5612 AZ Eindhoven P.O. Box 513, 5600 MB Eindhoven The Netherlands www.tue.nl

Author

Christiaan Dirkx Alex Dings

Date

June 8, 2015

Version 0.3

# Automata answers explained

Copyholder Christiaan Dirkx & Alex Dings

# Table of contents

Title
Automata answers explained

0 Introduction
1 Preliminaries

6

8



# Table of contents

| Fitle<br>Automata answers explained | 3 Push-Down Automata and Cont | ext-Free Languages 10 |
|-------------------------------------|-------------------------------|-----------------------|
|                                     | Exercise 3.1                  | 11                    |
|                                     | Exercise 3.2                  | 12                    |
|                                     | Exercise 3.3                  | 14                    |
|                                     | Exercise 3.4                  | 17                    |
|                                     | Exercise 3.5                  | 19                    |
|                                     | Exercise 3.6                  | 20                    |
|                                     | Exercise 3.7                  | 22                    |
|                                     | Exercise 3.8                  | 24                    |
|                                     | Exercise 3.9                  | 26                    |
|                                     | Exercise 3.10                 | 28                    |
|                                     | Exercise 3.11                 | 30                    |
|                                     | Exercise 3.12                 | 31                    |
|                                     | Exercise 3.13                 | 32                    |
|                                     | Exercise 3.14                 | 34                    |
|                                     | Exercise 3.15                 | 35                    |
|                                     | Exercise 3.16                 | 37                    |
|                                     | Exercise 3.17                 | 39                    |
|                                     | Exercise 3.18                 | 43                    |
|                                     | Exercise 3.19                 | 44                    |
|                                     | Exercise 3.20                 | 45                    |
|                                     | Exercise 3.21                 | 46                    |
|                                     | Exercise 3.22                 | 47                    |

# Table of contents

| Title<br>Automata answers explained | 4 Turing Machines and Computable Functions |    |  |
|-------------------------------------|--------------------------------------------|----|--|
|                                     | Lijst van Notities - ToDo                  | 49 |  |

### 0 Introduction

### Introduction 1: Special sets

| Set                                       |                     |                                | Element          |                                                                                    |
|-------------------------------------------|---------------------|--------------------------------|------------------|------------------------------------------------------------------------------------|
| Name                                      | Notation            | Definition                     | Name             | Notation                                                                           |
| alphabet                                  | Σ                   | Enumeration $(\neq \emptyset)$ | symbol<br>letter | a,b, arbitrary symbols                                                             |
| <i>n</i> -symbol strings over an alphabet | $\Sigma^n, n \ge 0$ | finite product (see below)     | string<br>word   | $\begin{vmatrix} a_1, a_2, a_n, n \ge 0 \\ a_1, a_2, a_n = \epsilon \end{vmatrix}$ |
| all finite strings over an alphabet       | $\Sigma^*$          | Set union     Set induction    | string<br>word   | $\epsilon$ , empty word $w,v,u$ , arbitrary word                                   |
| language                                  | L                   | subset of $\Sigma^*$           | word             |                                                                                    |

### **Definition 0.1**

$$\Sigma^{n} = \{a_{1}a_{2}...a_{n} | \forall i, 1 \leq i \leq n : a_{i} \in \Sigma\}$$
$$\Sigma^{*} = \bigcup_{n=0}^{\infty} \Sigma^{n}$$

### **Definition 0.2**

- 1. The empty word  $\epsilon \in \Sigma^*$
- 2. If  $a \in \Sigma, w \in \Sigma^*$ , then  $aw \in \Sigma^*$

### Introduction 2: Relations on $\Sigma^*$

| Name                  | Notation           | Definition                                                        |
|-----------------------|--------------------|-------------------------------------------------------------------|
| (is a) prefix (of)    | $v \preccurlyeq w$ | $\exists u, u \in \Sigma^* : vu = w$                              |
| (is a) suffix (of)    | $v \succcurlyeq w$ | $\exists u, u \in \Sigma^* : uv = w$                              |
| (is a) substring (of) |                    | $\exists x, x \in \Sigma^* : \exists y, y \in \Sigma^* x v y = w$ |

### **Uniqueness properties**

- 1.  $vu_1=w$  and  $vu_2=w$  implies  $u_1=u_2$  unique suffix is denoted as a quotient u=w/v
- 2.  $u_1v=w$  and  $u_2v=w$  implies  $u_1=u_2$

### **Introduction 3: Operators and functions**

| Name                            | Notation           | Definition                                                                                                    |
|---------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------|
| length                          | v                  | inductive 1. $ \epsilon =0$ 2. $ aw =1+ w $                                                                   |
| count, for all $c \in \epsilon$ | $\#_c(v)$          | inductive<br>1. $\#_c(\epsilon) = 0$<br>2. $\#_c(cw) = 1 + \#_c(w)$<br>3. $\#_c(aw) = \#_c(w), a \neq c$      |
| concatenation of strings        | juxtaposition $wv$ | inductive 1. $\epsilon v = v$ 2. $(aw)v = a(wv)$                                                              |
| concatenation of languages      | $L_1 \cdot L_2$    | set comprehension = $\{w_1w_2 w_1\in L_1,w_2\in L_2\}$                                                        |
| Kleene closure                  | $L^*$              | $ \begin{array}{l} \text{set comprehension} \\ = \{w_1w_2w_n   n \geq 0, w_1, w_2,, w_n \in L\} \end{array} $ |

### Introduction 4: (Algebraic) properties

| Name                                  | Notation (algebraic law)                            | Proof        |
|---------------------------------------|-----------------------------------------------------|--------------|
| unit of string concatenation          | $\epsilon v = v = v\epsilon$                        | by induction |
| associativity of string concatenation | (wv)u = w(vu)                                       | by induction |
| additivity of length operator         | wv  =  w  +  v                                      | by induction |
| additivity of count operator          | $\#_c(wv) = \#_c(w) + \#_c(v)$                      | by induction |
| zero of language concatenation        | $\emptyset \cdot L = \emptyset = L \cdot \emptyset$ | element wise |
| unit of language concatenation        | $\{\epsilon\} \cdot L = L = L \cdot \{\epsilon\}$   | element wise |

# 1 Preliminaries



# 2 Finite Automata and Regular Languages



# 3 Push-Down Automata and Context-Free Languages

### Learning targets chapter 3

At the end of this chapter the student should be able to:

- Construct a PDA from an language or CFG.
- Construct a CFG from an language or PDA.
- Give an invariant table of a PDA.
- Give derivations of a CFG.
- Prove that a CFG is equivalent to a language.
- Show a CFG to be ambiguous.
- Construct an unambiguous CFG from an ambiguous one.
- Prove that a language is context free.
- Prove that a language is not context free.

(Hopcroft, Motwani & Ullman, 2001) Consider the following PDA.



Compute all maximal derivation sequences for the following inputs:

- (a) ab;
- (b) aabb;
- (c) aba.

A maximal derivation sequence of a PDA P for a string w is a sequence

$$(q_0, w_0, x_0) \vdash P(q_1, w_1, x_1) \vdash P...(q_{n-1}, w_{n-1}, x_{n-1}) \vdash P(q_n, w_n, x_n) \nvdash P$$

where  $q_0,q_1,...,q_{n-1}, \quad q_n$  are states of P with  $q_0$  its initial state,  $w_0,w_1,...,w_{n-1},w_n$  strings over the input alphabet of P with  $w_0$  equal to w, and  $x_0,x_1,...,x_{n-1},x_n$  strings over the stack alphabet of P with  $x_0$  equal to  $\epsilon$ , the empty stack.

