

10. (a) where 10. (b) where 11. (4) where 12. (2) where 13. (5) where 14. (1) where 15. (2) where 16. (1) where 17. (2) $18. (16)$ $19. (3)$ $20. (288)$ mathematical mathema	. (3)	2. (40)	3. (3)	4. (2)	5. (4)	6. (2)	7. (2)	8. (1)
Combines mathered ma	. (4)nathongo	10. (2)athong	/11. (4) thongo	12. (2) thongo	/// 13. (3) hongo	/// 14. (1)hongo	/// 15. (2) ongo	// 16. (1) ongo /
Fulling, $x=0$ in $y^2+\log_x(\cos^2x)=y$ we get $y=0,1$. $2y\cdot y^2+\frac{1}{\sin^2x}\cdot 2\cos x(-\sin x)=y^2$ mathematically another the second of t	7. (2)	18. (16)	19. (3)	20. (248)				
Putting, $z=0$ in $y^2+\log_2(\cos x)=y$ we get $y=0,1$ $2y\cdot y^2+\frac{1}{\sin^2 z}\cdot 2\cos x(-\sin x)=y^2$ mathened methods mathened methods methods methods methods methods methods methods $y''(0)=0$ for $y=0$ $xy=1$. Differentiating $(1,2y\cdot y^2+2(y^2)^2-2\sec^2x=y^2)$, methods methods methods methods methods $y''(0)=2$ for $y=0$ $y''(0)=2$ methods meth	// mathongo							
$3y\cdot y'+\frac{1}{-4m^2}\cdot 2\cos x(-\sin x)=y' \text{mathense} math$. (3)							
$\Rightarrow yy - 2 \tan x = y - \dots (1)$ $y(y) = 0 \text{ for } y = 0 \text{ sky} = 1.$ Differentiating (1), $2y \cdot y'' + 2(y')^2 - 2sec^2x = y''$. $y''(y) = 2 \text{ for } y = 0$ $y''(y) = 2 \text{ for } y = 0$ $y''(y) = 2 \text{ for } y = 0$ $y''(y) = 2 \text{ for } y = 0$ $y''(y) = 2 \text{ for } y = 0$ $y''(y) = 2 \text{ for } y = 0$ $y''(y) = 2 \text{ for } y = 0$ $y''(y) = 2 \text{ for } y = 0$ $y''(y) = 2 \text{ for } y = 0$ $y''(y) = 2 \text{ for } y = 0$ $y''(y) = 2 \text{ for } y = 0$ $y''(y) = 2 \text{ for } y = 0$ $y'''(y) = 2 \text{ for } y = 0$ $y'''(y) = 2 \text{ for } y = 0$ $y'''(y) = 2 \text{ for } y = 0$ $y'''(y) = 2 \text{ for } y = 0$ $y'''(y) = 2 \text{ for } y = 0$ $y'''(y) = 2 \text{ for } y = 0$ $y'''(y) = 2 \text{ for } y = 0$ $y'''(y) = 2 \text{ for } y = 0$ $y'''(y) = 2 \text{ for } y = 0$ $y'''(y) = 2 \text{ for } y $								
$y'(0) = 0 \text{ for } y = 0 \text{ key} = 1.$ Differentiating (1), $2y \cdot y'' + 2(y)^2 - 2se^2x = y''$, mathened math	$\Rightarrow 2u \cdot u' - 2$	$x = x = y' \dots (x = y')$	mathongo					
Differentiating (1), $2y \cdot y'' + 2(y')^2 - 2sec^2x = y''$, mathons mathons mathons mathons mathons $y''(0) = 2$ for $y = 0$ $y''(0) = 2$. The mathons								
y'(0)=2 for $y=0$ $y'(0)=2$ for $y=1$ $y'(0)=2$ mathons y'''' mathons $y''''''''''''''''''''''''''''''''''''$			$\left(y^{\prime } ight) ^{2}-2sec^{2}x=y^{\prime \prime },$					
$ \begin{array}{c} \therefore y''(0) = 2 \\ \text{ Mathense } \\ Ma$	y"(0) = -2 for	or $y = 0$						
Given: $\log_{x}(x+y) = 4xy \text{mathonse} $	$y^{"}(0)=2$, for	y = 1						
Given: $\log_{\mathbb{R}}(x+y)=4xy$ mathons and hone mathons m	y''(0) = 2							
log_ $(x+y)=4xy$ mathons (mathons mathons math	. (40)							
When $x=0$, then $y=1$ $\log_{\mathbb{Z}}(x+y)=4xy$ $x+y=e^{4xy}$ mathongs with mathons wit	Given:							
log_ $(x+y)=4xy$ $\Rightarrow x+y=e^{xy}$ mathons x'	$\log_e(x+y)$ =	$=4xy$ $^{\mathrm{mathongo}}$						
$\Rightarrow x+y=e^{4xy} \pmod{1} \text{ mathons} mathon$								
Now differentiate w.r.t. x $1+y'=e^{ixy}(4y+4xy')$ (i) At $(0,1)\Rightarrow y'(0)=1$ and honge with mathonse with math	$\log_e(x+y) =$	4xy						
$1+y'=e^{4xy}(4y+4xy')\dots(1)$ At $(0,1)\Rightarrow y'(0)+1=4\Rightarrow y'(0)=3$ Now, again differentiate equation (i), we get $y''=e^{4xy}(4y+4xy)^2+e^{4xy}(4y'+4xy'')$ when $y''=e^{4xy}(4y+4xy)^2+e^{4xy}(4x+4xy)^2+e^{4xy}(4x+4xy)^2+e^{4xy}(4x+4xy)^2+e^{4xy}(4x+4xy)^2+e^{4xy}(4x+4xy)^2+e^{4xy}(4x+4xy)^2+e^{4xy}(4x+4xy)^2+e^{4xy}(4x+4xy)^2+e^{4xy}(4x+4xy)^2+e^{4xy}(4x+4xy)^2+e^{4xy}(4x+4xy)$								
