

BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift ® DE 41 43 214 A 1

(51) Int. Cl.5: C 07 K 15/28 A 61 K 39/395

DEUTSCHES PATENTAMT (21) Aktenzeichen:

P 41 43 214.2

Anmeldetag:

30.12.91

(43) Offenlegungstag:

28. 1.93

(30) Innere Priorität: (32) (33) (31)

25.07.91 DE 41 24 759.0

(71) Anmelder:

Boehringer Mannheim GmbH, 6800 Mannheim, DE

(74) Vertreter:

Weickmann, H., Dipl.-Ing.; Fincke, K., Dipl.-Phys. Dr.; Weickmann, F., Dipl.-Ing.; Huber, B., Dipl.-Chem.; Liska, H., Dipl.-Ing. Dr.-Ing.; Prechtel, J., Dipl.-Phys Dr.rer.nat., Pat.-Anwälte, 8000 München

(72) Erfinder:

Weidle, Ulrich, Dr., 8000 München, DE; Scheuer, Werner, Dr., 8122 Penzberg, DE; Kaluza, Brigitte, Dr., 8173 Bad Heilbrunn, DE; Riethmüller, Gert, Prof. Dr., 8000 München, DE

(54) Synergistisch wirkende Antikörperzusammensetzung

Die vorliegende Erfindung betrifft eine synergistisch wirkende Antikörperzusammensetzung zur Verbesserung der Immunsuppression, die (a) mindestens einen für sich alleine bereits stark inhibierenden monoklonalen Anti-CD4-Antikörper und (b) mindestens einen für sich alleine bereits stark inhibierenden monoklonalen Anti-IL2Ra- oder Anti-IL2RB-Antikörper enthält sowie ein auf dieser Antikörperzusammensetzung basierendes Arzneimittel.

Die vorliegende Erfindung betrifft eine synergistisch wirkende Antikörperzusammensetzung zur Verbesserung der Immunsuppression, die zwei Antikörper gegen verschiedene T-Zell-Oberflächenmarker enthält.

In der Transplantationschirurgie sind in den letzten zehn Jahren deutliche Fortschritte erzielt worden. Insbesondere haben sich die therapeutischen Maßnahmen, welche die Funktion und die Überlebens zeit des transplantierten Organs sicherstellen sollen, wesentlich verbessert. Trotz dieser positiven Entwicklung gewähren die heute etablierten Maßnahmen auch für einen begrenzten Zeitraum keinen hundertprozentigen Transplantationserfolg. Dies liegt zum einen an der Qualität 15 des zu transplantierenden Organs und der Operationstechnik, zum großen Teil jedoch daran, daß die Spenderorgane von einem genetisch differenten Individuum stammen. Diese genetische Nichtkompatibilität zwischen Empfänger und Spender (allogenes Transplantat) 20 verursacht im Empfänger eine Immunreaktion gegen Major Histocompatibility Complex (MHC)-kodierte Oberflächenantigene des Transplantats. Zur Verhinderung dieser Abstoßungsreaktion, die sowohl akut als auch chronisch verlaufen kann, muß die immunolo- 25 gische Reaktivität des Empfängers gezielt durch eine immunsuppressive Therapie unterdrückt werden. Alle heute in der Klinik verwendeten Immunsuppressiva bewirken jedoch eine mehr oder weniger unspezifische Immunsuppression. Die daraus resultierenden Neben- 30 wirkungen sind zum Teil gravierend.

So wirkt das Purinanalogon Azathioprin (Drug Evaluation, 6th Edition American Medical Association 1151 (1986)) als Antimetabolit auf alle proliferierenden Zellen. Nachteile dieser Substanz sind jedoch ihre poten- 35 tielle Lebertoxizität und die Induktion einer Knochenmarksdepression. Dadurch kommt es zur Verminderung aller Blutzellen.

Glucokortikoide gehören zu den nichtcytotoxischen Immunsuppressiva. Sie führen jedoch insbesondere bei 40 dadurch gekennzeichnet ist, daß sie einer längeren Therapiedauer zu nicht tolerablen Ne-(Wachstumsstörungen, Hypertonie, benwirkungen Herzinsuffizienz), die zur Absetzung der Medikation zwingen.

Anti-Lymphozyten-Globulin (ALG) und Cyclosporin 45 besitzen eine höhere Spezifität als die zuvor genannten Substanzen, wirken jedoch auf die Gesamtheit des Immunsystems und erhöhen durch diese generelle Immunsuppression das Risiko von Virus- und Bakterieninfeknes Sensibilisierungspotentials nur zeitlich befristet verabreicht werden kann. Die Behandlung mit Cyclosporin kann zu einer erhöhten Tumorinzidenz führen.

Akute Abstoßungskrisen bei Organtransplantationen behandelt werden (Cosimi AB: Transplant.Proc. 15 (1983), S. 1889; Kreis, H. et al., Transplant.Proc. 17 (1985), S. 1315; Krikma, R.L. et al., Transplantation 36 (1983), S. 620). T-Zellen (T-Lymphozyten) werden in CD4-positive und CD8-positive Zellen unterteilt. CD4 und CD8 sind Oberflächenantigene auf diesen Zellen. CD8-positive T-Zellen interagieren mit dem T-Zell-Rezeptor in Kontext mit MHC Klasse I Molekülen (Killerzellen). CD4-positive T-Zellen interagieren mit dem T-Zell-Rezeptor in Kontext mit MHC Klasse Il Molekülen auf 65 entsprechenden Rezipientenzellen (Helfer-T-Zellen, Suppressor T-Zellen).

Es wurde gezeigt, daß sowohl mit Anti-CD4-Antikör-

pern als auch mit Anti-CD8-Antikörpern die Absto-Bungsreaktion bei Organtransplantationen verhindert werden kann (vgl. z.B. Benjamin, R.J. and Waldmann, H.: Induction of tolerance by monoclonal antibody therapy, Nature 320 (1986), S. 449; Benjamin, R.J., Cobbold, S.P., Clark, M.P. and Waldmann, H.: Tolerance to rat monoclonal antibodies. Implications for serotherapy. J.Exp.Med. 163 (1986), S. 1539; Cobbold, S.P., Martin, G., Quin S.X. and Waldmann, H.: Monoclonal antibodies to promote marrow engraftment and tissue graft tolerance. Nature 323 (1986), S. 164; Quin S.X, Cobbold, S.P., Tighe, H., Benjamin, R. and Waldmann, H.: CD4 Mab pairs for immunosuppression and tolerance induction. Eur.J.Immunol. 18 (1987) S. 495).

Der Nachteil bei der immunsuppressiven Behandlung mit derartigen Antikörpern ist jedoch, daß diese in einer relativ großen Menge eingesetzt werden müssen. Damit kann es selbst bei chimärisierten Antikörpern zu heftigen Immunreaktionen kommen.

Die EP-A 02 40 344 offenbart in Beispiel 5 (Spalte 8) eine Kombination von Anti-CD4-MAKs mit Anti-IL2Rα (CD25)-MAKs zur Verhinderung von Transplantatabstoßungen. Eine vollständige Hemmung wird jedoch nur bei Kombination mit einem dritten MAK gegen CD8 erreicht. Der in der Kombination als Anti-IL2Rα-MAK verwendete Antikörper YCTLD45.1 zeigt für sich alleine keine nennenswerte Hemmung der Immunreaktion. Es wird jedoch nicht offenbart, welche Eigenschaften die in Kombination verwendbaren Antikörper besitzen müssen, damit generell eine vollständige Hemmung erwartet werden kann.

Eine Aufgabe der vorliegenden Erfindung besteht somit darin, ein immunsuppressives Mittel zur Verfügung zu stellen, welches zuverlässig die Abstoßungsreaktion gegen Transplantate unterdrücken kann und nur in geringen Dosen verabreicht werden muß.

Gelöst wird die erfindungsgemäße Aufgabe durch eine synergistisch wirkende Antikörperzusammensetzung zur Verbesserung der Immunsuppression, welche

- a) mindestens einen für sich alleine bereits stark inhibierenden monoklonalen Anti-CD4-Antikörper und
- b) mindestens einen für sich alleine bereits stark inhibierenden monoklonalen Anti-IL2Rα- oder Anti-IL2R\u00e4-Antik\u00f6rper enth\u00e4lt,

wobei ein stark inhibierender Antikörper bei einer Kontionen. Weitere Nachteile sind, daß ALG aufgrund sei- 50 zentration von 10 000 ng/ml die allogen induzierte Lymphozytenproliferation in Abwesenheit anderer Antikörper zu mindestens 40% hemmt.

