

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ и ИНФОРМАТИКИ

Кафедра математического моделирования и анализа данных

Кожановский Василий Николаевич

ПРИБЛИЖЕННОЕ ВЫЧИСЛЕНИЕ МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ ФУНКЦИОНАЛОВ ОТ ГАУССОВСКОГО ПРОЦЕССА, ОСНОВАННЫХ НА ИНТЕРПОЛЯЦИИ КОРРЕЛЯЦИОННОЙ ФУНКЦИИ

Научный руководитель

Егоров Александр Дмитриевич доктор физико-математических наук, профессор, Институт математики НАН Беларуси

Введение

Применение приближенных формул к вычислению математических ожиданий функционалов от гауссовских процессов вида $f(x) = \exp\{-\int_0^T V(x(t))dt\}$ сильно зависит от величины T. Имеющиеся в литературе приближенные формулы теряют свою эффективность при T>1. В данной работе рассматривается метод преобразования математических ожиданий от гауссовского процесса, заданного на [0;T], к математическим ожиданиям от гауссовских процессов, заданных на промежутках меньшей длины.

 Кожановский В. Н.
 Минск 2017

Цель работы

Применение формулы интерполяции корреляционной функции гауссовского процесса к приближенному вычислению функционалов от процессов.

 Кожановский В. Н.
 Минск 2017

Гауссовский процесс

Далее в работе рассматривается гауссовский случайный процесс, функция распределения которого задается плотностью. Плотность конечномерного распределения гауссовского процесса задаётся равенством:

$$p_{t_1,\dots,t_n}(u) = (2\pi)^{-n/2} (\det B)^{-1/2} \exp\left\{-\frac{1}{2}(B^{-1}(u-m), u-m)\right\},$$

где B – матрица с элементами $b_{ij}=B(t_i,t_j),\ i,j=1...n;\ m=(m(t_1),...,m(t_n)),$ $u=(u_1,\ldots,u_n);\ B(t,s)$ и m(t) – заданные функции. Здесь

$$(B^{-1}(u-m), u-m) = \sum_{k,j=1}^{n} c_{kj}(u_k - m(t_k))(u_j - m(t_j)),$$

где c_{kj} - элемент матрицы B^{-1} обратной к матрице B.

Кожановский В. Н. Минск 2017

Формула интерполяции

$$\langle \xi, X \rangle = \int_0^T X_t d\xi(t),$$

где $\xi = \xi(s)$ – функция ограниченной вариации.

$$K(\xi,\xi) = \int_{0}^{T} \int_{0}^{T} B(t,s)d\xi(t)d\xi(s).$$

Для двух гауссовских случайных процесов X_t , $t \in [0,T]$, с нулевым средним значением и корреляционными функционалами $K(\xi,\eta)$ и $K_0(\xi,\eta)$ соответственно определим гауссовкий процесс с корреляционным функционалом

$$K_u(\xi, \eta) = uK(\xi, \eta) + (1 - u)K_0(\xi, \eta), u \in [0, 1].$$

Соответственно для корреляционных функций имеем

$$B_u(t,s) = uB(t,s) + (1-u)B_0(t,s), u \in [0,1].$$

Формула интерполяции

$$E[f(X_{(\cdot)})] = \sum_{k=0}^{N} \frac{1}{2^k k!} \int_0^T \cdots \int_0^T \prod_{j=1}^k (B - B_0)(t_j, \tau_j) \times E[F^{(2k)}(X_{(\cdot)}; t, \tau)] d^k t d^k \tau + r_N(F(X_{(\cdot)})),$$

6

где $r_N(F(X_{(\cdot)}))$ – остаток, $t = (t_1, t_2, ..., t_k), \ \tau = (\tau_1, \tau_2, ..., \tau_k).$

Кожановский В. Н. Минск 2017

Численные результаты

$$F(X_{(\cdot)}) = \exp\{\langle \xi, X \rangle\}, \quad \forall \xi \in V[0, T].$$
 (1)

В качестве численного примера рассмотрим вычисление математического ожидания фукционала $\exp\{i\lambda\int_0^Tg(\tau)X_\tau d\tau\}$ от гауссовского процесса с нулевым средним и корреляционной функцией $B(t,\tau)=\frac{1}{2}\exp(-m|t-\tau|)$ по пространству функций X=X[0,T]:

$$\begin{split} I &\equiv I(T) = E_{[0,T]}[\exp\{i\lambda \int_0^T g(\tau)X_\tau d\tau\}] = \\ &\exp\Big\{-\frac{\lambda^2}{2}\int_0^T\int_0^T B(t,s)d\xi(t)d\xi(s)\Big\} = \\ &\exp\Big\{-\frac{\lambda^2}{2}\int_0^T\int_0^T B(t,s)g(t)g(s)dtds\Big\} = \\ &\exp\Big\{-\frac{\lambda^2}{4}\int_0^T\int_0^T \exp(-m|t-s|)g(t)g(s)dtds\Big\}. \end{split}$$

Минск 2017

Кожановский В. Н.

Формула аппроксимации

$$I(T) \approx \prod_{i=0}^{l-1} \left(\sum_{k=0}^{N} \frac{\lambda^{2k}}{2^{k} k! (m^{2}-1)^{k}} \left(e^{-\frac{T}{2^{j+1}}(m+1)}-1\right)^{k} \left(e^{-\frac{T}{2^{j+1}}}-e^{-\frac{mT}{2^{j+1}}}\right)^{k}\right)^{2^{j}} I^{2^{l}} \left(\frac{T}{2^{l}}\right).$$
 (3.1)

Точное значение: $I(T) = \exp\{\frac{-\lambda^2}{4(m^2 - 1)}(2e^{-T(m+1)} - e^{-2T}(m+1) + m - 1)\}.$

 Кожановский В. Н.
 Минск 2017

Численные результаты

Используем (3.1) для вычисления интеграла $I(\frac{T}{2^l})$. Результаты вычислений по фурмуле (3.1) для различных значений T при $\lambda=0.2,\ m=2, N=5, l=5$ приведены в следующей таблице:

Т	2	4	8	16
точн.знач.	0.996838	0.996675	0.996673	0.996672
по ф-ле (3.1)	0.996845	0.996682	0.995625	0.953672

При $\lambda=0.5,\ m=10, N=10, l=10$ приведены в следующей таблице:

Т	2	4	8	16
точн.знач.	0.994460	0.994336	0.994333	0.994334
по ф-ле (3.1)	0.994460	0.994335	0.994332	0.994312

При $\lambda=0.9,\ m=15, N=15, l=15$ приведены в следующей таблице:

Т	2	4	8	16
точн.знач.	0.987685	0.987428	0.987423	0.987423
по ф-ле (3.1)	0.987685	0.987428	0.987422	0.987422

Численные результаты

На следующих графиках отображена зависимость погрешности от количества итераций при изменениях параметров l и N.

При
$$T=16, \lambda=0.5,\ m=3,\ N=5,\ l=1...25$$
 имеем:

Численные результаты

При $T = 16, \lambda = 0.5, \ m = 3, \ l = 2, \ N = 1...40$ имеем:

Заключение

В данной работе предложена и исследована формула для вычисление математического ожидания функционалов от гауссовского процесса, основанных на интерполяции корреляционной функции

Полученные результаты позволяют утверждать, что применяемый метод дает достаточно точное приближенное значение.

Спасибо за внимание!

Кожановский В. Н. Минск 2017