学界 | 为提高质量、稳定性和变化性不断推陈出新

2017-11-15 机器海岸线

选自 arXiv

作者: Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen 等

机器海岸线编译

参与: 方建勇

PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION

Tero Karras Timo Aila Samuli Laine Jaakko Lehtinen NVIDIA NVIDIA NVIDIA NVIDIA and Aalto University {tkarras, taila, slaine, jlehtinen}@nvidia.com

论文链接:

http://research.nvidia.com/sites/default/files/publications/karras2017gan-paper-v2.pdf

摘要:我们描述了一个新的生成对抗网络的训练方法。 关键的思想是逐步发展生成器和鉴别器:从低分辨率开始,随着训练的不断进展,我们增加了新的层,可以模拟日益精细的细节。 这既加快了训练速度,又大大稳定了训练速度,降低了我们产生前所未有的质量的图像,例如 1024*1024 的 CELEBA 图像。我们还提出了一种简单的方法来增加生成的图像的变化,并实现了最好的纪录,在无人监督的 CIFAR10 中得分为 8.80。 此外,我们描述了几个实施细节,这对于阻止发生器和鉴别器之间的不健康竞争是重要的。 最后,我们提出了一个评估 GAN 结果的新指标,无论是在图像质量还是变化方面。 作为额外的贡献,我们构建了更高质量的 CELEBA 数据集版本。

图 1: 我们的训练从具有 4×4 像素的低空间分辨率的发生器 (G) 和鉴别器 (D) 开始。 随着训练的进展,我们逐渐增加层到 G 和 D,从而增加了生成的图像的空间分辨率。 在整个过程中,所有现有的层次都可以训练。 这里 N*N 是指在 N*N 空间分辨率下工作的卷积层。 这可以在高分辨率下实现稳定的合成,并且可以大大加快训练。 右侧为我们显示了在 1024 * 1024 分辨率下六个图像生成的例子。

Training configuration	CELEB-A						LSUN BEDROOM					
	Sliced Wasserstein distance ×103					MS-SSIM	Sliced Wasserstein distance ×103					MS-SSIM
	128	64	32	16	Avg	Mark Transfer	128	64	32	16	Avg	1021111
(a) Gulrajani et al. (2017)	12.99	7.79	7.62	8.73	9.28	0.2854	11.97	10.51	8.03	14.48	11.25	0.0587
(b) + Progressive growing	4.62	2.64	3.78	6.06	4.28	0.2838	7.09	6.27	7.40	9.64	7.60	0.0615
(c) + Small minibatch	75.42	41.33	41.62	26.57	46.23	0.4065	72.73	40.16	42.75	42.46	49.52	0.1061
(d) + Revised training parameters	9.20	6.53	4.71	11.84	8.07	0.3027	7.39	5.51	3.65	9.63	6.54	0.0662
(e*) + Minibatch discrimination	10.76	6.28	6.04	16.29	9.84	0.3057	10.29	6.22	5.32	11.88	8.43	0.0648
(e) Minibatch stddev	13.94	5.67	2.82	5.71	7.04	0.2950	7.77	5.23	3.27	9.64	6.48	0.0671
(f) + Equalized learning rate	4.42	3.28	2.32	7.52	4.39	0.2902	3.61	3.32	2.71	6.44	4.02	0.0668
(g) + Pixelwise normalization	4.06	3.04	2.02	5.13	3.56	0.2845	3.89	3.05	3.24	5.87	4.01	0.0640
(h) Converged	2.95	2.38	1.98	5.16	3.12	0.2880	3.26	3.06	2.82	4.14	3.32	0.0633

表 1: 生成的图像与训练图像(第5节)和多尺度结构相似性(MS-SSIM)之间的切片 Wasserstein 距离(SWD) 在 128 128 的几个训练设置生成的图像。对于 SWD,每列代表拉普拉斯 金字塔,最后给出了四个距离的平 均值。

图 3: (a) - (g) 与表 1 中的行相对应的 CELEBA 示例。这些是有意不聚合的。 (h) 我们的收敛结果。 请注意,有些图像显示锯齿,有些图像不锐利 - 这是数据集的一个缺陷,模型学习如实地复制。

图 4: 渐进式增长对训练速度和收敛的影响。计时是在使用 NVIDIA Tesla P100 的单 GPU 设置上测量的。(a)Gulrajani 等人关于挂钟时间的统计相似性。(2017)以 128 * 128 分辨率使用 CELEBA。 每张图表示拉普拉斯金字塔一个层次上的切片 Wasserstein 距离,垂直线表示停止表 1 中训练的点。(b)启用渐进式增长的相同图形。 竖直的虚线表示将 G 和 D 的分辨率加倍的点。(c)逐步增长对 1024 * 1024 分辨率的原始训练速度的影响。

图 5: 使用 CELEBA-HQ 数据集生成 1024 * 1024 的图像。 有关更多的结果,请参阅附录 F,以及潜在的空间插值附带的视频。 在右侧,来自 Marchesi(2017)的较早的百万像素 GAN 的两幅图像显示了有限的细节和变化。

Mao et al. (2016b) (128 \times 128) Gulrajani et al. (2017) (128 \times 128) Our (256 \times 256)

图 6: LSUN 卧室的视觉质量比较; 从引用的文章复制的图片。

图 7: 从不同的LSUN 类别生成的256 * 256 图像的选择。

本文为机器海岸线编译,转载请联系 fangjianyong@zuaa.zju.edu.cn 获得授权。

K-----