Parallel Looping & Variants

Daniel Andersor Week 5

Agenda

- Discuss map2_* and pmap_* (parallel iterations)
- walk() and friends
- modify()
- safely()
- reduce()

Learning objectives

- Understand the differences between map, map2, and pmap
- Know when to apply walk instead of map, and why it may be useful
- Understand the similarities and differences between map and modify
- Diagnose errors with **safely** and understand other situations where it may be helpful
- Collapsing/reducing lists with purrr::reduce() or base::Reduce()

map2

A few Examples

Basic simulations - iterating over two vectors

Plots by month, changing the title

Simulation

- Simulate data from a normal distribution
 - Vary *n* from 5 to 150 by increments of 5
 - \circ For each n, vary μ from -2 to 2 by increments of 0.25

How do we get all combinations

expand.grid

Example expand.grid

Bonus: It turns it into a data frame!

```
ints <- 1:3
lets <- c("a", "b", "c")
expand.grid(ints, lets)</pre>
```

Set conditions

Please follow along

```
conditions <- expand.grid(
  n = seq(5, 150, 5),
  mu = seq(-2, 2, 0.25)
)</pre>
```

head(conditions)

```
## n mu
## 1 5 -2
## 2 10 -2
## 3 15 -2
## 4 20 -2
## 5 25 -2
## 6 30 -2
```

tail(conditions)

Simulate!

```
sim1 <- map2(conditions$n, conditions$mu, ~{</pre>
     rnorm(n = .x, mean = .y, sd = 10)
})
str(sim1)
## List of 510
   $: num [1:5] -2.451 -4.568 13.281 -0.655 0.511
   $ : num [1:10] 8.96 13.47 4.49 -11.02 -4.59 ...
   $ : num [1:15] -2.004 -9.092 10.106 0.518 1.188 ...
##
   $: num [1:20] -1.68 -1.15 -2.93 -10.55 12.22 ...
   $ : num [1:25] -4.44 -17.06 2.5 3.4 -7.92 ...
##
##
   $ : num [1:30] 2.843 -8.808 -1.62 -3.26 0.751 ...
##
   $ : num [1:35] -21.81 -11.1 4.57 1.63 -2.46 ...
##
   $ : num [1:40] 11.49 -2.028 -20.209 0.831 -6.537 ...
##
   \$: num [1:45] -5.159 0.236 -6.797 -3.766 -6.161 ...
##
   $ : num [1:50] 3.38 -19.13 -6.7 3.11 1.54 ...
##
   $ : num [1:55] -11.77 -1.45 12.5 -4.6 -1.92 ...
##
    $ : num [1:60] -5.998 0.561 -6.62 10.99 3.965 ...
##
   \$: num [1:65] -20.38 -13.52 -3.15 -6.58 7.44 ...
##
    $ : num [1:70] 19.76 1.95 10.57 -12.95 -11.4 ...
    $ : num [1:75] -2.29 -10.73 -11.27 -3.03 -7.03 ...
##
    $ : num [1:80] 4.57 -2.82 4.18 -1.33 -8.75 ...
   $ : num [1:85] 11.05 15.3 4.34 -14.35 -11.56 ...
   $ : num [1:90] -3.62 3.73 6.69 -15.89 -7.76 ...
##
##
   $ : num [1:95] 0.867 -5.777 -18.431 -2.325 11.104 ...
##
   $ : num [1:100] 4.98 6.23 -4.84 11.01 8.29 ...
##
   \$: num [1:105] -10.27 -10.91 12.07 -6.96 7.68 ...
##
   $ : num [1:110] -0.417 5.606 -8.071 -10.544 12.469 ...
##
    $ : num [1:115] 4.027 -4.422 -8.751 -9.958 -0.423 ...
##
    $ : num [1:120] 12.238 -0.105 14.976 -5.154 -18.831 ...
    $ : num [1:125] -13.682 -0.952 -8.613 -10.508 -8.27 ...
```

More powerful

Add it as a list column!

```
sim2 <- conditions %>%
  as_tibble() %>% # Not required, but definitely helpful
  mutate(sim = map2(n, mu, ~rnorm(n = .x, mean = .y, sd = 10)))
sim2
```

Unnest

```
conditions %>%
  as_tibble() %>%
  mutate(sim = map2(n, mu, ~rnorm(.x, .y, sd = 10))) %>%
  unnest(sim)
```

```
## # A tibble: 39,525 \times 3
##
        n
             mu
                     sim
## <dbl> <dbl>
                   <dbl>
## 1
        5
             -2 6.028304
## 2
        5 -2 15.13266
## 3 5 -2 4.924202
## 4 5 -2 1.260976
## 5 5 -2 1.369952
## 6 10 -2 14.44016
## 7 10 -2 8.041027
## 8 10 -2 -24.28194
## 9 10 -2 -28.28235
## 10 10 -2 -4.804035
## # ... with 39,515 more rows
```

Challenge

Can you replicate what we just did, but using a rowwise() approach?

```
conditions %>%
  rowwise() %>%
  mutate(sim = list(rnorm(n, mu, sd = 10))) %>%
  unnest(sim)
```

```
## # A tibble: 39,525 \times 3
##
                          sim
          n
               mu
      <dbl> <dbl>
##
                       <dbl>
## 1
               -2 -18.14905
          5
## 2
## 3
## 4
               -2 4.356298
              -2 \quad -6.149922
              -2 \quad -8.977729
## 5 5
            -2 -31.17708
## 6
         10 \quad -2 \quad -18.16732
## 7
         10 -2 -5.176330
## 8
         10 \quad -2 \quad -13.09294
## 9
         10 -2 12.00952
## 10
         10
            -2 -15.62448
## # ... with 39,515 more rows
```


Vary the sol too?

pmap

Which we'll get to soor

Varying the title of a plot

The data

Please follow along

library(fivethirtyeight) pulitzer

```
## # A tibble: 50 × 7
##
                           circ2004 circ2013 pctchg circ num finals1990 2003
     newspaper
##
   <chr>
                              <dbl>
                                      <dbl>
                                                  <int>
                                                                      <int>
   1 USA Today
                            2192098
                                    1674306
                                                    -24
                                                                         1
   2 Wall Street Journal 2101017 2378827
                                                                        30
                                                     13
                            1119027 1865318
##
   3 New York Times
                                                     67
                                                                        55
## 4 Los Angeles Times
                             983727 653868
                                                    -34
                                                                        44
## 5 Washington Post
                             760034 474767
                                                    -38
                                                                        52
## 6 New York Daily News
                                                    -28
                             712671 516165
## 7 New York Post
                             642844 500521
                                                    -22
                                                                         0
## 8 Chicago Tribune
                             603315 414930
                                                    -31
                                                                        23
                             558874 583998
   9 San Jose Mercury News
                                                      4
## 10 Newsday
                             553117
                                    377744
                                                    -32
                                                                        12
## # ... with 40 more rows, and 2 more variables: num finals2004 2014 <int>,
      num finals1990 2014 <int>
## #
```

