CS559/659 Lecture 6:

Linear Regression

Reading: Bishop Book, Chapter 3

Outline

Linear Regression

- Linear model
- Loss (error) function based on the least squares fit
- Parameter estimation.
- Gradient methods.
- On-line regression techniques.
- Linear additive models
- Statistical model of linear regression

Supervised learning

Data: $D = \{D_1, D_2, ..., D_n\}$ a set of n examples $D_i = \langle \mathbf{x}_i, y_i \rangle$ $\mathbf{x}_i = (x_{i,1}, x_{i,2}, \cdots x_{i,d})$ is an input vector of size d y_i is the desired output (given by a teacher)

Objective: learn the mapping $f: X \to Y$

s.t. $y_i \approx f(\mathbf{x}_i)$ for all i = 1,..., n

Regression: Y is continuous

Example: earnings, product orders → company stock price

• Classification: Y is discrete

Example: handwritten digit in binary form → digit label

Linear regression

• Function $f: X \rightarrow Y$ is a linear combination of input components

$$f(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d = w_0 + \sum_{j=1}^d w_j x_j$$

 $w_0, w_1, \dots w_k$ - parameters (weights)

Linear regression

- Shorter (vector) definition of the model
 - Include bias constant in the input vector

$$\mathbf{x} = (1, x_1, x_2, \cdots x_d)$$

$$f(\mathbf{x}) = w_0 x_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d = \mathbf{w}^T \mathbf{x}$$

 $W_0, W_1, \dots W_k$ - parameters (weights)

Linear regression. Error.

- Data: $D_i = \langle \mathbf{x}_i, y_i \rangle$
- Function: $\mathbf{x}_i \to f(\mathbf{x}_i)$
- We would like to have $y_i \approx f(\mathbf{x}_i)$ for all i = 1,..., n
- Error function
 - measures how much our predictions deviate from the desired answers

Mean-squared error
$$J_n = \frac{1}{n} \sum_{i=1,...n} (y_i - f(\mathbf{x}_i))^2$$

Learning:

We want to find the weights minimizing the error!

Linear regression. Example

• 1 dimensional input

$$\mathbf{x} = (x_1)$$

Linear regression. Example.

• 2 dimensional input $\mathbf{x} = (x_1, x_2)$

Linear regression. Optimization.

We want the weights minimizing the error

$$J_n = \frac{1}{n} \sum_{i=1,...n} (y_i - f(\mathbf{x}_i))^2 = \frac{1}{n} \sum_{i=1,...n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

• For the optimal set of parameters, derivatives of the error with respect to each parameter must be 0

$$\frac{\partial}{\partial w_j} J_n(\mathbf{w}) = -\frac{2}{n} \sum_{i=1}^n (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \dots - w_d x_{i,d}) x_{i,j} = 0$$

Vector of derivatives:

grad
$$_{\mathbf{w}}(J_n(\mathbf{w})) = \nabla_{\mathbf{w}}(J_n(\mathbf{w})) = -\frac{2}{n} \sum_{i=1}^n (y_i - \mathbf{w}^T \mathbf{x}_i) \mathbf{x}_i = \overline{\mathbf{0}}$$

Linear regression. Optimization.

• grad $_{\mathbf{w}}(J_n(\mathbf{w})) = \overline{\mathbf{0}}$ defines a set of equations in \mathbf{w}

$$\frac{\partial}{\partial w_0} J_n(\mathbf{w}) = -\frac{2}{n} \sum_{i=1}^n (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \dots - w_d x_{i,d}) = 0$$

$$\frac{\partial}{\partial w_1} J_n(\mathbf{w}) = -\frac{2}{n} \sum_{i=1}^n (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \dots - w_d x_{i,d}) x_{i,1} = 0$$

. . .

$$\frac{\partial}{\partial w_j} J_n(\mathbf{w}) = -\frac{2}{n} \sum_{i=1}^n (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \dots - w_d x_{i,d}) x_{i,j} = 0$$

...

$$\frac{\partial}{\partial w_d} J_n(\mathbf{w}) = -\frac{2}{n} \sum_{i=1}^n (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \dots - w_d x_{i,d}) x_{i,d} = 0$$

Solving linear regression

$$\frac{\partial}{\partial w_j} J_n(\mathbf{w}) = -\frac{2}{n} \sum_{i=1}^n (y_i - w_0 x_{i,0} - w_1 x_{i,1} - \dots - w_d x_{i,d}) x_{i,j} = 0$$

