VMMT3 Projekt Sonar

Obsah

Popis úlohy	1
Popis dát a preprocessing	1
Model	1
Baseline	2
Trénovanie	3
Testovanie	4
Záver a porovnanie s baseline	4

Popis úlohy

Úlohou je naučiť sieť rozlišovať medzi sonarovými signálmi odrazenými od kovového valca a signálmi odrazenými od približne valcovej skaly.

Popis dát a preprocessing

Dataset sa skladá z 208 meraní 61 vlastností, z ktorých 60 je číselných, na základe ktorých máme odhadnúť poslednú, cieľovú vlastnosť – triedu R (rock) alebo M (mine). Každý číslený údaj predstavuje energiu v určitom frekvenčnom pásme započítanú za určité časové obdobie. Všetky hodnoty sú z intervalu 0 až 1.

Dataset je nevyvážený a tak v procese trénovania budeme počítať váhy pre jednotlivé triedy. Taktiež, ako vidíme na obrázku 1, viaceré vlastnosti v datasete navzájom korelujú, čo môžeme využiť pri pokuse zredukovať dimenziu vstupného vektora.

Obr. 1: Korelačná matica vlastností v datasete Sonar.

Model

Pre lepšie vyhodnotenie presnosti modela použijeme pri trénovaní finálneho modela 5-fold cross validation.

Baseline

Baseline bude jednoduchá neurónová siet, ktorej architektúru môžeme vidieť v tabuľke 1. Výsledky vidíme v tabuľkách 2, 3. Priebeh trénovania vidíme na obrázku 2. Trénovali sme počas 20 epoch a pri batch size 16 s pomocou optimizátora Adam(lr=0.001). Na obrázku 2 vidíme priemerný priebeh accuracy a loss naprieč 5 foldami vytvorenými z pôvodnej trénovacej množiny. Testovacie metriky sme testovali na pôvodnom testovacom datasete.

Name	Type	Shape	#Params	Act.	Reg.	Padding
dense_1	Dense	(None, 40)	2440	relu	None	same
$dense_2$	Dense	(None, 1)	41	sigmoid	l None	_
Total par.:	2481	(9.69 KB)				
Trainable par.:	2481	(9.69 KB)				
Non-trainable par.:	0	(0.00 Byte)				

Tabuľka 1: Topológia baseline modela.

Obr. 2: Priebeh trénovania baseline modela.

	M	R
Μ	15	4
R	7	16

Tabuľka 2: Confusion matrix baseline modela. Zvýraznená hlavná diagonála označuje správne klasifikácie.

	precision	recall	f1-score	support
M	0.68	0.79	0.73	19
R	0.80	0.70	0.74	23
accuracy			0.74	42
macro avg	0.74	0.74	0.74	42
weighted avg	0.75	0.74	0.74	42

Tabuľka 3: Hodnota najbežnejších klasifikačných metrík baseline modela.

Trénovanie

Finálny model môžeme vidieť v tabuľke 4. Priebeh trénovania môžeme vidieť na obrázku 3. Model sme trénovali pomocou 5-fold cross validation (rozdelenia trénovacieho datasetu na validačný a trénovací). Trénovanie trvalo 20 epoch s learning rateom 0,005 a optimalizátorom Adam a batch size 8. Počas trénovania sme pri každej krížovej validácii inicializovali PCA a aplikovali ho na trénovacie dáta s nastaveným počtom komponentov na 40.

Name	Type	Shape	#Par.	Act.	Reg.	Padding
dense_1	Dense	(None, 10)	410	relu	None	same
$dense_2$	Dense	(None, 10)	110	relu	None	same
$dropout_1$	Dropout(0.3)	(None, 10)	0	None	None	same
$dense_3$	Dense	(None, 1)	11	sigmoid	None	_
Total par.:	531	(2.07 KB)				
Trainable par.:	531	(2.07 KB)				
Non-trainable par.:	0	(0.00)				
		Byte)				

Tabuľka 4: Topológia modela.

Obr. 3: Priemerný priebeh trénovania finálneho modela pomocou 5-fold cross-validation.

Testovanie

Confusion matrix predikcie testovacej množiny môžeme vidieť v tabuľke 5. Bežné hodnoty evaluácie modelov nájdeme v tabuľke 6. Testovanie prebehlo na pôvodnom testovacom datasete, ktorý nebol súčasťou krížovej validácie.

	Μ	R
Μ	17	2
R	4	19

Tabuľka 5: Confusion matrix modela. Zvýraznená hlavná diagonála označuje správne klasifikácie.

	precision	recall	f1-score	support
M	0.81	0.89	0.85	19
R	0.90	0.83	0.86	23
accuracy			0.86	42
macro avg	0.86	0.86	0.86	42
weighted avg	0.86	0.86	0.86	42

Tabuľka 6: Hodnota najbežnejších klasifikačných metrík modela.

Záver a porovnanie s baseline

Ako vidíme, rozdieľ medzi baseline a finálnym modelom je pomerne významný. Finálny model je vo všetkých metrikách priemerne lepší o 15,70~% (priemer rozdielov weighted avg. metrík).

V tabuľke 7 vidíme rozdiely medzi confusion matrix finálneho modela a baseline modela. Negatívne hodnoty nesprávnych klasifikácií označujú tie predikcie, v ktorých sa finálny model mýli menej, a naopak pozitívne tie, v ktorých chybuje viac.

Hodnoty správnych klasifikácií – vyznačená hlavná diagonála – sa interpretujú opačne; pozitívny rozdiel znamená, že výsledný model určil danú triedu o daný počet klasifikácií častejšie než baseline, negatívne číslo zas znamená zhoršenie finálneho modela.

Ako vidíme, finálny model je obecne lepší klasifikátor.

	Μ	R
Μ	2	-2
R	-3	3

Tabuľka 7: Rozdiel confusion matrix modela a baselinemodela.