Prep data

```
pulitzer<- pulitzer %>%
  select(newspaper, starts_with("num")) %>%
  pivot_longer(
    -newspaper,
    names_to = "year_range",
    values_to = "n",
    names_prefix = "num_finals"
) %>%
  mutate(year_range = str_replace_all(year_range, "_", "-")) %>%
  filter(year_range != "1990-2014")
head(pulitzer)
```

```
## # A tibble: 6 × 3
## newspaper
                       year range
                                      n
##
   <chr>
                       <chr>
                                  <int>
## 1 USA Today
                       1990-2003
                                      1
## 2 USA Today
                        2004-2014
                                      1
## 3 Wall Street Journal 1990-2003
                                     30
## 4 Wall Street Journal 2004-2014
                                     20
## 5 New York Times
                       1990-2003
                                     55
## 6 New York Times
                       2004-2014
                                     62
```

One plot

```
wsj <- pulitzer %>%
    filter(newspaper == "Wall Street Journal")
ggplot(wsj, aes(n, year_range)) +
  geom_col(aes(fill = n)) +
  scale_fill_distiller(
   type = "seq",
   limits = c(0, max(pulitzer$n)),
    palette = "BuPu",
   direction = 1
  ) +
  scale_x_continuous(
   limits = c(0, max(pulitzer$n)),
    expand = c(0, 0)
  ) +
  guides(fill = "none") +
  labs(
    title = "Pulitzer Prize winners: Wall Street Journal",
    x = "Total number of winners",
    y = ""
```


Nest data

```
by_newspaper <- pulitzer %>%
    group_by(newspaper) %>%
    nest()

by_newspaper
```

```
## # A tibble: 50 × 2
## # Groups: newspaper [50]
##
     newspaper
                          data
##
   <chr>
                          st>
## 1 USA Today
                          <tibble [2 × 2]>
## 2 Wall Street Journal <tibble [2 x 2]>
##
  3 New York Times
                         <tibble [2 × 2]>
## 4 Los Angeles Times <tibble [2 × 2]>
                      <tibble [2 × 2]>
##
  5 Washington Post
## 6 New York Daily News <tibble [2 × 2]>
## 7 New York Post
                         <tibble [2 × 2]>
## 8 Chicago Tribune
                        <tibble [2 × 2]>
## 9 San Jose Mercury News <tibble [2 × 2]>
## 10 Newsday
                          <tibble [2 × 2]>
## # ... with 40 more rows
```

Produce all plots

You try first!

Don't worry about the correct title yet, if you don't want


```
by_newspaper %>%
   mutate(
      plot = map(
       data, ~{
          ggplot(aes(n, year_range)) +
            geom_col(aes(fill = n)) +
          scale_fill_distiller(
           type = "seq",
           limits = c(0, max(pulitzer$n)),
           palette = "BuPu",
           direction = 1
          ) +
          scale_x_continuous(
           limits = c(0, max(pulitzer$n)),
           expand = c(0, 0)
          ) +
        guides(fill = "none") +
       labs(
         title = "Pulitzer Prize winners",
         x = "Total number of winners",
         y = ""
```

Add title

```
library(glue)
p <- by_newspaper %>%
    mutate(
      plot = map2(
     data, newspaper, ~{
          ggplot(.x, aes(n, year_range)) +
            geom_col(aes(fill = n)) +
          scale_fill_distiller(
            type = "seq",
            limits = c(0, max(pulitzer$n)),
            palette = "BuPu",
            direction = 1
          ) +
          scale_x_continuous(
            limits = c(0, max(pulitzer$n)),
            expand = c(0, 0)
          guides(fill = "none") +
          labs(
            title = glue("Pulitzer Prize winners: {.y}"),
            x = "Total number of winners",
            y = ""
```

```
## # A tibble: 50 × 3
## # Groups: newspaper [50]
##
     newspaper
                           data
                                            plot
## <chr>
                           st>
                                            t>
##
  1 USA Today
                           <tibble [2 × 2]> <gg>
   2 Wall Street Journal
                           <tibble [2 × 2]> <gg>
##
   3 New York Times
                           <tibble [2 × 2]> <gg>
## 4 Los Angeles Times
                           <tibble [2 × 2]> <gg>
##
   5 Washington Post
                           <tibble [2 × 2]> <gg>
## 6 New York Daily News
                           <tibble [2 × 2]> <gg>
## 7 New York Post
                           <tibble [2 × 2]> <gg>
##
                           <tibble [2 × 2]> <gg>
   8 Chicago Tribune
  9 San Jose Mercury News <tibble [2 × 2]> <gg>
## 10 Newsday
                           <tibble [2 × 2]> <gg>
## # ... with 40 more rows
```

Look at a couple plots

p\$plot[[2]]

p\$plot[[3]]

p\$plot[[4]]

Challenge

(You can probably guess where this is going)

Can you reproduce the prior plots using a rowwise() approach?


```
pulitzer %>%
nest_by(newspaper) %>%
   mutate(
      plot = list(
     ggplot(data, aes(n, year_range)) +
        geom_col(aes(fill = n)) +
        scale_fill_distiller(
          type = "seq",
          limits = c(0, max(pulitzer$n)),
          palette = "BuPu",
          direction = 1
        ) +
        scale_x_continuous(
          limits = c(0, max(pulitzer$n)),
          expand = c(0, 0)
        ) +
        guides(fill = "none") +
        labs(
          title = glue("Pulitzer Prize winners: {newspaper}"),
          x = "Total number of winners",
          y = ""
```

```
## # A tibble: 50 × 3
## # Rowwise: newspaper
##
      newspaper
                                                     data plot
##
   <chr>
                                      <list<tibble[,2]>> <list>
## 1 Arizona Republic
                                                  [2 × 2] <gg>
## 2 Atlanta Journal Constitution
                                                  [2 \times 2] < gg>
   3 Baltimore Sun
                                                  [2 \times 2] < gg >
    4 Boston Globe
                                                  [2 \times 2] < gg >
```

Iterating over nvectors

pmap

pmap

Simulation

- Simulate data from a normal distribution
 - Vary *n* from 5 to 150 by increments of 5
 - \circ For each n, vary μ from -2 to 2 by increments of 0.25
 - \circ For each σ from 1 to 3 by increments of 0.1

```
full_conditions <- expand.grid(
  n = seq(5, 150, 5),
  mu = seq(-2, 2, 0.25),
  sd = seq(1, 3, .1)
)</pre>
```

head(full_conditions)

n mu sd ## 1 5 -2 1 ## 2 10 -2 1 ## 3 15 -2 1 ## 4 20 -2 1 ## 5 25 -2 1 ## 6 30 -2 1

tail(full_conditions)

n mu sd ## 10705 125 2 3 ## 10706 130 2 3 ## 10707 135 2 3 ## 10708 140 2 3 ## 10709 145 2 3 ## 10710 150 2 3

