MA 108 - Ordinary Differential Equations

Suresh Kumar

Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 76 suresh@math.iitb.ac.in

June 11, 2022

Exponetial order funcions

Recall:

- For a given f, L(f) may or may not exist.
- Sufficient conditions under which convergence is guaranteed for the integral in the definition of the Laplace transform is that f is piecewise continuous and is of exponential order.
- Piecewise continuity The function is continuous except possibly for finitely many jump discontinuities.

•

A function f is said to be of exponential order if there exists $a \in \mathbb{R}$ and positive constants t_0 and K such that

$$|f(t)| \leq Ke^{at},$$

for all $t \ge t_0 > 0$.

Exponetial order funcions-Examples

- If f is a bounded function defined on $[0, \infty)$, then it is of exponetial order with a = 0. In particular, $f(t) = \sin bt$, $\cos bt$, $t \ge 0$ are of exponetial order.
- $e^{\alpha t} \sin bt$, $t \ge 0$ is of exponetial order with $a = \alpha$.
- For $\alpha > 0$, $f(t) = t^{\alpha}$, $t \ge 0$ is of exponetial order, since for any a > 0,

$$\lim_{t\to\infty}t^{\alpha}e^{-at}=0.$$

• If the functions f_1 , f_2 defined on $[0, \infty)$ are of exponential order, so are $f_1 \pm f_2$, $f_1 f_2$.

Laplace transform-existence

Theorem: Let f be a piecewise continuous on $[0, \infty)$ and is of exponential order. Then L(f) exists on a domain which contain (α, ∞) where α is such that

$$|f(t)| \le Ke^{\alpha t}, \ t \ge t_0, K > 0, t_0 \ge 0.$$

Proof: Consider

$$\int_{0}^{\infty} e^{-st} |f(t)| dt = \int_{0}^{t_{0}} e^{-st} |f(t)| dt + \int_{t_{0}}^{\infty} e^{-st} |f(t)| dt$$

$$\leq \int_{0}^{t_{0}} e^{-st} |f(t)| dt + K \int_{t_{0}}^{\infty} e^{-(s-\alpha)t} dt.$$

First integral exists, since it is a definite integral and f is piecewise continuous. Second integral exists for all s > a. This we have already seen. Now comparison test for integrals implies that L(f)(s) exists for all all s > a.

Laplace transform-existence

The conditions given in the previous theorem are sufficient but not necessary.

Let $f(t) = \frac{1}{\sqrt{t}}$, t > 0 and f(0) = 0. Then f is not continuous at 0 and hence not piecewise continuous on $[0, \beta]$, for any $\beta > 0$. Now

$$\int_0^\infty e^{-st} \frac{1}{\sqrt{t}} dt = \int_0^1 e^{-st} \frac{1}{\sqrt{t}} dt + \int_1^\infty e^{-st} \frac{1}{\sqrt{t}} dt$$

Both the integrals exists using comparison test for integrals. Hence L(f) exists on $(0, \infty)$.

Property 1 : Linearity

Let $f,g:[0,\infty)\to\mathbb{R}$ be functions such that L(f) and L(g) exist on (α,∞) . Let $a,b\in\mathbb{R}$. Then,

$$L(af + bg)(s) = aL(f)(s) + bL(g)(s), s > \alpha.$$

Proof: For $s > \alpha$,

$$L(af + bg)(s) = \int_0^\infty e^{-st} (af(t) + bg(t)) dt$$
$$= \int_0^\infty e^{-st} af(t) dt + \int_0^\infty e^{-st} bg(t) dt$$
$$= aL(f)(s) + bL(g)(s).$$

