

Operating Systems

Résumé TE02

Auteur:
Marc Roten

 $\begin{array}{c} \textit{Professeur}: \\ \textit{Jacques} \ \ \text{Supcik} \end{array}$

Table des matières

1	Intr	roduction	2
2	Cha	apitre_6 La Gestion de la Mémoire	3
3	Cha	apitre_7 Systèmes de fichiers	4
	3.1	Exigences stockage long terme	4
	3.2	Le disque magnétique HDD	4
	3.3	Abstraction supplémentaire : le FICHIER	4
		3.3.1 systéme FAT	5
		3.3.2 NTFS-EXT	5
	3.4	Les extensions	5
	3.5	La structure des fichiers	6
	3.6	Commandes spéciales	6
	3.7	Fichiers Ordinaires	7
		3.7.1 Texte	7
		3.7.2 Binaire	7
	3.8	Les nombres magiques	8
	3.9	L'accès aux fichiers sequantial/random	8
	3.10	Attributs supplémentaires	8
	3.11	Appels systèmes : Opérations sur les fichiers	9
4	Cha	apitre_8 Systèmes de Fichiers / Répertoires	10
5	Cha	apitre_9 Disques / Systèmes de Fichiers	11
б	Con	nelusion	19

1 Introduction

Résumé pour la deuxième inter d'OS. Spécial dédicace à ma mère, pour la fête des mères.

1 INTRODUCTION Page 2 sur 12

2 Chapitre_6 La Gestion de la Mémoire

3 Chapitre_7 Systèmes de fichiers

3.1 Exigences stockage long terme

Pour tout ce qui concerne le stockage à long terme, il y a trois exigences.

- Grande capacité de stockage : on doit pouvoir enregistrer une grande quantité d'information
- Persistance : L'information, les modifications mémoires doivent persister après l'arrêt du processus qui les utilise
- **Mémore partagée :** Plusieurs processus doivent pouvoir accéder en même temps à la même information.

3.2 Le disque magnétique HDD

Le disque peut être considéré comme une suite séquentielle de blocs de taille fixe. Un disque possède deux opérations :

- lire un bloc K
- écrire un bloc K

3.3 Abstraction supplémentaire : le FICHIER

De tout temps, en informatique, pour simplifier l'utilisation et l'accès aux données, on a rajouté un niveau d'abstraction au niveau de l'OS, via ce que l'on appelle couramment : **File System.** c'est la partie qui gère les fichiers.

DOS, FAT12, FAT16	MS-DOS (1977)
FAT32	Windows 95 OSR 2 (1996)
NTFS	Windows NT 3.1 (1993)
UFS	Unix File System (1983)
EXT2, EXT3, EXT4	Linux (1992, 1993, 2006)
S5FS	System V File System (1969)
ZFS ¹	Open Solaris (2005)
Btrfs	Linux (2009 ²)
UBIFS	Unsorted Block Image Filesystem ³ (2008)
F2FS	Samsung, Flash-Friendly File System (2012)

Figure 1 – Liste non exhaustive des différents File System

.

Chaque File System définit ses propres rêgles concernant les noms de fichiers :

- Caractères autorisés
- encodage (ISO, Latin 1, UTF-8/16)
- nb Max
- distinction minuscule et majuscule

3.3.1 systéme FAT

Le système FAT définit la convention «8.3»:

- 8 caractères pour le nom du fichier, 3 pour l'extension
- encodage sur 8 bit
- Les caractères interdits
- espaces autorisés
- pas de distinction entre minuscule et majuscule

3.3.2 NTFS-EXT

- NTFS autorise 255 caractères Unicode codés en UTF-16
- EXT autorise 255 bytes pour les noms de fichiers, mais ne définit pas l'encodage des caractères (ISO/8859 ou Unicode)

FIGURE 2 – NTFS EXT

3.4 Les extensions

Extension de nom de fichier : Suffixe ajouté au nom d'un fichier pour identifier son format.

Chaque système (Windows ou UNIX) ne gère pas les extensions de manière simillaire. Voire ci-dessous

• UNIX: L'extension est juste une concention. exemple: fichier peut se nommer .vhd mais être un fichier executable.

- UNIX: Possible d'avoir plusieurs extension comme par exemple archive.tar.gz
- Windows : les extensions sont associées au programme qui peur traiter lesfichiers correspondants.

