

Activation and Loss Functions

PhD. Msc. David C. Baldears S. PhD(s). Msc. Diego López Bernal

Output Activation and Loss Functions

Every neural net specifies

- an activation rule for the output unit(s)
- a loss defined in terms of the output activation

First a bit of review...

Cheat Sheet 1

Perceptron

- Activation function $z_j = \sum_i w_{ji} x_i$ $y = \begin{cases} 1 & \text{if } z_j > 0 \\ 0 & \text{otherwise} \end{cases}$
- Weight update $\Delta w_{ji} = (t_j y_j)x_i$ $t_i \in \{0, 1\}$

$$\Delta w_{ji} = (t_j - y_j)x_i$$

assumes minimizing number of misclassifications

Linear associator (a.k.a. linear regression)

- Activation function $y_j = \sum w_{ji} x_i$
- Weight update

$$\Delta w_{ji} = \varepsilon (t_j - y_j) x_i$$

assumes minimizing squared error loss

Cheat Sheet 2

Two layer net (a.k.a. logistic regression)

- activation function
- weight update

$$z_j = \sum_i w_{ji} x_i \qquad y_j = \frac{1}{1 + e^{-z_j}}$$

$$\Delta w_{ji} = \varepsilon (t_j - y_j) y_j (1 - y_j) x_i \quad t_j \in [0, 1]$$

$$\Delta w_{ii} = \varepsilon (t_i - y_i) y_i (1 - y_i) x_i \quad t_i \in [0, 1]$$

assumes minimizing squared error loss

Deep(er) net

- activation function same as above
- weight update

$$\Delta w_{ji} = \varepsilon \delta_j x_i$$

assumes minimizing squared error loss

So same as above
$$\Delta w_{ji} = \varepsilon \delta_j x_i \qquad \delta_j = \begin{cases} (t_j - y_j) y_j (1 - y_j) & \text{for output unit} \\ \left(\sum_k w_{kj} \delta_j\right) y_j (1 - y_j) & \text{for hidden unit} \end{cases}$$

Activation Functions

Sigmoid / Logistic Function

$$logistic(u) = \frac{1}{1 + e^{-u}}$$

So far, the activation function (nonlinearity) is always the sigmoid function...

Activation Functions

A new change: modifying the nonlinearity

The logistic is not widely used in modern ANNs

Alternate 1: tanh

Like logistic function but shifted to range [-1, +1]

Logistic vs Tanh

Logistic

- Output = .5
 - when no input evidence, bias=0
- Will trigger activation in next layer
- Need large biases to neutralize
 - biases on different scale than other weights
- Does not satisfy weight initialization assumption of mean activation = 0

Tanh

- Output = 0
 - when no input evidence, bias=0
- Won't trigger activation in next layer
- Don't need large biases
- Satisfies weight initialization assumption

Rectified Linear Unit (ReLU)

Activation function

$$y = max(0, z)$$

Derivative

$$\frac{\partial y}{\partial z} = \begin{cases} 0 & z \le 0\\ 1 & \text{otherwise} \end{cases}$$

- Linear with a cutoff at zero
 - Implementation: clip the gradient when you pass zero)
 - Often used in vision tasks

Advantages

- fast to compute activation and derivatives
- no squashing of back propagated error signal as long as unit is activated
- discontinuity in derivative at z=0
- sparsity?

Disadvantages

- can potentially lead to exploding gradients and activations
- o may waste units: units that are never activated above threshold won't learn

Leaky ReLU

Activation function

$$y = \begin{cases} z & z > 0 \\ \alpha z & \text{otherwise} \end{cases}$$

Reduces to standard ReLU if $\alpha=0$

Trade off

 α =0 leads to inefficient use of resources (underutilized units)

 α =1 lose nonlinearity essential for interesting computation

$$\frac{\partial y}{\partial z} = \begin{cases} 1 & z > 0 \\ \alpha & \text{otherwise} \end{cases}$$

Softplus

Activation function

$$y = \ln(1 + e^z)$$

- Derivative defined everywhere
- zero only for $z \rightarrow -\infty$
- Doesn't saturate (at one end)
- Sparsifies outputs
- Helps with vanishing gradient

$$\frac{\partial y}{\partial z} = \frac{1}{1 + e^{-z}} = logistic(z)$$

Exponential Linear Unit (ELU)

