מבנה הבחינה: בבחינה שש שאלות.

עליך לענות על **חמש** שאלות.

כל שאלה מזכה ב- 20 נקודות.

הנחיות: כל תשובה תתחיל בעמוד חדש.

שאלה 1

: מצא חסמים אסימפטוטיים הדוקים עבור T(n) בכל אחת מנוסחאות הנסיגה שלהלן

$$T(n) = 3T(\frac{n}{2}) + n \cdot \lg n \quad .8$$

$$T(n) = 9T(\frac{n}{3}) + (\frac{n}{2})$$
 ...

שאלה 2

נתון מערך של k ערכי אלגוריתם מספרים, $k \geq 0$ מספרים, מספרים מערך של מערך ערכי מספרים. 0 מספרים מייב לרוץ בזמן $\Theta(n)$ במקרה הגרוע.

שאלה 3

הוכח שכל אלגוריתם מיון מבוסס השוואות בהפעלתו על מערך בעל 5 איברים חייב לבצע לפחות 7 השוואות.

רמז: התבונן בעץ ההחלטה.

שאלה 4

n בהנתן סדרה של מספרים שלמים בתחום $1..n^2$, האם אפשר לבנות עץ חיפוש בינרי המכיל את בהמתחות האלה, בזמן O(n) במקרה הגרוע? הראה כיצד או נמק מדוע לא.

שאלה 5

מוסיפים לכל צומת בעץ אדום-שחור שדה המכיל את גובה-השחור שלו. האם ניתן לתחזק שדות אלה בלי להשפיע על הביצועים האסימפטוטיים של הפעולות על עצים אדומים-שחורים? הראה כיצד או נמק מדוע לא.

שאלה 6

נבחן את בעיית המימוש של מונה עשרוני בן k ספרות. המונה מונה החל מ-0. אנו משתמשים נבחן את בעיית המימוש של מונה עשרוני בן $A\left[0..k-1\right]$. עבור מספר עשרוני המאוחסן במונה, $A\left[0..k-1\right], A\left[0..k-1\right]$ הספרה הכי פחות משמעותית נמצאת ב- $A\left[0..k-1\right]$, והספרה המשמעותית ביותר נמצאת ב- $x = \sum_{i=0}^{k-1} A[i] \cdot 10^i$, כך שמתקיים $A\left[k-1\right]$

$$A\left[i\right]=0,1,\ldots,k-1$$
 עבור $A\left[i\right]=0$, ולכן ג $x=0$

: כדי להוסיף 1 (מודולו 10^k) לערך המונה, אנו משתמשים בשגרה שלהלן

INCREMENT (A)
$$i \leftarrow 0$$

$$while \quad i < length[A] \ and \ A[i] = 9$$

$$do \quad A[i] \leftarrow 0$$

$$i \leftarrow i + 1$$

$$if \quad i < length[A]$$

$$then \quad A[i] \leftarrow A[i] + 1$$

השתמש בשיטת הצבירה כדי לחשב את העלות לשיעורין של כל פעולה.

בהצלחה!