Problemas – Regressão & Programação

Soluções

James R. Hunter
18 de abril de 2017

Nestes exercícios, vamos experimentar com regressão e programação. Os exercícios terão várias partes. Não esqueça responder a todas! Tem no Github um arquivo probsRegress.RData com os dados que você precisa para completar os exercícios. Fazer o download dele e load("probsRegress.RData").

1. Expectativa de Vida em Europa

Neste exercício, tirei dados do pacote gapminder sobre expectativa da vida (lifeExp) e PIB por capita (gdpPercap) para os anos 2002 e 2007 para os países de Europa. O código para reproduzir os dados para o problema segue. Você deve copiar e colar ele no seu trabalho. Faça uma regressão simples linear que mostra qual é o efeito que PIB tem sobre expectativa da vida. Países ricas têm expectativa de vida maior? Responde às partes a - f. Como sempre, não esqueça de fazer um pequeno estudo exploratório dos dados.

Dados do problema

Perguntas

- a. A variável lifeExp tem uma distribuição normal segunda o teste Shapiro-Wilks?
- b. Uma transformação logarítmica pode fazer ela normal? Por que?
- c. Reconhecendo que a variável dependente não é puramente normal, você pode confiar em qual regra de estatística para usar regressão linear? Por que?
- d. O que é a equação linear que determina a relação entre as variáveis no formato de $y = \beta_0 + \beta_1 x$
- e. Qual proporção de variância no modelo esta equação descreve?
- f. Mostre e examine os quatro gráficos que pode usar para entender melhor a regressão. Essa regressão é confiável? Por que?

1. Solução

a.

```
Desc(vidaExp$lifeExp)

## ------
## vidaExp$lifeExp (numeric)
##
```

```
##
       length
                                 {\tt NAs}
                                         unique
                                                        0s
                                                                          meanCI
                        n
                                                                 mean
##
            60
                       60
                                   0
                                                         0
                                                             77.17460
                                                                        76.40871
                                            = n
                                                                        77.94049
##
                   100.0%
                                0.0%
                                                      0.0%
##
##
           .05
                      .10
                                 . 25
                                         median
                                                        .75
                                                                   .90
                                                                              .95
     72.12185
                72.96350
                           74.66825
                                       78.17700
                                                  79.50975
                                                             80.55340
                                                                        80.88685
##
##
##
        range
                       sd
                               vcoef
                                            mad
                                                       IQR
                                                                 skew
                                                                            kurt
##
     10.91200
                  2.96481
                             0.03842
                                        3.25134
                                                   4.84150
                                                             -0.42494
                                                                        -1.06304
##
## lowest : 70.845, 71.322, 71.777, 72.14, 72.476
## highest: 80.657, 80.884, 80.941, 81.701, 81.757
```

vidaExp\$lifeExp (numeric)


```
##
## Shapiro-Wilk normality test
##
## data: vidaExp$lifeExp
## W = 0.93935, p-value = 0.005063
```

O teste de normalidade de Shapiro-Wilk tem um valor-p muito abaixo do nível tradicional de $\alpha=0.05$. Assim, provavelmente a distribuição **não** está normal.

b.

```
vidaExp <- vidaExp %>% mutate(lifeExplog = log10(lifeExp))
shapiro.test(vidaExp$lifeExplog)
```

##

```
## Shapiro-Wilk normality test
##
## data: vidaExp$lifeExplog
## W = 0.93567, p-value = 0.003486
```

Neste caso, a transformação não ajuda por causa dos 2 modos na distribuição.

c. Qual regra de estatística:

Teorema de Limite Central: Com um n alto (>35), podemos assumir que a distribuição aproxima à normal

d. Equação de Regressão

```
vidafit <- lm(lifeExp ~ gdpPercap, data = vidaExp)</pre>
summary(vidafit)
##
## Call:
## lm(formula = lifeExp ~ gdpPercap, data = vidaExp)
##
## Residuals:
##
       Min
                 1Q
                     Median
                                    3Q
## -2.81053 -1.26704 0.05817 1.21515 3.08633
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept) 72.03059980 0.45519976 158.24
                                                 <2e-16 ***
## gdpPercap
              0.00021999 0.00001749
                                        12.58
                                                 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.549 on 58 degrees of freedom
## Multiple R-squared: 0.7318, Adjusted R-squared: 0.7271
## F-statistic: 158.2 on 1 and 58 DF, p-value: < 2.2e-16
Equação: y = 72.031 + 0.002x
e.
R^2 = 0.7318 da variância
f.
par(mfrow=c(2,2))
plot(vidafit)
```


A curva no gráfico dos residuais (#1) indica que a relação entre gdpPercap e lifeExp é provávelmente de segundo grau. Esta conclusão seria apoiada pelas 2 pequenas curvas no meio da linha Q-Q e a curva no gráfico de Scale-Location. Assim, a solução em si merece pouco confiança no formato atual.

2. Loops, if ... then

No conjunto de dados vidaExp, você quer criar uma nova variável categórica que expressa gdpPercap em duas categorias: "alto", "baixo". Você vai dividir a variável ao ponto da média da gdpPercap.

- a. Escreva e execute um bloco de código usando ifelse() que cria a nova variável pibcat.
- b. Use uma combinação de um loop e uma construção condicional ("if . . . then") para conseguir esta tarefa.

2. Solução

a.

```
vidaExp$gdpcat <- ifelse(vidaExp$gdpPercap > mean(vidaExp$gdpPercap), "alto", "baixo")
```

b.

```
vidaExp$gdpcat2 <- 0
mediagdp <- mean(vidaExp$gdpPercap) # só quero calcular 1 vez, não cada vez que o loop roda
for (i in seq_along(vidaExp)) { # pode ser também (i in 1:nrow(vidaExp))
    if (vidaExp$gdpPercap[i] > mediagdp) {
        vidaExp$gdpcat2[i] <- "alto"
    }
    else {
        vidaExp$gdpcat2[i] <- "baixo"
    }
}</pre>
```

NB: Outras soluções são possíveis. Este não é a única possibilidade.

3. Kilometragem dos Carros

Uma sondagem sobre carros em 1970 listou 392 modelos de carros e a economia de combustível eles tiveram. Teve vários indicadores de que seria a quilometragem de combustível, como horsepower (cavalos). Para este problema, nós vamos trabalhar com auto1.

Perguntas e Tarefas

- a. Faça uma análise exploratória dos duas variáveis (mpg e horsepower)
- b. Faça um scatterplot de mpg (eixo-y) e horsepower (eixo-x). Mostra alguma tendência?
- c. Tendência é linear ou não-linear? Se for não-linear, qual poder melhor expressa esta relação
- d. Faça uma regressão linear simples entre mpg e horsepower. Escreva a equação da regressão e o R^2
- e. Mostre os 4 gráficos para o modelo simples. Mostra uma tendência nos resíduos?
- f. Faça uma regressão linear polinomial de segundo grau entre mp
g e horsepower. Escreva a equação da regressão e o \mathbb{R}^2
- g. Qual modelo teve a melhor R^2 ?
- h. Mostre os 4 gráficos para modelo polinomial.

3. Solução

a. Análise Exploratória

```
Desc(auto1$mpg)
##
  auto1$mpg (numeric)
##
##
     length
                    n
                         NAs
                               unique
                                           0s
                                                 mean
                                                        meanCI
##
         392
                  392
                            0
                                   127
                                            0
                                                23.45
                                                         22.67
              100.0%
                        0.0%
                                                         24.22
##
                                         0.0%
##
##
         .05
                          .25
                                           .75
                                                   .90
                                                            .95
                  .10
                               median
##
      13.00
               14.00
                       17.00
                                22.75
                                        29.00
                                                34.19
                                                         37.00
##
##
                   sd
                       vcoef
                                           IQR
                                                 skew
                                                          kurt
      range
                                  mad
```

```
## 37.60 7.81 0.33 8.60 12.00 0.45 -0.54
```

