Методы оптимизации Введение в численные методы оптимизации. Градиентный спуск

Александр Катруца

Московский физико-технический институт

24 марта 2021 г.

На прошлой лекции

- Условия ККТ
- Коническая двойственность
- Условие Слейтера
- ▶ Сильная и слабая двойственность

Постановка задачи

$$\min_{x \in S} f_0(x)$$
 s.t. $f_j(x) = 0, \ j = 1, \dots, m$
$$g_k(x) \leq 0, \ k = 1, \dots, p$$

где $S\subseteq\mathbb{R}^n$, $f_j:S\to\mathbb{R},\;j=0,\ldots,m$, $g_k:S\to\mathbb{R},\;k=1,\ldots,p$

- Все функции как минимум непрерывны
- Задачи нелинейной оптимизации в общем случае являются численно неразрешимыми!

Необходимое условие первого порядка

Если x^* точка локального минимума дифференцируемой функции f(x), тогда

$$f'(x^*) = 0$$

Необходимое условие первого порядка

Если x^* точка локального минимума дифференцируемой функции f(x), тогда

$$f'(x^*) = 0$$

Необходимое условие второго порядка

Если x^* точка локального минимума дважды дифференцируемой функции f(x), тогда

$$f'(x^*) = 0 \quad \text{if} \quad f''(x^*) \succeq 0$$

Необходимое условие первого порядка

Если x^* точка локального минимума дифференцируемой функции f(x), тогда

$$f'(x^*) = 0$$

Необходимое условие второго порядка

Если x^* точка локального минимума дважды дифференцируемой функции f(x), тогда

$$f'(x^*) = 0$$
 и $f''(x^*) \succeq 0$

Достаточное условие

Пусть f(x) дважды дифференцируемая функция, и пусть точка x^* удовлетворяет условиям

$$f'(x^*) = 0$$
 $f''(x^*) \succ 0$,

тогда x^{st} является точкой строгого локального минимума функции f(x)

Зачем нужны численные методы?

 Для задач большой размерности аналитическое выражение может быть трудно вычислить

Зачем нужны численные методы?

- Для задач большой размерности аналитическое выражение может быть трудно вычислить
- Чаще всего аналитического выражения для решения нет

Особенности численного решения

 ▶ Точно решить задачу принципиально невозможно из-за погрешности машинной арифметики

Особенности численного решения

- ▶ Точно решить задачу принципиально невозможно из-за погрешности машинной арифметики
- ▶ Необходимо задать критерий обнаружения решения

Особенности численного решения

- ▶ Точно решить задачу принципиально невозможно из-за погрешности машинной арифметики
- ▶ Необходимо задать критерий обнаружения решения
- Необходимо определить, какую информацию о задаче использовать

Как создаются численные методы?

 Способы численного решения уравнений из условий оптимальности

Как создаются численные методы?

- Способы численного решения уравнений из условий оптимальности
- Замена целевой функции её простой аппроксимацией

Как создаются численные методы?

- Способы численного решения уравнений из условий оптимальности
- Замена целевой функции её простой аппроксимацией
- Сведение условных задач к безусловным с сохранением множества решений

Общая схема

- ▶ Начальная точка x_0
- ightharpoonup Желаемая точность arepsilon

```
def GeneralScheme(x, epsilon):
    while StopCriterion(x) > epsilon:
        OracleResponse = RequestOracle(x)
        UpdateInformation(I, x, OracleResponse)
        x = NextPoint(I, x)
    return x
```

1. Какие критерии остановки могут быть?

- 1. Какие критерии остановки могут быть?
- 2. Что такое оракул и зачем он нужен?

- 1. Какие критерии остановки могут быть?
- 2. Что такое оракул и зачем он нужен?
- 3. Что такое информационная модель?

- 1. Какие критерии остановки могут быть?
- 2. Что такое оракул и зачем он нужен?
- 3. Что такое информационная модель?
- 4. Как вычисляется новая точка?

1. Сходимость по аргументу:

$$||x_k - x^*||_2 < \varepsilon$$

1. Сходимость по аргументу:

$$||x_k - x^*||_2 < \varepsilon$$

2. Сходимость по функции:

$$||f_k - f^*||_2 < \varepsilon$$

1. Сходимость по аргументу:

$$||x_k - x^*||_2 < \varepsilon$$

2. Сходимость по функции:

$$||f_k - f^*||_2 < \varepsilon$$

3. Выполнение необходимого условия

$$||f'(x_k)||_2 < \varepsilon$$

1. Сходимость по аргументу:

$$||x_k - x^*||_2 < \varepsilon$$

2. Сходимость по функции:

$$||f_k - f^*||_2 < \varepsilon$$

3. Выполнение необходимого условия

$$||f'(x_k)||_2 < \varepsilon$$

4. Зазор двойственности

$$f_k - g(\lambda_k, \mu_k) \le \varepsilon$$

Почти определение

Оракулом называют некоторое абстрактное устройство, которое отвечает на последовательные вопросы метода

Почти определение

Оракулом называют некоторое абстрактное устройство, которое отвечает на последовательные вопросы метода

Аналогия из ООП

- оракул это виртуальный метод базового класса
- каждая задача производный класс
- оракул определяется для каждой задачи отдельно согласно общему определению в базовом классе

Почти определение

Оракулом называют некоторое абстрактное устройство, которое отвечает на последовательные вопросы метода

Аналогия из ООП

- оракул это виртуальный метод базового класса
- каждая задача производный класс
- оракул определяется для каждой задачи отдельно согласно общему определению в базовом классе

Концепция чёрного ящика

- 1. Единственной информацией, получаемой в ходе работы итерационного метода, являются ответы оракула
- 2. Ответы оракула являются локальными

Информация о задаче

- 1. Каждый ответ оракула даёт **локальную** информацию о поведении функции в точке
- 2. Агрегируя все полученные ответы оракула, обновляем информацию о глобальном виде целевой функции:
 - кривизна
 - направление убывания
 - etc

$$x_{k+1} = x_k + \alpha_k h_k$$

$$x_{k+1} = x_k + \alpha_k h_k$$

Линейный поиск

- 1. Сначала выбирается направление h_k
- 2. Далее определяется «оптимальное» значение $lpha_k$

$$x_{k+1} = x_k + \alpha_k h_k$$

Линейный поиск

- 1. Сначала выбирается направление h_k
- 2. Далее определяется «оптимальное» значение $lpha_k$

Метод доверительных областей

- 1. Выбирается α -окрестность x_k
- 2. В этой окрестности строится упрощённая **модель** целевой функции
- 3. Далее определяется направления h_k , минимизирующее модель целевой функции и не выводящее точку $x_k + h_k$ за пределы области

Как сравнивать методы оптимизации?

Для заданного класса задач сравнивают следующие величины:

- 1. Сложность
 - \blacktriangleright аналитическая: число обращений к оракулу для решения задачи с точностью ε
 - \blacktriangleright арифметическая: общее число всех вычислений, необходимых для решения задачи с точностью ε
- 2. Скорость сходимости
- 3. Эксперименты

Скорости сходимости

1. Сублинейная

$$||x_{k+1} - x^*||_2 \le Ck^{\alpha},$$

где
$$\alpha < 0$$
 и $0 < C < \infty$

Скорости сходимости

1. Сублинейная

$$||x_{k+1} - x^*||_2 \le Ck^{\alpha},$$

где
$$\alpha < 0$$
 и $0 < C < \infty$

2. Линейная (геометрическая прогрессия)

