(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005年10月20日(20.10.2005)

PCT

(10) 国際公開番号 WO 2005/098068 A1

(51) 国際特許分類7: C22C 38/00, 38/14, 38/58

(21) 国際出願番号: PCT/JP2005/007109

(22) 国際出願日: 2005 年4 月6 日 (06,04,2005)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

2004年4月7日(07.04.2004) 特願2004-113278 ΤP 特願2005-102041 2005年3月31日(31.03.2005) ЛР

(71) 出願人 (米国を除く全ての指定国について): 新日 本製鐵株式会社 (NIPPON STEEL CORPORATION) [JP/JP]; 〒1008071 東京都千代田区大手町二丁目6番 3号 Tokyo (JP).

(72) 発明者; および

発明者/出願人 (米国についてのみ): 伊藤 実 (ITO, Minoru) [JP/JP]; 〒2938511 千葉県富津市新富20-1 新日本製鐵株式会社 技術開発本部内 Chiba (JP). 児 島 明彦 (KOJIMA, Akihiko) [JP/JP]; 〒2938511 千葉県 富津市新富20-1 新日本製鐵株式会社 技術開発 本部内 Chiba (JP). 皆川 昌紀 (MINAGAWA, Masanori) [JP/JP]; 〒8708566 大分県大分市大字西ノ洲 1 番地 新日本製鐵株式会社 大分製鐵所内 Oita (JP). 田中 洋 一 (TANAKA, Yoichi) [JP/JP]; 〒2938511 千葉県富津市 新富20-1 新日本製鐵株式会社 技術開発本部内 Chiba (JP). 長谷川 俊永 (HASEGAWA, Toshiei) [JP/JP]; 〒2938511 千葉県富津市新富20-1 新日本製鐵株 式会社 技術開発本部内 Chiba (JP). 大谷 潤 (OTANI, Jun) [JP/JP]; 〒8708566 大分県大分市大字西ノ洲 1番 地 新日本製鐵株式会社 大分製鐵所内 Oita (JP).

/続葉有/

(54) Title: THICK HIGH STRENGTH STEEL PLATE HAVING EXCELLENT LOW TEMPERATURE TOUGHNESS IN WELD-ING HEAT AFFECTED ZONE CAUSED BY HIGH HEAT INPUT WELDING

(54) 発明の名称: 大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板

- 1... TIME (SEC.)
- 2... TEMPERATURE (°C)

by high heat input welding, which is characterized in that it has a chemical composition, in mass %, that C: 0.03 to 0.14 %, Si: 0.30 % or less, Mn: 0.8 to 2.0 %, P: 0.02 % or less, S: 0.005 % or less, Ni: 0.8 to 4.0 %, Nb: 0.003 to 0.040 %, Al: 0.001 to 0.040 %, N: 0.0010 to 0.0100 %, Ti: 0.005 to 0.030 %, with the proviso that the contents of Ni and Mn satisfy the following formula [1], and the balance: iron and inevitable impurities, Ni/Mn ≥ 10 X Ceq - 3 (0.36 < Ceq < 0.42) wherein Ceq = C + Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15. The use of the above thick high strength steel plate can achieve excellent welding HAZ toughness, even when a welding is carried out with a welding heat input of 20 to 100 kJ/mm on a steel plate having a thickness of 50 to 80 mm and exhibiting a base material tensile strength of about 490 to 570 Mpa.

(57) 要約: 本発明は、板厚50~80mm、母材引張強度490~570MPa級の鋼板で、溶接入熱量が20~100kJ/mmの溶 接を行った場合においても優れた溶接HAZ靭性を実現できる厚手高強度鋼板を提供するもので、質量%で、C: 0.03~0.14%、Si:0.30%以下、Mn:0.8~2.0%、P:0.02%以下、S:0.005%以下、Ni:0.8~4.0%、Nb:0.003~ 0.040%, A1: 0.001

2005/

- (74) 代理人: 青木 篤, 外(AOKI, Atsushi et al.); 〒1058423 東京都港区虎ノ門三丁目 5 番 1 号 虎ノ門 3 7 森ビ ル 青和特許法律事務所 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

明 細 書

大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板

技術分野

本発明は、船舶、海洋構造物、中高層ビル、橋梁などに使用される溶接熱影響部(Heat Affected Zone、以後、HAZと称す。)の低温靭性に優れた厚手高強度鋼板に関するもので、特に、板厚50mm以上、母材引張強度490~570MPa級の鋼板で、溶接入熱量が20~100kJ/mmの溶接を行った場合においても優れた溶接継手部を有する鋼板に関するものである

背景技術

近年、船舶、海洋構造物、中高層ビル、橋梁などの大型構造物に使用される溶接用鋼材の材質特性に対する要望は厳しさを増している。特に、これら構造物の中では、板厚50mm超える厚手で母材の引張強度が570MPa級である鋼板の使用も多くなっている。また、溶接の効率化を促進するため、このような厚手高強度鋼板の溶接には、エレクトロガス溶接法、エレクトロスラグ溶接法などに代表されるような大入熱溶接法による1パス溶接が検討されており、母材そのものの靭性と同様に、HAZ靭性の要求も厳しさを増している。

大入熱溶接法が適用される鋼材のHAZ靭性に注目した提案は、これまで数多くなされてきた。例えば、特公昭55-026164 号公報では、微細なTi窒化物を鋼中に確保することによって、HAZのオーステナイト粒を小さくし、靭性を向上させる発明が開示

されている。また、特開平03-264614号公報では、Ti窒化物とMnSとの複合析出物をフェライトの変態核として活用し、HAZの靭性を向上させる発明が提案されている。さらに、特開平04-143246号公報では、Ti窒化物とBNとの複合析出物を粒界フェライトの析出核として活用し、HAZ靭性を向上させる発明が提案されている。

しかしながら、このTi窒化物は、HAZのうち最高到達温度が 1400℃を超える溶接金属との境界(以下、溶接ボンド部とも称 する。)近傍ではほとんど固溶してしまうので、靭性向上効果が低 下してしまうという問題がある。そのため、上記のようなTi窒化 物を利用した鋼材では、近年のHAZ靭性に対する厳しい要求や、 超大入熱溶接におけるHAZ靭性の必要特性を達成することが困難 である。

この溶接ボンド部近傍の靭性を改善する方法として、Ti酸化物を含有した鋼が厚板、形鋼などの様々な分野で使用されている。例えば、厚鋼板の分野では、特開昭61-079745号公報や特開昭61-117245号公報に記載された発明のように、Ti酸化物を含有した鋼が大入熱溶接部靭性向上に非常に有効であり、高張力鋼への適用が有望である。この原理は、鋼の融点においても安定なTi酸化物を析出サイトとして、溶接後の温度低下途中にTi窒化物、MnS等が析出し、さらにそれらをサイトとして微細フェライトが生成し、その結果、靭性に有害な粗大フェライトの生成が抑制されて、靭性の劣化が防止できるというものである。

しかしながら、このような T i 酸化物は、鋼中へ分散される個数をあまり多くすることができないという問題がある。その原因は、 T i 酸化物の粗大化や凝集合体であり、 T i 酸化物の個数を増加させようとすれば 5 μ m 以上の粗大な T i 酸化物、いわゆる介在物が

2

増加してしまうためと考えられる。この 5μ m以上の介在物は、構造物の破壊の起点となったり、靭性の低下を引き起こしたりして、有害であるため回避すべきものである。そのため、さらなるHAZ 靭性の向上を達成するためには、粗大化や凝集合体が起こりにくく、Ti酸化物よりも微細に分散する酸化物を活用する必要があった。

また、このようなTi酸化物の鋼中への分散方法としては、A1等の強脱酸元素を実質的に含まない溶鋼中へのTi添加によるものが多い。しかしながら、単に溶鋼中にTiを添加するだけでは鋼中のTi酸化物の個数、分散度を制御することは困難であり、さらには、TiN、MnS等の析出物の個数、分散度を制御することも困難である。そのため、Ti脱酸のみによってTi酸化物を分散させた鋼においては、例えば、Ti酸化物の個数が充分に得られない、あるいは、厚板の板厚方向の靭性が変動するといった問題があった

このような問題に対して、特開平06-293937号公報や特開平10-183295号公報では、Ti添加直後のA1添加、あるいはA1、Ca複合添加で、生成するTi-A1複合酸化物やTi、A1、Caの複合酸化物を活用する発明が開示されている。このような発明により、大入熱溶接HAZ靭性を大幅に向上させることが可能となった。

発明の開示

しかし、HAZのオーステナイト粒を小さくしたり、析出物をフェライトの変態核としてフェライトを生成したりする上記の従来手段では、板厚50mm以上で母材強度を引張強度で490MPa以上確保するためには、合金元素を増加させる必要があり、この場合

3

、溶接HAZの硬さが上昇することとともに、靭性を劣化させるMA (Martensite-Austenite-constituent) の生成が顕在化するため、例えば、造船分野でのE グレード (-20 $^{\circ}$ $^{\circ}$ 保証) のような十分なHAZ 靭性を安定して確保することができない。まして母材強度が引張強度で570M $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ ることができない。

そこで、本発明は、板厚50~80mm、母材引張強度490~570MPa級の鋼板で、溶接入熱量が20~100kJ/mmの溶接を行った場合においても優れた溶接HAZ靭性を実現できる、大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板を提供することを目的とするものである。

本発明者らは、Ni添加量およびNi/Mnを規定することによって、上記課題を有利に解決し得ることを知見し、さらに検討を加えて初めて本発明を完成させたものであり、その要旨は、以下の通りである。

(1) 質量%で、C:0.03~0.14%、Si:0.30%以下、Mn:0.8~2.0%、P:0.02%以下、S:0.005%以下、Al:0.001~0.040%、N:0.0010~0.0100%、Ni:0.8~4.0%、Ti:0.005~0.030%、Nb:0.003~0.040%を含有し、NiとMnが式[1]を満たし、残部が鉄および不可避不純物であることを特徴とする、大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板。

N i /M n \ge 1 0 \times C e q - 3 (0. 3 6 < C e q < 0. 4 2)

但し、C e q = C + M n / 6 + (C r + M o + V) / 5 + (N i + C u) / 1 5

(2) さらに、質量%で、 $Ca:0.0003\sim0.0050\%$ 、 $Mg:0.0003\sim0.0050\%$ 、 $REM:0.001\sim0.030\%$ のうちの1種または2種以上を含有し、かつ、 $O:0.0010\sim0.0050\%$ を含有し、円相当径が $0.005\sim0.5$ μ mの酸化物を、100個/mm²以上含有することを特徴とする、上記(1)に記載の大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板。

(3) さらに、質量%で、B:0.0005~0.0050%を含有することを特徴とする、上記(1)または(2)に記載の大入 熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板。

(4) さらに、質量%で、Cr:0.1~0.5%、Mo:0.01~0.5%、V:0.005~0.10%、Cu:0.1~1.0%のうちの1種または2種以上を含有することを特徴とする、上記(1)ないし(3)のいずれか1項に記載の大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板。

図面の簡単な説明

図 1 は、4 5 k J / m m 相当の溶接熱サイクルを示す図である。 図 2 は、N i / M n b C e q b 再現 H A Z 靭性 b の関係を示す図である。

図3は、微細酸化物分散またはB活用による再現HAZ靭性向上効果を示す図である。

発明を実施するための最良の形態

以下に本発明について詳細に説明する。

これまでHAZ靭性の向上手段として、前述のとおり、高温での オーステナイト粒の成長を抑制することが考えられてきた。その手

段として最も有効な方法は、分散粒子によりオーステナイトの粒界をピンニングし、粒界の移動を止める方法である。これは、溶接入熱が20~100kJ/mmと大入熱である場合においても、HAZの再加熱オーステナイト粒はピンニングにより極めて有効に細粒化する。しかし、母材強度を高めるために合金添加量を増加させていき、鋼材の溶接性と同時に化学成分的な焼入性を示す炭素当量(Ceq)が0.36以上となる鋼材ではHAZの硬さがより高くなるため、再加熱オーステナイト粒がピンニングにより細粒化した場合であっても十分なHAZ靭性が得られないという問題が新たに生じた。このようにHAZ部の硬さが高くなる場合では、地鉄そのものの靭性を向上させることが必要である。

そこで、発明者らは、課題としている厚手高強度鋼に必要となる、Ceqが0.36以上0.42以下と高い場合でのHAZ靭性改善に、地鉄そのものの靭性を改善する最適成分系を鋭意検討した。マトリックスの靭性を高める元素としては従来からNiが有効であることが知られている。しかし、今回のようにCeqが0.36以上0.42以下と高いHAZの靭性改善に有効かどうか、また有効である場合はどのような成分条件であれば有効かは知られていない。そこで、まず、Ni添加量の影響を検討した。検討にあたっては、母材強度確保に有効なNb量を0.003%以上添加することを前提とした。HAZ靭性の評価には、図1で示されるエレクトロガス溶接(入熱45kJ/mm)相当の熱サイクルを付与した時のシャルピー衝撃試験での延性・脆性遷移温度(vTrs)を採用した

N i 添加量の影響を検討した結果、まず、N i が 0 . 8 %より少ない場合では必要な靭性が得られないことが判明した。また、N i を 0 . 8 %以上添加した場合であっても、H A Z 靭性が改善されな

