#### What we discussed last week?

- What is data object, attributes, types
- •How to run a classification experiment?
- Data preprocessing
  - Identify outliers
  - Statistics on data
  - Data transformation
  - Skewness and normality?
  - •Other data transformation methods?

#### **KDD Process**



### **Exploratory Data Analysis**

#### What is EDA?

- EDA is an approach not a set of techniques.
- EDA is a philosophy about how a data analysis should be carried out.
- EDA primarily uses graphical techniques to
  - Maximize insight into a dataset
  - Uncover underlying structure
  - Extract important variables
  - Detect outliers and anomalies
  - Test underlying assumptions
  - Determine optimal factor settings

### How does EDA differ from other approaches to data analysis?

- Classical data analysis sequence
  - Problem -> Data -> Model -> Analysis -> Conclusions
- EDA data analysis sequence
  - Problem -> Data -> Analysis -> Model -> Conclusions
- Bayesian data analysis sequence
  - Problem -> Data -> Model -> Prior Distribution -> Analysis -> Conclusions
- For example, has increasing fee-structure led to decreasing market share? Hypotheses, and hypothesis testing
- How do we analyze data in the real world?

### EDA vs. Classical Statistical Data Analysis

#### Models

- Classical approach imposes models on the data
- EDA allows the data to suggest the model that best fits the data.

#### Focus

- Classical analysis focuses on the model, estimating parameters, and generating predicted values
- EDA focuses on the data, its structure, outliers, and models suggested by the data.

#### Techniques

- Classical techniques are generally quantitative in nature (t-tests, ANOVA, chi-squared tests, and F tests.
- EDA techniques are generally graphical (scatter plots, box plots, histograms, probability plots, etc., ...)

#### Rigor

- Classical techniques are rigorous, formal and objective
- EDA techniques are not are rigorous, are subjective, and depend on interpretation

#### Treatment of the data

- Classical techniques often map the data into a few numbers or estimates
- EDA makes use of graphic tools and shows all of the data

#### Assumptions

- Classical techniques depend on underlying assumptions (normality)
- EDA techniques make little or no assumptions

### **EDA:** Getting to Know the Data Set

- Graphs, plots, and tables often uncover important relationships in data
- Example:
  - In the mobile telecommunications industry, the churn term, also known as customer attrition or subscriber churning, refers to the phenomenon of loss of a customer
- 3,333 records and 20 variables in *churn* data
- The two tables below shows first 10 records from churn data set
  - Simple approach looks at field values of records

|    | State | Account Length | Area Code | Phone    | Intl Plan | VMail Plan | VMail Message | Day Mins | Day Calls | Day Charge | Eve Mins |
|----|-------|----------------|-----------|----------|-----------|------------|---------------|----------|-----------|------------|----------|
| 1  | KS    | 128            | 415       | 382-4657 | no        | yes        | 25            | 265.100  | 110       | 45.070     | 197.400  |
| 2  | ОН    | 107            | 415       | 371-7191 | no        | yes        | 26            | 161.600  | 123       | 27.470     | 195.500  |
| 3  | NJ    | 137            | 415       | 358-1921 | no        | no         | 0             | 243.400  | 114       | 41.380     | 121.200  |
| 4  | ОН    | 84             | 408       | 375-9999 | yes       | no         | 0             | 299.400  | 71        | 50.900     | 61.900   |
| 5  | OK    | 75             | 415       | 330-6626 | yes       | no         | 0             | 166.700  | 113       | 28.340     | 148.300  |
| 6  | AL    | 118            | 510       | 391-8027 | yes       | no         | 0             | 223.400  | 98        | 37.980     | 220.600  |
| 7  | MA    | 121            | 510       | 355-9993 | no        | yes        | 24            | 218.200  | 88        | 37.090     | 348.500  |
| 8  | MO    | 147            | 415       | 329-9001 | yes       | no         | 0             | 157.000  | 79        | 26.690     | 103.100  |
| 9  | LA    | 117            | 408       | 335-4719 | no        | no         | 0             | 184.500  | 97        | 31.370     | 351.600  |
| 10 | WV    | 141            | 415       | 330-8173 | yes       | yes        | 37            | 258.600  | 84        | 43.960     | 222.000  |

