This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: A61K 39/12, G01N 33/569 C12N 7/00

(11) International Publication Number:

WO 92/21375

A1

(43) International Publication Date:

10 December 1992 (10.12.92)

(21) International Application Number:

PCT/NL92/00096

(22) International Filing Date:

was filed:

5 June 1992 (05.06.92)

(30) Priority data: 91201398.4 6 June 1991 (06.06.91) EP (34) Countries for which the regional or international application

was filed: 92200781.0 18 March 1992 (18.03.92) (34) Countries for which the regional or international application

NL et al.

NL et al.

(71) Applicant (for all designated States except US): STICHTING ČENTRAAL DIĔRGENEESKUNDIG INSTITUUT [NL/NL]; Edelhertweg 15, NL-8219 PH Lelystad (NL).

(72) Inventors; and

(75) Inventors; and (75) Inventors; Applicants (for US only): WENSVOORT, Gert [NL/NL]; Dorpsstraat 29, NL-7971 CP Havelte (NL). TERPSTRA, Catharinus [NL/NL]; Boeier 02-94, NL-8242 CC Lelystad (NL). POL, Joannes, Maria, Anthonis [NL/NL]; Jol 30-05, NL-8243 HA Lelystad (NL). MO-ORMANN, Robertus, Jocobus, Maria [NL/NL]; De Telgang 12, NL-8252 EH Dronten (NL). MEULEN-BERG, Johanna, Jacoba, Maria [NL/NL]; Potgieterstraat 17 II, NL-1053 XP Amsterdam (NL). (74) Agent: SMULDERS, Th., A., H., J.; Vereenigde Octrooibureaux, Nieuwe Parklaan 97, NL-2587 BN The Hague

(81) Designated States: AT, AT (European patent), AU, BB, BE (European patent), BF (OAPI patent), BG, BJ (OAPI patent), BR, CA, CF (OAPI patent), CG (OAPI patent), patent), BR, CA, CF (OAPI patent), CG (OAPI patent), CH, CH (European patent), CI (OAPI patent), CM (OAPI patent), CS, DE, DE (European patent), DK, DK (European patent), ES, ES (European patent), FI, FR (European patent), GA (OAPI patent), GB, GB (European patent), GN (OAPI patent), GR (European patent), HU, IT (European patent), JP, KP, KR, LK, LU, LU (European patent), MC (European patent), MG, ML (OAPI patent), MN, MR (OAPI patent), MW, NL, NL (European patent), NO, PL, RO, RU, SD, SE, SE (European patent), SN (OAPI patent), TD (OAPI patent), TG (OAPI patent) US (OAPI patent), US.

Published

With international search report.

(54) Title: CAUSATIVE AGENT OF THE MYSTERY SWINE DISEASE, VACCINE COMPOSITIONS AND DIAGNOS-TIC KITS

(57) Abstract

Composition of matter comprising the causative agent of Mystery Swine Disease, Lelystad Agent, in a live, attenuated, dead, or recombinant form, or a part or component of it. Vaccine compositions and diagnostic kits based thereon. Recombinant nucleic acid comprising a Lelystad Agent-specific nucleotide sequence. Peptides comprising a Lelystad Agent-specific amino acid sequence. Lelystad Agent-specific antibodies.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

A constru	PC	Sania	MG	Madagascar
	-	•		Mali
Australia		• • • • • • • • • • • • • • • • • • • •		
Barbados	FR	France		Mongolia
Belgium	GA	Gabon		Mauritania
Burkina Faso	CB	United Kingdom	MW	Malawi
Bulgaria	GN	Guinea	NL	Netherlands
Benin	GR	Greece	NO	Norway
Brazil	HU	Hungary		Poland
Canada	ır	Italy		Romania
Central African Republic	JP	Japan		Sudan
Congo	KP	Democratic People's Republic	_	Sweden
Switzerland		of Korea		Senegal
Côte d'Ivoire	KR	Republic of Korea		Soviet Union
Cameroon	니	Licchtenstein	TD	Chad
Czechoslovakia	LK	Sri Lanka	TG	Togo
Germany	ᄖ	Luxembourg	US	United States of American
Denmark	MC	Monaco		
	Belgium Burkina Faso Bulgaria Benin Brazil Canada Central African Republic Congo Switzerland Côte d'Ivoire Cameroon Czechoslovakia Germany	Australia F1 Barbados FR Belgium GA Burkina Faso GB Bulgaria GN Benin GR Brazil HU Canada IT Central African Republic JP Congo KP Switzerland Côte d'Ivoire KR Cameroon LI Czechoslovakia LK Germany	Australia F1 Finland Barbados FR France Belgium GA Gabon Burkina Faso GB United Kingdom Bulgaria GN Guinea Benin GR Greece Brazil HU Hungary Canada IT Italy Central African Republic JP Japan Congo KP Democratic People's Republic of Korea Côte d'Ivoire KR Republic of Korea Cameroon LI Licchtenstein Czechoslovakia LK Sri Lanka Germany LU Luxembourg	Australia F1 Finland ML Barbados FR France MN Belgium GA Gabon MR Burkina Faso GB United Kingdom MW Bulgaria GN Guinea NL Benin GR Greece NO Brazil HU Hungary PL Canada IT Italy RO Central African Republic JP Japan SD Congo KP Democratic People's Republic SE Switzerland Of Korea SN Côte d'Ivoire KR Republic of Korea SU Cameroon LI Licehtenstein TD Czechoslovakia LK Sri Lanka TG Germany LIJ Luxembourg

1

Title: Causative agent of the Mystery Swine Disease, vaccine compositions and diagnostic kits

FIELD OF THE INVENTION

The invention relates to the isolation, characterization and utilization of the causative agent of the Mystery Swine Disease (MSD). The invention utilizes the discovery of the agent causing the disease and the determination of its genome organization, the genomic nucleotide sequence and the proteins encoded by the genome, for providing protection against and diagnosis of infections, in particular protection against and diagnosis of MSD infections, and for providing vaccine compositions and diagnostic kits, either for use with MSD or with other pathogen-caused diseases.

BACKGROUND

10

15

20

25

30

In the winter and early spring of 1991, the Dutch pig industry was struck by a sudden outbreak of a new disease among breeding sows. Most sows showed anorexia, some aborted late in gestation (around day 110), showed stillbirths or gave birth to mummified fetuses and some had fever. Occasionally, sows with bluish ears were found, therefore the disease was commonly named "Abortus Blauw". The disease in the sows was often accompanied by respiratory distress and death of their young piglets, and often by respiratory disease and growth retardation of older piglets and fattening pigs.

The cause of this epizootic was not known, but the symptoms resembled those of a similar disease occurring in Germany since late 1990, and resembled those of the so-called "Mystery Swine Disease" as seen since 1987 in the mid-west of the United States of America and in Canada (Hill, 1990). Various other names have been used for the disease, in Germany it is known as "Seuchenhafter Spätabort der Schweine", and in North-America it is also known as "Mystery Pig Disease", "Mysterious Reproductive Syndrome", and "Swine Infertility and Respiratory Syndrome". In North-America, Loula (1990) described the general clinical signs as:

2

- 1) Off feed, sick animals of all ages
- 2) Abortions, stillbirths, weak pigs, mummies
- 3) Post farrowing respiratory problems
- 4) Breeding problems.

5

10

15

20

25

30

35

No causative agent has as yet been identified, but encephalomyocarditis virus (EMCV), porcine parvo virus (PPV), pseudorabies virus (PRV), swine influenza virus (SIV), bovine viral diarrhea virus (BVDV), hog cholera virus (HCV), porcine entero viruses (PEV), an influenza-like virus, chlamidiae, leptospirae, have all been named as possible cause (Loula, 1990; Mengeling and Lager, 1990; among others).

SUMMARY OF THE INVENTION

The invention provides a composition of matter comprising isolated Lelystad Agent which is the causative agent of Mystery Swine Disease, said Lelystad Agent essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the Institut Pasteur, Paris, France, deposit number I-1102. The words "essentially corresponding" refer to variations that occur in nature and to artificial variations of Lelystad Agent, particularly those which still allow detection by techniques like hybridization, PCR and ELISA, using Lelystad Agent-specific materials, such as Lelystad Agent-specific DNA or antibodies.

The composition of matter may comprise live, killed, or attenuated isolated Lelystad Agent; a recombinant vector derived from Lelystad Agent; an isolated part or component of Lelystad Agent; isolated or synthetic protein, (poly)peptide, or nucleic acid derived from Lelystad Agent; recombinant nucleic acid which comprises a nucleotide sequence derived from the genome of Lelystad Agent; a (poly)peptide having an amino acid sequence derived from a protein of Lelystad Agent, the (poly)peptide being produced by a cell capable of producing it due to genetic ngineering with appropriate recombinant DNA; an isolated or synthetic antibody which specifically recognizes a part or component of Lelystad Agent;

2

5

10

15

20

25

30

35

3

or a recombinant vector which contains nucleic acid comprising a nucleotide sequence coding for a protein or antigenic peptide derived from Lelystad Agent.

On the DNA level, the invention specifically provides a recombinant nucleic acid, more specifically recombinant DNA, which comprises a Lelystad Agent-specific nucleotide sequence shown in figure 1. Preferably, said Lelystad Agent-specific nucleotide sequence is selected from anyone of the ORFs (Open Reading Frames) shown in figure 1.

On the peptide/protein level, the invention specifically provides a peptide comprising a Lelystad Agent-specific amino acid sequence shown in figure 1.

The invention further provides a vaccine composition for vaccinating animals, in particular mammals, more in particular pigs or swines, to protect them against Mystery Swine Disease, comprising Lelystad Agent, either live, killed, or attenuated; or a recombinant vector which contains nucleic acid comprising a nucleotide sequence coding for a protein or antigenic peptide derived from Lelystad Agent; an antigenic part or component of Lelystad Agent; a protein or antigenic polypeptide derived from, or a peptide mimicking an antigenic component of, Lelystad Agent; and a suitable carrier or adjuvant.

The invention also provides a vaccine composition for vaccinating animals, in particular mammals, more in particular pigs or swines, to protect them against a disease caused by a pathogen, comprising a recombinant vector derived from Lelystad Agent, the nucleic acid of the recombinant vector comprising a nucleotide sequence coding for a protein or antigenic peptide derived from the pathogen, and a suitable carrier or adjuvant.

The invention further provides a diagnostic kit for detecting nucleic acid from Lelystad Agent in a sample, in particular a biological sample such as blood or blood serum, sputum, saliva, or tissue, derived from an animal, in particular a mammal, more in particular a pig or swine,

comprising a nucleic acid probe or primer which comprises a nucleotide sequence derived from the genome of Lelystad Agent, and suitable detection means of a nucleic acid detection assay.

The invention also provides a diagnostic kit for detecting antigen from Lelystad Agent in a sample, in particular a biological sample such as blood or blood serum, sputum, saliva, or tissue, derived from an animal, in particular a mammal, more in particular a pig or swine, comprising an antibody which specifically recognizes a part or component of Lelystad Agent, and suitable detection means of an antigen detection assay.

The invention also provides a diagnostic kit for detecting an antibody which specifically recognizes Lelystad Agent in a sample, in particular a biological sample such as blood or blood serum, sputum, saliva, or tissue, derived from an animal, in particular a mammal, more in particular a pig or swine, comprising Lelystad Agent; an antigenic part or component of Lelystad Agent; a protein or antigenic polypeptide derived from Lelystad Agent; or a peptide mimicking an antigenic component of Lelystad Agent; and suitable detection means of an antibody detection assay.

The invention also relates to a process for diagnosing whether an animal, in particular a mammal, more in particular a pig or swine, is contaminated with the causative agent of Mystery Swine Disease, comprising preparing a sample, in particular a biological sample such as blood or blood serum, sputum, saliva, or tissue, derived from the animal, and examining whether it contains Lelystad Agent nucleic acid, Lelystad Agent antigen, or antibody specifically recognizing Lelystad Agent, said Lelystad Agent being the causative agent of Mystery Swine Disease and essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the Institut Pasteur, Paris, France, deposit number I-1102.

5

DETAILED DESCRIPTION OF THE INVENTION

The invention is a result of combined efforts of the Central Veterinary Institute (CVI) and the Regional Animal Health Services (RAHS) in the Netherlands in trying to find the cause of the new disease MSD. Farms with pigs affected by 5 the new disease were visited by field veterinarians of the RAHS. Sick pigs, specimens of sick pigs, and sow sera taken at the time of the acute and convalescent phase of the disease were sent for virus isolation to the RAHS and the CVI. Paired sera of affected sows were tested for antibodies against ten 10 known pig-viruses. Three different viruses, encephalomyocarditis virus, porcine entero virus type 2, porcine entero virus type 7, and an unknown agent, Lelystad agent (LA), were isolated. Sows which had reportedly been struck with the disease mainly seroconverted to LA, and hardly to any of the 15 other virus isolates or the known viral pathogens. In order to reproduce MSD experimentally, eight pregnant sows were inoculated intranasally with LA at day 84 of gestation. One sow gave birth to seven dead and four live but very weak piglets at day 109 of gestation; the four live piglets died 20 one day after birth. Another sow gave birth at day 116 to three mummified fetuses, six dead piglets and three live piglets; two of the live piglets died within one day. A third sow gave birth at day 117 to two mummified fetuses, eight dead and seven live piglets. The other sows farrowed around day 115 25 and had less severe reproductive losses. The mean number of live piglets from all eight sows at birth was 7.3 and the mean number of dead piglets at birth was 4.6. Antibodies directed against LA were detected in 10 out of 42 serum samples collected before the pigs had sucked. LA was isolated from 30 three piglets that died shortly after birth. These results justify the conclusion that LA is the causal agent of mystery swine disease.

LA gr ws with a cytopathic effect in pig lung macrophages

35 and can be identified by staining in an immuno-peroxidasemonolayer assay (IPMA) with postinfection sera of pigs c 829

6

and b 822, or with any of the other postinfection sera of the SPF pigs listed in table 5. Antibodies to LA can be identified by indirect staining procedures in IPMA. LA did not grow in any other cell system tested. LA was not neutralized by homologous sera, or by sera directed against a set of known viruses (Table 3). LA did not haemagglutinate with the red blood cells tested. LA is smaller then 200 nm since it passes through a filtre with pores of this size. LA is sensitive to chloroform. The above results show that Lelystad agent is not yet identified as belonging to a certain virus group or other microbiological species. It has been deposited 5 June 1991 under number I-1102 at Institute Pasteur, France.

10

15

20

25

30

The genome organization, nucleotide sequences, and polypeptides derived therefrom, of LA have now been found. These data together with those of others (see below) justify classification of LA (hereafter also called Lelystad Virus or LV) as a member of a new virus family, the Arteriviridae. As prototype virus of this new family we propose Equine Arteritis Virus (EAV), the first member of the new family of which data regarding the replication strategy of the genome and genome organization became available (de Vries et al., 1990, and references therein). On the basis of a comparison of our sequence data with those available for Lactate Dehydrogenase-Elevating Virus (LDV; Godeny et al., 1990), we propose that LDV is also a member of the Arteriviridae.

Given the genome organization and translation strategy of Arteriviridae it seems appropriate to place this new virus family into the superfamily of coronaviruses (Snijder et al., 1990a).

Arteriviruses have in common that their primary target cells in respective hosts are macrophages. Replication of LDV has been shown to be restricted to macrophages in its host, the mouse, whereas this strict propensity for macrophages has not been resolved yet for EAV, and LV.

35 Arteriviruses are spherical enveloped particles having a diameter of 45-60 nm and containing an icosahedral

7

nucleocapsid (Brinton-Darnell and Plagemann, 1975; Horzinek et al., 1971; Hyllseth, 1973).

The genome of Arteriviridae consists of a positive stranded polyadenylated RNA molecule with a size of about 12-13 kilobases (kb) (Brinton-Darnell and Plageman, 1975; van der Zeijst et al., 1975). EAV replicates via a 3' nested set of six subgenomic mRNAs, ranging in size from 0.8 to 3.6 kb, which are composed of a leader sequence, derived from the 5' end of the genomic RNA, which is joined to the 3' terminal body sequences (de Vries et al., 1990).

Here we show that the genome organization and replication strategy of LV is similar to that of EAV, coronaviruses and toroviruses, whereas the genome sizes of the latter viruses are completely different from those of LV and EAV.

10

25

30

35

The genome of LV consists of a genomic RNA molecule of about 14.5 to 15.5 kb in length (estimated on a neutral agarose gel), which replicates via a 3' nested set of subgenomic RNAs. The subgenomic RNAs consist of a leader sequence, the length of which is yet unknown, which is derived from the 5' end of the genomic RNA and which is fused to the body sequences derived from the 3' end of the genomic RNA (Fig. 2).

The nucleotide sequence of the genomic RNA of LV was determined from overlapping cDNA clones. A consecutive sequence of 15,088 bp was obtained covering nearly the complete genome of LV (Fig. 1). In this sequence 8 open reading frames (ORFs) were identified: ORF 1A, ORF 1B, and ORFs 2 to 7.

ORF 1A and ORF 1B are predicted to encode the viral replicase or polymerase, whereas ORFs 2 to 6 are predicted to encode structural viral membrane (envelope) associated proteins. ORF 7 is predicted to encode the structural viral nucleocapsid protein.

Because the products of ORF 6 and ORF 7 of LV show a significant similarity with VpX and Vp1 of LDV respectively,

8

it is predicted that the sequences of ORFs 6 and 7 will also be highly conserved among antigenic variants of LV.

The complete nucleotide sequence of figure 1 and all the sequences and protein products encoded by ORFs 1 to 7 and possible other ORFs located in the sequence of figure 1, are especially suited for vaccine development, in whatever sense, and for the development of diagnostic tools, in whatever sense. All possible modes are well known to persons skilled in the art.

Since it is now possible to unambigously identify LA, the causal agent of MSD, it can now be tested whether pigs are infected with LA or not. Such diagnostic tests have until now not been available.

The test can be performed by virus isolation in macrophages, or other cell culture systems in which LA might grow,
and staining the infected cultures with antibodies directed
against LA (such as postinfection sera c 829 or b 822), but it
is also feasible to develop and employ other types of
diagnostic tests.

For instance, it is possible to use direct or indirect immunohistological staining techniques, i.e. with antibodies directed to LA that are labeled with fluorescent compounds such as isothiocyanate, or labeled with enzymes such as horse-radish peroxidase. These techniques can be used to detect LA antigen in tissue sections or other samples from pigs suspected to have MSD. The antibodies needed for these tests can be c 829 or b 822 or other polyclonal antibodies directed against LA, but monoclonal antibodies directed against LA can also be used.

Furthermore, since the nature and organization of the genome of LA and the nucleotide sequence of this genome have been determined, LA specific nucleotide sequences can be identified and used to develop oligonucleotide sequences that can be used as probes or primers in diagnostic techniques such as hybridization, polymerase chain reaction, or any other

conflète nucleonée sequence.

15

20

25

30

35

PCT/NL92/00096 WO 92/21375

9

techniques that are developed to specifically detect nucleotide acid sequences.

10

15

25

30

35

It is also possible to test for antibodies directed against LA. Table 5 shows that experimentally infected pigs rapidly develop antibodies against LA, and table 4 shows that pigs in the field also have strong antibody responses against LA. Thus it can now also be determined whether pigs have been infected with LA in the past. Such testing is of utmost importance in determining whether pigs or pig herds or pig populations or pigs in whole regions or countries are free of LA. The test can be done by using the IPMA as described, but it is also feasible to develop and employ other types of diagnostic tests for the detection of antibodies directed against LA.

LA specific proteins, polypeptides, and peptides, or peptide sequences mimicking antigenic components of LA, can be used in such tests. Such proteins can be derived from the LA itself, but it is also possible to make such proteins by recombinant DNA or peptide synthesis techniques. These tests 20 can use specific polyclonal and/or monoclonal antibodies directed against LA or specific components of LA, and/or use cell systems infected with LA or cell systems expressing LA antigen. The antibodies can be used, for example, as a means for immobilizing the LA antigen (a solid surface is coated with the antibody whereafter the LA antigen is bound by the antibody) which leads to a higher specificity of the test, or can be used in a competitive assay (labeled antibody and unknown antibody in the sample compete for available LA antigen).

Furthermore, the above described diagnostic possibilities can be applied to test whether other animals, such as mammals, birds, insects or fish, or plants, or other living creatures, can be, or are, or have been infected with LA or related agents.

Since LA has now been identified as the causal agent of MSD, it is possible to make a vaccine to protect pigs against

10

this disease. Such a vaccine can simply be made by growing LA in pig lung macrophage cultures, or in other cell systems in which LA grows. LA can then be purified or not, and killed by established techniques, such as inactivation with formaline or ultra-violet light. The inactivated LA can then be combined with adjuvantia, such as Freund's adjuvans or aluminum hydroxide or others, and this composition can then be injected in pigs.

Dead vaccines can also be made with LA protein preparations derived from LA infected cultures, or derived from cell systems expressing specifically LA protein through DNA recombinant techniques. Such subunits of LA would then be treated as above, and this would result in a subunit vaccine.

10

15

20

25

30

35

Vaccines using even smaller components of LA, such as polypeptides, peptides, or peptides mimicking antigenic components of LA are also feasible for use as dead vaccine.

Dead vaccines against MSD can also be made by recombinant DNA techniques through which the genome of LA, or parts thereof, is incorporated in vector systems such as vaccinia virus, herpesvirus, pseudorabies virus, adeno virus, baculo virus or other suitable vector systems that can so express LA antigen in appropriate cells systems. LA antigen from these systems can then be used to develop a vaccine as above, and pigs, vaccinated with such products would develop protective immune responses against LA.

Vaccines against MSD can also be based on live preparations of LA. Since only young piglets and pregnant sows seem to be seriously affected by infection with LA, it is possible to use unattenuated LA, grown in pig lung macrophages, as vaccine for older piglets, or breeding gilts. In this way sows can be protected against MSD before they get pregnant, which results in protection against abortions and stillbirth, and against congenital infections of piglets. Also the maternal antibody that these vaccinated sows give to their offspring would protect their offspring against the disease.

11

Attenuated vaccines (modified-live-vaccines) against MSD can be made by serially passaging LA in pig lung macrophages, in lung macrophages of other species, or in other cell systems, or in other animals, such as rabbits, until it has lost its pathogenicity.

Live vaccines against MSD can also be made by recombinant DNA techniques through which the genome of LA, or parts thereof, is incorporated in vector systems such as vaccinia virus, herpesvirus, pseudorabies virus, adeno virus or other suitable vector systems that can so express LA antigen. Pigs, vaccinated with such live vector systems would then develop protective immune responses against LA.

Lelystad agent itself would be specifically suited to use as a live vector system. Foreign genes could be inserted in the genome of LA and could be expressing the corresponding protein during the infection of the macrophages. This cell, which is an antigen presenting cell, would process the foreign antigen and present it to B-lymfocytes and T-lymfocytes which will respond with the appropriate immune respons.

Since LA seems to be very cell specific and possibly also very species specific, this vector system might be a very safe system, which does not harm other cells or species.

