$=\frac{1}{2i}\left(2\pi i\delta'(w)-2\pi i\delta'(w+2)\right)$
$= \pi \left(S'(\omega) - S'(\omega^{+2}) \right)$
5. (2) f (F(w)) = = 1 ("w)e "wt dw
$=\frac{1}{2\pi}\cdot(-2\pi)\cdot(-t^2)$
= +1
(3, 7-1 (F(w)) = 1/1 (- 0) 2weiwt diw
=]Ti / w] (eiw+ e->iw) eint dw
$= \frac{1}{2\pi} \cdot \frac{1}{2} \left(\delta(t+2) + \delta(t-2) \right)$
$=\frac{1}{4\pi}(\delta(t+1)+\delta(t-2))$
$(4) \int_{-\infty}^{\infty} \frac{1}{1+w^{2}} e^{iwt} dw$ $= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{e^{iwt}}{(w+\overline{p}_{i})(w-\overline{p}_{i})} dw$
t20M上洋有为松多为了= 52i, elist : 51= = 10 · 211i· lin. elist = 12e-15t

$$\frac{1}{|\mathcal{L}|} = \frac{1}{4} \frac{1}{|\mathcal{L}|} + \frac{1}{4} \frac{1}{4} \frac{1}{|\mathcal{L}|} + \frac{1}{4} \frac{1}$$

6.11) = F(w)
$\therefore f[f(2t)] = \frac{1}{2}F(\frac{\omega}{2})$
$\widehat{f}\left[tf(t)\right] = i \int_{S} dw \left[F(\frac{w}{2})\right]$
$=\frac{1}{2}\cdot\frac{1}{2}F'(\frac{\pi}{2})$
$= \frac{1}{4}F'(\frac{\omega}{2})$
ω , $f[f(t)] = f(\omega)$
$\mathcal{F}[f(-2t)] = \mathcal{F}(-\mathcal{F})$
J[(t-2)f(-2t)]
$= \widetilde{f}(tf(-2t)-2f(-2t))$
$=\widetilde{f}(tf(-2t))-F(-5)$
$= \frac{i \cdot \frac{1}{2} \int_{\omega} F(-\frac{\omega}{3}) - F(-\frac{\omega}{3})}{2}$
$=\frac{-1}{4}F'(-\frac{\omega}{2})-F(-\frac{\omega}{2})$
· · · · · · · · · · · · · · · · · · ·

#).
$$f[f(t)] = f(w)$$
 $f[f'(t)] = iwf(w)$
 $f[f'(t)] = iwf(w)$
 $f[f(t)] = iwf(w)$

= 1e-t + 1 eit-e-it = 1e-t+ 1 (sint-cost) $=\frac{1}{2}e^{-t}+\frac{1}{2}e^{-(t-\frac{7}{2})}$ 8. (2) · ; } f [x(t)] = X(w) $\int_{-\infty}^{t} \frac{f[x'(t)] = iwX(w)}{\int_{-\infty}^{t} \chi(s) ds} = u(t) * \chi(t).$ $\frac{|\omega \times (\omega) - \beta(\frac{1}{i\omega} + \pi(\omega)) \times (\omega)}{|\omega \times (\omega) - \beta(\frac{1}{i\omega} + \pi(\omega)) \times (\omega)|} = \frac{2}{1+\omega^{2}}$ $\frac{|\omega \times (\omega) - \beta(\frac{1}{i\omega} + \pi(\omega)) \times (\omega)|}{|\omega \times (\omega) + \omega|} = \frac{2}{1+\omega^{2}}$ $\frac{|\omega \times (\omega) - \beta(\frac{1}{i\omega} + \pi(\omega)) \times (\omega)|}{|\omega \times (\omega) + \omega|} = \frac{2}{1+\omega^{2}}$ $\frac{|\omega \times (\omega) - \beta(\frac{1}{i\omega} + \pi(\omega)) \times (\omega)|}{|\omega \times (\omega) + \omega|} = \frac{2}{1+\omega^{2}}$ $\frac{|\omega \times (\omega) - \beta(\frac{1}{i\omega} + \pi(\omega)) \times (\omega)|}{|\omega \times (\omega) + \omega|} = \frac{2}{1+\omega^{2}}$: x(t) = 1 fto (- 2iw eiwt dw)

$$\frac{(\frac{1}{2}f(\frac{1}{2})) = -\frac{2^{12}}{(\frac{1}{2}^{2}f)(\frac{1}{2}^{2}f)}}{(\frac{1}{2}^{2}f)(\frac{1}{2}^{2}f)}$$

$$\frac{1}{(\frac{1}{2}^{2}f)(\frac{1}{2}^{2}f)}$$

$$\frac{1}{(\frac{1}{2}^{2}f)} = -\frac{1}{8} i e^{-\frac{1}{8}}$$

$$\frac{1}{(\frac{1}{2}^{2}f)} = -\frac{1}{8} i e^{-\frac{1}{8}}$$

$$\frac{1}{(\frac{1}{2}^{2}f)} = -\frac{1}{2} i e^{-\frac{1}{8}f}$$

$$\frac{1}{(\frac{1}{2}^{2}f)} = -\frac{1}{2} i e^{-\frac{1}{8}f}$$

$$\frac{1}{(\frac{1}{2}^{2}f)} = \frac{1}{8} i e^{\frac{1}{8}f} = -\frac{1}{8} i e^{\frac{1}{8}f}$$

$$\frac{1}{(\frac{1}{2}^{2}f)} = \frac{1}{8} i e^{\frac{1}{8}f} = \frac{1}{8} i e^{\frac{1}{8}f}$$

$$\frac{1}{(\frac{1}{2}^{2}f)} = \frac{1}{8} i e^{\frac{1}{8}f} = \frac{1}{8} i e^{\frac{1}{8}f}$$

$$\frac{1}{(\frac{1}{2}^{2}f)} = \frac{1}{8} i e^{\frac{1}{8}f} = \frac{1}{8} i e^{\frac{1}{8}f}$$

$$\frac{1}{(\frac{1}{2}^{2}f)} = \frac{1}{8} i e^{\frac{1}{8}f} = \frac{1}{8} i e^{\frac{1}{8}f}$$

$$\frac{1}{(\frac{1}{2}^{2}f)} = \frac{1}{8} i e^{\frac{1}{8}f} = \frac{1}{8} i e^{\frac{1}{8}f}$$

$$\frac{1}{(\frac{1}{2}^{2}f)} = \frac{1}{8} i e^{\frac{1}{8}f} = \frac{1}{8} i e^{\frac{1}{8}f}$$

$$\frac{1}{(\frac{1}{2}^{2}f)} = \frac{1}{8} i e^{\frac{1}{8}f} = \frac{1}{8} i e^{\frac{1}{8}f}$$

$$\frac{1}{(\frac{1}{2}^{2}f)} = \frac{1}{8} i e^{\frac{1}{8}f} = \frac{1}{8} i e^{\frac{1}{8}f}$$

$$\frac{1}{(\frac{1}{2}^{2}f)} = \frac{1}{8} i e^{\frac{1}{8}f} = \frac{1}{8} i e^{\frac{1}{8}f}$$

$$\frac{1}{(\frac{1}{2}^{2}f)} = \frac{1}{8} i e^$$