- 1. 用适当符号 $(\in, \notin, =, \subsetneq)$ 填空: π _**Q**; $\{x|x=2k+1, k \in \mathbf{Z}\}$ _ $\{x|x=2k-1, k \in \mathbf{Z}\}$; $\{3.14\}$ _**Q**; $\{y|y=x^2\}$ _ $\{x|y=x^2\}$.
- 2. 已知 $P = \{y = x^2 + 1\}$, $Q = \{y|y = x^2 + 1, x \in \mathbf{R}\}$, $E = \{x|y = x^2 + 1, x \in \mathbf{R}\}$, $F = \{(x,y)|y = x^2 + 1, x \in \mathbf{R}\}$, $G = \{x|x \ge 1\}$, $H = \{x|x^2 + 1 = 0, x \in \mathbf{R}\}$, 则各集合间关系正确的有______. (答案可能不唯一) (A) P = F (B) Q = E (C) E = F (D) $Q \subseteq G$ (E) $H \subseteq P$
- 3. 设全集是实数集 $\mathbf{R}, M = \{x | -2 \le x \le 2\}, N = \{x | x < 1\}, 则 <math>\mathbb{C}_U M \cap N = \mathbb{C}_U M \cap N = \mathbb{C}_U M \cap N = \mathbb{C}_U M \cap M = \mathbb{C}$
- 4. 设 $A = \{x \mid -4 < x < 4x \in \mathbb{R}\}, B = (-\infty, 1] \cup [3, +\infty), 则 \{x \mid x \in Ax \notin A \cap B\} = .$
- 5. $\ \ \mathcal{C}_{A} = \{x | x = \sqrt{k}, k \in \mathbb{N}\}, B = \{x | x \leq 3, x \in \mathbb{Q}\}, \ \mathbb{M} \ A \cap B = \mathbb{N}\}$
- 6. 设全集 $U = \{2, 3, a^2 + 2a 3\}$, 集合 $A = \{|2a 1|, 2\}, C_U A = \{5\}$, 则实数 a = 0.
- 7. (1) 设 $M = \{y | y = x^2, x \in \mathbf{R}\}, N = \{x | x = t, t \in \mathbf{R}\},$ 则 $M \cap N =$. (2) 设 $M = \{(x, y) | y = x^2, x \in \mathbf{R}\},$ $N = \{(t, x) | x = t, t \in \mathbf{R}\},$ 则 $M \cap N =$.
- 8. 设全集 $U=1,2,3,4, \mathbb{C}_U A \cap B=\{3\}, A \cap \mathbb{C}_U B=\{2\}, \mathbb{C}_U A \cup \mathbb{C}_U B=\{2,3,4\}, \ \mathbb{U} \cap \mathbb{C}_U B=\mathbb{C}_U A \cap \mathbb{C}_U B \cap \mathbb{C}_U B \cap \mathbb{C}_U A \cap \mathbb{$
- 9. 集合 $C = \{x | x = \frac{k}{2} \pm \frac{1}{4}, k \in \mathbf{Z}\}, D = \{x | x = \frac{k}{4}, k \in \mathbf{Z}\},$ 试判断 C 与 D 的关系, 并证明.
- 10. 集合 $A = \{x|x^2 + 4x = 0\}, B = \{x|x^2 + 2(a+1)x + a^2 1 = 0, x \in \mathbf{R}\}, (1)$ 若 $A \cap B = A$, 求实数 a 的取值范围:

例 3 若集合 A = [2,3], 集合 B = [a2a+1], (1) 若 $A \subset \neq B$, 求实数 a 的取值范围;(2) 若 $A \cap B \neq \emptyset$, 求实数 a 的取值范围. 【课后反馈】

- 11. 设全集 $U = \mathbf{R}$, 集合 $A = \{x | f(x) = 0\}, B = \{x | g(x) = 0\}, C = \{x | h(x) = 0x \in \mathbf{R}\}$, 则方程 $\frac{f^2(x) + g^2(x)}{h(x)} = 0$ 的解集是 (用 UABC 表示).
- 12. (1) 已知集合 $A = \{y|y = x^2, x \in \mathbf{R}\}, B = \{y|y = 4 x^2, x \in \mathbf{R}\},$ 则 $A \cap B =$. (2) 已知集合 $A = \{(x,y)|y = x^2, x \in \mathbf{R}\}, B = \{(x,y)|y = 4 x^2, x \in \mathbf{R}\},$ 则 $A \cap B =$.
- 13. 设 $m \in \mathbb{R}$, 已知 $A = \{.x|x^2 3x + 2 = 0\}, B = \{.x|mx + 1 = 0\}, 且 B \subset A$, 则 m = 0
- 14. (1) 集合 A 满足 $\{1\} \subseteq A \subset \neq \{1, 2, 3, 4\}$, 则满足条件的集合 A 有个. (2) 若 $A \cup B = \{1, 2\}$, 将满足条件的集合 A、B 写成集合对 (A, B), 则集合对 (A, B) 有个.
- 15. 已知 $A = \{x|x^2 3x + 2 = 0\}, B = \{x|x^2 ax + a = 0, x \in \mathbf{R}\},$ 若 $B \subset A$, 求满足题意的实数 a.
- 16. 设集合 $A = \{x | x^2 + px + 1 = 0, x \in \mathbf{R}\}$, 若 $A \cap R^+ = \emptyset$. 求实数 p 的取值范围.
- 17. 设函数 $f(x) = \lg(\frac{2}{x+1} 1)$ 的定义域为集合 A, 函数 $g(x) = \sqrt{1 |x+a|}$ 的定义域为集合 B. (1) 当 a = 1 时, 求集合 B. (2) 问: $a \ge 2$ 是 $A \cap B = \emptyset$ 的什么条件 (在"充分非必要条件、必要非充分条件、充要条件、既非充分也非必要条件"中选一)? 并证明你的结论.