Risk determination versus risk perception: From misperceived drone attacks, hate speech and military nuclear wastes to human-machine autonomy

W.F. Lawless (w.lawless@icloud.com) & Don Sofge (donald.sofge@nrl.navy.mil)

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

1

Background: Calls for Special Issues

- Special Issue Al Magazine (2019), "Computational context for human-machine teams" (Lawless et al., 2019)
 - •e.g., **Uber's self-driving car killed a pedestrian in 2018**: *NTSB* (2018): The car saw the pedestrian ~ 6s ahead, interlock prevented braking1.2s ahead, car's classification oscillated; the **human operator** took the wheel < 1s before impact and applied brakes ~ 1s after impact
 - •The human operator was distracted, and the car did not alert its human teammate earlier nor ask for help; both were poor team players
- Closing May 14th: Frontiers in Physics: Interdisciplinary Approaches to the
 Structure and Performance of Interdependent Autonomous Human Machine Teams
 and Systems (A-HMT-S) (Lawless, Sofge & LoFaro);
 https://www.frontiersin.org/research-topics/25455/interdisciplinary-approaches-to-the-structure-and-performance-of-interdependent-autonomous-human-mac;
- Closing Jul 31st: Entropy: "An Entropy Approach to the Structure and Performance
 of Interdependent Autonomous Human Machine Teams and Systems"; see at
 https://www.mdpi.com/journal/entropy/special_issues/Human_Machine_Teams

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

3

3

Al is changing society & war: Swarms versus Autonomous H-M Teams imply closed versus open systems

- Closed Systems: Often do not generalize
- Open Systems: Examples

Russians believed its base in Syria was "impregnable" (Grove, 2018)

- Swarms killed 2 Russian soldiers at their Russian airbase in Syria on New Year's Eve (Grove, 2018, WSJ), injuring 10 and damaging 6 planes ... Russia denied any deaths, US disavowed involvement.
- · Highly-maneuverable hypersonic missiles dramatically reduce reaction times increase risks
- In the future, can an A-HMT-S defeat the threat posed by "Skynet" slave swarms?
 - Generalizing from Lincoln's (1838, 1/27) Lyceum speech: "Yes ... As a nation of freemen, we must live through all time, or die by suicide."
- · If yes, will humans give authority to intelligent autonomous machines, teams & systems?
 - Invited article: Al Bookie Bet in Al Magazine (Sofge et al., 2019): In 5 years, yes, a machine (e.g., commercial airliner, train, ship, car) will be authorized to take responsibility from its human operator. Pro: W.F. Lawless; Con: Ranjeev Mittu; Referee: Don Sofge
- Editors (7/5/19), NYT and the United Nations reject "autonomous" systems as potentially immoral

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

DoD's Joint Risk Framework = logic (2016)

Figure 3. The Joint Risk Framework

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

5

But logic didn't prevent the Afghanistan drone strike in 2021

- What went wrong?
 - On August 26, 2021, 13 American service members were killed, 15 more injured by ISIS suicide bomber ...
 - On August 29, 2021, a DoD drone strike in Afghanistan killed 10 civilians, a tragic mistake
 - Gen. Said, USAF: highly emotional state may be prevented by "red teams"
- How to distinguish perceptions -> driven by highly emotional entanglements in the rush to act from the need to act quickly?
 - e.g., USS Vincennes 1988; USS Greeneville 2001; USS Fitzgerald & USS McCain 2017
- Literature: Logic & rationality fail facing uncertainty & conflict (Mann, 2018); e.g., games
 - Interview: General Zinni: war games -> "preordained proofs" (Augier & Barrett, 2021).