##

lowest : 9.0, 10.0 (2), 11.0 (4), 12.0 (6), 13.0 (20)

highest: 43.4, 44.0, 44.3, 44.6, 46.6

auto1\$mpg (numeric)

----## auto1\$horsepower (numeric)
##
length n NAs unique Os mean meanCI

0 ## 392 392 93 0 104.47 100.65 100.0% 0.0% 108.29 ## 0.0% ## ## .05 .10 .25 median .75 .90 .95 126.00 ## 60.55 75.00 93.50 157.70 180.00 67.00 ## ## IQR range sd vcoef madskew kurt ## 184.00 38.49 0.37 28.91 51.00 1.08 0.65

lowest: 46.0 (2), 48.0 (3), 49.0, 52.0 (4), 53.0 (2) ## highest: 210.0, 215.0 (3), 220.0, 225.0 (3), 230.0

auto1\$horsepower (numeric)

b. Scatterplot

Tem vários que pode usar. Vou usar a função do pacote car

∞ • • • •

c. Tendências

A tendência não é linear. Parece de pertencer a uma equação de segundo grau.

d. Regressão Simples

```
mpgfit1 <- lm(mpg ~ horsepower, data = auto1)</pre>
summary(mpgfit1)
##
## Call:
## lm(formula = mpg ~ horsepower, data = auto1)
##
## Residuals:
##
       \mathtt{Min}
                 1Q
                     Median
                                    3Q
                                            Max
## -13.5710 -3.2592 -0.3435 2.7630 16.9240
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 39.935861
                          0.717499 55.66
                                             <2e-16 ***
## horsepower -0.157845 0.006446 -24.49 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.906 on 390 degrees of freedom
## Multiple R-squared: 0.6059, Adjusted R-squared: 0.6049
## F-statistic: 599.7 on 1 and 390 DF, p-value: < 2.2e-16
Equação: y = 39.936 - 0.158x
R^2 = 0.606
```

e. 4 Gráficos

```
par(mfrow=c(2,2))
plot(mpgfit1)
```


Os resíduos mostram uma tendência clara de 2 grau

f. Regressão Polinomial

```
mpgfitpoli <- lm(mpg ~ horsepower + I(horsepower^2), data = auto1)</pre>
summary(mpgfitpoli)
##
## Call:
## lm(formula = mpg ~ horsepower + I(horsepower^2), data = auto1)
##
##
  Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
  -14.7135 -2.5943
                      -0.0859
                                 2.2868
                                         15.8961
##
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                   56.9000997
                               1.8004268
                                            31.60
                                                     <2e-16 ***
## horsepower
                   -0.4661896
                                0.0311246
                                           -14.98
                                                     <2e-16 ***
## I(horsepower^2)
                    0.0012305
                               0.0001221
                                            10.08
                                                     <2e-16 ***
##
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 4.374 on 389 degrees of freedom
## Multiple R-squared: 0.6876, Adjusted R-squared: 0.686
                  428 on 2 and 389 DF, p-value: < 2.2e-16
## F-statistic:
```

```
Equação: y = 56.900 - 0.466x + 0.001x^2
R^2 = 0.688
```

g. Melhor Modelo

Modelo polinomial

h. 4 Gráficos

4. auto2 – Regressão Múltipla

Esta vez, nós vamos usar outras variáveis relacionados aos motores dos carros para ver se elas têm influência sobre economia de combustível. O conjunto auto2 tem esses dados.

- a. Faça uma análise exploratória sobre as variáveis novas (displacement, weight, acceleration)
- b. Faça uma regressão múltipla usando todas as variáveis independentes.
- c. Mostre o resultado (summary())
- d. Qual porcentagem da variância dos dados em total este modelo descreve?
- e. Quais variáveis parecem não ter uma relação significante com a mpg? Porque, você acha?

