

Home Page

Title Page

Contents





Page 3 of 30

Go Back

Full Screen

Close

Quit

## Regression

- Regression: prediction. line fitting y = mx + c
- General: I: 1-D target variable, what is observed

$$t = y(\mathbf{x}) + \varepsilon$$

- $\mathbf{x}$  is the M-1-dimensional input data
- $y(\cdot)$ : 1-D function of (M-1)—dim input: the model  $\varepsilon$ : noise ( $\sim$  can't model, sometimes modelled)
- Reconciliation: may not be able to model all well
- Simple 2-D case: y: an implicit function of x.
  e.g., f(x,y) = ax + by + c = 0, or  $w_2x_2 + w_1x_1 + w_0 = 0$
- $y(\mathbf{x}) = y(\mathbf{x}, \mathbf{w}) = w_2x_2 + w_1x_1 + w_0x_0$ .  $x_0 = 1, w_0$ : bias
- Written equivalently in two ways:

$$y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x}$$
, for  $(D+1) = M - \dim \operatorname{data}$ ,  $x_0 = 1$ , or  $y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x} + w_0$ , for  $D = (M-1) - \dim \operatorname{data}$ 



Home Page

Title Page

Contents





Page 4 of 30

Go Back

Full Screen

Close

Quit

• 
$$y(\mathbf{x}, \mathbf{w}) = \mathbf{w_0} x_0 + \dots + \mathbf{w}_{M-1} x_{M-1} = \sum_{j=0}^{M-1} w_j x_j$$

• Generalising to scalar basis functions  $\phi_i(\mathbf{x})$ :

$$\bullet y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = w_o \phi_0(\mathbf{x}) + \dots w_{M-1} \phi_{M-1}(\mathbf{x})$$

• Model: linear combo of fixed basis fns (lin/non-lin)  $y(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \phi(\mathbf{x})$ 

- Not most general, but practically imp! Examples:
  - Polynomial basis fns: x<sup>j</sup>: blobal, unlike splines ■
  - Gaussian basis fns
  - Sigmoidal basis fns
  - Fourier basis fns
  - Wavelet basis fns localised in space & frequency



Home Page

Title Page

Contents





Page 5 of 30

Go Back

Full Screen

Close

Quit

## Maximum Likelihood, Least Squ

- $t = y(\mathbf{x}) + \varepsilon$ ;  $t = y(\mathbf{x}, \mathbf{w}) + \varepsilon$
- t: target variable  $v(\cdot)$ : deterministic fn (model)
- x: input, w: parameters, ε: noise
- $\varepsilon$ : take as the unmodelled part: the residue, or
- ullet ... model arepsilon as well. Common:  $arepsilon=\mathcal{N}(0,\sigma^2)$
- $t = \mathcal{N}(y(\cdot), \sigma^2)$ , Mean:  $y(\mathbf{x}, \mathbf{w})$ , variance:  $\sigma^2$
- If no  $y(\cdot)$ , t usually 0, or small +/-: weighing m/cl noise: zero error, offset:  $y(\cdot)$
- $p(t|\mathbf{x}, \mathbf{w}, \sigma^2) = p(t|\mathbf{w}, \sigma^2) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \sigma^2)$