Exercice 1:

BCPST-1

Pour tout entier naturel n, on pose $I_n = \int_0^{\frac{\pi}{4}} (\tan(x))^n dx$.

- 1. Calculer I_0 et montrer que $I_1 = \frac{1}{2} \ln 2$.
- 2. Montrer : $\forall n \in \mathbb{N}, I_n + I_{n+2} = \frac{1}{n+1}$ (ne pas forcément se précipiter sur une intégration par parties!).
- 3. Justifier : $\forall n \in \mathbb{N}, 0 \leq I_n \leq I_n + I_{n+2}$ puis montrer que (I_n) converge vers une limite à préciser.
- 4. Pour tout entier naturel n, on pose $p_n = I_{2n}$.
 - (a) Justifier: $\forall n \in \mathbb{N}, p_{n+1} = \frac{1}{2n+1} p_n$.
 - (b) Montrer : $\forall n \in \mathbb{N}^*$, $(-1)^{n-1}p_n = -\frac{\pi}{4} + \sum_{k=1}^n \frac{(-1)^{k-1}}{2k-1}$. En déduire :

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{2k-1} = \frac{\pi}{4}.$$

Exercice 2:

1. Soit k un entier supérieur ou égal à 2. Montrer :

$$\frac{1}{(k+1)(\ln(k+1))^2} \le \int_k^{k+1} \frac{1}{t(\ln t)^2} dt.$$

2. En déduire :

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \ \sum_{j=2}^{n} \frac{1}{j(\ln j)^2} \leqslant \frac{1}{2(\ln 2)^2} + \frac{1}{\ln 2}$$

3. On définit la suite $(S_n)_{n\in\mathbb{N}\setminus\{0,1\}}$ par :

$$\forall n \in \mathbb{N} \setminus \{0, 1\}, \ S_n = \sum_{j=2}^n \frac{1}{j(\ln j)^2}.$$

Montrer que $(S_n)_{n\in\mathbb{N}\setminus\{0,1\}}$ converge.

Exercice 3:

On considère la fonction définie par $f(x) = \left(1 + \frac{1}{x}\right)^x$.

- 1. Déterminer le domaine de définition de f.
- 2. Montrer que, pour tout $x \in \mathbb{R}_+^*$, $\ln(x) \leqslant x 1$ et en déduire $\ln(x) \geqslant 1 \frac{1}{x}$.
- 3. Étudier les variations de f sur $]0, +\infty[$.
- 4. Établir: $\forall n \in \mathbb{N}^*, 2 \leqslant \left(1 + \frac{1}{n}\right)^n \leqslant e$.
- 5. (a) Calculer $\lim_{h\to 0} \frac{\ln(1+h)}{h}$. Indication : c'est la dérivée de **22** en **23**.
 - (b) En déduire le calcul de $\lim_{x\to +\infty} \left(1+\frac{1}{x}\right)^x$.