

131

SEQUENCE LISTING

<110> NICKlin, Martin
Barton, Jenny

<120> IL-1L1 GENE AND POLYPEPTIDE PRODUCTS

<130> MSA-021.01

<140> 09/617,720

<141> 2000-07-17

<160> 54

<170> PatentIn Ver. 2.1

<210> 1

<211> 2563

<212> DNA

<213> Homo sapiens

<400> 1
aggggagtct acaccctgtg gagctcaaga tggcctgag tggggcgctg tgcttccgaa 60
tgaaggactc ggcattgaag gtgtttatc tgcatataataa ccagcttcta gctggagggc 120
tgcattcagg gaaggcatt aaaggtgaag agatcagcgt ggccccat cggtggctgg 180
atgccacgcgt gtcccccgtc atccctgggtg tccagggtgg aagccagtgc ctgtcatgtg 240
gggtggggca ggagccgact ctaacactag agccagtgaa catcatggag ctctatctt 300
gtgccaagga atccaagagc ttcacctct accggcgaaa catggggctc acctccagct 360
tcgagtcggc tgcctacccg ggctgggtcc tgcacgggt geetgaagcc gatcagcctg 420
tcagactcac ccagcttccc gagaatggtg gctggaatgc cccatcaca gacttctact 480
tccagcagtg tgacttagggc aacgtgcccc cccagaactc cctggcaga gccagctegg 540
gtgagggggtg agtggaggag acccatgggg gacaatact ctttctgtc tcaggacccc 600
cagggtctgac ttagtggca cctgaccact ttgtcttctg gttcccaatt tgcataaaatt 660
ctgagatttg gagctcagtc cagggtcctc cccactggg tgggtact gctgtggAAC 720
cttgtaaaaaa ccatgtgggg taaactgggataaacatgaa aagatttctg tgggggtggg 780
gtgggggagt gctggaaatc attcctgttt aatggtaact gacaagtgtt accctgagcc 840
ccgcaggcca acccatcccc agttggacct tataagggtca gtagcttcc acatgaagtc 900
ctctcaactca ccactgtgca ggagaggagg gtaggtcatag agtcaggat ctatggccct 960
tggcccagcc ccacccctt cccttatcc tgcactgtc atatgttacc tttcttatct 1020
cttcctcat catcttgggt tgggcatggag gaggtggta tgcagaaga aatggttcga 1080
gctcagaaga taaaagataa gttaggtatg ctgatccctt tttaaaacc caagatacaa 1140
tcaaaaatccc agatgctggt ctctattccc atgaaaaagt gctcatgaca tattgagaag 1200
acctacttac aaagtggcat atattgcaat ttattttat taaaagatac ctattttat 1260
atttctttat agaaaaaaagt ctggaagagt ttacttcaat tgttagcaatg tcagggtgt 1320
ggcagtatag gtgattttc tttaattctt gttaattttat ctgtatttcc taattttct 1380
acaatgaaga tgaattccctt gtataaaaat aagaaaaagaa attaatctt aggttaaggcag 1440
agcagacatc atctctgatt gtcctcagcc tccaaatccc cagagtaat tcaaattgaa 1500
tcgagctctg ctgctctgg tgggtgtat agtgcattgg aaacagatct cagaaaggcc 1560
actgaggagg aggctgtgt gagtttgggt ggctggaaat tctgggtaaag gaacttaaag 1620
aacaatccc atctggtaat tctttccctt aaggatcaca gcccctgggaa ttccaaggc 1680
ttggatccag tctctaaagaa ggctgctgtat ctgggtgtat tgcgtcccccc tcaaattcac 1740
atccttcttgc gaatctcagt ctgtgagttt atttggagat aaggtctctg cagatgtat 1800
tagttaagac aaggtcatgc tggatgaagg tagacctaaa ttcaatatga ctggtttct 1860
tgtatggaaa ggagaggaca cagagacaga ggagacgcgg ggaagactat gtaaagatga 1920
aggcagagat cggagtttg cagccacaag ctaagaaaaca ccaaggatttgg tggcaaccat 1980
cagaagcttg gaagaggcaa agaagaatttcc ttccttagag gcttttagagg gataacggct 2040
ctgctgaaac cttaatctca gacttccagc ctccctgaacg aagaaagaat aaatttcggc 2100
tgttttaagc caccaaggat aattggttac agcagctcta ggaaactaat acagctgcta 2160

132
2

aaatgatccc tgcctccatt ctgtgtgtgt cccctccac aatgtaccaa 2220
agttgtctt gtgacccaat agaatatggc agaagtgatg gcatgcact tccaagatta 2280
ggttataaaa gacactgcag ctctacttg agccctctt ctctgcacc caccgcccc 2340
aatctatctt ggctcaactcg ctctggggga agctagctgc catgctatga gcaggcctat 2400
aaagagactt acgtggtaaa aaatgaagtc tcctgcccac agccacatta gtgaacctag 2460
aagcagagac tctgtgagat aatcgatgtt tttttttt agttgctcag ttttggctta 2520
acttggatcg cagcaataga taaataatat gcagagaaag aga 2563

<210> 2
<211> 39
<212> DNA
<213> Homo sapiens

<400> 2
ttgaggaaca ggcagactcc acagctcccg ccaggagaa

39

<210> 3
<211> 42
<212> DNA
<213> Homo sapiens

<400> 3
aaggaaggag ggagaaggga aggagtgaag gaaggagtga aa

42

<210> 4
<211> 1284
<212> DNA
<213> Murine sp.

