$$\begin{array}{c|c} H & O & H \\ \hline H & N & O \\ \hline N & N & O \\ \hline \end{array}$$

$$H \longrightarrow H$$

$$H \longrightarrow H$$

Exercise 19

Presenters: Oriane Kopp and Myroslava Volosko

Questioners: Anja Probst and Jazmin Valeriano

We again consider the pyrimidine data set presented in the lecture. It contains 74 activity measurements of the enzyme DHFR in a bacterium in the presence of different pyrimidines characterized by 26 physicochemical properties. Those properties are quantified by the variables X1 to X26; the activity of DHFR is the response variable Y. The following figure shows the regularization path (left) and the result of a leave-one-out cross validation (right):

LASSO 😇

- Least Absolute Shrinkage and Selection Operator
- \bullet Find vector of coefficients β that minimizes the penalized residual sum of squares

$$RSS + \lambda \sum_{j=1}^{p} |\beta_j| = ||Y - X\beta||^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

a) What is the optimal range for the regularization

parameter?

a) What is the optimal range for the regularization

parameter?

"Best" model is the one with minimum

CV-value

What is CV-value?

- (Leave-one-out) Cross-validation value
- Remove one data point of the dataset and fit the model on the remaining data points → test the model on the data point you put aside → repeat

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2$$

a) What is the optimal range for the regularization

parameter?

a) What is the optimal range for the regularization parameter?

 $[-5, -3] \rightarrow$ lambda should be positive

 $[0.0001, 0.001] \rightarrow \text{ in log } [-9, -7]$

 $[0.005, 0.05] \rightarrow \text{ in log } [-5.2, -3]$

 $[0.1, 1] \rightarrow \text{ in log } [-2, 0]$

 $[3, 5] \rightarrow \text{ in log } [1, 1.6]$

a) What is the optimal range for the regularization

parameter?

 $[-5, -3] \rightarrow$ lambda should be positive

 $[0.0001, 0.001] \rightarrow \text{in log } [-9, -7]$

 $[0.005, 0.05] \rightarrow \text{ in log } [-5.2, -3]$

 $\{0.1, 1\} \rightarrow \text{ in log } [-2, 0]$

 $\{3, 5\} \rightarrow \text{in log } \{1, 1.6\}$

b) When choosing $\lambda = 0.018$ (left dotted line in left plot), we get the following coefficients (rounded):

27 x 1 spa	rse Matrix of class "dgCMatrix"	x13	-
	1	x14	-
(Intercept	0.600	x15	0.039
x 1	-	x16	_
x2	-	x17	0.008
x3	-	x18	_
x4	-0.040	x19	_
x5	-	x20	0.112
x6	-	x21	_
x7		x22	-0.316
x8	0.103	x23	
x9	0.001	x24	_
x10	-	x25	0.150
x11	-	x26	_
x12	-		

b) How many variables are selected in this model? Write down the corresponding model equation.

27 x 1 spa	arse Matrix of class "dgCMatrix"	x13	
	1	x14	_
(Intercept	t) 0.600	x15	0.039
x1	_	x16	_
x2	-	x17	0.008
x3	_	x18	_
x4	-0.040	x19	
x5	-	x20	0.112
x6	-	x21	_
x7	-	x22	-0.316
x8	0.103	x23	_
x9	0.001	x24	_
x10	-	x25	0.150
x11	_	x26	_
x12	-		

b) How many variables are selected in this model? Write down the corresponding model equation.

27 x 1 sp	arse Matrix of class "dgCMatrix"	x13	_
	1	x14	_
(Intercept	t) 0.600	x15	0.039
x 1	-	x16	_
x2	-	x17	0.008
x3	-	x18	_
x4	-0.040	x19	
x5		x20	0.112
x6	-	x21	-
x7	-	x22	-0.316
x8	0.103	x23	-
x9	0.001	x24	_
x10	-	x25	0.150
x11	-	x26	-
x12			

Only keep the variables that have nonzero coefficients

b) How many variables are selected in this model? Write down the corresponding model equation.

$$Y = 0.600 - 0.040x_4 + 0.103x_8 + 0.001x_9 + 0.039x_{15} + 0.008x_{17} + 0.112x_{20} - 0.316x_{22} + 0.150x_{25} + E, E \sim N(0, \sigma^2)$$

c) Assume now that we choose λ = 0.05 (right dotted line in left plot). Which variables remain in the model in this case?

