BIOINFORMATICS Databases

Mark Gerstein, Yale University bioinfo.mbb.yale.edu/mbb452a

Contents: Databases

- Structuring Information in Tables
- Keys and Joins
- Normalization
- Complex RDB encoding
- Indexes and Optimization
- Forms and Reports

<u>Unstructured</u> <u>Data</u>

This type of "membership" analysis has been performed previously in terms of the occurrence of sequence motifs, families, functions, and biochemical pathways. Starting from the most basic units, genomes have been compared in terms of the relative frequencies of short oligonucleotide and oligopeptide "words" (Blaisdell et al., 1996; Karlin & Burge, 1995; Karlin et al., 1992; Karlin et al., 1996). The degree of gene duplication in a number of genomes has been ascertained (Brenner et al., 1995; Koonin et al., 1996b; Riley & Labedan, 1997; Wolfe & Shields, 1997; Gerstein, 1997; Tamames et al., 1997). Other analyses have looked at how many highly conserved sequence families in one organism are present in another (Green et al., 1993; Koonin et al., 1995; Tatusov et al., 1997; Ouzounis et al., 1995a,b; Clayton et al., 1997). Finally, if sequences can be related to specific functions and pathways, one can see whether homologous sequences in two organisms truly have the same role (ortholog vs. paralog) and whether particular pathways are present or absent in different organisms (Karp et al., 1996a; Karp et al., 1996b; Koonin et al., 1996a; Mushegian & Koonin, 1996; Tatusov et al., 1996, 1997). This work has yielded many interesting conclusions in terms of pathways that are modified or absent in certain organisms. For instance, the essential citric acid cycle is found to be highly modified in H. influenzae (Fleischmann et al.,

Semi-Structured Data

REMARK	8	HET GROUP TRIVIAL NAME: FLAVIN ADENINE DINUCLEOTIDE (FAD)	1FNB	79
REMARK	8	CAS REGISTRY NUMBER: 146-14-5	1FNB	80
REMARK	8	SEQUENCE NUMBER: 315	1FNB	81
REMARK	8	NUMBER OF ATOMS IN GROUP: 53	1FNB	82
REMARK	8		1FNB	83
REMARK	8	HET GROUP TRIVIAL NAME: PHOSPHATE	1FNB	84
REMARK	8	SEQUENCE NUMBER: 316	1FNB	85
REMARK	8	NUMBER OF ATOMS IN GROUP: 5	1FNB	86
REMARK	8		1FNB	87
REMARK	8	HET GROUP TRIVIAL NAME: SULFATE	1FNB	88
REMARK	8	SEQUENCE NUMBER: 317	1FNB	89
REMARK	8	NUMBER OF ATOMS IN GROUP: 5	1FNB	90
REMARK	8		1FNB	91
REMARK	8	HET GROUP TRIVIAL NAME: K2 PT(CN)4	1FNB	92
REMARK	8	CHARGE: 2- (PT(CN)4)	1FNB	93
REMARK	8	SEQUENCE NUMBER: PT1 - PT7	1FNB	94
REMARK	8	NUMBER OF ATOMS IN GROUP: 9	1FNB	95
REMARK	8	ADDITIONAL COMMENTS: BINDING SITES USED IN MIR PHASING	1FNB	96
REMARK	8		1FNB	97
REMARK	8	HEAVY ATOM PARAMETERS ARE AS FOLLOWS:	1FNB	98
REMARK	8	PT PT 1 11.832 -8.309 27.027 0.68 33.00	1FNB	99
REMARK	8	PT PT 2 13.996 -2.135 13.212 0.42 40.00	1FNB	100
REMARK	8	PT PT 3 33.293 18.752 27.229 0.32 42.00	1FNB	101
REMARK	8	PT PT 4 19.961 -15.348 -10.328 0.23 28.00	1FNB	102
REMARK	8	PT PT 5 8.312 14.713 35.679 0.26 31.00	1FNB	103
REMARK	8	PT PT 6 27.594 -7.790 23.540 0.14 35.00	1FNB	104
REMARK	8	PT PT 7 15.917 -9.001 12.608 0.30 50.00	1FNB	105
REMARK	8		1FNB	106
REMARK	8	HET GROUP TRIVIAL NAME: URANYL NITRATE (UO2)	1FNB	107
REMARK	8	EMPIRICAL FORMULA: UO2 (NO3)2	1FNB	108
REMARK	8	CHARGE: 2-	1FNB	109
REMARK	8	SEQUENCE NUMBER: UR1 - UR13	1FNB	110
REMARK	8	NUMBER OF ATOMS IN GROUP: 3	1FNB	111
REMARK	8	ADDITIONAL COMMENTS: BINDING SITES USED IN MIR PHASING	1FNB	112
REMARK	8		1FNB	113
REMARK	8	HEAVY ATOM PARAMETERS ARE AS FOLLOWS:	1FNB	114
DEMARK	Ω	II IIP 1 8 513 16 214 36 081 0 49 27 00	1 FNB	115

Structured Data

gid_	TrgStrt	TrgStop	did
HI0299	119	135	d1931
HI0572	180	240	dlaba
HI0989	56	125	dlaco_1
н10988	106	458	dlaco_2
HI0154	2	76	dlacp
HI1633	2	432	dladea_
HI0349	1	183	dlaky
HI1309	35	52	d1alo_3
HI0589	8	25	d1alo_3
HI1358	239	444	dlamg_2
HI1358	218	410	dlamy_2
HI0460	20	24	dlans
НІ1386	139	147	dlans
HI0421	11	14	dlans
HI0361	285	295	dlans
HI0835	100	106	dlans

did_	fids
d2rs51_	1.002.007
dlimr	1.010.002
dlpyib1	1.007.030
d1dxtd_	1.001.001
d1811	1.004.002
d1vmoa_	1.002.044
d2gsq_1	1.001.031
d1etb2_	1.002.003
d1guha1	1.001.031
d1hrc	1.001.003
d1501c_	1.004.002
d1dmf	1.007.035
d1119	1.004.002
dlyrnc_	1.010.002
dlapld_	1.001.004
d1ndab2	1.003.004
d2rmai_	1.002.036
_	

fid_	bestrep N_minsp	N_scop	objname
1.001.001	d1flp 8	340	Globin-like
1.001.002	d1hdj 4	33	Long alpha-hairpin
1.001.003	d1ctj9	78	Cytochrome c
1.001.004	dlenh 18	76	DNA-binding 3-helical bundle
1.001.005	d1dtr_2 1	3	Diphtheria toxin repressor (DtxR) dimeriz
1.001.006	d1tns 1	2	Mu transposase, DNA-binding domain
1.001.007	d2spca_ 1	2	Spectrin repeat unit
1.001.008	d1bdd 1	4	Immunoglobulin-binding protein A modules
1.001.009	d1bal 1	5	Peripheral subunit-binding domain of 2-ox
1.001.010	d2erl 3	5	Protozoan pheromone proteins

Turn the Survey into a Table (I)

