Rotations by an Angle - Example 1

Example

Three parallel lines ℓ_1 , ℓ_2 , and ℓ_3 are given. A is a point on the line ℓ_1 .

How can we determine points B and C on ℓ_2 and ℓ_3 , respectively, such that ABC is an equilateral triangle.

Rotations by an Angle - Example 1

Assume that $\triangle ABC$ is equilateral, then a rotation by 60° about A will carry B to C.

That rotation also carries ℓ_2 (containing B) to ℓ_2' . The intersection of ℓ_2' and ℓ_3 is C.

Rotations by an Angle - Example 1

Now we know how to do it. Rotate ℓ_2 by 60° about A to obtain ℓ_2' . The intersection of ℓ_2' with ℓ_3 is the position for C. B can be constructed easily as the intersection of circle centred at A radius AC.

Note that there are two different solutions (why?)

Rotations by an Angle - Example 2

Example

Three concentric circles ω_1 , ω_2 , and ω_3 are given. A is a point on ω_1 .

How can we determine points B and C on ω_2 and ω_3 , respectively, such that ABC is an equilateral triangle.

Let's take a look at a sum of two rotations:

$$AB \stackrel{\mathsf{rotate}(O_1,\alpha)}{\to} A_1B_1 \stackrel{\mathsf{rotate}(O_2,\beta)}{\to} A_2B_2.$$

It is easy to see that the angle between A_2B_2 and AB is $\alpha+\beta$, thus it is a rotation by the angle $\alpha+\beta$, We need to determine the position of the center of rotation O.

Now, what happen with the centers O_1 and O_2 :

$$O_1 \stackrel{\mathsf{rotate}(O_1, \alpha)}{\to} O_1 \stackrel{\mathsf{rotate}(O_2, \beta)}{\to} O_1' \quad \mathsf{and} \quad O_2'' \stackrel{\mathsf{rotate}(O_1, \alpha)}{\to} O_2 \stackrel{\mathsf{rotate}(O_2, \beta)}{\to} O_2.$$

Therefore O is on both perpendicular bisectors of O_1O_1' and $O_2''O_2$.

Hence,
$$\angle OO_1O_2 = \frac{1}{2}\alpha$$
, $\angle OO_2O_1 = \frac{1}{2}\beta$.

Rotations by an Angle - Example 3

Pretty much the same as in the solution for the previous example.

Rotate ω_2 by 60° about A to obtain ω_2' . The intersection of ω_2' with ω_3 is the position for C. B can be constructed easily as the intersection of circle centred at A radius AC.

Note that there are at most four different solutions (why?).

Rotations by an Angle - Example 4

Example

Let E be a point in the square ABCD such that $\angle EAB = \angle EBA = 15^{\circ}$. Prove that $\triangle CDE$ is equilateral.

Rotations by an Angle - Example 4

Example

Let E be a point in the square ABCD such that $\angle EAB = \angle EBA = 15^{\circ}$. Prove that $\triangle CDE$ is equilateral.

Let F be a point inside ABCD such that $\triangle ABF$ is equilateral.

Rotations by an Angle - Example 4

Example

Let E be a point in the square ABCD such that $\angle EAB = \angle EBA = 15^{\circ}$. Prove that $\triangle CDE$ is equilateral.

Let F be a point inside ABCD such that $\triangle ABF$ is equilateral.

The rotation about A by 30° clockwise sends D to F, and the rotation about B by 30° clockwise sends F to C.

Rotations by an Angle - Example 4

Example

Let E be a point in the square ABCD such that $\angle EAB = \angle EBA = 15^{\circ}$. Prove that $\triangle CDE$ is equilateral.

Let F be a point inside ABCD such that $\triangle ABF$ is equilateral.

The rotation about A by 30° clockwise sends D to F, and the rotation about B by 30° clockwise sends F to C.

Thus the sum of rotation is a rotation about O by 60° sends D to C, where O is the point such that OC = OD, $\angle DOC = 60^{\circ}$, and $\angle OAB = OBA = 15^{\circ}$.

Rotations by an Angle - Example 4

Example

Let E be a point in the square ABCD such that $\angle EAB = \angle EBA = 15^{\circ}$. Prove that $\triangle CDE$ is equilateral.

Let F be a point inside ABCD such that $\triangle ABF$ is equilateral.

The rotation about A by 30° clockwise sends D to F, and the rotation about B by 30° clockwise sends F to C.