4. Solução

##

##

length

392

392

a. Análise Exploratória

```
Desc(auto2$displacement)
   auto2$displacement (numeric)
##
##
                               unique
     length
                          {\tt NAs}
                                            0s
                                                  mean
                                                         meanCI
                   n
##
        392
                 392
                            0
                                   81
                                                194.41
                                                         184.02
              100.0%
                         0.0%
                                                         204.80
##
                                          0.0%
##
                 .10
                                           .75
                                                    .90
##
        .05
                          . 25
                               median
                                                            .95
      85.00
               90.00
                      105.00
                               151.00
                                       275.75
                                                350.00
                                                         400.00
##
##
##
      range
                  sd
                        vcoef
                                  mad
                                           IQR
                                                   skew
                                                           kurt
##
     387.00 104.64
                        0.54
                                90.44 170.75
                                                  0.70
                                                          -0.79
##
## lowest : 68.0, 70.0 (3), 71.0 (2), 72.0, 76.0
## highest: 400.0 (13), 429.0 (3), 440.0 (2), 454.0, 455.0 (3)
```

auto2\$displacement (numeric)

0s

mean

0 2'977.58 2'893.24

meanCI

unique

346

 ${\tt NAs}$

```
100.0%
                              0.0%
                                                   0.0%
                                                                   3'061.93
##
##
                               .25
##
                     .10
                                      median
                                                    .75
                                                              .90
                                                                         .95
                                    2'803.50 3'614.75
##
     1'931.60
              1'990.00
                         2'225.25
                                                        4'277.60
                                                                   4'464.00
##
##
                             vcoef
                                                    IQR
                                                             skew
                                                                       kurt
        range
                     sd
                                         mad
                              0.29
##
     3'527.00
                 849.40
                                      948.12 1'389.50
                                                             0.52
                                                                       -0.83
##
## lowest : 1'613.0, 1'649.0, 1'755.0, 1'760.0, 1'773.0
## highest: 4'951.0, 4'952.0, 4'955.0, 4'997.0, 5'140.0
```

auto2\$weight (numeric)

Desc(auto2\$acceleration)

```
## auto2$acceleration (numeric)
##
##
     length
                         NAs
                              unique
                                           0s
                                                        meanCI
                   n
                                                  mean
        392
##
                 392
                           0
                                   95
                                            0
                                               15.541
                                                        15.267
             100.0%
                        0.0%
##
                                         0.0%
                                                        15.815
##
##
                         .25
                                           .75
        .05
                 .10
                              median
                                                   .90
                                                            .95
##
     11.255
             12.000
                      13.775
                              15.500 17.025
                                               19.000
                                                        20.235
##
##
      range
                  sd
                       vcoef
                                  mad
                                          IQR
                                                  skew
                                                          kurt
##
     16.800
               2.759
                       0.178
                                2.520
                                        3.250
                                                 0.289
                                                         0.406
##
## lowest : 8.0, 8.5 (2), 9.0, 9.5 (2), 10.0 (4)
## highest: 22.2 (2), 23.5, 23.7, 24.6, 24.8
```

auto2\$acceleration (numeric)

b. Regressão Multiplá

```
auto2fit <- lm(mpg ~ ., data = auto2)</pre>
```

c. Resumo

summary(auto2fit)

```
##
## Call:
## lm(formula = mpg ~ ., data = auto2)
## Residuals:
      Min
##
               1Q Median
                               3Q
                                      Max
## -11.378 -2.793 -0.333
                            2.193 16.256
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 45.2511397 2.4560447
                                     18.424 < 2e-16 ***
## horsepower
               -0.0436077 0.0165735
                                     -2.631 0.00885 **
## displacement -0.0060009
                                     -0.894 0.37166
                           0.0067093
## weight
               -0.0052805  0.0008109  -6.512  2.3e-10 ***
## acceleration -0.0231480 0.1256012 -0.184 0.85388
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

