Optimal Online Discrepancy Minimization

STOC2024

Setting: Online Vector Balancing

- vectors $v_1, ..., v_T \in R_n$
- decide the sign $x_i \in \{-1,1\}$
- keep the signed sum $\sum_{i=1}^{T} x_i v_i$ small in some norm

- Online vector balancing
 - $||v||_{\infty} \leq 1$:
 - l_{∞} : $O(\sqrt{T \log n})$
 - l_2 : $\Omega(\sqrt{(n-1)T})$

- v_i samples from distribution p:
 - $p \in \{-1,1\}^n: l_{\infty}$
 - $O(\sqrt{n})$
 - $O(\sqrt{n} \log T)$ prefix
 - $p \in [-1,1]^n$: l_{∞}
 - $O(n^2 \log nT) \rightarrow O(\sqrt{n} \log^4 nT) \rightarrow O_n(\sqrt{\log T})$

- Oblivious adversary:
 - Edge orientation:
 - $O(\log T)$ w.h.p
 - Subgaussian norm:
 - $O(\sqrt{\log nT})$ -subgaussian

Theorem 1. There is an online algorithm that against any oblivious adversary and for any sequence of vectors $v_1, ..., v_T \in \mathbb{R}^n$ with $||v_i||_2 \le 1$, arriving one at a time, decides random signs $x_1, ..., x_T \in \{-1, 1\}$ so that for every $t \in [T]$, the prefix sum $\sum_{i=1}^t x_i v_i$ is 10-subgaussian.

Theorem 2. Given a symmetric convex body $K \subseteq \mathbb{R}^n$, there is an online algorithm that against any oblivious adversary and for any sequence of vectors $v_1, \ldots, v_T \in$ \mathbb{R}^n with $\|v_i\|_2 \le 1$, arriving one at a time, decides random signs $x_1, \ldots, x_T \in \{-1, 1\}$ so that each of the following hold with probability at least 1/2:

- (a) $\sum_{i=1}^{T} x_i v_i \in O(1) \cdot K$ under the assumption $\gamma_n(K) \ge \frac{1}{2}$. (b) $\sum_{i=1}^{t} x_i v_i \in O(1) \cdot K$ for all $t \in [T]$ under the assumption $\gamma_n(K) \ge 1 \frac{1}{2T}$.

Theorem 7 (Banaszczyk Ban12). There is a constant $\alpha < 5$, so that for any $v_1, \ldots, v_T \in$ \mathbb{R}^n with $||v_i||_2 \le 1$ for i = 1, ..., T and any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge 1 - \frac{1}{2T}$, there are signs $x_1, ..., x_T \in \{-1, 1\}$ so that

$$\sum_{i=1}^{t} x_i v_i \in \alpha K \quad \forall t = 1, \dots, T.$$

Corollary 3. There is an online algorithm that against any oblivious adversary and for any sequence of vectors $v_1, ..., v_T \in \mathbb{R}^n$ with $||v_i||_2 \le 1$, arriving one at a time, decides random signs $x_1, ..., x_T \in \{-1, 1\}$ so that each of the following hold with probability at least $1 - \delta$ for any $\delta \in (0, \frac{1}{2}]$ and any $p \ge 2$:

(a)
$$\|\sum_{i=1}^{T} x_i v_i\|_p \lesssim \sqrt{p} \min(n, T)^{1/p} + \sqrt{\log(1/\delta)};$$

(b)
$$\max_{t \in [T]} \|\sum_{i=1}^t x_i v_i\|_p \lesssim \sqrt{p} \min(n, T)^{1/p} + \sqrt{\log T} + \sqrt{\log(1/\delta)}$$
.

Furthermore,

(c)
$$\|\sum_{i=1}^T x_i v_i\|_{\infty} \lesssim \sqrt{\operatorname{logmin}(n, T)} + \sqrt{\operatorname{log}(1/\delta)};$$

(d)
$$\max_{t \in [T]} \| \sum_{i=1}^t x_i v_i \|_{\infty} \lesssim \sqrt{\log T} + \sqrt{\log(1/\delta)}$$
.

