高等数学

Saturday $12^{\rm th}$ October, 2024

目录

Ι	1. 极限	6
1	L 基础	6
	1.1 常用极限	 . 6
	1.2 常用等价无穷小	 . 6
2	2 间断点	6
	2.1 第一类间断点	 . 6
	2.1.1 可去间断点	 . 7
	2.1.2 跳跃间断点	 . 7
	2.2 第二类间断点	 . 7
	2.2.1 振荡间断点	 . 7
	2.2.2 无穷间断点	 . 7
3	3 洛必达法则	7
	3.1 使用条件	 . 7
	3.2 结论	 . 7
4	1 极限审敛	8
II	II 导数	8
5	5 基础	8
0		
	5.2 常用高阶导数	
	5.3 莱布尼茨公式	
	5.4 中值定理	
	5.5 泰勒中值定理	
	5.5.1 拉格朗日型余项	
	5.5.2 佩亚诺型余项	
	5.5.3 误差估计式	
	5.5.4 特别的:麦克劳林公式	 . 10
	5.5.5 常用麦克劳林公式	 . 10
	5.6 极值(拉格朗日乘数法)	 . 10
	5.7 隐函数存在定理	 . 11
	5.8 雅可比行列式	 . 11
	··	
\mathbf{II}	III 积分	11

6	基础		L1
	6.1	牛顿-莱布尼茨公式	11
	6.2	第一类换元(凑微分)法	11
	6.3	第二类换元法	12
	6.4	分部积分 1	12
	6.5	常用积分表	12
		6.5.1 三角函数总表	12
		6.5.2 其他	13
	6.6	有理函数积分通解(递推)	13
	6.7	万能代换	13
	6.8	区间再现	13
		6.8.1 对称区间	13
	6.9	极坐标图形面积	14
	6.10	旋转体体积(参数方程)	14
	6.11	旋转体侧面积(参数方程)	14
	6.12	平面曲线弧长(参数方程)	14
	6.13	平面曲线曲率(参数方程)	14
7	重积		L4
	7.1	二重积分	
		7.1.1 换元	
		7.1.2 广义极坐标变换	
	7.2	三重积分	
		7.2.1 换元	
		7.2.2 柱面坐标	
		7.2.3 球面坐标	
		7.2.4 曲面面积(可轮换)	16
	7.3	积分应用	16
		7.3.1 质量	
		7.3.2 质心	16
		7.3.3 转动惯量	16
		7.3.4 古尔丁定理	16
8	曲丝		۱7
0	ш ≠ х 8.1		17
	0.1	8.1.1 格林公式	
		8.1.2 平面曲线积分与积分路径无关条件	
		8.1.3 曲线积分路径无关	
	8.2	8.1.3 曲线积分路径几天	
	0.2	8.2.1 三合一投影法(外側取正,内側取负)	
		8.2.3 曲面积分路径无关	LÕ

	8.3 斯托克斯公式	18
9	向量分析	18
	9.1 梯度	19
	9.2 散度	
	9.3 旋度	19
ΙV	au 微分方程	19
10	n阶线性微分方程	19
	10.1 线性相关	
	10.2 伯努利方程	
11	一阶线性微分方程	20
12	二阶线性微分方程	20
	12.1 齐次、非齐次、通解、特解关系	20
13	n阶常系数线性齐次微分方程	20
	13.1 特征方程	20
	13.2 通解对应项	20
14	二阶常系数线性齐次微分方程	21
	14.1 特征方程	
	14.2 通解	21
15	二阶常系数非齐次线性微分方程	21
	15.1 特解	
	15.1.1 常系数非齐次通解的大致形式	
	15.1.2 算子法求特解	22
16	全微分方程	23
	16.1 条件(微分换序)	23
\mathbf{V}	空间解析几何	23
17	· · 基础	23
	17.1 向量的方向余弦	
18	空间曲面	23
	18.1 基础	23
	18.1.1 法向量	23
	18.1.2 方向导数	23
	18.2 平面	23

		18.2.1 平面点法式	24
		18.2.2 平面截距式	24
		18.2.3 点面距离公式	24
19	空间	曲线	24
	19.1	参数方程	24
	19.2	切向量	24
	19.3	直线	24
	19.4	直线对称式(点向式)方程	25
	19.5	直线参数方程	25
20	特殊Ⅰ	曲面 Han	25
	20.1	圆锥面	25
	20.2	椭球面	25
	20.3	椭圆抛物面	25
	20.4	双曲抛物面(马鞍面)	25
	20.5	单叶双曲面	26
	20.6	双叶双曲面	26
V	[级	数	26
21	收敛	ラ 发散	26
21		ラ ク 版 绝对收敛	
		名	
		无穷大比较	
22	正项组	功 <i>物</i>	27
		~~~ 积分审敛法	
			0.7
		比值审敛法(达朗贝尔判别法)	
		根值审敛法(柯西判别法)	
23	交错		27
	23.1	莱布尼兹判别法	27
24	幂(	泰勒)级数	27
	24.1	阿贝尔定理	28
	24.2	系数模比值法	28
	24.3	系数模根值法	28
	24.4	加减运算	28
	24 5	泰勒级数	28
	24.0	<b>% 切                                   </b>	20

25	三角	(傅里叶)级数	<b>29</b>
	25.1	傅里叶级数	29
	25.2	狄利克雷收敛定理	29

# Part I

# 极限

# 1 基础

## 1.1 常用极限

$$\lim_{x \to 0^{+}} \left( 1 + \frac{1}{x} \right)^{x} = 1$$

$$\lim_{x \to \infty} \left( 1 + \frac{1}{x} \right)^{x} = e$$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f\left(\frac{i}{n}\right) = \int_{0}^{1} f(x) dx (n \in \mathbb{N}^{+})$$

# 1.2 常用等价无穷小

x为函数, $\lim_{x\to 0}$ 时,可对乘除因子替换

 $x \sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x$ 

$$x \sim (e^x - 1) \sim \ln(x + 1) \sim \ln\left(x + \sqrt{1 + x^2}\right)$$

$$x^3 \sim 6(x - \sin x) \sim 6(\arcsin x - x) \sim 3(\tan x - x)$$

$$x^3 \sim 3(x - \arctan x) \sim 2(\tan x - \sin x)$$

$$1 - \cos x \qquad \sim \frac{x^2}{2}$$

$$\log_a(1 + x) \qquad \sim \frac{x}{\ln a}$$

$$(1 + x)^a \qquad \sim ax + 1$$

$$a^x - 1 \qquad \sim x \ln a (0 < a \neq 1)$$

$$(1 + ax)^{\frac{1}{bx}} \qquad \sim e^{\frac{a}{b}}(1 - \frac{a^2}{2b}x)$$

# 2 间断点

# 2.1 第一类间断点

$$\exists \lim_{x \to x_0^-} \mathbb{H} \exists \lim_{x \to x_0^+}$$

#### 2.1.1 可去间断点

$$\lim_{x \to x_{0}^{-}} f\left(x\right) = \lim_{x \to x_{0}^{+}} f\left(x\right) = A\left(\iff \lim_{x \to x_{0}} f\left(x\right) = A\right)$$

# 2.1.2 跳跃间断点

$$\lim_{x \to x_0^-} f(x) \neq \lim_{x \to x_0^+} f(x)$$

## 2.2 第二类间断点

$$\lim_{x \to x_0^-}$$
