Logica Matematica

Dipartimento di Elettronica e Informazione Politecnico di Milano

21 aprile 2017

La logica come formalismo descrittivo

Un ulteriore linguaggio di specifica

- Logica: un formalismo "universale" alternativo al linguaggio naturale
 - Vantaggi: non ambiguità, possibile dimostrare in modo automatico proprietà desiderate
- Applicata in contesti molto vari: da ingegneria informatica a ingegneria dei sistemi
- Esistono formalismi applicativi basati sulla logica:
 - Linguaggi di programmazione (Prolog, Datalog)
 - Linguaggi di specifica (Z è lo standard ISO/IEC 13568)

La logica come formalismo descrittivo

Usi esaminati in questo corso

- Specifica di linguaggi formali (logica monadica del primo e secondo ordine)
- Logica per la specifica di comportamento (I/O) di programmi
- Logica per la specifica delle proprietà di sistemi temporizzati

Logica monadica del prim'ordine (MFO)

Sintassi ed interpretazione

- La MFO è un sottoinsieme (proprio) della logica del prim'ordine che consente di descrivere parole su un alfabeto I
- Sintassi :
 - una formula φ è $\varphi \stackrel{\Delta}{=} a(x) \mid x < y \mid \neg \varphi \mid \varphi \wedge \varphi \mid \forall x(\varphi)$
 - ullet dove $a \in \mathbf{I}$: una lettera predicativa per ogni simbolo di \mathbf{I}
- Interpretazione:
 - il dominio delle variabili è un sottoinsieme finito di N
 - corrisponde alla relazione di minore

Alcune abbreviazioni

Concetti ricorrenti

- Come sempre:
 - $\varphi_1 \vee \varphi_2 \stackrel{\Delta}{=} \neg (\neg \varphi_1 \wedge \neg \varphi_2)$
 - $\bullet \ \varphi_1 \Rightarrow \varphi_2 \stackrel{\Delta}{=} \ \neg \varphi_1 \lor \varphi_2$
 - $\bullet \ \exists x(\varphi) \ \stackrel{\Delta}{=} \ \neg \forall x(\neg \varphi)$
 - $x = y \stackrel{\Delta}{=} \neg (x < y) \land \neg (x > y)$
 - $\bullet \ x \le y \stackrel{\Delta}{=} \neg (y < x)$
- In aggiunta:
 - La costante 0: $x = 0 \stackrel{\Delta}{=} \forall y (\neg (y < x))$
 - La funzione successore S(x):

$$S(x) = y \stackrel{\Delta}{=} (x < y) \land \neg \exists z (x < z \land z < y)$$

ullet Le costanti $1,2,3,\ldots$ come $S(0),S(S(0)),S(S(S(0))),\ldots$

Interpretazione come parole su ${f I}$

Interpretazione di a(x)

- a(x) è vero \Leftrightarrow l'x-esimo simbolo di $w \in \mathbf{I}^*$ è a
 - ullet gli indici di w partono da 0

Esempi

- Formula vera su tutte e sole le parole non vuote che iniziano per a: $\exists x(x=0 \land a(x))$
- Formula vera su tutte e sole le parole in cui ogni a è seguita da una b: $\forall x (a(x) \Rightarrow \exists y (y = S(x) \land b(y)))$
- Formula vera per la sola stringa vuota: $\forall x \ (a(x) \land \neg a(x))$

Altre abbreviazioni convenienti

Abbreviazioni per indici comodi

- y = x + 1 indica y = S(x)
- generalizzando, se $k \in \mathbb{N}, k > 1$ indichiamo con y = x + k $\exists z_1, z_2, \ldots, z_{k-1}(z_1 = x+1, z_2 = z_1+1, \ldots, y = z_{k-1}+1)$
- y = x 1 indica x = S(y), ovvero x = y + 1, così come y = x k indica x = y + k
- last(x) indica $\neg \exists y(y > x)$

