

# CEC 2023 Competition on Seeking Multiple Optima in Dynamic Environments

Xin Lin<sup>1</sup>, Wenjian Luo<sup>2</sup>, Changhe Li<sup>3</sup>, Shengxiang Yang<sup>4</sup>, Yuhui Shi<sup>5</sup>

<sup>1</sup> Nanjing University of Information Science and Technology

<sup>2</sup> Harbin Institute of Technology, Shenzhen

<sup>3</sup> China University of Geosciences

<sup>4</sup> The De Montfort University

<sup>5</sup> Southern University of Science and Technology

# Outline

**◆**Introduction

**♦**Benchmarks

- **◆**Experiment Settings
- **♦**Results

# **Dynamic Multimodal Optimization Problems (DMMOPs)**

- □ Dynamic multimodal optimization problems (DMMOPs) have the dynamic and multimodal natures\*.
  - DMMOPs changes from one environment to another.
  - In each environment, there exists multiple global peaks.



<sup>\*</sup> Wenjian Luo, Xin Lin, Tao Zhu, and Peilan Xu. A Clonal Selection Algorithm for Dynamic Multimodal Function Optimization. *Swarm and Evolutionary Computation*, 50, 100459, 2019

### **Definitions of DMMOPs**

#### Definitions

$$\begin{pmatrix} \boldsymbol{o}_{11} & \boldsymbol{o}_{12} & \dots & \boldsymbol{o}_{t1} \\ \boldsymbol{o}_{12} & \boldsymbol{o}_{22} & \dots & \boldsymbol{o}_{t2} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{o}_{1n_1} & \boldsymbol{o}_{2n_2} & \dots & \boldsymbol{o}_{tn_t} \end{pmatrix} = arg \max_{\boldsymbol{x} \in \Omega} f(\boldsymbol{x}, t)$$

- Problem f(x, t) is a maximized DMMOP.
- $o_{tn_t}$  represents the  $n_t$ -th optimal solution in the t-th environment.
- Parameter  $\Omega$  defines the whole decision space.
- Goal:

The optimization algorithms solving DMMOPs should find all the optimal solutions in each environment.

# **Competition on DMMOPs**

- ☐ The goal of this competition is to test the performance of various optimization algorithms for solving DMMOPs.
  - The benchmark suit contains 24 problems, which are from our previous work\*.
- Website of the competition

http://mi.hitsz.edu.cn/activities/smode\_cec2023/index.html



#### **ORGANIZERS**

- Wenjian Luo, Harbin Institute of Technology, Shenzhen, China, Email: luowenjian@hit.com
- · Xin Lin, University of Science and Technology of China, Hefel, China, Email: iskcal@mail.ustc.edu.cn
- . Changhe Li, China University of Geosciences, Wuhan, China, Email: change.lw@gmail.com
- . Shengxiang Yang, the De Montfort University, Leicester LE1 9BH, United Kingdom, Email: syang@dmu.ac.uk
- Yuhui Shi, Southern University of Science and Technology, Shenzhen, China, Email: shiyh@sustech.edu.cn

<sup>\*</sup> X. Lin, W. Luo, P. Xu, Y. Qiao, and S. Yang, PopDMMO: A general framework of population-based stochastic search algorithms for dynamic multimodal optimization, *Swarm and Evolutionary Computation*, p. 101011, 2021.

# Outline

**◆**Introduction

**♦**Benchmarks

- **◆**Experiment Settings
- **◆**Results

■ Functions 1~4: Simple Multimodal Functions

Constructed by the DF generator\*

$$f(x) = \max_{\substack{i=1,\dots,G,\\G+1,\dots,G+L}} \left( H_i - W_i * \sqrt{\sum_{j=1}^{D} (x_j - X_{ij})^2} \right)$$

- $H_i$ ,  $W_i$  and  $X_{ij}$  represent the initial height, width and position of the *i*-th peak, respectively.
- G and L represent the number of global peaks and the maximum number of local peaks.
- The heights of the global peaks are the same and higher than the local peaks.
- The minimum distance between peaks is no less than 0.1.

<sup>\*</sup> R. W. Morrison and K. A. De Jong, "A test problem generator for non-stationary environments," *Proceedings of the 1999 Congress on Evolutionary Computation*, 1999, pp. 2047-2053 Vol. 3.

■ The first four functions simulate the fitness landscapes of benchmarks in CEC2013 competitions for multimodal optimization.



☐ Functions 5~8: Complex Multimodal Functions

Constructed by the composition functions in CEC 2013 competition for multimodal optimization\*.

$$f(x) = -\sum_{i=1}^{n} \omega_i (\hat{f}_i(\frac{x - o_i}{\lambda_i} * M_i))$$

- The composition function is composed by n basic functions.
- $\omega_i$  is the weight of the *i*-th basic functions, and  $\hat{f}_i$  is the normalized version of  $f_i$ .
- $o_i$ ,  $\lambda_i$  and  $M_i$  are the global optima, scale and rotation matrix of the *i*-th basic function, respectively.

