МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №3

по дисциплине: Исследование операций тема: Модификации симплекс-метода. Методы искусственного базиса и больших штрафов.

Выполнил: ст. группы ПВ-223 Игнатьев Артур Проверил: Вирченко Юрий Петрович **Цель работы:** изучение методов искусственного базиса и больших штрафов решения задач ЛП в канонической форме, не подготовленных к работе симплекс-методом в чистом виде.

Задания для подготовки к работе

- 1. Изучить метод и алгоритм искусственного базиса и составить программу решения задачи ЛП этим методом.
- 2. Изучить метод и алгоритм больших штрафов и составить программу решения задачи ЛП этим методом.
- 3. Запрограммировать изученные алгоритмы и отладить соответствующие программы. В рамках подготовки тестовых данных решить вручную следующую задачу.

3.

$$z = x_1 - 3x_2 + 4x_3 + 5x_4 - x_5 + 8x_6 \rightarrow \text{max};$$

$$\begin{cases} x_1 + 5x_2 - 3x_3 - 4x_4 + 2x_5 + x_6 = 14, \\ 2x_1 + 9x_2 - 5x_3 - 7x_4 + 4x_5 + 2x_6 = 30, \\ x_i \ge 0 \ (i = \overline{1, 6}). \end{cases}$$

Ручной расчет

Введем искусственные переменные x: в 1-ом равенстве вводим переменную x_7 ; во 2-ом равенстве вводим переменную x_8 ;

$$\begin{cases} x_1 + 5x_2 - 3x_3 - 4x_4 + 2x_5 + x_6 + x_7 = 14 \\ 2x_1 + 9x_2 - 5x_3 - 7x_4 + 4x_5 + 2x_6 + x_7 = 30 \end{cases}$$

Для постановки задачи на максимальную целевую функцию запишем так: $F(X) = x_1-3x_2+4x_3+5x_4-1x_5+8x_6$ - Mx_7 - $Mx_8 \rightarrow max$

За использование искусственных переменных, вводимых в целевую функцию, накладывается так называемый штраф величиной М, очень большое положительное число, которое обычно не задается.

Полученный базис называется искусственным, а метод решения называется методом искусственного базиса.

Из уравнений выражаем искусственные переменные:

$$x_7 = 14 - x_1 - 5x_2 + 3x_3 + 4x_4 - 2x_5 - x_6$$

$$x_8 = 30-2x_1-9x_2+5x_3+7x_4-4x_5-2x_6$$

которые поставим в целевую функцию:

$$F(X) = x_1 - 3x_2 + 4x_3 + 5x_4 - x_5 + 8x_6 - M(14 - x_1 - 5x_2 + 3x_3 + 4x_4 - 2x_5 - x_6) - M(30 - 2x_1 - 9x_2 + 5x_3 + 7x_4 - 4x_5 - 2x_6) \rightarrow \max$$

Базис	В	X1	X2	X3	X4	X5	X6	X7	X8
X7	14	1	5	-3	-4	2	1	1	0
X8	30	2	9	-5	-7	4	2	0	1
F(x0)	-44M	-1-3M	3-14M	-4+8M	-	1-6M	-8-3M	0	0
` ,					5+11M				

В качестве ведущего выберем столбец, соответствующий переменной x_2 , так как это наибольший коэффициент по модулю.

1-ая строка ведущая. Разрешающий элемент равен 5

Базис	В	X1	X2	X3	X4	X5	X6	X7	X8	min
X7	14	1	5	-3	-4	2	1	1	0	14/5
X8	30	2	9	-5	-7	4	2	0	1	10/3
F(x1)	-	-1-	3-	-	-	1-	-8-	0	0	
	44M	3M	14M	4+8M	5+11M	6M	3M			

