AE333

Mechanics of Materials

Lecture 17 - Exam Review
Dr. Nicholas Smith
Wichita State University, Department of Aerospace Engineering
6 Mar, 2019

schedule

- 6 Mar Exam Review
- 8 Mar Exam 2
- 11-15 Mar Spring Break

3/20/2019 Lecture 17 - exam 2 review

outline

exam

exam format

- Similar format to last exam
- Five questions
- Covers Axial Load, Torsion, and Bending
- Past exams included Transverse Shear, which will not be on this exam

topics

axial load

- Saint Venant's Principle
- Elastic Deformation
- Superposition
- Statically Indeterminate
- Force Method
- Thermal Stress

torsion

- Torsional deformation
- Torsion formula
- Power transmission
- Angle of twist
- Statically indeterminate torsion
- Thin-walled tubes

bending

- Shear and moment diagrams
- Bending deformation
- Flexure formula

axial load

3/20/2019 Lecture 17 - exam 2 review

axially loaded member

• We can use Hooke's Law to find the deformation of a general body under axial loading (below the elastic limit)

axially loaded member

• For some differential element, we can consider the internal forces and stresses

$$\sigma = rac{N(x)}{A(x)} = E(x)\epsilon(x) = E(x)\left(rac{d\delta}{dx}
ight)$$

• We can solve this for $d\delta$ to find

$$d\delta = rac{N(x)dx}{A(x)E(x)}$$

 We integrate this over the length of the bar to find the total displacement

sign convention

- In general, we consider a force or stress to be positive if it causes tension and elongation
- It is negative if it causes compression and contraction

statically indeterminate

- There are many problems that are at least slightly over-constrained
- While this is common engineering practice, it creates too many variables for statics analysis
- These problems are called "statically indeterminate"

statically indeterminate

- One extra equation we can use is called "compatibility" or the "kinematic condition"
- We know that at the displacement must be equal on both sides of any arbitrary section we make in a member
- We can separate a member into two parts, then use compatibility to relate the two unknown forces

statically indeterminate

thermal stress

- A change in temperature cases a material to either expand or contract
- For most materials this is linear and can be described using the coefficient of linear expansion

$$\delta T = \alpha \Delta T L$$

thermal stress

- When a body is free to expand, the deformation can be readily calculated
- If it is not free to expand, however, thermal stresses develop
- We can use the force method described previously to find the thermal stresses developed

torsion

torsion

- Torque is a moment that tends to twist a member about its axis
- For small deformation problems, we assume that the length and radius do not change signicantly under torsion
- The primary deformation we are concerned with in torsion is the angle of twist, denoted with ϕ

3/20/2019 Lecture 17 - exam 2 review

shear

torsion formula

- For a linearly elastic material, Hooke's Law in shear will hold ($au = G\gamma$)
- This means that, like shear strain, shear stress will vary linearly along the radius

torsion formula

• We can find the total force on an element, *dA* by multiplying the shear stress by the area

$$dF = \tau dA$$

• The torque (dT=
ho dF) produced by this force is then dT=
ho(au dA)

torsion formula

• Integrating over the whole cross-section gives

$$T=\int_A
ho(au dA)=rac{ au_{max}}{c}\int_A
ho^2 dA$$

• The integral $\int_A \rho^2 dA$ is also called the Polar Moment of Inertia, J, so we can write

$$au_{max} = rac{Tc}{J}$$

polar moment of inertia

- We know that $J=\int_A \rho^2 dA$, so we can compute this for some common shapes
- For a solid circular cross-section, we have

$$J=\int_0^c
ho^2(2\pi
ho d
ho)=rac{\pi}{2}c^4.$$

• For a circular tube we have

$$J=\int_{c_1}^{c_2}
ho^2(2\pi
ho d
ho)=rac{\pi}{2}(c_2^4-c_1^4)$$

power transmission

- Shafts and tubes are often connected to belts and drives, and the torque, speed, and power are all related
- Power is the rate of work done, for rotation problems, $P = T\omega$
- We are often given the frequency f instead of the angular velocity, ω , in this case $P=2\pi fT$

power units

- In SI Units, power is expressed in Watts 1 W = 1 N m / sec
- In Freedom Units, power is expressed in Horsepower 1 hp = 550 ft lb / sec

shaft design

- We often know the power and frequency of a drive, and need to design a shaft such that the shear stress is acceptable
- We can easily find the torque as $T=P/2\pi f$, we can use this combined with the torsion equation

$$au_{max} = rac{Tc}{J}$$

to find the appropriate shaft diameter.

