Problem Set #2 CHEM101A: General College Chemistry

Donald Aingworth IV August 29, 2025

What mass of $\mathrm{Fe_2O_3}$ would react with 20.00 g of Zn? The chemical equation for this reaction is:

$$3\operatorname{Zn} + \operatorname{Fe_2O_3} \longrightarrow 2\operatorname{Fe} + 3\operatorname{ZnO}$$
 (1)

1.1 Solution

The simple stoichiometry is the way to go here.

$$20.00g \times \frac{1\,\mathrm{mol}\,\mathrm{Zn}}{65.38g} \times \frac{1\,\mathrm{Fe_2O_3}}{3\,\mathrm{Zn}} \times \frac{159.7\,\mathrm{g}\,\mathrm{Fe_2O_3}}{1\,\mathrm{mol}\,\mathrm{Fe_2O_3}} = \boxed{16.28\,\mathrm{g}\,\mathrm{Fe_2O_3}} \tag{2}$$

x moles of C_4H_{10} reacts with oxygen according to the following equation:

$$2 C_4 H_{10} + 13 O_2 \longrightarrow 8 CO_2 + 10 H_2 O$$
 (3)

- a) How many moles of water are formed?
- b) How many moles of oxygen are consumed?

2.1 Solution (a)

The ratio of C_4H_{10} used to H_2O created in this reaction is 1:5. With x moles of C_4H_{10} , that would gives us $5x \mod H_2O$.

2.2 Solution (b)

The ratio of C_4H_{10} used to O_2 consumed in this reaction is 2:13. With x moles of C_4H_{10} , that would gives us $\boxed{\frac{13}{2}x \operatorname{mol} O_2}$.

10.00 g of N_2 is mixed with 33.61 g of F_2 , and the elements react according to the following equation:

$$N_2 + 3 F_2 \longrightarrow 2 NF_3$$
 (4)

- a) Which element is the limiting reactant?
- b) What is the theoretical yield of NF₃?
- c) If the reaction goes to completion, how many grams of the excess reactant will remain?
- d) Set up an ICE table for this reaction.

3.1 Solution (a)

First, we calculate the theoretical yields for each for the reactants.

$$m_{\rm N_2} = 10.00\,\mathrm{g} \times \frac{1\,\mathrm{mol}\,\mathrm{N_2}}{28.02\,\mathrm{g}\,\mathrm{N_2}} \times \frac{2\,\mathrm{NF_3}}{1\,\mathrm{N_2}} \times \frac{71.01\,\mathrm{g}\,\mathrm{NF_3}}{1\,\mathrm{mol}\,\mathrm{NF_3}} = 50.69\,\mathrm{g}\,\mathrm{NF_3} \qquad (5)$$

$$m_{\rm F_2} = 33.61\,\rm g \times \frac{1\,\rm mol\,F_2}{38.00\,\rm g\,F_2} \times \frac{2\,\rm NF_3}{3\,\rm F_2} \times \frac{71.01\,\rm g\,NF_3}{1\,\rm mol\,NF_3} = 41.87\,\rm g\,NF_3 \qquad (6)$$

With a lower final mass, $\boxed{\mathbf{F}_2}$ is the limiting reactant.

3.2 Solution (b)

The theoretical yield was found in part (a). $41.87 \,\mathrm{g}\,\mathrm{NF}_3$

3.3 Solution (c)

Use a similar strategy to part (a).

$$33.61\,\mathrm{g} \times \frac{1\,\mathrm{mol}\,\mathrm{F}_2}{38.00\,\mathrm{g}\,\mathrm{F}_2} \times \frac{1\,\mathrm{N}_2}{3\,\mathrm{F}_2} \times \frac{28.02\,\mathrm{g}\,\mathrm{N}_2}{1\,\mathrm{mol}\,\mathrm{N}_2} = 8.261\,\mathrm{g}\,\mathrm{NF}_3 \tag{7}$$

Subtract this from the available mass of N_2 to get the final N_2 .

$$10.00 \,\mathrm{g} \,\mathrm{N}_2 - 8.261 \,\mathrm{g} \,\mathrm{N}_2 = \boxed{1.74 \,\mathrm{g} \,\mathrm{N}_2} \tag{8}$$

3.4 Solution (d)

I used tabular for this table. Please excuse any poor or improper formatting.

mol	N_2	$+3\mathrm{F}_{2}$	$\longrightarrow 2 \mathrm{NF}_3$
I	0.3569	0.8844	0
С	-0.2948	-0.8844	0.5896
Е	0.0621	0	0.5896

For those interested in how I went about getting these values, I can explain. I started with the initial mass of F_2 , which has been previously established to be the limiting reactant, and converted that to moles. I did (roughly) the same thing for the known quantity of N_2 initially. We also start with no NF_3 . Assuming the percentage yield to be 100%, every mole of F_2 would be used, so the Change row for F_2 would be the negative of the initial quantity of F_2 . Multiply that by the ratio of N_2 to F_2 ($\frac{1}{3}$) to get the Change row of N_2 . The same can be done for NF_2 , just taking the negative thereof and with a ratio of $\frac{2}{3}$ instead of $\frac{1}{3}$. With all of this, we only have to add the initial and the change together (respecting the positive or negative signs) to get the values for the End row.

