Многоклассовая классификация.

Кантонистова Е.О.

ПЛАН ЛЕКЦИИ

- 1. Переобучение и регуляризация
- 2. Задачи многоклассовой классификации

ПЕРЕОБУЧЕНИЕ И РЕГУЛЯРИЗАЦИЯ

МЕТОД БОРЬБЫ С ПЕРЕОБУЧЕНИЕМ: РЕГУЛЯРИЗАЦИЯ

Большие значения параметров (весов) модели w – признак переобучения.

P.S. Если в данных есть линейно-зависимые признаки, они тоже приводят к переобучению (и к большим весам).

МЕТОД БОРЬБЫ С ПЕРЕОБУЧЕНИЕМ: РЕГУЛЯРИЗАЦИЯ

Большие значения параметров (весов) модели w – признак переобучения.

Решение проблемы – регуляризация.

Будем минимизировать регуляризованный функционал ошибки:

$$Q_{alpha}(w) = Q(w) + \alpha \cdot R(w) \rightarrow \min_{w}$$

где R(w) - регуляризатор.

РЕГУЛЯРИЗАЦИЯ

• Регуляризация штрафует за слишком большие веса.

Наиболее используемые регуляризаторы:

•
$$L_2$$
-регуляризатор: $R(w) = \big| |w| \big|_2 = \sum_{i=1}^d w_i^2$

•
$$L_1$$
-регуляризатор: $R(w) = \big||w|\big|_1 = \sum_{i=1}^d |w_i|$

РЕГУЛЯРИЗАЦИЯ

• Регуляризация штрафует за слишком большие веса.

Наиболее используемые регуляризаторы:

•
$$L_2$$
-регуляризатор: $R(w) = \big| |w| \big|_2 = \sum_{i=1}^d w_i^2$

$$ullet$$
 L_1 -регуляризатор: $R(w) = ig||w|ig|_1 = \sum_{i=1}^d |w_i|$

Пример регуляризованного функционала:

$$Q(a(w),X) = \frac{1}{l} \sum_{i=1}^{l} ((w,x_i) - y_i)^2 + \alpha \sum_{i=1}^{d} w_i^2,$$

где α – коэффициент регуляризации.

ПОЛЕЗНОЕ СВОЙСТВО L1-РЕГУЛЯРИЗАЦИИ

Все ли признаки в задаче нужны?

- Некоторые признаки могут не иметь отношения к задаче, т.е. они не нужны.
- Если есть ограничения на скорость получения предсказаний, то чем меньше признаков, тем быстрее
- Если признаков больше, чем объектов, то решение задачи будет неоднозначным.

Поэтому в таких случаях надо делать отбор признаков, то есть убирать некоторые признаки.

L_1 -РЕГУЛЯРИЗАЦИЯ

Утверждение. В результате обучения модели с L_1 регуляризатором происходит зануление некоторых весов,
т.е. отбор признаков.

Можно показать, что задачи

(1)
$$Q(w) + \alpha ||w||_1 \rightarrow \min_{w}$$

И

(2)
$$\begin{cases} Q(w) \to \min_{w} \\ ||w||_{1} \le C \end{cases}$$

эквивалентны.

ОТБОР ПРИЗНАКОВ ПО L1-РЕГУЛЯРИЗАЦИИ

Нарисуем линии уровня Q(w) и область $||w||_1 \le C$:

Если признак незначимый, то соответствующий вес близок к 0. Отсюда получим, что в большинстве случаев решение нашей задачи попадает в вершину ромба, т.е. обнуляет незначимый признак.

L2-РЕГУЛЯРИЗАЦИЯ НЕ ОБНУЛЯЕТ ПРИЗНАКИ

РАЗРЕЖЕННЫЕ МОДЕЛИ

Модели, в которых часть весов равна 0, называются разреженными моделями.

• L1-регуляризация зануляет часть весов, то есть делает модель разреженной.

