Question	Answer	Marks	Guidance
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left\{ -k\left(3x - k\right)^{-2} \right\} \left\{ \times 3 \right\} \left\{ +3 \right\}$	B2, 1, 0	
	$\frac{-3k}{(3x-k)^2} + 3 = 0 \text{leading to} (3)(3x-k)^2 = (3)k$ leading to $3x - k = [\pm]\sqrt{k}$	M1	Set $\frac{dy}{dx} = 0$ and remove the denominator
	$x = \frac{k \pm \sqrt{k}}{3}$	A1	OE
		4	
(b)	$a = \frac{4 \pm \sqrt{4}}{3}$ leading to $a = 2$	B1	Substitute $x = a$ when $k = 4$. Allow $x = 2$.
	$f''(x) = f'[-12(3x-4)^{-2} + 3] = 72(3x-4)^{-3}$	B1	Allow $18k(3x-k)^{-3}$
	> 0 (or 9) when $x = 2 \rightarrow$ minimum	B1 FT	FT on their $x = 2$, providing their $x \ge \frac{3}{2}$ and $f''(x)$ is correct
		3	

Question	Answer	Marks	Guidance	
(c)	Substitute $k = -1$ leading to $g'(x) = \frac{3}{(3x+1)^2} + 3$	M1	Condone one error.	
	g'(x) > 0 or $g'(x)$ always positive, hence g is an increasing function	A1	WWW. A0 if the conclusion depends on substitution of values into $g'(x)$.	
	Alternative method for question 11(c)			
	$x = \frac{k \pm \sqrt{k}}{3}$ when $k = -1$ has no solutions, so g is increasing or decreasing	M1	Allow the statement 'no turning points' for increasing or decreasing	
	Show $g'(x)$ is positive for any value of x , hence g is an increasing function	A1	Or show $g(b) > g(a)$ for $b > a \rightarrow g$, hence g is an increasing function	
		2		