Advanced Population Modeling : Projections

Gavin Fay

11/21/2023

Decision Analysis

► We often want to make statements about the consequences of alternative management actions given different states of nature.

Management Action	S	Expected		
	<i>r</i> =0.1	<i>r</i> =0.2	<i>r</i> =0.3	Outcome
Catch=10				
Catch=20	Sumi	atistic		
Catch=30		-		

► To compute expected outcomes we need to know the (relative) probability to associate with each state of nature (more in Bayesian lecture), AND have a way of determining the outcome for each management action.

Decision Tables

- ► A common steo after a model is fit and evaluated is to generate advice for management based on the assessment results.
- ► A Decision Table shows these results

(Fay et al. 2005)

				"Worst" q=1.34 M=0.07		Base $q = 1.03$ (based on prior) est. $M = 0.06$		_	est"
								q=0.79 M=0.05	
			Landings						
				Spawning		Spawning		Spawning	
Management action Yea		ear Catch (mt)	(mt)	Biomass	Depletion	Biomass	Depletion	Biomass	Depletion
1	2005	1,640	1,410	50,274	0.64	75,049	0.71	122,513	0.78
Average	2006	1,640	1,410	49,942	0.64	74,578	0.71	121,828	0.78
of last 5 years 2007 2008 2009 2010 2011 2012 2013 2014 2015		1,640	1,410	49,519	0.63	73,987	0.70	120,997	0.77
		1,640	1,410	49,004	0.63	73,271	0.70	120,009	0.77
	2009	1,640	1,410	48,419	0.62	72,452	0.69	118,886	0.76
	2010	1,640	1,410	47,807	0.61	71,572	0.68	117,677	0.75
	2011	1,640	1,410	47,217	0.60	70,687	0.67	116,443	0.74
	2012	1,640	1,410	46,686	0.60	69,845	0.66	115,244	0.74
	2013	1,640	1,410	46,233	0.59	69,082	0.66	114,125	0.73
	2014	1,640	1,410	45,865	0.59	68,419	0.65	113,115	0.72
	2015	1,640	1,410	45,589	0.58	67,868	0.65	112,233	0.72
	2016	1,640	1,410	45,408	0.58	67,437	0.64	111,492	0.71
1	2005	2,838	2,423	50,274	0.64	75.049	0.71	122.982	0.78
OY - F50%	2006	2,831	2,423	49,386	0.63	74,012	0.71	121,722	0.78
for base model 200 200 201 201 201 201 201 201 201 201		3,953	3,390	48,410	0.62	72,853	0.70	120,308	0.76
		3,859	3,316	46,816	0.60	70,989	0.68	118,185	0.75
	2009	3,765	3,239	45,205	0.58	69,067	0.66	115,965	0.74
	2010	3,671	3,159	43,624	0.56	67,137	0.64	113,700	0.72
		3,576	3,075	42,127	0.54	65,259	0.62	111,460	0.71
	2012	3,482	2,990	40,754	0.52	63,487	0.60	109,309	0.69
	2013	3,391	2,903	39,523	0.51	61.858	0.59	107,292	0.68
	2013	3,304	2,818	38,443	0.49	60,391	0.57	105,440	0.67
	2015	3,224	2,737	37,517	0.48	59,101	0.56	103,773	0.66
	2016	3,154	2,664	36,746	0.47	57,990	0.55	102,301	0.65

Stock projections

- ► Use the results of the assessment as the basis for the projection, given different assumptions for future conditions
- ► e.g. catch, F, recruitment, growth, M, etc.
- Projections can be deterministic or stochastic, with varying complexity.

Short-Term Deterministic Projection

• Project stock forward from the last year of the estimation model, assuming either F or catch, and population parameter values from the estimation model

Implementing deterministic projections

- ► Extend (or create new) storage objects for state variables
- ► Input the required catch advice (e.g. F or TAC)
- Loop over the projected years with the calculations for population dynamics

Stochastic projections

- ► Include effects of process error in projections (e.g. recruitment variability)
- ► Requires multiple realizations of stock dynamics
- Often achieved by Monte Carlo simulations.
- Summarize distribution of outcomes either by quantiles or risk metrics.

(Ichinokawa & Okamura 2014)

(lanelli et al. 2016)

Lab exercise 1 - deterministic projection

- ► Using the Schaefer biomass dynamics model, conduct a deterministic 30 year projection, with fixed exploitation rates of F=0.1, F=0.2, and F=0.3.
- ▶ Summarize the results in terms of average catch over the projection, and final year biomass relative to BMSY. (hint, for the Schaefer model BMSY = 0.5K)