Condiciones Descendente

¿Cuáles de las siguientes gramáticas se sabe con certeza que **no** son válidas para construir un Analizador Sintáctico Descendente?

1: Una gramática sin factorizar Esta respuesta es correcta.

Para que una gramática se pueda utilizar en un Analizador Sintáctico Descendente Predictivo tiene que estar factorizada

2: Una gramática ambigua

Explicación:

Las gramáticas ambiguas no pueden utilizarse para construir Analizadores Sintácticos

- 1: Todas las reglas del axioma de la gramática estarán colocadas en la fila del axioma
- 1: Una gramática que tenga las reglas $A \rightarrow a b \quad y \quad A \rightarrow a b c$
- **1:** Una gramática que tenga una regla $A \rightarrow A b c$

Condición LL(1)

Dada la siguiente gramática, ¿qué afirmaciones son correctas?

- 1: La gramática no es válida para construir un Analizador Sintáctico Descendente Recursivo
- 1: Las reglas de C sí cumplen la condición LL(1) Esta respuesta es correcta.

Explicación:

El FIRST(00)={0} y el FIRST(11)={1}, por lo que la intersección de ambos conjuntos es vacía

- 2: La gramática no es válida para construir un Analizador Sintáctico Descendente Recursivo Explicación:
- -La gramática no es LL(1) por las reglas de A, por lo que no se puede construir un Analizador Sintáctico Descendente

- -Las reglas de A no cumplen la condición LL(1) porque las dos reglas pueden derivar en cadenas que empiezan por 1 o por 0.
- 1: La gramática no es válida para construir un Analizador Sintáctico Descendente con tablas Esta respuesta es correcta.

Explicación:

La gramática no es LL(1), por lo que no se puede construir un Analizador Sintáctico Descendente con tablas

2: Las reglas de C sí cumplen la condición LL(1) Esta respuesta es correcta.

Explicación:

El FIRST(3)={3} y el FIRST(2B)={2}, por lo que la intersección de ambos conjuntos es vacía

3: Para aplicar la condición LL(1) a las reglas de A hay que comprobar que los First no tienen elementos en común considerando 2 de las reglas de cada vez, y también que el Follow (A) no tiene elementos en común con el First de ninguna de las dos primeras reglas Esta respuesta es correcta.

Explicación:

No es suficiente comprobar que no hay ningún elemento común a todas las reglas, sino que hay que comprobarlo 2 a 2 con todas las posibles parejas de reglas

- 2: La gramática no es LL(1)
- 3:Las reglas de A no cumplen la condición LL(1)

Condición LL(1) - 2

Dada la siguiente gramática, ¿qué afirmaciones son correctas?

1: Las reglas de A sí cumplen la condición LL(1)

Explicación:

El FIRST(01)={0} y el FIRST(10)={1}, por lo que la intersección de estos conjuntos no es vacía

2: La gramática es válida para construir un Analizador Sintáctico Descendente con tablas Explicación:

La gramática es LL(1), por lo que se puede construir un Analizador Sintáctico Descendente con tablas

- 1: Las reglas de B sí cumplen la condición LL(1)
- 2: Las reglas de S sí cumplen la condición LL(1)
- 1: La gramática es LL(1)
- 3: Las reglas de A sí cumplen la condición LL(1) porque el FIRST de una regla es {0} y el FIRST de la otra regla es {1}
- 1: Las reglas de C sí cumplen la condición LL(1)

Condición LL(1) - 3

Dada la siguiente gramática, ¿cuáles de las afirmaciones son correctas?

 $S \rightarrow A B \mid B C$

 $A \rightarrow 1 A \mid 2 A \mid \lambda$

 $B \rightarrow 3~C~4~|~\lambda$

 $C \rightarrow 3 \mid 2B$

Respuestas seleccionadas:

Las reglas de A sí cumplen la condición LL(1)

1: Las reglas de C sí cumplen la condición LL(1)

Explicación:

El FIRST(3)= $\{3\}$ y el FIRST(2B)= $\{2\}$, por lo que la intersección de ambos conjuntos es vacía

2: Para aplicar la condición LL(1) a las reglas de A hay que comprobar que los First no tienen elementos en común considerando 2 de las reglas de cada vez, y también que el Follow (A) no tiene elementos en común con el First de ninguna de las dos primeras reglas Explicación:

No es suficiente comprobar que no hay ningún elemento común a todas las reglas, sino que hay que comprobarlo 2 a 2 con todas las posibles parejas de reglas

3: La gramática no es válida para construir un Analizador Sintáctico Descendente con tablas

Esta respuesta es correcta.

