

Tidy Forecasting in R

Rob J Hyndman ISF 2018

- 1 Why change?
- 2 Model specification with fable
- 3 Example: Australian eating-out expenditure
- 4 Example: Half-hourly electricity demand
- 5 Example: Australian prison population
- 6 Equivalent methods
- 7 Extensibility
- 8 More information

forecast package

Pre 2003	Private functions used for consulting projec
July/August 2003	ets and thetaf added
August 2006	v1.0 available on CRAN
May 2007	auto.arima added
May 2010	arfima added
Feb/March 2011	tslm, stlf, naive, snaive added
August 2011	v3.0. Box Cox transformations added
December 2011	tbats added
April 2012	Package moved to github
November 2012	v4.0. nnetar added
June 2013	Major speed-up of ets
February 2016	v7.0. Added ggplot2 graphics
February 2017	v8.0. Added checkresiduals, tsCV and %>%

April 2018 v8.3. Added mstl

3

fable package

A replacement for the forecast package.

Why change?

- Integrating with tidyverse packages
- Designed for forecasting many related time series
- Consistency of interface using formulas
- Distribution forecasting rather than point + interval
- Flexible transformations
- Sub-daily data and multiple seasonal data handled more easily
- Simpler interface for forecast reconciliation

- 1 Why change?
- 2 Model specification with fable
- 3 Example: Australian eating-out expenditure
- 4 Example: Half-hourly electricity demand
- 5 Example: Australian prison population
- 6 Equivalent methods
- 7 Extensibility
- 8 More information

Formula model specification

?ets

ets {forecast} R Documentation

Exponential smoothing state space model

Description

Returns ets model applied to y.

Usage

```
ets(y, model = "ZZZ", damped = NULL, alpha = NULL, beta = NULL, gamma = NULL, phi = NULL, additive.only = FALSE, lambda = NULL, biasadj = FALSE, lower = c(rep(1e-04, 3), 0.8), upper = c(rep(0.9999, 3), 0.98), opt.crit = c("lik", "amse", "mse", "sigma", "mae"), nmse = 3, bounds = c("both", "usual", "admissible"), ic = c("aicc", "aic", "bic"), restrict = TRUE, allow.multiplicative.trend = FALSE, use.initial.values = FALSE, na.action = c("na.contiguous", "na.interp", "na.fail"), ...)
```

Formula model specification

?auto.arima

auto.arima {forecast}

R Documentation

Fit best ARIMA model to univariate time series

Description

Returns best ARIMA model according to either AIC, AICc or BIC value. The function conducts a search over possible model within the order constraints provided.

Usage

```
auto.arima(y, d = NA, D = NA, max.p = 5, max.q = 5, max.P = 2, max.Q = 2, max.order = 5, max.d = 2, max.D = 1, start.p = 2, start.q = 2, start.P = 1, start.Q = 1, stationary = FALSE, seasonal = TRUE, ic = c("aicc", "aic", "bic"), stepwise = TRUE, trace = FALSE, approximation = (length(x) > 150 | frequency(x) > 12), truncate = NULL, xreg = NULL, test = c("kpss", "adf", "pp"), seasonal.test = c("seas", "ocsb", "hegy", "ch"), allowdrift = TRUE, allowmean = TRUE, lambda = NULL, biasadj = FALSE, parallel = FALSE, num.cores = 2, x = y, ...)
```

Formula model specification

To simplify model building, we use a model formula. This should be more familiar to those who have done regression modelling.

```
t(y) ~ {model specification}
```

LHS: Response

- Defines the response variable from the data
- Specification of transformations (which are automatically back-transformed)

RHS: Specials

- Model specific special functions
- Exogenous regressors (if supported by model)

