Mathematics and numerics for data assimilation and state estimation – Lecture 16

Summer semester 2020

Overview

- Extended Kalman filtering
- 2 Ensemble Kalman filtering
- 3 Approximation errors for Gaussian-based nonlinear filter methods
- 4 Efficient implementation of EnKF and extensions to nonlinear observations

Summary lecture 15 and plan for today

Described two approximate filtering methods for the nonlinear problem

$$V_{j+1} = \Psi(V_j) + \xi_j, \qquad \qquad \xi_j \stackrel{iid}{\sim} N(0, \Sigma)$$

$$Y_{j+1} = HV_{j+1} + \eta_{j+1}, \qquad \qquad \eta_j \stackrel{iid}{\sim} N(0, \Gamma)$$

i.e., 3DVAR and Extended Kalman filtering.

Plan for today:

- More on Extended Kalman filtering
- lacktriangle Approximation error and study of why the filter distribution typically is non-Gaussian when Ψ is nonlinear
- The Ensemble Kalman filtering method.
- EnKF applied to nonlinear observations.

Key variational princple for extenstions of Kalman filtering

We recall that for Kalman filtering, we have the posterior

$$\pi(v_{j+1}|y_{1:j+1}) \propto \exp\Big(-\frac{1}{2}|y_{j+1} - Hv_{j+1}|_{\Gamma}^2 - \frac{1}{2}|v_{j+1} - \hat{m}_{j+1}|_{\hat{C}_{j+1}}^2\Big),$$

which implies that the filtering iteration $m_j\mapsto m_{j+1}$ can be described by the variational principle

$$\begin{split} \hat{m}_{j+1} &= \Psi(m_j) \\ J(u) &:= \frac{1}{2} |y_{j+1} - Hu|_{\Gamma}^2 + \frac{1}{2} |u - \hat{m}_{j+1}|_{\hat{C}_{j+1}}^2 \\ m_{j+1} &= \arg\min_{u \in \mathbb{R}^d} J(u). \end{split} \tag{1}$$

3DVAR

Fix the prediction covariance $\hat{\mathcal{C}}_{j+1} := \hat{\mathcal{C}}$ for all $j \geq 0$, and apply variational principle

$$\hat{m}_{j+1} = \Psi(m_j)
J(u) := \frac{1}{2} |y_{j+1} - Hu|_{\Gamma}^2 + \frac{1}{2} |u - \hat{m}_{j+1}|_{\hat{C}}^2
m_{j+1} = \arg\min_{u \in \mathbb{R}^d} J(u).$$
(2)

... which by the derivations for Kalman filtering yield

$$\hat{m}_{j+1} = \Psi(m_j)
K = \hat{C}H^T(H\hat{C}H^T + \Gamma)^{-1}
m_{j+1} = (I - KH)\hat{m}_{j+1} + Ky_{j+1}.$$
(3)

Overview

- Extended Kalman filtering
- Ensemble Kalman filtering
- 3 Approximation errors for Gaussian-based nonlinear filter methods
- 4 Efficient implementation of EnKF and extensions to nonlinear observations

Filtering setting

Initial condition $V_0 \sim N(m_0, C_0)$ and for j = 0, 1, ...

$$V_{j+1} = \Psi(V_j) + \xi_j,$$

$$Y_{j+1} = HV_{j+1} + \eta_{j+1},$$
(4)

and Gaussian noise assumptions as before.

Extend Kalman filtering (ExKF): At time j and given state (m_j, C_j) , linearize dynamics around m_j :

$$\Psi_L(v; m_j) := \Psi(m_j) + D\Psi(m_j)(v - m_j).$$

And apply Kalman filtering one prediction-update step to the linearized dynamics

$$V_{j+1} = \Psi(m_j) + D\Psi(m_j)(V_j - m_j) + \xi_j,$$

Extended Kalman filtering algorithm

Prediction step

$$\hat{m}_{j+1} = \Psi(m_j)$$

$$\hat{C}_{j+1} = D\Psi(m_j)C_jD\Psi(m_j)^T + \Sigma$$

Analysis step

$$K_{j+1} = \hat{C}_{j+1}H^{T}(H\hat{C}_{j+1}H^{T} + \Gamma)^{-1}$$

$$m_{j+1} = (I - K_{j+1}H)\hat{m}_{j+1} + K_{j+1}y_{j+1}$$

$$C_{j+1} = (I - K_{j+1}H)\hat{C}_{j+1}$$

 $\begin{tabular}{ll} \textbf{Motiation for prediction step:} & We have the following approximations: \\ \end{tabular}$

$$m_j pprox \mathbb{E}\left[\left.V_j\middle| Y_{1:j} = y_{1:j}
ight], \quad C_j pprox \mathbb{E}\left[\left.(V_j - m_j)(V_j - m_j)^T\middle| Y_{1:j} = y_{1:j}
ight]$$

Note further that the ExKF moments m_j and C_j are **not random** (given $y_{1:j}$).

