Machine Learning 2 – MAP569

Stéphane Gaïffas

Today (and next lecture) is about **optimization for machine learning**. We will learn about the main pillars:

- Proximal gradient descent and acceleration
- Coordinate descent, coordinate gradient descent
- Quasi-newton
- Stochastic gradient descent and beyond

We have seen a lot of problems of the form

$$\underset{w \in \mathbb{R}^d}{\operatorname{argmin}} f(w) + g(w)$$

with f a goodness-of-fit function

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle w, x_i \rangle)$$

where ℓ is some loss and

$$g(w) = \frac{1}{C} \operatorname{pen}(w)$$

where pen(·) is some penalization function, examples being pen(w) = $\frac{1}{2} ||w||_2^2$ (ridge) and pen(w) = $||w||_1$ (Lasso)

Example of losses for classification

- Logistic loss, $\ell(y, y') = \log(1 + e^{-yy'})$
- Hinge loss, $\ell(y, y') = (1 yy')_+$
- Quadratic hinge loss, $\ell(y, y') = \frac{1}{2}(1 yy')_+^2$
- Huber loss $\ell(y, y') = -4yy' \mathbf{1}_{yy' < -1} + (1 yy')^2_+ \mathbf{1}_{yy' \ge -1}$

Minimization of

$$F(w) = f(w) + g(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, \langle x_i, w \rangle) + \frac{1}{C} \operatorname{pen}(w)$$

First, note that the gradient and Hessian matrix writes

$$\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} \ell'(y_i, \langle x_i, w \rangle) x_i$$
$$\nabla^2 f(w) = \frac{1}{n} \sum_{i=1}^{n} \ell''(y_i, \langle x_i, w \rangle) x_i x_i^{\top}$$

with

$$\ell'(y,y') = \frac{\partial \ell'(y,y')}{\partial y'}$$
 and $\ell''(y,y') = \frac{\partial^2 \ell'(y,y')}{\partial y'^2}$

And note that *f* is convex iff

$$y' \mapsto \ell(y_i, y')$$

is for any $i = 1, \ldots, n$.

Definition. We say that *f* is *L*-**smooth** if it is continuously differentiable and if

$$\|\nabla f(w) - \nabla f(w')\|_2 \le L\|w - w'\|_2$$
 for any $w, w' \in \mathbb{R}^d$

If f is twice differentiable, this is equivalent to assuming

$$\lambda_{\max}(\nabla^2 f(w)) \leq L$$
 for any $w \in \mathbb{R}^d$

(largest eigenvalue of the Hessian matrix of f is smaller than L)

For the least-squares loss

$$\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} (\langle x_i, w \rangle - y_i) x_i, \quad \nabla^2 f(w) = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^{\top}$$

so that

$$L = \frac{1}{n} \lambda_{\mathsf{max}} \left(\sum_{i=1}^{n} x_i x_i^{\top} \right)$$

For the logit loss

$$\nabla f(w) = \frac{1}{n} \sum_{i=1}^{n} y_i (\sigma(y_i \langle x_i, w \rangle) - 1) x_i$$

and

$$\nabla^2 f(w) = \frac{1}{n} \sum_{i=1}^n \sigma(y_i \langle x_i, w \rangle) (1 - \sigma(y_i \langle x_i, w \rangle)) x_i x_i^{\top}$$

so that

$$L = \frac{1}{4n} \lambda_{\mathsf{max}} \left(\sum_{i=1}^{n} x_i x_i^{\top} \right)$$

Gradient descent. Now how to find

$$w^* \in \operatorname*{argmin}_{w \in \mathbb{R}^d} f(w)$$
 ?

A key point: the descent lemma. If f is L-smooth, then

$$f(w') \le f(w) + \langle \nabla f(w), w' - w \rangle + \frac{L}{2} ||w - w'||_2^2$$

for any $w, w' \in \mathbb{R}^d$

Proof. Use the fact that

$$f(w') = f(w) + \int_0^1 \langle \nabla f(w + t(w' - w)), w' - w \rangle dt$$

= $f(w) + \langle \nabla f(w), w' - w \rangle$
+ $\int_0^1 \langle \nabla f(w + t(w' - w)) - \nabla f(w), w' - w \rangle dt$

So that

$$|f(w') - f(w) - \langle \nabla f(w), w' - w \rangle|$$

$$\leq \int_{0}^{1} |\langle \nabla f(w + t(w' - w)) - \nabla f(w), w' - w \rangle dt|$$

$$\leq \int_{0}^{1} ||\nabla f(w + t(w' - w)) - \nabla f(w)|| ||w' - w|| dt$$

$$\leq \int_{0}^{1} ||Lt||w' - w||^{2} dt = \frac{L}{2} ||w' - w||^{2}$$

which proves the descent lemma.

