More undecidable problems

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

19 March 2024

Outline

More problems about Turing Machines

Problem (a)

Is it decidable whether a given Turing machine has at least 481 states? Assume that the TM is given using our standard encoding:

 $0^{n}10^{m}10^{k}10^{s}10^{t}10^{r}10^{u}10^{v}10^{p}10^{a}10^{q}10^{b}1010^{q}10^{b'}10^{a'}10^{q'}10^{b'}100\cdots 10^{p''}10^{a''}10^{q''}10^{b''}10.$

Problem (a)

Is it decidable whether a given Turing machine has at least 481 states? Assume that the TM is given using our standard encoding:

```
0^{n}10^{m}10^{k}10^{s}10^{t}10^{t}10^{t}10^{t}10^{v}1 \ 0^{p}10^{a}10^{q}10^{b}10 \ 1 \ 0^{p'}10^{a'}10^{a'}10^{b'}100 \ \cdots \ 1 \ 0^{p''}10^{a''}10^{a''}10^{b''}10.
```

Yes, it is.

We can give a TM N which given enc(M)

- Counts the number of states in *M* upto 481.
- Accepts if it reaches 481, rejects otherwise.

Problem (b)

Is it decidable whether a given Turing machine takes more than 481 steps on input ϵ without halting?

Problem (b)

Is it decidable whether a given Turing machine takes more than 481 steps on input ϵ without halting?

Yes, it is.

We can give a TM N which given enc(M)

- Uses 4 tapes: On the 4th tape it writes 481 0's.
- Uses the first 3 tapes to simulate M on input ϵ , like the universal TM U.
- Blanks out a 0 from 4th tape for each 1-step simulation done by U.
- Rejects if M halts before all 0's are blanked out on 4th tape, accepts otherwise.

Problem (c)

Is it decidable whether a given Turing machine takes more than 481 steps on *some* input without halting?

Problem (c)

Is it decidable whether a given Turing machine takes more than 481 steps on *some* input without halting?

Yes, it is.

Check if M runs for more than 481 steps on some input x of length upto 481. If so accept, else reject.

Problem (d)

Is it decidable whether a given Turing machine takes more than 481 steps on *all* inputs without halting?

Problem (d)

Is it decidable whether a given Turing machine takes more than 481 steps on *all* inputs without halting?

Yes, it is.

Check if M runs for more than 481 steps on each input x of length upto 481. If so accept, else reject.

Problem (e)

Is it decidable whether a given Turing machine moves its head more than 481 cells away from the left-end marker, on input ϵ ?

Problem (e)

Is it decidable whether a given Turing machine moves its head more than 481 cells away from the left-end marker, on input ϵ ?

Yes, it is.

Simulate M on ϵ for upto $m^{481} \cdot 482 \cdot k + 1$ steps. If M visits the 482nd cell, accept, else reject.

Problem (f)

Is it decidable whether a given Turing machine accepts the null-string ϵ ?

Problem (f)

Is it decidable whether a given Turing machine accepts the null-string ϵ ?

No. If it were decidable, say by a TM N, then we could use N to decide HP as follows: Define a new machine N' which given input M#x, outputs the description of a machine $P_{M \times}$ which:

- erases its input
- writes x on its input tape
- Behaves like M on x
- Accepts if M halts on x.

N' then calls N with input $P_{M,x}$.

Ν Generate PM.x M#x!New TM *N* accepts $P_{M,x}$ iff $P_{M,x}$ accepts ϵ iff *M* halts on *x*.

Turing machine M' for Problem (f)

$$L(P_{M,x}) = \begin{cases} A^* & \text{if } M \text{ halts on } x \\ \emptyset & \text{if } M \text{ does not halt on } x. \end{cases}$$

Problem (g)

Is it decidable whether a given Turing machine accepts any string at all? That is, is $L(M) \neq \emptyset$?

Problem (h)

Is it decidable whether a given Turing machine accepts all strings? That is, is $L(M) = A^*$?

Problem (i)

Is it decidable whether a given Turing machine accepts a finite set?

Problem (j)

Is it decidable whether a given Turing machine accepts a regular set?

Problem (j)

Is it decidable whether a given Turing machine accepts a regular set?

Given M and x, build a new machine M' that behaves as follows:

- Saves its input y on tape 2.
- $oldsymbol{o}$ writes x on tape 1.
- \odot runs as M on x.
- if M gets into a halting state, then
 - M' takes back control,
 - Runs as M_{NR} on y,
 - (Here M_{NR} is any TM that accepts a non-regular language NR, say $NR = \{a^n b^n \mid n \ge 0\}$).
 - M' accepts iff M_{NR} accepts.

Turing machine M' for Problem (j)

$$L(M') = \begin{cases} NR & \text{if } M \text{ halts on } x \\ \emptyset & \text{if } M \text{ does not halt on } x. \end{cases}$$

Problem (k)

Is it decidable whether a given Turing machine accepts a CFL?

Problem (I)

Is it decidable whether a given Turing machine accepts a recursive set?