$$f: G_1 \longrightarrow G_2$$
 gp hom.
 V
 $Kev(f)$ $Im(f)$
 II
 $\{x \in G_1: f(x) = e_2\}$ $\{y \in G_2: \exists x \in G_1 \Rightarrow f(x) = y\}$.

Lemma:
$$f: G_1 \longrightarrow G_2$$
 surjective gr how and $H \cong G_1$.

 $H = \text{Ker}(f) \iff G_1 / H \cong G_2$
induced from f .

So $Ker(f) = Ker(\pi) = H$.

$$E_{X}. \quad G_{1} = F_{ree}(2) \xrightarrow{P} G_{2} = \mathbb{Z}^{2}$$

$$\forall I$$

$$H = \langle \{\alpha \beta \alpha^{-1} \beta^{-1} : \alpha, \beta \in F_{ree}(2) \} \rangle.$$

Claim: His normal. Pf later

thur
$$G_1 \longrightarrow \mathbb{Z}^2$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Page 1

Lemma Let G be a group of H & G generated by {xyx'y': X,y ∈ G}
then H & G

to Prove: a haie H & he H, acc

Reduction 1: enough to show for generators: $ah_1h_2 \cdots h_r a^r = ah_r a^r ah_z a^{-1} \cdots ah_r a^r$.

Pf. Let $a \in G$, h = xyx'y'. $a(xyx'y')a' = (axa')(aya')(axa')'(aya')' \in H$.

Reduction 2: We can also assume $a \in Some$ set of generators 4 G (as sociativity).

Definition: Conjugation by a e G is & ___ axai.

- (1): (onj(a) is a group homomorphism.
- (2): Conj(a) · Conj(b) = Conj(ab)
- (3): (onj (e) = Identity

Hence $Conj(\alpha)^{-1} = Conj(\alpha^{-1})$ so $Conj(\alpha)$ is an isomorphism invase of a bijection.

Precise defin of a group given by generators & relns.

A: a set Free(A) \ni w can be uniquely without $\chi_i^{n_i} \chi_z^{n_i} \dots \chi_\ell^{n_\ell}$ (generators) where $\chi_i \in A$, $\eta_i \in \mathbb{Z}_{\neq 0}$, $\chi_{i-1} \neq \chi_i$

R c Free (A) (relations).

Q: how to define a group homomorphism Free(A) - H?

A: Just specify where to send even $x \in A$.

Then $W = \chi_1^{N_1} \chi_2^{N_2} \cdots \chi_\ell^{N_d} \xrightarrow{f} f(\chi_i)^{n_i} f(\chi_i)^{n_2} \cdots f(\chi_\ell)^{n_\ell}$.

{ Group hows } \longrightarrow { Set maps } \longrightarrow { $A \longrightarrow H$ }

Q: how to define a group hom. G-+H where G= <AIR>?

 \underline{A} :(1) Specify where each $x \in A$ goes $(mo \hat{f}: F_{ree}(A) \xrightarrow{har} H)$.

(2) Make Sure $\tilde{f}(\gamma) = e \quad \forall \quad \gamma \in \mathbb{R}$

Ex: D_{2n} := symmetries of regular n-gon. $|D_{2n}| = 2n$. S_{n} , r = rotation by $\frac{2\pi}{n}$. $(s^{2} = e, r^{m} = e, SrS = r^{-1})$.

Define $G = \langle \sigma, \rho \mid \sigma^2, \rho^n, \sigma_\rho \sigma_\rho \rangle$ how $\int_{1}^{\infty} \int_{1}^{\infty}$

· Check that this map is onto

· check that |G|=2N.

 $E_{x}: \text{ there exists a unique gr how} \quad P_{2n} \xrightarrow{\S_{50^{n}}} \stackrel{\S_{50^{n}}}{\longrightarrow} \stackrel{-1}{\longrightarrow} S.t. \left\{ \begin{array}{c} \S_{50^{n}} & \stackrel{5}{\longrightarrow} & -1 \\ \S_{50^{n}} & \stackrel{5}{\longrightarrow} & -1 \end{array} \right.$

 $\underline{Pf} \quad \text{we just check} \quad \text{eign}(S_1)^2 = Sign(S_2)^2 = \left(\text{Sign}(S_1)\text{Sign}(S_2)\right)^{\frac{n}{2}}.$

Note: Cont do Si -- i of nisodo.

let's believe that

$$S_{N} = \left\langle \sigma_{1}, \dots, \sigma_{N-1} \middle| \begin{array}{l} S_{i}^{2} = e \\ S_{i}S_{j} = S_{j}S_{i} & \text{if } |(-j)| \ge 2 \end{array} \right.$$

$$\int_{-1}^{2} \int_{-1}^{2} \left\{ \pm 13 \right\}$$