Comparison of MetAP2 Homologues (mouse 350 TD No:13) Fale = SEQ ID NO:17; human = SEQ ID NO:12; yeast = SEQ ID NO:14)

06 6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	180 180 180 116	263 263 263 206	353 353 353 296	4443 443 443	
76 LEEKERDDDDEDGDG LEEKEKDDDDEDGDG LEDKERDEDDEDGDG	166 WNDFREAAEAHROVR WNDFREAAEAHROVR WNDFREAAEAHROVR WNDVRKGAEIHRRVR	256 KIDFGTHISGRIIDC KIDFGTHISGRIIDC KIDFGTHISGRIIDC KVDYGVQVNGNIIDS	346 HAGKTVPIVKGGEAT HAGKTVPIVKGGEAT HAGKTVPIVKGGEAT HGGKSVPIVKNGDTT	436 LMALKNLCDLGIVDP LMALKNLCDLGIVDP LMALKNLCDLGIVDP LFALNNLVRHGIVQD	
61 GALVDEVAKQLESQA GTSVDEVAKQLERQA GASVDEVARQLERSA SPASDLKELNLENEG	151 TSEEKKALDQASEEI TSEEKKALDQASEEI TSEEKKALDQASEEI SRYLKRDLERAEH	255 PNAGDTTVLQYDDIC PNAGDTTVLQYDDIC PNAGDTTVLQYDDIC PNAGDTTVLQYDDIC	331 PIRNLNGHSIGPYRI PIRNLNGHSIGPYRI PIRNLNGHSIGQYRI PCRNLCGHSIAPYRI	421 AFCRRWLDRLGESKY AFCRRWLDRLGESKY AFCRRWLDRLGESKY PFCRRYLDRLGESKY	
46 KGAVSAVQQELDKES KGAVSAGQQELDKES KGPSAAGEQEPDKES	136 EYPPTQDGRTAAWRT EYPPTQDGRTAAWRT EYPPTQDGRTAAWRT	226 FPTGCSLNNCAAHYT FPTGCSLNNCAAHYT FPTGCSLNNCAAHYT FPTGCSLNNCAAHYT	316 ESYEVEIDGKTYQVK ESYEVEIDGKTYQVK ESYEVEIDGKTYQVK ESYEVEINGETYQVK	406 TKHLLNVINENFGTL TKHLLNVINENFGTL TKHLLNVINENFGTL AKHLLNVINENFGTL	
31 AEEAAKKRRKKKG AEEAAKKKRRKKKG AEEAAKKKRRKKKKG AEEAAKKKRRKKKK	121 CDLYPNGVFPKGQEC CDLYPNGVFPKGQEC CDLYPNGVFPKGQEC	211 NGLNAGLA NGLNAGLA NGLNAGLA NGLNAGLA	315 DVRLCDVGEAIQEVM DVRLCDVGEAIQEVM DVRLCDVGEAIQEVM	405 MKNFDVGHVPIRLPR MKNFDVGHVPIRLPR MKNFDVGHVPIRLPR ARSAEDHQVMPTLDS	RGDDY 478 EEMTIKT 480 RGDDY 478 KGDDY 421
30 GDLDPDDREEGTSST RDLDPDDREEGTSST GDLDPDDREEGAAST	120 KRGPKVQTDPPSVPI KRGPRVQTDPPSVPI KRGPKVQTDPPSVPI	210 ICEKLEDCSRKLIKE ICEKLEDCSRKLIKE ICEKLEDCSRKLIKE ICEKLEDCSRKLIKE	300 AVKDATNTGIKCAGI AVKDATNTGIKCAGI AVKDATNTGIKCAGI AVKDATNTGIKCAGI	376 TGKGVVHDDMECSHY TGKGVVHDDMECSHY TGKGVVHDDMECSHY TGRGYVTAGGEVSHY	466 EHTILLRPTCKEVVS EHTILCAQPVKKLSA EHTILLRPTCKEVVS EHTILLRAHKKEVVS
1 MAGVEQAASFGGHLN MAGVEEASSFGGHLN MAGVEEVAASGSHLN	91 DADGATGKKKKKKK DGDGAGKKKKKKK DGDGATGKKKKKKK ESKKKKKKKK	181 KYVMSWIKPGMTMIE KYVMSWIKPGMTMIE KYVMSWIKPGMTMIE RAIKDRIVPGMKLMD	271 AFTVTENPKYDILLT AFTVTENPKYDILLK AFTVTENPKYDILLK AFTVTENPKYDTLLK	375 RMEEGEVYAIETFGS RMEEGEVYAIETFGS RMEEGEVYAIETFGS KMEEGEHFAIETFGS	451 YPPLCDIKGSYTAQF YPPLCDIKGSYTAQF YPPLCDIKGSYTAQF YPPLNDIPGSYTAQF
mouse rat human yeast	mouse rat human yeast	mouse rat human yeast	mouse rat human yeast	mouse rat human yeast	mouse rat human yeast

Figure 2

A. Glucose

B. Galactose

FIGURE 3

Figure 4

A. Glucose

B. Galactose

H174A-MetAP2 requires N-terminal residues 2-57 for inhibition of map1 Δ growth under the GAL1 promoter.

Figure 5

The steady state levels of each MetAP2 construct are comparable. Immunoblot comparison of HA-MetAP2 wt, HA-MetAP2 H174A, and MetAP2 $\Delta 2$ -57 H174A steady state levels in map1 Δ .

Figure 6

Overexpression of H174A-MetAP2 under the GPD promoter does not inhibit the growth of map 2Δ

Figure 7

Figure 8

Figure

kDa

78

Figure 1