0	Person Number	5	1	20	8	13	22	9	21	7	25	11
1	First-Name	john	jason	josh	jerny	jessie	jennfer	jil	mark	martin	nurrey	mel
Б	Major Field?	biophysics	MB&B	MB&B	Molecular Biophysics and Biochemist ry	mbb	mb&b	mbb	Molecular Biophysics &Biochemi stry	MB&B	мав	MB&B
	Are you cambining this half-course module with another one?	У	y	У	n	°ń.	У	n	n	n	'n	n
1B	If so, which one?	macromole cular crystallogr aphy	Nucleic Nucleic	not decided yet	n		macromole cular crystallogr aphy	NA		N/A		T 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7.5	Comment on if taking for credit											
	Are there specific topics that you want to cover? (use words above)		BLAST searching, Dynamic Programmi ng	jaining	groel, a recursive descent parser, hashing function, poisson-	linkage and sib pair analysis, experiment altertiary structurede bermination		none	;	chemokine s	robotics	neural nets
58.5	Comment on if aversubscribed				no because I		n (I will not be here)					
	Status	G	G	G	U	U	U	0	U	U	G	U
7	Are you taking this for credit?	У	У	У	У	У	У	10	У	У	У	У
17	Are you combining this half-course module with another one?	У	У	У		n	У	n	-	n	n.	- 11
16	Do you think a biginformatics course should be offered again?	Y	У	У	У	У	У	Y	У	У	У	У
58	If course is oversubscribed this year, would you want to take it next year?	n		У			n		У	Y	В	У
9	Is time change to Mon. & Wed. 8:86-10:20 & NOT Fri. OK?	Ā	У	У	У	У	У	Y	¥	У		У
В	Is time change to Mon. & Wed. 8:30-10:45 & NOT Fri. OK?	Y	У	У	У	n	У	Y	У	n	У	У
57	Is time change to Mon. & Wed. 9:20-10:35 & NOT Fri. CIK?	У		У	У	У	У	¥	У	n	У	У
140	Can you program in peri?	n	У	15	- and		- 10		v	- 10	- 10	- n

Unique Identifier for Person?

Turn the Survey into a Table (II)

bioinfo.mbb.yale.edu

ale,

>

999,

 $\overline{}$

stein,

Ger

Mark

(0)

/

1999, Yale, bioinfo.mbb.yale.edu (c) Mark Gerstein,

Turn the Survey into a Table (III)

- Dependencies between Values (dates)
- Unstructured Text

48 Familianty with 'What GroEL does'	3.	3	-0	0	36	2	0.1	D	18	2	- 0
49 Familiarity with 'A worm is a metazoa'	1	3	0	3	1.	2	0	D	0	2	- 1
50 Familiarity with 'E. coli is gram negative'	- 1	2	1	3	2	2	1	3	1	2	1
51 Familiarity with "What chemokines are"	3	2	0	3	3	1	.0	0	0	2	0
Familianty with 'Joining together two database 52 tables'	0	2	0	2	1	2,5	0	0	0	1.	0
54 Favorite Fruit (response used for database class)	organe	orange	tangerine	pear	orange	mango	banana	watermelo n	Havi	honeymelo n	nectarine
Favorite Color (response used for database 55 class)	G	G	a	0	В	R	В	8	В	В	W
56 Any other random thoughts			I don't lanow know if anyone wants to lanow that I amreally hungry while I am writing this text.	Monday because I didn't know I would actually have the time slot free for this class. I hope that's	inthe MB&B major, I will not get the		попе	p	nope	music	3
61 day	Mon	Mon	Thu	Tue	Wed	Fri	Tue	Fri	Tue	Fri	Tue
62 month	Jan	Jan	Jan	Jan	Jan	Jan	Jan	Jan	Jan	Jan	Jan
63 date	12	12	15	13	14	16	13	16	13	16	13
64 hhmmss	13:43.18	11:14:10	21:00:41	13:15:19	14:20:28	1:08:01	15:16:25	1:07:59	11:08:16	14:49:31	16:37:24
85 year	1998	1998	1998	1998	1998	1998	1998	1998	199B	1998	1998

1999, Yale, bioinfo.mbb.yale.edu (c) Mark Gerstein,

Statistics are only Possible on Standarized Values

Familiarity with 'DNA, RNA'	0-3	3.0	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Familiarity with 'alpha-helix'	0-3	2.9	3	3	3	3	3		2	3	3	3	3	3	3	3
Familiarity with 'Cell nucleus'	0-3	2.8	3	3	3	3	2	2	3	2	3	3	3	3	3	3
Familiarity with 'ATP, NAD'	0-3	2.6	3	3	3	2	2	2		2	3	3	3	3	3	3
Familiarity with 'Genetic code'	0-3	2.6	3	3	3	3	3	2	3	2	3	3	3	3	3	3
Familiarity with 'a Bell-shaped Distribution (as of test scores)'	0-3	2.6	3	3	3	2	2	2	2	3	2	3	3	3	3	3
Familiarity with 'Calculation of Standard Deviation'	0-3	2.4	2	3	2	2	1	2	2	3	1	2	3	3	3	3
Familiarity with 'Proteins are tightly packed'	0-3	2.3	2	2	3	3	3	2		2	3	3	2	3	3	2
Familiarity with 'E. coli is gram negative'	0-3	2.2	2	1	3	2	2	2	3	1	3	3	3	2	2	3
Familiarity with 'Force as the Derivative (grad) of Energy'	0-3	2.0	2	3	2	2	3	2	2	3		2	2	3	3	2
Familiarity with 'Protein families'	0-3	1.9	3	2	3	2	2	2	1	1	1	3	2	3	2	2
Familiarity with 'What GroEL does'	0-3	1.9	3	3	3	3	3	2	3		3	3	3	1	2	2
Familiarity with 'A worm is a metazoa'	0-3	1.8	3	1	2	3	2	2	3		2	3	3	1	2	2
Familiarity with 'What chemokines are'	0-3	1.8	2	3	1	2	2	2		1	2	3	3	3	2	3
Familiarity with 'BLAST search'	0-3	1.4	3	1	1	1	2	1	2		1	2	2	2	2	2
Familiarity with 'A P-value of .01'	0-3	1.3	2	3	1	2	2	1		4		1	2	3	2	1
Familiarity with '3D rotations, translations'	0-3	1.2		2	2	1	1	4	9	3	1	2	1	1	2	2
Familiarity with 'Poisson-Boltzman Equation'	0-3	1.1	2	2	2	1	2	2		1		2	2	1	2	
Familiarity with 'Protein alignment algorithms'	0-3	1.0	2		1	1	2		2		201	1	2	1	2	2
Familiarity with 'Simulated annealing'	0-3	0.9		1	2	2	1	1	1		1.0	1	1	1	2	2
Familiarity with 'An Extreme Value Distribution'	0-3	0.7		3	1	17.		1	1	1	780	1	2	3		
Familiarity with 'Joining together two database tables'	0-3	0.7			1	2		1	8	To!	[a]	0	1	1	2	
Familiarity with 'Artificial Intelligence'	0-3	0.7	1	1			1	1	0_	(4)		2	1		- 8	
Familiarity with 'Sequence homology twilight zone'	0-3	0.6	2		2			2	2		12	1		2		
Familiarity with 'Decision trees'	0-3	0.6	1			1	8,-	243		1		1		1	- 3	-8
Familiarity with 'Constraint Satisfaction'	0-3	0.6	1	1		1			2.10	.545	00KC - 10	1	1	1	2	
Familiarity with 'Genetic algorithms'	0-3	0.5	1			Ä			1			1	2	2	1	2
Familiarity with 'Robotics'	0-3	0.5	1			1	1	1		3	5-9-5	1	1		1	- 1
Familiarity with 'Dynamic Programming'	0-3	0.5	1	1				1		0.00		1			1	1145
Familiarity with 'Bayesian probability'	0-3	0.4	1	1	1	13		1		4	34		1	1	1	2
Familiarity with 'Neural nets'	0-3	0.4	1		1	· ·		34	3	1	4	3 1.	2		1	1
Familiarity with 'A Recursive Descent Parser'	0-3	0.1		1					2					1990		
Familiarity with 'A Hashing Function'	0-3	2.7						1						1		
Familiarity with 'Belief nets'	0-3	0.0		- 6	13	1	8.	8				\$ \$_	j., j	0	- 0	-23
		100000								151401						-
Average		1.4	1.6	1.6	1.5	1.4	1.3	1.2	1.2	1.0	1.0	1.7	1.8	1.7	1.7	1.4

