Exercices (Théorie des ensembles)

https://f2school.com/theorie-des-ensembles/

I) Définition d'ensembles

Exercice I.1:

Définir l'ensemble des entiers naturels strictements inférieurs à 5.

Solution : $A = \{x \in \mathbb{N} \mid x < 5\}$

Exercice I.2:

Définir l'ensemble des entiers relatifs divisibles par 3 de deux façons différentes.

Solution:

$$A=ig\{x\in\mathbb{Z}\mid rac{x}{3}-\lfloorrac{x}{3}
floor
eq 0 ig\}$$
 ou $A=\{x\in\mathbb{Z}\mid x=3k,\ k\in\mathbb{Z}\}$

 $A = \{3k \mid k \in \mathbb{Z}\}$

Exercice I.3:

Définir l'ensemble des nombres impaires strictements supérieurs à 3.

$$A=\{x\in\mathbb{Z}\mid x=2k+1, k\in\mathbb{Z}\ et\ k>0\}$$

Exercice I.4:

Définir l'ensemble des points du cercle $\mathcal C$ de centre $(a,b)\in\mathbb R^2$ et de rayon r.

$$\mathcal{C} = \left\{ (x,y) \in \mathbb{R}^2 \mid (x-a)^2 + (y-b)^2 = r^2
ight\}$$

Exercice I.5:

Définir l'ensemble des points de tous les cercles dont l'aire est égale à 1.

$$\mathcal{C}=\left\{(x,y)\in\mathbb{R}^2\mid orall a,b\in\mathbb{R},\; (x-a)^2+(y-b)^2=r^2\;et\;\pi r^2=1
ight\}=\mathbb{R}^2$$

$$\mathcal{C} = \left\{ (x,y) \in \mathbb{R}^2 \mid orall a, b \in \mathbb{R}, \ (x-a)^2 + (y-a)^2 = rac{1}{\pi} \
ight\}$$

Exercice I.6:

Définir l'ensemble des points du disque ouvert $\mathcal D$ de centre $(a,b)\in\mathbb R^2$ et de rayon 2.

$$\mathcal{D}=\left\{(x,y)\in\mathbb{R}^2\mid (x-a)^2+(y-b)^2<4
ight\}$$

II) Relations ensemblistes

 $\frac{https://f2school.com/wp-content/uploads/2019/10/th\'{e}orie-des-ensembles-exercice-02.pdf$

Exercice II.1:

Soient $A=\{1,2,3\}$ et $B=\{0,1,2,3\}$. Décrire les ensembles $A\cap B$, $A\cup B$ et $A\times B$.

$$A \cap B = \{1, 2, 3\}, \ A \cup B = \{0, 1, 2, 3\}, \ A \times B = \{(1, 0), (1, 1), (1, 2), \dots, (3, 3)\}$$

Exercice II.2:

Soient $A = \{0, 2, 4\}$ et $B = \{1, 3, 4, 5\}$ dans le référentiel $E = \{0, 1, 2, 3, 4, 5\}$.

Déterminer les ensembles $A, \overline{B}, A \cap B$, $A \cup B$, $A \setminus B$, $\mathcal{P}(A)$ et $A \times B$

Exercice II.3:

Soient A=[1,3] et B=[2,4]. Déterminer les ensembles $A\cap B$ et $A\cup B$.

$$A\cap B=[2,3]$$
 et $A\cup B=[1,4]$

Exercice II.4:

Déterminer le complémentaire dans $\mathbb R$ des ensembles suivants : $A_1=]-\infty,0]$, $A_2=]-\infty,0[$, $A_3=]0,+\infty[$, $A_4=[0,+\infty[$, $A_5=]1,2[$, $A_6=[1,2[$ 2.

$$ar{A}_1=]0,+\infty[$$
 et $A\cup B=[1,4]$

Exercice II.5 Soient $A=]-\infty,1[\cup]2,+\infty[$, $B=]-\infty,1[$ et $B=[2,+\infty[$. Comparer les ensembles \bar{A} et $\bar{B}\cap\bar{C}$