(a) 
$$(q_0, ab, \epsilon) \vdash (q_0, b, 1) \vdash (q_0, \epsilon, 1) \vdash (q_1, \epsilon, \epsilon) \vdash (q_1, b, \epsilon)$$

$$(b) \ (q_0,aabb,\epsilon) \vdash (q_0,abb,1) \vdash (q_0,b,11) \vdash (q_0,\epsilon,11) \vdash (q_1,\epsilon,1) \vdash (q_1,\epsilon,\epsilon) \\ \vdash (q_1,abb,1) \vdash (q_1,b,11) \vdash (q_1,\epsilon,111) \stackrel{3x}{\vdash} (q_1,\epsilon,\epsilon) \\ \vdash (q_1,b,1) \vdash (q_1,\epsilon,11) \stackrel{2x}{\vdash} (q_1,\epsilon,\epsilon) \\ \vdash (q_1,b,\epsilon) \vdash (q_1,b,\epsilon) \\ \vdash (q_1,b,\epsilon) \vdash (q_1,\epsilon,11) \vdash (q_1,\epsilon,\epsilon) \\ \vdash (q_1,b,\epsilon) \vdash (q_1,\epsilon,\epsilon) \\ \vdash (q_1,b,\epsilon)$$

$$\begin{array}{c} \textbf{(c)} \ (q_0,aba,\epsilon) \vdash (q_0,ba,1) \vdash (q_0,a,1) \vdash (q_o,\epsilon,\underbrace{11}) \vdash (q_1,\epsilon,1) \vdash (q_1,\epsilon,\epsilon) \\ \qquad \qquad \vdash (q_1,ba,\epsilon) \\ \qquad \qquad \vdash (q_1,ba,\epsilon) \end{array}$$

Configurations marked in red are accepting configurations.

Construct a push-down automaton and give an invariant table for the following languages over the input alphabet  $\Sigma=\{a,b,c\}$ 

(a) 
$$L_1 = \{a^n b^m c^{n+m} | n, m \ge 0\};$$

(b) 
$$L_2 = \{a^{n+m}b^nc^m|n, m \ge 0\};$$

(c) 
$$L_3 = \{a^n b^{n+m} c^m | n, m \ge 0\};$$

(a) 
$$L_1 = \{a^n b^m c^{n+m} | n, m \ge 0\}$$



|                | I .               | 1           | i .                           |
|----------------|-------------------|-------------|-------------------------------|
| state <u>y</u> | input <u>w</u>    | stack x     | constraints                   |
| $q_0$          | $a^n$             | $1^n$       | $n \ge 0$                     |
| $q_1$          | $a^n b^m$         | $1^{n+m}$   | $n, m \ge 0$                  |
| $q_2$          | $a^n b^m c^p$     | $1^{n+m-p}$ | $0 \le p \le n+m; n, m \ge 0$ |
| $q_3$          | $a^n b^m c^{n+m}$ | $\epsilon$  | $n, m \geq 0$                 |

(b) 
$$L_2 = \{a^{n+m}b^nc^m | n, m \ge 0\}$$



| state y | input w       | stack x     | constraints                     |
|---------|---------------|-------------|---------------------------------|
| $q_0$   | $a^p$         | $1^p$       | $p \ge 0$                       |
| $q_1$   | $a^p b^q$     | $1^{p-q}$   | $0 \le q \le p$                 |
| $q_2$   | $a^p b^q c^r$ | $1^{p-q-r}$ | $0 \le q + r \le p; q, r \ge 0$ |
| $q_3$   | $a^p b^q c^r$ | $\epsilon$  | $q+r=p; q,r\geq 0$              |

(c) 
$$L_3 = \{a^n b^{n+m} c^m | n, m \ge 0\}$$

### interpretation:

$$(q_o,\underline{\mathbf{w}},\epsilon) \vdash^* (\mathbf{q},\epsilon,\underline{\mathbf{x}})$$

$$L_3 = \{a^n b^{n+m} c^m | n, m \ge 0\}$$

$$= \{a^n b^n b^m c^m | n, m \ge 0\}$$

$$= \{a^n b^n | n \ge 0\} \cdot \{b^m c^m | m \ge 0\}$$

Let be:

$$L_3' = \{a^n b^n | n \ge 0\}$$
  
$$L_3'' = \{b^m c^m | m \ge 0\}$$



| state y | input w           | stack x          | constraints              |
|---------|-------------------|------------------|--------------------------|
| $q_0$   | $a^n$             | $1^n$            | $n \ge 0$                |
| $q_1$   | $a^n b^p$         | 1 <sup>1-p</sup> | $0 \le q \le p$          |
| $q_2$   | $a^nb^{n+m}$      | $1^m$            | $n \ge 0, m \ge 0$       |
| $q_3$   | $a^n b^{n+m} c^q$ | $1^{m-q}$        | $0 \le q \le m, n \ge 0$ |
| $q_4$   | $a^nb^{n+m}c^m$   | $\epsilon$       | $n, m \ge 0$             |

Give a push-down automaton and invariant table for each of the following languages:

(a) 
$$L_4 = \{a^n b^{2n} | n \ge 0\};$$

(b) 
$$L_5 = \{a^n b^m | m \ge n \ge 1\};$$

(c) 
$$L_6 = \{a^n b^m | 2n = 3m + 1\};$$

(d) 
$$L_7 = \{a^n b^m | m, n \ge 0, m \ne n\}.$$

(a) 
$$L_4 = \{a^n b^{2n} | n \ge 0\}$$

$$\begin{array}{c} a[\emptyset/11] \\ a[1/111] \\ & a[1/111] \\ & & b[1/\epsilon] \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

| state | input       | stack      | constraints               |
|-------|-------------|------------|---------------------------|
| $q_0$ | $a^n$       | $1^{2n}$   | $n \ge 0$                 |
| $q_2$ | $a^n b^m$   | $1^{2n-m}$ | $n \ge 0, 0 \le m \le 2n$ |
| $q_1$ | $a^nb^{2n}$ | $\epsilon$ | $n \ge 0$                 |

(b) 
$$L_5 = \{a^n b^m | m \ge n \ge 1\}$$



| state | input      | stack      | constraints     |
|-------|------------|------------|-----------------|
| $q_0$ | $\epsilon$ | $\epsilon$ |                 |
| $q_1$ | $a^n$      | $1^n$      | $n \ge 1$       |
| $q_2$ | $a^n b^m$  | $1^{n-m}$  | $1 \le m \le n$ |
| $q_3$ | $a^n b^m$  | $\epsilon$ | $m \ge n \ge 1$ |

(c) 
$$L_6 = \{a^n b^m | 2n = 3m + 1\}$$



| state | input     | stack         | constraints                     |
|-------|-----------|---------------|---------------------------------|
| $q_0$ | $a^n$     | $1^{2n}$      | $n \ge 0$                       |
| $q_1$ | $a^n b^m$ | $1^{2n-3m-1}$ | $3m + 1 \le 2n, m \ge 0, n > 0$ |
| $q_2$ | $a^n b^m$ | $1^{2n-3m+1}$ | $3m-1 \le 2n, m \ge 0, n > 0$   |
| $q_3$ | $a^n b^m$ | $1^{2n-3m}$   | $3m \le 2n, m \ge 0, n > 0$     |
| $q_4$ | $a^n b^m$ | $\epsilon$    | $3m+1 \le 2n, m \ge 0, n > 0$   |

(d) 
$$L_7 = \{a^n b^m | m, n \ge 0, m \ne n\}$$



| state | input     | stack     | constraints     |
|-------|-----------|-----------|-----------------|
| $q_0$ | $a^n$     | $p^n$     | $n \ge 0$       |
| $q_1$ | $a^n b^m$ | $p^{n-m}$ | $n \ge m \ge 0$ |
| $q_1$ | $a^n b^m$ | $n^{m-n}$ | $m \ge n \ge 0$ |
| $q_2$ | $a^n b^m$ | $p^{n-m}$ | $n \ge m \ge 0$ |
| $q_2$ | $a^n b^m$ | $n^{m-n}$ | $m \ge n \ge 0$ |

# 

(a) Give a push-down automaton for the language

$$L_8 = \{ w \in \{a, b\} | \#_a(w) \neq \#_b(w) \}$$

(b) Give a push-down automaton for the language

$$L_9 = \{ w \in \{a, b, c\} | \#_a(w) \neq \#_b(w) \vee \#_b(w) \neq \#_c(w) \}$$

