Econ 103: Homework 2

Manu Navjeevan

August 18, 2021

Single Linear Regression Theory Review

1. Recall that we define our parameters of interest β_0 and β_1 as the parameters governing the "line of best fit" between Y and X:

$$\beta_0, \beta_1 = \arg\min_{b_0, b_1} \mathbb{E}[(Y - b_0 - b_1 X)^2].$$
 (1)

Once we define these parameters we define the regression error term $\epsilon = Y - \beta_0 - \beta_1 X$ which then generates the linear model

$$Y = \beta_0 + \beta_1 X + \epsilon.$$

- (a) Using the first order conditions for β_0 and β_1 (set the derivatives of the right hand side of (1) with respect to b_0 and b_1 equal to zero at) show why $\mathbb{E}[\epsilon] = \mathbb{E}[\epsilon X] = 0$.
- (b) Using the definition of β_0 and β_1 as line of best fit parameters, give an intuitive explanation for why $\mathbb{E}[\epsilon] = 0$.

Hypothesis Testing and Confidence Intervals

In the following questions, whenver running a hypothesis test, please state the null and alternative hypotheses, show some work, and state the conclusion of the test.

- 1. In an estimated simple regression model based on n=64, the estimated slope parameter, $\hat{\beta}_1$, is 0.310 and the standard error of $\hat{\beta}_1$ is 0.082.
 - (a) What is $\hat{\sigma}_{\beta_1}^2$? Recall σ_{β_1} is the terms such that, approximately for large n,

$$\sqrt{n}(\hat{\beta}_1 - \beta_1) \sim N(0, \sigma_{\beta_1}).$$

- (b) Test the hypothesis that the slope is zero against the alternative that it is not at the 1% level of significance ($\alpha = 0.01$).
- (c) Test the hypothesis that the slope is negative against the alternative that it is positive at the 1% level of significance ($\alpha = 0.01$).
- (d) Test the hypothesis that the slope is positive against the alternative that it is negative at the 5% level of significance. What is the p-value?
- (e) Generate a 99% confidence interval for β_1 . How can we use this interval to run the hypothesis test in part (b)?
- 2. Consider a simple regression of log-income (income is measured thousands of dollars), Y, against years of education, X. After collecting a sample of size n = 50 we estimate the following regression equation.

$$\hat{Y} = \hat{\beta}_0 + 0.0180X.$$

(a) Using the following information to solve for $\hat{\beta}_0$ as well as the estimated variance $\widehat{\text{Var}}(\hat{\beta}_0)$, which is the square of the standard error.

- The standard error of $\hat{\beta}_0$ is 2.174
- The test statistic, t^* , associated with the hypothesis test for

$$H_0: \beta_0 = 0$$
 vs. $H_1: \beta_0 \neq 0$,

is equal to 1.257.

- (b) Use the following information to solve for the standard error $\hat{\beta}_1$ as well as the estimated variance $\widehat{\text{Var}}(\hat{\beta}_1)$, which is the square of the standard error.
 - The test statistic, t^* , associated with the hypothesis test for

$$H_0: \beta_1 = 0$$
 vs. $H_1: \beta_1 \neq 0$,

is equal to 5.754

- (c) Given that Y is a logged variable, $Y = \log(\text{income})$, how do we interpret $\hat{\beta}_1$?
- (d) Suppose that we are interested in the average value of log-income for someone with 16 years of education. We want to use the model above to test the hypothesis that the average value of log-income for someone with 16 years of education is less than or equal to 1.85. That is we want to test

$$H_0: \lambda = \beta_0 + 16\beta_1 \le 1.85$$
 vs. $H_1: \lambda = \beta_0 + 16\beta_1 > 1.85$.

Use the fact that $\widehat{\text{Cov}}(\hat{\beta}_0, \hat{\beta}_1) = 2.84$ to test this hypothesis at level $\alpha = 0.1$.

- (e) Use the above to generate a 90% confidence interval for λ .
- 3. (Challenge) Suppose we find that $\hat{\beta}_1 > 0$. If we reject the null hypothesis that $\beta_1 = 0$ in favor of an alternative hypothesis that $\beta_1 \neq 0$ at level α , up to what level can we be sure that would we reject the null hypothesis that $\beta_1 \leq 0$ against an alternative that $\beta_1 > 0$? (Please give some explanation here as well as your answer, which will be some multiple of α).

R^2 and Goodness of Fit

1. Consider the following estimated regression equation.

$$\hat{Y} = 6.83 + 0.869X$$
.

Write the estimated regression equation that would result if

- (a) All values of X were divided by 20 before estimation.
- (b) All values of Y were divided by 20 before estimation.
- (c) All values of X and Y were divided by 20 before estimation.
- 2. Given the quantities in the questions below, calculate and interpret R^2 :
 - (a) $\sum_{i=1}^{n} (Y_i \bar{Y})^2 = 631.63$ and $\sum_{i=1}^{n} \hat{\epsilon}_i^2 = 182.85$.
 - (b) $\sum_{i=1}^{n} Y_i^2 = 5930.94$, $\bar{Y} = 16.035$, n = 20, and SSR = 666.72.
- 3. Suppose $R^2 = 0.7911$, SST = 552.36, and n = 20. Find $\hat{\sigma}_{\epsilon}^2$.