QUÍMICA 2022

PRUEBAS SELECTIVAS 2022 CUADERNO DE EXAMEN

QUÍMICA

NÚMERO DE MESA:

NÚMERO DE EXPEDIENTE:

Nº DE D.N.I. O EQUIVALENTE PARA EXTRANJEROS:

APELLIDOS Y NOMBRE:

ADVERTENCIA IMPORTANTE ANTES DE COMENZAR SU EXAMEN, LEA ATENTAMENTE LAS SIGUIENTES INSTRUCCIONES

- 1. **MUY IMPORTANTE**: Compruebe que este Cuaderno de Examen, integrado por 200 preguntas más 10 de reserva, lleva todas sus páginas y no tiene defectos de impresión. Si detecta alguna anomalía, pida otro Cuaderno de Examen a la Mesa.
- 2. La "Hoja de Respuestas" está nominalizada. Se compone de dos ejemplares en papel autocopiativo que deben colocarse correctamente para permitir la impresión de las contestaciones en todos ellos. **Recuerde que debe firmar esta Hoja.**
- 3. Compruebe que la respuesta que va a señalar en la "Hoja de Respuestas" corresponde al número de pregunta del cuestionario. **Sólo se valoran** las respuestas marcadas en la "Hoja de Respuestas", siempre que se tengan en cuenta las instrucciones contenidas en la misma.
- 4. Si inutiliza su "Hoja de Respuestas" pida un nuevo juego de repuesto a la Mesa de Examen y no olvide consignar sus datos personales.
- 5. Recuerde que el tiempo de realización de este ejercicio es de **cuatro horas y treinta minutos** improrrogables y que están **prohibidos** el uso de **calculadoras** y la utilización de **teléfonos móviles**, o de cualquier otro dispositivo con capacidad de almacenamiento de información o posibilidad de comunicación mediante voz o datos.
- 6. **No se entregarán**, en ningún caso, **los cuestionarios** con las preguntas de examen. Las distintas versiones de los cuadernos de examen se publicarán en la Web del Ministerio de Sanidad, al cierre de la última mesa de examen.

- 1. ¿Qué especie se determina cuando se valora una muestra que contiene Ca²⁺ y Mg²⁺ con EDTA a pH=12 y murexida como indicador?:
 - 1. Ca²⁺.
 - 2. Mg^{2+} .
 - 3. $Ca^{2+} + Mg^{2+}$.
 - 4. Ninguna de las dos especies.
- 2. Si valoramos 50,0 mL de HCl 0,050 M con NaOH 0,100 M, ¿cuál es el valor del pH en el punto de equivalencia?:
 - 1. 1.
 - 2. 2.
 - 3. 5.
 - 4. 7.
- 3. En una disolución acuosa de KHA, ¿cuál es la relación entre la concentración del ion potasio y la concentración del resto de las especies?:
 - 1. $[K^+] = [HA^-] + [OH^-]$.
 - 2. $[K^+] = [H_2A] + [HA^-] + [A^{2-}].$
 - 3. $[K^+] = [HA^-] + [OH^-] + 2[A^{2-}].$
 - 4. $[K^+] = [HA^-] + [OH^-] + 2[A^{2-}].$
- 4. ¿Qué proceso controla la corriente en la polarografía convencional?:
 - 1. La difusión.
 - 2. La convección.
 - 3. La adsorción.
 - 4. La conducción.
- 5. ¿Cuál de las siguientes afirmaciones es FALSA en relación con la calibración con patrón interno?:
 - Se aplica cuando, entre medidas sucesivas, es difícil mantener alguno de los parámetros operatorios o reproducir la cantidad de muestra sometida al proceso de medida.
 - 2. Se añaden a las muestras y a los patrones de calibración cantidades conocidas del patrón interno.
 - 3. El patrón interno debe presentar, en el proceso analítico, un comportamiento análogo al del analito que se quiere determinar.
 - La concentración del analito de interés se obtiene por extrapolación de la recta de regresión al punto del eje x (cantidad de analito añadida) donde la señal analítica medida es
- 6. Una disolución 0.1 M de un ácido débil monoprótico (HA) tiene un pH de 4. Se cumple que:
 - 1. $pK_a = 2$.
 - 2. $pK_a = 5$.
 - 3. $pK_a = 7$.
 - 4. $pK_a = 9$.

7. ¿Cuál de las siguientes afirmaciones es FALSA en relación con la yodometría?:

- 1. Es un método que consiste en la valoración del yodo generado en la reacción entre un analito oxidante y un exceso de yoduro.
- 2. El reactivo valorante del yodo generado es una disolución patrón de carácter reductor, generalmente tiosulfato de sodio.
- El almidón (indicador) se añade cerca del punto final de la valoración cuando la mayor parte del yodo ha sido valorada.
- 4. El punto final de la valoración yodométrica se pone de manifiesto por la aparición de color azul.

8. Las variaciones de presión en cromatografía de fluidos supercríticos:

- 1. No presentan ningún efecto sobre los tiempos de retención de las especies separadas.
- Presentan un efecto muy marcado sobre el factor de retención k.
- Tienen lugar durante la separación debido a fenómenos de descomposición de los fluidos utilizados.
- 4. Empeoran significativamente los cromatogramas obtenidos.

La valoración de Karl Fischer está relacionada con:

- La determinación de la dureza de un agua mineral.
- 2. La determinación potenciométrica de haluros.
- 3. La determinación de agua.
- 4. La determinación del punto isoeléctrico de una proteína.
- 10. Identifica la sustancia que se utiliza con más frecuencia como fase móvil en cromatografía de fluidos supercríticos:
 - 1. Agua.
 - 2. Metanol.
 - 3. Hexano.
 - 4. Dióxido de carbono.
- 11. Los espectrómetros infrarrojos de la transformada de Fourier:
 - 1. No tienen elemento dispersante y todas las longitudes de onda se detectan y se miden de manera simultánea.
 - 2. Utilizan monocromadores tipo Czerny-Turner para conseguir obtener espectros con muy bajo nivel de ruido.
 - Presentan una menor velocidad de respuesta y peor sensibilidad que los instrumentos de barrido, aunque permiten realizar análisis multielemental.
 - Incorporan como elemento clave en su funcionamiento un detector tipo CCD refrigerado.

12. ¿En qué consiste la elución en gradiente en cromatografía líquida de alta resolución (HPLC)?:

- 1. En la variación de la temperatura de la columna cromatográfica durante el análisis de forma continua y escalonada.
- 2. En la variación del flujo de la fase móvil durante la separación cromatográfica.
- 3. En la separación de los diferentes analitos en función de su polaridad.
- 4. En la variación de la composición de la fase móvil durante el análisis de forma continua y/o escalonada.

13. En la técnica de cromatografía líquida de reparto en fase normal:

- 1. La fase estacionaria tiene la misma polaridad que la fase móvil.
- 2. La fase estacionaria es polar y la fase móvil es no polar.
- 3. La fase móvil es una disolución reguladora del pH.
- 4. La fase estacionaria es menos polar que la fase móvil.

14. ¿Qué tipo de detectores se utilizan en la técnica de cromatografía iónica con columnas supresoras?:

- 1. Amperométricos.
- 2. Espectrofotométricos.
- 3. De conductividad.
- 4. De ionización de llama.

15. ¿Cuál es el orden de elución de los solutos en la cromatografía de exclusión por tamaños?:

- 1. Creciente de punto isoeléctrico.
- 2. Decreciente de peso molecular.
- 3. Creciente de peso molecular.
- 4. Creciente de polaridad.

16. El método Kjeldahl se utiliza para medir el porcentaje de un elemento en una mezcla. ¿De qué elemento se trata?:

- 1. Carbono.
- 2. Nitrógeno.
- 3. Hierro.
- 4. Cobre.

17. Si deseamos medir la concentración de cortisol (esteroide producido por las glándulas suprarrenales) en la orina de un adolescente mediante cromatografía líquida acoplada a espectrometría de masas en tándem (LC-MS/MS), ¿qué sustancia es más adecuada como patrón interno?:

- 1. Testosterona.
- 2. Cortisol deuterado.
- 3. Colesterol.
- 4. Albúmina.

18. ¿Cuál de las siguientes afirmaciones acerca de la espectrometría de masas con ionización por electronebulización (ESI/MS) es correcta?:

- 1. Los aditivos no volátiles de la fase móvil (como el tampón fosfato) no interfieren en la ionización y está recomendado su uso.
- 2. En la espectrometría de masas de iones negativos todos los voltajes son positivos mientras que para los iones positivos se utilizan voltajes negativos.
- Se recomienda la utilización de aditivos de baja fuerza iónica para que se pueda producir la ionización y detección del ion del analito.
- El electrospray puede crear moléculas nuevas, que no existían en la disolución acuosa previa.

19. ¿Cuál de las siguientes afirmaciones respecto a la ley de Beer NO es cierta?:

- 1. La ley de Beer se aplica a la radiación monocromática.
- 2. La ley de Beer no funciona bien con disoluciones diluidas (<0.01 M).
- 3. La ley de Beer se cumple cuando la especie absorbente no participa en un equilibrio que depende de la concentración.
- La ley de Beer afirma que la absorbancia es proporcional a la concentración de la especie absorbente.

20. En cromatografía líquida de alta resolución (HPLC), la utilización de una partícula más pequeña como fase estacionaria de la columna implica:

- 1. Mayor altura del plato teórico.
- 2. Mayor resistencia al flujo y por tanto presión de trabajo más elevada.
- 3. Incremento del tiempo óptimo de separación cromatográfica.
- 4. Ensanchamiento de los picos.

