Feedback — Week 4 - Problem Set

Help

You submitted this homework on Fri 25 Apr 2014 4:00 PM PDT. You got a score of 10.00 out of 10.00.

Question 1

An attacker intercepts the following ciphertext (hex encoded):

20814804c1767293b99f1d9cab3bc3e7 ac1e37bfb15599e5f40eef805488281d

He knows that the plaintext is the ASCII encoding of the message "Pay Bob 100\$" (excluding the quotes). He also knows that the cipher used is CBC encryption with a random IV using AES as the underlying block cipher. Show that the attacker can change the ciphertext so that it will decrypt to "Pay Bob 500\$". What is the resulting ciphertext (hex encoded)? This shows that CBC provides no integrity.

You entered:

20814804c1767293bd9f1d9cab3bc3e7 ac1e37bfb15599e5f40eef805488281d

Your Answer		Score	Explanation
20814804c1767293bd9f1d9cab3bc3e7 ac1e37bfb15599e5f40eef805488281d	~	1.00	You got it!
Total		1.00 /	
		1.00	

Question 2

Let (E,D) be an encryption system with key space K, message space $\{0,1\}^n$ and ciphertext

space $\{0,1\}^s$. Suppose (E,D) provides authenticated encryption. Which of the following systems provide authenticated encryption: (as usual, we use \parallel to denote string concatenation)

Your Answer	Score	Explanation
$ otin E'(k,m) = ig[c \leftarrow E(k,m), ext{ output } (c,c)ig] ext{ and } otin D'(k,\ (c_1,c_2)\) = egin{cases} D(k,c_1) & ext{if } c_1=c_2 \ ot & ext{ otherwise} \end{cases}$	√ 0.25	(E',D') provides authenticated encryption because an attack on (E',D') directly gives an attack on (E,D) .
$lacksymbol{\mathbb{D}} E'(k,m) = ig(E(k,m),\ E(k,m)ig) \ ext{and} \ D'(k,\ (c_1,c_2)\ ig) = egin{cases} D(k,c_1) & ext{if } D(k,c_1) = D(k,c_2) \ igt\perp & ext{otherwise} \end{cases}$	✓ 0.25	This system does not provide ciphertext integrity. To see why, recall that authenticated encryption (without a nonce) must be randomized to provide CPA security Therefore, $E'(k,m)=(c_1,c_2)$ will likely output a distinct ciphertext pair $c_1 \neq c_2$. The attacker can then output the ciphertext (c_1,c_1) and win the ciphertext integrity game.
$egin{aligned} egin{aligned} E'(k,m) &= E(k,m) & ext{and} \ D'(k,c) &= egin{cases} D(k,c) & ext{if } D(k,c) eq ot \ 0^n & ext{otherwise} \end{aligned}$	∨ 0.25	This system does not provide ciphertext integrity since an attacker can simply output the ciphertext 0^s and win the ciphertext integrity game.
$ otin E'ig((k_1,k_2),mig)=E(k_2,E(k_1,m)) ext{ and } otin D'ig((k_1,k_2),cig)=egin{cases} D(k_1,D(k_2,c)) & ext{if } D(k_2,c) otherwise \end{cases}$	✔ 0.25	(E^{\prime},D^{\prime}) provides authenticated encryption because an attack on

(E',D') gives an attack on (E,D). It's an interesting exercise to work out the ciphertext integrity attack on (E,D) given a ciphertext integrity attacker on (E',D').

Total 1.00 / 1.00

Question 3

If you need to build an application that needs to encrypt multiple messages using a single key, what encryption method should you use? (for now, we ignore the question of key generation and management)

Your Answer	Score	Explanation
Ouse a standard implementation of CBC encryption with a random IV.		
• use a standard implementation of one of the authenticated encryption modes GCM, CCM, EAX or OCB.	✓ 1.00	
implement OCB by yourself		
implement Encrypt-and-MAC yourself		
Total	1.00 /	
	1.00	

Question 4

Let (E,D) be a symmetric encryption system with message space M (think of M as only consisting for short messages, say 32 bytes). Define the following MAC (S,V) for messages in M:

$$S(k,m) := E(k,m) \quad ; \quad V(k,m,t) := \left\{ egin{array}{ll} 1 & ext{if } D(k,t) = m \\ 0 & ext{otherwise} \end{array}
ight.$$

What is the property that the encryption system (E,D) needs to satisfy for this MAC system to be secure?

