Teste Apresentação da Disciplina

Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

11 de março de 2014

Plano de Aula

- Sobre a Disciplina
 - Professor
 - Informações Importantes
- Pensamento
- Pra quê serve a Lógica
- 4 Linguagem Proposicional
 - Proposição
 - Conectivos
 - Alfabeto

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
- 2 Pensamento
- Pra quê serve a Lógica
- 4 Linguagem Proposiciona
 - Proposição
 - Conectivos
 - Alfabeto

Professor

Formação

Bacharel em Sistemas de Informação Mestre e Doutorando em Representação Conhecimento (IA)

Quem?

Esdras Lins Bispo Junior Recife, Pernambuco.

Professor

- Esdras Lins Bispo Jr.
- bispojr@ufg.com
- Sala 17B (Bloco dos Professores)

Disciplina

- Lógica para Ciência da Computação
- 17h20-19h00 (Terça, LEC III)
 15h30-17h10 (Quinta, Sala 11 CA 1)
- Dúvidas: 17h20 19h00 (Quinta) [necessário confirmação comigo]
- logica.bispojr.com (AVA Canvas).

Metodologia

- Aulas expositivas;
- Provas;
- Testes;
- Exercícios.

Testes

- Primeiro teste equivale a 20% da pontuação total;
- Segundo teste equivale a 10% da pontuação total.

Provas

- Primeiro teste equivale a 40% da pontuação total;
- Segundo teste equivale a 30% da pontuação total.

Exercícios [Bônus]

 Somatório de todos os exercícios equivale a 10% da pontuação total.

Avaliação

O cálculo da média final será dada da seguinte forma:

MF = MIN(10, PONT)

em que MIN representa o mínimo entre dois valores e PONT representa a pontuação total obtida em toda a disciplina.

Reposições de Aula

Dia: Quinta-feira (17h20-19h00)

Datas

- 20 de março;
- 03 de abril;
- 24 de abril;
- 4 15 de maio;
- **3** 29 de maio.

Não haverá aula

- 17 de abril;
- 4 01 de maio;
- 06 de maio;
- 08 de maio;
- 12 de junho;
- 17 de junho;
- 19 de junho.

Não haverá aula

- 17 de abril;
- 01 de maio;
- 06 de maio;
- **0** 08 de maio;
- 12 de junho;
- 17 de junho;
- 19 de junho.

Previsão de Término das Atividades

03 de julho.

Conteúdo do Curso

- Lógica Proposicional;
- Semântica da Lógica Proposicional;
- Construção de Tabelas-Verdade;
- Implicação Lógica e Argumento;
- Demonstração e Dedução;
- Satisfazibilidade;
- Lógica de Predicados;
- Programação Lógica.

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
- 2 Pensamento
- Pra quê serve a Lógica
- 4 Linguagem Proposiciona
 - Proposição
 - Conectivos
 - Alfabeto

Pensamento

Pensamento

Frase

Gosto de levar vantagem em tudo, certo?

Quem?

Gérson Nunes (1941-) Jogador de futebol da seleção brasileira de 1970.

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
- 2 Pensamento
- Pra quê serve a Lógica
- 4 Linguagem Proposiciona
 - Proposição
 - Conectivos
 - Alfabeto

Figura 1 : Criação de mecanismos de buscas.

Figura 2 : Desenvolvimento de processadores.

Figura 3 : Programas em Robótica.

Figura 4: Representação do Conhecimento.

Sumário

- Sobre a Disciplina
 - Professor
 - Informações Importantes
- 2 Pensamento
- Pra quê serve a Lógica
- 4 Linguagem Proposicional
 - Proposição
 - Conectivos
 - Alfabeto

Proposição

É uma sentença declarativa que pode ser julgada como verdadeira ou falsa.

Proposição

É uma sentença declarativa que pode ser julgada como verdadeira ou falsa.

Exemplos

• Dez é menor do que sete.

Proposição

É uma sentença declarativa que pode ser julgada como verdadeira ou falsa.

Exemplos

Dez é menor do que sete. ✓

Proposição

É uma sentença declarativa que pode ser julgada como verdadeira ou falsa.

- Dez é menor do que sete. ✓
- Como está você?

