

Note	0
	a)

The n-simplex is acyclic i.e., has the handogy of a point. But if we want to actually compute its Howdogy groups, we must build a simplectal complex with 2^n-1 simplices! On we do better?

6

Our goal today is to reduce a LARGE chain complex

... d3 C2 d2 C, d1 C0 -> 0

oning from some simplicial complex K to a MUCH SMALLER chair complex

 $0 \longrightarrow \mathbb{R}_2 \xrightarrow{\mathbb{R}_2} \mathbb{R}_1 \xrightarrow{\mathbb{R}_1} \mathbb{R}_2 \longrightarrow \mathbb{R}_2 \longrightarrow$

with the SAME HOMOLOGY, i.e.,

Hi(Co,do) ~ Hi(Mo,eo)

0)

The key observation in all this is the fact that a pair of simplices act in K can be REMOVED without changing hamology provided that t is the only simplex in the set {xeK | x>a and dim x-dima=1}

(handopy Epivalence) K-80,3

9)

The basic idea is to remove simplices, two-at-a-time, as many times as possible, without changing the hondayy groups.

Let K be a simpled complex. A PARTIAL Def 1 MATCHING on K is a dilection $\Sigma = \{(a, < \tau_0)\}$ of simplex-pairs satisfying a) if (act) & Z. then dimt = dima+1 b) if (act) & 2 then no other pair in 2 Contains either a or T Such matchings are usually. illustrated via amous from a to Z; 9, and 1 y The following are NOT partial watchings and / The simplices of R which do NOT appear in 21's. b) are colled I-CATTICAL, or usually just critical. A Z-PATH is a sequence of paired simplices that () fits together the this. OCTO > O, CT, > O2 CT2> ... > O4 CTA where all a's have the same dimension. d) We call I am ACYCLIC partial watching if none of its paths are cycles, i.e., I path のんてのフェー・フのんこてん with k>0 and nocTk

Let K be a finite simplicial complex and The Z an acyclic partial metching on K. Then, the handagy H. (K, F) can be computed by the chain Complex where $M_i = \bigoplus F$, and the boundary matrix e: Mi -> Mo-1 is given as follows. diversion (ers= Cr, s+ Z' Cr, no = m(p) = Ctk, s. (P=(ao<...<Th))
Z-path The summand is what you get by computing the multiplicity of prangmented by critical colle, ire; S) a < To > a , < To > o , < To > Note 8 When working with F= 4/2, the matrix entry ex, s & {0,13} just causts the parity (even = 0, odd = 1) of the number of Z-parns that "flow from y to S" This example had two paths so $M_1 \xrightarrow{\circ} M_0 \xrightarrow{\circ} O$

(MUTATIONS)

Discrete Morse Theory adapts nicely to other (a) handagy computations - persistent Mondagy and Sheaf abundagy.

I. PERSISTENCE: Here are two Filtrations of a '
I 1- simplex (numbers on simplices indicate which stage they are born in):

Fails 0 o 1 o o find works
When can we "pair and remove" two simplifies
without changing the persistent handbagy?

Every Altrotion $K_0 \subseteq K_1 \subseteq \dots \subseteq K_n = K$ of a simplicial B complex K is "equivalent to" a single function b: $K \to IN$, where $b(\alpha) = \min \{i \in \{0,\dots,n\} \mid \alpha \in K_i\}$, so $\alpha \le T$ means $b(\alpha) \in b(\tau)$. $\to \infty$

Def An acyclic partial matching \mathbb{Z} on \mathbb{K} is compatible with the fictration $\mathbb{K}_0 \subseteq -\subseteq \mathbb{K}_n = \mathbb{K}$ if it only pairs simplices with the SAME b- value, i.e., $(\alpha < \tau) \in \mathbb{Z} \implies b(\alpha) = b(\tau)$

[In other words, restricting I to Ki produces a genuine partial matching on Ki].

The SI is compatible with a filtration Koc. C. K. = K. Then the Morse chain complexes include; they will be the Morse complex associated to

the restriction of Z to K_i , we get injective chain maps M° co M° che M° co M° = "Altered morse complex. i-e, all such squares commute: ··· Company Mitt $\longrightarrow M_{j-1} \xrightarrow{\gamma_{j-1}} M_{j-1}$ Here, M' = : chain group generated by Z-antical simplies with b-values < i and dimension = j, and e's the Morse boundary operator Moreover, the Persistent Honology groups of the filtered Morse complex coincide with those of K. " Ge Bonophie" If Z is Albrahon-compatible, then any Z-path P= (a0< To > a, < Ti>--> an < Th) is b-nonincreasing! Every time we see a "z", the b value is the same across it. And if we see a ">", then be can not increase by "(x) (see B) an previous page). Thus, the boundary map eit precisely quals ej when restricted to the smaller Morse complex M' E Mit

SHEAVES: What if we had a sheaf if on R? Gold we compute sheaf chanology H.(K; F) by using discrete Morse Theory? The main difference is that the co-boundary map X d'y: C'(K,X) -> C'+(K,X). has the black-form *= (22,0). 7(052) Makrix Flot - F(t), Restriction map number (±1,0) If we have a pair (057), then we need 1 to be INVERTIBLE to define the recessary row and column operations! [See Ans 5 ideale]; and in this case, the multiplicity of a Z-path with coefficients in F is just given as follows: For P= (0,<67, 0,<7, >--1 > 0,<7,.) My (P) = - \$\frac{1}{\pi_{0,\text{To}}}\circ \frac{1}{\pi_{0,\text{To}}}\circ \frac{1}{\pi_{0,\text This is a LINFAR MAP Z(Th) -> Z(O) So, Morse bounday map ex loss the following. "block" relating critical simplex is to critical simplex $C_{2}|_{\mathcal{S},S} = \star_{\mathcal{S},S} + \sum_{\substack{p \in \mathbb{Z} \text{-path} \\ = (0,0<0,0), \text{ }}} \star_{0,1} \circ M_{2}(p) \circ \star_{\mathcal{S},\mathcal{T}_{u}}$

This is a linear map $F(8) \longrightarrow F(8)$ as desired.
Elet of be a sheaf on a simplicial complex K Thin and let I be on R-carpatible acyclic parties showsherg) matching on K, i.e.,
(actle Z =) f(act) is invertible.
Then, there is a cochain camplex My 4 My 4
Where Mig = D Z(a), and eight is given by dina = i
the formula in \mathbb{Z} , so that $H^{\circ}(K, \pi)$ is exactly the cohomology of M_{π}° !
FURTHER READING ON D.M.T.
There are two papers on using discrete Morse thany for (A) persistence and (B) showes:
(A) "Morse theory for Althorions & elficient computation of persistent homology" - Discrete & Comput geometry 2013
(B) "Discrete Morse Theory for computing collular Sheaf cohomology" - Foundations of comput- works, 2016.
Here you can find detailed proofs of all the route. The basic idea is this: show that if you remove out I pair (x7y), then we get a chair honotopy equivalence Then reiterate, removing another pair, etc.