	10486 10487 10488 ro	1997 1997 ws × 92 co	0 0 lumns	61 56	73 76	1500 1500	1500 1500	1479 1470		0.613 0.613	1 1	0
In [3]:		nsforming					selecte	d				
	<pre># here is_home1 is the response variable I selected. from sklearn.preprocessing import StandardScaler from numpy import set_printoptions X= data.copy() X.drop(columns=['is_home1'], inplace=True) X = X.values Y= data['is_home1'] Y=Y.values scaler=StandardScaler() knn_data = scaler.fit_transform(X) from sklearn.model_selection import train_test_split Ftrain,Ftest,Ltrain,Ltest=train_test_split(X,Y, test_size=0.20, random_state=22) # 103 is sq.root of n i.e sq.root of 10488. So applying KNN with k=103. from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier(n_neighbors=103) model.fit(Ftrain, Ltrain)</pre>											
Out[3]:	model.score(Ftest, Ltest) 0.5376549094375596 Accuracy is 50% with 103 neighbors. 103 is sq.root of n i.e sq.root of 10488.											
In [4]:												
In [5]:	<pre># plot vals=[list_k for k km km va # Plot plt.fi plt.pl plt.xl</pre>	ting elbo a list(ra in list_I in = KMeans infit(X) als.append asse again gure(figs ot(list_I abel('Nur abel('err	ange(1, k: s(n_clu d(km.ir inst k size=(6 k, vals nber of	oh 30)) usters=k nertia_) 6, 6)) 6, '-0')								
	1e 3.0 - 2.5 - 2.0 - 1.5 - 1.0 -		10 N	15 umber of cl	20 lusters	25	30					
In [6]:	model = KNeighborsClassifier(n_neighbors=6) model.fit(Ftrain, Ltrain) model.score(Ftest,Ltest)											
	0.6072449952335558 Accuracy increased to 60 % with 6 neighbors.											
In [7]:	<pre>6 is the number from the Elbow curve where the curve starts. error = [] # Calculating error for K values between 1 and 40 for i in range(1, 40): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(Ftrain, Ltrain) pred_i = knn.predict(Ftest) error.append(np.mean(pred_i != Ltest))</pre>											
In [8]:	<pre># plotting error rate vs K value plt.figure(figsize=(12, 6)) plt.plot(range(1, 40), error, color='red', linestyle='dashed', marker='o',</pre>											
	0.44 - 0.43 - 0.42 - 0.40 - 0.40 - 0.39 -	value incra	eses the	nean ei		15	20 K Valu	25		30	35	40
In [9]:	for i kn kn pr	[] culating a in range nn_model = nn_model.i red_i = kr cc.appenda	(1, 40) = KNeiç fit(Ftr nn_mode): ghborsCl ain, Lt el.predi	.assifi :rain) .ct(Fte	er(n_nei est)	ghbors=i)				
In [10]:	plt.fi plt.pl plt.ti plt.xl	marker tle('Accu abel('K \ abel('Acc	size=(1 (1, 40) rfaceco uracy F Value')	12, 6))), acc, plor='bl Rate Vs	color= .ue', m	narkersiz u <mark>e'</mark>)	e=10)	='dashed'	, mark	er='o',		
	0.61 - 0.60 - 0.59 - 0.58 - 0.57 -	o plot its sho	5 owing th	at as the		15	20 K Valu	vs K Value		30	35	40
In []:												

In [1]:

In [2]:

Out[2]:

import pandas as pd
import warnings
import numpy as np

import seaborn as sns

from matplotlib import pyplot

import matplotlib.pyplot as plt

warnings.filterwarnings('ignore')
os.chdir("E:\Ginu_StudyMaterials\Sem2\MachineLearning")

reading and printing dataset which is saved after doing feature selection
data = pd.read_csv("data.csv", encoding = 'unicode_escape')

...

 $season \quad playoff \quad score1 \quad score2 \quad elo1_pre \quad elo2_pre \quad elo1_post \quad elo2_post \quad prob1 \quad is_home1 \quad ...$

1627 0.718

1634 0.476

1684 0.524

1626 0.399

1479 0.387

1481 0.387

1519 0.613

...

0.282

1 ...

0 ...

1 ...

0 ...

0 ...

0 ...

1 ...

name2_New name2_Orlando name2_Phoenix name2_Portland name2_Sacrament
York Liberty Miracle Mercury Fire Monarch

import os

data