Chapitre 4:

Les supports de transmission de l'information

L'information dans un réseau peut circuler grâce à 3 agents de communication :

- les électrons qui permettent le transport d'informations de type électrique
- les photons qui permettent le transport d'information sous forme de lumière
- les ondes électromagnétiques.

Les supports physiques de ces 3 agents de communication sont :

Agent de communication	Electrons	Photons	Ondes électromagnétiques
Support	Câbles coaxiaux Câbles à paires torsadées	Fibres optiques	/
Type de support	Supports à guide physique		Support sans guide physique
Avantage		Liaison à haut débit, sur de longues distances	Liaison sans fil

Tableau 1 - Agents de communication de l'information et leurs supports

Notez qu'on peut mélanger les différents supports dans un même réseau.

1. Les câbles

Un des supports de communication le plus utilisé est le câble. Il s'agit d'une liaison physique entre nœuds du réseau. Il en existe différentes sortes :

- Les câbles en Cuivre permettant le transport d'un signal électrique
- La fibre optique permettant le transport de la lumière

a. Les câbles à paires torsadées

Il s'agit du type de câble le plus répandu dans le domaine des réseaux locaux. Il relie généralement un ordinateur à un routeur (également appelé « box »). La distance maximale de ce type de câble est de 100m. Au-delà, l'atténuation du signal est trop importante.

Figure 15 - Câble à paires torsadées [3]

Ils sont composés de 4 paires de fils conducteurs en cuivre torsadées par paires et torsadées entre elles pour limiter les perturbations électromagnétiques (**diaphonie**). C'est le cas des câbles terminés par des connecteurs RJ45³ (appelés par abus de langage câbles RJ45 ou câbles Ethernet):

Figure 16 - Câble à paires torsadées et connecteurs RJ45

Ces câbles se déclinent en plusieurs catégories :

Catégorie	Nombre de paires	Remarques	Connecteurs
CAT1	1 paire torsadée	1 Mbps Utilisé en téléphonie Abandonné à l'heure actuelle	Connecteurs RJ11
CAT3	4 paires torsadées	Débit faible de 10Mbps En cours d'abandon	
CAT5	4 paires torsadées	Téléphonie et réseau 100Mbps	
CAT5E	4 paires torsadées	Téléphonie et réseau 1Gbps non certifié	Connecteurs RJ45
CAT6	4 paires torsadées	Téléphonie et réseau 1 Gbps certifié	
CAT6A	CAT6A 4 paires torsadées		
CAT7	4 paires torsadées	10Gbps certifié	Connecteurs différents

Tableau 2 - Catégories de câbles torsadés

La catégorie 7 pose de gros problèmes car pour faire basculer un système sur ce type de câble, il faudrait changer tous les connecteurs (cartes réseaux, connecteurs muraux, ...). Il n'est pas souvent utilisé en informatique, on lui préfère un passage à la fibre optique.

³RJ-45 est le terme courant qu'on emploie pour désigner les connecteurs d'un câblage torsadé. Le nom complet de ces connecteurs est 8P8C; le terme RJ-45 vient d'un connecteur utilisé autrefois dans les télécommunications et qui lui ressemblait beaucoup. Aujourd'hui, quand on dit RJ-45, tout le monde comprend 8P8C, mais vous pourriez rencontrer l'appellation connecteur 8P8C.

En plus des catégories, les câbles à paires torsadées présentent différentes qualités de blindage :

Type de blindage	Signification	Explication pour CAT5	Remarques
UTP	Unshielded Twisted Pairs	Non blindé	Le moins coûteux
FTP	Foilded Twisted Pairs	Blindage avec une feuille d'alu	Ce blindage permet de protéger sommairement des interférences extérieures
SFTP	Shielded Foilded Twisted Pairs	Blindage avec une feuille d'alu et une tresse en cuivre	
STP	Shielded Twisted Pairs	Blindage avec une feuille d'alu par paire de câbles	
FFTP/SSTP	Foilded Foilded Twisted Pairs/Shielded Shielded Twisted Pairs	Blindage avec une feuille d'alu par paire de câbles et blindage du câble par une tresse en cuivre	Câble plus rigide donc à réserver aux connections permanentes Idéal pour passer près de systèmes perturbateurs (ascenseur, climatisation,)

Tableau 3 - Table des blindages des câbles torsadés

Figure 17 - Représentation des différents types de blindage [5]

Figure 18 - Exemple de câble SSTP [6]

La catégorie et le type de blindage sont inscrits directement sur le câble :

Figure 19 - Câble torsadé et les indications de sa catégorie et de son type de blindage

Ces câbles torsadés peuvent être croisés ou droits. Ce sont deux types de câbles distincts :

- le **câble droit** permet de relier ensemble 2 éléments différents (1 ordinateur à un hub(Concentrateur) ou à un switch (Commutateur réseau)). C'est donc le câble que vous utilisez pour connecter votre ordinateur à votre routeur ou box. Ces câbles droits ont 2 extrémités de type 568B.
- le **câble croisé** sert à relier directement 2 appareils identiques. Il sert donc à relier soit 2 switchs ensemble, ou encore 2 ordinateurs ensemble par exemple. Ces câbles ont été mis au point pour éviter les collisions : l'appareil 1 émet sur certains brins du câble, et l'appareil 2 émet sur les autres. Un câble croisé a une extrémité de type 568A et l'autre de type 568B.

Figure 20 - Brochages 568A et 568B [5]

A l'heure actuelle, la plupart des cartes réseaux et switchs s'adaptent automatiquement au type de câble branché. Ils croisent ou décroisent le câble automatiquement, on peut très bien maintenant relier 2 ordinateurs ensemble avec un câble droit.

Les avantages et inconvénients de ces types de câbles sont les suivants :

Avantages	Inconvénients
L'encombrement de ces câbles est plus faible que d'autres types (câbles coaxiaux)	Distances faibles (100m pour un réseau Ethernet)
Prix de revient faible	
Débits obtenus sur des réseaux locaux élevés (jusqu'à 10Gbps)	

Tableau 4 - Avantages et inconvénients des câbles torsadés [6]

Enfin, ces câbles sont appelés 10BT, ou 100BT ou 1000BT (selon le débit utilisé de 10 Mbps, 100 Mbps, 1000 Mbps) le T étant là pour « torsadé », ou twisted en anglais. On ajoute parfois un x derrière, pour dire que le réseau est commuté (voir plus loin).

b. Les câbles coaxiaux

Un câble coaxial est constitué de 2 conducteurs. Le premier est un conducteur creux et le second, appelé l'âme, est placé à l'intérieur du premier et isolé de celui-ci par un isolant. C'est sur l'âme que le signal est transporté. Cette structure en couches permet une bonne protection contre les bruits électromagnétiques.

Figure 21 - Câble coxial [3]

Avantages	Inconvénients
Très bonne protection contre les bruits électromagnétiques	Cette technique ne peut être intégrée dans des réseaux haut débit à cause de la faible bande passante de ces câbles

Le rapport entre les 2 diamètres des 2 conducteurs doit être de 3,6 ce qui permet d'envisager des géométries différentes :

• Le câble coaxial RG58

Egalement appelé câble 10 base 2 (10B2 : 10 pour le débit en Mbps, 2 pour la taille maximale du réseau en centaines de mètres) ou encore coaxial fin, thin ethernet ou encore cheapernet, il est à présent remplacé par du câble à paires torsadées. Sa connection est réalisée à l'aide de connecteurs de type BNC et T-BNC. Sa topologie physique est en bus et chaque extrémité du câble est terminée par un bouchon terminateur (résistance de 50Ω). Chaque segment de câble ne doit pas dépasser 180m et le débit dans ce type de câble ne dépasse pas 10Mbps. De plus, la topologie en bus implique la rupture du réseau en cas de section du câble. Ils sont donc de moins en moins utilisé pour les réseaux.

Tableau 5 - Connecteurs BNC mâle et femelle et connecteur BNC en T [7]

• Le câble coaxial RG11

Egalement appelé câble 10 base 5 (10B5 : 10Mbps 500m de taille maximale) ou encore gros coaxial, thick Ethernet où câble jaune. Sa topologie physique est en bus. Le diamètre et la rigidité de ce câble, avec en plus sa particularité de provoquer la rupture du réseau s'il est rompu ont fait qu'il n'est plus utilisé actuellement.

Le connecteur utilisé était de type vampire car il vient littéralement percer les couches du câble pour aller chercher l'information sur l'âme du câble. La topologie en bus implique la particularité de provoquer la rupture du réseau s'il est rompu ce qui a accéléré son abandon.

