多媒体技术基础及应用模拟试题 1

一、单项选择题(每小题 1 分,共 10 分	
1. 请根据多媒体的特性判断以下属于	多媒体范畴的是()。
A. 交互式视频游戏、彩色电视	
B. 交互式视频游戏、有声图书	
C. 彩色电视、彩色画报	
D. 有声图书、彩色画报	
2. 用 44.1kHz 的采样频率对声波进行	f采样,每个采样点的量化位数选用 8 位,录制 10
秒的单声道节目,其波形文件所需的存储容	:量是()。
A. 182KB	B. 441KB
C. 430.664KB	D. 630.28Kb
3. 在数字音频信息获取与处理过程中	,下列顺序正确的是()。
A. A/D 变换,采样,压缩,存储,解	压缩,D/A 变换
B. 采样,压缩,A/D变换,存储,解质	玉缩,D/A 变换
C. 采样,A/D变换,压缩,存储,解质	玉缩,D/A 变换
D. 采样,D/A 变换,存储,压缩,解	
4. 在视频信号实时处理技术中,如果	电视扫描正程时间为 52. 2μs,图像的分辨率为
512×512,实时就意味着处理每个像素的时	间近似为()。
A. $0.1 \mu s$ B. $0.2 \mu s$	C. 0. $3\mu s$ D. 0. $4\mu s$
5. 彩色可用()来描述。	
A. 亮度、饱和度、颜色	B. 亮度、对比度、颜色
C. 亮度、色调、颜色	D. 亮度、饱和度、色调
6. 下列说法不正确的是()。	
A. 预测编码是一种只能针对空间分	
B. 预测编码是根据某一模型进行的	•
C. 预测编码需将预测的误差进行存	
D. 预测编码中典型的压缩方法有 I	OPCM, ADPCM
7. 下列说法正确的是()。	
A. 信息量等于数据量与冗余量之利	
B. 信息量等于信息熵与数据量之差	
C. 信息量等于数据量与冗余量之差	
D. 信息量等于信息熵与冗余量之和	
8. AVE 主要是由()等部分组成。	a down M. d D
A. 视频子系统、音频子系统、视频音	T 频 总线

B. 彩色键连子系统、获取子系统

- C. CD-ROM 子系统
- D. 主机接口子系统
- 9. 超文本和超媒体的基本体系结构由()组成。
 - A. 用户接口层、链路层、数据库层
 - B. 用户接口层、结点层、超文本抽象机层
 - C. 网络层、数据库层、超文本抽象机层
 - D. 用户接口层、超文本抽象机层、数据库层
- 10. 多点视频会议系统中关键技术是()。
 - A. 视频会议系统的标准
 - B. 多点控制单元 MCU
 - C. 视频会议终端
 - D. 视频会议系统的安全保密

二、多项选择题(每小题 3 分,共 15 分)

- 1. 多媒体计算机技术的发展趋势是()。
 - A. 进一步完善计算机支持的协同工作环境 CSCW
 - B. 智能多媒体技术
 - C. 利用多媒体是计算机技术发展的必然趋势
 - D. 把多媒体信息实时处理和压缩编码算法做到 CPU 芯片中
 - E. 多媒体创作工具极其丰富
- 2. 音频编码分类类型主要有()。
 - A. 基于音频的声学参数进行编码
 - B. 基于音频数据的预测特性进行编码
 - C. 基于人的听觉特性进行编码
 - D. 基于音频数据的统计特性进行编码
 - E. 基于音频频域特性进行编码
- 3. 采用 YUV 彩色空间的好处有()。
 - A. 亮度信号解决了彩色电视机与黑白电视机兼容的问题
 - B. 光的强度解决了彩色电视机与黑白电视机兼容的问题
 - C. 利用颜色的饱和度解决了颜色的深浅程度
 - D. 对色度信号可采用大面积着色原理
 - E. 利用色调反映了颜色的基本特征
- 4. 超文本结点可分为()。

- A. 接口型 B. 离散型 C. 表现型 D. 动态型
- E. 组织型
- 5. 在视频会议系统中安全密码系统包括的功能是()。
 - A. 秘密性、可验证性

B. 完整性、不可否认性

C. 合法性、对称性

D. 兼容性、非对称性

E. 合法性、兼容性

三、填空题(每空2分,共20分)

- 1. 多媒体计算机可分为_____和____两大类。
- 2. 多媒体技术的主要特性有____、和多样性。
- 3. 多媒体数据压缩方法根据质量有无损失可分为_____和___和___
- 4. 超文本系统的结构模型主要包括_____和____两种。
- 5. 视频会议系统可分为 和 两大类。

四、简答题(每小题 6 分,共 30 分)

- 1. 把一台普通计算机变成多媒体计算机需要解决哪些关键技术?
- 2. 音频信号处理的特点是什么?
- 3. 简述三基色原理。
- 4. MPEG 图像的三种类型为 I 帧、P 帧、B 帧,若显示的顺序为:

那么,传输的顺序应如何?依据是什么?