21. En la cromatografía líquida en columna denominamos tiempo muerto a:

- 1. Tiempo que el soluto pasa absorbido dentro del empaquetamiento de la columna.
- 2. Tiempo que el soluto está fuera del empaquetamiento de la columna.
- 3. Tiempo que tarda una sustancia fuertemente retenida en eluir y llegar al detector.
- 4. Tiempo que tarda una sustancia no retenida por la columna en llegar hasta el detector.

22. ¿Cuál de las siguientes afirmaciones NO ES CIERTA de un procedimiento de calibración mediante el método de adición estándar?:

- Se puede utilizar para corregir las pérdidas de señal debida a la preparación de la muestra.
- La curva de calibración debe ser siempre lineal en la matriz de la muestra.
- 3. Se compensan los efectos de interferencia complejos debido a la matriz.
- Es compatible con el uso de un estándar interno.

23. Con respecto a la técnica analítica nefelometría, señale la respuesta correcta:

- El detector se sitúa en un ángulo de 180º con respecto al haz de luz que incide sobre la muestra.
- Es un procedimiento analítico basado en la pérdida de radiación transmitida al atravesar una suspensión.
- 3. Es un procedimiento analítico basado en la dispersión de la radiación al atravesar una suspensión.
- 4. Puede ser realizado sin problema con un espectrofotómetro.

24. La sensibilidad es una propiedad analítica que se define como:

- Concentración mínima de analito que origina una señal diferenciable estadísticamente de la señal del blanco.
- Es la relación que existe entre la variación de la señal analítica o cambio en la respuesta instrumental con un cambio en la concentración de analito.
- 3. Concentración mínima de analito que puede cuantificarse con precisión.
- 4. Capacidad de un método analítico para determinar de forma única el analito de interés.

25. Con respecto al efecto Hook, o efecto gancho, señale la respuesta correcta:

- 1. Es un fenómeno observado en inmunoensayos que proporciona concentraciones de analito falsamente elevadas.
- 2. Es un fenómeno que se produce ante concentraciones muy elevadas de antígeno en inmunoensayos.
- Es un fenómeno de reactividad cruzada motivado por analitos con estructura similar al de interés.
- 4. Es una interferencia positiva observada en inmunoensayos tipo "sándwich" de un paso.

26. De los siguientes elementos, ¿Cuál NO puede ser medido mediante espectrometría de masas con plasma de acoplamiento inductivo (ICP-MS)?:

- 1. Cloro.
- 2. Berilio.
- 3. Litio.
- 4. Yodo.

27. Con respecto a las teorías de la cromatografía, señale la respuesta INCORRECTA:

- La altura del plato teórico (H) es inversamente proporcional a la velocidad de flujo de la fase móvil.
- 2. La eficacia de la columna es mayor cuanto menor es la altura del plato teórico (H).
- 3. El número de platos teóricos (N) es inversamente proporcional al tiempo de retención del soluto.
- 4. La difusión en remolino o difusión de Eddy forma parte de la teoría cinética de la cromatografía.

28. El ácido etilendiaminotetraacético (EDTA) es un agente quelante muy utilizado en análisis químico, y se considera un ligando:

- 1. Monodentado.
- 2. Bidentado.
- 3. Tetradentado.
- 4. Hexadentado.

29. Tenemos dos disoluciones acuosas diluidas de fluoruro de amonio, una de 0,40 M y la otra de 0,10 M.

Datos: pKa(HF): 3,20 pKa(NH₄⁺): 4,75 Se cumple que:

- La solución de 0,40 M es más ácida que la solución de 0.10 M.
- 2. La solución de 0,10 M es más ácida que la solución de 0,40 M.
- 3. Ambas tienen un pH básico, pero no se puede decir cuál es más ácida con los datos proporcionados
- 4. Ambas soluciones tienen el mismo pH.

30. Según el Reglamento CLP (Reglamento de clasificación, etiquetado y envasado de sustancias y mezclas), ¿cómo se denominan las indicaciones de peligro?:

- 1. Frases P.
- 2. Frases H.
- 3. Frases R.
- 4. Frases S.

31. Cuando detectamos un posible dato anómalo dentro de un conjunto de datos, es necesario:

- 1. Aplicar un test Q de Dixon para evaluar si se puede rechazar o no.
- 2. Aplicar un test t de Student para evaluar si se puede rechazar o no.
- 3. Eliminarlo de la serie de datos antes de realizar el tratamiento de estos.
- 4. Aplicar un test F de Fisher para evaluar si se puede rechazar o no.

32. De las siguientes afirmaciones respecto a los atomizadores en espectroscopia atómica señala cuál es la correcta:

- Las muestras sólidas pueden introducirse en plasmas para su atomización mediante su vaporización con chispa o un haz de láser.
- El empleo de la generación de hidruros, como etapa previa a la atomización en llama o en plasma, es un sistema de introducción de muestra discontinuo.
- 3. Tanto el plasma como la llama son sistemas de atomización discontinuos que precisan una nebulización previa de la muestra.
- Los atomizadores electrotérmicos son dispositivos de atomización continuos que permiten atomizar muestras sólidas, líquidas y gaseosas.

33. Una disolución de ácido acético de concentración 0,1 M tiene un pH calculado de 2,9. ¿Qué sucede si añadimos acetato de sodio?:

- 1. El pH de la disolución será menor a 2,9.
- 2. El pH de la disolución no cambia, la adición de sales no modifica el valor de pH.
- 3. El pH de la disolución será mayor a 2,9.
- 4. Aumenta la temperatura de la disolución y no se modifica el pH.

34. ¿Qué tipo de fuente de radiación se puede utilizar en espectrometría de absorción molecular para realizar medidas a una longitud de onda de 220 nm?:

- 1. Lámpara de deuterio.
- 2. Lámpara de cátodo hueco.
- 3. Lámpara de wolframio.
- 4. Fuente Globar.

35. ¿Qué detector se utiliza en espectrometría de absorción en el infrarrojo?:

- 1. Fotomultiplicador.
- 2. Piroeléctrico.
- 3. Interferómetro.
- 4. Contadores proporcionales.

36. ¿Cuál es el fundamento de la cromatografía de intercambio iónico?:

- 1. Un equilibrio de reparto del analito entre una fase acuosa y una estacionaria recubierta con un disolvente apolar.
- Equilibrios de intercambio iónico entre los iones en disolución y los iones en la superficie de un sólido (fase estacionaria).
- 3. Equilibrios de adsorción sólido-líquido.
- La separación de los compuestos en función de su tamaño.

37. ¿Qué es la quimioluminiscencia?:

- Proceso de desactivación no radiante en el que la molécula pasa desde un nivel vibracional excitado a otro nivel vibracional inferior situado en el mismo estado electrónico.
- Proceso de emisión de radiación luminosa producida por una molécula, que ha sido previamente excitada por una radiación electromagnética.
- 3. Proceso de desactivación no radiante debido a la interacción entre la especie luminiscente y otra especie presente en el medio.
- 4. Proceso de emisión de radiación luminosa producida por una molécula previamente excitada por la energía liberada en una reacción química.

38. Los electrodos de membrana de vidrio se utilizan para la medición directa de pH. En este tipo de electrodos, ¿cuál es el electrodo que actúa como electrodo de referencia?:

- 1. Ag(s)|AgCl(s)|Cl(1,0 M).
- 2. $Ag(s)|AgCl(s)|H^{+}(1,0 M)$.
- 3. $Pt|H_2(g, 1 bar)|H^+(1,0 M)$.
- 4. $Hg(1)|Hg_2Cl_2(s)|H^+(1,0 M)$.

39. La existencia del flujo electroosmótico debe de ser tenido en cuenta en:

- 1. Voltametría de pulsos.
- 2. Cromatografía iónica.
- 3. Cromatografía de fluidos supercríticos.
- 4. Electroforesis capilar.

40. ¿Qué se produce cuando el núcleo de un cierto isótopo de Ti experimenta una captura electrónica?:

- Un anión Ti⁻.
- 2. Otro isótopo de Ti, diferente al inicial.
- 3. Un isótopo de V.
- 4. Un isótopo de Sc.

41. ¿Cuántos microestados presenta un átomo de C?:

- 1. 2.
- 2. 6.
- 3. 15.
- 4. 20.

42. ¿Qué molécula puede utilizarse para determinar el radio covalente del O?:

- 1. Peróxido de hidrógeno (H₂O₂).
- 2. Dioxígeno (O₂).
- 3. Ozono (O₃).
- 4. Dióxido de carbono (CO₂).

43. ¿Cuál es la geometría de BrF₃?:

- 1. Triangular plana, con el bromo en el centro del triángulo.
- 2. Triangular plana, con un flúor en el centro del triángulo.
- 3. Trigonal piramidal (análoga a NH₃).
- 4. En forma de T.

44. ¿Cuáles de estos átomos dan lugar a enlaces de H?:

- 1. N y P.
- 2. N y Cl.
- 3. O y C.
- 4. O y Br.

45. ¿De qué compuesto químico es una forma polimórfica la cristobalita?:

- 1. TiO₂.
- 2. SiO_2 .
- 3. MnO_2 .
- 4. ZrO_2 .

46. ¿Cuál es el componente principal de las porcelanas?:

- 1. La alúmina.
- 2. El feldespato.
- 3. El cuarzo.
- 4. La arcilla.

