디지털논리회로 (Digital Logic Circuit)

- Chapter 3

조합회로 시스템 설계 과정

1 단계: 각 입력과 출력을 2진으로 표현하라.

1.5 단계: 필요하면, 문제를 더 작은 부(sub) 문제로 나누어라.

2 단계: 설계 사양을 **진리표 혹은 대수 식**으로 형식화(formalize)해라.

3 단계: 서술을 **간단히** 하라.

4 단계: 설계 목표와 제약에 근거하여,

사용 가능한 부품으로 시스템을 구현한다.

Chapter 3 Karnaugh Map (K-Map)

- < 이 장의 핵심 >
- 3.1 K-map 소개
- 3.2 K-map 을 사용한 최소 SOP (Sum of Product) 표현
- 3.3 Don't care

< 응용 >

- 3.4 POS (Product of Sum)
- 3.5 5변수, 6변수를 위한 맵
- 3.6 다중 출력 문제

Chapter 3 Karnaugh Map (K-Map)

3.1 K-map 소개

- 3.2 K-map 을 사용한 최소 SOP (Sum of Product) 표현
- 3.3 Don't care
- 3.4 POS (Product of Sum)
- 3.5 5변수, 6변수를 위한 맵
- 3.6 다중 출력 문제

어려운 간소화 문제.. K-map?

- ◈ 어디서부터 어떻게 시작할지 모르겠는데..
 - → 시행착오와 경험
- ◈ 어떤 식을 어떤 순서로 사용해야 하는 거지?
 - → 알고리즘 같은 것 없음.. 이것 저것 시도해 보기

K-map: 그래픽적 방법 제공, 6변수 이하까지는 무난히~

- ◆ 간소화가 됐는지 안됐는지, 더 해야 하는지 그만둬도 되는지 어떻게 할 수 있지?
 - → 사실은 잘 모른다.

K-map: 100% 보장은 어렵지만 대부분의 경우 minimization 달성이 용이!

K-map 어떻게 생겼나 – two variables

함수로부터 K-map 그리기

$$f(a, b) = \sum m(0, 3)$$

$$g(A, B) = \sum m(0, 3) + \sum d(2)$$

K-map 어떻게 생겼나 – three variables

CAE	3 A' B' 00	A' B 01	<i>A B</i> 11	<i>A B'</i> 10
C' 0	A' B' C'	A' B C'	ABC'	AB' C'
C 1	A' B' C	A' B C	ABC	AB'C

AE	00	01	11	10
<i>C</i> 0	0	2	6	4
1	1	3	7	5
'				

P9a. ab + ab' = a 를 위해서..

$$m_0+m_1$$
: A'B'C' + A'B'C = A'B'
 m_4+m_6 : AB'C' + ABC' = AC'
 m_7+m_5 : ABC + AB'C = AC
 m_0+m_4 : A'B'C' + AB'C' = B'C'
 m_1+m_5 : A'B'C + AB'C = B'C

• • •

→ 인접하는 사각형들끼리 P9a를 적용시킬 수 있도록..

K-map 어떻게 생겼나 – three variables

→ 인접하는 사각형들끼리 P9a를 적용시킬 수 있도록..

K-map 어떻게 생겼나 – three variables

수직으로 그려도 되고~ 편한 대로.

K-map 어떻게 생겼나 – four variables

C D	00 00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

C D	00 00	01	11	10
	A'B'C'D'	A'B C'D'	ABC'D'	A B' C' D'
01	A'B'C'D	A'B C'D	ABC'D	A B'C'D
11	A'B'CD	A'BCD	ABCD	AB'CD
10	A'B'CD'	A'BCD'	AB C D'	A B'C D'