- 1 Why change?
- 2 Model specification with fable
- 3 Example: Australian eating-out expenditure
- 4 Example: Half-hourly electricity demand
- 5 Example: Australian prison population
- 6 Equivalent methods
- 7 Extensibility
- 8 More information

fpp2::auscafe

```
Feb
##
          Jan
                      Mar Apr
                                  May
                                        Jun
                                              Jul
                                                    Aug
                                                          Sep
  1982
                          0.342 0.342 0.329 0.339 0.332 0.342
##
  1983 0.369 0.348 0.366 0.351 0.360 0.347 0.364 0.376 0.378
       0.389 0.377 0.398 0.383 0.414 0.382 0.393 0.409
  1985 0.426 0.392 0.416 0.420 0.446 0.407 0.449 0.466 0.455
       0.504 0.453 0.480 0.497 0.531 0.485 0.526 0.538 0.537
  1987 0.572 0.525 0.544 0.558 0.565 0.542 0.599 0.584 0.593
  1988 0.605 0.586 0.625 0.612 0.630 0.635 0.659 0.656 0.660
  1989 0.733 0.661 0.713 0.694 0.710 0.722 0.741 0.746 0.767
  1990 0.858 0.764 0.840 0.805 0.809 0.799 0.815 0.828 0.812
  1991 0.862 0.771 0.813 0.797 0.821 0.801 0.829 0.854 0.882
  1992 0.938 0.862 0.936 0.932 0.929 0.869 0.891 0.875 0.914
       0.918 0.838 0.870 0.862 0.852 0.828 0.882 0.867 0.905
       0.985 0.902 1.015 0.939 0.941 0.935 1.013 1.018 1.041
       1.076 0.982 1.099 1.068 1.083 1.045 1.094
       1.213 1.128 1.180 1.169 1.146 1.109 1.138 1.146 1.105
       1.180 1.060 1.148 1.141 1.170 1.113 1.165 1.173 1.154
   1998 1.186 1.050 1.141 1.107 1.144 1.088 1.162 1.145 1.149
## 1999 1.244 1.124 1.245 1.236 1.271 1.208 1.219 1.234 1.261
```

10

```
library(tsibble)
cafe <- as_tsibble(fpp2::auscafe)
cafe</pre>
```

```
# A tsibble: 426 x 2 [1MONTH]
##
         index value
         <mth> <dbl>
##
##
   1 1982 Apr 0.342
   2 1982 May 0.342
##
##
   3 1982 Jun 0.329
##
   4 1982 Jul 0.338
##
    5 1982 Aug 0.332
##
    6 1982 Sep 0.342
   7 1982 Oct 0.358
##
##
   8 1982 Nov 0.375
##
    9 1982 Dec 0.433
  10 1983 Jan 0.369
```

with 116 mara

```
library(fable)
cafe %>% ARIMA(log(value))
```

```
## # A mable: 1 model [1MONTH]
## data model
## <list> <model>
## 1 <tsibble [426 x 2]> ARIMA(2,1,1)(2,1,2)[12]
```

