MEVEM

Mesure de la verse du maïs

NOTICE D'UTILISATION

Version 1.0

Nolan Bayon

16 septembre 2025

Table des matières

1	Pré	sentation générale 4
	1.1	Vue d'ensemble
	1.2	Principe de fonctionnement
	1.3	Contenu de la livraison
2	Inct	callation et configuration 4
4	2.1	Prérequis système
	2.1	2.1.1 Configuration minimale
	2.2	Installation du logiciel
	2.2	2.2.1 Installation rapide (recommandée)
		2.2.1 Installation (recommandee)
	2.3	Connexion du matériel
	2.3	Connexion du materiei
3		mière utilisation 5
	3.1	Démarrage du système
	3.2	Interface utilisateur
		3.2.1 Panneau de contrôle
		3.2.2 Zone d'affichage
4	Cal	ibration des capteurs 6
	4.1	Importance de la calibration
	4.2	Procédure de calibration
		4.2.1 Préparation
		4.2.2 Étapes de calibration
	4.3	Vérification de la calibration
5	Dás	disation des mesures 6
J	nea 5.1	Préparation de la mesure
	$5.1 \\ 5.2$	Acquisition des données
		1
	5.3	
	5.4	$oldsymbol{v}$
	5.4	Qualité des mesures
6	Ana	alyse et export des données 7
	6.1	Visualisation des résultats
	6.2	Export des données
		6.2.1 Format Excel
		6.2.2 Procédure d'export
7	Rés	olution de problèmes 8
•	7.1	Problèmes de connexion
		7.1.1 Le capteur n'est pas détecté
		7.1.2 Port série occupé
	7.2	Problèmes de calibration
	1.4	7.2.1 Échec de la calibration
		7.2.1 Dérive des mesures
	73	
	7.3	Problèmes d'interface

		7.3.1 L'interface web ne se charge pas	9
		7.3.2 Graphique figé ou non mis à jour	
	7.4	Problèmes de performance	
		7.4.1 Acquisition lente ou saccadée	0
8	Mai	ntenance 10	0
	8.1	Maintenance préventive	0
		8.1.1 Vérifications régulières	0
	8.2	Maintenance curative $\stackrel{\circ}{.}$	0
		8.2.1 Nettoyage du dispositif	0
9	Car	ctéristiques techniques 1	1
	9.1	Spécifications des capteurs	1
	9.2	Interface de communication	
	9.3	Alimentation et consommation	1
10	Con	act et support	1
	10.1	Support technique	1
11	Ann	exes 1	1
	11.1	Annexe A: Messages d'erreur	1
		Annexe B : Formats de données	
		11.2.1 Format du fichier de calibration	
	11 3	Annexe C : Baccourcis clavier	

1 Présentation générale

1.1 Vue d'ensemble

MEVEM (Mesure de la verse du maïs) est un système complet de mesure et d'analyse de la résistance à la verse des plants de maïs. Le système combine :

- Une interface mécanique de mesure avec capteurs d'angle et de force
- Un logiciel d'acquisition et d'analyse en temps réel
- Un système de calibration intégré
- Des outils d'export et d'analyse des données

1.2 Principe de fonctionnement

Le système MEVEM mesure simultanément :

- L'angle d'inclinaison du plant lors de l'application d'une force (capteur d'angle)
- La force appliquée nécessaire pour incliner le plant (capteur de force)

Ces mesures permettent d'établir des courbes force-angle caractéristiques de la résistance à la verse.

1.3 Contenu de la livraison

- Dispositif de mesure MEVEM avec capteurs intégrés
- Câble USB de connexion
- Logiciel MEVEM (exécutable Windows/Linux)
- Documentation technique et notice

2 Installation et configuration

2.1 Prérequis système

2.1.1 Configuration minimale

- Système d'exploitation : Windows 10+ ou Linux Ubuntu 18.04+
- **Mémoire**: 4 GB RAM minimum
- Espace disque: 200 MB disponibles
- Connectivité: Port USB 2.0 disponible
- Navigateur : Chrome, Firefox, Safari ou Edge (version récente)

