red: incolore forme leuco (BMH)

non de l'indicateur à la réduit en sa forme leuco

e+CF+BMH

aplique l'emploi d'une

facilite la dissola sa réaction avec la la sa de méthylène et

ation bleue

consomme du cette séquence catici la source la longue. La miche et non 4) RÉACTION DE CANNIZZARO

\$

\(\text{\tin}\text{\tint{\text{\tint{\text{\tint{\text{\tin}\text{\texi\text{\text{\text{\text{\text{\text{\texit{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text

2 Ph CHO + OH - Ph COO + Ph CH₂ OH

M

- erlenmeyer de 50 ml
- ballon de 50 ml
- bain de glace
- réfrigérant à eau
- agitateur magnétique chauffant
- ampoule à décanter de 100 ml
- 2 erlenmeyers de 100 ml
- ballon de 100 ml
- filtre papier
- entonnoir verre fritté
- papier pH
- appareil de chromatographie en phase gazeuse

• potasse 🛆

- benzaldéhyde
- éther diéthylique \Lambda
- sulfate de magnésium anhydre
- acide chlorhydrique concentré 36 %
- glace
- alcool benzylique (éventuellement)

L'emploi de solutions concentrées d'acide chlorhydrique et de potasse impose le port de gants et de lunettes de protection.

Mode opératoire

Dans un erlenmeyer de 50 ml plongé dans un bain de glace et posé sur un agitateur magnétique, dissoudre 10 g de potasse (0,18 mole) dans 10 ml d'eau. L'agitation magnétique doit être réglée de façon à éviter les projections. Quand la solution est homogène et à température ambiante, elle est versée dans le ballon de 50 ml placé sur l'agitateur magnétique chauffant (bain d'huile ou de silicone). Introduire alors 10 ml de benzaldéhyde (0,1 mole) et adapter le réfrigérant sur le ballon. Le mélange blanchâtre est porté à reflux, sous agitation vigoureuse, pendant 1 h 30. Après l'arrêt du chauffage, on verse 10 à 20 ml d'eau jusqu'à obtention d'une solution homogène. Refroidir et extraire avec quatre portions de 30 ml d'éther diéthylique. On prendra soin de conserver la phase aqueuse. La phase organique est

séchée par agitation sur sulfate de magnésium anhydre, puis filtrée sur un filtre en papier. La solution limpide est recueillie dans le ballon de 100 ml et l'éther diéthylique est chassé à l'évaporateur rotatif, l'huile restante constitue l'alcool benzylique. Pendant ce temps, la phase aqueuse, placée dans l'erlenmeyer de 100 ml, est refroidie dans un bain de glace. Celle-ci est acidifiée avec de l'acide chlorhydrique concentré . La réaction est exothermique. Le pH est contrôlé par l'emploi de papier indicateur. A pH = 6, un solide blanc apparaît. Laisser reposer quelques instants, puis filtrer les cristaux blancs sur le verre fritté. Ces cristaux d'acide benzoïque sont rincés à l'eau puis séchés. Ils peuvent être purifiés par recristallisation dans l'eau chaude.

L'acide benzoı̈que est caractérisé par son point de fusion $T_{\rm fus}=122\,{\rm ^oC}.$ Spectres IR :

Acide benzoïque

 \bar{v} (C = O) = 1690 cm⁻¹

- Alcool benzylique

 \bar{v} (O – H) = 3 300 cm⁻¹

 \bar{v} (C - O) = 1 030 cm⁻¹

La phase organique peut contenir des traces de benzaldéhyde n'ayant pas réagi. Ce mélange est étudié en chromatographie en phase gazeuse. Il faut déterminer préalablement les temps de rétention respectifs de l'alcool benzylique et du benzaldéhyde.

Discussion

- 1) La réaction de Cannizzaro est une dismutation des aldéhydes. Celle-ci a lieu en milieu fortement basique et n'est envisageable que sur des aldéhydes ne possédant pas d'hydrogène en α (dans le cas contraire, c'est l'aldolisation qui est observée).
 - 2) Le mécanisme proposé fait intervenir une migration d'hydrure :

no de 100 ml et l'éther eante constitue l'alcool e dans l'erlenmeyer de acdifiée avec de l'acide e de pH est contrôlé par apparaît. Laisser reposer en fritté. Ces cristaux

on $T_{608} = 122 \,{}^{\circ}\text{C}$.

event être purifiés par

aldehyde n'ayant pas reuse. Il faut détermicod benzylique et du

aldehydes. Celle-ci a sur des aldéhydes ne l'aldolisation qui est

hydrure

HOSID

OXYDATIONS ET RÉDUCTIONS

La réaction conduite dans l'eau lourde fournit de l'alcool benzylique ne possédant pas de liaison C-D: ceci montre que l'hydrogène provient du benzaldéhyde et non du solvant.

3) La différence de pK entre l'acide benzoïque et l'alcool benzylique est supérieure à 10 unités. Dans les conditions de la réaction, l'acide benzoïque est totalement ionisé en phase aqueuse et l'alcool benzylique est non ionisé, préférentiellement dans la phase organique : ceci permet une séparation facile.

Bibliographie

Vogel's Textbook of Practical Organic Chemistry. 4e éd., p. 791, Longman.

5)	RÉDUCTION DU BENZILE PAR LE BOROHYDRURE	DE SODIUM \$
		() (<u>)</u>
	Ph—C—C—Ph—1) NaBH ₄ ,EtOH O O	H → Ph OH OH
	Benzile	hydrobenzoïne méso.
M	 agitateur magnétique chauffant ballon de 100 ml réfrigérant à eau filtre papier plissé filtre Büchner ou verre fritté chauffe-ballon 	 benzile éthanol à 95 % ponce ou carborundum borohydrure de sodium

Mode opératoire

Dans le ballon de 100 ml, introduire 2 g de benzile (10 mmole) et 20 ml d'éthanol à 95°. Agiter et chauffer doucement le mélange au bain-marie jusqu'à dissolution du réactif (la solution jaunit) puis laisser refroidir pour obtenir une fine suspension. Ajouter alors 0,4 g de borohydrure de sodium (10 mmole) et agiter à