Predict survival on the Titanic

In this Lab, we ask you to apply the tools of machine learning to predict which passengers survived the tragedy

Dataset

The dataset contains 891 observations of 12 variables:

- PassengerId: Unique ID for each passenger
- Survived: Survival (0 = No; 1 = Yes)
- **Pclass**: Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)
- Name: Name
- Sex: Sex
- Age: Age
- Sibsp: Number of Siblings/Spouses Aboard
- Parch: Number of Parents/Children Aboard
- Ticket: Ticket Number
- Fare: Passenger Fare
- Cabin: Cabin
- **Embarked** Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)

```
# imports
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np

titanic = pd.read_csv("/content/titanic.csv")
titanic.drop('Cabin', axis=1, inplace=True) # Drop this column because it contains a lot o
titanic["Age"].fillna(titanic["Age"].median(),inplace=True)
titanic["Embarked"].fillna("S", inplace = True)
print ('survival rate = ', titanic.Survived.mean())

survival rate = 0.38383838383838383838
```

Model training

```
# Some of the columns don't have predictive power, so let's specify which ones are include
predictors = ["Pclass", "Sex", "Age", 'SibSp' ,'Parch', "Fare", "Embarked"]
# We need now to convert text columns in predictors to numerical ones
for col in predictors: # Loop through all columns in predictors
   if titanic[col].dtype == 'object': # check if column's type is object (text)
```

titanic[col] = pd.Categorical(titanic[col]).codes # convert text to numerical

titanic.head()

```
PassengerId Survived Pclass
                                        Name
                                              Sex
                                                    Age SibSp Parch
                                                                          Ticket
                                                                                     Fai
                                     Braund.
0
                                                1 22.0
                                                                                    7.250
             1
                        0
                                3
                                   Mr. Owen
                                                             1
                                                                    0 A/5 21171
                                       Harris
                                    Cumings,
                                   Mrs. John
                                      Bradley
1
             2
                                                0 38.0
                                                                    0 PC 17599 71.283
                                    (Florence
                                       Briggs
```

```
# Split the data into a training set and a testing set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(titanic[predictors], titanic['Survived
from sklearn.linear_model import LogisticRegression
clf = LogisticRegression(random_state=1)
clf.fit(X_train, y_train)
train_score = clf.score(X_train, y_train)
print ('train accuracy =', clf.score(X_train, y_train))

from sklearn.model_selection import cross_val_score
scores = cross_val_score(clf, titanic[predictors], titanic["Survived"], scoring='accuracy'
print('cross validation accuracy =', scores.mean())

train accuracy = 0.8073836276083467
cross validation accuracy = 0.7957428214731586
```

Decision Trees

Let's start with one single tree

```
from sklearn.tree import DecisionTreeClassifier

clf_dt = DecisionTreeClassifier(random_state=1)
  clf_dt.fit(X_train, y_train)

print ('train accuracy =', clf_dt.score(X_train, y_train))
print ('test accuracy =', clf_dt.score(X_test, y_test))

  train accuracy = 0.9887640449438202
  test accuracy = 0.7574626865671642
```

Predictions are obtained in the same way of Logistic Regression

Let's play around with some of the decision tree's parameters

```
# check the sklearn documentation and change the folowing parametrs: max_depth, min_sample
clf_dt = DecisionTreeClassifier(random_state=1, max_depth=3, min_samples_leaf=3,min_sample
clf_dt.fit(X_train,y_train)
print ('train accuracy =',clf_dt.score(X_train, y_train))

# Cross validation
scores_dt = cross_val_score(clf_dt, titanic[predictors], titanic["Survived"], scoring='acc
print('cross validation accuracy =', scores_dt)

train accuracy = 0.8571428571428571
cross validation accuracy = [0.82122905 0.81460674 0.81460674 0.78651685 0.82022472]
```

Plot the decision tree

Set the max_depth parameter in the previous classifier to 3 and leave all the other ones to default values.

```
from sklearn import tree
tree.export_graphviz(clf_dt, out_file='tree.dot')
# As a reminder, these are the predicting features in order
print (dict(zip(range(len(predictors)),predictors)))

{0: 'Pclass', 1: 'Sex', 2: 'Age', 3: 'SibSp', 4: 'Parch', 5: 'Fare', 6: 'Embarked'}
```

The image should look like the following

```
from IPython.display import Image
Image("/content/DT.png")
```


Predict the survival of a female, Pclass 1 or 2, above age 2.5

```
passenger1=np.array([1,0,2.5,0,0,0,0]).reshape(1, -1)
print ('proba =', clf_dt.predict_proba(passenger1))
print ('class =', clf_dt.predict(passenger1))

    proba = [[0.11363636 0.88636364]]
    class = [1]
```