Your Answer	Score	Explanation
authenticated encryption	✓ 1.00	Indeed, authenticated encryption implies ciphertext integrity which prevents existential forgery under a chosen message attack.
 semantic security under a deterministic chosen plaintext attack 		
chosen ciphertext security		
semantic security under a chosen plaintext attack		
Total	1.00 / 1.00	

Question 5

In lecture 8.1 we discussed how to derive session keys from a shared secret. The problem is what to do when the shared secret is non-uniform. In this question we show that using a PRF with a non-uniform key may result in non-uniform values. This shows that session keys cannot be derived by directly using a non-uniform secret as a key in a PRF. Instead, one has to use a key derivation function like HKDF.

Suppose k is a *non-uniform* secret key sampled from the key space $\{0,1\}^{256}$. In particular, k is sampled uniformly from the set of all keys whose most significant 128 bits are all 0. In other words, k is chosen uniformly from a small subset of the key space. More precisely,

for all
$$c \in \left\{0,1\right\}^{256}$$
 : $\Pr[k=c] = \left\{egin{array}{ll} 1/2^{128} & ext{if } \mathrm{MSB}_{128}(c) = 0^{128} \\ 0 & ext{otherwise} \end{array}
ight.$

Let F(k,x) be a secure PRF with input space $\{0,1\}^{256}$. Which of the following is a secure PRF when the key k is uniform in the key space $\{0,1\}^{256}$, but is insecure when the key is sampled from the *non-uniform* distribution described above?

Your Answer		Score	Explanation
$F'(k,x)=\left\{egin{array}{l} F(k,x)\ 1^{256} \end{array} ight.$	if $MSB_{128}(k) \neq 1^{128}$ otherwise		
$F'(k,x) = \begin{cases} F(k,x) \\ 1^{256} \end{cases}$	if $\mathrm{MSB}_{128}(k) \neq 0^{128}$ otherwise	1.00	$F'(k,x)$ is a secure PRF because for a uniform key k the probability that $\mathrm{MSB}_{128}(k)=0^{128}$ is negligible. However, for the *non-uniform* key k this PRF always outputs 1 and is therefore completely insecure. This PRF cannot be used as a key derivation function for the distribution of keys described in the problem.

$$F'(k,x) = \begin{cases} F(k,x) & \text{if MSB}_{128}(k) = 0^{128} \\ 0^{256} & \text{otherwise} \end{cases}$$

$$F'(k,x) = \left\{ egin{array}{ll} F(k,x) & ext{if MSB}_{128}(k) = 0^{128} \ 1^{256} & ext{otherwise} \end{array}
ight.$$

Total 1.00 / 1.00

Question 6

In what settings is it acceptable to use deterministic authenticated encryption (DAE) like SIV?

Your Answer Score Explanation	
-------------------------------	--

to individually encrypt many

packets in a voice conversation with a single key.

- when messages have sufficient structure to guarantee that all messages to be encrypted are unique.
- 1.00 Deterministic encryption is safe to use when the message/key pair is never used

more than once.

- to encrypt many records in a database with a single key when the same record may repeat multiple
- when a fixed message is repeatedly encrypted using a single key.

Total

times.

1.00 /

1.00

Question 7

Let E(k,x) be a secure block cipher. Consider the following tweakable block cipher:

$$E'((k_1, k_2), t, x) = E(k_1, x) \bigoplus E(k_2, t)$$

Is this tweakable block cipher secure?

