1 Definições elementares

Ao longo do texto, f representará uma função $f: I \to J$, onde I e J são subconjuntos de \mathbb{R} . Além disso, a função f^n representará a n-ésima iterada de f e $f^{(n)}$ representará n-ésima derivada de f.

Definição 1.1. Sejam $f: I \to J$ uma função, $p \in I$ e $n \ge 1$. Dizemos que p é um ponto periódico de f com período n se $f^n(p) = x$. Se $f^k(p) \ne x$ para todo $1 \le k < n$, então n é chamado de período principal. Em particular, se n = 1, dizemos que p é um ponto fixo de f.

Definição 1.2. Sejam $f: I \to J$ uma função, $p \in I$ e $n \ge 1$. Dizemos que p é um ponto eventualmente periódico de f, com período n, se existe m > 1 tal que $f^k(p) = f^{k+n}(p)$ para todo $k \ge m$. Em particular, se n = 1, dizemos que p é um ponto eventualmente fixo de f.

Definição 1.3. Sejam $f: I \to J$ uma função e $x \in I$. A órbita de x é o conjunto $O(x) = \{x, f(x), f^2(x), \cdots\}$.

Definição 1.4. Sejam $f: I \to J$ uma função, p um ponto periódico de período n e $x \in I$. Dizemos que x tende assintoticamente para p se $\lim_{k\to\infty} f^{kn}(x) = p$. O conjunto dos pontos que tendem assintoticamente para p, denotado por $W^s(p)$, é chamado chamado de conjunto estável de p. Dizemos que x tende assintoticamente para infinito se $\lim_{k\to\infty} |f^k(x)| = \infty$. O conjunto dos pontos que tendem assintoticamente para infinito, denotado por $W^s(\infty)$, é chamado de conjunto estável do infinito.

Proposição 1.5. Os conjuntos estáveis de dois pontos periódicos distintos possuem intersecção vazia.

Demonstração. Suponha que existam pontos periódicos distintos p e q de uma função f, de períodos m e n respectivamente, tais que $W^s(p) \cap W^s(q) \neq \emptyset$. Seja $x \in W^s(p) \cap W^s(q)$. Temos que $|f^{km}(x) - p| \to 0$ e $|f^{kn}(x) - q| \to 0$ quando $k \to \infty$.

Desse modo, dado $\varepsilon > 0$ existe $N \in \mathbb{N}$ tal que $|f^{km}(x) - p| < \frac{\varepsilon}{2}$ e $|f^{kn}(x) - q| < \frac{\varepsilon}{2}$ para todo k > N. Portanto, $|p - q| = |p - f^{kmn}(x) + f^{kmn}(x) - q| \le |f^{(kn)m}(x) - p| + |f^{(km)n}(x) - q| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Temos então que p = q, pois ε é arbitrário. Absurdo.

O objetivo do estudo de Sistemas Dinâmicos é entender a natureza das órbitas, identificando pontos periódicos, eventualmente periódicos, que tendem assintoticamente, etc.

2 Implicações da diferenciabilidade

Ao longo desse seção, I representará um intervalo fechado de \mathbb{R} .

Proposição 2.1. Seja $f: I \to I$ uma função contínua. Então f possui ponto fixo.

Demonstração. Seja I = [a, b] e considere a função contínua g(x) = f(x) - x definida em I. Como $f(a), f(b) \in I$, temos que $g(a) = f(a) - a \ge 0$ e $g(b) = f(b) - b \le 0$. Pelo Teorema do Valor Intermediário, existe $p \in I$ tal que g(p) = f(p) - p = 0. Desse modo, p é ponto fixo de f.

Teorema 2.2. Seja $f: I \to I$ uma função diferenciável. Suponha que |f'(x)| < 1 para todo $x \in I$. Então |f(x) - f(y)| < |x - y| para todo $x, y \in I$, $x \neq y$. Além disso, f admite um único ponto fixo.

Demonstração. Sejam $x, y \in I$, x < y. Pelo Teorema do Valor Médio, existe $c \in [x, y]$ tal que f(x) - f(y) = f'(c)(x - y). Portanto, |f(x) - f(y)| = |f'(c)||x - y| < |x - y|.