Theorem 4. For any $n \ge 2$, there is a strategy for an oblivious adversary that yields a sequence of unit vectors $v_1, ..., v_T \in \mathbb{R}^n$ so that for any online algorithm, with probability at least $1 - 2^{-T^{\Omega(1)}}$, one has $\max_{t \in [T]} \|\sum_{i=1}^t x_i v_i\|_{\infty} \gtrsim \sqrt{\log T}$.

This improves upon the $\Omega\left(\sqrt{\frac{\log T}{\log\log T}}\right)$ lower bound of [BJSS19].

Corollary 5 (Online edge orientation). There exists an online algorithm that for any set of n vertices and any sequence of edges, arriving one at a time, decides orientations so that at every vertex, the absolute difference between indegree and outdegree always remains bounded by $O(\sqrt{\log T})$ with high probability.

- Edge orientation:
 - $O(\log T)$ w.h.p

A *convex body* is a set $K \subseteq \mathbb{R}^n$ that is convex, compact (closed and bounded) and full-dimensional. Let $B_2^n := \{x \in \mathbb{R}^n \mid \|x\|_2 \le 1\}$ be the *Euclidean ball* and let $S^{n-1} := \{x \in \mathbb{R}^n \mid \|x\|_2 = 1\}$ be the *sphere*. A set $W \subseteq S^{n-1}$ is called an ε -net if for all $x \in S^{n-1}$, there is a $y \in W$ with $\|x - y\|_2 \le \varepsilon$.

Lemma 8. For any $0 < \varepsilon \le 1$, there is an ε -net $W \subseteq S^{n-1}$ of size $|W| \le (\frac{3}{\varepsilon})^n$.

Proof. Pick any maximal set of points $W \subseteq S^{n-1}$ that have $\|\cdot\|_2$ -distance at least ε to each other. Then W is an ε -net. Moreover the balls $x + \frac{\varepsilon}{2}B_2^n$ are disjoint for $x \in W$ and contained in $(1 + \frac{\varepsilon}{2})B_2^n$. Hence

$$|W| \le \frac{\operatorname{Vol}_n((1 + \frac{\varepsilon}{2}) \cdot B_2^n)}{\operatorname{Vol}_n(\frac{\varepsilon}{2} \cdot B_2^n)} = \left(\frac{1 + \frac{\varepsilon}{2}}{\frac{\varepsilon}{2}}\right)^n \le \left(\frac{3}{\varepsilon}\right)^n.$$

Theorem 15. There exists a constant $\alpha < 5$ such that the following holds. Let $\mathcal{T} = (V, E)$ be a tree with a distinguished root $r \in V$ and $|E| \ge 1$, where each edge $e \in E$ is assigned a vector $v_e \in \mathbb{R}^n$ with $||v_e||_2 \le 1$. Let $K \subseteq \mathbb{R}^n$ be a convex body with $\gamma_n(K) \ge 1 - \frac{1}{2|E|}$. Then there are signs $x \in \{-1, 1\}^E$ so that

$$\sum_{e \in P_i} x_e \, \nu_e \in \alpha K \quad \forall i \in V$$

where $P_i \subseteq E$ are the edges on the path from the root to i.

$$K_i := \Big(\bigcap_{j \in C_i} (K_j * \beta v_{\{i,j\}})\Big) \cap K.$$

for any leaf $i \in V$ one simply has $K_i = K$.

Claim I. For all $i \in V$ one has $\gamma_n(K_i) \ge 1 - \frac{|D_i|}{2|E|}$.

