IBS-2

DERWENT-ACC-NO: 1995-225989

DERWENT-

1995-225989

ACC-NO:

DERWENT- 199953

WEEK:

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE:

Pressure vessel for chemicals processing - comprises outer shell with discharge outlet at bottom end and contains

internal heat transfer element to heat and/or cool vessel

INVENTOR: MATSUGI, N; NISHIMI, H

PATENT-ASSIGNEE: SUMITOMO HEAVY IND LTD[SUMH]

PRIORITY-DATA: 1993JP-0353856 (December 27, 1993)

PATENT-FAMILY:

PUE	-NO	PUB-DATE		LANGUAGE	PAGES	MAIN-	·IPC
EP	659475 A1	June 28,	1995	E	018	B01J	019/00
JP	2975832 B2	November	10, 1999	N/A	004	B01J	019/00
JP	07185314 A	July 25,	1995	N/A	005	B01J	019/00
${\tt TW}$	255873 A	September	1, 1995	N/A	000	B65D	083/00
CN	1108965 A	September	27, 1995	N/A	000	B01J	003/04
US	5667758 A	September	16, 1997	N/A	015	F28D	007/00
EP	659475 B1	April 21,	1999	E	000	В01Ј	019/00
DΕ	69418007 E	May 27, 1	.999	N/A	000	B01J	019/00

DESIGNATED-STATES: BE DE FR GB IT BE DE FR GB IT

02Jnl.Ref; FR 1205978 ; FR 2473902 ; GB 2022454 ; JP CITED-

01274837 ; JP 59180290 ; US 3282459 ; US 4552724 DOCUMENTS:

APPLICATION-DATA:

PUE	3-NO	APPL-DESCRIPTOR APPL-NO		APPL-DATE		
ΕP	659475A1	N/A	1994EP-0120010	December	16,	1994
JΡ	2975832B2	N/A	1993JP-0353856	December	27,	1993
JP	2975832B2	Previous Publ.	JP 7185314	N/A		
JP	07185314A	N/A	1993JP-0353856	December	27,	1993
TW	255873A	N/A	1994TW-0111883	December	19,	1994
CN	1108965A	N/A	1994CN-0107624	December	27,	1994
US	5667758A	Cont of	1994US-0356536	December	15,	1994

US	5667758A N/A	1996US-0720072 September 27, 1996
ΕP	659475B1 N/A	1994EP-0120010 December 16, 1994
DE	69418007E N/A	1994DE-0618007 December 16, 1994
DE	69418007E N/A	1994EP-0120010 December 16, 1994
DE	69418007E Based on	EP 659475 N/A

INT-CL B01J003/00, B01J003/04, B01J014/00, B01J019/00,

(IPC): B65D083/00 , F28D007/00

ABSTRACTED-PUB-NO: EP 659475A

BASIC-ABSTRACT:

Processing vessel has an outer shell (1) with a discharge outlet (12) at its bottom end, and contains an internal heat transfer element (5) which is used for heating and/or cooling the vessel contents. The element is in the form of an inner barrel (5a) which contains the materials etc. (16) inside the shell, and which has flow passages (9) through which a temp. control fluid may pass. The inner barrel is spaced (14) from the shell by a fixing system, and an upper closure/expansion element (13a) ensures that the space in the barrel is isolated from the clearance space (14) between the barrel and the vessel. A small opening (18) is provided to allow equilisation of press. between the two spaces. Various embodiments of the flow passages in the inner barrel are claimed.

USE - For carrying out chemical processing involving heat transfer, used in e.g. chemicals, petrochemicals or food mfr. esp. useful where a large thermal load is experienced during processing.

ADVANTAGE - Vessel is easier and cheaper to construct and maintain than prior art devices. Gives improved heat exchange and more even heating or cooling, with improved operating efficiency and product quality.