(a) 
$$L_8 = \{w \in \{a, b\} | \#_a(w) \neq \#_b(w)\}$$

This can be seen as a generalization of Exercise 3.4d



| state | input | stack       | constraints                      |
|-------|-------|-------------|----------------------------------|
| $q_0$ | w     | $p^h$       | $h = \#_a(w) - \#_b(w) \ge 0$    |
| $q_0$ | w     | $n^{-\ell}$ | $\ell = \#_a(w) - \#_b(w) \le 0$ |
| $q_1$ | w     | $p^h$       | $h = \#_a(w) - \#_b(w) \ge 0$    |
| $q_1$ | w     | $n^{-\ell}$ | $\ell = \#_a(w) - \#_b(w) \le 0$ |

(b) 
$$L_9 = \{w \in \{a, b, c\} | \#_a(w) \neq \#_b(w) \vee \#_b(w) \neq \#_c(w)\}$$

By following the idea from [NOTE 1: ref] we come up with the following automaton:



### Definitions on.. [NOTE 2: whut]

A production rule:

 $S \to XbY$ 

A production step:

 $S \Rightarrow_G X b Y$ 

A production sequence derivation:

 $S{\Rightarrow}_G XbY{\Rightarrow}_G abY{\Rightarrow}_G abb$ 

(Hopcroft, Motwani & Ullman 2001) Consider the context-free grammar G given by the production rules

$$S \to XbY \\ X \to \epsilon | aX \\ Y \to \epsilon | aY | bY$$

that generates the language of the regular expression ab(a+b). Give leftmost and rightmost derivations for the following strings:

- (a) *aabab*;
- (b) *baab*;
- (c) aaabb.

Normal production steps, following the production rule are denoted in the following manner:  $S \stackrel{\ell}{\Rightarrow}_G XbY \stackrel{\ell}{\Rightarrow}_G aXbY$ 

As it is clear from the context that we are talking about the context-free grammar G, this is omitted in the following derivations.

Left most derivations:

(a) 
$$S \stackrel{\ell}{\Rightarrow} XbY \stackrel{\ell}{\Rightarrow} aXbY \stackrel{\ell}{\Rightarrow} aaXbY \stackrel{\ell}{\Rightarrow} aabY \stackrel{\ell}{\Rightarrow} aabaY \stackrel{\ell}{\Rightarrow} aababY \stackrel{\ell}{\Rightarrow} aabaY \stackrel{\ell}{\Rightarrow} aabAY \stackrel{\ell}{\Rightarrow} a$$

(b) 
$$A \stackrel{\ell}{\Rightarrow} XbY \stackrel{\ell}{\Rightarrow} bY \stackrel{\ell}{\Rightarrow} baY \stackrel{\ell}{\Rightarrow} baaY \stackrel{\ell}{\Rightarrow} baabY \stackrel{\ell}{\Rightarrow} baab$$

(c) 
$$S \stackrel{\ell}{\Rightarrow} XbY \stackrel{\ell}{\Rightarrow} aXbY \stackrel{\ell}{\Rightarrow} aaXbY \stackrel{\ell}{\Rightarrow} aaabY \stackrel{\ell}{\Rightarrow} aaaAY \stackrel{\ell}{\Rightarrow} aaAY \stackrel{\ell}$$

Right most derivations:

(a) 
$$SvXbYvXbaY \stackrel{r}{\Rightarrow} XbabY \stackrel{r}{\Rightarrow} Xbab \stackrel{r}{\Rightarrow} aXbab \stackrel{r}{\Rightarrow} aaXbab \stackrel{r}{\Rightarrow} aabab$$

(b) 
$$S \stackrel{r}{\Rightarrow} XbY \stackrel{r}{\Rightarrow} XbaY \stackrel{r}{\Rightarrow} XbaaY \stackrel{r}{\Rightarrow} XbaabY \stackrel{r}{\Rightarrow} Xbaab \stackrel{r}{\Rightarrow} baab$$

(c) 
$$S \stackrel{r}{\Rightarrow} XbY \stackrel{r}{\Rightarrow} XbbY \stackrel{r}{\Rightarrow} XbbY \stackrel{r}{\Rightarrow} aXbb \stackrel{r}{\Rightarrow} aaXbb \stackrel{r}{\Rightarrow} aaaXbb \stackrel{r}{\Rightarrow} aaabb$$

Lemma 3.15

[NOTE 3: to be filled]

Consider the context-free grammar G given by the production rules

$$S \to A|B$$

$$A \to \epsilon|aA$$

$$B \to \epsilon|bB$$

- (a) Prove that  $\mathcal{L}_G(A)=\{a^n|n\geq 0\}.$  (b) Prove that  $L(G)=\{a^n|n\geq 0\}\cup \{b^n|n\geq 0\}.$

Looking at the G, and the exercises (a & b) we can see that there are two languages. Let be:

$$L_a = \{a^n | n \ge 0\}$$

$$L_b = \{b^n | n \ge 0\}$$

(a) To be proven:  $\mathcal{L}_G(A) = L_a$ 

Firt part of the proof:  $\mathcal{L}_G(A) \subseteq L_a$ 

Proof by induction on an n of:

If  $A \Rightarrow_G^n w$  and  $w \in \{a, b\}^*$ , then  $w \in L_a$ , for all w

Base case: n=0. from  $A \Rightarrow_G^0 w$  it follows that a=w.

Hence  $\notin \{a, b\}^*$  so nothing needs to be proven.

Step: n=h+1, for some  $h \ge 0$ .

If  $A \Rightarrow_G^h w$  and  $w \in \{a,b\}*$ , then  $w \in L_a$ , for all w [IH]

$$A \Rightarrow_G^{h+1} w \text{ and } w \in \{a,b\}^*$$

Case analysis on first step in derivation:

- $-A \Rightarrow_G \epsilon \Rightarrow_G^h w$ . It follows that h=0 and  $w=\epsilon$ , so  $w \in L_a$ .
- $-A\Rightarrow_G aA\Rightarrow_G^h w$ . From Lemma 3.15 c it follows that w=av and  $A\Rightarrow_G^h v$ ,  $v \in \{a, b\}^*$

By the induction hypothesis  $v \in L_a$ , so  $v = a^m$  for some  $m \ge 0$ ..

Thus  $w = av = a^{m+1}$  and therefor  $w \in L_a$ .

Second part of the proof:  $\mathcal{L}_G(A) \subseteq L_a$ 

Proof by induction on an n of:

If 
$$A \Rightarrow_G^{n+1} a^n$$

Base case: n=0.  $A \to \epsilon$  is a production rule, so  $a \Rightarrow_G^1 \epsilon = a^0$ 

Step: n=h+1, for some  $h \ge 0$ .

$$A \Rightarrow^{h+1} [IH]$$

Due to  $a \Rightarrow_G^0 a$  and Lemma 3.15 b:  $aA \Rightarrow_G^{h+1} a^{h+1}$ 

Since  $A \Rightarrow aA$  is a production rule, we have  $A \Rightarrow_G aA \Rightarrow_G^{h+1} a^{h+1}$ , so  $A \Rightarrow_G^{h+2} a^{h+1}$ 

(b) To be proven:  $\mathcal{L}(G) = L_a \cup L_b$  Proof:

$$w \in \mathcal{L}(G)$$

$$\stackrel{val}{=}$$

$$w \in \mathcal{L}_G(S)$$

$$\stackrel{val}{=}$$

$$S \Rightarrow^* w \land w \in \{a,b\}^*$$

$$\stackrel{val}{=} \{case distinction first step : S \Rightarrow Aor S \Rightarrow B\}$$

$$(A \Rightarrow^* w \lor B \Rightarrow^* w) \land w \in \{a,b\}^*$$

$$\stackrel{val}{=}$$

$$(A \Rightarrow^* \land w \in \{a,b\}^*) \lor (B \Rightarrow^* \land w \in \{a,b\}^*)$$

$$\stackrel{val}{=}$$

$$w \in \mathcal{L}_G(A) \lor w \in \mathcal{L}_G(B)$$

$$\stackrel{val}{=} \{See exercise(a)\}$$

$$w \in L_a \lor w \in L_b$$

$$\stackrel{val}{=}$$

$$w \in L_a \cup L_b$$

Give a context-free grammar for each of the following languages and prove them correct.