,  $\lim_{x \to x_0^+}$ 至少满足有一个 $\sharp$ 

#### 2.2.1 振荡间断点

左、右极限至少一个为振荡不存在

#### 2.2.2 无穷间断点

左、右极限至少一个为∞

# 3 洛必达法则

## 3.1 使用条件

定义存在

$$x \in \mathring{U}(x_0)$$
  $(x_0$ 可取 $\infty$ )  $\exists f'(x_0), \exists g'(x_0)$ 

极限存在或为无穷

$$g'(x_0) \neq 0, \exists \lim_{x \to x_0} \frac{f'(x)}{g'(x)} \vec{\mathbb{E}} = \infty$$

符合
$$\frac{0}{0}$$
或 $\frac{任意}{\infty}$ 

## 3.2 结论

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = A \implies \lim_{x \to x_0} \frac{f(x)}{g(x)} = A$$

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \infty \implies \lim_{x \to x_0} \frac{f(x)}{g(x)} = \infty$$

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} \implies \lim_{x \to x_0} \frac{f(x)}{g(x)}$$

# 4 极限审敛

$$\lim_{x\to 0^+\atop y\to 0^+}\frac{x^py^q}{x^m+y^n}$$
  $m$ 、 $n$ 全为偶数且 $\frac{p}{m}+\frac{q}{n}>1$ 时  $\lim_{x\to 0^+\atop y\to 0^+\atop y\to 0^+}}\frac{x^py^q}{x^m+y^n}=0$ ,否则不存在 
$$\frac{p}{m}+\frac{q}{n}\leqslant 1$$
时,路径 $y=kx^{\frac{m-p}{q}}$ 可说明极限不存在

# Part II

# 导数

# 5 基础

## 5.1 求导法则

$$(f(x) + g(x))' = f'(x) + g'(x)$$

$$(f(x)g(x))' = f(x)g'(x) + f'(x)g(x)$$

$$(f(g(x)))' = f'(g(x))g'(x)$$

$$\left(\int_{v(x)}^{u(x)} f(t) dt\right)' = f[u(x)]u'(x) - f[v(x)]v'(x)$$

$$\left(\int_{v(x)}^{u(x)} f(x,t) dt\right)' = \int_{v(x)}^{u(x)} f'_x(x,t) dt + f[x,u(x)]u'(x) - f[x,v(x)]v'(x)$$

# 5.2 常用高阶导数

$$\sin^{(n)} \omega x = \omega^n \sin\left(\omega x + \frac{n\pi}{2}\right) \quad (n \in \mathbb{N})$$

$$\cos^{(n)} \omega x = \omega^n \cos\left(\omega x + \frac{n\pi}{2}\right) \quad (n \in \mathbb{N})$$

$$\ln^{(n)} (1+x) = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n} \quad (n \in \mathbb{N}^+)$$

$$\ln^{(n)} (1-x) = -\frac{(n-1)!}{(1-x)^n} \quad (n \in \mathbb{N}^+)$$

## 5.3 莱布尼茨公式

$$(uv)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(n-k)} v^{(k)}$$

#### 5.4 中值定理

定理	公式	约束
积分中值定理	$f(\xi) = \frac{\int_{a}^{b} f(x) dx}{x \Big _{a}^{b}}$	$\xi \in [a,b]$
罗尔中值定理	$f'(\xi) = 0$	$\xi \in (a,b)$
拉格朗日中值定理	$f'(\xi) = \frac{f(x) _a^b}{x _a^b}$	$\xi \in (a,b)$
柯西中值定理	$\frac{f'(\xi)}{g'(\xi)} = \frac{f(x) _a^b}{g(x) _a^b}$	$\xi \in (a,b)$

# 5.5 泰勒中值定理

 $R_n(x)$ 为余项

$$P_{n}(x) = \sum_{i=0}^{n} \left[ (x - x_{0}) \frac{d}{dx} \right]^{i} \frac{f(x_{0})}{i!} + R_{n}(x)$$

$$P_{n}(x, y) = \sum_{i=0}^{n} \left[ (x - x_{0}) \partial_{x} + (y - y_{0}) \partial_{y} \right]^{i} \frac{f(x_{0}, y_{0})}{i!} + R_{n}(x, y)$$

#### 5.5.1 拉格朗日型余项

 $\theta \in (0,1)$ 

$$R_{n}(x) = \left[ (x - x_{0}) \frac{d}{dx} \right]^{n+1} \frac{f(x_{0} + \theta(x - x_{0}))}{(n+1)!}$$

$$R_{n}(x,y) = \left[ (x - x_{0}) \partial_{x} + (y - y_{0}) \partial_{y} \right]^{i} \frac{f(x_{0} + \theta(x - x_{0}), y_{0} + \theta(y - y_{0}))}{(n+1)!}$$

#### 5.5.2 佩亚诺型余项

$$R_n(x) = o[(x - x_0)^n]$$
  
 $R_n(x, y) = o\left[\sqrt{(x - x_0)^2 + (y - y_0)^2}\right]^n$ 

#### 5.5.3 误差估计式

$$n \in \mathbb{N}; \exists M > 0 \forall x \in D \to M \geqslant \left| f^{(n+1)}(\xi) \right|$$

$$\implies |R_n(x)| \leqslant M \cdot \frac{\left| x - x_0 \right|^{n+1}}{(n+1)!}$$

#### 5.5.4 特别的:麦克劳林公式

$$\begin{cases}
(5.5.1) \\
x_0 = y_0 = 0
\end{cases} \implies \begin{cases}
P_n(x) = \sum_{i=0}^n \left( x \frac{d}{dx} \right)^i \frac{f(0)}{i!} + R_n(x) \\
P_n(x, y) = \sum_{i=0}^n \left( x \partial_x + y \partial_y \right)^i \frac{f(0, 0)}{i!} + R_n(x, y)
\end{cases}$$

#### 5.5.5 常用麦克劳林公式

 $\cos x$ 的2k和2k+1阶

$$\cos x = \sum_{i=0}^{k} (-1)^{i} \frac{x^{2i}}{2i!} + (-1)^{k+1} \cos \theta x \frac{x^{2k+2}}{(2k+2)!}$$