5. 理想的多媒体系统应如何设计和实现?

五、综合题(共25分)

1. 已知信源:

$$X = \begin{cases} X_1 & X_2 & X_3 & X_4 & X_5 & X_6 & X_7 \\ 0.35 & 0.20 & 0.15 & 0.10 & 0.10 & 0.06 & 0.04 \end{cases}$$

对其进行 Huffman 编码,并计算其平均码长。(15分)

2. 信源 X 中有 21 个随机事件,即 n=21。每一个随机事件的概率分别为: $X_1 \sim X_8 = \frac{1}{64}$; $X_9 \sim X_{16} = \frac{1}{32}$; $X_{17} \sim X_{21} = \frac{1}{8}$,请写出信息熵的计算公式并计算信源 X 的熵。(10 分)

多媒体技术基础及应用模拟试题 1 参考答案及评分标准

一、单项选择题(每小题 1 分,共 10 分)

1. B

2. C

3. C

4. A

5. C

6. A

7. C

8. A

9. D

10. B

二、多项选择题(每小题 3 分,共 15 分)

1. A,B,D 2. A,C,D 3. A,D

4. C,E

5. A,B

(每小题只有将所有的答案都选上才能得分,选不全的得0分。)

三、填空题(每空2分,共20分)

- 1. 计算机电视 电视计算机
- 2. 集成性 交互性
- 3. 有损失编码 无损失编码
- 4. HAM 模型 Dexter 模型
- 5. 点对点 多点

四、简答题(每小题 6 分,共 30 分)

- 1. 答: 多媒体计算机需要解决的关键技术如下: (错1点扣2分)
- (1) 视频音频信号的获取技术;
- (2) 多媒体数据压缩编码和解码技术;
- (3) 视频音频数据的实时处理和特技;
- (4) 视频音频数据的输出技术。
- 2. 答: 音频信号处理的特点如下:
- (1) 音频信号是时间依赖的连续媒体;(2分)
- (2) 理想的合成声音是立体声;(2分)
- (3) 对语音信号的处理,不仅是信号处理问题,还要抽取语意等其他信息。(2分)
- 3. 解:(1)自然界常见的各种颜色光,都可由红(R)、绿(G)、蓝(B)三种颜色光按不同 比例相配而成,(2分)
- (2) 同样绝大多数颜色也可以分解成红(R)、绿(G)、蓝(B)三种色光,这就是色度学中 最基本原理——三基色原理。(2分)
- (3) 三基色的选择不是唯一的,也可选其他三种颜色,但三种颜色必须是相互独立的, 即任何一种颜色都不能由其他两种颜色合成。(2分)
 - 4. (1) 传输的顺序应如下:

1 4 2 3 7 5 6

I P B B P B B (3分)

(2) 理由: MPEG 图像有三种类型: I 帧、P 帧、B 帧; I 帧为帧内图, P 帧为前项预测图 可根据 I 帧进行预测; B 帧为双项预测图可根据 I 帧或 P 帧进行预测。(3分)

- 5. 解: 理想的多媒体系统应按如下原则设计和实现: (错1点扣2分)
- (1) 采用国际标准的设计原则;
- (2) 多媒体和通信功能的单独解决变成集中解决;
- (3) 体系结构设计和算法相结合;
- (4) 把多媒体和通信技术做到 CPU 芯片中。

五、综合题(25分)

1. 解:

Huffman 编码: (10分)

$$X_1$$
 11 或 X_1 00 X_2 10 X_2 10 X_3 110 X_4 011 X_4 100 X_5 101 X_5 010 X_6 0000 X_6 1111 X_7 0001 X_7 1110 平均码长 $=\sum_{j=1}^{7}p_jl_j=2.55$ (bit) (5分)

2. 解:

$$H(X) = -\sum_{j=1}^{n} p(x_j) \log_2 p(x_i) = 3.875 \text{(bit)} \quad (10 \text{ } \text{$\frac{1}{2}$})$$

