Solution

Section 4.2 - Exponential Functions

Exercise

Find $2^{3.4}$

Solution

$$2^{3.4} = 10.5561$$

Exercise

Find $5\sqrt{3}$

Solution

$$5^{\sqrt{3}} = 16.2425$$

Exercise

Find $6^{-1.2}$

Solution

$$6^{-1.2} = 0.1165$$

Exercise

Evaluate to four decimal places using a calculator: $e^{-0.75}$

Solution

$$e^{-0.75} = .4724$$

Exercise

Evaluate to four decimal places using a calculator: $e^{2.3}$

Solution

$$e^{2.3} = 9.9742$$

Evaluate to four decimal places using a calculator: $e^{-0.95}$

Solution

$$e^{-0.95} = 0.3867$$

Exercise

Sketch the graph: $f(x) = 2^x + 3$

Solution

Asymptote: y = 3

Domain: $(-\infty, \infty)$

Range: $(3, \infty)$

X	f(x)
-1	3.5
0	4
1	5
2	7

Exercise

Sketch the graph: $f(x) = 2^{3-x}$

Solution

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

х	f(x)
1	4
2	2
3	1
4	.5

Sketch the graph: $f(x) = \left(\frac{2}{5}\right)^{-x}$

Solution

Asymptote: y = 0

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

х	f(x)
-1	0.4
0	1
1	2.5
2	6.25

Exercise

Sketch the graph: $f(x) = -\left(\frac{1}{2}\right)^x + 4$

Solution

Asymptote: y = 4

Domain: $(-\infty, \infty)$

Range: $(-\infty, 4)$

X	f(x)
-2	0
-1	2
0	3
1	3.5

Sketch the graph of $f(x) = e^{x+4}$

Solution

Asymptote: y = 0Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

х	f(x)
-5	0.4
-4	1
-3	2.7

Exercise

The exponential function $f(x) = 1066e^{0.042x}$ models the gray wolf population of the Western Great Lakes, f(x), in billions, x years after 1978. Project the gray population in the recovery area in 2012.

Solution

$$x = 2012 - 1978 = 34$$

$$f(x = 34) = 1066e^{0.042(34)}$$

$$= 4445.6$$

$$\approx 4446$$
1066 e^{(.042*34)}

Exercise

The function $f(x) = 6.4e^{0.0123x}$ describes world population, f(x), in billions, x years after 2004 subject to a growth rate of 1.23% annually. Use the function to predict world population in 2050.

Solution

$$x = 2050 - 2004 = 46$$

 $f(x = 46) = 6.4e^{0.0123(46)}$
 ≈ 11.27 billion
$$6.4 e^{(0.0123*46)}$$

Find the accumulated value of an investment of \$10,000 for 5 years at an interest rate of 5.5% if the money is

Solution

Given:
$$P = 10000$$

 $t = 5$
 $r = 0.055$

a. Semiannually: n = 2

$$\Rightarrow A = 10000 \left(1 + \frac{0.055}{2}\right)^{2(5)}$$

$$= \$13116.51$$

b. Quarterly: n = 4

$$\Rightarrow A = 10000 \left(1 + \frac{0.055}{4}\right)^{4(5)}$$
= \$13140.67

c. Monthly: n = 12

$$\Rightarrow A = 10000 \left(1 + \frac{0.055}{12}\right)^{12(5)}$$

$$= \$13157.04$$

d.
$$A = 10000e^{(0.055)(5)} = $13165.31$$
 10000 $e^{(0.055*5)}$ = \$13165.31

Exercise

Suppose \$1000 is deposited in an account paying 4% interest per year compounded quarterly.

- a) Find the amount in the account after 10 years with no withdraws.
- b) How much interest is earned over the 10 years period?

Solution

Given:

$$P = 1000$$

$$r = .04$$

$$n = 4$$

a)
$$t = 10$$

$$A = P\left(1 + \frac{r}{n}\right)^{tn}$$

$$A = 1000\left(1 + \frac{.04}{4}\right)^{10(4)}$$

$$1000(1 + .04/4) ^ (4*10)$$

$$=$$
\$1,488.86

b) The interest earned: \$1488.86 - \$1000 = \$488.86

Exercise

Becky must pay a lump sum of \$6000 in 5 yrs.

- a) What amount deposited today at 3.1% compounded annually will grow to \$6000 in 5 yrs.?
- b) If only \$5000 is available to deposit now, what annual interest rate is necessary for the money to increase to \$6000 in 5 yrs.?

Solution

a)
$$A = P\left(1 + \frac{r}{n}\right)^{tn}$$

 $6000 = P\left(1 + \frac{.031}{1}\right)^{5(1)}$
 $6000 = P(1.031)^{5}$
 $\frac{6000}{(1.031)^{5}} = P$
 $P \approx \$5,150.60$

b)
$$A = P\left(1 + \frac{r}{n}\right)^{tn}$$

 $6000 = 5000\left(1 + \frac{r}{1}\right)^{5(1)}$
 $\frac{6000}{5000} = (1+r)^5$
 $\frac{6}{5} = (1+r)^5$
 $\left(\frac{6}{5}\right)^{1/5} = 1+r$
 $r = \left(\frac{6}{5}\right)^{1/5} - 1$ (6/5)^(1/5)-1
 $\approx .0371$

The interest rate of 3.71% will produce enough to increase the \$5,000 to \$6,000 by the end of 5 yr.

An investment of 1,000 increased to \$13,464 in 20 years. If the interest was compounded continuously, find the interest rate.

Solution

$$A = Pe^{rt}$$

$$13464 = 1000e^{20r}$$

$$13.464 = e^{20r}$$

$$\ln(13.464) = \ln e^{20r}$$

$$20r = \ln 13.464$$

$$r = \frac{\ln 13.464}{20} \approx 0.13$$

The interest rate is 13%.

Exercise

Find the present value of \$4,000 if the annual interest rate is 3.5% compounded quarterly for 6 years.

Solution

Given:
$$A = 4000.00$$
, $r = 0.035$, $t = 6$, $n = 4$

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$4000 = P\left(1 + \frac{0.035}{4}\right)^{4(6)}$$

$$P = \frac{4000}{\left(1 + \frac{0.035}{4}\right)^{4(6)}}$$

$$= \$3245.30$$

$$A = 4000.00$$

$$A = 4000.00$$

$$A = 4000.00$$

$$A = 4000$$

$$A =$$

Exercise

How much money will there be in an account at the end of 8 years if \$18,000 is deposited at 3% interest compounded semi-annually?

Solution

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$= 18000\left(1 + \frac{0.03}{2}\right)^{2(8)}$$

$$= \$22,841.74$$

Exercise

The function defined by $P(x) = 908e^{-0.0001348x}$ approximates the atmospheric pressure (in millibars) at an altitude of x meters. Use P to predict the pressure:

908.00

- a) At 0 meters
- b) At 12,000 meters

Solution

a) At 0 meters

0

b) At 12,000 meters