Представим расчет каждого элемента в виде таблицы

В	X1	X2	X3	X4	X5	X6	X7	X8
14/5	1/5	5/5	-3/5	-4/5	2/5	1/5	1/5	0/5
30-	2-	9-	-5-(-	-7-(-	4-	2-	0-	1-
(14*9)/5	(1*9)/5	(5*9)/5	3*9):5	4*9):5	(2*9):5	(1*9):5	(1*9):5	(0*9):5
0-	(-1-3M)-	(3-	(-	(-	(1-6M)-	(-8-3M)-	(0)-	(0)-
(14*(3-	(1*(3-	14M)-	4+8M)-	5+11M)-	(2*(3-	(1*(3-	(1*(3-	(0*(3-
14M))/5	14M))/5	(5*(3-	(-3*(3-	(-4*(3-	14M)):5	14M)):5	14M)):5	14M)):5
		14M)):5	14M)):5	14M)):5				

Получаем новую симплекс таблицу

Базис	В	\mathbf{x}_1	\mathbf{X}_2	X 3	X 4	X5	X ₆	X7	X8
X2	14/5	1/5	1	-3/5	-4/5	2/5	1/5	1/5	0
X8	24/5	1/5	0	2/5	1/5	2/5	1/5	-9/5	1
F(X1)	-42/ ₅ -	⁻⁸ / ₅ -	0	⁻¹¹ / ₅ ⁻	⁻¹³ / ₅ -	⁻¹ / ₅ ⁻	⁻⁴³ / ₅ -	-	0
	$^{24}/_{5}M$	M		$^2/_5$ M	M	$^{2}/_{5}\mathbf{M}$	M	$^{3}/_{5}+^{14}/_{5}\mathbf{M}$	

Текущий опорный план неоптимален, так как в индексной строке находятся отрицательные коэффициенты.

В качестве ведущего выберем столбец, соответсвующий переменной х3, так как наибольший коэффициент по модулю

2-ая строка является ведущей. Разрешающий элемент равен (2/5) и находится на пересечении ведущего столбца и ведущей строки.

Базис	В	\mathbf{x}_1	\mathbf{x}_2	X ₃	X_4	X ₅	X ₆	X 7	X ₈	min
X ₂	14/5	1/5	1	-3/5	-4/5	2/5	1/5	1/5	0	-
X ₈	24/5	1/5	0	2/5	1/5	2/5	1/5	-9/5	1	12
F(X2)	⁻⁴² / ₅ ⁻ ²⁴ / ₅ M	⁻⁸ / ₅ - M	0	-11/ ₅ - 2/ ₅ M	-13/ ₅ - M	$^{-1}/_{5}^{-}$ $^{2}/_{5}$ M	-43/ ₅ - M	$^{3}/_{5}+^{14}/_{5}M$	0	

Представим расчет каждого элемента таблицы:

В	X ₁	X ₂	X 3	X4	X5	X ₆	X7	X8
$\frac{14}{5}$ - $(\frac{24}{5}*$ - $\frac{3}{5}:\frac{2}{5}$	$\frac{1}{5}$ - $(\frac{1}{5}*$ - $\frac{3}{5}:\frac{2}{5}$	1-(0*- ³ / ₅): ² / ₅	$^{-3}/_{5}$ - $(^{2}/_{5}*^{-}$ $^{3}/_{5}):^{2}/_{5}$	-4/5- (1/5*- 3/5):2/5	2/5- (2/5*- 3/5):2/5	$\frac{1}{5}$ - $(\frac{1}{5}*$ - $\frac{3}{5}:\frac{2}{5}$	1/5-(- 9/5*- 3/5):2/5	0-(1*- ³ / ₅): ² / ₅
²⁴ / ₅ : ² / ₅	$^{1}/_{5}:^{2}/_{5}$	0:2/5	$^{2}/_{5}:^{2}/_{5}$	$^{1}/_{5}:^{2}/_{5}$	² / ₅ : ² / ₅	$^{1}/_{5}:^{2}/_{5}$	$^{-9}/_{5}: ^{2}/_{5}$	1:2/5
(0)- (²⁴ / ₅ *(⁻ 11/ ₅ -	(-8/5- M)- (1/5*(- 11/5-	(0)- (0*(⁻ 11/ ₅ -	$(^{-11}/_{5}^{-}$ $^{2}/_{5}M)$ - $(^{2}/_{5}*(^{-}$ $^{11}/_{5}^{-}$	$(^{-13}/_{5} M) (^{1}/_{5}*(^{-}_{11}/_{5}-$	$(^{-1}/_{5}^{-}$ $^{2}/_{5}M)$ - $(^{2}/_{5}*(^{-}$ $^{11}/_{5}^{-}$	$(^{-43}/_{5}-$ M)- $(^{1}/_{5}*(^{-}$ $^{11}/_{5}^{-}$	(- 3/ ₅ + ¹⁴ / ₅ M)-(- 9/ ₅ *(- ¹¹ / ₅ -	(0)- (1*(⁻ 11/ ₅ -

