02441 Applied Statistics and Statistical Software

Exercise 2C - Process

The dataset process contains measurements of air flow, water temperature, and acid concentration of a process loss.

Variable name	Description
loss	loss from process
airflow	air flow
watertemp	temperature of water
acidconc	concentration of acid

1. Determine whether air flow, temperature of water, or concentration of acid influence on the process loss by a graphical comparison

Start by loading the data

```
process <- read.table("process.txt", header=TRUE)
plot(process, panel=panel.smooth)</pre>
```


2. Determine whether air flow, temperature of water or concentration of acid influence on the process loss by analysing each variable using simple linear regression

Making simple regression for each variable

```
lmair <- lm(process$loss~process$airflow)</pre>
lmwater <- lm(process$loss~process$watertemp)</pre>
lmacid <- lm(process$loss~process$acidconc)</pre>
summary(lmair)
##
## Call:
## lm(formula = process$loss ~ process$airflow)
## Residuals:
       Min
                 1Q
                     Median
                                   3Q
## -12.2896 -1.1272 -0.0459 1.1166
                                        8.8728
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                 -44.13202
                               6.10586 -7.228 7.31e-07 ***
## process$airflow 1.02031
                               0.09995 10.208 3.77e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.098 on 19 degrees of freedom
## Multiple R-squared: 0.8458, Adjusted R-squared: 0.8377
## F-statistic: 104.2 on 1 and 19 DF, p-value: 3.774e-09
summary(lmwater)
##
## Call:
## lm(formula = process$loss ~ process$watertemp)
##
## Residuals:
      Min
               1Q Median
                               3Q
                                      Max
## -7.8904 -3.6206 0.3794 2.8398 8.4747
##
## Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                    -41.9109 7.6056 -5.511 2.58e-05 ***
## process$watertemp 2.8174
                                 0.3567 7.898 2.03e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 5.043 on 19 degrees of freedom
```

Multiple R-squared: 0.7665, Adjusted R-squared: 0.7542 ## F-statistic: 62.37 on 1 and 19 DF, p-value: 2.028e-07

summary(lmacid)

```
##
## Call:
## lm(formula = process$loss ~ process$acidconc)
##
## Residuals:
##
       Min
                1Q Median
                                ЗQ
                                       Max
## -11.584 -5.584 -3.066
                             1.247
                                    22.416
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    -47.9632
                                34.5044 -1.390
                                                  0.1806
                      0.7590
                                                  0.0725 .
## process$acidconc
                                 0.3992
                                         1.901
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.565 on 19 degrees of freedom
## Multiple R-squared: 0.1599, Adjusted R-squared: 0.1156
## F-statistic: 3.615 on 1 and 19 DF, p-value: 0.07252
```

Plot the scatter plots

plot(process\$loss~process\$airflow, xlab="Airflow", ylab="Process Loss", main="Process loss related to a
abline(lmair)

Process loss related to airflow

Process loss related to water temperature

plot(process\$loss~process\$acidconc, xlab="Acid Concentration", ylab="Process Loss", main="Process loss abline(lmacid)

Process loss related to acid concentration

It appears like acid concentration doesn't have an influence in process loss because of the p-value in the linear regression and the visual inspection.

3. Determine whether air flow, temperature of water or concentration of acid influence on the process loss using multiple linear regression

```
lmall <- lm(process$loss~process$airflow+process$watertemp+process$acidconc)
summary(lmall)</pre>
```

```
##
## Call:
## lm(formula = process$loss ~ process$airflow + process$watertemp +
       process$acidconc)
##
##
## Residuals:
##
      Min
                1Q Median
                                       Max
##
   -7.2377 -1.7117 -0.4551 2.3614
##
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                     -39.9197
                                 11.8960 -3.356 0.00375 **
## process$airflow
                       0.7156
                                  0.1349
                                           5.307 5.8e-05 ***
## process$watertemp
                     1.2953
                                  0.3680
                                           3.520 0.00263 **
                                  0.1563 -0.973 0.34405
## process$acidconc
                      -0.1521
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.243 on 17 degrees of freedom
## Multiple R-squared: 0.9136, Adjusted R-squared: 0.8983
## F-statistic: 59.9 on 3 and 17 DF, p-value: 3.016e-09

par(mfrow=c(2,2))
plot(lmall)
```


4. Is there evidence of multicollinearity?

process\$watertemp

```
model <- tree(process$loss ~ ., process)
plot(model)
text(model)</pre>
```


It looks like airflow and water temperature are collinear/positiviely correlated.

5. Plot the residuals and analyse the results. Which x-variable should be removed if we want to reduce the model?

```
par(mfrow=c(2,2))
plot(lmall)
```



```
# New model without acid concentration
lmall2 <- lm(process$loss~process$airflow+process$watertemp)
summary(lmall2, correlation=TRUE)</pre>
```

```
##
## Call:
## lm(formula = process$loss ~ process$airflow + process$watertemp)
## Residuals:
                1Q
                   Median
                                30
                                       Max
   -7.5290 -1.7505
                    0.1894
                            2.1156
                                    5.6588
##
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     -50.3588
                                  5.1383
                                         -9.801 1.22e-08 ***
  process$airflow
                       0.6712
                                  0.1267
                                           5.298 4.90e-05 ***
## process$watertemp
                       1.2954
                                  0.3675
                                           3.525 0.00242 **
##
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.239 on 18 degrees of freedom
## Multiple R-squared: 0.9088, Adjusted R-squared: 0.8986
## F-statistic: 89.64 on 2 and 18 DF, p-value: 4.382e-10
##
## Correlation of Coefficients:
##
                     (Intercept) process$airflow
```

```
## process$airflow -0.31
## process$watertemp -0.34 -0.78

# New model without acid concentration and without the outlier
process2 <- process[-21,]
lmall3 <- lm(process2$loss~process2$airflow+process2$watertemp)
par(mfrow=c(2,2))
plot(lmall3)</pre>
```


summary(lmall3, correlation=TRUE)

```
##
## Call:
## lm(formula = process2$loss ~ process2$airflow + process2$watertemp)
##
## Residuals:
##
       Min
                1Q
                    Median
                                 3Q
                                        Max
##
   -2.9052 -2.2893 0.5151
                            1.0123
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                       -51.0760
                                    4.0502 -12.611 4.69e-10 ***
                                    0.1140
## process2$airflow
                                              7.568 7.70e-07 ***
                         0.8630
## process2$watertemp
                         0.8033
                                    0.3222
                                              2.493
                                                      0.0233 *
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.549 on 17 degrees of freedom
## Multiple R-squared: 0.9464, Adjusted R-squared: 0.9401
## F-statistic: 150.2 on 2 and 17 DF, p-value: 1.571e-11
##
## Correlation of Coefficients:
## (Intercept) process2$airflow
## process2$airflow -0.30
## process2$watertemp -0.29 -0.83
par(mfrow=c(1,1))
boxplot(lmall3$residuals)
```


We should remove acid concentration and the outlier.