

Introdução Inteligência Computacional

Profa. Dra. Ana Paula Abrantes de Castro e Shiguemori anapaula.acs@ifsp.edu.br
Instituto Federal de Educação, Ciência e Tecnologia – IFSP

Dr. Elcio Hideiti Shiguemori elcio@ieav.cta.br
Instituto de Estudos Avançados - IEAv

Curso: Análise e Desenvolvimento de Sistemas 4º. Semestre - IICI4 – 4 aulas Semanais

Redes Neurais Artificiais

A RNA

- As redes neurais artificiais são modelos baseados no funcionamento das redes dos neurônios biológicos.
- Estes modelos têm sido utilizados na solução de uma grande variedade de problemas em diversas áreas.
- Algumas de suas características, como baixo custo computacional, tolerância a falhas e capacidade de generalização, as tornam atrativas para implementações em software e hardware.

Redes Neurais Artificiais

Disciplina tecnológica que trata dos sistemas de processamento de informação paralelos, distribuídos e adaptáveis, que autonomamente desenvolvem capacidades de processamento da informação como respostas ao ambiente de informação.

(Hecht-Nielsen, 1990).

Não necessita do desenvolvimento de regras ou de algoritmos e reduz a quantidade de software que deve ser desenvolvido.

Estruturas Primárias de Processamento da Informação de Interesse: Redes
 Neurais

Histórico

1943

McCulloch e Pitts - "A Logical Calculus of the Ideas Immanent in Nervous Activity." Bulletin of Mathematical Biophysics, 1943, 5:115-133.

1949

Donald *Hebb -* Postulado para aprendizagem (Regra de Hebb)

1958

Frank *Rosenblatt - Perceptron (*classificador de padrões separáveis linearmente)

1969

Minksy e Paper - "Perceptron: na introduction to computational geometry". MIT Press, Massachusetts, 1969. Perceptron não resolvem problemas nãolineares.

Histórico

Anos 70

Poucas pesquisas (*Fukushima, Grossber, Kohonen*)

1982

John *Hopfield* - Paper enfatizando as propriedades associativas das RNA - Reiniciaram as pesquisas - relação entre redes recorrentes e sistemas físicos

1986

D.E. *Rumelhart*, G.E. *Hinton* e R.J. Williams, "Learning representations by *back-propagating* errors", Nature, 323:533-536, 1986.

Retomadas pelas Pesquisas

Redes Neurais Artificiais - RNA

São técnicas computacionais que apresentam um modelo matemático inspirado no funcionamento do cérebro humano

Adquirem conhecimento através da experiência

Modelam a forma do cérebro desempenhar tarefas ou funções

Implementação em hardware ou simuladas em software

Redes Neurais Artificiais - RNA

Interconexão maciça das células computacionais (*neurônios, ou unidades de processamento*) para alcançar um bom desempenho

 Desempenham as computações através de um processo de aprendizagem

Processador paralelo distribuído com capacidade natural para armazenar conhecimento experimental para uso posterior.

Definição de uma RNA

- Imita o cérebro de duas formas:
 - Adquire conhecimento através de aprendizagem.
 - Armazena conhecimento nas conexões entre neurônios (pesos).
- A aprendizagem é feita por um *algoritmo* que modifica os pesos da rede de uma forma ordenada para adquirir uma arquitetura previamente desejada
- Além da modificação dos pesos sinápticos uma RNA também pode modificar a própria *topologia*

Motivação das Redes Neurais

- Difere dos computadores digitais (na forma de fazer computação).
- Estrutura básica constituinte neurônio (Ramón e Cajál, 1911 -Haykin, 1994).
- Neurônio execução milisegundos (10-3s) X porta lógica nanosegundos (10-9s)
- No. de neurônios e interconexões supera a baixa velocidade de operação (10 bilhões de neurônios e 60 trilhões de conexões -Haykin, 1994).
- > Sistema complexo, não linear e paralelo.

Componentes de um neurônio

Componentes de um Neurônio

Axônio: transmissão de sinais a partir do corpo celular poucas ramificações e compridos

Dendritos: conduzem sinais para a célula; têm muitas ramificações. (zonas receptivas)

Sinapses: Unidades estruturais e funcionais elementares que medeiam as conexões entre os neurônios

Definição de uma RNA

Aprendizagem

- Algoritmo modifica os pesos da rede de uma forma ordenada para adquirir uma arquitetura previamente desejada
- Também pode modificar a própria topologia

Benefícios

- Não linearidade
- Mapeamento de entrada/saída
- Adaptabilidade
- Informação contextual
- Tolerância à falha
- Implementação em VLSI
- Analogia neurobiológica

Funcionamento

Aprendizagem:

Consiste no processo de Adaptação dos pesos sinápticos das conexões e os níveis de bias dos neurônios em resposta as entradas.

Ativação:

Consiste no processo de receber uma entrada e produzir uma saída com os pesos e bias obtidos na fase de aprendizagem.

Inspiração Biológica

Neurônio Biológico

O neurônio Biológico pode ser visto como sendo o dispositivo computacional elementar básico do sistema nervoso.

- Possui muitas entradas e uma saída.
- Entradas → conexões sinápticas
- Saída → axônio

O estímulo que chega à sinapse é transferida à membrana dendrital que dá origem a uma conexão excitatória ou inibitória.

Neurônio Artificial

Assim como os neurônios biológicos, os neurônios artificiais têm trada inúmeras entradas dadas pelos níveis de estímulos.

- Cada entrada é multiplicada por um peso sináptico.
- O resultado da multiplicação é somado
- E então passada por uma função de ativação

$$v_j = \sum_{k=1}^n w_{jk} x_k + b_j$$

$$y_j = \varphi(v_j)$$

Modelo do Neurônio Artificial

(McCulloch e Pitts, 1943)

(Fonte: Demísio, 2005)

Modelo do Neurônio Artificial

$$y = \varphi(v)$$

$$y = \begin{cases} 1, & v \ge 0 \\ 0, & v < 0 \end{cases}$$

$$y = \begin{cases} +1, & v \ge 0 \\ -1, & v < 0 \end{cases}$$

$$y = \begin{cases} 0, & v < 0 \\ v, & 0 \le v < 1 \\ 1, & v > 1 \end{cases}$$

$$y = v$$

$$y = \frac{1}{(1 + e^{-v})}$$

$$y = \tanh\left(\frac{v}{2}\right) = \frac{1 - e^{-v}}{(1 + e^{-v})}$$

$$y = \max[0, v]$$

$$y = \max[av, v], a = 0,1$$

Modelos de Arquiteturas

Camada Simples

Múltiplas Camadas Totalmente conectadas

Parcialmente conectada

Rede Profunda

Referências Bibliográficas

- José Demísio Simões da Silva Notas de Aula
- Ana Paula A. C. Shiguemori Notas de Aula
- Elcio Hideiti Shiguemori Notas de Aula