Department of Mathematics

Indian Institute of Technology Bhilai

IC152: Linear Algebra-II

Tutorial Sheet 1

- 1. Find the eigenvalues of zero and identity linear operators on a n-dimensional vector space by exhibiting the characteristic polynomials.
- 2. Suppose $T:V\to V$ be a linear operator on a vector space over a field $\mathbb F$ such that every vector in V is an eigenvector of T. Prove that T is a scalar multiple of the identity operator.
- 3. Let U and T are linear operators on a finite dimensional vector space V over a field \mathbb{F} . Prove that UT and TU have the same eigen values. What if V is not of finite dimension?
- 4. Find the eigenvalues and eigenvectors of the following operators
 - (i) $T: \mathbb{R}^2 \to \mathbb{R}^2$, defined as T(x, y) = (x + y, x).
 - (ii) $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$, defined as T(f(x)) = f(x) + (x+1)f'(x).
 - (iii) $T: M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$, defined as $T(A) = A^t$.
 - (iv) $T: \mathbb{C}^2(\mathbb{C}) \to \mathbb{C}^2(\mathbb{C})$, defined as T(x,y) = (y,-x).
- 5. Does $T: \mathcal{C}(\mathbb{R}; \mathbb{R}) \to \mathcal{C}(\mathbb{R}; \mathbb{R})$, where $\mathcal{C}(\mathbb{R}; \mathbb{R})$ denotes the space of continuous real valued functions defined on \mathbb{R} , defined as

$$(Tf)(x) = \int_0^x f(t)dt$$

has an eigenvector?

- 6. Let T be a linear operator on a vector space over a filed \mathbb{F} with $T\alpha = c\alpha$ for some $c \in \mathbb{F}$, then for any polynomial f over the field F, $f(T)\alpha = f(c)\alpha$.
- 7. Define determinant and trace of a linear operator on a finite dimensional vector space. Justify that your definitions are well defined.
- 8. Let $A \in M_{n \times n}(\mathbb{R})$ with characteristic polynomial

$$f(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0.$$

Prove that $f(0) = a_0 = \det(A)$. Is it possible for an invertible matrix to afford 0 as an eigenvalue?