step-wise solution for Towers

test cases and their answers

smallest case

move 1 disk from NY to LA using Chi solution: move the top disk fro NY to LA

next-to-smallest case

move 2 disks fro m hk to NYc using Anchorage solution:

move the top disk $Hk \rightarrow A$ move the dop disk $Hk \rightarrow NYC$ move the dop disk $A \rightarrow NYC$

larger case(s)

move 3 disk

the request that will start the processing

I am asked to create a string holding instructions to move *n* disks from *source* to *target* using *spare*

base case processing

return "move the top disk $S \rightarrow target$ "

decision rule

whether $n = 1 \Rightarrow$ use base otherwise \Rightarrow recufrsive case

recursive case processing, in three sub-parts

recursive abstraction

When I am asked to create a string holding instructions to move *n* disks from *source* to *target* using *spare*,

the recursive abstraction can create a string holding instructions to move *n*-1 disks from *source* to *target* using *spare*.

the leftover piece

move the largest disk

all the processing for a recursive case

When I am asked to create a string holding instructions to move *n* disks from *source* to *target* using *spare*,

and the recursive abstraction has provided nstructions to move *n*-1 disks from *source* to *target* using *spare.*,

then the remaining part of processing recursive cases requires instructions to move n-1 disks from *source* to *spare* using *target* if needed move the large $S \rightarrow target$

instructions to move *n*-1 disks from *spare* to *target* using *source* combined by