BİL 362 Mikroişlemciler: 8086 Çevirici Diline Giriş

Ahmet Burak Can

abc@hacettepe.edu.tr

Assembly Dilinin Temel Bileşenleri

- Sabitler ve ifadeler ("constants and expressions")
- Açıklamalar ("comments")
- Ayrılmış sözcükler ("reserved words")
- Belirteçler ("identifiers")
- Deyimler ("statements")
- Anımsatıcılar ("mnemonics") ve işlenenler ("operands")
- Derleyici komutları ("directives")

Çalıştırılabilir Programlar

- 8086 mimarisinde iki tür çalıştırılabilir program vardır:
 - COM programı: Kod, veri ve yığıtı içeren tek bir bölütten oluşur.
 - Küçük yardımcı program ("utility program") veya yerleşik program ("resident program") olarak kullanıma uygundur.
 - .EXE programı: Kod, veri ve yığıt için ayrı bölütlerden oluşur.
 - Daha ciddi ve büyük kapsamlı programlar için kullanıma uygundur.

- 2 -

Tamsayı Sabitler

[{+|-}] rakamlar [taban]

- · İkili, onlu, onaltılı veya sekizli rakamlar
- Taban karakterleri:
 - h onaltılı ("hexadecimal")
 - d onlu ("decimal")
 - b ikili ("binary")
 - o sekizli ("octal")
 - r kodlanmış gerçel ("encoded real")
- Örnekler:
 - 30d, 6Ah, 42, 1101b
 - Harf ile başlayan onaltılının önüne "0" konur: 0A5h

Tamsayı İfadeler

• İşleçler ve öncelikleri:

Operator	Name	Precedence Level
()	parentheses	1
+,-	unary plus, minus	2
*,/	multiply, divide	3
MOD	modulus	3
+,-	add, subtract	4

Örnekler:

Expression	Value
16 / 5	3
-(3 + 4) * (6 - 1)	-35
-3 + 4 * 6 - 1	20
25 mod 3	1

- 5 -

Karakter ve Dizgi Sabitleri

- Karakterler tek veya çift tırnak içine alınır.
 - 'A', "x"
 - ASCII karakter = 1 bayt
- Dizgiler tek veya çift tırnak içine alınır.
 - "ABC"
 - 'xyz'
 - Her karakter 1 bayt yer tutar.

Gerçel Sabitler

[{+|-}] tamsayı.[tamsayı] [üs]

- Örnekler:
 - **–** 2.
 - +3.0
 - -44.2E + 05
 - 26.E5
- Kodlanmış gerçel ("encoded real")
 - IEEE kayan-noktalı biçiminde, onaltılı tabanda ifade edilmiş gerçel sayıdır.
 - Örnek:

3 F 8 0 0 0 0 (kodlanmış gerçel)

⇒ 3F800000r

- 6 -

Açıklamalar ("Comments")

- Kodun anlaşılmasını kolaylaştırmak için açıklamalar program satırları içine eklenmelidir.
 - Tek-satır açıklamalar
 - Noktalı virgül (";") ile başlar.
 - Örnek:

ADD AX, BX ; AX = AX + BX

- Çok-satır açıklamalar
 - COMMENT bildirimini takip eden, programcının seçtiği bir karakterle devam eder ve yine programcının seçtiği aynı karakterle sona erer.
 - Örnek:

COMMENT!

Bu satır açıklamadır.

Bu satır da açıklamadır!

Ayrılmış Sözcükler ("Reserved Words")

- Komut anımsatıcılar (instruction mnemonics"): İşlemci tarafından işletilir.
 - Örnek: MOV, ADD, ...
- Derleyici talimatları ("directives): Derleyiciye bilgi sağlar.
 - Örnek: END, SEGMENT, ...
- Özellikler ("attributes"): İşlenenler için büyüklük ve kullanımı tanımlar.
 - Örnek: BYTE, WORD, ...
- İşleçler ("operators"): İfadelerin içinde kullanılır.
 - Örnek: FAR, SIZE, ...
- Öntanımlı semboller ("predefined symbols"): Programa bilgi döndürür.
 - Örnek: @data, @model, ...