Relational Databases

- Databases make program data persistent
- RDB's turn formless data in a number of structured tables
 - Ways of joining together tables to give various views of the data

Adaptor: An Introduction

171

Figure 11-1. Adaptor modules

<u>SQL</u>

- SIMPLE Language for Building and Querying Tables
- CREATE a table
- INSERT values into it
- SELECT various entries from it (tuples, rows)
- UPDATE the values
- Example: How Many Globin Folds are there in E. coli versus Yeast?

matches table

gid_	TrgStrt	TrgStop	did	score
HI0299	119	135	d1931	3.1
HI0572	180	240	d1aba	0.0032
HI0989	56	125	dlaco_1	0.0049
HI0988	106	458	dlaco_2	4.4e-14
HI0154	2	76	dlacp	1.2e-23
HI1633	2	432	dladea_	0
HI0349	1	183	dlaky	7.6e-36
HI1309	35	52	d1alo_3	1.1
HI0589	8	25	d1alo_3	1.8
HI1358	239	444	dlamg_2	0.002
HI1358	218	410	dlamy_2	0.00037
HI0460	20	24	dlans	1.8
HI1386	139	147	dlans	3.3
HI0421	11	14	dlans	6.4
HI0361	285	295	dlans	8.2
HI0835	100	106	dlans	9.7

```
create table
matches(
 gid char255,
    # Genome_ID
 TrgStrt int,
    # Start of
    # Match in Gene
 TrgStop int,
    # End of Match
    # in Gene
 did char255,
      ID Matching
    # Structure
 score real
    # e-value
    # of Match
```

matches table 2

gid_	TrgStrt	TrgStop	did	score
HI0299	119	135	d1931	3.1
HI0572	180	240	d1aba	0.0032
HI0989	56	125	dlaco_1	0.0049
HI0988	106	458	dlaco_2	4.4e-14
HI0154	2	76	dlacp	1.2e-23
HI1633	2	432	dladea_	0
HI0349	1	183	dlaky	7.6e-36
HI1309	35	52	d1alo_3	1.1
HI0589	8	25	d1alo_3	1.8
HI1358	239	444	dlamg_2	0.002
HI1358	218	410	dlamy_2	0.00037
HI0460	20	24	dlans	1.8
HI1386	139	147	dlans	3.3
HI0421	11	14	dlans	6.4
HI0361	285	295	dlans	8.2
HI0835	100	106	dlans	9.7

```
insert into
matches
(gid, TrgStrt,
   TrgStop, did,
   score)
values
(HI0299, 119,
   135, d1931__,
   3.1)
```

structures table

```
did
        fid
d2rs51 1.002.007
dlimr 1.010.002
dlpyib1 1.007.030
dldxtd_ 1.001.001
d1811 1.004.002
dlvmoa_ 1.002.044
d2gsq_1 1.001.031
dletb2_ 1.002.003
dlquhal 1.001.031
dlhrc__ 1.001.003
d1501c_ 1.004.002
dldmf__ 1.007.035
d1119 1.004.002
dlyrnc_ 1.010.002
dlapld 1.001.004
dlndab2 1.003.004
d2rmai_ 1.002.036
```

```
create table
structures(
  did char255,
     # ID Matching
     # Structure
  fid char255,
     # ID of fold that
     # structure has
)
```

10 K domain structure IDs (did) vs. 300 fold IDs (fid)

folds table

```
create table
folds(
  fid char255,
    # fold ID
  bestrep char255,
    N_hlx int,
    N_beta int,
    # number of helices & sheets
  name char255
    # name of fold
)
```

E : a	bost NI bl	NT boto	
fid_	bestrep N_hlx	N_beta	name
1.001.001	d1flp 8	0	Globin-like
1.001.002	d1hdj 4	0	Long alpha-hairpin
1.001.003	d1ctj 9	0	Cytochrome c
1.001.004	dlenh 2	0	DNA-binding 3-helical bundle
1.001.005	d1dtr_2 1	3	Diphtheria toxin repressor (DtxR) dimeriz
1.001.006	d1tns 1	2	Mu transposase, DNA-binding domain
1.001.007	d2spca_ 0	2	Spectrin repeat unit
1.001.008	d1bdd0	4	Immunoglobulin-binding protein A modules
1.001.009	d1bal 0	5	Peripheral subunit-binding domain of 2-ox
1.001.010	d2erl 3	5	Protozoan pheromone proteins

16

Match Table: Ways Structures A, B, and C can match HI Genome

Structures have a limited number of folds, which have various characteristics

bioinfo.mbb.yale.edu Yale, 1999,

Structure of a Table

- Row
 - ♦ Entity, Tuple, Instance
- Column
 - ♦ Field
 - ♦ Attribute of an Entity
 - ♦ dimension
- Key
 - Certain Attributes (or combination of attributes) can uniquely identify an object, these are keys
- NULL
 - ♦ Variant Records

	key	key				
Table	attr-a	attr-b	attr-c	attr-d	attr-e	attr-f
tuple-1	a1	b1	c1	d1	e1	f1
tuple-2	a2	b2	c2	d2	e2	f2
tuple-3	a3	b3	с3	d3	e3	f3
tuple-4	a4	b4	c4	d4	e4	f4
tuple-5	a5	b5	c5	d5	e5	f5
tuple-6	a6	b6	с6	d6		
tuple-7	a7	b7	c7	d7		f7
tuple-8	a8	b8	с8	d8	e8	f8
tuple-9	a9	b9	с9	d9	e9	f9
tuple-10	a10	b10	c10	d10		f10
tuple-11	a11	b11	c11	d11	e11	f11
tuple-12	a12	b12	c12	d12	e12	f12
tuple-13	a13	b13	c13	d13	e13	f13
tuple-14	a14	b14	c14	d14	e14	f14

