Netflix Analysis

Importing Necessary Libraries

```
In [2]: import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
import matplotlib.pyplot as plt
import seaborn as sns
```

Read the CSV file as DataFrame

In [3]:	<pre>df = pd.read_csv(r"C:\Users\Abdo\Desktop\Projects\Netflix_Analysis_Projec</pre>
	df.head(3)

Out[3]:		show_id	type	title	director	cast	country	date_added	release_y		
	0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	NaN	United States	September 25, 2021	21		
	1	s2	TV Show	Blood & Water	NaN	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	September 24, 2021	2		
	2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	NaN	September 24, 2021	2		

Sampling Data from a DataFrame

```
In [4]: df.sample(10)
```

Out[4]:		show_id	type	title	director	cast	country	date_added	r
	7295	s7296	TV Show	Leyla and Mecnun	Onur Ünlü	Ali Atay, Melis Birkan, Serkan Keskin, Ahmet M	Turkey	April 15, 2017	
	7948	s7949	TV Show	Save Our Shelter	NaN	Rocky Kanaka, Rob North	United States	August 18, 2018	
	5481	s5482	Movie	Chamatkar	Rajiv Mehra	Shah Rukh Khan, Naseeruddin Shah, Urmila Maton	India	May 15, 2017	
	2728	s2729	Movie	Humpty Sharma Ki Dulhania	Shashank Khaitan	Varun Dhawan, Alia Bhatt, Ashutosh Rana, Sidha	India	April 1, 2020	
	8183	s8184	Movie	The Adventures of Sharkboy and Lavagirl	Robert Rodriguez	Taylor Lautner, Taylor Dooley, Cayden Boyd, Ge	United States	December 2, 2020	
	7880	s7881	Movie	Rocky II	Sylvester Stallone	Sylvester Stallone, Talia Shire, Burt Young, C	United States	August 1, 2019	
	7507	s7508	Movie	Moonlight	Barry Jenkins	Trevante Rhodes, André Holland, Janelle Monáe,	United States	May 21, 2019	
	7089	s7090	Movie	Inuyasha the Movie - La spada del dominatore d	Toshiya Shinohara	Kappei Yamaguchi, Satsuki Yukino, Koji Tsujita	Japan	September 1, 2017	
	7989	s7990	Movie	Sexo, Pudor y Lagrimas	Antonio Serrano	Demián Bichir, Susana Zabaleta, Jorge Salinas,	Mexico	December 15, 2017	
	6809	s6810	Movie	Froning: The Fittest Man in History	Heber Cannon	Rich Froning	United States	July 15, 2018	

show_id type title director cast country date_added r

1- Data Cleaning and Processing

• Dealing with the missing data

```
In [5]: # Replacments
        # Replace blank countries with the mode (most common) country
        df['country'] = df['country'].fillna(df['country'].mode()[0])
        df['cast'].replace(np.nan, 'No Data',inplace = True)
        df['director'].replace(np.nan, 'No Data',inplace = True)
        # Drops
        df.dropna(inplace=True)
        # Drop Duplicates
        df.drop_duplicates(inplace= True)
In [6]: df.isnull().sum()
Out[6]: show_id
                         0
        type
        title
        director
        cast
        country
        date_added
         release_year
         rating
        duration
         listed in
                         0
        description
        dtype: int64
In [7]: | df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Index: 8790 entries, 0 to 8806
Data columns (total 12 columns):
               Non-Null Count Dtype
    Column
              8790 non-null object
    show id
0
1 type
2 title
               8790 non-null object
               8790 non-null object
3 director
               8790 non-null object
4 cast
                8790 non-null object
5 country
                8790 non-null object
6 date_added 8790 non-null object
7 release_year 8790 non-null int64
   rating 8790 non-null object
9
    duration
               8790 non-null object
               8790 non-null object
10 listed in
11 description 8790 non-null
                               object
dtypes: int64(1), object(11)
memory usage: 892.7+ KB
```

• Date Conversion and Feature Extraction

```
In [8]: # Remove leading/trailing spaces
df['date_added'] = df['date_added'].str.strip()

# Convert to datetime, handling errors by coercing invalid formats to NaT
df['date_added'] = pd.to_datetime(df['date_added'], errors='coerce')

# Extract month and month name
df['month_added'] = df['date_added'].dt.month
df['month_name_added'] = df['date_added'].dt.month_name()
df['year_added'] = df['date_added'].dt.year

df.head(3)
```

Out[8]:

	show_id	type	title	director	cast	country	date_added	release_y
0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	No Data	United States	2021-09-25	21
1	s2	TV Show	Blood & Water	No Data	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	2021-09-24	2
2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	United States	2021-09-24	2

 Feature Engineering and Data Cleaning: Extracting Key Attributes and Normalizing Data

```
In [9]: # Quick feature engineering
        # Helper column for various plots
        df['count'] = 1
        # Many productions have several countries listed - this will skew our res
        # Lets retrieve just the first country
        df['first_country'] = df['country'].apply(lambda x: x.split(",")[0])
        df['first_country'].head()
        # Rating ages from this notebook: https://www.kaggle.com/andreshg/eda-beg
        ratings_ages = {
            'TV-PG': 'Older Kids',
             'TV-MA': 'Adults',
             'TV-Y7-FV': 'Older Kids',
             'TV-Y7': 'Older Kids',
             'TV-14': 'Teens',
             'R': 'Adults',
             'TV-Y': 'Kids',
            'NR': 'Adults',
             'PG-13': 'Teens',
             'TV-G': 'Kids',
             'PG': 'Older Kids',
             'G': 'Kids',
             'UR': 'Adults',
             'NC-17': 'Adults'
        }
```

```
df['target_ages'] = df['rating'].replace(ratings_ages)
df['target_ages'].unique()

# Genre

df['genre'] = df['listed_in'].apply(lambda x : x.replace(' ,',',').repla

# Reducing name length

df['first_country'].replace('United States', 'USA', inplace=True)
df['first_country'].replace('United Kingdom', 'UK',inplace=True)
df['first_country'].replace('South Korea', 'S. Korea',inplace=True)
```

