EQUAÇÕES DIFERENCIAIS EM VARIEDADES ALGÉBRICAS

WODSON MENDSON

RESUMO. O presente texto é de caráter puramente expositório. Iniciando do básico (equações diferencias sobre \mathbb{R}/\mathbb{C}) visamos definir a categoria das equações diferenciais em variedades algébricas e estudar aspectos aritméticos e geométricos relacionados.

Sumário

Parte 1. Teoria clássica das equações diferenciais ordin	árias 1
1. Teorema fundamental das EDO's	1
2. Sistema linear diferencial homogêneo sobre $\mathbb R$	3
3. Sistema linear holomorfo homogêneo	4
Parte 2. Redução módulo primos	6
4. Redução módulo p	6
5. p -curvatura e existência de soluções	7
Parte 3. Conexões, curvatura e p-curvatura	8
6. Algumas construções	11
Parte 4. Equações diferenciais em geral	13
7. Variedades sobre \mathbb{C}	13
8. Variedades sobre $k \operatorname{com} char(k) > 0$	18
9. Pontos singulares regulares	24
Parte 5. Campos holomorfos de tipo finito em $(\mathbb{C}^2,0)$	27
10. Integrais primeiras holomorfas: um critério aritmético	32
Referências	35

Parte 1. Teoria clássica das equações diferenciais ordinárias

- 1. Teorema fundamental das EDO's
- 1.1. **EDOS's e suas soluções.** Seja $U \subset \mathbb{R}^{n+1}$ um aberto conexo. Uma equação diferencial de **primeira ordem** em n-variáveis em U é uma equação do tipo x'=f(t,x) onde f(t,x) é uma função contínua em U. Uma solução de uma tal equação é uma função $x:(t_1,t_2)\longrightarrow \mathbb{R}^n$ de classe C^1 tal que para todo $t\in [t_1,t_2]$ temos
 - $(t, x(t)) \in U$;

 $^{^1\}mathrm{O}$ autor agradece Jorge Vitório Pereira pela leitura e correções feitas no texto

•
$$x'(t) = f(t, x(t)).$$

1.2. Enunciado do Teorema de existência e unicidade. Na presente seção, mostraremos o seguinte resultado.

Teorema 1.1. Sejam $f \in C^0(U, \mathbb{R}^n)$ e $(t_0, x_0) \in U$. Se f é localmente Lipchitz com respeito ao segundo argumento e uniformemente com respeito ao primeiro então existe única solução local $\overline{x}(t) \in C^1(I, \mathbb{R}^n)$ definida em algum intervalo I em torno de t_0 .

Exemplo. A condição Lipschitz é relevante para garantir a unicidade. Para ver isso, considere a equação $x' = x^{1/3}$. Temos que $x_1(t) := 0$ para $t \in \mathbb{R}$ e $x_2(t) := (2/3t)^{3/2}$ para $t \geq 0$ são duas soluções passando por 0.

1.3. O princípio de contração. A principal ferramenta que usaremos na demonstração do Teorema 1.1 acima é o seguinte resultado.

Teorema 1.2 (Princípio da contração). Seja V um \mathbb{R} -espaço Banach $e \ X \subset V$ um conjunto fechado. Seja $f: X \longrightarrow X$ uma α -contração. Então existe único $x \in X$ tal que f(q) = q e

$$|f^n(p) - q| \le \frac{\alpha^n}{1 - \alpha} |f(p) - p|.$$

Demonstração. Seja s outro ponto fixo satisfazendo as condições acima. Então, $|s-q|=|f(s)-f(q)|\leq \alpha |s-q|$. Logo, s=q. Assim, se existir ponto fixo então é único.

Mostremos a existência. Fixe $x_0 \in X$ e considere a sequência de iteradas $x_n := f^n(x_0)$. Temos que

$$|x_{n+1} - x_n| < \alpha |x_n - x_{n-1}| < \dots < \alpha^n |x_1 - x_0|$$
.

Assim, para m > n temos que

$$|x_m - x_n| = |\sum_{j=m+1}^n (x_{j+1} - x_j)| \le \sum_{j=m+1}^n |x_{j+1} - x_j| \le$$

$$\le \sum_{j=m+1}^n \alpha^j |x_1 - x_0| = \alpha^n \sum_{j=1}^{m-1-n} \alpha^j |x_1 - x_0|.$$

Como $\sum_{j=1}^{m-n-1} \alpha^j |x_1 - x_0| = 1 - \alpha^{m-n}/1 - \alpha$ segue que

$$|x_m - x_n| \le \alpha^n (1 - \alpha^{m-n}/1 - \alpha)|x_1 - x_0| \le \frac{\alpha}{1 - \alpha}|x_1 - x_0|.$$

Em particular, segue que a sequencia $\{x_n\}$ é Cauchy. Assim, existe $x := \lim x_n$. Note que $x \in X$, já que X é fechado. Temos ainda, $|f(x) - x| = |f(\lim x_n) - \lim x_n| = \lim_{|x_{n+1} - x_n|} = 0$. Logo, f(x) = x.

Observação. Seja I um intervalo compacto em \mathbb{R} e $X := C^0(I; \mathbb{R}^n)$. Usando a estrutura de \mathbb{R} -espaço em \mathbb{R}^n podemos equipar X com uma estrutura \mathbb{R} -espaço vetorial. Além disso, X admite estrutura normada dada pela seguinte fórmula: dado $f \in X$, defina $|f| := \sup_{t \in I} \{|f(t)|\}$. Temos que X é um espaço de Banach.

1.4. **Prova do Teorema 1.1.** Seja T>0 e considere $X_T:=C([-T,T],\mathbb{R}^n)$. Pela observação acima, X é um espaço de Banach. Seja $\delta>0$ e considere a bola $B_{\delta}(x_0)\subset\mathbb{R}^n$. Vamos procurar um operador $\Phi:X\longrightarrow X$ e um fechado $F\subset X$ tal que $\Psi|_F:F\longrightarrow F$ seja uma contração e o ponto fixo de F se correponda a uma (única) solução local do sistema diferencial associado x'(t)=f(x,t) em torno de (t_0,x_0) . Para simplificar notação, suporemos que $t_0=0$. Considere o compacto $V_T:=[-T,T]\times\overline{B_{\delta}(x_0)}$ e seja $F_{\delta}:=\{x\in X\mid |x-x_0|\leq \delta\}$, onde encaramos x_0 como a função constante. Sejam $M:=\sup_{t\to 0}|t_t(t,x)|$ e $T_0:=Min\{T,\delta/2M\}$.

Defina o operador $\Phi: X_{T_0} \longrightarrow X_{T_0}$ que associa $x \in X_{T_0}$ à função

$$\Phi(x)(t) := x_0 + \int_{-t}^t f(s, x) ds.$$

Afirmação: Φ se restringe a uma contração: $\Phi|_{F_0}: F_0 \longrightarrow F_0$. De fato, temos

$$|\Phi(x)(t) - x_0| = \left| \int_{-t}^t f(s, x) ds \right| \le 2T_0 M \le \delta.$$

Daí, $\Phi(F_0) \subset F_0$.

 Φ é uma contração: para ver isso, note que $|\Phi(x)(t) - \Phi(y)(t)| = |\int_{-t}^{t} (f(s,x) - f(s,y))ds| \le 2T_0C|x(s) - y(s)|$, já que f(s,x) é localmente Lipchitz com respeito ao segundo argumento. Assim, escolhendo $T_0 < (2C)^{-1}$ obtemos a condição de contração. Aplicando o teorema do ponto fixo, segue que existe única aplicação $x \in F_0$ tal que $\Phi(x) = x$. Isso, por sua vez se corresponde a única solução $x : [-T_0, T_0] \longrightarrow B_\delta(x_0)$ que tal que x'(t) = f(t,x).

1.5. **Versão holomorfa.** Um argumento análogo pode ser aplicado para mostrar o caso holomorfo:

Proposição 1. Sejam $U := \{(z,w) \in \mathbb{C} \times \mathbb{C}^n \mid |z-z_0| < \varepsilon \quad e \quad |w-w_0| < \delta\}$ $e \mid f : U \longrightarrow \mathbb{C}$ função analítica e limitada. Então, o problema de valor inicial $w' = f(z,w), \ w(z_0) = w_0$ possui única solução analítica definida no disco $D_{\delta_0}(z_0),$ onde $\delta_0 := \inf\{\varepsilon, \delta/M\} \text{ com } M := \sup_{(z,w) \in \overline{U}} |f(z,w)|.$

2. Sistema linear diferencial homogêneo sobre $\mathbb R$

Consideremos agora um sistema diferencial do tipo X'(t) = A(t)X(t), onde A(t) é uma matriz de funções contínuas em um intervalo limitado $I := (t_1, t_2)$. Chamaremos um tal sistema de **sistema linear diferencial homogêneo real.**

Pelo teorema fundamental, fixado $t_0 \in I$ existe única solução $\alpha(t)$ definida em todo o aberto I.

Definição 1. O conjunto de soluções fundamentais em I do sistema homogêneo $X^{'}(t) = A(t)X(t)$ é

$$S(I) := \{\alpha : I \longrightarrow \mathbb{R}^n \mid \alpha \text{ \'e uma solução do sistema} \}.$$

Proposição 2.1. Sejam $t_0 \in I$ e $\alpha_1, \dots, \alpha_m \in S(I)$. Então, $\alpha_1, \dots, \alpha_n$ são linearmente independentes sobre I se e somente se $\alpha_1(t_0), \dots, \alpha_m(t_0)$ são linearmente independentes.

Demonstração. Uma relação do tipo $\sum_j c_j \alpha_j = 0$ em I implica, em particular, uma relação do tipo $\sum_j c_j \alpha_j(t_0) = 0$. Agora, suponha que $\sum_j c_j \alpha_j(t_0) = 0$ para algumas constantes c_j nem todas nulas. Pelo teorema de unicidade, sabemos que

existe única solução em I passando por $\alpha(t_0) := \sum_j c_j \alpha_j(t_0)$. Como 0 é uma solução e $\alpha(t) := \sum_j c_j \alpha_j$ satisfaz a equação diferencial segue que $\alpha(t) = 0$ em I.

Teorema 2.2. S(I) é um \mathbb{R} -módulo de dimensão n.

Demonstração. Pela proposição acima, $\dim_{\mathbb{R}} \mathcal{S}(I) \leq n$. Agora, aplique o teorema de existência em I para as condições iniciais $X_i(t_0) = e_i$, onde e_i é o i-vetor canônico.

Seja $\mathbf{Ab}(\mathbb{R})$ a categoria cujos objetos consistem de abertos de \mathbb{R} com mapas definidos por inclusões. Considere o sistema homogêneo $D_A: X'(t) = A(t)X(t)$ onde A uma matriz de funções contínuas em \mathbb{R} . Defina o funtor $\mathcal{S}_A: \mathbf{Ab}(\mathbb{R}) \longrightarrow \mathbf{Vect}_{\mathbb{R}}$ que a cada aberto U associa

$$S_A(U) := \{ \alpha : U \longrightarrow \mathbb{R}^n \mid \alpha \text{ \'e uma solução do sistema } D_A \}.$$

Proposição 2.3. S_A é um feixe localmente constante de \mathbb{R} -espaços vetoriais de dimensão n.

Demonstração. Pela definição, devemos mostrar que para todo ponto $t \in \mathbb{R}$ existe um aberto U em torno de t tal que $\mathcal{S}_A|_U \cong \mathbb{R}^n$. Mas, isso se segue da teorema anterior.

3. SISTEMA LINEAR HOLOMORFO HOMOGÊNEO

Muitos resultados como no caso \mathbb{R} se estendem para sistemas homogêneos sobre \mathbb{C} , com algumas sutilezas com respeito a extensão de soluções.

Um sistema sistema holomorfo homogêneo definido em $U\subset \mathbb{C}$ consiste em uma equação do tipo

$$X^{'}(z) = A(z)X(z)$$

onde $A(z) \in \mathcal{M}_n(\mathcal{O}_{\mathbb{C}}(U))$. Uma solução do sistema em um aberto $V \subset U$ consiste em uma função $X(z) \in \mathcal{O}_{\mathbb{C}}(U)$ que satisfaz a equação acima. Para simplificar notação denotaremos o sistema diferencial acima no aberto U por $D_A(U)$.

Lema 3.1. Sejam U um aberto conexo e $A(z) \in \mathcal{M}_n(\mathcal{O}_{\mathbb{C}}(U))$. Dado $z_0 \in U$ seja $D(z_0, \delta)$ a maior bola contida em U cetrada em z_0 . Então, dado $x_0 \in \mathbb{C}^n$ existe única função holomorfa $x(z) \in \mathcal{O}_{\mathbb{C}}(D(z_0; \delta))^n$ tal que x(z)' = A(z)x(z) e $x(z_0) = x_0$.

Demonstração. Unicidade: Seja x(z) uma tal solução. Expandindo em série de potência, em torno de z_0 temos que $x(z)' = \sum_n x_n (z-z_0)^n$ para $z \in D(z_0, \delta)$ e expandindo a função A(z) em torno de z_0 temos $A(z) = \sum_m A_m (z-z_0)^m$ em $D(z_0, \delta)$. Substitundo na equação e comparando coeficientes, obtemos uma identidade do tipo

$$(n+1)x_{n+1} = \sum_{i=0}^{n} A_{n-i}x_i$$

e assim, os coeficientes de x(z) unicamente determinados por x_0 . Isso demonstra a unicidade.

Existência: Defina $x(z) := \sum_{n \geq 0} a_n (z - z_0)^n \in \mathbb{C}[[z - z_0]]^n$, onde os coeficientes a_n são definidos indutivamente como acima i.e. $(n+1)a_{n+1} = \sum_{i=0}^n A_{n-i}a_i$, onde $a_0 := x_0$. Vamos mostrar que essa série formal é de fato analítica na região $D(z_0, \delta)$.

Como $\sum_i A_i (z-z_0)^i$ é convergente, segue que $\lim A_i = 0$ e dai, dado $\varepsilon > 1/\delta$ existe n_0 tal que $n > n_0$ implica $|A_n| < \varepsilon$. Escolha c > 0 tal que $c\varepsilon^n > |A_n|$ para todo $n \ge 0$. Assim, obtemos $(n+1)|a_{n+1}| \le \sum_{i=0}^n |A_{n-i}||a_i| \le c \sum_i \varepsilon^{n-i} |a_i|$. Defina uma sequencia $\{c_n\}$ pondo

- (i) $c_0 := |x_0|$;
- (ii) $(n+1)c_{n+1} = c \sum_{j=0}^{n} \varepsilon^{n-j} c_j$.

Note que $2|a_1| \le |a_0|c\varepsilon = c_0c\varepsilon = 2c_1 \Longrightarrow |a_1| \le c_1$ e por recorrencia segue que $|a_i| \le c_i$ para todo i. Seja $g(z) := \sum_j c_j z^j \in \mathbb{C}[[z]]$.

A série converge para $|z| < 1/\varepsilon$. De fato, da fórmula $(n+1)c_n = c\sum_{k=0}^n \varepsilon^{n-k}c_k = c\varepsilon\sum_{k=0}^{n-1}\varepsilon^{n-1-k}c_k + cc_n = (n\varepsilon+c)c_n \Longrightarrow c_{n+1}/c_n = (\varepsilon+c/n)/(1+1/n)$ e segue que para n >> 0 $|c_{n+1}/c_n||z| < 1$, se $|z| < 1/\varepsilon$. Como ε foi escolhido de forma arbitrária (módulo a condição $\varepsilon > 1/\delta$) segue que g(z) tem raio de convergencia pelo menos δ e dai segue que a série $\sum_i a_i (z-z_0)^i$ na região $D(z_0,\delta)$.

Teorema 3.2. Sejam U um aberto simplesmente conexo em \mathbb{C} e $A(z) \in \mathcal{M}(\mathcal{O}_{\mathbb{C}}(U))$ matriz de funções holomorfas em \mathbb{C} . Então, existe única solução definida em U do sistema $D_A(U)$.

Demonstração. (ver [1][Theorem 1]) Sejam $z \in U$ e $\alpha : [0,1] \longrightarrow U$ uma curva conectando z e z_0 . Como $\alpha([0,1])$ é compacto temos que existe $r \in \mathbb{R}_{>0}$ tal que todos os discos de raio r com centro em $\alpha([0,1])$ estão em U. Seja $A_1, ..., A_k$ uma família de discos de raio r/2 tal que o centro z_i de A_i está em A_{i-1} . Pela lema acima, podemos encontrar S_1, \dots, S_k soluções do sistema nos discos tais que

- (i) $S_1(z_0) = Y_0$.
- (ii) S_i é uma continuação analítica da solução S_{i-1} para $j=2,\cdots,k$.

Assim, S_1 admite continuação analítica ao longo da curva α . Como U é simplesmente conexo, pelo teorema de monodromia [1][Theorem 67, pag 225] segue que S_1 se extende a uma função holmorfa de U em \mathbb{C}^n que é a solução procurada.

Definição 2. Sejam U um aberto simplesmente conexo e $X(z) = [X_1(z), \dots, X_n(z)]$ uma matriz de funções holomorfas definias em U. Dizemos que X(z) é uma solução fundamental do sistema $D_A(U)$ se

- As colunas de X(z): $X_1(z),...,X_n(z)$ são soluções do sistema.
- $X(z) \in GL_n(\mathcal{O}_{\mathbb{C}}(U)).$

O próximo teorema estabelece que a condição $X(z) \in GL_n(\mathcal{O}_{\mathbb{C}}(U))$ é equivalente à $X(z_0) \in GL_n(\mathbb{C})$ para algum $z_0 \in U$.

