

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»_

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»_

Логика и теория алгоритмов

Домашнее Задание № 2

Студент: Нгуен Ань Тхы

Группа: ИУ7-И46Б

Доказать в исчислении высказываний (буквы обозначают произвольные формулы):

Вариант 19:
$$\neg (\neg (\neg B \lor C) \to (\neg A \lor C)) \equiv (A \& (B \& \neg C))$$

Решение:

Имеем:

определение конъюнкции: $A\&B = \neg(A \to \neg B)$ (I)

определение дизъюнкции: $A \lor B = \neg A \rightarrow B$ (II)

{секвенция (3):
$$\vdash \neg \neg A \to A$$
 $\Rightarrow \neg \neg A \equiv A$ (III)

{секвенция (6):
$$\vdash (\neg B \to \neg A) \to (A \to B)$$

секвенция (7): $\vdash (A \to B) \to (\neg B \to \neg A)$ $\Rightarrow (\neg B \to \neg A) \equiv (A \to B)$ (IV)

Левая часть: $\neg (\neg (\neg B \lor C) \to (\neg A \lor C))$, используем (II) и (III) имеем:

$$\neg (\neg (\neg B \lor C) \to (\neg A \lor C)) \equiv \neg (\neg (\neg \neg B \to C) \to (\neg \neg A \to C)) \equiv \neg (\neg (B \to C) \to (A \to C))$$

Правая часть: $(A&(B&\neg C))$, используем (I) и (III) имеем:

$$(A\&(B\&\neg C)) \equiv \neg(A\rightarrow\neg\neg(B\rightarrow\neg\neg C)) \equiv \neg(A\rightarrow(B\rightarrow C))$$

Следовательно, исходная формула имеет вид:

$$\neg$$
 (\neg (B \rightarrow C) \rightarrow (A \rightarrow C)) \equiv \neg (A \rightarrow (B \rightarrow C)), используем (IV) имеем:

$$\neg(B \rightarrow C) \rightarrow (A \rightarrow C) \equiv A \rightarrow (B \rightarrow C)$$

Поскольку надо доказать эквивалентность двух формул, то нужно вывести правую часть из левой и левую из правой.

Выводим правую часть из левой:

$$\vdash (\neg (B \mathbin{\rightarrow} C) \mathbin{\rightarrow} (A \mathbin{\rightarrow} C)) \mathbin{\rightarrow} (A \mathbin{\rightarrow} (B \mathbin{\rightarrow} C))$$

$$(1) \neg (B \rightarrow C) \rightarrow (A \rightarrow C)$$
 - гипотеза

- (2) А гипотеза
- (3) В гипотеза
- (4) A \rightarrow (\neg C \rightarrow \neg (A \rightarrow C)) секвенция (8) при замене A:=A, B:=C

$$(5) \neg C \rightarrow \neg (A \rightarrow C) - MP(2), (4)$$

$$(6)$$
 ($\neg C \rightarrow \neg (A \rightarrow C)) \rightarrow ((A \rightarrow C) \rightarrow C)$ - секвенция (6) при замене A:=(A \rightarrow C), B:=C

$$(7) (A \rightarrow C) \rightarrow C - MP (5), (6)$$

$$(8) \neg (B \rightarrow C) \rightarrow C R1, (1), (7)$$

$$(9) (\neg (B \rightarrow C) \rightarrow C) \rightarrow ((\neg \neg (B \rightarrow C) \rightarrow C) \rightarrow C)$$
 - секвенция (9)

при замене
$$A := \neg (B \rightarrow C)$$
, $B := C$

$$(10) (\neg \neg (B \rightarrow C) \rightarrow C) \rightarrow C - MP(8), (9)$$

$$(11) ((B \rightarrow C) \rightarrow C) \rightarrow C - R4 шаг (10)$$

(12)
$$B \rightarrow (\neg C \rightarrow \neg (B \rightarrow C))$$
 – секвенция (8) при замене $A := B, B := C$

$$(13) \neg C \rightarrow \neg (B \rightarrow C) - MP(3), (12)$$

$$(14) (B \rightarrow C) \rightarrow C - R6 шаг (13)$$

Итак
$$\neg (B \rightarrow C) \rightarrow (A \rightarrow C)$$
, A, B $\vdash C \vdash (\neg (B \rightarrow C) \rightarrow (A \rightarrow C)) \rightarrow A \rightarrow (B \rightarrow C)$

выводим левую часть из правой:

$$\vdash(A \rightarrow (B \rightarrow C)) \rightarrow (\neg(B \rightarrow C) \rightarrow (A \rightarrow C))$$

(1)
$$A \rightarrow (B \rightarrow C)$$
 - гипотеза

(3)
$$\neg B \rightarrow (B \rightarrow C)$$
 - секвенция (5) при замене A:=B, B:=C

$$(4) (\neg B \rightarrow (B \rightarrow C)) \rightarrow (\neg (B \rightarrow C) \rightarrow \neg \neg B)$$
 - секвенция (7)

при замене
$$A := \neg B$$
, $B := B \rightarrow C$

$$(5) \neg (B \rightarrow C) \rightarrow \neg \neg B - MP(3), (4)$$

$$(6) \neg \neg B - MP(2), (5)$$

(7)
$$\neg \neg B \rightarrow B$$
 - секвенция (3) при замене A:=B

$$(8) B - MP(6), (7)$$

$$(9) (A \rightarrow C) - R1$$
 для (1) и (8)

Итак (A
$$\rightarrow$$
(B \rightarrow C)), \neg (B \rightarrow C) \vdash (A \rightarrow C) \vdash (A \rightarrow C)) \rightarrow (\neg (B \rightarrow C)) \rightarrow (A \rightarrow C))