Full Simulation

```
fsim <- pmap(
  list(
    number = full_conditions$n,
    average = full_conditions$mu,
    stdev = full_conditions$sd
  ),
  function(number, average, stdev) {
    rnorm(n = number, mean = average, sd = stdev)
  }
)
str(fsim)</pre>
```

```
## List of 10710
   $ : num [1:5] -4.199 -3.204 -2.763 -0.905 -1.841
   $ : num [1:10] -2.41 -1.7 -3.88 -1.14 -1.27 ...
##
   $ : num [1:15] -3.31 -2.45 -2.27 -2.09 -1.73 ...
##
##
   $ : num [1:20] -2.52 -1.39 -3.14 -2.084 -0.328 ...
##
   $ : num [1:25] -1.63 -2.88 -2.38 -2.82 -2.91 ...
   $ : num [1:30] -2.41 -1.81 -2.03 -2.93 -2.28 ...
##
   $ : num [1:35] -2.189 -1.206 -2.042 -2.412 0.821 ...
##
   \$: num [1:40] -3.43 -1.02 -1.97 -2.94 -2.09 ...
##
    \$: num [1:45] -2.79 -2.46 -1.42 -2.8 -3.16 ...
##
    \$: num [1:50] -0.151 -1.627 -1.442 -2.382 -3.784 ...
    $ : num [1:55] -1.5568 -2.8275 -0.8929 -1.3075 -0.0722 ...
##
    $ : num [1:60] -0.42 -2.62 -2.3 -2.09 -2.19 ...
##
    $ : num [1:65] 0.0461 -3.6882 -1.7017 -0.6819 -1.7574 ...
   $ : num [1:70] -2.6 -2.04 -3.66 -1.3 -1.98 ...
##
   $ : num [1:75] -2.88 -2.57 -0.41 -2.33 -1.35 ...
   $ : num [1:80] -2.3 -3.94 -3.27 -2.4 -1.52 ...
##
   $ : num [1:85] -1.32 -2.07 -1.66 -2.06 -2.15 ...
```

Alternative spec

```
fsim <- pmap(
  list(
    full conditions$n,
    full conditions$mu,
    full conditions$sd
  ),
  \simrnorm(n = ..1, mean = ..2, sd = ..3)
str(fsim)
## List of 10710
   $ : num [1:5] -2.87 -1.68 -2.32 -1.66 -1.08
   $: num [1:10] -3.8 -2.77 -1.54 -2.09 -1.45 ...
   $ : num [1:15] -2.06 -2.94 -2.49 -1.95 -1.7 ...
   $ : num [1:20] -2.252 0.982 -2.533 -1.488 -2.107 ...
   $ : num [1:25] -1.881 -4.009 -2.054 -0.562 -4.825 ...
##
##
    \$: num [1:30] -2.65 -3.07 -1.71 -1.81 -3.31 ...
   $ : num [1:35] -2.7959 -0.6448 -1.6797 -1.7245 0.0426 ...
##
    $ : num [1:40] -2.06 -1.51 -1.55 -2.01 -2.7 ...
   $ : num [1:45] -2.0684 -0.0702 -3.0578 -3.8359 -2.5373 ...
   $ : num [1:50] -1.84 -1.97 -2.24 -2.48 -2.15 ...
   $ : num [1:55] -3.23 -2.85 -1.79 -3.6 -4.26 ...
   $ : num [1:60] -1.312 -4.121 0.292 -1.261 -1.614 ...
##
   $ : num [1:65] -0.739 -0.758 -2.503 -2.336 -2.551 ...
##
   $: num [1:70] -2.13 -1.82 -1.88 -1.73 -2.97 ...
##
   $ : num [1:75] -1.12 -1.34 -1.3 -2.1 -1.83 ...
##
   $ : num [1:80] -2.472 -0.824 -3.924 -2.104 -0.749 ...
    $ : num [1:85] -2.192 -1.415 -1.274 -2.019 -0.942 ...
    $ : num [1:90] -1.507 -2.312 -0.323 -0.888 -0.207 ...
##
    $ : num [1:95] -1.05 -3.42 -3.19 -1.94 -1.66 ...
```

Simpler

Maybe a little too clever

A data frame is a list so...

```
fsim <- pmap(
  full_conditions,
  ~rnorm(n = ..1, mean = ..2, sd = ..3)
)
str(fsim)</pre>
```

```
## List of 10710
   $ : num [1:5] -1.08 -2.65 -1.5 -1.99 -3.24
  $ : num [1:10] -2.48 -1 -2.7 -2.2 -1.22 ...
## $ : num [1:15] -1.039 -0.234 -2.134 0.528 -2.764 ...
## $ : num [1:20] -0.563 -1.456 -2.317 -1.858 -1.123 ...
   $ : num [1:25] -2.32 -1.09 -3.2 -1.5 -3.91 ...
   $ : num [1:30] -1.31 -2.11 0.63 -1.98 -1.09 ...
   $ : num [1:35] -2.77 -3.31 -2.72 -3.66 -2.94 ...
   $ : num [1:40] -4.33 -2.78 -1.53 -1.95 -2.29 ...
##
   $ : num [1:45] -3.124 -2.491 0.411 -1.956 -0.184 ...
##
   $ : num [1:50] 0.478 -1.339 -1.519 -2.596 -1.915 ...
##
##
   $ : num [1:55] -2.884 -4.148 -0.759 -2.151 -1.535 ...
   $ : num [1:60] -1.373 -1.524 -3.11 -2.065 -0.995 ...
   $ : num [1:65] -2.191 -0.475 -3.031 -1.903 -0.812 ...
   $ : num [1:70] -1.17 -2.67 -3.83 -3.32 -2.83 ...
   $ : num [1:75] -2.345 -0.782 -2.943 -2.79 -2.927 ...
##
   $ : num [1:80] -1.52 -1.78 -2.61 -2.92 -2.93 ...
##
   $ : num [1:85] -2.35 -3 -2.85 -3.3 -2.21 ...
    $: num [1:90] -2.59 -2.46 -2.52 -3.01 -2.96 ...
```