$$||x_{k+1} - x^*||_2 \le Cq^k,$$

где
$$q \in (0,1)$$
 и $0 < C < \infty$

Скорости сходимости

1. Сублинейная

$$||x_{k+1} - x^*||_2 \le Ck^{\alpha},$$

где
$$\alpha < 0$$
 и $0 < C < \infty$

2. Линейная (геометрическая прогрессия)

$$||x_{k+1} - x^*||_2 \le Cq^k,$$

где
$$q \in (0,1)$$
 и $0 < C < \infty$

3. Сверхлинейная

$$||x_{k+1} - x^*||_2 \le Cq^{k^p},$$

где
$$q \in (0,1)$$
, $0 < C < \infty$ и $p > 1$

Скорости сходимости

1. Сублинейная

$$||x_{k+1} - x^*||_2 \le Ck^{\alpha},$$

где $\alpha < 0$ и $0 < C < \infty$

2. Линейная (геометрическая прогрессия)

$$||x_{k+1} - x^*||_2 \le Cq^k,$$

где $q \in (0,1)$ и $0 < C < \infty$

3. Сверхлинейная

$$||x_{k+1} - x^*||_2 \le Cq^{k^p},$$

где $q \in (0,1)$, $0 < C < \infty$ и p > 1

4. Квадратичная

$$||x_{k+1}-x^*||_2 \le C||x_k-x^*||_2^2$$
, или $||x_{k+1}-x^*||_2 \le Cq^{2^k}$

где
$$q \in (0,1)$$
 и $0 < C < \infty$

Сравнение скоростей сходимости

(Б.Т. Поляк Введение в оптимизацию, гл. 1, \S 6)

Что дают теоремы сходимости

класс задач, для которых применим метод

(Б.Т. Поляк Введение в оптимизацию, гл. 1, \S 6)

- класс задач, для которых применим метод
 - выпуклость

(Б.Т. Поляк Введение в оптимизацию, гл. 1, \S 6)

- класс задач, для которых применим метод
 - выпуклость
 - гладкость

(Б.Т. Поляк Введение в оптимизацию, гл. 1, \S 6)

- класс задач, для которых применим метод
 - выпуклость
 - гладкость
- качественное поведение метода

(Б.Т. Поляк Введение в оптимизацию, гл. 1, \S 6)

- класс задач, для которых применим метод
 - выпуклость
 - гладкость
- качественное поведение метода
 - существенно ли начальное приближение

(Б.Т. Поляк Введение в оптимизацию, гл. 1, \S 6)

- класс задач, для которых применим метод
 - выпуклость
 - гладкость
- качественное поведение метода
 - существенно ли начальное приближение
 - по какому функционалу есть сходимость

(Б.Т. Поляк Введение в оптимизацию, гл. 1, \S 6)

- класс задач, для которых применим метод
 - выпуклость
 - гладкость
- качественное поведение метода
 - существенно ли начальное приближение
 - по какому функционалу есть сходимость
- оценку скорости сходимости

(Б.Т. Поляк Введение в оптимизацию, гл. 1, § 6)

- класс задач, для которых применим метод
 - выпуклость
 - гладкость
- качественное поведение метода
 - существенно ли начальное приближение
 - по какому функционалу есть сходимость
- оценку скорости сходимости
 - теоретическая оценка без проведения экспериментов

(Б.Т. Поляк Введение в оптимизацию, гл. 1, § 6)

- класс задач, для которых применим метод
 - выпуклость
 - гладкость
- качественное поведение метода
 - существенно ли начальное приближение
 - по какому функционалу есть сходимость
- оценку скорости сходимости
 - теоретическая оценка без проведения экспериментов
 - определение факторов, которые влияют на сходимость

(Б.Т. Поляк Введение в оптимизацию, гл. 1, § 6)

- класс задач, для которых применим метод
 - выпуклость
 - гладкость
- качественное поведение метода
 - существенно ли начальное приближение
 - по какому функционалу есть сходимость
- оценку скорости сходимости
 - теоретическая оценка без проведения экспериментов
 - определение факторов, которые влияют на сходимость
 - иногда заранее можно выбрать число итераций для достижения заданной точности

