Correlating UI Contexts with Sensitive API Calls: Dynamic Semantic Extraction And Analysis

Jie Liu, Dongjie He, Diyu Wu and Jingling Xue

ISSRE 2020 Coimbra, Portugal Online

Problem: Is the Sensitive API Invocation legal?


```
# ...
# ...
# invoke sendTextMessage(...)
```

Existing Solution I: app-level techniques

Sensitive API Invocation,

e.g., sendTextMessage

Message Apps

Non-messaging Apps

Legitimacy

Could not distinguish API invocation with its calling context

Suffer from many false positive or many false negative.

Existing Solution II: API-level techniques

Sensitive API Invocation,
e.g., sendTextMessage

Dynamic features, e.g.,
reflection, dynamic class loading

Attributes, e.g., text, could be null or statically unknown.

ICSE 14, USENIX Security 18

Our Key Insight: Correlating UI Contexts with Sensitive API Calls dynamically.

Our Approach: APICOG Overview

Dynamic Analysis:

Associate sensitive API call with its related top Activity

Semantic Extraction:

- Extract Activity semantics from saved screenshot, UI layout and App description.
- Extract API semantics from API documentation.

Correlation Inference:

 Determine if semantics provides enough information to justify the legitimacy of the usage.

Our Approach: Dynamic Analysis

<BoosterActivity, LocationManager getLastKnownLocation()>

21

22

Snippet from BoosterActivity:onClick

```
String service = CipherUtil.decrypt("bG9jYXRp");// service = "location";

Object lm = ctx.getSystemService(service); // get LocationManager object
// mtdName = "getLastKnownLocation";

String mtdName = CipherUtil.decrypt("WpMUG6kCL/VztBsv");

Method mtd = lm.getClass().getMethod(mtdName, String.class);
// get the current location

Object location = mtd.invoke(lm, provider);

Oplect location = mtd.invoke(lm, provider);
```

Our Approach: Semantics Extraction

Our Approach: Correlation Inference

callsite:

getLastKnownLocation

action resources:

(boost, battery), (null, memory),

•••

Evaluation

1500 malware apps from Drebin dataset [1]

All 1625 benign apps from F-Droid[2]

Manually-annotated Ground Truth

Арр Туре	# of Apps	# of Apps with Activity-callsite Pairs	# of Total Activity-callsite Pairs	# of Positive Activity-callsite Pairs	# of Negative Activity-callsite Pairs
Benign	1625	251	805	696	109
Malware	1500	725	4294	191	4103
Total	3125	976	5099	887	4212

Half pairs for training and half for testing.

^[1] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens, "Drebin: Effective and explainable detection of android malware in your pocket." in NDSS, 2014.

^[2] F-Droid. Free and Open Source App Repository. https://f-droid.org/. 2019.

RQ1: Precision, Recall and Accuracy

Overall Performance of APICOG against the Ground Truth

App Type	# of Testing Activity-callsite Pairs	TP	FN	FP	TN	Accuracy	Precision	Recall
Benign	410	339	12	15	44	93.4%	95.8%	96.6%
Malware	2140	72	20	11	2037	98.6%	86.7%	78.3%
Total	2550	411	32	26	2081	97.7%	94.1%	92.8%

RQ2: Classification Approaches

RQ3:Effectiveness of Different Semantics

Compare of APICOG with different Semantics:

- APICOGdes = API semantics + App description semantics.
- APICOGasd = API semantics + UI state semantics.
- APICOG = API semantics + App description semantics + UI state semantics.

Tool	Accuracy	Precision	Recall	F1 Score
APICoG _{des}	94.8%	91.4%	77.2%	83.7%
APICoGasd	95.7%	91.1%	83.5%	87.2%
APICog	97.7%	94.1%	92.8%	93.4%

Our Contributions

- First dynamic description-to-permission fidelity approach for Android.
- Open-sourced tool:
 - http://www.cse.unsw.edu.au/~corg/apicog/

THANK YOU.