Computing the motional emf in a loop. A planar metallic wire loop moves with a velocity \mathbf{v} in a nonuniform static magnetic field of flux density \mathbf{B} , as depicted in Fig. Q6.8. The magnetic field due to the induced current in the loop is negligible. Consider the following two expressions computed for this loop: $A_1 = -\frac{d}{dt} \int_S \mathbf{B} \cdot d\mathbf{S}$ and $A_2 = \oint_C (\mathbf{v} \times \mathbf{B}) \cdot d\mathbf{l}$, where the reference directions of $d\mathbf{l}$ and $d\mathbf{S}$ are interconnected by the right-hand rule. Which of the following is true for the induced emf, e_{ind} , in the loop?

- (A) $e_{\text{ind}} = A_1 + A_2$.
- (B) $e_{\text{ind}} = A_1 A_2$.
- (C) $e_{\text{ind}} = A_1 = A_2$.
- (D) $e_{\text{ind}} = A_1$ and $e_{\text{ind}} \neq A_2$.
- (E) $e_{\text{ind}} = A_2$ and $e_{\text{ind}} \neq A_1$.

Figure Q6.8 Planar metallic wire loop moving with a velocity \mathbf{v} in a time-constant magnetic field of flux density $\mathbf{B}(x, y, z)$; for Question 6.20.

Solution: (C)
Answer: (C)