Multiple Linear Regression Part A: The Best Linear Predictor

THOMAS WIEMANN University of Chicago

Econometrics Econ 21020

Updated: May 16, 2022

In lecture 7, we discussed the Selection on Observables (SO) assumption:

- \triangleright Showed that E[Y|W=w,X=x]=E[g(w,U)|X=x] under SO;
- \triangleright Derived binning estimator for CATE and ATE for discrete (W, X).

But binning estimators are not versatile:

- \triangleright For continuous/mixed (W, X), binning estimators are not applicable;
- \triangleright Even for discrete (W, X), may run into the small bin problem.

Need an alternative estimator for the CEF E[Y|W=w,X=x].

The alternative estimator we consider is *multiple* linear regression.

▶ Generalization of simple linear regression discussed in Lecture 6.

Introduction (Contd.)

Multiple linear regression has the same pros & cons discussed before:

- ▷ Easy to compute but difficult to interpret...
- □ Linear regression does not estimate the CEF directly!
- ▶ Linear regression estimates the *best linear approximation* of the CEF.

We again take two key steps:

- A. Define, analyze and discuss the best linear approximation of the CEF.
- B. Derive and characterize the linear regression estimator.

In contrast to Lecture 6, this time we focus on random vectors.

▷ Key results will be familiar, but proofs will be different.

Notation: Throughout, vectors are always column vectors. Column vectors can be transformed to row vectors using the transpose-operator. In particular, $x \in \mathbb{R}^p$, $p \in \mathbb{N}$ is a column vector and x^\top is a row vector.

Outline

- 1. Best Linear Predictor
- 2. Properties of the BLP-Residual
- 3. Interpretation of the BLP-Coefficients
 - ▷ The Frisch-Waugh Theorem
 - ▷ Generalized Yitzhaki's Theorem

- 1. Best Linear Predictor
- 2. Properties of the BLP-Residual
- 3. Interpretation of the BLP-Coefficients
 - ▷ The Frisch-Waugh Theorem
 - ▷ Generalized Yitzhaki's Theorem

Best Linear Predictor

The best linear approximation to the CEF w.r.t. the L^2 -loss is referred to as the best linear predictor.

▷ See Problem 5 of Problem Set 4 why this terminology is sensible.

Definition 1 (Best Linear Predictor; BLP)

Let Y be a random variable and $X = (1, X_1, \ldots, X_k)^{\top}$ be a random vector. The *best linear predictor* (BLP) of the conditional expectation E[Y|X] is defined as

$$BLP(Y|X) = X^{\top}\beta = \beta_0 + X_1\beta_1 + \ldots + X_k\beta_k, \tag{1}$$

where the BLP-coefficients $\beta = (\beta_0, \beta_1, \dots, \beta_k)$ are such that

$$\beta \in \underset{\beta \in \mathbb{R}^{k+1}}{\min} \ E\left[\left(E\left[Y|X\right] - X^{\top}\beta\right)^{2}\right]. \tag{2}$$

As before, the BLP is an approximation to the CEF:

$$\triangleright$$
 BLP $(Y|X=x) \neq E[Y|X=x]$ except in very special cases!

Wiemann The Best Linear Predictor 6/34

BLP-coefficients are known functions of moments of (Y, X):

Theorem 1

Let Y be a random variable and $X = (1, X_1, \dots, X_k)^{\top}$ be a random vector. If $E[XX^{\top}]^{-1}$ exists, then

$$\beta \in \underset{\beta \in \mathbb{R}^{k+1}}{\operatorname{arg \, min}} \ E\left[\left(E\left[Y|X\right] - X^{\top}\beta\right)^{2}\right]$$

$$\Leftrightarrow \qquad \beta = E[XX^{\top}]^{-1}E[XY]. \tag{3}$$

Theorem 1 is hugely convenient:

- \triangleright Well equipped for analyzing moments of (Y, X);
- > Immediately suggest sample analogue estimator (patience, for now).

Vector Differentiation Recap

As the objective in (2) is convex in β , FOCs are sufficient and necessary.

 \triangleright Differentiate with respect to β , set to 0, then solve for β .

The difficulty: $\beta \in \mathbb{R}^{k+1}$ is a vector!

▷ Need vector differentiation rules (prerequisites?).

We only require the following rules, stated here without proof:

Lemma 1

Consider $x \in \mathbb{R}^p, \ A \in \mathbb{R}^{s,p}, \ B \in \mathbb{R}^{p,p}$ for $p,s \in \mathbb{N}$. Then

$$\frac{\partial}{\partial x}Ax = A, \qquad \frac{\partial}{\partial x^{\top}}x^{\top}A^{\top} = A,$$

$$\frac{\partial}{\partial x}x^{\top}Bx = x^{\top}(B^{\top} + B).$$
(4)

We're now equipped for the proof of Theorem 1.