47. ¿Qué es un polímero termoplástico?:

- Es un material polimérico cristalino que se ablanda cuando se calienta y endurece al enfriarse.
- 2. Es un material polimérico semicristalino que se ablanda cuando se calienta y endurece al enfriarse.
- 3. Es un material polimérico amorfo que se ablanda cuando se calienta y endurece al enfriarse
- 4. Es un material polimérico cristalino que no se altera por la aplicación de calor.

48. ¿Qué es la sinterización?:

- Es la preparación de partículas pequeñas a partir de partículas de mayor tamaño a baja temperatura.
- Es la preparación de partículas pequeñas a partir de partículas de mayor tamaño a alta temperatura.
- 3. Es la coalescencia de partículas de un agregado en polvo por difusión que se lleva a cabo a temperatura baja.
- 4. Es la coalescencia de partículas de un agregado en polvo por difusión que se lleva a cabo a temperatura alta.

49. ¿Qué metales constituyen la aleación conocida como latón?:

- 1. Hierro y níquel.
- 2. Cobre y níquel.
- 3. Hierro y zinc.
- 4. Cobre y zinc.

50. ¿Genera una corriente de hidrógeno el magnesio metálico en contacto con agua?:

- 1. No, no es suficientemente reductor.
- 2. No, porque el magnesio se recubre de una capa de Mg(OH)₂ cuando empieza a reaccionar con el agua.
- 3. No, porque el Mg oxida el agua a oxígeno.
- 4. No, porque la reacción del magnesio con agua da MgO y MgH₂.

51. ¿Tiene el yodo a temperatura ambiente el aspecto de un sólido oscuro con brillo metálico?:

- No, el yodo a temperatura ambiente es un gas verde.
- 2. No, el yodo a temperatura ambiente es un líquido rojizo.
- 3. Sí, porque, a pesar de que el sólido está formado por moléculas I₂, la distancia intermolecular entre dos átomos de yodo próximos es menor que la suma de radios de Van der Waals.
- 4. Sí, porque el sólido está formado por una red cúbica centrada en el cuerpo.

- 52. ¿Cuál es el estado de oxidación del átomo de carbono en el formaldehido (metanal)?:
 - 1. 4
 - 2. 2.
 - 3. 0.
 - 4. -2.
- 53. ¿Cuáles son las estequiometrías de los compuestos de flúor con titanio?:
 - 1. TiF₃ y TiF₄.
 - 2. TiF, TiF₃ y TiF₅.
 - 3. TiF₃, TiF₄ y TiF₅.
 - 4. TiF₂, TiF₄ y TiF₆.
- 54. ¿Cómo son las disoluciones de KMnO₄ en agua?:
 - 1. Violetas y oxidantes.
 - 2. Amarillas y oxidantes.
 - 3. Violetas y reductoras.
 - 4. Amarillas y reductoras.
- 55. Dada la siguiente reacción (sin igualar), indica cuál de las siguientes afirmaciones es correcta: $x \text{ N}_2\text{H}_4(l) + y \text{ H}_2\text{O}_2(l) \rightarrow z \text{ N}_2(g) + t \text{ H}_2\text{O}(g)$:
 - 1. x = z = 1; y = 2; t = 4.
 - 2. Se trata de una reacción ácido-base en la que la hidracina actúa como ácido y el peróxido de hidrógeno como base.
 - 3. Se trata de una reacción de desproporción entre la hidracina y el peróxido de hidrógeno.
 - Se trata de una reacción redox en la que el peróxido de hidrógeno actúa como reductor y la hidracina como oxidante.
- 56. ¿Cuál es la valencia máxima que puede mostrar el elemento de número atómico 42?:
 - 1. +2.
 - 2. +3.
 - 3. +5.
 - 4. +6.
- 57. Se conoce como eflorescencia:
 - 1. A la propiedad que poseen algunos minerales y sustancias químicas de convertirse en polvo por sí mismos, por pérdida de agua de cristalización, al ser expuestos al aire.
 - A la reacción redox espontánea que tiene lugar entre un oxidante y un reductor, que forman parte de un mismo compuesto, al ser éste expuesto al calor.
 - Al fenómeno de flotación que experimenta la escoria en los procesos metalúrgicos de los altos hornos.
 - 4. Al proceso de protonación de los sulfuros metálicos con ácidos fuertes que genera el desprendimiento de ácido sulfhídrico gas.

- 58. ¿En cuál de los conjuntos siguientes todas las especies son paramagnéticas?:
 - 1. NO, CO, CN-.
 - 2. NO, O₂, OF.
 - 3. NO^+, O_2^+, OF^+ .
 - 4. NO⁻, O₂²⁻, N₂.
- 59. Con respecto a la energía de estabilización del campo cristalino (EECC) se puede afirmar que:
 - Puesto que Δ_{oct} es 4/9 de Δ_{tet}, la EECC de un entorno octaédrico siempre es menor que la de un entorno tetraédrico isoelectrónico.
 - Las diferencias entre las EECC octaédricas y tetraédricas son máximas para los casos d³ y d⁸ de alto espín, y éstas son las configuraciones electrónicas para las que encontramos menos complejos tetraédricos.
 - 3. La gran mayoría de complejos de níquel(II) son octaédricos. Especialmente aquellos con ligandos grandes, de carga negativa y de campo débil (es decir, ligandos bajos en la serie espectroquímica).
 - 4. Los iones tetrahalogenonicolato(II), [NiX₄]²-, donde X es cloruro, bromuro o yoduro, no existen como tales en forma tetraédrica sino que adquieren otros ligandos (como moléculas de agua) para alcanzar un entorno octaédrico.
- 60. La composición de la conocida "leche de magnesia" que se utiliza para tratar la indigestión es:
 - 1. Sulfato de magnesio.
 - 2. Fosfato de magnesio.
 - 3. Hidroxosulfato de magnesio.
 - 4. Hidróxido de magnesio.
- 61. ¿Cómo se denomina la reacción en la que una misma especie se oxida y se reduce de forma simultánea?:
 - 1. Disociación.
 - Comproporción.
 - 3. Desproporción.
 - 4. Conmutación.
- 62. ¿Cuál es el número de coordinación de una esfera en un empaquetamiento compacto?:
 - 1. 14.
 - 2. 8.
 - 3. 12.
 - 4. 10.
- 63. ¿A cuál de estos grupos de simetría puede pertenecer una molécula quiral?:
 - 1. C_i.
 - 2. C₁.
 - 3. C_s.
 - 4. T_d.

64. El acero al carbono es:

- 1. Un compuesto intermetálico.
- 2. Una aleación de sustitución.
- 3. Una aleación intersticial.
- 4. Un producto puro.

65. ¿Cuál es la estructura de FeCr₂O₄?:

- 1. Espinela normal.
- 2. Espinela inversa.
- 3. Perowskita.
- 4. Corindón.

66. ¿Cuál de los siguientes complejos de coordinación satisface la regla de los 18 electrones de valencia?:

- 1. [Rh(CO)₂Cl₂]⁻.
- 2. $[Ni(en)_3]^{2+}$ (en = etilendiamina).
- 3. $[Fe(CN)_6]^{3-}$.
- 4. $[CpMn(CO)_3]$ (Cp = ciclopentadienilo).

67. ¿Cuál de las siguientes reacciones NO es adecuada para la preparación de HBr?:

- 1. $2 \text{ KBr} + \text{H}_2 \text{SO}_{4 \text{ (conc.)}} \rightarrow \text{K}_2 \text{SO}_4 + 2 \text{ HBr.}$
- 2. $3 \text{ KBr} + \text{H}_3\text{PO}_{4 \text{ (conc.)}} \rightarrow \text{K}_3\text{PO}_4 + 3 \text{ HBr.}$
- 3. $PBr_3 + 3 H_2O \rightarrow H_3PO_3 + 3 HBr$.
- 4. $H_2 + Br_{2(g)} \rightarrow 2 HBr$.

68. Teniendo en cuenta sus diagramas de orbitales moleculares, ¿cuál de las siguientes afirmaciones es FALSA?:

- La molécula de C₂ tiene un orden de enlace C-C de 2.
- 2. El oxígeno molecular en su estado fundamental es un gas paramagnético.
- La molécula de Be₂ tiene un orden de enlace Be-Be de 1.
- 4. El valor de la multiplicidad de spin del oxígeno molecular en su estado fundamental es 3 (estado triplete).

69. ¿Cuál de las siguientes especies NO está entre los componentes del smog fotoquímico?:

- 1. O₃.
- 2. NO₂.
- 3. SO₂.
- 4. CH₄.

70. ¿Cuál de los siguientes iones metálicos es un ácido intermedio de acuerdo con el principio de "ácidos y bases, duros y blandos"?:

- 1. Cu²⁺.
- 2. Pt^{2+} .
- 3. Cd²⁺.
- 4. Pb²⁺.

71. ¿Cuál de las siguientes afirmaciones relativas a la química atmosférica de los radicales hidroxilo es correcta?:

- Los radicales hidroxilo no reaccionan con monóxido de carbono.
- Los radicales hidroxilo no reaccionan con dióxido de azufre.
- Los radicales hidroxilo no reaccionan con sulfuro de hidrógeno.
- Los radicales hidroxilo pueden sufrir reacciones de terminación de la cadena al interaccionar con radicales hidroperoxilo.

72. ¿Qué especie resulta de la reacción de azufre elemental con ion sulfito?:

- 1. Ion ditionito.
- 2. Ion ditionato.
- 3. Ion tiosulfato.
- 4. Ion disulfito.
- 73. Los asbestos fueron ampliamente utilizados por su resistencia mecánica y al calor con un relativo bajo coste, y posteriormente abandonados por ser peligrosos para la salud. ¿Cómo se agrupan los tetraedros de silicato en los mismos?:
 - Silicatos simples conteniendo iones aislados SiO₄⁴⁻.
 - 2. Silicatos dobles conteniendo iones Si₂O₇⁶-.
 - 3. Ciclosilicatos.
 - 4. Silicatos formando cadenas y/o láminas.

