Customer Profiling using Machine Learning Algorithms

Algorithm Used:

- 1) Logistic Regression
- 2) Decision Tree Classifier
- 3) K-means Clustering

Feature Used:

- a) Age
- b) Sex
- c) Level of Profession
- d) Education

Target Variable: Level of Influence (Three classes: 1,2,3)

Feature Engineering:

- 1) all the features used are categorical
- 2) Although Type of Location is a categorical feature but it's not useful to build a model due to dominant behavior of 1 (Dhaka)
- 3) Other columns such as Name, Profile are just random string and not useful as a feature at all.

Result Analysis:

1) Logistic Regression

Accuracy achieved 80% with train: test =80:20 split

Row ID	Age	Sex	Level o	Education	S Level of Influence	S Prediction (Level of Influence)
Row3	2	1	2	3	1	1
Row10	3	0	3	3	3	3
Row24	2	0	0	3	1	1
Row29	3	0	3	3	3	3
Row32	3	0	3	3	2	3
Row34	2	1	0	3	1	1
Row35	2	0	1	3	1	1
Row42	3	0	3	3	3	3
Row44	3	0	3	3	3	3
Row49	3	0	2	3	2	1

2) Decision Tree Classifier

Accuracy achieved 70% with train: test =80:20 split

Row ID	S Age	S Sex	S Level o	S Education	S Level of Influence	S Prediction (Level of Influence)
Row1	3	0	3	3	1	3
Row2	3	0	3	3	1	3
Row4	3	1	3	3	3	3
Row7	3	0	3	3	3	3
Row13	3	0	3	3	1	3
Row15	2	1	2	3	1	1
Row23	3	0	3	3	3	3
Row29	3	0	3	3	3	3
Row33	3	1	3	3	3	3
Row46	2	0	1	3	1	1

3) K-means Clustering

Sample Output given below, full excel sheet available separately.

Programming / Simulation Environment: KNIME

By, Md Mahmud Ferdous