得分

(1) $\ddot{a} = \lim_{x \to a} (\frac{x+a}{x-a})^x = 9$, y = 1

(2) 设a,b为常数,使函数 $f(x) = \begin{cases} ax + b, x > 1 \\ x^3, x \le 1 \end{cases}$ 在x = 1处可导,则a =______,b =______

(3) 曲线 $y = \frac{x^2}{2x+1}$ 的斜渐近线为______,

南开大学 2018 级信息类一元函数微分学统考试卷 (A卷) 2018年11月24日

(说明:答案务必写在装订线右侧,写在装订线左侧无效。影响成绩后果自负。)

题号	_	11	111	四	五.	六	七	八	卷面 成绩	核分 签名	复核 签名
得分											

- 一、选择题(每小题 4 分)
- (1) 下列等式中正确的是(
 - (A) $\lim_{x \to 0} \frac{\sin^2 x}{x} = 1$; (B) $\lim_{x \to 0} \frac{\sin 2x}{x} = 1$; (C) $\lim_{x \to \infty} x \tan \frac{1}{x} = 1$; (D) $\lim_{x \to \infty} \frac{\sin x}{x} = 1$.
- (2) 设f(x)是(a,b)内单调有界的函数,则f(x)在(a,b)内的间断点的类型是(
 - (A) 第二类间断点; (B) 第一类间断点; (C) 不确定; (D) 无穷间断点;
- (3) 若对曲线 y = f(x) 在 $(x_0, f(x_0))$ 处的切线平行于 Ox 轴,则当 $x \to x_0$, $f(x) f(x_0)$ 是 $x x_0$ 的(
 - (A) 同阶,但不等价的无穷小; (B) 等价无穷小; (C) 低阶的无穷小; (D) 高阶的无穷小;
- (4) 设函数 $f(x) = \sin(1/x)$, 则 $f'(\frac{1}{\pi}) = ($
 - (A) π^2 ; (B) $-\pi^2$; (C) -1; (D) 0.

二、填空题(每小题4分):

- (5) 设 $f'(x) = (x-1)(2x+1), x \in (-\infty, +\infty)$,则在区间 $(\frac{1}{2}, 1)$ 内,函数f(x)是(
 - (A) 单调增加, 曲线 y = f(x) 是下凸的; (B) 单调减少, 曲线 y = f(x) 是下凸的;
 - (C) 单调增加, 曲线 y = f(x) 是上凸的; (D) 单调减少, 曲线 y = f(x) 是上凸的.

得分

- (5) 曲线 $y = x^3 + x$ 在 (0,0) 处的切线方程为_____

三、求下列极限: (每小题5分)

(1)
$$\lim_{x\to\infty} (\sqrt{x^2+x+1} - \sqrt{x^2-x+1})$$
;

(2)
$$\lim_{x\to 1} \left(\frac{x}{x-1} - \frac{1}{\ln x}\right)$$
; 三题

 $(3) \lim_{x \to 0} \frac{\tan x - x}{x - \sin x}$

四、求下列函数的导数(每小题5分):

四题 得分

(2) 设
$$y = y(x)$$
 是参数方程
$$\begin{cases} x = t^3 + 3t \\ y = t^3 - 3t \end{cases}$$
, 所确定的函数,求 $\frac{dy}{dx}$;

(3) 设
$$y = (1 + x^2) \arctan x$$
, 求 $\frac{d^2 y}{dx^2}$

五、证明下列不等式: (每小题 6 分)

(1)
$$\stackrel{\text{def}}{=} x > 0, \ln(1+x) > x - \frac{x^2}{2}$$

(2)
$$\stackrel{\text{def}}{=} 0 < x < \frac{\pi}{2}, (2 + \cos x)x > 3\sin x;$$

六、(6 分) 求函数 $f(x) = x^3 - 3x^2 + 4$ 在[-3,3]上的最大值,最小值.

六题 得分

五题 得分 七、(6 分) 求函数 $f(x) = x^3 - 6x^2 + 9x - 17$ 的极值,并证明:方程 f(x) = 0 只有一个实根。

七题 得分

八、(6分) 设函数 f(x) 在 [a,b] 上二阶可导,且 f(a) = f(b),

证明: 存在 $\xi \in (a,b)$, 使 $(b-\xi)f''(\xi) = 2f'(\xi)$

八题 得分