flexOR: flexible garbling for XOR gates that beats free-XOR

background

background: garbled circuit

background: garbled circuit

background: garbled circuit

Garbled row reduction [NaorPinkasSumner99,PinkasSchneiderSmartWilliams09]

Garbled row reduction [NaorPinkasSumner99,PinkasSchneiderSmartWilliams09]

Fix one of the ciphertexts to be all zeroes

Garbled row reduction [NaorPinkasSumner99,PinkasSchneiderSmartWilliams09]

- Fix one of the ciphertexts to be all zeroes
- ightharpoonup Corresponding wire label must be $\mathrm{Dec}(0^n)$, not uniform

Garbled row reduction [NaorPinkasSumner99,PinkasSchneiderSmartWilliams09]

- Fix one of the ciphertexts to be all zeroes
- ightharpoonup Corresponding wire label must be $\mathrm{Dec}(0^n)$, not uniform
- Only 3 ciphertexts needed for garbled gate
- More advanced technique reduces size to 2 ciphertexts

Definition

Offset of a wire = XOR of its two wire labels

Definition

Offset of a wire = XOR of its two wire labels

Definition

Offset of a wire = XOR of its two wire labels

Free XOR optimization [KolesnikovSchneider08]:

ightharpoonup all wires have *same* (secret) offset Δ

Definition

Offset of a wire = XOR of its two wire labels

Free XOR optimization [KolesnikovSchneider08]:

- lacktriangle all wires have *same* (secret) offset Δ
- wire *labels* for XOR gate satisfy $C = A \oplus B$

Definition

Offset of a wire = XOR of its two wire labels

Free XOR optimization [KolesnikovSchneider08]:

- lacktriangle all wires have *same* (secret) offset Δ
- lacktriangle wire *labels* for XOR gate satisfy $\emph{C}=\emph{A}\oplus\emph{B}$
- compute output wire label by XOR'ing input wire labels (no crypto!)

free XOR

Free XOR limitations:

- Requires strong circularity hardness assumption
 [ChoiKatzKumaresanZhou12]
- 2. Incompatible with 4-to-2 row reduction [PinkasSchneiderSmartWilliams09]

free XOR

Free XOR limitations:

- Requires strong circularity hardness assumption [ChoiKatzKumaresanZhou12]
- 2. Incompatible with 4-to-2 row reduction [PinkasSchneiderSmartWilliams09]

Motivating Question

Can we overcome these limitations, while retaining Free XOR's benefits (as much as possible)?

free XOR

Free XOR limitations:

- Requires strong circularity hardness assumption [ChoiKatzKumaresanZhou12]
- 2. Incompatible with 4-to-2 row reduction [PinkasSchneiderSmartWilliams09]

Motivating Question

Can we overcome these limitations, while retaining Free XOR's benefits (as much as possible)? *Hint: yes!*

Flexible XOR (fleXOR) technique [this work]:

lacktriangle "adjust" offsets of both input wires to $\Delta_{\mathcal{C}}$

Flexible XOR (fleXOR) technique [this work]:

lacktriangle "adjust" offsets of both input wires to $\Delta_{\mathcal{C}}$

Flexible XOR (fleXOR) technique [this work]:

fleXOR garbling $\mathsf{Enc}_{\mathsf{A}\oplus\Delta_{\mathsf{A}}}(\mathsf{A}^*\oplus\Delta_{\mathsf{C}})$ false: A false: A* true: ${\it A}^*\oplus \Delta_{\it C}$ true: $A \oplus \Delta_{oldsymbol{\Delta}}$ offset: Δ_A offset: $\Delta_{\it C}$ true: $A^* \oplus B^* \oplus \Delta_C$ false: B false: B* offset: Δ_c true: $\mathit{B}^* \oplus \Delta_\mathit{C}$ true: ${\it B} \oplus \Delta_{\it B}$ offset: Δ_R offset: $\Delta_{\it C}$

Flexible XOR (fleXOR) technique [this work]:

Flexible XOR (fleXOR) technique [this work]:

Flexible XOR (fleXOR) technique [this work]:

- lacktriangle "adjust" offsets of both input wires to $\Delta_{\it C}$, then use free XOR
- apply row reduction

- lacktriangle "adjust" offsets of both input wires to $\Delta_{\it C}$, then use free XOR
- apply row reduction

- lacktriangle "adjust" offsets of both input wires to $\Delta_{\it C}$, then use free XOR
- apply row reduction: each "adjustment" requires 1 ciphertext

$$A^* := A$$

- lacktriangle "adjust" offsets of both input wires to $\Delta_{\it C}$, then use free XOR
- apply row reduction: each "adjustment" requires 1 ciphertext
- lacktriangle if $\Delta_{\it A}=\Delta_{\it C}$, no need to "adjust" first wire at all!

