

EPL Data Analysis

SC1015 Mini Project

By A135 Grp 10:

Patel Dhairya Nayanbhai U2221896A

Dominic Tay Jia Wen U2223491J

Sum Yuan Sen U2221346D

Table of Contents

- 1. Introduction and Objective of our project (English Premier League Dataset)
- 2. Data Preprocessing
 - a. Data Cleaning
 - b. Exploratory Data Analysis
- 3. Model Training
 - a. Model Selection
 - b. Results of Model
- 4. Hyperparameter Tuning
 - a. Overview
 - b. Results
- 5. Conclusion
 - a. Case Study
 - b. Limitations
- 6. References

Checkpoint 1: Introduction

Background on Topic

The English Premier League is the most-watched sports league in the world and is contested by 20 clubs which operates on a system of promotion and relegations.

As football evolves in the modern era where teams spent huge amount of money on player transfers, sponsorships etc., it is clear that the stakes are high and teams are desperate to win.

Thus, this project aims to make use of the abundance of data that is ever present to us in today's technology-driven world to generate meaningful insights for teams to adopt.

Our Objective

To investigate factors that will **maximise goals scored for a football team** in the *English Premier League*, using data from past 5 seasons of the EPL (17/18 to 21/22)

Our Dataset

For our dataset, we use the **Saif Uddin English Premier League Dataset** from **Kaggle**.

Seasons 17/18 to 22/23 were used.

Significance

1. Due to the competitive nature of the Premier League, teams need to win to get the maximum number of points for each match.

2. To win, team must **score more goals than opponent**.

Insights from data will help to generate strategies that maximise goals scored, help a team win and perform better in the long run.

Checkpoint 2: Data Preprocessing

Data Preparation & Cleaning

Our dataset started out with many miscellaneous data such as "Referee", "Date" etc.

Besides, other insignificant variables such as the red and yellow cards given out during a match are voided as well since its not within our scope of exploration.

As a result we streamline the data to that of home team related.

Before:

Exploring the data such as **Shots, Shot on Target, Corners, Fouls** that happened during a match in the *Premier League* and whether it affects the **number of goals scored.**

1560 rows × 6 columns

We noted that the data are all *Numeric* and *Univariate* in nature.

A *Correlation Heatmap* was then used to observed which variables stands out when correlating to **goals** scored.

As seen here the Variables "HS" (R^2 = 0.34) and "HST" (R^2 = 0.64) were the most correlated to goals scored

And since the variables "HS" and "HST" are univariate, we proceeded to use a **Box & Whiskers Plot** to have a better look on the distribution.

Home Shots on Target - "HST":

Home Shots - "HS":

Checkpoint 3: Model Training

Model Selection

- 1. Decision Tree (Baseline)
- 2. K-Nearest Neighbors
- 3. Random Forest (a max depth of 4 to prevent long time training and fitting)

How we train, fit and evaluate the models:

- We train and fit each of the model over 100 times to get a much more accurate average score value
- Values used for comparison is the accuracy score of the model on the test values

Sample result of Decision Tree

Decision Tree Classifier: Goodness of Fit of Model Classification Accuracy Mean Squared Error (MSE)

Goodness of Fit of Model Classification Accuracy Mean Squared Error (MSE) Train Dataset

: 0.9855769230769231 : 0.016826923076923076

Test Dataset

: 0.4519230769230769

: 1.2532051282051282

Sample result of K-Nearest Neighbors

K-Nearest Neighbors Classifier:

Goodness of Fit of Model Classification Accuracy Mean Squared Error (MSE)

Goodness of Fit of Model Classification Accuracy Mean Squared Error (MSE) Train Dataset

: 0.5777243589743589 : 1.0993589743589745

Test Dataset

: 0.41025641025641024 : 1.2371794871794872

Sample result of Random Forest

Random Forest Classifier: Goodness of Fit of Model Classification Accuracy Mean Squared Error (MSE)

Goodness of Fit of Model Classification Accuracy Mean Squared Error (MSE) Train Dataset

: 0.5264423076923077

: 0.969551282051282

Test Dataset

: 0.5256410256410257 : 0.8846153846153846

Results

```
Average of Linear Regression (over 100 times) Accuracy Score: 0.4134615384615385 MSE: 1.2759935897435897

Average of k-Nearest-Neighbors (over 100 times) Accuracy Score: 0.3941025641025641 MSE: 1.3841025641025644

Average of Random Forest (over 100 times) Accuracy Score: 0.4966025641025642 MSE: 0.9815384615384615
```

We chose the Random Forest model as it has the highest Accuracy Score and the lowest MSE.

