

LED Driver for High Power LEDs

ILD4001

Step down LED Controller for high power LEDs

Data Sheet

Revision 2.0, 2011-06-09

Industrial and Multimarket

Edition 2011-06-09

Published by Infineon Technologies AG 81726 Munich, Germany © 2011 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision Histo	Revision History							
Page or Item	Subjects (major changes since previous revision)							
Revision 2.0, 2	Revision 2.0, 2011-06-09							
All	Preliminary status removed							
Table 4	DC characteristics updated							
Table 5	Switching characteristics updated							
Chapter 6.4	LED current vs T _S added							
Revision 1.5, 2	011-05-30							
Table 2	ESD capability updated							
Table 5	AC characteristics updated							
Table 7	Analog dimming updated							
Chapter 6.4	All figures updated							

Trademarks of Infineon Technologies AG

AURIXTM, BlueMoonTM, C166TM, CanPAKTM, CIPOSTM, CIPURSETM, COMNEONTM, EconoPACKTM, CoolMOSTM, CoolSETTM, CORECONTROLTM, CROSSAVETM, DAVETM, EasyPIMTM, EconoBRIDGETM, EconoDUALTM, EconoPIMTM, EiceDRIVERTM, eupecTM, FCOSTM, HITFETTM, HybridPACKTM, I2RFTM, ISOFACETM, IsoPACKTM, MIPAQTM, ModSTACKTM, my-dTM, NovalithICTM, OmniTuneTM, OptiMOSTM, ORIGATM, PRIMARIONTM, PrimePACKTM, PrimeSTACKTM, PRO-SILTM, PROFETTM, RASICTM, ReverSaveTM, SatRICTM, SIEGETTM, SINDRIONTM, SIPMOSTM, SMARTITM, SmartLEWISTM, SOLID FLASHTM, TEMPFETTM, thinQ!TM, TRENCHSTOPTM, TriCoreTM, X-GOLDTM, X-PMUTM, XMMTM, XPOSYSTM.

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

3

Last Trademarks Update 2010-10-26

Table of Contents

Table of Contents

	Table of Contents
	List of Figures
	List of Tables
1	Features
2	Product Brief
3	Maximum Ratings
4	Thermal Characteristics
5 5.1 5.2 5.3	Electrical Characteristics12DC Characteristics12Switching Characteristics13Digital Signals14
6 6.1 6.2 6.3 6.4	Basic Application Information15External MOSFET15Setting the Average LED Current15Dimming of the LEDs16Switching Parameters18
7	Application Circuit
8	Evaluation Board
9	Package Information

List of Figures

List of Figures

igure 1	Block Diagram	. 8
igure 2	Total Power Dissipation vs. Soldering Point Temperature T_{S}	11
igure 3	Analog Voltage Dimming (12V, 3 LEDs, T_A =25°C) vs. R_{sense}	16
igure 4	Analog Voltage Dimming (Relative) vs. R _{sense}	
igure 5	Analog Voltage Dimming vs. T_A (12V, 3 LEDs, 110 m Ω , 47 μ H)	17
igure 6	PWM Dimming: 3 dB Deviation of Contrast Ratio to Linear Dimming (12 V, 68 μH, 3 LEDs)	18
igure 7	Application Circuit	24
igure 8	ILD4001 on Evaluation Board Using BSP318S	24
igure 9	Package Outline SC74	25
igure 10	Recommended PCB Footprint for Reflow Soldering	25
igure 11	Tape Loading	25

List of Tables

List of Tables

Table 1	Pin Definition and Function
Table 2	Maximum Ratings
Table 3	Maximum Thermal Resistance
Table 4	DC Characteristics
Table 5	Switching Characteristics
Table 6	Digital Control Parameter at Pin EN/PWM

Step down LED Controller for high power LEDs

1 Features

- Wide input voltage range: 4.5 V ... 42 V
- Capable to drive N-channel MOSFETs that provide up to 3 A output current and up to 98% efficiency
- Temperature shut down mechanism
- Switching frequency up to 500 kHz
- · Analog and PWM dimming possible
- Typical 3 % output current accuracy
- Very low LED current drift over temperature
- · Minimum external component required
- Small package: SC-74

Applications

- · LED controller for indoor and outdoor illumination
- LED replacement lamps, e.g. MR16 halogen replacement
- Retail, office and residential high power luminaires
- · Architectural lighting
- Downlights and light engines
- · Appliances, e.g. fridge / freezer

Product Name	Package	Pin Configuration						Marking
ILD4001	SC74-6-4	1 = V _S	2 = GND	3 = EN	4 = V _{drive}	5 = GND	6 = V _{sense}	01

Data Sheet 7 Revision 2.0, 2011-06-09

Product Brief

2 Product Brief

The ILD4001 is a hysteretic buck LED controller IC for driving high power LEDs in indoor and outdoor lighting applications.

