Made with mcidoc v.1.00

Laboratory Report 3

On the Study of Different Rotor Geometry Configuration for use in High-Speed Induction Motors

Drive Technologies WS 2024

Author(s)

Student ID(s)

Supervisor

Cohort

Group

Jason Smith

2024000095

Colin Stevens

BA-MECH-22

BA-MECH-22-4A

Lecturer Daniel T. McGuiness, Ph.D

Contents

1	Intro	duction										3
	1.1	The Ne	ed for Speed	 	 					 		3
			Report Structure									

List of Figures

1.1	The authors interest in the topic as years go on	5	
	, , ,		

List of Tables

1.1	As can be clearly seen, this table has absolutely no reason to be here aside from tak-	
	ing space. But it is a nice table to show how it should look and a template to write	
	your own tables	4

Chapter 1

Introduction

1.1 The Need for Speed

In recent years, improvements in manufacturing, transportation and process industry technologies bring about an increase in optimal operation speed in drive systems. In this respect, recently developed high speed gear-less or direct-drive electrical drives have seen an increase in interest based on the reduction in the total structural volume of the drive system. Due to the significant development of cost-effective, fast switching and compact variable frequency drives technology, wide speed range operations of different type AC motors has become feasible. The speed definition of an induction motor can be seen in Eq. 1.1

$$n = \frac{120f}{p},\tag{1.1}$$

In literature, there are several descriptions for the term "high-speed". As a mechanical engineer, peripheral speed over 150 $\rm m~s^{-1}$ is considered to be high speed [1]. From the motor manufacturer's point of view, a two-pole machine which is supplied higher than 50-60 Hz, can be considered as a high-speed machine. However, the most important point of view for the high-speed term is explained by development at power electronics. Nowadays, up to few hundreds hertz frequencies can be produced by variable frequency drives. However, voltage qualities of these are not satisfactory due to limited switching frequency of high-power IGBT technology. Thus, high-speed levels might be calculated for frequencies in the range of 100-400 Hz are considered to be high-frequencies [2]. Owing to brush and commutator structure causing mechanical and electrical problems, DC drives are not allowed to be used for high-speed applications. In addition to the aforementioned statement, the structure is not appropriate for large centrifugal forces. Nevertheless, as high-speed drive applications, there are different type of AC motor concepts proposed in literature [1]–[4]: Laminated/solid induction, permanent magnet synchronous and switched reluctance synchronous motors.

It is due to remarkable improvements of power electronics, frequency inverters and AC variable-speed drives, which allows a wider use of applications of solid-rotor induction motor (SRIM). SRIM's are used in drive application ranging from a few kW's to 10 MW's. Fans, compressors, pumps, gas tur-

Table 1.1: As can be clearly seen, this table has absolutely no reason to be here aside from taking space. But it is a nice table to show how it should look and a template to write your own tables.

Admission requirements for Mathematics (MSc)	Courses completed before start	Date of completion
Mathematical Analysis (30 ECTS)	Mathematical Analysis 1 Mathematical Analysis 2 Complex Analysis	22.04.2014 15.02.2013 01.07.2015
Algebra/Linear algebra (22.5 ECTS)	Advanced Algebra Abstract Algebra	17.02.2013 01.06.2015
Geometry/Topology (15 ECTS)	Topology Vector Analysis Differential Geometry	01.11.2014 15.06.2015 15.02.2013

bines, sewing machines, space and aeronautics, auxiliary motors for starting turbo-alternators, eddy current brakes, two-phase servomotors are a few examples of its areas.

Below are the advantages of SRIM compared to CRIM:

- Structural and Mechanical integrity, Rigiditiy, Reliability and Strength of Material
- High thermal properties
- High speed in high power applications (high moment density)
- Low noise and vibrations in high speed applications
- Simple to protect against aggressive chemicals
- Ease of Manufacturing
- Low level of noise and vibrations (If the rotor has no slots)
- Linearity of torque-speed characteristics throughout the entire speed range
- The possibility of obtaining steady-state stability.

In 1950s, Solid-Rotor topologies for induction machines operating at high speeds have gained a lot of interest. From its inception to 1970s, various scientists and engineers have contributed to the development and the theory of solid rotor construction, where significant interest was seen the 1990s for using solid rotor structure for high speed applications [1].

As the rotor does not contain any trace of copper ¹windings, the eddy currents roam in the rotor without any conductive path restriction and cause the motor to have different characteristics compared to a Cage Rotor Induction motor (CRIM), an industry standard construction. While eddy cur-

Jason Smith 4

¹the rotor consists of a solid body of steel or similar ferromagnetic material

Figure 1.1: The authors interest in the topic as years go on.

rents are the main principle of its operation, these currents also causes the motor to have lower efficiency in slow speed aplications and this indirectly decreases its power factor. But in high speed application where the speed is around 30000 rpm the losses become far less and SRIM becomes the better choice for high speed applications.

1.1.1 Report Structure

In this report for Drive Technologies, the high-speed performance of the four different types of rotors are investigated and compared using finite element analysis: cage, smooth solid, axially slitted, coated is designed using a finite-element analysis (FEA). All rotors are designed with similar geometries and construction parameters to minimise the effect of unwanted effects.

```
// C++ program to find all string
    // which are greater than given length k
    #include <bits/stdc++.h>
    using namespace std;
    // function find string greater than
    // length k
    void string_k(string s, int k)
      // create an empty string
      string w = "";
12
      // iterate the loop till every space
13
      for (int i = 0; i < s.size(); i++) {</pre>
        if (s[i] != ' ')
15
        // append this sub string in
17
        // string w
18
        w = w + s[i];
```

Jason Smith 5

```
else {
20
21
            // if length of current sub
22
            \ensuremath{//} string w is greater than
23
            // k then print
24
            if (w.size() > k)
            cout << w << " ";
26
            w = "";
27
28
       }
29
30
```

The number of turns per stator slot is selected so as to obtain the same stator current in rated operation. All four motors were analyzed using FEA tools for 20 different speeds in order to obtain the combined torque-speed characteristics. To illustrate visually the differences in the distributions of the magnetic flux and the eddy current the results for 11300 rpm are presented and the core loss, the total loss and the efficiency for the specific speed are compared for all the motors. The designed four motors will be also compared for winding currents, induced voltages, flux linkages, electromagnetic torque, copper losses, iron losses, solid rotor losses and efficiency.

Jason Smith 6

Bibliography

- [1] J. F. Gieras and J. Saari, "Performance calculation for a high-speed solid-rotor induction motor," *IEEE transactions on industrial electronics*, vol. 59, no. 6, pp. 2689–2700, 2011.
- [2] J. Pyrhönen, "The high-speed induction motor: Calculating the effects of solid-rotor material on machine characteristics," *Acta Polytechnica Scandinavica*, *Electrical Engineering Series*;(*Finland*), vol. 68, 1991.
- [3] J. Lähteenmäki et al., Design and voltage supply of high-speed induction machines. Helsinki University of Technology, 2002.
- [4] J. Saari et al., Thermal analysis of high-speed induction machines. Helsinki University of Technology, 1998.