

Communication

pubs.acs.org/JACS

The Cyanide Ligands of [FeFe] Hydrogenase: Pulse EPR Studies of ¹³C and ¹⁵N-Labeled H-Cluster

William K. Myers, †,§ Troy A. Stich, †,§ Daniel L. M. Suess,† Jon M. Kuchenreuther,† James R. Swartz,‡ and R. David Britt*,†

Supporting Information

ABSTRACT: The two cyanide ligands in the assembled cluster of [FeFe] hydrogenase originate from exogenous L-tyrosine. Using selectively labeled tyrosine substrates, the cyanides were isotopically labeled via a recently developed *in vitro* maturation procedure allowing advanced electron paramagnetic resonance techniques to probe the electronic structure of the catalytic core of the enzyme. The ratio of the isotropic ¹³C hyperfine interactions for the two CN⁻ ligands—a reporter of spin density on their respective coordinating iron ions—collapses from ≈5.8 for the H_{ox} form of hydrogenase to <2 for the CO-inhibited form. Additionally, when the maturation was carried out using [¹⁵N]-tyrosine, no features previously ascribed to the nitrogen of the bridging dithiolate ligand were observed suggesting that this bridge is not sourced from tyrosine.

ydrogenases catalyze the redox interconversion of protons and H₂ and thus have received much focus as key elements in biological solar fuel production. The [FeFe] form of hydrogenase (HydA) is particularly active, and its catalytic H-cluster consists of a [4Fe-4S] cluster ([4Fe-4S]_H) linked through a cysteine sulfur to a unique dinuclear iron cluster ([FeFe]_H, Scheme 1). This subcluster possesses five inorganic ligands—two CN⁻ and three CO—as well as a bridge recently assigned as dithiomethylamine (DTMA). The subcluster possesses for the control of the control o

Active HydA can be expressed in *Escherichia coli* only by also adding genes for three Fe-S containing maturase enzymes—HydE, HydF, and HydG—that are required for production of the [FeFe]_H subcluster.⁵ Alternatively, synthetic dinuclear Fe clusters can be transferred to HydA apoprotein (containing only the [4Fe-4S]_H subcluster) to produce active

Scheme 1

enzyme.⁴ We are utilizing a different technology: the HydE, HydF, and HydG maturases are added to a solution of apo-HydA for *in vitro* maturation and concurrent activation.⁶ This cell-free biosynthetic method allows for facile and precise isotope incorporation into the [FeFe]_H subcluster.⁷

The Fe-bound CO and CN $^-$ ligands of the [FeFe] $_{\rm H}$ subcluster are sourced from L-tyrosine (Tyr) and produced by HydG. S $^{-10}$ In the present study, we use the cell-free biosynthetic method along with α - 13 C-Tyr ([2- 13 C]-Tyr) and [15 N]-Tyr to specifically label the two CN $^-$ ligands with the magnetic nuclei 13 C and 15 N (I=1/2). The hyperfine interaction (HFI) of these magnetic nuclei with the unpaired electrons distributed over the H-cluster serve as site-specific reporters of its electronic structure, important metrics for evaluating computational models of the H-cluster.

When poised in the active oxidation state known as Hox the [4Fe-4S]_H subcluster is diamagnetic with a formal charge of 2+, 13 though the [4Fe-4S]_H carries some unpaired density due to the exchange interaction with the [FeFe]_H fragment. [FeFe]_H itself is in a formally mixed-valence Fe(I,II) S = 1/2state that is characterized by a rhombic electron paramagnetic resonance (EPR) spectrum (Figure 1A, top). While the overall oxidation state of the Hox form of the H-cluster is widely accepted, the distribution of the valences about the cluster is still debated. One formulation based on results from electronic structure calculations assigns a 1+ oxidation state to the Fe that is distal to the [4Fe-4S]_H subcluster (Fe_d), leaving the proximal Fe ion (Fe_n) in the ferrous oxidation state.¹⁴ However, ⁵⁷Fe electron nuclear double resonance (ENDOR) spectroscopic studies of HydA from Desulfovibrio desulfuricans (DdS) found that the spin density was shared more-or-less equally over both iron ions of [FeFe]_H. 15 Many computational models of the Hcluster have been judged based on the quality of the predicted magnetic parameters. Initially, only the 57Fe HFI were employed as a discriminating constraint. 14,16 More recently, however, ligand HFI, from either the nearby, naturally abundant 14N nuclei or from 13C nuclei introduced by treatment of HydA with isotopically labeled ¹³CO gas, have been used to evaluate computer-generated structural models of the H-cluster. 3,16,17 Unfortunately, in the case of the ¹⁴N hyperfine parameters, the assignment of the observed signals to

Received: July 11, 2014 Published: August 15, 2014

12237

[†]Department of Chemistry, University of California, Davis, Davis, California 95616 United States

[‡]Department of Chemical Engineering and Department of Bioengineering, Stanford University, Stanford, California 94305 United States

Figure 1. X-band (9.4 GHz) CW EPR spectra (A) of the $H_{\rm ox}$ form of HydA matured using natural-abundance Tyr (top) or [2- 13 C]-Tyr (bottom). Davies ENDOR spectra (B) of HydA ([2- 13 C]-Tyr) collected at 1158, 1192, and 1212 mT (top to bottom). Corresponding g-values given in figure. Q-band (33.79 GHz) Mims ENDOR spectra (C) of HydA ([2- 13 C]-Tyr) collected at 1150, 1157, 1164, 1171, 1178, 1184, 1191, 1198, and 1205 mT (top to bottom). Corresponding g-values given in figure. Traces of experimental data are shown in black; simulations for the $H_{\rm ox}$ form are presented in red.

specific nitrogen atoms is ambiguous owing to the high natural-abundance of $^{14}\mathrm{N};$ and the $^{13}\mathrm{CO}\text{-treatment}$ aids only in characterizing the $H_{ox}\text{-CO}$ form. We therefore reasoned that studies of the electronic structure of H_{ox} would be aided by selective incorporation of magnetic nuclei into the diatomic ligands of the $[FeFe]_H$ cluster.

The X-band continuous-wave (CW) EPR spectrum of *in vitro* matured HydA from *Clostridium pasteurianum* (CpI) poised in the H_{ox} state is consistent with that published previously with $g=2.100,\ 2.040,\ 1.996$ (Figure 1A). Using [2- 13 C]-Tyr in the maturation of HydA leads to a splitting of ≈ 1 mT centered at each g-value of this H_{ox} signal (cf. top and bottom traces in Figure 1A). Q-band Davies ENDOR spectra acquired at field positions corresponding to each g-value (Figure 1B) confirm this strong 13 C HFI by showing features at ≈ 27 MHz that have no counterpart in analogous spectra of HydA matured using natural-abundance tyrosine. 19 The variation in shape and

breadth of these features as a function of resonant field position results from orientation selection, i.e., at certain field positions, a discrete subset of molecular orientations of HydA are probed. Proper simulation of this behavior allows for the orientation of the corresponding ¹³C hyperfine tensor to be determined relative to the molecular *g*-tensor. These parameters are summarized in Table 1. The degree of ¹³C HFI anisotropy is consistent with that of other Fe-bound cyanides (cf. Table 1).

