Concordia University

Dept. of Computer Science and Software Engineering

COMP 335 - Introduction to Theoretical Computer Science

Sample Midterm Exam

Student ID:	
First Name:	(Please PRINT)
Last Name:	(Please PRINT)

Important Notes:

- * Books, notes, calculators, extra sheets are NOT allowed.
- * Maximum time is **70 minutes** and the Maximum point is **24**.
- * Write with **PEN** only. For drawing graphs, you may use a pencil as well.
- * There are 3 types of questions as follows.
 - (Detailed): For Q1 and Q2 on pages 2 and 3 you need to write detailed answers.
 - (T/F): Mark True or False for questions on page 4. Briefly justify if false.
 - (Multiple-Choice Questions): Mark on the scan sheet for MCQ's on pages 5 to 9.
- * For Detailed questions, answer in the area below them. Use other areas for rough work.
- * Questions are not in specific order of difficulties. So browse through and do the easy ones first.
- * Make sure you have **9 pages** including this cover page.

Q1. [2 Points] Let L be any language over $\Sigma = \{a, b\}$. Using L, we define a new language L' which includes every string w if both w and its reverse are in L. Show that L' is regular whenever L is regular.

- **Q2.** Consider the regular expression $r = ab^*a^* + (ab)^*ba$.
 - (a). [1 Point] List all strings in L(r) whose size/length is at most 3.

(b). [2 Points] Give a finite state automaton that accepts L(r).

- Q3. [5 Points] (T/F Questions) In each of the following questions, mark T if it is always true. In this case, no explanation is needed. Otherwise mark F and justify briefly, for instance, by giving a counter-example.
 - (a). Suppose R is a regular language and L is any subset of R. Then L is regular.
 - $\bullet T \qquad \bullet F$
 - (b). Let $L=\{a^nb^n:n\geq 0\}$. Then the string aba^4b^4 is in L^3 (note: $L^3=LLL$). \bullet T

- (c). The language $L(\emptyset \emptyset^* + \emptyset)$ has no strings. • T • F
- (d) If L_1 is finite and $L_1 \cup L_2$ is regular, then L_2 is regular. • T
- (e) Let L be any language. Then $R=L^*-L$ is the complement of L, that is, R includes every string that is not in L.
 - $\bullet T \qquad \bullet F$

[14 Points] (Multiple Choice Questions). Each question has exactly one answer. Each correct answer gets 1 point. Providing a wrong or multiple answers to each question gets 0. Mark your answer by drawing a circle around the answer. Use PENS and NOT pencils.

- 1. Let $L = L_3^*(L_1 \cup L_2)L_3$ be a language, where $L_1 = \{ab^n : n \ge 1\}$, $L_2 = L(b^*a^*)$, and $L_3 = \{aa, aaa\}$. The number of strings of length at most 3 in L is ...?
 - (a) 3
 - (b) 4
 - (c) 5
 - (d) 6

- 2. Let $L = \{ab, aab, aba\}$. Which of the following strings is NOT in $L^* L^2$?
 - (a) λ
 - (b) *ab*
 - (c) *ba*
 - (d) aba

- 3. Let $L_1 = \emptyset$ (the empty set) and $L_2 = \{a^n : n \ge 0\}$. Which of the following is $L_1^*L_2$?
 - (a) Ø
 - (b) $\{\lambda\}$
 - (c) L_1
 - (d) L_2

- 4. Which of the following statements is NOT correct?
 - (a) If L^R is regular, then L is regular.
 - (b) If \overline{L} is regular, then L is regular.
 - (c) If L^* is regular, then L is regular.
 - (d) If \overline{L} is finite, then L is regular.

- 5. What is the minimum number of states required for a DFA that accepts the language: $L = \{w : w \in \{a, b\}^*, w \text{ does not end with } ab\}$?
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
- 6. What is the language L(r) described by the following regular expression?

$$r = (b+c)^*(\lambda+a)(b+c)^*(\lambda+a)(b+c)^*(\lambda+a)(b+c)^*?$$

- (a) every string in L(r) has at least one a
- (b) every string in L(r) has at least two a's
- (c) every string in L(r) has at least three a's
- (d) none of the above

7. Consider the following FA M in which q_0 is both the intial and the final state.

State	λ	a	b
q_0	ϕ	$\{q_0\}$	$\{q_1,q_2\}$
q_1	$\{q_0\}$	$\{q_1\}$	$\{q_2\}$
q_2	$\{q_1\}$	$\{q_2\}$	$\{q_1\}$

Of the following, which one is the result of the function $\delta^*(q_0, babb)$?

- (a) $\{q_0\}$
- (b) $\{q_0, q_1\}$
- (c) $\{q_1, q_2\}$
- (d) $\{q_0, q_1, q_2\}$

8. Which of the following regular expressions corresponds to the language accepted by the FA M defined above?

- (a) $(a+b)^*$
- (b) $a^* + (ba)^*$
- (c) $a^* + b(a+bb)^*$
- (d) $a^* + b(a + bab)^*$

9. A regular expression for the set of strings that begin with ab and end with bba is:

- (a) ab(a+b)*ba
- (b) a(b+a)*bba
- (c) ab(a+b)*bba
- (d) ab(b+a)*bba+abba

- 10. Let $r = (a+b)^*b(c+cd)^*$ be a regular expression. How many strings of length at most 3 are there in the language denoted by r?
 - (a) 9
 - (b) 10
 - (c) 11
 - (d) 12
- 11. Of the following languages over $\Sigma = \{a, b\}$, which one is accepted by the FA below?

- (a) Σ^*
- (b) The set of strings that end with bb
- (c) The set of strings that end with a or b
- (d) In addition to λ , the set of strings that end with ba^*b

12. In the previous question, what is the minimum number of states of an equivalent I

- (a) 1
- (b) 2
- (c) 3
- (d) 4

- 13. Which of the following statements is correct?
 - (a) If L_1 is regular and $L_1 \cap L_2$ is regular, then L_2 is regular.
 - (b) The union of infinitely many regular languages is regular.
 - (c) If L_1L_2 is a finite language, then L_1 and L_2 are both finite.
 - (d) If L_1 and L_2 are regular languages, then their difference $(L_1 L_2)$ is also regular.
- 14. For any alphabet Σ , the language $\emptyset^*\emptyset\Sigma^*\Sigma$ is equal to ...?
 - (a) $= \emptyset$
 - (b) $= \Sigma$
 - $(c) = \{\lambda\}$
 - (d) = Σ^+