Non-commutative geometry

Ikhan Choi

April 21, 2025

Contents

I	Non-commutative spaces			
1	1.2 Kaspa 1.3 Cuntz	K-theory n characterization	4 4 5 18 20	
2	Cyclic theory 2			
3	3.2 Right	Hilbert bimodules	22 22 22 23	
4	4.2 Conne4.3 Kaspa4.4 Higso	ations	24 24 24 26 27 28	
II	Geomet	ric applications	29	
5	5.2	ral triples	30 30 32 32	
O	6.1 Chern 6.2 Spects 6.2.1 6.2.2 6.2.3	a characters ral flows Equivariant KK-class associated to a circle action Modular index pairing index formulae	33 33 35 35 35 35	

7	Topological models			
	7.1 I	K-homology	36	
	7.2	Correspondences	36	
8	Baum	a-Connes conjecture	37	
9	Coarse geometry			
	9.1		38	
	9.2	Quantum Hall effect	38	
	9.3		39	
10	Quan	tum metric spaces	40	
	10.1		40	
11 Topics				
	11.1 ľ	Non-commutative tori	41	
	11.2 I	Foliations	41	
III	[Ph	ysical applications	42	
12 D-branes			43	
13 Quantum Hall effects				
14	14 Standard models			
15 Anomalies				

Part I Non-commutative spaces

Chapter 1

Bivariant K-theory

1.1 Higson characterization

1.1 (Bivariant K-theory). According to Higson, a *bivariant K-theory* is defined as the initial homotopy invariant, operator stable, split exact functor $kk_0 : C^*Alg_{(sep)} \to KK_{0,(sep)}$ to an additive category. The additive category $KK_{0,(sep)}$ is called the *Kasparov category*.

Consider separable nuclear C*-algebras

$$\mathcal{I} := C([0,1]), \qquad \mathcal{K} = K(\ell^2), \qquad \mathcal{S} := C_0(\mathbb{R}).$$

For a functor from $C^*Alg_{(sep)}$, the homotopy invariance means that the constant function *-homomorphism $A \to \mathcal{I} \otimes A$ is mapped to an isomorphism, and the *operator stability* or just the *stability* means that the corner embedding *-homomorphism $A \to \mathcal{K} \otimes A$ is mapped to an isomorphism, for all (separable) C^* -algebras A. The operator stability means the stability under the stabilization functor $\mathcal{K} \otimes -$, whose term comes from the stable equivalence of vector bundles. See the standard projection picture of the operator K-theory.

Recall that the tensor products \otimes_{max} and \otimes_{min} define symmetric monoidal structures on $C^*Alg_{(sep)}$. Each tensor product induces a corresponding symmetric monoidal structure on the Kasparov category such that the bivariant K-theory is monoidal(?).

1.2. The functor $\Sigma: KK_{0,(\text{sep})}^{\text{op}} \to KK_{0,(\text{sep})}^{\text{op}}$ defined as the opposite functor $\Sigma:=(kk_0(\mathcal{S})\otimes -)^{\text{op}}=kk_0(\mathcal{S}\otimes -)^{\text{op}}$ induced by the nuclear C^* -algebra \mathcal{S} is called the *suspension*, and Meyer-Nest showed it defines a triangulated category structure on the opposite Kasparov category $KK_{0,(\text{sep})}^{\text{op}}(?)$.

Recall that the category CH_* of pointed compact Hausdorff spaces is triagulated and there is an equivalence $CH_* \to CC^*Alg^{op}$ with the category of commutative C^* -algebras. The functor

$$CH_* \rightarrow C^*Alg^{op} \rightarrow KK_0^{op}$$

preserves the triangulated category structure(?).

Bott periodicity can be proved by abstract non-sense? Cuntz showed $kk_0(\mathcal{T}_0) \cong 0$, where \mathcal{T}_0 is the *non-unital Toeplitz algebra*, together with an exact sequence

$$0 \to \mathcal{K} \to \mathcal{T}_0 \to \mathcal{S} \to 0$$
(?).

1.2 Kasparov picture

- · Kasparov-Stinespring theorem
- · Kasparov-Voiculescu theorem
- Kasparov-Weyl-von Neumann theorem

Super:

- positive/negative: convenient to use \pm for super-modules
- even(zero)/odd(one): convenient in the Koszul sign rules by the ring structure of degree, and conventional adjectives in super-algebras
- **1.3** (Kasparov modules). Let A and B be C^* -algebras. We regard A and B to have trivial $\mathbb{Z}/2\mathbb{Z}$ -gradings. Note that a $\mathbb{Z}/2\mathbb{Z}$ -grading is technically same as a $\mathbb{Z}/2\mathbb{Z}$ -action. An *even Kasparov module* or simply a *Kasparov module* over (A, B) is a pair (E, F) consisting of
 - (i) a countably generated right Hilbert module E over B together with a *-homomorphism $A \rightarrow B(E)$,
 - (ii) a bounded linear operator $F = \begin{pmatrix} 0 & F_- \\ F_+ & 0 \end{pmatrix}$ on E such that
 - (ii.i) $F \in B(E)$,
 - (ii.ii) $[F, a] \in K(E)$ for $a \in A$,
 - (ii.iii) $a(F F^*) \in K(E)$ for $a \in A$,
 - (ii.iv) $a(F^2-1) \in K(E)$ for $a \in A$,
- (iii) a $\mathbb{Z}/2\mathbb{Z}$ -grading on E such that the bimodule actions by (A, B) are even and the operator F is odd.

An odd Kasparov module is an even Kasparov module with trivial $\mathbb{Z}/2\mathbb{Z}$ -grading.

Let (E_0, F_0) and (E_1, F_1) be even Kasparov modules over (A, B). A *unitary equivalence* between them is an even A-linear B-adjointable isometric isomorphism $u: E_0 \to E_1$ with $Ad\ u(F_0) = F_1$. A *homotopy* between them is an even Kasparov module (E, F) over (A, C([0, 1], B)) such that there are unitary equivalences $(E(0), F(0)) = (E_0, F_0)$ and $(E(1), F(1)) = (E_1, F_1)$, where $(E(t), F(t)) := (E \otimes_{\delta_t} B, F \otimes 1)$ and $\delta_t : C([0, 1], B) \to B : b \mapsto b(t)$ for each $t \in [0, 1]$. We can check (E(t), F(t)) is an even Kasparov module over (A, B) with simple computations. A homotopy (E, F) between (E_0, F_0) and (E_1, F_1) is particularly called an *operator homotopy* if $E = E_0[0, 1]$ with $E_0 = E_1$, $E_0 = E_0$,

We can take a representative F being self-adjoint because $\begin{pmatrix} 0 & F_- \\ F_+ & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & F_+^* \\ F_+ & 0 \end{pmatrix}$ defines operator homotopic Kasparov modules.

- (a) compact perturbation
- (b) operator homotopy
- (c) degenerate

Proof. (b)

(c) Let (E_0, F_0) be a degenerate Kasparov cycle from A to B. Define a Kasparov cycle (E, F) from A to B[0,1] such that $E := E_0[0,1)$

$$(C_b([0,1),K(E_0)) \not\subset K(E_0[0,1))$$
 in general.)
(d)

1.4 (Equivariant Hilbert super-bimodules). Let A and B be C^* -algebras with actions of a locally compact group G. A *Hilbert bimodule* is a Banach bimodule over (A, B) such that the norm is induced from a B-valued inner product for which the left action of A is adjointable. A Hilbert bimodule is sometimes called a *correspondence*.

We say a Hilbert super-bimodule E over (A, B) is *equivariant* if it consists of a strongly continuous even action $u: G \to L(E)$ on E such that

$$u_s(a\xi) = \alpha_s(a)u_s(\xi), \qquad \beta_s(\langle \eta, \xi \rangle) = \langle u_s(\eta), u_s(\xi) \rangle, \qquad a \in A, \ b \in B,$$
$$s \in G, \ \xi, \eta \in E.$$

Note that it follows $u_s(\xi b) = u_s(\xi)\beta_s(b)$ automatically. It generalizes covariant representations of A and equivariant Hilbert modules over B, with additional $\mathbb{Z}/2\mathbb{Z}$ -grading. An equivariant super-correspondence is in fact technically the same as the equivariant correspondence over $G \times \mathbb{Z}/2\mathbb{Z}$, in which the action of $\mathbb{Z}/2\mathbb{Z}$ corresponds to the parity operator $\gamma: \xi_{\pm} \mapsto \pm \xi_{\pm}$ given by the grading, but we will not consider it as an action. We also avoid omitting parantheses in the notation $u_s(\xi)$ because the group action u is not u-linear in general unless the group action on u is trivial. One can check that for an equivariant super-correspondence u from u to u the adjoint action u acts continuously on u and strictly continuously on u

- (a) If E is an equivariant super-correspondence from A to B, then $(L^2(G) \otimes E, \lambda \otimes u)$ is naturally an equivariant super-correspondence from A to B. If E is faithful, non-degenerate, and full, then so is $L^2(G) \otimes E$, respectively. Fell's absorption.
- (b) interior tensor product and coalgebra structure from the group...

Proof. (a)

Define a super-correspondence $(L^2(G) \otimes E, \lambda \otimes u)$ from A to B such that the correspondence structure is defined as it is

$$(a\xi)(t) := a\xi(t), \quad (\xi b)(t) := \xi(t)b, \quad \langle \eta, \xi \rangle = \int_G \langle \eta(t), \xi(t) \rangle dt,$$

which is equivariant since

$$((\lambda_{s} \otimes u_{s})(a\xi))(t) = u_{s}((a\xi)(s^{-1}t)) = u_{s}(a\xi(s^{-1}t)) = \alpha_{s}(a)u_{s}(\xi(s^{-1}t))$$

$$= \alpha_{s}(a)((\lambda_{s} \otimes u_{s})(\xi))(t) = (\alpha_{s}(a)(\lambda_{s} \otimes u_{s})(\xi))(t),$$

$$((\lambda_{s} \otimes u_{s})(\xi b))(t) = u_{s}((\xi b)(s^{-1}t)) = u_{s}(\xi(s^{-1}t)b) = u_{s}(\xi(s^{-1}t))\beta_{s}(b)$$

$$= ((\lambda_{s} \otimes u_{s})(\xi))(t)\beta_{s}(b) = ((\lambda_{s} \otimes u_{s})(\xi)\beta_{s}(b))(t),$$

$$\beta_{s}(|\xi|^{2}) = \int_{G} \beta_{s}(|\xi(t)|^{2}) dt = \int_{G} |(u_{s}(\xi))(t)|^{2} dt = \int_{G} |((\lambda_{s} \otimes u_{s})(\xi))(t)|^{2} dt = |(\lambda_{s} \otimes u_{s})(\xi)|^{2}.$$

Fell absorption: Define a super-correspondence $(L^2(G) \otimes_{\beta} E_0, \lambda \otimes 1)$ from *A* to *B* such that

$$(a\xi_0)(t) := \alpha_t^{-1}(a)\xi_0(t), \quad (\xi_0b)(t) := \xi(t)\beta_t^{-1}(b), \quad \langle \eta_0, \xi_0 \rangle := \int_G \beta_t(\langle \eta_0(t), \xi_0(t) \rangle) dt,$$

which can be also shown to be equivariant. We have an analogue of the Fell absorption in the sense that there is an equivariant even A-linear B-adjointable isometric isomorphism $w: L^2(G) \otimes_{\beta} E_0 \to L^2(G) \otimes E$ defined such that $(w\xi_0)(t) := u_t(\xi_0(t))$.

1.5 (Continuous fields of super-correspondences). Let A and B be $C_0(X)$ -algebras, where X be a locally compact Hausdorff space. Take notice that X should not be interpreted as a pointed compact Hausdorff space when we consider $C_0(X)$ -algebras. We say a super-correspondence E from A to B is said to be *over* $C_0(X)$ if $f \notin E$ for $f \in C_0(X)$ and $f \in E$. For equivariant versions for which $f \in C_0(X)$ is a $f \in C_0(X)$ on $f \in C_0(X)$

(a)

(b) Define $B[0,1] := B \otimes C([0,1])$ and $E[0,1] := E \otimes_B B[0,1]$. We have a natural isomorphisms

$$C([0,1],B) = B[0,1], \quad C([0,1],E) = E[0,1],$$

 $C([0,1],K(E)) = K(E[0,1]), \quad C([0,1],B(E)_{\text{strict}}) = B(E[0,1])$

as C*-algebras, and in the first three the identifications are equivariant. If $F \in C([0,1], B(E)_{norm})$ and F(t) is G-continuous for each $t \in [0,1]$, then F is G-continuous in B(E[0,1]). The evaluation maps are all well-defined.

- (c) For a $C_0(X)$ -algebra A, there exists a faithful non-degenerate correspondence E from A to some $C_0(X)$ -algebra B.
- (d) tensor products of $C_0(X)$ -C*-algebras

Proof. (b) Two C*-algebras $C_0(X, B)$ and $B \otimes C_0(X)$ have a common dense *-subalgebra $B \odot C_0(X)$, and the induced C*-norms coincide by the nuclearity of $C_0(X)$, so the identity on the dense *-algebra extends to a *-isomorphism between the two C*-algebras.

Two Banach spaces $C_0(X, E)$ and $E \otimes_B C_0(X, B)$ have a common dense *-subalgebra $E \otimes_B C_0(X, B)$, and the induced norms are given by

$$\|\sum_{i} \xi_{i} \otimes b_{i}\|_{C_{0}(X,E)}^{2} = \sup_{x \in X} \|\sum_{i,j} b_{j}^{*}(x) \langle \xi_{j}, \xi_{i} \rangle b_{i}(x)\|_{B} = \|\sum_{i} \xi_{i} \otimes b_{i}\|_{E \otimes_{B} C_{0}(X,B)}^{2},$$

so the *B*-adjointable isometric isomorphism.

For $C_0(X,K(E)) = K(C_0(X,E))$ and $C_0(X,B(E)_{\text{strict}}) = B(C_0(X,E))$, we consider a dense *-subalgebra $\theta_{E \oplus C_0(X)}$. For $T := \sum_i \theta_{\xi_i \otimes f_i, \eta_i \otimes g_i}$, norms from $C_0(X,K(E))$, $K(C_0(X,E))$ and semi-norms from $C_0(X,B(E)_{\text{strict}})$, $B(C_0(X,E))$ are

$$\sup_{x \in X} \sup_{\xi \in E_1} \|T(x)\xi\|_E, \quad \sup_{\xi \in C_0(X,E)_1} \sup_{x \in X} \|(T\xi)(x)\|_E,$$

$$\sup_{x \in X} \|T(x)\xi\|_E, \quad \xi \in E, \quad \sup_{x \in X} \|(T\xi)(x)\|_E, \quad \xi \in C_0(X,E).$$

(For the last two, we omit the seminorms associated to adjoints.) One can see that the first two are equal by temporarily fixing points $x \in X$. The last two families of semi-norms are same but the generating vectors are different as E and $C_0(X, E)$, so in order to extend the convergence for $\xi \in C_0(X, E)$ from $\xi \in E \odot C_0(X)$, we can use the boundedness of a strictly convergent net so that the two topologies are same on the bounded part. Note that the norm topology on B(E) cannot make use of the density of an appropriate *-subalgebra.