Orientation-selected Mims ENDOR spectra (Figure 1C) reveal three distinct classes of more weakly coupled ¹³C nuclei $(A_{\rm iso} = 3.80, 4.87, \text{ and } \approx 7.0 \text{ MHz})$. These features are centered about the ¹³C Larmor frequency and split by the magnitude of the HFI. Analogous data sets collected for CO-treated samples (Figures S3 and S4) possess similar features at ± 1.8 and ± 3.6 MHz, confirming that they arise from the two cyanide ligands in the H_{ox}-CO form of hydrogenase (labeled as CN_a and CN_b since we cannot distinguish between the Fe_p-bound and Fe_dbound cyanides at this time). Note the absence of contributions from H_{ov}-CO to the ENDOR spectra acquired at the extreme field positions (g = 2.099 and 2.004) of H_{ox} (Figure 1C). This results from the relative narrowness of the H_{ox}-CO signal. This narrowness is also why we see strong contributions from H_{ox}-CO even though the contamination is relatively small. The remaining features centered at ±2.2 MHz in Figure 1C are thus ascribed to the other CN^- ligand in $H_{\rm ox}$. Based on the crystallographic results, 2 $Fe_{\rm d}$ possesses a square

pyramidal local geometry whose z-axis points along the bond between the Fe_d ion and the bridging CO. For the sixcoordinate Fe_p, the identity of the local z-axis is less obvious, but computational results suggest that it is aligned along the ${\rm Fe_p\text{-}CO_{bridge}}$ bond. 14 As the two terminal ${\rm CN^-}$ ligands appear to be bound in the same position relative to the local z-axis of their respective Fe ions, the ratio of the isotropic ¹³C HFI should serve as a reporter of the relative spin density on each iron. Again, based on earlier computational results, we assign the larger ¹³C HFI as arising from the distal Fe-bound cyanide of H_{ox} . For the proximal Fe-bound cyanide, we measure A_{iso} = 4.87 MHz. This ratio of \approx 5.8 correlates approximately with the Fe_d:Fe_p ratio of computed Mulliken spin populations. 14,16 For H_{ox} -CO, the $A_{iso}(^{13}CN_a):A_{iso}(^{13}CN_b)$ ratio drops to <2 (see magnetic parameters listed in Table 1) indicating a much more even distribution of spin density over the two Fe ions than what was observed for Hox that is again consistent with computational results. 14,16 Interestingly, the $^{13}\mathrm{C}$ HFI tensors for the two CN⁻ ligands in the H_{ox}-CO form lack significant anisotropy compared to other Fe-bound cyanides (cf. Table 1)

X- and Q-band HYSCORE spectra for natural-abundance H_{ox} (Figure 2, top) are essentially identical to those obtained earlier by Silakov et al.³ When the *in vitro* maturation of HydA is performed with ¹⁵N-labeled tyrosine ([¹⁵N]-Tyr), the nitrogens of the cyanide ligands become selectively isotopically labeled.⁹ The corresponding HYSCORE data are strikingly different from those of natural-abundance H_{ox} (cf. top and bottom plots in Figure 2) signaling that the majority of features arise from tyrosine-derived nitrogens. The correlation ridges in the Q-band spectrum of H_{ox} ([¹⁵N]-Tyr) are well-simulated with the hyperfine parameters $A(^{15}N) = [0.8, 6.3, -1.2]$ MHz (Figure S5). Given the rather large magnitude of $A_{iso}(^{15}N)$, this nitrogen is likely that in the Fe_d-bound cyanide. We observe no ¹⁵N-derived features that we could assign to cyanides in the H_{ox} -CO form.

