ELEC40006: 1st Year Electronics Design Project 2024

Engineering (Design)Communication

Room 614 e.perea@imperial.ac.uk

Outline

- Recap
- Engineering (Design) Communication
- Formats
 - 1. Technical reports
 - 2. Oral presentations
 - 3. Design reviews
 - 4. Engineering drawings
 - 5. Manufacturing specifications
- Deliverables for your project
- How to ensure a positive outcome
- Summary

Recap

Engineering (Design) Communication

- 1. Technical report
- 2. Oral presentations
 - 3. Design reviews
- 4. Engineering drawings
- 5. Manufacturing specificationsDeliverables for your projectHow to ensure a positive outcomeSummary

Client Problem Statement

Problem Definition —

Conceptual Design

Communicate

Final Design

Preliminary Design

Teamwork

We all work in different ways

Teamwork is about being self-aware and aware of others (work, thinking and learning styles)

Academic writing

How can you communicate your ideas?

Intellectual Property

What ideas can you protect? How can you protect your ideas?

Deliverables

Assessment	Date	Content	Weighting
Interim Presentation	1 June	A presentation with Q&A to exhibit your design so far	20%
Reflections on professional practice	Throughout	Reflection on your contributions to the project and your technical and professional competencies development	5%
Project report	13 June	A formal technical report detailing the design process and delivered technical solution	35%
Interview, Demo and Competition	18 June	Explain to the examiner how your EEERover works and answer their questions. Then compete head-to-head with other groups to compete the challenge in the quickest time	40%

Recap

Engineering (Design) Communication

- 1. Technical report
- 2. Oral presentations
 - 3. Design reviews
- 4. Engineering drawings
- 5. Manufacturing specificationsDeliverables for your projectHow to ensure a positive outcomeSummary

Learning Outcomes

By the end of this session you should be able to:

- 1. Define the purpose of Engineering Design Communication
- 2. Enumerate some of the forms it can take
- 3. Describe in detail the structure and contents of 5 of them

Communication

- Takes place during the entire design process, but has greater importance in the last phase
- It forms the basis for the manufacture / approval of the product or system
- Once we have developed our selected concept (final design) we need to communicate it
- The project not complete unless results communicated to client or stakeholders

Communication in the context of Engineering Design (ED)

Purpose of communication:

- Document design (process and outcome)
- Describe how it will become a physical product / operating system
- Inform client or stakeholders of outcomes and /or process

General advice

Applies to all technical communication:

- 1. Know your purpose
- 2. Know your audience
- 3. Choose and organise content and format around 1 & 2

General advice

- 4. Write precisely and clearly
- 5. Design your pages well
- 6. Think visually
- 7. Write ethically

Recap

Engineering (Design) Communication

- 1. Technical report
- 2. Oral presentations
 - 3. Design reviews
- 4. Engineering drawings
- 5. Manufacturing specificationsDeliverables for your projectHow to ensure a positive outcomeSummary

1. Technical report

The purpose is to ensure client / stakeholder accepts the design

and technical choices made

- It must clearly present:
 - Design problem (brief specification)
 - What needs must be met (specification)
 - Alternatives considered (preliminary design)
 - Decisions made
 - Basis for decisions
 - Final design
 - Future work

Technical report

- The results of the process must be summarised clearly and concisely
- Include only essential information in report
- Move technical / support material to the appendices

- Find out what recipient wants do with information
- Use understandable language as your client might not be technical (but remain formal)
- Wider audience than those involved in project

Technical report

Writing

- Determine structure of report
- Start writing an outline first
- Results vs. process
- Three important aspects:
 - a) Presentation
 - b) Structure
 - c) Style

a) Presentation

The following simple steps should help you achieve this:

- Use 10 pt (at least), justified margins
- Number the pages
- Include a cover page with:
 - assignment title
 - module reference and name
 - your name, student number, course and year
 - the title and name of the lecturer the work is submitted to (check the correct spelling of their name)
 - the date of submission
 - "Imperial College" logo (optional)

Please note:

- This is a generic structure for a technical report
- Different assignments might mean the addition of new sections or the removal others

Sections:

- Cover Page : As detailed in the previous section
- Contents Page: Headings and page numbers
 (Remember to include appendices and references)
- Abstract: States the purpose of the report.
 Should be concise (around 300 words)
 Write this section last (suggestion)
- Introduction / Background: Helps put the report in context

Main Body of the report:

The headings for this section are report-specific Decide the headings according to the brief for your assignment

- **Discussion:** What is significant about the results obtained? What do they mean? Critical evaluation
- **Conclusion:** What have you concluded from the results? Include recommendations for future work.

References:

Reference all sources and credit all images

Check which system you are expected to use (IEEE,
Harvard, Vancouver or other)

Appendices:

Include all non-essential (but important) information Make reference to the appendices in the main body of the report - connect

c) Style

- Consider the audience for the report and tailor your writing
- Remember that you are writing a technical document. Your statements should be backed by facts, and not based on personal opinion or feelings
- Use a readable style with concise sentences
- Reduce the number of words used to the minimum needed to get your message across

Avoid flowery language

- Do not try to write the entire report at once
- Start with an outline of the sections and what information might be included in each of them
- Once you have completed the outline, write the first draft of the report and review it
- Get someone to read it and provide feedback
- Write the final version of the report, refining the first draft and including the feedback received

c) Style

- The report should flow as a whole. Maintain logical linkage between sentences, paragraphs and sections
- You are writing an objective piece of work, use the passive voice rather than the active voice

Active voice – I carried out the experiment

Passive voice – The experiment was carried out

c) Style

The tense of the verb should change according to the type of statement being made:

Past tense: used to describe the work done to come up with the findings presented in the report (example: three samples of the material were tested under operational conditions)

Future tense: used for plans that extend into the future (example: future work will include testing a statistically representative sample under operational conditions)

Recap

Summary

- **Engineering (Design) Communication**
 - 1. Technical report
 - 2. Oral presentations
 - 3. Design reviews
 - 4. Engineering drawings
 - 5. Manufacturing specificationsDeliverables for your projectHow to ensure a positive outcome

2. Oral presentations

- Might take place at various stages of the process
- Guidelines:
 - Prepare rough outline
 - Develop presentation
 - Support materials
 - Rehearse
 - Dress professionally

Recap

- **Engineering (Design) Communication**
 - 1. Technical report
 - 2. Oral presentations
 - 3. Design reviews
 - 4. Engineering drawings
 - 5. Manufacturing specificationsDeliverables for your projectHow to ensure a positive outcomeSummary

3. Design reviews

- Different to other types of presentations
- The design team presents design choices made during the project (in detail) to a technical audience who offer suggestions, raise questions and assess design
- Must remain about the design rather than the people

Recap

Engineering (Design) Communication

- 1. Technical report
- 2. Oral presentations
 - 3. Design reviews
- 4. Engineering drawings
- 5. Manufacturing specificationsDeliverables for your projectHow to ensure a positive outcomeSummary

4. Engineering Drawing

- Universal means of communication to convey ideas and intentions
- Communicates an exact requirement or specification which cannot be misinterpreted
- Can become part of legal contract between customer and supplier

Engineering Drawing

- Include only information required to ensure clear communication
- Use only standard symbols and abbreviations
- Ensure accurate dimensioning without unnecessary details
- Governed by ISO 8888:2020

BS (ISO) 8888:2020

- The standard that governs engineering drawings
- Incorporates information contained in ISO
- A summary of the most important features will be covered today
- Refer to the standard for additional information

Contents of a Drawing

- 1. Representation
- 2. Title block
- 3. Border and grid reference system
- 4. Scale
- 5. Dimensions

Recap

Engineering (Design) Communication

- 1. Technical report
- 2. Oral presentations
 - 3. Design reviews
- 4. Engineering drawings
- 5. Manufacturing specificationsDeliverables for your projectHow to ensure a positive outcomeSummary

5. Manufacturing specifications

- Form the basis on which the designed product / system will be built and assembled
- Characteristics:
 - Unambiguous
 - Complete
 - Transparent
- Allow for product to be correctly made without referring to designer

Recap

Engineering (Design) Communication

- 1. Technical report
- 2. Oral presentations
 - 3. Design reviews
- 4. Engineering drawings
- 5. Manufacturing specifications

Deliverables for your project

How to ensure a positive outcome Summary

Final Report Contents

- Process and outcomes
- Formal documentation of all the technical and nontechnical work carried out
- Design decisions and final design
- What would you do if you had more time? Future work
- Reflection

Final Report Guidelines

- Deadline: 13th June 2024
- Ask Dr Merdan for submission details
- File name: "Group Name surnames"
- Main assessment areas:
 - System Design (30%)
 - Implementation (30%)
 - Results (25%)
 - Teamwork (15%)

Word limit

Max 10,000 words

Cover, Contents and References pages do not count Include word count on front cover

 All essential information should be in the main body Appendix - words do not contribute to word count BUT your report should make sense without the appendix

Reference appendix(ces) in main body

		High	Medium	Low
System Design	30%	Top-level requirements refined by exploring the problem space. Definition of quantitative specifications. Division of problem into submodules. Requirements and interfaces defined for all submodules.		Vague or incomplete specifications. Weak system-level design
Implementation	30%	High-quality technical solutions for all elements of the project. Consideration of alternatives and justification for design decisions. Unambiguous documentation of the solution.		Some design elements not documented, even if they work correctly. Doubts over referencing of research material
Results	25%	High-quality evidence that solution meets all requirements at both subsystem level and top level. Appropriate tests designed.		Testing incomplete or not relevant to specifications. Doubts over accuracy of results
Teamworking	15%	Documentation of group member contributions to the project. Integrated report with consistent style and formatting.		Sections from different authors compiled with little overall editing. Basic content on system-level design and implementation

Code

- Do not include all your code in your report
 Add only the snippets needed to understand what you are doing in the report text
- Place full code in a GitHub repository
 - Link from report
 - Repository must be private (give access to examiners only)
- Comment your code
- Structure in such a way that the assessor can easily understand the logic and the contents

Recap

Engineering (Design) Communication

- 1. Technical report
- 2. Oral presentations
 - 3. Design reviews
- 4. Engineering drawings
- 5. Manufacturing specifications
 Deliverables for your project

How to ensure a positive outcome

Summary

Where are you now?

Planning

- Compile a detailed <u>project plan</u>
- Update it often
- Add detail as you find out what the next steps will be
- Your final project plan will not remotely resemble the original one
- That is expected

Meetings

- Hold <u>regular team meetings</u>
- Review progress since last meeting
- Allocate work to be carried out for next meeting
- Keep minutes

Communication

- Establish a <u>good communication strategy</u> (Whatsapp, Snapchat, text, email)
- Document repository (GitHub)

is nothing more uncommon than common sense.

Frank Lloyd Wright

If in doubt, ask:

- Dr Merdan
- Mrs Perea
- Academics
- Laboratory staff
- GTAs

Summary

- Recap
- Engineering (Design) Communication
- Formats
 - 1. Technical reports
 - 2. Oral presentations
 - 3. Design reviews
 - 4. Engineering drawings
 - 5. Manufacturing specifications
- Deliverables for your project
- How to ensure a positive outcome
- Summary