Exercice II.6

Soient $A=]-\infty,3]$, B=]-2,7] et $C=]-5,+\infty[$ trois parties de $\mathbb{R}.$ Déterminer $A\cap B,\ A\cup B,\ B\cap C,\ B\cup C,\ \mathbb{R}\setminus A,\ A\setminus B,\ (\mathbb{R}\setminus A)\cap (\mathbb{R}\setminus B),\ (\mathbb{R}\setminus (A\cup B),\ (A\cap B)\cup (A\cap C)$ et $A\cap (B\cup C)$

Solution

$$(\mathbb{R}\setminus A)\cap (\mathbb{R}\setminus B)=\mathbb{R}\setminus (A\cup B)=]7,+\infty[\ (A\cap B)\cup (A\cap C)=]-2,3]\cup]-5,3]=]-5,3]$$

Exercice II.7:

Soit $A=\{1,8,10\}$. Décrire $\mathcal{P}(A)$, l'ensemble des parties de A.

Exercice II.8:

Soit $C_{red} = \llbracket 0; 2
rbracket, C_{green} = \llbracket 0; 2
rbracket, C_{blue} = \llbracket 0; 2
rbracket,$ Décrire $C_{red} imes C_{green} imes C_{blue}$.

Exercice II.9 (démo de cours)

Soient A, B et C trois parties d'un ensemble E. Montrer que :

1.
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$2. \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Solution

Il s'agit de résultats du cours que l'on peut utiliser sans démonstration mais cet exercice demande de les redémontrer.

1. Si $x \in A \cup (B \cap C)$

Alors $(x \in A \text{ ou } x \in (B \cap C))$

Alors $(x \in A \text{ ou } (x \in B \text{ et } x \in C))$

Si $x \in A$ alors $x \in A \cup B$ et $x \in A \cup C$, par conséquent $x \in (A \cup B) \cap (A \cup C)$.

Si $(x \in B \text{ et } x \in C)$ alors $(x \in A \cup B \text{ et } x \in A \cup C)$

Donc si $(x \in A \text{ ou } (x \in B \text{ et } x \in C))$ alors $(x \in A \cup B \text{ et } x \in A \cup C)$

On a montré que $A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$

Si $x \in (A \cup B) \cap (A \cup C)$ alors $(x \in A \cup B \text{ et } x \in A \cup C)$.

 $(x \in A \cup B \text{ et } x \in A \cup C) \Leftrightarrow ((x \in A \text{ ou } x \in B) \text{ et } (x \in A \text{ ou } x \in C))$

Si $(x \in A \text{ et } (x \in A \text{ ou } x \in C))$ alors $x \in A \cap A \text{ ou } x \in A \cap C$

Si $(x \in B \text{ et } (x \in A \text{ ou } x \in C))$ alors $x \in B \cap A \text{ ou } x \in B \cap C$

Alors $x \in A$ ou $x \in A \cap C$ ou $x \in B \cap A$ ou $x \in B \cap C$

Alors $x \in A$ ou $x \in A \cap C \subset A$ ou $x \in B \cap A \subset A$ ou $x \in B \cap C$

Alors $x \in A$ ou $x \in B \cap C$

Alors $x \in A \cup (B \cap C)$

On a montré que $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$

Finalement $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

2. Si $x \in A \cap (B \cup C)$

Alors $(x \in A \text{ et } x \in B \cup C)$

Alors $(x \in A \text{ et } (x \in B \text{ ou } x \in C))$

Alors $(x \in A \text{ et } x \in B)$ ou $(x \in A \text{ et } x \in C)$

Alors $x \in A \cap B$ ou $x \in A \cap C$

Alors $x \in (A \cap B) \cup (A \cap C)$

On a montré que $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$

 $\mathsf{Si}\ x \in (A\ \cap\ B)\ \cup\ (A\ \cap\ C)$

Alors $x \in A \cap B$ ou $x \in A \cap C$

Alors $(x \in A \text{ et } x \in B)$ ou $(x \in A \text{ et } x \in C)$

Alors $(x \in A \text{ ou } x \in A)$ et $(x \in A \text{ ou } x \in C)$ et $(x \in B \text{ ou } x \in A)$ et

