

Bioinformatics Summer School Long-reads Transcriptomics

Carmen Lafuente Sanz

Genoscope, Evry-Courcouronnes, France

LongTREC - The Long-reads TRanscriptome European Consortium Marie Skłodowska-Curie grant agreement No 101072892

Course Contents

- Basic concepts of metatranscriptomics
- 2 Experimental design
- 3 Downstream analysis

Section 1

Basic concepts of metatranscriptomics

What is metatranscriptomics and why does it matter?

There are different approaches to study microbial communities

Adapted from: Burki, F., Sandin, M. & Jamy, M. (2021). Diversity and ecology of protists revealed by metabarcoding. Current Biology, 31(20), R1233–R1282. https://doi.org/10.1016/j.cub.2021.07.066

Metagenomics: What genes are present?

Adapted from: Burki, F., Sandin, M. & Jamy, M. (2021). Diversity and ecology of protists revealed by metabarcoding. Current Biology, 31(20), R1233–R1282. https://doi.org/10.1016/j.cub.2021.07.066

Sequencing total community DNA

DNA

RNA

 Can reconstruct genomes, find genes and functions

METAGENOMICS

Metabarcoding: Who is there?

Adapted from: Burki, F., Sandin, M. & Jamy, M. (2021). Diversity and ecology of protists revealed by metabarcoding. Current Biology, 31(20), R1233–R1282. https://doi.org/10.1016/j.cub.2021.07.066

 Targets a single genetic marker (e.g., 16S for bacteria, 18S for eukaryotes)

METAGENOMICS

METABARCODING

Good for building community composition

DNA

RNA

Metatranscriptomics: What genes are active right now?

Adapted from: Burki, F., Sandin, M. & Jamy, M. (2021). Diversity and ecology of protists revealed by metabarcoding. Current Biology, 31(20), R1233-R1282. https://doi.org/10.1016/j.cub.2021.07.066

- Assessment of environmental gene
- Detects responses to environmental change (stress, nutrients, pollution)

Metatranscriptomics: Why does it matter?

Identifies which genes are **actively being expressed** by community members, providing insights into functional activity rather than mere taxonomic presence.

Helps understand:

- Ecosystem function
- Microbial behaviour: p.e. human microbiome studies

Adapted from: Burki, F., Sandin, M. & Jamy, M. (2021). Diversity and ecology of protists revealed by metabarcoding. Current Biology, 31(20), R1233–R1282. https://doi.org/10.1016/j.cub.2021.07.066

Practical example: TARA Oceans & marine metatranscriptomics

- International scientific expedition (2009–2013)
- Sampled ocean water from over 200 global stations
- 40,000 marine samples were collected
- Goal: Understand the diversity, function, and structure of planktonic life

Spatial scale From nanometres to 40,000 km

Challenges and limitations: Ribosomal RNA

More than 95% of RNA is **rRNA** → Difficult mRNA isolation → Wastes sequencing effort

Challenges and limitations:

RNA stability

RNA degrades rapidly, requiring careful sample handling.

Host contamination

In host-associated samples (p.e. gut) a large fraction of RNA comes from the host. Can be difficult to separate in complex samples.

Challenges and limitations: Data complexity

- Mapping reads: difficult due to the lack of reference genomes
- Ambigous reads: Many genes are conserved across species, paralogous genes contain high sequence similarity
- Normalization: Transcript abundance is influenced by both gene expression and organism abundance (+ technical artifacts)

Course Contents

- Basic concepts of metatranscriptomics
- 2 Experimental design
- 3 Downstream analysis

Section 2.1.

Experimental design

Sampling and RNA extraction

- What type of sample will I collect?
- Does the time or condition of collection matter?
- How can I avoid contamination?
- How much material is needed?

Environmental samples

Sediment Soil Water

Host-associated biological samples

Ojala, T., Kankuri, E., & Kankainen, M. (2023). Understanding human health through metatranscriptomics. Trends in Molecular Medicine, 29(5), 376–389. https://doi.org/10.1016/j.molmed.2023.02.002

Select the study area for sampling

- 1- In-depth study of the **maps and satellite data** to identify the schooner's precise station.
- 2- Certain regions are chosen on the basis of observable **phenomena**, such as phytoplankton blooms.
- 3- Choose **appropriate tool** for the type of sampling required.

