AUTOMATY A GRAMATIKY

Pavel Surynek

Univerzita Karlova v Praze

Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky

Normální formy bezkontextových gramatik Pumping lemma Zásobníkové automaty

Chomského normální forma

- všechny jazyky \mathcal{L}_0 \mathcal{L}_1 \mathcal{L}_3 regulární bezkontextové kontextové rekurzivně spočetné
- větvící faktor u derivačního stromu
 - počet následníků vnitřních vrcholů
 - pokud bychom znali horní odhad na větvící faktor, můžeme zdola odhadnout výšku derivačního stromu pro dané slovo
 - výška odpovídá délce nejdelší orientované cesty z kořene do listu
 - bezkontextová gramatika G = (V_N, V_T, S, P) je v Chomského normálním tvaru, jestliže pravidla mají tvar:
 - $X \rightarrow AB$ pro $X, A, B \in V_N$, nebo $X \rightarrow x$ pro $X \in V_N$ a $x \in V_T$
 - větvící faktor je nejvýše 2
 - derivační strom, který přináší slovo délky > 2^{h-1} musí mít výšku aspoň h+2 (k listové hladině se nevětví)
 - dost vysoký derivační strom má opakující se neterminály na cestě z kořene do listu

2 | Automaty a gramatiky 8 Pavel Surynek, 2015

Převod na Chomského formu

- ke každé bezkontextové gramatice G = (V_N, V_T, S, P) existuje bezkontextová gramatika $G' = (V_N', V_T, S, P') v Chomského normální$ **formě**, že $L(G') = L(G) - \{\lambda\}$
 - předzpracování
 - eliminace pravidel $X \rightarrow Y$ pro $X, Y \in V_N$
 - stejně jako u regulárních gramatik
 - eliminace pravidel $X \rightarrow \lambda$ pro $X \in V_N$ (zde může dojít ke ztrátě λ)
 - stejně jako u převodu bezkontextové gramatiky na kontextovou
 - zbývají pravidla tvaru $X \rightarrow x$ pro $X \in V_N$ a $x \in V_T$ a pravidla $X \rightarrow Y_1Y_2...Y_n$, kde $Y_i \in (V_N \cup V_T)$ pro i = 1,2,...,n s $n \ge 2$
 - pro každý terminál X∈V_T zavedeme nový neterminál X_x a pravidlo X_x→ x
 - $X \rightarrow Y_1Y_2...Y_n$ nahradíme pravidlem $X \rightarrow Z_1Z_2...Z_n$, kde

- jestliže n> $\overline{2}$ vzniklé pravidlo X \rightarrow Z₁Z₂...Z_n dále nahradíme pravidly
 - \blacksquare $X \to Z_1B_1$, $B_1 \to Z_2B_2$, ..., $B_{n-2} \to Z_{n-1}Z_n$, kde B_i pro j=1,2,...,n-2 jsou vždy nové neterminály

Př.: A → BcDe

nové neterminály

a pravidla

$$X_c \rightarrow c, X_e \rightarrow e$$

- (i) $A \rightarrow BX_cDX_e$
- (ii) $A \rightarrow BB_1$

$$B_1 \rightarrow X_c B_2$$

$$B_a \rightarrow DX$$

 $B_2 \rightarrow DX_2$

Poznámky k převodu

- \square použití původního pravidla $X \rightarrow Y_1Y_2...Y_n$ je **atomické**
 - tomu musí odpovídat atomicita (nedělitelnost) použití sekvence náhradních pravidel
 - sekvence nových pravidel se použije buď <u>celá</u> nebo <u>vůbec</u>
 - při použití nového pravidla $X \to Z_1B_1$ je nutno postupně použít všechna nová pravidla $B_i \to Z_{i+1}B_{i+1}$
 - jinak nelze B_i postupně přepsat neterminály
 - po použití pravidla je jednoznačně určené, které následující má být použito

Př.: bezkontextová gramatika

```
G = (V_N, V_T, A, P), kde

V_N = \{ A, B, C, D, E \}

V_T = \{ 0, 1 \}

P = \{ A \rightarrow B \mid C \quad B \rightarrow 0B1 \mid 01

C \rightarrow D \mid E \quad D \rightarrow 1D0 \mid 1

E \rightarrow 0E \mid 0 \}
```