(Б.Т. Поляк Введение в оптимизацию, гл. 1, § 6)

Что НЕ дают теоремы сходимости

 сходимость метода ничего не говорит о целесообразности его применения

(Б.Т. Поляк Введение в оптимизацию, гл. 1, \S 6)

- сходимость метода ничего не говорит о целесообразности его применения
- оценки сходимости зависят от неизвестных констант

(Б.Т. Поляк Введение в оптимизацию, гл. 1, \S 6)

- сходимость метода ничего не говорит о целесообразности его применения
- оценки сходимости зависят от неизвестных констант
- учёт ошибок округления и точности решения вспомогательных задач

Порядок метода

lacktriangle Методы нулевого порядка: оракул возвращает только значение функции f(x)

Порядок метода

- Методы нулевого порядка: оракул возвращает только значение функции f(x)
- Методы первого порядка: оракул возвращает значение функции f(x) и её градиент f'(x)

Порядок метода

- lacktriangle Методы нулевого порядка: оракул возвращает только значение функции f(x)
- Методы первого порядка: оракул возвращает значение функции f(x) и её градиент f'(x)
- Методы второго порядка: оракул возвращает значение функции f(x), её градиент f'(x) и гессиан f''(x).

Порядок метода

- lacktriangle Методы нулевого порядка: оракул возвращает только значение функции f(x)
- Методы первого порядка: оракул возвращает значение функции f(x) и её градиент f'(x)
- Методы второго порядка: оракул возвращает значение функции f(x), её градиент f'(x) и гессиан f''(x).

Q: существуют ли методы более высокого порядка?

Порядок метода

- Методы нулевого порядка: оракул возвращает только значение функции f(x)
- Методы первого порядка: оракул возвращает значение функции f(x) и её градиент f'(x)
- Методы второго порядка: оракул возвращает значение функции f(x), её градиент f'(x) и гессиан f''(x).

Q: существуют ли методы более высокого порядка? Использование истории

Порядок метода

- Методы нулевого порядка: оракул возвращает только значение функции f(x)
- Методы первого порядка: оракул возвращает значение функции f(x) и её градиент f'(x)
- Методы второго порядка: оракул возвращает значение функции f(x), её градиент f'(x) и гессиан f''(x).

Q: существуют ли методы более высокого порядка? Использование истории

1. Одношаговые методы

$$x_{k+1} = \Phi(x_k)$$

Порядок метода

- Методы нулевого порядка: оракул возвращает только значение функции f(x)
- Методы первого порядка: оракул возвращает значение функции f(x) и её градиент f'(x)
- Методы второго порядка: оракул возвращает значение функции f(x), её градиент f'(x) и гессиан f''(x).

Q: существуют ли методы более высокого порядка?

Использование истории

1. Одношаговые методы

$$x_{k+1} = \Phi(x_k)$$

2. Многошаговые методы

$$x_{k+1} = \Phi(x_k, x_{k-1}, ...)$$

Главное

- Введение в численные методы оптимизации
- ▶ Общая схема работы метода
- Способы сравнения методов оптимизации
- Зоопарк задач и методов

Методы спуска

$$x_{k+1} = x_k + \alpha_k h_k$$

так что

$$f(x_{k+1}) < f(x_k)$$

Методы спуска

$$x_{k+1} = x_k + \alpha_k h_k$$

так что

$$f(x_{k+1}) < f(x_k)$$

Определение

Направление h_k называется направлением убывания

Методы спуска

$$x_{k+1} = x_k + \alpha_k h_k$$

так что

$$f(x_{k+1}) < f(x_k)$$

Определение

Направление h_k называется направлением убывания

Замечание

Существуют методы, которые не требуют монотонного убывания функции от итерации к итерации

Градиентный спуск

Глобальная оценка сверху на функцию f в точке x_k :

$$f(y) \le f(x_k) + \langle f'(x_k), y - x_k \rangle + \frac{L}{2} ||y - x_k||_2^2 \equiv g(y),$$

где $\lambda_{\max}(f''(x)) \leq L$ для всех допустимых x.