Your Answer Score Explanation

 \bigcirc no because for $x \neq x'$ and $t \neq t'$ we have

$$E'((k_1,k_2),t,x) \overset{'}{\bigoplus} E'((k_1,k_2),t',x) = E'((k_1,k_2),t,x') \overset{'}{\bigoplus} E'((k_1,k_2),t,x')$$

- $\ \bigcirc$ yes, it is secure assuming E is a secure block cipher.
- Ono because for $t \neq t'$ we have $E'((k_1,k_2),t,0) \bigoplus E'((k_1,k_2),t',1) = E'((k_1,k_2),t',1) \bigoplus E'((k_1,k_2),t',1)$
- ullet no because for x
 eq x' we have

 $E'((k_1, k_2), 0, x) \bigoplus E'((k_1, k_2), 1, x) = E'((k_1, k_2), 0, x') \bigoplus E'((k_1, k_2), x') \bigoplus$

1.00 since this relation holds, an attacker can

make 4

queries to E' and distinguish E' from a random collection of one-to-one functions.

Ono because for
$$x \neq x'$$
 we have $E'((k_1,k_2),0,x) \bigoplus E'((k_1,k_2),0,x) = E'((k_1,k_2),0,x') \bigoplus E'((k_1,k_2),0,x')$

Total 1.00 / 1.00

Question 8

In lecture 8.5 we discussed format preserving encryption which is a PRP on a domain $\{0,\ldots,s-1\}$ for some pre-specified value of s. Recall that the construction we presented worked in two steps, where the second step worked by iterating the PRP until the output fell into the set $\{0,\ldots,s-1\}$

Suppose we try to build a format preserving credit card encryption system from AES using *only* the second step. That is, we start with a PRP with domain $\{0,1\}^{128}$ from which we want to build a PRP with domain 10^{16} . If we only used step (2), how many iterations of AES would be needed in expectation for each evaluation of the PRP with domain 10^{16} ?

Your Answer	Score	Explanation
$\bigcirc 2^{128}$		
$\bigcirc 10^{16}$		
$^{\circ}$ $2^{128}/10^{16}pprox 3.4 imes 10^{22}$	1.00	On every iteration we have a probability of $10^{16}/2^{128}$ of falling into the set $\{0,\dots,10^{16}\}$ and therefore in expectation we will need $2^{128}/10^{16}$ iterations. This should explain why step (1) is needed.
$\bigcirc 10^{16}/2^{128}$		

Total 1.00 / 1.00

Question 9

Let (E,D) be a secure tweakable block cipher. Define the following MAC (S,V):

$$S(k,m) := E(k,m,0) \quad ; \quad V(k,m, \mathrm{tag}) := \left\{ \begin{array}{ll} 1 & \text{if } E(k,m,0) = \mathrm{tag} \\ 0 & \text{otherwise} \end{array} \right.$$

In other words, the message m is used as the tweak and the plaintext given to E is always set to 0. Is this MAC secure?

Your Answer	Score	Explanation
O no		
Oit depends on the tweakable block cipher.		
yes	✔ 1.00	A tweakable block cipher is indistinguishable from a collection of random permutations. The chosen message attack on the MAC gives the attacker the image of 0 under a number of the permutations in the family. But that tells the attacker nothing about the image of 0 under some other member of the family.
Total	1.00 / 1.00	

Question 10

In Lecture 7.6 we discussed padding oracle attacks. These chosen-ciphertext attacks can break poor implementations of MAC-then-encrypt. Consider a system that implements MAC-then-encrypt

where encryption is done using CBC with a random IV using AES as the block cipher. Suppose the system is vulnerable to a padding oracle attack. An attacker intercepts a 64-byte ciphertext c (the first 16 bytes of c are the IV and the remaining 48 bytes are the encrypted payload). How many chosen ciphertext queries would the attacker need *in the worst case* in order to decrypt the entire 48 byte payload? Recall that padding oracle attacks decrypt the payload one byte at a time.

Your Answer	Scor	e Explanation
• 12288	✓ 1.00	Correct. Padding oracle attacks decrypt the payload one byte at a time. For each byte the attacker needs no more than 256 guesses in the worst case. Since there are 48 bytes total, the number queries needed is $256 \times 48 = 12288$
256		
65536		
12240		
Total	1.00 1.00	1