

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

General Description

The MAX9039–MAX9043 and MAX9050–MAX9053 feature combinations of low-power comparators and precision voltage references. Their operating voltage range makes them ideal for both 3V and 5V systems. The MAX9039/MAX9040/MAX9041/MAX9050/MAX9051 have a single comparator and reference consuming only 40 μ A of supply current. The MAX9042/MAX9043/MAX9052/MAX9053 have dual comparators and one reference, and consume only 55 μ A of supply current. Low-voltage operation and low supply current make these devices ideal for battery-operated systems.

The comparators feature rail-to-rail inputs and outputs, with a common-mode input voltage range that extends 250mV beyond the supply rails. Input bias current is typically 1.0pA, and input offset voltage is typically 0.5mV. Internal hysteresis ensures clean output switching, even with slow-moving input signals. The output stage features a unique design that limits supply current surges while switching, virtually eliminating supply glitches typical of many other comparators. This design also minimizes overall power consumption under dynamic conditions. The comparator outputs have rail-to-rail, push-pull output stages that sink and source up to 8mA. The propagation delay is 400ns, even with the low-operating supply current.

The reference output voltage is set to 1.23V in the MAX9039, to 2.048V in the MAX9040–MAX9043, and to 2.500V in the MAX9050–MAX9053. The MAX9040–MAX9043 and the MAX9050–MAX9053 are offered in two grades: an A grade with 0.4% initial accuracy and 6ppm/ $^{\circ}$ C tempco, and a B grade with 1% initial accuracy and 100ppm/ $^{\circ}$ C tempco. The voltage references feature a proprietary curvature-correction circuit and laser-trimmed thin-film resistors. These series-mode references can sink or source up to 500 μ A of load current.

Applications

Precision Battery Management
Window Comparators
IR Receivers

Level Translators
Digital Line Receivers

Typical Operating Circuit and Functional Diagrams appear at end of data sheet.

UCSP is a trademark of Maxim Integrated Products, Inc.

Features

- ◆ Comparator + Precision Reference in UCSP/SOT23
- ◆ 2.5V to 5.5V Single-Supply Operation (MAX9039–MAX9043)
- ◆ Low Supply Current (MAX9039/MAX9040/MAX9041/MAX9050/MAX9051)
40 μ A Quiescent
50 μ A with 100kHz Switching
- ◆ 400ns Propagation Delay
- ◆ Rail-to-Rail Inputs
- ◆ Rail-to-Rail Output Stage Sinks and Sources 8mA
- ◆ Internal \pm 3mV Hysteresis
- ◆ Voltage Reference Offers
±0.4% (max) Initial Accuracy (A grade)
6ppm/ $^{\circ}$ C (typ) Temperature Coefficient (A grade)
Stable for 0 to 4.7nF Capacitive Loads

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE	TOP MARK
MAX9039BEBT-T*	-40°C to +85°C	6 UCSP	AAZ
MAX9040AEUK-T	-40°C to +85°C	5 SOT23	ADNW
MAX9040BEUK-T	-40°C to +85°C	5 SOT23	ADNX
MAX9041AEUT-T	-40°C to +85°C	6 SOT23	AAHF
MAX9041BEUT-T	-40°C to +85°C	6 SOT23	AAHH
MAX9041AES	-40°C to +85°C	8 SO	—
MAX9041BES	-40°C to +85°C	8 SO	—

*UCSP reliability is integrally linked to the user's assembly methods, circuit board material, and environment. Refer to the UCSP Reliability section of this data sheet for more information.

Ordering Information continued at end of data sheet.

Selector Guide appears at end of data sheet.

Pin Configurations

Pin Configurations continued at end of data sheet.

