第一章 熵权法

熵的概念起源于热力学,后依据信息论中熵的定义有了如下的定义:

$$e = -\frac{1}{\ln m} \sum_{i=1}^{m} p_i \ln p_i, \ i = 1, 2, \dots, m$$

其中, p_i 为每种状态出现的概率。

熵权法是一种客观赋权方法。在具体使用过程中,熵权法根据各指标的变异程度,利用信息熵计算出各指标的熵权,从而得出较为客观的指标权重。

1.1 熵权法的评价步骤

设有n个评价对象,m个评价指标变量,第i个评价对象关于第j个指标变量的取值为 a_{ij} ,构造数据矩阵 $A=(a_{ij})_{n\times m}$ 。评价步骤如下:

(1) 计算第 i 个评价对象关于第 j 个指标值的比重:

$$p_{ij} = \frac{a_{ij}}{\sum_{i=1}^{n} a_{ij}}, i = 1, 2, \dots, n; j = 1, 2, \dots, m$$

(2) 计算第 i 项指标的熵值:

$$e_j = -\frac{1}{\ln n} \sum_{i=1}^n p_{ij} \ln p_{ij}, \ j = 1, 2, \dots, m$$

(3) 计算第 j 项指标的变异系数:

$$g_i = 1 - e_i, j = 1, 2, \dots, m$$

对于第j项指标, e_i 越大,指标值的变异程度就越小。

(4) 计算第 i 项指标的权重:

$$\omega_j = \frac{g_j}{\sum_{j=1}^m g_j}, \ j = 1, 2, \dots, m$$

(5) 计算第 i 个评价对象的综合评价值:

$$s_i = \sum_{j=1}^m \omega_j P_{ij}$$

评价值越大越好。

例题 1.1 请根据下表给出的 10 个学生 8 门课的成绩,给出这 10 个学生评奖学金的评分排序。

学生编号	语文	数学	物理	化学	英语	政治	生物	历史
1	93	66	86	88	77	71	90	94
2	97	99	61	61	75	87	70	70
3	65	99	94	71	91	86	80	93
4	97	79	98	61	92	66	88	69
5	85	92	87	63	67	64	96	98
6	63	65	91	93	80	80	99	74
7	71	77	90	88	78	99	82	68
8	82	97	76	73	86	73	65	70
9	99	92	86	98	89	83	66	85
10	99	99	67	61	90	69	70	79

符号说明:

 x_1,x_2,\ldots,x_8 分别表示:语文、数学、物理、化学、英语、政治、生物、历史成绩。 a_{ij} :表示第 i 个学生关于指标变量 x_j 的取值。

各个学生评价值从高到低的编号次序为: 9、1、3、7、6、5、4、10、8、2。

```
clc
clear
A = xlsread('Data_ShangQuan');
A(:, 1) = [ ];
[n, m] = size(A);
p = A./sum(A);
e = -sum(p. * log(p))/log(n);
g = 1 - e;
w = g/sum(g)
               % 计算权重
s = w * p'
                 % 计算各个评价对象的综合评价值
[sd, ind] = sort(s, 'descend')
                         % 对评价值从大到小排序
writematrix(w, 'Data_ShangQuan_Results.xlsx')
                                         % 把数据写到 Excel 文件的表单 1
writematrix([1:n; s],'Data_ShangQuan_Results.xlsx', 'Sheet', 2) % 把数据写到表单 2
```

1.2 模型的应用

参见优秀论文 2016-B-10。