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

DoD (2021): Risk determination versus subjective perception

7

Hate mail: Human perception versus machine determination

- In an interview, Sheryl Sandberg, Facebook's COO, claimed FB's algorithms detected 91% of 1.5 million posts detected for violating its hate policy.
- However, the software engineers and scientists at Facebook reported to BuzzFeed (Mac & Silverman, 2020):
 - 1 of every 1,000 pieces of content or 5 million of the 5 billion pieces of content posted daily to Facebook — violates its rules on hate speech.
 - However, with Al and third-party help, Facebook was "deleting less than 5% of all of the hate speech posted to Facebook"
- FB's claims versus its reality leave the public under-informed.
 - The under-informed are vulnerable to the **risk of manipulation** (Chalmers, 2022)

Can Social Science, a closed system study of the individual, generalize to open systems to determine the risk of autonomy? No, it's insufficient

Leading Theory	Leading theory and theorist	Theory invalidated by:
Self-Esteem	Diener (1984); hailed by the American Psychological Association (1987) as "important" to success	Baumeister et al., 2005
Ego-Depletion	Baumeister & Vohs, 2007	Hagger et al., 2016
Implicit Attitudes Theory (racism)	Greenwald et al., 1998	Blanton et al. (Tetlock), 2009
Superforecasters	Tetlock & Gardiner, 2015	Brexit & Trump, 2016
Honesty (2012), PNAS	Lisa, Ariely & Bazerman et al., 2012; Ariely, chief developer & promoter of the "Honesty" scale, used fabricated data	Berenbaum, 2021, Editor in Chief, PNAS, retracted original article about "honesty."

Nosek's (2015) Replication Project attempts to fix the validation problem, while ignoring the inability to generalize!

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

9

Can we determine risks for autonomous human-machine teams with closed system models (e.g., Shannon, rational, games)?

- Yes (comms) and No (orgs). Shannon IT assumes i.i.d. data (independent), implying no social effects (Schölkopf et al., 2021)
 - Conant (Shannon): Teams work best under minimal communication (i)
 - But zero Shannon info => min i for teams -> swarms of slaves:
 - however, Knowledge ... [is useless to] a slave'; Frederick Douglass (1892, p. 103)
 - Contradicting Shannon, the best science teams are interdependent (Cooke & Hilton, 2015; Cummings, 2015; Bisbey et al., 2019)
- · Can rational theory work in open systems?
 - Rational theory -> observations of social data aggregated ≠ recreate social
 - Rational theory fails facing conflict or uncertainty (Mann, 2018)
 - Machine Learning = context dependency => closed system (e.g., Uber)
 - Interdependence = state dependency => open system ~ Von Neumann IT

Starting over with open systems: A history of "interdependence" (i): Quantum mechanics, Social Psychology, Systems Engineering & Science of Teams

- First, Schrödinger 1935 (p. 555) describes quantum theory:
 - ... the best possible knowledge of a whole does not necessarily include the best possible knowledge of all its parts ... [because they are not] independent
- Lewin (1951), founder of Social Psychology: asserted that the "whole is greater than the sum of its parts."
- From the *Systems Engineering Handbook* (Walden et al., 2015), "A System is a set of elements in interaction" (Bertalanffy, 1968) where systems "... often exhibit emergence, ... meaningful only when attributed to the whole, not to its parts" (Checkland, 1999).
- But if parts of a whole team are <u>not independent</u> (e.g., Boltzmann's reduction in *dof*), can a state of interdependence among complementary parts confer a thermodynamic advantage to the whole? *Yes*! (Cooke & Lawless, 2021).
- Social systems are autonomous, interdependent & open (Jones, 1998). <u>However</u>, what is interdependence?

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

11

Interdependence Theory: Arbitrarily separated, *i* produces 3 effects: bistability, measurement problem & non-factorability

- Bistability (individual <-> teammate; two-sided stories; multitasking (MT) in orthogonal roles; competition; deception)
- Measurement problem: M(i) collapses bistable information from orthogonal roles ~ <u>zero</u> correlations, or inner product ⟨a, b⟩ = 0 => two-sided stories collapse to the dominant one)
- Non-factorable information (endless debates; divorce; Brexit; quantum interpretations; e.g., Weinberg, 2017); **Tradeoffs** tested in free markets ($\partial I_{bistable}/\partial t$), courts, "**red teams**"

Theory: *i* = Bistability

When no predators are nearby, forests become unhealthy forests (Carroll, 2016)

Predators nearby produce a healthy forest (Carroll, 2016)

