WHITCOMBE'S

MAP OF AUCKLAND

CITY & SUBURBS
WHITCOMBE & TOMBS LTD.

A probabilistic early-warning signal for noiseinduced tipping in quasi-stationary regimes of metastability

Davide Papapicco*

Graham Donovan* Lauren Smith* Merryn Tawhai†

*Department of Mathematics, Faculty of Science, University of Auckland

†Auckland Bioengineering Institute

Definition

Definition

Definition

Metric	Critical slowing down	Flickering
Variance	✓	X
Skewness	Х	✓

Definition

Metric	Critical slowing down	Flickering
Variance	✓	X
Skewness	X	✓

Definition

Metric	Critical slowing down	Flickering
Variance	✓	X
Skewness	Х	✓

^[1] Early Warning Signals toolbox

Measures of incoming criticality

The stability landscape

- has a physical interpretation;
- shows a consisten trend for an incoming tipping;
- relies on little to no prior knowledge of the nature of the system.

- has a physical interpretation;
- shows a consisten trend for an incoming tipping;
- relies on little to no prior knowledge of the nature of the system.
- Input: timeseries data

- has a physical interpretation;
- shows a consisten trend for an incoming tipping;
- relies on little to no prior knowledge of the nature of the system.
- Input: timeseries data
- 2) Algorithm:

- has a physical interpretation;
- shows a consisten trend for an incoming tipping;
- relies on little to no prior knowledge of the nature of the system.
- Input: timeseries data
- 2) Algorithm:
 - 2.1) assemble a histogram;

- has a physical interpretation;
- shows a consisten trend for an incoming tipping;
- relies on little to no prior knowledge of the nature of the system.
- 1) Input: timeseries data
- 2) Algorithm:
 - 2.1) assemble a histogram;
 - 2.2) find the best curve fit;

- has a physical interpretation;
- shows a consisten trend for an incoming tipping;
- relies on little to no prior knowledge of the nature of the system.
- 1) Input: timeseries data
- 2) Algorithm:
 - 2.1) assemble a histogram;
 - 2.2) find the best curve fit;
 - 2.3) reconstruct the landscape;

- has a physical interpretation;
- shows a consisten trend for an incoming tipping;
- relies on little to no prior knowledge of the nature of the system.
- Input: timeseries data
- 2) Algorithm:
 - 2.1) assemble a histogram;
 - 2.2) find the best curve fit;
 - 2.3) reconstruct the landscape;
- 3) Output: probability of tipping^[3]

^[3] Kramers, H., Physica, 7 (1940)

An EWS from data

References

H. A. Kramers, Physica **7** (1940).

C. Kuehn, Physica D **240** (2011).

M. Scheffer, et al., Science 338 (2012).

Thank you.