Alors $x \in A$ et $x \in A \cup C$ et $x \in B \cup A$ et $x \in B \cup C$ Comme $x \in A$ et $x \in A \cup C$ et $x \in B \cup A$ entraine que $x \in A$

 $x \in (A \cap B) \cup (A \cap C) \Rightarrow x \in A \text{ et } x \in B \cup C \Rightarrow x \in A \cap (B \cup C)$

On a montré que $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$

Et finalement $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Exercice II.10

- 1. Montrer que $(A \setminus B) \setminus C = A \setminus (B \cup C)$
- 2. Montrer que $(A \setminus B) \cap (C \setminus D) = (A \cap C) \setminus (B \cup D)$

Solution

- 1. $(A \setminus B) \setminus C = (A \cap \overline{B}) \setminus C = (A \cap \overline{B}) \cap \overline{C} = A \cap (\overline{B} \cap \overline{C}) = A \cap (\overline{B \cup C}) = A \setminus (B \cup C)$
- $2. \ (A \setminus B) \cap (C \setminus D) = (A \cap \overline{B}) \cap (C \cap \overline{D}) = (A \cap C) \cap (\overline{B} \cap \overline{D}) = (A \cap C) \cap (\overline{B \cup D}) = (A \cap C) \setminus (B \cup D)$

Exercice II.11

On donne la définition suivante $A\Delta B=(A\setminus B)\cup(B\setminus A)$

1. Montrer que

$$(A \cap B) \cap (\overline{A \cap C}) = A \cap B \cap \overline{C}$$
$$(A \cap C) \cap (\overline{A \cap B}) = A \cap C \cap \overline{B}$$

2. En déduire que

$$(A \cap B)\Delta(A \cap C) = A \cap (B\Delta C)$$

Solution

- 1. $(A \cap B) \cap (\overline{A \cap C}) = (A \cap B) \cap (\overline{A} \cup \overline{C}) = (A \cap B \cap \overline{A}) \cup (A \cap B \cap \overline{C}) = \emptyset \cup (A \cap B \cap \overline{C}) = A \cap B \cap \overline{C}$ Pour la seconde il suffit d'intervertir B et C
- 2. $(A \cap B)\Delta(A \cap C) = ((A \cap B) \setminus (A \cap C)) \cup ((A \cap C) \setminus (A \cap B))$
 - $= ((A \cap B) \cap (A \cap C)) \cup ((A \cap C) \cap (A \cap B)) = (A \cap B \cap C) \cup (A \cap C \cap B)$
 - $=A\cap ((B\cap C)\cup (C\cap B))=A\cap ((B\setminus C)\cup (C\setminus B))=A\cap (B\Delta C)$

III) Pour aller plus loin

Exercice III.1

Soit E un ensemble et soit $\mathcal{P}(E)$ l'ensemble des parties de E. Pour A et B dans $\mathcal{P}(E)$, on appelle différence symétrique de A par B l'ensemble, noté $A\Delta B$ défini par : $A\Delta B=(A\cup B)\setminus(A\cap B)$

- 1. Montrer que $A\Delta B=(A\cap \overline{B})\cup (B\cap \overline{A})=(A\setminus B)\cup (B\setminus A).$
- 2. Calculer $A\Delta A$, $A\Delta \emptyset$ et $A\Delta E$.
- 3. Montrer que pour tous A, B et C dans $\mathcal{P}(E)$, on a :

a) Montrer que :
$$\overline{\left(A\cap\overline{B}\right)\cup\left(B\cap\overline{A}\right)}=\left(\overline{A}\cap\overline{B}\right)\cup\left(B\cap A\right)$$

b) Montrer que:

$$(A\Delta B)\Delta C = (A\cap \overline{B}\cap \overline{C})\cup (B\cap \overline{A}\cap \overline{C})\cup (C\cap \overline{A}\cap \overline{B})\cup (C\cap B\cap A)$$

