El modelo canónical de robots móviles no-holonómicos

Kjartan Halvorsen

March 30, 2022

Modelo canónical a.k.a modelo uniciclo

From Martina Zambelli (2013) *Posture regulation for unicycle-like robots with prescribed performance guarantees.* KTH - Royal Institute of Technology, Sweden.

Robot tipo diferencial (differential drive)

Robot móvil - modelo uniciclo

Robot móvil - modelo uniciclo

Cinemática

$$\xi = \begin{bmatrix} \theta \\ x \\ y \end{bmatrix}, \quad u = \begin{bmatrix} \omega \\ v \end{bmatrix}$$
$$\frac{d}{dt}\xi = \begin{bmatrix} \dot{\theta} \\ \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} \omega \\ v \cos \theta \\ v \sin \theta \end{bmatrix}$$

Robot móvil - modelo uniciclo

Cinemática

$$\xi = \begin{bmatrix} \theta \\ x \\ y \end{bmatrix}, \quad u = \begin{bmatrix} \omega \\ v \end{bmatrix}$$

$$\frac{d}{dt}\xi = \begin{bmatrix} \dot{\theta} \\ \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} \omega \\ v\cos\theta \\ v\sin\theta \end{bmatrix}$$

Actividad En simulink

Diferencial a modelo uniciclo

Cinemática

Diferencial a modelo uniciclo

Cinemática

Actividad Determine

- 1. La velocidad lineal (v_R, v_L) de cada rueda dado su velocidad angular (ω_R, ω_L)
- 2. La velocidad lineal v del centro robot dado las dos velocidades v_R y v_L
- 3. La velocidad angular ω del robot dado las dos velocidades v_R y v_L
- 4. Las relaciones invertidas. Es decir, las velocidades angulares ω_R y ω_L de los ruedos dado las velocidades v y ω .

Implementación de la cinemática inversa

En simulink/matlab

Control en lazo abierto

Control en lazo abierto

Queremos manejar el robot de un estado inicial a otro estando. Es decir eligir una señal de entrada

$$u(t) = \begin{bmatrix} v(t) \\ \omega_t \end{bmatrix}, \ t \in [0, t_1)$$

que mueve el robot de una posición y orientación inicial $(x(0), y(0), \theta(0))$ a otra posición y orientación en t_1 segundos.

Control en lazo abierto

Queremos manejar el robot de un estado inicial a otro estando. Es decir eligir una señal de entrada

$$u(t) = \begin{bmatrix} v(t) \\ \omega_t \end{bmatrix}, \ t \in [0, t_1)$$

que mueve el robot de una posición y orientación inicial $(x(0), y(0), \theta(0))$ a otra posición y orientación en t₁ segundos.

Actividad

Dibuje la señal de entrada que

- 1. mueve el robot una distancia 1m derecho en 3 segundos.
- 2. cambia la dirección del robot 90 grados hacia izquierda.
- 3. que mueve el robot en una trayectoria de forma cuadrada con lados de 1 metros en 20 segundos.

Implementación del control en lazo abierto

Simulink