MAXIM

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

Maxim Integrated Products 1

MAX9039-MAX9043/MAX9050-MAX9053

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC} to V _{EE})	-0.3V to +6V
All Other Pins	(V _{EE} - 0.3V) to (V _{CC} + 0.3V)
Current into Input Pins	±20mA
Output Short-Circuit Duration (OUT __ , REF)	Indefinite Short Circuit to Either Supply
Continuous Power Dissipation (T _A = +70°C)	
5-Pin SOT23 (derate 7.10mW/°C above +70°C)	571mW
6-Bump UCSP (derate 3.9mW/°C above +70°C)	308mW
6-Pin SOT23 (derate 8.70mW/°C above +70°C)	696mW

8-Pin SO (derate 5.88mW/°C above +70°C)	471mW
8-Pin μMAX® (derate 4.1mW/°C above +70°C)	330mW
10-Pin μMAX (derate 5.6mW/°C above +70°C)	444mW
Operating Temperature Range	-40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Bump Reflow Temperature (Note 1)	+235°C

Note 1: This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device can be exposed to during board-level solder attach and rework. This limit permits only the use of the solder profiles recommended in the industry-standard specification, JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and Convection Packaging Reflow. Preheating is required. Hand or wave soldering is not allowed.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—A Grade (0.4% Initial Accuracy)

(V_{CC} = +5V, V_{EE} = 0V, V_{CM} = 0V, I_{OUT} = 0A, I_{REF} = 0A, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range (Note 3)	V _{CC}	MAX9040–MAX9043		2.5	5.5		V
		MAX9050–MAX9053		2.7	5.5		
Supply Current	I _{CC}	MAX9040/MAX9041/ MAX9050/MAX9051	V _{CC} = 2.7V		47	67	μA
			V _{CC} = 5V		52	72	
		MAX9042/MAX9043/ MAX9052/MAX9053	V _{CC} = 2.7V		55	80	
			V _{CC} = 5V		60	85	
COMPARATORS							
Input Offset Voltage (Note 4)	V _{OS}	Over entire common-mode range	T _A = +25°C		±0.5	±5.0	mV
			T _A = -40°C to +85°C			±7.0	
Input Hysteresis	V _{HYST}				±3.0		mV
Input Bias Current (Notes 5, 6, 7)	I _B	Specified common-mode range			±0.001	±10.0	nA
Input Offset Current (Note 5)	I _{OS}	Specified common-mode range			±0.5		pA
Common-Mode Voltage Range (Notes 5, 8)	CMVR	T _A = +25°C		V _{EE} - 0.25	V _{CC} + 0.25		V
		T _A = -40°C to +85°C		V _{EE}	V _{CC}		
Common-Mode Rejection Ratio (Note 5)	CMRR	Specified common-mode range		52	80		dB
Power-Supply Rejection Ratio	PSRR	MAX9040–MAX9043, 2.5V ≤ V _{CC} ≤ 5.5V		55	80		dB
		MAX9050–MAX9053, 2.5V ≤ V _{CC} ≤ 5.5V		55	80		
Input Capacitance (Note 5)	C _{IN}				2.5		pF
Output Short-Circuit Current	I _{SC}	V _{OUT} = V _{EE} or V _{CC}	V _{CC} = 5V		95		mA
			V _{CC} = 2.7V		35		
Output Voltage Low	V _{OL}	V _{CC} = 5V, I _{SINK} = 8mA			0.2	0.55	V
		V _{CC} = 2.7V, I _{SINK} = 3.5mA			0.15	0.4	

μMAX is a registered trademark of Maxim Integrated Products, Inc.

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

ELECTRICAL CHARACTERISTICS—A Grade (0.4% Initial Accuracy) (continued)

(V_{CC} = +5V, V_{EE} = 0V, V_{CM} = 0V, I_{OUT} = 0A, I_{REF} = 0A, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Output Voltage High	V _{OH}	V _{CC} = 5V, I _{SOURCE} = 8mA		4.45	4.85		V
		V _{CC} = 2.7V, I _{SOURCE} = 3.5mA		2.3	2.55		
Output Rise/Fall Times	t _R /t _F	C _L = 15pF		40			ns
		C _L = 50pF		50			
		C _L = 200pF		80			
Output Propagation Delay (Note 9)	t _{PD+} / t _{PD-}	C _L = 15pF, V _{CC} = 2.7V	50mV overdrive	450			ns
			100mV overdrive	400			
Power-Up Time	t _{PU}	Time to V _{OUT} valid logic state		20			μs

VOLTAGE REFERENCE

Output Voltage	V _{REF}	T _A = +25°C	MAX9040–MAX9043	2.040	2.048	2.056	V
			MAX9050–MAX9053	2.490	2.500	2.510	
Output Voltage Temperature Coefficient (Note 10)	TCVREF	μMAX/SO		6	30		ppm/°C
		SOT23		6	50		
Line Regulation	ΔV _{REF} / ΔV _{CC}	2.5V ≤ V _{CC} ≤ 5.5V, MAX9040–MAX9043		+50	+200		μV/V
		2.7V ≤ V _{CC} ≤ 5.5V, MAX9050–MAX9053		+50	+200		
Load Regulation	ΔV _{REF} / ΔI _{REF}	Sourcing, 0μA ≤ I _{REF} ≤ 500μA		2	4		μV/μA
		Sinking, -500μA ≤ I _{REF} ≤ 0μA		3.5	6		
Output Short-Circuit Current	I _{SC}	V _{REF} = V _{EE} or V _{CC}		4			mA
Thermal Hysteresis (Note 11)	T _{HYST}			130			ppm
Long-Term Stability		1000h at T _A = +25°C		50			ppm
Noise Voltage	E _{OUT}	f = 0.1Hz to 10Hz		40			μV _{P-P}
		f = 10Hz to 10kHz		105			μVRMS
Ripple Rejection	ΔV _{REF} / ΔV _{CC}	V _{CC} = 5V ± 100mV, f = 120Hz		84			dB
Turn-On Settling Time	t _R (V _{REF})	To V _{REF} = 1% of final value		200			μs
Capacitive-Load Stability Range (Note 7)	C _L (V _{REF})			0	4.7		nF

ELECTRICAL CHARACTERISTICS—B Grade (1% Initial Accuracy)

(V_{CC} = 5V, V_{EE} = 0V, V_{CM} = 0V, I_{OUT} = 0A, I_{REF} = 0A, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage Range (Note 3)	V _{CC}	MAX9039–MAX9043		2.5	5.5		V
		MAX9050–MAX9053		2.7	5.5		
Supply Current	I _{CC}	MAX9039/MAX9040/ MAX9041/MAX9050/ MAX9051	V _{CC} = 2.7V	40			μA
			V _{CC} = 5.0V	45	100		
		MAX9042/MAX9043/ MAX9052/MAX9053	V _{CC} = 2.7V	55			
			V _{CC} = 5.0V	60	130		

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

ELECTRICAL CHARACTERISTICS—B Grade (1% Initial Accuracy) (continued)

($V_{CC} = 5V$, $V_{EE} = 0V$, $V_{CM} = 0V$, $I_{OUT} = 0A$, $I_{REF} = 0A$, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^\circ C$.)
(Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
COMPARATOR							
Input Offset Voltage (Note 4)	V_{OS}	Over entire common-mode range		± 1		± 9.0	mV
Input Hysteresis	V_{HYST}			± 3.0			mV
Input Bias Current (Notes 5, 6, 7)	I_B	Specified common-mode range		± 0.001		± 25.0	nA
Input Offset Current (Note 5)	I_{OS}	Specified common-mode range		± 0.5			pA
Common-Mode Voltage Range (Notes 5, 8)	$CMVR$			V_{EE}		V_{CC}	V
Common-Mode Rejection Ratio (Note 5)	$CMRR$	Specified common-mode range		52	80		dB
Power-Supply Rejection Ratio	$PSRR$	MAX9039–MAX9043, $2.5V \leq V_{CC} \leq 5.5V$		55	80		dB
		MAX9050–MAX9053, $2.7V \leq V_{CC} \leq 5.5V$		55	80		
Input Capacitance (Note 5)	C_{IN}			2.5			pF
Output Short-Circuit Current	I_{SC}	$V_{OUT} = V_{EE}$ or V_{CC}	$V_{CC} = 5V$	95			mA
			$V_{CC} = 2.7V$	35			
Output Voltage Low	V_{OL}	$V_{CC} = 5V$, $I_{SINK} = 8mA$		0.2		0.55	V
		$V_{CC} = 2.7V$, $I_{SINK} = 3.5mA$		0.15			
Output Voltage High	V_{OH}	$V_{CC} = 5V$, $I_{SOURCE} = 8mA$		4.45		4.85	V
		$V_{CC} = 2.7V$, $I_{SOURCE} = 3.5mA$		2.55			
Output Rise/Fall Times	$t_{R/F}$	$C_L = 15pF$		40			ns
		$C_L = 50pF$		50			
		$C_L = 200pF$		80			
Output Propagation Delay (Note 9)	t_{PD+}/t_{PD-}	$C_L = 15pF$, $V_{CC} = 2.7V$	50mV overdrive	450			ns
			100mV overdrive	400			
Power-Up Time	t_{PU}	Time to V_{OUT} valid logic state		20			μs
VOLTAGE REFERENCE							
Output Voltage	V_{REF}	$TA = +25^\circ C$	$MAX9039$	1.218	1.230	1.242	V
			$MAX9040$ – $MAX9043$	2.028	2.048	2.068	
			$MAX9050$ – $MAX9053$	2.475	2.500	2.525	
Output Voltage Temperature Coefficient (Note 10)	TCV_{REF}			20		100	ppm/°C
Line Regulation	$\Delta V_{REF}/\Delta V_{CC}$	$2.5V \leq V_{CC} \leq 5.5V$	$MAX9039$ – $MAX9043$	+50	+200		μV/V
			$MAX9050$ – $MAX9053$	+50	+200		
Load Regulation	$\Delta V_{REF}/\Delta I_{REF}$	Sourcing: $0\mu A \leq I_{REF} \leq 500\mu A$		2	4		μV/μA
		Sinking: $-500\mu A \leq I_{REF} \leq 0\mu A$		3.5	6		
Output Short-Circuit Current	I_{SC}	$V_{REF} = V_{EE}$ or V_{CC}		4			mA
Thermal Hysteresis (Note 11)	T_{HYST}			130			ppm
Long-Term Stability		1000h at $T_A = +25^\circ C$		100			ppm
Noise Voltage	E_{OUT}	$f = 0.1Hz$ to $10Hz$		40			μV _{P-P}
		$f = 10Hz$ to $10kHz$		105			μVRMS

