

松灵机器人产品 HUNTER 用户手册

AgileX Robotics Team

Version 1.2 Release

目录

1	HUNTER 简介 Introduction	3
	1.1 产品列表	3
	1.2 性能参数	3
	1.3 开发所需	4
2	基本介绍 The Basics	5
	2.1 状态指示	6
	2.2 电气接口说明	6
	2.2.1 顶部电气接口说明	6
	2.2.2 尾部电气接口说明	8
	2.3 DJI 遥控说明	9
	2.3 控制指令与运动说明	11
3	使用与开发 Getting Started	12
	3.1 使用与操作	12
	3.2 充电	13
	3.3 开发	13
	3.3.1 CAN 接口协议	
	3.3.2 CAN 线的连接	18
	3.3.3 CAN 指令控制的实现	19
4	注意事项 Attention	21
	4.1 HUNTER 电池注意事项	21
	4.2 HUNTER 使用环境注意事项	21
	4.3 HUNTER 电气外部扩展注意事项	22
	4.4 HUNTER 机械负载注意事项	22
	4.5 其他注意事项	22
5	常见问题与解决 O&A	23

6	产品尺寸 Product Dimensions	24
	6.1 产品外形此村说明图	. 24
	6.2 顶部扩张支架尺寸说明图	. 25

1 HUNTER 简介 Introduction

HUNTER 是一款阿克曼模型可编程 UGV (Unmanned Ground Vehicle),它是一款采用阿克曼转向设计的底盘,具有和汽车类似的特征,在普通水泥、柏油路上优势明显。相对于四轮差速底盘,HUNTER 具有更高的载重能力,能达到更高的运动速度,同时对结构和轮胎的磨损更小,适合长时间的工作。HUNTER 虽不是为全地形设计,但是装备了摇摆臂悬挂,能够通过减速带等常见障碍物。立体相机、激光雷达、GPS、IMUs、机械手等设备可选择加装至 HUNTER 作为扩展应用。HUNTER 可被应用到无人巡检、安防、科研、勘探、物流等领域。

1.1 产品列表

名称	数量
HUNTER 机器人本体	X 1
钥匙锁	X 1
电池充电器(AC 220V)	X 1
航空插头公头 (4Pin)	X 2
DJI 遥控器(选配)	X 1

1.2 性能参数

参数类型	项目	指标
	长 x 宽 x 高 (mm)	980 X 718 X 330
	轴距 (mm)	650
	前 / 后轮距 (mm)	578
	车体重量 (Kg)	45~50
	电池类型	锂电池 24V 20aH
】 机械参数	动力驱动电机	直流无刷 2 X 200W
7月777(少安X	转向驱动电机	直流无刷 200W
	减速箱	1: 32
	驱动形式	后轮驱动
	转向	前轮阿克曼
	最大转向角度	30°
	转向精度	0.5°

	空载最高车速(m/s)	1.65
┃ ┃ 性能参数指针	最小转弯半径 (mm)	1700
	最大爬坡能力	20°
	最小离地间隙(mm)	105
	校生	遥控控制
拉生	控制模式	控制指令模式
控制参数	遥控器	2.4G / 极限距离 1Km
	通讯接口	CAN / RS232

1.3 开发所需

HUNTER 出厂时可选配 DJI/FS 遥控器,用户可以通过遥控器控制 HUNTER 移动机器人底盘,完成移动和转向控制操作;HUNTER 配备了 CAN 和 RS232,用户可以通过 CAN 和 RS232 接口进行二次开发。

2 基本介绍 The Basics

本部分内容将会对 HUNTER 移动机器人底盘作一个基本的介绍,便于用户和开发者对于 HUNTER 底盘有一个基本的认识。如下图 2.1 与 2.2 所示,为整个移动机器人底盘的一个概览视图。

