ЛЕКЦІЯ 3

ПРЕДСТАВЛЕННЯ ПОДІЙ ЗА ДОПОМОГОЮ ЕЛЕМЕНТАРНИХ ПОДІЙ. ЙМОВІРНІСТЬ ПОЯВИ ХОЧА Б ОДНІЄЇ ПОДІЇ. ОЦІНЮВАННЯ НАДІЙНОСТІ РОБОТИ ПРОСТИХ СХЕМ ЗА ДОПОМОГОЮ ФОРМУЛ ТЕОРІЇ ЙМОВІРНОСТЕЙ. ФОРМУЛА ПОВНОЇ ЙМОВІРНОСТІ. ФОРМУЛА БАЄСА

3.1. Представлення події за допомогою елементарних подій

Представлення події за допомогою елементарних подій ϵ одним з основних концептів у теорії ймовірностей. *Елементарні події* ϵ найпростішими можливими результатами експерименту, що не можуть бути розбиті на більш прості результати. Вони утворюють повний простір можливих результатів експерименту.

Основні поняття

Елементарна подія (ω): Це найпростіший можливий результат експерименту. Наприклад, у підкиданні монети елементарні події можуть бути «герб» і «решітка».

Простір елементарних подій (Ω): Це множина всіх можливих елементарних подій. Наприклад, для підкидання монети $\Omega = \{\Gamma \text{ерб}, P \text{ешітка}\}.$

Подія (A): Це будь-яка підмножина простору елементарних подій. Подія може складатися з однієї або кількох елементарних подій. Наприклад, подія A у підкиданні монети може бути «випаде герб», тобто $A = \{\Gamma \text{ерб}\}$.

Приклад

Розглянемо приклад підкидання грального кубика. Простір елементарних подій буде:

$$\Omega = \{1,2,3,4,5,6\}.$$

Події можуть бути представлені як підмножини цього простору. Наприклад:

Подія A: Випаде парне число. Тоді $A = \{2,4,6\}$.

Подія B: Випаде число більше 4. Тоді $B = \{5,6\}$.

Представлення подій

Будь-яка подія може бути представлена за допомогою операцій представлених в лекції 1, таких як об'єднання, перетин або різниця елементарних подій.

Об'єднання подій

Подія $A \cup B$ (A + B) означає, що відбудеться або подія A, або подія B, або обидві події одночасно. Наприклад, для подій $A = \{2,4,6\}$ і $B = \{5,6\}$:

$$A + B = \{2,4,5,6\}.$$

Перетин подій

Подія $A \cap B$ $(A \cdot B)$ означає, що відбудеться як подія A, так і подія B. Наприклад, для подій $A = \{2,4,6\}$ і $B = \{5,6\}$:

$$A \cdot B = \{6\}.$$

Різниця подій

Подія A/B (A-B) означає, що відбудеться подія A, але не подія B. Наприклад, для подій $A=\{2,4,6\}$ і $B=\{5,6\}$:

$$A - B = \{2,4\}.$$

Представлення подій за допомогою елементарних подій дозволяє зрозуміти структуру і взаємозв'язки між подіями. Це фундаментальне поняття в теорії ймовірностей, яке лежить в основі багатьох інших концептів і методів аналізу.

Таким чином, якщо задана подія A та множина незалежних елементарних подій $\{A_1; A_2; ...; A_n\}$, без настання кожної з яких неможливе настання події A, то її можна представити за допомогою операцій над даними елементарними подіями, таким чином, щоб утворені в результаті більш складні події були несумісними. Найчастіше використовуються операції перетину, об'єднання та доповнення.

Подібне представлення необхідно для можливості використання формул додавання ймовірностей несумісних подій та формул множення незалежних (незалежних у сукупності) подій, що значно спростить процес обчислення ймовірності події A.

Приклад 3.1. На модульній контрольній роботі студентам запропоновано 9 задач: 4 — першого рівня складності, 3 — другого і дві — третього рівня. Подія $A_i = \{poзв'язання \ i$ -ї задачі першого рівня, $i = 1,2,3,4\}$, $B_j = \{poзв'язання \ j$ -ї задачі першого рівня, $j = 1,2,3\}$, $C_k = \{poзв'язання \ k$ -ї задачі першого рівня, $k = 1,2\}$, $D = \{oдержання позитивної оцінки\}$. Виразити подію D через події A_i , B_j , C_k , якщо для отримання позитивної оцінки необхідно розв'язати всі задачі першого рівня, принаймні дві другого рівня і принаймні одну третього рівня.

$$A = A_1 \cdot A_2 \cdot A_3 \cdot A_4,$$

де A_i , i = 1,2,3,4 – незалежні події.

$$B = B_1 \cdot B_2 \cdot \overline{B_3} + B_1 \cdot \overline{B_2} \cdot B_3 + \overline{B_1} \cdot B_2 \cdot B_3 + B_1 \cdot B_2 \cdot B_3,$$

де B_j , = 1,2,3 – незалежні події, а $B_1 \cdot B_2 \cdot \overline{B_3}$; $B_1 \cdot \overline{B_2} \cdot B_3$; $\overline{B_1} \cdot B_2 \cdot B_3$; $B_1 \cdot B_2 \cdot B_3$ – несумісні події.

$$C = C_1 \cdot \overline{C_2} + \overline{C_1} \cdot C_2 + C_1 \cdot C_2,$$

де C_k , k=1,2 – незалежні події, а $C_1\cdot \overline{C_2}$; $\overline{C_1}\cdot C_2$; $C_1\cdot C_2$ – несумісні події.

Кожен доданок в подіях B та C є несумісними подіями.

Отже,
$$D = A \cdot B \cdot C$$
.

Відповідь. $D = A \cdot B \cdot C$.