cafe %>% ARIMA(log(value)) %>% summary()

```
## Series: log(value)
  ARIMA(2,1,1)(2,1,2)[12]
##
## Coefficients:
##
           ar1
                  ar2
                        mal sar1 sar2
                                            sma1 sma2
       -0.925 -0.318
##
                       0.588 0.724 -0.213 -1.44 0.557
## s.e. 0.182 0.060
                       0.189 0.174 0.074 0.17
                                                 0.149
##
  sigma^2 estimated as 0.000554: log likelihood=959
  AIC=-1903 AICc=-1903 BIC=-1871
##
  Training set error measures:
##
                    MF
                         RMSF
                                MAF
                                       MPF MAPF MASE
  Training set -0.00106 0.0371 0.0267 -0.0506 1.78 0.256
##
                 ACF1
## Training set -0.0184
```

```
cafe %>% ARIMA(log(value)) %>% forecast()
```

```
cafe %>% ARIMA(log(value)) %>% forecast() %>%
  summary()
```

```
# A tsibble: 24 x 4 [1MONTH]
##
        index
                             80%
                                          95%
               mean
##
        <mth> <dbl> <hilo>
                                          <hilo>
##
   1 2017 Oct 3.81 [3.70, 3.93]80 [3.64, 3.99]95
##
   2 2017 Nov 3.79
                    [3.65, 3.93]80 [3.58, 4.00]95
##
   3 2017 Dec
               4.17
                    [3.99, 4.34]80 [3.91, 4.43]95
##
   4 2018 Jan 3.73
                    [3.55, 3.90]80
                                   [3.46,
                                          4.00]95
##
   5 2018 Feb
               3.40
                    [3.22, 3.57]80 [3.14, 3.67]95
##
   6 2018 Mar
               3.77
                    [3.56,
                           3.99]80 [3.46,
                                          4.10]95
##
   7 2018 Apr
               3.70
                    [3.48,
                           3.93]80 [3.37,
                                          4.05]95
##
     2018 May 3.76
                    [3.52,
                           4.00]80 [3.40, 4.13]95
     2018 Jun 3.66
                    [3.41, 3.90]80 [3.29,
                                          4.04795
##
   10 2018 Jul
               3.88
                    [3.61, 4.15]80
                                   [3.48, 4.31]95
   # ... with 14 more rows
```

```
cafe %>% ARIMA(log(value)) %>% forecast() %>%
  summary(level=90)
```

```
## # A tsibble: 24 x 3 [1MONTH]
##
        index mean
                            90%
## <mth> <dbl> <hilo>
## 1 2017 Oct 3.81 [3.66, 3.96]90
##
   2 2017 Nov 3.79 [3.62, 3.97]90
##
   3 2017 Dec 4.17 [3.95, 4.39]90
##
   4 2018 Jan 3.73 [3.50, 3.96]90
##
   5 2018 Feb 3.40 [3.18, 3.62]90
##
   6 2018 Mar 3.77 [3.51, 4.05]90
   7 2018 Apr 3.70 [3.42, 3.99]90
##
##
   8 2018 May 3.76 [3.46, 4.07]90
   9 2018 Jun 3.66 [3.35, 3.98]90
##
  10 2018 Jul 3.88 [3.54, 4.24]90
  # ... with 14 more rows
```


- 1 Why change?
- 2 Model specification with fable
- 3 Example: Australian eating-out expenditure
- 4 Example: Half-hourly electricity demand
- 5 Example: Australian prison population
- 6 Equivalent methods
- 7 Extensibility
- 8 More information

Example: Half-hourly electricity demand

elecdemand

```
# A tsibble: 17,520 x 4 [30MINUTE]
      index
                          Demand Temperature WorkDay
##
##
      <dttm>
                            <fdb>>
                                        <dbl>
                                                <fdb>>
                            3.91
##
    1 2014-01-01 00:00:00
                                         18.2
                                                    0
##
    2 2014-01-01 00:30:00
                            3.67
                                         17.9
                                                    0
##
    3 2014-01-01 01:00:00
                            3.50
                                         17.6
                                                    0
##
    4 2014-01-01 01:30:00
                            3.34
                                         16.8
                                                    0
##
    5 2014-01-01 02:00:00
                            3.20
                                         16.3
                                                    0
    6 2014-01-01 02:30:00
                            3.10
##
                                         16.6
                                                    0
##
    7 2014-01-01 03:00:00
                            3.04
                                         16.6
                                                    0
                            3.01
##
    8 2014-01-01 03:30:00
                                         16.7
                                                    0
##
    9 2014-01-01 04:00:00
                            3.02
                                         16.2
                                                    0
   10 2014-01-01 04:30:00
                             3.03
                                         16.6
                                                    0
```

