主要组织相容性复合体及其编码分子

- 一、MHC结构及其多基因特性
- 二、MHC的多态性
- 三、MHC分子和抗原肽的相互作用
- 四、HLA与临床医学
- 五、MHC的生物学功能

(a) Mating of inbred mouse strains with different MHC haplotypes

(b) Skin transplantation between inbred mouse strains with same or different MHC haplotypes

第一节 MHC结构及其多基因特性

多基因性指复合体由多个位置相邻的基因座位所组成,编码产物具有相同或相似的功能。

分为I、II、III类

(一) 经典的MHC I类和II类分子

MHC	小鼠 H-2	人HLA		
染色体定位	17	6p21.31		
米巴仲廷世	1500kb	3600kb		
I	K, D, L	B, C, A		
II	A, E	DP, DQ, DR		
III	C	C4 A BfC2		

(二) I类和II类基因的表达产物 --HLA分子

1、分布:

I类(HLA-A/B/C): 所有有核细胞表面

II类(HLA-DR/DP/DQ): APC(Mf,DC,B)、胸腺上皮细胞、活化T细胞

2、结构:

I类 $\alpha (\alpha_1 \alpha_2 \alpha_3 \text{ Tm C})$ 、 $\beta_2 \text{m}$ II类 $\alpha (\alpha_1 \alpha_2 \text{Tm C})$ 、 $\beta (\beta_1 \beta_2 \text{Tm C})$

MHC I类分子

MHC I类分子的结构示意图

MHC II类分子

MHC II 类分子的结构示意图

(三) 免疫功能相关基因

1、血清补体成分编码基因:

C4B, C4A, Bf, C2

2、抗原加工提呈相关基因

- o 低分子量多肽(LMP)基因
- o 抗原加工相关转运体(TAP)基因
- HLA-DM基因
- HLA-DO基因
- o TAP相关蛋白基因 tapasin

3、非经典I类(Ib)基因: HLA-E、HLA-G、HLA-F

4、炎症相关基因

- o 肿瘤坏死因子基因家族 TNF、LTA、LTB
- 转录调节基因或类转录因子基因家族 I-κB、B144、ZNF173、ZNF178
- MHC I类相关基因(MIC)家族
- 热休克蛋白基因家族 HSP70(分子伴侣)

免疫相关基因

DN DM LMP TAPDO

A COLOR COLO

抗原加工提 呈相关基因

相关编码产物:

C4 Bf C2: TNF

and the contract of the contra

血清补体 炎症相 成分编码 关基因

C2 C4

非经典 I类基因

TNF HSP70

HLA-E HLA-F HLA-G

第二节 MHC的多态性

(一)多态性的基本概念

多态性(polymorphism)一个基因座位上多个等位基因单倍型(haplotype)等位基因在单个染色体上的组合基因型(genotype)等位基因在两条染色体上的组合表现型(phenotype)基因型所表现的抗原特异性

非多态性、纯合子、杂合子

HLA的表型、基因型与单元型

受检者	P	ح	丙
	A1 A2 B8 B12	A1 A1 B8 B12	A1 A1 B8 B8
表型	HLA-A1、2: B8、12	HLA-A1: B8. 12	HLA-A1: B8
基因型	HLA-A1, A2	HLA-A1 、A1	HLA-A1, A1
	HLA-B8、B12	HLA-B8、B12	HLA-B8、B8
单体型	HLA-A1 - B8/A2 - B12	HLA-A1 - B8/A1 - B12	HLA-A1 - B8/A1 - B8

等位基因最多的座位是HLA-B(301个)
和HLA-DRB1(227个)

HLA-A*0103HLA-DRB1*1102

(二)连锁不平衡和单元型

HLA-DRB1*0901 15.6%

HLA-DQB1*0701 21.9%

同一条染色体上概率 3.4%

实际上为 11.3%

汉族 A2-B46-Cw3-DR9-DQ9-Dw23 A33-B17-Cw2-DR3-DQ2-Dw3

(三) HLA多肽性的产生及其意义

- ✓ 基因突变
- ✓ 基因重组
- ✓ 基因转换

选择压力(selection pressure)

第三节 MHC分子和抗原肽的 相互作用

(一) 抗原肽和HLA分子相互作用的分子基础

- 空间构象的拓朴
- ➤ 锚定残基 Anchor residue
- > 共同基序 consensus motif
- > 结合的特异性与包容性

抗原肽:MHC I 类分子复合物

抗原肽:MHC Ⅱ类分子复合物

抗原肽与MHC I 和MHC II 类分子结合示意图

不同HLA等位基因产物以特定的共同基序选择性的结合抗原肽

等位基因产物	共同基序								
守山巫山)彻	1	2	3	4	5	6	7	8	9
I类分子A*0201	Х	L M	Х	Х	Χ	X	Χ	X	L V
B*2705	X	R	X	X	X	X	X	Х	L F
II类分子DRB1*0405	I F Y N	X	X	I L E V F	X	N S T Q	X	X	E D

(二) 抗原肽和MHC分子相互作用的特点

包容性(flexibility):

组成共同性基序的x氨基酸,顺序和结构可变 同一MHC分子要求的锚定残基不止一种氨基酸 不同MHC分子接纳的抗原肽可有相似的共同基序

第四节 HLA与临床医学

- 1、HLA与器官移植
- 2、HLA分子的异常表达和临床疾病
- 3、HLA与疾病的关联
- 4、HLA与亲子鉴定和法医学

疾病	HLA抗原	相对风险(%)
强直性脊髓炎	B27	89.8
急性前葡萄膜炎	B27	10.0
肾小球性肾炎咯血综合征	DR2	15.9
多发性硬化症	DR2	4.8
乳糜泻	DR3	10.8
突眼性甲状腺肿	DR3	3.7
重症肌无力	DR3	2.5
系统性红斑狼疮	DR3	5.8
胰岛素依赖性糖尿病	DR3/DR4	25.0
类风湿性关节炎	DR4	4.2
寻常天疱疣	DR4	14.4
淋巴瘤性甲状腺肿	DR5	3.2

与HLA呈现强相关的一些自身免疫病

第五节 MHC的生物学功能

(一) 作为抗原提呈分子参与适应性免疫应答

- T细胞以其TCR实现对抗原肽和MHC分子的 双重识别
- o被MHC分子结合并提呈的成分,可以是自身抗原,甚至是MHC分子本身
- o MHC是疾病易感性个体差异的主要决定者
- o MHC参与构成种群基因结构的异质性

内源性抗原的加工及呈递过程

外源性抗原的加工及递呈过程

T细胞-抗原提呈细胞间相互作用的MHC限制性

(二)作为调节分子参与固有免疫应答

- 经典的III类基因为补体成分编码,参与补体反应和免疫性疾病的发生
- 非经典I类基因和MIC基因产物可作为配体 分子,调节NK细胞和部分杀伤细胞活性
- 炎症相关基因参与启动和调控炎症反应,并 在应激反应中发挥作用