

Kourosh Davoudi kourosh@uoit.ca

Week 2: Data Exploration (OLAP)

CSCI 4150U: Data Mining

Data Mining: Data Exploration

OLAP

On-Line Analytical Processing (OLAP)

- On-Line Analytical Processing (OLAP) was proposed by E. F. Codd, the father of the relational database.
- Relational databases put data into tables, while OLAP uses a multidimensional array representation.
 - Such representations of data previously existed in statistics and other fields
- There are a number of data analysis and data exploration operations that are easier with such a data representation.

Creating a Multidimensional Array (Example: Iris data)

- We show how the attributes, petal length, petal width, and species type can be converted to a multidimensional array
 - First, we discretized the petal width and length to have categorical values: low, medium, and high

Petal Length	Petal Width	Species Type	Count
low	low	Setosa	46
low	medium	Setosa	2
medium	low	Setosa	2
medium	medium	Versicolour	43
medium	high	Versicolour	3
medium	high	Virginica	3
high	medium	Versicolour	2
high	medium	Virginica	3
high	high	Versicolour	2
high	high	Virginica	44

Example: Iris data (continued)

- Each unique tuple of petal width, petal length, and species type identifies one element of the array.
- This element is assigned the corresponding count value.
- All non-specified tuples are 0.

	Petal Length	Petal Width	Species Type	Coun						▲ Petal Width	
,	low	low	Setosa	46							
	low	medium	Setosa	2	Virginica /						
	medium	low	Setosa	2	2 Versicolour Setosa						
	medium	medium	Versicolour	43		high	0	0	0		
	medium	high	Versicolour	3		riigii					
	medium	high	Virginica	3		medium	0	0	2		
	high	medium	Versicolour	2		love	0	0	40	Species	
	high	medium	Virginica	3	3 low 0		2	46	58		
	high	high	Versicolour	2		Petal	high	шm	<u>wo</u>		
	high	high	Virginica	44		Width		medium			
				•				_			

Creating a Multidimensional Array (General Procedure)

- Converting tabular data into a multidimensional array:
 - Identify which attributes are to be the dimensions and which attribute is to be the target attribute
 - Attributes used as dimensions must have discrete values
 - Values of target variable appear as entries in the array
 - The target value is typically a count or continuous value
 - Can have no target variable at all except the count of objects that have the same set of attribute values
 - <u>Find the value of each entry</u> in the multidimensional array by <u>summing</u> the values (of the target attribute) or the count of all objects that have the attribute values corresponding to that entry.

OLAP Operations: Data Cube

- The key operation of a OLAP is the formation of a data cube
- A data cube is a multidimensional representation of data, together with all possible aggregates.
- By all possible aggregates, we mean the aggregates that result by:
 - selecting a proper subset of the dimensions and summing over all remaining dimensions.

Data Cube Example

• Consider a data set that records the sales of products at a number of company stores at various dates.

- This data can be represented as a 3 dimensional array
- There are 3 two-dimensional aggregates (3 choose 2), 3 one-dimensional aggregates, and 1 zero-dimensional aggregate (the overall total)

Date

Data Cube Example (continued)

 The following figure table shows one of the two dimensional aggregates, along with two of the one-dimensional aggregates, and the overall total

data

			date		
		Jan 1, 2004	Jan 2, 2004	 Dec 31, 2004	total
	1	\$1,001	\$987	 \$891	\$370,000
ct ID	:	:		÷	:
produ	27	\$10,265	\$10,225	 \$9,325	\$3,800,020
Гd	:			:	:
	total	\$527,362	\$532,953	 \$631,221	\$227,352,127

OLAP Operations: Slicing

 Slicing is selecting a subset of cells from the entire multidimensional array by specifying a specific value for one/more dimensions.

OLAP Operations: Dicing

- Dicing involves selecting a subset of cells by specifying a range of attribute values for dimensions.
 - This is equivalent to defining a subarray from the complete array.

Example: Roll-up

Example: Drill-Down

OLAP Operations: Roll-up and Drill-down

- Attribute values often have a hierarchical structure.
 - Each date is associated with a year, month, and week.
 - A location is associated with a continent, country, state (province, etc.), and city.
 - Products can be divided into various categories, such as clothing, electronics, and furniture.
- Note that these categories often nest and form a tree or lattice
 - A year contains months which contains day
 - A country contains a state which contains a city

OLAP Operations: Roll-up and Drill-down

- This hierarchical structure gives rise to the roll-up and drill-down operations.
 - For sales data, we can aggregate (roll up) the sales across all the dates in a month.
 - Conversely, given a view of the data where the time dimension is broken into months, we could split the monthly sales totals (drill down) into daily sales totals.
 - Likewise, we can drill down or roll up on the location attributes.