- 9 -

Deyimler ("Statements")

- Komut animsaticilar ("instruction mnemonics")
 - Derleyici makine koduna çevirir ve işletir.
 - Örnek: MOV, ADD, ...
- Talimatlar ("directives")
 - Derleyiciye belirli bir işlemin yapılmasını bildirir; işletilmez.
 - Örnek: Veri tanımlama

Örnek:

	Belirteç	İşleç	İşlenen
Bildirim:	COUNT	DB	1
Komut:	L30:	MOV	AX, 0

Belirteçler ("Identifiers")

- Referans etmek istediğiniz program öğeleri için kullanılır.
 - İsim ("name")

Örnek:

COUNTER DB 0

Etiket ("label")

Örnek:

KLE: ADD BL, 25

- 1-247 karakter (rakamlar dahil), büyük/küçük harfe duyarlı değil
- İçerebileceği karakterler:
 - Alfabetik karakterler : A...Z, a...z
 - Rakamlar (ilk karakter olamaz): 0...9
 - Özel karakterler: Soru işareti ("?"), alt çizgi ("_"), dolar işareti ("\$"), salyangoz işareti ("@"), nokta işareti ("." ilk karakter olamaz)

- 10 -

Komutlar

- · Assembler tarafından makine koduna derlenir.
- İşlemci tarafından koşturulur.
- [label:] anımsatıcı işlenen(ler) [; açıklama]
 - Etiket ("label") -- seçimli
 - Anımsatıcı ("mnemonic") -- zorunlu
 - İşlenen ("operand") -- komuta bağlı olarak gerekli
 - Acıklama ("comment") -- secimli

Komut Anımsatıcılar ve İşlenenler

- Komut anımsatıcılar
 - Örnek: MOV, ADD, SUB, MUL, INC, DEC
- İşlenenler
 - Sabit ("constant")
 - Sabit ifade ("constant expression")
 - Yazmaç ("register")
 - Bellek (veri etiketi "data label")

- 13 -

Komut İşlenenleri

Örnek:

wordx DW 0 ; wordx'i sözcük olarak tanımla

...

mov cx, wordx ; wordx'in içeriğini cx yazmacına kopyala

mov cx, 25 ; cx yazmacına 25 yaz

mov cx, bx ; bx yazmacının içeriğini cx yazmacına kopyala

mov cx, [bx] ; bx ile adreslenen bellek içeriğini cx yazmacına kopyala

Komut Biçimleri: Örnekler

• İşlenen yoksa:

- stc ; Elde ("Carry") bayrağını 1 yap

• Bir işlenen varsa:

inc eax ; yazmaçinc myByte ; bellek

• İki işlenen varsa:

add ebx, ecx ; yazmaç, yazmaçsub myByte, 25 ; bellek, sabit

add eax, 36 * 25 ; yazmaç, sabit ifade

- 14 -

Derleyici Talimatları ("Directives") - 1

- Kaynak programın derlenmesi ve listelenmesi için deyimlerdir; sadece derleme sırasında iş görürler ve makine koduna çevrilmezler.
- Assembler tarafından tanınan ve yanıt verilen komutlardır.
 - Intel komut setinin bir parçası değildir.
 - Kodu ve veri alanlarını tanımlamak, bellek modelini seçmek, yordamları tanımlamak, vb. için kullanılır.
 - Büyük/küçük harfe <u>duyarlı değildir.</u>
- Farklı derleyiciler ("Assemblers") farklı bildirimlere sahiptir.