74. ¿Qué se emite cuando un núcleo radio-226 se transforma en uno de radón-222?:

- 1. Radiación de tipo alfa.
- 2. Radiación de tipo beta.
- 3. Radiación de tipo gamma.
- 4. Radiación X.

75. ¿Qué especie bastante común en aguas de consumo puede, en concentración excesiva, provocar metahemoglobinemia o "síndrome del bebé azul"?:

- 1. Hierro(III).
- 2. Cobre(II).
- 3. Nitrato.
- 4. Sulfato.

76. ¿Cuántos electrones desapareados tiene el cobre(I) en orbitales 3d?:

- 1. Ninguno.
- 2. Uno.
- 3. Dos.
- 4. Tres.

77. ¿Cuál es la fórmula del fosgeno?:

- 1. POCl₃.
- 2. COCl₂.
- 3. NO₂Cl.
- 4. SOCl₂.

78. ¿Qué se obtiene al reaccionar, en las condiciones adecuadas, 10 gramos de hidrógeno y 32 gramos de oxígeno?:

- 1. 16 gramos de agua.
- 2. 32 gramos de agua.
- 3. 36 gramos de agua.
- 4. 72 gramos de agua.

79. ¿Se puede guardar el ácido fluorhídrico en una botella de vidrio?:

- 1. Sí, el vidrio es muy inerte.
- 2. Sí, si el vidrio es de color ámbar.
- 3. No, reacciona con el vidrio para dar SiF₄.
- 4. No, reacciona con el vidrio dando flúor.

80. ¿Cuál de los siguientes ácidos es más fuerte?:

- 1. HCl.
- 2. HI.
- 3. H₂SO₄.
- 4. HNO₃.

81. Una reacción química que transcurre a temperatura y presión constantes es espontánea cuando:

- La variación de energía de Gibbs de reacción es cero.
- La variación de entalpía de reacción es negativa
- 3. La variación de energía de Gibbs de reacción es negativa.
- 4. La variación de entalpía de reacción es igual a cero

82. Los métodos de relajación en Cinética Química se utilizan para:

- Determinar las concentraciones de las especies reaccionantes mediante la modificación del equilibrio en un sistema reactivo.
- Determinar la velocidad de reacción mediante la modificación del equilibrio en un sistema reactivo.
- 3. Determinar la constante de equilibrio mediante la modificación del equilibrio en un sistema reactivo.
- Determinar las constantes de velocidad mediante la modificación del equilibrio en un sistema reactivo.

83. ¿Cómo afecta la temperatura a la distribución de Maxwell de las velocidades moleculares?:

- 1. A temperatura baja el máximo de la función de distribución se localiza a velocidades altas.
- A medida que aumenta la temperatura aumenta la velocidad más probable y disminuye el número de moléculas que tienen dicha velocidad.
- 3. A temperatura alta la función de distribución presenta un máximo muy alto y estrecho en la región de velocidades altas.
- 4. A una temperatura baja y fija las funciones de distribución de las velocidades moleculares de dos muestras de gases de distinta masa molecular son tales que el gas más ligero tiene el máximo a velocidades más bajas.

84. ¿Qué afirmación es correcta con respecto a las propiedades del agua?:

- La temperatura de fusión disminuye a medida que la presión aumenta como consecuencia del aumento del volumen durante la fusión.
- 2. La temperatura de fusión no se ve afectada por el aumento de la presión, pero sí se produce un aumento del volumen durante la fusión.
- 3. El aumento de la presión no cambia la temperatura de fusión ni el volumen.
- 4. La temperatura de fusión disminuye a medida que la presión aumenta como consecuencia de la disminución del volumen durante la fusión.

85. ¿Qué es una ecuación de estado?:

- Es una ecuación que permite calcular la variación de entalpía en un proceso termodinámico.
- 2. Es una ecuación matemática que describe la probabilidad de un estado.
- 3. Es una función matemática que permite calcular la constante cinética de una reacción química.
- 4. Una función matemática que relaciona diferentes variables de estado sin tener que recurrir a la experimentación.

86. Indique las unidades de la constante de velocidad de una reacción que sigue la ley cinética v = k [A][B][C]:

- 1. $M^{-2} s^{-1}$.
- 2. $M^{-1} s^{-1}$.
- 3. $M s^{-1}$.
- 4. s⁻¹.

87. Indique la afirmación correcta sobre las funciones de estado termodinámicas:

- 1. La entalpía es la suma de la energía interna más el producto de la presión por el volumen.
- La energía de Gibbs es la suma de la energía interna más el producto de la entropía por la temperatura.
- La energía interna se define como la energía de Helmholtz menos el producto de la temperatura por la entropía.
- 4. La energía de Helmholtz es la suma de la entalpía más el producto de la presión por el volumen.

88. ¿Qué magnitudes son necesarias para obtener la entalpía molar de una reacción a una temperatura distinta de la estándar?:

- 1. Es suficiente conocer la entalpía estándar de reacción y la temperatura a la que se quiere calcular la entalpía molar de reacción.
- Se necesitan las capacidades caloríficas molares a presión constante de los reactivos y productos en las condiciones deseadas.
- 3. Si la reacción implica sustancias gaseosas, se necesita la variación del volumen de reacción.
- 4. La entalpía molar de reacción es independiente de la temperatura.

89. La función de distribución de Boltzmann:

- 1. Describe la distribución de energía asociada a sistemas químicos en equilibrio.
- 2. Describe la distribución espacial de moléculas asociada a sistemas químicos en equilibrio.
- 3. Describe la distribución de energía asociada a sistemas químicos en equilibrio o fuera del equilibrio.
- 4. Es independiente de la temperatura.

90. ¿Cómo varía la conductividad molar de un electrolito al incrementar su concentración?:

- Por su definición, la conductividad molar es una magnitud intensiva que no depende de la concentración.
- 2. Cuando aumenta la concentración de un electrolito aumenta el número de iones presentes en la disolución, por lo que la conductividad molar también aumenta.
- La conductividad molar siempre disminuye cuando aumenta la concentración del electrolito.
- Para electrolitos débiles la conductividad molar aumenta con la concentración, mientras que para electrolitos fuertes la relación es inversa.

91. ¿Qué afirmación es correcta en relación con la superficie de energía potencial asociada a una reacción química?:

- 1. Los reactivos, productos e intermedios de reacción corresponden a mínimos de la superficie de energía potencial.
- La comparación de la energía de los productos con la de los reactivos proporciona información sobre la cinética de la reacción.
- Es imposible obtener información sobre la cinética de la reacción a partir de su superficie de energía potencial.
- 4. El concepto de superficie de energía potencial surge directamente de la ecuación de Schrödinger.

92. ¿Qué afirmación es correcta en relación con las ecuaciones de Hartree-Fock de la química computacional?:

- Estas ecuaciones tienen como objetivo obtener computacionalmente la energía de una reacción.
- Para obtener las ecuaciones de Hartree-Fock a partir de la ecuación de Schrödinger es necesario suponer que los núcleos atómicos permanecen aproximadamente fijos durante el movimiento de electrones.
- 3. Estas ecuaciones se basan en la teoría de la repulsión de los pares de electrones de la capa de valencia.
- 4. Para obtener las ecuaciones de Hartree-Fock se supone que la función de onda es un producto de funciones asociadas a los electrones presentes en el sistema químico.

93. Si una reacción exotérmica se realiza en condiciones adiabáticas y a presión constante:

- 1. La entalpía de los productos será mayor que la de los reactivos.
- La entalpía de los productos será menor que la de los reactivos.
- 3. La temperatura de los productos será mayor que la de los reactivos.
- 4. La temperatura de los productos será menor que la de los reactivos.

94. El criterio para el equilibrio material, en un sistema cerrado capaz de efectuar sólo trabajo presión-volumen mantenido a temperatura y volumen constantes, es que:

- 1. La energía interna del sistema sea mínima.
- 2. La entalpía del sistema sea mínima.
- 3. La energía libre de Helmholtz del sistema sea mínima.
- La energía libre de Gibbs del sistema sea mínima.

95. El potencial químico de glucosa sólida a 25°C y 1 atm es:

- Menor que el potencial químico de glucosa disuelta en una disolución acuosa insaturada a 25°C y 1 atm.
- Mayor que el potencial químico de glucosa disuelta en una disolución acuosa insaturada a 25°C y 1 atm.
- 3. Igual que el potencial químico de glucosa disuelta en una disolución acuosa insaturada a 25°C y 1 atm.
- 4. Mayor que el potencial químico de glucosa disuelta en una disolución acuosa sobresaturada a 25°C y 1 atm.

96. A 25°C la adición de nitrato potásico, sal soluble en agua, a una disolución acuosa de cloruro de plata, sal poco soluble en agua, provocará:

- Una disminución de la fuerza iónica de la disolución.
- 2. Un aumento del coeficiente de actividad iónico medio del cloruro de plata.
- 3. Una disminución de la constante del producto de solubilidad del cloruro de plata.
- 4. Un aumento de la solubilidad del cloruro de plata.

97. El modo normal de la vibración de tensión simétrica de la molécula lineal de CO₂ es:

- 1. Activo en el infrarrojo y activo en Raman.
- 2. Activo en el infrarrojo e inactivo en Raman.
- 3. Inactivo en el infrarrojo y activo en Raman.
- 4. Inactivo en el infrarrojo e inactivo en Raman.