K-map 에서 grouping 하기 - 2개씩 묶기

$$m_{13} + m_9$$
: $ABC'D + AB'C'D = AC'D$

$$m_3 + m_{11}$$
: $A'B'CD + AB'CD = B'CD$

$$m_0 + m_2$$
: $A'B'C'D' + A'B'CD' = A'B'D'$

K-map 에서 grouping 하기 - 4개씩 묶기

K-map 에서 grouping 하기 - 8개씩 묶기

Q 그룹으로 묶기

∖ A B					
CD	00	01	11	10	
00			-		
01	1		1	1	
11	1		1	1	
10					

CD	00 8	01	11	10
00	1		,	1
01	1			1
11	1			
10	1			

K-map ⊒2|7|

$$f = x'yz' + x'yz + xy'z' + xy'z + xyz$$

x y	00	01	11	10
0		1		1
1		1	1	1

K-map 결과와 비교

최소 곱의 합(SOP):

Minimum sum of product implementation of *f.*

내포항 (Implicant)

: 함수를 SOP로 표현했을 때 각 product term

CD	00 B	01	11	10
00	1		1	
01			1	
11	1	1	1	1
10				

Minterm 2 Implicant

A'B'C'D' A'B'CD A'BCD ABC'D' ABC'D ABCD AB'CD

내포항 (Implicant)

: 함수를 SOP로 표현했을 때 각 product term

2개짜리 그룹 Implicant

A'CD

BCD

ACD

B'CD

ABC'

ABD

CD	00	01	11	10
00	1		1	
01			1	
11	1	1	1	1
10				

내포항 (Implicant)

: 함수를 SOP로 표현했을 때 각 product term

4개짜리 그룹 Implicant CD

1, 2, 4, 8..(2의 지수승)개의 1로 이루어진 사각형

커버한다 (Cover)

Implicant들이 함수 F를 *Cover* 한다.

- = 가능한 14개의 Implicant 들 중에 ***..*를 고르면 F를 표현할 수 있다.
- = 가능한 14개의 Implicant 들 주에 ***..* 를 고르면 K-map의 1이 모두 포함된다.

A	В			
CD	00	01	11	10
00	1		1	
01			1	
11	1	1	1	1
10				

최소항	2개로 구성된 그룹	4 개로 구성된 그	그룹
A'B'C'D' A'B'CD A'BCD ABC'D' ABC'D ABCD AB'CD	A'CD BCD ACD B'CD ABC' ABD	CD	
총 14개의 L	 #포항		

커버한다 (Cover)

Implicant가 minterm m_0 .. m_N 을 *Cover* 한다.

Ex) Implicant ACD는 m11과 m15를 Cover 한다.

CDAI	00 8	01	11	10
00	1		1	
01			1	
11	1	1	1	1
10		,		

주 내포항 (Prime Implicant : PI)

: 다른 내포항에 완전히 포함되지 않는 하나의 내포항

Prime Implicant: A'B'C'D', ABC', ABD, CD

단순화를 위해서는 Implicant가 아닌 Prime Implicant를 찾아야함

- 1) Implicant를 포함하는 Prime Implicant가 있다면 일단 literal 개수가 적음
- 2) 1을 더 많이 포함하는 Prime Implicant위주로 찾으면 결국 term 개수도 줄어듬

필수 주 내포항 (Essential Prime Implicant : EPI)

: 다른 주 내포항에 포함되지 않는 적어도 1개의 1을 포함하는 주 내포항 → 다른 PI로는 절대 커버 불가능한 1 찾기

Prime Implicant: A'B'C'D', ABC', ABD, CD

Q. 위의 PI들 중 EPI가 아닌 것은?

예제 3.4

- 함수 G
 - 최소식 G = ABD + ABC (EPI로만 구성)
- ◆ 함수 H
 - ◆ 최소식 *H = BC ' D + ABC (EPI로만 구성)*
 - ◆ EPI로 다 커버했으므로 EPI가 아닌 PI ABD 는 사용 하지 않아도 됨

Chapter 3 Karnaugh Map (K-Map)

- 3.1 K-map 소개
- 3.2 K-map 을 사용한 최소 SOP (Sum of Product) 표현
- 3.3 Don't care
- 3.4 POS (Product of Sum)
- 3.5 5변수, 6변수를 위한 맵
- 3.6 다중 출력 문제