 $\sin x$ 的2k-1和2k阶

$$\sin x = \sum_{i=1}^{k} (-1)^{i-1} \frac{x^{2i-1}}{(2i-1)!} + (-1)^k \cos \theta x \frac{x^{2k+1}}{(2k+1)!}$$

其他函数的n阶

$$e^{x} = \sum_{i=0}^{n} \frac{x^{i}}{i!} + e^{\theta x} \frac{x^{n+1}}{(n+1)!}$$

$$\ln(1+x) = \sum_{i=0}^{n} (-1)^{i-1} \frac{x^{i}}{i} + \frac{(-1)^{n}}{(1+\theta x)^{n+1}} \cdot \frac{x^{n+1}}{(n+1)} (x > -1)$$

$$(1+x)^{\alpha} = \sum_{i=0}^{n} \left( \prod_{j=0}^{n-1} (\alpha - j) \cdot \frac{x^{i}}{i!} \right) + \frac{\prod_{i=0}^{n} (\alpha - i)}{(1+\theta x)^{n+1-\alpha}} \cdot \frac{x^{n+1}}{(n+1)!}$$

#### 5.6 极值(拉格朗日乘数法)

#### 二元情况

$$\begin{cases} \text{约束条件: } \varphi(x,y) = 0 \\ \text{目标函数: } f(x,y) \\ \begin{cases} \nabla f = \lambda \nabla \varphi \left( \mathbb{P} \nabla f \parallel \nabla \varphi \right) \\ \varphi(x,y) = 0 \end{cases} \end{cases} \Longrightarrow \begin{cases} \text{解得几组}(x_i,y_i) \mathbb{P} \text{为可能的极值点} \\ \text{活无约束条件} \varphi(x,y) = 0, \\ \text{可设约束为0} = 0, \mathbb{P} \nabla \varphi = (0,0) \\ \mathbb{P} \nabla f = (0,0) \end{cases}$$

检验可能的极值点 $(x_0, y_0)$ 

$$\begin{cases}
f_{xy}''^{2}(x_{0}, y_{0}) < f_{xx}''(x_{0}, y_{0}) f_{yy}''(x_{0}, y_{0}) \\
f_{xx}''(x_{0}, y_{0}) > 0
\end{cases} \implies f(x_{0}, y_{0})$$

$$f_{xx}''^{2}(x_{0}, y_{0}) < f_{xx}''(x_{0}, y_{0}) f_{yy}''(x_{0}, y_{0}) \\
f_{xx}''(x_{0}, y_{0}) < 0
\end{cases} \implies f(x_{0}, y_{0})$$

$$f_{xx}''^{2}(x_{0}, y_{0}) > f_{xx}''(x_{0}, y_{0}) f_{yy}''(x_{0}, y_{0}) \implies f(x_{0}, y_{0})$$

$$f_{xy}''^{2}(x_{0}, y_{0}) > f_{xx}''(x_{0}, y_{0}) f_{yy}''(x_{0}, y_{0}) \implies f(x_{0}, y_{0})$$

$$f_{xy}''^{2}(x_{0}, y_{0}) = f_{xx}''(x_{0}, y_{0}) f_{yy}''(x_{0}, y_{0}) \implies \text{a.i.}$$
高进一步讨论

n元情况

$$\begin{cases} \text{约束条件\Phi: } \varphi_1\left(x_1,x_2,\cdots,x_n\right)=0\\ \varphi_2\left(x_1,x_2,\cdots,x_n\right)=0\\ \vdots\\ \varphi_{n-1}\left(x_1,x_2,\cdots,x_n\right)=0\\ \text{目标函数: } f\left(x_1,x_2,\cdots,x_n\right)\\ \\ \nabla f=\sum_i \lambda_i \nabla \varphi_i \ ( 三元时共面)\\ \text{约束条件Φ} \end{cases} \Longrightarrow \text{解得几组}\left(x_1,x_2,\cdots,x_n\right)$$
即为可能的极值点

#### 5.7 隐函数存在定理

$$F(x,y)$$
 (二元)

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x'}{F_y'} \left( F_y' \neq 0 \right)$$

$$F(x,y,z)$$
 (多元)

$$\frac{\partial y}{\partial x} = -\frac{F_x'}{F_y'} \left( F_y' \neq 0 \right)$$

## 5.8 雅可比行列式

$$\frac{\partial \left(\mathbf{u}_{1}, u_{2}, \cdots, u_{n}\right)}{\partial \left(x_{1}, x_{2}, \cdots, x_{n}\right)} = \begin{vmatrix} \partial_{x_{1}} \mathbf{u}_{1} & \partial_{x_{2}} \mathbf{u}_{1} & \cdots & \partial_{x_{n}} \mathbf{u}_{1} \\ \partial_{x_{1}} u_{2} & \partial_{x_{2}} u_{2} & \cdots & \partial_{x_{n}} u_{2} \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_{1}} u_{n} & \partial_{x_{2}} u_{n} & \cdots & \partial_{x_{n}} u_{n} \end{vmatrix}$$

# Part III

# 积分

- 6 基础
- 6.1 牛顿-莱布尼茨公式

$$\int_{a}^{b} f'(x) dx = f(x) \Big|_{a}^{b}$$

6.2 第一类换元(凑微分)法

$$\int f(x) g(x) dx = \int f(x) d\left(\int g(x) dx\right)$$

# 6.3 第二类换元法

$$\int f(x) dx = \int f(t) dt \Big|_{t=\varphi(x)}$$

$$\int_{a}^{b} f[\varphi(x)] dx = \int_{\varphi(a)}^{\varphi(b)} f(t) \frac{d\varphi^{-1}(t)}{dt} dt \Big|_{t=\varphi(x)}$$

# 6.4 分部积分

$$\begin{cases} u = u(x) \\ v = v(x) \end{cases}$$

$$uv = \int u dv + \int v du$$

$$uv|_a^b = \int_a^b u dv + \int_a^b v du$$

# 6.5 常用积分表

# 6.5.1 三角函数总表

$\int f(x)  \mathrm{d}x + C$	f(x)	f'(x)	$\int f(x)  \mathrm{d}x + C$	f(x)	f'(x)
$-\cos x$	$\sin x$	$\cos x$	$\sin x$	$\cos x$	$-\sin x$
