Properties of LTI Systems

Jose Krause Perin

Stanford University

June 29, 2018

Last lecture

- ▶ A random process is an indexed collection of random variables
- ▶ A random process is strict-sense stationary (SSS) if all its finite-order statistics are time invariant. That's hard to verify in practice.
- ▶ A random process is wide-sense stationary (WSS) if its mean is constant and if its autocorrelation function only depends on the time difference.
- ▶ A random process is ergodic if its time averages are equal to its probability averages
- ► The Fourier transform of the autocorrelation function is called the power spectrum density (PSD). The PSD has units of W/Hz or dBm/Hz.
- ▶ When a random signal is filtered by an LTI system defined by $h[n] \leftrightarrow H(e^{j\omega})$, its autocorrelation function is filtered by an LTI system defined by $h[n] * h^*[-n]$, and its PSD is shaped by $|H(e^{j\omega})|^2$
- Random processes that have PSD constant over all frequencies are called white noise
- ▶ By the central limit theorem, the output of an LTI system to a random input is approximately Gaussian distributed

Today's lecture

Magnitude and Phase Response

Poles, Zeros, and the Frequency Response

All-Pass Systems

Minimum Phase Systems

Linear and Generalized Linear Phase Systems

Magnitude and phase response

Recall that complex exponentials are eigenfunctions of LTI systems

$$LTI\{e^{j\omega n}\} = H(e^{j\omega})e^{j\omega n}$$

 $H(e^{j\omega})$ is the corresponding **eigenvalue** of $e^{j\omega n}$ $H(e^{j\omega})$ tell us by how much the LTI system **scales** and **delays** $e^{j\omega n}$

$$H(e^{j\omega}) = \underbrace{|H(e^{j\omega})|}_{\text{Magnitude}} \exp(j\underbrace{\arg H(e^{j\omega})}_{\text{Phase}}) \tag{polar coordinates}$$

Calculating the output $Y(e^{j\omega})=H(e^{j\omega})X(e^{j\omega})$

$$\begin{split} |Y(e^{j\omega})| &= |H(e^{j\omega})| \cdot |X(e^{j\omega})| & \text{(magnitudes multiply)} \\ &\arg Y(e^{j\omega}) = \arg H(e^{j\omega}) + \arg X(e^{j\omega}) & \text{(phases add)} \end{split}$$

Magnitude and phase response

Phase unwrapping

Calculating the phase $\angle H(e^{j\omega})$ using $\arctan(\cdot)$ leads to discontinuities known as **phase** wrapping, since the image of $\arctan(\cdot)$ is $[-\pi,\pi]$.

Phase unwrapping corrects jumps of $\pm 2\pi$ in the phase response.

Group delay

Definition

$$au_g(\omega) = \operatorname{grd} H(e^{j\omega}) \equiv -\frac{d}{d\omega} \operatorname{arg} H(e^{j\omega})$$
 (group delay)

Group delay measures by how much $e^{j\omega}$ is delayed by the LTI system. In continuous-time, $\tau_g(\omega)$ has units of seconds. In discrete-time, $\tau_g(\omega)$ has units of samples.

Example

If a system has linear phase:

$$argH(e^{j\omega}) = -\omega n_d$$
 (linear phase)

Then, the group delay is constant:

$$au_g(\omega) = -rac{d}{d\omega}(-\omega n_d) = n_d$$
 (constant group delay)

Conclusion: Linear-phase systems delay all frequencies equally.

Consider the <u>causal</u> LTI system defined by the following z-transform

$$H(z) = \left(\frac{(1 - 0.98e^{j0.8\pi}z^{-1})(1 - 0.98e^{-j0.8\pi}z^{-1})}{(1 - 0.8e^{j0.4\pi}z^{-1})(1 - 0.8e^{-j0.4\pi}z^{-1})}\right) \prod_{k=1}^{4} \left(\frac{(c_k^* - z^{-1})(c_k - z^{-1})}{(1 - c_k z^{-1})(1 - c_k^*z^{-1})}\right)^2$$

where $c_k = 0.95e^{j(0.15\pi + 0.02\pi k)}$

It has the following pole-zero plot:

Wrapped and unwrapped phase response

Group delay and magnitude response

Consider the following input signal

Three sinusoidal pulses of frequencies $\omega_1=0.8\pi$, $\omega_2=0.2\pi$, and $\omega_3=0.4\pi$.

