Préparation à l'agrégation, stage **Groupes**

I. Vrai ou Faux?

On désigne par G un groupe et par x, y des éléments de G. Répondre par Vrai ou Faux aux assertions suivantes (justifiez). Dans le cas d'une assertion fausse, étudier si l'assertion devient vraie en ajoutant une certaine hypothèse.

- **1.1** Si x et y sont d'ordre fini,
 - a) leur produit l'est aussi.
 - b) le sous-groupe $\langle x, y \rangle$ est fini.
- **1.2** Si x, y sont d'ordre fini et commutent,
- a) l'ordre de leur produit xy est majoré, resp. s'exprime par une certaine expression (laquelle?) en fonction des ordres de x et de y.
- b) l'ordre du groupe $\langle x, y \rangle$ est majoré, resp. s'exprime par une certaine expression (laquelle?) en fonction des ordres de x et de y.
 - c) G contient un élément d'ordre ppcm(x,y).
- **1.3** Soit p un nombre premier. Tout x d'ordre fini s'écrit de manière unique comme produit x = su = us, où $s, u \in G$, l'ordre de s est premier à p et celui de u est une puissance de p.
- **1.4** Si H est un sous-groupe d'indice fini n de G, on a $x^n \in H$.
- **1.5** Soit H un sous-groupe distingué de G. On note \bar{x} l'image canonique de x dans G/H et on suppose que \bar{x} est d'ordre fini m.
 - a) Il existe x' d'ordre m dans G tel que $\bar{x'} = \bar{x}$.
- b) Si on suppose que m est premier avec l'ordre fini de H, alors x est aussi d'ordre m.
- **1.6** Si G est abélien fini de cardinal $p^a m$ où p est premier et ne divise pas m, il existe un unique sous-groupe H de G d'ordre p^a . De plus H contient tous les p-éléments de G. (NB: peut se justifier sans thm de Sylow ni thm de structure, en utilisant 1.3 et le thm de Cauchy 3.2).
- **1.7** a) Si |G| = 15, alors G est abélien.
 - b) Si |G| = 15, alors G est cyclique.
- **1.8** Si G est cyclique, tous ses sous-groupes sont cycliques.

- 1.9 Si \mathbb{F}_q est un corps fini de cardinal impair, et $G = \mathbb{F}_q^*$, alors
- a) x est un carré dans G si et seulement si $x^{(q-1)/2} = 1$. Sinon, on a $x^{(q-1)/2} = -1.$
 - b) Le produit de deux "non carrés" de G est un carré.

II. Groupes cycliques, exercices

- **2.1** Si l'élément g du groupe G est d'ordre n et $k \in \mathbb{Z}$, quel est l'ordre de g^k ?
- **2.2** Trouver tous les générateurs du groupe \mathbb{F}_{13}^* . (On rappelle que si p est premier, \mathbb{F}_p est le corps $\mathbb{Z}/p\mathbb{Z}$.)
- **2.3** On suppose que $G = \langle g \rangle$ est d'ordre n et que $k \in \mathbb{Z}$.
 - a) Quel est le sous-groupe $N_k = \{x \in G \mid x^k = 1\}$?
 - b) Déterminer tous les sous-groupes de G.
 - c) Quel est le nombre d'éléments d'ordre d (où d|n) dans G?
 - d) Quel est le sous-groupe G^k image du morphisme $x \mapsto x^k$ de G dans G?
- e) Carrés et cubes On prend $G = \mathbb{F}_q^*$ avec q impair. Donner deux descriptions du sous-groupe G^2 , et son ordre. Étudier de même le sous-groupe G^3 (deux cas). Application: $\bar{2}$ est-il un carré (resp. un cube) dans \mathbb{F}_{19}^* ? (répondre sans énumérer les carrés resp. cubes).
- f) Pour $a \in G$, résoudre l'équation $x^k = a$ dans G (indication: écrire $a = g^s$, $0 \le s \le n - 1$).
- **2.4** Résoudre dans $\mathbb{Z}/60\mathbb{Z}$: $24\overline{k} = \overline{0}$.
- **2.5** Résoudre dans \mathbb{F}_{19}^* : **a)** $x^{25} = \overline{3}$ **b)** $x^{10} = \overline{7}$ **c)** $x^{15} = \overline{13}$. **d)** $x^{15} = \overline{12}$.

