성균관대학교 소프트웨어학과 이 지 형

Sequential Data Modeling

Sequential Data

- Most of data are sequential
- Speech, Text, Image, ...

Deep Learnings for Sequential Data

- Convolutional Neural Networks (CNN)
 - Try to find local features from a sequence
- Recurrent Neural Networks: LSTM, GRU
 - Try to capture the feature of the past

Sequential Data Processing

What is sequential data?

What do we have to consider for sequential data processing?

$$h_t = f(Ux_t + Wh_{t-1})$$
$$y_t = g(Vh_t)$$

- $\rightarrow x_t$: input at time t
- h_t : hidden state at time t
- f: is an activation function
- **▶** U, V, W: network parameters
 - ▶ RNN shares the same parameters across all time steps
- g. activation function for the output layer

Recap: Regular NN

Training Data

 (x_1, y_1)

 (x_2, y_2)

 (x_3, y_3)

 (x_4, y_4)

 (x_5, y_5)

$$h_t = f(Ux_t)$$

$$y_t = g(Vh_t)$$

Connections form cycles

Training Data

$$(x_1, y_1)$$

$$(x_2, y_2)$$

$$(x_3, y_3)$$

$$(x_4, y_4)$$

$$(x_5, y_5)$$

$$h_t = f(Ux_t + Wh_{t-1})$$
$$o_t = g(Vh_t)$$

$$h_t = f(Ux_t + Wh_{t-1})$$
$$y_t = g(Vh_t)$$

$$h_t = f(Ux_t + Wh_{t-1})$$
$$y_t = g(Vh_t)$$

Connections form cycles

Training Data (x_1, y_1)

 (x_2, y_2)

 (x_3, y_3)

 (x_4, y_4) (x_5, y_5)

$$h_t = f(Ux_t + Wh_{t-1})$$
$$y_t = g(Vh_t)$$

Connections form cycles

Training Data

$$(x_1, y_1)$$

$$(x_2, y_2)$$

$$(x_3, y_3)$$

$$(x_4, y_4)$$

$$(x_5, y_5)$$

$$h_t = f(Ux_t + Wh_{t-1})$$
$$y_t = g(Vh_t)$$

$$h_t = f(Ux_t + Wh_{t-1})$$
$$y_t = g(Vh_t)$$

Long Term Dependency

- $\rightarrow x_1 \sim x_{t-1}$ are encoded into h_{t-1}
- h_{t-1} has the information on the past
- ightharpoonup It is a context to process x_t

Fully-Connected NN

- Long Term Dependency of Standard RNN
 - However, it may exponentially decade or grow
 - Usually, it is limited to 10 steps

- Capable of learning long-term dependencies.
 - LSTM networks introduce a new structure called a memory cell
 - ▶ An LSTM can learn to bridge time intervals in excess of 1000 steps
 - ▶ Gate units that learn to open and close access to the past
 - Input gate
 - Forget gate
 - Output gate
 - Neuron with a self-recurrent

Equations

- i: input gate
- f: forget gate
- o: output gate
- ▶ g: self-recurrent
- $ightharpoonup c_t$: internal memory
- h_t : hidden state
- y: final output

$$i = \sigma(x_t U^i + h_{t-1} W^i)$$

$$f = \sigma(x_t U^f + h_{t-1} W^f)$$

$$o = \sigma(x_t U^o + h_{t-1} W^o)$$

$$g = \tanh(x_t U^g + h_{t-1} W^g)$$

$$c_t = c_{t-1} \circ f + g \circ i$$

$$h_t = \tanh(c_t) \circ o$$

$$y = softmax(Vh_t)$$

Gradient Flow

Gradient Flow

Uninterrupted Gradient Flow

Similar to ResNet!

- Training Data
 - Usually, samples are preprocessed in a fixed length

$$(x_{1}, y_{1})$$

$$(x_{2}, y_{2})$$

$$(x_{3}, y_{3})$$

$$(x_{4}, y_{4})$$

$$(x_{5}, y_{5})$$

$$(x_{6}, y_{6})$$

$$(x_{7}, y_{7})$$

$$(x_{8}, y_{8})$$

$$(x_{1}x_{2}x_{3}x_{4}, y_{4})$$

$$(x_{2}x_{3}x_{4}x_{5}, y_{5})$$

$$(x_{3}x_{4}x_{5}x_{6}, y_{6})$$

$$(x_{4}x_{5}x_{6}x_{7}, y_{7})$$

$$(x_{5}x_{6}x_{7}x_{8}, y_{8})$$
...

Training

Samples are trained with a fixed length of RNN

$$(x_{1}x_{2}x_{3}x_{4}, y_{4})$$

$$(x_{2}x_{3}x_{4}x_{5}, y_{5})$$

$$(x_{3}x_{4}x_{5}x_{6}, y_{6})$$

$$(x_{4}x_{5}x_{6}x_{7}, y_{7})$$

$$(x_{5}x_{6}x_{7}x_{8}, y_{8})$$

$$E = (y - o)^2$$

Training

$$x_1x_2x_3\cdots x_n\to y$$

$$E = (y - o)^2$$

Training

Structure

$$r_t = \sigma(W_{xr}x_t + W_{hr}h_{t-1} + b_r)$$

$$z_t = \sigma(W_{xz}x_t + W_{hz}h_{t-1} + b_z)$$

$$\tilde{h}_t = \tanh(W_{xh}x_t + W_{hh}(r_t \odot h_{t-1}) + b_h)$$

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \tilde{h}_t$$

Question and Answer