Midterm Examination of [Signals and Systems] 2021-2022 Spring-term

Southern University of Science and Technology

Name:	Class:	Student ID:
Name:	agiarism are Not All	lowed!
PART 1:		
Choose the correct an	nswer(s) or fill in the	e blank. (2'x 10=20')
1. Choose all correct state	ements:	
a) A system with input- output signals, respe		c(t) is not a linear system, where x and y are the input and
b) A causal system is a	memoryless system.	
c) If the input signal to	a LTI system is periodic	e, then the output is also periodic with the same period.
d) The system $y(t)=x(t)$	sin(t+1) is a causal syst	em.
2. For a CT LTI system,	if the linear-constant-c	oefficient differential equation connecting input x(t) and
output y(t) is given, we ca	an also have	<u></u> .
a) The system function	of the LTI system	
b) Frequency response	of the LTI system	
c) The Unit impulse rea	sponse of the LTI system	1
d) System output y(t) v	when the input signal x(t)) is given
3. For signal $x(t) = \delta(t)$), its Fourier transform	$X(j\omega) =$, and for signal $x(t) = 2\delta(t-1)$,
its Fourier transform X (<i>(jω)</i> =	
4. Please 1) describe the system and why:	frequency response of an	n ideal lowpass filter, and 2) discuss whether it is a causal
		ourier transform is c) not sure
6. Please describe the step	os to get the Fourier trans	sform of a periodic signal.

The Fourier transform of a CT periodic signal is a ______ spectrum.

- a) discrete
- b) continuous
- c) Depends on the input signal

7. For a LTI system with unit impulse response h(t) and input signal x(t), please describe at least 2 ways to determine the output signal y(t).

8.
$$\int_{-\infty}^{3} (2t^2 + 3t) \delta(\frac{1}{2}t - 2) dt = ($$
A. 0 B. 27 C. 44 D. 88

9. The Fourier transform of f(t) is $F(j\omega)$, then the Fourier transform of f'(2t) is ()

A. j4wF(j2w)

B. $j\frac{w}{4}F(j\frac{w}{2})$

C. $j\frac{w}{2}F(j\frac{w}{2})$

D. j2wF(j2w)

10. For a DT LTI system S, the shape of the frequency response of

y[n] = (x[n] + x[n-1] + x[n-2] + x[n-3]) / 4 is ______; while the shape of the frequency

response of y[n] = x[n] - x[n-1] is ______.

- a) Low-pass filtering
- b) High-pass filtering
- c) Band-pass filtering
- d) Dependent on the spectrum of the input signal x[n]

PART 2:

P1 (15'=10'+5')

(1) Calculate the convolution of the following two signals:

$$x(t) = \begin{cases} 1, & 0 < t < 2 \\ 0, & \text{otherwise} \end{cases}, \text{ and } h(t) = \begin{cases} t, & 0 < t < 4 \\ 0, & \text{otherwise} \end{cases}.$$

and plot the waveform of y(t)=x(t) * h(t)

(2) Describe a different method to compute y(t)=x(t) * h (t). Elaborate the procedure without computation.

P2 (10'=2'+4'+4')

For a CT periodic signal $x(t) = \sin(\pi \cdot t/4) + 3\sin(\pi \cdot t/2)$,

- (1) What is the fundamental period (T)?
- (2) Represent the signal x(t) in the form of Fourier series.
- (3) Plot its Fourier series and Fourier transform, respectively.

P3 (20'=5'+5'+5'+5')

Consider an LTI system with impulse response $h[n]=0.3^n u[n]$, and with an periodic input

$$x[n] = \cos(\frac{\pi n}{4}) + 3\cos(\frac{\pi n}{2})$$

- (1) Represent the input signal x[n] in the form of Fourier series.
- (2) Determine the Fourier series coefficients from a₋₅ to a₂, and a₃₂, a₄₇.
- (3) What is the frequency response of this system?
- (4) Express the system output y[n] in the form of Fourier series. Note:

$$H(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} h[n]e^{-j\omega n}$$

P4 (15'=10'+5')

Consider the following block diagram of an CT LTI system.

- 1) Write a differential equation relating the input x(t) and output y(t)
- 2) Write the frequency response $H(j\omega)$ of this LTI system..

Note:

P5 (20' =5'+5'+10')

A causal and stable LTI system S has the frequency response of

$$H(j\omega) = \frac{Y(j\omega)}{X(j\omega)} = \frac{2j\omega + 2}{15 - \omega^2 + 8j\omega},$$

- (1) Determine a differential equation relating the input x(t) and output y(t) of S.
- (2) Determine the impulse response h(t) of S.
- (3) What is the output of *S* when the input is $x(t) = e^{-t}u(t)$?