Lecture 21 Column Generation and Dantzig Wolfe Decomposition

Can Li

ChE 597: Computational Optimization Purdue University

The cutting stock problem

 Consider a paper mill that has a number of rolls of paper of fixed width. Customers demand different numbers of rolls of various-sized widths.

The Cutting Stock Problem

Consider a paper mill that has a number of rolls of paper of fixed width. Customers demand different numbers of rolls of various-sized widths.

- Given K = 20 rolls of width W = 100 inches.
- Widths w_i (inches) and Demand n_i (rolls) are given as:

Width w_i (inches)	25	35	40
Demand n_i (rolls)	7	5	3

For example, a master roll can be cut into the following patterns:

- 4 rolls each of width 25 inches.
- 2 rolls of width 35 + 1 roll of width 25 (resulting in a waste of
 5)

Determine a cutting plan that:

- Satisfies all demands
- Minimizes number of used rolls

Question: How to formulate the optimization problem?

The Cutting Stock Problem: Classical Formulation

Originally proposed by Kantorovich in "Mathematical methods of planning and organizing production" (1939 in Russian, 1960 in English). Economics Nobel, 1975.

Decision variables

$$y_k = \begin{cases} 1 & \text{if master roll } k \text{ is cut} \\ 0 & \text{otherwise} \end{cases}$$

 z_{ik} = number of rolls of width w_i cut on master roll k

- Objective: minimize number of rolls used $\sum_{k=1}^{K} y_k$
- Constraints
 - Satisfy demand of each type of roll: $\sum_{k=1}^{n} z_{ik} \ge n_i$ for $i = 1, \dots, m$.
 - Cut no more than available: $\sum_{i=1}^m w_i z_{ik} \leq W y_k$ for $k=1,\ldots,K$.

The Cutting Stock Problem: Classical Formulation

Decision variables:

$$y_k = \begin{cases} 1 & \text{if master roll } k \text{ is cut} \\ 0 & \text{otherwise} \end{cases}$$

 z_{ik} = number of rolls of width w_i cut on master roll k

• Objective:

$$\min \sum_{k=1}^{K} y_k$$

Subject to:

$$\sum_{k=1}^{K} z_{ik} \ge n_i \quad \forall i = 1, \dots, m$$

$$\sum_{i=1}^{m} w_i z_{ik} \le W y_k \quad \forall k = 1, \dots, K$$

$$y_k \in \{0, 1\} \quad \forall k = 1, \dots, K$$

$$z_{ik} \in \mathbb{Z}_+ \quad \forall k = 1, \dots, K, \forall i = 1, \dots, m$$

The Cutting Stock Problem: Classical Formulation

How good is this model?

- This formulation has poor computational performance in practice.
- Theoretical justifications for poor performance?
 - Weak LP relaxation
 - Highly symmetric/degenerate
- Question: How to break symmetry?
- Is there an alternative formulation?

Originally proposed by Gilmore and Gomory in "A linear programming approach to the cutting-stock problem", Operations Research (1961).

 Key observation: Optimal solution uses only a few of all possible cutting patterns.

Width w _i	Pa	tter	ns <i>p</i>	Demand n _i
25	4	1	1	7
35	0	2	1	5
40	0	0	1	3

Optimal solution uses only 3/15 possible patterns.

 Key observation: Optimal solution uses only a few of all possible cutting patterns.

Width w _i	Patterns p			Demand n _i
25	$4x_1$	$+1x_{2}$	$+1x_{3}$	≥ 7
35	$0x_{1}$	$+2x_{2}$	$+1x_{3}$	≥ 5
40	$0x_{1}$	$+0x_{2}$	$+1x_{3}$	≥ 3

- Decision variables
- x_p = number of master rolls to be cut using pattern p
- Objective: minimize number of rolls used $\sum_{p} x_{p}$

$$\min_{x} \quad \sum_{p \in P} x_{p}$$
 s.t. $\sum_{p \in P} a_{ip}x_{p} \geq n_{i} \quad \forall i = 1, \dots, m$ $x_{p} \in \mathbb{Z}_{+} \quad \forall p \in P \quad (=\text{feasible patterns})$

- $a_{ip} =$ number of rolls of width w_i in pattern p
- Question: How many feasible patterns are possible?
- $\approx \binom{m}{j}$, where j= average no. of cuts in a feasible pattern.
- j can be estimated as W/\bar{w} where $\bar{w}=$ average width $=\frac{\sum_{i}w_{i}n_{i}}{\sum_{i}n_{i}}$.
- This is combinatorial growth. For example, a typical real-world problem contains about m=50 orders (widths). If there are j=10 average cuts per master roll, then the number of feasible patterns is more than 10 billion.

How good is this model?

