A Pragmatic Approach to Census Analsysis: Tidycensus and R

Jamaal Green

September 19, 2017

Introduction

About Me

 $\,\,{}^{\circ}$ PhD Candidate in Urban Studies and Planning

About Me

- PhD Candidate in Urban Studies and Planning
- My dissertation is examining industrial zoning and labor market change

About Me

- PhD Candidate in Urban Studies and Planning
- My dissertation is examining industrial zoning and labor market change
- I use a pretty wide array of census products for work (ACS, PUMS, LEHD)

A Pragmatic Approach

"Let the question guide your method"

Likewise...

Let your problems guide your tools

The steps many social data analysts and GIS user have to make:

Tabular Data collection/import (factfinder)

- Tabular Data collection/import (factfinder)
- Spatial Data collection(Tigerline files, anyone?)

- Tabular Data collection/import (factfinder)
- Spatial Data collection(Tigerline files, anyone?)
- Tabular data cleaning, munging, and joins

- Tabular Data collection/import (factfinder)
- Spatial Data collection(Tigerline files, anyone?)
- Tabular data cleaning, munging, and joins
- Table to spatial data joins (we've all done this in Arc with moderate success)

- Tabular Data collection/import (factfinder)
- Spatial Data collection(Tigerline files, anyone?)
- Tabular data cleaning, munging, and joins
- Table to spatial data joins (we've all done this in Arc with moderate success)
- If making maps...spatial processing (clips, intersections, spatial joins)

- Tabular Data collection/import (factfinder)
- Spatial Data collection(Tigerline files, anyone?)
- Tabular data cleaning, munging, and joins
- Table to spatial data joins (we've all done this in Arc with moderate success)
- If making maps...spatial processing (clips, intersections, spatial joins)
- Other visualizations and report writing

This Works But It Could be Better...

This workflow is effective but suffers from:

Massive number of intermediate outputs

This Works But It Could be Better...

This workflow is effective but suffers from:

- Massive number of intermediate outputs
- 2 Jumps among any number of different applications making confusion likely

This Works But It Could be Better...

This workflow is effective but suffers from:

- Massive number of intermediate outputs
- 2 Jumps among any number of different applications making confusion likely
- 3 Can easily become disorganized if data/project management isn't specified beforehand

Enter R

What is R?

A powerful language

What is R?

- A powerful language
- Application

What is R?

- A powerful language
- Application
- o "Do it all" workbench

It's free

- It's free
- It's fast

- It's free
- It's fast
- It's data type agnostic (read any variety of text files, .shp. GEOJSON, GEOTIFF)

- It's free
- It's fast
- It's data type agnostic (read any variety of text files, .shp. GEOJSON, GEOTIFF)
- Massive number of packages for statistical or spatial analysis and visualization

- It's free
- It's fast
- It's data type agnostic (read any variety of text files, .shp. GEOJSON, GEOTIFF)
- Massive number of packages for statistical or spatial analysis and visualization
- Many things that are hard or slow in other applications (table joins in Arc, anyone?) are fast in R

- It's free
- It's fast
- It's data type agnostic (read any variety of text files, .shp. GEOJSON, GEOTIFF)
- Massive number of packages for statistical or spatial analysis and visualization
- Many things that are hard or slow in other applications (table joins in Arc, anyone?) are fast in R
- Large, helpful online community and growing variety of books/guides/courses

- It's free
- It's fast
- It's data type agnostic (read any variety of text files, .shp. GEOJSON, GEOTIFF)
- Massive number of packages for statistical or spatial analysis and visualization
- Many things that are hard or slow in other applications (table joins in Arc, anyone?) are fast in R
- Large, helpful online community and growing variety of books/guides/courses
- IT'S FREE

But why should I?

Has the following ever happened to you?

 Need to download multiple variables over multiple years and you get a data folder filled with ambiguously named tables that you end up deleting anyway?

But why should I?

Has the following ever happened to you?

- Need to download multiple variables over multiple years and you get a data folder filled with ambiguously named tables that you end up deleting anyway?
- Had to change your geography of interest on short notice and then go through the time consuming process of redownloading and processing?

