

Presentación final Análisis geoespacial

Mateo López Mogollón Ing. Civil Programa: Esp. R.H.

Problema:

Evolución de coberturas y su efecto en aportes de caudal durante eventos extremos.

Caso de estudio: Cuenca Río Aburra

Fuente: portal área metropolitana

Motivación:

Comprender desde una perspectiva geoespacial, las causas de inundación en entornos urbanos en escala de microcuenca.

Fuente: infobae, 29/04/2025

Discretización de eventos: cuando el sensor registre

nivel de emergencia en estación de nivel fija

Fuentes de información:

SIATA (estaciones de nivel y precipitación),

ALOS PALSAR (MDT, 12.5m)

IDEAM (coberturas)

IGAC (capas vectoriales diversas)

Estaciones meteorológicas AMVA Fuente: portal SIATA

Serie de niveles (abril, 2025), en 87 estaciones red SIATA

Umbral de riesgo, descripción SIATA.

Capas de entrada:

Coberturas Corine Land Cover, IDEAM

- Tejido urbano discontinuo
- Zona industrial y comercial
- Vías
- Aeropuertos

Discretización de coberturas, área permeable (fucsia) o impermeable (verde)

Drenaje doble y sencillo AMVA, 68 estaciones de nivel

Discretización de cuencas y áreas aferentes para estaciones

DESBORDE

LONGITUD

0 -75.5798199999... 6.185110000000...

108 Q. Dona Maria - Santa Rita

Atributos:

LATITUD

1 -75.6514999999... 6.190590000000... 11.01758285000...

0 -75.5974300000... 6,258590000000... 1.162763574000... 1.076476571000...

- ID: código estación
- ESTACION: Drenaje al que pertenece
- DESBORDE: Si presento crecientes en el mes (1), sino (0)

AREA PERM

TIA

0.591719081 10.42586376000... 5.502340950000... 460.2601318359... 1761,000000000.

PPT

COTA

- AREA: área de la cuenca aportante [km2]
- TIA: área impermeable / área total [%]
- PPT: precipitación promedio diaria [mm/día]
- COTA: elevación de terreno [m.s.n.m.]

AREA IMP

8.646379494000... 3.865673624000... 4.780705870000...

0.231352579

20 estaciones (amarillo) de 68 con reporte de riesgo y sus cuencas (rojo). AMVA

Dataframe de puntos

AREA

Red de drenaje sencillo y estaciones AMVA.

Atributos:

- ID: código estación
- ESTACION: Drenaje al que pertenece
- DESBORDE: Si presento crecientes en el mes (1), sino (0)
- AREA: área de la cuenca aportante [km2]
- TIA: área impermeable / área total [%]
- PPT: precipitación promedio diaria [mm/día]
- COTA: elevación de terreno [m.s.n.m.]

- Longitud drenaje [m]
- Densidad drenaje

Densidad de Kernel. En rojo: 68 estaciones

Función K de Ripley, para 68 estaciones

Modelos	R ² [%]	
Regresión Logística	4.41	
OLS	2.88	
SAR	6.76	
SLX	13.00	
SEM	6.31	

Resumen métodos E2 - E3.

Variables descriptoras

- PPT [mm/día]
- TIA [%]
- COTA [m.s.n.m.]
- Longitud drenaje [m]
- Densidad drenaje

SLX R^2 [%] = 37.61

Data set :	unknown			
Weights matrix :	None			
Dependent Variable :DES		Number o	of Observations:	68
Mean dependent var :		Number o	of Variables :	11
S.D. dependent var :		Degrees	of Freedom :	57
R-squared :		· ·		
Adjusted R-squared :	0.2667			
Sum squared residual:	9.05527	F-statis	stic :	3.4365
Sigma-square :	0.159	Prob(F-s	statistic) :	
S.E. of regression :			elihood :	
Sigma-square ML :	0.133	Akaike i	info criterion :	77.877
S.E of regression ML:			criterion :	
Variable	Coefficient	Std.Error	t-Statistic	Probability
CONSTANT	1.73822	1.56856	1.10816	0.27245
TIA	0.00218	0.00203	1.07733	0.28587
PPT	0.00470	0.00119	3.93906	0.00023
СОТА	-0.00105	0.00033	-3.23223	0.00204
longitud_tramo_cercano	-0.00005	0.00001	-3.18543	0.00234
densidad_drenaje	0.00000	0.00000	1.06179	0.29281
W_TIA	-0.01201	0.00458	-2.62491	0.01111
W_PPT	-0.00480	0.00232	-2.07135	0.04286
W_COTA	0.00077	0.00084	0.91182	0.36570
W longitud tramo cercano	-0.00003	0.00003	-0.96104	0.34059

Modelo con rezago espacial, modificado (SLX)

Modelos de regresión

Referencias:

- Han Chen, Yizhao Wei, Jinhui Jeanne Huang. (2023). Altered landscape pattern dominates the declined urban evapotranspiration trend.
- Guzman G. (2018). Análisis de la influencia del diseño urbano en la meteorología del Valle de Aburra
- Osorio D. (2019). Vulnerabilidad de la disponibilidad actual y futura del recurso hídrico en el valle de Aburra y sus cuencas abastecedoras.

