Backtracking I

Clase 15

IIC 2133 - Sección 3

Prof. Eduardo Bustos

Sumario

CSPs

Backtracking

Cierre

Consideremos el problema de posicionar 8 reinas en un tablero de ajedrez de modo que no se ataquen

- Las reinas se desplazan por filas, columnas y diagonales
- Para lograr el objetivo: deben estar en columnas, filas y diagonales diferentes

¿Qué tan fácil es resolverlo?

Para modelar este problema, podemos numerar las filas y columnas

- Cada fila y columna en el rango 1...8
- Denotamos por x_i a la columna de la reina en la fila i
- Las posiciones de las 8 reinas se describe como un vector

$$(x_1,\ldots,x_8)$$

¿Cómo sabemos si (4,6,8,2,7,1,3,5) es una solución?

El vector (4,6,8,2,7,1,3,5) representa la siguiente configuración

	1	2	3	4	5	6	7	8
1				Q_1				
2						Q_2		
3								Q_3
4		Q ₄						
5							Q ₅	
6	Q_6							
7			Q ₇					
8					Q ₈			

Efectivamente es solución al problema

Este problema tiene un conjunto de restricciones

- 1. Dos reinas no deben estar en la misma fila
- 2. Dos reinas no deben estar en la misma columna
- 3. Dos reinas no deben estar en un camino diagonal

	1	2	3	4	5	6	7	8
1				Q_1				
2						Q_2		
3								Q_3
4		Q ₄						
5							Q_5	
6	Q_6							
7			Q ₇					
8					Q ₈			

Problemas de satisfacción de restricciones

Definición

Un problema de satisfacción de restricciones o constraint satisfaction problem (CSP) es una tripleta (X, D, C) tal que

- $X = \{x_1, \dots, x_n\}$ es un conjunto de variables
- $D = \{D_1, \dots, D_n\}$ es un conjunto de dominios respectivos
- $C = \{C_1, \ldots, C_m\}$ es un conjunto de **restricciones**

donde cada restricción involucra un subconjunto de variables de X. Una solución es una asignación de las variables en sus dominios tal que se satisfacen todas las restricciones.

Observemos que

- No necesariamente las variables son del mismo dominio
- Una restricción C_i puede involucrar 1, 2 o más variables de X

Problemas de satisfacción de restricciones

Ejemplo

El problema de las 8 reinas efectivamente es un CSP

Variables

- $X = \{x_1, \ldots, x_8\}$
- $lue{}$ Cada variable x_i se interpreta como columna de la reina en la fila i

Dominios

- $D = \{B, \ldots, B\} \text{ con } B = \{1, \ldots, 8\}$
- En este caso el dominio de cada variable en X es el mismo

Restricciones

- La restricción sobre las filas está implícita en la elección de las variables
- Para las columnas: $i \neq j \rightarrow x_i \neq x_j$
- Para las diagonales: $i \neq j \rightarrow |(x_j x_i)/(j i)| = 1$

Otro problema clásico

Consideremos un tablero de sudoku parcialmente completado

					9
7				6	8
				1	4
		3			2
	1		5	3	7
5					3
			9		5

¿Podemos ver el sudoku como un CSP? $\xi X, D, C$?

¿Es fácil resolver los CSP?

Las 8 reinas y el sudoku son ejemplos de la clase de problemas CSP

¿Qué tan rápido pueden resolverse los problemas de esta clase?

Existe un problema central en computación que puede ayudarnos

Definición

El problema de decisión SAT toma como input una fórmula en lógica proposicional $\varphi \in \mathcal{L}(P)$ y responde si φ es satisfacible

Ejemplo

Para el conjunto $P = \{p\}$

- φ_1 = $p \to \neg p$ es satifacible, pues $\sigma(\varphi_1)$ = 1 para la valuación $\sigma(p)$ = 0
- $\varphi_2 = p \land \neg p$ no es satifacible, pues no existe valuación que la haga verdadera

¿Es fácil resolver los CSP?