(a) 
$$L_1 = \{a^n b^m | n, m \ge 0, n \ne m\};$$
  
(b)  $L_2 = \{a^n b^m c^\ell | n, m, \ell \ge 0, n \ne m \lor m \ne \ell\};$ 

(a)

$$\begin{split} L_1 &= \{a^n b^m | n, m \geq 0; n \neq m\} \\ &= \{a^n b^m | n, m \geq 0; (n > m \lor n < m)\} \\ &= \{a^n b^m | n > m \geq 0\} \cup \{a^n b^m | 0 \leq n < m\} \\ &= \{a^{k+m} b^m | k > 0, m \geq 0\} \cup \{a^n b^{n+\ell} | n \geq 0, \ell > 0\} \\ &= \underbrace{\{a^h | h > 0\}}_{\mathcal{L}(A)} \cdot \underbrace{\{a^m b^m | m \geq 0\}}_{\mathcal{L}(T)} \cup \underbrace{\{a^n b^n | n \geq 0\}}_{\mathcal{L}(T)} \cdot \underbrace{\{b^\ell | \ell > 0\}}_{\mathcal{L}(B)} \end{split}$$

CFG for  $L_1$ :

$$S \to AT|TB$$

$$T \to \epsilon|aTb$$

$$A \to a|aA$$

$$B \to b|bB$$

### **Allowed arguments**

 $\mathcal L$  extended to strings of variables and terminals:

$$\mathcal{L}(\epsilon) = \{\epsilon\} \mathcal{L}(Xx) = \mathcal{L}(X) \cdot \mathcal{L}(x)$$

Proof 1:

$$\mathcal{L}(T) = \{a^m b^m | m \ge 0\}$$

Proof analogous to Example 3.14 [NOTE 4: work out]

Proof 2:

$$\mathcal{L}(A) = \{a^h | h > 0\}$$

Proof 3.

 $\mathcal{B}(A) = \{b^{\ell} | \ell > 0\}$  Proof analogous to Example 3.6a [NOTE 5: work out]

Lemmas: [NOTE 6: existing?]

- 
$$\mathcal{L}(X_1X_2...X_h) = \mathcal{L}(X_1) \cdot \mathcal{L}(X_2)...\mathcal{L}(X_h)$$

if 
$$X \to x_1|x_2|...|x_h$$

then 
$$\mathcal{L}(X) = \mathcal{L}(x_1) \cup \mathcal{L}(x_2) \cup ... \cup \mathcal{L}(X_h)$$

Proof 4:

$$\begin{split} \mathcal{L}(S) &= \mathcal{L}(AT) \cup \mathcal{L}(TB) \\ &= \mathcal{L}(A) \cdot \mathcal{L}(T) \cup \mathcal{L}(T) \cdot \mathcal{L}(B) \\ &= L_1 \textbf{[NOTE 7:} according to above lemmas]} \end{split}$$

(b)

$$\begin{split} L_2 &= \{a^nb^mc^\ell|n,m,\ell\geq 0, n\neq m\vee m\neq \ell\} \\ &= \{a^nb^mc^\ell|n,m,\ell\geq 0, n\neq m\} \cup \{a^nb^mc^\ell|n,m,\ell\geq 0, m\neq l\} \\ &= \underbrace{\{a^nb^m|n,m,n\neq m\}}_{\text{see (a)}} \cdot \{c^\ell|\ell\geq 0\} \cup \{a^n|n\geq 0\} \cdot \underbrace{\{a^nb^mc^\ell|n,m,\ell\geq 0, m\neq l\}}_{\text{see (a)}} \end{split}$$

$$S \rightarrow S_1C|AS_2$$

$$\begin{cases} S_1 \rightarrow A_1T_1|T_1B_1 \\ T_1 \rightarrow \epsilon|aT_1b \\ A_1 \rightarrow a|aA_1 \\ B_1 \rightarrow b|bB_1 \end{cases}$$

$$\begin{cases} C \rightarrow \epsilon cC \\ A \rightarrow \epsilon aA \end{cases}$$

$$\begin{cases} S_1 \rightarrow B_2T_2|T_2C_2 \\ T_1 \rightarrow \epsilon|bT_2c \\ A_1 \rightarrow b|bB_2 \\ B_1 \rightarrow c|cC_2 \end{cases}$$

Give a construction, based on the number of operators, that shows that every **[NOTE 8:** lol?] the language of every regular expression can be generated by a context-free grammar.

$$\begin{split} G:RE_{\Sigma} \to CFG & \text{such that } \mathcal{L}(r) = \mathcal{L}(G(r)) \\ G(\underline{0}) &= (\{S_{\underline{0}}\}, \Sigma, \emptyset, S_{\underline{0}}) \\ G(\underline{1}) &= (\{S_{\underline{1}}\}, \Sigma, S_{\underline{1}} \to \epsilon, S_{\underline{1}}) \\ G(a) &= (\{S_a\}, \Sigma, S_a \to a, S_a) \end{split} \qquad \qquad \mathcal{L}(\underline{0}) = \emptyset = \mathcal{L}(G(\underline{0})) \\ \mathcal{L}(\underline{1}) &= \{\epsilon\} = \mathcal{L}(G(\underline{1})) \\ \mathcal{L}(a) &= \{a\} = \mathcal{L}(G(a)) \end{split}$$

for all  $a \in \Sigma$ 

[NOTE 9: Constructions from the proof of TH 3.32]

$$\begin{split} &-G(r_1+r_1)=(\{S_{r_1+r_2}\}\cup V_1\cup V_2, \Sigma\{S_{r_1+r_2}\to S_{r_1}|S_{r_2}\}\cup R_1\cup R_2, S_{r_1+r_2})\\ &\text{Where:}\\ &G(r_1)=(V_1, \Sigma, R_1, S_{r_1})\\ &G(r_2)=(V_2, \Sigma, R_2, S_{r_2}) \end{split}$$

Provided:

$$V_1 \cap V_2 = \emptyset$$

$$S_{r_1+r_2} \notin V_1 \cup V_2$$

can be established by renaming variables

$$\mathcal{L}(r_1 + r_2) = \mathcal{L}(r_1) \cup \mathcal{L}(r_2)$$

$$= \mathcal{L}(G(r_1)) \cup \mathcal{L}(G(r_2))$$

$$= \mathcal{L}_{G(r_1)}(S_{r_1}) \cup \mathcal{L}_{G(r_2)}(S_{r_2})$$

$$= \mathcal{L}_{G(r_1+r_2)}(S_{r_1+r_2})$$

$$= \mathcal{L}(G(r_1 + r_2))$$

-  $G(r_1\cdot r_1)=(\{S_{r_1\cdot r_2}\}\cup V_1\cup V_2, \Sigma\{S_{r_1\cdot r_2}\to S_{r_1}|S_{r_2}\}\cup R_1\cup R_2, S_{r_1\cdot r_2})$  [NOTE 10: should be checked]

Where:

$$G(r_1) = (V_1, \Sigma, R_1, S_{r_1})$$
  
 $G(r_2) = (V_2, \Sigma, R_2, S_{r_2})$ 

Provided:

$$V_1 \cap V_2 = \emptyset$$
  
$$S_{r_1 + r_2} \notin V_1 \cup V_2$$

can be established by renaming variables

$$\mathcal{L}(r_1 \cdot r_2) = \mathcal{L}(r_1) \cdot \mathcal{L}(r_2)$$

$$= \mathcal{L}(G(r_1)) \cdot \mathcal{L}(G(r_2))$$

$$= \mathcal{L}_{G(r_1)}(S_{r_1}) \cdot \mathcal{L}_{G(r_2)}(S_{r_2})$$

$$= \mathcal{L}_{G(r_1 \cdot r_2)}(S_{r_1 \cdot r_2})$$

$$= \mathcal{L}(G(r_1 \cdot r_2))$$

- 
$$G(r*) = (\{S_{r*}\} \cup V_1 \cup V_2, \Sigma\{S_{r^*} \rightarrow S_{r_1} | S_{r_2} \cup R_1 \cup R_2, S_{r^*})$$
  
