http://www.mpboardonline.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्य, Paytm or Google Pay से

C-445 HIGHER MATHEMATICS 2014

Time: 3 Hours | Class: 12th [M. M.: 100

http://www.mpboardonline.com

Instructions:-(1) All questions are compulsory.(2) Read the instructions of question paper carefully and write answrs of them. (3) There are two Sections-Section A and Section B in the question paper. (4) In Section A Question Nos. 1 to 5 are objective type which contain Choose the correct answers, True/False, Fill in the blanks, Match the columns and Answer in one word/sentence. Each question carries 5 marks.(5) Internal options are given in Question Nos. 6 to 24 of Section B.(6) Q. Nos. 6 to 10 carry 2 marks each.(7) Q. Nos. 11 to 17 carry 4 marks each.(8) Q. Nos. 18 to 22 carry 5 marks each.(9) Q. Nos. 23 and 24 carry 6 marks each.

- Choose the correct answer from the given options of each objective type question:
 - (i) Fraction $\frac{2x+3}{(x+1)(x-3)} = \frac{a}{x+1} + \frac{b}{x-3}$, $\tan a + b =$
 - (a) 0

(b) 1

(c) 2

- (d) 3
- (ii) $\sin \left[\sin^{-1} \frac{1}{2} + \cos^{-1} \frac{1}{2} \right]$ is equal to:
 - (a) 1

(b) 2

(c) $\frac{1}{2}$

- (d) $\frac{1}{4}$
- (iii) Equation of plane parallel to z-axis:
 - (a) ax + by + d = 0
- (b) bx + cz + d = 0
- (c) by + cz + d = 0
- (d) None of these
- (iv) If $y = \log [\log (\log x)]$, then value of $\frac{dy}{dx}$ is:
 - (a) $\frac{1}{x \log x}$
- (b) $\frac{1}{x \log x \log(\log x)}$

http://www.mpboardonline.com

- (c) $\frac{1}{x \log(\log x)}$
- (d) $\frac{1}{x}$
- (v) Coordinates of centre of sphere $6x^2 + 6y^2 + 6z^2 16x + 9z 6$ = 0 are:
 - $(a) \left(\frac{3}{4}, 0, \frac{4}{3}\right)$
- (b) (-16,0,9)
- (c) $\left(-8, 0, \frac{9}{2}\right)$
- (d) $\left(\frac{4}{3}, 0, \frac{-3}{4}\right)$
- Write True/False in the following statements:
 - (i) Distance from origin to the plane 6x 3y + 2z + 14 = 0 is 2.
 - (ii) The value of coefficient of correlation is always 2.
 - (iii) Integration of constant is zero.
 - (iv) Unit vector in the direction of vector \overrightarrow{a} is $\frac{a}{|\overrightarrow{a}|}$.

- Position vectors of points P and Q are $\hat{i} + 3\hat{j} 7\hat{k}$ and (v) $5\hat{i} - 2\hat{j} + 4\hat{k}$ respectively, then value of |PQ| is $9\sqrt{2}$.
- 3. Fill in the blanks:
 - nth derivative of eax is (i)
 - In perfect correlation both regression lines be (ii)
 - Projection of \overrightarrow{h} in the direction of \overrightarrow{a} (iii)
 - If xy = 6, then minimum value of 2x + 3y is (iv)
 - Direction cosines of Y-axis are
- Match the correct pairs: 4.

(a) Newton-Raphson's formula

(i)
$$\int_{a}^{b} f(x) dx = \frac{h}{3} [y_0 + y_n]$$
$$+ 4 (y_1 + y_3 + ... + y_{n-1})$$
$$+ 2 (y_2 + y_4 + + y_{n-2})]$$

http://www.mpboardonline.com

- (b) Simpson's rule formula
- (ii) 2.667
- (c) Cube root of 2 upto 3 place of decimal
- (iii) 1258
- (d) Trapezoidal rule

(iv)
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

(e) Approximate value of

$$\int_{0}^{2} x^{2} dx \text{ by Simpson's}$$
rule when $n = 4$

$$\int_{0}^{2} x^{2} dx \text{ by Simpson's} \qquad (vi) \int_{a}^{b} f(x) dx = \frac{h}{2} [(y_{0} + y_{n})]$$
rule when $n = 4$

$$+ 2 (y_{1} + y_{2} + \dots y_{n-1})]$$
Where $h = \left(\frac{b-a}{n}\right)$

- Write the value of $\int e^x (\sin x + \cos x) dx$. (i)
- Write the value of $\int_{-\infty}^{\infty} \sin x \, dx$.
- Write the value of $\int_{0}^{\pi} \log(\sin x) dx$.

- (iv) Write the value of $\int_{0}^{\pi} |\cos x| dx$.
- (v) Write the value of $\int \frac{\cot x}{\log(\sin x)} dx$.

