MDL ASSIGNMENT - 2

Name - Varun Gupta Roll No - 2023101108

Task and Task 2 are at the end of the report.

Task 3

The following table shows the value for bias, variance and MSE for different types of polynomial equation

```
Bias-Variance Trade-off Metrics:
                               Variance
   Degree
            2.5705752217 | 0.0719870009
                                          2.6425622227
            2.5336615747
                           0.1204423401
                                          2.6541039148
            2.0149890221
                           0.2003840653
                                          2.2153730874
            1.7492114984 | 0.2822000902 | 2.0314115886
            1.6255842674 | 0.4992947499 | 2.1248790173
            1.6229782024 | 0.6833792933 | 2.3063574957
                           0.9074129359 | 2.6203453949
            1.7129324590
            2.4828464050
                           2.0154446887 | 4.4982910937
            4.5432052556
                                          6.4704377476
                           1.9272324919
            5.8334658868
                           3.0792576905
                                          8.9127235773
```

Bias emerges when a complex real-world problem is approximated using a simpler model. As the polynomial degree increases, enhancing the model's complexity, bias generally decreases since higher-degree polynomials can better capture the training data's nuances. However, a slight increase in bias from degree 7 to 8 suggests potential overfitting.

Variance measures how much a model's predictions fluctuate for a given data point. As the polynomial degree increases, variance typically rises due to the model's sensitivity to minor variations in the training data. Interestingly, a decrease in variance from degree 9 to 10 indicates an improvement in the model's ability to generalize to unseen data.

In summary, the bias-variance tradeoff highlights that increasing model complexity reduces bias but raises variance, and vice versa. Achieving the right balance is crucial to prevent both underfitting and overfitting.

Task 4

Irreducible Error: The irreducible error remains constant across different polynomial degrees. This stability is expected because the irreducible error reflects the inherent noise or randomness in the data, which no model can eliminate. Regardless of changes in model complexity, as indicated by the polynomial degree, the irreducible error remains unaffected. It is an intrinsic property of the data, persistent even when the modeling approach is adjusted.

In conclusion, the irreducible error stays unchanged despite variations in the model, underscoring its nature as inherent noise that cannot be reduced by altering the model's complexity.

Task 5

Underfitting occurs when the model is too simplistic to capture the complexity of the data, resulting in high Bias² and Variance. This is typically seen in lower polynomial degrees (e.g., 1, 2, 3).

Overfitting occurs when the model closely fits the training data but exhibits high variability in predictions, leading to low Bias² and high Variance. This is often observed in higher polynomial degrees (e.g., 8, 9, 10).

The Bias²-Variance plot is useful for identifying the optimal model complexity, which strikes a balance between bias and variance, minimizing errors and providing the best fit for the dataset.

Therefore, it is essential to find an optimal degree where the model fits the data appropriately, avoiding both overfitting and underfitting. An iterative approach should be applied to determine the degree that best suits your dataset.

Task 6

Comparison of Regularization Techniques

Analysis of Regularization Impact

1. Polynomial Regression without Regularization

 High-degree polynomials (d=10) lead to overfitting by capturing noise in the training data, resulting in poor test data performance and high MSE.

2. Ridge Regression (L2 Regularization)

- Ridge reduces coefficient magnitudes, stabilizing predictions and improving generalization over unregularized models.
- The performance depends on α:
 - Low α: Similar to an unregularized model.
 - High α: Simpler model with more regularization.
 - Optimal α balances bias and variance.

3. Lasso Regression (L1 Regularization)

- Lasso performs feature selection by forcing some coefficients to zero, resulting in a sparser model.
- α controls sparsity:
 - Higher α: More coefficients become zero.
 - Lower α: Closer to unregularized model.

4. Comparative Analysis

- Model Complexity: Unregularized is most complex; Ridge retains all features; Lasso eliminates irrelevant features.
- **Generalization**: Both Ridge and Lasso improve test set performance, offering better stability and robustness.
- Practical Implications:
 - Use Ridge when all features matter.
 - Use Lasso for feature selection.
 - Select α through cross-validation.

For most cases, it is recommended to start with Ridge regression, as it stabilizes predictions and improves generalization. Cross-validation should be used to find the optimal value of α , which balances bias and variance for the best model performance. If feature selection is a priority, Lasso regression is ideal, as it reduces the model complexity by forcing some coefficients to zero. It is crucial to monitor both training and test errors to assess the model's generalization ability and prevent overfitting. In conclusion, finding the right balance between model complexity and performance through regularization is key to achieving optimal generalization and avoiding both underfitting and overfitting.

