Why xgboost is so fast?

Yafei Zhang

kimmyzhang@tencent.com

August 1, 2016

- GBDT Recall
- Split Finding Algorithm
- Column Blocks and Parallelization
- Cache Aware Access
- System Tricks
- Summary
- Reference

Goal

A training set $\mathcal{D} = \{(x_i, y_i)\}_{1}^{N}$. A loss function L. The model F.

Objective Function

$$\mathcal{L} = \underbrace{\sum_{i=1}^{N} L(y_i, F(x_i; w))}_{Training \ loss} + \underbrace{\sum_{k=1}^{K} \Omega(f_k)}_{Regularization}$$
(1)

where

$$F(x; w) = \sum_{k=0}^{K} f_k(x; w_k)$$
 (2)

Goal: Learn F Greedily

$$F^* = \arg\min_{E} \mathcal{L} \tag{3}$$

Tree Splitting Algorithm

At iteration k, f_k is wanted

$$L(y_{i}, F_{k}(x_{i}; w)) = L(y_{i}, F_{k-1}(x_{i}; w) + f_{k}(x_{i}))$$

$$\approx L(y_{i}, F_{k-1}(x_{i}; w)) + \underbrace{\frac{\partial L(y_{i}, F_{k-1}(x_{i}; w))}{\partial F_{k-1}}}_{:=g_{i}} f_{k}(x_{i})$$

$$+ \frac{1}{2} \frac{\partial^{2} L(y_{i}, F_{k-1}(x_{i}; w))}{\partial F^{2}} f_{k}^{2}(x_{i})$$
(5)

$$= L(y_i, F_{k-1}(x_i; w)) + g_i f_k(x_i) + \frac{1}{2} h_i f_k^2(x_i)$$
 (6)

where

$$F_k = \sum_{k=1}^{K} f_j \tag{7}$$

Tree Splitting Algorithm

Overall Loss w.r.t. f_k

$$\mathcal{L}(\mathbf{f_k}) = \sum_{i=1}^{N} \left[g_i \mathbf{f_k}(\mathbf{x_i}) + \frac{1}{2} h_i \mathbf{f_k^2}(\mathbf{x_i}) \right] + \Omega(\mathbf{f_k})$$
 (8)

 $\Omega()$ for a decision tree f

$$\Omega(f) = \frac{\gamma}{2}J + \frac{\lambda}{2}\sum_{j=1}^{J}b_j^2 \tag{9}$$

 γ , λ : regularization coefficient.

J: number of leaf nodes in f.

 R_i : regions of leaf nodes in f.

 b_i : values of R_i .

Tree Splitting Algorithm

With $\{R_j\}_1^J$ known, we are to optimize $\{b_j\}_1^J$. How to get $\{R_j\}_1^J$ will be described later.

The optimal leaf values are given by minimizing $\mathcal L$

$$\mathcal{L}(\mathbf{f_k}) = \mathcal{L}(\{\mathbf{b_j}\}_1^J, \{R_j\}_1^J) = \sum_{j=1}^J \left[\sum_{\substack{x_j \in R_j \\ \vdots = G_j}} g_i \mathbf{b_j} + \frac{1}{2} \left(\sum_{\substack{x_j \in R_j \\ \vdots = H_j}} h_i + \lambda \right) \mathbf{b_j^2} \right] + \frac{\gamma}{2} J$$

$$(10)$$

To keep symbols uncluttered, J, b_i and R_i are parameters of f_k .

Tree Splitting Algorithm: Optimize b_i

The optimal leaf value of R_i

$$b_j^* = \arg\min_{b_j} \mathcal{L}(\{b_j\}_1^J, \{R_j\}_1^J) = -\frac{G_j}{H_j + \lambda}$$
 (11)

The minimal loss function

$$\mathcal{L}(\{b_j^*\}_1^J, \{R_j\}_1^J) = -\frac{1}{2} \sum_{i=1}^J \frac{G_j^2}{H_j + \lambda} + \frac{\gamma}{2} J$$
 (12)

Tree Splitting Algorithm: Get R_j

With $\{R_j\}_1^J$ and $\{b_i^*\}_1^J$, now we consider splitting R_i to R_L and R_R .

Define R and R': old and new splitting scheme

$$\mathbf{R}: \{R_i\}_1^J \tag{13}$$

$$\mathbf{R'}: \{R_j\}_{1,j\neq i}^J \cup \{R_L, R_R\}$$
 (14)

Define \mathbf{b}^* and $\mathbf{b}^{*'}$

$$\mathbf{b}^* : \{b_j^*\}_1^J \tag{15}$$

$$\mathbf{b}^{*'}: \{b_i^*\}_{1,i\neq i}^J \cup \{b_L^*, b_R^*\}$$
 (16)

Tree Splitting Algorithm: Get R_j

Gain is defined to be the decrease in \mathcal{L} after splitting R_i , and use (12).

