceptible cattle
P. MILLIGAN	301	Modelling trypanosomiasis transmission
L. CHUKA MADUBUNYI	309	Ecological studies of <i>Glossina austeni</i> at Jozani Forest, Unguja Island, Zanzibar
M. I. MWANGELWA, R. D. DRANSFIELD, L. H. OTIENO and K. J. MBATA	315	Distribution and diel activity patterns of <i>Glossina fuscipes fuscipes</i> Newstead on Rusinga Island and mainland in Mbala, Kenya
J. W. HARGROVE	323	Age-dependent changes in the probabilities of survival and capture of the tsetse, <i>Glossina morsitans morsitans</i> Westwood
D. J. ROGERS	331	A general model for tsetse populations
S. E. RANDOLPH, D. J. ROGERS and J. KIILU	347	Rapid changes in the reproductive cycle of wild-caught tsetse, <i>Glossina pallidipes</i> Austen, when brought into the laboratory
J. O. A. DAVIES-COLE and M. F. B. CHAUDHURY	355	Mating efficiency in females of <i>Glossina pallidipes</i>
M. OKECH and A. HASSANALI	363	The origin of phenolic tsetse attractants from host urine: Studies on the pro-attractants and microbes involved

R. K. SAINI	369	Responses of tsetse, <i>Glossina</i> spp. (Diptera: Glossinidae) to phenolic kairomones in a wind tunnel
J. BRADY, M. J. PACKER and G. GIBSON	377	Odour plume shape and host finding by tsetse
R. H. GOODING	385	Genetic aspects of quality control in tsetse colonies
W. SHERENI	399	Strategic and tactical developments in tsetse control in Zimbabwe (1981-1989)
J. LANCIEN, J. MUGUWA, C. LANNES and J. B. BOUVIER	411	Tsetse and human trypanosomiasis challenge in south eastern Uganda
E. A. OPIYO, A. R. NJOGU and J. K. OMUSE	417	Use of impregnated targets for control of <i>G. pallidipes</i> in Kenya
L. CLAUDE, E. JEAN-PIERRE, G. PASCAL and L. JEAN-JACQUES	427	The control of riverine tsetse
G. P. KAAYA and M. A. OKECH	443	Microorganisms associated with tsetse in nature: Preliminary results on isolation, identification and pathogenicity
A. P. M. SHAW	449	A spreadsheet model for the economic analysis of tsetse control operations benefiting cattle production
W. E. ORMEROD	455	Africa with and without tsetse
Publisher's Announcement	462	Special Issues
<i>Instructions to Authors</i>	i	
<i>Author Checklist</i>	iv	

VOLUME 11 NUMBER 4/5

SPECIAL ISSUE

TROPICAL STEM BORERS OF GRAMINACEOUS CROPS: A NEW SYNTHESIS

T. R. ODHIAMBO	463	Foreword
T. R. ODHIAMBO	465	Welcome Remarks
K. M. HARRIS	467	Keynote Address: Bioecology of <i>Chilo</i> spp.

STATUS AND CONTROL OF *CHILO* spp. IN DIFFERENT REGIONS

S. Z. SITHOLE	481	Status and control of <i>Chilo partellus</i> Swinhoe (Lepidoptera: Pyralidae) in Southern Africa
E. M. MINJA	489	Management of <i>Chilo</i> spp. infesting cereals in Eastern Africa
F. P. NEUPANE	501	Status and control of <i>Chilo</i> spp. on cereal crops in Southern Asia
C. S. LI	535	Status and control of <i>Chilo</i> spp., their distribution, host range and economic importance in Oceania
V. MELAMED-MADJAR	541	Status of <i>Chilo agamemnon</i> Bles. in Israel and the probable reasons for the decrease in its populations

TAXONOMY, DISTRIBUTION, POPULATION ECOLOGY, DYNAMICS AND CROP LOSSES

K. V. SESHU REDDY, M. C. LUBEGA and K. O. S. SUM 549 Population patterns of *Chilo* spp. in sorghum, maize and millets

K. KIRITANI 555 Recent population trends of *Chilo suppressalis* in temperate and sub-tropical Asia

K. V. SESHU REDDY and P. T. WALKER 563 A review of the yield losses in graminaceous crops caused by *Chilo* spp.

T. R. ODHIAMBO 571 Special Lecture: Assets of an IPM specialist with particular reference to *Chilo*

PHYSIOLOGY, BEHAVIOUR AND BIOCHEMISTRY

H. KANNO 579 Initiation mechanism of mating behaviour in the rice stem borer, *Chilo suppressalis* Walker

H. C. AGARWAL, R. GUPTA, R. RATH and V. GOEL 583 Sterol inhibition in *Chilo partellus*

S. M. WALADDE, H. M. KAHORO and S. A. OCHIENG' 593 Sensory biology of *Chilo* spp. with specific reference to *C. partellus*

REARING AND QUALITY CONTROL

S. L. TANEJA and K. F. NWANZE 605 Mass rearing of *Chilo* spp. on artificial diets and its use in resistance screening

M. BETBEDER-MATIBET 617 Elevage de plusieurs especes du genre *Chilo* et de certains de leurs parasites pour la lutte biologique contre les foreurs des graminees en Afrique

HOST PLANT RESISTANCE

K. LEUSCHNER 627 A review of laboratory and field screening procedures for *Chilo partellus*

M. N. UKWUNGWU 639 Host plant resistance in rice to the African striped borer, *Chilo zacconius* Bles. (Lepidoptera: Pyralidae)

B. TORTO, A. HASSANALI and K. N. SAXENA 649 Chemical aspects of *Chilo partellus* feeding on certain sorghum cultivars

BREEDING AND RESISTANCE GENETICS

R. C. CHAUDHURY and G. S. KHUSH 659 Breeding rice varieties for resistance against *Chilo* spp. of stem borers in Asia and Africa

B. L. AGRAWAL, S. L. TANEJA, L. R. HOUSE and K. LEUSCHNER 671 Breeding for resistance to *Chilo partellus* Swinhoe in sorghum