图 2.1 前部概览视图

图 2.2 尾部概览视图

HUNTER 整体上采用了模块化和智能化的设计思想,在动力模块上采用充气胶轮与独立悬挂的复合设计,再加上动力强劲的直流无刷伺服电机,使得 HUNTER 机器人底盘开发平台具有很强的通过性和地面适应性,可在不同的地面灵活运动。

车体尾部安装了急停开关,使得在发生紧急情况时可快速进行紧急停车操作,避 免发生安全事故,降低或避免不必要的损失。

在汽车的尾部和顶部均配置了开放的电气接口和通讯接口,方便客户进行二次开发,电气接口在设计选型上采用了航空防水接插件,一方面利用客户的扩展和使用,另外一方面使得机器人平台可以在一些严苛的环境种使用。

2.1 状态指示

用户可以通过安装在 HUNTER 上的电压表、蜂鸣器以及灯光来确定车体的状态。 具体可以参考表 2.1。

状态	描述
当前电压	当前电池电压可通过尾部电气面板中的电压表查看,精确到 1V
低电压报警	当电池电压低于 22V,车体会发出"滴-滴-滴"刺激的声音进行提示。当检测到电池电压低于 21.5V 时,HUNTER 为了防止电池损坏,会主动切断外部扩展供电和驱动器供电,此时底盘将无法进行运动控制和接受外部指令控制。
上电显示	前后灯光亮起

表格 2.1 车体状态说明表

2.2 电气接口说明

2.2.1 顶部电气接口说明

HUNTER 提供了两组 4 引脚航空外部扩展接口以及一组 DB9 (RS232) 通信控制接口(当前版本可以用于固件升级,不支持控制)。

顶部航空接口位置如图 2.3 所示。

图 2.3 HUNTER 顶部电气界面示意图

HUNTER 顶部以及尾部均设置有一个航空扩展接口,航空扩展接口配置了一组电源以及一组 CAN 通讯接口。便于使用者可给扩展设备提供电源,以及通讯使用。其具体引脚定义图 2.4。

这里需要注意的是,这里的扩展电源受内部控制,当电池电压低于安全电压会主动切断供电,所以客户需要注意,在达到临界电压前 HUNTER 平台会发出低电压报警通知,用户在使用过程中注意充电。

引脚编号	引脚类型	功能及定义	备注
1	电源	VCC	电源正,电压范围 23~29.2V,最大电流10A
2	- C///s	GND	电源负
3	CAN	CAN_H	CAN总线高
4	CAN	CAN_L	CAN总线低

图 2.4 顶部航空扩展接口引脚定义图

2.2.2 尾部电气接口说明

尾部的扩展接口如图 2.4 所示,其中 Q1 为钥匙开关,是电气部分总开关;Q2 为充电界面;Q3 驱动系统供电开关;Q4 为 DB9 串口(当前版本可以用于固件升级,不支持控制);Q5 为 CAN 和 24V 电源扩展接口;Q6 为电源显示交互。

图 2.4 尾部视图

关于 Q4 的其具体引脚定义如图 2.5 所示。

引脚编号	定义
2	RS232-RX
3	RS232-TX
5	GND

图 2.5 Q4 引脚说明图

尾部配备了和顶部一致的 CAN 通信接口和 24V 电源接口,在内部他们是导通的。 其线序的具体定义如图 2.6 所示。

引脚编号	引脚类型	功能及定义	备注
1	电源	VCC	电源正,电压范围 23~29.2V,最大电流5A
2		GND	电源负
3	CAN	CAN_H	CAN总线高
4		CAN_L	CAN总线低

图 2.6 尾部航空接口引脚说明图

2.3 DJI 遥控说明

2.3.1 DJI 遥控控制说明

DJI DT7 遥控器为 HUNTER 产品选配配件,客户可根据实际需求选配,使用遥控器可以轻松控制 HUNTER 通用机器人底盘,在本产品中我们采用左手油门的设计。其定义及其功能可参考图 2.7。