Practical example: TARA Oceans & marine metatranscriptomics

https://www.encyclopedie-environnement.org/app/uploads/2021/02/Tara-Expedition_fig3-trajet-schema.jpg

Practical example: TARA Oceans & marine metatranscriptomics

Bringing the Regent net back on board – © Maeva Bardy, Tara Ocean Foundation

Net sampling on board Tara - © Louise Cognard, Tara Ocean Foundation

Karsenti, E., Acinas, S. G., Bork, P., Bowler, C., De Vargas, C., Raes, J., Sullivan, M., Arendt, D., Benzoni, F., Claverie, J., Follows, M., Gorsky, G., Hingamp, P., Iudicone, D., Jaillon, O., Kandels-Lewis, S., Krzic, U., Not, F., Ogata, H., . . . Wincker, P. (2011). A holistic approach to Marine Eco-Systems Biology. PLoS Biology, 9(10), e1001177. https://doi.org/10.1371/journal.pbio.1001177

Niskin bottles <1µm

20-180μm; >180μm Nets

GPSS
« Gravity Plankton Sieving System »

0.8-5µm; 5-20µm

Experimental design: Sample preservation

- What type of sample will I collect?
- Does the time or condition of collection matter?
- How can I avoid contamination
- How much material is needed?

How will I stabilize RNA after collection?

Experimental design: Sample preservation

Preservation methods to maintain RNA integrity

Stabilize against RNA degradation:

- mRNA has a short half-life (minutes)
- Endogenous RNases

Stabilize gene expression profiles :

Transport and handling can alter them

- Flash freezing
- RNAlater®
- RNAprotect®
- Phenol-Ethanol
- TRIzol®, QIAzol®, TRI®

Transferring samples to liquid nitrogen - © Leslie Moquin, Tara Ocean Foundation

Flash freezing -> Filters stored at -80°C -> dry ice for shipping

Experimental design: Sample disruption

Is my priority RNA yield (qualitative) or reproducibility (quantitative)?

Experimental design: Sample disruption

Main methods:

Mechanical disruption (bead beater) Enzymatic lysis (lysozyme or lysostaphin) Proteinase K digestion

Recommendations:

For qualitative studies: Combine all lysis methods to maximize RNA recovery.

As much diversity as possible

 For quantitative studies: Prefer mechanical methods, that are more reproducible.

Reproducibility

Experimental design: DNase treatment

During cell lysis, both DNA and RNA are released simultaneously. Therefore, to obtain high-quality RNA, it is essential to use specific enzymes—such as DNase I—to remove any residual DNA from the sample.

DNase I can degrade double-stranded and single-stranded DNA.

Experimental design: RNA Extraction

MICROBIAL GENOMICS

RESEARCH ARTICLE

Barber et al., Microbial Genomics 2024;10:001298 DOI 10.1099/mgen.0.001298

Evaluation of commercial RNA extraction kits for long-read metatranscriptomics in soil

Daniel G. Barber¹, Christian A. Davies², Iain P. Hartley¹ and Richard K. Tennant^{1,*}

Extraction kit	Product code	Acronym used in this study	Input wt (g)	Homogenisation speed (m s ⁻¹)	Homogenisation time (seconds)	Elution vol. (µl)
FastRNA Pro Soil-Direct Kit (MP Biomedicals)	6070050	MP	~0.5	6	40	100
Quick-RNA Faecal/Soil Microbe Microprep kit (Zymogen Research)	R2040	Z	~0.25	6	40	10-15
NucleoBond RNA Soil Mini kit for RNA from soil (Machery-Nagel)	740 142.50	Nm	~0.5	6	40	100
NucleoBond RNA Soil Midi kit for RNA from soil (Machery-Nagel	740 140.20	Nd	~2	6	40	100
RNeasy PowerSoil Total RNA kit (Qiagen)	12866-25	Q	~2	6	40	100