3.2. Ймовірність появи хоча б однієї події

Нехай проводиться n незалежних випробувань, у кожному з яких може відбутися подія A_i ($i=1,2,3,\ldots n$) з ймовірністю $P(A_i)=p_i$ або протилежна подія $\overline{A_i}$ ($A_i \cup \overline{A_i}=\Omega, A_i \cap \overline{A_i}=\emptyset$) з ймовірністю $P(\overline{A_i})=q_i, (p_i+q_i=1).$

Ймовірність появи принаймні однієї з подій $A_1, A_2, ..., A_n$, незалежних в сукупності, знаходиться за формулою:

$$P(A) = 1 - q_1 \cdot q_2 \cdot \dots \cdot q_n. \tag{3.1}$$

Якщо події $A_1; A_2; ...; A_n$ мають однакову ймовірність p, то ймовірність настання принаймні однієї з цих подій дорівнює:

Тоді

$$P(A) = 1 - q^n. (3.2)$$

Приклад 3.2. Продано 10000 білетів лотереї. На один білет випадає виграш у 500 грн., на 100 білетів — виграші у 100 грн., на 200 білетів — виграші у 20 грн., на 300 білетів — виграші у 5 грн., інші білети — невиграшні. Дехто купив один білет. Знайти ймовірність того, що він виграє не менше 20 грн.

Розв'язання. Розглянемо подію $A = \{$ виграти не менше 20 грн. $\}$. Це означає, що виграти можна або 20 грн., або 100 грн., або 500 грн. Введемо події:

 $A_1 = \{$ виграти 20 грн. $\}, A_2 = \{$ виграти 100 грн. $\}, A_3 = \{$ виграти 500 грн. $\}.$

Події A_1, A_2, A_3 — несумісні, тобто в наслідок експерименту може настати лише одна з них.

Тоді подію A можна представити у вигляді: $A = A_1 + A_2 + A_3$.

За формулою про додавання несумісних ймовірностей:

$$P(A) = P(A_1 + A_2 + A_3) = P(A_1) + P(A_2) + P(A_3) = \frac{200}{10000} + \frac{100}{10000} + \frac{1}{10000} = 0,0301.$$

Або ж:

$$P(A) = 1 - \left(\frac{300}{10000} + \frac{9399}{10000}\right) = 0.0301.$$

Відповідь. P(A) = 0.0301.

Приклад 3.3. Кругова мішень має три зони: І, ІІ, ІІІ. Ймовірність влучення у першу зону одним пострілом дорівнює 0,3; у другу -0,5; у третю -0,1. Знайти ймовірність промаху.

Розв'язання. Розглянемо події:

$$A_i = \{$$
промах по i -ій зоні $\}, \overline{A}_i = \{$ влучання в i -у зону $\}, i = 1,2,3.$

Тоді $\overline{A} = \overline{A_1} + \overline{A_2} + \overline{A_3}$, де $\overline{A_1}$; $\overline{A_2}$; $\overline{A_3}$ влучення відповідно у першу, другу і третю зони. Ці події несумісні — поява однієї з них виключає появу інших, бо виконується тільки один постріл.

За формулою про додавання ймовірностей несумісних подій маємо

$$P(\overline{A}) = P(\overline{A_1} + \overline{A_2} + \overline{A_3}) = P(\overline{A_1}) + P(\overline{A_2}) + P(\overline{A_3}) = 0.3 + 0.5 + 0.1 = 0.9.$$

Подія A протилежна події \bar{A} . Тому $P(A) + P(\bar{A}) = 1$.

Таким чином P(A) = 1 - 0.9 = 0.1.

Відповідь. P(A) = 0,1.

Приклад 3.4. Виконуються три постріли у одну і ту ж мішень. Ймовірність влучення у мішень першим пострілом дорівнює 0,5; другим -0,7; третім -0,8. Знайти ймовірність того, що в результаті трьох пострілів у мішені буде рівно одна пробоїна.

Розв'язання. Розглянемо подію $A = \{$ рівно одне влучення у мішень $\}$. Ця подія може здійснитись декількома способами, тобто вона розпадається на три несумісні варіанти: може бути влучення першим пострілом, промахи другим і третім; або влучення другим пострілом, промахи першим і третім; або влучення третім пострілом, промахи першим і другим.

Введемо події: A_1 ; A_2 ; $A_3 = \{$ влучення у мішень першим, другим і третім пострілом відповідно $\}$, $\overline{A_1}$; $\overline{A_2}$; $\overline{A_3} = \{$ промах першим, другим і третім пострілами $\}$.

Тоді
$$A=A_1\cdot \overline{A_2}\cdot \overline{A_3}+\overline{A_1}\cdot A_2\cdot \overline{A_3}+\overline{A_1}\cdot \overline{A_2}\cdot A_3.$$

Події A_1 ; A_2 ; A_3 ; $\overline{A_1}$; $\overline{A_2}$; $\overline{A_3}$ — незалежні, а події $A_1 \cdot \overline{A_2} \cdot \overline{A_3}$; $\overline{A_1} \cdot A_2 \cdot \overline{A_3}$; $\overline{A_1} \cdot A_2 \cdot \overline{A_3}$; $\overline{A_1} \cdot A_3$ — несумісні.

За формулами про додавання і добуток ймовірностей

$$P(A) = P(A_1 \cdot \overline{A_2} \cdot \overline{A_3} + \overline{A_1} \cdot A_2 \cdot \overline{A_3} + \overline{A_1} \cdot \overline{A_2} \cdot A_3) =$$

$$= P(A_1 \cdot \overline{A_2} \cdot \overline{A_3}) + P(\overline{A_1} \cdot A_2 \cdot \overline{A_3}) + P(\overline{A_1} \cdot \overline{A_2} \cdot A_3) =$$

$$= P(A_1) \cdot P(\overline{A_2}) \cdot P(\overline{A_3}) + P(\overline{A_1}) \cdot P(A_2) \cdot P(\overline{A_3}) + P(\overline{A_1}) \cdot P(\overline{A_2}) \cdot P(\overline{A_3}) =$$

$$= 0.5 \cdot 0.3 \cdot 0.2 + 0.5 \cdot 0.7 \cdot 0.2 + 0.5 \cdot 0.3 \cdot 0.8 = 0.22.$$

Відповідь. P(A) = 0.22.