Extension	Signification
fichier.bak	Fichier de sauvegarde
fichier.c	Fichier source d'un programme C
fichier.gif	Fichier image de format GIF (Graphical Interchange Format)
fichier.hlp	Fichier d'aide
fichier.html	Fichier document en langage HTML (HyperText Markup
	Language)
fichier.jpg	Fichier image de format standard JPEG
fichier.mp3	Fichier de musique codée en MPEG de niveau 3
fichier.mpg	Fichier de vidéo codée en MPEG
fichier.o	Fichier objet (source compilée, non encore liée)
fichier.pdf	Fichier document au format PDF (Portable Document File)
fichier.ps	Fichier document au format PostScript
fichier.tex	Fichier document au format TEX
fichier.txt	Fichier document au format texte
fichier.zip	Fichier archive compressé

Figure 3 – extensions courantes

3.5 La structure des fichiers

Il existe trois sortes de fichiers:

- Suite d'octet (byte sequence)
- Suite d'enregistrements (record sequence)
- Arbre (tree)

3.6 Commandes spéciales

Commande trouver les fichiers caractères : $find/dev/-type\ c$

Commande trouver les fichiers spéciaux blocs : $find/dev/-type\ b|column-c\ 67|expand$

3.7 Fichiers Ordinaires

3.7.1 Texte

- Encodage des caractères (ASCII, ISO/IEC 8859-1/Latin1, UTF-8, UTF-16, ...)
- Conventions pour coder la fin d'une ligne (End Of Line EOL).

Caractères communs retout à la ligne ci-dessous

Carriage Return	CR	chr(13)	^M	\r	\x0D
Line Feed	LF	chr(10)	^J	\n	\x0A

Mac OS (≤ 9), Apple II	\rightarrow	CR
UNIX, Mac OS X	\rightarrow	LF
DOS, Windows	\rightarrow	CR + LF

Figure 4 - CR LF

3.7.2 Binaire

FIGURE 5 – fichiers Binaires

- (a) un fichier executable
- (b) un fichier d'archive

3.8 Les nombres magiques

Les nombres magiques sont utilisés par les programmes pour identifier un fichier. Voir liste en Figure 6

Fichier Jpeg	0xFF 0xD8	
PDF	%PDF	
DOS exécutable	0x4D 0x5A («MZ» en ASCII / Mark Zbikowsl	ki ⁴)
MS Office	0xD0 0xCF 0x11 0xE0 (D0CF11E0 / DocFile)	
ZIP	0x50 0x4B («PK» en ASCII / Phil Katz ⁵)	

FIGURE 6 – Chiffres magiques

3.9 L'accès aux fichiers sequantial/random

Sequential Access : Ce système est utilisé principalement pour les bandes magnétique

 $Random\ Access$: Utilisé principalement par les disques. Ce système permer un déplacement à une position donnée. Fonction SEEK

3.10 Attributs supplémentaires

Protection Qui peut accéder au fichier et de quelle manière Mot de passe Mot de passe nécessaire pour accéder au fichier
Mot de passe
Mot de passe
Créateur du fichier
Propriétaire Propriétaire actuel du fichier
Indicateur lecture seule 0 pour la lecture/écriture, 1 pour la lecture seule
Indicateur fichier caché 0 pour un fichier normal, 1 un pour fichier caché
Indicateur fichier système 0 pour un fichier normal, 1 pour un fichier système
Indicateur d'archivage 0 si le fichier a été archivé, 1 s'il doit être archivé
Indicateur fichier ASCII/binaire 0 pour un fichier ASCII, 1 pour un fichier binaire
Indicateur fichier accès aléatoire O pour un accès séquentiel, 1 pour un accès aléatoire
Indicateur fichier temporaire 0 pour un fichier normal, 1 pour supprimer le fichier
lorsque le processus se termine
Indicateur de verrouillage O pour un fichier non verrouillé, 1 pour un fichier verrouillé
Longueur d'enregistrement Nombre d'octets dans l'enregistrement
Position de la clé Position de la clé dans chaque enregistrement
Longueur de la clé Nombre d'octets du champ clé
Date de création Date et heure de création du fichier
Date du dernier accès Date et heure du dernier accès au fichier
Date de modification Date et heure de la dernière modification
Taille courante Nombre d'octets du fichier
Taille maximale Taille maximale autorisée pour le fichier

FIGURE 7 – Attributs supplémentaires

3.11 Appels systèmes : Opérations sur les fichiers

systems Calls

- Create: RAJOUTER DU MERDIER
- Delete
- Open
- close
- read
- write
- Append
- SEEK
- get attributes
- Set attributes
- rename

```
copy ( source , destination )

sf = open ( source ) # sf is a file descriptor
df = create ( destination ) # df is a file descriptor
buffer_size = 4096
buffer = array [ buffer_size ] of byte
while true :
    count = read (sf , buffer , buffer_size )
    if count <= 0:
        break
    write (df , buffer , count )
close ( sf )
close ( df )</pre>
```

4 Chapitre_8 Systèmes de Fichiers / Répertoires

5 Chapitre_9 Disques / Systèmes de Fichiers

6 Conclusion

Si vous avez aimé mon résumé, faites un git clone de mon Git. Suivez moi sur gitlab.forge.heia-fr.ch github and iLoveFreeSoftware.com.

6 CONCLUSION Page 12 sur 12