Experimental design: RNA Extraction

Extraction kit	Acronym used in this study	Sufficient yield	RNA integrity	Purity	Extraction handling & process
FastRNA Pro Soil-Direct Kit (MP Biomedicals)	MP	-	-	-	-
Quick-RNA Faecal/Soil Microbe Microprep kit (Zymogen Research)	Z	+	++	-	+
NucleoBond RNA Soil Mini kit for RNA from soil (Machery-Nagel)	Nm	+	+	+	+
NucleoBond RNA Soil Midi kit for RNA from soil (Machery-Nagel)	ND	++	-	+	
RNeasy PowerSoil Total RNA kit (Qiagen)	Q	++	++	+	+

Experimental design: mRNA enrichment

RNA extraction + rRNA depletion

Adapted from Aransay, A. M., & Trueba, J. L. L. (2016). Field Guidelines for Genetic Experimental Designs in High-Throughput Sequencing. In Springer eBooks. https://doi.org/10.1007/978-3-319-31350-4

Experimental design: RNA extraction

 Should rRNA depletion be performed as part of the RNA extraction process?

Experimental design: RNA quality assesment

RIN and Fragment size distribution

Methods to check RNA quality:

- Femto Pulse: Ultra-sensitive capillary electrophoresis, ultra low input RNA
- Bioanalyzer: Microfluidic electrophoresis
- TapeStation: Automated capillary electrophoresis, high-throughtput

Bioanalyzer

Section 2.2.

Experimental design

Library preparation and RNA-Seq platform selection

RNA-sequencing: What platform is the best for metatranscriptomics?

There is no easy answer. Trade-off between:

Overall cost How much money do you have?

RNA-sequencing: What platform is the best for metatranscriptomics?

There is no easy answer. Trade-off between:

- Overall cost
- Read length

What is your desired read length?

There is no easy answer. Trade-off between:

- Overall cost
- Read length
- Sequencing depth

How many reads do you need per sample?

There is no easy answer. Trade-off between:

- Overall cost
- Read length
- Sequencing depth
- Quality of the data

There is no easy answer. Trade-off between:

- Overall cost
- Read length
- Sequencing depth
- Quality of the data
- Support for the available technology

There is no easy answer. Trade-off between:

- Overall cost
- Read length
- Sequencing depth
- Quality of the data
- Support for the available technology

Consider also the mix of two strategies (p.e. ONT and Illumina)

Section 2.3.

Experimental design

RNA quantity and multiplexing

Experimental design: RNA quantity

Platform	RNA Input	Notes
Illumina	1-1000ng (Illumina Stranded Total RNA Prep)	Can work with low input, Illumina Total RNA Prep with Ribo-Zero Plus
ONT (Nanopore)	300 ng polyA (direct RNA) 1 µg total RNA (direct RNA) 10 ng polyA (cDNA) 500 ng total RNA (cDNA)	Direct RNA requires more input; cDNA kits are more flexible
PacBio	300ng	Less suitable for low-input samples

Experimental design: Multiplexing

Sequencing adapters can include a **barcode** that serves to identify the sample if several samples are mixed in the same run (multiplexing).

RNA-sequencing: Short-reads vs long-reads

Challenges

Short-reads:

- Fragmented reads
- Difficult transcript assembly specially for diverse microbial communities

Long-reads:

- Higher cost, limiting the scale of the experiments
- Sequencing errors are particularly problematic for metatranscriptomic samples
- Lower sequencing depth

RNA-sequencing: Short-reads vs long-reads

While long-read sequencing platforms generally offer lower sequencing depth compared to short-read platforms, they allow the **direct capture of full-length transcripts**, including those from **low-abundance genes or rare microorganisms**.

In contrast, short-read data requires **assembly or transcript inference**, which often leads to the **loss of rare -** especially problematic in **metatranscriptomics**, where transcriptomes are highly complex.

Therefore, even with fewer reads, long reads can more faithfully represent transcript diversity.

Recap: Metatranscriptomics workflow

Questions

What is the main advantages of long-read sequencing over short-read sequencing in metatranscriptomics?

In metatranscriptomic studies, what is the key difference between qualitative and quantitative experiments?

Why do you think that sequencing depth is particularly important in metatranscriptomics compared to single-organism transcriptomics?

Course Contents

- Basic concepts of metatranscriptomics
- 2 Experimental design
- 3 Downstream analysis

Section 3.1.

Downstream analysis

Quality control of raw reads

Trimming

Reads can contain adapter sequences, primers, barcodes.