Claim II. There are signs $x \in \{-1,1\}^E$ so that $\sum_{e \in P_i} x_e v_e \in \frac{1}{\beta} K_i$ for all $i \in V \setminus \{r\}$.

$$a \in K_i \stackrel{\text{Def } K_i}{\subseteq} K_j * \beta v_{\{i,j\}} \stackrel{\text{Thm } 6}{\subseteq} (K_j + \beta v_{\{i,j\}}) \cup (K_j - \beta v_{\{i,j\}})$$

Then we may pick a sign $x_{\{i,j\}} \in \{-1,1\}$ so that $a + \beta x_{\{i,j\}} v_{\{i,j\}} \in K_j$.

$$K := \left\{ (y^{(1)}, \dots, y^{(N)}) \in \mathbb{R}^{Nn} \mid ||Y||_{\psi_2, \infty} \le 2 + \delta \text{ where } Y \sim \{y^{(1)}, \dots, y^{(N)}\} \right\}. \tag{1}$$

Intuitively, the vectors in K consist of N many blocks of dimension n with the property that a uniform random block generates a subgaussian random vector. Since $\|\cdot\|_{\psi_2,\infty}$ is a norm, K is a symmetric convex body. The main result for this section will be that K has a large Gaussian measure if N is large enough.

Proposition 16. For any $\delta > 0$, there is a constant $C_{\delta} > 0$ so that for all $n, N \in \mathbb{N}$ one has $\gamma_{Nn}(K) \ge 1 - \frac{C_{\delta}^n}{N^{1+\delta}}$.

Theorem 19. There exists a constant $\gamma < 10$ such that the following holds. Let $\mathcal{T} = (V, E)$ be a tree with a distinguished root, where each edge $e \in E$ is assigned a vector $v_e \in \mathbb{R}^n$ with $||v_e||_2 \le 1$. Then there is a distribution \mathcal{D} over $\{-1,1\}^E$ so that for $x \sim \mathcal{D}$, $\sum_{e \in P_i} x_e v_e$ is γ -subgaussian for every $i \in V$ where $P_i \subseteq V$ are the edges on the path from the root to i.

Theorem 20. For every $T \in \mathbb{N}$, there exists a randomized online algorithm which, upon receiving a vector $v_i \in \mathbb{R}^n$ with $||v_i||_2 \le 1$ for each $i \in [T]$, outputs a random sign $x_i \in \{-1,1\}$ so that the prefix sum $\sum_{j=1}^i x_j v_j$ is 10-subgaussian. The algorithm runs in time $\exp(T^{CnT})$ for some universal constant C > 0.

Open Questions

Conjecture 1. Does there exist an online algorithm that for any sequence of vectors $v_1, ..., v_n \in \mathbb{R}^n$ with $||v_i||_{\infty} \le 1$, arriving one at a time, decides random signs $x_1, ..., x_n \in \{-1, 1\}$ so that $||\sum_{i=1}^n x_i v_i||_{\infty} \le O(\sqrt{n})$ with high probability?

Conjecture 2. Does there exist an online algorithm that for any sequence of vectors $v_1, ..., v_T \in \mathbb{R}^n$, each with two nonzero coordinates (one equal to 1 and the other -1) and arriving one at a time, decides random signs $x_1, ..., x_T \in \{-1, 1\}$ so that $\|\sum_{i=1}^t x_i v_i\|_{\infty} \le O(\sqrt[3]{\log T})$ for all $t \in [T]$ with high probability?

Conjecture 3. Does there exist a polynomial time online algorithm that against any oblivious adversary, for any sequence of vectors $v_1, ..., v_T \in \mathbb{R}^n$ with $||v_i||_2 \le 1$, decides random signs $x_1, ..., x_T \in \{-1, 1\}$ so that for every $t \in [T]$, the prefix sum $\sum_{i=1}^t x_i v_i$ is O(1)-subgaussian?

Online Edge Coloring is (Nearly) as Easy as Offline

STOC2024

Setting: Online Edge Coloring

- A graph is revealed piece by piece (either edge-by-edge or vertex-by-vertex)
- Algorithm: assign colors to edges upon their arrival irrevocably so that no two adjacent edges are assigned the same color.
- Objective: use few colors in any graph of maximum degree Δ

- Offline: Δ or $\Delta+1$
- Online:
 - $\Delta = O(\log n)$: $2\Delta 1$ (greedy)

$$\Delta = \omega(\log n): (\frac{e}{e+1} + o(1))\Delta$$

Conjecture 1.1 ([BNMN92]). There exists an online edge-coloring algorithm for n-vertex graphs that colors the edges of the graph online using $(1 + o(1))\Delta$ colors, assuming known maximum degree $\Delta = \omega(\log n)$.