Teorema 3.3. Seja X(z) uma matriz de função holomorfas definida em U e satisfazendo X'(z) = A(z)X(z) em U. Seja $d(z) := \det X(z)$ e t(z) := trX(z). Então, para todo $z_0 \in U$

$$d(z) = d(z_0) \exp(\int_{z_0}^z t(v) dv) \qquad em \ U.$$

Demonstração. ver [1][Wronski's Identity]

Corolário 3.4. det $X(z) \in \mathcal{O}_{\mathbb{C}}(U)^* \iff \det X(z_0) \in \mathbb{C}^*$ para algum $z_0 \in U$.

Observação. Seja U um aberto simplesmente conexo de \mathbb{C} e considere

$$S(U) := \{ \alpha : U \longrightarrow \mathbb{C}^n \mid \alpha \text{ \'e solução de } D_A(U) \}.$$

Temos que S(U) é um \mathbb{C} -módulo de dimensão n. De fato, fixe $z_0 \in U$. Pelo teorema de existência e unicidade, existe únicas soluções $\alpha_1, ..., \alpha_n \in S(U)$ tais que $\alpha_i(z_0) = E_i$, o i-esimo vetor da base canônica. Assim, pelo corolário acima $\alpha_1, ..., \alpha_n$ é \mathbb{C} -linearmente independente de modo que $\dim S(U) \geq n$. Não é dificil ver, como visto no caso \mathbb{R} , que $\dim S(U) \leq n$ de modo que $\dim S(U) = n$.

Teorema 3.5. O feixe S é um feixe locamente constante de \mathbb{C} -módulos de posto n.

Demonstração. Devemos provar que para qualquer $z_0 \in U$ existe uma vizinhança V de z_0 tal que $S|_V \cong \mathbb{C}^n$. Agora, como qualquer ponto $z_0 \in U$ possui uma vizinhança simplesmente conexa obtemos o resultado da observação anterior.

Parte 2. Redução módulo primos

4. Redução módulo
$$p$$

Seja $A(t) \in \mathcal{M}_n(\mathbb{Q}(t))$ matriz racional a coeficientes em \mathbb{Q} e considere o sistema de equações diferenciais

$$X^{'}(t) = A(t)X(t) \tag{*}$$

Definição 3. (cf.[10]) A *n*-curvatura de (*) é a matriz $A_n(t)$ definida recursivamente pondo

- $A_0(t) = id_n;$
- $A_{n+1}(t) = A'_n(t) + A_n(t)A(t)$.

Definição 4. Seja p um inteiro primo. Diremos que p é um primo de boa redução da equação (*) se existe $B(t) \in \mathcal{M}_n(\mathbb{Z}_{(p)}[t])$ tal que $B(t) \otimes \mathbb{Q} = A(t)$. Aqui, $\mathbb{Z}_{(p)}$ é a localização de \mathbb{Z} com respeito ao sistema multiplicativo $S = \mathbb{Z} - p\mathbb{Z}$.

Seja K um corpo arbitrário e $D:K\longrightarrow K$ uma derivação. Chamaremos o par (K,D) de um corpo diferencial.

Definição 5. Uma equação diferencial linear em (K, D) consiste em uma equação do tipo

$$E: D^{n} + a_{n-1}D^{n-1} + \cdots + a_{1}D + a_{0}D^{0}$$

onde $a_i \in K$. Uma solução de E consiste em um elemento $f \in K$ tal que E(f) = 0.

Um resultado que usaremos implicitamente no teorema abaixo é a seguinte proposição $\,$

Proposição 2. Seja (K,d) um corpo diferencial e L/K uma extensão algébrica do tipo Galois. Então existe única derivação $D:L\longrightarrow L$ tal que $D|_K=d$.

Demonstração. Escreva $L=k(\alpha)$ para algum elemento $\alpha\in L$. Agora, seja $m_{\alpha}(T)=T^n+a_{n-1}T^{n-1}+\cdots+a_0\in k[T]$ o polinômio minimal de α . Considerando a identidade $m_{\alpha}(\alpha)=0$ vemos que se uma tal derivação $D:L\longrightarrow L$, extendendo d, existe então aplicando D resulta:

$$0 = m'_{\alpha}(\alpha)D(\alpha) = -(da_0 + da_1\alpha + \dots + da_{n-1}\alpha^{n-1})$$

e daí,
$$D(\alpha) = -m'(\alpha)^{-1}(da_0 + da_1\alpha + \dots + da_{n-1}\alpha^{n-1}).$$

Isso demonstra em particular, que D é única, se existir. Agora, defininido D pela regra acima, não é difícil verificar que $D:L\longrightarrow L$ é uma derivação extendendo d.

Exemplo. Sejam $K = \mathbb{F}_5(t)$, $d = \frac{\partial}{\partial t} e \ a(t) = \frac{1}{t^2+1} \in \mathbb{F}_5(t)$. Considere a equação $E: d - a(t)d^0 = 0$.

Defina,

$$f(t) := \frac{-1 + t^2 - t^4 + t^6 - t^8}{-t^8 - t^7 + 3t^6 - 3t^5 - 2t^3 + 3t^2 + t - 1}$$

Um cálculo elementar mostra que E(f) = 0.

Observação. Na demonstração do próximo teorema, ficará claro como encontrar uma solução de E mediante a(t), algo que foi usado implicitamente aqui.

5. p -curvatura e existência de soluções

Teorema 5.1. Seja $p \in \mathbb{Z}$ um primo de boa redução da equação acima e considere o sistema (*) módulo p. As seguintes afirmações são equivalentes

- (i) O sistema módulo p possui uma base de soluções algébricas sobre $\mathbb{F}_p(t)$.
- (ii) O sistema módulo p possui uma base de soluções em $\mathbb{F}_p(t)$.
- (iii) O sistema admite uma base de soluções em $\mathbb{F}_p((t))$.
- (iv) $A_p(t) \mod p = 0$.

Demonstração. A implicação $(i) \Longrightarrow (ii)$ demonstra-se utilizando um argumento do tipo Galois: Seja $K|\mathbb{F}_p(t)$ uma extensão finita tal que todas as soluções da equação diferencial estão definidas sobre K. Sem perda de generalidade podemos supor que $K/\mathbb{F}_p(t)$ é Galois. Sejam, $f_1, ..., f_n \in K$ uma base de soluções. Então, se para cada i definirmos $g_i := \sum_{\sigma \in G_{K/\mathbb{F}_p(t)}} f_i^{\sigma}$ segue que $g_1, ..., g_n$ é uma base de soluções em $\mathbb{F}_p(t)$. A recíproca $(ii) \Longrightarrow (i)$ é evidente.

- $(ii) \Rightarrow (iii)$: trivial.
- $(iii) \Rightarrow (iv)$: Observe que se X(t) é uma solução de (*) temos que $X^{(n)}(t) = A_n(t)X(t)$, como pode ser visto por indução. Aplicando isso, e usando o fato de que $X^{(p)}(t) = 0 \mod p$ segue que $A_p(t) = 0 \mod p$.
- $(iv) \Rightarrow (ii)$: Suponha que $A_p(t) = 0 \mod p$. Em particular, $A_{p-1}(t) = -A_{p-1}(t)A(t)$. Vamos mostrar que existe uma base de soluções para o sistema diferencial em $\mathbb{F}_p(t)$. Para isso, defina

$$Z(t) := \left[\sum_{j=0}^{p-1} \frac{(-1)^j t^j A_j}{j!} \right]^{-1} \in \mathcal{M}_n(\mathbb{F}_p(t)).$$

Um cálculo elementar mostra que Z'(t) = Z(t)A de modo que as colunas da matriz Z(t) formam uma base de soluções do sistema módulo p.

Exemplo. Considere a equação $y' = (1/t^2 + 1)y$ sobre $\mathbb{Q}(t)$ e tome p = 5. Calculando $A_5(t)$ e obtemos a fórmula

$$A_5(t) = \frac{25 - 240t^2 + 120t^4}{t^{10} + 5t^8 + 10t^6 + 10t^4 + 5t^2 + 1}.$$

Pode-se verificar que $A_5(t) = 0 \mod 5$ e a proposição acima garante que existe base de soluções sobre $\mathbb{F}_5(t)$.

Observação. Dada uma equação diferencial do tipo y' = a(x)y, com $a(t) \in \mathbb{Q}(t)$ existe uma fóruma fechada para a p-curvatura. De fato, $A_p = a^{(p-1)} - a^p \mod p$ (cf.[10]).

Consideremos agora o caso n=1 e o sistema y'=a(x)y para $a(x)\in\mathbb{Q}(x)^*$.

Teorema 5.2 (Honda). São equivalentes

- (i) Existe solução algébrica sobre $\mathbb{Q}(x)$.
- (ii) Existe solução mod p para quase todo primo p.
- (iii) Seja $\sigma := adx \in \Omega^1_{\mathbb{Q}(x)/\mathbb{Q}}$. Então todos os pólos de σ , incluindo ∞ , têm ordem 1 e os resíduos estão em \mathbb{Q} .

Demonstração. A implicação $(i) \Longrightarrow (ii)$ é trivial. Agora, suponha que σ satisfaz (iii). Seja $m \in \mathbb{N}$ tal que $m\sigma$ tenha todos os residuos em \mathbb{Z} e tome $f \in \overline{\mathbb{Q}}(x)$ tal que $df/f = m\sigma$. Então, $f^{1/m}$ é algébrica sobre $\mathbb{Q}(x)$ e satisfaz a equação y' = a(x)y. Assim, $(iii) \Longrightarrow (i)$.

Para mostrar que $(ii) \Longrightarrow (iii)$, usaremos o seguinte fato:

• Sejam K um corpo de número e $r \in K^*$. Suponha que para quasi-todo place $v \in \mathbb{P}(K)$ a redução $\overline{r} \in k_v$ é um elemento do corpo primo de v. Então $r \in \mathbb{Q}$.

Agora, assuma que (ii) vale. Seja K um corpo de número tal que todos os polos de σ estejam em $K \cup \{\infty\}$. Seja v um place de K tal que:

- σ tem boa redução sobre v.
- Os polos de σ são distintos em k_v .
- y' = a(x)y tem solução f não nula em $k_v(x)$.

Escreva $f = \prod_i (x - f_i)^{m_i}$, aumentando k_v se necessário. Então, $df/f = \sum_i \frac{m_i}{x - f_i} dx$ tem polos de ordem no máximo 1 e todos os resíduos estão no corpo primo de k_v . Como isso vale para quese todo place v segue que os resíduos de σ são números algébricos tal que a redução para quasi todo place v é um elemento do corpo primo. Pelo fato acima, segue que os resíduos de σ estão em \mathbb{Q} .

A proposição acima é o caso n = 1 da seguinte (ver [10])

Conjectura 5.3 (Grothendieck-Katz). Seja L(y) o operador diferencial

$$L(y) := y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y + a_0y$$

com $a_i \in \mathbb{Q}(x)$. São equivalentes

- (1) L(y) = 0 possui n-soluções linearmente independentes sobre $\overline{\mathbb{Q}}$ que são algébricas sobre $\mathbb{Q}(x)$.
- (2) Para quasi-todo primo p, a equação obtida por redução módulo p, $L_p(y) = 0$ possui n-soluções linearmente independentes sobre $\mathbb{F}_p(x^p)$ que estão no corpo $\mathbb{F}_p(x)$.

Observação. Mais adiante daremos uma reformulação da conjectura em termos de conexões.

Parte 3. Conexões, curvatura e p-curvatura

Seja k um corpo e X uma variedade algébrica sobre k.

Definição 6. Uma conexão em X consiste em um par (\mathcal{F}, ∇) onde \mathcal{F} é um feixe coerente em X e ∇ é uma aplicação k-linear

$$\nabla: \mathcal{F} \longrightarrow \Omega^1_{X/k} \otimes_{\mathcal{O}_X} \mathcal{F}$$

satisfazendo uma identidade do tipo Leibnitz: para qualquer seções locais $f \in \mathcal{O}_X$ e $s \in \mathcal{F}$ temos $\nabla(fs) = df \otimes s + f \nabla(s)$, onde df denota a imagem de f pelo mapa diferencial $d : \mathcal{O}_X \longrightarrow \Omega^1_{X/k}$.

O núcleo de ∇ é um chamado de feixe das seções horizontais de ∇ e é denotado por \mathcal{F}^{∇} . Diremos que \mathcal{F} é trivial se é gerado como \mathcal{O}_X -módulo por $\mathcal{F}^{\nabla}(X)$.

Dada uma conexão (\mathcal{F},∇) obtemos naturamente mapas em diferenciais de ordem superior

$$\nabla_i: \Omega^i_{X/k} \otimes \mathcal{F} \longrightarrow \Omega^{i+1}_{X/k} \otimes \mathcal{F}.$$

que são definidos pela regra $\nabla_i(\omega \otimes s) = d\omega \otimes s + (-1)^i \omega \wedge \nabla(s)$.

Observação. ∇_i são k-mapas, mas em geral não são \mathcal{O}_X -mapas.

Definição 7. Seja (\mathcal{F}, ∇) um conexão em X. A **curvatura** de ∇ é o mapa $K(\nabla) := \nabla_1 \circ \nabla : \mathcal{F} \longrightarrow \Omega^2_{X/k} \otimes \mathcal{F}$.

Proposição 3. Para i > 0 temos $\nabla_{i+1} \circ \nabla_i(\omega \otimes s) = \omega \otimes K(\nabla)(s)$. Em particular, se (\mathcal{F}, ∇) é uma equação diferencial em X então obtemos um complexo de feixes

$$0 \longrightarrow \mathcal{F} \longrightarrow \Omega^1_{X/k} \otimes \mathcal{F} \longrightarrow \Omega^2_{X/k} \otimes \mathcal{F} \longrightarrow \cdots$$

Demonstração. Temos

$$\nabla_{i+1} \circ \nabla_i (\omega \otimes s) = \nabla_{i+1} (d\omega \otimes s + (-1)^i \omega \wedge \nabla(s)) =$$
$$\nabla_{i+1} (d\omega \otimes s) + (-1)^i \nabla_{i+1} (\omega \wedge \nabla(s)).$$

Pela linearidade, podemos supor $\nabla(s) = \sigma \otimes t$. Daí resulta,

$$\nabla_{i+1}(d\omega \otimes s) = (-1)^{i+1}d\omega \wedge \nabla(s)$$

$$\nabla_{i+1}(\omega \wedge \nabla(s)) = \nabla_{i+1}(\omega \wedge \sigma \otimes t) = d(\omega \wedge \sigma) \otimes t + (-1)^{i+1}\omega \wedge \sigma \wedge \nabla(t)$$

Daí vem,

$$\nabla_{i+1} \circ \nabla_i (\omega \otimes s) = (-1)^{i+1} d\omega \wedge \nabla(s) + (-1)^i (d(\omega \wedge \sigma) \otimes t + (-1)^{i+1} \omega \wedge \sigma \wedge \nabla(t))$$

Temos $d(\omega \wedge \sigma) \otimes t = d\omega \wedge \sigma \otimes t + (-1)^i \omega \wedge d\sigma \otimes t$. Substituindo na formula acima acima e realizando as devidas simplificações obtemos $\nabla_{i+1} \circ \nabla_i (\omega \otimes s) = \omega \wedge K(s)$.

Observação. $K \notin \mathcal{O}_X$ -linear. De fato, sejam $f \in \mathcal{O}_X$ e $s \in \mathcal{F}$. Então, $K(fs) = \nabla_1 \circ \nabla(fs) = \nabla_1 (ds \otimes s + f \nabla(s)) = -df \otimes \nabla(s) + df \otimes s + f \nabla(\nabla(s)) = fK(s)$.

Definição 8. Dizemos que (\mathcal{F}, ∇) é integrável se $K(\nabla) = 0$. Uma **equação diferencial** em uma variedade algébrica X/k é uma conexão integravel em X.

Observação. A escolha para o nome equação diferencial em X/k é justificada pelo seguinte caso: Seja y'=a(z)y uma equação diferencial em \mathbb{C} e suponha que $a(z) \in \mathcal{M}(\mathbb{P}^1)$ com polos $\{a_1, \cdots, a_n\}$. Podemos definir naturalmente uma conexão holomorfa em $U := \mathbb{P}^1_{\mathbb{C}} - \{a_1, \cdots, a_n\}$ pondo:

$$\nabla_a:\mathcal{O}_U\longrightarrow\Omega^1_U\otimes\mathcal{O}_U$$

que explicitamente é dada por $\nabla_a(f) := df + afdt$ para qualquer $f \in \mathbb{C}(t)$ regular em U. Temos que $(\mathcal{O}_U, \nabla_a)$ é uma equação diferencial em $U \subset \mathbb{P}^1_{\mathbb{C}}$.

