Question number	Scheme	Marks
5 (a)	$u_2 + u_4 = ar + ar^3 = 212.5$	M1
	$u_3 + u_4 = ar^2 + ar^3 = 62.5$	1711
	$\frac{\left(1+r^2\right)}{\left(r+r^2\right)} = \frac{17}{5}$	M1
	$\left(r+r^2\right)^{-1}$ 5	1,11
	$12r^2 + 17r - 5 = 0$	M1
	(4r-1)(3r+5) = 0	dM1
	$r = \frac{1}{4}$ $r = -\frac{5}{3}$	
	$r = \frac{1}{4}$ $r = -\frac{1}{3}$	A1
		(5)
(b)	$r = \frac{1}{4} \Rightarrow a = 800$ So $\frac{a}{1-r} = \frac{800}{3} = \frac{3200}{3}$	3.61 4.1
	$1-r$ $\frac{3}{2}$ 3	M1 A1
	4	(2)
Total 7 marks		

Part	Mark	Guidance		
(a)	M1			
. ,		For either $ar + ar^3 = 212.5$ or $ar^2 + ar^3 = 62.5$ correct For attempting to eliminate a or ar either by division or substitution:		
	M1	e.g. $\frac{ar(1+r^2)}{ar(r+r^2)} = \frac{212.5}{62.5} \Rightarrow \frac{(1+r^2)}{(r+r^2)} = \frac{212.5}{62.5} = \left(\frac{17}{5}\right)$		
	M - 41	An attempt involves some factorisation to eliminate <i>a</i> or <i>ar</i>		
	Metno	d 1 – finds a 3TQ For forming a 2TO in a only using their expressions		
	M1	For forming a 3TQ in r only using their expressions. $(12r^2 + 17r - 5 = 0)$ oe		
	Accept for example $150r^2 + 212.5r - 62.5 = 0$			
	dM1 For an attempt to solve their 3TQ to give two values of r See General Guidance for the definition of an attempt. For example: $(4r-1)(3r+5)=0 \Rightarrow r=,$			
		This mark is dependent on the FIRST M mark being awarded		
	Metho	od 2 – finds a cubic equation		
	M1	For forming a cubic with a common factor of r in each term. e.g. $12r^3 + 17r^2 - 5r = 0$		
	dM1	For factorising their cubic equation to achieve $r(12r^2 + 17r - 5) = 0$ and for an attempt to solve their 3TQ to give two values of r Ignore $r = 0$ if also given. See General Guidance for the definition of an attempt. For example: $(4r-1)(3r+5) = 0 \Rightarrow r =,$ This mark is dependent on the FIRST M mark being awarded		
	A1	For the correct values; $r = \frac{1}{4}$ and $r = -\frac{5}{3}$ (reject $r = 0$ if seen earlier)		
(b)	M1	Uses their $r = \frac{1}{4}$ [where $ r < 1$] to find the value of a (800) with the correct formula for the sum of a geometric series to infinity. Condone an incorrect value of a even if they have used $r = \frac{1}{4}$ [The formula is given on page 2 of this booklet]. $S_{\infty} = \frac{a}{1-r} = \frac{'800'}{1-'\frac{1}{4}'} = \dots$ For the correct value, $S_{\infty} = \frac{3200}{3}$ or $1066\frac{2}{3}$		
		Do not accept for example 1066.67 unless the stated value is 1066.6		