What is a Key?

```
table matches(gid, TrgStrt, TrgStop, did, score)
table structures(did, fid)
table folds(fid, bestrep, N_hlx, N_beta, name)
```

```
gid -> many matches
gid,TrgStrt -> unique match (one tuple)
thus, primary key gid,TrgStrt
gid,TrgStop -> unique match as well
fid -> many did's, but did -> one fid
thus, primary key did
one-to-one between fid and name
```

1<->1 1->many many->1

SQL Select on a Single Table

	key	key				
Table	attr-a	attr-b	attr-c	attr-d	attr-e	attr-f
tuple-1	a1	b1	c1	d1	e1	f1
tuple-2	a2	b2	c2	d2	e2	f2
tuple-3	a3	b3	c3	d3	e3	f3
tuple-4	a4	b4	c4	d4	e4	f4
tuple-5	a5	b5	c5	d5	e5	f5
tuple-6	a6	b6	c6	d6		8
tuple-7	a7	b7	c7	d7		f7
tuple-8	a8	b8	c8	d8	e8	f8
tuple-9	a9	b9	с9	d9	e9	f9
tuple-10	a10	b10	c10	d10		f10
tuple-11	a11	b11	c11	d11	e11	f11
tuple-12	a12	b12	c12	d12	e12	f12
tuple-13	a13	b13	c13	d13	e13	f13
tuple-14	a14	b14	c14	d14	e14	f14

- Select {columns} from {a table}
 where {row-selection is true}
- projection of a selection
- Sort result on a attribute

SQL Select on a Single Table, Example

```
gid
        TrgStrt TrgStop did
                                   score
                        d1931
HI0299
        119
                                      3.1
                135
        180
                240
                        d1aba
                                   0.0032
HI0572
HI0989
        56
                125
                        dlaco 1
                                   0.0049
                        d1aky
HI0349
        1
                183
                                   7.6e - 36
                        dlalo 3
HI1309
                52
                                      1.1
                        d1alo 3
                                      1.8
HI0589
                25
                                    0.002
HI1358
        239
                444
                        dlamq 2
                        dldar 2
HI0016
                173
                                   2e-07
                274
HI0016
       179
                        dldar 1
                                  8.5e-06
                476
                        dldar 4
HI0016
        399
                                  0.00031
HI0460
                        dlans
                                      1.8
HI1386
       139
                147
                        d1ans
                                      3.3
HI0421
                14
                        dlans
                                      6.4
HI0361
        285
                295
                        d1ans
                                      8.2
                        d1ans
HI0835
       100
                106
                                      9.7
```

Select * from matches where gid= HI0016

```
HI0016
                173
                        dldar 2
                                   2e-07
                        dldar 1 8.5e-06
HI0016
        179
                274
HI0016 399
                476
                        dldar 4
                                  0.00031
```

 Select * from matches where gid= HI0016 and TrgStrt=179

HI0016 179 274 dldar 1 8.5e - 06

SQL Select on a Single Table, Example 2

gid_	TrgStrt	TrgStop	did	score
HI0299	119	135	d1931	3.1
HI0572	180	240	dlaba	0.0032
HI0989	56	125	dlaco_1	0.0049
HI0349	1	183	dlaky	7.6e-36
HI1309	35	52	dlalo_3	1.1
HI0589	8	25	d1alo_3	1.8
HI1358	239	444	$d1amg_2$	0.002
HI0016	1	173	d1dar_2	2e-07
HI0016	179	274	dldar_1	8.5e-06
HI0016	399	476	dldar_4	0.00031
HI0460	20	24	dlans	1.8
HI1386	139	147	dlans	3.3
HI0421	11	14	dlans	6.4
HI0361	285	295	dlans	8.2
HI0835	100	106	dlans	9.7

Select did from matches where score < 0.0001

d1aky___, d1dar_2, d1dar_1

HI0349	1	183	dlaky	7.6e-36
I0016	1	173	d1dar_2	2e-07
HI0016	179	274	d1dar_1	8.5e-06

Matches

Structures

Joins

Foreign Key

Folds

					i
gid_	TrgStrt	TrgStop	did	score	
HI0299	119	135	d1931	3.1	
HI0572	180	240	dlaba	0.0032	
HI0989	56	125	dlaco_1	0.0049	
HI0988	106	458	dlaco_2	4.4e-14	
HI0154	2	76	dlacp	1.2e-23	
ні1633	2	432	d1adea_	0	
HI0349	1	183	dlaky	7.6e-36	
HI1309	35	52	d1alo_3	1.1	
НІ0589	8	25	d1alo_3	1.8	
ні1358	239	444	dlamg_2	0.002	
HI1358	218	410	dlamy_2	0.00037	
HI0460	20	24	dlang_	1.8	
HI1386	139	147	dlans	3.3	
HI0421	11	14	dlans	6.4	
HI0361	285	295	dlans	8.2	
HI0835	100	106	dlans	9.7	
1					4

did_	fid
d2rs51_	1.002.007
dlimr	1.010.002
d1pyib1	1.007.030
d1dxtd_	1.001.001
d1811	1.004.002
d1vmoa_	1.002.044
d2gsq_1	1.001.031
d1etb2_	1.002.003
d1guha1	1.001.031
d1hrc	1.001.003
d1501c_	1.004.002
d1dmf	1.007.035
21119_	1.004.032
dlyrnc_	1.010.002
dlans	1.007.008
d2rmai_	1.002.036

fid_	bestrep N_hlx	N_beta	name
1.001.001	d1flp 8	0	Globin-like
1.001.002	d1hdj 4	0	Long alpha-hairpin
1.001.003	d1ctj 9	0	Cytochrome c
1.001.004	dlenh 2	0	DNA-binding 3-helical bundle
1.001.005	d1dtr_2 1	3	Diphtheria toxin repressor (DtxR) dimeriz
1.001.006	dltns 1	2	Mu transposase, DNA-binding domain
1.001.007	d2spca_ 0	2	Spectrin repeat unit
1.001.008	_d1bdd 0	4	Immunoglobulin-binding protein A modules
1.007.008	dlqkt 4	3	Neurotoxin III (ATX III)
1.001.010	d2erl 3	5	Protozoan pheromone proteins

SQL Select on Multiple Tables

- Select *
 from matches, structures, folds
 where
 matches.gid = HI0361
 and matches.did=structures.did
 and structures.fid = folds.fid
- Returns
 matches | structures | folds
 HI0361,285,295,d1ans____,8.2 | d1ans___,1.007.008 | 1.007.008,d1qkt___,4, 3,Neurotoxin III ...
- Select <u>score,name</u> from matches, structures, folds where gid = HI0361and matches.did=structures.did and structures.fid = folds.fid

8.2, Neurotoxin III ...