Activation function

$$y = \begin{cases} z & z > 0 \\ \alpha(e^z - 1) & z \le 0 \end{cases}$$

Reduces to standard ReLU if $\alpha=0$

Derivative

$$\frac{\partial y}{\partial z} = = \begin{cases} 1 & z > 0 \\ y + \alpha & z \le 0 \end{cases}$$

Radial Basis Functions

Activation function

$$y = e^{(-\|x - w\|^2)}$$

Sparse activation

many units just don't learn

same issue as ReLUs

Clever schemes to initialize weights

e.g., set w near cluster of x's

playground.tensorflow.org

Tinker With a **Neural Network** Right Here in Your Browser. Don't Worry, You Can't Break It. We Promise.

Common Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

Categorical Outputs

Considered the case where the output y denotes the probability of class membership

belonging to class A versus Ā

Instead of two possible categories, suppose there are n

e.g., animal, vegetable, mineral

Categorical Outputs

Each input can belong to one category

• y_i denotes the probability that the input's category is j

To interpret *y* as a probability distribution over the alternatives

•
$$\sum_{j} y_{j} = 1$$
 and $0 \le y_{j} \le 1$

•
$$\sum_{j} y_{j} = 1$$
 and $0 \le y_{j} \le 1$
Activation function $y_{j} = \frac{e^{z_{j}}}{\sum_{k} e^{z_{k}}}$

Exponentiation ensures nonnegative values Denominator ensures sum to 1

Known as softmax, and formerly, Luce choice rule

Derivatives For Categorical Outputs

For softmax output function

$$y_j = \frac{e^{z_j}}{\sum_k e^{z_k}} \qquad z_j = \sum_{i=1}^n w_{ji} x_i$$

Weight update is the same as for two-category case!

$$\Delta w_{ji} = \varepsilon \delta_j x_i \quad \delta_j = \begin{cases} \frac{\partial E}{\partial y_j} y_j (1 - y_j) & \text{for output unit} \\ \left(\sum_k w_{kj} \delta_j\right) y_j (1 - y_j) & \text{for hidden unit} \end{cases}$$

...when expressed in terms of y

Objective Functions for NNs

Regression:

- Use the same objective as Linear Regression
- Quadratic loss (i.e. mean squared error)

Classification:

- Use the same objective as Logistic Regression
- Cross-entropy (i.e. negative log likelihood)
- o This requires probabilities, so add an additional "softmax" layer at the end of our network

Forward

$$\text{Quadratic} \quad J = \frac{1}{2}(y-y^*)^2$$

Cross Entropy
$$J = y^* \log(y) + (1 - y^*) \log(1 - y)$$

Backward

$$\frac{dJ}{dy} = y - y^*$$

$$\frac{dJ}{dy} = y^* \frac{1}{y} + (1 - y^*) \frac{1}{y - 1}$$

-4

Common Activation Functions

Name	Activation $y = f(x)$	Derivative $f'(x) = \partial y / \partial x$
	2	1
	1	
	0	0.5
	-1	
	-2	0
Linear	-2 -1 0 1 2	-2 -1 0 1 2
·	f(x) = x	f'(x) = 1
	1	1
	0.75	0.75
	0.5	0.5
	0.25	0.25
Binary	-10 -5 0 5 10	-10 -5 0 5 10
Dillary		
	$f(x) = \begin{cases} 1 & \text{for } x > 0 \\ 0 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ 1 & \text{for } x = 0 \end{cases}$
50 0	10	1
	7.5	0.75
	5	0.5
	2.5	0.25
	0	0
ReLu	-10 -5 0 5 10	-10 -5 0 5 10
	$f(x) = \begin{cases} 0; & \text{for } x <= 0 \\ x; & \text{for } x > 0 \end{cases}$	$f'(x) = \begin{cases} 0; & \text{for } x <= 0 \\ 1; & \text{for } x > 0 \end{cases}$
	×10 ⁻³	6 ×10 ⁻³
	15	4.5
	10	3
	5	1.5
	0	
Softmax	-2 -1 0 1 2	-2 -1 0 1 2
	$f(x_i) = \frac{e^{x_i}}{\sum_{k=1}^{N} e^{x_k}}, \ \forall i = 1N$	$f'(x) = \begin{cases} f(x_i)(1 - f(x_j)); & \text{for } i == j \\ -f(x_i)f(x_j); & \text{for } i \neq j \end{cases}$

