COT 6405 ANLYSIS OF ALGORITHMS

Divide-and-Conquer

Computer & Electrical Engineering and Computer Science Dept. Florida Atlantic University

Spring 2017

Outline

- Divide-and-conquer method
- Analyzing RT
- Problems solved using divide-and-conquer
 - Binary Search
 - Finding the closest pair of points
 - Integer multiplication
 - Strassen's matrix product

Divide-and-conquer method

- Recursive approach
- Three steps at each level of the recursion:
 - Divide the problem into a number of subproblems of smaller input size
 - Conquer the subproblems by solving them recursively.
 Base case: if the subproblem sizes are small enough, just solve them in a straightforward manner
 - **Combine** the solutions of the subproblems into a solution for the original problem

Analyzing Divide-and-Conquer

Express the RT using a recurrence

$$T(n) = a T(n/b) + f(n)$$

$$a \ge 1, b > 1$$

- **conquer step**: solve *a* subproblems, each of which is *1/b* the size of the original problem
- **divide and combine steps** together take f(n) time
- Solve the recurrence using the Master Theorem

Binary Search

 Given a sorted array A of n numbers, determine whether a given number x belongs to the array.

General problem: search x into A[p..r]

- Divide the array into two halves q = \((p+r)/2 \)
- Compare x with the middle element A[q]
 - If they have the same value, then return x's location
 - If x < A[q], then search x into A[p..q-1]
 If x > A[q], then search x into A[q+1..r]

Example: BinarySearch for x = 18

Initial call: BinarySearch(A,1,n,x)

RT analysis

$$T(n) = T(n/2) + \Theta(1)$$

Case 2 of the Master Theorem:

$$T(n) = \Theta(\log n)$$

Finding the closest pair of points

Reference: Algorithm Design, by Jon Klainberg and Eva Tardos, Chapter 5.4

Problem: given n points in the plane, find the pair that is closest together.

- considered by M. Shamos and D. Hoey in 1970s
- O(n²) solution compute the distance between each pair of points and take the minimum
- O(nlogn) solution using divide-and conquer

Notations

- set of points $P = \{p_1, p_2, ..., p_n\}$
- p_i has coordinates (x_i, y_i)
- d(p_i, p_j) Euclidean distance between p_i and p_j
- assume that no two points have the same x-coordinates or the same y-coordinates

One-dimensional version:

- closest pair of points on a line
- O(n logn) solution:
 - sort them in O(n logn) time
 - walk through the sorted list computing the distance between consecutive points

Divide-and-conquer approach

- Divide: the point set P is divided evenly into Q and R by the line L
- Conquer: recursively find the closest pair among the points in Q and among the points in P
- **Combine**: find the overall solution from subproblems. This step should take linear time O(n).

Algorithm details

- For any set of points P
 - let P_x denotes the points sorted by increasing x coordinate
 - let P_v denotes the points sorted by increasing y coordinate
- First level of recursion:
 - Q is the "left half" of P the first \[\ln/2 \] points in P_x
 - R is the "right half" of P the last Ln/2 points in Px
 - one pass through each of P_x and P_y in O(n) can create Q_x , Q_y , R_x , and R_y
 - Q_x,R_x points in Q and R sorted in increasing x coordinate
 - Q_v,R_v points in Q and R sorted in increasing y coordinate
 - recursively find a closest pair of points in Q and R
 - Let q₀* and q₁* be the closest pair of points in Q
 - Let r₀^{*} and r₁^{*} be a closest pair of points in R

- Objective: linear time O(n)
- Let $\delta = \min \{ d(q_0^*, q_1^*), d(r_0^*, r_1^*) \}$
- Are there $q \in Q$ and $r \in R$ such that $d(q,r) < \delta$?
- Notations:
 - x* be the x-coordinate of the rightmost point in Q
 - L is the vertical line x = x* separating Q and R

Property: If there exist $q \in Q$ and $r \in R$ such that $d(q,r) < \delta$ then each of q and r lies within a distance δ of L.

