Lógica

Lógica de Predicados Aula 17 – Cláusulas de Horn e FNC

Profa. Helena Caseli helenacaseli@ufscar.br

Literal

- Um literal é um átomo (literal positivo) ou a negação de um átomo (literal negativo)
 - → Os literais L e ¬L são ditos **complementares**

Cláusula

Uma cláusula é uma fórmula da forma:

$$\forall X_1 \ \forall X_2 \ \forall X_3 \dots \ \forall X_p \ (L_1 \lor L_2 \lor L_3 \lor \dots \lor L_q)$$

- Na qual cada L_i (1 \leq i \leq q) é um literal e $X_1, X_2, ..., X_p$ são todas as variáveis que ocorrem em $L_1, L_2, ..., L_q$
- → Todas as variáveis são quantificadas universalmente

CLÁUSULAS

Cláusula

- Exemplos
 - ∀X1 p(X1,a)
 - ∀X1 ∀X2 r(f(X1),X2)
 - ∀X1 ∀X2 (¬p(X1,a) ∨ r(f(X1),X2))
 - ¬X1 ∨ p(a)
 - ∀X1 ∀X2 (¬p(X1,a) ^ r(f(X1),X2)) NÃO CLÁUSULAS
 - \forall X1 p(X1,a) \rightarrow r(a,X1)

Cláusula

$$\forall X_1 \ \forall X_2 \ \forall X_3 \dots \forall X_p (A_1 \lor A_2 \lor \dots \lor A_m \lor \neg B_1 \lor \neg B_2 \lor \dots \lor \neg B_n)$$

Pode ser reescrita como

Pode-se entender como uma disjunção de literais em que A: literal positivo e B: literal negativo

Cláusula

$$\forall X_1 \ \forall X_2 \ \forall X_3 \dots \forall X_p (A_1 \lor A_2 \lor \dots \lor A_m \lor \neg B_1 \lor \neg B_2 \lor \dots \lor \neg B_n)$$

Pode ser reescrita como

$$A_1 \lor A_2 \lor \dots \lor A_m \leftarrow B_1 \land B_2 \land \dots \land B_n$$

- Se m > 1 as conclusões são indefinidas, ou seja, existe mais do que uma conclusão
- Se m = 1, $n \ge 0$ a cláusula é definida
- Se m = 0, n = 0, a cláusula é vazia (nil)

Cláusula de Horn

- Cláusulas que contêm no máximo 1 literal positivo
 - Cláusula definida de programa (regra)
 - É uma cláusula de programa que contém exatamente 1 literal positivo

Para toda atribuição de valores às variáveis que ocorrem na cláusula, se B₁, B₂, ..., B_n são todas verdadeiras então A é verdadeira

Cláusula de Horn

- Cláusulas que contêm no máximo 1 literal positivo
 - Cláusula definida de programa (regra)
 - É uma cláusula de programa que contém exatamente 1 literal positivo

$$A \leftarrow B_1 \wedge B_2 \wedge \dots \wedge B_n$$

- → A, B₁, B₂, ..., B_n são átomos
- Cláusula unária (fato) corpo vazio

A é sempre verdade, por isso é um fato!

Cláusula de Horn

- Cláusulas que contêm no máximo 1 literal positivo
 - Cláusula definida de programa (regra)
 - É uma cláusula de programa que contém exatamente 1 literal positivo

$$A \leftarrow B_1 \wedge B_2 \wedge \dots \wedge B_n$$

- → A, B₁, B₂, ..., B_n são átomos
- Cláusula unária (fato) corpo vazio

Cláusula meta (consulta) – sem cabeça

$$\leftarrow B_1 \land B_2 \land \dots \land B_n$$

Forma Normal Prenex (FNP)

• Uma fórmula α da Lógica de Predicados está na Forma Normal Prenex (FNP) se e somente se α estiver na forma

$$(Q_1X_1)(Q_2X_2)...(Q_nX_n)$$
 (M)

- Em que cada (Q_iX_i), i = 1, ..., n é (∀X_i) ou (∃X_i) e M é uma fórmula que não contém quantificadores
- \rightarrow $(Q_1X_1)(Q_2X_2)...(Q_nX_n)$ é o **prefixo** de α
- \rightarrow M é a matriz de α
- Exemplo: ∀X ∃Y p(X,Y)

