SEGREGATION OF POLYMER BLENDS

IN SMALL PORES

Elie Raphaël

Matière Condensée Collège de France F-75231 Paris Cedex 05

INTRODUCTION

Many studies have been devoted to the subject of polymer blends, mainly as a result of their major role in the processing of new high-performance materials.

The thermodynamic properties of an A + B polymer mixture in the fluid state are usually described by the Flory-Huggins model : 1 the chains are inscribed on a lattice, all sites being filled either by a monomer A (probability ϕ) or by a monomer B (probability 1 - ϕ). The free energy per site is then given by :

$$F/kT = N_A^{-1} \phi Log \phi + N_B^{-1}(1 - \phi) Log(1 - \phi) + \chi \phi(1 - \phi)$$
 (1)

(where N and N are the degrees of polymerization of A and B respectively). The first two terms describe the translational entropy of the chains. The last term corresponds to the energy of interaction. The Flory parameter χ is generally positive and favors segregation.

The (mean-field) Flory-Huggins theory is expected to be qualitatively correct, provided that both N_A and N_B are large. For instance, in the symmetric case (N_A = N_B = N), the critical value of χ is given by

$$\chi_{c} = 2/N \tag{2}$$

For $\chi < \chi_{\text{C}}$, the system is entirely miscible, while for $\chi > \chi_{\text{C}}$ the system separates into two phases for a certain range of the relative concentration φ .

Our aim here is to understand -by the use of scaling laws- how the critical value (2) is modified when the blend is *confined* in a cylindrical tube of diameter D.

Let us first recall the main results obtained by Brochard and de Gennes for a monodisperse polymer melt of chemically identical chains confined in a tube. When the diameter D of the tube is large, we are dealing with a three dimensional system: the chains are ideal spherical coils of size $R_0 = aN^{1/2}$ (a being a monomer size). For $aN^{1/4} << D << aN^{1/2}$, each chain is confined in two directions but still spans an unperturbed length R_0 in the direction parallel to the tube axis. For D $<< aN^{1/4}$, the chains are spatially segregated: each chain occupies a given length $R_0 > Na^3D^{-2}$ of the tube and the chains lie in sequence one after the other.

We now consider the case of an A + B molten polymer blend confined in a tube of diameter D. For sake of simplicity, we restrict ourselves to the symmetric case $N_A=N_B=N$. We take the wall to be repulsive and assume that the interaction between a monomer and the wall is the same for the two polymer species. If D >> aN $^{1/2}$, the system is three dimensional and χ is given by χ \sim 1/N (Eq.(2)). On the other hand, if D << aN $^{1/4}$, we know (See section 1) that the chains lie in sequence one after the other (Fig. 1). The free energy per site is then given by

$$F/kT = N^{-1} \phi Log\phi + N^{-1} (1 - \phi) Log(1 - \phi) + 2N^{-1} \phi (1 - \phi) \epsilon_{AB}/kT$$
 (3)

where $\epsilon_{\mbox{AB}}$ represents the energy associated to the boundary between an A-chain and a B-chain. If we denote by L the thickness of this boundary, $\epsilon_{\mbox{AB}}$ can be written as

$$\varepsilon_{AB} \sim LD^2 a^{-3} kT\chi$$
 (4)

where LD² represents the volume of the interfacial region. For a non confined system, the interfacial thickness was predicted to vary as \sim a $\chi^{-1/2}$. ⁴ This result can be qualitatively derived⁵ by considering a sharp A - B boundary (Fig. 2). A portion (n monomers) of the A-chain will enter the B-phase if n.(kT χ) \leqslant kT. Such a portion extending over a distance \sim an $^{1/2}$, we indeed recover the expression a $\chi^{-1/2}$.

If we assume that the interfacial thickness is not modified by the confinement, i.e.:

$$L \sim a \chi^{-1/2}$$
, (5)

Eqs.(3), (4) and (5) lead to a critical value of the Flory parameter⁶

$$\chi_{c} \sim (D/a)^{-4} \qquad (1 < D/a << N^{1/4})$$
 (6)

Since for D = aN 1 / 4 we recover the 3d value χ $^{\circ}$ 1/N, we conclude that χ departs from its 3d value only when D becomes smaller than aN 1 / 4 c(see Fig. 3). For D << aN 1 / 4 , $\chi_{_{\mbox{\scriptsize C}}}$ increases, thus increasing the blend miscibility.

DISCUSSION

- 1. It can be shown that the approximation L \sim a $\chi^{-1/2}$ breaks down for D < a $\chi^{-1/4}$. However, the results derived in the previous section do remain valid. ⁷
- 2. It is important to notice that the chains may have difficulty to re-arrange themselves : to pass through a B-chain, an A-chain must get over a potential barrier which becomes large with regard to kT for D << aN $^{1/4}$. In that case, equilibration times might thus become very long.
- 3. In the case of a polymer blend confined in a slab, the critical value of χ is expected to be given by the usual three dimensional expression (Eq.(2)), whatever the distance between the two walls. ⁷ To observe an increase of the blend miscibility, one must therefore confine the system at least along two directions (e.g. in a tube).
- 4. We have here studied the segregation of two, chemically different, polymers of the same length in a confined geometry. The somewhat related

problem of a confined mixture of long and short -chemically identical-chains will be discussed elsewhere. 8

ACKNOWLEDGMENTS

I am greatly indebted to P.G. de Gennes who suggested me this work and provided me with constant advice. I also thank A. Silberberg and D. Andelman for stimulating discussions and useful comments.

