Измерване на относителна плътност на пари по метода на Виктор Майер

Лабораторно упражнение №3.5

Виолета Кабаджова, ККТФ, фак. номер: 3PH0600026

Физически Факултет, Софийски Университет "Св. Климент Охридски" 28 май 2023 г.

1 Теоритична част

<u>Забележка</u>: В текущия протокол, макар и нестандартно, ще бележим относителната плътност с r (латинският аналог на гръцкото ρ).

Упражнението цели измерването на относителната плътност на пари хлороформ спрямо плътността на въздух при нормални условия (налягане $p=101\ 325$ Ра и температура T=273.15 К). Тъй като в повечето случаи абсолютната стойност на газове и пари е много малка, то за удобство плътността се дефинира като относителна плътност между два газа, като най-често използваният еталон е сух въздух при нормални условия. Тази дефиниция се формулира във вида 1, където ρ_0 , V_0 , M_0 са съответно плътността, обемът и масата на изследваното вещество, а ρ_{air} - плътността на въздуха.

$$r = \frac{\rho_0}{\rho_{air}} = \frac{M_0}{V_0} \frac{1}{\rho_{air}} \tag{1}$$

2 Експериментална част

2.1 Експериментална установка

Над нагревател се слага стъклена колба пълна с вода, която се загрява и изпарява, като след това поема по тръбичките на системата. Когато парата стигне до стъкления съд 2 на схемата (фиг. 1), тя започва да затопля стъкления съд 3, след което да кондензира и да излиза от стъкления кожух 2, падайки в съда отдолу. Когато вътрешния съд 3 се загрява, въздухът в него се разширява и се отвежда до епруветка 5, където избутва част от водата. Следователно в епруветка 5 можем да измерим пряко изместеното количество обем. Отбелязваме, че налягането в епруветката, което съответства на нивото в широкия съд 4, е сума от хидростатичното налягане на стълба вода с височина h над това ниво ($\rho_{H_20}gh$) и налягането на газовата смес в горния край на епруветката, което от своя страна е сума от парциалните налягания p_1 на изместения въздух от съда 3 и на наситените пари e (e зависи от температурата на водата в епруветката 5).

Тъй като съд 4 и епруветка 5 са скачени съдове, и налягането на повърхността на водата в съд 4 е равно на атмосферното налягане p_{atm} , то от условието за равновесие на скачени съдове следва ур. 3.

Фигура 1: Схема на опитна постановка; 1 - колба над нагревател, 2 - стъклен кожух, 3 и 4 - стъклени съдове, 5 - измерителна епруветка, 6 - ампула

$$p_{atm} = p_1 + e + \rho_{h_2o}gh, \tag{2}$$

$$p_1 = p_{atm} - e - \rho_{h_2o}gh, (3)$$

Работната формула, която ще използваме е формула 4, където M_0 , V_0 , p_0 , ρ_0 са съответно масата, обемът, налягането и плътността на изследваното вещество, T_{atm} , p_{atm} - съответните температура и налягане на атмосферата при стандартни условия, p_1 , e - съответните парциални налягания на изместения въздух от съда 3 (фиг. 1) и на наситените водни пари, ρ_{h_2o} - плътността на водата в съд 4 (фиг. 1), h - височината на водата в епруветка 5 (фиг. 1).

$$r = \frac{\rho_0}{\rho_{air}} = \frac{M_0 T_{air} p_0}{V_0 T_{atm} \rho_{air} p_1} = \frac{M_0 T_{air} p_0}{V_0 T_{atm} \rho_{air}} \frac{1}{(p_{air} - e - \rho_{h_2o} gh)}$$
(4)

2.2 Задача: Измерване коефициента на вътрешно триене и дължината на свободния пробег на молекулите на въздуха

Правим експеримента веднъж и записваме измерванията в таблица 1. За да намерим масата на изследваното вещество, използваме формула 5, където V_{ch} е първоначално налятото количество хлороформ в ампула 6 на фиг. 1. Използваните стандартни константи записваме в таблица 2, като тяхната грешка е половината от най-малкото записано деление.

$$M = V_{ch0} = 1489 \cdot 4 \cdot 10^{-9} = (60 \pm 7) \cdot 10^{-6} kg \tag{5}$$

Величина	Стойност и грешка	Мерна единица
Плътност на въздуха p_{air}	$95\ 389\ \pm 10$	Pa
Температура на въздуха T_{air}	292 ± 0.5	K
Плътност на хлороформ ρ_0	1489 ± 0.5	$ m kg/m^3$
Налято количество		
хлороформ в ампула V_{ch}	$(40 \pm 5) \cdot 10^{-6}$	m^3
Обем газ в епруветка V_0	$(7.5 \pm 0.05) \cdot 10^{-6}$	m^3
Височина на воден стълб		
в епруветка h	$(9 \pm 0.5) \cdot 10^{-2}$	m
Налягане на наситени		
водни пари при $19 \deg C$ е	2199.45 ± 24	Pa

Таблица 1: Измервания и резултати

Използвайки ур. 4, получаваме $r=7.2\pm1.4$. Тъй като относителната плътност r е съотношение между две други плътности, то тази величина е безразмерен коефициент.

Величина	Стойност	Мерна единца
Атмосферно налягане		
при нормални условия p_{atm}	101 325	Pa
Температура при		
нормални условия T_{atm}	273.15	K
Плътност на въздуха ρ_{air}	1.293	${ m kg/m^3}$
Земно ускорение д	9.81	m/s^2
Плътност на водата ρ_{h_2o}	997	$ m kg/m^3$

Таблица 2: Използвани стандартни константи