SHORT DESCRIPTION OF THE DRAWINGS

5

10

20

25 FIG. 1 shows the nucleotide sequence of the LV genome.

The deduced amino acid sequence of the identified ORFs are shown. The methionines encoded by the (putative) ATG start sites are indicated in bold and putative N-glycosylation sites are underlined. Differences in the nucleotide and amino acid sequence, as identified by sequencing different cDNA clones, are shown. The nucleotide sequence of primer 25, which has been used in hybridization experiments (see Fig. 2 and section "results"), is underlined.

FIG. 2 shows the organization of the LV genome. The cDNA cl nes, which have been used for the determination of the nucleotide sequence, are indicated in the upper part of the

figure. The parts of the clones, which were sequenced, are indicated in black. In the lower part of the figure the ORFs, identified in the nucleotide sequence, and the subgenomic set of mRNAs, encoding these ORFs, are shown. The dashed lines in the ORFs represent alternative initiation sites (ATGs) of these ORFs. The leader sequence of the genomic and subgenomic RNAs is indicated by a solid box.

FIG. 3 shows the growth characteristics of LA:

- empty squares titre of cell-free virus;
- 10 solid squares titre of cell-associated virus;
 - solid line percentage cytopathic effect (CPE).

MATERIALS AND METHODS

Sample collection

- Samples and pigs were collected from farms where a herd epizootic of MSD seemed to occur. Important criteria for selecting the farm as being affected with MSD were: sows that were off feed, the occurrence of stillbirth and abortion, weak offspring, respiratory disease and death among young piglets.
- 20 Samples from four groups of pigs have been investigated:
 - (1) tissue samples and an oral swab from affected piglets from the field (table 1A),
 - (2) blood samples and oral swabs from affected sows in the field (tables 1B and 4),
- 25 (3) tissue samples, nasal swabs and blood samples collected from specific-pathogen-free (SPF) pigs experimentally infected by contact with affected sows from the field or
 - (4) tissue samples, nasal swabs and blood samples collected from specific-pathogen-free (SPF) pigs experimentally infected
- 30 by inoculation with blood samples of affected sows from the field (tables 2 and 5).

Sample preparation

Samples for virus isolation were obtained from piglets and sows which on clinical grounds were suspected to have MSD,

13

and from experimentally infected SPF pigs, sows and their piglets.

Tissue samples were cut on a cryostat microtome and sections were submitted for direct immunofluorescence testing (IFT) with conjugates directed against various pig pathogens.

10% Suspensions of tissues samples were prepared in Hank's BSS supplemented with antibiotics, and oral and nasal swabs were soaked in Hank's BSS supplemented with antibiotics. After one hour at room temperature, the suspensions were clarified for 10 min at 6000 g, and the supernatant was stored at -70°C for further use. Leucocyte fractions were isolated from EDTA or heparin blood as described earlier (Wensvoort and Terpstra, 1988), and stored at -70°C. Plasma and serum for virus isolation was stored at -70°C.

Serum for serology was obtained from sows suspected to be in the acute phase of MSD, a paired serum was taken 3-9 weeks later. Furthermore, sera were taken from the experimentally infected SPF pigs at regular intervals and colostrum and serum was taken from experimentally infected sows and their piglets. Sera for serology were stored at -20°C.

Cells

5

10

15

20

25

30

35

Pig lung macrophages were obtained from lungs of 5-6 weeks old SPF pigs or from lungs of adult SPF sows from the Central Veterinary Institute's own herd. The lungs were washed five to eight times with phosphate buffered saline (PBS). Each aliquot of washing fluid was collected and centrifuged for 10 min at 300 g. The resulting cell pellet was washed again in PBS and resuspended in cell culture medium (160 ml medium 199, supplemented with 20 ml 2.95% tryptose phosphate, 20 ml foetal bovine serum (FBS), and 4.5 ml 1.4% sodium bicarbonate) to a concentration of 4 x 10⁷ cells/ml. The cell suspension was then slowly mixed with an equal volume of DMSO mix (6.7 ml of above medium, 1.3 ml FBS, 2 ml dimethylsulfoxide 97%), aliquoted in 2 ml ampoules and stored in liquid nitrogen.

Macrophages from one ampoule were prepared for cell culture by washing twice in Earle's MEM, and resuspended in 30 ml growth medium (Earle's MEM, supplemented with 10% FBS, 200 U/ml penicillin, 0.2 mg/ml streptomycine, 100 U/ml mycostatin, and 0.3 mg/ml glutamine). PK-15 cells (American Type Culture Collection, CCL33) and SK-6 cells (Kasza et al., 1972) were grown as described by Wensvoort et al. (1989). Secondary porcine kidney (PK2) cells were grown in Earle's MEM, supplemented with 10% FBS and the above antibiotics. All cells were grown in a cell culture cabinet at 37°C and 5% CO2.

Virus isolation procedures.

10

15

20

25

30

Virus isolation was performed according to established techniques using PK2, PK-15 and SK-6 cells, and pig lung macrophages. The former three cells were grown in 25 ml flasks (Greiner), and inoculated with the test sample when monolayers had reached 70-80% confluency. Macrophages were seeded in 100 µl aliquots in 96-well microtiter plates (Greiner) or in larger volumes in appropriate flasks, and inoculated with the test sample within one hour after seeding. The cultures were observed daily for cytopathic effects (CPE), and frozen at -70°C when 50-70% CPE was reached or after five to ten days of culture. Further passages were made with freeze-thawed material of passage level 1 and 2 or higher. Some samples were also inoculated into nine to twelve day old embryonated hen eggs. Allantoic fluid was subinoculated two times using an incubation interval of three days and the harvest of the third passage was examined by haemagglutination at 4°C using chicken red blood cells, and by an ELISA specifically detecting nucleoprotein of influenza A viruses (De Boer et al., 1990).

Serology

Sera were tested in haemagglutinating inhibition tests
(HAI) to study the development of antibody against
haemagglutinating encephalitis virus (HEV), and swine
influenza viruses H1N1 and H3N2 according to the protocol of

15

Masurel (1976). Starting dilutions of the sera in HAI were 1:9, after which the sera were diluted twofold.

Sera were tested in established enzyme-linked immunosorbent assays (ELISA) for antibodies against the glycoprotein gI of pseudorabies virus (PRV; Van Oirschot et al., 1988), porcine parvo virus (PPV; Westenbrink et al., 1989), bovine viral diarrhoea virus (BVDV; Westenbrink et al., 1986), and hog cholera virus (HCV; Wensvoort et al., 1988). Starting dilutions in the ELISA's were 1:5, after which the sera were diluted twofold.

Sera were tested for neutralizing antibodies against 30-300 TCID₅₀ of encephalomyocarditis viruses (EMCV), porcine enteroviruses (PEV), and Lelystad agent (LA) according to the protocol of Terpstra (1978). Starting dilutions of the sera in the serum neutralization tests (SNT) were 1:5, after which the sera were diluted twofold.

Sera were tested for binding with LA in an immunoperoxidase-monolayer assay (IPMA). Lelystad agent (LA; code: CDI-NL-2.91) was seeded in microtiter plates by adding 50 ml 20 growth medium containing 100 $TCID_{50}$ LA to the wells of a microtiter plate containing freshly seeded lung macrophages. The cells were grown for two days and then fixed as described (Wensvoort, 1986). The test sera were diluted 1:10 in 0.15 M NaCl, 0.05% Tween 80, 4% horse serum, or diluted further in 25 fourfold steps, added to the wells and then incubated for one hour at 37°C. Sheep-anti-pig immunoglobulins (Ig) conjugated to horse radish peroxidase (HRPO, DAKO) were diluted in the same buffer and used in a second incubation for one hour at 37°C, after which the plates were stained as described 30 (Wensvoort et al., 1986). An intense red staining of the cytoplasm of infected macrophages indicated binding of the sera to LA.

Virus identification procedures

10

15

The identity of cytopathic isolates was studied by determining the buoyant density in CsCl, by stimating

16

particle size in negatively stained preparations through electron microscopy, by determining the sensitivity of the isolate to chloroform and by neutralizing the CPE of the isolate with sera with known specificity (Table 3). Whenever an isolate was specifically neutralized by a serum directed against a known virus, the isolate was considered to be a representative of this known virus.

Isolates that showed CPE on macrophage cultures were also studied by staining in IPMA with postinfection sera of pigs c 829 or b 822. The isolates were reinoculated on macrophage cultures and fixed at day 2 after inoculation before the isolate showed CPE. Whenever an isolate showed reactivity in IPMA with the postinfection sera of pigs c 829 or b 822, the isolate was considered to be a representative of the Lelystad agent. Representatives of the other isolates grown in macrophages or uninfected macrophages were also stained with these sera to check the specificity of the sera.

Further identification of Lelystad agent.

10

15

20

Lelystad agent was further studied by haemagglutination at 4°C and 37°C with chicken, guinea pig, pig, sheep, or human 0 red blood cells. SIV, subtype H3N2, was used as positive control in the haemagglutination studies.

The binding of pig antisera specifically directed against pseudorabies virus (PRV), transmissible gastroenteritis virus (TGE), porcine epidemic diarrhoea virus (PED), haemagglutinating encephalitis virus (HEV), African swine fever virus (ASFV), hog cholera virus (HCV) and swine influenza virus (SIV) type H1N1 and H3N2, of bovine antisera specifically directed against bovine herpes viruses type 1 and 4 (BHV 1 and 4), malignant catarrhal fever (MCF), parainfluenza virus 3 (PI3), bovine respiratory syncitial virus (BRSV) and bovine leukemia virus (BLV), and of avian antisera specifically directed against avian leukemia virus (ALV) and inf ctious bronchitis virus (IBV) was studied with

PCT/NL92/00096 WO 92/21375

species-Ig specific HRPO conjugates in an IPMA on LA infected and uninfected pig lung macrophages as described above.

We also tested in IPMA antisera of various species directed against mumps virus, Sendai virus, canine distemper 5 virus, rinderpest virus, measles virus, pneumonia virus of mice, bovine respiratory syncytial virus, rabies virus, foamy virus, maedi-visna virus, bovine and murine leukemia virus, human, feline and simian immunodeficiency virus, lymphocytic choriomeningitis virus, feline infectious peritonitis virus, mouse hepatitis virus, Breda virus, Hantaan virus, Nairobi sheep disease virus, Eastern, Western and Venezuelan equine encephalomyelitis virus, rubella virus, equine arteritis virus, lactic dehydrogenase virus, yellow fever virus, tickborn encephalitis virus and hepatitis C virus.

10

15

20

25

30

35

LA was blindly passaged in PK2, PK-15, and SK-6 cells, and in embryonated hen eggs. After two passages, the material was inoculated again into pig lung macrophage cultures for reisolation of LA.

LA was titrated in pig lung macrophages prior to and after passing through a 0.2 micron filter (Schleicher and Schuell). The LA was detected in IPMA and by its CPE. Titres were calculated according to Reed and Muench (1938).

We further prepared pig antisera directed against LA. Two SPF pigs (21 and 23) were infected intranasally with 10^5 TCID₅₀ of a fifth cell culture passage of LA. Two other SPF pigs (25 and 29) were infected intranasally with a fresh suspension of the lungs of an LA-infected SPF piglet containing 105 TCID50 LA. Blood samples were taken at 0, 14, 28, and 42 days postinfection (dpi).

We further grew LA in porcine alveolar macrophages to determine its growth pattern over time. Porcine alveolar macrophages were seeded in F25 flasks (Greiner), infected with LA with a multiplicity of infection of 0.01 TCID50 per cell. At 8, 16, 24, 32, 40, 48, 56, and 64 h after infection, one flask was examined and the percentage of CPE in relation to a noninfected control culture was det rmined. The culture medium

5

10

15

20

25

35

18

was then harvested and replaced with an equal volume of phosphate-buffered saline. The medium and the flask were stored at -70° C. After all cultures had been harvested, the LA titres were determined and expressed as log TCID₅₀ ml⁻¹.

The morphology of LA was studied by electronmicroscopy. LA was cultured as above. After 48 h, the cultures were freeze-thawed and centrifuged for 10 min at 6000 x g. An amount of 30 ml supernatant was then mixed with 0.3 ml LAspecific pig serum and incubated for 1.5 h at 37°C. After centrifugation for 30 min at $125,000 \times g$, the resulting pellet was suspended in 1% Seakem agarose ME in phosphate-buffered saline at 40°C. After coagulation, the agarose block was immersed in 0.8% glutaraldehyde and 0.8% osmiumtetroxide (Hirsch et al., 1968) in veronal/acetate buffer, pH 7.4 (230 mOsm/kg $\rm H_2O$), and fixed by microwave irradiation. This procedure was repeated once with fresh fixative. The sample was washed with water, immersed in 1% uranyl acetate, and stained by microwave irradiation. Throughout all steps, the sample was kept at 0°C and the microwave (Samsung RE211D) was set at defrost for 5 min. Thin sections were prepared with standard techniques, stained with lead citrate (Venable et al., 1965), and examined in a Philips CM 10 electron microscope.

We further continued isolating LA from sera of pigs originating from cases of MSD. Serum samples originated from the Netherlands (field case the Netherlands 2), Germany (field cases Germany 1 and Germany 2; courtesy Drs. Berner, München and Nienhoff, Münster), and the United States [experimental case United States 1 (experiment performed with ATCC VR-2332; courtesy Drs. Collins, St. Paul and Chladek, St. Joseph), and field cases United States 2 and United States 2; courtesy Drs. van Alstine, West Lafayette and Slife, Galesburg]. All samples were sent to the "Centraal Diergeneeskundig Instituut, Lelystad" for LA diagnosis. All samples were used for virus isolati n on porcine alveolar macrophages as described. Cytophatic isolates were passaged three times and identified

as LA by specific immunostaining with anti-LA post infection sera b 822 and c 829.

We also studied the antigenic relationships of isolates NL1 (the first LA isolate; code CDI-NL-2.91), NL2, GE1, GE2, US1, US2, and US3. The isolates were grown in macrophages as above and were tested in IPMA with a set of field sera and two sets of experimental sera. The sera were also tested in IPMA with uninfected macrophages.

The field sera were: Two sera positive for LV (TH-187 and 10 TO-36) were selected from a set of LA-positive Dutch field sera. Twenty-two sera were selected from field sera sent from abroad to Lelystad for serological diagnosis. The sera originated from Germany (BE-352, BE-392 and NI-f2; courtesy Dr. Berner, München and Dr. Nienhoff, Münster), the United 15 Kingdom (PA-141615, PA-141617 and PA-142440; courtesy Dr. Paton, Weybridge), Belgium (PE-1960; courtesy Prof. Pensaert, Gent), France (EA-2975 and EA-2985; courtesy Dr. Albina, Ploufragan), the United States (SL-441, SL-451, AL-RP9577, AL-P10814/33, AL-4994A, AL-7525, JC-MN41, JC-MN44 and JC-MN45; 20 courtesy Dr. Slife, Galesburg, Dr. van Alstine, West Lafayette, and Dr. Collins, St. Paul), and Canada (RB-16, RB-19, RB-22 and RB-23; courtesy Dr. Robinson, Quebec).

The experimental sera were: The above described set of sera of pigs 21, 23, 25, and 29, taken at dpi 0, 14, 28, and 42. A set of experimental sera (obtained by courtesy of Drs. Chladek, St. Joseph, and Collins, St. Paul) that originated from four six-month-old gilts that were challenged intranasally with $10^{5.1}$ TCID₅₀ of the isolate ATCC VR-2332. Bloodsamples were taken from gilt 2B at 0, 20, 36, and 63 dpi; 30 from gilt 9G at 0, 30, 44, and 68 dpi; from gilt 16W at 0, 25, 40, and 64 dpi; and from gilt 16Y at 0, 36, and 64 dpi.

25

35

To study by radio-immunoprecipitation assay (RIP; de Mazancourt et al., 1986) the proteins of LA in infected porcine alveolar macrophages, we grew LA-infected and uninfected macrophages for 16 hours in the presence of labeling medium containing 35S-Cysteine. Then the labeled cells

20

were precipitated according to standard methods with 42 dpi post-infection sera of pig b 822 and pig 23 and with serum MN8 which was obtained 26 days after infecting a sow with the isolate ATCC VR-2332 (coutesy Dr. Collins, St. Paul). The precipitated proteins were analysed by electrophoresis in a 12% SDS-PAGE gel and visualized by fluorography.

To characterize the genome of LA, we extracted nuclear DNA and cytoplasmatic RNA from macrophage cultures that were infected with LA and grown for 24 h or were left uninfected.

The cell culture medium was discarded, and the cells were washed twice with phosphate-buffered saline. DNA was extracted as described (Strauss, 1987). The cytoplasmic RNA was extracted as described (Favaloro et al., 1980), purified by centrifugation through a 5.7 M CsCl cushion (Setzer et al., 1980), treated with RNase-free DNase (Pharmacia), and analyzed in an 0.8% neutral agarose gel (Moormann and Hulst, 1988).

Cloning and Sequencing

5

20

25

30

35

To clone LV RNA, intracellular RNA of LV-infected porcine lung alveolar macrophages (10 μ g) was incubated with 10 mM methylmercury hydroxide for 10 minutes at room temperature. The denatured RNA was incubated at 42°C with 50 mM Tris-HCl, pH 7.8, 10 mM MgCl₂, 70 mM KCl, 0.5 mM dATP, dCTP, dGTP and dTTP, 0.6 μ g calf thymus oligonucleotide primers pd(N)6 (Pharmacia) and 300 units of Moloney murine leukaemia virus reverse transcriptase (Bethesda Research Laboratories) in a total volume of 100 μ l. 20 mM EDTA was added after 1 hr; the reaction mixture was then extracted with phenol/chloroform, passed through a Sephadex G50 column and precipitated with ethanol.

For synthesis of the second cDNA strand, DNA polymerase I (Boehringer) and RNase H (Pharmacia) were used (Gübler and Hoffman, 1983). To generate blunt ends at the termini, double-stranded cDNA was incubated with T4 DNA polymerase (Pharmacia) in a reaction mixture which contained 0.05 mM deoxynucleotide-triphosphates. Subsequently, cDNA was fractionated in a 0.8%

21

neutral agarose gel (Moormann and Hulst, 1988). Fragments of 1 to 4 kb were electroeluted, ligated into the SmaI site of pGEM-4Z (Promega), and used for transformation of Escherichia coli strain DH5α (Hanahan, 1985). Colony filters were hybridized with a ³²P-labelled single-stranded cDNA probe. The probe was reverse transcribed from LV RNA which had been fractionated in a neutral agarose gel (Moormann and Hulst, 1988). Before use the single stranded DNA probe was incubated with cytoplasmic RNA from mock-infected lung alveolar macrophages.

The relationship between LV cDNA clones was determined by restriction enzyme analysis and by hybridization of Southern blots of the digested DNA with nick-translated cDNA probes (Sambrook et al., 1989).

10

15

20

25

30

35

To obtain the 3' end of the viral genome, we constructed a second cDNA library, using oligo (dT)₁₂₋₁₈ and a 3' LV specific oligonucleotide that was complementary to the minusstrand viral genome as a primer in the first-strand reaction. The reaction conditions for first- and second-strand synthesis were identical to those described above. This library was screened with virus-specific 3' end oligonucleotide probes.

Most part (> 95%) of the cDNA sequence was determined with an Automated Laser Fluorescent A.L.F.TM DNA sequencer from Pharmacia LKB. Fluorescent oligonucleotide primer directed sequencing was performed on double-stranded DNA using the AutoReadTM Sequencing Kit (Pharmacia) essentially according to procedures C and D described in the AutoreadTM Sequencing Kit protocol. Fluorescent primers were prepared with FluorePrimeTM (Pharmacia). The remaining part of the sequence was determined via double-stranded DNA sequencing using oligonucleotide primers in conjunction with a T7 polymerase based sequencing kit (Pharmacia) and α -32S-dATP (Amersham). Sequence data were analysed using the sequence analysis programs PCGENE (Intelligenetics, Inc, Mountain View, USA) and FASTA (Pearson and Lipman, 1988).

PCT/NL92/00096 WO 92/21375

22

Experimental reproduction of MSD.

Fourteen conventionally reared pregnant sows that were pregnant for 10-11 weeks were tested for antibody against LA in the IPMA. All were negative. Then two groups of four sows 5 were formed and brought to the CVI. At week 12 of gestation, these sows were inoculated intranasally with 2 ml LA (passage level 3, titre $10^{4.8}\ \text{TCID}_{50}/\text{ml})$. Serum and EDTA blood samples were taken at day 10 after inoculation. Food intake, rectal temperature, and other clinical symptoms were observed daily. At farrowing, the date of birth and the number of dead and living piglets per sow were recorded, and samples were taken for virus isolation and serology.

RESULTS

10

20

25

30

35

Immunofluorescence 15

Tissue sections of pigs with MSD were stained in an IFT with FITC-conjugates directed against African swine fever virus, hog cholera virus, pseudorabies virus, porcine parvo virus, porcine influenza virus, encephalomyocarditis virus and Chlamydia psittaci. The sections were stained, examined by fluorescent microscopy and all were found negative.

Virus isolation from piglets from MSD affected farms.

Cytopathic isolates were detected in macrophage cultures inoculated with tissue samples of MSD affected, two-to-ten day old piglets. Sixteen out of 19 piglets originating from five different farms were positive (Table 1A). These isolates all reacted in IPMA with the post-infection serum of pig c 829, whereas non-inoculated control cultures did not react. The isolates therefore were representatives of LA. One time a cytopathic isolate was detected in an SK-6 cell culture inoculated with a suspension of an oral swab from a piglet from a sixth farm (farm VE) (Table 1A). This isolate showed characteristics of the picorna viridae and was neutralized by serum specific for PEV 2, therefore the isolate was identified

23

as PEV 2 (Table 3). PK2, PK-15 cells and hen eggs inoculated with samples from this group remained negative throughout.

Virus isolation from sows from MSD affected farms.

5

15

20

25

Cytopathic isolates were detected in macrophage cultures inoculated with samples of MSD affected sows. 41 out of 63 sows originating from 11 farms were positive (Table 1B). These isolates all reacted in IPMA with the post-infection serum of pig b 822 and were therefore representatives of LA. On one 10 occasion a cytopathic isolate was detected in a PK2 cell culture inoculated with a suspension of a leucocyte fraction of a sow from farm HU (Table 1B). This isolate showed characteristics of the picorna viridae and was neutralized by serum specific for EMCV, therefore the isolate was identified as EMCV (Table 3). SK-6, PK-15 cells and hen eggs inoculated with samples from this group remained negative.

Virus isolation from SPF pigs kept in contact with MSD affected sows.

Cytopathic isolates were detected in macrophage cultures inoculated with samples of SPF pigs kept in contact with MSD affected sows. Four of the 12 pigs were positive (Table 2). These isolates all reacted in IPMA with the post-infection serum of pig c 829 and of pig b 822 and were therefore representatives of LA. Cytopathic isolates were also detected in PK2, PK-15 and SK-6 cell cultures inoculated with samples of these SPF pigs. Seven of the 12 pigs were positive (Table 2), these isolates were all neutralized by serum directed against PEV 7. One of these seven isolates was studied further and other characteristics also identified the isolate as PEV 7 30 (Table 3).

Virus isolation from SPF pigs inoculated with blood of MSD affected sows.

