Roll No: 2 | Darshit Asalaliya | Msc.ICT: 3 | Introduction to Python and Data Science Assignment - 3 4.1 Given the brain weight and body weight, its been seen that there exists a relation. You as a data scientist are required to fit the data to a line and plot a linear regression graph. Display the intercept and slope value. Perform prediction for new data - brain weight = 15. 4.2 Predict the the petrol consumption, when given the details average income, paved highways, petrol tax and population data. Apply linear regression to find the intercept. print("----* Question 1 *----") #Import Some Required Libraries import pandas as pd import numpy as np import os import matplotlib.pyplot as plt #%matplotlib inline import seaborn as sns #Read The Data data = pd.read_csv(r"C:\Users\LENOVO\.spyder-py3\breain_weight.csv") print(data) **#Drop Function** #data1 = data.drop(["Body Weight"]) #print(data1) #Data Print top 5 Recors print(data.head(5)) #Data Print last 5 Recors print(data.tail(5)) #Slicing print(data[20:30]) **#Statistical Information**

```
Roll No: 2 | Darshit Asalaliya | Msc.ICT: 3 | Introduction to Python and Data Science Assignment - 3
data.info()
#Statistical Information
data.describe()
#Single Value
print(data.count())
#Checking the null value
data.isna().sum()
data["Brain Weight"].fillna(0, inplace=True)
print(data.head(15))
data["Brain Weight"].isna().sum()
#Bar Plot
x = data["Brain Weight"]
y = data["Body Weight"]
plt.bar(x, y, color="Blue")
plt.title("Bar Plot of Brain Weight vs Body Weight")
plt.xlabel("Brain Weight")
plt.ylabel("Body Weight")
plt.show()
#Scatter Plot
plt.scatter(data["Brain Weight"], data["Body Weight"], color="Green")
plt.title("Scatter Plot of Brain Weight vs Body Weight")
plt.xlabel("Brain Weight")
plt.xlabel("Body Weight")
plt.show()
plt.savefig("ScatterPlot.png")
#Seaborn Use
sns.set(rc={"figure.figsize": (8, 4)}); np.random.seed(0)
x = np.random.randn(100)
ax = sns.distplot(x)
```

```
Roll No: 2 | Darshit Asalaliya | Msc.ICT: 3 | Introduction to Python and Data Science Assignment - 3
plt.show()
#box plot
sns.boxplot(data["Brain Weight"], data["Body Weight"])
#training and testing dataset.
train = data[:40]
print(train)
test = data[40:]
print(test)
#Model, Fitting
#Linear Regression
from sklearn.linear_model import LinearRegression
model = LinearRegression().fit(data[["Brain Weight"]], data[["Body Weight"]])
#Intercept
print("Intercept : ", model.intercept_)
#Slope - Coefficient
print("Slope : ", model.coef_)
#Determination of coefficient
print("Determination of Coefficient: ", model.score(data[["Brain Weight"]], data[["Body Weight"]]))
#Prediction : Brain Weight = 15
model.predict([[15]])
print("----* Question 2 *----")
# Predict the the petrol consumption, when given the details average income, paved highways, petrol tax and
population data. Apply linear regression to find the intercept.
#Predict the the petrol consumption
```

```
Roll No: 2 | Darshit Asalaliya | Msc.ICT: 3 | Introduction to Python and Data Science Assignment - 3
from sklearn.linear_model import LinearRegression
data1 = pd.read_csv(r"C:\Users\LENOVO\.spyder-py3\petrol_consumption.csv")
data1.columns=['Petrol_tax','Average_income','Paved_Highways','Population_Driver_licence','Petrol_Consumption']
print(data1.head(10))
print(data1.tail(10))
data1.describe()
model1 = LinearRegression().fit(data1[["Petrol_tax"]], data1[["Average_income"]])
#Prediction: Petrol Consumption
model1.predict(data1[['Petrol_Consumption']])
#Intercept
print("Intercept : ", model1.intercept_)
#Slooe - Coefficient
print("Slope : ", model1.coef_)
Output:
```

Roll No: 2 | Darshit Asalaliya | Msc.ICT: 3 | Introduction to Python and Data Science Assignment - 3

4

Roll No : 2 | Darshit Asalaliya | Msc.ICT : 3 | Introduction to Python and Data Science Assignment - 3

		Barsine / isaia	<u> </u>	
	Index	Brain Weight	Body Weight	
0	1	3.385	44.50	
1	2	0.480	15.50	
2	3	1.350	8.10	
3	4	465.000	423.00	
4	5	36.330	119.50	
5	6	27.660	115.00	
6	7	14.830	98.20	
7	8	1.040	5.50	
8	9	4.190	58.00	
9	10	0.425	6.40	
10	11	0.101	4.00	
11	12	0.920	5.70	
12	13	1.000	6.60	
13	14	0.005	0.14	
14	15	0.060	1.00	
15	16	3.500	10.80	
16	17	2.000	12.30	
17	18	1.700	6.30	
18	19	2547.000	4603.00	
19	20	0.023	0.30	
20	21	187.100	419.00	
21	22	521.000	655.00	
22	23	0.785	3.50	
23	24	10.000	115.00	
24	25	3.300	25.60	
25	26	0.200	5.00	
26	27	1.410	17.50	
27	28	529.000	680.00	
28	29	207.000	406.00	
29	30	85.000	325.00	
30	31	0.750	12.30	
31	32	62.000	1320.00	