$$A^* := A$$

- lacktriangle "adjust" offsets of both input wires to $\Delta_{\it C}$, then use free XOR
- apply row reduction: each "adjustment" requires 1 ciphertext
- lacktriangle if $\Delta_{\mathcal{A}}=\Delta_{\mathcal{C}}$, no need to "adjust" first wire at all!
- garble XOR gate using 0, 1, or 2 ciphertexts
 - \cdots depending on how many of $\{\Delta_{A}, \Delta_{B}, \Delta_{C}\}$ are distinct

Wire ordering:

Wire ordering:

Wire ordering:

Wire ordering:

Wire ordering:

Group circuit's **wires** into equivalence classes (same class \Leftrightarrow same offset)

How should we choose wire orderings to minimize total cost of garbling XOR gates?

wire orderings

Wire ordering:

Group circuit's **wires** into equivalence classes (same class \Leftrightarrow same offset)

How should we choose wire orderings to minimize total cost of garbling XOR gates?

- while avoiding circularity assumption of Free-XOR?
- ··· keeping compatibility with 2-row-reduction for non-XOR gates?

wire orderings

Wire ordering:

Group circuit's **wires** into equivalence classes (same class \Leftrightarrow same offset)

How should we choose wire orderings to minimize total cost of garbling XOR gates?

- ••• while avoiding circularity assumption of Free-XOR?
- ··· keeping compatibility with 2-row-reduction for non-XOR gates?

combinatorial constraints of wire ordering

removing circularity

 $\operatorname{Enc}_{\mathbf{A}\oplus\Delta,\mathbf{B}\oplus\Delta}(\mathbf{C}\oplus\Delta)pprox\operatorname{junk}$,

 $\operatorname{Enc}_{A \oplus \Delta, B \oplus \Delta}(C \oplus \Delta) \approx \operatorname{junk}$

Key cycle: same secret Δ in key and message!

Recipe: how to avoid a "key cycle"

- 1. Order all the wire-offsets: $\Delta_1, \Delta_2, \dots$
- 2. Enforce: Enc... $_{A \oplus \Delta_{i}}$... $(\cdots B \oplus \Delta_{j} \cdots)$ allowed $\Leftrightarrow i < j$

Recipe: how to avoid a "key cycle"

- 1. Order all the wire-offsets: $\Delta_1, \Delta_2, \dots$
- 2. Enforce: Enc... $_{A \oplus \Delta_i}$... $(\cdots B \oplus \Delta_j \cdots)$ allowed $\Leftrightarrow i < j$

In FleXOR:

$$\Delta_i$$
 Δ_k

$$\Delta_i$$
 Δ_j
 Δ_k

Recipe: how to avoid a "key cycle"

- 1. Order all the wire-offsets: $\Delta_1, \Delta_2, \dots$
- 2. Enforce: Enc... $_{A \oplus \Delta_{i}}$... $(\cdots B \oplus \Delta_{j} \cdots)$ allowed $\Leftrightarrow i < j$

In FleXOR:

$$\Delta_i$$
 Δ_j
 Δ_k

Recipe: how to avoid a "key cycle"

- 1. Order all the wire-offsets: $\Delta_1, \Delta_2, \dots$
- 2. Enforce: Enc... $_{A \oplus \Delta_i}$... $(\cdots B \oplus \Delta_j \cdots)$ allowed $\Leftrightarrow i < j$

In FleXOR:

encrypts, if
$$i \neq k$$

$$\begin{array}{c} \Delta_i \\ \Delta_j \end{array}$$
encrypts, if $j \neq k$

Recipe: how to avoid a "key cycle"

- 1. Order all the wire-offsets: $\Delta_1, \Delta_2, \dots$
- 2. Enforce: Enc... $A \oplus \Delta_i$... $(\cdots B \oplus \Delta_j \cdots)$ allowed $\Leftrightarrow i < j$

In FleXOR:

encrypts, if $i \neq k$ $\begin{array}{c} \Delta_i \\ \Delta_j \end{array}$

encrypts, if $j \neq k$

Definition: monotone wire ordering

$$\Delta_i$$
 Δ_j
 Δ_k
 $\Rightarrow k > \max\{i, j\}$

$$\frac{\Delta_i}{\Delta_j} \sum_{\Delta_k} \Delta_k$$

$$\Rightarrow k \ge \max\{i, j\}$$

results

Results

- FleXOR garbling does not require circularity assumption, when offsets chosen via monotone wire ordering
 - Same assumption required for OT-extension [Ishai+03]
- 2. NP-hard to find **optimal** monotone wire ordering

