Teeth Classification Using Deep Learning

Introduction

This project focuses on classifying different types of teeth conditions using a deep learning-based image classification model. The dataset contains images of various teeth conditions, which are categorized into multiple classes.

Dataset

- The dataset consists of images categorized into seven classes:
 - o CaS
 - o CoS
 - o Gum
 - o MC
 - o OC
 - o OLP
 - o OT
- Data is split into:
 - o Training Set
 - Validation Set
 - Testing Set
- Images are preprocessed and augmented to improve model performance.

Preprocessing

- Images are resized to (224, 224) pixels.
- Applied data augmentation techniques:
 - o Rotation, Width/Height Shift, Shear, Zoom, Horizontal Flip.
- Normalization applied (rescale pixel values to [0,1]).

Model Architecture

The model is a Convolutional Neural Network (CNN) built using TensorFlow/Keras. It consists of:

- 1. Convolutional layers (32, 64, 128 filters)
- 2. MaxPooling layers to downsample feature maps
- 3. Batch Normalization for stability
- 4. Fully connected layers with ReLU activation
- 5. Softmax output layer with seven classes

Training & Evaluation

- The model is compiled with:
 - o Optimizer: Adam
 - o Loss Function: Categorical Crossentropy

- o Metrics: Accuracy
- Early stopping and learning rate reduction were applied to enhance training stability.
- Training involved 50 epochs with checkpointing for the best model.

Performance Analysis

- The model achieved:
 - o Test Accuracy: 97.28%
 - o **Test Loss:** 0.1191
- Confusion Matrix and Classification Report were generated to analyze misclassifications.
- Some misclassifications were found, possibly due to overlapping features in similar conditions.

Conclusion

The deep learning model successfully classifies teeth conditions with high accuracy. Future improvements may include:

- Expanding the dataset for better generalization.
- Using transfer learning with pre-trained models.
- Implementing advanced augmentation techniques.

References

• TensorFlow/Keras Documentation