Motivation for the ExKF algorihtm

Using that $\Psi(m_j)$ and $D\Psi(m_j)$ are deterministic (given $y_{1:j}$), we obtain the approximation

$$\hat{m}_{j+1} = \mathbb{E} \left[\Psi(m_j) + D\Psi(m_j)(V_j - m_j) + \xi_j | Y_{1:j} = y_{1:j} \right]$$

$$= \Psi(m_j) + D\Psi(m_j) \Big(\mathbb{E} \left[V_j | Y_{1:j} = y_{1:j} \right] - m_j \Big)$$

$$\approx \Psi(m_j)$$

and (similar derivation as for Kalman filtering with $A=D\Psi(m_j)$),

$$\begin{split} \hat{C}_{j+1} &= \mathsf{Cov}[\Psi(m_j) + D\Psi(m_j)(V_j - m_j) + \xi_j | Y_{1:j} = y_{1:j}] \\ &= \mathsf{Cov}[D\Psi(m_j)(V_j - m_j) + \xi_j | Y_{1:j} = y_{1:j}] \\ &= D\Psi(m_j) \mathbb{E}\left[(V_j - m_j)(V_j - m_j)^T | Y_{1:j} = y_{1:j} \right] D\Psi(m_j)^T + \Sigma \\ &\approx D\Psi(m_j) C_j D\Psi(m_j)^T + \Sigma. \end{split}$$

Remarks on errors of ExKF and 3DVAR

It generally does hold that

$$\mathbb{E}\left[\Psi(V) + \xi\right] = \Psi(\mathbb{E}\left[V\right]) \implies \hat{m}_j = \Psi(m_j) \stackrel{\textit{in general}}{\neq} \mathbb{E}\left[\Psi(V_j) \middle| Y_{1:j} = y_{1:j}\right].$$

■ Nor does it generally hold that $V_j|Y_{1:j}=y_{1:j}$ is Gaussian when Ψ is nonlinear, and the analysis step, being derived under the assumption of Gaussian posterior

$$\pi(v_j|y_{1:j}) \propto \exp\Big(-\frac{1}{2}|y_{j+1} - Hv_{j+1}|_{\Gamma}^2 - \frac{1}{2}|v_{j+1} - \hat{m}_{j+1}|_{\hat{C}_{j+1}}^2\Big).$$

which, may only approximately hold, and the consecutive variational principle

$$m_{j+1} = \arg\min_{u \in \mathbb{R}^d} \frac{1}{2} |y_{j+1} - Hu|_{\Gamma}^2 + \frac{1}{2} |u - \hat{m}_{j+1}|_{\hat{C}_{j+1}}^2$$

is thus also only an approximation.

Overview

- 1 Extended Kalman filtering
- 2 Ensemble Kalman filtering
- 3 Approximation errors for Gaussian-based nonlinear filter methods
- 4 Efficient implementation of EnKF and extensions to nonlinear observations

Ensemble Kalman filtering

We again consider the problem with $V_0 \sim N(m_0, C_0)$ and for $j=0,1,\ldots$

$$V_{j+1} = \Psi(V_j) + \xi_j,$$

$$Y_{j+1} = HV_{j+1} + \eta_{j+1},$$
(5)

and Gaussian noise assumptions as before.

EnKF initial condition is ensemble of iid "particles" $v_0^{(i)} \stackrel{\textit{iid}}{\sim} \mathbb{P}_{V_0}$ for i = 1, 2, ..., M and whose empirical measure approximates the true initial distribution:

$$\mathbb{P}_{V_0}(dv) pprox rac{1}{M} \sum_{i=1}^M \delta_{v_0^{(i)}}(dv)$$

EnKF Prediction at time j = 1

To approximate the prediction \mathbb{P}_{V_1} , all particles are simulated one step ahead:

$$\hat{v}_1^{(i)} = \Psi(v_0^{(i)}) + \xi_1^{(i)}, \quad i = 1, 2, \dots, M$$

where $\{\xi_i^{(i)}\}$ are iid $N(0,\Sigma)$ -distributed and

$$\mathbb{P}_{V_1}(dv) pprox rac{1}{M} \sum_{i=1}^M \delta_{\hat{v}_1^{(i)}}(dv).$$