いものと、逆にHAZ靭性が低下するものも見られた。そこで、さらに他の添加元素やCeqとの関係を含め鋭意検討した結果、このようにCeqがO.36以上O.42以下の場合では、図2に示すように、HAZ靭性は、CeqとNi/Mnとによって関係付けられることを見出した。図2は、検討に用いた鋼材の再現HAZ靭性(vTrs)を、Ceq毎に層別し、Ni/Mn比を横軸としてプロットしたものである。図2から、

Ni/Mn \ge 10 \times Ce q - 3・・・・・・・・・・ [1] の関係が成立つ鋼材において、v Tr s で - 15 $^{\circ}$ C以下の良好な靭性が得られた。式 [1] を満たさない鋼材が十分なHA Z 靭性が得られない理由としては、Niの添加量が十分ではなくマトリックス高靭化効果が小さいため、あるいは、Niを多く含む場合であってもMnの過剰添加によりHA Z 中にMA 生成し、Niの高靭化効果が消失されるためと考えられる。なお、上記検討で用いた鋼材を入熱 100 k J / m m 相当の熱サイクルにて同様の検討を行なった結果、入熱 100 k J / m m の場合においても、式 [1] の関係にある鋼材においては良好な再現HA Z 靭性が得られることを確認している。

上述の検討により、HAZ靭性は、式[1]を満たす、0.8%以上のNi添加により改善されることを見出したが、さらに発明者らは、一層のHAZ靭性改善を検討した。HAZ靭性を改善させる方法として以下の3つを検討した。第一に、大入熱溶接では高温滞留時間が長期化するためオーステナイト粒が粗大化し、これがHAZ靭性を低下させることから、高温滞留時のオーステナイトの粗大化を抑制させる方法である。第二に、大入熱溶接では溶接後の冷却時間が長いためオーステナイト粒界から生成するフェライトの粗大化し、この粗大な粒界フェライトがHAZ靭性低下の原因になるこ

とから、粒界フェライトの粗大化を抑制する方法である。第三に、 HAZ組織そのものを微細にさせる方法である。

第一のオーステナイト粒の粗大化を抑制する方法に関しては、例えば、特許文献 7 に記載されているように、微細酸化物を分散させる方法が有効である。特許文献 7 では、微細酸化物の分散に、脱酸工程で溶鋼の溶存酸素量を S i との平衡反応で調整し、さらにその後 T i、A 1、C a の順序で脱酸するとしている。そして、この方法により、粒子径が 0 . 0 1 \sim 1 . 0 μ m の酸化物を 5 \times 1 0 5 個 / mm 2 で分散させるとしている。

そこで、発明者らは、Ceqが0.36以上0.42以下と高い 場合で、Nbを0.003%含み、かつNiを0.8%以上添加し た系において、微細酸化物を分散させHAZ靭性を更に向上させる 方法を鋭意検討した。まず、微細酸化物を分散させる方法であるが 、このような系においては、脱酸工程で溶鋼の溶存酸素量を0.0 0 1 0 ~ 0 . 0 0 5 0 % に調整し、その後、まず T i で脱酸し、引 き続きAlで脱酸した後、さらに、Ca、Mg、REMのうち1種 類以上添加することで、円相当径が0.005~0.5μmの微細 酸化物を100個/mm²以上分散させることが可能であることを 見出した。また、この微細酸化物分散により、溶接での高温滞留時 のオーステナイト粒粗大化が抑制されHAZ靭性を更に改善させる ことできた。一例として、Niを適正添加したのみのHAZ靭性と 比較した結果を図3に示す。なお、生成される酸化物は、Niの量 が多いほど細かく、個数も多くなり、Ni量が1.5%以上の場合 では1000個/mm²以上となる。これは今回見出したものである 。さらに、溶鋼中のSi量については、Si量が多い場合では酸化 物ができにくくなるため、Si量は0.30%以下、さらには0. 20%以下とすることが好ましいことが今回の検討から明らかとな

8

った。他方、Ti 脱酸の前の溶存酸素量が0. 0050%を越える場合や脱酸元素の順番が異なる場合では、酸化物が粗大化し微細酸化物が十分に得られないため、オーステナイト粒の粗大化の抑制効果は殆ど得られない。なお、円相当径0. 005 \sim 0.5 μ mの酸化物の個数は、母材となる鋼板から抽出レプリカを作製し、それを電子顕微鏡にて10000倍で100視野以上(観察面積にして10000 μ m²以上)を観察し、0. 1 μ m未満の粒子に関しては適宜倍率を高めて観察した。観察された0. 005 \sim 0.5 μ m径の各粒子において元素分析を行い、酸化物であるものカウントした

次に、発明者らは、HAZ靭性向上方法として、上述で第二の方 法、および、第三の方法として記した、粒界フェライトの粗大化抑 制、および、HAZ組織の微細化を鋭意検討した。その結果、Ce qが0.36以上0.42以下と高い場合で、かつNiを0.8% 以上添加した系で、特に今回のような20~100kJ/mm相当 の大入熱溶接をする場合においては、Bの添加が有効であることが 判明した。その理由は、粒界フェライトの粗大化抑制の点では、再 加熱オーステナイト粒界に固溶Bが偏析することにより粒界フェラ イトの生成が抑制されるためである。また、HAZ組織の微細化の 点では、今回のような大入熱溶接で冷却速度が遅い場合では、B添 加によりオーステナイト粒界、および、オーステナイト粒内の介在 物にB窒化物が析出し、それを核とする数μmの微細なフェライト がオーステナイト粒界および粒内に多数生成することによりHAΖ 組織が微細化されるためである。B添加によるHAZ靭性の改善を 、Niを適正添加したのみのHAZ靭性と比較した結果を図3に示 す。B添加によりHAZ靭性がさらに向上していることが判る。さ らに、図3には、上述の微細酸化物を分散させる方法に加えB添加

させた場合でのHAZ靭性を示しているが、微細酸化物分散とB添加によりHAZ靭性が一層向上している。これは、BNの析出サイトとなる酸化物が増えたことによって、そのBNを核するフェライトが増えHAZ組織がより微細化したためと考えられる。

また、強度確保や耐食性の向上の観点から、上記条件に加え、Cu、Cr、Mo、Vを添加した場合でのHAZ靭性も検討した。その結果、それぞれ、 $0.1\sim0.4\%$ 、 $0.1\sim0.5\%$ 、0.01 $\sim0.2\%$ 、 $0.05\sim0.050\%$ の範囲での添加であれば、HAZ靭性を大きく低下しないことが判明した。

なお、この発明の鋼板の製造方法は、特に制限されることはなく 、公知の方法に従って製造すれば良い。例えば、上記の好適成分組 成に調整した溶鋼を連続鋳造法でスラブとしたのち、1000~1 250℃に加熱してから、熱間圧延を施せばよい。

