

Joint RL meeting

Gridworld implementation of Olivia's task

Andrea Pierré January 30th, 2023

Brown University

Outline

- 1. Implementation
- 2. Issues along the road
- 3. Results
- 4. Main differences with Niloufar's model

Outline

1. Implementation

2. Issues along the road

3. Results

4. Main differences with Niloufar's model

· RL concepts abstracted in high level functions :

- reset(): reset the environment at the end of the episode
- reward(): define in what conditions the agent get a reward and how much reward it gets
- is_terminated(): define when the end of the episode has been reached
- step(): execute the defined action in the current state

```
new_state, reward, done = env.step(action, state)
```

- RL concepts abstracted in high level functions :
 - reset(): reset the environment at the end of the episode
 - reward(): define in what conditions the agent get a reward and how much reward it gets
 - is_terminated(): define when the end of the episode has been reached
 - step(): execute the defined action in the current state

```
new_state, reward, done = env.step(action, state)
```

- RL concepts abstracted in high level functions :
 - reset(): reset the environment at the end of the episode
 - reward(): define in what conditions the agent get a reward and how much reward it gets
 - is_terminated(): define when the end of the episode has been reached
 - step(): execute the defined action in the current state

```
new_state, reward, done = env.step(action, state)
```

- RL concepts abstracted in high level functions :
 - reset(): reset the environment at the end of the episode
 - reward(): define in what conditions the agent get a reward and how much reward it gets
 - is_terminated(): define when the end of the episode has been reached
 - step(): execute the defined action in the current state

```
new_state, reward, done = env.step(action, state)
```

- RL concepts abstracted in high level functions :
 - reset(): reset the environment at the end of the episode
 - reward(): define in what conditions the agent get a reward and how much reward it gets
 - is_terminated(): define when the end of the episode has been reached
 - step(): execute the defined action in the current state

```
new_state, reward, done = env.step(action, state)
```

• Each step, the agent gets a composite observation:

location	cue		
{0,,24}	North light		
	South light		
	Odor A		
	Odor B		

 Convenience functions to translate the movements between the grid positions and the states

• Each step, the agent gets a composite observation:

location	cue
{0,,24}	North light
	South light
	Odor A
	Odor B

 Convenience functions to translate the movements between the grid positions and the states

 Wrapper environment to translate the human readable environment (composite state) into a suitable environment for the Q-learning algorithm (flat state)

```
state = {"location": 13, "cue": LightCues.North}
env.convert_composite_to_flat_state(state)
# => 13

state = 63
env.convert_flat_state_to_composite(state)
# => {"location": 13, "cue": <OdorID.A: 1>}
```

Human readable objects

```
action = 0
Actions(action).name
# => "UP"
```

 Wrapper environment to translate the human readable environment (composite state) into a suitable environment for the Q-learning algorithm (flat state)

```
state = {"location": 13, "cue": LightCues.North}
env.convert_composite_to_flat_state(state)
# => 13

state = 63
env.convert_flat_state_to_composite(state)
# => {"location": 13, "cue": <OdorID.A: 1>}
```

· Human readable objects

```
action = 0
Actions(action).name
# => "UP"
```

Outline

1. Implementation

2. Issues along the road

3. Results

4. Main differences with Niloufar's model

Not enough states to solve the task

Pre odor - North light				
0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

Post odor - Odor A				
50	51	52	53	54
55	56	57	58	59
60	61	62	63	64
65	66	67	68	69
70	71	72	73	74

Pre odor - South light				
25	26	27	28	29
30	31	32	33	34
35	36	37	38	39
40	41	42	43	44
45	46	47	48	49

Post odor - Odor B				
76	77	78	79	
81	82	83	84	
86	87	88	89	
91	92	93	94	
96	97	98	99	
	76 81 86 91	76 77 81 82 86 87 91 92	76 77 78 81 82 83 86 87 88 91 92 93	

ϵ -greedy when Q-values are identical

Vanilla ϵ -greedy

Randomly choosing actions with the same Q-values

Outline

1. Implementation

2. Issues along the road

3. Results

4. Main differences with Niloufar's model

Standard Q-learning – allocentric environment

Standard Q-learning – allocentric environment

7/14

Q-learning with function approximation – allocentric environment – without joint representation

Q-learning with function approximation – allocentric environment – without joint representation

Q-learning with function approximation – allocentric environment – with joint representation

Q-learning with function approximation – allocentric environment – with joint representation

Standard Q-learning – egocentric environment

→ Agent not learning (yet)

Standard Q-learning – egocentric environment

Outline

1. Implementation

2. Issues along the road

3. Results

4. Main differences with Niloufar's model

Main differences with Niloufar's model

- The environment is closer to the real experiment → ports are in the corners of the arena, not in the middle of the walls
- Code is clean, readable, and abstracted in high level functions/concepts

Questions ?