Timer in PWM Mode

16/32 bits, **Count Down**, 8-bit Pre-scaler (Timer Extension)

PWM Signals

<u>Note</u>: For a PWM signal, period of signal do not change when duty cycle changes.

Timer PWM Mode

Table 11-3. General-Purpose Timer Capabilities

Mode	Timer Use	Count Direction	Counter Size		Prescaler Size ^a		Prescaler Behavior
			16/32-bit GPTM	32/64-bit Wide GPTM	16/32-bit GPTM	32/64-bit Wide GPTM	(Count Direction)
One-shot	Individual	Up or Down	16-bit	32-bit	8-bit	16-bit	Timer Extension (Up), Prescaler (Down)
	Concatenated	Up or Down	32-bit	64-bit	-	-	N/A
Periodic	Individual	Up or Down	16-bit	32-bit	8-bit	16-bit	Timer Extension (Up), Prescaler (Down)
	Concatenated	Up or Down	32-bit	64-bit	-	-	N/A
RTC	Concatenated	Up	32-bit	64-bit	-	-	N/A
Edge Count	Individual	Up or Down	16-bit	32-bit	8-bit	16-bit	Timer Extension (Both)
Edge Time	Individual	Up or Down	16-bit	32-bit	8-bit	16-bit	Timer Extension (Both)
PWM	Individual	Down	16-bit	32-bit	8-bit	16-bit	Timer Extension

a. The prescaler is only available when the timers are used individually

PWM mode: Count **DOWN** only Prescalar: **MSB** bits of Timer.

Source: Tiva TM4C123GH6PM Microcontroller Data Sheet (spmu376e.pdf, p708)

Timer PWM Mode – Timer Operation

- 1 Initialize Timer Start value (ILR) to 0xC350; Match value (MATCHR) = 0x411A.
- 2 Timer output goes to '1'.
- Timer counts down on every clock cycle. When Timer counts down to Match value, output toggles.
- 4 Timer continues to count down to '0' & then reloads to Start (ILR) value.
- 5 Cycle repeats.

We can see that **Duty Cycle** of PWM signal can be change by the **Match value**.

Assume 50MHz system bus:

$$PWM\ Period = (0xC350 - 0x0) \times \frac{1}{50MHz} = 1ms$$

$$Duty\ Cycle = \frac{(0xC350 - 0x411A)}{0xC350} = 66.7\%$$

Source: Tiva TM4C123GH6PM Microcontroller Data Sheet (spmu376e.pdf, p717)

PWM Mode Operation (Assume Timer A)

- Timer can be configured as a 24-bit **DOWN** counter.
 - 16 bits (**TAILR**) + 8 bits (**TAPR** pre-scaler).
- TAILR & TAPR store the START value of the count-down counter.
- When **TAEN** bit is set, Timer is enabled & it begins to count DOWN until it reaches 0x00.
- In the <u>next</u> counter cycle, it reloads the counter value from **TAILR** & **TAPR** & count down continues.
- <u>Timer Output & Match Event</u>:
 - At start of count down, when Timer counter value equals TAILR & TAPR, Timer output is '1', and goes to '0' when Timer values equals values in TnMATCHR & TnPMR regs.
- Timer PWM output can be inverted through **TAPWML** bit (**CTL** reg).

Source: Tiva TM4C123GH6PM Microcontroller Data Sheet (spms376e.pdf, p708)

Setting Timer to PWM Mode:

Control Register (GPTMCTL)

 Register is used with the **GPTMCFG & GMTMTnMR** to set the timer configuration & enable other timer features.

TAEVENT: Timer A Event Mode **TBEVENT:** Timer B Event Mode

Positive Edge : 0x00
Negative Edge : 0x01
Both Edges : 0x03

TAEN: Timer A Enable **TBEN:** Timer B Enable • Timer Disabled : 0

• Timer Enabled: 1

PWM Signal Polarity:

• TAPWML = 1 or 0 : Inverts PWM signal.