98. ¿Cuántos términos de energía potencial de interacción electrón-electrón tiene el hamiltoniano del átomo de nitrógeno?:

- 1. 6.
- 2. 21.
- 3. 15.
- 4. 10.

99. La entalpía de sublimación del yodo a 25°C y 101,3 kPa es igual a:

- 1. La entalpía de vaporización menos la entalpía de fusión del yodo.
- 2. La energía del enlace yodo-yodo.
- 3. La entalpía de vaporización del yodo.
- 4. La entalpía de formación del yodo en fase gas.

- 100. Conocidos los potenciales estándar de reducción Cu^{2+}/Cu y Ag^+/Ag , respectivamente +0,34 y +0,80 V, ¿cuál es la energía libre de Gibbs estándar de la reacción Cu+2 $Ag^+ \rightarrow Cu^{2+}+2$ Ag?:
 - 1. −110010 J.
 - 2. 88780 J.
 - 3. -55005 J.
 - 4. 0,46 J.
- 101. En una reacción, si el cociente de reacción, Q, es mayor que Kc la reacción evolucionará:
 - 1. Hacia la formación de productos.
 - Hacia la descomposición de productos en reactivos.
 - No evolucionará, el sistema se encuentra en equilibrio.
 - 4. Es imposible que Q sea mayor que Kc.
- 102. El valor numérico de la fuerza iónica, I, $=\frac{1}{2}\sum_i c_i z_i^2$, de una disolución que contiene a los

electrolitos $M^{3+}X^{3-}$ y KCl en concentraciones iguales a c, es:

- 1. *c*.
- 2. 5*c*.
- 3. 9*c*.
- 4. 10*c*.
- 103. En la electrolisis de una disolución acuosa de sal común se obtienen 22,4 L de gas cloro medidos a 1 atm y 0°C. Si la intensidad de corriente aplicada ha sido de 2 A, el tiempo de electrolisis es:
 - 1. 96500 s.
 - 2. (96500/2) s.
 - 3. (96500 x 2) s.
 - 4. 96500 min.
- 104. El transporte de materia en una disolución puede ser debido a la difusión (gradiente de concentración), a la migración (gradiente de potencial eléctrico) y a la convección (movimiento de la disolución como un todo).

 Indicar qué afirmación es cierta:
 - 1. En una disolución homogenizada en reposo y a temperatura constante de azúcar en agua, la materia se transporta por migración.
 - 2. En una disolución homogenizada en reposo y a temperatura constante de azúcar en agua, la materia se transporta por difusión.
 - En una disolución homogenizada en reposo y a temperatura constante de azúcar en agua, la materia se transporta por difusión, migración y convección.
 - En una disolución homogenizada en reposo y a temperatura constante de azúcar en agua, no existe transporte.

- Para ciertas reacciones de recombinación de radicales, como por ejemplo, $2 \text{ CH}_3 \rightarrow \text{C}_2\text{H}_6$, se ha observado que la energía de activación es prácticamente cero. En consecuencia dichas reacciones:
 - 1. Serán más lentas a temperaturas más bajas.
 - 2. Serán más rápidas a temperaturas más bajas.
 - 3. La constante de velocidad de estas reacciones será esencialmente independiente de la temperatura.
 - 4. Nunca pueden ser espontáneas.

La ecuación de Gibbs-Duhem es útil para:

- Obtener el coeficiente de actividad del soluto si se conoce el del disolvente.
- 2. Conocer la dependencia con la temperatura del coeficiente de actividad del soluto.
- 3. Obtener el coeficiente de actividad iónico medio de un electrolito.
- 4. Conocer la dependencia con la presión del coeficiente de actividad del disolvente.
- Se ha observado para una determinada reacción química entre gases ideales que la constante de equilibrio aumenta al aumentar la temperatura. De aquí se deduce que:
 - $1. \quad \Delta_r S^0 > 0.$
 - $2. \quad \Delta_r G^0 < 0. \\ 3. \quad \Delta_r G^0 > 0.$

 - 4. $\Delta_r H^0 > 0$.

108. En un oscilador armónico unidimensional, los niveles energéticos:

- 1. Están tan próximos entre sí que puede suponerse que la energía varía de forma continua.
- 2. Aumentan su separación al aumentar la ener-
- 3. Son independientes de la frecuencia del oscilador.
- Están equiespaciados.

La aproximación de Born-Oppenheimer:

- 1. Indica que el cuadrado de la función de onda da la densidad de probabilidad de encontrar a las partículas en un lugar dado del espacio.
- 2. Permite calcular la energía de red de un cristal iónico.
- 3. Permite tratar los movimientos electrónicos y nucleares de forma independiente.
- 4. Calcula orbitales moleculares de tipo π utilizando únicamente orbitales atómicos de tipo

La reacción, en fase gas, entre el monocloruro de vodo (ICl) v el hidrógeno (H2) da como productos yodo y cloruro de hidrógeno. El mecanismo de reacción es en dos etapas:

Etapa lenta: $H_2(g) + ICl(g) \rightarrow HI(g) + HCl(g)$ Etapa rápida: HI (g) + ICl (g) \rightarrow I₂ (g) + HCl

¿Cuál es la ecuación de velocidad?:

- Velocidad = $k[H_2][IC1]$.
- Velocidad = $k[H_2][ICl]^2$.
- $Velocidad = k[H_2][IC1]/([HI][HC1]).$
- 4. Velocidad = k[HI][ICI].
- La reacción $2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$ tiene un valor de Δ_rH⁰ = -198 kJ·mol⁻¹. ¿Qué efecto tiene un aumento de temperatura?:
 - 1. No afecta al equilibrio, solo a las velocidades de reacción.
 - Se favorece la formación de SO₂.
 - 3. Se favorece la formación de SO₃.
 - 4. Se favorece la formación de SO₂ y SO₃. La velocidad de reacción no cambia.
- En cuanto al efecto fotoeléctrico, ¿Qué paráme-112. tro debemos aumentar para conseguir un aumento de la energía cinética de los electrones emitidos?:
 - 1. La intensidad de la radiación.
 - 2. La longitud de onda de la radiación.
 - La frecuencia de la radiación.
 - 4. Tanto la intensidad como la frecuencia de la radiación.
- Para la fusión del hielo a 0°C y 1 atm se cumple 113.
 - 1. La variación de energía libre de Gibbs es
 - 2. La variación de energía libre de Helmholtz es
 - 3. La variación de entropía es cero.
 - 4. La variación de entalpía es cero.
- ¿Qué compuesto tiene el punto de ebullición 114. más bajo a 1,0 atm de presión?:
 - 1. CH₄.
 - 2. C₂H₆.
 - 3. Cl₂.
 - 4. CCl₄.
- ¿Cuál de las siguientes afirmaciones sobre los niveles de energía relativa de los orbitales moleculares para la molécula de O2 es INCORREC-**TA?:**
 - 1. $\sigma_{2s} < \sigma^*_{2s}$.
 - $2. \quad \sigma_{2s} < \sigma_{2p}.$
 - 3. $\pi_{2p} < \sigma_{2p}$.
 - 4. $\sigma^*_{1s} < \sigma_{2s}$.

- 116. ¿Cuál de las siguientes combinaciones materialcoloide es INCORRECTA?:
 - 1. Mayonesa-emulsión.
 - 2. Humo-aerosol.
 - 3. Piedra pómez-espuma sólida.
 - 4. Ópalo-disolución sólida.
- 117. ¿Qué dos orbitales están ubicados entre los ejes de un sistema de coordenadas y no a lo largo de los ejes?:
 - 1. d_{xy} , d_{z^2} .
 - 2. $d_{xy}, d_{x^2-y^2}$.
 - 3. d_{xz} , d_{z^2} .
 - 4. d_{xy} , d_{yz} .
- 118. 8,0 moles de CO reaccionan con 4,0 moles de O2 para dar 8,0 moles de CO2 a 25°C y 1,0 bar. Si en la reacción se liberan 566,0 kJ y PΔV es igual a -2,5 kJ, entonces:
 - 1. $\Delta H^{\circ} = -566,0 \text{ kJ y } \Delta U = -563,5 \text{ kJ}.$
 - 2. $\Delta H^{\circ} = -566,0 \text{ kJ y } \Delta U = -568,5 \text{ kJ}.$
 - 3. $\Delta H^{\circ} = +566.0 \text{ kJ y } \Delta U = +568.5 \text{ kJ}.$
 - 4. $\Delta H^{\circ} = +566,0 \text{ kJ y } \Delta U = +563,5 \text{ kJ}.$
- 119. Los átomos que menos dispersan la radiación de rayos X son los de:
 - 1. Hidrógeno.
 - 2. Nitrógeno.
 - 3. Cloro.
 - 4. Renio.
- 120. Las fuerzas de atracción entre especies neutras (átomos o moléculas, pero no iones) se conocen como:
 - 1. Fuerzas de van der Waals.
 - 2. Dipolares.
 - 3. Dipolo inducido.
 - 4. Iónicas.
- 121. El cambio de entalpía para la formación de un mol de un compuesto directamente a partir de sus elementos se conoce como:
 - 1. Calor entrópico.
 - 2. Calor de combustión.
 - 3. Calor estándar de formación.
 - 4. Calor de iniciación.
- 122. La hibridación del carbono en el etileno es:
 - 1. sp.
 - 2. s.
 - 3. sp^3 .
 - 4. sp^2 .

