

第三届 eBPF开发者大会

www.ebpftravel.com

mmperf: Android系统上基于eBPF的性能观测实践

荣耀终端 | OS Kernel Lab 李志卫 / 夏兵

中国.西安

作者介绍

- 李志卫: Android系统性能优化专家, eBPF技术爱好者, 有多年嵌入式系统和Android 系统优化经验, 乐于构建可复用的基础观测能力。
- 夏兵:性能工程专家,eBPF技术爱好者,致力于让性能分析与优化变得更简单。在系统性能可观测、性能剖析与自动化诊断等领域有多年的实战经验。

Android系统性能背景:用户使用场景丰富,硬件资源受限

- 硬件资源受限的条件下:如何满足复杂多变的用户诉求?如何观测瓶颈点?
- 现有观测工具: trace / perfetto / simpleperf / ...

需求分析 设计开发 经验分享

mmperf需求来源: Android性能观测诉求收集

mmperf需求设计:多维度分解,长时间观测,概率学统计

mmperf设计目的:差异化诉求,低开发量,实用为主

维度	mmperf	simpleperf	perfetto / systrace	bcc / bpftrace /
设计目的	基于eBPF的耗时,计数和调用栈观测 分解到时间和任务	多功能的性能观测工具 调用栈和短时间观测为主	基于ftrace/atrace的性能观测 工具	易用的eBPF观测工具
设计能力	轻量级,长时间,可商用观测目标基于任务和时间轴数据库查询接口非实时编译	▶ 周期性采集调用栈,PMU等相 关信息▶ 形成record或者status的汇聚。▶ 无需编译	采集ftrace/atrace交互式UI呈现数据库查询接口接入了更多的关联信息	➢ 采集eBPF数据➢ 使用简单的脚本语言或者结合c 语言进行数据呈现➢ 实时编译
优点	 ⇒ 灵活的观测目标与条件 ⇒ 灵活的数据聚合 ⇒ 与用户场景关联 ⇒ 结合调度信息 ⇒ 有数据库查询能力支持 ⇒ 体积小 (xxxKB) 	➤ 采集信息丰富,包含调用栈➤ 当前也有很好的UI工具,如 firefox profiler等	▷ 功能丰富▷ 高速迭代▷ 优雅的UI呈现▷ Android设备主要分析工具▷ 有强大数据库查询能力支持	▶ 语法简洁,学习成本较高▶ 能做很多常见的简单的数据汇聚
缺点	▶ 目的性强,功能单一▶ 信息不如现有工具丰富▶ UI简陋,未来考虑接入perfetto	▶ 数据量大,开销高	▶ 数据量较大	➤ 依赖编译环境 ➤ Android系统默认无法直接使 用
应用难度	▶ 低*	➤ 低	➤ 低	➤ 低 ➤ Android系统部署难度中等
建议场景	▶ 长时间观测指定目标,进行概率统计与分析▶ 需要基于时间和任务的分解与聚合▶ 需要量化观测目标与用户场景的关系	➤ 短时间观测指定目标的调用栈, PMU等信息	短时间观测性能场景(现有 trace信息可满足分析诉求)复杂的综合因素分析	▶ 有明确的自定义观测目标。▶ 可复现的故障现场

mmperf设计目标:抽象为公共框架以便快速开发

•一次采集,多维使用 •墙上运行时长 无侵入式观测 •汇聚灵活,降低开销 •实际运行时长 Debpp 观测分析效率 数据汇聚 调度集成 观测开销影响 快速开发 呈现与分析 调度影响感知 •UI微观分析 多目标观测 •DB宏观统计 •多目标联动 场景关联分析 •场景结合 •灵活的条件 •灵活的条件

mmperf中能力的抽象与设计:以运行时长统计为例

mmperf分层设计: 充分借助eBPF高效灵活的数据采集优势

mmperf分层设计: 内核态

mmperf分层设计: 用户态

mmperf分层设计: 数据处理

Threads			Processes Application			cation	Scenes					
process		total					do_try_to_free_pages					
process	‡threads	‡uapid	count	dur_wall	dur_running	≑idle_count	¢prio_min	\$prio_max	-count	dur_wall	<pre>\$dur_running</pre>	≑idle_count ∜
												Aa
rdware.camera.provider@2.4-service_64	248	114	352503	9,094,191,433	4,334,476,541	6659	98	120	767	1,725,331,495	1,023,878,734	980
lor.qti.hardware.display.allocator-service	4	41	386619	5,313,409,363	4,150,631,397	1781	97	100	291	343,808,119	278,487,224	158
system_server	187	6	410473	5,444,221,748	2,625,070,914	2630	89	130	149	662,639,015	286,828,964	249
mmperf	1	1	99569	1,499,916,442	886,350,973	493	117	117	100	293,202,080	114,778,274	131
com.hihonor.camera	101	72	39975	1,336,876,690	472,189,240	418	97	130	94	515,368,747	132,833,586	89
[zswapd0]	1	0	25552	1,306,357,795	722,086,636	170	135	135	81	918,088,387	349,012,023	113
com.qiyi.video	553	98	342715	18,460,585,010	2,689,037,145	4056	100	139	71	173,513,179	88,650,471	64
com.autonavi.minimap	667	106	352209	8,625,048,332	2,383,308,456	2131	100	139	35	246,133,543	110,670,000	88
/system/bin/logd	6	12	10664	1,000,366,348	246,790,417	120	130	130	25	412,208,128	76,040,474	33
/system/bin/hiview	12	47	8697	607,881,767	229,442,231	162	120	130	22	150,083,072	54,665,364	42
826	826	826	6303065	142,500,746,281	50,719,458,346	51359	0	139	1986	7,547,131,806	3,156,198,745	2536 1

mmperf实现效果:表格,时间线图,统计学数据,场景关联

89	Statistics		Threads	ocesses			Application				
			thread						total		
= tid	2 thread	= pid	2 process	#ls_main	=upid	tuopid	± count	dur_wall =	= dur_running	tidle_cr	
1211	ellocationessi	1211	/vecdor/hin/hw/vembu.gii.hanlware.display.allocator-service	-	63	3116	145287	2,134,578,60H	1,755,853,400		
1095	provider@Z4-se	1095	/vendoc/bir/hu/android.hanhure.comma.grovider@2.4-service_54	- 1	723	349	46255	719,455,111	479,292,243		
24829	mmped	24829	numper	1	- 3	284	95507	1,499,916,442	886,150,973		
194	zewspd0	199	[innepdi]	- 1	715	- 11	25532	1,306,557,295	722,086,636		
4056	Hwllinder:1211_3	1211	/vendac/bin/hw/	D	63	HIS	84441	1,130,824,604	883,485,136		
1221	provider@2.4-se	1095	/wendou/bin/his/androi	B	733	349	5193	147,595,228	95,617,785		
29785	Thread-61	22979		ò	299	33	857	81,988,647	61,561,051		
1246	Hwffinder:1211_2	1211	/vendor/tin/hw	0	-60	309	17511	1,236,117,990	864,664,293		
5437	SoundDecoder 2	5072	com/shonoccamera	0	732	100	347	154,610,677	38,547,596		
5436	Asynctask#1	5072	comhihosoccamera	Ü	732	100	388	699.882.658	127,640,151		
12365	12365	12365	12163	12265	12365	12565	6303065	142,900,746,291	20,719,450,546	19	

mmperf实现效果: 自动化处理数据, 完整调用栈打印

测试模型中自动化的获取统计数据

内核态C,用户态C++,用户态Java完整调用栈

mmperf实现效果: 数据汇聚, 大幅降低开销, 同时兼顾细节

id	value	Total count
0	sched	25,459,504
1	mm_rlock_acquire	11,283,689
2	mm_rlock_dur	10,951,929
3	mm_wlock_acquire	3,311,331
4	mm_wlock_dur	3,310,702
5	page_alloc	32,603,015
6	page_free	32,206,023

1.2小时采集数据量约1.2亿次,存储占用~140MB

可统计,可分解

mmperf应用案例1: 关键UI线程概率出现内存回收时间长

应用极速连续启动场景

Render关键线程案例分析:

- ▶ 重载下,小概率概率出现长耗时,文件缓存读取/ZRAM解压/慢速路径均涉及
- > 其中慢速路径相对影响较大,甚至出现200ms+连续慢速路径的情况
- > 按120Hz推算, 丢帧影响24帧左右。

mmperf应用案例2: JVM GC与底层内存管理之间的视角差异冲突

thread: HeapTaskDaemon

视角冲突点:

- ▶ GC对象分散存储于内存页
- 内存页可能会被大量压缩
- ➤ GC过程产生数据搬运
- ➢ 搬运过程带来缺页数据换入

mmperf应用案例3: 前后台场景下资源供给的自动化统计

mmperf实践经验典型案例1:编译优化导致的eBPF verifier校验错误问题

```
. .
; if ( bit array is set(task filter users, TASK UID FILTER SIZE,
UID(uid_gid))) {
12: (bf) r1 = r0
13: (67) r1 <<= 32
14: (77) r1 >>= 32
15: (b7) r2 = 131072
; if (index >= size) {
16: (2d) if r2 > r1 goto pc+31
from 16 to 48: R0=inv(id=2) R1=inv(id=0,umax value=131071,var off=
(0x0; 0x1ffff)) R2=inv131072 R6=ctx(id=0,off=0,imm=0) R7=inv(id=1)
R10=fp0
; uint32 t index = pos >> 3;
48: (bf) r1 = r0
49: (77) r1 >>= 3
; return !!(arr[index] & (1 << offset));
50: (57) rl &= 536870911
51: (18) r2 = 0xffffffc01e753008
53: (0f) r2 += r1
54: (71) r1 = *(u8 *)(r2 +0)
 R0=inv(id=2) R1_w=invP(id=0,umax_value=536870911,var_off=(0x0;
0x1fffffff))
R2_w=map_value(id=0,off=8200,ks=4,vs=24584,umax_value=536870911,var_of
f = (0 \times 0; 0)
x1fffffff)) R6=ctx(id=0,off=0,imm=0) R7=inv(id=1) R10=fp0
invalid access to map value, value_size=24584 off=536879111 size=1
R2 max value is outside of the allowed memory range
```



```
. .
; if (__bit_array_is_set(task_filter_users, _TASK_UID_FILTER_SIZE,
UID(uid gid))) {
; if (index >= size) {
16: (2d) if r2 > r1 goto pc+31 // 16: 拿位移前数据做判断
; uint32 t index = pos >> 3;
48: (bf) r1 = r0
                             // 48: index=pos (0xFFFFFFFF)
49: (77) r1 >>= 3 1
                             // 49: 位移 index=(0~0x1FFFFFFF)
; return !!(arr[index] & (1 << offset));
50: (57) r1 &= 536870911
                             // 50: 536870911 == 0x1FFFFFFF
51: (18) r2 = 0xffffffc01e753008 // r2 = arr
53: (0f) r2 += r1
                             // r2 = &arr[index]
54: (71) r1 = *(u8 *)(r2 +0) // 判定存在越界读取可能, 校验失败。
```

问题现象:一段正确的程序在eBPF加载过程中,出现map访问越界的校验错误

根本原因:编译优化调整了判断条件和代码位置,导致校验失败。

解决方法:访问数据前(3)增加内存屏障 barrier var(index);问题消失。

mmperf实践经验典型案例2: kprobe观测陷阱

```
. .
// irg_work.c
void irq_work_single(void *arg)
 lockdep_irq_work_enter(flags);
 work->func(work);
 lockdep_irq_work_exit(flags);
static void irg_work_run_list(struct llist_head *list)
 irq_work_single(work);
void irg_work_run(void)
  irg_work_run_list(this_cpu_ptr(&raised_list));
EXPORT_SYMBOL_GPL(irg_work_run);
// smp.c
static void flush smp call function queue()
 if (type == CSD_TYPE_IRQ_WORK) {
        irq_work_single(csd);
```

```
(gdb) b *irq_work_run +0x0

Note: breakpoint 1 also set at pc 0xffffffc00822c808.

(gdb) disassemble /s 0xffffffc00822c808,0xffffffc00822c9bc

Dump of assembler code from 0xffffffc00822c808 to 0xffffffc00822c9bc:
...

211 lockdep_irq_work_enter(flags);
0xffffffc00822c878 <irq_work_run+112>: ldr x8, [x0, #16]
213 lockdep_irq_work_exit(flags);
...
```

问题现象: 观测目标 1 的数量明显少于 2 的某一部分入口。逻辑上说不通

根本原因: 观测目标irq_work_single(), 部分流程中被优化为内联。典型的kprobe使用陷阱。

解决方法:不太可能为了改善观测而修改编译参数等,规避观测目标。影响结果:问题是隐蔽的,会引导我们得到错误甚至完全相反的结论。

mmperf设计总结: 渐进式设计的演进原则

离线数据分析

> 分享了一种性能观测框架设计

- ✓ 能力抽象: 耗时统计, 计数统计, 调用栈记录, 低代码开发
- ✓ 数据聚合:长时间观测,降低系统资源开销
- ✓ 调度结合: 界定问题的可优化方向与优化空间
- ✓ 场景关联:场景信息导入,直观分析对场景的影响
- ✓ 见微见著:微观与宏观并行分析(平均时延,长尾时延)

> 分享了开发中遇到的一些问题与陷阱

- ✓ eBPF程序<mark>校验错误</mark>问题案例
- ✓ kprobe目标的<mark>观测陷阱</mark>案例

参考链接

- BPF Instruction Set: https://www.kernel.org/doc/html/v6.0/bpf/instruction-set.html
- simpleperf: https://android.googlesource.com/platform/system/extras/+/refs/heads/main/simpleperf/
- dwarf backtrace unwind: https://bbs.kanxue.com/thread-274546.htm
- OpenJDK: https://wiki.openjdk.org/display/shenandoah/Main
- virtual memory: https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/9_VirtualMemory.html
- kprobe issue on LPC2024 (Yonghong Song and Alan Maguire):
 https://lpc.events/event/18/contributions/1945/attachments/1508/3179/Kernel%20func%20tracing%20in%20the%20face%20of%20compiler%20optimization.pdf
- adeb: https://github.com/joelagnel/adeb
- ExtendedAndroidTools: https://github.com/facebookexperimental/ExtendedAndroidTools

Thanks

HONOR