By rearranging the terms we get a system of linear equations

with d+1 unknowns

 $\mathbf{A}\mathbf{w} = \mathbf{b}$

$$w_0 \sum_{i=1}^{n} x_{i,0} 1 + w_1 \sum_{i=1}^{n} x_{i,1} 1 + \dots + w_j \sum_{i=1}^{n} x_{i,j} 1 + \dots + w_d \sum_{i=1}^{n} x_{i,d} 1 = \sum_{i=1}^{n} y_i 1$$

$$w_0 \sum_{i=1}^{n} x_{i,0} x_{i,1} + w_1 \sum_{i=1}^{n} x_{i,1} x_{i,1} + \dots + w_j \sum_{i=1}^{n} x_{i,j} x_{i,1} + \dots + w_d \sum_{i=1}^{n} x_{i,d} x_{i,1} = \sum_{i=1}^{n} y_i x_{i,1}$$

•••

$$w_0 \sum_{i=1}^n x_{i,0} x_{i,j} + w_1 \sum_{i=1}^n x_{i,1} x_{i,j} + \ldots + w_j \sum_{i=1}^n x_{i,j} x_{i,j} + \ldots + w_d \sum_{i=1}^n x_{i,d} x_{i,j} = \sum_{i=1}^n y_i x_{i,j}$$

Solving linear regression

• The optimal set of weights satisfies:

$$\nabla_{\mathbf{w}}(J_n(\mathbf{w})) = -\frac{2}{n} \sum_{i=1}^n (y_i - \mathbf{w}^T \mathbf{x}_i) \mathbf{x}_i = \overline{\mathbf{0}}$$

Leads to a system of linear equations (SLE) with d+1 unknowns of the form

$$\mathbf{A}\mathbf{W} = \mathbf{b}$$

$$w_0 \sum_{i=1}^n x_{i,0} x_{i,j} + w_1 \sum_{i=1}^n x_{i,1} x_{i,j} + \ldots + w_j \sum_{i=1}^n x_{i,j} x_{i,j} + \ldots + w_d \sum_{i=1}^n x_{i,d} x_{i,j} = \sum_{i=1}^n y_i x_{i,j}$$

Solution to SLE: ?

Solving linear regression

The optimal set of weights satisfies:

$$\nabla_{\mathbf{w}}(J_n(\mathbf{w})) = -\frac{2}{n} \sum_{i=1}^n (y_i - \mathbf{w}^T \mathbf{x}_i) \mathbf{x}_i = \overline{\mathbf{0}}$$

Leads to a system of linear equations (SLE) with d+1 unknowns of the form $\mathbf{A}\mathbf{w} = \mathbf{b}$

$$w_0 \sum_{i=1}^{n} x_{i,0} x_{i,j} + w_1 \sum_{i=1}^{n} x_{i,1} x_{i,j} + \dots + w_j \sum_{i=1}^{n} x_{i,j} x_{i,j} + \dots + w_d \sum_{i=1}^{n} x_{i,d} x_{i,j} = \sum_{i=1}^{n} y_i x_{i,j}$$

Solution to SLE:

$$\mathbf{w} = \mathbf{A}^{-1}\mathbf{b}$$

matrix inversion

Gradient descent solution

Goal: the weight optimization in the linear regression model

$$J_n = Error (\mathbf{w}) = \frac{1}{n} \sum_{i=1...n} (y_i - f(\mathbf{x}_i, \mathbf{w}))^2$$

An alternative to SLE solution:

Gradient descent

Idea:

- Adjust weights in the direction that improves the Error
- The gradient tells us what is the right direction

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla_{\mathbf{w}} Error_{i}(\mathbf{w})$$

 $\alpha > 0$ - a learning rate (scales the gradient changes)

Gradient descent method

• Descend using the gradient information

Direction of the descent

• Change the value of w according to the gradient

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla_{\mathbf{w}} Error_{i}(\mathbf{w})$$

Gradient descent method

• New value of the parameter

$$w_j \leftarrow w_j * -\alpha \frac{\partial}{\partial w_j} Error(w)|_{w^*}$$
 For all j

 $\alpha > 0$ - a learning rate (scales the gradient changes)

Gradient descent method

• Iteratively approaches the optimum of the Error function

Online gradient algorithm

The error function is defined for the whole dataset D

$$J_n = Error(\mathbf{w}) = \frac{1}{n} \sum_{i=1,\dots n} (y_i - f(\mathbf{x}_i, \mathbf{w}))^2$$

