Thermopile Array With Lens Optics Rev.1: 2017.10.16 Lupp/Schnorr

Content

1	Prir	ncipal Schematic for HTPA16x16d:	2
2	Pin	Assignment- Bottom View:	2
3	Opt	ical Orientation	3
4	Ord	ler Code Example	4
5	Seri	ial Order of Frame	5
6	Cha	aracteristics:	6
	6.1	Common Specifications:	6
	6.2	Optical characteristics:	6
	6.3	Electric Specifications	7
7	I ² C	Timings HTPA16x16d:	8
8	I ² C	Communication:	9
	8.1	Write Command:	9
	8.2	Read Command:	9
	8.3	Sensor Commands:	9
	8.4	EEPROM communication	12
	8.5	I ² C Example Sequences – EEPROM Wakeup / Standby	13
	8.6	I ² C Example Sequences – EEPROM Block Erase / Block Write	13
	8.7	I ² C Example Sequences – EEPROM Sequential Erase / Write	14
	8.8	I2C Example Sequence – EEPROM Continuous Erase	15
	8.9	I2C Example Sequence – EEPROM Continuous Write	15
	8.10	I2C Example Sequence – EEPROM Sequential Read	16
	8.11	I2C Example Sequence – EEPROM Continuous Read	16
	8.12	I ² C Example Sequences – Init and Read Thermopile Array	17
9	Ten	nperature calculation	18
	9.1	Ambient Temperature:	19
	9.2	Thermal Offset:	19
	9.3	Electrical Offset	20
	9.4	Vdd Compensation	20
	9.5	Object Temperature:	21
	9.6	Example calculation:	23
	Look-	-up Table	25
1() (Outer Dimensions	26

Thermopile Array With Lens Optics Rev.1: 2017.10.16 Lupp/Schnorr

1 Principal Schematic for HTPA16x16d:

Figure 1: Schematic for HTPA16x16d

2 Pin Assignment-Bottom View:

Figure 2: pin-allocation

Pin	Symbol	Description
1	SCL	Digital I/O, Open Drain, 100k PU, Serial Clock
2	VDD	Positive supply voltage
3	VSS	Negative supply voltage / Ground (0V) (connected to housing)
4	SDA	Digital I/O, Open Drain, 100k PU, Serial Data

Datasheet HTPA16x16dR1L2.1/0.8F5.0HiC Page 2 of 26

Thermopile Array With Lens Optics Rev.1: 2017.10.16 Lupp/Schnorr

3 Optical Orientation

Figure 3: Optical orientation

Thermopile Array With Lens Optics Rev.1: 2017.10.16 Lupp/Schnorr

4 Order Code Example

Figure 4: Exemplary order code

Thermopile Array With Lens Optics Rev.1: 2017.10.16 Lupp/Schnorr

5 Serial Order of Frame

The sensor is divided into two parts (top and bottom half) which are again separated into 2 blocks. The readout order is shown below for the different blocks.

Block 0 (top)
Block 1 (top)
Block 1 (bottom)
Block 0 (bottom)

Figure 5: Division of blocks

Whenever a conversion is started the Block x of the top and bottom half are measured at the same time. Each block consists of 64 Pixel that are sampled fully parallel. The readout order on the bottom half is mirrored compared to the top half so that the central lines are always read last.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	rea
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	adout
	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	ŭ
	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	oro
	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	order
	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	top.
	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	þ
	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	
	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	ı ,
	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	rea
	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	readout
	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	
	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	order
ı	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	ler
ı	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	bc
	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	bottor
_																	=

Figure 6: 16x16d readout order for active pixel

The electrical offsets are sampled in parallel for the top and bottom half. The matching rows for the corresponding electrical offsets and active Pixel are marked with the same color. The conversion of the electrical offsets is started by sending the command for the BLIND bit during the start command, see 8.3.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127

Figure 7: 16x16d readout order for electrical offsets

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

HEIMANN Sensor HEIMANN SENSOR GMBH

HTPA16x16dR1L2.1/0.8F5.0HiC[Si]

Thermopile Array With Lens Optics

Rev.1: 2017.10.16 Lupp/Schnorr

6 Characteristics:

6.1 Common Specifications:

Technology n-poly/p-poly Si Element Resistance approx. 300 kOhms

Sensitivity approx. 450 V/W without optics and filter

Thermal pixel time constant <4 ms
Digital Interface I²C
Analog Output No

Selectable Clock 1 to 13 MHz EEPROM size 1024x16 Bit

Pitch 90 µm Absorber size 44 µm Max. Framerate 120 Hz

(complete frame with maximum I2C and sensor clock speed and reduced ADC resolution)

256 sensitive elements

6.2 Optical characteristics:

Focal length: 2.1 mm ("L" equals the focal length of the lens)

F-Number: 0.8

Field of view: 45 x 45 deg

Lens coating: LWP-Coating 5.0

Cut On (Tr. 5%): $5.0 \mu m \pm 0.3 \mu m$

Thermopile Array With Lens Optics Rev.1: 2017.10.16 Lupp/Schnorr

HEIMANN Sensor

6.3 Electric Specifications

Table 1: Absolute Maximum Ratings

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply Voltage	V_{DD}		-0.3		3.6	V
Voltage at All inputs and outputs	V_{IO}		-0.3		V _{DD} +0.3	V
Storage Temperature	T _{STG}		-40		85	Deg. C

Table 2: Operating Conditions

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply Voltage	V_{DD}		3.3	3.35	3.6	V
Supply Current (sensor running)	I_{DD}		3	3.3	3.8	mA
Supply Current (sensor in idle state)	I_{DD}			TBD		mA
Standby Current (sensor in sleep state)	I_{SBY}			TBD		μΑ
Operation Temperature	T_{A}		-20		65	Deg. C
ESD-Protection		Human body model 100pF + 1k5Ohm	2.0			kV

Table 3: Electrical Characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Digital Input						0.8
Internal Clock	F _{CLK}		1	5	13	MHz 3
frequency						3.UI
Internal I ² C Pull up	R_{PU}		1	100	100	kOhm 7
Bias current	I _{BIAS}		1	3	13	μA
BPA current	I_{BPA}		0.2	1.5	4.0	μΑ 👸
Input voltage high	V_{IH}		$0.7xV_{DD}$			V
Input voltage low	$V_{\rm IL}$				$0.3xV_{DD}$	V 01 20
PTAT						6
Temperature range			TBD		TBD	Deg. C
PTAT gradient				TBD		K/V

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics Rev.1: 2017.10.16 Lupp/Schnorr

Table 4: Preamplifier / ADC

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Chopper frequency	F _{CHP}			20		kHz
Preamplifier Noise	N _{PA}	at 20 kHz		72		$nV/HZ^{1/2}$
Frame rate (Full Array)	FR1			18		Hz
Frame rate (Half Array)	FR4			36		HZ
ADC pos. Reference	V_{REFP}			1.6		V
ADC neg. Reference	V_{REFN}			0.9		V
ADC resolution	ADC_{LSB}	at 16 Bit		21		μV

I²C Timings HTPA16x16d:

Figure 8: I²C Timings of HTPA16x16d

Table 5: I2C Timings

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
I ² C clock frequency	F_{CLK}			400	1000	kHz
low pulse duration	T _{CLK,lo}		0.50			μs
high pulse duration	T _{CLK,hi}		0.26			μs
data set up time	T _{SU,data}		0.05			μs
data hold time	T _{hd,data}		0.00			μs
start setup time	T _{SU,start}		0.26			μs
start hold time	T _{hd,start}		0.26			μs
stop setup time	T _{SU,stop}		0.26			μs
stop hold time	T _{hd,stop}		0.26			μs
time between STOP / START	T _{buf}		0.50			μs

HEIMANN Sensor GmbH Contact / Customer Support Phone 49 (0) 6123 60 50 30 Maria-Reiche-Str. 1 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics

Rev.1: 2017.10.16 Lupp/Schnorr

8 I²C Communication:

The chip uses the **7-bit I**²**C** address **0x1A** for configuration and **sensor** data and the **7-bit I**²**C** address **0x1B** to access the internal **EEPROM**. The address byte is followed by a W/R bit and an 8-bit command.