- 1. **모든 필수 주 내포항 (EPI)**들을 찾음.
 - ◆ 맵 상에서 필수 주 내포항들을 묶음
 - ◆ 필수 주 내포항으로 만드는 최소항(minterm)들에 * 표시를 한다.
 - ◆ 일반적으로 가장 고립된 1들로부터 시작하는 것이 빠르다.
- 2. **함수를 커버하는 '충분한' 다른 주 내포항 (PI)**들을 찾음.
 - (2 가지 기준)
 - ◆ 선택된 주 내포항 (PI)에 의해 <u>될수록 많은 새로운(아직 커버되지</u>
 <u>않은) 1을 커버하는 주 내포항</u>을 선택.
 - 고립되고 커버되지 않은 1을 남겨놓지 않도록 함.

예제 3.5

1.EPI 찾기 (고립된 것부터 찾기)

2. PI찾기

예제 3.5

$$F = A'B'C'D' + ABC' + \dots$$

 $\Gamma = ABCD + ABC + C$

1*들은 다른 PI로는 절대 커버될 수 없는 minterm 들이므로 Group을 EPI로 만들어주는 minterm들이다.

→ EPI로 모두 해결된 케이스, 2단계 필요 없음.

예제 3.6 EPI 와 PI로 해결

- 1.EPI 찾기 (고립된 것부터 찾기)
- 2. PI찾기

예제 3.6 EPI 와 PI로 해결

• 필수 주 내포항(EPI)

- 가장 고립된 m₁₁ -> wyz

- m₀, m₁₂, m₈ -> y'z'

- 주 내포항(PI)남은 2개의 1은 w'xz 에 의해 커버
 - 최소곱의 합 식 f = y'z' + w y z + w'xz

예제 3.8

 $f(a, b, c, d) = \Sigma m(0, 2, 4, 6, 7, 8, 9, 11, 12, 14)$

- 1. **모든 필수 주 내포항 (EPI)**들을 찾음.
 - <u>맵</u> 상에서 필수 주 <u>내포항들을</u> 묶음
 - ◆ 필수 주 <u>내포항으로</u> 만드는 <u>최소항(minterm)</u>들에 * 표시를 한다.
 - ◆ 일반적으로 가장 고립된 1들로부터 시작하는 것이 빠르다.
- 2. **함수를 커버하는 '충분한' 다른 주 내포항 (PI)**들을 찾음.

(2 가지 기준)

- ◆ 선택된 주 <u>내포항</u> (PI)에 의해 <u>될수록 많은 새로운(아직 커버되지</u> 않은) 1을 커버하는 주 내포항을 선택.
- ◆ 고립되고 커버되지 않은 1을 남겨놓지 않도록 함.
- 필수 주 내포항: a'd' + bd' + a'bc + ab'd
- 1개의 1(*m₈*)이 남음
- 4개로 이루어진 그룹(c'd')과 2개로 이루어진 그룹(ab'c')에 커버
- 최소 식 f = a'd' + bd' + a'bc + ab'd + c'd'

예제 3.10 특이한 경우

이렇게 묶고 싶죠? 그런데 MAP방법 1을 생각해 보면 EPI부터 찾아야 함. EPI인가??

예제 3.10 특이한 경우

• 최소 해

$$G = A'BC' + A'CD + ABC + AC'D$$

예제 3.11 최소 SOP가 여러 개 있을 수도 있음 $g(w, x, y, z) = \sum m(2, 5, 6, 7, 9, 10, 11, 13, 15)$

$$g = XZ + WZ + \dots$$

더 이상의 EPI는 없는 것 같으므로 PI로 남은 1을 커버해야 하는데... 2개짜리 그룹 2개면 가능할 것으로 보임

K-map 통한 최소 SOP 찾기

예제 3.11 최소 SOP가 여러 개 있을 수도 있음 $g(w, x, y, z) = \sum m(2, 5, 6, 7, 9, 10, 11, 13, 15)$

2개짜리 그룹 2개를 만드는 다수의 방법들

→ 다수의 최소 SOP 해

$$g = xz + wz + w'yz' + wx'y$$

$$g = xz + wz + x'yz' + w'xy$$

$$g = xz + wz + x'yz' + w'xy$$

$$g = XZ + WZ + W'YZ' + X'YZ'$$

연습문제 2

f=

CDA	00 00	01	11	10
00				1
01	1	1	1	
11	1	1	1	1
10	1	1		

h=

CDAI	B 00	01	11	10
00		1	1	1
01		1	1	
11		1	1	,
10	1	1		1

연습

연습문제 2

h=

$$f = a b' c' d' + c d + a' c + a' d + b d$$

$$h = b d + a' b + b' c d' + a c' d'$$

 $h = b d + b c' + a' c d' + a b' d'$

Chapter 3 Karnaugh Map (K-Map)

- 3.1 K-map 소개
- 3.2 K-map 을 사용한 최소 SOP (Sum of Product) 표현
- 3.3 Don't care
- 3.4 POS (Product of Sum)
- 3.5 5변수, 6변수를 위한 맵
- 3.6 다중 출력 문제

함수가 don't care를 포함한다면??

PI(Prime Implicant)와 EPI(Essential Prime Implicant)의 정의를 조금만 바꾸어보자.

- PI: 다른 더 큰 사각형에 포함되지 않은 1, 2, 4, 8, .. 개의 1 또는 ×의 사각형이다.
 - ×(don't care)도 1과 같이 동등하게
 - 모두 x로만 이루어진 PI는 의미 없음
- EPI: 다른 PI에 의해 커버되지 않는 1을 적어도 한 개를 커버하는 PI.
 - ×(don't care)는 EPI로 만들 수 있는 조건에서 빠짐.

** 주의:

grouping의 목적은 1을 모두 cover하는 것. X는 굳이 cover안되어도 됨

예제 3.20 $F(A, B, C, D) = \Sigma m(1, 7, 10, 11, 13) + \Sigma d(5, 8, 15)$

• 최소해 (가운데 맵)

$$F = BD + A'C'D + AB'C$$

• 모든 무정의를 1로 고려하는 경우 (오른쪽 맵)

$$F = BD + A'C'D + AB'C + AB'D'$$

$$F = BD + A'C'D + ACD + AB'D'$$

• 모든 무정의를 '0'으로 고려한 경우

$$F = A'B'C'D + A'BCD + ABC'D + AB'C$$

(

Don't care로 유연하게 최적화 하는 것보다는 해가 복잡해짐

예제 3.21 yz wx

y z	x 00	01	11	10
00	х	1	1	
01	x		1	1
11	x	1*)		1*
10	Х			

- 2 개의 EPI x'z 와 w'yz (가운데 맵)
- 4 개의 don't care로 이루어진 w'x'는 PI지만, EPI는 아님
- 모두 무정의로만 이루어진 주 내포항은 사용할 수 없음
- •남은 1을 묶는 여러 가지 방법(오른쪽 맵)

예제 3.21

•최소화 해
$$g_1 = x'z + w'yz + w'y'z' + wxy'$$
 $(m_0 = 1)$ $g_2 = x'z + w'yz + xy'z' + wxy'$ $(m_0 = 0)$ $g_3 = x'z + w'yz + xy'z' + wy'z$ $(m_0 = 0)$ g_2 와 g_3 는 대수학적으로 같은 함수이지만 g_1 과는 다르다.

예제 3.22

- 첫번째 맵 : 유일한 EPI *c'd*'와 *ab,* 3 개의 1이 남음
- 두번째 맵 : b'd'를 이용한 2개의 해 (g_1, g_2)
- 세번째 맵 : ad'를 이용한 해 $g_1 = c$

$$g_1 = c'd' + ab + b'd' + a'cd$$

 $g_2 = c'd' + ab + b'd' + a'b'c$
 $g_3 = c'd' + ab + ad' + a'b'c$

• 동일성을 검증 : don't care들이 처리된 값을 표로 구현 그림에서.. 1로 여겨져서 cover가 되었는지 유무에 따라..