Table 1. 13C HFI and 15N HFI for CO and CN Bound to Fe-Centers

species	A^{13} C (MHz)	$[\alpha, \beta, \gamma] (\deg)^a$	assignment	reference
CpI H _{ox} ([2- ¹³ C]-Tyr)	[30.9, 23.3, 30.2]	[60, 120, 170]	CN_d	this work
	[5.22, 5.24, 4.16]	[30, 90, 0]	CN_p	this work
CpI H _{ox} -CO ([2- ¹³ C]-Tyr)	[7.0, 7.0, 7.2]	[0, 0, 0]	CN_a	this work
	[3.75, 3.75, 3.90]	[0, 0, 0]	CN_b	this work
DdS H _{ox} - ¹³ CO	[15.6, 16.6, 19.2]		CO_{ext}	17
	[8.5, 9.8, 3.9]		CO_{bridge}	17
	[3.2, 3.7, 4.4]		CO_d	17
Mb- ¹³ CN	[-23.0, -27.6, -28.7]		Fe(III)-CN	21
Pf Fd- ¹³ CN	[-4.5, -4.5, +0.1]		[4Fe-4S]+-CN	22
species	$A^{15}N$ (MHz)	$[\alpha, \beta, \gamma]$ (deg)	assignment	reference
CpI H _{ox} ([¹⁵ N]-Tyr)	[0.8, 6.3, -1.2]	[45, -20, 0]	CN_d	this work
DdS H _{ox}	$[2.1, 5.3, -0.6]^b$	[41, 24, 0]	CN_d	3
	$[1.4, 2.7, 2.0]^b$	[40, 25, 0]	DTMA	3
	$[-3.4, 2.0, -1.0]^b$	[0, 4, 20]	Lys	3
DdS H _{ox} -CO	$[0.56, -0.28, 0.79]^b$	[0, -10, 0]		17
Mb-C ¹⁵ N	[n.d., n.d., 5.25]		Fe(III)-CN	23
Pf Fd-C ¹⁵ N	[+1.8, +1.0, -2.4]		[4Fe-4S]+-CN	22

"Euler angles are relative to g-frame defined by g1 < g2 < g3. For H_{ox} this corresponds to $g_z < g_y < g_x$ as we assign the local z-axis of Fe_d to the Fe-CO_{bridge} bonding vector. Determined by scaling the experimentally determined ^{14}N HFI by the ratio of the $^{15}N/^{14}N$ Larmor frequencies (1.4028). Abbreviations: Mb = myoglobin; Pf Fd = [4Fe-4S] ferredoxin from *Pyrococcus furiosus*; n.d. = not determined.

Figure 2. X-band (left) and Q-band (right) HYSCORE spectra of the H_{ox} form of HydA matured using natural-abundance ([^{14}N]-Tyr, top) or with [^{15}N]-Tyr (bottom).

The biosynthetic origin of the putative DTMA bridge is presently unknown. One proposal suggests that HydG can assemble this bridging ligand from two molecules of tyrosine. Analysis of ^{14}N HYSCORE spectra of DdS HydA poised in the $H_{\rm ox}$ state led to the assignment of a set of correlation ridges to the DTMA amino nitrogen $(A(^{14}N) = [1.0, 1.9, 1.4] \ \rm MHz).^3$ By scaling this reported ^{14}N HFI by the ratio of the $^{15}N/^{14}N$ Larmor frequencies, we can simulate the X-band HYSCORE spectrum as if the DTMA had been ^{15}N -labeled (see Figures S6 and S7). The predicted correlation ridges corresponding to the ^{15}N -DTMA nitrogen are not found in the experimental HYSCORE spectrum of $H_{\rm ox}$ ([^{15}N]-Tyr) suggesting either that tyrosine is not the source of the DTMA nitrogen or that the previously reported ^{14}N HFI parameters for DdS HydA are not appropriate for CpI $H_{\rm ox}$.

Using isotopically labeled tyrosine substrates in conjunction with the *in vitro* biosynthetic route to generate the H-cluster

gives us the flexibility to site-specifically label the cyanide ligands with ¹³C and ¹⁵N. The signals we observe from ¹⁵N are unambiguously attributed to the nitrogen of an Fe-bound cyanide. Further, comparison of the two cyanide ¹³C couplings is consistent with just one of the Fe ions (Fe_d) of [FeFe]_H carrying the majority of unpaired electron spin in the H_{ox} state. As such, the relatively large rhombicity of the H_{ox} EPR signal can be understood as arising from the asymmetry in the equatorial ligand set for the low-spin 3d⁷ Fe_d spin center. Thus, the difference in g-shifts for g_y and g_x (0.0367 vs 0.0947) is attributed to the difference in the energies of the Fe_d -3d_{xz} \rightarrow Fe_d-3d_{z²} and the Fe_d-3d_{yz} \rightarrow Fe_d-3d_{z²} transitions, respectively.²⁴ If we orient the g-tensor for H_{ox} as follows: g_z is oriented along of z-axis of Fe_d , and g_x and g_y are made to bisect the Fe_d -S and Fe_d-S bonding vectors and the Fe_d-CO_d and Fe_d-CN_d bonding vectors, respectively; then the unique axis of the ¹³C hyperfine tensor for CN_d is found to point approximately along the Fe_d-

