DR. BABASAHEB AMBEDKAR TECHNOLOGICAL UNIVERSITY, LONERE

Regular and Supplementary Winter Examination – 2024

Branch: Computer Engineering/Computer Science Engineering and Allied

Cours	se: B.Tech						Semester	: III
Subject Code & Name: BTCOC302 Discrete Mathematics								
Max Marks: 60				Date: 07/0	Date: 07/02/2025			13 Hr.
Instructions to the Students: 1. Each question carries 12 marks. 2. Question No. 1 will be compulsory and include objective-type questions. 3. Candidates are required to attempt any four questions from Question No. 2 to Question No. 6. 4. The level of question/expected answer as per OBE or the Course Outcome (CO) on which the question is based is mentioned in () in front of the question. 5. Use of non-programmable scientific calculators is allowed. 6. Assume suitable data wherever necessary and mention it clearly.								
				•		·	(Level	Marks
Q. 1	Objective type qu	uestions. (Comp	uls	ory Questio	n)		CO)	12
1 (What does P(A U	B) represent in s	et t	heory?	€	,		D) 1
	a. Union of sets A and B	b. Intersection of sets A an	l	c. Difference between a		d. Compleme nt of sets A and B		1621
2.	If the final column		of a	-10	ment			9 1
	If the final column of a truth table of a given statement formula has all "F" then it is called							5
	a. Contradiction	b. Tautology	c.	Negation	d. no	one of the above		
3	The cardinality of	the Power set of	the	e set {1, 5, 6	} is_	•		1
	a. Five	b. Six	c.	Seven	d.	Eight		
4	A relation R in a s	et A is called		, if (a ₁ , a ₂) ∈ F	R implies (a ₂ , a ₁)		1
	\in R, for all $a_1, a_2 \in$ A.							
		b. Symmetric		equivalence		d. iterative		213
5	5 If $f: A \to B$ and $g: B \to C$ be the bijective functions. Then $(g \ O f)^{-1}$							1 1
	<u>rs</u>							9
l	a. $f^{-l}Og^{-l}$	b. <i>g O f</i>	c.	$g^{-1}Of^{-1}$	d.	fOg		2
6	The graph in whic	th, there is a clos	ed t	trail which ir	ıclud	es every edge		1
	of the graph is kno	own as?						

c. Directed

graph

d. Planar graph

b. Euler graph

a. Hamiltonian

graph

7650				_	76/27A			7620	
7	A simple graph has							1	
	a. Loops	b. Par	allel edges	c. I	Both a & b	d. N	one of the		
						men	tioned		
8	It is called a leaf if it has children?								1
	a. One b. Two c. Multiple d. No				-				
9 (The vertex	which	is reachable	fror	n u is called		_ of u.		<u>ග</u> 1
	a. Son	a. Son b. Root c. Descendant d. Simple vertex							22
10	Which of the following is the algorithm to find the minimum								1
-	spanning t	ree of t	he given grap	h?	9				10
	a. Both b &	& c	b. Prim's		c. Kruskal	's	d. None of the	-	2
			Algo.		Algo.		mentioned		
11	Field will	be form	ned from the		_ algebraic	struct	ures.		1
	a. (C,+,×)($(C,+,\times)$	b. (Q,+,×)	(Q,	+,×) c. (R	,+,×)	d. $(Z,+,\times)(Z,+,\times)$	=	
12	The ring $(S, +, \cdot)$ is called a ring with identity if (S, \cdot) is								1
	a. Commutative b. Monoid c. Semi group d. Satisfy associative							=	
	property								
	9		1		9			/T 1	9
946,								(Level	Marks
							CO)	5 10	
Q. 2 Solve the following.							CO1	12	
A) Using Venn Diagrams Prove that- $1. [A - (B - C) = (A - B) U ((A \cap B \cap C)].$							CO1	6	
					· -				
2. $[A \cap (B \otimes C) = (A \cap B) \otimes (A \cap C)].$							CO1	6	
B) Out of 120 students surveyed; it was found that 20 students have							CO1	6	
studied French, 50 students have studied English, 70 students have								0	
studied Hindi, 5 studied English and French, 20 have studied English								21	
and Hindi, 10 have studied Hindi and French, only 3 students have								46	
(studied all the three languages. Find how many students have studied –								51646219
1) Hindi alone,								5	
	2) French alone,3) English but not Hindi.								
	4) Hindi bı	ut not F	Tench.						

		(Level	Marks
		CO)	
.3	Solve the following.		12
4)	Let $A=B=C=D \in R$, Also $f:A \rightarrow B$, $g:B \rightarrow C$ and $h:C \rightarrow D$ where	CO2	6
	$f(a) = a+1$, $g(b) = b^2+2$, $h(c) = 7c-2$. Find		
	① 1) g O f(-2) 2) f O g(-2) 3) g O f(a)		ဘ
B)	Find the inverse of:	CO2	5 6
		(10

Q. 4 Solve Any Two of the following. 12 Find the shortest path between 0 to 4 using Dijkstras Algorithm in the CO3 6 weighted graph displayed in Figure below.

CO3 B) What is isomorphic Graphs. Prove that the following graphs are Isomorphic graph.

51646219 C) Write a short note on Hamiltonian path, Hamiltonian Circuit and 6 Hamiltonian Graph with suitable example.

		(Level Ma	arks
		CO)	
2.5	Solve Any Two of the following.	33)	12
A)	Construct a Binary Search Tree from its following Pre-Order and	CO4	6
	In-Order Traversal.		
(Pre-Order Traversal: FBADCEGIH	0	
	In-Order Traversal : A B C D E F G H I	2	
B) (Find the Minimal spanning tree (MST) for the given graph using	CO4 9	6
(Rruskal's Algorithm	CO49497	
Ì	5 LO D	2	
	4		
	- /13		
	A C		
	& & 2		
	G F		
C) (Explain the Concept of Binary Search Tree and complete Binary	CO4 O	6
C) .		C04 Z	U
(Search Tree with suitable example. Also Explain deleting a node in	46	
	binary search tree which have two Childs.	9	
Ç		Ŋ	10
. 6	Solve Any Two of the following.		12
A)	What are Binary Operations? Explain its five properties with suitable	e CO5	6
	example.		
B)	If $G = \{0, 3, 6, 9, 12\}$, check whether G under addition modulo 15	5 CO5	6
	ie $(G, +_{15})$ is an abelian group or not?		
1	Define and Explain-	CO5	6
,	T) Semi Groups 2) Monoids 3) Integral Domain	2	
(*** End ***	16,	
(7) Semi Groups 2) Monoids 3) Integral Domain *** End ***	5164621	
Ì	2	27	