Vision-Aided Navigation (086761) Homework #1

Submission in pairs by: 12 November 2017, 13:30. Electronic submission is preferred.

Basic probability

1. Consider a random vector x with a Gaussian distribution:

$$x \sim N(\mu_x, \Sigma_x)$$
.

- (a) Write an explicit expression for p(x).
- (b) Consider a linear transformation y = Ax + b. Show y has a Gaussian distribution, $y \sim N(\mu_y, \Sigma_y)$, and find expressions of μ_y and Σ_y in terms of μ_x and Σ_x .
- 2. Let $p(x) = N(\hat{x}_0, \Sigma_0)$ be a prior distribution over $x \in \mathbb{R}^n$ with known mean $\hat{x}_0 \in \mathbb{R}^n$ and covariance $\Sigma_0 \in \mathbb{R}^{n \times n}$. Consider a given measurement $z \in \mathbb{R}^m$ with a corresponding linear measurement model z = Hx + v, where H is a measurement matrix and v is Gaussian noise $v \sim N(0, R)$ with covariance R. The matrices $H \in \mathbb{R}^{m \times n}$ and $R \in \mathbb{R}^{m \times m}$ are known.
 - (a) Write an expression for the a posteriori probability function (pdf) over x, p(x|z), in terms of solely the prior p(x) and measurement likelihood p(z|x).
 - (b) Derive analytically an expression for the maximum a posteriori (MAP) estimate x^* and the associated covariance Σ or information matrix $I = \Sigma^{-1}$ such that $p(x|z) = N(x^*, \Sigma)$.

Useful relation: $||a||_{\Sigma}^2 = ||\Sigma^{-1/2}a||^2$ where $\Sigma^{-1} = \Sigma^{-T/2}\Sigma^{-1/2}$.

Hands-on Exercises - Please print and submit your code.

- 1. Rotations. Implement transformation from rotation matrix to Euler angles and vice versa
 - (a) Implement a function that receives as input Euler angles (roll angle ϕ , pitch angle θ , and yaw angle ψ) and calculates the corresponding rotation matrix assuming roll-pitch-yaw order from Body to Global: $R = R_Z(\psi) R_Y(\theta) R_X(\phi)$.
 - (b) What is the rotation matrix from Body to Global for $\psi = \pi/7$, $\theta = \pi/5$, and $\phi = \pi/4$?
 - (c) Implement a function that receives as input a rotation matrix and calculates the corresponding Euler angles assuming roll-pitch-yaw order.
 - (d) What are the Euler angles in degrees for the following rotation matrix (Body to Global, assuming roll-pitch-yaw order):

$$R_B^G = \left[\begin{array}{cccc} 0.813797681 & -0.440969611 & 0.378522306 \\ 0.46984631 & 0.882564119 & 0.0180283112 \\ -0.342020143 & 0.163175911 & 0.925416578 \end{array} \right]$$

2. 3D rigid transformation. The coordinates of a 3D point in a global frame are

$$l^G = (450, 400, 50)^T$$
.

This 3D point is observed by a camera whose pose is described by the following rotation and translation with respect to the global frame:

$$R_G^C = \left[\begin{array}{ccc} 0.5363 & -0.8440 & 0\\ 0.8440 & 0.5363 & 0\\ 0 & 0 & 1 \end{array} \right]$$

1

$$t_{C \to G}^G = \left(-451.2459, 257.0322, 400\right)^T$$

Calculate the 3D point coordinates in a camera frame ($l^C =?$). Write an explicit expression for the appropriate 3D transformation.

- 3. Pose composition. An autonomous ground vehicle (robot) is commanded to move forward by 1 meter each time. Due to imperfect control system, the robot instead moves forward by 1.01 meter and also rotates by 1 degree.
 - Remark: In this exercise we consider a 2D scenario, where pose is defined in terms of x-y coordinates and an orientation (heading) angle.
 - (a) Write expressions for the corresponding commanded and actual transformations note these are relative to the robot frame.
 - (b) Assuming robot starts moving from the origin, calculate evolution of robot pose (in terms of x-y position and orientation angle) for 10 steps using pose composition. Draw the commanded and actual robot pose for 10 steps. What is the dead reckoning error at the end?