Explicación:

La gramática no es LL(1), por lo que no se puede construir un Analizador Sintáctico Descendente con tablas

4: Esta gramática no cumple la condición LL(1) porque la regla $B\rightarrow 3C4$ se aplicaría cuando el siguiente token es "3" y la regla $B\rightarrow \lambda$ se aplicaría para los elemento del Follow(B) que contiene el "3"

Esta respuesta es correcta.

Explicación:

Este caso incumple la condición LL(1)

Analizador Descendente con tablas

En relación con el Analizador Sintáctico Descendente por Tablas (LL(1)), ¿cuáles de las siguientes respuestas son correctas?

1: Cada celda de la tabla puede contener una regla o estar vacía Esta respuesta es correcta.

Explicación:

- Si hay una regla indica que el reconocimiento puede proseguir y si está vacía indica un error en el reconocimiento
- 2: Una misma regla puede aparecer únicamente en una fila de la tabla, y podría estar varias veces

Esta respuesta es correcta.

Explicación:

Cada regla está en la fila de su no terminal y en las columnas correspondientes a su FIRST

- 3: La columna \$ puede estar vacía
- 4: La tabla no puede tener una fila vacía

Follow 1

Indica cuáles de los conjuntos Follow son correctos para la siguiente Gramática:

```
S \longrightarrow e A B g | C D | \lambda

A \longrightarrow A a | a

B \longrightarrow b B | \lambda

C \longrightarrow E F D

D \longrightarrow k D | k

E \longrightarrow E g | h | \lambda

F \longrightarrow ij F | \lambda
```

```
1: FOLLOW(B) = { g }

2: FOLLOW (E) = { i, k, g }

1: FOLLOW (S) = { $ }

2: FOLLOW (C) = { k }

3: FOLLOW (F) = { k }

2: FOLLOW (A) = { b, g, a }

FOLLOW (D) = { $, k }
```

Follow 2

Indica cuáles de los conjuntos Follow son correctos para la siguiente Gramática:

```
S → e A B g | C B

A → A a | a

B → b B | λ

C → E F D

D → k D | λ

E → E g | h | λ

F → i j F | λ

1: FOLLOW (C) = { b, $ }

2: FOLLOW (E) = { i, k, b, $, g }

3: FOLLOW (F) = { k, b, $ }

1: FOLLOW (S) = { $ }

2: FOLLOW (A) = { b, g, a }

3: FOLLOW (C) = { b, $ }

4: FOLLOW (B) = { k, b, $ }

5: FOLLOW (B) = { g, $ }
```

Autómata LR 2

Dada la siguiente gramática, ¿cuál de las siguientes afirmaciones relativas al Autómata Reconocedor de Prefijos Viables (método de Análisis Sintáctico Ascendente LR(1)) es correcta?

$$S \rightarrow B A \mid C B$$

 $A \rightarrow 1 A \mid 2 A \mid \lambda$
 $B \rightarrow 3 C 4 \mid \lambda$
 $C \rightarrow 3 \mid 2 B$

Respuesta:

El estado inicial contiene al ítem A→•2A

Esta respuesta es incorrecta.

Explicación:

Al no aparecer en ningún momento la configuración "•A" en la parte derecha de un ítem, las reglas de A no entran en juego para añadir nuevos ítems al estado

La respuesta correcta era:

Respuesta:

Desde el estado inicial, hay una transición etiquetada con el símbolo "1" a un estado donde se encuentra el ítem A→•1A

Explicación:

El ítem $A\rightarrow \bullet 1A$ está presente en el estado inicial y eso produce una transición con "1" correspondiente al Goto (I0,1) en el que al calcular el cierre($\{A\rightarrow 1\bullet A\}$) vuelve a salir $A\rightarrow \bullet 1A$

Respuesta seleccionada: El estado inicial contiene al ítem C→•2B **Explicación:**

Como está el ítem del axioma (S' \rightarrow •S) y de ahí surge el ítem S \rightarrow •CB, hay que introducir los ítems que surgen a partir de C

Conflictos LR

Dado el siguiente estado perteneciente al Autómata reconocedor de Prefijos Viables de un Analizador Sintáctico LR, In= $\{S\rightarrow A F \bullet, A\rightarrow B D \bullet, B\rightarrow 3 \bullet A, B\rightarrow \bullet 3 A, C\rightarrow 3 \bullet 4, B\rightarrow 5 A \bullet\}$

¿cuál de las siguientes afirmaciones es correcta?