Foreign Key matches

gid_	TraStrt	TrgStop	did	score
910 <u></u> HI0299	_	135	d1931	3.1
HI0572		240	dlaba	0.0032
HI0989	56	125	dlaco_1	0.0049
HI0988		458	dlaco 2	
HI0154	2	76	dlacp	
HI1633	2	432	d1adea	0
HI0349	1	183	dlaky	7.6e-36
HI1309	35	52	d1alo 3	1.1
HI0589	8	25	d1alo_3	1.8
HI1358	239	444	dlamg_2	0.002
HI1358	218	410	dlamy_2	0.00037
HI0460	20	24	dlang	1.8
HI1386	139	147	dlans	3.3
HI0421	11	14	dlans	6.4
HI0361	285	295	dlans	8.2
HI0835	100	106	dlans	9.7

structures

did_ fid d2rs51_ 1.002.007 d1imr_ 1.010.002 d1pyib1 1.007.030 d1dxtd_ 1.001.001
dlimr 1.010.002 dlpyib1 1.007.030 dldxtd_ 1.001.001
dlpyib1 1.007.030 dldxtd_ 1.001.001
d1dxtd_ 1.001.001
_
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
d1811 1.004.002
d1vmoa_ 1.002.044
d2gsq_1 1.001.031
d1etb2_ 1.002.003
dlguhal 1.001.031
d1hrc 1.001.003
d150lc_ 1.004.002
d1dmf 1.007.035
21119 1.004.002
dlyrnc_ 1.010.002
dlans 1.007.008
d2rmai_ 1.002.036

matches.did is a (foreign) key in the structures table -- i.e. looks up exactly one structure.

Selection as Array Lookup

- Same for a fold identifier from a structure id
 - ♦ \$fid=\$structure{\$did}
 - ♦ (perl pseudo-code)
- Same for matches and folds tables, but this time arrays return multiple values and have multiple field keys
 - ♦ (\$bestrep, \$N_hlx, \$N_beta, \$name) = \$folds{\$fid}
- Joining as a double-lookup
 - \$ \$did = 1mbd___
 (\$bestrep, \$N_hlx, \$N_beta, \$name) = \$folds{ \$structures{\$did}} }
 - ♦ Select bestrep,N_hlx,N_beta,name from structures, folds where structures.fid = folds.fid and structures.did = 1mbd

SQL Select on Multiple Tables

	key	key			Ti	1		
Table 1	gid	TrgStrt	TrgStop	did		Table 2	did	fid
	Str	S.	St.	St.	8			8
tuple-1	HI001	12	200	d1mbd		tuple-i	d1lfg_1	1.007.006
tuple-2	HI002	15	231	d1hhba_	5	tuple-i	d1lfg_1	1.007.006
tuple-3	HI002	100	343	d1lfg_1		tuple-i	d1lfg_1	1.007.006
tuple-4	HI003	12	80	d1lfg_1	8	tuple-i	d1lfg_1	1.007.006
tuple-5	HI009	200	260	d1mba		tuple-i	d1lfg_1	1.007.006
tuple-6	HI023	300	450	d2ubx	8	tuple-i	d1lfg_1	1.007.006
tuple-7	HI045	2	89	d2lmg		tuple-i	d1lfg_1	1.007.006
tuple-1	HI001	12	200	d1mbd	15	tuple-ii	d1mba_	1.003.002
tuple-2	HI002	15	231	d1hhba_		tuple-ii	d1mba_	1.003.002
tuple-3	HI002	100	343	d1lfg_1	5	tuple-ii	d1mba_	1.003.002
tuple-4	HI003	12	80	d1lfg_1		tuple-ii	d1mba_	1.003.002
tuple-5	HI009	200	260	d1mba	6.6	tuple-ii	d1mba_	1.003.002
tuple-6	HI023	300	450	d2ubx		tuple-ii	d1mba_	1.003.002
tuple-7	HI045	2	89	d2lmg	8	tuple-ii	d1mba_	1.003.002

Structures

Select {columns} from {huge cross-product of tables}
 where {row-selection is true}

Matches

- ♦ cross-product T(1) x T(2) builds a huge virtual table where every row of T(1) is paired with every row of T(2). Then perform selection on this.
- Select fid from matches, structures where gid=HI009 and matches.did = structures.did

Cross Product A x B

A(1)B(1) A(1)B(2) A(1)B(3)

A(1) = Row 1 of Table A

A(2) = Row 2 of Table A

A(i) = Row i of Table A

 $A \times B =$

A(1)B(M) A(2)B(1)

A(2)B(2)

A(2)B(3)

A has N rows and C columns

B(1) = Row 1 of Table B

B(2) = Row 2 of Table B

B(i) = Row i of Table B

A x B has N x M rows and

C+K columns

A(2)B(M)

A(N)B(1)

A(N)B(2)

A(N)B(3)

A(N)B(M)

B has M rows and K columns

Figure 2.23 E-R diagram with account as a relationship set.

Korth & Silberschatz

- branch <=> matches (gid-start +++ did)
- ♦ customer <=> folds (fid +++)
- linked by account <=> structures (did fid)

Aggregate Functions-Statistics on Attributes

- Query Statistics
 - ♦ select gid, count (distinct did) from matches
 - ♦ select max(N_hlx) from folds where N_beta = 0
- How many matches to globins in the E. coli genome
- Complex Query by nesting selections
 - ♦ <u>F</u> <= select fid from folds where name contains "globin"</p>
 - \Diamond D <= select did from structures where fid in <u>F</u>
 - ♦ N <= select count(distinct gid,TrgStrt) from matches where did in <u>D</u> and score < .01</p>

Joins

```
gid
        TrgStrt TrgStop did
                                    score
HI0299
        119
                135
                         d1931
                                       3.1
                         d1aba
                                    0.0032
HI0572
        180
                 240
HI0989
        56
                125
                         dlaco_1
                                    0.0049
                         dlaco 2
HI0988
        106
                 458
                                    4.4e-14
                                    1.2e-23
                         d1acp
HI0154
        2
                 76
HI1633
                         d1adea
                                          0
        2
                 432
                         dlaky___
                                    7.6e-36
HI0349
                183
HI1309
                52
                         d1alo_3
        35
                                       1.1
HI0589
                 25
                         d1alo 3
                                       1.8
        239
                         dlamg 2
                                     0.002
HI1358
                 444
                                    0.00037
HI1358
        218
                         dlamy_2
                 410
HI0460
                                       1.8
        20
                 24
                         dlana
                147
HI1386
        139
                         dlans
                                       3.3
                                       6.4
HI0421
        11
                 14
                         d1ans
HI0361
        285
                 295
                         d1ans
                                       8.2
HI0835
                                       9.7
        100
                106
                         d1ans
```

did fid d2rs51_ 1.002.007 dlimr__ 1.010.002 dlpyib1 1.007.030 dldxtd 1.001.001 d1811 1.004.002 dlvmoa 1.002.044 d2qsq_1 1.001.031 dletb2 1.002.003 dlquhal 1.001.031 dlhrc 1.001.003 d150lc_ 1.004.002 d1dmf 1.007.035 21119 1.004.032 dlyrnc .010.002 1.007.008 d1ans 1.002.036 d2rmai

fid_	bestrep N_hlx	N_beta	name
1.001.001	d1flp 8	0	Globin-like
1.001.002	d1hdj 4	0	Long alpha-hairpin
1.001.003	d1ctj 9	0	Cytochrome c
1.001.004	dlenh 2	0	DNA-binding 3-helical bundle
1.001.005	d1dtr_2 1	3	Diphtheria toxin repressor (DtxR) dimeriz
1.001.006	dltns 1	2	Mu transposase, DNA-binding domain
1.001.007	d2spca_ 0	2	Spectrin repeat unit
1.001.008	_d1bdd 0	4	Immunoglobulin-binding protein A modules
1.007.008	d1qkt 4	3	Neurotoxin III (ATX III)
1.001.010	d2erl 3	5	Protozoan pheromone proteins