Pela Proposição 2.1, f admite um ponto fixo p. Suponha que exista um ponto fixo q diferente de p. Então, pela primeira parte da demonstração, |p-q|=|f(p)-f(q)|<|p-q|. Absurdo.

Definição 2.3. Sejam $f: I \to J$ uma função diferenciável e p um ponto periódico de f com período principal n. Dizemos que p é um ponto hiperbólico se $|(f^n)'(p)| \neq 1$. Se $|(f^n)'(p)| > 1$ dizemos que p é um ponto hiperbólico atrator e se $|(f^n)'(p)| < 1$ dizemos que p é um ponto hiperbólico repulsor. Dizemos que p é um ponto não hiperbólico se $|(f^n)'(p)| = 1$.

Teorema 2.4. Sejam $f: I \to I$ uma função C^1 e p um ponto periódico de f com período principal n. Se p é um ponto hiperbólico atrator, existe uma vizinhança U de p tal que $\lim_{k\to\infty} f^{kn}(x) = p$ para todo $x \in U$. Se p é um ponto hiperbólico repulsor, existe uma vizinhança V de p tal que, se $x \in V$ e $x \neq p$, $f^{kn}(x) \notin V$ para algum $k \geq 1$.

Demonstração. Suponha que p é um ponto hiperbólico atrator. Como f' é contínua, existe $\varepsilon > 0$ tal que $|(f^n)'(x)| \le \lambda < 1$ para todo $x \in (p - \varepsilon, p + \varepsilon)$. Pelo Teorema do Valor Médio, se $x \in U$ então $|f^n(x) - p| = |f^n(x) - f^n(p)| \le \lambda |x - p|$. Por indução, $|f^{kn}(x) - p| \le \lambda^k |x - p|$. Desse modo, $f^{kn}(x) \to p$ quando $k \to \infty$.

Suponha que p é ponto hiperbólico repulsor. De maneira análoga, existe $\varepsilon > 0$ tal que $|f^{kn}(x) - p| \ge \lambda^k |x - p| > 1$ para todo $x \in (p - \varepsilon, p + \varepsilon), x \ne p$. Como $\lambda^k |x - p| \to \infty$ quando $k \to \infty$, temos que $f^{kn}(x) \notin V$ para algum $k \ge 1$.

3 A família quadrática

Nosso objetivo será estudar, durante essa seção e as próximas, a dinâmica da família de funções $F_{\mu}: \mathbb{R} \to \mathbb{R}$ dadas por $F_{\mu}(x) = \mu x(1-x)$, onde $\mu > 0$. Tal família é chamada de família quadrática.

Ao longo dessa e das próximas seções, a menos que dito explicitamente o contrário, I denotará o intervalo [0,1] da reta real.

Proposição 3.1. 1. $F_{\mu}(0) = 0$ e $F_{\mu}(p_{\mu}) = p_{\mu}$, onde $p_{\mu} = \frac{\mu - 1}{\mu}$.

- 2. $F_{\mu}(1) = 0$ $e F_{\mu}(\frac{1}{\mu}) = p_{\mu}$.
- 3. Se $\mu > 1$ então $0 < p_{\mu} < 1$.
- 4. O vértice da parábola é o ponto $(\frac{1}{2}, \frac{\mu}{4})$.

Demonstração. Trivial.

No resto dessa seção estudaremos o caso onde $1 < \mu < 3$.

Proposição 3.2. Suponha que $\mu > 1$. Então $W^s(\infty) = (-\infty, 0) \cup (1, \infty)$.

Demonstração. Se x < 0, a sequência $(F_{\mu}^{n}(x))_{n}$ é monótona decrescente pois $F_{\mu}(x) < x$. Se $(F_{\mu}^{n}(x))_{n} \to x_{0}$, para algum $x_{0} < 0$, a continuidade de F_{μ} implica que $(F_{\mu}^{n+1}(x))_{n} \to F_{\mu}(x_{0}) < x_{0}$. Absurdo. Portanto, $(F_{\mu}^{n}(x))_{n} \to -\infty$.

Como $F_{\mu}(x) < 0$ para todo x > 1, concluímos que $W^{s}(\infty) = (-\infty, 0) \cup (1, \infty)$.

A proposição anterior nos diz que resta estudar a dinâmica de F_{μ} restrita ao intervalo I = [0, 1].

