Digitaltechnik Wintersemester 2021/2022 4. Vorlesung

Erste Überlegungen zu eventueller DT Hybrid-Vorlesung (Folie von letzter Woche)

- Aktuelle Regelungen erlauben prinzipiell hybride Vorlesung: Mi, 9:50 11:30 Uhr am Innenstadtcampus
- ► Max. 50% Hörsaalbelegung im Schachbrettmuster unter 3G Bedingungen
- ► Erlaubt deutlich bessere Interaktion zwischen Dozent und Studierenden im Hörsaal als Online
- Vorlesung würde aufgezeichnet (wie bisher)
- Asynchrone Fragen zur Vorlesung via Moodle (wie bisher)
- Änderungen:
 - Falls LAN stabil würden wir versuchen, weiterhin live zu streamen mit Online Fragen im Chat (ohne Garantie)
 - Falls Regelungen es nicht mehr erlauben, würden wir wieder auf DT Online-Vorlesung wechseln

Umfrage: Wer von Ihnen hätte Stand JETZT prinzipiell Interesse an einer DT Hybrid-Vorlesung und würde in den Hörsaal kommen?

Umfrage

Inhalt

- 1. Einleitung
- 2. Kombinatorische Logik
- 3. Boole'sche Gleichungen
- 4. Boole'sche Algebra
- 5. Zusammenfassung

Agenda

- 1. Einleitung
- 2. Kombinatorische Logik
- 3. Boole'sche Gleichunger
- 4. Boole'sche Algebra
- 5. Zusammenfassung

Überblick der heutigen Vorlesung

- Kombinatorische Logik
 - ▶ Boole'sche Gleichungen
 - Boole'sche Algebra

Harris 2013/2016 Kap. 2.1 - 2.3

Agenda

- 1. Einleitung
- 2. Kombinatorische Logik
- 3. Boole'sche Gleichungen
- 4. Boole'sche Algebra
- 5. Zusammenfassung

Abstrakte Eigenschaften logischer Schaltungen

- Eingänge
- Ausgänge
- Spezifikation des Funktionalen Verhaltens = realisierte (boole'sche) Funktion
- Spezifikation des Zeitverhaltens

Komponenten einer logischen Schaltung

- Verbindungsknoten
 - ► Eingangs-Terminale: A, B, C
 - ► Ausgangs-Terminale: Y, Z
 - ► Interne Knoten: n_1
- Schaltungselemente
 - $ightharpoonup E_1, E_2, E_3$
 - ▶ jedes selbst eine Schaltung → Hierarchie

Arten von logischen Schaltungen

- kombinatorische Logik ("Schaltnetz")
 - Ausgänge hängen nur von aktuellen Eingangswerten ab
- sequentielle Logik ("Schaltwerk")
 - Ausgänge hängen von aktuellen Eingangswerten und internem Zustand ab
 - ⇒ Ausgänge indirekt abhängig von vorherigen Eingangswerten

Eigenschaften kombinatorischer Logik

- jedes Schaltungselement ist selbst kombinatorisch
- ▶ jeder Verbindungsknoten ist
 - Eingang in die Schaltung, oder
 - an genau ein Ausgangsterminal ("Treiber") eines Schaltungselements angeschlossen
- jeder Pfad durch die Schaltung besucht jeden Verbindungsknoten maximal einmal (zyklenfrei)

Agenda

- 1. Einleitung
- 2. Kombinatorische Logik
- 3. Boole'sche Gleichungen
- 4. Boole'sche Algebra
- 5. Zusammenfassung

Boole'sche Gleichungen LQ2-1

- beschreiben Ausgänge einer kombinatorischen Schaltung als (boole'sche) Funktion der Eingänge
- ⇒ Spezifikation des funktionalen Verhaltens (ohne zeitliche Information)
- unter Verwendung elementarer boole'scher Operatoren (sortiert nach *Operatorpräzedenz*):

ightharpoonup NOT: \overline{A}

 \triangleright AND: $AB = A \cdot B$

XOR: A ⊕ B

 \triangleright OR: A+B

Beispiel: Volladdierer

 $S = F_1 : (A, B, C_{in}) \in \mathbb{B}^3 \mapsto \mathbb{B}$

 $ightharpoonup C_{out} = F_2 : (A. B. C_{in}) \in \mathbb{B}^3 \mapsto \mathbb{B}$

