T2

题目描述

给定一个长度为 n 的一次函数序列 $f_i(x)=a_ix+b_i$,定义一个函数序列的代价为,将该序列内的所有一次函数任意重排,初始定义 x=0 ,将 x 代入到一次函数中并得到其函数值,将函数值设置为 x ,即 $x\leftarrow f_i(x)$,按顺序依次处理玩所有函数后得到最终的 x ,则代价为所有重排方案中最终的 x 的最小值。

现在需要将这个长度为 n 的一次函数序列划分成若干个连续子段,使得满足所有连续子段的代价之和 $\leq c$,保证 $c \geq \sum_{i=1}^n b_i$,询问所有合法划分方案中的最小的划分段数,以及在保持最小划分段数的所有方案中的最小代价。

时间限制 2 秒,空间限制 512 MB。

输入格式

第一行两个整数 n, c 。

接下来 n 行第 i 行输入两个非负整数 a_i, b_i 。

输出格式

第一行两个整数,分别表示最小划分段数和在此基础上的最小代价。

数据范围

对于 100% 的数据,保证 $1 \le n \le 2000$, $1 \le a_i \le 10^5$, $0 \le \sum_{i=1}^n b_i \le c \le 10^8$ 。

测试点编号	$n \leq$	特殊性质
$1\sim 4$	10	无
$5\sim 8$	100	无
$9\sim12$	500	无
$13\sim16$	无	Α
$17\sim20$	无	无

特殊性质 A: 保证 $1 \le a_i \le 2$ 。