Neurotech/ML	Stuff (best read in-order):
☐ Speed	h Recognition with RNNs: https://arxiv.org/pdf/1303.5778.pdf
0	Using only audio, not EMG
0	Bidirectional end-to-end LSTM RNNs + CTC
	 Long Short-term Memory (LSTM) - used for context/memory in longer
	sequences
	■ Bidirectional Recurrent Neural Network (RNN) - layers feed forward but
	also backward, used for sequences
	 Connectionist Temporal Classification (CTC) - type of loss function for
	training RNNs
0	Achieved 17.7% error rate on TIMIT
☐ EMG-I	JKA Data Corpus:
https://	www.researchgate.net/publication/271824674 The EMG-UKA Corpus for Elect
romyo	graphic Speech Processing
0	Two datasets, full one has 7:32 hours of data (452 minutes), trial version has
	1:52 hours of data (112 minutes)
0	Has EMG readings of audible, whispered, and silent reading
0	Includes audio, transcription, and (badly) aligned phonemes
0	https://www.kaggle.com/datasets/xabierdezuazo/emguka-trial-corpus
☐ End-to	end with Subvocal Speech:
http://v	www.pamelatoman.net/wp/wp-content/uploads/2018/06/subvocal_speech_recogni
ion_pa	<u>aper.pdf</u>
Ο	Uses EMG-UKA data corpus
0	Uses LSTM RNNs + CTC in a similar way to Paper #1
Ο	Attempted data augmentation, but no significant improvement
0	Achieved 70.2% character error rate on EMG-UKA
☐ Attenti	on is All You Need: https://arxiv.org/pdf/1706.03762.pdf
0	■ Transformer Neural Networks - EXPLAINED! (Attention is all you need)
0	Transformers are incredible for sequence-to-sequence, examples include:
	■ GPT-3 Stable Diffusion Whisper Gato

 $\circ\quad$ Typically much more accurate and faster to train than RNN/LSTM architecture

Whisper: https://cdn.openai.com/papers/whisper.pdf		
	0	Transformer model that transcribes audio to text
	TEMO	GNet: https://arxiv.org/pdf/2109.12379.pdf
	0	Transformer model using sEMG (surface EMG) for hand gesture recognition
	0	~80% accuracy on 18 classes
☐ ViT: https://ieeexplore.ieee.org/document/9834070		
	0	Seems to be better than TEMGNet
	0	~90% accuracy on 18 classes (same dataset as TEMGNet)

Extra:

- https://link.springer.com/article/10.1007/s41133-016-0001-z
- Transformers for Image Recognition at Scale: https://arxiv.org/pdf/2010.11929.pdf
- EEG based Continuous Speech Recognition using Transformers: https://arxiv.org/pdf/2001.00501.pdf

Transformer Implementation Tutorials:

Transformers in Keras:

■ Introduction to Attention, Transformers and NLP in Keras

Transformers in PyTorch (2 yrs ago):

Pytorch Transformers from Scratch (Attention is all you need)

Transformers in PyTorch (6 months ago):

■ Transformer: Concepts, Building Block, Attention, Sample Implementation in PyTorch

Transformers in PyTorch (Recent Paper by Microsoft):

https://paperswithcode.com/paper/torchscale-transformers-at-scale

GPT (Generative Pretrained Transformer) in PyTorch (very recent)

■ Let's build GPT: from scratch, in code, spelled out.