<400> 4
ggcacgaggg gacccgtt tctacttagg tctcaaattt tccagccttg tctttgccta 60
aaatttcctg ctgttattt caaaataggg tctacatact gtggagctca tgatggttct 120
gagtgggca ctatgctcc gaatgaagga ttcaagccttg aaggtactgt atctgcacaa 180
taaccagctg ctggctggag gactgcacgc agagaaggc attaaagggtg aggagatcg 240
tggtgtccca aatcgggcac tggatgccag tctgtccct gtcatcctgg gcggtcaagg 300
aggaagccag tgcctatctt gtggacaga gaaaggccaa attctgaaac ttgagccagt 360
gaacatcatg gagctctacc tcggggccaa ggaatcaaag agcttccaccc tctaccggcg 420
ggatatgggt cttacctcca gcttcgaatc cgctgcctac ccaggctggt tccctctgcac 480
ctcaccggaa gctgaccagc ctgtcagct cactcagatc cctgaggacc cccgctggga 540
tgctccatc acagacttct actttcagea gtgtgacttag ggctgcgtgg tccccaaac 600
tccataagca gaggcagagt aggcaatggc ggctcctgtat agaggataga gagacagagg 660
agctccacag tagtggctt actcctctcc ttccctactg gactccgc tctgaccta 720
ggcacacaga cactctttc tcctgcattt cagtgcgtgt aaatcttctg gtatttggag 780
ctcaatgtgt agattcttc agattggatg gtactaccc tgggtgtggaa cccaatagaa 840
accacgtagg accaacaatgg accaacaatgg aagattctt ggtgaagaag aggtggaaac 900
tgttcataca tagtaagatc tgacacagta cctcagaatg cctgcattt cttatgttct 960
ggagaaatgg gaggggggggt caccaagact ttctctggct ggctggccc ttccctcaa 1020
cctttctgac atctgcagcc tctctcatc ttgccttcat tctctggccc tgaaccgaga 1080
gggtgatatac aggatagctg acagaagatg accaggcaca ctgtcctggt ttgaaaccag 1140
aggggacaat aaaaaaccct gattctggtc tctactcaca taaaaagaag cttgtgaaca 1200
ttaagtggaa agagattgct actaaataac ataccttgc ttttcatctt aattaaaata 1260
tacttctcta tattatataat tttt 1284

133

<210> 5
<211> 155
<212> PRT
<213> Homo sapiens

<400> 5
Met Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser Ala Leu
1 5 10 15

Lys Val Leu Tyr Leu His Asn Asn Gln Leu Leu Ala Gly Gly Leu His
20 25 30

Ala Gly Lys Val Ile Lys Gly Glu Glu Ile Ser Val Val Pro Asn Arg
35 40 45

Trp Leu Asp Ala Ser Leu Ser Pro Val Ile Leu Gly Val Gln Gly Gly
50 55 60

Ser Gln Cys Leu Ser Cys Gly Val Gly Gln Glu Pro Thr Leu Thr Leu
65 70 75 80

Glu Pro Val Asn Ile Met Glu Leu Tyr Leu Gly Ala Lys Glu Ser Lys
85 90 95

Ser Phe Thr Phe Tyr Arg Arg Asp Met Gly Leu Thr Ser Ser Phe Glu
100 105 110

Ser Ala Ala Tyr Pro Gly Trp Phe Leu Cys Thr Val Pro Glu Ala Asp
115 120 125

Gln Pro Val Arg Leu Thr Gln Leu Pro Glu Asn Gly Gly Trp Asn Ala
130 135 140

Pro Ile Thr Asp Phe Tyr Phe Gln Gln Cys Asp
145 150 155

<210> 6
<211> 155
<212> PRT
<213> Murine sp.