Градиентный спуск

Глобальная оценка сверху на функцию f в точке x_k :

$$f(y) \le f(x_k) + \langle f'(x_k), y - x_k \rangle + \frac{L}{2} ||y - x_k||_2^2 \equiv g(y),$$

где $\lambda_{\max}(f''(x)) \leq L$ для всех допустимых x. Справа – квадратичная форма, точка минимума которой имеет

Справа – квадратичная форма, точка минимума которой имеет аналитическое выражение:

$$g'(y^*) = 0$$

$$f'(x_k) + L(y^* - x_k) = 0$$

$$y^* = x_k - \frac{1}{L}f'(x_k) \equiv x_{k+1}$$

Этот способ позволяет оценить значение шага как $\frac{1}{L}.$

Выбор шага

- ▶ Постоянный $\alpha_k \equiv \mathrm{const} < \frac{2}{L}$
- ▶ Убывающая последовательность, такая что $\sum\limits_{k=1}^{\infty} \alpha_k = \infty$, например $\frac{1}{k}, \frac{1}{\sqrt{k}}$, etc
- Адаптивный поиск: правила Армихо, Вольфа, Гольдштейна и другие
- lacktriangle Наискорейший спуск: поиск лучшего $lpha_k$

Важно

Лучший размер шага даёт не столь существенное теоретическое ускорение сходимости

Сходимость к стационарной точке

$$f(x_{k+1}) \le f(x_k) + \langle f'(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} \|x_{k+1} - x_k\|_2^2 =$$

$$f(x_k) - \alpha_k \|f'(x_k)\|_2^2 + \frac{L\alpha_k^2}{2} \|f'(x_k)\|_2^2 =$$

$$f(x_k) - \left(\alpha_k - \frac{L\alpha_k^2}{2}\right) \|f'(x_k)\|_2^2$$

Сходимость к стационарной точке

$$f(x_{k+1}) \le f(x_k) + \langle f'(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||_2^2 =$$

$$f(x_k) - \alpha_k ||f'(x_k)||_2^2 + \frac{L\alpha_k^2}{2} ||f'(x_k)||_2^2 =$$

$$f(x_k) - \left(\alpha_k - \frac{L\alpha_k^2}{2}\right) ||f'(x_k)||_2^2$$

▶ Условие убывания: $\alpha_k - \frac{L\alpha_k^2}{2} > 0 \Rightarrow \alpha_k < \frac{2}{L}$

Сходимость к стационарной точке

$$f(x_{k+1}) \le f(x_k) + \langle f'(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||_2^2 =$$

$$f(x_k) - \alpha_k ||f'(x_k)||_2^2 + \frac{L\alpha_k^2}{2} ||f'(x_k)||_2^2 =$$

$$f(x_k) - \left(\alpha_k - \frac{L\alpha_k^2}{2}\right) ||f'(x_k)||_2^2$$

- ▶ Условие убывания: $lpha_k rac{Llpha_k^2}{2} > 0 \Rightarrow lpha_k < rac{2}{L}$

Сходимость к стационарной точке

$$f(x_{k+1}) \le f(x_k) + \langle f'(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||_2^2 =$$

$$f(x_k) - \alpha_k ||f'(x_k)||_2^2 + \frac{L\alpha_k^2}{2} ||f'(x_k)||_2^2 =$$

$$f(x_k) - \left(\alpha_k - \frac{L\alpha_k^2}{2}\right) ||f'(x_k)||_2^2$$

- ▶ Условие убывания: $lpha_k rac{Llpha_k^2}{2} > 0 \Rightarrow lpha_k < rac{2}{L}$
- $f(x_k) f(x_{k+1}) \ge \frac{1}{2L} ||f'(x_k)||_2^2$