Proof of Theorem 1

Proof.

Linear Conditional Expectation Functions

The next result gives the special case when the BLP is the CEF.

Corollary 1

Let Y be a random variable and $X = (1, X_1, \dots, X_k)^{\top}$ be a random vector such that $E[XX^{\top}]^{-1}$ exists. If E[Y|X] is linear, that is,

$$\exists \tilde{\beta} \in \mathbb{R}^{k+1} : \quad E[Y|X] = X^{\top} \tilde{\beta},$$
 (5)

then.

$$E[Y|X] = BLP(Y|X). (6)$$

Proof.

Linear Conditional Expectation Functions (Contd.)

As before, one should not generally believe that E[Y|X] is linear.

▶ Economic theory rarely motivates severe *functional* form restrictions.

Important exception: When X is discrete, then E[Y|X] is linear in the set of indicators $\{\mathbb{1}_x(X)\}_{x\in \text{supp }X}$ w/o further restrictions:

$$E[Y|X] =$$

Note: Note that E[Y|X] is not guaranteed to be linear in X even if X is discrete! It's important to transform X using indicators: $X = \sum_{x \in \text{supp } X} \mathbb{1}_x(X)x$.

- 1. Best Linear Predictor
- 2. Properties of the BLP-Residual
- 3. Interpretation of the BLP-Coefficients
 - ▷ The Frisch-Waugh Theorem
 - ▷ Generalized Yitzhaki's Theorem

The BLP-residual is the error when predicting Y using BLP(Y|X).

▷ Convenient object in the analysis of the BLP.

Definition 2 (BLP-Residual)

Let Y be a random variable and $X = (1, X_1, \dots, X_k)^{\top}$ be a random vector. The BLP-*residual* ε is defined as

$$\varepsilon = Y - \mathsf{BLP}(Y|X). \tag{7}$$

Properties of the BLP-Residual

The BLP-residual is mean-zero and uncorrelated to X.

▶ Importantly: This is not an assumption!

Lemma 2

Let Y be a random variable and $X = (1, X_1, \dots, X_k)^{\top}$ be a random vector. If $\varepsilon = Y - \mathsf{BLP}(Y|X)$, then

$$E[\varepsilon] = 0$$
, and $E[\varepsilon X] = 0$. (8)

Proof.

Properties of the BLP-Residual (Contd.)

In general, the BLP-residual is *not* mean-independent of X.

In particular, if Y is a random variable, $X = (1, X_1, \dots, X_k)^{\top}$ is a random vector, and $\varepsilon = Y - \text{BLP}(Y|X)$, then typically

$$E[\varepsilon|X] \neq 0, \tag{9}$$

except in very special cases (e.g., when the CEF is linear).

See Problem 1e) of Problem Set 4.

- 1. Best Linear Predictor
- 2. Properties of the BLP-Residual
- 3. Interpretation of the BLP-Coefficients
 - ▶ The Frisch-Waugh Theorem
 - ▷ Generalized Yitzhaki's Theorem

Interpretation of the BLP-Coefficient β

Note that BLP(Y|X) is a feature of the joint distribution of (Y,X):

- ▷ Purely descriptive;
- Captures the approximate expected level of Y associated with a level of X.

Practitioners often calculate the difference in BLPs:

$$BLP(Y|X=x') - BLP(Y|X=x) =$$
(10)

Note that x and x' are *vectors*. Interpretation:

 $\triangleright \beta$ captures the approximate expected change in Y associated with a change from X=x to X=x'.

Terminology is very important to avoid confusion:

- ▷ Need "approximate" to highlight that BLP(Y|X) $\neq E[Y|X]$;
- ▶ Need "associated" to emphasize purely descriptive interpretation.

Solving for Subvectors of β

We're often interested in only a *sub*vector of the BLP-coefficient β .

- \triangleright Often: The component of β corresponding to the policy variable.
- ▷ Ceteris paribus-principle.

Consider Y and
$$(X^{\top}, W) = (1, X_1, \dots, X_{k-1}, W)$$
.

 $\triangleright X$ is a random vector but W is a random variable.

Let
$$\beta = (\beta_0, \beta_1, \dots, \beta_{k-1}, \beta_W)^\top = (\beta_X^\top, \beta_W)^\top$$
 be the BLP($Y|X, W$)-coefficient.

Suppose we're *only* interested in β_W .

 \triangleright E.g., because W is the policy variable of interest;

How do we interpret β_W ?