 $\rightarrow S = A \oplus B \oplus C_{in}$

Grundlegende Definitionen

Komplement: boole'sche Variable mit einem Balken (invertiert)

 $\overline{A}, \overline{B}, \overline{C}$

Literal: Variable oder ihr Komplement

 $A, \overline{A}, B, \overline{B}, C, \overline{C}$

Implikant: Produkt von Literalen

 $ABC, A\overline{C}, BC$

Minterm: Produkt (UND, Konjunktion) über alle Eingangsvariablen

 $ABC, AB\overline{C}, \overline{A}BC$

Maxterm: Summe (ODER, Disjunktion) über alle Eingangsvariablen

 $(A + \overline{B} + \overline{C}), (A + B + \overline{C}), (\overline{A} + \overline{B} + \overline{C})$

Minterm LQ2-2 RQ2-2

- Produkt (Implikant), das jede Eingangsvariable genau einmal enthält
- entspricht einer Zeile in Wahrheitswertetabelle
- jeder Minterm wird für genau eine Eingangskombination wahr (unabhängig von Ergebnisspalte)

A	В	Y	Minterm
0	0	0	$m_0 = \overline{A} \overline{B}$
0	1	1	$m_1 = \overline{A} B$
1	0	1	$m_2 = A \overline{B}$
1	1	0	$m_3 = A B$

Disjunktive Normalform (DNF) = Sum-of-products (SOP)

- ▶ Summe aller Minterme, für welche die Funktion wahr ist
- ⇒ jede boole'sche Funktion hat genau eine DNF (abgesehen von Kommutation)
- ► Im Beispiel: $Y = m_1 + m_2 = \overline{A} B + A \overline{B}$
- \Rightarrow $A \oplus B$ nur kompakte Schreibweise für $\overline{A} B + A \overline{B}$

Α	В	Υ	Minterm
0	0	0	$m_0 = \overline{A} \overline{B}$
0	1	1	$m_1 = \overline{A} B$
1	0	1	$m_2 = A \overline{B}$
1	1	0	$m_3 = A B$

- Summe, welche jede Eingangsvariable genau einmal enthält
- entspricht einer Zeile in Wahrheitswertetabelle
- jeder Maxterm wird für genau eine Eingangskombination falsch (unabhängig von Ergebnisspalte)

A	В	Y	Maxterm
0	0	0	$M_0 = A + B$
0	1	1	$M_1 = A + \overline{B}$
1	0	1	$M_2 = \overline{A} + B$
1	1	0	$M_3 = \overline{A} + \overline{B}$

Konjunktive Normalform (KNF) = Product-of-sums (POS)

- ▶ Produkt aller Maxterme, für welche die Funktion falsch ist
- ⇒ jede boole'sche Funktion hat *genau eine* KNF (abgesehen von Kommutation)
- ► Im Beispiel: $Y = M_0 M_3 = (A + B) (\overline{A} + \overline{B})$
- $\Rightarrow A \oplus B$ nur kompakte Schreibweise für $(A + B) (\overline{A} + \overline{B})$

Α	В	Υ	Maxterm
0	0	0	$M_0 = A + B$
0	1	1	$M_1 = A + \overline{B}$
1	0	1	$M_2 = \overline{A} + B$
1	1	0	$M_3 = \overline{A} + \overline{B}$

Agenda

- 1. Einleitung
- 2. Kombinatorische Logik
- 3. Boole'sche Gleichungen
- 4. Boole'sche Algebra
- 5. Zusammenfassung

Boole'sche Algebra LQ3-1

- Rechenregeln boole'scher Gleichungen
 - Axiome: grundlegende Annahmen der Algebra (nicht beweisbar)
 - ► Theoreme: komplexere Regeln, die sich aus Axiomen ergeben (beweisbar)
- analog zur Algebra auf natürlichen Zahlen
- lacktriangle ergänzt um Optimierungen durch Begrenzung auf ${\mathbb B}$
- Axiome und Theoreme haben jeweils duale Entsprechung: AND \leftrightarrow OR, $0 \leftrightarrow 1$