• error for a sample $D_i = \langle \mathbf{x}_i, y_i \rangle$

$$J_{\text{online}} = Error_i(\mathbf{w}) = \frac{1}{2}(y_i - f(\mathbf{x}_i, \mathbf{w}))^2$$

Online gradient method: changes weights after every sample

vector form:
$$w_j \leftarrow w_j - \alpha \frac{\partial}{\partial w_j} Error_i(\mathbf{w})$$

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla_{\mathbf{w}} Error_{i}(\mathbf{w})$$

 $\alpha > 0$ - Learning rate that depends on the number of updates

Online gradient method

Linear model
$$f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

On-line error $J_{online} = Error_i(\mathbf{w}) = \frac{1}{2}(y_i - f(\mathbf{x}_i, \mathbf{w}))^2$

On-line algorithm: generates a sequence of online updates

(i)-th update step with:
$$D_i = \langle \mathbf{x}_i, y_i \rangle$$

$$D_i = \langle \mathbf{x}_i, y_i \rangle$$

j-th weight:

$$w_{j}^{(i)} \leftarrow w_{j}^{(i-1)} - \alpha(i) \frac{\partial Error_{i}(\mathbf{w})}{\partial w_{j}} \big|_{\mathbf{w}^{(i-1)}}$$

$$w_j^{(i)} \leftarrow w_j^{(i-1)} + \alpha(i)(y_i - f(\mathbf{x}_i, \mathbf{w}^{(i-1)}))x_{i,j}$$

Fixed learning rate: $\alpha(i) = C$ Annealed learning rate: $\alpha(i) \approx \frac{1}{C}$

- Use a small constant

- Gradually rescales changes

Online regression algorithm

```
Online-linear-regression (D, number of iterations)

Initialize weights \mathbf{w} = (w_0, w_1, w_2 \dots w_d)

for i=1:1: number of iterations

do select a data point D_i = (\mathbf{x}_i, y_i) from D

set learning rate \alpha(i)

update weight vector

\mathbf{w} \leftarrow \mathbf{w} + \alpha(i)(y_i - f(\mathbf{x}_i, \mathbf{w}))\mathbf{x}_i

end for
return weights \mathbf{w}
```

• Advantages: very easy to implement, continuous data streams

On-line learning. Example

Practical concerns: Input normalization

Input normalization

- makes the data vary roughly on the same scale.
- Can make a huge difference in on-line learning

Assume on-line update (delta) rule for two weights j,k,:

For inputs with a large magnitude the change in the weight is huge: changes to the inputs with high magnitude disproportional as if the input was more important

Input normalization

Input normalization:

- Solution to the problem of different scales
- Makes all inputs vary in the same range around 0

$$\overline{x}_{j} = \frac{1}{n} \sum_{i=1}^{n} x_{i,j}$$
 $\sigma_{j}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i,j} - \overline{x}_{j})^{2}$

New input:
$$\widetilde{x}_{i,j} = \frac{(x_{i,j} - \overline{x}_j)}{\sigma_j}$$

More complex normalization approach can be applied when we want to process data with correlations

Similarly we can renormalize outputs y

Extensions of simple linear model

Replace inputs to linear units with feature (basis) functions to model nonlinearities

The same techniques as before to learn the weights

Additive linear models

Models linear in the parameters we want to fit

$$f(\mathbf{x}) = w_0 + \sum_{k=1}^m w_k \phi_k(\mathbf{x})$$

 $W_0, W_1...W_m$ - parameters

$$\phi_1(\mathbf{x}), \phi_2(\mathbf{x})...\phi_m(\mathbf{x})$$
 - feature or basis functions

- Basis functions examples:
 - a higher order polynomial, one-dimensional input $\mathbf{x} = (x_1)$

$$\phi_1(x) = x$$
 $\phi_2(x) = x^2$ $\phi_3(x) = x^3$

- Multidimensional quadratic $\mathbf{x} = (x_1, x_2)$

$$\phi_1(\mathbf{x}) = x_1 \quad \phi_2(\mathbf{x}) = x_1^2 \quad \phi_3(\mathbf{x}) = x_2 \quad \phi_4(\mathbf{x}) = x_2^2 \quad \phi_5(\mathbf{x}) = x_1 x_2$$

Other types of basis functions

$$\phi_1(x) = \sin x \quad \phi_2(x) = \cos x$$

Basis Functions: Polynomials

Basis Functions: Gaussians

Basis Functions: Sigmoidals

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right), \quad \sigma(a) = \frac{1}{1 + \exp(-a)}$$

