Universidad de Granada	Fundamentos Físicos y Tecnológicos G.I.I.	Examen de Teoría 3 de Febrero de 2012	
Apellidos:			Firma:
Nombre:	DNI:	Grupo:	

- Responde a cada pregunta en hojas separadas.
- Indica en cada hoja tu nombre, el número de página y el número de páginas totales que entregas.
- Lee detenidamente los enunciados antes de contestar.
- No es obligatorio hacer los ejercicios en el orden en el que están planteados.
- 1. Un cilindro dieléctrico de radio R=2cm y de longitud L=10m (L»R) se carga con Q=-3C.
 - *a*) Calcula el campo eléctrico creado en cualquier punto del espacio por esta estructura. Explique razonadamente la dirección y sentido de dicho campo.(**0.5 puntos**)
 - b) Calcula la diferencia de potencial entre dos puntos que están a 5cm y 7cm del centro del cilindro respectivamente. (0.5 puntos)

Ayuda:
$$\varepsilon_0 = 8.85 \ 10^{-12} C^2/Nm^2$$
, $S_{lat} = 2\pi r l$, $S_{base} = \pi r^2$ y $V = \pi r^2 l$

- 2. En el circuito de la figura 1:
 - a) Calcula el equivalente Thevenin del circuito visto desde los puntos A y B si R= $2k\Omega$, V=6V, I₁=4mA y I₂=2mA.(1.5 puntos)
 - b) Calcula la potencia en cada una de las fuentes del circuito justificando si es consumida o suministrada.(1.2 puntos)

Figura 1: Circuito para el problema 2

3. Calcula en el circuito de la figura 2 el punto de polarización del transistor (I_D y V_{DS}). Datos: Para el diodo V_T =0.7V. Para el MOSFET V_T =2V, V_{CC} =10V, R_1 =100k Ω , R_2 =5k Ω , k= 20 $10^{-4}A/V^2$.(1.5 puntos)

Figura 2: Circuito para el problema 3

- 4. En el circuito de la figura 3, $R_1=R_2=R_3=10k\Omega$ y L=1mH.
 - a) Calcula la función de transferencia. (1 punto)
 - b) Dibuja y explica el diagrama de Bode en amplitud y en fase. (1.5 puntos)
 - c) Calcula la intensidad que circula por R₃. (0.25 puntos)
 - d) Si $v_i(t) = 10\cos(2 \cdot 10^5 t)V$, ¿cual es la expresión de $v_o(t)$? (0.25 puntos)

Figura 3: Circuito para el problema 4

- 5. Dibuja el circuito que implementa la función lógica $f(A,B,C)=A\cdot C+B$ teniendo en cuenta que se necesita que el consumo de potencia sea el menor posible (**0.5 puntos**). Para las siguientes combinaciones de entradas:
 - a) A=1,B=1,C=1
 - b) A=0,B=0,C=0
 - c) A=0,B=1,C=0

explica razonadamente cual es el valor de la función usando el circuito que has pintado y comentando el estado en el que se encuentran cada uno de los transistores que ha utilizado.(0.5 puntos)

6. Explica de forma breve el funcionamiento y la utilidad del circuito de la figura 4. (0.8 puntos)

Figura 4: Circuito para el problema 6