5、ROS+OpenCV application

5、ROS+OpenCV application

5.1、Overview

5.2、Usage

5.2.1、Start up

5.2.2、显示方法

5.2.3 Effect show

5.3、Node

5.3.1、Edge detection algorithm

5.3.2、Contour moment

5.3.3 Face recognition

5.1. Overview

wiki: http://wiki.ros.org/opencv apps

Source code: https://github.com/ros-perception/opencv apps.git

Function package path: ~/software/transbot_library/src/opencv_apps

Code reference: https://github.com/ltseez/opencv/tree/master/samples/cpp

opencv_apps provides various nodes that run internally OpenCV's functionalities and publish the result as ROS topics. With opencv_apps, you can skip writing OpenCV application codes for a lot of its functionalities by simply running a launch file that corresponds to OpenCV's functionality you want.

Contents

- 1. Introduction, usage
- 2. Edge Detection Nodes
 - edge_detection
 - 2. hough_lines
 - hough_circles
- 3. Structual Analysis Nodes
 - find_contours
 - 2. convex_hull
 - 3. general_contours
 - 4. contour_moments
- 4. People/Face Detection Nodes
 - 1. face_detection
 - 2. face_recognition
 - 3. people_detect
- 5. Motion Analysis Nodes
 - 1. goodfeature_track
 - 2. camshift
 - 3. fback_flow
 - 4. lk_flow
 - 5. phase_corr
 - 6. simple_flow
- 6. Object Segmentaion Nodes
 - 1. segment_objects
 - 2. watershed segmentation
- 7. Image Filter Nodes
 - 1. rgb_color_filter
 - 2. hls_color_filter
 - 3. hsv_color_filter
- 8. Simple Image Processing Nodes
 - 1. adding_images

5.2、Usage

5.2.1、Start up

Step 1: Start the camera

roslaunch transbot_visual opencv_apps.launch camDevice:=Astra

【camDevice】: ORBBEC camera is 【Astra】, High frame rate camera【USBCam】; The default is 【USBCam】

If the webpage cannot be viewed, check if there is no [web_video_server] node, if not, you need to run the following command.

rosrun web_video_server web_video_server

Step 2: Start the function of Opencv_apps

roslaunch opencv_apps face_recognition.launch # Face recognition
roslaunch opencv_apps corner_harris.launch # harris corner

detection
roslaunch opencv_apps camshift.launch # Target tracking
algorithm
roslaunch opencv_apps contour_moments.launch # Contour moment
roslaunch opencv_apps convex_hull.launch # Polygon outline

```
roslaunch opencv_apps discrete_fourier_transform.launch # Discrete Fourier
Transform Algorithm
roslaunch opencv_apps edge_detection.launch
                                                        # Edge detection
algorithm
roslaunch opencv_apps face_detection.launch
                                                        # Face detection
algorithm
roslaunch opencv_apps fback_flow.launch
                                                        # Optical flow
detection algorithm
roslaunch opencv_apps find_contours.launch
                                                        # Contour detection
roslaunch opencv_apps general_contours.launch
                                                        # General contour
detection
roslaunch opencv_apps goodfeature_track.launch
                                                        # Feature point
tracking
roslaunch opencv_apps hls_color_filter.launch
                                                        # HLS color filter
roslaunch opencv_apps hough_circles.launch
                                                        # Hough circle
detection
roslaunch opencv_apps hough_lines.launch
                                                        # Hough line detection
roslaunch opencv_apps hsv_color_filter.launch
                                                        # HSV color filter
                                                        # LK optical flow
roslaunch opencv_apps lk_flow.launch
algorithm
                                                         # Human detection
roslaunch opencv_apps people_detect.launch
algorithm
roslaunch opencv_apps phase_corr.launch
                                                         # Phase correlation
displacement detection
roslaunch opencv_apps pyramids.launch
                                                         # Image pyramid
sampling algorithm
roslaunch opencv_apps rgb_color_filter.launch
                                                        # RGB color filtering
                                                        # Clear background
roslaunch opencv_apps segment_objects.launch
detection algorithm
roslaunch opencv_apps simple_flow.launch
                                                         # Simplified optical
flow algorithm
roslaunch opencv_apps smoothing.launch
                                                         # Simple filter
roslaunch opencv_apps threshold.launch
                                                        # Threshold image
processing
roslaunch opencv_apps watershed_segmentation.launch
                                                      # Watershed
segmentation algorithm
```

Almost every function case will have a parameter [debug_view], boolean type, whether to use Opency to display the picture, it is displayed by default.

