ASSIGNMENT 4

Assignment Date	25 Nov 2022
Student Name	M. Appas
Student Roll Number	420619104004
Maximum Mark	2 mark

- 1. Download the dataset: Dataset
- 2. Load the dataset into the tool.
- 3. Perform Below Visualizations.
 - · Univariate Analysis
 - · Bi-Variate Analysis
 - · Multi-Variate Analysis
- 4. Perform descriptive statistics on the dataset.
- 5. Check for Missing values and deal with them.
- 6. Find the outliers and replace them outliers
- 7. Check for Categorical columns and perform encoding. 8. Split the data into dependent and independent variables. 9. Scale the independent variables
- 10. Split the data into training and testing
- 11. Build the Model
- 12. Train the Model
- 13. Test the Model

Univariate Analysis

Bi variate Analysis

Multi Variate Analysis

import pandas as pd
import numpy as np
import sklearn as sk

#loading the data
data = pd.read_csv('/content/abalone.csv')

data.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

data.tail()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390	0.2490	11
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145	0.2605	10
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875	0.3080	9
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610	0.2960	10
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765	0.4950	12

data.shape

(4177, 9)

data preprocessing

#missing values
data.isnull().sum()

Sex 0
Length 0
Diameter 0
Height 0

Whole weight 0
Shucked weight 0
Viscera weight 0
Shell weight 0
Rings 0
dtype: int64

remove unwanted columns
data = data.drop(columns = ['Sex'],axis = 1)

data.head()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

deal with outlier
import seaborn as sns
sns.boxplot(data.Height)

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f7f76a2a810>

Encoding
pd.get_dummies(data['Height'])

	0.000	0.010	0.015	0.020	0.025	0.030	0.035	0.040	0.045	0.050	• • •	0.2
0	0	0	0	0	0	0	0	0	0	0		
1	0	0	0	0	0	0	0	0	0	0		
2	0	0	0	0	0	0	0	0	0	0		
3	0	0	0	0	0	0	0	0	0	0		
4	0	0	0	0	0	0	0	0	0	0		
4172	0	0	0	0	0	0	0	0	0	0		
4173	0	0	0	0	0	0	0	0	0	0		
4174	0	0	0	0	0	0	0	0	0	0		
4175	0	0	0	0	0	0	0	0	0	0		
4176	0	0	0	0	0	0	0	0	0	0		

4177 rows × 51 columns


```
# scaling
from sklearn.preprocessing import MinMaxScaler
scale = MinMaxScaler(feature_range=(0,1))
y = data['Rings']
x = data.drop(columns=['Rings'],axis = 1)
names = x.columns
names
     Index(['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight',
            'Viscera weight', 'Shell weight'],
           dtype='object')
x = scale.fit_transform(x)
Х
     array([[0.51351351, 0.5210084 , 0.0840708 , ..., 0.15030262, 0.1323239 ,
             0.14798206],
            [0.37162162, 0.35294118, 0.07964602, ..., 0.06624075, 0.06319947,
             0.06826109],
            [0.61486486, 0.61344538, 0.11946903, ..., 0.17182246, 0.18564845,
             0.2077728 ],
            [0.70945946, 0.70588235, 0.18141593, ..., 0.3527236, 0.37788018,
             0.30543099],
            [0.74324324, 0.72268908, 0.13274336, ..., 0.35642233, 0.34298881,
```

```
0.29347285],
            [0.85810811, 0.84033613, 0.17256637, ..., 0.63517149, 0.49506254,
             0.49177877]])
#train and test
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.2)
from sklearn.linear model import LogisticRegression
model = LogisticRegression()
model.fit(x_train,y_train)
     /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: Conver
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
       extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
     LogisticRegression()
# test with train data
pred = model.predict(x train)
pred
     array([6, 8, 10, ..., 9, 8, 8])
from sklearn import metrics
metrics.accuracy score(pred,y train)
     0.26967973660580663
pred = model.predict(x test)
metrics.accuracy_score(pred,y_test)
     0.25239234449760767
```

Colab paid products - Cancel contracts here

✓ 0s completed at 11:11 PM

×