Example: Half-hourly electricity demand

```
fit2 <- ARIMA(elecdemand,</pre>
 Demand ~ Temperature + I(Temperature^2) + WorkDay)
summary(fit2)
## Series: Demand
  Regression with ARIMA(1,1,0)(2,0,2)[2] errors
##
## Coefficients:
##
       ar1 sar1 sar2 sma1 sma2 Temperature
## 0.853 -0.181 0.523 -0.066 -0.792 -0.009
## s.e. 0.005 0.015 0.012 0.012 0.011 0.002
   I(Temperature^2) WorkDay
##
                      0
                          0.016
                          0.006
## s.e.
##
  sigma^2 estimated as 0.00846: log likelihood=16949
  AIC=-33881 AICc=-33881 BIC=-33811
##
## Training set error measures:
                    MF
##
                       RMSF MAF
                                     MPF MAPF MASE ACE1
## Training set 6.51e-06 0.092 0.0634 0.00633 1.39 0.292 0.103 20
```

- 1 Why change?
- 2 Model specification with fable
- 3 Example: Australian eating-out expenditure
- 4 Example: Half-hourly electricity demand
- 5 Example: Australian prison population
- 6 Equivalent methods
- 7 Extensibility
- 8 More information

fpp2::prisonLF

```
## # A tibble: 1,536 x 5
##
     state gender legal t
                                    count
     <fct> <fct> <fct> <fct> <date>
##
                                   <dbl>
   1 ACT Female Remanded 2005-03-01
##
##
   2 ACT Female Remanded 2005-06-01
   3 ACT Female Remanded 2005-09-01
##
   4 ACT Female Remanded 2005-12-01
                                       4
##
   5 ACT Female Remanded 2006-03-01
##
   6 ACT Female Remanded 2006-06-01
                                       6
##
##
   7 ACT Female Remanded 2006-09-01
                                       9
           Female Remanded 2006-12-01
                                       6
##
   8 ACT
   9 ACT Female Remanded 2007-03-01
                                       4
##
  10 ACT
           Female Remanded 2007-06-01
## # ... with 1,526 more rows
```

```
prison <- fpp2::prisonLF %>%
  mutate(qtr=yearquarter(t)) %>%
  select(-t) %>%
  as_tsibble(index=qtr, key=id(state,gender,legal))
prison
```

```
## # A tsibble: 1,536 x 5 [1QUARTER]
## # Key: state, gender, legal [32]
## state gender legal count qtr
## <fct> <fct> <fct> <dbl> <gtr>
   1 ACT Female Remanded 2 2005 Q1
##
##
   2 ACT Female Remanded 4 2005 Q2
   3 ACT Female Remanded 1 2005 Q3
##
   4 ACT Female Remanded 4 2005 04
##
   5 ACT Female Remanded 4 2006 Q1
##
   6 ACT Female Remanded
                           6 2006 02
##
```

prison %>% ETS(count)

```
# A mable: 32 models [10UARTER]
  # Key: state, gender, legal [32]
##
     state gender legal data
                                              model
##
     <model>
##
##
   1 ACT Female Remanded <tsibble [48 x 2] > ETS(M,A,N)
   2 ACT Female Sentenced <tsibble [48 x 2]> ETS(A,A,N)
##
   3 ACT
          Male Remanded <tsibble [48 x 2]> ETS(M,N,N)
   4 ACT
           Male Sentenced <tsibble [48 x 2]> ETS(A,N,N)
   5 NSW
          Female Remanded <tsibble [48 x 2]> ETS(M.N.M)
##
   6 NSW
           Female Sentenced <tsibble [48 x 2]> ETS(M,N,M)
##
   7 NSW
           Male
                  Remanded \langle tsibble [48 \times 2] \rangle ETS(M,A,A)
##
   8 NSW
           Male Sentenced <tsibble [48 x 2]> ETS(M,A,A)
##
   9 NT
           Female Remanded <tsibble [48 x 2]> ETS(M,N,N)
##
  10 NT
           Female Sentenced <tsibble [48 x 2]> ETS(M,A,A)
    ... with 22 more rows
```

