

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

IN THE CLAIMS

What is claimed is:

1. A semiconductor device, comprising:
2 a trench element separation region including a trench formed in a
3 surface of a semiconductor substrate, the trench element separation region
4 isolating separate semiconductor elements;
5 an oxide film formed on inner walls of the trench;
6 a trench filling insulating material filling the trench and having edges
7 above the inner walls of the trench; and
8 wherein a top section of the trench and the edges of the trench filling
9 insulating material are formed so as to be essentially located on the same
10 plane.

1. 2. The semiconductor device of claim 1, wherein the edges of the trench filling
2 insulating material are defined by side edges of a sacrificial layer.

1. 3. The semiconductor device of claim 2, wherein the sacrificial layer is a silicon nitride
2 film.

1. 4. The semiconductor device of claim 3, wherein:
2 the side edges of the sacrificial layer are formed by an etching process
3 including a neutral radical.

SUB 1 5. The semiconductor device of claim 1, wherein the semiconductor elements are
2 insulated gate field effect transistors (IGFETs).

1 6. The semiconductor device of claim 5, wherein the IGFETs include opposite
2 conductivity types.

mult 3 7. A semiconductor device, comprising:
1 a trench element separation region including a trench formed in a
2 surface of a semiconductor substrate, the trench element separation region
3 isolating a first doped channel layer of a first insulated gate field effect
4 transistor (IGFET) from a second doped channel layer of a second IGFET;
5 an oxide film formed on inner walls of the trench;
6 a trench filling insulating material filling the trench and having edges
7 above the inner walls of the trench; and
8 wherein inner wall edges in a top section of the trench and the edges of
9 the trench filling insulating material are formed so as to be essentially located
10 on the same plane.
11

1 8. The semiconductor device of claim 7, wherein the edges of the trench filling
2 insulating material are defined by side edges of a sacrificial layer.

mult 4 9. The semiconductor device of claim 8, wherein:

2 the side edges of the sacrificial layer are formed by an etching process
3 including a fluorine radical.

1 10. The semiconductor device of claim 7, wherein the first and second doped channel
2 layers are of the same conductivity types.

1 11. The semiconductor device of claim 7, wherein the first and second doped channel
2 layers are of opposite conductivity types.

1 12. A method for forming a trench element separation region on a surface of a
2 semiconductor substrate, comprising the steps of:

3 depositing a first insulation film onto the surface of the semiconductor
4 substrate;

5 depositing and patterning a second insulation film to form a second
6 insulation film pattern;

7 dry etching the semiconductor substrate using the second insulation
8 film pattern as an etching mask to form a trench;

9 forming an oxide film on an inner wall of the trench by thermally
10 oxidizing the semiconductor substrate using the second insulation film pattern
11 as an oxidation mask;

12 removing a modified layer formed on the surface of the second
13 insulation film during the thermal oxidation step by using a neutral radical
14 including fluorine;

15 etching the surface of the second insulation film by a predetermined
16 thickness after the modified layer is removed;
17 depositing a filling insulation film over the whole surface of the trench
18 to completely fill the trench after the surface of the second insulation film is
19 etched; and
20 chemically mechanical polishing the filling insulation film using the
21 second insulation film as a polishing stopper to form a trench filling insulating
22 material.

Sub C

1 13. The method for manufacturing a semiconductor device according to claim 12,
2 wherein:

3 the second insulation film includes a silicon nitride film.

1 14. The method for manufacturing a semiconductor device according to claim 12,
2 wherein:

3 the semiconductor substrate is a silicon substrate and the neutral
4 radical is a fluorine radical.

1 15. The method for manufacturing a semiconductor device according to claim 14,
2 wherein:

3 a final judgment of the modified layer removal is performed by
4 measuring a change in intensity of emissions with a wavelength of
5 approximately 336 nm from a reaction product NH.

1 **16.** The method for manufacturing a semiconductor device according to claim 14,
2 wherein:

3 a final judgment of the modified layer removal is performed by
4 measuring a change in intensity of emissions with a wavelength of
5 approximately 388 nm from a reaction product CN.
Sub C

1 **17.** The method for manufacturing a semiconductor device according to claim 14,
2 wherein:

3 the thickness of the second insulation film is etched for adjustment
4 such that edges of the trench insulating material above the inner walls of the
5 trench are essentially located on the same plane as edges of the inner walls of
6 the trench in a top section of the trench.
ED

1 **18.** The method for manufacturing a semiconductor device according to claim 14, further
2 including the step of:

3 forming a doped channel layer of an insulated gate field effect
4 transistor (IGFET) by ion implantation and heat treatment after the trench
5 filling insulating material is formed.

1 **19.** The method for manufacturing a semiconductor device according to claim 14,
2 wherein:

3 the first insulation film is a silicon oxide film formed by thermal

4 oxidation of the semiconductor substrate; and
5 the filling insulation film is a silicon oxide film deposited by a vapor
6 deposition method.

SvB
C, 7

- 1 **20.** The method for manufacturing a semiconductor device according to claim 14,
2 wherein:
3 the trench element separation region isolates a first insulated gate field
4 effect transistor (IGFET) from a second IGFET.

1

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100