次に、本発明で使用する鋼素材の成分組成の限定理由について説明する。以下、組成における質量%は単に%で記す。

Cは、鋼の強度を向上させる有効な成分として下限を0.03% とし、また過剰の添加は、炭化物やMAを多量に生成しHAZ靭性 を著しく低下させるので、上限を0.14%とした。

Siは、母材の強度確保、脱酸などに必要な成分であるが、HAZの硬化により靭性が低下するのを防止するため上限を0.30%とした。さらに酸化物を利用する場合では溶鋼中の酸素濃度の減少を防ぐために上限を0.20%以下とするのが好ましい。

Mnは、母材の強度、靭性の確保に有効な成分として 0.8%以上の添加が必要であるが、溶接部の靭性、割れ性などの許容できる範囲で上限を 2.0%とした。さらに、Mnに上限に関しては、Ceq、Mn量、およびNi量との関係を示す式 [1]を満たす必要がある。これは、今回の検討で新たに見出された、Ceqが高い場

合でMnの増加がHAZ組織中にMAを多量に生成させる原因となりNiによるHAZ靭性の向上効果を消失させるということに基づく。

$$N i / M n \ge 1 0 \times C e q - 3$$
 [1]

Pは、含有量が少ないほど望ましいが、これを工業的に低減させるためには多大なコストがかかることから、含有範囲を 0.02以下とした。

Sは、含有量が少ないほど望ましいが、これを工業的に低減させるためには多大なコストがかかることから、含有範囲を 0.005 以下とした。

Niは、本発明で重要な元素であり、少なくとも 0.8%の添加が必要である。さらに、Niに下限に関しては、Ceq、Mn量、およびNi量との関係を示す式[1]を満たす必要がある。上限に関しては、製造コストの観点から 4.0%とした。

N i
$$/$$
M n \ge 1 0 \times C e q $-$ 3 [1]

N b は、焼き入れ性を向上させることにより母材の強度を向上させるために有効な元素であることから 0.03%以上添加する。しかし、N b を多く添加するとN i / M n 比に関係なくH A Z 中にM A が生成しやすくなり、0.040%より多く添加した場合ではH A Z 中に長径が 5μ m以上の粗大なM A が多数生成しH A Z 靭性を大きく低下させることがあることからN b の上限を 0.040%とした。なお、より高い靭性を得るためには、上述の式 [1] を満たすN i / M n 比の場合で長径が 5μ m以上の粗大なM A が殆ど生成しない 0.020%以下にNb量を抑えることが好ましい。さらにより高い靭性をより安定的に得るためには、上述の式 [1] を満たすN i / M n 比の場合で長径が 3μ m以上のMAが殆ど生じない 0.010%以下にNb量を抑えることが好ましい。

A 1 は、重要な脱酸元素であり、下限値を0.001%とした。また、A 1 が多量に存在すると、鋳片の表面品位が劣化するため、上限を0.040%とした。

Tiは、再加熱オーステナイト粒の粗大化抑制のために必要なピンニング粒子となるTi窒化物やTi含有酸化物を生成させるため、0.005%以上添加する。しかし、過剰の添加は固溶Ti量を増加させHAZ靭性の低下を招くことから、0.030%を上限とした。

Nは、溶接後の冷却中にオーステナイト粒界および粒内にTi窒化物やB窒化物を生成させるために必要に応じて添加量を調整する。Bと結合してB窒化物を形成させるためには0.0010%以上添加が必要であるが、過剰の添加は固溶N量を増大させHAZ靭性の低下を招くことから、0.0100%を上限とした。

Caは、再加熱オーステナイト粒の粗大化抑制のために必要なピンニング粒子となるCa系酸化物を生成させるために必要に応じて0.0003%以上の添加する。しかし、過剰の添加は粗大介在物を生成させることから、0.0050%を上限とした。

Mgは、再加熱オーステナイト粒の粗大化抑制のために必要なピンニング粒子となるMg系酸化物を生成させるために必要に応じて0.003%以上の添加する。しかし、過剰の添加は粗大介在物を生成させることから、0.0050%を上限とした。

REMは、再加熱オーステナイト粒の粗大化抑制のために必要なピンニング粒子となるREM系酸化物を生成させるために必要に応じて0.001%以上の添加する。しかし、過剰の添加は粗大介在物を生成させることから、0.030%を上限とした。また、ここで述べるREMとは、CeおよびLaであり、添加量は両者の総量である。

Bは、固溶Bとして溶接後の冷却中にオーステナイト粒界に偏析させ粒界フェライトの生成を抑制するため、また、オーステナイト粒界や粒内でBNを生成させるために、必要に応じて0.0005%以上添加する。しかし、過剰の添加は固溶B量を増大させ、HAZ硬さを大きく上昇させてHAZ靭性の低下を招くことから、0.050%を上限とした。

Cuは、鋼材の強度および耐食性を向上させるために必要に応じて0.1%以上添加する。その効果は、1.0%で飽和するので上限を1.0としたが、0.4%を越えるとMAが生成しやすくなりHAZ靭性が低下することから、好ましくは0.4%以下が良い。

Crは、鋼材の耐食性を向上させるために必要に応じて0.1%以上添加するが、過剰の添加はMA生成によるHAZ靭性の低下を招くことから、0.5%を上限とした。

Moは、母材の強度および耐食性を向上させるために有効な元素であり必要に応じて 0.01%以上添加する。その効果は、0.5%で飽和するので上限を 0.5%としたが、過剰の添加はMA生成による HAZ 靭性の低下を招くことから、好ましくは 0.2%以下が良い。

Vは、母材の強度を向上させるために有効な元素であり必要に応じて0.005%添加する。その効果は、0.10%で飽和するので上限を0.10%としたが、過剰の添加はMA生成によるHAZ 物性の低下を招くことから、好ましくは0.050%以下が良い。実施例1

表 1 に示した化学成分の溶鋼を連続鋳造して綱片を作製した。 D 2 3 ~ D 3 4、 D 4 6 ~ D 4 9 に関しては T i 投入前に溶鋼の溶存酸素を S i で 0 . 0 0 1 0 % ~ 0 . 0 0 5 0 % に調整し、その後、まず T i で脱酸し、引き続き A 1 で脱酸した後、 C a 、 M g , R E

