Structure Groups and Linear Transformations

Darien Elderfield

August 20, 2015

1 Preliminaries

Definition 1. Let V be a vector space and $R: V \times V \times V \times V \to \mathbb{R}$ be linear in each input. R is an **algebraic curvature tensor** if it satisfies the following properties for all $x,y,z,w \in V$:

- 1. R(x, y, z, w) = -R(y, x, z, w),
- 2. R(x, y, z, w) = R(z, w, x, y)
- 3. R(x, y, z, w) + R(z, x, y, w) + R(y, z, x, w) = 0

The vector space of algebraic curvature tensors on V is denoted A(V).

Definition 2. Let $A \in End(V)$. The **precomposition of A**, denoted A^{\dagger} , with an algebraic curvature tensor R(x,y,z,w) is defined $A^{\dagger}R(x,y,z,w) = R(Ax,Ay,Az,Aw)$. If A is invertible, we may instead define the precomposition of A with R as $A^{\dagger\dagger}R(x,y,z,w) = R(A^{-1}x,A^{-1}y,A^{-1}z,A^{-1}w)$. In some cases, the precompositions A^{\dagger} and $A^{\dagger\dagger}$ may be used interchangably. In these cases, we denote the precomposition as A^* , and assume the form $A^{\dagger\dagger}$ in any arguments given, although the corresponding arguments for A^{\dagger} can be easily verified.

Definition 3. Let R be an algebraic curvature tensor on a vector space V of dimension n. The **structure group** of R is denoted G_R and defined $G_R = \{A \in GL(n) | A^*R = R\}$.

Definition 4. A **Jordan block** of size k corresponding to some eigenvalue $\lambda \in \mathbb{R}$ on \mathbb{R}^k is defined:

$$J(k,\lambda) = \begin{bmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda \end{bmatrix}$$

The Jordan block corresponding to a pair of complex conjugate eigenvalues $a \pm b\sqrt{-1}$ is defined in the construction of the size 2k matrix:

$$J(k, a, b) = \begin{bmatrix} A & I & 0 & \dots & 0 \\ 0 & A & I & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & A \end{bmatrix}$$

where

$$A = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

and

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Definition 5. Let $\{A_i\}$ be a collection of square matrices, i=1,...,n. The **direct sum** of A_i is:

$$\bigoplus_{i=1}^{n} A_i = \begin{bmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_n \end{bmatrix}$$

Lemma 1. Let $A \in End(V)$. Choosing an appropriate basis for V, A will decompose as the direct sum of Jordan blocks. The unordered collection of these blocks is determined by A.

Definition 6. The **Jordan normal form** of A is the unordered collection of Jordan blocks from the preceding lemma.

2 A Generalization of Previous Results

Lemma 2. Let $A \in End(V)$. Define $T_A : \mathcal{A}(V) \to \mathcal{A}(V)$ by $T_A(R) = A^*R$. Then T_A is a linear transformation on $\mathcal{A}(V)$.

Proof. Let $R_1, R_2 \in \mathcal{A}(V)$ and let $c \in \mathbb{R}$. Then: $T_A((R_1 + R_2)(x, y, z, w)) = A^*(R_1 + R_2)(x, y, z, w) = (R_1 + R_2)(Ax, Ay, Az, Aw)$ $= R_1(Ax, Ay, Az, Aw) + R_2(Ax, Ay, Az, Aw) = A^*R_1(x, y, z, w) + A^*R_2(x, y, z, w)$ $= T_A(R_1(x, y, z, w)) + T_A(R_2(x, y, z, w)).$

Furthermore,

$$T_A(cR_1(x, y, z, w)) = T_A(R_1(cx, y, z, w)) = A^*R_1(cx, y, z, w) = R_1(A(cx), Ay, Az, Aw)$$

= $R_1(cAx, Ay, Az, Aw) = cR_1(Ax, Ay, Az, Aw) = cA^*R_1(x, y, z, w)$
= $cT_A(R_1(x, y, z, w))$.

The following constitutes a generalization of the work done by Kaylor [1].

Definition 7. Let $\mathscr{B} = \{\mathscr{R}_1, \mathscr{R}_2, ..., \mathscr{R}_N\}$ be an ordered basis for $\mathcal{A}(V)$ and let $A \in End(V)$. Define the **Kaylor matrix** of A with respect to \mathscr{B} :

$$K_A = \begin{bmatrix} \beta_{11} & \beta_{21} & \dots & \beta_{N1} \\ \beta_{12} & \beta_{22} & \dots & \beta_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{1N} & \beta_{2N} & \dots & \beta_{NN} \end{bmatrix}$$

where β_{ij} is the coefficient corresponding to \mathcal{R}_j when $A^*\mathcal{R}_i$ is expressed in terms of the basis \mathcal{B} .

Lemma 3. K_A is the matrix representation of the linear transformation T_A with respect to the ordered basis \mathscr{B} .