Př.: ekvivalentní bezkontextová v Chomského tvaru

$$\begin{aligned} G' &= (V_N', V_T, A, P'), kde \\ V_N &= \{ A, A_1, A_2, B, B_1, D, D_1, E, X_0, X_1 \} \\ V_T &= \{ 0, 1 \} \\ P &= \{ A \rightarrow X_0 A_1 \mid X_0 X_1 \mid X_1 A_2 \mid 1 \mid X_0 E \mid 0 \qquad A_1 \rightarrow BX_1 \\ A_2 \rightarrow DX_0 \qquad B \rightarrow X_0 B_1 \mid X_0 X_1 \qquad B_1 \rightarrow BX_1 \\ D \rightarrow X_1 D_1 \mid 1 \qquad D_1 \rightarrow DX_0 \qquad E \rightarrow X_0 E \mid 0 \qquad X_0 \rightarrow 0 \qquad X_1 \rightarrow 1 \} \end{aligned}$$

Greibachové normální forma

- Greibachové normální forma bezkontextové gramatiky $G = (V_N, V_T, S, P)$
 - pravidla jsou tvaru $X \rightarrow xY_1Y_2...Y_n$ pro $X, Y_1, Y_2,...,Y_n \in V_N$ a $x \in V_T$, kde $n \in \mathbb{N}_0$
 - důležité v implementaci analyzátoru
 - předstupeň k LL(1) analyzátoru
 - nutno ještě přidat jednoznačnost
- □ ke každé bezkontextové gramatice $G = (V_N, V_T, S, P)$ existuje bezkontextová gramatika $G'' = (V_N'', V_T, S, P'')$ v Greibachové normální formě, že $L(G') = L(G)-\{\lambda\}$
 - \square provedeme eliminaci pravidel $X \rightarrow \lambda$
 - zjednoduší se rozbor případů v dalších krocích
 - postupně
 - odstraníme přímou levou rekurzi, tj. pravidla tvaru $X \to Xu$ pro $X \in V_N$ a $u \in (V_N \cup V_T)^+$ nahradíme jinými
 - nahradíme pravidla tvaru $X \rightarrow uYv$ pro $X,Y \in V_N$ a $u,v \in (V_N \cup V_T)^*$
 - u výsledné gramatiky dokončíme úpravu na Greibachové formu

 $V_{N} = \{ R, B \}$ $V_{T} = \{ (,) \}$

 $P = \{ B \rightarrow (RB R \rightarrow) \mid (RR \} \}$

Převod na **Greibachové** formu (1)

- **náhrada levě rekurzivních** pravidel X → Xu
 - □ nechť $X \to Xu_1$, $X \to Xu_2$, ... $X \to Xu_n$ s $u_i \in (V_N \cup V_T)^+$ pro $i \in \{1, 2, ..., n\}$ jsou všechna levě rekurzivní pravidla pro $X \in V_N$, kde
 - □ $aX \rightarrow v_1$, $X \rightarrow v_2$, ... $X \rightarrow v_k s v_i \in (V_N \cup V_T)^+$ pro $j \in \{1, 2, ..., k\}$ jsou všechna zbývající pravidla pro X
 - nahrazením všech těchto pravidel pravidly $X \rightarrow v_i Z | v_i a Z \rightarrow u_i Z | u_i pro všechna i=1,2,...,n a j=1,2,...,k dostaneme$ ekviválentní gramatiku
- náhrada pravidel tvaru X → uYv
 - □ nechť $Y \rightarrow w_1$, $Y \rightarrow w_2$, ..., $Y \rightarrow w_m$ s $w_i \in (V_N \cup V_T)^*$ pro $i \in \{1, 2, ..., m\}$ jsou všechna pravidla pro Y∈V_N
 - nahrazením pravidla $X \rightarrow uYv$ pravidly $X \rightarrow uw_1v$, $X \rightarrow uw_2v$, ..., $X \rightarrow uw_mv$ dostaneme ekvivalentní gramatiku
- chceme vytvořit gramatiku s pravidly tvaru
 - \square $X \rightarrow xw$, kde $X \in V_N$, $x \in V_T$, $w \in (V_N \cup V_T)^*$ nebo
 - \square $X \rightarrow Yw$, kde $X,Y \in V_N$, $w \in (V_N \cup V_T)^*$ a platí, že
 - X předchází Y v nějakém očíslování neterminálů, kde S je první

Převod na Greibachové formu (2)