List column version

```
full_conditions %>%
     as_tibble() %>%
     mutate(sim = pmap(list(n, mu, sd), \sim rnorm(..1, ..2, ..3)))
## # A tibble: 10,710 \times 4
##
                      sd sim
                mu
          n
      <dbl> <dbl> <dbl> <t>>
##
## 1
          5
                -2
                       1 <dbl [5]>
         10 –2
## 2
                       1 <dbl [10]>
## 3 15 -2 1 <dbl [15]>
## 4 20 -2 1 <dbl [20]>
## 5 25 -2 1 <dbl [25]>
## 6 30 -2 1 <dbl [30]>
## 7 35 -2 1 <dbl [35]>
## 8 40 -2 1 <dbl [40]>
## 9 45 -2
                      1 <dbl [45]>
## 10
               -2
                       1 <dbl [50]>
         50
## # ... with 10,700 more rows
```

Unnest

```
full_conditions %>%
    as_tibble() %>%
    mutate(sim = pmap(
        list(n, mu, sd), ~rnorm(..1, ..2, ..3)
    )
    ) %>%
    unnest(sim)
```

```
## # A tibble: 830,025 \times 4
##
            mu
                  sd
                         sim
        n
     <dbl> <dbl> <dbl>
##
                        <dbl>
##
  1
        5
            -2
                  1 - 1.014073
##
        5 -2 1 -2.302678
  2
## 3 5 -2 1 -1.358109
## 4 5 -2 1 -3.393003
## 5 5 -2 1 -2.740573
## 6 10 -2 1 -2.406099
## 7 10 -2 1 -1.734234
## 8 10 -2 1 -1.031400
## 9
       10 \quad -2 \quad 1 \quad -2.074230
## 10
       10
           -2
                  1 - 3.276515
## # ... with 830,015 more rows
```

Replicate with nest_by()

You try first

##

##

10

7

8

10

10

```
full_conditions %>%
  rowwise() %>%
  mutate(sim = list(rnorm(n, mu, sd))) %>%
  unnest(sim)
## # A tibble: 830,025 \times 4
                              sim
         n
              mu
                    sd
##
     <dbl> <dbl> <dbl>
                            <dbl>
##
                     1 - 1.732164
              -2
## 2
         5 \quad -2 \quad 1 \quad -1.446031
## 3
         5 	 -2 	 1 	 -2.720625
## 4 5 -2 1 -2.883673
## 5 5 -2 1 -1.490718
```

10 -2 1 -1.546600

10 -2 1 -1.520583 10 -2 1 -4.065966

-2

... with 830,015 more rows

-2 1 -0.5051152

1 - 1.517951

Plot

Add a caption stating the total number of Pulitzer prize winners across years

Add column for total

Easiest way (imo)

Create a column to represent exactly the label you want.

```
#install.packages("english")
library(english)
pulitzer <- pulitzer %>%
    mutate(
        label = glue(
          "{str_to_title(as.english(tot))} Total Pulitzer Awards"
    )
)
```

select(pulitzer, newspaper, label)

```
## # A tibble: 100 × 2
## # Groups: newspaper [50]
##
     newspaper
                         label
##
   <chr>
                         <qlue>
## 1 USA Today
                         Two Total Pulitzer Awards
## 2 USA Today
                         Two Total Pulitzer Awards
   3 Wall Street Journal Fifty Total Pulitzer Awards
   4 Wall Street Journal Fifty Total Pulitzer Awards
## 5 New York Times
                         One Hundred Seventeen Total Pulitzer Awards
## 6 New York Times
                         One Hundred Seventeen Total Pulitzer Awards
## 7 Los Angeles Times Eighty-Five Total Pulitzer Awards
## 8 Los Angeles Times
                         Eighty-Five Total Pulitzer Awards
## 9 Washington Post
                         One Hundred Total Pulitzer Awards
## 10 Washington Post
                         One Hundred Total Pulitzer Awards
## # ... with 90 more rows
```

Produce one plot

```
wsj2 <- pulitzer %>%
    filter(newspaper == "Wall Street Journal")
ggplot(wsj2, aes(n, year_range)) +
  geom\_col(aes(fill = n)) +
  scale_fill_distiller(
    type = "seq",
   limits = c(0, max(pulitzer$n)),
    palette = "BuPu",
    direction = 1
  ) +
  scale_x_continuous(
   limits = c(0, max(pulitzer$n)),
    expand = c(0, 0)
  guides(fill = "none") +
  labs(
    title = glue("Pulitzer Prize winners: Wall Street Journal"),
    x = "Total number of winners",
    y = "",
    caption = unique(wsj2$label)
```


Produce all plots

Nest first

```
by_newspaper_label <- pulitzer %>%
    group_by(newspaper, label) %>%
    nest()

by_newspaper_label
```

```
## # A tibble: 50 \times 3
## # Groups:
              newspaper, label [50]
                            label
##
     newspaper
                                                                        data
   <chr>
                            <qlue>
                                                                        st>
                            Two Total Pulitzer Awards
## 1 USA Today
                                                                        <tibble [2 × 3]>
## 2 Wall Street Journal
                            Fifty Total Pulitzer Awards
                                                                        <tibble [2 × 3]>
## 3 New York Times
                            One Hundred Seventeen Total Pulitzer Awards <tibble [2 × 3]>
## 4 Los Angeles Times
                            Eighty-Five Total Pulitzer Awards
                                                                        <tibble [2 × 3]>
## 5 Washington Post
                            One Hundred Total Pulitzer Awards
                                                                        <tibble [2 × 3]>
## 6 New York Daily News
                           Six Total Pulitzer Awards
                                                                        <tibble [2 × 3]>
## 7 New York Post
                            Zero Total Pulitzer Awards
                                                                        <tibble [2 × 3]>
## 8 Chicago Tribune
                            Thirty-Eight Total Pulitzer Awards
                                                                        <tibble [2 × 3]>
## 9 San Jose Mercury News Six Total Pulitzer Awards
                                                                        <tibble [2 × 3]>
## 10 Newsday
                            Eighteen Total Pulitzer Awards
                                                                        <tibble [2 × 3]>
## # ... with 40 more rows
```

Produce plots

```
final_plots <- by_newspaper_label %>%
   mutate(plots = pmap(list(newspaper, label, data), ~{
   ggplot(..3, aes(n, year_range)) +
      geom_col(aes(fill = n)) +
      scale_fill_distiller(
       type = "seq",
        limits = c(0, max(pulitzer$n)),
        palette = "BuPu",
        direction = 1
        scale_x_continuous(
          limits = c(0, max(pulitzer$n)),
          expand = c(0, 0)
        guides(fill = "none") +
       labs(
       title = glue("Pulitzer Prize winners: {..1}"),
          x = "Total number of winners",
          y = "",
       caption = ...2
      })
```

Look at a couple plots

final_plots\$plots[[1]]

final_plots\$plots[[2]]

final_plots\$plots[[3]]

final_plots\$plots[[4]]

Replicate with nest_by()