Proof. Let $R \in \mathcal{A}(V)$. Then $R = \sum_{i=1}^{N} \alpha_i \mathscr{R}_i$ where $\alpha_i \in \mathbb{R}$. Express R as a column vector with respect to \mathscr{B} :

$$R = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_N \end{bmatrix}$$

 $T_A: \mathcal{A}(V) \to \mathcal{A}(V)$, so given $\mathscr{R}_i \in \mathscr{B}$, $T_A(\mathscr{R}_i) = A^*\mathscr{R}_i = \sum_{j=1}^N \beta_{ij}\mathscr{R}_j$ where $\beta_{ij} \in \mathbb{R}$. Then $T_A(R) = T_A(\sum_{i=1}^N \alpha_i \mathscr{R}_i) = \sum_{i=1}^N \alpha_i T_A(\mathscr{R}_i)$, since T_A is linear. But then $\sum_{i=1}^N \alpha_i T_A(\mathscr{R}_i) = \sum_{i=1}^N \alpha_i \sum_{j=1}^N \beta_{ij}\mathscr{R}_j = \sum_{j=1}^N \mathscr{R}_j \sum_{j=1}^N \alpha_i \beta_{ij}$. Expressed as a column vector with respect to \mathscr{B} :

$$T_{A}(R) = \begin{bmatrix} \sum_{i=1}^{N} \alpha_{i} \beta_{i1} \\ \sum_{i=1}^{N} \alpha_{i} \beta_{i2} \\ \vdots \\ \sum_{i=1}^{N} \alpha_{i} \beta_{iN} \end{bmatrix} = \begin{bmatrix} \beta_{11} & \beta_{21} & \dots & \beta_{N1} \\ \beta_{12} & \beta_{22} & \dots & \beta_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{1N} & \beta_{2N} & \dots & \beta_{NN} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{N} \end{bmatrix} = K_{A}R$$

Theorem 1. Let $\mathbf{x} = x_1 \mathcal{R}_1 + ... + x_N \mathcal{R}_N$. If there exists a nonzero algebraic curvature tensor R such that $A \in G_R$, then $K_A \mathbf{x} = \mathbf{x}$ has a non-trivial solution. [1]

Corollary 1. The solution space of $K_A \mathbf{x} = \mathbf{x}$ is the set of all algebraic curvature tensors R such that $A \in G_R$. [1]

3 Results

Fact. $K_I = I$

Proof. Let
$$R \in \mathcal{A}(V)$$
. Then: $K_I R(x, y, z, w) = I^* R(x, y, z, w) = R(I^{-1}x, I^{-1}y, I^{-1}z, I^{-1}w) = R(x, y, z, w) = IR(x, y, z, w)$.

Fact. $K_{-A} = K_A$

Proof. Let $R \in \mathcal{A}(V)$. Then:

$$K_{-A}R(x,y,z,w) = (-A)^*R(x,y,z,w) = R((-A)^{-1}x,(-A)^{-1}y,(-A)^{-1}z,(-A)^{-1}w)$$

$$= R(-A^{-1}x,-A^{-1}y,-A^{-1}z,-A^{-1}w) = (-1)^4R(A^{-1}x,A^{-1}y,A^{-1}z,A^{-1}w)$$

$$= A^*R(x,y,z,w) = K_AR(x,y,z,w).$$

Theorem 2. Let $A,B \in End(V)$ and let K_A and K_B be the matrix representations of $T_A(R) = A^{\dagger}R$ and $T_B(R) = B^{\dagger}R$ with respect to the basis \mathscr{B} . Then the matrix representation of $T_{AB}(R) = (AB)^{\dagger}R$ with respect to \mathscr{B} is $K_{AB} = K_BK_A$.

Proof. Let
$$R \in \mathcal{A}(V)$$
. Then $K_{AB}R(x,y,z,w) = (AB)^{\dagger}R(x,y,z,w)$
= $R(ABx,ABy,ABz,ABw) = A^{\dagger}R(Bx,By,Bz,Bw) = B^{\dagger}(A^{\dagger}R(x,y,z,w))$
= $K_BK_AR(x,y,z,w)$.

Corollary 2. Let $A,B \in GL(n)$ and let K_A and K_B be the matrix representations of $T_A(R) = A^{\dagger\dagger}R$ and $T_B(R) = B^{\dagger\dagger}R$ with respect to the basis \mathscr{B} . Then the matrix representation of $T_{AB}(R) = (AB)^{\dagger\dagger}R$ with respect to \mathscr{B} is $K_{AB} = K_AK_B$.

Proof. Let $R \in \mathcal{A}(V)$. Then:

$$\begin{split} &K_{AB}R(x,y,z,w) = (AB)^{\dagger\dagger}R(x,y,z,w) = R((AB)^{-1}x,(AB)^{-1}y,(AB)^{-1}z,(AB)^{-1}w) \\ &= R(B^{-1}A^{-1}x,B^{-1}A^{-1}y,B^{-1}A^{-1}z,B^{-1}A^{-1}w) = B^{\dagger\dagger}R(A^{-1}x,A^{-1}y,A^{-1}z,A^{-1}w) \\ &= A^{\dagger\dagger}(B^{\dagger\dagger}R(x,y,z,w)) = K_AK_BR(x,y,z,w). \end{split}$$

Corollary 3. If $A \in GL(n)$ then $K_{A^{-1}} = (K_A)^{-1}$.

