

IAP20 REQUESTED 14 DEC 2005

LETTER FOR PCT ARTICLE 34 AMENDMENT OF CLAIMS

Date : March 25, 2005

International Preliminary Examination Authority
Korean Intellectual Property Office
920 Dunsan-dong, Seo-gu, Daejeon 302-701
Republic of Korea

Amendment of the claims under Article 34
International Application No.: PCT/KR2004/001441
International Filing Date: 16 June 2004

Title: "GABION UNIT AND GABION MESH COMPRISING IT"
Applicant: HUH, Soo-Young et al

Agent: YEWN, Kyung-Hyun
2F, Shinwon Bldg., 823-14 Yeoksam-dong, Kangnam-gu,
Seoul 135-933 Republic of Korea
(Tel. No.: 82-2-563-5400)
Agent's File No.: PCT040614

Dear Sir(s):

Applicant herewith submits replacement sheets with regard to the above-referenced international application, as enclosed. Please take into consideration the claim amendment in examining this international application.

In respect of each claim appearing in the international application based on the replacement sheets submitted herewith, the following claims are:

- (1) unchanged : claim 2 and claim 6
- (2) cancelled : none
- (3) added : none

10/560780

IAP20 Recd 13.12.14 DEC 2005

(4) amended : claim 1 and claims 3 to 5

	Before	Amended
Claim 1	~ particularly suitable for ~	~ suitable for ~
Claim 3 to 5	~ as claimed in claim 1, wherein ~	~ as claimed in claim 2, wherein ~

Sincerely,

Applicant (agent) YEWN, Kyung-Hyun (seal)

CLAIMS

1. (amended) A spiral double-twisted structure suitable for a gabion unit of a gabion mesh, comprising:

5 i) an n-th upper steel wire (A_n) and an n-th lower steel wire (B_n) which are paired with each other and rotated in one direction to form a front spiral twisted structure,

ii) a k-th transverse steel wire (C_k) which is transversely inserted between the n-th upper steel wire (A_n) and the n-th lower steel wire (B_n) of the front spiral twisted structure, and

10 iii) the n-th upper steel wire (A_n) and the n-th lower steel wire (B_n) which are rotated in a direction opposite to the one direction after passing over the k-th transverse steel wire (C_k) serving as a centerline, in order to form a rear spiral twisted structure, where k represents the relative position relationship among transverse steel wires and is a positive integer including 0, and n represents the relative position relationship among the upper and
15 lower steel wires and is a positive integer including 0.

2. A gabion unit including two longitudinal steel wires and one transverse steel wire, comprising:

20 1) one k-th spiral double-twisted structure including a k-th transverse steel wire (C_k);

2) two ($k+1$)-th spiral double-twisted structures including a ($k+1$)-th transverse steel wire (C_{k+1}); and

25 3) one ($k+2$)-th spiral double-twisted structure including a ($k+2$)-th transverse steel wire (C_{k+2}), where k represents the relative position relationship among the transverse steel wires and is a positive integer including 0.

3. (amended) The gabion unit as claimed in claim 2, wherein the k-th spiral double-twisted structure is formed in such a manner that:

30 i) an n-th upper steel wire (A_n) and an n-th lower steel wire (B_n) are paired with each other and rotated in one direction to form a front spiral twisted structure,

ii) the k-th transverse steel wire (C_k) is transversely inserted between the n-th upper steel wire (A_n) and the n-th lower steel wire (B_n) of the front spiral twisted structure, and

5 iii) the n-th upper steel wire (A_n) and the n-th lower steel wire (B_n) are rotated in a direction opposite to the one direction after passing over the k-th transverse steel wire (C_k) serving as a centerline, in order to form a rear spiral twisted structure, where k represents the relative position relationship among the transverse steel wires and is a positive integer including 0; and n represents the relative position relationship among the upper and lower steel wires and is a positive integer including 0.

10

4. (amended) The gabion unit as claimed in claim 2, wherein the $(k+1)$ -th spiral double-twisted structure is formed in such a manner that:

15 i) the n-th upper steel wire (A_n) is paired with an adjacent $(n+1)$ -th lower steel wire (B_{n+1}) and an $(n-1)$ -th upper steel wire (A_{n-1}) is paired with the n-th lower steel wire (B_n), and the pairs of steel wires are then rotated in the one direction to form front spiral twisted structures, respectively,

ii) the $(k+1)$ -th transverse steel wire (C_{k+1}) is transversely inserted between the paired two longitudinal steel wires of each of the front spiral twisted structures, and

20 iii) the paired two longitudinal steel wires are rotated in the direction opposite to the one direction after passing over the $(k+1)$ -th transverse steel wire (C_{k+1}) serving as a centerline, in order to form a rear spiral twisted structure, where k represents the relative position relationship among the transverse steel wires and is a positive integer including 0, and n represents the relative position relationship among the upper and lower steel wires and is a positive integer including 0.

25

5. (amended) The gabion unit as claimed in claim 2, wherein the $(k+2)$ -th spiral double-twisted structure is formed in such a manner that:

30 i) the n-th upper steel wire (A_n) is paired again with the n-th lower steel wire (B_n) and they are then rotated in the one direction to form a front spiral twisted structure,

ii) the $(k+2)$ -th transverse steel wire (C_{k+2}) is transversely inserted between the

paired upper and lower steel wires (A_n, B_n) of the front spiral twisted structure, and

iii) the paired upper and lower steel wires (A_n, B_n) are rotated again in the direction opposite to the one direction after passing over the $(k+2)$ -th transverse steel wire (C_{k+2}) serving as a centerline, in order to form a rear spiral twisted structure, where k represents the relative position relationship among the transverse steel wires and is a positive integer including 0, and n represents the relative position relationship among the upper and lower steel wires and is a positive integer including 0.

6. A gabion mesh, comprising:

gabion units according to any one of claims 2 to 5 consecutively and repeatedly coupled to one another both in a right and left direction and in a fore and aft direction.