The LED controller is capable of driving an external MOSFET power transistor with the internal push-pull output stage to achieve LED currents of 350 mA up to 3 A and more depending on the dimensioning of the MOSFET, the thermal budget of the circuit board and the current sense resistor.

The ILD4001 is widely suitable for LED applications with supply voltages up to 42 V. A multifunctional enable pin allows dimming of the LEDs with DC voltage or a PWM signal. Furthermore the enable pin can be used to switch the LED controller on and off to minimize power consumption in standby.

The ILD4001 incorporates an integrated thermal shutdown function pulling low the V_{drive} output signal once the junction temperature exceeds the threshold temperature. Once the junction temperature drops below the threshold temperature the V_{drive} output is activated again.

To provide maximum design flexibility, the ILD4001 is housed in a small SC-74 package.

Figure 1 Block Diagram

Product Brief

Pin Definition

Table 1 Pin Definition and Function

Pin No.	Name	Pin Type	Buffer Type	Function
1	V_s	Input	_	Supply voltage
2	GND	GND	_	IC ground
3	EN / PWM	Input	_	Multifunctional pin:
4	V _{drive}	Output	_	Push-pull switch output pin
5	GND	GND	_	IC ground
6	V _{sense}	Input	_	LED current sense pin

Maximum Ratings

3 Maximum Ratings

Table 2 Maximum Ratings

Parameter	Symbol		Value	s	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Supply voltage	V_S	_	_	45	V	_
Peak output current	I_{drive}	_	_	50	mA	_
Total power dissipation, $T_s \le 115^{\circ}\text{C}$	P_{tot}	_	_	500	mW	_
Junction temperature	T_J	_	_	150	°C	_
Solder temperature of GND pins	T_{SGND}	_	_	125	°C	_
Storage temperature range	T_{STG}	-65	_	150	°C	_
ESD capability	$V_{ESD\;HBM}$				kV	HBM acc. to
at pin 4	202 112.71	_	_	1		JESD22-A114
at all other pins		-	_	4		

Attention: Stresses above the max. values listed here may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

Thermal Characteristics

4 Thermal Characteristics

Table 3 Maximum Thermal Resistance

Parameter	Symbol		Values		Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Junction - soldering point ¹⁾	R_{thJS}	_	_	70	K/W	_	

¹⁾ For calculation of R_{thJA} please refer to application note AN077, "Thermal Resistance Calculation"

Figure 2 Total Power Dissipation vs. Soldering Point Temperature T_S

Equation (1) is a first estimation to calculate the power dissipation of the IC:

$$P_{tot} = V_S \cdot I_S + f_{Switch} \cdot C_{drive} \cdot V_S \cdot 5V \tag{1}$$

Electrical Characteristics

5 Electrical Characteristics

5.1 DC Characteristics

All parameters at $T_{\rm A}$ = 25 °C, $V_{\rm S}$ = 12 V, $V_{\rm EN}$ = 3 V, unless otherwise specified.

Table 4 DC Characteristics

Parameter	Symbol	Values			Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Supply voltage	V_S	4.5	_	42	V	_	
Overall current consumption open load	I _{S open load}	_	4.2	_	mA	$V_{\rm S}$ = 4.5 V, $I_{\rm LED}$ = 0 mA	
Overall current consumption open load	I _{S open load}	_	5.1	-	mA	$V_{\rm S}$ = 40 V, $I_{\rm LED}$ = 0 mA	
Overall current consumption open load	I _{S open load}	_	5.3	_	mA	$V_{\rm S}$ = 42 V, $I_{\rm LED}$ = 0 mA	
Overall standby current consumption	I _{S standby}	_	_	260	nA	$V_{S} = 4.5 \text{ V},$ $V_{EN} = 0.4 \text{ V}$	
Overall standby current consumption	I _{S standby}	_	_	360	nA	$V_{S} = 40 \text{ V},$ $V_{EN} = 0.4 \text{ V}$	
Enable voltage for standby mode ¹⁾	V_{EN}	0	_	0.4	V		
Enable voltage for analog dimming ²⁾	V_{EN}	1	_	42	V		
Enable voltage for linear analog dimming	V_{EN}	1	_	2	V	linear dimming range	
Input current of multifunctional control pin	I_{EN}	_	150	270	μA	V _{EN} = 3 V	
Current of Sense input	I _{sense}	_	20	_	μA	At any LED current	
Termperature shut down threshold	T_{TSD}	_	120	_	°C	$V_{ m drive}$ gets pulled low, refers to $T_{ m J}$	

¹⁾ In standby mode ILD4001 doesn't pull low the V_{drive} signal. Depending on gate capacitance driven a 10 - 100 k Ω shunt resistor to GND is required to avoid a floating gate of the MOSFET. A discharge time of about 1 μ s is recommended.