$-\ln \cos x $	$\tan x$	$\sec^2 x$	$\ln  \sin x $	$\cot x$	$-\csc^2 x$
$\ln \sec x + \tan x $	$\sec x$	$\sec x \tan x$	$-\ln\left \csc x + \cot x\right $	$\csc x$	$-\csc x \cot x$
	$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$		$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
	$\arctan x$	$\frac{1}{1+x^2}$		$\operatorname{arccot} x$	$-\frac{1}{1+x^2}$
	arcsecx	$\frac{1}{ x \sqrt{x^2-1}}$		arccscx	$-\frac{1}{ x \sqrt{x^2-1}}$
$\cosh x$	$\sinh x$	$\cosh x$	$\sinh x$	$\cosh x$	$\sinh x$
$\ln \cosh x $	$\tanh x$	$\mathrm{sech}^2 x$	$\ln  \sinh x $	$\coth x$	$-\operatorname{csch}^2 x$
$\arctan\left(e^{x}\right)$	$\mathrm{sech}x$	$-\operatorname{sech} x \tanh x$	$-\ln \mathrm{csch}x + \coth x $	$\operatorname{csch} x$	$-\operatorname{csch} x \operatorname{coth} x$
	arsinhx	$\frac{1}{\sqrt{x^2+1}}$		$\operatorname{arcosh} x$	$\frac{1}{\sqrt{x^2 - 1}}$
	artanhx	$\frac{1}{1-x^2}$		$\operatorname{arcoth} x$	$\frac{1}{1-x^2}$
	arsechx	$-\frac{1}{ x \sqrt{1-x^2}}$		$\operatorname{arcsch} x$	$-\frac{1}{ x \sqrt{1+x^2}}$

## 6.5.2 其他

$$\int a^{x} dx = \frac{a^{x}}{\ln a} + C$$

$$\int \frac{dx}{x^{2} - a^{2}} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

$$\int \frac{dx}{a^{2} + x^{2}} = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\int \frac{dx}{\sqrt{x^{2} \pm a^{2}}} = \ln \left| x + \sqrt{x^{2} \pm a^{2}} \right| + C$$

$$\int \frac{dx}{\sqrt{a^{2} - x^{2}}} = \arcsin \frac{x}{a} + C$$

#### 6.6 有理函数积分通解(递推)

$$\int \frac{x+N}{\left(x^2+px+q\right)^{\lambda}} dx \begin{cases} 0 > p^2 - 4q \\ a = \sqrt{q - \frac{p^2}{4}} \\ b = N - \frac{p}{2} \end{cases}$$

$$= \begin{cases} \frac{2bx+bp-2a^2}{4\left(\lambda-1\right)a^2\left(x^2+px+q\right)^{\lambda-1}} + \frac{b\left(2\lambda-3\right)}{2\left(\lambda-1\right)a^2} \int \frac{dx}{\left(x^2+px+q\right)^{\lambda-1}} & (\lambda > 1) \\ \frac{\ln\left(x^2+px+q\right)}{2} + \frac{b}{a}\arctan\frac{x+2p}{2a} + C & (\lambda = 1) \end{cases}$$

#### 6.7 万能代换

$$x = 2 \arctan u \implies \begin{cases} \sin x = \frac{2u}{1+u^2} \\ \cos x = \frac{1-u^2}{1+u^2} \\ dx = \frac{2}{1+u^2} du \end{cases}$$

#### 6.8 区间再现

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$$

#### 6.8.1 对称区间

$$\int_{-a}^{a} f(x) dx = \int_{0}^{a} [f(x) + f(-x)] dx$$

## 6.9 极坐标图形面积

$$A = \frac{1}{2} \int_{\alpha}^{\beta} r^2 \left(\theta\right) d\theta$$

Definition 6.9.1 (以下参数方程中都有,且都可轮换).

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

## 6.10 旋转体体积(参数方程)

绕x轴

圆盘法

$$V = \pi \int_{a}^{b} x' y^2 dt$$

柱壳法

$$V = 2\pi \int_{a}^{b} xy'ydt$$

## 6.11 旋转体侧面积(参数方程)

绕x轴

$$S = 2\pi \int_a^b y\sqrt{x'^2 + y'^2} dt$$

# 6.12 平面曲线弧长(参数方程)

$$s = \int_{a}^{b} \sqrt{x'^{2} + y'^{2}} dt = \int_{\alpha}^{\beta} \sqrt{r^{2}(\theta) + r'^{2}(\theta)} d\theta$$

## 6.13 平面曲线曲率(参数方程)

曲率半径:  $K^{-1}$ 

$$K = \frac{|x'y'' - x''y'|}{(x'^2 + y'^2)^{\frac{3}{2}}}$$

# 7 重积分

## 7.1 二重积分

**Definition 7.1.1**  $(d\sigma = dxdy)$ .

$$\iint\limits_{D} f\left(x,y\right) \mathrm{d}\sigma$$

#### 7.1.1 换元

$$\begin{cases} x = x (u, v) \\ y = y (u, v) \\ \frac{\partial (x, y)}{\partial (u, v)} \Big|_{D'} \neq 0 \end{cases} \implies \iint_{D} f(x, y) \, dx dy = \iint_{D'} f(x, y) \left| \frac{\partial (x, y)}{\partial (u, v)} \right| du dv$$

#### 7.1.2 广义极坐标变换

$$\begin{cases} x(r,\theta) = x_0 + ar\cos\theta \\ y(r,\theta) = y_0 + br\sin\theta \end{cases} \implies \iint_D f(x,y) \, dx dy = ab \iint_D f(x,y) \, r dr d\theta$$

## 7.2 三重积分