Exemplo. Seja $\mathcal{F} = \mathcal{O}_X$ e $\nabla := d + \omega$ para algum $\omega \in \Omega_{X/k}$. Então, (\mathcal{O}_X, ∇) é uma equação diferencial em X se e somente se ω é fechada. De fato, usando as definições temos que $K(\nabla) = d\omega$

Seja $D \in \mathbf{Der}_k(\mathcal{O}_X)$ uma k-derivação e denote por \overline{D} o \mathcal{O}_X -mapa correspondente em $\mathbf{Hom}_{\mathcal{O}_X}(\Omega^1_{X/k},\mathcal{O}_X)^1$. Obtemos assim um mapa de k-feixes $\Omega^1_{X/k}\otimes\mathcal{F}\longrightarrow\mathcal{F}$ que associa $\omega\otimes s\mapsto \overline{D}(\omega)s$. Isso determina uma k-mapa

$$\mathcal{F} \longrightarrow \Omega^1_{X/k} \otimes \mathcal{F} \longrightarrow \mathcal{F}: \qquad s \mapsto (\overline{D} \otimes id) \nabla(s).$$

e por conseguinte uma mapa de k-feixes

$$\psi_{\nabla}: \mathbf{Der}_k(\mathcal{O}_X) \longrightarrow \mathbf{End}_k(\mathcal{F}): \qquad D \mapsto (\overline{D} \otimes id) \circ \nabla$$

Definição 9. Dizemos que ψ_{∇} é um k-mapa de Lie se para quaisquer $D_1, D_2 \in \mathbf{Der}_k(\mathcal{O}_X)$ vale

$$\psi_{\nabla}([D_1, D_2]) = [\psi_{\nabla}(D_1), \psi_{\nabla}(D_2)].$$

Exemplo. Vamos descrever o mapa acima localmente. Seja X = Spec(A) para A uma k-álgebra lisa de dimensão d (e.g. $A = k[X_1, ..., X_d]$). Nesse caso, existem $s_1, ..., s_d \in A$ tais que $\Omega_{A/k} = Ads_1 \oplus \cdots \oplus Ads_d$.

Sejam $\partial_1, \dots, \partial_d$ elementos formando uma A-base de $Der_k(A)$ dual a ds_1, \dots, ds_d . Seja M um A-módulo livre equipado com uma estrutura diferencial $\nabla: M \longrightarrow \Omega_{A/k} \otimes M$. Sejam e_1, \dots, e_n elementos de M formando uma A-base. Dado $D = \sum_i b_i \partial_i \in Der_k(A)$ consideremos o A-mapa $i_D: \Omega_{A/k} \longrightarrow A$ que associa $\sum_i a_i ds_i \mapsto \sum_i a_i D(ds_i) = \sum_i a_i b_i$. Temos

$$\psi_{\nabla}: Der_k(A) \longrightarrow End_k(M): D \mapsto i_D \circ \nabla.$$

$$Aqui, \nabla(e_k) = \sum_{i,j} a_{i,k}^j ds_i \otimes e_j.$$
 $Dai, \psi_{\nabla}(D)(e_k) = i_D(\sum_{i,j} a_{i,k}^j ds_i \otimes e_j) = \sum_{i,j} a_{i,k}^j b_i e_j.$

Proposição 4. Sejam (\mathcal{F}, ∇) uma conexão em uma variedade algébrica X/k e ψ o mapa definido acima. Então,

 (\mathcal{F}, ∇) é uma equação diferencial em $X \Longleftrightarrow \psi_{\nabla}$ é um k-mapa de Lie

Isso é consequência direta do seguinte

Lema 1. Para quaisquer $D_1, D_2 \in \mathbf{Der}_k(\mathcal{O}_X)$ temos

$$(D_1 \wedge D_2 \otimes id) \circ \nabla_1 \circ \nabla = -\overline{[D_1, D_2]} \otimes id \circ \nabla + \overline{[D_1]} \otimes id \circ \nabla, \overline{D}_2 \otimes id \circ \nabla$$

Demonstração.É suficiente considerar o caso local onde X=Spec(A), para alguma k-'algebra lisa.

Seja M um A-módulo livre com base $\{e_1,...,e_n\}$ equipado com uma estrutura diferencial $\nabla: M \longrightarrow M \otimes \Omega^1_{A/k}$. Sejam $X_1,...,X_n \in A$ tais que $dX_1,...,dX_n$ formam uma base para $\Omega^1_{A/k}$ como A-módulo. Fixe $\partial_{X_1},...,\partial_{X_n}$ base de T_X dual a $\{dX_1,...,dX_n\}$.

Sejam $D_1 = \sum_i \alpha_{1,i} \partial_{X_i}$ e $D_2 = \sum_i \alpha_{2,i} \partial_{X_i}$ duas derivações. Se $\nabla(e_k) = \sum_{i,j} a_{i,k}^j dX_i \otimes e_j$ não é difícil verificar que vale as seguintes fórmulas:

$$(i_{D_1 \wedge D_2})(K(e_k)) = \sum_{i,j,p} \partial_{X_p} (a_{i,k}^j)(\alpha_{p,1}\alpha_{i,2} - \alpha_{p,2}\alpha_{1,i})e_j + \sum_{i,j,p,h} a_{i,k}^j a_{p,j}^h (\alpha_{1,p}\alpha_{2,i} - \alpha_{2,p}\alpha_{1,i})e_h$$
$$i_{[D_1,D_2]}(\nabla(e_k)) = \sum_{i,j,p} a_{i,k}^j [\alpha_{1,p}\partial_{X_p}\alpha_{2,i} - \alpha_{2,p}\partial_{X_p}\alpha_{1,i}]e_k.$$

¹relembre que existe um isomorfismo natural de \mathcal{O}_X -módulos $\mathbf{Der}_k(\mathcal{O}_X) \cong \mathbf{Hom}_{\mathcal{O}_X}(\Omega^1_{X/k}, \mathcal{O}_X)$

Defina $T_i := i_{D_i} \circ \nabla$ para $i \in \{1, 2\}$. Então temos

$$(T_{1} \circ T_{2})(e_{k}) = \sum_{i,j,p} [\alpha_{2,i}\partial_{X_{p}}a_{i,k}^{j} + a_{i,k}^{j}\partial_{X_{p}}\alpha_{2,i}]\alpha_{1,p}e_{j} + \sum_{p,h} a_{p,j}^{h}a_{i,k}^{j}\alpha_{2,i}\alpha_{1,p}e_{h}$$

$$(T_{2} \circ T_{1})(e_{k}) = \sum_{i,j,p} [\alpha_{1,i}\partial_{X_{p}}a_{i,k}^{j} + a_{i,k}^{j}\partial_{X_{p}}\alpha_{1,i}]\alpha_{2,p}e_{j} + \sum_{p,h} a_{p,j}^{h}a_{i,k}^{j}\alpha_{1,i}\alpha_{2,p}e_{h}$$

Daí,

$$\begin{split} [T_1,T_2](e_k) &= \sum_{i,j,p} [(\alpha_{1,i}\alpha_{2,p} - \alpha_{2,i}\alpha_{1,p})\partial_{X_p}(a^j_{i,k})]e_j + \\ &\sum_{i,j,p} [a^j_{i,k}\partial_{X_p}(\alpha_{1,i})\alpha_{2,p} - a^j_{i,k}\partial_{X_p}(\alpha_{2,i})\alpha_{i,p}]e_j + \sum_{i,j,h,p} a^h_{p,j}a^j_{i,k}(\alpha_{2,i}\alpha_{1,p} - \alpha_{1,i}\alpha_{2,p})e_h. \end{split}$$
 Em particular,
$$[T_1,T_2](e_k) - i_{[D_1,D_2]}(\nabla(e_k)) = (i_{D_1 \wedge D_2})(K(e_k)) \text{ para todo } k. \end{split}$$

6. Algumas construções

Seja X uma variedade lisa definida sobre k. Denotaremos por $\mathbf{E.D}(X/k)$ a categoria com

- (i) $Obj(\mathbf{E.D}(X/k)) := equações diferenciais em X$
- (ii) Dados (\mathcal{F}, ∇) e (\mathcal{F}', ∇') um mapa $f : (\mathcal{F}, \nabla) \longrightarrow (\mathcal{F}', \nabla')$ consiste em \mathcal{O}_X mapa tal que para qualquer $D \in \mathbf{Der}_k(\mathcal{O}_X)$ o seguinte diagrama seja comutativo

$$\begin{array}{ccc}
\mathcal{F} & \xrightarrow{\psi_{\nabla}(D)} \mathcal{F} \\
\downarrow^{f} & f \\
\downarrow^{\psi_{\nabla'}(D)} & \downarrow^{g} \\
\mathcal{G} & \xrightarrow{\psi_{\nabla'}(D)} \mathcal{G}
\end{array}$$

Um mapa $\Phi: \mathbf{Der}_k(\mathcal{O}_X) \longrightarrow \mathbf{End}_k(\mathcal{F})$ é dito um \mathcal{O}_X -mapa Leibnitz se para quaisquer seções locais $f \in \mathcal{O}_X$, $s \in \mathcal{F}$ e derivação $D \in \mathbf{Der}_k(\mathcal{O}_X)$ temos

$$\Phi(fD) = f\Phi(D)$$
 e $\Phi(D)(fs) = D(f)s + f\Phi(D)(s)$.

Lema 6.1. Sejam X uma variedade lisa sobre k e \mathcal{F} um feixe localmente livre em X. Existe uma correspondência 1-1:

 $\{ conex\tilde{o}es\ em\ \mathcal{F} \} \longrightarrow \{ \mathcal{O}_X \text{- mapas Leibniz } \mathbf{Der}_k(\mathcal{O}_X) \longrightarrow \mathbf{End}_k(\mathcal{F}) \}$ que associa $\nabla \mapsto \psi_{\nabla}$.

Demonstração. Seja $\Phi: \mathbf{Der}_k(\mathcal{O}_X) \longrightarrow \mathbf{End}_k(\mathcal{F})$ um mapa \mathcal{O}_X -linear Leibniz. Dada uma seção local $s \in \mathcal{F}$ e $D = \sum_i a_i \partial_i$ definimos $\nabla_{\Phi}(s)(D)$, pondo

$$\nabla_{\Phi}(s)(D) = \Phi(D)(s) \in \mathcal{F}$$

Temos que ∇_{ϕ} é uma conexão: $\nabla_{\phi}(fs)(D) = \Phi(D)(fs) = D(df)s + f\Phi(D)(s)$.

Produto tensorial e Hom: Sejam $E_1 = (\mathcal{F}, \nabla)$ e $E_2 := (\mathcal{G}, \nabla')$ duas equações diferencais em X. O produto tensorial de E_1 por E_2 é o par

$$E_1 \otimes E_2 := (\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}, \nabla^{"})$$

onde para qualquer $D \in \mathbf{Der}_k(\mathcal{O}_X)$ definimos ∇'' pela regra:

$$\psi_{\nabla''}(D)(s \otimes t) := \psi_{\nabla}(D)(s) \otimes t + s \otimes \psi_{\nabla'}(D)(t).$$

A conexão "mapas" de E_1 para E_2 é construída pondo:

$$Hom(E_1, E_2) := (Hom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G}), \nabla^{"})$$

onde para qualquer $D \in \mathbf{Der}_k(\mathcal{O}_X)$ definimos $\nabla^{''}$ pela regra:

$$\psi_{\nabla''}(D)(f) := \psi_{\nabla'}(D) \circ f - f \circ \psi_{\nabla}(D)$$

Os objetos definidos acima são de fato equações diferenciais em X

Proposição 5.
$$E_1, E_2 \in E.D(X/k) \Longrightarrow E_1 \otimes E_2$$
 e $Hom(E_1, E_2) \in E.D(X/k)$.

Demonstração. Vamos mostrar que $E_1 \otimes E_2 \in \mathbf{E.D}(X/k)$. Note que $\psi_{\nabla''}$ é uma conexão. De fato, é suficiente mostrar que o mapa $\psi_{\nabla''}$ é um \mathcal{O}_X -mapa de tipo Leibniz. Para isso, seja D uma derivação e $f \in \mathcal{O}_X$ e $s \otimes t \in \mathcal{F} \otimes \mathcal{G}$ seções locais. Então,

$$\psi_{\nabla''}(D)(f(s \otimes t)) = \psi_{\nabla''}(D)((fs) \otimes t) = \psi_{\nabla}(D)(fs) \otimes t + fs \otimes \psi_{\nabla'}(D)(t) = D(f)s \otimes t + f\psi_{\nabla}(D)(s) \otimes t + fs \otimes \psi_{\nabla'}(D)(t) = D(f)(s \otimes t) + f\psi_{\nabla''}(D)(s \otimes t).$$

Um cálculo similar mostra que $\psi_{\nabla''}$ satisfaz $\psi_{\nabla''}(fD) = f\psi_{\nabla''}(D)$ de modo que $\nabla^{''}$ é uma conexão em $\mathcal{F}\otimes_{\mathcal{O}_X}\mathcal{G}.$ Resta mostrar que $\psi_{\nabla^{''}}$ é um mapa de Lie. Para isso tome D_1, D_2 duas derivações e $s \otimes t$ uma seção local de $\mathcal{F} \otimes \mathcal{G}$. Temos

$$\begin{split} [\psi_{\nabla''}(D_{1}), \psi_{\nabla''}(D_{2})](s \otimes t) &= \\ \psi_{\nabla''}(D_{1})[\psi_{\nabla}(D_{2})(s) \otimes t + s \otimes \psi_{\nabla'}(D_{2})(t)] - \psi_{\nabla''}(D_{2})[\psi_{\nabla}(D_{1})(s) \otimes t + s \otimes \psi_{\nabla'}(D_{1})(t)] &= \\ \psi_{\nabla}(D_{1})(\psi_{\nabla}(D_{2})(s)) \otimes t + s \otimes \psi_{\nabla'}(D_{1})\psi_{\nabla'}(D_{2})(t) \\ &- \psi_{\nabla}(D_{2})(\psi_{\nabla}(D_{1})(s)) \otimes t - s \otimes \psi_{\nabla'}(D_{2})\psi_{\nabla'}(D_{1})(t) \\ &= [\psi_{\nabla}(D_{1}), \psi_{\nabla}(D_{2})](s) \otimes t + s \otimes [\psi_{\nabla'}(D_{1}), \psi_{\nabla'}(D_{2})](t). \end{split}$$

Pela integrabilidade de ∇ e ∇' segue que

$$[\psi_{\nabla''}(D_1), \psi_{\nabla''}(D_2)](s \otimes t) = \psi_{\nabla''}([D_1, D_2])(s \otimes t).$$

6.1. Propriedades funtoriais. Sejam X e Y variedades sobre k e $f:Y\longrightarrow X$ um mapa. Então f induz dois funtores

$$f^*: \mathbf{E.D}(X/k) \longrightarrow \mathbf{E.D}(Y/k)$$
 $(\mathcal{F}, \nabla) \mapsto (f^*\mathcal{F}, f^*\nabla)$
 $f_*: \mathbf{E.D}(Y/k) \longrightarrow \mathbf{E.D}(X/k)$ $(\mathcal{G}, \nabla) \mapsto (f_*\mathcal{G}, \nabla)$

que são contruidos da seguinte forma:

Caso f^* :

(i)
$$f^*\mathcal{F} := f^{-1}\mathcal{F} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X$$

(ii) $f^*\nabla: f^*\mathcal{F} \longrightarrow \Omega^1_{X/k} \otimes_{\mathcal{O}_X} f^*\mathcal{F}$ é o mapa induzido pelo seguinte diagrama

$$f^*\mathcal{F} \longrightarrow \Omega^1_{X/k} \otimes_{\mathcal{O}_X} f^*\mathcal{F}$$
 é o mapa induzido pelo seguinte diag
$$f^*\mathcal{F} \longrightarrow f^*(\Omega^1_{Y/k} \otimes_{\mathcal{O}_Y} \mathcal{F}) \cong f^*\Omega^1_{Y/k} \otimes_{\mathcal{O}_X} f^*\mathcal{F}$$

$$\downarrow^f$$

$$\Omega^1_{X/k} \otimes_{\mathcal{O}_X} f^*\mathcal{F}$$

(i) $f_*\mathcal{G}$ é o $f_*\mathcal{O}_Y$ -módulo que associa $U \mapsto \mathcal{G}(f^{-1}(U))$. Observe que podemos equipar $f_*\mathcal{G}$ com uma estrutura \mathcal{O}_X -módulo via o mapa $f^\#:\mathcal{O}_X\longrightarrow f_*\mathcal{O}_Y$.

(ii) $f_*\nabla: f_*\mathcal{G} \longrightarrow \Omega^1_{X/k} \otimes_{\mathcal{O}_X} f_*\mathcal{F}$ é o mapa que associa $f_*: gs \mapsto d(g) \otimes s + f^{\#}(g)\nabla(s)$ para $g \in \mathcal{O}_X$ e $s \in f_*\mathcal{G}$ seções locais.

Parte 4. Equações diferenciais em geral

7. Variedades sobre C

Seja X uma variedade complexa conexa.

Proposição 6. Seja $p: Y \longrightarrow X$ um homeomorfismo local. Então, Y admite única estrutura de variedade complexa tal que p é um mapa holomorfo.

Demonstração. Seja $P \in Y$ e $f: U \subset X \longrightarrow \mathbb{C}^n$ uma carta sobre Q = f(P). Seja $V \subset U$ tal que $f^{-1}(V) \longrightarrow V$ é um homeomorfismo. Então obtemos uma carta sobre P considerando a composição

$$f|_V \circ p|_{f^{-1}(V)} : f^{-1}(V) \longrightarrow V \longrightarrow \mathbb{C}^n.$$

Definição 10. Seja X uma variedade complexa. Um **sistema local** em X é um feixe \mathcal{F} em X tal que para todo $Q \in X$ existe um aberto U tal que $\mathcal{F}_{|U} = G$ para algum conjunto G.

Definição 11. Seja X uma variedade complexa. Um **sistema local complexo** em X é um feixe \mathcal{F} em X tal que para todo $Q \in X$ existe um aberto U tal que $\mathcal{F}_{|U} = G$ para algum \mathbb{C} -espaço vetorial G com dim \mathbb{C} $G < \infty$.