- 123. La deshidrohalogenación de los halogenuros de alquilo por bases alcóxido se produce por el mecanismo:
 - 1. E2.
 - 2. E1.
 - 3. $S_N 1$.
 - 4. $S_N 2$.
- 124. En Resonancia Magnética Nuclear la dependencia de la posición de resonancia de un núcleo que resulta de su ambiente molecular se llama:
 - 1. Acoplamiento electrónico.
 - 2. Campo inducido.
 - 3. Desplazamiento químico.
 - 4. Acoplamiento espín-espín.
- 125. La secuencia formación de un reactivo de Grignard o alquil litio (también llamada metalación) seguida de hidrólisis convierte un haloalcano en un:
 - 1. Alcano.
 - 2. Alcohol.
 - 3. Aldehído.
 - 4. Ácido carboxílico.
- 126. El catalizador que consiste en paladio precipitado sobre carbonato cálcico con acetato de plomo y quinolina se conoce como:
 - 1. Catalizador de Heck.
 - 2. Catalizador de Lindlar.
 - 3. Catalizador de Perkin.
 - 4. Catalizador de Suzuki.
- 127. Los nitrilos se hidrolizan a:
 - 1. Aldehídos.
 - 2. Aminas.
 - 3. Cetonas.
 - 4. Ácidos carboxílicos.
- 128. La estructura del furano es análoga a la del pirrol, excepto que el NH ha sido sustituido por un:
 - 1. S.
 - 2. C.
 - 3. O.
 - 4. P.
- 129. La fusión de un anillo de benceno en las posiciones 2,3 de un pirrol genera:
 - 1. Quinolina.
 - 2. Isoquinolina.
 - 3. Quinidina.
 - 4. Indol.

130. Indique cuál de los siguientes derivados de benceno es MENOS reactivo frente a un electrófilo en una reacción de tipo Friedel-Crafts:

- 131. Indique cuál de los siguientes cationes es más estable:
 - 1. CH₃⁺.
 - 2. CH₃–CH₂⁺.
 - 3. (CH₃)₂CH⁺.
 - 4. CH₂=CH-CH₂⁺.
- 132. ¿Cuál de los siguientes compuestos experimenta una solvólisis más rápida con metanol?:
 - 1. CH_3Br .

133. Prediga el producto mayoritario de la siguiente reacción:

- 134. ¿Qué producto/s resultará/n al tratar (E)-3-hexeno con Br₂?:
 - 1. Una mezcla de dibromuros enantioméricos.
 - 2. Una mezcla de dibromuros diasteroméricos.
 - 3. *(E)*-3,4-dibromo-3-hexeno.
 - 4. Un dibromuro meso.
- 135. ¿Cuál de los siguientes enunciados, sobre el heterociclo piridina, es FALSO?:
 - 1. La piridina es una base más fuerte que el pi-
 - 2. La reacción de piridina con ácido acético da lugar a acetato de piridinio.
 - 3. La piridina está desactivada hacia el ataque electrofilico, pero está activada hacia la sustitución nucleofilica aromática.
 - 4. La piridina es una base más fuerte que la piperidina.
- 136. ¿Cuál es el nombre de la reacción mediante la cual, en presencia de una base fuerte, las amidas primarias reaccionan con cloro o con bromo para formas aminas con un átomo de carbono menos?:
 - 1. Síntesis de Gabriel.
 - 2. Reordenamiento de Curtius.
 - 3. Reordenamiento de Hofmann.
 - 4. Reacción de Sandmeyer.

137. El 2-butanol puede obtenerse a partir del propino mediante la secuencia de reacciones siguiente:

- 1. *1*. NaNH₂ ; *2*. CH₃Br ; *3*. H₂/cat. Lindlar; *4*. H⁺/H₂O.
- 1. NaOH; 2. CH₃Br; 3. H₂/cat. Lindlar; 4. H⁺/H₂O.
- 3. 1. NaNH₂; 2. CH₃Br; 3. H₂/Pd-C; 4. H⁺/H₂O.
- 1. NaNH₂;
 2. CH₃CH₂Br;
 3. H₂/cat. Lindlar;
 4. H⁺/H₂O.

138. Indique cuál de los siguientes compuestos es la base más fuerte:

139. ¿Qué producto mayoritario se obtiene cuando el acetoacetato de etilo se trata con un exceso de borohidruro de sodio en metanol?:

- 1. 3-hidroxibutanoato de metilo.
- 2. 1,3-butanodiol.
- 3. Ácido 3-oxobutanoico.
- 4. 4-hidroxi-2-butanona.

140. ¿Qué combinación es la adecuada para llevar a cabo la síntesis del siguiente éter?:

1.
$$\bigcirc$$
 OH + CH₃CH₂B

2.
$$\bigcirc$$
 ONa + CH₃CH₂Br

3.
$$\bigcirc$$
 Br + CH₃CH₂ONa

4.
$$\bigcirc$$
 Br + CH₃CH₂OH

141. ¿Cuál de los siguientes enunciados es verdadero?:

- 1. La reacción entre una cetona y un reactivo de Grignard es irreversible porque los carbocationes son malos grupos salientes.
- 2. Los reactivos de Grignard son reactivos electrofilicos en su reacción con cetonas.
- 3. Las cetonas son reactivos nucleofílicos en su reacción con reactivos de Grignard.
- 4. La reacción entre una cetona y un reactivo de Grignard es irreversible porque los carbaniones son malos grupos salientes.

142. ¿Qué productos se forman cuando se trata 1,3-butadieno con bromo en tetracloruro de carbono a 20°C?:

1.
$$H_2C-C-C-CH_2 + H_2C-C-C-CH_2 \\ \dot{B}_r \dot{B}_r H + \dot{B}_r$$

2.
$$H_3C-C-C=CH_2$$

3.
$$H_2C-C-C=CH$$

 $\dot{B}r$ $\dot{B}r$

143. ¿Cuál de las siguientes bases es la más adecuada para llevar a cabo la transformación de 2-bromo-3-metilbutano en 2-metil-2-buteno?:

- 1. KOCH₃.
- 2. Piridina.
- 3. KOC(CH₃)₃.
- 4. Diisopropilamida de litio.

144. ¿Cuál es el orden descendente de nucleofília, en disolventes hidroxílicos, de las siguientes especies: agua, ion metóxido, trietilfosfina e ion acetato?:

- 1. Ion metóxido > ion acetato > trietilfosfina > agua.
- 2. Trietilfosfina > ion metóxido > ion acetato >
- 3. Trietilfosfina > ion acetato > ion metóxido > agua.
- 4. Ion acetato > ion metóxido > trietilfosfina > agua.

145. ¿Qué productos se forman cuando lleva a cabo la mononitración de 1-nitronaftaleno?:

1.
$$NO_2$$
 NO_2 NO_2

3.
$$NO_2 NO_2$$
 NO_2 NO_2

4.
$$NO_2$$
 NO_2 NO_2

146. ¿Cúal de los siguientes enunciados sobre la tautomería es FALSO?:

- Los tautómeros son isómeros que se interconvierten
- 2. Los tautómeros son formas resonantes.
- 3. Los tautómeros son compuestos diferentes.
- 4. La tautomería ocurre por la migración de un protón y el movimiento de un doble enlace.

147. ¿Qué producto orgánico mayoritario se obtiene en la reacción del 2-metilpropanal con hidróxido sódico a 5°C?:

- 1. 2-metilpropanol.
- 2. Ácido 2-metilpropanoico.
- 3. 3-hidroxi-2,3,4-trimetilpentanal.
- 4. 2,3,4-trimetilpentanal.

148. El orden de acidez decreciente de los siguientes ácidos carboxílicos es:

2.
$$CO_2H$$
 CO_2H CO_2H CO_2H CO_2H

3.
$$CO_2H$$
 F CO_2H CO_2H

4.
$$\begin{array}{c|c} F & CO_2H & CO_2H \\ \hline \end{array}$$

149. ¿Cuál de los siguientes enunciados es FALSO?:

- 1. La reacción de metátesis con apertura de anillo de alquenos cíclicos da lugar a dienos.
- La reacción de metátesis con apertura de anillo de alquenos cíclicos se lleva a cabo usualmente con el reactivo de Grubbs.
- La reacción de metátesis con apertura de anillo de alquenos cíclicos conduce a la formación de etileno.
- 4. La reacción de metátesis con apertura de anillo de alquenos cíclicos puede realizarse en presencia de otros grupos funcionales.

150. ¿Cuál de las siguientes técnicas NO es adecuada para la separación de los enantiómeros de una mezcla racémica de talidomida?:

- 1. Cromatografía quiral.
- 2. Destilación.
- 3. Cristalización.
- 4. Reacción con agentes de resolución quiral.

151. La fórmula general de un hidrocarburo acíclico con dos enlaces triples es:

- 1. C_nH_{2n-4} .
- 2. C_nH_{2n-6} .
- 3. C_nH_{2n-2} .
- 4. C_nH_{2n-10} .

152. ¿Cuál es la frase que describe mejor el mecanismo de sustitución nucleófila en un haluro terciario?:

- 1. Formación de un carbocatión con retención de configuración.
- 2. Reacción concertada con retención de configuración.
- Reacción concertada con inversión de configuración.
- 4. Formación de un carbocatión con racemización parcial.

153. ¿Qué producto se obtendría al tratar el 2,3-dimetil-2,3-butanodiol con H₂SO₄, a 100°C?:

- 1. 3,3-dimetil-2-butanona.
- 2. 2,3-dimetil-1,3-butadieno.
- 3. 1,1,2,2-tetrametiloxirano.
- 4. Acetona (2 equivalentes).