(c) We will choose $B = C_0(X)^{**}$. $(C_0(X)^{**}$ is not a $C_0(X)$ -algebra...) Fix a state ω on A. Since $C_0(X)^{**} \subset Z(A^{**})$, there is a conditional expectation $\varphi: A^{**} \to C_0(X)^{**}$, which factors through $\omega^{**} = \omega^{**}\varphi$ because $C_0(X)^{**} \subset Z(A^{**})$ is unital. Since φ is completely positive, the Stinespring construction on $A \odot C_0(X)$ gives rise to a C^* -correspondence E_ω from A to $C_0(X)^{**}$. Define $E:=\bigoplus_{\omega\in S(A)}E_\omega$. If $\alpha\in A$ acts trivially on E, which means $\varphi(\alpha^*\alpha)=0$ and $\omega(\alpha^*\alpha)=0$. Thus A acts failfully on E.

For equivariant version, first take $A \to B(E_0)$. Define $A \to B(L^2(G) \otimes_B E_0)$ such that

$$(a\xi_0)(t) := \alpha_t^{-1}(a)\xi_0(t).$$

Using the Fell absorption $B(L^2(G) \otimes_{\beta} E_0) = B(L^2(G) \otimes E)$, we have $A \to B(L^2(G) \otimes E)$ such that

$$(a\xi)(t) = u_t(\alpha_t^{-1}(a)\xi(t)).$$

Note that $A \rightarrow B(E_0)$ is not equivariant, so

$$u_t(\alpha^{-1}(a)\xi(t)) \neq au_t(\xi(t)).$$

1.6 (Equivariant Kasparov modules). $a[u_s, F] \in K(E)$ for $a \in A$ and $s \in G$, and $aF \in B(E)$ is G-continuous for

1.7 (Functorial properties of KK-theory). The set of homotopy classes of countably generated Kasparov modules is denoted by $KK^G(A,B)$. The set theoretic issue does not occur because we only consider countably generated correspondences.

- (a) $KK^G(A, B)$ is an abelian group.
- (b) KK^G is a homotopy invariant bivariant functor.
- (c) KK^G is split-exact.
- (d) KK^G is stable.

Proof. (a) well-definedness

associativity: clear

identity: clear

inverse: Let (E, F) be a Kasparov cycle from A to B. Let $U \in B(E, -E)^{\text{odd}}$ be the identity operator. Note that [U,a]=0 and $\mathrm{Ad}\,u_s(U)=U$ for $a\in A$ and $s\in G$. We prove that $-(E,F):=(-E,-UFU^*)$ is the inverse. Consider

$$\overline{E} := (E \oplus -E)[0,1], \qquad \overline{F}(t) := \begin{pmatrix} c(t)F & s(t)U^* \\ s(t)U & -c(t)UFU^* \end{pmatrix} \in B(E \oplus -E), \qquad t \in [0,1],$$

where $c(t) := \cos \frac{\pi}{2} t$ and $s(t) := \sin \frac{\pi}{2} t$, with an identification $\overline{F} \in B(\overline{E})$ obtained from the norm continuity of $\overline{F}:[0,1]\to B(E\oplus -E)$. If we prove $(\overline{E},\overline{F})$ is a Kasparov cycle from A to B[0,1], then it becomes an operator homotopy between $(E \oplus -E, F \oplus -UFU^*)$ and a degenerate Kasparov cycle. Since \overline{E} is clearly a countably generated super-correspondence, it suffices to check \overline{F} satisfies the conditions in the definition of Kasparov cycles.

(b)

Suppose $\varphi_0, \varphi_1 : A \rightrightarrows A'$ are homotopic. We calim $\varphi_0^*, \varphi_1^* : KK^G(A', B) \rightrightarrows KK^G(A, B)$ are equal. Suppose $\psi_0, \psi_1 : B \rightrightarrows B'$ are homotopic. We will show $\psi_{0*}, \psi_{1*} : KK^G(A, B) \rightrightarrows KK^G(A, B')$.

(c) Here we prove KK^G preserves finite biproduct. The only non-trivial part is the injectivity of

$$KK^G(A_1 \oplus A_2, B) \rightarrow KK^G(A_1, B) \oplus KK^G(A_2, B).$$

Let $(E_0, F_0) \in KK^G(A_1 \oplus A_2, B)$. Define a Kasparov cycle (E, F) from $A_1 \oplus A_2$ to B[0, 1] such that

$$E := E_0 \otimes_B BV$$
, $V := ([0,1] \times \{0\}) \cup (\{0\} \times [0,1])$, $F := F_0 \otimes 1$,

where the correspondnece structure on E is given by

$$((a_1, a_2)\xi b)(s, t) := \begin{cases} (a_1, (1-s)a_2)\xi(s, 0)b(s) & \text{if } s \neq 0, \\ (a_1, a_2)\xi(0, 0)b(0) & \text{if } (s, t) = (0, 0), \\ ((1-t)a_1, a_2)\xi(0, t)b(t) & \text{if } t \neq 0, \end{cases}$$

$$(a_1, a_2) \in A_1 \oplus A_2, \ b \in B[0, 1],$$

$$\xi \in E, \ (s, t) \in V.$$

and

$$\langle \eta, \xi \rangle (t) := \begin{cases} \langle \eta(0,0), \xi(0,0) \rangle & \text{if } t = 0, \\ \frac{1+t}{2} (\langle \eta(t,0), \xi(t,0) \rangle + \langle \eta(0,t), \xi(0,t) \rangle) & \text{if } t \neq 0, \end{cases} \qquad \xi, \eta \in E, \ t \in [0,1].$$

Then, (E, F) is a homotopy between (E_0, F_0) and $((A_1, E_0) \oplus (A_2, E_0), F_0 \oplus F_0)$, so we are done.

- **1.8** (Stabilization theorem). Let E be an equivariant Hilbert module over a C^* -algebra B with an action of a compact group G. Denote by B_0 and E_0 the C^* -algebra B and the Hilbert module E over B_0 with trivial gradings and trivial group actions. Let $H_{B_0} := \ell^2 \otimes B_0$ and $H_B := (\ell^2 \otimes L^2(G) \otimes B, \mathrm{id} \otimes \lambda \otimes \beta)$ be the standard Hilbert modules respectively over B_0 and B, where H_B is graded and equivariant with non-trivial grading on $\ell^2 = \ell_+^2 \oplus \ell_-^2$. Suppose E is countably generated as a Hilbert B-module.
 - (a) There is a B_0 -adjointable isometric isomorphism $H_{B_0} = E_0 \oplus H_{B_0}$.
 - (b) There is an equivariant even *B*-adjointable isometric isomorphism $H_B = E \oplus H_B$.
- *Proof.* (a) The Hilbert module E_0 over B_0 is countably generated if and only if there is a dense range B_0 -adjointable operator $H_{B_0} \to E_0$. (I think it is false)
- (b) Since the grading is technically nothing but an action of $\mathbb{Z}/2\mathbb{Z}$ and the product group $G \times \mathbb{Z}/2\mathbb{Z}$ is still compact, it only needs to consider group actions. By the part (a), there is a B_0 -adjointable isometric isomorphism $T_0: H_{B_0} = E_0 \oplus H_{B_0}$ which is equivariant with respect to trivial actions, and the tensor product $1 \otimes_{\beta} T_0: L^2(G) \otimes_{\beta} H_{B_0} = L^2(G) \otimes_{\beta} (E_0 \oplus H_{B_0})$ is an equivariant B-adjointable isometric isomorphism because the equivariance follows from $(\lambda_s \otimes 1)(1 \otimes_{\beta} T) = (1 \otimes_{\beta} T)(\lambda_s \otimes 1)$ and the adjointability is due to $(1 \otimes_{\beta} T)^* = 1 \otimes_{\beta} T^*$. Since $\ell^2 = \ell^2 \oplus \ell^2 = \ell^2 \otimes \ell^2$ and the tensor product of Hilbert spaces is commutative, by applying the Fell absorption principle for Hilbert modules three times, we have

$$\begin{split} H_{B} &= \ell^{2} \otimes L^{2}(G) \otimes B \\ &= \ell^{2} \otimes L^{2}(G) \otimes (\ell^{2} \otimes B) \\ &= \ell^{2} \otimes L^{2}(G) \otimes_{\beta} H_{B_{0}} \\ &= \ell^{2} \otimes L^{2}(G) \otimes_{\beta} (E_{0} \oplus H_{B_{0}}) \\ &= (\ell^{2} \otimes L^{2}(G) \otimes_{\beta} E_{0}) \oplus (\ell^{2} \otimes L^{2}(G) \otimes_{\beta} H_{B_{0}}) \\ &= (\ell^{2} \otimes L^{2}(G) \otimes E) \oplus (\ell^{2} \otimes L^{2}(G) \otimes E) \\ &= H_{E} \oplus H_{B}, \end{split}$$

where $H_E := (\ell^2 \otimes L^2(G) \otimes E, \mathrm{id} \otimes \lambda \otimes u)$, and all the identities mean equivariant *B*-adjointable isometric isomorphisms.

Since G is compact, we have an equivariant linear isometry $\mathbb{C} \to L^2(G)$. It gives rise to a direct sum

decomposition $L^2(G) = \mathbb{C} \oplus \mathbb{C}^{\perp}$, so $E^{\perp} := \mathbb{C}^{\perp} \otimes E$ implies

$$\begin{split} E \oplus H_E &= E \oplus (\ell^2 \otimes L^2(G) \otimes E) \\ &= E \oplus (\ell^2 \otimes (\mathbb{C} \oplus \mathbb{C}^{\perp}) \otimes E) \\ &= E \oplus (\ell^2 \otimes (E \oplus E^{\perp})) \\ &= E \oplus (\ell^2 \otimes E) \oplus (\ell^2 \otimes E^{\perp}) \\ &= ((\mathbb{C} \oplus \ell^2) \otimes E) \oplus (\ell^2 \otimes E^{\perp}) \\ &= (\ell^2 \otimes E) \oplus (\ell^2 \otimes E^{\perp}) \\ &= \ell^2 \otimes (E \oplus E^{\perp}) \\ &= \ell^2 \otimes L^2(G) \otimes E \\ &= H_E, \end{split}$$

where all the identities mean equivariant B-adjointable isometric isomorphisms. Therefore,

$$H_B = H_E \oplus H_B = E \oplus H_E \oplus H_B = E \oplus H_B.$$

1.9 (Technical theorem). Let J be a C^* -algebra with a continuous action of a locally compact group G, and A_1 and A_2 be C^* -subalgebras of the multiplier algebra M(J). Suppose φ ($\varphi(s) = [u_s, \widehat{F}_2]$) is a bounded function $G \to M(J)$ such that

- (i) Δ is a norm separable subset of M(J) such that $[\Delta, A_1] \subset A_1$, and G acts on A_1 ,
- (ii) $A_1(A_2 \cup \varphi(G) \cup \varphi(G)^*) \subset J$,
- (iii) *G*-action on A_1 is continuous, and $s \mapsto a_1 \varphi(s)$, $a_1 \varphi(s)^*$ are norm continuous for every $a_1 \in A_1 + J$.

Assume that J, A_1 , A_2 are σ -unital, and that G is σ -compact. Then, there is M, $N \in M(J)^{\text{ev}}$ with $0 \le M$, $N \le 1$ and M + N = 1 such that

- (i) $[\Delta, M], [\Delta, N] \subset J$ and $[u_s, M], [u_s, N] \in J$ for $s \in G$,
- (ii) $MA_1 \subset J$ and $N(A_2 \cup \varphi(G) \cup \varphi(G)^*) \subset J$,
- (iii) *M* and *N* are *G*-continuous, and $s \mapsto N\varphi(s)$ is norm continuous.

Proof. (a) We first show a lemma on the existence of sequential quasi-central approximate unit. The statement we want to prove is as follows: for a σ -unital C*-algebra A and a strictly locally compact σ -compact Hausdorff subset $\Delta \subset M(A)$, there is a countable directed approximate unit $e_n \in A^+$ of A such that $[e_n, -] \to 0$ compactly in $C(\Delta, A)$.

Or assuming Δ is a norm separable closed subspace, we can construct a bounded linear map $\Delta \to \ell^1(\mathbb{N})$: $d \mapsto ([e_n - e_{n-1}, d])_n$.

Let e_n be a sequential approximate unit of A. Take any compact $K \subset Y$. Let Λ be the algebraic convex closure of e_n . Define a bounded linear operator

$$L:A \rightarrow C(K,A):a \mapsto [a,-].$$

Our goal is to show the closure of the image $L\Lambda$ in C(K,A) contains zero. Suppose not so that there is $l \in C(K,A)^*$ such that

$$0<\inf_{\nu\in\Lambda}\operatorname{Re}l(L\nu).$$

We claim that $Le_i \to 0$ weakly in C(K,A). We can show that it converges in

$$\sigma(A \otimes C(K), A^* \odot \operatorname{span} \operatorname{PS}(C(K))).$$

To enhance the convergence, we need to introduce vector measures and require for an approximate unit to be a sequence for applying the bounded convergence theorem!!!! I think we can show this using the measure topology (maybe).

(b) We now prove the main theorem. We do not consider G-actions. All we have are $A_1, A_2, \Delta \subset M(J)$ such that $[\Delta, A_1] \subset J$ and $A_1A_2 \subset J$. We may assume Δ is countable and norm compact.

Take strictly positive $h_1 \in A_1$, $h_2 \in A_2$, $k \in J$. Take an approximate unit $e_n \in A_1$ quasi-central for Δ . We may assume

$$||e_n h_1 - h_1|| < 2^{-n}, \qquad ||[d, e_n]|| < 2^{-n},$$

where $d \in \Delta$. Take an approximate unit $v_n \in J$ such that $v_0 = 0$ and

$$\|(\nu_n-\nu_{n-1})^{\frac{1}{2}}w\|\leq \|w(1-\nu_{n-1})w\|^{\frac{1}{2}}<2^{-n},\qquad \|[z,(\nu_n-\nu_{n-1})^{\frac{1}{2}}]\|<2^{-n},$$

where $w \in \{k, e_n h_2\}$ and $z \in \Delta \cup \{h_1, h_2\}$. The second inequality can be done by approximate the square root with polynomials in $v_n - v_{n-1}$.

The sum of $(v_n-v_{n-1})^{\frac{1}{2}}(1-e_n)(v_n-v_{n-1})^{\frac{1}{2}}$ is strictly Cauchy in M(J) because

$$\|(v_n-v_{n-1})^{\frac{1}{2}}(1-e_n)(v_n-v_{n-1})^{\frac{1}{2}}k\| \leq \|(v_n-v_{n-1})^{\frac{1}{2}}k\| < 2^{-n},$$

and defined to be M. We have $[\Delta, M] \subset J$ because

$$\|[d,(v_n-v_{n-1})^{\frac{1}{2}}(1-e_n)(v_n-v_{n-1})^{\frac{1}{2}}]\| \leq 2\|[d,(v_n-v_{n-1})^{\frac{1}{2}}\| + \|[d,e_n]\| < 3 \cdot 2^{-n}.$$

We have $MA_1 \subset J$ because

$$\|(\nu_n-\nu_{n-1})^{\frac{1}{2}}(1-e_n)(\nu_n-\nu_{n-1})^{\frac{1}{2}}h_1\|\leq \|[(\nu_n-\nu_{n-1})^{\frac{1}{2}},h_1]\|+\|h_1-e_nh_1\|<2\cdot 2^{-n}.$$

We have $NA_2 \subset J$ because

$$\|(v_n-v_{n-1})^{\frac{1}{2}}e_n(v_n-v_{n-1})^{\frac{1}{2}}h_2\|\leq \|[(v_n-v_{n-1})^{\frac{1}{2}},h_2]\|+\|(v_n-v_{n-1})^{\frac{1}{2}}e_nh_2\|<2\cdot 2^{-n}.$$

If $hk \in \mathcal{K}$, then there is a projection $M(\mathcal{K})$ which essentially separates h and k.

