core map

Name:

TLB hit

real-time scheduling

Part 1: Word Bank

affinity scheduling

Write one of the words or terms from the following list into the blank appearing to the left of the appropriate definition. Note that there are more words and terms than definitions. (1.5 pts. each)

not recently used

arring sorie adming	core maj	~	not recently asea	rear time seriedaning	125 1110
base and bound	demand	paging	pin (e.g., pin a page)	shadow page table	TLB miss
Belady's anomaly	gang sch	eduling	preemption	spatial locality	TLB shootdown
checkpoint	I/O-bour	nd task	priority boosting	superpage	working set
compute-bound task	lock orde	ering	priority donation	temporal locality	=
copy-on-write	log	J	process migration	time quantum	zero-on-reference
σορ, σc	.00		p. 6 6 6 6 6 1 1 1 6 1 6 1 1 1 1 1 1 1 1	anno quantum	20.0 0
1	A	n ordered sequ	uence of steps saved to	persistent storage.	
2	TI	he set of memo	ory locations that a prog	gram has referenced in t	he recent past.
3	W	/hen a schedul	er takes the processor a	away from one task and	gives it to another.
4		rograms tend t accessed.	o reference the same in	structions and data tha	t have been recently
5		rograms tend t accessed.	co reference instructions	s and data near those th	at have been recently
6		widely used a determined or		dlock, where locks are a	cquired in a pre-
7		n early system of physical mer		where each process is li	mited to a specific range
8		he ability to tal		n one system, stop its ex	ecution, and resume it on
9		consistent sna		e of a process, including	the contents of memory
10			l resource to a physical i a physical page.	resource, such as a threa	ad to a processor or a
11.		· ·	transferring data across	the kernel-user bounda page table entries.	ary without memory-to-
12			•	ferentially scheduled on I to improve cache reuse	•
13			•	a lower priority thread, to riority until the lock is re	
14		oresent. When		a missing page, the hard	of its memory physically dware traps to the kernel,

Part 2: Deadlock

15. Give the four necessary conditions for deadlock. (6 pts.)

True/False. Circle only one of T or F. (1.5 pts. each)

Use this table for questions 16-19 for deadlock avoidance questions based on the Banker's algorithm. Treat each question independently, starting each time from the values shown in the table.

threads	max need	allocated	remaining need
Α	10	1	9
В	9	5	4
С	8	4	4

Unused units = 5

- 16. T / F Can safely grant request of thread A for 1 units.
- 17. T / F Can safely grant request of thread B for 1 unit.
- 18. T / F Can safely grant request of thread A for 2 units.
- 19. T / F Can safely grant request of thread B for 2 units.
- 20. What type of assumptions does the Banker's algorithm make about the threads for which it manages the requests? For example, what assumptions does the algorithm make about the number and lifetimes of the threads? (2 pts.)

[poorly worded – revise if using in future]

21. Based on your answer to question 20, is the Banker's algorithm a good choice for a time-sharing system? (2 pts.)

[poorly worded – revise if using in future]

Part 3: Scheduling

Chaut Tauss	/Medium-Term	/I a m ~ Ta maa		Cinala and		ь л	. /	1	' مام ما	١.
Snort-Term	/weallim-term	/I ONS-TERM	Schedilling	Circle oniv	vone or s	IVI		ı m	each	1
J.101 C 1 C1111	, ivicaiaiii i ciiii	/ - 0115 1 C1111	Julicaaiiiig.	Circic Circ	,	, ,	\	- 0	cacii	,

- 22. S / M / L Is called a dispatcher.
- 23. S / M / L Typically runs after every interrupt.
- 24. S / M / L Attempts to dynamically maintain a balanced job mix.

FIFO/RR/MFQ/SJF-preemptive. Circle one or more of F, R, M, S, as applies. (2 pts. each)

- 25. F / R / M / S Is preemptive.
- 26. F / R / M / S Uses time quantums.
- 27. F / R / M / S Requires future knowledge.
- 28. F / R / M / S Has minimum average response time for any workload.
- 29. Given the following list of tasks, arrival times, and service times, calculate the completion (i.e., departure) time and response (i.e., turnaround) time of each task for FIFO scheduling and again for SJF-preemptive scheduling. (12 pts.)

