AArch32 Instructions AArch64
Instructions

Index by Encoding

External Registers

TRCQCTLR, Q Element Control Register

The TRCQCTLR characteristics are:

Purpose

Controls when Q elements are enabled.

Configuration

AArch64 System register TRCQCTLR bits [31:0] are architecturally mapped to External register TRCQCTLR[31:0].

This register is present only when FEAT_ETE is implemented, FEAT_TRC_SR is implemented and TRCIDR0.QFILT == 1. Otherwise, direct accesses to TRCQCTLR are undefined.

Attributes

TRCQCTLR is a 64-bit register.

Field descriptions

6362616059585756555453525150494847464544434241	. 40	39	38	37	36	11
			RES0			·
RES0	MODE	RANGE[7]	RANGE[6]	RANGE[5]	RANGE[4]	RAN
31302928272625242322212019181716151413121110 9	8	7	6	5	4	

Bits [63:9]

Reserved, res0.

MODE, bit [8]

Selects whether the Address Range Comparators selected by TRCQCTLR.RANGE indicate address ranges where the trace unit is permitted to generate Q elements or address ranges where the trace unit is not permitted to generate Q elements:

MODE Meaning

	0b0	Exclude mode.
		The Address Range
		Comparators selected by
		TRCQCTLR.RANGE indicate
		address ranges where the trace
		unit must not generate Q
		elements. If no ranges are
		selected, Q elements are
		permitted across the entire
		memory map.
	0b1	Include Mode.
		The Address Range
		Comparators selected by
		TRCQCTLR.RANGE indicate
		address ranges where the trace
		unit can generate Q elements. If
		all the implemented bits in
		RANGE are set to 0 then Q
		elements are disabled.
_		

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally unknown value.

RANGE[<m>], bit [m], for m = 7 to 0

Specifies whether Address Range Comparator <m> controls Q elements.

RANGE[<m>]</m>	Meaning
0b0	The address range that
	Address Range
	Comparator <m></m>
	defines, is not selected.
0b1	The address range that
	Address Range
	Comparator <m></m>
	defines, is selected.

This bit is res0 if $m \ge TRCIDR4.NUMACPAIRS$.

The reset behavior of this field is:

• On a Trace unit reset, this field resets to an architecturally unknown value.

Accessing TRCQCTLR

Must be programmed if TRCCONFIGR.QE != 0b00.

Writes are constrained unpredictable if the trace unit is not in the Idle state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCQCTLR

op0	op1	CRn	CRm	op2
0b10	0b001	0b0000	0b0001	0b001

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && CPTR EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT FGT) && (!HaveEL(EL3) | |
SCR EL3.FGTEn == '1') && HDFGRTR EL2.TRC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        X[t, 64] = TRCQCTLR;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = TRCQCTLR;
elsif PSTATE.EL == EL3 then
    if CPTR_EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = TRCQCTLR;
```

MSR TRCQCTLR, <Xt>

op0	op1	CRn	CRm	op2
0b10	0b001	0b0000	0b0001	0b001

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR_EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.TRC == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCQCTLR = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCQCTLR = X[t, 64];
elsif PSTATE.EL == EL3 then
    if CPTR EL3.TTA == '1' then
        AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCQCTLR = X[t, 64];
```

	28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d9	
С	opyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. Th document is Non-Confidentia	is
	document is ivon-confidentic	11.