

휴스타 ICT 설계 팀프로젝트1 MLP 실습 및 DNN

이새봄

목차

• MLP 실습

• DNN 실습

MLP실습

numpy로 구현

```
import numpy as np
2
      # 시그모이드 함수
3
      def actf(x):
          return 1/(1+np.exp(-x))
5
6
      # 시그모이드 함수의 미분치
7
      def actf_deriv(x):
8
              return x*(1-x)
9
10
      # 입력유닛의 개수, 은닉유닛의 개수, 출력유닛의 개수
11
      inputs, hiddens, outputs = 2, 2, 1
12
      learning_rate=0.2
13
14
      # 훈련 샘플과 정답
15
      X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
16
      T = np.array([[1], [0], [0], [1]])
17
18
      W1 = np.array([[0.10, 0.20], [0.30, 0.40]])
19
      W2 = np.array([[0.50],[0.60]])
20
      B1 = np.array([0.1, 0.2])
21
      B2 = np.array([0.3])
22
23
```

```
# 순방향 전파 계산
       def predict(x):
25
                                       # 입력을 layer0에 대입한다.
26
                layer0 = x
                Z1 = np.dot(layer0, W1)+B1 # 행렬의 곱을 계산한다.
27
                                           # 활성화 함수를 적용한다.
28
                layer1 = actf(Z1)
                Z2 = np.dot(layer1, W2)+B2 # 행렬의 곱을 계산한다.
29
                layer2 = actf(Z2)
                                           # 활성화 함수를 적용한다.
30
31
                return layer0, layer1, layer2
    # 역방향 전파 계산
     def fit():
         global W1, W2, B1, B2
                              # 우리는 외부에 정의된 변수를 변경해야 한다.
         for i in range(90000):
                              # 9만번 반복한다.
            for x, y in zip(X, T): # 학습 샘플을 하나씩 꺼낸다.
               x = np.reshape(x, (1, -1)) # 2차원 행렬로 만든다. ①
               y = np.reshape(y, (1, -1)) # 2차원 행렬로 만든다.
               layer0, layer1, layer2 = predict(x)
                                                  # 순방향 계산
                                            # 오차 계산
               layer2_error = layer2-y
               layer2_delta = layer2_error*actf_deriv(layer2) # 출력층의 델타 계산
               layer1_error = np.dot(layer2_delta, W2.T)
                                                   # 은닉층의 오차 계산 ②
               layer1_delta = layer1_error*actf_deriv(layer1) # 은닉층의 델타 계산 ③
               W2 += -learning rate*np.dot(laver1.T, laver2 delta) # @
               W1 += -learning_rate*np.dot(layer0.T, layer1_delta) #
49
               B2 += -learning_rate*np.sum(layer2_delta, axis=0) # @
50
               B1 += -learning_rate*np.sum(layer1_delta, axis=0) #
      def test():
          for x, y in zip(X, T):
              x = np.reshape(x, (1, -1)) # 하나의 샘플을 꺼내서 2차원 행렬로 만든다.
              layer0, layer1, layer2 = predict(x)
              print(x, y, layer2) # 출력층의 값을 출력해본다.
       fit()
58
      test()
```



```
[[0 0]] [1] [[0.99196032]]
[[0 1]] [0] [[0.00835708]]
[[1 0]] [0] [[0.00836107]]
[[1 1]] [1] [[0.98974873]]
```


MLP실습

sklearn로 구현

```
X = [[0,0],[0,1],[1,0],[1,1]]
y = [0,0,0,1]

p = Perceptron()
p.fit(X,y)

print(p.predict(X)) # [0 0 0 1]
```

[0 0 0 1]

AND GATE 선형 모델 분류 가능

[0 1 1 0]

from sklearn import svm

print(p.predict(X)) # [0 1 1 0]

p = svm.SVC()

p.fit(X,y)

XOR GATE 선형 모델 분류 불가능

 $[0 \ 0 \ 0 \ 0]$

비선형 모델 사용하여 분류

MLP실습

keras로 구현

```
import numpy as np
      import tensorflow as tf
      model = tf.keras.models.Sequential()
4
5
      model.add(tf.keras.layers.Dense(units=2, input_shape=(2,), activation='sigmoid')) #@
6
      model.add(tf.keras.layers.Dense(units=1, activation='sigmoid')) #②
      model.compile(loss='mean_squared_error', optimizer=tf.keras.optimizers.SGD(lr=0.3))
9
      model.summarv()
.1
      X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
.3
      y = np.array([[0], [1], [1], [0]])
      model.fit(X, y, batch_size=1, epochs=10000)
      print( model.predict(X) )
                                                                 Numpy에서의
                                                                 복잡한 코드를
                            global W1, W2, B1, B2
                                                               간단히 작성 가능
                                  x = np.reshape(x, (1, -1)) # 2차원
                                  y = np.reshape(y, (1, -1)) # 2차원 행렬로 만든다.
                                  layer0, layer1, layer2 = predict(x)
                                  laver2_error = laver2-v
                                  layer1_error = np.dot(layer2_delta, W2.T) # 은닉층의 오차 계산 ②
                                  layer1_delta = layer1_error*actf_deriv(layer1) # 은닉층의 델타 계산 ③
```

