昆 明 理 工大学 2012级 试 卷 A卷

考试科目: 高等数学A(2) 考试日期: 2013年6月24日 命题教师: 命题小组

题号	_	=	Ξ	四	五	六	总分
评分					/		
阅卷人							

一、填空题(每小题4分,共40分)

1. 设
$$f(x,y) = e^{xy} \sin \frac{\pi}{2} y$$
,则 $f_x(1,1) =$ ______

2. 函数
$$z = x^y$$
在点(2,1)处的全微分 $dz|_{(2,1)} = _____.$

3. 曲
$$\begin{cases} z = \frac{x^2 + y^2}{4} \\ y = 4 \end{cases}$$
 , 上的点 (2,4,5) 处的切线方程

为 .

4. 设Σ为球面 $x^2 + y^2 + z^2 = 14$,则其上的点(1,2,-3)处的切

平面方程为

5. 设平面区域 D 为 $x^2 + y^2 \le 1$,

6. 设空间区域Ω为 $x^2 + y^2 + z^2 ≤ 1$,

则
$$\iiint_{\Omega} (z-3)dv =$$
_______.

7. 设 Σ 为球面 $x^2 + y^2 + z^2 = a^2$,

则
$$\iint_{\Sigma} (x^2 + y^2 + z^2) dS = \underline{\hspace{1cm}}.$$

8. 设 Σ 为xoy面上的闭区域,则

$$\iint_{\Sigma} x dy dz + y dz dx + z dx dy = \underline{\hspace{1cm}}.$$

9. 齐次微分方程 v'' - 4v' + 4v = 0 的特解为 . . .

10. 设 $y_1 = 1$, $y_2 = 1 + x$, $y_3 = 1 + x + x^2$ 均是线性微分方程

y'' + p(x)y' + q(x)y = f(x)的特解,则方程的通解是

y = _____

二、计算题题(每小题8分,共24分)

1. 求
$$\iint_{D} \sqrt{x^2 + y^2} d\sigma$$
 , 其中 D 为区域 $x^2 + y^2 \le a^2$ 与

$$x^2 + y^2 \ge ay$$
的公共部分 $(a > 0)$.

2. 求立体 $x^2 + y^2 + z^2 \le 2az$ 与 $z \ge \sqrt{x^2 + y^2}$ 的公共部分的体积 (a > 0).

3. 求 $\iint_{\Sigma} x dy dz + y dz dx + z dx dy$, 其中 Σ 为 上 半 球 面 $z = \sqrt{a^2 - x^2 - y^2} (a > 0)$ 取上侧.

三、设z = z(x,y)是由方程, $x - y - z + xe^z = 0$ 确定的隐函数 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$. (8 分)

四、求表面积为 a^2 而体积为最大的长方体的体积. (8分)

五、求 $\int_L (x^2 - y) dx - (x + \sin^2 y) dy$, 其中 L 为 圆 周 $y = \sqrt{2x - x^2} \text{ 上由点}(0,0) 至点(1,1) - 段弧. (10 分)$

六、已知可微函数f(x)满足