(Section-B)

- 6. AC and BD are the diagonals of a quadrilateral ABCD, prove that:

 → → → →

 AB+ DC = AC+ DB
- 7. Find the Vector and Cartesian equation of the sphere whose centre (2, -3, 4) and radius is 5.
- (Or) Find the vector equation of the sphere concentric with the sphere \Rightarrow |r+(i-2j-3k)|=5 and its radius is two times of that sphere.
- 8. If $\overrightarrow{a} = 2\hat{i} + 5\hat{j} + 8\hat{k}$, $\overrightarrow{b} = \hat{i} + 3\hat{j} + 7\hat{k}$ and $\overrightarrow{c} = 3\hat{i} + 2\hat{j} + \hat{k}$, then find the value of $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$.

nttp://www.mpboardonline.com

- (Or) A particle is acted upon by a force $\vec{F} = 4\hat{i} + \hat{j} 3\hat{k}$ it is displaced from the point (1,2,3) to the point (5,4,1). Find the work done.
- 9. Evaluate:

$$\int\!\!\sqrt{\frac{1-x}{1+x}}\;dx.$$

(Or) Evaluate:

$$\int \frac{1}{1-\sin x} \, dx.$$

10. Evaluate:

$$\int \log_e x \, dx.$$

(Or) Solve:

$$\int \frac{\sec x}{(\sec x - \tan x)} \, dx.$$

$$\frac{x^2+7x}{x^2+7x-8}.$$

- (Or) If $\frac{1}{x^3 2x^2 x + 2} = \frac{A}{x 1} + \frac{B}{x + 1} + \frac{C}{x 2}$, then find the value of A + B + C.
- 12. Solve the equation:

$$\tan^{-1} x + 2\cot^{-1} x = \frac{2\pi}{3}$$

(*Or) Prove that: $\sec^2(\tan^{-1}2) + \csc^2(\cot^{-1}3) = 15.$

13. If $y = \sin(2\sin^{-1}x)$, then prove that:

$$\frac{dy}{dx} = 2\sqrt{\frac{1 - y^2}{1 - x^2}}$$

(Or) If
$$y = \tan^{-1} \left(\frac{2x}{1-x^2} \right)$$
,

http://www.mpboardonline.com

then find $\frac{dy}{dx}$.

14. Differentiate sec x by first principle.

(Or) If
$$y = \log \sqrt{\frac{1 - \cos 3x}{1 + \cos 3x}}$$
, find $\frac{dy}{dx}$.

- 15. The profit function is $P(x) = 41 + 24x 18x^2$, calculate the maximum profit of the company.
- (Or) The radius of a spherical balloon is incerasing at the constant rate of 10 cm/sec. At what rate is the surface area increasing when the radius is 15 cm?
- 16. Calculate coefficient of correlation from the following data:

x	y .
3	15
10	17
8	4
6	5
8	4

(Or) If r is a coefficient of correlation of two variables x and y, then prove that:

$$r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x\sigma_y}.$$

Where σ_x^2 , σ_y^2 and σ_{x-y}^2 are the variance of x, y and x - y respectively.

17. Find the lines of regression from the following data:

X	. y	
2	6	
4	: :5	
6	4	1
8	3	
10	2	`

(Or) Find the value of y from the following data when x = 70 and coefficient of correlation is 0.8:

	x	y
Mean	18	100
S.D.	14	20

nttp://www.mpboardonline.com

- 18. Find the angle between the two lines whose direction cosines are given by equations l + m + n = 0 and 2l + 2m mn = 0.
- (Or) Find the equations of planes passing through the intersection of the planes x + 3y + 6 = 0 and 3x y + 4z = 0 whose distance from origin is 1.

19. If

$$f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2} & x \neq 0 \\ 4 & x = 0 \end{cases}$$

then discuss the continuity of f(x) at x = 0.

(Or) Evaluate:

$$\lim_{x \to 0} \frac{6^{x} - 1}{\sqrt{3 - x} - \sqrt{3}} .$$

20. Find the area of the ellipse:

$$\frac{x^2}{4} + \frac{y^2}{9} = 1.$$

(Or) Evaluate:

$$\int \frac{\sin x}{\sin x + \cos x} \, dx .$$

21. Solve the differential equation :

$$(1+x^2)\frac{dy}{dx} + 2xy = 4x^2$$
.

(Or) Solve the homogeneous differential equation: $(x^2 + y^2) dx + 2xy dy = 0.$

- 22. Two cubical dice are thrown simultaneously. Find the probability of getting an odd number on the first dice or getting the sum 9 on the two dice.
- (Or) A coin is tossed twice. Find the probability distribution of the number of heads.
- Find the equation of the sphere passing through the points (3,0,0), (0,-1,0) and (0,0,-2) and having the centre on the plane 3x + 2y + 4z = 1

nttp://www.mpboardonline.com

- (Or) Prove that the lines $\frac{x+1}{3} = \frac{y+3}{5} = \frac{z+5}{7}$ and $\frac{x-2}{1} = \frac{y-4}{3} = \frac{z-6}{5}$ are intersecting to each other. Find their point of intersection.
- 24. Prove by vector method: $\sin (\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \sin \beta$.
- (Or) If D, E, F are the mid point of the sides BC, CA, AB of the triangle ABC, then prove by vector method that:

$$\Delta DEF = \frac{1}{4} \Delta ABC$$
.