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

ELECTRICAL CHARACTERISTICS—B Grade (1% Initial Accuracy) (continued)

($V_{CC} = 5V$, $V_{EE} = 0V$, $V_{CM} = 0V$, $I_{OUT} = 0A$, $I_{REF} = 0A$, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^\circ C$.)
(Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Ripple Rejection	$\Delta V_{REF}/\Delta V_{CC}$	$V_{CC} = 5V \pm 100mV$, $f = 120Hz$		84		dB
Turn-On Settling Time	$t_R(V_{REF})$	To $V_{REF} = 1\%$ of final value		200		μs
Capacitive Load Stability Range (Note 7)	$C_L(V_{REF})$		0	4.7		nF

Note 2: All devices are 100% production tested at $T_A = +25^\circ C$. Limits over the extended temperature range are guaranteed by design.

Note 3: Supply voltage range guaranteed by PSRR test on comparator and line regulation of REF.

Note 4: V_{OS} is defined as the center of the input-referred hysteresis band.

Note 5: For the comparators with the inverting input (IN-) uncommitted.

Note 6: Input bias current is the average of the inverting and noninverting input bias currents.

Note 7: Not production tested. Guaranteed by design.

Note 8: Guaranteed by CMRR test.

Note 9: $V_{OVERDRIVE}$ is beyond the offset and hysteresis determined trip point.

Note 10: Temperature coefficient is measured by the box method; i.e., the maximum ΔV_{REF} is divided by the maximum ΔT .

Note 11: Thermal hysteresis is defined as the change in V_{REF} at $+25^\circ C$ before and after cycling the device from T_{MIN} to T_{MAX} .

Typical Operating Characteristics

($V_{CC} = 5V$, $V_{EE} = 0V$, $V_{CM} = 0V$, $I_{OUT} = 0A$, $I_{REF} = 0A$, $T_A = +25^\circ C$, unless otherwise noted.)

MAX9039/MAX9040/MAX9041/MAX9050/MAX9051
SUPPLY CURRENT vs. TEMPERATURE

MAX9042/MAX9043/MAX9052/MAX9053
SUPPLY CURRENT vs. TEMPERATURE

MAX9039/MAX9040/MAX9041/MAX9050/MAX9051
SUPPLY CURRENT vs. SWITCHING FREQUENCY

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

Typical Operating Characteristics (continued)

($V_{CC} = 5V$, $V_{EE} = 0V$, $V_{CM} = 0V$, $I_{OUT} = 0A$, $I_{REF} = 0A$, $T_A = +25^\circ C$, unless otherwise noted.)

