

Practical CVOps: Datasets भारतीय विज्ञान संस्थान and Labels

Deepak Subramani
Assistant Professor
Dept. of Computational and Data Science
Indian Institute of Science Bengaluru

Creating Vision Datasets

- Collecting images can be done in multiple ways
 - Mounting a camera at the end of an almond processing line, traffic intersection etc
 - Extracting photographs from a digital catalog
 - Purchasing an archive of satellite imagery
 - Medical image devices
- Capturing photographs
 - Use the highest resolution that is necessary for the noise characteristics of your image and what your ML infra budget can handle
 - Higher-resolution outdoor images in low light have higher noise
 - Collecting high-res images needs a lot of time and bandwidth

desirative of 1055 v.v.t. weight (parameter)
gradient

$$\frac{1}{2} \frac{1}{2} \frac{1$$

Trainable parameters

Stochastic Gradient Decent Mini-batch SGD

Proof of Concept

- In many situations, you may not have the data on hand, and collecting it for a PoC would take too long. What to do?
- Purchase similar data to understand the feasibility of a project before investing in routine data collection.
- When purchasing images,
 - acquire images that are similar in quality, resolution, etc. to the images that you will ultimately be able to use in the actual project.
- Simulate labeled images by modifying existing images
 - In advanced applications of crowd counting etc

Labeling Data

- For image classification there are two manual labeling approaches
 - Move the images to a folder whose name is the label
 - Create an excel file (spreadsheet) with first column having the path of the image and the other columns having the label(s)
- Object detection
 - Needs bounding box (usually counterclockwise starting from top-left)
- Segmentation
 - Needs labels of pixels

Labeling at scale

- OpenCV Computer Vision Annotation Tool
 - https://github.com/opencv/cvat

Noisy Student

- Manually label, say, 10,000 images.
- Use these images to train a small CV model. This is the teacher model.
- Use this model to predict the labels of, say, one million unlabeled images.
- Train a larger CV model, called the student model, on the combination of labelled and pseudo-labelled images.
- During the learning of the student model, employ dropout and random data augmentations so that this model generalizes better than the teacher.
- Iterate by putting the student model back as the teacher.
- Manually correct the pseudo-labels by choosing images where the models are not confident.

Labelling Service

- Crowdsourcing
- AI Labeling Services https://cloud.google.com/vertex-ai/pricing#labeling

Computer Vision: Revision

Deepak Subramani **Assistant Professor** Dept. of Computational and Data Science Indian Institute of Science Bengaluru

Lecture and Assignment Guide

- This Slide Deck has Material for 6 hours of teaching divided into Parts 1-6
- We will go through
 - Week 01
 - Part 01 Convolutional and Pooling Layers; AST 01
 - Part 02 Transfer Learning and Modern CV Design Principle; AST 02
 - Week 02
 - Part 01 Modern Convolutional Building Blocks for Image Classification; AST 03
 - Part 02 Object Localization
 - Interpreting what convolutions learn (Advanced topic) AST 03
 - Week 03
 - Part 01 Object Detection (YOLO), Image Segmentation Lec 05
 - Part 02 Practical CVOps
 - AST04 Object Detection with YOLO
 - Week 04
 - Revision
 - AST05 Image Segmentation
- Additional Reading material to go in depth of math with references and code references are provided with the marking of "Additional Material" or "Additional Discussion" etc

Mini Projects

- Persons with face-masks
 - load the image dataset using ImageDataGenerator from the path directory
 - perform data augmentation on the fly and create batches of the dataset
 - build the convolutional neural networks for classification problem
 - visualize & interpret what CNN layers learn
 - use the transfer learning (pre-trained models) for classification problems
- Lungs Segmentation Biomedical Image Analytics
 - understand, prepare, and visualize the the dataset containing image and corresponding masked image used for segmentation
 - implement DeepLabV3+ architecture
 - create a masked image (prediction)

Three Essential Tasks in Computer Vision

- Image Classification
 - Single Label
 - Binary
 - Multiclass
 - Multi Label
- Image Segmentation
 - Pixel wise identify the class
 - Example: Zoom background replacement
- Object Detection
 - Bounding box around objects
 - Self-driving cars, face detection in cameras

State of the Art as of May 2024

- https://paperswithcode.com/area/computer-vision
- Image Classification
 - For speed: Efficient Net (CNN),
 - For accuracy: Vision Transformer
- Semantic Segmentation
 - For speed: Unet, DeepLabv3
 - For accuracy: Deformable Convolution (InternImage), Vision Transformer (Segment Anything)
- Instance Segmentation Mask-R-CNN, RetinaNet [Feature Pyramid]
- Object Detection
 - For speed: YOLOv10
 - For accuracy: Deformable Convolution (InternImage)

Recommended Strategy

- Small Dataset (<1000 labelled images) Use Transfer Learning
- Medium Dataset (Upto 5000-10000) Use Fine Tuning
- Large Dataset (Beyond 10k) Train from scratch
 - Rules of thumb!
- Edge Devices use MobileNet
- SoTA needed? Use Efficient Net (or even ViT)
- Traditional firms who like time-tested methods
 - ResNet50, VGG19
- If training cost and inference time are not a concern, use all three and do an ensemble!

