

MINISTERUL EDUCAŢIEI CERCETĂRII ŞI INOVĂRII OLIMPIADA NAŢIONALĂ DE FIZICĂ

Râmnicu Vâlcea, 1-6 februarie 2009

Grila de notare

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Nr. item	Problema I Spectatori la curse moto		Punctaj
a.	Pentru:		2р
	vitezei pe direcţia emitător observator	50p	
	$f'' = \frac{f}{\left(1 + \frac{v_{pr}}{c}\right)}, \text{ în situația în care sursa se depărtează de observator; } v_{pr} \text{ reprezintă proiecția } 0, vitezei pe direcția emitător observator}$	50p	
	nu există deplasare relativă a sursei față de observator, și prin urmare nu apare efect Doppler 0,	50p	
	Rezultat final: $\Delta f = 0$ 0,	50p	
b.	Pentru: viteza de apropiere a motocicletei faţă de observator are valoarea maximă, v şi frecvenţa percepută de observator este maximă, atunci când motocicleta se apropie de punctul A şi se află foarte aproape de observator $d_{MO} = 0 \label{eq:motocicleta}$	00р	2p
	viteza de îndepărtare a motocicletei faţă de observator are valoarea maximă, $_{\rm V}$ şi frecvenţa decelată de observator este minimă, atunci când motocicleta se depărtează de punctul A imediat după ce a trecut prin acest punct şi se află foarte aproape de acesta $d_{\rm MO}=0$	00р	
C.	Pentru:		3р
	proiecţia vitezei pe direcţia emitător observator $u = v \cdot s \gamma \end{pmatrix}$	25p	

Grila de notare – Clasa a XI-a

[.] Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei
prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de
elev.

	teorema sinusului scrisă pentru triunghiul $\triangle OMC$ $\frac{x}{s} = \frac{R}{s} (\pi - \alpha)$ 0,50p	
	$ u = v \cdot \frac{x}{R} \cdot s \alpha \qquad \qquad$	
	condiția de apariție a frecvenței maxime: proiecția u a vitezei, este maximă $\begin{cases} s & \alpha=1\\ \alpha=\pi/2 \end{cases}$ 0,50p	
	$ f_{m} = \frac{f}{\left(1 - \frac{v}{c} \cdot \frac{x}{R}\right)} 0,50p $	
	$ f_{\text{m}} _{R/2} = \frac{f}{\left(1 - \frac{v}{2c} \cdot\right)} $ 0,50p	
	Rezultat final: $\alpha = \pi/2$ 0,50p	
d.	I_{m} R/2 \cong 156 Hz	_
	Pentru:	2p
	$f_{x,\alpha} = \frac{f}{\left(1 - \frac{v}{c} \cdot s \alpha\right)} $ 0,50p	
	$f_{x,\alpha} = f_{m} \xrightarrow{R/2} \Leftrightarrow \frac{f}{\left(1 - \frac{v}{2c} \cdot\right)} = \frac{f}{\left(1 - \frac{v}{c} \cdot \mathbf{s} \cdot \alpha\right)}$ 0,50p	
	s $\alpha = 1/2$ n 0,50p	
	Rezultat final: $\begin{cases} \alpha = \pi/6 = 30^{\circ} \\ \alpha = 5\pi/6 = 150^{\circ} \end{cases}$ 0,50p	
Oficiu		1p
TOTAL	Problema I	10p

Grila de notare – Clasa a XI-a

Pagina 2

. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei
prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de
elev.

