

Общероссийский математический портал

А. И. Мадунц, Формальные группы Любина—Тейта над кольцом целых многомерного локального поля, 3an. научн. cem.  $\Pi OMU$ , 2001, том 281, 221-226

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением <a href="http://www.mathnet.ru/rus/agreement">http://www.mathnet.ru/rus/agreement</a>

Параметры загрузки: IP: 212.232.76.46

8 ноября 2015 г., 14:34:09



## А. И. Мадунц

## ФОРМАЛЬНЫЕ ГРУППЫ ЛЮБИНА-ТЕЙТА НАД КОЛЬЦОМ ЦЕЛЫХ МНОГОМЕРНОГО ЛОКАЛЬНОГО ПОЛЯ

Теория формальных групп Любина-Тейта хорошо развита в случае групп над кольцом целых классического (одномерного) локального поля (см. [3, 4]). Цель данной работы – обобщить результаты этой теории на многомерный случай.

Введем основные обозначения (подробнее о понятиях, связанных с многомерными локальными и полными полями, см. [2]).

К – n-мерное локальное поле, т.е. последовательность полных дискретно нормированных полей  $K_n, K_{n-1}, \ldots, K_0$ , где каждое последующее поле является полем вычетов предыдущего, причем  $K_0$  конечно.

 $q = p^f$  – число элементов поля  $K_0$ .

 $\overline{v}=(v_1,\ldots,v_n)$  - нормирование ранга n (многомерное норми-

 $(t_1, \ldots, t_n)$  – система локальных параметров поля K. Поскольку в дальнейшем нам понадобится только  $t_1$ , мы для краткости будем обозначать его t и называть простым элементом.

 $\mathcal O$  – кольцо целых поля K относительно многомерного норми-

 $\mathfrak{M}$  – максимальный идеал кольца  $\mathcal{O}$ .

 $\mathcal{O}_1 = \{ a \in \mathcal{O} : (v_2(a), v_3(a), \dots, v_n(a)) \ge (0, 0, \dots, 0) \}.$ 

$$\mathfrak{M}_1 = \{ a \in \mathcal{O} : (v_2(a), v_3(a), \dots, v_n(a)) \ge (1, 0, \dots, 0) \}.$$

Напомним, что множество  $\mathbb{Z}^n = \{\overline{r} = (r_1, \dots, r_n) : r_s \in \mathbb{Z}\}$ предполагается лексикографически упорядоченным в следующем смысле:

$$\overline{r}^{(1)} = (r_1^{(1)}, \dots, r_n^{(1)}) < \overline{r}^{(2)} = (r_1^{(2)}, \dots, r_n^{(2)})$$

означает, что  $r_m^{(1)} < r_m^{(2)}$ ,  $r_{m+1}^{(1)} = r_{m+1}^{(2)}, \ldots, r_n^{(1)} = r_n^{(2)}$ , где  $m \leqslant n$ . Заметим, что  $\mathfrak{M} = t\mathcal{O}$ . Кроме того, выполнены включения

$$\mathfrak{M}_1 \subset \mathfrak{M} \subset \mathcal{O} \subset \mathcal{O}_1$$
.

Легко видеть также, что  $p \in \mathfrak{M}$ .

Теперь приведем некоторые результаты из теории формальных групп (см. [4]). Сформулируем так называемую функциональную лемму.

Функциональная лемма. Пусть R – поле, A – его подкольцо, I – идеал в A,  $\sigma$  – кольцевой гомоморфизм, p – простое число,  $p \in A$ ,  $q = p^f$ ,  $s_i \in R$ ,  $i \geqslant 1$ , причем выполнены условия

- 1.  $\sigma(A) \subset A$ ,
- $2. \sigma(a) \equiv a^q \mod I, a \in A,$
- 3. для любого i имеем  $s_iI \subset A$ .