Comments:

- ▶ The sinusoidal pulse of frequency $\omega_1=0.8\pi$ was virtually eliminated, since H(z) has a zero at frequency 0.8π .
- ▶ The sinusoidal pulse of frequency $\omega_2 = 0.2\pi$ had a gain of about 1.2, but note that the group delay at that frequency is 150 samples.
- ▶ The sinusoidal pulse of frequency $\omega_3 = 0.4\pi$ had its amplitude doubled, but remained centered around n = 150, since the group delay of H(z) around 0.4π is negligible.
- Interestingly, the effect of the system was to switch the position of the two pulses in time. Note that now, the pulse of frequency $\omega_3=0.4\pi$ comes before the pulse of frequency $\omega_2=0.2\pi$.

Poles and zeros

The **zeros** of H(z) are the values of z for which H(z)=0, while the **poles** of H(z) are the values of z for which $H(z)=\infty$.

For **rational** z-**transforms** (ratio of two polynomials in z^{-1} or z), zeros and poles are the roots of the numerator and denominator polynomials, respectively.

$$H(z) = \frac{B(z)}{A(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{a_0 + a_1 z^{-1} + \dots + a_N z^{-N}}$$
$$= \frac{b_0}{a_0} z^{N-M} \frac{(z - z_1)(z - z_2) \dots (z - z_M)}{(z - p_1)(z - p_2) \dots (z - p_N)}$$

- ▶ If the coefficients $\{b_0, \ldots, b_M\}, \{a_0, \ldots, a_N\}$ are <u>real</u>, the poles and zeros are either <u>real</u> or they appear in complex conjugate pairs
- ▶ H(z) has **finite impulse response (FIR)** if $a_k = 0, k = 1, ...N$ i.e., all poles of H(z) are at the origin.
- \blacktriangleright H(z) has **infinite impulse response (IIR)** if H(z) has poles away from the origin.

Question: How do poles and zeros affect the frequency response?

Effect of a zero: $H(z) = 1 - re^{j\theta}z^{-1}$

Magnitude

$$H(z) = \frac{z - re^{j\theta}}{z}$$

$$|H(e^{j\omega})| = \left| \frac{e^{j\omega} - re^{j\theta}}{e^{j\omega}} \right|$$

$$= \left| \left| \frac{v_1 - v_2}{v_1} \right| \right|$$

$$= \frac{||v_3||}{||v_1||}$$

$$= ||v_3||$$

Question: How do poles and zeros affect the frequency response?

Effect of a zero: $H(z) = 1 - re^{j\theta}z^{-1}$

Phase

$$H(z) = \frac{z - e^{j\theta}}{z}$$

$$\angle H(e^{j\omega}) = \angle \frac{e^{j\omega} - re^{j\theta}}{e^{j\omega}}$$

$$= \angle (e^{j\omega} - re^{j\theta})$$

$$- \angle e^{j\omega}$$

$$= \angle (v_1 - v_2) - \angle v_1$$

$$= \angle v_3 - \omega$$

Effect of a pole:
$$H(z) = \frac{1}{1 - re^{j\theta}z^{-1}}$$

Magnitude

$$\begin{split} H(z) &= \frac{z}{z - re^{j\theta}} \\ |H(e^{j\omega})| &= \left| \frac{e^{j\omega}}{e^{j\omega} - re^{j\theta}} \right| \\ &= \left| \frac{v_1}{v_1 - v_2} \right| \\ &= \frac{||v_1||}{||v_3||} \\ &= \frac{1}{||v_3||} \end{split}$$