M. ASHRAF and B. FATIMA 683 Breeding for resistance to *Chilo* spp. in sugar-cane

R. S. PATHAK 689 Genetics of sorghum, maize, rice and sugar-cane resistance to the cereal stem borer, *Chilo* spp.

CULTURAL, GENETIC AND CHEMICAL CONTROL

K. V. SESHU REDDY 703 Cultural control of *Chilo* spp. in graminaceous crops

V. A. O. OKOTH 713 Potential for the use of genetic methods for the control of *Chilo* spp.

BIOLOGICAL CONTROL

A. I. MOHYUDDIN	721	Biological control of <i>Chilo</i> spp. in maize, sorghum and millet
H. DAVID and S. EASWARAMOORTHY	733	Biological control of <i>Chilo</i> spp. in sugar-cane
D. J. GREATHEAD	749	Utilization of natural enemies of <i>Chilo</i> spp. for management in Africa
LU QING GUANG and G. W. OLOO	757	Host preference studies on <i>Trichogramma</i> sp. nr <i>mwanzae</i> Schulzen and Feijen (Hymenoptera: Trichogrammatidae) in Kenya
J. W. BAHANA	765	Bioecological studies on <i>Dentichasmias busseolae</i> Heinrich and its potential for biological control of <i>Chilo partellus</i> Swinhoe
M. O. ODINDO	773	Potential of <i>Nosema</i> spp. (Microspora: Nosematidae) and viruses in the management of <i>Chilo</i> spp. (Lepidoptera: Pyralidae)
M. BROWNBRIDGE	779	The role of bacteria in the management of <i>Chilo</i> spp.

PEROMONAL CONTROL

P. S. BEEVOR, H. DAVID and O. T. JONES	787	Female sex pheromones of <i>Chilo</i> spp. (Lepidoptera: Pyralidae) and their development in pest control applications
G. C. UNNITHAN and K. N. SAXENA	795	Population monitoring of <i>Chilo partellus</i> (Swinhoe) (Lepidoptera: Pyralidae) using pheromone traps
S. TATSUKI	807	Status of application of sex pheromone of rice stem borer moth, <i>Chilo suppressalis</i> in Japan

INTEGRATED PEST MANAGEMENT

E. A. AKINSOLA	815	Management of <i>Chilo</i> spp. in rice in Africa
A. RAJABALEE	825	Management of <i>Chilo</i> spp. on sugar-cane with notes on mating disruption studies with the synthetic sex pheromone of <i>C. sacchariphagus</i> in Mauritius

INTERNATIONAL CO-OPERATION AND TRAINING

Z. M. NYIIRA	839	International co-operation and training for management of <i>Chilo</i> spp.
Publisher's Announcement	844	Special Issue

Instructions to Authors i
Author Checklist iv

VOLUME 11 NUMBER 6

Publisher's Announcement	i	Special Issue
R. RAMASAMY and M. S. RAMASAMY	845	<i>Mini Review Article</i> The role of host immunity to arthropod vectors in regulating the transmission of vector borne diseases
N. NATARAJAN and P. C. SUNDARA BABU	851	<i>Research Articles</i> Importance of the gram pod borer and earhead bug on sorghum
M. E. HASSAN SHAZALI	855	Faba bean (<i>Vicia faba</i> L.) seed coat colour, tannin content and susceptibility to bruchids

A. E. P. MNZAVA and M. A. DI DECO	861	Chromosomal inversion polymorphism in <i>Anopheles gambiae</i> and <i>Anopheles arabiensis</i> in Tanzania
J. S. BAINS, S. C. KHANNA, S. K. GARG and S. P. SHARMA	865	Age-related analysis of adenosine triphosphatase activity as affected by propyl gallate in the drosophilid, <i>Zaprionis paravittiger</i>
C. P. SRIVASTAVA, M. P. PIMBERT and W. REED	869	Spatial and temporal changes in the abundance of <i>Helicoverpa</i> (= <i>Heliothis</i>) <i>armigera</i> (Hubner) in India
R. K. KASHYAP, M. K. BANERJEE, KALLOO and A. N. VERMA	877	Survival and development of fruit borer, <i>Heliothis armigera</i> (Hubner), (Lepidoptera:Noctuidae) on <i>Lycopersicon</i> spp.
F. O. APPIAH, D. A. OKIY and S. E. NNABUCHI	883	Influence of food type on the rate of development of <i>Catantops spissus spissus</i> Walker, (Orthoptera: Acrididae)
H. C. SHARMA, P. VIDYASAGAR and K. LEUSCHNER	889	Componental analysis of the factors influencing resistance to sorghum midge, <i>Contarinia sorghicola</i> Coq.
E. M. EL-BANHAWY and B. A. ABOU-AWAD	899	Records of the genus <i>Amblyseius</i> Berlese from Tanzania with a description of a new species (Acari: Mesostigmata)
C. PETER and B. V. DAVID	903	Influence of host plants on the parasitism of <i>Diaphania indica</i> (Lepidoptera: Pyralidae) by <i>Apanteles taragamae</i> (Hymenoptera: Braconidae)
A. O. MONGI and C. A. AGANYO	907	<i>Rhipicephalus appendiculatus</i> : Immunochemical isolation, identification and characterization of tick gut antigens recognized by IgGs derived from rabbits repeatedly infested with ticks
Book review	917	
Obituary	919	
Instructions to authors	i	
Author checklist	iv	