Squared Error Loss

Sensible regardless of output range and output activation function

$$E = \frac{1}{2} \sum_{j} (t_j - y_j)^2 \qquad \frac{\partial E}{\partial y_j} = y_j - t_j$$

Remember

$$\Delta w = \varepsilon \frac{\partial E}{\partial y}$$

with logistic output unit

$$y_j = \frac{1}{1 + e^{-z_j}}$$

$$\frac{\partial y_j}{\partial z_j} = y_j (1 - y_j)$$

with tanh output unit

$$y_j = tanh(z_j)$$
$$= \frac{2}{1 + e^{-z_j}} - 1$$

$$\frac{\partial y_j}{\partial z_j} = (1 + y_j)(1 - y_j)$$

Cross Entropy Loss

Used when the target output represents a probability distribution

- e.g., a single output unit that indicates the classification decision (yes, no)
 for an input
- Output $y \in [0,1]$ denotes Bernoulli likelihood of class membership
- Target *t* indicates true class probability (typically 0 or 1)

Note: single value represents probability distribution over 2 alternatives

Cross entropy, H, measures distance in bits from predicted distribution to target distribution

$$E = H = -t\ln(y) - (1-t)\ln(1-y)$$

$$\frac{\partial E}{\partial y} = \frac{y}{y(1-y)}$$

Squared Error Versus

Cross Entropy

$$\frac{\partial E_{\text{sqerr}}}{\partial y} = y - t$$

$$\frac{\partial y}{\partial z} = y(1 - y)$$

$$\frac{\partial E_{\text{sqerr}}}{\partial z} = (y - t)y(1 - y)$$

$$\frac{\partial E_{\text{xentropy}}}{\partial y} = \frac{y - t}{y(1 - y)}$$

$$\frac{\partial y}{\partial z} = y(1 - y)$$

$$\frac{\partial E_{\text{xentropy}}}{\partial z} = y - t$$

Essentially, cross entropy does not suppress learning when output is confident (near 0 or 1)

- net devotes its efforts to fitting target values exactly
- e.g., consider situation where y=.99 and t=1

Maximum Likelihood Estimation

In statistics, many parameter estimation problems are formulated in terms of maximizing the likelihood of the data

- find model parameters that maximize the likelihood of the data under the model
- e.g., 10 coin flips producing 8 heads and 2 tails
- What is the coin's bias?

Likelihood formulation

$$\mathcal{L} = y^t (1 - y)^{1-t}$$
 for $t \in \{0, 1\}$
 $\ell = \ln(\mathcal{L}) = t \ln(y) + (1 - t)(1 - y)$

What's the relationship between ℓ and E_{xentropy} ?

Probabilistic Interpretation of Squared-Error Loss

Consider a network output and target y, $t \in \mathbb{R}$

Suppose that the output is corrupted by Gaussian observation noise

$$y=t+\eta$$

where $\eta \sim$ "Gaussian" (0,1)

We can define the likelihood of the target under this noise model

$$P(t|y) = \frac{1}{\sqrt{2\pi}} e^{(-\frac{1}{2}(t-y)^2)}$$

Probabilistic Interpretation of Squared-Error Loss

For a set of training examples, $\alpha \in \{1,2,3,...\}$, we can define the data set likelihood

$$\mathcal{L} = \prod_{\alpha} P(t^{\alpha} | y^{\alpha})$$

$$\ell = \ln(\mathcal{L}) = \sum_{\alpha} \ln(P(t^{\alpha}|y^{\alpha})) \text{ where } P(t|y) = \frac{1}{\sqrt{2\pi}} e^{(-\frac{1}{2}(t-y)^2)} = -\frac{1}{2} \sum_{\alpha} (t^{\alpha} - y^{\alpha})^2$$

$$= -\frac{1}{2} \sum_{\alpha} (t^{\alpha} - y^{\alpha})^2$$

Squared error can be viewed as likelihood under Gaussian observation noise $E_{\text{sqerr}} = -c\ell$

Other noise distributions can motivate alternative losses.

e.g., Laplace distributed noise and $E_{abserr} = |t-y|$ What is $\frac{\partial E_{abserr}}{\partial y}$?

What is
$$\frac{\partial E_{\text{abserr}}}{\partial y}$$
 ?