Other Basis Functions

- ▶ Fourier basis: specific frequency, infinite time span
- ▶ Wavelet: localized in frequency and time
- ▶ Linear models could use any of these basis

Fitting additive linear models

• Error function $J_n(\mathbf{w}) = 1/n \sum_{i=1,...n} (y - f(\mathbf{x}_i))^2$

Assume: $\phi(\mathbf{x}_i) = (1, \phi_1(\mathbf{x}_i), \phi_2(\mathbf{x}_i), \dots, \phi_m(\mathbf{x}_i))$

$$\nabla_{\mathbf{w}} J_n(\mathbf{w}) = -\frac{2}{n} \sum_{i=1,...n} (y_i - f(\mathbf{x}_i)) \varphi(\mathbf{x}_i) = \overline{\mathbf{0}}$$

Leads to a system of m linear equations

$$w_0 \sum_{i=1}^n 1\phi_j(\mathbf{x}_i) + \ldots + w_j \sum_{i=1}^n \phi_j(\mathbf{x}_i)\phi_j(\mathbf{x}_i) + \ldots + w_m \sum_{i=1}^n \phi_m(\mathbf{x}_i)\phi_j(\mathbf{x}_i) = \sum_{i=1}^n y_i \phi_j(\mathbf{x}_i)$$

Can be solved exactly like the linear case

Example. Regression with polynomials.

Regression with polynomials of degree m

- Data points: pairs of $\langle x, y \rangle$
- Feature functions: m feature functions

$$\phi_i(x) = x^i \qquad i = 1, 2, \dots, m$$

Function to learn:

$$f(x, \mathbf{w}) = w_0 + \sum_{i=1}^m w_i \phi_i(x) = w_0 + \sum_{i=1}^m w_i x^i$$

Learning with feature functions

Function to learn:

$$f(x, \mathbf{w}) = w_0 + \sum_{i=1}^k w_i \phi_i(x)$$

On line gradient update for the $\langle x,y \rangle$ pair

$$w_0 = w_0 + \alpha(y - f(\mathbf{x}, \mathbf{w}))$$

•

$$w_i = w_i + \alpha (y - f(\mathbf{x}, \mathbf{w})) \phi_i(\mathbf{x})$$

Gradient updates are of the same form as in the linear and logistic regression models

Example. Regression with polynomials.

Example: Regression with polynomials of degree m

$$f(x, \mathbf{w}) = w_0 + \sum_{i=1}^m w_i \phi_i(x) = w_0 + \sum_{i=1}^m w_i x^i$$

• On line update for $\langle x,y \rangle$ pair

$$w_0 = w_0 + \alpha (y - f(\mathbf{x}, \mathbf{w}))$$

$$w_j = w_j + \alpha (y - f(\mathbf{x}, \mathbf{w}))x^j$$

Multidimensional additive model example

Multidimensional additive model example

Statistical model of regression

- A generative model: y = f(x, w) + ε
 f(x, w) is a deterministic function
 ε is a random noise, represents things we cannot capture with f(x, w), e.g. ε ~ N(0, σ²)
- Assume $f(\mathbf{x}, \mathbf{w}) = \mathbf{w}^T \mathbf{x}$ is a linear model, and $\varepsilon \sim N(0, \sigma^2)$ Then: $f(\mathbf{x}, \mathbf{w}) = E(y \mid \mathbf{x})$ models the mean of outputs y for \mathbf{x} and the **noise** models deviations from the mean
- The model defines the conditional density of y given x, w, σ

$$p(y \mid \mathbf{x}, \mathbf{w}, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{1}{2\sigma^2} (y - f(\mathbf{x}, \mathbf{w}))^2 \right]$$

ML estimation of the parameters

• likelihood of predictions = the probability of observing outputs y in D given \mathbf{w} , σ

$$L(D, \mathbf{w}, \sigma) = \prod_{i=1}^{n} p(y_i | \mathbf{x}_i, \mathbf{w}, \sigma)$$

- Maximum likelihood estimation of parameters
 - parameters maximizing the likelihood of predictions

$$\mathbf{w}^* = \arg\max_{\mathbf{w}} \prod_{i=1}^n p(y_i \mid \mathbf{x}_i, \mathbf{w}, \sigma)$$

- Log-likelihood trick for the ML optimization
 - Maximizing the log-likelihood is equivalent to maximizing the likelihood

$$l(D, \mathbf{w}, \sigma) = \log(L(D, \mathbf{w}, \sigma)) = \log \prod_{i=1}^{n} p(y_i | \mathbf{x}_i, \mathbf{w}, \sigma)$$