<sup>\*</sup> Li, X., Engelbrecht, A., & Epitropakis, M. G. Benchmark functions for CEC'2013 special session and competition on niching methods for multimodal function optimization. RMIT University, Evolutionary Computation and Machine Learning Group, Australia, Tech. Rep. 2013

■ The last four functions are directly from the composition functions in CEC2013 competitions for multimodal optimization.





# **Dynamic Change Modes**

■ Modes 1~6: Basic change modes from GDBG\*

C1:Small step changes

C2: Large step changes

C3: Random changes

C4: Chaotic changes

C5: Recurrent changes

C6: Recurrent with noisy changes

<sup>\*</sup> Li, C., Yang, S., Nguyen, T. T., Yu, E. L., Yao, X., Jin, Y., Beyer, H., Suganthan, P. N. Benchmark generator for CEC 2009 competition on dynamic optimization. Tech. Rep. 2008.

# **Dynamic Change Modes**

- Modes 7~8: Additional change modes about the number of optima.
  - C7 changes the number of optima linearly.
  - C8 changes the number of optima randomly.
  - Other core parameters changes according to C1.



### **Others**

- Move conditions
  - The nearest distance from the current optimum to the rest optima must be larger than a predefined threshold.
  - If the condition is not satisfied, the current optimum should move multiple times until satisfying the condition.
- ☐ Information of DMMOPs
  - 60 environments for each problem
  - 5000\*D number of fitness evaluations in each environment

# Outline

**◆**Introduction

**♦**Benchmarks

- **Experiment Settings**
- **♦**Results

# **General Settings**

- ☐ The 24 benchmarks are divided into 3 groups, i.e., G1, G2 and G3.
  - G1 => Multimodal property (F1~F8)
  - G2 => Dynamic property (C1~C8)
  - G3 => High dimensional property (D = 10)

Table 1: Details of the benchmark problems

| Group | Index | Multimodal function | Dynamic Mode | Dimension |
|-------|-------|---------------------|--------------|-----------|
| G1    | P1    | F1                  | C1           | 5         |
|       | P2    | F2                  | C1           | 5         |
|       | P3    | F3                  | C1           | 5         |
|       | P4    | F4                  | C1           | 5         |
| G1    | P5    | F5                  | C1           | 5         |
|       | P6    | F6                  | C1           | 5         |
|       | P7    | F7                  | C1           | 5         |
|       | P8    | F8                  | C1           | 5         |
|       | P9    | F8                  | C1           | 5         |
|       | P10   | F8                  | C2           | 5         |
|       | P11   | F8                  | C3           | 5         |
| G2    | P12   | F8                  | C4           | 5         |
| G2    | P13   | F8                  | C5           | 5         |
|       | P14   | F8                  | C6           | 5         |
|       | P15   | F8                  | C7           | 5         |
|       | P16   | F8                  | C8           | 5         |
|       | P17   | F1                  | C1           | 10        |
|       | P18   | F2                  | C1           | 10        |
| G3    | P19   | F3                  | C1           | 10        |
|       | P20   | F4                  | C1           | 10        |
|       | P21   | F5                  | C1           | 10        |
|       | P22   | F6                  | C1           | 10        |
|       | P23   | F7                  | C1           | 10        |
|       | P24   | F8                  | C1           | 10        |

# **General Settings**

#### ☐ Parameters:

- Runs: 30. Each problem is executed 30 times.
- Frequency: each environment contains 5000 \* D fitness evaluations.
- Number of Environments: 60.
- Maximum Fitness evaluations: the maximum of fitness evaluations in all environments is set to 5000 \* D \* 60.
- Environmental change condition: there is no fitness evaluation for the current environment.
- Termination condition: all the fitness evaluations are consumed.

### **Performance Metric**

Peak Ratio (PR) is adopted as the performance metric.

$$PR = \frac{\sum_{i=1}^{Run} \sum_{j=1}^{Env} NPF_{ij}}{\sum_{i=1}^{Run} \sum_{j=1}^{Env} Peaks_{ij}}$$

- Run: the total number of the independent runs, i.e., 30.
- Env: the number of the environment in a run
- $NPF_{ij}$ : the number of the found optimal solutions in the final population of the j-th environment and i-th run.
- $Peaks_{ij}$ : the total number of global peaks in the corresponding environment and run.