Wenn es sich bei dem Antikörper (b) um einen Anti-IL2Rα-Antikörper handelt, dann liegt das molare Verkonnten auch erfolgreich mit Anti-T-Zell-Antikörpern 55 hältnis der Antikörper (a) und (b) vorzugsweise zwischen 1:10 und 10:1. Wenn es sich dagegen bei dem Antikörper (b) um einen Anti-IL2Rβ-Antikörper handelt, dann liegt das molare Verhältnis der Antikörper (a) und (b) vorzugsweise zwischen 1:1000 und 10:1. Die Kombination Anti-CD4-MAK und Anti-IL2Rα-MAK ist erfindungsgemäß bevorzugt.

Eine Voraussetzung für den synergistischen Effekt bei der Kombination von monoklonalen Anti-CD4-bzw. Anti-IL2 Rezeptor-Antikörpern ist, daß jeder dieser Antikörper bereits für sich alleine eine immunsuppressive, d. h. die Lymphozytenproliferation stark inhibierende Wirkung zeigen muß. Diese "stark inhibierende" Wirkung im Sinne der vorliegenden Erfindung zeigt sich darin, daß der betreffende Antikörper bereits alleine die allogen induzierte Lymphozytenproliferation (MLR) bei einer Konzentration von 10 000 ng/ml zu mindestens 40% hemmt. Antikörper, die in einer Konzentration von 10 000 ng/ml bei der MLR keine Hemmwirkung oder eine Hemmwirkung von weniger als 40% zeigen, sind daher als Bestandteile einer erfindungsgemäßen Zusammensetzung im allgemeinen nicht geeignet.

Es wurde gefunden, daß die Kombination eines stark inhibierenden monoklonalen Antikörpers gegen die CD4-Struktur mit einem stark inhibierenden monoklonalen Antikörper gegen die α-Kette des IL2-Rezeptors (Anti-IL2Rα-Antikörper) oder die β-Kette des IL2-Rezeptors (Anti-IL2Rβ-Antikörper) überraschenderweise die Inhibierung der Proliferation der T-Helferzellen 15 synergistisch steigert, so daß auf diese Weise Transplantationsabstoßungen vermieden werden. Es zeigt sich, daß bei einem üblicherweise verwendeten in vitro Testsystem für die immunologische Histokompatibilität zweier Individuen (Mixed Lymphocyte Reaction, MLR, 20 Selected Methods in Cellular Immunology, Mishell, B.B., Shiigi S.M. eds. WH Freeman and Company, San Francisco 1980) die gleichzeitige Zugabe zweier monoklonaler Antikörper (Anti-CD4, Anti-IL-2 Rezeptor) synergistisch die Eymphozytenproliferation hemmt. Die wirksame Dosis dieser Antikörperkombination ist damit überraschenderweise wesentlich geringer als die wirksame Dosis der Antikörper, wenn sie einzeln eingesetzt werden. Weiterhin wurde überraschenderweise festgestellt, daß bei der Kombination von Anti-IL2Rα-Antikörpern mit Anti-CD4-Antikörpern eine bis zu 96%ige Hemmung der MLR erzielt werden kann. Bei Verwendung von Anti-IL2Ra-Antikörpern oder Anti-CD4-Antikörpern allein wird dagegen selbst bei Konzentratioerreicht. Bei der Kombination von Anti-IL2Rβ-Antikörpern mit Anti-CD4-Antikörpern kann ebenfalls überraschenderweise eine bis zu 96%ige Hemmung der MLR erzielt werden.

Der erfindungsgemäße und überraschende Synergis- 40 mus wird nur dann festgestellt, wenn ein für sich alleine bereits stark inhibierender Anti-IL2Rα-oder Anti-IL2Rβ-MAK in Kombination mit einem Anti-CD4-MAK verwendet wird. Verwendet man hingegen beispielsweise einen nicht bzw. nur schwach inhibieren- 45 den Anti-IL2Ra-MAK, so wurde in Kombination mit einem für sich alleine bereits stark inhibierenden Anti-CD4-MAK keine verstärkte suppressive Wirkung gegenüber der alleinigen Verwendung des Anti-CD4-MAK festgestellt.

Bei einer Kombination von Anti-CD4-MAK und Anti-IL2Ra-MAK werden für einen optimalen synergistischen Effekt vorzugsweise die beiden Antikörper (a) und (b) in einem molaren Verhältnis von 1:10 bis 10:1 verwendet. Besonders bevorzugt beträgt das molare 55 Verhältnis der Antikörper (a) und (b) von 1:5 bis 5:1, am meisten bevorzugt von 3:10 bis 3:1. Bei Verwendung der Kombination Anti-CD4-MAK und Anti-IL2Rβ-MAK wird vorzugsweise ein molares Verhältnis der Antikörper (a) und (b) von 1:1000 bis 10:1 gewählt. Die erfin- 60 dungsgemäße Antikörperzusammensetzung kann sowohl einen als auch mehrere Anti-CD4-Antikörper und sowohl einen als auch mehrere Anti-IL2Rα- oder Anti-IL2Rβ-Antikörper enthalten, wobei sich bei Verwendung von mehreren Antikörpern einer Spezifität das 65 molare Verhältnis immer jeweils auf die Summe aller Antikörper einer Spezifität bezieht.

Weiterhin wurde festgestellt, daß für die erfindungs-

gemäße Verwendung die Anwendung der beiden Antikörper zwar gemeinsam, aber nicht unbedingt gleichzeitig erfolgen muß, um den synergistischen Effekt zu zeigen. Unter dem Begriff "gemeinsamen Anwendung" ist 5 im Sinne der vorliegenden Erfindung zu verstehen, daß auch eine gewisse zeitliche Versetzung bei der Verabreichung beider Antikörper toleriert werden kann. Es ist jedoch erforderlich, daß bei Verabreichung des zweiten Antikörpers die Wirksamkeit des zuerst verabreichten 10 Antikörpers noch nicht deutlich nachgelassen haben darf. In der Praxis kann eine derartige in Frage kommende zeitliche Versetzung etwa bis zu 12 Stunden betragen.

Ein weiterer Vorteil der erfindungsgemäßen Antikörperkombination ist ihre hohe Spezifität. Da Anti-IL2Rαoder Anti-IL2Rβ-Antikörper insbesondere an die aktivierten T-Symphozyten binden und lediglich die Anti-CD4-Antikörper an die Gesamtheit aller T-Helferzellen binden, wird durch die erfindungsgemäße Kombination dieser Antikörper in den erfindungsgemäß geringen Mengen die allgemeine Immunreaktion nur unwesentlich unterdrückt.

Die als Komponenten der erfindungsgemäßen Antikörperzusammensetzung geeigneten Antikörper kön-25 nen murine, humane, chimärisierte oder humanisierte Antikörper oder Antikörperfragmente sein. Vorzugsweise verwendet man humane, chimärisierte oder humanisierte Antikörper oder derartige Antikörperfragmente, da auf diese Weise die Möglichkeit einer Immunreaktion gegen die verabreichten Antikörper möglichst gering gehalten wird. Chimärisierte oder humanisierte Antikörper im Sinne der vorliegenden Erfindung sind nicht-humane Antikörper z. B. murinen Ursprungs, bei denen mittels bekannter gentechnologischer Methoden nen von 30 µg/ml keine stärkere Hemmung als 70% 35 murine Sequenzen durch humane Sequenzen ersetzt worden sind. Bei den chimärisierten Antikörpern wird dabei nur die konstante Region des Antikörpers durch eine entsprechende humane Region ersetzt, während bei humanisierten Antikörpern die CDR-Regionen (complementary-determining regions) von humanen V-Regionen für die leichte und die schwere Kette eines Antikörpers durch die CDR-Regionen eines murinen oder anderen Nager-Antikörpers ausgetauscht werden können, so daß der humanisierte Antikörper bis auf die CDR-Regionen einem humanen Antikörper entspricht. Ebenfalls geeignet für das erfindungsgemäße Verfahren sind Antikörperfragmente, z. B. Fab- oder F(ab)2-Antikörperfragmente, die nach Standardmethoden gewonnen werden können.

