BAB III CONTOH ILUSTRATIF

Pada gambar di atas, setiap buah yang memasuki sensor akan direpresentasikan dalam bentuk vektor tiga dimensi :

$$\mathbf{p} = \begin{bmatrix} bentuk \\ tekstur \\ berat \end{bmatrix}$$

Dengan menggunakan ketentuan berikut ini :

Elemen	Nilai	Arti
bentuk	1 dan -1	bulat dan lonjong
tekstur	1 dan -1	halus dan kasar
berat	1 dan -1	> 1 pound dan
		< 1 pound

prototip jeruk akan direpresentasikan sebagai
$$\mathbf{p_1} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$

prototip apel akan direpresentasikan sebagai
$$\mathbf{p_2} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

3.1 Perseptron

3.1.1 Kasus dua input

Jika bobot $w_{1,1} = -1$ dan bobot $w_{1,2} = 1$, maka keluaran neuron adalah :

$$a = hardlims(n) = hardlims([-1 1])\mathbf{p} + b)$$

Jika perkalian menghasilkan nilai $\geq -b$ maka output bernilai 1.

Jika perkalian menghasilkan nilai < -b maka output bernilai −1.

Dengan asumsi bahwa b = -1, dapat dibuat batas keputusan seperti pada gambar berikut ini

3.1.2 Contoh pengenalan pola

Untuk masalah pengenalan apel dan jeruk di atas, karena hanya terdapat dua kategori, maka dapat digunakan perseptron satu neuron. Dengan vektor input tiga dimensi, persamaan perseptron menjadi :

$$a = hardlims \left[\begin{bmatrix} w_{1,1} & w_{1,2} & w_{1,3} \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} + b \right]$$

Bidang batas untuk masalah ini adalah sbb. :

Dengan matriks bobot $\mathbf{W} = [0 \ 1 \ 0]$ dan bias b = 0, maka klasifikasi apel dan jeruk dapat berlangsung sempurna, karena :

Orange:

$$a = hardlims \left[\begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} + 0 \right] = -1 (orange),$$

Apple:

$$a = hardlims \left[\begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + 0 \right] = 1 (apple) .$$

3.2 Jaringan Hamming

3.2.1 Feedforward layer

Matriks bobot :
$$\mathbf{W}^1 = \begin{bmatrix} \mathbf{p}_1^T \\ \mathbf{p}_2^T \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & -1 \end{bmatrix}$$

Jika vektor bias : $\mathbf{b}^1 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$, maka keluaran *feedforward layer* :

$$\mathbf{a}^{1} = \mathbf{W}^{1}\mathbf{p} + \mathbf{b}^{1} = \begin{bmatrix} \mathbf{p}_{1}^{T} \\ \mathbf{p}_{2}^{T} \end{bmatrix} \mathbf{p} + \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} \mathbf{p}_{1}^{T}\mathbf{p} + 3 \\ \mathbf{p}_{2}^{T}\mathbf{p} + 3 \end{bmatrix}.$$

3.2.2 Recurrent layer

Persamaan kompetisi:

$$\mathbf{a}^2$$
 (0) = \mathbf{a}^1 (kondisi awal)

dan

$$\mathbf{a}^2(t+1) = \mathbf{poslin}(\mathbf{W}^2\mathbf{a}^2(t))$$

(superscript mengindikasikan nomor lapisan, bukan pangkat!)

Matriks bobot : $\mathbf{W}^2 = \begin{bmatrix} 1 & -\epsilon \\ -\epsilon & 1 \end{bmatrix} \text{ dengan } \epsilon \text{ adalah sebuah nilai yang}$

lebih kecil dari 1/(S - 1), dan S adalah jumlah neuron pada lapisan recurrent

Iterasi lapisan recurrent berlangsung sbb. :

$$\mathbf{a}^{2}(t+1) = \mathbf{poslin}\left(\begin{bmatrix} 1 & -\varepsilon \\ -\varepsilon & 1 \end{bmatrix} \mathbf{a}^{2}(t)\right) = \mathbf{poslin}\left(\begin{bmatrix} a_{1}^{2}(t) - \varepsilon a_{2}^{2}(t) \\ a_{2}^{2}(t) - \varepsilon a_{1}^{2}(t) \end{bmatrix}\right).$$

3.2 Jaringan Hopfield

Jika matriks bobot dan bias :
$$\mathbf{W} = \begin{bmatrix} 0.2 & 0 & 0 \\ 0 & 1.2 & 0 \\ 0 & 0 & 0.2 \end{bmatrix}$$
; $\mathbf{b} = \begin{bmatrix} 0.9 \\ 0 \\ -0.9 \end{bmatrix}$ maka

operasi jaringan Hopfield berturut-turut adalah:

$$a_1(t+1) = satlins(0.2 \ a_1(t) + 0.9)$$

$$a_2(t+1) = satlins(1.2 \ a_2(t))$$

$$a_3(t+1) = satlins(0.2 \ a_3(t) - 0.9)$$

Digunakan contoh jeruk (\mathbf{p}_1) dan apel (\mathbf{p}_2) di atas. Faktor pembeda kedua objek terdapat pada elemen ke dua vektor ciri, sementara elemen-1 dan elemen-3 masing-masing bernilai 1 dan -1.

Jika elemen ke-2 diberi nilai 1, maka hasil iterasi adalah sbb. :

$$\mathbf{a}(0) = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix}; \ \mathbf{a}(1) = \begin{bmatrix} 0.7 \\ -1 \\ -1 \end{bmatrix}; \ \mathbf{a}(2) = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}; \ \mathbf{a}(3) = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$$

yang dengan jelas menunjuk kategori jeruk.