Cryptography – Questionnaire 2

Name:				
Matr.:				
${ m "One/Two-liners"}-5{ m P}$				
Exercise 2.1				21
How many injective functions $f:\{0,1\}^n \to \{0,1\}^{2n}$ are there? Give a closed-form Answer:	n express	sion!		
Exercise 2.2				11
State the name of a computationally secret fixed-length ES such that every PPT-algorithms c , tries to compute the parity of the original message m , succeeds with probability $ x_n \leq \{0,1\}^n$ is just the xor of all bits $\bigoplus_i x_i$				
Answer:				
Exercise 2.3				21
Let $f:\{0,1\}^n \to \{0,1\}^n$ be a DPT-computable function such that f is a permuta	tion on {	$[0,1]^n$ for	or all n .	
Show that $G: \{0,1\}^n \to \{0,1\}^{2n}$ with $G(x) = f(x) x \oplus f(x) $ is never a PRG of sta PPT distinguisher, and (roughly) estimate its success probability.	retch $l(n$)=2n.	To this end, briefly	<u>ly</u> describ
Questions—1P each = $5P$	true	false		
$f \colon \mathbb{N} \to \mathbb{R}$ is negligible with $f(n) := \begin{cases} \frac{1}{2^n} & \text{if } n \text{ is even,} \\ \frac{1}{\log_2(n)} & \text{otherwise.} \end{cases}$.				
Let $f: \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{N}$. If $(f \circ g)$ is negligible, then f and g are both negligible.				
If $\varepsilon : \mathbb{N} \to \mathbb{R}^+$ is negligible, then $f : \mathbb{N} \to \mathbb{R}^+$ with $f(n) := \varepsilon(\lceil \log n \rceil)$ is also negligible.				

Let $\mathcal{E} = (\text{Gen}, \text{Enc}, \text{Dec})$ be a computationally secret fixed-length PPT-ES. Every PPT-algorithm \mathcal{A} , which, on input 1^n and ciphertext c, tries to compute the parity of the original message m, succeeds with probability exactly

There exists a PRG G with strech l(n) > n such that $\Pr\left[\mathsf{Win}_{n,G}^{\mathsf{IndPRG}}(\mathcal{D})\right] = \frac{1}{2}$ for every probabilistic exponential time distinguisher \mathcal{D} and all $n \in \mathbb{N}$.

1/2.