

Systematic Evaluation and Validation

Dr. Debdoot Sheet

Assistant Professor
Department of Electrical Engineering
Indian Institute of Technology Kharagpur

www.facweb.iitkgp.ernet.in/~debdoot/

Contents

- Datasets and baselines
- Prospective vs. retrospective experiments
- Bias and variance
- Sample sufficiency
- Evaluating segmentation
- Evaluating classification
- Receiver operating characteristics
- Folded Cross-validation

Datasets and Baselines

Playground

- Standard evaluation
 - Anonymized
 - Same modality or set of modalities
 - Cohort collected
 - Similar disease
 - Similar genetic makeup
 - Similar age-group and demography
 - Equal number of subjects per pathological group
 - Control / normal may be absent
- Follow-up / prognosis data
 - Similar number for all cases used

Prior Record Holders

- Literature reviews
 - Performance of methods employing same dataset
 - Re-implementation of other methods on standard dataset
 - Same set of metrics used for evaluation
 - Comparing computation times - similar hardware platform (acceleration if any) to be used

Datasets

Benchmarking on a Dataset

DRIVE: Results Browser

Results for ca	se 1.			
Displayed 1. Input 2. Gold standa		ity Specifi	icity Accur	acy Az
Chaudhuri	0.276	0.997	0.903	0.950
 Jiang Niemeijer 	0.714 0.719	0.949 0.972	0.918 0.939	0.944
Perez	0.796	0.961	0.939	
7. Staal	0.778	0.971		.967
8. Zana	0.773	0.975	0.949 ().942

http://www.isi.uu.nl/Research/Databases/DRIVE/browser.php

Experiments

Prospective

- Plan data collection before event occurs
 - Pharmaceutical / drug trials
 - Controlled animal model trials
- Used to test a certain hypothesis
- Pros
 - Class balance
- Cons
 - Regulatory approvals
 - Costly to perform

Retrospective

- Data collected as event occurs
 - Epidemic data
 - Imaging modality efficacy studies
- Used to form a hypothesis from observations
- Pros
 - Less expensive and generally free of cost
 - Regulatory approvals hassle free
- Cons
 - Class imbalance

Sampling Issues

Biased

Unbiased low variance

Unbiased high variance

Ensuring Sample Sufficiency

- Sample sufficiency?
 - Myth for medical image datasets
 - Normal or healthy
 - More cases and samples
 - Abnormal or diseases
 - Rarer a diseases lesser the samples
 - Require high performance for rare diseases

- Solution
 - Data augmentation during training
 - How?
 - Replicate samples for the weaker class
 - Use rotations, affine transformation, etc.
 - Restrict use of warping on images or applying intensity transformations.

Segmentation

$$O = \frac{|B \cap A^c|}{|A|} \quad U = \frac{|A \cap B^c|}{|A|} \quad D = \frac{2|A \cap B|}{|A| + |B|} \quad J = \frac{|A \cap B|}{|A \cup B|}$$

Oversegmentation

Undersegmentation

Dice coefficient

Jaccard coefficient

Segmentation

Hausdorff distance

$$H = \max\left(\inf_{f \in F} d(f, G), \inf_{g \in G} d(g, F)\right)$$

Classification

		Prediction			
		Р	N		
Ground	Р	TP	FN		
Truth	N	FP	TN		

•
$$Accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$

•
$$Sensitivity = \frac{TP}{TP + FN}$$

• Specificity =
$$\frac{TN}{TN+FP}$$

•
$$Precision = \frac{TP}{TP+FP}$$

•
$$F - score = \frac{2TP}{2TP + FP + FN}$$

Receiver Operating Characteristics

Folded Cross-validation

- Folding
 - Creating nonoverlapping sample sets
 - Class $0 N_0$ Samples
 - Class $1 N_1$ Samples
 - Folds k
 - Training samples per fold = $\frac{N_0 + N_1}{k} (k 1)$

- Divide samples in k number of bags
 - K-th bag will contain
 - $\frac{N_0}{k}$ samples of Class 0
 - $\frac{N_1}{k}$ samples of Class 1
 - No bags will overlap

Take home message

- K.D. Toennies, *Guide to Medical Image Analysis* [Chap. 13], Advances in Computer Vision and Pattern Recognition, Springer-Verlag, 2012.
- J. Kalpathy-Cramer, H. Mueller, "Systematic Evaluations and Ground Truth", T.M. Deserno (ed.), Biomedical Image Processing, Biological and Medical Physics, Biomedical Engineering, Springer-Verlag, 2011.