ModSim Exercise 9

Yoonyoung Cho

November 9 2015

1 Model

The baseball is modelled as a particle, since the rotation is relatively trivial for the purposes of the investigation; modelling baseball as a rigid body involves more complex mechanics – namely aerodynamics, Magnus effects, etc. – which are beyond the scope of the question, as the primarily concern of the question is translational displacement.

2 Interactions

The forces that would act upon the ball are: Gravity¹, $\vec{F_g} = -\frac{Gm1m2}{\vec{r}^2}\hat{\mathbf{r}}$ Drag^2 , $\vec{F_d} = -1/2\rho C_d A \vec{v}^2 \hat{\mathbf{v}}$

3 Free Body Diagram

Figure 1: Free body diagram of the baseball.

In the diagram, F_d is Drag, F_g is Gravity, and v is the velocity(notated in grey since it does not contribute to net force).

4 Mathematical Abstraction

The ball was modeled in a 2D coordinate system, where sideways movement was ignored; in this manner, the x-axis was aligned parallel to the ground; likewise, the y-axis was normal to the ground. The mathematical

 $^{^1\}mathrm{Primary}$ Factor

²Secondary Factor

relationships are as follows:

$$\begin{split} \frac{d\vec{r}}{dt} &= \vec{v} \\ \frac{d\vec{v}}{dt} &= \frac{\vec{F}}{m_b} \\ \vec{F} &= \vec{F_g}(\vec{r}) + \vec{F_d}(\vec{v}) \\ \vec{F_g} &= -\frac{Gm_em_b}{\vec{r}^2} \hat{\mathbf{r}} \\ \vec{F_d} &= -1/2\rho C_d A \vec{v}^2 \hat{\mathbf{v}} \end{split}$$

As for initial conditions, at time t = 0, the ball would be some height above the origin (to accurately reflect baseball scenario), but its x-value would be at the reference(0); the velocity would depend on the occasion.

5 Explanation of Terms

Term	Description	Value	Unit
$ec{r}$	Position of baseball	< 0,5 >	m
\vec{v}	Velocity of baseball	< 39, 12 >	m/s
G	Gravitational Constant	6.67408e - 11	$m^3kg^{-1}s^{-2}$
m_b	Mass of Baseball	.145	kg
m_e	Mass of Earth	5.9742e24	$_{ m kg}$
A	Cross-sectional area of baseball	.004	m^2
$ec{ec{F_d}}$	Gravity	< 0, -1.42 >	N
$ec{F_d}$	Drag Force	< -0.6, -0.09 >	N
ho	Density of Air	1.225	kg/m^3
C_d	Drag Coefficient of Baseball	0.3	-

Table 1: The terms in the differential equation; Vectors were notated element-wise. Constant values are taken verbatim; variable values are samples within reasonable range.