Bicubic Bézier Exact Interpolation

David Eberly
Geometric Tools, LLC
http://www.geometrictools.com/
Copyright © 1998-2012. All Rights Reserved.

Created: October 23, 2010

Contents

1	Introduction	2
2	The Algorithm	2

1 Introduction

Given a 4×4 grid of points, a bicubic Bézier surface patch may be constructed to pass through the 16 points, thus leading to an exact interpolation of the points.

2 The Algorithm

Let the data points be \mathbf{P}_{ij} for $0 \le i \le 3$ and $0 \le j \le 3$. A bicubic Bézier patch $\mathbf{X}(s,t)$ is of the form shown below where the coefficient of $(1-s)^{3-i}s^i$ is the combinatorial symbol for 3 *choose* i and has value 3!/((3-i)!i!). Similarly, the coefficient of $(1-t)^{3-j}t^j$ has value 3!/((3-j)!j!). The domain is $(s,t) \in [0,1]^2$.

$$\mathbf{X}(s,t) = \sum_{i=0}^{3} \sum_{j=0}^{3} {3 \choose i} (1-s)^{3-i} s^{i} {3 \choose j} (1-t)^{3-j} t^{j} \mathbf{C}_{ij}$$

$$= (1-s)^{3} [(1-t)^{3} \mathbf{C}_{00} + 3(1-t)^{2} t \mathbf{C}_{01} + 3(1-t) t^{2} \mathbf{C}_{02} + t^{3} \mathbf{C}_{03}]$$

$$+ 3(1-s)^{2} s [(1-t)^{3} \mathbf{C}_{10} + 3(1-t)^{2} t \mathbf{C}_{11} + 3(1-t) t^{2} \mathbf{C}_{12} + t^{3} \mathbf{C}_{13}]$$

$$+ 3(1-s) s^{2} [(1-t)^{3} \mathbf{C}_{20} + 3(1-t)^{2} t \mathbf{C}_{21} + 3(1-t) t^{2} \mathbf{C}_{22} + t^{3} \mathbf{C}_{23}]$$

$$+ s^{3} [(1-t)^{3} \mathbf{C}_{30} + 3(1-t)^{2} t \mathbf{C}_{31} + 3(1-t) t^{2} \mathbf{C}_{32} + t^{3} \mathbf{C}_{33}]$$

$$(1)$$

We want to choose the \mathbf{C}_{ij} so that $\mathbf{X}(i/3, j/3) = \mathbf{P}_{ij}$ for $0 \le i \le 3$ and $0 \le j \le 3$. This gives us a linear system of 16 vector-valued equations in 16 unknowns, The matrix of coefficients is invertible, leading to the

solution

 $C_{33} = X_{33}$