

With the inverted dropout technique, at test time:

- You apply dropout (randomly eliminating units) but keep the 1/keep_prob factor in the calculations used in training.
- You apply dropout (randomly eliminating units) and do not keep the 1/keep_prob factor in the calculations used in training
 - You do not apply dropout (do not randomly eliminate units), but keep the 1/keep_prob factor in the calculations used in training.
- You do not apply dropout (do not randomly eliminate units) and do not keep the 1/keep_prob factor in the calculations used in training

Correct

Question 8/10

✓ 1.00/1.00 points		
from (sing the parameter keep_prob say) 0.5 to 0.6 will likely cause llowing: (Check the two that	
	Increasing the regularization effect	
	Reducing the regularization effect	
	Causing the neural network to end up with a higher training set error	
	Causing the neural network to end up with a lower training set error	

Question 9/10

✓ 1.00/1.00 points		
Which of these techniques are useful for reducing variance (reducing overfitting)? (Check all that apply.)		
Exploding gradient		
L2 regularization		
Xavier initialization		
Data augmentation		
Vanishing gradient		
Gradient Checking		

Question 10/10

Why do we normalize the inputs x?

- It makes it easier to visualize the data
- It makes the parameter initialization faster
- Normalization is another word for regularization--It helps to reduce variance
- It makes the cost function faster to optimize

NEXT ITEM

Question 6/10

✓ 1.00/1.00 points

What happens when you increase the regularization hyperparameter lambda?

- Weights are pushed toward becoming smaller (closer to 0)
- Weights are pushed toward becoming bigger (further from 0)
- Doubling lambda should roughly result in doubling the weights
- Gradient descent taking bigger steps with each iteration (proportional to lambda)

Question 5/10

1.00/1.00 points

What is weight decay?

- Gradual corruption of the weights in the neural network if it is trained on noisy data.
- The process of gradually decreasing the learning rate during training.
- A technique to avoid vanishing gradient by imposing a ceiling on the values of the weights.
- A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration.

Question 4/10

1.00/1.00 points

You are working on an automated check-out kiosk for a supermarket, and are building a classifier for apples, bananas and oranges. Suppose your classifier obtains a training set error of 0.5%, and a dev set error of 7%. Which of the following are promising things to try to improve your classifier? (Check all that apply.)

Increase the regularization parameter lambda

Decrease the regularization parameter lambda

Get more training data

Question 3/10

✓ 1.00/1.00 points		
seems follow	r Neural Network model s to have high bias, what of the ring would be promising things ? (Check all that apply.)	
	Add regularization	
	Get more test data	
	Get more training data	
	Make the Neural Network deeper	
	Increase the number of units in each hidden layer	

Question 2/10

The dev and test set should:

- Come from the same distribution
- Come from different distributions
- Be identical to each other (same (x,y) pairs)
- Have the same number of examples

Question 1/10

✓ 1.00/1.00 points

If you have 10,000,000 examples, how would you split the train/dev/test set?

- 98% train . 1% dev . 1% test
- 33% train . 33% dev . 33% test
- 60% train . 20% dev . 20% test