Now, again differentiate equation (i), we get $y'' = e^{4sy}(4y + 4xy)^2 + e^{4sy}(4y' + 4y' + 4xy'') = 0 \text{mathonge} mat$			•					
Now, again differentiate equation (i), we get $y'' = e^{4xy}(4y + 4xy')^2 + e^{4xy}(4y' + 4y' + 4xy'') = 0 \text{mathonge} ma$	$1+y=e^{xy}$	$(4y + 4xy') \dots (1$	mathongo					
$y''' = e^{4xy}(4y + 4xy)^2 + e^{4xy}(4y' + 4y' + 4xy'')$ mathongs y'''' mathongs y''''' mathongs y''''' mathongs y'''''' mathongs y''''''' mathongs y''''''' mathongs y''''''' mathongs y'''''''' mathongs y'''''''''' mathongs $y''''''''''''''''''''''''''''''''''''$								
$X(0,1)$ $y''(0) = 1(4 \times 1 + 0)^2 + 1(4 \times 3 + 4 \times 3 + 0)$ $\Rightarrow y''(0) = 16 + 24 = 40$ and $y''(0) = 10$ and								
$y''(0) = 1(4 \times 1 + 0)^2 + 1(4 \times 3 + 4 \times 3 + 0)$ $\Rightarrow y''(0) = 16 + 24 = 40$ ang	$y = e^{-1}(4y)$ At $(0, 1)$	$+4xy$) $+\epsilon$ (4	4y + 4y + 4xy					
$\Rightarrow y''(0) = 16 + 24 = 40 \text{ ongo } \text{ mathongo } matho$		$\times 1 + 0)^{2} + 1(4 \times$	$(3+4\times 3+0)$					
$\Rightarrow y''(0) = 40$. (3) Given $h(x) = f(f(x))$ "thongo "/" mathongo "/"								
Given $h(x) = f(f(x))$ athongs $///$ mathongs $////$ mathongs $////$ mathongs $/////$ mathongs $/////$ mathongs $//////$ mathongs $///////$ mathongs $////////////////////////////////////$	$\Rightarrow y''(0) = 4$	0						
Given $h(x) = f(f(x))$ athongs $///$ mathongs $///$ mathongs $////$ mathongs $////$ mathongs $/////$ mathongs $//////$ mathongs $////////$ mathongs $////////////////////////////////////$								
$\Rightarrow h'(x) = f'(f(x)). f'(x)$ $\Rightarrow h'(x) = f(f(x)). f(x) \dots (1) \text{ (as } f'(x) = f(x))$ Now $f'(x) = f(x)$ mathons with mathons we mathons we mathons with mathons wi	Given $h(x) =$	f(f(x)) athong						
$\Rightarrow h'(x) = f(f(x)) \cdot f(x) \dots (1) \text{ (as } f'(x) = f(x))$ $\text{Now } f'(x) = f(x) \text{ mathongo } math$								
Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to x , we get $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to $\frac{f'(x)}{f(x)} = 1$ Integrating both sides with respect to $\frac{f'(x)}$		f(x)), $f(x)$ (1)	(as $f'(x) = f(x)$)					
Integrating both sides with respect to x , we get 0 /// mathongo /	Now $f'(x) =$	f(x) mathongo						
Integrating both sides with respect to x , we get 0 /// mathongo /	$\Rightarrow \frac{f'(x)}{f(x)} = 1$							
$ \begin{array}{c} \operatorname{im} f(x) = x + e \\ \Rightarrow f(x) = k \cdot e^x \\ \Rightarrow f(x) = \frac{2}{e} \cdot e^x \dots \\ (2) [:: f(1) = 2] \text{mathongo} \text{''} mathong$	* * /		ect to x, we get					
$y \Rightarrow f(x) = \frac{2}{e}$, e^x ,(2) [:: $f(1) = 2$] mathongo /// math	$\ln \lvert f(x) \lvert = x brace$	+c						
Putting $x=1$ in equation (1), we get $h'(1)=f(f(1))$. $f(1)=f(2)$. $2=2$. $\frac{2}{e}e^2=4e$ (using equation (2)) wathongo wathougo wathongo wathong								
$h'(1)=f(f(1)). f(1)=f(2). 2=2. \frac{2}{e}e^2=4e$ (using equation (2)) "mathongo" mathongo" matho	$\Rightarrow f(x) = \frac{2}{e}$.	e^x (2) [:, f	(1)=2] mathongo					
	_							
	h'(1) = f(f(1))	$f(1) = f(2) \cdot 2 =$	$= 2. \frac{2}{e}e^2 = 4e$ (using e	quation (2))				

Answer Keys and Solutions

Answer Keys and Solutions

Answer Keys and Solutions