S1 定义为功能选择按钮, S2 未使用; C1 为油门按钮, 控制 HUNTER 前进和后退; C2 控制前轮的转向。

图 2.7 遥控器示意图

2.3.2 FS_i6_S 遥控说明

富斯遥控器为 HUNTER 产品选配配件,客户可根据实际需求选配,使用遥控器可以轻松控制 HUNTER 通用机器人底盘,在本产品中我们采用左手油门的设计。其定义及其功能可参考图 2.9。

图 2.9 富斯遥控器按键示意图

按键的功能定义为: SWA、SWC、SWD 暂时未被启用,其中 SWB 为控制模式选择按钮,拨至最上方为指令控制模式,拨至中间为遥控控制模式; S1 为油门按钮,控制 HUNTER 前进和后退; S2 控制前轮的转向,POWER 为电源按钮,同时按住即可开机。

2.3 控制指令与运动说明

我们将地面移动车辆根据 ISO 8855 标准建立如图 2.8 的坐标参考系。

图 2.8 车身参考坐标系示意图

正如 2.8 所展示的,HUNTER 车体与建立的参考坐标系 X 轴为平行状态。

在遥控器控制模式下,遥控器摇杆 S1 往前推动则为往 X 正方向运动,S1 往后推动则往 X 负方向运动,S1 推动至最大值时,往 X 方向运动速度最大,S1 推动至最小值时,往 X 方向负方向运动速度最大;遥控器摇杆 S2 左右控制车体前轮的转向运动,S2 望左推,小车往左转向,推至最大,此时转向角度最大,S2 往右推,小车往右转,推至最大,此时右转向角度最大。

在控制指令模式下,线速度的正值表示往 X 轴正方向运动,线速度的负值表示往 X 轴负方向运动;角速度的正值表示车体由 X 轴正方向往 Y 轴正方向运动。

3 使用与开发 Getting Started

本部分主要介绍 HUNTER 平台的基本操作与使用,介绍如何通过外部 CAN 口,通过 CAN 总线协议来对车体进行二次开发。

3.1 使用与操作

启动操作基本操作流程如下:

● 检查

- 检查车体状态。检查车体是否有明显异常;如有,请联系售后支持;
- 检查急停开关状态。确认两个急停按钮均处于释放状态;
- 取下尾部电气面板盖板,可看见尾部电气面板;
- 初次使用时确认尾部电气面板中 Q3(驱动电源开关)是否被按下,如按下、请按下后释放,则处于释放状态,此时驱动器处于断电状态;

● 启动

- 旋转钥匙开关(电气面板中 Q1),正常情况下,电压表正常显示电池电压,前后尾灯均正常亮起;
- 检查电池电压,如未有"滴-滴-滴···"连续蜂鸣器声音,表示电池电压正常,若电量低,请充电;
- 按下 Q3 (驱动电源开关按钮);

● 关闭操作

■ 旋转钥匙开关,即可切断电源;

急停

■ 按下 HUNTER 车体左右两侧的急停开关即可;

遥控控制基本操作流程

正常启动 HUNTER 移动机器底盘后,启动遥控器,将控制模式选择为遥控控制模式,即可通过遥控器控制 HUNTER 平台运动。

3.2 充电

HUNTER 产品默认随车配备一个 10A 的充电器,可满足客户的充电需求。 充电具体操作流程如下:

- 确保 HUNTER 底盘处于停机断电状态。充电前请确认尾电气控制台中 Q1(钥匙开关)处于关闭状态;
- 将充电器的插头插入车尾电气控制面板中 Q2 充电界面中;
- 将充电器连接电源,将充电器中开关打开,即可进入充电状态。

注意: 当前电池从 22V 充满电状态大约需要 3~5 小时,电池充满电电压约为 29.2V; 充电时间计算 30 aH ÷ 10A = 3h

3.3 开发

HUNTER 产品针对用户的开发提供了 CAN 和 RS232(当前版本未开放)的接口,用户可选择其中一种接口对车体进行指令控制。

3.3.1 CAN 接口协议

HUNTER 产品中 CAN 通信标准采用的是 CAN2.0B 标准,通讯波特率为 500K,报 文格式采用 Motorola 格式。通过外部 CAN 总线接口可以控制底盘的移动的线速度以 及旋转的角速度; HUNTER 会实时反馈当前的运动状态信息以及 HUNTER 底盘的状态信息等。

