

The invention claimed is:

1. A method of detecting and identifying a received signal, comprising the steps of:			
segmenting the received signal into at least a first and a second segment, each having at			
least two symbols;			
correlating each of the symbols in the at least first and second segments with a			
representative symbol to produce at least a first and a second set of symbol correlation outputs;			
producing at least a first and a second set of signal identity outputs, the first set of signal			
identity outputs indicating a degree of match between a first signal represented by the first set of			
symbol correlation outputs and each of a plurality of expected signal identities, and the second set			
of signal identity outputs indicating a degree of match between a second signal represented by the			
second set of symbol correlation outputs and each of the plurality of expected signal identities;			
providing frequency offset compensation to at least the first and second set of signal			
identity outputs to produce at least a first and second set of frequency offset compensated signal			
identity outputs;			
summing corresponding signal identity outputs from the at least first and second sets of			
frequency offset compensated signal identity outputs to form a plurality of summed signal			
identity outputs; and			
comparing at least one summed signal identity output to a threshold to detect and identify			
the received signal.			
2. The method of claim 1, further comprising the step of deinterleaving at least one of the			

- 2. The method of claim 1, further comprising the step of deinterleaving at least one of the segments to form the at least two symbols.
- 3. The method of claim 1, wherein the representative symbol is the same for at least two symbols.
- 4. The method of claim 1, wherein the threshold is the same for each summed signal identity output.
- 5. A method of detecting and identifying a received signal, comprising the steps of: segmenting the received signal into at least a first and a second segment, each having at least two symbols;

5

correlating	each of the symbols in the at least first and second	segments with a
representative symb	ol to produce at least a first and a second set of syn	nbol correlation outputs;

producing at least a first and a second set of signal identity outputs, the first set of signal identity outputs indicating a degree of match between a first signal represented by the first set of symbol correlation outputs and each of a plurality of expected signal identities, and the second set of signal identity outputs indicating a degree of match between a second signal represented by the second set of symbol correlation outputs and each of the plurality of expected signal identities;

providing a first frequency offset compensation to at least the first and second set of signal identity outputs to produce at least a first and second set of first frequency offset compensated signal identity outputs;

providing a second frequency offset compensation to at least the first and second set of signal identity outputs to produce at least a first and second set of second frequency offset compensated signal identity outputs;

summing corresponding signal identity outputs from the at least first and second sets of first frequency offset compensated signal identity outputs to form a first plurality of summed signal identity outputs;

summing corresponding signal identity outputs from the at least first and second sets of second frequency offset compensated signal identity outputs to form a second plurality of summed signal identity outputs;

comparing at least one summed signal identity output from the first and second plurality of summed signal identity outputs to a threshold to produce a set of threshold exceeding signal identity outputs; and

selecting at least one threshold exceeding signal identity output based on magnitude to detect and identify the received signal.