- Bi-stable illusions tell us that:
- "... the visual system chooses only a single interpretation at a time, never a mixture." (Eagleman, 2001)

 Teams can multi-task, individuals cannot (Wickens, 1992)

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

13

Bistability implies *duality*, but closed systems assume risk perceptions and actions are 1:1

- Why is social science hard to replicate (Nosek, 2015)? Possibly because:
- Cognitive concepts imply 1:1 *implicit behaviors* (e.g., implicit racism, in Greenwald & Banaji, 1995; not valid, in Blanton et al., 2009); or,
- Behaviors imply 1:1 *implicit cognitive beliefs* (e.g., *Inverse Reinforcement Learning*, in game theory; Amadae, 2017; praxeology, or action by von Mises; Thagard, 2019).
- Why don't self-reported observations of behavior = actual behavior? (Zell & Krizan, 2014);
 - Despite women reportedly taking HIV prevention pills 95% of the time, => drug failed, the secondary measure of effective drug levels in their blood when reported was <26%: "There was a profound discordance between what they told us ... and what we measured," infectious disease specialist Jeanne Marrazzo said. (Cohen, 2013)
 - Interdependence is respectable again (e.g., see National Acad. Sci., in Cooke & Hilton, 2015; Endsley, 2021), driving society-technology evolution (Ponce de Leon et al., 2021)

Pentagon Briefing: tragic drone attack driven by one <u>misperceived</u> <u>risk</u> (DoD, 2021)

Independent agents (Uber car & operator) who do not share perceptions -> fatality

Theory: M(i) -> Measurement problem = collapses 2sided stories to one => the dominant risk perception

Measurement in social systems affects what's measured => <u>state-</u> <u>dependency</u> (Davies, 2020)

Authoritarian & gang one-sidedness -> de-evolution; e.g., N Korea

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

Gazzaniga (2011): the left split-brain did not see what the right half saw

15

US DOE's one-sided mandates before 1983 saw no risks to its practices that grossly contaminated the environment across the U.S.

Before 1983, DOE as sole authority -> nuclear waste mis-management (Lawless, 1985)

Public awareness in 1985 stopped DOE's use of cardboard boxes; public awareness in 2000 accelerated the closure of its old radwaste burial ground

 DOE's nuclear waste management today = 2-sided factions, information processing & better decisions

 DOE promoted minority (consensus) rules -> conflict on Hanford's Citizen Advisory Board, but not on the majority-ruled SRS-CAB (Bradbury et al., 2003)

Policy & trust: At DOE SRS today (majority rules), with competing oversight and debate by several groups (e.g., DNFSB), DOE's decisions significantly improved (Lawless et al., 2014; Akiyoshi et al., 2021).

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

Endless fights are common, but who is right?

Long-running fights impact profits 2016-18

Non-factorable information: 2-sided factions & conflicts are costly

Endless civil-war disrupts social structures: Syria 2012 versus 2014

structures: Syria 2012 versus 2014

 Perturbations of poorest teams generate too much Shannon I (e.g., CDM -> poor Russian teams; in WSJ):

- Interdisciplinary science teams are the worst at performing team science (Cummings, 2015)
- Perturbations of the best teams act as a unit (Schrodinger, 1944) ~ little information generated, => subadditivity:
 - · Von Neumann's Subadditivity: S(ρAB)≤S(ρA)+S(ρB)

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

17

17

If interdependence -> "bewilderment" (Jones, 1998, p. 33), what can theory predict?

- Closed Systems: Homo economicus is a theoretical abstraction that some economists use to describe a rational human being
 - Rudd [2021]: "Mainstream economics is replete with ideas that "everyone knows" to be true, but that are actually arrant nonsense" (e.g., surveys of inflation ≠ inflation)
- Previous Closed-System Predictions on Redundancy:
 - Social network analysts: "As redundancy increases, the network becomes more efficient ..." (Centola & Macy, 2007, p. 716)
 - NAS: team size: "many hands make light work," but that team size remained unsolved (Cooke & Hilton, 2015)
- My Open-Systems Prediction: Redundancy reduces i & MEP

Results: Facing uncertainty in open systems, how to reduce risk?