Ahora, para $\varphi \in \mathcal{L}(P)$, podemos interpretar la pregunta

 $i\varphi$ es satisfacible?

como un CSP donde

- X = P, conjunto de variables proposicionales
- $D = \{B..., B\} \text{ con } B = \{0, 1\}$
- Restricción de que el valor de verdad de φ sea 1 al evaluar los valores asignados a cada variable

Si tuviéramos una forma eficiente de resolver un CSP, podríamos usarla para resolver SAT

; Es fácil resolver los CSP?

Teorema

El problema de decisión SAT es NP-completo

Los problemas NP-completos son considerados difíciles

- Es un problema abierto saber si se pueden resolver de manera eficiente
- Además, todo problema NP-completo sirve para resolver otro problema NP-completo

Con esto, los CSP servirían para resolver cualquier problema NP-completo

Conclusión: los CSP son difíciles

Resolviendo CSPs

Para resolver un CSP, podemos partir con fuerza bruta

- Generar todas las asignaciones de variables
- Verificar cada asignación para ver si cumple todas las restricciones
- Si se encuentra una asignación que cumple, se retorna como solución

Para un CSP (X, D, C), esto requiere revisar en general las tuplas de

$$D_1 \times D_2 \times \cdots \times D_n$$

Ejemplo

Para el problema de las 8 reinas, hay

$$8^8 = 16.777.216$$

tuplas posibles de la forma (x_1, \ldots, x_8) . ¿Cuántas hay en el sudoku?

¿Cómo mejoramos esto?

Sumario

CSPs

Backtracking

Cierre

Resolviendo CSPs

Quizás no es necesario generar todas las tuplas

- Podemos informar la búsqueda en el espacio de tuplas posibles
- Esa búsqueda puede arrepentirse si se rompe una restricción

Utilizaremos la estrategia algorítmica de backtracking, que incluye

- un conjunto de variables $X = \{x_1, \dots, x_n\}$
- un conjunto de dominios **finitos** $D = \{D_1, \dots, D_n\}$
- un conjunto de restricciones sobre variables

Backtracking es la forma central para resolver CSPs (también se usa para otros problemas)

Backtracking

La estrategia de backtracking se basa en el siguiente principio

- 1. Realizar una asignación de la variable x_k cuando ya se han asignado x_1, \ldots, x_{k-1}
- 2. Se verifica si la nueva asignación **parcial** $x_1, \ldots, x_{k-1}, x_k$ puede terminar en una solución al problema
- 3. Si no es así, nos retractamos y deshacemos la asignación de x_k

El paso de retractarse se conoce como backtrack

- Permite descartar tuplas que violan alguna restricción
- Lo hacemos sin necesidad de conocer la tupla completa
- Nos ahorramos revisar $|D_{k+1}| \times \cdots \times |D_n|$ tuplas

Backtracking es igual o más rápido que la fuerza bruta

Backtracking

¿Tiene solución el siguiente tablero?

					9
7				6	8
				1	4
		3			2
	1		5	3	7
5					3
			9		5

Backtracking

Queremos garantías sobre la existencia de soluciones

- Si el problema tiene solución, queremos saberlo
- Si no tiene, también queremos saberlo

Podemos responder recursivamente la pregunta

Dado un problema, ¿es posible resolverlo?

aprovechando que extender una asignación parcial

$$(x_1,\ldots,x_{k-1})\to(x_1,\ldots,x_{k-1},x_k)$$

genera una nueva instancia del problema

Hacemos Backtracking para la nueva instancia

Backtracking: idea de pseudocódigo

```
input: Conjunto de variables sin asignar X, dominios D,
            restricciones R
  isSolvable(X, D, R):
      if X = \emptyset: return true
      x \leftarrow \text{alguna variable de } X
2
3
      for v \in D_x:
          if x = v no rompe R:
              x \leftarrow v
5
              if isSolvable(X - \{x\}, D, R):
                   return true
7
               x \leftarrow \emptyset
8
      return false
9
```

Esto es solo una orientación: las variables, argumentos y estructura dependerá del problema particular

Problema de las 8 reinas

2

3

4

5

6

7

A continuación, un algoritmo para determinar si una asignación parcial de las 8 reinas puede dar lugar a una solución válida

```
input: Arreglo T[0...7],
                                             input: Arreglo T[0...7],
        indice 0 < i < 8
                                                      índices 0 \le i, i \le 7
output: true ssi hay solución
                                             output: false ssi es ilegal
Queens(T, i):
                                             Check(T, i, v):
   if i = 8: return true
                                                 for i = 0 ... i - 1:
 for v = 0...7:
                                                     if v = T[i]:
                                           2
       if Check(T, i, v):
                                           3
                                                        return false
           T[i] \leftarrow v
                                                    if |(v-T[j])/(i-j)| = 1:
                                           4
          if Queens(T, i+1):
                                                        return false
              return true
                                                 return true
                                           6
   return false
```

¿Cómo podemos modificar el algoritmo para obtener una solución?

