The effect of heterogeneity on hypergraph contagion models

Nicholas Landry, Juan G. Restrepo, University of Colorado at Boulder

Background

GOAL: Developing more realistic models of social and viral contagion by not only including pairwise (i.e., person-to-person) interactions, but higher-order interactions as well (i.e., group interactions). We use the generalization of a network known as a hypergraph.

We used a modified SIS model to include higher order interactions. The mechanisms of contagion for a node are

The network-based SIS model is simply a) and b).

Notation

- N nodes with degrees k
- x_k is the fraction of infected nodes with degree k
- P(k) is the number of nodes with degree k
- The infected population average is

$$\langle I \rangle = \sum_{k} \frac{P(k) x_k}{N}$$

- β_2^c is the epidemic threshold, above which epidemics occur
- β_3^c is the threshold at which explosive transitions to appear

Mean-Field Theory Continued

The mean-field equation is

We used the mean-field equation to find the theoretical onset of bistability, where two stable equilibria can exist, which we denote β_3^c . If the system crosses over the unstable branch (also called a "critical mass"), the system explosively transitions to an epidemic equilibrium; below it, the infection dies out.

We used the undirected configuration model for the pairwise network and two ways of choosing the 3-hyperedge connections, degree-correlated and uncorrelated:

Degree-correlated

Uncorrelated

Phase diagram as a function of β_2 and β_3 , found by numerically solving for the equilibria of the meanfield equation

Mean-Field Simulation

 β_3^c/β_2^c with respect to the powerlaw exponent, r, and the maximum degree in the uncorrelated case

 β_3^c/β_2^c with respect to the powerlaw exponent, r, and the maximum degree in the degree-correlated case

Discrete-Time Markov

Measure of bistability for different values of β_3 and different networks

 $P(k) \propto k^{-3}$

Conclusions

- Heterogeneous networks suppress explosive transitions
- Triangles uncorrelated with the network degree suppress explosive transitions

References

- Iacopini, I., Petri, G., Barrat, A. *et al.* Simplicial models of social contagion. *Nat Commun* 10, 2485 (2019). doi:10.1038/s41467-019-10431-6
- de Arruda, Guilherme Ferraz, Giovanni Petri, and Yamir Moreno. Social contagion models on hypergraphs. *Physical Review Research* 2.2 (2020): 023032.
- Cisneros-Velarde, Pedro, and Francesco Bullo. Multi-group SIS Epidemics with Simplicial and Higher-Order Interactions. arXiv preprint arXiv:2005.11404 (2020).