SUBJECT INDEX

Acigona ignefusalis control of 109–117
Acorus calamus 47–53
 adenosine triphosphatase activity 865–867
Aenasius advena 167
Aeromonas 443–448
 Africa
 without tsetse 455–461
 with tsetse 455–461
 agroecosystems 1–11
Amblyseius 899–902
Amblyseius fustis 899–902
Amblyseius largoensis 899–902
Amblyseius merus 861–863
Amblyseius sawaga 899–902
Amblyseius serengati 899–902
 Amino acids 1–11
Amrasca biguttula biguttula 73–77
Anopheles arabiensis 119–131, 861–863
Anopheles gambiae 861–863, 119–131
 antifeedant growth inhibitory effects 47–53
Apanteles flavipes 535–589, 733–748
Apanteles sp. 617–623, 749–755
Apanteles taragamae 903–906
 aphid, cowpea population on 21–26
Aphis craccivora 21–26
Aphis gossypii 73–77
 arthropods
 interactions with 1–11
 vectors 845–850
 artificial diets 605–616
 irrigation 119–131
 rearing systems 133–141
Aspavia armigera 171–177
Aspergillus 443–448
 assessment of
 crop losses 481–488
 insects and quality 133–141
 Association of Officially Analytical Chemists 63–67
 attractants 363–368
Azadirachta indica 149–152

Bacillus spp. 443–448
Bacillus thuringiensis 779–783
Bacillus thuringiensis entomocidus 779–783
 bacteria in management of *Chilo* 779–783
 beanfly 35–41, 97–101
 beetles, biology of 227–234
Bemisia tabaci 73–77
 biconical trap 313
 biochemical components of cassava 63–67
 bioecological studies 765–772

biological control
 of *Chilo* spp. 721–732, 733–749
 of *Chilo partellus* 765–772
 in maize, millet and sorghum 721–732
 methods 481–488, 489–499
 bioecology of *Chilo* sp. 467–477
 biologique contre les foreurs 617–623
 biological
 parameters 133–141
 studies 143–148
 biology
 of *Callosobruchus subinnotatus* 227–234
 sensory of *Chilo* spp. 593–602
 biotype 55–62, 309
 blowfly rearing media 143–148
 body louse 223–226
Bracon chinensis 535–539
 breeding
 for resistance to *Chilo* spp. 683–687
 for resistance to *Chilo partellus* 671–682
 rice varieties 659–669
 brown planthopper population of 55–62
 Bruchid mortality 149–152
 Bruchids susceptibility to 855–859
Bruchidius incarnatus susceptibility to 855–859
Busseola fusca 757–763

Calocoris angustatus 851–854
Calopogonium mucunoides 883–887
Callosobruchus maculatus
 control of 149–152
 susceptibility to 855–859
Callosobruchus subinnotatus 227–234
 cassava
 biochemical components of 63–67
 green spider mite 43–45
 mealybug 189–195
Catantops spissus spissus
 rate of development 883–887

cattle
 production 449–453
 trypanosome isolates 271–280

Cedecea 443–448
 cellular immune responses 845–850
 cereal
 crop production 489–499
Chilo spp. on 501–534
 stem borer resistance 689–699
 yield losses 463
 characterization of trypanosome 271–280
 chemical

aspects of *Chilo partellus* 649–655
 control 489–499
Chilo agamemnon
 bioecology 467–477
 biological control 721–732
 on maize 605–616
 status 541–549
Chilo auricilia 535–539
Chilo auricilius 659
 bioecology 467–477
 cereal pest 501–534
 female sex pheromone 787–794
 on sugar-cane 605–616
Chilo diffusilineus 467, 659, 721–732
Chilo infuscatellus
 bioecology 467–477
 biological control 721–748
 cereal pest 501–534
 management with virus 773–778
 sugar-cane pest 535–539
Chilo IPM specialist 571–576
Chilo niponella 467
Chilo orichalcocilellus 467, 605
 biological control 721–732
 control 489–499
Chilo panici 467
Chilo partellus 659
 bioecology 467–477
 biology 593–602
 biological control 721–732, 765–772
 cereal pest 501–534
 chemical aspects 649–655
 control 481–499
 feeding responses 79–89
 genetic control 713–718
 laboratory screening 627–638
 larvae 79–89
 management with *Nosema* spp. 773–778
 on maize 605–616
 population monitoring of 795–805
 progeny 757–763
 responses of 79–89
 resistance to 689–699
 sterol inhibition 583–591
 virus 773–778
 yield losses by 463
Chilo plejadellus 467
Chilo polychrysa 535–539
Chilo polychrysus 467, 659, 501–534
Chilo species bioecology 467–477
Chilo sacchariphagus
 bioecology 467–477
 biological control 721–732
 control 489–499
 sex pheromone 787–794
Chilo sacchariphagus indicus

cereal pest 501–534
 female sex pheromones 787–794
Chilo spp.
 biological control 721–748
 control 501–539
 cultural control 703–712
 distribution 535–539
 economic importance 535–539
 genetic control 713–718
 in graminaceous crops 703–712
 host range 535–539
 infesting cereals 489–499
 losses caused by 563–569
 natural enemies 749–755
Nosema spp. virus 773–778
 in maize 549–554
 management 489–499, 815–836
 with *Bacillus thuringiensis*
 779–783
 mass rearing 605–616
 in millet 549–554
 resistance against 659–669,
 683–699
 in rice 815–823
 sex pheromones 787–794
 in sorghum 549–554
 status 501–539
 in sugar-cane 733–748
 population patterns 549–554
Chilo supermain cereal pest
 501–534
Chilo suppressalis 605, 659
 application of sex pheromone
 807–812
 bioecology 467–477
 biological control 721–732
 cereal pest 501–534
 control 535–539
 distribution and economic
 importance 535–539
 in rice 807–812
 management with virus 773–778
 mating behaviour 579–582
 population trends 555–562
 sex pheromones 787–794
 status 535–539
Chilo terrenellus 467, 535–539
Chilo tumidicostalis 501–534
Chilo zacconius 605, 659
 bioecology 467–477
 biology 617–623, 815–823
 life history 815–825
 resistance 639–647
 chlorophyll content 63–67
 chromosomal polymorphism
 861–863
Claviceps fusiformis 13–19
 coccinellid 167
 predatory 21–26
 componental analysis 889–898
Coniesta (acigona) ignefusalis
 13–19
Contarinia sorghicola 889–898
 control
 of *Acigona ignefusalis* 109–117
Callosobruchus maculatus
 149–152
Chilo spp. 501–539, 703–718
Glossina pallidipes 417–425
 insects 133–141
 millet stem borer 109–117,
 481–488
Chilo partellus 481–488
 in tsetse 385–409, 427–441
Corpus allatum 159–166
 cotton upland pests of 73–77
 cowpea
 aphid 21–26
Aspavia armigera 171–177
Maruca testulalis 217–222
 seeds 149–152
 varieties 171–177
Cryptolaemus montrouzieri 167–170
 cultural control
 of *Chilo* spp. 703–712
 methods 489–499
 cutworm, variegated 47–53
 cytogenetic observations on 119–131
 damage threshold 43–45
 date of
 planting 109–117
 sowing effect on beanfly 97–101
 deltamethrin 223
Dentichasmias busseolae 765–772
Dermestes maculatus 153–157
 development period 209, 171–177
Diaphania indica of 903–906
Diatraea saccharalis 1–11
Diatraephaga striatula 617–623
 diel activity *Glossina fuscipes*
fuscipes 315–321
 dieldrin 223
 diflubenzuron 205–208
 dipterous insects 27–34
 disease incidence, on 13–19
 distribution of *Glossina fuscipes*
fuscipes 315–321
 DNA probes 271–280
 drosophilid 865–867
 earhead bug 851–854
 ecdysone 159–166
 ecological studies 309–313
 economic
 analysis 449–453
 injury level 43–45
 threshold 43–45
 egg parasite 733–748
Elaeis guineensis 883–887
Eldana saccharina 757–763
 electrophysiological bioassay 79–89
 élevage de plusieurs *Chilo* 617–623
 energy utilization 197–204
 endocrine centres 159–166
 engorgement period index 235–243
Enterobacter 443–448
Ephestia cautella 209–215
 epidemiological significance
 265–269
 ergot 13–19
 eri-silkworm 159
 estimating larval densities 217–222
Exochomus troberti 189–195
 faba bean 855–859
 factors influencing resistance
 889–898
 fenitrothion 223
Ferrisia virgata 167–170
 field screening 13–19, 627–638
 fish protectant 153–157
 Food
 dye marking 91–96
 media 209–215
Fusarium 443–448
 fruit borer 877–881
 genetics of cereals 689–699
 genetic
 aspects of control 385–398
 diversity 13–19
 methods of control 713–718
Geromyia penniseti 13–19
Glossina austeni 309–313
Glossina brevipalpis 262
Glossina fuscipes fuscipes 262
 distribution and diel activity
 315–321
 pyramidal traps 411–416
Gossypium hirsutum 73–77
Glossina morsitans morsitans
 261–262
 age-dependent changes 323–330
 control 399–409
 phenolic kairomones response
 369–375
 population model 331–346
 survival and capture 323–330
Glossina palpalis 331–340
Glossina pallidipes 261–262
 bacteria isolation from 443–448
 control 399–409, 417–425
 phenolic kairomones response
 369–375
 population model 331–346
 reproductive cycle 347–354
Glossina spp. 369–375
Goniozus procerae 617–623
 gram pod borer 851–854
 graminaceous crops 563–569
 grasshopper parasitoids 27–34
 green spider mite
 on cassava 43–45
 damage threshold 43–45
 infestation of 63–67
 growth inhibitory effects 47–53
 groundnuts bambara pest of
 227–234
 guava striped mealybug 167–170
 head smut 13–19
Helicoverpa (= Heliothis)
armigera 851–854, 869–876
Heliocheilus (Raguva)
albipunctella 13–19, 205–208
Heliothis armigera 877–881
 host
 finding by tsetse 377–384
 immunity 845–850
 influence 903–906
 plant behaviour 79–89
 preference studies 757–763
 response to 79–89
 resistance 489–499, 639–647
 human

head louse 223–226
trypanosomiasis and tsetse 411–416
humoral immune responses 845–850

immunochemical
isolation 907–917
identification 907–917
characterization 907–917

impregnated targets use of 417–425

incubation period 153

infections, mixed 271–280

insect incidence, on 13–19

insecticidal efficacy 149–152

insecticide application 205–208

insecticides 109–117

insect
parasitoid 749
pests
homopterous 73–77

integrated
control 109–117
pest management 489–499, 571–576

intrinsic rate 189

inversion polymorphism 119–131

IPM specialist assets 571–576

irrigation scheme 119–131

juvenile hormone
action of 159–166
analogues 69–72

kairomones, phenolic 369–375

karyotypes 119–131

Larval
critical weight 133–141
parasite 733–748

Lipaphis erysimi 69–72

Lixophaga diatraea 617–623

Lucilia caesar 143–148

Lycopersicon chaesmanii 877–881

Lycopersicon chilense 877–881

Lycopersicon esculentum 877–881

Lycopersicon glabratum 877–881

Lycopersicon hirsutum f. glabratum 877–881

Lycopersicon peruvianum 877–881

Lycopersicon pimpinellifolium 877–881

Lycopersicon spp. 877–881

Macrotermes carbonarius 197–204

malathion 223

management of *Chilo* spp.
with bacteria 779–783
in cereals 489–499
with *Nosema* and viruses 773–778
in rice 815–823
on sugar-cane 825–836
training 839–843

Manihot esculenta 883–887

Maruca testulalis 217–222

mass rearing of *Chilo* spp. 605–616

mating

behaviour mechanism 579–582
disruption 825–836
efficiency 355–361

mealybug 167–170, 189–195

mechanisms of resistance 481–488

media from local materials 143–148

medium, standard Snyders 143–148

Menochilus sexmaculatus 21–26

metamorphic endocrine centres 159–166

microbes 363–368

microorganisms 443–448

millet cultivars and midge 13–19

mite
green spider 43–45
influence of 63–67
red 27–34

mixed cropping 109–117

modelling trypanosomiasis
transmission 301–307

model
spreadsheet 449–453
for tsetse 331–346

Mononychellus tanajoa 43–45, 63–67

morphometric studies 143–148

mortality 149–152

Mucor 443–448

multilocational tests 13–19

mustard aphid reproduction of 69–72

Nagana 259

Nannomonas speciation 265–259

natural enemies of 749–755

NG2B traps 347

NGU traps 262

Neem seed
powder 153–157
oil 149–152

nematodes 1–11

Nilaparvata lugens 55–62

Nosema spp. 773–778

odour plume shape 377–384

Oedaleus senegalensis 27–34

Oryza brachyarrtha 659

Oryza minuta 659

Oryza nivara 659

Oryza officinalis 659

Ophiomyia phaseoli
effect of planting date on 97–101
on *Phaseolus vulgaris* 35–41

Ophiomyia spencerella
effects of planting date on 97–101
on *Phaseolus vulgaris* 35–41

Ostrinia nubilalis 541–545

ovicidal action 153

oviposition 149–153

parasitoids 27–34, 721–732

parasitism of *Diaphania indica* 903–906

pathogens, interactions with 1–11

pearl millet
cultivars 13–19

Heliocheilus albipunctella 205–208

Pediculus humanus humanus 223–226

capitilis 223–226

penicillium 443–488

Pennisetum americanum 205–208

Peridroma saucia 47–53

permethrin 223

pest control 787–794

pesticidal control 399–409

pesticide-resistant populations 167–170

pest
status of *Aspavia armigera* 171–177
stored groundnuts 227–234
of upland cotton 73–77

Phaseolus vulgaris 35–41

Phenacoccus manihoti 189–195

phenolic
kairomones 369–375
tsetse attractants 363–368

pheromone traps
population monitoring 795–805
for *Chilo suppressalis* 807–812

Philosamia ricini 159–166

Phycitid moths 209–215

Piper guineense seed oil of 149–152

Plodia interpunctella 209–215

pod borer
changes in abundance 869–876
gram 851–854
spatial distribution of 217–222

polyculture 1–11

polymorphism chromosomal 861–863

population
of *Anopheles arabiensis* 119–131
of *Chilo suppressalis* 555–562
decrease 541–549
dispersion of 73–77
fluctuation, cowpea aphid 21–26
monitoring of *Chilo partellus* 795–805
patterns of *Chilo* spp. 549–554

predators 721–732
impact of 167–170
of mealybug 189–195
of *Oedaleus senegalensis* 27–34

pro-attractants 363–368

propyl gallate 865–867

prothoracic gland 159–166

prothoracicotropic-like effects 159

Providencia alcatafacies 443–448

proximate analysis 63–67

rabbit resistance to 235–243

raatoon stunting disease 1–11

rearing media 143–148

reproductive cycle 347–354

reproductive efficacy 149–152

research and development to tsetse 261–262

resistant
maize varieties 79–89
millet varieties 109–117

respiratory rate 197–204

Rhipicephalus appendiculatus 907–917

Rhizopus 143–148

rice *Aspavia armigera* 171–177

sampling plan 217–222
 sandfly behaviour 91–96
Scirphophaga innotata 535–539
Scymnus coccivora 167
 seed damage 149–152
 dressing 109–117
 oils efficacy of 149–152
 sensory biology of *Chilo* spp. 593–602
Sergentomyia africanaus 91–96
Sergentomyia bedfordi 91–96
Sergentomyia clydei 91–96
Sergentomyia schwetzi 91–96
Sergentomyia squamipleuris 91–96
Serrata 443–448
Sesamia cretica 541
Sesamia nonagrioides 541–545
 sex pheromones
 on *Chilo sacchariphagus* 825–836
 of stem borer, application 807–812
Sitotroga cerealella 179–188, 757–763
 sleeping sickness, human 259
 sorghum
 cultivars 649–655
 midge resistance 889–898
 speciation 265–269
 species-specific DNA probes 271–280
 spreadsheet model 449–453
 stalk borer 13–19
 status
 Chilo agamemnon 541–549
 Chilo partellus 481–488
 Chilo spp. 50–539
 stem borers
 bioecology 467–477
 control 481–488, 109–177
 damage 109–177
 flight phenology 795–805
 infestation 109–177
 mating behaviour 579–582
 of millet 109–117
 natural enemies of 109–117
 resistance against 659–669
 status 481–488
 of sugar-cane 825–836
Sergentomyia affinis 91–96
Sergentomyia antennatus 91–96

Sergentomyia ingrami 91–96
Sitophilus oryzae 179–188
 Sorghum resistance in 179–188
 spectrophotometry 63–67
 spike development 205–208
 spike worm 13–19, 205–208
 sterol inhibition in *Chilo partellus* 583–591
 striped borer resistance to 639–647
 striped mealybug 167–170
Sturmopsis inferens 733–748
 subspeciation 265–269
 sugar-cane borer 1–11
 susceptible maize varieties 79–89
 sweetflag growth inhibitory effects of 47–53

Tetrastichus spp. 617–623
 tick
 gut antigens 907–917
 resistance index 235–243
 weight index 235–243
Tilapia protectant 153–157
 tolerance 489–499
Tolysporium penicilliariae 13–19

Traps
 NGU2B 347
 NGU 262
 pyramidal 411–416
 training for management
 of *Chilo* spp. 839–843
Trichoderma 443–448
Trichogramma spp. 733–748
Trichogramma sp. nr. *mwanzai* 757–763
Trichospilus spp. 617–623
Trypanosoma brucei characterization 271–280
Trypanosoma congolense 271–280
 characterization 271–280
 speciation 265–269
 subspeciation 265–269
Trypanosoma gambiense 411–416
Trypanosoma rhodesiense 411–416
Trypanosoma simiae
 speciation 265–269
 subspeciation 265–269
Trypanosoma vivax
 characterization 271–280
 trypanosome isolates 271–280

trypanosomiasis transmission 301–307
 tsetse 259
 africa with and without 465–461
 age-dependent changes 323–330
 attractants 363–368
 capture 323–330
 chuka trap 309–311
 control 259–262
 control genetic aspects 385–398
 control spreadsheet model 449–453
 control strategic developments 399–409
 control tactical developments 399–409
 host finding 377–384
 and human trypanosomiasis 411–416
 microorganisms of 443–448
 odour plume shape 377–384
 phenolic kairomones to 369–375
 population model 331–346
 reproductive cycle 347–354
 riverine control 427–441
 super trap 261–262
 survival 323–330

upland rice varieties 171–177

vector borne diseases 845–850
Vicia faba 855–859
Vigna unguiculata 217–222
Voandzeia subterranea 228

weeds 1–11
 ecological relationships 1–11
 community interactions 1–11
 competition 1–11
 wild reared insects 133–141

X-chromosome identification 119–131

yield losses 171, 563–569
 yield losses in graminaceous 563–569

Zaprionus paravittiger 865–867
Zea mays 883–887

AUTHOR INDEX

Abou-Awad, B. A. 899–902
 Aganyo, C. A. 907–917
 Agrawal, B. L. 671–682
 Agarwal, H. C. 583–591
 Ajayi, O. 107–117
 Akinsola, E. A. 815–823
 Allotey, J. 209–215
 Anene, C. 27–34
 Appiah, F. O. 883–887
 Ashraf, M. 683–687
 Bahana, J. W. 765–772
 Banerjee, M. K. 877–881
 Beevor, P. S. 787–794
 Betbeder-Matibet, M. 617–623
 Bouvier, J. B. 411–416
 Brady, J. 377–384
 Brownbridge, M. 779–783
 Chaudhury, M. F. B. 355–361
 Chaudhary, R. C. 659–669
 Claude, L. 427–441
 Collardelle, C. 293–299
 Coulibaly, L. 293–299
 Darji, N. 281–287
 David, B. V. 903–906
 David, H. 733–748, 787–794
 Davies-Cole, J. O. A. 355–361
 Dhaliwal, Z. S. 73–77
 Dhanarajan, G. 197–204
 Di Deco, M. A. 861–863
 Dipeolu, O. O. 235–243
 D'leteren, G. D. 293–299
 Dransfield, R. D. 315–321
 Dumont, P. 293–299
 Easwaramoorthy, S. 733–748
 Ebochuo, V. O. 153–157
 Egwuatu, R. I. 43–45, 63–67
 El-Banhawy, E. M. 899–902
 Ewete, F. K. 171–177
 Fatima, B. 683–687
 Feron, A. 293–299
 Firempong, S. 217–222
 Gahukar, R. T. 13–19, 205–208
 Galun, R. 223–226
 Garg, S. K. 865–867
 Gashumba, J. K. 265–269
 Gibson, G. 377–384
 Goel, V. A. 583–591
 Gooding, R. H. 385–398
 Goswami, L. 209–215
 Greathead, D. J. 749–755
 Guang, Q. L. 759–763
 Gupta, R. 583–591
 Hargrove, J. W. 323–330
 Harris, K. M. 467–477
 Hassanali, A. 363–368, 649–655
 Hecker, P. 293–299
 House, L. R. 671–682
 Idriss, M. H. 159–166
 Isman, M. B. 47–53
 Ivbijaro, M. F. 149–152
 Jacobson, R. L. 91–96
 Jeane-Pierre, E. 427–441
 Jean-Jacques, L. 427–441
 Jeannin, P. 293–299
 Jones, O. T. 787–794
 Kaaya, G. P. 443–448
 Kaddu, J. B. 91–96
 Kahoro, H. M. 79–89, 593–602
 Kalloo, 877–881
 Kanno, H. 579–582
 Kashyap, R. K. 877–881
 Kayumbo, H. Y. 35–41, 91–101
 Khan, Z. R. 55–62
 Khanna, S. C. 865–867
 Khush, G. S. 659
 Kiiulu, J. 347–354
 Kiritani, K. 555–562
 Knaus, R. M. 1–11
 Koul, O. 47–53
 Krishnamoorthy, A. 167–170
 Lakkundi, N. H. 21–26
 Lancien, J. 411–416
 Lannes, C. 411–416
 Leak, S. G. A. 293–299
 Leuschner, K. 627–638, 671–682,
 889–898
 Li, C. S. 535–539
 Lubega, M. C. 549–554
 Madubunyi, L. C. 309–313
 Magalit, H. 217–222
 Majiwa, P. A. O. 271–280
 Mani, M. 167–170
 Mbata, G. N. 227–234, 245–251
 Mbata, K. J. 315–321
 Mbulamperi, D. B. 289–292
 McComie, L. D. 197–204
 Melamed-Madjar, V. 541–549
 Miller, J. 223–226
 Minengu, M. 293–299
 Minja, E. M. 489–499
 Minja, S. 293–299
 Mnzava, A. E. P. 861–863
 Mohyuddin, A. I. 721–732
 Mongi, A. O. 907–917
 Mueke, J. M. 35–41, 97–101
 Mujuwa, J. 411–416
 Mukama, T. K. 119–131
 Mulatu, W. 293–299
 Mulligan, P. 301–307
 Mumcuoglu, K. Y. 223–226
 Muttinga, M. J. 91–96
 Mwangelwa, M. I. 315–321
 Mwangi, R. W. 119–131
 Nankudaba, G. 293–299
 Natarajan, N. 851–854
 Nderitu, J. H. 97–101
 Neupane, F. P. 501–534
 Njogu, A. R. 417–425
 Nnabuchi, S. E. 883–887
 Nwanze, K. F. 605–616
 Nyeko, J. H. P. 271–280
 Nyiira, Z. M. 839–843
 Ochieng'-Odero, J. P. R. 133–141
 Ochieng, S. A. 79–89, 593–602
 Ociba, P. M. 271–280
 Odhiambo, T. R. 259–263,
 463, 465, 571–576
 Odindo, M. O. 773–778
 Okech, M. 363–368, 443–448
 Okeke, J. 143–148
 Okiy, D. A. 883–887
 Okorie, T. G. 143–148, 153–157
 Okoth, V. A. O. 713–718
 Olagbaju, R. A. 171–177
 Ole-Moiyo, O. K. 271–280
 Oloo, G. W. 256, 759–763
 Omuse, J. K. 417–425
 Onyango, P. 281–287
 Opiyo, E. A. 417–425
 Ordner, G. 293–299
 Ormerod, W. E. 455–461
 Otieno, L. H. 271–280, 281–287
 315–321
 Packer, M. J. 377–384
 Pascal, G. 427–441
 Pathak, R. S. 689–699
 Peter, C. 903–906
 Pimbert, M. P. 869–876
 Rajabalee, A. 825–836
 Ramasamy, M. S. 845–850
 Ramasamy, R. 845–850
 Randolph, S. E. 347–354
 Rath, R. 583–591
 Reagan, T. E. 1–11
 Reed, W. 869–876
 Rogers, D. J. 331–354
 Rowlands, G. J. 293–299
 Saini, R. K. 369–375
 Sandhu, S. S. 73–77
 Sauveroche, B. 293–299
 Saxena, K. N. 649–655, 795–805
 Saxena, R. C. 55–62
 Schlein, Y. 91–96
 Seshu Reddy, K. V. 549–554,

563-569, 703-712
Sharma, H. C. 889-898
Sharma, S. P. 865-867
Shaw, A. P. M. 449-453
Shazali, H. M. E. 855-859
Shereni, W. 399-409
Showler, A. T. 1-12
Sidhu, A. S. 73-77
Sidhu, H. S. 69-72
Singh, G. 69-72
Singh, J. 73-77
Singh, S. P. 167-170

Sithole, S. Z. 481-488
Siyambola, O. O. 153-157
Srikanth, J. 21-26
Srivastava, C. P. 869-876
Sum, K. O. S. 549-554
Sundara Babu, P. C. 851-854

Taneja, S. L. 605-616, 671-682
Tatsuki, S. 807-812
Tikubet, G. 293-299
Torto, B. 649-655
Trail, J. C. M. 293-299

Ukwungwu, M. N. 639-647
Umeh, E.-D. N. 189-195
Unnithan, G. C. 795-805

Vajime, C. G. 27-34
Verma, A. N. 877-881
Vidyasagar, P. 889-898
Waladde, S. M. 79-89, 593-602
Walker, P. T. 563-569
Wongo, L. E. 179-188
Zethner, O. 254

INSECT SCIENCE AND ITS APPLICATION

The International Journal of Tropical Insect Science

AIMS AND SCOPE

Insect Science and its Application deals comprehensively with all aspects of scientific research targeted on tropical insects (and related arthropods), and the application of new discoveries and innovations to such diverse fields as pest and vector management and use of insects for human welfare.

A distinctive feature of the journal is its multi- and inter-disciplinary nature, which transcends the traditional boundaries of entomology.

Its second feature is its concentration on the recording and reviewing of the progress of insect science in the tropical and subtropical regions of the world. Thus, without excluding any area of the wide-ranging field encompassed by insect science, the journal will accept manuscripts in environmental physiology, the regulation of development and reproduction, population modelling, chemical ecology, natural products chemistry, plant resistance, host-insect relations, behaviour of tropical pest species, epidemiology of tropical diseases, vector biology, pest and vector management research, insect pathology, entomo-meteorology, insects in relation to farming systems, forest entomology, social insects and arthropods, and the use and farming of insects. It is the intention of the Editors to have the manuscripts published rapidly, consistent with the needs of quality control.

In addition to articles of original research, the journal also publishes mini-review articles, announcements and reports of meetings, book reviews, new patents, obituaries of prominent scientists and software survey. Each regular issue of the journal usually contains a short review article on a critical or rapidly developing area of tropical insect science; normally, the Editors will have invited an author to contribute such a mini-review.

Insect Science and its Application is an international journal, pursuing its own independent policy through its editorial staff and the Editorial Advisory Board, which is

internationally appointed. Its sponsors, the ICIPE and the African Association of Insect Scientists (AAIS), do not intervene in editorial matters.

INSTRUCTIONS TO AUTHORS

For indications of the design of papers, the author should consult a recent issue of the journal. The following paragraphs are provided as guidelines for the preparation and submission of manuscripts.

1. All papers for publication in *Insect Science and its Application* should be submitted directly to Professor Thomas R. Odhiambo, Editor-in-Chief, *Insect Science and its Application*, ICIPE Science Press, P.O. Box 72913, Nairobi, Kenya. Papers should be mailed in a strong envelope, preferably linen, as they will otherwise arrive in a damaged condition.
2. Papers should be typed in English or French, and be original contributions in the field of tropical insect science. Each paper should have a summary in the form of an abstract not exceeding 200 words in both English and French.
3. Submission of a paper implies that it has not been published previously, that it is not under consideration for publication elsewhere, and that if accepted for *Insect Science and its Application* the authors will transfer copyright (by signing the form) to the ICIPE Science Press of the International Centre of Insect Physiology and Ecology. Manuscripts and illustrations become the property of the journal.
4. There is no page charge for papers accepted for publication.
5. Manuscripts and illustrations must be submitted in triplicate (original and two copies) to ensure efficient refereeing. If a computer is used for the preparation of the manuscript, the diskette should also be submitted (the author should state the hardware and software used and ensure that it is virus-free). In the case of multiple authorship, the authors should indicate who is to receive correspondence and the correct address for the mailing of proofs.
6. Manuscripts must be typewritten with double spacing (including the reference list), with wide margins, and on one side of the paper only. Authors are requested to keep their

communications as concise as possible. Footnotes should be avoided, and italics should not be used for emphasis. A running head of not more than 30 letters should be supplied.

7. The manuscript should contain the following features:

Title: This should be followed by the author's name and full address.

Abstract: Containing a brief summary of the contents, and conclusions of the paper. It should not be longer than 200 words, and should be supplied in both English and French.

Key Words: A short list of key words (arranged in alphabetical order) should be provided for rapid scanning of the contents of the paper and use in compiling the Index to the completed volume of the journal.

Introduction: Should contain a brief survey of the relevant literature and the reasons for doing the work.

Materials and Methods: Sufficient information should be given to permit repetition of the experimental work by other workers. The technical description of methods should be given only when such methods are new or modified.

Results: Should be presented concisely. Only in exceptional cases will it be permissible to present the same set of results in both a table and a figure. The results section should not be used for discussion.

Discussion: Should be separate from the Results section, and should deal with the significance of the results and their relationship to the object of the work.

Comparison with relevant published work should be made, and conclusions drawn.

Acknowledgements: Only pertinent acknowledgements should be cited.

Reference: The Harvard system will be followed. References should be detailed in the following order: Authors' names and initials, date of publication (in brackets), the title of the article, the name of the journal as abbreviated in the *World List of Scientific Periodicals* (4th edn. 1964), the volume, and the first and last pages of the article, e.g.

Delobel A. G. L (1983) Influence of temperature and host plant condition on preimaginal development and survival in sorghum shootfly *Atherigona soccata*. *Insect Sci. Applic.* 4, 327-335.

For books, the author's names, date of publication, title, edition, page reference,

publisher's name and the place of publication should be given, e.g.

Zurflueh R. C. (1976) Phenylethers as insect growth regulators: laboratory and field experiments. In *Juvenile Hormones* (Edited by Gilbert L. L.), pp. 61-74. Plenum Press, New York.

Within the text, references should be given as Unnithan (1981) or (Unnithan, 1981). When a citation includes more than two authors, e.g. Ochieng', Onyango and Bungu, the paper should be referred to in the text as Ochieng' et al., provided that this is not ambiguous. If there are only two authors, they should be referred to as Ochieng' and Onyango. If papers by the same authors in the same year are cited, they should be distinguished by letters (a,b,c, etc.).

Reference to papers "in press" must mean that the article has been accepted for publication and should be given as follows:

Darlington J. P. E. C. (1988) Primary reproductives and royal cells of the termite, *Macrotermes michaelseni*.

Insect Sci. Applic. (In press).

References to "personal communication" and unpublished work are permitted in the text only.

8. Illustrations. All necessary original illustrations should accompany the manuscript, but should not be inserted in the text. All photographs, graphs and diagrams should be numbered consecutively in arabic numerals in the order in which they are referred to in the text.

Black and white glossy photographs or positive prints (not slides or X-ray negatives) should be sent, unmounted wherever possible, and should be restricted to the minimum necessary.

Charts, graphs or diagrams should be drawn boldly in black ink on good quality white paper or card. Lettering to appear on the illustrations should be given in full and should be of sufficient size to withstand considerable reduction, where necessary. Alternatively, lettering may be shown on a rough overlay and will be inserted by the printer.

Illustrations should not be larger than 15 x 24 cm, or they may be damaged in the post. On the back of each illustration should be indicated the author's name, the figure number (in arabic numerals), and the top of the illustration, where this is not clear.

The following symbols should be used on

line drawings as they are readily available to the printer: ▲ △ ▼ ▽ ■ □ × + ● ○.

Legends to figures should be typed on a separate sheet, not under the figures, and should give sufficient data to make the illustration comprehensible without reference to the text.

Magnification of photographs and illustrations should be indicated by an appropriate scale bar and not in the legend. This practice obviates the complications which arise through change of size in reproduction.

9. Tables should be constructed so as to be intelligible without reference to the text, numbered in arabic numerals, and typed on separate sheets. Every table should be provided with an explanatory caption, and each column should carry an appropriate heading. Units of measurement should always be indicated clearly. All tables and figures must be referred to in the text in numerical order.

10. Only standard abbreviations should be used. Where specialized abbreviations are

used, the name should be given initially in full with the abbreviation indicated in parentheses.

11. The common and Latin names should be given for all species used in the investigation, although taxonomic affiliation and authority should not necessarily be provided in the title.

12. Page proofs will be sent to the authors by the publisher. They will already have been proof read by the proof reader for the typesetter's errors; but it is the author's responsibility to ensure that the proof contains no errors. Correction to proofs should be restricted to typesetter's errors or editorial queries only. Other than these, substantial alterations will be charged to the author. Proofs should be returned to the ICIPE Science Press within 48 hr of receipt for final preparation for printing. Failure to meet this deadline may result in the inadvertent inclusion of errors in the published article. The publisher will not be held responsible for printed errors, if the author overlooks them.

this drive may as they are readily available to the printer. A Δ V V ■□ X + O.

Legends to figures should be typed on a separate sheet, not under the figures, and should give sufficient data to make the illustrations comprehensible without reference to the text.

Magnification of photographs etc.

Computations should be submitted by an appropriate computer and not by hand. This practice will help eliminate errors which arise during conversion from machine output. 9. Tables should be submitted according to the following scheme: the first page of the table should contain the title, author's name, and address, and a brief abstract of the table. The table should begin on a new page and should be preceded with two short lines. The first and second columns should each contain one heading. Units of measurement should always be indicated clearly. All tables and figures must be referred to in the text in numerical order. 10. Only standard photographic film should be used. When specialized films are required

use, the name should be given orally to the editor with the observation that such is required. 11. The original and four copies of each figure or graph should be submitted. Although taxonomic illustrations and drawings would not be negotiable for publication, they can be. These proofs will be sent via the telephone or by air-mail. They will normally consist of one copy of the proof ready for the editor to sign, but it is the editor's responsibility to ensure that the final corrected manuscript, including all proofs, should be returned to the editor's office in original specimen order. Other than these, manuscripts and proofs will be charged to the author. Proofs should be returned to the PCCB no later than within 48 hr of receipt for final publication for printing. Failure to return the proofs may delay the final publication of the article. 12. All proofs in the published article. The publisher will not be held responsible for printed errors, if the manuscript contains none.