DIGITAL SYSTEM

7th PRACTICUM: FLIP - FLOP BASIC

Writed by:

Name : Ainayah Syifa Hendri

NIM : L200183203

Major : Information Engineering

INFORMATION TECHNOLOGY FACULTY OF COMMUNICATION AND INFORMATICS MUHAMMADIYAH UNIVERSITY OF SURAKARTA 2019

PRACTICUM ACTIVITIES

1st Experiment. NOR Latch

1. Create and simulate NOR latch as shown! And then click the SW-SPDT switch to operate Latch.

2. Based on your simulation, fill in the points in the following table!

	S (Set)	R (Reset)	Output	
	3 (301)	K (Reset)	Q	Q'
1	0	1	0	1
2	0	0	0	1
3	1	0	1	0
4	0	0	1	0
5	1	1	0	0

3. Answer the following question!

- a. What will happen if we give the condition S = R = 0? The output will be same with before, so it can be memory
- b. Why is the condition S = R = 1 not allowed? Because the output between Q and Q' is same

2nd Experiment. NAND Latch

1. Create and simulate NAND latch as shown! And then click the SW-SPDT switch to operate Latch.

2. Based on your simulation, fill in the points in the following table!

	S (Set)	R (Reset)	Output	
	S (Set)		Q	Q'
1	0	1	1	0
2	1	1	1	0
3	1	0	0	1
4	1	1	0	1
5	0	0	1	1

- 3. Answer the following question!
 - a. What will happen if we give the condition S = R = 1? The output will be same with before, so it can be memory
 - b. Why is the condition S = R = 0 not allowed? Because the output between Q and Q' is same
- 4. Based on the flip-flop analysis above, what is your opinion about the statement "Flip-flop and latch are used as data storage elements":

The output will be memory or not change data if S = R = 1 and will give new data or change data if change input 0 to 1 and 1 to 0. And the forbidden thing is S = R = 0 because it give Q and Q' are same.

3rd Experiment. Flip-Flop RS

1. Create and simulate the Flip-Flop RS as shown! And then click the SW-SPDT switch to operate the Flip-Flop RS.

2. Based on your simulation, fill in the points in the following table!

	S (Set)	R (Reset)	CLOCK	Output	
	3 (361)	K (Keset)	CLOCK	Q	$Q_{(t+1)}$
1	0	0	0	X	X
2	0	0	1	X	X
3	0	1	0	X	X
4	0	1	1	0	1
5	1	0	0	0	1
6	1	0	1	1	0
7	1	1	0	1	0
8	1	1	1	0	0

3. Answer the following question!

- a. What will happen if we give the condition S = R = 1 and the clock changes from 1 to 0? Logic race condition detected during transient analysis (simulation error).
- b. How can the above conditions occur?

 Because S = R = 1 is forbidden because Q and Q' will be same. So, if we change the clock will be error (S = R = 1 and the clock changes from 1 to 0).

- 4. Explain how the Flip-Flop RS works?
 - R S = 0 0 then lock the previous value
 - 0 1 then change the value of Q to $Q_{(t+1)}$
 - 1 0 then change the value
 - 1 1 prohibited conditions that cause errors

4th Experiment. Flip-Flop D

1. Create and simulate the Flip-Flop D as shown! And then click the SW-SPDT switch to operate the Flip-Flop.

2. Based on your simulation, fill in the points in the following table!

	D	CLOCK	Output		
	D	CLOCK	Q	Q'	
1	0	0	X	X	
2	0	1	0	1	
3	1	0	0	1	
4	1	1	1	0	
5	0	0	1	0	
6	0	1	0	1	
7	1	0	0	1	
8	1	1	1	0	

3. Explain how the Flip-Flop D works?

If the clock is off, it will lock the previous output value.

If the clock is on, it will change the previous Q value.

4. What is the function of the NOT gate on the Flip - Flop D compared to the Flip - Flop SR?
To overcome prohibited conditions

5th Experiment. Flip-Flop JK

1. Create and simulate the JK Flip-Flop as shown! And then click the SW-SPDT switch to operate the Flip-Flop.

2. Based on your simulation, fill in the points in the following table!

	T	K	CLOCK	Output	
	J	K		Q	$Q_{(t+1)}$
1	0	0	0	0	1
2	0	0	1	0	1
3	0	1	0	0	1
4	0	1	1	0	1
5	1	0	0	0	1
6	1	0	1	1	0
7	1	1	0	1	0
8	1	1	1	0	1

3. Answer the following question!

- a. What will happen if J = K = 0 and the clock rise up (change from 0 to 1)? Clock values change but do not change the value of Q and $Q_{(t+1)}$ (it be memory).
- b. What will happen if J=K=1 and the clock rise up?

If clock = 1, the value of Q and $Q_{(t+1)}$ will change.

If clock = 0 it will store the values of Q and $Q_{(t+1)}$.

4. Explain how the Flip-Flop JK works!

The principle works almost the same as the Flip-Flop RS, only the prohibited condition (J K = 1.1, clock up) has been removed.