ΘΕΜΑ 4

Δύο σημειακά φορτία $q_1=+1$ μC και $q_2=-2$ μC έχουν ίσες μάζες και συγκρατούνται ακίνητα στο κενό και σε απόσταση r=10 cm μεταξύ τους.

4.1. Να υπολογίσετε την ηλεκτρική δυναμική ενέργεια του συστήματος των σημειακών φορτίων q_1 και q_2 .

Μονάδες 6

Τα σημειακά φορτία αφήνονται ελεύθερα να κινηθούν τη χρονική στιγμή $t_0 = 0$.

4.2. Αν v_1 , v_2 είναι τα μέτρα των ταχυτήτων των σημειακών φορτίων q_1 και q_2 αντίστοιχα, όταν η μεταξύ τους απόσταση υποπενταπλασιαστεί, να υπολογίσετε τον λόγο $\frac{v_1}{v_2}$,

Μονάδες 6

4.3. Να υπολογίσετε τα μέτρα v_1 και v_2 των ταχυτήτων των σημειακών φορτίων q_1 και q_2 αντίστοιχα, όταν η απόστασή τους υποπενταπλασιαστεί, αν για τις μάζες των δύο φορτίων ισχύει $m_1=m_2=m=0.72~\mu g$

Μονάδες 7

4.4. Να σχεδιάσετε, σε κοινό σύστημα ορθογώνιων αξόνων, τις γραφικές παραστάσεις που απεικονίζουν τις μεταβολές της ηλεκτρικής δυναμικής ενέργειας, της κινητικής ενέργειας και της μηχανικής ενέργειας του συστήματος των σημειακών φορτίων q_1 και q_2 , σε συνάρτηση με την απόστασή τους, από τη χρονική στιγμή $t_0=0$ μέχρι τη χρονική στιγμή που η απόστασή τους υποπενταπλασιάζεται.

Μονάδες 6

Δίνεται: $k_{\eta\lambda}=9\cdot 10^9\,\frac{N\cdot m^2}{c^2}$. Σε καθένα από τα φορτία q_1 και q_2 ασκείται μόνο η ηλεκτρική δύναμη αλληλεπίδρασης μεταξύ τους.