			FIFC)	SJF-preer	nptive
Task	Arrival	Service	Completion	Response	Completion	Response
	Time	Time	Time	Time	Time	Time
Α	0	10				
В	1	6				
		_				
С	3	5				

Aging/Boosting. Circle only one or A or B. (1 pt. each)
30. A / B Priority increases while waiting.
31. A / B Priority increase value is specified as a parameter to the signal operation for I/O completion.
32. Devise a workload when FIFO is optimal for average response time. (2 pts.)
[revise? Describe the properties of a workload for which FIFO]
33. Devise a workload when FIFO is pessimal for average response time. (2 pts.)
33. Devise a workload when RR is pessimal for average response time. (2 pts.)
34. Explain the priority inversion problem, and explain how dynamic priority scheduling with aging would solve the problem. (4 pts.)
[need to be specific about the case of priority inversion with bounded locks]

Part 4: Address Translation

Base and Bound/Segmentation/Paging. Circle one or more of BB, S, or P, as applies. (1.5 pts. each)

- 35. BB / S / P Can have external fragmentation.
- 36. BB / S / P Performs a bounds/limit check on the offset field.
- 37. BB / S / P Requires loading of one or more privileged CPU registers on a process switch.
- 38. BB / S / P Process memory image is divided into variable-length regions that match the program structure; each region has a unique identifier field that cannot be changed when adding to the offset field.

39. Consider a simple architecture with paged segments in which three-decimal-digit virtual addresses are used. The segment id is the first decimal digit, the virtual page number is the second decimal digit, and the offset is the last decimal digit. The physical address are two decimal digits: the page frame is the first decimal digit, and the offset is the second decimal digit. E.g., the virtual address 111 would be translated to physical address 51 given the following segment and page table entries. Give the physical addresses for the following virtual addresses. (3 pts.)

Segment Table	Page Table A	Page Table B
0 = points to page table A, segment length is 3 pages	0 = present, page frame 4	0 = present, page frame 7
1 = points to page table B, segment length is 2 pages	1 = not present	1 = present, page frame 5
X (other values are invalid)	2 = present, page frame 3	X (other values are invalid)
	X (other values are invalid)	

(a)	Virtual address 000 is translated	to r	physical address	
(~,	th taar aaaress coo is translated	, o	orry orear address	

(b) Virtual address 104 is translated to physical address	(b)	Virtual address 104	I is translated to	physical address	
---	-----	---------------------	--------------------	------------------	--

40. Using the diagram format of the textbook (letter means miss, and "+" means hit), show how the system would fault pages into the four frames of physical memory using the LRU replacement policy. (4 pts.)

REF	Α	В	С	D	В	Α	E	F	В	F	Α	G	E	F	Α
1															
2															
3															
4															

41. Using the diagram format of the textbook (letter means miss, and "+" means hit), show how the system would fault pages into the four frames of physical memory using the clock replacement policy (i.e., FIFO second chance; when faulted in, each page has its use bit set to 0 so that information about subsequent use can be recorded). (4 pts.)

REF	Α	В	С	D	В	Α	E	F	В	F	Α	G	E	F	Α
1															
2															
3															
4															

Answer questions 42-46 using powers of 2 and a memory byte as the addressable unit. (Diagram is from Wikipedia.)

- 42. What is the name of the paging scheme shown above? (2 pts.)
- 43. What is the size in bytes of a page table in the paging scheme shown above? (2 pts.)
- 44. Consider a contiguous data structure of 16 MB. How many pages do you need to store this structure? (2 pts.)
- 45. How many page directory entries do you need to store the data structure in question 44? (2 pts.)
- 46. Explain how the paging scheme shown above supports a sparse address space. (3 pts.)
- XC. When a processor does a TLB shootdown, must it wait until other processors respond or can it proceed in parallel while other processors are handling the shootdown? Explain your answer. (2 pts.)