AQUÁRIO VIRTUAL: Ciclo reprodutivo ovíparo

Aluno(a): Carlos Eduardo Machado

Orientador: Dalton Solano dos Reis

Roteiro

- Introdução
- Objetivos
- Fundamentação Teórica
- Trabalhos Correlatos
- Trabalho Original
- Requisitos
- Especificação
- Implementação
- Análise de Resultados
- Conclusão e Sugestões

Introdução

- Simuladores;
- Aquário virtual.

Objetivos

- Sistema de ciclo de reprodução para peixes ovíparos;
- Utilização de animação comportamental;
- Diversidade de condições ideais para os peixes;

Fundamentação Teórica

- Ciclo de vida dos peixes;
- Animação comportamental;
- Unity Machine Learning Agents Toolkit

Trabalhos Correlatos

- Estevão (2020);
- Piske (2015);
- Toebe (2014).

Análise do uso de animação comportamental com o motor de jogos Unity

Fonte: Estevão (2020).

VISEDU – Aquário virtual: simulador de ecossistema utilizando animação comportamental

Um modelo baseado em agentes para o ciclo de vida dos insetos: aplicação na interação afídeo-planta-vírus

- Simulação de insetos pragas agrícolas;
- Alimentação, reprodução e morte natural;
- Não tem representação gráfica.

Trabalho original

Fonte: Losada (2019).

Trabalho original

Trabalho original

Fonte: Silva (2020).

Requisitos Funcionais

- Criar peixes através da reprodução dos peixes ovíparos;
- Processar o crescimento dos peixes após a saída do ovo, desde o nascimento até a morte natural;
- Definir uma idade inicial para os peixes do aquário;
- Reduzir a saúde dos peixes baseado na diversidade de temperatura do aquário;

Requisitos Não Funcionais

- Desenvolver utilizando o motor de jogos Unity e a linguagem C#;
- Utilizar o toolkit ML-Agents para o treinamento dos peixes;
- Ser compatível com o aquário virtual e com a realidade virtual.

Especificação

Especificação

UNIVERSIDADE DE BLUMENAU

Especificação

Implementação

Implementação

UNIVERSIDADE DE BLUMENAU

Análise dos Resultados

- Treinamento e comportamento dos peixes;
- Reunião com o professor Sérgio Luiz Althoff;
- Dificuldades e limitações.

Conclusões e Sugestões

- Objetivos;
- Movimentação dos peixes;
- Sugestões do professor Sérgio:
 - Utilização de espécies encontradas nos aquários do Brasil;
 - Exibir mais informações biológicas relacionadas a morte dos peixes;
 - Maior interação entre espécies do aquário, peixes de espécies diferentes sendo agressivas.

Conclusões e Sugestões

- Explorar os vários algoritmos de aprendizado do ML Agents (PPO, SAC, MA-POCA e selfplay);
- Novas interação entre os peixes;
- Adição e remoção de peixes do aquário;
- Criar animações para alimentação e o envelhecimento do peixe;
- Limitar a reprodução dos peixes para ambientes ideais;
- Desenvolver o processo larval do peixe;