Derleyici Talimatları ("Directives") - 2

- En yaygın kullanılan derleyici talimatları:
 - SEGMENT: Bölüt tanımlamak için kullanılır.
 - PROC: Yordam tanımlamak için kullanılır.
 - END: Kodun sonunu belirtir.
 - ENDP yordam sonunu, ENDS ise bölüt sonunu belirtir.
 - ASSUME: Derleyiciye hangi bölütün hangi amaçla kullanılacağını belirtmek için kullanılır.
 - .EXE programlarında veri bölütünün adresi DS yazmacına atanmalıdır.

- 17 -

Basitleştirilmiş Bölüt Talimatları - 1

- Kod, yığıt ve veri bölütlerinin tanımlarını kolaylaştırmak için eklenmiştir.
- Öncelikle .MODEL talimatı ile kullanılacak bellek modeli seçilir.
 - Small (Kod: Tek, 64k; Veri: Tek, 64k)
 - Medium (Kod: Sınır yok; Veri: Tek, 64k)
 - Compact (Kod: Tek, 64k; Veri: Sınır yok)
 - Large (Kod: Sınır yok; Veri: Sınır yok)
 - Huge (Kod: Sınır yok; Veri: Sınır yok)
 - Huge içerisinde 64k'dan büyük değişkenler tanımlanabilir.

Derleyici Talimatları: Örnek

STACK SEGMENT STACK ENDS DATASEG SEGMENT DATASEG ENDS CODESEG SEGMENT PROC ASSUME SS:STACK, DS:DATASEG, CS:CODESEG MOV AX, DATASEG ; Veri bölütü DATASEG MOV DS, AX ; Komutlar **ENDP** ; Yordam sonu MAIN ; Kod bölütü sonu CODESEG ENDS **END** MAIN : Program sonu

- 18 -

Basitleştirilmiş Bölüt Talimatları - 2

• Model belirlendikten sonra bölütler tanımlanır.

STACK [büyüklük] : YığıtDATA : VeriCODE : Kod

- Bölüt sonlarını belirtmeye gerek yoktur.
- ASSUME talimatı yazmaya gerek yoktur, kendisi eklenir.

Basitleştirilmiş Bölüt Talimatları: Örnek

.MODEL SM/	ALL		
.STACK 64			; Yığıt bölütünü tanımla
.DATA			; Veri bölütünü tanımla
FLDD DW	215		
FLDE DW	125		
FLDF DW	?		
,			; Kod bölütünü tanımla
MAIN	PROC	FAR	, Kod boldtulla tallillia
IVIZIIV	MOV	AX, @data	; Veri bölütünün adresini
	MOV	DS, AX	; DS yazmacına koy
	IVIOV	DS, AX	; DS yazmacina koy
	MOV	AX, FLDD	; AX yazmacına 0215 değerini koy
	ADD	AX, FLDE	; AX'e 0125'i ekle
	MOV	FLDF, AX	; Sonucu FLDF'de sakla
	MOV	AX, 4C00H	; Komutların sonu
	INT	21H	, Komutaim sona
MAIN	ENDP	2111	: Yordam sonu
IVIZIIV	FND	MAIN	,
	END	IVIAIIN	; Program sonu

- 21 -

Ön-tanımlı Veri Tipleri (Gerçel Sayı)

- REAL4
 - 4-bayt IEEE kısa gerçel sayı
- REAL8
 - 8-bayt IEEE uzun gerçel sayı
- REAL10
 - 10-bayt IEEE genişletilmiş gerçel sayı

Ön-tanımlı Veri Tipleri (Tamsayı)

- BYTE, SBYTE
 - 8-bit işaretsiz ve işaretli tamsayı
- WORD, SWORD
 - 16-bit işaretsiz ve işaretli tamsayı
- DWORD, SDWORD
 - 32-bit işaretsiz ve işaretli tamsayı
- QWORD
 - 64-bit tamsayı
- TBYTE
 - 80-bit tamsayı

