## 1 Trajectory Planner

The result of TrajectoryPlanner.estimateLaunchPoint() is used to construct Shots

$$Shot(P_{Reference}, P_{Release} - P_{Reference}, t_1, t_2), \tag{1}$$

where  $t_1$  is the time when the shot is performed and  $t_2$  is the time when the special ability of the bird is triggered, that are given to the SimulationManager to simulate them and estimate their score.

## 1.1 Converting The Trajectory Into Our Simulation



The resulting parabola of the trajectory planner can be seen in the function TrajectoryPlanner.setTrajectory()

```
_theta = Math.atan2(_release.y - _ref.y,
       _ref.x - _release.x);
    _theta = launchToActual(_theta);
    _velocity = getVelocity(_theta);
    _ux = _velocity * Math.cos(_theta);
    _uy = _velocity * Math.sin(_theta);
    _a = -0.5 / (_ux * _ux);
    _b = _uy / _ux;
    _trajectory = new ArrayList<Point>();
    for (int x = 0; x < X_MAX; x++) {</pre>
        double xn = x / _scale;
        int y = _ref.y - (int) ((_a * xn * xn +
           _b * xn) * _scale);
        _trajectory.add(new Point(x + _ref.x, y));
    }
    _trajSet = true;
}
```

In short it is given by the equation:

$$y_{px}(x) = \frac{1}{2 * u_x^2 * (h+w)} * x_{px}^2 - \frac{u_y}{u_x} * x_{px},$$
 (2)

where  $\vec{u}$  is the velocity in the koordinate system of the trajectory planner. The units of the simulation are meters and not pixels thus the parabola needs to be converted with  $y_m = \frac{y_{px}}{ppm}$  and  $x_m = \frac{x_{px}}{ppm}$ , where ppm are the pixels per meter, and since the y-axis of the vision is upside down we need the negetive value of

$$y_m(x) = \frac{-y_{px}(x)}{ppm} \tag{3}$$

$$y_m(x) = \frac{-\frac{1}{2*u_x^2*(h+w)} * x_{px}^2 + \frac{u_y}{u_x} * x_{px}}{ppm}$$
(4)

$$y_m(x) = -\frac{1}{2 * u_x^2 * (h+w)} * \frac{x_{px}^2}{ppm} + \frac{u_y}{u_x} * \frac{x_{px}}{ppm}$$

$$y_m(x) = -\frac{ppm}{2 * u_x^2 * (h+w)} * x_m^2 + \frac{u_y}{u_x} * x_m$$
(5)

$$y_m(x) = -\frac{ppm}{2 * u_x^2 * (h+w)} * x_m^2 + \frac{u_y}{u_x} * x_m$$
 (6)

Any shot in the simulation can be expressed by the following equation:

$$y_m(x) = -\frac{g}{2 * v_x^2} * x_m^2 + \frac{v_y}{v_x} * x_m.$$
 (7)

To perform the Shot given to the simulation the parameters q and v need to be calculated. From our earlier measurements we have concluded, that  $g = 9.81 \frac{m}{c^2}$ given a slingshot height of 5m. This leaves only v to be calculated. From the equations (6) and (7) follows that

$$-\frac{g}{2*v_x^2} = -\frac{ppm}{2*u_x^2*(h+w)}$$

$$\frac{v_y}{v_x} = \frac{u_y}{u_x}$$
(9)

$$\frac{v_y}{v_n} = \frac{u_y}{u_n} \tag{9}$$

which can be solved for  $\boldsymbol{v}$ 

$$v_x^2 = \frac{g * (h+w)}{ppm} * u_x^2 \tag{10}$$

$$\updownarrow$$
 since  $v$  and  $u$  show in the same direction (11)

$$v_x = \sqrt{\frac{g * (h+w)}{ppm}} * u_x \tag{12}$$

$$v_y = \frac{u_y}{u_x} * v_x \tag{13}$$

$$v_y = \sqrt{\frac{g * (h+w)}{ppm}} * u_y \tag{14}$$

$$\vec{\boldsymbol{v}} = \sqrt{\frac{g * (h+w)}{ppm}} * \vec{\boldsymbol{u}}$$
 (15)