Type vampire

Figure 23 Illustration d'une connexion vampire

Figure 22 - Photo d'un connecteur vampire [23]

 Le câble coaxial large bande
 C'est le câble utilisé pour la transmission des chaines de télévision par câble, sa largeur de bande permettant la transmission d'images. Son débit peut atteindre quelques centaines de Mbps.

c. Les fibres optiques

Une **fibre optique** est composée de 2 matériaux transparents (Silicium ou plastique) différents entourés d'une protection opaque. Elle comprend un cœur dans lequel se propage la lumière. Lorsque celle-ci rencontre l'interface cœur/gaine, elle donne naissance à un faisceau réfléchi et un faisceau réfracté en fonction des lois de Descartes⁴. Le Silicum constituant les fibres en verre est dopé afin de modifier ses propriétés (notamment sa souplesse). Les fibres en plastique sont réservées aux liaisons à très courte distance (quelques cm).

Figure 24 - Fibre optique [8]

On choisit des matériaux tels que l'indice de réfraction du cœur soit supérieur à celui de la gaine ce qui entraine une réflexion totale dans le cœur. On a ainsi conçu un guide de lumière dans lequel la lumière circule

 $^{^4\}Theta_2$ =- Θ_1 (Θ_2 est l'angle de réflexion et Θ_1 l'angle d'incidence) et n_1 .sin Θ_1 = n_2 .sin Θ_2 (n_1 est l'indice de réfraction du milieu dans lequel se propage le rayon incident, n_2 est l'indice de réfraction du milieu dans lequel se propage le rayon réfracté, Θ_1 est l'angle d'incidence et Θ_2 l'angle de réfraction)

sans jamais en sortir (sauf à l'autre bout de la fibre !). On envoie de la lumière dans le fil, et elle ressort quelques mètres/kilomètres plus loin.

Cette fois, on ne transporte plus l'information avec de l'électricité mais avec des signaux lumineux. En gros, pour représenter les 2 états propres au binaire, une impulsion lumineuse représentera l'information binaire 1 et l'absence de lumière représentera l'information binaire 0.

Cette fibre est communément appelée 1000BF. 1000B indiquant qu'il s'agit de Gigabit et F pour fibre.

Etant donné que les fibres optiques transportent de la lumière, elles sont peu sensibles aux perturbations électromagnétiques et le signal est peu atténué d'un bout à l'autre de la fibre. On va donc utiliser ce type de câble pour transporter des informations sur des longues distances (de plusieurs kilomètres). De plus ; les fibres optiques permettent des débits supérieurs à 100Mbps pouvant aller jusqu'à plusieurs centaines de Gbps.

Avantages	Inconvénients
Peu sensibles aux perturbations électromagnétiques donc supportent sans difficulté la proximité d'émetteurs radioélectriques	Les équipements en bout de ligne convertisseurs optiques) ont un coût très élevé ce qui limite la généralisation des fibres optiques dans le cadre des réseaux locaux d'entreprise.
Faible atténuation du signal sur de longues distances (espacement plus important entre 2 régénérations des signaux transmis ⁵)	
Débit permis plus élevé que pour des câbles en Cu	
Faible encombrement (diamètre extérieur 0,1mm) et faible poids (quelques grammes au kilomètre) ce qui permet un conditionnement en câble contenant plusieurs centaines de fibres	
La bande passante très large allant jusqu'au THz (qui permet le multiplexage sur un même support de très nombreux canaux de TV, hi-fi,téléphone,)	

⁵ Les meilleures fibres optiques présentent une atténuation si faible qu'elles permettent d'envisager des pas de régénération de plus de 500 km à comparer à la distance entre 2 générations de 2km pour le câble coaxial qui reliait Lyon à Paris.

Plus fiable niveau sécurité car la lecture sur fibre optique est particulièrement difficile

Tableau 6 - Avantages et inconvénients des fibres optiques

Il existe aujourd'hui trois types de fibre qui ne présentent pas des performances identiques au niveau du débit et de la distance parcourue. Ceci est dû aux phénomènes de réflexion dans la fibre qui diffèrent en fonction de la longueur d'onde :

