CNN²: Viewpoint Generalization via a Binocular Vision

Wei-Da Chen and Shan-Hung Wu

CS Department, National Tsing-Hua University Taiwan, R.O.C.

wdchen@datalab.cs.nthu.edu.tw, shwu@cs.nthu.edu.tw

On Generalizability of CNNs

- The Convolutional Neural Networks (CNNs) have laid the foundation for many techniques in various applications
- However, the 3D viewpoint generalizability of CNNs is still far behind human's visual capabilities

3D Viewpoint Generalizability

- Humans can recognize objects at unseen angles
- But CNNs cannot

Outline

- Related work
- CNN^2
 - Dual feedforward pathways
 - Dual parallax augmentation
 - Concentric Multiscale (CM) pooling
- Experiments

Voxel-Reconstruction Methods

• E.g., the Perspective Transformer Networks (PTNs) by Yan et al. 16

Learn 3D models directly

Cons

- Require either
 - Voxel-level supervision, or
 - Omnidirectional images as input
- Both are expensive to collect in practice

CapsuleNets (Hinton et al. 17, 18)

- Different capsules are organized in a parse tree where lower-level capsules are dynamically routed to upper-level capsules using an agreement protocol
- When viewpoint changes, the "routes" will change in a coordinate way

But...

- People found that CapsuleNets are hard to train
 - Capsules increase the number of model parameters
 - Iterative routing-by-agreement algorithm is timeconsuming
 - Does not ensure the emergence of a correct parse tree (Peer et al. 18)
- Not compatible with CNNs
 - and therefore cannot benefit the rich CNN ecosystem

Outline

- Related work
- CNN^2
 - Dual feedforward pathways
 - Dual parallax augmentation
 - Concentric Multiscale (CM) pooling
- Experiments

Our Goals

- A new model that
 - has improved 3D viewpoint generalizability
 - does not require expensive input and supervision
 - is CNN compatible

Observation:

Humans understand the world using two eyes!

Binocular Images

Today, binocular images can be easily collected

- Majority of people are using their smartphones, which are now usually equipped with dual or more lens
- One can also extract two nearby frames in online videos to construct a large binocular image dataset

Binocular Solution 1 (LeCun et al. 14)

- Stacks up two binocular images along the channel dimension and then feeds them to a regular CNN
- But don't model any prior of binocular vision

Binocular Solution 2: Sol. 1 + Monodepth (Godard et al. 17)

 Calculate the depth map explicitly, then add it as additional input channels

However...

- The depth information is only a subset of the knowledge that can be learned from binocular vision
- Studies in neuroscience have found out that human's visual system can detect
 - Stereoscopic edges (Von Der Heydt et al. 00)
 - Foreground and background (Qiu and Von Der Heydt 05; Maruko et al. 08)
 - Illusory contours of objects (Von der Heydt et al. 1984; Anzai et al. 07)

Our Solution: CNN²

- Dual feedforward pathways
- Dual parallax augmentation
- Concentric Multiscale (CM) pooling

Outline

- Related work
- CNN^2
 - Dual feedforward pathways
 - Dual parallax augmentation
 - Concentric Multiscale (CM) pooling
- Experiments

Dual Feedforward Pathways

- Humans visual system at left and right sides of the brain are known to have bias (Gotts et al. 13)
- Filters/kernels in the left and right pathways can learn different (biased) features

Outline

- Related work
- CNN^2
 - Dual feedforward pathways
 - Dual parallax augmentation
 - Concentric Multiscale (CM) pooling
- Experiments

Dual Parallax Augmentation (1/2)

Left path:

Right path:

$$h_R$$
 concat $\begin{pmatrix} wxhxc & wxhxc & wxhxc \\ h_L & - & h_R \end{pmatrix}$ $=$ \tilde{h}_R

Dual Parallax Augmentation (2/2)

- Allows the filters/kernels in convolutional layers to recursively detect stereoscopic features at different abstraction levels by looking into the parallax
- The small differences between the two input images at the pixel level and at shallow layers may add up to a big difference at a deeper layer

Outline

- Related work
- CNN^2
 - Dual feedforward pathways
 - Dual parallax augmentation
 - Concentric Multiscale (CM) pooling
- Experiments

Concentric Multiscale (CM) Pooling (1/2)

Areas that are out of focus are blurred

Concentric Multiscale (CM) Pooling (2/2)

Placed *Before* Convolution

 Allows filters/kernels to contrast blurry features with clear features

Outline

- Related work
- CNN^2
 - Dual feedforward pathways
 - Dual parallax augmentation
 - Concentric Multiscale (CM) pooling
- Experiments

Datasets

ModelNet2D (gray scale)

• SmallNORB (gray scale)

RGBD-Object (RGB)

Train/Test Setting

3D Viewpoint Generalization

Learning Efficiency

Backward Compatibility

PTN

 CNN², by default, does not generalize to 2D rotated images

CNN2 + BL-module

CNN2

CapsuleNet

 But can be enhanced by existing works on 2D rotation generalizability

Takwaways

- We propose CNN² that
 - gives improved 3D viewpoint generalizability
 - does not require expensive input or supervision
 - is compatible with CNNs and can benefit the rich CNN ecosystem
- Detects stereoscopic features beyond depth via:
 - Dual feedforward pathways
 - Dual parallax augmentation
 - Concentric Multiscale (CM) pooling

from binocular images