Lukion matematiikkakilpailu 25. 1. 1997

Ratkaisuehdotuksia

1. Määritä ne luvut a, joille yhtälöllä

$$a3^x + 3^{-x} = 3$$

on tasan yksi ratkaisu x.

Ratkaisu. Koska 3^x saa kaikki positiiviset reaalilukuarvot ja jokaisen tasan kerran, tehtävän ratkaisuja ovat kaikki ne luvut a, joille yhtälöllä $at+\frac{1}{t}=3$ eli $at^2-3t+1=0$ on tasan yksi positiivinen juuri. Yhtälön dskriminantti on 9-4a. Yhtälöllä on reaalisia ratkaisuja, jos $9-4a\geq 0$ eli jos $a\leq \frac{9}{4}$. Jos a=0, yhtälöllä on tasan yksi positiivinen ratkaisu $t=\frac{1}{3}$. Jos $a\neq 0$, ratkaisut ovat $t=\frac{1}{2a}(3\pm\sqrt{9-4a})$. Jos $0< a<\frac{9}{4}$ yhtälöllä on kaksi positiivista ratkaisua. Jos $a=\frac{9}{4}$, ratkaisuja on tasan yksi. Jos a<0, luvuista $3\pm\sqrt{9-4a}$ tasan toinen on negatiivinen, ja yhtälöllä tasan yksi positiivinen juuri. Tehtävän ratkaisuja ovat siis $a=\frac{9}{4}$ ja kaikki ei-positiiviset luvut a.

2. Ympyrät, joiden säteet ovat R ja r, missä R > r, sivuavat toisiaan ulkopuolisesti. Ympyröille piirretään yhteinen tangentti, joka ei kulje ympyröiden sivuamispisteen kautta. Tämän tangentin ja ympyröiden rajoittamaan alueeseen piirretään mahdollisimman suuri ympyrä. Kuinka suuri on tämän ympyrän säde?

Ratkaisu. Olkoon r-säteisen ympyrän keskipiste O_1 ja sen ja tangentin sivuamispiste A, R-säteisen ympyrän keskipiste O_2 ja sivuamispiste B. Olkoon vielä C se O_2B :n piste, jolle $O_1C\|AB$. silloin $O_2C=R-r$ ja $O_1O_2=r+R$, joten Pythagoraan lauseen nojalla $O_1C^2=4rR$. Tehtävässä kysytty ympyrä sivuaa molempia annettuja ympyröitä ja suoraa AB. Jos O on tehtävässä kysytyn ympyrän keskipiste ja x sen säde,

niin $OO_1=r+x$, $OO_2=R+x$, ja jos O:n kautta piirretty AB:n suuntainen suora leikkaa O_1A :n pisteessä D ja O_2B :n pisteessä E, niin $O_1D=r-x$ ja $O_2E=R-x$. Suorakulmaisista kolmioista OO_1D ja OEO_2 saadaan $DO^2=4xr$ ja $OE^2=4xR$. Koska $(DO+OE)^2=O_1C^2$, on $4rR=4x(r+R)+8x\sqrt{rR}$ eli

$$x = \frac{rR}{R + r + 2\sqrt{rR}} = \left(\frac{\sqrt{r}\sqrt{R}}{\sqrt{r} + \sqrt{R}}\right)^2.$$

3. Pyöreän pöydän ääressä on 12 ritaria. Jokainen ritari on vihoissa viereisten ritarien, mutta ei muiden ritarien, kanssa. Viisi ritaria on valittava pelastamaan prinsessaa. Yhtään vihamiesparia ei haluta mukaan. Kuinka monella eri tavalla valinta voidaan suorittaa?