Приклад 3.5. За умов попередньої задачі знайти ймовірність того, що у мішені буде хоча б одна пробоїна.

Розв'язання. Введемо подію $B = \{$ хоча б одне влучення у мішень $\}$. Ця подія означає, що у мішені може бути або одна пробоїна, або дві пробоїни, або три пробоїни. Тому подію B можна записати:

$$B = A_1 \cdot \overline{A_2} \cdot \overline{A_3} + \overline{A_1} \cdot A_2 \cdot \overline{A_3} + \overline{A_1} \cdot \overline{A_2} \cdot A_3 + A_1 \cdot A_2 \cdot \overline{A_3} + A_1 \cdot \overline{A_2} \cdot A_3 + A_1 \cdot \overline{A_2} \cdot A_3 + A_1 \cdot A_2 \cdot \overline{A_3} + A_1 \cdot \overline{A_2} \cdot A_3 + A_1 \cdot A_2 \cdot \overline{A_3} + A_1 \cdot \overline{A_2} \cdot A_3$$

Тепер, використовуючи формул про додавання і добуток ймовірностей, можна знайти ймовірність події B.

Але цю задачу простіше розв'язати, якщо перейти від прямої події B до протилежної події \overline{B} — ні одного влучення.

Очевидно, що $\bar{B} = \overline{A_1} \cdot \overline{A_2} \cdot \overline{A_3}$. Події $\overline{A_1}$; $\overline{A_2}$; $\overline{A_3}$ – незалежні.

За формулою про добуток ймовірностей трьох незалежних подій:

$$P(\bar{B}) = 0.5 \cdot 0.3 \cdot 0.2 = 0.03.$$

Звідси
$$P(B) = 1 - P(\bar{B}) = 1 - 0.03 = 0.97.$$

Відповідь. P(A) = 0.97.

Приклад 3.6. Гральний кубик підкидається чотири рази. Чому дорівнює ймовірність того, що цифра 3 з'явиться при цьому хоча б один раз?

Розв'язання. Ймовірність того, що при одному підкиданні з'явиться цифра 3, дорівнює $\frac{1}{6}$.

Тоді
$$q = 1 - p = 1 - \frac{1}{6} = \frac{5}{6}$$
. Згідно з (3.2) дістанемо:
$$P(A) = 1 - q^4 = 1 - \left(\frac{5}{6}\right)^4 = 1 - \frac{625}{1296} = \frac{671}{1296}.$$

Відповідь. $P(A) = \frac{671}{1296}$.

3.3. Оцінювання надійності роботи простих схем за допомогою формул теорії ймовірностей

Оцінювання надійності роботи простих схем за допомогою формул теорії ймовірностей є важливою задачею, особливо в інженерії та комп'ютерних науках. Умовна ймовірність, незалежні події, формула включення-виключення та інші концепції теорії ймовірностей допомагають аналізувати і прогнозувати роботу схем.

Основні поняття

Hadiйність (R) — ймовірність того, що система або компонент буде функціонувати безвідмовно протягом заданого часу.

Biomoba (F) — ймовірність того, що система або компонент відмовлять протягом заданого часу.

Зв'язок між надійністю та відмовою:

$$F = 1 - R. \tag{3.3}$$

Оцінювання надійності послідовних схем

У *послідовній схемі* всі компоненти підключені один за одним. Відмова будь-якого компонента призводить до відмови всієї системи.

Рис. 3.1. Схема з послідовним з'єднанням

Якщо елементи системи з'єднані послідовно (рис. 3.1), і при цьому відомі ймовірності безвідмовної роботи кожного елемента p_i (i=1,...,n), то позначивши надійність системи через R, дістанемо:

$$R = \prod_{i=1}^{n} p_i. \tag{3.4}$$

$$F = 1 - \prod_{i=1}^{n} p_i. \tag{3.5}$$

Оцінювання надійності паралельних схем

У паралельній схемі всі компоненти підключені паралельно. Відмова всієї системи станеться тільки тоді, коли всі компоненти відмовлять.

Рис. 3.2. Схема з паралельним з'єднанням

Якщо елементи системи з'єднані за схемою, наведеною на рис. 3.2, і при цьому відомі ймовірності безвідмовної роботи кожного елемента p_i (i = 1, ..., n), то надійність роботи системи знайдемо за формулою:

$$R = 1 - \prod_{i=1}^{n} q_i, q_i = 1 - p_i.$$

$$F = \prod_{i=1}^{n} q_i, q_i = 1 - p_i.$$
(3.6)
(3.7)

$$F = \prod_{i=1}^{n} q_i, q_i = 1 - p_i. \tag{3.7}$$

Приклад 3.7. Ділянку електричної схеми наведено на рис. 3.3. Події $A_i = \{ відмова \}$ елемента $a_i(i=1,2)$ }; $B=\{$ відмова елемента b}; $C_j=\{$ відмова елемента $c_j(j=1,2)\}; D=\{$ ділянка проводить струм $\}$. Виразити D та \overline{D} через A_i , B, C_j .

Рис. 3.3. Схема для прикладу 3.7

Розв'язання. Подія *D* відбудеться, коли не відмовить принаймні один з елементів a_i , елемент b і принаймні один з елементів c_i . Тобто

$$D = (A_1 \cdot \overline{A_2} + A_2 \cdot \overline{A_1} + \overline{A_1} \cdot \overline{A_2}) \cdot \overline{B} \cdot (C_1 \cdot \overline{C_2} + \overline{C_1} \cdot C_2 + \overline{C_1} \cdot \overline{C_2}),$$

$$\overline{D} = (A_1 \cdot A_2) \cdot \overline{B} \cdot (C_1 \cdot \overline{C_2} + \overline{C_1} \cdot C_2 + \overline{C_1} \cdot \overline{C_2}) + (A_1 \cdot \overline{A_2} + A_2 \cdot \overline{A_1} + A_1 \cdot A_2) \cdot B \cdot (C_1 \cdot \overline{C_2} + \overline{C_1} \cdot C_2 + \overline{C_1} \cdot \overline{C_2}) + (A_1 \cdot \overline{A_2} + A_2 \cdot \overline{A_1} + \overline{A_1} \cdot \overline{A_2}) \cdot \overline{B} \cdot (C_1 \cdot C_2).$$
Відповідь. Представлено події D та \overline{D} .