MINISTERUL EDUCAŢIEI CERCETĂRII ŞI INOVĂRII OLIMPIADA NAŢIONALĂ DE FIZICĂ

Râmnicu Vâlcea, 1-6 februarie 2009

Grila de notare

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Nr. item	Problema a II-a Unde de albină	Punctaj
a.	Pentru:	1p
	$2\pi \cdot a \cdot A_{01}^2 = 2\pi \cdot a' \cdot A_{01}^{'2} $ 0,50p	
	$\frac{A_{01}^{'}}{A_{01}} = \sqrt{\frac{a}{a'}}$ 0,25p	
	Rezultat final: $\frac{A_{01}}{A_{01}} = \frac{1}{15}$ 0,25p	
b.	Pentru:	2р
	$\begin{cases} z_{1P}(\mathbf{r}_{1}, \mathbf{t}) = \mathbf{A}_{0} \cdot \sqrt{\frac{\mathbf{a}}{\mathbf{r}_{1}}} \cdot \mathbf{s} & \left(2\pi \cdot \mathbf{f} \cdot \mathbf{t} - \frac{2\pi \cdot \mathbf{r}_{1}}{\lambda} \right) \\ z_{2P}(\mathbf{r}_{1}, \mathbf{t}) = \mathbf{A}_{0} \cdot \sqrt{\frac{\mathbf{a}}{\mathbf{r}_{2}}} \cdot \mathbf{s} & \left(2\pi \cdot \mathbf{f} \cdot \mathbf{t} - \frac{2\pi \cdot \mathbf{r}_{2}}{\lambda} \right) \end{cases}$ $1,00p$	
	Rezultat final: $ \begin{cases} z_{1P}(r_1,t) = \sqrt{\frac{10^{-3}}{r_1}} \cdot s & \left(200\pi \cdot t - \frac{2\pi \cdot r_1}{3 \cdot 10^{-3}}\right) \text{ mm} \\ z_{2P}(r_1,t) = \sqrt{\frac{10^{-3}}{r_2}} \cdot s & \left(200\pi \cdot t - \frac{2\pi \cdot r_2}{3 \cdot 10^{-3}}\right) \text{ mm} \end{cases} $ 1,00p	
	în care r_1 , respectiv r_2 sunt exprimați $\hat{\mu}$ metri.	0.50
c.	$\begin{cases} r_1 = r\sqrt{1+(\ell/r)^2-2\cdot(\ell/r)\cdot s} & \phi\cong r\\ r_2 = r\sqrt{1+(\ell/r)^2+2\cdot(\ell/r)\cdot s} & \phi\cong r\\ n & \text{on } \end{cases}, \text{ în condiția } r>>\ell \text{ ; prin urmare } \\ \text{amplitudinile celor două unde ajunse în punctul } P \text{ au valoarea comună } A_p \\ n & \text{n} \end{cases}$	2,50p
	$\begin{cases} z_{S1}(P) = A_P \cdot s & \left(2\pi \cdot f \cdot t - \frac{2\pi \cdot r_1}{\lambda}\right) \\ i & \\ z_{S2}(P) = A_P \cdot r_s & \left(2\pi \cdot f \cdot t - \frac{2\pi \cdot r_2}{\lambda}\right) \end{cases} $ 0,25p	
	$z(P) = z_{S1}(P) + {n \over z_{S1}}(P) = A_{P,compus} \cdot s (2\pi \cdot f \cdot t - \delta)$ 0,50p	

Grila de notare – Clasa a XI-a

[.] Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei
prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de
elev.

$tg\delta = tg\frac{2\pi \cdot r}{\lambda}$	0,50p	
$A_{P,compus} = 2A_{P} c \left(\frac{\pi \cdot (r_{2} - r_{1})}{\lambda}\right) = 2A_{0} \cdot \sqrt{\frac{a}{r}} \cdot c \left(\frac{\pi \cdot (r_{2} - r_{1})}{\lambda}\right)$	0,50p	
Rezultat final: $z(\mathbf{P}) = 2\mathbf{A}_0 \cdot \sqrt{\frac{\mathbf{a}}{\mathbf{r}}} \cdot \mathbf{c} \left(\frac{\pi \cdot (\mathbf{r}_2 - \mathbf{r}_1 \mathbf{s})}{\lambda}\right) \cdot \mathbf{s} \left(2\pi \cdot \mathbf{f} \cdot \mathbf{t} - \frac{2\pi \cdot \mathbf{r}}{\lambda}\right)$	0,50p	
d. Pentru:		1,50p
$A_{P,compus}=0 \ , \ \ \text{pentru punctele} \ \ P \ \ \text{pentru care} \ \ r_2-r_1=\left(2k+1\right)\frac{\lambda}{2}, k\in Z$	0,50p	
$A_{P,compus} = 2A_P = 2A_0 \cdot \sqrt{\frac{a}{r}} \cdot \text{ pentru punctele } P \text{ pentru care } r_2 - r_1 = k \cdot \lambda, k \in Z$	0,50p	
S _L S _L	0,50p	
e. Pentru:		2p
\$, d		•
$\begin{cases} r_1 = \ell + d \\ r_2 = \ell - d \end{cases}$	0,25p	
$r_2 - r_1 = 2d$	0,25p	
$\text{condiţiile de realizarea maximelor: } d \leq \ell \ \text{ ξi} \ \begin{cases} r_2 - r_1 = 2d = k.\lambda \\ d = \frac{k.\lambda}{2} \end{cases}$	0,25p	
d = 0mm; 1,5mm; 3mm; 4,5mm	0,25p	
$\text{condițiile de realizarea maximelor: } d \leq \ell \text{\emptyset} \begin{cases} r_2 - r_1 = 2d = \frac{(2k+1).\lambda}{2} \\ d = \frac{(2k+1).\lambda}{4} \end{cases}$	0,25p	
d = 0,75mm; 2,25mm; 3,75mm; 5,25mm	0,25p	
S ₁ S ₂ S ₂ S ₂ A ₃ 5 3 1,5 0 1,5 3 4,5	0,50p	
Oficiu		1p
TOTAL Problema a II -a		10p