Effect of a pole:
$$H(z) = \frac{1}{1 - re^{j\theta}z^{-1}}$$

Phase

$$H(z) = \frac{z}{z - re^{j\theta}}$$

$$\angle H(e^{j\omega}) = \angle \frac{e^{j\omega}}{e^{j\omega} - re^{j\theta}}$$

$$= -\angle (e^{j\omega} - re^{j\theta})$$

$$+ \angle e^{j\omega}$$

$$= -\angle v_3 + \angle v_1$$

$$= -\angle v_3 + \omega$$

Summary of effect of poles and zeros

	Magnitude	Phase
Zero	$ v_3 $	$\angle v_3 - \omega$
Pole	$\frac{1}{ v_3 }$	$-\angle v_3 + \omega$

- As $e^{j\omega}$ approaches a zero, $|H(e^{j\omega})| \to 0$
- ▶ As $e^{j\omega}$ approaches a zero, $\angle |H(e^{j\omega})|$ decreases $(-\omega)$ factor.
- ► At the zero there will be a negative-to-positive sign change of the phase response (**phase** advance) (must account effect of other zeros/poles)
- As $e^{j\omega}$ approaches a pole, $|H(e^{j\omega})| \to \infty$
- As $e^{j\omega}$ approaches a pole, $\angle |H(e^{j\omega})|$ increases ($+\omega$ factor)
- ► At the pole there will be a positive-to-negative sign change of the phase response (**phase lag**) (must account effect of other zeros/poles).

Conclusion: Zeros decrease the magnitude and introduce phase advance (negative group delay), while poles increase magnitude and introduce phase lag (positive group delay)

Example: $H(z) = 1 - 0.9e^{j\pi/4}z^{-1}$

Example: $H(z) = 1 - 0.9e^{j\pi/4}z^{-1}$

Example:
$$H(z) = \frac{1}{1 - 0.9e^{j\pi/4}z^{-1}}$$

Example:
$$H(z) = \frac{1}{1 - 0.9e^{j\pi/4}z^{-1}}$$

Match the pole-zero plots to the magnitude responses

Match the pole-zero plots to the phase responses

Sketch the magnitude and phase responses

Important classes of LTI systems

- All-pass systems
- ► Minimum-phase systems
- ► Linear-phase systems
- ► Generalize linear-phase systems

All-pass systems

Definition

An all-pass system has magnitude response independent of ω :

$$|H(e^{j\omega})| = A = \mathsf{Constant}, \forall \omega$$

This condition is satisfied by systems of the form

$$H_{ap}(z) = \frac{z^{-1} - e_k^*}{1 - e_k z^{-1}} = e_k^* \frac{z - 1/e_k^*}{z - e_k}$$
 pole at $e_k \Longleftrightarrow$ zero at $1/e_k^*$

For every pole inside the unit circle e_k , there's a zero outside the unit circle at the **conjugate** reciprocal $1/e_k^*$ location. More generally,

$$H_{ap}(z) = A \prod_{k=1}^{M_r} \frac{z^{-1} - d_k}{1 - d_k z^{-1}} \prod_{k=1}^{M_c} \frac{(z^{-1} - e_k^*)(z^{-1} - e_k)}{(1 - e_k z^{-1})(1 - e_k^* z^{-1})}$$

 d_k are real poles and e_k, e_k^* are complex conjugate poles.

Causal all-pass systems properties

1. The unwrapped phase is always non-positive (it may be zero)

$$arg(H_{ap}(e^{j\omega})) \le 0, \qquad 0 \le \omega \le \pi$$

2. As a consequence of the above property, the group delay is always non-negative

$$\tau_g = -\frac{d}{d\omega} \arg(H_{ap}(e^{j\omega})) \ge 0, \qquad 0 \le \omega \le \pi$$

All-pass systems: example

$$H_{ap}(z) = \frac{z^{-1} + 0.75}{1 + 0.75z^{-1}} \frac{z^{-1} - 0.5}{1 - 0.5z^{-1}} \frac{(z^{-1} - 0.8e^{-j\pi/4})(z^{-1} - 0.8e^{j\pi/4})}{(1 - 0.8e^{-j\pi/4}z^{-1})(1 - 0.8e^{j\pi/4}z^{-1})}$$

Minimum phase systems

Definition

A <u>causal</u> and <u>stable</u> system is **minimum phase** if all its zeros are inside the unit circle.