It leads, around a point w^k (where k is an iteration counter) to

$$f(w) \le f(w^k) + \langle \nabla f(w^k), w - w^k \rangle + \frac{L}{2} ||w - w^k||_2^2$$

for any $w \in \mathbb{R}^d$

Remark that

$$\begin{aligned} & \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ f(w^k) + \langle \nabla f(w^k), w - w^k \rangle + \frac{L}{2} \|w - w^k\|_2^2 \right\} \\ & = \underset{w \in \mathbb{R}^d}{\operatorname{argmin}} \left\| w - \left(w^k - \frac{1}{L} \nabla f(w^k) \right) \right\|_2^2 \end{aligned}$$

Hence, it is natural to choose

$$w^{k+1} = w^k - \frac{1}{I} \nabla f(w^k)$$

This is the basic gradient descent algorithm

But... where g is gone?

Proximal Gradient descent. Let's put back *g*:

$$f(w)+g(w)\leq f(w^k)+\langle \nabla f(w^k),w-w^k\rangle+\frac{L}{2}\|w-w^k\|_2^2+g(w)$$
 and again

$$\underset{w \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ f(w^{k}) + \langle \nabla f(w^{k}), w - w^{k} \rangle + \frac{L}{2} \| w - w^{k} \|_{2}^{2} + g(w) \right\} \\
= \underset{w \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ \frac{L}{2} \| w - \left(w^{k} - \frac{1}{L} \nabla f(w^{k}) \right) \|_{2}^{2} + g(w) \right\} \\
= \underset{w \in \mathbb{R}^{d}}{\operatorname{argmin}} \left\{ \frac{1}{2} \| w - \left(w^{k} - \frac{1}{L} \nabla f(w^{k}) \right) \|_{2}^{2} + \frac{1}{L} g(w) \right\} \\
= ????$$

Proximal operator. For any $g: \mathbb{R}^d \to \mathbb{R}$ convex, and any $w \in \mathbb{R}^d$, we define

$$\operatorname{prox}_g(w) = \operatorname*{argmin}_{w' \in \mathbb{R}^d} \left\{ \frac{1}{2} \|w - w'\|_2^2 + g(w') \right\}$$

We proved already that if $g(w) = \lambda ||w||_1$ then

$$\operatorname{prox}_g(w) = S_{\lambda}(w) = \operatorname{sign}(w) \odot (|w| - \lambda)_+$$

(soft-thresholding) and that if $g(w) = rac{\lambda}{2} \|w\|_2^2$ then

$$\operatorname{prox}_{g}(w) = \frac{1}{1+\lambda}w$$

(shrinkage)

Proximal gradient descent (GD)

- **Input**: starting point w^0 , Lipschitz constant L > 0 for ∇f
- For $k = 1, 2, \dots$ until convergence do

$$w^k \leftarrow \operatorname{prox}_{g/L} \left(w^{k-1} - \frac{1}{L} \nabla f(w^{k-1}) \right)$$

Return last w^k

For Lasso

$$w^* \in \operatorname*{argmin}_{w \in \mathbb{R}^d} \Big\{ \frac{1}{2n} \|y - Xw\|_2^2 + \lambda \|w\|_1 \Big\},$$

the iteration is

$$w^k \leftarrow S_{\lambda/L} \Big(w^{k-1} - \frac{1}{Ln} X^\top (Xw^{k-1} - y) \Big),$$

where S_{λ} is the soft-thresholding operator

A theoretical guarantee

- Put for short F = f + g,
- Take any $w^* \in \operatorname{argmin}_{w \in \mathbb{R}^d} F(w)$