- 22 -

Veri Tanımlama İfadesi

- Veri tanımlama ifadesi, değişken için bellekte yer ayrılmasını sağlar.
- Sözdizim:

```
[isim] talimat ilklendirici [, ilklendirici] . . .
```

value1 BYTE 10

Veri Tanımlama: BYTE ve SBYTE

8-bit tamsayılar (veya çift karakterler) için yer açar

- 25 -

Dizgi Tanımlama - 1

- Bir dizgi, karakterlerin dizisinden oluşur.
 - Genellikle "null" ile biter ("null-terminated")
- Örnek:

```
str1 DB "Adinizi girin",0
str2 DB 'Hata: Program durduruluyor',0
str3 DB 'A','E','I','O','U'
greeting DB "BIL-220 icin yazilmis "
DB "deneme programina hosgeldiniz.",0
```

Bayt Dizisi Tanımlama

```
list1 DB 10,20,30,40

list2 DB 10,20,30,40

DB 50,60,70,80

DB 81,82,83,84

list3 DB ?,32,41h,00100010b

list4 DB OAh,20h,'A',22h
```

Dizgi Tanımlama - 2

• Tek bir dizgiyi birden çok satırda tanımlamak için, her satırın sonuna virgül (",") koyulur.

```
menu DB "Hesap Kontrol",0dh,0ah,0dh,0ah,

"1. Yeni hesap yarat",0dh,0ah,

"2. Mevcut hesabi ac",0dh,0ah,

"3. Hesaba kredi ver",0dh,0ah,

"4. Hesabi borclandir",0dh,0ah,

"5. Cikis",0dh,0ah,

"Secim> ",0
```

- 26 -

Dizgi Tanımlama - 3

- Satır sonu karakter dizisi:
 - 0Dh = carriage return
 - 0Ah = line feed

```
str1 DB "Adinizi girin: ",0Dh,0Ah

DB "Adresinizi girin: ",0

newLine DB 0Dh,0Ah,0
```

- 29 -

Veri Tanımlama: WORD ve SWORD

• 16-bit tamsayılar (veya çift karakterler) için yer açar.

```
word1 DW 65535 ; en büyük isaretsiz deger
word2 DW -32768 ; en kucuk isaretli deger
word3 DW ? ; ilklendirilmemis, isaretsiz
word4 DW "AB" ; cift karakter
myList DW 1,2,3,4,5 ; sozcuk dizisi
array DW 5 DUP(?) ; ilklendirilmemis dizi
```

DUP İşleci

- Bir dizi ("array") veya dizgi ("string") için yer açar.
- Sözdizimi:

```
sayaç DUP (değişken)
```

- sayaç ve değişken sabit veya sabit ifade olmalıdır.

- 30 -

Veri Tanımlama: DWORD ve SDWORD

- 32-bit tamsayılar için yer açar.
 - Aşağıda verilen tanımlar MASM standardındadır.

```
val1 DWORD 12345678h ; isaretsiz
val2 SDWORD -2147483648 ; isaretli
val3 DWORD 20 DUP(?) ; isaretsiz dizi
val4 SDWORD -3,-2,-1,0,1 ; isaretli dizi
```

Veri Tanımlama: QWORD, TBYTE, Gerçel Sayı

- Dört-sözcük ("quadword"), on-bayt ("tenbyte") ve gerçel sayılar için yer açar .
 - Aşağıda verilen tanımlar MASM standardındadır.

```
quad1 QWORD 1234567812345678h
val1 TBYTE 100000000123456789Ah
rVal1 REAL4 -2.1
rVal2 REAL8 3.2E-260
rVal3 REAL10 4.6E+4096
ShortArray REAL4 20 DUP(0.0)
```

EQU Talimatı

- Bir sembolü tamsayı veya metin ifade olarak tanımlar.
 - Tekrar tanımlanamaz.

```
Count EQU 100
PI EQU <3.1416>
pressKey EQU <"Devam etmek için bir tusa basin...",0>
.data
prompt BYTE pressKey
```

- 34 -

- 33 -