- a) If 58.26 g of iodine reacts with excess aluminum, what is the theoretical yield of aluminum iodide? The reaction is $2\,\mathrm{Al} + 3\,\mathrm{I}_2 \longrightarrow 2\,\mathrm{AlI}_3$.
- b) If 56.11 g of aluminum iodide is actually formed in the reaction in part a, what is the percent yield of aluminum iodide?

4.1 Solution (a)

Watch me use the power of Stiochiometry Magic.

$$58.26 \,\mathrm{g} \times \frac{1 \,\mathrm{mol} \,\mathrm{I}_2}{253.8 \,\mathrm{g} \,\mathrm{I}2} \times \frac{2 \,\mathrm{AlI}_3}{3 \,\mathrm{I}_2} \times \frac{407.68 \,\mathrm{g} \,\mathrm{AlI}_3}{1 \,\mathrm{mol} \,\mathrm{AlI}_3} = \boxed{62.39 \,\mathrm{g} \,\mathrm{AlI}_3} \tag{9}$$

4.2 Solution (b)

Here we use the formula for the pecent yield.

$$PY = \frac{AY}{TY} \times 100\% = \frac{56.11 \,\mathrm{g}}{62.39 \,\mathrm{g}} \times 100\% = 0.8994 \times 100\% = \boxed{89.94\%}$$
 (10)

A chemist mixes 16.00~g of HCl with 10.00~g of Mg and obtains an 81.3% yield of MgCl₂. What mass of MgCl₂ did the chemist obtain? The chemical reaction is:

$$Mg + 2 HCl \longrightarrow MgCl_2 + H_2$$
 (11)

5.1 Solution

First calculate the theoretical yield of MgCl₂ in the cases of HCl and Mg being the limiting reactants.

$$MM(MgCl_2) = 24.31 \text{ g/mol} + 2 * 35.45 \text{ g/mol} = 95.21 \text{ g/mol}$$
 (12)

$$MM(HCl) = 1.008 \,\text{g/mol} + 35.45 \,\text{g/mol} = 36.458 \,\text{g/mol}$$
 (13)

$$m_{\rm Mg} = 10.00\,{\rm g} \times \frac{1\,{\rm mol\,Mg}}{24.31\,{\rm g\,Mg}} \times \frac{1\,{\rm MgCl_2}}{1\,{\rm Mg}} \times \frac{95.21\,{\rm g\,MgCl_2}}{1\,{\rm mol\,MgCl_2}} \tag{14}$$

$$= 39.16 \,\mathrm{g} \,\mathrm{MgCl_2}$$
 (15)

$$m_{\rm HCl} = 16.00\,\mathrm{g} \times \frac{1\,\mathrm{mol\,HCl}}{36.458\,\mathrm{g\,HCl}} \times \frac{1\,\mathrm{MgCl_2}}{2\,\mathrm{HCl}} \times \frac{95.21\,\mathrm{g\,MgCl_2}}{1\,\mathrm{mol\,MgCl_2}}$$
 (16)

$$=20.89\,\mathrm{g\,MgCl_2}\tag{17}$$

The latter is lower, so the HCl would be the limiting reactant and $20.89\,\mathrm{g}$ MgCl₂ would be the theoretical yield. Multiplying this by the (decimal version of) the percetage yield to get the actual yield.

$$20.89 \,\mathrm{g} \,\mathrm{MgCl_2} * 0.813 = \boxed{16.98 \,\mathrm{g} \,\mathrm{MgCl_2}}$$
 (18)

How many milliliters of liquid Br_2 (density = 3.1 g/mL) will react with 6.143 g of Cr, if the product of this reaction is $CrBr_3$?