As a consequence, if a system H(z) is **minimum phase**, then the system $H^{-1}(z)$ (its inverse) is also causal, stable, and minimum phase.

Properties of minimum phase systems

1. Minimum phase-lag property (the reason they are called minimum phase):

Proof: Since for any H(z) we can write $H(z)=H_{min}(z)H_{ap}(z)$. The phase response is

Conclusion: the systems H(z) and $H_{min}(z)$ have the same magnitude response, but $H_{min}(z)$ has the minimum phase-lag response.

2. Minimum group-delay property: similarly to the property above.

$$\operatorname{grd} H(z) = \operatorname{grd} H_{min}(z) + \operatorname{grd} H_{ap}(z)$$
 (group delays add)
 $\operatorname{grd} H(z) \ge \operatorname{grd} H_{min}(z)$ (from properties of all-pass systems: $\operatorname{grd} H_{ap}(z) \le 0$)

Properties of minimum phase systems

3. **Minimum energy-delay property**: The N first samples of the impulse response of a minimum phase system $h_{min}[m] \leftrightarrow H_{min}(e^{j\omega})$ have more energy than the N first samples of any other system $h[m] \leftrightarrow H(e^{j\omega})$ with same magnitude response. Formally, If $|H_{min}(e^{j\omega})| = |H(e^{j\omega})|$, then

$$\sum_{m=0}^{N-1} |h[m]|^2 \leq \sum_{m=0}^{N-1} |h_{min}[m]|^2, \text{for any } N$$

For proof, see problem 5.71 of the textbook.

Minimum-phase/all-pass decomposition

Any rational system function H(z) can be uniquely decomposed into a cascade of minimum phase system and an all-pass system:

$$H(z) = H_{min}(z)H_{ap}(z)$$

Proof sketch:

Suppose that H(z) has one zero outside the unit circle $1/c^*$. We can remove $1/c^*$ from H(z) by simply writing

$$H(z) = H_1(z)(z^{-1} - c^*)$$

$$= \underbrace{H_1(z)(1 - cz^{-1})}_{\text{minimum phase}} \underbrace{\frac{z^{-1} - c^*}{1 - cz^{-1}}}_{\text{all-pass}}$$

Since |c| < 1, the factor $H_1(z)(1-cz^{-1})$ is also minimum phase and it differs from H(z) only in that the zero of H(z) that was outside the unit circle at $z=1/c^*$ is reflected inside the unit circle to the conjugate reciprocal location z=c.

This proof can be easily extended if H(z) has more than one zero outside the unit circle.

Algorithm for minimum-phase/all-pass decomposition

Given a non-minimum phase system H(z), we wish to find a minimum phase system $H_{min}(z)$ and an all-pass system $H_{ap}(z)$ such that

$$H(z) = H_{min}(z)H_{ap}(z)$$

- 1. Write $H_1(z)$, which contains all zeros and poles of H(z) that are inside the unit circle.
- 2. For each zero $1/c^*$ of H(z) outside the unit circle, add a zero to $H_1(z)$ at the conjugate reciprocal location c. And add the term $\frac{z^{-1}-c^*}{1-cz^{-1}}$ to the all-pass system.
- 3. By convention, we make $|H_{ap}(z)|=1$, so the gain of $H_{min}(z)$ at zero frequency must be equal to the gain of H(z).

Example of minimum-phase/all-pass decomposition

Consider the non-minimum phase system

$$H(z) = \frac{(1 + \frac{3}{2}e^{j\pi/4}z^{-1})(1 + \frac{3}{2}e^{-j\pi/4}z^{-1})}{1 - \frac{1}{3}z^{-1}}$$

Implications of minimum-phase/all-pass decomposition

Suppose we want to design $H_d(z)$ to compensate for the effects of H(z).

Ideally, we'd like to have $H_d(z) = H^{-1}(z)$. But what if $H^{-1}(z)$ is <u>unstable</u>?

$$H_d(z) = H_{min}^{-1}(z)$$

Design $H_d(z)$ to compensate for the minimum phase system. $H_{min}^{-1}(z)$ is guaranteed to be stable.

