

Pagina 1 din 4

31 ianuarie – 5 februarie 2010
Constanța

Subject	Parţial	Pagina 1 c
1. Barem subject 1		10
a) a_1) $\frac{1}{f} = (n-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$, $R_2 = mR_1$, $R_1 = (n-1) \frac{m-1}{m} f$	0,5	
Pentru o lentilă biconvexă $m = -3 \Rightarrow R_1 = 20 \text{ cm}$, $R_2 = -60 \text{ cm}$;	0,5	
Pentru o lentilă menisc convergent $m = 3 \Longrightarrow R_1 = 10$ cm, $R_2 = 30$ cm.	0,5	
a_2) $x_2 = \frac{x_1 f}{x_1 + f}$ $x_2 = 90 \text{ cm}$	0,5	
$eta = rac{y_2}{y_1} = rac{x_2}{x_1} = rac{f}{x_1 + f}, \ eta = -2.$	0,5	
$a_3) f_{im} = f, f_{ob} = -f$	0,25	
$z_1 = -(f + x_1), \ z_2 = x_2 - f$	0,25	
$z_1 z_2 = -(x_1 + f) \left(\frac{x_1 f}{x_1 + f} - f \right) = f^2, \ z_1 z_2 = f^2.$	0,5	
a ₄) Pentru obiect: $v_x = \frac{\Delta x_1}{\Delta t} = v \cos \alpha_1, v_y = \frac{\Delta y_1}{\Delta t} = v \sin \alpha_1;$	0,25	
Pentru imagine: $u_x = \frac{\Delta x_2}{\Delta t} = u \cos \alpha_2, u_y = \frac{\Delta y_2}{\Delta t} = u \sin \alpha_2.$	0,25	5,5
$\frac{\Delta y_{_2}}{\Delta y_{_1}} = \frac{y_{_2}}{y_{_1}} = \frac{u_{_y}}{v_{_y}} = \beta , \ u_{_y} = \beta v_{_y}; u_{_y} = -6 \mathrm{m/s} .$	0,25	
$\Delta x_{_1}=\Delta z_{_1},\ \Delta x_{_2}=\Delta z_{_2}$	0,25	
$\label{eq:continuity} \Big(z_1^{} + \Delta z_1^{}\Big)\Big(z_2^{} + \Delta z_2^{}\Big) = f^2^{},$		
Neglijând produsul $\Delta z_1\cdot\Delta z_2\Rightarrow z_1\cdot\Delta z_2=-z_2\cdot\Delta z_1$ $-\frac{x_1f}{}-f$	0,25	
$\frac{u_x}{v_x} = \frac{\Delta x_2}{\Delta x_1} = -\frac{\Delta z_2}{\Delta z_1} = \frac{z_2}{z_1} = -\frac{x_2 - f}{x_1 + f} = -\frac{\frac{x_1 f}{x_1 + f} - f}{x_1 + f} = \beta^2,$	0,25	
$u_x = 12\sqrt{3} \text{ m/s.}$	0,25	
$u = \sqrt{u_x^2 + u_y^2} = 6\sqrt{13} \text{ m/s. } \operatorname{tg}\alpha_2 = \frac{u_y}{u_x} = -\frac{\sqrt{3}}{6}.$	0,25	
b) b1) menisc divergent $R_2=2R_1=(n-1)(m-1)f$, $R_2=-15\mathrm{cm}$.	0,50	
$C_{\textit{sist}} = 2C_{\textit{lent}} + C_{\textit{ogl}}, \; C_{\textit{sist}} = -\frac{2}{30} + \frac{4}{30} = \frac{1}{15} \;\; \text{cm}^{-1} = \frac{20}{3} \delta.$	0,50	3,5

Pagina 2 din 4

31 ianuarie – 5 februarie 2010
Constanța

Subject	Parţial	Punctaj
b ₂) Lentila argintată este echivalentă cu o oglindă concavă cu raza de curbură	0,25	
$R_e = -30 \ cm.$		
Obiectul se suprapune cu imaginea sa când trece prin centrul de curbură al oglinzii echivalente.	0,50	
Ca urmare $\Delta t = \frac{R_e}{2v} = 15 \text{ s.}$	0,50	
b ₃) Pentru o oglindă sferică (echivalentă) mărirea transversală este	0,25	
$\beta = \frac{1}{1 - Cx_1}$		
$\beta_1 = \beta_2 \Rightarrow Cx_1 = Cx_1', C(x_1 - x_1') = 0 \Rightarrow C = 0.$	0,50	
Ca urmare, oglinda echivalentă trebuie să fie plană.	0,50	
$C'_{sist} = 2C_{lent} + C_{ogl} = \frac{2}{f_{lent}} + \frac{2}{R_2} = \frac{2}{f} - \frac{4}{(m-1)f} = 0$	0.50	
m=3.	0,50	
Oficiu		1

