Structures Report

Reinaldo Zapata

1 Up

1.1 $\mathcal{V}^{\mathrm{xb}}$: energy range: 0.0–0.2 eV

Figure 1: The most intense response for V^{xb} is for 40° .

Figure 2: Cheking angle of incidence for xb components for up structure.

Figure 3: Three components of V^{xb} @ 40°.

1.2 $\mathcal{V}^{ ext{yb}}$: energy range: 0.0–0.2 eV

Figure 4: The most intense response for $\mathcal{V}^{\mathrm{yb}}$ is for 40° .

Figure 5: Cheking angle of incidence for yb components.

Figure 6: Three components of $\mathcal{V}^{\mathrm{yb}}$ @ 40°.

1.3 V^{xb} : energy range: 1.8–2.1 eV

Figure 7: The most intense response for V^{xb} is for 40° .

Figure 8: Three components of V^{xb} @ 40°.

Figure 9: The most intense response for V^{yb} is for 40° .

Figure 10: Three components of V^{yb} @ 40°.

1.4 $|\mathcal{V}^{ab}|$ energy range 0.0–0.2 eV: angles θ and φ , layers, and comparison with CdSe and GaAs

Figure 11: $|\mathcal{V}^{ab}|$ (solid line, leftside scale) and the corresponding angles θ and φ (dashed lines, rightside scale).

Figure 12: Layer decomposition for the most intense response: V^{yz} .

Figure 13: Comparisson of the most intense response vs the most intense responses of CdSe and GaAs.

1.5 $|\mathcal{V}^{ab}|$, angles θ and φ , layers, and comparison with CdSe and GaAs for the energy range of 1.8–2.1 eV

Figure 14: $|\mathcal{V}^{ab}|$ (solid line, leftside scale) and the corresponding angles θ and φ (dashed lines, rightside scale).

Figure 15: Layer decomposition for the most intense response: \mathcal{V}^{yz} .

Figure 16: Comparisson of the most intense response vs the most intense responses of CdSe and GaAs.

2 alt

2.1 V^{xb} : energy range: 0.6–1.0 eV

Figure 17: The most intense response for V^{xb} is for 145°.

Figure 18: Cheking angle of incidence for xb components.

Figure 19: Three components of V^{xb} @ 145°.

2.2 V^{yb} : energy range: 0.6–1.0 eV

Figure 20: The most intense response for V^{yb} is for 145° .

Figure 21: Cheking angle of incidence for yb components.

Figure 22: Three components of V^{yb} @ 145°.

2.3 $|V^{ab}|$, angles θ and φ , layers, and comparison with CdSe and GaAs.

Figure 23: $|\mathcal{V}^{ab}|$ (solid line, leftside scale) and the corresponding angles θ and φ (dashed lines, rightside scale).

Figure 24: Layer decomposition for the most intense response: V^{yz} .

Figure 25: Comparisson of the most intense response vs the most intense responses of CdSe and GaAs.