Como estamos assumindo que X é conexa, dado um sistema local complexo \mathcal{F} faz sentido em falar de posto de \mathcal{F} . Mais precisamente, fixe $Q \in X$ e seja U um aberto tal que $\mathcal{F}|_U = G \cong \mathbb{C}^n$. Definimos $\mathbf{rank}(\mathcal{F}) := n$.

Nessa seção estaremos interessados nas seguintes categorias:

• Cov(X): Um objeto consiste de um recobrimento $f:Y\longrightarrow X$. Dados dois recobrimentos Y/X e Z/X um mapa entre eles consiste em uma aplicação continua $f:Y\longrightarrow X$ tal que o digrama abaixo é comutativo

$$\begin{array}{ccc} Y & \xrightarrow{f} & Z \\ & \searrow & \downarrow \\ & & X \end{array}$$

- $\mathbf{Fib}_p(X)$: Fixado $p \in X$, $\mathbf{Fib}_p(X)$ consiste na categoria cujos objetos são conjuntos equipados com uma $\pi_1(X,p)$ -ação à esqueda e morfismos sendo mapas de $\pi_1(X,p)$ -conjuntos.
- A_X : Objetos consistem em sistemas locais em X. Morfismos são mapas estre feixes.
- $\mathcal{A}_X(\mathbb{C})$: Objetos consistem em sistemas locais complexos em X. Morfismos são mapas de \mathbb{C} -feixes.

Sejam \mathcal{A} e \mathcal{B} duas categorias e $F: \mathcal{A} \longrightarrow \mathcal{B}$ um funtor. Relembre que F é uma equivalência de categorias se para todo objeto $B \in \mathcal{B}$ existe $A \in Obj(\mathcal{A})$ tal que F(A) = B e se $Hom_{\mathcal{A}}(A, A') \cong Hom_{\mathcal{B}}(F(A), F(A'))$ para quaisquer objetos A, A' em \mathcal{A} .

Teorema 7.1. Existe uma equivalência de categorias

$$\mathcal{A}_X \cong \mathbf{Cov}(X) \cong \mathbf{Fib}_p(X).$$

Demonstração. Daremos um esboço. Um argumento completo pode ser encontrado no livro [9][Theorem 2.3.4, Theorem 2.5.9]. Sejam $f: Y \longrightarrow X$ um recobrimento e $p \in X$. Pela teoria geral, sabemos que dado $[\sigma] \in \pi_1(X,p)$ e $q \in f^{-1}(p)$ existe um único levantamento, módulo homotopia, de σ à Y, denotado por $\overline{\sigma}$, tal que $\overline{\sigma}(0) = q$. Isso determina uma ação de $\pi_1(X,p)$ na fibra $f^{-1}(p)$, pondo $[\sigma], q := \overline{\sigma}(1)$.

Agora, dado uma sistema local \mathcal{F} de \mathbb{C} -módulos obtemos um recobrimento de X, considerando o espaço etale associado ao feixe \mathcal{F} que é explicitamente construido da seguinte forma:

A nível de conjuntos é $X_{\mathcal{F}} := \coprod_{P \in X} \mathcal{F}_P$. Observe que obtemos naturalmente um mapa projeção: $\pi_{\mathcal{F}} : X_{\mathcal{F}} \longrightarrow X$ que associa $\langle q, s_q \rangle \mapsto q$. Uma seção $s \in \mathcal{F}(U)$ naturalmente induz uma seção do mapa $\pi_{\mathcal{F}}$ restrita a $\overline{s} : U \ni q \mapsto s_q$. Equipamos $X_{\mathcal{F}}$ com a topologia forte exigindo que para todo aberto U e seção $s \in \mathcal{F}(U)$ a seção induzida $\overline{s} : U \longrightarrow X_{\mathcal{F}}$ seja continua.

Observação. Seja X uma variedade complexa e considere o functor covariante

$$F: \operatorname{Cov}(X) \longrightarrow \operatorname{Fib}_p(X) \qquad (f: Y \longrightarrow X) \mapsto f^{-1}(p)$$

Pode-se provar que F é funtor representável. O objeto que o representa, único módulo isorfismo, é chamado de recobrimento universal de X.

Definição 12. Seja Gum grupo. Uma $\mathbb{C}\text{-representação finita é um homomorfismo de grupos$

$$\Phi: G \longrightarrow \mathbf{Aut}_{\mathbb{C}}(\mathbb{C}^n)$$

para algum $n \in \mathbb{N}$. Um morfismo entre duas \mathbb{C} -representações $\Phi_1 : G \longrightarrow \mathbf{Aut}_{\mathbb{C}}(\mathbb{C}^n)$, $\Phi_2 : G \longrightarrow \mathbf{Aut}_{\mathbb{C}}(\mathbb{C}^m)$ é um mapa \mathbb{C} -linear $f : \mathbb{C}^n \longrightarrow \mathbb{C}^m$ tal que o digrama

$$\mathbb{C}^n \xrightarrow{f} \mathbb{C}^m$$

$$\downarrow \Phi_1 \qquad \Phi_2 \downarrow$$

$$\mathbb{C}^n \xrightarrow{f} \mathbb{C}^m$$

é comutativo i.e. $f \circ \Phi_1(g) = \Phi_2(g) \circ f$ para todo $g \in G$. Denote por $\mathbf{Rep}(G)$ a categoria de \mathbb{C} -representações finitas com morfismos definidos como acima.

Corolário 7.2. Seja X uma variedade complexa. Existe uma equivalência de categorias

$$\mathcal{A}_X(\mathbb{C}) \cong \mathbf{Rep}(\pi_1(X))$$

Demonstração. Seja \mathcal{F} um sistema local de \mathbb{C} -módulos e $P \in X$. Pelo mapa que realiza a equivalência $\psi : \mathcal{A}_X \cong \mathbf{Fib}_p(X)$ sabemos que ψ leva \mathcal{F} em $\mathcal{F}_P \cong \mathbb{C}^N$. Assim, dar um sistema local de \mathbb{C} -módulos é equivalente a dar um \mathbb{C} -espaço vetorial de dimensão finita equipado com uma ação de $\pi(X)$ i.e. uma representação finita de $\pi(X)$.

Vejamos um pequeno exemplo:

Exemplo. Sejam R >> 1 real e U := D(0,R). Defina $U^* := U - \{0\}$ e seja $f \in \mathcal{M}(U)$ holomorfa em U^* com polo em z = 0. Vamos descrever a monodromia

baseada em z:=1 i.e. imagem do mapa $\Phi:\pi_1(U^*,1)\longrightarrow GL_1(\mathcal{F}_1)$ onde \mathcal{F} é o feixe de soluções associado a equação diferencial

$$y' = fy$$
.

Como $\pi_1(U^*,1) = \mathbb{Z}[\gamma]$ onde $\gamma:[0,1] \longrightarrow U^*$ é o caminho que associa $t \mapsto \exp(2\pi t)$, é suficiente definir $\Phi([\gamma])$. Dado $s \in \mathcal{F}_1$ temos que $\Phi([\gamma])(s) = ms$ é a continuação analítica de s ao longo do caminho γ . Agora, $U^* = U_0 \cup U_1$, onde $U_0 := \{z \in U^* \mid im(z) \notin (0,\infty)\}$ e $U_1 := \{z \in U^* \mid im(z) \notin (-\infty,0)\}$. Temos $U_0 \cap U_1 = V_+ \coprod V_-$ onde $V_+ = \{z \in U^* \mid re(z) > 0\}$ e $V_- = \{z \in U^* \mid re(z) < 0\}$. Agora, U_i simplesmente conexo implica que existe $g_i \in \mathcal{O}(U_i)$, primitiva para f em U_i . Como g_0 e g_1 diferem por uma constante cada componente conexa de $U_0 \cap U_1$, podemos supor que $g_0 = g_1$ em V_- . Agora, fixe $\exp(g_1)$ uma base para soluções em \mathcal{F}_1 . Então, realizando a continuação analítica ao longo de γ obtemos $m \exp(g_0)$, para algum $m \in \mathbb{C}$. Como a continuação analítica envolve a percorrer cada componente conexa de $U_0 \cap U_1$, obtemos $m \exp(g_0) = \exp(g_1)$. Em particular, avaliando em z = 1, resulta $m \exp(g_0(1)) = \exp(g_1(1))$. Daí, $m = \exp(g_1(1) - g_0(1))$

$$= \exp(g_1(1) - g_1(-1) + g_0(-1) - g_0(1)) = \exp(\int_{\gamma} f) = \exp(2\pi i \operatorname{Res}_0(f)).$$

Observação. No exemplo acima vemos que a imagem da representação associada a equação diferencial y' = fy é finita se e somente se $Res_0(f) \in \mathbb{Q}$ se e somente se $Res_0(f) \in \mathbb{F}_p$ para quase-todo primo p, onde $Res_0(f)$ denota a redução módulo p de $Res_0(f)$.

O principal teorema da seção é o seguinte

Teorema 7.3. (Correspondência de Riemann-Hilbert) Seja X uma variedade complexa. Então, existe uma equivalência de categorias²

$$\mathbf{E.D.A}(X/\mathbb{C}) \cong \mathcal{A}_X(\mathbb{C}) \qquad (\mathcal{F}, \nabla) \mapsto \mathcal{F}^{\nabla}.$$

onde \mathcal{F}^{∇} é o feixe que a cada aberto $U \subset X$ associa

$$U \mapsto \mathcal{F}^{\nabla}(U) := \{ s \in \mathcal{F}(U) \mid \nabla(s) = 0 \}.$$

A aplicação que associa um sistema local de $\mathbb C$ -módulos a uma equação diferencial analítica em X pode ser descrita explicitamente pondo

$$\mathcal{F} \mapsto \mathcal{F}_X := \mathcal{F} \otimes_{\mathbb{C}} \mathcal{O}_X.$$

Devemos provar que \mathcal{F}^{∇} é um sistema local e que $\mathcal{F}^{\nabla} \otimes_{\mathbb{C}} \mathcal{O}_X \cong \mathcal{F}$. A prova do teorema acima apresentada aqui segue de perto a prova contida em [?]. Relembramos inicialmente algumas generalidades sobre distribuições em variedades complexas.

Definição 13. Seja X uma variedade complexa. Uma distribuição holomorfa \mathcal{D} de dimensão $d \leq \dim X$ em X consiste em uma coleção de \mathbb{C} -espaços $\mathcal{D} = \{\mathcal{D}_P\}_{P \in X}$ com $\mathcal{D}_P \subset T_{X,P}$ um \mathbb{C} -subespaço de dimensão d que varia de holomorficamente no seguinte sentido:

Para cada $P \in X$ existe uma vizinhaça U de P e campos holomorfos $v_1, ..., v_d \in T_X(U)$ tais que $\mathcal{D}_P = \langle v_{1,P}, ..., v_{d,P} \rangle$ para todo $P \in U$, onde $v_{i,P}$ denota o germe de v_i em torno de P.

 $^{^2}$ para X uma variedade complexa, denotaremos por $\mathbf{E.D.A}(X/\mathbb{C})$ a categoria cujos objetos são equações diferenciais analíticas em X.

Definição 14. Seja X uma variedade complexa e \mathcal{D} uma distribuição em X. Seja $v \in T_X(X)$. Dizemos que $v \in \mathcal{D}$ se para todo $P \in X$ temos que $v \in \mathcal{D}_P$.

Uma distribuição holomorfa \mathcal{D} é dita **integrável** se $[v_1, v_2] \in \mathcal{D}$ para quaisquer $v_1, v_2 \in \mathcal{D}$.

Definição 15. Seja $Y \subset X$ uma subvariedade analítica de dimensão d e \mathcal{D} uma distribuição holomorfa em X de dimensão d. Dizemos que Y é uma variedade integral da distribuição \mathcal{D} se para cada $P \in Y$ temos $T_{Y,P} = \mathcal{D}_P$.

Teorema 7.4. (Frobenius) Seja X uma variedade complexa e \mathcal{D} uma distribuição holomorfa integrável de dimensão d em X. Então para cada $P \in X$ existe uma única subvariedade integral de \mathcal{F} passando por P.

Exemplo. Seja $X := \mathbb{C}^2 - \{(0,0)\}$ e considere o campo holomorfo definido pondo

$$v := X\partial_X + Y\partial_Y \in T_X$$

Para cada $P = (a, b) \in U$ defina $\mathcal{D}_P := \mathbb{C}v_P$ onde $v_P := a\partial_X|_P + b\partial_Y|_P$. Então, $\mathcal{D} := \{\mathcal{D}_P\}$ é uma distruição holomorfa de dimensão 1 em U. Além disso, para cada $\alpha \in \mathbb{C}$, temos que $Y_\alpha := V(\langle X + \alpha Y \rangle) \cap U$ é uma subvariedade integral de \mathcal{D} .

Vamos provar a correspondência de Riemann-Hilbert. Comecemos com o seguinte

Lema 7.5. Sejam (\mathcal{F}, ∇) uma equação diferencial analítica em X e $P \in X$. Existe uma vizinhança U de p tal que O mapa $\mathcal{F}^{\nabla}(U) \longrightarrow \mathcal{F}_p \otimes_{\mathcal{O}_{X,p}} \mathcal{O}_{X,p}/\mathcal{M}_{X,p}$ que associa $s \mapsto s_p \otimes 1$ é um isomorfismo de \mathbb{C} -módulos.

Demonstração. Seja (\mathcal{F}, ∇) uma conexão holomorfa em X. A prova do lema será dividida em passos:

- Passo 1 construção de uma distribuição \mathcal{F} no fibrado $V_X(\mathcal{F})$: Relembre que dado um feixe localmente livre de posto m em X podemos construir uma variedade complexa $V_X(\mathcal{F})$ munida de uma estrutura de fibrado vetorial de posto m sobre X. A construção é realizada da seguinte forma:
 - Seja $\mathcal{U} := \{U_i\}_{i \in I}$ uma cobertura trivializante para \mathcal{F} e defina $V_X(\mathcal{F}) := \prod_i U_i \times \mathbb{C}^m / \cong$, onde dados $P = (u_1, v_1)$ e $Q = (u_2, v_2)$ dizemos que $P \cong Q \iff u_1 = u_2$ e $v_2 = \phi_{ij}(u_1)v_1$, onde $\phi_{ij} \in GL_m(\mathcal{O}_{U_{ij}})$ são as matrizes obtidas pela trivialidade de \mathcal{F} na cobertura \mathcal{U} .

Considere o mapa projeção $\pi: V_X(\mathcal{F}) \longrightarrow X$ e seja $P \in X$. Tome $(p, \sigma_0) \in \pi^{-1}(P)$. Seja U um aberto em torno de P e $\sigma \in \mathcal{F}(U)$ uma seção tal que $\sigma_P \otimes 1 = \sigma_0$. Encare σ como um mapa $\sigma: U \longrightarrow V_X(\mathcal{F})|_U$ e defina uma família de \mathbb{C} -espaços vetorias $\mathcal{D} = \{\mathcal{D}_Q\}_{Q \in V_X(\mathcal{F})}$ pondo

$$\mathcal{D}_{(P,\sigma_0)} := (d_P \sigma - \nabla_P(\sigma))(T_{X,P})$$

Afirmação 1: \mathcal{D} independe da escolha da seção σ e define uma distribuição m-dimensional em X.

De fato, escolha bases para $T_{X,P}$ e $T_{V(\mathcal{F}),(P,\sigma_0)}$, digamos

$$T_{X,P} = \mathbb{C}\partial_{X_1}|_P \oplus \cdots \oplus \mathbb{C}\partial_{X_n}|_P$$

$$T_{V(\mathcal{F}),(P,\sigma_0)} = \mathbb{C}\partial_{X_1}|_P \oplus \cdots \oplus \mathbb{C}\partial_{X_n}|_P \oplus \mathbb{C}\partial_{Y_1}|_{\sigma_0} \oplus \cdots \oplus \mathbb{C}\partial_{Y_m}|_{\sigma_0}$$

Um cálculo elementar mostra que se definirmos $\psi_P := d_P \sigma - \nabla_P(\sigma)$ então,

$$v_{k,P} := \psi_P(\partial_{X_k}) = \partial_{X_k}|_P - \sum_{i,j} \sigma_{0,j}(P) a_{k,i}^j(P) \partial_{Y_i}|_{\sigma_0}.$$

onde $a_{k.i}^j$ são funções regulares em uma vizinhaça de Ptais que

$$\nabla(s_j) = \sum_{k,i} a_{i,j}^k dx_k \otimes s_i.$$

Em particular, $\mathcal{D}_{(P,\sigma_0)}$ idepende da seção σ tal que $\sigma_P \otimes 1 = \sigma_0$. Além disso, não é difícil ver da descrição explícita de ψ , que $\mathcal{D} = \langle v_1, ..., v_n \rangle$ é uma distribuição n-dimensional em $V_X(\mathcal{F})$.

Passo 2 - \mathcal{D} **é integrável:** Vamos mostrar que $K(\nabla)=0$ implica que \mathcal{D} é integrável. Para isto, sejam D_1 e D_2 elementos de \mathcal{D} . Devemos mostrar que

$$[D_1, D_2]_{(P,\sigma_0)} \in \mathcal{D}_{(P,\sigma_0)}$$
para todo $(P,\sigma_0) \in V(\mathcal{F})$.

