The origin of animal eggs and the 'embryonic hourglass':
a new (joint) interpretation

Presented in the Second Life®

Presented in the Second Life® Embryo Physics Course http://www.embryophysics.org

November 10, 2010

By

Stuart A. Newman New York Medical College

Stuart_Newman@NYMC.edu

The origin of animal eggs and the 'embryonic hourglass': a new (joint) interpretation

Stuart A. Newman New York Medical College

Second Life Embryo Physics Course

November 10, 2010

The "embryonic hourglass"

Different routes to insect segmentation

From Forgacs & Newman, *Biological Physics* of the Developing Embryo; 2005. Based on (left) Patel et al., Nature; 1994 and (right) Ingham, Nature; 1988.

The phylum Choanozoa is a unicellular sister clade of the Metazoa

Nuclearia

Mesomycetozoea

One or more of the choanozoans (and thus the unicellular ancestor of the Metazoa) contain genes specifying cadherins, C-type lectins, Notch and Hedgehog, members of the metazoan developmental-genetic toolkit.

Some single-cell functionalities

biochemical oscillation

The main types of gastrulation

Gastrulation can involve engulfment-like tissue rearrangement (e.g., zebrafish)

AG Gajewski; University of Cologne

Phase separation and engulfment behavior in liquids and tissues

Armstrong, Crit Rev Biochem Mol Biol 24:119; 1989

Differential adhesion of cell subpopulations leads to cell sorting and tissue engulfment

Based on Steinberg, 1978 See Krieg et al., Nat Cell Biol; 2008

Gastrulation often involves lumen formation (e.g., sea urchins)

Lumens can automatically arise in clusters of cells that are individually apico-basally polarized

<u>Toolkit</u> <u>molecules</u>: Wnt pathway

Gastrulation can involve buckling-like movements of tissue sheets (e.g., *Drosophila*)

Leptin, *In* Keller et al, eds., *Gastrulation*, Plenum; 1991

Epithelial morphogenesis by position-dependent modulation of stiffness and viscoelasticity (e.g., buckling)

Theory in: Gierer, *Q. Rev. Biophys*; 1977; Mittenthal and Mazo, *J. Theor. Biol*; 1983

Plausible physical bases of origination of gastrulation: differential adhesion (phase separation and engulfment), \pm cell polarity, \pm epithelial folding

Embryos typically undergo elongation (e.g., gastrulation, germ band extension)

Forgacs & Newman, *Biological Physics* of the Developing Embryo; 2005 (after Keller et al., 2000)

Tissue narrowing and elongation can arise from intercalation of (planar) polarized cells

Forgacs & Newman, *Biological Physics* of the Developing Embryo; 2005 (After Keller *et al.*)

Morphogen gradients

Hedgehog (~Shh)

Dpp (~BMP)

Wg (~Wnt)

Drosophila imaginal disks

Tabata and Takei; Development, 2004

Toolkit molecules: Hh; FGF; Wnt; BMP/TGFβ

Somitogenesis results from synchronized biochemical oscillation interacting with a molecular gradient

Hes1-mediated signal

Dequéant & Pourquié, 2008

DPM	molecules	physics	evo-devo role	effect
ADH	cadherins	adhesion	multicellularity	
LAT	Notch	lateral inhibition	coexistence of alternative cell states	₩
DAD	cadherins	differential adhesion	phase separation; tissue multilayering	★
POLa	Wnt	cell surface anisotropy	topological change; interior cavities	₩
POLp	Wnt	cell shape anisotropy	tissue elongation	-
ECM	chitin; collagen	stiffness; dispersal	tissue solidification; elasticity; EMT	→
osc	Wnt + Notch	synchrony of oscillation	morphogenetic fields; segmentation	→
MOR	TGF-β/BMP; FGF; Hh	diffusion	pattern formation	
TUR	MOR + Wnt + Notch	dissipative structure	segmentation; periodic patterning	-

Presence of DPM-associated toolkit genes in choanozoans and metazoans

<u>Choanozoa</u>: (unicellular sister clade of Metazoa)

ADH; DAD: cadherins; C-type lectins

LAT: Notch (only some species)

MOR: Hh

ECM: collagen

All of above, plus POL: Wnt

Placozoa Porifera ("basal" metazoans)

All of above, plus

MOR: TGF-β

POL: Wnt

<u>Cnidaria</u>: (eumetazoans)

All of the above, plus

MOR: FGFs

Different combinations of non-collagenous ECM and matricellular proteins

Arthropods; chordates: (Bilateria)

All of the above

From Dumollard et al. J. Cell Sci.; 2002

Examples of Egg-Patterning Processes (EPPs)

Two models for the embryonic hourglass

