In [1]: import pandas as pd
import numpy as np
import seaborn as sns

In [3]: data = pd.read_csv(r"D:\Data Analysis Project\StudentsPerformance.csv")

In []: #understanding the data

In [4]: data.head()

Out[4]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75

In [5]: data.tail()

Out[5]:

	gender	race/ethnicity	parental level of education	lunch	test preparation course	math score	reading score	writing score
995	female	group E	master's degree	standard	completed	88	99	95
996	male	group C	high school	free/reduced	none	62	55	55
997	female	group C	high school	free/reduced	completed	59	71	65
998	female	group D	some college	standard	completed	68	78	77
999	female	group D	some college	free/reduced	none	77	86	86

In [6]: data.shape

Out[6]: (1000, 8)

In [7]: data.describe()

```
Out[7]:
                 math score reading score writing score
          count 1000.00000
                              1000.000000
                                           1000.000000
                   66.08900
                                69.169000
                                              68.054000
          mean
            std
                   15.16308
                                14.600192
                                              15.195657
                    0.00000
                                17.000000
                                              10.000000
           min
           25%
                   57.00000
                                59.000000
                                              57.750000
           50%
                   66.00000
                                70.000000
                                              69.000000
           75%
                   77.00000
                                79.000000
                                              79.000000
                  100.00000
                               100.000000
                                             100.000000
           max
In [8]:
         data.columns
Out[8]: Index(['gender', 'race/ethnicity', 'parental level of education', 'lunch',
                 'test preparation course', 'math score', 'reading score',
                 'writing score'],
                dtype='object')
In [9]:
         data.nunique()
                                           2
Out[9]: gender
          race/ethnicity
                                           5
          parental level of education
                                           6
          lunch
                                           2
                                           2
          test preparation course
          math score
                                          81
          reading score
                                          72
          writing score
                                          77
          dtype: int64
In [22]: data['gender'].unique()
Out[22]: array(['female', 'male'], dtype=object)
In [23]:
         #cleaning the data
In [45]:
         data.isnull().sum()
Out[45]:
                                          0
          gender
                                          0
          race/ethnicity
          parental level of education
                                          0
          lunch
                                          0
          test preparation course
                                          0
          math score
                                          0
          reading score
                                          0
          writing score
                                          0
          dtype: int64
In [46]: student = data.drop(['race/ethnicity', 'parental level of education'], axis=1)
In [47]: student.head()
```

Out[47]:	gender lunch		lunch	test preparation course	math score	reading score	writing score
	0	female	standard	none	72	72	74
	1	female	standard	completed	69	90	88
	2	female	standard	none	90	95	93
	3	male	free/reduced	none	47	57	44
	4	male	standard	none	76	78	75

In [48]: #3 relationship analysis

In [49]: student = student.select_dtypes(include='number')
 correlation_matrix = student.corr()

In [50]: sns.heatmap(correlation_matrix,xticklabels=correlation_matrix.columns,yticklabels=correla-

Out[50]: <Axes: >

In [51]: sns.pairplot(student)

Out[51]: <seaborn.axisgrid.PairGrid at 0x21ce29265d0>

In [57]: sns.relplot(x='math score', y='reading score', hue='writing score', data=student)

Out[57]: <seaborn.axisgrid.FacetGrid at 0x21ce31a0440>

Out[65]: <seaborn.axisgrid.FacetGrid at 0x21ce353c680>

In [65]: sns.displot(student['math score'],bins=5)

In []: