Question number	Scheme	Marks
8(a)	$x^3 + 3x^2y + 3xy^2 + y^3$	B1 [1]
(b)	$\alpha + \beta = -\frac{3}{2}$ and $\alpha\beta = \frac{4}{2}$ oe	B1
	$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$	M1
	$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta)$ $\left("-\frac{3}{2}"\right)^{3} - 3("2")\left("-\frac{3}{2}"\right) \qquad \text{oe}$	dM1
	$\frac{45}{8}$ oe	A1 [4]
(c)	$\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2} =$	
	$\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2} = \frac{\alpha^3 + \beta^3}{\alpha^2 \beta^2} = \frac{\binom{45}{8}}{2^2}$	M1
	$\frac{\alpha}{45}$ oe $\frac{45}{32}$ oe	A1ft
	$\frac{\alpha}{\beta^{2}} \times \frac{\beta}{\alpha^{2}} = \frac{1}{\alpha\beta} = \frac{1}{2'}$ $\frac{1}{2} \text{ oe}$ $x^{2} - \frac{45}{32}x + \frac{1}{2}(=0)$	
	$\frac{1}{2}$ oe	B1ft
	$x^{2} - \frac{45}{32}x + \frac{1}{2}(=0)$	M1
	$32x^2 - 45x + 16 = 0 \text{oe}$	A1 [5]
	To	tal 10 marks

Part	Mark	Additional Guidance
(a)	B1	For the correct expansion simplified or un-simplified.
		For example, allow $x^3 + 2x^2y + x^2y + xy^2 + 2xy^2 + y^3$
(b)	B1	Product and sum both correct, written explicitly or used later in working.
	M1	An attempt to rearrange their expression from part (a) to achieve as a minimum
		$\alpha^3 + \beta^3 = (\alpha + \beta)^3 \pm 3\alpha\beta(\alpha + \beta)$
		Note: Accept alternative algebraic arrangements of $\alpha^3 + \beta^3$ but please check
		carefully that the algebra is correct.
	dM1	Substitution of their sum and product into an expression which must be of the form
		$(\alpha+\beta)^3\pm 3\alpha\beta(\alpha+\beta)$
		Note: If they substitute correctly into alternative arrangements check that they are correct.
	A1	For $\frac{45}{8}$ oe
(-)	N/1	8
(c)	M1	Correct algebra to obtain $\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2} = \frac{\alpha^3 + \beta^3}{\alpha^2 \beta^2}$ and substitution of their values for the sum
		p 3. 9. p
		and product.
	A1ft	45
		For $\frac{45}{32}$ oe
		Note: only follow through their values for product and sum into correct algebra .
	B1ft	For the correct algebra and substitution of their $\alpha\beta = 2$ to obtain
		$\alpha \beta 1 1 $
		$\frac{\alpha}{\beta^2} \times \frac{\beta}{\alpha^2} = \frac{1}{\alpha\beta} = \frac{1}{2}$ ft their $\alpha\beta$
	M1	Use of their sum and product to correctly form an expression as shown,
		$x^2 - \frac{45}{32}x + \frac{1}{2}(=0)$
		$\begin{bmatrix} x & 32 & 1 & 2 & (-6) \end{bmatrix}$
		Allow missing = 0 for this mark or even = y for this mark.
	A1	Correct equation or any multiple of it, for example, $64x^2 - 90x + 32 = 0$
		The coefficients, must be integers.
	ALT Starts with $\left(x - \frac{\alpha}{\beta^2}\right) \left(x - \frac{\beta}{\alpha^2}\right) = 0 \Rightarrow x^2 - x \left(\frac{\beta}{\alpha^2} + \frac{\alpha}{\beta^2}\right) + \frac{\beta}{\alpha^2} \times \frac{\alpha}{\beta^2} = 0$	
		$(\beta^2)(\alpha^3)$ $(\alpha^3\beta^2)(\alpha^3\beta^2)$
		Correct algebra to obtain $\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2} = \frac{\alpha^3 + \beta^3}{\alpha^2 \beta^2}$ and substitution of their values for the sum
	M1	eta^2 $lpha^2$ $lpha^2$ $lpha^2eta^2$
		and product.
	Alft	For $\frac{45}{32}$ oe
	AIII	Note: only follow through their values for product and sum into correct algebra.
		For the correct algebra and substitution of their $\alpha\beta = 2$ to obtain
	B1ft	$\frac{\alpha}{\beta^2} \times \frac{\beta}{\alpha^2} = \frac{1}{\alpha\beta} = \frac{1}{2!} \text{ ft their } \alpha\beta$
	λ // 1	For $x^2 - x\left(\frac{45}{32}\right) + \frac{1}{2} = 0$
	M1	
		Accept this expression on it's own or even = y for this mark
	A1	Correct equation or any multiple of it, for example, $64x^2 - 90x + 32 = 0$ The coefficients, must be integers.
<u> </u>		The coefficients, must be integers.