表 2 に鋼板の製造条件、板厚、機械的性質を示す。また、D 2 3 ~ D 3 4、D 4 6~D 4 9 に関しては、鋼板の任意の箇所において測定した、円相当径 0 . 0 0 5~0 . 5 μ m の微細酸化物の個数を併記した。酸化物の個数は、鋼板の任意の箇所から抽出レプリカを作製し、それを電子顕微鏡にて 1 0 0 0 0 0 倍で 1 0 0 視野以上(観察面積にして 1 0 0 0 0 μ m 2 以上)を観察し、0 . 1 μ m未満の粒子に関しては適宜倍率を高めて観察した。観察される 0 . 0 0 5~0 . 5 μ m 径の各粒子において元素分析を行い、酸化物であるものカウントすることにより求めた。D 2 3~D 3 1、D 4 6~D 49のどの鋼材も、円相当径で 0 . 0 1~0 . 5 μ m の微細酸化物が本発明範囲の 1 0 0 個 μ m μ 以上分散させている。なお、S i 以外の元素がほぼ同等である D 4 6、D 4 7 および D 4 8、D 4 9 の比較から、S i 量は 0 . 2 0 % 以下と少ない方が酸化物の量が多いことが分かる。

これら鋼板に、溶接入熱量が $20\sim100$ k J/m m であるエレクトロガス溶接(E G W)あるいはエレクトロスラグ溶接(E S W)を用いて、鋼板を突き合せて立て向き1 パス溶接を行った。そして、板厚中央部(t / 2)に位置するHA Z において、F L から1 m m 離れたHA Z と F L の 2 箇所にノッチを入れ、-40 $\mathbb C$ でシャルピー衝撃試験を行った。表 2 に溶接条件とHA $\mathbb Z$ 靭性を示す。こ

こでのシャルピー衝撃試験では、JIS4号の2mmVノッチのフルサイズ試験片を用いた。また、表2には、FL〜HAZ1mm間の旧オーステナイト粒径を併記した。ここで記載しているFL〜HAZ1mm間の旧オーステナイト粒径は、板厚中央部を中心とした板厚方向2mmと、FL〜HAZ1mmを含む面に含まれる旧オーステナイト粒の粒径を断面法により測定した平均粒径である。なお、ここではネット状につながっている塊状フェライトを旧オーステナイト粒の粒界として測定を行なった。

D1~D49は本発明鋼である。鋼の化学成分が適正に制御されているために、所定の母材性能を満たしつつ、一40℃での大入熱HAZ靭性が良好である。また、微細酸化物を分散させたD23~D34、D46~D49はFL~HAZ1mm間の旧オーステナイト粒径が200μm以下と他のものより細粒になっており、一40℃での大入熱HAZ靭性が一層高くなっている。また、Bの添加しHAZ組織の微細化を図ったD20は、Bを添加していない、B以外の添加元素が同量であるD19に比べてHAZ靭性が良好であり、一40℃での大入熱HAZ靭性も高い値を示している。

一方、比較鋼の $C1\sim17$ は、式[1]を満たすための十分なNiが含まれていない、もしくは、鋼の化学成分が適正に制御されているために、大入熱HAZ靭性が不充分である。

表 1

					ľ								
区分	記号	С	Si	Mn	Р	S	Ni	Nb	Al	Ti	N_	Ca_	Mg
	D1	0.04	0.13	1.31	0.008	0.002	1.6	0.006	0.015	0.008	0.0035		
	D2	0.04	0.17	0.81	0.008	0.002	2.8	0.006	0.015	0.008	0.0035		
l	D3	0.07	0.17	1.40	0.007	0.002	0.9	0.006	0.015	0.007	0.0035		
	D4	0.07	0.05	0.81	0.006	0.002	2.4	0.006	0.014	0.008	0.0035		
	D5	0.10	0.19	1.11	0.007	0.002	1.1	0.004	0.015	0.007	0.0032		
	D6	0.13	0.05	0.91	0.007	0.003	1.2	0.005	0.014	0.006	0.0037		
	D7	0.06	0.19	1.41	0.007	0.002	1.3	0.005	0.012	0.006	0.0042		
	D8	0.06	0.22	1.11	0.006	0.003	2.1	0.005	0.014	0.006	0.0035		
	D9	0.09	0.15	1.21	0.007	0.003	1.4	0.006	0.015	0.006	0.0035		
	D10	0.12	0.11	1.01	0.007	0.002	1.4	0.005	0.014	0.009	0.0035		
	D11	0.13	0.14	0.91	0.006	0.002	1.5	0.006	0.015	0.008	0.0035		
	D12	0.06	0.14	1.41	0.007	0.002	1.6	0.005	0.014	0.008	0.0032		
	D13	0.06	0.22	1.11	0.007	0.002	2.4	0.005	0.014	0.007	0.0035		
ĺ	D14	0.09	0.21	1.31	0.008	0.002	1.4	0.005	0.014	0.008	0.0035		
1	D15	0.13	0.19	1.01	0.007	0.002	1.6	0.005	0.014	0.007	0.0035		
	D16	0.12	0.22	0.91	0.007	0.003	2.1	0.006	0.015	0.006	0.0035		
発明鋼	D17	0.13	0.17	1.01	0.006	0.002	1.7	0.005	0.014	0.006	0.0032		
	D18	0.12	0.15	1.11	0.008	0.002	1.5	0.005	0.014	0.006	0.0037		
	D19	0.06	0.14	1.41	0.007	0.002	1.6	0.005	0.014	0.009	0.0041		
1	D20	0.06	0.14	1.40	0.007	0.002	1.6	0.005	0.014	0.009	0.0041		
	D21	0.06	0.10	1.21	0.007	0.002	1.7	0.006	0.015	0.010	0.0035		
ŀ	D22	0.06	0.22	1.11	0.007	0.002	1.8	0.005	0.014	0.008	0.0055		
ļ	D23	0.06	0.16	1.31	0.008	0.004	1.8	0.005	0.014	0.008	0.0035	0.0018	
-	D24	0.06	0.17	1.40	0.008	0.004	1.6	0.005	0.014	0.008	0.0037	0.0019	
	D25	0.06	0.12	1.20	0.007	0.002	2.1	0.006	0.015	0.007	0.0033		0.0016
ļ	D26	0.06	0.15	1.00	0.007	0.002	2.6	0.005	0.014	0.008	0.0036		
	D27	0.06	0.11	1.21	0.007	0.002	1.8	0.015	0.015	0.007	0.0035	0.0014	
	D28	0.06	0.23	1.00	0.007	0.002	1.9	0.005	0.014	0.006	0.0035	0.0018	
	D29	0.06	0.17	1.20	0.008	0.004	1.8	0.005	0.014	0.006	0.0035	0.0036	
	D30	0.06	0.12	1.20	0.007	0.002	1.7	0.006	0.015	0.006	0.0035	0.0009	
	D31	0.06	0.12	1.20	0.007	0.002	1.9	0.006	0.015	0.006	0.0035	0.0016	
	D32	0.07	0.15	1.21	0.007	0.003	1.4	0.028	0.014	0.009	0.0032	0.0015	
	D33	0.08	0.13	1.21	0.009	0.002	1.3	0.013	0.014	0.010	0.0052	0.0017	
	D34	0.08	0.19	1.21	0.008	0.003	1.5	0.013	0.025	0.008	0.0076	0.0012	
	D35	0.08	0.19	1.21	0.010	0.002	1.2	0.021	0.014	0.008	0.0035		