Sample prediction mean and covariance

$$\hat{m}_1 := rac{1}{M} \sum_{i=1}^M \hat{v}_1^{(i)}, \qquad \hat{\mathcal{C}}_1 := rac{1}{M-1} \sum_{i=1}^M (\hat{v}_1^{(i)} - \hat{m}_1) (\hat{v}_1^{(i)} - \hat{m}_1)^T.$$

EnKF analysis at time i = 1

■ The Kalman gain is computed using the \hat{C}_1 :

$$K_1 = \hat{C}_1 H^T (H \hat{C}_1 H^T + \Gamma)^{-1}$$

 \blacksquare and the observation y_1 is assimilated into each particle by

$$\begin{cases} y_1^{(i)} = y_1 + \eta_1^{(i)} & \text{perturbed observations} \\ v_1^{(i)} = (I - K_1 H) \hat{v}_1^{(i)} + K_1 y_1^{(i)} \end{cases} \text{ for } i = 1, 2, \dots, M,$$
 with $\eta_j^{(i)} \stackrel{\textit{iid}}{\sim} \textit{N}(0, \Gamma).$

■ As before, the empirical measure of $\{v_1^{(i)}\}$ approximates $V_1|Y_1=y_1$:

$$\mathbb{P}_{V_1|Y_1=y_1}(dv) \approx \frac{1}{M} \sum_{i=1}^M \delta_{v_1^{(i)}}(dv)$$

Iterated EnKF formulas

Given any $y_1, y_2, ...$ and $\{v_i^{(i)}\}_{i=1}^M$, the EnKF iterations are

Prediction step

$$\hat{v}_{j+1}^{(i)} = \Psi(v_j^{(i)}) + \xi_j^{(i)}, \quad i = 1, 2, \dots, M$$

$$\hat{\mathcal{C}}_{j+1} = rac{1}{M-1} \sum_{i=1}^{M} (\hat{v}_{j+1}^{(i)} - \hat{m}_{j+1}) (\hat{v}_{j+1}^{(i)} - \hat{m}_{j+1})^{T}, \qquad \hat{m}_{j+1} = rac{1}{M} \sum_{i=1}^{M} \hat{v}_{j+1}^{(i)}$$

 $=:E_M[\hat{\mathbf{v}}_{i+1}^{(\cdot)}]$

Analysis step

$$K_{i+1} = \hat{C}_{i+1}H^{T}(H\hat{C}_{i+1}H^{T} + \Gamma)^{-1}$$

 $=: \operatorname{Cov}_{M}[\hat{v}_{i+1}^{(\cdot)}]$

$$K_{j+1} = C_{j+1}H'(HC_{j+1}H'+1)^{-1}$$

$$\begin{cases} y_{j+1}^{(i)} = y_{j+1} + \eta_{j+1}^{(i)} \\ v_{i+1}^{(i)} = (I - K_{j+1}H)\hat{v}_{i+1}^{(i)} + K_{j+1}y_{i+1}^{(i)} \end{cases}$$
 for $i = 1, 2, \dots, M$,

Comments

■ In settings when \hat{C}_j is non-singular, the analysis step can be viewed as the variational principle

$$v_j^{(i)} := \arg\min_{u \in \mathbb{R}^d} \frac{1}{2} |y_j^{(i)} - Hu|_{\Gamma}^2 + \frac{1}{2} |u - \hat{m}_j|_{\hat{C}_j}^2$$

(see [SST Chp 9] for an extension of this argument when \hat{C}_j is singular).

• A random perturbation $\eta_j^{(i)}$ is added to the observation in the analysis step for each particle for the purpose of consistency: in the setting with linear dynamics $\Psi(v) = Av$,

$$\lim_{M \to \infty} \mathbb{E}\left[\hat{C}_j^{EnKF}\right] \begin{cases} <\hat{C}_j^{Kalman} & \text{without perturbed obs} \\ =\hat{C}_j^{Kalman} & \text{with perturbed obs} \end{cases}$$

[Ubung 8].

