Year 3 Chemistry Supplementary Exercise

Acids and Bases

There are four possible answers, **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in the brackets provided.

1 The pH of an aqueous solution of hydrochloric acid is 2.

What will be the pH of the acid after the addition of 10 g of sodium chloride?

- **A** 1
- **B** 2
- **C** 7
- **D** 9
- 2 A 25 cm³ sample of dilute sulfuric acid contains 0.025 moles of the acid.

What is the hydrogen ion concentration in the solution?

- A 0.25 mol/dm³
- **B** 0.50 mol/dm³
- C 1.00 mol/dm³
- $\mathbf{D} = 2.00 \, \mathrm{mol/dm^3} \tag{}$
- 3 The following equations represent reactions of dilute sulfuric acid.

Which reaction is not 'typical' of a dilute acid?

A
$$2KOH(aq) + H_2SO_4(aq) \rightarrow K_2SO_4(aq) + 2H_2O(l)$$

B
$$CuO(s) + H_2SO_4(aq) \rightarrow CuSO_4(aq) + H_2O(l)$$

C
$$Pb(NO_3)_2(aq) + H_2SO_4(aq) \rightarrow PbSO_4(s) + 2HNO_3(aq)$$

In an experiment 5 cm³ of 1.0 mol/dm³ sodium hydroxide are gradually added to 10 cm³ of 1.0 mol/dm³ hydrochloric acid containing methyl orange.

Which change occurs in the mixture?

- A The concentration of the H⁺ ions increases.
- B The methyl orange changes colour.
- C More water molecules are formed.
- **D** A precipitate is formed.
- 5 All ammonium salts on heating with sodium hydroxide produce ammonia gas.

From which ammonium salt can the greatest mass of ammonia be obtained?

- A 0.5 mol (NH₄)₃PO₄
- B 0.5 mol (NH₄)₂SO₄
- C 1.0 mol NH₄Cl
- D 1.0 mol NH₄NO₃
- When aqueous sodium hydroxide was added to aqueous lead(II) nitrate, a white precipitate formed. The precipitate dissolved when excess aqueous sodium hydroxide was added.

Which statement is **not** correct?

- A Aqueous lead(II) nitrate contains Pb²⁺ and NO³⁻ ions.
- **B** Aqueous sodium hydroxide has a pH above 7.
- **C** The ionic equation for the formation of the precipitate is $Pb^{2+}(aq) + 2OH^{-}(aq) \rightarrow Pb(OH)_{2}(s)$.
- **D** The precipitate dissolved because an acid-base reaction occurred.

- (a) Explain why sodium dihydrogen phosphate is both an 'acid' and a 'salt'.
- (b) Sodium dihydrogen phosphate can be made by reacting sodium hydroxide with phosphoric acid, H₃PO₄.

[2]

- (i) Write an equation for the formation of sodium dihydrogen phosphate.
- (ii) Suggest the formula of two other salts formed from sodium hydroxide and phosphoric acid. [3]
- (c) The table shows information about other acidic compounds.

name	pH of a 0.5 mol/dm ³ solution	
sodium dihydrogen phosphate	4.5	increasing acid strength
ethanoic acid	3.8	
sulfuric acid	1.0	

- (i) Explain why sulfuric acid behaves as a strong acid but ethanoic acid behaves as a weak acid.
- (ii) Describe an experiment, other than measuring pH, that you could carry out to show that sulfuric acid is a strong acid but ethanoic acid is a weak acid.

State what measurements you would make and what results you would expect. [5]

		$2K(s) + 2H_2O(l) \rightarrow 2K^+(aq) + 2OH^-(aq) + H_2(g)$	
	Des	scribe what you would see when potassium reacts with water.	
		[2]	
(c)) A sample of 0.195 g of potassium was added to $500\mathrm{cm^3}$ of cold water. When the reaction was finished, $100\mathrm{cm^3}$ of 0.100 mol/dm³ hydrochloric acid was added to form solution \mathbf{X} .		
	(i)	Calculate the number of moles of hydroxide ions formed when the potassium was added to water.	
	(ii)	Calculate the number of moles of hydrogen ions in 100 cm ³ of 0.100 mol/dm ³ hydrochloric acid.	
	(iii)	Give an ionic equation to represent the neutralisation reaction.	
	(iv)	Suggest a pH value for solution X . Explain your answer.	
		[4]	

(b) Potassium reacts with water as shown in the equation.