协议包含系统状态回馈帧、运动控制回馈帧、控制帧,协议内容具体如下:

系统状态回馈指令包含了当前车体状态回馈、控制模式状态回馈、电池电压回馈 以及故障回馈,协议内容如表 3.1 所示。

表格 2.1 HUNTER 底盘系统状态回馈帧

WILLIAM WENT SON WHEN SON					
指令名称	系统状态回馈指令				
发送节点	接收节点 ID 周期(ms) 接收超时			接收超时(ms)	
线控底盘	决策控制单元	0x151	20ms	无	
数据长度	0x08				
位置	功能	数据类型	说明	1	
byte [0]	当前车体状态	unsigned int8	0x00 系统正常 0x01 紧急停车模式 (未启用) 0x01 系统异常		
byte [1]	模式控制	signed int8	0x00 遥控模式 0x01 指令控制模式		
byte [2]	电池电压高八位	unaignad int16	☆に中に V 10 /	ᆇᄶᄭ	
byte [3]	电池电压低八位	unsigned int16	实际电压 X 10 (作印用土」 (0.11)	
byte [4]	故障信息高八位	unsigned int16	详见备注 [**] 0~255 循环计数,每发送一条指令计数加一次		
byte [5]	故障信息低八位*	unsigned intro			
byte [6]	计数校验 (count)	unsigned int8			
byte [7]	校验位(checksum)	unsigned int8	校验	<u></u> 位	

	故障信息说明				
字节	位	含义			
	bit [0]	CAN 通信控制指令校验错误(0:无故障 1: 故障)			
	bit [1]	前轮转向编码器异常(0: 无故障 1: 故障)			
	bit [2]	遥控器失联保护(0: 无故障 1: 故障)[1]			
by#o [4]	bit [3]	预留,默认 0			
byte [4]	bit [4]	预留,默认 0			
	bit [5]	预留,默认 0			
	bit [6]	预留,默认 0			
	bit [7]	预留,默认 0			
	bit [0]	电池欠压故障 (0:无故障 1: 故障)			
	bit [1]	电池过压故障 (0:无故障 1: 故障)			
	bit [2]	电机 1 通讯故障 (0:无故障 1: 故障)			
by#0 [5]	bit [3]	电机 2 通讯故障(0:无故障 1: 故障)			
byte [5]	bit [4]	电机 3 通讯故障 (0:无故障 1: 故障)			
	bit [5]	电机 4 通讯故障(0:无故障 1: 故障)			
	bit [6]	电机驱动过温故障 (0:无故障 1: 故障)			
	bit [7]	电机过流故障 (0:无故障 1: 故障)			

注[1]遥控器失联保护仅支持富士遥控器,DJI 遥控器不支持,且为手动模式下生效。

运动控制回馈帧指令包含了当前车体的运动线速度、运动角速度回馈,协议具体内容如表 3.2 所示。

表格 3.2 运动控制回馈帧

指令名称	运动控制回馈指令				
发送节点	接收节点	ID	周期 (ms)	接收超时(ms)	
线控底盘	决策控制单元	0x131	20ms	无	
数据长度	0x08				
位置	功能	数据类型	说明		
byte [0]	移动速度高八位	signed in t16	实际速度 X 1000 (精确到 0.001m/s)		
byte [1]	移动速度低八位	signed int16			
byte [2]	转向内转角高八位	siana adia+16	☆に油 併 ∨ 1000 /¥	≛ 盎□ 0 001 ro d\	
byte [3]	转向内转角高八位	signed int16	实际速度 X 1000 (精确到 0.001rad		
byte [4]	保留	-	0x00		
byte [5]	保留	-	0x00		
b) #2 [6]] 计数校验 (count)	ungian ad int0	0~255 循环计数,每	发送一条指令计	
byte [6]		unsigned int8	数加一	-次	
byte [7]	校验位(checksum)	unsigned int8	校验位		