You try first


```
final_plots2 <- pulitzer %>%
 ungroup() %>%
 nest_by(newspaper, label) %>%
   mutate(
      plots = list(
        ggplot(data, aes(n, year_range)) +
          geom_col(aes(fill = n)) +
        scale_fill_distiller(
         type = "seq",
         limits = c(0, max(pulitzer$n)),
          palette = "BuPu",
         direction = 1
        ) +
          scale_x_continuous(
            limits = c(0, max(pulitzer$n)),
            expand = c(0, 0)
        ) +
          guides(fill = "none") +
         labs(
            title = glue("Pulitzer Prize winners: {newspaper}"),
            x = "Total number of winners",
            y = "",
            caption = label
```

final_plots2

... with 40 more rows

```
## # A tibble: 50 × 4
## # Rowwise: newspaper, label
##
                                      label
                                                                                        data plo
      newspaper
##
      <chr>
                                      <alue>
                                                                             <list<tibble[> <li;</pre>
   1 Arizona Republic
                                      Seven Total Pulitzer Awards
                                                                                    [2 \times 3] < gg
    2 Atlanta Journal Constitution Six Total Pulitzer Awards
                                                                                    [2 \times 3] < gg
   3 Baltimore Sun
                                      Thirteen Total Pulitzer Awards
                                                                                    [2 \times 3] < gg
## 4 Boston Globe
                                      Forty-One Total Pulitzer Awards
                                                                                    [2 \times 3] < gg
## 5 Boston Herald
                                      Zero Total Pulitzer Awards
                                                                                    [2 \times 3] < gg
## 6 Charlotte Observer
                                      Four Total Pulitzer Awards
                                                                                    [2 \times 3] < gg
## 7 Chicago Sun-Times
                                      Two Total Pulitzer Awards
                                                                                    [2 \times 3] < gg
## 8 Chicago Tribune
                                      Thirty-Eight Total Pulitzer Awards
                                                                                    [2 \times 3] < gg
## 9 Cleveland Plain Dealer
                                      Eleven Total Pulitzer Awards
                                                                                    [2 \times 3] < gg
## 10 Columbus Dispatch
                                      One Total Pulitzer Awards
                                                                                    [2 \times 3] < gg
```

Save all plots

We'll have to iterate across at least two things: (a) file path/names, and (b) the plots themselves

We can do this with the map() family, but instead we'll use a different function, which we'll talk about more momentarily.

As an aside, what are the **steps** we would need to take to do this?

Could we use a **nest_by()** solution?

Try with nest_by()

You try first:

- Create a vector of file paths
- "loop" through the file paths and the plots to save them

Example

Create a directory

```
fs::dir_create(here::here("plots", "pulitzers"))
```

Create file paths

```
files <- str_replace_all(
  tolower(final_plots$newspaper),
  " ",
  "-"
)
paths <- here::here("plots", "pulitzers", glue("{files}.png"))
paths</pre>
```

```
[1] "/Users/daniel/Teaching/data sci specialization/2021-22/c3-fp-2022/plots/pulitze
   [2] "/Users/daniel/Teaching/data sci specialization/2021-22/c3-fp-2022/plots/pulitze
##
    [3] "/Users/daniel/Teaching/data sci specialization/2021-22/c3-fp-2022/plots/pulitze:
##
   [4] "/Users/daniel/Teaching/data sci specialization/2021-22/c3-fp-2022/plots/pulitze:
##
   [5] "/Users/daniel/Teaching/data sci specialization/2021-22/c3-fp-2022/plots/pulitze
##
   [6] "/Users/daniel/Teaching/data sci specialization/2021-22/c3-fp-2022/plots/pulitze
##
   [7] "/Users/daniel/Teaching/data sci specialization/2021-22/c3-fp-2022/plots/pulitze:
##
   [8] "/Users/daniel/Teaching/data sci specialization/2021-22/c3-fp-2022/plots/pulitze
   [9] "/Users/daniel/Teaching/data sci specialization/2021-22/c3-fp-2022/plots/pulitze:
## [10] "/Users/daniel/Teaching/data sci specialization/2021-22/c3-fp-2022/plots/pulitze:
## [11] "/Users/daniel/Teaching/data sci specialization/2021-22/c3-fp-2022/plots/pulitze:
## [12] "/Users/daniel/Teaching/data sci specialization/2021-22/c3-fp-2022/plots/pulitze:
## [13] "/Users/daniel/Teaching/data sci specialization/2021-22/c3-fp-2022/plots/pulitze
```

Add paths to data frame

```
final_plots %>%
  ungroup() %>%
  mutate(path = paths) %>%
  select(plots, path)
## # A tibble: 50 × 2
##
   plots
## <list>
## 1 <gg>
## 2 <gg>
## 3 <gg>
## 4 <gg>
## 5 <gg>
## 6 <gg>
## 7 <gg>
## 8 <gg>
## 9 <gg>
## 10 <gg>
## # ... with 40 more rows, and 1 more variable: path <chr>
```

Save

```
final_plots %>%
   ungroup() %>%
   mutate(path = paths) %>%
   rowwise() %>%
   summarize(
      ggsave(
        path,
        plots,
        width = 9.5,
        height = 6.5,
        dpi = 500
      )
   )
}

## # A tibble: 50 × 1
## # ... with 40 more rows, and 1 more variable:
## * `ggsave(path, plots, width = 9.5, height = 6.5, dpi = 500)` <chr>
```

Wrap-up

- Parallel iterations greatly increase the things you can do iterating through at least two things simultaneously is pretty common
- The nest_by() approach can regularly get you the same result as group_by() %>% nest() %>% mutate() %>% map()
 - Caveat must be in a data frame, which means working with list columns
 - My view it's still worth learning both. Looping with {purrr} is super flexible and often safer than base versions (type safe).
 Doesn't have to be used within a data frame.

Break

Looping variants

Agenda

- walk() and friends
- modify()
- safely()
- reduce()

Reminder

Learning Objectives (for this part)

- Know when to apply walk instead of map, and why it may be useful
- Understand the parallels and differences between map and modify
- Diagnose errors with **safely** and understand other situations where it may be helpful
- Collapsing/reducing lists with purrr::reduce() or base::Reduce()

Setup

Let's go back to our plotting example:

Saving

- We saw last time that we could use nest_by()
 - Required a bit of awkwardness with adding the paths to the data frame
 - Instead, we'll do it again but with the walk() family

Why walk()?

Walk is an alternative to map that you use when you want to call a function for its side effects, rather than for its return value. You typically do this because you want to render output to the screen or save files to disk – the important thing is the action, not the return value.

More practical

If you use walk(), nothing will get printed to the screen. This is particularly helpful for RMarkdown files.

Example

Please do the following

- Create a new RMarkdown document
- Paste the code you have for creating the plots in a code chunk there (along with the library loading, data cleaning, etc.)