Theorem. If the sequence $\{w^k\}$ is generated by the proximal gradient descent algorithm, then if f is L-smooth then

$$F(w^k) - F(w^*) \le \frac{L\|w^0 - w^*\|_2^2}{2k}$$

Comments

- Convergence rate is O(1/k)
- ε -accuracy (namely $F(w^k) F(w^*) \le \varepsilon$) achieved after $O(L/\varepsilon)$ iterations
- Is it possible to improve the O(1/k) rate? It's very slow!
- Improving this rate a lot requires an extra assumption: strong convexity

f is μ -strongly convex if

$$f(\cdot) - \frac{\mu}{2} \|\cdot\|_2^2$$

is convex. When f if differentiable, it is equivalent to

$$f(w') \ge f(w) + \langle \nabla f(w), w' - w \rangle + \frac{\mu}{2} ||w' - w||_2^2$$

for any $w, w' \in \mathbb{R}^d$. When f is twice differentiable, this is equivalent to

$$\lambda_{\min}(\nabla^2 f(w)) \ge \mu$$

for any $w \in \mathbb{R}^d$ (smallest eigenvalue of $\nabla^2 f(w)$)

When f is L-smooth, μ -strongly convex and twice differentiable, then

$$\mu \le \lambda_{\min}(\nabla^2 f(w)) \le \lambda_{\max}(\nabla^2 f(w)) \le L$$

for any $w \in \mathbb{R}^d$. We define in this case

$$\kappa = \frac{L}{\mu} \ge 1$$

as the **condition number** of f.

Theorem. If the sequence $\{w^k\}$ is generated by the proximal gradient descent algorithm, and if f is L-smooth and μ -strongly convex, we have

$$F(w^k) - F(w^*) \le \frac{L}{2} \exp\left(-\frac{4k}{\kappa + 1}\right) ||w^0 - w^*||$$

where $\kappa = L/\mu$ is the condition number of f.

Comments

- Convergence rate is $O(e^{-ck})$
- ε -accuracy achieved after $O(\kappa \log(1/\varepsilon))$ iterations

Acceleration. Can we improve the number of iterations $O(L/\varepsilon)$ (*L*-smooth) and $O(\frac{L}{\mu}\log(1/\varepsilon))$ (*L*-smooth and μ strongly-convex) ?

Yes: the idea is to combine w^k and w^{k-1} to find w^{k+1}

Accelerated Proximal Gradient Descent (AGD)

- Input: starting points $z^1 = w^0$, Lipschitz constant L > 0 for ∇f , $t_1 = 1$
- For $k = 1, 2, \dots$ until converged do

$$w^k \leftarrow \operatorname{prox}_{g/L}(z^k - \frac{1}{L}\nabla f(z^k))$$
 $t_{k+1} \leftarrow \frac{1 + \sqrt{1 + 4t_k^2}}{2}$
 $z^{k+1} \leftarrow w^k + \frac{t_k - 1}{t_{k+1}}(w^k - w^{k-1})$

• Return last w^k

Theorem. Accelerated proximal gradient descent needs

 $O(L/\sqrt{\varepsilon})$ iterations to achieve ε -precision

in the L-smooth case and

$$O\!\left(\sqrt{rac{L}{\mu}}\log(1/arepsilon)
ight)$$
 iterations to achieve $arepsilon$ -precision

in the L-smooth and μ -strongly convex case

Remark. AGD is not a descent algorithm, while GD is

Another approach: coordinate descent

- Received a lot of attention in machine learning and statistics the last 10 years
- It is state-of-the-art on several machine learning problems, when possible
- This is what is used in many R packages and for scikit-learn Lasso / Elastic-net and LinearSVC

Idea. Minimize one coordinate at a time (keeping all others fixed)

Given $f: \mathbb{R}^d \to \mathbb{R}$ convex and smooth if we have

$$f(w + ze_j) \ge f(w)$$
 for all $z \in \mathbb{R}$ and $j = 1, \dots, d$

(where $e_j=j$ -th canonical vector of \mathbb{R}^d) then we have

$$f(w) = \min_{w' \in \mathbb{R}^d} f(w')$$

Proof. $f(w + ze_j) \ge f(w)$ for all $z \in \mathbb{R}$ implies that

$$\frac{\partial f}{\partial w^j}(w) = 0$$

which entails $\nabla f(w) = 0$, so that w is a minimum for f convex and smooth

Exact coordinate descent (CD)

- For t = 1, ...,
- Choose $j \in \{1, \ldots, d\}$
- Compute

$$\begin{aligned} w_j^{t+1} &= \operatorname*{argmin}_{z \in \mathbb{R}} f(w_1^t, \dots, w_{j-1}^t, z, w_{j+1}^t, \dots, w_d^t) \\ w_{j'}^{t+1} &= w_{j'}^t \quad \text{for } j' \neq j \end{aligned}$$

Remarks

- Cycling through the coordinates is arbitrary: uniform sampling, pick a permutation and cycle over it every each d iterations
- Only 1D optimization problems to solve, but a lot of them

Example. Least-squares linear regression

- Let $f(w) = \frac{1}{2n} ||Xw y||_2^2$
- X features matrix with columns X^1, \ldots, X^d
- Minimization over w_i with all other coordinates fixed:

$$0 = \nabla_{w_j} f(w) = \langle X^j, Xw - y \rangle = \langle X^j, X^j w_j + \boldsymbol{X}^{-j} w_{-j} - y \rangle$$

where X^{-j} is \boldsymbol{X} with j-th columns removed and w_{-j} is w with j-th coordinate removed

Namely

$$w_j = \frac{\langle X^j, y - \boldsymbol{X}^{-j} w_{-j} \rangle}{\|X^j\|_2^2}$$

• Repeat these updates cycling through the coordinates j = 1, ..., d

• Namely pick $j \in \{1, ..., d\}$ at iteration t and do

$$w_j^{t+1} \leftarrow \frac{\langle X^j, y - \boldsymbol{X}^{-j} w_{-j}^t \rangle}{\|X^j\|_2^2}$$
$$w_{j'}^{t+1} \leftarrow w_{j'}^t \quad \text{for } j' \neq j$$

- Written like this, one update complexity is $n \times d$ (matrix-vector product $\mathbf{X}^{-j} w_{-j}$ and inner product with X_j)
- Update of all coordinates is $O(nd^2)$? While GD is O(nd) at each iteration...
- No! There is a trick. Defining the current **residual** $r^t \leftarrow y \mathbf{X} w^t$ we can write an update as

$$w_j^{t+1} \leftarrow w_j^t + \frac{\langle X^j, r^t \rangle}{\|X_j^t\|^2}$$
 and $r^{t+1} \leftarrow r^t + (w_j^{t+1} - w_j^t)X^j$

• This is 2n, which makes the full coordinates update O(nd), like an iteration of GD

Theorem (Warga (1963))

If f is continuously differentiable and strictly convex, then exact coordinate descent converges to a minimum.

Remarks.

- A 1D optimization problem to solve at each iteration: cheap for least-squares, but can be expensive for other problems
- Let's solve it approximately, since we have many iterations left
- Replace exact minimization w.r.t. one coordinate by a single gradient step in the 1D problem

Coordinate gradient descent (CGD)

- For t = 1, ...,
- Choose $j \in \{1, ..., d\}$
- Compute

$$w_j^{t+1} = w_j^t - \eta_j \nabla_{w_j} f(w^t)$$

$$w_{j'}^{t+1} = w_{j'}^t \quad \text{for } j' \neq j$$

where

• η_j = the step-size for coordinate j, can be taken as $\eta_j = 1/L_j$ where L_i is the Lipchitz constant of

$$f^{j}(z) = f(w + ze_{j}) = f(w_{1}, \dots, w_{j-1}, z, w_{j+1}, \dots, w_{d})$$

• Cool. Let's try it...

Wow! Coordinate gradient descent is much faster than GD and AGD! But why ?

Theorem (Nesterov (2012)). Assume that f is convex and smooth and that each f^j is L_j -smooth.

Consider a sequence $\{w^t\}$ given by CGD with $\eta_j=1/L_j$ and coordinates j_1,j_2,\ldots chosen at random: i.i.d and uniform distribution in $\{1,\ldots,d\}$. Then

$$\mathbb{E}f(w^{t+1}) - f(w^*) \le \frac{n}{n+t} \left((1 - \frac{1}{n})(f(w^0) - f(w^*)) + \frac{1}{2} \|w^0 - w^*\|_L^2 \right)$$

with
$$||w||_L^2 = \sum_{j=1}^d L_j w_j^2$$
.

Remark. Bound in expectation, since coordinates are taken at random. For cycling coordinates $j = (t \mod d) + 1$ the bound is much worse.

Comparison with gradient descent

• GD achieves ε -precision with

$$\frac{L\|w^0 - w^*\|_2^2}{2\varepsilon}$$

iterations. A single iteration for GD is O(nd)

• CGD achieves ε -precision with

$$\frac{d}{\varepsilon} \left(\left(1 - \frac{1}{n} \right) (f(w^0) - f(w^*)) + \frac{1}{2} \| w^0 - w^* \|_L^2 \right)$$

iterations. A single iteration for CGD is O(n)

• Note that $f(w^0) - f(w^*) \le \frac{L}{2} \|w^0 - w^*\|_2^2$ but typically $f(w^0) - f(w^*) \ll \frac{L}{2} \|w^0 - w^*\|_2^2$

So, this is actually

$$\frac{L\|w^0 - w^*\|_2^2}{\varepsilon} \text{ against } \frac{1}{\varepsilon} \|w^0 - w^*\|_L^2$$

- Namely L against the L_i
- For least-squares we have $L = \lambda_{\mathsf{max}}(\boldsymbol{X}^{\top}\boldsymbol{X})$ and $L_j = \|X^j\|_2^2$
- We always have

$$||L_j|| \|X^j\|_2^2 = \|Xe_j\|_2^2 \le \max_{u:\|u\|_2=1} \|Xu\|_2^2 = \lambda_{\max}(X^\top X) = L$$

- And actually it often happens that $L_j \ll L$. For instance, if features are normalized then $L_j = 1$, while $L \approx d$ meaning $L_j = O(L/d)$
- This explains roughly why CGD is much faster than GD for ML problems

- What about non-smooth penalization using CGD ?
- What if I want to use an L1 penalization $g(w) = \lambda ||w||_1$?
- We only talk about the minimization of f(w) convex and smooth using CGD
- What if we want to minimize f(w) + g(w) for g a penalization function, like we did with GD and AGD

Proximal coordinate gradient descent allows to minimize f(w) + g(w) for a **separable** function g, namely a function of the form

$$g(w) = \sum_{j=1}^d g_j(w^j)$$

with each g_j convex (eventually not smooth) and such that $\operatorname{prox}_{g_j}$ is easy to compute. For Lasso, take $g^j(w^j) = \lambda |w^j|$ for the Lasso (we saw 3 weeks ago that $\operatorname{prox}_{g_i}$ is easy to compute)

Proximal coordinate gradient descent (PCGD)

- For t = 1, ...,
- Choose $j \in \{1, \ldots, d\}$
- Compute

$$w_j^{t+1} \leftarrow \operatorname{prox}_{\eta_j g_j} (w_j^t - \eta_j \nabla_{w_j} f(w^t))$$

 $w_{j'}^{t+1} = w_{j'}^t \quad \text{for } j' \neq j$

where we recall that

- ullet $\eta_j=$ the step-size for coordinate j, can be taken as $\eta_j=1/L_j$
- And where $prox_{\eta_i g_i}$ is

$$\operatorname{prox}_{\eta_j g_j}(w_j) = \operatorname*{argmin}_{z \in \mathbb{R}} \frac{1}{2} (z - w_j)^2 + \eta_j g_j(z)$$

The same Theorem holds as for (CGD) (under the same assumptions, for random draws of coordinates)

Applications to machine learning. Minimization of

$$\min_{w \in \mathbb{R}^d} f(w) + \sum_{j=1}^d g_j(w^j)$$

- Regression elastic-net: $f(w) = \frac{1}{2n} || \boldsymbol{X} w y ||_2^2$ and $g_j(w) = \lambda(\tau |w_j| + (1 \tau)w_j^2)$
- Logistic regression ℓ_1 : $f(w) = \log(1 + \exp(-y \odot X w))$ and $g_j(w) = \lambda |w_j|$
- Box-constrained regression $f(w) = \frac{1}{2n} || \mathbf{X} w y ||_2^2$ such that $|| w ||_{\infty} \le r$
- Non-linear least-squares $f(w) = \frac{1}{2n} || \mathbf{X} w y ||_2^2$ such that $w_i \ge 0$
- This is what is used in scikit-learn for LinearSVC when dual=True (even if constraint is not separable)

Next week

- Some grand-mother recipes for supervised learning
- Quasi-newton
- Stochastic gradient descent and beyond
- You will implement all the algorithms and compare them !
- This means that you need to bring your laptop next week to the PC

Thank you!