

Electric Circuits II Project

Report

Prepared by

Mark Raymond Takla

Theoretical background:

We chose the Band Pass filter circuit 5 (Sallen Key / Cascaded band pass filter).

Equations used:

1.
$$Gain = V_{out}/V_{in} = V_{out}$$
 as $V_{in} = 1V$

2.

Lower cutoff Frequency	$f_L = \frac{1}{2\pi\sqrt{2} R_1 C_1}$
Higher Cutoff Frequency	$f_H = \frac{1}{2\pi\sqrt{2} R_2 C_2}$
Center Frequency	$f_0 = \sqrt{\omega_L \omega_H}$

Filter design:

Values:

 $R_1 = 1k$ ohms, $R_2 = 100k$ ohms

 $C_1 = 10nf, C_2 = 22pf$

Therefore $f_L = 11253.9 \text{ kHz}$, $f_H = 51154 \text{ kHz}$, $f_0 = 23993.4 \text{ kHz}$

We also obtained from the AC Sweep graph

 $f_1 = 11.9 \text{ kHz} (< f_0)$

 $f_0 = 24 \text{ kHz (peak)}$

 $f_2 = 39 \text{ kHz } (>f_0)$

Circuit simulation:

Circuit Design on Capture:

AC Sweep Simulation Profile:

Time Transient Simulation Profile:

Simulation results:

Screenshots for the obtained simulation results and comments on the simulation results.

You need to run two simulation profiles:

i. AC sweep simulation:

Sketch of the gain versus the frequency, where Vac is used as the input signal (One sketch is required).

Figure 1 Expected outcome for the AC Sweep

AC Sweep Results:

ii. Time domain simulation:

Sketch of voltage amplitude versus time, where Vsin is used as the input signal at three different frequencies (f < fo, f = fo and f > fo).

*Time Transient Results (f*₁ = 11.9 kHz):

Time Transient Results (f $_0$ = 24 kHz):

*Time Transient Results (f*₂ = 39 kHz):

Hardware implementation:

Purchased components:

- 3 1k ohms resistors
- 2 100k ohms resistors
- 2 10 nf capacitors
- 3 22 pf capacitors
- 2 Lm741 op amps
- 1 breadboard
- Wires & crocodiles

Hardware Connections:

Hardware results:

Includes pictures from the oscilloscope for the input voltage and the output **voltage at**three different frequencies (to show that the type of filter).

Includes also discussion of the results obtained from the hardware implementation.

i. f < fo: (11.9 kHz)

ii. $f \approx fo$: (24 kHz)

iii. f > fo: (39 kHz)

