

Computer Vision Systems Programming VO Approaching Computer Vision Problems

Christopher Pramerdorfer
Computer Vision Lab, Vienna University of Technology

Topics

Aspects of Computer Vision (CV) problems Approaching CV problems

Aspects of CV Problems

CV is about

- ▶ Infering information about the world
- From images or videos (or extracted features)

To make things more formal, we represent

- ightharpoonup This information as a scalar w or vector \mathbf{w}
- Our measurements as a feature vector x

We then model the relationship between x and w

▶ Usually the most challenging aspect

Aspects of CV Problems

So each CV problem consists of three things

- ▶ The information w we are interested in
- ▶ The features x from which we infer this information
- ► A model that describes the relationship

This model

- Is a mathematical function
- ► That usually has parameters that are learned from data

Thus we can break down every CV problem into

- 1. Specifying w
- 2. Specifying how we obtain x (image processing)
- 3. Modeling the relationship between x and w
- 4. Learning the particular relationship from training samples
- 5. Assessing the performance on test samples

We will discuss these steps using two example applications

Approaching CV Problems Application 1

Detect motion in videos via background subtraction

Image from Prince 2012

Application 1 – Selecting w

We want to predict whether a pixel belongs to a moving object

We are interested in a single property with two possible outcomes

- ▶ A pixel either belongs to a moving object or not
- ▶ So $dim(\mathbf{w}) = 1$ and we just write w
- We let w=1 mean yes and w=0 mean no

As $w \in \{0,1\} \subset \mathbb{N}$, this is a classification problem

Application 1 – Selecting x

Given our problem we

- ▶ Build a model independently for each pixel
- Let $\mathbf{x} = (r, g, b)$ be the corresponding pixel value

We decide that color should not matter and convert to grayscale

lacktriangle We end up with a single value $x \in \{0, \dots, 255\}$

Approaching CV Problems Application 1 – Model Selection

Suppose that it is reasonable to assume that

- ▶ The illumination remains constant
- ▶ The sensor noise is normally distributed
- ▶ We don't know how moving objects look like
- Moving and unmoving objects are equally likely

We build a statistical model Pr(x|w)

lacktriangle Probability that a pixel assumes value x, given a certain w

As we model x given w, this is a generative model

Approaching CV Problems Application 1 – Model Selection

Given these assumptions, we have

$$Pr(x|w = 0) = Norm_{x}(\mu, \sigma^{2})$$

$$Pr(x|w = 1) = Uniform_{x}(0, 255)$$

$$Pr(w) = Bern_{x}(0.5)$$

Application 1 – Learning

We need to learn the model parameters $\theta = (\mu, \sigma)$

So we collect n frames in which no motion occurs

 $lackbox{ Let }\{x_i\}_{i=1}^n$ be the training set for a given pixel

We don't know anything about μ and σ so we

- Assume that the training samples are independent
- \triangleright Estimate θ purely from data (maximum likelihood)

Application 1 – Learning

Maximum likelihood means selecting the heta

▶ Under which observing $\{x_i\}_{i=1}^n$ is most likely

Or in mathematical terms

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{arg max}} \Pr(x_1, \dots, x_n | \boldsymbol{\theta})$$
$$= \underset{\boldsymbol{\theta}}{\operatorname{arg max}} \prod_{i=1}^n \Pr(x_i | \boldsymbol{\theta})$$

Application 1 – Learning

Continuing from before

$$\hat{\boldsymbol{\theta}} = \arg \max_{\boldsymbol{\theta}} \prod_{i=1}^{n} \operatorname{Norm}(\mu, \sigma^{2})$$

$$= \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log \operatorname{Norm}(\mu, \sigma^{2})$$

$$= \arg \max_{\boldsymbol{\theta}} \left(-0.5n \log \sigma^{2} - 0.5n \log(2\pi) - 0.5 \sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{\sigma^{2}} \right)$$

Application 1 – Learning

If we differentiate and equate to zero, we obtain

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2$$

We have derived algorithms for finding our model parameters

Application 1 – Inference

To obtain w from $\Pr(x|w)$ we use Bayes' rule

$$Pr(w|x) = \frac{Pr(x|w) Pr(w)}{Pr(x)}$$

Or if we don't need probabilities, we simply assign $\boldsymbol{w}=\boldsymbol{0}$ iff

$$\Pr(x|w=0) \Pr(w=0) > \Pr(x|w=1) \Pr(w=1)$$

Application 1 – Inference

Assume we learned $\mu=95, \sigma=2$ and observe x=100

We obtain

- $ightharpoonup \Pr(x = 100 | w = 0) \Pr(w = 0) = \mathsf{Norm}(100; 95, 2) \cdot 0.5$
- $\qquad \qquad \Pr(x=100|w=1)\Pr(w=1) = \mathsf{Uniform}(0,255) \cdot 0.5$
- ▶ We get 0.004 and 0.002, respectively, so w=0

