

What cloud?

- Terminology overload, used to mean e.g.:
 - Storage services (Dropbox)
 - Virtual server hosting (Amazon Web Services)
 - Software platforms (Google App Engine)
 - Pretty much any web service
 - The Internet as a whole
- Self-service and automation are the common features

Separation of Responsibilities

Pouta Clouds in general

- True self-service IaaS
 - Deploy your own virtual machines, storage and network as requirements evolve
- Powered by OpenStack
 - CSC does a lot of integration and customization, often based on feedback received from customers
- Simple to create and modify VMs
 - o Web UI, CLI & REST API interfaces
- Diverse set of hardware to serve many use cases
 - High Performance Computing nodes
 - General purpose nodes
 - Data Intensive Computing nodes (upcoming)

cPouta use cases

- Running scientific applications
 - Computational clusters
 - Software stacks not available on other CSC platforms
- Building custom services
 - Web servers, file servers etc.
 - Software Defined Infrastructure (DevOps)
 - Rapidly deploying dev/test/prod environments
- Virtual computer class
- Research data/information sharing
- Whatever you can think of. We urge you to experiment!

0.5.0

Virtual machine flavors in cPouta

VM type	Description	Use
standard.*	Oversubscribed "traditional" cloud virtual machines.	All non-CPU, non-IO intensive workloads
hpcgen1.*	Non-oversubscribed, non-HT Sandy Bridge nodes (Taito)	CPU intensive HPC/HTC workloads
hpcgen2.*	Non-oversubscribed, HT Haswell large memory nodes	Memory and CPU intensive HPC/HTC workloads
io.* (H1/2016)	SSD-backed high IOPS nodes	IOPS intensive workloads

What OpenStack?

- Set of tools to build an IaaS cloud for creating virtualized
 - o servers
 - networks
 - storage
- OpenStack is to the datacenter what Linux is to a server an operating system
- Just like there are many Linux distributions, there are many OpenStack distributions
- Full end-user control and responsibility of their infrasrtucture

CSC

Interfaces

- Web
 - o Works from any modern browser
 - Launch, list, terminate servers
 - Server console in the browser
 - Manage storage and networks
- Command line
 - Can do all the same things as the web interface and more
- API
 - Management through a programmable interface


```
ID
                                       l Name
                                                                   Status
                                                                                Networks
 ca02b61d-656e-479f-bde2-7bb8b58add0f | Galaxu-test
                                                                  I SUSPENDED I
                                                                                                                                CSC
                                                                               csc=192.168.1.18
 b1884673-3844-4c22-825e-4a0567ed8b3b | HarriPerformance<u>Tests_1_3 | ACTIVE</u>
                                                                                csc=192.168.1.26. 86.50.168.22
 e37bb795-57de-4e88-93bc-e91b65a5f77a | HarriPerformanceTests_1_4 | ACTIVE
                                                                                csc=192.168.1.29, 86.50.168.26
 a4d94367-971f-4ec4-af8d-18384dd9bb84 | Image builder
                                                                    ACTIVE
                                                                                csc=192.168.1.25, 86.50.168.6
                                                                    ACTIVE
 393c4f74-0964-4029-94f9-f871e8ace721 | JarnoTest
                                                                                csc=192.168.1.20. 86.50.168.64
 df5dee5f-76df-4f91-b3c4-1c6112f9dfec | TestUserTest
                                                                    SHUTOFF
                                                                                csc=192.168.1.44
                                                                   ACTIVE
 82fd0a09-9fc7-449f-843b-1298cad52bbe | ceph-node4
                                                                                csc=192.168.1.45
 37efdee1-11a6-4b0a-9297-2682ced4f681 | ceph-node5
                                                                    ACTIVE
                                                                                csc=192.168.1.46
 7ca99cd8-c9ec-45bc-ad6c-09013049b8cd | ceph-node6
                                                                    ACTIVE
                                                                                csc=192.168.1.47
                                                                   ACTIVE
 71adc582-6d4c-4bb2-ae03-a3feec5213c3 | chipster-test
                                                                                csc=192.168.1.5, 86.50.168.39
                                                                  I ERROR
 6f3c82af-7f42-40dd-98da-db4ba12b960c | chipster-test-from-image
 9300313c-338a-4327-890e-4d02d1821bf2 | fail2ban-test Johan
                                                                  I ACTIVE
                                                                                csc=192.168.1.27, 86.50.168.8
 c250a4ee-6323-4246-a18e-5b5ab1f1882d | kalletest
                                                                   ACTIVE
                                                                                csc=192.168.1.22
                                                                   ACTIVE
                                                                                csc=192.168.1.49, 86.50.168.33
 51c0a65d-1aba-4cc0-b565-ca85bd19c61b | karan-RD0
                                                                   ACTIVE
 1e1999c5-b6fe-44f8-8960-91d47e300727 | karan-ceph-admin
                                                                                csc=192.168.1.28. 86.50.168.70
 2373fa4f-95e9-4bb2-b80e-feb2b0379415 | karan-ceph-client1
                                                                   ACTIVE
                                                                                csc=192.168.1.40
 0db4f304-3cd2-4337-b0e2-934ff74082fd | karan-ceph-mon1
                                                                    ACTIVE
                                                                                csc=192.168.1.38
                                                                    ACTIVE
 5825e7f5-fe91-4889-a32d-298b24168c20 | karan-ceph-mon2
                                                                                csc=192.168.1.33
 aea288a5-2042-4311-9010-dbf686070246 | karan-ceph-mon3
                                                                    ACTIVE
                                                                                csc=192.168.1.31
 b88b0360-9557-4942-8a2d-e2a597f93f9f | karan-ceph-node1
                                                                    SUSPENDED
                                                                                csc=192.168.1.34
                                                                    ACTIVE
 28242b30-8b64-4186-9dc3-6834e5037d84 | karan-ceph-node2
                                                                                csc=192.168.1.37
                                                                   ACTIVE
 618e23e5-f8d0-49a0-89da-2b89c4a008de | karan-ceph-node3
                                                                                csc=192.168.1.41
 2b8164d8-cbe2-4143-85f6-67f1598ccdce | karan-ceph-puppetmaster
                                                                    ACTIVE
                                                                                csc=192.168.1.4
 20dd95ad-4178-4e5b-9097-912a396bc6bd | lalves_test
                                                                   ACTIVE
                                                                                csc=192.168.1.21
                                                                   ACTIVE
                                                                                csc=192.168.1.19. 86.50.168.30 |
 c7eb0d54-12b9-4124-baf5-7cf2459320d4 | olli test3
 fade122d-d763-4354-ae7d-79e235421baf | p i-ubuntu
                                                                    ACTIVE
                                                                                csc=192.168.1.2. 86.50.168.10
rlaurika@pilkkasiipi ~ $
```

