CS3063 Theory of Computing

Semester 4 (21 Intake), Jan – May 2024

Lecture 5

Regular Languages & Finite Automata – Session 4

Announcements

Assignment 1: due 04th March

- Week 6: Quiz 4 (based on L5, this lecture)
 - Thursday 29th Feb
 - 8.15am: Group 2
 - 9.15am: Group 1

Today's Outline Lecture 5

- FA with outputs (Moore, Mealy models)
- Pumping lemma for regular languages
- Applications of FA
- State Minimization

[Conclusion of "FA + Regular Languages"]

Overview of Topics Covered:

- Regular expressions/languages
- Finite automata (FA)
- Regular language
 ← FA
- NFA
 - Given NFA → equivalent deterministic FA
- NFA-Λ
 - Given NFA- Λ equivalent NFA
- Equivalency among DFA, NFA, NFA-Λ

Today's Outline

Lecture 5

- FA with outputs (Moore, Mealy models)
- Pumping lemma for regular languages
- Applications of FA
- State Minimization

1. FA With Outputs

- So far we considered FA with a binary result: "accept" or "reject"
- Outputs from other alphabets are possible

- Two approaches
 - Moore model/machines
 - Mealy model/machines

Moore Machines

- The output is associated with the state
- Formally, a Moore machine is a 6-tuple $(Q, \Sigma, \Delta, q_0, \delta, \lambda)$ where,
 - -Q, Σ , q_0 , δ are as in FA we studied
 - $-\Delta$ is the output alphabet
 - $-\lambda$ is a mapping from Q to Δ (gives the output associated with each state)

Example Moore Machine

Example Moore Machine

- Transition Table
 - For the transition diagram in previous slide

Present state	Next state		Output
	Input=0	Input=1	Output
→A	А	В	0
В	С	А	1
С	В	С	2

FA Moore Machine?

 Given an FA, we can get an "equivalent Moore machine" as follows

- $\Delta = \{0, 1\}$
- $-\lambda(q)=1$ if q is an accepting state
- $-\lambda(q)=0$ if q is not an accepting state

Mealy Machines

The output is associated with the transition

- A Mealy machine is a 6-tuple $(Q, \Sigma, \Delta, q_0, \delta, \lambda)$ where,
 - All elements are as in the Moore machine, ...
 - Except λ maps $Q \times \Sigma$ to Δ
 - That is, $\lambda(q, a)$ gives the output associated with the transition from state q on input a

Example Mealy Machine

Example Mealy Machine

- Transition Table
 - For the transition diagram in previous slide

Present State	Input=0		Input=1	
	Next State	Output	Next State	Output
→A	В	0	С	0
В	В	1	С	0
С	В	0	С	1

Moore vs. Mealy Models

- If the input string is of length *n*, the length of the output string is:
 - For a Moore machine → n+1
 - $\lambda(q_0)$ is the same for all cases
 - For a Mealy machine $\rightarrow n$

- What is the output for input Λ?
 - Moore machine gives output $\lambda(q_0)$
 - Mealy machine gives output Λ

Moore-Mealy Equivalence

- Ignoring the output of a Moore machine for input Λ, for a given Moore machine there is an equivalent Mealy machine (and vice versa)
 - i.e., for a given input string, the output strings would be the same for the two machines
- Homework
 - Find how to convert between the two types

Today's Outline Lecture 5

- FA with outputs (Moore, Mealy models)
- Pumping lemma for regular languages
- Applications of FA
- State Minimization

2. Pumping Lemma

- Allows us to prove non-regularity (i.e., that a language is not regular)
- A theorem that says all regular languages have a special property
 - Suppose $M=(Q, \Sigma, q_0, A, \delta)$ is an FA that recognizes a language L
 - Strings with sufficient length (pumping length) in the language can be "pumped" up
 - These strings correspond to "loops" in the path of transitions from start state to accepting state

Pumping Lemma ...contd

- For a string $x \in L$, if M enters a state twice then we have a path with a loop
 - -x is of the form uvw where v corresponds to the loop