■ It can be shown that $v_{j+1}^{(i)} \in \text{Span}(\{\hat{v}_{j+1}^{(i)}\}_{i=1}^{M})$: motivate

Comments

- The EnKF empirical measure is of course an approximation of but the method has obvious advantages over other in terms of robustness and storage.
- Storage: EnKF needs to store $\mathcal{O}(M \times d)$ values $(v_j^{(1)}, \dots, v_j^{(M)} \in \mathbb{R}^d)$. The Kalman filter needs to store $\mathcal{O}(d \times d)$ (the covariance $C_j \in \mathbb{R}^{d \times d}$).

If the true dimension of problem is much smaller than d, then EnKF is often successful in tracking the truth at a storage constraint than $d \times d$.

- EnKF is more directly applicable to nonlinear problems than ExKF, and better at handling nonlinearities than both ExKF and 3DVAR.
- As for other nonlinear filtering methods, \mathbb{P}_{V_0} need not be Gaussian for EnKF.

Animation of EnKF

Animation of EnKF

Example implementation of EnKF

Dynamics:

$$V_{j+1} = 2.5\sin(V_j) + \xi_j V_0 \sim N(0, 1)$$
 (6)

where $\xi_j \sim N(0, 0.09)$ **Observations:**

$$Y_j = V_j + \eta_j, \quad j = 1, 2, \dots,$$

with $\eta_j \sim N(0,1)$.

EnKF:

- 1. Sample iid $v_0^{(i)} \sim N(0,1)$ for i = 1, 2, ...,
- 2. Simulate $\hat{v}_1^{(i)} = 2.5 \sin(v_0^{(i)}) + \xi_0^{(i)}$ for i = 1, 2, ..., M.

EnKF continued

EnKF:

3. Compute

$$\hat{C}_1 = \mathrm{Cov}_M[\hat{v}_1^{(\cdot)}]$$

and

$$K_1 = \hat{C}_1 H^T (H \hat{C}_1 H^T + \Gamma)^{-1}$$

and

$$\begin{cases} y_1^{(i)} = y_1 + \eta_1^{(i)} \\ v_1^{(i)} = (I - K_1 H) \hat{v}_1^{(i)} + K_1 y_1^{(i)} \end{cases} \quad \text{for } i = 1, 2, \dots, M,$$

5. Simulate

$$\hat{v}_2^{(i)} = 2.5 \sin(v_1^{(i)}) + \xi_1^{(i)}$$
 for $i = 1, 2, ..., M$,

and so forth.

Matlab code:

```
Psi = Q(v) 2.5*sin(v):
v = m0 + sqrt(C0)*randn(M,1); %initial condition
m(1) = mean(v); C(1) = cov(v);
for j=1:J
   % EnKF filtering
   vHat
               = Psi(v) + sqrt(Sigma)*randn(M,1);
   cHat = cov(vHat):
   K
       = (cHat*H')/(H*cHat*H'+Gamma);
   yPerturbed = y(j) + sqrt(Gamma)*randn(M,1);
               = (1-K*H)*vHat+K*yPerturbed;
   v
   % for plotting puropses
   m(j+1) = mean(v); C(j+1) = cov(v);
end
```

Numerical results EnKF for M = 10

An observation sequence $y_{1:J} = v_{1:J}^{\dagger} + \eta_{1:J}$ is generated from synthetic data for J = 1000.

$$rac{1}{1001} \sum_{k=0}^{1000} |v_k^{\dagger} - m_k|^2 pprox 0.4950$$
 and

Numerical results EnKF for M = 100

$$\frac{1}{1001}\sum_{k=0}^{1000}|v_k^{\dagger}-m_k|^2pprox 0.3902$$
 and

Numerical results EnKF for M=1000 (very similar to M=100)

$$\frac{1}{1001} \sum_{k=0}^{1000} |v_k^{\dagger} - m_k|^2 \approx 0.3799$$

Why does not the error converge towards 0?

Comparison of time-averaged errors

EnKF M = (10, 100, 1000):

$$\frac{1}{1001} \sum_{k=0}^{1000} |v_k^{\dagger} - m_k|^2 \approx (0.4950, 0.3902, 0.3799),$$

ExKF

$$\frac{1}{1001} \sum_{k=0}^{1000} |v_k^{\dagger} - m_k|^2 = .9969$$

3DVAR (best try, with $\hat{C} = 2$)

$$\frac{1}{1001} \sum_{k=0}^{1000} |v_k^{\dagger} - m_k|^2 = 0.6023.$$

Comparison of covariances

EnKF with ensemble size M = 10

Variation in ExKF covariance relates to linearization around different points m_j in prediction step: $\hat{C}_{j+1} = D\Psi(m_j)C_jD\Psi(m_j)^T + \Sigma$