Сходимость к стационарной точке

$$f(x_{k+1}) \le f(x_k) + \langle f'(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||_2^2 =$$

$$f(x_k) - \alpha_k ||f'(x_k)||_2^2 + \frac{L\alpha_k^2}{2} ||f'(x_k)||_2^2 =$$

$$f(x_k) - \left(\alpha_k - \frac{L\alpha_k^2}{2}\right) ||f'(x_k)||_2^2$$

- ▶ Условие убывания: $\alpha_k \frac{L\alpha_k^2}{2} > 0 \Rightarrow \alpha_k < \frac{2}{L}$
- $f(x_k) f(x_{k+1}) \ge \frac{1}{2L} ||f'(x_k)||_2^2$

Сходимость к стационарной точке

$$f(x_{k+1}) \le f(x_k) + \langle f'(x_k), x_{k+1} - x_k \rangle + \frac{L}{2} ||x_{k+1} - x_k||_2^2 =$$

$$f(x_k) - \alpha_k ||f'(x_k)||_2^2 + \frac{L\alpha_k^2}{2} ||f'(x_k)||_2^2 =$$

$$f(x_k) - \left(\alpha_k - \frac{L\alpha_k^2}{2}\right) ||f'(x_k)||_2^2$$

- ▶ Условие убывания: $\alpha_k \frac{L\alpha_k^2}{2} > 0 \Rightarrow \alpha_k < \frac{2}{L}$
- $f(x_k) f(x_{k+1}) \ge \frac{1}{2L} ||f'(x_k)||_2^2$
- ▶ f ограничена снизу, $||f'(x_k)||_2 \to 0, k \to \infty$

Сходимость для выпуклой функции

Теорема

Пусть f выпуклая функция с Липшицевым градиентом и $lpha=rac{1}{L}$, тогда градиентный спуск сходится как

$$f(x_{k+1}) - f^* \le \frac{2L||x - x_0||_2^2}{k+4} = \mathcal{O}(1/k)$$

Сходимость для сильно выпуклой функции

Следствие сильной выпуклости

$$f(z) \ge f(x_k) + \langle f'(x_k), z - x_k \rangle + \frac{\mu}{2} ||z - x_k||_2^2$$

ightharpoonup Минимизируя обе части по z

$$f(x^*) \ge f(x_k) - \frac{1}{2\mu} \|f'(x_k)\|_2^2, \quad \|f'(x_k)\|_2^2 \ge 2\mu (f(x_k) - f^*)$$

▶ Вспомним, что для $lpha_k \equiv rac{1}{L}$

$$f^* \le f(x_{k+1}) \le f(x_k) - \frac{1}{2L} ||f'(x_k)||_2^2$$

▶ И наконец получим линейную сходимость

$$f(x_{k+1}) - f^* \le \left(1 - \frac{1}{\kappa}\right) (f(x_k) - f^*)$$

Теорема для сильно выпуклой функции

Теорема

Пусть f с Липшицевым градиентом и μ сильно выпукла, $\alpha_k = \frac{2}{\mu + L}$, тогда градиентный спуск сходится как

$$f(x_k) - f^* \le \frac{L}{2} \left(\frac{L-\mu}{L+\mu}\right)^{2k} ||x_0 - x^*||_2^2$$

$$q^* = \frac{L - \mu}{L + \mu} = \frac{L/\mu - 1}{L/\mu + 1} = \frac{\kappa - 1}{\kappa + 1},$$

где κ - оценка числа обусловленности f''(x). Q: что такое число обусловленности матрицы?

$$q^* = \frac{L - \mu}{L + \mu} = \frac{L/\mu - 1}{L/\mu + 1} = \frac{\kappa - 1}{\kappa + 1},$$

где κ - оценка числа обусловленности f''(x).

