MAT367: Differential Geometry

QiLin Xue

Fall 2021

Contents

1 Manifold 2

1 Manifold

Definition: Let $U \subset \mathbb{R}^n$, $V \subset \mathbb{R}^n$ be open. A map

$$F: U \to V \tag{1.1}$$

is called **smooth** if it is infinitely differentiable. The collection of all smooth maps from U to V is denoted as $C^{\infty}(U,V)$.

A map $F \in C^{\infty}(U,V)$ is a **diffeomorphism** if it has a smooth inverse. For example, $e^x : \mathbb{R} \to \mathbb{R}_{>0}$ is a diffeomorphism. On the other hand, $x^3 : \mathbb{R} \to \mathbb{R}$ is smooth and invertible, but its inverse is not smooth.

Definition: Given a smooth map $F: U \to V$ and $x \in U$, its **Jacobian** matrix is the $n \times m$ matrix of partial derivatives,

$$Df(x) = \left[\frac{\partial F^i}{\partial x^j}(x)\right]_i^j. \tag{1.2}$$

If n = m, the determinant of DF(x) is called the **Jacobian determinant**.

Theorem: Inverse Function Theorem: A function $F:U\to V$ is a diffeomorphism if and only if,

- F is invertible and smooth.
- $\forall x \in U$, DF(x) is invertible.

The proof is provided in MAT257.

Definition: Let M be a set.

- (a) An m-dimensional (coordinate) chart (U, φ) on M is a subset $U \subset M$ together with a map $\varphi : U \to \mathbb{R}^m$ such that $\varphi(U)$ is open and φ is bijective onto its image. Here, U is the **chart domain** and φ is the **coordinate map.**
- (b) Two charts (U,φ) and (V,ψ) are **compatible** if
 - (a) $\varphi(U \cap V)$ and $\psi(U \cap V)$ are open
 - (b) $\psi \circ \varphi^{-1} : \varphi(U \cap V) \to \psi(U \cap V)$ is a diffeomorphism.

Note, in MAT257, we defined coordinate charts from \mathbb{R}^k to the manifold M. Here, it is the other way around. The definitions are equivalent since φ is a diffeomorphism. This new perspective is interesting because we are no longer embedding M into \mathbb{R}^k , but instead giving it a manifold structure. As a *result* of this structure, we can then get a topology.

Also note that if $U \cap V = \varphi$, then (U, φ) and (V, ψ) are automatically compatible.

Definition: Given a chart (U, φ) , the composition

$$U \xrightarrow{\varphi} \varphi(U) \subset \mathbb{R}^n \xrightarrow{pr^i} \mathbb{R}$$
 (1.3)

is equivalent to $u^i:U\to\mathbb{R}$ and are called the **coordinate functions** of φ . Given $p\in U$, the n-tuple $(u^1(p),\dots,u^n(p))$ is called the **coordinates** of p in this chart. The transition maps $\psi\circ\varphi^{-1}$ are called **change of coordinates**.

Definition: An m-dimensional atlas on a set M is a collection of coordinate charts $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha})\}$, such that

- 1. $\bigcup U_{\alpha} = M$
- 2. $\forall \alpha, \beta, \ (U_\alpha, \varphi_\alpha)$ and (U_β, φ_β) are compatible.

Let us look at some examples.

Example 1: Let M be the set of **affine** lines in \mathbb{R}^n . By affine, we mean it is just a line, and doesn't necessarily need to go through the origin. To find an atlas, define $U = \{\ell | \ell \text{ is not vertical}\}$ and $V = \{\ell | \ell \text{ is not horizontal}\}$. Any $\ell \in U$ can be written as y = mx + b, so the map

$$\varphi: U \to \mathbb{R}^2$$
$$y = mx + b \mapsto (m, b)$$

is a bijection. Similarly, any $\ell \in V$ can be written as x=my+b, so the map

$$\psi: V \to \mathbb{R}^2$$

$$x = my + b \mapsto (m, b).$$

We propose that the above is an atlas. Clearly, this covers M so we just need to check compatibility. Note that $U \cap V$ is the collection of lines which are not horizontal and not vertical. We have,

$$\begin{split} \varphi(U \cap V) &= \mathbb{R}^2 - \{ \text{y-axis} \} \\ &= \{ (m,b) : m \neq 0 \}, \end{split}$$

so it is open. Similarly, $\psi(U \cap V)$ is also open. Finally, we need to check that the transition function is a diffeomorphism, which is true since it maps

$$(m,b)\mapsto \left(\frac{1}{m},-\frac{b}{m}\right),$$

which is smooth. Interestingly, M is the *infinite Mobius band*.

Note that we cannot simply define a manifold to be a set with an atlas. If this was true, then we could potentially have two atlases that describe a single manifold that don't necessarily agree with each other.

Definition: Suppose that $\mathcal{A}=\{(U_\alpha,\psi_\alpha)\}$ is an m-dimensional atlas on M. Let (U,φ) be a chart on M. We say that (U,φ) is compatible with \mathcal{A} if it is compatible with $(U_\alpha,\varphi_\alpha)$, for all α .