- let S be the points in P within distance δ of L
- observation:
 - S might be the whole P
 - checking all the pairs is O(n²) ⇒ too large !!!

- Let S_y be the points in S sorted by increased y-coordinate
 - constructed by a single pass through $P_y \Rightarrow O(n)$

Property: If s, s' \in S have the property that d(s,s') < δ , then s and s' are within 15 positions of each other in the sorted list S_v .

Property: If s, s' \in S have the property that d(s,s') < δ , then s and s' are within 15 positions of each other in the sorted list S_y.

- let Z plane containing all points within distance δ of L
- partition Z into a grid $\delta/2 \times \delta/2$
- each box contains at most one point of S
 - each pair in Q or in R has distance $\geq \delta$
 - points in one box belong either to Q or R
 - distance between any two points in a box is $\leq \delta \sqrt{2}/2 < \delta$

- two points s, s' \in S which are at least 16 position apart in S_v have d(s, s') > δ
 - separated by at least 3 rows \Rightarrow distance > $3\delta/2$

 Note that the value of 15 can be reduced, but for our purpose it is important to be a constant

Combine step:

- make one pass through S_v
 - for each $s \in S_y$ compute its distance to the next 15 points in S_y
 - record the smallest distance
 - if the smallest distance is $< \delta$, then this is the closest pair in P
 - otherwise the pair (in Q or R) with dist = δ is the closest pair in P
- Combine step takes O(n)

```
Closest-Pair(P)
  Construct P_x and P_y (O(n \log n) time)
  (p_0^*, p_1^*) = \text{Closest-Pair-Rec}(P_x, P_y)
Closest-Pair-Rec(P_x, P_y)
   If |P| \leq 3 then
     find closest pair by measuring all pairwise distances
   Endif
   Construct Q_x, Q_y, R_x, R_y (O(n) time)
   (q_0^*, q_1^*) = \text{Closest-Pair-Rec}(Q_x, Q_y)
   (r_0^*, r_1^*) = \text{Closest-Pair-Rec}(R_x, R_y)
   \delta = \min(d(q_0^*, q_1^*), d(r_0^*, r_1^*))
   x^* = \max x - \text{coordinate of a point in set } Q
   L = \{(x,y) : x = x^*\}
   S = points in P within distance \delta of L.
    Construct S_v (O(n) time)
   For each point s \in S_y, compute distance from s
       to each of next 15 points in S_{\nu}
       Let s, s^\prime be pair achieving minimum of these distances
     (O(n) \text{ time})
    If d(s,s') < \delta then
        Return (s,s')
    Else if d(q_0^*, q_1^*) < d(r_0^*, r_1^*) then
        Return (q_0^*, q_1^*)
     Else
        Return (r_0^*, r_1^*)
     Endif
```

– // Base Case // Divide —// Conquer // Combine

RT Analysis

```
T(n) = 2T(n/2) + cn
Case 2 of the Master Theorem \Rightarrow T(n) = \Theta(n \lg n)
```

Integer Multiplication

Reference: Algorithm Design, by Jon Klainberg and Eva Tardos, Chapter 5.5

Problem: multiplication of two n-digit numbers x and y.

$$\begin{array}{rrr}
 & 1100 \\
 \times 1101 \\
\hline
 12 & 1100 \\
 \times 13 & 0000 \\
\hline
 36 & 1100 \\
 \hline
 12 & 1100 \\
\hline
 156 & 10011100
\end{array}$$

Standard solution in $O(n^2)$:

- compute partial products by multiplying each digit of y by x
- add up all the partial products
- n partial products; takes O(n) to compute each partial product $\Rightarrow O(n^2)$

Assume numbers are in base-2 (it doesn't matter)

$$x = x_1 2^{n/2} + x_0$$

 $y = y_1 2^{n/2} + y_0$

 x_1 is the high-order n/2 bits; x_0 is the low-order n/2 bits similar for y_1, y_0

$$xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0) = x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0$$

- Four subproblems: x_1y_1 , x_1y_0 , x_0y_1 , x_0y_0
- Combining the solutions of the subproblems take O(n)

$$T(n) = 4T(n/2) + cn$$

$$T(n) = 4T(n/2) + cn$$

Case 1 of Master Thm $\Rightarrow T(n) = O(n^2)$

No improvement in the RT!