Axiome der boole'schen Algebra

(Dualität: AND \leftrightarrow OR, 0 \leftrightarrow 1)

	Axiom		Duales Axiom	Bedeutung
A1	$B \neq 1 \Rightarrow B = 0$	A1'	$B \neq 0 \Rightarrow B = 1$	Dualität
A 2	$\overline{0} = 1$		$\overline{1} = 0$	Negieren
А3	$0 \cdot 0 = 0$	A3'	1 + 1 = 1	Und / Oder
A 4	1 · 1 = 1	A4'	0 + 0 = 0	Und / Oder
A 5	$0\cdot 1=1\cdot 0=0$	A5'	1 + 0 = 0 + 1 = 1	Und / Oder

Theoreme der boole'schen Algebra

	Theorem		Duales Theorem	Bedeutung
T1	$A \cdot 1 = A$	T1'	A + 0 = A	Neutralität
T2	$A \cdot 0 = 0$	T2'	A+1=1	Extremum
Т3	$A \cdot A = A$	T3'	A + A = A	Idempotenz
T4	$\overline{\overline{A}} = A$			Involution
T5	$A \cdot \overline{A} = 0$	T5'	$A + \overline{A} = 1$	Komplement
T6	$A \cdot B = B \cdot A$	T6'	A + B = B + A	Kommutativität
T7	$A\cdot (B\cdot C)=(A\cdot B)\cdot C$	T7'	A+(B+C)=(A+B)+C	Assoziativität
T8	$A\cdot (B+C)=(A\cdot B)+(A\cdot C)$	T8'	$A+(B\cdot C)=(A+B)\cdot (A+C)$	Distributivität
Т9	$A\cdot (A+B)=A$	T9'	$A + (A \cdot B) = A$	Absorption
T10	$(A\cdot B)+(A\cdot \overline{B})=A$	T10'	$(A+B)\cdot (A+\overline{B})=A$	Zusammenfassen
T11	$(A \cdot B) + (\overline{A} \cdot C) + (B \cdot C) = (A \cdot B) + (\overline{A} \cdot C)$	T11'	$(A+B)\cdot (\overline{A}+C)\cdot (B+C)=$ $(A+B)\cdot (\overline{A}+C)$	Konsensus
T12	$\overline{A \cdot B \cdot C \dots} = \overline{A} + \overline{B} + \overline{C} \dots$	T12'	$\overline{A+B+C\dots}=\overline{A}\cdot\overline{B}\cdot\overline{C}\dots$	De Morgan

T1: Neutralität von 1 und 0

$$A > D > A + 0 = A$$

T2: Extremum von 0 und 1

$$\begin{array}{c}
A > \\
0 > \\
\end{array}$$

$$\begin{array}{c} A \\ 1 \end{array} \longrightarrow A + 1 = 1$$

T3: Idempotenz

$$\begin{array}{c} A \\ A \end{array} \longrightarrow A + A = A$$

T4: Involution

T5: Komplement

$$A + \overline{A} = 1$$

T6: Kommutativität

$$\begin{array}{c} A \\ B \end{array} \longrightarrow A \cdot B = B \cdot A \longleftrightarrow \begin{array}{c} E \\ A \end{array}$$

$$\begin{array}{c} A \\ B \end{array} \longrightarrow A + B = B + A \longleftrightarrow \begin{array}{c} E \\ A \end{array}$$

T7: Assoziativität

T8: Distributivität

$$A \rightarrow A \cdot (B+C) = (A \cdot B) + (A \cdot C) \leftarrow A \cdot B$$

!!! Letzteres gilt **NICHT über den ganzen Zahlen**, aber in boole'scher Algebra !!!