• For solid shafts we can solve for *c* uniquely, but not for hollow shafts

angle of twist

- While in axial problems we examined the total deformation for the general case, in torsion we will examine the total angle of twist in general
- Using the method of sections, we can consider a differential disk which has some internal torque as a function of x, T(x).
- On this section, the shear strain will be related to the angle of twist by the thickness of the section (dx) and the radial distance (ρ) .

3/20/2019 Lecture 17 - exam 2 review

angle of twist

angle of twist

• γ and $d\phi$ are related by $d\phi = \gamma \frac{dx}{
ho}$

• We also know that $\gamma = \tau/G$ and $\tau = T(x)\rho/J(x)$ substituting both this gives

$$d\phi=rac{T(x)}{J(x)G(x)}dx$$

multiple torques

• If a shaft is subjected to multiple torques, or if there is a discontinuous change in shape or material we can sum the change in angle over various segments

$$\phi = \sum rac{TL}{JG}$$

sign convention

- When we section a shaft and consider the internal torque, it is important to be consistent with our signs
- Both torque and angle of twist should follow the same convention
- The convention is to use the right hand rule with the thumb pointing normal to the cut, and the fingers curling in the positive direction

shear flow

- Thin-walled tubes of non-circular cross-sections are commonly found in aerospace and other applications
- We can analyze these using a technique called shear flow
- Because the walls of the tube are thin, we assume that the shear stress is uniformly distributed through the wall thickness

shear flow

• If we consider an arbitrary segment of a tube with varying thickness, we find from equilibrium that the product of the average shear stress and the thickness must be the same at every location on the cross-section

$$q= au_{avg}t$$

• *q* is called the shear flow

average shear stress

 We can relate the average shear stress to the torque by considering the torque produced about some point within the tubes boundary

$$T=\oint h au_{avg}tds$$

• Where *h* is the distance from the reference point, *ds* is the differential arc length and *t* is the tube thickness.

average shear stress

- We notice that $\tau_{avg}t$ is equal to the shear flow, q, which must be constant
- We can also simplify the integral by relating a similar area integral to the arc length integral

$$dA_m = 1/2hds$$

• Thus

$$T=\oint h au_{avg}tds=2q\int dA_m=2qA_m$$

angle of twist

• The angle of twist for a thin-walled tube is given by

$$\phi = rac{TL}{4A_m^2G} \oint rac{ds}{t}$$

bending

relation between load, shear, moment

- When there are several forces, supports, or loading conditions applied to a beam, the piecewise method can be cumbersome
- In this section we will examine the differential relationships between distributed load, shear, and bending moments

distributed load

distributed load

- Consider a beam subjected to only distributed loading
- If we section this beam in the middle (to remove both supports) we can relate V to the loading function w(x)
- Considering the sum of forces in *y*:

$$egin{aligned} V + w(x) \Delta x - (V + \Delta V) &= 0 \ \Delta V &= w(x) \Delta x \end{aligned}$$

distributed load

- ullet If we divide by Δx and let $\Delta x o 0$ we find $rac{dV}{dx} = w(x)$
- Thus the slope of the shear diagram is equal to the distributed load function

moment diagram

• If we consider the sum of moments about *O* on the same section we find

$$(M+\Delta M)-(w(x)\Delta x)k\Delta x-V\Delta x-M=0 \ \Delta M=V\Delta x+kw(x)\Delta x^2$$

ullet Dividing by Δx and letting $\Delta x
ightarrow 0$ gives

$$\frac{dM}{dx} = V$$

concentrated forces

• If we consider a concentrated force (instead of a distributed load) we find

$$\Delta V = F$$

• This means that concentrated loads will cause the shear diagram to "jump" by the amount of the concentrated force (causing a discontinuity on our graph)

couple moments

• If our section includes a couple moment, we find (from the moment equation) that

$$\Delta M = M_0$$

• Thus the moment diagram will have a jump discontinuity

bending deformation

- If we drew a grid on a specimen in bending, we would find that vertical lines tend to stay straight (but rotate)
- Horizontal lines will become curved
- If bending lifts the ends up (like a smile), then the top face will be in compression (and expand), while the bottom face will be in tension (and contract)

