

ANEXO LECCIÓN 1

Conceptos y arquitectura del sistema de bases de datos

Describir

- n Modelos de datos y sus categorías
- n Esquemas, instancias y estados
- n Arquitectura de tres esquemas

n Independencia de datos

Modelos de datos

n Modelo de datos:

- n Un conjunto de conceptos para describir la estructura de una base de datos. Por estructura de una base de datos nos referimos a los tipos de datos, las relaciones y las restricciones que se aplican a los datos.
- n La mayoría de los modelos de datos también incluyen un conjunto de operaciones básicas para especificar recuperaciones y actualizaciones en la base de datos.

Categorías de modelos de datos

- n Modelos de datos conceptuales (semánticos de alto nivel):
 - n Proporcionar conceptos que se acerquen a la forma en que muchos usuarios perciben los datos.

(También llamados modelos de datos basados en entidades o en objetos).

- n Modelos de datos físicos (de bajo nivel, internos):
 - n Proporcionar conceptos que describan detalles de cómo se almacenan los datos en la computadora.
- n Modelos de datos de implementación (representacionales):
 - n Proporcionar conceptos que se encuentren entre los dos anteriores, utilizados por muchas implementaciones comerciales de DBMS (por ejemplo, modelos de datos relacionales utilizados en muchos sistemas comerciales).

Esquemas versus instancias

n Esquema de base de datos:

- n La descripción de una base de datos.
- n Incluye descripciones de la estructura de la base de datos, los tipos de datos y las restricciones de la base de datos.

n Diagrama de esquema:

n Una visualización ilustrativa de (la mayoría de los aspectos de) un esquema de base de datos.

n Construcción de esquema:

n Un componente del esquema o un objeto dentro del esquema, por ejemplo, ESTUDIANTE, CURSO.

Ejemplo de un esquema de base de datos

STUDENT

Name Student_number Class Major

Figure 2.1

Schema diagram for the database in Figure 1.2.

COURSE

PREREQUISITE

Course_number	Prerequisite_number

SECTION

GRADE_REPORT

Student_number Se	ction_identifier Grade
---------------------	--------------------------

Esquemas versus instancias

n Estado de la base de datos:

- n Los datos reales almacenados en una base de datos en un momento determinado en el tiempo. Esto incluye la recopilación de todos los datos de la base de datos.
- n También se llama instancia de base de datos (o ocurrencia o instantánea).
 - n El término instancia también se aplica a individuos componentes de la base de datos, por ejemplo, instancia de registro, instancia de tabla, instancia de entidad

Esquema de base de datos

versus estado de base de datos

n Estado de la base de datos:

n Se refiere al contenido de una base de datos en un momento a tiempo.

n Estado inicial de la base de datos:

n Se refiere al estado de la base de datos cuando se carga inicialmente en el sistema.

n Estado válido:

n Un estado que satisface la estructura y las restricciones de la base de datos.

Esquema de base de datos

versus estado de base de datos (continuación)

n Distinción

- n El esquema de la base de datos cambia con muy poca frecuencia.
- n El estado de la base de datos cambia cada vez que se actualiza la base de datos.

- n El esquema también se llama intensión.
- n Estado también se llama extensión.

Ejemplo de estado de una base de datos

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

SECTION

Section_identifier	Course_number	Semester	Year	Instructor
85	MATH2410	Fall	04	King
92	CS1310	Fall	04	Anderson
102	CS3320	Spring	05	Knuth
112	MATH2410	Fall	05	Chang
119	CS1310	Fall	05	Anderson
135	CS3380	Fall	05	Stone

GRADE_REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	Α

PREREQUISITE

Figure 1.2A database that stores student and course information.

Course_number	Prerequisite_number
CS3380	CS3320
CS3380	MATH2410
CS3320	CS1310

Arquitectura de tres esquemas

- n Define esquemas DBMS en tres niveles:
 - n Esquema interno a nivel interno para describir estructuras de almacenamiento físico y rutas de acceso (por ejemplo, índices). n Normalmente utiliza un modelo de datos físicos .
 - n Esquema conceptual a nivel conceptual para describir la estructura y las restricciones de toda la base de datos para una comunidad de usuarios. n Utiliza un modelo de datos conceptual o de implementación .
 - n Esquemas externos a nivel externo para describir la varias vistas de usuario.
 - n Generalmente utiliza el mismo modelo de datos que el esquema conceptual.

La arquitectura de tres esquemas.

Independencia de datos

n Independencia lógica de datos:

n La capacidad de cambiar el esquema conceptual sin tener que cambiar los esquemas externos y sus programas de aplicación asociados.

n Independencia de datos físicos:

- n La capacidad de cambiar el esquema interno. sin tener que cambiar el esquema conceptual.
- n Por ejemplo, el esquema interno se puede cambiar cuando se reorganizan ciertas estructuras de archivos o se crean nuevos índices para mejorar el rendimiento de la base de datos.