T9: Absorption

T10: Zusammenfassen

T11: Konsensus

T12: De Morgan

$$\overrightarrow{A} \rightleftharpoons \overrightarrow{B} \rightleftharpoons \overrightarrow{A} + \overrightarrow{B} \rightleftharpoons \overrightarrow{A} + \overrightarrow{B} \rightleftharpoons \overrightarrow{A} + \overrightarrow{B} \rightleftharpoons \overrightarrow{A} + \overrightarrow{B} \rightleftharpoons \overrightarrow{A} \Rightarrow \overrightarrow{B} \rightleftharpoons \overrightarrow{A} \Rightarrow \overrightarrow{B} \Rightarrow \overrightarrow{A} \Rightarrow$$

Augustus De Morgan, 1806 - 1871

- erster Präsident der London Mathematical Society
- Lehrer von Ada Lovelace
- De Morgan'sche Regeln:
 - Das Komplement des Produkts ist die Summe der Komplemente.
 - Das Komplement der Summe ist das Produkt der Komplemente.

Umfrage

Beweis für Theoreme

- ► Methode 1: Überprüfen aller Möglichkeiten
- ▶ Methode 2: Gleichung durch Axiome und andere Theoreme vereinfachen

Beweis für Distributivität (T8) durch Überprüfen aller Möglichkeiten

Α	В	С	B+C	A(B+C)	A B	A C	A B + A C
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Beweis für Absorption (T9) durch Anwendung von Axiomen und Theoremen

$A\cdot(A+B)$	
$= A \cdot A + A \cdot$	В
= A + A·	В
= A · 1 + A ·	В
$= A \cdot (1 + B)$	
= <i>A</i> · 1	
= A	

Distributivität
Idempotenz
Neutralität
Distributivität
Extremum
Neutralität
q.e.d.

Beweis für Zusammenfassen (T10) durch Anwendung von Axiomen und Theoremen

	$A \cdot B + A \overline{B}$
=	$A \cdot (B + \overline{B})$
=	<i>A</i> ⋅ 1
=	Α

Distributivität Komplement Neutralität q.e.d.

Beweis für Konsensus (T11) durch Anwendung von Axiomen und Theoremen

$$A \cdot B + \overline{A} \cdot C + B \cdot C$$
 Neutralität
$$= A \cdot B + \overline{A} \cdot C + 1 \cdot B \cdot C$$
 Komplement
$$= A \cdot B + \overline{A} \cdot C + (A + \overline{A}) \cdot B \cdot C$$
 Distributivität
$$= A \cdot B + \overline{A} \cdot C + A \cdot B \cdot C + \overline{A} \cdot B \cdot C$$
 Kommutativität
$$= A \cdot B + A \cdot B \cdot C + \overline{A} \cdot C + \overline{A} \cdot C \cdot B$$
 Neutralität
$$= A \cdot B \cdot 1 + A \cdot B \cdot C + \overline{A} \cdot C \cdot 1 + \overline{A} \cdot C \cdot B$$
 Distributivität
$$= A \cdot B \cdot (1 + C) + \overline{A} \cdot C \cdot (1 + B)$$
 Extremum
$$= A \cdot B \cdot 1 + \overline{A} \cdot C \cdot 1$$
 Neutralität
$$= A \cdot B \cdot 1 + \overline{A} \cdot C \cdot 1$$
 Neutralität
$$= A \cdot B \cdot 1 + \overline{A} \cdot C \cdot 1$$
 Q.e.d.

Logikminimierung

Logikminimierung RQ3-1

$$Y = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C + A B C$$

$$= \overline{A} (\overline{B} \overline{C} + \overline{B} C) + A (\overline{B} \overline{C} + \overline{B} C) + A B C$$

$$= \overline{A} (\overline{B} (\overline{C} + C)) + A (\overline{B} (\overline{C} + C)) + A B C$$

$$= \overline{A} \overline{B} + A \overline{B} + A B C$$

$$= (\overline{A} + A) \overline{B} + A B C$$

$$= \overline{B} + A B C$$

- weitere Vereinfachungen möglich?
- $Y = \overline{B} + AC$
- Systematik notwendig, um minimale Ausdücke zu erkennen/finden

Agenda

- 1. Einleitung
- 2. Kombinatorische Logik
- 3. Boole'sche Gleichungen
- 4. Boole'sche Algebra
- 5. Zusammenfassung

Zusammenfassung und Ausblick

- Kombinatorische Logik
- ▶ Boole'sche Gleichungen
- Boole'sche Algebra
- Nächste Vorlesung behandelt
 - Logikminimierung und -realisierung