Codagami Anime Recommender

•••

Data Mining Project

Group-15

Chinmaya Singal	180207	chinmaya@iitk.ac.in
Dipesh Khandelwal	180249	dipeshk@iitk.ac.in
Rythm Agarwal	180636	rythm@iitk.ac.in
Sakshi	180653	sakshisa@iitk.ac.in
Sarthak Dubey	180674	srthkdb@iitk.ac.in

Data Source

Data retrieval and processing

```
{} anime_list_final_231.json
         "1": {
             "id": 1,
             "title": "Cowboy Bebop",
             "main picture": {
                 "medium": "https://api-cdn.myanimelist
                 "large": "https://api-cdn.myanimelist.
             "alternative titles": {
                 "synonyms": [],
                 "en": "Cowboy Bebop",
                 "ia": "カウポーイビバップ"
             "start date": "1998-04-03",
             "end date": "1999-04-24",
             "synopsis": "In the year 2071, humanity ha
             "mean": 8.77,
             "rank": 33,
             "popularity": 45,
```


id	title	main picture	alternative titles	start date	end date
1.0	Cowboy Bebop	{'medium': 'https://api- cdn.myanimelist.net/im	{'synonyms': [], 'en': 'Cowboy Bebop', 'ja': '	1998-04- 03	1999-04- 24
6.0	Trigun	{'medium': 'https://api- cdn.myanimelist.net/im	{'synonyms': [], 'en': 'Trigun', 'ja': 'トライガン'}	1998-04- 01	1998-09- 30
8.0	Bouken Ou Beet	{'medium': 'https://api- cdn.myanimelist.net/im	{'synonyms': ['Adventure King Beet'], 'en': 'B	2004-09- 30	2005-09- 29
16.0	Hachimitsu to Clover	{'medium': 'https://api- cdn.myanimelist.net/im	('synonyms': ['HachiKuro', 'Honey & Clover'], 	2005-04- 15	2005-09- 27
18.0	Initial D Fourth Stage	{'medium': 'https://api- cdn.myanimelist.net/im	('synonyms': ['Initial D 4th Stage'], 'en': "	2004-04- 17	2006-02- 18
s × 33 columns					

Json Data collected from MAL API

Data converted and processed to pandas Dataframe for analysis

ALS based Recommender

Alternating Least Square (ALS) Matrix Factorization based Collaborative Filtering

Make recommendations

Enter your anime name in my_anime_list, and the recommender will generate recommendations

```
my_anime_list = ['Cowboy Bebop']

recommends = make_recommendation(
    best_model_params={'iterations': 10, 'rank': 20, 'lambda_': 0.05},
    ratings_data=rating_data,
    df_animes=animes,
    fav_anime_list=my_anime_list,
    n_recommendations=10,
    spark_context=sc)

print('Recommendations for {}:'.format(my_anime_list[0]))
for i, title in enumerate(recommends):
    print('{0}: {1}'.format(i+1, title))
```

```
Recommendations for Cowboy Bebop:

1: Fullmetal Alchemist: Brotherhood

2: Hunter x Hunter (2011)

3: Shingeki no Kyojin Season 3

4: Shokugeki no Souma: San no Sara

5: "Violet Evergarden: Kitto ""Ai"" wo Shiru Hi ga Kuru no Darou"

6: Seishun Buta Yarou wa Yumemiru Shoujo no Yume wo Minai

7: Death Note

8: Kimi no Na wa.

9: Saiki Kusuo no Ψ-nan 2

10: Shingeki no Kyojin Season 3 Part 2
```