 $\triangleright \beta_W$ just the *k*th component of β ...

Solving for Subvectors of β (Contd.)

Frisch and Waugh (1933) motivate an alternative interpretation of β_W .

Define

- $\triangleright \ \tilde{Y} \equiv Y BLP(Y|X);$
- $\triangleright \ \tilde{W} \equiv W BLP(W|X).$

Then the Frisch-Waugh Theorem shows

$$\beta_W = \frac{Cov(\tilde{W}, \tilde{Y})}{Var(\tilde{W})},$$

whenever $Var(\tilde{W}) > 0$.

Interpretation:

- \triangleright β_W is the coefficient of W controlling for $X=(1,X_1,\ldots,X_{k-1})^{\top}$;
- ▶ But be very careful: Controlling is not conditioning!

BLP with De-Meaned Variables

We first consider simply de-meaning the variables under consideration.

Lemma 3

Let Y be a random variable and $X=(1,X_1,\ldots,X_k)^\top=(1,X_{1:k}^\top)^\top$ be a random vector. Let $\bar{Y}\equiv Y-E[Y]$ and $\bar{X}\equiv X_{1:k}-E[X_{1:k}]$. If $\beta=(\beta_0,\beta_1,\ldots,\beta_k)^\top$ are BLP(Y|X)-coefficients, then $\beta_{1:k}=(\beta_1,\ldots,\beta_k)$ are BLP($\bar{Y}|\bar{X}$)-coefficients.

Proof.

The Frisch-Waugh Theorem

Theorem 2 states a version of the result due to Frisch and Waugh (1933).

▶ Arguably one of the most important theorems in econometrics.

Theorem 2 (Frisch-Waugh Theorem)

Let Y be a random variable and $(X^\top, W) = (1, X_1, \dots, X_{k-1}, W)$ be a random vector. Let $\tilde{Y} \equiv Y - BLP(Y|X)$ and $\tilde{W} \equiv W - BLP(W|X)$. If $Var(\tilde{W}) > 0$ and $\beta = (\beta_0, \beta_1, \dots, \beta_{k-1}, \beta_W)^\top = (\beta_X^\top, \beta_W)^\top$ are BLP(Y|X, W)-coefficients, then

$$\beta_W = \frac{Cov(\tilde{W}, \tilde{Y})}{Var(\tilde{W})}.$$
 (11)

Importantly: The Frisch-Waugh Theorem is a purely descriptive result!

- \triangleright As before, the coefficient β_W is a purely descriptive parameter;
- ▷ Do not get fooled by fancy maths...

The Frisch-Waugh Theorem (Contd.)

Proof.

22 / 3

- 1. Best Linear Predictor
- 2. Properties of the BLP-Residual
- 3. Interpretation of the BLP-Coefficients
 - ▷ The Frisch-Waugh Theorem
 - ▶ Generalized Yitzhaki's Theorem

Interpretation of the BLP-Coefficient β (Contd.)

If E[Y|X, W] is linear in both X and W, then

$$\frac{\partial}{\partial w} E[Y|X, W = w] \stackrel{\text{(1)}}{=} \frac{\partial}{\partial x} BLP(Y|X, W = w) = \beta_W, \qquad (12)$$

where (1) follows from Corollary 1.

 \triangleright Under linearity, β_W is the CEF derivative w.r.t. W.

The interpretation is appealing but is appropriate only in special cases.

Would like derivative-interpretation for β_W w/o functional assumptions...

▷ ... but we don't have one!

Generalized Yitzhaki's Theorem

Angrist and Krueger (1999) generalize Yitzhaki's Theorem (Lecture 6A):

 \triangleright Don't restrict E[Y|X,W] but assume E[W|X] is linear.

Theorem 3 (Generalized Yitzhaki's Theorem)

Let Y and W be random variables and X be a random vector. Let β be the BLP(Y|X,W)-coefficient where β_W is the coefficient corresponding to W. If E[Var(W|X)] > 0 and E[W|X] is linear, then

$$\beta_W = E\left[\int_{-\infty}^{\infty} \left(\frac{\partial}{\partial t} E[Y|W=t,X]\right) \omega(t,X) dt\right], \tag{13}$$

where

$$\omega(t,X) = \frac{\left(E[W|W \ge t,X] - E[W|W < t,X]\right)P(W \ge t|X)P(W < t|X)}{E\left[Var(W|X)\right]}$$

Note: Angrist and Krueger (1999) only provide formulas for a discrete variable of interest. Theorem 3 is a slight generalization of their result.

Generalized Yitzhaki's Theorem (Contd.)

Proof.

Generalized Yitzhaki's Theorem (Contd.)