Let $H := \ell^2$ and take $s \in B(H)^+$ such that s is not invertible but $1_{\{0\}}(s) = 0$ and the projections $p_n := 1_{[(n+1)^{-1},n^{-1})}(s)$ are infinite in B(H) with $e_n := \sum_{k \le n} p_k \to 1$ strictly in B(H). Since $sx \in K(H)$ implies $p_nx \in K(H)$ by polynomial approximation via functional calculus, and since $p_nx \in K(H)$ implies $sx \in K(H)$ by $e_nsx \in K(H)$, so $B := \{x \in B(H) : xs \in K(H), sx \in K(H)\} = \{x \in B(H) : xp_n \in K(H), p_nx \in K(H)\}$.

If $x \in B(H)$ with $0 \le x \le 1$ essentially annihilates $C^*(s)$, that is, $x \in B$, then $p_n x p_n \in K(p_n H)$ implies $\|p_n(1-x)p_n\| \ge 1$. By measuring the norm of $p_n(1-x)p_n$ as an operator on $K(p_n H)$, we can find $b = \sum_n p_n b p_n \in B(H)$ such that $\|b\| = 1$ and $p_n b p_n \in K(p_n H)$ and $\|(p_n(1-x)p_n)(p_n b p_n)\| \ge 2^{-1}$. Then, $b \in B$ since $p_n b = p_n b p_n = b p_n \in K(H)$. Since b commutes with p_n by construction, we have $\|p_n(1-x)bp_n\| \ge 2^{-1}$, and it implies $(1-x)b \notin K(H)$. (If $k \in K(H)^+$, then $\|p_n k p_n\| = \|k^{\frac{1}{2}}(e_n - e_{n-1})k^{\frac{1}{2}}\| \to 0$.)

Non-commutative Tietze extension.

1.10 (How to use the technical theorem). Let A, B, and C be C^* -algebras with actions of a locally compact group G, and let (E_1, F_1) and (E_2, F_2) be equivariant Kasparov modules over (A, B) and (B, C) respectively. For the interior tensor product $E_{12} := E_1 \otimes_B E_2$, let

$$J := K(E_{12}), \qquad K_1 := K(E_1) \otimes \mathbb{C}, \qquad K_2 := \{x \in B(E_{12}) : K_1 x \cup x K_1 \subset J\}$$

be C*-subalgebras of $M(J) = B(E_{12})$. The essential annihilator K_2 has a counterexample such that M does not exist. Consider a subset Δ and C*-subalgebras A_1 and A_2 of M(J).

- (i) $[\Delta, A_1] \subset A_1$,
- (ii) $A_1A_2 \subset J$,

Under some countability conditions, the technical theorem states that there exist M and N are even adjointable positive operators on E_{12} with M+N=1 such that

- (i) $[\Delta, M] \subset J$ (and $[\Delta, N] \subset J$)
- (ii) $MA_1, NA_2 \subset J$.

reformulation of the existence of an element of M(J) to the closedness of a subset of J^* ?

Restatement: if B_1, B_2 are orthogonal σ -unital C*-subalgebras of a unital C*-algebra Q, and if $[\Delta, B_1] \subset B_1$, then there is $m \in Q$ commuting with Δ such that mb = 0 for $b \in B_1$ and mb = b for $b \in B_2$.

If every m cannot separate B_1 and B_2 , then

When $\Delta=0$ and every algebras are separable, since $\pi(A_1)\pi(A_2)=0$ implies $C^*(\pi(A_1),\pi(A_2))\cong\pi(A_1)\oplus\pi(A_2)$, and since the surjection $C^*(A_1,A_2)\to C^*(\pi(A_1),\pi(A_2))$ is extended to a *surjection* $M(C^*(A_1,A_2))\to M(C^*(\pi(A_1),\pi(A_2)))$, the technical theorem can be easily proved.

(If we prove $F_{12} - F'_{12} \in K_2$, then we have $N^{\frac{1}{2}}F_{12} \equiv N^{\frac{1}{2}}F'_{12}$.) Let \hat{F}_1 and \hat{F}_2 be odd adjointable operators on E_{12} . Let

$$F_{12} := M^{\frac{1}{2}} \hat{F}_1 + N^{\frac{1}{2}} \hat{F}_2.$$

$$D_{12} = D_1 \otimes 1 + 1 \otimes D_2 + (s - (id \otimes 1_B)) \otimes 1, \quad s: E_1 \to E_1 \otimes \widetilde{B}$$

$$M = \frac{\frac{1}{2} + \hat{D}_1^2}{1 + \hat{D}_1^2 + \hat{D}_2^2}, \quad N = \frac{\frac{1}{2} + \hat{D}_2^2}{1 + \hat{D}_1^2 + \hat{D}_2^2}$$

- (a) Such M and N exist if Δ is separable, A_1 and A_2 are σ -unital, and G is σ -compact.
- (b) If

$$\begin{split} \Delta \supset \{\widehat{F}_1, \widehat{F}_2\} \cup A, \\ A_1 + J \supset \{[\widehat{F}_1, a], [u_s, \widehat{F}_1]a, (\widehat{F}_1 - \widehat{F}_1^*)a, (\widehat{F}_1^2 - 1)a : a \in A, \ s \in G\}, \quad \widehat{F}_1 a \text{ is G-continuous,} \\ A_2 + J \supset \{[\widehat{F}_2, a], [u_s, \widehat{F}_2]a, (\widehat{F}_2 - \widehat{F}_2^*)a, (\widehat{F}_2^2 - 1)a : a \in A, \ s \in G\}, \\ A_1 \cup A_2 + J \supset \{[\widehat{F}_1, \widehat{F}_2]\}, \end{split}$$

then (E_{12}, F_{12}) is an equivariant Kasparov module over (A, C). We cannot assume \widehat{F}_2a is G-continuous in construction, so the condition (ii) in the technical theorem becomes longer than (i) and (iii). In particular, the second row is fulfilled if $\widehat{F}_1 = F_1 \otimes 1$ and $A_1 \supset K_1$, the third row is fulfilled if (E_{12}, \widehat{F}_2) is a Kasparov module. When we apply the technical theorem, these two conditions are always satisfied, except the existence of the Kasparov product.

(c) If \hat{F}_2 satisfies the connection condition for F_2 and if

$$\Delta \supset \{\widehat{F}_1, \widehat{F}_2\}, \qquad A_1 + J \supset K_1,$$

then F_{12} satisfies the connection condition for F_2 .

(d) If \hat{F}_1 satisfies the positivity condition for F_1 and if

$$\Delta \supset \{F_1 \otimes 1, \widehat{F}_1\} \cup A, \qquad A_2 + J \supset \{[F_1 \otimes 1, \widehat{F}_2]\},$$

then F_{12} satisfies the positivity condition for F_1 .

(If)

(e) If $\hat{F}_1 = F_1 \otimes 1$ and \hat{F}_2 satisfies the connection condition for F_2 , and if

$$\Delta = \{\widehat{F}_1, \widehat{F}_2\} \cup A,$$

$$A_1 = K_1 + C^*(\{[\widehat{F}_1, a], [u_s, \widehat{F}_1]a, (\widehat{F}_1 - \widehat{F}_1^*)a, (\widehat{F}_1^2 - 1)a : a \in A, s \in G\}),$$

$$A_2 = C^*([\widehat{F}_1, \widehat{F}_2]) + C^*(\{[\widehat{F}_2, a], [u_s, \widehat{F}_2]a, (\widehat{F}_2 - \widehat{F}_2^*)a, (\widehat{F}_2^2 - 1)a : a \in A, s \in G\}),$$

then all the assumptions of the technical theorem, and (E_{12}, F_{12}) is a Kasparov product of (E_1, F_1) and (E_2, F_2) .

Note that $\hat{F}_1 = F_1 \otimes 1$ implies

$$[\hat{F}_1, a], [u_s, \hat{F}_1]a, (\hat{F}_1 - \hat{F}_1^*)a, (\hat{F}_1^2 - 1)a \in K_1$$

and the connection condition \hat{F}_2 for F_2 implies

$$[\hat{F}_2, a], [u, \hat{F}_2]a, (\hat{F}_2 - \hat{F}_2^*)a, (\hat{F}_2^2 - 1)a \in K_2$$

positivity condition implies $[\hat{F}_1, \hat{F}_2]C^*(\{[\hat{F}_1, a], [u_s, \hat{F}_1]a, (\hat{F}_1 - \hat{F}_1^*)a, (\hat{F}_1^2 - 1)a : a \in A, s \in G\}) \subset J$?

If we add some elements in Δ , A_1 , A_2 in this basic form, and if we check that the added elements do not violate the conditions $[\Delta, A_1] \subset A_1$ and $A_1A_2 \subset J$, then (E_{12}, F_{12}) is still a Kasparov product of (E_1, F_1) and (E_2, F_2) .

Proof. (b) We prove that from (ii) to (v). Modulo $K(E_{12})$, we have

$$\begin{split} [F_{12},a] &\equiv M^{\frac{1}{2}}[\widehat{F}_{1},a] + N^{\frac{1}{2}}[\widehat{F}_{2},a] \equiv 0, \\ [u_{s},F_{12}]a &\equiv M^{\frac{1}{2}}[u_{s},\widehat{F}_{1}]a + N^{\frac{1}{2}}[u_{s},\widehat{F}_{2}]a \equiv 0, \\ (F_{12} - F_{12}^{*})a &\equiv (\widehat{F}_{1} - \widehat{F}_{1}^{*})aM^{\frac{1}{2}} + (\widehat{F}_{2} - \widehat{F}_{2}^{*})aN^{\frac{1}{2}} \equiv 0, \\ (F_{12}^{2} - 1)a &\equiv M(\widehat{F}_{1}^{2} - 1)a + N(\widehat{F}_{2}^{2} - 1)a + M^{\frac{1}{2}}N^{\frac{1}{2}}[\widehat{F}_{1},\widehat{F}_{2}]a \equiv 0. \end{split}$$

For the *G*-continuity of $F_{12}a$, since $s \mapsto [u_s, M], [u_s, N], N[u_s, \hat{F}_2]$ are norm continuous, the map

$$\begin{split} s \mapsto & [u_s, F_{12}a] = [u_s, M^{\frac{1}{2}} \widehat{F}_1 a + N^{\frac{1}{2}} \widehat{F}_2 a] \\ & = [u_s, M^{\frac{1}{2}}] \widehat{F}_1 a + M^{\frac{1}{2}} [u_s, \widehat{F}_1 a] \\ & + [u_s, N^{\frac{1}{2}}] \widehat{F}_2 a + N^{\frac{1}{2}} [u_s, \widehat{F}_2] a + N^{\frac{1}{2}} \widehat{F}_2 [u_s, a] \end{split}$$

is norm continuous, so (E_{12}, F_{12}) is a Kasparov module over (A, C).

(c) Because $\theta_{\xi_1} \otimes 1 \in A_1$ for $\xi_1 \in E_1$ implies $M^{\frac{1}{2}}T_{\xi_1}T_{\xi_1}^*M^{\frac{1}{2}} = M^{\frac{1}{2}}(\theta_{\xi_1} \otimes 1)M^{\frac{1}{2}} \equiv 0$ and $M^{\frac{1}{2}}T_{\xi_1} \equiv 0$ by the

polar decomposition, we have

$$\begin{split} F_{12}T_{\xi_1} - T_{\xi_1}F_2 &= M^{\frac{1}{2}}\widehat{F}_1T_{\xi_1} + N^{\frac{1}{2}}\widehat{F}_2T_{\xi_1} - T_{\xi_1}F_2 \\ &\equiv \widehat{F}_1M^{\frac{1}{2}}T_{\xi_1} + N^{\frac{1}{2}}T_{\xi_1}F_2 - T_{\xi_1}F_2 \\ &\equiv 0 - (N^{\frac{1}{2}} + 1)^{-1}MT_{\xi_1}F_2 \equiv 0, \end{split}$$

and

$$\begin{split} F_{12}^*T_{\xi_1} - T_{\xi_1}F_2^* &= \widehat{F}_1^*M^{\frac{1}{2}}T_{\xi_1} + \widehat{F}_2^*N^{\frac{1}{2}}T_{\xi_1} - T_{\xi_1}F_2^* \\ &\equiv 0 + N^{\frac{1}{2}}\widehat{F}_2^*T_{\xi_1} - T_{\xi_1}F_2^* \\ &\equiv N^{\frac{1}{2}}T_{\xi_1}F_2^* - T_{\xi_1}F_2^* \\ &\equiv -(N^{\frac{1}{2}} + 1)^{-1}MT_{\xi_1}F_2^* \equiv 0. \end{split}$$

(d) It easily follows from

$$a^*[F_1 \otimes 1, F_{12}]a \equiv a^*M^{\frac{1}{2}}[F_1 \otimes 1, \widehat{F}_1]a + a^*N^{\frac{1}{2}}[F_1 \otimes 1, \widehat{F}_2]a$$

$$\equiv 2M^{\frac{1}{4}}a^*[F_1 \otimes 1, \widehat{F}_1]aM^{\frac{1}{4}} + 0 \ge 0.$$

(e) Let $\theta_{\xi_1,\eta_1} \otimes 1 = T_{\xi_1} T_{\eta_1}^* \in K_1$ with $\xi_1,\eta_1 \in E_1$. We can check $\widehat{F}_2 K_1 \subset K_1 + J$ by applying the polar decomposition on

$$\begin{split} |F_{12}T_{\xi_1}T_{\eta_1}^*|^2 &\equiv |T_{\varepsilon(\xi_1)}F_2T_{\eta_1}^*|^2 = T_{\eta_1}F_2^*T_{\varepsilon(\xi_1)}^*T_{\varepsilon(\xi_1)}F_2T_{\eta_1}^* = T_{\eta_1}F_2^*|\varepsilon(\xi_1)|^2F_2T_{\eta_1}^* \\ &\equiv T_{\eta_1}F_2^*F_2|\xi_1|^2T_{\eta_1}^* \equiv T_{\eta_1}|\xi_1|^2T_{\eta_1}^* = T_{\eta_1}T_{\xi_1}^*T_{\xi_1}T_{\eta_1}^* = (\theta_{\xi_1,\eta_1}^*\theta_{\xi_1,\eta_1}) \otimes 1, \end{split}$$

and $[\hat{F}_2, K_1] \subset J$ by

$$[\hat{F}_2, T_{\xi_1} T_{\eta_1}^*] = \hat{F}_2 T_{\xi_1} T_{\eta_1}^* - T_{\varepsilon(\xi_1)} T_{\varepsilon(\eta_1)}^* \hat{F}_2 \equiv T_{\varepsilon(\xi_1)} F_2 T_{\eta_1}^* - T_{\varepsilon(\xi_1)} F_2 T_{\eta_1}^* = 0.$$

$$\begin{split} K_1[\hat{F}_2,A] &\subset [\hat{F}_2,K_1A] + [\hat{F}_2,K_1]A \subset [\hat{F}_2,K_1] + JA \subset J, \\ T_{\xi_1}T_{\eta_1}^*(\hat{F}_2 - \hat{F}_2^*) &\equiv T_{\xi_1}(F_2 - F_2^*)T_{\varepsilon(\eta_1)}^* = \lim_i T_{\xi_1}(e_i(F_2 - F_2^*))T_{\varepsilon(\eta_1)}^* \equiv 0, \\ T_{\xi_1}T_{\eta_1}^*(\hat{F}_2^2 - 1) &\equiv T_{\xi_1}(\hat{F}_2^2 - 1)T_{\eta_1}^* = \lim_i T_{\xi_1}(e_i(\hat{F}_2^2 - 1))T_{\eta_1}^* \equiv 0. \end{split}$$

The condition $[\Delta, A_1] \subset A_1$ follows from $[A, K_1] \cup [\widehat{F}_1, K_1] \subset [B_1, K_1] \subset K_1$ and $[\widehat{F}_2, K_1] \subset J$. The condition $A_1(A_2 \cup \varphi(G) \cup \varphi(G)^*) \subset J$ holds because $K_1u_s = K_1$ and $K_1\widehat{F}_1 \subset K_1$ imply

$$K_{1}[u_{s}, \hat{F}_{2}] \subset [K_{1}u_{s}, \hat{F}_{2}] + [K_{1}, \hat{F}_{2}]u_{s} \subset J,$$

$$K_{1}[u_{s}, \hat{F}_{2}]^{*} = K_{1}[u_{s}, \hat{F}_{2}^{*}] \subset [K_{1}u_{s}, \hat{F}_{2}^{*}] + [K_{1}, \hat{F}_{2}^{*}]u_{s} \subset J,$$

$$K_{1}[\hat{F}_{1}, \hat{F}_{2}] \subset [K_{1}\hat{F}_{1}, \hat{F}_{2}] + [K_{1}, \hat{F}_{2}]\hat{F}_{1} \subset J.$$

The map $s\mapsto a_1[u_s,\widehat{F}_2]$ is continuous for $a_1\in A_1$ since $a_1\widehat{F}_2\in A_1$ so that

$$a_1[u_s, \hat{F}_2] = [u_s, a_1 \hat{F}_2] - [u_s, a_1] \hat{F}_2 \to 0,$$

and we can do similarly for $s \mapsto a_1[u_s, \widehat{F}_2^*]$.

- **1.11** (Kasparov product). Let A, B, C be G-C*-algebras and G be a locally compact group. For Kasparov modules (E_1, F_1) and (E_2, F_2) from A to B and from B to C, a *Kasparov product* of (E_1, F_1) and (E_2, F_2) is a Kasparov module (E_{12}, F_{12}) from A to C such that $E_{12} := E_1 \otimes_B E_2$ and F_{12} satisfies
 - (i) the connection condition for F_2 :

$$F_{12}T_{\xi_1} - T_{\varepsilon(\xi_1)}F_2$$
, $F_{12}^*T_{\xi_1} - T_{\varepsilon(\xi_1)}F_2^* \in K(E_2, E_{12})$, $\xi_1 \in E_1$,

(ii) the positivity condition for F_1 :

$$a^*[F_1\otimes 1,F_{12}]a\geq 0\in Q(E_{12}),\qquad a\in A.$$

Suppose *A* is separable and *G* is σ -compact.

- (a) The Kasparov product exists.
- (b) The Kasparov product is unique up to operator homotopy.
- (c) The Kasparov product is independent up to homotopy.
- (d) The Kasparov product is associative and has units, i.e. the Kasparov category is additive.

Proof. (a) As the first step, we prove the following lemma: for a countably generated super-Hilbert module E_1 over B and a super-correspondence E_2 from B to C with trivial group actions, if $F_2 \in B(E_2)^{\text{odd}}$ satisfies $[F_2, b] \in K(E_2)$ for $b \in B$, then there exists $\widehat{F}_2 \in B(E_{12})^{\text{odd}}$ satisfying the connection condition for F_2 . Let \widetilde{B} be the unitization of B. Then, E_1 and E_2 are naturally considered as a super-Hilbert module over \widetilde{B} and a super-correspondence from \widetilde{B} to C, respectively. Since E_1 is countably generated, regarding the grading temporarily as a $\mathbb{Z}/2\mathbb{Z}$ -action, we can apply the equivariant stabilization theorem for $\mathbb{Z}/2\mathbb{Z}$ -action to construct an even projection $P_1 \in B(H_{\widetilde{B}})^{\text{ev}}$ such that $E_1 = P_1H_{\widetilde{B}}$, where $H_{\widetilde{B}} := \ell^2 \otimes \widetilde{B}$ and $\ell^2 = \ell_+^2 \oplus \ell_-^2$ has a non-trivial $\mathbb{Z}/2\mathbb{Z}$ -grading. Then, we have even \widetilde{B} -adjointable isometry

$$E_{12} \subset H_{\widetilde{B}} \otimes_{\widetilde{B}} E_2 = \ell^2 \otimes \widetilde{B} E_2 \subset \ell^2 \otimes E_2$$

with a retract

$$\ell^2 \otimes E_2 \xrightarrow{1 \otimes 1_{\widetilde{B}}} \ell^2 \otimes \widetilde{B}E_2 = H_{\widetilde{B}} \otimes_{\widetilde{B}} E_2 \xrightarrow{P_1 \otimes_{\widetilde{B}} 1} E_1 \otimes_{\widetilde{B}} E_2 = E_{12},$$

where

$$1 \otimes 1_{\widetilde{R}} \in B(\ell^2 \otimes E_2)^{\text{ev}}, \qquad P_1 \otimes_{\widetilde{R}} 1 \in B(H_{\widetilde{R}} \otimes_{\widetilde{R}} E_2)^{\text{ev}}$$

are projections onto complemented super-Hilbert submodules of $\ell^2 \otimes E_2$ over C. Observe that the tensor product $1 \otimes F_2$ is well-defined on $\ell^2 \otimes E_2$. Define $\widehat{F}_2 \in B(E_{12})^{\mathrm{odd}}$ by the compression of $1 \otimes F_2 \in B(\ell^2 \otimes E_2)^{\mathrm{odd}}$ using the inclusion of $E_{12} \subset \ell^2 \otimes E_2$. To check \widehat{F}_2 satisfies the connection condition for F_2 , take $\xi_1 \in E_1 \subset H_{\widetilde{B}}$.

Since $\ell^2 \odot \widetilde{B}$ is dense in $H_{\widetilde{B}}$, we may assume $\xi_1 = e \otimes b$ for $e \in \ell^2$ and $b \in \widetilde{B}$. Then,

$$\begin{split} \widehat{F}_2 T_{\xi_1} \xi_2 &= (P_1 \otimes_{\widetilde{B}} 1)(1 \otimes 1_{\widetilde{B}})(1 \otimes F_2)(1 \otimes 1_{\widetilde{B}})(P_1 \otimes_{\widetilde{B}} 1)(\xi_1 \otimes_{\widetilde{B}_0} \xi_2) \\ &= (P_1 \otimes_{\widetilde{B}} 1)(1 \otimes 1_{\widetilde{B}})(1 \otimes F_2)(1 \otimes 1_{\widetilde{B}})(\xi_1 \otimes_{\widetilde{B}} \xi_2) \\ &= (P_1 \otimes_{\widetilde{B}} 1)(1 \otimes 1_{\widetilde{B}})(1 \otimes F_2)(1 \otimes 1_{\widetilde{B}})(e \otimes b \xi_2) \\ &= (P_1 \otimes_{\widetilde{B}} 1)(1 \otimes 1_{\widetilde{B}})(1 \otimes F_2)(e \otimes b \xi_2) \\ &= (P_1 \otimes_{\widetilde{B}} 1)(1 \otimes 1_{\widetilde{B}})(\varepsilon(e) \otimes F_2 b \xi_2) \\ &= (P_1 \otimes_{\widetilde{B}} 1)(\varepsilon(e) \otimes 1_{\widetilde{B}} F_2 b \xi_2), \end{split}$$

$$T_{\varepsilon(\xi_1)} F_2 \xi_2 = \varepsilon(\xi_1) \otimes_{\widetilde{B}_0} F_2 \xi_2 \\ &= (P_1 \otimes_{\widetilde{B}} 1)(\varepsilon(\xi_1) \otimes_{\widetilde{B}} F_2 \xi_2) \\ &= (P_1 \otimes_{\widetilde{B}} 1)(\varepsilon(e) \otimes b F_2 \xi_2), \end{split}$$

so

$$\widehat{F}_2T_{\xi_1}-T_{\varepsilon(\xi_1)}F_2=(P_1\otimes_{\widetilde{B}_0}1)(\varepsilon(e)\otimes 1_{\widetilde{B}})[F_2,b]\in K(E_2,E_{12}).$$

By definition of \hat{F}_2 , we can also check the same for \hat{F}_2^* . Therefore, \hat{F}_2 satisfies the connection condition for F_2 . Now we construct $F_{12} \in B(E_{12})^{\text{odd}}$ such that (E_{12}, F_{12}) is a Kasparov module, and the connection and positivity conditions are satisfied. Let $\hat{F}_1 := F_1 \otimes 1$, and take $\hat{F}_2 \in B(E_{12})^{\text{ev}}$ satisfying the connection condition for F_2 . Let

$$\begin{split} &\Delta := \{\hat{F}_1, \hat{F}_2\} \cup A, \\ &A_1 := K_1, \\ &A_2 := C^*([\hat{F}_1, \hat{F}_2], \ [\hat{F}_2, a], \ (\hat{F}_2 - \hat{F}_2^*)a, \ (\hat{F}_2^2 - 1)a : a \in A). \end{split}$$

By the technical theorem, $F_{12}:=M^{\frac{1}{2}}\widehat{F}_1+N^{\frac{1}{2}}\widehat{F}_2$ is a Kasparov product.

(b) Suppose both F_{12} and F'_{12} on E_{12} define Kasparov products of (E_1, F_1) and (E_2, F_2) . Let

$$\begin{split} &\Delta := \{\widehat{F}_1, F_{12}, F_{12}'\} \cup A, \\ &A_1 := K_1, \\ &A_2 := C^*([\widehat{F}_1, F_{12}], [\widehat{F}_1, F_{12}'], F_{12} - F_{12}'). \end{split}$$

We only need to check $A_1(F_{12}-F_{12}')\subset J$ to apply the technical theorem: for $T_{\xi_1}T_{\eta_1}^*\in K_1$, we have

$$T_{\xi_1}T_{\eta_1}^*(F_{12}-F_{12}')\equiv T_{\xi_1}(F_2-F_2)T_{\varepsilon(\eta_1)}^*=0.$$

Define $F_{12}'':=M^{\frac{1}{2}}\widehat{F}_1+N^{\frac{1}{2}}F_{12}$, using the technical theorem. Since $N^{\frac{1}{2}}F_{12}\equiv N^{\frac{1}{2}}F_{12}'$ implies

$$a^*[F_{12}'', F_{12}]a \equiv a^*M^{\frac{1}{2}}[\widehat{F}_1, F_{12}]a + a^*N^{\frac{1}{2}}[F_{12}, F_{12}]a \ge 0,$$

$$a^*[F_{12}'', F_{12}']a \equiv a^*M^{\frac{1}{2}}[\widehat{F}_1, F_{12}']a + a^*N^{\frac{1}{2}}[F_{12}, F_{12}]a \ge 0,$$

the operators F_{12} and F_{12}' are connected by two operator homotopies via F_{12}'' by the following lemma: if (E_0, F_0) and (E_0, F_1) are Kasparov modules over (A, B) such that $a^*[F_0, F_1]a \ge 0$ in $Q(E_0)$ for every $a \in A$, then they are operator homotopic.

Here is the proof. Let $C := \{T \in B(E_0) : [T, a] \in K(E_0), a \in A\}$ and $I := \{T \in B(E_0) : Ta, aT \in K(E_0), a \in A\}$. Then, I is a closed ideal of a C^* -algebra C, and let all congruence notation denote the identity modulo I in the rest of the proof. We can check $[F_0, F_1] \in C$ and $[F_0, F_1] \ge 0$ modulo I so that there is an even operator

 $P \in C^+$ such that $[F_0, F_1] \equiv P$, and $F_0^2 \equiv F_1^2 \equiv 1$ implies that P commutes with F_0 and F_1 modulo I. Define

$$F(t) := (1 + c(t)s(t)P)^{-\frac{1}{2}}(c(t)F_0 + s(t)F_1), \qquad t \in [0, 1],$$

where $c(t) := \cos \frac{\pi}{2} t$ and $s(t) := \sin \frac{\pi}{2} t$. It is norm continuous, *G*-invariant modulo *I*, and *G*-continuous. We also have for each $t \in [0,1]$ that $F(t) \in C$, $F(t) \equiv F(t)^*$, and

$$F(t)^{2} \equiv (1 + c(t)s(t)P)^{-1}(c(t)^{2}F_{0}^{2} + c(t)s(t)[F_{0}, F_{1}] + s(t)^{2}F_{1}(t)^{2}) \equiv 1.$$

Thus it defines an operator homotopy between F_0 and F_1 .

(c)

(d) Consider the Kasparov products F_{12} , F_{23} , $F_{1(23)}$. Note that $F_{1(23)}$ satisfies the positivity condition for F_1 and the connection condition for F_{23} and F_3 . Let

$$\begin{split} &\Delta := \{\widehat{F}_1, \widehat{F}_{12}, F_{1(23)}\} \cup A, \\ &A_1 := K_1 + K_{12}, \\ &A_2 := C^*([\widehat{F}_1, F_{1(23)}], [\widehat{F}_{12}, F_{1(23)}]). \end{split}$$

It suffices to check

$$[\hat{F}_1, K_{12}] \subset A_1, \quad [\hat{F}_{12}, K_1] \subset A_1, \quad K_1[\hat{F}_{12}, F_{1(23)}] \subset J, \quad K_{12}[\hat{F}_1, F_{1(23)}] \subset J,$$

to apply the technical theorem. The second is clear from $[\hat{F}_{12}, K_1] \subset J$, and the other can be proved as

$$\begin{split} & [\widehat{F}_1,K_{12}] \subset [B_1,K_{12}] \subset [B_{12},K_{12}] \subset K_{12}, \\ & K_1[\widehat{F}_{12},F_{1(23)}] \subset [K_1\widehat{F}_{12},F_{1(23)}] + [K_1,F_{1(23)}]\widehat{F}_{12} \subset [K_1+K_{12},F_{1(23)}] + J\widehat{F}_{12} \subset J, \\ & K_{12}[\widehat{F}_1,F_{1(23)}] \subset [K_{12}\widehat{F}_1,F_{1(23)}] + [K_{12},F_{1(23)}]\widehat{F}_1 \subset [K_{12},F_{1(23)}] + J\widehat{F}_1 \subset J. \end{split}$$

If we define $F_{(12)3} := M^{\frac{1}{2}} \hat{F}_1 + N^{\frac{1}{2}} F_{1(23)}$ using the technical theorem, then it satisfies the connection condition for F_3 because so is $F_{1(23)}$, and satisfies the positivity condition F_{12} because $\hat{F}_{12} \in \Delta$ and $[\hat{F}_{12}, F_{1(23)}] \in A_2$ give

$$a^*[\widehat{F}_{12},F_{(12)3}]a \equiv a^*M^{\frac{1}{2}}[\widehat{F}_{12},\widehat{\widehat{F}}_1]a + a^*N^{\frac{1}{2}}[\widehat{F}_{12},F_{1(23)}]a \geq 0,$$

so $F_{(12)3}$ is a Kasparov product of F_{12} and F_3 . On the other hand,

$$a^*[F_{(12)3},F_{1(23)}]a \equiv a^*M^{\frac{1}{2}}[\widehat{F}_1,F_{1(23)}]a + a^*N^{\frac{1}{2}}[F_{1(23)},F_{1(23)}]a \ge 0$$

implies $F_{(12)3}$ and $F_{1(23)}$ are operator homotopic.