Example 1

For s > 0,

$$L(e^{i\omega t})(s) = \int_0^\infty e^{-st} e^{i\omega t} dt$$

$$= \int_0^\infty e^{-(s-i\omega)t} dt$$

$$= \frac{e^{-(s-i\omega)t}}{-(s-i\omega)} \Big|_{t=0}^\infty = \frac{1}{s-i\omega}$$

$$= \frac{s+i\omega}{s^2+\omega^2}.$$

Hence,

$$L(\cos\omega t + i\sin\omega t)(s) = \frac{s + i\omega}{s^2 + \omega^2}.$$

Using linearity,

$$L(\cos \omega t)(s) = \frac{s}{s^2 + \omega^2}, \qquad L(\sin \omega t)(s) = \frac{\omega}{s^2 + \omega^2}.$$

Example 2

For $a \ge 0$,

$$L(\cosh at)(s) = L(\frac{e^{at} + e^{-at}}{2})(s), s > a,$$

$$= \frac{1}{2}L(e^{at})(s) + \frac{1}{2}L(e^{-at})(s)$$

$$= \frac{1}{2}\left(\frac{1}{s-a} + \frac{1}{s+a}\right) = \frac{s}{s^2 - a^2}.$$

Hence,
$$L(\cosh at)(s) = \frac{s}{s^2 - a^2}, s > a.$$

Similarly, $L(\sinh at)(s) = \frac{a}{s^2 - a^2}, s > a.$

Example 3

For s > 0,

$$L(te^{i\omega t})(s) = \int_{0}^{\infty} e^{-st} t e^{i\omega t} dt = \int_{0}^{\infty} t e^{-(s-i\omega)t} dt$$

$$= \frac{te^{-(s-i\omega)t}}{-(s-i\omega)} \Big|_{t=0}^{\infty} + \int_{0}^{\infty} \frac{e^{-(s-i\omega)t}}{s-i\omega} dt$$

$$= \frac{1}{s-i\omega} \times \frac{e^{-(s-i\omega)t}}{-(s-i\omega)} \Big|_{t=0}^{\infty}$$

$$= \frac{1}{(s-i\omega)^{2}} = \frac{1}{s^{2}-\omega^{2}-2is\omega} \frac{s^{2}-\omega^{2}+2is\omega}{s^{2}-\omega^{2}+2is\omega}$$

$$= \frac{s^{2}-\omega^{2}}{(s^{2}-\omega^{2})^{2}+4s^{2}\omega^{2}} + i\frac{2s\omega}{(s^{2}-\omega^{2})^{2}+4s^{2}\omega^{2}}$$

$$= \frac{s^{2}-\omega^{2}}{(s^{2}+\omega^{2})^{2}} + i\frac{2s\omega}{(s^{2}+\omega^{2})^{2}}.$$

Hence,

$$L(t\cos\omega t)(s) = \frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}, \qquad L(t\sin\omega t)(s) = \frac{2s\omega}{(s^2 + \omega^2)^2}, s > 0.$$

Property 2 : I Shifting theorem (s shifting)

If L(f(t))(s) = F(s), then $L(e^{at}f(t))(s) = F(s-a)$.

Proof:

$$L(e^{at}f(t))(s) = \int_0^\infty e^{-st}e^{at}f(t) dt$$
$$= \int_0^\infty e^{-(s-a)t}f(t) dt$$
$$= F(s-a).$$

Examples:

1.
$$L(t^2)(s) = \frac{2}{s^3}, s > 0 \Longrightarrow L(e^{-t}t^2)(s) = \frac{2}{(s+1)^3}, s > -1.$$

2.
$$L(\cos \omega t)(s) = \frac{s}{s^2 + \omega^2}, s > 0 \Longrightarrow L(e^{at}\cos \omega t)(s) = \frac{s - a}{(s - a)^2 + \omega^2}, s > a.$$

Exercises

Find the Laplace transforms of

- $\mathbf{0}$ $t^n e^{at}$
- 2 cosh at cos at
- $e^{-t}\sin^2 t$

Property 3: Scaling

If
$$L(f)(s) = F(s)$$
, then $L(f(ct))(s) = \frac{1}{c}F\left(\frac{s}{c}\right)$, $c > 0$.