prison %>% ETS(count) %>% forecast()

```
## # A fable: 32 forecasts [1QUARTER]
  # Key: state, gender, legal [32]
     state gender legal data
                                       model
                                                 forecast
     <model> <fc>
##
          Female Remanded <tsibble [48~ ETS(M,A,N) ~N [h=8]
   1 ACT
   2 ACT Female Sentenced <tsibble [48~ ETS(A.A.N) ~N [h=8]
   3 ACT
          Male Remanded <tsibble [48~ ETS(M,N,N) ~N [h=8]
   4 ACT
          Male Sentenced <tsibble [48~ ETS(A,N,N) ~N [h=8]
   5 NSW
          Female Remanded <tsibble [48~ ETS(M,N,M) ~N [h=8]
   6 NSW
           Female Sentenced <tsibble [48~ ETS(M,N,M) ~N [h=8]
          Male Remanded <tsibble [48~ ETS(M,A,A) ~N [h=8]
   7 NSW
   8 NSW
          Male Sentenced <tsibble [48~ ETS(M,A,A) ~N [h=8]
##
   9 NT
           Female Remanded <tsibble [48~ ETS(M,N,N) ~N [h=8]
## 10 NT
           Female Sentenced <tsibble [48~ ETS(M,A,A) ~N [h=8]
## # ... with 22 more rows
```

- 1 Why change?
- 2 Model specification with fable
- 3 Example: Australian eating-out expenditure
- 4 Example: Half-hourly electricity demand
- 5 Example: Australian prison population
- 6 Equivalent methods
- 7 Extensibility
- 8 More information

Equivalent methods: forecast \longrightarrow **fable**

```
auto.arima → ARIMA
ets
              \longrightarrow ETS
tslm/lm \longrightarrow LM
tbats
          \longrightarrow TBATS
nnetar \longrightarrow NNAR
stlm
               \longrightarrow STL %>%
                    modelcomponents(
                       ETS(seasadj),SNAIVE(season))
```

- All functions have a formula interface with automatic modelling if no formula provided.
- All functions produce mable class objects.

Equivalent methods: forecast \longrightarrow **fable**

croston → CROSTON %>% forecast

forecast produces fable class objects

```
naive → NAIVE %>% forecast
\overline{\text{snaive}} \longrightarrow \overline{\text{SNAIVE } \%}\% forecast
thetaf → THETA %>% forecast
stlf \longrightarrow STL \%
                modelcomponents(
                  ETS(seasadj),SNAIVE(season)) %>%
                forecast
hw
          \longrightarrow HW %>% forecast
holt \longrightarrow HOLT %>% forecast
       \longrightarrow SES %>% forecast
ses
splinef → SPLINE %>% forecast
```

- 1 Why change?
- 2 Model specification with fable
- 3 Example: Australian eating-out expenditure
- 4 Example: Half-hourly electricity demand
- 5 Example: Australian prison population
- 6 Equivalent methods
- 7 Extensibility
- 8 More information

Extending fable

fable simplifies the times-series model development process

Tools to easily create new fable models

- Easily create specials for model formulae
- Focus on model estimation and forecasts

Automatically supported fable functionality

- Transformations and back-transformations (with bias adjustments)
- Plotting tools
- Accuracy measures and evaluation
- Model combinations (hierarchies & ensembles)

- 1 Why change?
- 2 Model specification with fable
- 3 Example: Australian eating-out expenditure
- 4 Example: Half-hourly electricity demand
- 5 Example: Australian prison population
- 6 Equivalent methods
- 7 Extensibility
- 8 More information

More information

devtools::install_github("tidyverts/tsibble")
devtools::install_github("tidyverts/fable")

Di Cook

Earo Wang

Mitchell O'Hara-Wild

Follow our progress

- tidyverts.org
- robjhyndman.com/hyndsight