But why should I?

Has the following ever happened to you?

- Need to download multiple variables over multiple years and you get a data folder filled with ambiguously named tables that you end up deleting anyway?
- Had to change your geography of interest on short notice and then go through the time consuming process of redownloading and processing?
- Attempted to rename a column in ArcMap (yes, I know this is now available in ArcPro)?

Let's Be Pragmatic

These recurring challenges can be better addressed (saving yourself precious time) by learning a little bit of ${\sf R}$

tidyverse

"An opinionated collection of R packages for data science"

A set of packages to handle common "data science" tasks with consistent behavior and language. A more accessible way to do data science in R for all steps of a project from data import/cleaning to visualization and modeling

Tidycensus...one stop shop for ACS data

 R package authored by Prof. Kyle Walker at TCU to make gathering and visualizing census data easier

Tidycensus...one stop shop for ACS data

- R package authored by Prof. Kyle Walker at TCU to make gathering and visualizing census data easier
- The package uses the census API to call ACS and decennial data as well as ACS Data Profile tables

Tidycensus...one stop shop for ACS data

- R package authored by Prof. Kyle Walker at TCU to make gathering and visualizing census data easier
- The package uses the census API to call ACS and decennial data as well as ACS Data Profile tables
- Data is returned in either wide or long format and there is an option to join the data to its appropriate Tigerline geometry

A quick example...

Our assignment: Get latest 5 year MHI for Multnomah County at Tract Level and graph the results (as an added bonus, and in the interest of transparency, let's include MOEs)

Query ACS

```
if(!require(pacman)){install.packages("pacman");
  library(pacman)}
p_load(ggplot2, tidycensus, dplyr)
acs_key <- Sys.getenv("CENSUS_API_KEY")</pre>
#Enter the variables and geographies below
census title <- c("Median Household Income by County:\n
Coefficient of Variation")
census var <- c("B19013 001E")
census geog <- c("county")</pre>
census state <- c("or")
acs_data <- get_acs(geography = census_geog, variables =</pre>
census_var, state = census_state, output = "wide")
```

Little Bit of Processing

Finally...let's plot

```
#Plot Percentages with Derived MOE
acs_plot <- acs_data %>%
  ggplot(aes(x = MHI est,
  y = reorder(NAME, MHI_est))) +
  geom point(color = "black", size = 2) +
  geom_errorbarh(aes(xmin = MHI_est - MHI_moe,
                     xmax = MHI est + MHI moe )) +
  labs(title = paste(census title),
       subtitle =
      paste0("Oregon 2011-2015 American Community Survey"),
       x = "Median Household Income") +
  scale x continuous(labels = scales::dollar) +
  theme minimal() +
  theme(panel.grid.minor.x = element blank(),
        panel.grid.major.x = element blank())
plot(acs plot)
```

Our Output

Median Household Income by County: Coefficient of Variation Oregon 2011–2015 American Community Survey

Mapping It Out

R as a GIS- tigris and sf

tigris- a package that will download tigerline shapefiles simple features- uses well known text to signify geometry allowing for spatial objects to be treated as dataframes

Tract Processing tidyverse style

```
if(!require(pacman)){install.packages("pacman");
  library(pacman)}
p_load(sf, tigris, viridis, ggthemes, ggplot2,
       tidycensus, stringr, dplyr)
options(tigris_class = "sf", tigris_use_cache = TRUE)
acs_key <- Sys.getenv("CENSUS API KEY")</pre>
mhi tables <- c("B19013 001")
#download tracts and county, get the tracts for PDX
#Metro counties and counties for the state
mhi_tract <- get_acs(geography = "tract",</pre>
                      variables = mhi tables,
                      state = "OR",
                      geometry = TRUE)
```

Our Tract Map Set Up

```
p1 <- ggplot() +
  geom sf(data = metro tract, aes(fill = estimate)) +
  coord sf(datum = NA) +
  theme(plot.title = element text(size = 16,
                    face = "bold", margin = margin(b=10))) +
  theme(plot.subtitle = element text(size = 14,
                      margin = margin(b = -20))) +
  theme(plot.caption = element text(size = 9,
                    margin = margin(t = -15), hjust = 0)) +
  scale fill viridis(labels = scales::dollar,
                     name = "MHI Estimate") +
  labs(caption = "Source: US Census Bureau ACS (2011-2015)",
        title = "Median Household Income for PDX Metro\n at t
        subtitle = "An R 'sf' Example") + theme minimal()
```