Eine genaue Beschreibung von geeigneten Anti-IL2Rα-Antikörpern findet man in der DE 40 28 955.9. Anti-CD4-Antikörper sind in Eur.J.Immunol. 18 (1987) 495 beschrieben. Eine Beschreibung von geeigneten Anti-IL2R\u00dB-Antik\u00f6rpern findet man in Takeshita, T., Goto, Y., Tada, K., Nagata, K., Asao, H., Sugamura, K.: J.Exp.Med. 169 (1989) 1323; Tsudo, M., Kitamura, F., Mijasaka, M.: Proc.Natl.Acad.Sci.USA 86 (1989) 1982 und Niguma, T., Sakagami, K., Kawamura, T., Haisa, M., Fujiwara, T., Kusaka, S., Uda, M., Orita, K.: Transplantation 52(1991)296 - 302.

Besonders geeignet ist eine Kombination von Anti-CD4- und Anti-IL2R\alpha- oder Anti-IL2R\beta-Antik\overline{o}rpern, deren Sequenzen für die variablen Regionen der leichten bzw. schweren Ketten in den beiliegenden Sequenzprotokollen beschrieben sind. SEQ ID NO. 1 und 2 zeigen Nukleotid- bzw. Aminosäuresequenzen des Anti-CD4-Antikörpers MT 15.1, SEQ ID NO. 3 und 4 zeigen Nukleotid- bzw. Aminosäuresequenzen des Anti5

CD4-Antikörpers MT 3.10, SEQ ID NO. 5 und 6 zeigen Nukleotid- bzw. Aminosäuresequenzen des Anti-IL2Rα-Antikörpers MAK 179. SEQ ID No. 9 und 10 zeigen Nukleotid- bzw. Aminosäuresequenzen des Anti-ILRβ-Antikörpers A41. Während sich die zuvor genannten Antikörper zur Herstellung einer erfindungsgemä-Ben Zusammensetzung eignen, wurde dagegen festgestellt, daß der alleine nur schwach inhibitorisch wirkende Anti-ILRa-Antikörper M-215 (SEQ ID. 7 und 8) in Kombination mit einem stark inhibierenden Anti- 10 CD4-Antikörper keinen synergistischen Effekt zeigt. Geeignete konstante Regionen (murin oder human) für diese Antikörper sind beschrieben in : Sequences of proteins of immunological interest; E. Kabat, T. Wu, M. Reid-Miller, H. Perry and K. Gottesman, U.S. Depart- 15 ment of Health and Human Services, 1987, p. 282-325. Die Fusion der Gene für die konstanten Regionen mit den Genen für die variablen Regionen kann mittels Standard-Klonierungstechniken der Molekularbiologie erfolgen.

Weiterhin ist ein Gegenstand der vorliegenden Erfindung ein Arzneimittel, das aus Komponenten (1) und (2) besteht, wobei die beiden Komponenten gemeinsam zu verabreichen sind, aber getrennt formuliert sein können, welches dadurch gekennzeichnet ist, daß die Kompo- 25 SEQ ID NO. 1 nente (1) einen für sich alleine stark inhibierenden monoklonalen Anti-CD4-Antikörper (a) als Wirkstoff und die Komponente (2) einen für sich alleine stark inhibierenden monoklonalen Anti-IE2Rα- oder Anti-IL2Rβ-Antikörper (b) als Wirkstoff enthält, gegebenenfalls mit 30 üblichen pharmazeutischen Hilfs-, Verdünnungs-, Träger- und Füllstoffen. Bei Verwendung eines Anti-IL2Rα-Antikörpers als Wirkstoff der Komponente (2) ist das molare Verhältnis der beiden Antikörper der Komponenten (1) und (2) im Arzneimittel vorzugsweise 35 ten Kette es Anti-CD4-Antikörpers MT 3.10, von 1:10 bis 10:1. Besonders bevorzugt beträgt das molare Verhältnis der beiden Antikörper von 1:5 bis 5:1, am meisten bevorzugt von 3:10 bis 3:1. Verwendet man hingegen einen Anti-IL2Rβ-Antikörper als Wirkstoff der Komponente (2), dann ist das Verhältnis der beiden 40 Antikörper der Komponenten (1) und (2) vorzugsweise von 1:1000 bis 10:1.

Wie bereits oben ausgeführt, sind die beiden Komponenten des erfindungsgemäßen Arzneimittels gemeinsam zu verabreichen, wobei der Begriff "gemeinsam" 45 SEQ ID NO.6 jedoch nicht unbedingt gleichzeitig bedeuten muß. Daher ist klar, daß die beiden Komponenten des erfindungsgemäßen Arzneimittels getrennt formuliert sein können. Die Formulierung der Antikörper erfolgt mittels Standardmethoden, z. B. in intravenös verabreich- 50 zeigt die Nukleotid- und Aminosäuresequenz der leich-

baren physiologischen Lösungen.

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Antikörperzusammensetzung oder des erfindungsgemäßen Arzneimittels bei einer immunsuppressiven Therapie, 55 insbesondere bei einer Therapie zur Unterdrückung einer Immunreaktion nach Organ- oder Gewebetransplantationen und Autoimmunerkrankungen.

Bei einem derartigen Behandlungsverfahren wird ein erfindungsgemäßes Arzneimittel verabreicht, das die 60 ten Kette des Anti-IL2RB-Antikörpers MAK A41 und Kombination eines Anti-CD4- und eines Anti-IL2Rαoder Anti-IL2Rβ-Antikörpers enthält. Bei einem derartigen therapeutischen Verfahren ist es überraschenderweise möglich, die Menge der verwendeten Antikörper gegenüber dem getrennten Einsatz der MAKs um den 65 A41. Faktor 10 herabzusetzen. Bei den verschiedenen in vivo Transplantationsmodellen werden MAKs gegen Oberflächenstrukturen bei einer Konzentration von 1 bis

5 mg/kg Körpergewicht (täglich für 10 bis 14 Tage) eingesetzt. Bei einer erfindungsgemäßen Kombination Anti-CD4 plus Anti-IL2Rα bzw. Anti-CD4 plus Anti-IL2Rβ könnte die effektive Dosis auf 100 bis 200 µg/kg herabgesetzt werden.

Folgende Antikörper wurden bei der ECACC, Public Health Laboratory Service, Porton Down, Salisbury, Witshire SP 5 OJG, Großbritannien hinterlegt:

Anti CD4 MAK MT 15.1 unter der Bezeichnung Clone 15-1/P3/14 (ECACC 90090705),

Anti CD4 MAK MT 3.10 unter der Bezeichnung Clone 3. 101/sB10 (ECACC 90090702) und

Anti IL2Ra MAK 179 unter der Bezeichnung 3G10/179 (ECACC 9007 1905).

Der monoklonale Anti IL2Rβ-Antikörper A41 wurde unter der Bezeichnung MAK < -IL-2R > M-A23A41 bei der Deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH (DSM), Mascheroder Weg 1b, D-3300 Braunschweig, am 30.07.1991 unter der Nr. DSM 20 ACC 2015 hinterlegt.

Die folgenden Beispiele sollen in Verbindung mit den Sequenzprotokollen SEQ ID NO. 1 bis NO. 10 die Erfindung weiter verdeutlichen.

zeigt die Nukleotid- und Aminosäuresequenz der leichten Kette des Anti-CD4-Antikörpers MT 15.1,

SEQ ID NO. 2

zeigt die Nukleotid- und Aminosäuresequenz der schweren Kette des Anti-CD4-Antikörpers MT 15.1,

SEQ ID NO. 3

zeigt die Nukleotid- und Aminosäuresequenz der leich-

SEQ ID NO. 4

zeigt die Nukleotid- und Aminosäuresequenz der schweren Kette des Anti-CD4-Antikörpers MT 3.10,

SEQ ID NO.5

zeigt die Nukleotid- und Aminosäuresequenz der leichten Kette des Anti-IL2Rα-Antikörpers MAK 179,

zeigt die Nukleotid- und Aminosäuresequenz der schweren Kette des Anti-IL2Rα-Antikörpers MAK 179,

SEQ ID NO.7

ten Kette des Anti-IL2Rα-Antikörpers MAK M-215,

SEO ID NO.8

zeigt die Nukleotid- und Aminosäuresequenz der schweren Kette des Anti-IL2Ra-Antikörpers MAK M-215,

SEQ ID NO.9

zeigt die Nukleotid- und Aminosäuresequenz der leich-

SEO ID NO. 10

zeigt die Nukleotid- und Aminosäuresequenz der schweren Kette des Anti-IL2RB-Antikörpers MAK

BNSDOCID: <DE 4143214A1_l_>

Beispiel 1

Messung der Inhibition der Mixed Lymphocyte Reaction (MLR) durch Antikörper

Die Mixed Lymphocyte Reaction (gemischte Lymphozyten Kultur) basiert auf der Eigenschaft von T-Lymphozyten, nach Erkennen von Fremdantigenen in vitro verstärkt zu proliferieren. Fremdantigene können Bakterien und Viren sein, aber auch Transplantations- 10 antigene auf fremdem Gewebe oder Zellen. Zur Induktion der T-Zell-Proliferation von durch Plasmaphorese gewonnenen peripheren Blut-Lymphozyten (PPBL) wurde die humane Lymphozyten-Linie RPMI 1788 (ATCC CLL156) verwendet. Durch Behandlung mit 15 Mitomycin C wurde diese Zelllinie in ihrer Eigenproliferation vollständig blockiert. In der MLR proliferieren also nur die T-Lymphozyten der PPBL. Die Aktivierung der T-Lymphozyten kann durch Zugabe von immunsuppressiven Substanzen komplett inhibiert werden.