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

Typical Operating Characteristics (continued)
($V_{CC} = 5V$, $V_{EE} = 0V$, $V_{CM} = 0V$, $I_{OUT} = 0A$, $I_{REF} = 0A$, $T_A = +25^\circ C$, unless otherwise noted.)

PROPAGATION DELAY (t_{PD+})

PROPAGATION DELAY (t_{PD-})

SWITCHING CURRENT (OUT RISING EDGE)

SWITCHING CURRENT (OUT FALLING EDGE)

POWER-UP DELAY (OUT)

POWER-UP DELAY (REF)

**INPUT BIAS CURRENT
vs. INPUT VOLTAGE**

**MAX904₊/MAX905₊
REFERENCE OUTPUT VOLTAGE
TEMPERATURE DRIFT**

**MAX9039
REFERENCE OUTPUT VOLTAGE
TEMPERATURE DRIFT**

MAX9039-MAX9043/MAX9050-MAX9053

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

Typical Operating Characteristics (continued)

($V_{CC} = 5V$, $V_{EE} = 0V$, $V_{CM} = 0V$, $I_{OUT} = 0A$, $I_{REF} = 0A$, $T_A = +25^\circ C$, unless otherwise noted.)

Pin Description

PIN						NAME	FUNCTION
MAX9039	MAX9040 MAX9050	MAX9041 MAX9051		MAX9042 MAX9052	MAX9043 MAX9053		
UCSP	SOT23	SOT23	SO	SO/µMAX	µMAX		
A2	1	1	6	—	—	OUT	Comparator Output
A1	2	2	4	4	5	V_{EE}	Negative Supply Voltage
B1	3	3	3	—	—	IN+	Comparator Noninverting Input
B3	4	5	1	2	2	REF	Reference Voltage Output
A3	5	6	7	8	10	V_{CC}	Positive Supply Voltage
B2	—	4	2	—	—	IN-	Comparator Inverting Input
—	—	—	5, 8	—	9	N.C.	No Connection. Not internally connected.
—	—	—	—	1	1	OUTA	Comparator A Output
—	—	—	—	3	4	INA+	Comparator A Noninverting Input
—	—	—	—	5	6	INB+	Comparator B Noninverting Input
—	—	—	—	6	7	INB-	Comparator B Inverting Input
—	—	—	—	7	8	OUTB	Comparator B Output
—	—	—	—	—	3	INA-	Comparator A Inverting Input

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

Detailed Description

The MAX9039–MAX9043 and MAX9050–MAX9053 feature single/dual, low-power, low-voltage comparators and a precision voltage reference. They operate from a single 2.5V to 5.5V (MAX9039/MAX904_) or 2.7V to 5.5V (MAX905_) supply. The single comparators with reference, (MAX9039/MAX9040/MAX9041/MAX9050/MAX9051 consume only 40 μ A of supply current, while the dual comparators with reference (MAX9042/MAX9043/MAX9052/MAX9053) consume only 55 μ A of supply current. Their common-mode input range extends 0.25V beyond each rail. Internal hysteresis ensures clean output switching, even with slow-moving input signals.

The output stage employs a unique design that minimizes supply current surges while switching, virtually eliminating the supply glitches typical of many other comparators. Large internal output drivers allow rail-to-rail output swing that can sink and source up to 8mA of current.

The precision reference uses a proprietary curvature-correction circuit and laser-trimmed thin-film resistors, resulting in a temperature coefficient of less than 30ppm/ $^{\circ}$ C over the extended temperature range and initial accuracy of 0.4% (A grade). The reference output voltage is set to 1.23V in the MAX9039, 2.048V in the MAX9040–MAX9043, and to 2.500V in the MAX9050–MAX9053.

Comparator Input Stage Circuitry

The devices' input common-mode range extends from ($V_{EE} - 0.25V$) to ($V_{CC} + 0.25V$). These comparators may operate at any differential input voltage within these limits. Input bias current is typically 1.0pA if the input volt-

age is between the supply rails. Comparator inputs are protected from overvoltage by internal body diodes connected to the supply rails. As the input voltage exceeds the supply rails, these body diodes become forward biased and begin to conduct. Consequently, bias currents increase exponentially as the input voltage exceeds the supply rails.