|    | Eve Calls | Eve Charge | Night Mins | Night Calls | Night Charge | Intl Mins | Intl Calls | Intl Charge | CustServ Calls | Churn |
|----|-----------|------------|------------|-------------|--------------|-----------|------------|-------------|----------------|-------|
| 1  | 99        | 16.780     | 244.700    | 91          | 11.010       | 10.000    | 3          | 2.700       | 1              | False |
| 2  | 103       | 16.620     | 254.400    | 103         | 11.450       | 13.700    | 3          | 3.700       | 1              | False |
| 3  | 110       | 10.300     | 162.600    | 104         | 7.320        | 12.200    | 5          | 3.290       | 0              | False |
| 4  | 88        | 5.260      | 196.900    | 89          | 8.860        | 6.600     | 7          | 1.780       | 2              | False |
| 5  | 122       | 12.610     | 186.900    | 121         | 8.410        | 10.100    | 3          | 2.730       | 3              | False |
| 6  | 101       | 18.750     | 203.900    | 118         | 9.180        | 6.300     | 6          | 1.700       | 0              | False |
| 7  | 108       | 29.620     | 212.600    | 118         | 9.570        | 7.500     | 7          | 2.030       | 3              | False |
| 8  | 94        | 8.760      | 211.800    | 96          | 9.530        | 7.100     | 6          | 1.920       | 0              | False |
| 9  | 80        | 29.890     | 215.800    | 90          | 9.710        | 8.700     | 4          | 2.350       | 1              | False |
| 10 | 111       | 18.870     | 326.400    | 97          | 14.690       | 11.200    | 5          | 3.020       | 0              | False |

### **Attributes and Data**

Types
State: Ategorical, for the 50 states and the

- State: Categorical, for the 50 states and the District of Columbia,
- Account Length: Integer-valued, how long account has been active,
- · Area code: Categorical
- Phone Number: Essentially a surrogate for customer ID,
- International Plan: Dichotomous categorical, yes or no,
- Voice Mail Plan, Dichotomous categorical, yes or no,
- Number of Voice Mail Messages: Integer-valued
- Total Day Minutes: Continuous, minutes customer used service during the day,
- Total Day Calls: Integer-valued,
- *Total Day Charge*: Continuous, perhaps based on above two variables,
- Total Eve Minutes: Continuous, minutes customer used service during the evening,

- Total Eve Calls: Integer-valued,
- *Total Eve Charge*: Continuous, perhaps based on above two variables,
- *Total Night Minutes*: Continuous, minutes customer used service during the night,
- Total Night Calls: Integer-valued,
- Total Night Charge: Continuous, perhaps based on above two variables.
- Total International Minutes: Continuous, minutes customer used service to make international calls.
- Total International Calls: Integer-valued,
- *Total International Charge*: Continuous, perhaps based on above two variables,
- Number of Calls to Customer Service: Integervalued.
- Churn: Target. Indicator of whether the customer has left the company (True or False).

## Getting to Know the Data Set (cont'd)

- Insights from inspecting the table:
  - The variable Phone uses only seven digits,
  - There are two flag variables,
  - Most of our variables are continuous, and
  - The response variable Churn is a flag variable having two values, True and False.
  - "churn" indicates customers leaving one company in favor of another company's products or services

