Multiview Depth Map Enhancement by Variational Bayes Inference Estimation of Dirichlet Mixture Models

Pravin Kumar Rana, Zhanyu Ma, Jalil Taghia, and Markus Flierl

School of Electrical Engineering KTH Royal Institute of Technology Stockholm, Sweden

May 31, 2013

Motivation and background

Multiview video imagery

Multiview video imagery

Multiview video imagery

Multiview video imagery

Multiview video imagery

Depth image based rendering

Multiview video imagery

Depth image based rendering

 Depth pixels represent shortest distance between object points and the camera plane

To be estimated from multiview imagery

Depth image

Near

Far

Multiview video imagery

Depth image based rendering

Virtual view

- Depth pixels represent shortest distance between object points and the camera plane
- To be estimated from multiview imagery

Depth image

3D warping

Far

Near

Multiview video imagery

MPEG Depth Estimation Reference Software (DERS)

MPEG Depth Estimation Reference Software (DERS)

MPEG Depth Estimation Reference Software (DERS)

MPEG Depth Estimation Reference Software (DERS)

Problem: Inter-view depth inconsistency

Depth enhancement framework

Overview of our prior work

Overview of our prior work

[1] P. K. Rana, J. Taghia, and M. Flierl, "A variational Bayesian inference framework for multiview depth image enhancement," IEEE Int. Symp. Multimedia (ISM), 2012

Overview of our prior work

[1] P. K. Rana, J. Taghia, and M. Flierl, "A variational Bayesian inference framework for multiview depth image enhancement," IEEE Int. Symp. Multimedia (ISM), 2012

Improved depth enhancement framework

Improved depth enhancement framework

[1] P. K. Rana, J. Taghia, and M. Flierl, "A variational Bayesian inference framework for multiview depth image enhancement," IEEE Int. Symp. Multimedia (ISM), 2012

Improved depth enhancement framework

[1] P. K. Rana, J. Taghia, and M. Flierl, "A variational Bayesian inference framework for multiview depth image enhancement," IEEE Int. Symp. Multimedia (ISM), 2012

Concatenation of view imagery

- Multiview imagery has inherent inter-view similarity
- To have a unique model for multiview imagery
 - The inherent inter-view similarity is exploited by concatenating views from multiple viewpoints

Color space

RGB

Color space

- Use the chromatic color representation to make the procedure insensitive to the absolut luminance
- The chromaticity of a pixel is described by a vector of three chromaticity coefficients [x y z]^T

$$x+y+z=1$$

[1] P. K. Rana, J. Taghia, and M. Flierl, "A variational Bayesian inference framework for multiview depth image enhancement," IEEE Int. Symp. Multimedia (ISM), 2012

Why variational Bayes inference (VBI)?

- The goal of classification is to partition an image into regions each of which has a reasonably homogeneous visual appearance
- Usually, clustering algorithm, such as expectation-maximization (EM) suffers from one major drawbacks that the number of clusters has to be known
- Variational Bayes inference automatically select the number of cluster

Why Dirichlet mixture model with variational Bayes inference?

- The vector of image pixels has nonnegative elements and is bounded
 - It can be efficiently modeled by utilizing non-Gaussian distributions [3]
- Based on the pixel vector's properties, assume that the pixel vectors of each cluster are Dirichlet distributed
- Use Dirichlet mixture model (DMM) with VBI to capture the all underlying clusters in multiview imagery
- It reduces complexity