Proposição 3.3. Suponha que $1 < \mu < 3$.

- 1. $0 \text{ \'e} \text{ } um \text{ } ponto \text{ } repulsor \text{ } e \text{ } p_{\mu} \text{ \'e} \text{ } um \text{ } ponto \text{ } atrator.$
- 2. $\lim_{n\to\infty} F_{\mu}^{n}(x) = p_{\mu} \text{ para todo } x \in (0,1).$

Demonstração. Como $F'_{\mu}(x) = \mu - 2\mu x$ e $1 < \mu < 3$, a primeira parte é verdadeira pois $|F'_{\mu}(0)| = \mu > 1$ e $|F'_{\mu}(p_{\mu})| = |2 - \mu| < 1$.

Falta provar o item 2. \Box

Portanto, conhecemos completamente a dinâmica de F_{μ} quando $1 < \mu < 3$. Temos $W^{s}(0) = \{0, 1\}, W^{s}(p_{\mu}) = (0, 1)$ e $W^{s}(\infty) = (-\infty, 0) \cup (1, \infty)$.

4 Conjuntos de Cantor e Caos

Analisaremos nessa seção a dinâmica de F_{μ} quando $\mu > 4$ e, para entendê-la, será preciso estudar o que é um conjunto de Cantor.

Definição 4.1 (Conjunto de Cantor). Um subconjunto Γ de \mathbb{R} , $\Gamma \neq \emptyset$, é um conjunto de Cantor se

- 1. Γ é fechado e limitado.
- 2. Γ não possui intervalos.

3. Todo ponto de Γ é um ponto de acumulação de Γ .

Observe inicialmente que $F_{\mu}(\frac{1}{2}) = \frac{\mu}{4} > 1$ quando $\mu > 4$, ou seja, existem pontos em I que não permanecem em I após uma iteração de F_{μ} . Em vista da Proposição 3.2, a dinâmica de F_{μ} em tais pontos é determinada, pois pertencem ao conjunto $W^{s}(\infty)$. De modo mais geral, se um ponto de I não permanece I após um número finito de iterações, então ele pertence ao conjunto $W^{s}(\infty)$.

Desse modo, considere o conjunto $\Lambda_n = \{x \in I : F_{\mu}^n(x) \in I\}$, isto é, o conjunto formado pelos pontos de I que permanecem em I após n iterações de F_{μ} e considere o conjunto $\Lambda = \cap \Lambda_n$, isto é, o conjunto formado pelos pontos de I que permanecem em I por iteração de F_{μ} . Portanto, pela observação anterior, resta entender a dinâmica de F_{μ} nos pontos de Λ e, para isso, é necessário entender o que é o conjunto Λ .

Proposição 4.2. Suponha $\mu > 4$.

1.
$$\Lambda_1 = [0, \alpha] \cup [\beta, 1]$$
, onde $\alpha = \frac{1}{2} - \frac{\sqrt{\mu^2 - 4\mu}}{2\mu}$ $e \beta = \frac{1}{2} + \frac{\sqrt{\mu^2 - 4\mu}}{2\mu}$.

- 2. Λ_n é a união de 2^n intervalos fechados disjuntos.
- 3. Se J é um dos intervalos fechados que formam Λ_n , então $F^n_{\mu}: J \to I$ é um homeomorfismo.

Demonstração. Analisando F'_{μ} observamos que F_{μ} é estritamente crescente no intervalo $[0, \frac{1}{2}]$ e estritamente decrescente no intervalo $[\frac{1}{2}, 1]$. Como $F_{\mu}(0) = F_{\mu}(1) = 0$ e $F_{\mu}(\frac{1}{2}) > 1$ o Teorema do Valor Intermediário implica que existem α e β tais que $F_{\mu}(\alpha) = F_{\mu}(\beta) = 1$. Os valores de α e β são encontrados resolvendo a equação de segundo grau $\mu x(1-x) = 1$. Logo, $F_{\mu}([0, \alpha]) = F_{\mu}([\beta, 1]) = [0, 1]$ e $F_{\mu}(x) > 1$ para todo $x \in (\alpha, \beta)$. Portanto, $\Lambda_1 = [0, \alpha] \cup [\beta, 1]$ e o item 1 está demonstrado.