Esempi

- Parole non vuote terminanti per $a: \exists x(last(x) \land a(x))$
- Parole con almeno 3 simboli di cui il terzultimo è a $\exists x(a(x) \land \exists y(y=x+2 \land last(y)))$ Abbreviando: $[\exists x(a(x) \land last(x+2))]$

Semantica formale

Semantica dei componenti di una formula

- Dati $w \in \mathbf{I}^+$ e \mathbf{V}_1 insieme delle variabili, un assegnamento è una funzione $v_1 : \mathbf{V}_1 \to \{0, 1, \dots, |w| 1\}$
 - $w, v_1 \vDash a(x)$ se e solo se w = uav e $|u| = v_1(x)$
 - $w, v_1 \vDash x < y$ se e solo se $v_1(x) < v_1(y)$
 - $w, v_1 \vDash \neg \varphi$ se e solo se $w, v_1 \nvDash \varphi$
 - $w, v_1 \vDash \varphi_1 \land \varphi_2$ se e solo se $w, v_1 \vDash \varphi_1$ e $w, v_1 \vDash \varphi_2$
 - $w, v_1 \vDash \forall x(\varphi)$ se e solo se $w, v_1' \vDash \varphi$ per ogni v_1' con $v_1'(y) = v_1(y)$ con y diversa da x

Linguaggio di una formula

• $L(\varphi) = \{ w \in \mathbf{I}^+ \mid \exists v : w, v \vDash \varphi \}$

Proprietà della MFO

Chiusura rispetto ad operazioni

- I linguaggi esprimibili con MFO sono chiusi per unione, intersezione, complemento
 - Basta combinare le formule con ∧, ∨, ¬
- In MFO non posso esprimere $L = \{a^{2n}, n \in \mathbb{N}\}$ su $\mathbf{I} = \{a\}$
- MFO è strettamente meno potente degli FSA
 - Da una formula in MFO posso sempre costruire un FSA equivalente
 - L può essere riconosciuto solo da un FSA

Proprietà della MFO

Chiusura rispetto alla * di Kleene

- I linguaggi definiti da una formula MFO non sono chiusi rispetto alla * di Kleene
 - la formula $a(0) \wedge a(1) \wedge last(1)$ definisce $L = \{aa\}$
 - ullet la *-chiusura di L è il linguaggio delle stringhe di a pari
- MFO è in grado di definire i linguaggi star-free: sono i linguaggi ottenuti per unione, intersezione, concatenazione e complemento di linguaggi finiti
- Come definire tutti i REG?

Logica Monadica del Secondo Ordine (MSO)

Quantificare insiemi di posizioni

- Per avere lo stesso potere espressivo degli FSA basta "solo" permettere di quantificare sui predicati monadici
 - In pratica, quantificare su insiemi di posizioni
 - ullet Quantificazione su predicati del prim'ordine o logica del secondo ordine
- Ammettiamo formule come $\exists X \ (\varphi) \ \text{con} \ X$ appartenente all' insieme dei predicati monadici (insiemi di posizioni)
- Convenzione: usamo maiuscole e minuscole
 - Maiuscole per indicare variabili con dominio l' insieme dei predicati monadici
 - ullet Minuscole per indicare variabili $\in \mathbb{N}$

Semantica

Assegnamento delle variabili

- L'assegnamento di variabili del 2º ordine (insieme V_2) è una funzione $v_2: V_2 \to \wp(\{0, 1, \dots, |w|-1\})$
 - $w, v_1, v_2 \models X(x)$ se e solo se $v_1(x) \in v_2(X)$
 - $w, v_1, v_2 \vDash \forall X(\varphi)$ se e solo se $w, v_1' \vDash \varphi$ per ogni v_2' con $v_2'(Y) = v_2(Y)$, con Y diversa da X

Esempio

• Possiamo descrivere il linguaggio $L = \{a^{2n}, n \in \mathbb{N} \setminus \{0\}\}$

$$\exists P(\forall x (\quad a(x) \land \\ (\neg P(x) \Leftrightarrow P(x+1)) \land \\ \neg P(0) \land \\ (last(x) \Rightarrow P(x)) \quad))$$

Da FSA a MSO

Una formula MSO per ogni FSA

Da MSO a FSA

Completare l' equivalenza

- Data una φ MSO, si può sempre costruire un FSA che accetta esattamente $L(\varphi)$ (teorema di Büchi-Elgot-Trakhtenbrot)
 - La dimostrazione dell'esistenza è costruttiva: mostra come costruire l'FSA a partire da una formula MSO (non la vediamo per semplicità)
- La classe dei linguaggi definibili via MSO coincide con REG

Logica per definire proprietà dei programmi

Un formalismo per definire gli effetti

- Specifica di un algoritmo di ricerca: la variabile found $\in \{0,1\}$ deve valere 1 se e solo se esiste un elemento dell' array a di n elementi uguale all' elemento x cercato
 - found $\Leftrightarrow \exists i (a[i] = x \land 0 \le i \le n-1)$
- ullet Specifica di un algoritmo di inversione out-of-place di un array a in un array b
 - $\forall i, (0 \le i \le n-1 \Rightarrow b[i] = a[n-1-i])$

Più in generale

Pre- e Post-condizioni

- Abbiamo un insieme di condizioni espresse come formule che devono essere vere prima dell' esecuzione di un programma P (pre-condizioni) affinchè siano vere un insieme di fatti dopo la sua esecuzione (post-condizioni)
- Esempio: ricerca di un elemento x in un array ordinato aPre $\{\forall i, (0 \le i \le n-2 \Rightarrow a[i] \le a[i+1])\}$
 - Esecuzione del programma P

Post
$$\{\text{found} \Leftrightarrow \exists i (a[i] = x \land 0 \le i \le n-1)\}$$

- N.B. le pre e post precedenti non implicano che Psia un algoritmo di ricerca binaria: una ricerca lineare funziona ugualmente
- Controesempio: un algoritmo di ricerca binaria non garantirebbe post se pre fosse semplicemente $\{True\}$

Un ulteriore esempio

Ordinamento di array di n elementi senza ripetizioni

$$\texttt{Pre} \ \{ \neg \exists i,j \ (\ 0 \leq i \leq n-1 \ \land \ 0 \leq j \leq n-1 \ \land \ a[i] = a[j] \ \land \ i \neq j) \}$$

Esecuzione di ORD

Post
$$\{\forall i, (0 \le i \le n-2 \Rightarrow a[i] \le a[i+1])\}$$

"Buone" specifiche

- É una specifica "adeguata"?
- La specifica agisce come un "contratto" con chi deve sviluppare ORD, così come con chi usa il programma sviluppato

Ordinamento di array di n elementi senza ripetizioni

Una specifica più accurata

Pre {
$$\neg \exists i, j \ (0 \le i \le n-1 \land 0 \le j \le n-1 \land a[i] = a[j] \land i \ne j) \land \forall i \ (0 \le i \le n-1 \Rightarrow a[i] = b[i]) }$$

Esecuzione di ORD

Post
$$\{ \ \forall i, (\ 0 \leq i \leq n-2 \Rightarrow a[i] \leq a[i+1]) \land \forall i (\ 0 \leq i \leq n-1 \Rightarrow \exists j (\ 0 \leq j \leq n-1 \land a[i] = b[j])) \land \forall j (\ 0 \leq j \leq n-1 \Rightarrow \exists i (\ 0 \leq j \leq n-1 \land a[i] = b[j])) \ \}$$

"Buone" specifiche

- Se eliminiamo la prima porzione della Pre, la specifica è ancora valida?
- La specifica data è un "buon" modello anche per l' ordinamento di una lista o un file?