Newspaper Balloons Kendo

Input multiview data

Newspaper Balloons Kendo

Input multiview data

Using Dirichlet mixture model with variational Bayes inference

Newspaper

Balloons

Kendo

Input multiview data

Using Dirichlet mixture model with variational Bayes inference

Using Gaussian mixture model with variational Bayes inference

Newspaper Balloons Kendo

Input multiview data

Using Dirichlet mixture model with variational Bayes inference

Using Gaussian mixture model with variational Bayes inference

Multiview depth classification

Exploiting the per-pixel association between color and depth

View image

Depth image

Concatenated view imagery

Concatenated depth imagery

Multiview depth classification

Newspaper

Balloons

Kendo

Input multiview data

Using Dirichlet mixture model with variational Bayes inference in xyz space

Multiview depth classification

Newspaper Balloons

Kendo

Input multiview data

Using Dirichlet mixture model with variational Bayes inference in xyz space

Multiview depth subclassification

Difference between color and depth clusters

- Why?
 - due to foreground and background depth difference
 - due to inter-view inconsistency

Multiview depth subclassification

Means-shift clustering

- A nonparametric clustering technique
- Does not require prior knowledge of the number of clusters
- Does not constrain the shape of the clusters
- Assigns the mean to depth pixels irrespective of the originating viewpoints
- Bayesian approaches imply higher computational complexity

Experimental results

Experimental setup

MPEG 3DTV multiview data set

Newspaper (1024 X 768)

Lovebird1 (1024 X 768)

Kendo (1024 X 768)

Balloons (1024 X 768)

Poznan street (1920 X 1088)

Complexity

Multiview data	Initial number of mixture components	Active number of mixture components (after convergence)		
set		VBI-GMM	VBI-DMM	
Lovebird1	100	31	24	
Kendo	100	34	15	

MPEG View Synthesis Reference Software (VSRS) 3.5

Enhanced depth map

Left

Enhanced depth map

Right

MPEG View Synthesis Reference Software (VSRS) 3.5

Enhanced depth map

Left

Reference view

Enhanced depth map

Right

Reference view

Test sequence	Input view pair	Virtual view	Y-PSNR [dB]		
			With MPEG depth maps	With VBIGMM + K-Means depth maps	With VBIDMM + Mean-shift depth maps
Newspaper	(4, 6)	5	32.00	32.10	32.11
Kendo	(3, 5)	4	36.54	36.72	39.35
Lovebird1	(6, 8)	7	28.50	28.68	29.04
Balloons	(3, 5)	4	35.69	35.93	36.02
Poznan Street	(3, 5)	4	35.56	35.58	35.72

- K-means sub-clustering
 - Number of cluster : 12

	Input view pair	Virtual view	Y-PSNR [dB]		
Test sequence			With MPEG depth maps	With VBIGMM + K-Means depth maps	With VBIDMM + Mean-shift depth maps
Newspaper	(4, 6)	5	32.00	32.10	32.11
Kendo	(3, 5)	4	36.54	36.72	39.35
Lovebird1	(6, 8)	7	28.50	28.68	29.04
Balloons	(3, 5)	4	35.69	35.93	36.02
Poznan Street	(3, 5)	4	35.56	35.58	35.72

K-means sub-clustering

- Number of cluster : 12

Test sequence: Kendo

With MPEG depth map

With VBDMM Mean-shift depth map

Test sequence: Kendo

With MPEG depth map

With VBDMM Mean-shift depth map

Test sequence: Kendo

Original

With MPEG depth maps

With VBGMM + K-Means depth maps

With VBDMM + Mean-Shift depth maps

Test sequence: Kendo

With VBDMM Mean-Shift depth maps

K-Means

depth maps

With MPEG depth map

With VBDMM Mean-shift depth map

With MPEG depth map

With VBDMM Mean-shift depth map

Original

With MPEG depth maps

With VBGMM K-Means depth maps

With VBDMM Mean-Shift depth maps

With MPEG depth map

With VBDMM Mean-shift depth map

Original

With MPEG depth maps

With VBGMM K-Means depth maps

With VBDMM Mean-Shift depth maps

Conclusions

- The inter-view depth consistency and hence, the free-viewpoint experience improve
- The per-pixel association between depth and color is exploited by classification
- Depth subclassification improves depth maps and hence, view rendering quality
- Both objective and subjective results improve

Thank you