- la fibre multimode à saut d'indice qui fait passer toutes les longueurs d'onde et fonctionne donc avec un émetteur de lumière blanche. Dans ce type de fibre, l'indice de réfraction du cœur est constant, la réflexion se produit donc à l'interface cœur-gaine et la lumière circule en formant des lignes droites brisées (voir Figure 25 Profil d'indice de réfraction et trajectoire de la lumière pour une fibre à saut d'indice, une fibre à gradient d'indice et une fibre monomode).
- la fibre multimode à gradient d'indice qui utilise toujours de la lumière blanche mais ici, l'indice de réfraction du cœur n'est pas constant. Il est maximal au cœur de la fibre et diminue progressivement jusqu'à la gaine. Cette conception permet d'avoir une lumière qui n'est plus réfléchie à l'interface cœur-gaine mais qui est plutôt courbée progressivement lorsqu'elle s'en approche (voir Figure 25 Profil d'indice de réfraction et trajectoire de la lumière pour une fibre à saut d'indice, une fibre à gradient d'indice et une fibre monomode)
- la fibre **monomode** : qui n'est capable de faire passer qu'une seule longueur d'onde lumineuse (donc une seule couleur). Elle fonctionne donc avec un émetteur de lumière laser.

Figure 25 - Profil d'indice de réfraction et trajectoire de la lumière pour une fibre à saut d'indice, une fibre à gradient d'indice et une fibre monomode [9]

SYSTEMES ET RESEAUX | Maître-assistant : Isabelle Boulogne

Dans les fibres multimodes, principalement celle à saut d'indice, les différentes longueurs d'onde de la lumière blanche vont se réfléchir légèrement différemment et au bout de la fibre, ces lumières de longueur d'onde différentes n'arriveront pas parfaitement ensemble. Cela limite donc la distance pouvant être parcourue. On a par exemple des ordres de grandeur de 2km de distance possible pour la fibre multimode et 60km pour la fibre monomode.

La fibre monomode est à la base des liaisons réseau sous-marines, notamment entre les Etats-Unis et l'Europe avec des fibres monomodes déposées au fond des rivières, mers et océans et des répétiteurs de signaux lumineux tous les 60km.

Les émetteurs de lumière sont :

- des diodes électroluminescentes. Il s'agit d'une source polychromatique donc moins performante mais également moins chère
- des lasers (source monochromatique, plus puissante, plus chère et à durée de vie plus courte)

La fibre optique est intensément utilisée

- chez les opérateurs internet qui ont besoin d'une large bande passante⁷
- dans les grandes sociétés pour ce qu'on appelle le backbone (colonne vertébrale du réseau) car c'est
 lui qui doit être le plus performant
- dans certaines entreprises où se trouvent de gros moteurs créant de fortes perturbations électromagnétiques

On classe les fibres optiques en différentes catégories selon leurs performances :

- En multimode, elles sont classées par débit maximum ou par bande passante à 1km :
 - OM1 : la moins performante (1Gbps à 275m, 10Gbps à 33m ou 200MHz/km)
 - o OM2
 - OM3
 - OM4 : la plus performante (1Gbps à 1100m, 10Gbps à 500m ou 3,5GHz/km)
- En monomode, elles sont classées selon leur atténuation maximum :
 - OS1:1,0dB/km pour OS18

⁶Des records de l'ordre de 8000km ont néanmoins été atteints!

⁷Bande de fréquence dans laquelle les signaux sont transmis « convenablement »

⁸ À1310 et 1550nm

OS2: 0,4dB/km pour OS29

Le tableau suivant reprend, en fonction du type de fibre sélectionné, la distance couverte, en mètres, par les différentes applications de réseau Ethernet :

				Type de fibre		
Type de réseau Ethernet	Caractéristiques	62.5/125 μm (200/500)	62.5/125 μm 50/125 μm (500/500)	50/125 μm (500/800) (500/1200)	50/125 μm (1500/500)	Fibre monomode
		OM1	OM2	Supérieur OM2	OM3	OS1
10 Base FL	10 Mbit/s 850 nm	3 000 m	3 000 m	3 000 m	3 000 m	N.A
100 Base FX	100 Mbit/s 1300nm	5 000 m	5 000 m	5 000 m	5 000 m	N.A
1000 Base SX	1 Gbit/s 850 nm	275 m	550 m	550 m	550 m	N.A
1000 Base LX	1 Gbit/s 1300 nm	550 m	550 m	> à 550 m	550 m	5 000 m
10 Gbase S	10 Git/s850 nm	33 m	82 m	82 m	300 m	N.A
10 Gbase L	10 Gbit/s 1300 nm	N.A	N.A	N.A	N.A	10 000 m
10 Gbase LX4	10 Gbit/s - 4 λ 1300 nm	300 m	300 m	> à 300 m	300 m	10 000 m
10 Gbase E	10 Gbit/s 1550 nm	N.A	N.A	N.A	N.A	40 000 m

