

Cono adaptador

Andrés Pedraza Rodríguez

PROPIEDADES DEL MATERIAL

allfitdist

DISEÑO GEOMÉTRICO

Rigidizadores helicoidales (12)

• Mantienen la integridad de la estructura

 Soportan poca carga pero pueden pandear si son muy ligeros

Rigidizadores verticales (12)

 Soportan la carga de compresión principalmente

 Son los que más influyen en la carga de pandeo

Anillos Horizontales (5)

- Trabajan a tracción evitando que se separen los rigidizadores hacia fuera
- Los de los extremos son los más solicitados
- Son los que más influyen en la deformación

MODELO FEM

DEFORMACIONES

Desplazamiento: -0.357 mm

PANDEO

Carga crítica: 15,397 kN

FALLOS

Razones para mantener el elemento TRIA:

- Representa zonas de unión de piezas (solo trabaja la matriz)
- El resto de la estructura es capaz de soportar las solicitaciones aún así

modelos avanzados

Coeficiente de rozameinto carbono/acero pulido

~ 0.11

Desplazamiento vertical

-1.739

conclusiones

Masa del Tesla Roadster 1235 kg

(~12.115 kN)

Masa del cono adaptador 154.3 g