<400> 6
Met Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser Ala Leu
1 5 10 15

Lys Val Leu Tyr Leu His Asn Asn Gln Leu Leu Ala Gly Gly Leu His
20 25 30

Ala Glu Lys Val Ile Lys Gly Glu Glu Ile Ser Val Val Pro Asn Arg
35 40 45

Ala Leu Asp Ala Ser Leu Ser Pro Val Ile Leu Gly Val Gln Gly Gly
50 55 60

Ser Gln Cys Leu Ser Cys Gly Thr Glu Lys Gly Pro Ile Leu Lys Leu
65 70 75 80

134

4

Glu Pro Val Asn Ile Met Glu Leu Tyr Leu Gly Ala Lys Glu Ser Lys
85 90 95

Ser Phe Thr Phe Tyr Arg Arg Asp Met Gly Leu Thr Ser Ser Phe Glu
100 105 110

Ser Ala Ala Tyr Pro Gly Trp Phe Leu Cys Thr Ser Pro Glu Ala Asp
115 120 125

Gln Pro Val Arg Leu Thr Gln Ile Pro Glu Asp Pro Ala Trp Asp Ala
130 135 140

Pro Ile Thr Asp Phe Tyr Phe Gln Gln Cys Asp
145 150 155

<210> 7

<211> 141

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Consensus
polypeptide sequence

<400> 7

Met Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser Ala Leu
1 5 10 15

Lys Val Leu Tyr Leu His Asn Asn Gln Leu Leu Ala Gly Gly Leu His
20 25 30

Ala Lys Val Ile Lys Gly Glu Glu Ile Ser Val Val Pro Asn Arg Leu
35 40 45

Asp Ala Ser Leu Ser Pro Val Ile Leu Gly Val Gln Gly Ser Gln
50 55 60

Cys Leu Ser Cys Gly Pro Leu Leu Glu Pro Val Asn Ile Met Glu Leu
65 70 75 80

Tyr Leu Gly Ala Lys Glu Ser Lys Ser Phe Thr Phe Tyr Arg Arg Asp
85 90 95

Met Gly Leu Thr Ser Ser Phe Glu Ser Ala Ala Tyr Pro Gly Trp Phe
100 105 110

Leu Cys Thr Pro Glu Ala Asp Gln Pro Val Arg Leu Thr Gln Pro Glu
115 120 125

Trp Ala Pro Ile Thr Asp Phe Tyr Phe Gln Gln Cys Asp
130 135 140

<210> 8

<211> 138

<212> PRT

<213> Homo sapiens

135

<400> 8
Phe Arg Ile Trp Asp Val Asn Gln Lys Thr Phe Tyr Leu Arg Asn Asn
1 5 10 15

Gln Leu Val Ala Gly Tyr Leu Gln Gly Pro Asn Val Asn Leu Glu Glu
20 25 30

Lys Ile Asp Val Val Pro Ile Glu Pro His Ala Leu Phe Leu Gly Ile
35 40 45

His Gly Gly Lys Met Cys Leu Ser Cys Val Lys Ser Gly Asp Glu Thr
50 55 60

Arg Leu Gln Leu Glu Ala Val Asn Ile Thr Asp Leu Ser Glu Asn Arg
65 70 75 80

Lys Gln Asp Lys Arg Phe Ala Phe Ile Arg Ser Asp Ser Gly Pro Thr
85 90 95

Thr Ser Phe Glu Ser Ala Ala Cys Pro Gly Trp Phe Leu Cys Thr Ala
100 105 110

Met Glu Ala Asp Gln Pro Val Ser Leu Thr Asn Met Pro Asp Glu Gly
115 120 125

Val Met Val Thr Lys Phe Tyr Phe Gln Glu
130 135

<210> 9
<211> 73
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Consensus
polypeptide sequence

<400> 9
Phe Arg Asp Lys Tyr Leu Asn Asn Gln Leu Ala Gly Leu Val Glu Ile
1 5 10 15

Val Val Pro Pro Leu Gly Gly Cys Leu Ser Cys Gly Glu Leu Leu
20 25 30

Glu Val Asn Ile Leu Lys Lys Phe Phe Arg Asp Gly Thr Ser Phe Glu
35 40 45

Ser Ala Ala Pro Gly Trp Phe Leu Cys Thr Glu Ala Asp Gln Pro Val
50 55 60

Leu Thr Pro Gly Thr Phe Tyr Phe Gln
65 70

<210> 10
<211> 465

<212> DNA
<213> Homo sapiens

<400> 10
atggtcctga gtggggcgct gtgcttccga atgaaggact cggcattgaa ggtgcatttat 60
ctgcataata accagttct agctggaggg ctgcacgcag ggaaggcat taaaggtgaa 120
gagatcagcg tggccccaa tcggtggtg gatgccagcc tgtcccccgt catcctgggt 180
gtccagggtg gaagccagtg cctgtcatgt ggggtggggc aggagccgac tctaacaacta 240
gagccagtga acatcatgga gctctatctt ggtgccaagg aatccaagag cttcaccttc 300
taccggcggg acatgggct cacctccagc ttcgagtcgg ctgcctaccc gggctggttc 360
ctgtgcacgg tgcctgaagc cgatcaggct gtcagactca cccagcttcc cgagaatgg 420
ggctggaatg ccccatcac agacttctac ttccagcagt gtgac 465

<210> 11
<211> 465
<212> DNA
<213> Murine sp.