Join Gives Unnormalized Table

Joining Two or More Tables with a Select Query Gives a New, "Bigger" Table

gid_	TrgStrt	TrgStop	did	score	fid	N_hlx	N_beta	name
HI029	9 119	135	d1931	3.1	1.010.002	2 0	2	Spectrin repeat unit
HI057	2 180	240	dlaba	0.0032	1.002.045	5 1	2	Mu transposase, DNA-binding domain
HI098	9 56	125	dlaco_1	0.0049	1.001.031	. 8	0	Globin-like
HI098	8 106	458	dlaco_2	4.4e-14	1.001.031	8	0	Globin-like
HI015	4 2	76	dlacp	1.2e-23	1.001.031	8	0	Globin-like
HI163	3 2	432	dladea_	0	1.010.002	2 0	2	Spectrin repeat unit
HI034	9 1	183	dlaky	7.6e-36	1.001.031	8	0	Globin-like
HI130	9 35	52	d1alo_3	1.1	1.007.008	3 4	3	Neurotoxin III (ATX III)
HI058	9 8	25	d1alo_3	1.8	1.002.045	5 1	2	Mu transposase, DNA-binding domain
HI135	8 239	444	dlamg_2	0.002	1.004.002	2 1	3	Diphtheria toxin repressor (DtxR)
HI135	8 218	410	dlamy_2	0.00037	1.002.044	1 0	4	Immunoglobulin-binding protein A
HI046	0 20	24	dlans	1.8	1.007.008	3 4	3	Neurotoxin III (ATX III)
HI138	6 139	147	dlans	3.3	1.007.008	3 4	3	Neurotoxin III (ATX III)
HI042	1 11	14	dlans	6.4	1.007.008	3 4	3	Neurotoxin III (ATX III)
HI036	1 285	295	dlans	8.2	1.007.008	3 4	3	Neurotoxin III (ATX III)
HI083	5 100	106	dlans	9.7	1.007.008	3 4	3	Neurotoxin III (ATX III)

(c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu

What if Want to update Fold 1.007.008 to be "Neurotoxin IV"?

`

♦ Many Updates

Normalization

- So Good if Previously <u>Normalized</u> into Separate Tables
 - ♦ Eliminate Redundancy
 - ♦ Allow Consistent Updating

gid_	TrgStrt	TrgStop	did	score	fid	N_hlx	N_beta	name	Oi De
н10299	119	135	d1931	3.1	1.010.002	2 0	2	Spectrin repeat unit	-
HI0572	2 180	240	dlaba	0.0032	1.002.045	5 1	2	Mu transposase, DNA-binding domain	9
HI0989	56	125	dlaco_1	0.0049	1.001.031	L 8	0	Globin-like	7
HI0988	3 106	458	dlaco_2	4.4e-14	1.001.031	L 8	0	Globin-like	
HI0154	1 2	76	dlacp	1.2e-23	1.001.031	L 8	0	Globin-like	00
HI1633	3 2	432	d1adea_	0	1.010.002	2 0	2	Spectrin repeat unit	7
HI0349) 1	183	dlaky	7.6e-36	1.001.031	L 8	0	Globin-like	2
HI1309	35	52	d1alo_3	1.1	1.007.008	3 4	3	Neurot xin III (ATX III)	Ç
HI0589	8 (25	d1alo_3	1.8	1.002.045	5 1	2	Mu transposase, DNA-binding domain	Ú
HI1358	3 239	444	dlamg_2	0.002	1.004.002	2 1	3	Diphtheria toxir repressor (DtxR)	(
HI1358	3 218	410	dlamy_2	0.00037	1.002.044	1 0	4	Immunoglobulin-binding protein A)
HI0460	20	24	dlans	1.8	1.007.008	3 4	3	Neurotoxin III (ATX III)	5
HI1386	5 139	147	dlans	3.3	1.007.008	3 4	3	Neurotoxin III (ATX III)	Ž
HI0421	11	14	dlans	6.4	1.007.008	3 4	3	Neurotoxin III (ATX III)	(
HI0361	285	295	dlans	8.2	1.007.008	3 4	3	Neurotoxin III (ATX III)	,
HI0835	5 100	106	dlans	9.7	1.007.008	3 4	3	Neurotoxin III (ATX III)	5

Yale, bioinfo.mbb.yale.edu 1999, (c) Mark Gerstein,

Normalization Example

Un-normalized

Name	City	Area-Code	Phone-Number
Charles	NY	212	345-6789
Mark	SF	415	236-8982
Jane	NY	212	567-2345
Jeff	SF	415	435-3535
Jack	Boston	617	234-9988

Normalized

Name	City	Phone-Number
Charles	NY	345-6789
Mark	SF	236-8982
Jane	NY	567-2345
Jeff	SF	435-3535
Jack	Boston	234-9988

City Area-Code NY 212 SF 415 Boston 617

Normalized Tables

Theory of Normalization

gid_	TrgStrt	TrgStop	did	score
HI0299	119	135	d1931	3.1
HI0572	180	240	dlaba	0.0032
HI0989	56	125	dlaco_1	0.0049
HI0988	106	458	dlaco_2	4.4e-14
ні0154	2	76	dlacp	1.2e-23
HI1633	2	432	d1adea_	0
ні0349	1	183	dlaky	7.6e-36
HI1309	35	52	d1alo_3	1.1
HI0589	8	25	dlalo_3	1.8
ні1358	239	444	$d1amg_2$	0.002
HI1358	218	410	dlamy_2	0.00037
н10460	20	24	dlans	1.8
ні1386	139	147	dlans	3.3
HI0421	11	14	dlans	6.4
HI0361	285	295	dlans	8.2
н10835	100	106	dlans	9.7

did_	fid
d2rs51_	1.002.007
dlimr	1.010.002
dlpyib1	1.007.030
d1dxtd_	1.001.001
d1811	1.004.002
d1vmoa_	1.002.044
d2gsq_1	1.001.031
d1etb2_	1.002.003
d1guha1	1.001.031
d1hrc	1.001.003
d1501c_	1.004.002
d1dmf	1.007.035
d1119	1.004.002
dlyrnc_	1.010.002
dlans	1.007.008
d2rmai_	1.002.036

fid_	bestrep N_hlx	N_beta	name
1.001.001	d1flp 8	0	Globin-like
1.001.002	d1hdj 4	0	Long alpha-hairpin
1.001.003	d1ctj 9	0	Cytochrome c
1.001.004	d1enh 2	0	DNA-binding 3-helical bundle
1.001.005	d1dtr_2 1	3	Diphtheria toxin repressor (DtxR) dimeriz
1.001.006	d1tns 1	2	Mu transposase, DNA-binding domain
1.001.007	d2spca_ 0	2	Spectrin repeat unit
1.001.008	d1bdd 0	4	Immunoglobulin-binding protein A modules
1.007.008	d1qkt 4	3	Neurotoxin III (ATX III)
1.001.010	d2erl 3	5	Protozoan pheromone proteins