Приклад 3.8. Електричні елементи з'єднані за схемами, наведеними на рис. 3.4 *i* 3.5.

Рис. 3.4. Схема для прикладу 3.8 (a)

Рис. 3.5. Схема для прикладу 3.8 (б)

Ймовірність того, що електричний елемент буде працювати при ввімкненні в електромережу наведених схем, ϵ величиною сталою і дорівню ϵ $p_i = 0.85$. Яка ймовірність того, що при ввімкненні в електромережу наведених схем у них буде електрострум?

Розв'язання. За відомим значенням p_i знаходимо $q_i = 1 - p_i = 1 - 0.85 = 0.15$ (i = 1,2,3,4).

a)
$$R = \prod_{i=1}^4 p_i = (0.85)^4 = 0.522$$
;

6)
$$R = 1 - \prod_{i=1}^{4} q_i = 1 - (0.15)^4 = 1 - 0.00051 - 0.99949.$$

Відповідь. а) R = 0.522; б) R = 0.99949.

Приклад 3.9. Дано послідовну схему з трьома компонентами, надійності яких $R_1 = 0.9$; $R_2 = 0.8$; $R_3 = 0.95$. Визначити надійність всієї схеми.

Розв'язання. Надійність всієї послідовної схеми:

$$R = R_1 \cdot R_2 \cdot R_3 = 0.9 \cdot 0.8 \cdot 0.95 = 0.684.$$

Відповідь. R = 0.684.

Приклад 3.10. Дано паралельну схему з трьома компонентами, надійності яких $R_1 = 0.9$; $R_2 = 0.8$; $R_3 = 0.95$. Визначити надійність всієї схеми.

Розв'язання. Ймовірність відмови кожного компонента:

$$F_1 = 1 - R_1 = 0.1; F_2 = 1 - R_2 = 0.2; F_3 = 1 - R_3 = 0.05.$$

Ймовірність відмови всієї паралельної схеми:

$$F = F_1 \cdot \hat{F}_2 \cdot F_3 = 0.1 \cdot 0.2 \cdot 0.05 = 0.001$$

Надійність всієї паралельної схеми:

$$R = 1 - F = 1 - 0,001 = 0,999.$$

Для визначення надійності електричних схем також можна використовувати формулу включення-виключення.

$$R = R_1 + R_2 + R_3 - R_1 \cdot R_2 - R_1 \cdot R_3 - R_2 \cdot R_3 + R_1 \cdot R_2 \cdot R_3 =$$

= 0,9 + 0,8 + 0,95 - 0,9 \cdot 0,8 - 0,9 \cdot 0,95 - 0,8 \cdot 0,95 + 0,9 \cdot 0,8 \cdot 0,95 = 2,65 - 2,335 + 0,684 = 0,999.

Відповідь. R = 0,999.

3.4. Формула повної ймовірності

В практичній діяльності, як правило, зустрічаються події, що відбуваються не самі по собі в чистому вигляді, найчастіше вони відбуваються спільно з іншими подіями.

Нехай задано подію A та набір попарно несумісних подій $H_1, H_2, ..., H_n$, кожна з яких може призвести до настання події A в рамках деякого експеримента. Таких, що $P(H_i) > 0$ для всіх i і $\bigcup_{i=1}^n H_i = \Omega$. Його називають повною групою подій або розбиттям простору Ω .

Події $H_1, H_2, ..., H_n$ що утворюють повну групу подій, часто називають гіпотезами. При зручному виборі гіпотез для довільної події A можуть порівняно

просто обчислюватися ймовірності $P(A/H_i)$ (умовна ймовірність події відбутися при виконанні «гіпотези» H_i) і $P(H_i)$ (ймовірність виконання «гіпотези» H_i). Як, використовуючи ці дані, обчислити ймовірність відбування події A?

Теорема 3.1. Нехай $H_1, H_2, ..., H_n$ — повна група подій. Тоді ймовірність будь якої події A може бути обчислена за формулою:

$$P(A) = \sum_{i=1}^{n} P(H_i) \cdot P(A/H_i). \tag{3.8}$$

Доведення. Розглянемо покрокове доведення

Початкове розбиття

Почнемо з розбиття простору Ω на взаємовиключні події H_i :

$$\Omega = H_1 \cup H_2 \cup ... \cup H_n$$

Об'єднання події

Подію A можна представити як об'єднання її перетинів з подіями H_i :

$$A = (A \cap H_1) \cup (A \cap H_2) \cup ... \cup (A \cap H_n)$$

Це справедливо, оскільки H_i утворюють повну систему подій.

Взаємовиключність

Оскільки події H_i взаємовиключні, то події $A \cap H_i$ також взаємовиключні. Тому ймовірність об'єднання подій $A \cap H_i$ дорівнює сумі їх ймовірностей:

$$P(A) = P((A \cap H_1) \cup (A \cap H_2) \cup ... \cup (A \cap H_n)) = \sum_{i=1}^{n} P(A \cap H_i).$$

Умовна ймовірність

За визначенням умовної ймовірності

$$P(A/H_i) = \frac{P(A \cap H_i)}{P(H_i)},$$

тобто

$$P(A \cap H_i) = P(A/H_i) \cdot P(H_i)$$

Підстановка

Підставляємо $P(A \cap H_i)$ у суму:

$$P(A) = \sum_{i=1}^{n} P(A \cap H_i) = \sum_{i=1}^{n} P(A/H_i) \cdot P(H_i).$$

Що й треба було довести.

Формулу (3.8) називають формулою повної ймовірності.