<u>PWM Mode</u>: Set register to values in **BOLD**

Source: Tiva TM4C123GH6PM Microcontroller Data Sheet (spmu376e.pdf, p737)

Setting Timer to PWM Mode:

Timer A Mode Register (GPTMTAMR)

Type, Reset Value: R/W, 0x0000.0000

Timer Mode:

- TAMR = 0x1: One-Shot
- TAMR = 0x2 : Periodic Timer
- TAMR = 0x3 : Capture Mode

Timer Count Direction: (Count Down for PWM)

- **TACDIR = 0** : Count Down (*default*)
- **TACDIR 1** : Count Up

PWM Interrupt: (not used in SEM2306)

• TAAPWMIE = 1 : Enables PWM Interrupt

Timer Capture Mode:

- TACMR = 0 : Edge-Count Mode
- TACMR = 1 : Edge-Time Mode

Timer Alternate Mode Select:

- TAAMS = 1 : Enable PWM mode
- TAAMS = 0 : Capture or Compare mode

PWM Mode: Set to values in **BOLD**

Timer PWM Registers

PWM PERIOD: GPTMT*n*ILR, GPTM*n*PR

PWM DUTY-CYCLE: GPTMTnMATCHR, GPTMTnPMR

PWM Mode Registers

- Four registers that will determine the PWM output waveform:
 - **Start of PWM count** is loaded in:
 - TnILR (Interval Load Register)
 - TnPR (Pre-scale Register). if used
 - **Duty cycle of PWM** signal determined by the Match registers:
 - TnMATCHR (Match Register)
 - TnPMR (Pre-scale Match Register). if used.

Timer A Interval Load Register

(GPTMTAILR) – from Lecture Notes on Timer, Part 1

- **TAILR** = 32-bit load value.
- When the timer is counting **DOWN**, this register is used to load the **starting count value** into the Timer.
- When the Timer is counting **UP**, this register sets the **upper bound** for the timeout event.

Timer A Prescale Register

(GPTMTAPR) – from Lecture Notes on Timer, Part 1

Type, Reset Value: RW, 0x0000.0000

Register allows software to extend the range of the timers when they are used <u>individually</u>.

Timer count is extended through a **Prescale** value.

TAPSR: GPTM Timer A Prescale (8-bits)

For the 16/32-bit GPTM, this field contains the entire 8-bit prescaler. For the 32/64-bit Wide GPTM, this field contains the lower 8-bits of the 16-bit prescaler.

Timer A Match Register (GPTMTAMATCHR)

This register is loaded with a match value.

Interrupts can be generated when the timer value is equal to the value in this register in one-shot or periodic mode

Timer A Prescale Match Register (GPTMTAPMR)

Type, Reset Value: R/W, 0x0000.0000

- This register allows software to extend the range of the **GPTMTAMATCHR** when the timers are used individually.
- In 16-bit mode, **TAPSMR** contains the 8-bit pre-scaler value.

Timer PWM Examples

PWM PERIOD: GPTMT*n*ILR, GPTM*n*PR

PWM DUTY-CYCLE: GPTMTnMATCHR, GPTMTnPMR

Ex 1: Timer PWM Operation (1KHz, 50%)

If system clock is 80 MHz & we want a PWM output at 1 KHz with duty cycle of 50%:

- At 80MHz bus clock, period = 12.5ns.
- With a 24-bit count DOWN Timer,
 - maximum count = 2^{24}
 - maximum interval = $2^{24} \times 12.5$ ns = 209.715 ms.

Period at
$$1 \text{ KHz} = \frac{1}{1000} = 1 \text{ ms}$$

Pre-scaler timer extension)

no of counts =
$$\frac{1ms}{12.5ns}$$
 = 80,000 = 0x01.3880

$$duty\ cycle = \frac{(80,000 - n)}{80,000} = 0.5$$

$$n = 40,000 = 0x00.9C40$$

Ex 1: Timer PWM Operation (1KHz, 50%)

If system clock is 80 MHz & we want a PWM output at 1 KHz with duty cycle of 50%:

Timer PWM output waveform:

Ex 2: Timer PWM Operation (100 Hz, 25%)

If system clock is 80 MHz & we want a PWM output at 100 Hz with duty cycle of 25%:

- At 80MHz bus clock, period = 12.5ns.
- With a 24-bit count down Timer,
 - maximum count = 2^{24}
 - maximum interval = $2^{24} \times 12.5$ ns = 209.715 ms.

Period at
$$100 \ Hz = \frac{1}{100} = 10 \ ms$$

no of counts = $\frac{10ms}{12.5ns}$
= $800,000 = 0x0C.3500$

duty cycle = $\frac{(800,000 - n)}{800,000} = 0.25$
 $n = 600,000 = 0x09.27C0$


```
Reload (TAILR) = 0x034FF

Pre-scaler (TAPR) = 0x0C

Match (TAMATCHR) = 0x027BF

Pre-scaler Match (TAPMR) = 0x09
```

Ex 2: Timer PWM Operation (100 Hz, 25%)

If system clock is 80 MHz & we want a PWM output at 1 KHz with duty cycle of 25%:

Timer PWM output waveform:

Ex 3: Timer PWM Operation (100 KHz, 25%)

If system clock is 80 MHz & we want to get a PWM output at 100 KHz with duty cycle of 25%:

- At 80MHz bus clock, period = 12.5ns.
- With a 24-bit count down Timer,
 - maximum count = 2^{24}
 - maximum interval = $2^{24} \times 12.5$ ns = 209.715 ms.