Uma cálculo elementar mostra que para quaisquer $1 \leq i, j \leq n$ temos

$$[v_i, v_j] = -\sum_{k,l} R_{i,j,k}^l \sigma_k \partial_{y_l} \qquad (*)$$

onde $R^l_{i,j,k}$ são coeficientes determinados pela equação

$$K(\nabla)(s_k) = \nabla_1 \circ \nabla_0(s_k) = \sum_{l} (\sum_{i < j} R_{i,j,k}^l dx_i \otimes dx_j) \otimes s_l \qquad (**)$$

Em particular, da fórmula (*) e do fato de que v_i envolve termos mônicos em ∂_{x_i} temos que $[v_i,v_j]\in\mathcal{D}$ se e somente se $R^l_{i,j,k}=0$ para todo i,j,k,l. Agora, pela fórmula (**) vemos que isso é equivalente a condição $K(\nabla)=0$ que é satisfeita pela hipótese: $(\mathcal{F},\nabla)\in\mathbf{E.D.A}(X/\mathbb{C})$.

Passo 3 - subvariedades integrais de \mathcal{D} se identificam, em uma vizinhaça da fibra $p \times \mathcal{F}(P)$, com seções planas de \mathcal{F}^{∇} :

Seja $\sigma \in \mathcal{F}(U)$ para algum aberto U. Então, $\sigma \in \mathcal{F}^{\nabla}(U)$ se e somente se o mapa $d\sigma: T_X|_U \longrightarrow T_{V_X(\mathcal{F})}|_U$ se fatora passando pela distribuição $\mathcal{D}|_U \subset T_{V_X(\mathcal{F})}|_U$. De fato, diminuindo se necessário podemos supor $V_X(\mathcal{F})|_U \cong U \times \mathcal{F}(P)$. Nesse caso, σ se corresponde ao mapa

$$\sigma: (x_1, ..., x_n) \mapsto (x_1, ..., x_n, \sigma_1(x), ..., \sigma_m(x)).$$

de modo que $d\sigma(\partial_{X_k}) = \partial_{X_k} + \sum_{i=1}^m \frac{\partial s_i}{\partial_{X_k}} \partial_{Y_i}$. Em particular, vemos que $d\sigma(\partial_{X_k}) \in \mathcal{D}$ se e somente se $d\sigma(\partial_{X_k}) = v_k$. Assim, $d\sigma$ se fatora passando por \mathcal{D} se e somente se para todo k temos

$$\sum_{i=1}^{m} \frac{\partial s_i}{\partial X_k} \partial_{Y_i} = -\sum_{i,j} \sigma_j a_{k,i}^j \partial_{Y_i}$$

Agora, a conclusão se segue da seguinte fórmula:

$$\nabla(\sigma) = \nabla(\sum_{i} \sigma_{i} s_{i}) = \sum_{i,k} \left(\frac{\partial \sigma_{k}}{\partial x_{i}} + \sum_{j} a_{i,j}^{k} \sigma_{j}\right) dx_{i} \otimes s_{k}.$$

Agora, seja $P \in X$ e $\sigma_0(P) = \sum_i \sigma_{0,j}(P) s_j(P)$ um elemento da fibra $\mathcal{F}(P)$. Pela condição de integrabilidade em \mathcal{D} sabemos que existe uma subvariedade analítica $V \subset V_X(\mathcal{F})$, em uma vizinhança \tilde{U} de $\sigma_0(P)$, e passando por $\sigma_0(P)$ tal que para

todo $Q \in V$ temos $T_QV = \mathcal{D}_Q$. Diminuindo se necessário, podemos supor que $\tilde{U} = U \times \mathcal{F}(P)$. Agora, considere a projeção $\pi : V \subset \tilde{U} \longrightarrow U$. Pela construção temos que π é um isomorfismo em uma viziança de $\sigma_0(P)$. Com efeito, considerando o mapa diferencial temos que $d_{\sigma_0}\pi$ leva a base $v_{1,P},...,v_{n,P}$ na base $\partial_{X_1},...,\partial_{X_n}$. Seja s a inversa de π definida em um aberto U'. Então, temos

$$s: U' \longrightarrow V|_{U'} \longrightarrow V_X(\mathcal{F})|_{U'}$$

e segue que ds se fatora passando por \mathcal{D} .

Em particular, o mapa natural $\mathcal{F}^{\nabla} \longrightarrow \mathcal{F}_P \otimes_{\mathcal{O}_{X,P}} \mathcal{O}_{X,P}/\mathcal{M}_{X,P}$ é sobrejetivo. A injetividade se segue do teorema de unicidade de equações diferenciais, o qual garante que única solução da equação diferencial $\nabla(\sigma) = 0$ satisfazendo $\sigma(P) = \sigma_0$.

Demonstração. (da correspondência de Riemann-Hilbert) Pelo lema acima, sabemos que a aplicação $(\mathcal{F},\nabla)\mapsto \mathcal{F}^{\nabla}$ está bem definida. Vamos contruir o funtor inverso. Para isso, seja \mathcal{G} um sistema local sobre X. Defina $\mathcal{G}_X:=\mathcal{G}\otimes_{\mathbb{C}}\mathcal{O}_X$ feixe que associa $U\mapsto \mathcal{G}(U)\otimes_{\mathbb{C}}\mathcal{O}_X(U)$ e seja $\{U_i\}_i$ uma cobertura de X tal que $\mathcal{G}|_{U_i}\cong\mathbb{C}^n$. Fixe i e tome $s_1,\ldots,s_n\in\mathcal{G}(U_i)$ uma base. Dado $\sum_j f_j\otimes s_j\in\mathcal{G}_X(U_i)$ definimos $\nabla_c|_{U_i}$ pondo

$$\nabla_c|_{U_i}(\sum_j f_j \otimes s_j) = \sum_j df_j s_j.$$

Como qualquer outra escolha de base difere por uma matriz com coeficentes constantes e como df=0 para todo $f\in\mathbb{C}$ segue que ∇_c está bem definida e independe de base. O funtor inverso é $\mathcal{G}\mapsto (\mathcal{G}_X,\nabla_c)$.

Corolário 7.6. Seja X uma variedade complexa. Então,

E.D.A
$$(X/\mathbb{C}) \cong \mathcal{A}_X(\mathbb{C}) \cong \mathbf{Rep}(\pi_1(X)).$$

8. Variedades sobre k com char(k) > 0

8.1. Caso em que char(k) = p > 0. No que se segue k denotará um corpo algebricamente fechado de caracteristica p > 0 e X uma variedade sobre k. Denotaremos o morfismo estrutural $X \longrightarrow Spec(k)$ por h.

Definição 16. O mapa **Frobenius absoluto**, denotado por F_X , consiste no morfismo

$$F_X = (id, f) : (X, \mathcal{O}_X) \longrightarrow (X, \mathcal{O}_X)$$

que a nivel de espaço topológico é a identidade e a nível de funções é o mapa p-potencia i.e. $f: \mathcal{O}_X \longrightarrow \mathcal{O}_X$ associa $g \mapsto g^p$.

Seja F_k o Frobenius absoluto associado ao esquema X = Spec(k). Considerando os morfismos F_X , h e usando a propriedade universal do produto fibrado obtemos

um único mapa $F_{X/k}: X \longrightarrow X^{(p)}$ tal que o diagrama abaixo é comutativo.

Chamaremos $F_{X/k}$ de mapa **Frobenius relativo**.

Observação. Suponha que X = Spec(A) para alguma k-álgebra de tipo finito. Seja $A^{(p)} := A \otimes_{F_k} k$ onde $F_k : k \longrightarrow k : a \mapsto a^p$. O diagrama acima pode ser visto como a versão geometrica do seguinte diagrama:

onde $h: l \mapsto l.1_A$, $p: a \mapsto a \otimes 1$, $q: l \mapsto 1 \otimes l$ e $F_{X/k}: a \otimes l \mapsto la^p$.

Definição 17. Seja (\mathcal{F}, ∇) uma equação diferencial em X. A p-curvatura de ∇ é por definição o mapa

$$\varphi_p : \mathbf{Der}_k(\mathcal{O}_X) \longrightarrow \mathbf{End}_k(\mathcal{F})$$

 $D \mapsto \psi_{\nabla}(D)^p - \psi_{\nabla}(D^p).$

Lema 8.1. (Fórmula de Jacobson) Sejam R uma algebra associativa sobre um corpo k de característica p > 0. Sejam $a, b \in R$. Então,

$$(a+b)^p = a^p + b^p + \sum_{i=1}^{p-1} s_j(a,b).$$

onde $s_i(a,b)$ são polinomios de Lie.

Demonstração. Seja T um indeterminada comutando com a e b. Temos

$$(Ta+b)^p = T^p a^p + b^p + \sum_{j=1}^{p-1} s_j(a,b)T^j$$

para alguns termos polinomiais $s_i(a, b)$ (não necessariamente comutativo).

Seja D_T o operador diferencial canônico na álgebra R[T]. Aplicando D_T na identidade acima temos

$$D_T((Ta+b)^p) = \sum_{i=0}^{p-1} (Ta+b)^j a (Ta+b)^{p-j-1} = \sum_{i=1}^{p-1} j s_j(a,b) T^{j-1}$$

Agora, dado $a \in R$ defina os operadores:

$$l(a): R \longrightarrow R: b \mapsto ab$$
 $r(a): R \longrightarrow R: b \mapsto ba$ $ad(a): R \longrightarrow R: b \mapsto l(a)b - r(a)b.$

Note que l(a) e r(a) são operadores com [l(a), r(a)] = 0. Agora, note que X e Y são elementos comutando em R então vale

$$(X-Y)(X-Y)^{p-1} = (X-Y)\sum_{j=0}^{p-1} \binom{p-1}{j} (-1)^j X^{p1-j} Y^j = (X-Y)\sum_{j=0}^{p-1} X^{p-1-j} Y^j$$

Em particular,

$$ad(Ta+b)^{p-1} = \sum_{j=0}^{p-1} l(Ta+b)^{p-1-j} r(aT+b)^j$$

e dai obtemos a fórmula: $ad(Ta+b)^{p-1}(a) = \sum_{j=0}^{p-1} (Ta+b)^{p-1-j} a(aT+b)^j = \sum_{j=1}^{p-1} j s_j(a,b) T^{j-1}$.

Assim,
$$s_j(a,b) = (1/j)\mathbf{Coef}(ad(Ta+b)^{p-1}(a), T^{j-1})^3$$
.

Lema 8.2. (Deligne) Sejam R uma algebra associativa sobre um corpo k de caracteristica p > 0, $D, g \in R$. Dado $n \in \mathbb{N}$, defina $g^{(n)} := [D, [D, ..., [D, g]]...]$ n-iterações de '['g. Suponha que $[g^{(n)}, g^{(m)}] = 0$ para quaisquer $m, n \in \mathbb{N}$. Então,

$$(fD)^p = f^p D^p + f(f^{p-1})^{(p-1)} D.$$

Demonstração. Veja [4][proposition (5.3)].

Proposição 7. Seja X/k uma variedade sobre k com char(k) = p > 0 e tome (\mathcal{F}, ∇) uma equação diferencial em X. Então,

- (i) $\varphi_p \notin p$ -linear i.e. $\varphi_p(D_1 + D_2) = \varphi_p(D_1) + \varphi_p(D_2) \in \varphi_p(fD) = f^p \varphi_p(D)$.
- (ii) $[\psi_{\nabla}(D), \psi_{\nabla}(D^p)] = [\psi_{\nabla}(D), \varphi_p(D)] = [\psi_{\nabla}(D^p), \varphi_p(D)] = 0.$
- (iii) $[\varphi_p(D), \varphi_p(D_1)] = 0$ para quaisquer $D, D_1 \in \mathbf{Der}_k(\mathcal{O}_X)$.
- (iv) $[\varphi_p(D), \psi_{\nabla}(D_1)] = 0$ para quaisquer $D, D_1 \in \mathbf{Der}_k(\mathcal{O}_X)$.

Demonstração. (i) Sejam D_1,D_2 derivações. Usando a fórmula de Jacobson, temos que

$$\psi_{\nabla}((D_1 + D_2)^p) = \psi(D_1^p + D_2^p + \sum_{i=1}^{p-1} s_i(D_1, D_2)) = \psi(D_1^p) + \psi(D_2^p) + \sum_{i=1}^{p-1} s_i(\psi(D_1), \psi(D_2))$$

onde usamos o fato de que a conexão (\mathcal{F}, ∇) é integrável e que s_i é um polinômio de Lie, para garantir a identidade $\psi_{\nabla}(s_i(D_1, D_2)) = s_i(\psi(D_1), \psi(D_2))$

Agora, mais uma aplicação da fómula de Jacobson resulta

$$\psi_{\nabla}(D_1 + D_2)^p = (\psi(D_1) + \psi(D_2))^p = \psi(D_1)^p + \psi(D_2)^p + \sum_{i=1}^p s_i(\psi(D_1), \psi(D_2))$$

de modo que tomando a diferença obtemos

$$\varphi_p(D_1 + D_2) = \varphi_p(D_1) + \varphi_p(D_2).$$

 $^{{}^{3}\}mathbf{Coef}(ad(Ta+b)^{p-1}(a),T^{j-1}) = \text{coeficiente de } ad(Ta+b)^{p-1}(a) \text{ que ocorre em } T^{j-1}$

Agora, seja $f \in \mathcal{O}_X$ e $s \in \mathcal{F}$. Então,

$$(fD)^p = f^p D^p + f D^{p-1} (f^{p-1}) D$$

e assim

$$\psi_{\nabla}((fD)^p) = f^p \psi_{\nabla}(D^p) + fD^{p-1}(f^{p-1})\psi_{\nabla}(D)$$

Por outro lado,

$$\psi_{\nabla}(fD)^{p} = (f\psi_{\nabla}(D))^{p} = f^{p}\psi_{\nabla}(D)^{p} + f(f^{p-1})^{(p-1)}\psi_{\nabla}(D) = f^{p}\psi_{\nabla}(D)^{p} + fD^{p-1}(f^{p-1})\psi_{\nabla}(D).$$

Tomando a diferença resulta: $\varphi_p(fD) = f^p \varphi_p(D)$.

Note que se D é uma derivação então D e D^p comutam e daí segue que $\psi_{\nabla}(D)$ e $\psi_{\nabla}(D^p)$ comutam, pois ∇ é plana. Em particular,

$$[\varphi_p(D), \psi_{\nabla}(D)] = [\varphi_p(D), \psi_{\nabla}(D^p)] = 0$$

o que demonstra (ii).

Agora sejam D e D_1 derivações. Sem perda de generalidade, podemos supor que X = Spec(A), para uma k-álgebra regular A. Tome $s_1, ..., s_n \in \mathcal{O}_X$ tais que $ds_1, ..., ds_n$ formam uma base de $\Omega^1_{X/k}$ como \mathcal{O}_X -módulo (note que uma tal base existe já que estamos assumindo X regular). Temos

$$D = \sum_{i} a_{i} \partial_{s_{i}} \quad e \quad D' = \sum_{i} b_{i} \partial_{s_{i}}$$

para alguns $a_i, b_i \in A$. Aqui, $\{\partial s_1, \dots, \partial_{s_n}\}$ é a base de $\mathbf{Der}(A)$ dual a base $\{ds_1, \dots, ds_n\}$.

Agora, vamos provar que

$$[\varphi_{p}(D), \varphi_{p}(D^{'})] = [\varphi_{p}(D), \psi_{\nabla}(D^{'})] = 0$$

Temos 4 ,

$$\varphi_p(D) = \sum_i a_i^p \varphi_p(\partial_{s_i}) = \sum_i a_i^p \psi_{\nabla}(\partial_{s_i})^p$$
$$\varphi_p(D') = \sum_i b_i^p \psi_{\nabla}(\partial_{s_i})^p \quad \text{e} \quad \psi_{\nabla}(D') = \sum_i b_i \psi_{\nabla}(\partial_{s_i})$$

Daí,

$$[\varphi_{p}(D), \varphi_{p}(D^{'})] = \sum_{i,j} a_{i}^{p} b_{j}^{p} [\psi_{\nabla}(\partial_{s_{i}})^{p}, \psi_{\nabla}(\partial_{s_{j}})^{p}] = 0$$

$$[\varphi_p(D), \psi_{\nabla}(D')] = \sum_{i,j} a_i^p b_i [\psi_{\nabla}(\partial_{s_i})^p, \psi_{\nabla}(\partial_{s_j})] = 0$$

Denotaremos por $\mathbf{E.D}_0(X/k)$ a categoria cujos objetos consistem de equações diferenticais com p-curvatura 0.

Teorema 8.3. (Cartier) Seja X/k uma varieade sobre corpo k com char(k) = p > 0, Seja $X^{(p)}$ a variedade obtida por mudança de base com respeito ao Frobenius absoluto F_k . Então, existe uma equivalencia de cateorias $\mathbf{E}.\mathbf{D}_0(X/k) \cong \mathbf{QSch}(X^{(p)})$.

⁴relembre que $\partial_{s_i}^p = 0$

Demonstração. (ver [4][Theorem 5.1]) Os funtores são definidos naturalmente. Para cada (\mathcal{F}, ∇) equação diferencial com p-curvatura 0 definimos $F_*(\mathcal{F}^{\nabla})$ o feixe em $X^{(p)}$. Reciprocamente, para cada \mathcal{G} feixe coerente em $X^{(p)}$ definimos a conexão em X pondo $(F^*(\mathcal{G}), \nabla_c)$, onde ∇_c é a conexão canonica i.e. para cada seções locais $f \in \mathcal{O}_X$ e $s \in F^*\mathcal{G}$ temos $\nabla_c(fs) = df \otimes s$. Pode-se mostrar que tais functores são mutalmente quasi-inversos.

Definição 18. Seja (\mathcal{F}, ∇) uma equação diferencial em uma variedade X definida sobre um corpo de número k. Diremos que \mathcal{F} é trivial se é gerado como \mathcal{O}_X -módulo por \mathcal{F}^{∇} .