8.1 Write Command:

In case of a write access to an internal register the command is followed by the data byte. The chip acknowledges each byte with a low active ACK bit.

Figure 9: Write command

8.2 Read Command:

To read data from the chip first the address and command must be sent. After the last ACK a new start-bit (repeated start) and the address with a set read-flag initiates the read sequence. There can be bytes read as many as required. The last byte must be denoted by a not-acknowledge. The shown example below can be used e.g. to get the status register.

Figure 10: Read command

8.3 Sensor Commands:

The sensor has several registers that can be written and read, they are listed below.

Table 6: Configuration register (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)1					
Config Reg	7	6	5	4	3	2	1	0
Name	RFU		BLC	OCK	START	VDD_MEAS	BLIND	WAKEUP
Default	0	0	0	0	0	0	0	0

The WAKEUP bit is used to switch on / off the chip and must be set prior all other operations. After the START bit is set the chip starts a conversion of the array or blind elements and enters the idle state (not sleep!) when finished. The BLOCK selects one of the four multiplexed array blocks.

If the BLIND bit is set the electrical offsets are sampled instead of the active pixel and the setting of the BLOCK is ignored.

If VDD_MEAS bit is set the VDD voltage is measured instead of the PTAT value. RFU means reserved for future use and can be subject to change.

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Thermopile Array With Lens Optics

Rev.1: 2017.10.16 Lupp/Schnorr

Table 7: Status Register (read only)

Addr / CMD	0x1A (7	x1A (7 Bit!) / 0x02											
Status Reg	7	6	5	4	3	2	1	0					
Name		RF	Ŧ U		BLC	OCK	VDD_MEAS	EOC					
Default	0	0	0	0	0	0	0	0					

If the EOC flag is set a previous started conversion has been finished.

Table 8: Trim Register 1 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)3					
Trim Reg 1	7	6	5	4	3	2	1	0
Name		RFU MBIT TRIM						
Default	0	0	0	0	1	1	0	0

MBIT_TRIM: m = 4 to $12 \implies (m+4)$ bit as ADC resolution

(Default: m=12)

Table 9: Trim Register 2 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)4					
Trim Reg 2	7	6	5	4	3	2	1	0
Name		RFU			BIA	S TRIM	ГОР	
Default	0	0	0	0	1	1	0	0

BIAS_TRIM_TOP: 0 to 31 \Rightarrow 1 μ A to 13 μ A

(Default: 5µA)

This setting is used to adjust the bias current of the ADC. A faster clock frequency requires a higher bias current setting.

Table 10: Trim Register 3 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)5					
Trim Reg 3	7	6	5	4	3	2	1	0
Name		RFU			BIA	S TRIM I	ВОТ	
Default	0	0	0	0	1	1	0	0

BIAS TRIM BOT: 0 to 31 \Rightarrow 1µA to 13µA

(Default: 5µA)

This setting is used to adjust the bias current of the ADC. A faster clock frequency requires a higher bias current setting.

Table 11: Trim Register 4 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)6					
Trim Reg 4	7	6	5	4	3	2	1	0
Name	RI	FU			CLK	TRIM		
Default	0	0	0	1	0	1	0	1

CLK TRIM: $0 \text{ to } 63 \implies 1 \text{MHz to } 13 \text{MHz}$

(Default: 5MHz)

NOTE: The measure time depends on the clock frequency settings. One quarter frame takes about:

$$t_{FR4} = \frac{32 \cdot (2^{MBIT} + 4)}{F_{CLK}} \approx 27 ms @ 5MHz$$

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Thermopile Array With Lens Optics

Rev.1: 2017.10.16 Lupp/Schnorr

Table 12: Trim Register 5 (write only)

Addr / CMD	0x1A (7	0x1A (7 Bit!) / 0x07							
Trim Reg 5	7	6	5	4	3	2	1	0	
Name		RFU BPA TRIM TOP							
Default	0	0	0	0	1	1	0	0	

BPA_TRIM_TOP: 0 to 31 \Rightarrow 0.2 μ A to 4.0 μ A

(Default: 1.5µA)

This setting is used to adjust the common mode voltage of the preamplifier.

Table 13: Trim Register 6 (write only)

Addr / CMD	0x1A (7	0x1A (7 Bit!) / 0x08							
Trim Reg 6	7	6	5	4	3	2	1	0	
Name		RFU BPA TRIM BOT							
Default	0	0	0	0	1	1	0	0	

BPA_TRIM_BOT: 0 to 31 \Rightarrow 0.2 μ A to 4.0 μ A

(Default: 1.5µA)

This setting is used to adjust the common mode voltage of the preamplifier.

Table 14: Trim Register 7 (write only)

Addr / CMD	0x1A (7	Bit!) / 0x0)9					
Trim Reg 7	7	6	5	4	3	2	1	0
Name		PU SDA	A TRIM			PU SCI	_ TRIM	
Default	1	0	0	0	1	0	0	0

PU_SDA_TRIM: select internal pull up resistor on SDA (Default: 100kOhm)
PU_SCL_TRIM: select internal pull up resistor on SCL (Default: 100kOhm)

"1000" = 100 kOhm; "0100" = 50 kOhm; "0010" = 10 kOhm; "0001" = 1 kOhm

Table 15: Read Data 1 Command (Top Half of Array)

Addr / CMD	0x1A (7 E	Bit!) / 0x()A								
Read Data	7	7 6 5 4 3 2 1 0									
1. Byte / 2. Byte]	PTAT 1 M	SB / LSE	3					
3. Byte / 4. Byte		Pixel (0+BLOCK*64) MSB / LSB									
5. Byte / 6. Byte			Pixel (1	+BLOCK	*64) MS	B / LSB					
129. Byte / 130. Byte			Pixel (6	3+BLOCK	*64) MS	B / LSB		·			

Table 16: Read Data 2 Command (Bottom Half of Array)

Addr / CMD	0x1A (7 H	0x1A (7 Bit!) / 0x0B									
Read Data	7	7 6 5 4 3 2 1 0									
1. Byte / 2. Byte]	PTAT 2 M	SB / LSE	3					
3. Byte / 4. Byte			Pixel (24	0-BLOCK	(*64) MS	SB / LSB					
5. Byte / 6. Byte			Pixel (24	1-BLOCK	(*64) MS	SB / LSB					
33. Byte / 34. Byte			Pixel (25	5-BLOCK	(*64) MS	SB / LSB					
35. Byte / 36. Byte			Pixel (22	24-BLOCK	(*64) MS	SB / LSB					
37. Byte / 38. Byte		Pixel (225-BLOCK*64) MSB / LSB									

HEIMANN Sensor GmbH Contact / Customer Support Internet Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 www.hei

D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

www.heimannsensor.com

mail: info@heimannsensor.com

Thermopile Array With Lens Optics

Rev.1: 2017.10.16 Lupp/Schnorr

65. Byte / 66. Byte	Pixel (239-BLOCK*64) MSB / LSB
67. Byte / 68. Byte	Pixel (192-BLOCK*64) MSB / LSB
129. Byte / 130. Byte	Pixel (207-BLOCK*64) MSB / LSB

The complete sensor data must be read at once. If the communication fails somewhere in between, all successive data will be corrupted. The readout can be stopped anywhere by pausing the clock. A new initialized readout proceeds at this stopped byte by continuing the clock, but the index is reset when a new conversion has been started.

