Ramakrishna Mission Vivekananda University

Belur Math, Howrah, West Bengal

School of Mathematical Sciences, Department of Data Science

M.Sc. in Big Data Analytic 2018, Mid Semester Exam

Course: **DA311: Time Series** *Instructor: Dr. Sudipta Das*Student signature and Id:

Time: $1\frac{3}{4}$ hrs Max marks: 40

Date: 15 Sep 2018

- 1. Select the right answers
 - (a) Which of the following is necessary condition for weakly stationary time series?
 - i. Mean is constant and does not depend on time
 - ii. Autocovariance function depends on s and t only through their difference |s-t| (where t and s are moments in time)
 - iii. The time series under considerations is a finite variance process
 - iv. Time series is Gaussian
 - (b) Which of the following is true for white noise?
 - i. Mean =0
 - ii. Autocorrelation function is constant at zero
 - iii. Zero autocovariances except at lag zero
 - iv. Quadratic Variance
 - (c) Second differencing in time series can help to eliminate
 - i. Linear Trend
 - ii. Quadratic Trend
 - iii. Seasonality
 - iv. Noise
 - (d) The partial autocorrelation function is necessary for distinguishing between
 - i. An AR and MA model
 - ii. An AR and an ARMA
 - iii. An MA and an ARMA
 - iv. Different models within the ARMA family

 $[1 \times 4 = 4]$

- 2. For an iid sequence Y_1, \ldots, Y_n , let S be the number of values of i such that $Y_i > Y_{i-1}$, $i = 2, \ldots, n$. Find the expectation and variance of S. [1+3=4]
- 3. Let X and Y be two random variables with $EY^2 < \infty$. Deduce that the random variable f(X) that minimizes $E(Y f(X))^2$ is f(X) = E[Y|X]. [4]

4. Let $\{Z_t\}$ be a sequence of independent normal random variables, each with mean 0 and variance σ^2 . Is the following process stationary, $X_t = Z_t \cos(ct) + Z_{t-1} \sin(ct)$? [4]

5. If
$$m_t = \sum_{k=0}^{p} c_k t^k$$
, $t = 0, \pm 1, \pm 2, \dots$, show that $\nabla^{p+1} m_t = 0$. [4]

6. Is the following ARMA process causal as well as invertible. ($\{Z_t\}$ denotes white noise)

$$X_t - .75X_{t-1} + .5625X_{t-2} = Z_t + 1.25Z_{t-1}$$

[2+2=4]

[4]

7. Show that the two MA(1) processes

$$X_t = Z_t + \theta Z_{t-1}, \{Z_t\} \sim WN(0, \sigma^2)$$

and

$$Y_t = \tilde{Z}_t + \frac{1}{\theta} \tilde{Z}_{t-1}, \ \{\tilde{Z}_t\} \sim WN(0, \sigma^2 \theta^2),$$

where $0 < |\theta| < 1$, have the same autocovariance functions.

- 8. For an MA(1), $X_t = Z_t + \theta Z_{t-1}$, what can be the maximum value of $|\rho_X(1)|$ for any real θ . For which values of θ does $\rho_X(1)$ attain its maximum and minimum? ($\{Z_t\}$ denotes white noise and $\rho_X(1)$ is the auto-correlation of X_t at lag 1) [3+3=6]
- 9. Show that the value at lag 2 of the partial ACF of the MA(1) process

$$X_t = Z_t + \theta Z_{t-1}, t = 0, \pm 1, \dots,$$

where
$$\{Z_t\} \sim WN(0, \sigma^2)$$
, is $\phi_{22} = -\theta^2/(1 + \theta^2 + \theta^4)$. [6]

This exam has total 9 questions, for a total of 40 points and 0 bonus points.