Thus the sum of rotation is a rotation about O by 60° sends D to C, where O is the point such that OC = OD, $\angle DOC = 60^{\circ}$, and $\angle OAB = OBA = 15^{\circ}$. Hence $\Box O \equiv E$, $\Box D = COC = COC$

Rotations by an Angle - Example 5

Example

Let ABGF and ACDE be squares outside $\triangle ABC$. Let H be the midpoint of DG. Show that HB = HC and $HB \perp HC$.

Rotations by an Angle - Example 5

Example

Let ABGF and ACDE be squares outside $\triangle ABC$. Let H be the midpoint of DG. Show that HB = HC and $HB \perp HC$.

Since CD = CA and $\angle DCA = 90^{\circ}$, so the rotation about C by 90° anti-clockwise sends D to A. Also, the rotation about B by 90° anti-clockwise sends A to G.

Rotations by an Angle - Example 5

Example

Let ABGF and ACDE be squares outside $\triangle ABC$. Let H be the midpoint of DG. Show that HB = HC and $HB \perp HC$.

Since CD = CA and $\angle DCA = 90^{\circ}$, so the rotation about C by 90° anti-clockwise sends D to A. Also, the rotation about B by 90° anti-clockwise sends A to G.

Thus the sum of rotation is a rotation about O by 180° sends D to G, where O is the point such that $\angle OCB = 45^{\circ}$ and $\angle OBC = 45^{\circ}$.

Rotations by an Angle - Example 5

Example

Let ABGF and ACDE be squares outside $\triangle ABC$. Let H be the midpoint of DG. Show that HB = HC and $HB \perp HC$.

Since CD = CA and $\angle DCA = 90^{\circ}$, so the rotation about C by 90° anti-clockwise sends D to A. Also, the rotation about B by 90° anti-clockwise sends A to G.

Thus the sum of rotation is a rotation about O by 180° sends D to G, where O is the point such that $\angle OCB = 45^{\circ}$ and $\angle OBC = 45^{\circ}$.

A rotation of about O by 180° sends D to G means that OD = OG, thus $O \equiv H$.

Rotations by an Angle - Example 6

Example

On the sides of an arbitrary triangle ABC, exterior to it, construct isosceles triangles BCA_1 ACB_1 , CAB_1 with angles at the vertices A_1 , B_1 , and C_1 , respectively equal to α , β and γ .

Prove that if $\alpha+\beta+\gamma=360^\circ$, then the angles of the triangle $A_1B_1C_1$ are equal to $\frac{1}{2}\alpha$, $\frac{1}{2}\beta$ and $\frac{1}{2}\gamma$, that is, they do not depend on the shape of the triangle ABC.

First, point A is taken into itself by the sum of three rotations through the angles β , α , and γ ($\alpha+\beta+\gamma=360^\circ$) about the centers B_1,A_1,C_1 :

$$A \stackrel{\mathsf{rotate}(B_1,\beta)}{\to} C \stackrel{\mathsf{rotate}(A_1,\alpha)}{\to} B \stackrel{\mathsf{rotate}(C_1,\gamma)}{\to} A.$$

Thus, the sum of the these rotations is the identity transformation.

Let C' be the center of the rotation equivalent to the sum of the rotations about B_1 and A_1 . Then it is the rotation through $\alpha + \beta = 360^{\circ} - \gamma$ brings A to B.

However, the rotation about C_1 through γ brings A to B in opposite direction. Since a rotation through an angle θ is the same as the rotation through an angle $360^{\circ} - \theta$ about the same center in the opposite direction, thus $C_1 \equiv C'$.

Therefore $\angle C_1A_1B_1 = \frac{1}{2}\alpha, \angle C_1B_1A_1 = \frac{1}{2}\beta$, and similarly $\angle B_1C_1A_1 = \frac{1}{2}\gamma$.

Rotations by an Angle - Example 7

Example

In triangle ABC, the angle bisector at vertex C intersects the circumcircle and the perpendicular bisectors of sides BC and CA at points R, P, and Q, respectively. The midpoints of BC and CA are K and L, respectively.

Prove that triangles *RPK* and *RQL* have the same area.

Rotations by an Angle - Example 7

WLOG, assume AC < BC. Let $ACB = \gamma$. From the right triangles CLQ and CKP,

$$\angle OPQ = \angle OQP = 90^{\circ} - \frac{\gamma}{2}.$$

Thus, OPQ is isosceles, OP = OQ, and $\angle POQ = 180^{\circ} - 2\left(90^{\circ} - \frac{\gamma}{2}\right) = \gamma$.

CR is the angle bisector, so R is midpoint of \widehat{AB} , and

$$\angle ROA = \angle ROB = \gamma$$
, $AR = RB$.