Pagina 3 din 4

31 ianuarie – 5 februarie 2010
Constanta

Subject 2 Barem subject 2 a1) $ma = F \cos \alpha - \mu (G - F \sin \alpha)$	Parțial	Punctaj 10
$(a1) ma = F \cos \alpha - \mu (G - F \sin \alpha)$	4	10
$arrange ma = r \cos \alpha - \mu (G - r \sin \alpha)$	1	4
$a = \frac{F\left(\cos\alpha + \mu\sin\alpha\right)}{m} - \mu g$	0,5	
$a = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	0,5	
$a = 4 \mathrm{m/s^2}$	0,5	
$a(m/s^2)$	1	
$\begin{array}{c} 4 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		
a3) din aria graficului $\Rightarrow v = 40 \text{m/s}$.	1	-
b)		5
b1) Corpul începe să alunece atunci când $F_r = \mu N$	0,5	
$F\cos\alpha - \mu(mg - F\sin\alpha) = 0$ la momentul	1	
$t_1 = \frac{\mu mg}{b\left(\cos\alpha + \mu\sin\alpha\right)} = \frac{1}{0.9} s = 1.11 s.$		
Corpul se desprinde dacă $N=0$	0,5	
$F\sin\alpha - mg = 0$ la momentul $t_2 = \frac{mg}{b\sin\alpha} = 10 \text{ s}$	1	
$a(t) = \frac{b}{m} (\cos \alpha + \mu \sin \alpha) t - \mu g \text{ pentru } t \in [t_1, t_2]$	1	
$\Rightarrow a(t) = \frac{3}{2}t - \frac{5}{3}$		
$a(m/s^2)$	0,5	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Din aria graficului $\Rightarrow v = 59,33 \frac{\text{m}}{\text{s}}$.	0,5	
Oficiu		1

Pagina 4 din 4

31 ianuarie – 5 februarie 2010
Constanța

Subject 3	Parţial	Punctaj
Barem subject 3		10
a) a1) $F - \mu_1 mg = m_1 a_1 \Rightarrow a_1 = \frac{F}{m} - \mu_1 g; \ a_1 = 9 \text{ m/s}^2.$	1	
a2) $T_C = \frac{m}{2} (a + \mu_1 g); T = 50 \text{ N}.$	1	3
a3) $R = \sqrt{F_r^2 + N^2}$; $R = N\sqrt{1 + \mu^2} = mg\sqrt{1 + \mu^2}$; $R \cong 100, 5 \text{ N}$.	1	
b) b1) $x \in (0, \ell/2)$; $a(x) = \frac{F}{m} - \mu_1 \frac{l - x}{l} g = 9 + \frac{x}{10}.$ $a(\ell/2) = 9.5 \text{ m/s}^2$	1	6
$x \in (\ell/2,\ell) , \ a(x) = \frac{F}{m} - \mu_2 \frac{x - \ell/2}{\ell} g - \mu_1 \frac{\ell - x}{\ell} g = 10 - \frac{x}{10} .$	1	
$a(\ell) = 9 \text{ m/s}^2.$ $B \xrightarrow{C} A \xrightarrow{\vec{F}}$ $\mu_1 \qquad 0 \qquad \mu_2 \qquad \vec{\chi}$ $\ell/2$		
$x \in (\ell, 3\ell/2), \ a(x) = \frac{F}{m} - \mu_2 \frac{x - \ell/2}{\ell} g = 11 - 2\frac{x}{10}$	1	
$a(3\ell/2) = 8 \text{ m/s}^2$.		
$x > 3\ell/2, \ a = 8 \text{ m/s}^2$	0,5	
a(m/s²) 11	1	
10 9		
8		
$\ell/2$ ℓ $3\ell/2$ $x(m)$		
b3) $a_{\text{max}} = 9.5 \text{ m/s}^2$, $T_C = \frac{m}{2} (a_{\text{max}} + \mu_1 g)$, $T_C = 52.5 \text{ N}$.	1,5	
Oficiu		1

Subiect propus de prof. dr. Constantin Corega, prof. Seryl Talpalaru, Prof. Ion Toma

CNER – Cluj-Napoca CNER – Iași CNMV – București