Knowledge of Δ is necessary: no algorithm can use fewer than $\frac{e}{e-1}\Delta \approx 1.582\Delta$ colors otherwise [CPW19].

Online Edge Coloring to Online Matching:

$$\bullet \quad \alpha \Delta \rightarrow \frac{1}{\alpha \Delta}$$

Online Matching to Online Edge Coloring:

$$\frac{1}{\alpha \Delta} \to (\alpha + O((\frac{\log n}{\Delta})^{\frac{1}{4}}))\Delta$$

•
$$\Delta = \omega(\log n) \to (\alpha + o(1))\Delta$$

Theorem 1.2 (See exact bounds in Theorem 4.11). There exists an online algorithm that, on n-vertex graphs with known maximum degree $\Delta = \omega(\log n)$, outputs a $(1 + o(1))\Delta$ -edge-coloring with high probability.

Via the aforementioned reduction, we obtain the above from our following key technical contribution.

Theorem 1.3. There exists an online matching algorithm that on graphs with known maximum degree Δ , outputs a random matching M satisfying

$$\Pr[e \in M] \geqslant \frac{1}{\Delta + \Theta(\Delta^{3/4} \log^{1/2} \Delta)} = \frac{1}{(1 + o(1)) \cdot \Delta} \qquad \forall e \in E.$$

Algorithm 1 (Natural Matching Algorithm).

When an edge $e_t = (u, v)$ arrives, match it with probability

$$P(e_t) \leftarrow \begin{cases} \frac{1}{\Delta + q} \cdot \frac{1}{\prod_{j=1}^k (1 - P(e_{t_j}))} & \textit{if } u \textit{ and } v \textit{ are still unmatched,} \\ 0 & \textit{otherwise,} \end{cases}$$

where e_{t_1}, \ldots, e_{t_k} are those previously-arrived edges incident to the endpoints of e_t .

Algorithm 2 (MATCHINGALGORITHM).

Initialization: Set $F_1(v) \leftarrow 1$ for every vertex v and $M_1 \leftarrow \emptyset$.

$$F_t(u) := \prod_{e_{t_j} \in \delta_t(u)} (1 - P(e_{t_j}))$$
 and $F_t(v) := \prod_{e_{t_j} \in \delta_t(v)} (1 - P(e_{t_j})).$

At the arrival of edge $e_t = (u, v)$ at time t:

- Sample $X_t \sim Uni[0,1]$.
- Define

$$P(e_t) = \begin{cases} \frac{1}{\Delta + q} \cdot \frac{1}{F_t(u) \cdot F_t(v)} & \text{if } u \text{ and } v \text{ are unmatched in } M_t, \\ 0 & \text{otherwise.} \end{cases}$$

and

$$\hat{P}(e_t) = \begin{cases} P(e_t) & \text{if } \min\{F_t(u), F_t(v)\} \cdot (1 - P(e_t)) \geqslant q/(4\Delta) \\ 0 & \text{otherwise.} \end{cases}$$

• Set

$$-F_{t+1}(u) \leftarrow F_t(u) \cdot (1 - \hat{P}(e_t));$$

$$-F_{t+1}(v) \leftarrow F_t(v) \cdot (1 - \hat{P}(e_t));$$

$$-M_{t+1} \leftarrow \begin{cases} M_t \cup \{e_t\} & \text{if } X_t < \hat{P}(e_t), \\ M_t & \text{otherwise.} \end{cases}$$

$$q = \sqrt{200} \cdot \Delta^{3/4} \ln^{1/2} \Delta.$$

Lemma 4.2. For any edge $e_t = (u, v)$ it holds that

$$\Pr[X_t < P(e_t)] = \frac{1}{\Delta + q}.$$

Observation 4.4. If $e_t = (u, v)$ and $\min\{F_t(u), F_t(v)\} \ge q/(3\Delta)$, then $\hat{P}(e_t) = P(e_t)$.