Transfer Learning

Tricks of the Trade

Data Augmentation

Keras –

ImageDataGenerator

Batch Normalization

Fine tuning – unfreeze layer by layer

Labeling Data

- For image classification there are two manual labeling approaches
 - Move the images to a folder whose name is the label
 - Create an excel file (spreadsheet) with first column having the path of the image and the other columns having the label(s)
- Object detection
 - Needs bounding box (usually counterclockwise starting from top-left)
- Segmentation
 - Needs labels of pixels
- OpenCV Computer Vision Annotation Tool
 - https://github.com/opencv/cvat
- AI Labeling Service from Cloud Providers

Theory Concepts

- Convolution
- Pooling
- Residual Connection
- Depthwise Separable Convolution
- Inverted Residual Bottleneck (Efficient Net)
- Transpose Convolution
- Atrous Convolution
- Batch Normalization
- Fully Convolutional Network
- Evaluation Metrics (IoU, mAP)

Convolutional Layer

Pooling Layer

Max Pool

2	3	1	9
4	7	3	5
8	2	2	2
1	3	4	5

Max-Pool with a 2 by 2 filter and stride 2.

Residual Block

MSTITUTE OF

- 2015 winner is ResNet that used a residual block
- Networks were being deeper and residual (or skip connections) enabled training such deeper networks
- Usually networks are trained to learn a function h(x)
- By adding a skip connection, we are forcing the network to learn f(x) = h(x) x
- When stacking several Residual Units, the signal can make its way to all the parts of network even if some layers experience a vanishing gradient

Depthwise Separable Convolutions

 Channel-by-channel convolutions followed by 1x1 Conv

Deepak Subramani, deepakns@iisc.ac.in

Inverted Residual Bottleneck

- Goal: Same expressivity as ResNet, Xception but with a dramatically reduced weight count and inference time
- Designed to be used on mobile phone where resources are scarce
- Argument: Information flow between residual blocks is lowdim in nature and can be represented by limited number of channels
- Important: Last 1x1 doesn't have any nonlinear activation as ReLU would destroy too much information

Transposed Convolution

- Think of stretching an image by adding empty rows and columns
- Then on the stretched image do a regular convolution
- Initialize these kernels to do a linear interpolation
- But as the weights are learnable, it does better!

Atrous Convolution

- The convolution field of view is modified by considering a larger area with zeros added to the filter itself
- Number of learnable parameters is the same as regular convolution, but now the field of view has changed
- This is used in Deep Lab

Batch Normalization

- He initialization + ELU can reduce vanishing/exploding gradient problem at the beginning, but problems can recur later during training
- Batch Normalization (loffe and Szegedy 2015) solves this problem
- Idea:
 - Zero center and normalize before or after activation function of every layer
 - Learn two parameter vectors (one set for every input) output scaling and output shift

 i.e., learn the optimal mean and scale of each of the layer's inputs!
- Question:
 - Need a batch to calculate the mean and std for scaling
 - Use the current mini batch to get the mean and std
- Note:
 - Add BN after input layer, then it is almost equivalent to applying StandardScaler, but only on the mini-batch and not the full train set

FCN Example (Cont)

- What happens if we feed 448x448 images to this FCN?
 - Last conv layer is 14x14, and it will produce a 8x8 map
 - What is this 8x8 map? It is equivalent to sliding the original CNN across the image
- Now the network has to be run only once
- You Only Look Once (YOLO)

YOLO Visually

YOLO v3

U-Net

DeepLabv3

Evaluation Metric

- IoU Intersection over union
- mAP Mean Average Precision

Other Tasks in CV

- Pose Estimation
- Object Tracking
- Action Recognition
- Motion Estimation
- Monocular Depth
- Content-aware Image Editing
- Scene Reconstruction (NeRF Neural Radiance Fields)
 - novel views of complex scenes

DW Sepanable

7×7×3

2 Milters 3×3

DL 100

50 x 5 x 5 -> 100

50×575

1818001

7 5 x 5 x 50 x 100

7 100

5×5

GT P 0 -> D 487 1 - 522 7

50

2

0

100

