

10508945

IN THE SPECIFICATION

HL 6-15-09 Please replace the paragraph beginning at page 8, line *4*, with the following rewritten paragraph:

On the other hand, a correction factor for the outer side of the spring, A_2 , is expressed by the following formula (2). According to this formula, when a spring index is 2.0, the corrected stress acting on the outer side of the spring is 0.443 0.514 times of that acting on the inner side of the spring.

HL 6-15-09 Please replace the paragraph beginning at page 9, line *5*, with the following rewritten paragraph:

In addition, the above shot peening treatment is effective in giving a compressive residual stress in the surface of a spring to suppress the growth of fatigue cracks. Springs to be subjected to the shot peening treatment require a high compressive residual stress because they are used, particularly, under high-stress conditions. Thus, the residual stress difference as above has to be further strictly managed. In view of this need, it is preferable to set the above residual stress difference material at 300 MPa or less.

Please replace the Table 4 at page 15, with the following amended Table 4:

Table 4

No.	Kind of Steel	D/d	Tensile Strength (MPa)		Temperature for Stress relief annealing (°C)	$(R_u) - (R_v)$ (MPa)	Surface Roughness Ry (μm)	Fatigue Life ($\sim 10^8$ -cycles) ($\times 10^6$ cycles)
			After Drawing	After Stress relief annealing				
16	L	6.81	1942	1960	350	954	2.7	1.8
17	L	6.81	1942	1963	380	764	3.6	2.7
18	L	6.81	1942	1949	410	253	3.1	8.7
19	M	6.81	1856	1881	410	108	2.4	10.0
20	N	6.81	1832	1854	410	333	2.2	7.9

10508945