Multi-dimensional Scaling

Debajyoti Mondal

University of Saskatchewan

Given Data → Find Plot (Classic – Multi-Dimensional-Scaling)

Algorithm

- ♦ Set up the matrix of squared distances **D**²
- \Rightarrow Apply the double centering: $B = -\frac{1}{2} \vec{J} \vec{D}^2 \vec{J}$
- Compute m eigenvalues and m eigenvectors
- Multiply eigenvectors and sqrt of eigenvalues

Classic Multi-Dimensional-Scaling (MDS)

- Started from the matrix of pairwise Euclidean distances (D²)
- Computed pseudo scalar product matrix B from D²
- Found out interesting vectors that gave us the coordinates.

 What would you do if the distances are not Euclidean?

- PCA (fast)
- Non-metric MDS (iterative, slow, better result than PCA)

- Get some data
- Subtract the mean from each dimension
- Calculate covariance matrix
- Find interesting vectors that will represent the principal components (distinguishing feature)

- Get some data
- Subtract the mean from each dimension
- Calculate covariance matrix
- Find interesting vectors that will represent the principal components (distinguishing feature)

	x	y
	2.5	2.4
	0.5	0.7
	2.2	2.9
	1.9	2.2
Data =	3.1	3.0
	2.3	2.7
	2	1.6
	1	1.1
	1.5	1.6
	1.1	0.9
	'	•

- Get some data
- Subtract the mean from each dimension
- Calculate covariance matrix
- Find interesting vectors that will represent the principal components (distinguishing feature)

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{(n-1)}$$

$$var(X) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})}{(n-1)}$$

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)}$$

Covariance is a measure of the joint variability of two random variables.

- Get some data
- Subtract the mean from each dimension
- Calculate covariance matrix
- Find interesting vectors that will represent the principal components (distinguishing feature)

$$var(X) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{(n-1)}$$

$$var(X) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})}{(n-1)}$$

$$cov(X, Y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{X})}{(n-1)}$$

Covariance is a measure of the joint variability of two random variables.

- Get some data
- Subtract the mean from each dimension
- Calculate covariance matrix
- Find interesting vectors that will represent the principal components (distinguishing feature)

```
cov = \begin{pmatrix} .616555556 & .615444444 \\ .615444444 & .716555556 \end{pmatrix}
```

```
eigenvalues = \begin{pmatrix} .0490833989 \\ 1.28402771 \end{pmatrix} eigenvectors = \begin{pmatrix} -.735178656 \\ .677873399 \\ -.735178656 \end{pmatrix}
```

- Get some data
- Subtract the mean from each dimension
- Calculate covariance matrix
- Find interesting vectors that will represent the principal components (distinguishing feature)

- Get some data
- Subtract the mean from each dimension
- Calculate covariance matrix
- Find interesting vectors that will represent the principal components (distinguishing feature)

 We now have a ordered list of eigenvectors – in this case only 2 vectors – shown in dashed lines

 We now want to construct feature of the datapoints

• We now have a ordered list of eigenvectors – in this case only 2 vectors – shown in dashed lines

 We now want to construct a feature of the datapoints by choosing the most important *k* eigenvectors

 We now have a ordered list of eigenvectors – in this case only 2 vectors – shown in dashed lines

• We now want to construct a feature of the datapoints by choosing the most important *k* eigenvectors

```
eigenvalues = \begin{pmatrix} .0490833989 \\ 1.28402771 \end{pmatrix} eigenvectors = \begin{pmatrix} -.735178656 \\ .677873399 \\ -.735178656 \end{pmatrix}
```

 $\begin{pmatrix} -.677873399 \\ -.735178656 \end{pmatrix}$

 Multiply the 'meansubtracted data' with the selected vector to get the selected feature for each data point

• Since we have only one eigenvector, we will get one feature per datapoint

	V	y^{\checkmark}	
	.69	.49	
	-1.31	-1.21	
	.39	.99	
	.09	.29	(677873399)
DataAdjust =	1.29	1.09	$\left(735178656 \right)$
	.49	.79	
.19 81 31	31		
	81		
	31		
	71	-1.01	

Final Result

Classic Multi-Dimensional-Scaling (MDS) vs Principal Component Analysis (PCA)

- PCA minimizes dimensions, preserving covariance of data
- MDS minimizes dimensions, preserving distance between data points
- They are different, if distance measure is different.

Classic Multi-Dimensional-Scaling (MDS) vs

- Started from the matrix of pairwise Euclidean distances D²
- Computed pseudo scalar product matrix B from D²
- Found out interesting vectors that gave us the coordinates.

- Get some data
- Subtract the mean from each dimension
- Calculate covariance matrix
- Find interesting vectors that will represent the principal components (distinguishing feature)

	PCA	MDS	
n → data points	Covariance	Gram matrix	
D→ dimensions	matrix (D x D)	$(n \times n)$	
Computation	$O((n+d)D^2)$	$O((D+d)n^2)$	

Learning Goal

- Understand dataset types and structural properties of data
- Learn the double centering operation
- Able to relate distance square matrix to scalar product matrix
- Describe the basic idea behind multi-dimensional scaling
- Get familiar with the classic multi-dimensional scaling algorithm