Pontificia Universidad Católica de Chile

Facultad de Matemáticas

Profesor: Héctor Pastén Ayudante: José Cuevas Barrientos

Curso: Teoría de Números Sigla: MAT2225

Fecha: 10 de noviembre de 2023

Dinámicas aritméticas

Dinámicas aritméticas

Para no complicarnos la vida, diremos que un morfismo $f: \mathbb{P}^1 \to \mathbb{P}^1$ es una función que en las cartas afines (es decir, sobre puntos de la forma [x:1] e [1:y]) viene dado por funciones racionales (i.e., fracciones formales de polinomios). Si estas fracciones tienen ceros en los denominadores, entonces diremos que determina una aplicación racional $f: \mathbb{P}^1 \dashrightarrow \mathbb{P}^1$ (y se denotara con esta flecha quebrada). Nótese que todo morfismo está dado por funciones racionales, necesariamente del mismo grado y homogéneas (para que estén bien definidas en la recta proyectiva); llamaremos el grado de la aplicación racional al grado de las funciones que le definen por coordenadas.

Nótese que toda aplicación racional de $\mathbb{P}^1(\mathbb{C})$ de grado 1 viene dada por:

$$\mu_{a,b,c,d}([x:y]) := [ax + by : cx + dy], \qquad a,b,c,d \in \mathbb{C}.$$

Donde excluimos la posibilidad de que a = b = c = d = 0.

- 1. Demuestre que las siguientes condiciones son equivalentes:
 - a) $\mu_{a,b,c,d}$ es un morfismo (jy no una aplicación racional!).
 - b) $\mu_{a,b,c,d}$ es no constante.
 - c) $\mu_{a,b,c,d}$ es inyectivo.
 - d) $\mu_{a,b,c,d}$ es sobreyectivo.
 - e) $ad bc \neq 0$.

Concluya que los automorfismos (i.e., isomorfismos de $\mathbb{P}^1 \to \mathbb{P}^1$) de grado 1 están en biyección con

$$\operatorname{PGL}_2(\mathbb{C}) := \operatorname{GL}_2(\mathbb{C})/\mathbb{C}^{\times}.$$

Los elementos de PGL₂ se dicen transformaciones de Möbius.

2. Sean $(\alpha_1, \alpha_2, \alpha_3)$ y $(\beta_1, \beta_2, \beta_3)$ dos ternas de puntos distintos de \mathbb{P}^1 . Demuestre que existe una transformación de Möbius $\mu \in \mathrm{PGL}_2(\mathbb{C})$ tal que cada $\mu(\alpha_i) = \beta_i$.

Definición 1.1: Sea $f \colon X \to X$ una función sobre un conjunto cualquiera. Dado un punto $x \in X$ su *órbita* es¹

$$f^{\mathbb{N}}(x) := \{ f^n(x) : n \in \mathbb{N} \},\$$

donde f^n denota la composición n veces y donde $f^0 := \mathrm{Id}_X$. Denotaremos

$$\operatorname{Per}_n(f) := \{ x \in X : f^n(x) = x \}, \qquad \operatorname{Per}_n^{**}(f) := \{ x \in \operatorname{Per}_n(f) : \forall 0 < m < n, \quad x \notin \operatorname{Per}_m(f) \}.$$

Se dice que x es periódico si $x \in \bigcup_{n=1}^{\infty} \operatorname{Per}_n(f)$. Se dice que x es preperiódico si su órbita $f^{\mathbb{N}}(x)$ es finita, de lo contrario se dice que x es un punto errante. Se dice que x es estrictamente preperiódico si es preperiódico, pero no periódico.

- 3. Sea $\varphi(z) \in \mathbb{C}(z)$ una función racional de grado (geométrico)² $d \geq 2$.
 - a) Demuestre que $|\operatorname{Per}_n(f)| \leq d^n + 1$.
 - b) Demuestre que $\lim_{n} |\operatorname{Per}_{n}(f)| = \infty$.
 - c) Concluya que $\operatorname{Per}_n^{**}(f)$ no es vacío para infinitos n's.

 $^{^{1}\}text{Otros}$ textos también emplean $\mathcal{O}_{f}(x)$ u $O_{f}^{+}(x).$

²El grado geométrico de una función racional $\varphi(z) = g(z)/h(z)$, donde $g, h \in \mathbb{C}[z]$ son polinomios coprimos es máx{deg g, deg h}.

4. Dada una curva elíptica $\mathcal{E}: y^2 = x^3 + Ax^2 + Bx + C$ con $A, B, C \in \mathbb{Q}$ en forma de Weierstrass, la fórmula explícita para la duplicación de un punto con coordenadas P := [u:v:1] es

$$x(2 \cdot P) = \frac{x^4 - b_4 x^2 - 2b_6 x - b_8}{4x^3 + b_2 x^2 + 2b_4 x + b_6},$$

donde los b_i 's son racionales en función de A,B,C. Se pueden explicitar como $b_2=4A,b_4=2B,b_6=4C,b_8=B^2-4AC$. La fórmula anterior se conoce como **fórmula de duplicación**.

Demuestre que \mathcal{E} posee finitos puntos racionales de torsión cuyo orden sea de la forma 2^n .

5. Sea $f(x) \in \mathbb{Z}[x]$ un polinomio tal que el 0 sea un punto estrictamente preperiódico de f. Denotemos $\ell(f) := \text{mcm}(f(0), f^2(0))$; para todo punto errante x_0 definamos:

$$a_n := \frac{f^n(x_0)}{\operatorname{mcd}(f^n(x_0), \ell(f))}.$$

- a) Demuestre que $(a_n)_n$ es una sucesión de enteros coprimos dos a dos.
- b) Con ello dé una nueva demostración de la infinitud de primos.

2. Comentarios adicionales

En el ejercicio 4 vimos un caso muy particular de torsión de una curva elíptica. Uno igual puede llevar el argumento más al extremo empleando fórmulas de para calcular n veces un punto P. Éstas fórmulas existen y vienen dadas por los llamados **polinomios de división** (cfr. SILVERMAN [3, págs. 105-106], ex. 3.7). Aunque el argumento general que se emplea es identificando a una curva elíptica (¡sobre $\mathbb{C}!$) con un cociente de grupos topológicos \mathbb{C}/Λ , donde Λ es un reticulado pleno (i.e., es de la forma $\Lambda = \alpha \mathbb{Z} + \beta \mathbb{Z}$, donde $\alpha, \beta \in \mathbb{C}^{\times}$ son complejos no nulos tales que $\alpha/\beta \notin \mathbb{R}$); con ello no solo se concluye finitud general de la torsión, sino que la torsión (¡en $\mathbb{C}!$) se puede calcular completamente y $E[m] \cong (\mathbb{Z}/m\mathbb{Z})^2$ (cfr. [3, pág. 106], ex. 3.8).

El último ejercicio fue una idea original de Granville [1].

Referencias y lecturas adicionales

- 1. Granville, A. Using Dynamical Systems to Construct Infinitely Many Primes. Amer. Math. Monthly 125, 483-496. doi:10.1080/00029890.2018.1447732 (2018).
- 2. Silverman, J. H. The arithmetic of dynamical systems. (Springer-Verlag, 2007).
- 3. SILVERMAN, J. H. The arithmetic of elliptic curves. 2.ª ed. (Springer-Verlag, 2009). Correo electrónico: josecuevasbtos@uc.cl