Si se añade el ítem $A\rightarrow 3$ •, habría un conflicto de Reducción-Reducción independientemente de cual fuera el Follow (A)

Explicación:

En todo caso habría dos reducciones posibles para cualquier elemento del Follow (A), por $A\rightarrow B$ D y por $A\rightarrow 3$

Si el Follow(A) contiene el terminal "4", hay un conflicto de Reducción-Desplazamiento

Explicación:

En este estado, se debería desplazar con el token "4" (por $C\rightarrow 3 \bullet 4$), pero también reducir (por $A\rightarrow B D \bullet$), por lo que hay un conflicto

Si el Follow(A) contiene el terminal "3", hay un conflicto de Reducción-Desplazamiento

El estado inicial contiene el ítem B -> · 3C4 Explicación:

Como está el ítem axioma(S' -> \cdot S) y de ahí surge el ítem S -> \cdot BC, hay que introducir los ítems que surgen a partir de B.

Si se añade el ítem $A\rightarrow 3$ •, habría un conflicto de Reducción-Reducción independientemente de cual fuera el Follow (A)

First - 6

¿Cuáles de los siguientes conjuntos son correctos, dada la siguiente gramática?

```
P \rightarrow D \ P \ | \ S \ P \ | \ \lambda
D \rightarrow var \ T \ id \ ; \ D \ | \ \lambda \ | \ F \ ; \ D
F \rightarrow function \ id \ T \ ( \ id : T \ L \ ) \ begin \ S \ end
L \rightarrow ; \ id : T \ L \ | \ \lambda
T \rightarrow integer \ | \ boolean
S \rightarrow if \ E \ do \ S \ | \ return \ E \ | \ id := E \ ; \ S
E \rightarrow id \ ( \ K \ )
K \rightarrow E \ R
R \rightarrow \lambda \ | \ ; \ K \ R
```

1: First (P) = {var, function, λ , if, return, id} Esta respuesta es correcta.

Explicación:

P puede ser lambda o empezar por lo mismo que empieza D o S

2: First (D) = {var, λ , function} Esta respuesta es correcta.

Explicación:

D puede ser lambda o empezar por var o por lo que empiece F

3: First (S) = {if, return, id} Esta respuesta es correcta.

4: First (K) = {id}

Esta respuesta es correcta.

Explicación:

K empezará por lo mismo por lo que empieza E

5: First (E) = {id}

Esta respuesta es correcta.

Explicación:

E siempre empezará con un id

Esta respuesta es correcta.

Explicación:

El First de un terminal es el propio terminal

- 7. First (R) = $\{;, \lambda\}$
- 8. First (L) = $\{;, \lambda\}$
- 9. First (boolean) = {boolean}
- 10. First $(F) = \{function\}$

Gramática aumentada

Gramática aumentada -> Descendente:

¿Cuáles de las siguientes afirmaciones son correctas en relación con la Gramática aumentada?

Respuestas Seleccionadas:

1: Si S es el axioma de la gramática original, la gramática aumentada tendrá la regla S'→S, siendo S' un nuevo axioma

Esta respuesta es correcta.

Explicación:

Así es como se crea la gramática aumentada

2: La gramática aumentada se obtiene a partir de la gramática original, añadiendo un nuevo axioma y una nueva regla que deriva el nuevo axioma en el axioma de la gramática original

Esta respuesta es correcta.

Explicación:

De esta manera, se asegura que al reducir por esta regla, se aceptará la cadena de entrada

3: La gramática aumentada es necesaria para que un Analizador Sintáctico Ascendente LR sepa cuándo se debe utilizar la acción de Aceptar

Esta respuesta es correcta.