A demonstração dos itens 2 e 3 será feita por indução. Pela primeira parte dessa demonstração, Λ_1 é a união de $2^1=2$ intervalos fechados disjuntos e F_μ é um homeomorfismo em cada um deles pois $F_\mu([0,\alpha])>0$ e $F_\mu([\beta,1])<0$.

Suponha que Λ_k é a união de 2^k intervalos fechados disjuntos de modo que $F_\mu^k: J \to I$ é um homeomorfismo para cada intervalo J que forma Λ_k .

Sendo F_{μ}^k um homeomorfismo, então $F_{\mu}^k(x)>0$ ou $F_{\mu}^k(x)<0$ para todo $x\in J$. Suponha que $F_{\mu}^k(x)>0$. O caso $F_{\mu}^k(x)<0$ é tratado de maneira análoga.

Existem $a, x_1, x_2, b \in J$, $a < x_1 < x_2 < b$, tais que $F_{\mu}^k(a) = 0$, $F_{\mu}^k(x_1) = \alpha$, $F_{\mu}^k(x_2) = \beta$ e $F_{\mu}^k(b) = 1$. Considere os intervalos $J_1 = [a, x_1]$ e $J_2 = [x_2, b]$. Desse modo, $F_{\mu}^{k+1}(J_1) = F_{\mu}(F_{\mu}^k(J_1)) = F_{\mu}([0, \alpha]) = [0, 1]$ e, analogamente, $F_{\mu}^{k+1}(J_2) = [0, 1]$. Como $(F_{\mu}^{k+1})'(J_1) = F_{\mu}'(F_{\mu}^k(J_1))(F_{\mu}^k)'(J_1) = F_{\mu}'([0, \alpha])(F_{\mu}^k)'(J_1) > 0$ e, analogamente, $(F_{\mu}^{k+1})'(J_2) = F_{\mu}'([\beta, 1])(F_{\mu}^k)'(J_2) < 0$. Logo, F_{μ}^{k+1} é um homeomorfismo entre J_1 e I e entre J_2 e I.

A partir de cada intervalo fechado de Λ_k construímos dois novos intervalos fechados disjuntos tais que F_{μ}^{k+1} restrita em cada um desses intervalos é um homeomorfismo sobre I e, portanto, esses intervalos fazem parte de Λ_{k+1} . Desse modo, se Λ_k é formado por 2^k intervalos, então Λ_{k+1} é formado por $2 \cdot 2^k = 2^{k+1}$ intervalos fechados disjuntos. Assim, o resultado está provado.

Vamos mostrar agora que Λ é um conjunto de Cantor quando $\mu > 2 + \sqrt{5}$ e, para isso, utilizaremos o resultado abaixo.

Lema 4.3. Suponha $\mu > 2 + \sqrt{5}$. Existe $\lambda > 1$ tal que $|F'(x)| > \lambda$ para todo $x \in \Lambda_1$. Além disso, o tamanho de cada intervalo em Λ_n é menor que $(\frac{1}{\lambda})^n$.

Demonstração. Para provar a primeira parte, observamos inicialmente que $\mu^2 - 4\mu > 1$ quando $\mu > 2 + \sqrt{5}$. Desse modo, $F'(x_1) = \sqrt{\mu^2 - 4\mu} > 1$ e $F'(x_2) = -\sqrt{\mu^2 - 4\mu} < -1$, onde $x_1 = \frac{1}{2} - \frac{\sqrt{\mu^2 - 4\mu}}{2\mu}$ e $x_2 = \frac{1}{2} + \frac{\sqrt{\mu^2 - 4\mu}}{2\mu}$.

Temos também que F' é estritamente decrescente, pois $F''(x) = -2\mu < 0$. Portanto, $F'(x) \ge F'(x_1) > 1$ para todo $x \in [0, x_1]$ e $F'(x) \le F'(x_2) < -1$ para todo $x \in [x_2, 1]$. De acordo com a Proposição 4.2, $\Lambda_1 = [0, x_1] \cup [x_2, 1]$ e, desse modo, |F'(x)| > 1 para todo $x \in \Lambda_1$. (Sendo F' contínua?) Portanto, existe $\lambda > 1$ tal que |F'(x)| > 1 para todo $x \in \Lambda_1$.