Proof.
$$K_{A^{-1}}K_A = K_{A^{-1}A} = K_I = I$$
 and $K_AK_{A^{-1}} = K_{AA^{-1}} = K_I = I$.

Theorem 3. If G is a subgroup of GL(n) then $K_G = \{K_A | A \in G\}$ is also a group.

Proof. G is a group so I ∈ G, and so $K_I = I ∈ K_G$. Let $K_A ∈ K_G$. Then A ∈ G and $A^{-1} ∈ G$ so $K_{A^{-1}} = (K_A)^{-1} ∈ K_G$. Let $K_A, K_B ∈ K_G$. Then A,B ∈ G so AB ∈ G and so $K_AK_B = K_{AB} ∈ K_G$. Let $K_A, K_B, K_C ∈ K_G$. Then $K_A(K_BK_C) = (K_AK_B)K_C$ since matrix multiplication is associative.

Lemma 4. Let $\mathcal{B} = \{e_1, e_2, ..., e_n\}$ be a basis for a vector space V. Then given $e_i, e_j \in \mathcal{B}$, $e_i \neq e_j$, there exists a symmetric bilinear form ϕ such that the canonical algebraic curvature tensor $R_{\phi}(x, y, z, w) = \phi(x, w)\phi(y, z) - \phi(x, z)\phi(y, w)$ has $R_{\phi}(e_i, e_j, e_j, e_i) = 1$ and, up to symmetries of algebraic curvature tensors, all other $R_{\phi}(e_k, e_l, e_m, e_p) = 0$.

Proof. Let $\phi: V \times V \to \mathbb{R}$ be defined as follows: $\phi(e_i, e_i) = \phi(e_j, e_j) = 1$ and $\phi(e_k, e_l) = 0$ for all other basis vector pairs. Then ϕ is a symmetric bilinear form, so we can form the canonical algebraic curvature tensor $R_{\phi}(x, y, z, w) = \phi(x, w)\phi(y, z) - \phi(x, z)\phi(y, w)$. Then $R_{\phi}(e_i, e_j, e_j, e_i) = 1$ and, up to symmetries of algebraic curvature tensors, all other $R_{\phi}(e_k, e_l, e_m, e_p) = 0$.

Lemma 5. Let $\mathscr{B} = \{e_1, e_2, ..., e_n\}$ be a basis for a vector space V. Then given distinct $e_i, e_j, e_k \in \mathscr{B}$, there exists an algebraic curvature tensor $\bar{R} \in \mathcal{A}(V)$ such that $\bar{R}(e_i, e_j, e_k, e_i) = 1$ and, up to symmetries of algebraic curvature tensors, all other $\bar{R}(e_l, e_m, e_p, e_q) = 0$.

Proof. Let $\phi: V \times V \to \mathbb{R}$ be defined as follows: $\phi(e_i, e_i) = \phi(e_j, e_k) = \phi(e_k, e_j) = 1$ and $\phi(e_l, e_m) = 0$ for all other basis vector pairs. Then ϕ is a symmetric bilinear form, so we can define the canonical algebraic curvature tensor $R_{\phi}(x, y, z, w) = \phi(x, w)\phi(y, z) - \phi(x, z)\phi(y, w)$. Then $R_{\phi}(e_i, e_j, e_k, e_i) = 1$, and if E_s is any other permutation of $\{e_i, e_i, e_j, e_k\}$ then $R_{\phi}(E_s)$ is predetermined by the symmetries of algebraic curvature tensors. It is clear from the definition of R_{ϕ} that all other $R_{\phi}(e_l, e_m, e_p, e_q) = 0$ except $R_{\phi}(e_j, e_k, e_k, e_j) = -1$ and its nonzero associates. According to the previous lemma, there exists an algebraic curvature tensor $R_{\psi} \in \mathcal{A}(V)$ such that $R_{\psi}(e_j, e_k, e_k, e_j) = 1$ and all other $R_{\psi}(e_l, e_m, e_p, e_q) = 0$, up to symmetries of algebraic curvature tensors. Then $\bar{R} = R_{\phi} + R_{\psi}$ has:

$$\begin{split} \bar{R}(e_i,e_j,e_k,e_i) &= R_{\phi}(e_i,e_j,e_k,e_i) + R_{\psi}(e_i,e_j,e_k,e_i) = 1 + 0 = 1, \\ \bar{R}(e_j,e_k,e_k,e_j) &= R_{\phi}(e_j,e_k,e_k,e_j) + R_{\psi}(e_j,e_k,e_k,e_j) = -1 + 1 = 0, \text{ and } \\ \bar{R}(e_l,e_m,e_p,e_q) &= R_{\phi}(e_l,e_m,e_p,e_q) + R_{\psi}(e_l,e_m,e_p,e_q) = 0 + 0 = 0 \\ \text{for all other } \bar{R}(e_l,e_m,e_p,e_q), \text{ up to symmetries of algebraic curvature tensors.} \end{split}$$

Theorem 4. If $A \in GL(n)$, $n \geq 3$, then $K_A = I \Leftrightarrow A = \pm I$.