If the bit for the electrical offsets (Bit 1 in Config 0x01) is set the electrical offsets are sampled and can be read similar to the active pixel:

Table 17: Read Data electrical offsets (Top Half of Array)

Addr / CMD	0x1A (7 B	it!) / 0x0A									
Read Data	7	7 6 5 4 3 2 1 0									
1. Byte / 2. Byte		PTAT 1 MSB / LSB or VDD 1 MSB / LSB									
3. Byte / 4. Byte		electrical offset (0) MSB / LSB									
5. Byte / 6. Byte			elect	rical offset	(1) MSB /	LSB					
				•							
129. Byte / 130. Byte			electi	rical offset	(63) MSB /	LSB					

Table 18: Read Data electrical offsets (Bottom Half of Array)

Addr / CMD	0x1A (7 B	it!) / 0x0B								
Read Data	7	7 6 5 4 3 2 1 0								
1. Byte / 2. Byte			PTAT 2 M	ISB / LSB o	or VDD 2 N	ASB / LSB				
3. Byte / 4. Byte			electr	ical offset (112) MSB	/ LSB				
5. Byte / 6. Byte		electrical offset (113) MSB / LSB								
33. Byte / 34. Byte			electr	ical offset (127) MSB	/ LSB				
35. Byte / 36. Byte			electi	rical offset	(96) MSB /	LSB				
129. Byte / 130. Byte			electi	rical offset	(79) MSB /	LSB				

The complete sensor data must be read at once. If the communication fails somewhere in between, all successive data will be corrupted. The readout can be stopped anywhere by pausing the clock. A new initialized readout proceeds at this stopped byte by continuing the clock, but the index is reset when a new conversion has been started.

8.4 EEPROM communication

To read/write data from/to the internal EEPROM the I2C address 0x1B is used.

Table 19: EEPROM Commands

Name	CMD	Read / Write	Comment
Standby	0x00	W	
			releases all signals to default state
Active	0x01	W	wait for 15µs when wake up from standby
Normal Erase	0x02	W	program pulse width 5ms
Normal Write	0x03	W	program pulse width 5ms

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Thermopile Array With Lens Optics

Rev.1: 2017.10.16 Lupp/Schnorr

Block Erase	0x04	W	program pulse width 5ms
Block Write	0x05	W	program pulse width 5ms
Normal Read	0x06	W	
Set Data	0x0A	W	16 bit data, MSB first
Get Data	0x0B	R	16 bit data, MSB first

Note: The EEPROM must be activated (wake up from standby) prior being used. The active command also initializes the EEPROM to its default state.

Note: Each word must be erased before it can be written, a write command stores only a "1" to the EEPROM cell.

Note: The commands "SET_DATA" / "GET_DATA" will increment the address pointer, except for the first execution after "SET_ADDR".

8.5 I²C Example Sequences – EEPROM Wakeup / Standby

	ADDR	W/R	EEPROM_ACTIVE	
S	0x1B	0	0x01	P

	ADDR	W/R	EEPROM_STANDBY	
S	0x1B	0	0x01	P

Figure 11: EEPROM Wakeup / Standby

8.6 I²C Example Sequences – EEPROM Block Erase / Block Write

	ADDR	W/R	BLOCK_ERASE	
S	0x1B	0	0x04	P

wait 5ms

	ADDR	W/R	EEPROM_ACTIVE	
S	0x1B	0	0x01	P

	ADDR	W/R	SET_DATA	DATA_MSB	DATA_LSB	
S	0x1B	0	0x0A	DATA	DATA	P

	ADDR	W/R	BLOCK_WRITE	
S	0x1B	0	0x05	P

wait 5ms

	ADDR	W/R	EEPROM_ACTIVE	
S	0x1B	0	0x01	P

Figure 12: EEPROM Block Erase / Block Write

Internet

Thermopile Array With Lens Optics

Rev.1: 2017.10.16 Lupp/Schnorr

8.7 I²C Example Sequences – EEPROM Sequential Erase / Write

	ADDR	W/R	SET_ADDR	EEP_ADDR	
S	0x1B	0	0x09	ADDR	P

	ADDR	W/R	NORMAL_ERASE	
S	0x1B	0	0x02	P

wait 5ms

	ADDR	W/R	SET_DATA	DATA_MSB	DATA_LSB	
S	0x1B	0	0x0A	DATA	DATA	P

	ADDR	W/R	NORMAL_WRITE	
S	0x1B	0	0x03	P

wait 5ms

1		ADDR	W/R	SET_ADDR	EEP_ADDR	
	S	0x1B	0	0x09	ADDR	P

	ADDR	W/R	NORMAL_ERASE	
S	0x1B	0	0x02	P

wait 5ms

	ADDR	W/R	SET_DATA	DATA_MSB	DATA_LSB	
S	0x1B	0	0x0A	DATA	DATA	P

	ADDR	W/R	NORMAL_WRITE	
S	0x1B	0	0x03	P

wait 5ms

	ADDR	W/R	SET_ADDR	EEP_ADDR	
S	0x1B	0	0x09	ADDR	P

	ADDR	W/R	NORMAL_ERASE	
S	0x1B	0	0x02	P

wait 5ms

	ADDR	W/R	SET_DATA	DATA_MSB	DATA_LSB	
S	0x1B	0	0x0A	DATA	DATA	P

١		ADDR	W/R	NORMAL_WRITE	
ı	S	0x1B	0	0x03	P

wait 5ms

	ADDR	W/R	SET_ADDR	EEP_ADDR	
S	0x1B	0	0x09	ADDR	P

	ADDR	W/R	NORMAL_ERASE	
S	0x1B	0	0x02	P

wait 5ms

	ADDR	W/R	EEPROM_ACTIVE	
S	0x1B	0	0x01	P

Figure 13: EEPROM Sequential Erase / Write

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Thermopile Array With Lens Optics