Em char(k) > 0 existe um critério para trivialidade de (\mathcal{F}, ∇) que resulta facilmente da equivalência $\mathbf{E.D}_0(X/k) \cong \mathbf{QSch}(X^{(p)})$.

Corolário 8.4. Sejam X/k uma varieadede com char(k) = p > 0 e (\mathcal{F}, ∇) uma equação diferencial em X. São equivalentes:

- (i) \mathcal{F} é trivial.
- (ii) $\varphi_p = 0$.
- 8.2. Invariância da nilpotencia da p-curvatura por mapas etales. Nessa seção, relambramos generalidades sobre morfismos lisos e etales. Detalhes podem ser encontrados em [8].

Definição 19. Seja $f:X\longrightarrow S$ um morfismo de tipo finito entre esquemas. Diremos que f é liso de dimensão relativa d se

- (i) $f \in liso;$
- (ii) $\Omega_{X/S}$ é um \mathcal{O}_X -módulo localmente livre de posto d.

Definição 20. Seja $g: R \longrightarrow A$ um mapa de aneis. Diremos que f é **etale** se

- (ii) $g^* : Spec(A) \longrightarrow Spec(R)$ é liso.
- (ii) $\Omega_{A/R}^1 = 0$.

Assim, um mapa de anéis $g:R\longrightarrow A$ é etale se é liso de dimensão relativa 0. Um mapa entre esquemas afins $f:Spec(R)\longrightarrow Spec(A)$ será dito etale se o mapa de anéis associado $f^\#:A\longrightarrow R$ é etale.

Definição 21. Sejam f como acima e $P \in X$. Diremos que f é etale em P se existe um aberto afim $U = Spec(A) \ni P$ e $V = Spec(R) \subset S$ com $f(U) \subset V$ tal que o mapa induzido $f^* : Spec(A) \longrightarrow Spec(R)$ é etale.

Diremos que f é etale se é etale em todo ponto $P \in X$.

Proposição 8. Seja $f: X \longrightarrow S$ um mapa etale. Então,

- (i) f é liso de dimensão relativa 0.
- (ii) f é um mapa aberto.

Definição 22. Uma variedade **afim global** é um esquema afim S = Spec(R) de tipo finito sobre \mathbb{Z} .

Observação. Se S = Spec(R) é uma variedade afim global então qualquer ponto fechado $\mathcal{M} \in Spm(R)$ tem característica finita. De fato, se \mathcal{M} é um ponto fechado então temos, em particular, que $\{\mathcal{M}\}$ é um conjunto construtível. Assim, pelo teorema de Chevalley segue que $\{\mathcal{M} \cap \mathbb{Z}\}$ é construtível. Agora, como conjuntos construtíveis em esquemas noetherianos devem conter um aberto denso de seu fecho segue que $\mathcal{M} \cap \mathbb{Z} \neq 0$.

Mais geralmente, pode-se mostrar que R/\mathcal{M} é um corpo finito.

Proposição 9. Seja S = Spec(R) uma variedade afim global $e \ f : X \longrightarrow S$ um mapa liso e seja $h : X' \longrightarrow X$ um mapa etale próprio. Seja $G : (\mathcal{G}, \nabla)$ uma equação diferencial em X'/S e denote a p-curvatura da redução módulo p de G por $\varphi_p(G)$. Então.

 $\varphi_p(G_p)$ é nilpotente se e somente se $\varphi_p(h_*G_p)$ é nilpotente onde G_p denota a redução módulo p da equação diferencial G.

Proposição 10. Seja S = Spec(R) uma variedade afim global $e \ f : X \longrightarrow S$ um mapa liso $e \ seja \ h : X' \longrightarrow X$ um mapa etale. Seja $E : (\mathcal{F}, \nabla)$ uma equação diferencial em X/S e denote a p-curvatura da redução módulo p de E por $\varphi_p(E)$. Então,

$$\varphi_p(E_p)$$
 é nilpotente se e somente se $\varphi_p(h^*E_p)$ é nilpotente

onde E_p denota a redução módulo p da equação diferencial E, desde que isso faça sentido.

Demonstração. Seja X/k uma variedade lisa sobre um corpo de característica p>0 e tome $E:(\mathcal{G},\nabla)$ uma equação diferencial em X. Seja X' uma variedade sobre k etale sobre X i.e. existe $h:X'\longrightarrow X$ mapa etale. Devemos mostrar que $\varphi_p(h^*E)$ é nilpotente se e somente se $\varphi_p(E)$ é nilpotente. Associado ao mapa h existe uma sequencia exata de $\mathcal{O}_{X'}$ -módulos:

$$h^*\Omega^1_{X/k} \longrightarrow \Omega^1_{X'/k} \longrightarrow \Omega^1_{X'/X} \longrightarrow 0$$

Agora, como o mapa h é etale temos que

(i)
$$\Omega^1_{X'/X} = 0$$
.

(ii)
$$\delta: h^*\Omega_{X/k} \longrightarrow \Omega_{X'/k}$$
 é injetivo.

Em particular, segue que $h^*\Omega^1_{X/k} \cong \Omega^1_{X'/k}$. Agora, a p-curvatura $\varphi_p(E): T_X \longrightarrow End_k(\mathcal{F})$ induz um p-mapa $h^*\varphi_p(E): h^*T_X \longrightarrow End_k(h^*\mathcal{F})$ e não é difícil ver que $h^*\varphi$ é nilpotente se e somente se φ é nilpotente. Por outro lado, temos o seguinte diagrama comutativo:

$$T_{X'} \xrightarrow{\varphi_p(h^*E)} End_k(h^*\mathcal{F})$$

$$\downarrow^{\delta'} \qquad \downarrow^{id}$$

$$h^*T_X \xrightarrow{h^*\varphi_p(E)} End_k(h^*\mathcal{F})$$

onde o mapa δ' é o isomorfismo obtido dualizando δ . Daí, segue que $\varphi_p(E_p)$ é nilpotente se e somente se $\varphi_p(h^*E_p)$ é nilpotente.

Proposição 11. Seja $f: X \longrightarrow S$ um morfismo liso de dimensão relativa d. Então existe abertos $U = Spec(A) \subset X$ e $V = Spec(R) \subset S$ tal que $f(U) \subset V$ e um morfismo etale $\pi: U \longrightarrow \mathbb{A}^d_R$ tal que o seguinte diagrama é comutativo.

Demonstração. Localmente f é um mapa entre esquemas afins $f: Spec(A) \longrightarrow Spec(R)$ com $A = R[X_1,...,X_n]/\langle f_1,...,f_r\rangle$ tal que a matriz jacobiana $(\partial f_i/\partial X_j)_{1\leq i,j\leq r}$ tem determinante inversível em A. Sejam $s_1,\cdots s_d\in A$ tais que $ds_1,\cdots ds_d$ sejam uma base de $\Omega^1_{A/R}$ como A-módulo. O diagrama acima resulta do digrama

$$R \longrightarrow R[X_1, ..., X_n]$$

onde π^* é o mapa que associa $X_i \mapsto s_i$. Temos que A é uma $R[X_1, ..., X_n]$ -algebra lisa de dimensão relativa 0 i.e. A é etale como $R[X_1, ..., X_n]$.

9. Pontos singulares regulares

Seja X uma variedade algébrica sobre $\mathbb C$ não singular. Denotaremos por X^{an} a variedade complexa associada.

Relembramos as seguintes notações:

E.D.A (X/\mathbb{C}) = categoria das equações diferencias analíticas em X^{an} .

 $\mathbf{E.D}(X/\mathbb{C}) = \text{categoria das equações diferenciais algébricas sobre } X.$

 $\mathcal{A}_X(\mathbb{C}) = \text{categoria de sistemas locais de } \mathbb{C}\text{-m\'odulos de dimensão finita}.$

Sejam X uma curva completa não singular sobre \mathbb{C} com corpo de funções K e (\mathcal{F}, ∇) uma equação diferencial algébrica em X. Seja (M, ∇) o módulo diferencial associado, i.e. $M := \mathcal{F}_p$ onde p é o ponto genérico de X com conexão induzida ∇_p (o qual continuaremos a denotar por ∇).

Definição 23. Seja $P \in X(\mathbb{C})$ um ponto racional. Diremos que P é um **ponto singular regular** de (\mathcal{F}, ∇) se existir um $\mathcal{O}_{X,P}$ -módulo livre W_P tal que:

- (i) $\operatorname{rank}_{\mathcal{O}_{X,P}} W_P = \dim_K M$.
- (ii) $\psi_{\nabla}(\mathbf{Der}_P(K))(W_P) \subset W_P$

Aqui, $\mathbf{Der}_P(K)$ consiste de derivações fixando P.

Definição 24. Diremos que (\mathcal{F}, ∇) possui monodromia local quasi-unipontente em P se:

- (i) P é singular regular.
- (ii) Existe uma base $f = (f_1, \dots, f_n)$ de W_P tal que $\psi_{\nabla}(\mathbf{Der}_P(K))(f) = Bf$ onde $B \mod \mathcal{M}_{X,P}$ possui valores característicos $\alpha_1, \dots, \alpha_n \in \mathbb{Q}$.

Definição 25. Sejam X uma variedade algébrica sobre \mathbb{C} e $E:=(\mathcal{F},\nabla)$ uma equação diferencial algébrica. Diremos que E possui pontos singulares regulares se para qualquer curva completa não singular $C/\mathbb{C},\ S\subset C$ conjunto finito e $f:C-S\longrightarrow X$ morfismo a restrição $f^*(\mathcal{F},\nabla)$ possui pontos singulares regulares em S.

Analogamente, diremos que E possui monodromia local quasi-unipontente no infinito se para qualquer curva completa não singular $C/\mathbb{C}, S \subset C$ conjunto finito e $f: C-S \longrightarrow X$ morfismo a restrição $f^*(\mathcal{F}, \nabla)$ possui monodromia local quasi-unipontente em S.

No que se segue denotaremos por **E.D.P.S.R** (X/\mathbb{C}) a categoria das equações diferenciais algébricas sobre X com **pontos singulares regulares**.

Observação. Seja (\mathcal{F}, ∇) uma equação diferencial algébrica em X. Como objetos algébricos sobre X induzem naturalmente objetos analíticos em $X(\mathbb{C})$ obtemos uma equação diferencial analítica em $(\mathcal{F}^{an}, \nabla^{an})$ em $X(\mathbb{C})$.

Tal associação é funtorial de modo que obtemos um funtor $F: \mathbf{E}.\mathbf{D}(X/\mathbb{C}) \longrightarrow \mathbf{E}.\mathbf{D}.\mathbf{A}(X/\mathbb{C}): (\mathcal{F}, \nabla) \mapsto (\mathcal{F}^{an}, \nabla^{an})$. Um teorema de Deligne garante que o funtor obtido por restrição $\mathbf{E}.\mathbf{D}.\mathbf{P}.\mathbf{S}.\mathbf{R}(X/\mathbb{C}) \longrightarrow \mathbf{E}.\mathbf{D}.\mathbf{A}(X/\mathbb{C})$ é um isomorfismo.

$$E.D.P.S.R(X/\mathbb{C}) \xrightarrow{an} E.D(X/\mathbb{C})$$

$$\downarrow^{\cong}$$

$$E.D.A(X/\mathbb{C})$$

Assim, equações diferenciais algébricas com pontos singulares regulares se correpondem as equações diferenciais analíticas na variedade complexa associada a X.

Exemplo. Seja $f \in \mathbb{C}(t)$ e considere o módulo diferencial $(\mathbb{C}(t), \nabla)$ onde $\nabla : \mathbb{C}(t) \longrightarrow \mathbb{C}(t) \otimes \Omega^1_{\mathbb{C}(t)/\mathbb{C}} : g \mapsto (g' - fg) \otimes dt$. Sejam $\alpha_1, ..., \alpha_k$ os polos de f(t) em \mathbb{C} . Então,

 α_i é um ponto singular regular se e somente se $\operatorname{ord}_{\alpha_i}(f(t)) \geqslant -1$.

De fato, seja $W_{P_i} := \mathbb{C}[t]_{(t-\alpha_i)}$. Então $\psi_{\nabla}(\mathbf{Der}_{P_i}(W_{P_i})) \subset W_{P_i}$ se e somente se $ord_{\alpha_i}(f) + ord_{\alpha_i}(t-\alpha_i) \geq 0 \iff ord_{\alpha_i}(f(t)) \geqslant -1$.

9.1. Influência da p-curvatura. Seja X uma variedade projetiva sobre $\mathbb C$ descrita pelas equações homogêneas $F_1, \cdots, F_r \in \mathbb C[X_0, ..., X_n]$ no espaço projetivo $\mathbb P^n_{\mathbb C}$ e denote por R a $\mathbb Z$ -álgebra de tipo finito obtida por adjunção de todos os coeficientes que ocorrem nas equações que descrevem X. Desse modo, podemos encarar X como um Spec(R)-esquema.

Seja $\mathcal{M} \in Spm(R)$ e $k(\mathcal{M})$ o corpo residual associado. Chamaremos $X_{k(\mathcal{M})}$ de a redução módulo \mathcal{M} da variedade X.

Definição 26. Seja X uma variedade definida sobre um corpo de caracteristica p > 0 e denote por P uma "propriedade abstrata" para X (ou sobre algum objeto definido sobre X). Diremos que P vale para quase todo primo p, se P é verdadeira para $X_{k(\mathcal{M})}$ para todo ideal maximal contido em um aberto $U \subset Spec(R)$. Diremos que P vale para uma infinidade de primos p, se P é verdadeira em $X_{k(\mathcal{M})}$ para todo ideal maximal contido em um conjunto denso $F \subset Spec(R)$.

O objetivo dessa seção é provar o seguinte teorema:

Teorema 9.1. Sejam X uma variedade projetiva lisa sobre \mathbb{C} e (\mathcal{F}, ∇) uma equação diferencial algébrica em X.

- (i) Se, para um conjunto infinito de primos p, as p-curvaturas φ_p são nilpotentes então (\mathcal{F}, ∇) possui pontos singulares regularaes.
- (ii) Se φ_p é nilpotente para quase todo primo p então (\mathcal{F}, ∇) possui monodromia local quasi-unipontente no infinito.

Para demonstrar o tal teorema faremos o uso da forma local normal de um ponto singular regular. Mais precisamente,

Teorema 9.2. Sejam X/\mathbb{C} uma curva completa não singular com corpo de funções K e (M, ∇) uma equação diferencial algébrica em X. Sejam $P \in X(\mathbb{C})$, t um parametro uniformizante de P e defina $n := \dim_K M$. Os seguinte são equivalentes:

- (i) P não é um ponto singular regular de (M, ∇) .
- (ii) Para todo $d \in \mathbb{Z}$ com $d \in \langle n \rangle$ existe uma base $f = (f_1, ..., f_n)$ de $M \otimes_K K(u)$ ($u := t^{1/d}$) tal que $\psi_{\nabla}(u\partial_u)f = Bf$ com $B = u^{-v}B_{-v}$ com $v \in \mathbb{Z}_{>1}$ e $B_{-v} \in \mathcal{M}(\mathcal{O}_{P^1/d})$ possui imagem possui não nilpotente quando reduzida módulo $P^{1/d}$.

Seja S uma variedade afim global e $f: X \longrightarrow S$ um mapa liso de dimensão relativa 1. Seja (\mathcal{F}, ∇) uma equação diferencial em X/S. Sejam P e Q os pontos genéricos de X e S. Defina $K:=\mathcal{O}_{X,P}, k:=\mathcal{O}_{S,Q}$ e denote por C(k) a curva completa não singular associada extensão K/k. Note que a equação diferencial (\mathcal{F}, ∇) induz naturalmente uma equação diferencial na curva C.

Diremos que (\mathcal{F}, ∇) possui pontos singulares regulares se a equação diferencial induzida na curva completa C(k) possui pontos singulares regulares no sentido acima. Considerações análogas para monodromia local quasi-unipotente no infinito.

Teorema 9.3. Seja S = Spec(R) uma variedade afim global $e \ f : X \longrightarrow S$ um mapa liso de dimensão relativa $1 \ e \ (\mathcal{F}, \nabla)$ uma equação diferencial em X/S.

- (i) Se para quase-todo primo p a p-curvatura de $(\mathcal{F}, \nabla) \mod p$ é nilpotente então (\mathcal{F}, ∇) possui monodromia local quasi-unipontente no infinito.
- (ii) Se para uma infinidade de primos p a p-curvatura de (\mathcal{F}, ∇) mod p é nilpotente então (\mathcal{F}, ∇) possui pontos singulares regulares.

Demonstração. Seja K/k o corpo de funções associado a f e denote por C(k) a curva completa não singular correspondente. Seja $P \in C(k)$ um k-ponto com parâmetro uniformizante T e suponha que P é um ponto singular da equação diferential $(\mathcal{F}, \nabla)|_{K/k}$, o qual denotaremos por (M, ∇) .

Inicialmente note que podemos assumir:

- (i) X é um aberto principal D(g) em $\mathbb{A}^1_R = Spec(R[T])$, para algum $g \in R[T]$: De fato, pela proposição 11, sabemos que existe um mapa etale $\pi: X \longrightarrow \mathbb{A}^1_R$ tal que o $f = c \circ \pi$, onde $c: \mathbb{A}^1_R \longrightarrow S$ é o mapa canônico. Além disso, pela proposição 9 temos que (\mathcal{F}, ∇) possui p-curvatura nilpotente se e somente se $f_*(\mathcal{F}, \nabla)$ o possui. (ii) M é um $R[T]_{g(T)}$ -módulo livre: \mathcal{F} é localmente livre. Assim, diminuindo D(g), se necessário, podemos supor que M é livre como $R[T]_{g(T)}$ -módulo.
- (iii) $g(T) = T^k h(T)$, para algum $h(T) \in R[T]$ e j > 0 e $h(0) \in R^*$: De fato, a condição k > 0 é equivalente a pedir que (M, ∇) possui ponto singular em P ("os denominares envolvem T"). Localizando no sistema multiplicativo $\{h(0)^m\}_{m \in \mathbb{N}}$, se necessário, podemos supor $h(0) \in R^*$.