27 x 1 spars	e Matrix of class "dgCMatrix"	x13 x14	
(Intercept)	0.600	x15	0.039
x1	-	x16	_
x2	-	x17	0.008
x3	-	x18	-
x4	-0.040	x19	-
x5	-	x20	0.112
x6	-	x21	-
x7	-	x22	-0.316
x8	0.103	x23	-
x9	0.001	x24	-
x10	-	x25	0.150
x11	-	x26	-
x12	-		

What do we know?

 Values with coefficient 0 with a bigger lambda won't suddenly reappear with a smaller lambda, so we know from b) that only x4, x8, x9, x15, x17, x20, x22 or x25 can still be in the model

- X4, X8, X22
- X4, X20
- X14, X22, X25
- X15, X17, X22
- X22, X25

What do we know?

 Values with coefficient 0 with a bigger lambda won't suddenly reappear with a smaller lambda, so we know from b) that only x4, x8, x9, x15, x17, x20, x22 or x25 can still be in the model

- X4, X8, X22
- X4, X20
- X14, X22, X25
- X15, X17, X22
- X22, X25

c) Assume now that we choose λ = 0.05 (right dotted line in left plot). Which variables remain in the model in this case?

27 x 1 spars	e Matrix of class "dgCMatrix	" x13	
	1	x14	-
(Intercept)	0.600	x15	0.039
x1	-	x16	_
x2	-	x17	0.008
x3	-	x18	-
x4	-0.040	x19	_
x5	-	x20	0.112
x6	-	x21	-
x7	-	x22	-0.316
x8	0.103	x23	-
x9	0.001	x24	-
x10	-	x25	0.150
x11	-	x26	-
x12	_		

0.039

0.008

0.112

-0.316

0.150

the model in this case? 23 16 27 x 1 sparse Matrix of class "dgCMatrix" x13x14W) (Intercept) 0.600 x150.039 x16 0.008 x17x3x18-0.040x19Coefficients -0.5 0.0 0.112x20x21-0.316x220 103 x230 001 x240.150 x25x10 x11 x26x12 $Y = \beta_0 + \beta_1 x^2 + \beta_2 x^2 + E$, $E \sim N(0, \sigma^2)$

Conclusion (**)

- In this exercise, the point is not to find the correct model but to "play" with LASSO
- LASSO is great for viewing the dynamic of the coefficients of the variable
- Hard to tell the exact values for regularization parameter and path just by looking....

Questions?

From the lecture (slide 161)

K-fold vs Leave-one-out cross validation

K-fold

- Split the dataset in k subsets
- Remove one subset and fit the model on the remaining subsets
- Test the model on the set you put aside
- Repeat for each subset

Leave-one-out

- Remove one data point (from response vector and model matrix)
- Fit the model on the remaining data points
- Test the model on the data point you removed
- Repeat for each data point

K-fold vs Leave-one-out cross validation

K-fold

- Split the dataset in k subsets
- Remove one subset and fit the model on the remaining subsets
- Test the model on the set you put aside
- Repeat for each subset
- → Better for big datasets

Leave-one-out

- Remove one data point (from response vector and model matrix)
- Fit the model on the remaining data points
- Test the model on the data point you removed
- Repeat for each data point

Why does the AIC approach not work for ridge and LASSO regression?

- Ridge regression does not perform variable selection.
- LASSO is nowadays often used for high-dimensional data (n = p, or even p > n): e.g., with genetic data. AIC only works for n >> p

→ That's why we use cross-validation