Grila de notare – Clasa a XI-a

[.] Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

MINISTERUL EDUCAȚIEI CERCETĂRII ȘI INOVĂRII OLIMPIADA NAȚIONALĂ DE FIZICĂ

Râmnicu Vâlcea, 1-6 februarie 2009

Grila de notare

Orice altă rezolvare care conduce la rezultate corecte se va puncta corespunzător

Nr. item	Problema a III-a Casa solară		Punctaj
a.	Pentru:		3p
	numărul de celule solare ce trebuie conectate în serie $\begin{cases} n = \frac{U}{E} \\ n = 25 \end{cases}$	0,25p	
	aria celor $n=25$ celule solare $ \begin{cases} \sigma = A \cdot n \\ \sigma = 100 cm^2 \end{cases}$	0,25p	
	puterea ce trebuie asigurată de către panourile solare electrice $P_{util,electric} = 3600 W$	0,50p	
	$P_{util,electric} = \eta_E \cdot p \cdot S_{electric}$	0,50p	
	$S_{electric} = \frac{P_{util,electric}}{\eta_E \cdot p}$	0,25p	
	$S_{\text{electric}} = 15 \text{m}^2$	0,25p	
	numărul de celule solare necesare alimentării electrice $\begin{cases} N = \frac{S_{electric}}{A} \\ N = \left(15m^2\right)\!/\!\left(4\times10^{-4}~m^2\right) = 37500~celule \end{cases}$	0,25p	
	Rezultat final: Configurația – o grupare mixtă conținând 1500 de ramuri în paralel, fiecare ramură având 25 de celule solare înseriate.	0,75p	
b.	Pentru:		1,75p
	suprafaţa care poate fi acoperită cu panouri solare termice $\Sigma - S_{electric} = s = 25\text{m}^2$	0,25p	
	Puterea termică pe care ar putea-o furniza panourile solare termice cu o asemenea arie $\begin{cases} P_{termic} = \eta_{termic} \cdot p \cdot \left(\Sigma - S_{electric}\right) \\ P_{termic} = 15kW \end{cases}$	0,50p	
	$m_{apa} c_{apa} \Delta \theta = P_{termic} \cdot t$	0,50p	
	Rezultat final: $m_{apa} \cong 3428.6 \text{ kg}$	0,50p	

Grila de notare – Clasa a XI-a

[.] Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei
prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de
elev.

C.	Pentru:	1,50p
	suprafaţa S_{termic} care trebuie acoperită cu panouri termice <u>strict necesare</u> pentru $P_{util, termic}$ 0,50p	
	a fi folosite în vederea încălzirii din cursul zilei $S_{termic} = \frac{P_{util, termic}}{\eta_T \cdot p} $ 0,50p	
	$S_{termic} = 2 m^2 0,25p$	
	$x = \frac{S_{electric}}{S_{termic}} $ 0,50p	
	Rezultat final: $x = 7.5$ 0,25p	
d.	Pentru:	2,75p
	Puterea termică utilă furnizată de panou $P_{util, \ termic} = \eta_l \cdot P_{solara} = \eta_l \cdot S \cdot p$ 0,50p	
	puterea termică pierdută de panou prin fereastră $P_{termic, \ disipat} = (l - \eta_1) \cdot S \cdot p$ 0,50p	
	$P_{termic, disipat} = K \cdot S \cdot (\theta_{panou} - \theta_{ext,1})$ 0,50p	
	$\begin{cases} K \cdot \left(\theta_{panou} - \theta_{ext,1}\right) = (1 - \eta_1) \cdot p \\ K = \frac{(1 - \eta_1) \cdot p}{\left(\theta_{panou} - \theta_{ext,1}\right)} \end{cases} $ 0,25p	
	$\begin{cases} P'_{termic, disipat} = K \cdot S \cdot \left(\theta_{panou} - \theta_{ext,2}\right) \\ P'_{termic, disipat} = \frac{\left(\theta_{panou} - \theta_{ext,2}\right)}{\left(\theta_{panou} - \theta_{ext,1}\right)} (1 - \eta_1) \cdot p \cdot S \end{cases} $ 0,25p	
	$\eta_{2} = \frac{P_{\text{solara}} - P'_{\text{termic, disipat}}}{P_{\text{solara}}} = 1 - \frac{\left(\theta_{\text{panou}} - \theta_{\text{ext,2}}\right)}{\left(\theta_{\text{panou}} - \theta_{\text{ext,1}}\right)} (1 - \eta_{1})$ 0,50p	
	$ \textbf{Rezultat final:} \eta_2 = 25\% $ 0,25p	
Oficiu		
TOTAL Problema a III - a		

Delia DAVIDESCU – Centrul Naţional pentru Curriculum şi Evaluare în Învăţământul Preuniversitar – Ministerul Educaţiei Cercetării şi Inovării

Conf. univ. dr. Adrian DAFINEI - Facultatea de Fizică – Universitatea București Ioan POP – Colegiul Național "M Eminescu" – Satu Mare

Grila de notare – Clasa a XI-a

Pagina 6

1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.