A1

```
In [1]: # Standard imports
import numpy as np
np.seterr(all='ignore'); # allows floating-point exceptions
import matplotlib.pyplot as plt
```

Q3: FPNS $\mathcal{F}(6, 6, -6, 6)$

(a)

The largest value in ${\mathcal F}$ is:

$$0.555555\times 6^6$$

(b)

The value in our number system is:

$$0.545335 \times 6^{-2}$$

(c)

From class we learned that we can express the machine epsilon as:

$$\mathsf{E} = \frac{1}{2}B^{1-t}$$

Plugging in our values give us:

$$\mathsf{E} = \frac{1}{2} \times 6^{1-6}$$

$$E = 0.500000 \times 6^5$$

(d)

The total number of normalized numbers that can be expressed is:

=
$$2$$
 (sign) $\times 5$ (first digit) $\times 6^5$ (next 5 digits) $\times 13$ (exponent)

= 1010880

Therefore we need to calculate the amount of normalized numbers that are less then:

```
= 0.100000 \times 6^1
```

	Which gives us a fraction of:
	$=\frac{544320}{1010880}$
	$=\frac{7}{13}$
In []:	

will be greater then 1. The number of combinations is:

= 544320

= 2 (sign) $\times 5$ (first digit) $\times 6^5$ (next 5 digits) $\times 7$ (exponent)

In []:	
In []:	
In []:	