Natural Language Processing (CSE 447/547M): Compositional Semantics

Noah Smith

© 2019

University of Washington nasmith@cs.washington.edu

March 11, 2019

In order to link NL to a knowledge base, we might want to design a formal way to represent meaning.

In order to link NL to a knowledge base, we might want to design a formal way to represent meaning.

Desiderata for a **meaning representation language**:

represent the state of the world, i.e., a knowledge base

In order to link NL to a knowledge base, we might want to design a formal way to represent meaning.

- represent the state of the world, i.e., a knowledge base
- query the knowledge base (e.g., verify that a statement is true, or answer a question)

In order to link NL to a knowledge base, we might want to design a formal way to represent meaning.

- represent the state of the world, i.e., a knowledge base
- query the knowledge base (e.g., verify that a statement is true, or answer a question)
- handle ambiguity, vagueness, and non-canonical forms
 - "I wanna eat someplace that's close to UW"
 - "something not too spicy"

In order to link NL to a knowledge base, we might want to design a formal way to represent meaning.

- represent the state of the world, i.e., a knowledge base
- query the knowledge base (e.g., verify that a statement is true, or answer a question)
- ▶ handle ambiguity, vagueness, and non-canonical forms
 - "I wanna eat someplace that's close to UW"
 - "something not too spicy"
- support inference and reasoning
 - "can Karen eat at Schultzy's?"

In order to link NL to a knowledge base, we might want to design a formal way to represent meaning.

Desiderata for a meaning representation language:

- represent the state of the world, i.e., a knowledge base
- query the knowledge base (e.g., verify that a statement is true, or answer a question)
- ▶ handle ambiguity, vagueness, and non-canonical forms
 - "I wanna eat someplace that's close to UW"
 - "something not too spicy"
- support inference and reasoning
 - "can Karen eat at Schultzy's?"

Eventually (but not today):

- deal with non-literal meanings
- expressiveness across a wide range of subject matter

A (Tiny) World Model

- ▶ **Domain:** Adrian, Brook, Chris, Donald, Schultzy's Sausage, Din Tai Fung, Banana Leaf, American, Chinese, Thai
- ► **Property:** Din Tai Fung has a long wait, Schultzy's is noisy; Alice, Bob, and Charles are human
- ► **Relations:** Schultzy's serves American, Din Tai Fung serves Chinese, and Banana Leaf serves Thai

Simple questions are easy:

- ► Is Schultzy's noisy?
- Does Din Tai Fung serve Thai?

A (Tiny) World Model

- Domain: Adrian, Brook, Chris, Donald, Schultzy's Sausage, Din Tai Fung, Banana Leaf, American, Chinese, Thai a, b, c, d, ss, dtf, bl, am, ch, th
- ▶ **Property:** Din Tai Fung has a long wait, Schultzy's is noisy; Alice, Bob, and Charles are human $Longwait = \{dtf\}, Noisy = \{ss\}, Human = \{a, b, c\}$
- ► **Relations:** Schultzy's serves American, Din Tai Fung serves Chinese, and Banana Leaf serves Thai $Serves = \{(ss, am), (dtf, ch), (bl, th)\}, Likes = \{(a, ss), (a, dtf), \ldots\}$

Simple questions are easy:

- ► Is Schultzy's noisy?
- Does Din Tai Fung serve Thai?

A Quick Tour of First-Order Logic

- **Term:** a constant (ss) or a variable
- **Formula:** defined inductively . . .
 - ▶ If R is an n-ary relation and t_1, \ldots, t_n are terms, then $R(t_1, \ldots, t_n)$ is a formula.
 - If ϕ is a formula, then its negation, $\neg \phi$, is a formula.
 - ▶ If ϕ and ψ are formulas, then binary logical connectives can be used to create formulas:
 - $ightharpoonup \phi \wedge \psi$
 - $ightharpoonup \phi \lor \psi$
 - $\phi \Rightarrow \psi$
 - $ightharpoonup \phi \oplus \psi$
 - \blacktriangleright If ϕ is a formula and v is a variable, then quantifiers can be used to create formulas:
 - ▶ Universal quantifier: $\forall v, \phi$
 - ightharpoonup Existential quantifier: $\exists v, \phi$

Note: Leaving out functions, because we don't need them in a single lecture on FOL for NL.