12

²⁾ V_{drive} line requires a shunt resistor to GND to avoid a floating gate of the MOSFET for a V_{EN} voltage below the min. specified limit

Electrical Characteristics

5.2 Switching Characteristics

All parameters at T_A = 25 °C, unless otherwise specified. $V_{\rm S}$ = 12 V, $R_{\rm sense}$ = 158 m Ω ($I_{\rm LED}$ = 730 mA), L = 68 μ H, $V_{\rm EN}$ = 3 V

Table 5 Switching Characteristics

Parameter	Symbol		Values	6	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Switching frequency	f_{Switch}	_	200	_	kHz	3 LEDs in series
Maximum switching frequency	$f_{Switch\ max}$	_		500	kHz	for any coil value
Output voltage in push-high condition	V_{drive_high}	_	5	_	V	I_{drive} = 10 mA
Output voltage in pull-low condition	V_{drive_low}	_	250	_	mV	I_{drive} = -10 mA
Voltage offset of V _{sense} input ¹⁾	V _{sense}	_	116	-	mV	3 LEDs in series, V_S - V_{fLED} ≥ 3 V
Sense threshold hysteresis	V _{sense hys}	_	±15	_	%	At any LED current
Output current accuracy	I_{outacc}	_	±3	_	%	3 LEDs in series
Output current drift over supply voltage	I _{outaccVs}	_	6	_	%	3 LEDs in series V_S = 12 42 V

¹⁾ Voltage offset below supply voltage V_S

ILD4001 Step down LED Controller for high power LEDs

Electrical Characteristics

5.3 Digital Signals

All parameters at $T_{\rm A}$ = 25 °C, unless otherwise specified.

Table 6 Digital Control Parameter at Pin EN/PWM

Parameter	Symbol		Value	s	Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Input voltage for power on	V_{On}	2.5	3	42	V	Full LED current	
Input voltage for power off ¹⁾	$V_{O\!f\!f}$	-0.3	_	0.4	V	_	
Min. power on puls duration	t_{On}	10			μs		

¹⁾ During power off ILD4001 doesn't pull low the V_{drive} signal. Depending on gate capacitance driven a 10 - 100 k Ω shunt resistor to GND is required to avoid a floating gate of the MOSFET. A discharge time of about 1 μ s is recommended.

6 Basic Application Information

This section covers the basic information required for calculating the parameters for a certain LED application. For detailed application information please check the application note **AN213** (Driving 2 - 5 W LEDs with ILD4001) or visit our web site http://www.infineon.com/lowcostleddrivers

6.1 External MOSFET

An external MOSFET is required to drive the LEDs in the ILD4001 application. There are a few factors to be considered while choosing the suitable external MOSFET. First, choose the correct voltage and current rating of the MOSFET. Please ensure the $V_{\rm DS}$ breakdown voltage and $I_{\rm DS}$ current capability is sufficient and ensure that the external MOSFET is working within the safe operating area region of DC mode. Second, the logic high level from ILD4001 is 5 V and the external MOSFET must be able to be driven with a 5 V gate voltage. Third, choose a low $R_{\rm DSON}$ MOSFET to improve the efficiency of the system.

The BSR302N is recommended for supply voltages up to 30 V and an output current up to 3.7 A. For higher supply voltages up to 42 V, the BSP318S is recommended with an output current of up to 2.6 A.

For an overview of all suitable MOSFETs please visit http://www.infineon.com/smallsignalmosfets

6.2 Setting the Average LED Current

The average output current for the LEDs is set by the external sense resistor R_{sense} . To calculate the value of this resistor a first approximation can be calculated using **Equation (2)**.

 V_{sense} is dependent on the supply voltage V_{s} and the number of LEDs in series.

$$R_{sense} = \frac{V_{sense}}{I_{LED}} \tag{2}$$

Example Calculation

 V_s = 12 V, I_{LED} = 730 mA, L = 68 μ H, V_{fLED} = 3 V, 3 LEDs in series For this configuration V_{sense} will settle at 116 mV. $\rightarrow R_{sense}$ = 158 m Ω according to **Equation (2)**

An easy way to achieve this resistor value is to connect several standard resistors in parallel.

6.3 Dimming of the LEDs

Analog Voltage Dimming

The voltage level of the EN/PWM pin can be used for analog dimming of the LED current. The analog dimming characteristic graph is shown in **Figure 3**. To achieve a linear change in LED current versus control voltage the recommended voltage range at the EN/PWM pin is 1 V to 2 V. The maximum achievable LED current is defined by resistor R_{sense} . The maximum LED current will be achieved for $V_{EN} \ge 2.5 \text{ V}$ as shown in **Figure 4**.

