DAY 3-111 DAYS VERIFICATION CHALLENGE

Topic: Encoders, Decoders

Skill: Digital Electronics

DAY 3 CHALLENGE:

1. Design & explain working of:

a. Decimal to BCD encoder

2			2 1					(200	oge		5	2)		
-		-	-						17		7	1		-	
X		-	-												
28	_	-	-		-		- 1				1				
X,	to Decimal				1	→ A3									
									1						
αc					-	->	itel 4	4 (2)							
Xu			BCD												
03		-	Enca	der		7	H1				0		1/2		
α_2		-			-	\rightarrow	Ao								
a		-			100	211	-170					8	24		
OC.		->-	-			1-	-1			Real.			_		
- 4		-	248			19	14					-37		1	
_				-				-					W	1	
-	Ng	oc ₈	007	as		×4	oc ₃	α_2	00g	26	A3		2 A:	1	
-	0	0	0	0	0	0	0	0	0	1	0			(
1.53	0	0	0	0	0	0	0	0	0	0	0		0	7	
37	0	0.	0	0	0	0	0	0		0	0		1	0	
-	0	0	0	0	0	1	0	0	0	0	0	0		2	
	0	0	0	0	1	0	0	0	0	0	0	1	0	7	
		0	0	1	0	0	0	0	0	0	0	1	7	0	
	0	G	1	0	0	0	0	0	0	0	0	7	1	1	
	0	1	0	0	0	0	0	0	0	0	1			0	
	I	ó	0	0	0	0	0	0	0	0	1			1	

b. Octal to Binary encoder using OR gates.

c. 3:8 Decoder

						12.00					1
		Io I 12	Yo	7s	42	73	74	75 7	6	72	
	-> /z	000	1	0	0	0	6	0	٥_	0	
3.8	→ Y6	001	0	I	0	0	0	0 (0_	0	
12	>\ 5	010	0	0	I	0	0	0	0	O	
-> secoder	->14	011	0	0	0	1	0	0	0	0	
74	> /3	000	0	0	0	0	1	0	0	0	
10	-> 12 ->12	101	0	0	0	0	0	1	0	0	
	- Y ₀	110	0	0	0	O	0	G	1	0	
1]]]]	0	0	0	0	0	0	0	I	
EV.		100									

d. 4: 2 Priority Encoder

2. Explain difference between:

a. Encoder & Decoder

an encoder converts multiple inputs into fewer binary outputs (e.g., 4-to-2), reducing data lines. A decoder reverses this process, converting binary inputs into more outputs (e.g., 2-to-4), enabling the interpretation of encoded data.

b. Encoder & Priority Encoder

An encoder converts multiple inputs into a smaller number of binary outputs, without considering the importance of each input; it simply encodes the inputs that are active. In contrast, a priority encoder does the same encoding but with an added feature: if multiple inputs are active simultaneously, it prioritizes the highest-order input and encodes only that one, effectively ignoring the others. This prioritization is crucial in situations where certain signals need to take precedence over others.

3. Explain applications of:

a. Priority encoder

- Interrupt Handling: Manages multiple interrupts, prioritizing the most critical.
- Network Resource Allocation: Prioritizes data packets for transmission.
- Control Systems: Ensures emergency signals are processed first.

b. Priority Decoder

- Memory Addressing: Selects specific memory cells in RAM.
- Display Systems: Activates segments in digital displays.
- CPU Instruction Decoding: Interprets binary instructions for CPU operations.

4. What are the basic functions of:

a. Digital Encoder

Converts multiple input signals into a smaller number of binary outputs.

b. Digital Decoder

Converts binary inputs into multiple outputs, often activating specific lines or components based on the input.