Análisis II - Análisis Matemático II - Matemática 3

Examen Final - 23/02/2018

Nombre: L. U.: Carrera:

Ej. 1	Ej. 2	Ej. 3	Ej. 4	Nota

- 1. Sea a > 0 y $f : [a, b] \subset \mathbb{R} \to \mathbb{R}$ una función de clase C^1 . Considerar la superficie de revolución obtenida al girar el gráfico de la función f(x) = z alrededor del eje z. Dar una fórmula expresada en términos de f para el área de esta superficie.
- **2**. Sea $F: \mathbb{R}^3 \to \mathbb{R}^3$ un campo vectorial de clase C^1 . Para un punto $p \in \mathbb{R}^3$ y un número real r > 0, denotamos con B(p, r) a la bola de centro p y radio r. Probar que

$$\operatorname{div} F(p) = \lim_{r \to 0} \frac{1}{\operatorname{Vol}(B(p, r))} \int_{\partial B(p, r)} F \cdot d\mathbf{S},$$

donde la superficie $\partial B(p,r)$ tiene la orientación exterior.

3. Sean $f, a : \mathbb{R} \to \mathbb{R}$ dos funciones continuas. Describir todas las soluciones de la ecuación diferencial

$$y' + a(x)y = f(x).$$

4. Considerar el sistema

$$X'(t) = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix} X(t)$$

con $\alpha, \beta \in \mathbb{R}$. Encontrar todos los valores de α y β que garanticen que la solución es acotada para t > 0.

Esbozar el diagrama de fases cuando $\alpha = 1$ y $\beta = -1$.

Justifique todas sus respuestas.