Complejidad

El análisis de complejidad del *backtracking* involucra el conteo de tuplas posibles

- En un conjunto de *n* variables $X = \{x_1, ..., x_n\}$
- con valores posibles en dominios $D = \{D_1, \ldots, D_n\}$
- tenemos $|D_1| \times |D_2| \times \cdots \times |D_n|$ tuplas posibles

Luego, en el caso particular de que $|D_i| = K$ para todo i,

revisar todas las tuplas es $\mathcal{O}(K^n)$

Complejidad

La complejidad de las posibles soluciones para CSP cumplen,

- la estrategia de fuerza bruta revisa **todas las tuplas** $\mathcal{O}(K^n)$
- \blacksquare el backtracking puede revisar menos tuplas, pero sigue siendo proporcional $\mathcal{O}(K^n)$

Es decir, asintóticamente estas estrategias tienen la misma complejidad

¿Cuál es más rápido en la práctica?

No olvidar: Backtracking es igual o más rápido que la fuerza bruta

Otra interpretación del backtracking

Podemos pensar en la estrategia de backtracking como **búsqueda en un grafo implícito**

Los CSP generan muchas tuplas posibles como asignaciones para las variables de \boldsymbol{X}

- Cada posible asignación genera un camino
- Las nuevas asignaciones abren nuevos caminos
- A la colección de todas estas alternativas le llamamos grafo implícito

El ejemplo por excelencia para visualizar el grafo implícito es el **problema de recorrer un laberinto**

Supongamos que nos interesa salir de un laberinto dado que estamos en Θ

Podemos resolver este problema con backtracking

Planteamos el problema como un CSP

- Variables?
- Dominios?
- Restricciones?
- Qué define el éxito?

Caracterizamos por Θ la posición actual

En cada nueva posición Θ solo podemos elegir dar un paso en las direcciones libres y distintas de aquella de la cual venimos

Debemos hacer backtrack cuando llegamos a un camino sin salida: solo muros y celdas ya visitadas

No hay más opciones: ¿hasta dónde nos arrepentimos con el backtrack?

Sabemos que ir al norte no funcionó. Probamos otra opción yendo al sur.

En este caso, logramos llegar a una solución que encuentra la salida

Le agregamos etiquetas a las posiciones, de modo que sabemos cuáles hemos visitado (visited). Todas comienzan como nonvisited y la salida se marca como exit

```
input: Conjunto de variables sin asignar X, posición x, dominios D,
            restricciones R
   isSolvable(X, x, D, R):
      if x = exit: return true
1
2
      if visited: return false
     x \leftarrow visited
3
      for v \in \{N, E, S, W\}:
4
           if x + v \neq wall:
5
              x \leftarrow x + v
6
              if isSolvable(X, x, D, R):
7
                   return true
8
               x \leftarrow nonvisited
9
       return false
10
```

Otros problemas habituales

Hay varios problemas clásicos que se resuelven mediante backtracking

- Recorrido del caballo de ajedrez (Knight's tour problem)
- Problema de la mochila (capacidad versus número de items)
- Balance de carga
- Coloreo de mapas (Sudoku es un caso particular)

En general, puzzles NP-completos podemos atacarlos con alguna idea de backtracking

Sumario

CSPs

Backtracking

Cierre

Objetivos de la clase

- ☐ Definir la clase de problemas de satisfacción de restricciones
- Comprender la dificultan inherente a los CSP
- ☐ Comprender la estrategia de backtracking
- ☐ Identificar pseudocódigo base para backtracking y sus partes
- ☐ Aplicar las ideas de backtracking para resolver algunos problemas