Preliminary problems

Deadline: 20/02/2021, 23:59

The purpose of these tasks is to give you an impression of the maths we are going to use in this module; to introduce some basic notation; and to give you joy of solving easy exercises.

- 1. Given $\alpha, w, x \in \mathbb{R}^k$ column vectors and $W \in \mathbb{R}^{n \times k}$ matrix, prove the following identities:
 - a) $\nabla_{\alpha}(w^T\alpha) = w^T$
 - b) $\nabla_x(Wx) = W$
 - c) For k = n, $\nabla_x(x^T W x) = (W^T + W)x$

(Note that for a function $f: \mathbb{R}^k \to \mathbb{R}$, ∇f is the row vector $\nabla f = [\partial_1 f, \dots, \partial_k f]$, and for a function $g: \mathbb{R}^n \to \mathbb{R}^m$, ∇g is the matrix whose element in row i and column j is $\partial_i(g_i)$.)

- 2. Let $\xi_i \in \{0;1\}$ $(i=1,\ldots,N)$ independent, indentically distributed random variables with $\Pr(\xi_i=1)=\mu$, and let $\nu=\frac{1}{N}\sum_{i=0}^N \xi_i$. What are the values of the following expressions?
 - a) $\mathbb{E}\{\nu\}$
 - b) $Var \nu$
 - c) $\mathbb{E}\{(\nu \mu)^2\}$
- 3. Let $\pi(\theta)$ be a (one-dimensional) probability distribution for some parameter θ and $R: \mathbb{R} \to \mathbb{R}$ some function. Prove that

$$\frac{d}{d\theta} \left(\mathbb{E}_{a \sim \pi(\theta)} R(a) \right) = \mathbb{E}_{a \sim \pi(\theta)} \frac{d}{d\theta} \log \pi(a \mid \theta) R(a), \tag{1}$$

where $\pi(a \mid \theta)$ is the likelihood of a in the distribution $\pi(\theta)$. ($\mathbb{E}_{a \sim \pi(\theta)}$ denotes the expected value of the random variable a that is distributed according to $\pi(\theta)$.)

4. In the Python file attached, for each function, write an equivalent implementation using only Numpy (vector or linear algebraic) operations. (le. eliminate all the loops.)

There is a tester function at the end (called main), with which you can check your solution. (np.vectorize is cheating.) Only the first three tasks are mandatory, the last two are optional.