Predict the survival of a male, above age 11.5, Pclass 2 or 3

```
passenger2=np.array([1,1,11.5,0,0,0,0]).reshape(1, -1)
print ('proba =', clf_dt.predict_proba(passenger2))
print ('class =', clf_dt.predict(passenger2))

proba = [[0. 1.]]
    class = [1]
```

By looking at this decision tree, you can get a sense the relative importance between features. let's see which are the most important ones using the attribute: **feature_importances_**

feat_imp = pd.DataFrame(clf_dt.feature_importances_, predictors, columns=['Importance'])
feat_imp.sort_values('Importance', ascending=False)

	Importance
Sex	0.612883
Pclass	0.189340
Age	0.079526
SibSp	0.064308
Embarked	0.050315
Fare	0.003628
Parch	0.000000

As expected, **Parch** and **Fare** are the least important ones because they were not used for splitting, while **Sex** is the most important one since it was used first for splitting.

Random Forest

A [Random Forest](http://scikit-

<u>learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier</u> from sklearn.ensemble import RandomForestClassifier) is an ensemble of decision trees

```
from sklearn.ensemble import RandomForestClassifier
clf_rf = RandomForestClassifier(random_state=1)

clf_rf.fit(X_train,y_train)
print ('train accuracy =',clf_rf.score(X_train, y_train))

# Cross validation
scores_rf = accuracy_score(y_test,y_pred)
print('cross validation accuracy =', scores_rf)

train accuracy = 0.9887640449438202
cross validation accuracy = 0.7574626865671642
```

In the same way, you can print the feature importance of all the trees

```
feat_impr = pd.DataFrame(clf_rf.feature_importances_, predictors, columns=['Importance'])
feat_impr.sort_values('Importance', ascending=False)
```

	Importance	1
Fare	0.260215	
Sex	0.260039	
Age	0.252220	
Pclass	0.088561	
SibSp	0.053251	
Parch	0.045476	

Random forest, like decision trees have a lot of parameters to tune. Usually, performance does not change linearly with parameters. Let's take as an example, the accuracy as a function of number of trees (**n_estimators**)

```
%matplotlib inline
import matplotlib.pyplot as plt

trees=range(50)
accuracy=np.zeros(50)
for idx in range(len(trees)):
    clf_rf=RandomForestClassifier(random_state=1, n_estimators=idx + 1)
    clf_rf.fit(X_train,y_train)
    accuracy[idx]=clf_rf.score(X_test, y_test)

plt.plot(trees, accuracy)
plt.ylabel('accuracy')
plt.xlabel('Number of Trees')
```


In the following, try to tune manually the following parameters: min_samples_leaf, min_samples_split, max_depth, n_estimators in order to increase cross validation accuracy.

```
clf_rf = RandomForestClassifier(random_state=1, max_depth=3, min_samples_leaf=3, min_samples_
```

```
clf_rf.fit(X_train, y_train)
print ('train accuracy =', clf_rf.score(X_train, y_train))

# Cross validation
scores_rf = cross_val_score(clf_rf, titanic[predictors], titanic["Survived"], scoring='acc
print('cross validation accuracy =', scores_rf.mean())

    train accuracy = 0.85553772070626
    cross validation accuracy = 0.8014060636494884
```

This might be a difficult job to do manually. In other way is to search automatically the best combination of different ranges for these parameters. This is done using **Grid Search**

Grid Search

print(clf_gs.best_params_)

```
{'min_samples_leaf': 3, 'min_samples_split': 8, 'n_estimators': 30}
```

Let's use these best parameters and check whether they achieve really the above cv accuracy

```
clf_rf3 = RandomForestClassifier(random_state=1,min_samples_leaf=3,min_samples_split=8,n_e
clf_rf3.fit(X_train, y_train)
print ('train accuracy =', clf_rf3.score(X_train, y_train))
```

```
scores_rt3 = cross_vai_score(cit_rt3, titanic[predictors], titanic[ survived ], scoring= a print('cross validation accuracy =',scores_rf3.mean())
```

```
train accuracy = 0.9036918138041734
cross validation accuracy = 0.8327976900382902
```

As you can see, grid search allows you to find the best model parameters to improve your accuracy. Now, we can see the most important features of this last classifier

feat_imp = pd.DataFrame(clf_rf3.feature_importances_, predictors, columns=['Importance'])
feat_imp.sort_values('Importance', ascending=False)

	Importance
Sex	0.464300
Fare	0.168838
Pclass	0.154466
Age	0.068293
SibSp	0.055289
Parch	0.047531
Embarked	0.041283