Pumping Lemma ...contd

- If |Q|=n, for a string x in L with length at least n
 - We can write, $x=a_1a_2...a_ny$
 - The sequence of n+1 states $q_0 = \delta^*(q_0, \Lambda)$, $q_1 = \delta^*(q_0, a_1)$, $q_2 = \delta^*(q_0, a_1a_2)$,..., $q_n = \delta^*(q_0, a_1a_2...a_n)$ must contain some state at least twice (where loop exists)
 - $-\delta^*(q_i, v) = q_i$ means $\delta^*(q_i, v^m) = q_i$ for every $m \ge 0$
 - So, $\delta^*(q_0, uv^m w) = q_f$ for every m ≥ 0

Pumping Lemma ...conto

- Pumping Lemma: Version 1
 - Suppose L is a regular language recognized by an FA with n states. For any string x in L with $|x| \ge n$, x may be written as x = uvw for some strings u, v and w satisfying

$$|uv| \le n$$

 $|v| > 0$
for any $m \ge 0$, $uv^m w$ is in L

Pumping Lemma ...contd

- Pumping Lemma: Version 2 (more common)
 - Suppose L is a regular language. Then there is an integer n so that for any x in L with $|x| \ge n$, there are strings u, v and w so that

```
x=uvw
|uv| \le n
|v| > 0
for any m \ge 0, uv^m w is in L
```

Either \boldsymbol{u} or \boldsymbol{w} may be Λ , but \boldsymbol{v} can't be Λ

Pumping Lemma ...contd

- Idea: for an arbitrary string of sufficient length in L, a portion of it can be pumped up
 - Lemma gives a necessary condition to be regular
- To prove that a language is not regular using this lemma, we must show that the language does not have the property described in it
 - Can assume property holds and show contradiction
 - E.g., assume there is an n (although we do not know it), then find a string x, with $|x| \ge n$, that will lead to a contradiction

Example

- Show that $L = \{0^i 1^i \mid i \ge 0\}$ is not regular
 - Assume properties in pumping lemma hold for L
 - Choose **x** with $|\mathbf{x}| \ge n$; a reasonable choice is $\mathbf{x} = 0^n 1^n$
 - Lemma says x can be split into 3 as x=uvw for some u, v, w and for any m ≥ 0, uv^mw is in L
 - We can show this is not possible, as follows
 - Note: either \boldsymbol{u} or \boldsymbol{w} may be Λ , but \boldsymbol{v} can't be Λ
- Case 1: The string v with only 0s
 - For any u, w, the string uvvw has more 0s than 1s; $\rightarrow uvvw$ is not in L
 - Similarly, for any $m \ge 0$, $uv^m w$ is not in L
 - This case is a contradiction

Example ...contd

- Show that $L = \{0^i 1^i \mid i \ge 0\}$ is not regular
- Case 2: The string v with only 1s
 - For whatever u, w, for any $m \ge 0$, the string $uv^m w$ has more 1s than 0s; so $uv^m w$ is not in L
 - This case is a contradiction
- Case 3: String v consists of both 0s and 1s
 - In this case, the string uvvw may have the same number of 0s and 1s, but they will be out of order (some 1s before 0s)

A contradiction

Example ...contd

- Show that $L = \{0^i 1^i \mid i \ge 0\}$ is not regular
 - [Cases 2 and 3 can be eliminated by considering the condition
 |uv| ≤ n]
 - Contradictions for all cases of v
 - L cannot be regular

- Programming languages are not regular
 - E.g., main() $\{^n\}^n$

Today's Outline

Lecture 5

- FA with outputs (Moore, Mealy models)
- Pumping lemma for regular languages
- Applications of FA
- State Minimization

3. Applications of FA

- Modeling of reactive systems
 - Reactive system
 - A system that changes its actions, outputs and status in response to stimuli from within or outside
 - Maintains an ongoing interaction with the environment rather than produce some final value upon termination
 - Examples
 - Vending machines, ATMs, communication protocols
 - Systems for air-traffic control
 - Control systems for trains, planes, nuclear plants

Applications of FA

 Some software design problems simplified by using regular expressions or converting regular expressions to FA

• Though programming languages are not regular, *tokens* (identifiers, literals, operators, reserved words, punctuation) can be described by regular expressions

Applications of FA

- Lexical analysis/analyzers
 - First phase in compiling a program
 - Identifying and classifying the tokens
 - Lexical-analyzer generator
 - Input: sequence of regular expressions (for tokens)
 - Output: a lexical analyzer (an FA) to recognize any token

E.g., lex and flex

Applications of FA ...contd

- Text editors
 - Operations based on regular expressions
 - For searching, substitution
 - E.g., vi editor
 - $\frac{s}{s}/\frac{s}{s}$ substitute two or more spaces by a single space
- "grep": utility to search for reg. expressions
- Other similar tools, situations...