- 1. Schultzy's is not loud
- 2. Some human likes Chinese
- 3. If a person likes Thai, then they aren't friends with Donald
- 4. $\forall x, Restaurant(x) \Rightarrow (Longwait(x) \lor \neg Likes(a, x))$
- 5. $\forall x, \exists y, \neg Likes(x, y)$
- 6. $\exists y, \forall x, \neg Likes(x, y)$

- 1. Schultzy's is not loud
- 2. Some human likes Chinese
- 3. If a person likes Thai, then they aren't friends with Donald
- 4. $\forall x, Restaurant(x) \Rightarrow (Longwait(x) \lor \neg Likes(a, x))$
- 5. $\forall x, \exists y, \neg Likes(x, y)$
- 6. $\exists y, \forall x, \neg Likes(x, y)$

 $\neg Noisy(ss)$

1. Schultzy's is not loud

 $\neg Noisy(ss)$

- $\exists x, Human(x) \land Likes(x, ch)$
- 3. If a person likes Thai, then they aren't friends with Donald
- 4. $\forall x, Restaurant(x) \Rightarrow (Longwait(x) \lor \neg Likes(a, x))$
- 5. $\forall x, \exists y, \neg Likes(x, y)$
- 6. $\exists y, \forall x, \neg Likes(x, y)$

1. Schultzy's is not loud

 $\neg Noisy(ss)$

- $\exists x, Human(x) \land Likes(x, ch)$
- 3. If a person likes Thai, then they aren't friends with Donald $\forall x, Human(x) \land Likes(x, th) \Rightarrow \neg Friends(x, d)$
- 4. $\forall x, Restaurant(x) \Rightarrow (Longwait(x) \lor \neg Likes(a, x))$
- 5. $\forall x, \exists y, \neg Likes(x, y)$
- 6. $\exists y, \forall x, \neg Likes(x, y)$

1. Schultzy's is not loud

 $\neg Noisy(ss)$

- $\exists x, Human(x) \land Likes(x, ch)$
- 3. If a person likes Thai, then they aren't friends with Donald $\forall x, Human(x) \land Likes(x, th) \Rightarrow \neg Friends(x, d)$
- 4. $\forall x, Restaurant(x) \Rightarrow (Longwait(x) \lor \neg Likes(a, x))$ Every restaurant has a long wait or is disliked by Adrian.
- 5. $\forall x, \exists y, \neg Likes(x, y)$
- 6. $\exists y, \forall x, \neg Likes(x, y)$

1. Schultzy's is not loud

 $\neg Noisy(ss)$

- $\exists x, Human(x) \land Likes(x, ch)$
- 3. If a person likes Thai, then they aren't friends with Donald $\forall x, Human(x) \land Likes(x, th) \Rightarrow \neg Friends(x, d)$
- 4. $\forall x, Restaurant(x) \Rightarrow (Longwait(x) \lor \neg Likes(a, x))$ Every restaurant has a long wait or is disliked by Adrian.
- 5. $\forall x, \exists y, \neg Likes(x, y)$ Everybody has something they don't like.
- 6. $\exists y, \forall x, \neg Likes(x, y)$

1. Schultzy's is not loud

 $\neg Noisy(ss)$

- $\exists x, Human(x) \land Likes(x, ch)$
- 3. If a person likes Thai, then they aren't friends with Donald $\forall x, Human(x) \land Likes(x, th) \Rightarrow \neg Friends(x, d)$
- 4. $\forall x, Restaurant(x) \Rightarrow (Longwait(x) \lor \neg Likes(a, x))$ Every restaurant has a long wait or is disliked by Adrian.
- 5. $\forall x, \exists y, \neg Likes(x, y)$ Everybody has something they don't like.
- 6. $\exists y, \forall x, \neg Likes(x, y)$ There exists something that nobody likes.

Logical Semantics

(Montague, 1970)

The denotation of a NL sentence is the set of conditions that must hold in the (model) world for the sentence to be true.

Every restaurant has a long wait or Adrian doesn't like it.

is true if and only if

$$\forall x, Restaurant(x) \Rightarrow (Longwait(x) \lor \neg Likes(a, x))$$

is true.

This is sometimes called the **logical form** of the NL sentence.

The Principle of Compositionality

The meaning of a NL phrase is determined by the meanings of its sub-phrases.

The Principle of Compositionality

The meaning of a NL phrase is determined by the meanings of its sub-phrases.

I.e., semantics is derived from syntax.

The Principle of Compositionality

The meaning of a NL phrase is determined by the meanings of its sub-phrases.

I.e., semantics is derived from syntax.

We need a way to express semantics of phrases, and compose them together!

(Much more powerful than what we'll see today; ask your PL professor!)

Informally, two extensions:

- $ightharpoonup \lambda$ -abstraction is another way to "scope" variables.
 - ▶ If ϕ is a FOL formula and v is a variable, then $\lambda v.\phi$ is a λ -term, meaning: an unnamed function from values (of v) to formulas (usually involving v)
- ▶ **application** of such functions: if we have $\lambda v.\phi$ and ψ , then $[\lambda v.\phi](\psi)$ is a formula.
 - lt can be **reduced** by substituting ψ in for every instance of v in ϕ .

(Much more powerful than what we'll see today; ask your PL professor!)

Informally, two extensions:

- $ightharpoonup \lambda$ -abstraction is another way to "scope" variables.
 - If ϕ is a FOL formula and v is a variable, then $\lambda v.\phi$ is a λ -term, meaning: an unnamed function from values (of v) to formulas (usually involving v)
- **Parameter** application of such functions: if we have $\lambda v.\phi$ and ψ , then $[\lambda v.\phi](\psi)$ is a formula.
 - ▶ It can be **reduced** by substituting ψ in for every instance of v in ϕ .

Example:

 $\lambda x.Likes(x,dtf)$ maps things to statements that they like Din Tai Fung

(Much more powerful than what we'll see today; ask your PL professor!)

Informally, two extensions:

- $ightharpoonup \lambda$ -abstraction is another way to "scope" variables.
 - If ϕ is a FOL formula and v is a variable, then $\lambda v.\phi$ is a λ -term, meaning: an unnamed function from values (of v) to formulas (usually involving v)
- **Parameter** application of such functions: if we have $\lambda v.\phi$ and ψ , then $[\lambda v.\phi](\psi)$ is a formula.
 - ▶ It can be **reduced** by substituting ψ in for every instance of v in ϕ .

Example:

 $[\lambda x. Likes(x, dtf)](c)$ reduces to Likes(c, dtf)

(Much more powerful than what we'll see today; ask your PL professor!)

Informally, two extensions:

- $ightharpoonup \lambda$ -abstraction is another way to "scope" variables.
 - If ϕ is a FOL formula and v is a variable, then $\lambda v.\phi$ is a λ -term, meaning: an unnamed function from values (of v) to formulas (usually involving v)
- **application** of such functions: if we have $\lambda v.\phi$ and ψ , then $[\lambda v.\phi](\psi)$ is a formula.
 - ▶ It can be **reduced** by substituting ψ in for every instance of v in ϕ .

Example:

 $\lambda x. \lambda y. Friends(x,y)$ maps things x to maps of things y to statements that x and y are friends

(Much more powerful than what we'll see today; ask your PL professor!)

Informally, two extensions:

- $ightharpoonup \lambda$ -abstraction is another way to "scope" variables.
 - If ϕ is a FOL formula and v is a variable, then $\lambda v.\phi$ is a λ -term, meaning: an unnamed function from values (of v) to formulas (usually involving v)
- **Parameter** application of such functions: if we have $\lambda v.\phi$ and ψ , then $[\lambda v.\phi](\psi)$ is a formula.
 - ▶ It can be **reduced** by substituting ψ in for every instance of v in ϕ .

Example:

 $[\lambda x.\lambda y.Friends(x,y)](b)$ reduces to $\lambda y.Friends(b,y)$

(Much more powerful than what we'll see today; ask your PL professor!)

Informally, two extensions:

- $ightharpoonup \lambda$ -abstraction is another way to "scope" variables.
 - ▶ If ϕ is a FOL formula and v is a variable, then $\lambda v.\phi$ is a λ -term, meaning: an unnamed function from values (of v) to formulas (usually involving v)
- **application** of such functions: if we have $\lambda v.\phi$ and ψ , then $[\lambda v.\phi](\psi)$ is a formula.
 - ▶ It can be **reduced** by substituting ψ in for every instance of v in ϕ .

Example:

 $[[\lambda x.\lambda y.Friends(x,y)](b)](a)$ reduces to $[\lambda y.Friends(b,y)](a)$, which reduces to Friends(b,a)

Semantic Attachments to CFG

- ▶ NNP \rightarrow Adrian $\{a\}$
- ▶ VBZ \rightarrow likes $\{\lambda f.\lambda y. \forall x f(x) \Rightarrow Likes(y,x)\}$
- ▶ JJ \rightarrow expensive $\{\lambda x. Expensive(x)\}$
- ▶ NNS \rightarrow restaurants $\{\lambda x.Restaurant(x)\}$
- $ightharpoonup NP \rightarrow NNP \{NNP.sem\}$
- ▶ NP \rightarrow JJ NNS $\{\lambda x. \text{JJ.sem}(x) \land \text{NNS.sem}(x)\}$
- ► VP → VBZ NP {VBZ.sem(NP.sem)}
- $ightharpoonup S
 ightarrow NP VP \{VP.sem(NP.sem)\}$

$$\left[\underbrace{\lambda y. \forall x, Expensive(x) \land Restaurant(x) \Rightarrow Likes(y, x)}_{\text{VP.sem}}\right] \left(\underbrace{a}_{\text{NP.sem}}\right)$$

 $\forall x, Expensive(x) \land Restaurant(x) \Rightarrow Likes(a, x)$

Graph-Based Representations

Abstract Meaning Representation (Banarescu et al., 2013)

"The boy wants to visit New York City."

Designed for (1) annotation-ability and (2) eventual use in machine translation.

Combinatory Categorial Grammar

(Steedman, 2000)

CCG is a grammatical formalism that is well-suited for tying together syntax and semantics.

Formally, it is more powerful than CFG—it can represent some of the context-sensitive languages (which we do not have time to define formally).

CCG Types

Instead of the " \mathcal{N} " of CFGs, CCGs can have an infinitely large set of structured categories (called **types**).

- Primitive types: typically S, NP, N, and maybe more
- ► Complex types, built with "slashes," for example:
 - ► S/NP is "an S, except that it lacks an NP to the right"
 - ► S\NP is "an S, except that it lacks an NP to its left"
 - ► (S\NP)/NP is "an S, except that it lacks an NP to its right, and its left"

You can think of complex types as functions, e.g., S/NP maps NPs to Ss.

CCG Combinators

Instead of the production rules of CFGs, CCGs have a very small set of generic **combinators** that tell us how we can put types together.

Convention writes the rule differently from CFG: $X ext{ } Y \Rightarrow Z$ means that X and Y combine to form a Z (the "parent" in the tree).