Variation in EnKF covariance relates to variations in the ensemble flow: $\hat{C}_{j+1} = \text{Cov}_M[\hat{v}_i^{(\cdot)}].$

Overview

- Extended Kalman filtering
- 2 Ensemble Kalman filtering
- 3 Approximation errors for Gaussian-based nonlinear filter methods
- 4 Efficient implementation of EnKF and extensions to nonlinear observations

Exact vs approximate filtering methods

For the nonlinear filtering problem

$$V_{j+1} = \Psi(V_j) + \xi_j,$$
 $\xi_j \stackrel{iid}{\sim} N(0, \Sigma)$
 $Y_{j+1} = HV_{j+1} + \eta_{j+1},$ $\eta_j \stackrel{iid}{\sim} N(0, \Gamma),$

with same independence assumptions as before, we derived in Lecture 14 that if we know the pdf of $V_j|Y_{1:j}=y_{1:j}$ then

Prediction step

The prediction rv $V_{j+1}|Y_{1:j}=y_{1:j}$ equals rv $\Psi(V_j)+\xi_j|Y_{1:j}=y_{1:j}$.

3DVAR: Approximated by $N(\Psi(m_j), \hat{C})$.

ExKF: Approximated by $N(\Psi(m_j), \hat{C}_j)$, linearized covariance.

EnKF: Approximated by empirical distribution of $\{\Psi(v_j^{(i)}) + \xi_j^{(i)}\}_{i=1}^M$.

Will be a good approximation asymptotically (provided $\{v_j^{(i)}\}_{i=1}^M$ is a good approximation of analysis distribution at time j).

Analysis step:

$$\pi(v_{j+1}|y_{1:j+1}) \propto \exp\left(-\frac{1}{2}|y_{j+1} - Hv_{j+1}|_{\Gamma}^{2}\right)\pi(v_{j+1}|y_{1:j})$$
$$\propto \pi_{N(0,\Gamma)}(y_{j+1} - Hv_{j+1})\pi(v_{j+1}|y_{1:j})$$

3DVAR and ExKF: The analysis step for these methods is, after linearization, a carbon copy of Kalman filtering. Using that $V_{j+1}|Y_{1:j}=y_{1:j}\sim N(\Psi(m_j),\hat{C}_j)$ for these methods, we have that

$$\pi(v_{j+1}|y_{1:j+1}) \propto \pi_{N(0,\Gamma)}(y_{j+1} - Hv_{j+1})\pi_{N(\Psi(m_i),\hat{C}_{j+1})}(v_{j+1})$$

(with
$$\hat{C}_j = \hat{C}$$
 for 3DVAR).

Conclusion: Approximation errors enter in prediction step for these two methods.

EnKF: Is more subtle to study as the particles correlate/mix in the analysis step. We will look at the simplified setting when $M = \infty$.

Mean-field limit

$$\Pr \begin{cases} \hat{v}_{j+1}^{(i)} &= \Psi(v_{j}^{(i)}) + \xi_{j}^{(i)} \\ \hat{C}_{j+1} &= \text{Cov}_{M}[\hat{v}_{j+1}^{(\cdot)}] \end{cases} \quad \text{AnI} \begin{cases} K_{j+1} &= \hat{C}_{j+1}H^{T}(H\hat{C}_{j+1}H^{T} + \Gamma)^{-1} \\ y_{j+1}^{(i)} &= y_{j+1} + \eta_{j+1}^{(i)} \\ v_{j+1}^{(i)} &= (I - K_{j+1}H)\hat{v}_{j+1}^{(i)} + K_{j+1}y_{j+1}^{(i)} \end{cases}$$

 $M=\infty$ yields iid mean-field EnKF (MFEnKF) particles with dynamics

$$\Pr \begin{cases} \hat{v}_{j+1}^{\mathrm{MF},(i)} &= \Psi(v_{j}^{\mathrm{MF},(i)}) + \xi_{j}^{(i)} \\ \hat{C}_{j+1}^{\mathrm{MF}} &= \mathrm{Cov}[\hat{v}_{j+1}^{\mathrm{MF}}] \end{cases} \quad \mathsf{Anl} \begin{cases} K_{j+1}^{\mathrm{MF}} &= \hat{C}_{j+1}^{\mathrm{MF}} H^{T} (H\hat{C}_{j+1}^{\mathrm{MF}} H^{T} + \Gamma)^{-1} \\ y_{j+1}^{(i)} &= y_{j+1} + \eta_{j+1}^{(i)} \\ v_{j+1}^{\mathrm{MF},(i)} &= (I - K_{j+1}^{\mathrm{MF}} H) \hat{v}_{j+1}^{\mathrm{MF},(i)} + K_{j+1}^{\mathrm{MF}} y_{j+1}^{(i)} \end{cases}$$

Note: $v_{i+1}^{MF,(i)}$ are all iid.

Bayes filter vs mean-field EnKF

Assuming that for some $j \geq 0$,

$$\pi_{V_j^{\text{MF}},(i)} = \pi_{V_j|Y_{1:j}=y_{1:j}}$$

then, since

$$v_{j+1}^{\mathrm{MF}} = \Psi(v_{j}^{\mathrm{MF}}) + \xi_{j} \stackrel{D}{=} \Psi(V_{j}) + \xi_{j} | (Y_{1:j} = y_{1:j}) = \hat{V}_{j+1} | Y_{1:j} = y_{1:j}$$
 the next-time prediction pdfs of BF and MFEnKF will agree:

$$\pi_{\hat{V}_{i+1}^{\mathrm{MF},(i)}} = \pi_{V_{j+1}|Y_{1:j}=y_{1:j}}$$

However, by
$$v_{j+1}^{\mathrm{MF},(i)} = \hat{v}_{j+1}^{\mathrm{MF},(i)} + \underbrace{\mathcal{K}_{j+1}^{\mathrm{MF}}\Big(y_{j+1}^{(i)} - H\hat{v}_{j+1}^{\mathrm{MF},(i)}\Big)}_{Y}$$

we obtain

we obtain
$$\pi_{v_{j+1}^{\mathrm{MF},(i)}}(v) = \int \rho_{Y|v_{j+1}^{\mathrm{MF},(i)}}(v-x)\pi_{v_{j}^{\mathrm{MF},(i)}}(x)\,dx = \pi_{Y|v_{j+1}^{\mathrm{MF},(i)}} * \pi_{v_{j}^{\mathrm{MF},(i)}}(v).$$

with

with
$$Y|v_{j+1}^{\mathrm{MF},(i)} = K_{j+1}^{\mathrm{MF}} \Big(y_{j+1}^{(i)} - H\hat{v}_{j+1}^{\mathrm{MF},(i)}\Big)|v_{j}^{\mathrm{MF},(i)} \sim K_{j+1}^{\mathrm{MF}} N(y_{j+1} - H\hat{v}_{j+1}^{\mathrm{MF},(i)}, \Gamma).$$

Bayes filter vs mean-field measure

BF:
$$\pi(v_{j+1}|y_{1:j+1}) \propto \pi_{N(y_{j+1},\Gamma)}(v_{j+1})\pi(v_{j+1}|y_{1:j})$$

$$\mathsf{MFEnKF:} \quad \pi_{\pi_{V_{j+1}^{\mathrm{MF}}}}(v_{j+1}) \ \propto \pi_{K_{j+1}^{\mathrm{MF}} N(y_{j+1} - H\hat{v}_{j+1}^{\mathrm{MF}}, \Gamma)} * \pi_{V_{j}^{\mathrm{MF}}}(v_{j+1}).$$

Conclusion: EnKF has two types of approximation errors:

- 1. Prediction error due to a finite ensemble, and
- 2. analysis error due to the particle-wise Gaussian variational principle.

Convergence of EnKF

Notation: Let

$$\pi_j^{\mathrm{EnKF,M}}(dv) := rac{1}{M} \sum_{i=1}^M \delta_{v_j^{(i)}}(dv),$$

and let π_j^{MF} denote the distribution for a mean-field particle at time j:

$$v_j^{ ext{MF},(i)} \sim \pi_j^{ ext{MF}} \quad ext{and} \quad \pi_j^{ ext{MF}}[f] = \mathbb{E}^{\pi_j^{ ext{MF}}}[f].$$

For a QoI $f: \mathbb{R}^d \to \mathbb{R}$, let

$$\pi_j^{\mathrm{EnKF,M}}[f] := rac{1}{M} \sum_{i=1}^M f(v_j^{(i)}) = \mathbb{E}^{\pi_j^{\mathrm{EnKF,M}}}[f]$$

and

$$\pi_j^{\mathrm{MF}}[f] := \mathbb{E}^{\pi_j^{\mathrm{MF}}}[f].$$

We describe two kinds of large-ensemble limit types of convergence:

- \blacksquare convergence of EnKF to the Kalman filter when Ψ is linear, and
- lacksquare $\pi_j^{
 m EnKF,M}[f]
 ightarrow \pi_j^{
 m MF}[f]$ when Ψ is nonlinear.

Theorem 1 (Mandel et al. "On the convergence of the ensemble Kalman filter" (2011))

Consider the linear-Gaussian filter problem

$$V_{j+1} = AV_j + \xi_j, \quad \xi_j \sim N(0, \Sigma), \ Y_{j+1} = HV_{j+1} + \eta_{j+1}, \quad \eta_{j+1} \sim N(0, \Gamma),$$

and assume that $V_0 \sim N(m_0, C_0)$. Then, for any observation sequence $y_1, y_2, ...$, it holds that

$$\pi_j^{ ext{MF}} = \mathbb{P}_{V_j | Y_{1:j} = \mathbf{y}_{1:j}} = \mathcal{N}(\textit{m}_j, \textit{C}_j)$$

with (m_j, C_j) determined through the Kalman filtering iterative formulas, and as $M \to \infty$,

$$E_M[v_i^{(\cdot)}] \stackrel{L^2(\Omega)}{\to} m_i, \quad \operatorname{Cov}_M[v_i^{(\cdot)}] \stackrel{L^2(\Omega)}{\to} C_i.$$

Application: EnKF may be a sound choice in linear-Gaussian settings when $d\gg 1$, because then Kalman filtering becomes infeasible due to storage constraints.

Theorem 2 (Le Gland et al., (2009)) Consider the dynamics and observations,

$$V_{j+1} = \Psi(V_j) + \xi_j, \quad \xi_j \sim \mathcal{N}(0, \Sigma),$$

$$V_{j+1}=HV_{j+1}+\eta_{j+1},\quad \eta_{j+1}\sim N(0,\Gamma),$$
 and assume that $V_0\in L^p(\Omega)$ for any order $p\geq 1$, and that for the drift mapping W and a Ool $f:\mathbb{P}^d\to\mathbb{P}$

mapping Ψ and a QoI $f: \mathbb{R}^d \to \mathbb{R}$. $\max(|f(x)-f(y)|, |\Psi(x)-\Psi(y)|) \le C|x-y|(1+|x|^s+|u|^s), \text{ for some } s \ge 0.$

Then, for any fixed observation sequence y_1, y_2, \ldots , it holds for any $p \geq 1$ that

$$\|\pi_j^{\mathsf{EnKF},\mathsf{M}}[f] - \pi_j^{\mathrm{MF}}[f]\|_{L^p(\Omega)} \leq \frac{C(p,j,y_{1:j})}{\sqrt{M}},$$

(which also can be written
$$\left(\left[\left| \frac{M}{p} f(v_i^{(i)}) \right| \right]^{1/p} \right)^{1/p}$$
 C(p, i.e., i.

 $\left(\mathbb{E}\left[\left|\sum_{i=1}^{M} \frac{f(v_j^{(i)})}{M} - \int_{\mathbb{R}^d} f(x) \, \pi_j^{\mathrm{MF}}(dx)\right|^p\right]\right)^{1/p} \leq \frac{C(p,j,y_{1:j})}{\sqrt{M}}\right).$

Overview

- 1 Extended Kalman filtering
- Ensemble Kalman filtering
- 3 Approximation errors for Gaussian-based nonlinear filter methods
- 4 Efficient implementation of EnKF and extensions to nonlinear observations

Computing sample moments in the ambient space \mathbb{R}^k

A crucial step in the EnKF iteration is the computation of the prediction sample covariance:

$$\hat{C}_j = \operatorname{Cov}_M[v_j^{(\cdot)}].$$

and its usage in the Kalman gain:

$$K_i = \hat{C}_i H^T (H \hat{C}_i H^T + \Gamma)^{-1}.$$

Note that rather than the full matrix \hat{C}_j , what one needs for computing the gain is

$$H\hat{C}_{j}H^{T} = H\left(\frac{1}{M-1}\sum_{i=1}^{M}(\hat{v}_{j}^{(i)} - \hat{m}_{j})(\hat{v}_{j}^{(i)} - \hat{m}_{j})^{T}\right)H^{T}$$

$$= \frac{1}{M-1}\sum_{i=1}^{M}H(\hat{v}_{j}^{(i)} - \hat{m}_{j})\Big(H(\hat{v}_{j}^{(i)} - \hat{m}_{j})\Big)^{T}$$

$$= \operatorname{Cov}_{M}[Hv_{j}^{(\cdot)}] \in \mathbb{R}^{k \times k}.$$

and

$$\hat{C}_j H^T = \operatorname{Cov}_M[\hat{v}_i^{(\cdot)}, H\hat{v}_i^{(\cdot)}] \in \mathbb{R}^{d \times k}.$$