ML estimation of the parameters

Using conditional density

$$p(y \mid \mathbf{x}, \mathbf{w}, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2\sigma^2} (y - f(\mathbf{x}, \mathbf{w}))^2\right]$$

We can rewrite the log-likelihood as

$$l(D, \mathbf{w}, \sigma) = \log(L(D, \mathbf{w}, \sigma)) = \log \prod_{i=1}^{n} p(y_i | \mathbf{x}_i, \mathbf{w}, \sigma)$$

$$= \sum_{i=1}^{n} \log p(y_i | \mathbf{x}_i, \mathbf{w}, \sigma) = \sum_{i=1}^{n} \left\{ -\frac{1}{2\sigma^2} (y_i - f(\mathbf{x}_i, \mathbf{w}))^2 - c(\sigma) \right\}$$

$$= -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - f(\mathbf{x}_i, \mathbf{w}))^2 + C(\sigma)$$

 Maximizing with regard to w, is <u>equivalent to minimizing</u> <u>squared error functions</u>

ML estimation of parameters

 Criteria based on mean squares error function and the log likelihood of the output are related

$$J_{online}(y_i, \mathbf{x}_i) = \frac{1}{2\sigma^2} \log p(y_i \mid \mathbf{x}_i, \mathbf{w}, \sigma) + c(\sigma)$$

- We know how to optimize parameters w
 - the same approach as used for the least squares fit
- But what is the ML estimate of the variance of the noise?
- Maximize $l(D, \mathbf{w}, \sigma)$ with respect to variance

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - f(\mathbf{x}_i, \mathbf{w}^*))^2$$

= mean square prediction error for the best predictor

Regularized linear regression

- If the number of parameters is large relative to the number of data points used to train the model, we face the threat of overfit (generalization error of the model goes up)
- The prediction accuracy can be often improved by setting some coefficients to zero
 - Increases the bias, reduces the variance of estimates

• Solutions:

- Subset selection
- Ridge regression
- Lasso regression
- Principal component regression
- Next: ridge regression

Ridge regression

Error function for the standard least squares estimates:

$$J_n(\mathbf{w}) = \frac{1}{n} \sum_{i=1,\dots n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

- We seek: $\mathbf{w}^* = \arg\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1,...n} (y_i \mathbf{w}^T \mathbf{x}_i)^2$
- Ridge regression:

$$J_n(\mathbf{w}) = \frac{1}{n} \sum_{i=1\dots n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \|\mathbf{w}\|^2$$

- Where $\|\mathbf{w}\|^2 = \sum_{i=0}^d w_i^2$ and $\lambda \ge 0$
- What does the new error function do?

Ridge regression

Standard regression:

$$J_n(\mathbf{w}) = \frac{1}{n} \sum_{i=1,\dots n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

Ridge regression:

$$J_n(\mathbf{w}) = \frac{1}{n} \sum_{i=1\dots n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \|\mathbf{w}\|^2$$

- $\|\mathbf{w}\|^2 = \sum_{i=0}^d w_i^2$ penalizes non-zero weights with the cost proportional to λ (a shrinkage coefficient)
- If an input attribute x_j has a small effect on improving the error function it is "shut down" by the penalty term
- Inclusion of a shrinkage penalty is often referred to as regularization

Ridge regression

How to solve the least squares problem if the error function is enriched by the regularization term $\lambda \|\mathbf{w}\|^2$?

Answer: The solution to the optimal set of weights w is obtained again by solving a set of linear equation.

Standard linear regression:

$$\nabla_{\mathbf{w}}(J_n(\mathbf{w})) = -\frac{2}{n} \sum_{i=1}^n (y_i - \mathbf{w}^T \mathbf{x}_i) \mathbf{x}_i = \overline{\mathbf{0}}$$

Solution:
$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

where X is an nxd matrix with rows corresponding to examples and columns to inputs

Regularized linear regression:

$$\mathbf{w}^* = (\lambda \mathbf{I} + \mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

Lasso regression

Standard regression:

$$J_n(\mathbf{w}) = \frac{1}{n} \sum_{i=1,...n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

Lasso regression:

$$J_n(\mathbf{w}) = \frac{1}{n} \sum_{i=1,..n} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 + \lambda \|\mathbf{w}\|_1$$

- $\|\mathbf{w}\|_1 = \sum_{i=0}^d |w_i|$ penalizes non-zero weights with the cost proportional to λ
- Lasso regression is more aggressive than the ridge regression in zeroing the weights
- Lasso + ridge regularization combined:
 - Elastic net regularization