

T Square Project Step 2: Integration

Timo Scheerer, Timo Büchert

Integration Pipeline

- 1. Integrated Schema (ER Model)
- 2. Integration Pipeline Architecture
- 3. Filling the DB and RMV tables
- 4. Cluster relevant transfer option candidates using the city associated to the RMV and DB stations
- 5. Calculate distances within clusters and fill the table if distance is below threshold
- 6. Identification of identical stations
 - 1. Filter by distance (lower threshold)
 - 2. String similarity of the station names
- 7. Identification of best options

Integrated Schema (ER Model)

Integration Pipeline Architecture

@Bean

```
d application.properties
spring.batch.jdbc.initialize-schema=always
spring.datasource.url=jdbc:postgresql://docker.local:5432/postgres
spring.datasource.username=postgres
spring.datasource.password=postgres
spring.datasource.driver-class-name=org.postgresql.Driver
spring.jpa.database-platform=org.hibernate.dialect.PostgreSQLDialect
spring.jpa.hibernate.ddl-auto=update
chunk.size=1000
import.db.file.name=DB Bahnhof alle.csv
import.rmv.file.name=RMV_Haltestellen.csv
integration.distance.threshold.meters=300
integration.equality.threshold.meters=200
integration.equality.threshold.levenshtein=5
integration.equality.threshold.levenshtein.cityname=6
integration.equality.prefixlength.cityname=4
```

Filling the DB and RMV tables through mapping / calculating the relevant attributes

RMV Station →	Integrated RMV Station
hafasId	
rmvId	
dhid	stationId
hstName	stationName
nameFahrplan	
xIplWert, yIplWert	longitude
xWgs84, yWgs85	longitude, latitude
Ino	
gueltigAb, gueltigBis	
verbund1IstgleichRmv	
gemeindename	cityName
land, rp, ortsteilname	
ags values	

DB Station →	Integrated DB Station
evaNr	stationId
ds100	
ifopt	
name	stationName, cityName (extracted from name)
verkehr	
laenge	longitude
breite	latitude
betreiberName	
betreiberNr	
status	

Clustering by city names

- For each DB station we search for RMV stations in the same city
- One word city names like 'Marburg' are easy wins
- Cities like 'Frankfurt a.M.' have different string representations
- If no exact match is found candidates are searched and best is used
 - Candidates...
 - ... have common 4 char prefix
 - ... have a Levenshtein distance below 6

Identification of similar stations example

RMV	DB
Marburg Hauptbahnhof	Marburg(Lahn)
Marburg Südbahnhof	Marburg Süd
Frankfurt (Main) Hauptwache	Frankfurt(M)Hauptwache

Identification of similar stations

- Take all stations in a specific range as equality candidates
- Take the station names and remove parts between brackets
- Compute three Levenshtein distances and take the minimum
 - Take RMV station name and append 'Bahnhof' to DB station name
 - Take RMV station name and append 'Hauptbahnhof' to DB station name
 - Take RMV station name and DB station name
- If a pair of stations has a Levenshtein distance below a certain threshold assume its equal

Best Options

- All identical station transfers are best options
- The transfer option with the smallest distance which is no identical station transfer is best option
- There may be two best options for one station (one identical and one non-identical)