Proof: Let $\xi = ct$. Then, $d\xi = c dt$.

$$L(f(ct)) = \int_0^\infty e^{-st} f(ct) dt$$

$$= \int_0^\infty e^{-(\frac{s\xi}{c})} \frac{1}{c} f(\xi) d\xi$$

$$= \frac{1}{c} \int_0^\infty e^{-(\frac{s\xi}{c})} f(\xi) d\xi$$

$$= \frac{1}{c} F(\frac{s}{c}).$$

Example:

$$L(e^t)(s) = \frac{1}{s-1}, s > 1 \Longrightarrow L(e^{at})(s) = \frac{1}{a} \frac{1}{\left(\frac{s}{a}-1\right)} = \frac{1}{s-a}, s > a.$$

Property 4: Differentiation

١.

- (i) Suppose *f* is continuous,
- (ii) f is piecewise continuous on [0, a] for all a > 0,
- (iii) $|f(t)| \le Ke^{\alpha t}$, for $t \ge t_0 > 0$, where K > 0, t_0 , $\alpha \in \mathbb{R}$.

Then, L(f)(s) exists for $s > \alpha$ and

$$L(f') = sL(f) - f(0).$$

II.

- (a) Suppose $f, f', \dots, f^{(n-1)}$ are continuous
- (b) $f^{(n)}$ is piecewise continuous on [0, a], for all a > 0,
- (c) For all $t \geq t_0 > 0$, $|f^{(i)}(t)| \leq Ke^{\alpha t}$, $0 \leq i \leq n-1$, where K > 0, t_0 , $\alpha \in \mathbb{R}$.

Then, $L(f^{(n)})(s)$ exists for all $s > \alpha$ and

$$L(f^{(n)}) = s^n L(f) - s^{n-1} f(0) - s^{n-2} f(0) - \ldots - s f^{(n-2)}(0) - f^{(n-1)}(0).$$

Proof of Property 4

Consider the interval $[0, \beta]$. Let f be discontinuous at t_1, t_2, \ldots, t_n , where $0 = t_0 < t_1 < t_2 < \ldots < t_n < t_{n+1} = \beta$. Then,

$$\int_0^\beta e^{-st} f'(t) dt = \int_0^{t_1} e^{-st} f'(t) dt + \int_{t_1}^{t_2} e^{-st} f'(t) dt + \ldots + \int_{t_n}^\beta e^{-st} f'(t) dt.$$

Integrating by parts, we get:

$$\int_{0}^{\beta} e^{-st} f'(t) dt = \sum_{i=1}^{n+1} [e^{-st} f(t)]_{t_{i-1}}^{t_{i}} + s \sum_{i=1}^{n+1} \int_{t_{i-1}}^{t_{i}} e^{-st} f(t) dt$$
$$= e^{-s\beta} f(\beta) - f(0) + s \int_{0}^{\beta} e^{-st} f(t) dt.$$

Taking limit as $\beta \to \infty$, we get:

$$L(f')(s) = sL(f) - f(0),$$

for $s > \alpha$.

Proof of Corollary

Induction. n=1 is already done. Assume that the result is true up to n-1. Then, for $s>\alpha$,

$$L(f^{(n)})(s) = L((f^{(n-1)})')(s)$$

$$= sL(f^{(n-1)}) - f^{(n-1)}(0)$$

$$= s(s^{n-1}L(f) - s^{n-2}f(0) - \dots - f^{(n-2)}(0)) - f^{(n-1)}(0)$$

$$= s^{n}L(f) - s^{n-1}f(0) - s^{n-2}f'(0) - \dots - f^{(n-1)}(0).$$

First derivative :

$$L(f)(s) = sL(f) - f(0).$$

✓ Second derivative :

$$L(f'')(s) = s^2 L(f) - sf(0) - f'(0).$$

