Università degli studi di Verona Dipartimento di Informatica — Settore di Matematica Prova scritta di Algebra lineare — 25 settembre 2008

matricola		nome		cognome	
	corso di laure	ea		anno accademico	di immatricolazione
	Votazione:	Т1	E1		
		T2	E2		
		12	E3		

Domande iniziali

- \square (1) Sia **A** una matrice 3×3 con det $A \neq 0$. Si dica se 0 è un autovalore di **A**.
- \square (2) Esistono applicazioni lineari biiettive $f: \mathbb{C}^3 \to \mathbb{C}^3$?
- \square (3) Sia $\{\mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3\}$ un insieme linearmente indipendente nello spazio vettoriale V. Esiste uno scalare α in modo che l'insieme $\{\mathbf{v}_1; \mathbf{v}_2; \alpha \mathbf{v}_2 + \mathbf{v}_3; \mathbf{v}_1 \mathbf{v}_2\}$ sia linearmente indipendente?
- T1) Data la definizione di molteplicità algebrica m e geometrica d per l'autovalore λ della matrice quadrata \mathbf{A} , si dimostri che $1 \leq d \leq m$.
- T2) Dati due sottospazi X e Y dello spazio vettoriale finitamente generato V, si definisca il sottospazio somma X+Y e si dia una condizione necessaria e sufficiente affinché $\dim(X+Y)=\dim X+\dim Y$.
- E1) Si consideri, al variare di $\alpha \in \mathbb{C}$, la matrice

$$\mathbf{A}_{\alpha} = \begin{bmatrix} \alpha & 2\alpha & \alpha^2 & \alpha \\ 2 & 4 - \alpha & 2\alpha - 1 & 2 \\ 1 & 2 + \alpha & 3\alpha + 1 & 1 \end{bmatrix}.$$

Trovare, per ogni $\alpha \in \mathbb{C}$ la decomposizione LU oppure la P^TLU . Per $\alpha = 0$ si trovi una base ortogonale di $C(\mathbf{A}_0)$. Per $\alpha = 0$ si trovi una base ortogonale di $N(\mathbf{A}_0)$.

Interpretando \mathbf{A}_{α} come la matrice completa di un sistema lineare, per quali valori di α il sistema ha soluzione?

E2) Sia $f: \mathbb{C}^4 \to \mathbb{C}^4$ una trasformazione lineare e si supponga che la matrice associata a f rispetto alla base ordinata $\mathscr{B} = \{\mathbf{e}_1; \mathbf{e}_2; \mathbf{e}_3 + \mathbf{e}_4; \mathbf{e}_3 + \mathbf{e}_1\}$ su dominio e codominio (\mathbf{e}_i sono i vettori della base canonica di \mathbb{C}^4) sia

$$\mathbf{A} = \begin{bmatrix} 2 & 2 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

- (a) Si determini la matrice \mathbf{B} associata a f rispetto alle basi canoniche.
- (b) Si calcoli la dimensione dell'immagine di f.
- (c) Si dica se la matrice \mathbf{B} è diagonalizzabile.
- (d) Si calcoli una base dello spazio nullo dell'applicazione lineare f.
- E3) Si determini per quali valori del parametro $\beta \in \mathbb{C}$ la matrice

$$\mathbf{B}_{\beta} = \begin{bmatrix} 1 & \beta & 0 \\ -1 & 0 & -\beta \\ 0 & 1 & 1 \end{bmatrix}$$

è diagonalizzabile. Per $\beta = -1$ si trovi una base di \mathbb{C}^3 formata da autovettori di \mathbf{B}_{-1} .