- očíslujeme neterminály
 - $V_N = \{S = X_1, X_2, ..., X_n\}$
- postupně zpracujeme pravidla pro neterminály X₁, X₂, ..., X_n
 - když zpracovávané pravidlo je tvaru X_i → X_iu pro u∈(V_N∪ V_T)*
 - provedeme <u>nahrazení levé rekurze</u>
 - když zpracovávané pravidlo je tvaru X_i → X_iu pro u∈(V_N∪ V_T)*, kde j < i</p>
 - provedeme s $X_i \rightarrow X_i u$ náhradu pravidla tvaru $X \rightarrow uYv$
 - pravidla pro X_j již byla zpracována, na začátku pravé strany se nemůže objevit neterminál s vyšším pořadovým číslem
- finální úprava na Greibachové formu
 - postupně zpracujeme pravidla pro neterminály X_n, X_{n-1}, ..., X₁
 - pomocné neterminály z náhrad nikdy nestojí na začátku pravé strany
 - pravidla k dalšímu ošetření jsou tedy tvaru X_i → X_iu s u∈(V_N∪ V_T)* a i<j</p>
 - provedeme s X_i → X_iu náhradu pravidla tvaru X → uYv
 - pravidla pro X_j již byla zpracována a pravá strana pravidel pro X_n začínala terminály, na začátku pravé strany se tedy objeví terminál (indukce)
 - obdržíme pravidla tvaru $X \to xY_1Y_2...Y_n$ pro $X \in V_N$, Y_1 , Y_2 ,..., $Y_n \in (V_N \cup V_T)$ a $x \in V_T$, kde $n \in \mathbb{N}_0$
 - stačí terminály uvnitř pravých stran nahradit novými neterminály a přidat pravidla

(bezkontextové) pumping lemma

- vezmeme-li dostatečně dlouhé slovo z jazyka lze v něm tandemově na dvou místech pumpovat
 - □ je-li L bezkontextový jazyk nad abecedou X, pak existují n,m∈N, že $(\forall z \in L)[|z| \ge n \Rightarrow (\exists u,v,w,x,y \in X^*)(z=u.v.w.x.y \land |vwx| \le m \land vx ≠ λ \land (\forall i \in \mathbb{N}_0)uv^iwx^iy ∈ L)]$
 - důkaz je založen na opakování neterminálu X na cestě z kořene do listu v derivačním stromu
 - pokud taková cesta a neterminál existují:

Důkaz pumping lemmatu

X1 X2 U V W X Y

- □ L bezkontextový, pak existují n,m∈N

 - nechť G = (V_N, V_T, S, P) je bezkontextová gramatika v Chomského normální formě, že L(G) = L {λ}
 - větvící faktor je nejvýše 2
 - \blacksquare h = $|V_N|$, n = $2^{h-1}+1$, m = 2^h
 - zvolme slovo $z \in L$, že $|z| \ge 2^{h-1} + 1$
 - každý derivační strom vzhledem ke G přinášející z obsahuje cestu z kořene do listu s délky aspoň h+2 (poslední je terminál, tedy aspoň h+1 neterminálů)
 - nějaký neterminál se na této cestě opakuje, nechť je to X∈V_N
 - nechť X¹ a X² jsou jeho dva různé výskyty nejblíže listu s
 - délka cesty z X¹ do listu s je nejvýše h+2, tedy | vwx | ≤2h=m
 - X¹ má dva následníky, aspoň z jednoho vede cesta do listů v rámci v nebo x
 - navíc pravidla tvaru X $\rightarrow \lambda$ nemáme, tedy vx $\neq \lambda$
 - $\blacksquare S \Rightarrow_G^* u X^1 y \Rightarrow_G^* u v X^2 x y \Rightarrow_G^* u v w x y$, pak také
 - $\blacksquare S \Rightarrow_G^* uX^1y \Rightarrow_G^* uv X^1xy \Rightarrow_G^* uv VX^2xxy \Rightarrow_G^* uv VX^2xxy$
 - \blacksquare S \Rightarrow_G^* uX 1 y \Rightarrow_G^* uwy

Ukázky použití pumping lemmatu

- □ L bezkontextový, pak existují n,m∈N
 - $(\forall z \in L)[|z| \ge n \Rightarrow (\exists u, v, w, x, y \in X^*)(z = u.v.w.x.y \land |vwx| \le m \land vx \ne \lambda \land (\forall i \in \mathbb{N}_0)uv^iwx^iy \in L)]$
 - platí-li <u>negace</u> výroku pro každé n,m∈N, tj. pro každé n,m∈N ($\exists z \in L$)[$|z| \ge n \land (\forall u,v,w,x,y \in X^*)(z=u.v.w.x.y \land |vwx| \le m \land vx \ne \lambda \Rightarrow (\exists i \in N_0)uv^iwx^iy \notin L)$], jazyk není bezkontextový
 - \Box L₁ = {aⁱbⁱcⁱ | i = 0,1,2,...}
 - n,m∈N od nepřítele
 - k = max(n,m), zvolíme $z = a^k b^k c^k$, evidentně $|z| \ge n$
 - zkoumejme všechny možné rozklady z=u.v.w.x.y, kde|vwx|≤m ∧ vx ≠ λ
 - vwx nemůže obsahovat <u>a</u> a <u>c</u> zároveň
 - při pumpování nedojde k přidání <u>a a c zároveň</u>
 - □ $L_2 = \{a^i b^j c^k \mid i,j,k = 0,1,2,... \land i \le j \le k \}$
 - $n,m \in \mathbb{N}$ od nepřítele, opět k = $\max(n,m)$, zvolíme z = $a^k b^k c^k$, evidentně $|z| \ge n$
 - rozklad z=u.v.w.x.y nemůže v části vwx obsahovat <u>a</u> a <u>c</u> zároveň
 - při pumpování buď přidáváme <u>a</u>, nebo ubíráme <u>c (b</u> lze přidávat i ubírat)