Our Tract Output

Median Household Income for PDX Metro at the census tract level An R 'sf Example

Source: US Census Bureau ACS (2011-2015)

Our County Output

Median Household Income for Oregon at the county level

An R 'sf' Example

Source: US Census Bureau ACS (2011-2015)

Let's Stretch A Bit

Your Assignment

Create a social vulnerability index for the PDX Metro area using % in poverty, non-White %, % under 5 years of age, and % over 64 years of age and map it

Inital Collection and Processing

```
#name the tables we need
vul_vars <- c("B17001_001", "B17001_002", "B02001_001",</pre>
              "B02001 002", "B01001 003", "B01001 020",
              "B01001 021", "B01001 022", "B01001 023",
              "B01001 024", "B01001 025", "B01001 027",
              "B01001 044", "B01001 045", "B01001 046",
              "B01001 047", "B01001 048", "B01001 049")
#grab the data for Oregon
vul_acs <-
  get_acs(geography = "tract", variables = vul_vars,
  state = "OR", output = "wide")
vul_acs <- vul_acs %>%
  mutate(CountyFIPS = str_sub(GEOID, 1, 5))
```

Clean Up Table and Calculate Percentages

```
vul2 <- vul acs %>%
  mutate(PovShare = B17001_002E/B17001_001E,
        NonWhite = (B02001_001E - B02001_002E)/B02001_001E,
        Under5 = (B01001\ 003E + B01001\ 027E)/B02001\ 001E
        Older64Male = B01001_020E + B01001_021E +
        B01001 022E +B01001 023E + B01001 024E +
        B01001 025E,
        Older64Female = B01001 044E +
        B01001 045E + B01001 046E + B01001 047E +
        B01001 048E + B01001 049E,
        01der64 =
        (Older64Male + Older64Female)/B02001 001E) %>%
  select(NAME, GEOID, CountyFIPS, PovShare,
         NonWhite, Under5, Older64)
```

Get Index Values

```
vul2 <- vul2 %>%
  mutate(
  z Pov = (PovShare - mean(PovShare, na.rm = TRUE))/
           sd(PovShare, na.rm = TRUE),
  z NonWhite = (NonWhite - mean(NonWhite, na.rm = TRUE))/
           sd(NonWhite, na.rm = TRUE),
  z Under5 = (Under5 - mean(Under5, na.rm = TRUE))/
           sd(Under5, na.rm = TRUE),
  z Older64 = (Older64 - mean(Older64, na.rm = TRUE))/
           sd(Older64, na.rm = TRUE))
vul2 <- vul2 %>%
  mutate(VulIndex = (z_Pov + z_NonWhite + z_Under5 +
                      z Older64)/4) %>%
  select(GEOID, CountyFIPS, z_Pov, z_NonWhite, z_Under5,
         z Older64, VulIndex)
```

Subset & Join to Geometry

```
metro counties <-c("41051", "41005", "41009",
                     "41067", "41071")
v_{11}12 < -v_{11}12 \%
  filter(CountyFIPS %in% metro counties)
or tracts <- tracts(state = "OR")
metro vul <- inner join(vul2, or tracts,
                         bv = c("GEOID" = "GEOID")) %>%
  select(1:7, geometry) %>% st_as_sf()
```

And...voila

Social Vulnerability for Metro oregon An R 'sf' example

Source: US Census Bureau ACS (2011-2015)

Wrapping Up

Let the Problem Guide The Tool

It's not necessary to do everything in $\mathsf{R},$ but we can do a lot of things faster and easier in R

A tidy approach...

The tidyverse, and packages connected to it, make R more approachable than ever

Some Additional Resources

- "R For Data Science" by Wickham and Grolemund
- DataCamp
- StackOverflow
- Presentation Link