6.1 Solution

First write a chemical equation for this and balance it.

$$3 \operatorname{Br}_2 + 2 \operatorname{Cr} \longrightarrow 2 \operatorname{CrBr}_3$$

Ethane (C₂H₆) reacts with oxygen according to the following chemical equation:

$$2 C_2 H_6 + 7 O_2 \longrightarrow 4 CO_2 + 6 H_2 O$$
 (19)

- a) If you mix 5 moles of C_2H_6 with 13 moles of O_2 , how many moles of each substance will you end up with, assuming the reaction goes to completion? Include an ICE table in your answer.
- b) If you mix 81.43 g of C_2H_6 with 194.60 g of O_2 , how many grams of each substance will you end up with, assuming the reaction goes to completion? Include an ICE table in your answer. (Note: your ICE table should be in terms of moles.)
- c) A chemist mixes 3.414 moles of O_2 with an unknown number of moles of C_2H_6 . The chemist obtains 1.657 moles of O_2 . How many moles of C_2H_6 must have been present originally, assuming the reaction went to completion? Include an ICE table in your answer.

Ammonia reacts with oxygen according to the following chemical equation:

$$4 \,\mathrm{NH_3} + 3 \,\mathrm{O_2} \longrightarrow 2 \,\mathrm{N_2} + 6 \,\mathrm{H_2O} \tag{20}$$

Suppose you mix x moles of NH_3 with y moles of O_2 .

- a) If NH_3 is the limiting reactant, how many moles of each substance will you end up with, assuming the reaction goes to completion? Include an ICE table in your answer.
- b) If O_2 is the limiting reactant, how many moles of each substance will you end up with, assuming the reaction goes to completion? Include an ICE table in your answer.
- c) If you end up with 0.4y moles of O_2 , what must the relationship be between x and y, assuming the reaction goes to completion?

You have x grams of $Na_2Cr_2O_7$. How many grams of CrCl3 will be formed if the $Na_2Cr_2O_7$ undergoes the reaction below? Express your answer in terms of x.

$$\mathrm{Na_{2}Cr_{2}O_{7}} + 3\,\mathrm{Zn} + 14\,\mathrm{HCl} \longrightarrow 2\,\mathrm{CrCl_{3}} + 3\,\mathrm{ZnCl_{2}} + 2\,\mathrm{NaCl} + 7\,\mathrm{H_{2}O} \tag{21}$$

A metal sample weighing 1.410 g contains a mixture of copper and aluminum. When excess HCl is added to this sample, the aluminum reacts as follows:

$$2 \text{ Al} + 6 \text{ HCl} \longrightarrow 2 \text{ AlCl}_3 + 3 \text{ H}_2$$
 (22)

 $849~\rm mL$ of $\rm H_2$ (density 0.08264 g/L) is produced. Calculate the mass percentage of each element in the original sample. Note that copper does not react with HCl.

A chemist has a mixture of ${\rm AgNO_3}$ and ${\rm KNO_3}$ that weighs a total of 4.177 g. The chemist dissolves the mixture in water and then adds a solution of NaOH. The AgNO3 reacts with the NaOH as follows:

$$2\,\mathrm{AgNO_3(aq)} + 2\,\mathrm{NaOH(aq)} \longrightarrow \mathrm{Ag_2O(s)} + 2\,\mathrm{NaNO_3(aq)} + \mathrm{H_2O(l)} \tag{23}$$

The chemist finds that 1.080 grams of ${\rm Ag_2O}$ were formed. Calculate the mass percentages of ${\rm AgNO_3}$ and ${\rm KNO_3}$ in the original mixture. (Note that ${\rm KNO_3}$ does not react with NaOH.)

A 25.000 g sample of sulfur is burned. Some of the sulfur reacts to form SO_2 :

$$S + O_2 \longrightarrow SO_2$$
 (24)

The rest of the sulfur reacts to form SO_3 :

$$2S + 3O_2 \longrightarrow 2SO_3$$
 (25)

The total mass of products (SO $_2$ and SO $_3)$ is 58.723 g. Calculate the masses of SO $_2$ and SO $_3$ in this mixture.

Contents

1	Topic A Problem 12				
	1.1 Solution	2			
2	Topic A Problem 13				
	2.1 Solution (a)	3			
	2.2 Solution (b)	3			
3	Topic A Problem 14				
	3.1 Solution (a)	4			
	3.2 Solution (b)	4			
	3.3 Solution (c)	4			
	3.4 Solution (d)	4			
4	Topic A Problem 15				
	4.1 Solution (a)	6			
	4.2 Solution (b)	6			
5	Topic A Problem 16				
	5.1 Solution	7			
6	Topic A Problem 17	8			
	6.1 Solution	8			
7	Topic A Problem 18	9			
	7.1 Solution	9			
8	Topic A Problem 19	10			
	8.1 Solution	10			
9	Topic A Problem 20				
	9.1 Solution	11			
10	Topic A Problem 21	12			
	10.1 Solution	12			
11	Topic A Problem 22	13			
	11.1 Solution	13			
12	Topic A Problem 23	14			
	12.1 Solution	14			