	Page No. Date
	MDL Assignment
	Name - Varin Gupta
	Roll No - 2023101108
	NOLITIO 202310110 d
	Task 1: -> 6.
	THOIR SECTION AND A SECTION AN
(a)	Gradient descent is an iterative optimization
	algorithm used to minimize & function by adjusting
	its parameters. In case of simple linear regression
14 6 106	with one dep & one indep variable it minimize
	the cost function by finding more b.
	y = m c + b
	4 Intercept
	Dependendent) Slope Independent
	Redicted Veter J.C. x Variable of a world
	J 6
(Let y be the predicted Value 2 y be the actual
	rative sit $\hat{y} = mx + b$ and $(\hat{y} - y)$ is a measure of the error
1,00	After this gradie Cost function of $J(m,b) = \frac{1}{2} \frac{2(9i - (mxi + b))^2}{n^{i-1}}$
	Cost function o
	$J(m,b) = 1 \geq (3i - (mxi+b))^2$
11	and the second of the second o
	ઉ પ્રા
	where n is the number of Data Points
	After th Now Gradient of Cost is calculated
	with each coefficient.

Gradients one Partial derivatives of the cost function with respect to m and b. $= -2 \sum_{i=1}^{3} Ci Cyi - \hat{y}_{i}^{2}$ $= -2 \sum_{i=1}^{3} (yi - \hat{y}_{i}^{2})$ 96 Now initially randomly assign values to m 2b and using 'a' called as the learning rate, new values of m 2b are calculated win following way -> mnew = moid - x 2] Now the process is repeated until the change in meb becomes negligible + Said to Converged The final m 2 b grave rep by matinal 2 b final (b) For Multivariate regression model the equation is: $y = b + \sum_{i=1}^{n} w_i x_i$ Now the Error function becomes,

 $E = \frac{1}{m} \sum_{i=1}^{\infty} (y_i^2 - (b + \sum_{i=1}^{\infty} w_i) \propto (i))^2$ where m is the number of Pata points and xij is the ith input for the ith oc varioble Now we find the partial derivatives of the error function curt b 2 w? Hile \$1,2,-1-03: $Db = -2 \qquad (yi - (b + \sum wixij))$ $m \qquad i=1$ $Dwx = -2 \qquad xik \qquad (yi - (b + \sum wixij))$ $m \qquad i=1$ Using these partial derivative equations we will find out the next values of our slope and bias as follows: Wi = wi - LXDwi b = b - LXDb We repeat this iteratively until own error function is very small or ideally O. The value of wire to that are left with now will be the optimon values.

Jask 2 % -Assumption: 52 = 0 (No Irreducible & Error) Given: -> x:[-3,-1,0,2,3,4]y : [10, 2, 3, 8, 18, 30]

A

Writing Everything in Vector format True Values Models Given: > $\frac{5}{100} = x^2 + x + 1$ f2(x) = 2x2+2x+2 $S_3(x) = x^2 + 2x + 2$ Mow Calculating Predicted Values; $\mathcal{L}_{1}(x) = [x, y, y, y, z]$ $f_{2}(x) = [14,2,2,14,26,42]$ $f_3(x) = [5,1,2,10,17,26]$ $E: [\widehat{3}: (x)] = \underbrace{A} = [\widehat{3}: (x) + \widehat{3}: (x)]$ = 1 [26,4,5,31,56,89] Bias = E([f(x)] - f(x))+ Using Bias for the jth datapoint

14.89, 0.22, 0.22, 8.22, 29.56, 80.22] $MSE = \frac{1}{3} \left(ym - Jm(x_j) \right)^2$ $= \frac{1}{3^2} \left[\frac{3^2}{1^2}, \frac{1^2}{2^2}, \frac{1^2}{1^2}, \frac{5^2}{9^2} \right] + \left[\frac{9^2}{1^2}, \frac{0^2}{1^2}, \frac{2^2}{1^2}, \frac{3^2}{1^2} \right]$ + [52 12 12 22 12 N2] = 1 9+16+25, 1+0+1, 4+1+1, 25+36+4, 25+644), 81+144+16 = 1 50,2,6,41,90,241] = [16.66, 6.66, 2, 13.66, 30, 80.33] Now, Van + Bias2 - [14.388 , 0.22 , 0.22 8.22, 29.56, 80.22] +1.78 +0.44 ,+1.78 +5.44 ,+0.44,+0.11 $= [16.66, 0.66, 2, 13.66, 30, 80.\overline{3}]$ = ØMSE Henry Verified