Explicación:

Se necesita para poder identificar la acción de Aceptar en un analizador ascendente

2: La gramática aumentada es necesaria para construir un Analizador Sintáctico Ascendente LR

Esta respuesta es correcta.

Explicación:

Se necesita para poder identificar la acción de Aceptar

Además, te ha faltado por seleccionar:

Respuesta:

La nueva regla del axioma introducida en la gramática aumentada dará lugar a un ítem en el estado inicial del autómata de prefijos viables que tendrá el punto inmediatamente antes del axioma de la gramática original **Explicación:**

Este ítem indica que aún no ha comenzado el análisis de la cadena de entrada

1: Si S es el axioma de la gramática original y S' el nuevo axioma de la gramática aumentada, el estado inicial del autómata del LR tendrá el ítem $S' \rightarrow \cdot S$

Esta respuesta es correcta.

Explicación:

Este ítem indica que aún no ha comenzado el análisis de la cadena de entrada

Respuesta:

La gramática aumentada es necesaria para asegurarse que el axioma nunca aparecerá en el lado derecho de ninguna regla

Explicación:

De esta manera, al reducir por la nueva regla del nuevo axioma, se sabrá que se debe aceptar la cadena

goto

Para la siguiente gramática, indica cuáles de los siguientes cálculos de los conjuntos cierre o goto son correctos, cuando se quiere construir un Analizador LR:

$$S \rightarrow A B$$

$$A \rightarrow B C \mid k C$$

$$B \rightarrow C D \mid \lambda$$

$$C \rightarrow + A$$

$$D \rightarrow k B$$

Respuestas seleccionadas:

I0=cierre(
$$\{S' \rightarrow \cdot S\}$$
)= $\{S' \rightarrow \cdot S, S \rightarrow \cdot AB, A \rightarrow \cdot BC, A \rightarrow \cdot kC, B \rightarrow \cdot CD, B \rightarrow \cdot, C \rightarrow \cdot +A\}$

1: I2=goto(I0, A)=
$$\{S\rightarrow A\cdot B, B\rightarrow \cdot CD, B\rightarrow \cdot, C\rightarrow \cdot +A\}$$

Esta respuesta es correcta.

Explicación:

El cálculo es correcto

1: I1=goto(I0, S)=
$$\{S' \rightarrow S \cdot \}$$
 Es

ta respuesta es correcta.

Explicación:

El cálculo es correcto

2: I3=goto(I0, B)=
$$\{A\rightarrow B\cdot C, C\rightarrow \cdot +A\}$$

Esta respuesta es correcta.

Explicación:

El cálculo es correcto

3. I5=goto(I0, C)={
$$B\rightarrow C\cdot D, D\rightarrow \cdot kB$$
}

Explicación:

El cálculo es correcto

4. I6=goto(I0, +)={ $C \rightarrow +\cdot A$, $A \rightarrow \cdot BC$, $A \rightarrow \cdot kC$, $B \rightarrow \cdot CD$, $B \rightarrow \cdot$, $C \rightarrow \cdot +A$ }

Explicación:

El cálculo es correcto

5. I4=goto(I0, k)=
$$\{A\rightarrow k\cdot C, C\rightarrow \cdot +A\}$$

1: I7=goto(I0, D)={} Esta respuesta es correcta. Explicación: El cálculo es correcto

Resultados Autómata LR

Dada la siguiente gramática, ¿cuál de las siguientes afirmaciones relativas al Autómata Reconocedor de Prefijos Viables (método de Análisis Sintáctico Ascendente LR(1)) es correcta?

$$S \rightarrow A B \mid B C$$

 $A \rightarrow 1 A \mid 2 A \mid \lambda$
 $B \rightarrow 3 C 4 \mid \lambda$
 $C \rightarrow 3 \mid 2 B$

Respuesta seleccionada: El ítem C→•3 pertenece al estado inicial del autómata

La respuesta seleccionada fue incorrecta

Explicación:

Al no aparecer en ningún momento la configuración "•C" en la parte derecha de un ítem, las reglas de C no entran en juego para añadir nuevos ítems al estado

La respuesta correcta era:

El estado inicial contiene al ítem A→•2A

Dada la siguiente gramática, ¿cuál de las siguientes afirmaciones relativas al Autómata Reconocedor de Prefijos Viables (método de Análisis Sintáctico Ascendente LR(1)) es correcta?