Today's Outline

Lecture 5

- FA with outputs (Moore, Mealy models)
- Pumping lemma for regular languages
- Applications of FA
- State Minimization

4. (State) Minimization of DFA

- Minimization of DFA means minimizing the number of states of an DFA
- Detailed discussion on this requires understanding of equivalence relations and equivalence classes of states
- Myhill-Nerode Theorem
 - Reading assignment
 - Provides a necessary and sufficient condition for a language to be regular

Minimization ...conto

 Myhill-Nerode theorem implies that there is a unique minimum-state DFA for every regular language

- Idea is to identify pairs of equivalent states
 - Two states q_i and q_j are equivalent if some language L takes the DFA from either state to an accepting state (same or different)

Minimization ...contd

- In practice, rather than looking for pairs of equivalent states we find pairs (p, q) of distinguishable states, which is easier
 - i.e., $\delta^*(p, x)$ is an accepting state and $\delta^*(q, x)$ is not, or vice versa, for some string x
- If two states are not equivalent, they are distinguishable
 - All pairs of states are presumed equivalent until they are proved distinguishable

State Minimization ...contd

- Initially we have two equivalence classes or two distinguishable sets of states
 - The set of accepting states, and
 - The set of non-accepting states
- But we initially don't know the equivalence relation between 2 states in one class
 - So, next we consider pairs of states presumed equivalent (not yet distinguishable)
 - For this, consider transitions from states

State Minimization ...contd

- We look at single symbols from ∑ to check the transitions from pairs of states
 - If all symbols in Σ take a DFA from states p and q to accepting states, then p and q are equivalent
 - Even if one symbol in Σ takes a DFA from states p and q to a pair of states already known to be distinguishable, then p and q are also distinguishable

Minimization Algorithm

- To identify distinguishable pairs of states
 - List all (unordered) pairs of states
 - Make a sequence of passes through these
 - 1st pass: mark each pair of which exactly one is an accepting state
 - Next passes: mark any pair (p, q) if there is an a in Σ for which $\delta(p, a) = r$, $\delta(q, a) = s$ and also (r, s) is already marked
 - After a pass with no new pair marked, stop
 - Marked states → distinguishable, else → equivalent

Minimization Algorithm

 Can use a lower (or upper) triangular matrix to mark the pairs in passes

• This is the distinguishability matrix

Example is for a DFA with6 states

Mark this for the pair (1, 6)

Example 5.6 in Book (p. 179)

Solution - Step 1

First pass

 Pairs marked as "1" are those with exactly one element being an (the only) accepting state

Solution - Step 2

2nd pass

- Pairs marked as "2"
- (2,5) is marked because $\delta(2,0)=4$, $\delta(5,0)=6$ and (4, 6) is already marked
- Similarly for other cases

Distinguishability Matrix

1						
2						
3	2	2				
4			2			
5	2	2		2		
6	1	1	1	1	1	
7	2	2		2		1
	1	2	3	4	5	6

Solution - Step 3

- 3rd pass
 - No new pairs marked
- Stop !!
- Equivalence classes
 - $-\{1, 2, 4\}$
 - $-{3, 5, 7}$
 - $-{6}$

Distinguishability Matrix

2						
3	2	2				
4			2			
5	2	2		2		
6	1	1	1	1	1	
7	2	2		2		1
'	1	2	3	4	5	6

Solution – Step 4

Solution – Final Answer

Minimum state DFA

More on Minimization

- Within a pass, the following is possible
 - A pair (p,q) is unmarked while every pair (r, s) such that $\delta(p a) = r$, $\delta(q, a) = s$ for every a in Σ is also unmarked
 - Add (p,q) to a linked list for each (r, s); if later (r, s) is marked, then mark (p,q) also
- At the end
 - an unmarked-pair means the 2 states are equivalent and can be merged
 - # of equivalent classes = # of minimum states

Exercise

Solution

- States 4 and 5 are equivalent (in the same equivalence class, indistinguishable)
 - Can merge 4 and 5

Conclusion

- Today we discussed
 - FA with output
 - Pumping lemma
 - Applications of FA
 - State Minimization
- We conclude "FA+Regular Languages"

Next topic: Context-free Languages