По каждому ряду  $g(X)=\sum_{i\geqslant 1}g_iX^i$  над A мы теперь можем построить новый ряд  $f_g(X)=\sum_{i\geqslant 1}f_iX^i$  над R по следующему функциональному урав нению:

$$f_g(X) = g(X) + \sum_{i \geqslant 1} s_i \sigma^i f_g(X),$$

где  $\sigma f_g(X) = \sum_{i\geqslant 1} f_i^\sigma X^{q^i}$ . При этом формула, связывающая коэффициенты рядов, имеет вид

$$f_{q^r m} = g_{q^r m} + s_1 \sigma(f_{q^{r-1} m}) + \ldots + s_r \sigma^r(f_m)$$

(здесь т не делится на q).

Пусть  $g(X)=\sum_{i\geqslant 1}g_iX^i$ ,  $h(X)=\sum_{i\geqslant 1}h_iX^i$  ряды над A, и  $g_1$  обратим в A. Тогда

- 1. ряд  $F_g(X,Y) = f_g^{-1}(f_g(X) + f_g(Y))$  имеет коэффициенты в A,
- 2. ряд  $f_g^{-1}(f_h(X))$  имеет коэффициенты в A,
- 3. сущёствует ряд l(X) с коэффициентами в A такой, что  $f_q(h(X))=f_l(X),$ 
  - 4. если  $\alpha(X)$  степенной ряд над A, а  $\beta(X)$  над R, то

$$\alpha(X) \equiv \beta(X) \mod I^r$$

тогда и только тогда, когда

$$f_a(\alpha(X)) \equiv f_a(\beta(X)) \mod I^r$$
,

5. если h(X), l(X) удовлетворяют некоторым функциональным уравнениям и  $h(X) \equiv l(X) \equiv X \mod X^2$ , то формальные законы H(X,Y) и L(X,Y) строго изоморфны тогда и только тогда, когда функциональные уравнения для h(X) и l(X) одного типа.

Применим функциональную лемму к случаю  $R=K,\ A=\mathcal{O},\ I=\mathfrak{M},\ \sigma$  — тождественный гомоморфизм,  $s_1=t^{-1},\ s_i=0,\ i>1,$ 

g(X) = X. Это можно сделать, поскольку  $\mathcal{O}/\mathfrak{M}$  является полем, состоящим из q элементов, что очевидным образом дает соотношение

$$a^q \equiv a \mod \mathfrak{M}$$

для всех  $a \in \mathcal{O}$ .

Итак, наше функциональное уравнение имеет вид

$$f(X) = X + t^{-1}f(X^q).$$

По части 1 функциональной леммы коэффициенты формальной группы  $F(X,Y)=f^{-1}(f(X)+f(Y))$  лежат в  $\mathcal O$ . Поскольку ряд tf(X) удовлетворяет функциональному уравнению того же типа, что и f(X), но с g(X)=tX, по части 2 функциональной леммы коэффициенты ряда  $f^{-1}(tf(X))$  лежат в  $\mathcal O$ .

Обозначим этот ряд  $[t]_F(X)$ . Таким образом,  $[t]_F(X)$  является эндоморфизмом над  $\mathcal O$  формальной группы F(X,Y). Кроме того, легко видеть, что

$$[t]_F(X) \equiv tX \mod \deg 2$$

и

$$[t]_F(X) \equiv X^q \mod \mathfrak{M}.$$

Теперь введем множество

$$E_t = \{l(X) \in \mathcal{O}[[X]] : l(X) \equiv tX \mod \deg 2, l(X) \equiv X^q \mod \mathfrak{M}\}.$$

Тем же способом, что и в одномерном случае (см. [1, 3]) доказывается, что для любого  $l(X) \in E_t$  существует единственная формальная группа  $F_l(X,Y)$  над  $\mathcal{O}$ , такая что l(X) – ее эндоморфизм. Эти формальные группы будем называть формальными группами Любина—Тейта. Итак, F(X,Y) – формальная группа Любина—Тейта, соответствующая эндоморфизму  $[t]_F(X)$ .

Аналогичным образом, подобно одномерному случаю (см. [4]) доказывается также то, что любая формальная группа Любина—Тейта получается по функциональной лемме при некотором  $g(X) \in \mathcal{O}[[X]]$  и для любого  $g(X) \in \mathcal{O}[[X]]$  полученная по функциональной лемме формальная группа  $F_g(X,Y)$  является формальной группой Любина—Тейта. Поэтому имеет место

**Предложение 1.** F(X,Y) – формальная группа Любина-Тейта в том и только в том случае, когда ее логарифм (образующая) f(X) удовлетворяет условию  $f(X) - t^{-1}f(X^q) \in \mathcal{O}[[X]]$ .