- Theoretical properties
 - No symmetry issues
 - Strong LP relaxations

Computational properties

- If we explicitly list all the patterns, we would run out of memory.
- If we had the "optimal patterns" from the start, we could easily solve the problem. But we don't know which ones these are.
- We know that the vast majority of patterns are useless.
 - Question: How do we find the useful patterns?

Properties of the LP relaxation

Relax the integer variables x_p , $p \in P$ as continuous variables.

$$\min_{x} \quad \sum_{p \in P} x_p$$

s.t.
$$\sum_{p \in P} a_{ip} x_p = n_i \quad \forall i = 1, \dots, m \quad \text{(assume equality for simplicity)}$$

$$x_p \geq 0 \quad \forall p \in P \quad \text{(=feasible patterns)}$$

- The optimal solution is always obtained at a basic feasible solution (BFS).
- At a BFS, out of the |P| inequalities constraints, |P| m of them are active. At least |P| m of the constraints $x_p \ge 0$ are active.
- At a BFS solution, at most $m x_p > 0$. In other words, at most m patterns are used in the optimal solution.
- We only need the columns of a_{ip} correspond to the optimal patterns.
- If we round up every non-zero LP variable to the nearest integer, this integer solution is feasible and has value at most m more than LP solution.

Column generation

Basic idea:

- Start with an initial subset of feasible patterns
- Solve the LP relaxation assuming these are the only feasible patterns
- Check if the inclusion of any pattern that has been left out can improve the objective ("pricing") → the most critical step
- Iterate

Start with an Initial Basic Feasible Solution

Start with a small subset of patterns $P^0 \subseteq P$,

$$x_p \geq 0 \quad \forall p \in P^0$$
 (=a subset of all the feasible patterns)
• For example, P^0 can have only m patterns just to ensure that the

- For example, P^0 can have only m patterns just to ensure that the problem is feasible. Each width is covered by at least one pattern. Finding an initial basic feasible solution is easy for this problem. For $i = 1, \ldots, m$, we may let the i th pattern consist of one roll of width w_j and none of the other widths. Then, the m columns of A form a feasible basis.
- A BFS solution to this is problem is also a BFS to the original problem with |P| patterns. We can just set the rest of the variables in P\P⁰ to zero (nonbasic).
- Recall in the primal simplex method, the optimality condition is the reduced costs of the nonbasic variables being nonnegative.

Computing Reduced Costs

- Suppose the optimal basis matrix of the problem being B
- Dual multipliers $y^T = c_B^T (B)^{-1}$
- Dual multipliers $y^T = c_B^T(B)^{-1}$ Reduced costs of pattern p: $\bar{c}_p = c_p A_p^T y$. Ap there Note that $c_p = 1$ for all p (each pattern consumes one roll of the
- paper).
- If $A_p^T y > 1$ for any p, we have a column with a negative reduced cost.
- The next step is to find a column (pattern) with negative reduced cost.

Integer Programming for Negative Reduced Cost

$$\max_{a} \sum_{i=1}^{m} y_{i} a_{i}$$
s.t.
$$\sum_{i=1}^{m} w_{i} a_{i} \leq W$$

$$a_{i} \in \mathbb{Z}^{+}$$

- Solving this IP yields the column with the least reduced cost.
- If the optimal objective value is less than 1, no more columns with negative reduced costs exist.
- Otherwise, the optimal a gives the new pattern to enter the basis.
- The pricing problem can also be seen as finding the "most violated" constraints of the dual problem.
- This IP is the Knapsack Problem, solvable via dynamic programming.

Applications of Column Generation

- Cutting stock problem
- Vehicle routing problem
- Aircraft routing
- Crew scheduling

LP Problem Structure

- Consider an LP problem with two sets of decision variables x₁ and x₂.
- Variables x₁ and x₂ are subject to their own constraints (m₁ and m₂ constraints, respectively) and m₀ shared coupling constraints.
- Matrices D_1, D_2, F_1, F_2 define the system.

min
$$c_1^T x_1 + c_2^T x_2$$

s.t. $D_1 \underbrace{x_1 + D_2 x_2 = b_0}_{F_1 x_1 = b_1}$ "complicating Constraints".
 $F_2 x_2 = b_2$
 $x_1, x_2 \ge 0$

Reformulation Using Minkowski-Weyl Theorem

min
$$c_1^T x_1 + c_2^T x_2$$

s.t. $D_1 x_1 + D_2 x_2 = b_0$
 $x_1 \in P_1, x_2 \in P_2$

where $P_i = \{x_i, F_i x_i = b_i, x_i \ge 0\}$

- For i = 1, 2, let x_i^j be the extreme points and w_i^k be extreme rays of P_i .
- Any x_i ∈ P_i can be represented by a convex combination of these points and conic combination of the extreme rays.

