Differential Geometry

Thomas Brosnan

Notes taken in Professor Sergey Frolov's class, Michaelmas Term $2024\,$

"hokay" -Sergey Frolov

Contents

1	Def	inition of a Manifold
	1.1	Regions
	1.2	Differentiable Manifold
	1.3	Abuse of notation
2	Elei	ments of Topology
	2.1	Topological space
		2.1.1 Induced topology
		2.1.2 Continuity
		2.1.3 Homeomorphic
		2.1.4 Topology on a manifold
	2.2	Metric space
		2.2.1 Hausdorff
		2.2.2 Compact
		2.2.3 Connected
	2.3	Orientation
3	Maj	ppings and Tensors on Manifolds
		3.0.1 Manifold mappings
	3.1	equivilent manifolds
	3.2	Tangent vector

1 Definition of a Manifold

1.1 Regions

• A region ("open set") is a set of D points in \mathbb{R}^n such that together with each point p_0 , D also contains all points sufficiently closer to p_0 , i.e.:

$$\forall p_0 = (x_0^1, \dots, x_0^n) \in D \ \exists \ \epsilon > 0,$$

 $st : p = (x^1, \dots, x^n) \in D, \text{ iff } |x^i - x_0^i| < \epsilon.$

• A region with out a boundary is obtained fro ma region D by adjoining all boundary points to D. The boundary of a region is the set of all boundary points.

1.2 Differentiable Manifold

- A differentiable n-dimensional manifold is a set M together with the following structure on it. The set M is the union of a finite or countably infinite collection of subsets U_q with the following properties:
 - Each subset U_q has defined on it co-ords x_q^{α} , $\alpha = 1, \ldots, n$ called local co-ords by virtue of which U_q is identifiable with a region of Euclidean n-space \mathbb{R}^n with Euclidean co-ords x_q^{α} . The U_q with their co-ord systems are called *charts* or *local coordinate neighborhoods*.
 - Each non-empty intersection $U_q \cap U_p$ of a pair of charts thus has defined on it two co-ord systems, the restriction of x_p^{α} and x_q^{α} . It is required that under each of these coordinatizations the intersection $U_q \cap U_p$ is identifiable with a region of \mathbb{R}^n and that each of these co-ordinate systems be expressible in terms of the other in a one to one differentiable manner. Thus, if a the transition functions from x_p^{α} to x_q^{α} and back are given by:

$$x_p^{\alpha} = x_p^{\alpha}(x_q^1, \dots, x_q^n), \quad \alpha = 1, \dots, n$$

$$x_q^{\alpha} = x_q^{\alpha}(x_p^1, \dots, x_p^n), \quad \alpha = 1, \dots, n$$

Then the Jacobian $J_{pq} = det(\partial x_p^{\alpha}/\partial x_q^{\alpha})$ is non-zero on $U_p \cap U_q$.

1.3 Abuse of notation

• Regular partial derivative do not have the same "canceling" that total derivative have (dx*dy/dx = dy) But we can restore this property through Einstein summation convention. That is that:

$$\sum_{\gamma=1}^{n} \frac{\partial x_{p}^{\alpha}}{\partial x_{q}^{\gamma}} \frac{\partial x_{q}^{\gamma}}{\partial x_{q}^{\beta}} = \frac{\partial x_{p}^{\alpha}}{\partial x_{q}^{\gamma}} \frac{\partial x_{q}^{\gamma}}{\partial x_{q}^{\beta}} = \delta_{\beta}^{\alpha}$$

2 Elements of Topology

2.1 Topological space

- A topological space is a set X of points of which certain subsets called *open sets* of the topological space, are distinguished, these open sets have to satisfy:
 - The intersection of any two (and hence of any finite collection) open sets should again be an open set.
 - The union of any collection of open sets must again be open.
 - The empty set and the whole set X must be open.
- The compliment of any open set is called a *closed* set of the topological space.

In Euclidean space \mathbb{R}^n the "Euclidean topology" is the usual one where the open sets are the open regions.

