

- Network Congestion
- Congestion Control in FR
- Traffic Management in ATM
- Internet QoS
- Resource Allocation and RSVP
- Differentiated Services

- Congestion
 - Number of packets transmitted through the network approaches the packet handling capacity of the network
- One or more switches/routers becomes overloaded
 - Generally 80% utilization is critical
- Congestion control
 - Keep number of packets below level at which performance falls off dramatically

Queues at a Switch

 Switch overloads because receiving packets faster than it can forward

- Congestion at switch
 - Bursty traffic / poor topology
 - Packet arrival rate exceeds the outgoing link capacity

- Packet processing rate < packet arriving rate
- Insufficient memory to store arriving packets
- Effects caused at congested switch
 - Discard queued packets to make room for new comings
 - Prevent additional packets from entering the congested port (link-layer flow control)

Network Utilization

Delay and Throughput vs. Network Load

a. Delay as a function of load

b. Throughput as a function of load

Communication Power

$$Power = \frac{Throughput}{Delay}$$

- Assume all the links have similar capacity, and run in full for both direction
- Then switches 3 and 4 will be in congestion

- Choke Packet
- Backpressure
- Warning bit
- Congestion window
- Random early discard
- Traffic shaping

- 抑制分组
- 反压
- 警告位
- 拥塞窗口
- 随机早期丢弃
- 流量整形

- Control packet
 - Generated at congested node
 - Sent to source node
- Source quench: using ICMP to notify source
 - From router or destination, sent for every discarded packet

- Hop-by-Hop Choke Packets
 - Propagation time > transmission time (long distance or high speed link)
 - Choke packets from router to source are not effective
 - Require each hop to reduce its transmission

- Special bits set in the packet header by switches
 - Alerts end systems of increasing congestion
 - End systems take steps to reduce offered load

Backwards

- Congestion avoidance in opposite direction to congested packet
- Assume congestion will burst up quickly

Forwards

- Congestion avoidance in same direction as congested packet
- Assume congestion will cumulate slowly

Four Cases of Congestion

(4) Congestion Window

- Control congestion at hosts
 - Packet timeout as a signal of network congestion
 - Dynamic send window management (as in TCP) to hold the packet sending

(5) Random Early Discard

- Control congestion at routers (switches)
 - Combined with congestion window at hosts
- Internet (TCP) global synchronization problem
 - Traffic burst fills queues so packets lost, TCP connections enter slow start
 - Traffic drops so network under utilized, connections leave slow start at same time causing burst again
- Handle the problem RED
 - Router randomly discards packets before buffer becomes completely full

The RED Algorithm

Compute average queue length

 $avgLen = (1-\omega) \times avgLen + \omega \times sampleLen$

Calculate average queue size avgLen if $avgLen < TH_{min}$ queue packet

else if $TH_{min} \le \alpha vgLen < TH_{max}$ calculate probability p with probability p discard packet else with probability 1-p queue packet

else if $avg \ge TH_{max}$ discard packet

(6) Traffic Shaping

- Shape the traffic (packet flow) before it enters the network
 - Control the rate at which packets are sent
 - At connection set-up, host and end switch negotiate a traffic pattern (shape)
- Two traffic shaping algorithms
 - Leaky Bucket
 - Token Bucket

- Shape bursty traffic into fixed-rate traffic by averaging the data rate
- May drop the packets if the bucket is full

Leaky Bucket

- Do nothing when input is idle
- Packet output rate is fixed

Fixed-rate data

Token Bucket

- Use token to control the output traffic, allowing vary output rate
- Token generation rate is fixed, may drop token (not packet) when bucket full

Token Bucket

Token bucket is more powerful in traffic shaping

3 metrics defined

- Average traffic rate
- Burst traffic rate
- Maximum burst size

Summary

- Mechanisms for Network Congestion Control
 - Choke packet
 - Backpressure
 - Warning bit
 - Congestion window
 - Random early discard
 - Traffic shaping

Homework

■ 第7章: R19, P18, P20