Idea: use only 3 subproblems!

$$(x_1+x_0)(y_1+y_0) = x_1y_1+x_1y_0+x_0y_1+x_0y_0$$

$$xy = x_1y_12^n + (x_1y_0 + x_0y_1)2^{n/2} + x_0y_0$$

RT analysis:

T(n) = 3 T(n/2) + cn
Case 1 of the Master Thm
$$\Rightarrow T(n) = \Theta(n^{\log_2^3}) = \Theta(n^{1.59})$$

Integer Multiplication, example

```
x = 1100
y = 1101 n = 4
Divide
x_1 = 11, \quad x_0 = 00
y_1 = 11, \quad y_0 = 01
x_1 + x_0 = 11
y_1 + y_0 = 100
Conquer
p = (x_1 + x_0)(y_1 + y_0) = 11.100 = 1100
x_0 y_0 = 00 \cdot 01 = 0
x_1y_1 = 11 \cdot 11 = 1001
Combine
xy = x_1y_12^n + (p - x_0y_0 - x_1y_1)2^{n/2} + x_0y_0 = 10010000 +
  (1100 - 0 - 1001) 2^2 + 0 = 10011100
```

Strassen's Matrix Product

Reference: Algorithms, by Richard Johnsonbaugh and Marcus Schaefer, Chapter 5.4

Problem: multiplication of two matrices A and B.

- A_{ii} element row i, column j
- matrix product C = AB requires A and B to be compatible
 - if A is $m \times p$ and B is $p \times n$
 - then C is m × n

Matrix Product

$$C = AB$$

$$C_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj}$$

```
Input Parameters: A, B
Output Parameter: C

matrix\_product(A, B, C) {
n = A.last
for i = 1 to n
for j = 1 to n {
C[i][j] = 0
for k = 1 to n
C[i][j] = C[i][j] + A[i][k] * B[k][j]
}
```

```
RT = \Theta(n^3)
```

Can we do better?

- Assume A and B have size n × n, where n is a power of 2
- If n > 1, divide A and B into four n/2 × n/2 matrices

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
 and $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$

and compute the matrix product as:

$$C = AB = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix}$$

• Base case: when n = 1

What is the RT for the combine step?

$$RT = \Theta(n^2)$$

How to express RT for this Divide-and-Conquer using a recurrence?

$$T(n) = 8T(n/2) + cn^2$$

What is the RT?

case 1 of the Master Thm
$$\Rightarrow$$
 T(n) = Θ (n³) no improvement ...

• Idea: use 7 subproblems (instead of 8)

Strassen's algorithm computes 7 subproblems:

$$q_{1} = (a_{11} + a_{22}) * (b_{11} + b_{22})$$

$$q_{2} = (a_{21} + a_{22}) * b_{11}$$

$$q_{3} = a_{11} * (b_{12} - b_{22})$$

$$q_{4} = a_{22} * (b_{21} - b_{11})$$

$$q_{5} = (a_{11} + a_{12}) * b_{22}$$

$$q_{6} = (a_{21} - a_{11}) * (b_{11} + b_{12})$$

$$q_{7} = (a_{12} - a_{22}) * (b_{21} + b_{22})$$

Matrix product is computed as:

$$AB = \begin{pmatrix} q_1 + q_4 - q_5 + q_7 & q_3 + q_5 \\ q_2 + q_4 & q_1 + q_3 - q_2 + q_6 \end{pmatrix}$$

Strassen's algorithm, RT Analysis

T(n) = 7T(n/2) + cn²

Case 1 of the Master Thm
$$\Rightarrow$$

T(n) = $\Theta(n^{\log_2^7}) = \Theta(n^{2.807})$