Ratkaisu. Ehto tarkoittaa, että pelastuspartioon ei voi valita ketään vierekkäin istujaa. Valittujen viiden väliin jää siten viisi epätyhjää ritariryhmää. Koska partioon kuulumattomia ritareita on seitsemän, nämä viisi ryhmää muodostuvat joko niin, että yhdessä on kolme ja muissa yksi tai kahdessa on kaksi ja kolmessa yksi ritari. Oletetaan, että ritarit istuvat pöydän ympärillä vastapäivan lueteltuina järjestyksessä R_1, R_2, \ldots, R_{12} . Jos R_1 on mukana pelastuspartiossa, niin yllä mainittu kolmen ei mukana olevan ritarin joukko voi olla viidessä eri paikassa ja kahden ei mukana olevan ritarin ryhmät $\binom{5}{2}$ eri paikassa. Erilaisia partioita, joissa R_1 on mukana, on siis 5+10=15. Missään mäistä partioista ei ole mukana R_2 . Samalla tavalla kuin edellä voidaan laskea, että partioita, joissa R_2 on mukana, on 15. Toistaiseksi ei ole laskettu sellaisia partioita, joista puuttuvat sekä R_1

ei ole mukana R_2 . Samalla tavalla kuin edellä voidaan laskea, että partioita, joissa R_2 on mukana, on 15. Toistaiseksi ei ole laskettu sellaisia partioita, joista puuttuvat sekä R_1 että R_2 . Jos tällainen partio muodostuu nin, että yhdessä ei mukana olevien ryhmässä on kolme ritaria, niin nämä kolme ovat joko $\{R_1, R_2, R_3\}$ tai $\{R_{12}, R_1, R_2\}$. Jos taas kahdessa ei mukana olevien ryhmässä on kaksi ritaria, niin toinen näistä ryhmistä on $\{R_1, R_2\}$ ja toinen voidaan valita neljällä eri tavalla. Partioita, joissa ei ole mukana kumpikaan ritareista R_1 ja R_2 on siis kuusi erilaista. Eri mahdollisuuksia muodostaa pelastuspartio on siis kaikkiaan 15 + 15 + 6 = 36 kappaletta.

4. Laske kaikkien sellaisten nelinumeroisten lukujen, joiden kymmenjärjestelmäesityksessä on vain parittomia numeroita, summa.

Ratkaisu. Parittomia numeroita on viisi ja niiden summa on 25. Kukin numero esiintyy tietyssä paikassa kaikkiaan 5^3 :ssa luvussa. Näin ollen kunkin kymmenen potenssin kertoimien summa on $25 \cdot 5^3 = 5^5$. Tehtävässä kysytty summa on siten $1111 \cdot 5^5 = 3471875$.

5. Sijoita tasoon n pistettä $(n \ge 3)$ niin, että minkään kahden pisteen etäisyys ei ylitä yhtä ja täsmälleen n:n pisteparin välinen etäisyys on yksi.

Ratkaisu. Sijoitetaan pisteet A_1 , A_2 ja A_3 kärjiksi tasasivuiseen kolmioon, jonka sivun pituus on 1. Jos n=3, sijoittelu on vaaditunlainen. Jos n>3, piirretään A_1 -keskinen ympyrä Γ A_2 :n ja A_3 :n kautta ja sijoitetaan pisteet A_4 , . . . , A_n numerojärjestyksessä mielivaltaisesti Γ:n lyhemmälle kaarelle A_2A_3 . Nyt n:n janan A_1A_i , $2 \le i \le n$ ja A_2A_3 pituus on tasan 1. Olkoon i>3. Kulma $\angle A_2A_iA_3$ on tylppä (se on itse asiassa 150°), joten A_2A_3 on kolmion $A_2A_3A_i$ pisin sivu. Siis $A_2A_i<1$ ja $A_iA_3<1$. Jos 3 < i < j, niin $\angle A_2A_iA_j$ on tylppä. Siis A_2A_j on kolmion $A_2A_jA_i$ pisin sivu, ja $A_iA_j< A_2A_j<1$. Sijoittelu täyttää tehtävän vaatimukset.