$$S \rightarrow A B \mid B C$$

 $A \rightarrow 1 A \mid 2 A \mid \lambda$
 $B \rightarrow 3 C 4 \mid \lambda$

 $C \rightarrow 3 \mid 2 B$

Respuesta seleccionada: El estado inicial contiene al ítem B→•3C4 La respuesta seleccionada fue correcta

Explicación:

Como está el ítem del axioma ($S' \rightarrow \bullet S$) y de ahí surge el ítem $S \rightarrow \bullet BC$, hay que introducir los ítems que surgen a partir de B

First - 8

¿Cuáles de los siguientes conjuntos son correctos, dada la siguiente gramática?

 $P \rightarrow A B C \mid d$

 $A \rightarrow a \mid \lambda$

 $B \rightarrow a \mid b \mid \lambda$

 $C \rightarrow e A D R f | \lambda$

 $D \rightarrow B S E$

 $R \rightarrow int \mid bool \mid P$

 $S \rightarrow if (E) \{S\} else \{S\}; S \mid id = E; S \mid \lambda$

 $E \rightarrow (E) \mid g$

Respuestas seleccionadas:

1: First (A) = $\{a, \lambda\}$

Esta respuesta es correcta.

Explicación:

A empieza por a o por nada

2: First (C) = $\{e, \lambda\}$

Esta respuesta es correcta.

Explicación:

C empieza por e o por nada

3: First (D) = {a, b, if, id, (, g}

Esta respuesta es correcta.

Explicación:

D empieza por lo que empieza B , S o

4: First (S) = {if, id, λ }

Esta respuesta es correcta.

Explicación:

Las reglas de S empiezan por esos terminales o son anulables

5. First $(E) = \{ (, g) \}$

FIRST 7

¿Cuáles de los siguientes conjuntos, correspondientes a lados derechos de reglas, son correctos, dada la siguiente gramática?

```
P \rightarrow D \ P \ | \ S \ P \ | \ \lambda
D \rightarrow var \ T \ id \ ; \ D \ | \ \lambda \ | \ F \ ; \ D
F \rightarrow function \ id \ T \ ( \ id \ : \ T \ L \ ) \ begin \ S \ end
L \rightarrow \ ; \ id \ : \ T \ L \ | \ \lambda
T \rightarrow integer \ | \ boolean
S \rightarrow if \ E \ do \ S \ | \ return \ E \ | \ id \ := \ E \ ; \ S
E \rightarrow id \ ( \ K \ )
K \rightarrow E \ R
```

 $R \rightarrow \lambda \mid ; K R$

Respuestas Seleccionadas:

1: First (S P) = {if, return, id} Esta respuesta es correcta.

Explicación:

S siempre empieza por una de estas tres palabras, con lo que no tenemos que preocuparnos de P

2: First (var T id ; D) = {var} Esta respuesta es correcta.

Explicación:

Esta cadena de símbolos gramaticales siempre empieza por var

3: First
$$(E R) = \{id\}$$

Esta respuesta es correcta.

Explicación:

E siempre empieza por identificador

4: First (D P) = {var, function,
$$\lambda$$
, if, return, id}

Esta respuesta es correcta.

Explicación:

D empieza por var y F, y puede ser lambda, por lo que tenemos que ver por qué empieza P, que también puede ser lamda

Esta respuesta es correcta.

Explicación:

F siempre empieza por function

Esta respuesta es correcta.

1: First (id := E ; S) = {id}

Esta respuesta es correcta.

Explicación:

Esta cadena de símbolos gramaticales siempre empieza por id

First - 8

Has terminado la actividad:

¿Cuáles de los siguientes conjuntos son correctos, dada la siguiente gramática?

```
P \rightarrow A B C \mid d
```

$$A \rightarrow a \mid \lambda$$

$$B \rightarrow a \mid b \mid \lambda$$

$$C \rightarrow e A D R f | \lambda$$

$$D \rightarrow B S E$$

$$R \rightarrow int \mid bool \mid P$$

$$S \rightarrow if (E) \{S\} else \{S\}; S \mid id = E; S \mid \lambda$$

$$E \rightarrow (E) \mid g$$

Respuestas Seleccionadas:

1:First (R) = {int, bool, a, b, e, λ , d}

Esta respuesta es correcta.

