

Computer Vision

Lecture 5: Edge Detection

Dr. Esmaeil Najafi

MSc. Javad Khoramdel

Image is a function

- Image is a function from spatial location to density.
 - Image(10, 10) = 255
 - Image (70, 10) = 0

What's an edge?

Edges are rapid changes in this function

What's an edge?

Edges are rapid changes in this function

– 1D example:

Almost no changes

- We can take derivative to spot the edges.
- Edges = high response

Image derivatives

• Recall:

$$- f'(a) = \lim_{h \to 0} \left(\frac{f(a+h) - f(a)}{h} \right)$$

- We don't have an "actual" Function, must estimate
- Possibility: set h = 1
- What will that look like?

Image derivatives

Recall:

$$- f'(a) = \lim_{h \to 0} \left(\frac{f(a+h) - f(a)}{h} \right)$$

- We don't have an "actual" Function, must estimate
- Possibility: set h = 1
- What will that look like?

We want to estimate the derivative at this location, but it seems the focus of this operation is not exactly at this location.

Image derivatives

• Recall:

$$- f'(a) = \lim_{h \to 0} \left(\frac{f(a+h) - f(a)}{h} \right)$$

- We don't have an "actual" Function, must estimate
- set h = 2
- What will that look like?

Images are noisy

But we already know how to smooth!

Gaussian filter

Raw image

Filtered image

Smooth first, then derivative

Derivative estimator filter (in x direction)

Gaussian filter

Raw image

Smooth first, then derivative

Derivative estimator filter (in x direction)

Gaussian filter

Raw image

1	2	1
2	4	2
1	2	1

Derivative estimator filter (in x direction)

Gaussian filter

SobelX filter

- We can take derivative with Sobel filters!
- But ...

Filtered with SobelX

Filtered with SobelY

- We can take derivative with Sobel filters!
- But edges go both ways.

Filtered with negative SobelX

Filtered with negative SobelY

We want to find extrema

- 2nd derivative!
 - Crosses zero at extrema

Laplacian (2nd derivative)!

- Crosses zero at extrema
- Recall:

$$- f''(a) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Laplacian:

$$- \Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Again, have to estimate f"(x):

Laplacians

• Laplacian:

$$- \Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Laplacians

• Laplacian:

$$- \Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

0	1	0				
1	-4	1	*			
0	1	0				

Laplacians

 Instead of using negative Laplacian (filter with a negative value in its middle), we can also use a positive Laplacian filter.

Negative Laplacian

0	1	0
1	-4	1
0	1	0

Positive Laplacian

0	-1	0
-1	4	-1
0	-1	0

Laplacians also sensitive to noise

- Again, use gaussian smoothing
- We can just use one kernel since convs commute
- In other words, we can apply a gaussian filter to a Laplacian filter then use the result for finding the edges.
- This filter is called Laplacian of Gaussian (LoG)

Another approach: gradient magnitude

- Don't need 2nd derivatives because they are sensitive to noise.
- Just use magnitude of gradient

• But how?

Another approach: gradient magnitude

By using x and y components of the gradient, we can find the gradient magnitude

Gradient Magnitude

We are not done yet!

- Some edges are thicker than expected.
- There are some noisy points.
- What we should do now?
 - Canny edge detection!

Canny edge detection

- Your first image processing pipeline!
 - Old-school computer vision is all about pipelines

- Algorithm:
 - Smooth image (only want "real" edges, not noise)
 - Calculate gradient direction and magnitude
 - Non-maximum suppression perpendicular to edge
 - Threshold into strong, weak, no edge
 - Connect together components

Smooth image

You know how to do this, gaussians!

Gradient magnitude and direction

- Sobel filter
 - $Magnitude = \sqrt{SobelX^2 + SobelY^2}$
 - Angle = Arctan2(SobelY, SobelX)

Gradient Magnitude

- We want single pixel edges, not thick blurry lines.
- We need to check nearby pixels and eliminate the additional pixels.

Gradient Magnitude

- For a given pixel, we compare its density with its neighbors in the direction of the gradient and the negative direction of the gradient.
- If a pixel is brighter than its neighbors, we keep it; otherwise we eliminate it (i.e., we replace it with zero)

Gradient is in the direction of the highest changes, because of that, it is perpendicular to the edge.

Threshold the edges

- Still there are some noise.
- We use 2 thresholds and classify each edge candidate based on these situations:
 - Pixel value > High threshold
 - ✓ strong edge
 - Pixel value < High threshold, but Pixel value > Low threshold
 - ✓ weak edge
 - Pixel value < Low Threshold
 - ✓ no edge
- Why two thresholds?

Connect 'em up!

- Strong edges are edges!
- Due to the noise, some edges which we expect to be strong edges may be affected and converted to weak edges.
 - That's why we use two thresholds!
- Weak edges are edges if and only if they connect to strong edges.
- We usually look at 8 closest neighbors of a weak edge point

If there is a strong edge point in the neighborhood, we keep it, otherwise we eliminate

it!

Canny edge detection

