

ATTTCGCCCT	TCAGCTCCAA	TIGCTCTATG	TTAGAATTG	CCTTTTTC	AAGATGGATT	60
TCCTTCACAG	GAATGGAGTG	CTCATATAATTC	AGCATTGCA	GAAGGACTAC	CGAGCTTACT	120
ACACTTTCT	AAATTTATG	TCCAATGTTG	GAGACCCAG	GAATATCTTT	TTCAATTATT	180
TTCCACTTTG	TTTCAATT	AATCAGACAG	TTGAAACCAA	GATGATATGG	GTAGCAGTCA	240
TTGGGGATTG	GTAAATCTT	ATATTAAT	GGATATTATT	TGGTCATCGA	CCTTACTGGT	300
GGGTCAGAGA	AACTCAGATT	TACCCAAATC	ACTCAAGTCC	ATGCCCTGAA	CAGTCCCTA	360
CTACATGTGA	AACAGGTCCA	GGAAAGTCCAT	CTGGCCATGC	AATGGGGCGCA	TCCTGTGTCT	420
GGTATGTCTAT	GTTAACCGCT	GCCCCTGAGCC	ACACTGTCTG	TGGGATGGAT	AAGTTCTCTA	480
TCACTCTGCA	CAGACTGACC	TGGTCATTTC	TTGGGAGTGT	TTTTGGTTG	ATTCAAAATCA	540
GTGTCTGCAT	CTCCAGAGTA	TTCATAGCAA	CACATTTC	TCATCAAGTT	ATTCTTGGAG	600
TAATTGGTGG	CATGCTGGTG	GCAGAGGCCT	TTGAACACAC	TCCAGGCATC	CAAACGGCCA	660
GTCTGGCAC	ATACCTGAAG	ACCAACCCTCT	TTCTCTTCCT	GTTCAGTT	GGCTTTTACCC	720
TGTTTCTTAG	GGTGGCTCAAC	ATTGACCTGC	TGTGGTCCGT	GCCCATAGCC	AAAAAGTGGT	780
GTGCTAACCC	CGACTGGATC	CACATTGACA	CCACGCCCTT	TGCTGGACTC	GTGAGAAACC	840
TTGGGGTCCCT	CTTGGCTTG	GGCTTGCACAA	TCAACTCAGA	GATGTTCCCTC	CTGAGCTGCC	900
GAGGGGAAA	TAACTACACA	CTGAGCTTCC	GTTGGCTCTG	TGCCTTGACC	TCATTGACAA	960
TACTGCAGCT	CTACCATTT	CTCCAGATCC	CGACTCACGA	AGAGCATTAA	TTTTATGTGC	1020
TGTCTTTTG	AAAAGTGCAT	TCCATTCCCC	TAACTGGT	TGCTTTCAATT	CCCTACTCTG	1080
TTCATATGTT	ATGAAACAA	AGCGGAAAGA	AGAGTCAGTA	AAAAAAAGA	AAAAAAAGA	1138

Fig. 1

Met Asp Phe Leu His Arg Asn Gly Val Leu Ile Ile Gln His Leu Gln	10
5	15
Lys Asp Tyr Arg Ala Tyr Tyr Thr Phe Leu Asn Phe Met Ser Asn Val	20
25	30
Gly Asp Pro Arg Asn Ile Phe Phe Ile Tyr Phe Pro Leu Cys Phe Gln	35
40	45
Phe Asn Gln Thr Val Gly Thr Lys Met Ile Trp Val Ala Val Ile Gly	50
55	60
Asp Trp Leu Asn Leu Ile Phe Lys Trp Ile Leu Phe Gly His Arg Pro	65
70	75
Tyr Trp Trp Val Gln Glu Thr Gln Ile Tyr Pro Asn His Ser Ser Pro	80
85	90
Cys Leu Glu Gln Phe Pro Thr Thr Cys Glu Thr Gly Pro Gly Ser Pro	95
100	105
Ser Gly His Ala Met Gly Ala Ser Cys Val Trp Tyr Val Met Val Thr	110
115	120
Ala Ala Leu Ser His Thr Val Cys Gly Met Asp Lys Phe Ser Ile Thr	125
130	135
	140

Fig. 2A

3 / 11

Leu	His	Arg	Leu	Thr	Trp	Ser	Phe	Leu	Trp	Ser	Val	Phe	Trp	Leu	Ile
145															160
Gln	Ile	Ser	Val	Cys	Ile	Ser	Arg	Val	Phe	Ile	Ala	Thr	His	Phe	Pro
				165						170					175
His	Gln	Val	Ile	Leu	Gly	Val	Ile	Gly	Met	Leu	Val	Ala	Glu	Ala	
				180				185							190
Phe	Glu	His	Thr	Pro	Gly	Ile	Gln	Thr	Ala	Ser	Leu	Gly	Thr	Tyr	Leu
				195				200							205
Lys	Thr	Asn	Leu	Phe	Leu	Phe	Leu	Phe	Ala	Val	Gly	Phe	Tyr	Leu	Leu
				210				215							220
Leu	Arg	Val	Leu	Asn	Ile	Asp	Leu	Leu	Trp	Ser	Val	Pro	Ile	Ala	Lys
				225				230							240
Lys	Trp	Cys	Ala	Asn	Pro	Asp	Trp	Ile	His	Ile	Asp	Thr	Thr	Pro	Phe
				245				250							255
Ala	Gly	Leu	Val	Arg	Asn	Leu	Gly	Val	Leu	Phe	Gly	Leu	Gly	Phe	Ala
				260				265							270
Ile	Asn	Ser	Glu	Met	Phe	Leu	Leu	Ser	Cys	Arg	Gly	Gly	Asn	Asn	Tyr
				275				280							285