Explicación:

R empieza por un tipo o por lo que empieza P

2:First (C) = $\{e, \lambda\}$

Esta respuesta es correcta.

Explicación:

C empieza por e o por nada

3:First (P) = $\{a, b, e, \lambda, d\}$

Esta respuesta es correcta.

Explicación:

P empieza siempre por d o por lo que empieza A, por lo que empieza B o por lo que empieza C

Follow - 3

Has terminado la actividad:

¿Cuáles de los siguientes conjuntos son correctos, dada la siguiente gramática?

```
P \rightarrow D \ P \ | \ S \ P \ | \ \lambda
D \rightarrow var \ T \ id \ ; \ D \ | \ \lambda \ | \ F \ ; \ D
F \rightarrow function \ id \ T \ ( \ id \ : \ T \ L \ ) \ begin \ S \ end
L \rightarrow \ ; \ id \ : \ T \ L \ | \ \lambda
T \rightarrow integer \ | \ boolean
S \rightarrow if \ E \ do \ S \ | \ return \ E \ | \ id \ := \ E \ ; \ S
E \rightarrow id \ ( \ K \ )
K \rightarrow E \ R
R \rightarrow \lambda \ | \ ; \ K \ R
```

Respuestas Seleccionadas:

1: Follow (S) = {var, function, \$, if, return, id, end} Esta respuesta es correcta.

Explicación:

Después de S solo puede venir P.

2: Follow (T) = {id, (,), ;} Esta respuesta es correcta.

Explicación:

Después de T solo puede venir L o lo que venga tras L

3: Follow (R) = {), ;} Esta respuesta es correcta.

Explicación:

Tras R vendrá lo mismo que lo que puede estar tras K

4: Follow (E) = {do, var, function, \$, if, return, id, end, ;,)} Esta respuesta es correcta.

Explicación:

E puede ir seguido de do, del punto y coma, de R y de lo que venga tras S

5: Follow (F) = {;} Esta respuesta es correcta.

Explicación:

Después de F no puede venir nada más

6: Follow (K) = {), ;}

Esta respuesta es correcta.

Explicación:

Tras K solo puede venir el paréntesis o R

5: Follow $(P) = \{\$\}$

Esta respuesta es correcta.

Explicación:

Por definición, el dólar está después del axioma

Además, te ha faltado por seleccionar:

Respuesta:

Follow (D) = {var, function, \$, if, return, id}

Explicación:

Detrás de D viene P (que puede ser anulable)

$$Follow(L) = \{ \}$$

Follow - 4

¿Cuáles de los siguientes conjuntos son correctos, dada la siguiente gramática?

```
P \rightarrow A B C \mid d
A \rightarrow a \mid \lambda
B \rightarrow a \mid b \mid \lambda
C \rightarrow e A D R f \mid \lambda
D \rightarrow B S E
R \rightarrow int \mid bool \mid P
S \rightarrow if (E) {S} else {S}; S \mid id = E; S \mid \lambda
E \rightarrow (E) \mid g
```

Respuestas Seleccionadas:

1: Follow (C) = {\$, f}

Esta respuesta es correcta.

Explicación:

Tras C puede venir lo que hay tras P y tras R

2: Follow (A) = {a, b, e, \$, f, if, id, (, g} Esta respuesta es correcta.

Explicación:

Hay que ver por qué empieza B C y D R f y añadir el dólar

3: Follow
$$(R) = \{f\}$$

Esta respuesta es correcta.

Explicación:

Tras R es lo único que hay

Follow(P) =
$$\{\$, f\}$$

$$Follow(E) = \{\}$$
, ;, int, bool, a, b, e, d, f\}

Esta respuesta es correcta.

Explicación:

Tras S puede venir la llave o por lo que empiece E

2:Follow (D) = {int, bool, a, b, e, d, f}

Esta respuesta es correcta.

Explicación:

Tras D viene todo lo que se puede derivar de R

3:Follow (C) = {\$, f}

Esta respuesta es correcta.

Explicación:

Tras C puede venir lo que hay tras P y tras R

1: Follow (B) =
$$\{e, \$, f, if id, (, g)\}$$