

IIC1253 — Matemáticas Discretas

Tarea 1 – Respuesta Pregunta 1

Pregunta 1

1. ¿ Es verdad que si $\alpha \not\equiv \beta$, entonces $\alpha \equiv \neg \beta$? Demuestre o de un contraejemplo. Para probar que no se cumple basta con tomar

$$p \to q \not\equiv p$$

p	q	$p \rightarrow q$	p	$\neg p$
0	0	1	0	1
0	1	1	0	1
1	0	0	1	0
1	1	1	1	0

Notamos que no se cumple:

$$p \to q \equiv \neg p$$

Por lo tanto no se cumple lo enunciado.

2. ¿ Es verdad que si $\Sigma \vDash \alpha$, entonces $\neg \alpha \vDash \neg \beta$ para cualquier fórmula β en Σ ? Demuestre o de un contraejemplo.

Para probar que no se cumple tomamos la consecuencia lógica $\Sigma \vDash \alpha$:

$$\{p,p\to q\}\vDash q$$

Donde se cumple que cuando p y $p \to q$ son verdaderos q también lo es, por lo que $\alpha = q$ es consecuencia lógica de $\Sigma = \{p, p \to q\}$.

Del enunciado se debiese cumplir que:

$$\{\neg q\} \vDash \neg p$$

$$\{\neg q\} \vDash \neg (p \to q)$$

Al realizar la tabla de verdad obtenemos:

p	q	$ \neg q$	$\neg p$	$\neg(p \to q)$
0	0	1	1	0
0	1	0	1	0
1	0	1	0	1
1	1	0	0	0

Por lo que no se cumple que

$$\{\neg q\} \vDash \neg p$$
$$\{\neg q\} \vDash \neg (p \to q)$$

ya que hay casos en los que $\neg q$ es verdadero y $\neg p$ es falso o $\neg (p \rightarrow q)$ es falso.

3. Demuestre que una valuación v_1,\ldots,v_n hace verdadera a la fórmula:

$$(\cdots((p_1 \leftrightarrow p_2) \leftrightarrow p_3) \cdots \leftrightarrow p_n)$$

si, y solo si, el número de valores falsos en v_1, \ldots, v_n es par. Para esto tomamos el caso n=3:

$$((p_1 \leftrightarrow p_2) \leftrightarrow p_3)$$

y realizamos la tabla de verdad

p_1	p_1	p_1	$((p_1 \leftrightarrow p_2) \leftrightarrow p_3)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Notamos que para este caso la expresión se vuelve verdadera si hay una cantidad par de ceros. Si ahora definimos

$$s_1 = ((p_1 \leftrightarrow p_2) \leftrightarrow p_3)$$

y planteamos el caso n=4 de la forma

$$s_1 \leftrightarrow p_4$$

y formamos la tabla de verdad obtendremos

s_1	p_4	$s_1 \leftrightarrow p_4$
0	0	1
0	1	0
1	0	0
1	1	1

Notamos que cuando s_1 toma el valor falso es porque hay una cantidad impar de ceros en dicha expresión, luego si p_4 es cero habrá una cantidad par de ceros por lo que la expresión $s_1 \leftrightarrow p_4$ será verdadera.

Ahora para el caso genérico si tomamos la expresión

$$((s_{n-3} \leftrightarrow p_n) \leftrightarrow p_{n+1})$$

y suponemos que se cumple el que s_{n-3} es verdadero si y solo si la cantidad de valores falsos es par, entonces realizamos la tabla de verdad correspondiente

s_{n-3}	p_n	p_{n+1}	$((s_{n-3} \leftrightarrow p_n) \leftrightarrow p_{n+1})$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Donde de igual forma se cumple que si la suma de valores falsos es par la expresión final es verdadera, y no se cumple en ningún otro caso.

IIC1253 — Matemáticas Discretas

Tarea 1 – Respuesta Pregunta 2

Pregunta 2

Sea α y β dos formulas proposicionales tal que $\alpha \vDash \beta$. Demuestre que existe una formula γ tal que $\alpha \vDash \gamma$, $\gamma \vDash \beta$ y γ solo contiene variables mencionadas en α y β simultáneamente.

Para eso primero probaremos que para que se cumpla $\alpha \vDash \beta$ estos deben tener elementos en común. Si tomamos

$$\alpha = \{\alpha_1, \ldots, \alpha_n\}$$

con

$$\alpha_i = \alpha_i(p,q), \forall i \in \{1,\ldots,n\}$$

У

$$\beta = \beta(w)$$

Al realizar la tabla de verdad obtendremos

p	q	w	α	β
0	0	0		В
0	1	0	A	
1	0	0		
1	1	0		
0	0	1		B'
0	1	1	4	
1	0	1	A	
1	1	1		

Donde A será una cadena de ceros y unos dependiente de p y q, B será una cadena de solo ceros o solo unos y B' será la cadena opuesta a B a menos que β sea una contradicción o tautología, en ese caso α será una contradicción o una tautología y siempre se puede formar una tautología o contradicción γ con los elementos que tengan en común ($p \lor \neg p$ y $p \land \neg p$, 0 o 1 en caso de no tener elementos en común).

En los demás casos no se puede cumplir que $\alpha \vDash \beta$ a menos que tengan elementos comunes, ya que si hay una concordancia entre algún elemento de A con uno de B, que ambos sean 1 para alguna valuación, como B y B' son opuestos y A se compara también con B' si antes coincidían ahora no lo harán ya que A seguirá teniendo un 1 pero B' tendrá un 0.

Ahora como la consecuencia lógica viene dada solo por lo elementos comunes de ambos, α puede tener como consecuencia lógica a alguna proposición que este formada por elementos de α y β y está a su vez tenga como consecuencia lógica a β ya que tienen elementos en común. Para encontrarla basta realizar un DNF para obtener los valores de 1 donde α y β coinciden y eliminar las demás variables de las que no dependen simultáneamente α y β .