ECE 303 Lab 7

Drexel University

To: Dr. Christopher Peters

From: Zheren Gu

cc: Amirhosein Chahe

Date: 5/24/2023

Re: Motors

Purpose

The purpose of this lab was to the DC motor and a ultrasonic sensor to get the code to react according to inputs from both. This is all to prepare us for the final project that will use this.

Discussion

This lab was easy once I read through the document a few times, the most challenging part was understanding how the ultrasonic sensor worked and how to incorporate that with the fan. There was also sometimes that the fan would have a physical problem with spinning because I would hold it and I could feel the inside of the motor spinning, but the fan blades it self did not.

Recommendation

I could have cleaned my wiring up better as well as tested on a cleaner surface than my desk, there are possibilities that something could have interfered that was unintended.

```
#include <Arduino.h>
#include "DigitalPin.h"
DigitalPin::DigitalPin(int pin)
{
 pinMode(pin, OUTPUT);
 _pin = pin;
}
void DigitalPin::set_ICR(){
 if(_pin == 6){
       TCCR4A = (1 << WGM41) | (1 << COM4A1);
       TCCR4B = (1 << WGM43) | (1 << CS40);
       ICR4 = 255;
       OCR4A = 50;
       TCNT4 = 0;
  }
}
void DigitalPin::set_duty_cycle(int num){
 if(_pin == 6){
       OCR4A = (num * 255) / 100;
```

```
}
#ifndef DigitalPin_h
#define DigitalPin_h
#include <Arduino.h>
class DigitalPin
{
public:
 DigitalPin(int pin);
 void set_ICR();
 void set_duty_cycle(int val);
};
#endif
#include <Arduino.h>
const int forward = 5;
const int backward = 7;
int redLED = 38;
int greenLED = 40;
int yellowLED= 42;
int time_delay =3000;
int val = 0;
int outval = 0;
```

}

```
char temp;
int trigPin = 10;
                     // Trigger
int echoPin = 11;
                     // Echo
long duration, cm, inches;
void go_forward(){
  digitalWrite(forward, HIGH);
  digitalWrite(backward,LOW);
void go_backward(){
  digitalWrite(forward,LOW);
  digitalWrite(backward, HIGH);
void brake(){
  digitalWrite(forward,LOW);
  digitalWrite(backward,LOW);
void setup() {
  //Serial Port begin
 Serial.begin (9600);
  //Define inputs and outputs
  pinMode(trigPin, OUTPUT);
  pinMode(echoPin, INPUT);
  pinMode(forward,OUTPUT);
  pinMode(backward,OUTPUT);
  pinMode(redLED,OUTPUT);
  pinMode(greenLED,OUTPUT);
  pinMode(yellowLED,OUTPUT);
  digitalWrite(forward, HIGH);
  digitalWrite(backward,LOW);
void loop() {
digitalWrite(trigPin, LOW);
delayMicroseconds(5);
digitalWrite(trigPin, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin, LOW);
```

```
pinMode(echoPin, INPUT);
duration = pulseIn(echoPin, HIGH);
// Convert the time into a distance
cm = (duration/2) / 29.1;  // Divide by 29.1 or multiply by 0.0343
inches = (duration/2) / 74; // Divide by 74 or multiply by 0.0135
Serial.print(inches);
Serial.print("in, ");
Serial.print(cm);
Serial.print("cm");
Serial.println();
if(cm > 0 \&\& cm < 2.5){
 Serial.println("close");
    analogWrite(forward, 100);
    analogWrite(backward,0);
    digitalWrite(redLED,HIGH);
    digitalWrite(yellowLED,LOW);
    digitalWrite(greenLED,LOW);
  if(cm >= 2.5 \&\& cm <= 7){
    Serial.println("mid");
    analogWrite(forward,150);
    analogWrite(backward,0);
    digitalWrite(redLED,HIGH);
   digitalWrite(greenLED,HIGH);
    digitalWrite(yellowLED,LOW);
  if(cm > 7){
    Serial.println("far");
    analogWrite(forward, 255);
    analogWrite(backward,0);
    digitalWrite(redLED, HIGH);
    digitalWrite(yellowLED, HIGH);
    digitalWrite(greenLED,HIGH);
delay(2000);
```

}