- α está na Forma Normal Conjuntiva (FNC) se e somente se estiver na FNP e sua matriz for uma conjunção de disjunções de literais
- Também conhecida como Forma Clausal
- → É empregada no método de inferência **resolução** que serve de base para a programação lógica

Forma Normal Conjuntiva (FNC)

- Exemplos
 - $\forall X \ \forall Y \ ((p(X) \lor \neg q(Y)) \land (\neg r(a,b) \lor \neg p(a)))$
 - ∀X ∀Y ∀Z (s(X,Y,Z) ^ p(Y))
 - q(a) ^ p(b)

ESTÁ NA FNC

- ∀X ¬ ∀Y ∀Z (s(Z,Y,Z) ∧ p(X))
- $\forall X (p(X) \rightarrow p(f(X)))$
- $\forall X \ \forall Y \ ((p(X) \land \neg q(Y)) \lor (\neg r(a,b) \land \neg p(a)))$

Forma Normal Conjuntiva (FNC)

- Regras para transformar uma fórmula para a FNC
 - 1. Eliminar variáveis livres
 - Se a fórmula α tiver uma variável livre, X, substitua α por (\exists X α)
 - Esse procedimento deve ser repetido até que a fórmula não contenha variáveis livres

```
Entrada: \forall X (p(X) \rightarrow \neg (\exists X \forall V q(U,V) \land \exists X p(f(X))))
```

Saída – Passo 1: $\exists U \ \forall X \ (p(X) \rightarrow \neg (\exists X \ \forall V \ q(U,V) \land \exists X \ p(f(X))))$

Forma Normal Conjuntiva (FNC)

- Regras para transformar uma fórmula para a FNC
 - 2. Eliminar quantificadores desnecessários
 - Eliminar todo quantificador ∀X ou ∃X que não contenha nenhuma ocorrência de X em seu escopo

```
Saída – Passo 1: \exists U \ \forall X \ (p(X) \rightarrow \neg(\exists X \ \forall V \ q(U,V) \land \exists X \ p(f(X))))
```

Saída – Passo 2: $\exists U \ \forall X \ (p(X) \rightarrow \neg (\forall V \ q(U,V) \land \exists X \ p(f(X))))$

- Regras para transformar uma fórmula para a FNC
 - 3. Renomear variáveis quantificadas várias vezes
 - Se uma mesma variável é governada por dois quantificadores, substitua a variável de um deles e todas as suas ocorrências por uma nova variável que não ocorra na fórmula
 - Esse passo deve ser repetido até que todos os quantificadores governem variáveis diferentes

```
Saída – Passo 2: \exists U \ \forall X \ (p(X) \rightarrow \neg (\forall V \ q(U,V) \land \exists X \ p(f(X))))
```

Saída – Passo 3:
$$\exists U \ \forall X \ (p(X) \rightarrow \neg (\forall V \ q(U,V) \land \exists Y \ p(f(Y))))$$

Forma Normal Conjuntiva (FNC)

- Regras para transformar uma fórmula para a FNC
 - 4. Remover \leftrightarrow e \rightarrow
 - $\bullet \alpha \leftrightarrow \beta \equiv (\neg \alpha \lor \beta) \land (\neg \beta \lor \alpha)$
 - $\alpha \rightarrow \beta \equiv (\neg \alpha \lor \beta)$

Saída – Passo 3: $\exists U \ \forall X \ (p(X) \rightarrow \neg (\forall V \ q(U,V) \land \exists Y \ p(f(Y))))$

Saída – Passo 4: $\exists U \ \forall X \ (\neg p(X) \ \lor \ \neg(\ \forall V \ q(U,V) \land \ \exists Y \ p(f(Y))))$

- Regras para transformar uma fórmula para a FNC
 - 5. Mover a negação para o interior da fórmula

$$\neg (\forall X)(\alpha) \equiv (\exists X)(\neg \alpha)$$

$$\neg (\exists X)(\alpha) \equiv (\forall X)(\neg \alpha)$$

$$\neg(\alpha \land \beta) \equiv (\neg\alpha \lor \neg\beta)$$

$$\neg(\alpha \lor \beta) \equiv (\neg\alpha \land \neg\beta)$$

$$\neg \neg \alpha \equiv \alpha$$

Saída – Passo 4:
$$\exists U \ \forall X \ (\neg p(X) \lor \neg (\forall V \ q(U,V) \land \exists Y \ p(f(Y))))$$

$$\exists U \ \forall X \ (\neg p(X) \lor (\neg \forall V \ q(U,V) \lor \neg \exists Y \ p(f(Y))))$$

