Makromolekulové látky

Vysvetlite pojmy: monomér, polymér, makromolekula, polymerizačný stupeň. Zapíšte polymerizáciu eténu, propénu, styrénu, PVC, PTFE. Popíšte fyzikálne a chemické vlastnosti plastov, ich význam, použitie, vplyv na zdravie človeka a ŽP.

- sú to látky s vysokou molekulovou hmotnosťou, ktoré sú tvorené z makromolekúl.

<u>Makromolekula</u> = obrovská molekula, zložená z veľkého počtu <u>monomérov</u> do dlhých reťazcov.

Monomér = základná stavebná jednotka, pravidelne opakujúca sa časť makromolekuly (vieme ju prirovnať ku gorálke v náhrdelníku), opakovaním monomérov vzniká polymér

Monomér = stavebná jednotka, ktorá sa opakuje

Polymerizačný stupeň – označujeme nakromolekule

Delenie makrololekul.látok:

a)Oligoméry - zlúčeniny, ktoré obsahujú 2 až 10 monomérov v svojej molekule

b)Biopolyméry – sú prírodné makromolekulové látky – majú veľký počet monomérnych jednotiek, patria tu nukleové kyseliny, polysacharidy, bielkoviny!!!!

Rozdelenie makromolekulových látok

Podľa pôvodu

- o prírodné (NK, polysacharidy škrob, bielkoviny)
- modifikované (lepidlá, tmely, celuloid)
- o syntetické pripravené umelo (silon., nylon.vlákno)

Rozdelenie syntetických polymérov

Podľa typu reakcie vzniku polyméry pripravené

- o polymerizáciou
- o polykondenzáciou
- o polyadíciou

podľa tvaru makromolekuly

o lineárne, rozvetvené, sieťované, priestorovo sieťované

podľa vplyvu teploty

- o termoplasty pri zvýšenej teplote mäknú a dajú sa znova tvarovať (PVC, PE, PP, PS)
- o termosety pri zvýšenej teplote sa netopia, ale rozkladajú sa (bakelit, živice)

Dôkaz PVC Beilsteinova skúška – PVC plasty horia zeleným plameňom

Porovnanie polymerizácie, polykondenzácie a polyadície :

Polymerizácia	Polykondenzácia	Polyadícia
- polyreakcia, pri ktorej reagujú 2 rovnaké monoméry s násobnou väzbou	reakcia, pri ktorej reagujú 2 rôzne monoméry s reaktívnymi skupinami	-polyreakcia pri ktorej reagujú <mark>2 rôzne</mark> monoméry s reaktívnymi
prebieha <u>reťazovo</u> - po iniciácii veľmi rýchlo, má 3 fázy: iniciácia, propagácia, terminácia	stupňovitá reakcia	skupinami stupňovitá reakcia
nevzniká vedľajší produkt	pri reakcii v každom stupni vzniká vedľajší produkt jednoduchá malá molekula, napr. voda, amoniak, CH ₃ OH	Nevzniká vedľajší produkt -charakteristický je presun H atómu v reťazci!!!!!
katalyzátor je potrebný iba pri iniciácii	katalyzátor je potrebný počas celej reakcie	
exotermická reakcia, je potrebné chladenie, aby nedošlo k mäknutiu vzniknutého polyméru	<u>endotermická</u>	
Reťazec narastá iba 1 smerom	reťazec narastá do obidvoch smerov	
reakcia sa nedá kedykoľvek zastaviť, musí sa ukončiť termináciou	reakciu je možné kedykoľvek zastaviť	
Pripravujú sa tak PVC, PE, PS, PP, PTFE	Pripravujú sa tak polyestery, polyamidy, fenoplasty, bakelit	polyuretány

Príprava polyetylénu:

Príprava polypropylénu :

$$n H_2C = CH - CH_3 \longrightarrow \begin{bmatrix} H_2C - CH \\ CH_3 \end{bmatrix}_n$$

propylén polypropylén

n H C
$$=$$
 C $=$ C

Významné plasty a ich vlastnosti:

polyetylén PE

je pevný, odolný voči vode, chemikáliám(K, Z) a mrazu, nevýhodou polyetylénu je, že ho možno použiť len do teploty 80 °C. Nefarbený je mliečne zakalený a matný,veľmi ľahko sa poškriabe, ťažko spája lepením či lisovaním. Polyetylén oproti PVC pozostáva len z atómov uhlíka a vodíka a v ideálnom prípade pri spaľovaní PE odpadov zhorí na CO₂ a H₂O, čím nepredstavuje taký veľký ekologický problém (napr. pri spaľovaní PVC vzniká aj chlorovodík).

Výroba fliaš, fólií, obalovej techniky - obaly, ktoré prepúšťajú O2 a CO2 ale nie H2O – dôležité pri potravinách, ktoré musia dýchať a nesmú vyschnúť

Polyetylén tereftalát – PET

je číry, pevný a ľahký plast, ktorý sa používa najmä na výrobu fliaš na nápoje, obalov na potraviny a na výrobu oblečenia, je to najviac recyklovaný druh plastu. V Európe má mieru recyklácie 52 %. Medzi výrobky, ktoré sa bežne vyrábajú z recyklovaného PET patria koberce, odevy, priemyselné popruhy, laná, automobilové diely, výplň vlákien pre zimné bundy a spacáky, stavebné materiály, nové PET fľaše a poháre.

polypropylén – PP

má podobné vlastnosti, je však odolný do teploty 160 °C

- je pevnejší ako PE preto aj výroba lán a špagátov
- polyvinylchlorid PVC
- veľmi odolný polymér, voči vyšším teplotám aj mrazu, našiel široké uplatnenie pri výrobe linolea, hračiek, záhradných hadíc a rôznych rúr.
- nemäkčený=NOVODUR
- mäkčený=NOVOPLAST výroba podlahových krytín, hračiek, fólií známy aj ako IGELIT

polystyrén – PS

- dobrý izolant, na výrobu jednorazových šálok a riadov, výroba misiek, obalov a elektroizolačných materiálov.
- ťažko sa recykluje, preto sa "zelená" aktívne stavia proti jeho použitiu.

Polytertafluóretylén - PTFE

vysoko odolný voči K, Z, aj vysokým tepelotám, má hladký nepriľnavý povrch, použitie: výroba ložísk, panvíc, sklznice lyží

PMMA = POLYMETYLMETAKRYLÁT – KONTAKTNÉ ŠOŠOVKY, sklá lietadiel, kostná chirurgia

Fyzik. a chemické vl. plastov závisia od monomérov, aditív=prídavných látok

Výhody plastov: lacné, tvarovateľné, ľahké, na vzduchu stále, nekorodujú, opakovateľne recyklovateľné (hoci nie všetky)

Nevýhody plastov: ťažko rozložiteľné, znečisť. ŽP, uvoľňovanie karcinogénov pri vyššej teplote (hlavne PVC)

ŽP-súčasná doba sa zvykne označovať ako "doba plastová", nakoľko tých rôznorodých plastov je už naozaj veľmi veľa, problém je s ich množstvom, nestláčajú ich ľudia. Mikroplasty dokázané takmer všade, v podzemných vodách, v snehu na Mount Evereste, Problémom je aj úhyn vtákov, živiacich sa planktónom – žalúdky mláďat sú plné plastov. Súčasný trend nakladania s plastami smeruje k recyklácii= zhodnocovanie odpadu z plastov ich recykláciou (do žltých nádob). Napr. recykláciou 150 fliaš vyrobíme koberec, z 30 fliaš vznikne

fleesová mikina, recykláciou plastov vylovených z mora sa vyrábajú botasky.