Напомним, что  $f(X) \in K[[X]]$  называется логарифмом формальной группы F(X,Y), если  $f(X) \equiv X \mod \deg 2$  и  $F(X,Y) = f^{-1}(f(X) + f(Y))$ .

Однако далее мы наблюдаем некоторое отличие от классической теории. Для классического локального поля был верен тот факт, что простой элемент t определен этим условием однозначно, т.е. если и для простого  $t_1$  выполнено условие  $f(X) - t_1^{-1} f(X^q) \in \mathcal{O}[[X]]$ , то  $t = t_1$ . В нашей ситуации это не так.

Предложение 2. Пусть  $f(X) - t^{-1}f(X^q) \in \mathcal{O}[[X]]$ . Тогда для простого  $t_1$  выполнено условие  $f(X) - t_1^{-1}f(X^q) \in \mathcal{O}[[X]]$  в том и только в том случае, когда  $t - t_1 \in \mathfrak{M}_1$ .

**Доказательство.** Пусть выполнено условие  $f(X) - t_1^{-1} f(X^q) \in \mathcal{O}[[X]]$ . Следовательно,

$$f_{q^i} - t^{-1} f_{q^{i-1}} = g_{q^i} \in \mathcal{O}$$

И

$$f_{q^i} - t_1^{-1} f_{q^{i-1}} = c_{q^i} \in \mathcal{O}.$$

Домножив эти равенства на  $tf_{q^i}^{-1}$  и  $t_1f_{q^i}^{-1}$  соответственно и вычтя из первого второе, получаем

$$t - t_1 = (g_{q^i}t - c_{q^i}t_1)f_{q^i}^{-1}.$$

Учитывая, что  $f_q-t^{-1}=g_q\in\mathcal{O}$ , имеем  $\overline{v}(f_q)=(-1,0,\dots,0)$ . Далее несложной индукцией показываем, что  $\overline{v}(f_{q^i})=(-i,0,\dots,0)$ . Таким образом, для всех i верно соотношение

$$\overline{v}(t-t_1) \geqslant (i+1,0,\ldots,0),$$

что и дает условие  $t - t_1 \in \mathfrak{M}_1$ .

Теперь проведем доказательство в обратную сторону. Пусть  $t-t_1=a\in\mathfrak{M}_1$  и  $f(X)-t^{-1}f(X^q)\in\mathcal{O}[[X]].$  Тогда

$$f_{g^{i}m} - t^{-1}f_{g^{i-1}m} = g_{g^{i}m} \in \mathcal{O}$$

и

$$f_{q^im} - t_1^{-1} f_{q^{i-1}m} = g_{q^im} + t^{-1} f_{q^{i-1}m} (1 - (1 - at^{-1})^{-1})$$

(здесь m не делится на q). Осталось доказать, что

$$t^{-1}f_{q^{i-1}m}(1-(1-at^{-1})^{-1}) \in \mathcal{O}.$$

Поскольку  $f_m\in\mathcal{O}$  и  $f_{q^im}=t^{-1}f_{qi-1m}+g_{q^im},g_{q^im}\in\mathcal{O}$ , индукцией получаем, что  $t^mf_{q^im}\in\mathcal{O}$ . Следовательно,

$$t^{-1}f_{a^{i-1}m}(1-(1-at^{-1})^{-1})=t^{i-1}f_{a^{i-1}m}t^{-i}(at^{-1}-a^2t^{-2}+\ldots).$$

Но  $a \in \mathfrak{M}_1$ , и потому для любого i имеем  $t^{-i}a \in \mathcal{O}$ , что завершает доказательство.

**Замечание.** Таким образом, по любой формальной группе Любина-Тейта с точностью до  $\mathfrak{M}_1$  определяется простой элемент t(F) и однозначно определяется элемент  $\overline{t}(F) \in \mathcal{O}/\mathfrak{M}_1$ .