Comparator Output Stage Circuitry

The comparators in these devices contain a unique output stage capable of rail-to-rail operation with loads up to 8mA. Many comparators consume orders-of-magnitude more current during switching than during steady-state operation. However, with this family of comparators, the supply current change during an output transition is extremely small. The *Typical Operating Characteristics* graph Supply Current vs. Switching Frequency shows the minimal supply current increase as the output switching frequency approaches 1MHz. This characteristic reduces the need for power-supply filter capacitors to reduce glitches created by comparator switching currents. Another advantage realized in high-speed, battery-powered applications is a substantial increase in battery life.

Applications Information

Additional Hysteresis

These comparators have ± 3 mV internal hysteresis. Additional hysteresis can be generated with two resistors using positive feedback (Figure 1). Use the following procedure to calculate resistor values:

- 1) Calculate the trip points of the comparator using these formulas:

$$V_{TH} = V_{REF} + \left(\frac{(V_{CC} - V_{REF})R2}{R1 + R2} \right)$$

$$V_{TL} = V_{REF} \left(1 - \frac{R2}{R1 + R2} \right)$$

V_{TH} is the threshold voltage at which the comparator switches its output from high to low as V_{IN} rises above the trip point. V_{TL} is the threshold voltage at which the comparator switches its output from low to high as V_{IN} drops below the trip point.

- 2) The hysteresis band will be:

$$V_{HYS} = V_{TH} - V_{TL} = V_{CC} \left(\frac{R2}{R1 + R2} \right)$$

Figure 1. Additional Hysteresis

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

Figure 2. Time Averaging of the Input Signal for Data Recovery

- 3) In this example, let $V_{CC} = 5V$ and $V_{REF} = 2.5V$:

$$V_{TH} = 2.5 + 2.5 \left(\frac{R_2}{R_1 + R_2} \right)$$

and

$$V_{TL} = 2.5 \left(1 - \frac{R_2}{R_1 + R_2} \right)$$

- 4) Select R_2 . In this example, we will choose $1k\Omega$.
- 5) Select V_{HYS} . In this example, we will choose $50mV$.
- 6) Solve for R_1 :

$$V_{HYS} = V_{CC} \left(\frac{R_2}{R_1 + R_2} \right)$$

$$0.050 = 5 \left(\frac{1000}{R_1 + 1000} \right)$$

where $R_1 \approx 100k\Omega$, $V_{TH} = 2.525V$, and $V_{TL} = 2.475V$.

Board Layout and Bypassing

Power-supply bypass capacitors are not typically needed, but would be called for in cases where supply impedance is high, supply leads are long, or excessive noise is expected on the supply lines. Use $100nF$ bypass capacitors under these conditions. Minimize signal trace lengths to reduce stray capacitance.

Reference Output/Load Capacitance

The MAX9039/MAX9043/MAX9050 do not require an output capacitor on REF for frequency stability. They are stable for capacitive loads up to $4.7nF$. However, in applications where the load or the supply can experience step changes, an output capacitor will reduce the

amount of overshoot (or undershoot) and assist the circuit's transient response. When an application is not subject to transient conditions, the REF capacitor can be omitted.

Biasing for Data Recovery

Digital data is often embedded into a bandwidth- and amplitude-limited analog path. Recovering the data can be difficult. Figure 2 compares the input signal to a time-averaged version of itself. This self-biases the threshold to the average input voltage for optimal noise margin.

Even severe phase distortion is eliminated from the digital output signal. Be sure to choose R_1 and C_1 so that:

$$f_{CAR} \gg \frac{1}{2\pi R_1 C_1}$$

where f_{CAR} is the fundamental carrier frequency of the digital data stream.

UCSP Package Consideration

For general UCSP package information and PC layout considerations, please refer to Maxim Application Note, "Wafer-Level Chip-Scale Package."

UCSP Reliability

The chip-scale package (UCSP) represents a unique packaging form factor that may not perform equally to a packaged product through traditional mechanical reliability tests. UCSP reliability is integrally linked to the user's assembly methods, circuit board material, and usage environment. The user should closely review these areas when considering use of a UCSP. Performance through Operating Life Test and Moisture Resistance remains uncompromised as it is primarily determined by the wafer-fabrication process.