 ${\rm CN_d}$ bond, as expected (Figure S8).²⁵ This finding supports our electronic structure description of ${\rm H_{ox}}$; namely, that the unpaired electron largely resides in a molecular orbital of $3{\rm d}_z{}^2$ character centered on the Fe_d ion.

Based on the similar magnitudes of the ¹³CN HFI, the electron spin becomes distributed more evenly over both iron ions after inhibition with free CO. This more delocalized spin topology leads to a collapse of the g-matrix rhombicity. Analogously, the rather narrow EPR signal for the formally mixed-valence Cu(I,II) Cu_A cluster in nitrous oxide reductase is understood as a weighted sum of the hypothetical mononuclear g-matrices of each Cu site.²⁶ In the case of H_{ox}-CO, we do not know the values for the intrinsic g-matrix for the two Fe ions. However, we can use the H_{ox} g-values as a first estimate. Upon forming H_{ov}-CO, delocalization of the unpaired electron spin cancels out some of the anisotropy from each site-specific gmatrix, leading to the axial (g = 2.072, 2.006, 2.006), molecular g-matrix. The nearly isotropic HFI tensors for the two CNligands in H_{ox}-CO result from this same mechanism of anisotropy cancellation. These findings are in agreement with earlier computational models 14,16 that indicate a dramatic delocalization of unpaired spin density in going from the Hox form to Hox-CO

ASSOCIATED CONTENT

Supporting Information

Details of experimental procedures and data analysis methods. Supplemental EPR spectra and corresponding simulations. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

rdbritt@ucdavis.edu

Author Contributions

§These authors contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was funded by National Institutes of Health (GM104543 to R.D.B.) and the Division of Material Sciences and Engineering (J.R.S. award no. DE-FG02-09ER46632) of the Office of Basic Energy Sciences of the U.S. Department of Energy. D.L.M.S. acknowledges support from the National Institutes of Health (F32GM111025 from the NIGMS).

■ REFERENCES

- (1) Vincent, K. A.; Parkin, A.; Armstrong, F. A. Chem. Rev. 2007, 107, 4366.
- (2) Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853.
- (3) Silakov, A.; Wenk, B.; Reijerse, E.; Lubitz, W. Phys. Chem. Chem. Phys. 2009, 11, 6592.
- (4) Berggren, G.; Adamska, A.; Lambertz, C.; Simmons, T. R.; Esselborn, J.; Atta, M.; Gambarelli, S.; Mouesca, J. M.; Reijerse, E.; Lubitz, W.; Happe, T.; Artero, V.; Fontecave, M. *Nature* **2013**, 499, 66.
- (5) Shepard, E. M.; Mus, F.; Betz, J. N.; Byer, A. S.; Duffus, B. R.; Peters, J. W.; Broderick, J. B. *Biochemistry* **2014**, *53*, 4090.
- (6) Kuchenreuther, J. M.; Shiigi, S. A.; Swartz, J. R. Methods Mol. Biol. (N. Y., NY, U. S.) 2014, 1122, 49.