 $S_{r^*} \notin V$ 

can be established by renaming variables

 $\mathcal{L}(r^*) = \mathcal{L}(G(r^*))$  [NOTE 11: see proof of TH 3.32]



(Hopcroft, Motwani & Ullman 2001) Consider the context-free grammar G given by the production rules  $S \rightarrow aS|Sb|a|b$ 

- (a) Prove that no string  $w \in \mathcal{L}(G)$  has a substring ba.
- (b) Give a description of  $\mathcal{L}(G)$  that is independent of G.
- (c) Prove that your answer for part (b) is correct.
- (a) To be proven:

If 
$$S\Rightarrow_G^* x$$
 Then  $\exists_{h,\ell}[h,\ell\geq 0: x=a^hSb^\ell\vee x=a^{h+1}Sb^\ell]\vee x=a^hSb^{\ell+1}$ 

Proof by induction on the number of steps in the derivation:

Base case:

$$S \Rightarrow_G^0 x$$

It follows that 
$$x = S = a^0 S b^0$$

Induction step: 
$$S \Rightarrow_{C}^{n+1} x$$

Induction step: 
$$S \Rightarrow_G^{n+1} x$$
  
If  $S \Rightarrow_G^n y$ , then  $\exists_{h,\ell}[..y..$ [NOTE 12: $nocluesss$ ]]

$$S \Rightarrow_G^{n+1} x = \underbrace{S \Rightarrow_G^n y}_{G} \Rightarrow_G^1 s$$

Due to the induction hypothesis and the fact that from y a production step to x can be made:

$$y = a^h S b^\ell$$
 for some  $h, l \ge 0$ 

Case distinction on production rule applied in the last step:

$$\begin{array}{ll} - & S \rightarrow aS \text{ applied:} & x = a^h a S b^\ell \\ & = a^{h+1} S b^\ell \\ - & S \rightarrow bS \text{ applied:} & x = a^h S b b^\ell \\ & = a^h S b^{\ell+1} \end{array}$$

$$= a^n S b^{\ell+}$$
-  $S \to a$  applied:  $x = a^h a b^{\ell}$ 

$$=a^{h+b}b^{\ell}$$
 $-S \rightarrow b$  applied:  $x = a^hbb^{\ell}$ 
 $= a^hb^{\ell+1}$ 

if 
$$w \in \mathcal{L}(G)$$
,  $then S \Rightarrow_G^* w$  and  $w \in \{a, b\}$ ?

if 
$$w\in\mathcal{L}(G), thenS\Rightarrow_G^* w$$
 and  $w\in\{a,b\}^*$   
So by the above property  $w=a^{h+1}b^\ell$  or  $w=a^hb^{\ell+1}$  for some  $h,\ell\geq 0$ 

In neither form w contains the substring ba.

(b) 
$$L=\{a^{h+1}b^\ell|h,\ell\geq 0\}\cup\{a^hb^{\ell+1}|h,l\geq 0\}$$
 Claim: 
$$L=\mathcal{L}(G)$$

(c) Proof of 
$$L = \mathcal{L}(G)$$

$$-\mathcal{L}(G) \subseteq L$$
: see (a)

- $L \subseteq \mathcal{L}(G)$ : let  $w \in L$ 
  - Assume  $w=a^{h+1}b^\ell$  for some  $h,\ell\geq 0.$  Then we have the following derivation:

$$S \xrightarrow{S \to aS} {}^h \ a^h S \xrightarrow{S \to Sb} {}^\ell \ a^h Sb^\ell \xrightarrow{S \to a} {}^1 \ a^{h+1}b^\ell$$
 So  $w \in \mathcal{L}(G)$ 

– Assume  $w=a^hb^{\ell+1}$  for some  $h,\ell\geq 0$ . Then we have the following derivation:

$$S \xrightarrow{\underline{S \to aS}} {}^h \ a^h S \xrightarrow{\underline{S \to Sb}} {}^\ell \ a^h S b^\ell \xrightarrow{\underline{S \to b}} {}^1 \ a^h b^{\ell+1}$$
 So  $w \in \mathcal{L}(G)$ 



(Hopcroft, Motwani & Ullman 2001) Consider the context-free grammar G given by the production rules

$$S \to aSbS|bSaS|\epsilon$$

Prove that  $\mathcal{L}(G) = \{ w \in \{a, b\} | \#_a(w) = \#_b(w) \}.$ 

$$CFGG: S \rightarrow aSbS|bSaS|\epsilon$$

To be proven:

$$\mathcal{L}(G) = L = \{ w \in \{a, b\} | \#_a(w) = \#_b(w) \}$$

Proof:

 $-\mathcal{L}(G)\subseteq L$ :

Proof by induction on h

If 
$$S \Rightarrow^h x$$
, then  $\#_a(x) = \#_b(x)$  for all  $x$ , for all  $h \ge 0$ .

Base case: 
$$(h = 0)$$
  $S \Rightarrow^0 x$ , so  $x = S$ 

$$\#_a(x) = \#_a(S) = 0 = \#_b(S) = \#_b(x)$$

Step case:  $(h = \ell + 1)$  for some  $\ell \ge 0$  if  $S \Rightarrow^{\ell} y$ , then  $\#_a(y) = \#_b(y)$  for all y [IH]

Case distinction on the last step of derrivation:

$$-S \Rightarrow^{\ell} uSv \Rightarrow uaSbSv = x$$

By the [IH] we have 
$$\#_a(uSv) = \#_b(uSv)$$

$$(\#_a(uSv) = \#_b(uSv)) = (\#_a(uv) = \#_b(uv))$$

It follows that 
$$\#_a(x) = \#_a(uaSbSv) = 1 + \#_a(uv) = 1 + \#_b(uv) = \#_b(uaSbSv) = \#_b(x)$$

$$-\ S \Rightarrow^{\ell} uSv \Rightarrow ubSaSv = x$$

analogous reasoning [NOTE 13: okay.]

$$-S \Rightarrow^{\ell} uSv \Rightarrow uv = x$$
$$\#_a(x) = \#_a(uv) = \#_b(uv) = \#_b(x)$$

-  $L \subseteq \mathcal{L}(G)$ :

Proof by structural induction on w (meaning: strong induction on |w|):

if  $w \in L$ , then  $w \in \mathcal{L}(G)$  for all w

Base case: 
$$(w = \epsilon) \ S \Rightarrow \epsilon = w$$
, so  $w \in \mathcal{L}(G)$ 

Step case:  $(|w| \ge 2)$ 

$$-w = aua$$
:  $w = \underbrace{a\underbrace{u_1}_{\in L} b}_{\in L} \underbrace{u_2 a}_{\in L}$ 

$$|au_1b| < |w|$$
$$|u_2a| < |w|$$

By the induction hypothesis the following derivation exists:

$$i: S \Rightarrow^* u_1$$

ii: 
$$S \Rightarrow^* u_2 a$$

```
w can be derived as follows: S\Rightarrow aSbS\stackrel{i}{\Rightarrow}^* au_1bS\stackrel{ii}{\Rightarrow}^* au_1bu_2a=w [NOTE 14: using lemma 3.15] 
-w=bub\text{: analogous.}
-w=aub\text{: }w\text{ can be derived as follows: }S\Rightarrow aSbS\stackrel{i}{\Rightarrow}^* aubS\Rightarrow aub=w [NOTE 15: using lemma 3.15] 
-w=bua\text{: analogous.}
```



A context-free grammar G=(V,T,R,S,) is called *linear* if each production rule is of either of the following two forms:  $A\to aB$  or  $A\to \epsilon$  for  $A,B\in V$ , not necessarily different, and  $a\in T$ .

- Argue that every regular language is generated by a linear context-free grammar.
- Argue that every linear context-free grammar generates a regular language.
- See the proof of TH 3.18 for the DFA to linear CFG transformation and the argument of its correctness.
- Let G = (V, T, R, S) be a linear context free grammar.