Proof. (\Leftarrow) This follows directly from the two previously stated facts.

- (\Rightarrow) Suppose $A \neq \pm I$. Then $A^{-1} \neq \pm I$, so the Jordan Normal form of A^{-1} has a Jordan block that isn't either J(1,1) or J(1,-1). Call this block A_1 . A_1 has one of the following forms:
- (i) $J(1,\lambda), \lambda \neq \pm 1$
- (ii) $J(2,\lambda)$
- (iii) $J(m,\lambda), m \in \mathbb{Z}, 3 \leq m \leq n$
- (iv) J(1, a, b)
- (v) $J(p, a, b), p \in \mathbb{Z}, 2 \leq p \leq \frac{n}{2}$

(Note that none of the Jordan blocks of A^{-1} can have eigenvalue zero, since A^{-1} is invertible, and additionally that none of the Jordan blocks with complex eigenvalues can have imaginary part zero, since they would not be complex.)

(i) Suppose $A_1 = J(1, \lambda), \lambda \neq \pm 1$. Choose an ordered basis $\mathcal{B} = \{e_1, e_2, ..., e_n\}$ for V such that, reading down and to the right along the diagonal of the matrix representation of A^{-1} , A_1 appears first and the remaining Jordan blocks appear in the

following order: (1) any other $J(1,\eta)$, (2) any $J(m,\eta)$, $m \in \mathbb{Z}$, $3 \le m \le n-1$, (3) any J(p,a,b), $p \in \mathbb{Z}$, $1 \le p \le \frac{n-1}{2}$. $n \ge 3$, so A^{-1} has another Jordan block, A_2 , in the second diagonal entry of A^{-1} . A_2 will have form like that of (1),(2), or (3) above.

- (i)(1) Suppose $A_2=J(1,\eta)$. Then A^{-1} has another Jordan block A_3 in the third diagonal position with form either (a) $J(m,\gamma), 1 \leq m \leq n-2$, or (b) $J(p,a,b), p \in \mathbb{Z}, 1 \leq p \leq \frac{n-2}{2}$.
 - (i)(1)(a) Suppose $A_3 = J(m, \gamma), 1 \le m \le n-2$. Then A^{-1} has the form:

$$A^{-1} = \begin{bmatrix} \lambda & 0 & 0 & \dots & 0 \\ 0 & \eta & 0 & \dots & 0 \\ 0 & 0 & \gamma & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \end{bmatrix}$$

So $A^{-1}e_1 = \lambda e_1$, $A^{-1}e_2 = \eta e_2$, and $A^{-1}e_3 = \gamma e_3$. Then $A^{\dagger\dagger}R(e_1,e_2,e_2,e_1) = R(A^{-1}e_1,A^{-1}e_2,A^{-1}e_1) = R(\lambda e_1,\eta e_2,\eta e_2,\lambda e_1)$ $= \lambda^2\eta^2R(e_1,e_2,e_2,e_1)$. Similarly, $A^{\dagger\dagger}R(e_1,e_3,e_3,e_1) = R(A^{-1}e_1,A^{-1}e_3,A^{-1}e_3,A^{-1}e_1) = R(\lambda e_1,\gamma e_3,\gamma e_3,\lambda e_1)$ $= \lambda^2\gamma^2R(e_1,e_3,e_3,e_1)$ and $A^{\dagger\dagger}R(e_2,e_3,e_3,e_2) = R(A^{-1}e_2,A^{-1}e_3,A^{-1}e_3,A^{-1}e_2)$ $= R(\eta e_2,\gamma e_3,\gamma e_3,\eta e_2) = \eta^2\gamma^2R(e_2,e_3,e_3,e_2)$. If $K_A = -I$ then $A^{\dagger\dagger}R(e_1,e_2,e_2,e_1) = -R(e_1,e_2,e_2,e_1)$, but $A^{\dagger\dagger}R(e_1,e_2,e_2,e_1) = \lambda^2\eta^2R(e_1,e_2,e_2,e_1)$, so this is impossible. If $K_A = I$ then $A^{\dagger\dagger}R(e_1,e_2,e_2,e_1)$ $= R(e_1,e_2,e_2,e_1), A^{\dagger\dagger}R(e_1,e_3,e_3,e_1) = R(e_1,e_3,e_3,e_1), \text{ and } A^{\dagger\dagger}R(e_2,e_3,e_3,e_2) = R(e_2,e_3,e_3,e_2),$ so $\lambda^2\eta^2 = \lambda^2\gamma^2 = \eta^2\gamma^2 = 1$. Thus $\lambda^2 = \gamma^2$, so $1 = \lambda^2\gamma^2 = \lambda^4$. But $\lambda \neq \pm 1$, so this is impossible.

