(Q5)

Theorem 1. Let $A, B \subseteq \mathbb{R}$. If $f: A \to B$ is strictly monotone, then there exists a subset $C \subseteq \mathbb{R}$ with the same cardinality as A.

Proof. By Proposition 5.1.4, since f is strictly monotone, it is therefore injective on B. In order to prove that |C| = |A|, we construct a bijection between them. Let C = f(A). f is surjective on C by the definition of function image, and is also injective on C since $C \subseteq B$.

Therefore, since $f: A \to C$ is bijective, |C| = |A|.