

Model

MANOVA

1 factor

Assumptions:

$$X_{\ell,j} \sim N\left(\mu_{\ell}, \Sigma_{\ell}\right)$$
.

$$\Sigma_1 = \Sigma_2 = \dots = \Sigma_g.$$

$$\mu_{\ell} = \mu + \tau_{\ell}, \qquad \sum_{\ell=1}^{g} n_{\ell} \tau_{\ell} = 0.$$

Hypothesis

$$H_0: \forall \mu_\ell = \mu \qquad \leftrightarrow \qquad \forall \tau_\ell = 0$$

 $H_1: \exists \tau_\ell \neq 0$

Decomposition of variance

$$SST = \sum_{\ell=1}^{g} \sum_{j=1}^{g} (X_{\ell,j} - \bar{X}) (X_{\ell,j} - \bar{X})^{T}$$

$$SSW = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (X_{\ell,j} - \bar{X}_{\ell}) (X_{\ell,j} - \bar{X}_{\ell})^{T}$$

$$SSB = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (X_{\ell} - \bar{X}) (X_{\ell} - \bar{X})^{T}$$

Decomposition of variance

$$SST = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (X_{\ell,j} - \bar{X}) (X_{\ell,j} - \bar{X})^{T}$$

$$SSW = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (X_{\ell,j} - \bar{X}_{\ell}) (X_{\ell,j} - \bar{X}_{\ell})^{T}$$

$$SSB = \sum_{\ell=1}^{g} \sum_{j=1}^{n_{\ell}} (X_{\ell} - \bar{X}) (X_{\ell} - \bar{X})^{T}$$

$$\Lambda^* = \frac{|SSW|}{|SSB + SSW|}.$$

Illustration

Exact Distributions of Wilks Lambda.

Table 6.3 Distribution of Wilks' Lambda, $\Lambda^* = \mathbf{W} / \mathbf{B} + \mathbf{W} $		
No. of variables	No. of groups	Sampling distribution for multivariate normal data
p = 1	$g \ge 2$	$\left(rac{\Sigma n_{\ell}-g}{g-1} ight)\left(rac{1-\Lambda^*}{\Lambda^*} ight)\sim F_{g-1,\Sigma n_{\ell}-g}$
p = 2	$g \ge 2$	$\left(\frac{\Sigma n_{\ell}-g-1}{g-1}\right)\left(\frac{1-\sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right)\sim F_{2(g-1),2(\Sigma n_{\ell}-g-1)}$
$p \ge 1$	g = 2	$\left(rac{\Sigma n_{\ell}-p-1}{p} ight)\left(rac{1-\Lambda^*}{\Lambda^*} ight)\sim F_{p,\Sigma n_{\ell}-p-1}$
$p \ge 1$	g = 3	$\left(\frac{\Sigma n_{\ell} - p - 2}{p}\right) \left(\frac{1 - \sqrt{\Lambda^*}}{\sqrt{\Lambda^*}}\right) \sim F_{2p, 2(\Sigma n_{\ell} - p - 2)}$

Approximate distribution of Wilks Lambda.

$$-\left(n-1-\frac{p+g}{2}\right)\ln\left(\Lambda^*\right) \sim \chi_{p(g-1)}^2$$

Pairwise Cl's

$$\left[(\bar{X}_{ai} - \bar{X}_{bi}) \pm t_{n-g}, \frac{\alpha}{\frac{pg(g-1)}{2}} \cdot \sqrt{S_{wii} \cdot \frac{1}{n_a} + \frac{1}{n_b}} \right], i = 1, ..., p \land a, b = 1, ..., g$$

Model Check

Hypothesis:

$$H_0: \forall \Sigma_{\ell} = \Sigma$$
$$H_1: \exists \Sigma_{\ell} \neq \Sigma$$

Likelihood Ratio Test

$$\Lambda = \frac{\underset{\Sigma}{max} L(\Sigma)}{\underset{\Sigma_{1}, \cdots, \Sigma_{g}}{max} L(\Sigma_{1}, \cdots, \Sigma_{g})}$$

$$-2\log \Lambda = \left((n-g)\log |S_p| - \sum_{l=1}^{g} (n_l - 1)\log |S_l| \right)$$

Reject:

$$-2c \cdot \log \Lambda > \chi^2_{p^{\frac{p+1}{2}},\alpha}$$

MANOVA2

subtitle

Assumptions:

$$X_{\ell k,j} \sim N_p \left(\mu_{\ell k}, \Sigma_{\ell k} \right)$$
.

$$\forall \Sigma_{\ell k} = \Sigma.$$

$$\mu_{\ell k} = \mu + \tau_{\ell} + \beta_k + \gamma_{\ell k}.$$

Hypothesis

$$H_{0,\gamma}: \forall \gamma_{\ell k} = 0$$
 $H_{0,\tau}: \forall \tau \ell = 0$ $H_{0,\beta}: \forall \beta_k = 0$
 $H_{1,\gamma}: \exists \gamma_{\ell k} \neq 0$ $H_{1,\tau}: \exists \tau \ell \neq 0$ $H_{1,\beta}: \exists \beta_k \neq 0$