[65] from google.colab import files
 from google.colab import drive
 drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

[66] import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns

[67] df = pd.read_csv("/content/drive/MyDrive/ML/USA_Housing.csv", sep =",")

df.head()

 \Box

Address	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	wg. Area Income	
208 Michael Ferry Apt. 674\nLaurabury, NE 3701	1.059034e+06	23086.800503	4.09	7.009188	5.682861	79545.458574	0
188 Johnson Views Suite 079\nLake Kathleen, CA	1.505891e+06	40173.072174	3.09	6.730821	6.002900	79248.642455	1
9127 Elizabeth Stravenue\nDanieltown, WI 06482	1.058988e+06	36882.159400	5.13	8.512727	5.865890	61287.067179	2
USS Barnett\nFPO AP 44820	1.260617e+06	34310.242831	3.26	5.586729	7.188236	63345.240046	3
USNS Raymond\nFPO AE 09386	6.309435e+05	26354.109472	4.23	7.839388	5.040555	59982.197226	4

```
df.columns = ['Income', 'Age', 'No_rooms', 'No_bedrooms', 'Population', 'Price', 'Address']
names = ['Income', 'Age', 'No_rooms', 'No_bedrooms', 'Population', 'Price']
for i in names:
    df[i] = (df[i] - min(df[i])) / (max(df[i]) - min(df[i]))
df.head()

The location of the price Address Address
```

*		Income	Age	No_rooms	No_bedrooms	Population	Price	Address
	0	0.686822	0.441986	0.501502	0.464444	0.329942	0.425210	208 Michael Ferry Apt. 674\nLaurabury, NE 3701
	1	0.683521	0.488538	0.464501	0.242222	0.575968	0.607369	188 Johnson Views Suite 079\nLake Kathleen, CA
	2	0.483737	0.468609	0.701350	0.695556	0.528582	0.425192	9127 Elizabeth Stravenue\nDanieltown, WI 06482
	3	0.506630	0.660956	0.312430	0.280000	0.491549	0.507384	USS Barnett\nFPO AP 44820
	4	0.469223	0.348556	0.611851	0.495556	0.376988	0.250702	USNS Raymond\nFPO AE 09386

[70] df.corr()

	Income	Age	No_rooms	No_bedrooms	Population	Price
Income	1.000000	-0.002007	-0.011032	0.019788	-0.016234	0.639734
Age	-0.002007	1.000000	-0.009428	0.006149	-0.018743	0.452543
No_rooms	-0.011032	-0.009428	1.000000	0.462695	0.002040	0.335664
No_bedrooms	0.019788	0.006149	0.462695	1.000000	-0.022168	0.171071
Population	-0.016234	-0.018743	0.002040	-0.022168	1.000000	0.408556
Price	0.639734	0.452543	0.335664	0.171071	0.408556	1.000000

cmatplotlib.axes._subplots.AxesSubplot at 0x7fa1b6e562d0>


```
# Biểu diễn dữ liệu
plt.plot(df['Income'], df['Price'], 'go')
plt.xlabel('Income')
plt.ylabel('Price')
plt.show()
```



```
[73] # Loại bỏ các giá trị ngoại lai:
    # Tính IQR
    q1 = df['Income'].quantile(q=0.25)
    q3 = df['Income'].quantile(q=0.75)
    iqr = q3 - q1
    # Tính cận trên, cận dưới
    lower = q1 - 1.5*iqr
    upper = q3 + 1.5*iqr
# Loại bỏ outlier
df = df[(df['Income']>lower) & (df['Income']<upper)]</pre>
```



```
[75] from sklearn.model_selection import train_test_split
     from sklearn import datasets, linear_model
     from sklearn import metrics
     from sklearn.metrics import accuracy_score
     df_train, df_test = train_test_split(df,test_size=0.2)
[76] X = df_train["Income"]
     y = df_train['Price']
[77] y = np.array(y)
     y = y.reshape(y.shape[0], 1)
     X = np.array(X)
     X = X.reshape(X.shape[0], 1)
     one = np.ones((X.shape[0], 1))
     Xbar = np.concatenate((one, X), axis =1)
[78] A = np.dot(Xbar.T, Xbar)
     b = np.dot(Xbar.T, y)
     w = np.dot(np.linalg.pinv(A), b)
     w0 = w[0][0]
     w1 = w[1][0]
     array([[0.05751174],
            [0.77563527]])
```

```
[79] X_test=np.array(df_test['Income']).reshape(-1,1)
    y_test=np.array(df_test['Price']).reshape(-1,1)
    y_pred=w0+w1*X_test
```

```
[80] # Drawing the fitting line
  plt.plot(X.T, y.T, 'bo')
  plt.plot(X_test, y_pred, 'ro')
  plt.xlabel('Income')
  plt.ylabel('Price')
  plt.show()
```



```
[81] regr = linear_model.LinearRegression(fit_intercept=True)
    regr.fit(np.array(df_train['Income']).reshape(-1,1), df_train['Price'])
    print(regr.coef_)

[82] print(regr.intercept_)
    0.05751173814521071

[83] y_predict= regr.predict(np.array(X_test).reshape(-1,1))
```

```
[84] # Drawing the fitting line
   plt.plot(X.T, y.T, 'bo')
   plt.plot(X_test.reshape(-1,1) , y_predict, 'ro') # data
   plt.xlabel('Incom')
   plt.ylabel('Price')
   plt.show()
```



```
[86] #Cách sklearn
    print(metrics.mean_absolute_error(y_test, y_predict))
    #Cách sử dụng công thức toán
    print(metrics.mean_absolute_error(y_test, y_pred))
```

0.0903708970084246 0.0903708970084246

Nhận xét: Ta có MAE = 9,04% nên sự khác biệt trung bình giữa các giá trị dự đoán và giá trị thực tế là khá nhỏ. Do đó mô hình hoạt động khá tốt