15.8 Integrals in spherical coordinates.

Basic settings.

Relationships with cartesian coordinates.

EXAMPLE 1 The point $(2, \pi/4, \pi/3)$ is given in spherical coordinates. Plot the point and find its rectangular coordinates.

EXAMPLE 2 The point $(0, 2\sqrt{3}, -2)$ is given in rectangular coordinates. Find spherical coordinates for this point.

Important solids' equations.

Sphere.

Half planes.

 $0 < c < \pi/2$

Cones.

Evaluating integrals.

Formula for the change of variable (in polar coordinate).

$$\iiint_E f(x, y, z) dV = \int_c^d \int_\alpha^\beta \int_a^b f(\rho \sin(\phi) \cos(\theta), \rho \sin(\phi) \sin(\theta), \rho \cos(\phi)) \rho^2 \sin(\phi) d\rho d\theta d\phi$$

$$E = \{(\rho,\theta,\phi) \, | \, a \leq \rho \leq b, \, \alpha \leq \theta \leq \beta, \, c \leq \phi \leq d\}$$

EXAMPLE 3 Evaluate $\iiint_B e^{(x^2+y^2+z^2)^{3/2}} dV$, where *B* is the unit ball:

$$B = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$$

EXAMPLE 4 Use spherical coordinates to find the volume of the solid that lies above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = z$.