Die Durchführung der MLR erfolgt in Anlehnung an Selected Methods in Cellular Immunology Mishell B.B., Shiigi S.M. eds. WH Freeman and Company San Francisco (1980).

Medium (RPMI 1640 komplett)

440 ml RPMI 1640 (Boehringer Mannheim, Katalog

50 ml fötales Kälberserum (FKS) (Boehringer Mannheim, Katalog Nr. 210 471)

5 ml Glutaminlösung, 200 mmol/l (Boehringer Mannheim, Katalog Nr. 210 277)

5 ml Vitaminlösung (1%) (Boehringer Mannheim, Katalog Nr. 210 307) enthaltend

1 ml Penicillin (50 000) und Streptomycin (50 mg) (Bo- 35 ehringer Mannheim, Katalog Nr. 210 404) in RPMI 1640

Vitaminlösung (Boehringer Mannheim, Katalog Nr. 210 307):

	mg/100 ml
Ca-D(+)-Pantothenat	10,0
Cholinchlorid	10,0
Folsäure	10,0
meso-Inosit	20,0
Nicotinsäureamid	10,0
Pyridoxal · HCl	10,0
Riboflavin	1,0
Thiamin · HCl	10,0

PPBL-Zellen: Aus Lymphozytenkonzentrat (gewonnen durch Plasmaphorese, Bayerisches Rotes Kreuz München) wurden die Lymphozyten durch Dichtezentrifugation mittels Lymphozyten-Trennmedium (Boehringer Mannheim, Katalog Nr. 295 949) gewonnen. Nach zweimaligem Waschen der Zellen in RPMI 1640 komplett wurde ein Zelltiter von 106/ml eingestellt.

CCL 156; IgM-lambda Ketten sezernierend)

RPMI 1788-Zellen (ATCC CCL 156) werden mit Mitomycin C behandelt. Dazu werden 107 Zellen/ml mit 50 μg Mitomycin (gelöst in 100 μl RPMI 1640 komplett) versetzt und 45 Minuten bei 37°C, 5% CO2 inkubiert. 65 Danach werden die Zellen abzentrifugiert und 2× mit RPMI 1640 (komplett) gewaschen.

Es wird ein Zelltiter von 1 · 106/ml eingestellt.

Zur Durchführung der MLR werden 100 µl PPBL (105-Zellen) in Medium, RPMI 1640 komplett, 100 µl RPMI 1788-Zellen (105-Zellen) in Medium, RPMI 1640 komplett und 20 µl Probensubstanz (MAK 179 und/ 5 oder MAK M 15.1) in den in den Tabellen 1 bis 2b angegebenen Konzentrationen in Flachboden-Gewebekulturplatten (96 Vertiefungen, Fa. Nunc) gegeben. Es wird vier Tage im Brutschrank bei 37°C und 5% CO2 inkubiert. Das Ausmaß der Proliferation wird durch Einbau von radioaktivem Thymidin in die DNS quantifiziert. Dafür werden 0,5 μCi/Vertiefung Methyl-³H Thymidin (spezifische Aktivität 25 Ci/mmol, TRK 120, Amersham-Buchler, Braunschweig) in 25 µl Medium zugegeben. Die Zellen werden weitere 24 Stunden im Brutschrank bei 37°C und 5% CO2 inkubiert.

Anschließend werden die Zellen mit einem Inotech-Harvester (Fa. Inotech, Wohlen, Schweiz) auf Glasfiberfilterplatten geerntet. Mit dem Filter Counting System INB-384 (Inotech) wird die Radioaktivität der Filter-20 platten bestimmt. Aus dem Verhältnis der gemessenen Radioaktivität für einen Testansatz mit Probensubstanz zu einem Testansatz ohne Probensubstanz wird die prozentuale Inhibition, wie sie in den Tabellen 1, 2a und 2b angegeben ist, bestimmt. (Die Konzentrationsangaben in den Tabellen sind als Mengenangaben pro ml Testvolumen zu verstehen.)

Die folgende Tabelle 1 zeigt die Dosis-Wirkungskurve bei jeweils alleiniger Anwendung der monoklonalen Antikörper MAK 179 (Anti-IL2Ra-Antikörper) oder MT 3.10 bzw. MT 15.1 (Anti-CD4-Antikörper) in der allogen induzierten Lymphozyten Proliferation (MLR). Aus den Werten ist ersichtlich, daß die Hemmwirkungen der einzelnen Antikörper bei einer Konzentration von ca. 300 ng/ml einen Maximalwert zwischen 60 bis 70% erreichen. Durch weitere Zugabe desselben Antikörpers bis zu einer Konzentration von 30 000 ng/ml kann die Hemmwirkung nicht mehr verbessert werden.

Tabelle 1 Hemmung der MLR in Prozent gegenüber Kontrolle

45	Konz. ng/ml	MAK 179	MT 3.10	MT 15.1
	1	4	9	5
	3	11	18	2
	10	28	26	24
50	30	48	57	52
	100	58	58	54
	300	61	67	67
	1000	61	68	67
	3000	60	62	65
55	10 000	61	68	70
	30 000	61	70	70

Die folgende Tabelle 2a zeigt die Inhibition der allo-RPMI 1788-Zellen: Humane Lymphozytenlinie (ATCC 60 gen induzierten Lymphozyten Proliferation (MLR) durch Kombination von MAK 179 und MT 3.10. Überraschenderweise wurde gefunden, daß durch gemeinsame Anwendung beider Antikörper eine sehr deutliche Verbesserung der Hemmwirkung eintritt. Bereits bei Einsatz von jeweils 100 ng/ml der beiden Antikörper wird eine fast vollständige Inhibition der allogen induzierten Lymphozyten-Proliferation festgestellt.

9 Tabelle 2a

Tabelle 3a

Konzentration in 1 MAK 179	ng/ml MT 3.10	Inhibition %	5	Konzentration in ng/n M-215	nl MT 3.10	Inhibition %
1	The state of the s	0		10 000		20
10		23		_	100	43
100	***	53		10 000	1	18
_	1	0	10	10 000	10	31
	10	19		10 000	100	40
-	100	43				
1	1	0			Tabelle 3b	
10	1	14	15		1450110 00	
100	1	46				
1 10	10 10	29 45		Konzentration in ng/r M-215	nl MT 15.1	Inhibition %
100	10	74				
1	100 100	39 69	20	10 000	100	20 44
10	100	92		10 000	1	19
100	100	92		10 000	10	26
			25	10 000	100	45

Die folgende Tabelle 2b zeigt die Inhibition der allogen induzierten Lymphozyten-Proliferation (MLR) durch Kombination von MAK 179 und MT 15.1. Man findet bereits bei Einsatz von jeweils 100 ng/ml der beiden Antikörper eine fast vollständige Inhibition der allogen induzierten Lymphozyten-Proliferation.

Tabelle 2b

Konzentration in MAK 179	ng/ml MT 15.1	Inhibition %
1 ^{a)}		0
10		23
100		53
	1	0
	10	18
	100	53
1	1	1
10	1	25
100	1	62
1	10	16
10	10	48
100	10	86
1	100	28
10	100	64
100	100	96

Es wurde auch die Wirkung der Kombination eines alleine nur schwach inhibierenden Anti-IL2Rα-Antikörpers (M-215) mit den stark inhibitorisch wirksamen Anti-CD4-Antikörpern 3.10 bzw. 15.1 getestet. Die Test-durchführung erfolgte, wie in Beispiel 1 beschrieben. Die Ergebnisse sind in den Tabellen 3a und 3b dargestellt.

