Data analysis and

9 Numpy, Pandas and Seaborn modplatlib

Python Lists vs Numpy Arrays

Creating Numpy arrays, Comparison with Python lists. Arithmetic ranges. Perform indexing, slicing and masking.

Shallow vs Deep Copy, **Splitting & Stacking**

Learn the difference between shallow and deep copy, how to split arrays or stack them as required.

Grouping, Melting, Pivoting, Binning Data

Group the data, perform aggregations. Change the layout of the data by melting or pivoting operations. Bin numerical data into categorical groups/buckets.

Intro to Matplotlib & Seaborn, Uni/Bi - variate analysis

plt.plot(), Anatomy of Matplotlib, Uni/Bi variate plots. Bar plot, Countplot, Boxplot, Histogram, Line plot, Scatterplot.

Array Manipulation, 2D Numpy Arrays

2D Numpy arrays, Array manipulation, Transposing & Reversal. Perform statistical operations. Broadcasting.

Pandas DataFrame Basics

Create a DataFrame, obtain shape, data types, unique entries. Indexing, Masking, Sorting values. Handling duplicate rows. Concatenate & Merge two dataframes.

Handling missing values, String & Datetime type values.

None vs NaN, find and treat missing values - Data Imputation. Manipulate string and datetime data.

Multivariate analysis and Correlation

Create plots for multiple features - Jointplot, Pairplot. Colormaps, Correlation matrix & heatmap.

AV Part 2 Probability

DAV Part3 Hypathesis testing

Agenda

- D What and Why: Wumpy
- Dies and Stype
- 5 Type Conversions
- 9 Indexing and Slicing
- ONPS Use-Care

List Vs Array

Heedd.	List
Homogenous	Heterogen our

Ex: [], a, 3, ey]

nyms

str list

Freedy gaster es Dist?

List 13 [0, 1, 2, 3]

3 by 1 3 by 1 5 by 1 5

Dey 26 26 26 [1,2,3,4] B Contigous block De Same datatype of themosy * Namba Gesda 5 C is used for implementing

D Manipulate 3 create and process Hesal

All the concepts of List Such as 2 bicind judokind out worker (20m1) en are same in enmpy de rest

1D array

shape: (4,)

2D array

shape: (2, 3)

shape: (4, 3, 2)

549 Doesd : 31.

How likely is it that you would recommend [company X] to a friend or colleague? 0 1 2 3 4 5 6 7 8 9 10 Not at all likely Extremely likely

294 : state : NPS

Detractors: Respondents with a score of 0-6 Passive: Respondents with a score of 7-8 Promoters: Respondents with a score of 9-10.