# Outline

**◆**Introduction

**♦**Benchmarks

- **◆**Experiment Settings
- **♦**Results

# Algorithms

| Name      | Authors                                         | Affiliation                                              |
|-----------|-------------------------------------------------|----------------------------------------------------------|
| mEGA      | Yuxin Liu, Chengyang Bu                         | Hefei University of Technology                           |
| CMA-ES-DS | Ying Zhu, Ziyu Zhang, Yuetong Sun, Peilan<br>Xu | Nanjing University of Information Science and Technology |

# Results at 1e-4

| Group | Problem | mGA   | CMA-ES-DS |
|-------|---------|-------|-----------|
|       | P1      | 0.613 | 0.767     |
|       | P2      | 0.867 | 1.000     |
|       | Р3      | 0.842 | 1.000     |
| G1    | P4      | 0.873 | 1.000     |
| GI    | P5      | 0.321 | 0.617     |
|       | P6      | 0.243 | 0.402     |
|       | P7      | 0.312 | 0.594     |
|       | P8      | 0.033 | 0.629     |

| Group | Problem | mGA   | CMA-ES-DS |
|-------|---------|-------|-----------|
|       | P9      | 0.034 | 0.629     |
|       | P10     | 0.006 | 0.563     |
|       | P11     | 0.008 | 0.554     |
| G2    | P12     | 0.006 | 0.579     |
| G2    | P13     | 0.012 | 0.621     |
|       | P14     | 0.017 | 0.619     |
|       | P15     | 0.040 | 0.377     |
|       | P16     | 0.039 | 0.549     |

| Group | Problem | mGA   | CMA-ES-DS |
|-------|---------|-------|-----------|
|       | P17     | 0.373 | 0.696     |
|       | P18     | 0.661 | 0.600     |
| G3    | P19     | 0.688 | 0.817     |
|       | P20     | 0.815 | 0.975     |
|       | P21     | 0.330 | 0.597     |
|       | P22     | 0.249 | 0.363     |
|       | P23     | 0.372 | 0.597     |
|       | P24     | 0.039 | 0.404     |

# Results at 1e-3 and 1e-5

| Group | Problem | mGA   | CMA-ES-<br>DS |
|-------|---------|-------|---------------|
|       | P1      | 0.619 | 0.767         |
|       | P2      | 0.933 | 1.000         |
|       | P3      | 0.919 | 1.000         |
| G1    | P4      | 0.943 | 1.000         |
| GI    | P5      | 0.353 | 0.617         |
|       | P6      | 0.248 | 0.402         |
|       | P7      | 0.316 | 0.594         |
|       | P8      | 0.041 | 0.629         |
|       | P9      | 0.040 | 0.629         |
|       | P10     | 0.085 | 0.563         |
|       | P11     | 0.010 | 0.554         |
| G2    | P12     | 0.008 | 0.579         |
| G2    | P13     | 0.014 | 0.621         |
|       | P14     | 0.019 | 0.619         |
|       | P15     | 0.043 | 0.377         |
|       | P16     | 0.044 | 0.549         |
|       | P17     | 0.301 | 0.696         |
|       | P18     | 0.829 | 0.600         |
|       | P19     | 0.724 | 0.817         |
| G3    | P20     | 0.938 | 0.975         |
| GS    | P21     | 0.335 | 0.597         |
|       | P22     | 0.242 | 0.363         |
|       | P23     | 0.376 | 0.597         |
|       | P24     | 0.045 | 0.404         |

| Group | Problem | mGA   | CMA-ES-<br>DS |
|-------|---------|-------|---------------|
|       | P1      | 0.559 | 0.767         |
|       | P2      | 0.691 | 1.000         |
|       | P3      | 0.734 | 1.000         |
| G1    | P4      | 0.752 | 1.000         |
| Gi    | P5      | 0.281 | 0.617         |
|       | P6      | 0.241 | 0.402         |
|       | P7      | 0.261 | 0.594         |
|       | P8      | 0.030 | 0.629         |
|       | P9      | 0.030 | 0.629         |
|       | P10     | 0.005 | 0.563         |
|       | P11     | 0.007 | 0.554         |
| G2    | P12     | 0.004 | 0.579         |
| G2    | P13     | 0.010 | 0.621         |
|       | P14     | 0.014 | 0.619         |
|       | P15     | 0.035 | 0.377         |
|       | P16     | 0.034 | 0.549         |
|       | P17     | 0.167 | 0.696         |
|       | P18     | 0.109 | 0.600         |
|       | P19     | 0.311 | 0.817         |
| G3    | P20     | 0.293 | 0.975         |
| U3    | P21     | 0.327 | 0.597         |
|       | P22     | 0.243 | 0.363         |
|       | P23     | 0.327 | 0.597         |
|       | P24     | 0.030 | 0.404         |

# Ranking of the Algorithms at 1e-4

| Rank* | Name      | Authors                                         | Affiliation                                              |
|-------|-----------|-------------------------------------------------|----------------------------------------------------------|
| 1     | CMA-ES-DS | Ying Zhu, Ziyu Zhang,<br>Yuetong Sun, Peilan Xu | Nanjing University of Information Science and Technology |
| 2     | mGA       | Yuxin Liu, Chenyang Bu                          | Hefei University of Technology                           |

<sup>\*</sup> Ranks are sorted by the number of the best performance

# THANK YOU