Rev.1: 2017.10.16 Lupp/Schnorr

8.8 I2C Example Sequence – EEPROM Continuous Erase

	ADDR	W/R	SET_ADDR	EEP_ADDR	
S	0x1B	0	0x09	ADDR	P

	ADDR	W/R	NORMAL_ERASE	
S	0x1B	0	0x02	P

wait 5ms

ĺ		ADDR	W/R	SET_ADDR	EEP_ADDR	
ĺ	S	0x1B	0	0x09	ADDR	P

	ADDR	W/R	NORMAL_ERASE	
S	0x1B	0	0x02	P

wait 5ms

		ADDR	W/R	EEPROM_ACTIVE	
I	S	0x1B	0	0x01	P

Figure 14: EEPROM Continuous Erase

8.9 I2C Example Sequence – EEPROM Continuous Write

	ADDR	W/R	SET_ADDR	EEP_ADDR	
S	0x1B	0	0x09	ADDR	P

	ADDR	W/R	SET_DATA	DATA_MSB	DATA_LSB	
S	0x1B	0	0x0A	DATA	DATA	P

	ADDR	W/R	NORMAL_WRITE	
S	0x1B	0	0x03	P

wait 5ms

	ADDR	W/R	SET_DATA	DATA_MSB	DATA_LSB	
S	0x1B	0	0x0A	DATA	DATA	P

	ADDR	W/R	NORMAL_WRITE	
S	0x1B	0	0x03	P

wait 5ms

	ADDR	W/R	EEPROM_ACTIVE	
S	0x1B	0	0x01	P

Figure 15: EEPROM Continuous Write

Internet

Thermopile Array With Lens Optics

Rev.1: 2017.10.16 Lupp/Schnorr

8.10 I2C Example Sequence – EEPROM Sequential Read

	ADDR	W/R	SET_ADDR	EEP_ADDR	
S	0x1B	0	0x09	ADDR	P

	ADDR	W/R	NORMAL_READ	
S	0x1B	0	0x06	P

	ADDR	W/R	GET_DATA		ADDR	W/R	DATA_MSB	DATA_LSB	
S	0x1B	0	0x0B	Sr	0x1B	1	??	??	P

		ADDR	W/R	SET_ADDR	EEP_ADDR	
ĺ	S	0x1B	0	0x09	ADDR	P

	ADDR	W/R	NORMAL_READ	
S	0x1B	0	0x06	P

	ADDR	W/R	GET_DATA		ADDR	W/R	DATA_MSB	DATA_LSB	
S	0x1B	0	0x0B	Sr	0x1B	1	??	??	P

	ADDR	W/R	EEPROM_ACTIVE	
S	0x1B	0	0x01	P

Figure 16: EEPROM Sequential Read

8.11 I2C Example Sequence – EEPROM Continuous Read

	ADDR	W/R	SET_ADDR	EEP_ADDR	
S	0x1B	0	0x09	ADDR	P

	ADDR	W/R	NORMAL_READ	
S	0x1B	0	0x06	P

	ADDR	W/R	GET_DATA		ADDR	W/R	DATA_MSB	DATA_LSB	
S	0x1B	0	OxOB	Sr	0x1B	1	??	??	P
	-	-			•		-		

	ADDR	W/R	GET_DATA		ADDR	W/R	DATA_MSB	DATA_LSB	
S	0x1B	0	OxOB	Sr	0x1B	1	??	??	P
		•				•	-		

	ADDR	W/R	GET_DATA		ADDR	W/R	DATA_MSB	DATA_LSB	
S	0x1B	0	0x0B	Sr	0x1B	1	??	??	P

	ADDR	W/R	GET_DATA		ADDR	W/R	DATA_MSB	DATA_LSB	
S	0x1B	0	0x0B	Sr	0x1B	1	??	??	P

	ADDR	W/R	EEPROM_ACTIVE	
S	0x1B	0	0x01	P

Figure 17: EEPROM Continuous Read

Internet

Thermopile Array With Lens Optics

Rev.1: 2017.10.16 Lupp/Schnorr

ADDR

ADDR

W/R

READ_DATA

W/R READ_DATA

8.12 I²C Example Sequences – Init and Read Thermopile Array

(There should be a delay of at least 5 ms between the write of each Configuration Register)

	ADDR	W/R	CONFIG_REG	W	AKEUP				
S	0x1A	0	0x01		0x01	P			
							_		
	ADDR	W/R	TRIM_REG1	MB	IT_TRIM				
S	0x1A	0	0x03		0x0C	P			
							=		
	ADDR	W/R	TRIM_REG2	BIA	S_TRIML				
S	0x1A	0	0x04		0x0C	P			
							=		
	ADDR	W/R	TRIM_REG3	BIAS	S_TRIMR				
S	0x1A	0	0x05		0x0C	P			
							=		
	ADDR	W/R	TRIM_REG4	CLI	K_TRIM				
S	0x1A	0	0x06		0x14	P			
							_		
	ADDR	W/R	TRIM_REG5	BPA	_TRIML				
S	0x1A	0	0x07		0x0C	P			
							_		
	ADDR	W/R	TRIM_REG6	BPA	_TRIMR				
S	0x1A	0	0x08		0x0C	P			
							_		
	ADDR	W/R	TRIM_REG7	PU	_TRIM				
S	0x1A	0	0x09		0x88	P			
	ADDR	W/R	CONFIG_REG	STAR	Γ WAKEUP		1		
S	0x1A	0	0x01		0x09	P	1		
	-	-							
	ADDR	W/R	STATUS_REG		ADDR		W/R	STATUS	
S	Ox1A	0	0x02	Sr	0x34		1	??	P
	0 ms (Poll E	_	UAU2	ŊΙ	UADT		1	1	1
vv ait 3	`	,	CTATIC DEC		4 DDD		W/D	CTATLC	
C	ADDR	W/R	STATUS_REG	C.,	ADDR 0-24		W/R	STATUS	D
S	0x1A	0	0x02	Sr	0x34		1	??	P

	ADDR	W/R	CONFIG_REG	SLEEP	
S	0x1A	0	0x01	0x00	P

ADDR

ADDR

Figure 18: Init and Read Thermopile Array

PTAT1 MSB

PTAT1 LSB

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

P0,0 LSB

P0,0 LSB

P0,0 MSB

www.heimannsensor.com mail: info@heimannsensor.com

Px,y MSB

Thermopile Array With Lens Optics

Rev.1: 2017.10.16 Lupp/Schnorr

9 Temperature calculation

The object and ambient temperature can be calculated from the sensor output and the stored calibration data. The table below is showing an overview of the EEPROM.

16x16d	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09	0x0A	0x0B	0x0C	0x0D	0x0E	0x0F
0	PixCmi	n [float]	PixCm	x [float]					gradScale	GlobalGain			TN	epsilon		
10											MBIT(calib)	BIAS(calib)	CLK(calib)	BPA(calib)	PU(calib)	
20	MBIT(user)	BIAS(user)	CLK(user)	BPA(user)	PU(user)	VDDTh1	VDDTh2						PTATTh1	PTATTh2		
30					PTAT-grad	dient (float)	PTAT-off	set (float)			Devi	ce ID			VddScGrad	VddScOff
40																
	VddCompGrad stored as 12 bit sigend values															
90																
A0																
							VddCon	npOff store	ed as 12 bit siger	nd values						
F0																
100																
							Th1ij/G	iradij store	d as 16 bit signe	d values						
1F0																
200																
							Th2ij /Ot	fsetij store	d as 16 bit signe	d values						
2F0																
300																
							Pij s	tored as 1	6 bit unsigned va	alues						
3F0																

Figure 19: EEPROM overview 16x16d

All values are stored as unsigned 16 bit values in the little endian format unless they are specified otherwise. Grey marked areas are used during calibration or for future use and are Heimann Sensor reserved.

