Tutorial 6 STAT 150

Exercise 1 (Question 4 of the midterm)

Let (X_n) be a branching process with $X_0 = 1$ and offspring distribution ξ

- (a) Find $\mathbb{E}[X_n]$ and then use it to calculate the mean of the total population $\sum_{n=0}^{\infty} X_n$.
- (b) Let $p \in (0,1)$, and denote q = 1 p. Consider the Markov chain $(Y_n: n \ge 0)$ on state space $S = \{0, 1, 2, \dots\}$ with transition probabilities

$$p_{i,j} = \left\{ \begin{array}{ll} qp^j & \text{if } i=0, j \geq 0 \\ qp^{j-i+1} & \text{if } i \geq 1, j \geq i-1 \end{array} \right.$$

and all other $p_{i,j} = 0$. Using a "slowed down" version of a branching process, determine the values of p for which (Y_n) is transient, null recurrent or positive recurrent.

(c) For p such that (Y_n) is positive recurrent, find the long run proportion of time spent in state 1.

Exercise 2

Customers arrive at a store according to a Poisson process with rate λ . Each customer remains in the store for an amount of time that is distributed as an exponential random variable with rate μ , independently of all other customers. Let t=0 be the time when the store opens (at which point there are not yet any customers in the store). Let N_t be the number of customers that have arrived by time t and S_t the number of customers in the store at time t.

- (a) Given that the first customer arrives at time t=1, find the expected number of customers which arrive by t = 2.
- (b) Find $\mathbb{E}[S_t|N_t]$ and then use this to compute $\mathbb{E}[S_t]$, the expected number of customers in the store at time t.

Exercise 3

Let X(t) be a Poisson process of rate λ , and W_n the time of the nth event.

Find the joint distribution of W_1 and W_2 .