Aus den Tabellen 3a und 3b ist ersichtlich, daß eine Kombination der Antikörper M-215 und MT 3.10 bzw. M-215 und MT 15.1 auch bei extrem hohen Konzentrationen keinen synergistischen Effekt zeigt.

Beispiel 2

Es wurde die Dosis-Wirkungskurve des alleine stark inhibierenden Anti-IL2Rβ-Antikörpers A41 alleine und in Kombination mit den bereits in Beispiel 1 getesteten stark inhibierenden Anti-CD4-Antikörpern MT3.10 und MT 15.1 untersucht. Die Testdurchführung erfolgte gemäß Beispiel 1. Die Ergebnisse sind in den Tabellen 4a und 4b beschrieben.

Tabelle 4a

		7 1 11 1
Konzentration in 1 MAK A 41	MT 3.10	Inhibitor %
100		11
1000		26
10 000		50
_	1	4
-	10	31
	100	60
100	1	8
1000	1	32
10 000	1	60
100	10	48
1000	10	70
10 000	10	85
100	100	64
1000	100	76
10 000	100	96

30

11 Tabelle 4b

Konzentration in MAK. A 41	ng/ml MT 15.1	Inhibiton %
100	-	11
1000		26
10 000		50
	1	0
	10	34
_	100	55
100	1	27
1000	1	39
10 000	1	49
100	10	48
1000	10	70
10 000	10	80
100	100	59
1000	100	78
10 000	100	92

Aus den Tabellen 4a und 4b ist ersichtlich, daß eine 25 Kombination der Antikörper A41 und MT3.10 bzw. A41 und MT15.1 eine synergistische Wirkung gegenüber einer alleinigen Verabreichung der Antikörper zeigt.

Patentansprüche

- 1. Synergistisch wirkende Antikörperzusammensetzung zur Verbesserung der Immunsuppression, dadurch gekennzeichnet daß sie
 - a) mindestens einen für sich alleine bereits 35 stark inhibierenden monoklonalen Anti-CD4-Antikörper und
 - b) mindestens einen für sich alleine bereits stark inhibierenden monoklonalen Anti-IL2Rα- oder Anti-IL2Rβ-Antikörper

wobei ein stark inhibierender Antikörper bei einer Konzentration von 10 000 ng/ml die allogen induzierte Lymphozytenproliferation in Abwesenheit anderer Antikörper zu mindestens 40% hemmt.

- 2. Antikörperzusammensetzung nach Anspruch 1, 45 dadurch gekennzeichnet, daß sie als Antikörper (b) mindestens einen Anti-IL2Rα-Antikörper enthält, wobei das molare Verhältnis der Antikörper (a) und (b) von 1:10 bis 10:1 ist.
- 3. Antikörperzusammensetzung nach Anspruch 2, 50 dadurch gekennzeichnet, daß das molare Verhältnis der Antikörper (a) und (b) von 1:5 bis 5:1 ist.
- 4. Antikörperzusammensetzung nach Anspruch 2, dadurch gekennzeichnet, daß das molare Verhältnis der Antikörper (a) und (b) von 3:10 bis 3:1 ist.
- 5. Antikörperzusammensetzung nach einem der Ansprüche 1 4, dadurch gekennzeichnet, daß der Antikörper (a) die in SEQ ID NO. 1 und 2 oder die in SEQ ID NO. 3 und 4 dargestellten Aminosäuresequenzen als variable Regionen der leichten bzw. 60 schweren Kette aufweist.
- 6. Antikörperzusammensetzung nach einem der Ansprüche 1-5, dadurch gekennzeichnet, daß der Antikörper (b) die in SEQ ID NO. 5 und 6 dargestellten Aminosäuresequenzen als variable Regionen der leichten bzw. schweren Kette aufweist.
- 7. Antikörperzusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß sie als Antikörper (b)

mindestens einen Anti-IL2Rβ-Antikörper enthält, wobei das molare Verhältnis der Antikörper (a) und (b) von 1:1000 bis 10:1 ist.

- 8. Antikörperzusammensetzung nach Anspruch 7, dadurch gekennzeichnet, daß der Antikörper (b) die in SEQ. ID NO. 9 und 10 dargestellten Aminosäuresequenzen als variable Regionen der leichten bzw. schweren Kette aufweist.
- 9. Antikörperzusammensetzung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Antikörper (a) und (b) murine, humane, chimärisierte oder humanisierte Antikörper oder Antikörperfragmente sind.
- 10. Arzneimittel, das aus Komponenten (1) und (2) besteht, wobei die beiden Komponenten gemeinsam zu verabreichen sind, aber getrennt formuliert sein können, dadurch gekennzeichnet, daß die Komponente (1) einen für sich alleine stark inhibierenden monoklonalen Anti-CD4-Antikörper (a) als Wirkstoff und die Komponente (2) einen für sich alleine stark inhibierenden monoklonalen Anti-IL2Rα- oder Anti-IL2Rβ-Antikörper (b) als Wirkstoff enthält, gegebenenfalls mit üblichen pharmazeutischen Hilfs-, Verdünnungs-, Träger- und Füllstoffen.
- 11. Arzneimittel nach Anspruch 10, dadurch gekennzeichnet, daß die Komponente (2) einen für sich alleine stark inhibierenden monoklonalen Anti-IL2Rα-Antikörper (b) als Wirkstoff enthält, wobei das molare Verhältnis der beiden Antikörper der Komponenten (1) und (2) im Arzneimittel von 1:10 bis 10:1 ist.
- 12. Arzneimittel nach Anspruch 11, dadurch gekennzeichnet, daß das molare Verhältnis der beiden Antikörper von 1:5 bis 5:1 ist.
- 13. Arzneimittel nach Anspruch 11, dadurch gekennzeichnet, daß das molare Verhältnis der beiden Antikörper von 3:10 bis 3:1 ist.
- 14. Arzneimittel nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, daß der Antikörper (a) die in SEQ ID NO. 1 und 2 oder die in SEQ ID NO. 3 und 4 dargestellten Aminosäuresequenzen als variable Regionen der leichten bzw. schweren Kette aufweist.
- 15. Arzneimittel nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, daß der Antikörper (b) die in SEQ ID NO. 5 und 6 dargestellten Aminosäuresequenzen als variable Regionen der leichten bzw. schweren Kette aufweist.
- 16. Arzneimittel nach Anspruch 10, dadurch gekennzeichnet, daß die Komponente (2) einen für sich alleine stark inhibierenden monoklonalen Anti-IL2Rβ-Antikörper (b) als Wirkstoff enthält, wobei das molare Verhältnis der beiden Antikörper der Komponenten (1) und (2) im Arzneimittel von 1:1000 bis 10:1 ist.
- 17. Arzneimittel nach Anspruch 16, dadurch gekennzeichnet, daß der Antikörper (b) die in Seq. ID No. 9 und 10 dargestellten Aminosäuresequenzen als variable Regionen der leichten bzw. schweren Kette aufweist.
- 18. Arzneimittel nach einem der Ansprüche 10 bis 17, dadurch gekennzeichnet daß die Antikörper (a) und (b) murine, humane, chimärisierte oder humanisierte Antikörper oder Antikörperfragmente sind.
- 19. Verwendung einer Antikörperzusammensetzung nach einem der Ansprüche 1 bis 9 oder eines

BNSDOCID: <DE_____4143214A1_l_>

Arzneimittels nach einem der Ansprüche 10 bis 18 bei einer immunsuppressiven Therapie, insbesondere bei der Therapie nach Organ- oder Gewebetransplantationen.

20. Verfahren zur Herstellung eines Arzneimittels für eine immunsuppressive Therapie, insbesondere für die Therapie nach Organ- und Gewebetransplantationen, worin man ein aus Komponenten (1) und (2) bestehendes Arzneimittel bereitstellt, dessen beide Komponenten gemeinsam zu verabreichen sind, aber getrennt formuliert werden können, dadurch gekennzeichnet, daß die Komponente (1) einen stark inhibierenden monoklonalen Anti-CD4-Antikörper (a) als Wirkstoff und die Komponente (2) einen stark inhibierenden monoklonalen Anti-IL2Rα- oder Anti-IL2Rβ-Antikörper (b) als Wirkstoff enthält, gegebenenfalls mit üblichen pharmazeutischen Hilfs-, Verdünnungs-, Trägerund Füllstoffen.