**Definition 7.2.1** (dV = dxdydz).

$$\iiint f(x, y, z) \, \mathrm{d}V$$

#### 7.2.1 换元

$$\begin{cases} x = x (u, v, w) \\ y = y (u, v, w) \\ z = z (u, v, w) \end{cases} \implies \iiint_{\Omega} f(x, y, z) \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iiint_{\Omega'} f(x, y, z) \left| \frac{\partial (x, y, z)}{\partial (u, v, w)} \right| \, \mathrm{d}u \mathrm{d}v \mathrm{d}w$$

$$\frac{\partial (x, y, z)}{\partial (u, v, w)} \Big|_{\Omega'} \neq 0$$

#### 7.2.2 柱面坐标

$$\begin{cases} x = x (r, \theta, z) = x_0 + ar \cos \theta \\ y = y (r, \theta, z) = y_0 + br \sin \theta \\ z = z (r, \theta, z) = z \end{cases}$$

$$\iiint_{\Omega} f(x, y, z) dxdydz = \iiint_{\Omega} f(x, y, z) rdrd\theta dz$$

#### 7.2.3 球面坐标

$$\begin{cases} x = x (r, \varphi, \theta) = \rho \sin \varphi \cos \theta \\ y = y (r, \varphi, \theta) = \rho \sin \varphi \sin \theta \\ z = z (r, \varphi, \theta) = \rho \cos \varphi \end{cases}$$

$$\iiint_{\Omega} f(x, y, z) dxdydz = \iiint_{\Omega} f(x, y, z) \rho^{2} \sin \varphi d\rho d\varphi d\theta$$

#### 7.2.4 曲面面积(可轮换)

$$z = z(x,y)$$

$$(x,y) \in D_{xy}$$

$$\Longrightarrow S = \iint_{D} \sqrt{1 + z_x'^2 + z_y'^2} dxdy$$

#### 7.3 积分应用

密度为 $\rho(x,y)$ 或 $\rho(x,y,z)$ 

#### 7.3.1 质量

$$M = \iint_{D} \rho(x, y) d\sigma, M = \iiint_{\Omega} \rho(x, y, z) d\sigma$$

#### 7.3.2 质心

质心的x坐标为

$$\bar{x} = \frac{\iint\limits_{D} x\rho\left(x,y\right) \mathrm{d}\sigma}{M}, \bar{x} = \frac{\iint\limits_{\Omega} x\rho\left(x,y,z\right) \mathrm{d}\sigma}{M}$$

 $\rho(\cdots) \equiv 1$ 时,质心相当于形心

## 7.3.3 转动惯量

绕x轴时

$$I_{x} = \iint_{D} y^{2} \rho(x, y) d\sigma, I_{x} = \iiint_{\Omega} (y^{2} + z^{2}) \rho(x, y, z) d\sigma$$

#### 7.3.4 古尔丁定理

旋转体体积(平面图形D绕直线l: Ax + By + C = 0旋转)

$$V = \iint_{D} 2\pi d_{l}(x, y) dxdy = 2\pi \iint_{D} \frac{|Ax + By + C|}{\sqrt{A^{2} + B^{2}}} dxdy$$

若D形心为 $(x_0, y_0)$ 

$$V = 2\pi d_l(x_0, y_0) S_D = 2\pi \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} \iint_D dxdy$$

# 8 曲线与曲面积分

#### 8.1 曲线积分

Definition 8.1.1.

$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases} \begin{cases} P = P(x, y, z) \\ Q = Q(x, y, z) \\ R = R(x, y, z) \end{cases}$$

**Definition 8.1.2** (第一类).  $t \in [\alpha, \beta]$   $\theta \in [\theta_1, \theta_2]$ 

$$\int_{L} f(x,y) ds = \int_{\alpha}^{\beta} f(x,y) \sqrt{x'^{2} + y'^{2}} dt = \int_{\theta_{2}}^{\theta_{1}} \sqrt{r^{2}(\theta) + r'^{2}(\theta)} d\theta$$

$$\int_{\Gamma} f(x,y,z) ds = \int_{\alpha}^{\beta} f(x,y,z) \sqrt{x'^{2} + y'^{2} + z'^{2}} dt$$

**Definition 8.1.3** (第二类(坐标积分)).  $t: \alpha \rightarrow \beta$ 

$$\int_{\Gamma} P dx + Q dy + R dz = \int_{\alpha}^{\beta} (Px' + Qy' + Rz') dt$$

#### 8.1.1 格林公式

L围成D

$$\oint_{L} P dx + Q dy = \iint_{D} \begin{vmatrix} \partial_{x} & \partial_{y} \\ P & Q \end{vmatrix} dx dy = \iint_{D} (Q'_{x} - P'_{y}) dx dy$$

#### 8.1.2 平面曲线积分与积分路径无关条件

 $\int_L P dx + Q dy$ 与积分路径无关

$$\int_{L} P dx + Q dy = \int_{A}^{B} P dx + Q dy$$

$$\iff \oint_{L} P dx + Q dy = 0$$

$$\iff \exists u = u (x, y), du = P dx + Q dy$$

$$\iff D \not \mid D, Q'_{x} = P'_{y}$$

#### 8.1.3 曲线积分路径无关

$$\int_{\Gamma} P dy dz + Q dz dx + R dx dy \rightarrow \begin{cases} R'_y = Q'_z \\ P'_z = R'_x \\ Q'_x = P'_y \end{cases}$$

#### 8.2 曲面积分

Definition 8.2.1.

$$z = z(x,y) \begin{cases} P = P(x,y,z) \\ Q = Q(x,y,z) \\ R = R(x,y,z) \end{cases}$$

**Definition 8.2.2** (第一类(可轮换)).

$$\iint\limits_{\Sigma} f\left(x,y,z\right) \mathrm{d}S = \iint\limits_{D_{xy}} f\left(x,y,z\right) \sqrt{z_x'^2 + z_y'^2 + 1} \mathrm{d}x \mathrm{d}y$$

Definition 8.2.3 (第二类(坐标积分)(外(远离原点)侧取正,内(指向原点)侧取负)).