|    | State | Account Length | Area Code | Phone    | Intl Plan | VMail Plan | VMail Message | Day Mins | Day Calls | Day Charge | Eve Mins |
|----|-------|----------------|-----------|----------|-----------|------------|---------------|----------|-----------|------------|----------|
| 1  | KS    | 128            | 415       | 382-4657 | no        | yes        | 25            | 265.100  | 110       | 45.070     | 197.400  |
| 2  | ОН    | 107            | 415       | 371-7191 | no        | yes        | 26            | 161.600  | 123       | 27.470     | 195.500  |
| 3  | NJ    | 137            | 415       | 358-1921 | no        | no         | 0             | 243.400  | 114       | 41.380     | 121.200  |
| 4  | ОН    | 84             | 408       | 375-9999 | yes       | no         | 0             | 299.400  | 71        | 50.900     | 61.900   |
| 5  | OK    | 75             | 415       | 330-6626 | yes       | no         | 0             | 166.700  | 113       | 28.340     | 148.300  |
| 6  | AL    | 118            | 510       | 391-8027 | yes       | no         | 0             | 223.400  | 98        | 37.980     | 220.600  |
| 7  | MA    | 121            | 510       | 355-9993 | no        | yes        | 24            | 218.200  | 88        | 37.090     | 348.500  |
| 8  | MO    | 147            | 415       | 329-9001 | yes       | no         | 0             | 157.000  | 79        | 26.690     | 103.100  |
| 9  | LA    | 117            | 408       | 335-4719 | no        | no         | 0             | 184.500  | 97        | 31.370     | 351.600  |
| 10 | WV    | 141            | 415       | 330-8173 | yes       | ves        | 37            | 258.600  | 84        | 43.960     | 222.000  |

|    | Eve Calls | Eve Charge | Night Mins | Night Calls | Night Charge | Intl Mins | Intl Calls | Intl Charge | CustServ Calls | Churn |
|----|-----------|------------|------------|-------------|--------------|-----------|------------|-------------|----------------|-------|
| 1  | 99        | 16.780     | 244.700    | 91          | 11.010       | 10.000    | 3          | 2.700       | - 1            | False |
| 2  | 103       | 16.620     | 254.400    | 103         | 11.450       | 13.700    | 3          | 3.700       | -1             | False |
| 3  | 110       | 10.300     | 162.600    | 104         | 7.320        | 12.200    | 5          | 3.290       | 0              | False |
| 4  | 88        | 5.260      | 196.900    | 89          | 8.860        | 6.600     | 7          | 1.780       | 2              | False |
| 5  | 122       | 12.610     | 186.900    | 121         | 8.410        | 10.100    | 3          | 2.730       | 3              | False |
| 6  | 101       | 18.750     | 203.900    | 118         | 9.180        | 6.300     | 6          | 1.700       | 0              | False |
| 7  | 108       | 29.620     | 212.600    | 118         | 9.570        | 7.500     | 7          | 2.030       | 3              | False |
| 8  | 94        | 8.760      | 211.800    | 96          | 9.530        | 7.100     | 6          | 1.920       | 0              | False |
| 9  | 80        | 29.890     | 215.800    | 90          | 9.710        | 8.700     | 4          | 2.350       | - 1            | False |
| 10 | 111       | 18.870     | 326.400    | 97          | 14.690       | 11.200    | 5          | 3.020       | 0              | False |

## Summarization and Visualization of Variables



## Summarization and Visualization of Variables



### Insights

- Vmail messages has spike on the length
- Most quantitative variables seems normally distributed, except Intl Calls and CustServ Calls, which are right-skewed
- Unique (# of distinct field values) shows 51 for *State*, but only 3 for *Area Code* how can this be?
- Mode for State is West Virginia
- International plan and voice mail plan look very similar to churn

## **Exploring Categorical Variables**

- Bar Charts
- How many customers churned?

#### **Bar Graph of Churners and Non-Churners**



## **Exploring Categorical Variables**

- General Exploratory Data Analysis Goals
  - Investigate variables
    - Examine Distributions of Categorical variables
    - Look at Histograms of numerical variables
    - Explore relationships among sets of variables
- Specific goal for Churn data mining example ( whole objective )
  - Develop a model for the type of customer likely to churn
- Today's software packages allow us to
  - Become familiar with the variables <u>and at the same time</u>, **begin to see which variables** are associated with churn
- Objective: Explore the data while keeping an eye on the overall
  - · Bar graph below shows counts and percentages of customers who churned and did not churn

| Value 4 | Proportion | %     | Count |
|---------|------------|-------|-------|
| False   |            | 85.51 | 2850  |
| True    |            | 14.49 | 483   |