Suponha que (M, ∇) seja p-nilpotente para um numero infinito de primos p e seja P um ponto singular. Assuma que não é regular. Seja $n := rank_A(M)$, onde definimos $A := R[T]_{q(T)}$. Seja $Z := T^{1/n!}$ e considere a mudança de variáves:

$$R[T]_{g(T)} \longrightarrow R[Z]_{g(Z)} : T \mapsto Z$$

Pela invariancia da p-nilpotencia seque a equação diferencial considerada em $Spec(R[Z]_{g(Z)})$ é p-nilpotente. Assim, pela forma normal de um ponto não singular regular segue que existe uma base $f=(f_1,...,f_n)$ de M tal que

$$\psi_{\nabla}(Z\partial_Z)f = Z^{\mu}(A + ZB)f$$

com $\mu > 0$, $A \in \mathcal{M}_n(R)$ não nilpotente e $B \in \mathcal{M}_n(R[Z]_{h(Z)})$. Agora, para cada $j \in \mathbb{Z}_{>0}$ temos

$$\psi_{\nabla}(Z\partial_Z)^i f = Z^{-\mu i}(A^i + ZB_i)f \quad \text{com } B_j \in \mathcal{M}_n(R[Z]_{h(Z)})$$

Seja pum primo. Pela hipotése de nilpotencia da p-curvaturasegue que existe $a(p)\in\mathbb{N}$ tal que 5

$$(\psi_{\nabla}(Z\partial_Z)^p - \psi_{\nabla}(Z\partial_Z))^{a(p)} \in pM.$$

Equivalentemente,

$$(Z^{\mu p}(A^p - ZB_p) - Z^{\mu}(A + ZB))^{a(p)} \in pM.$$

Considerando o termo de maior ordem resulta $A^{a(p)p} \in p\mathcal{M}_p(R)$ para todo primo p. Em particular, segue que $A \mod p$ é nilpotente para ideais maximais em um conjunto denso $F \subset Spec(R)$. Em particular, A é nilpotente. Contradição! Assim, P é um ponto singular regular. Pela definição sabemos que existe uma base de M tal que

$$\psi_{\nabla}(T\partial_T)f = (A + TB)f$$

onde $A \in \mathcal{M}_n(R)$ e $B \in \mathcal{M}_n(R[T]_{h(T)})$. Engordando R, se necessário, podemos assumir que a decomposição de Jordan-Chevalley de A está definida sobre R i.e. temos

$$A = D + N, \qquad [D, N] = 0$$

com $D \in \mathcal{M}_n(R)$ diagonal e $N \in \mathcal{M}_n(R)$ nilpotente. Suponha que (M, ∇) seja p-nilpotente para quase-todo primo p. Então para cada tal primo temos

$$(\psi_{\nabla}(T\partial_T)^p - \psi_{\nabla}(T\partial_T))^{a(p)} \in pM.$$

Por outro lado, temos

$$\psi_{\nabla}(T\partial_T)^j f = (A^j + TB_i)f$$

Comparando o termo constante na espressão $\varphi_p^{a(p)}$ resulta

$$(A^p - A)^{a(p)} \in p\mathcal{M}_n(R)$$

Escrevendo A = D + N obtemos $(A^p - A)^{a(p)} = (D^p - D + N^p - N)^{a(p)} = 0 \mod p$ e considerando os termos na diagonal vem $D^p = D \mod p$, para quase-todo primo p. Daí, D possui coeficientes em \mathbb{Q} .

Conjectura (Grothendieck-Katz). Sejam X uma variedade lisa sobre um corpo de número k e (\mathcal{F}, ∇) uma equação diferencial em X. Suponha que para quase todo número primo p, a redução módulo p de (\mathcal{F}, ∇) possui p-curvatura nula. Então, módulo recobrimento etale \mathcal{F} é trivial.

Parte 5. Campos holomorfos de tipo finito em $(\mathbb{C}^2,0)$

9.2. Forma normal de Jordan-Chevalley. Sejam kum corpo perfeito e Vum k-espaçovetorial com $\dim_k V<\infty.$

Relembre que um mapa k-linear $T:V\longrightarrow V$ é dito semi-simples se satisfaz uma das seguintes condições equivalentes:

- Se $m_T(t)$ é o polinômio minimal de T então $m_T(t) \otimes \overline{k}$ é reduzido;
- Se $W \subset V$ é um k-subespaço T-invariante então existe $W^{'}$ um subespaço T-invariante tal que $V = W \oplus W^{'}$;

⁵relembramos que em $\mathbb{F}_p[Z]$ vale a fórmula: $(Z\partial_Z)^p = Z\partial_Z$

• Se $k = \overline{k}$ então T é diagonalizável.

Dizemos que T é nilpotente se existir $nin\mathbb{N}$ tal que $T^n=0$.

Teorema 9.4. (cf.[2][section 4.2]) Sejam k um corpo algebricamente fechado e $T \in End_k(V)$. Então, T se escreve, unicamente, como

$$T = T_S + T_N$$

onde T_S é semi-simples, T_N é nilpotente e $[T_S, T_N] = 0$.

Demonstração. Seja $p_T(t) = \prod_{i=1}^r (t - \alpha_i)^{m_i}$ o polinômio característico de T. Para $i \in \{1, ..., r\}$ defina $V_i := Ker((T - \alpha_i id_V)^{m_i})$ de modo que temos uma decomposição:

$$V = V_1 \oplus \cdots \oplus V_r$$

Note que $T_i := T|_{V_i} \in End_k(V_i)$ possui polinômio característico $p_{T_i}(t) = (t - \alpha_i)^{m_i}$ Agora, relembre o teorema chinês dos restos:

$$k[t]/\prod_{i=1}^{r} (t - \alpha_i)^{m_i} \cong \prod_{i=1}^{r} k[t]/(t - \alpha_i)^{m_i}$$

Assim, considerando $(\alpha_1, ..., \alpha_r, 0) \in k[t]/(t-\alpha_1)^{m_1} \times k[t]/(t-\alpha_2)^{m_2} \times \cdots \times k[t]/(t-\alpha_r)^{m_r} \times k[t]/\langle t \rangle$ sabemos que existe $p(t) \in k[t]$ tal que

$$p(t) \equiv \alpha_i \mod (t - \alpha_i)^{m_i} \text{para } i = 1, ..., r \in p(t) \equiv 0 \mod (t).$$

Seja $q(t):=t-p(t)\in k[t]$ e defina: $T_S:=p(T)$ e $T_N:=q(T)$. Observe que por construção $[T_S,T_N]=0$. Vamos mostrar que T_S é semi-simples. Com efeito, pela construção temos que $T_S|_{V_i}=\alpha_i i d_{V_i}$ e assim, $T_S=T_S|_{V_1}\oplus\cdots\oplus T_S|_{V_r}$ de modo que T_S possui polinômio minimal $(t-a_1)\cdots(t-a_r)$. Como T_S é diagonalizável temos que $T_N=T-T_S$ é uma matriz nilpotente. Assim, $T=T_S+T_N$ é uma tal decomposição. Provemos agora a unicidade. Seja T=s+n uma decomposição com s semi-simples, n nilpotente e [s,n]=0. Vamos mostrar que $s=T_S$ e $n=T_N$. Considere a diferença $T':=T_S-s$. Temos que T' é semi-simples. De fato, T' soma de dois operadores semi-simples que comutam entre si. Agora, observe que T' é nilpotente: de fato, $T'=T_S-s=T_N-n$ é nilpotente já que T_N e n comutam entre si. Conslusão: T' é nilpotente e semi-simples o que implica T'=0. Assim, $s=T_S$ e $n=T_N$.

Observação. Note que mostramos algo a mais: T se escreve de maneira única como $T_S + T_N$ com T_S diagonalizável, T_N nilpotente, $[T_S, T_N] = 0$ e com T_S , T_N polinômios em T. Em particular, qualquer operador comutando com T comuta com T_S e T_N .

Vamos aplicar o resultado acima para campos formais. Seja $v = \{v^M\}_{M \in \mathbb{N}}$ um campo formal em \mathbb{C}^2 fixando $\langle X, Y \rangle$. Aqui, encaramos um campo formal como uma coleção de derivações $v^M \in Der(\mathcal{O}/\mathcal{M}^{M+1})$ tal que o seguinte diagrama é comutativo:

$$\mathcal{O}_{X}/\mathcal{M}^{N+1} \xrightarrow{v^{N+1}} \mathcal{O}_{X}/\mathcal{M}^{N+1} \\
\downarrow^{\pi_{N+1}} & \pi_{N+1} \downarrow \\
\mathcal{O}_{X}/\mathcal{M}^{N} \xrightarrow{v^{N}} \mathcal{O}_{X}/\mathcal{M}^{N}$$

Como $\mathcal{O}/\mathcal{M}^N$ é uma \mathbb{C} -espaço de dimensão finita encarando v^N como um \mathbb{C} -operador e aplicando o teorema acima obtemos uma decomposição

$$v^M = v_S^M + v_N^M \quad (*)$$

onde v_S^M e v_N^M são as partes semi-simples e nilpotente, respectivamente. Isso determina uma decomposição do campo $v=\{v^M\}=\{v_S^M\}+\{v_N^M\}=v_S+v_N.$

Corolário 9.5. Seja v um derivação de $\mathbb{C}[[X,Y]]$ fixando $\mathcal{M}:=\langle X,Y\rangle$. Então existêm únicos v_S e v_N derivações em $\mathbb{C}[[X,Y]]$ tal que

$$v = v_S + v_N \qquad [v_S, v_N] = 0 \qquad (*)$$

9.3. Campos de tipo finito.

Definição 27. Seja $v = a(X,Y)\partial_X + b(X,Y)\partial_Y$ um campo holomorfo em \mathbb{C}^2 . Seja R[v] a \mathbb{Z} -álgebra obtida por ajunção de todos os coeficientes que ocorrem nas equações que definem a(X,Y) e b(X,Y). Diremos que v é de tipo finito se R[v] é uma \mathbb{Z} -álgebra de tipo finito.

Definição 28. Seja v um campo polinomial definido em $\mathbb{A}^2_{\mathbb{C}}$. Seja R uma \mathbb{Z} -álgebra de tipo finito tal que v pode ser vista como uma derivação sobre R (um modelo afim de v). Seja $\mathcal{M} \in Spm(R)$ de caracterítica p. A p-curvatura do campo v é definida por

$$D_p(v) := \frac{\overline{v} \wedge \overline{v}^p}{\partial_X \wedge \partial_Y} \in R/\mathcal{M}[X, Y].$$

Diremos que $v \in p$ -fechado se $D_p(v) = 0$.

Observação. Seja v um campo holomorfo de tipo finito em $(\mathbb{C}^2,0)$ com singularidade em 0. Seja v_2 outro campo de tipo finito analiticamente conjugado a v. Relembre que isso quer dizer que existe um isomorfismo de \mathbb{C} -álgebras $\phi: \mathcal{O}_X \longrightarrow \mathcal{O}_X$ tal que o seguinte diagrama é comutativo:

$$\begin{array}{ccc}
\mathcal{O}_X & \xrightarrow{v} & \mathcal{O}_X \\
\phi & & & \phi \\
\mathcal{O}_X & \xrightarrow{v_2} & \mathcal{O}_X
\end{array}$$

Vamos assumir que ϕ esteja definido sobre a R-álgebra de tipo finito associada a v e v_2 de modo que a redução módulo p se comporte bem. Assim, para cada primo de boa redução do diagrama acima se definirmos $\mathcal{O}_X \otimes \mathbb{F}_p := \mathbb{F}_p[[X,Y]]$ então obtemos outro diagrama:

$$\begin{array}{c|c}
\mathcal{O}_X \otimes \mathbb{F}_p & \xrightarrow{\overline{v}} \mathcal{O}_X \otimes \mathbb{F}_p \\
\hline
\overline{\phi} & & & \downarrow \overline{\phi} \\
\mathcal{O}_X \otimes \mathbb{F}_p & \xrightarrow{\overline{v_2}} \mathcal{O}_X \otimes \mathbb{F}_p
\end{array}$$

Temos $D_p(v) = 0$ se e somente se $D_p(v_2) = 0$.

Lema 9.6. Seja $v = a(X,Y)\partial_X + b(X,Y)\partial_Y$ um campo formal com singularidade em 0. Sejam $v = v_L + v_N$ sua forma normal e $M \in \mathbb{N}$. Então, existe $p_0(M) \in \mathbb{N}$ tal que para qualquer primo $p > p_0(M)$, temos que

$$\overline{v}^M = \overline{v_L}^M + \overline{v_N}^M \mod p$$

é a decomposição de Jordan-Chevalley de v reduzido módulo p em $R_M \otimes \mathbb{F}_p$, onde $R_M := \mathcal{O}_X/\langle X,Y \rangle^{M+1}$

Demonstração. Considere a expressão

$$v^M = v_L^M + v_N^M$$

sobre $\mathcal{O}_X/\langle X,Y\rangle^{M+1}$. Seja p um primo de boa redução e observe que:

- (i) $[\overline{v_L}^M, \overline{v_N}^M] = 0.$
- (ii) $\overline{v_N^M}$ é nilpotente.

Assim, pela unicidade da decomposição de Jordan-Chevalley, é suficiente mostrar que v_S é um operador semi-simples $\mod p$. Agora, sabemos que v_S é semi-simples se e somente se seu polinômio minimal é reduzido. Por sua vez isso ocorre se e somente se o discriminante do polinômio minimal é não nulo. Assim, esquivando um número finito de primos p garantimos que o discriminante do polinomio minimal reduzido $\mod p$ é reduzido.

Exemplo. Suponha que v é linear e não degenerado. Módulo multiplicação por unidade, o campo se escreve como:

$$v = X\partial_X + \alpha Y\partial_Y$$

com $\alpha \in \mathbb{C}^*$. Seja p um primo de boa redução i.e. $p = char(\mathcal{M})$ para algum $\mathcal{M} \in Spm(R[\alpha])$. É bem conchecido que $\alpha \in \mathbb{Q}$ se e somente se $\alpha \mod p \in \mathbb{F}_p$ para quase todo primo p. Note que \overline{v} é p-fechado se e somente se $\alpha \in \mathbb{F}_p$. Em particular, v é p-fechado para quasi-todo primo p se e somente $\alpha \in \mathbb{Q}$.

O exemplo acima é caso particular do seguinte (compare com teorema de Katz)

Teorema 9.7. Seja v um campo em $\mathbb{A}^2_{\mathbb{C}}$ com singularidade isolada em 0 e com valor característico α . Suponha que v admite um modelo afim i.e. existe R uma \mathbb{Z} -álgebra de tipo finito tal que v pode ser encarado como uma derivação sobre R.

Se
$$D_p(v) = 0$$
 para quasi-todo primo p então $\alpha \in \mathbb{Q}$

Além disso, v é formalmente linearizável.

Demonstração. Vamos usar a decomposição de Jordan-Chevalley. Podemos escrever

$$v = v_L + v_N \in Der(\mathbb{C}[[X, Y]])$$

com $v_L = X\partial_X + \alpha Y\partial_Y$. Sabemos que a decoposição acima é obtida por passagem ao limite da decomposição de Jordan-Chevalley obtida em cada jato:

$$v^M = v_L^M + v_N^M : \mathcal{O}_X/\mathcal{M}^{M+1} \longrightarrow \mathcal{O}_X/\mathcal{M}^{M+1}.$$

Fixe $M \in \mathbb{N}$. Sabemos que existe $p_0(N)$ tal que para qualquer primo $p > p_0(N)$

$$\overline{v^M} = \overline{v_L^M} + \overline{v_N^M} : \mathcal{O}_X / \mathcal{M}^{M+1} \otimes \mathbb{F}_p \longrightarrow \mathcal{O}_X / \mathcal{M}^{M+1} \otimes \mathbb{F}_p$$

é a decoposição de Jordan-Chevalley do operador $\overline{v^M}$ obtido por redução $\mod p$. Vamos mostrar agora que v_L é paralelo à v_N sobre $\mathbb{C}[[X,Y]]$. Para isso, fixe M e tome p grande o suficente tal que $(v_N^M)^p=0$. Temos, $v=v_L+v_N$ e $v^p=v_L^p+v_N^p$ sobre $\mathcal{O}_X/\mathcal{M}^{M+1}\otimes \mathbb{F}_p$ e dai:

$$0=v^N\wedge (v^N)^p=(v_L)^N\wedge (v_L^N)^p+v_N^N\wedge (v_L^N)^p$$

Usando o fato que 0 é não degenerado e que, assim, $v_N^M \wedge v_L^p$ envolve termos de ordem > 2 obtemos

$$(v_L)^N \wedge (v_L^N)^p = (v_N)^M \wedge (v_L^M)^p = 0$$

para todo p. Daí, segue que $\alpha \mod p \in \mathbb{F}_p$ para quasi-todo primo p e por conseguinte $\alpha \in \mathbb{Q}$. Por outro lado, concluimos também que $(v_N)^M \wedge v_L^M = 0 \mod p$ para todo primo $p > p_0(M)$. Em particular, $(v_N)^M \wedge (v_L^M)^p = 0$ em $\mathcal{O}_X/\mathcal{M}^{M+1}$. Por passagem ao limite vem: $v_N \wedge v_L = 0 \Longrightarrow v = (1 + g(X,Y))v_L$, para algum $g \in \hat{\mathcal{O}}_X$.