Lemma 4.5. Let $e_{t_1} = (u_1, v), \ldots, e_{t_\ell} = (u_\ell, v)$ be the edges incident to v, arriving at times $t_1 < \cdots < t_\ell$. Let $S := \{u_i \in N(v) \mid u_i \notin M_{t_i}\}$ be those neighbors u_i that are not matched before time t_i when the edge $e_{t_i} = (u_i, v)$ arrives. Then,

$$F(v) \geqslant 1 - \sum_{u_i \in S} \frac{1}{\Delta + q} \frac{1}{F_{t_i}(u_i)}.$$

As a consequence, $F(v) \geqslant q/(3\Delta)$ holds if

$$\sum_{u_i \in S} \frac{1}{\Delta + q} \frac{1}{F_{t_i}(u_i)} \leqslant \frac{\Delta}{\Delta + q/2}.$$
(3)

Main Techniques $S_t := \{u_i \in N(v) \mid u_i \notin M_{\min\{t,t_i\}}\}$ and $Y_{t-1} := \sum_{u_i \in S_t} \frac{1}{\Delta + q} \frac{1}{F_{\min\{t,t_i\}}(u_i)}$.

Lemma 4.6. Y_0, \ldots, Y_m form a martingale w.r.t. the random variables X_1, \ldots, X_m . Furthermore, the difference $Y_t - Y_{t-1}$ is given by the following two cases:

• If e_t is added to M_{t+1} , which happens with probability $\hat{P}(e_t)$, then:

$$Y_t - Y_{t-1} = -\frac{1}{\Delta + q} \sum_{u_i \in S_t \cap e_t} \frac{1}{F_t(u_i)}.$$
 (4)

• If instead e_t is not added to M_{t+1} , which happens with probability $1 - \hat{P}(e_t)$, then:

$$Y_t - Y_{t-1} = \frac{1}{\Delta + q} \cdot \frac{\hat{P}(e_t)}{1 - \hat{P}(e_t)} \sum_{u_i \in S_t \cap e_t} \frac{1}{F_t(u_i)}.$$
 (5)

Lemma 4.9 (Observed Variance). For the martingale Y_t described above, we have:

$$W_m := \sum_{t=1}^m \mathbb{E}[(Y_t - Y_{t-1})^2 \mid X_1, \dots, X_{t-1}] \leqslant \frac{128\Delta \ln \Delta}{q^2}.$$

Lemma 4.9 (Observed Variance). For the martingale Y_t described above, we have:

$$W_m := \sum_{t=1}^m \mathbb{E}[(Y_t - Y_{t-1})^2 \mid X_1, \dots, X_{t-1}] \leqslant \frac{128\Delta \ln \Delta}{q^2}.$$

Lemma 2.3 (Freedman's Inequality [Fre75]; see also [BDG16, Theorem 12], [HMRAR98, Theorem 3.15]). Let Y_0, \ldots, Y_m be a martingale with respect to the random variables X_1, \ldots, X_m . If $|Y_k - Y_{k-1}| \le A$ for any $k \ge 1$ and $W_m \le \sigma^2$ always, then for any real $\lambda \ge 0$:

$$\Pr[|Y_n - Y_0| \ge \lambda] \le 2 \exp\left(-\frac{\lambda^2}{2(\sigma^2 + A\lambda/3)}\right).$$

Lemma 4.10. $\Pr[F(v) < q/(3\Delta)] \le 2\Delta^{-3}$.

Proof. Let $\lambda := q/(3\Delta)$. By Fact 4.7 and Lemma 4.5, we have that

$$\Pr[F(v) < q/(3\Delta)] \leqslant \Pr\left[|Y - Y_0| \geqslant \frac{\Delta}{\Delta + q/2} - \frac{\Delta}{\Delta + q}\right] \leqslant \Pr[|Y - Y_0| \geqslant \lambda].$$