3/20/2019 Lecture 17 - exam 2 review

bending deformation

neutral axis

- Since the bottom is in tension and the top is in compression, there must be somewhere in between that is under no stress
- We call that the neutral axis, and assume it does not change in length
- We also assume that planar sections remain planar (no warping)
- Finally, Poisson's effects are neglected (cross-sections keep the same size and shape)

strain

- We will now consider an infinitesimal beam element before and after deformation
- Δx is located on the neutral axis and thus does not change in length after deformation
- Some other line segment, Δs is located y away from the neutral axis and changes its length to $\Delta s'$ after deformation

strain

3/20/2019 Lecture 17 - exam 2 review

strain

ullet We can now define strain at the line segment Δs as

$$\epsilon = \lim_{\Delta s o 0} rac{\Delta s' - \Delta s}{\Delta s}$$

strain

- If we define ρ as the radius of curvature after deformation, thus $\Delta x = \Delta s = \rho \Delta \theta$
- The radius of curvature at Δs is ρy , thus we can write

$$\epsilon = \lim_{\Delta\theta \to 0} \frac{(\rho - y)\Delta\theta - \rho\Delta\theta}{\rho\Delta\theta}$$

• Which gives

$$\epsilon = -rac{y}{
ho}$$

hooke's law

- If the beam is a linear material that follows Hooke's Law, the stress must be linearly proportional to the strain
- Thus the stress will vary linearly through the beam, just like the strain does

neutral axis

- We have already hypothesized that a neutral axis must exist, we will now find its location
- To be in equilibrium, the resultant force(s) produced by the stress must sum to zero, which means

$$egin{aligned} \sum F_x &= 0 = \int_A dF = \int_A \sigma dA \ &= \int_A -\left(rac{y}{c}
ight)\sigma_{max}dA \ &= -rac{\sigma_{max}}{c}\int_A y dA \end{aligned}$$

neutral axis

- Since σ_{max} and c are both non-zero constants, we know that $\int_A y dA = 0$
- Which can only be satisfied at the horizontal centroidal axis, so the neutral axis is the centroidal axis

bending moment

• The internal bending moment must be equal to the total moment produced by the stress distribution

$$egin{aligned} M &= \int_A y dF = \int_A y (\sigma dA) \ &= \int_A y \left(rac{y}{c}\sigma_{max}
ight) dA \ &= rac{\sigma_{max}}{c} \int_A y^2 dA \end{aligned}$$

bending moment

ullet We recognize that $\int_A y^2 dA = I,$ and we re-arrange to write $\sigma_{max} = rac{Mc}{I}$

procedure

- Find the internal moment at the point of interest, or draw a moment diagram to find the maximum point (if needed)
- Determine the moment of inertia for the beam section
- Find the neutral axis and/or the distance from the neutral axis to the point of interest
- Use the flexure formula to find the stress

moment of inertia

- We know that $I = \int_A y^2 dA$
- For common shapes, this integral has been pre-calculated (about the centroid of the shape)
- For compound shapes, we use the parallel axis theorem to combine inertias from multiple areas

parallel axis theorem

- The parallel axis theorem is used to find the moment about any axis parallel to an axis passing through the centroid
- If we consider an axis parallel to the *x*-axis, separated by some *dy* we have

$$I_X = \int_A (y+dy)^2 dA$$

• Which gives

$$I_x = \int_A y^2 dA + 2 dy \int_A y dA + dy^2 \int_A dA$$

parallel axis theorem

- The first integral is the moment of inertia about the original x-axis, which we will call \bar{I}_x
- The second integral is zero since the *x*-axis passes through the centroid
- ullet This gives the parallel axis theorem $I_x=ar{I}_x+Ady^2$

parallel axis theorem

• Similarly for the y-axis and polar moment of inertia we find

$$egin{aligned} I_y &= {ar I}_{ar y} + A dx^2 \ J_O &= {ar J}_{C} + A d^2 \end{aligned}$$