Consider the rotation around O by angle γ , see the figure below. This transformation moves:

$$Q \to P, \ A \to R, \ R \to B \Rightarrow \triangle QAR \cong \triangle PRB \Rightarrow [QAR] = [PRB].$$

Rotations by an Angle - Example 7

Finally:

$$\frac{[\textit{RQL}]}{[\textit{RQA}]} = \frac{\mathsf{distance}(\textit{L},\textit{CR})}{\mathsf{distance}(\textit{A},\textit{CR})} = \frac{\textit{CL}}{\textit{CA}} = \frac{1}{2}, \text{ and similarly } \frac{[\textit{RPK}]}{[\textit{BPR}]} = \frac{1}{2}$$

Therefore,

$$[\mathit{RQL}] = \frac{1}{2}[\mathit{RQA}] = \frac{1}{2}[\mathit{BPR}] = [\mathit{RPK}]$$

Symmetry - Example 1

Example

 $\angle MON$ is given, together with two points A and B. Find a point X on the side OM such that the triangle XYZ is isosceles: XY = XZ, where Y and Z are on the points of intersection of XA and XB with ON.

Symmetry - Example 1

Let B' be the image of B over OM,

Symmetry - Example 1

Let B^\prime be the image of B over OM, then:

$$\angle B'XA = \angle B'XB + \angle YXZ,$$

Symmetry - Example 1

Let B' be the image of B over OM, then:

$$\angle B'XA = \angle B'XB + \angle YXZ, \ \angle B'XB = 2\angle OXZ = 2(\angle XZY - \angle MON)$$

Symmetry - Example 1

Let B' be the image of B over OM, then:

$$\angle B'XA = \angle B'XB + \angle YXZ, \ \angle B'XB = 2\angle OXZ = 2(\angle XZY - \angle MON) \Rightarrow \angle B'XA = 180^{\circ} - 2\angle MON.$$

Symmetry - Example 1

Let B' be the image of B over OM, then:

$$\angle B'XA = \angle B'XB + \angle YXZ, \ \angle B'XB = 2\angle OXZ = 2(\angle XZY - \angle MON) \Rightarrow \angle B'XA = 180^{\circ} - 2\angle MON.$$

Thus, X is the intersection of OM with the arc constructed on the chord AB', that subtends an angle equal to $180^{\circ}-2\angle MON$.

Symmetry - Example 2

Example

Construct a quadrilateral ABCD in which a circle can be inscribed, given the lengths of two adjacent sides AB and AD and the angles at the vertices B and D.

Symmetry - Example 2

The key idea here is that the reflection of CD over the line through A and the center of the circle is a tangent to the circle!

Symmetry - Example 2

First, we start the construction by point A then segment AB, then segment $AD_1 = AD$ where D is on the line AB, same side as B in respect to A.

Second, because $\angle B$ and $\angle D_1 = \angle D$ are known, thus we can construct rays going from B and D_1 .

Finally, we construct a circle tangents to all three lines.

Symmetry - Example 2

The rest is simple, we reflect D' and its ray over the line AO where O is the center of the circle. The reflected ray will intersect the ray from B at C. We are done.

Symmetry - Example 3

Example

A billiard ball bounces off a side of a billiard table in such a manner that the two lines along which it moves before and after hitting the sides are equally inclined to the side. Suppose a billiard table were bordered by n lines $\ell_1,\ell_2,\ldots,\ell_n$. Let A and B be two given points on the billiard table. In what direction should one hit a ball placed at A so that it will bounce consecutively off the lines $\ell_1,\ell_2,\ldots,\ell_n$, and then pass through the point B (see the diagram below, where n=3)?

Symmetry - Example 3

Assume that the problem has been solved, that is, that points $X_1, X_2, ..., X_n$ have been found on the lines $\ell_1, \ell_2, ..., \ell_n$ such that $AX_1X_2 ... X_nB$ is the path of a billiard ball (the case n=3).

It is easy to see that the point X_n , is the point of intersection of the line ℓ_n with the line $X_{n-1}B_n$, where B_n , is the image of B in ℓ_n , that is, the points B_n, X_n, X_{n-1} lie on a line.

But then the point X_{n-1} is the point of intersection of the line ℓ_{n-1} with the $X_{n-2}B_{n-1}$, where B_{n-1} , is the image of B_n in ℓ_{n-1} and so on.

Symmetry - Example 3

Assume that the problem has been solved, that is, that points $X_1, X_2, ..., X_n$ have been found on the lines $\ell_1, \ell_2, ..., \ell_n$ such that $AX_1X_2 ... X_nB$ is the path of a billiard ball (the case n=3).

Here's the construction: Reflect the point B in I_n , obtaining the point B_n ; next reflect B_n in I_{n-1} to obtain B_{n-1} , and so forth, until the image B_1 of the point B_2 , in line ℓ_1 is obtained.