$$x_i = \sum_{j \in J_i} \lambda_i^j x_i^j + \sum_{k \in K_i} \theta_i^k w_i^k$$

$$\sum_{i \in J_i} \lambda_i^j = 1 \quad \text{for } i = 1, 2$$

$$\lambda_i^j \ge 0$$
, $\forall i = 1, 2, j \in J_i$ $\theta_i^k \ge 0$ for $i = 1, 2, k \in K_i$

$$\langle P_1 \rangle^2 \times_{\mathcal{S}}$$

Master Problem Formulation
$$X_1 \in \mathbb{N}$$
, $\Leftrightarrow \{x_1 \mid X_1 = \sum_{j=1}^{n} x_j^{-1} \lambda_j = 1\}$

- The master problem is a reformulation with decision variables λ_i^J and θ_i^k .
- $m_0 + 2$ equality constraints. At a BFS, we can have at most $m_0 + 2 \lambda_i^J$ and θ_i^k being nonzero.

$$\begin{split} \min \sum_{j \in J_1} \lambda_1^j c_1^T x_1^j + \sum_{k \in K_1} \theta_1^k c_1^T w_1^k + \sum_{j \in J_2} \lambda_2^j c_2^T x_2^j + \sum_{k \in K_2} \theta_2^k c_2^T w_2^k \\ \text{s.t.} \sum_{j \in J_1} \lambda_1^j D_1 x_1^j + \sum_{k \in K_1} \theta_1^k D_1 w_1^k + \sum_{j \in J_2} \lambda_2^j D_2 x_2^j + \sum_{k \in K_2} \theta_2^k D_2 w_2^k = b_0 \mid \mathcal{M}_{\text{o}} \rangle \\ \sum_{j \in J_i} \lambda_i^j = 1 \quad i = 1, 2 \\ \sum_{j \in J_i} \lambda_i^j \geq 0, \quad \forall i = 1, 2, \ j \in J_i \quad \theta_i^k \geq 0 \quad \forall i = 1, 2, \ k \in K_i \end{split}$$

Master Problem vs. Original Problem

- Original problem has $m_0 + m_1 + m_2$ equality constraints.
- Master problem simplifies to $m_0 + 2$ equality constraints.
- Decision variables in the master problem could be very large in number because of the large number of extreme points and extreme rays.
- At a BFS, we can have at most $m_0 + 2 \lambda_i^J$ and θ_i^k being nonzero. Most of the variables are zero (nonbasic).
- Solution: use column generation to generate the columns corresponding to the basic variables.

Basis Matrix and Dual Vector

- Start with a master problem with only a small subset of extreme points and extreme rays.
- Consider basis matrix B and its inverse B^{-1} .
- Dual vector $p^T = c_B^T B^{-1}$.
- Vector p has $m_0 + 2$ components: q for the first m_0 and r_1, r_2 for the last two.
- Recall the formula for the reduced cost for the *j*th variable is $c_j A_j^T p$

Dantzig Wolfe Subproblem

- Reduced cost of λ_1^j : $(c_1^T q^T D_1)x_1^j r_1$.
- Reduced cost of θ_1^k : $(c_1^T q^T D_1)w_1^k$.
- Objective is to identify if any reduced costs are negative.

Form the subproblem to decide on optimality:

min
$$(c_1^T - q^T D_1)x_1$$

s.t. $x_1 \in P_1$

- Solve using simplex method.
- If optimal cost is $-\infty$, we find an extreme ray w_1^k that $(c_1^T q^T D_1)w_1^k < 0$.
- If the optimal cost is finite and smaller than r_1 , we find an extreme point x_1^j with negative reduced cost, i.e., $(c_1^T q^T D_1)x_1^j r_1 < 0$.
- If the the optimal cost is finite and no smaller than r_1 . $(c_1^T q^T D_1) w_1^k \ge 0$ for all extreme rays and $(c_1^T q^T D_1) x_1^j r_1 \ge 0$ for all extreme points. We can terminate.

Decomposition Algorithm - Iteration Steps

- 1. Start with a BFS to the master problem.
- 2. Solve two subproblems for P_1 and P_2 .
 - If both subproblems yield nonnegative reduced costs, current solution is optimal.
 - If not, determine the entering variable based on the subproblem with a negative reduced cost. Add columns corresponding to the extreme point or the extreme ray that yield the negative reduced cost.
- 3. Update the master problem and repeat.

Applicability to multiple subproblems

min
$$c_1^T x_1 + c_2^T x_2 + \dots + c_t^T x_t$$

s.t. $D_1 x_1 + D_2 x_2 + \dots + D_t x_t = b_0$
 $F_i x_i = b_i,$
 $x_1, x_2, \dots, x_t \ge 0$

The only difference is that at each iteration of the algorithm, we may have to solve t subproblems.

References

 Bertsimas, D., & Tsitsiklis, J. N. (1997). Introduction to linear optimization. Belmont, MA: Athena scientific.