Logica per specificare proprietà di sistemi

Una lampada a pulsante

- Informalmente "se premo il pulsante, la luce si accende entro au secondi
 - $\operatorname{Push}(t)$: predicato vero quando il pulsante è premuto all'istante t
 - ullet L_on(t): pred. vero quando la luce è accesa all'istante t
- Un primo tentativo di specifica potrebbe essere:

$$\forall t \; (\; \mathtt{Push}(t) \Rightarrow \exists t_1 (\; t \leq t_1 \leq t + \tau \land \mathtt{L}_\mathtt{on}(t_1)) \;)$$

 Prestando attenzione a cosa indica questa specifica, si nota che presenta alcune divergenze rispetto al comportamento "atteso" da parte di un pulsante di accensione della luce

Un pulsante temporizzato

Primo tentativo di formalizzazione

$$\forall t (\text{ Push}(t) \Rightarrow \forall t_1 (t \leq t_1 \leq t + \tau \Rightarrow \text{L}_{-}\text{on}(t_1)) \land \\ \forall t_2 (t + \tau \leq t_2 \Rightarrow \text{L}_{-}\text{off}(t_2)))$$

• Non ancora... se premo il pulsante a luce accesa?

Un pulsante temporizzato

Secondo tentativo di formalizzazione

$$\begin{array}{c} \forall t (\ (\ \mathsf{Push}(t) \land \mathsf{L_off}(t) \) \Rightarrow \\ \forall t_1 (\ t \leq t_1 \leq t + \tau \Rightarrow \mathsf{L_on}(t_1) \) \ \land \ \mathsf{L_off}(t+k) \) \ \land \\ \forall t_3, t_4 (\ \mathsf{L_off}(t_3) \land \forall t_5 (t_3 \leq t_5 \leq t_4 \Rightarrow \neg \mathsf{Push}(t_5)) \Rightarrow \mathsf{L_off}(t_4)) \end{array}$$

Meglio, ma nulla vieta che la luce sia accesa e spenta....

Un pulsante temporizzato

Terzo (ed ultimo) tentativo di formalizzazione

$$\forall t (\ \mathtt{L_on}(t) \Leftrightarrow \neg \mathtt{L_off}(t) \) \land \\ \forall t (\ \mathtt{Push}(t) \Rightarrow \\ \exists \delta (\forall t_1(t - \delta < t_1 < t \ \lor \ t > t_1 > t + \delta) \Rightarrow \neg \mathtt{Push}(t_1))) \land \\ \forall t ((\ \mathtt{Push}(t) \land \exists \delta (\forall t - \delta < t_1 < t \Rightarrow \mathtt{L_off}(t_1) \) \) \Rightarrow \\ \forall t_1(t \leq t_1 \leq t + k \Rightarrow \mathtt{L_on}(t_1)) \land \mathtt{L_off}(t + k) \) \land \\ \forall t_3, t_4(\ \mathtt{L_off}(t_3) \land \forall t_5(t_3 \leq t_5 \leq t_4 \Rightarrow \neg \mathtt{Push}(t_5)) \Rightarrow \mathtt{L_off}(t_4))$$

Variazioni sul tema

Possibili alternative a modifiche ridotte

- Pulsante di spegnimento al posto di spegnimento temporizzato
- Pulsante che necessita di essere tenuto premuto
 - La luce resta sempre accesa fin quando il pulsante è premuto
 - ullet ... oppure ha uno spegnimento di sicurezza dopo au

Sull'approccio in generale

• Logica come formalismo descrittivo per sistemi reali: generale, ma sistematico e non ambiguo

Verso metodi e linguaggi di specifica

Verifiche di correttezza di implementazioni

- Specificare i requisiti di un algoritmo in un'opportuna logica
- Implementare l'algoritmo in un opportuno linguaggio
- Ottenere la correttezza dell'implementazione come dimostrazione (automatizzata) di un teorema

Logica come descrizione di "dati"

- É possibile scegliere un'opportuna logica per descrivere un insieme di concetti
 - e.g., RDF per pagine web, logiche descrittive per dati biomedici
- Se la logica è opportuna (= è possibile calcolare la verità di un dato teorema) possiamo automatizzare la validazione di nostre deduzioni su vaste quantità di dati