2.2 Installation du logiciel

2.2.1 Installation rapide (recommandée)

- 1. Téléchargez l'exécutable MEVEM correspondant à votre système :
 - mevem_windows.exe pour Windows
 - mevem_linux pour Linux
- 2. Placez l'exécutable dans un dossier dédié
- 3. Linux uniquement : Rendez le fichier exécutable :

```
chmod +x mevem_linux
```

2.2.2 Configuration des permissions (Linux)

Sur Linux, il est nécessaire de configurer les permissions d'accès aux ports série :

1. Ajoutez votre utilisateur au groupe dialout :

```
sudo usermod -a -G dialout $USER
```

- 2. Redémarrez votre session (déconnexion/reconnexion)
- 3. Vérifiez la configuration :

```
groups $USER
```

2.3 Connexion du matériel

- 1. Connectez le dispositif MEVEM à votre ordinateur via le câble USB fourni
- 2. Le système détecte automatiquement les ports série disponibles
- 3. Les ports testés automatiquement sont :
 - Windows: COM3, COM4, COM5
 - Linux: /dev/ttyUSB0, /dev/ttyUSB1, /dev/ttyACM0

3 Première utilisation

3.1 Démarrage du système

- 1. Lancez l'exécutable MEVEM :
 - Windows: Double-cliquez sur mevem_windows.exe
 - Linux : Exécutez ./mevem_linux dans un terminal
- 2. L'interface web s'ouvre automatiquement dans votre navigateur par défaut
- 3. URL d'accès manuel: http://127.0.0.1:5000

3.2 Interface utilisateur

3.2.1 Panneau de contrôle

Le panneau de contrôle situé en haut de l'interface comprend :

- **Démarrer mesure** : Lance l'acquisition de données
- Arrêter mesure : Arrête l'acquisition en cours
- Effacer données : Supprime les données actuelles
- Exporter Excel : Sauvegarde les données au format Excel
- Calibrer capteurs : Lance la procédure de calibration
- Actualiser statut : Rafraîchit l'état de connexion

3.2.2 Zone d'affichage

- Graphique principal : Courbe force vs angle en temps réel
- Panneau d'information : État de connexion et calibration
- Statistiques : Durée, amplitude, force maximale

4 Calibration des capteurs

4.1 Importance de la calibration

La calibration est **obligatoire** avant toute mesure. Elle permet :

- D'assurer la précision des mesures
- De convertir les valeurs brutes des capteurs en unités physiques
- De compenser les variations liées à l'environnement

4.2 Procédure de calibration

4.2.1 Préparation

Avant de commencer la calibration, assurez-vous de disposer de :

- Étalons d'angle : supports à 0° et 45°
- Masse étalon : poids de 1 kg \pm 10 g
- Surface plane et stable

4.2.2 Étapes de calibration

1. Cliquez sur le bouton Calibrer capteurs

2. Calibration de l'angle :

- (a) Placez le dispositif en position horizontale (0°)
- (b) Appuyez sur "Entrée" quand la position est stable
- (c) Inclinez le dispositif à exactement 45°
- (d) Appuyez sur "Entrée" quand la position est stable

3. Calibration de la force :

- (a) Retirez toute charge du capteur (position à vide)
- (b) Appuyez sur "Entrée" pour enregistrer le zéro
- (c) Placez exactement 1 kg sur le capteur
- (d) Appuyez sur "Entrée" pour finaliser
- 4. La calibration est automatiquement sauvegardée

4.3 Vérification de la calibration

Après calibration, vérifiez que :

- Les voyants de statut passent au vert
- Les valeurs affichées correspondent aux références utilisées
- La calibration est marquée comme "Calibré" dans l'interface

5 Réalisation des mesures

5.1 Préparation de la mesure

- 1. Vérifiez que la calibration est effectuée et valide
- 2. Placez le plant de maïs dans le dispositif de mesure
- 3. Assurez-vous que le plant est bien maintenu et stable
- 4. Vérifiez l'affichage des valeurs en temps réel

5.2 Acquisition des données

- 1. Maintenez le bouton de la poignée du dispositif pendant toute la mesure.
- 2. Le voyant orange en bas de la machine doit être allumé.
- 3. Cliquez sur **Démarrer mesure** dans le logiciel
- 4. Appliquez progressivement la force sur le plant
- 5. Observez la courbe se dessiner en temps réel sur le graphique
- 6. Continuez jusqu'à la rupture ou la limite souhaitée
- 7. Cliquez sur **Arrêter mesure**