Below 0.4 V the ILD4001 is set to standby mode and the output is switched off. In standby mode ILD4001 doesn't pull low the $V_{\rm drive}$ output signal driving the gate of the external MOSFET. Depending on gate capacitance driven a 10 - 100 k Ω shunt resistor to GND is required to avoid a floating gate of the MOSFET. Furthermore a gate discharge time of about 1 μ s is recommended.

Figure 3 Analog Voltage Dimming (12V, 3 LEDs, T_A =25°C) vs. R_{sense}

Figure 4 Analog Voltage Dimming (Relative) vs. R_{sense}

Figure 5 Analog Voltage Dimming vs. T_A (12V, 3 LEDs, 110 m Ω , 47 μ H)

PWM Dimming

Besides the analog dimming functionality the EN/PWM pin acts as input for a pulse width modulated (PWM) signal to control the dimming of the LED string. For PWM dimming the signal's logic high level should be at least 2.5 V and the PWM frequency should be lower than 5 kHz. For the ILD4035/4001 demo board a dimming frequency less than 330 Hz is recommended to maintain a maximum contrast ratio of 100:1. The achieveable contrast ratio is shown on **Figure 6** based on the measured average LED current deviating 3 dB from the linear reference. The maximum contrast ratio depends mainly on the rise time of the inductor current and is thus dependent on supply voltage, inductor size and LED string forward voltage.

Figure 6 PWM Dimming: 3 dB Deviation of Contrast Ratio to Linear Dimming (12 V, 68 μH, 3 LEDs)

During the low state of the PWM signal ILD4001 doesn't pull low the V_{drive} signal. Depending on gate capacitance driven and intended gate discharge time (about 1 μs is recommended) a 10 - 100 $k\Omega$ shunt resistor to GND is required to avoid a floating gate of the MOSFET.

6.4 Switching Parameters

For all shown switching parameters ILD4001 has been measured on evaluation board ILD4035/4001 using a BSP318S N-channel MOSFET at $T_{\rm A}$ = 25 °C. Used LEDs have a typical $V_{\rm fLED}$ of 3 V. See application note **AN213** for further details.

Performance vs. supply voltage and number of LEDs: $R_{\rm sense} = 75~{\rm m}\Omega$, L = 33 μ H, $V_{\rm fLED} = 3~{\rm V}$

I_{LED} versus V_{S} and Number of LEDs

$f_{ m Switch}$ versus $V_{ m S}$ and Number of LEDs

Efficiency versus $V_{\rm S}$ and Number of LEDs

Performance vs. supply voltage and number of LEDs: $R_{\rm sense} = 75~{\rm m}\Omega$, L = 47 ${\rm \mu H}$, $V_{\rm fLED} = 3~{\rm V}$

I_{LED} versus V_{S} and Number of LEDs

$f_{ m Switch}$ versus $V_{ m S}$ and Number of LEDs

Efficiency versus $V_{\rm S}$ and Number of LEDs

Performance vs. supply voltage and number of LEDs: $R_{\rm sense}$ = 158 m Ω , L = 47 μ H, $V_{\rm fLED}$ = 3 V

I_{LED} versus V_{S} and Number of LEDs

f_{Switch} versus V_{S} and Number of LEDs

Efficiency versus $V_{\rm S}$ and Number of LEDs

Performance vs. supply voltage and number of LEDs: $R_{\rm sense}$ = 158 m Ω , L = 68 μ H, $V_{\rm fLED}$ = 3 V

I_{LED} versus V_{S} and Number of LEDs

f_{Switch} versus V_{S} and Number of LEDs

Efficiency versus $V_{\rm S}$ and Number of LEDs

LED current vs. soldering point temperature T_{S} (V_{S} = 12V, V_{fLED} = 3 V, 3 LEDs)

 I_{LED} versus T_S (Rsense = 75 m Ω , L = 47 μH)

 I_{LED} versus T_S (R_{sense} = 110 mOhm, L = 68 μ H)

 $I_{\rm LED}$ versus $T_{\rm S}$ (R_{sense} = 158 m Ω , L = 68 μ H)

Application Circuit

7 Application Circuit

For detailed application information please check the Application Note **AN213** (Driving 2 - 5 W LEDs with ILD4001) or visit our web site http://www.infineon.com/lowcostleddrivers

Figure 7 Application Circuit

8 Evaluation Board

Figure 8 ILD4001 on Evaluation Board Using BSP318S

Package Information

9 Package Information

Figure 9 Package Outline SC74

Figure 10 Recommended PCB Footprint for Reflow Soldering

Figure 11 Tape Loading

www.infineon.com