(公式写对给5分,结果对给5分)

多媒体技术基础及应用模拟试题 2

_	-、单项选择题(每小题1分,共10分)	X 1 - w
1.	. 多媒体技术的主要特性有()。	
	A. 多样性、集成性、智能性	B. 智能性、交互性、可扩充性
	C. 集成性、交互性、可扩展性	D. 交互性、多样性、集成性
2.	. 音频数字化过程中采样和量化所用到的	的主要硬件是()。
	A. 数字编码器	
	B. 数字解码器	
	C. 模拟到数字的转换器(A/D转换器)
	D. 数字到模拟的转换器(D/A 转换器)
3.	人们在实施音频数据压缩时,通常应综	合考虑()几个方面。
	A. 音频质量、数据量、音频特性	
	B. 音频质量、计算复杂度、数据量	
	C. 计算复杂度、数据量、音频特性	
	D. 音频质量、计算复杂度、数据量、音频	页特性
4.	以 PAL 制 25 帧/秒为例,已知一帧彩色	色静态图像(RGB)的分辨率为256×256,每种
颜色用	16bit 表示,则该视频每秒钟的数据量为	J().
	A. $256 \times 256 \times 3 \times 8 \times 25$ b/s	B. $512 \times 512 \times 3 \times 8 \times 25$ b/s
	C. $256 \times 256 \times 3 \times 16 \times 25$ b/s	D. $512 \times 512 \times 3 \times 16 \times 25$ b/s
5.	下列数字视频中()质量最好。	
	A. 320×240 分辨率、30 位真彩色、30 l	帧/秒的帧率
	B. 320×240 分辨率、30 位真彩色、25 t	贞/秒的帧率
	C. 240×180 分辨率、24 位真彩色、15 t	贞/秒的帧率
	D. 640×480 分辨率、16 位真彩色、15 k	贞/秒的帧率
6.	下列说法不正确的是()。	
	A. 熵压缩法会减少信息量	
	B. 熵压缩法是有损压缩法	
	C. 熵压缩法可以无失真地恢复原始数:	据
	D. 熵压缩法的压缩比一般都较大	
7.	在 MPEG 中为了提高数据压缩比,采用	目的方法有()。
	A. 运动补偿与运动估计	
	B. 减少时域冗余与空间冗余	
	C. 帧内图像数据与帧间图像数据压缩	

D. 向前预测与向后预测

8. 下列不是 MPC 对图形、图像处理能力	7的基本要求的是()。
A. 可产生丰富、形象逼真的图形	
B. 可以逼真、生动地显示彩色静止图	像
C. 实现三维动画	i je
D. 实现一定程度的二维动画	
9. 在超文本和超媒体中不同信息块之间	
A. 结点 B. 字节	C. 链 D. 媒体信息
10. 基于内容检索要解决的关键技术是() 。
A. 动态设计	B. 多媒体特征提取和匹配
C. 多媒体数据管理技术	D. 多媒体数据查询技术
二、多项选择题(每小题 3 分,共 15 分)	
1. 多媒体技术未来发展的方向是()	•
A. 高分辨率,提高显示质量	B. 高速度化,缩短处理时间
C. 简单化,便于操作	D. 智能化,提高信息识别能力
E. 不再支持计算机协同工作	
2. 请根据多媒体的特性判断以下属于多	媒体范畴的是()。
A. 交互式视频游戏	B. 有声图书
C. 彩色画报	D. 立体声音乐
E. 电视节目	
3. 从人与计算机交互的角度来看,音频信	言号相应的处理是()。
A. 人与计算机通信	B. 计算机-人-计算机通信
C. 人-计算机声卡通信	D. 计算机与人通信
E. 人-计算机-人通信	
4. 下列叙述正确的是()。	
A. 结点在超文本中是信息的基本单方	ਹ ੋ '
B. 结点的内容可以是文本、图形、图像	象、动画、视频和音频
C. 结点是信息块之间连接的桥梁	
D. 结点在超文本中必须经过严格的是	定义
E. 一个结点可以是一个信息块	
5. 下列说法中正确的是()。	
A. 视频会议系统是一种分布式多媒体	本信息管理系统
B. 视频会议系统是一种集中式多媒体	信息管理系统
C. 视频会议系统的需求是多样化的	
D. 视频会议系统是一个复杂的计算机	几网络系统
E. 视频会议系统的中的关键技术是多	S点控制单元 MCU
三、填空题(每空2分,共20分)	
1. 多媒体技术就是综合处理	信息,使多种信息建立逻辑连接,集成
为一个系统并具有交互性。	
2. 在多媒体系统中,音频信号可分为	和号两类。
	• 175 •