35 Cytopathic isolates were detected in macrophage cultures inoculated with samples of SPF pigs inoculated with blood of

24

MSD affected sows. Two out of the eight pigs were positive (Table 2). These isolates all reacted in IPMA with the post-infection serum of pig c 829 and of pig b 822 and were therefore representatives of LA. PK2, SK-6 and PK-15 cells inoculated with samples from this group remained negative.

Summarizing, four groups of pigs were tested for the presence of agents that could be associated with mystery swine disease (MSD).

In group one, MSD affected piglets, the Lelystad agent (LA) was isolated from 16 out of 20 piglets; one time PEV 2 was isolated.

In group two, MSD affected sows, the Lelystad agent was isolated from 41 out of 63 sows; one time EMCV was isolated. Furthermore, 123 out of 165 MSD affected sows seroconverted to the Lelystad agent, as tested in the IPMA. Such massive seroconversion was not demonstrated against any of the other viral pathogens tested.

In group three, SPF pigs kept in contact with MSD

20 affected sows, LA was isolated from four of the 12 pigs; PEV 7

was isolated from seven pigs. All 12 pigs pigs seroconverted

to LA and PEV 7.

In group four, SPF pigs inoculated with blood of MSD affected sows, the LA was isolated from two pigs. All eight pigs seroconverted to LA.

Serology of sows from MSD affected farms.

15

25

30

35

Paired sera from sows affected with MSD were tested against a variety of viral pathogens and against the isolates obtained during this study (Table 4). An overwhelming antibody respons directed against LA was measured in the IPMA (75% of the sows seroconverted, in 23 out of the 26 farms seroconversion was found), whereas with none of the other viral pathogens a clear pattern of seroconversion was found. Neutralizing antibody directed against LA was not detected.

25

Serology of SPF pigs kept in contact with MSD affected sows.

All eight SPF pigs showed an antibody respons in the IPMA against LA (Table 5). None of these sera were positive in the IPMA performed on uninfected macrophages. None of these sera were positive in the SNT for LA. The sera taken two weeks after contact had all high neutralizing antibody titres (>1280) against PEV 7, whereas the pre-infection sera were negative (<10), indicating that all pigs had also been infected with PEV 7.

10

15

35

Serology of SPF pigs inoculated with blood of MSD affected sows.

All eight SPF pigs showed an antibody response in the IPMA against LA (Table 5). None of these sera were positive in the IPMA performed on uninfected macrophages. None of these sera were positive in the SNT for LA. The pre- and two weeks post-inoculation sera were negative (<10) against PEV 7.

Further identification of Lelystad agent.

20 LA did not haemagglutinate with chicken, guinea pig, pig, sheep, or human O red blood cells.

LA did not react in IPMA with sera directed againts PRV, TGE, PED, ASFV, etc.

After two blind passages, LA did not grow in PK2, PK-15, or SK-6 cells, or in embryonated hen eggs, inoculated through the allantoic route.

LA was still infectious after it was filtred through a 0.2 micron filter, titres before and after filtration were $10^{5.05}$ and $10^{5.3}$ TCID₅₀ as detected by IPMA.

30 Growth curve of LA (see figure 3). Maximum titres of cell-free virus were approximately $10^5 \cdot 5$ TCID₅₀ ml⁻¹ from 32-48 h after inoculation. After that time the macrophages were killed by the cytopathic effect of LA.

Electronmicroscopy. Clusters of spherical LA particles were found. The particles measured 45-55 nm in diameter and contained a 30-35 nm nucleocapsid that was surrounded by a

lipid bilayer membrane. LA particles were not found in infected cultures that were treated with negative serum or in negative control preparations.

Isolates from the Netherlands, Germany, and the United States. All seven isolates were isolated in porcine alveolar macrophages and passaged three to five times. All isolates caused a cytopathic effect in macrophages and could be specifically immunostained with anti-LA sera b 822 and the 42 dpi serum 23. The isolates were named NL2, GE1, GE2, US1, US2, and US3.

Antigenic relationships of isolates NL1, NL2, GE1, GE2, US1, US2, and US3. None of the field sera reacted in IPMA with uninfected macrophages but all sera contained antibodies directed against one or more of the seven isolates (Table 7). None of the experimental sera reacted in IPMA with uninfected macrophages, and none of the 0 dpi experimental sera reacted with any of the seven isolates in IPMA (Table 8). All seven LA isolates reacted with all or most of the sera from the set of experimental sera of pigs 21, 23, 25, and 29, taken after 0 dpi. Only the isolates US1, US2, and US3 reacted with all or most of the sera from the set of experimental sera of gilts 2B, 9G, 16W, and 16Y, taken after 0 dpi.

Radioimmunoprecipitation studies. Seven LA-specific proteins were detected in LA-infected macrophages but not in uninfected macrophages precipitated with the 42 dpi sera of pigs b 822 and 23. The proteins had estimated molecular weights of 65, 39, 35, 26, 19, 16, and 15 kilodalton. Only two of these LA-specific proteins, of 16 and 15 kilodalton, were also precipitated by the 26 dpi serum MN8.

30

35

10

15

20

25

Sequence and organization of the genome of LV

The nature of the genome of LV was determined by
analyzing DNA and RNA from infected porcine lung alveolar
macrophages. No LV-specific DNA was detected. However, we did
detect LV-specific RNA. In a 0.8% neutral agarose gel LV RNA
migrated slightly slower than a preparation of hog cholera

5

10

15

20

25

30

35

27

virus RNA of 12.3 kb (Moormann et al., 1990) did. Although no accurate size determination can be performed in neutral agarose gels, it was estimated that the LV-specific RNA is about 14.5 to 15.5 kb in length.

To determine the complexity of the LV-specific RNAs in infected cells and to establish the nucleotide sequence of the genome of LV, we prepared cDNA from RNA of LV-infected porcine lung alveolar macrophages and selected and mapped LV-specific cDNA clones as described under Materials and Methods. The specificity of the cDNA clones was reconfirmed by hybridizing specific clones, located throughout the overlapping cDNA sequence, to Northern blots carrying RNA of LV-infected and uninfected macrophages. Remarkably, some of the cDNA clones hybridized with the 14.5 to 15.5 kb RNA detected in infected macrophages only, whereas others hybridized with the 14.5 to 15.5 kb RNA as well as with a panel of 4 or 5 RNAs of lower molecular weight (estimated size, 1 to 4 kb). The latter clones were all clustered at one end of the cDNA map and covered about 4 kb of DNA. These data suggested that the genome organization of LV may be similar to that of coronaviridae (Spaan et al., 1988), Berne virus (BEV; Snijder et al., 1990b), a torovirus, and EAV (de Vries et al., 1990), i.e. besides a genomic RNA there are subgenomic mRNAs which form a nested set which is located at the 3' end of the genome. This assumption was confirmed when sequences of the cDNA clones became available and specific primers could be selected to probe the blots with. A compilation of the hybridization data obtained with cDNA clones and specific primers, which were hybridized to Northern blots carrying the RNA of LV-infected and uninfected macrophages, is shown in figure 2. Clones 12 and 20 which are located in the 5' part and the centre of the sequence respectively hybridize to the 14.5 to 15.5 kb genomic RNA detected in LV-infected cells only. Clones 41 and 39, however, recognize the 14.5 to 15.5 kb genomic RNA and a set of 4 and 5 RNAs of lower molecular weight, respectively. The most instructive and conclusive

28

hybridization pattern, however, was obtained with primer 25, which is located at the ultimate 5' end in the LV sequence (compare Fig. 1). Primer 25 hybridized to a panel of 7 RNAs, with an estimated molecular weight ranging in size from 0.7 to 3.3 kb (subgenomic mRNAs), as well as the genomic RNA. The most likely explanation for the hybridization pattern of primer 25 is that 5' end genomic sequences, the length of which is yet unknown, fuse with the body of the mRNAs which are transcribed from the 3' end of the genome. In fact, the hybridization pattern obtained with primer 25 suggests that 5' end genomic sequences function as a so called "leader sequence" in subgenomic mRNAs. Such a transcription pattern is a hallmark of replication of coronaviridae (Spaan et al., 1988), and of EAV (de Vries et al., 1990).

10

15

20

25

30

35

The only remarkable discrepancy between LV and EAV which could be extracted from the above data is that the genome size of LV is about 2.5 kb larger than that of EAV.

The consensus nucleotide sequence of overlapping cDNA clones is shown in figure 1. The length of the sequence is 15,088 basepairs, which is in good agreement with the estimated size of the genomic LV RNA.

Since the LV cDNA library was made by random priming of the reverse transcriptase reaction with calf thymus pd(N)6 primers, no cDNA clones were obtained which started with a poly-A stretch at their 3' end. To clone the 3' end of the viral genome, we constructed a second cDNA library, using oligo (dT) and primer 39U183R in the reverse transcriptase reaction. Primer 39U183R is complementary to LV minus-strand RNA, which is likely present in a preparation of RNA isolated from LV-infected cells. This library was screened with virus-specific probes (nick-translated cDNA clone 119 and oligonucleotide 119R64R), resulting in the isolation of five additional cDNA clones (e.g., cDNA clone 151, Fig. 2). Sequencing of these cDNA clones revealed that LV contains a 3' poly(A) tail. The length of the poly(A) tail varied between the various cDNA clones, but its maximum length was twenty

29

nucleotides. Besides clone 25 and 155 (Fig. 2), four additional cDNA clones were isolated at the 5' end of the genome, which were only two to three nucleotides shorter than the ultimate 5' nucleotide shown in figure 1. Given this finding and given the way cDNA was synthesized, we assume to be very close to the 5' end of the sequence of LV genomic RNA.

Nearly 75% of the genomic sequence of LV encodes ORF 1A and ORF 1B. ORF 1A probably initiates at the first AUG (nucleotide position 212, Fig. 1) encountered in the LV sequence. The C-terminus of ORF 1A overlaps the putative N-terminus of ORF 1B over a small distance of 16 nucleotides. It thus seems that translation of ORF 1B proceeds via ribosomal frameshifting, a hallmark of the mode of translation of the polymerase or replicase gene of coronaviruses (Boursnell et al., 1987; Bredenbeek et al. 1990) and the torovirus BEV (Snijder et al., 1990a). The characteristic RNA pseudoknot structure which is predicted to be formed at the site of the ribosomal frameshifting is also found at this location in the sequence of LV (results not shown).

10

15

20

25

30

35

(results not shown).

ORF 1B encodes an amino acid sequence of nearly 1400 residues which is much smaller than ORF 1B of the coronaviruses MHV and IBV (about 3,700 amino acid residues; Bredenbeek et al., 1990; Boursnell et al., 1987) and BEV (about 2,300 amino acid residues; Snijder et al., 1990a). Characteristic features of the ORF 1B product of members of the superfamily of coronaviridae like the replicase motif and the Zinc finger domain can also be found in ORF 1B of LV

Whereas ORF 1A and ORF 1B encode the viral polymerase and therefore are considered to encode a non-structural viral protein, ORFs 2 to 7 are believed to encode structural viral proteins.

The products of ORFs 2 to 6 all show features reminiscent of membrane (envelope) associated proteins. ORF 2 encodes a protein of 249 amino acids containing two predicted N-linked glycosylation sites (Table 9). At the N-terminus a hydrophobic

5

10

15

20

25

30

35

30

sequence, which may function as a so called signal sequence, is identified. The C-terminus also ends with a hydrophobic sequence which in this case may function as a transmembrane region which anchors the ORF 2 product in the viral envelope membrane.

ORF 3 may initiate at the AUG starting at nucleotide position 12394 or at the AUG starting at nucleotide position 12556 and then encodes proteins of 265 and 211 amino acids respectively. The protein of 265 residues contains seven putative N-linked glycosylation sites, whereas the protein of 211 residues contains four (Table 9). At the N-terminus of the protein of 265 residues a hydrophobic sequence is identified.

Judged by hydrophobicity analysis, the topology of the protein encoded by ORF 4 is similar to that encoded by ORF 2 if the product of ORF 4 initiates at the AUG starting at nucleotide position 12936. However, ORF 4 may also initiate at two other AUG codons (compare figures 1 and 2) starting at positions 12981 and 13068 in the sequence respectively. Up to now it is unclear which startcodon is used. Depending on the startcodon used, ORF 4 may encode proteins of 183 amino acids containing four putative N-linked glycosylation sites, of 168 amino acids containing four putative N-linked glycosylation sites, or of 139 amino acids containing three putative N-linked glycosylation sites (Table 9).

ORF 5 is predicted to encode a protein of 201 amino acids having two putative N-linked glycosylation sites (Table 9). A characteristic feature of the ORF 5 product is the internal hydrophobic sequence between amino acid 108 to amino acid 132.

Analysis for membrane spanning segments and hydrophilicity of the product of ORF 6 shows that it contains three transmembrane spanning segments in the N-terminal 90 amino acids of its sequence. This remarkable feature is also a characteristic of the small envelope glycoprotein M or El of several coronaviruses e.g. Infectious Bronchitis Virus (IBV; Boursnell et al., 1984) and Mouse Hepatitis Virus (MHV: Rottier et al., 1986). It is therefor predicted that the

protein encoded by ORF 6 has a membrane topology analogous to that of the M or El protein of coronaviruses (Rottier et al., 1986). A second characteristic of the M or El protein is a so called surface helix which is located immediately adjacent to the presumed third transmembrane region. This sequence of about 25 amino acids which is very well conserved among coronaviruses is also recognized, although much more degenerate, in LV. Yet we predict the product of LV ORF 6 to have an analogous membrane associated function as the coronavirus M or El protein. Furthermore, the protein encoded by ORF 6 showed a strong similarity (53% identical amino acids) with VpX (Godeny et al., 1990) of LDV.

The protein encoded by ORF 7 has a length of 128 amino acid residues (Table 9) which is 13 amino acids longer than Vp1 of LDV (Godeny et al., 1990). Yet a significant similarity (43% identical amino acids) was observed between the protein encoded by ORF 7 and Vp1. Another shared characteristic between the product of ORF 7 and Vp1 is the high concentration of basic residues (Arg, Lys and His) in the N-terminal half of the protein. Up to amino acid 55 the LV sequence contains 26% Arg, Lys and His. This finding is fully in line with the proposed function of the ORF 7 product or Vp1 (Godeny et al., 1990), namely encapsidation of the viral genomic RNA. On the basis of above data, we propose the LV ORF 7 product to be the nucleocapsid protein N of the virus.

A schematic representation of the organization of the LV genome is shown in figure 2. The map of overlapping clones used to determine the sequence of LV is shown in the top panel. A linear compilation of this map indicating the 5' and 3' end of the nucleotide sequence of LV, shown in figure 1, including a division in kilobases is shown below the map of cDNA clones and allows the positioning of these clones in the sequence. The position of the ORFs identified in the LV genome is indicated below the linear map of the LV sequence. The bottom panel shows the nested set of subgenomic mRNAs and the position of these RNAs relative to the LV sequence.

32

In line with the translation strategy of coronavirus, torovirus and arterivirus subgenomic mRNAs it is predicted that ORFs 1 to 6 are translated from the unique 5' end of their genomic or mRNAs. This unique part of the mRNAs is considered to be that part of the RNA that is obtained when a lower molecular weight RNA is "subtracted" from the higher molecular weight RNA which is next in line. Although RNA 7 forms the 3' end of all the other genomic and subgenomic RNAs, and thus does not have a unique region, it is believed that ORF 7 is only translated from this smallest sized mRNA. The "leader sequence" at the 5' end of the subgenomic RNAs is indicated with a solid box. The length of this sequence is about 200 bases, but the precise site of fusion with the body of the genomic RNAs still has to be determined.

15

20

Experimental reproduction of MSD

Eight pregnant sows were inoculated with LA and clinical signs of MSD such as inappetance and reproductive losses were reproduced in these sows. From day four to day 10-12 post-inoculation (p.i.), all sows showed a reluctance to eat. None of the sows had elevated body temperatures. Two sows had bluish ears at day 9 and 10 p.i. In Table 6 the day of birth and the number of living and dead piglets per sow is given. LA was isolated from 13 of the born piglets.

25

Table 1.

Description and results of virus isolation of field samples.

A Samples of piglets suspected of infection with MSD. number age farm material used results* of pigs days RB 5 2 lung, tonsil, and brains $5 \times LA$ lung, brains, DV 4 3 pools of kidney, spleen $3 \times LA$ 10 TH 3 3-5 lung, pools of kidney, tonsil $3 \times LA$ 3 DO 10 lung, tonsil $2 \times LA$ ZA 4 1 lung, tonsil $3 \times LA$ VΕ 1 ? oral swab 1 x PEV 2 TOTAL 20 16 x LA, 15 1 x PEV 2

	B Sampl		ws suspected of infection material used	with MSD. results	
20	TH	2	plasma and leucocytes	1 x LA	
	HU	5	plasma and leucocytes	2 x LA, 1 X EM	CV
	TS	10	plasma and leucocytes	6 x LA	
	HK	5	plasma and leucocytes	2 x LA	
	LA	6	plasma and leucocytes	2 x LA	
25	VL	6	serum and leucocytes	5 x LA	
	TA _.	15	serum	11 x LA	
	LO	4	plasma and leucocytes	2 x LA	
	JA	8	plasma and leucocytes	8 x LA	
	VD	1	plasma and leucocytes	1 x LA	
30	VW	1	serum	1 x LA	
	TOTAL	63		41 x LA, 1 x EM	CV

^{*} Results are given as the number of pigs from which the isolation was made. Sometimes the isolate was detected in more then one sample per pig.

LA = Lelystad agent

PEV 2 = porcine entero virus type 2 EMCV = encephalomyocarditis virus

Table 2. Description and results of virus isolation of samples of pigs with experimentally induced infections.

5	sow	pia@	material used	results*
				0 m T3
	A (LO)#	c 835	lung, tonsil	2 x LA
		c 836	nasal swabs	2 x PEV 7
		c 837	nasal swabs	
10	B (JA)	c 825	lung, tonsil	
		c 821	nasal swabs	1 x PEV 7
		c 823	nasal swabs	4 x PEV 7
	C (JA)	c 833	lung, tonsil	1 x LA, 1 x PEV 7
	• (c 832	nasal swabs	2 x PEV 7
15		c 829	nasal swabs, plasma	
			and leucocytes	3 x LA, 2 x PEV 7
	D (VD)	c 816	-	
	2 (12)	c 813	- -	1 x LA
			nasal swabs	1 x PEV 7
20	ማሳጥኒ፣ ተፍለገጽ		contact pigs	7 x LA. 13 x PEV 7
20				
	A	ь 809	nasal swabs	
		b 817	nasal swabs	
	В	b 818	nasal swabs, plasma	
25	_		and leucocytes	1 x LA
		ъ 820	nasal swabs	
	С	b 822	nasal swabs	
		b 826	nasal swabs	
	D	ь 830	nasal swabs	1 x LA
30		b 834	nasal swabs	
	TOTAL isola		blood inoculated pigs	2 x LA

@ SPF pigs were either kept in contact (c) with a sow suspected to be infected with MSD, or were given 10 ml EDTA blood (b) of that sow intramuscularly at day 0 of the experiment. Groups of one sow and three SPF pigs (c) were kept in one pen, and all four of these groups were housed in one stable. At day 6, one SPF pig in each group was killed and tonsil and lungs were used for virus isolation. The four groups of SPF pigs inoculated with blood (b) were housed in four other pens in a separate stable. Nasal swabs of the SPF pigs were taken at day 2, 5, 7 and 9 of the experiment, and EDTA blood for virus isolation from plasma and leucocytes was taken whenever a pig had fever.

^{*} Results are given as number of isolates per pig.

LA = Lelystad agent

PEV 7 = porcine entero virus type 7

[#] In brackets the initials of the farm of origin of the sow are given.

Table 3. Identification of viral isolates

5	origin and cell culture	buoyant ¹ density in CsCl		sens ³ . to chloroform	neutralized by ⁴ serum directed against (titre)
	leucocytes sow farm HU PK-15, PK2, SK6	1.33 g/ml	28-30	not sens.	EMCV (1280)
10	oral swab piglet farm VE SK6		28-30	not sens.	PEV 2 (> 1280)
15	nasal swabs, to SPF pigs CVI PK-15, PK2, SK6	ND	28-30	not sens.	PEV 7 (> 1280)
	various samples various farms pig lung macroph		pleomorf	sens.	none (all < 5)

- 20 1) Buoyant density in preformed lineair gradients of CsCl in PBS was determined according to standard techniques (Brakke; 1967). Given is the density where the peak of infectivity was found.
- 2) Infected and noninfected cell cultures of the isolate under study were freeze-thawed. Cell lysates were centrifuged for 30 min at 130,000 g, the resulting pellet was negatively stained according to standard techniques (Brenner and Horne; 1959), and studied with a Philips CM 10 electron microscope. Given is the size of particles that were present in infected and not present in non-infected cultures.
 - 3) Sensitivity to chloroform was determined according to standard techniques (Grist, Ross, and Bell; 1974).
 - 4) Hundred to 300 TCID₅₀ of isolates were mixed with varying dilutions of specific antisera and grown in the appropriate
- ocell system until full CPE was observed. Sera with titres higher then 5 were retested, and sera which blocked with high titres the CPE were considered specific for the isolate. The isolates not sensitive to chloroform were tested with sera specifically directed against porcine entero viruses (PEV) 1
- 40 to 11 (courtesy Dr. Knowles, Pirbright, UK), against encephalomyocarditis virus (EMCV; courtesy Dr. Ahl, Tübingen, Germany), against porcine parvo virus, and against swine vesicular disease.
- The isolate (code: CDI-NL-2.91) sensitive to chloroform was tested with antisera specifically directed against pseudorables virus, bovine herpes virus 1, bovine herpes virus 4, malignant catarrhal virus, bovine viral diarrhoea virus, hog cholera virus, swine influenza virus H1N1 and H3N2, parainfluenza 3 virus, bovine respiratory syncitial virus,
- transmissible gastroenteritis virus, porcine epidemic diarrhoea virus, haemaglutinating encephalitis virus, infectious bronchitis virus, bovine leuk mia virus, avian leukemia virus, maedi-visna virus, and with the xperimental sera obtained from the SPF-pigs (see Table 5).

Table 4.
Results of serology of paired field sera taken from sows suspected to have MSD. Sera were taken in the acute phase of the disease and 3-9 weeks later. Given is the number of sows which showed a fourfold or higher rise in titre/number of sows tested.