表 1 つづき 1

					Π						
区分	REM	0_	В	Cu	Cr	Мо	V	Ceq	Ni/Mn	10 × Ceq −3	判定*
								0.37	1.22	0.7	0
	•							0.36	3.46	0.6	0
								0.36	0.64	0.6	0
								0.37	2.96	0.7	0
								0.36	0.99	0.6	0
								0.36	1.32	0.6	0
								0.38	0.92	0.8	0
								0.39	1.89	0.9	0
								0.39	1.16	0.9	0
								0.38	1.39	0.8	0
								0.38	1.65	0.8	.0
								0.40	1.13	1.0	0
								0.41	2.16	1.1	0
<u> </u>								0.40	1.07	1.0	0
								0.41	1.58	1.1	0
								0.41	2.31	1.1	0
発明鋼								0.41	1.68	1.1	0
20.21247	_							0.41	1.35	1.1	0
								0.40	1.13	1.0	0_
			0.0012					0.40	1.14	1.0	0
				0.4				0.40	1.40	1.0	0
			0.0023		0.2			0.41	1.62	1.1	0
ì		0.0019						0.40	1.37	1.0	0_
		0.0019	0.0008					0.40	1.14	1.0	0_
		0.0017	0.0009					0.40	1.75	1.0	0
	0.0220	0.0020	0.0011					0.40	2.60	1.0	0
1		0.0017		0.3				0.40	1.49	1.0	0
		0.0030	0.0009		0.2		0.017	0.40	1.90	1.0	0
		0.0029	0.0009	0.3				0.40	1.50	1.0	0
		0.0028	0.0009	0.2		0.05		0.40	1.42	1.0	0
Į.		0.0023	0.0009	0.2			0.037	0.41	1.58	1.1	0
		0.0018	0.0012	0.4				0.39	1.16	0.9	0_
		0.0020	0.0009	0.3				0.39	1.07	0.9	0_
		0.0015	0.0035	0.4				0.41	1.24	1.1	0
								0.36	0.99	0.6	0

表 1 つづき 2

区分	記号	С	Si	Mn	Р	S	Ni	Nb	Al	Ti_	N	Ca	Mg
	D36	0.09	0.19	1.21	0.010	0.003	1.5	0.015	0.015	0.008	0.0035		
[D37	0.10	0.19	1.11	0.006	0.002	1.9	0.015	0.035	0.007	0.0035		
	D38	0.11	0.14	0.91	0.006	0.003	1.7	0.031	0.014	0.008	0.0035		
	D39	0.12	0.14	1.11	0.008	0.002	1.8	0.029	0.032	0.007	0.0032		
	D40	0.10	0.14	1.21	0.009	0.002	1.6	0.030	0.014	0.006	0.0037		
200 DE 000	D41	0.10	0.24	1.21	0.006	0.002	1.5	0.031	0.028	0.006	0.0042		
発明鋼	D42	0.08	0.24	1.31	0.005	0.003	1.6	0.032	0.014	0.006	0.0035		
1	D43	0.03	0.22	1.31	800.0	0.003	2.5	0.035	0.038	0.006	0.0035		
	D44	0.06	0.24	0.81	0.007	0.003	3.2	0.035	0.014	0.009	0.0035		
	D45	0.03	0.11	1.51	0.007	0.002	1.8	0.035	0.014	0.010	0.0035		
1	D46	0.07	0.11	1.21	0.007	0.003	1.4	0.028	0.014	0.009	0.0032	0.0015	
	D47	0.07	0.28	1.21	0.007	0.003	1.4	0.028	0.014	0.009	0.0032	0.0015	
	D48	0.06	0.11	1.20	0.008	0.004	1.8	0.005	0.014	0.006	0.0035	0.0018	
	D49	0.06	0.28	1.20	0.008	0.004	1.8	0.005	0.014	0.006	0.0035	0.0017	
	C1	0.04	0.14	1.90	0.007	0.002	0.1	0.008	0.012	0.008	0.0032		
	C2	0.04	0.09	1.60	0.006	0.003	0.8	0.009	0.019	0.008	0.0037		
1	C3	0.06	0.09	1.70	0.007	0.003	0.2	0.005	0.012	0.008	0.0042		
	C4	0.09	0.11	1.60	0.008	0.003	0.0	0.006	0.015	0.007	0.0035		
	C5	0.10	0.14	1.30	0.008	0.002	0.7	0.005	0.014	0.008	0.0035		
	C6	0.13	0.22	1.20	0.007	0.002	0.5	0.003	0.012	0.008	0.0035		
	C7	0.06	0.11	1.90_	0.007	0.002	0.1	0.006	0.015	0.008	0.0035		
	C8	0.06	0.14	1.60	0.007	0.004	0.8	0.005	0.014	0.007	0.0032		
比較鋼	C9	0.09	0.17	1.40	0.008	0.002	0.9	0.005	0.014	0.008	0.0037		
	C10	0.11	0.23	1.30	0.007	0.002	0.8	0.006	0.015	0.007	0.0042		
	C11	0.06	0.16	2.00	0.008	0.004	0.1	0.005	0.014	0.006	0.0035		L]
	C12	0.06	0.11	1.60	0.007	0.002	1.1	0.006	0.015	0.006	0.0035		
	C13	0.10	0.25	1.70	0.006	0.003	0.2	0.006	0.015	0.006	0.0035		
1	C14	0.12	0.14	1.40	0.007	0.002	0.7	0.005	0.014	0.006	0.0035		
	C15	0.09	0.12	1.60	0.008	0.003	0.8	0.015	0.013	0.009	0.0032		
	C16	0.08	0.24	1.50	0.008	0.003	0.6	0.035	0.013	0.010	0.0037		
	C17	0.09	0.14	1.20	0.007	0.002	1.4	0.045	0.014	800.0	0.0042	<u> </u>	

表 1 つづき 3

区分	REM	0	В	Cu	Cr	Мо	V	Ceq	Ni/Mn	10 × Ceq −3	判定*
						0.03		0.40	1.24	1.0	0
								0.41	1.71	1.1	0
							0.045	0.38	1.87	0.8	0
								0.43	1.62	1.3	0
1				0.2				0.42	1.32	1.2	0
2V. DIT AU								0.40	1.24	1.0	0
発明鋼								0.41	1.22	1.1	0
	***************************************	· · · · · ·						0.42	1.91	1.2	0
]								0.41	3.95	1.1	0
								0.40	1.19	1.0	0
		0.0018		0.4			•	0.39	1.16	0.9	0
		0.0018		0.4				0.39	1.16	0.9	0
1		0.0026	0.0012	0.3				0.40	1.50	1.0	0
		0.0026	0.0012	0.3				0.40	1.50	1.0	0
								0.36	0.05	0.6	×
								0.36	0.50	0.6	×
į į								0.36	0.12	0.6	×
i								0.36	0.00	0.6	×
								0.36	0.54	0.6	×
1								0.36	0.42	0.6	×
								0.38	0.05	0.8	×
								0.38	0.50	0.8	×
比較鋼								0.38	0.64	8.0	×
								0.38	0.62	8.0	×
								0.40	0.05	1.0	×
								0.40	0.69	<u>1.0</u>	×
								0.40	0.12	1.0	×
								0.40	0.50	1.0	×
								0.41	0.50	1.1	×
								0.37	0.40	0.7	×
								0.38	1.17	0.8	0

