An Introduction To Bayesian **Statistics**

Simon Thornewill von Essen

Data Analyst, Goodgame Studios

@sthornewillve 🐍

How do we estimate the probability?

- Classical: By considering equal outcomes
- Frequentist: Relative Frequency over time
- Bayesian: By updating our beliefs for each obs.

Coin Toss: Classical Est.

```
Coin
|
|-----
| |
H T
0.5 0.5
```

Dice: Classical Est.

Classical Stats

- Requirements
 - All Outcomes are known
 - Outcomes are assumed to be equally likely
- Advantages
 - Fast Estimation
 - Easy to understand
- Disadvantages
 - o High Bias
 - Outcomes must be known
 - Cannot create sophisticated (high variance) models

How do we estimate the probability?

- Classical
- Frequentist
- Bayesian

Thermometer Calibration: Frequentist Est.

- Calibrating Thermometer to show accurate values
- Follows a Normal Distribution

Frequentist Approach:

Take many readings and use the expectation value (mean) to find value over time.

Thermometer Calibration: Frequentist Est.

Confidence Interval:

- From sample mean and standard deviation, calculate an interval
- "Interval that contains the true parameter some percent of the time"

Probability of Rain: Frequentist Est.

P-value:

- Probability of data given a parameter
- "The probability that outcome is due to random chance given that there is no difference between experimental groups"
- $P(X | \mu)$

Thermometer Calibration: Test

1. Mean thermometer temp is higher than assumed param,P-value = 0.001 (highly significant),

Does this mean that the probability of mean thermometer temp is 0.999? 🗶

2 2. 95% Confidence interval is [98°C, 102 °C] and mean = 100°C,

Does this mean that 100°C will fall inside this interval 95% of the time?

Thermometer Calibration: Test

? 1. Mean thermometer temp is higher than assumed param,P-value = 0.001 (highly significant),

Probability of getting this result given no difference in experimental groups is 0.001

② 2. 95% Confidence interval is [98°C, 102 °C] and mean = 100°C,

Interval will contain the parameter 95% of the time

Thermometer Calibration: Test Learnings

Frequentism expects that parameters exist and are fixed, the probabilities are the likelihood of our data given these expectations

Thermometer Calibration: Test Learnings

Child doesn't move, but you will only take a picture of them 95% of the time

Frequentist Stats

Requirements

- Possibility to perform experiments indefinitely
- Parameters are assumed to be specific values
- Able to estimate params given enough experiments

Advantages

- Works well for simulations
- "Objective"

Disadvantages

- Requires large sample size
- Does not allow for integration of domain knowledge
- P-values and confidence intervals are unintuitive
- o Difficult to communicate

Frequentist Stats Disav. Cont.

What if?

- Amount of data you have is limited?
- You have relevant and applicable prior information
- "Infinite" experiments are not possible? (Cost, feasibility) 🗸
- Stakeholders have a hard time understanding frequentist logic? 🗸
- Children never stay still and assuming they don't is blasphemy

How do we estimate the probability?

- Classical
- Frequentist
- Bayesian

Bayes Theorem

How

Foreshadow MCMC

Conclusion and "Call to Action"

Find Slides on Github

https://cutt.ly/zGqux9

Find me on Social Media!

@sthornewillve