(i)(1)(b) Suppose $A_3 = J(p, a, b), p \in \mathbb{Z}, 1 \le p \le \frac{n-2}{2}, 1 \le m \le n-2$. Then A^{-1} has the form:

$$A^{-1} = \begin{bmatrix} \lambda & 0 & 0 & 0 & \dots & 0 \\ 0 & \eta & 0 & 0 & \dots & 0 \\ 0 & 0 & a & b & \dots & 0 \\ 0 & 0 & -b & a & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \end{bmatrix}$$

So $A^{-1}e_1 = \lambda e_1$, $A^{-1}e_2 = \eta e_2$, and $A^{-1}e_3 = ae_3 - be_4$. Then $A^{\dagger\dagger}R(e_1, e_3, e_3, e_1) = R(A^{-1}e_1, A^{-1}e_3, A^{-1}e_3, A^{-1}e_1) = R(\lambda e_1, ae_3 - be_4, ae_3 - be_4, \lambda e_1) = \lambda^2 a^2 R(e_1, e_3, e_3, e_1) - 2\lambda^2 abR(e_1, e_3, e_4, e_1) + \lambda^2 b^2 R(e_1, e_4, e_4, e_1)$.

Let R_{ijji} denote the algebraic curvature tensor constructed in lemma 3, $R_{ijji} = R_{\phi}$ for the appropriate ϕ , and let R_{ijki} denote the algebraic curvature tensor constructed in lemma 4, $R_{ijki} = \bar{R}$ for the appropriate \bar{R} . Let $R = R_{1331} + \frac{a}{2b}R_{1341}$. Then $R(e_1, e_3, e_3, e_1) = 1$, but $A^{\dagger\dagger}R(e_1, e_3, e_3, e_1) = \lambda^2 a^2 R(e_1, e_3, e_3, e_1) - 2\lambda^2 abR(e_1, e_3, e_4, e_1) +$

 $\lambda^2 b^2 R(e_1, e_4, e_4, e_1) = \lambda^2 a^2 (1) - 2\lambda^2 a b(\frac{a}{2b}) + \lambda^2 b^2 (0) = \lambda^2 a^2 - \lambda^2 a^2 = 0$. Thus $A^{\dagger\dagger} R \neq R$ and $A^{\dagger\dagger} R \neq -R$, so $K_A \neq \pm I$.

(i)(2) Now suppose $A_2 = J(m, \eta), 2 \le m \le n - 1$. Then A^{-1} has the form:

$$A^{-1} = \begin{bmatrix} \lambda & 0 & 0 & \dots & 0 \\ 0 & \eta & 1 & \dots & 0 \\ 0 & 0 & \eta & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \end{bmatrix}$$

So $A^{-1}e_1 = \lambda e_1$, $A^{-1}e_2 = \eta e_2$, and $A^{-1}e_3 = e_2 + \eta e_3$. Then $A^{\dagger\dagger}R(e_1,e_3,e_3,e_1) = R(A^{-1}e_1,A^{-1}e_3,A^{-1}e_3,A^{-1}e_1) = R(\lambda e_1,e_2+\eta e_3,e_2+\eta e_3,\lambda e_1) = \lambda^2 R(e_1,e_2,e_2,e_1) + \lambda^2 \eta^2 R(e_1,e_3,e_3,e_1) + 2\lambda^2 \eta R(e_1,e_2,e_3,e_1)$. Let $R = -\eta^2 R_{1221} + R_{1331}$. Then $R(e_1,e_3,e_3,e_1) = 1$, but $A^{\dagger\dagger}R(e_1,e_3,e_3,e_1) = \lambda^2 R(e_1,e_2,e_2,e_1) + \lambda^2 \eta^2 R(e_1,e_3,e_3,e_1) + 2\lambda^2 \eta R(e_1,e_2,e_3,e_1) = \lambda^2 (-\eta^2) + \lambda^2 \eta^2 (1) + 2\lambda^2 \eta (0) = -\lambda^2 \eta^2 + \lambda^2 \eta^2 = 0$. Thus $A^{\dagger\dagger}R \neq R$ and $A^{\dagger\dagger}R \neq -R$, so $K_A \neq \pm I$.

(i)(3) Now suppose $A_2 = J(p, a, b), p \in \mathbb{Z}, 1 \le p \le \frac{n-1}{2}$. Then A^{-1} has the form:

$$A^{-1} = \begin{bmatrix} \lambda & 0 & 0 & \dots & 0 \\ 0 & a & b & \dots & 0 \\ 0 & -b & a & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \end{bmatrix}$$

So $A^{-1}e_1 = \lambda e_1$ and $A^{-1}e_2 = ae_2 - be_3$. Then $A^{\dagger\dagger}R(e_1, e_2, e_2, e_1)$ = $R(A^{-1}e_1, A^{-1}e_2, A^{-1}e_2, A^{-1}e_1) = R(\lambda e_1, ae_2 - be_3, ae_2 - be_3, \lambda e_1) = \lambda^2 a^2 R(e_1, e_2, e_2, e_1) + \lambda^2 b^2 R(e_1, e_3, e_3, e_1) - 2\lambda^2 abR(e_1, e_2, e_3, e_1)$.