Figure 1. A+B polymer blend confined in a tube of diameter D in the regime $1 \le D/a << N^{1/4}$. Each chain occupies a given length R_{H} of the tube and the chains lie in sequence one after the other. Two adjacent chains A and B overlap in a region of thickness L (shaded area).

Figure 2. Variation of the critical value of the Flory parameter with the diameter D of the tube.

Figure 3. An interface between A and B polymers. A portion of an A-chain (n monomers) may enter the B phase if $n \cdot \chi \leq 1$. Such a portion of the chain extends over a distance an 1/2 and the overall thickness of the interface is given by $a \cdot \chi - 1/2$.

REFERENCES

- 1. P. J. Flory, "Principles of Polymer Chemistry", Cornell U.P., Ithaca, N.Y., Chap. XII (1971).
- P. G. de Gennes, J. Phys. Lett. France 38:441 (1977).
- 3. F. Brochard and P. G. de Gennes, J. Phys. Lett. France 40:399 (1979).
- 4. E. Helfand and Y. Tagami, <u>J. Polym. Sci</u>. B29:741 (1971).
- 5. E. Helfand, Acc. Chem. Res. 8:295 (1975).
- 6. Since we are now dealing with a one dimensional system and short range couplings we cannot strictly define a critical point and a critical value of $\epsilon_{\mbox{AB}}.$ However, there is at least a crossover-point between an uncorrelated mixture and a situation with long correlated "trains" of identical chains. The crossover point corresponds to $\varepsilon_{AB} \sim kT$, which leads to Eq.(6).

 7. E. Raphaël, J. Phys. France 50:803 (1989).

 8. F. Brochard and E. Raphaël, submitted to Macromolecules (1989).

Phase Transitions in Soft Condensed Matter

Edited by
Tormod Riste and
David Sherrington

NATO ASI Series

Series B: Physics Vol. 211

Phase Transitions in Soft Condensed Matter

NATO ASI Series

Advanced Science Institutes Series

A series presenting the results of activities sponsored by the NATO Science Committee, which aims at the dissemination of advanced scientific and technological knowledge, with a view to strengthening links between scientific communities.

The series is published by an international board of publishers in conjunction with the NATO Scientific Affairs Division

A B	Life Sciences Physics	Plenum Publishing Corporation New York and London
С	Mathematical	Kluwer Academic Publishers
	and Physical Sciences	Dordrecht, Boston, and London
D	Behavioral and Social Sciences	
Ε	Applied Sciences	
F	Computer and Systems Sciences	Springer-Verlag
G	Ecological Sciences	Berlin, Heidelberg, New York, London,
H	Cell Biology	Paris, and Tokyo

Recent Volumes in this Series

- Volume 204—Techniques and Concepts of High-Energy Physics V edited by Thomas Ferbel
- Volume 205—Nuclear Matter and Heavy Ion Collisions edited by Madeleine Soyeur, Hubert Flocard, Bernard Tamain, and Madeleine Porneuf
- Volume 206—Spectroscopy of Semiconductor Microstructures edited by Gerhard Fasol, Annalisa Fasolino, and Paolo Lugli
- Volume 207—Reduced Thermal Processing for ULSI edited by Roland A. Levy
- Volume 208—Measures of Complexity and Chaos edited by Neal B. Abraham, Alfonso M. Albano, Anthony Passamante, and Paul E. Rapp
- Volume 209—New Aspects of Nuclear Dynamics edited by J. H. Koch and P. K. A. de Witt Huberts
- Volume 210—Crystal Growth in Science and Technology edited by H. Arend and J. Hulliger
- Volume 211—Phase Transitions in Soft Condensed Matter edited by Tormod Riste and David Sherrington

Series B: Physics

Phase Transitions in Soft Condensed Matter

Edited by

Tormod Riste

Institute for Energy Technology Kjeller, Norway

and

David Sherrington

Imperial College of Science, Technology, and Medicine London, United Kingdom

Plenum Press
New York and London
Published in cooperation with NATO Scientific Affairs Division

Proceedings of a NATO Advanced Study Institute on Phase Transitions in Soft Condensed Matter, held April 4–14, 1989, in Geilo, Norway

Library of Congress Cataloging-in-Publication Data

```
Phase transitions in soft condensed matter / edited by Tormod Riste
  and David Sherrington.
       p. cm. -- (NATO ASI series. Series B, Physics; v. 211)
    "Proceedings of a NATO Advanced Study Institute on Phase
  Transitions in Soft Condensed Matter, held April 4-14, 1989, in
  Geilo, Norway"--T.p. verso.
     "Published in cooperation with NATO Scientific Affairs Division."
    Includes bibliographical references.
    ISBN-13:978-1-4612-7862-7
                                     e-ISBN-13:978-1-4613-0551-4
    DOI: 10.1007/978-1-4613-0551-4
  1. Condensed matter--Congresses. 2. Phase transformations (Statistical physics)--Congresses. I. Riste, Tormod, 1925-II. Sherrington, D. C. III. NATO Advanced Study Institute on Phase
  Transitions in Soft Condensed Matter (1989 : Geilo, Norway)
  IV. North Atlantic Treaty Association. Scientific Affairs Division.
  V. Series.
  QC173.4.C65P442 1989
                                                                         89-26644
  530.4'1--dc20
                                                                             CIP
```

© 1989 Plenum Press, New York Softcover reprint of the hardcover 1st edition 1989

A Division of Plenum Publishing Corporation 233 Spring Street, New York, N.Y. 10013

All rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher