第9章 微分方程

1. 一阶微分方程

方程类型	标准形式	求解方法
变量可分离	$\frac{dy}{dx} = f(x) \cdot g(y)$	$\int \frac{dy}{g(y)} = \int f(x)dx + C$
齐次型方程	$\frac{dy}{dx} = f\left(\frac{y}{x}\right)$	$u = \frac{y}{x}$, 代入得
		$\frac{du}{dx} = \frac{f(u) - u}{x},$ 再分离变量
一阶线性微分方 程	y' + P(x)y = Q(x)	方法一:常数变易法 方法二:公式法
		$y = e^{-\int P(x)dx} \left[\int Q(x)e^{\int P(x)dx} dx + C \right]$

2. 高阶微分方程

(1)可降阶的高阶微分方程.

#######################################	→ <u></u> <u></u> <u></u> <u></u> <u></u>
典型形式	求解方法
$y^{(n)} = f(x)$	两边经过 <i>n</i> 次积分即可
y'' = f(x, y')	$\Rightarrow y' = p, y'' = \frac{dp}{dx}$
(不显含未知函数 ^y)	$\frac{dp}{dx} = f(x, p)$ 为一阶微分方程,再求
y'' = f(y, y')	$y' = p, y'' = \frac{dp}{dx} = \frac{dp}{dy} \cdot \frac{dy}{dx} = p\frac{dp}{dy}$
(不显含自变量x)	

$$p\frac{dp}{dy} = f(y,p)$$
 为一阶微分方程,再求

(2) 二阶线性微分方程的解结构

记二阶线性微分方程
$$y'' + P(x)y' + Q(x)y = f(x)$$
(1)

对应的齐次方程为
$$y'' + P(x)y' + Q(x)y = 0$$
(2)

若 y^* 为(1)的一个特解, y_1,y_2 为(2)的两个线性无关的特解,则

 $c_1 y_1 + c_2 y_2$ 为(2)的通解

$$y^* + c_1 y_1 + c_2 y_2$$
为(1)的通解.

注:对于 n 阶线性微分方程的解结构也有类似结论.

(3)二阶常系数线性齐次微分方程的解法

$$y'' + py' + qy = 0$$
 $(p,q$ 为常数)(3)

首先写出对应于该方程的特征方程

$$\lambda^2 + p\lambda + q = 0$$

解此方程,求出两特征值 λ_1,λ_2 ,根据 λ_1,λ_2 的不同情形按下表写出通解.

λ_1, λ_2	通解
两个不相同的实根 λ_1,λ_2	$y = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x}$
两个相的实根 $\lambda_1 = \lambda_2$	$y = (c_1 + c_2 x)e^{\lambda_1 x}$
一对共轭复根 $\alpha \pm i\beta$	$y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x)$

(4) n 阶常系数线性齐次微分方程的解法

以上结论可推广至n阶常系数线性齐次微分方程

$$y^{(n)} + p_1 y^{(n-1)} + p_2 y^{(n-2)} + \dots + p_{n-1} y' + p_n y = 0 \quad \dots$$
 (4)

其中 p_i $(i=1,2,3,\cdots,n)$ 为常数.

根据特征方程 $\lambda^n + p_1 \lambda^{n-1} + p_2 \lambda^{n-2} + \dots + p_{n-1} \lambda + p_n = 0$

的根的四种情况,分别写出对应的解:

- a) λ 为特征方程的单重实根, (4) 有相应的一个解 $e^{\lambda x}$
- b) λ 为特征方程的k 重实根, (4) 有相应的k 个解 $e^{\lambda x}, xe^{\lambda x}, \dots, x^{k-1}e^{\lambda x}$
- c) $a \pm bi$ 为特征方程的单重复根, (4) 有相应的两个解 $e^{ax} \cos bx$, $e^{ax} \sin bx$
- d) $a \pm bi$ 为特征方程的k 重共轭复根, (4) 有相应的 2^k 个解 $e^{ax} \cos bx, e^{ax} \sin bx, xe^{ax} \cos bx, xe^{ax} \sin bx, \cdots, x^{k-1} e^{ax} \cos bx, x^{k-1} e^{ax} \sin bx$

若记以上求出的n个解为 $y_1(x), y_2(x), \dots, y_n(x)$,则(4)的通解就是 $c_1y_1(x) + c_2y_2(x) + \dots + c_ny_n(x)$

(5) 二阶常系数线性非齐次微分方程的解法

$$y'' + py' + qy = f(x)$$
 $(f(x) \neq 0)$ (5)

其中 p,q 为常数. 方程 (5) 的解法: 首先求出 (5) 对应的齐次方程 (3) 的通解 $c_1y_1+c_2y_2$, 再求出 (5) 的一个特解 y^* , 则 (5) 的通解为 $y=y^*+c_1y_1+c_2y_2$

而^{y*}的求法如下:

当f(x)为某些特殊类型函数时,用待定系数法求 y^* .

a) $f(x) = e^{\lambda x} P_m(x)$, 其中 λ 为常数, $P_m(x)$ 为 x 的 m 次多项式则可设(5)的特解为 $y^* = x^k Q_m(x) e^{\lambda x}$ (6)

 $Q_m(x)$ 为与 $P_m(x)$ 同次的多项式. 将 (6) 代入 (5) 比较系数可求出 $Q_m(x)$, 从而求出 y^* .

$$f(x) = e^{\lambda x} [P_I(x) \cos \omega x + P_n(x) \sin \omega x]$$

其中 $^{\lambda,\omega}$ 均为常数, $^{P_l,P_n(x)}$ 分别为 l 次, n 次多项式.

则(5)的特解可设为

$$y^* = x^k e^{\lambda x} [Q_m(x) \cos \omega x + R_m(x) \sin \omega x] \quad \dots \tag{7}$$

$$k = \begin{cases} 0, & \lambda \pm \omega i$$
不是(3)的特征方程的根
其中 $\lambda \pm \omega i$ 是(3)的特征方程的单重根

$$Q_m(x), R_m(x)$$
 为 m 次多项式, $m = \max\{l, n\}$

将(7)代入(5)比较同类项系数可求出 $Q_m(x), R_m(x)$,从而求出 y^* .

复习指导:

第9章 微分方程 学习指导

一. 解微分方程的方法

解微分方程的问题一般分求通解和求特解两类,需要求特解时,先求其通解,然后将已知的初始 条件代入通解,

确定任意常数,得到特解。求通解时首先要判断微分方程的类型,然后对不同类型的方程用不同的方法去解。

所学的微分方程分类如下

	1 11 100/17/17 11 12/17 20/20 1
一 阶 微	变量可分离: $\frac{dy}{dx} = f(x) \cdot g(y)$
分方程	$rac{dy}{rac{dy}{dx}} = f\left(\frac{y}{x}\right)$
	一阶线性微分方程: $y'+P(x)y=Q(x)$
	贝努利方程: $\frac{dy}{dx} + P(x)y = Q(x)y^n$ $(n \neq 0,1)$

高阶	可降阶的高阶微分方程	$y^{(n)} = f(x)$	
微分		$y'' = f(x, y')$ (不显含未知函数 y)	
方程		y'' = f(y, y') (不显含自变量 x)	
	常系数线性微分方程	常系数	二阶常系数线性齐次微分方程
	y'' + py' + qy = f(x) $(p,q为常数)$	线性 齐 次微分	y'' + py' + qy = 0
	(p,q/3市数)	方程	ⁿ 阶常系数线性齐次微分方程
			$y^{(n)} + p_1 y^{(n-1)} + p_2 y^{(n-2)} + \dots + p_{n-1} y' + p_n y = 0$
		常系数 线性 非	$f(x) = e^{\lambda x} P_m(x)$ 的情况,其中 λ 为常数, $P_m(x)$ 为 x
		齐次 微 分方程 (二阶)	的 m 次多项式
			$f(x) = e^{\lambda x} [P_l(x) \cos \omega x + P_n(x) \sin \omega x]_{\text{ in fig., } \text{ \sharp phi}}$
			λ, ω 均为常数, $P_l, P_n(x)$ 分别为 l 次, n 次多项式.

注: 另外还有一种全微分方程, 将在下册讲授.

二. 微分方程的应用题

解微分方程的应用题分两步:

a) 根据具体问题建立微分方程:对于几何问题一般利用导数的几何意义列方程,对于物理问题一般根据微元法和物理定理列方程。

注: 在应用问题中常常包含有一些初试条件, 在列方程时不要遗漏。

b) 解微分方程。