<400> 11
atggttctga gtggggcact atgcttccga atgaaggatt cagcctgaa ggtactgtat 60
ctgcacaata accagctgct ggctggagga ctgcacgcag agaaggcat taaaggtgag 120
gagatcagtg ttgtcccaa tcgggcactg gatgccagtc tgtcccccgt catcctgggc 180
gttcaaggag gaagccagtg cctatctgt gggacagaga aaggccaat tctgaaaactt 240
gagccagtga acatcatgga gctctaccc gggcccaagg aatcaaagag cttcaccttc 300
taccggcggg atatgggtct tacctccagc ttcaaatccg ctgcctaccc aggctggttc 360
ctctgcacct caccggaagc tgaccagcct gtcaggctca ctcagatccc tgaggacccc 420
gcctggatg ctccatcac agacttctac ttccagcagt gtgac 465

<210> 12
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Conserved
consensus DNA sequence

<220>
<221> modified_base
<222> (1)..(41)
<223> "n" represent a variable base

<400> 12
acaatnaaaa nccngatnc tggctctan tcncatnaaa a

41

<210> 13
<211> 155
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Recombinant
IBR polypeptide

137

<400> 13
Met Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser Ala Leu
1 5 10 15

Lys Val Leu Tyr Leu His Asn Asn Gln Leu Leu Ala Gly Gly Leu His
20 25 30

Ala Gly Lys Val Ile Lys Gly Glu Glu Ile Ser Val Val Pro Asn Arg
35 40 45

Trp Leu Asp Ala Ser Leu Ser Pro Val Ile Leu Gly Val Gln Gly Gly
50 55 60

Ser Gln Cys Leu Ser Cys Gly Val Gly Gln Glu Pro Thr Leu Thr Leu
65 70 75 80

Glu Pro Val Asn Ile Met Glu Leu Tyr Leu Gly Ala Lys Glu Ser Lys
85 90 95

Ser Phe Thr Phe Tyr Arg Arg Asp Met Gly Leu Thr Ser Ser Phe Glu
100 105 110

Ser Ala Ala Tyr Pro Gly Trp Phe Leu Cys Thr Val Pro Glu Ala Asp
115 120 125

Gln Pro Val Arg Leu Thr Gln Leu Pro Glu Asn Gly Gly Trp Asn Ala
130 135 140

Pro Ile Thr Asp Phe Tyr Phe Gln Gln Cys Asp
145 150 155

<210> 14
<211> 154
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Recombinant
IBR polypeptide

<400> 14
Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser Ala Leu Lys
1 5 10 15

Val Leu Tyr Leu His Asn Asn Gln Leu Leu Ala Gly Gly Leu His Ala
20 25 30

Gly Lys Val Ile Lys Gly Glu Glu Ile Ser Val Val Pro Asn Arg Trp
35 40 45

Leu Asp Ala Ser Leu Ser Pro Val Ile Leu Gly Val Gln Gly Gly Ser
50 55 60

Gln Cys Leu Ser Cys Gly Val Gly Gln Glu Pro Thr Leu Thr Leu Glu
65 70 75 80

138
8

Pro Val Asn Ile Met Glu Leu Tyr Leu Gly Ala Lys Glu Ser Lys Ser
85 90 95

Phe Thr Phe Tyr Arg Arg Asp Met Gly Leu Thr Ser Ser Phe Glu Ser
100 105 110

Ala Ala Tyr Pro Gly Trp Phe Leu Cys Thr Val Pro Glu Ala Asp Gln
115 120 125

Pro Val Arg Leu Thr Gln Leu Pro Glu Asn Gly Gly Trp Asn Ala Pro
130 135 140

Ile Thr Asp Phe Tyr Phe Gln Gln Cys Asp
145 150

<210> 15

<211> 157

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Recombinant
IBR polypeptide

<400> 15

Gly Ser Ser Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser
1 5 10 15

Ala Leu Lys Val Leu Tyr Leu His Asn Asn Gln Leu Leu Ala Gly Gly
20 25 30

Leu His Ala Gly Lys Val Ile Lys Gly Glu Glu Ile Ser Val Val Pro
35 40 45

Asn Arg Trp Leu Asp Ala Ser Leu Ser Pro Val Ile Leu Gly Val Gln
50 55 60

Gly Gly Ser Gln Cys Leu Ser Cys Gly Val Gly Gln Glu Pro Thr Leu
65 70 75 80

Thr Leu Glu Pro Val Asn Ile Met Glu Leu Tyr Leu Gly Ala Lys Glu
85 90 95

Ser Lys Ser Phe Thr Phe Tyr Arg Arg Asp Met Gly Leu Thr Ser Ser
100 105 110

Phe Glu Ser Ala Ala Tyr Pro Gly Trp Phe Leu Cys Thr Val Pro Glu
115 120 125

Ala Asp Gln Pro Val Arg Leu Thr Gln Leu Pro Glu Asn Gly Gly Trp
130 135 140

Asn Ala Pro Ile Thr Asp Phe Tyr Phe Gln Gln Cys Asp
145 150 155

a

139
9

<210> 16
<211> 73
<212> DNA
<213> Homo sapiens

<400> 16
ctggcaatgg caggcagggaa agacagagga aggaaggagg gagaagggaa ggagtgaagg 60
aaggagtgaa aaa 73

