

Model Optimization and Tuning Phase Template

Date	15 th July 2024
Team ID	739924
Project Title	Auto Foresight : A Predictive Model for Streamlining Car Loan Repayment Planning
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peakperformance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
Random Forest	(n_estimators, random_state)	(n_estimators=200, random_state=42)
Decision Tree Classifier	(criterion, random_state)	<pre>(criterion='entropy' , random_state=0)</pre>
K-Nearneast Neighbour	n_neighbors	n_neighbors=15

Performance Metrics Comparison Report (2 Marks):

Model	Baseline Metric	Optimized Metric
Random Forest	Training Accuracy = 0.998252	Test Accuracy= 0.99825
K-Nearest Neighbour	Training Accuracy =0.873415	Test Accuracy=0.855944
Naïve Bayes Classifier	Training Accuracy = 0.639234	Test Accuracy== 0.544299

Final Model Selection Justification (2 Marks):

Final Model	Reasoning	
Random Forest	Random Forest Regressor emerged as a contender due to its ability to mitigate overfitting and handle noisy data. It is an ensemble method that combines multiple decision trees, providing robust predictive accuracy. Random forests are less sensitive to outliers and noise compared to individual decision trees.	
KNN(K-Nearest Neighbors)	KNN was assessed for its simplicity and intuitive approach. It makes predictions based on the average of the k-nearest neighbors in the feature space, without making strong assumptions about the underlying data distribution. KNN is suitable for capturing complex, non-linear relationships, especially in smaller datasets.	
Naive Bayes Classifier	The Naive Bayes classifier is chosen due to its simplicity, efficiency, and effectiveness in handling large datasets with high-dimensional features, which are common in financial data. Its probabilistic nature provides clear insights into the likelihood of loan repayment default, making it easier to interpret and communicate results to stakeholders. Despite its assumption of feature independence, the classifier performs robustly in real-world applications, ensuring reliable and timely predictions for loan repayment planning.	
Decision Tree Classifier	The Decision Tree classifier is selected for its intuitive and interpretable structure, making it easy for stakeholders to understand the decision-making process. It efficiently handles both numerical and categorical data, accommodating the diverse features present in vehicle loan data. Additionally, it can capture complex interactions between features without requiring feature independence, providing more nuanced predictions. Its ability to visualize decision paths aids in identifying key factors influencing loan repayment, enhancing the overall decision-making process.	