$$\iint\limits_{\Sigma} P \mathrm{d}y \mathrm{d}z + Q \mathrm{d}z \mathrm{d}x + R \mathrm{d}x \mathrm{d}y = \pm \iint\limits_{\Sigma} \frac{-Pz_x' - Qz_y' + R}{\sqrt{z_x'^2 + z_y'^2 + 1}} \mathrm{d}S$$

8.2.1 三合一投影法(外侧取正,内侧取负)

$$\iint_{\Sigma} P dy dz + Q dz dx + R dx dy = \pm \iint_{D_{xy}} \left( -P z'_x - Q z'_y + R \right) dx dy$$

8.2.2 高斯公式

$$\iint_{\Sigma} P dy dz + Q dz dx + R dx dy = \iiint_{\Omega} (P'_x + Q'_y + R'_z) dV$$

8.2.3 曲面积分路径无关

$$\iint\limits_{\Sigma} P \mathrm{d}y \mathrm{d}z + Q \mathrm{d}z \mathrm{d}x + R \mathrm{d}x \mathrm{d}y \to P'_x + Q'_y + R'_z = 0$$

8.3 斯托克斯公式

$$\oint_{\Gamma} P dx + Q dy + R dz = \iint_{\Sigma} \begin{vmatrix} dy dz & dz dx & dx dy \\ \partial_{x} & \partial_{y} & \partial_{z} \\ P & Q & R \end{vmatrix}$$

$$= \iint_{\Sigma} \left( R'_{y} - Q'_{z} \right) dy dz + \left( P'_{z} - R'_{x} \right) dz dx + \left( Q'_{x} - P'_{y} \right) dx dy$$

# 9 向量分析

Definition 9.0.1 (向量场).

$$\vec{\psi} = \{P, Q, R\}$$

## 9.1 梯度

Definition 9.1.1 (梯度).

$$\nabla = \{\partial_x, \partial_y, \partial_z\}$$

## 9.2 散度

**Definition 9.2.1** (通过 $\Sigma$ 流向指定侧的通量).

$$\Phi = \iint_{\Sigma} P dy dz + Q dz dx + R dx dy$$

Theorem 9.2.1 (散度).

$$\operatorname{div} \vec{\psi} = \nabla \cdot \vec{\psi} = P_x' + Q_y' + R_z'$$

#### 9.3 旋度

Definition 9.3.1 (沿封闭曲线 $\Gamma$ 的环流量).

$$\oint_{\Gamma} P \mathrm{d}x + Q \mathrm{d}y + R \mathrm{d}z$$

Theorem 9.3.1 (旋度).

$$\operatorname{rot} \vec{\psi} = \nabla \times \vec{\psi} = \left\{ R'_y - Q'_z, P'_z - R'_x, Q'_x - P'_y \right\}$$

# Part IV

# 微分方程

# 10 n阶线性微分方程

Definition 10.0.1.

$$y^{(n)} + \sum_{i=0}^{n-1} p_i(x) y^{(i)} = f(x)$$

## 10.1 线性相关

$$\frac{f(x)}{g(x)} = \mathcal{C}(\mathcal{C} \in \mathbb{C})$$

## 10.2 伯努利方程

$$y' + P(x) y = Q(x) y^{\alpha} \xrightarrow{z=y^{1-\alpha}} z' + (1-\alpha) P(x) z = (1-\alpha) Q(x)$$

# 11 一阶线性微分方程

**Definition 11.0.1**  $(f(x) \equiv 0$ 时,为齐次).

$$\begin{cases}
(10.0.1) \\
n = 1
\end{cases} \implies y' + P(x) y = f(x)$$

Theorem 11.0.1 (通解).

$$y = \frac{\int f(x) \exp(\int P(x) dx) dx + C}{\exp(\int P(x) dx)}$$

# 12 二阶线性微分方程

Definition 12.0.1.

$$y'' + P(x)y' + Q(x)y = f(x)$$

# 12.1 齐次、非齐次、通解、特解关系

齐特+齐特(线性无关)=齐通

齐通+非特=非通

齐特+非特=非特

非特-非特=齐特

# 13 n阶常系数线性齐次微分方程

Definition 13.0.1.

$$y^{(n)} + \sum_{i=0}^{n-1} p_i y^{(i)} = 0 (p_i \in \mathbb{C})$$

## 13.1 特征方程

$$r^n + \sum_{i=0}^{n-1} p_i r^i = 0$$

#### 13.2 通解对应项

k重实根r在通解中对应项

$$y_r = \sum_{i=1}^k C_i x^{i-1} \cdot e^{rx}$$

特别的: r为共轭复根( $r = \alpha \pm \beta i$ )时,可改写为两个实根

$$y_r = (C_1 \cos \beta x + C_2 \sin \beta x)e^{\alpha x}$$

# 14 二阶常系数线性齐次微分方程

Definition 14.0.1.

$$y'' + py' + qy = 0$$

14.1 特征方程

$$r^2 + pr + q = 0$$

14.2 通解

 $r_1 \neq r_2$ 

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

 $r_1 = r_2$ 

$$y = (C_1 + C_2 x) e^{r_1 x}$$

 $r_{1,2} = \alpha \pm \beta i$ 

$$y = (C_1 \cos \beta x + C_2 \sin \beta x)e^{\alpha x}$$

# 15 二阶常系数非齐次线性微分方程

Definition 15.0.1.

$$y'' + py' + qy = f(x)$$

#### 15.1 特解

Theorem 15.1.1 (特解).  $\mathcal{P}_n$ 表示n次多项式

$$(15.0.1)$$

$$f(x) = \left[\mathcal{P}_{n_1}(x)\cos\omega x + \mathcal{P}_{n_2}(x)\sin\omega x\right]e^{\lambda x}$$

$$m = \max\{n_1, n_2\}$$

$$\Longrightarrow$$

$$y^* = x^k \left[ \mathcal{U}_m(x) \cos \omega x + \mathcal{V}_m(x) \sin \omega x \right] e^{\lambda x} \begin{cases} k = 0 & (\lambda \pm \omega i \Lambda 是特征方程根) \\ k = 1 & (\lambda \pm \omega i 是特征方程根) \end{cases}$$

Theorem 15.1.2 (特解的特例).  $\omega = 0$ 时, $m = n_1$ 

$$(15.0.1)$$

$$f(x) = \mathcal{P}_m(x) e^{\lambda x}$$

$$\implies y^* = x^k \mathcal{Q}_m(x) e^{\lambda x} \begin{cases} k = 0 & (\lambda T 是特征方程根) \\ k = 1 & (\lambda 是特征方程单根) \\ k = 2 & (\lambda 是特征方程重根) \end{cases}$$

#### 15.1.1 常系数非齐次通解的大致形式

齐次通解齐次特解非齐次特解
$$C_1$$
  $a(x)$   $e^{r_1x}$   $+C_2$   $b(x)$   $e^{r_2x}$   $+$   $x^k$   $c(x)$   $e^{\lambda x}$  非齐次特解

#### 15.1.2 算子法求特解