Application 1 – Inference

For probabilities we divide by Pr(x = 100) (Bayes rule)

We obtain $\Pr(x=100)$ via marginalization

Recall from statistics lecture that

- $ightharpoonup \Pr(x) = \sum_{w} \Pr(x, w)$ (discrete case)
- $\Pr(x, w) = \Pr(x|w) \Pr(w)$

So
$$\Pr(x=100) = \sum_{i \in \{0,1\}} \Pr(x=100|w=i) \Pr(w=i) \approx .006$$

We already calculated the summands in previous slide

Approaching CV Problems Application 1 – Remarks

Model selection governed by domain knowledge

- ▶ Illumination does not change
- Sensor noise is normally distributed
- ▶ No information on moving object frequency, appearance

If you have this information, this is the way to go

- Think about how your data came into being
- Use this information for modeling

Approaching CV Problems Application 1 – Remarks

On this basis your solution will work unless

- ► The assumptions were wrong (e.g. illumination changes)
- ▶ Training data are not representative $(\hat{\theta} \text{ wrong})$

Approaching CV Problems Application 2

Categorize naturalistic images into thousands of classes

Image from image-net.org

Approaching CV Problems Application 2 – Selecting w

Assume there is a single dominant object in each image Goal is to predict which object is visible

Classification problem with c classes, $w \in \{0, \dots, c-1\}$

Application 2 – Selecting x

What are good features for this task?

- lacktriangle No clear relationship between images and w
- ► Thus unclear how to select x

So we just resize the images to a fixed size $u \times v$

And use a powerful model that figures out the rest

Approaching CV Problems Application 2 – Model Selection

We use a Convolutional Neural Network (CNN)

- ► Special kind of neural network (details later)
- Known to perform exceptionally well in such cases

CNNs are discriminative models, $\Pr(w|\mathbf{x})$

Compare to the generative model in application 1

Approaching CV Problems Application 2 – Model Selection

CNNs consist of several layers we must specify manually

- ► Such model parameters are called hyperparameters
- ▶ More familiar example: k in k-means

Typically specified

- Based on experience, literature
- Experimentally (try and see what works best)

Application 2 – Learning

Assume that we again have n training samples $\{(\mathbf{x}_i, w_i)\}_{i=1}^n$

 $lackbox{}{} w_i$ is class of visible object in image \mathbf{x}_i

Proceeding as in application 1 we seek

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{arg max}} \Pr(w_1, \dots, w_n | \mathbf{x}_1, \dots, \mathbf{x}_n, \boldsymbol{\theta})$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{arg max}} \prod_{i=1}^n \Pr(w_i | \mathbf{x}_i, \boldsymbol{\theta})$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{arg max}} \sum_{i=1}^n \log \Pr(w_i | \mathbf{x}_i, \boldsymbol{\theta})$$

Application 2 – Learning

But our model $\Pr(w|\mathbf{x}, \boldsymbol{\theta})$ is very complex

- ► CNNs can have millions of parameters
- lacktriangle Computing $\Pr(w|\mathbf{x},oldsymbol{ heta})$ can require millions of operations
- There is no analytical solution

Thankfully algorithms for learning already exist

Application 2 – Inference

Our model is discriminative so we don't need Bayes' rule

• We have modeled $\Pr(w|\mathbf{x})$ directly

Approaching CV Problems Application 2 – Remarks

No obvious relationship between images and w

- Unclear how to select x
- ▶ Unable to model the relationship like before

For these reasons we

- ▶ Use a powerful generic machine learning technique as model
- Incorporate feature selection into it

Approaching CV Problems Application 2 – Remarks

CNNs are state of the art models for many CV problems

- ▶ But very complex, require lots of training data
- More on CNNs later

Both applications were extreme (but realistic) examples

Application 1

- ightharpoonup Selecting and computing ${f x}$ was trivial
- Derived statistical model and algorithms

Application 2

- Unclear how to select x
- Used a powerful model that did all the work

Most CV problems lie somewhere in between

- ► Focus on obtaining suitable x (image processing)
- ▶ Utilize generic machine learning algorithms as models

We will see a few examples in upcoming lectures

Approaching CV Problems Suggestions

Think about how your data came into being $\label{eq:came} \text{Use this information to model the relationship between } \mathbf{x} \text{ and } \mathbf{w}$ Ideally use probabilistic models (model uncertainty)

Approaching CV Problems Suggestions – Models vs. Algorithms

Don't think in terms of algorithms

"I will use a linear SVM to predict the class"

▶ Is this even a suitable model for the given problem?

Go the other way around

- ► Confirm that a linear *model* is applicable
- Select a suitable algorithm (e.g. linear SVM)

Approaching CV Problems Suggestions

Embrace machine learning

- ▶ It is everywhere in modern CV (including image processing)
- ▶ Don't guess your parameters, learn them

Bibliography

Prince, S.J.D. (2012). *Computer Vision: Models Learning and Inference*. Cambridge University Press.