Query Optimization

- Get at the Data Quickly!!
- Indexes
- Hash Function Reproduce the Effect of Indexes
 - ♦ Rapidly Associate a Bucket with Each Key
- Joining 10 tables, which to do first?
 - Joining is slow so store some tables in unnormalized form
 Speed vs Memory

Indexes Speed Access

One

_	Brighton	217	Green	750
	Downtown	101	Johnson	500
*	Downtown	110	Peterson	600
*	Mianus	215	Smith	700
*	Perryridge	102	Hayes	400
*	Perryridge	201	Williams	900
*	Perryridge	218	Lyle	700
*	Redwood	222	Lindsay	700
*	Round Hill	305	Turner	350

No Index

bucket 1 Green Lindsay Smith Brighton 217 Green 750 Downtown 101 Johnson 500 bucket 2 Downtown 110 Peterson 215 Smith Mianus 700 Perryridge 102 Hayes 400 201 Williams 900 Perryridge bucket 3 **Double** Perryridge 700 218 Lyle 700 Redwood 222 Lindsay Index Round Hill 305 Turner

(c) Mark

Yale, bioinfo.mbb.yale.edu

1999,

Gerstein,

37

j e		Simple Data Types	Complex Data Types
Simple		C2 700 K35570 C	2000
Structure	Data	int: 1,2,3	struct A {pointer-list + char}
		chars: hello, text	method Am acts on A
	DB	Simple File	Object DB (OODB)
24		File withunstructured	Complex data and methods
		text	stored in a file
			Persistent data from C++ program with an "image"
			datatype and method for
	Example	Your .login file	comparing images
Relational		Relational Database	Object Relational DB
Structure	VVhat	(RDB)	(ORDB)
		*	Rows and columns contain
			complex objects and
		Rows and columns	methods are defined to
	Arrays of	contain ints and chars	handle them
	Query		
	Lang.	SQL	oql
		A query can ask for all	
		names containing first	A query can ask for all
		names stored at	images that look like one
-	Ex. Query	10PM	stored at 10PM

Object Databases

C, fortran vs. C++

Forms & reports [user views]

- Reports are the result of running a succession of selects queries on a database, joining together a number of tables, and then pasting the results together
- Forms are the same but they are editable
- Forms and Reports represent particular views of the data
 - ♦ For instance, one can be keyed on gene id listing all the structures matching a gene and the other could be keyed on structure id listing all the gene matching a given structure

Aspects of Forms: Transactions and Security

- Transactions
 - Genome Centers and United Airlines!
 - ♦ Log each entry and enable UNDO
- Security
 - ♦ Only certain users can modify certain fields

Complex Data Example: Encoding Trees in RDBs

Node	Parent	
1	0	
2	1	
3	1	
4	1	
5	4	
6	4	

Node	Name		
1	Organism		
2	Bacteria		
3	Archea		
4	Eukarya		
5	Metazoa		
6	Plants		

4

RDBs Everywhere: Internet Mail

(c) Mark Gerstein, 1999, Yale, bioinfo.mbb.yale.edu

find -ls

/etc/passwd

RDBs Everywhere: File System

INODE	SIZE PERMISSION	USER	GROUP	BYTES MMM-DD	-YEAR NAME
120462 120463 120464 120465 120466 108224 108227 108228 108229 108230 108231	1 drwxr-xr-x 1 drwxr-xr-x 514 -rw-rr- 19 -rw-rr- 514 -rw-rr- 507 -rw-rr- 19 -rw-rr- 19 -rw-rr- 106 -rw-rr- 7 -rw-rr-	10 mbg 2 mbg 1 mbg	gerstein	1024 Feb 12 1024 Jan 30 525335 Nov 10 18469 Nov 10 525372 Nov 10 518822 Nov 10 54775 Jan 30 19131 Nov 11 108345 Nov 16 108354 Jan 28 6962 Jan 30	1997 . 1997 ./hi-tbl 1996 ./hi-tbl/id_gorss.tbl 1996 ./hi-tbl/id_kytedool.tbl 1996 ./hi-tbl/id_seq.tbl 1996 ./mj-tbl/id_gorss.tbl 1997 ./mj-tbl/id_abcode.tbl 1996 ./mj-tbl/id_kytedool.tbl 1996 ./mj-tbl/word_stats.tbl.bak 1997 ./mj-tbl/word_stats.tbl 1997 ./mj-tbl/hist_seqlen.tbl
108232 91903	7 -rw-rr 1 drwxr-xr-x	1 mbg 2 mbg	gerstein gerstein	6967 Jan 30 1024 Nov 19	1997 ./mj-tbl/hist_num_H_res.tbl 1996 ./po-tbl

USER: PASSWD: **UID**: GID: COMMENT: DIR: SHELL

ftp:*:14:50:FTP User:/home/ftp:

nobody: *:99:99:Nobody: /:

mlml:cw5ZrAmNBAxvU:106:100:Michael Levitt (linux):/u1/mlml:/bin/tcsh

dabushne:ErR3hu4q0t07Y:108:100:Dave:/ul/dabushne:/bin/tcsh

mbg:V9CPWXAG.mo3E:5514:165:Mark Gerstein,432A, BASS,2-6105,:/u0/mbg:/bin/tcsh

mbg10:V9CPWXAG.mo3E:5516:165:alternate account for mbg:/home/mbg10:/bin/tcsh

local::502:20:Local Installed Packages:/ul/local:/bin/tcsh
login::503:20:Hyper Login:/u0/login/hyper-login.pl

bioinfo.mbb.yale.ed 0 a > 6 9 6 $\overline{}$ steil er Ü ark C

Example Report: Motions Database

Report on Calmodulin

Report shows information, merging together many tables with variable amounts of information. Form same but allows entry.

```
rile Side Peru din Residentia Optiona diferensi
     Motion in Calmodulin [cm]
                                                              Excess Consult Mission, Hings Mechanism (E-2-11).
                      c Closed a SERNE St. SIAR, closed with popular
(Linda to Close Listes Close, Consection Cont., Lane, we Wild., place,
c Closed in NOTE.
                                             Observé BOTER. 1988. STATE CONTROL STATE LA SER MET MANAGEMENT CONTROL BETTER STATE CONTROL BETTER STATE CONTROL STATE CONTRO
                                                         G New York, Erina, SCOR, Completenana, Wildl., Law and Wildl., Index
; Open & ACLN. Nr. N. vay
(Links & Find. Erina, SCOR, Open-Strottena, Wildl., Index and Wildl., Index
                                                                    The operations is ligared custom to specify the invested to rings to applie the low mean stressor, 
compression and control such as the age used the product is excluded in which come the control of the
                                                                    course. Due explorement with its profits set to a gift partition for which processes of the country. 
On only charges to the cover of the large region. Make the consequency have subset a varietie.

Application Local CL 20 = 7

Decided to Green Scale CL 2 = 90

Decided to Green Scale CL 2 = 90

Decided to Green Scale CL 2 = 90

Local CL 20 = 90

Local 
                            □ M E Mewitor: A E Meior and F A Quantum (1983). These entry are recognized by Chamach and 2.4 minutum of a Chamach and Science Chamach (1984). (2) 1.155 (1986). (2) 0.05 (a) 1.15 (a) 1.95 (b) 1.15 (c) 1.15
                                                   the Theory and published. The Milesting defination [1, 15] oriented a special form with the subset oriented in single the results of the origin of the calculations. As supported the international control of the calculations of the calculations are supported to the calculations of the c
     2 50
```