Create a directory

We already did this, but in case we hadn't...

```
fs::dir_create(here::here("plots", "pulitzers"))
```

Create file paths

```
newspapers <- str_replace_all(
  tolower(final_plots$newspaper),
  " ",
  "_"
)
paths <- here::here(
  "plots",
  "pulitzers",
  glue("{newspapers}.png")
)</pre>
```

Challenge

- Use a map() family function to loop through paths and final_plots\$plots to save all plots.
- Render (knit) your file. What do you notice?

walk()

Just like map(), we have parallel variants of walk(), including, walk2(), and pwalk()

These work just like map() but don't print to the screen

Try replacing your prior code with a walk() version.

How does the rendered output change?

Save plots

```
walk2(paths, final_plots$plots, ggsave,
    width = 9.5,
    height = 6.5,
    dpi = 500)
```

modify

Unlike map() and its variants which always return a fixed object type (list for map(), integer vector for map_int(), etc), the modify() family always returns the same type as the input object.

map VS modify

map

```
map(mtcars, ~as.numeric(scale(.x)))
## $mpg
## [1] 0.15088482 0.15088482 0.44954345 0.21725341 -0.23073453 -0.33028740
  [7] -0.96078893 0.71501778 0.44954345 -0.14777380 -0.38006384 -0.61235388
## [13] -0.46302456 -0.81145962 -1.60788262 -1.60788262 -0.89442035 2.04238943
## [19] 1.71054652 2.29127162 0.23384555 -0.76168319 -0.81145962 -1.12671039
## [25] -0.14777380 1.19619000 0.98049211 1.71054652 -0.71190675 -0.06481307
## [31] -0.84464392 0.21725341
##
## $cyl
## [1] -0.1049878 -0.1049878 -1.2248578 -0.1049878 1.0148821 -0.1049878 1.0148821
   [8] -1.2248578 -1.2248578 -0.1049878 -0.1049878 1.0148821 1.0148821 1.0148821
## [15] 1.0148821 1.0148821 1.0148821 -1.2248578 -1.2248578 -1.2248578
## [22] 1.0148821 1.0148821 1.0148821 1.0148821 -1.2248578 -1.2248578
## [29] 1.0148821 -0.1049878 1.0148821 -1.2248578
##
## $disp
## [1] -0.57061982 -0.57061982 -0.99018209 0.22009369 1.04308123 -0.04616698
   [7] 1.04308123 -0.67793094 -0.72553512 -0.50929918 -0.50929918 0.36371309
## [13] 0.36371309 0.36371309 1.94675381 1.84993175 1.68856165 -1.22658929
## [19] -1.25079481 -1.28790993 -0.89255318 0.70420401 0.59124494 0.96239618
## [25] 1.36582144 -1.22416874 -0.89093948 -1.09426581 0.97046468 -0.69164740
## [31] 0.56703942 -0.88529152
##
## $hp
## [1] -0.53509284 -0.53509284 -0.78304046 -0.53509284 0.41294217 -0.60801861
## [7] 1.43390296 -1.23518023 -0.75387015 -0.34548584 -0.34548584 0.48586794 69 / 100
```

modify

modify(mtcars, ~as.numeric(scale(.x)))

```
##
                                           cyl
                                                      disp
                                                                    hp
                                                                              drat
                               mpg
## Mazda RX4
                        0.15088482 - 0.1049878 - 0.57061982 - 0.53509284  0.56751369
## Mazda RX4 Wag
                        0.15088482 - 0.1049878 - 0.57061982 - 0.53509284
                                                                        0.56751369
## Datsun 710
                        0.44954345 - 1.2248578 - 0.99018209 - 0.78304046
                                                                        0.47399959
## Hornet 4 Drive
                        0.21725341 - 0.1049878
                                                0.22009369 - 0.53509284 - 0.96611753
## Hornet Sportabout
                       -0.23073453
                                    1.0148821 1.04308123
                                                            0.41294217 - 0.83519779
## Valiant
                       -0.33028740 -0.1049878 -0.04616698 -0.60801861 -1.56460776
## Duster 360
                       -0.96078893   1.0148821   1.04308123   1.43390296   -0.72298087
## Merc 240D
                        0.71501778 - 1.2248578 - 0.67793094 - 1.23518023 0.17475447
## Merc 230
                        0.44954345 - 1.2248578 - 0.72553512 - 0.75387015 0.60491932
## Merc 280
                       -0.14777380 -0.1049878 -0.50929918 -0.34548584
                                                                        0.60491932
## Merc 280C
                       -0.38006384 -0.1049878 -0.50929918 -0.34548584
                                                                        0.60491932
                       -0.61235388 1.0148821
## Merc 450SE
                                                0.36371309 0.48586794 -0.98482035
## Merc 450SL
                       -0.46302456 1.0148821
                                                0.36371309 0.48586794 -0.98482035
## Merc 450SLC
                       -0.81145962 1.0148821 0.36371309 0.48586794 -0.98482035
## Cadillac Fleetwood -1.60788262 1.0148821 1.94675381 0.85049680 -1.24665983
## Lincoln Continental -1.60788262 1.0148821 1.84993175 0.99634834 -1.11574009
## Chrysler Imperial
                       -0.89442035
                                   1.0148821
                                                1.68856165
                                                            1.21512565 -0.68557523
## Fiat 128
                        2.04238943 - 1.2248578 - 1.22658929 - 1.17683962
                                                                        0.90416444
## Honda Civic
                        1.71054652 - 1.2248578 - 1.25079481 - 1.38103178
                                                                        2.49390411
## Toyota Corolla
                        2.29127162 -1.2248578 -1.28790993 -1.19142477
                                                                        1.16600392
## Toyota Corona
                        0.23384555 - 1.2248578 - 0.89255318 - 0.72469984
                                                                       0.19345729
## Dodge Challenger
                       -0.76168319 1.0148821 0.70420401 0.04831332 -1.56460776
## AMC Javelin
                       -0.81145962   1.0148821   0.59124494   0.04831332   -0.83519779
## Camaro Z28
                       -1.12671039 1.0148821
                                                0.96239618
                                                           1.43390296 0.24956575
## Pontiac Firebird
                                   1.0148821
                                                1.36582144
                       -0.14777380
                                                            0.41294217 - 0.96611753
## Fiat X1-9
                        1.19619000 - 1.2248578 - 1.22416874 - 1.17683962
                                                                        0.90416444
## Porsche 914-2
                        0.98049211 - 1.2248578 - 0.89093948 - 0.81221077
                                                                        1.55876313
## Lotus Europa
                                                                        0.32437703
                        1.71054652 - 1.2248578 - 1.09426581 - 0.49133738
## Ford Pantera L
                       -0.71190675
                                   1.0148821
                                                0.97046468
                                                            1.71102089
                                                                        1.16600392
```

```
map2(LETTERS[1:3], letters[1:3], paste0)

## [[1]]
## [1] "Aa"
##
## [[2]]
## [1] "Bb"
##
## [[3]]
## [1] "Cc"

modify2(LETTERS[1:3], letters[1:3], paste0)

## [1] "Aa" "Bb" "Cc"
```

safely

Errors during iterations

Sometimes a loop will work for most cases, but return an error on a few

Often, you want to return the output you can

Alternatively, you might want to diagnose where the error is occurring

purrr::safely()