rlaurika@pilkkasiipi ~ \$ nova list

Storage types in OpenStack

- OS image
 - The root disk of the VM
 - Usually not very large for efficiency reasons
- Ephemeral disk = scratch
 - Throw-away scratch disk
 - o Disappears when VM instance is deleted
- Volumes = persistent block storage
 - Persistent disk for storing hot data
 - Can be attached and detached to/from a running VM
- Swift = reliable object storage (Coming 2016)
 - Replicated storage for cold data
 - Accessed over HTTP
- Still missing: shared file system (CIFS,NFS,..)

The most obvious workflow when using a cloud

- 1. Start a virtual machine
- 2. Login
- 3. Configure some software using the command line
 - Install some packages
 - Edit a few configuration files
 - Make a few changes to the firewall
 - Start some services
- 4. Done!

What needs to fail for this workflow to fail? Just one of these:

Some recommendations

- Automate as much as possible
- Separate configuration from state

Automate as much as possible

- If something goes wrong, manual recovery may be difficult or impossible
- Make it easy to recreate your VMs from scratch
- Configuration management helps. Some tools for that:
 - Ansible
 - Puppet
 - Chef

Separate configuration from state

- Configuration is installed software, configuration files, firewall rules etc.
- State is e.g. data in a database or data produced by a computation
- Where to store each:
 - Configuration: VM's local filesystem
 - State: persistent volume (like a virtual hard drive attached to the VM)
- You should have a backup of both your state and your configuration

Ansible (http://www.ansible.com)

- Free and open source software for automating configuration tasks
- Easy to use
- No need to install anything on the machine to be configured SSH is enough
- For an example, see:
 - o https://github.com/CSC-IT-Center-for-Science/pouta-ansible-demo

0.50

Hands on exercises

Documentation:

https://research.csc.fi/pouta-user-guide

- 1. Setup prerequisites
 - SSH key
 - Security group
- 2. Launch a virtual machine (use CentOS 7)
- 3. Assign a floating IP to the VM
- 4. Login to the VM
- 5. Attach block storage