Schema

```
CREATE TABLE relations (
 id CHAR(15),
 id_to_ CHAR(15),
  type CHAR(30),
  comment CHAR(512)
CREATE TABLE single_vals (
 id CHAR(10),
 name_ CHAR(30),
 val CHAR(30),
  comment CHAR(500)
CREATE TABLE structures (
 id CHAR(10),
 pdb_id_ CHAR(8),
 name_short CHAR(50),
  chain CHAR(1),
 name_long CHAR(100)
CREATE TABLE value names (
  abbrev_ CHAR(15),
  name CHAR(50)
CREATE TABLE endnote_refs (
 num I INT,
 name CHAR(512)
```

```
CREATE TABLE classes (
  class_num_ CHAR(10),
  new CHAR(10),
  class name CHAR(80)
CREATE TABLE classifications
  id _ CHAR(10),
  class_num CHAR(10)
CREATE TABLE links (
  id CHAR(10),
  url_ CHAR(150),
 hilit_text CHAR(100),
  other_text CHAR(500),
  flag CHAR(5)
CREATE TABLE names (
 id CHAR(10).
  seq_num_n INT,
 name CHAR(255)
CREATE TABLE refs (
 id CHAR(10),
 medline I INT.
  endnote_I INT,
  flag_n INT
CREATE TABLE descriptions
 id_{-} CHAR(10),
  num_I INT,
 prose CHAR(5000)
```

Motion in Calmodulin [cm]

Classification

Known Domain Motion, Hinge Mechanism $\lceil D-h-2 \rceil$

Structures

- Closed is 2BBM; fly, NMR, closed with peptide (Links to PDB, Entriz, SCOP, Core-Structures, VRML-lines, and VRML-tubes).
- Closed is CTR
 (Links to PDB, Entrez, SDOP, Dore-Structures, VRML-lines, and VRML-tubes).
- Closed is ICDL; mammelian, recomb., X-ray
 (Links to PDB, Entrez, SCOP, Core-Structures, VRML-lines, and VRML-tubes).
- Closed (conf. 3) is 2BBN; fly, NMR, closed with 2nd peptide (Links to PDB, Entrez, SCOP, Core-Structures, VRML-lines, and VRML-tubes).
- Open is 1CLL: human, X-ray, refined (Links to PDB, Entrez, SCOP, Core-Structures, VRML-lines, and VRML-tubes).
- Open is 4CLN: fly, X-ray (Links to PDB, Entrez, SCOP, Core-Structures, VRML-lines, and VRML-tubes).

Description

- Basically, this hinge motion involves long helix splitting into 2 helices (inclined at ~100 degrees) with strand in between.
- O The unligated form of calmodulin contains two globular domains, connected by a long helix. NMR and X-ray structures of ligated calmodulin show the molecule binding to peptide helices with different sequences and the two domains closing around the peptide far enough to make contact with each other. In this motion, the long interdomain helix, which is known to have only marginal stability in solution, partly unfolds to break into two helical segments connected by a 4-residue hinge region in an extended conformation. The angle between the axes of the two helical segments is ~100 degrees. As there is an additional twist around the helix axes, the total rotation of one domain relative to the other is upwards of 150 degrees. Calmodulin can bind peptides with different sequences because of flexibility in the side.

Structures: Variable Number Per ID (Var. Num. of Phone Num. per Person), Foreign Key into PDB


```
Particular values describing motion

Annotation Level (1..10) = 7
Domain 1 (residue selection) = 2 - 80
Domain 2 (residue selection) = 81 - 147
Location of a Hinge (residue selection) = 72 - 82 (4cln v. 2bbm)
Maximum CA displacement (A) = 60 (After sieve-fitting on domain-1)
Maximum Rotation (degrees) = 148.02
Number of Inter-domain connections = 1
Number of Significant Torsion Angle Changes = 18 (Greater than 20 degrees)
Number of hinges = 1
```

Single Values: Joining Two Tables and Iterating in Perl

47

Example Report: Motions Database

References

O W E Meador A R Mean, and F A Quiocho (1992). Target enzyme recognition by Calmodulin: 2.4 structure of a Calmodulin-Peptide Complex. Science. 257: 1251-1255. (Medline-UI 92390716: Feport or Entrez export)

 M Ikura, G M Clore, A M Gronenborn, G Zhu, C B Klee and A Bax (1992). Solution structure of a Calmodulin- Parget peptide complex by multidimensional NMR. Science. 256: 632-644. (Medline-UI 92263694: Report or Entrez export)

O W E Meador, A.R. Means and F.A. Quiocho (1993). Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science. 262: 1718-1721.

(Medline-UI 94082290: Report or Entrez export)

L Stryer (1995). Biochemistry, New York, WH Freeman and Company.

REFS
id_ medline_I endnote_I
acetyl 0 1007
br 90294303 893
br 93154310 313
cm 92263094 640
cm 92390716 647
cm 94082290 673

ENDNOTE PEFS

649

name
S Subramaniam, M Gerstein, D Oesterhelt and R H Hender
R Henderson, J M Baldwin, T A Ceska, F Zemlin, E Beckm
M K Gilson, T P Straatsma, JA A McCammon, D R Ripoll,
W E Meador, A R Means and F A Quiocho (1992). Target e
M Ikura, G M Clore, A M Gronenborn, G Zhu, C B Klee an
B-H Oh, J Pandit, C-H Kang, K Nikaido, S Gokcen, G F-L

References:

Join Two Lists (Protein Names and References) with a Table Containing Key for each List (a Relation: protein has reference.)

SELECT endnote_refs.name, refs.medline_I FROM endnote_refs,refs WHERE refs.id_ = 'cm' AND refs.endnote_I = endnote_refs.num_I

Data and Graphics

4x4 Transformation Matrix. The following 4x4 matrix [1 .. 16] orients the opened form so that the axis
rotation is along the z-axis and the origin is at the molecular centroid.

Closed Form. Adapted from Biochemistry, Copyright 1995, Lubert Stryer.

o MOVIES. A page giving pointers to movies of the motion.

Open Form Adapted from Biochemistry, Copyright 1995, Lubert Stryer.

The closing of calmodulin in 3 steps. From another viewpoint, showing open, closed, and partially open

Torsion Changes + Atom Deviations. Columns are, respectively: residue, phi-O, psi-O,

sidechain-rotamer-D, phi-□, psi-C, rotamer-C, dphi, dpsi, dCA (after doing a fit) (O=open-form, C=closed-form).

Graphics:
How to Store
Complex Data?
(File Pointers,
BLOBS, OODB)