Master thesis

19. May Jannik Gut

Disease Ontology check

- All ICD-codes in Disease ontology collected
- Script written to count the amount of codes in BfS data, which are in Disease Ontology
 - Report % of
 - All diagnosis
 - Main diagnosis
 - Fully documented visits
 - Tested on very small subset
 - Get error "Permission denied" to BfS data often, but not always
 - Fix?
 - Already checked old code
 - Already checked Euler wiki

BfS data

Graph hierarchy embedding

- Only one relation type
- Leafs (more than) half of the nodes have only one edge
- Add a two-hop relation during inference?
- Add a "not-related" relation during inference?
 - Should be covered by negative sampling.

- This task is rather uniform for a tree
 - "Sisters" could be have very similar representation
 - GIN encoding probably more expressive than strict TransE
 - Testing makes smarter, but first plan

SubGNN

- Three channels
 - Neighbourhood
 - Weakness of SubGNN
 - Position in graph
 - Total position not interesting for all codes at bottom of same tree
 - Relative position pretty interesting
 - Structure
 - Not interesting if all components just nodes
 - Special component from main diagnosis up to root?
 - Implicitly boosts relative position in graph.
- New channel are categorical features
 - At first regular DNN
- Exact prediction still not sure
- Loss is length until correct node in CHOP hierarchy
 - Maybe different stages, first training stage only expect prediction at depth 1

Other embedding types

- Strictly hierarchical → hyperbolic embeddings
 - General paper
 - ICD embeddings already exist
 - HyperCore for ICD codes (<u>next slide</u>)
- NLP-type techniques on ICD-codes
 - word2Vec → these Embeddings
 - BERT → Med-BERT (trained for a week on a 30 Mil. cohort)
- If NLP techniques work well, why not try (<u>hyperbolic</u>) neural machine <u>translation</u>?
 - From (Med-BERT) ICD to CHOP.

Epoch 790 MAP 1.0

Table 6: Results of retrained CNNs on MIMIC-III with top-50 and full ICD codes. **Bold** text denotes the new state of the art obtained by an old model.

Model	MIMIC-III Top-50 Codes					MIMIC-III Full Codes					
	AUC-ROC		Fl		P@5	AUC-ROC		FI		Dag	P@15
	Macro	Micro	Macro	Micro	rws	Macro	Micro	Macro	Micro	P@8	PWID
CNN (Kim, 2014)	87.6	90.7	57.6	62.5	62.0	80.6	96.9	4.2	41.9	58.1	44.3
CAML (Mullenbach et al., 2018)	87.5	90.9	53.2	61.4	60.9	89.5	98.6	8.8	53.9	70.9	44.5
MultiResCNN (Li and Yu, 2020)	89.9	92.8	60.6	67.0	64.1	91.0	98.6	8.5	55.2	73.4	58.4
HyperCore (Cao et al., 2020)	89.5	92.9	60.9	66.3	63.2	93.0	98.9	9.0	55.1	72.2	57.9
CNN (retrained)	90.8	93.1	62.4	67.1	64.0	85.0	97.4	5.9	36.5	49.0	39.4

HyperCore

- Annotate ICD code from clinical notes (NLP)
 - Multilabel prediction
- Focusses on
 - Hierarchical structure → hyperbolic distance score
 - Co-occurrence → co-graph embedding
 - Project the embeddings with a matrix each and add them together
 - Each code then has a score
- Directly related codes attract each other in the hyperbolic space and negative samples repel each other.
- Clinical notes get encoded with CNNs to give code-wise document encodings.
 - The projection to the hyperbolic space is done with two MLPs
 - Length of the vector (bigger is further from root)
 - Direction of the vector (which kind of diagnosis)

 Co-graph has edge weights between codes is proportional to the amount of times the codes were seen together. Afterwards run normal GCN.

Figure 3: The architecture of Hyperbolic and Co-graph Representation method (HyperCore). In the Poincaré ball \mathcal{B}^n , we show the embeded code hierarchy (i.e., tree-like hierarchical structure). The dots l_i (i=1,2,3) on the tree-like hierarchical structure and triangles m_i (i=1,2,3) in the Poincaré ball denote hyperbolic code embeddings and hyperbolic document representations, respectively.

_

Next steps

- Finally get Disease Ontology comparison done
 - Not too optimistic, honestly
- Think about how to predict codes for SubGNN model
- Read up on Neural Machine Translation
 - What is needed?
 - Do we have that for our problem?
- Report back on Friday evening