154. ¿Qué producto se obtiene al calentar 1,3-butadieno con acrilonitrilo (CH₂=CH−C≡N)?:

- 1. 4-vinilciclohex-1-eno.
- 2. 3-ciclohexen-1-carbonitrilo.
- 3. 3-vinilciclobutan-1-carbonitrilo.
- 4. 6-vinil-2,5-dihidropiridina.

155. ¿Cuál de los siguientes sistemas cíclicos pi es aromático?:

- 1. Ciclooctatetraeno.
- 2. Catión ciclopropenilo.
- 3. Anión ciclopropenilo.
- 4. Catión ciclopentadienilo.

156. ¿Qué tipo de compuesto orgánico mayoritario esperaría en la reacción de ciclohexanona con metilamina en presencia de cianoborohidruro sódico en etanol?:

- 1. Un nitrilo.
- 2. Una hidroxiamina.
- 3. Una amina.
- 4. Una imina.

157. El compuesto (R,R)-1,2-dibromociclobutano:

- 1. Presenta dos carbonos asimétricos y es por tanto un compuesto quiral.
- 2. Es un compuesto ópticamente inactivo.
- 3. Es un compuesto meso y es por tanto un compuesto aquiral.
- 4. No presenta carbonos asiméticos y es por tanto un compuesto aquiral.

158. En la reacción de *cis*- y *trans*-1-bromo-4-(1,1-dimetiletil)ciclohexano con metóxido sódico:

- 1. Se produce *trans*-4-(1,1-dimetiletil)-1-metoxiciclohexano.
- 2. Se produce una mezcla de *cis* y *trans*-4-(1,1-dimetiletil)-1-metoxiciclohexano.
- 3. Se produce el 4-(1,1-dimetiletil)ciclohex-1eno, siendo la reacción más rápida si se parte del isómero *trans* de la sustancia de partida.
- 4. Se produce 4-(1,1-dimetiletil)ciclohex-1-eno, siendo la reacción más rápida si se parte del isómero *cis* de la sustancia de partida.

159. ¿Cuál de los siguientes enunciados, relativos a acetales, es FALSO?:

- La formación de acetales es catalizada sólo por ácidos, pero la hidrólisis requiere condiciones básicas.
- 2. Los aldehídos forman acetales con mayor rapidez que las cetonas.
- La formación de un acetal no altera el estado de oxidación del átomo de carbono del grupo carbonilo precursor.
- 4. El etilenglicol se usa con frecuencia para preparar acetales cíclicos.

160. ¿Cuál de las siguientes afirmaciones es correcta para los glicoesfingolípidos?:

- 1. Son apolares.
- 2. Su función principal es la reserva energética.
- 3. En el caso de que porten ácido siálico, se denominan gangliósidos.
- Tienen dos residuos de ácidos grasos en su molécula.

161. ¿Cuál de las siguientes afirmaciones es cierta para la oxidación de ácidos grasos?:

- La oxidación y la síntesis de ácidos grasos se dan con las mismas reacciones, pero en sentido contrario.
- 2. Tiene lugar en el citosol.
- 3. Tiene lugar con niveles plasmáticos bajos de glucagón o adrenalina.
- 4. Los ácidos grasos deben activarse (uniéndose a CoA) para permitir su internalización en la mitocondria.

162. ¿Cuál de las siguientes afirmaciones es cierta para el metabolismo del nitrógeno de los aminoácidos?:

- 1. El nitrógeno es liberado en el proceso de digestión por las proteasas pancreáticas.
- 2. El primer paso de la eliminación del nitrógeno suele ser la transferencia del grupo α-amino al α-cetoglutarato.
- 3. Las aminotransferasas son inespecíficas y actúan sobre todos los aminoácidos.
- 4. Las reacciones de transaminación son altamente irreversibles.

163. ¿Cuál de las siguientes afirmaciones es FALSA para síntesis de desoxirribonucleótidos?:

- 1. La enzima clave es la ribonucleótido reducta-
- 2. La fuente de equivalentes reductores es el NADPH + H⁺.
- 3. El dATP inhibe alostéricamente la síntesis.
- 4. Se sintetizan directamente desde desoxirribo-

164. ¿Cuál de las siguientes afirmaciones es cierta para la regulación hormonal de la glucolisis?:

- Se realiza únicamente en el inicio de la ruta, controlando la actividad de la hexoquinasa/glucoquinasa.
- 2. El glucagón inhibe la piruvato quinasa.
- La insulina activa la síntesis de fructosa-2,6bisfosfato.
- 4. La insulina inhibe la fosfofructoquinasa-1.

165. Los valores de pKa del ácido aspártico son 2,1; 3,9 y 9,8. Su punto isoeléctrico (pI) es:

- 1. 7,0.
- 2. 5,3.
- 3. 3,0.
- 4. 3,9.

166. Las proteínas destinadas a ser secretadas se sintetizan en:

- 1. Los polisomas libres.
- 2. El retículo endoplásmico rugoso.
- 3. El aparato de Golgi.
- 4. El retículo endoplásmico liso.

167. El escualeno es un precursor de:

- 1. Esfingosina.
- 2. Prostaglandinas.
- 3. Ácido araquidónico.
- 4. Colesterol.

168. Cada ciclo de oxidación de los ácidos grasos:

- 1. Libera una molécula de acetil-CoA.
- 2. Consume dos moléculas de NADH.
- 3. Genera dos moléculas de FADH₂.
- 4. Produce una deshidratación.

169. La lanzadera malato-aspartato:

- 1. Permite la regeneración del NADH citosólico necesario para la glucolisis.
- 2. Sirve para pasar los electrones del NADH del citosol a la mitocondria.
- 3. Transfiere los electrones del NADH al citrato.
- 4. Es un complejo transportador de electrones.

170. Con respecto a la constante de Michaelis-Menten (K_m) :

- 1. Se expresa en unidades de velocidad.
- Un valor alto de K_m se puede relacionar con gran estabilidad del complejo enzimasustrato.
- Equivale a la concentración de sustrato que se requiere para alcanzar la mitad de la velocidad máxima.
- 4. Se mantiene constante para las enzimas de una misma clase.

171. ¿Qué longitud de onda sería fuertemente absorbida por una solución de color rojo?:

- 1. 450 nm.
- 2. 585 nm.
- 3. 600 nm.
- 4. 650 nm.

172. ¿Cuál de los siguientes procesos bioquímicos está promovido por la insulina?:

- 1. Glucogenolisis.
- 2. Gluconeogénesis.
- 3. Lipolisis.
- 4. Captación de glucosa por las células.

173. El movimiento electroforético de las proteínas hacia el ánodo disminuye cuando se aumenta:

- 1. El pH del tampón.
- 2. La fuerza iónica del tampón.
- 3. La intensidad de la corriente.
- 4. El voltaje.

174. Las endonucleasas de restricción:

- 1. Hidrolizan enlaces fosfoéster comenzando por los extremos 5' del DNA.
- Se utilizan para la formación de moléculas híbridas mediante recombinación.
- 3. Reconocen y cortan el DNA en secuencias específicas.
- 4. Reconocen y cortan el DNA en secuencias libres de nucleosomas.

175. Las enzimas alteran:

- 1. Las velocidades de reacción y los equilibrios.
- 2. Las velocidades de reacción pero no los equilibrios
- 3. Únicamente los equilibrios de la reacción.
- 4. La afinidad por los sustratos.

176. La reacción en cadena de la polimerasa permite:

- Cartografiar e identificar los genes de un genoma.
- 2. Amplificar secuencias de DNA específicas.
- 3. Conocer la topología de secuencias de DNA específicas.
- 4. Localizar estructuras en secuencias de RNA.

177. Las topoisomerasas son enzimas:

- Que desnaturalizan la estructura en doble hélice del DNA.
- Que permiten la hibridación entre dos isómeros topológicos del DNA.
- Que aumentan o disminuyen el grado de desenrollamiento del DNA.
- 4. Que tienen actividad helicasa-primasa.

178. La actividad de corrección de pruebas de la DNA polimerasa I procariótica es una actividad:

- 1. Polimerizante 5'-3'.
- 2. Transesterificadora 5'-3'.
- 3. Exonucleasa 5'-3'.
- 4. Exonucleasa 3'-5'.

179. Sobre la vitamina B₁₂:

- También es conocida como piridoxina o piridoxal.
- 2. Participa en reacciones de carboxilación.
- 3. Su actividad está ligada a la del ácido fólico.
- 4. Contiene manganeso en su estructura.

180. ¿Cuál de los siguientes aminoácidos se abrevia con una E en la nomenclatura de una letra?:

- 1. Ácido aspártico.
- 2. Ácido glutámico.
- 3. Asparragina.
- 4. Glutamina.

181. En biología molecular, ¿cómo se llama a la temperatura a la cual la mitad de copias de una secuencia de DNA se encuentra en forma de cadena simple y la otra mitad en forma de cadena doble?:

- 1. Temperatura de hibridación.
- 2. Temperatura de conjugación.
- 3. Temperatura de transformación.
- 4. Temperatura de fusión.

182. Es cierto en relación con la eucromatina:

- 1. Está muy condensada.
- 2. Es transcripcionalmente activa.
- 3. Supone el 90% de la cromatina total.
- 4. Contiene secuencias de ADN altamente repetitivas.

183. Con respecto a la ruta de las penosas fosfato:

- En la fase no oxidativa se transforman unos monosacáridos en otros, destacando la obtención de ribosa-5-fosfato.
- La eritrosa-4-P es un intermediario de la fase oxidativa.
- 3. Su finalidad es la obtención de NAD⁺.
- 4. En la fase oxidativa se genera GTP.

