Labor Digitaltechnik

Versuch 1: Zählerschaltung 0-9

Ziel:

Ziel ist es einen Zähler aufzubauen welches durch einer zusammenstellung von mehreren JK Flipflops einen 4-Bit Binärcode erzeugt, dass von 0 auf 9 zählt. Das Binärcode soll anschließend mit einem Codewandler in Greycode angezeigt werden.

Vorname	Nachname	Immatrikulationsnummer

Vorgelegt von: Warten

Geprüft von: Dipl. Ing. (FH) Martin Konz

Datum: 06. Juli 2021

Digitaltechnik Labor Versuch 1: Zählerschaltung 0-9

nhaltsverzeichnis	
Schaltplan	2
Bauteilliste	2
Steckbrettzeichnung	
Pinout der Bauteile	
Auswertung	4
Stromverbrauch	

Schaltplan:

Abb. 1

Bauteile:

Anzahl:	Bauteil:	Teilenummer:
2x	2-JK Flipflop	74LS73
2x	4-AND	7408
1x	4-OR	7432
1x	4-XOR	7486
7x	Widerstand	-
4x	LED rot	-
4x	LED grün	-
1x	Spannungsgenerator	-
1x	Clock	-
1x	Steckbrett mit genug Kabel	-

Tab. 1

Steckbrettzeichnung Versuch 1:

Abb. 2

Pinout der Bauteile:

4-AND (7408):

Abb. 3

4-XOR (7486):

Abb. 5

4-OR (7432):

JK FlipFlop (7473):

Auswertung:

Die 4-Bit Binärzählerschaltung besteht aus 4 JK Flipflops, welche synchron (also von einem gemeinsamen Clock) gesteuert werden. Auf die CLR Pins der jeweiligen Flipflops wird 5V angelegt. Die Ausgänge der Flipflops werden als Plus für die jeweiligen LEDs benötigt, welche über einen 150 ohm Widerstand geschaltet sind.

An dem Flipflop Q1 wird über den J und K eingängen 5V Spannung angelegt sodass es bei negativer Taktflanke des Clock signals schaltet. Die restlichen flipflops werden miteinander verbunden sodass das aufzählen ermöglicht werden kann (siehe Schaltplan).

Da die Zählerschaltung bereits nach 9 wieder bei 0 anfangen soll, wird am dritten JK Flipflop, Q3, der Ausgang mit dem Ausgang Q1 ver-und-et. Dies sorgt dafür dass die Zählerschaltung bei 8 schon zurücksetzt und wieder bei 0 anfängt.

Die jeweiligen Ausgänge der 4 Flipflops werden an LED Leuchten verbunden, welche mit einer gemeinsamen Masse versorgt sind. Die von Q1 angetriebene Leuchte stellt das LSB (2^o) dar und die von Q4 das MSB (2^o).

Für den Greycode Wandler werden noch zusätzlich 3 XOR Verknüpfungen benötigt, welche ebenfalls durch LEDs dargestellt werden können.

Stromverbrauch:

Der Strom wurde mittels Multimeter gemessen, um den Verbrauch der jeweiligen Zustände zu ermitteln:

Zustand Zähler:	Strom (mA)
Übergang	33
0000	21
Übergang	41
0001	29
Übergang	46
0010	34
Übergang	44
0011	32
Übergang	46
0100	33
Übergang	53
0101	42
Übergang	49
0110	37
Übergang	47
0111	35
Übergang	45
1000	33
Übergang	52
1001	40

Der Verbrauch ist also abhängig von der Anzahl der leuchtenden LEDs, und dem Zustand selber, da die Schaltung auch Strom verbraucht. Das JK Flipflop ist negativ Taktgesteuert. Es besteht eine Verzögerte Reaktion von ungefähr 5 sekunden, was anhand der stromspitzen sichtbar ist.

Labor Digitaltechnik

Versuch 2: Rückwärtszählerschaltung 15-0

Ziel:

Ziel ist es einen Zähler aufzubauen welches durch einer zusammenstellung von mehreren JK flipflops einen 4-Bit Binärcode erzeugt, dass von 15 auf 0 runterzählt. Das Binärcode soll anschließend mit einer 7-segment Anzeige in Numerische Zahlen dargestellt werden.

Vorname	Nachname	Immatrikulationsnummer

Vorgelegt von:

Geprüft von: Dipl. Ing. (FH) Martin Konz

Datum: 06. Juli 2021

Digitaltechnik Labor Versuch 1: Zählerschaltung 0-9

Inhaltsverzeichnis	
Schaltplan	2
Bauteile	2
Steckbrettzeichnung	3
Pinout der Bauteile	3
Erklärung	4
Auswertung	5

Schaltplan:

Abb. 1

Bauteile:

Anzahl:	Bauteil:	Teilenummer:
2x	2-JK Flipflop	74LS73
3x	4-AND	7408
1x	4-OR	7432
2x	BCD Codewandler	7447
2x	7-Segment-Anzeige	LTS-4801
18x	Widerstand	-
4x	LED	-
1x	Spannungsgenerator	-
1x	Clock	-
1x	Steckbrett mit genug Kabel	-

Steckbrettzeichnung:

Abb. 2

Pinout der Bauteile:

Erklärung:

In dieser asynchronen Schaltung bekommt nur das erste Flipflop den CLK von dem Funktionsgenerator. Die Takteingänge der nachfolgenden Flipflops sind mit dem Ausgang des vorherigen Flipflops angeschlossen (siehe Schaltplan abb. 1).

Mit Hilfe eines Oszilloskops konnte die Laufzeit der Schaltung observiert werden. Hierzu wurde der Gelbe Kanal 1 an den 1. Takteingang, und der Grüne Kanal 2 an einer LED Leuchte der 7-Segment-Anzeige angeschlossen. Das Oszilloskop reagiert auf die fallende Taktflanke. Durch drücken der "single" Taste konnten folgende Bilder vom Oszilloskop erzeugt werden:

Bild 1

Bild 2

Digitaltechnik Labor Versuch 1: Zählerschaltung 0-9

Auswertung:

Die Laufzeit von dem Takteingang zur 7-Segment-Anzeige ist durch die, in Bild 1 sichtbare, verzögerte Reaktion der 7-Segment-Anzeige zur fallenden Taktflanke sichtbar. Da es sich um eine sehr minimale Verzögerung handelt, wird das Oszilloskop auf eine Zeitbasis von 50 ns eingestellt. Da der abstand zwischen den beiden Signalen ungefähr zwei Kasten beträgt, kann eine Laufzeit von ca. 100 ns geschätzt werden. Laufzeit beschreibt die dauer eines Schaltvorgangs.

Das 2. Bild stellt das Verhalten eines deaktivierten Segmentes dar. Da keine Spannung vorhanden ist, trotz wechselndes verhalten, kann abgeschlossen werden dass, das Segment kein Strom verbraucht.