- 1st test: Of top oil firms (Kullback-Leibler divergence), contradicting social network theory & NAS, redundancy impedes *interdependence* & free choice (Lawless, 2017a, *JMP*).
 - e.g., in 2018, Exxon had 1/8th as many employees as Sinopec
- 2nd test: Of militaries around the globe (K-L divergence): Authoritarians increase redundancy & corruption (Lawless, 2017b, *Frontiers in Physics*).
- 3rd test: Intelligence "tunes" a team's interactions to reduce risk & increase
 MEP
 - Support for MEP based on a nation's patents produced v HDI from UN data for 19 MENA nations & Israel: school and patents (r = .62, p < .05)
 - Orthogonality (Lawless, 2019, Foundations of Science)
 - Finding (2019): Schooling (knowledge training) ~ total patents
 - Finding (2001): Flight training (not schooling) = Top fighter pilots

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

19

Open System Models: Unless prevented, in shared contexts, humans facing uncertainty debate alternatives to reduce risk ("red teams")

Model-1: Opposing beliefs serve to challenge traditions to improve behavior, leading to more evolution in free, but not closed, systems

A. Minority rules (consensus-seeking; easy to model) -> minority-control impedes alternatives; + stability, independence; e.g., Asch's (1951) line study -> poor decisions (e.g., China; Cuba; N. Korea)

B. Majority rule (debate builds factions; + instability; but checks & balances control factions; *hard to model*); e.g., best legal decisions: "*informed assessment of competing interests*" (Justice Ginsburg, 2011)

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

Model-2 (SEP): Ground $(S_{Whole} \leq \sum S_i)$ vs. excited $(S_{Whole} \geq \sum S_i)$

Lawless, 2020, Entropy; 2021, Informatics; excited state calculations from Kang, 2002, in Lawless, 2002

Open Systems, *Notional Model*: An organization provides Helmholtz *free energy* "from an external source ... [to maintain its] dissipative structure" (Prigogine, 1977) by offsetting its waste and products produced. We illustrate with a notional diagram of *free energy* from Gibbs (closed systems).

4th test: Metrics for complementarity

- A new equation leads to several discoveries: C ≈ ΔSEP * ΔMEP
 - · First, tradeoffs: $\Delta SEP < -> \Delta MEP$
 - Second, for maximum performance: $lim_{\Delta SEP->min}\Delta MEP \rightarrow max$
 - · Third, $\Delta SEP_1 > \Delta SEP_2 \Rightarrow$ a vulnerability in SEP_1 that decides competition
 - · For example:
 - Enforced cooperation increases systemic vulnerability to risk & the need to steal innovations (e.g., China, in Baker, 2015; Ratcliffe, 2020).
 - Monopolies increase organizational vulnerability to risk & the need to steal innovations from clients (e.g., Amazon, in Mattioli, 2020, WSJ).
 - Redundancy in organizations increases vulnerability to shocks (e.g., oil collapse in 2020)
 - Fourth, to enhance deception: Minimize $SEP: Team \rightarrow Unit \Rightarrow lim_{dof->unit} ln(Team) = minimum$
 - · Fifth, to test risk perceptions & break emotion entanglement ("group think"), red teams -> compromise

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

21

Speculation: A model matching experience

- 1. MT = orthogonal roles => fewer dof (e.g., marriage; team; restaurant).
 - e.g., The "performance of a team is not decomposable to, or an aggregation of, individual performances" (Endsley, 2021, p. 11).
 - Tensors = factorability => decomposable, no interdependence
- 2. From portfolio theory (Markowitz, 1952):
 - Individuals MT poorly (Wickens, 1992), but teams MT perfectly
 - *lim* n->N team *r*MT -> 0 (e.g., orthogonal pairs: conductor-pianist)
- 3. Superordinates = team goals -> "asabiyya" (Ibn Khaldun ~ 1400)
 - lim n->N team rSuperordinate -> 1 (e.g., a unit's "fierce cohesion")
- 4. Emotion: Ground states (good team fit) v excited states (poor team fit)
- 5. Words into music: https://melobytes.com/en/app/melobytes (see the words: "conservative" and "liberal")
 - 3-block harmonic oscillators at resonance -> MEP
- · 6. Crystal: an ion is at higher entropy than a crystal
 - Intelligence "tunes" teammates to fit with each other -> -SEP, +MEP