- c) Montrer que $A\Delta(B\Delta C)=(C\Delta B)\Delta A$
- d) A l'aide du b), montrer que $(A\Delta B)\Delta C=(C\Delta B)\Delta A$
- e) En déduire que : $(A\Delta B)\Delta C = A\Delta (B\Delta C)$

1.
$$(A \cup B) \setminus (A \cap B) = (A \cup B) \cap \overline{(A \cap B)} = (A \cup B) \cap \overline{(A \cup B)}$$

$$= (A \cap \overline{A}) \cup (A \cap \overline{B}) \cup (B \cap \overline{A}) \cup (B \cap \overline{B}) = \emptyset \cup (A \cap \overline{B}) \cup (B \cap \overline{A}) \cup \emptyset$$

$$= (A \cap \overline{B}) \cup (B \cap \overline{A}) = (A \setminus B) \cup (B \setminus A)$$
2.
$$A \triangle A = (A \cup A) \setminus (A \cap A) = A \setminus A = \emptyset$$

$$A \triangle \emptyset = (A \cup \emptyset) \setminus (A \cap \emptyset) = A \setminus \emptyset = A$$

$$A \triangle E = (A \cup E) \setminus (A \cap E) = E \setminus A = \overline{A}$$
3.
$$\overline{(A \cap \overline{B})} \cup (B \cap \overline{A}) = \overline{A \cap \overline{B}} \cap \overline{(B \cap \overline{A})} = (\overline{A} \cup B) \cap (\overline{B} \cup A)$$

$$= (\overline{A} \cap \overline{B}) \cup (\overline{A} \cap A) \cup (B \cap \overline{B}) \cup (B \cap A) = (\overline{A} \cap \overline{B}) \cup \emptyset \cup \emptyset \cup (B \cap A)$$

$$= (\overline{A} \cap \overline{B}) \cup (B \cap A)$$
b)
$$(A \triangle B) \triangle C = ((A \cap \overline{B}) \cup (B \cap \overline{A})) \triangle C = (((A \cap \overline{B}) \cup (B \cap \overline{A})) \cap \overline{C}) \cup (C \cap \overline{(A \cap \overline{B})} \cup (B \cap \overline{A}))$$

$$= (A \cap \overline{B} \cap \overline{C}) \cup (B \cap \overline{A} \cap \overline{C}) \cup (C \cap \overline{(A \cap \overline{B})} \cup (B \cap A))$$

$$= (A \cap \overline{B} \cap \overline{C}) \cup (B \cap \overline{A} \cap \overline{C}) \cup (C \cap \overline{A} \cap \overline{B}) \cup (C \cap B \cap A)$$
c)
$$(A \triangle B) \triangle C = (C \cap \overline{A} \triangle \overline{B}) \cup ((A \triangle B) \cap \overline{C}) = ((A \triangle B) \cap \overline{C}) \cup (C \cap \overline{A} \triangle \overline{B}) = C \triangle (A \triangle B)$$
or
$$A \triangle B = (A \cap \overline{B}) \cup (B \cap \overline{A}) = (B \cap \overline{A}) \cup (A \cap \overline{B}) = B \triangle A \text{ donc } (A \triangle B) \triangle C = C \triangle (A \triangle B) = C \triangle (B \triangle A)$$
d)
$$(C \triangle B) \triangle A = (C \cap \overline{B} \cap \overline{A}) \cup (B \cap \overline{C} \cap \overline{A}) \cup (A \cap \overline{B}) = B \triangle A \text{ donc } (A \triangle B) \triangle C = C \triangle (A \triangle B) = C \triangle (B \triangle A)$$
c)
$$(A \triangle B) \triangle C = (C \cap \overline{A} \triangle A) \cup (B \cap \overline{C} \cap \overline{A}) \cup (A \cap \overline{B}) = B \triangle A \text{ donc } (A \triangle B) \triangle C = C \triangle (A \triangle B) = C \triangle (B \triangle A)$$
d)
$$(C \triangle B) \triangle A = (C \cap \overline{B} \cap \overline{A}) \cup (B \cap \overline{C} \cap \overline{A}) \cup (A \cap \overline{C} \cap \overline{B}) \cup (A \cap B \cap C) = A \triangle (B \triangle C), \text{ en changeant } A \text{ et } C.$$
e)
$$(A \triangle B) \triangle C = C \triangle (B \triangle A) \text{ d'après d'or } C \triangle (B \triangle A) = A \triangle (B \triangle C) \text{ d'après c'o.}$$