Assumptions for representatives of Kasparov cycles:

- non-degenerate
- · standard Hilbert module
- · operator homotopy
- self-adjoint norm one by compact perturbation
- norm continuous fredholm when E and B are continuous fields over X...?

1.12 (K-theory picture). Let B be a C^* -algebra. Consider

$$KK(\mathbb{C}, B) \to K_0(B) : (E, F) \mapsto [\ker F_+] - [\ker F_+^*],$$

where $K_0(B)$ is described in the Serre-Swan picture. NO, it cannot be defined.

Proof. We first show the well-definedness. Let (E,F) be a Kasparov cycle over A and B. We can show $F_+ \in B(E_+, E_-)$ is a Fredholm operator with a parametrix $F_- \in B(E_-, E_+)$. Since the compact operator $1-F_-F_+$ acts on the Hilbert submodule $\ker F_-F_+ \subset E_+$ as the identity, the ideal of finite-rank operators in $B(\ker F_-F_+)$ becomes norm dense, which approximates the unit so that it contains an invertible. Hence the identity operator has finite rank, and we see that $\ker F_-F_+$ is an algebraically finitely generated module over B. Since $\ker F_+ \subset \ker F_-F_+$ and the kernel of an adjointable operator is always complemented (WRONG), $\ker F_+$ is projective. We can do similarly for $\ker F_+^*$. As a remark, we can prove $\operatorname{ran} F_+$ is also complemented by the approximation property of compact operators and the open mapping theorem, but it is not essential part in the proof.

Suppose (E, F_0) and (E, F_1) are operator homotopic Kasparov cycles.

The injectivity

The surjectivity

1.13 (Atiyah-Jänich theorem in Kasparov picture).

Proof. Let B = C(X) Let $H_B = \ell^2 \otimes B$. For $F_+ \in B(E_+, E_-)$, by stabilization theorem, we may assume $F_+ \in B(H_B)$. It defines a strictly continuous map $X \to \operatorname{Fred}(\ell^2)$. We may assume it is norm continuous?

(direct sum, pullback, interior tensor product, pushout, exterior tensor product?)

ring structure, R(G)-module structures

inverses equivariant imprimitivity bimodules

1.3 Cuntz picture

We begin with historical development of extension theory.

An extension of an algebra is an analogue of an embedding of a space.

Dual algebras and K-homology.

Q(A) is calle the *outer multiplier algebra* or the *Calkin algebra* or the...

1.14 (Weyl-von Neumann theorem). Recall that neither $U(M(\mathcal{K})) \to U(Q(\mathcal{K}))$ nor $N(M(\mathcal{K})) \to N(Q(\mathcal{K}))$ is surjective because a unilateral right shift $s \in M(\mathcal{K})$ provides a unitary in $Q(\mathcal{K})$ of index -1, while every invertible in $N(M(\mathcal{K}))$ should have index zero. The Fredholm index is a group homomorphism $Q(\mathcal{K})^{\times} \to \mathbb{Z}$, which induces the isomorphism $K_1(Q(\mathcal{K})) \to K_0(\mathcal{K}) \cong \mathbb{Z}$.

Recall also that for $x \in M(\mathcal{K})$ the *essential spectrum* of x is the set of $\lambda \in \mathbb{C}$ such that $\lambda - x$ is not a Fredholm operator. By the Atkinson theorem, $\lambda \in \mathbb{C}$ belongs to the essential spectrum of x if and only if $\lambda - x$ is not invertible in $Q(\mathcal{K})$, so it is just the spectrum of x in $Q(\mathcal{K})$. It can be also described by the complement of the set of isolated eigenvalues of finite multiplicity in the spectrum in $M(\mathcal{K})$.

Two elements of $Q(\mathcal{K})$ are called *essentially unitarily equivalent* if same orbit in $Q(\mathcal{K})$ by the inner action of $U(M(\mathcal{K}))$). Since $U(M(\mathcal{K})) \to U(Q(\mathcal{K}))$ is a proper inclusion, the essential unitary equivalence is stronger than the unitary equivalence in $Q(\mathcal{K})$. If two normal elements x and y of $M(\mathcal{K})$ are essentially unitarily equivalent, then their essential spectra coincide. The Weyl-von Neumann-Berg theorem states the converse

also holds. The original Weyl-von Neumann theorem states that every bounded self-adjoint operator on a separable Hilbert space is an arbitrarily small compact perturbation of a diagonal operator ($\sigma = \sigma_n$).

An element of $Q(\mathcal{K})$ is called *essentially normal* if it is just normal in $Q(\mathcal{K})$. Note that $N(M(\mathcal{K})) \to N(Q(\mathcal{K}))$ is not surjective, while $M(\mathcal{K})^{sa} \to Q(\mathcal{K})^{sa}$ is surjective. If two normal elements x and y of $Q(\mathcal{K})$ are essentially unitarily equivalent, then their essential spectra coincide and indices of $\lambda - x$ and $\lambda - y$ coincide for all λ outside the essential spectrum. The Brown-Douglas-Fillmore theorem states that the converse also holds.

For an essentially normal operator with essential spectrum X, there is a corresponding Busby invariant, a unital injective *-homomorhism $C(X) \to Q(K)$. It defines a class of $K_1(C(X))$ in the extension picture.

Let *E* be a separable unital C^* -algebra. Two maps $E \to B$ are called *approximately unitarily equivalent* if the orbits under the multiplier inner action of *B* have the same closure in the point-norm topology.

essentially unitarily equivalent iff approximately unitarily equivalent?

basically unitary equivalence takes multiplier unitaries, not unitization unitaries.

- **1.15** (Essential extensions and Busby invariants). Let A be a unital C^* -algebra. An essential extension of A by \mathcal{K} is a unital C^* -algebra E together with a surjective *-homomorphism $E \to A$ whose kernel is an essential ideal of E *-isomorphic to \mathcal{K} . A Busby invariant of A is a unital injective *-homomorphism $A \to Q(\mathcal{K})$. We define $\operatorname{Ext}(A) = \operatorname{Ext}(A, \mathcal{K})$ as the set of all equivalence classes of essential extensions by \mathcal{K} . Brown-Douglas-Fillmore investigated this group.
 - (a) There is a natural bijection between Ext(A) and the set of all unitary equivalence classes of Busby invariants.
 - (b) Since there is a natural injective *-homomorphism $Q(\mathcal{K}) \oplus Q(\mathcal{K}) \to Q(\mathcal{K})$?, Ext(A) is an abelian semi-group.

If the corresponding essential extension of a Busby invariant $A \to Q(\mathcal{K})$ is split, then since it means that there is a *-homomorphism $A \to M(\mathcal{K})$ factors through the Busby invariant, we can construct an Eilenberg swindle $A \to M(\mathcal{K}) \cong M(\mathcal{K} \otimes \mathcal{K}) \to Q(\mathcal{K})$? so the split extension is zero in Ext(A)? (by the Voiculescu theorem, Ext(A) is an abelian monoid if A is separable.)

An extension by K is called *semi-split* if it is a direct summand of a split extension. Using the Stinespring dilation, we can prove an extension by K is semi-split if and only if it has a completely positive section.

Let A be a unital separable C*-algebra. For a representation $A \to M(\mathcal{K})$ together with a projection $p \in B(H)$ satisfying $[p, a] \in \mathcal{K}$ for $a \in A$, then $A \to Q(pH)$ defines a generalized Toeplitz extension

$$0 \to K(pH) \to E \to A \to 0.$$

A unital injective *-homomorphism $A \to Q(\mathcal{K})$ is semi-split if and only if it is isomorphic to a generalized Toeplitz extension.

There is a way to define the K-homology by the Spanier-Whitehead duality?. (dual C*-algebra)

We will see that if *A* is separable nuclear unital, by Choi-Effros, then the extension group is isomorphic to the first K-homology group $\operatorname{Ext}(A) := \operatorname{Ext}(A, \mathcal{K}) \cong K^1(A) = KK_1(A, \mathcal{C}) = KK(A, \mathcal{S})$.

index pairing $\operatorname{Ext}(C(X)) \to \operatorname{Hom}(\pi_1(X), \mathbb{Z})...$

It is known that $KK(A, B) \cong \operatorname{Ext}(A, S \otimes B)$

The Weyl-von Neumann theorem states that self-adjoint elements of Q(H) with same spectrum are all unitarily equivalent.(?)

1.16. Almost commuting matrices

1.17 (Voiculescu theorem). Let E be a unital separable C^* -algebra. Let $\pi: E \to M(\mathcal{K})$ be a non-degenerate representation and $\sigma: E \to M(\mathcal{K})$ be a completely positive linear map such that $\sigma|_{\pi^{-1}(\mathcal{K})} = 0$. For example, we can consider σ obtained by a section of a semi-split Busby invariant.

Then, $\sigma \lesssim \pi$, i.e. there is a coisometry $\nu \in M(\mathcal{K})$ such that $\sigma = (\operatorname{Ad} \nu)\pi$ in $Q(\mathcal{K})$...?

 $(\pi \text{ and } \pi \oplus \sigma \text{ is approximately unitarily equivalent in } Q(\mathcal{K})$. If σ is a *-homomorphism, then π and $\pi \oplus \sigma$ is unitarily equivalent in $Q(\mathcal{K})$.)

(When do we need the faithfulness of π ? When do we need the unitality of σ ? When do we need the separability of E?)

- (a) σ is weakly* approximated by vector states, if H is one-dimensional. (Glimm)
- (b) σ is approximated by isometry conjugations in L(E,B(H)), if H is finite-dimensional. (?)
- (c) σ is approximated by isometry conjugations in $\varphi + L(A, K(H))$, if H, K are separable.

Proof. (a) Hahn-Banach separation and Weyl-von Neumann theorem.

- (b) correspondence for completely positive linear maps to matrix algebras.
- (c) quasi-central approximate unit and block diagonal c.p. maps.

Let $\pi: A \to B(H)$ be a representation of a C*-algebra and $p \in B(H)$ is a projection. If $A \to Q(pH)$ is a *-homomorphism, then $A \to Q((1-p)H)$ is also a *-homomorphism, and $pA(1-p) \cup (1-p)Ap \subset K(H)$.

(Pimsner, Popa, Voiculescu, Kasparov) For *A* separable and *B* σ -unital(do we really need this σ -unitality?), The group Ext(A, B) of all equivalence classes of essential extensions

$$0 \to \mathcal{K} \otimes B \to E \to A \to 0$$
.

stable uniqueness theorem(Lin or Dadarlat-Eilers)

1.18 (Cuntz two-fold extension functor). Let A be a C^* -algebra. Let ι and $\bar{\iota}$ be the canonical inclusions $A \to A * A$ into the free product. The algebra qA is defined as the C^* -algebra generated by $q(a) := \iota(a) - \bar{\iota}(a)$ for $a \in A$ in A * A. We have $q : A \to qA$.

1.19.

$$KK(A,B) := [qA, \mathcal{K} \otimes B]$$

A *Cuntz pair* or a *quasi-homomorphism* is a pair of *-homomorphisms $\varphi_{\pm}: A \to M(\mathcal{K} \otimes B)$ such that $\varphi_{+} - \varphi_{-}$ maps into $\mathcal{K} \otimes B$. A homotopy is defined by a point-strict continuous path.

1.4 Baaj-Julg picture

- **1.20** (Unbounded Kasparov modules). Let A and B be C^* -algebras. An unbounded Kasparov module over (A, B) is a pair (A, E, D) consisting of
 - (i) a dense *-subalgebra A of A,
 - (ii) a right Hilbert module E over (A, B),
- (iii) an densely defined linear operator D on E,

such that

- (i) D is regular,
- (ii) A acts on dom D and $\overline{[D,a]}$ is adjointable for $a \in A$,

(Lipschitz condition)

- (iii) D is self-adjoint,
- (iv) $a(D+i)^{-1}$ is compact for $a \in A$.

(compact resolvent condition)

We say an unbounded Kasparov module (A, E, D) is *even* if it is equipped with a $\mathbb{Z}/2\mathbb{Z}$ -grading such that D is odd, and *odd* otherwise. An unbounded Kasparov module (A, E, D) is called *countably generated* if E is countably generated over B.

Chapter 2

Cyclic theory

Let A be an associative algebra over a field k. The cyclic bicomplex is defined by $CC_{p,q}(A) := A^{\otimes (q+1)}$ for $p,q \in \mathbb{Z}_{\geq 0}$.

 $b: A^{\otimes (q+1)} \to A^{\otimes q}$ be the Hochschild operator

$$b(a_0 \otimes \cdots \otimes a_q) := b'(a_0, \cdots, a_q) + (-1)^q a_q a_0 \otimes \cdots \otimes a_{q-1},$$

where

$$b'(a_0 \otimes \cdots \otimes a_q) := \sum_{i=0}^{q-1} (-1)^j a_0 \otimes \cdots \otimes a_j a_{j+1} \otimes \cdots \otimes a_q.$$

Connes signed cyclic permutation

$$\lambda(a_0 \otimes \cdots \otimes a_q) := (-1)^q a_q \otimes a_0 \otimes \cdots \otimes a_{q-1},$$

and $Q := \sum_{j=0}^{q} \lambda^{j}$ is computed as

$$Q(a_0 \otimes \cdots \otimes a_q) := \sum_{j=0}^q (-1)^{jq} a_j \otimes \cdots \otimes a_q \otimes a_0 \otimes \cdots \otimes a_{j-1}.$$

Rows are exact at p > 0. Let D_n be the total complex of the cyclic bicomplex $CC_{p,q}$. The homology group of D_n is denoted by HC_nA .

Taking the first two columns at p = 0 and p = 1, the homology group of the total complex is the *Hochschild homology group*. When A is unital, then the second column at p = 1 is exact so that we obtain the usual Hochschild homology only using the first column p = 0.

Connes SBI sequence

A normalized (b,B)-cochain is a finite collection $\{\phi_m\}$ of continuous multilinear functionals on $\mathcal A$

Chapter 3

3.1 Operator spaces

- **3.1** (Guess on the general role of \mathcal{K}). We define \mathcal{K} as the C*-algebra of compact operators on a separable Hilbert space ℓ^2 , equipped with
 - (i) canonical inclusions $M_n(\mathbb{C}) \to \mathcal{K}$ into the upper left corners,
 - (ii) a \mathcal{K} -bimodule *-isomorphism $M_2(\mathcal{K}) \to \mathcal{K}$,

as an internal structure of K.