*Ni/Mn \geq 10×Ceq-3を満たす場合は \bigcirc 、満たさないものは×を記す。

表 2

				母村	才(t/2部) ¹⁾		酸化物数 2)
区分	記号	製造方法	板厚(mm)	引張強度(MPa)	降伏応力(Mpa)	νE _{-40 (J)}	(個/mm²)
	D1	TMCP	60	576	476	231	
	D2	TMCP	65	565	465	229	
	D3	DQ-T	70	576	456	225	
	D4	TMCP	60	576	476	231	
	D5	DQ-T	55	605	485	238	
	D6	TMCP	65	565	465	229	
	D7	TMCP	70	560	460	219	
	D8	TMCP	80	541	441	213	
	D9	DQ-T	60	601	481	225	
	D10	TMCP	65	570	470	223	
	D11	TMCP	75	550	450	216	
	D12	TMCP	80	545	445	208	
	D13	TMCP	55	596	496	224	
	D14	DQ-T	65	595	475	217	
	D15	TMCP	70	566	466	213	
	D16	TMCP	65	578	478	214	
発明鋼	D17	DQ-T	70	.588	468	211	
光明啊	D18	TMCP	75	556	456	210	
	D19	TMCP	70	565	465	214	l
	D20	TMCP	70	575	482	214	
	D21	DQ-T	70	585	465	214	
	D22	TMCP	70	566	466	213	
	D23	TMCP	65	575	475	218	900
	D24	DQ-T	60	605	485	221	1200
	D25	TMCP	70	565	465	214	1300
	D26	TMCP	80	545	445	209	1100
	D27	TMCP	70	565	465	214	900
	D28	TMCP	65	574	474	218	1800
	D29	TMCP	60	585	485	221	2100
}	D30	DQ-T	65	594	474	218	2400
	D31	TMCP	60	587	487	219	1900
	D32	TMCP	70	563	463	217	700
	D33	TMCP	65	572	472	221	600
	D34	DQ-T	80	567	447	207	1400
	D35	TMCP	70	555	455	225	<u> </u>

表2つづき1

	突き合せ1	パス溶接条件 3)	FL~HAZ1mmの 4)	HAZ	靭性 5)
区分	溶接方法	入熱(kJ/mm)	平均γ粒径(μm)	FL/vE ₋₄₀ (J)	FL+1mm/vE ₋₄₀ (J)
	EGW	39	480	140	128
	EGW	42	520	135	124
	ESW	85	770	116	106
	ESW	73	660	123	113
	ESW	67	605	127	117
	EGW	42	520	135	124
	ESW	85	770	116	106
	EGW	51	640	124	114
	EGW	39	480	140	128
	ESW	79	715	119	109
	EGW	48	600	128	117
	EGW	51	640	124	114
	EGW	35	440	144	132
	ESW	79	715	119	109
	ESW	85	770	116	106
	EGW	42	520	135	124
発明鋼	EGW	45 ·	560	131	120
 	EGW	48	600	128	117
	EGW	45	560	131	120
	EGW	45	560	171	156
1	ESW	85	770	116	106
	EGW	45	560	184	180
	ESW	79	180	207	189
\	EGW	39	165	214	196
	EGW	45	152	221	203
	EGW	51	185	204	187
	EGW	45	180	207	189
	ESW	79	167	213	195
	EGW	39	184	205	188
	EGW	42	165	214	196
	EGW	39	184	205	188
	EGW	45	180	207	189
	EGW	42	164	214	197
1	ESW	98	180	196	180
l	ESW	85	660	123	113

表 2 つづき 2

				母和	才(t/2部) ¹⁾		酸化物数 2)
区分	記号	製造方法	板厚(mm)	引張強度(MPa)	降伏応力(Mpa)	νΕ _{-40 (J)}	(個/mm²)
	D36	DQ-T	70	584	464	215	
	D37	TMCP	65	578	478	214	
	D38	TMCP	60	581	481	226	
	D39	TMCP	70	571	471	208	
	D40	DQ-T	80	570	450	203	
	D41	TMCP	70	565	465	214	
EVA PIP AVE	D42	TMCP	65	576	476	216	
発明鋼	D43	TMCP	60	589	489	217	
	D44	TMCP	65	577	477	215	
	D45	DQ-T	60	605	485	221	
]	D46	TMCP	70	553	465	217	900
	D47	TMCP	70	579	481	217_	400
	D48	TMCP	60	578	485	221	2300
	D49	TMCP	60	592	485	221	1500
	C1	TMCP	70	556	456	225	
	C2	DQ-T	60	595	475	233	
	C3	TMCP	75	544	444	224	
l	C4	TMCP	60	. 574	474	234_	
	C5	TMCP	60	576	476	232	
	C6	TMCP	55	586	486	236	
1	C7	DQ-T_	60	601	481	226	
	C8	TMCP	60	580	480	227_	
比較鋼	C9	TMCP	60	581	481	226	
1	C10	TMCP	60	580	480	227	
	C11	DQ-T	70	585	465	214	
	C12	TMCP	60	585	485	221	
1	C13	TMCP	70	564	464	215	ļ
	C14	TMCP	65	575	475	218	
	C15	TMCP	55	598	498	222	
	C16	DQ-T	65	588	468	226	
	C17	TMCP	60	581	481	226	<u> </u>

表2つづき3

	突き合せ1	パス溶接条件 3)	FL~HAZ1mmの 4)	HAZ	靭性 ⁵⁾
区分	溶接方法	入熱(kJ/mm)	平均γ粒径(μm)	FL/vE ₋₄₀ (J)	FL+1mm/vE ₋₄₀ (J)
	ESW	85	605	127	117
	EGW	42	520	135	124
	ESW	73	770	116	106
	EGW	45	640	124	114
	EGW	51	480	140	128
	ESW	85	715	119	109
224 0日 4項	EGW	42	600	128	117
発明鋼	EGW	39	640	124	114
	EGW	42	440	144	132
	ESW	73	715	119	109
	EGW	45	145	225	206
	EGW	45	195	200	183
	EGW	39	164	214	236
	EGW	39	185	204	225
	ESW	85	770	36	25
	EGW	39	480	57	40
	EGW	48	600	46	32
	EGW	39	480	57	40
	EGW	39	480	57	40
	ESW	67	605	45	32
	EGW	39	480	57	40
	EGW	39	480	57	40
比較鋼	EGW	39	480	57	40
1	EGW	39	480	57	40
	ESW	85	770	36	25
	EGW	39	480	57	40
	EGW	45	560	49	34
	EGW	42	520	53	37
	ESW	67	605	45	32
	EGW	42	520	53	37
	EGW]	39	480	57	40

- 1)板厚中心位置、YSとTSは試験片2本の平均値、-40℃でのシャルピー吸収エネルギー(vE-40)は試験片3本の平均値。
- 2) 鋼板の任意の箇所より抽出レプリカを作。電子顕微鏡にて10000倍で100視野以上(観察面積にして10000μm²以上)を観察。

但し、 0.1μ m未満の粒子に関しては適宜倍率を高めて観察。

円相当径 $0.005\sim0.5$ μ mの粒子うち元素分析で酸化を含むものをカウントして1 m m 2 あたりの個数に換算。

3) EGW:エレクトロガス溶接、ESW:エレクトロスラグ溶接、溶接入熱量は溶接全長での平均値、各溶接法で共通の溶接材料を使用。

- 4) 板厚中央部を中心とした板厚方向2mmと、FL~HAZ1mmを含む面に含まれる旧オーステナイトの平均粒径。 断面法により測定。ネット状につながっているフェライトを旧オーステナイト粒の粒界として測定。
- 5) F L ノッチはWMとHAZ が等分になるように罫書き、各ノッチ位置での v E 4 0 は試験片3本の平均値。

産業上の利用可能性

本発明は、船舶、海洋構造物、中高層ビルなどの破壊に対する厳しい靭性要求を満足する厚手鋼板を供給するものであり、この種の産業分野にもたらす効果は極めて大きく、さらに構造物の安全性の意味から社会に対する貢献も非常に大きい。

請 求 の 範 囲

1. 質量%で、

 $C : 0.03 \sim 0.14\%$

Si:0.30%以下、

 $Mn: 0.8 \sim 2.0\%$

P:0.02%以下、

S:0.005%以下、

 $A1:0.001\sim0.040\%$

 $N : 0.0010 \sim 0.0100\%$

 $Ni: 0.8 \sim 4.0\%$

 $T i : 0. 005 \sim 0. 030\%$

 $Nb:0.003\sim0.040\%$

を含有し、NiとMnが式[1]を満たし、残部が鉄および不可避不純物であることを特徴とする、大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板。

N i / M n \geq 1 0 \times C e q - 3 (0. 3 6 < C e q < 0.

42) [1]

但し、C = q = C + M n / 6 + (C r + M o + V) / 5 + (N i + C u) / 1 5

2. さらに、質量%で、

 $Ca:0.0003\sim0.0050\%$

 $Mg: 0.0003 \sim 0.0050\%$

 $REM: 0.001 \sim 0.030\%$

のうちの1種または2種以上を含有し、かつ

 $O : 0. 0010 \sim 0. 0050\%$

を含有し、円相当径が 0.005~0.5 μ m の酸化物を、100

個/mm²以上含有することを特徴とする、請求項1に記載の大入 熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板。

3. さらに、質量%で、

B : $0.0005\sim0.0050\%$

を含有することを特徴とする、請求項1または請求項2に記載の大 入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板。

4. さらに、質量%で、

 $C r : 0 . 1 \sim 0 . 5 \%$

 $Mo: 0.01 \sim 0.5\%$

 $V : 0.005 \sim 0.10\%$

 $Cu: 0. 1 \sim 1. 0\%$

のうちの1種または2種以上を含有することを特徴とする、請求項 1ないし請求項3のいずれか1項に記載の大入熱溶接による溶接熱 影響部の低温靭性に優れた厚手高強度鋼板。

Fig.1

Fig.2

Fig.3

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2005/007109

		101/012	003/007±03								
	CATION OF SUBJECT MATTER 7 C22C38/00, 38/14, 38/58										
According to Int	According to International Patent Classification (IPC) or to both national classification and IPC										
B. FIELDS SE	EARCHED										
Minimum docur Int . Cl	nentation searched (classification system followed by cla 7 C22C38/00-38/60	assification symbols)									
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2005 Kokai Jitsuyo Shinan Koho 1971-2005 Toroku Jitsuyo Shinan Koho 1994-2005											
	Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WPI (DIALOG)										
C. DOCUME	NTS CONSIDERED TO BE RELEVANT										
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.								
X A	X JP 9-3597 A (Nippon Steel Corp.), 1,3,4										
X A	JP 2003-313628 A (Nippon Steron November, 2003 (06.11.03), Table 1 (kind of steel 1) (Family: none)	el Corp.),	3,4 1,2								
Further do	ocuments are listed in the continuation of Box C.	See patent family annex.									
"A" document of to be of par filing date "L" document verified to est special reas "O" document reduced to comment reduced to est special reas "O" document per document per file.	egories of cited documents: lefining the general state of the art which is not considered ticular relevance lication or patent but published on or after the international which may throw doubts on priority claim(s) or which is ablish the publication date of another citation or other on (as specified) eferring to an oral disclosure, use, exhibition or other means sublished prior to the international filing date but later than date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family									
11 Jul	al completion of the international search y, 2005 (11.07.05)	Date of mailing of the international sear 26 July, 2005 (26.0									
	ng address of the ISA/ se Patent Office	Authorized officer									
Facsimile No.		Telephone No.									

発明の属する分野の分類(国際特許分類(IPC)) Int.Cl. 7 C 2 2 C 3 8 / 0 0, 3 8 / 1 4, 3 8 / 5 8

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl.⁷ C 2 2 C 3 8 / 0 0 - 3 8 / 6 0

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2005年

日本国実用新案登録公報

1996-2005年

日本国登録実用新案公報

1994-2005年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

WPI (DIALOG)

C. 関連する	と認められる文献	λ.
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3万元の成日 人の 中で国が下入たりのことは、この民任人の国が少なか	明水切軋団切留方
X	JP 9-3597 A (新日本製鐵株式会社)	1, 3, 4
A	1997.01.07,表1,2(鋼種10)(ファミリーなし)	2
X	JP 2003-313628 A (新日本製鐵株式会社)	3, 4
A	2003.11.06,表1(鋼種1)(ファミリーなし)	1, 2
	·	
,		
		·

C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用す る文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
 - 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの

国際調査を完了した日 11.07.2005	国際調査報告の発送日 26.7.2	2005
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 佐藤 陽一 電話番号 03-3581-1101 内線	4K 9731 泉 3435