This choice of $H_d(z)$ compensates for the magnitude, but there'll still be an uncompensated phase distortion introduced by $H_{ap}(z)$. Oftentimes that's good enough.

Relation between magnitude and phase plots

Question: given the magnitude response $|H(e^{j\omega})|$ of a <u>causal</u> system, what can we tell about its phase response $\arg H(e^{j\omega})$?

For minimum phase systems, the magnitude response perfectly describes the phase response.

Kramers-Kronig relations

For any <u>real</u> and <u>causal</u> system defined by $h(t) \leftrightarrow H(j\Omega) = H_r(j\Omega) + jH_i(j\Omega)$, where $H_r(j\Omega) = \operatorname{Re}\{H(j\Omega)\}$ and $H_i(j\Omega) = \operatorname{Im}\{H(j\Omega)\}$, the **Kramers-Kronig relations** establish that

$$H(j\Omega) = H_r(j\Omega) - j\mathcal{H}\{H_r(j\Omega)\},\$$

where $\mathcal{H}\{\cdot\}$ is the **Hilbert transform**.

Conclusion: The imaginary part of $H(j\Omega)$ is determined from the Hilbert transform of the real part. Knowing just the real part is sufficient to completely specify the system, and the imaginary part is "redundant" information.

- ▶ $H_r(j\Omega)$ is the Fourier transform of the even part of the impulse response, and $H_i(j\Omega)$ is the Fourier transform of the odd part of the impulse response (recall even/odd decomposition from lecture 1)
- ► Causality check: compare the imaginary part of the frequency response with the Hilbert transform of the real part.
- ▶ All physical systems are causal, so the Kramers-Kronig relations apply to all physical LTI systems.

The Hilbert transform

The Hilbert transform of a signal x(t) is defined as

$$\mathcal{H}\{x(t)\} = h_{HT}(t) * x(t),$$

where

$$h_{HT}(t) = \begin{cases} \frac{1}{\pi t}, & t \neq 0\\ 0, & t = 0 \end{cases}$$

$$\mathcal{F}\{h_{HT}(t)\} = H_{HT}(\Omega) = -j\operatorname{sign}(\Omega) = \begin{cases} -j, & \Omega > 0\\ 0, & \Omega = 0\\ j, & \Omega < 0 \end{cases}$$

More generally, the Hilbert transform is an operation over a function of some variable. If that function is $H(j\Omega)$ we would have

$$\mathcal{H}\{H(j\Omega)\} = h_{HT}(\Omega) * H(j\Omega)$$

Relating magnitude and phase responses

$$H(e^{j\omega}) = |H(e^{j\omega})| \exp(j \arg(H(e^{j\omega})))$$

$$\ln H(e^{j\omega}) = \underbrace{\ln |H(e^{j\omega})|}_{\text{real}} + j \underbrace{\arg(H(e^{j\omega}))}_{\text{imaginary}}$$
 (taking \ln of both sides)

Now we could use the Kramers-Kronig relation to obtain

$$\arg(H(e^{j\omega})) = -\mathcal{H}\{\ln|H(e^{j\omega})|\}$$

The Kramers-Kronig relations only hold if $\ln H(e^{j\omega})$ is <u>causal</u>. It turns out that if $H(e^{j\omega})$ is <u>minimum phase</u>, then $\ln H(e^{j\omega})$ is causal and we can apply the Kramers-Kronig relation. **Conclusion:** The phase response of a minimum phase system is related to the log-magnitude by the Hilbert transform. Recall from the minimum phase/all-pass decomposition

$$H(e^{j\omega}) = H_{min}(e^{j\omega})H_{ap}(e^{j\omega})$$
$$|H(e^{j\omega})| = |H_{min}(e^{j\omega})| |H_{ap}(e^{j\omega})|^{-1}$$

Therefore, if we apply the above procedure to a non-minimum phase system H(z), we will recover the phase of its minimum phase component $H_{min}(z)$.

Linear-phase systems

Definition

$$H(e^{j\omega}) = |H(e^{j\omega})|e^{-j\omega\alpha}$$

The phase is a linear function of ω : $\arg H(e^{j\omega}) = -\alpha\omega$. Consequently, the group delay is constant: $\gcd H(e^{j\omega}) = \alpha$.