The point X_1 , that determines the direction in which the billiard ball at A must be hit, is obtained as the point of intersection of the line ℓ_1 with the line AB_1 . It is then easy to find the points $X_2, \ldots X_n$ with the aid of the points $B_2, \ldots B_n$ and X_1 .

January 18, 2025

Symmetry - Example 4

Example

A center of symmetry of a set S means a point O, not necessarily in S, such that for every point $A \in S$, there is another point $B \in S$ such that O is the midpoint of AB. We say that B is symmetric to A with respect to O.

Prove that a set S containing a *finite* number of points cannot have more than one center of symmetry.

Example from Geometric Transformations II session:

The strip formed by two parallel lines clearly has infinitely many centers of symmetry. Can a figure have more than one, but only a finite number of centers of symmetry (for example, can it have two and only two centers of symmetry)?

Symmetry - Example 4 - Solution by the Extremal Principle

Let O be the center of symmetry. Suppose to the contrary that $\mathcal F$ has another center of symmetry $O'\not\equiv O$. Since $\mathcal F$ contains a finite number of points, by the Extremal Principle, there exists $A\in\mathcal F$ with the greatest distance from O. We consider two cases A,O,O' are collinear and A,O,O' are not collinear.

Case 1: A, O, O' are collinear. There are three sub-cases.

Case 1.1: O is between A and O'. Let X be the point symmetric to A with respect to O' (see the diagram below on the left). Then XO > XO' = AO' > AO, which is a contradiction to the maximality of AO.

Case 1.2: O' is between A and O. Let Y be the point symmetric to A with respect to O, and let Y' be the point symmetric to Y with respect to O' (see the diagram above on the right). Then Y'O > Y'O' = YO' > YO = AO, which is a contradiction to the maximality of AO.

Case 1.3: A is between O and O'. Let Z be the point symmetric to A with respect to O' (see the diagram below) Then ZO > AO, which is a contradiction to the maximality of AO.

Case 2: A, O, O' are not collinear. Let B be the point symmetric to A with respect to O, let A' the point symmetric to A with respect to O', and let B' the point symmetric to B with respect to O' (see the diagram below).

Because the quadrilateral ABA'B' has 2 diagonals that bisect each other (AO' = O'A', BO' = O'B'), thus ABA'B' is a parallelogram. Therefore $\angle B'AB + \angle A'BA = 180^{\circ}$, so one of $\angle B'AB$ and $\angle A'BA$ is greater than or equal to 90° .

Case 2.1: $\angle A'BA \ge 90^{\circ}$, then A'O > BO = AO (because $\angle A'BO$ is the largest angle in $\triangle A'BO$), which is a contradiction to the maximality of AO.

Case 2.2: $\angle B'AB \ge 90^{\circ}$, then B'O > AO (because $\angle B'AO$ is the largest angle in $\triangle B'AO$), which is a contradiction to the maximality of AO.

Hence, ${\mathcal F}$ cannot have more than one center of symmetry.

Vector Introduction

Definition (Vector)

Vector is a *directed line segment*, or as an arrow connecting an initial point A with a terminal point B, and denoted by \overrightarrow{AB} . Vectors are usually denoted in lowercase boldface, as in \mathbf{u}, \mathbf{v} , or \mathbf{w} .

A vector is called *zero vector* if the initial point and the terminal point are the same, in other words its magnitude is 0. A zero vector has an arbitrary or indeterminate direction. A *unit vector* is any vector with a length of one.

Vector Introduction

Definition (Equality)

Two vectors are said to be equal if they have the same magnitude and direction.

The equality of \mathbf{u}, \mathbf{v} is denoted as $\mathbf{u} = \mathbf{v}$.

Vector Introduction

Definition (Parallel, Opposite, and Antiparallel)

Two vectors are parallel if they have the same direction but not necessarily the same magnitude: \overrightarrow{AB} and $\overrightarrow{A_1B_1}$ ($\overrightarrow{AB} \parallel \overrightarrow{A_1B_1}$) or \overrightarrow{AB} and $\overrightarrow{A_3B_3}$ ($\overrightarrow{AB} \parallel \overrightarrow{A_3B_3}$.)

Two vectors are *opposite* if they have the same magnitude but opposite direction: \overrightarrow{AB} and $\overrightarrow{A_2B_2}$. Two vectors are *antiparallel* if they have opposite direction: $\overrightarrow{A_2B_2}$ and $\overrightarrow{A_3B_3}$.