1. Input wires get Δ_1

- 1. Input wires get Δ_1
- 2. For each gate in topological order, assign smallest legal Δ_i
 - ▶ XOR gates: $k \ge \max\{i, j\}$

- 1. Input wires get Δ_1
- 2. For each gate in topological order, assign smallest legal Δ_i
 - ▶ XOR gates: $k \ge \max\{i, j\}$
 - other gates: $k > \max\{i, j\}$

- 1. Input wires get Δ_1
- 2. For each gate in topological order, assign smallest legal Δ_i
 - ▶ XOR gates: $k \ge \max\{i, j\}$
 - other gates: $k > \max\{i, j\}$

- 1. Input wires get Δ_1
- 2. For each gate in topological order, assign smallest legal Δ_i
 - ▶ XOR gates: $k \ge \max\{i, j\}$
 - other gates: $k > \max\{i, j\}$

- 1. Input wires get Δ_1
- 2. For each gate in topological order, assign smallest legal Δ_i
 - ▶ XOR gates: $k \ge \max\{i, j\}$
 - other gates: $k > \max\{i, j\}$

- assign i to wires that reach S via XOR paths
- 2. $S := \{ barrier AND-gates \}$
- 3. i := i 1

- assign i to wires that reach S via XOR paths
- 2. $S := \{ barrier AND-gates \}$
- 3. i := i 1

- assign i to wires that reach S via XOR paths
- 2. $S := \{ barrier AND-gates \}$
- 3. i := i 1

- assign i to wires that reach S via XOR paths
- 2. $S := \{ barrier AND-gates \}$
- 3. i := i 1

- assign i to wires that reach S via XOR paths
- 2. $S := \{ barrier AND-gates \}$
- 3. i := i 1

 $S := \{ \text{output gate} \}$ i := depthrepeat:

- assign i to wires that reach S via XOR paths
- 2. $S := \{ barrier AND-gates \}$
- 3. i := i 1

All XOR gates are free!

Observation

[offset given to wire w] + [# AND gates between w and output] = constant

Observation

[offset given to wire w] + [# AND gates between w and output] = constant

Smarter heuristic:

1. $d(w) = \max \text{ of # AND gates in a path from } w \text{ to output}$

Observation

[offset given to wire w] + [# AND gates between w and output] = constant

Smarter heuristic:

1. $d(w) = \max \text{ of # AND gates in a path from } w \text{ to output}$

Observation

[offset given to wire w] + [# AND gates between w and output] = constant

Smarter heuristic:

- 1. $d(w) = \max \text{ of # AND gates in a path from } w \text{ to output}$
- 2. assign Δ_i to w so that i + d(w) = constant

concrete results (using our heuristic)

Garbled circuit size (ciphertexts per gate)

	assump						
	OWF						
Free XOR	circular	0.64	2.79	1.82	2.05	0.50	0.90

concrete results (using our heuristic)

Garbled circuit size (ciphertexts per gate)

scheme	assump	AES	DES	SHA1	SHA2	HamDst	IntMult
	OWF						
Free XOR	circular	0.64	2.79	1.82	2.05	0.50	0.90
FleXOR	related-key	0.76	2.84	2.02	2.26	0.67	1.15

concrete results (using our heuristic)

Garbled circuit size (ciphertexts per gate)

scheme	assump	AES	DES	SHA1	SHA2	HamDst	IntMult
	OWF						
	circular						
FleXOR	related-key	0.76	2.84	2.02	2.26	0.67	1.15√
		+19%	+2%	+11%	+10%	+34%	+28%

row-reduction compatibility

why is free-XOR incompatible with $4\rightarrow 2$ -row-reduction?

Row reductions

ightharpoonup 4
ightarrow 3 reduction

why is free-XOR incompatible with $4\rightarrow 2$ -row-reduction?

Row reductions

ightharpoonup 4
ightarrow 3 reduction: \emph{C}_0 set implicitly

why is free-XOR incompatible with $4\rightarrow 2$ -row-reduction?

Row reductions

- lacksquare 4 ightarrow 3 reduction: \emph{C}_0 set implicitly
- ▶ $4 \rightarrow 2$ reduction: both C_0, C_1 set implicitly

why is free-XOR incompatible with $4\rightarrow 2$ -row-reduction?

Row reductions

- lacksquare 4 ightarrow 3 reduction: \emph{C}_0 set implicitly
- lacksquare 4 ightarrow 2 reduction: both $\it C_0, \it C_1$ set implicitly
- ⇒ no control over offset of output wire!

