

MULTI-STATE CHURN ANALYSIS

WITH A SUBSCRIPTION PRODUCT

GRADIENT

Nice to meet you!

WE'RE GRADIENT:

A crew of quantitative marketers and technologists that gather hard data and build robust statistical models to guide organizations through their most difficult decisions.

We're confirmed data geeks, but word on the street is that we're easy to work with and pretty fun, too.

GRADIENTMETRICS.COM

SURVIVAL ANALYSIS

DEFINITION & EXAMPLES

LET'S START TALKING

A branch of statistics for analyzing the **expected duration of time until** one or more **events** happen.

Examples

- 1. A death of the patient.
- 2. A deactivation of the service.
- 3. An accident on the road.
- 4. The device failure.
- 5. An employee leaving the company.
- 6. A customer cancelling subscription.

SURVIVAL ANALYSIS

QUESTIONS IT (MIGHT) ANSWER

LET'S START ASKING

What's the probability an event will (not) occur after a specific period of time?

Which characteristics indicate a reduced or increased risk of occurrence of an event?

What periods of time are most (or least) exposed to the risk of an event?

SURVIVAL ANALYSIS

CHALLENGES IT FACES

DEPENDING ON THE SCENARIO

Data

- 1. Censoring.
- 2. Interval data.
- 3. Observations may not be independent.
- 4. Time varying features.

Events

- 1. Recurring events one event might occur multiple times.
- 2. Competing risks one of multiple events might occur.
- 3. A multi-state (cyclic/acyclic) nature of the process.

HOW YOU OBSERVE EVENTS

DATA STRUCTURE

SIMPLE CASE

HEAD OF THE DATA

ID	Start Date	End Date	Status
1	2018-01-28	2018-02-22	Censoring
2	2017-12-16	2018-01-08	Event
3	2017-12-09	2018-01-06	Censoring
4	2018-01-16	2018-02-23	Censoring
5	2017-12-16	2018-02-11	Event
6	2018-02-18	2018-03-01	Event

Data **do not** correspond to the plot.

HOW YOU HANDLE THEM

DATA STRUCTURE

SIMPLE CASE

HEAD OF THE DATA

Status	Time		ID
Event	days	3	1
Censoring	days	33	2
Event	days	85	3
Event	days	16	4
Censoring	days	24	5
Censoring	days	22	6

Data **do** correspond to the plot.

TOOLS SURVIVAL CURVES

KAPLAN-MEIER ESTIMATES

$$\hat{S}(t) = \prod_{t_i \le t} \frac{n_i - d_i}{n_i}$$

where

 t_i - time of i-th event

 n_i - number of observations in a risk set at time t_i

 d_i - number of events at t_i

Log-rank test seeks for statistically significant differences between curves.

TOOLS RISK SET (TABLE)

SURVIVORS AT A TIME

Useful when considering whether results at a specific time point are significant due to the sample size.

DATA STRUCTURE

MULTI-STATE CASE

HEAD OF THE DATA

ID	Time 1	Event 1	Time 2	Event 2	Time 3	Event 3
1	22	1	995	0	995	0
2	29	1	12	1	422	1
3	1264	0	27	1	1264	0
4	50	1	42	1	84	1
5	22	1	1133	0	114	1
6	33	1	27	1	1427	0

Demonstrational data.

1 EVENT / COX PROPORTIONAL HAZARDS

COX METHODOLOGY OVERVIEW

1. Proportional hazards assumptions.

- 2. Functional form of continuous variables.
- 3. Independent observations.
- 4. Independent censoring from the mechanism that rules of event's times.
- 5. Non informative censoring
 does not give an
 information on parameters of
 the time distribution of
 events because it does not
 depend on them

NOTE

One can use accelerated failure time (AFT) models.

EXAMPLE COEFFICIENTS

variable	coef	exp(coef)
age	0.15	1.16
ecog.ps	0.10	1.11
rx	-0.81	0.44

coxph(Surv(futime, fustat) # age + ecog.ps + rx, data=ovarian)

DIAGNOSTIC PLOTS

Fig. 1: Shoenfeld residuals.

OVARIAN DATA

Fig. 2: Deviance residuals.

FUNCTIONS (survminer)

- 1. ggcoxzph
- 2. ggcoxdiagnostics
- 3. ggcoxfunctional

Fig. 3: Martingale residuals.

NEVENTS (ACYCLIC) MULTI-STATE MODEL

TRANSITION MATRIX

1 2 3 4 5

to

from

NA = transition not possible

numbers in cells

=

The most complicated part is the proper data coding for the model's input.

GRADIENT

NEVENTS (ACYCLIC) MULTI-STATE MODEL

SOME COEFFICIENTS

year=2013-2017	year=2008-2012	gender=female	discount=yes	age=20-40	age=>40	transition
0.94	0.80	-0.72	-0.26	-0.77	-1.15	1
0.31	0.39	-0.58	-0.15	-0.72	-1.34	2
-0.11	0.02	-0.53	0.08	-0.04	-0.43	3
0.23	0.13	-0.22	-0.09	-0.66	-0.86	4
-0.63	-0.54	-0.24	0.14	-0.64	0.14	5
1.33	0.88	-0.35	0.24	-1.23	-1.65	6
0.09	-0.35	-0.57	0.39	-0.57	-0.82	7

Reference level for

- age below 20
- year 2002-2007

NEVENTS (ACYCLIC) MULTI-STATE MODEL

PREDICTIONS OF THE STATE

Depending on the customer features, the predictions of being in a state after particular time are different.

Credits for modeling:

cran.r-project.org/package= mstate

Customer A

· Discount: Yes

· Gender: Female

Joined: 2013-2017

• Age: Younger than 20

Customer B

· Discount: No

Gender: Male

Joined: 2002-2007

Age: 20-40

Model assumptions should be considered for every possible transition.

Time varying variables can be taken into the account when handling subscription based data.

Playing with cyclic models requires domain knowledge in (sub) Markov Chain field.

Credits:
cran.r-project.org/package=survminer
github.com/kassambara/survminer
www.ggplot2-exts.org/gallery/
stdha.com/english/rpkgs/survminer

DID YOU LIKE THE TALK? JOIN US AT WHY R? 2020.

youtube.com/WhyRFoundation

24-27 SEPTEMBER WHYR.PL/2020/

THANK YOU FOR THE ATTENTION

github.com/g6t/mchurn