Trimming help to retain **high-confidence sequences** that will map more accurately and uniquely to references.

Trimming

Tools:

- Porechop (outdated)
- Pychopper
- · Porechop-abi
- Dorado trim

Bonenfant, Q., Noé, L., & Touzet, H. (2022). Porechop_ABI: discovering unknown adapters in Oxford Nanopore Technology sequencing reads for downstream trimming. Bioinformatics Advances, 3(1). https://doi.org/10.1093/bioadv/vbac085

Additional filtering

Host contamination

Reads within a length range

Others: Mask low complexity regions, remove low quality reads

Removal of rRNA reads computationally

- If we sequence total RNA, most RNA sequences will be ribosomal RNA (rRNA)
- Its important to filter out rRNA before downstream analysis

SortMeRNA: Removal of rRNA reads computationally

- SortMeRNA takes as input files of reads and one or multiple rRNA database file, and sorts apart aligned and rejected reads into two files.
- Can sort a large set of metatranscriptomic reads with high accuracy
- Algorithm implements seeds with errors -> robust to errors of different types of sequencers
- Database can be constructed on any family of sequences provided by the user.

SortMeRNA: Removal of rRNA reads computationally

 Database can be constructed on any family of sequences provided by the user.

JOURNAL ARTICLE

The Protist Ribosomal Reference database (PR²): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy 3

Laure Guillou

, Dipankar Bachar, Stéphane Audic, David Bass,
Cédric Berney, Lucie Bittner, Christophe Boutte, Gaétan Burgaud,
Colomban de Vargas, Johan Decelle ... Show more

Section 3.2.

Downstream analysis

Transcript assembly

Downstream analysis: De Novo Assembly

Short reads- **De Novo Assembly**

- Velvet
- SOAPdenovo
- Trinity
- Oases

+ Cluster overall results (p.e. cd-hit-est)

Downstream analysis: De Novo Assembly

Long reads- (Not always) De Novo Assembly

Long-read reduce or eliminate the need for de novo assembly

Using raw long reads helps retain a more **faithful representation of the biological sample**, avoiding biases introduced during transcript assembly.

Particularly powerful in complex microbial communities, where assembly can be difficult due to **high diversity and redundancy**.

Section 3.3.

Downstream analysis

Reference sequences for mapping

Downstream analysis: Reference sequences for mapping

Mapping on transcripts/proteins catalogs: Unigenes

Non-redundant sets of gene sequences clustered together based on shared sequence similarity

- Functions
- Taxonomy
- Abundance
- Expression

Rasool, K. G., Mehmood, K., Husain, M., Tufail, M., Alwaneen, W. S., & Aldawood, A. S. (2021).

Mapping on transcripts/proteins catalogs: Unigenes

ARTICLE

Doi: 10.1038/s41467-017-02342-1

OPEN

A global ocean atlas of eukaryotic genes

Quentin Carradec et al.# ©

The individual sequence reads cluster into **116 million unigenes** representing the largest reference collection of eukaryotic transcripts from any single biome.

Mapping on « genomes » like Metagenome-Assembled Genomes (MAGs)

Mirete, S., Sánchez-Costa, M., Díaz-Rullo, J., De Figueras, C. G., Martínez-Rodríguez, P., & González-Pastor, J. E. (2025). Metagenome-Assembled Genomes (MAGs): advances, challenges, and ecological insights. Microorganisms, 13(5)

Downstream analysis: Reference sequences for mapping

Mapping on « genomes »

Article

Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean

```
Tom O. Delmont,<sup>1,2,9,*</sup> Morgan Gaia,<sup>1,2</sup> Damien D. Hinsinger,<sup>1,2</sup> Paul Frémont,<sup>1,2</sup> Chiara Vanni,<sup>3</sup> Antonio Fernandez-Guerra,<sup>4</sup> A. Murat Eren,<sup>5</sup> Artem Kourlaiev,<sup>1,2</sup> Leo d'Agata,<sup>1,2</sup> Quentin Clayssen,<sup>1,2</sup> Emilie Villar,<sup>1</sup> Karine Labadie,<sup>1,2</sup> Corinne Cruaud,<sup>1,2</sup> Julie Poulain,<sup>1,2</sup> Corinne Da Silva,<sup>1,2</sup> Marc Wessner,<sup>1,2</sup> Benjamin Noel,<sup>1,2</sup> Jean-Marc Aury,<sup>1,2</sup> Tara Oceans Coordinators, Colomban de Vargas,<sup>2,6</sup> Chris Bowler,<sup>2,7</sup> Eric Karsenti,<sup>2,6,8</sup> Eric Pelletier,<sup>1,1</sup> Patrick Wincker,<sup>1,2</sup> and Olivier Jaillon<sup>1,2</sup>
```


683 new eukaryotic genomes of at least 10 Mb in size.

