Démonstrations – Réductions géométriques

Propriété: (Dimension des sev en somme directe)

Soit E un \mathbb{K} -ev de dimension finie. Soient F_1, \dots, F_m des sev de E. On a :

La somme $F_1 + \cdots + F_m$ est directe

 \Leftrightarrow

$$\dim(F_1 + \dots + F_m) = \sum_{i=1}^m \dim(F_i)$$

Démonstration:

Considérons $\varphi: F_1 \times ... \times F_m \to F_1 + \cdots + F_m$

$$(f_1, \dots, f_m) \mapsto f_1 + \dots + f_m$$

On sait que φ est linéaire.

On a:

$$F_1 + \dots + F_m$$
 est directe $\Leftrightarrow \forall x \in F_1 + \dots + F_m, \exists ! (f_1, \dots, f_m) \in F_1 \times \dots \times F_m, x = \varphi(f_1, \dots, f_m)$ $\Leftrightarrow \varphi$ est bijective

 $\Leftrightarrow \varphi$ est injective (car par construction, φ est surjective)

$$\Leftrightarrow \ker \varphi = \{0_{F_1 \times \dots \times F_m}\}$$

$$\Leftrightarrow$$
 dim ker $\varphi = 0$

$$\Leftrightarrow \dim Im \varphi = \dim(F_1 \times ... \times F_m)$$

Propriété: (Inter & Union stables)

Soient F et G deux sev de E stables par $u \in \mathcal{L}(E)$. Alors F + G et $F \cap G$ sont aussi stables par u.

Démonstration:

Soit
$$z \in F + G$$
, $\exists (x, y) \in F \times G$ tel que $z = x + y$
Alors $u(x + y) = \underbrace{u(x)}_{\in F} + \underbrace{u(y)}_{\in G} \in F + G$

Donc F + G est stable par u.

De même, $F \cap G \subset F$ et $F \cap G \subset G$

Donc $u(F \cap G) \subset u(F) \subset F$ et $u(F \cap G) \subset u(G) \subset G$

Donc $u(F \cap G) \subset F \cap G$

Propriété : (Stabilité des images et noyaux)

Soient $u, v \in \mathcal{L}(E)$, tels que $u \circ v = v \circ u$. Alors $\ker u$ et $\mathrm{Im}(u)$ sont stables par v.

<u>Démonstration</u>:

- Soit $y \in \text{Im}(u)$ Alors $\exists x \in E, y = u(x)$ D'où $v(y) = v(u(x)) = u(v(x)) \in \text{Im}(u)$
- Soit $x \in \ker u$, montrons que $v(x) \in \ker u$. Or $u(v(x)) = v(u(x)) = v(0_E) = 0_E$ Donc $v(x) \in \ker u$.