

Universitatea "Politehnica" din Bucureşti Facultatea de Automatică & Calculatoare

Identificarea Sistemelor

• Note de curs •

Dan Ştefănoiu Profesor

Danny@router.indinf.pub.ro
http://www.geocities.com/dandusus/Danny.html

http://www.geocities.com/aplimathes/SISP

	Bibliografie	-
0	Privire de ansamblu (obiect de studiu, problematică, experiment de identificare)	4
2	Modele de identificare	48
	2.0 Scurtă clasificare	48
	2.2 Noțiuni de Statistică și Prelucrare de Semnal	51
	2.3 Analiza modelelor neparametrice	
	2.4 Modele parametrice (clase uzuale, criterii de stabilitate)	
3	Semnale de stimul	110
	3.0 Necesitatea stimulării corecte a proceselor	
	3.2 Conceptul de persistență	
	3.3 Proprietăți ale semnalelor persistente	
	3.4 Clase de semnale persistente (semnale ideale, semnale practice, metode de generare)	120
		400
4)	Metode de identificare şi validare	
	4.0 Scurtă clasificare	
	10.2 Metoda Celor Mai Mici Pătrate (MCMMP)	133
	4.3 Metoda Variabilelor Instrumentale (MVI)	160
	Metode bazate pe optimizarea parametrilor (Newton-Baphson, Gauss-Newton)	

4	Metode de identificare şi validare (continuare)	132
	4.5 Metoda Celor Mai Mici Pătrate Extinsă (MCMMPE)	177
	4.6 Metoda Minimizării Erorii de Predicție (MMEP)	182
	1.7 Metode bazate pe Teoria Estimației (Bayes, verosimilitatea maximă)	188
	10.8 Identificarea şi predicţia proceselor auto-regresive	198
	4.9 Metode adaptive de identificare (MCMMP-R, MVI-R, utilizarea ferestrelor culisante, MCMMPQR-R)	225
	0.00 Estimarea structurii modelelor de identificare	
	4.00 Validarea modelelor de identificare	
	4.02 Deschidere către metode şi modele de identificare avansate (estimarea modelelor de tip MIMO cu ajutorul MCMMP, identificarea proceselor cu reacție, estimarea modelelor cu reprezentare pe stare folosind filtrul Kalman-Bucy)	
5	Exercitii rezolvate	P1.P61

Bibliografie Referința fundamentală

- 1.Ljung L. System Identification Theory for the User, Prentice Hall, Upper Saddle River, N.J., 2nd edition,1999.
- 2. Söderström T. Lecture Notes in Identification, Uppsala University Presss, Sweden, 1984
- 3. Söderström T., Stoica P. System Identification, Prentice Hall, London, UK, 1989.
- 4. Ștefănoiu D. Identificarea Experimentală a Sistemelor Serii de Timp, Tipografia Universitătii "Politehnica" din București, România, 1996.
- 5. Ștefănoiu D. Identificarea Experimentală a Sistemelor Probleme de Seminar, Tipografia Universității "Politehnica" din București, România, 1996.
- 6.Ştefănoiu D., Culiță J., Stoica P. Fundamentele Modelării și Identificării Sistemelor, Editura PRINTECH, București, România, 2005.
- 7.Ştefănoiu D., Matei I., Stoica P. Aspecte Practice în Modelarea și Identificarea Sistemelor, Editura PRINTECH, București, România, 2004.

Curs & Examen

Teme de laborator

Privire de ansamblu

Modelarea proceselor/sistemelor dinamice folosind date experimentale achiziționate în cursul exploatării acestora.

Termen care se referă la construcția și determinarea unui model matematic asociat unei entități evolutive/dinamice cu structură necunoscută.

• Practic, entitatea este văzută ca o cutie neagră capabilă să ofere informații despre mecanismele care determină evoluția/dinamica acesteia, dacă este stimulată corespunzător.

Relație matematică abstractă care descrie cu o anumită acuratețe caracteristicile și/sau dinamica/funcționarea unei entități (cutii negre).

Model de identificare

- Modelul de identificare constituie un fel de carte de identitate a entității studiate.
- Acesta reflectă relația dintre intrarea care stimulează entitate (de regulă un proces sau un sistem) și ieșirea care codifică reacția corespunzătoare a acelei entități.
- Construcția modelelor de identificare se bazează pe datele experimentale furnizate de către cutia neagră.

Privire de ansamblu

- > simulare, în vederea evidențierii caracteristicilor principale și/sau a comportamentului în diverse situații
- > recunoaștere de forme
- > prelucrări de semnale
- > predicție/prognoză
- ➤ diagnoză de defecte
- > proiectare de sisteme automate de conducere sau reglare

Aplicații uzuale de identificare

IS este un domeniu cu deschidere către abordări interdisciplinare

O referire

Objectiv

Tipuri de identificare

Obiectivul cursului

Identificare analitică

• Se utilizează legile fizico-chimice de la baza dinamicii proceselor (ecuații de bilanț de masă/energie, ecuații de echilibru static și/sau dinamic, etc.).

Model analitic

Identificare experimentală

Determinarea unor parametri fără semnificații fizice, care descriu comportamentul procesului în jurul unui anumit punct de funcționare.

Model experimental

• Privire de ansamblu

Caracteristici ale modelelor de identificare experimentală

- generalitate şi validitate limitată la anumite clase de procese, semnale de stimul
 sau la anumite puncte de funcționare ale aceluiași proces;
- (S) interpretare fizică dificilă;
 - în majoritatea cazurilor, parametrii nu au semnificații fizice clare;
 - parametrii sunt utilizați ca instrumente menite să ușureze descrierea funcționării pocesului;
- © determinarea lor este adesea realizabilă prin metode algoritmice, ceea ce le conferă eficiență și simplitate.

Scurt istoric al dezvoltării domeniului IS

• IS a apărut și s-a dezvoltat aproximativ odată cu Automatica, pe fondul aplicațiilor de control automat.

Unul dintre fondatorii Facultății de Automatică și Calculatoare din București (1967)

• Privire de ansamblu

Coordonatele domeniului IS

Metode de identificare

fundamentală

Coordonata

Bazate pe Teoria Optimizărilor (TO)

- Se pot finaliza prin algoritmi implementabili pe un mijloc automat de calcul.
- Permit analiza convergenței.
- Nu permit analiza consistenței (convergenței statistice).
- Metoda principală:
 Metoda Celor Mai Mici Pătrate (MCMMP).

Bazate pe Teoria Estimației (TE)

- Au caracter mai mult teoretic, fiind rareori implementabile pe un mijloc automat de calcul.
- 8 Nu permit analiza convergenței.
- Permit analiza consistenței(convergenței statistice).

Modele (matematice) de identificare

Neparametrice

- Descrieri calitative (analize) preliminare ale proceselor.
- Date statistice referitoare la evoluția/dinamica proceselor.
- 4 tipuri de analize (în timp și în frecvență).

- Conceptui cei

• Conceptul central: persistența.

Semnale de stimul

- Semnalul ideal: zgomotul alb
- Semnalul practic: pseudo-aleator (binar).

Parametrice

- Conceptul central: parametrul.
- Organizate în clase (ARMAX,
 RSISO, cu reprezentare pe stare, etc.).

Privire de ansamblu

Probleme practice ridicate de identificarea unui proces

♦ Selectarea mărimilor care trebuie şi pot fi măsurate.

În absența unor tehnici de deparazitare a datelor (atenuare a zgomotelor și interferențelor), modelul de identificare rezultat este adesea inadecvat.