Mechanical stress performance is a greater consideration for a UCSP. UCSPs are attached through direct solder contact to the user's PC board, foregoing the inherent stress relief of a packaged product lead frame. Solder joint contact integrity must be considered. Information on Maxim's qualification plan, test data, and recommendations are detailed in the UCSP application note, which can be found on Maxim's website at www.maxim-ic.com.

Chip Information

PROCESS: BiPolar

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

Functional Diagrams

MAX9039–MAX9043/MAX9050–MAX9053

Selector Guide

PART	COMPARATORS PER PACKAGE	V _{REF} (V)	IN- CONNECTIONS
MAX9039	1	1.230	Uncommitted
MAX9040	1	2.048	REF
MAX9041	1	2.048	Uncommitted
MAX9050	1	2.500	REF
MAX9051	1	2.500	Uncommitted
MAX9042	2	2.048	REF/Uncommitted
MAX9043	2	2.048	Uncommitted/Uncommitted
MAX9052	2	2.500	REF/Uncommitted
MAX9053	2	2.500	Uncommitted/Uncommitted

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

Pin Configurations (continued)

Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE	TOP MARK
MAX9042AEUA	-40°C to +85°C	8 µMAX	—
MAX9042BEUA	-40°C to +85°C	8 µMAX	—
MAX9042AES	-40°C to +85°C	8 SO	—
MAX9042BESA	-40°C to +85°C	8 SO	—
MAX9043AEUB	-40°C to +85°C	10 µMAX	—
MAX9043BEUB	-40°C to +85°C	10 µMAX	—
MAX9050AEUK-T	-40°C to +85°C	5 SOT23	ADNW
MAX9050BEUK-T	-40°C to +85°C	5 SOT23	ADNY
MAX9051AEUT-T	-40°C to +85°C	6 SOT23	AAHG
MAX9051BEUT-T	-40°C to +85°C	6 SOT23	AAHI
MAX9051AES	-40°C to +85°C	8 SO	—
MAX9051BESA	-40°C to +85°C	8 SO	—
MAX9052AEUA	-40°C to +85°C	8 µMAX	AAHG
MAX9052BEUA	-40°C to +85°C	8 µMAX	AAHI
MAX9052AES	-40°C to +85°C	8 SO	—
MAX9052BESA	-40°C to +85°C	8 SO	—
MAX9053AEUB	-40°C to +85°C	10 µMAX	—
MAX9053BEUB	-40°C to +85°C	10 µMAX	—

Typical Operating Circuit

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

PACKAGE TYPE	PACKAGE CODE	DOCUMENT NO.
6 UCSP	B6-3	21-0097
5 SOT23	—	21-0057
6 SOT23	—	21-0058
8 SO	—	21-0041
8 µMAX	—	21-0036
10 µMAX	—	21-0061

MAX9039-MAX9043/MAX9050-MAX9053

SL-UCSP-EPS

TOP VIEW

COMMON DIMENSIONS	
A	0.62+0.05-0.08
A1	0.29±0.02
A2	0.33 REF.
b	Ø0.35±0.03
D1	0.50 BASIC
E1	1.00 BASIC
e	0.50 BASIC
SD	0.25 BASIC
SE	0.00 BASIC

PKG. CODE	VARIABLE DIMENSIONS		DEPOPULATED SOLDER BALLS
	D	E	
B6-1	1.00±0.05	1.52±0.05	NONE
B6-2	1.00±0.05	1.52±0.05	B2
B6-3	1.05±0.05	1.57±0.05	NONE
B6-4	1.05±0.05	1.57±0.05	B2
B6-5	0.97±0.05	1.46±0.05	NONE
B6-6	1.16±0.05	1.57±0.05	NONE

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. PRODUCT MARKING: NUMBER OF CHARACTERS AND LINES VARY PER PRODUCT.

