

6. K-means/KNN and PCA

Table of Contents

- Using Iris data
 - K-means clustering
 - KNN classification
 - PCA analysis

K-means clustering using sklearn

class sklearn.cluster.Kmeans

```
KMeans (n_clusters=8,
        init='k-means++',
        n_init=10,
        max_iter=300,
        tol=0.0001,
        precompute_distances='auto',
        verbose=0,
        random_state=None,
        copy_x=True,
        n_jobs=1,
        algorithm='auto')
```


- For 2 dimensional data, initialize classes of each data point
- This is to initialize the centroids (K=2)
- The centroids are set as $K_1 = (7/3, 8/3)$ and $K_2 = (20/4, 19/4)$

Re-assign each data point to the closest centroid

Disadvantages of K-means

- The k-means algorithm is sensitive to outliers!
 - Since an object with an extremely large value may substantially distort the distribution of the data.
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.
- K-Means has problems when clusters are of differing
 - Sizes
 - Densities
 - Non-spherical shapes

K-means using sklearn KMeans

Simply fit the data using KMeans function

K-means using Iris data

- Load iris data
- Fit data using KMeans with three different settings
 - K=3, 8 and bad initialization (random)

Measure cluster quality with different scores

- There are several score metrics for measuring clustering quality
 - Homogeneity
 - Completeness
 - V-means
 - Adjusted rand index (ARI)
 - Adjusted mutual information (AMI)
 - Silhouette score

Estimator	Homogeneity	Completeness	V-means	ARI	АМІ	Silhouette
k=8	0.926	0.51	0.658	0.456	0.498	0.363
k=3	0.751	0.765	0.758	0.73	0.748	0.553
k=3(random init)	0.736	0.747	0.742	0.716	0.733	0.551

K-Nearest Neighbor (KNN) classification using sklearn

class sklearn.neighbors.KNeighborsClassifier(

```
n_neighbors=5,
weights='uniform',
algorithm='auto',
leaf_size=30,
p=2,
metric='minkowski',
metric_params=None,
n_jobs=1,
**kwargs)
```


Minkowski
$$\left(\sqrt{\sum_{i=1}^{k} \left(\left|x_{i}-y_{i}\right|\right)^{q}}\right)^{1/q}$$

K-Nearest Neighbor (KNN)

- The class of input data is determined by voting of K-neighbors
- Actually, a classification model is not generated by KNN

Disadvantages of KNN

- The classification is done on the fly
- For each input data, KNN must compute K-neighbor distances
- This can be very slow for a large input data

How do we choose K for KNN?

KNN example using Iris data

 The colored regions show the classification area for future input data

PCA analysis

 Principal component analysis is a method that reduces dimensionality to project the data onto a lower dimensional space

PCA using sklearn decomposition class

class sklearn.decomposition.PCA(

```
n_components=None,

copy=True,

whiten=False,

svd_solver='auto',

tol=0.0,

iterated_power='auto',

random_state=None)
```


PCA example using Iris data

- Load iris data
- Perform PCA and observe (PC1, PC2, PC3)
- Compare with (PC2, PC3) plot