Donc $(A\Delta B)\Delta C = A\Delta (B\Delta C)$.

Exercice III.2 (démo de cours)

Soit E un ensemble et F et G deux parties de E. Démontrer que :

1.
$$(\overline{A\cap B})=\overline{A}\cup\overline{B}$$

2.
$$(\overline{A \cup B}) = \overline{A} \cap \overline{B}$$

3.
$$E \setminus (A \cap B) = (E \setminus A) \cup (E \setminus B)$$

4.
$$E \setminus (A \cup B) = (E \setminus A) \cap (E \setminus B)$$

Solution

Il s'agit de résultats du cours, on peut les utiliser sans démonstration mais c'est l'objet de cet exercice.

- 1. Soit $x\in \overline{(A\cap B)}$, $x\not\in A\cap B$ et donc $x\not\in A$ ou $x\not\in B$, ce qui signifie que $x\in \overline{A}\cup \overline{B}$. Cela montre que $\overline{(A\cap B)}\subset \overline{A}\cup \overline{B}$.
 - Soit $x\in \overline{A}\cup \overline{B}$, $x\not\in A$ ou $x\not\in B$ donc $x\not\in A\cap B$ ce qui entraîne que $x\in \overline{(A\cap B)}$. Cela montre que $\overline{A}\cup \overline{B}\subset \overline{(A\cap B)}$.

Et finalement $\overline{(A\cap B)}=\overline{A}\cup\overline{B}$

Remarque: On aurait raisonner par équivalence.

2. Soit $x\in \overline{(A\cup B)}$, $x\not\in A\cup B$ et donc $x\not\in A$ et $x\not\in B$, ce qui signifie que $x\in \overline{A}\cap \overline{B}$.

Soit $x\in\overline{A}\cap\overline{B}$, $x\not\in A$ et $x\not\in B$ donc $x\not\in A\cup B$ ce qui entraîne que $x\in\overline{(A\cup B)}$. Cela montre que $\overline{A}\cap\overline{B}\subset\overline{(A\cup B)}$.

Et finalement $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$

Remarque : On aurait raisonner par équivalence.

Exercice III.3

Soit E un ensemble et F et G deux parties de E. Démontrer que :

1.
$$F\subset G\Leftrightarrow F\cup G=G$$

2.
$$F\subset G\Leftrightarrow F\cap\overline{G}=\emptyset$$

Solution

Il s'agit de résultats du cours, on peut les utiliser sans démonstration mais c'est l'objet de cet exercice.

1. Supposons que $F \subset G$.

Si $x \in F \cup G$ alors $x \in F \subset G$ ou $x \in G$ alors $x \in G$. Donc $F \cup G \subset G$.

Si $x \in G$ alors $x \in F \cup G$, par conséquent $F \cup G = G$.

On a montré que $F \subset G \Rightarrow F \cup G = G$

Supposons que $F \cup G = G$.

Soit $x \in F$, $x \in F \cup G = G$ donc $x \in G$.

On a montré que $F \cup G = G \Rightarrow F \subset G$.

Finalement $F \subset G \Leftrightarrow F \cup G = G$.

2. Supposons que $F \subset G$.

Si $x \in F \cap CE$ G, $x \in F$ et $x \notin G \supset F$ donc $x \in F$ et $x \notin F$ ce qui est impossible par conséquent

$$F \cap CEG = \emptyset$$
.

On a montré que $F \subset G \Rightarrow F \cap CE G = \emptyset$

Supposons que $F \cap CE G = \emptyset$.