**Теорема 1.** Формальные группы Любина-Тейта F(X,Y) и G(X,Y) изоморфны над  $\mathcal O$  тогда и только тогда, когда  $\overline t_F=\overline t_G$ , причем в этом случае они строго изоморфны.

**Доказательство.** Пусть  $\overline{t}_F = \overline{t}_G$ . Тогда по Предложению 2 можно выбрать простой t такой, что для логарифмов выполнены условия  $f(X) - t^{-1}f(X^q) \in \mathcal{O}$  и  $g(X) - t^{-1}g(X^q) \in \mathcal{O}$ . По части 4 функциональной леммы имеем строгий изоморфизм формальных групп.

Пусть теперь F(X,Y) и G(X,Y) изоморфны,  $\phi$  — изоморфизм. По уже доказанному  $g(X)-t_G^{-1}g(X^q)\in\mathcal{O}$ . Подставляя в это равенство  $\phi(X)$  вместо X, получаем соотношение

$$g(\phi(X)) - t_G^{-1}g(\phi(X)^q) = f(X) - t_G^{-1}(f(x^q) + qh(X)) \in \mathcal{O},$$

где  $h(X)\in \mathcal{O}[[X]]$ . Учитывая, что  $f(X)-t_F^{-1}f(X^q)\in \mathcal{O}$ , применяем Предложение 2.

Теперь изучим фактор-множество  $\mathcal{O}/\mathfrak{M}_1$ . Для этого требуется напомнить, как определяется многомерное нормирование:

$$\overline{v}_K = \overline{v} = (v_1, \dots, v_n) : K \to \mathbb{Z}^n \cup \{\infty\},\$$

где  $\overline{v}(0) = \infty$ , а при  $a \neq 0$ 

$$v_i(a)=v_{K_i}\left(\overline{at_n^{-v_n(a)}\dots t_{i+1}^{-v_{i+1}(a)}}
ight)$$
 для  $1\leqslant i\leqslant n-1;$   $v_n(a)=v_{K_n}(a).$ 

(Здесь надчеркивание обозначает образ в  $K_{i}$ .)

Легко видеть, что можно корректно определить гомоморфизм, сопоставляющий каждому  $a\in\mathcal{O}$  его вычет в поле  $K_1$ , причем ядром будет являться  $\mathfrak{M}_1$ , а образом – кольцо целых поля  $K_1$ . Обозначим его  $\mathcal{O}_{K_1}$ . Итак, мы доказали

Предложение 3.  $\mathcal{O}/\mathfrak{M}_1 \approx \mathcal{O}_{K_1}$ .

Заметим, что  $K_1$  – классическое (одномерное) локальное поле. Для любого простого элемента  $\overline{t}$  из локального поля  $K_1$  определим множество

$$E_{\overline{t}} = \{l(X) \in \mathcal{O}[[X]] : \overline{l}(X) \equiv \overline{t}X \mod \deg 2, l(X) \equiv X^q \mod \mathfrak{M}\}$$

(здесь надчеркивание обозначает образ в  $K_1$ ).

**Теорема.** Формальные группы Любина-Тейта изоморфны над  $\mathcal{O}$  тогда и только тогда, когда среди их эндоморфизмов есть принадлежащие  $E_{\overline{t}}$  при одном и том же  $\overline{t}$ , причем в этом случае формальные группы строго изоморфны.

## Литература

- 1. С. В. Востоков, И. Б. Жуков, Некоторые подходы к построению абелевых расширений для p-адических полей. Труды С.-Петерб. мат. общ-ва, 3 (1994), 194-214.
- 2. И. Б. Жуков, А. И. Мадунц, Многомерные полные поля: топология и другие основные понятия. Труды С.-Петерб. мат. общ-ва, 3 (1994), 4-46.
- 3. К. Ивасава, Локальная теория полей классов. М., Мир, 1983, 180 сс.
- 4. M. Hazewinkel, Formal groups and applications. New York, Academic Press, 1978, 573 pp.

Madunts A. I. Lubin-Tate formal groups over integer ring of multidimensional local field.

The paper gives isomorphism criterions for Lubin-Tate formal groups over an integer ring of a miltidimensional local field.

Санкт-Петербургский государственный технический университет

Поступило 21 мая 2001 г.