• $g_1 \neq g_2 = g_1$	9	2
------------------------	---	---

	m ₇	m ₉
g_1	1	0
g_2	0	0
g_3	0	0

Chapter 3 Karnaugh Map (K-Map)

- 3.1 K-map 소개
- 3.2 K-map 을 사용한 최소 SOP (Sum of Product) 표현
- 3.3 Don't care
- 3.4 POS (Product of Sum)
- 3.5 5변수, 6변수를 위한 맵
- 3.6 다중 출력 문제

POS(Product of Sum)형태의 최소화

드모르간의 정리 이용 (P11)

$$(a+b)' = a'b'$$
 $(ab)'=a'+b'$

POS → SOP → K-map 사용하여 최소화 → min SOP → min POS

step1 step2 step3

Ex) ((a+b)(c+d))'=(a'b')+(c'd')

Ex) ((a'b')+(c'd'))' = (a+b)(c+d)

Step 1. 함수의 **보수를 맵에 표현**

함수에 대한 맵이 이미 존재하는 경우, 모든 0을 1로, 모든 1을 0으로 대치. X는 변환하지 않음

Step 2. 함수의 보수에 대한 최소 SOP 찾기

Step 3. POS를 만들기 위하여, 2 에서 구한 SOP에 다시 보수를 취함

POS(Product of Sum)형태의 최소화

예제 3.25
$$f(a, b, c, d) = \sum m(0, 1, 4, 5, 10, 11, 14)$$
 최소 f_{POS} 를 구하라

- f '(a, b, c, d) = Σ m(2, 3, 6, 7, 8, 9, 12, 13, 15)
- f' = ac' + a'c + abd (K map 결과) : 최소 f'_{SOP}

 → f = (a'+c)(a+c')(a'+b'+d') : 최소 f_{POS}
- f' = ac' + a'c + bcd (K map 결과) : 최소 f'_{SOP}

 → f = (a'+c)(a+c')(b'+c'+d') : 최소 f_{POS}

Chapter 3 Karnaugh Map (K-Map)

- 3.1 K-map 소개
- 3.2 K-map 을 사용한 최소 SOP (Sum of Product) 표현
- 3.3 Don't care
- 3.4 POS (Product of Sum)
- 3.5 5변수, 6변수를 위한 맵
- 3.6 다중 출력 문제

5개 변수 Map

- 5변수 맵은 2⁵ = 32개로 구성
- ◈ 16개의 정사각형을 2개층(layer)구조로 나타냄

6개 변수 Map

- ♦ 6변수 맵은 2⁶ = 64개로 구성
- ◈ 16개의 정사각형을 4개층(layer)구조로 나타냄

5개 변수 함수 Mapping

 $F(A, B, C, D, E) = \Sigma m(4, 5, 6, 7, 9, 11, 13, 15, 16, 18, 27, 28, 31)$

					Α					
\ B (0	()			\ B (0		1	
DE	00	01	11	10		DE	00	01	11	10
00		1				00	1		1	
01		1	1	1		01				
11		1	1	1		11			1	1
10		1				10	1			

5개 변수 K-map 풀기 (1)

- ◈ 늘 그렇듯 EPI 먼저 찾기!
 - → 한 layer에서 EPI 여야 하지만
 - → 인접한 layer에서도 대응하는 정사각형에 1이 없는 것이어야만 함
- → 그리고 이러한 1을 포함한 PI는 그 층에만 속하게 됨 (따라서, 4변수 맵 문제가 된다.)
 - →A' 또는 A를 붙이기만 하면 4변수(BCDE)와 동일

5개 변수 K-map 풀기 (2)

◈ 양쪽의 레이어 상에 1을 커버하는 EPI

◈ 최종 해

F = A'B'C + A'BE + AB'C'E' + ABCD'E' + BDE

Chapter 3 Karnaugh Map (K-Map)

- 3.1 K-map 소개
- 3.2 K-map 을 사용한 최소 SOP (Sum of Product) 표현
- 3.3 Don't care
- 3.4 POS (Product of Sum)
- 3.5 5변수, 6변수를 위한 맵
- 3.6 다중 출력 문제

다중 출력 문제

- ♦ 3개의 입력 A, B, C와 2개의 출력 F, G
 - 2개의 문제로 나누어서 취급
 - ◆ 하나의 시스템: 게이트들의 공유가능 -> 비용 줄임.

