Recorp:

1. equivariant may,
$$f: X \rightarrow X'$$

$$\begin{array}{ccc}
X & \xrightarrow{f} X' & f(x) = x + f(x) \\
x & \xrightarrow{f} X' & f(x) & \xrightarrow{f} X & \xrightarrow{f} X'
\end{array}$$

2. Symmetric group
$$S_n$$

$$\phi = \begin{pmatrix} 1 & 2 & 3 & \cdots & n \\ P_1 & P_2 & \cdots & P_n \end{pmatrix} \qquad P_i = \phi(i)$$

$$ex. \quad \phi \in S_4 \qquad \phi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 12 & 3 & 4 \end{pmatrix}$$

dim
$$V = n$$
. $\hat{e}_i = \{0, 0, \dots, 1, 0, \dots\}$
 th
 $t_q(\hat{e}_i)(= \sum_j A_j; \hat{e}_j) = \hat{e}_{\phi i}$
 $A_{ji} = \hat{e}_j^T \hat{e}_{\phi i}, = \{0, \infty, \infty\}$

cycle decomy.
4.
$$\phi$$
. (1)(234)(5) --- unique $\forall \phi$

transposition alcomp.
$$(a_r a_2 - a_r) = (a_r a_r)(a_r a_{r-1}) - (a_r a_2)$$

generators:

- @ (12) & (12··n)
- 5. transposition decomp not unique. but even & odd unique.

Definition A permutation $\phi \in S_n$ is even (odd)

if it is a product of even (odd)

transpositions. (Parity)

(efuivalent)

Definition If $\phi = \sigma_1 - \sigma_T$ is a complete foroviration into disjoint cycles (signum) $89n(\phi) = (-1)^{n-t}$

Cycle decomp. is unique => S&n es well-defined

(123) €8₃

$$S_{4}^{2}n((23)) = (-1)^{3-1} = 1$$
 even.

$$0 S_6 \ni \phi = (123)(45) = (123)(45)(6)$$
 $n=6$
 $t=3$
 $S \notin n = (-1)^3 = -4$

or-cycle
$$t=(N-r)+1$$
 rodd \iff even perm.
 $sgn \ \phi = (-1)^{n-t} = (-1)^{r+1}$ even \iff odd.

0 Sfn (tφ) = sfn(t) Sfn(β) actually sgn(aβ) = sgn(d) sgn(β) We can defin a homomorphism:

$$S_n : S_n \longrightarrow \mathbb{Z}_2$$

$$\phi \longmapsto Sg_n(\phi)$$

Definition: The Alternating group An CSn is the subgroup of Sn of even permutations.

- O odd is a subgroup?
- Θ $A_2 = \{1\}$ $A_3 = \{4, (123), (132)\}$

$$A_{4} = \{ 4.$$

$$(123), (132),$$

$$(124), (142)$$

$$(134), (143)$$

$$(234), (143)$$

$$(12), (34), (13), (13), (14), (14), (123), \{ 144, (23), (14), (24), (23), (24)$$

3 Az is Abelian Az \(Z_1 \) \(Y_3 \)

Ab is not Abelian. Angy not (123)(124) = (13)(24) (124)(123) = (14)(23)

J. G. Braiding group (12.13)

φ∈Sn:

 $\widetilde{\psi} \in B_n$ $\widetilde{\sigma}(z) = (\widetilde{i}, it|)$

$$\mathbb{D} \widehat{\mathcal{O}}_{c} \widehat{\mathcal{O}}_{j} = \widehat{\mathcal{O}}_{j} \widehat{\mathcal{O}}_{c} \quad (|i-j| \ge 2)$$

différence between o: 8 ô: G 7 1 0; = 1

$$S_{n} = \langle \sigma_{i} \cdots \sigma_{n-1} | \sigma_{i} \sigma_{j} \sigma_{i}^{-1} \sigma_{j}^{-1} = 1, (i-j) | \geq 2$$

$$\sigma_{i} \sigma_{i+1} \sigma_{i} = \sigma_{i+1} \sigma_{i} \sigma_{i+1}, \sigma_{i} \sigma_{i+1}, \sigma_{i}^{-1} = 1$$

∂₁ = ∠δ₁ · · · δ₁ · · δ₁ · δ₂ · δ₂ · δ₁ · δ₁ · δ₂ · δ₂ · δ₂ · δ₃ · δ₂ · δ₃ · δ₃ · δ₃ · δ₃ · δ₃ · δ₃ · δ₄ · δ₃ · δ₃ · δ₃ · δ₃ · δ₄ · δ₃ ·

Auyon fractional ferante en hall. Topological frante en computing Vary-Baxter equations

 $\phi: \beta_n \longrightarrow S_n$ homo. $G_i \longrightarrow G_i$

6. Cosets and conjugacy (7)

6.1. Cosers and lagrange theorem 36 133

Definition: Let HCG be a subgroup.