**Definition 15.1.1** (*D*算子).

$$Df(x) = f'(x), \frac{1}{D}f(x) = \int f(x) dx$$

对于(15.0.1):

$$y^* = \frac{1}{D^2 + pD + q} f(x) = \frac{1}{\mathcal{F}(D)} f(x)$$

若代入D后分母 $\mathcal{P}(D)$ 出现为0的状况,则(可多次使用,D算子只对右侧f(x)有效):

$$y^* = x^n \frac{1}{\mathcal{P}(D)} f(x) \longrightarrow y^* = x^{n+1} \frac{1}{\mathcal{P}'(D)} f(x)$$

 $f(x) = \operatorname{Ce}^{kx}$ : D换为k

 $f(x) = C \sin ax$ 或 $C \sin ax$ :  $D^2$ 换为 $-a^2$  若代入 $D^2$ 后分母有mD + n (mn > 0)一次多项式,可以配平方将一次多项式化到分子,再代入 $D^2$ 后直接使用D算子求导

 $f(x)=\mathcal{P}_n(x)$ : 使用 $\frac{1}{1+x}=\sum\limits_{n\in\mathbb{N}}\left(-x
ight)^n$ 泰勒展开 $\frac{1}{\mathcal{F}(D)}$ ( $\mathcal{F}(D)-1$ 当作x,不考虑收敛域),使得展开后D的最高次幂与 $\mathcal{P}_n(x)$ 相同即可

 $f(x) = e^{kx}y(x)$ : 移位定理

$$y^* = \frac{1}{\mathcal{F}(D)} e^{kx} y(x) = e^{kx} \frac{1}{\mathcal{F}(D+k)} y(x)$$

 $f(x) = \mathcal{P}_n(x) \operatorname{C} \sin ax$ :

$$y^* = \frac{1}{\mathcal{F}(D)} \mathcal{P}_n(x) \operatorname{C} \sin ax = \operatorname{Im} \left[ \frac{1}{\mathcal{F}(D)} \mathcal{P}_n e^{iax} \right]$$

 $f(x) = \mathcal{P}_n(x) C \cos ax$ :

$$y^* = \frac{1}{\mathcal{F}(D)} \mathcal{P}_n(x) C \cos ax = \text{Re}\left[\frac{1}{\mathcal{F}(D)} \mathcal{P}_n e^{iax}\right]$$

- 16 全微分方程
- 16.1 条件(微分换序)

$$P(x,y) dx + Q(x,y) dy = 0$$
是全微分方程  $\iff P'_y = Q'_x$ 

Part V

# 空间解析几何

- 17 基础
- 17.1 向量的方向余弦

$$\vec{\mathbf{v}}^0 = \begin{bmatrix} \cos \alpha \\ \cos \beta \\ \cos \gamma \end{bmatrix} = \frac{1}{\|\vec{\mathbf{v}}\|} \begin{bmatrix} \vec{\mathbf{v}}_x \\ \vec{\mathbf{v}}_y \\ \vec{\mathbf{v}}_z \end{bmatrix}$$

- 18 空间曲面
- 18.1 基础

Definition 18.1.1.

$$F\left(x, y, z\right) = 0$$

18.1.1 法向量

 $\nabla F$ 

18.1.2 方向导数

方向为1

$$\frac{\partial F}{\partial \boldsymbol{l}} = \partial_x F \cdot \cos \alpha + \partial_y F \cdot \cos \beta + \partial_z F \cdot \cos \gamma = \partial_x F \cdot \frac{\boldsymbol{l} \cdot \boldsymbol{i}}{|\boldsymbol{l}|} + \partial_y F \cdot \frac{\boldsymbol{l} \cdot \boldsymbol{j}}{|\boldsymbol{l}|} + \partial_z F \cdot \frac{\boldsymbol{l} \cdot \boldsymbol{k}}{|\boldsymbol{l}|}$$
$$\boldsymbol{l} = \nabla F \implies \frac{\partial F}{\partial \boldsymbol{l}} = |\nabla F|$$

18.2 平面

Definition 18.2.1.

$$Ax + By + Cz + D = 0$$

## 18.2.1 平面点法式

过
$$(x_0, y_0, z_0)$$
,法向量 $\begin{bmatrix} A \\ B \\ C \end{bmatrix}$ 

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$

#### 18.2.2 平面截距式

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

## 18.2.3 点面距离公式

点 $(x_0, y_0, z_0)$ 

$$d = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

# 19 空间曲线

Definition 19.0.1.

$$\begin{cases} F(x, y, z) = 0 \\ G(x, y, z) = 0 \end{cases}$$

## 19.1 参数方程

$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$$

# 19.2 切向量

$$\vec{\tau} = \nabla F \times \nabla G$$

#### 19.3 直线

Definition 19.3.1.

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$

## 19.4 直线对称式(点向式)方程

过
$$(x_0,y_0,z_0)$$
,方向向量 $\begin{bmatrix} m\\n\\p \end{bmatrix}$  
$$\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}=t$$

## 19.5 直线参数方程

$$\begin{cases} x = x_0 + mt \\ y = y_0 + nt \\ z = z_0 + pt \end{cases}$$

# 20 特殊曲面

**Definition 20.0.1** (绕z轴旋转曲面: (原曲线为 $f(y_1, z) = 0$ )).

$$\begin{cases} f(y_1, z) = 0 \\ \sqrt{x^2 + y^2} = |y_1| \end{cases} \implies f(\pm \sqrt{x^2 + y^2}, z) = 0$$

## 20.1 圆锥面

$$z^2 = \cot^2 \alpha \cdot \left(x^2 + y^2\right)$$

Definition 20.1.1 (以下二次曲面方程中都有).