<210> 17
<211> 16
<212> PRT
<213> Homo sapiens

<400> 17
Met Ala Gly Arg Lys Asp Arg Gly Arg Lys Glu Gly Glu Gly Lys Glu
1 5 10 15

<210> 18
<211> 54
<212> DNA
<213> Homo sapiens

<400> 18
ttggagggAAC aggcagactc cacagctccc gccaggagaa aggaacattc tgag 54

<210> 19
<211> 10
<212> DNA
<213> Homo sapiens

<400> 19
tccaaaatacg 10

<210> 20
<211> 10
<212> DNA
<213> Homo sapiens

<400> 20
gatgttcag 10

<210> 21
<211> 10
<212> DNA
<213> Homo sapiens

<400> 21
tttccccacag 10

<210> 22
<211> 10

a

140
10

<212> DNA
<213> Homo sapiens

<400> 22
ctgccggcag

10

<210> 23
<211> 10
<212> DNA
<213> Homo sapiens

<400> 23
ctggcaatgg

10

<210> 24
<211> 10
<212> DNA
<213> Homo sapiens

<400> 24
ttggaggaac

10

<210> 25
<211> 10
<212> DNA
<213> Homo sapiens

<400> 25
gggagtctac

10

<210> 26
<211> 10
<212> DNA
<213> Homo sapiens

<400> 26
aatgaaggac

10

<210> 27
<211> 10
<212> DNA
<213> Homo sapiens

<400> 27
gtgaagagat

10

<210> 28
<211> 10
<212> DNA
<213> Homo sapiens

<400> 28

141

ccagtgaaca

10

<210> 29
<211> 10
<212> DNA
<213> Homo sapiens

<400> 29
agtggaaaaag

10

<210> 30
<211> 10
<212> DNA
<213> Homo sapiens

<400> 30
acattctgag

10

<210> 31
<211> 10
<212> DNA
<213> Homo sapiens

<400> 31
tgtgcttccg

10

<210> 32
<211> 10
<212> DNA
<213> Homo sapiens

<400> 32
gtcattaaag

10

<210> 33
<211> 10
<212> DNA
<213> Homo sapiens

<400> 33
aacactagag

10

<210> 34
<211> 10
<212> DNA
<213> Homo sapiens

<400> 34
agagaaaagag

10

<210> 35

a 142
12

<211> 10
<212> DNA
<213> Homo sapiens

<400> 35
gtaaggaaga

10

<210> 36
<211> 10
<212> DNA
<213> Homo sapiens

<400> 36
gtatgctctg

10

<210> 37
<211> 10
<212> DNA
<213> Homo sapiens

<400> 37
gtgagtgtat

10

<210> 38
<211> 10
<212> DNA
<213> Homo sapiens

<400> 38
gttgggtatg

10

<210> 39
<211> 10
<212> DNA
<213> Homo sapiens

<400> 39
gtgagacttg

10

<210> 40
<211> 10
<212> DNA
<213> Homo sapiens

<400> 40
aaacaaaatgc

10

<210> 41
<211> 104
<212> PRT
<213> Homo sapiens

143

<400> 41
Met Val Leu Ser Gly Ala Leu Cys Phe Arg Met Lys Asp Ser Ala Leu
1 5 10 15

Lys Val Leu Tyr Leu His Asn Asn Gln Leu Leu Ala Gly Gly Leu His
20 25 30

Ala Gly Lys Val Ile Lys Gly Glu Glu Ile Ser Val Val Pro Asn Arg
35 40 45

Trp Leu Asp Ala Ser Leu Ser Pro Val Ile Leu Gly Val Gln Gly Gly
50 55 60

Ser Gln Cys Leu Ser Cys Gly Val Gly Gln Glu Pro Thr Leu Thr Leu
65 70 75 80

Glu Val Asn Ile Met Glu Leu Tyr Leu Gly Ala Lys Glu Ser Lys Ser
85 90 95

Phe Thr Phe Tyr Arg Arg Asp Met
100

<210> 42
<211> 100
<212> PRT
<213> Homo sapiens

<400> 42
Arg Lys Ser Ser Lys Met Gln Ala Phe Arg Ile Trp Asp Val Asn Gln
1 5 10 15

