

Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

EYP1026 - MODELOS PROBABILÍSTICOS Ayudantía N°7

Profesor: Guido del Pino Ayudante: José Quinlan Fecha: 21 de Septiembre - 2016

- 1. Sea $X \sim \text{Cauchy}(0, 1)$.
 - a) Analice la existencia de E[X].
 - b) Determine $\alpha \in \mathbb{R}$ tal que $\mathbb{P}(X \leq \alpha) = \mathbb{P}(X \geq \alpha) = \frac{1}{2}$.
 - c) Demuestre que $X^{-1} \sim \text{Cauchy}(0, 1)$.

Nota: $X \sim \text{Cauchy}(0,1)$ si su densidad de probabilidad viene dada por

$$f(x) = \frac{1}{\pi} \frac{1}{1+x^2} : x \in \mathbb{R}.$$

- 2. Una partícula de masa $m \in \mathbb{R}^+$ experimenta una velocidad aleatoria $V \sim \text{Normal}(0, \sigma^2) : \sigma^2 \in \mathbb{R}^+$. Deduzca la distribución de su energía cinética $K = \frac{1}{2}mV^2$.
- 3. Determine la densidad de probabilidad asociada a las siguientes transformaciones:
 - a) $|X| \operatorname{con} X \sim \operatorname{Normal}(0, \sigma^2) : \sigma^2 \in \mathbb{R}^+$.
 - b) X^{-1} con $X \sim \text{Gamma}(\alpha, \beta) : \alpha, \beta \in \mathbb{R}^+$.
 - c) $\alpha + \gamma \log(X) : \alpha \in \mathbb{R}, \gamma \in \mathbb{R}^+ \text{ con } X \sim \text{Exponencial}(1).$