5.3 Paramètres de mesure

5.3.1 Fenêtre de moyennage

Le système effectue une moyenne glissante sur les mesures pour réduire le bruit :

- Valeur par défaut : 25 échantillons
- Plage réglable : 1 à 100 échantillons
- Impact : Plus la fenêtre est large, plus la courbe est lissée

Pour modifier ce paramètre :

- 1. Accédez aux paramètres dans l'interface
- 2. Ajustez la "Fenêtre de moyennage"
- 3. Validez le changement

5.4 Qualité des mesures

Pour obtenir des mesures de qualité :

- Effectuez l'application de force de manière progressive et constante
- Évitez les à-coups et les vibrations
- Surveillez la stabilité des valeurs avant de commencer
- Arrêtez la mesure dès que la rupture est atteinte

6 Analyse et export des données

6.1 Visualisation des résultats

Le graphique principal affiche:

- **Axe X**: Angle d'inclinaison (en degrés)
- **Axe Y**: Force appliquée (en kg)
- Courbe : Évolution de la force en fonction de l'angle

Les informations statistiques incluent :

- Durée totale de la mesure
- Nombre de points acquis
- Angle maximum atteint
- Force maximum appliquée
- Amplitude des mesures

6.2 Export des données

6.2.1 Format Excel

L'export Excel génère un fichier contenant :

— Feuille "Mesures MEVEM":

- Timestamp (temps relatif)
- Angle (degrés)
- Force (kg)
- Valeurs brutes des capteurs
- Nombre d'échantillons moyennés

— Feuille "Métadonnées" :

- Date et heure de la mesure
- Paramètres de calibration
- Statistiques de la session
- Configuration du système

6.2.2 Procédure d'export

- 1. Après avoir terminé une mesure, cliquez sur Exporter Excel
- 2. Choisissez l'emplacement de sauvegarde
- 3. Le fichier est nommé automatiquement avec la date et l'heure
- 4. Format: mevem_mesure_AAAAMMJJ_HHMMSS.xlsx

7 Résolution de problèmes

7.1 Problèmes de connexion

7.1.1 Le capteur n'est pas détecté

Symptômes:

- Voyant de connexion rouge
- Message "Aucun capteur détecté"
- Impossible de démarrer une mesure

Solutions:

- 1. Vérifiez la connexion USB du dispositif
- 2. Redémarrez l'application MEVEM
- 3. Testez sur un autre port USB
- 4. Vérifiez les permissions (Linux) :

```
ls -l /dev/ttyUSB*
2 groups $USER | grep dialout
```

7.1.2 Port série occupé

Symptômes:

- Message "Port occupé par une autre application"
- Connexion intermittente

Solutions:

- 1. Fermez toutes les applications utilisant des ports série
- 2. Débranchez et rebranchez le dispositif USB
- 3. Sur Linux, vérifiez les processus utilisant le port :

```
sudo lsof /dev/ttyUSBO
```

7.2 Problèmes de calibration

7.2.1 Échec de la calibration

Symptômes:

- Message d'erreur pendant la procédure
- Valeurs aberrantes après calibration
- Impossibilité de terminer la calibration

Solutions:

- 1. Vérifiez la stabilité du dispositif pendant la calibration
- 2. Assurez-vous que les étalons sont corrects (0°, 45°, 1 kg)
- 3. Répétez la procédure de calibration
- 4. Vérifiez l'absence de vibrations durant la calibration

7.2.2 Dérive des mesures

Symptômes:

- Valeurs qui dérivent au fil du temps
- Différences importantes entre mesures successives
- Zéro instable

Solutions:

- 1. Laissez le système se stabiliser 5-10 minutes après démarrage
- 2. Refaites une calibration complète
- 3. Vérifiez la température ambiante (évitez les variations)
- 4. Contrôlez l'absence de courants d'air

7.3 Problèmes d'interface

7.3.1 L'interface web ne se charge pas

Solutions:

- 1. Accédez manuellement à http://127.0.0.1:5000
- 2. Vérifiez que le port 5000 n'est pas utilisé par une autre application
- 3. Redémarrez l'application MEVEM
- 4. Testez avec un autre navigateur web

7.3.2 Graphique figé ou non mis à jour

Solutions:

- 1. Actualisez la page web (F5)
- 2. Vérifiez la connexion WebSocket dans la console du navigateur
- 3. Redémarrez l'application
- 4. Cliquez sur Actualiser statut

7.4 Problèmes de performance

7.4.1 Acquisition lente ou saccadée

Causes possibles:

- Processeur surchargé
- Fenêtre de moyennage trop importante
- Problèmes de communication série

Solutions:

- 1. Fermez les applications inutiles
- 2. Réduisez la fenêtre de moyennage
- 3. Utilisez un câble USB de meilleure qualité
- 4. Évitez les hubs USB non alimentés

8 Maintenance

8.1 Maintenance préventive

8.1.1 Vérifications régulières

Avant chaque utilisation:

- Vérification visuelle du dispositif
- Test de la connexion USB
- Contrôle des valeurs au repos

Après chaque utilisation:

— Nettoyage du dispositif avec un chiffon sec

Mensuelle:

- Calibration complète du système
- Mise à jour du logiciel si disponible
- Archivage des données importantes

8.2 Maintenance curative

8.2.1 Nettoyage du dispositif

- 1. Débranchez le dispositif de l'alimentation USB
- 2. Nettoyez les surfaces avec un chiffon légèrement humide
- 3. Evitez tout liquide près des connecteurs électroniques
- 4. Séchez complètement avant reconnexion

9 Caractéristiques techniques

9.1 Spécifications des capteurs

Paramètre	Capteur d'angle	Capteur de force
Plage de mesure	0° à 90°	0 à 10 kg
Résolution	0,1°	1 g
Précision	±0,5°	$\pm 0.5\%$ PE
Linéarité	<1% PE	$<0.5\% \ { m PE}$
Dérive thermique	<0,1°/°C	<0,01%/°C
Fréquence d'acquisition	100	Hz

Table 1 – Spécifications des capteurs

9.2 Interface de communication

Paramètre	Valeur
Interface	USB 2.0 (série virtuelle)
Vitesse	115200 bauds
Format des données	8 bits, pas de parité, 1 bit de stop
Protocole	VeTiMa, iMa, Ta
Longueur du câble	2 mètres

Table 2 – Spécifications de communication

9.3 Alimentation et consommation

Paramètre	Valeur
Alimentation	5V via USB
Consommation nominale	200 mA
Consommation max	350 mA

Table 3 – Caractéristiques électriques

10 Contact et support

10.1 Support technique

Pour toute question technique ou problème d'utilisation :

Email: nolan.bayon@gmail.com
 Téléphone: +33 (0)7 83 90 70 45

11 Annexes

11.1 Annexe A : Messages d'erreur

Message	Cause	Solution
"Permission refusée"	Droits insuffisants sur le	Ajouter l'utilisateur au
	port série	groupe dialout
"Port occupé"	Autre application utilise le	Fermer les applications
	port	concurrentes
"Calibration échouée"	Instabilité pendant la cali-	Répéter avec plus de stabi-
	bration	lité
"Connexion perdue"	Débranchement du disposi-	Vérifier la connexion USB
	tif	
"Valeurs aberrantes"	Problème de capteur	Recalibrer ou contacter le
		support

11.2 Annexe B : Formats de données

11.2.1 Format du fichier de calibration

```
{
    "angle": {
      "raw_min": 0,
      "raw_max": 1023,
      "real_min": 0.0,
      "real_max": 45.0,
      "calibrated": true
    },
    "force": {
      "raw_min": 0,
10
      "raw_max": 1023,
11
      "real_min": 0.0,
12
      "real_max": 1.0,
13
      "calibrated": true
    }
15
16 }
```

11.3 Annexe C: Raccourcis clavier

Raccourci	Action
F5	Actualiser l'interface
Ctrl+S	Exporter les données
Espace	Démarrer/Arrêter la mesure
Échap	Annuler l'opération en cours

Table 5 – Raccourcis clavier disponibles