Forward ($X/Y \quad Y \Rightarrow X$) and backward ($Y \quad X \backslash Y \Rightarrow X$)

Forward $(X/Y \mid Y \Rightarrow X)$ and backward $(Y \mid X \backslash Y \Rightarrow X)$

Forward ($X/Y \quad Y \Rightarrow X$) and backward ($Y \quad X \backslash Y \Rightarrow X$)

Forward $(X/Y \mid Y \Rightarrow X)$ and backward $(Y \mid X \backslash Y \Rightarrow X)$

Conjunction Combinator

 $X \text{ and } X \Rightarrow X$

Conjunction Combinator

X and $X\Rightarrow X$

Conjunction Combinator

X and $X\Rightarrow X$

Composition Combinator

Forward $(X/Y \mid Y/Z \Rightarrow X/Z)$ and backward $(Y \setminus Z \mid X \setminus Y \Rightarrow X \setminus Z)$

Composition Combinator

Forward $(X/Y \quad Y/Z \Rightarrow X/Z)$ and backward $(Y \setminus Z \quad X \setminus Y \Rightarrow X \setminus Z)$

Type-Raising Combinator

Forward $(X \Rightarrow Y/(Y \backslash X))$ and backward $(X \Rightarrow Y \backslash (Y/X))$

50 / 54

Back to Semantics

Each combinator also tells us what to do with the semantic attachments.

- ▶ Forward application: $X/Y : f \quad Y : g \Rightarrow X : f(g)$
- ► Forward composition: $X/Y: f \quad Y/Z: g \Rightarrow X/Z: \lambda x. f(g(x))$
- ▶ Forward type-raising: $X: g \Rightarrow Y/(Y \setminus X): \lambda f.f(g)$

CCG Lexicon

Most of the work is done in the lexicon!

Syntactic and semantic information is much more formal here.

- ▶ Slash categories define where all the syntactic arguments are expected to be
- $ightharpoonup \lambda$ -expressions define how the expected arguments get "used" to build up a FOL expression

Extensive discussion: Carpenter (1997)

Some Topics We Don't Have Time For

- ► Tasks, evaluations, annotated datasets (e.g., CCGbank, Hockenmaier and Steedman, 2007)
- ► Learning for semantic parsing (Zettlemoyer and Collins, 2005) and CCG parsing (Clark and Curran, 2004a)
- ▶ Using CCG to represent other kinds of semantics (e.g., predicate-argument structures; Lewis and Steedman, 2014)
- ► Integrating continuous representations in semantic parsing (Lewis and Steedman, 2013; Krishnamurthy and Mitchell, 2013)
- Supertagging (Clark and Curran, 2004b) and making semantic parsing efficient (Lewis and Steedman, 2014)
- Grounding meaning in visual (or other perceptual) experience

References I

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. Abstract meaning representation for sembanking. In *Proc. of the Linguistic Annotation Workshop and Interoperability with Discourse*, 2013.

Bob Carpenter. Type-logical semantics. MIT Press, 1997.

Stephen Clark and James R. Curran. Parsing the WSJ using CCG and log-linear models. In Proc. of ACL, 2004a.

Stephen Clark and James R. Curran. The importance of supertagging for wide-coverage CCG parsing. In *Proc. of COLING*, 2004b.

Julia Hockenmaier and Mark Steedman. CCGbank: a corpus of CCG derivations and dependency structures extracted from the Penn Treebank. *Computational Linguistics*, 33(3):355–396, 2007.

Jayant Krishnamurthy and Tom Mitchell. Vector space semantic parsing: A framework for compositional vector space models. 2013.

Mike Lewis and Mark Steedman. Combining distributional and logical semantics. *Transactions of the Association for Computational Linguistics*, 1:179–192, 2013.

Mike Lewis and Mark Steedman. A* CCG parsing with a supertag-factored model. In Proc. of EMNLP, 2014.

Richard Montague. Universal grammar. Theoria, 36:373-398, 1970.

Mark Steedman. The Syntactic Process. MIT Press, 2000.

Luke Zettlemoyer and Michael Collins. Learning to map sentences to logical form: Structured classification with probabilistic categorial grammars. In *Proc. of UAI*, 2005.