Checkpoint 4: Hyperparameter Tuning

How to tune the hyperparameter

Model used for tuning hyperparameter

· Grid Search from model selection.

Random Forest parameter to tune

- n_estimators
- max_depth
- max_leaf_node

n_estimators parameter

For n_estimate the value range from 50 to 500 with increment of 10

• e.g 50,60,70... 490, 500

Sample result of the tuning.

max_depth and max_leaf_node parameter

- The value of n_estimator used will be the same as previous result found
- Both parameter will use the same range of 3 to 9

Same result of the tuning

Tuning Result

We train and fit the baseline model and the newly tuned random forest model over 100 times to get more accurate results

Sample from Decision Tree

Decision Tree Classifier: Goodness of Fit of Model Classification Accuracy Mean Squared Error (MSE)

Goodness of Fit of Model Classification Accuracy Mean Squared Error (MSE) Train Dataset

: 0.9879807692307693 : 0.016826923076923076

Test Dataset

: 0.47115384615384615 : 1.3846153846153846

Sample from Random Forest Tuned

Random Forest Classifier with tuned values:

Goodness of Fit of Model Classification Accuracy Mean Squared Error (MSE)

: 0.5336538461538461 : 0.9046474358974359

Goodness of Fit of Model Classification Accuracy Mean Squared Error (MSE) Test Dataset

Train Dataset

: 0.4775641025641026 : 1.141025641025641

Tuning Result

The results showed that there is a small improvement in accuracy in the tuned random forest compared to the first random forest we did and the tuned random forest is performing better than the baseline model.

Average of Decision Tree (baseline) (over 100 times) Accuracy Score: 0.41275641025641036 MSE: 1.2846794871794867 Average of Random Forest Tuned (over 100 times) Accuracy Score: 0.49134615384615365 MSE: 0.8376923076923064

The results from before:

Average of Random Forest (over 100 times) Accuracy Score: 0.4966025641025642 MSE: 0.9815384615384615

Checkpoint 5: Conclusion

Conclusion

- Random forest model is the most accurate in predicting the number of goals scored
- To maximise goals scored, the team must:
 - Maximise Shots Taken & Shots on Target
- The most important predictor was Shots on Target

Case Study

Man City scored more goals despite a low number of shots per match for that

season

Average Shots on Target and Average Goals Scored by Team by Season

Better teams will be more efficient at converting Shots on Target opportunities to goals scored, conversely **lower teams** might still find it challenging.

Despite having a significant number of shots per match, **Crystal Palace** scored very few goals that season.

Limitations

- The data available to us had a limited number of variables.
- More extensive data with a greater number of variables such as
 possession, passes, etc. could be obtained to form a more
 accurate regression model to predict the number of goals
 scored in future.
- As seen from the case studies in the previous slide, higher shots
 on target may not necessarily translate to more goals
 consistently due to the individual abilities of various players for
 each team.

Thank You!

References

- 1. 1.6. nearest neighbors. scikit. (n.d.). Retrieved April 22, 2023, from https://scikit-learn.org/stable/modules/neighbors.html#classification
- 2. Sklearn.ensemble.randomforestclassifier. scikit. (n.d.). Retrieved April 22, 2023, from https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
- 3. English Premier League Dataset. Saif. (2022) Retrieved March 2, 2023, from https://www.kaggle.com/datasets/saife245/english-premier-league
- 4. Create a Python Heatmap with Seaborn. Holland. (2018). Retrieved March 2, 2023, from https://absentdata.com/python-graphs/create-a-heat-map-with-seaborn/
- 5. Python BoxPlot Jupyter Notebook. Lowther. (2019). Retrieved March 19, 2023, from https://www.wafermovement.com/2019/08/pythonboxplotnotebook/
- 6. Making Plots in Jupyter Notebook Beautiful & More. Bipin. (2020). Retrieved March 19, 2023, from https://towardsdatascience.com/making-plots-in-jupyter-notebook-beautiful-more-meaningful-23c8a35c0d5d
- 7. scikit learn. scikit-learn-developers. (2007). Retrieved March 2, 2023 from https://scikit-learn.org/stable/about.html#citing-scikit-learn