BOTTOM VIEW

SIDE VIEW

	DALLAS SEMICONDUCTOR	
	PROPRIETARY INFORMATION	
TITLE: PACKAGE OUTLINE, 3x2 UCSP		
APPROVAL	DOCUMENT CONTROL NO. 21-0097	REV. G /1

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

SOICN .150" EPS

TOP VIEW

FRONT VIEW

SIDE VIEW

NOTES:

1. D&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15mm (.006").
3. LEADS TO BE COPLANAR WITHIN 0.10mm (.004").
4. CONTROLLING DIMENSION: MILLIMETERS.
5. MEETS JEDEC MS012.
6. N = NUMBER OF PINS.

INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX
A	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.10	0.25
B	0.014	0.019	0.35	0.49
C	0.007	0.010	0.19	0.25
e	0.050 BSC		1.27 BSC	
E	0.150	0.157	3.80	4.00
H	0.228	0.244	5.80	6.20
L	0.016	0.050	0.40	1.27

VARIATIONS:

INCHES		MILLIMETERS		N	MS012
DIM	MIN	MAX	MIN	MAX	
D	0.189	0.197	4.80	5.00	8 AA
D	0.337	0.344	8.55	8.75	14 AB
D	0.386	0.394	9.80	10.00	16 AC

 PROPRIETARY INFORMATION	DALLAS SEMICONDUCTOR MAXIM	
	TITLE: PACKAGE OUTLINE, .150" SOIC	
APPROVAL	DOCUMENT CONTROL NO. 21-0041	REV. B / 1

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

DALLAS SEMICONDUCTOR	MAXIM
TITLE: PACKAGE OUTLINE, SOT 6L BODY	
APPROVAL	DOCUMENT CONTROL NO. 21-0058

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. FOOT LENGTH MEASURED AT INTERCEPT POINT BETWEEN DATUM A & LEAD SURFACE.
3. PACKAGE OUTLINE EXCLUSIVE OF MOLD FLASH & METAL BURR. MOLD FLASH, PROTRUSION OR METAL BURR SHOULD NOT EXCEED 0.25mm.
4. PACKAGE OUTLINE INCLUSIVE OF SOLDER PLATING.
5. PIN 1 IS LOWER LEFT PIN WHEN READING TOP MARK FROM LEFT TO RIGHT. (SEE EXAMPLE TOP MARK)
6. PIN 1 I.D. DOT IS 0.3mm Ø MIN. LOCATED ABOVE PIN 1.
7. MEETS JEDEC MO178, VARIATION AB.
8. SOLDER THICKNESS MEASURED AT FLAT SECTION OF LEAD BETWEEN 0.08mm AND 0.15mm FROM LEAD TIP.
9. LEAD TO BE COPLANAR WITHIN 0.1mm.
10. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
11. MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY.

SYMBOL	MIN	NOMINAL	MAX
A	0.90	1.25	1.45
A1	0.00	0.05	0.15
A2	0.90	1.10	1.30
b	0.35	0.40	0.50
C	0.08	0.15	0.20
D	2.80	2.90	3.00
E	2.60	2.80	3.00
E1	1.50	1.625	1.75
L	0.35	0.45	0.60
L1		0.60	REF.
e1		1.90	BSC.
e		0.95	BSC.
a	0°	2.5°	10°

PKG CODES:
U6-1, U6-2, U6-4, U6C-8,
U6SN-1, U6CN-2, U6S-3, U6F-5,
U6F-6, U6FH-5, U6FH-6

-DRAWING NOT TO SCALE-

DALLAS SEMICONDUCTOR		
TITLE: PACKAGE OUTLINE, SOT 6L BODY		
APPROVAL	DOCUMENT CONTROL NO. 21-0058	REV. 1 2/2

MAX9039-MAX9043/MAX9050-MAX9053

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

Package Information (continued)

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.

BLUMAXD.EPS

MAX9039-MAX9043/MAX9050-MAX9053

Micropower, Single-Supply, UCSP/SOT23 Comparator + Precision Reference ICs

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	10/99	Initial release	—
1	1/00	Corrections to initial release	—
2	4/00	Adding new part	—
3	4/00	Increase in Max Supply Current specs	—
4	10/02	Adding UCSP package for MAX9039	—
5	10/07	Adding input current ratings in Abs Max, style changes	—
6	3/09	Update Chip Information, Package Info, correct MAX9053 part number, style changes	1, 2, 10, 12–19

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

20 **Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600**

© 2009 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.