Ainda de acordo com a Proposição 4.2, Λ_n é formado pela união de 2^n intervalos disjuntos. Seja [a,b] um desses intervalos. Observe que $F^n(a), F^n(b) \in \{0,1\}$ e $F^n(a) \neq F^n(b)$. Se $c \in [a,b]$, em particular $c \in \Lambda_1$ e, portanto, $(F^n)'(c) = F'(F^{n-1}(c)) \cdots F'(c) > \lambda^n$. Pelo Teorema do Valor Médio, existe $c \in [a,b]$ tal que $1 = |F^n(b) - F^n(a)| = |(F^n)'(c)|b-a| > \lambda^n|b-a|$. Desse modo, $|b-a| < \frac{1}{\lambda^n}$ e a segunda parte está provada. \square

Teorema 4.4. Suponha $\mu > 2 + \sqrt{5}$. Então Λ é um conjunto de Cantor.

Demonstração. Como $F^n_{\mu}(0) = 0 \in I$ para todo n temos $0 \in \Lambda$ e, portanto, Λ é não vazio. Como $\Lambda_n \in I$ para todo n temos que Λ é limitado. Como Λ é intersecção de conjuntos fechados temos que Λ é fechado.

Agora, suponha que Λ contém algum intervalo. Então, existem $x, y \in I$, x < y, tais que $[x, y] \subset \Lambda$. Existe N tal que $(\frac{1}{\lambda})^N < |x - y|$. De acordo com o Lema 4.4, isso implica que $[x, y] \notin \Lambda_N$ pois os intervalos de Λ_N possuem tamanho menor que $(\frac{1}{\lambda})^N$. Absurdo e, portanto, Λ não possui intervalos.

Por fim, observe que, se x é um ponto extremo de algum intervalo de Λ_n , então $x \in \Lambda$ pois $F_{\mu}^{n+1}(x) = 0$. Sejam $x \in \Lambda$ e $\varepsilon > 0$. Existe N tal que $(\frac{1}{\lambda})^N < \varepsilon$. Como $x \in \Lambda$, temos que $x \in \Lambda_N$ e, portanto, x é elemento de algum intervalo cujo tamanho é menor que ε . Portanto, existe y ponto extremo do intervalo que contém x tal que $|x-y| < \varepsilon$. Pela observação feita no início do parágrafo, $y \in \Lambda$. Como ε é arbitrário, temos que x é um ponto de acumulação de Λ .

Concluímos então que Λ é um conjunto de Cantor.

Observação. O Teorema 4.4 é válido para $4 < \mu \le 2 + \sqrt{5}$, porém a demonstração é mais complicada.

Durante o restante da seção, vamos definir o conceito de caos e mostrar que F é uma função caótica para $\mu > 4$.

Definição 4.5. Seja $f: D \to D$ uma função. Dizemos que f é topologicamente transitiva se dados $x, y \in D$ e $\varepsilon > 0$, existem $z \in D$ e $k \ge 1$ tais que $|z - x| < \varepsilon$ e $|f^k(z) - y| < \varepsilon$.

Intuitivamente, uma função f topologicamente transitiva é uma função mistura quaisquer dois conjuntos abertos, isto é, existe um ponto de um dos conjuntos que é levado para o outro conjunto após um número finito de iterações da f.

Proposição 4.6. Se $\mu > 2 + \sqrt{5}$, então F é topologicamente transitiva.

Demonstração.

Definição 4.7. Seja $f:D\to D$ uma função. Dizemos que f depende sensivelmente das condições iniciais se para algum $\delta>0$, dados $x\in D$ e $\varepsilon>0$, existem $y\in D$ e $k\geq 1$ tais que $|x-y|<\varepsilon$ e $|f^k(x)-f^k(y)|>\delta$.

Proposição 4.8. Se $\mu > 2 + \sqrt{5}$, então F depende sensivelmente das condições iniciais.

Demonstração.

Podemos agora definir o que é um função caótica.

Definição 4.9. Seja $f: D \to D$ uma função. Dizemos que f é caótica se

- 1. O conjunto de pontos periódicos de f é denso.
- 2. f é topologicamente transitiva.
- 3. f depende sensivelmente das condições iniciais.

Teorema 4.10. Se $\mu > 2 + \sqrt{5}$, então F é caótica.

Demonstração.