Saída – Passo 5:
$$\exists U \ \forall X \ (\neg p(X) \lor (\exists V \ \neg q(U,V) \lor \ \forall Y \ \neg p(f(Y))))$$

- Regras para transformar uma fórmula para a FNC
 - 6. Eliminar quantificadores existenciais Skolemização
 - Substitua cada ocorrência da variável quantificada existencialmente por uma função de Skolem:
 - Uma função cujos argumentos são as variáveis quantificadas universalmente que influenciam o quantificador existencial sendo removido
 - Uma constante, se o quantificador existencial sendo removido não estiver no escopo de nenhum universal

```
Saída – Passo 5: \exists U \ \forall X \ (\neg p(X) \lor (\exists V \ \neg q(U,V) \lor \forall Y \ \neg p(f(Y))))
Saída – Passo 6: \forall X \ (\neg p(X) \lor (\neg q(a,g(X)) \lor \forall Y \ \neg p(f(Y))))
```

- Regras para transformar uma fórmula para a FNC
 - 7. Obter a forma normal Prenex e remover os quantificadores universais
 - Mova todos os quantificadores universais para a frente da fórmula fazendo com que o escopo de cada um deles seja a fórmula toda (FNP)
 - Elimine as ocorrências explícitas dos quantificadores universais

```
Saída – Passo 6: \forall X \ (\neg p(X) \lor (\neg q(a,g(X)) \lor \forall Y \ \neg p(f(Y)))) \forall X \ \forall Y \ (\neg p(X) \lor \neg q(a,g(X)) \lor \neg p(f(Y))) Saída – Passo 7: \neg p(X) \lor \neg q(a,g(X) \lor \neg p(f(Y)))
```

Forma Normal Conjuntiva (FNC)

- Regras para transformar uma fórmula para a FNC
 - 8. Colocar a matriz da FNP na forma conjuntiva

•
$$(\alpha \land \beta) \lor \gamma \equiv (\alpha \lor \gamma) \land (\beta \lor \gamma)$$

$$\bullet \alpha \lor (\beta \land \gamma) \equiv (\alpha \lor \beta) \land (\alpha \lor \gamma)$$

Entrada: $\forall X (p(X) \rightarrow \neg(\exists X \ \forall V \ q(U,V) \land \exists X \ p(f(X))))$

FNC equivalente: $\neg p(X) \lor \neg q(a,g(X)) \lor \neg p(f(Y))$

- Encontre as FNC para as fórmulas a seguir
 - a) $(\forall X (p(X))) \rightarrow (\exists X q(X))$
 - b) $(\forall X (\forall Y ((\exists Z (p(X,Z) \land p(Y,Z)))) \rightarrow (\exists U q(X,Y,U))))))$
 - c) $(\forall X (\forall Y (s(X,Y) \leftrightarrow (\forall U (p(U,X) \rightarrow p(U,Y))))))$
 - d) $(\forall X (\exists Y (\forall Z (irma(Z,Y) \leftrightarrow (irma(Z,X) \land irma(X,Y))))))$

Forma Normal Conjuntiva (FNC)

- Encontre as FNC para as fórmulas a seguir
 - a) $(\forall X (p(X))) \rightarrow (\exists X q(X))$
 - b) $(\forall X (\forall Y ((\exists Z (p(X,Z) \land p(Y,Z)))) \rightarrow (\exists U q(X,Y,U))))))$
 - c) $(\forall X (\forall Y (s(X,Y) \leftrightarrow (\forall U (p(U,X) \rightarrow p(U,Y))))))$
 - d) $(\forall X (\exists Y (\forall Z (irma(Z,Y) \leftrightarrow (irma(Z,X) \land irma(X,Y))))))$

RESPOSTAS

```
a) \neg p(a) \lor q(b) b) \neg p(X,Z) \lor \neg p(Y,Z) \lor q(X,Y,f(X,Y)) c) C_1: \neg s(X,Y) \lor \neg p(U,X) \lor p(U,Y) C_2: p(f(X,Y),X) \lor s(X,Y)   
d) C_3: \neg p(f(X,Y),Y) \lor s(X,Y)   
d) C_1: \neg irma(Z,f(X)) \lor irma(Z,X)   
C_2: \neg irma(Z,f(X)) \lor irma(X,f(X))   
C_3: \neg irma(Z,X) \lor \neg irma(X,f(X)) \lor irma(Z,f(X))
```