Let $R = R_{1221} + \frac{a}{2b}R_{1231}$. Then $R(e_1, e_2, e_2, e_1) = 1$, but $A^{\dagger\dagger}R(e_1, e_2, e_2, e_1) = \lambda^2 a^2 R(e_1, e_2, e_2, e_1) + \lambda^2 b^2 R(e_1, e_3, e_3, e_1) - 2\lambda^2 abR(e_1, e_2, e_3, e_1) = \lambda^2 a^2(1) + \lambda^2 b^2(0) - 2\lambda^2 ab(\frac{a}{2b}) = \lambda^2 a^2 - \lambda^2 a^2 = 0$

Thus $A^{\dagger\dagger}R \neq R$ and $A^{\dagger\dagger}R \neq -R$, so $K_A \neq \pm I$.

- (ii)Now, when $A_1=J(2,\lambda),$ A_2 has one of the following forms: (1) $J(m,\eta),$ $1\leq m\leq n-2,$ or (2) J(p,a,b), $1\leq p\leq \frac{n-2}{2}.$
 - (ii)(1) Suppose $A_2 = J(m, \eta), 1 \le m \le n 2$. Then A^{-1} has the form:

$$A^{-1} = \begin{bmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 0 & \dots & 0 \\ 0 & 0 & \eta & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \end{bmatrix}$$

So $A^{-1}e_2 = e_1 + \lambda e_2$ and $A^{-1}e_3 = \eta e_3$. Then $A^{\dagger\dagger}R(e_2, e_3, e_3, e_2)$ = $R(A^{-1}e_2, A^{-1}e_3, A^{-1}e_3, A^{-1}e_2) = R(e_1 + \lambda e_2, \eta e_3, \eta e_3, e_1 + \lambda e_2) = \lambda^2 \eta^2 R(e_2, e_3, e_3, e_2) + \eta^2 R(e_1, e_3, e_3, e_1) + 2\lambda \eta^2 R(e_3, e_1, e_2, e_3).$

Let $R = R_{2332} - \lambda^2 R_{1331}$. Then $R(e_2, e_3, e_3, e_2) = 1$, but $A^{\dagger\dagger} R(e_2, e_3, e_3, e_2) = \lambda^2 \eta^2 R(e_2, e_3, e_3, e_2) + \eta^2 R(e_1, e_3, e_3, e_1) + 2\lambda \eta^2 R(e_3, e_1, e_2, e_3) = \lambda^2 \eta^2 (1) + \eta^2 (-\lambda^2) + 2\lambda \eta^2 (0) = \lambda^2 \eta^2 - \lambda^2 \eta^2 = 0$.

Thus $A^{\dagger\dagger}R \neq R$ and $A^{\dagger\dagger}R \neq -R$, so $K_A \neq \pm I$.

(ii)(2) Now suppose $A_2 = J(p, a, b), 1 \le p \le \frac{n-2}{2}$. Then A^{-1} has the form:

$$A^{-1} = \begin{bmatrix} \lambda & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda & 0 & 0 & \dots & 0 \\ 0 & 0 & a & b & \dots & 0 \\ 0 & 0 & -b & a & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \end{bmatrix}$$

So $A^{-1}e_1 = \lambda e_1$ and $A^{-1}e_3 = ae_3 - be_4$. Then $A^{\dagger\dagger}R(e_1, e_3, e_3, e_1)$ = $R(A^{-1}e_1, A^{-1}e_3, A^{-1}e_3, A^{-1}e_1) = R(\lambda e_1, ae_3 - be_4, ae_3 - be_4, \lambda e_1) = \lambda^2 b^2 R(e_1, e_4, e_4, e_1) + \lambda^2 a^2 R(e_1, e_3, e_3, e_1) - 2\lambda^2 abR(e_1, e_3, e_4, e_1)$.

Let $R = R_{1331} + \frac{a}{2b}R_{1341}$. Then $R(e_1, e_3, e_3, e_1) = 1$, but $A^{\dagger\dagger}R(e_1, e_3, e_3, e_1) = \lambda^2 b^2 R(e_1, e_4, e_4, e_1) + \lambda^2 a^2 R(e_1, e_3, e_3, e_1) - 2\lambda^2 abR(e_1, e_3, e_4, e_1) = \lambda^2 b^2(0) + \lambda^2 a^2(1) - 2\lambda^2 ab(\frac{a}{2b}) = \lambda^2 a^2 - \lambda^2 a^2 = 0$. Thus $A^{\dagger\dagger}R \neq R$ and $A^{\dagger\dagger}R \neq -R$, so $K_A \neq \pm I$.

