CS 4820, Spring 2018

Name: Rongguang Wang

NetID: rw564

Collaborators: Siyuao Liu (sl2928); Yihao Chen (yc2288)

(3) (10 points) As in question (2), let $T \subset \Sigma^*$ denote the set of all strings x such that x is the description of a termination-safe Turing machine. Prove that \overline{T} , the complement of T in Σ^* , is not recursively enumerable.

Solution:

The problem is aiming to prove that the set \bar{T} is not recursively enumerable (r.e.), where T belongs to Σ^* denote the set of all strings x such that x is the description of a termination-safe Turing Machine. Termination-safe Turing Machine refers to one that is guaranteed to terminate on every input string. To prove that set \bar{T} is not recursively enumerable, we reducing from the co-halting problem \bar{H} to \bar{T} since \bar{H} is not recursively enumerable. Given a Turing Machine $M_{\bar{T}}$ which is used to solve the termination-safe problem such that $M_{\overline{T}}(M)$ outputs YES if and only if Turing Machine M does not halt on input y. We need another machine C which is used to solve the co-halting problem such that C(x;y) outputs YES if and only if x does not halt on input y. Then, we can construct machine C which encoding machine x and input y as the input of machine $M_{\bar{T}}$. Assume that machine $M_{\bar{T}}$ takes in a machine which is the encapsulating of x and y which represents as $S_{x,y}$. There is a one-to-one relationship which combines machine $M_{\overline{T}}$ and machine C that Turing Machine M is not termination-safe if and only if x does not halt on input y. Thus, Turing Machine $S_{x,y}$ should operates as following: If x is not halt on input y, then the machine should loop forever which means that $S_{x,y}$ is not termination-safe. If x halts on input y, then the machine halts which means that $S_{x,y}$ is termination-safe. Now we define the operation rule of Turing Machine $M_{\bar{T}}(S_{x,y})$. $M_{\bar{T}}(S_{x,y})$ outputs NO if and only if $S_{x,y}$ is not termination-safe which means that machine x is not halt on input y. $M_{\bar{T}}(S_{x,y})$ outputs YES if and only if $S_{x,y}$ is termination-safe which means that machine x is halt on input y. Therefore, we reduced T from the co-halting problem \bar{H} which means that the set size of \bar{T} is greater than or equals to the set size of \bar{H} . Since co-halting problem \bar{H} is not recursively enumerable, \bar{T} is not recursively enumerable. Next, we proof by strong induction. x; y belongs to set \bar{H} if and only if $M_{\bar{T}}$ accepts x; y which means $S_{x,y}$ accepts x; y. Thus, \bar{H} is recursively enumerable which contradict to the fact that \bar{H} is not recursively enumerable. Therefore, \bar{T} is not recursively enumerable.