Gain

$$Gain = 2\mathcal{L}(\mathbf{b}^*, \mathbf{R}) - 2\mathcal{L}(\mathbf{b}^{*'}, \mathbf{R'})$$
(17)

$$=\frac{G_L^2}{H_L+\lambda}+\frac{G_R^2}{H_R+\lambda}-\frac{(G_L+G_R)^2}{H_L+H_R+\lambda}-\gamma \tag{18}$$

3 Terms:

- Gain from splitting
- Gain from not splitting
- The complexity introduced by splitting

Tree Splitting Algorithm: Put all together

From (18), we have the algorithm

- Calculate g_i and h_i for all instances.
- Carry out split finding algorithm to get some proposed splits.
 - Iterate over all proposed splits.
 - Calculate gain according to (18).
- Select the "best" split, which results in the maximal gain.
- Stop splitting if the maximal gain is negative or some criterions are met.

GBDT to tree splitting algorithm to split finding algorithm. Split finding algorithm will be described next section.

- GBDT Recall
- Split Finding Algorithm
- Column Blocks and Parallelization
- 4 Cache Aware Access
- System Tricks
- Summary
- Reference

Split Finding Algorithm

Trivial for binary features

Only one split. We can skip this section:)

How to find proposed splits?

- Exact Greedy Algorithm
 - Enumerate over all possible splits by brute force.
- Approximate Algorithm
 - Propose percentiles on one feature.
 - GK01(M. Greenwald & S. Khanna, 2001, Space-Efficient Online Computation of Quantile Summaries).
 - GK01's variations and extensions.

In the approximate algorithm, can we reuse the proposed splits?

- Global: proposal will be carried out per tree.
- Local: proposal will be carried out per split.

A Percentiles Demo

from Internet

Exact Greedy Algorithm

Algorithm 1: Exact Greedy Algorithm for Split Finding

```
\begin{array}{l} \textbf{Input:} \ I, \ \text{instance set of current node} \\ \textbf{Input:} \ d, \ \text{feature dimension} \\ gain \leftarrow 0 \\ G \leftarrow \sum_{i \in I} g_i, \ H \leftarrow \sum_{i \in I} h_i \\ \textbf{for} \ k = 1 \ \textbf{to} \ m \ \textbf{do} \\ & \quad \mid G_L \leftarrow 0, \ H_L \leftarrow 0 \\ & \quad \mid \textbf{for} \ j \ in \ sorted(I, \ by \ \mathbf{x}_{jk}) \ \textbf{do} \\ & \quad \mid G_L \leftarrow G_L + g_j, \ H_L \leftarrow H_L + h_j \\ & \quad \mid G_R \leftarrow G - G_L, \ H_R \leftarrow H - H_L \\ & \quad \mid score \leftarrow \max(score, \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{G^2}{H + \lambda}) \\ & \quad \textbf{end} \\ \textbf{Output:} \ \textbf{Split} \ \text{with max score} \end{array}
```

Time complexity

 $O(N_u)$: N_u is the number of unique values of this feature.

Approximate Algorithm

Algorithm 2: Approximate Algorithm for Split Finding

for k = 1 to m do

Propose $S_k = \{s_{k1}, s_{k2}, \dots s_{kl}\}$ by <u>percentiles</u> on feature k. Proposal can be done per tree (<u>global</u>), or per split(<u>local</u>).

end

for
$$k = 1$$
 to m do

$$G_{kv} \leftarrow = \sum_{j \in \{j \mid s_{k,v} \ge \mathbf{x}_{jk} > s_{k,v-1}\}} g_j$$

$$H_{kv} \leftarrow = \sum_{j \in \{j \mid s_{k,v} \ge \mathbf{x}_{jk} > s_{k,v-1}\}} h_j$$

end

Follow same step as in previous section to find max score only among proposed splits.

Time complexity

 $O(N_p)$: N_p is the number of proposed splits of this feature.

Approximate Algorithm: Demo

$$Gain = \max\{Gain, \frac{G_1^2}{H_1 + \lambda} + \frac{G_{23}^2}{H_{23} + \lambda} - \frac{G_{123}^2}{H_{123} + \lambda} - \gamma,$$

$$\frac{G_{12}^2}{H_{12} + \lambda} + \frac{G_3^2}{H_3 + \lambda} - \frac{G_{123}^2}{H_{123} + \lambda} - \gamma\}$$
(20)

$$\frac{G_{12}^2}{H_{12} + \lambda} + \frac{G_3^2}{H_3 + \lambda} - \frac{G_{123}^2}{H_{123} + \lambda} - \gamma \}$$
 (20)

Split Finding Algorithm: Conclusions

eps: bucket width, 1/eps: number of percentile buckets.