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

Mapping Linear Algebra to evidence with IBM Quantum Lab

ullet For dI/dt, **rotations** of neutrals driven by L-R beliefs $X \mid$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}; \text{ results in } \textbf{limit cycles}$$

Neutrals in superpositions -> i (-> a state of dependency)

$$\begin{array}{l} H|0\rangle = \frac{1}{\sqrt{-2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{-2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{, where } \begin{pmatrix} a \\ b \end{pmatrix} \text{->} \\ |a^2| = |b^2| = \frac{1}{2} \end{array}$$

 Future: Provided minimum available energy for least structural cost (SEP), a "bio-cell" at resonance maximizes work (MEP)

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

23

Conclusions: Risk Determination versus Risk Perceptions for Autonomous HMTs & Systems

- 1st: A perfect team at ground state => intelligence tunes a team's χ among its parts (not rational), low emotion, least structural entropy ~ team fitness (ordered, like a bio-crystal) -> MEP (Martyushev, 2013), like focusing a telescope (Lawless, 2021) -> resonance in information flow $(\partial I/\partial t)$?
 - Static perceptions cannot determine risks, dynamic skills, team fit, performance nor interdependence; only competition (debate) can identify perfect or dysfunctional teams, motivating hit-or-miss mergers & alliances
- 2rd: Subadditivity of i => the best teams evolve, resilient to shock, but perfect teams are irreproducible => select team members by trial & error
- 3th: Vulnerability theory => shocks harm teams with more redundancy.
- 4th: Little generalizes from Science of individuals or H-H teams to science of A-HMTs; however, the converse may be true, that the mathematics of A-HMTs generalize to challenge risk perceptions & improve risk determinations
- 5th: All interpretations are subjective, increasing the value of debates, "red teams" (Gen. Said, USAF, drone attack in Afghanistan) & checks & balances

Backup slides

25

25

Questions & Future Research

- Is the greatest danger of risk perception -> emotional spasms ("group think," fear)?

 - What actions can machines take to reduce the emotional states of human operators? (Red teams?)
- Do authoritarians & gangs control others by increasing independence among citizens to reduce factions?
- As the strength of free choice, does autonomy, when limited, drive $\partial I_{bistable}/\partial t$?
- Is it best to govern autonomous human-machine teams & systems with strict limits (Commanders Intent, rules of engagement, etc.)?
- How do emotional states melt boundaries (e.g., NATO's closer realignment against Putin)?

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

Open System Uncertainty, debate, structure, performance:

Color	Function	10	Fourier Transform	00:	0,00
Red	$f_1(t) = e^{-2\tau^2}$.33	$F_i(s) = \frac{\sqrt{2\pi}}{2} e^{-\frac{1}{2}s^2}$	5.01	1.6
Green	$f(t) = e^{-\frac{1}{2}t}$.94	$F(s) = \sqrt{2\pi}e^{-\frac{1}{2}r^2}$	2.51	2.31
Black	$f_i(t) = e^{\frac{-t^2}{\lambda}}$	2.66	$F_2(s) = 2\sqrt{2\pi}e^{-2s^2}$	1.25	3.3.

- 4th test: Metrics for complementarity
 - A new equation leads to several discoveries: $C \approx \Delta SEP * \Delta MEP$
 - · First, tradeoffs: $\Delta SEP < -> \Delta MEP$
 - Second, for maximum performance: $lim_{\Delta SEP->min}\Delta MEP \rightarrow max$
 - · Third, $\Delta SEP_1 > \Delta SEP_2 \Rightarrow$ a vulnerability in SEP_1 that decides competition
 - · For example:
 - Enforced cooperation increases systemic vulnerability & the need to steal technology (e.g., China, in Baker, 2015; Ratcliffe, 2020).
 - Monopolies increase organizational vulnerability & the need to steal ideas from clients (e.g., Amazon, in Mattioli, 2020, WSJ).
 - Fourth, to enhance deception: Minimize $SEP: Team \rightarrow Unit \Rightarrow S = ln(Team) = 0$
 - Fifth, to counter Risk perceptions: Red Team challenges Blue Team decision: $\Delta K o 0$
 - Gen. Said's DoD report on the Aug. 29, 2021, drone attack in Afghanistan; https://www.defense.gov/News/Transcripts/Transcript/Article/2832634/pentagon-press-secretary-john-f-kirby-and-air-force-lt-gen-sami-d-said-hold-a-p/