- (7) Kuchenreuther, J. M.; Myers, W. K.; Suess, D. L. M.; Stich, T. A.; Pelmenschikov, V.; Shiigi, S. A.; Cramer, S. P.; Swartz, J. R.; Britt, R. D.; George, S. J. Science **2014**, 343, 424.
- (8) Swanson, K. D.; Duffus, B. R.; Beard, T. E.; Peters, J. W.; Broderick, J. B. Eur. J. Inorg. Chem. 2011, 935.
- (9) Kuchenreuther, J. M.; George, S. J.; Grady-Smith, C. S.; Cramer, S. P.; Swartz, J. R. *PLoS One* **2011**, *6*, e20346.
- (10) Kuchenreuther, J. M.; Myers, W. K.; Stich, T. A.; George, S. J.; NejatyJahromy, Y.; Swartz, J. R.; Britt, R. D. Science 2013, 342, 472.
- (11) Driesener, R. C.; Challand, M. R.; McGlynn, S. E.; Shepard, E. M.; Boyd, E. S.; Broderick, J. B.; Peters, J. W.; Roach, P. L. Angew. Chem. 2010, 49, 1687.
- (12) Shepard, E. M.; Duffus, B. R.; George, S. J.; McGlynn, S. E.; Challand, M. R.; Swanson, K. D.; Roach, P. L.; Cramer, S. P.; Peters, J. W.; Broderick, J. B. *J. Am. Chem. Soc.* **2010**, *132*, 9247.
- (13) Popescu, C. V.; Munck, E. J. Am. Chem. Soc. 1999, 121, 7877.
- (14) Fiedler, A. T.; Brunold, T. C. Inorg. Chem. 2005, 44, 9322.
- (15) Silakov, A.; Reijerse, E. J.; Albracht, S. P. J.; Hatchikian, E. C.; Lubitz, W. J. Am. Chem. Soc. 2007, 129, 11447.
- (16) Greco, C.; Silakov, A.; Bruschi, M.; Ryde, U.; De Gioia, L.; Lubitz, W. Eur. J. Inorg. Chem. 2011, 1043.
- (17) Silakov, A.; Wenk, B.; Reijerse, E.; Albracht, S. P. J.; Lubitz, W. J. Biol. Inorg. Chem. **2009**, 14, 301.
- (18) A modest (20% of overall spectral intensity) of the axial signal (g = 2.072, 2.006, 2.006) arising from H_{ox} -CO was removed by subtraction. H_{ox} -CO contamination is common and can be seen by other methods such as infrared absorption spectroscopy.
- (19) This ENDOR transition at 27 MHz is approximately equal to twice the ¹³C Larmor frequency at this field; therefore the ENDOR transition in other spin manifold is expected at <1 MHz though it is not evident in our ENDOR data. However, both ¹³C spin-flip transitions are observed in the Q-band HYSCORE spectrum (Figure S2).
- (20) Pilet, E.; Nicolet, Y.; Mathevon, C.; Douki, T.; Fontecilla-Camps, J. C.; Fontecave, M. FEBS Lett. 2009, 583, 506.
- (21) Van Doorslaer, S.; Trandafir, F.; Harmer, J. R.; Moens, L.; Dewilde, S. Biophys. Chem. 2014, 190–191, 8.
- (22) Telser, J.; Smith, E. T.; Adams, M. W. W.; Conover, R. C.; Johnson, M. K.; Hoffman, B. M. J. Am. Chem. Soc. 1995, 117, 5133.
- (23) Mulks, C. F.; Scholes, C. P.; Dickinson, L. C.; Lapidot, A. J. Am. Chem. Soc. 1979, 101, 1645.
- (24) Weil, J. A.; Bolton, J. R. Electron paramagnetic resonance: elementary theory and practical applications; John Wiley & Sons: Hoboken, NI, 2007.
- (25) Telser, J.; Smith, E. T.; Adams, M. W. W.; Conover, R. C.; Johnson, M. K.; Hoffman, B. M. J. Am. Chem. Soc. 1995, 117, 5133.
- (26) Neese, F.; Zumft, W. G.; Antholine, W. E.; Kroneck, P. M. H. J. Am. Chem. Soc. 1996, 118, 8692.