情報処理工学第6回

藤田一寿

公立小松大学保健医療学部臨床工学科

論理回路

■ 論理回路

- 論理演算を回路で表したものを論理回路とよぶ.
- コンピュータは論理回路により様々な処理を実現している.

- 論理回路を構成する素子のことを論理素子と言う.
- 論理回路は1と0を扱う. 1と0はそれぞれ真と偽, T (True)とF (False), もしくはH (High)とL(Low)と呼ばれることもある.

論理素子

• 論理積(AND),論理和(OR),否定(NOT),排他的論理和

$A \cdot$	B =	Y
Α	В	Υ

ANDゲート

ORゲート

$\overline{A} = Y$			$A \in$	$\theta B =$	= Y	
				А	В	Υ
	Α	Υ		0	0	0
	0	1		0	1	1
	1	0		1	0	1
				1	1	n

XORゲート

NOTゲート

NAND回路,NOR回路

• 論理積の否定および論理和の否定を出力する回路を、それぞれNAND ゲート、NORゲートと呼ぶ。

• NOTゲートの三角の部分は省略できるので、それぞれのゲートは次のように描くことができる、

論理式から論理回路へ

■ 論理式から論理回路を作る

• 論理式で用いる論理演算に対応する論理素子がそれぞれあるので、論 理式は論理回路に変換することができる。

・次の論理式を論理回路に直せ.

$$Y = \overline{A} + \overline{B}$$
 $Y = (A + B) + A \cdot B$

・次の論理式を論理回路に直せ.

$$Y = \overline{A} + \overline{B}$$

$$Y = (A + B) + A \cdot B$$

• 次の論理式を論理回路に直せ.

$$Y = \overline{A} \oplus \overline{B}$$

$$Y = (A + B) + A \cdot B$$

・次の論理式を論理回路に直せ.

$$Y = \overline{A} + \overline{B}$$

$$Y = (A + B) + A \cdot B$$

注意:線が接続している部分は黒丸で描く.

・次の論理式を論理回路に直せ.

$$Y = \overline{A} + \overline{B}$$

$$Y = (A + B) \oplus A \cdot B$$

注意:線が接続している部分は黒丸で描く.

論理式の簡略化と論理回路

• 論理式を論理回路にするとき、論理式はなるべく簡単化した後に論理 回路にする.

$$Y = (A + B) + A \cdot B$$
$$= A + B$$

演習

• 次の論理式を論理回路に直せ.

$$Y = A \cdot B + \overline{A} \cdot \overline{B}$$

・ 次の論理式を論理回路に直せ.

AND OR NOT =D- -D-

論理回路から論理式へ

論理回路を論理式に変換する.

この回路を論理式に変換してみる.

まず,入力に近い回路から論理式に変換する.

論理回路から論理式を作る

出力を計算するAND回路は、 入力に接続されている回路 の出力を受け取る.

$$Y = (A + B) \cdot (A \cdot B)$$

論理回路の簡略化

• 先の例の論理回路から得られた論理式を見ると, 論理式を簡単化する ことができることが分かる.

$$Y = (A + B) \cdot (A \cdot B)$$

簡単化可能

論理回路の簡略化

例題で扱った回路は、簡略化するとAND回路となった.

論理回路から真理値表へ

• 論理回路の動作は、論理式だけではなく真理値表でも表現することができる。

Α	В	Υ
0	0	
0	1	
1	0	
1	1	

• 論理回路の動作は、論理式だけではなく真理値表でも表現することができる。

А	В	Υ
0	0	0
0	1	0
1	0	1
1	1	0

- 論理回路から真理値表に変換する一番簡単な方法
 - 一つ一つ値を代入して出力を求める.

Α	В	Υ
0	0	0
0	1	0
1	0	1
1	1	0

- 論理回路から真理値表に変換するスマートなやり方
 - ・ 論理回路から論理式を求める.

 $(A+B) \cdot \bar{B} = A \cdot \bar{B} + B \cdot \bar{B} = A \cdot \bar{B}$ よって A=1, B=0だけ1,それ以外は0 となる.

Α	В	Υ
0	0	0
0	1	0
1	0	1
1	1	0

演習

• 次の論理回路の真理値表をかけ.

演習

・次の論理回路の真理値表をかけ.