A stabilized Banach space is a Banach bimodule \widetilde{E} over \mathcal{K} such that there is a \mathcal{K} -bimodule isomorphism $M_2(\widetilde{E}) \to \widetilde{E}$. (compatibility with $M_2(\mathcal{K}) \to \mathcal{K}$? uniqueness of bimodule isomorphism?) There is a categorical equivalence between operator spaces with complete isometries and stabilized Banach spaces...?

Let *A* be a C*-algebra together with a *-isomorphism $M_2(A) \rightarrow A$.

A stabilized Banach bimodule \widetilde{E} over $\mathcal{K} \otimes A$ and $\mathcal{K} \otimes B$ such that there is a bimodule isomorphism $M_2(\widetilde{E}) \to \widetilde{E}$...? countably generatedness....

A stabilized C*-algebra is a C*-algebra \widetilde{A} equipped with $\mathcal{K} \to M(\widetilde{A})$ and a \mathcal{K} -bimodule *-isomorphism $M_2(\widetilde{A}) \to \widetilde{A}$...? A stable C*-algebra has many stabilized structures.

stabilization functor is left adjoint to the forgetful functor from stable C^* -algebras to C^* -algebras.

- **3.2** (Lemmas for stable representations). (i) $B(\ell^2 \otimes H) = M(\mathcal{K} \otimes K(H))$?
 - (ii) $B(\ell^2 \otimes H) = B_{\mathbb{C}}(\mathcal{K} \otimes H)$ or $B_{\mathcal{K}}(\mathcal{K} \otimes H)$?
- (iii) $\mathcal{K} \otimes B(H) = K(\ell^2 \otimes H)$?
- (iv)

representation as a *-homomorphism $A \rightarrow M(K(H))$.

3.3 (Strict topology and generalized von Neumann algebras). Is it possible to define the σ -strict topology as the induced topology on B(E) from the strict topology of $B(K \otimes E)$?

Dual pair theory on σ -strictly continuous linear functionals? It cannot be a weak* topology. Then, what is it?

3.2 Right Hilbert bimodules

3.4 (Structures on Banach bimodules). Let E be a Banach bimodule over C^* -algebras A and B. We say E is *right Hilbert* if there is a right inner product is a map $\langle \cdot, \cdot \rangle : E \times E \to B$ such that the left action of A is adjointable. The *imprimitivity bimodule* is a Banach bimodule E over A and B which is both-sided Hilbert and satisfies $A \in A$ satisfies $A \in B$ for $A \in B$ for

- 3.5 (Interior tensor products of Banach bimodules).
- 3.6 (Stabilized Banach spaces).

3.3 Kasparov-Stinespring construction

Chapter 4

4.1 Derivations

- 4.1 (Universal unbounded derivations).
- **4.2** (Dirac operators). A commutator by the Dirac operator is not defined on the whole algebra A.

 ΩB is the universal differential non-negatively graded algebra.

unbounded derivations $[D_2, -]$.

An inner product on $\Omega^1 B \subset B \otimes B$ is the non-commutative analogue of Riemannian structure on B. The moduli space of Hilbert structures on $\Omega^1 B$? Is there a canonical Banach structure on $\Omega^1 B$? The norm on $\Omega^1_{D_2} B$ is not fixed.

The universal derivation $B \to \Omega^1(B)$ is odd. We want to construct a right inner product on $\Omega^1 B$ Dual Hilbert module?

It may be impossible to assume *B* is a C*-algebra... For example, it would be an operator algebra.

For a derivation $\delta: A \to \mathcal{K} \otimes A$, is it possible to consider the crossed product by δ ?

4.3 (Inner derivations).

4.2 Connections

4.4 (Connections from derivations). Let E be a Hilbert module E over a C^* -algebra B. Let $\nabla : \operatorname{dom} \nabla \subset E \to E \otimes \Omega^1(B)$ be a connection with respect to the universal derivation $d: B \to \Omega^1(B)$. By the universality of d, to any derivation $\delta : B \to \Omega$ to a bimodule Ω over B we can associate a connection $\nabla_{\delta} : E \to E \otimes_B \Omega$ satisfying

$$\nabla_{\delta}(\xi b) = \nabla_{\delta}(\xi)b + \xi \otimes \delta(b), \qquad \xi \in E, \ b \in B.$$

As a special case, if $\delta = X : B \to B$ is a vector field for B = C(M), then we have $\nabla_X : E \to E$.

What is the exact definition of bimodule Ω in here?

A derivation cannot be defined on the whole algebra B. A connection cannot be defined on the whole module E. We need to consider operator algebras \mathcal{B} and \mathcal{E} ...?

4.5 (Bimodule of 1-forms). Let B be an associative algebra. The B-bimodule of 1-forms is defined by $\Omega^1(B) := \widetilde{B} \otimes B$ as vector spaces, whose elements $b_0 \otimes b_1 \in \Omega^1(B)$ will be denoted by $b_0 db_1$, together with the universal derivation $d: B \to \Omega^1(B): b \mapsto db$. The B-bimodule structure on $\Omega^1(B)$ is given by

$$b(b_0 db_1) := bb_0 db_1, (b_0 db_1)b := b_0 d(b_1 b) - b_0 b_1 db, b_0 \in \widetilde{B}, b_1, b \in B.$$

We have the short exact sequence of *B*-bimodules

$$0 \to \Omega^1(B) \to \widetilde{B} \otimes \widetilde{B} \to \widetilde{B} \to 0$$
,

where

$$\Omega^1(B) \to \widetilde{B} \otimes \widetilde{B} : b_0 \, d \, b_1 \mapsto b_0 \otimes b_1 - b_0 b_1 \otimes 1, \qquad \widetilde{B} \otimes \widetilde{B} \to \widetilde{B} : b \otimes b' \mapsto b \, b'.$$

4.6. Taking the interior tensor $E_1 \otimes_R -$, we have a short exact sequence of right *B*-modules

$$0 \to E_1 \otimes_B \Omega^1(B) \to E_1 \otimes \widetilde{B} \to E_1 \to 0$$
,

(why is this still exact after tensoring? projectivity of E_1 ?) where

$$E_1 \otimes_B \Omega^1(B) \to E_1 \otimes \widetilde{B} : \xi_1 \otimes_B b_0 db_1 \to \xi_1 b_0 \otimes b_1 - \xi_1 b_0 b_1 \otimes 1, \qquad E_1 \otimes \widetilde{B} \to E_1 : \xi_1 \otimes b \to \xi_1 b.$$

Then, there is a one-to-one correspondence

$$\{ \text{right B-linear splits $s: $E_1 \to E_1 \otimes \widetilde{B}$} \} \longleftrightarrow \{ d\text{-connections $\nabla: E_1 \to E_1 \otimes_B \Omega^1(B)$} \},$$

given by

$$\nabla(\xi_1) = s(\xi_1) - \xi_1 \otimes 1, \qquad \xi_1 \in E_1.$$

The connection proprty can be checked as

$$\nabla(\xi_1 b) - \nabla(\xi_1) b = \xi_1 \otimes b - \xi_1 b \otimes 1 = \xi_1 \otimes_B db.$$

4.7. We start from the exact sequence of vector spaces

$$E_1 \otimes_B \Omega^1(B) \otimes_B E_2 \to E_1 \otimes E_2 \to E_1 \otimes_B E_2 \to 0.$$

(left exact? I don't know yet) Since D_1 is right B-linear but D_2 is not left B-linear, so we choose a split

$$s \otimes_B 1 : E_1 \otimes_B E_2 \rightarrow E_1 \otimes E_2 : \xi_1 \otimes_B \xi_2 \mapsto s(\xi_1)\xi_2$$

where $s: E_1 \to E_1 \otimes \widetilde{B}$, to define a twisted operator $1 \otimes_{\nabla} D_2$ on $E_1 \otimes_B E_2$. Let $\Omega^1_{D_2}(B) \subset \operatorname{End}_C(E_2)$ be the B-bimodule generated by $b_0[D_2, b_1]$ for $b_0 \in \widetilde{B}$ and $b_1 \in B$,

$$\left\{\begin{array}{c} \text{right B-linear splits $s:E_1\to E_1\otimes\widetilde{B}$}\\ \text{such that (?)} \end{array}\right\}\longleftrightarrow \{D_2\text{-connections $\nabla:E_1\to E_1\otimes_B\Omega^1_{D_2}(B)$}\},$$

given by

$$\nabla(\xi_1) = (1 \otimes D_2)(s \otimes_B 1)(\xi_1 \otimes_B -) - \xi_1 \otimes D_2.$$

(How can we formally establish such correspondence? For example, from D_2 -connection, can we retrieve s?) The connection property can be checked as

$$\nabla(\xi_1 b) - \nabla(\xi_1) b = \xi_1 \otimes D_2 b - \xi_1 b \otimes D_2 = \xi_1 \otimes_B [D_2, b].$$

(We must have the right *B*-linear inclusion $\Omega^1_{D_2}(B) \subset \widetilde{B} \otimes \operatorname{End}_{\mathcal{C}}(E_2)$ with $b_0[D_2,b_1] \mapsto b_0 \otimes D_2b_1 - b_0b_1 \otimes D_2$.

Is this well-defined?) We can also see

$$(1 \otimes_{\nabla} D_2)(\xi_1 \otimes_B \xi_2) = \xi_1 \otimes D_2 \xi_2 + \nabla(\xi_1) \xi_2$$

= $\xi_1 \otimes D_2 \xi_2 + (1 \otimes D_2) s(\xi_1) \xi_2 - \xi_1 \otimes D_2 \xi_2$
= $(1 \otimes D_2)(s \otimes_B 1)(\xi_1 \otimes_B \xi_2)$

4.8. $\Omega_{D_2}^2(B)$ space of connctions

$$E_{1} \otimes_{B} \Omega^{1}(B) \longrightarrow E_{1} \otimes \widetilde{B} \xrightarrow{\downarrow^{S}} E_{1} \otimes_{B} \widetilde{B} \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$E_{1} \otimes_{B} \Omega^{1}(B) \longrightarrow E_{1} \otimes \widetilde{B} \longrightarrow E_{1} \otimes_{B} \widetilde{B} \longrightarrow 0$$

$$\downarrow^{S \otimes_{B} 1} E_{1} \otimes_{E} E_{2} \longrightarrow 0$$

$$\downarrow^{1 \otimes D_{2}} \qquad \downarrow^{1 \otimes_{\nabla} D_{2}} E_{1} \otimes E_{2} \longrightarrow 0$$

$$E_{1} \otimes E_{2} \longrightarrow E_{1} \otimes_{B} E_{2} \longrightarrow 0$$

, we may have to perturb the split map $s_1: E_1 \to E_1 \otimes \widetilde{B}$ to make $D_1 \otimes 1 + 1 \otimes_{\nabla^1} D_2$ self-adjoint regular. I think we can compute the moduli space of connections when E_1 can be stabilized. $\widetilde{B} \to \widetilde{B} \otimes \widetilde{B}: b \mapsto 1 \otimes b$ induces the *Grassmann connection*.

$$(D_{1} \otimes 1)(1 \otimes_{\nabla^{1}} D_{2})(\xi_{1} \otimes \xi_{2}) = (-1)^{\deg \xi_{1}}(D_{1}\xi_{1} \otimes D_{2}\xi_{2} + (D_{1} \otimes 1)\nabla_{D_{2}}^{1}(\xi_{1})\xi_{2})$$

$$(1 \otimes_{\nabla^{1}} D_{2})(D_{1} \otimes 1)(\xi_{1} \otimes \xi_{2}) = (-1)^{\deg \xi_{1}+1}(D_{1}\xi_{1} \otimes D_{2}\xi_{2} + \nabla_{D_{2}}^{1}(D_{1}\xi_{1})\xi_{2})$$

$$[a, b] = ab - (-1)^{\deg a \deg b}ba$$

$$[D_{1} \otimes 1, 1 \otimes_{\nabla^{1}} D_{2}](\xi_{1} \otimes \xi_{2}) =$$

4.3 Kasparov category

4.9 (Definition of Kasparov modules). Let *A* and *B* be C*-algebras. A *differential Kasparov module* over (A, B) is a triple (E, D, ∇) consisting of

- (i) a right Hilbert bimodule E over (A, B),
- (ii) odd self-adjoint regular *D* on *E* with $[D, a] \in B(E)$ and $a(D+i)^{-1} \in K(E)$ for $a \in A$,
- (iii) $\nabla: E \to E \otimes_B \Omega^1 B$ is a connection for the universal derivation.

Necessary conditions:

- ∇^2 : dom $\nabla^2 \subset E_2 \to E_2 \otimes_C \Omega^1(C)$ defines a derivation $[\nabla^2, -]: B \to B(E_2, E_2 \otimes_C \Omega^1(C))$ to a bimodule over B.
- (a) existence of connection? (we don't care which does not admit a connection for the universal derivation?)
- (b) definition of smoothness?

4.10 (Homotopy equivalences). How can we restrict an unbounded operator to define D(0) and D(1) on the boundary?

How can we construct a connection $E \to E \otimes \Omega^1(B[0,1])$? operator-algebraic formulation of transgression?

- (a) transitivity of equivalence?
- (b) nice representatives?
- **4.11** (Smooth equivalences). (a) transitivity of equivalence?
 - (b) nice representatives?
- **4.12** (Composition product). Let A, B, and C be C^* -algebras, and let (E_1, D_1, ∇^1) and (E_2, D_2, ∇^2) be differential Kasparov cycles from A to B and from B to C, respectively.

Since the connection ∇^2 : dom $\nabla^2 \subset E_2 \to E_2 \otimes_C \Omega^1(C)$ defines a derivation $[\nabla^2, -]: B \to B(E_2) \otimes_C \Omega^1(C)$ to a bimodule over B, we have a connection

$$\nabla^1_{\nabla^2}: E_1 \to E_1 \otimes_B B(E_2, E_2 \otimes_C \Omega^1(C))$$

satisfying

$$\nabla^1_{\nabla^2}(\xi_1 b) = \nabla^1_{\nabla^2}(\xi_1)b + \xi_1 \otimes [\nabla_2, b].$$

The product connection is

$$\nabla^{12}: E_{12} \to E_{12} \otimes_C \Omega^1(C)$$

defined such that

$$\nabla^{12}(\xi_1\otimes\xi_2):=\nabla^1_{\nabla_2}(\xi_1)\xi_2+\xi_1\otimes\nabla^2(\xi_2)$$

Since the Dirac operator $D_2: E_2 \to E_2$ defines a derivation $[D_2, -]: B \to B(E_2)$ to a bimodule over B, we have a connection

$$\nabla^1_{D_2}: E_1 \to E_1 \otimes_B B(E_2),$$

satisfying

$$\nabla^1_{D_2}(\xi_1 b) = \nabla^1_{D_2}(\xi_1)b + \xi_1 \otimes [D_2, b].$$

The product Dirac operator is

$$D_{12} := D_1 \otimes 1 + 1 \otimes_{\nabla^1} D_2,$$

where $1 \otimes_{\nabla^1} D_2$ is the twisted Dirac operator defined such that

$$(1 \otimes_{\nabla^1} D_2)(\xi_1 \otimes \xi_2) := (-1)^{\partial \xi_1} (\xi_1 \otimes D_2 \xi_2 + \nabla^1_{D_2} (\xi_1) \xi_2).$$

4.13 (Exterior product).