```
## Residual standard error: 4.247 on 387 degrees of freedom
## Multiple R-squared: 0.707, Adjusted R-squared: 0.704
## F-statistic: 233.4 on 4 and 387 DF, p-value: < 2.2e-16</pre>
```

d. % de Variância

```
R^2 = .707
```

e. Variáveis não-significativas

displacement e acceleration não parecem significativas, possivelmente porque horsepower também descreve a mesma caracteristica dos carros.

5. Regressão Lógistica

Vamos agora olhar num estudo sobre câncer de próstata. A questão aqui é de entender melhor se o câncer espalhou para os linfonodos em volta da próstata. O estudo tenta avaliar se cinco indicadores podem substituir uma cirurgia exploratória. As cinco variáveis no conjunto de proscan são

- 1. raioX: leitura de um raio X; valores binários 1 = positivo, 0 = negativo
- 2. grau: leitura patológica como resultado de uma biopsia de agulha fina; valores binários 1 = positivo, 0 = negativo
- 3. estagio: tamanho do tumor obtido pela palpação com os dedos; valores binários 1= positivo, 0= negativo
- 4. idade: idade do paciente em anos
- 5. acido: nível x 100 de fosfatase ácida sérica

A variável linfonodos tem o resultado determinado pela cirurgia se o câncer tinha espalhado ou não

Tarefas

- a. Faça uma análise exploratória dos dados, inclusive com cplot() para entender o problema melhor
- b. Construa um modelo logístico de linfonodos contra as outras variáveis
- c. Todas as variáveis são significativas? Quais são e quais não são
- d. Construa um segundo modelo logístico usando raioX, estagio e acido
- e. Este modelo descreve mais da deviança nos dados?
- f. Construa um terceiro modelo com só as variáveis significativas.
- g. Faça uma comparação entre os três modelos. Qual é o melhor? Com este modelo, calcule os odds, um intervalo de confiança para os odds e a probabilidade de ocorrência da presença de tecido maligno nos linfonodos.

5. Solução

a. Análise Exploratória

Desc(proscan)

```
## Describe proscan (data.frame):
## data.frame: 53 obs. of 6 variables
##
##
  Nr ColName
               Class NAs Levels
##
  1 raioX
               numeric .
##
   2 grau
               numeric .
##
   3 estagio
               numeric .
  4 idade
##
               numeric .
##
  5 acido
               numeric .
##
  6 linfonodos integer .
##
##
## -----
## 1 - raioX (numeric)
##
         n NAs unique Os mean meanCI
53 O 2 38 0.28 0.16
##
   length
##
    53
         100.0% 0.0%
                        71.7%
##
                                     0.41
##
##
    .05 .10 .25 median
                          .75 .90
##
   0.00
          0.00 0.00 0.00 1.00 1.00 1.00
##
                          IQR skew kurt
##
          sd vcoef mad
    range
    1.00 0.45 1.61 0.00 1.00 0.94 -1.14
##
##
##
##
    level freq perc cumfreq cumperc
## 1
    0 38 71.7% 38 71.7%
## 2
      1 15 28.3%
                  53 100.0%
```

1 - raioX (numeric)

2 - grau (numeric)

3 - estagio (numeric)

4 - idade (numeric)

5 - acido (numeric)

6 - linfonodos (integer - dichotomous)

b. Modelo Logístico 1

```
linffit1 <- glm(linfonodos ~ ., data = proscan, family = binomial(link = "logit"))</pre>
summary(linffit1)
##
## Call:
## glm(formula = linfonodos ~ ., family = binomial(link = "logit"),
       data = proscan)
##
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                            Max
## -2.0110 -0.7020 -0.3654
                               0.5723
                                         1.9852
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.06180
                           3.45992
                                     0.018
                                              0.9857
                           0.80718
                                     2.534
## raioX
                2.04534
                                              0.0113 *
                0.76142
                           0.77077
                                     0.988
                                              0.3232
## grau
## estagio
                1.56410
                           0.77401
                                     2.021
                                              0.0433 *
               -0.06926
                           0.05788
## idade
                                    -1.197
                                              0.2314
## acido
                0.02434
                           0.01316
                                     1.850
                                              0.0643 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 70.252 on 52 degrees of freedom
## Residual deviance: 48.126 on 47 degrees of freedom
## AIC: 60.126
```

```
##
## Number of Fisher Scoring iterations: 5
```

c. Variáveis Significativos

Não todas são significativas. Significativos: raioX e estagio. Outras: não

d. Segundo Modelo

```
linffit2 <- glm(linfonodos ~ raioX + estagio + acido, data = proscan,</pre>
                family = binomial(link = "logit"))
summary(linffit2)
##
## Call:
  glm(formula = linfonodos ~ raioX + estagio + acido, family = binomial(link = "logit"),
       data = proscan)
##
##
## Deviance Residuals:
                      Median
                 1Q
## -1.8630 -0.8508 -0.3889
                               0.5721
                                        2.2386
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.57565
                           1.18115
                                  -3.027 0.00247 **
## raioX
                2.06179
                           0.77767
                                     2.651 0.00802 **
                1.75556
                           0.73902
                                     2.376 0.01752 *
## estagio
## acido
                0.02063
                           0.01265
                                     1.631 0.10291
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 70.252 on 52 degrees of freedom
##
## Residual deviance: 50.660 on 49 degrees of freedom
## AIC: 58.66
##
## Number of Fisher Scoring iterations: 4
```

e. Modelo descreve mais de deviância

Apesar da melhora no AIC, este modelo tem um leve aumento no desvio residual (de 48.126 até 50.660). Então formalmente, piorou o desvio.

f. Modelo 3 - Variáveis Significativos

```
##
## Call:
## glm(formula = linfonodos ~ raioX + estagio, family = binomial(link = "logit"),
      data = proscan)
##
## Deviance Residuals:
      Min
                10
                    Median
                                  30
                                          Max
## -1.9166 -0.9907 -0.4934
                                       2.0815
                              0.5892
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.0446
                           0.6100 -3.352 0.000802 ***
                2.1194
                           0.7468
                                    2.838 0.004541 **
## raioX
## estagio
                1.5883
                           0.7000
                                    2.269 0.023274 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 70.252 on 52 degrees of freedom
##
## Residual deviance: 53.353 on 50 degrees of freedom
## AIC: 59.353
##
## Number of Fisher Scoring iterations: 4
```

g. Comparação

O melhor modelo parece de ser o 1° porque tem o desvio residual mínimo.

```
invlogit <- function(x) { ## função para calcular invlogit
    1/(1 + exp(-x))
}
coefplot(linffit1)</pre>
```

Warning: Ignoring unknown aesthetics: xmin, xmax

invlogit(linffit3\$coefficients)


```
paste("Relação de Odds:")
## [1] "Relação de Odds:"
exp(coef(linffit1)) # Calculate the odds
## (Intercept)
                     raioX
                                  grau
                                            estagio
                                                          idade
                                                                      acido
     1.0637501
                 7.7318248
                             2.1413054
                                         4.7783782
                                                      0.9330843
                                                                  1.0246432
paste("Intervalo de Confiança dos Odds:")
## [1] "Intervalo de Confiança dos Odds:"
exp(confint(linffit1))
## Waiting for profiling to be done...
##
                     2.5 %
                                97.5 %
## (Intercept) 0.001034489 1069.888640
## raioX
               1.716422071
                             43.757848
                             10.063372
## grau
               0.463285378
                             24.644741
## estagio
               1.111673710
## idade
               0.826708615
                              1.042456
## acido
               0.998575134
                              1.054816
paste("Probabilidade de Ocorrência:")
## [1] "Probabilidade de Ocorrência:"
```

(Intercept) raioX estagio ## 0.1145964 0.8927786 0.8303733