Zásobníkový automat (ZA)

- zásobníkový automat (push-down automaton)
 - \Box Z = (Q, X, Y, δ , q₀, z₀, F)
 - Q konečná neprázdná množina stavů
 - X konečná neprázdná vstupní abeceda
 - Y konečná neprázdná **zásobníková** abeceda
 - $\bullet \delta: Q \times (X \cup \{\lambda\}) \times Y \rightarrow 2_{FIN} Q \times Y^*$
 - přechodová funkce trojici stavu, čtenému symbolu pásky (případně nečtení) a čtenému symbolu ze zásobníku přiřazuje konečnou množinu dvojic stav a zásobníkové slovo
 - Q×Y* je nekonečná; nelze tedy použít 2^{Q×Y*}, protože by nešlo konečně reprezentovat
 - $q_0 \in Q$ počáteční stav
 - z₀ ∈ Y počáteční zásobníkový symbol
 - přechodová funkce vždy ze zásobníku čte, tj. provede operaci pop
 - na začátku zásobník obsahuje z₀
 - F ⊆ Q množina přijímajících stavů
 - vyprázdnění zásobníku ukončí výpočet
- deterministický zásobníkový automat
 - □ $|\delta(q,x,y)| \le 1$ pro $q \in Q$, $x \in X \cup \{\lambda\}$ a $y \in Y$
 - □ když $\delta(q,\lambda,y)\neq\emptyset$ pro q∈Q a y∈Y, pak $\delta(q,x,y)=\emptyset$ pro všechna x∈X

Výpočet zásobníkového automatu

- u ZA hovoříme o instrukcích
 - □ instrukce $(p,x,y) \rightarrow (q,w)$ odpovídá $(q,w) \in \delta(p,x,y)$ pro $p,q \in Q$, $x \in X$, $y \in Y$, $w \in Y^*$
 - je použitelná, když
 - stav řídící jednotky je p, na pásce je čten symbol x, na vrcholu zásobníku se nachází symbol y
 - jejím použitím dojde ke
 - změně stavu řídící jednotky na q, čtení pokračuje na následující buňce
 - ze zásobníku je odebrán symbol y (pop(y)) a na zásobník je vloženo slovo w
 - pro w = $y_1y_2...y_n$ vložení w odpovídá push (y_n) , ..., push (y_1)
 - instrukce $(p,\lambda,y) \rightarrow (q,w)$
 - čtený symbol není kontrolován, <u>nedojde</u> k posunu čtení na další buňku
- konfigurace ZA
 - trojice (q,u,v), kde q∈Q, u∈X* a v∈Y*
 - u část slova na pásce, kterou zbývá přečíst (včetně právě čteného symbolu)
 - v obsah zásobníku (směrem shora)
 - konfigurace $K_1 = (p, xu, yv)$ vede přímo na konfiguraci $K_2 = (q, u, wv)$, kde q∈Q, u∈X*, x∈X, v,w∈Y* a y∈Y, jestliže $(q,w) \in \delta(p,x,y)$, píšeme $K_1 \vdash_7 K_2$
 - případně $K_1 = (p_1 x u_1 y v)$ vede na $K_2 = (q_1 x u_1 w v)$, jestliže $(q_1 w) \in \delta(p_1 \lambda_1 y)$
 - K vede na K'; K ⊢₇* K' jestliže existují K₁, K₂, ..., Kₙ, kde n∈N₀, že K ⊢₂ K₁ ⊢₂ ... ⊢₂ Kո ⊢₂ K'

Jazyky přijímané ZA (1)