Tableau 7 - Tableau reprenant les distances pouvant être couvertes par les différents types de fibres

d. Remarques

- Un support n'est jamais parfait, nous l'avons vu dans les avantages et inconvénients de chaque technique. Il faut néanmoins choisis consciencieusement la technique la plus adaptée à notre cas de figure et s'adapter aux inconvénients inhérents à cette technique.
- Au fil de la transmission, un signal circulant sur support peut être :
 - Atténué
 - o Déformé
 - Parasité

La figure suivante illustra la différence entre ces 3 déformations du signal :

⁹ À 1310 et 1550nm

Figure 26 Illustration des 3 types de déformation du signal

e. Exercices

Combien de paires torsadées contient le câble ci-dessous ?
 Quel débit peut-il soutenir ?
 Comment est blindé ce type de câble ?
 S'agit-il d'un câble croisé ou droit ?

- 2. Quel est le temps de transmission de 1Kb sur un réseau dont le débit est : 10 Mb/s, 100 Mb/s ou 1Gb/s ?
- 3. Comment se dénomme un câble à paires torsadées permettant d'atteindre un débit de 100Mbps et utilisé dans un mode de transmission à bande de base ?
- 4. Un coursier parisien doit transporter un paquet de dix disquettes d'une société A à une société B distante de 20 kms. Chaque disquette contient 1,4 Mo. L'homme se déplace en scooter à travers la ville avec une vitesse moyenne estimée à 30 km/h. Sur cette distance, utiliser un coursier n'est-il pas une solution obsolète par rapport à l'utilisation d'une ligne téléphonique dont la vitesse de transmission est de 56Kbit/s?

Même question en remplaçant les dix disquettes par un CD-ROM dont la capacité est de 700Mo. Que peut-on retenir de cette petite anecdote ?

- 5. Qu'est-ce qu'un câble 100BTx ?
- 6. Les câbles dont voici les embouts sont-il droits ou croisés ?

7. Même question avec le câble qui circule en classe

2. Les supports sans fils

Il existe également des supports non physiques qui permettent la transmission d'informations. Les réseaux utilisant de tels câblages sont appelés réseaux sans fils.

Les ondes électromagnétiques se déplaçant dans l'air, le vide, ... et permettant la transmission de signaux, ont permis la mise en place de telles connexions.

La création des réseaux sans fils a des intérêts divers :

- Faciliter l'accès au réseau de personnes itinérantes
- Connecter des locaux impossibles ou trop coûteux à câbler (monuments historiques, ...)
- Offrir de nouveau services (hotspots, ...)
- Réaliser un réseau en un temps très court (salon, exposition, ...)

Le sans-fil ne remplacera pas les réseaux filaires dans leur entièreté : il est par exemple impossible de connecter 2 serveurs entre eux avec un réseau sans fil.

Quel que soit le type de support sans fil utilisé (Bluetooth, Infra-rouges, ondes radio, ...), la technique est globalement la même : elle nécessite une antenne émettrice (émetteur) et une antenne de réception (réception). La liaison entre l'émetteur et le récepteur s'effectue sans support physique.

Une antenne est un élément rayonnant (un conducteur) dont la longueur est un sous-multiple de la longueur d'onde. Ces antennes peuvent être omnidirectionnelles (source ponctuelle, dipôle) ou directionnelles (parabole, yagi,...).

Figure 27 - Schéma d'un système d'émission d'ondes électromagnétiques [3]

Le débit des techniques de transmission sans-fil dépendent de la distance entre l'émetteur et le récepteur : plus on est loin de l'antenne, plus le débit et faible.