(iii) Let $A_1 = J(m, \lambda), 3 \le m \le n$. Then A^{-1} has the form:

$$A^{-1} = \begin{bmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ 0 & 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \end{bmatrix}$$

So $A^{-1}e_1 = \lambda e_1$ and $A^{-1}e_3 = e_2 + \lambda e_3$. Then $A^{\dagger\dagger}R(e_1, e_3, e_3, e_1)$ = $R(A^{-1}e_1, A^{-1}e_3, A^{-1}e_3, A^{-1}e_1) = R(\lambda e_1, e_2 + \lambda e_3, e_2 + \lambda e_3, \lambda e_1) = \lambda^2 R(e_1, e_2, e_2, e_1) + 2\lambda^3 R(e_1, e_2, e_3, e_1) + \lambda^4 R(e_1, e_3, e_3, e_1).$

Let $R = -\lambda^2 R_{1221} + R_{1331}$. Then $R(e_1, e_3, e_3, e_1) = 1$, but $A^{\dagger\dagger} R(e_1, e_3, e_3, e_1) = \lambda^2 R(e_1, e_2, e_2, e_1) + 2\lambda^3 R(e_1, e_2, e_3, e_1) + \lambda^4 R(e_1, e_3, e_3, e_1) = \lambda^2 (-\lambda^2) + 2\lambda^3 (0) + \lambda^4 (1) = -\lambda^4 + \lambda^4 = 0$. Thus $A^{\dagger\dagger} R \neq R$ and $A^{\dagger\dagger} R \neq -R$, so $K_A \neq \pm I$.

- (iv) Let $A_1 = J(1, a, b)$. Then A_2 has one of the following forms:
- (1) $J(m,\lambda), 1 \le m \le n-2$, or (2) $J(q,c,d), 1 \le q \le \frac{n-2}{2}$.
 - (iv)(1) Let $A_2 = J(m, \lambda), 1 \le m \le n-2$. Then A^{-1} has the form:

$$A^{-1} = \begin{bmatrix} a & b & 0 & \dots & 0 \\ -b & a & 0 & \dots & 0 \\ 0 & 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \end{bmatrix}$$

So $A^{-1}e_1 = ae_1 - be_2$ and $A^{-1}e_3 = \lambda e_3$. Then $A^{\dagger\dagger}R(e_1, e_3, e_3, e_1)$ = $R(A^{-1}e_3, A^{-1}e_1, A^{-1}e_2, A^{-1}e_3) = R(ae_1 - be_2, \lambda e_3, \lambda e_3, ae_1 - be_2) = \lambda^2 a^2 R(e_1, e_3, e_3, e_1) + \lambda^2 b^2 R(e_2, e_3, e_3, e_2) - 2ab\lambda^2 R(e_3, e_1, e_2, e_3)$.

Let $R = \frac{a}{2b}R_{3123} + R_{1331}$. Then $R(e_1, e_3, e_3, e_1) = 1$, but $A^{\dagger\dagger}R(e_1, e_3, e_3, e_1) = \lambda^2 a^2 R(e_1, e_3, e_3, e_1) + \lambda^2 b^2 R(e_2, e_3, e_3, e_2) - 2ab\lambda^2 R(e_3, e_1, e_2, e_3) = \lambda^2 a^2 (1) + \lambda^2 b^2 (0) - 2ab\lambda^2 (\frac{a}{2b}) = \lambda^2 a^2 - \lambda^2 a^2 = 0$. Thus $A^{\dagger\dagger}R \neq R$ and $A^{\dagger\dagger}R \neq -R$, so $K_A \neq \pm I$.

(iv)(2) Let $A_2 = J(q, c, d), 1 \le q \le \frac{n-2}{2}$. Then A^{-1} has the form:

$$A^{-1} = \begin{bmatrix} a & b & 0 & 0 & \dots & 0 \\ -b & a & 0 & 0 & \dots & 0 \\ 0 & 0 & c & d & \dots & 0 \\ 0 & 0 & -d & c & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots \end{bmatrix}$$

So $A^{-1}e_1 = ae_1 - be_2$, $A^{-1}e_2 = be_1 + ae_2$ and $A^{-1}e_3 = ce_3 - de_4$. Then $A^{\dagger\dagger}R(e_1, e_2, e_3, e_1) = R(A^{-1}e_1, A^{-1}e_2, A^{-1}e_3, A^{-1}e_1) = R(ae_1 - be_2, be_1 + ae_2, ce_3 - de_4, ae_1 - be_2) = ac(a^2 + b^2)R(e_1, e_2, e_3, e_1) + bc(a^2 + b^2)R(e_2, e_1, e_3, e_2) - ad(a^2 + b^2)R(e_1, e_2, e_4, e_1) - bd(a^2 + b^2)R(e_2, e_1, e_4, e_2).$