4.4 Higson characterization

- 4.14 (Continuity).
- **4.15** (Homotopy invariance). Homotopy invariance like: if A(0) and A(1) are homotopic, then $KK(A(0), B) \cong KK(A(1), B)$. (I think homotopy of C*-algebras can be defined as a continuous field of C*-algebras over the parameter space I)
- 4.16 (Split exactness). additivity follows
- 4.17 (Stability).

4.18 (Higson universality). universal among homotopy invariant split exact stable functors to additive categories.

4.5 Relation to other pictures

- 4.19 (Bounded picture).
- 4.20 (Unbounded picture).

Part II Geometric applications

Chapter 5

Index pairing

5.1 Spectral triples

5.1 (Elliptic operators). Let X be an n-dimensional smooth manifold. Let $S = S_+ \oplus S_-$ be a graded smooth complex vector bundles on X. We will put a measure on X and a Hermitian structure on S to consider the Hilbert space of sections. Let $D: \Gamma^{\infty}(S_+) \to \Gamma^{\infty}(S_-)$ be a *linear partial differential operator*, a linear operator that is locally a polynomial in the operators ∂_i with smooth matrix-valued coefficients $a_I \in \Gamma^{\infty}(\operatorname{Hom}(S_+, S_-))$ for each multi-index I. By the Peetre theorem, a local linear operator is a linear partial differential operator. The *symbol* of D can be defined equivalently as either of

(i) a linear bundle map $\sigma(D): T^*X \to \text{Hom}(S_+, S_-)$ over X such that

$$\sigma(D)|_{(x,\xi)} := \sum_{i=1}^{n} a_i(x) \frac{\partial}{\partial x^i}, \quad (x,\xi) \in T^*X,$$

(ii) a $C^{\infty}(X)$ -module map $\sigma(D): \Omega^{1}(X) \to \Gamma^{\infty}(\operatorname{Hom}(S_{+}, S_{-}))$ such that

$$\sigma(D)(df) := [D, f] = \sum_{i=1}^{n} a_i \partial_i f, \qquad f \in C^{\infty}(X),$$

(iii) a smooth section $\sigma(D) \in \Gamma^{\infty}(T^*X, \pi^* \operatorname{Hom}(S_+, S_-)) = \Gamma^{\infty}(\operatorname{Hom}(T^*X, \operatorname{Hom}(S_+, S_-))) = \Gamma^{\infty}(TX \otimes S_+^* \otimes S_-)$ such that blabla.

When S_+ and S_- have same rank, we say D is *elliptic* if its symbol $\sigma(D)_x: T_x^*X \to \operatorname{Hom}(S_{+,x}, S_{-,x})$ at each $x \in X$ is invertible for all $\xi \in T_x^*X \setminus \{0\}$.

5.2 (Topological indices). Let X be a locally compact Hausdorff space. The *Thom space* Th(V) of a vector bundle $V \to X$ is the homotopy class of the pair (V, V_0), where S_0 is the complement of the zero section in V, or the pair of the disk bundle and the sphere bundle. It is homotopic to the one-point compactification of the total space S if X is compact.

Let *X* be a smooth manifold. For an embedding $X \hookrightarrow \mathbb{R}^n$, the *topological index* is defined as the composition

$$K(T^*X) \xrightarrow{\sim} K(T^*N) \to K(T^*\mathbb{R}^n) \cong \mathbb{Z},$$

where the first map is the Thom isomoprhism established because T^*N can be given a complex vector bundle structure over T^*X , and the second map is the induced map of the quotient map $(T^*\mathbb{R}^n_+,*) \to (T^*N_+,*)$.

5.3. Let X be a smooth manifold. An elliptic operator $D_+: \Gamma^{\infty}(S_+) \to \Gamma^{\infty}(S_-)$ defines a linear bundle map $\sigma(D_+): T^*X \to \operatorname{Hom}(S_+, S_-)$, and the ellipticity of D implies that the symbol defines a K-theory class

$$[\{\ker \sigma(D)_{(x,\xi)}\}] - [\{\ker \sigma(D)_{(x,\xi)}^*\}] \in K^0(\operatorname{Th}(T^*X)).$$

An elliptic operator $D_+: \Gamma^{\infty}(S_+) \to \Gamma^{\infty}(S_-)$ defines a K-theory class of $K^0(\operatorname{Th}(T^*X))$ and a K-homology class of $K^0(C_0(X))$.

Let $S \to X$ be a super-Hermitian bundle over a closed Riemannian manifold. Then, we have a unital super-representation $C(X) \to B(L^2(S))$ given by multiplication. For example, if X is spin, then it canonically defines a super-Hermitian bundle $S \to X$ called the spinor bundle, and every Dirac operator on it gives a same K-homology class, i.e. a spin structure (in fact, also a spin^c structure) on X canonically gives rise to a class of $K_0(X)$, called the fundamental class.

A *Dirac operator* on S is an odd differential operator $D: \Gamma^{\infty}(S) \to \Gamma^{\infty}(S)$ such that the symbol satisfies $\sigma(x,\xi) = -\|\xi\|$ on each fiber S_x . $(D^2 = \Delta)$ Then, every Dirac operator is elliptic, and hence Fredholm.

A *Dirac bundle* on *X* is a super-Hermitian bundle *S* together with a real bundle map $c: \Omega^1(X) \to \Gamma(\operatorname{End}_{\mathbb{C}}(S))$, called the *Clifford multiplication*, such that the square of ξ is $-\|\xi\|$ in $\operatorname{End}_{\mathbb{C}}(S)$. In other words, a Dirac bundle structure on *S* is an equivalence class of Dirac operators having same symbol.(differs to Lawson-Michelson)

A Dirac type operator on S is an odd differential operator D on $\Gamma^{\infty}(S)$ of first order such that [D, f] = c(df) for $f \in C^{\infty}(X)$. Automatically elliptic, and hence Fredholm. For example, when $S_{\pm} := \Lambda_{\pm} T^* X$ and $V = V_{+}$ is a vector bundle on X, if we have a connection $\nabla^{V} : \Gamma^{\infty}(V) \to \Gamma^{\infty}(V \otimes T^* X)$ on V, then there is the twisted Dirac type operator

$$1 \otimes_{\nabla^{V}} D_{+} := (1 \otimes c)(\nabla^{V} \otimes 1 + 1 \otimes \nabla^{S}) : \Gamma^{\infty}(V \otimes S_{+}) \to \Gamma^{\infty}(V \otimes S_{-}),$$

where $c\nabla^S = D_+$. We can write

$$(1 \otimes_{\nabla^{V}} D_{+})(\xi \otimes \psi) := \xi \otimes (D_{+}\psi) + \nabla^{V}(\xi)\psi, \qquad \xi \in \Gamma^{\infty}(V), \ \psi \in \Gamma^{\infty}(S).$$

- **5.4** (Spectral triples). A *spectral triple* is an unbounded Kasparov module (H, D) over (A, \mathbb{C}) together with a dense *-subalgebra A in the domain of [D, -].
- **5.5** (Spectral triples by elliptic operators). Let X be a closed smooth manifold. Let $D_+: \Gamma^{\infty}(S_+) \to \Gamma^{\infty}(S_-)$ be an elliptic operator on a graded Hermitian bundle $S \to X$. Then, we have an even spectral triple

$$(C^{\infty}(X), L^2(S), D).$$

5.6 (Spectral triples by Hodge-de Rham Dirac operators). Let X be a closed Riemannian manifold. By specifying a Riemannian metric, the space $\Gamma(\Lambda T^*X)$ of continuous sections admits a canonical right Hilbert module structure over $C^{\infty}(X)$. Fix a faithful state on C(X) induced by the normalized volume form on X and consider its Gelfand-Naimark-Segal representation $L^2(X)$. Then, the right Hilbert bimodule $\Gamma(\Lambda T^*X)$ over C(X) can be tensor producted with the representation $L^2(X)$ of C(X) to provide a representation $L^2(\Lambda T^*X)$ of C(X).

Consider the even spectral triple

$$(C^{\infty}(X), L^2(\Lambda T^*X), d + d^*),$$

where, $d + d^*$ is the *Hodge-de Rham Dirac operator*. The *Hodge-de Rham Laplacian* Δ . Dolbeault operator with respect to the almost complex structure on T^*X ?

5.7 (Spectral triples by signature operators).

5.8 (Spectral triples by spin^c-Dirac operators).

5.9 (Spectral triples by Dolbeault-Dirac operators).

5.2

5.10 (Even index pairing). For a projection $p \in M_k(A)$ for some $k \ge 0$ and a Fredholm module (H, F) over A,

$$\begin{array}{cccc} K_0(A) & \times & K^0(A) & \to & \mathbb{Z} \\ \left[\left(p(\ell^2 \otimes A), 0 \right) \right] & & \left[(H, F) \right] & \mapsto & \operatorname{Ind}(p(1 \otimes F_+) p \in B(pH^k)) \end{array}$$

Proof. Well-defineness of index pairing.

Coincidence with Kasparov product.

5.11 (Twisted Dirac operators).

5.12. Hodge de Rham: Euler characteristic

signature: L-genus? Pontryagin-Hirzebruch class?

spin^c: Â-genus

What is the relation between the index theoretic compression $p(1 \otimes F_+)p$ and the twisted Dirac operator $1 \otimes_{\nabla} F_+$?

5.13 (Atiyah-Singer index theorem of twisted Dirac operators). Let X be a compact manifold. Let V be a complex vector bundle over X, and $D_+: \Gamma^{\infty}(S_+) \to \Gamma^{\infty}(S_-)$ be a Dirac type operator. Then, for any connection ∇ on V, we have

$$\operatorname{Ind}(1 \otimes_{\nabla} D_{+}) = \int_{X} \operatorname{Ch}(V) \widehat{A}(S),$$

where Ch(V) is the Chern character of V and $\widehat{A}(S)$ is

5.3 Generalized Toeplitz operators

5.14 (Fredholm modules by Toeplitz operators). Consider the odd Fredholm module

$$(C^{\infty}(S^1), L^2(S^1), F),$$

where F:=2P-1 and $P:L^2(S^1)\to H^2(S^1)$ is the projection onto the Hardy space.

Toeplitz operator $T_a := PaP$ for $a \in C(S^1)$.

Generalized Toeplitz operator PuP for $u \in U_k(A)$.

5.15 (Mishchenko and Fomenko index theorem).

Chapter 6

Index formulae

6.1 Chern characters

6.1 (Summability). Let *A* be a C*-algebra, and (H, F) be a Fredholm module over *A*. For $p \in \mathbb{Z}_{\geq 1}$, we say (H, F) is (p + 1)-summable if $[F, a] \in L^{p+1}(H)$ for $a \in A$.

Let *A* be a C*-algebra. Let (H, F) be a normalized (p + 1)-summable Fredholm module over *A*. For $n \ge p$ with the same parity of the Fredholm module (H, F), we define a cyclic cocycle Ch by

$$Ch_n(H,F)(a_0,\cdots,a_n):=\frac{\lambda_n}{2}Tr(\gamma[F,a_0]\cdots[F,a_n]).$$

6.2 Spectral flows

We have $\overline{F(N)} = K(N)$ since $0 \le x \le 1$ with $x \in F(x)$ has $\tau(x) < \tau(s_l(x)) < \infty$, and it implies $x \in K(N)$.

- **6.2** (Breuer-Fredholm operators). Let N be a semi-finite von Neumann algebra with a faithful semi-finite normal trace τ . Let F(N) be the *-ideal of N whose support projections have finite traces, and let K(N) be the norm closed ideal of N generated by projections of finite traces, and $\pi: N \to Q(N) := N/K(N)$ be the canonical surjection. An element $f \in N$ is called *Breuer-Fredholm* if f and f^* has kernel projections of finite trace, and its *index* is defined as the difference of traces of kernel projections $Ind(f) := \tau(1-s_r(f)) \tau(1-s_r(f^*))$. We do not require the closed range.
 - (a) $f \in N$ is Breuer-Fredholm of index zero if $1 f \in K(N)$.
 - (b) $f \in N$ is Breuer-Fredholm if and only if $\pi(f)$ is invertible in Q(N).
 - (c) $Ind(f^*) = -Ind(f)$ and $Ind(f_1f_2) = Ind(f_1) + Ind(f_2)$.

Proof. (a) There is $g \in N$ such that $1-g \in F(N)$ and ||g-f|| < 1. If we let s := 1-(g-f) and $h := 1-(1-g)s^{-1}$, then $h \in N$ satisfies $1-h \in F(N)$.

We have a Breuer-Fredholm element h by $1-s_r(h) \le s_l(1-h)$ and $1-s_l(h) \le s_r(1-h)$. Since $e:=s_l(1-h) \lor s_r(1-h)$ is a finite projection such that $1-s_r(h) \le e$ and $s_r(e-(1-h)) \le e$, and since $s_r(h)-(1-e)$ is a projection fixing e-(1-h) from right and $1-e+s_r(e-(1-h))$ is a projection fixing h from right, we have

$$1 - s_r(h) = e - s_r(e - (1 - h)) \sim e - s_l(e - (1 - h)) = 1 - s_l(h)$$
.

From $hs(1-s_r(hs))=0$ we have $hs_l(s(1-s_r(hs)))=0$, and it implies $s_r(h) \le 1-s_l(s(1-s_r(hs)))$ and

$$1 - s_r(h) \ge s_l(s(1 - s_r(hs)) \sim s_l(1 - s_r(hs)) = 1 - s_r(hs).$$

Similarly we can show $1 - s_r(h) \lesssim 1 - s_r(hs)$, we have $1 - s_r(hs) \sim 1 - s_r(h)$. We finally have

$$1 - s_r(f) = 1 - s_r(s - (1 - f_0)) = 1 - s_r(hs) \sim 1 - s_r(h)$$
$$\sim 1 - s_l(h) = 1 - s_l(hs) = 1 - s_l(s - (1 - f_0)) = 1 - s_l(f),$$

so that $\tau(1-s_r(f)) = \tau(1-s_r(h)) < \infty$ and the index of f is zero.

xy = 0 implies |x|y = 0 since $y^*|x|^2y = |xy|^2 = 0$, |x|y = 0 implies $s_r(x)y = 0$ since $s_r(x)$ can be computed as a series of |x|.

(b) Suppose f is Breuer-Fredholm. We prove $\pi(f)$ is invertible.

Find a finite projection e in N such that $s_r(f) - s_r((1-e)f) \sim s_l(f) \wedge e$.

$$s_r((1-e)f) \sim s_l((1-e)f) = 1-e$$

- **6.3.** Let N be a semi-finite von Neumann algebra with a faithful semi-finite normal trace τ .
- (a) Let p and q be projections in N such that $\|\pi(p) \pi(q)\| < 1$. Then, $p s_r(qp)$ and $q s_r(pq)$ have finite traces so that we can define

$$\operatorname{Ind}(p,q) = \tau(p - s_r(qp)) - \tau(q - s_r(pq)),$$

also called the essential codimension.

- (b) Let $\{f_t\}$ be a norm continuous path of Breuer-Fredholm operators in N, parametrized by $t \in [0,1]$. Then, $t \mapsto \pi(p_t)$ is norm continuous, where $p_t := 1_{[0,\infty)}(f_t)$.
 - (c) Now we can define for a sufficiently fine finite partition $\{t_i\}$ of [0,1] the spectral flow by

$$sf({f_t}) := \sum_i Ind(p_{t_{i-1}}, p_{t_i}),$$

which does not depend on the choice of the partition $\{t_i\}$.