Conclusions

Approximate approach can be as well as the exact one.

- GBDT Recall
- Split Finding Algorithm
- 3 Column Blocks and Parallelization
- 4 Cache Aware Access
- System Tricks
- Summary
- Reference

Column Blocks and Parallelization

Column Blocks and Parallelization

- Feature values are sorted.
- A block contains one or more feature values.
- Instance indices are stored in blocks.
- Missing features are not stored.
- With column blocks, a parallel split finding algorithm is easy to design.

- GBDT Recall
- Split Finding Algorithm
- 3 Column Blocks and Parallelization
- 4 Cache Aware Access
- System Tricks
- Summary
- Reference

Cache Aware Access

Tricks

- A thread pre-fetches data from non-continuous memory into a continuous buffer.
- The main thread accumulates gradients statistics in the continuous buffer.

Cache Aware Access: Conclusions

Conclusions

• Cache aware algorithm is always no worse.

- GBDT Recall
- Split Finding Algorithm
- 3 Column Blocks and Parallelization
- 4 Cache Aware Access
- System Tricks
- Summary
- Reference

System Tricks

- Block pre-fetching.
- Utilize multiple disks to parallelize disk operations.
- LZ4 compression(popular recent years for outstanding performance).
- Unrolling loops.
- OpenMP.

LZ4 Compression

Compress blocks with LZ4.

Compressor	Ratio	Compression	Decompression
memcpy	1	4200 MB/s	4200 MB/s
LZ4 fast 17 (r129)	1.607	690 MB/s	2220 MB/s
LZ4 default (r129)	2.101	385 MB/s	1850 MB/s
LZO 2.06	2.108	350 MB/s	510 MB/s
QuickLZ 1.5.1.b6	2.238	320 MB/s	380 MB/s
Snappy 1.1.0	2.091	250 MB/s	960 MB/s
LZF v3.6	2.073	175 MB/s	500 MB/s
zlib 1.2.8 -1	2.73	59 MB/s	250 MB/s
LZ4 HC (r129)	2.72	22 MB/s	1830 MB/s
zlib 1.2.8 -6	3.099	18 MB/s	270 MB/s

Unrolling Loops: Program I

```
#include <stdio.h>
int main() {
  int sum = 0;
  int i;
  for (i = 0; i < 100000000; i++) {
    sum += i;
  }
  printf("%d\n", sum);
  return 0;
}</pre>
```

Unrolling Loops: Program II

```
#include <stdio.h>
int main() {
  int sum = 0;
  int i;
  for (i = 0; i < 100000000; i += 8) {</pre>
    sum += i;
    sum += i + 1;
    sum += i + 2;
    sum += i + 3:
    . . .
    sum += i + 7:
  }
  printf("%d\n", sum);
  return 0;
```

Unrolling Loops

Conclusions

Program II is 40%-50% faster.

Performance can benefit from unrolling loops with light loop bodies.

A simple solution

CFLAGS=-funroll-loops

CXXFLAGS=-funroll-loops

Use flags above to compile Program I.

OpenMP

A shared-memory parallel programming primitive.

```
#pragma omp parallel for
for (int i = 0; i < 1024; i++) {
    // do something in parallel
}</pre>
```

Not always faster, programs need to be tuned carefully.

```
CFLAGS=-fopenmp
CXXFLAGS=-fopenmp
LDFLAGS=-fopenmp
```


- GBDT Recall
- Split Finding Algorithm
- 3 Column Blocks and Parallelization
- Cache Aware Access
- System Tricks
- **6** Summary
- Reference

Summary

- GBDT recall
 - tree splitting algorithm: f_k , b_j , R_j
- Split finding algorithm
 - exact vs approximate
 - global vs local
- Column blocks and parallelization
 - one block = one or multiple features
 - sorted feature value
 - easy to parallelize
- Cache aware access
 - pre-fetch
 - alleviate non-continuous memory access
- System Tricks
 - pre-fetch
 - utilize multiple disks
 - LZ4 compression
 - Unrolling loops
 - OpenMP

- GBDT Recall
- Split Finding Algorithm
- Column Blocks and Parallelization
- 4 Cache Aware Access
- System Tricks
- Summary
- Reference

Reference

- J. Friedman(1999). Greedy Function Approximation: A Gradient Boosting Machine.
- J. Friedman(1999). Stochastic Gradient Boosting.
- T. Hastie, R. Tibshirani, J. Friedman(2008). Chapter 10 of The Elements of Statistical Learning(2e).
- T. Chen, C. Guestrin(2016). XGBoost: A Scalable Tree Boosting System.