

- Based in Barclays Rise, London
- Participated in Barclays TechStars
 Accelerator

Product: Machine Learning Deployment on Kubernetes

(https://github.com/SeldonIO/seldon-core)

ML Consultancy:

- ML applications FX/Equity Prediction
- Churn prediction

Overview

- Machine Learning on Kubernetes
- Machine Learning Deployment Challenges
 - Seldon-core
- Kubeflow integration
- End-to-End Machine Learning
 - Example

Goal: Help Data Science Project Teams Succeed

Data Scientist

- Analyzes the data
- Builds the predictive model
- Optimizes the model

Data Engineer

- Manages infrastructure
- Monitors the model in production
- First response on issues

Business Manager

- Decides the project goals
- Defines business KPIs
- Evaluates ROI
- Provides Approval/Audits

Machine learning on Kubernetes

Seldon-Core Goals

- Deployment
 - Launch
 - Scaling up/down
 - Updates
 - Rolling
 - Canary
 - Blue-Green
 - Shadow
 - Health checks
 - Recovery
- Optimization
 - Infrastructure
 - Latency
 - Throughput
 - Model

- Connect to Business Applications
 - Synchronous
 - REST
 - gRPC
 - Asynchronous
 - Message Queues

- Management
 - Auditing
 - Versioning
 - Data provenance
 - Monitoring
 - o CI/CD
 - "GitOps"

Seldon-Core Goals

- ML Tool Agnostic
 - Python
 - TensorFlow
 - scikit-learn
 - \circ R
 - Java
 - Spark
 - H2O
 - Commercial Toolkits

- Dynamic ML Service Mesh
 - Routing requests
 - AB Tests
 - Multi-Armed Bandit
 - Transformations
 - Feature Normalization
 - Ensembles results
 - Metrics
 - Concept drift
 - Outlier detection
 - Security

kubeflow

Seldon-Core Machine Learning Deployment

HELM 1. Install Seldon-Core helm **K8S Cluster** ksonnet RED HAT' OPENSHIFT 2. Package runtime ML S₂I Container Registry yaml kubectl 3. Describe runtime graph ison

seldon-core architecture

© 2018

Runtime Prediction Graphs Predictive Units

Models

- Runtime prediction models
 - Tensorflow, sci-kit learn, H2O, Spark

Routers

- Direct requests to one child graph
 - A-B testing, Multi-Armed Bandits

Combiners

- Combine responses from child graphs
 - Ensemblers

Transformers

- Transform the request
 - Feature normalization
- Transform response
 - Concept drift, Outlier detection

Seldon Core Complex Graphs

Example Seldon Deployment Manifest (custom kubernetes resource)

```
"apiVersion": "machinelearning.seldon.io/vlalphal",
"kind": "SeldonDeployment",
"metadata": {
   "labels": {
        "app": "seldon"
    "name": "seldon-deployment-example"
"spec": {
    "annotations": {
        "project_name": "FX Market Prediction",
        "deployment version": "v1"
    "name": "test-deployment",
    "oauth key": "oauth-key",
                                                                                             List of predictors
            "componentSpec": {
                "spec": {
                    "containers": [
                            "image": "seldonio/mean classifier:0.6",
                            "imagePullPolicy": "IfNotPresent",
"name": "mean-classifier",
                            "resources": {
                                                                                                Pod Specification
                                 "requests": -
                                     "memory": "1Mi"
                    "terminationGracePeriodSeconds": 20
             'graph": {
                "children": [],
                "name": "mean-classifier",
                "endpoint": {
                                                                                              Graph Definition
                    "type" : "REST"
                "subtype": "MICROSERVICE",
                "type": "MODEL"
                                                                                                Replicas
            "replicas": 1,
                "predictor version" : "v1"
```


Canary

Blue-Green Deployments

Shadow Deployments

Seldon-Core ML Tool Agnostic

Openshift Source-to-Image

https://github.com/openshift/source-to-image

User Image Ready to deploy on seldon-core

Wrapping python models with S2I

Tensorflow, sklearn, pyTorch, etc.

```
IrisClassifier.py

from sklearn.externals import joblib

class IrisClassifier(object):

    def __init__(self):
        self.model = joblib.load('/mnt/model/IrisClassifier.sav')

    def predict(self,X,features_names):
        return self.model.predict_proba(X)
```

requirements.txt

scikit-learn==0.19.0 scipy==0.18.1

.s2i/environment

MODEL_NAME=IrisClassifier API_TYPE=REST SERVICE TYPE=MODEL

s2i build . seldonio/seldon-core-s2i-python2 myrepo/iris-py-classifier

Wrapping R models with S2I


```
iris.R

library(methods)

predict.iris <- function(iris,newdata=list()) {
    predict(iris$model, newdata = newdata)
}

new_iris <- function(filename) {
    model <- readRDS(filename)
    structure(list(model=model), class = "iris")
}

initialise_seldon <- function(params) {
    new_iris("model.Rds")
}</pre>
```

install.R

install.packages('rpart')

.s2i/environment

MODEL_NAME=iris.R API_TYPE=REST SERVICE_TYPE=MODEL

s2i build . seldonio/seldon-core-s2i-r myrepo/iris-r-classifier

Wrapping Java models with S21

H2O, Spark (Enterprise), DL4J, Weka etc.

```
cdependencies>
    <dependency>
        <groupld>org.springframework.boot</groupld>
        <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
        <groupld>io.seldon.wrapper</groupld>
        <artifactId>seldon-core-wrapper</artifactId>
        </dependency>
        <dependency>
        <dependency>
        </dependency>
        <dependency-lartifactId>
        </dependency>
</dependency></dependency></dependency></dependency></dependency></dependency></dependency></dependency>
```

@Component @Primary public class H2OModelHandler implements SeldonModelHandler { @Override public SeldonMessage predict(SeldonMessage payload) { //Custom Predict method here

.s2i/environment

API_TYPE=REST SERVICE TYPE=MODEL

s2i build . seldonio/seldon-core-s2i-java-build myrepo/java-model --runtime-image seldonio/seldon-core-s2i-java-runtime

Seldon Core Workflow

1. Package

Create REST or gRPC dockerized microservice.

2. Describe Deployment

Create/update kubernetes resource manifest for deployment graph.

3. Deploy

Manage and analyze the performance of live deployments.

External API to connect to business REST or gRPC

Predict

- Request/Responses generic payloads
- o Data
 - Tensor shaped set of floats
 - NDArray allow multi-typed and easy JSON serialization
 - Custom string or binary
- Meta data

Feedback

- Request
- o Response
- Reward

Seldon Core Roadmap

Low Latency

- Nvidia TensorRT
- Predictive batching
- Optimized single model scenarios

Data Provenance

- Add tags to wrapped models; return in metadata
- Gitops

Distributed Graphs

- Multiple k8s deployments per graph
- Istio integration

Kubeflow Components

Development

- Ksonnet Packages
- Jupyter Hub
- Tensorflow Training

Pipelines

Argo Workflows

Deployment

- Ambassador reverse proxy
- Tensorflow Serving
- Seldon-core

Work In progress

- Batch Inference
- RPC Metrics
 - Tensorflow Serving
 - Seldon Core
- Integration ML Toolkits
 - MxNet
 - PyTorch
 - Pachyderm
- Central Dashboard

CRDs for TensorFlow, pyTorch, and more...

```
apiVersion: "kubeflow.org/v1alpha1"
kind: "TFJob"
metadata:
  name: "example-job"
spec:
  replicaSpecs:
    - replicas: 1
      tfReplicaType: MASTER
      template:
        spec:
          containers:
            - image: gcr.io/tf-on-k8s-dogfood/tf_sample:dc944ff
              name: tensorflow
          restartPolicy: OnFailure
    - replicas: 1
      tfReplicaType: WORKER
      template:
        spec:
          containers:
            - image: gcr.io/tf-on-k8s-dogfood/tf_sample:dc944ff
              name: tensorflow
          restartPolicy: OnFailure
    - replicas: 2
      tfReplicaType: PS
      template:
        spec:
          containers:
            - image: gcr.io/tf-on-k8s-dogfood/tf_sample:dc944ff
              name: tensorflow
          restartPolicy: OnFailure
```


Using Kubeflow

```
# Initialize a ksonnet APP
APP NAME=my-kubeflow
ks init ${APP NAME}
cd ${APP NAME}
# Install Kubeflow components
ks registry add kubeflow github.com/kubeflow/kubeflow/tree/master/kubeflow
ks pkg install kubeflow/core
ks pkg install kubeflow/tf-job
ks pkg install kubeflow/tf-serving
ks pkg install kubeflow/seldon
# Deploy Kubeflow
NAMESPACE=kubeflow
kubectl create namespace ${NAMESPACE}
ks generate core kubeflow-core --name=kubeflow-core --namespace=${NAMESPACE}
ks apply default -c kubeflow-core
```


End-to-End Machine Learning

Continuous Integration

Continuous Deployment

End-to-End ML Example

https://github.com/kubeflow/example-seldon

MNIST

11543

75353 55906

35200

Goal: Classify Digits

@seldon_io

Thank You

https://github.com/SeldonIO/seldon-core

https://github.com/kubeflow/example-seldon

https://github.com/kubeflow/kubeflow

seldon

Clive Cox

cc@seldon.io

Seldon Technologies Ltd

hello@seldon.io seldon.io US: +1 (646) 397-9911 UK: +44 (20) 7193-6752 41 Luke Street London EC2A 4DP