$^{2}/_{5}M)):^{2}$	$^{2}/_{5}M)):^{2}$	$^{2}/_{5}$ M)): 2	$^{2}/_{5}M)):^{2}$	$^{2}/_{5}$ M)): 2	$^{2}/_{5}M)):^{2}$	$^{2}/_{5}M)):^{2}$	² / ₅ M)): ² /	$^{2}/_{5}M)):^{2}$
/5	/5	/5	/5	/5	/5	/5	5	/5

Получаем новую симплекс-таблицу:

Базис	В	X ₁	X2	X3	X4	X5	X ₆	X ₇	X8
X ₂	10	1/2	1	0	-1/2	1	1/2	-5/2	3/2
Х3	12	1/2	0	1	1/2	1	1/2	-9/2	5/2
F(X2)	18	-1/2	0	0	-3/2	2	-15/2	$^{-21}/_{2}+\mathbf{M}$	¹¹ / ₂ + M

Текущий опорный план неоптимален, так как в индексной строке находятся отрицательные коэффициенты.

В качестве ведущего выберем столбец, соответствующий переменной x_6 , так как это наибольший коэффициент по модулю.

Следовательно, 1-ая строка является ведущей.

Разрешающий элемент равен (1/2) и находится на пересечении ведущего столбца и ведущей строки.

Базис	В	\mathbf{x}_1	X 2	X 3	X4	X5	X ₆	X7	X8	min
X ₂	10	1/2	1	0	-1/2	1	1/2	-5/2	3/2	20
X3	12	1/2	0	1	1/2	1	1/2	-9/2	5/2	24
F(X3)	18	-1/2	0	0	-3/2	2	-15/2	$^{-21}/_{2}+\mathbf{M}$	$^{11}/_{2}+M$	

Представим расчет каждого элемента в таблице

	r 1		r 1						
	В	\mathbf{x}_1	\mathbf{x}_2	X ₃	\mathbf{x}_4	X ₅	X ₆	X ₇	X ₈
10	0: 1/2	1/2:1/2	1: 1/2	0:1/2	- 1/2:1/2	1: 1/2	1/2:1/2	5/2: 1/ ₂	3/2:1/2
(1	12- 10*1/ ₂):1/ ₂	1/ ₂ - (1/ ₂ *1/ ₂):1/ ₂	0- (1* ¹ / ₂): ¹ / ₂	1- (0*1/ ₂):1/ ₂	1/2-(- 1/2*1/2):1/2	1- (1* ¹ / ₂): ¹ / ₂	1/ ₂ - (1/ ₂ *1/ ₂):1/ ₂	-9/2-(- 5/2*1/2):1/2	5/ ₂ - (³ / ₂ * ¹ / ₂): ¹ / ₂
)-	¹ / ₂ +M (10*(⁻ / ₂)): ¹ / ₂	(-1/2)- (1/2*(- 15/2)):1/2	(0)- (1*(⁻ ¹⁵ / ₂)): ¹ / 2	(0)- (0*(⁻ ¹⁵ / ₂)): ¹ / 2	(-3/2)-(- 1/2*(- 15/2)):1/ 2	(2)- (1*(⁻ ¹⁵ / ₂)): ¹ / 2	(-15/2)- (1/2*(- 15/2)):1/2	(⁻ 21/ ₂ +M) -(⁻⁵ / ₂ *(⁻ 15/ ₂)): ¹ / 2	(11/2+M)-(3/2*(- 15/2)):1/2

Получаем новую симплекс-таблицу:

Базис	В	\mathbf{x}_1	X ₂	X3	X4	X5	X ₆	X 7	X 8
X ₆	20	1	2	0	-1	2	1	-5	3
X ₃	2	0	-1	1	1	0	0	-2	1
F(X3)	168	7	15	0	-9	17	0	-48+M	28+M

Текущий опорный план неоптимален, так как в индексной строке находятся отрицательные коэффициенты.