- 2.6 Dans $\mathbb{Z}/18\mathbb{Z}$, déterminer le sous-groupe engendré par $\{\overline{6},\overline{14}\}$ puis l'intersection des sous-groupes $< \overline{6} >$ et $< \overline{14} >$.
- 2.7 En dénombrant les éléments d'ordre donné dans $\mathbb{Z}/n\mathbb{Z}$, montrer la formule $n = \sum_{d|n} \varphi(d)$.

Soit G un groupe d'ordre n qui pour tout d contient au plus un sous-groupe d'ordre d. Montrer que G est cyclique.

Application: tout sous-groupe fini du groupe multiplicatif d'un corps commutatif est cyclique.

2.8 Expliciter un isomorphisme de groupes ET son inverse entre les groupes $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ et $\mathbb{Z}/12\mathbb{Z}$.

A quelle condition sur (m, n) le groupe produit $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ est-il cyclique?

- 2.9 Pour $n \in \mathbb{N}^*$, on note \mathbb{U}_n le sous-groupe (cyclique!) des racines n-ièmes de l'unité dans \mathbb{C}^* . Soient m, n dans \mathbb{N}^* , de ppcm N.
- a) Identifier le groupe $\mathbb{U}_n \cap \mathbb{U}_m$. Montrer que le sous-groupe $\mathbb{U}_n \cdot \mathbb{U}_m =$

- $<\mathbb{U}_n,\mathbb{U}_m>$ est égal à \mathbb{U}_N .
- b) On suppose n et m premiers entre eux. Montrer que tout générateur de \mathbb{U}_{nm} s'écrit de manière unique comme produit d'un générateur de \mathbb{U}_n et d'un générateur de \mathbb{U}_m . Qu'en déduisez-vous pour la fonction d'Euler φ ?

III. Ordre d'un élément, exercices

- **3.1** Si p,q sont premiers et q divise 2^p-1 , alors $q \equiv 1 \pmod{2p}$ (introduire un groupe convenable). Montrer que le nombre de Mersenne $2^{23}-1$ n'est pas premier.
- **3.2** Prouver le théorème de Cauchy pour les groupes abéliens finis: si p premier divise l'ordre du groupe G, alors G possède un élément d'ordre p (on pourra raisonner par récurrence sur |G|).
- **3.3 a)** Soit G un groupe abélien fini. Si n est l'ordre maximal d'un élément de G, montrer que l'ordre de tout élément de G divise n (cf. 1.2 c)); n est dit l'exposant de G (ppcm des ordres). Que se passe-t-il si $G = \mathfrak{S}_3$?
- b) Soit $H = \langle y \rangle$, où $y \in G$ est d'ordre n. Établir 1.5 a) dans ce cas. En déduire une preuve par récurrence de l'existence d'un isomorphisme de G avec un produit de groupes cycliques de cardinaux $(a_i)_{1 \le i \le r}$, avec $a_i | a_{i+1}$ pour tout i et $a_r = n$.

Compléments autour de 1.1b):

- Voici un groupe infini d'isométries du plan affine euclidien qui est engendré par deux éléments d'ordre 3 dont le produit est aussi d'ordre 3: partant d'un triangle équilatéral ABC, on note α (resp. β , γ) la rotation d'angle $2\pi/3$ de centre A (resp. B, resp. C). Alors on vérifie que $\alpha \circ \beta \circ \gamma = id_{\mathbb{R}^2}$, alors que $\beta \circ \alpha \circ \gamma$ est une translation (laquelle?), d'ordre infini. Le groupe G engendré par α et β convient donc (c'est le groupe des isométries positives qui conservent un pavage hexagonal).
- Le problème de Burnside, problème majeur en théorie des groupes, soulevé en 1902, demande si tout groupe de type fini dont tout élément est d'ordre fini est fini. Pour les sous-groupes de $GL_n(\mathbb{C})$, c'est un théorème de Schur (1911) (et pour l'agrégation, vous verrez probablement le cas où ce sous-groupe est supposé d'exposant fini, résolu par Burnside). Mais l'énoncé général est faux, cela même en se limitant aux groupes d'exposant fini (Adian et Novikov, 1968).