Lazy Diagnosis of In-Production Concurrency Bugs

Baris Kasikci Weidong Cui Xinyang Ge Ben Niu

Problem

- It is hard to diagnose the root causes of concurrency bugs
- It is hard to perform bug diagnosis in production
- Existing attempts to solve the problem are not practical
 - High overhead
 - Assume existence of special hardware

Key Insights

Coarse Interleaving Hypothesis

- Events leading to concurrency bugs are coarsely-interleaved
- Holds for real-world systems (54 bugs in 13 systems)
 - Apache httpd, MySQL, memcached, ...
- Does not hold for programs with fine-grained concurrency
 - Concurrent data structures, ...

If the hypothesis holds, bug patterns can be identified efficiently

RWR Atomicity Violation

Can be measured with a coarse and low-overhead times

How does Lazy-Diagnosis Work?

(1) Control flow trace generation

Upon failure or on demand

(2) Trace processing

Filters out instructions that don't execute

(3) Dynamic trace generation

Partially ordered using Intel Processor
Trace timing packets

(4) Hybrid points-to analysis

• Interprocedural, flow-insensitive, operates on executed instructions

(5) Type-based ranking -----

 Favors exact type match for identifying potential instructions involved in a bug

(6) Bug pattern classification ----

 Relies on the partially-ordered trace and type-based ranking

(7) Statistical Diagnosis

• Identifies patterns that are positivelycorrelated with failures

Results

Our Lazy Diagnosis prototype Snorlax:

- Has low runtime overhead (<1% on average)
- Scales better than the state-of-the art concurrency bug diagnosis technique

Trace processing

Hybrid points-to analysis + Trace processing

Type-based ranking + Hybrid points-to analysis + Trace processing

■ Bug pattern computation + Type-based ranking + Hybrid points-to analysis + Trace processing

A combination of all the techniques is necessary for high accuracy