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

27

A notional diagram of *free energy-entropy* abstracted from Gibbs. We assume a team operates crudely like an "intelligent" fluid. This notional diagram underscores the importance of an organization's ability to collect and make available sufficient free energy "from an external source ... [to maintain a] dissipative structure" (Prigogine, 1977) that offsets the waste and products produced by a team or organization.

Model-1: Facing uncertainty, humans seek consensus: 1. A minority can force conformity to a "rational" context (even facing uncertainty or conflict); or, 2. A majority can debate the available information to build K and shared context.

- 1. Minority rules (consensus-seeking; socialism; easy to model) -> minority-control suppresses alternatives; + stability; e.g., Asch's (1951) line study -> poor decisions (e.g., destroying the Uighur culture in China)
- The requirement for consensus in the European Council often holds policy-making hostage to national interests in areas which Council could and should decide by a qualified majority." (WP, 2001, p. 29)
- e.g., the European Union's consensus-seeking in foreign affairs increases doubts => increased structural entropy production (SEP); (in Lawless, 2019b)
- Monopolies (e.g., Google, in Forbes, 2019); Fraud (e.g., VW emission scandal in 2015; in Boston, 2021, WSJ)
- 2. Majority rules (democratic debate builds a shared context; + instability; hard to model); e.g., best legal decisions: "informed assessment of competing interests" (Justice Ginsburg, 2011)
 - A U.S. DoD review of the August 29, 2021 Drone Strike in Afghanistan concluded that when facing
 uncertainty, a rigorous red teams test of that decision was imperative (Lawless & Sofge (2022), Risk
 determination versus risk perception: From misperceived drone attacks, hate speech and military
 nuclear wastes to human-machine autonomy. AAAI-2022).

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

29

29

Background: NSC-AI

- NSC-Al (2021). Final Report:
 - ... the rapidly improving ability of computer systems to solve problems ... is world altering
 - The NSCAI Final Report recommends [among several]:
 - Defend against emerging Al-enabled threats to America's free and open society. (p. 9)
 - Manage risks associated with Al-enabled and autonomous weapons. (p. 10)
 - [To] Establish justified confidence in AI systems
 - Present a democratic model of Al use for national security (p. 11).
 - As it happens, this is my area of research

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022 $$_{\sim}$$

Endless fights are common, but who is right?

Long-running fights impact profits 2016-18

Non-factorable information: 2-sided factions & conflicts

Adelson's (2005) illusion => misperception

Endless civil-war disrupts social structures: Syria 2012 versus 2014

Putting AI in the Critical Loop: Assured trust and autonomy in human-machine teams. AAAI Symposium, March 21, 2022

31

Non-factorable information

- Perturbations of poorest teams generate too much Shannon information (e.g., divorce):
 - $H(x,y) \ge H(x), H(y)$; however, interference from consequences & energy ignored
 - Moreover, interdisciplinary science teams are the worst at team science (Cummings, 2015)
 - If $\sigma_{SEP}\sigma_{MEP} \sim C$, then as $\sigma_{SEP} \rightarrow \infty$, in the limit, $\sigma_{MEP} \rightarrow 0$
- Perturbations of the best teams act as a unit => subadditivity ~ little information generated:
 - Von Neumann's Subadditivity: S(ρAB)≤S(ρA)+S(ρB) (e.g., in business, one train performing two functions; good marriage; the best teams)
 - If σ SEP σ MEP ~ C, then as σ SEP -> 0, in the limit, σ MEP -> ∞