控制帧包含了模式控制、故障清除指令、线速度控制开度、角速度控制开度以及检验和,其具体协议内容如表 3.3 所示。

表格 3.3 运动控制指令控制帧

指令名称	控制指令				
发送节点	接收节点	ID	周期(ms)	接收超时(ms)	
决策控制单元	底盘节点	0x130	20ms	无	
数据长度	0x08				
位置	功能	数据类型	说	明	
byte [0]	控制模式	unsigned int8	0x00 遥控模式		
byte [1]	故障清除指令	unsigned int8	0x01 指令控制模式 ^[1] 详见备注 2*		
byte [2]	线速度百分比	signed int8	最大速度 1.50.m/s,值域为(-100, 100)		
byte [3]	内转角角度百分比	signed int8	最大内转角 (-43°, 43°) 值域为 (100, 100)		
byte [4]	保留	-	0x00		
byte [5]	保留	-	0x00		
byte [6]	计数校验 (count)	unsigned int8	0~255 循环计数,每发送一条指令 数加一次		
byte [7]	校验位(checksum)	unsigned int8	校验位		

注1, 控制模式说明

HUNTER 在遥控器不上电的情况下,控制模式默认是指令控制模式,即可以直接通过指令控制底盘,但是即使底盘处于指令模式下,如果要成功执行指令中的速度指令,在指令中的控制模式依然需要设为 0x01。若在打开遥控器,遥控器具有最高权限,可以屏蔽指令的控制,可以切换控制模式。

注 2, 故障清除指令信息:

- 0x00 无故障清除指令
- 0x01 清除电池欠压故障
- 0x02 清除电池过压故障
- 0x03 清除电机 1 通讯故障
- 0x04 清除电机 2 通讯故障
- 0x05 清除电机 3 通讯故障
- 0x06 清除电机 4 通讯故障
- 0x07 清除电机驱动过温故障
- 0x08 清除电机过流故障

	T					
指令名称	功能设定指令					
发送节点	接收节点	ID	周期 (ms)	接收超时(ms)		
决策控制单元	底盘节点	0x210	无	无		
数据长度	0x08					
位置	功能	数据类型	说	.明		
byte [0]	设定当前位置为零点	unsigned int8	0x00 无效 0xAA 设置当前位置为零点			
byte [1]	保留	-	0x00			
byte [2]	保留	-	0x00			
byte [3]	保留	-	0x00			
byte [4]	保留	-	0x00			
byte [5]	保留	-	0x00			
byte [6]	计数校验 (count)	unsigned int8	0~255 循环计数,每发送一条指令 数加一次			
byte [7]	校验位(checksum)	unsigned int8	校验位			

指令名称	功能设定反馈指令					
发送节点	接收节点	ID	周期 (ms)	接收超时(ms)		
决策控制单元	底盘节点	0x211	无	无		
数据长度	0x08					
位置	功能	数据类型	说	.明		
byte [0]	设置零点状态反馈	unsigned int8	0x00 无效 0xAA 设置当前位置为零点成功			
byte [1]	保留	-	0x00			
byte [2]	保留	-	0x00			
byte [3]	保留	-	0x00			
byte [4]	保留	-	0x00			
byte [5]	保留	-	0x00			
byte [6]	计数校验 (count)	unsigned int8	0~255 循环计数,每发送一条指令记数加一次 校验位			
byte [7]	校验位(checksum)	unsigned int8				

注 3: 示例数据,以下数据仅供测试使用

1, 小车以 0.15m/s 的速度前进

byte [0]	byte [1]	byte [2]	byte [3]	byte [4]	byte [5]	byte [6]	byte [7]
0x01	0x00	0x0a	0x00	0x00	0x00	0x00	0x44