МНОГОКЛАССОВАЯ КЛАССИФИКАЦИЯ

Решаем задачу классификации на K классов.

• Обучим K бинарных классификаторов $b_1(x), ..., b_K(x)$, каждый из которых решает задачу: принадлежит объект x к классу k_i или не принадлежит?

Например, линейные классификаторы будут иметь вид $b_k(x) = sign((w_k, x))$

Решаем задачу классификации на K классов.

• Обучим K бинарных классификаторов $b_1(x), ..., b_K(x)$, каждый из которых решает задачу: принадлежит объект x к классу k_i или не принадлежит?

Например, линейные классификаторы будут иметь вид

$$b_k(x) = sign((w_k, x))$$

• Тогда в качестве итогового предсказания будем выдавать класс самого уверенного классификатора:

$$a(x) = \underset{k \in \{1, \dots, K\}}{argmax}((w_k, x))$$

Решаем задачу классификации на K классов.

• Обучим K бинарных классификаторов $b_1(x), ..., b_k(x)$, каждый из которых решает задачу: принадлежит объект x к классу k_i или не принадлежит?

Например, линейные классификаторы будут иметь вид

$$b_k(x) = sign((w_k, x))$$

• Тогда в качестве итогового предсказания будем выдавать класс самого уверенного классификатора:

$$a(x) = \underset{k \in \{1, \dots, K\}}{argmax((w_k, x))}$$

- Предсказания классификаторов могут иметь разные масштабы, поэтому сравнивать их некорректно.

ullet Для каждой пары классов i и j обучим бинарный классификатор $a_{ij}(x)$, который будет предсказывать класс i или j

(если всего K классов, то получим \mathcal{C}_K^2 классификаторов).

Каждый такой классификатор будем обучать только на объектах классов i и j.

• Для каждой пары классов i и j обучим бинарный классификатор $a_{ij}(x)$, который будет предсказывать класс i или j

(если всего K классов, то получим C_K^2 классификаторов). Каждый такой классификатор будем обучать только на объектах классов i и j.

• В качестве итогового предсказания выдадим класс, который предсказало наибольшее число алгоритмов:

$$a(x) = \underset{k \in \{1,...,K\}}{\operatorname{argmax}} \sum_{i=1}^{K} \sum_{j \neq i} [a_{ij}(x) = k]$$

• Для каждой пары классов i и j обучим бинарный классификатор $a_{ij}(x)$, который будет предсказывать класс i или j

(если всего K классов, то получим C_K^2 классификаторов). Каждый такой классификатор будем обучать только на объектах классов i и j.

• В качестве итогового предсказания выдадим класс, который предсказало наибольшее число алгоритмов:

$$a(x) = \underset{k \in \{1, \dots, K\}}{\operatorname{argmax}} \sum_{i=1}^{K} \sum_{j \neq i} [a_{ij}(x) = k]$$

MULTICLASS AND MULTI-LABEL CLASSIFICATION

- Если каждый объект может принадлежать только одному классу, то решаем задачу multiclass классификации
- Если каждый объект может принадлежать нескольким классам (задача классификации с пересекающимися классами), то решаем задачу multi-label классификации.

МЕТРИКИ КАЧЕСТВА

Для бинарной классификации мы использовали такие метрики как accuracy, precision, recall, f1-score, confusion matrix, roc-auc, pr-auc. Многие из них обобщаются на многоклассовый случай. Давайте поговорим как.

 Метрика accuracy - это доля правильных ответов модели, она без изменений в формуле может применяться для любого количества классов.

МЕТРИКИ КАЧЕСТВА

		True/Actual		
		Positive (😭)	Negative	
Predicted	Positive (😭)	5 (TP)	1 (FP)	
	Negative	2 (FN)	2 (TN)	

Чему равны precision и recall?