MBIT(calib), BIAS(calib), CLK(calib), BPA(calib) and PU(calib) are the settings for the registers that have been used during calibration (see chapter 8.3 on how to set them). MBIT(user), BIAS(user), CLK(user), BPA(user) and PU(user) are free to be set by the user. The temperature calculation is only valid if the same settings are used that have been set during calibration!

TN is the tablenumber and has to match the given tablenumber in the sample code. GlobalGain, VDDTh1, VDDTh2, PTATTh1 and PTATTh2 are stored as 16 bit unsigned values.

VDDTH1 and VDDTH2 is the used supply voltage during calibration measured by the sensor itself and stored in Digits.

The corresponding order of $ThGrad_{ij}$, $ThOffset_{ij}$ and P_{ij} to the Pixelnumber is given by the following overview:

```
16x16d

ThGrado,0 → Pixel 0 ThGrado,1 → Pixel 1 ... ThGrado,15 → Pixel 15

ThGrad1,0 → Pixel 16 ThGrad1,1 → Pixel 17 ... ThGrad1,15 → Pixel 31

...

ThGrad7,0 → Pixel 112 ThGrad7,1 → Pixel 113 ... ThGrad7,15 → Pixel 127

ThGrad3,0 → Pixel 240 ThGrad8,1 → Pixel 241 ... ThGrad8,15 → Pixel 255

ThGrad9,0 → Pixel 224 ThGrad9,1 → Pixel 225 ... ThGrad9,15 → Pixel 239

...

ThGrad15,0 → Pixel 128 ThGrad31,1 → Pixel 129 ... ThGrad31,3 → Pixel 143
```

Figure 20: Readout order 16x16d

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Thermopile Array With Lens Optics

Rev.1: 2017.10.16 Lupp/Schnorr

The order of $VddCompGrad_{ij}$ and $VddCompOff_{ij}$ is similar to the electrical Offsets and have to be used block by block. $VddCompGrad_{ij}$ and $VddCompOff_{ij}$ are stored as 12 bit signed values. Please check the sample code for a more detailed readout of the 12 bit values.

16x16d			
VddCompGrad₀,₀ → Pixel 0	VddCompGrad₀,₁ → Pixel 1	 VddCompGrad₀,₅ → Pixel 15	
VddCompGrad₁,0 → Pixel 15	VddCompGrad₁,1 → Pixel 16	 VddCompGrad₁₅ → Pixel 31	
VddCompGrad _{2,0} → Pixel 32	VddCompGrad₂,1 → Pixel 33	 VddCompGrad _{2,15} → Pixel 47	
VddCompGrad₃,0 → Pixel 48	VddCompGrad₃,1 → Pixel 49	 VddCompGrad₃,₁5 → Pixel 63	<u>a</u>
VddCompGrad₀,₀ → Pixel 64	VddCompGrad₀,1 → Pixel 65	 VddCompGrad₀,₁₅ → Pixel 79	top half
			\$
<u> </u>			
VddCompGrad₃,0 → Pixel 112	VddCompGrad₃,1 → Pixel 113	 VddCompGrad₃,₁₅ → Pixel 127	
VddCompGrad _{4,0} → Pixel 240	VddCompGrad₄,₁ → Pixel 241	 VddCompGrad₄,₁5 → Pixel 255	
VddCompGrad₅,0 → Pixel 224	VddCompGrad₅,1 → Pixel 225	 VddCompGrad₅,₁₅ → Pixel 239	
VddCompGrad _{6,0} → Pixel 208	VddCompGrad _{6,1} → Pixel 209	 VddCompGrad _{6,15} → Pixel 223	₩
VddCompGrad _{7,0} → Pixel 192	VddCompGrad _{7,1} → Pixel 193	 VddCompGrad _{7,45} → Pixel 207	ؿ
VddCompGrad _{4,0} → Pixel 176	VddCompGrad₄,₁ → Pixel 177	 VddCompGrad₄,₁₅ → Pixel 191	E
			oottom half
			ă
			_
VddCompGrad _{7,0} → Pixel 128	VddCompGrad _{7,1} → Pixel 129	 VddCompGrad _{7,45} → Pixel 143	

Figure 21: Readout of VDDCompGrad 16x16d

9.1 Ambient Temperature:

The ambient temperature (Ta) is calculated from the average measured PTAT value, the $PTAT_{gradient}$ and the $PTAT_{offset}$.

$$Ta = PTAT_{av} \cdot PTAT_{gradient} + PTAT_{offset}$$
 (Value is given back in dK)

Where:

 $PTAT_{gradient}$ is the gradient of the PTAT stored in the EEPROM as a float value $PTAT_{offset}$ is the offset of the PTAT stored in the EEPROM as a float value

$$PTAT_{av} = \frac{\sum_{i=0}^{3} PTAT_{i}}{\Delta}$$
 is the average measured PTAT value

9.2 Thermal Offset:

The thermal offset of the sensor needs to be substracted for each pixel to compensate for any thermal drifts.

$$V_{ij_Comp} = V_{ij} - \frac{ThGrad_{ij} \cdot PTAT_{av}}{2^{gradScale}} - ThOffset_{ij}$$

Where:

ij represents the row (i) and column (j) of the pixel V_{ii} compared voltage

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

www.heimannsensor.com mail: info@heimannsensor.com

Internet

HEIMANN Sensor

HTPA16x16dR1L2.1/0.8F5.0HiC[Si]

Thermopile Array With Lens Optics

Rev.1: 2017.10.16 Lupp/Schnorr

 V_{ij} is the raw pixel data (digital), readout from the RAM

 $ThGrad_{ij}$ is the thermal gradient, stored in the EEPROM from 0x100 to 0x1FF $ThOffset_{ii}$ is the thermal offset, stored in the EEPROM from 0x200 to 0x2FF

gradScale is the scaling coefficient for the thermal gradient stored in the EEPROM

9.3 Electrical Offset

The electrical offset is used to compensate changes in the supply voltage. This compensation is only a subtraction, so it can be done before or after the thermal offset compensation (here done afterwards).

The compensation for the top half is done by using the following formula:

$$V_{ij_Comp}$$
*= V_{ij_Comp} -elOffset[$(j+i\cdot16)$ %64]

and the bottom half analogue with this formula:

$$V_{ij Comp}$$
*= $V_{ij Comp}$ -elOffset[$(j+i\cdot 16)$ %64+64]

where:

ij represents the row (i) and column (j) of the pixel and electrical offset

 V_{ij_Comp} * is the thermal and electrical offset compensated voltage

 V_{ij_Comp} is the thermal offset compensated voltage elOffset [ij] is the electrical offset belonging to Pixel ij

is the rest of the integer division of i by 128 (e.g. 130:128=2) ("modulo")

Please see chapter 5 for the serial order.

9.4 Vdd Compensation

A supply voltage compensation called VddComp is used to take care of supply voltage changes. In order to use this compensation the supply voltage of the sensor (Vdd) has to be measured by the sensor from time to time by setting the configuration register and the average of Vdd 1 and Vdd 2 is resulting in Vdd (similar like $PTAT_{av}$).

