

Olimpiada Matemática de Andalucía La Rábida (Huelva) 23 de febrero de 2019

Problemas

1. Encuentra todas las soluciones del sistema de ecuaciones

$$ad = b + c$$
$$bc = a + d$$

donde a, b, c, d son enteros positivos tales que a < b < c < d.

2. En un tablero de ajedrez de tamaño $n \times n$ se escribe 1 o -1 en cada una de sus casillas. Sea a_k el producto de todos los números de la fila k, y sea b_m el producto de todos los números de la columna m. Si n=2019, ¿Se pueden colocar los números de manera que la suma

$$a_1 + a_2 + \cdots + a_n + b_1 + b_2 + \cdots + b_n$$

sea cero? ¿Y si n = 2020?

- **3.** Sea ABC un triángulo acutángulo, D, E, F los pies de las alturas de A, B y C, respectivamente. Sean:
 - 1. O es el punto medio del segmento AD,
 - 2. c la circunferencia de centro O que pasa por A y D,
 - 3. $X \in Y$ las intersecciones de c con $AB \setminus AC$, respectivamente.
 - 4. P la intersección de XY con AD, y Q la intersección de AD y EF.

Prueba que P es el punto medio del segmento QD.

4. Sean k, m y n enteros positivos tales que k + m + 1 sea un número primo estrictamente superior a n + 1. Se designa por C_s al entero s(s + 1). Demostrar que el producto $(C_{m+1} - C_k) \cdot (C_{m+2} - C_k) \cdot \cdots (C_{m+n} - C_k)$ es divisible por el producto $C_1 C_2 \cdots C_n$.