Приклад 3.11. Маємо три урни. В першій урні ϵ 6 білих і 2 чорні кульки, у другій — 3 білі і 4 чорні, в третій 4 білі і 3 чорні. Вибирає навмання будь-яку урну і виймаємо одну кульку. Знайти ймовірність того, що ця кулька біла.

Розв'язання. Розглянемо подію $A = \{$ взято кульку білого кольору $\}$.

Сформулюємо гіпотези, що можуть призвести до настання події A в рамках проведеного ексерименту:

 $H_1 = \{$ вибір першої урни $\}; H_2 = \{$ вибір другої урни $\}; H_3 = \{$ вибір третьої урни $\}.$ Гіпотези рівноможливі (з умов задачі), маємо:

$$P(H_1) = P(H_2) = P(H_3) = \frac{1}{3}$$

Умовні ймовірності події A для цих гіпотез відповідно такі:

$$P(A/H_1) = \frac{6}{8} = \frac{3}{4}$$
; $P(A/H_2) = \frac{3}{7}$; $P(A/H_3) = \frac{4}{7}$.

Таким чином:

$$P(A) = \frac{1}{3} \cdot \frac{3}{4} + \frac{1}{3} \cdot \frac{3}{7} + \frac{1}{3} \cdot \frac{4}{7} = \frac{49}{84} \approx 0,583.$$

Відповідь. $P(A) \approx 0.583$.

3.5. Формула Баєса

Розглянемо подію A та сформульовані гіпотези H_i (i=1,2,...,n), які можуть призвести до настання даної події в рамках експерименту.

Формула Баєса використовується для обчислення умовної ймовірності настання гіпотези H_i за умови, що настання події A. Вона дозволяє знайти $P(H_i/A)$, знаючи $P(A/H_i)$.

Формула Баєса дуже корисна в різних областях, таких як статистика, машинне навчання та медицина.

Теорема 3.2. Для умовної ймовірності
$$P(A/H_i)$$
 справедлива рівність:
$$P(H_i/A) = \frac{P(A/H_i) \cdot P(H_i)}{P(A)}, \tag{3.9}$$

дe:

 $P(A/H_i)$ — ймовірність події A за умови, що відбулася подія H_i .

 $P(H_i/A)$ — ймовірність події H_i за умови, що відбулася подія A.

P(A) — апріорна ймовірність події A.

 $P(H_i)$ — ймовірність події H_i .

Доведення.

Визначення умовної ймовірності

За визначенням умовної ймовірності маємо:

$$P(A/H_i) = \frac{P(A \cap H_i)}{P(H_i)}$$

i

$$P(H_i/A) = \frac{P(A \cap H_i)}{P(A)}.$$

Перетин подій

Ймовірність перетину подій можна записати як:

$$P(A \cap H_i) = P(A/H_i) \cdot P(H_i)$$

Підставлення

Підставляючи $P(A \cap H_i)$ у формулу для $P(H_i/A)$:

$$P(H_i/A) = \frac{P(A/H_i) \cdot P(H_i)}{P(A)}.$$

Формула (3.9) називається формулою Баєса.

Формула Баєса є потужним інструментом для оновлення ймовірностей на основі нових даних. Вона широко використовується у багатьох галузях, таких як медицина, економіка, машинне навчання та багато інших.

Приклад 3.12. Три заводи виробляють одну й ту ж продукцію. При цьому 1-й завод виробля ϵ 25%, 2-й завод — 35% і 3-й завод — 40% всі ϵ ї виробленої продукції. Брак складає 5% від продукції 1-го заводу, 3% від продукції 2-го і 4% від продукції 3-го заводу. Вся продукція змішується і надходить до продажу. Знайти а) ймовірність придбати бракований виріб; б) умовну ймовірність того, що придбаний крам виготовлений 1-м заводом, якщо цей виріб бракований.

Розв'язання. Виріб вибираєтья наудачу з усієї виробленої продукції.

Розглянемо три гипотези:

 $H_i = {\text{виріб виготовлено на } i\text{-му заводі}}, i = 1,2,3.$

Ймовірності цих гіпотез дано

$$P(H_1) = 0.25; P(H_2) = 0.35; P(H_1) = 0.4.$$

Нехай $A = \{$ виріб виявився бракованим $\}$.

Дано також умовні ймовірності

$$P(A/H_1) = 0.05; P(A/H_2) = 0.03; P(A/H_1) = 0.04.$$

а) За формулою повної ймовірності, отримуємо, що ймовірність події A дорівнює

$$P(A) = P(H_1) \cdot P(A/H_1) + P(H_2) \cdot P(A/H_2) + P(H_3) \cdot P(A/H_3) =$$

= 0,25 \cdot 0,05 + 0,35 \cdot 0,03 + 0,4 \cdot 0,04 = 0,039.

б) За формулою Байеса маємо:

$$P(H_1/A) = \frac{0,25 \cdot 0,05}{0,25 \cdot 0,05 + 0,35 \cdot 0,03 + 0,4 \cdot 0,04} \approx 0,32.$$

Відповідь. a) P(A) = 0.039; б) $P(H_1/A) \approx 0.32$

Приклад 3.13. Два стрільці підкидають монетку і вибирають, хто з них стріляє по мішені (однією кулею). Перший стрілець влучає в мішень з ймовірністю 1, другий стрілець — з ймовірністю 0,00001. а) Яка ймовірність кулі влучити в мішень? б) Якщо куля влучила, то які ймовірності того що стріляв 1-й або 2-й стрілець?

Розв'язання. Сформулюємо дві гіпотези про експеримент:

 $H_1 = \{\text{стріля} \in 1$ -й стрілок $\}$; $H_2 = \{\text{стріля} \in 2$ -й стрілок $\}$.

Апріорні (a'priorі — «до досліду») ймовірності цих гіпотез однакові:

$$P(H_1) = P(H_2) = \frac{1}{2}.$$

Розглянемо подію $A = \{$ куля потрапила в мішень $\}$. Відомо, що

$$P(A/H_1) = 1$$
; $P(A/H_2) = 0.00001$.