Define 
$$NFA N = (Q_n, \Sigma, \rightarrow_N, q_0, F_N)$$
 by

$$\begin{split} Q_N &= V \\ \Sigma &= T \\ q_0 &= S \\ F_N &= \{A \in V | A \rightarrow \epsilon \in R\} \\ \rightarrow_N &= \{(A,a,B) | A \rightarrow aB \in R\} \end{split}$$

For 
$$u \in \Sigma^*$$
  $(=T^*)$  we have

$$S \Rightarrow_G^* uA \text{ iff } (S, u) \vdash_N^* (A, \epsilon)$$

and

$$S \Rightarrow_G^* u \text{ iff } (S, u) \vdash_N^* (B, \epsilon) \text{ for some } B \in F_N$$

(both can be proven by induction)

It follows that  $w \in \mathcal{L}(G)$  iff  $w \in \mathcal{L}(N)$  for all  $w \in \Sigma^*$ 

So 
$$\mathcal{L}(G) = \mathcal{L}(N)$$

and thus  $\mathcal{L}(G)$  is a regular language.

Consider again the the grammar of Exercise 3.5 with production rules

$$S \to XbY \\ X \to \epsilon | aX \\ Y \to \epsilon | aY | bY$$

Provide parse trees for this grammar with yield aabab, baab, and aaabb. A context-free grammar G is called *ambiguous* if there exist two different complete parse trees  $PT_1$  and  $PT_2$  of G such that  $yield(PT_1) = yield(PT_2)$ . Otherwise G is called *unambiguous*.

Parse tree for aabab (unique):

Parse tree for baab (unique):



Parse tree for aaabb (unique):



(a) Show that the grammar G given by the production rules

$$S \to AB|aaB$$
  $A \to a|Aa$   $B \to b$ 

is ambiguous.

(b) Provide an unambiguous grammar G that generates the same language as G. Argue why G is unambiguous and why  $\mathcal{L}(G') = \mathcal{L}(G)$ .

(a) 
$$S o AB|aaB$$
  $A o a|Aa$   $B o b$ 

String *aab* has two different complete parse trees:



So grammar G is ambiguous.

$$\mathcal{L}(G) = \mathcal{L}(a^+b) = \{a^n b | n > 0\}$$

- (b) G':  $S \to AB$   $A \to a|Aa$   $B \to b$  (G' equals G with production A  $B \to aaB$  removed) To be proved: A  $B \to aaB$  removed: A  $B \to aaB$  removed:
  - $\mathcal{L}(G') \subseteq \mathcal{L}(G)$ :

Every derivation sequence in G' is a derivation sequence in G

 $\begin{array}{c} - \ \mathcal{L}(G) \subseteq \mathcal{L}(G') \text{:} \\ \text{Let } w \in \mathcal{L}(G) \text{, so } S \Rightarrow_G^* w \end{array}$ 

Case distinction on the first step:

- $\begin{array}{l} \ S \Rightarrow_G AB \Rightarrow_G^* w; \\ \text{this is a derivation in } G' \text{ as well, so } w \in \mathcal{L}(G') \end{array}$
- $-S\Rightarrow_G aaB\Rightarrow_G^*w;$  it follows that w=aab and  $S\Rightarrow_{G'}AB\Rightarrow_{G'}Aab\Rightarrow_{G'}aab$ , so  $w\in\mathcal{L}(G')$

G' is unambiguous:  $a^nb(n>0)$  has only one parse tree in G'

### Intermezzo

[NOTE 16: could be added later]



(a) Show that the grammar  ${\cal G}$  given by the production rules

$$S \to \epsilon |aSbS|bSaS$$

is ambiguous.

- (b) Provide an unambiguous grammar G that generates the same language as G. Argue why G is unambiguous and why  $\mathcal{L}(G')=\mathcal{L}(G)$ .
- (a) G is ambiguous since abab has two different (complete) parse trees.



(b) [NOTE 17: ermergewd, te lang]

(Hopcroft, Motwani & Ullman 2001) Convert the context-free grammar  ${\cal G}$ 

$$S \to aAAA \quad \to aS|bS|a$$

to a PDA P that accepts on empty stack with  $\mathcal{N}(P) = \mathcal{L}(G)$ .

### First method:

$$G: \quad S \to aAA \quad A \to aS|bS|a$$

Transformation to a PDA accepting on final state from the proof of TH 3.25

Transformation to a PDA accepting on empty stack from the proof of TH 3.29



### Second method:

$$G: S \to aAA \quad A \to aS|bS|a$$

Direct ad hoc transformation to a PDA accepting on empty stack from the proof of TH 3.29

$$\left. \begin{array}{l} \text{Matching steps} \left\{ \begin{matrix} a[a/\epsilon] & \tau[S/aAA] \\ \tau[A/aS] \\ b[b/\epsilon] & \tau[A/bS] \\ \tau[A/\epsilon] & \tau[D/\epsilon] \end{matrix} \right\} \text{Production steps} \\ \tau[D/\epsilon] & \} \text{Removal of stack bottom symbol} \end{array} \right.$$



Consider the PDA P accepting on empty stack below.



- (a) Construct a context-free grammar G such that  $\mathcal{L}(G) = \mathcal{N}(P)$ .
- (b) Symbol  $X \in V \cup T$  is called productive if  $X \Rightarrow_G w$  for some  $w \in T$ . It follows that a terminal is always productive and that a variable A is productive if there exists a production rule  $A \to_G X_1 X_2 ... X_k$  where all symbols  $X_1, X_2, ..., and X_k$  are productive (note that in case k = 0 A is productive). Removing from G all non-productive symbols and all rules that contain non-productive symbols results in a reduced grammar G with  $\mathcal{L}(G') = \mathcal{L}(G)$ .

Determine all productive symbols in the constructed grammar and give the reduced grammar.

(a) 
$$\mathcal{N}(P) = (\{a^n b a^n b | n \ge 1\})^*$$

Transformation to a CFG from the proof of TH 3.30

$$S \to [q_0 D q_0] | [q_0 D q_1]$$

$$q_0 \xrightarrow{a[D/XD]} q_0 \qquad \qquad \underbrace{\begin{array}{c} [q_0Dq_0] \\ \langle \underline{\hat{1}} \rangle - \cdots - \langle \underline{\hat{0}} \rangle - \langle \underline{\hat{q}} \rangle - \langle \underline{\hat{q}}$$

$$q_0 \xrightarrow{a[X/XX]} q_0 \qquad [q_0Xq_0] \qquad \rightarrow_{\langle \underline{\tilde{0}}\rangle^2} a[q_0Xq_0][q_0Xq_0]|_{\langle \underline{\tilde{0}}\rangle^2 - \langle \underline{\tilde{4}}\rangle^2 - - - -}} [q_0Xq_1][q_1Xq_0] \qquad \qquad \\ [q_0Xq_1] \qquad \rightarrow_{\langle \underline{\tilde{0}}\rangle^2} a[q_0Xq_0][q_0Xq_1]|_{\langle \underline{\tilde{4}}\rangle^2 - - - - -}} [q_1Xq_1] \qquad \qquad \\ (\underline{\tilde{4}}) \xrightarrow{a[q_0Xq_1]} \qquad \rightarrow_{\langle \underline{\tilde{0}}\rangle^2} a[q_0Xq_0][q_0Xq_1]|_{\langle \underline{\tilde{4}}\rangle^2 - - - - -}} [q_1Xq_1] \qquad \qquad \\ (\underline{\tilde{4}}) \xrightarrow{a[q_0Xq_1]} \qquad \rightarrow_{\langle \underline{\tilde{0}}\rangle^2} a[q_0Xq_0][q_0Xq_0]|_{\langle \underline{\tilde{4}}\rangle^2 - - - - -}} [q_1Xq_1] \qquad \qquad \\ (\underline{\tilde{4}}) \xrightarrow{a[q_0Xq_1]} a[q_0Xq_0][q_0Xq_0]|_{\langle \underline{\tilde{4}}\rangle^2 - - - - -}} [q_0Xq_1][q_0Xq_1] \qquad \qquad \\ (\underline{\tilde{4}}) \xrightarrow{a[q_0Xq_1]} a[q_0Xq_0][q_0Xq_0][q_0Xq_0]|_{\langle \underline{\tilde{4}}\rangle^2 - - - - -}} [q_0Xq_1][q_0Xq_1] \qquad \qquad \\ (\underline{\tilde{4}}) \xrightarrow{a[q_0Xq_1]} a[q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q_0Xq_0][q$$