This definition of linear-phase systems fails to include simple cases. **Example:** When $H(e^{j\omega})$ is purely real, changes of sign in $H(e^{j\omega})$ cause jumps of $\pm \pi$ in $\operatorname{grd} H(e^{j\omega})$. Hence, those systems are not strictly linear phase.

Generalized linear phase systems

Definition

$$H(e^{j\omega}) = |H(e^{j\omega})|e^{-j\omega\alpha+j\beta}$$

a term β is added to account for constant phase changes. The phase function is now affine.

$$\arg H(e^{j\omega}) = \beta - \alpha\omega, 0 < \omega < \pi$$
 (phase)
$$\gcd H(e^{j\omega}) = \alpha$$
 (group delay)

Ideal delay

Consider the system with frequency response

$$H(e^{j\omega}) = e^{-j\alpha\omega}, 0 \le \omega \le \pi$$
 (ideal delay)

If α is integer:

$$h[n] = \delta[n-\alpha] \tag{from DTFT delay property)}$$

If α is not integer:

$$h[n] = \frac{\sin \pi (n - \alpha)}{\pi (n - \alpha)} = \operatorname{sinc}(n - \alpha)$$

What does not integer delay mean?

Ideal delay

If $\boldsymbol{\alpha}$ is integer, delay corresponds to shifting samples.

Ideal delay

If α is not integer, delay corresponds to *resampling*. Other samples are used to interpolate signal to obtain the value at the non-integer instants.

Interpretation of non-integer delay

These two systems are equivalent.

Causal FIR Linear-phase systems

Types I & II: even symmetry

$$h[M-n]=h[n], 0\leq n\leq M$$
 (even symmetry)
$$H(e^{j\omega})=A_e(e^{j\omega})e^{-j\omega M/2}$$
 (Delay of $M/2$)
$$A_e(e^{j\omega})=A_e(e^{-j\omega})$$
 (due to even symmetry)

Type I: M even, integer delay

Type II: M odd, half sample delay

FIR Linear-phase systems

Types III & IV: odd symmetry

$$h[M-n]=-h[n], 0\leq n\leq M$$
 (odd symmetry)
$$H(e^{j\omega})=jA_o(e^{j\omega})e^{-j\omega M/2}$$
 (Delay of $M/2$)
$$A_o(e^{j\omega})=-A_o(e^{-j\omega})$$
 (due to odd symmetry)

Type IV: M odd, half sample delay

Type III: M even, integer delay

M = 1

Summary of linear phase FIR systems

	Even symmetry	Odd symmetry
\overline{M} even	Type I	Type III
		zeros at $z=\pm 1$
$\overline{\ \ }M$ odd	Type II	Type IV
	zeros at $z=-1$	zeros at $z=+1$
	$H(z^{-1}) = z^M H(z)$	$H(z^{-1}) = -z^M H(z)$

Question from midterm 2014

- 1. Which systems are FIR?
- 2. Which ones are stable?
- 3. Which ones are *likely* all-pass?
- 4. Which ones are minimum-phase?
- 5. Which ones are *likely* linear phase systems?
- 6. Which ones could be Type II lowpass linear phase systems?
- 7. Which ones likely have highpass frequency response?

Summary

- ► The frequency response of a system tell us how much each frequency was scaled (magnitude response), and delayed (phase response) by the system.
- ▶ Poles increase magnitude and introduce phase lag (positive group delay)
- Zeros decrease the magnitude and introduce phase lead (negative group delay)
- ▶ All-pass systems have constant magnitude response. For each pole at e_k , there will be a zero at $1/e_k^*$ (conjugate reciprocal)
- Minimum phase systems have all zeros inside the unit circle. Hence, its inverse is stable.
- ► Any system can be decomposed into a cascade of a minimum phase system and an all-pass system
- ► For minimum phase systems, the phase response is given by the Hilbert transform of the log-magnitude response.
- ▶ The phase response of a generalized linear phase systems is an affine function
- ▶ FIR systems are linear phase as long as their impulse response is symmetric
- Linear phase rational IIR systems do not exist