а) Тому ймовірність кулі влучити в мішень

$$P(A) = P(H_1) \cdot P(A/H_1) + P(H_2) \cdot P(A/H_2) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0,00001 \approx 0.5.$$

б) Припустимо, що подія A відбулася. Яка тепер апостеріорна (a'posteriori — «після досліду») ймовірність кожної з гіпотез H_i ?

Зрозуміло, що перша з цих гіпотез набагато ймовірніша за другу (а саме, в 100000 раз). Дійсно,

$$P(H_1/A) = \frac{\frac{1}{2} \cdot 1}{\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0,00001} \approx 1; \ P(H_2/A) = \frac{\frac{1}{2} \cdot 0,00001}{\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0,00001} \approx 0.$$

Відповідь. a) $P(A) \approx 0.5$; б) $P(H_1/A) \approx 1$; $P(H_2/A) \approx 0$.

Приклад 3.14. Для пошуку космічного апарату, що приземлився, призначено 10 гелікоптерів, кожен з яких веде пошук в одному з двох районів, де апарат може знаходитися з ймовірностями 0,8 і 0,2. Як слід розподілити гелікоптери по районах пошуків, щоб ймовірність виявлення апарату була найбільшою, якщо кожен гелікоптер незалежно від інших знаходить апарат в районі пошуку з ймовірністю 0,3? Знайти ймовірність виявлення апарату при оптимальному розподілі гелікоптерів.

Розв'язання. Позначимо подію

$$A = \{$$
виявлення апарату $\}$

і гіпотези

 $H_1 = \{$ апарат знаходиться в першому районі $\}$; $H_2 = \{$ апарат знаходиться в другому районі $\}$.

За умовою задачі

$$P(H_1) = 0.8$$
; $P(H_2) = 0.2$.

Нехай в перший район направлено m гелікоптерів, а в другий 10-m. Подія A за умови виконання гіпотези H_1 полягає в виявленні апарату принаймні одним з m гелікоптерів, тому для обчислення умовної ймовірності $P(A/H_1)$ застосуємо формулу (3.2):

$$P(A/H_1) = 1 - (0.7)^m$$

оскільки ймовірності знаходження апарату кожним з m гелікоптерів однакові і рівні p=0,3, отже, q=0,7.

Аналогічно $P(A/H_2) = 1 - (0,7)^{10-m}$, і за формулою повної ймовірності (3.8)

$$P(A) = 0.8 \cdot (1 - (0.7)^m) + 0.2 \cdot (1 - (0.7)^{10-m}) = 1 - 0.8 \cdot (0.7)^m - 0.2 \cdot (0.7)^{10-m}.$$

Далі потрібно знайти таке значення m, при якому ймовірність P(A) буде максимальною. Прирівняємо похідну від P(A) по m нулю:

$$\frac{dP(A)}{dm} = -0.8 \cdot (0.7)^m \cdot ln(0.7) + 0.2 \cdot (0.7)^{10-m} \cdot ln(0.7) = 0,$$

звідки

$$(0,7)^{2\cdot m-10}=0,25.$$

або після логарифмування

$$2 \cdot m - 10 = \frac{\ln(0.25)}{\ln(0.7)} \approx 4,$$

звідки m = 7.

Отже, оптимальний розподіл гелікоптерів по районах пошуку: 7 – в перший район і 3 – в другий. При цьому найбільша ймовірність виявлення апарату

$$P(A) = 1 - 0.8 \cdot (0.7)^7 - 0.2 \cdot (0.7)^3 = 0.866.$$

Відповідь. 7 – в перший район і 3 – в другий; P(A) = 0.866.

Приклад 3.15. Проводиться випробування надійності приладу, який складається з двох вузлів. Вузли працюють або виходять з ладу незалежно один від одного. Надійності (ймовірності безвідмовної роботи за час t) першого і другого вузлів відомі і дорівнюють відповідно 0,9 і 0,95. Впродовж часу t прилад відмовив. Знайти ймовірність того, що до цього призвів: **a**) вихід з ладу 1-го вузла; **b**) вихід з ладу 2-го вузла; **c**) вихід з ладу обох вузлів.

Розв'язання. Позначимо подію $A = \{$ за час t прилад відмовив $\}$, а гіпотези H_1, H_2, H_3 — події, зазначені в умовах а)-в) задачі. Взагалі повна група гіпотез включає також гіпотезу $H_4 = \{$ обидва вузли не вийшли з ладу $\}$, хоча сумісна поява подій A і H_4 є подією неможливою.

Ймовірності гіпотез обчислюються за формулою (2.8):

$$P(H_1) = 0.1 \cdot 0.95 = 0.095; P(H_2) = 0.9 \cdot 0.05 = 0.045;$$

 $P(H_3) = 0.1 \cdot 0.05 = 0.005; P(H_4) = 0.9 \cdot 0.95 = 0.855.$

Оскільки подія A відбулась, то мала місце одна з гіпотез H_1 , H_2 , H_3 , причому $A = H_1 + H_2 + H_3$ (прилад відмовляє в разі появи будь-якої з цих гіпотез), тому

$$P(A) = P(H_1) + P(H_2) + P(H_3) = 0.145.$$

Далі за формулами Баєса (3.9) знаходимо апостеріорні ймовірності гіпотез $P(H_i/A)$, (i=1,2,3) враховуючи, що всі умовні ймовірності $P(H_i/A)=1$, оскільки відмова приладу при появі будь-якої з гіпотез H_1, H_2, H_3 є подія достовірна:

$$P(H_1/A) = \frac{0.095}{0.145} = 0.655; P(H_2/A) = \frac{0.045}{0.145} = 0.31;$$

 $P(H_3/A) = \frac{0.005}{0.145} = 0.035.$

Ймовірності гіпотез після того, як відбулася подія A, істотно зросли і ці апостеріорні ймовірності вже утворюють повну групу подій.

Відповідь. a) $P(H_1/A) = 0.655$; б) $P(H_2/A) = 0.31$; в) $P(H_3/A) = 0.035$.