Example

Please run the code above

2 6 <tibble [79 × 10]>
3 8 <tibble [70 × 10]>
4 5 <tibble [4 × 10]>

Try to fit a model

(please follow along)

Notice the error message is *super* helpful! (this is new)

```
by_cyl %>%
   mutate(mod = map(data, ~lm(hwy ~ displ + drv, data = .x)))

## Error in `mutate()`:
## ! Problem while computing `mod = map(data, ~lm(hwy ~ displ +
## drv, data = .x))`.
## i The error occurred in group 2: cyl = 5.
## Caused by error in `contrasts<-`:
## ! contrasts can be applied only to factors with 2 or more levels</pre>
```

Safe return

• First, define safe function - note that this will work for any function

```
safe_lm <- safely(lm)</pre>
```

Next, loop the safe function, instead of the standard function

```
safe_models <- by_cyl %>%
  mutate(safe_mod = map(data, ~safe_lm(hwy ~ displ + drv, data = .x)))
safe_models
```

What's returned?

\$error

```
safe_models$safe_mod[[1]]
## $result
##
## Call:
## .f(formula = ..1, data = ..2)
##
## Coefficients:
                displ
## (Intercept)
                                drvf
       37.370 -5.289
##
                                3.882
##
##
## $error
## NULL
safe_models$safe_mod[[4]]
## $result
## NULL
##
```

<simpleError in `contrasts<-`(`*tmp*`, value = contr.funs[1 + isOF[nn]]): contrasts contrasts

Inspecting

I often use **safely()** to help me de-bug. Why is it failing *there* (but note the new error messages help with this too).

First - create a new variable to filter for results with errors

```
safe models %>%
  mutate(error = map_lgl(safe_mod, ~!is.null(.x$error)))
## # A tibble: 4 × 4
## # Groups: cyl [4]
##
      cyl data
                            safe mod
                                            error
    <int> <list>
                            st>
##
                                            <lql>
## 1 4 <tibble [81 × 10]> <named list [2]> FALSE
## 2 6 <tibble [79 × 10]> <named list [2]> FALSE
## 3 8 <tibble [70 × 10]> <named list [2]> FALSE
## 4
        5 <tibble [4 × 10]> <named list [2]> TRUE
```

Inspecting the data

```
safe models %>%
  mutate(error = map_lgl(safe_mod, ~!is.null(.x$error))) %>%
  filter(isTRUE(error)) %>%
  select(cyl, data) %>%
  unnest(data)
## # A tibble: 4 × 11
## # Groups: cyl [1]
      cyl manufacturer model
                                                               hwy fl
##
                              displ year trans
                                                   drv
                                                          cty
                                                   <chr> <int> <int> <chr>
## <int> <chr>
                     <chr>
                              <dbl> <int> <chr>
       5 volkswagen jetta 2.5 2008 auto(s6)
                                                           21
                                                                29 r
## 2 5 volkswagen jetta 2.5 2008 manual(m5) f
                                                           21
                                                                29 r
## 3 5 volkswagen
                     new beetle 2.5 2008 manual(m5) f
                                                           20
                                                                28 r
## 4 5 volkswagen new beetle 2.5 2008 auto(s6) f
                                                           20
                                                                29 r
## # ... with 1 more variable: class <chr>
```

The **displ** and **drv** variables are constant, so no relation can be estimated.

Pull results that worked

Now we can **broom::tidy()** or whatevs

Notice that there is no cyl == 5.

```
safe models %>%
  mutate(results = map(safe_mod, "result"),
         tidied = map(results, broom::tidy)) %>%
  select(cyl, tidied) %>%
  unnest(tidied)
## # A tibble: 11 × 6
## # Groups: cyl [3]
##
       cyl term
                        estimate std.error statistic
                                                        p.value
##
     <int> <chr>
                                    <dbl>
                                              <dbl>
                                                          <dbl>
                          <dbl>
## 1
         4 (Intercept) 37.37023
                                3.537572 10.56381
                                                   1.052943e-16
## 2
         4 displ
                      -5.288562 1.436068 -3.682668 4.235795e- 4
## 3
         4 drvf
                       3.882134 0.9971876 3.893083 2.073699e- 4
## 4
         6 (Intercept) 27.96536
                                2.347630 11.91217
                                                   5.718039e-19
         6 displ
                      -2.333261 0.6373304 -3.660991 4.651570e- 4
## 5
## 6
         6 drvf
                                0.6012367 7.602397 6.789988e-11
                   4.570840
## 7
         6 drvr
                      6.384355 1.229277
                                         5.193585 1.713129e- 6
## 8
         8 (Intercept) 14.82265
                                2.887289
                                         5.133759 2.708515e- 6
## 9
         8 displ
                      0.3060487 0.5719058 0.5351383 5.943528e- 1
         8 drvf
## 10
                      8.555294 2.679129 3.193311 2.156229e- 3
## 11
         8 drvr
                      3.709336 0.7319048 5.068058 3.473594e- 6
```

When else might we use this?

Any sort of web scraping - pages change and URLs don't always work

Example

```
library(rvest)
links <- list(
   "https://en.wikipedia.org/wiki/FC_Barcelona",
   "https://nosuchpage",
   "https://en.wikipedia.org/wiki/Rome"
)
pages <- map(links, ~{
   Sys.sleep(0.1)
   read_html(.x)
})</pre>
```

Error in open.connection(x, "rb"): Failed to connect to nosuchpage port 443: Connection

The problem

I can't connect to https://nosuchpage because it doesn't exist

BUT

That also means I can't get *any* of my links because *one* page errored (imagine it was 1 in 1,000 instead of 1 in 3)

safely() to the rescue

Safe version

```
safe_read_html <- safely(read_html)
pages <- map(links, ~{
   Sys.sleep(0.1)
   safe_read_html(.x)
})
str(pages)</pre>
```

```
## List of 3
## $ :List of 2
## ..$ result:List of 2
## ....$ node:<externalptr>
## ....$ doc :<externalptr>
## .. ..- attr(*, "class")= chr [1:2] "xml document" "xml node"
## ..$ error : NULL
## $ :List of 2
## ..$ result: NULL
## ..$ error :List of 2
## .... $ message: chr "Timeout was reached: [nosuchpage] Failed to connect to nosuchpage]
## ...$ call : language open.connection(x, "rb")
   ....- attr(*, "class")= chr [1:3] "simpleError" "error" "condition"
## $ :List of 2
## ..$ result:List of 2
## ....$ node:<externalptr>
## ....$ doc :<externalptr>
## .. ..- attr(*, "class")= chr [1:2] "xml document" "xml node"
## ..$ error : NULL
```

