Lecture 3: Multivariate smoothing & model selection

The story so far...

- How GAMs work
- How to include detection info
- Simple spatial-only models

Life isn't that simple

- Which enivronmental covariates?
- Which response distribution?
- Which response?

How to select between possible models?

Adding covariates

Model formulation

- Pure spatial, pure environmental, mixed?
- Prior knowledge of biology/ecology of species
- What are drivers of distribution?
- What data is available?

Sperm whale covariates

Tobler's first law of geography

"Everything is related to everything else, but near things are more related than distant things"

Tobler (1970)

Implications of Tobler's law

Adding smooths

- Already know that + is our friend
- Can build a big model...

Each s () has its own options

- s(..., k=...) to adjust basis size
- s(..., bs="...") for basis type
- lots more options (we'll see a few here)

Now we have a huge model, what do we do?

Term selection

Two popular approaches (using *p*-values)

Stepwise selection - path dependence

All possible subsets - computationally expensive (fishing?)

p-values

- Test for zero effect of a smooth
- They are **approximate** for GAMs (but useful)
- Reported in summary

summary(dsm_all)

```
##
## Family: Tweedie(p=1.25)
## Link function: log
##
## Formula:
## count \sim s(x, y) + s(Depth) + s(DistToCAS) + s(SST) + s(EKE) +
      s(NPP) + offset(off.set)
##
##
## Parametric coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -20.6368 0.2751 -75 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
##
       edf Ref.df F p-value
## s(x,y) 5.225 7.153 1.233 0.2920
## s(Depth) 3.568 4.439 6.641 1.82e-05 ***
## s(DistToCAS) 1.000 1.000 1.504 0.2204
## s(SST) 5.927 6.986 2.068 0.0407 *
## s(EKE) 1.763 2.225 2.579 0.0693 .
## s(NPP) 2.393 3.068 0.856 0.4678
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Path dependence is an issue here

- (silly) Strategy: want all $p \approx 0$ (***), remove terms 1-by-1
- Two different universes appear:

This isn't very satisfactory!

Term selection during fitting

- Already selecting wigglyness of terms
- (via a penalty)
- What about using it to remove the whole term?

Shrinkage approach

- Basis s(..., bs="ts") thin plate splines with shrinkage
- remove the wiggles **then** remove the "linear" bits
- nullspace should be shrunk less than the wiggly part

Shrinkage example

Model with no shrinkage

... with shrinkage

summary(dsm_ts_all)

```
##
## Family: Tweedie(p=1.277)
## Link function: log
##
## Formula:
## count \sim s(x, y, bs = "ts") + s(Depth, bs = "ts") + s(DistToCAS,
      bs = "ts") + s(SST, bs = "ts") + s(EKE, bs = "ts") + s(NPP,
##
      bs = "ts") + offset(off.set)
##
##
## Parametric coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -20.260 0.234 -86.59 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Approximate significance of smooth terms:
                   edf Ref.df F p-value
##
## s(x,y) 1.8875209 29 0.705 4.33e-06 ***
## s(Depth) 3.6794182 9 4.811 < 2e-16 ***
## s(DistToCAS) 0.0000934 9 0.000 0.6797
## s(SST) 0.3826654 9 0.063 0.2160
## s(EKE) 0.8196256 9 0.499 0.0178 *
## s(NPP) 0.0003570 9 0.000 0.8372
## ---
```

EDF comparison

	tp	ts
s(x,y)	5.2245	1.8875
s(Depth)	3.5679	3.6794
s(DistToCAS)	1.0001	0.0001
s(SST)	5.9267	0.3827
s(EKE)	1.7631	0.8196
s(NPP)	2.3931	0.0004

Removing terms?

1. EDF

- Terms with EDF<1 may not be useful (can we remove?)
- 2. non-significant *p*-value
 - Decide on a significance level and use that as a rule

(In some sense leaving "shrunk" terms in is more "consistent" in terms of variance estimation, but can be computationally annoying)

Comparing models

Comparing models

- Usually have >1 option
- How can we pick?
- Even if we have 1 model, is it any good?

(This can be subtle, more in model checking tomorrow!)

Akaike's "An Information Criterion"

- As for many other models, we can get an AIC from our model
- Comparison of AIC fine **but**:
 - can't compare Tweedie (continuous) and negative binomial (discrete) distributions!
 - (within distribution is fine)

```
AIC(dsm_all)

## [1] 1238.288

AIC(dsm_ts_all)

## [1] 1225.822
```

Selecting between response distributions

Goodness of fit

- Q-Q plots
- Closer to the line is better
- But what does "close" mean?

Using reference bands

- What is down to random variation?
- Where does the model actually fail?
- Resampling the response, generate bands

Which response type?

Count model count~...

- Effort is effective effort
- Response is count per segment

Estimated abundance abundance

- Effort is area of each segment
- Response is estimated abundance per segment

When to use each approach?

- Practical choice
- 2 detection function covariate "levels"
 - "Observer"/"observation" -- change within segment
 - "Segment" -- change between segments
- "Count model" only lets us use segment-level covariates
- "Estimated abundance" lets us use either

Sperm whale response example (either)

- Detection covariate: Beaufort
- Changes at segment level
- count or abundance.est

Sperm whale response example (abundance.est)

- Detection covariate: group size (size)
- Changes at observation level
- abundance.est only

Recap

Recap

- Adding smooths
- Path dependence
- Removing smooths
 - *p*-values
 - shrinkage
- Comparing models
- Comparing response distributions