The compensation for the top half is done by using the following formula:

$$VDD_{av} = \frac{\sum_{i=0}^{3} VDD_i}{4}$$

$$V_{ij_VDDComp} = V_{ij_Comp} *$$

$$\frac{\left(\frac{VddCompGrad[(j+i\cdot16)\%64]\cdot PTAT_{av}}{2^{VddScGrad}} + VddCompOff[(j+i\cdot16)\%64]\right)}{2^{VddScOff}}$$

$$\cdot \left(VDD_{av} - VDD_{TH1} - \left(\frac{VDD_{TH2} - VDD_{TH1}}{PTAT_{TH2} - PTAT_{TH1}}\right) \cdot (PTAT_{av} - PTAT_{TH1})\right)$$

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

www.heimannsensor.com
mail: info@heimannsensor.com

Datasheet HTPA16x16dR1L2.1/0.8F5.0HiC Page 20 of 26

Thermopile Array With Lens Optics

Rev.1: 2017.10.16 Lupp/Schnorr

And the bottom half analogue with this formula:

$$V_{ij_VDDComp} = V_{ij_Comp} *$$

$$\left(\frac{VddCompGrad[(j+i\cdot 16)\%64+128]\cdot PTAT_{av}}{2^{VddScGrad}} + VddCompOff[(j+i\cdot 16)\%64+64]\right)$$

$$\cdot \left(VDD_{av} - VDD_{TH1} - \left(\frac{VDD_{TH2} - VDD_{TH1}}{PTAT_{TH2} - PTAT_{TH1}} \right) \cdot \left(PTAT_{av} - PTAT_{TH1} \right) \right)$$

Where:

ij represents the row (i) and column (j) of the pixel

 V_{ij} VDDComp is the Vdd compensated voltage

 V_{ij_Comp} * is the thermal and electrical offset compensated voltage VddCompGrad[ij] is the VddComp gradient belonging to Pixel ij

VddCompOff[ij] is the VddComp offset belonging to Pixel ij

is the rest of the integer division of i by 128 (e.g. 130:128=2) ("modulo")

 VDD_{av} is the average measured supply voltage of the sensor in Digits

VddScGrad is a scaling coefficient and stored in the EEPROM 0x3E VddScOff is a scaling coefficient and stored in the EEPROM 0x3F

 VDD_{TH1} is the supply voltage during calibration point 1 stored in the EEPROM 0x25 is the supply voltage during calibration point 2 stored in the EEPROM 0x26

 $PTAT_{TH1}$ is the PTAT value of calibration point 1 stored in the EEPROM 0x2C $PTAT_{TH2}$ is the PTAT value of calibration point 2 stored in the EEPROM 0x2D

9.5 Object Temperature:

The calculation of the object temperature is done by using a look-up table and doing a bilinear interpolation, the matching table is given by the tablenumber (TN). The table is supplied in a separate file named "Table.c". If you do not have the file, please ask Heimann Sensor for support.

The sensitivity coefficients ($PixC_{ii}$) are calculated in the following way:

$$PixC_{ij} = \left(\frac{P_{ij} \cdot \left(PixC_{\max} - PixC_{\min}\right)}{65535} + PixC_{\min}\right) \cdot \frac{epsilon}{100} \cdot \frac{GlobalGain}{10000}$$

Where:

 $PixC_{ii}$ is the sensitivity coefficient for each pixel

 P_{ii} is the stored sensitivity coefficient scaled to 16 bit

 $PixC_{min}$ is the minimum sensitivity coefficient, used for scaling $PixC_{max}$ is the maximum sensitivity coefficient, used for scaling

epsilon is the emissivity factor

GlobalGain is a factor for fine tuning of the sensitivity for all Pixel

Leading to a compensation of the pixel voltage

HEIMANN Sensor GmbH Contact / Customer Support Internet

Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 <u>www.heimannsensor.com</u> D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 <u>www.heimannsensor.com</u> mail: info@heimannsensor.com

Thermopile Array With Lens Optics Rev.1: 2017.10.16 Lupp/Schnorr

 $V_{ij_PixC} = \frac{V_{ij_VDDComp} \cdot PCSCALEVAL}{}$ PixC_{ii}

Where:

 V_{ij_PixC} is the sensitivity compensated IR voltage

PCSCALEVAL is a defined scaling coefficient, typically set to $1 \cdot 10^8$

Thermopile Array With Lens Optics

Rev.1: 2017.10.16 Lupp/Schnorr

9.6 Example calculation:

Example values:

$$PTAT_{av} = \frac{\sum_{i=0}^{3} PTAT_{i}}{4} = 38152 Digits$$

$$PTAT_{gradient} = 0.0211 \, dK / Digit$$

$$PTAT_{offset} = 2195.0 dK$$

$$V_{00} = 34435 \ Digits$$

$$elOffset[0] = 34240$$

$$gradScale = 24$$

$$ThGrad_{00} = 11137$$

$$ThOffset_{00} = 65506$$
 $\xrightarrow{signcheck}$ -30

$$VDD_{av} = 35000$$

$$VDD_{TH1} = 33942$$

$$VDD_{TH2} = 36942$$

$$PTAT_{TH1} = 30000$$

$$PTAT_{TH2} = 42000$$

$$VddCalib = 33942$$

$$VddCompGrad[0] = 10356$$
 \longrightarrow 10356

$$VddCompOff[0] = 51390 \longrightarrow_{signcheck} -14146$$

$$VddScGrad = 16$$

$$VddScOff = 23$$

$$PixC_{00} = 1.087 \cdot 10^8$$

$$PCSCALEVAL = 1.10^{8}$$

Compensation of electrical offset:

$$V_{00_Comp}^* *= V_{00_Comp} - elOffset[0] = 34439 - 34240 = 199$$

Compensation of supply voltage:

$$V_{ij_VDDComp} = V_{ij_Comp} * - \frac{\left(\frac{VddCompGrad[0] \cdot PTAT_{av}}{2^{VddScGrad}} + VddCompOff[0]\right)}{2^{VddScOff}} \cdot \left(VDD_{av} - VDD_{TH1} - \left(\frac{VDD_{TH2} - VDD_{TH1}}{PTAT_{TH2} - PTAT_{TH1}}\right) \cdot (PTAT_{av} - PTAT_{TH1})\right)$$

$$= 199 - \frac{\left(\frac{10356 \cdot 38152}{2^{16}} - 14146\right) \cdot \left(35000 - 33942 - 2038\right)}{2^{23}} = 199 - (1) = 198$$

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1

Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics

Rev.1: 2017.10.16 Lupp/Schnorr

Table 20: Example look-up table

TA[dK]/dig	2882	3032	3182	3332
-64	1494	2128	2491	2775
-32	2466	2692	2898	3091
0	2882	3032	3182	3332
32	3170	3285	3406	3530
64	3396	3491	3592	3699
96	3584	3665	3754	3848
128	3746	3818	3897	3981
160	3890	3954	4025	4102
192	4019	4078	4143	4214
224	4137	4191	4251	4317
256	4246	4296	4351	4413
288	4347	4393	4445	4503
320	4441	4485	4534	4588

$$V_{00_PixC} = \frac{198 \cdot 1 \cdot 10^8}{1.087 \cdot 10^8} = 182$$

Ta was calculated before to 3000 dK.

The matching region in the look-up table is already marked yellow, the bi-linear interpolation is leading to an object temperature of $3941 \text{ dK} = 120.9 \,^{\circ}\text{C}$.