2. 小车前轮转向 4.3°

byte [0]	byte [1]	byte [2]	byte [3]	byte [4]	byte [5]	byte [6]	byte [7]
0x01	0x00	0x00	0x0a	0x00	0x00	0x00	0x44

3. 小车静止, 切换控制模式为指令模式 (遥控器不开启的情况下测试)

byte [0]	byte [1]	byte [2]	byte [3]	byte [4]	byte [5]	byte [6]	byte [7]
0x01	0x00	0x00	0x00	0x00	0x00	0x00	0x3a

注 4: 数据校验位为每一帧 CAN 消息的数据段最后一个有效字节,其校验和的计算方法 checksum =(ID_H + ID_L + data_length+ can_msg.data[0] + can_msg.data[1] + can_msg.data[2] + can_msg.data[3] + can_msg.data[4]+ ···+ can_msg.data[n]) & 0xFF:

- ID_H 与 ID_L 为 ID 分别是帧 ID 的高八位和低八位。比如 ID 为 0x540, 那么对应的 ID_H 为 0x05, ID_L 为 0x40;
- Data_length 为数据长度为一帧 CAN 消息中数据段有效数据长度,包含校验和这个字节;

can_msg.data[n]为有效数据段中具体每个字节的具体内容, 计数校验位是需要参与 校验和计算的, 校验和本身不参与计算。

```
/**
 * @brief CAN message checksum example code
 * @param[in] id : can id
 * @param[in] *data : can message data struct pointer
 * @param[in] len : can message data length
 * @return the checksum result
 */
static uint8 Agilex_CANMsgChecksum(uint16 id, uint8 *data, uint8 len)
{
    uint8 checksum = 0x00;
    checksum = (uint8)(id & 0x00ff) + (uint8)(id >> 8) + len;
    for(uint8 i = 0 ; i < (len-1); i++)
    {
        checksum += data[i];
    }
    return checksum;
}</pre>
```

图 3.1 CAN 消息校验算法

3.3.2 CAN 线的连接

HUNTER 随车发货提供了两个航空插头公头如图 3.2,客户需要自己焊接将线引出。线的定义可参考表 2.2。

图 3.2 航空插头公头示意图

注: 当前 HUNTER 版本对外扩展接口仅顶部接口开放。此版本中电源最大可提供 5A 的电流。

3.3.3 CAN 指令控制的实现

正常启动 HUNTER 移动机器人底盘,打开 DJI 遥控器,然后将控制模式切换至指令控制,即将 DJI 遥控器 S1 模式选择拨至最上方,此时 HUNTER 底盘会接受来自 CAN 接口的指令,同时主机也可以通过 CAN 总线回馈的实时数据,解析当前底盘的状态,具体协议内容参考 CAN 通讯协议。

3.4 固件升级

为了方便解决客户对 HUNTER 所使用的固件版本进行升级,给客户带来更加完善的体验,HUNTER 提供了固件升级的硬件接口以及与之对应的客户端软件。其客户端界面如图 3.3 所示。

升级准备

- 串口线 X1
- USB 转串口 X1
- HUNTER 底盘 X1
- 电脑(Windows 操作系统) X 1

升级过程

- 连接前保证机器人底盘电源处于断开状态;
- 使用串口线连接至 HUNTER 底盘尾部串口;
- 串口线连接至电脑;
- 打开客户端软件;
- 选择端口号;
- HUNTER 底盘上电,立即点击开始连接(HUNTER 底盘会在上电前 6 等待,如果时间超过 6S 则会进行进入应用程序);若连接成功,会在文本框提示"连接成功";
- 加载 Bin 文件;
- 点击升级,等待升级完成的提示即可;
- 断开串口线,底盘断电,再次通电即可。