A	[3]	7
0	0	0
0		0
	0	0

真理値表から論理回路へ

■ 真理値表から論理回路を作る

- 論理回路を用い,何かの機能を実現するとき,まず真理値表を作成する.
- ・論理回路は作成した真理値表を元に作成する.
- では、どうすれば真理値表から論理回路を作れるのか?

А	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

この真理値表から論理回路をどう作る?

■ 真理値表から論理回路を作る

- 真理値表から論理回路を作ることは非常に難しい.
- 真理値表から論理回路を作るには、次の手順を踏む.

真理值表

真理値表に基づき, 論理式を作る

論理式に基づき, 論理回路を作る

■ 真理値表から論理式を作る

・出力が1のときに着目する.

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

■ 真理値表から論理式を作る

・図のように論理式を作る.

А	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

- 出力が1の部分は入 力の掛け算に
- 入力が0のところは 否定に

この作業は、出力が1になる行だけ1になる論理式を求めている。

■ 真理値表から論理式を作る

- 先程の手順で作成した論理式を足す.
- できた論理式を簡単化して完成.

Α	В	Υ	
0	0	0	
0	1	1	$A \cdot B \rightarrow \overline{A} \cdot B + A \cdot \overline{B}$
1	0	1	$\Lambda \overline{R} $
1	1	0	

XORの式になった

■ 真理値表から論理回路を作る

• 完成した論理式から、論理回路を作成すればよい.

Α	В	Υ	
0	0	0	
0	1	1	$\overline{A} \cdot B + A \cdot \overline{B}$
1	0	1	
1	1	0	_
			$\begin{array}{c c} A & & \\ \hline \\ B & & \\ \hline \\ \end{array}$

• 次の真理値表を論理式で表わせ. ただし、論理式はできるだけ簡単化せよ.

А	В	Υ
0	0	0
0	1	0
1	0	1
1	1	0

• 次の真理値表を論理式で表わせ. ただし、論理式はできるだけ簡単化せよ.

А	В	Υ
0	0	0
0	1	0
1	0	1
1	1	0

• 次の真理値表を論理式で表わせ. ただし、論理式はできるだけ簡単化せよ.

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	1

演習 演習

・次の真理値表を論理式で表わせ.ただし、論理式はできるだけ簡単化せよ.

Α	В	Υ		
0	0	1	A·B	
0	1	0		Ā·B +A·B
1	0	0		71 0 1 (1) 1
1	1	1	A · B	

演習

・図の回路の出力Xを表す真理値表で正しいのはどれか. (27回国家試験)

١.	入力		出力
	Α	В	X
	0	0	0
	0	1	0
	1	0	0
	1	1	1

3.	入力		出力
	Α	В	Х
	0	0	1
	0	1	0
	1	0	0
	1	1	1

1.	入力		出力
	A	В	Х
	0	0	0
	0	1	1
	1	0	1
	1	1	1

・図の回路の出力Xを表す真理値表で正しいのはどれか. (27回国家試

回路を論理式で表すと

$$A \cdot B + \overline{A + B}$$

となる. $A \cdot B$ と $\overline{A + B}$ を足した真理値表は3となる.

 $\underline{A \cdot B} + \overline{A + B} = \underline{A \cdot B} + \overline{\underline{A}} \cdot \overline{B} = (\overline{A} + B) \cdot (\underline{A} + \overline{B}) = \overline{\underline{A} \cdot \overline{B}} \cdot \overline{\overline{A} \cdot B} = \overline{\underline{A} \cdot \overline{B}} + \overline{\overline{A} \cdot B}$ なので、この回路はXORの否定になっている。

١.	入力		出力
	Α	В	X
	0	0	0
	0	1	0
	1	0	0
	1	1	1

2.	入力		出力
	Α	В	X
	0	0	0
	0	1	1
	1	0	1
	1	1	0

3.	入	カ	出力
	Α	В	Х
	0	0	1
	0	1	0
	1	0	0
	1	1	1

入力		出力
A	В	х
0	0	0
0	1	1
1	0	1
1	1	1

これはNOR

■ 中間試験

- 第8回(11月21日)講義の後半に実施
- 時間は30分
- ・ 範囲は第1回から第7回の講義で取り扱った次の内容
 - N進数,波形信号(音声など),画像,論理式,論理回路
- 国家試験、ME2種の過去問を改変したものを出題
- 筆記用具・スマホまたはPCのみ持ち込み可

- 不合格(60点未満)となった学生がいた場合は、対象者に再試の連絡 をする.
- 定期試験ができると国家試験もできるようになるので頑張ろう.