Assignment 2

(CS1.502) Information-Theoretic Methods in Computer Science, Spring 2023

Due on 24th February (Friday).

INSTRUCTIONS

- Discussions with other students are not discouraged. However, all write-ups must be done individually with your own solutions.
- Any plagiarism when caught will be heavily penalised.
- Be clear and precise in your writing.

Problem 1. (a) Let Z_1, Z_2, \ldots, Z_n be a sequence of independent and identically distributed (i.i.d.) random variables with mean μ and variance σ^2 . Let $\bar{Z}_n = \frac{1}{n} \sum_{i=1}^n Z_i$ be the sample mean. Show that \bar{Z}_n converges to μ in probability, i.e., for every $\epsilon > 0$,

$$\lim_{n \to \infty} P(|\bar{Z}_n - \mu| > \epsilon) = 0.$$

This is known as the weak law of large numbers (WLLN).

(3 marks)

(b) For a sequence $x^n := (x_1, x_2, \dots, x_n)$ with x_i , for $i \in [1:n]$, taking values in a finite alphabet \mathcal{X} , the empirical PMF is defined as $\pi_{x^n}(x) = \frac{|\{i: x_i = x\}|}{n}$. Let $X^n = (X_1, X_2, \dots, X_n)$ be a sequence of i.i.d. random variables with X_i , for each $i \in [1:n]$, distributed according to P_X over \mathcal{X} . Using WLLN, show that $\pi_{X^n}(x)$ converges to $P_X(x)$ in probability, i.e., $\lim_{n \to \infty} P(|\pi_{X^n}(x) - P_X(x)| > \epsilon) = 0$, for all $x \in \mathcal{X}$.

(2 marks)

Problem 2. A tripartite graph is a graph where the vertex set can be partitioned into three disjoint sets A, B, and C such that no two vertices within the same set have an edge between them. Let n_1 be the number of edges between vertices in A and vertices in B, n_2 be the number of edges between B and C, and B0 are the number of edges between B1 and B2. Suppose B3 denotes the maximum number of triangles in such a graph. Prove that B3 are the number of edges between B4 and B5. Suppose B6 denotes the maximum number of triangles in such a graph. Prove that B4 are the number of edges between B5 and B6.

[Hint. A triangle can be represented by three vertices, one each from A, B, and C. Pick a triangle uniformly at random from the set of all triangles in the graph.]

(5 marks)

Problem 3. Let S be a random variable distributed according to P_S over the set of all subsets of [1:n] and μ be such that $P(i \in S) \geq \mu$, for all $i \in [1:n]$. Then for jointly distributed random variables X_1, X_2, \ldots, X_n ,

$$\mu H(X_1, X_2, \dots, X_n) \le \mathbb{E}_{S \sim P_S}[H(X_S)].$$

(5 marks)