CS571 - ARTIFICIAL INTELLIGENCE LAB

Lab - 3 Hill Climbing

Jenish Monpara	1901CS28
Tanishq Malu	1901CS63
Tarusi Mittal	1901CS65

Instructions to run the code

- 1. Launch terminal
- 2. Run "python3 main.py Start_State.txt End_State.txt"

Sample Input-Output for each case for Success and failure cases:

Heuristic type 1: Number of tiles displaced from their destined position

Solution exists case

Start Case:

В	T2	Т3
T1	T4	T5
T6	T7	T8

Goal Case:

T2	T4	T3
T1	В	T5
T6	T7	T8

Screenshot Of code:

```
(ML Course) jenish@Jenishs-MacBook-Pro lab3 % python3 main.py Start_State.txt End_State.txt
Enter the type of Hueristic function:
1. h1(n) = Number of tiles displaced from their destined position.
2. h2(n) = Sum of Manhattan distance of each tile from the goal
1
-----
-----
-----
Found a solution to the puzzle!
Start State of the Puzzle:
B T2 T3
T1 T4 T5
T6 T7 T8
Goal State of the Puzzle:
T2 T4 T3
T1 B T5
T6 T7 T8
Total number of states explored: 3
Total number of states to Optimal Path: 3
Optimal Path Cost: 2
Time taken: 0.0008342266082763672
B T2 T3
T1 T4 T5
T6 T7 T8
   ٧
T2 B T3
T1 T4 T5
T6 T7 T8
   ٧
T2 T4 T3
T1 B T5
T6 T7 T8
```

Solution does not exists case:

Start Case:

T2	T8	T3
T1	В	T5
T7	Т6	T4

Goal Case:

T2	T4	Т3
T1	В	T5
T6	T7	T8

Screenshot Of code:

(ML Course) jenish@Jenishs-MacBook-Pro lab3 % python3 main.py Start_State_2.txt End_State.txt Enter the type of Hueristic function:

```
1. h1(n) = Number of tiles displaced from their destined position.
```

2. h2(n) = Sum of Manhattan distance of each tile from the goal

Total number of states explored before ending the program: 1

Heuristic type 2: Sum of Manhattan distance of each tiles from the goal position.

Solution exists case

Start Case:

В	T2	Т3
T1	T4	T5
Т6	T7	T8

Goal Case:

T2	T4	Т3
T1	В	T5
T6	T7	Т8

Screenshot Of code:

```
(ML Course) jenish@Jenishs-MacBook-Pro lab3 % python3 main.py Start_State.txt End_State.txt
Enter the type of Hueristic function:
1. h1(n) = Number of tiles displaced from their destined position.
2. h2(n) = Sum of Manhattan distance of each tile from the goal
-----
Found a solution to the puzzle !
Start State of the Puzzle:
B T2 T3
T1 T4 T5
T6 T7 T8
Goal State of the Puzzle:
T2 T4 T3
T1 B T5
T6 T7 T8
Total number of states explored: 5
Total number of states to Optimal Path: 3
Optimal Path Cost: 2
Time taken: 0.0009918212890625
B T2 T3
T1 T4 T5
T6 T7 T8
   ٧
T2 B T3
T1 T4 T5
T6 T7 T8
   ٧
T2 T4 T3
T1 B T5
T6 T7 T8
```

Solution does not exists case

Start Case:

T2	T8	T3
T1	В	T5
T7	Т6	T4

Goal Case:

T2	T4	Т3
T1	В	T5
T6	T7	T8

Screenshot Of code:

(ML Course) jenish@Jenishs-MacBook-Pro lab3 % python3 main.py Start_State_2.txt End_State.txt Enter the type of Hueristic function:

1. h1(n) = Number of tiles displaced from their destined position.

```
2. h2(n) = Sum of Manhattan distance of each tile from the goal

2 ------
------
------
------
00PS ! The program was unable to find a solution !

Start State of the Puzzle:
T2 T8 T3
T1 B T5
T7 T6 T4

Goal State of the Puzzle:
T2 T4 T3
T1 B T5
T6 T7 T8
```

Total number of states explored before ending the program: 5