Let $R = \frac{ac}{bd}R_{2142} + R_{1231}$. Then $R(e_1, e_2, e_3, e_1) = 1$, but $A^{\dagger\dagger}R(e_1, e_2, e_3, e_1) = ac(a^2+b^2)R(e_1, e_2, e_3, e_1) + bc(a^2+b^2)R(e_2, e_1, e_3, e_2) - ad(a^2+b^2)R(e_1, e_2, e_4, e_1) - bd(a^2+b^2)R(e_2, e_1, e_4, e_2) = ac(a^2+b^2)(1) + bc(a^2+b^2)(0) - ad(a^2+b^2)(0) - bd(a^2+b^2)(\frac{ac}{bd}) = ac(a^2+b^2) - ac(a^2+b^2) = 0$. Thus $A^{\dagger\dagger}R \neq R$ and $A^{\dagger\dagger}R \neq -R$, so $K_A \neq \pm I$.

(v) Let J(p, a, b), $2 \le p \le \frac{n}{2}$. Then A^{-1} has the form:

$$A^{-1} = \begin{bmatrix} a & b & 1 & 0 & \dots & 0 \\ -b & a & 0 & 1 & \dots & 0 \\ 0 & 0 & a & b & \dots & 0 \\ 0 & 0 & -b & a & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \end{bmatrix}$$

So $A^{-1}e_1 = ae_1 - be_2$, $A^{-1}e_2 = be_1 + ae_2$ and $A^{-1}e_3 = e_1 + ae_3 - be_4$. Then $A^{\dagger\dagger}R(e_1, e_2, e_3, e_1) = R(A^{-1}e_1, A^{-1}e_2, A^{-1}e_3, A^{-1}e_1) = R(ae_1 - be_2, be_1 + ae_2, e_1 + ae_3)$

 $ae_3 - be_4, ae_1 - be_2) = b(a^2 + b^2)R(e_1, e_2, e_2, e_1) + a^2(a^2 + b^2)R(e_1, e_2, e_3, e_1) + ab(a^2 + b^2)R(e_2, e_1, e_3, e_2) - ab(a^2 + b^2)R(e_1, e_2, e_4, e_1) - b^2(a^2 + b^2)R(e_2, e_1, e_4, e_2).$ Let $R = \frac{a^2}{b^2}R_{2142} + R_{1231}$. Then $R(e_1, e_2, e_3, e_1) = 1$, but $A^{\dagger\dagger}R(e_1, e_2, e_3, e_1) = b(a^2 + b^2)R(e_1, e_2, e_2, e_1) + a^2(a^2 + b^2)R(e_1, e_2, e_3, e_1) + ab(a^2 + b^2)R(e_2, e_1, e_3, e_2) - ab(a^2 + b^2)R(e_1, e_2, e_4, e_1) - b^2(a^2 + b^2)R(e_2, e_1, e_4, e_2) = b(a^2 + b^2)(0) + a^2(a^2 + b^2)(1) + ab(a^2 + b^2)(0) - ab(a^2 + b^2)(0) - b^2(a^2 + b^2)(\frac{a^2}{b^2}) = a^2(a^2 + b^2) - a^2(a^2 + b^2) = 0.$ Thus $A^{\dagger\dagger}R \neq R$ and $A^{\dagger\dagger}R \neq -R$, so $K_A \neq \pm I$.

Corollary 4. Define $U: G \to K_G$ by $U(A) = K_A$. Then U is an onto homomorphism of groups, $Ker(U) = \{\pm I\}$, and so $G/\{\pm I\} \cong K_G$.

Proof. By construction, $K_A \in K_G \Rightarrow A \in G$ and $U(A) = K_A$ so U is onto. Let $A, B \in G$. Then $U(AB) = K_{AB} = K_A K_B = U(A)U(B)$. So U is a group homomorphism. $Ker(U) = \{A \in G | U(A) = K_A = I\} = \{\pm I\}$ by the previous theorem, so $G/\{\pm I\} \cong K_G$ by the First Isomorphism Theorem.

4 Open Questions

- 1. Given $A \in End(V)$, A not necessarily invertible, if $A \in G_R$ for some R and Ker(R) = 0, must it be that Ker(A) = 0?
- 2. For $A \in GL(n)$, does the Jordan normal form of A determine or constrain the Jordan normal form of K_A ?
- 3. Given some number of elements from a group $G \in GL(n)$, can the study of Kaylor matrices determine whether or not G is the structure group for some algebraic curvature tensor \mathbb{R} ?

5 Acknowledgments

I would like to thank Dr. Corey Dunn for his guidance, insights, and patience throughout this project. I would also like to thank Dr. Rolland Trapp for the air of positivity and humor that he brings to the program. This project was supported both by NSF grant DMS-1461286 and California State University, San Bernardino.

6 References

[1] Kaylor, Lisa. Is Every Invertible Linear Map in the Structure Group of some Algebraic Curvature Tensor?, CSUSB 2012 REU, http://www.math.csusb.edu/reu/LK12.pdf.