## Comparing Two Categorical Variables

- How many customers churned and had international plans?
- Contingency/Crosstabulation tables and related bar charts

|       | International Plan |     |  |  |  |
|-------|--------------------|-----|--|--|--|
| Churn | No                 | Yes |  |  |  |
| False | 2664               | 186 |  |  |  |
| True  | 346                | 137 |  |  |  |

|       | International Plan |        |  |  |  |
|-------|--------------------|--------|--|--|--|
| Churn | No                 | Yes    |  |  |  |
| False | 88.50%             | 57.59% |  |  |  |
| True  | 11.50%             | 42.41% |  |  |  |





### Comparing Two Categorical Variables (Other Methods)

Clustered Bar Charts





Comparative Pie Charts





## Comparing Two Categorical Variables

- How many customers churned and had voicemail?
- Contingency/Crosstab tables and related bar charts

|       | Voice Mail Plan |     |  |  |
|-------|-----------------|-----|--|--|
| Churn | No              | Yes |  |  |
| False | 2008            | 842 |  |  |
| True  | 403             | 80  |  |  |

|       | Voice Mail Plan |        |  |  |  |
|-------|-----------------|--------|--|--|--|
| Churn | No              | Yes    |  |  |  |
| False | 83.28%          | 91.32% |  |  |  |
| True  | 16.72%          | 8.68%  |  |  |  |





### **Comparing Multiple Variables**



## Comparing Multiple Variables



### Summary of EDA for International Plan

- Perhaps we should investigate what it is about our international plan that is inducing our customers to leave
- We should expect that, whatever data mining algorithms we use to predict churn, the model will probably include whether or not the customer selected the International Plan

## **Exploring Numeric Variables**

- Numeric summary measures for several variables shown
- Includes min and max, mean, median, and standard deviation
- For example, Account Length has min
   = 1 and max = 243
- Mean and median both ~101, which indicates symmetry
- Voice Mail Messages not symmetric;
   mean = 8.1 and median = 0





## **Exploring Numeric Variables** (cont'd)

- Median = 0 indicates half of customers had no voice mail messages
- Recall use of correlated variables should be avoided
- Correlations of Customer Service Calls and Day Charge with other numeric variables shown
- All correlations are "Weak" except for Day Charge and Day Minutes, where r = 1.0
- Indicates perfect linear relationship



### **Histograms**



### **Normalized Histograms**



### Histograms (cont'd)





## Summary of Additional Variables

- Additional EDA concludes no obvious association between Churn and remaining numeric attributes
- These numeric attributes probably not strong predictors in data model; however, they should be retained as input to model
- Important higher-level associations/interactions may exist
- Let model identify which inputs are important
- Different EDA task may encounter huge number of inputs
- Data mining performance adversely affected by many inputs?
- Possibly exclude inputs not associated with target variable
- Or, use dimension-reduction technique such as principal components analysis.

# Exploring Multiple Numeric Variables (Multivariate Relations)

Scatter Plots

Scatterplot of Day and Evening Minutes by Churn



### Scatter Plots: No apparent relationship



### Scatter Plot: Linear Relationship



### Scatter Plot: Quadratic Relationship



#### **Scatter Plot: Homoscedastic**



As x increases the variance of y does not change

#### **Scatter Plot: Heteroscedastic**



As x increases, the variance of y changes - in this case increases

### More than two variables





### Scatter Plot Matrix of Day Minutes, Day Calls, Day Charge, and Customer Service Calls



# Scatter Plot of Day Minutes and Customer Service Calls Colored by Churn



### Selecting Interesting Subsets of the Data for Further Investigation

- Scatter plots or histograms identify interesting subsets of data
- Top figure shows selection of churners with high day and evening minutes
- Distribution of churn for this subset shown (bottom)
- 43.5% (192/441) of customers having both high day and evening minutes are churners
- This is ~3X churn rate of entire data set





### Using EDA to Uncover Anomalous Fields



- EDA sometimes uncovers anomalous records
- For example, examine distribution of *Area Code* variable
- Area Code used as categorical variable, grouping records geographically
- Attribute contains only three values: 408, 415, and 510
- All area codes located in California
- Is this strange?
- Perhaps not, if all records from California

## Using EDA to Uncover Anomalous Fields (cont'd)



- However, cross-tabulation of Area Code and State shows an anomaly
- Area codes distributed evenly across <u>all states</u>
- Data for attribute likely in error; or *State* attribute may have incorrect values?
- Domain expert should be consulted before including these variables in data mining models

### **Binning**

- Binning categorizes an attribute's numeric (or categorical) values into reduced set of classes
- Makes analysis more convenient
- For example, number of Day Minutes could be binned into "Low", "Medium", and "High" categories
- For example, State values may be binned into regions
- California, Oregon, Washington, Alaska, and Hawaii are categorized as "Pacific"
- Binning defined as both data preparation and data exploration activity
- Various strategies exist for binning numeric variables
- One approach equalizes number of records in each class
- Another partitions values into groups, with respect to target

### Binning (cont'd)



- Recall those with fewer Customer Service Calls have lower churn rate
- For example, bin number of *Customer Service Calls* into "low" and "high" categories
- Figure shows churn rate for "low" class is 11.25% (Top)
- However, those within "high" group have 51.69% churn rate (Bottom)
- Churn rate more than 4X higher

## Dealing with Correlated Variables

- Using highly correlated variables in data model:
  - Should be avoided!
  - Incorrectly emphasizes one or more data inputs
  - Creates model instability and produces unreliable results
  - Matrix plot of Day Minutes, Day Calls, and Day Charge shown in



## **Dealing with Correlated Variables** (cont'd)

- As number of *Day Minutes* increase we expect *Day Charge* to increase
- Example of <u>positive correlation</u>
- Oddly, lack of graphical evidence supports correlation between *Day Minutes* and *Day Calls*, or *Day Calls* and *Day Charge*
- Additionally, r = 0.07 indicating variables uncorrelated
- However, <u>linear relationship</u> exists between Day Charge and Day Minutes
- Day Charge is <u>linear function</u> of Day Minutes

### Strategy for Handling Correlated Variables

- Identify any variables that are perfectly corrected
  - Omit one.

- Identify groups of variables that are correlated with each other
  - Apply dimension reduction methods during the modeling phase

## Dealing with Correlated Variables (cont'd)

#### Regression Analysis: Day Charge versus Day Mins

```
The regression equation is
Day Charge =0.000613 + 0.170 Day Mins

Predictor Coef SE Coef T P
Constant 0.0006134 0.0001711 3.59 0.000
Day Mins 0.170000 0.000001 186644.31 0.000

S = 0.002864 R-Sq = 100.0% R-Sq(adj) = 100.0%
```

- Estimated regression equation shown in Figure 3.3 (Minitab) expresses relationship
  - "Day Charge equals 0.000613 plus 0.17 times Day Minutes"
- Company uses flat-rate billing model of 17 cents/minute
- R-squared statistic = 1.0 ( indicates <u>perfect\_linear\_relationship</u>
- T C D Cl | D AC |

## Dealing with Correlated Variables (cont'd)

- One of two variables should be eliminated from model
- Day Charge arbitrarily chosen for removal
- Evening, Night, and International variable pairs reflect similar results
- Therefore, Evening Charge, Night Charge, and International Charge also removed
- Proceeding to data mining without first eliminating correlated variables may have produced compromised results
- Number of attributes reduced from 20 to 16
- Reduction in dimensionality of solution space beneficial to some data mining algorithms

### Summary

- EDA uncovered some insights into *churn* data set:
  - Four "Charge" fields are linear functions of "Minutes" fields
  - Correlation among remaining numeric attributes "Weak"
  - Area Code and/or State fields anomalous
  - Customers with International Plan churn at higher rate
  - Those in Voice Mail Plan churn less frequently
  - Customers calling customer service 4 or more churn 4X higher than others
  - Customer with high day and evening minutes churn 4X higher rate than others
- These observations performed using EDA only; no data mining applied
- Results can be easily formulated into actionable plan designed to reduce churn rate
- Useful links:
  - https://r4ds.had.co.nz/exploratory-data-analysis.html
  - <a href="https://towardsdatascience.com/exploratory-data-analysis-in-python-c9a7">https://towardsdatascience.com/exploratory-data-analysis-in-python-c9a7</a>
    <a href="mailto:7dfa39ce">7dfa39ce</a>