Note that (U,φ) is compatible with $\mathcal A$ if and only if $\{(U,\varphi)\}\cup \mathcal A$ is an atlas on M. This implies that given any atlas, there is a maximal atlas that contains it. We want to define $\tilde{\mathcal A}$ as the union of all charts which are compatible with $\mathcal A$. To do so, we can simply take the union of all charts that are compatible with $\mathcal A$.

However, this isn't immediately obvious since the compatibility of charts is not obviously an equivalence relation. In other words, if (U, φ) and (V, ψ) are compatible with \mathcal{A} , are they compatible with each other? This is not true since we could get an empty triple intersection, as shown below:

However, since atlases covers M, this is not an issue.

Lemma 1: Let $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha})\}$ be an atlas on M. If (U, φ) and (V, Ψ) are compatible with \mathcal{A} , then they are compatible with each other.

Proof. For every chart, the sets $\varphi_{\alpha}(U \cap U_{\alpha})$ and $\varphi_{\alpha}(V \cap U_{\alpha})$ are open, hence their intersection is open. This intersection is

$$\varphi_{\alpha}(U \cap U_{\alpha}) \cap \varphi_{\alpha}(V \cap U_{\alpha}) = \varphi_{\alpha}(U \cap V \cap U_{\alpha}).$$

Since $\varphi \circ \varphi_{\alpha}^{-1}$ is a diffeomorphism, we have that

$$\varphi(U \cap V \cap U_{\alpha}) = (\varphi \circ \varphi_{\alpha}^{-1})(\varphi_{\alpha}(U \cap V \cap U_{\alpha})).$$

is also open. Finally, we have that $\varphi(U\cap V)=\bigcup_{\alpha}\varphi(U\cap V\cap U_{\alpha})$, which implies $\varphi(U\cap V)$ is open.

Why is $\psi \circ \varphi^{-1} : \varphi(U \cap V) \to \psi(U \cap V)$ smooth? This is because

$$\varphi(U \cap V \cap U_{\alpha}) \xrightarrow{\varphi_{\alpha} \circ \varphi^{-1}} \varphi_{\alpha}(U \cap V \cap U_{\alpha}) \xrightarrow{\psi \circ \varphi_{\alpha}^{-1}} \psi(U \cap V \cap U_{\alpha}).$$

Therefore, $\psi \circ \varphi^{-1} \bigg|_{U \cap V \cap U_{\alpha}}$ is smooth, being the composition of smooth maps. Hence, since U_{α} covers M, $\psi \circ \varphi^{-1}$ is smooth.

Theorem: Given an atlas A on M, let \tilde{A} be the collection of all charts that are compatible with A. Then A is an atlas on M containing A, and be the largest such.

Definition: An atlas on a set M is called **maximal** if it is not properly contained in any larger atlas. Any atlas for M determines a maximal atlas, namely $\tilde{\mathcal{A}}$.

We can finally define a manifold,

Definition: A manifold is a set M together with a maximal atlas $\mathcal{A} = \{(U_{\alpha}, \varphi_{\alpha})\}$ such that

- 1. M is covered by countably many charts
- 2. (Hausdorff condition) For any distinct points $p,q\in M$, there are coordinate charts $(U_{\alpha},\varphi_{\alpha})$ and $(U_{\beta},\varphi_{\beta})$ such that $p\in U_{\alpha},\ q\in U_{\beta},\ U_{\alpha}\cap U_{\beta}=\emptyset$. The charts $(U_{\alpha},\varphi_{\alpha})\in\mathcal{A}$ are called the coordinate charts on M.

Let us give some examples.

Example 2: Let $M = \mathbb{R}^n$ with an atlas given by $\{(U_x, \varphi_x)\}$ where for $x \in \mathbb{R}^n$, $U_x = \{x\}$ and $\varphi_x : U_x \to \{0\} = \mathbb{R}^0$ is the unique map. This is an atlas, but fails the countability criteria.

Example 3: Let $X=\mathbb{R}\times\{-1,1\}$ (i.e. two copies of \mathbb{R}). Consider the equivalence relation on X generated by $(x_0,1) \sim (x_1,-1) \iff x_0 = x_1 < 0$. This is represented by the picture below,

Let $M=X/\sim$. Let $\pi:X\to M$ be the quotient map, and let

$$U = \pi(\mathbb{R} \times \{1\}), \qquad V = \pi(\mathbb{R} \times \{-1\}). \tag{1.4}$$

If $f: X \to \mathbb{R}$ defined by $(x, i) \mapsto x$, then f defines a functions

$$\tilde{f}: M \to \mathbb{R}$$
 (1.5)

such that $f|_U$ and $f|_V$ are bijectors onto \mathbb{R} . So, $(U, f|_U)$ and $(V, f|_V)$ is an atlas on M for which the Hausdoff condition

Lemma 2: Let M be a set with a maximal atlas $\mathcal{A}=\{(U_{\alpha},\varphi_{\alpha})\}$ and suppose that $p,q\in M$ are distinct points contained in a single chart (U,φ) . Then there exists α,β such that

- 1. $p \in U_{\alpha}$, $q \in U_{\beta}$ 2. $U_{\alpha} \cap U_{\beta} = \emptyset$