$$q_0 \xrightarrow{b[X/X]} q_1 \qquad [q_0 X q_0] \qquad \to \underbrace{\bar{0}}_{\langle \underline{\tilde{0}} \rangle} b[q_1 X q_0]$$

$$\underbrace{[q_0 X q_1]}_{\langle \underline{\tilde{0}} \rangle} \xrightarrow{b}_{\langle \underline{\tilde{0}} \rangle} b[q_1 X q_1]$$

$$q_0 \xrightarrow{a[X/\epsilon]} q_1 \qquad \qquad \underbrace{[q_1 X q_1]}_{\langle \widehat{\underline{0}} \rangle^{-}} \rightarrow {}_{\langle \widehat{\underline{0}} \rangle^{-}}$$

$$q_1 \xrightarrow{b[D/D]} q_0 \qquad \qquad \underbrace{\begin{bmatrix} q_1 D q_0 \end{bmatrix}}_{\left[q_1 D q_1\right]} \xrightarrow{} \underbrace{\begin{bmatrix} b \\ 0 \end{bmatrix}}_{\left[q_0 D q_1\right]} \xrightarrow{} \underbrace{b}_{\left[q_0 D q_1\right]}$$

$$q_0 \xrightarrow{\tau[D/\epsilon]} q_0 \qquad \qquad \underbrace{[q_0 D q_0]}_{\text{(1)}} \qquad \rightarrow \underbrace{(0)}_{\text{(2)}}$$

(b) Productive symbols (in order of discovery; see above)

Reduced grammar (rules only):

$$S \to [q_0 D q_0]$$

$$[q_0 D q_0] \to a[q_0 X q_1][q_1 D q_0] | \epsilon$$

$$[q_0 X q_1] \to a[q_0 X q_1][q_1 X q_1] | b[q_1 X q_1]$$

$$[q_1 X q_1] \to a$$

$$[q_1 D q_0] \to [q_0 D q_0]$$

(Hopcroft, Motwani & Ullman, 2001) Consider again the PDA of Exercise 3.1 repeated below.



- (a) Construct a context-free grammar that generates the same language as this PDA accepts.
- (b) Determine all productive symbols in the constructed grammar and give the reduced grammar (see (b) of the previous question for a definition of productive symbols).

(a)  $q_1$  can be removed. The resulting PDA accepts the same language as P. This is the case because the accepting state  $(q_0)$  is unreachable from  $q_1$ 



PDA P accepting on final state.  $\mathcal{L}(P)\{aw|w\in\{a,b\}^*\}$ 

#### Construction from proof of Th 3.29

$$\begin{array}{ccc} a[D/1D] & & & \\ a[1/11] & & \tau[1/\epsilon] \\ b[1/1] & & \tau[D/\epsilon] \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

ePDA P' accepting on empty stack.  $\mathcal{N}(P') = \mathcal{L}(P)$ 

#### Construction from proof of Th 3.30

CFG G 
$$\mathcal{L}(G) = \mathcal{N}(P') = \mathcal{L}(P)$$

$$\underbrace{S} \rightarrow [q_0 D q_0] |_{\underbrace{\langle \bar{3} \rangle}} [q_0 D q_{and}]$$

$$q_{0} \xrightarrow{a[D/1D]} q_{0} \qquad [q_{0}Dq_{0}] \qquad \rightarrow_{\underbrace{0}} a[q_{0}1q_{0}][q_{0}Dq_{0}]|_{\underbrace{0}} a[q_{0}1q_{end}][q_{end}Dq_{0}]$$

$$\underbrace{q_{0}Dq_{end}]} \qquad \rightarrow_{\underbrace{0}} a[q_{0}1q_{0}][q_{0}Dq_{end}]|_{\underbrace{0}} a[q_{0}1q_{end}][q_{end}Dq_{end}]$$

$$q_{0} \xrightarrow{a[1/11]} q_{0} \qquad [q_{0}1q_{0}] \qquad \rightarrow_{\underbrace{0}} a[q_{0}1q_{0}][q_{0}1q_{0}]|_{\underbrace{0}} a[q_{0}1q_{end}][q_{end}1q_{0}]$$

$$\underbrace{q_{0}1q_{end}} \qquad \rightarrow_{\underbrace{0}} a[q_{0}1q_{0}][q_{0}1q_{0}]|_{\underbrace{0}} a[q_{0}1q_{end}][q_{end}1q_{0}]$$

$$\underbrace{q_{0}1q_{end}} \qquad \rightarrow_{\underbrace{0}} b[q_{0}1q_{0}] \qquad \rightarrow_{\underbrace{0}} b[q_{0}1q_{0}]$$

$$\underbrace{q_{0}1q_{end}} \qquad \rightarrow_{\underbrace{0}} b[q_{0}1q_{0}] \qquad \rightarrow_{\underbrace{0}} a[q_{0}1q_{end}][q_{end}1q_{end}]$$

$$\underbrace{q_{0}1q_{end}} \qquad \rightarrow_{\underbrace{0}} a[q_{0}1q_{end}] \qquad \rightarrow_{\underbrace{0}} a[q_{0}1q_{end}][q_{end}1q_{end}]$$

$$\underbrace{q_{0}1q_{end}} \qquad \rightarrow_{\underbrace{0}} a[q_{0}1q_{end}] \qquad \rightarrow_{\underbrace{0}} a[q_{end}1q_{end}][q_{end}1q_{end}]$$

$$\underbrace{q_{0}1q_{end}} \qquad \rightarrow_{\underbrace{0}} a[q_{end}1q_{end}] \qquad \rightarrow_{\underbrace{0}} a[q_{end}1q_{end}][q_{end}1q_{end}]$$

$$\underbrace{q_{0}1q_{end}} \qquad \rightarrow_{\underbrace{0}} a[q_{end}1q_{end}] \qquad \rightarrow_{\underbrace{0}} a[q_{end}1q_{end}][q_{end}1q_{end}]$$

$$\underbrace{q_{0}1q_{end}} \qquad \rightarrow_{\underbrace{0}} a[q_{end}1q_{end}] \qquad \rightarrow_{\underbrace{0}} a[q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q_{end}1q_{end}][q$$

(b) Productive symbols (in order of discovery; see above)

$$\textcircled{1} \left[ q_{end} D q_{end} \right] \textcircled{2} \left[ q_{end} 1 q_{end} \right] \textcircled{3} \left[ q_1 D q_{end} \right] \textcircled{4} \left[ q_0 1 q_{end} \right] \textcircled{5} S$$

Reduced grammar (rules only):

$$\begin{split} S &\to [q_0 D q_{end}] \\ & [q_0 D q_{end}] \to a [q_0 1 q_{end}] [q_{end} D q_{end}] | [q_{end} D q_{end}] \\ & [q_0 1 q_{end}] \to a [q_0 1 q_{end}] [q_{end} 1 q_{end}] | b [q_0 1 q_{end}] | [q_{end} 1 q_{end}] \\ & [q_{end} 1 q_{end}] &\to \epsilon \\ & [q_{end} D q_{end}] &\to \epsilon \\ \end{split}$$
 substitute in other production rules.

Reduced grammar (rules only), after substitution:

$$S \to [q_0 D q_{end}]$$
$$[q_0 D q_{end}] \to a[q_0 1 q_{end}] \epsilon$$
$$[q_0 1 q_{end}] \to a[q_0 1 q_{end}] |b[q_0 1 q_{end}]| \epsilon$$

- Show that the class of context-free languages is closed under reversal, i.e. if L is a context-free language then so is  $L^R = \{w^R | w \in L\}$ .
- Show that the class of context-free languages is not closed under set difference, i.e. if  $L_1$  and  $L_2$  are context-free languages, then  $L_1 \backslash L_2 = \{w \in L_1 | w \notin L_2\}$  is not context-free in general.
- (a) If L is a context-free language, then  $L^R$  is a context-free language *Proof:* Let L be a context-free language.