Vector Introduction

Definition (Addition and Subtraction)

The sum of \mathbf{u} and \mathbf{v} of two vectors may be defined as $\mathbf{u} + \mathbf{v}$. The resulting vector is sometimes called the resultant vector of \mathbf{u} and \mathbf{v} .

The addition may be represented graphically by placing the tail of the arrow \mathbf{v} at the head of the arrow \mathbf{u} , and then drawing an arrow from the tail of \mathbf{u} to the head of \mathbf{v} . The new arrow drawn represents the vector $\mathbf{u} + \mathbf{v}$, shown as below.

The difference of u and v is u - v, or u + (-v), which is the addition of u to the opposite of v.

Symmetry - Example 4 - Solution by Vectors

Suppose that there were two centers of symmetry, P and Q. Let S be a set of pairwise distinct points in \mathcal{F} :

$$S = \{A_1, A_2, \ldots, A_n\}.$$

Symmetry - Example 4 - Solution by Vectors

Suppose that there were two centers of symmetry, P and Q. Let S be a set of pairwise distinct points in \mathcal{F} :

$$S = \{A_1, A_2, \ldots, A_n\}.$$

For each k = 1, 2, ..., n, let B_k denotes the point in S that is symmetric to A_k with respect to P.

Symmetry - Example 4 - Solution by Vectors

Suppose that there were two centers of symmetry, P and Q. Let S be a set of pairwise distinct points in \mathcal{F} :

$$S=\{A_1,A_2,\ldots,A_n\}.$$

For each k = 1, 2, ..., n, let B_k denotes the point in S that is symmetric to A_k with respect to P.

By the definition of symmetry, we have $\overrightarrow{PA_k} + \overrightarrow{PB_k} = \mathbf{0}$.

Note that for each $k \in \{1, 2, ..., n\}$, there exists $j \in \{1, 2, ..., n\}$ $B_k = A_j$. So $(B_1, B_2, ..., B_n)$ is a permutation of $(A_1, A_2, ..., A_n)$.

Suppose that there were two centers of symmetry, P and Q. Let S be a set of pairwise distinct points in \mathcal{F} :

$$S = \{A_1, A_2, \ldots, A_n\}.$$

For each k = 1, 2, ..., n, let B_k denotes the point in S that is symmetric to A_k with respect to P.

By the definition of symmetry, we have $\overrightarrow{PA_k} + \overrightarrow{PB_k} = \mathbf{0}$.

Note that for each $k \in \{1, 2, ..., n\}$, there exists $j \in \{1, 2, ..., n\}$ $B_k = A_j$. So $(B_1, B_2, ..., B_n)$ is a permutation of $(A_1, A_2, ..., A_n)$.

Summing this from k = 1 to k = n implies that:

$$\sum_{k=1}^{n} \overrightarrow{PA_k} + \overrightarrow{PB_k} = \mathbf{0}, \ \sum_{k=1}^{n} \overrightarrow{PA_k} = \sum_{k=1}^{n} \overrightarrow{PB_k} \Rightarrow \sum_{k=1}^{n} \overrightarrow{PA_k} = \mathbf{0}.$$

Suppose that there were two centers of symmetry, P and Q. Let S be a set of pairwise distinct points in \mathcal{F} :

$$S = \{A_1, A_2, \ldots, A_n\}.$$

For each k = 1, 2, ..., n, let B_k denotes the point in S that is symmetric to A_k with respect to P.

By the definition of symmetry, we have $\overrightarrow{PA_k} + \overrightarrow{PB_k} = \mathbf{0}$.

Note that for each $k \in \{1, 2, ..., n\}$, there exists $j \in \{1, 2, ..., n\}$ $B_k = A_j$. So $(B_1, B_2, ..., B_n)$ is a permutation of $(A_1, A_2, ..., A_n)$.

Summing this from k = 1 to k = n implies that:

$$\sum_{k=1}^{n} \overrightarrow{PA_k} + \overrightarrow{PB_k} = \mathbf{0}, \ \sum_{k=1}^{n} \overrightarrow{PA_k} = \sum_{k=1}^{n} \overrightarrow{PB_k} \Rightarrow \sum_{k=1}^{n} \overrightarrow{PA_k} = \mathbf{0}.$$

By the same reasoning, we also have $\overrightarrow{QA_1} + \overrightarrow{QA_2} + \ldots + \overrightarrow{QA_n} = \mathbf{0}$. Subtracting,

$$\mathbf{0} = \sum_{k=1}^{n} \overrightarrow{PA_k} - \sum_{k=1}^{n} \overrightarrow{QA_k} = n\overrightarrow{QP} \Rightarrow \overrightarrow{QP} = 0 \Rightarrow \boxed{Q \equiv P.}$$