МЕТРИКИ КАЧЕСТВА

		True/Actual		
		Cat (🐯)	Fish (��)	Hen (🐴)
Predicted	Cat (🐷)	4	6	3
	Fish (¶)	1	2	0
	Hen (4)	1	2	6

Для вычисления точности и полноты в этом случае существует несколько подходов:

- Микроусреднение (micro-average)
- Макроусреднение (macro-average)
- Взвешенное усреднение (weighted-average)

МАКРОУСРЕДНЕНИЕ

В этом подходе мы вычисляем значение выбранной метрики для каждой бинарной ситуации (кошка/не кошка, рыба/не рыба, курица/не курица), а затем усредняем полученные числа.

• Например, посчитаем точность и полноту для ситуации кошка/не кошка:

		True/Actual		
		Cat (🐯)	Fish (��)	Hen (🐴)
Predicted	Cat (🐷)	4	6	3
	Fish (��)	1	2	0
	Hen (4)	1	2	6

МАКРОУСРЕДНЕНИЕ

		True/Actual		
		Cat (🐯)	Fish (��)	Hen (4)
Predicted	Cat (🐯)	4	6	3
	Fish (��)	1	2	0
	Hen (4)	1	2	6

$$ullet$$
 $precision(cat)=rac{TP}{TP+FP}=rac{4}{4+6+3}=rac{4}{13}$

To есть false positive - это все объекты, которые модель ошибочно назвала кошкой (их 6+3)

$$ullet \ recall(cat) = rac{TP}{TP+FN} = rac{4}{4+1+1}$$

Здесь false negative - это все кошки, которых модель не нашла (кошки, названные моделью не кошками).

Тогда macro-average

$$precision = rac{precision(cat) + precision(fish) + precision(hen)}{3}$$

ВЗВЕШЕННОЕ УСРЕДНЕНИЕ

		True/Actual		
		Cat (🐯)	Fish (��)	Hen (🐴)
Predicted	Cat (🐯)	4	6	3
	Fish (��)	1	2	0
	Hen (4)	1	2	6

Взвешенное усреднение (weighted-average)

В этом подходе мы усредняем посчитанные для каждого класса метрики с весами, пропорциональными количеству объектов класса.

To есть weighted average

$$precision = rac{6}{25} \cdot precision(cat) + rac{10}{25} \cdot precision(fish) + rac{9}{25} \cdot precision(hen),$$

так как всего 25 объектов, и из них 6 кошек, 10 рыб и 9 куриц.

МИКРОУСРЕДНЕНИЕ

		True/Actual		
		Cat (🐯)	Fish (��)	Hen (4)
Predicted	Cat (🐯)	4	6	3
	Fish (��)	1	2	0
	Hen (4)	1	2	6

Микроусреднение (micro-average)

В этом подходе мы вычисляем значения TP, TN, FP, FN по всей матрице ошибок сразу, исходя из их определения. Затем по полученным числам вычисляем выбранные метрики.

• $precision = \frac{TP}{TP + FP}$

TP - это количество верно угаданных объектов положительного класса. В нашем случае TP=4+2+6=12

FP - это суммарное количество false positive-предсказаний. Например, если cat предсказана как fish, то это false positive для fish. Таким образом, FP - это сумма всех неверных предсказаний, то есть FP=6+3+1+0+1+2=13

Получаем micro-average

$$precision = rac{12}{12+13} = rac{12}{25}$$

МИКРОУСРЕДНЕНИЕ

		True/Actual		
		Cat (🐯)	Fish (��)	Hen (🐴)
Predicted	Cat (🐷)	4	6	3
	Fish (¶)	1	2	0
	Hen (4)	1	2	6

$$ullet \ recall = rac{TP}{TP+FN}$$

FN - это сумма false negative-предсказаний. Например, если cat предсказана как fish, то это false negative для cat. Таким образом, FN - это опять же сумма всех неверных предсказаний, то есть FN=6+3+1+0+1+2=13

Получается, что в случае микроусреднения

$$precision = recall$$

И так как f1-score - это среднее гармоническое точности и полноты, то *при микроусреднении*

$$precision = recall = f1$$