3.	PAL 制采用的彩色空间是	;NTSC 制采用的彩色空间是
----	---------------	-----------------

4. 超文本和超媒体的主要特征是____、___和网络结构。

5. 基于内容检索的体系结构可分为_____和___两个子系统。

四、简答题(每小题 6 分,共 30 分)

- 1. 音频卡的主要功能是什么?
- 2. 衡量数据压缩技术性能的重要指标是什么?
- 3. 预测编码的基本思想是什么?
- 4. 理想的多媒体系统应如何设计和实现?
- 5. 简答视频会议系统的组成及功能。

五、综合题(共 25 分)

1. 已知信源:

$$X = \begin{cases} X_1 & X_2 & X_3 & X_4 & X_5 & X_6 & X_7 \\ 0.60 & 0.15 & 0.10 & 0.08 & 0.03 & 0.03 & 0.01 \end{cases}$$

对其进行 Huffman 编码,并计算其平均码长。(15分)

2. 信源 X 中有 14 个随机事件,即 n=14。每一个随机事件的概率分别为: $P(x_1) \sim P(x_{12}) = \frac{1}{16}$; $P(x_{13}) \sim P(x_{14}) = \frac{1}{8}$,请写出信息熵的计算公式并计算信源 X 的熵。(10 分)

多媒体技术基础及应用模拟试题 2 参考答案及评分标准

一、单项选择题(每小题 1 分,共 10 分)

1. D

2. C

3. B

4. C 5. A

6. C

7. C

8. B

9. C

10. B

二、多项选择题(每小题 3 分,共 15 分)

1. A,B,C,D 2. A,B 3. A,D,E 4. A,B,E 5. A,C,E

(每小题只有将所有的答案都选上才能得分,选不全的得0分。)

三、填空题(每空2分,共20分)

- 1. 计算机 声文图
- 2. 语音信号 非语音信
- 3. YUV YIQ
- 4. 交互性 多媒体化
- 5. 特征抽取系统 查询子系统
- 四、简答题(每小题 6 分,共 30 分)
- 1. (每答错一点扣2分)
- (1) 录制与播放;
- (2) 编辑与合成;
- (3) MIDI 和音乐合成:
- (4) 文语转换与语音识别。
- 2. 答:(1) 压缩前后所需的信息存储量之比要大;(2分)
- (2) 实现压缩的算法要简单要标准化,压缩、解压缩的速度要快;(2分)
- (3) 恢复效果要好。(2分)
- 3. 答:(1)首先建立数学模型,利用以往的样本值对新的样本值进行预测;(2分)
- (2) 将样本的实际值与其预测值相减得到一个误差值;(2分)
- (3) 对误差值进行编码。(2分)
- 4. 解: 理想的多媒体系统应按如下原则设计和实现: (每答错一点扣2分)
- (1) 采用国际标准的设计原则;
- (2) 多媒体和通信功能的单独解决变成集中解决;
- (3) 体系结构设计和算法相结合;
- (4) 把多媒体和通信技术作到 CPU 芯片中。
- 5. 视频会议系统由以下几部分组成: (每答错一点扣2分)
- (1) 终端设备: 完成各自的数据处理任务,并行完成多媒体通信协议的处理、音视频信 号的接收、存储与播放,记录和检索大量与会议相关的数据与文件。
 - (2) 通信链路: 传输数据。

- (3) 多点控制单元 MCU: 是系统的核心设备,处理多个地点同时进行通信的情况。将各终端送来的信号进行分离,抽取出音频、视频、数据和信令信号,分别送到相应的处理单元,进行音频混合或切换、数据广播和确定路由选择、定时和处理会议控制。
- (4) 管理软件:协议处理、会议服务、音频与视频信号处理、协同工作管理、图形用户接口。

五、综合题(25分)

1. 解:

Huffman 编码: (10分)

平均码长 =
$$\sum_{j=1}^{7} p_j l_j = 1.91$$
(bit) (5分)

2. 解:

$$H(X) = -\sum_{j=1}^{n} p(x_j) \log_2 p(x_i) = 3.75 \text{(bit)} \quad (10 \text{ }\%)$$

(公式写对给5分,结果对给5分)