Proposição 12. Seja v uma derivação em um dominio de tipo finito A sobre corpo k com char(k) = p > 0. Então, v admite integral primeira não trivial se e somente se $D_p(v) = 0$.

Demonstração. Se segue da correspondência em [6][1.9 proposition].

A proposição acima sugere um principio local-global para existência de integral primeira. Consideremos um caso bem particular:

Proposição 13. Seja v um campo holomorfo de tipo finito. Suponha que exista um conjunto infinito $S \subset Spec(\mathbb{Z})$ tal que $v \mod p$ possui integral primeira $f_p \in \mathbb{F}_p[X,Y]$ para todo primo $p \in S$. Além disso, suponha que $deg(f_p) \leq d$, para algum $d \in \mathbb{Z}$ independente de p. Então existe uma integral primeira polinomial para v em $\mathbb{Q}[X,Y]$.

Demonstração. Com efeito, suponha que para todo primo $p \in S$ exista integral primeira $f_p \in \mathbb{F}_p[X,Y]$ de grau $\leq d$. Seja $F_p \in \mathbb{Q}[X,Y]$ um levantamento de f_p de grau no máximo d em \mathbb{Q} . Então, temos $v(F_p) = pG_p$ para algum G_p de grau no máximo deg(v) + d. Assim, a coleção $\{G_p\}_{p \in S}$ pode ser vista como um suconjunto do \mathbb{Q} -espaço vetorial $\mathbb{Q}[X,Y]_{\leq deg(v)+d}$ de polinômios de grau no máximo deg(v)+d. Em particular, existem primos $p_1,...,p_k$ e $a_1,...,a_n \in \mathbb{Q}$, nem todos nulos, tais que

$$a_1G_{p_1} + \dots + a_kG_{p_k} = 0$$

Defina $F := \sum_{i} \frac{a_i}{n_i} F_{p_i}$. Então,

$$v(\sum_i \frac{a_i}{p_i} F_{p_i}) = \sum_i \frac{a_i}{p_i} v(F_{p_i}) = \sum_i \frac{a_i}{p_i} p_i G_{p_i} = 0$$

Para concluir a prova resta mostrar que $\sum_i \frac{a_i}{p_i} F_{p_i} \neq 0$. Não mostraremos isso, mas seguiremos outro caminho.

Seja $X_d(\mathbb{C}) := \{f \mid f \text{ \'e uma integral primeira de grau } \leq d \text{ de } v\}$. Note que $X_d(\mathbb{C})$ \'e uma variedade afim em $\mathbb{A}^N_{\mathbb{C}}$ para algum $N \in \mathbb{N}$. Afirmamos que $X_d(\mathbb{C}) \neq \emptyset$. De fato, isso se segue do teorema dos zeros. Se $X_d(\mathbb{C}) = \emptyset$ e $g_1, ..., g_M$ são as equações que descrevem tal variedade então existe uma relação do tipo

$$1 = a_1 g_1 + \dots + a_M g_M$$
 (*)

Por hipótese, para uma infinidade de primos p temos que $\overline{X_d}(\mathbb{F}_p) \neq \emptyset$. Em particular, escolhendo um primo conveniente e reduzindo a identidade (*) modulo p obtemos uma contradição $\overline{1} = 0$. Em particular, o campo v admite uma integral primeira polinomial de grau d sobre \mathbb{C} .

Isso demonstra que v admite uma integral primeira polinômial sobre \mathbb{C} . Agora, um argumento do tipo Galois e especialização permite construir uma integral primeira definina sobre K:=Frac(R), onde R é a \mathbb{Z} -álgebra de definição de v.

Observação. Seja $v \in Der_{\mathbb{Z}}(\mathbb{Z}[X,Y])$ uma derivação e p um primo racional. Denote por v_p a redução módulo p do campo v. É possível que v não admita curva aglébrica invariante definida sobre \mathbb{C} mas que v_p possui curva invariante para quasitodo primo p. De fato, em [7] é demonstrado que qualquer campo em \mathbb{A}^2_k com deg(v) < p possui curva algébrica invariante. Por outro lado, é bem conhecido (cf.[3]) que o campo de Jouanolou

$$v_d = (1 - XY^d)\partial_X + (X^d + Y^{d+1})\partial_Y$$

não admite uma curva algébrica invariante. Em particular, uma afirmação do tipo existe curva algebrica invariante sobre $\mathbb C$ se e somente se existe curva algébrica sobre $\overline{\mathbb F_p}$ para quasi-todo primo p é falsa.

10. Integrais primeiras holomorfas: um critério aritmético

O objetivo dessa seção consiste em provar um critério aritmético para existência de integrais primeiras holomorfas em folheções sobre superfícies algébricas. Inicialmente trateremos o caso local.

Definição 29. Seja v um campo holomorfo em \mathbb{C}^2 com única singularidade em 0. Suponha que v admite um modelo afim sobre uma \mathbb{Z} -álgebra de tipo finito R. A função arimética associada a v é a aplicação:

$$\mu_v : \mathbf{Spm}(R) \longrightarrow \mathbb{N} \cup \{\infty\} \qquad \mathcal{M} \mapsto ord_0(D_q(v))$$

onde $q := char(R/\mathcal{M})$.

Proposição 14. $\mu_v(Q) \geq \delta_v(Q)$ para todo Q, onde $\delta_v(Q) := (q+1)l(0) - q$. ⁶.

Demonstração. De fato, escreva $v = v_{l(0)} + v_{l(0)+1} + \cdots$ e note que

$$v^p = v_{(q+1)l(0)-q} + \cdots$$

com $v_{(q+1)l(0)-q}$ possivelmente nulo. Daí, vem $\mu_v(Q) \ge (q+1)l(0)-q$.

10.1. p-curvatura e existência de integrais primeiras holomorfas.

Proposição 15. Seja v um campo holomorfo de tipo finito em $(\mathbb{C}^2, 0)$ com singularidade isolada em 0. Suponha que 0 não é degenerado com valor característico -1. Então, v não admite uma integral primeira holomorfa em torno de 0 se e somente se μ_v é limitada.

Lema 10.1. Seja v um campo holomorfo em $(\mathbb{C}^2,0)$ com parte linear $Dv = aX\partial_X - b\partial_Y$, com $a,b \in \mathbb{Z}$ coprimos. Seja $m \in \mathbb{N}$ e defina

 $\mathcal{D}_m := \mathbb{C}\text{-espaço dos polinômios de } grau \leq m$.

 $Seja \ A = diag(a, -b) \ a \ matrix \ associada \ a \ parte \ linear \ de \ v \ em \ 0 \ e \ defina$

$$L_A^{(m)}: \mathcal{D}_m^{(2)} \longrightarrow \mathcal{D}_m^{(2)}: P_m \mapsto JP_m A\tilde{X} - AP_m \tilde{X}$$

Suponha que $L_A^{(m)}$ seja um isomorfismo. Então, $L_{A\otimes\overline{\mathbb{F}_p}}^{(m)}$ é $\overline{\mathbb{F}_p}$ -isomorfismo para todo primo p tal que $m<[\frac{p-|ab|}{|a-b|+|ab|}]$.

 $^{{}^{6}}l(0) := \inf\{n \in \mathbb{N} \mid v \in \langle X, Y \rangle^{n}\}$

Demonstração. Seja $X^{m_1}Y^{m_2}$ um monômio com $m_1+m_2\leq m$. Não é difícil verificar que vale as seguintes fórmulas:

$$L_A^{(m)}(X^{m_1}Y^{m_2}e_1) = (am_1 - bm_2 - a)X^{m_1}Y^{m_2}e_1$$

$$L_A^{(m)}(X^{m_1}Y^{m_2}e_2) = (am_1 - bm_2 + b)X^{m_1}Y^{m_2}e_2.$$

Como estamos assumindo $L_A^{(m)}$ um isomorfismo temos que para qualquer par $(m_1,m_2)\in\mathbb{N}^2$ com $m_1+m_2\leq m$ é tal que $(am_1-bm_2-a)(am_1-bm_2+b)\neq 0$. Assim, devemos verificiar condições entre m e p que garantem $m_1-m_2-1\notin\langle p\rangle$ e $m_1-m_2+1\notin\langle p\rangle$ restrita a condição $m_1+m_2=m$. Agora, temos que $|am_1-bm_2-a|=|am-am_2-bm_2|+a=a(m+1)+|a-b|m_2\leq a(m+1)+|a-b|m\leq m(ab+|a-b|)+ab$. O mesmo argumento aplicado a $|am_1-bm_2+b|$ implica $|am_1-bm_2+b|\leq m(ab+|a-b|)+ab$. Em particular, se p>ab+m(ab+|a-b|) i.e. se $m<\frac{p-ab}{ab+|a-b|}$ concluímos que $L_{A\otimes\overline{\mathbb{F}}_p}^{(m)}$ é um isomorfismo, como queríamos demonstrar.

Observação. Seja v um campo analítico com singularidade em 0 não degenerada e parte linear Dv(0) = diag[a, -b]. Usando o mapa descrito acima podemos mostrar (teorema de Poincaré-Dulac) que existe um campo formalmente conjugado a v no sequinte tipo

$$v = v_1 + v_N$$

onde $v_1 = aX\partial_X - bY\partial_Y$ e com v_N envolvendo somente termos ressoantes. O argumento consiste em inverter os monômios não ressoantes que ocorrem em v. Tal processo pode ser encarado como um algoritmo para forma normal de Jordan-Chevalley de v.

Lema 10.2. Seja v um campo holomorfo com parte linear $Dv = aX\partial_X - bY\partial_Y$, para $a, b \in \mathbb{Z}_{>0}$ inteiros coprimos. Suponha que v esteja na sua forma normal i.e. $v = v_1 + v_N$ com $v_1 = aX\partial_X - bY\partial_Y$ e $v_N = a(X,Y)\partial_X + b(X,Y)\partial_Y$ envolvendo somente termos ressonantes. Seja $f \in \mathcal{O}_X$ uma integral primeira holomorfa para v definida em torno de 0. Então, existe $g(T) = a_1T + \cdots \in \mathbb{C}\{T\}$ tal que $f(X,Y) = g(X^bY^a)$.

Demonstração. Temos

$$a(X,Y) = \sum_{ai-bj=a} a_{i,j} X^i Y^j = \sum_k a_{i(k),j(k)} X(X^b Y^a)^k = X(\sum_k a_{i(k),j(k)} (X^b Y^a)^k).$$

$$b(X,Y) = \sum_{ai-bj=-b} b_{i,j} X^i Y^j = \sum_k b_{i(k),j(k)} Y(X^a Y^b)^k = Y(\sum_k b_{i(k),j(k)} (X^a Y^b)^k).$$

Assim, temos que $v=v_1+Xh_1(X^aY^b)\partial_X+Yh_2(X^aY^b)\partial_Y$, para $h_1(T),h_2(T)\in\mathbb{C}\{T\}$

Agora, seja $f(X,Y) \in \mathbb{C}\{X,Y\}$ uma integral primeira holomorfa em 0 para v e escreva $f = f_1 + f_2 + f_3 + \cdots$ onde f_d é um polinômio homogêneo de grau d. Observe que $v = v_1 + v_{(a+b)+1} + v_{2(a+b)+1} + \cdots + v_{k(a+b)+1} + \cdots$.

Considerando a igualdade v(f)=0 e comparando os termos de cada grau, obtemos:

- (i) **termos de grau** 1: $v_1(f_1) = 0$. Escrevendo f = AX + BY para $A, B \in \mathbb{C}$ resulta A = B = 0.
- (ii) **termos de grau** d < a+b: Afirmamos que $f_d = 0$ nesse caso. Com efeito, a condição d < a+b implica que $v_1(f_d) = 0$. Agora, escrevendo $f_d = \sum_{i+j=d} r_{i,j} X^i Y^j$ e considerando a identidade $v_1(f_d) = 0$ obtemos $\sum_{i+j=d} r_{i,j} (ia-bj) X^i Y^j = 0$ e daí resulta i = bk e j = ak para algum $k \in \mathbb{N}$. Agora, como i+j=d obtemos k(a+b) = d < a+b, absurdo a menos que $f_d \equiv 0$.
- (iii) **termos de grau** d=a+b: $v_1(f_{a+b})=0$. O mesmo argumento usado em (ii) mostra que $f_{a+b}=\sum_k r_k(X^aY^b)^k$ com k(a+b)=d.

Em geral, não é difícil verificar que $f_{k(a+b)+j}=0$ para todo $k\in\mathbb{N}$ e $j\in\{1,...,a+b-1\}$. Além disso, todo termo do tipo $f_{l(a+b)}$ é da forma $h_{l(a+b)}(X^bY^a)$, para algum $h_{l(a+b)}\in\mathbb{C}[T]$. Em particular, $f=h(X^bY^a)$ para algum $h\in\mathbb{C}[[T]]$.

Demonstração. (da proposição) Seja v um campo holomorfo de tipo finito como no enunciado. Podemos supor que v está na sua forma normal $v=v_L+v_N$. Sabemos que $v_N=h_1(XY)X\partial_X+h_2(XY)Y\partial_Y$ para alguns $h_1=\sum_i a_iT^i, h_2=\sum_i b_iT^i\in\mathbb{C}[[T]]$. Agora, pelo lema acima sabemos que v admite intergal primeira formal se e somente se $a_i=-b_i$ para todo $i\in\mathbb{N}$. Por outro lado, seja p um primo de boa redução de v. Então, obtemos um campo \overline{v} sobre $\overline{\mathbb{F}_p}$. Seja $(\overline{v})_1+(\overline{v})_N$ sua forma normal. Pelo lema 10.1 sabemos que se escrevermos $v=v_1+v_2+\cdots+v_{h(p)}+v_{h(p)+1}+\cdots$ então

$$(\overline{v})_1 + (\overline{v})_N = \overline{v_1} + \dots + \overline{v_{h(p)-1}} + \overline{v_{h(p)}} + \overline{v_{h(p)+1}} + \dots$$

onde h(p) = p - 1. Suponha que v admite uma integral primeira holmorfa. Então, pela observação acima temos $a_i = -b_i$ para todo i e assim $v_k = S_k(X,Y)v_1$ para todo k e algum $S_k \in \mathbb{C}[X,Y]$. Agora, analisando a redução módulo p obtemos $(\overline{v})_1 + (\overline{v})_N = (\overline{S}_1 + \dots + \overline{S}_{h(p)})v_1 + \overline{v}_{h(p)+1} + \dots$

Daí, $\mu_v(p) \ge h(p) + 1 + 1 = p + 1$. Em particular, μ_v é não limitada.

Agora, suponha que v não admite uma integral primeira formal. Então, pelo lema anterior isso equivale a dizer que existe $i \in \mathbb{N}$ tal que $a_i \neq -b_i$. Tome i o menor indice com tal propriedade. Então, uma análise análoga mostrar que a forma normal de \overline{v} tem o seguinte tipo

$$\overline{A(X,Y)}\overline{v_1} + \overline{v_i} + \overline{v_{i+1}} \cdots$$

com $\overline{v_i} \wedge \overline{v_1} \neq 0$ e $\overline{A(X,Y)} \in \overline{\mathbb{F}_p}$. Considerando a p-curvatura de v vemos que $\mu_v(p) = ord_0(v_1 \wedge v_i)$ e assim independe de primo p. Em particular, μ_v é uma função limitada.

Observação. Usamos acima o fato de que para garantir a existência de integral primeira holomorfa em torno de 0 do campo v é suficiente tratar o caso formal (cf. [5]).

A proposição acima se generaliza:

Teorema 10.3. Seja v um campo holomorfo com singularidade não degenerada e irredutível em 0 com valor característico $\alpha \in \mathbb{Q}_{\leq 0}$. Então, v não admite uma integral primeira holomorfa se e somente se μ_v é uma função limitada.

Demonstração. O argumento é similar ao caso anterior. O ponto crucial consiste na cota fornecida pelo lema 10.1.

Referências

- 1. Werner Balser, Formal power series and linear systems of meromorphic ordinary differential equations, Universitext, Springer-Verlag, New York, 2000.
- 2. James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978, Second printing, revised.
- 3. J. P. Jouanolou, Équations de Pfaff algébriques, Lecture Notes in Mathematics, vol. 708, Springer, Berlin, 1979.
- 4. Nicholas M Katz, Nilpotent connections and the monodromy theorem: Applications of a result of turrittin, Publications mathématiques de l'IHES 39 (1970), 175-232.
- 5. Jean-François Mattei and Robert Moussu, Intégrales premières d'une forme de pfaff analytique, Annales de l'institut Fourier, vol. 28, 1978, pp. 229–237.
- 6. Yoichi Miyaoka and Thomas Peternell, Geometry of higher-dimensional algebraic varieties, DMV Seminar, vol. 26, Birkhäuser Verlag, Basel, 1997.
- 7. J. Pereira, Invariant hypersurfaces for positive characteristic vector fields, Journal of Pure and Applied Algebra 171 (2002), no. 2-3, 295–301.
- 8. The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu, 2018.
- 9. Tamás Szamuely, Galois groups and fundamental groups, vol. 117, Cambridge University Press, 2009.
- 10. Marius van der Put, Reduction modulo p of differential equations, Indagationes mathematicae **7** (1996), no. 3, 367–387.