图 3.3 固件升级客户端界面

4 注意事项 Attention

本部分包含一些使用和开发 HUNTER 的应该注意的一些事项。

4.1 电池注意事项

- HUNTER产品出厂时电池并不是满电状态的,具体电池电量可以通过 HUNTER 底盘尾部电压显示表显示或者 CAN 总线通信接口读取得到,充电时间以充电器亮绿色指示灯表示充电完毕,但是绿灯亮起后电池依然会以 0.1A 的电流缓慢充电,可以再充 30 分钟左右;
- 请不要在电池使用殆尽以后再进行充电,在 HUNTER 提示电量低的情况下请及时充电;
- 静态存放条件:存储的最佳温度为-20℃~60℃,电池在不使用的情况下存放,必须是
 2 个月左右充放电一次,然后使电池处于满电压状态进行存放,请勿将电池放入火中,或对电池加热,请勿在高温下存储电池;
- 充电:必须使用配套的锂电池专用充电器进行充电,请勿在 0℃以下给电池充电,请勿使用非原厂标配的电池、电源、充电器。

4.2 使用环境注意事项

- HUNTER 室外工作温度为-10℃~45℃,请勿在室外温度低于-10℃、高于 45℃环境中使用;
- HUNTER 室内工作温度为 0℃~42℃,请勿在室内温度低于 0℃、高于 42℃环境中使用;
- HUNTER 的使用环境的相对湿度要求是:最大 80%,最小 30%;
- 请勿在存在腐蚀性、易燃性气体的环境或者靠近可燃性物质的环境中使用;
- 不要存在在加热器或者大型卷线电阻等发热体周围;
- 除特别定制版 (IP 防护等级定制), HUNTER 不具有防水功能,请勿在有雨、雪、积水的环境使用;
- 建议使用环境海拔高度不超过 1000m;
- 建议使用环境昼夜温差不超过 25℃;

4.3 电气外部扩展注意事项

- 顶部扩展电源电流不超过 6.25A,总功率不超过 150W;
- 尾部扩展电源电流不超过 5A,总功率不超过 120W;
- 当系统检测到电池电压低于安全电压以后,外部电源扩展会被主动切换,所以如果外部 扩展设别涉及到重要数据的存储且无掉电保护,建议用户注意。

4.4 机械负载注意事项

4.5 其他注意事项

- HUNTER 前后为塑料件,请勿直接捶打,否则容易损坏;
- 搬运时以及设置作业时,请勿落下或者倒置;
- 非专业人员,请不要私自拆卸。

5 常见问题与解决 Q&A

O: HUNTER 启动正常,使用遥控器控制车体不移动?

A: 首先确认驱动供电是否正常,驱动器的电源开关是否被按下,急停开关是否被释放; 然后确认遥控器的左侧上方模式选择开关选择的控制模式是否正确。

Q: HUNTER 遥控控制正常,底盘状态、运动信息反馈正常,下发控制帧协议,车体控制模式无法切换,底盘不响应控制帧协议?

A: 正常情况下,HUNTER 若可以通过要遥控器控制正常情况下,说明底盘运动控制正常,可以接受到底盘的反馈帧,说明 CAN 扩展链路正常。请检查发送的 CAN 控制帧,看数据校验是否正确,控制模式中是否置为指令控制模式,可以通过底盘反馈的状态帧中错误位中校验错误标志的状态情况。

Q: HUNTER 在运行中发出"滴-滴-滴···"的声音,改如何处理?

A: 若 HUNTER 发出连续的"滴-滴-滴·"表明电池已经处于警报电压状态,请及时充电。

O: HUNTER 在运行过程中出现轮胎磨损情况是属于正常现象嘛?

A: HUNTER 在运行过程中出现轮胎磨损属于正常现象。由于 HUNTER 采用的是四轮差速转向的设计,在车体旋转的过程中会出现滑动摩擦和滚动摩擦并存的情况,如果地面不光滑,表面粗糙,这个时候对轮胎表面存在磨损情况。为了减少磨损或者减缓磨损的过程,可以采用小角度转弯的形式,尽量减少原地旋转的形式。

6 产品尺寸 Product Dimensions

6.1 产品外形此村说明图

6.2 顶部扩张支架尺寸说明图