- \Box Z = (Q, X, Y, δ , q₀, z₀, F)
 - jazyk přijímaný přijímajícím stavem L(Z)
 - $L(Z) = \{ w \mid w \in X^* \land (\exists v, f)[v \in Y^* \land f \in F \land (q_0, w, z_0) \vdash_Z^* (f, \lambda, v)] \}$
 - jazyk přijímaný <u>prázdným zásobníkem</u> N(Z)
 - $N(Z) = \{ w \mid w \in X^* \land (\exists q \in Q)(q_0, w, z_0) \vdash_{7}^* (q, \lambda, \lambda) \}$

```
Př.: L = {0<sup>i</sup>1<sup>i</sup>|i=0,1,2,...}, ZA Z, že L(Z)=L

Z= ({p,q,r}, {0, 1}, {a, z}, δ, p, z, {r}), kde

\delta(p,0,z) = \{(p, az)\}
\delta(p,0,a) = \{(p, aa)\}
\delta(p,1,a) = \{(q, \lambda)\}
\delta(q,1,a) = \{(q, \lambda)\}
\delta(p,\lambda,z) = \{(r, \lambda)\}
```

```
Př.: L = {0<sup>i</sup>1<sup>i</sup> | i=0,1,2,...}, ZA Z, že N(Z)=L Z= ({p,q}, {0, 1}, {a, z}, δ, p, z, ∅), kde \delta(p,0,z) = \{(p,a)\} \delta(p,0,a) = \{(p,aa)\} \delta(p,1,a) = \{(q, λ)\} \delta(q,1,a) = \{(q, λ)\} \delta(p, λ,z) = \{(p, λ)\}
```

Jazyky přijímané ZA (2)

- \Box Z = (Q, X, Y, δ , q₀, z₀, F)
 - pro zásobníkový automat Z existuje zásobníkový automat Z_1 , že $L(Z)=N(Z_1)$
 - $\Box Z_1 = (Q \cup \{q_0', q_f\}, X, Y \cup \{z_0'\}, \delta', q_0', z_0', \emptyset)$
 - na zásobník pomocný symbol z₀
 - původně vyprázdnění znamenalo konec, nyní by znamenalo přijmutí
 - simulujeme Z
 - v přijímajícím stavu odebereme pomocný z₀′
 - z_0', q_0', q_f jsou nové
 - $\delta'(q_0', \lambda, z_0') = \{(q_0, z_0'z_0)\}$
 - $\delta'(q, x, y) = \delta(q, x, y)$ pro všechna $q \in Q$, $x \in X$, $y \in Y$
 - $\delta'(q, \lambda, y) = \delta(q, \lambda, y)$ pro všechna $q \in Q F$, $y \in Y$
 - $\delta'(q, \lambda, y) = \delta(q, \lambda, y) \cup \{(q_f, \lambda)\} \text{ pro } q \in F, y \in Y \cup \{z_0'\}$
 - zde rušíme determinismus
 - $\bullet \delta'(q_f, \lambda, y) = \{(q_f, \lambda)\} \text{ pro } y \in Y \cup \{z_0'\}$

Jazyky přijímané ZA (3)

- \Box Z = (Q, X, Y, δ , q₀, z₀, F)
 - pro zásobníkový automat Z existuje zásobníkový automat Z_2 , že $N(Z)=L(Z_2)$
 - navíc, když Z je deterministický, je i Z₂ deterministický
 - \square $Z_2 = (Q \cup \{q_0', q_f\}, X, Y \cup \{z_0'\}, \delta', q_0', z_0', \{q_f\})$
 - na zásobník pomocný symbol z₀
 - simulujeme Z
 - je-li na zásobníku vidět pomocný z₀, přijímáme, neboť to odpovídá původnímu vyprázdnění
 - $\mathbf{z}_0', \mathbf{q}_0', \mathbf{q}_f$ jsou nové
 - $\delta'(q_0', \lambda, z_0') = \{(q_0, z_0'z_0)\}$
 - $\delta'(q, x, y) = \delta(q, x, y)$ pro všechna $q \in Q$, $x \in X$, $y \in Y$
 - $\delta'(q, \lambda, y) = \delta(q, \lambda, y)$ pro všechna $q \in Q$, $y \in Y$
 - $\delta'(q, \lambda, z_0') = \{(q_f, \lambda)\}$ pro všechna $q \in Q$
 - □ $w \in N(Z) \Leftrightarrow (q_0, w, z_0) \vdash_Z^* (q, \lambda, \lambda) \text{ pro } q \in Q \Leftrightarrow$ $(q_0', w, z_0') \vdash_{Z_2} (q_0, w, z_0 z_0') \vdash_{Z_2}^* (q, \lambda, z_0') \vdash_{Z_2} (q_f, \lambda, \lambda)$ $\Leftrightarrow w \in L(Z_2)$