- *Proof.* (a) Since $\|\pi(p) \pi(pqp)\| \le \|\pi(p) \pi(q)\| < 1$ implies $\pi(pqp)$ is invertible in Q(pNp), pqp is Breuer-Fredholm in the corner pNp. Then, $p s_r(qp) \le p s_r(pqp)$ has finite trace. Similar for $q s_r(pq)$.
- (b) Let $f \in N$ be a Breuer-Fredholm element in N so that $\pi(f)$ is invertible in Q(N). Let $\varepsilon > 0$ such that $[-\varepsilon, e] \cap \sigma(\pi(f)) = \emptyset$. If we take $u, l \in C_b(\mathbb{R})$ such that $l \leq 1_{[0,\infty)} \leq u$ on \mathbb{R} and $l = 1_{[0,\infty)} = u$ on $\mathbb{R} \setminus [-\varepsilon, \varepsilon]$. Then, we have $1_{[0,\infty)}(\pi(f)) = \pi(1_{[0,\infty)}(f))$ by

$$1_{[0,\infty)}(\pi(f)) = l(\pi(f)) = \pi(l(f)) \le \pi(1_{[0,\infty)}(f)) \le \pi(u(f)) = u(\pi(f)) = 1_{[0,\infty)}(\pi(f)).$$

Therefore, since $t \mapsto \pi(f_t)$ is norm continuous path of invertible elements, the positive part

$$t \mapsto 1_{[0,\infty)}(\pi(f_t)) = \pi(1_{[0,\infty)}(f_t)) = \pi(p_t)$$

is also norm continuous.

(c) It suffices to show $\operatorname{Ind}(p,r)=\operatorname{Ind}(p,q)+\operatorname{Ind}(q,r)$ for projections $p,q,r\in N$ satisfying $\|\pi(p)-\pi(q)\|<\frac{1}{2}$ and $\|\pi(q)-\pi(r)\|<\frac{1}{2}$. Since $\|pi(r-rqpr)\|<1$, we can find $k\in K(rNr)$ such that $\|r-rqpr+k\|<1$. Therefore, rqpr-k is invertible in rNr so that $\operatorname{Ind}_r(rqpr)=\operatorname{Ind}_r(rqpr-k)=0$.

$$0 = \operatorname{Ind}_r(rqpr) = \operatorname{Ind}_{q,r}(rq) + \operatorname{Ind}_{p,q}(qp) - \operatorname{Ind}_{p,r}(rp).$$

6.4 (Continuous fields of Fredholm operators). Let X be a compact Hausdorff space. A continuous field of Fredholm operators $\{F_x \in B(\ell^2)\}_{x \in X}$ has the same data of the Kasparov module $(\ell^2 \otimes C(X), F)$ on the standard

Hilbert module with some additional conditions... in the sense that

$$F_+(x) = F_x : B(\ell^2 \otimes C(X) \otimes_{\delta_x} \mathbb{C}) \cong B(\ell^2), \qquad x \in X.$$

It defines a K-theory class by the graded algebraically finitely generated projective Hilbert module $\ker F$ over C(X). (really projective?)

The parametrized Hamiltonian $\{A(x)\}_{x\in X}$ defined on a fixed Hilbert space H naturally defines a K-theory class of $K_1(C_0(X))$, while the Dirac operator $-i\partial_x$ defines a K-homology class of $K^1(C_0(X))$, the Bott class. We consider the *Dirac-Schrödinger operator*

$$D_A = -i\partial_x + A(x) : \operatorname{dom} D_A \subset L^2(X, H) \to L^2(X, H).$$

(signs and grading?) Thus the spectral flow theorem states that the Dirac-Schrödinger operator is the unbounded Kasparov product, and in particular its index defines a class in $KK(\mathbb{C},\mathbb{C})$ is the spectral flow.

$$\begin{array}{ccc} K_0(C(S^1)) & \times & K^0(C(S^1)) & \to & \mathbb{Z} \\ \left[(H \otimes C(S^1), A?) \right] & & \left[(L^2(S^1), -i\partial_x) \right] & \mapsto & \text{sf} \end{array}$$

odd index pairing or the spectral flow pairing Callias-type theorems and Toeplitz-type theorems

6.2.1 Equivariant KK-class associated to a circle action

Let *A* be a C*-algebra and $\sigma : \mathbb{T} \to \operatorname{Aut}(A)$ be an action with spectral subspace assumption. Then, the faithful conditional expectation $\varepsilon : A \to A^{\sigma}$ defines a \mathbb{T} -equivariant full right Hilbert bimodule $E := \overline{A}$ over (A, A^{σ}) .

(By assuming periodicity of σ , we can obtain spectral projections by continuous functional calculus.) We can obtain a class of $KK_1^{\mathbb{T}}(A, A^{\sigma})$.

6.2.2

Let A be a C*-algebra and $\sigma: \mathbb{T} \to \operatorname{Aut}(A)$ be an action with spectral subspace assumption. Let φ be an invaraint faithful densely defined lower semi-continuous weight on A. Let $M := \pi_{\varphi}(A)''$ and N :=

6.2.3 Modular index pairing

Let N be a semi-finite von Neumann algebra with a faithful semi-finite normal trace τ . Let D_1 and D_2 be closed self-adjoint operators affiliated with N, with $P_1 := 1_{[0,\infty)}(D_1)$ and $P_2 := 1_{[0,\infty)}(D_2)$ the positive spectral projections. If $D_1 - D_2 \in B(H)$ and P_1P_2 is Breuer-Fredholm, then the spectral flow is defined by $\mathrm{sf}(D_1,D_2) := \tau(P_1P_2)$. In the case when P_1 and P_2 are finite, then $\mathrm{sf}(D_1,D_2) = \tau(P_2) - \tau(P_1)$.

6.3 Local index formulae

Topological models

7.1 K-homology

7.1 (Fredholm modules). It is intoduced in [Ati70]. analytic K-homology

7.2 (Baum-Douglas K-homology). Let X be a paracompact Hausdorff space, and A be a closed subspace of X. A *Baum-Douglas geometric cycle* of the pair (X,A) is a triple (Z,E,φ) of

- (i) a smooth compact spin c manifold Z possibly with boundary,
- (ii) a smooth Hermitian bundle $E \rightarrow Z$,
- (iii) a continuous map $\varphi: Z \to X$ such that $\varphi(\partial Z) \subset A$.
- 7.3 (Connective K-homology). It is introduced in [Seg77]

For a complex vector bundle $Y \to X$, $\beta : K(X) \to K(Y)$ is an isomorphism, and the inverse $\alpha : K(Y) \to K(X)$ can be constructed the family of elliptic operators parametrized by X blabla. We have $\beta \in KK(C(X), C(Y))$ and $\alpha \in KK(C(Y), C(X))$.

7.2 Correspondences

The topological analogues of algebraic correspondences are first studied by Baum, Connes, and Skandalis in 1980s. Emerson-Meyer enhanced the notions in [EM10] Let X and Y be paracompact Hausdorff spaces. A correspondence from X to Y is a compactly supported K-theory datum of a locally compact Hausdorff space Z, together with continuous maps $b: Z \to X$ and $f: Z \to Y$. Connes-Skandalis assume that f is K-oriented.

Then, $b_*(j(E) \otimes_Z f_!) \in KK(X, Y)$, where $j(E) \in K(Z, Z)$.

Baum-Connes conjecture

Coarse geometry

9.1

A *coarse structure* on a set X is an ideal \mathcal{E} on $X \times X$, in the sense that \mathcal{E} is a downward closed and upward directed set on $X \times X$, such that

(i) for every $E \in \mathcal{E}$, we have $\Delta \subset E$, (reflexivity)

(ii) for every $E, E' \in \mathcal{E}$, there is $E'' \in \mathcal{E}$ such that $E \circ E' \subset E''$, (triangle inequality)

(iii) for every $E \in \mathcal{E}$, we have $E^{-1} \in \mathcal{E}$. (symmetry)

Each element $\mathcal{P}(X \times Y)$ is one-to-one corresponded to union-preserving functions $\mathcal{P}(X) \to \mathcal{P}(Y)$.

In a metric space X, for each r > 0, we have a fattening $E_r : \mathcal{P}(X) \to \mathcal{P}(X)$ that preserves union, and $E_r \cup E_{r'} = E_{\max\{r,r'\}}$.

In a locally compact group G, for each relatively compact $B \subset G$, we have $E_B^L : S \mapsto BS$, $E_B^R : S \mapsto SB^{-1}$, $E_B^{LR} : S \mapsto BSB^{-1}$, and they define three coarse structures on G.

A canonical bornology $\mathcal{B} := \{ E(S) : E \in \mathcal{E}, |S| < \infty \}$ can be defined.

Two subsets S_1, S_2 of a coarse space X are called *asymptotically disjoint* if for every entourage E_1, E_2 the intersection $E_1(S_1) \cap E_2(S_2)$ is bounded.

9.2 Quantum Hall effect

A wave function is a section ψ of a U(1)-line bundle $L \to M$, more generally, a section ψ of a Hermitian G-vector bundle $V \to M$. Galilean invariant momentum operator? We fix a connection ∇ on L, which can be forgotten if M is contractible and no magnetic fields are considered. A U(N)-gauge fixing is just a choice of a local field of orthonormal frames on the intersection of two charts of M, making V locally trivially \mathbb{C}^N with the standard basis. After gauge fixing, the covariant derivative is represented locally as $\nabla_j \psi = (\partial_j - iA_j)\psi$, where $A = \sum_i A_j dx^j$ is a $\mathbb{R} = -i\mathfrak{u}(1)$ -valued one-form.

If (M, ∇) has non-trivial holonomy (the Aharonov-Bohm flux), then it comes into play.

On $M=\mathbb{R}^2$ with a connection ∇ such that the curvature form is $\mathcal{F}^{\nabla}=b\cdot \mathrm{vol}_M$ for some $b\in\mathbb{R}\setminus\{0\}$, then the *Landau operator*, which is a free Hamiltonian defined by the connection Laplacian or the Bochner Laplacian $H:=\nabla^*\nabla=-\mathrm{tr}(\nabla^2)\geq 0$, its spectrum is known to be $\sigma(H)=(2\mathbb{N}+1)|b|$. This discreteness of the spectrum is called the *Landau quantization*.

We consider a spin manifold M with the spinor bundle S, and the sections of $S \otimes V \to M$ represent the space of wave functions. curvature of a spin connection the Laplacians

9.3

Loop spaces, Loop groups

Quantum metric spaces

10.1

Let X be a metrizable compact space, or equivalently a commutative separable C^* -algebra. A metric d which topologize X gives rise to a semi-norm L on a dense *-subalgebra of C(X) defined such that

$$L(f) := \sup_{x \neq y} \frac{|f(x) - f(y)|}{d(x, y)},$$

called the Lipschitz semi-norm. The Lipschitz semi-norm not only recovers the original metric d by

$$d(x,y) = \sup_{L(f) \le 1} |f(x) - f(y)|,$$

but also defines a metric d on the state space Prob(X) such that

$$d(\mu,\nu):=\sup_{L(f)\leq 1}|(\mu-\nu)(f)|,$$

called the Monge-Kantorovich metric.

Topics

11.1 Non-commutative tori

11.2 Foliations

The paper by Connes-Skandalis

Part III Physical applications

D-branes

Quantum Hall effects

Standard models

We want to consider connections on an unbounded Kasparov module for $KK((\mathbb{C} \oplus \mathbb{H}) \otimes C(M), C(M))$.

YM:

$$A \subset \operatorname{End}_B(E_1) \otimes C(M), \qquad B := C(M), \qquad C = \mathbb{C}$$

The D_2 -connection on E_1 gives an unbounded Kasparov module over A and B, and the unbounded Kasparov product (H_{12}, D_{12}) over A can be called the YM spectral triple.

Glashow-Weinberg-Salam:

$$A := (\mathbb{C} \oplus M_2(\mathbb{C})) \otimes C(M), \qquad B := C(M), \qquad C = \mathbb{C}$$

with

$$(E_1,D_1,\nabla^1):=((\mathbb{C}\oplus\mathbb{C}^2)\otimes C(M),T,d), \qquad (E_2,D_2,\nabla^2):=(L^2(S),D_2,0).$$

Then, the internal gauge group is $U(A) \approx C(M, \mathrm{U}(1) \times \mathrm{U}(2))$, and the adjointability of A implies that the gauge group preserves the fibers of the bundle E_1 . The group $\mathrm{U}(1) \times \mathrm{U}(2)$ acts on the fiber space $\mathbb{C} \oplus \mathbb{C}^2$, and the group $C(M, \mathrm{U}(1) \times \mathrm{U}(2))$ acts on the total space $(\mathbb{C} \oplus \mathbb{C}^2) \times M$ of the trivial associated vector bundle. Scalar fields are elements of one-form space $\Omega^1_{D_1}(A)$, can be computed to have two components, are Higgs bosons. Gauge fields are elements of the D_2 -connection space $\mathrm{Hom}_B(E_1, E_1 \otimes \Omega^1_{D_2}(B))$ on the trivial bundle E_1 , have the form $\nabla^1 + \omega$, where $\omega \in \Omega^1_{D_2}(B) \otimes (\mathfrak{u}(1) \oplus \mathfrak{u}(2))$ represents the pair of the B and W bosons.

 $\Omega^1_{D_{12}}(A)$ is a subspace of $\Omega^1_{D_1}(A) \oplus \operatorname{Hom}_B(E_1, E_1 \otimes \Omega^1_{D_2}(B))$.

(By replacing $M_2(\mathbb{C})$ to the quaternions, we obtain SU(2) instead of U(2).)

A matter field, equivalently a fermion, is a vector in $E_1 \otimes_B E_2 = (\mathbb{C} \oplus \mathbb{C}^2) \otimes L^2(S)$. The interaction action functional is defined by $\langle D_{12}\psi,\psi\rangle$ on $E_1 \otimes_B E_2$?

A charge is a generator of a gauge group. For $U(1) \times SU(2)$, the generator Y for U(1) is called the weak hypercharge, and the generators T for SU(2) are called the weak isospins.

 T_i give iso

Y = -1 left-handed lepton doublet $L_l = (v_l, e_l)$

Y = -2 right-handed electron singlet e_r

Y = 1/3 left-handed quark doublet $Q_l = (u_l, d_l)$

Y = 4/3 right-handed up quark singlet u_r

Y = -2/3 right-handed down quark singlet d_r

Y = 1 scalar doublet ϕ

singlet -> four dimensional (left/right)-handed singlet -> two dimensional

If we let *S* be of dimension 4, then U(1) and *Y* acts on the fiber space of dimension $(15+1) \times 2$. We need 8(?)-dimensional representation of U(1)×SU(2) instead of 3-dimensional representation $\mathbb{C} \oplus \mathbb{C}^2$. fundamental

representation?

For the Seiberg-Witten, the gauge group is U(1). The Dirac operator on $L^2(S)$ is determined by a connection. The moduli space of paris of a vector and a connection satisfying the monopole equation... and its dimension can be computed by the Atiyah-Singer????

Anomalies