The averaged statistics of the whole dataset were **35.4 Mb in genome size**, about **14,000 genes per MAG**, and a **BUSCO completeness of 40%**.

Mapping on metagenomic long reads from the same sample

Metatranscriptomics provides a window into the active fraction of **uncultivable microorganisms**

Section 3.4.

Downstream analysis

Taxonomic and functional characterization

Downstream analysis: Taxonomic and functional analysis

Taxonomic assignment

Identify which organisms are actively expressing genes in the microbial community.

Downstream analysis: Taxonomic and functional characterization

Functional Analysis

Identify the **biological functions** of expressed genes (mRNAs) in the microbial

community.

- HUMAnN3
- MEGAN
- DIAMOND
- eggNOG-mapper
- Pfam + HMMER

Downstream analysis

Interpreting metatranscriptomic variation

 Alterations in the relative abundance of organisms and their associated genes

 Changes in the expression of genes encoded among the community members

Simó, C., Mamani-Huanca, M., Hernández-Hernández, O., Redondo-Río, Á., Muñoz, S., & García-Cañas, V. (2025).

Metatranscriptomics workflow

4- PRE-PROCESSING	5- TAXONOMIC ASSIGNATION	6- FUNCTIONAL CHARACTERIZATION
Trimming rRNA removal Host removal Additional filtering	Active microbial community	What is the active microbial community doing a Al Plans Crist, Set. 4. Crist, Set. 4. Set. 6. Group Set. 4. Fascoin Typen

Why do metatranscriptomics important?

Tara Oceans revealed hidden marine diversity

The large quantity of genetic barcodes generated made it possible first of all to characterize almost all the eukaryotic species of plankton in the photic zone analysed. **150,000 genetic types of eukaryotic plankton** were identified, which represents an unsuspected diversity compared to the 11,000 species described so far. It appeared that the vast majority of the genetic types listed have no close reference in current genetic databases, demonstrating that these organisms are mostly **unrecorded and uncultivatable**. One third of the genetic diversity could not be associated with any of the major eukaryotic lines recognized today.

https://www.encyclopedie-environnement.org/en/life/the-tara-oceans-expedition-explores-the-diversity-of-plankton/

Why do metatranscriptomics important?

Tara Oceans revealed hidden marine diversity

ARTICLE DOI: 10.1038/s41467-017-02342-1

OPEN

A global ocean atlas of eukaryotic genes

Ouentin Carradec et al. # (D)

- 116 million unigenes
- $N50 \sim 650 bp$
- 51.2% of unigenes have no matches in public sequence databases

Thank You!

For more information about the LongTREC Summer School:

https://longtrec.eu

Practice: Dataset overview

MICROBIAL GENOMICS

RESEARCH ARTICLE

Barber et al., Microbial Genomics 2024:10:001298 DOI 10.1099/mgen.0.001298

Evaluation of commercial RNA extraction kits for long-read metatranscriptomics in soil

Daniel G. Barber¹, Christian A. Davies², Iain P. Hartley¹ and Richard K. Tennant^{1,*}

ACCESS MICROBIOLOGY an open research platform

RESEARCH ARTICLE

Child et al., Access Microbiology 2024;6:000868.v3 DOI 10.1099/acmi.0.000868.v3

Comparative evaluation of soil DNA extraction kits for long read metagenomic sequencing

Harry T. Child, Lucy Wierzbicki, Gabrielle R. Joslin and Richard K. Tennant*

Practice: Dataset overview

Heath metaT long reads

Heath metaG long reads

Wood metaT long reads

Wood metaG long reads

Practice

conda activate metatranscriptomics

cd /home/train/longTREC/day4/notebooks/metatranscriptomics

jupyter notebook