ABSTRACTED-PUB-NO: EP 659475B

EQUIVALENT-ABSTRACTS:

Processing vessel has an outer shell (1) with a discharge outlet (12) at its bottom end, and contains an internal heat transfer element (5) which is used for heating and/or cooling the vessel contents. The element is in the form of an inner barrel (5a) which contains the materials etc. (16) inside the shell, and which has flow passages (9) through which a temp. control fluid may pass. The inner barrel is spaced (14) from the shell by a fixing system, and an upper closure/expansion element (13a) ensures that the space in the barrel is isolated from the clearance space (14) between the barrel and the

DERWENT-ACC-NO: 1995-225989

vessel. A small opening (18) is provided to allow equilisation of press. between the two spaces. Various embodiments of the flow passages in the inner barrel are claimed.

USE - For carrying out chemical processing involving heat transfer, used in e.g. chemicals, petrochemicals or food mfr. esp. useful where a large thermal load is experienced during processing.

ADVANTAGE - Vessel is easier and cheaper to construct and maintain than prior art devices. Gives improved heat exchange and more even heating or cooling, with improved operating efficiency and product quality.

US 5667758A

The processing vessel comprises: a vessel body having an inner wall and a discharge orifice at its lower end; a temperature control element inside the vessel body comprising at least one flow passage through which a temperature control medium, for at least one of heating or cooling, is caused to flow, where the temperature control element defines an inner barrel in which a processing material is accommodated in heat exchange relation with the temperature control element; a device for spatially fixing the temperature control element in the vessel body proximate to and spaced from the inner wall thereby defining an unfilled chamber between the temperature control element and the inner wall of the vessel body; a closure device for enclosing the chamber between the vessel body and the temperature control element thereby creating a closed chamber; device for preventing the processing material from entering the closed chamber; and a device for openly communicating the interior of the inner barrel with the closed chamber, without communication with space exterior to the vessel, whereby the pressure in the inner barrel is the same as the pressure in the closed chamber.

CHOSEN- Dwg.1/3 Dwg.1/13

DRAWING:

TITLE- PRESSURE VESSEL CHEMICAL PROCESS COMPRISE OUTER SHELL

TERMS: DISCHARGE OUTLET BOTTOM END CONTAIN INTERNAL HEAT TRANSFER

ELEMENT HEAT COOLING VESSEL

DERWENT-CLASS: J04 Q34 Q78

CPI-CODES: J04-X; J08-C;

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1995-103988

PUB-NO:

EP000659475A1

DOCUMENT-IDENTIFIER: EP 659475 A1

Processing vessel.

PUBN-DATE:

June 28, 1995

INVENTOR-INFORMATION:

NAME

COUNTRY

MATSUGI, NOBUO NISHIMI, HARUYUKI JP

ASSIGNEE-INFORMATION:

NAME

COUNTRY

SUMITOMO HEAVY INDUSTRIES JP

APPL-NO:

EP94120010

APPL-DATE: December 16, 1994

INT-CL (IPC): B01J019/00

EUR-CL

B01J019/24 , B01J003/04 , B01J019/00 , F28D001/06 ,

(EPC):

F28D009/00 , B01J003/04

PRIORITY-DATA: JP35385693A (December 27, 1993)

ABSTRACT:

CHG DATE=19990617 STATUS=O> A processing vessel in which a temperature control element (5) having a helical flow passage (9) formed on an outer surface of an inner barrel (6) containing a processing liquid and a heating or cooling temperature control medium caused to flow through the flow passage is disposed in a vessel body with a spacing formed between the temperature control element and an inner surface of the vessel body. The spacing between the vessel body and the temperature control element is closed at a certain position to form a closed chamber. Preferably, a system for generally equalizing the pressures in the inner barrel and the closed chamber is provided. The temperature control element can be assembled in the vessel body after being manufactured outside the vessel body. Therefore, the processing vessel can be manufactured at an improved efficiency and can be maintained by ordinary in-vessel maintenance operations.