Lys Thr Phe Tyr Leu Arg Asn Asn Gln Leu Val Ala Gly Tyr Leu Gln
20 25 30

Gly Pro Asn Val Asn Leu Glu Glu Lys Ile Asp Val Val Pro Ile Glu
35 40 45

Pro His Ala Leu Phe Leu Gly Ile His Gly Gly Lys Met Cys Leu Ser
50 55 60

Cys Val Lys Ser Gly Asp Glu Thr Arg Leu Gln Leu Glu Val Asn Ile
65 70 75 80

Thr Asp Leu Ser Glu Asn Arg Lys Gln Asp Lys Arg Phe Ala Phe Ile
85 90 95

Arg Ser Asp Ser
100

<210> 43
<211> 6540
<212> DNA
<213> Homo sapiens

<400> 43
catgagcaaa gatgttaata caaagatgtt tgtcacaaca tggtttcaa tagcaaaaaa 60

agagagaaaa atatataaaa gacaaataac agtggatagg tttcaataaa taatgttaca 120
gtgatacagt taaatactat acagctattg aagcatgtca ttattcatat ttagtatgga 180
aagatattt gctatttgc tacatgaaaa aatgagggtt gaaaaagtat aggtttgtg 240
aatctgttg atgaaagctg tctatagttt catgtgtatg tgtgtggagg aaaaagtgtt 300
gtcattgggt ttctgtatgact gacactcagaa aagacaagta ttcacatTTT ttcttggc 360
tgcattggat ttccaggtt ttctacaatg aacatgttagg ctgaacattc cctaagcagg 420
agagtcccac ctctaacatc tcctgttaggc ctggcaatgg caggcaggaa agacagagga 480
aggaaggagg gagaaggaa ggagtgaagg aaggagtgaa aaagtaagg aagaaaggaa 540
atagggagg aaggaggaa atgggaaaggg aaagaaggaa aggaaggaaa gagggaggaa 600
agaaaggaag ggaaaaggaa gggagttagt gaatgaaaaga tggaaaagaa gaagaaaggaa 660
agggaggcag ggaggaaaga aagttgcgt tcccttgc tgccatggc actgactt 720
agggtctgaa agcccctgag atgaaaagc ctatgtctca caaagagctg gaaagcctca 780
aggaagttt tcaatattt tggaaaggaaa ctgtctccag aagctccct ccccacgaca 840
gataatgagc agcaagtgc tctggcact taggtgtatg taaaatcagc ctggaaatcc 900
tgctccctcct caggtcctgg cagtttcagg gcccctccctt aggccttact taaaaggctg 960
aggcatcctt ggaggaaacag gcagactcca cagtcctccgc caggagaaag gaacattctg 1020
aggtatgctc tggggcgctg gtggtacccg agtctctcc tgaccaggaa cccagaatct 1080
gtccgtgga ggctgttacatgctgggaa gctcggtgca gctgcttgc attccaaaat aggggagtt 1200
cagccaaactc agccttcctc tccatgattt tctttgtt tgctccgtt gagtgtatga 1260
acaccctgtg gagctcaaga tggctctgag tggggcgctg tgatgaccc ggttagaccc gttgtccagc 1320
ggccctggt tgggtgttgc ctccggagga agtgagttt tggaaattt tgaccagcac 1380
tctgagcagg agggaggaag ggaggggtt ccattgcagc ggcaggactg gggcaggcca 1440
ctcattgctc ttaggtttt cccagccctt ttcaaataagg cttccagttt agagctccag 1500
tctcacaagg ggtccctgtat gctgaggggg acaagtgaac ctcagagctc cgccattgtc 1560
ccaagtctat ccaaggtggg aacgggggcc aggtccctg cccctaccc cctgtactc 1620
ccccatcaca gtgaatggat gtaagctcac ccactctgtg agtctgttca cccactggca 1680
tttggggata ataataaaac aaaaaccattt accatcagcc acagaggatg agagtggtcc 1740
tgtaccaagc cagacactt gccgtgttcc gggcttaaca atgggactcg attagaggag 1800
tttctctcag tctaataaaag cacttccac gatgtttct tctctgtatca agttaatgca 1860
tcccacagag gcatccagga gatgtttac acagtggagc gtcgttccat cccactggca 1920
ggaaattctg ctttctacat cctctctaa gagaaccaca gcccagctca gcatatgagt 1980
gactgaggtt ttctgaagta aggcaactt gttaatcgta ttttagttagt catcgacc 2040
attttacac tgcattttttt tccccat aacttttggaa aacaccact tttaggataca 2100
tcttccacct cataggatgc caggaaatca actgagttca aagatgagaa acaactttg 2160
aaagttaaat aaaagaaatt taaattttaa gaaactcttcc acttagtaag gaatataatg 2220
ccaaatagaa atacatgtat cttgaagaat tgaagaatca ggcttaacg tgaaagaggc 2280
ctggatgtt tccaaaccat catcttagt tagcaatggg gaggctcagg cccagagttt 2340
gcgagagagt tgcattttgc gactcagcag cattggaggg atagatgggg caagaaccta 2400
gggctctgac tcaccgtgca gcttcttcc caacaggaga tgggttgggg cagaaaaggt 2460
tgaatagggtt gaaggagcaa accacagact ccagtgggg actgtggggt catcctcc 2520
gtagggcatg agcccagcag ggctgggaga caaggctgtg ctgttactt tggcacagta 2580
ggaagaaaga gagacaaaat gcctgagatc agggggtttct ctggatccag ggcattgtgg 2640
agtgtccacc ctcctccaa tgcattttcc acccttccct gatgtttcag aatgaaggac 2700
tcggcattga aggtgtttt tctgcataat aaccagctt tagctggagg gtcgtatgca 2760
gggaaggtca taaaagttt ggtatgaaac atgacccact ttccttggc tctataact 2820
ctcaggggag gggcctgaa gagggcttag aatagtctat cagatttaga taggcctaca 2880
gagcccaggg attagggcag cacaaccat gctctaagca aaggcaataaa aataactaca 2940
cctctcagca aagtgaagac acacgcttcc gggccacccg aagcttctgt gcagaagtga 3000
gaatgttttcaagaggctt gtctgtcat tcccttacag gtatgttttgcgtcaagcatt 3060
gcattccctg ggagccagta agtaccaagg agagaactaa cgtatgttctt ctatacc 3120
tttccctat gggagttttt ttctgcctt ccaccctggg tccctctgc tctctgaaaga 3180
tcctcagtc ctttaggttgg agggaccatc agaaccatgttgcattgttgg acctctgtt 3240
tgctcactt gccccatgca ctgcaacagg tccctctcta aaatgttttgcgtca 3300
cctggggcac ctttgctgag cacatgtcc aggtatgttcc ttcagctagg ccatatgtgt 3360
atgtgtgtgc ttactgggtt atgtatgttgc atatgtgtt gacatgtatgtt 3420
gtgcattgtat gtaaccatgtt atgtgtttttgcgtcaaggtatgttgcgtca 3480
atgtgtgtgtt atatgtatgtt gttgtgttgc atgtatgttgcgtca 3540

145
15

<210> 44
<211> 152
<212> PRT
<213> *Homo sapiens*

146
16

<400> 44
Arg Pro Ser Gly Arg Lys Ser Ser Lys Met Gln Ala Phe Arg Ile Trp
1 5 10 15

Asp Val Asn Gln Lys Thr Phe Tyr Leu Arg Asn Asn Gln Leu Val Ala
20 25 30

Gly Tyr Leu Gln Gly Pro Asn Val Asn Leu Glu Glu Lys Ile Asp Val
35 40 45

Val Pro Ile Glu Pro His Ala Leu Phe Leu Gly Ile His Gly Gly Lys
50 55 60

Met Cys Leu Ser Cys Val Lys Ser Gly Asp Glu Thr Arg Leu Gln Leu
65 70 75 80

Glu Ala Val Asn Ile Thr Asp Leu Ser Glu Asn Arg Lys Gln Asp Lys
85 90 95

Arg Phe Ala Phe Ile Arg Ser Asp Ser Gly Pro Thr Thr Ser Phe Glu
100 105 110

Ser Ala Ala Cys Pro Gly Trp Phe Leu Cys Thr Ala Met Glu Ala Asp
115 120 125

Gln Pro Val Ser Leu Thr Asn Met Pro Asp Glu Gly Val Met Val Thr
130 135 140

Lys Phe Tyr Phe Gln Glu Asp Glu
145 150

<210> 45
<211> 153
<212> PRT
<213> Homo sapiens

<400> 45
Ala Pro Val Arg Ser Leu Asn Cys Thr Leu Arg Asp Ser Gln Gln Lys
1 5 10 15

Ser Leu Val Met Ser Gly Pro Tyr Glu Leu Lys Ala Leu His Leu Gln
20 25 30

Gly Gln Asp Met Glu Gln Gln Val Val Phe Ser Met Ser Phe Val Gln
35 40 45

Gly Glu Glu Ser Asn Asp Lys Ile Pro Val Ala Leu Gly Leu Lys Glu
50 55 60

Lys Asn Leu Tyr Leu Ser Cys Val Leu Lys Asp Asp Lys Pro Thr Leu
65 70 75 80

Gln Leu Glu Ser Val Asp Pro Lys Asn Tyr Pro Lys Lys Met Glu
85 90 95

Lys Arg Phe Val Phe Asn Lys Ile Glu Ile Asn Asn Lys Leu Glu Phe
100 105 110

147

Glu Ser Ala Gln Phe Pro Asn Trp Tyr Ile Ser Thr Ser Gln Ala Glu
115 120 125

Asn Met Pro Val Phe Leu Gly Gly Thr Lys Gly Gly Gln Asp Ile Thr
130 135 140

Asp Phe Thr Met Gln Phe Val Ser Ser
145 150

<210> 46
<211> 159
<212> PRT
<213> Homo sapiens

<400> 46
Ser Ala Pro Phe Ser Phe Leu Ser Asn Val Lys Tyr Asn Phe Met Arg
1 5 10 15