Let  $G = (V, \Sigma, R, S)$  be a context-free grammar with  $\mathcal{L}(G) = L$ 

Define 
$$G^R = (V, \Sigma, R^R, S)$$
, where  $R^R = \{A \rightarrow \alpha^R | A \rightarrow \alpha \in R\}$ 

Therefore:

$$\begin{array}{ll} \beta A \gamma \Rightarrow_G \beta \alpha \gamma & \text{(rule:} A \rightarrow a\text{)} \\ \text{iff} & \\ (\beta A \gamma)^R = \gamma^R A \beta^R \Rightarrow_{G^R} \gamma^R \alpha^R \beta^R = (\beta \alpha \gamma)^R & \text{(rule:} A \rightarrow \alpha^R\text{)} \end{array}$$

We have that:

 $\gamma_0 \Rightarrow_G \gamma_1 \Rightarrow_G ... \Rightarrow_G \gamma_{n-1} \Rightarrow_G \gamma_n$  is a derivation (production sequence) for G

$$\begin{array}{c} \gamma_0^R \Rightarrow_{G^R} \gamma_1^R \Rightarrow_{G^R} \ldots \Rightarrow_{G^R} \gamma_{n-1}^R \Rightarrow_{G^R} \gamma_n^R \\ \text{is a derivation for } G^R \end{array}$$

It follows that:

$$\begin{aligned} & w \in L \\ & \stackrel{val}{=} w \in \mathcal{L}(G) \\ & \stackrel{val}{=} S \Rightarrow_G w \\ & \stackrel{val}{=} S^R \Rightarrow_{G^R} w^R \\ & \stackrel{val}{=} S \Rightarrow_{G^R} w^R \\ & \stackrel{val}{=} w^R \in \mathcal{L}(G^R) \end{aligned}$$

So 
$$\mathcal{L}(G^R) = L^R$$

(b)  $L_1=\{a^nb^nc^m|n,m\geq 0\}$  is a context-free language  $L_2=\{w\in\{a,b,c\}^*|\#_b(w)\neq\#_c(w)\}$  is a context-free language (accepted by a push down automaton)

$$\begin{array}{l} L_1\backslash L_2=\{a^nb^nc^m|\neg(n\neq m)\}\\ =\{a^nb^nc^n|n\geq 0\} \text{ is not context-free} \end{array}$$

- Show that the language  $L_1 = \{a^{n^2}d|n \ge 0\}$  is not context-free.
- (a) Assume  $L_1$  is a context-free language. Let m>0. Choose  $w=a^{m^2}$ , then  $w\in L_1$  and  $|w|=m^2\geq m$ . Let uvxyz be strings with  $w=uvxyz, |vxy|\leq m, vy\neq \epsilon$ .

It follows that 
$$v=a^{|v|},y=a^{|y|}$$
, thus  $1\leq |vy|\leq m$ . Choose  $i=2$ . Then  $uv^2xy^2z=a^{m^2+|vy|}\notin L_1$  since  $m^2< m^2+|vy|\geq m^2+m=m(m+1)<(m+1)^2$ .

Since the property for context-free languages from the pumping lemma thus not holds  $(uv^ixy^iz \notin L_1)$ , we can conclude that  $L_1$  is therefore not context free.

- Show that the language  $L_2 = \{ww^R w | w \in \{a, b\}\}$  is not context-free.
- (a) Assume  $L_2$  is a context-free language. Let m>0. Choose  $w=a^mb^mb^ma^ma^mb^m=a^mb^{2m}a^{2m}b^m$ , then  $w\in L_2$  and  $|w|=6m\geq m$ . Let uvxyz be strings with  $w=uvxyz, |vxy| \leq m, vy \neq \epsilon$ .

We can now apply case distinction, due to  $|vxy| \le m$ :

-v and y contain only a's.

Choose i=2.

Now either

$$-uv^{2}xy^{2}z = a^{m+|vy|}b^{2m}a^{2m}b^{m} \notin L_{2}$$
$$-uv^{2}xy^{2}z = a^{m}b^{2m}a^{2m+|vy|}b^{m} \notin L_{2}.$$

-v and y contain both a's and b's.

Thus 
$$\#_a(vy) = k > 0, \#_b(vy) = l > 0.$$

Choose i = 0.

Now either

$$-uv^0xy^0z = a^{m-k}b^{2m-l}a^{2m}b^m \notin L_2$$

$$-uv^0xy^0z = a^mb^{2m-l}a^{2m-k}b^m \notin L_z$$

$$-uv^{0}xy^{0}z = a^{m}b^{2m-l}a^{2m-k}b^{m} \notin L_{2}$$

$$-uv^{0}xy^{0}z = a^{m}b^{2m}a^{2m-k}b^{m-l} \notin L_{2}$$

We can thus conclude that  $L_2$  is not a context-free language.

- Show that the language  $L_3 = \{0^n 10^{2n} 10^{3n} | n \ge 0\}$  is not context-free.
- (a) Assume  $L_3$  is a context-free language. Let m>0. Choose  $w=0^m10^{2m}10^{3m}$ , then  $w\in L_3$  and  $|w|=6m+2\geq m$ . Let uvxyz be strings with  $w=uvxyz, |vxy|\leq m, vy\neq \epsilon$ .

We can now apply case distinction, due to  $|vxy| \leq m$  and thus vy cannot contain two 1's:

- $-\ vy$  contains one 1. Choose i=0:  $uv^0xy^0z$  now only contains one 1, thus  $\notin L_3.$
- vy contains only 0's. Choose i = 0:

Now either

$$-uv^{0}xy^{0}z = 0^{m-|vy|}10^{2m}10^{3m} \notin L_{3}$$

$$-uv^{0}xy^{0}z = 0^{m-|v|}10^{2m-|v|}10^{3m} \notin L_{3}$$

$$-uv^{0}xy^{0}z = 0^{m}10^{2m-|vy|}10^{3m} \notin L_{3}$$

$$-uv^{0}xy^{0}z = 0^{m}10^{2m-|vy|}10^{3m-|yy|} \notin L_{3}$$

$$-uv^{0}xy^{0}z = 0^{m}10^{2m}10^{3m-|vy|} \notin L_{3}$$

$$-uv^{0}xy^{0}z = 0^{m}10^{2m}10^{3m-|vy|} \notin L_{3}$$

We can thus conclude that  $L_3$  is not a context-free language.

- Show that the language  $L_4 = \{a^n b^l c^m | n, l \ge m\}$  is not context-free.
- (a) Assume  $L_4$  is a context-free language. Let m>0. Choose  $w=a^mb^mc^m$ , then  $w\in L_3$  and  $|w|=3m\geq m$ . Let uvxyz be strings with  $w=uvxyz, |vxy|\leq m, vy\neq \epsilon$ .

We can now apply case distinction, due to  $|vxy| \le m$ :

- vy contains a's and b's. Thus  $\#_a(vy) = k, \#_b(vy) = l$ , with  $k+l \geq 1$ . Choose i=0:  $uv^0xy^0z = a^{m-k}b^{m-l}c^m \notin L_4$ .
- vy contains b's and c's. Thus  $\#_b(vy) = k, \#_c(vy) = l$ , with  $k+l \geq 1$ . Choose i=0:  $uv^0xy^0z = a^mb^{m-k}c^{m-l} \notin L_4$ .

We can thus conclude that  $L_4$  is not a context-free language.

# 4 Turing Machines and Computable Functions



## **Lijst van Notities - ToDo**

| 1  | ref                                     | 17 |
|----|-----------------------------------------|----|
| 2  | whut                                    | 18 |
| 3  | to be filled                            | 19 |
| 4  | work out                                | 22 |
| 5  | work out                                | 22 |
| 6  | existing?                               | 22 |
| 7  | according to above lemmas               | 22 |
| 8  | lol?                                    | 24 |
| 9  | Constructions from the proof of TH 3.32 | 24 |
| 10 | should be checked                       | 24 |
| 11 | see proof of TH 3.32                    | 25 |
| 12 | no cluesss                              | 26 |
| 13 | okay.                                   | 28 |
| 14 | using lemma 3.15                        | 29 |
| 15 | using lemma 3.15                        | 29 |
| 16 | could be added later                    | 33 |
| 17 | ermergewd, te lang                      | 34 |