Ve216 Introduction to Signals and Systems: Summary March 12, 2018, 09:20 Yong Long, UM-SJTU Joint Institute (Based on Lecture Notes by Prof. Jeffrey A. Fessler)

Signals and Systems: Summary 1

- Circuits: $v(t) = Ri(t), v(t) = L\frac{\mathrm{d}}{\mathrm{d}t}i(t), i(t) = C\frac{\mathrm{d}}{\mathrm{d}t}v(t)$ Notation: $x(t) = \begin{cases} e^{-t}, & t > 2, \\ 0, & \text{otherwise} \end{cases} = e^{-t}u(t-2)$
- Time transformation:
 - $x\left(\frac{t-t_0}{w}\right)$. First scale according to w, then shift according to t_0 . x(at-b). First time-delay by b, then time-scale by a

- Integrator system $y(t) = \int_{-\infty}^t x(\tau) d\tau = x(t) * u(t)$ Even symmetry: x(-t) = x(t), Odd symmetry: x(-t) = -x(t)• Ev $\{x(t)\} = \frac{1}{2}(x(t) + x(-t))$, Od $\{x(t)\} = \frac{1}{2}(x(t) x(-t))$, $x(t) = \text{Ev }\{x(t)\} + \text{Od }\{x(t)\}$.
- Average value: $A \stackrel{\triangle}{=} \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) dt$
- Energy: $E \stackrel{\triangle}{=} \int_{-\infty}^{\infty} |x(t)|^2 dt$
- Average power: $P \stackrel{\triangle}{=} \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$ Energy signal: $E < \infty, P = 0$. Power signal: $E = \infty, 0 < P < \infty$. Power of periodic signal: $P = \frac{1}{T_0} \int_0^{T_0} |x(t)|^2 dt$

- Step function: u(t) = 1 for t > 0.
- Rect function: rect(t) = 1 for -1/2 < t < 1/2, rect(t) = u(t+1/2) u(t-1/2) = u(t+1/2)u(1/2-t)
- Impulse functions
 - Sifting property: $\int_{-\infty}^{\infty} x(t)\delta(t-t_0)\,dt = x(t_0)$ if x(t) is continuous at t_0
 - Sampling property: $x(t)\delta(t-t_0)=x(t_0)\delta(t-t_0)$ if x(t) is continuous at t_0 unit area property: $\int_{-\infty}^{\infty}\delta(t-t_0)\,dt=1$ for any t_0 scaling property: $\delta(at+b)=\frac{1}{|a|}\delta(t+b/a)$ for $a\neq 0$.

 - symmetry property: $\delta(t) = \delta(-t)$
 - support property: $\delta(t-t_0)=0$ for $t\neq t_0$
 - \bullet relationships with unit step function: $\delta(t)=\frac{\mathrm{d}}{\mathrm{d}t}u(t),\,u(t)=\int_{-\infty}^t\delta(\tau)\,d\tau$

Continuous-time system properties

- Stability (BIBO): all bounded input signals produce bounded output signals
- Invertibility: each output signal is the response to only one input signal
- Causal: output signal value y(t) at any time t depends only on present and past input signal values.
- Static (memoryless): output at any time only depends on input signal at the same time. (otherwise dynamic)
- Time invariant:

- $x(t) \xrightarrow{\mathcal{T}} y(t)$ implies that $x(t-t_0) \xrightarrow{\mathcal{T}} y(t-t_0)$
- Recipe for showing time-invariance.
 - Determine output signal y(t) due to a generic input signal x(t).
 - Determine the delayed output signal $y(t-t_0)$, by replacing t with $t-t_0$ in y(t) expression.
 - Determine output signal $y_d(t)$ due to a delayed input signal $x_d(t) = x(t t_0)$.
 - If $y_d(t) = y(t t_0)$, then system is time-invariant.
- Linear systems:

 - superposition property: $\mathcal{T}[\sum_k a_k x_k(t)] = \sum_k a_k \mathcal{T}[x_k(t)]$ additivity property: $\mathcal{T}[x_1(t) + x_2(t)] = \mathcal{T}[x_1(t)] + \mathcal{T}[x_2(t)]$
 - scaling property: $\mathcal{T}[ax(t)] = a\mathcal{T}[x(t)]$

LTI systems

input-output relationship described by convolution integral:

$$y(t) = \int_{-\infty}^{\infty} x(t-\tau)h(\tau) d\tau = \int_{-\infty}^{\infty} h(t-\tau)x(\tau) d\tau$$

Properties:

- Commutative property: x(t) * h(t) = h(t) * x(t)
- Associative property: $[x(t) * h_1(t)] * h_2(t) = x(t) * [h_1(t) * h_2(t)]$
- Distributive property: $x(t) * [h_1(t) + h_2(t)] = [x(t) * h_1(t)] + [x(t) * h_2(t)]$
- The order of serial connection of LTI systems does not affect the overall impulse response.
- $\bullet \ x(t) * \delta(t) = x(t)$
- Delay property: $x(t) * \delta(t t_0) = x(t t_0)$
- $\delta(t-t_0) * \delta(t-t_1) = \delta(t-t_0-t_1)$
- Time-invariance: If y(t) = x(t) * h(t), then $x(t t_0) * h(t t_1) = y(t t_0 t_1)$

LTI system properties

- causal: h(t) = 0 for all t < 0

- static: $h(t) = k\delta(t)$, otherwise dynamic stable: $\int_{-\infty}^{\infty} |h(t)| dt < \infty$ invertible: $h(t) * h_i(t) = \delta(t)$ for some $h_i(t)$ If h(t) * x(t) = 0 for some nonzero signal x(t), then not invertible
- \bullet step response: $h(t) = \frac{\mathrm{d}}{\mathrm{d}t} s(t),$ where $u(t) \stackrel{\mathrm{LTI}}{\longrightarrow} s(t)$

Linear, constant coefficient, differential equation systems

- LTI and causal if initially at rest
- dynamic unless N = M = 0
- homogenous solution, natural response: $y_h(t) = \sum_l C_l e^{s_l t}$, where s_l 's are the N roots of the characteristic polynomial $\sum_{k=0}^N a_k s^k = 0$.

 • particular solution, forced response: $y_p(t) = P_0 x(t) + P_1 \frac{\mathrm{d}}{\mathrm{d}t} x(t) + \cdots$

Topics covered in Lecture 1-7

Chap. 1

- signal classes
- signal notation
- * time transformations
- amplitude transformations
- signal operations
- integrator system (running integral operation)
- * even/odd signals
- * energy and power signals
- periodicity
- * unit step / rect signals
- * unit impulse function
- * impulse function properties (sifting, sampling)
- CT systems
- block diagrams
- system classes
- * amplitude properties: linearity, stability, invertibility
- * time properties: causality, memory, time-invariance

Chap. 2

- impulse response h(t)
- convolution for CT LTI systems
- * graphical convolution
- * properties of convolution and LTI systems
- impulse response vs step response
- * properties of convolution and impulse response
- LTI system properties characterized by h(t) (causality, memory, stability, invertibility)
- diffeq systems
- solutions of diffeq

The items with a * are virtually guaranteed to be on the exam.

Tips for Exam Preparation

- Review quizzes. Some quiz problems are selected from previous exams. Make sure that you completely understand the answers to all problems on previous quizzes.
- **Study lecture slides.** Read through lecture slides and the summary notes carefully. Make sure that you fully understand all the lecture materials.
- Study homework solutions. Review your HW sets and the posted solutions on SAKAI.
- Attend exam recitation classes. TAs will posted times on SAKAI.