Non-results

In a real example, we'd probably want to double-check the pages where we got no results

```
errors <- map_lgl(pages, ~!is.null(.x$error))
links[errors]

## [[1]]
## [1] "https://nosuchpage"</pre>
```


Reducing a list

The map() family of functions will always return a vector the same length as the input

reduce() will collapse or reduce the list to a single element

Example

```
l <- list(
  c(1, 3),
  c(1, 5, 7, 9),
  3,
  c(4, 8, 12, 2)
)
reduce(l, sum)</pre>
```

[1] 55

Compare to map()

```
## [[1]]
## [1] 4
##
## [[2]]
## [1] 22
##
## [[3]]
## [1] 3
##
## [[4]]
## [1] 26
```

map(l, sum)

What's going on?

The code reduce(1, sum) is the same as

```
sum(l[[4]], sum(l[[3]], sum(l[[1]], l[[2]])))
```

[1] 55

Or slidghlty differently

```
first_sum <- sum(l[[1]], l[[2]])
second_sum <- sum(first_sum, l[[3]])
final_sum <- sum(second_sum, l[[4]])
final_sum</pre>
```

[1] 55

Why might you use this?

What if you had a list of data frames like this

```
l_df <- list(
    tibble(id = 1:3, score = rnorm(3)),
    tibble(id = 1:5, treatment = rbinom(5, 1, .5)),
    tibble(id = c(1, 3, 5, 7), other_thing = rnorm(4))
)</pre>
```

We can join these all together with a single loop – we want the output to be of length 1!

reduce(l_df, full_join)

```
## # A tibble: 6 × 4
     id score treatment other thing
##
## <dbl> <dbl>
                 <int> <dbl>
## 1
      1 -1.251776
                    1 -1.191128
1 NA
## 3 3 -0.9096793
                    1 1.555894
## 4 4 NA
                    0 NA
## 5 5 NA
                  0 -1.420784
## 6 7 NA
                 NA 0.6982053
```

Note - you have to be careful on directionality

reduce(l_df, left_join)

reduce(l_df, right_join)

Another example

You probably just want to bind_rows()

```
l_df2 <- list(
    tibble(id = 1:3, scid = 1, score = rnorm(3)),
    tibble(id = 1:5, scid = 2, score = rnorm(5)),
    tibble(id = c(1, 3, 5, 7), scid = 3, score = rnorm(4))
)
reduce(l_df2, bind_rows)</pre>
```

```
## # A tibble: 12 × 3
       id scid
                    score
## <dbl> <dbl>
                    <dbl>
## 1
        1 1.671069
## 2
        2 1 -0.2444534
## 3 3 1 -0.1864957
## 4 1 2 -0.7310893
## 5 2 2 0.1925646
## 6 3 2 1.797250
## 7 4 2 0.2418765
           2 3.328079
## 8
## 9 1 3 0.7411117
## 10 3 3 0.8653901
     5 3 -0.1097661
## 11
        7 3 0.09372232
## 12
```

Non-loop version

Luckily, the prior slide has become obsolete, because **bind_rows()** will do the list reduction for us.

bind_rows(l_df2)

```
## # A tibble: 12 × 3
##
        id scid
                      score
##
     <dbl> <dbl>
                     <dbl>
##
  1
         1
                 1.671069
##
   2
              1 - 0.2444534
##
             1 -0.1864957
  4
##
             2 - 0.7310893
            2 0.1925646
   5
##
##
              2 1.797250
## 7
              2 0.2418765
## 8
             2 3.328079
## 9
          3 0.7411117
## 10
         3 0.8653901
## 11
              3 - 0.1097661
## 12
              3 0.09372232
```

Another example

This is a poor example, but there are use cases like this

```
library(palmerpenguins)
map(penguins, as.character) %>%
  reduce(paste)
```

```
[1] "Adelie Torgersen 39.1 18.7 181 3750 male 2007"
##
##
    [2] "Adelie Torgersen 39.5 17.4 186 3800 female 2007"
##
    [3] "Adelie Torgersen 40.3 18 195 3250 female 2007"
    [4] "Adelie Torgersen NA NA NA NA NA 2007"
##
        "Adelie Torgersen 36.7 19.3 193 3450 female 2007"
        "Adelie Torgersen 39.3 20.6 190 3650 male 2007"
##
        "Adelie Torgersen 38.9 17.8 181 3625 female 2007"
##
    [7]
        "Adelie Torgersen 39.2 19.6 195 4675 male 2007"
##
    [8]
##
    [9] "Adelie Torgersen 34.1 18.1 193 3475 NA 2007"
    [10] "Adelie Torgersen 42 20.2 190 4250 NA 2007"
    [11] "Adelie Torgersen 37.8 17.1 186 3300 NA 2007"
        "Adelie Torgersen 37.8 17.3 180 3700 NA 2007"
        "Adelie Torgersen 41.1 17.6 182 3200 female 2007"
##
        "Adelie Torgersen 38.6 21.2 191 3800 male 2007"
##
    [15] "Adelie Torgersen 34.6 21.1 198 4400 male 2007"
        "Adelie Torgersen 36.6 17.8 185 3700 female 2007"
##
##
        "Adelie Torgersen 38.7 19 195 3450 female 2007"
    [17]
        "Adelie Torgersen 42.5 20.7 197 4500 male 2007"
    [18]
##
        "Adelie Torgersen 34.4 18.4 184 3325 female 2007"
##
    [20]
        "Adelie Torgersen 46 21.5 194 4200 male 2007"
        "Adelie Biscoe 37.8 18.3 174 3400 female 2007"
##
    [21]
##
    [22] "Adelie Biscoe 37.7 18.7 180 3600 male 2007"
    [23] "Adelie Biscoe 35.9 19.2 189 3800 female 2007"
##
    [24] "Adelie Biscoe 38.2 18.1 185 3950 male 2007"
```

Why use reduce()

This is one that I use a fair bit, but have a hard time coming up with good examples for.

The tidyverse makes it less needed, generally.

Still a good "tool" to have

Wrap up

- Lots more to {purrr} but we've covered a lot
- Functional programming can *really* help your efficiency, and even if it slows you down initially, I'd recommend always striving toward it, because it will ultimately be a huge help.

Questions?

If we have any time left - let's work on the homework

Next time (fully remote)

Functions

Beginning next class, the focus of the course will shift