W2 += -learning_rate*np.dot(layer1.T, layer2_delta) # @
W1 += -learning_rate*np.dot(layer0.T, layer1_delta) #
B2 += -learning_rate*np.sum(layer2_delta, axis=0) # @
B1 += -learning_rate*np.sum(layer1_delta, axis=0) #

```
Epoch 9993/10000
Epoch 9994/10000
Epoch 9995/10000
Epoch 9996/10000
Epoch 9997/10000
Epoch 9998/10000
Epoch 9999/10000
Epoch 10000/10000
[[0.01678485]
[0.9854888]
[0.9855789]
[0.01506674]]
```


데이터셋

Personal Key Indicators of Heart Disease

2020 annual CDC survey data of 400k adults related to their health status

Data Code (51) Discussion (5) Metadata

About Dataset

Key Indicators of Heart Disease

2020 annual CDC survey data of 400k adults related to their health status

What topic does the dataset cover?

Usability © 10.00

License

CC0: Public Domain

Expected update frequency

Annually

	С	D	Е	F	G	Н		J	K	L	М
1	creatinine_phosphokinase	diabetes	ejection_fra	high_blood	platelets	serum_crea	serum_sod	sex	smoking	time	DEATH_EVENT
2	582	0	20	1	265000	1.9	130	1	0	4	1
3	7861	0	38	0	263358.03	1.1	136	1	0	6	1
4	146	0	20	0	162000	1.3	129	1	1	7	1
5	111	0	20	0	210000	1.9	137	1	0	7	1
6	160	1	20	0	327000	2.7	116	0	0	8	1
7	47	0	40	1	204000	2.1	132	1	1	8	1
8	246	0	15	0	127000	1.2	137	1	0	10	1
9	315	1	60	0	454000	1.1	131	1	1	10	1
10	157	0	65	0	263358.03	1.5	138	0	0	10	1

코드

```
import numpy as np
import pandas as pd
import tensorflow as tf
train = pd.read_csv("heart_failure_clinical_records_dataset.csv", sep=',')
# 결손치가 있는 데이터 행은 삭제
train.dropna(inplace=True)
# 2차원 배열을 1차원 배열로 평탄화
target = np.ravel(train.DEATH_EVENT)
# 사망여부를 학습 데이터에서 삭제
train.drop(['DEATH_EVENT'], inplace=True, axis=1)
# 케라스 모델을 생성
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(16, activation='relu', input_shape=(train.shape[1],)))
model.add(tf.keras.layers.Dense(8, activation='relu'))
model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
# 케라스 모델을 컴파일하다.
model.compile(loss='binary_crossentropy',
             optimizer='adam',
             metrics=['accuracy'])
# 케라스 모델을 학습시킨다.
model.fit(train, target, epochs=10, batch_size=1, verbose=1)
```


model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(16, activation='relu', input model.add(tf.keras.layers.Dense(1, activation='relu'))
model.add(tf.keras.layers.Dense(1, activation='relu'))
model.add(tf.keras.layers.Dense(3, activation='relu'))

loss: 110.0692 accuracy: 0.6054

loss: 0.6321 accuracy: 0.6789

loss: 0.6783 accuracy: 0.6789

model.add(tf.keras.layers.Dense(16, activation='relu', inpu model.add(tf.keras.layers.Dense(8, activation='relu')) model.add(tf.keras.layers.Dense(8, activation='relu')) model.add(tf.keras.layers.Dense(8, activation='relu')) model.add(tf.keras.layers.Dense(8, activation='relu')) model.add(tf.keras.layers.Dense(8, activation='relu')) model.add(tf.keras.layers.Dense(1, activation='sigmoid'))

6

accuracy: 0.5886

loss: 1.2933

일반적으로 좋아지지만, 과하면 오히려 성능이 떨어짐

loss: 0.7055

accuracy: 0.3211

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(2, activation='relu', input model.add(tf.keras.layers.Dense(1, activation='relu', imput model.add(tf.keras.layers.Den

loss: 7.9552

accuracy: 0.6020

일반적으로 좋아지지만, 과하면 오히려 성능이 떨어짐

loss: 119.0219

accuracy: 0.6187

loss: 228.3505

accuracy: 0.5819

ACTIVATION FUNCTION

relu

```
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(16, activation='relu',)inpu
model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
```

loss: 110.0692 accuracy: 0.6054

본 데이터셋에 대해서는, sigmoid가 더 적합함

sigmoid

```
# 케라스 모델을 생성

model = tf.keras.models.Sequential()

model.add(tf.keras.layers.Dense(16, activation='sigmoid', i
model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
```

loss: 0.6289

accuracy: 0.6789

하이퍼 파라미터 튜닝 필요

참고자료

https://www.kaggle.com/datasets/kamilpytlak/personal-key-indicators-of-heart-disease?datasetId=1936563&sortBy=voteCount

• 딥 러닝 강의자료 코드