Ile Ile Lys Tyr Glu Phe Ile Leu Asn Asp Ala Leu Asn Gln Ser Ile
20 25 30

Ile Arg Ala Asn Asp Gln Tyr Leu Thr Ala Ala Leu His Asn Leu
35 40 45

Asp Glu Ala Val Lys Phe Asp Met Gly Ala Tyr Lys Ser Ser Lys Asp
50 55 60

Asp Ala Lys Ile Thr Val Ile Leu Arg Ile Ser Lys Thr Gln Leu Tyr
65 70 75 80

Val Thr Ala Gln Asp Glu Asp Gln Pro Val Leu Leu Lys Glu Met Pro
85 90 95

Glu Ile Pro Lys Thr Ile Thr Gly Ser Glu Thr Asn Leu Leu Phe Phe
100 105 110

Trp Glu Thr His Gly Thr Lys Asn Tyr Phe Thr Ser Val Ala His Pro
115 120 125

Asn Leu Phe Ile Ala Thr Lys Gln Asp Tyr Trp Val Cys Leu Ala Gly
130 135 140

Gly Pro Pro Ser Ile Thr Asp Phe Gln Ile Leu Glu Asn Gln Ala
145 150 155

<210> 47
<211> 157
<212> PRT
<213> Homo sapiens

<400> 47
Tyr Phe Gly Lys Leu Glu Ser Lys Leu Ser Val Ile Arg Asn Leu Asn
1 5 10 15

148
18

Asp Gln Val Leu Phe Ile Asp Gln Gly Asn Arg Pro Leu Phe Glu Asp
20 25 30

Met Thr Asp Ser Asp Cys Arg Asp Asn Ala Pro Arg Thr Ile Phe Ile
35 40 45

Ile Ser Met Tyr Lys Asp Ser Gln Pro Arg Gly Met Ala Val Thr Ile
50 55 60

Ser Val Lys Cys Glu Lys Ile Ser Thr Leu Ser Cys Glu Asn Lys Ile
65 70 75 80

Ile Ser Phe Lys Glu Met Asn Pro Pro Asp Asn Ile Lys Asp Thr Lys
85 90 95

Ser Asp Ile Ile Phe Phe Gln Arg Ser Val Pro Gly His Asp Asn Lys
100 105 110

Met Gln Phe Glu Ser Ser Tyr Glu Gly Tyr Phe Leu Ala Cys Glu
115 120 125

Lys Glu Arg Asp Leu Phe Lys Leu Ile Leu Lys Lys Glu Asp Glu Leu
130 135 140

Gly Asp Arg Ser Ile Met Phe Thr Val Gln Asn Glu Asp
145 150 155

<210> 48

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Consensus
peptide sequence

<220>

<221> MOD_RES

<222> (1)..(6)

<223> Xaa represents a variable amino acid

<400> 48

Leu Lys Xaa Leu Xaa Leu

1 5

<210> 49

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Consensus
peptide sequence

<220>

<221> MOD_RES

149
x9

<222> (1)..(7)
<223> Xaa represents a variable amino acid

<400> 49
Ile Thr Asp Phe Xaa Xaa Gln
1 5

<210> 50
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Consensus
peptide sequence

<220>
<221> MOD_RES
<222> (1)..(12)
<223> Xaa represents a variable amino acid

<400> 50
Tyr Leu Xaa Asn Asn Gln Leu Xaa Ala Gly Xaa Leu
1 5 10

<210> 51
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Consensus
peptide sequence

<220>
<221> MOD_RES
<222> (1)..(9)
<223> Xaa represents a variable amino acid

<400> 51
Leu Glu Xaa Val Asn Ile Xaa Xaa Leu
1 5

<210> 52
<211> 24
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Consensus
peptide sequence

<220>
<221> MOD_RES
<222> (1)..(24)

150
20

a
<223> Xaa represents a variable amino acid

<400> 52

Thr Xaa Ser Phe Glu Ser Ala Ala Xaa Pro Gly Trp Phe Leu Cys Thr
1 5 10 15

Xaa Xaa Glu Ala Asp Gln Pro Val
20

<210> 53

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Binding domain

<400> 53

Phe Gly Phe Arg
1

but
<210> 54

<211> 13

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: N-terminal
extension

<400> 54

Gly Ser Ser Gly Leu Arg Arg Ala Ser Leu Gly Ser Ser
1 5 10