Machine learning: Part 2

- Unsupervised Learning: k-means algorithm
- Learning from incomplete Data: EM algorithm

1/22

Y. Liu Intro to Al

^{*}Slides based on those of D. Poole and A. Mackworth

Unsupervised learning

- Unsupervised learning is the problem of identifying multiple categories in a collection of objects.
- The problem is unsupervised because the category labels are not given.
- e.g., classification of stars by astronomers
- In hard clustering, each example is placed definitively in a class.
- In soft clustering, each example has a probability distribution over its class.

EM Algorithm for clustering

- Start with a random theory or randomly classified data
- Repeat the following two steps:
 - E-step generates the expected classification for each example.
 - M-step generates the best theory using the current classification of data.
- We consider two instances of the EM algorithm

k-means algorithm

Used for hard clustering.

Inputs:

- training examples
- ullet the number of classes, k

Outputs:

- a prediction of a value for each feature for each class
- an assignment of examples to classes

\overline{k} -means algorithm formalized

- ullet E is the set of all examples
- ullet the input features are X_1,\ldots,X_n
- $val(e, X_j)$ is the value of feature X_j for example e.
- there is a class for each integer $i \in \{1, \dots, k\}$.

The k-means algorithm outputs

- a function $class: E \rightarrow \{1, \dots, k\}$. class(e) = i means e is in class i.
- a pval function where $pval(i, X_j)$ is the prediction for each example in class i for feature X_j .

Y. Liu Intro to Al 5 / 22

k-means algorithm formalized

The sum-of-squares error for class and pval is

$$\sum_{e \in E} \sum_{j=1}^{n} \left(pval(class(e), X_j) - val(e, X_j) \right)^2.$$

Aim: find class and pval that minimize sum-of-squares error.

Y. Liu Intro to Al 6 / 22

k-means $\overline{\mathsf{algorithm}}$

Initially, randomly assign the examples to the classes. Repeat the following two steps:

• For each class i and feature X_i ,

$$pval(i, X_j) \leftarrow \frac{\sum_{e:class(e)=i} val(e, X_j)}{|\{e:class(e)=i\}|},$$

• For each example e, assign e to the class i that minimizes

$$\sum_{j=1}^{n} (pval(i, X_j) - val(e, X_j))^2.$$

until the second step does not change the assignment of any example.

Y. Liu Intro to Al 7/22

Example Data

Y. Liu

Intro to AI 8/2

Random Assignment to Classes

Y. Liu

Intro to AI 9/2

Assign Each Example to Closest Mean

Y. Liu

Intro to Al

Ressign Each Example to Closest Mean

Stable assignment found

Y. Liu Intro to Al

Other clustering results

- A different initial assignment can give different clustering.
- One clustering is for the lower points to be in one class, and for the other points to be in another class.
- Running the algorithm with three classes would separate the data into the top-right, the left-center, and the lower clusters.

Intro to Al

Properties of k-means

- This algorithm will eventually converge to a local minimum.
- It is not guaranteed to converge to a global minimum.
- ullet Increasing k can always decrease error until k is the number of different examples.

EM algorithm

- Used for soft clustering examples are probabilistically in classes.
- k-valued random variable C

Model

	Da	ata			
X_1	X_2	X_3	X_4		
t	f	t	t		
f	t	t	f		
f	f	t	t		

 $P(X_1|C)$ $P(X_2|C)$ $P(X_3|C)$

EM Algorithm Overview

- Repeat the following two steps:
 - E-step give the expected number of data points for the unobserved variables based on the given probability distribution.
 - M-step infer the (maximum likelihood or maximum aposteriori probability) probabilities from the data.
- Start either with made-up data or made-up probabilities.
- EM will converge to a local maxima.

EM algorithm

Y. Liu

Intro to Al

16 / 22

Augmented data – E step

Suppose
$$k = 3$$
, and $dom(C) = \{1, 2, 3\}$.
 $P(C = 1 | X_1 = t, X_2 = f, X_3 = t, X_4 = t) = 0.407$
 $P(C = 2 | X_1 = t, X_2 = f, X_3 = t, X_4 = t) = 0.121$
 $P(C = 3 | X_1 = t, X_2 = f, X_3 = t, X_4 = t) = 0.472$:

nt	Count	<i>X</i> ₄	<i>X</i> ₃	X_2	X_1
	:	:	÷	:	:
)	100	t	t	f	t
	:	:	÷	÷	:

$A[X_1,\ldots,X_4,C]$

	_			_		
	X_1	X_2	X_3	X_4	С	Count
	:	:	:	:	:	:
	t	f	t	t	1	40.7
>	t	f	t	t	2	12.1
	t	f	t	t	3	47.2
	:	:	:	:	:	:

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ からぐ

Y. Liu Intro to Al 17 / 22

M step

X_1	X_2	<i>X</i> ₃	<i>X</i> ₄	С	Count	C
:	:	:	:	:	:	
t	f	t	t	1	40.7	$(x_1)(x_2)(x_3)(x_4)$
t	f	t	t	2	12.1	
t	f	t	t	3	47.2	统计
:	:	:	:	:	:	

$$P(C=v_i) = \frac{\sum_{t \models C=v_i} Count(t)}{\sum_t Count(t)}$$

$$P(X_k = v_j | C=v_i) = \frac{\sum_{t \models C=v_i \land X_k=v_j} Count(t)}{\sum_{t \models C=v_i} Count(t)}$$

◆□▶ ◆□▶ ◆重▶ ◆重▶ ■ めぬぐ

Y. Liu Intro to AI 18/22

Learning with hidden variables

Many real-world problems have hidden (a.k.a latent) variables

A simple diagnostic network for heart disease

Hidden variables complicate the learning problem.

Y. Liu Intro to Al 19 / 22

EM algorithm

- Repeat the following two steps:
 - E-step give the expected number of data points for the unobserved variables based on the given probability distribution. Requires probabilistic inference.
 - M-step infer the (maximum likelihood) probabilities from the data. This is the same as the fully observable case.
- Start either with made-up data or made-up probabilities.
- EM will converge to a local maxima.

A simple example

• What if we had only observed values for A, B, C?

Α	В	С
t	f	t
f	t	t
t	t	f

EM algorithm

Augmented Data

Α	В	С	Н	Count
t	f	t	t	0.7
t	f	t	f	0.3
f	t	t	f	0.9
f	t	t	t	0.1
	•			

Probabilities

Y. Liu Intro to Al