Definition: safe wire ordering

... plus some fine print

Results

- 1. Can garble using FleXOR + $4 \to 2$ row reduction, when offsets chosen via **safe** wire ordering
 - ▶ XOR gates cost 0, 1, or 2; other gates cost 2
- 2. We suggest a very simple heuristic to find safe orderings:

Definition: safe wire ordering

... plus some fine print

Results

- 1. Can garble using FleXOR + $4 \to 2$ row reduction, when offsets chosen via **safe** wire ordering
 - XOR gates cost 0, 1, or 2; other gates cost 2
- 2. We suggest a very simple heuristic to find safe orderings:
 - Output wires of AND-gates get distinct offsets (in topological order)
 - lacksquare All other wires get offset Δ_0

concrete results (using our heuristic)

Garbled circuit size (ciphertexts per gate)

	scheme	assump	AES	DES	SHA1	SHA2	${\sf HamDst}$	IntMult
		OWF						
	Free XOR	circular	0.64	2.79	1.82	2.05	0.50	0.90
	FleXOR	related-key	0.76	2.84	2.02	2.26	0.67	1.15

concrete results (using our heuristic)

Garbled circuit size (ciphertexts per gate)

scheme	assump	AES	DES	SHA1	SHA2	HamDst	IntMult
classical	OWF	2.00	2.00	2.00	2.00	2.00	2.00
Free XOR	circular	0.64	2.79	1.82	2.05	0.50	0.90
FleXOR	related-key	0.76	2.84	2.02	2.26	0.67	1.15
FleXOR	circular	0.72	1.89	1.39	1.56	0.50	0.94

concrete results (using our heuristic)

Garbled circuit size (ciphertexts per gate)

	scheme	assump	AES	DES	SHA1	SHA2	HamDst	IntMult
,	classical	OWF	2.00	2.00	2.00	2.00	2.00	2.00
	Free XOR	circular	0.64	2.79	1.82	2.05	0.50	0.90
	FleXOR	related-key	0.76	2.84	2.02	2.26	0.67	1.15
	FleXOR	circular	0.72	1.89	1.39	1.56	0.50	0.94
			+12%	-32%	-24%	-24%	+0%	+4%

extensions

- 1. Trivial wire ordering \Rightarrow collapse to Free-XOR
- 2. Monotone wire ordering \Rightarrow eliminate circular assumption
- 3. Safe wire ordering \Rightarrow compatibility with aggressive row reduction

- 1. Trivial wire ordering \Rightarrow collapse to Free-XOR
- 2. Monotone wire ordering \Rightarrow eliminate circular assumption
- 3. Safe wire ordering \Rightarrow compatibility with aggressive row reduction
- 4. Monotone + safe wire ordering \Rightarrow both!

- 1. Trivial wire ordering \Rightarrow collapse to Free-XOR
- 2. Monotone wire ordering \Rightarrow eliminate circular assumption
- 3. Safe wire ordering \Rightarrow compatibility with aggressive row reduction
- 4. Monotone + safe wire ordering ⇒ both!
- Constrain input/output wires only ⇒ compatibility with protocols that break "garbling scheme" abstraction boundary

- 1. Trivial wire ordering \Rightarrow collapse to Free-XOR
- 2. Monotone wire ordering \Rightarrow eliminate circular assumption
- 3. Safe wire ordering \Rightarrow compatibility with aggressive row reduction
- 4. Monotone + safe wire ordering ⇒ both!
- Constrain input/output wires only ⇒ compatibility with protocols that break "garbling scheme" abstraction boundary
- 6. Other interesting properties?

wrap-up

summary

FleXOR = Flexible XOR!

- ▶ New way to garble XOR gates: costs 0, 1, or 2 ciphertexts per gate
- Get results competitive with Free-XOR, from weaker assumption
- \blacktriangleright Get results often better than Free-XOR, by leveraging $4 \to 2$ row-reduction

open problems

- Better FleXOR on existing circuits
 - better wire-ordering heuristics? guaranteed approximation ratio?
 - hardness of approximation?
 - use ideas from approximations of "multi-cut" problem

open problems

- Better FleXOR on existing circuits
 - better wire-ordering heuristics? guaranteed approximation ratio?
 - hardness of approximation?
 - use ideas from approximations of "multi-cut" problem
- Better circuits targeted for FleXOR
 - instead of simply minimizing # of non-XOR gates

open problems

Better FleXOR on existing circuits

- better wire-ordering heuristics? guaranteed approximation ratio?
- hardness of approximation?
- use ideas from approximations of "multi-cut" problem

Better circuits targeted for FleXOR

instead of simply minimizing # of non-XOR gates

Implementation

- fastest garbling scheme (JustGarble) uses fixed-key AES: need to re-analyze FleXOR security
- wire orderings computed on the fly, or stored with circuit?
- revisit $4 \rightarrow 2$ row reduction?