TF-IDF based Recommender

Term Frequency — Inverse Document Frequency (TF-IDF) based recommendation systems are content based recommenders

```
def recommend anime(title, max reco = 10, cosine sim = cos sim, cosine sim o
       print("Anime Recommendations for: "+title)
       recommended animes = []
       index = anime names[anime names == title].index[0]
       similar scores = pd.Series(cosine sim[index])
       similar scores genre = pd.Series(cosine sim genre[index])
       mean = anime df['mean']
       mean = mean.apply(lambda x: x if x \ge 7 else 0)
       anime mean score = pd.Series(np.array(mean))
       similar scores mul = similar scores.mul(similar scores genre)
       similar scores mul = similar scores mul.mul(anime mean score)
       similar scores mul = similar scores mul.sort values(ascending=False)
       top animes = list(similar scores mul.iloc[1:max reco+1].index)
       for anime index in top animes:
           anime row = anime df.iloc[anime index]
           anime name = anime row['title']
           recommended animes.append(anime name)
       return recommended animes
   recommend anime("Cowboy Bebop")
 √ 56.1s
Anime Recommendations for: Cowboy Bebop
['Cowboy Bebop: Yose Atsume Blues',
 'Seihou Bukyou Outlaw Star',
 'Cowboy Bebop: Tengoku no Tobira',
 'Space Adventure Cobra',
 'Waga Seishun no Arcadia: Mugen Kidou SSX',
 'Ginga Tetsudou Monogatari',
 'Iria: Zeiram The Animation',
 'Uchuu Senkan Yamato',
 'Freedom',
 'Sayonara Ginga Tetsudou 999: Andromeda Shuuchakueki']
```

KNN based Recommender

K- Nearest Neighbours (KNN) item based collaborative filtering

print('{0}: {1}, with distance of {2}'.format(i+1, reverse mapper[idx], dist))

reverse_mapper = {v: k for k, v in mapper.items()}
print('Recommendations for {}:'.format(fav_anime))
for i, (idx, dist) in enumerate(raw recommends):

my favorite = 'Cowboy Bebop'

2: Akira, with distance of 0.31690885637703625 3: Monster, with distance of 0.3168795683168413

5: Bleach, with distance of 0.30396440374767253

8: Death Note, with distance of 0.28743321445921133

4: Samurai Champloo, with distance of 0.3042900227126648

6: Cowboy Bebop: Tengoku no Tobira, with distance of 0.30382183444633903

9: Fullmetal Alchemist: Brotherhood, with distance of 0.28349179908653377 10: Neon Genesis Evangelion, with distance of 0.28263286514808483

7: Neon Genesis Evangelion: The End of Evangelion, with distance of 0.30313470443520196

SVD based Recommender

```
def cosine similarity sort(r data, anime id, top n=10):
    ind = anime id - 1
    anime row = r data[ind, :]
    magnitude = np.sqrt(np.einsum('ij, ij -> i', r data, r data))
    matrix similarity = np.dot(anime row, r data.T) / (magnitude[ind] * magnitude)
    sorted indices = np.argsort(-matrix similarity)
    return sorted indices[:top n]
```

```
def get most similar anime(anime df, anime id, index list):
    print('Best recommendations for {0}: \n'.format(
    anime df[anime df.anime id == anime id].title.values[0]))
    for id in index list + 1:
        print(anime df[anime df.anime id == id].title.values[0])
```

id for which we want recommendation

```
top n = 10
  rep data = V.T[:, :k] # representative data
  index list = cosine similarity sort(rep data, anime id, top n)
  #Get the top N recommendations
  get most similar anime(anime df, anime id, index list)
Best recommendations for Cowboy Bebop:
```

El Hazard: The Alternative World

Saiyuuki Reload Gunlock

k = 50

Trigun

Beck

anime id = 2

Initial D First Stage

Mobile Suit Gundam SEED

Yakitate!! Japan

Hunter x Hunter: Greed Island Final

Pita Ten Green Green

Insights and Analysis

Number of animes produced of each media type

Number of animes aired with time

The dip in the number of animes started during 2020–21 is due to the COVID–19 pandemic.

Number of animes produced by top studios with time

Viewership of Top Studios

Bones has the largest viewership among top studios

Distribution of animes based on age rating

Frequency of various ratings given by viewers

Arigatō Gozaimasu!