2.1.1 Induced topology

• Given any subset $A \in \mathbb{R}^n$, the *induced topology* on A is that where the open sets are the intersections $A \cap U$, where U ranges over all open sets of \mathbb{R}^n .

2.1.2 Continuity

• A map $f: X \to Y$ of one topological space to another is called *continuous* if the complete inverse image $f^{-1}(U)$ of every open set $U \subset Y$ is open in X.

2.1.3 Homeomorphic

• Two topological space are *topologically equivalent* or *homeomorphic* if there is a one to one and onto map (bijective) between them, such that it and its inverse are continuous.

2.1.4 Topology on a manifold

• The topology on a manifold M is given by the following specifications of the open sets. In every local co-ordinate neighborhood U_q the open regions are to be open in the topology on M; the totality of open sets of M is then obtained by admitting as open, also arbitrary unions countable collections of such regions, i.e. by closing under countable unions.

2.2 Metric space

- A metric space is a set which comes equipped with a "distance function" i.e. a real-valued function $\rho(x,y)$, defined on pairs x,y of its elements and having the following properties:
 - Symmetry: $\rho(x, y) = \rho(y, x)$.
 - Positivity: $\rho(x,x) = 0$, $\rho(x,y) > 0$ if $x \neq y$.
 - The triangle inequality: $\rho(x,y) \le \rho(x,z) + \rho(z,y)$.

2.2.1 Hausdorff

• A topological space is called *Hausdorff* if any two points are contained in disjoint open sets. Any metric space is Hausdorff because the open balls of radius $\rho(x,y)/3$ with centers at c,y do not intersect.

All topological spaces we consider will be Hausdorff.

2.2.2 Compact

• A topological space X is said to be compact if every countable collection of open sets covering X contains a finite sub-collection already covering X.

If X is a metric space the compactness is equivalent to the condition that from every sequence of points of X a convergent sub-sequence can be selected.

2.2.3 Connected

• A topological space is connected if any two points can be joined by a continuous path.

2.3 Orientation

- A manifold M is said to be *orientated* of one can choose its atlas (collection of all the charts) so that for every pair U_p, U_q of intersecting co-ordinate neighborhoods the Jacobian of the transition functions is positive.
- We say that the co-ordinate systems x and y define the same orientation if J > 0 and the opposite orientation if J < 0.

3 Mappings and Tensors on Manifolds

3.0.1 Manifold mappings

• A mapping $f: M \to N$ is said to be smooth of smoothness class k if for all p, q for which f determines functions $y_q^b(x_p^1, \ldots, x_p^m) = f(x_p^1, \ldots, x_p^m)_p^b$, these functions are, where defined, smooth of smoothness calss k (i.e. all theire partial derivatives up to those of k-th order exist and are continuous).

the smoothness class of f cannot exceed the maximum class of the manifolds.

3.1 equivilent manifolds

• The manifolds M and N are said to be *smoothly equivilent* or diffeomorphic if there is a one to one and onto map f such that both $f: M \to N$ and $f^{-1}: N \to M$ are smooth of some class $k \ge 1$. Since f^{-1} exits then the jacobian $J_{pq} \ne 0$ wherever it is defined.

3.2 Tangent vector

• A tangent vector to an m-dim manifold M at an arbitrary point x is represented in terms of local co-ords x_{-p}^{α} by an m tuple ξ^{α} of components which are linked to the components in terms of any

oher system x_q^{β} of local co-ords by:

$$\xi_p^{\alpha} = \left(\frac{\partial x_p^{\alpha}}{\partial x_q^{\beta}}\right)_x \xi_q^{\beta}, \quad \forall \ \alpha \tag{3.1}$$

- The set of all tangent vectors to an m-dim manifold M at a point x forms an m-dim vector space $T_x = T_x M$, the tangent space to M at the point x.
- Thus, the velocity at x of any smooth curve M through x is a tangent vector to M at x.
- From this definition 3.1 one sees that for any choice of local co-ords x^{α} in a neighbourhood of x