Regelungstechnik 2

FS 24 Prof. Dr. Lukas Ortmann

Autoren: Authors

Version: 1.0.20240229

https://github.com/P4ntomime/regelungstechnik-2

Inhaltsverzeichnis

Regelkreise aus LTI-Systemen (S. 105)	2	1.2 Regelung	2
1.1 Stellering	2.	1.3 Stabilität eines Systems mit Rückkopplung	-

1 Regelkreise aus LTI-Systemen (S. 105)

1.1 Steuerung

Eine Steuerung besitzt keine Rückkopplung und ist somit ein offener Regelkreis

$$y = \underbrace{KL \cdot r}_{\text{Sensitivität}} + \underbrace{K \cdot z}_{\text{Störung}}$$

1.2 Regelung

Eine regelung besitzt eine Gegenkopplung

$$y = KH \cdot (r-y) + K \cdot z$$

$$y = \underbrace{\frac{KH}{1+KH} \cdot r}_{\text{Sensitivität}} + \underbrace{\frac{K}{1+KH} \cdot z}_{\text{Störungsunterdrückung}}$$

1.2.1 Störungsunterdrückung (S. 106)

Ein Regler ist vorteilhaft, um Störungen zu unterdrücken, denn für die Verstärkung der Störung z gilt:

$$\lim_{H \to \infty} \frac{K}{1 + KH} \cdot z = 0$$

- \Rightarrow Hat der Regler eine grosse Verstärkung H, so wird die Störung z unterdrückt
- →Bei einer Steuerung wird die Störung nicht unterdrückt

1.2.2 Sensitivität (Empfindlichkeit) (S. 106)

Für die Sensitivität eines Reglers gilt:

$$\lim_{H \to \infty} \frac{KH}{1 + KH} \cdot r = 1$$

- \Rightarrow Hat der Regler eine grosse Verstärkung H, so ist $y \approx r$ (Ausgang \approx Sollwert) \Rightarrow Bei einer Steuerung muss $H=\frac{1}{L}$ sein, damit $y \approx r$

1.2.3 Stabilitätsproblem (S. 109-110)

Sobald ein offener Regelkreis (Steuerung) geschlossen wird, muss darauf geachtet werden, dass das System stabil ist.

1.3 Stabilität eines Systems mit Rückkopplung

(asymp.) stabil Verstärkung |V| < 1System schwingt nicht

grenzstabil Verstärkung V = -1System schwingt mit konstanter Ampl. instabil Verstärkung |V| > 1System schwingt mit zunehmender Ampl.

1.3.1 Berechnung Grenzstabilität (S. 111)

Für Grenzstabilität muss für die Verstärkung des Systems gelten: V=-1

Beispiel: Grenzstabilität System aus I-Glied und Totzeitglied

Es muss gelten: y(t) = -e(t) unter der Annahme, dass $e(t) = A \cdot \cos(\omega t)$

$$x(t) = K \cdot \int_{0}^{t} e(\tau) d\tau + x_{0} = K \cdot \int_{0}^{t} A \cdot \cos(\omega \tau) d\tau + x_{0} = K \frac{A}{\omega} \sin(\omega \tau) \Big|_{0}^{t} + x_{0}$$

$$= \frac{KA}{\omega} \sin(\omega t) + \underbrace{x_{0}}_{0}$$

$$y(t) = x(t - T_{t}) = \frac{KA}{\omega} \sin(\omega (t - T_{t})) = \frac{KA}{\omega} \cos(\omega (t - T_{t}) - \frac{\pi}{2})$$

Koeffizientenvergleich:

$$\underbrace{\frac{KA}{\omega}\cos\left(\omega t - \omega T_t - \frac{\pi}{2}\right)}_{y(t)} = -A\cos(\omega t) = \underbrace{A \cdot \cos(\omega t - \pi)}_{-e(t)}$$

- \Rightarrow Wenn der Regler die Verstärkung K hat ist das System grenzstabil und das System schwingt für alle Zeit mit der Frequenz ω
- \Rightarrow Die Verstärkung K muss vermieden werden!