Número:_____

Nota: cada resposta errada nas questões 1 a 6 desconta 0.33 valores

1.	$[1,0 \; \mathrm{valores}]$ - Considere o seguinte excerto de um programa escrito em <i>assembly</i> e a executar numa máquina com cache:								
	loop:	mull addl addl subl	1 0(%ebx), %edx 1 \$2, %edx 1 %edx, %eax 1 \$4, %ebx 1 \$2, %ecx ciclo						
	Considere que o registo %ecx tem inicialmente o valor 10. O programa é executado numa máquina com frequência do relógio igual a 3 GHz, CPI _{CPU} = 1, a <i>miss rate</i> de instruções é 1% e a de dados é 6%. Sabendo que <i>miss penalty</i> é de 150 ns, qual o tempo de execução deste programa?								
			T_{exec} = 150 ns			<i>T_{exec}</i> = 100 ns			
			T_{exec} = 33 ns			T_{exec} = 13 ns			
3.	 [1.0 valores] - Complete a afirmação abaixo : "A técnica de pipelining, relativamente a uma arquitectura sequencial de ciclo único, acelera o desempenho de um processador pois						·		

4.	[1,0 valores] -	Quantos bits tem	a <i>tag</i> de uma	a hierarquia d	de memória	(S=1024, E	=8, B=	=128
	m=32)?							

□ t= 15 □ t= 17

□ t=10 □ t=12

5. [1,0 valores] - Considere um processador com um bloco de lógica combinatória que pode ser dividido em 4 blocos, cada com uma duração de 214, 283, 252 e 201 picosegundos. Com uma organização em pipeline de 4 estágios este processador permite um ciclo de relógio mínimo de 333 picosegundos. A frequência máxima da organização sequencial correspondente a esta lógica combinatória é de:

 \Box f = 3.0 GHz \Box f = 1.0 GHz \Box f = 2 GHz \Box f = 1.5 GHz

6. [1,0 valores] - Considere o programa abaixo executado numa máquina com *pipeline* com 4 estágios idêntica à apresentada nas aulas (e representada na figura ao lado).

I1: mov \$10, %eax

12: sub \$5, %eax

I3: jz I1

I4: add \$10, %eax

Se esta máquina resolve todas as dependências (dados e controlo) recorrendo ao *stalling*, então o programa executa em:

			_		_	
7 ciclos		11 ciclos		9 ciclos		12 ciclos

Número:_____

7.	[2.0 valores] A tabela abaixo apresenta na coluna da esquerda uma sequência de endereços
	(m=6) de acesso à memória gerados por um determinado programa. As 3 colunas seguintes
	referem-se a um modo de mapeamento numa cache que usa o algoritmo de substituição
	LRU. Preencha-as indicando em que set/linha (dentro do set) mapeia cada endereço, qual a
	tag associada a essa linha depois deste acesso e indicando se se trata de um cold miss, colisão
	ou de um hit. Considere a cache inicialmente fria.

Addr	(S=4,E=2,B=4,m=6)	tag	cold miss/hit/colisão
1			
17			
3			
6			
32			

- 8. [2.0 valores] Considere de novo a máquina e o programa apresentados na questão 6. Considere agora que esta máquina suporta:
 - . previsão estática de saltos, prevendo sempre os saltos condicionais como tomados;
 - . data forwarding, com reencaminhamento do registo WR para o estágio de Decode e da saída da ALU para o estágio de Decode isto é, idêntico ao modelo analisado nas aulas.

Indique, justificando, quantos ciclos serão agora necessários para executar este programa.