Fig. 2B

4 / 11

Thr	Leu	Ser	Phe	Arg	Leu	Leu	Cys	Ala	Leu	Thr	Ser	Leu	Thr	Ile	Leu
290															
															300
Gln	Leu	Tyr	His	Phe	Leu	Gln	Ile	Pro	Thr	His	Glu	Glu	His	Leu	Phe
305															320
Tyr	Val	Leu	Ser	Phe	Cys	Lys	Ser	Ala	Ser	Ile	Pro	Leu	Thr	Val	Val
															335
Ala	Phe	Ile	Pro	Tyr	Ser	Val	His	Met	Leu	Met	Lys	Gln	Ser	Gly	Lys
															350
Lys	Ser	Gln													
															355

Fig. 2C

Applicants: Hong Chen
Title: HUMAN GLUCOSE-6-PHOSPHATASE MOLECULES AND USES THEREOF
Attorney/Agent: Kerri Pollard Schray
Docket No.: MPI00-209CP1CN1M

Sheet 5 of 11

5 / 11

H	1	MDFLHRNGVLIIQHLQKDYRAYYTFLNFMSNVGDPRNIFFIYFPLLCQFN	H	51	QTVGTTKMIWAVIGDWLNLIKEKWILFGHRYWWVQETQIYPNHSPPCLEQ	H	101	FPTTCETGPGPSGHAMGASCVWYVMVTAAALSHTVCGMDFKSITLHRLTW	H	151	SFLWSVFWLIQISVCISRVFIATHFPHQVILGVIGGMLVAEAFEHTPGIQ	H	201	TASLGTYLTNLFLEAVGFYLRLRVNLIDLLSVPIAKKWCANPDWIH	H	251	IDTTPEAGLVRNLGVLFGLGEAINSEMFLLSRGNNYTLSERLLCALT
M	1	MDFLHRSGVLIIHHLQEDYRTYYGFLNFMSNVGDPRNIESIYFPLWFQLN	M	51	QNVGTTKMIWAVIGDWLNLIKEKWILFGHRYWWIQETEIYPNHSPPCLEQ	M	101	FPTTCETGPGPSGHAMGSSCSCVWYVMVTAAALSYTISRMEESSVTLHRLTW	M	151	SFLWSVFWLIQISVCISRVFIATHFPHQVILGVIGGMLVAEAFEHTPGVH	M	201	MASLSVYLTNVEFLFALGFYLRLFIDLLSVPIAKKWCANPDWIH	M	251	IDSTPEAGLVRNLGVLFGLGEAINSEMFLRSQGENGTKPSSERLLCALT

Fig. 3A

Applicants: Hong Chen
Title: HUMAN GLUCOSE-6-PHOSPHATASE MOLECULES AND USES THEREOF
Attorney/Agent: Kerri Pollard Schray
Docket No.: MPI00-209CP1CN1M

H 301 LTILQLYHFLQIPTHEELFYVLSFCKSASASIPLTVVAFIPYSVHMLMKQS
M 301 LTTMOLYREFIKIPTHAEPLFYLLSECKSASASIPLMVVALIPIYCVHMLMRPG

H 351 GKKSQ
M 351 DKKTK

Fig. 3B

Applicants: Hong Chen
Title: HUMAN GLUCOSE-6-PHOSPHATASE MOLECULES AND
USES THEREOF
Attorney/Agent: Kerri Pollard Schray
Docket No.: MP100-209CP1CN1M
Sheet 7 of 11

7 / 11

Fig. 4

8 / 11

Fig. 5

Applicants: Hong Chen
Title: HUMAN GLUCOSE-6-PHOSPHATASE MOLECULES AND USES THEREOF
Attorney/Agent: Kerri Pollard Schray
Docket No.: MPI00-209CP1CN1M