Generalized Yitzhaki's Theorem (Contd.)

The generalized Yitzhaki weights are such that:

- $\forall x \in \operatorname{supp} X$, the weights $\omega(t,x)$ are s.t. $\omega(t,x) \geq 0, \forall t$, and $\int_{-\infty}^{\infty} \omega(t,x) dt = 1$.
- $\forall x \in \text{supp } X$, maximum weight reached at t = E[W|X = x] (if density exists at E[W|X = x]).

Similar to Yitzhaki's weights but now also w/ expectations w.r.t. X!

- > Allows for precise interpretation as weighted average CEF derivative;
- \triangleright But precise interpretation even more difficult w/ inclusion of X!

Are practitioners thinking of Theorem 3 when interpreting β_W ?

 \triangleright Recall: When linearity of E[W|X] is not assumed, we don't even have a weighted-average derivative interpretation of β_W !

- 1. Best Linear Predictor
- 2. Properties of the BLP-Residual
- 3. Interpretation of the BLP-Coefficients
 - ▷ The Frisch-Waugh Theorem
 - ▷ Generalized Yitzhaki's Theorem

Causal Interpretation under Random Assignment

Consider the all causes model discussed in previous lectures:

$$Y = g(W, U). (14)$$

The conditional average structural function (casf) is

$$g_1(w,X) \equiv E_U[g(w,U)|X], \tag{15}$$

Conditional effects of marginal changes in the policy variable:

$$g_1'(w,X) \equiv \frac{\partial}{\partial w} g_1(w,X).$$
 (16)

Practitioners are often content with a summary of $g'_1(w, X)$:

$$\overline{g}_1' \equiv E_{W,X} \left[g_1'(W,X) \right]. \tag{17}$$

 $ightarrow \overline{g}'_1$ is the expected change in Y caused by a marginal change in W.

Causal Interpretation under Random Assignment (Contd.)

 \overline{g}_1' is a function (of the distribution) of U and is thus not identified.

▶ Need identifying assumption!

In lecture 7, we saw that under Assumption SO and CS, we have

$$E[g(w, U)|X] = E[Y|W = w, X].$$
 (18)

Then simply

$$g_1'(w,X) = \frac{\partial}{\partial w} E[Y|W=w,X]. \tag{19}$$

Under the conditions of Theorem 3, SO and CS, we then have

$$\beta_W = E \left[\int_{-\infty}^{\infty} g_1'(t, X) \omega(t) dt \right]. \tag{20}$$

- \triangleright Under linearity of E[W|X], SO, and CS, may interpret β as weighted average of the asf-derivative;
- \triangleright But β_W is generally distinct from average asf-derivative \overline{g}'_1 .

The Best Linear Predictor 31 / 34

Causal Interpretation under Random Assignment (Contd.)

The Yitzhaki interpretation for β_W in Equation (20) is often challenging. We thus also discuss a weaker alternative.

$$BLP(Y|W=w,X=x)$$
 is an approx./ to $E[Y|W=w,X=x]$.

- \triangleright Under SO and CS, E[Y|W=w,X=x]=E[g(w,U)|X=x].
- ▶ Hence, BLP(Y|W=w,X=x) is an approx./ to E[g(w,U)|X=x] whenever SO and CS are assumed.

SO and CS thus motivate an approximate causal interpretation of β_W :

 \triangleright Under SO and CS, β_W captures the *approximate* expected change in Y caused by a unit-change in W.

Summary

Today, we generalized the BLP(Y|X) for vector-valued X.

- \triangleright Showed the BLP-coefficients are well-defined when $E[XX^{\top}]^{-1}$ exists;
- ▶ Hopeful that this is a useful alternative to the direct analysis of E[Y|X=x] when P(X=x) is small.

But there is no free lunch...

- ▶ Approximation of E[Y|X] makes interpretation of BLP(Y|X)coefficients β challenging;
- \triangleright Used Frisch-Waugh Theorem for analysis of sub-vector β_W ;
- \triangleright Used Theorem 3 to motivate a weighted-average derivative interpretation of β_W when E[W|X] is linear;
- \triangleright Discussed interpretation of β_W under SO and CS.

In Part B, we turn to estimating the BLP-coefficients:

- \triangleright Introduce the *ordinary least squares* estimator for β ;
- ▷ Analyze its statistical properties.

References

Angrist, J. D. and Krueger, A. B. (1999). Empirical strategies in labor economics. In *Handbook of Labor Economics*, volume 3, pages 1277–1366. Elsevier.

Frisch, R. and Waugh, F. V. (1933). Partial time regressions as compared with individual trends. *Econometrica*, pages 387–401.