Parasitic Effects on Dual-Granularity Cooperative Quantization (DGCQ) System

B11901027 王仁軒

Recall

- Dual-granularity cooperative quantizer
 - □When quantizing analog voltage, use another ckt to calculate an approximated result

Total: N iterations

Total V: N⋅(Vs/2)

Counter: $N \cdot (Vs/2) / Vref$

Quantizing MAC Voltage

- Coarse-grained method
 - □Takes 2ⁿ iterations to get n bit precision
 - □Area is roughly a fixed value
- SAR ADC
 - □Takes n iterations to get n bit precision
 - \square Area is proportional to 2^n (dominated by caps)

Quantizing MAC Voltage

- Partition of coarse/fine grained result
 - □Suppose Vref=VDD

$$0.01100011010$$
 x VDD Coarse-grained Fine-grained

After 8 iteration, $V_{acc} = 8V_s - \lfloor 8V_s \rfloor$ $8V_s = 011.00011010 \times VDD$ $\lfloor 8V_s \rfloor = 011.00000000 \times VDD$ $V_{acc} = 000.00011010 \times VDD$

DGCQ

Coarse-grained result

Fine-grained result

Quantizing MAC Voltage

■ 3-bit coarse, 8-bit fine

Bit precision can reach 12 bit in most situation (lossless)

Parasitic Effect

- Coarse-grained method is iterative
 - □Loss in each iteration accumulates
 - □ADC is also a source of noise

Parasitic Effect

- Coarse-grained method is iterative
 - □Loss in each iteration accumulates
 - □ADC is also a source of noise

Effect of DGCQ (Lossy Case)

- ADC : Large area, larger loss
- Coarse-grained : Time-consuming
- Dual-granularity: Less area, low loss, fast

Effect of DGCQ on ML Tasks

- The dataset used in the paper is ImageNet
 - □ImageNet is not implemented in torch
 - ■Use a simpler dataset CIFAR-10

Model	ResNet-18
Dataset	ImageNet
Data precision	INT8
Task	Classification
Metric	Accuracy

- ResNet-18
 - □Trained using fp32 precision
 - ■Quantize to int8 after training
 - □Compute MAC result for each layer and apply loss

Effect of DGCQ on ML Tasks

Comparison between coarse/fine-grained value

DGCQ: Merge 2 types of granularity