21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß man als Antikörper (b) einen Anti-IL2Rα-Antikörper verwendet, wobei das molare Verhältnis der beiden Antikörper der Komponenten (1) und (2) von 1:10 bis 10:1 ist.

22. Verfahren nach Anspruch 20, dadurch gekenn- 25 zeichnet, daß man als Antikörper (b) einen Anti- IL2Rβ-Antikörper verwendet, wobei das molare Verhältnis der beiden Antikörper der Komponenten (1) und (2) von 1:1000 bis 10:1 ist.

23. Verfahren zur immunsuppressiven Therapie, 30 insbesondere für die Therapie nach Organ- und Gewebstransplantationen, dadurch gekennzeichnet, daß man ein Arzneimittel nach einem der Ansprüche 10 bis 18 verabreicht.

Hierzu 10 Seite(n) Zeichnungen

35

40

45

50

55

60

65

Nummer: Int. Cl.⁵: DE 41 43 214 A1 C 07 K 15/28

Offenlegungstag:

28. Januar 1993

SEQ ID NO: 1 (Leichte Kette Klon 151, anti CD4 MAK MT 15.1)

ART DER SEQUENZ: Nucleotidsequenz mit entsprechendem Protein SEOUENZLAENGE: 381 Basenpaare

MERKMALE: aa -20 (Met) Start der Signalsequenz

aa l (Asp) Beginn der V-Region

von aa 96 (Tyr) bis aa 107 (Lys) J2-Region

ATG ATG TCC TCT GCT CAG TTC CTT GGT CTC CTG TTG CTC TGT TTT CAA 48 Met Met Ser Ser Ala Gln Phe Leu Gly Leu Leu Leu Cys Phe Gln GGT ACC AGA TGT GAT ATC CAG ATG ACA CAG ACT ATA TCC TCC TCT 96 Gly Thr Arg Cys Asp Ile Gln Met Thr Gln Thr Ile Ser Ser Leu Ser GCC TCT CTG GGA GAC AGA GTC ACC ATC AGT TGC AGG GCA AGT CAG GAC 144 Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln Asp 15 ATT AAC AAT TAT TTA AGC TGG TAT CAG CAG AAA CCA GAT GGA ACT GTT 192 Ile Asn Asn Tyr Leu Ser Trp Tyr Gln Gln Lys Pro Asp Gly Thr Val AAA CTC CTG ATC TAC TAC ACA TCA AGA TTA CAT TCA GGA GTC CCA TCA 240 Lys Leu Leu Ile Tyr Tyr Thr Ser Arg Leu His Ser Gly Val Pro Ser 50 AGG TTC AGT GGC AGT GGG TCT GGA ACA GAT TAT TCT CTC ACC ATT ACC 288 Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile Thr 65 AAC CTG GAG CAA GAA GAT GTT GCC ACT TAC TTT TGC CAA CAG GGT AAT 336 Asn Leu Glu Gln Glu Asp Val Ala Thr Tyr Phe Cys Gln Gln Gly Asn ACG CTT CCG TAC ACG TTC GGA GGG GGG ACC AAG CTG GAA ATA AAA Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys

Nummer.
Int. Cl.⁵:
Offenlegungstag:

DE 41 43 214 A1 C 07 K 15/28 28. Januar 1993

SEQ ID NO: 2 (Schwere Kette Klon 151; anti CD4 MAK MT 15.1)

ART DER SEQUENZ: Nucleotidsequenz mit entsprechendem Protein SEQUENZLAENGE: 417 Basenpaare

MERKMALE: aa -19 (Met) Start der Signalsequenz aa 1 (Gln) Beginn der V-Region von aa 108 (Asp) bis aa 120 (Ser) J4-Region

ATG Met	GCT Ala	TGG Trp	GTG Val	TGG Trp -15	ACC Thr	TTG Leu	CTT Leu	TTC Phe	CTG Leu -10	ATG Met	GCA Ala	GCT Ala	GCC Ala	CAA Gln -5	AGT Ser	48
ATC Ile	CAA Gln	GCA Ala	CAG Gln 1	ATC Ile	CAG Gln	TTG Leu	GTG Val 5	CAG Gln	TCT Ser	GGA Gly	CCT Pro	GAG Glu 10	CTG Leu	AAG Lys	ACG Thr	96
CCT Pro	GGA Gly 15	GAG Glu	ACA Thr	GTC Val	AAG Lys	ATC Ile 20	TCC Ser	TGC Cys	AAG Lys	GCT Ala	TCT Ser 25	GGT Gly	TAT Tyr	ACC Thr	TTC Phe	144
ACA Thr 30	GAC Asp	TAT Tyr	TCA Ser	ATA Ile	CAC His 35	TGG Trp	GTG Val	AAG Lys	CAG Gln	GCT Ala 40	CCA Pro	GGG Gly	AAG Lys	GAT Asp	TTA Leu 45	192
AAG Lys	TGG Trp	ATG Met	GGC Gly	TGG Trp 50	ATA Ile	AAC Asn	ACT Thr	GAG Glu	ACT Thr 55	GGT Gly	GAG Glu	CCA Pro	ACA Thr	TAT Tyr 60	GCA Ala	240
GAT Asp	GAC Asp	TTC Phe	ACG Thr 65	GGA Gly	CGG Arg	TTT Phe	GCC Ala	TTC Phe 70	TCT Ser	TTG Leu	GAA Glu	ACC Thr	TCT Ser 75	GCC Ala	AGC Ser	288
											GAG Glu					336
											GAT Asp 105					384
					TCA Ser 115											

Nummer: Int. Cl.⁵:

DE 41 43 214 A1 C 07 K 15/28 Offenlegungstag: 28. Januar 1993

SEQ ID NO: 3 (Leichte Kette Klon 310, anti CD4 MAK MT 3.10)

ART DER SEQUENZ: Nucleotidsequenz mit entsprechendem Protein SEQUENZLAENGE: 393 Basenpaare

MERKMALE: aa -20 (Met) Start der Signalsequenz aa 1 (Asp) Beginn der V-Region von aa 101 (Thr) bis aa 111 (Lys) J1-Region

ATG Met -20	GAG Glu	ACA Thr	GAC Asp	ACA Thr	ATC Ile -15	CTG Leu	CTA Leu	TGG Trp	GTG Val	CTG Leu -10	CTG Leu	CTC Leu	TGG Trp	GTT Val	CCA Pro -5	48
		ACT Thr														96
ATG Met	TCT Ser	CTA Leu 15	GGG Gly	CAG Gln	AGG Arg	GCC Ala	ACC Thr 20	ATC Ile	TCC Ser	TGC Cys	AAG Lys	GCC Ala 25	AGC Ser	CAA Gln	AGT Ser	144
Leu		TAT					TAT									192
		CCA Pro													TCT Ser 60	240
		CCA Pro														288
		ATC Ile														336
		AGT Ser 95														384
	ATC Ile 110	AAA Lys														

208 064/466

Nummer: Int. Cl.5: Offenlegungstag: DE 41 43 214 A1 C 07 K 15/28 28. Januar 1993

SEQ ID NO: 4 (Schwere Kette Klon 310, anti CD4 MAK MT 3.10)

ART DER SEQUENZ: Nucleotidsequenz mit entsprechendem Protein SEQUENZLAENGE: 411 Basenpaare

aa -18 (Met) Start der Signalsequenz aa 1 (Gln) Beginn der V-Region von aa 107 (His) bis aa 118 (Ala) J3-Region MERKMALE:

ATG Met	GAA Glu	TGG Trp	AGG Arg -15	ATC Ile	TTT Phe	CTC Leu	TTC Phe	ATC Ile -10	CTG Leu	TCA Ser	GGA Gly	ACT Thr	GCA Ala -5	GGT Gly	GTC Val	48
CAC His	TCC Ser	CAG Gln 1	GTT Val	CAC His	CTG Leu	CAG Gln 5	CAG Gln	TCT Ser	GGA Gly	CCT Pro	GAG Glu 10	CTG Leu	GTG Val	AAG Lys	CCT Pro	96
GGG Gly 15	CCT Pro	TCA Ser	GTG Val	AAG Lys	ATG Met 20	TCC Ser	TGC Cys	AAG Lys	GCT Ala	TCT Ser 25	GGA Gly	TAC Tyr	ACA Thr	TTC Phe	ACT Thr 30	144
GAC Asp	TAT Tyr	GTT Val	GTA Val	AGT Ser 35	TGG Trp	ATG Met	CAA Gln	CAG Gln	AGA Arg 40	ACT Thr	GGA Gly	CAG Gln	GTC Val	CTT Leu 45	GAG Glu	192
TGG Trp	ATT Ile	GGA Gly	GAG Glu	ATT Ile 50	TAT Tyr	CCT Pro	GGA Gly	AGT Ser	GGT Gly 55	AGT Ser	GCT Ala	TAT Tyr	TAC Tyr	AAT Asn 60	GAA Glu	240
AAA Lys	TTC Phe	AAG Lys	GGC Gly 65	AAG Lys	GCC Ala	ATA Ile	CTG Leu	ACT Thr 70	GCA Ala	GAG Asp	AAA Lys	TCC Ser	TCC Ser 75	AGC Ser	ACA Thr	288
GCC Ala	TAC Tyr	ATG Met 80	GAG Glu	TTC Phe	AGC Ser	AGC Ser	CTG Leu 85	ACA Thr	TCT Ser	GAG Glu	GAC Asp	TCT Ser 90	GCG Ala	GTC Val	TTT Phe	336
TTC Phe	TGT Cys 95	GCA Ala	AGA Arg	CGG Arg	GGG Gly	GAT Asp 100	GGT Gly	TCC Ser	CTC Leu	GGC Gly	TTT Phe 105	GCT Ala	CAC His	TGG Trp	GGC Gly	384
		ACT Thr														

Nummer: Int. Cl.⁵; Offenlegungstag: DE 41 43 214 A1 C 07 K 15/28 28. Januar 1993

SEQ ID NO: 5 (Leichte Kette Klon 179, anti IL2R MAR 179)

ART DER SEQUENZ: Nucleotidsequenz mit entsprechendem Protein SEQUENZLAENGE: 381 Basenpaare

MERKMALE: aa -20 (Met) Start der Signalsequenz aa 1 (Asp) Beginn der V-Region von aa 96 (Arg) bis aa 107 (Lys) J1-Region

		GTC Val													CCA Pro -5	48
GGT Gly	GCA Ala	AGA Arg	TGT Cys	GAC Asp 1	ATC Ile	CTG Leu	ATG Met	ACC Thr 5	CAA Gln	TCT Ser	CCA Pro	TCC Ser	TCC Ser 10	ATG Met	TCT Ser	96
		CTG Leu 15														144
		AGT Ser														192
		CTG Leu													TCA Ser 60	240
		AGT Ser														288
		GAA Glu														336
		CCT Pro 95														

Nummer: Int. Cl.⁵: Offenlegungstag:

DE 41 43 214 A1 C 07 K 15/28 28. Januar 1993

SEQ ID NO: 6 (Schwere Kette Klon 1/9, anti IL2R MAK 179)

ART DER SEQUENZ: Nucleotidsequenz mit entsprechendem Protein SEQUENZLAENGE: 396 Basenpaare

MERKMALE: aa -19 (Met) Start der Signalsequenz aa 1 (Asp) Beginn der V-Region

von aa 99 (Asp) bis aa 102 (Asn) D-Region von aa 103 (Trp) bis aa 113 (Ala) J3-Region

ATG GAC TCC AGG CTC AAT TTA GTT TTC CTT GTC CTT ATT TTA AAA GGT 48 Met Asp Ser Arg Leu Asn Leu Val Phe Leu Val Leu Ile Leu Lys Gly
-15 -10 -5

GTC CAG TGT GAT GTG CAG CTG GTG GAG TCT GGG GGA GGC TTA GTG CAG 96 Val Gln Cys Asp Val Gln Leu Val Glu Ser Gly Gly Leu Val Gln

CCT GGA GGG TCC CGG AAA CTC TCC TGT GTT GCC TCT GGA TTC ACT TTC 144
Pro Gly Gly Ser Arg Lys Leu Ser Cys Val Ala Ser Gly Phe Thr Phe
15 20 25

AGT ACC TTT GGA ATG CAC TGG GTT CGT CAG GCT CCA GAG AAG GGG CTG 192 Ser Thr Phe Gly Met His Trp Val Arg Gln Ala Pro Glu Lys Gly Leu 30 35 40 45

GAG TGG GTC GCA TAC ATT AGT AGT GGC AGT GGT ACC ATC TAC TAT GCA 240 Glu Trp Val Ala Tyr Ile Ser Ser Gly Ser Gly Thr Ile Tyr Tyr Ala 50 55

GAC ACA GTG AAG GGC CGA TTC ACC ATC TCC AGA. GAC AAT CCC AAG AAT 288
Asp Thr Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Pro Lys Asn
65 70 75

ACC CTG TTC CTG CAA ATG ACC AGT CTA AGG TCT GAG GAC ACG GCC ATG 336
Thr Leu Phe Leu Gln Met Thr Ser Leu Arg Ser Glu Asp Thr Ala Met
80 85 90

TAT TAC TGT GCA AGA GAT TGG ATG AAC TGG GGC CAA GGG ACT CTG GTC 384
Tyr Tyr Cys Ala Arg Asp Trp Met Asn Trp Gly Gln Gly Thr Leu Val
95 100 105

ACT GTC TCT GCA Thr Val Ser Ala

Offenlegungstag: 28. Januar 1993

SEQ ID NO: 7 (Leichte Kette Klon 215, anti IL2Ra MAK M-215)

ART DER SEQUENZ: Nukleotidsequenz mit entsprechendem Protein SEQUENZLAENGE: 435 Basenpaare

MERKMALE:

aa -22 (Met): Start der Signalsequenz aa l (Lys): Beginn der V-Region von aa 95 (Phe) bis aa 106 (Lys) J4-Region ab aa 107 (Arg): Beginn der C-Region

ATG Met	GAT Asp	TTT Phe -20	CAA Gln	GTG Val	CAG Gln	ATT Ile	TTC Phe -15	AGC Ser	TTC Phe	CTG Leu	CTA Leu	ATC Ile -10	AGT Ser	GCT Ala	TCA Ser	48
GTC Val	ATA Ile -5	ATG Met	TCC Ser	AGA Arg	GGC Gly	AAA Lys 1	ATT Ile	GTT Val	CTC Leu	TCC Ser 5	CAG Gln	TCT Ser	CCA Pro	GCA Ala	ATC Ile 10	96
CTG Leu	TCT Ser	GCA Ala	TCT Ser	CCA Pro 15	GGG Gly	GAG Glu	AAG Lys	GTC Val	ACA Thr 20	ATG Met	ACT Thr	TGC Cys	AGG Arg	GCC Ala 25	AGC Ser	144
TCA Ser	AGT Ser	ATA Ile	AGT Ser 30	TAC Tyr	ATG Met	CAC His	TGG Trp	TAC Tyr 35	CAG Gln	CAG Gln	AAG Lys	CCA Pro	GGA Gly 40	TCC Ser	TCC Ser	192
CCC Pro	AAA Lys	CCC Pro 45	TGG Trp	ATT Ile	CAA Gln	GCC Ala	ACA Thr 50	TCC Ser	AAC Asn	CTG Leu	GCT Ala	TTT Phe 55	GGA Gly	GTC Val	CCT Pro	240
TCT Ser	CGC Arg 60	TTC Phe	AGT Ser	GGC Gly	AGT Ser	GGG Gly 65	TCT Ser	GGG Gly	ACC Thr	TCT Ser	TAC Tyr 70	TCT Ser	CTC Leu	ACA Thr	ATC Ile	288
									ACT Thr							336
									GGG Gly 100							384
									ATC Ile							432

208 064/466

CAG 435 Gln

Nummer: Int. Cl.5: Offenlegungstag:

DE 41 43 214 A1 C 07 K 15/28 28. Januar 1993

SEQ ID NO: 8 (Schwere Kette Klon 215, anti IL2Ra MAK M-215)

ART DER SEQUENZ: Nukleotidsequenz mit entsprechendem Protein SEQUENZLAENGE: 549 Basenpaare

MERKMALE: aa -19 (Met) : Start der Signalseugenz aa 1 (Gln): Beginn der V-Region von aa 98 (Thr) bis aa 104 (Ser) D-Region von aa 105 (Trp) bis aa 119 (Ala) J3-Region

ab aa 120 (Ala) : Beginn der C-Region

ATG Met	GCT Ala	GTG Val	CTG Leu	GGG Gly -15	Leu	CTT Leu	CTC Leu	TGC Cys	CTG Leu -10	Val	ACT Thr	TTC Phe	CCA Pro	AGC Ser	TGT	48
GTC Val	CCG Pro	TCC Ser	CAG Gln 1	GTG Val	CAG Gln	CTG Leu	AAG Lys 5	GAG Glu	TCA Ser	GGG Gly	CCT Pro	GGC Gly 10	CTG Leu	GTG Val	GCG Ala	96
CCC Pro	TCA Ser 15	CAG Gln	AGC Ser	CTG Leu	TCC Ser	ATC Ile 20	ACA Thr	TGC Cys	ACC Thr	GTC Val	TCA Ser 25	GGG Gly	TTC Phe	TCA Ser	TTA Leu	144
AGT Ser 30	Thr	TAT Tyr	AGT Ser	GTA Val	TAC Tyr 35	TGG Trp	GTT Val	CGC Arg	CAG Gln	CCT Pro 40	CCA Pro	GGA Gly	AAG Lys	GGT Gly	CTG Leu 45	192
GAG Glu	TGG Trp	CTG Leu	GGA Gly	GTG Val 50	ATA Ile	TGG Trp	AGT Ser	GAT Asp	GGA Gly 55	AGC Ser	ACA Thr	ACC Thr	TAT Tyr	AAT Asn 60	TCA Ser	240
ACT Thr	CTC Leu	AAA Lys	TCC Ser 65	AGA Arg	CTG Leu	ACC Thr	ATC Ile	AGC Ser 70	AAG Lys	GAC Asp	AAC Asn	TCC Ser	AAG Lys 75	AGT Ser	CAA Gln	288
GTT Val	TTC Phe	TTA Leu 80	AAA Lys	GTG Val	AAC Asn	AGT Ser	CTC Leu 85	CAA Gln	ACT Thr	GAT Asp	GAC Asp	ACA Thr 90	GCC Ala	ATG Met	TAC Tyr	336
TAC Tyr	TGT Cys 95	GCC Ala	AGA Arg	ACC Thr	TAT Tyr	GGT Gly 100	TAT Tyr	GAC Asp	GGG Gly	TCC Ser	TGG Trp 105	CTT Leu	GCT Ala	TAC Tyr	TGG Trp	384
GGC Gly 110	CAA Gln	GGG Gly	ACT Thr	CTG Leu	GTC Val 115	ACT Thr	GTC Val	TCT Ser	GCA Ala	GCC Ala 120	AAA Lys	ACA Thr	ACA Thr	CCC Pro	CCA Pro 125	432
TCA Ser	GTC Val	TAT Tyr	CCA Pro	CTG Leu 130	GCC Ala	CCT Pro	GGG Gly	TGT Cys	GGA Gly 135	GAT Asp	ACA Thr	ACT Thr	GGT Gly	TCC Ser 140	TCC Ser	480
GTG Val	ACT Thr	CTG Leu	GGA Gly 145	TGC Cys	CTG Leu	GTC Val	AAG Lys	GGC Gly 150	TAC Tyr	TTC Phe	CCT Pro	GAG Glu	TCA Ser 155	GTG Val	ACT Thr	528
GTG Val	ACT Thr	TGG Trp 160	AAC Asn	TCT Ser	GGA Gly	TCC Ser	54	9								

208 064/466

Nummer: Int. Cl.⁵: DE 41 43 214 A1 C 07 K 15/28 28. Januar 1993

Offenlegungstag:

SEQ.ID.NO.: 9 (leichte Kette Klon A23A41, anti IL2Rß MAK A41)

ART DER SEQUENZ: Nukleotidsequenz mit entsprechendem Protein

SEQUENZLÄNGE: 322 bp MERKMALE: aa 1-96 V-Region

aa 97-107 J-Region

bp 322 erstes Basenpaar der C-Region

GAC Asp	GTC Val	TTG Leu	CTG Leu	ACT Thr 5	CAG Gln	TCT Ser	CCA Pro	GCC Ala	ATC Ile 10	CTG Leu	TCC Ser	GTG Val	AGT Ser	CCA Pro 15	GGA Gly	48
GAA Glu	AGA Arg	GTC Val	AGT Ser 20	TTC Phe	TCC Ser	TGT Cys	AGG Arg	GCC Ala 25	AGT Ser	CAG Gln	AGC Ser	ATT Ile	GGC Gly 30	ACA Thr	AGC Ser	96
ATA Ile	CAC His	TGG Trp 35	TAT Tyr	CAG Gln	CAA Gln	AGA Arg	ACA Thr 40	AAT Asn	GGT Gly	CCT Pro	CCA Pro	AGG Arg 45	CTT Leu	CTC Leu	ATA Ile	144
AAG Lys	TAT Tyr 50	GCG Ala	TCT Ser	GAG Glu	TCA Ser	ATC Ile 55	TCT Ser	GGG Gly	ATC Ile	CCT Pro	TCC Ser 60	AGG Arg	TTT Phe	AGT Ser	GGC Gly	192
AGT Ser 65	GGA Gly	TCA Ser	GGG Gly	ACA Thr	GAT Asp 70	TTT Phe	ACT Thr	CTT Leu	AGC Ser	ATC Ile 75	AGC Ser	AGT Ser	GTG Val	GAG Glu	TCT Ser 80	240
GAA Glu	GAT Asp	ATT Ile	GCA Ala	GAT Asp 85	TAT Tyr	TAC Tyr	TGT Cys	CAA Gln	CAA Gln 90	ACT Thr	AAT Asn	AGC Ser	TGG Trp	CCA Pro 95	ACC Thr	288
ACG Thr	TTC Phe	GGA Gly	GGG Gly 100	GGG Gly	ACC Thr	AAG Lys	CTG Leu	GAA Glu 105	ATT Ile	AAA Lys	С	322				

Nummer.
Int. Cl.⁵:
Offenlegungstag:

DE 41 43 214 A1 C 07 K 15/28 28. Januar 1993

SEQ.ID.NO.: 10 (Schwere Kette Klon A23A41, anti IL2RB MAK A41)

ART DER SEQUENZ: Nukleotidsequenz mit entsprechendem Protein

SEQUENZLÄNGE: 355 bp

MERKMALE: aa 1-98 V-Region aa 99-104 D-Region aa 105-118 J-Region

bp 355 erstes Basenpaar der C-Region

GAG Glu 1	GTC Val	CAG Gln	CTG Leu	CAA Gln 5	CAG Gln	TTT Phe	GGA Gly	GCT Ala	GAA Glu 10	TTG Leu	GTG Val	AAG Lys	CCT Pro	GGG Gly 15	ACT Thr	48
TCG Ser	GTG Val	AAG Lys	ATA Ile 20	TCC Ser	TGC Cys	AAG Lys	GCT Ala	TCT Ser 25	GGC	TAC Tyr	ATT Ile	TTC Phe	ACT Thr 30	GAC Asp	TAC Tyr	96
AAC Asn	ATG Met	GAC Asp 35	TGG Trp	GTG Val	AAG Lys	CAG Gln	AGC Ser 40	CAT His	GGA Gly	AAG Lys	AGC Ser	CTT Leu 45	GAG Glu	TGG Trp	ATT Ile	144
GGA Gly	GAT Asp 50	ATT Ile	GAT Asp	CCT Pro	AAC Asn	TTT Phe 55	GAT Asp	AGT Ser	TCC Ser	AGT Ser	TAC Tyr 60	AAC Asn	CAG Gln	AAG Lys	TTC Phe	192
AAG Lys 65	GGA Gly	AAG Lys	GCC Ala	ACA Thr	TTG Leu 70	ACT Thr	GTA Val	GAC Asp	AAG Lys	TCC Ser 75	TCC Ser	AAC Asn	ACA Thr	GCC Ala	TAC Tyr 80	240
ATG Met	GAG Glu	CTC Leu	CGC Arg	AGC Ser 85	CTG Leu	ACA Thr	TCT Ser	GAG Glu	GAC Asp 90	ACT Thr	GCA Ala	GTC Val	TAT Tyr	TAC Tyr 95	TGT Cys	288
GCA Ala	AGA Arg	GGG Gly	GGA Gly 100	TTC Phe	CCC Pro	TAT Tyr	GGT Gly	ATG Met 105	GAC Asp	TAC Tyr	TGG Trp	GGT Gly	CAA Gln 110	GGA Gly	ACC Thr	336
			GTC Val		TCA Ser	G .	355									

208 064/466