Proposição

É uma sentença declarativa que pode ser julgada como verdadeira ou falsa.

- Dez é menor do que sete. ✓
- Como está você? ×

Proposição

É uma sentença declarativa que pode ser julgada como verdadeira ou falsa.

- Dez é menor do que sete. ✓
- Como está você? ×
- Como ela é talentosa!

Proposição

É uma sentença declarativa que pode ser julgada como verdadeira ou falsa.

- Dez é menor do que sete. ✓
- Como está você? ×
- Como ela é talentosa! ×

Proposição

É uma sentença declarativa que pode ser julgada como verdadeira ou falsa.

- Dez é menor do que sete. ✓
- Como está você? ×
- Como ela é talentosa! ×
- Existe vida em outros planetas do universo.

Proposição

É uma sentença declarativa que pode ser julgada como verdadeira ou falsa.

- Dez é menor do que sete. ✓
- Como está você? ×
- Como ela é talentosa! ×
- Existe vida em outros planetas do universo. √

Conectivos

São operadores lógicos que conectam proposições gerando como resultado novas proposições.

Conectivos

São operadores lógicos que conectam proposições gerando como resultado novas proposições.

- p = "Dez é menor do que sete".
- q = "Existe vida em outros planetas do universo".

Conectivos

São operadores lógicos que conectam proposições gerando como resultado novas proposições.

Exemplos

- p = "Dez é menor do que sete".
- q = "Existe vida em outros planetas do universo".

Conjunção

 $p \wedge q =$ "Dez é menor do que sete e existe vida em outros planetas do universo".

Conectivos

São operadores lógicos que conectam proposições gerando como resultado novas proposições.

Exemplos

- p = "Dez é menor do que sete".
- q = "Existe vida em outros planetas do universo".

Disjunção

 $p \lor q =$ "Dez é menor do que sete ou existe vida em outros planetas do universo".

Conectivos

São operadores lógicos que conectam proposições gerando como resultado novas proposições.

Exemplos

- p = "Dez é menor do que sete".
- q = "Existe vida em outros planetas do universo".

Condicional

p o q = "Se dez é menor do que sete então existe vida em outros planetas do universo".

Conectivos

São operadores lógicos que conectam proposições gerando como resultado novas proposições.

Exemplos

- p = "Dez é menor do que sete".
- q = "Existe vida em outros planetas do universo".

Negação

 $\neg p =$ "Dez **não** é menor do que sete".

Conectivos

São operadores lógicos que conectam proposições gerando como resultado novas proposições.

Exemplos

- p = "Dez é menor do que sete".
- q = "Existe vida em outros planetas do universo".

Negação

- ¬p = "Dez <mark>não</mark> é menor do que sete".
- $\neg q =$ "Não existe vida em outros planetas do universo".

Alfabeto

• Um conjunto infinito e contável de *símbolos proposicionais*, também chamados de *átomos*, ou de *variáveis proposicionais*:

$$\mathcal{P} = \{p_0, p_1, p_2, ...\}.$$

Alfabeto

• O conectivo unário ¬ (negação, lê-se: NÃO).

Alfabeto

Os conectivos binários ∧ (conjunção, lê-se: E), ∨ (disjunção, lê-se: OU), e → (implicação, lê-se: SE... ENTÃO...).

Alfabeto

• Os elementos de pontuação, que contêm apenas os parênteses '(' e ')'.

Alfabeto

- Um conjunto infinito e contável de símbolos proposicionais, também chamados de átomos, ou de variáveis proposicionais: $\mathcal{P} = \{p_0, p_1, p_2, ...\}.$
- O conectivo unário ¬ (negação, lê-se: NÃO).
- Os conectivos binários ∧ (conjunção, lê-se: E), ∨ (disjunção, lê-se: OU), e → (implicação, lê-se: SE... ENTÃO...).
- Os elementos de pontuação, que contêm apenas os parênteses '(' e ')'.

Onde estudar mais...

Livro

SILVA, F. S. C. Da; FINGER, M.; MELO, A. C. V. de.

Seção 1.2: A Linguagem Proposicional.

Em Lógica para Computação.

São Paulo: Thomson Learning, 2006.

Código Bib.: [519.687 SIL /log].

Teste Apresentação da Disciplina

Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

11 de março de 2014