Period at
$$100 \ KHz = \frac{1}{100,000} = 10 \ us$$

no of counts = $\frac{10us}{12.5ns} = 800 = 0x0320$

$$duty \ cycle = \frac{(800 - n)}{800} = 0.25$$

$$n = 600 = 0x0258$$

No need for pre-scaler!

Reload (**TAILR**) = 0x31FPre-scaler (**TAPR**) = 0x00Match (**TAMATCHR**) = 0x0257Pre-scaler Match (**TAPMR**) = 0x00

Ex 4: Timer PWM Operation (800 KHz, 33%)

If system clock is 80 MHz & we want to get a PWM output at 800 KHz with duty cycle of 33%:

- At 80MHz bus clock, period = 12.5ns.
- With a 24-bit count down Timer,
 - maximum count = 2^{24}
 - maximum interval = $2^{24} \times 12.5$ ns = 209.715 ms.

Period at 800 KHz =
$$\frac{1}{800,000}$$
 = 1.25 us
no of counts = $\frac{1.25us}{12.5ns}$ = 100 = 0x0064
duty cycle = $\frac{(100 - n)}{100}$ = 0.33
 $n = 67 = 0x0043$

No need for pre-scaler!

Reload (**TAILR**) = 0x0063Pre-scaler (**TAPR**) = 0x00Match (**TAMATCHR**) = 0x0042Pre-scaler Match (**TAPMR**) = 0x00

Timer PWM Mode Initialization

TM4C123GH6PM7

Timer PWM Mode (16-bit) – Initialization Example

```
#define PB TOCCPO 6U /* PB6 */
void Port Init( void ) {
    /* Enable clocks to peripherals */
    SYSCTL->RCGCTIMER |= SYSCTL RCGCTIMER RO; /* Timer 0 */
    SYSCTL->RCGCGPIO |= SYSCTL RCGCGPIO R1 /* GPIO Port B */
   /* Wait for peripherals to be ready */
   while( 0 == (SYSCTL->PRTIMER & SYSCTL PRTIMER R1) );
   while ( 0 == (SYSCTL->PRGPIO & SYSCTL PRGPIO R1) );
   /* setup Timer 0 GPIO pin at PB6 */
   GPIOB->AFSEL |= BIT (PB TOCCPO);  // enable alternate function
   GPIOB->PCTL |= GPIO PCTL PB6 TOCCPO; // enable timer 0 in PB6
   GPIOB->DEN |= BIT (PB TOCCPO); // enable PB6
   GPIOB->DIR |= BIT (PB TOCCPO); // set as output
    /* setup timer 0 t0 PWM mode */
   TIMERO->CTL &= ~TIMER CTL TAEN; // disable timer 0 during setup
   TIMERO->CFG |= TIMER CFG 16 BIT; // set to 16-bit mode
   /* TAAMS-enable PWM; TAMR-Periodic mode */
   TIMERO->TAMR |= TIMER TAMR TAAMS | TIMER TAMR TAMR PERIOD;
   TIMERO->TAMR &= ~TIMER TAMR TACMR; // TACMR-Edge-Count mode
    TIMERO->TAPR = 0x0; /* prescaler (8 bits) */
   TIMERO - > TAILR = 0x063F; // TAILR-pulse period
   TIMERO - > TAMATCHR = 0 \times 0.42F;
   TIMERO - > TAPMR = 0 \times 0;
   TIMERO->CTL |= TIMER CTL TAEN; // enable timer 0
```

Review Questions

- 1. Can a Timer configured in PWM mode count UP?
- 2. Describe how the prescaler is used in Timer PWM mode.
- 3. Describe how a Timer works in **PWM mode**.
- 4. A system has a system clock of **80 MHz**. We want to generate a **PWM output** waveform at **Timer 0 (GPIO PB6)** with a frequency of **50 KHz** and with duty cycle of **33%**. What are values we should load to GPTMTAILR, GPTMTAPR, GPTMTAMATCHR and GPTMTAPMR registers
- 5. A system has a system clock of **50 MHz**. We want to generate a **PWM output** waveform at **Timer 2 (GPIO PB0)** with a frequency of **500 Hz** and with duty cycle of **50%**. What are values we should load to GPTMTAILR, GPTMTAPR, GPTMTAMATCHR and GPTMTAPMR registers?