IS 604 Assignment 7

David Stern

November 23, 2015

9.14

Use the Kolmogorov-Smirnov test to discover whether the distribution of location of accidents is uniformly distributed for the month of September.

To test for uniformity, our hypotheses are:

```
H_0: R_i \sim Uniform[0, 1]
H_A: R_i \sim Uniform[0, 1]
```

[1] 0.172

We will use table A.8 in the Discrete-Event System Simulation to test the critical value of D = 0.172 for the sample size N = 30.

For a significance level of $\alpha = 0.10$ at N = 30, $D_{0.10} = 0.22$. Since our computed value of D = 0.172 is less than the critical value of $D_{0.10} = 0.22$, we do not reject the null hypothesis that the accidents are uniformly distributed.

9.17

The time required for 50 different employees to compute and record the number of hours worked during the week was measured, with the following results in minutes:

Use the chi-square test to test the hypothesis that these service times are exponentially distributed. Let the number of class intervals be k = 6. Use the level of significance $\alpha = 0.05$.

 $H_0 = exponentially\ distributed$ $H_A = not\ exponentially\ distributed$

Each interval will have equal probability p = 0.1666667. To find the enpoints of these intervals we must solve for the expression below where a_i is the endpoint of the i th interval.

$$a_i = -\frac{1}{\lambda}ln(1-ip), i = 0, 1, ...6$$

```
suppressWarnings(suppressMessages(library(knitr)))
lambda <- 1/mean(minutes)</pre>
p < -1/6
endpts <- c()
for (i in 0:6){
  endpts[i+1] \leftarrow log(1-(i*p))/-lambda
bins <- cut(minutes, breaks=endpts, labels=c("bin 1","bin 2","bin 3","bin 4"," bin 5"," bin 6"))
Oi <- summary(bins)
Ei <- rep(p*length(minutes),6)</pre>
fit <- ((0i-Ei)^2)/Ei
intervals <-c("[0,0.220)","[0.220,0.489)","[0.489,0.836)",
                "[0.836,1.325)","[1.325,2.161)","[2.161,inf)")
df <- data.frame("Class Intervals"=intervals,</pre>
                  "Observed Freq., Oi"=Oi,
                  "Expected Freq., Ei"=Ei,
                  "((Oi-Ei)^2)/Ei"=fit)
kable(df)
```

	Class.Intervals	Observed. Freq Oi	${\bf Expected.Freq..Ei}$	XOi.Ei2Ei
bin 1	[0,0.220)	8	8.333333	0.0133333
bin 2	[0.220, 0.489)	11	8.333333	0.8533333
bin 3	[0.489, 0.836)	9	8.333333	0.05333333
bin 4	[0.836, 1.325)	5	8.333333	1.3333333
bin 5	[1.325, 2.161)	10	8.333333	0.33333333
bin 6	[2.161, inf)	7	8.333333	0.2133333

Our value for χ_0^2 value is the sum of the right-most column, 2.8. At $\alpha = 0.05$ and k - 1 = 5 degrees of freedom, $\chi_{0.05,5}^2 = 11.1$. Since $\chi_0^2 < \chi_{0.05,5}^2$, we do not reject the null hypothesis.