Alcuni esercizi sul lemma di Yoneda. Fissiamo una categoria $\mathcal C$ una volta per tutte.

Esercizio 1: Siano F e G prefasci su \mathcal{C} . Definite la nozione di freccia $F \to G$. Si può prendere ispirazione dalla definizione di funzione lineare tra spazi vettoriali, oppure di funzione G-equivariante tra G-insiemi. Concludete che esiste una categoria $\mathrm{Psh}(\mathcal{C})$ i cui oggetti sono i prefasci su \mathcal{C} e le cui frecce sono quelle che avete definito.

Esercizio 2: il lemma di Yoneda. Sia A un oggetto di $\mathcal C$, sia F un qualsiasi prefascio su $\mathcal C$ e sia $h_A=\mathcal C(-,A)$ il prefascio rappresentabile associato ad A. Denotiamo con $\mathrm{Psh}(\mathcal C)(h_A,F)$ l'insieme delle frecce $h_A\to F$ (vedi esercizio 1). Allora, esiste una biezione naturale

$$Psh(\mathcal{C})(h_A, F) \xrightarrow{\sim} F(A). \tag{1}$$

Esercizio 3: l'immersione di Yoneda. Date categorie \mathcal{C} e \mathcal{D} , un $funtore \ F \colon \mathcal{C} \to \mathcal{D}$ è per definizione il dato di una funzione tra le famiglie di oggetti $C \mapsto F(C) \in \mathcal{D}$ e, per ogni coppia di oggetti (C,D), una funzione tra gli insiemi di frecce

$$F_{C,D}: \mathcal{C}(C,D) \to \mathcal{D}(F(C),F(D))$$
 (2)

che preservi composizioni e identità, cioè F(gf)=F(g)F(f) e $F(1_C)=1_{F(C)}$. Denotiamo con $P{\rm sh}(\mathcal C)$ la categoria dei prefasci su $\mathcal C$ (Esercizio 1). Allora, esiste un funtore

$$h: \mathcal{C} \to \mathrm{Psh}(\mathcal{C})$$
 (3)

definito sugli oggetti come $C \mapsto h_C = \mathcal{C}(-,C)$. Come lo definite sulle frecce? Dimostrate poi che tale funtore induce una *biezione*

$$h_{C,D}: \mathcal{C}(C,D) \to \mathrm{Psh}(\mathcal{C})(h_C,h_D)$$
 (4)

Si dice che il funtore h è pienamente fedele. Può essere interpretato come una sorta di inclusione di categorie, e ciò spiega in quali termini h_C contiene precisamente l'informazione contenuta in C nella categoria C.