

DIRETRIZES PARA O PROJETO INTEGRADOR III-B (16E3A M5/6)

TEMA:

Desenvolvimento de um Sistema em Python com Operações em Banco de Dados

Aluno: Luan Vitor Costa Silva Lopes Email: luanvito2005@gmail.com

1-Planilha de Requisitos

Requisitos de Função (RF)

- RF01: O sistema precisa possibilitar a inscrição de clientes.
- RF02: O software deve apresentar uma lista de todos os clientes registrados.
- RF03: O sistema deve ter a capacidade de eliminar um cliente.
- RF04: O sistema precisa possibilitar a alteração das informações de um cliente.
- RF05: O sistema precisa guardar o nome, email, número de telefone e endereço do cliente.

Não Funcionais (INF)

- RNF01: A implementação do sistema deve ser feita em Python.
- RNF02: É necessário que o sistema use um banco de dados relacional, como MySQL ou PostgreSQL.
- RNF03: É necessário que o sistema possua persistência de dados (armazenamento contínuo).
- RNF04: O sistema deve empregar conceitos fundamentais de programação, tais como listas, dicionários, condicionais, laços e funções.

2-Identificação das Entidades Centrais

Instituição: Cliente

Campo	Tipo de dado	Descrição
id	Inteiro	Identificador único (PK)
nome	Texto (varchar)	Nome completo do cliente
email	Texto (varchar)	Email do cliente
telefone	Texto (varchar)	Telefone do cliente
endereco	Texto (varchar)	Endereço do cliente

3-Estrutura Conceitual (ER)

Cliente: Entidade

- PK: id
- nome
- email
- telefone
- endereco

(Diagrama básico de uma única entidade, já que o contexto é inicial e direto. Se desejar, posso criar uma representação gráfica do diagrama ER.

4-Estrutura Lógica (Tabelas)

Tabela: clientes

```
CREATE TABLE clientes (
id INT PRIMARY KEY AUTO_INCREMENT,
nome VARCHAR(100) NOT NULL,
email VARCHAR(100) NOT NULL,
telefone VARCHAR(20),
endereco VARCHAR(150)
);
```

O modelo já foi normalizado (1FN, 2FN e 3FN), uma vez que:

- Todos os campos possuem natureza atômica.
- Existe chave primária
- Não existem dependências temporárias.

5-Programa inicial em Python (ainda sem banco de dados)

Segue o esquema inicial contendo listas e dicionários:

```
clientes = []
def cadastrar_cliente():
  nome = input("Nome: ")
  email = input("Email: ")
  telefone = input("Telefone: ")
  endereco = input("Endereço: ")
  cliente = {
    "id": len(clientes) + 1,
    "nome": nome,
    "email": email,
    "telefone": telefone,
    "endereco": endereco
  clientes.append(cliente)
  print("Cliente cadastrado com sucesso!\n")
def listar_clientes():
  for cliente in clientes:
    print(f"ID: {cliente['id']} | Nome: {cliente['nome']} | Email: {cliente['email']}")
```

```
def excluir_cliente():
  id_excluir = int(input("Digite o ID do cliente para excluir: "))
  for cliente in clientes:
    if cliente["id"] == id_excluir:
       clientes.remove(cliente)
       print("Cliente excluído com sucesso!\n")
  print("Cliente não encontrado.\n")
def menu():
  while True:
    print("1. Cadastrar Cliente")
    print("2. Listar Clientes")
    print("3. Excluir Cliente")
    print("4. Sair")
    opcao = input("Escolha uma opção: ")
    if opcao == "1":
       cadastrar_cliente()
    elif opcao == "2":
       listar_clientes()
    elif opcao == "3":
       excluir_cliente()
    elif opcao == "4":
       break
    else:
       print("Opção inválida!")
menu()
```

Anderson Soares Costa Professor Responsável