If you don't need to display it, set it to [False], for example

```
roslaunch opencv_apps contour_moments.launch debug_view:=False
```

5.2.2、显示方法

rqt_image_view

Enter the following command to select the corresponding topic

```
rqt_image_view
```

opencv

The system displays it by default.

Web view

192.168.2.102:8080

5.2.3、Effect show

• Optical flow detection algorithm

Move the screen and observe the phenomenon.

• Feature point tracking

Hough circle detection

• Hough line detection

The lower the threshold, the more lines there are, and the more easily the picture gets stuck.

• Phase correlation displacement detection

The faster the camera moves, the larger the radius of the circle.

• Watershed segmentation algorithm

Use the mouse to select different objects, the system automatically distinguishes them.

5.3, Node

5.3.1、Edge detection algorithm

Parameter	Туре	Default	Analyze
~use_camera_info	bool	true	Subscribe to the topic [camera_info] to get the default coordinate system ID, otherwise use the image information directly.
~debug_view	bool	false	Whether to create a window to display the node image
~edge_type	int	0	Specify the edge detection method: 0: Sobel operator, 1: Laplacian operator, 2: Canny edge detection
~canny_threshold1	int	100	Specify the second canny threshold
~canny_threshold2	int	200	Specify the first canny threshold
~apertureSize	int	3	The aperture size of the Sobel operator.
~apply_blur_pre	bool	True	Whether to apply blur() to the input image
~postBlurSize	double	3.2	Input image aperture size
~apply_blur_post	bool	False	Whether to apply GaussianBlur() to the input image
~L2gradient	bool	False	Parameters of canny
~queue_size	int	3	Queue size

5.3.2. Contour moment

Parameter	Туре	Default	Analyze
~use_camera_info	bool	true	Subscribe to the topic [camera_info] to get the default coordinate system ID, otherwise use the image information directly.
~debug_view	bool	false	Whether to create a window to display the node image
~canny_low_threshold	int	0	Canny edge detection low threshold
~queue_size	int	3	Queue size

5.3.3、Face recognition

Parameter	Туре	Default	Analyze
~approximate_sync	bool	false	Subscribe to the topic [camera_info] to get the default coordinate system ID, otherwise use the image information directly.
~queue_size	int	100	Queue size for subscribed topics
~model_method	string	"eigen"	Face recognition method: "eigen", "fisher" or "LBPH"
~use_saved_data	bool	true	Load training data from the ~data_dir path
~save_train_data	bool	true	Save the training data to the ~data_dir path for retraining
~data_dir	string	"~/opencv_apps/face_data"	保存训练数据路径
~face_model_width	int	190	Train the width of the face image
~face_model_height	int	90	Training the height of the face image
~face_padding	double	0.1	Fill ratio of each face
~model_num_components	int	0	The number of components of the face recognizer model (0 is considered unlimited)
~model_threshold	double	8000.0	Face recognition model threshold
~lbph_radius	int	1	Radius parameter (only applicable to LBPH method)
~lbph_neighbors	int	8	Neighborhood parameters (only applicable to LBPH method)
~lbph_grid_x	int	8	Grid x parameters (only applicable to LBPH method)
~lbph_grid_y	int	8	Grid y parameter (only applicable to LBPH method)

Parameter	Туре	Default	Analyze
~queue_size	int	100	Image subscriber queue size

Steps:

- 1. First, after the colon in the figure below, enter the character's name: Yahboom
- 2. Confirm name: y
- 3. Then place the face in the center of the image and click OK.
- 4. Cycle to add a photo: y, click to confirm.
- 5. To end the picture collection, enter: n and click to confirm.
- 6. Close the launch file and restart.

If you need to enter the recognition, cycle 1~5 in turn until all the recognition personnel are entered, and then perform step 6.

```
face_recognition_trainer.py
Please input your name and press Enter: Yahboom
Your name is Yahboom. Correct? (y/n): y
Please stand at the center of the camera and press Enter:
taking picture...
One more picture? (y/n): y
taking picture...
One more picture? [y/n]:
```

Step 3: Ensure that the face can be recognized

Recognition effect

