

Probeklausur - 5.4.19

1 Induktion (5 Punkte)

Man zeige mit vollstängider Induktion für alle $n \in \mathbb{N}$:

$$\sum_{k=0}^{n} k \cdot k! = (n+1)! - 1$$

wobei $n! = \prod_{l=1}^{n} l$ die Fakultät für $n \in \mathbb{N}$ definiert.

2 Supremum und seine Freunde (4 Punkte)

- (a) Geben Sie eine Menge mit ihrem endlichem Supremum und Infimum an, die weder Minimum noch Maximum hat.
- (b) Hat die Menge $\{\sin(k/n)|k,n\in\mathbb{N}\}$ ein Maximum? Was ist ihr Supremum? Begründen Sie.
- (c) Geben Sie den maximalen Definitionsbereich D sowie den zugehörigen Wertebereich W der Funktion $\arctan(x/2)/2$ an (ohne Begründung).

3 Komplexe Zahlen (4 Punkte)

Bestimmen Sie $r \in [0, \infty), \phi \in [0, 2\pi)$ sodass gilt:

- (a) $\frac{1-i}{1+i} = re^{i\phi}$
- (b) $(i + re^{i\phi}) = -2i$

Zeige: $|z + w|^2 + |z - w|^2 = 2(|z|^2 + |w|^2)$

4 Folgen und Konvergenz (7 Punkte)

Sei $(a_n)_{n\in\mathbb{N}_0}$ eine Folge. Die Teilfolgen $(b_n)_{n\in\mathbb{N}_0}$ und $(c_n)_{n\in\mathbb{N}_0}$ seien durch $b_n:=a_{2n}$ und $c_n:=a_{2n+1}$ definiert.

- (a) Zeigen Sie: Konvergieren $(b_n)_{n\in\mathbb{N}_0}$ und $(c_n)_{n\in\mathbb{N}_0}$ beide gegen a, so konvergiert auch $(a_n)_{n\in\mathbb{N}_0}$ gegen a. Tipp: Benutzen Sie das ϵ -Kriterium und betrachten Sie zuerst die beiden Folgen $(b_n)_{n\in\mathbb{N}_0}$ und $(c_n)_{n\in\mathbb{N}_0}$.
- (b) Geben Sie ein Beispiel einer Folge $(a_n)_{n\in\mathbb{N}_0}$ an, sodass die beiden Teilfolgen $(b_n)_{n\in\mathbb{N}_0}$ und $(c_n)_{n\in\mathbb{N}_0}$ konvergieren, die Folge $(a_n)_{n\in\mathbb{N}_0}$ aber nicht.
- (c) Berechnen Sie den Grenzwert:

$$\lim_{n\to\infty}\frac{\sqrt{9n^2+4n-3}+6n-4}{n+3}$$

5 Reihen (5 Punkte)

Die Fibonaccifolge ist definiert durch $a_1 = a_2 = 1$ und $a_{n+1} = a_n + a_{n-1}$ für n > 2. Entscheiden Sie begründet, ob folgende Reihen konvergieren:

(a)
$$\sum_{n=1}^{\infty} a_n (-1)^n$$

(b)
$$\sum_{n=1}^{\infty} (-1)^n / a_n$$

Berechnen Sie: $\sum_{n=0}^{\infty} n \cdot (1/2)^n$ (Hinweis: Cauchy-Produkt)

6 Taylorreihen und Taylorpolynome (8 Punkte)

Entwickeln Sie die Funktion $f(x) = \frac{x}{1+x}$ bis zur zweiten Ordnung um x = 3.

Zeigen Sie, dass die Koeffizienten der Taylorreihe $\sum_{n=0}^{\infty} a_n x^n = \frac{1}{1-e^{x-1}}$ durch die Formel $a_n = \sum_{k=0}^{\infty} \frac{k^n}{e^k n!}$ gegeben sind. Geben Sie den Konvergenzradius r der Reihe an.

7 Ableitungen (4 Punkte)

- (a) Leiten Sie die Funktion $f(x) = \sin(\cos(x))$ zwei mal ab.
- (b) Berechnen Sie: $\lim_{x\to 0} \frac{\sqrt{4-x}-\sqrt{4+x}}{x}$

8 Integration (6 Punkte)

- (a) Bestimmen Sie die Stammfunktion von $x \cdot e^{\alpha x}$
- (b) Für welche $\alpha \in \mathbb{R}$ konvergiert das Integral: $I_1 := \int_0^\infty x \cdot e^{\alpha x} dx$?
- (c) Sei nun $\alpha < 0$. Bestimmen Sie den Wert des Integrals:

$$I_n := \int_0^\infty x^n \cdot e^{\alpha x} \mathrm{d}x$$

Tipp: n-fache partielle Integration.

9 Fourier-Reihen (7 Punkte)

Gegeben sei die 2π periodische Funktion f mit

$$f(x) = \pi - |x|$$
 für $-\pi \le x \le \pi$

- (a) Man berechne die Fouriersinuskoeffizienten und Fourierkosinuskoeffizienten der zu f(x) zugehörigen Fourierreihe $F_f(x)$.
- (b) Bestimme mit Hilfe von Teilaufgabe (a) den Wert der unendlichen Reihe:

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots$$