Sheet 9 of 11

9 / 11

HP	MDFLHRNGVLIQHLQKDYRAYYTFLNEMSNVGDPRNIEFFYFPLCFQFN	
MP	MDFLHRSGVLIHHHQDHYRTYYGFLNEMSNVGDPRNIESIYFPLWFQLN	
F1	MDLLHSWGVELAVYLQTRYGKYEGLFDLASTVADLHTTFFWLFPIWFEHLR	
M1	MEEGMNILHDFGIQSTRYLVQNVYQDSQDWFIIVSVIADLRNAFYVLFPIWFHLK	
C1	MEKGMDVLHDFGIQSTTHYLQVNQDSDQDWFIIVSVIADLRNAFYVLFPIWFHLR	
H1	MEEGMNVLHDFGIQSTTHYLQVNQDSDQDWFIIVSVIADLRNAFYVLFPIWFHLQ	
HP	QTVGTTKMIWWAVIGDWLNLIFKWILEGHRPYWWVQETQIYPNHSSSPCLEQFPTT	
MP	QNVGTTKMIWWAVIGDWLNLIFKWILEGHRPYWWVIQETEIYPNHSSSPCLEQFPTT	
F1	RDTALRLIIWWAVIGDWLNVLKWLGERPYWWVHETKFYGAGPAPSILQQFPI	
M1	ETVGGINLWWAVVGDWLNVLVEKWILEGQRPYWWVLDTDYSSNSVPIIKQFPVT	
C1	EAVGIKLWWAVIGDWLNVLVEKWILEGQRPYWWVMDTDYSSNTSVPLIKQFPVT	
H1	EAVGIKLWWAVIGDWLNVLVEKWILEGQRPYWWVLDTDYSSNTSVPLIKQFPVT	
HP	CETGGSPSGHAMGASCVWWVMVTAALSHTVCGMDKESITLHRLTWFSIWSVFW	
MP	CETGGSPSGHAMGSSCVWWVMVTAALSYTISRMEESSVTLHRLTWSEFLWSVFW	
F1	CETGGSPSGPSGHAMGAAGVYVMVTALLS--IAREKQCPPLLRYFLYIGLWMIG	
M1	CETGGSPSGPSGHAMGAAGVYVMVTALLA--IFRGKKRPTYGFRCLNVILWLGFW	
C1	CETGGSPSGPSGHAMGTAGVYVMVTSTS--IFRGRKRPTYRFRCLNILLWLGFW	
H1	CETGGSPSGPSGHAMGTAGVYVMVTSTS--IFQGKIKPTYRFRCLNVILWLGFW	

Fig. 6A

HP LIQISVCISRVEIATHFPHQVILGVIGGMLVAEAFEHTPGIQTASLGTYLKTNL
MP **LIQISVCISRVEIATHFPHQVILGVIGGMLVAEAFEHTPGVHMASLSVYLLKTNV**
F1 **LVELNVCLSRVYMAAHFPHQVIAGIIITGTGLVAEVVSKEKWIVSASLKKYFLITL**
M1 **AVQLMNCLSRVYLAAHFPHQVIVAGVLSGIAVAETFSHIRGIYNASLRKYCLITI**
C1 **AVQLMNCLSRVYLAAHFPHQVIVAGVLSGIAVAETFRHIQSIYNASLKKYFLITE**
H1 **AVQLMNCLSRVYLAAHFPHQVIVAGVLSGIAVTEFSIHISIYNASLKKYFLITE**

HP FLFLFAVGFYLLRVLNIDLILWSVPIAKKWCANPDWIHIDDTTPFAGLVRLNLGVL
MP **FLFLFALGFYLLRLFGLDILWWSVPIAKKWCANPDWIHIDSTPFAAGLVRLNLGVL**
F1 **FITSEAVGFYVLLKALDVDLIWTMEKAQKWCIRPEWVHLDSAPEASLLRNMGSL**
M1 **FLFGFALGFYLLKGLGVDDLILWTLERAKRWCERPEWVHLDTTPFASLEFKNLGTL**
C1 **FLFSEFAIGFYLLKGLGVDDLILWTLERAKARRWCERPEWVHIDDTPFASLLKNVGTI**
H1 **FLFSEFAIGFYLLKGLGVDDLILWTLERAKAQRWCEDPEWVHIDDTPFASLLKNLGTI**

HP FGLGFAINSEMFLSCRGNNYNTLSFRLLCALTSLTILQLYHFLQIPTHEEEHLF
MP **FGLGFAINSEMFLRSCQGENGTKPSPRLLCALTSLTLMQLYREFIKIPTHAEPLF**
F1 **FGLGIGLHSPEFYKTTKMRIMSA--PLRIGGCCIVSVSLLHLLDGWTFSPENHMTF**
M1 **LGLGLALNSSMYRKSCCKGEISKSPPRFACIVASVLLHLDLSKPPSQVELIF**
C1 **FGLGVTLNSSMYRESCKGKLSKWFPFRLSCIVVSLLLHLDLSKPPSQTELIF**
H1 **FGLGLALNSSMYRESCKGKLSKWLPFRLSSIVASVLLHVDLSKPPSQVELIF**

Fig. 6B

11 / 11

HP YVLSECKSASIPPLTVVAFIPIYSV-HMLMKQSGKKSQ
MP YLLSECKSASIPLMVVALIPIYCV-HMLMRPGDKKTK
F1 YALSFCKSAVALLIPTTLVPWALS~~KIY~~PVKTEGKNL
M1 YILSFCKSATVPFAASVSLIPYCLARILG-QTHKKSL
C1 YTLSFCKSAAVPLASVSLIPYCLARVFD-QPDKKSL
H1 YVLSECKSAVPLASVSIPIYCLAQVLG-QPHKKSL

Fig. 6C