#### 20.2 椭球面

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

#### 20.3 椭圆抛物面

$$\frac{x^2}{2p} + \frac{y^2}{2q} = z$$

#### 20.4 双曲抛物面(马鞍面)

$$-\frac{x^2}{2p} + \frac{y^2}{2q} = z$$

$$z = xy$$

20.5 单叶双曲面

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

20.6 双叶双曲面

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$

Part VI

# 级数

- 21 收敛与发散
- 21.1 绝对收敛

$$\sum_{n\in\mathbb{N}^+} |u_n| = s, s \in \mathbb{C}$$

21.2 条件收敛

绝对收敛 ∩ 条件收敛 = ∅

21.3 无穷大比较

$$n \to +\infty$$

$$n^{n}\gg n!\gg a^{n}\left(a>1\right)\gg n^{p}\left(p>1\right)\gg |\gg n^{p}\left(1\geqslant p>0\right)\gg \left(\ln n\right)^{q}\left(q>0\right)$$

 $\sum_{n\in\mathbb{N}^+}\frac{1}{u_n}$ 中,若 $u_n$ 在|记号左侧则收敛,在|记号右侧则发散

 $\sum\limits_{n\in\mathbb{N}^+}\frac{v_n}{u_n}$ 中,若 $u_n$ 在|记号左侧,且 $v_n$ 在 $u_n$ 右侧时收敛,否则发散( $\frac{n^p\left(1\geqslant p>0\right)}{n^q\left(q>1\right)}$ 除外,需进一步p>q+1才收敛)

# 22 正项级数

## 22.1 积分审敛法

$$\sum_{n \in \mathbb{N}^{+}} f(n) - \iint_{1}^{+\infty} f(x) \, \mathrm{d}x$$
欽散同

# 22.2 比较审敛法

$$\lim_{n \to \infty} \frac{u_n}{v_n} \begin{cases} = 0 & \Longrightarrow \sum v_n 收敛则 \sum u_n 收敛 \\ \in (0, +\infty) & \Longrightarrow \sum v_n, \sum u_n 敛散同 \\ = +\infty & \Longrightarrow \sum v_n 发散则 \sum u_n 发散 \end{cases}$$

# 22.3 比值审敛法(达朗贝尔判别法)

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} \begin{cases} <1 & \Longrightarrow \sum u_n 收敛 \\ =1 & \Longrightarrow \sum u_n 可能收敛可能发散 \\ >1 & \Longrightarrow \sum u_n 发散 \end{cases}$$

## 22.4 根值审敛法(柯西判别法)

$$\lim_{n \to \infty} \sqrt[n]{u_n} \begin{cases} <1 & \Longrightarrow \sum u_n 收敛 \\ =1 & \Longrightarrow \sum u_n 可能收敛可能发散 \\ >1 & \Longrightarrow \sum u_n 发散 \end{cases}$$

# 23 交错级数

#### 23.1 莱布尼兹判别法

正项级数
$$u_n \setminus \left\{ \lim_{n \to \infty} u_n = 0 \right\} \implies$$
交错级数 $\sum (-1)^{n (\vec{u}n-1)} u_n$ 收敛

# 24 幂(泰勒)级数

**Definition 24.0.1** (以下默认幂级数形式).

$$\sum_{n\in\mathbb{N}} = a_n x^n, \, \text{收敛半径为} R$$

#### 24.1 阿贝尔定理

$$\begin{cases} x \in (-R,R) & \text{绝对收敛} \\ x \in \{-R,R\} & \text{单独讨论} \\ x \in (-\infty,-R) \cup (R,+\infty) & \text{发散} \end{cases}$$

收敛区间为(-R,R),收敛域需要讨论端点 $\pm R$ 处的值

# 24.2 系数模比值法

$$R^{-1} = \rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

## 24.3 系数模根值法

$$R^{-1} = \rho = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

## 24.4 加减运算

$$\left. \begin{array}{l} \sum a_n x^n \psi \, \text{敛域为} I_a \\ \sum b_n x^n \psi \, \text{敛域为} I_b \end{array} \right\} \implies \sum a_n x^n \pm \sum b_n x^n = \sum \left( a_n \pm b_n \right) x^n, x \in I_a \cap I_b$$

#### 24.5 泰勒级数

$$f(x) \sim \sum_{n \in \mathbb{N}} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

#### 24.6 常用泰勒级数

$$e^{x} = \sum_{n \in \mathbb{N}} \frac{x^{n}}{n!}$$

$$\sin x = \sum_{n \in \mathbb{N}} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos x = \sum_{n \in \mathbb{N}} (-1)^{n} \frac{x^{2n}}{(2n)!}$$

$$\ln (1+x) = \sum_{n \in \mathbb{N}^{+}} (-1)^{n-1} \frac{x^{n}}{n} \qquad x \in (-1,1]$$

$$\ln (1-x) = \sum_{n \in \mathbb{N}^{+}} -\frac{x^{n}}{n} \qquad x \in (-1,1]$$

$$\frac{1}{1+x} = \sum_{n \in \mathbb{N}} (-x)^{n} \qquad x \in (-1,1)$$

$$\frac{1}{1-x} = \sum_{n \in \mathbb{N}} x^{n} \qquad x \in (-1,1)$$

$$(1+x)^{\alpha} = \sum_{n \in \mathbb{N}} \prod_{i=0}^{n-1} (\alpha - i) \prod_{i=0}^{n-1} (\alpha - i) = 1 \quad x \in (-1,1)$$

# 25 三角(傅里叶)级数

#### 25.1 傅里叶级数

$$f(x) \sim \frac{a_0}{2} + \sum_{n \in \mathbb{N}^+} (a_n \cos nx + b_n \sin nx)$$

f(x)周期为T=2l时(l常取 $\pi$ ),有傅里叶系数:

$$\begin{cases} a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx, n \in \mathbb{N} &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \cos n\omega x dx \\ b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx, n \in \mathbb{N}^+ &= \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(x) \sin n\omega x dx \end{cases}$$

$$\omega = \frac{2\pi}{T} = \frac{\pi}{l}$$

#### 25.2 狄利克雷收敛定理

f(x)在一个周期内有:

- 1. 连续或只有有限个第一类间断点
- 2. 只有有限个极值点

即 f(x) 的傅里叶级数在R连续,且

- 1.  $x_0$ 连续时,级数收敛于 $f(x_0)$
- 2.  $x_0$ 是第一类间断点时,级数收敛于 $\frac{f(x_0^-) + f(x_0^+)}{2}$