On utilise différents types d'ondes électromagnétiques dans les réseaux sans fils :

- Les infra-rouges dans les réseaux IR
- Les ondes radio dans le bluetooth
- Les micro-ondes dans le Wifi

Figure 28 -Spectre des ondes électro-magnétiques

a. Utilisation des infra-rouges

Ce type d'onde ne traverse pas les parois. Elle est prévue pour des liaisons sans fil à très courte distance (maximum 1,5m), par exemple entre 2 éléments portables d'un LAN (connection entre un Smartphone et un PC portable). Le débit est relativement faible. Cette méthode de connexion sans fil est à présent supplantée par le Bluetooth. Il existe néanmoins encore à l'heure actuelle des souris, claviers sans fils qui utilisent l'infra-rouge.

b. Le Bluetooth

Le Bluetooth est une technique qui utilise l'espace hertzien, pour diffuser des ondes radio entre équipements électroniques. Le réseau formé des entités en communication par Bluetooth est appelé **piconet**. Piconet vient de pico-network. On traduira cela par pico-réseau en français. Dans un picoréseau, les appareils utilisent la relation « maître-esclave » : le maître donne des ordres, l'esclave obéit.

Quand plusieurs picoréseaux sont reliés, les esclaves peuvent avoir plusieurs maîtres, on parle alors de scatternet ou inter-réseau (ou encore « réseau dispersé »).

En Bluetooth, un esclave ne peut communiquer qu'avec son ou ses maître(s). Il ne peut pas communiquer avec d'autres esclaves ou maîtres. Inversement, un maître ne peut communiquer qu'avec son ou ses esclave(s) (bien qu'un maître puisse être lui-même esclave d'un autre). D'ailleurs, un maître ne peut pas avoir plus de 7 esclaves.

Il existe 3 classes en Bluetooth : la classe 1, la 2 et la 3. Ce qui les différencie est juste la portée. Dans la classe 1, la portée peut aller jusqu'à 100 mètres, dans la catégorie 2, elle est d'une dizaine de mètres, et dans la classe 3, elle est de quelques mètres seulement (moins de 10). C'est cette 3ème classe qui est utilisée dans les téléphones portables.

c. Le Wi-Fi

Le Wi-Fi est le moyen de transmission de données sans fil le plus utilisé. Sa portée peut dépasser 200 mètres en espace ouvert et sa vitesse de débit théorique est de plus de 100 Mbps. Il est aujourd'hui très utilisé dans les réseaux personnels et locaux. "Wi-Fi" peut être considéré comme le nom commercial de la norme IEEE 802.11, norme qui régit cette technologie.

Cette norme 802.11 est en réalité la norme initiale publiée en 1997 qui offrait des débits de 1 ou 2 Mbit/s. Des révisions ont ensuite été apportées afin d'augmenter le débit (c'est le cas des normes 802.11a, 802.11b, 802.11g, 802.11n et 802.11ac, appelées normes 802.11 physiques) ou de spécifier des fonctions de sécurité ou d'interopérabilité. Le tableau suivant présente les principales révisions de la norme 802.11 et leur signification :

Norme	Nom	Description
802.11a	Wi-Fi 5	La norme 802.11a (baptisée Wi-Fi 5) permet d'obtenir un haut débit (dans un rayon d'environ 10 mètres : 54 Mbit/s théoriques,27 Mbit/s réels)
802.11b	Wi-Fi	La norme 802.11b était la norme Wi-Fi la plus répandue en base installée au début des années 2000. Elle propose un débit théorique crête de 11 Mbit/s (6 Mbit/s réels) avec une portée pouvant aller jusqu'à 300 mètres (en théorie) dans un environnement dégagé.
802.11e	Amélioration de la qualité de service	La norme 802.11e vise à donner des possibilités en matière de qualité de service de manière à permettre, notamment, une meilleure transmission de la voix et de la vidéo.

SYSTEMES ET RESEAUX | Maître-assistant : Isabelle Boulogne

802.11g		La norme 802.11g offre un plus haut débit (54 Mbit/s théoriques, 25 Mbit/s réels)
802.11i		La norme 802.11i a pour objectif d'améliorer la sécurité des transmissions
802.11n	WWiSE (World-Wide Spectrum Efficiency) ou TGn Sync	Le débit théorique atteint les 450 Mbit/s.
802.11ac	Amélioration du débit	IEEE 802.11 ac est la dernière évolution du standard de transmission sans fil 802.11, qui permet une connexion sans fil haut débit dans la bande de fréquence des 5 GHz). Le 802.11 ac offre jusqu'à 1 500 Mbit/s de débit théorique.

Tableau 8 - Principale révisions de la norme 802.11 et leurs significations [10]

Notez que les débits annoncés sont toujours théoriques car dans la réalité, on peut diviser par 2 à cause des obstacles sur le chemin de l'onde (mur, ...).