184. Señale la INCORRECTA con respecto al Ciclo de Krebs:

- 1. Genera dos moléculas de GTP.
- 2. Desempeña un papel crucial como nexo entre las distintas rutas metabólicas.
- 3. Proporciona precursores para muchas rutas biosintéticas a través de sus intermediarios.
- 4. Es una vía anfibólica.

185. ¿Cuál de los siguientes aminoácidos contiene azufre?:

- 1. Leucina.
- 2. Metionina.
- 3. Triptófano.
- 4. Prolina.

186. ¿Cuál de las siguientes afirmaciones sobre la estructura en lámina β de las proteínas NO es cierta?:

- 1. Las cadenas sólo se pueden disponer de forma paralela, es decir en el mismo sentido.
- 2. Está estabilizada mediante enlaces por puente de hidrógeno.
- 3. Las cadenas laterales se disponen hacia arriba o hacia abajo del plano.
- 4. Es un tipo de estructura secundaria muy extendida.

187. En la cinética de una enzima, los inhibidores reversibles competitivos:

- 1. Disminuyen la K_m sin modificar la V_{max} .
- 2. Disminuyen tanto la K_m como la V_{max} .
- 3. Aumentan la K_m y disminuyen la V_{max} .
- 4. Aumentan la K_m sin modificar la V_{max} .

188. ¿Cuál de estos mecanismos NO está implicado en la regulación de la expresión génica en eucariotas?:

- Regulación de la compactación de la cromatina.
- 2. Inicio de la replicación.
- 3. Maduración del mRNA.
- 4. Inicio de la traducción.

189. El ciclo de Krebs o del ácido cítrico está favorecido por altas concentraciones celulares de:

- 1. ATP y NADH.
- 2. ADP y NAD⁺.
- 3. ADP y NADH.
- 4. ATP y NAD⁺.

190. En referencia con las vitaminas, señale la respuesta correcta:

- 1. La tiamina tiene como función transferir unidades de un átomo de carbono en los procesos de síntesis de RNA y aminoácidos.
- 2. La biotina suplementada en exceso puede causar ataxia y neuropatía sensorial.
- 3. La vitamina C interviene en la formación de hidroxiprolina del colágeno.
- 4. El déficit de piridoxina puede producir pelagra.

191. Sobre la eritropoyetina, señale la respuesta correcta:

- 1. Es una lipoproteína sintetizada a nivel renal.
- 2. Inhibe la producción de hematíes en la médula ósea
- 3. La liberan las células tubulares renales cuando disminuye la presión de oxígeno.
- 4. Aumenta en la insuficiencia renal progresiva.

192. En el punto isoeléctrico de los aminoácidos y proteínas:

- 1. Ambos grupos ionizables del aminoácido tienen la misma carga.
- 2. La carga neta de cada grupo ionizable es cero.
- 3. La suma algebraica de las cargas de los grupos ionizables es cero.
- 4. La carga es igual para todos los aminoácidos a un determinado pH.

193. Si en un DNA de doble cadena hay un 20% en moles de guanina, ¿cuál es el porcentaje en moles de timina?:

- 1. 20%.
- 2. 30%.
- 3. 80%.
- 4. No se puede saber con ese único dato.

194. La alta fidelidad del proceso de síntesis de proteínas se debe principalmente a:

- 1. La actividad de la enzima peptidil transferasa.
- 2. La presencia de factores de iniciación y de elongación específicos para cada aminoacil-tRNA.
- El acoplamiento entre el ribosoma y el RNA de transferencia.
- 4. La actividad correctora de la aminoacil-tRNA sintetasa.

195. La impronta genética (imprinting) es la:

- 1. Expresión diferencial de uno de los alelos.
- 2. Ausencia en el genoma de ciertos genes.
- 3. Expresión de genes causantes de enfermedades
- 4. Presencia en el genoma de genes que permiten la identificación individual.

196. Las hormonas esteroideas actúan a nivel celular:

- 1. Inhibiendo enzimas preexistentes.
- 2. Mediante la formación de un segundo mensajero.
- Mediante la regulación de la expresión génica.
- Modificando la concentración de calcio iónico intracelular.

197. En referencia al fragmento Klenow, señale la respuesta FALSA:

- Es un fragmento de la enzima DNA polimerasa I.
- 2. Su gran ventaja es su estabilidad a altas temperaturas.
- 3. Se utiliza para el relleno de extremos 3' de fragmentos de DNA.
- 4. Tiene actividad de polimerasa y de 3'→5' exonucleasa.

198. ¿Qué es la secuencia Shine-Dalgarno?:

- 1. Una secuencia de RNA mensajero que solo existe en procariotas.
- Una secuencia situada a 6 o 7 nucleótidos del codón de terminación de la traducción del RNA
- 3. Una secuencia de DNA consenso en la región promotora de genes eucariotas.
- 4. Secuencia situada a 25 nucleótidos del sitio de inicio de la transcripción.

199. ¿Cómo afecta el aumento de la temperatura a la reacción antígeno-anticuerpo?:

- Aumenta la velocidad y disminuye la afinidad de unión.
- Disminuye la velocidad y aumenta la afinidad de unión.
- 3. Aumenta la velocidad y la afinidad de unión.
- 4. Disminuye la velocidad y la afinidad de unión.

200. Los plásmidos son:

- 1. Fragmentos de DNA lineales con genes de resistencia a antibióticos.
- 2. Moléculas de RNA de cadena doble y circulares con genes de resistencia a antibióticos.
- Moléculas de DNA circulares que se replican de forma dependiente del cromosoma del huésped.
- Moléculas de DNA circulares que se replican independientemente del cromosoma del huésped.

201. ¿Cuál de las siguientes afirmaciones sobre los diagramas de Pourbaix es FALSA?:

- Son representaciones gráficas del potencial (ordenada) en función del pH (abscisa) para un elemento dado bajo condiciones termodinámicas estándar (usualmente agua a 25°C).
- Las especies más oxidadas se hallan en la parte superior del diagrama, mientras que las especies más reducidas se encuentran en la parte inferior.
- Las líneas oblicuas indican reacciones entre especies con dependencia tanto del potencial como del pH.
- 4. Dos líneas oblicuas y paralelas, que representan la oxidación del agua (línea inferior) y la reducción del agua (línea superior), delimitan una zona del diagrama que contiene las especies estables en solución acuosa.

202. ¿Cuál de los siguientes compuestos experimentará un reagrupamiento cuando sea sometido a una reacción de solvólisis?:

- 1. 3-yodo-5-metilhexano.
- 2. 3-yodohexano.
- 3. 3-yodo-2-metilhexano.
- 4. 3-yodo-3-metilhexano.

203. ¿Qué mide la escala de Mohs?:

- 1. Acidez.
- 2. Conductividad.
- 3. Dureza.
- Viscosidad.

204. La bilirrubina es:

- 1. Un biomarcador de función hepática.
- 2. Un biomarcador de función renal.
- 3. Un biomarcador de función cardiaca.
- 4. Un biomarcador de función cerebral.

205. ¿Qué tipo de electroforesis capilar emplea un gradiente de pH continuo y estable?:

- 1. Electroforesis capilar de zona (CZE).
- 2. Electroforesis capilar en gel (CGE).
- 3. Isotacoforesis capilar (CITP).
- 4. Isoelectroenfoque capilar (CIEF).

206. ¿A qué corresponde el código UFI que consta obligatoriamente en la etiqueta de productos clasificados por sus riesgos para la salud?:

- Código alfanumérico que permite identificar de forma unívoca un producto durante una llamada de emergencia a un centro toxicológico.
- 2. Código QR que incluye información sobre el lote y fecha de caducidad de un producto.
- Código de barras que incluye información sobre el lote y fecha de caducidad de un producto y permite identificarlo durante una emergencia.
- 4. Código QR que permite identificar de forma unívoca un producto durante una llamada de emergencia a un centro toxicológico.

207. La fluorescencia molecular:

- 1. Es más intensa al aumentar la temperatura.
- Es más intensa al disminuir la viscosidad del disolvente
- 3. Está particularmente favorecida en las moléculas rígidas.
- Presenta un mayor rendimiento cuántico de emisión en medios con niveles de oxígeno elevados.

208. Considere la siguiente reacción: C(s) + H₂O(g) ⇒ CO(g) + H₂(g). En el equilibrio a una temperatura determinada las concentraciones son: [H₂O]=0,12 M y [CO]=[H₂]=1,2 M. Si todas estas concentraciones aumentan en 0,5 M de forma simultánea, ¿cuál de las siguientes respuestas es cierta?:

- 1. Se formará más $H_2O(g)$.
- 2. Se formarán más productos.
- 3. Es preciso conocer el valor de K_p para saber lo que sucede.
- 4. El valor de K_c no cambia, por lo tanto, no pasa nada.

209. Toda medida lleva asociada un error. Los errores sistemáticos son aquellos producidos por los equipos de medida o por los analistas que:

- 1. Se corrigen realizando un número elevado de medidas.
- 2. Se producen siempre en el mismo sentido, provocando un sesgo.
- 3. No se pueden corregir.
- 4. Son debidos al azar y no se pueden eliminar, aunque sí minimizar.

210. ¿Cuál es la enzima encargada de desenrollar la doble hélice durante el proceso de replicación del DNA?:

- 1. Primasa.
- 2. DNA girasa.
- 3. DNA helicasa.
- 4. DNA polimerasa.