- 1. Implement **logistic regression** using Python/R to perform classification on Social_Network_Ads.csv dataset.
- 2. Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on the given dataset.

```
import numpy as np
import pandas as pd
import sklearn
import matplotlib.pyplot as plt
```

Loading the Dataset, checking for null values and preprocessing data

```
df = pd.read_csv ('/content/Social_Network_Ads.csv')
df
```

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
395	15691863	Female	46	41000	1
396	15706071	Male	51	23000	1
397	15654296	Female	50	20000	1
398	15755018	Male	36	33000	0
399	15594041	Female	49	36000	1

400 rows × 5 columns

1	Gender	400 non-null	object
2	Age	400 non-null	int64
3	EstimatedSalary	400 non-null	int64
4	Purchased	400 non-null	int64

dtypes: int64(4), object(1)
memory usage: 15.8+ KB

df.head()

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0

df.isnull()

	User ID	Gender	Age	EstimatedSalary	Purchased
0	False	False	False	False	False
1	False	False	False	False	False
2	False	False	False	False	False
3	False	False	False	False	False
4	False	False	False	False	False
395	False	False	False	False	False
396	False	False	False	False	False
397	False	False	False	False	False
398	False	False	False	False	False
399	False	False	False	False	False

400 rows × 5 columns

df.isnull().sum()

User	ID	0
Gende	er	0
Age		0
Estir	matedSalary	0
Purch	nased	0
dtype	e: int64	

df

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	1	19	19000	0
1	15810944	1	35	20000	0
2	15668575	0	26	43000	0
3	15603246	0	27	57000	0
4	15804002	1	19	76000	0
395	15691863	0	46	41000	1
396	15706071	1	51	23000	1
397	15654296	0	50	20000	1
398	15755018	1	36	33000	0
399	15594041	0	49	36000	1

400 rows × 5 columns

Split dependent (y) variable and independent (x) variables as y = mx + c

```
x = df.drop(['Purchased'], axis = 1)
y = df['Purchased']
```

Splitting data to training and testing dataset.

```
from sklearn.model_selection import train_test_split
xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size =0.2,random_state = 0)
```

Use Logistic regression(Train the Machine) to Create Model

```
# import the class
from sklearn.linear_model import LogisticRegression
# instantiate the model (using the default parameters)
logreg = LogisticRegression()
# fit the model with data
model = logreg.fit(xtrain,ytrain)
```

Predict the y_pred for all values of train_x and test_x

```
ytrain_pred = logreg.predict(xtrain)
ytest_pred = logreg.predict(xtest)
```

Evaluate the performance of Model for train_y and test_y

```
df1 = pd.DataFrame(ytrain_pred,ytrain)
df2 = pd.DataFrame(ytest_pred,ytest)
```

df1

	0
Purchased	l
1	1
0	0
0	0
0	0
1	0
1	0
0	0
0	0
0	0
0	1

80 rows × 1 columns

Calculate the required evaluation parameters

```
from sklearn.metrics import precision_score, confusion_matrix, accuracy_score, recall_score, classific
cm = confusion_matrix(ytest, ytest_pred)
cm
     array([[56, 2],
            [12, 10]])
accuracy = accuracy_score(ytest, ytest_pred)
print(accuracy)
precision =precision_score(ytest, ytest_pred, average='micro')
print(precision)
recall = recall_score(ytest, ytest_pred, average='micro')
print(recall)
     0.825
     0.825
     0.825
print (classification_report(ytest, ytest_pred))
                   precision
                               recall f1-score
                                                    support
                                  0.97
                                                         58
                        0.82
                                            0.89
```

1	0.83	0.45	0.59	22
accuracy			0.82	80
macro avg	0.83	0.71	0.74	80
weighted avg	0.83	0.82	0.81	80

Plotting the logistic regression model

import seaborn as sns
sns.heatmap(cm, annot=True,)

Axes: >