В качестве ведущего выберем столбец, соответствующий переменной х₄, так как это наибольший коэффициент по модулю.

2-ая строка является ведущей.

Разрешающий элемент равен (1) и находится на пересечении ведущего столбца и ведущей строки.

Базис	В	\mathbf{x}_1	X2	X 3	X4	X5	X ₆	X 7	X8	min
X ₆	20	1	2	0	-1	2	1	-5	3	-
X3	2	0	-1	1	1	0	0	-2	1	2
F(X4)	168	7	15	0	-9	17	0	-48+M	28+M	

Представим расчет каждого элемента в виде таблицы:

В	\mathbf{x}_1	X 2	X 3	X4	X ₅	X ₆	X7	X8
20-(2*-1):1	1- (0*- 1):1	2-(- 1*- 1):1	0- (1*- 1):1	-1- (1*- 1):1	2- (0*- 1):1	1- (0*- 1):1	-5-(-2*- 1):1	3-(1*- 1):1
2:1	0:1	-1:1	1:1	1:1	0:1	0:1	-2:1	1:1
(28+M)- (2*(- 9)):1	(7)- (0*(- 9)):1	(15)- (- 1*(- 9)):1	(0)- (1*(- 9)):1	` `	(17)- (0*(- 9)):1	` /	48+M)-	(28+M)- (1*(- 9)):1

Получаем новую симплекс-таблицу

Базис	В	X ₁	X ₂	X3	X4	X5	X ₆	X7	X8
X ₆	22	1	1	1	0	2	1	-7	4
X4	2	0	-1	1	1	0	0	-2	1
F(X4)	186	7	6	9	0	17	0	-66+M	37+M

Среди значений индексной строки нет отрицательных. Поэтому эта таблица определяет оптимальный план задачи.

Так как в оптимальном решении отсутствуют искусственные переменные (они равны нулю), то данное решение является допустимым.

Оптимальный план можно записать так: $x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 2, x_5 = 0, x_6 = 22$ F(X) = 1*0 - 3*0 + 4*0 + 5*2 - 1*0 + 8*22 = 186

Блок-схемы: Функция simplexAlgorithmCalculataion

Функция CheckOptimality:

Функция doPivotting:

Функция findPivotColumn:

Функция findPivotRow

Функция CalculateSimplex

Код программы:

```
finclude <iostream> // Подключение заголовочного файла для ввода-вывода в
#include <vector> // Подключение заголовочного файла для использования
using namespace std; // Использование стандартного пространства имён
         rows = matrix.size(); // Установка количества строк cols = matrix[0].size(); // Установка количества столбцов
                  A[i][j] = matrix[i][j]; // Присваивание значений матрицы
```

```
if (checkOptimality() == true)
    int pivotColumn = findPivotColumn(); // Находим столбец для
    int pivotRow = findPivotRow(pivotColumn); // Находим строку для
    doPivotting(pivotRow, pivotColumn); // Производим обновление
    bool isOptimal = false; // Инициализируем флаг оптимальности
    int positveValueCount = 0; // Счётчик положительных значений
        if (value >= 0)
            positveValueCount++;
    if (positveValueCount == C.size())
        isOptimal = true; // Устанавливаем флаг оптимальности
        print(); // Выводим текущее состояние таблицы
    return isOptimal; // Возвращаем флаг оптимальности
void doPivotting(int pivotRow, int pivotColumn) // Функция для
    float rowNew[cols]; // Массив значений обновлённой строки
```

```
pivotColVals[j] = A[j][pivotColumn];
    rowNew[k] = pivotRowVals[k] / pivetValue;
            float multiplyValue = pivotColVals[m];
            A[m][p] = A[m][p] - (multiplyValue * rowNew[p]);
        float multiplyValue = pivotColVals[i];
       B[i] = B[i] - (multiplyValue * B[pivotRow]);
float multiplyValue = C[pivotColumn]; // Получаем коэффициент для
for (int i = 0; i < C.size(); i++)</pre>
   C[i] = C[i] - (multiplyValue * rowNew[i]);
```

```
for (int i = 1; i < C.size(); i++) // Цикл по коэффициентам целевой
int negativeValueCount = 0; // Счётчик отрицательных значений
       positiveValues[i] = A[i][pivotColumn];
       positiveValues[i] = 0; // Игнорируем отрицательные значения
if (negativeValueCount == rows)
```

```
if (result[i] > 0)
       location = i;
bool result = simplexAlgorithmCalculataion(); // Выполняем
if (result == true) // Проверяем флаг окончания алгоритма
```

```
int count0 = 0; // Счётчик нулевых элементов
           cout << "variable" << index + 1 << ": " << 0 << endl; //</pre>
vector<vector<float>> vec2D(rowSizeA, vector<float>(colSizeA, 0)); //
```

```
Simplex simplex(vec2D, b, c); // Создание объекта класса Simplex
}import numpy as np # Импорт библиотеки numpy для работы с массивами
       self.A = np.array(matrix) # Преобразование матрицы А в массив
       self.B = np.array(b) # Преобразование вектора В в массив питру
       self.C = np.array(c) # Преобразование вектора С в массив numpy
       if self.checkOptimality(): # Проверка на оптимальность текущего
       pivotRow = self.findPivotRow(pivotColumn) # Нахождение опорной
       self.doPivoting(pivotRow, pivotColumn) # Выполнение операции
```

```
self.A[pivotRow] = rowNew # Обновление опорной строки
       self.B[pivotRow] /= pivotValue # Обновление значения вектора В
               self.B[i] -= pivotColVals[i] * self.B[pivotRow]
       self.C -= self.C[pivotColumn] * rowNew
       return np.argmin(self.C) # Возвращает индекс минимального элемента
pivotColumn], 0) # Выделение положительных значений столбца
        if np.all(positiveValues == 0): # Если все значения нулевые
       result = np.where(positiveValues > 0, self.B / positiveValues, 0)
       pivotRow = np.argmin(result[result > 0]) + 1 # Нахождение индекса
       return pivotRow
```

```
if result:
    end = True

print("\n>Вазисные переменные:")
for i, row in enumerate(self.A.T):
    if np.count_nonzero(row) == 1:
        index = np.argmax(row)
        print(f"x {index + 1}: {self.B[index]}")
    else:
        print(f"x {i + 1}: 0")

print("\n3начение целевой функции::", self.maximum)

# Определение матрицы A, векторов b и с
matrix_A = [[1, 5, -3, -4, 2, 1, 1, 0],
        [2, 9, -5, -7, 4, 2, 0, 1]]

vector_b = [14, 30]
vector_c = [-1, 3, -4, -5, 1, -8, 0, 0]

# Создание экземпляра класса Simplex и выполнение симплекс-метода simplex = Simplex(matrix_A, vector_b, vector_c)
simplex.calculateSimplex()
```

Результат работы программы:

```
Исходная матрица:
[1, 5, -3, -4, 2, 1, 1, 0]
[2, 9, -5, -7, 4, 2, 0, 1]

Полученная матрица с помощью метода искусственого метода:
[1, 1, 1, 0, 2, 1, -7, 4]
[0, -1, 1, 1, 0, 0, -2, 1]

Базисные переменные:

x4 = 2
x6 = 22

Значение целевой функции: 186
```

Вывод: в ходе выполнения лабораторной работы был изучен симплексметод для решения задачи линейного прораммирования с использованием симплекс-таблицы. Были получены навыки кодирования изученного алгоритма, отладки и тестирования соответсвующих программ. Ручной метод и программа выдает одинаковые ответы, из чего можно сделать вывод, что алгоритм решения правильный.