A global Offset (GlobalOff) is used for fine tuning of the measured object temperature and has to be added to the object temperature. This value is stored in the EEPROM.

Thermopile Array With Lens Optics Rev.1: 2017.10.16 Lupp/Schnorr

Look-up Table

The matching look-up table has to be taken from the Table.c file. Here is just shown an exemplary data for one optics.

exemplary data for one optics.											
lig \ Ta[dK]	2782	2882	2982	3082	3182	3282	3382				
-512 -448				1295 1848	1742 2094	2005 2284	2202 2442				
-384	⊐ To	in d	K	2156	2340	2496	2634				
-320 -256	2042	2244	2414	2381 2562	2534 2697	2671 2822	2797 2938				
-192	2287	2445	2587	2717	2839	2954	3065				
-128 -64	2481 2642	2612 2755	2735 2865	2852 2972	2964 3078	3073 3182	3180 3285				
-04	2782	2882	2982	3082	3182	3282	3382				
64	2906	2996	3089	3183	3278	3375	3473				
128 192	3019 3121	3101 3197	3187 3278	3276 3363	3368 3452	3462 3544	3558 3638				
256	3216	3286	3363	3445	3531	3621	3715				
320 384	3305 3387	3370 3449	3443 3519	3522 3595	3606 3677	3695 3764	3787 3856				
448	3465	3524	3590	3664	3745	3831	3922				
512 576	3539 3609	3595 3662	3659 3724	3731 3794	3810 3872	3895 3957	3986 4047				
640	3676	3727	3787	3855	3932	4016	4106				
704 768	3740 3802	3788 3848	3847 3904	3914 3971	3990 4046	4073 4128	4163 4218				
832	3861	3905	3960	4025	4100	4182	4271				
896 960	3918 3973	3960 4014	4014 4066	4078 4129	4152 4202	4233 4284	4322 4372				
1024	4026	4065	4117	4179	4251	4332	4421				
1088 1152	4077 4127	4115 4164	4166 4213	4227 4274	4299 4345	4380 4426	4469 4515				
1216	4175	4211	4260	4320	4391	4471	4560				
1280 1344	4222 4268	4257 4302	4305 4349	4364 4408	4435 4478	4515 4558	4604 4647				
1408	4312	4345	4391	4450	4520	4600	4689				
1472	4355	4388	4433	4491	4561	4641	4730				
1536 1600	4398 4439	4429 4470	4474 4514	4532 4571	4601 4640	4681 4720	4770 4809				
1664	4480 4519	4509 4548	4553 4591	4610 4648	4679 4716	4758 4796	4848 4885				
1728 1792	4519 4558	4548 4586	4591 4629	4685	4716 4753	4833	4885 4922				
1856	4595	4623	4666	4721	4790	4869	4959				
1920 1984	4633 4669	4660 4696	4702 4737	4757 4792	4825 4860	4905 4940	4995 5030				
2048	4705	4731	4772	4826	4894	4974	5064				
2112 2176	4740 4774	4765 4799	4806 4839	4860 4894	4928 4961	5008 5041	5098 5131				
2240	4808	4832	4872	4926	4994	5074	5164				
2304 2368	4841 4873	4865 4897	4904 4936	4958 4990	5026 5058	5106 5137	5197 5228				
2432	4906	4929	4968	5021	5089	5169	5260				
2496 2560	4937 4968	4960 4991	4998 5029	5052 5082	5119 5149	5199 5230	5291 5321				
2624	4999	5021	5059	5112	5179	5259	5351				
2688 2752	5029 5059	5050 5080	5088 5117	5141 5170	5208 5237	5289 5318	5381 5410				
2816	5088	5109	5146	5199	5266	5346	5439				
2880 2944	5117 5145	5137 5165	5174 5202	5227 5255	5294 5322	5375 5402	5467 5495				
3008	5173	5193	5230	5282	5349	5430	5523				
3072 3136	5201 5228	5220 5247	5257 5284	5309 5336	5376 5403	5457 5484	5550 5577				
3200	5255	5274	5310	5362	5429	5510	5604				
3264 3328	5282 5308	5300 5326	5336 5362	5388 5414	5455 5481	5537 5563	5630 5656				
3392	5334	5352	5388	5439	5507	5588	5682				
3456 3520	5360 5385	5377 5403	5413 5438	5465 5489	5532 5557	5613 5638	5708 5733				
3584	5410	5427	5462	5514	5581	5663	5758				
3648 3712	5435 5459	5452 5476	5487 5511	5538 5562	5606 5630	5688 5712	5783 5807				
3776	5483	5500	5535	5586	5654	5736	5831				
3840 3904	5507 5531	5524 5547	5558 5582	5610 5633	5677 5701	5760 5783	5855 5879				
3968	5554	5571	5605	5656	5724	5806	5902				
4032 4096	5578 5601	5594 5616	5628 5650	5679 5702	5747 5769	5829 5852	5925 5948				
4160	5623	5639	5673	5724	5792	5875	5971				
4224 4288	5646 5668	5661 5683	5695 5717	5746 5768	5814 5836	5897 5919	5994 6016				
4352	5690	5705	5739	5790	5858	5941	6038				
4416 4480	5712 5734	5727 5748	5760 5782	5811 5833	5879 5901	5963 5984	6060 6082				
4544	5755	5770	5803	5854	5922	6006	6103				
4608 4672	5776 5797	5791 5811	5824 5844	5875 5896	5943 5964	6027 6048	6125 6146				
4736	5818	5832	5865	5916	5984	6069	6167				
4800 4864	5839 5859	5853 5873	5886 5906	5937 5957	6005	6089	6188				
4928	5880	5893	5926	5977	6045	6130	6229				
4992 5056	5900 5920	5913 5933	5946 5965	5997 6017	6065 6085	6150 6170	6249				
5120	5940	5953	5985	6036	6105	6190	6289				
5184 5248	5959 5979	5972 5991	6005 6024	6056 6075	6124 6144	6209 6229	6309 6329				
5312	5998	6011	6043	6094	6163	6248	6348				
5376 5440	6017 6036	6030 6049	6062 6081	6113 6132	6182 6201	6267 6286	6368 6387				
5504	6055	6067	6099	6150	6220	6305	6406				
5568 5632	6074 6092	6086 6104	6118 6136	6169 6187	6238 6257	6324 6343	6425 6444				
5696	6111	6123	6155	6206	6275	6361	6462				
5760 5824	6129 6147	6141	6173 6191	6224	6293	6379	6481 6499				
5824 5888	6147 6165	6159 6177	6191 6209	6242 6260	6311 6329	6398 6416	6499 6517				
5952 6016	6183	6195	6226	6277	6347	6434	6536				
6016 6080	6201 6219	6212 6230	6244 6261	6295 6313	6365 6382	6451 6469	6554 6571				
6144	6236	6247	6279	6330	6400	6487	6589				
6208 6272	6253 6271	6264 6282	6296 6313	6347 6364	6417 6434	6504 6522	6607 6624				
6336	6288	6299	6330	6381	6451	6539	6642				
6400 6464	6305 6322	6316 6332	6347 6364	6398 6415	6468 6485	6556 6573	6659 6676				
6528	6339	6349	6380	6432	6502	6590	6693				
6592 6656	6355 6372	6366 6382	6397 6413	6448 6465	6519 6535	6607 6623	6710 6727				
6720	6388	6399	6430	6481	6552	6640	6744				
6784	6405	6/15	6446	6497	6569	6656	0704				