Q: что такое число обусловленности матрицы?

▶ При $\kappa\gg 1$, $q^*\to 1\Rightarrow$ оооочень *медленная* сходимости. Например при $\kappa=100$: $q^*\approx 0.98$

$$q^* = \frac{L - \mu}{L + \mu} = \frac{L/\mu - 1}{L/\mu + 1} = \frac{\kappa - 1}{\kappa + 1},$$

где κ - оценка числа обусловленности f''(x).

Q: что такое число обусловленности матрицы?

- ▶ При $\kappa\gg 1$, $q^*\to 1\Rightarrow$ оооочень *медленная* сходимости. Например при $\kappa=100$: $q^*\approx 0.98$
- ▶ При $\kappa \simeq 1,\ q^* \to 0 \Rightarrow$ ускорение сходимости. Например при $\kappa = 4$: $q^* = 0.6$

$$q^* = \frac{L - \mu}{L + \mu} = \frac{L/\mu - 1}{L/\mu + 1} = \frac{\kappa - 1}{\kappa + 1},$$

где κ - оценка числа обусловленности f''(x).

Q: что такое число обусловленности матрицы?

- ▶ При $\kappa\gg 1$, $q^*\to 1\Rightarrow$ оооочень *медленная* сходимости. Например при $\kappa=100$: $q^*\approx 0.98$
- ▶ При $\kappa \simeq 1$, $q^* \to 0 \Rightarrow$ ускорение сходимости. Например при $\kappa = 4$: $q^* = 0.6$

Q: какая геометрия у этого требования?

Can we do better?

Что нам известно

- ightharpoonup Для выпуклых функций с Липшицевым градиентом градиентный спуск сходится как $\mathcal{O}(1/k)$
- ightharpoonup Для сильно выпуклых функций с Липшицевым градиентом градиентный спуск сходится с линейной скоростью $q=rac{\kappa-1}{\kappa+1}$

Q: есть ли методы, которые сходятся быстрее, и как это выяснить?

Для обоих классов функций существуют такие «плохие» функции, для которых выполнены следующие оценки **снизу**

Для обоих классов функций существуют такие «плохие» функции, для которых выполнены следующие оценки **снизу**

для выпуклых функций с Липшицевым градиентом

$$f(x_{k+1}) - f^* \ge \frac{3L||x_0 - x^*||_2^2}{32(k+1)^2}$$

Для обоих классов функций существуют такие «плохие» функции, для которых выполнены следующие оценки **снизу**

для выпуклых функций с Липшицевым градиентом

$$f(x_{k+1}) - f^* \ge \frac{3L||x_0 - x^*||_2^2}{32(k+1)^2}$$

для сильно выпуклых функций с Липшицевым градиентом

$$f(x_{k+1}) - f^* \ge \frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2k} \|x_0 - x^*\|_2^2$$

Для обоих классов функций существуют такие «плохие» функции, для которых выполнены следующие оценки **снизу**

для выпуклых функций с Липшицевым градиентом

$$f(x_{k+1}) - f^* \ge \frac{3L||x_0 - x^*||_2^2}{32(k+1)^2}$$

для сильно выпуклых функций с Липшицевым градиентом

$$f(x_{k+1}) - f^* \ge \frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2k} \|x_0 - x^*\|_2^2$$

Эти оценки справедливы для таких методов, что

$$x_{k+1} = x_0 + \operatorname{span}(f'(x_0), \dots, f'(x_k))$$

Оптимальные методы

Про методы, которые в той или иной степени достигают нижних оценок, будет рассказано на следующей лекции:

- метод сопряжённых градиентов
- метод тяжёлого шарика
- градиентный метод Нестерова

Резюме

- ▶ Общая схема работы методов оптимизации
- ▶ Скорости сходимости
- Градиентный спуск
- Свойства и сходимость
- Нижние оценки