Appl. No. Filed

known

a first controller configured to move the chip-carrier plates within the magazine in a manner such that the selected chip-carrier plate is positioned at a collection point to be collected from the magazine; and

a second controller configured to move the movable holder of the transport arrangement, wherein the first and second clamping devices are disposed one above the other in a vertical arrangement on the holder and are constructed so that each can individually release or grip a chip-carrier plate on one and the same angular position of the holder.

- 2. (Amended) The mechanism of Claim 1, wherein the first and second clamping devices comprise a receiving element with a pneumatically or electrically actuated clamp for the controllable fixation of a chip-carrier plate or the release thereof.
- 3. (Amended) The mechanism of Claim 1, wherein the chip-carrier plates are constructed as plates with a substantially square outer shape and engagement bores to engage the clamping devices of the transport arrangement as well as a holding device of the chip-detaching system.
- 4. (Amended) The mechanism of Claim 1, wherein the chip-carrier plates are designed to receive conventional chip carriers selected from the group consisting of a type of the waffle pack, gel pack, and carrier-film frame.
- 5. (Amended) The mechanism of Claim 1, wherein the first and second clamping devices are attached to a common base element that can be displaced vertically with respect to a housing of the transport arrangement.
- 6. (Amended) A method of operating a mechanism for exchanging chip-carrier plates in a hybrid chip-bonding machine, wherein, when a transport arrangement of an exchanging mechanism is in a first working position, comprising the steps of:

removing a selected chip-carrier plate from a magazine immediately followed by a step of

N

į,

depositing another chip-carrier plate, which has been taken out of a processing station, in a magazine, and when the transport arrangement is in a second working position,

transferring the chip-carrier plates taken from the magazine into the processing station,

removing the processed chip-carrier plate from the processing station, such that each transport event from the magazine to the processing station and in the reverse direction is carried out while a chip-carrier plate is being handled in the processing station.

- 7. (Amended) The method of Claim 6, wherein delivering the selected chip-carrier plate to the processing station further includes the step of returning the selected chip-carrier plate from the processing station to the magazine.
- 8. (Amended) The method of Claim 6, wherein the transport arrangement moves only in a straight line in both directions between the first and second working positions.

Please, add the following new Claims:

- 9. (New) The method of Claim 6, wherein the steps are performed in the listed order.
- 10. (New) The method of Claim 6, wherein the steps are performed in the reverse of the listed order.
- 11. (New) A method of operating a mechanism for exchanging chip-carrier plates in a hybrid chip-bonding machine having a processing station, a magazine, and a transport arrangement in a first working position, the method comprising:
 - a first transport event, wherein a selected chip-carrier plate is removed from a magazine;
 - a second transport event, wherein another chip-carrier plate, which has been taken out of the processing station, is deposited in the magazine;

N

a fourth transport event, wherein the processed chip-carrier plate is removed from the processing station.

- 12. (New) The method according to Claim 11, wherein transferring the selected chipcarrier plate to the processing station includes returning the selected chip-carrier plate from the processing station to the magazine.
- 13. (New) The method according to Claim 11, wherein the transport arrangement moves only in a straight line in both directions between the first and second working positions.
- 14. (New) The method of Claim 11, wherein the transport events and are carried out in a reverse order such that each transport event from the magazine to the processing station and in the reverse direction is carried out while at least one of the chip-carrier plates is being handled in the processing station.
- 15. (New) A mechanism for exchanging chip-carrier plates in a chip-bonding machine having a processing station, the mechanism comprising:
 - a magazine to store the chip-carrier plates;
 - a transport arrangement having a first and second clamping device that are disposed on a movable holder such that the transport arrangement is designed to remove a selected chip-carrier plate from the magazine, deliver the selected chip-carrier plate to the processing station, and after processing remove the selected chip-carrier plate from the processing station and deposit the selected chip-carrier plate in the magazine; and
 - a first control component that is configured to move the holder of the transport arrangement, wherein the first and second clamping devices are disposed one above the other on the holder and are configured in a manner such that each clamping device individually releases or grips at least one of the chip-carrier plates in a position relative to the holder.

- 16. (New) The mechanism of Claim 15, wherein the mechanism further comprises a second control component.
- 17. (New) The mechanism of Claim 16, wherein the second control component is configured to move the at least one of the chip-carrier plates within the magazine in a manner such that the selected chip-carrier plate is positioned at a collection point to be collected from the magazine.
- 18. (New) The mechanism of Claim 15, wherein the first and second clamping devices comprise a receiving element with an actuated clamp for the controllable fixation or release of at least on of the chip-carrier plates.
- 19. (New) The mechanism of Claim 18, wherein the actuated clamp is a pneumatically actuated clamp.
- 20. (New) The mechanism of Claim 18, wherein the actuated clamp is an electrically actuated clamp.
- 21. (New) The mechanism of Claim 15, wherein the chip-carrier plates are constructed as plates with a substantially square outer shape and engagement device.
- 22. (New) The mechanism of Claim 21, wherein the engagement device is used by the chip-detaching system as a holding device.
- 23. (New) The mechanism of Claim 22, wherein the engagement device comprise bores, which are configured to engage the clamping devices of the transport arrangement.
- 24. (New) The mechanism of Claim 15, wherein the chip-carrier plates are designed to receive conventional chip carriers.
- 25. (New) The mechanism of Claim 24, wherein the conventional chip-carriers are carrier types selected from the group consisting of a waffle pack, a gel pack, and a carrier-film frame.

Appl. No.

known

Filed

1 mm/

ļ.1.

- 26. (New) The mechanism of Claim 15, wherein the mechanism further comprises a common base element and a transport arrangement housing.
- 27. (New) The mechanism of Claim 26, wherein the first and second clamping devices are attached to the common base element.
- 28. (New) The mechanism of Claim 27, wherein the common base element may be displaced vertically with respect to the transport arrangement housing.
- 29. (New) The mechanism of Claim 15, wherein the chip-bonding machine is a hybrid chip-bonding machine.
- 30. (New) The mechanism of Claim 15, wherein the mechanism further comprises a chip-detaching system.
- 31. (New) The mechanism of Claim 30, wherein the chip-detaching system comprises the processing station.
- 32. (New) The mechanism of Claim 15, wherein the first and second clamping devices are disposed one above the other in a vertical arrangement on the holder.
- 33. (New) The mechanism of Claim 15, wherein the first and second clamping devices are configured so that each clamping device individually releases or grips a chip-carrier plate in a substantially similar position relative to the holder.
- 34. (New) The mechanism of Claim 33, wherein the position includes an angular position.

REMARKS

These changes are being made to bring the subject application into better conformance with U.S. practice, to claim the benefit of a previously filed European application, and to more distinctly claim what the Applicant regards as the invention. No new matter is being introduced. Entrance of this amendment is respectfully requested.