	Farm	Intervali	HAI			ELISA			
		in weeks	чEV	HIN1	H3N2	PRV	PPV	BVDV	HCV
10	TH	3	0/6	0/6	0/6	0/6	0/6	0/5	0/6
20	RB	5	0/13	1/13	0/13	1/9	0/7	0/6	0/9
	HU	4	0/5	0/5	3/5	0/5	0/5	0/5	0/5
	TS	3	1/10	0/10	0/10	0/10	0/10	0/4	0/10
	Ar 10	3 3	0/5	0/5	0/5	0/5	1/5	0/5	0/5
15	JA	3	0/11	1/11	3/11	0/11	2/11	0/11	0/11
13	WE	4	1/6	1/6	1/6	3/7	3/7	0/7	0/7
	GI		0/4	1/4	0/4	0/4	0/4	0/4	0/4
	SE	5	0/8	0/8	0/8	0/8	0/6	0/3	0/8
	KA	4 5 5	0/1	0/1	0/1	0/1	0/1	ND	0/1
20	HO	3	1/6	0/5	1/6	0/6	0/6	0/6	0/6
20	NY	4	0/5	1/5	1/5	0/3	0/4	0/2	0/4
	JN	3	0/10	5/10	0/10	0/10	1/10	0/10	0/10
	KOf	3	1/10	0/10	0/10	0/10	2/10	0/10	0/10
	OE	9	ND	ND	ND	0/6	0/6	0/6	0/6
25	LO	9 6	ND	ND	ND	0/3	0/3	0/2	0/3
23	WI	4	ND	ND	ND	0/1	1/1	0/1	0/3
	RR	3	ND	ND	ND	1/8	0/8	0/8	0/8
	RY	4	ND	ND	ND	0/3	0/4	0/3	0/4
	BE	5	ND	ND	ND	0/10	0/10	0/10	0/10
30	BU	3	ND	ND	ND	1/6	0/6	0/6	0/6
50	KR	3 3 5	ND	ND	ND	1/4	0/4	0/4	0/4
	KW	5	ND	ND	ND	0/10	0/10	0/10	0/10
	VR	5	ND	ND	ND	1/6	0/6	0/6	0/6
	HU	4	ND	ND	ND	1/4	0/3	0/3	0/4
35	ME	3	ND	ND	ND	0/5	1/5	0/5	0/5
-		J							
	total	negative ⁿ	19	41	29	97	16	140	165
		positivep	7 7	48	62	55	131	1	0
		sero-							
40	conve		4	10	9	9	11	0	0
40		tested	100	99	100	161	158	141	165

The sera were tested in haemagglutinating inhibition (HAI) tests for the detection of antibody against haemagglutinating encephalitis virus (HEV), and swine influenza viruses H1N1 and H3N2, in enzyme-linked-immuno sorbent assays (ELISA) for the detection of antibody against the glycoprotein gI of pseudorabies virus (PRV), against porcine parvo virus (PPV), bovin viral diarrhoea virus (BVDV), and hog cholera virus (HCV).

37

Table 4 - continued

45

	Farm	Interval		EMCVi	PEV2	PEV2i	PEV7	PEV7i	LA	IPMA LA
5	TH	3	0/6	0/6	0/5	0/5	0/6	0/5	0/6	6/6
	RB	5	1/7	1/9	0/6	2/6	1/8	0/6	0/13	7/9
	HU	4	ND	0/5	0/5	0/5	ND	0/5	0/5	5/5
	TS	3	0/10	0/10	0/7	0/4	0/10	0/7	ND	10/10
	VL	3	ND	ND	1/5	0/5	ND	0/5	ND	5/5
10	JA	3	0/11	0/11	0/11	0/11	1/11	2/11	0/5	8/11
	WE	4	1/7	1/6	1/6	1/7	1/7	1/7	0/7	7/ 7
	GI	4	0/4	0/4	0/4	0/4	0/4	0/4	0/4	4/4
	SE	5	0/8	0/8	0/6	1/8	0/8	1/5	0/8	6/8
	KA	5	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
15	НО	3	0/6	0/6	0/6	0/6	0/6	0/6	0/6	4/6
	NY	4	0/4	0/4	0/2	0/2	0/4	0/3	0/4	4/4
	JN	3	0/10	0/10	1/10	0/9	0/10	0/10	0/10	5/10
	KOf	3	0/10	0/10	2/10	2/10	1/10	3/10	ND	8/10
	OE	9	0/6	0/6	1/6	1/5	ND	1/6	ND	4/6
20	LO	6	0/3	0/3	0/3	0/3	0/3	0/3	ND	3/3
	WI	4	ND	ND	0/1	0/1	ND	0/1	ND	0/3
	RR	3	0/8	1/8	0/8	0/8	0/8	.0/8	ND	8/8
	RY	4	0/4	ND	0/4	0/1	ND	1/4	ND	1/4
	BE	5	ND	ND	0/10	0/10	ND	1/10	ND	0/10
25	ΒŪ	3	ИD	ND	0/6	0/6	ND	0/6	ND	6/6
	KR	3	ND	ND	0/4	0/4	ND	0/4	ND	1/4
	KW	5	ND	ND	0/10	0/10	ND	1/10	ND	10/10
	VR	5	ND	ND	0/6	1/6	ND	0/6	ND	6/6
	HU	4	ND	ND	0/3	0/4	ND	0/3	ND	3/4
30	ME	3	ND	ND	0/5	0/5	ND	0/5	ND	2/5
	total	L neg.n	15	29	0	0	2	1	69	15
		l pos.p	88	74	144	138	90	136	0	27
		sero-	00	12	733	130	30	100	U	41
35		erteds	2	3	6	8	4	10	0	123
		tested	105	107	150	146	96	147	69	165

The sera were tested in serum neutralization tests (SNT) for the detection of neutralizing antibody directed against encephalomyocarditis virus (EMCV), the isolated (i) EMCV, porcine entero viruses (PEV) 2 and 7 and the PEV isolates (i), and against the Lelystad agent (LA), and were tested in an immuno-peroxidase-monolayer-assay (IPMA) for the detection of antibody directed against the Lelystad agent (LA).

f fattening pigs. i time between sampling of the first and second serum. n total number of pigs of which the first serum was negative in the test under study, and of which the second serum was also negative or showed a less then fourfold rise in titre. P total number of pigs of which the first serum was positive and of which the second serum showed a less then fourfold rise in titre. S total number of pigs of which the second serum had a fourfold or higher titre then the first serum in the test under study. ND = not done.

Table 5.
Development of antibody directed against Lelystad agent as measured by IPMA.

5	A contact pigs Weeks post contact: Pig	serum O	titres 2	in I	PMA 4	5
	c 836	0	10	640	640	640
	c 837	0	10	640	640	640
10	c 821	0	640	640	640	640
10	c 823	0	160	2560	640	640
	c 829	0	160	640	10240	10240
	c 832	Ō	160	640	640	2560
	c 813	Ö	640	2560	2560	2560
15	c 815	Ō	160	640	640	640
13						
	B blood inoculated pigs	serum 1	titres	in IPN	1A	
	Weeks post inoculation:	0	2	3	4	6
	Pig					
20	b 809	0	640	2560	2560	2560
	b 817	0	160	640	640	640
	b 818	0	160	640	640	640
		0	160	640	640	640
	ъ 820	U				
		ŏ	640	2560	2560	10240
25	b 822				2560 640	10240
25		0	640	2560	2560	

See Table 2 for description of the experiment. All pigs were bled at regular intervals and all sera were tested in an immuno-peroxidase-monolayer-assay (IPMA) for the detection of antibody directed against the Lelystad agent (LA).

Table 6. Experimental reproduction of MSD.

5	sow	length of gestation	No. of pat birthalive (number		No. of deaths week 1	LA ¹ in born dead	piglets died in week 1
	52	113	12 (5)	3 (2)	6	2	4
10	965	116	3(0)	9(3)	2	4	
	997	114	9(0)	1(0)	0		
	1305	116	7(0)	2(0)	1		
	134	109	4(4)	7(4)	4	3	
	941	117	7	10			
15	1056	113	7(1)	3(0)	4		
	1065	115	9	2			

¹⁾ LA was isolated from lung, liver, spleen, kidney, or ascitic fluids.

²⁾ Antibodies directed against LA were detected in serum samples taken before the piglets had sucked, or were detected in ascitic fluids of piglets born dead.

Table 7.
Reactivity in IPMA of a collection of field sera from Europe and North-America tested with LA isolates from the Netherlands (NL1 and NL2), Germany (GE1 and GE2), and the United States (US1, US2 and US3).

_	•							
	Isolates:	NL1	NL2	GE1	GE2	US1	บร2	US3
	Sera from:							
10	The Netherland	<u>s</u> .						
	TH-187	3.5_{t}	3.5	2.5	3.5	-	-	-
	TO-36	3.5	3.0	2.5	3.0	-	1.0	-
	Germany							
	BE-352	4.0	3.5	2.5	3.0	-	1.5	_
15	BE-392	3.5	3.5	2.5	2.5	1.5	1.5	0.5
	NI-f2	2.5	1.5	2.0	2.5	-	_	_
	United Kingdom							
	PA-141615	4.0	3.0	3.0	3.5	-		_
	PA-141617	4.0	3 .5	3.0	3.5	-	2.5	
20	PA-142440	3.5	3.0	2.5	3.5	-	2.0	2.5
	<u>Belgium</u>							
	PE-1960	4.5	4.5	3.0	4.0	1.5	-	-
	France							
	EA-2975	4.0	3.5	3.0	3.0	2.0	-	-
25	EA-2985	3.5	3.0	3.0	2.5	-	-	-
	<u>United States</u>		_,					2.0
	SL-441	3.5	1.5	2.5	2.5	3.5	3.5	
	SL-451	3.0	2.0		2.5	3.5	4.5	
	AL-RP9577	1.5		_		3.0	_	
30		0.5			-	2.5	2.0	
	AL-4094A	-	-	_	-	1.0	1.0	-
	AL-7525	-	-	-	_	1.0		
	JC-MN41	-	_	_	_	2.0		
	JC-MN44	_	_	_	_	2.0		
35	JC-MN45	_	_	_	_	2.0	J.0	2.0
	Canada	2 5		2 0	2.0	3.0	3.5	_
	RB-16 RB-19		_	1.0	-		1.5	-
		1.5	_	2.0	2.5	2.5	3.5	_
40	RB-22 RB-23	1.5	_	2.0	_	-	3.0	_
40	KD-23	_	_	_				

t = titre expressed as negative log; - = negative

Table 8.

Reactivity in IPMA of a collection of experimental sera raised against LA and SIRSV tested with LA isolates from the Netherlands (NL1 and NL2), Germany (GE1 and GE2), and the United States (US1, US2 and US3).

Isol	Lates:	NL1	NL2	GE1	GE2	US1	US2	บร3
	Sera:							
	anti-LA:					_		
21	14 dpi	2.5 ^t	2.0	2.5		1.5	2.0	1.5
	28 dpi	4.0	3.5	3.5			2.5	1.5
	42 dpi	4.0	3 .5	3.0		1.5	2.5	
23	14 dpi		2.0	2.5		1.0	2.0	1.0
	28 dpi	3.5	3.5	3.5	4.0	1.5	2.0	2.0
	42 dpi		4.0	3.0			2.5	
25	14 dpi	2.5	2.0	2.5		1.5	2.0	
	28 dpi		3.5	4.0		-	1.5	2.0
	42 dpi		4.0	3.5		1.5	2.0	2.0
29	14 dpi		3.5	3.0		-	2.0	1.5
	28 dpi		3.5	3.0		1.5	2.5 2.5	2.0 2.5
	42 dpi	4.0	3.5	3.5	4.0	1.5	4.5	2.5
ant	ti-SISRV:							
2B	20 dpi	-	-	-	-	2.0	2.0	-
	36 dpi	-	-	-	-	1.5	2.0	-
	63 dpi	-	-	-	_	1.0	1.0	-
9G	30 dpi	-	-	-	-	2.5	3.0	_
	44 dpi		-	-	-	2.5	3.5	1 5
	68 dpi	-	-	-	_	2.0 2.0	3.5 3.0	1.5
16W	25 dpi	-	-	_		2.0	3.0	_
	40 dpi	_	_	_	-	2.5	2.5	1.5
1 637	64 dpi	_	<u>-</u>	_	_	1.0	3.0	1.0
16Y		_	_	_	_	2.5	3.0	-
	64 dpi	_	_	_		2.0	5.5	

t = titer expressed as negative log; - = negative

Table 9. Characteristics of the ORFs of Lelystad Virus.

ORF	Nucleotides (first-last)	No. of amino acids	Calculated size of the unmodified peptide (kDa)	number of glycosylation sites
ORF1A	212-7399	2396	260.0	3
ORF1B	7384-11772	1463	161.8	3
ORF2	11786-12532	249	28.4	2
ORF3	12394-13188 12556-13188	265 211	30.6 24.5	7 4
ORF4	12936-13484 12981-13484 13068-13484	183 168 139	20.0 18.4 15.4	4 4 3
ORF5	13484-14086	201	22.4	2
ORF6	14077-14595	173	18.9	2
ORF7	14588-14971	128	13.8	1
	ORF1A ORF1B ORF2 ORF3 ORF4 ORF5 ORF6	ORF1A 212-7399 ORF1B 7384-11772 ORF2 11786-12532 ORF3 12394-13188 12556-13188 ORF4 12936-13484 12981-13484 13068-13484 ORF5 13484-14086 ORF6 14077-14595	ORF1A 212-7399 2396 ORF1B 7384-11772 1463 ORF2 11786-12532 249 ORF3 12394-13188 265 12556-13188 211 ORF4 12936-13484 183 12981-13484 168 13068-13484 139 ORF5 13484-14086 201 ORF6 14077-14595 173	(first-last) acids size of the unmodified peptide (kDa) ORF1A 212-7399 2396 260.0 ORF1B 7384-11772 1463 161.8 ORF2 11786-12532 249 28.4 ORF3 12394-13188 265 30.6 12556-13188 211 24.5 ORF4 12936-13484 183 20.0 12981-13484 168 18.4 13068-13484 139 15.4 ORF5 13484-14086 201 22.4 ORF6 14077-14595 173 18.9

20

References

Boer, G.F. de, Back, W., and Osterhaus, A.D.M.E., (1990) An ELISA for detection of antibodies against influenza A nucleoprotein in human and various animal species, Arch. Virol. 115, 47-61.

Boursnell, M.E.G., Brown, T.D.K., and Binns, M.M., (1984) Sequence of the membrane protein gene from avian coronavirus IBV, Virus Res. 1, 303-314.

Boursnell, M.E.G., Brown, T.D.K., Foulds, I.J., Green, P.F., Tomley F.M., and Binns, M.M., (1987) Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus, J. Gen. Virol. 68, 57-77.

Brakke, M.K., (1967) In: Methods in Virology, Volume II, pp. 93-117 (Edited by K. Maramorosch and H. Koprowski) New York, Academic Press.

Bredenbeek, P.J., Pachuk, C.J., Noten, J.F.H., Charité, J., Luytjes, W., Weiss, S.R., and Spaan, W.J.M., (1990) The primary structure and expression of the second open reading frame of the polymerase gene of coronavirus MHV-A59. Nucleic Acids Res. 18, 1825-1832.

Brenner, S., and Horne, R.W., (1959) A negative staining method for high resolution electron microscopy of viruses, Biochimica et Biophysica Acta 34, 103-110.

Brinton-Darnell, M., and Plagemann, P.G., (1975)
Structure and chemical-physical characteristics of lactate dehydrogenase-elevating virus and its RNA, J. Virol. 16, 420-433.

Favaloro, J., Treisman, R. & Kamen, R., (1980) In:

30 Methods in Enzymology, vol. 65, 718-749 (eds. Grossman, L. & Moldave, K.) Academic Press, New York.

Godeny, E.K., Speicher, D.W., and Brinton, M.A., (1990) Map location of lactate dehydrogenase-elevating virus (LDV) capsid protein (Vpl) gene, Virology, 177, 768-771.

25

Grist, N.R., Ross, C.A., and Bell, E.J., (1974) In: Diagnostic Methods in Clinical Virology, p. 120, Oxford, Blackwell Scientific Publications.

Gübler, U., and Hoffman, B.J., (1983) A simple and very efficient method for generating cDNA libraries, Gene 25, 263-269.

Hanahan, D., (1985) In: DNA Cloning I; A Practical Approach, Chapter 6, 109-135.

Hill, H., (1990) Overview and History of Mystery Swine

10 Disease (Swine Infertility Respiratory Syndrome), In:

Proceedings of the Mystery Swine Disease Committee Meeting,

October 6, 1990, Denver, Colorado, Livestock Conservation

Institute, Madison WI, USA.

Hirsch, J.G. & Fedorko, M.E., (1968) Ultrastructure of human leucocytes after simultanous fixation with glutaraldehyde and osmiumtetroxide and postfixation in uranylacetate, Journal of Cellular Biology 38, 615.

Horzinek, M.C., Maess, J., and Laufs, R., (1971) Studies on the substructure of togaviruses II. Analysis of equine arteritis, rubella, bovine viral diarrhea and hog cholera viruses, Arch. Gesamte Virusforsch. 33, 306-318.

Hyllseth, B., (1973) Structural proteins of equine arteritis virus, Arch. Gesamte Virusforsch. 40, 177-188.

Kasza, L., Shadduck, J.A., and Christoffinis, G.J., (1972) Establishment, viral susceptibility and biological characteristics of a swine kidney cell line SK-6, Res. Vet. Sci. 13, 46-51.

Loula, T., (1990) Clinical Presentation of Mystery Pig Disease in the breeding herd and suckling piglets, In: Proceedings of the Mystery Swine Disease Committee Meeting, October 6, 1990, Denver, Colorado, Livestock Conservation Institute, Madison WI, USA.

Masurel, N., (1976) Swine influenza virus and the recycling of influenza A viruses in man, Lancet ii, 244-247.

Mazancourt, A. de, Waxham, M.N., Nicholas, J.C., & Wolinsky, J.S., (1986) Antibody response to the rubella virus

structural proteins in infants with the congenital rubella syndrome . J. Med. Virol. 19, 111-122.

Mengeling, W.L., and Lager, K.M., (1990) Mystery Pig Disease: Evidence and considerations for its etiology, In: Proceedings of the Mystery Swine Disease Committee Meeting, October 6, 1990, Denver, Colorado, Livestock Conservation Institute, Madison WI, USA.

Moormann, R.J.M., and Hulst, M.M., (1988) Hog cholera virus: identification and characterization of the viral RNA and virus-specific RNA synthesized in infected swine kidney cells, Virus Res. 11, 281-291.

10

15

20

30

Moormann, R.J.M., Warmerdam, P.A.M., van der Meer, B., Schaaper, W.M.M., Wensvoort, G., and Hulst, M.M., (1990)

Molecular cloning and nucleotide sequence of hog cholera virus strain Brescia and mapping of the genomic region encoding envelope protein El, Virology, 177, 184-198.

Oirschot, J.T. van, Houwers, D.J., Rziha, H.J., and Moonen, P.J.L.M., (1988) Development of an ELISA for detection of antibodies to glycoprotein I of Aujeszky's disease virus: a method for the serological differentiation between infected and vaccinated pigs, J. Virol. Meth. 22, 191-206.

Pearson, W.R., and Lipman, D.J., (1988) Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85, 2444-2448.

Reed, L.J., and Muench, H., (1938) A simple method of estimating fifty percent endpoints, Am. J. Hyg. 27, 493-497.

Rottier, P.J.M., Welling, G.W., Welling-Wester, S., Niesters, H.G.M., Lenstra, J.M., and van der Zeijst, B.A.M., (1986) Predicted membrane topology of the coronavirus protein E1. Biochemistry 25, 1335-1339.

Sambrook, J., Fritsch, E.F., and Maniatis, T., (1989) Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Lab., Cold Spring Harbor NY.

Sethna, P.B., Hung, S-L., and Brian, D.A., (1989)

35 Coronavirus subgen mic minus-strand RNAs and the potential for mRNA replicons, Proc. Natl. Acad. Sci. USA, 86, 5626-5630.

20

30

Setzer, D.R., McGrogan, M., Nunberg, J.H. & Schimke, R.T., (1980) Size heterogeneity in the 3'-end of the dehydrofolate reductase messenger RNA's in mouse cells, Cell 22, 361-370.

Snijder, E.J., den Boon, J.A., Bredenbeek, P.J., Horzinek, M.C., Rijnbrand, R., and Spaan, W.J.M., (1990a) The carboxyl-terminal part of the putative Berne virus polymerase is expressed by ribosomal frameshifting and contains sequence motifs which indicate that toro- and coronaviruses are evolutionary related, Nucleic Acids Res. 18, 4535-4542. 10

Snijder, E.J., Horzinek, M.C., and Spaan, W.J.M., (1990b) A 3'-coterminal nested set of independently transcribed messenger RNAs is generated during Berne virus replication. J. Virol. 64, 355-363.

Spaan, W.J.M., Cavanagh, D., and Horzinek, M.C., (1988) 15 Coronaviruses: structure and genome expression. J. Gen. Virol. 69, 2939-2952.

Strauss, W.M., (1987) Preparation of genomic DNA from mammalian tissue, In: Current protocols in molecular biology (eds. Ausubel F.M et al.) 2.2.1 John Wiley & Sons, New York.

Terpstra, C., (1978) Detection of Border disease antigen in tissues of affected sheep and in cell cultures by immunofluorescence, Res. Vet. Sci. 25, 350-355.

Venable, J.H. & Coggeshall, R., (1965) A simplified lead citrate stain for use in electronmicroscopy, Journal of 25 Cellular Biology 25, 407.

Vries, A.A.F. de, Chirnside, E.D., Bredenbeek, P.J., Gravestein, L.A., Horzinek, M.C., and Spaan, W.J.M., (1990) All subgenomic mRNAs of equine arteritis virus contain a common leader sequence, Nucleic Acids Res. 18, 3241-3247.

Wensvoort, G., and Terpstra, C., (1988) Bovine viral diarrhoea infections in piglets from sows vaccinated against swine fever with contaminated vaccine, Res. Vet. Sci. 45, 143-148.

Wensvoort, G., Terpstra, C., and Bloemraad, M., (1988) An 35 enzyme immunoassay, employing monoclonal antibodies and

47

detecting specifically antibodies against classical swine fever virus, Vet. Microbiol. 17, 129-140.

5

20

Wensvoort, G., Terpstra, C., Boonsta, J., Bloemraad, M., and Zaane, D. van, (1986) Production of monoclonal antibodies against swine fever virus and their use in laboratory diagnosis, Vet. Microbiol. 12, 101-108.

Wensvoort, G., Terpstra, C., and Kluyver, E.P. de, (1989) Characterization of porcine and some ruminant pestiviruses by cross-neutralization, Vet. Microbiol. 20, 291-306.

Westenbrink, F., Middel, W.G.J., Straver, P., and Leeuw, P.W. de, (1986) A blocking enzyme-linked immunosorbent assay (ELISA) for bovine virus diarrhoea virus serology, J. Vet. Med. B33, 354-361.

Westenbrink, F., Veldhuis, M.A., and Brinkhof, J.M.A.,
15 (1989) An enzyme-linked immunosorbent assay for detection of
antibodies to porcine parvo virus, J. Virol. Meth. 23, 169178.

Zeijst, B.A.M. van der, Horzinek, M.C., and Moennig, V., (1975) The genome of equine arteritis virus, Virology, 68, 418-425.

CLAIMS

- 1. Composition of matter comprising isolated Lelystad Agent which is the causative agent of Mystery Swine Disease, said Lelystad Agent essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the Institut Pasteur, Paris, France, deposit number I-1102.
- 2. Composition of matter comprising killed isolated Lelystad Agent which is the causative agent of Mystery Swine Disease, said Lelystad Agent essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the Institut Pasteur, Paris, France, deposit number I-1102.

10

15

20

- 3. Composition of matter comprising attenuated isolated Lelystad Agent which is the causative agent of Mystery Swine Disease, said Lelystad Agent essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the Institut Pasteur, Paris, France, deposit number I-1102.
- 4. Composition of matter comprising a recombinant vector derived from Lelystad Agent which is the causative agent of Mystery Swine Disease, said Lelystad Agent essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the Institut Pasteur, Paris, France, deposit number I-1102.
- 5. Composition of matter comprising an isolated part or component of Lelystad Agent which is the causative agent of Mystery Swine Disease, said Lelystad Agent essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the Institut Pasteur, Paris, France, deposit number I-1102.
- 30 6. Composition of matter comprising isolated or synthetic protein, (p ly)peptide, or nucleic acid derived from Lelystad Agent which is the causative agent of Mystery Swine Disease, said Lelystad Agent essentially corresponding to the

isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the Institut Pasteur, Paris, France, deposit number I-1102.

- 7. Composition of matter comprising recombinant nucleic
 5 acid which comprises a nucleotide sequence derived from the
 genome of Lelystad Agent which is the causative agent of
 Mystery Swine Disease, said Lelystad Agent essentially
 corresponding to the isolate Lelystad Agent (CDI-NL-2.91)
 deposited 5 June 1991 with the Institut Pasteur, Paris,
 10 France, deposit number I-1102.
 - 8. Composition of matter comprising recombinant nucleic acid which comprises a Lelystad Agent-specific nucleotide sequence shown in figure 1.
- 9. Composition of matter comprising recombinant nucleic
 15 acid which comprises a Lelystad Agent-specific nucleotide
 sequence selected from anyone of the Open Reading Frames shown
 in figure 1.
- 10. Composition of matter comprising a (poly)peptide having an amino acid sequence derived from a protein of

 20 Lelystad Agent which is the causative agent of Mystery Swine Disease, said Lelystad Agent essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the Institut Pasteur, Paris, France, deposit number I
 1102, the (poly)peptide being produced by a cell capable of producing it due to genetic engineering with appropriate recombinant DNA.
 - 11. Composition of matter comprising a (poly)peptide comprising a Lelystad Agent-specific amino acid sequence shown in figure 1.
- 30 12. Composition of matter comprising an isolated or synthetic antibody which specifically recognizes a part or component of Lelystad Agent which is the causative agent of Mystery Swine Disease, said Lelystad Agent essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91)
 35 deposited 5 June 1991 with the Institut Pasteur, Paris, Franc, deposit number I-1102.

- vector which contains nucleic acid comprising a nucleotide sequence coding for a protein or antigenic peptide derived from Lelystad Agent which is the causative agent of Mystery Swine Disease, said Lelystad Agent essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the Institut Pasteur, Paris, France, deposit number I-1102.
- 14. Vaccine composition for vaccinating animals, in

 10 particular mammals, more in particular pigs or swines, to

 protect them against Mystery Swine Disease, comprising

 Lelystad Agent which is the causative agent of Mystery Swine

 Disease, said Lelystad Agent essentially corresponding to the

 isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991

 with the Institut Pasteur, Paris, France, deposit number I
 1102, and a suitable carrier or adjuvant.
 - 15. Vaccine composition for vaccinating animals, in particular mammals, more in particular pigs or swines, to protect them against Mystery Swine Disease, comprising killed Lelystad Agent which is the causative agent of Mystery Swine Disease, said Lelystad Agent essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the Institut Pasteur, Paris, France, deposit number I-1102, and a suitable carrier or adjuvant.
- 25 16. Vaccine composition for vaccinating animals, in particular mammals, more in particular pigs or swines, to protect them against Mystery Swine Disease, comprising attenuated Lelystad Agent which is the causative agent of Mystery Swine Disease, said Lelystad Agent essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the Institut Pasteur, Paris, France, deposit number I-1102, and a suitable carrier or adjuvant.
- 17. Vaccine composition for vaccinating animals, in particular mammals, more in particular pigs or swines, to protect them against Mystery Swine Disease, comprising a

51

recombinant vector which contains nucleic acid comprising a nucleotide sequence coding for a protein or antigenic peptide derived from Lelystad Agent which is the causative agent of Mystery Swine Disease, said Lelystad Agent essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the Institut Pasteur, Paris, France, deposit number I-1102, and a suitable carrier or adjuvant.

- 18. Vaccine composition for vaccinating animals, in

 10 particular mammals, more in particular pigs or swines, to

 protect them against Mystery Swine Disease, comprising an

 antigenic part or component of Lelystad Agent which is the

 causative agent of Mystery Swine Disease, said Lelystad Agent

 essentially corresponding to the isolate Lelystad Agent (CDI
 NL-2.91) deposited 5 June 1991 with the Institut Pasteur,

 Paris, France, deposit number I-1102, and a suitable carrier

 or adjuvant.
- 19. Vaccine composition for vaccinating animals, in particular mammals, more in particular pigs or swines, to
 20 protect them against Mystery Swine Disease, comprising a protein or antigenic polypeptide derived from, or a peptide mimicking an antigenic component of, Lelystad Agent which is the causative agent of Mystery Swine Disease, said Lelystad Agent essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the Institut Pasteur, Paris, France, deposit number I-1102, and a suitable carrier or adjuvant.
- 20. Vaccine composition for vaccinating animals, in particular mammals, more in particular pigs or swines, to
 30 protect them against a disease caused by a pathogen, comprising a recombinant vector derived from Lelystad Agent which is the causative agent of Mystery Swine Disease, said Lelystad Agent essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the
 35 Institut Pasteur, Paris, France, deposit number I-1102, the nucleic acid of the recombinant vector comprising a nucleotide

PCT/NL92/00096 WO 92/21375

sequence coding for a protein or antigenic peptide derived from the pathogen, and a suitable carrier or adjuvant.

21. Diagnostic kit for detecting nucleic acid from Lelystad Agent which is the causative agent of Mystery Swine 5 Disease, said Lelystad Agent essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the Institut Pasteur, Paris, France, deposit number I-1102, in a sample, in particular a biological sample such as blood or blood serum, sputum, saliva, or tissue, derived from an animal, in particular a mammal, more in particular a pig or swine, comprising a nucleic acid probe or primer which comprises a nucleotide sequence derived from the genome of Lelystad Agent, and suitable detection means of a nucleic acid detection assay.

10

30

35

- 22. Diagnostic kit for detecting antigen from Lelystad 15 Agent which is the causative agent of Mystery Swine Disease, said Lelystad Agent essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the Institut Pasteur, Paris, France, deposit number I-1102, in a sample, in particular a biological sample such as blood or 20 blood serum, sputum, saliva, or tissue, derived from an animal, in particular a mammal, more in particular a pig or swine, comprising an antibody which specifically recognizes a part or component of Lelystad Agent, and suitable detection means of an antigen detection assay. 25
 - 23. Diagnostic kit for detecting an antibody which specifically recognizes Lelystad Agent which is the causative agent of Mystery Swine Disease, said Lelystad Agent essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the Institut Pasteur, Paris, France, deposit number I-1102, in a sample, in particular a biological sample such as blood or blood serum, sputum, saliva, or tissue, derived from an animal, in particular a mammal, more in particular a pig or swine, comprising an antigenic part or component of Lelystad Agent, and suitable detection means of an antibody detection assay.

53

- 24. Diagnostic kit for detecting an antibody which specifically recognizes Lelystad Agent which is the causative agent of Mystery Swine Disease, said Lelystad Agent essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposited 5 June 1991 with the Institut Pasteur, Paris, France, deposit number I-1102, in a sample, in particular a biological sample such as blood or blood serum, sputum, saliva, or tissue, derived from an animal, in particular a mammal, more in particular a pig or swine, comprising a protein or antigenic polypeptide derived from Lelystad Agent, or a peptide mimicking an antigenic component of Lelystad Agent, and suitable detection means of an antibody detection assay.
- 25. Diagnostic kit for detecting an antibody which

 15 specifically recognizes Lelystad Agent which is the causative
 agent of Mystery Swine Disease, said Lelystad Agent
 essentially corresponding to the isolate Lelystad Agent (CDINL-2.91) deposited 5 June 1991 with the Institut Pasteur,
 Paris, France, deposit number I-1102, in a sample, in

 20 particular a biological sample such as blood or blood serum,
 sputum, saliva, or tissue, derived from an animal, in
 particular a mammal, more in particular a pig or swine,
 comprising killed, live or attenuated Lelystad Agent, and
 suitable detection means of an antibody detection assay.
- 26. A process for diagnosing whether an animal, in particular a mammal, more in particular a pig or swine, is contaminated with the causative agent of Mystery Swine Disease, comprising preparing a sample, in particular a biological sample such as blood or blood serum, sputum, saliva, or tissue, derived from the animal, and examining whether it contains Lelystad Agent nucleic acid, Lelystad Agent antigen, or antibody specifically recognizing Lelystad Agent, said Lelystad Agent being the causative agent of Mystery Swine Disease and essentially corresponding to the isolate Lelystad Agent (CDI-NL-2.91) deposit d 5 June 1991

54

with the Institut Pasteur, Paris, France, deposit number I-1102.

1/19

Fig. 1(1)

GGG.	rat i	CCC	CCI	PACZ	ATAC	ACC	ACZ	CTI	CIZ	GTC	TT	GTC)AT	CI	rggz	AGG	GTG	:GG1	AC	60
														25						
AGC	CCC	CCC	CAC	CCC	TTC	GCC	CC1	GT	CTA	\GCC	CAZ	\CAC	GTZ	ATC	TTC	TIC!	CTC	:GGG	GC	120
GAG!	rgce	CCG	CCI	GC1	r G C1	CCC	TIC	CAG	CGG	GAZ	\GGZ	ACC.1	CCC	GAG	'TA'	TT	CCGG	AGA	IGC	180
ACC.	rgci	TTA	ACGG	GAT	CTC	CAC		TTA				rece G				CCGC R		ATC M	TG C	240 10
C3 C/	7000						····	1220		·	70777	· Cimc		- ma	- 13.01		mon			
CAC																	C		S	300 30
TGC																				360
A	R	S	L	L	S	P	E	L	Q	D	Т	D	L	G	A	V	G	L	F	50
TTAC																				420
Y	K	P	R	D	K	L	H	W	K	V	P	I	G	Ι	P	Q	V	E	С	70
TACT								-												480
T	P	S	G	C	C	W	Т	S	A	V	F.	Ъ	ь	A	R	M	T	S	G	90
CAA	CAC																	GGI	TG	540
N	H	N	F	L	Q	R	L	V	K	V	A	D	V	L	Y	R	D	G	С	110
CTIC	GCA	CCI	'CGA	CAC	CTI	'CGT	GAA	CTC	CAA	GTI	TAC	GAG	CGC	:GGC	TGC	'AAC	TGG	TAC	CC	600
L	A	P	R	H	L	R	E	L	Q	V	Y	E	R	G	С	N	W	Y	P	130
GAT	CACG	GGG	CCC	GIG	CCC	:GGG	ATG	GGT	TIG	TTI	GCG	AAC	TCC	ATC	CAC	GTA	TCC	GAC	CA	660
I	T	G	P	V	P	G	M	G	L	F	A	N	S	M	H	V	S	D	Q	150
GCCG	TTC	CCI	GGI	GCC	ACC	CAT	GIG	TTG	ACI	AAC	TCC	CCI	TIC	CCI	CAA	CAG	GCT	TGT	'CG	720
P	F	P	G	A	T	H	V	L	T	N	S	P	L	P	Q	Q	A	С	R	170
GCAG																_				780
Q	P	F	С	P	F	E	E	A	H	S	S	V	Y	R	W	K	K	F	V	190
GGT	TTC	'ACG	GAC	TCC	TCC	CTC	AAC	GGT	'CGA	TCI	'CGC	'ATG	ATG	TGG	ACG	CCG	GAA	TCC	GA	840
V	F	T	D	S	S	L	N	G	R	S	R	M	M	W	T	P	E	S	D	210
TGAI	TCA	GCC	:GCC	CIG	GAG	GTA	CTA	CCG	CCI	GAG	TTA	GAA	CGI	CAG	GTC	GAA	ATC	CTC	ΑT	900
D	S	A	A	L	E	V	L	P	P	E	L	E	R	Q	V	E	I	L	I	230
TCGG	AGT	TTT	CCI	GCI	CAT	CAC	CCI	GTC	GAC	CIG	GCC	GAC	TGG	GAG	CTC	'ACT	GAG	TCC	CC	960
																			P	
																				1020
E	N	G	F	S	F	N	T	S	H	S	C	G	H	L	V	Q	N	P	D	270

2/19

Fig. 1(2)

CGTG	TII	GAI	'GGC	'AAC	TGC	TGC	CTC	TCC	TGC	TT	TIC	GGC	CAC	TCG	GTC	GAZ	GTC	CGC	"TG	1080
V	F	D	G	K	C	W	L	S	C	F	L	G	Q	S	V	E	V	R	C	290
CCAI	GAC	GAA	CAI									ACC	AAC	TGC	GGC	GIC	CAI	GGI	'AA	1140
H	E	E	H	L	A	D	A	F	G	Y	Q	T	K	W	G	V	H	G	K	310
GTAC	CTC	.CAG	CGC	AGC	CT	CAP	GTI	CGC	:GGC	'ATT	'CGT	GCI	GTA	GTC	'GAT	CCI	GAT	GGI	'CC	1200
Y	L	0	R	R	Ŀ	0	V	R	G	I	R	A	V	V	D	P	D	G	Р	330
_	_	~			_	-	-		_				-		_	_	_	_	_	
CATT	CAC	(देगाना	Y;AZ	וניני	CTC	البكيات	*T(%(יכככ	CAG	n CT	TGC	ATC	'AGG	CAC	יריוי	ים	بالملك	CAT	ΥZA	1260
I	H	v			L						W	I	R	H	L	T	L	D	D	350
_	**	٠	-	-		5	_	-	¥	ט	**	-4-	10	2.1	ם	_		ט	ט	330
TGAT	VIIIV	יאריר	ירריז		m	V VITET	1000	-	יאריא	maa	(A181	'	יאחשו	CALLES.		יאאר	יארי	CAC		1320
D	V	љС TP	P	G J	T F	V V								V						
ע	V	T.	P	G	P	V	R	L	T	S	L	R	I	V	P	N	T	E	P	370
TACC			:CGG	YIA	TT	CGG		GGA	GCG	CAI	AAG	TGG	TAI	GGC	:GC1	GCC	:GGC	'AAA	CG	1380
${f T}$	T	S	R	I	F	R	F	G	Α	H	K	W	Y	G	A	A	G	K	R	390
GGCT	'CG'I	GCI	'AAC	CGI	GCC	:GCI	'AAA	AGT	GAG	AAG	GAT	TCG	GCI	CCC	'ACC	CCC	'AAG	GTI	'GC	1440
A	R	A	K	R	A	Α	K	S	E	ĸ	D	S	A	P	T	P	K	V	A	410
CCTG	CCG	CTC	יכככ	'ACC	गरभा	CCD	ATT	יאככ	'ልሮር	TAC	ייי	CCA	CCG	ACA	GAC	CCC	ייייייןיי	بلنتكياء	22	1500
	P			ΤŢ	C	G	I	T	T	Y	s	P	P	T	D	G	S	C	G	430
- 1	E	٧	_	_	C	G	_	_	1	-	D	E	F	Τ.	ט	G	2	C	G	430
TIGG	CAIT		- TITE	~~	~~	מחומי	N/III	13 3 C		2 mr	ממוג	2 2111	r-	~~~	*****		mac			7.560
	H																			1560
W	n	V	L	A	A	I	M	N	R	M	I	N	G	D	F	T	S	P	L	450
								_												
GACT	CAG	TAC	AAC	'AGA	CCA	GAG	GAI	GAI	TGG	GCI	TCI	GAT	TAT	GAI	CII	GII	CAG	GCG	AT	1620
${f T}$	Q	Y	N	R	P	E	D	D	W	A	S	D	Y	D	L	V	Q	A	I	470
TCAA	TGT	CTA	CGA	CTG	CCI	GCI	'ACC	GIG	GTT	CGG	AAT	CGC	GCC	TGT	'CCI	'AAC	:GCC	AAG	TA	1680
0	C	L	R	L	P	Α	T	V	V	R	N	R	Α	C	P	N	A	K	Y	490
_	_			_	_		_	•	•					_	_				_	250
CCTT	מידיםי	ΔΔΔ	्चांग	ממי	מבא	<u>्याना</u>	יראר	TY2C	CAC	מיזים	GAG	CITY	ACC	TV TI	C D	בידים	الم	برساب	CC.	1740
L		K	L	N	G	v		W		V		A.	R	S	G		_	P		510
- 1	_	K	ш	7.0	G	V	п	AA	<u>C.</u>	٧	Ŀ	V	А	Ð	G	ΪΑΙ	A	P	R	210
~~~														_~-						
CTCC																				1800
S	L	S	R	E	C	V	V	G	V	C	S	E	G	C	V	A	P	P	Y	530
TCCA	GCA	GAC	GGG	CIA	CCI	AAA	CGT	GCA	CTC	GAG	GCC	TIG	GCG	TCT	GCI	TAC	AGA	CTA	CC	1860
P	A	D	G	L	P	ĸ	R	A	L	E	A	L	A	S	A	Y	R	L	P	550
CTCC	САТ	TCT	Gur	'ACC	יין יין	GGT	יוייניב	ىلمىك	GAC	بلملماء	بلملت	ىنى	ТАД	CCA	CCT	CCT	CAC	CAD	بلعك	1920
									D								0		F	570
	יב	_	٧	J		9	-	_	ט	T.	ч	_	TA	-	-	_	×	T.	r	570
CHICC.	300	~m~	~~	יה או	N FEET		3 CC	m~~	~~~	mar.	~~+	~~~	~~~	maa	~~~			·		1000
CTGG															_					1980
W	T	L	D	K	M	Ĺ	T	S	P	S	P	E	R	S	G	F	S	S	L	590

3/19

# Fig. 1(3)

GTA!	[AA]	TTA	CTA	TTZ	GAG	GTT	GT	CCC	CAA	AAA	TGC	GGI	'GCC	'ACC	GAA	LGGG	GCI	TTC	TA.	2040
Y	K	L	L	L	E	V	V	P	Q	K	C	G	A	T	E	G	A	F	I	610
CTA	rgci	GTT	GAC	AGG	OTA	TTC	AAC	GAI	IGI	CCC	AGC	TCC	'AA	CAG	GCC	ATC	GCC	CTI	CT	2100
Y	A	V	E	R	M	L	K	D	C	P	S	S	K	Q	A	M	A	L	L	630
GGCZ	\AAZ	ATT	'AAA	GT	CCF	\TCC	TC	AAG	GCC	:CCG	TCI	GTG	TCC	CIC	GAC	GAC	TGI	TTC	CC	2160
A	K	I	K	V	P	S	S	K	A	P	S	V	s	L	D	E	С	F	P	650
TAC	GAI	GTI	TTA	\GCC	GAC	TTC	GAC	CCA	GCA	TCI	'CAG	GAA	AGG	icco	CAA	AGT	TCC	:GGC	:GC	2220
T	D	V	L	A	D	F	E	P	A	S	Q	E	R	P	Q	S	S	G	A	670
																75				
TGCT	GT	GTC	CTG	TGT	TCA	CCG	GAT	GCA	AAA	GAG	TTC	GAG	GAA	GCA	GCC	-	_	GAA	GT	2280
												E			A				V	690
TCAZ	ACE DA	: Δር:ጣ	race (	יר אַר	'אאר	:GCC	ሂደጥረ	'C'AC	لفكيلة	የገርን	ירייני	بلعلماء	<b>13.</b>	የታልር	ינכטז	الحا	ממי	דע מי	ΥZΔ	2340
												L								710
~																				
GCAG												-	-				-			2400
Q	V	Q	V	V	A	G	E	Q	L	K	L	G	G	С	G	L	A	V	G	730
GAAT	GCI	CAT	GAA	GGI	GCI	CIG	GTC	TCA	GCI	GGI	CTA	ATT	AAC	CTG	GTA	GGC	:GGG	AAT	TT	2460
N	A	H	E	G	A	L	v	S	A	G	L	I	N	L	V	G	G	N	L	750
GTCC	יכיכי	מיאיני	CAC	יכככ	יצדע:	ΔΔΔ	GAZ	ממ	יצדיםי	كىلىك	דיג בי	ימכר	יריכנ	ממבי	CAC	ממבץ	רכש	حبلاء	CD.	2520
												S				E		L		770
TTTC	TCC	CAA	CCA	GCA	CCA	GCI	TCC	'ACA	ACG	ACC	CTI	GTG	AGA	GAG	CAA	ACA	CCC	GAC	AA	2580
												V								790
CCCZ	التكتا	मार्थ वा	דימבץ	13CC	יכביו	የድሮር	ירוויר	יריר	יביזיר	ישרר	بتعلي	מביצי	CDD	-Talal.	ישני	ירירים	אריכ	CCC	ירכ	2640
												R								810
ma ma	~~~	-	.~~	~~~	~~~					~~~			~~~							
TATA																				2700
1	ъ	C	H	V	ĸ	n	C	G	Т	15	S	G	ע	S	S	S	Þ	ь	ם	830
TCT																				2760
L	S	D	A	Q	T	L	D	Q	P	L	N	L	S	L	A	A	M	P	V	850
GAGG	ינירר	יארר	'GCG	गुरुष	TAC	יכידי	יככר	יזבאויי	CITE	CAC	CCT	שככ	רכר	CAC	ىرسات	כיתיבי	باعاماء	עיזיבץ	2 2	2820
												R								870
																				0,0
GCCI																				2880
P	R	N	Α	F	S	D	G	מו	S	Α	T٠	0	F	C	R	т.	S	H.	C	290

4/19

# Fig. 1(4)

CAGC	TCI	GTC	ATC	GAG	TTI	GAC	CGG	ACA	AAA	GAT	'GC'I	'CCG	GTG	GTI	GAC	:GCC	CCI	GTC	GA.	2940
S	S	٧	I	E	F	D	R	T	K	D	A	P	V	V	D	A	P	V	D	910
CTTG	מאב	בים	יחיריני	ממ	ነር ልር	יכככ	ارسلار	بالت)بلة	(TTA	GTC	'GAT	CCT	TTC	GAA	TTT	GCC	GAA	CTC	'AA	3000
L		T	s		E			s						E	F			L		930
n	1	1	ي	TA	Ľ	n.	ш	2	v	٧	ט	_	-	_	-	21		_	10	220
GCGC	CCG:	CGT														GCC	GA'I	GIC	CA:	3060
R	P	R	F	S	Α	Q	Α	L	I	D	R	G	G	P	L	Α	D	V	H	950
TGCA	מממ	מיזימ	מממ	ממב	ירכם	מידים	דעיד	MAN A	CAG	TCC	יכיוויר	מבי	GCT	TGT	GAG	CCC	GGT	ΆζΤ	CG	3120
	K					V										P		S	R	970
A	v	Τ.	V	7.4	K	٧	1	Ľ	Ž	_		Q	_	_	15	E	G		K	370
TGCA	ACC	CCA	GCC	'ACC	<b>AGG</b>						ATG	TGG	GAI	AGC	GIC	GAC	ATG	AAA	AC	3180
A	T	P	Α	T	R	E	W	L	D	K	M	W	D	R	V	D	M	K	T	990
						•														
TTGG		mar.	ארכ	an C	CAC	كالملة	ממחי	COT	יביביוי	ירכר	יברים	بلعلم	4	ידיריר	ירשוע	מממי	المليار	الملك	יככ	3240
																	F	L	Þ	
W	R	C	T	S	Q	F	Q	A	G	K	Τ.	П	A	D	11	V	F	L	P	1010
TGAC	ATG	ITA:	CAA	GAC	'ACA		CCI	CCI	GII	CCC	AGG	AAG	AAC	CGA	GCI	'AG'I	GAC	AAI	'GC	3300
D	M	I	0	D	Т	P	P	P	V	P	R	K	N	R	A	S	D	N	Α	1030
_		_	~.	_	_	_														
CGGC	CALL C	א א מ	~~~	CITIC		ירכז	CNC	m~~	СУП	ארכ	תתת	THE STATE	λСП	CTTC	יאריר	ירירי	ירתר	ירירא	ת ת	3360
			_																	
G	Г	K	Q	L	V	A	Q	W	D	R	K	Ъ	S	V	T	P	P	Ъ	K	1050
ACCG	GTI	GGG	CCA	GTG	CTI	GAC	CAG	ATC	GTC	CCI	'CCG	CCT	ACG	GAI	'ATC	:CAG	CAA	GAA	GA	3420
P	V	G	P	V	L	D	0	I	V	P	P	P	T	D	I	0	0	E	D	1070
_	-	_	_	-	_	_	_	_								_	_			
TGTC	יאכיכ		m~~	ייא אוד		יררא	~~~	יראוד		ccc	ωлп	-		יא כייד	אביציי	CITICS	אכיר	יארים	~~	3480
V	${f T}$	P	S	D	G	P	P	H	A	P	D	F	Þ	S	R	V	S	T	G	1090
CGGG	AGT	TGG	AAA	GGC	CIT	'ATG	CII	TCC	GGC	ACC	CGI	CIC	GCG	GGG	TCI	'ATC	'AGC	CAG	CG	3540
G	S	W	K	G	Τ.	M	L	S	G	T	R	L	A	G	S	I	S	0	R	1110
_	_	••		_	_		~	_	_	-		_		_	_	_	-	*		
CCTT	13 MV		maa	~	****	~~~			maa	~~		-			אווא		202	CITITE .	****	3600
														_	_					3600
L	M	T	W	V	F	E	V	F	S	H	L	P	A	F.	M	L	${f T}$	L	F	1130
CTCG	CCG	CGG	GGC	TCI	'ATG	GCT	'CCA	GGT	GAT	TGG	TIG	TTT	GCA	GGI	GTC	GTI	TTA	CIT	'GC	3660
S		R	G	S	M	A	P	G	D	M	L		A	G	V		L	L	A	1150
	_	10	G	5	1-1	-	-	9		**	_	-		•	•	•			-	1130
TCTC																				3720
L	L	L	C	R	S	Y	P	I	L	G	C	L	P	L	L	G	V	F	S	1170
TGGT	لمالم	تكلمك	CCC	יריבירן	لملشكا	بلتكاب	تكلتك	CCT	بلملث	الملما	יייט	ահար	ጥርር	ATT	G(T	اعلماء	العالية	מיויבץ	tal.	3780
						R	_													
G	D	יו	ĸ	ĸ	V	π	ш	G	V	r	G	Ð	77	I.I	A	r	A	V	F	1190
TTTA														_						3840
L	F	S	${f T}$	P	S	N	P	v	G	S	S	C	D	H	D	S	P	E	C	1210
_	-	_	_	-	_		_	- •	_	-	-	_	_		_	-	_	_	_	

5/19

# Fig. 1(5)

TCAT	GCI	GAG	CTI	TIC	GCI	CT	GAG	CAG	CGC	CAA	CTI	TGG	GAA	CCI	GTG	CGC	GGC	CII	GT	3900
Н	A	E	L	L	A	L	E	Q	R	Q	L	M	E	P	V	R	G	L	V	1230
GGTC	יבבר	יררר	لا بالله	الحرد	יריווי	VIETYZ.	ויבאני	יאויבי	ידיים	<b>भ</b> याचा	יכבר	יא אכ	لابلعل	ישוי	יניביוי	<b>Y</b> CCC	מייריב	ССТ	ביד	3960
	G						C			L			L	L		G	S	R	Y	1250
V	G	P	٥	G	П	ם	C	V	_	יי	G	K	п	n	G	G	Ö	K	1	1230
TCTC	TGG	CAT	GI'I	CTC	CTA	CG1	TTA	TGC	ATG	CIT	GCA	GAT	TIC	:GCC	CII	TCI	CTI	GII	TΆ	4020
L	W	H	V	L	L	R	L	C	M	L	A	D	L	Α	L	S	L	V	Y	1270
TGTG	GTG	TCC	CAG	GGG	CGI	TGT	CAC	'AAG	TGT	TGG	GGA	AAG	TGI	'ATA	AGG	ACA	GCI	CCI	GC	4080
	v	S					H					ĸ		I	R		Α		A	1290
		_	~	_									_							•
GGAG	CTC	CT	أجات	ראמי	בידיבץ	لماليا	CCT	TTC	TCG	CGC	GCC	'ACC	CGT	GTC	TCI	TT:	GTA	TCC	TT	4140
							P					T			S		V			1310
_	•	••	~	••	•	-	-	-	_			-		•	_		•	-	_	
GTGT	דעבץ	מביציו	كىلمك	ממיזי	ACC	ירריב	מממ	CCC	्र दिनग	የጋልጥ	الرما	Y21Y2	ראר	नगर	מרם	ACC	יככיז	<u> الرات</u>	CC	4200
	D		F	0	T	P		G				v					G	W	R	1330
	ט	1	-	v	-	_	1.	-	٧		-	٧			-	-	•	**	10	1330
CGGG	ייייי	TYC	ССП	لتتات	יבאכ	יאכיר	יררר	יאחערי	יייאמיי	ממיץ	CCN	כאכ	ת מיי	מממ		מחע	CCT	או עינב	<b>C</b> C	4260
	C			G			P								P			Y		1350
G	C	M	K	G	Е	٥	=	_	п	¥	F	п	Q	K	F	_	A		A	1330
CAAT	MINITED VO	ረ አጥ	ע בי	אמ	מממ	איינע	لمكران	<b>12</b> 00	ירא <i>א</i>	ACC:	CTC	العلات	COT		יררא	ጥልር	ሃጋአባ	יררר	באמ	4320
N	L		E		K		S					V					D	P	S	1370
74	נג	ט	13	17	10	1.1	S	A	V	_	٧	٧	_	٧	E	1	ט	E	٦	13/0
TCAG	المال	יאייעי	מממי	יייי	والمالة	מממי	لملاك	تكليب	CAG	CCC	CCA	ccc	CCC	יאחומי	(ZITYZ	CAC	יכאכ	برحس	יארי	4380
	A						V								V		٥	P	T	1390
V		_	10	_		10	٧		¥		9	3		_	v	ט	v	E	-	1370
ACCI	TAC	ረጥር	بىلىت.	ייביי	יאויבץ	ייזיריר	מבץ	יאים:	ירירי	باساند	מיצוי	ברר	מיייי	Intell	ماماير	יררש	מממ	بلملت	יכר	4440
			v		V		E	I				A		F	F	P		V	P	1410
-	15		٧	K	٧	5	- 22	_	_	Ŀ		n	F	£	Ľ	E	К	٧	F	TATO
AGTO	יא ארי	י. יריריא	מאיז	414.5C	יאככ	لملات	YZITYZ	מידיבע	ርአጥ	TY:	GNO	יזויי) עי	nialal	<b>131113</b>	CCI	ccc	لعلنت	יכיכי	באני	4500
V							V												C	1430
٧	IA	F	ע	_	K	٧	V	V	ט	5	ע	_	F	V	A	A	V	ж	C	1430
							c													
CGGT	אנוש	m/Y	מיאמו	יכרא	ת גרם.	ر مالک	_		CCC	CCC	ccc	יא א רי	ijalal.	ייירר	יא א מי	HEIL V	חתת	יכיאכי	20	4560
_																		_		
G	Y	S	T	A	Q	ш	V	T	G	ĸ	G	M	F	A	K	L	N	Q	T	1450
cccc	1000	300	N N C	TIL TI	i a mo	****	· > ~	***	200	7 (41)					ma c	3.00	~		am.	4.000
_																				4620
P	P	R	N	S	I	S	T	K	T	T	G	G	A	S	Y	T	L	A	V	1470
~~~		~~~		~~~					~~~											
GGCI																				4680
A	Q	V	S	A	W	.1,	Ţ	٧	H	۳	Ţ	L	G	L	W	F	T	S	Р	1490
					-			~ -~												
TCAA																				
Q	V	C	G	R	G	T	A	D	Р	W	C	S	14	P	F	S	Y	P	T	1510
																				
CTAI																				
Y	G	P	G	V	V	C	S	S	R	L	С	V	S	A	D	G	V	T	L	1530

Fig. 1(6)

GCCA	(TET)	TTC	TCA	GCC	GTG	GCA	CAA	CTC	TCC	GGT	'AGA	GAG	GTG	:GGG	ATI	LILL	TTA:	TIG	GT	4860
	L		~~	2	77	7	_	L	_ c	G	D	F	77	G	т	모	т	Τ.	77	1550
P	1.2	r	D	A	V	Α.	Q	ינ	3	G	K	111	٧	G	_	T	_		٠	1330
GCTC	GTC	TCC	TIG	ACI	GCI	TIG	GCC	CAC	CGC	ATG	GCI	CII	'AAC	IGCA	GAC	'ATG	TTA	GTG	GT	4920
	v		T -	m	7	т.	7	H	ъ	M	2	T.	K	Δ	ח	M	T.	77	7.7	1570
יד	V	5	п	T	M	ш	n	п	17	1.7	n		10	А		1.1		•	•	13,0
CTTI	TCG	GCT	TIT	TGI	GCI	TAC	:GCC	TGG:	CCC	'ATG	AGC	TCC	TGC:	TTP	YTA	TGC	TTC	TTT	CC	4980
Tr.	C	7	F	C	Ζ	v	Δ	W	Þ	M	S	S	W	Τ,	T	C	F		P	1590
F	5	^	T.	C	-	_	-	••	_			_	••	_	_	_	-	-	_	
													_							
TATA	CTC	TIG	AAG	TGG	GTT	'ACC	CII	CAC	CCI	CIT	ACI	ATG	CH	TGG	GTC	CAC	TCA	ALLC.	TT	5040
I	т.	т.	K	W	V	d)	т.	H	P	Τ.	Т	M	L	W	v	H	S	F	L	1610
_		_		••	•	-	_	••	-	_	-		_	• • •	•		_	_	_	
		-																		
GGTG	TII	TGT	CIG	CCA	IGCA	GCC	:GGC	ATC	CIC	TCA	CIA	GGG	AIA	ACI	GGC	CII	CII	TGG	iGC	5100
v	F	C	L	P	A	Α	G	I	L	S	L	G	I	${f T}$	G	L	L	W	A	1630
•	_	_	_	_			_													
												~~		~						E1.C0
AATT																				5160
I	G	R	F	${f T}$	0	V	Α	G	I	I	${f T}$	P	Y	D	I	H	Q	Y	${f T}$	1650
_	_		_	_	~												_			
									~~~		~~~	~~~	~		~	···	-	-	2	E220
CTCI																				5220
S	G	P	R	G	A	A	A	V	A	${f T}$	A	P	E	G	T	Y	M	A	A	1670
CGTC	.~~		~~		*****	3.00		~~	200	*****	NITTO		300		TIV TI	***	CHIT	~~~	mc .	5280
V	R	R	A	A	L	${f T}$	G	R	T	L	I	F	T	₽	S	$\mathbf{A}$	V	G	S	1690
CCTI	NAIN.	~~~	cem	Y CYT	AIRIC	יאככ	אכיוו	יחתיץ	א א אי		4142C	A SECTION A	אמי	יאכיכ	YZITYZ	יית ע	Y ZVI TI	מיויבי	CC	5340
L	L	E	G	A	F.	R	T.	H	K	ь	C	L	N	T.	V	N	V	V	G	1710
CTCI	<b>ग</b> /	بلعلماء	CCT	יויריר	<b>YCGA</b>	CCC	لباب	كلملة	ACC	'A'I'T	GAT	GGC	AGA	AGA	ACT	<b>የ</b> ታጥር	יניידי:	'ACT	'GC	5400
								F											A	1730
S	5	ند	G	S	G	G	V	F	T.	Ŧ	ע	G	R	K	T.	V	V	1	A	1/30
TGCC	CAT	GTG	TIG	AAC	:GGC	GAC	'ACA	GCT	'AGA	GTC	ACC	GGC	GAC	TCC	TAC	'AAC	:CGC	ATG	CA	5460
								A												1750
A	п	V	ш	14	G	ע	T	m	K	V		G	ט	5	1	7.4	K	1-1	п	1/30
CACI	TTC	AAG	ACC	'AAI	GGT	GAI	TAI	<b>GCC</b>	TGG	TCC	CAT	CI	GAI	GAC	TGG	CAG	:GGC	GTT	'GC	5520
T)	F	K	m	M	G	D	v	A	W	C	п	Δ	D	D	W	0	G	77	Δ	1770
-	Ľ	77	_	7.4	G	ט	-	-	**	5	11	21	ט	ב	**	¥	G	٧		1,,0
CCCI	GIG	GTC	AAG	GTI	'GCG	AAG	GGG	TAC	CGC	:GGT	'CGT	GCC	TAC	TGG	CAA	ACA	TCA	ACT	'GG	5580
P	7.7	77	ĸ	₹7	Δ	K	G	Y	R	G	R	Δ	Y	W	0	T	S	T	G	1790
-	•	•	•	•			•	-	2.	•			-	••	×	-		-	_	50
											_									
TGTC	GAA	CCC	GGT	'ATC	TTA.	GGG	GAA	<u>.</u> GGG	TTC	GCC	TTC	IGI	LLL	ACI	'AAC	TGC	:GGC	GAI	TC	5640
v	E	Þ	G	т	т	G	民	G	F	Α	F	C	F	gr	N	C	G	D	S	1810
•	_	_	_	_	-	•		•	-		_	_	_	_		_	_	_	_	
GGGG	TCA	CCC	GIC	'ATC	TCA	GAA	TCI	GGT	GAT	CIT	AIT	GGA	AT'C	:CAC	ACC	GGI	TCA	AAC	AΑ	5700
G	S	P	V	I	S	E	S	G	D	L	I	G	I	H	T	G	S	N	K	1830
_	~	-	•	_	_	_	_	_	_	_	_	_	_		_	_	_			
											~		- 11							
ACTI	GGI	ICI																		
L	G	S	G	L	V	T	T	P	E	G	E	$\mathbf{T}$	C	T	I	K	E	T	K	1850

# Fig. 1(7)

GCTC	TCT	GAC	CIT	TCC	AGA	CAT	TTT	GCA	GGC	:CCA	AGC	GIT	CCT	CII	GGG	GAC	'AT'I	'AAA'	TT	5820
	S		L	S						P		v							L	1870
GAGI	'CCG	GCC	ATC	ATC	CCI	GAT	GTA	ACA	TCC	ATT	CCG	AGT	GAC	TTG	GCA	TCG	CTC	CTA	<b>GC</b>	5880
S	P	Α	I	I	P	D	V	T	S	I	P	S	D	L	A	S	L	L	A	1890
CTCC																				5940
S	V	P	V	V	E	G	G	L	S	Т	V	Q	ഥ	Ļ	C	V	F,	F	L	1910
TCTC	maa		2000	2000	~~~	MAN TO SERVICE	200	maa	מים מי	~~~	Allen	r water	~~	وهرون	ccc	aten.	415151	-	(जा)	6000
L		CGC R	AIG M	M M	G	CA1		W		P		V					F	L	L	1930
n	W	K	141	141	G	п	A	71	1	P	_	٧	^	٧	G	E	F	п	T	1930
GAAT	Y A A	יניינע	باعات	יררים	מרם	لملت	TTE	CTC	CGA	GCC	CTC	Heleli	TCT	Lalal	GCA	CTC		CTC	CT	6060
N						v											F		L	1950
	_					-														
TGCA	TGG	GCC	ACC	CCC	TGG	TCI	GCA	CAG	GTG	TIG	ATG	ATT	AGA	CTC	CTC	ACG	GCA	TCI	'CT	6120
A	W	A	T	P	W	S	A	Q	V	L	M	I	R	L	L	T	A	S	L	1970
CAAC																				6180
N	R	N	K	L	S	L	A	F	Y	A	L	G	G	V.	V	G	L	A	A	1990
TGAA	2000	~~~	- A		~~		202			~~~		m/en	<b>~</b> * * * * * * * * * * * * * * * * * * *		-	m	202	ma o		C240
TGAA E		G G				G											ACA T		C	6240 2010
	_	G	1	. г	_	G	K	L	3	15	ננ	.5	V		ъ.	.5	1	1	C	2010
CITC	ATT.	CCT	AGG	GTC	CTI	GCT	ATG	ACC	AGT	TGT	GIT	ccc	ACC	ATC	ATC	rra'	GGT	<b>GGA</b>	CT	6300
F						A										I				2030
																	_	_		
								G	}											
CCAT											_					-				6360
H	T	L	G	V	I	L	W	L	F	K	Y	R	С	L	H	N	M	L	V	2050
-			- ~				~~~				~~~			~~-	~~	~~				<b>5.00</b>
TGGT				TTT F	TCA S							Y			GAG E		N N	CIC L	AG R	6420
G	ע	G	S	r.	D	S	A	F	r	'n	R	I	F	A	E	G	14	L	R	2070
AAAA	CCT	باعلات	מיים	CAG	יתיכר	ידיביאדי	מפר	ביווים	חממ	יאממי	വമവ	m/C	מיזיי	ልርር	COT	المال	עיופוי	COT	TY Z	6480
-						C												A		2090
	_	•	_	×	_	_	_				_	_	_	-			_		•	2000
CAAG	TTG	TCA	CAG	GCI	GAC	CTT	GAT	TTT	TIG	TCC	AGC	TTA	ACG	AAC	TTC	AAG	TGC	TIT	GT	6540
K		s	0		D		D			S				N	F			F	v	2110
			_																	
ATCT	GCT	TCA	AAC	ATG	AAA	AAT	GCT	GCC	GGC	CAG	TAC	ATT	GAA	GCA	GCG	TAT	GCC	AAG	GC	6600
S	A	S	N	M	K	N	A	A	G	Q	Y	I	E	A	A	Y	A	K	A	2130
CCIG																				6660
L	R	Q	E	L	A	S	L	V	Q	I	D	K	M	K	G	V	L	S	K	2150

# Fig. 1(8)

GCTCGAGGCCTTTGCTGAAACAGCCACCCCGTCCCTTGACATAGGTGACGTGATTGTTC	T 6720
LEAFAETATPSLDIGDVIV	
GCTTGGGCAACATCCTCACGGATCCATCCTCGATATTAATGTGGGGACTGAAAGGAAAA	
LGQHPHGSILDINVGTERK	T 2190
TGTGTCCGTGCAAGAGACCCGGAGCCTAGGCGGCTCCAAATTCAGTGTTTGTACTGTCG	T 6840
V S V Q E T R S L G G S K F S V C T V	V 2210
_	
A	m cooo
GTCCAACACCCGTGGACGCCTTGACCGGCATCCCACTCCAGACACCCAACCCCTCTTT	
SNTPVDALTGIPLQTPTPL	F 2230
manan namagaaaaman maaan aaaaaaa na na aa mammin n namaan ahaa aa maha na n	n 6060
TGAGAATGGTCCGCGTCATCGCAGCGAGGAAGACGATCTTAAAGTCGAGAGGATGAAGA	
ENGPRHRSEEDDLKVERMK	K 2250
ACACTGTGTATCCCTCGGCTTCCACAACATCAATGGCAAAGTTTACTGCAAAATTTGGG	A 7020
	D 2270
H C A S T G L H M T M G K A I C Y T M	D 2270
CAAGTCTACCGGTGACACCTTTTACACGGATGATTCCCGGTACACCCAAGACCATGCTT	T 7080
K S T G D T F Y T D D S R Y T O D H A	
K S I G D I F I I D D S K I I Q D H A	2230
TCAGGACAGGTCAGCCGACTACAGAGACAGGGACTATGAGGGTGTGCAAACCACCCCCC	A 7140
Q D R S A D Y R D R D S E T P V G T V	V 2310
Q D R D R D I R D R D D D I I V G I V	. 2526
ACAGGGATTTGATCCAAAGTCTGAAACCCCTGTTGGCACTGTTGTGATCGGCGGTATTA	C 7200
	P 2330
GTATAACAGGTATCTGATCAAAGGTAAGGAGGTTCTGGTCCCCAAGCCTGACAACTGCC	T 7260
KNRYLIKGKEVLVPKPDNC	L 2350
TGAAGCTGCCAAGCTGTCCCTTGAGCAAGCTCTCGCTGGGATGGGCCAAACTTGCGACC	T 7320
EAAKLSLEQALAGMGQTCD	L 2370
TACAGCTGCCGAGGTGGAAAAGCTAAAGCGCATCATTAGTCAACTCCAAGGTTTGACCA	
TAAEVEKLKRIISQLQGLT	T 2390
ORFIE	
TGAACAGGCTTTAAACTGTTAGCCGCCAGCGGCTTGACCCGCTGTGGCCGCGGCGCCCT	
EQALNC-	2396
- T G F K L L A A S G L T R C G R G G L	19
	0 5505
GTTGTGACTGAAACGGCGGTAAAAATTATAAAATACCACAGCAGAACTTTCACCTTAGG	
V V T E T A V K I I K Y H S R T F T L G	39
CCTTTAGACCTAAAAGTCACTTCCGAGGTGGAGGTAAAGAAATCAACTGAGCAGGGCCA	
PLDLKVTSEVKKSTEQGH	59

# Fig. 1(9)

GCT	GTT	GTG	GCA	AAC	TTA	TGI	TCC	GGI	GTC	'ATC	TTG	ATG	AGA	CCT	CAC	CCA	.CCG	TCC	CTT	7620
A	V	V	A	N	L	C	S	G	V	I	L	M	R	P	H	P	P	S	L	79
GTC	GAC	GTT	CTT	CIG	AAA	CCC	GGA	CTI	GAC	'ACA	ATA	CCC	GGC	ATT	CAA	CCA	GGG	CAT	GGG	7680
v	D	V	L	L	K	P	G	L	D	T	I	P	G	I	Q	P	G	H	G	99
GCC	GGG	AAT	ATG	GGC	GTG	GAC	GGI	TCI	'ATT	TGG	GAT	111	GAA	ACC	GCA	CCC	ACA	AAG	GCA	7740
A	G	N	M	G	V	D	G	S	I	W	D	F	E	T	A	P	T	K	A	119
GAA	CTC	GAG	TTA	TCC	'AAG	CAA	ATA	ATC	CAA	GCA	TGI	GAA	GTT	'AGG	CGC	GGG	GAC	:GCC	CCG	7800
E	L	E	L	S	K	Q	I	I	'Q	A	С	E	V	R	R	G	D	A	P	139
AAC	CTC	CAA	CTC	CCI	TAC	'AAG	CTC	TAT.	CCI	GTI	AGG	GGG	GAT	CCI	GAG	CGG	CAI	'AAA'	<b>GGC</b>	7860
N	L	Q	L	P	Y	K	L	Y	P	V	R	G	D	P	E	R	H	K	G	159
CGC	CTT	ATC	'AA'I	'ACC	AGG	rrr	GGA	GAI	TTA	CCI	TAC	'AAA	ACT	CCI	CAA	GAC	ACC	'AAG	TCC	7920
	L			T	R	F	G	D	L	P	Y	K	T	P	Q	D	T	K	S	179
GCA	ATC	CAC	GCG	GCI	TGT	TGC	CTG	CAC	:CCC	'AAC	:GGC	GCC	:CCC	:GTG	TCI	GAT	GGI	'AAA'	TCC	7980
A	I	H	A	A	С	С	L	H	P	N	G	A	P	V	S	D	G	K	s	199
ACA	CTA	GGT	ACC	'AC'I	CTI	CAA	CAI	GGI	TTC	GAC	CTI	TAT	GTC	CCT	ACI	GTG	CCC	TAT	AGT	8040
T	L	G	T	T	L	Q	H	G	F	E	L	Y	V	P	T	V	P	Y	S	219
GTC	ATG	GAG	TAC	CT1	GAI	TCA	LCG(	CC1	GAC	'ACC	CC1	·I-I-I	'ATG	TGT	ACI	'AAA'	CAI	GGC	ACT	8100
V	M	E	Y	L	D	S	R	P	D	T	P	F	M	C	T	K	H	G	T	239
TCC	'AAG	GCI	GCI	GCA	GAG	GAC	CTC	CAP	AAA	TAC	GAC	CTA	TCC	'ACC	CAA	GGA	TTI	GTC	CTG	8160
S	K	F	V	L	P	G	V	L	R	L	V	R	R	F	I	F	A	A	A	259
CCI	GGG	GTC	CTA	CGC	CTA	GTZ	\CG(	'AGF	VITC	'ATC	-I-I-I	GGC	CAT	'ATT	GGI	'AAG	GCG	CCG	CCA	8220
E						D														279
TIC	TTC	CTC	CCA	TCA	ACC	TAT	CCC	GC(	'AAC	AAC	TCI	'ATC	GCA	<b>GGG</b>	ATC	'AA'I	GGC	CAG	AGG	8280
L						Y														299
TTC	CCA	ACA	AAG	GAC	GT	CAC	AGC	'ATZ	ACC1	GAZ	ATI	GAT.	GAA	ATG	TGT	GCC	CGC	GCI	GTC	8340
						Q														319
AAG	GAG	AAT	TGG	CAZ	ACT	GIG	ACZ	ACCI	TGC	'ACC	CTC	AAC	AAA	CAG	TAC	TGT	TCC	'AAG	CCC	8400
						V														339
ΔΔΖ	ACC	'AGG	ACC	'ATY	CTC	GGC	ACC	'AAC	'AAC	.I-I-I	'A'I'I	GCC	TTG	GCI	'CAC	AGA	TCG	GCG	CTC	8460
	Т					G														359
AGT																			AAA	8520
S	G	v	$\mathbf{T}$	Q	Α	F	M	K	· K	Α	W	K	S	P	I	A	L	G	K	379

# Fig. 1(10)

AACAAATTCAAGGAGCTGCATTGCACTGTCGCCGGCAGGTGTCTTGA	GGCCGACTTGGCC 8580
NKFKELHCTVAGRCLE	ADLA 399
TCCTGTGACCGCAGCACCCCCGCCATTGTAAGATGGTTTGTTGCCAA	ACCTCCTGTATGAA 8640
SCDRSTPAIVRWFVAI	ILLYE 419
CTTGCAGGATGTGAAGAGTACTTGCCTAGCTATGTGCTTAATTGCTG	CCATGACCTCGTG 8700
LAGCEEYLPSYVLNC	H D L V 439
GCAACACAGGATGGTGCCTTCACAAAACGCGGTGGCCTGTCGTCCGC	GGACCCCGTCACC 8760
ATQDGAFTKRGGLSS	D P V T 459
AGTGTGTCCAACACCGTATATTCACTGGTAATTTATGCCCAGCACAT	
SVSNTVYSLVIYAQHM	
TTGAAAATGGGTCATGAAATTGGTCTTAAGTTCCTCGAGGAACAGCT	
LKMGHEIGLKFLEEQI	
CTCCTTGAAATTCAGCCTATGTTGGTATACTCTGATGATCTTGTCTT	GTACGCTGAAAGA 8940
LLEIQPMLVYSDDLVI	Y A E R 519
C	
CCCACATTTCCCAATTACCACTGGTGGGTCGAGCACCTTGACCTGAT	
PTFPNYHWWVEHLDL	LLGFR 539
ACGGACCCAAAGAAAACCGTCATAACTGATAAACCCAGCTTCCTCGG	
TDPKKTVITDKPSFL	CRIE 559
GCAGGGCGACAGCTAGTCCCCAATCGCGACCGCATCCTGGCTGCTCT	
AGRQLVPNRDRILAAI	A Y H M 579
AAGGCGCAGAACGCCTCAGAGTATTATGCGTCTGCTGCCGCAATCCT	GATGGATTCATGT 9180
KAQ <u>N</u> ASEYYASAAII	M D S C 599
GCTTGCATTGACCATGACCCTGAGTGGTATGAGGACCTCATCTGCGG	TATTGCCCGGTGC 9240
ACIDHDPEWYEDLIC	; I A R C 619
GCCCGCCAGGATGGTTATAGCTTCCCAGGTCCGGCATTTTTCATGTC	CATGTGGGAGAAG 9300
ARQDGYSFPGPAFFMS	M W E K 639
CTGAGAAGTCATAATGAAGGGAAGAAATTCCGCCACTGCGGCATCTC	
LRSHNEGKKFRHCGIO	DAKA 659
GACTATGCGTCCGCCTGTGGGCTTGATTTGTGTTTGTTCCATTCGC	
DYASACGLDLCLFHSI	IFHQH 679

# Fig. 1(11)

	(	-																		
TG	CCCI	rg T(	CAC	CIC	GAG	CTG(	CGGT	CAC	CAT	rgcc	GG"	TC	AAA	GAZ	YTG'	TCC	CAC	FIG:	CAG	9480
C	P	V	T	L	S	C	G	H	H	A	G	S	K	E	C	S	Q	C	Q	699
TrC2	אררייו	املتكا	ותבובו	سات	TYZCZ	מאמי	ነጥሮ	المال	لعلنكا	פעבאו	<b>12</b> CC	YETY	ניוויי	מממ	ממא	ויירע ג	יררז	אמידינ	AAA	9540
S						R												Y		719
۵	P	V	G	A	G	K	5	•	п	ע	A	V	п	V	Q	_	P	I	K	7.13
CC.	rcci	rcg:	'AC	rg T	CAT	CATO	JAAC	GTC	GG1	['AA']	'AAZ	AACZ	ACC	3GCC	CTC	GA'I	CCC	GGG	AGG	9600
						M														739
			_					-	_			_				_	_			
ጥል(	יראנ	יחיני	التاب	נביים	الالات	11/411/	YZITE	<b>Y2</b> C2		א מי	יאכינ	יביבינ	ישריאיי	מי)בא	ccc	חת מי	אבא <i>ז</i>	(Zillel	GAT	9660
						L												A TET		759
	Q	ט	7.	K	G	ш	V		v	K	K	G	_	A	G	14	Ŀ	V	ע	/ 55
			,																	
~		~~ *	_	<i>Y</i>	~~~							. ~ ~ ~								
																			ATG	9720
L	S	ש	G	ם	Y	Q	V	V	P	L	L	P	T	С	K	D	I	N	M	779
																			GGA	9780
V	K	V	A	C	N	V	L	L	S	K	F	I	v	G	P	P	G	S	G	799
															-	T				
AAC	ACC	ACC	TGO	CTZ	ACTO	BAGT	CAA	GTC	CAG	GAC	GAT	GAT.	GTC	TTA.	TAC	'ACA	CCC	'ACC	CAT	9840
K						S											P		H	819
	_	_				_	*	•	*	_	_	_	•	_	-	Ī	•	•		042
																_				
CAG	ייאבי	יצדיעי.	املمان	יימבץ	ניזיעיו	אכיחיר מיייר	ים:מי	1201	كلمك	מממי	टगर	ALAS-C	יאככ	ייענים	TOO	ידיניגי	מייי	ac y	GCC	9900
ō	T	M				v										I				
¥	-	L.I	L	ט	_	V	5	-	ш	v	٧	C	ĸ	1	5	_	P	G	A	839
mor	~~~	~	-	*****	~~		~~	~~~									_			
TCA		W.I.C	.CC1	711		ACCE.	ICC1	الخلال	JEK.	itee	عاعات	iCCG	TGG	GIT	AGG	CLI			AGC	9960
S	G	Ţ	P	F.	Ъ	P	Р	A	R	S	G	₽	W	V	R	L	I	A	S	859
																AAT	CAI	CIG	GAC	10020
G	H	V	P	G	R	V	S	Y	L	D	E	A	G	Y	C	N	H	L	D	879
ATI	CII	'AGA	CTG	CIT	TCC	'AAA	ACA	CCC	CTI	GIG	TGI	TIG	GGI	GAC	CTT	CAG	CAA	CIT	CAC	10080
I	L	R	L	L	S	K	T	P	L	V	C	L	G	D	L	0			H	899
											_		_			-	-	_		•
CCI	GTC	GGC	TTT	(GAT	Tree	TAC	TET	דעיד	CTT:	יוייוי	СУП	יראכ	ביויים	الحال	כאכי	מממ	ര	Call.	ACC	10140
	v					Y													T	919
-	•	•	•	_		•	_	•	•	-	ט	Z	1/1	E	Q	K	Q	ш	1	313
х	יאווארו	ma c	מיאמי	·	~~~	·~~	N N C	3 m	maa	~~	~~~	3 ma				ms	- ~~	~~~		
MCI T	AI.		MZH.	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Jee.	CCI	AAL	AIC	TGC	GCA	LGC	ATC	ناهن:	CCI	IGI.	TAC	AGG —		AAA	10200
.1.	1	Y	R	F.	G	P	N	1	C	A	R	I	Q	P	C	Y	R	E	K	939
																			GGT	10260
L	E	S	K	A	R	N	T	R	V	V	F	${f T}$	${f T}$	R	P	V	A	F	G	959
CAG	GTG	CIG	ACA	CCA	TAC	CAT	AAA	GAT	CGC	ATC	GGC	TCT	GCG	ATA	ACC	ATA	GAT	TCA	TCC	10320
$\circ$	77	Τ.	T)	D	v	T	17	D	D	T	C		70	_	m	~	<b>n</b>		~~	070

12/19

## Fig. 1(12)

CAG	GGG	GCC	ACC	TTT															AAA	10380
Q	G	A	T	F	D	I	V	Т	L	H	L	P	S	P	K	S	υ.	N_	K	999
יייר	ረርጋን	ഭനമ	بلملت	СПР	GCC	ATC	ACT	CGG	GCA	AGA	CAC	GGG	TIG	TTC	ATT	TAT	GAC	CCI	CAT	10440
s	R	A	L	v	A	I	T	R	A		H	G	L	F	I	Y		P	H	1019
3	л	A	ш	V	~	_	-	10	-7.	10		•	-	-	_	_	_	_		
AAC	CAG	CTC	CAG	GAG	TT	TTC	AAC	TTA	ACC	CCI	GAG	CGC	ACI	GAT	TGT	AAC	CTT	GTG'	TTC	10500
N	0	L	0	E	F			L	T		E	R	T	D	C	N	L	V	F	1039
	*	_	=		_	_														
300		~~~	~~~	~~~		גיוויי	CHILL		AAT	CCC	יייעבי	יייב בי	CCA	ביחירי	מיאמ	ארייוי	מידיבו	CCC	AAG	10560
												N		v	T	T	v	A	ĸ	1059
S	R	G	D	E	L	V	V	L	N	A	D	IA	A	V	Τ.	7	V	M	V	1033
GCC	CIT	GAG	ACA	GGT	CCA	TCI	<b>CGA</b>	TTT	<b>CGA</b>	GTA	TCA	GAC	CCG	AGG'	TGC	AAG	TCT	CIC	TTA	10620
A	L	E	T	G	P	S	R	F	R	V	S	D	P	R	C	ĸ	S	L	${f L}$	1079
		_	_	_																
CCC	V CTE	TICHT	m(Y		יוים גי	· • • • • • • • • • • • • • • • • • • •	ממבי	CCC	AGC	יחיבאוי	באדע	מיים	ביויי	ᢗᡃᢉᢋ	ממי	CITC	GCA	САТ	AAC	10680
_										C	M		L	P	0	v			N	1099
A	A	C	S	A	S	L	E	G	S	C	141	2	ш	F	¥	٧	-	п	7.4	1099
CIG	GGG	TTT	TAC	TTT	TCC	:CCG	GAC	AGT	'CCA	ACA	TTT	GCA	CCT	CIG	CCA	AAA	GAG	TIG	GCG	10740
L	G	F	Y	F	S	P	D	S	P	T	F	A	P	L	P	K	E	L	A	1119
_	_		_																	
CCT	Call		CCN	CITY	्नाग	17ACC	יכיאכ	יראכ	AAT	ייממ	cac	cc	TCC	درسا	דיב	MEN.	بلملت	CTY	ىلىك	10800
													M	P	D	R	L	V	A	1139
P	H	M	P	V	V	T	H	Q	N	N	R	A	W	P	ע	K	ш	٧	A	7,733
												_								
AG1	'ATG	CGC	CCA	ATT	GAI	<b>GCC</b>	:CGC	TAC	AGC	AAG	CCA	AIG	GTC	GGT	GCA	GGG	TAT	GIG	GTC	10860
S	M	R	P	I	D	A	R	Y	S	K	P	M	V	G	A	G	Y	V	V	1159
CCC	יריים	יחירי	יא כיכ	गान्द्रम	<b>रणाणा</b>	التاكة	יש כייו	<b>1</b>	GGT	فالث	تكلت	מיאי	TAC	TAT	CTC	ACA	CTA	TAC	ATC:	10920
			љСC T	Ŧ	L	G	T		G					Y		T	L	Y	I	1179
G	P	S	T	r	ינ	G	1	P	G	V	V	S	7	-		*	ш	1	_	11/2
AGG	GGI	GAG	CCC				CCA	GAA	ACA	CIC	GTI		ACA	GGG	CGI	ATA	GCC	ACA	GAT'	10980
R	G	E	P	0	A	L	P	E	${f T}$	L	V	S	T	G	$\mathbf{R}$	I	Α	${f T}$	D	1199
ריבעני	YY	CAC	ייעיי	ירשיר	TAC	Y:(T)	GCI	GAG	GAA	GAG	GCA	GCA	AAA	GAA	CTC	CCC	CAC	GCA	TTC	11040
C	R	E	Y		D	A		E	E	E			K		L	P	H	A	F	1219
C	х	E	-	ш	ט	A	-	13	تد			**	**	_	_	•	**	**	•	
													~~	-	- ~-				om s	
AT	:GGC	GAI	GIC	AAA	GGI	ACC	ACG	GTI	GGG	GGG	TGT								CTA	11100
I	G	D	V	K	G	${f T}$	${f T}$	V	G	G	C	H	H	I	${f T}$	S	K	Y	L	1239
ככיי	יאכר	יייריכ	علباء	:८८ग	א בי	GAC	गु(ग	GT	GCC	GTA	GTT	GGA	GTA	AGT	TCG	CCC	GGC	AGG	GCT	11160
P																			A	1259
P	х	S	ш	E	v	ע	2	٧	•	•	٠	3	•	_		_	•	••		
										<b>~</b> -~		~~~	<b>~</b>	~~~	~~~	~~-	m = -		~ · ·	11000
																				11220
A	K	A	V	C	T	L	T	D	V	Y	L	P	E	L	R	P	Y	L	Q	1279
CO	יעבע	יאמי	יבר זי	ע האנוי	מממ	יבאבי	تكلله	מממי	CITC	מממי	מידידי	GAC	كنداد	AGG	GAC	יאיני	((;)	מידים	ATG	11280
																			M	1299
ų	E	1,	A	5	K	C	W	v	11	7	T	ע	£	K	ע	٧	Λ.	L.	1.1	エムフラ

13/19

# Fig. 1(13)

GTC	TGG				ACC										TGG					11340
V	W	K	G	A C	T	A	Y	F	Q	L	E	G	L	T	W	S	A	L	P	1319
CNO	mam	~~~	3.CC	_	ATT(	מאכיני	יבאור	700	ስ አ <i>ር</i> ረር	אויעב	ברכי	Zeroty Zeroty	ימיחיבי	תארי	יובניע	יייעבי	مري	יתיבאו	מידימ	11400
					I											D	P	C	I	1339
D	Y	A	R	ħ.	1	Q	ъ	P	K	ע	A	V	V	I	1	ע	P	C	_	1339
GGA	CCG	GCA	מים	GCC	AAC	CGT	AAG	TC:	TG	CGA/	ACC	ACA	GAC	TGG	CGG	GCC	GAC	CTG	<b>GCA</b>	11460
G	P		Т	A		R				R						A			A	1359
GTG	ACA	CCG	TAT	GAT	TAC	GT(	3CC(	CAG	AAC	ATT.	rig	ACA	ACA	GCC	TGG	TTC	GAG	GAC	CTC	11520
v					Y			Q		I	L				W		E	D	L	1379
•	_	-	-	_	-	•		*		_		_	_		•	_	Ξ.			
GGG	CC	ሮልር	TCC	AAG	ATT	T*17(3(	3GG	PT(36	CAG	CC	H-17	AGG	CGA	GCA	TTT	GGC	TTT	GAA	AAC	11580
G		0			I												F	E	N	1399
G	-	ν	**	10	_		•	_	¥	•	•			21	-	٠	•	_	••	2000
7 (10)	CAC	יית איי		~~	ATC	TIPIV	ארייב	720	72007	י ביצווי	ነ አጥ	27/Y	200	א אר	G D C	רית מידי	سی د	באתי	ינועית	11640
					T	_						D	G					D D	Y	1419
T	E	D	W	A	Τ.	11	A	ĸ	ĸ	M	14	ע	G	V	ע	I	1	ע	I	1419
220	m-a-a-	» » ~			~~~	7777	~~~	707	73.CV	700	ma	TI 3 (~		~m	a am	~m	~~~	C A ITT	200	11700
					CGA															11700
N	W	N	C	V	R	E	R	Ь	н	A	Ţ	Y	G	R	A	R	D	H	T	1439
					GGC															11760
Y	H	F	Α	₽	G	T	E	L	0	77	E	T	_	77			L	P	P	1459
								_	×	•		L	G	K	P	R	11	E	•	2400
									_		_	_	_		_		_	_		
				TGA	ATT	CGG	GT(		_		_	_	_		_		_	_		11820
	CAA Q		CCG P	TGA -	ATT	CGG	GT(		_	ATGO	- GG!	- rca	CIG	T <b>G</b> G	- AGT	AAA	ATC.	_		
				-	ATT RF2	CGG(	GT(		_		_	_	CIG	T <b>G</b> G	_	AAA	ATC.	_	CAG	11820
				-		ccc	GT(	YEAE	- CA	ATGO	- GG!	- rca	CIG	T <b>G</b> G	- AGT	AAA	ATC.	AGC	CAG	11820 1463
				-		cec	3GT(	YEAE	- CA	ATGO	- GG!	- rca	CIG	T <b>G</b> G	- AGT	AAA	ATC.	AGC	CAG	11820 1463
G	Q	v	P	0	RF2	ACT		M TPC	- GCAI	ATG(	G G	rca(	C	T <b>G</b> G.	- AGT. V	AAA K T GCC	ATC.	AGC( A	CAG S	11820 1463
G	Q	v	P	o: GCC	RF2	ACT	3AG	YFAE M	CAL	ATG(	G G	rca( H	C	TGG: G	agt V Atti	AAA K T GCC	ATC.	AGC( A	CAG S	11820 1463 12
G	Q	v	P	o: GCC	RF2	ACT	3AG	M TPC	CAL	ATG( W	G G	rca( H	CIG C	TGG: G	agt V Atti	AAA K T GCC	ATC S	AGC( A	CAG	11820 1463 12
G	Q	v	P	o: GCC	RF2	ACT	3AG	M TPC	CAL	ATG( W	G G	rca( H	CIG C	TGG: G	agt V Atti	AAA K T GCC	ATC S	AGC( A	CAG	11820 1463 12
G CTG C	Q TTC S	V GIG	P GAC T	o: GCC P	RF2	ACI( L	Bag:	EATY M FTCC	Q Q CTTC	ATGO W STTZ L	G G	TCA( H STG( W	CTG C STT L	TGG. G GAT.	AGT V ATT L	AAA K T GCC P S	ATC. S ATT F	AGC A TTC S	CAG S CTT L	11820 1463 12
G	Q TTC S	V GIG W	P GAC T	or GCC P	RF2 TTC: S	ACI( L	BAG S	EATY M FTCC	Q Q CTTC L	ATGO W STTZ L	G G AGIY V	rcad H Sigg W	CTG C STTV L	TGG. G GAT.	AGT V ATT L	AAA K T GCC. P S	ATC. S ATT F	AGC A TTC S	CAG S CTT L	11820 1463 12 11880 32
G	Q TTC S ATA	V GIG W	P GAC T	o: GCC P	RF2 TTC: S	ACTO L	Bag:	EATY M FTCC	Q Q CTTC	ATGO W STTZ L	G G V V	rcad H Sigg W	CTG C STT L	TGG. G GAT: I	AGT. V ATT L	AAA K T GCC P S	ATC. S ATT F	AGC(A) A TTC(S) STG(G)	CAG S CTT L	11820 1463 12 11880 32
G CTG	Q TTC S ATA	V GTG W	P GAC T	GCC P GGG	rf2 ITC S ITC S	ACTO L ACCO	SACT S STC(	EATO M PTCO S SCAC	Q Q CTTC L CGAC	ATGO W FTTZ L G	G V TTA	FCAG H STGG W	CTG C STTC L STC	GAT.	AGT.  V ATT. L CTT.	AAA K GCC P S CTC	ATC S ATT F AGA	AGCO A TTCO S GTGO W	CAG S CTT L	11820 1463 12 11880 32 11940 52
G CTG C C C C C C C C C C C C C C C C C	Q TTC S ATA Y	V GIG CIG C	GAC T	GCC P GGG G	RF2 TTC: S TTC: S	ACTO L ACCO P	EACT S ETC S S CGC	EATO M FTCO S SCAL Q	Q Q CTTK L D CCC	ATGO W ETTE L IGGO G	G G V V TTAC	FCA( H  FTG( W  CTG( W	CTG C C STIC	GATE F	AGT.  ATT.  L  CTT.  F	AAA K T GCC P S CTC S	ATC. S ATT F AGA: E	AGCO A TTCO S TTCO W	CAG S CTT L GTT F	11820 1463 12 11880 32 11940 52 12000
G CTG C C C C C C C C C C C C C C C C C	Q TTC S ATA	V GIG CIG C	GAC T	GCC P GGG G	RF2 TTC: S TTC: S	ACTO L ACCO P	EACT S ETC S S CGC	EATO M PTCO S SCAC	Q Q CTTK L D CCC	ATGO W ETTE L IGGO G	G G V V TTAC	FCA( H  STG( W  CTG( W	CTG C C STIC	GATE I IIII	AGT.  ATT.  L  CTT.  F	AAA K T GCC P S CTC S	ATC. S ATT F AGA: E	AGCO A TTCO S TTCO W	CAG S CTT L	11820 1463 12 11880 32 11940 52
G CTG C C C P TGC A	Q TTC S ATA Y TCC	V GTG W CTG C C	GAC T	GCC P GGG G CTC	rf2 FTC: S FTC: V	ACTO L ACCO P PCGO R	EAG S ETC S CGC	M FTCC S GCAC Q FCTC	Q CTTC L CTTC D CTTC P	ATGG	G G V TTAC Y CAC	H FIGO	C C C STIN	GAT. ITT	AGT.  V ATT. L CTT. F CTA. Y	AAAA K T GCCC P S CTCC S	ATT S ATT F AGA E AAGA	AGC(AGC)	CAG S CTT L GTT F CTA Y	11820 1463 12 11880 32 11940 52 12000 72
G CTG C C C C C C C C C C C C C C C C C	Q TTC S ATA Y TCC P	V GTG W CTG C GCG R	P GAC T L CTT	GCC GCC GCC	TTC: S TTC: S CGT: V	ACTO L ACCO P P PCGG R	EAG: S ETC: S CGC: A	M FTCC S GCAC Q FCTC	Q CTTK L L CGGA: D GCCi	W FITTI L IGGS G ATTI F	G AGTO V PTACE Y TACE TO COCC	H FIGORE W CIGO W ICTO L	CTG C GTTN L GTC S CCCO	GATE F GAAAN N TIGC	AGT. V ATT. L CTT. F CTA. Y	AAAA  K T GCCC P S CTCC S TCGC R	ATTC S ATTT F AGA AGA R 3CA	AGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CAG S CTT L GTT F CTA Y	11820 1463 12 11880 32 11940 52 12000 72 12060
G CTG C C C C C C C C C C C C C C C C C	Q TTC S ATA Y TCC P	V GTG W CTG C GCG R	P GAC T L CTT	GCC GCC GCC	TTC: S TTC: S CGT: V	ACTO L ACCO P P PCGG R	EAG: S ETC: S CGC: A	M FTCC S GCAC Q FCTC	Q CTTK L L CGGA: D GCCi	W FITTI L IGGS G ATTI F	G AGTO V PTACE Y TACE TO COCC	H FIGORE W CIGO W ICTO L	CTG C GTTN L GTC S CCCO	GATE F GAAAN N TIGC	AGT. V ATT. L CTT. F CTA. Y	AAAA  K T GCCC P S CTCC S TCGC R	ATTC S ATTT F AGA AGA R 3CA	AGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CAG S CTT L GTT F CTA Y	11820 1463 12 11880 32 11940 52 12000 72 12060
G CTG C C P TGC A TGA	Q TTCC S ATA Y TCC P AGG G	V GTG W CTG C GCG R	P GAC T L CTT	GCC GCC GCC	TTC: S TTC: S CGT: V	ACTO L ACCO P P PCGG R	EAG: S ETC: S CGC: A	M FTCC S GCAC Q FCTC	Q CTTK L L CGGA: D GCCi	W FITTI L IGGS G ATTI F	G AGTO V PTACE Y TACE TO COCC	H FIGORE W CIGO W ICTO L	CTG C GTTN L GTC S CCCO	GGAT. ITTT	AGT. V ATT. L CTT. F CTA. Y	AAAA  K T GCCC P S CTCC S TCGC R	ATTC S ATTT F AGA AGA R 3CA	AGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CAG S CTT L GTT F CTA Y	11820 1463 12 11880 32 11940 52 12000 72 12060
GCCC PTGC A	Q TTCC S ATA Y TCC P AGG G	V CIG C C C C C C C C C C C C C C C C C C	P GAC T L CTT F	GCC P GGG G CTC S GCCC	RF2 TTC: S TTC: S CGT: V CAAA	ACTO L ACCO P TOGG R	SAGS S S S CGC: A CAGG	M FTCO S SCAO Q P P P P P P P P P P P P P P P P P P	GCAL  Q  CTTC  L  GCGAL  D  GCCL  P	ATGG	G G V Y Y CAC:	H FIGO	CTG C GTTC S GCCC P ATTT	GAT: ITTT F GAA: N IGC: A	AGT.  V ATT. L CTT. F CTA. Y AGT.	AAAA K T GCCC P S CTCC S TCCG R	ATTC S ATTT F AGAAGA R BCAAGA H	AGCCCA A TTTCCC S STTGCC W S STTCCC S S CCCCA P	CAG S CTT L STT F CTA Y ATT L	11820 1463 12 11880 32 11940 52 12000 72 12060 92
G CTG CC GCC P TGC A TGA E	Q TTO	V CIGGO C CCTN L	P GACC T L CTT F GTT L	GCCA	RF2 TTC: S S CGT. V CAAN	ACTO L ACCO P TOGG R CTGG C	GAGE S S S CGC: A CAGE R	M  FTCC S  GCA( Q  FCTC L  ACCC P	Q Q CTTC L CGAN D D CCAN	ATGG	G G V Y Y Y C C C C P	H GTGGGW W TCTGL L ACAM	CTG C GTTV L GTCC S CCCC P ATTT	GAT: F GAA: ITITO F GAA: ITITO GAA: G G G G G G G G G G G G G G G G G	AGT. V ATT. L CTT. F CTA. Y AGT. V	AAAA  K T GCCC P S CTCC S TCCG R CAAA	ATTC. S ATTT F AGAGA E AAGA R H TCC	AGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CAG S CTT L STT F CTA Y ATT L	11820 1463 12 11880 32 11940 52 12000 72 12060 92
G CTG CC GCC P TGC A TGA E	Q TTO	V CIGGO C CCTN L	P GACC T L CTT F GTT L	GCCA	RF2 TTC: S S CGT. V CAAN	ACTO L ACCO P TOGG R CTGG C	GAGE S S S CGC: A CAGE R	M  FTCC S  GCA( Q  FCTC L  ACCC P	Q Q CTTC L CGAN D D CCAN	ATGG	G G V Y Y Y C C C C P	H GTGGGW W TCTGL L ACAM	CTG C GTTV L GTCC S CCCC P ATTT	GAT. ITTT	AGT. V ATTTL L CTT. F CTA. V AGT. V	AAAA  K T GCCC P S CTCC S TCCG R CAAA	ATTC. S ATTT F AGAGA E AAGA R H TCC	AGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CAG S CTT L STT F CTA Y ATT L	11820 1463 12 11880 32 11940 52 12000 72 12060 92
G CTG CC GCC P TGC A TGA E	Q TTO	V CIGGO C CCTN L	P GACC T L CTT F GTT L	GCCA	RF2 TTC: S S CGT. V CAAN	ACTO L ACCO P TOGG R CTGG C	GAGE S S S CGC: A CAGE R	M  FTCC S  GCA( Q  FCTC L  ACCC P	Q Q CTTC L CGAN D D CCAN	ATGG	G G V Y Y Y C C C C P	H GTGGGW W TCTGL L ACAM	CTG C GTTV L GTCC S CCCC P ATTT	GAT: F GAA: ITITO F GAA: ITITO GAA: G G G G G G G G G G G G G G G G G	AGT. V ATTTL L CTT. F CTA. V AGT. V	AAAA  K T GCCC P S CTCC S TCCG R CAAA	ATTC. S ATTT F AGAGA E AAGA R H TCC	AGCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CAG S CTT L STT F CTA Y ATT L	11820 1463 12 11880 32 11940 52 12000 72 12060 92

# Fig. 1(14)

TTA	CCA	GAC	CAT	GGA	ACA'	TTC	AGG'	TCA	AGO	GGC(	CTG	GAA	GCA	GGT	GGT	TGG	TGA	GGC	CAC	12180
Y	Q	T	M	E	H	S	G	Q	A	A	W	K	. Q	V	V	G	E	A	T	132
TCT	CAC	GAA	GCT	GTC	AGG	GCT	CGA'	TAT	AGT	TAC	TCA	TTT	CCA	ACA	CCT	GGC	:CGC	AGT	GGA	12240
L	T	K	L	S	G	L	D	I	V	T	H	F	. Ō	H	L	A	A	. <b>V</b>	E	152
GGC	GGA	TTC	TIG	CCG	CIT	TCT	CAG	CIC	ACG	ACT	CGI	GAT	GCI	AAA	AAA	TCI	TGC	CGT	TGG	12300
A	. D	S	C	R	F	L	S	S	R	L	V	M	L	K	N	L	A	. <b>v</b>	G	172
																			GCC	12360
_N	_ v	S	L	Q	Y	_N	_ T	T	L	D	R	Ł V	E	L	I	F	P	T	P	192
AGG	TAC	GAG	GCC	CAA	GTT	GAC	CGA'	TT	CAG	ACA	ATG	GCI	CAT	CAG	TGT	GCA	CGC	TTC	CAT	12420
G	T	R	P	K	L	T	D	F	R	Q	W	L	. I	S	V	H	A	. s	I	212
								OR	<b>F</b> 3		M	A	H	Q	C	A	R	F	H	9
																			AGC	12480
																			A	232
F	F	L	С	G	F	I	С	Y	L	V	H	S	A	L	A	S	<u>N</u>	S	s	29
TCI	ACG	CTA	TGT	TTT	TGG	TTT	CCA'	ITG	GCC	CAC	GGC	'AAC	ACA	TCA	TTC	GAG	CIG	ACC	ATC	12540
																	-			249
S	T	L	С	F	W	F	P	L	A	H	G	N	T	S	F	E	L	T	I	49
																			CCC	12600
_N_	Y	T	I	C	M	P	С	S	T	S	Q	A	A	R	Q	R	L	E	P	69
GGT	CGT	AAC	ATG	TGG'	TGC	AAA	ATA	<b>GG</b>	CAT	GAC	AGG	TGT	GAG	GAG	CGT	GAC	CAT	GAT	GAG	12660
G	R	N.	M	W	C	K	I	G	H	D	R	С	E	E	R	D	H	D	E	89
TTG	TTA	ATG	TCC	ATC	CCG	TCC	GGG	TAC	GAC	AAC	CTC	'AAA'	CTT	GAG	GGT	TAT	TAT	GCT	TGG	12720
L	L	M	S	I	P	S	G	Y	D	N	L	K	L	E	G	Y	Y	A	W	109
CIG	GCT	TTT	TIG	TCC	TTT	TCC	TAC	GCG(	GCC	CAA'	ITC	CAT	CCG	GAG	TIG	TTC	GGG	ATA	GGG	12780
L	A	F	L	S	F	S	Y	A	A	Q	F	H	P	E	L	F	G	I	G	129
AAT	GTG	TCG	CGO	GTC	TTC	GTG	GAC	AAG	CGA	CAC	CAG	TTC	ATT	IGI	GCO	GAG	CAT	GAT	GGA	12840
_N_	V	S	R	V	F	V	D	K	R	H	Q	F	I	С	A	E	H	D	G	149
CAC	AAT	TCA	ACC	GTA'	TCE	ACO	<b>GGA</b>	CAC	AAC	ATC	rcc	:GCA	TTA	TAT	GCG	GCA	TAT	TAC	CAC	12900
H	_N_	S	T	V	S	T	G	H.	N	I	S	A	L	Y	A	A	Y	Y	H	169
CAC	CAA	ATA	GAO	GGG	GGC	TAA	TGG'	TTC	CAT	TTG	GAA	IGG	CIG	CGG	CCA	CTC	TII	TCT	TCC	12960
																	F			189
									ORF	L	1	M Z	A Z	A J	A :	r 1	L I	<b>F</b> :	F	8

15/19

# Fig. 1(15)

TGGCTGGTGCTCAACATATCATGGTFTCTGAGGCGTTCGCCTGTAAGCCCTGTTTCTCGAWLVLN_ISWFLRRSPVSPVSR LAGAQHIMVSEAFACKPCFS	13020 209 28
CGCATCTATCAGATATTGAGACCAACACGACCGCGGCTGCCGGTTTCATGGTCCTTCAGG R I Y Q I L R P T R P R L P V S W S F R T H L S D I E T N T T A A A G F M V L Q	13080 229 48
ACATCAATTGTTTCCGACCTCACGGGGTCTCAGCAGCGCAAGAGAAAATTTCCTTCGGAA T S I V S D L T G S Q Q R K R K F P S E D I N C F R P H G V S A A Q E K I S F G	13140 249 68
AGTCGTCCCAATGTCGTGAAGCCGTCGGTACTCCCCAGTACATCACGATAACGGCTAACG S R P N V V K P S V L P S T S R - K S S Q C R E A V G T P Q Y I T I T A N	13200 265 88
TGACCGACGAATCATACTTGTACAACGCGGACCTGCTGATGCTTTCTGCGTGCCTTTTCTVTDESYLVNADLLMLSACLF	13260 108
ACGCCTCAGAAATGAGCGAGAAAGGCTTCAAAGTCATCTTTGGGAATGTCTCTGGCGTTG Y A S E M S E K G F K V I F G N V S G V TTTCTGCTTGTGTCAATTTCACAGATTATGTGGCCCCATGTGACCCAACATACCCAGCAGC	13320 128 13380
V S A C V N F T D Y V A H V T Q H T Q Q  ATCATCTGGTAATTGATCACATTCGGTTGCTGCATTTCCTGACACCATCTGCAATGAGGT	148
H H L V I D H I R L L H F L T P S A M R  GGGCTACAACCATTGCTTGTTTGTTCGCCATTCTCTTGGCAATATGAGATGTTCTCACAA	168 13500
WATTIACLFAILLAI- ORF5 MRCSHK ATTGGGGGGTTTCTTGACTCCGCACTCTTGCTTCTGGTGGGCTTTTTTTT	183 6 13560
L G R F L T P H S C F W W L F L L C T G	26
L S W S F A D G N G D S S T Y Q Y I Y N  CTTGACGATATGCGAGCTGAATGGGACCGACTGGTTGTCCAGCCATTTTGGTTGG	46
L T I C E L N G T D W L S S H F G W A V  CGAGACCTTTGTGCTTTACCCGGTTGCCACTCATATCCTCTCACTGGGTTTTCTCACAAC	66
E T F V L Y P V A T H I L S L G F L T T  AAGCCATTTTTTTGACGCGCTCGGCTCTCGGCGCTGTATCCACTGCAGGATTTGTTGGCGG	86 13800
SHFFDALGLGAVSTAGFVGG	106

16/19

# Fig. 1(16)

GCGC R	ATE Y	CGT V	ACT L	CIG	CAG S	CGT V	CTA Y	CGG( G	CGC A	TTG C	TGC A	TTT F	CGC A	AGC A	GTI F	CGI V	'ATG	TTT F	TGT V	13860 126
CATO	CG'	TGC	TGC	TAA	AAA	TTG	CAT	GGC(	CTG	CCG	CTA	IGC	CCG	TAC	CCG	GTI	TAC	CAA	CTT	13920
		A									Y							N		146
CATT	ľĠŦ	GGA	CGA	CCG	GGG	GAG	AGT	TCA'	rcg	ATG	GAA	GTC	TCC	AAT	AGT	GGI	'AGA	AAA	ATT	13980
																			L	166
GGG																		AGG	GGT	14040
G	K	A	E	V	D	G	N	L	V	T	I	K	H	V	V	L	E	G	V	186
TAAZ	\GC	TCA	ACC	CIT	GAC	GAG	GAC	TTC	<b>3GC</b>	TGA	GCA	ATG	GGA	GGC	CTA	GAC	GAT	TTI	TGC	14100
K	A	Q	P	L	T	R	T	S	A	E	Q	W	E	A						201
									OR	F6		M	G	G	L	D	D	F	С	8
AACG	2 አጥ	بلغان	אחינים	acc.	מכיז	ממי	א א מ	بمسم	באנוב	מיויי	ccc	بالململ	אכר	איזיער	מיאמי	חמים	מיאמי	ССП	מידימי	14160
														_	_		T			28
	_	•	_	••		*			•	_		•	_	_	-	-	-	_	_	
ATG	'ATA	TAC	GCC	CIT	AAG	GTG	TCA	CGC	3GC	CGA	CTC	CTG	GGG	CIG	TIG	CAC	ATC	CTA	ATA	14220
M	I	Y	A	L	K	V	S	R	G	R	L	L	G	L	L	H	I	L	I	48
TTT																			AAC	14280
F	L.	N	С	S	F	T	F	G	Y	M	T	Y	V	H	F	Q	S	T	N	68
CGTC	TO	GCA	CTT	ACC	CIG	GGG	GCI	GTT	<b>GTO</b>	GCC	CTT	CIG	TGG	GGT	GII	TAC	AGC	TTC	ACA	14340
R	V	A	L	T	L	G	A	V	V	A	L	L	W	G	V	Y	S	F	T	88
GAGI																				14400
E	S	W	K	F	I	T	S	R	C	R	L	С	С	L	G	R	R	Y	I	108
CIG	3CC	CCI	<b>GCC</b>	CAT	CAC	GTA	GAA	AGT	CT	GCA	GGT	CTC	CAT	TCA	ATC	TCA	GCG	TCT	GGT	14460
L	A	P	A	H	H	V	E	S	A	A	G	L	H	S	I	S	A	S	G	128
AACC																				14520
N	R	A	Y	A	V	R	ĸ	P	G	L	T	S	<b>V</b> .	N	G	T	L	V	P	148
GGAC	TT	CGG	AGC	CTC	GTG	CTG	GC(	GGC	AAA	CGA	GCI	GTT	AAA	CGA	GGA	GTG	GTT	AAC	CTC	14580
G	L	R	S	L	v	L	G	G	ĸ	R	A	v	K	R	G	V	V	N	L	168
GTC	3 Ci	773 FT	700	~~	m 2 2	7 7 7 <i>7</i>	~~~	730	707	~~ ~ ~	~ n n •	7 7 7 A	~~~	3 3 C	ma 🗥	300	maa	C S III	777	14640
Q1C		Y			T.WW	LT-T-J		3H171	لاعمات	- CHANN	JAM	HTY.	MM	HH72	TAN	احلام	100	QMT.	GGG	14040
ORF		M	_	G	ĸ	N	0	S	0	ĸ	K	ĸ	ĸ	S	T	A	P	M	G	18
-	•	•••		-			. ×	_	×	••			••	5	_		-	-1	J	
GAAJ	rgg	CCA	3CC	AGT	CAA	TCA	ACT	FTG(	CA	GII	GCI	GGG	TGC.	TAA	GAT	AAA	GTC	CCA	GCG	14700
N	G	Q	P	V	N	Q	L	C	Q	L	L	G	A	M	I	K	S	Q	R	38

# Fig. 1(17)

								•	7								
ITTCCCCT 14760	CACATT	AGCC	GAGA	CCT	AAG	AAA	AAG	'AAA	GCC	CAC	\GG/	GGZ	'AGC	CCI	CAA	CAG	C
F P L 58																	
IGCTIGCA 14820	CCTCT	GCTC	GAAC	ACT	CAG	ACC	CTC	CAC	CAC	CGC	TATC	GAC	GAT	GAA	GCI	GCT	G
C L Q 78																	
			A														
AGCGGGAA 14880	CATCCA	TITC	TCGC	GCG	ACT	GGA	GCA	GGC	CAZ	'AA'	TTC	GCT	ACC	CAG	ATC	ATCG	2
S G K 98																	-
ATTCGCGT 14940	CCTGA	TGCG	ACAG	CAT	GCI	GTT	CCG	CTG	'ATC	111	CGAC	GT	'C'AG	TTI	AGT	GTC	G
I R V 118																	
GCCGCGA 15000	rgaatg	AGGT	AGTC	GAC	TTT	TAA	AGT	GCA	GG7	CAC	'AGT	CGCC	TCC	ACA	TCT	ACT	G
128								A						_			
ATACTTAA 15060	:GGTCA	TGGG	CACA	GAT	GGC	TAG	AAT	TTC	CTZ	'CAC	AGI	CIC	CCI	TGG	GTG	reec	T
15088	Ą	AAAA	AAAA	AAA	AAA	AAA	AAA	ATI	GA/	ACC	GIG	CAT	AAC	AGG	GGC	TCA	T

Fig. 2



19/19



Fig. 3

## INTERNATIONAL SEARCH REPORT

International Application No

PCT/NL 92/00096

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ⁶								
According to International Patent	Classification (IPC) or to both National Class							
Int.Cl. 5 A61K39/12	2; G01N33/569;	C12N7/00						
IL FIELDS SEARCHED	<u> </u>							
	Minimum Document	ation Searched ⁷						
Classification System	a	assification Symbols						
Int.Cl. 5	A61K ; G01N ;							
	Documentation Searched other the to the Extent that such Documents are							
III. DOCUMENTS CONSIDERE	D TO BE RELEVANT 9							
Category O Citation of Do	cument, ¹¹ with indication, where appropriate	e, of the relevant passages 12	Relevant to Claim No. ¹³					
Vol.128,	Vol.128, no.24, 15 June 1991, LONDON,							
WENSVOOR of pigs. * column	RTG. ET AL. : " "Blue e	ar" disease						
Vol.13, WENSVOOR disease of Lelys	RINARY QUARTERLY no.3, July 1991, pages RT G. ET AL.: "Mystery in the Netherlands: the stad virus." nole document *	swine	1-26					
	<b></b>	-/						
"E" earlier document but publifiling date "L" document which may throw which is cited to establish citation or other special re "O" document referring to an other means	neral state of the art which is not alar relevance ished on or after the international or doubts on priority claim(s) or the publication date of another ason (as specified) oral disclosure, use, exhibition or to the international filing date but	"T" later document published after the interna or priority date and not in conflict with th cited to understand the principle or theory invention "X" document of particular relevance; the clain cannot be considered novel or cannot be convolve an inventive step "Y" document of particular relevance; the clain cannot be considered to involve an inventi document is combined with one or more or ments, such combination being obvious to in the art. "A" document member of the same patent fam	e application but value in the control of the contr					
IV. CERTIFICATION								
Date of the Actual Completion of t	he International Search JST 1992	Date of Mailing of this International Search 1 5. 09. 92	ch Report					
International Searching Authority EUROPEA	AN PATENT OFFICE	Signature of Authorized Officer AVEDIKIAN P.F.						

International Application No  (CONTINUED FROM THE SECOND SHEET)							
III. DOCUMEI	(13 CO(4000)00000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Relevant to Claim No.					
Category °	Citation of Document, with indication, where appropriate, of the relevant passages						
(,P	THE VETERINARY QUARTERLY Vol.13, no.3, July 1991, pages 131-136; TERPSTRA C. ET AL.: "Experimental reproduction of porcine epidemic abortion and respiratory syndrome (mystery swine disease) by infection with Lelystad virus: Koch's postulates fulfilled." * the whole document *	1-26					
(,P	THE VETERINARY QUARTERLY Vol.13, no.3, July 1991, pages 137-143; POL J.M.A. ET AL.: "Pathological ultra- structural, and immunohistochemical changes caused by Lelystad virus in experimentally induced infections of mystery swine disease (synonym: porcine epidemic abortion and respiratory syndrome (PEARS))."  * the whole document *	1-26					
	-						