The set

gH:= \$3h | he+>

is a left-coser of H.

(right - cost Hg= Sh& | hEHS)

JEG is a representative of gH (H3)

Example O G= Z. H=NZ

g+H = 8g+n.r | re2}

1 N Low 8 = 1 17 =

n=2 H & H+1

@ G = S; H = S2 = 81. (12) CS;

 $S_3 = \{1, (121, (13), (23), (123), (132)\}$

3H: 1.H=H

(12) H = & (1.27, 1) = H

(13) H = f(13), (123)}

$$(23)H = \{(23), (132)\}$$

$$(123)H = \{(123), (123)(12) = (13)\}$$

$$(132)H = \{(132), (23)\}$$

$$(L \neq R: H(12)) = \{(123), (23)\} \neq (123)H$$

Observation: The (laft) cosets are either the same or disjoint.

Seen as group accesson:
$$\ddot{X} = G$$

$$\ddot{G} = H$$
right action of H on G.
$$G \times H \longrightarrow G$$

$$(8, h) \longmapsto gh$$

Proof: Suppose $3 \in 3, H \cap 3 \neq H$ then $3 = 3, h_1 = 3, h_2 \quad h_1 \in H$ $3 = 3, h_2 \quad h_1 = 3, h_2 \quad h_1 \in H$ $3 = 3, h_2 \quad h_1 = 3, h_2 \quad h_2 = 3, h_3 \in H$ $3 = 3, h_2 \quad h_1 = 3, h_2 \quad h_2 = 3, h_3 \in H$ $3 = 3, h_2 \quad h_1 = 3, h_2 \in H$ where $3 = 3, h_1 \in H$ $3 = 3, h_2 \quad h_1 \in H$ $3 = 3, h_2 \quad h_1 \in H$ $3 = 3, h_2 \in H$ 3 =

Theorem (legrange): If H is a subgroup

of a finite group & . then

livides makes

we sever for a

Proof. | gi H|= | H| ∀ gi ∈ Gi, and

G = Ügi H ,

=> |G| = m |H|

Conclay. If |G|=P is a prime. Hen G : S = Cyclic group. $G \stackrel{\mathcal{L}}{=} P_p \stackrel{\mathcal{L}}{=} 2p$ Proof. Pick a $g \in G$. S.f. $g \neq 1$ $H = Cg > = 91.8, g^2 - - J$ $|H| |G| = 91.1 = p \Rightarrow G = H$.

Corollar (Farmaris little theorem)

a integer. p.prime $a^{p} = a \mod p.$

Definition. & a group. H subgroup.

The set of left cosets in a list denoted a/H

It is the set of orbits under the recall about right group across of H on G.

It is also referred to as a homogeneous space.

The cardinality of G/H is
the index of H in G. denoted

[G:H] (= (G//H))

Example, 1. $G = S_5$ $H = S_2$ $G/H = \{ H. (123)H. (132)H \}$ [G:H] = 6/2 = 3

a. G = <w| w = 1> H= < w' | w = 1> w= e : x w'= e

[GH]=2 G/H= FH. WHY

3.
$$G = A_6$$
 $H = \{1, (12)(34)\} \stackrel{!}{\underline{}} 2_2$
 $CG : HJ = 6$

-> reparabes of gett or not, gett. now consider 3-cycles

Converse of Lagrange theorem is usually not true.

digression.
$$[G:HJ=2.$$
 $G=HUJH$ (8¢H)
 $HJ=H=2HJ^{-1}$
"normal subgroup"

A special case: (leave for reading)

Theorem (Sylow's first theorem). Suppose p is prime and pk divides IGI for KENT

Then there is a subgroup of order Pk

Example.