Приклад 3.16. В продукції підприємства по виробництву електричних ламп число бракованих ламп серед будь-яких ста рівноможливе від 0 до 2. Знайти ймовірність того, що серед ста ламп не буде жодної бракованої, якщо з вибраних навмання десяти всі виявились придатними.

Розв'язання. Позначимо через А подію:

 $A = \{\text{серед 10-ти ламп всі придатні}\},$

а через H_1 , H_2 , H_3 – гіпотези: серед ста ламп є відповідно 0,1,2 браковані.

За умовою задачі гіпотези рівноможливі:

$$P(H_1) = P(H_2) = P(H_3) = \frac{1}{3}.$$

Обчислимо умовні ймовірності події А для кожної з гіпотез:

$$P(A/H_1) = \frac{C_{100}^{10}}{C_{100}^{10}} = 1; P(A/H_2) = \frac{C_{99}^{10}}{C_{100}^{10}} = 0,9; P(A/H_3) = \frac{C_{98}^{10}}{C_{100}^{10}} = 0,81.$$

За формулою повної ймовірності (3.8)

$$P(A) = \frac{1}{3} \cdot (1 + 0.9 + 0.81) = 0.9,$$

а апостеріорна ймовірність гіпотези H_1 за формулою Байєса

$$P(H_1/A) = \frac{1}{3 \cdot 0.9} = 0.37.$$

Відповідь. $P(H_1/A) = 0.37$.

Приклад 3.17. Два стрільці незалежно один від одного виконали по одному пострілу у мішень. Ймовірність влучення у мішень першим стрільцем дорівнює 0,7; другим — 0,6. Після стрільби у мішені виявлено одну пробоїну. Знайти ймовірність того, що поцілив у мішень другий стрілець.

Розв'язання. Подія $A = \{ y \text{ мішені виявлено одну пробоїну} \}.$

Спочатку розглянемо можливі результаті стрільби кожним стрільцем:

 $A_1 = \{\text{перший стрілець поцілив у мішень}\}; \overline{A_1} = \{\text{перший стрілець не поцілив у мішень}\};$

 $A_2 = \{$ другий стрілець поцілив у мішень $\}; \overline{A_2} = \{$ другий стрілець не поцілив у мішень $\}.$

До проведення стрільби можливі такі гіпотези:

 $H_1 = {\text{обидва стрільці не поцілили у мішень}};$

 $H_2 = \{$ перший стрілець поцілив, другий не поцілив у мішень $\}$;

 $H_3 = \{$ перший стрілець не поцілив, другий – поцілив у мішень $\}$;

 $H_4 = {\text{обидва стрільці поцілили у мішень}}.$

Ймовірність цих подій:

$$P(H_1) = P(\overline{A_1} \cdot \overline{A_2}) = P(\overline{A_1}) \cdot P(\overline{A_2}) = 0.3 \cdot 0.7 = 0.12,$$

$$P(H_2) = P(A_1 \cdot \overline{A_2}) = P(A_1) \cdot P(\overline{A_2}) = 0.7 \cdot 0.4 = 0.28,$$

 $P(H_3) = P(\overline{A_1} \cdot A_2) = P(\overline{A_1}) \cdot P(A_2) = 0.3 \cdot 0.6 = 0.18,$
 $P(H_4) = P(A_1 \cdot A_2) = P(A_1) \cdot P(A_2) = 0.7 \cdot 0.6 = 0.42.$

Умовні ймовірності події A після проведених пострілів для розглянутих гіпотез такі: $P(A/H_1) = 0$; $P(A/H_2) = 1$; $P(A/H_3) = 1$; $P(A/H_4) = 0$.

Після проведених пострілів гіпотези H_1 і H_4 неможливі, а ймовірність гіпотези H_3 буде обчислюватися за формулою:

$$P(H_3/A) = \frac{P(H_3) \cdot P(A/H_3)}{\sum_{i=1}^4 P(H_i) \cdot P(A/H_i)} = \frac{0.81 \cdot 1}{0.23 \cdot 1 + 0.18 \cdot 1} = \frac{9}{23}.$$

Відповідь. Ймовірність того, що пробоїна належить другому стрільцю дорівнює $\frac{9}{23}$.

Приклад 3.18. Один шах, якому страшенно наскучив придворний астролог з його брехливими віщуваннями, вирішив стратити його. Але, як людина не жорстока, він вирішив дати астрологу останній шанс. Астролог повинен розподілити по урнам 4 кулі: 2 білі та 2 чорні. Кат вибере навмання одну з урн і з неї витягне кулю. Якщо куля буде чорна, то астрологу відрубають голову, якщо ні — він залишиться живим. Як потрібно розподілити кулі в урнах, щоб забезпечити собі максимальну ймовірність залишитись живим.

Розв'язання. Вважатимемо, що астролог використає максимум 4 урни. Сформулюємо наступну подію: $A = \{\text{Астролог лишиться живим}\} = \{\text{Кат витягне білу кульку}\}.$

Настання цієї події можливо при наступних гіпотезах:

 $H_1 = \{ \text{Всього 4 урни: в кожній урні по 1 кульці} \};$

 $H_2 = \{ \text{Всього 3 урни: 1 урна} - 2 чорні кульки, 2 урни – по 1 білій кульці <math>\};$

 $H_3 = \{ \text{Всього 3 урни: 1 урна} - 2 білі кульки, 2 урни – по 1 чорній кульці <math>\};$

 $H_4 = \{ \text{Всього 3 урни: 1 урна} - 1 біла кулька, 2 урна - 1 біла та 1 чорна кульки, 3 урна - 1 чорна кулька<math>\};$

 $H_5 = \{ \text{Всього 2 урни: 1 урна} - 2 білі кульки, 2 урна - 2 чорні кульки <math>\};$

 $H_6 = \{\text{Всього 2 урни: 1 урна} - 1 біла та 1 чорна кульки, 2 урна - 1 біла та 1 чорна кульки<math>\};$

 $H_7 = \{ \text{Всього 2 урни: 1 урна} - 1 біла кулька, 2 урна - 1 біла та 2 чорні кульки <math>\};$

 $H_8 = \{ \text{Всього 2 урни: 1 урна} - 1 чорна кулька, 2 урна - 1 чорна та 2 білі кульки <math>\};$

 $H_9 = \{ \text{Всього 1 урна: 2 білі та 2 чорні кульки} \}.$

Обчислимо $P(A/H_i)$ (i=1,2,...9) за формулою повної ймовірності (3.8).

$$P(A/H_1) = \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 1 + \frac{1}{4} \cdot 0 + \frac{1}{4} \cdot 0 = \frac{1}{2};$$

$$P(A/H_2) = \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 1 = \frac{2}{3};$$

$$P(A/H_3) = \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 0 = \frac{1}{3};$$

$$P(A/H_4) = \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot \frac{1}{2} + \frac{1}{3} \cdot 0 = \frac{1}{2};$$

$$P(A/H_5) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0 = \frac{1}{2};$$

$$P(A/H_6) = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2};$$

$$P(A/H_7) = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \frac{1}{3} = \frac{2}{3};$$

$$P(A/H_8) = \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot \frac{2}{3} = \frac{1}{3};$$

$$P(A/H_9) = 1 \cdot \frac{1}{2} = \frac{1}{2}.$$

Відповідь. Астрологу краще розмістити кульки в 3 урнах: 1 урна – 2 чорні кульки, 2 урни – по 1 білій кульці або в 2 урнах: 1 урна – 1 біла кулька, 2 урна – 1 біла та 2 чорні кульки.

3.6. Наївний Баєсівський класифікатор

Наївний Баєсівський класифікатор (Naive Bayes classifier) — це проста й ефективна ймовірнісна модель для класифікаційних завдань, заснована на застосуванні формули Баєса з припущенням про незалежність ознак. Хоча припущення про незалежність ознак ϵ досить сильним і рідко вірним у реальних задачах, наївний Баєсівський класифікатор часто показує хороші результати на практиці.

Основи Наївного Баєсівського класифікатора

Наївний Баєсівський класифікатор використовує формулу (3.10) для обчислення ймовірності належності зразка до певного класу. Для заданого зразка з ознаками $X=(x_1,x_2,...,x_n)$ і класу C_k , класифікатор обчислює апостеріорну ймовірність $P(C_k/X)$ за формулою (3.10).

$$P(C_k/X) = \frac{P(X/C_k) \cdot P(C_k)}{P(X)},$$
(3.10)

 $P(\mathcal{C}_k/X)$ — апостеріорна ймовірність класу \mathcal{C}_k за умов спостережуваних ознак

 $P(X/C_k)$ — ймовірність спостережуваних ознак X за умов класу C_k .

 $P(C_k)$ — апріорна ймовірність класу C_k .

P(X) — ймовірність спостережуваних ознак X (нормалізуючий фактор).

Наївне припущення незалежності

Наївний Баєсівський класифікатор робить наївне припущення, що всі ознаки незалежні одна від одної за умов класу. Тобто:

$$P(X/C_k) = P((x_1, x_2, ..., x_n)/C_k) = \prod_{i=1}^n P(x_i/C_k).$$

Тоді формула для апостеріорної ймовірності спрощується до:

$$P(C_k/X) = P(C_k) \cdot \prod_{i=1}^n P(x_i/C_k), \tag{3.11}$$

оскільки P(X) = 1, бо $X = \Omega$.

Виведення рішення

Для класифікації зразка Х потрібно обчислити апостеріорні ймовірності для всіх можливих класів і вибрати клас з найбільшою ймовірністю: $\hat{\mathcal{C}} = \operatorname*{arg\ max}_{\mathcal{C}_k} P(\mathcal{C}_k/X).$

$$\hat{C} = \underset{C_k}{arg \, max} P(C_k/X). \tag{3.12}$$

Приклад застосування

Припустимо, що у нас ϵ набір даних про електронні листи, і ми хочемо класифікувати «спам» або «не спам». Нехай $x_1, x_2, ..., x_n$ представляють присутність або відсутність певних ключових слів у листі.

$$P(\text{спам}) = \frac{\text{кількість спам} - \text{листів}}{\text{загальна кількість листів}}$$

$$P(\text{He cпам}) = \frac{\text{кількість нe cпам} - \text{листів}}{\text{загальна кількість листів}}.$$

$$\frac{\text{Обчислення умовних ймовірностей для кожного ключового слова}}{\text{кількість спам} - \text{листів 3 ключовим словом } x_i}$$

$$P(x_i = 1/\text{спам}) = \frac{\text{кількість спам} - \text{листів 3 ключовим словом } x_i}{\text{кількість нe cпам} - \text{листів 3 ключовим словом } x_i}$$

$$P(x_i = 1/\text{нe cпам}) = \frac{\text{кількість нe cпам} - \text{листів 3 ключовим словом } x_i}{\text{кількість нe cпам} - \text{листів 3 ключовим словом } x_i}$$

$$\frac{\text{Обчислення апостеріорної ймовірності для нового листа}}{\text{кількість нe cпам}} P(\text{спам}/X) = P(\text{спам}) \cdot \prod_{i=1}^{n} P(x_i/\text{спам}),$$

$$P(\text{нe cпам}/X) = P(\text{нe cпам}) \cdot \prod_{i=1}^{n} P(x_i/\text{нe cпам}).$$

$$\frac{\text{Класифікація листа}}{\text{с = } \frac{\text{arg}}{\text{спам, he cпам}}} P(C_k/X).$$

Наївний Баєсівський класифікатор є потужним і ефективним інструментом для багатьох завдань класифікації, таких як фільтрація спаму, класифікація текстів і розпізнавання образів. Хоча припущення про незалежність ознак рідко виконується на практиці, цей класифікатор часто показує хороші результати завдяки своїй простоті і швидкості.