				icic i	J		
6848	6421	6431	6462	6514	6584	6673	6777
6912	6437	6447	6478	6530	6600	6689	6794
6976	6453	6463	6494	6546	6616	6705	6810
7040	6469	6479	6510	6562	6632	6721	6826
7104	6485	6495	6526	6577	6648	6737	6842
7168	6501	6511	6542	6593	6664	6753	6858
7232	6517	6526	6557	6609	6680	6769	6874
7296	6532	6542	6573	6624	6695	6785	6890
7360	6548	6557	6588	6640	6711	6800	6906
7424	6563	6572	6603	6655	6726	6816	6922
7488	6578	6588	6618	6670	6742	6831	6937
7552	6594	6603	6634	6685	6757	6847	6953
7616	6609	6618	6649	6700	6772	6862	6968
7680	6624	6633	6664	6715	6787	6877	6984
7744	6639	6648	6678	6730	6802	6892	6999
7808	6654	6663	6693	6745	6817	6907	7014
7872	6669	6677	6708	6760	6832	6922	7029
7936	6683	6692	6723	6774	6846	6937	7044
8000	6698	6707	6737	6789	6861	6952	7059
8064	6712	6721	6752	6803	6876	6966	7074
8128 8192	6727	6735	6766	6818 6832	6890 6905	6981	7089
8256	6741 6756	6750 6764	6780 6795	6847	6919	6996 7010	7104 7118
8320	6770	6778	6809	6861	6933	7024	7133
8384	6784	6792	6823	6875	6947	7039	7147
8448	6798	6806	6837	6889	6961	7053	7162
8512	6812	6820	6851	6903	6976	7067	7176
8576	6826	6834	6865	6917	6990	7081	7190
8640	6840	6848	6878	6931	7003	7095	7205
8704	6854	6862	6892	6944	7017	7109	7219
8768	6868	6875	6906	6958	7031	7123	7233
8832	6881	6889	6919	6972	7045	7137	7247
8896	6895	6903	6933	6985	7058	7151	7261
8960	6908	6916	6946	6999	7072	7164	7275
9024	6922	6930	6960	7012	7086	7178	7288
9088	6935	6943	6973	7026	7099	7192	7302
9152	6949	6956	6987	7039	7112	7205	7316
9216	6962	6969	7000	7052	7126	7219	7329
9280	6975	6983	7013	7065	7139	7232	7343
9344	6988	6996	7026	7079	7152	7245	7356
9408	7001	7009	7039	7092	7165	7259	7370
9472	7015	7022	7052	7105	7178	7272	7383
9536	7028	7035	7065	7118	7191	7285	7396
9600	7040	7048	7078	7130	7204	7298	7410
9664	7053	7060	7091	7143	7217	7311	7423
9728	7066	7073	7103	7156	7230	7324	7436
9792	7079	7086	7116	7169	7243	7337	7449
9856	7092	7098	7129	7181	7256	7350	7462
9920	7104	7111	7141	7194	7268	7363	7475
9984	7117	7123	7154	7207	7281	7375	7488
10048	7129	7136	7166	7219	7294	7388	7501
10112	7142	7148	7179	7231	7306	7401	7513
10176	7154	7161	7191	7244	7318	7413	7526
10240	7166	7173	7203	7256	7331	7426	7539
10304	7179	7185	7215	7268	7343	7438	7551
10368	7191	7197	7228	7281	7356	7451	7564
10432	7203	7210	7240	7293	7368	7463	7576
10496	7215	7222	7252	7305	7380	7475	7589
10560	7227	7234	7264	7317	7392	7488	7601
10624	7239	7246	7276	7329	7404	7500	7614
10688	7251	7258	7288	7341	7416	7512	7626
10752	7263	7270	7300	7353	7428	7524	7638
10816	7275	7281	7312	7365	7440	7536	7651
10880	7287	7293	7323	7377	7452	7548	7663
10944	7299	7305	7335	7389	7464	7560	7675
11008	7311	7317	7347	7400	7476	7572	7687
11072	7322	7328	7358	7412	7488	7584	7699
11136	7334	7340	7370	7424	7499	7596	7711
11200	7346	7352	7382	7435	7511	7608	7723
11264	7357	7363	7393	7447	7523	7619	7735
11328	7369	7375	7405	7458	7534	7631	7747
11392	7380	7386	7416	7470	7546	7643	7758
11456	7392	7397	7427	7481	7557	7654	7770
11520	7403	7409	7439	7493	7569	7666	7782
11584	7414	7420	7450	7504	7580	7677	7793
11648	7426	7431	7461	7515	7592	7689	7805
11712	7437	7443	7473	7526	7603	7700	7817
11776	7448	7454	7484		7614	7712	7828
11840	7459	7465	7495	7538 7549	7625	7723	7840
11904	7471	7476	7506	7560	7637	7734	7851
11968	7482	7487	7517	7571	7648	7746	7862
12032	7493	7498	7528	7582	7659	7757	7874
12096	7504	7509	7539	7593	7670	7768	7885
12160	7515	7520	7550	7604	7681	7779	7896
12224	7526	7531	7561	7615	7692	7790	7908
12288	7536	7542	7572	7626	7703	7801	7919
12352 12416	7547	7552	7583	7637 7648	7714 7725	7812 7823	7930 7941
12416	7558 7569	7563 7574	7593 7604	7658	7736	7834	7941
12544	7580	7585	7615	7669	7746	7845	7963
12608	7590	7595	7625	7680	7757	7856	7974
12672	7601 7612	7606	7636 7647	7690	7768	7867	7985
12736	7612	7617	7647	7701	7779	7878	7996
12800	7622	7627	7657	7712	7789	7888	8007
12864	7633	7638	7668	7722	7800	7899	8018
12928	7643	7648	7678	7733	7810	7910	8029
12992	7654	7659	7689	7743	7821	7920	8040
13056	7664	7669	7699	7754	7832	7931	8050
13120	7675	7679	7709	7764	7842	7942	8061
13184	7685	7690	7720	7774	7852	7952	8072
13248	7695	7700	7730	7785	7863	7963	8082
13312	7706	7710	7740	7795	7873	7973	8093
13376	7716	7720	7751	7805	7884	7984	8104
13440	7726	7731	7761	7816	7894	7994	8114
13504	7736	7741	7771	7826	7904	8004	8125
13568	7746	7751	7781	7836	7914	8015	8135
13632	7757	7761	7791	7846	7925	8025	8145
13696	7767	7771	7801	7856	7935	8035	8156
13760	7777	7781	7811	7866	7945	8046	8166
13824	7787	7791	7821	7876	7955	8056	8177
13888	7797	7801	7831	7886	7965	8066	8187
13952	7807	7811	7841	7896	7975	8076	8197
14016	7817	7821	7851	7906	7985	8086	8207
14080	7827	7831	7861	7916	7995	8096	8218
14144	7836	7841	7871	7926	8005	8106	8228
14208	7846	7851	7881	7936	8015	8116	8238

10 Outer Dimensions:

 HEIMANN Sensor GmbH
 Contact / Customer Support

 Maria-Reiche-Str. 1
 Phone 49 (0) 6123 60 50 30

 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet