2016 Algorithm HW4 Solutions

指導教授:謝孫源教授

助教: 盧緯 張耕華 楊順翔 許景添

Question 1(10pts)

Solution:

The presence of a negative-weight cycle can be determined by looking at the diagonal of the matrix $L^{(n-1)}$ computed by an allpairs shortest-path algorithm. If the diagonal contains any negative number there must be a negative-weight cycle.

Question 2(10pts)

Solution:

The identity matrix for "multiplication" should look as the one given in the exercise since 0 is the identity for + and ∞ is the identity for min.

Question 3(10pts)

Solution:

We wish to compute the transitive closure of a directed graph G = (V, E). Construct a new graph $G^* = (V, E^*)$ where E^* is initially empty. For each vertex v traverse the graph G adding edges for every node encountered in E^* . This takes O(VE) time.

Question 4(10pts)

Solution:

▶ PPT CH24 P8.9

Question 5(10pts)

Solution:

	S	Α	В	С	D	Е
i=1	0	9	11	12	8	7
i=2	0	3	11	7	8	7
i=3	0	3	5	6	8	7
i=4	0	3	5	6	8	7

Question 6(10pts)

Solution:

Question 7(10pts)

Solution:

After forming the augmented constraint graph and seeking the shortest path from node 0 to all other nodes, using an algorithm with negative length cycle detection, one finds there is a negative length cycle (2, 3, 5, 4, 2) with length 1 - 7 + 10 - 6 = -2. Thus the system is infeasible.

Question 8(10pts)

Solution:

Since there is an arc of length 0 from node 0 to every other node, the label on every node (representing the length of the shortest path found so far from node 0 to that node) is set to 0 in the first step. Since it is only modified if a shorter path is found, of necessity such a path must have length less than 0, and so cannot be positive; the answer is "no".

Question 9 (10pts)

Solution:

Slow-All-Pairs-Shortest-Paths (5%)

$$L^4$$
 (1%) $\left\{egin{array}{ccccccc} 0 & 6 & \infty & 8 & -1 & \infty \ -2 & 0 & \infty & 2 & -3 & \infty \ -5 & -3 & 0 & -1 & -3 & -8 \ -4 & 2 & \infty & 0 & -5 & \infty \ 5 & 7 & \infty & 9 & 0 & \infty \ 3 & 5 & 10 & 7 & 2 & 0 \end{array}
ight)$

 $L^5(1\%)$

$$\left\{
\begin{array}{ccccccc}
0 & 6 & \infty & 8 & -1 & \infty \\
-2 & 0 & \infty & 2 & -3 & \infty \\
-5 & -3 & 0 & -1 & -6 & -8 \\
-4 & 2 & \infty & 0 & -5 & \infty \\
5 & 7 & \infty & 9 & 0 & \infty \\
3 & 5 & 10 & 7 & 2 & 0
\end{array}
\right\}$$

Question 9(10pts)

Solution:

Faster-All-Pairs-Shortest-Paths(5%)

$$L^4$$
 (2%)

$$\begin{cases}
0 & 6 & \infty & 8 & -1 & \infty \\
-2 & 0 & \infty & 2 & -3 & \infty \\
-5 & -3 & 0 & -1 & -3 & -8 \\
-4 & 2 & \infty & 0 & -5 & \infty \\
5 & 7 & \infty & 9 & 0 & \infty \\
3 & 5 & 10 & 7 & 2 & 0
\end{cases}$$

► L⁸ (2%)

Question 10(10pts)

Solution:

- (I) True or False (3%)
 - Running time = $Θ(n^3 \lg n)$
 - Space requirement = $\Theta(n^2 \lg n)$ or $\Theta(n^2)$
- ► (II) False (3%)
 - Counter example

- ▶ (III) True (2%)
- ▶ (IV) True (2%)