CLAIMS

We claim:

- 1 1. A method for workload planning, comprising the steps
- 2 of:

11

- determining for each of a plurality of prospective customers, a projected quantity of material for
- 5 processing;
- determining for each customer a complexity factor for processing said material; and
- responsive to said projected quantity and said

 complexity factor, determining staffing requirements

 and productivity targets for a demanufacturing

enterprise for processing said material.

- The method of claim 1, further comprising the step of
 projecting said quantity by volume.
- 1 3. The method of claim 1, further comprising the step of

- 2 converting said volume to weight.
- 1 4. The method of claim 2, further comprising the steps of
- 2 converting said volume to weight, and determining said
- 3 complexity factor by prototyping.
- 1 5. The method of claim 4, said prototyping including the
- 2 step of disassembly prototyping.
- 1 6. The method of claim 5, said disassembly prototyping
- 2 step being applied to new material and further comprising
- 3 the step of accumulating historical data for determining
- 4 said complexity factor for previously disassembled material.
- 1 7. The method of claim 2, said projecting step further
- 2 comprising the step of determining an expected number of
- 3 truckloads of said material.
- 1 8. The method of claim 5, said disassembly prototyping
- 2 further including the step of determining salvageable and
- 3 disposable content for said material of a given equipment
- 4 type.
- 1 9. The method of claim 1, further comprising the steps of
- 2 applying said quantity projections and complexity factors to END920010061US1 17

- 3 workload planning model for forecasting workload
- 4 requirements for said processing; and responsive to said
- 5 workload requirements determining staffing requirements and
- 6 resource balancing between projects.
- 1 10. The method of claim 9, further comprising the steps of
- 2 adjusting said workload requirements for absenteeism,
- 3 fatigue, breaks, and vacation pattern factors.
- 1 11. The method of claim 9, said workload planning model
- being implemented as a computer spreadsheet.
- 1 12. The method of claim 11, further comprising the step of
- 2 periodically updating said workload planning model based
- 3 upon actual and anticipated changes in quantity projections
- 4 and complexity factors.
- 1 13. The method of claim 10, further comprising the step of
- 2 calculating said productivity targets for a demanufacturing
- 3 enterprise using said quantity projections and complexity
- 4 factors.
- 1 14. A method for forecasting staffing requirements for a
- 2 demanufacturing enterprise, comprising the steps of:

I	
200	
Trans.	
Œ	
i e	

4

3		converting projected customer returns to weight,
4		multiplying said weight by a complexity factor
5		determined by disassembly prototyping to generate a
6		staff requirement for each of a plurality of customers;
7		generating a summation of said staff requirements for
8		all customers; and
9		adjusting said staff requirements for all customers by
10		an expected absenteeism factor, fatigue factor, breaks
11		requirements, and vacation patterns to generate said
12		staffing requirements and productivity targets for said
13		demanufacturing enterprise.
1	15.	The method of claim 14, further comprising the step of
2	exect	uting said converting, generating, and adjusting steps
3	in a	spreadsheet model.
1	16.	System for workload planning, comprising:
2		a computer model for determining for each of a
3		plurality of prospective customers, a projected

5 a computer model for determining for each customer a END920010061US1 19

quantity of material for processing;

6

-	_	_	-	

7 a computer model, responsive to said projected quantity

complexity factor for processing said material; and

- and said complexity factor, for determining staffing
- 9 requirements and productivity targets for processing
- 10 said material.
 - 1 17. The system of claim 16, further comprising:
- 2 a process tracking database for accumulating historical
- data, said data including actual and projected
- 4 complexity factors for materials for each of plurality
- 5 of said customers.
- 1 18. The system of claim 17, further comprising:
- 2 model input for receiving customer projections of said
- 3 quantity of material and the results of disassembly
- 4 prototyping.
- 1 19. A program storage device readable by a machine,
- 2 tangibly embodying a program of instructions executable by a
- 3 machine to perform method steps for workload planning, said
- 4 method steps comprising:

5	determining for each of a plurality of prospective
6	customers, a projected quantity of material for
7	processing;

- 8 determining for each customer a complexity factor for 9 processing said material; and
- responsive to said projected quantity and said

 complexity factor, determining staffing requirements

 and productivity targets for processing said material.
 - 1 20. The program storage device of claim 19, said method 2 steps further comprising the step of projecting said 3 quantity by volume.
 - 1 21. The program storage device of claim 19, said method 2 steps further comprising the step of converting said volume 3 to weight.
 - The program storage device of claim 20, said method steps further comprising the step of converting said volume to weight, and determining said complexity factor by prototyping.
 - 1 23. The program storage device of claim 22, said END920010061US1 21

- 2 prototyping step including the step of disassembly
- 3 prototyping.
- 1 24. The program storage device of claim 23, said
- 2 disassembly prototyping step being applied to new material
- and further comprising the step of accumulating historical
- 4 data for determining said complexity factor for previously
- 5 disassembled material.
- 1 25. The program storage device of claim 20, said projecting
- 2 step further comprising the step of determining an expected
- 3 number of truckloads of said material.
- 1 26. The program storage device of claim 23, said
- 2 disassembly prototyping further including the step of
- determining salvageable and disposable content for said
- 4 material of a given equipment type.
- 1 27. The program storage device of claim 19, said method
- 2 steps further comprising the steps of applying said quantity
- 3 projections and complexity factors to workload planning
- 4 model for forecasting workload requirements for said
- 5 processing; and responsive to said workload requirements
- 6 determining staffing requirements and resource balancing
- 7 between projects.

- The program storage device of claim 27, said method 1
- 2 steps further comprising the step of adjusting said workload
- requirements for absenteeism, fatigue, breaks, and vacation 3
- 4 pattern factors.
- The program storage device of claim 27, said workload 1
- 2 planning model being implemented as a computer spreadsheet.
- 1 30. The program storage device of claim 29, said method
- steps further comprising the step of periodically updating 2
- said workload planning model based upon actual and 3
- anticipated changes in quantity projections and complexity
- 5 factors.
- The program storage device of claim 28, said method 1
- steps further comprising the step of calculating said 2
- productivity targets for a demanufacturing enterprise using 3
- 4 said quantity projections and complexity factors.
- A computer program product or computer program element 1
- 2 for forecasting staffing requirements for a demanufacturing
- 3 enterprise, according to the steps of:
- converting projected customer returns to weight, 4 END920010061US1

5	multiplying said weight by a complexity factor
6	determined by disassembly prototyping to generate a
7	staff requirement for each of a plurality of customers;
8	generating a summation of said staff requirements for
9	all customers; and
10	adjusting said staff requirements for all customers by
11	an expected absenteeism factor, fatigue factor, breaks
12	requirements, and vacation patterns to generate said
13	staffing requirements and productivity targets for said
14	demanufacturing enterprise.