다중 출력 문제 - 결과의 일부를 완전 공유

예제 3.32
$$F(A, B, C) = \sum m(0, 2, 6, 7)$$
 $G(A, B, C) = \sum m(1, 3, 6, 7)$

$$G(A, B, C) = \Sigma m(1, 3, 6, 7)$$

• 각 함수에 대해 아래와 같은 식을 얻을 수 있음

$$F = A'C' + AB$$

$$G = A'C + AB$$

예제 3.32(계속)

$$F = A'C' + AB$$

G = A'C + AB

- ◈ 우측: 두개의 독립된 문제
- ◈ 좌측: 항(AB) 공유함으로써 게이트 수가 줄어듬.

예제 3.33 $F(A, B, C) = \Sigma m(0, 1, 6)$ $G(A, B, C) = \Sigma m(2, 3, 6)$

독립된 문제(위쪽 맵): F = A'B' + ABC' G = A'B + BC'

$$G = A'B + BC$$

예제 3.33 (계속)

◈ 공유: F=A'B' + ABC' G=A'B+ABC' (5 게이트: 3 AND, 2 OR, 11 inputs)

예제 3.34
$$F(A, B, C) = \Sigma m(2, 3, 7)$$

 $G(A, B, C) = \Sigma m(4, 5, 7)$

• 독립된 문제 해

$$f = a'b + bc$$

$$g = ab' + ac$$

예제 3.35 $F(A, B, C, D) = \Sigma m(4, 5, 6, 8, 12, 13)$ $G(A, B, C, D) = \Sigma m(0, 2, 5, 6, 7, 13, 14, 15)$

1. 하나의 함수에서만 1인 것(<mark>적색, 명백히 공유 불가능</mark>)들에서 EPI 찾기

$$F = AC'D' + ...$$

$$G = A'B'D' + BC + ...$$

2. 공유 가능하지만 다른 쪽에서 EPI에 포함되었으면 공유 포기하고 나만의 그루핑

$$F = AC'D' + A'BD' + ...$$

$$G = A'B'D' + BC + ...$$

예제 3.35 (계속)

3. 나머지는 공유!

$$F = AC'D' + A'BD' + BC'D$$

 $G = A'B'D' + BC + BC'D$
(20 inputs, 7 게이트)

예제 3.35 (계속)

◈ 독립함수로 풀면

$$F = AC'D' + A'BD' + BC'$$

 $G = A'B'D' + BC + BD$
(21 inputs, 8 게이트)

방법 정리하면

- 1. 하나의 함수에서만 1인 것(명백히 공유 불가능)들에서 EPI 찾기
- 2. 공유 가능하지만 다른 쪽에서 EPI에 포함되었으면 공유 포기
- 3. 나머지 공유 가능한 항들 공유

예제 3.36 $F(A, B, C, D) = \Sigma m(0, 2, 3, 4, 6, 7, 10, 11)$ $G(A, B, C, D) = \Sigma m(0, 4, 8, 9, 10, 11, 12, 13)$

1. 하나의 함수에서만 1인 것(명백히 공유 불가능)들에서 EPI 찾기

CD	00	01	11	10
00	1	1		
01				
11	1	1*		1
10	1	1)		1

CDAL	00	01	11	10
00	1	1	1	1
01			1*	1
11				1
10				1

- 2. 공유 가능하지만 다른 쪽에서 EPI에 포함되었으면 공유 포기
- → 이 문제에서는 그런 것은 없네.

예제 3.36 계속

3. 나머지 공유 가능한 항들 공유

A'C'D' 와 AB'C 를 공유 (16 inputs, 6 게이트)

•
$$F = A'C + A'C'D' + AB'C$$

•
$$G = AC' + A'C'D' + AB'C$$