In [10]: df.head()

TII [TO]:	v]: u::neau()								
Out[10]:		show_id	type	title	director	cast	country	date_added	release_y
	0	s1	Movie	Dick Johnson Is Dead	Kirsten Johnson	No Data	United States	2021-09-25	21
	1	s2	TV Show	Blood & Water	No Data	Ama Qamata, Khosi Ngema, Gail Mabalane, Thaban	South Africa	2021-09-24	2
	2	s3	TV Show	Ganglands	Julien Leclercq	Sami Bouajila, Tracy Gotoas, Samuel Jouy, Nabi	United States	2021-09-24	2
	3	s4	TV Show	Jailbirds New Orleans	No Data	No Data	United States	2021-09-24	2
	4	s5	TV Show	Kota Factory	No Data	Mayur More, Jitendra Kumar, Ranjan Raj, Alam K	India	2021-09-24	2

• Save the Cleaned DataFrame As CSV File

```
In [11]: df.to_csv(r"C:\Users\Abdo\Desktop\Cleaned_Netflix.csv", index=False)
```

2- Data Visualization

I'll use the Netflix brand colours

```
In [12]: # Palette
sns.palplot(['#221f1f', '#b20710', '#e50914','#f5f5f1'])
# Defining Netflix colors
netflix_colors = ['#221f1f', '#b20710', '#e50914', '#f5f5f1']

plt.title("Netflix brand palette ",loc='left',fontfamily='serif',fontsize
plt.show()
```

Netflix brand palette

• Pie Chart: Displays the Ratio of Movies & TV Shows

```
In [13]: x = df.groupby(['type'])['type'].count()
         y = len(df)
         r = ((x / y) * 100).round(2)
         explode = (0.1, 0.1) # Adjust as needed
         # Creating a pie chart
         plt.figure(figsize=(10, 8))
         plt.pie(
             r,
             labels=r.index,
             autopct='%1.1f%',
             startangle=140,
             colors=netflix_colors[:len(r)],
             explode=explode[:len(r)], # Explode effect for the slices
             shadow=True,
                                        # Adding shadow for a 3D effect
             wedgeprops=dict(edgecolor='grey') # Adding an edge color to the wedg
         plt.title('Ratio of Movies & TV Shows')
         plt.legend(title='Type', loc='best') # Adding a legend
         plt.show()
```


 Histogram: Distribution of Duration - Displays the distribution of movie durations

```
In [14]: # Converting 'duration' to numeric values (in minutes)
    df['duration_numeric'] = df['duration'].str.extract('(\d+)').astype(float

# Calculate the mean duration
    mean_duration = df['duration_numeric'].mean()

# Creating a histogram of durations
    plt.figure(figsize=(10, 6))
    plt.hist(df['duration_numeric'].dropna(), bins=30, color='#e50914', edgec

# Adding a vertical line for the mean duration
    plt.axvline(mean_duration, color='blue', linestyle='dashed', linewidth=1,

plt.title('Distribution of Movie Duration')
    plt.xlabel('Duration (minutes)')
    plt.ylabel('Frequency')
```

```
plt.legend() # Show the legend with the mean duration label
plt.show()
```


• Box Plot: Duration by Type - Visualizes the spread of durations for Movies and TV Shows.

```
In [15]: # Creating a box plot of duration by type
   plt.figure(figsize=(12, 8))
   sns.boxplot(x='type', y='duration_numeric', data=df, palette=netflix_colo
   plt.title('Distribution of Duration by Type')
   plt.xlabel('Type')
   plt.ylabel('Duration (minutes)')
   plt.show()
```


• Count Plot: Titles by Genre - Illustrates the number of titles for each genre.

```
In [16]: # Exploding the genres into separate rows
    genres = df['listed_in'].str.get_dummies(sep=', ')

# Summing up the number of titles per genre
    genre_counts = genres.sum().sort_values(ascending=False)

# Creating a count plot for genres
    plt.figure(figsize=(12, 8))
    sns.barplot(x=genre_counts.index, y=genre_counts.values, palette=netflix_plt.xticks(rotation=90)
    plt.title('Number of Titles by Genre')
    plt.xlabel('Genre')
    plt.ylabel('Number of Titles')
    plt.show()
```


Conclusion

This analysis of the Netflix dataset provided insights into various aspects of the content available on the platform:

- Ratio of Movies to TV Shows: Visualized using a pie chart to show the proportion of movies versus TV shows.
- **Distribution of Movie Duration**: A histogram depicted the range of movie lengths, with a vertical line indicating the mean duration.
- Additional Insights:
 - Comparison of movie and TV show durations using a box plot.
 - Number of titles by genre.

These visualizations reveal key trends and distributions in Netflix's content library. Future analyses could explore content popularity trends, viewer ratings, and personalized recommendations for even deeper insights.

About the Author

Name: Abdelrahman Alaa

• Email: 3bdo3laa1@gmail.com

• LinkedIn: www.linkedin.com/in/3bdo-3laa1

• **GitHub**: https://github.com/Abdo3laa

Thank you for reviewing this analysis. For any questions or feedback, please contact me. ck, please contact me.