Extension to nonlinear filtering settings

The resulting EnKF formulas

$$\begin{split} \text{Prediction} & \left\{ \hat{v}_{j+1}^{(i)} \right. = \Psi(v_{j}^{(i)}) + \xi_{j}^{(i)} \\ \text{Analysis} & \left\{ \begin{aligned} & K_{j+1} &= \text{Cov}_{M}[\hat{v}_{j+1}^{(\cdot)}, H\hat{v}_{j+1}^{(\cdot)}] (\text{Cov}_{M}[H\hat{v}_{j+1}^{(\cdot)}] + \Gamma)^{-1} \\ & y_{j+1}^{(i)} &= y_{j+1} + \eta_{j+1}^{(i)} \\ & v_{j+1}^{(i)} &= \hat{v}_{j+1}^{(i)} + K_{j+1} \Big(y_{j+1}^{(i)} - H\hat{v}_{j+1}^{(i)} \Big) \end{aligned} \right. \end{split}$$

may also be viewed as a motivation for the following extension to nonlinear observation mappings¹ $h: \mathbb{R}^d \to \mathbb{R}^k$:

$$\begin{aligned} & \text{Prediction} \left\{ \hat{v}_{j+1}^{(i)} \right. = \Psi(v_{j}^{(i)}) + \xi_{j}^{(i)} \\ & \text{Analysis} \quad \begin{cases} K_{j+1} &= \text{Cov}_{M}[\hat{v}_{j+1}^{(\cdot)}, h(\hat{v}_{j+1}^{(\cdot)})](\text{Cov}_{M}[h(\hat{v}_{j+1}^{(\cdot)})] + \Gamma)^{-1} \\ y_{j+1}^{(i)} &= y_{j+1} + \eta_{j+1}^{(i)} \\ v_{j+1}^{(i)} &= \hat{v}_{j+1}^{(i)} + K_{j+1} \Big(y_{j+1}^{(i)} - h(\hat{v}_{j+1}^{(i)}) \Big). \end{cases} \end{aligned}$$

¹Evensen, "Data Assimilation, The Ensemble Kalman Filter", (2009).

Rough idea of alternative approach to nonlinear observations in EnKF

Prediction
$$\begin{cases} \hat{v}_{j+1}^{(i)} &= \Psi(v_{j}^{(i)}) + \xi_{j}^{(i)} \\ \hat{m}_{j+1} &= E_{M}[\hat{v}_{j+1}^{(\cdot)}] \\ \hat{C}_{j+1} &= \operatorname{Cov}_{M}[\hat{v}_{j+1}^{(\cdot)}] \end{cases}$$

And solve the following minimization problem by iterated solver for each particle $i=1,2,\ldots,M^2$:

Analysis
$$\begin{cases} y_{j+1}^{(i)} &= y_{j+1} + \eta_{j+1}^{(i)} \\ v_{j+1}^{(i)} &= \arg\min_{u \in \mathbb{R}^d} \frac{1}{2} |y_{j+1}^{(i)} - h(u)|_{\Gamma}^2 + \frac{1}{2} |u - \hat{m}_{j+1}|_{\hat{C}_{j+1}}^2 \end{cases}$$

 $^{^2}$ Oliver and Gu, "An Iterative Ensemble Kalman Filter for Multiphase Fluid Flow Data Assimilation" (2007)

Summary

 We have introduced three nonlinear filtering methods based on Gaussian approximation in the update step (3DVAR, ExKF and EnKF).

- lacktriangle The methods do not generally converge to the Bayes filter when Ψ is nonlinear, but should not for that reason alone be excluded from practical use.
- EnKF offers the most robust prediction-step approach, it converges in weak sense to the mean-field EnKF when *h* is linear, and it may be extended to settings with nonlinear *h*.

Best filtering method measured in terms of accuracy and efficiency

KF = Kalman filter; PF = particle filter; EKF = extended KF; UKF = unscented KF; EnKF = ensemble KF

Figure from talk by Mattias Katzfuss on "Extended ensemble Kalman filters for high-dimensional hierarchical state-space models".