Université Félix Houphouët-Boigny UFR Mathématiques et Informatique

Année 2023-2024

Licence 3 Mathématiques TD : Topologie

Exercice 1

Soit E un ensemble non vide. On pose $\forall (x,y) \in E \times E$

$$d(x,y) = \begin{cases} 1 \text{ si } x \neq y \\ 0 \text{ si } x = y \end{cases}$$

- 1) Montrer que d est une distance sur E. (Cette distance est appelée la distance discrète).
- 2) a) Quels sont les ouverts pour cette distance? Quelle est la topologie obtenue?
 - b) Quels sont les fermés pour cette distance?
- 3) a) Quelles sont les suites de Cauchy pour cette distance?
 - b) L'espace (E, d) est-il complet ?

Exercice 2

Soit E l'espace des applications continues de [-1,1] dans C. Pour tous $f,g\in E$, on pose

$$d(f,g) = \sqrt{\int_{-1}^{1} |f(t) - g(t)|^2 dt}$$

- 1) Montrer que d est une distance sur E.
- 2) Pour tout entier $n \geq 1$, on pose

$$f_n(x) = 0 \text{ si } x \in [-1, 0]$$

$$f_n(x) = nx \ si \ x \in]0, \frac{1}{n}]$$

$$f_n(x) = 1 \ si \ x \in]\frac{1}{n}, 1]$$

- a) Montrer que la suite $(f_n)_n \ge 1$ est une suite de Cauchy de (E, d).
- b) L'espace métrique (E, d) est-il complet ?

Exercice 3

- 1) Montrer que si (E, d) est un espace métrique complet et si F est une partie fermée de (E, d), alors (F, d) est complet.
 - 2) Soient $a, b \in \mathbb{R}$. Soit E l'ensemble des applications $f : [a, b] \to \mathbb{R}$ qui sont bornées. Soit D_{∞} la distance de la convergence uniforme sur E.

- (i) Donner en la justifiant, la définition de D_{∞} .
- (ii) Soit $F = C^0([a, b], \mathbb{R})$ l'ensemble des applications continues $f : [a, b] \to \mathbb{R}$. Montrer que F est une partie fermée de (E, D_{∞}) .
- (iii) En déduire que (F, D_{∞}) est complet.

NB: Ce résultat pourra être utilisé.

Exercice 4

Soient A un nombre réel strictement positif et E l'espace des applications continues de [0, A] dans \mathbb{R} muni de la distance de la convergence uniforme D.

Soit $T: E \to E$ l'application définie par $\forall x \in E$ et $\forall t \in [0, A]$

$$T(x)(t) = 1 + \int_0^t x(s)ds.$$

- 1) Donner en la justifiant, la définition de D.
- 2) Montrer que l'on a bien $T(x) \in E, \forall x \in E$.
- 3) Montrer que l'application T est lipschitzienne.
- 4) On suppose que A < 1. Montrer que T admet un point fixe et ce point fixe est unique.
- 5) Montrer que le point fixe de T est l'unique solution du problème de Cauchy :

$$u'(t) - u(t) = 0, \ \forall t \in [0, A] \ \text{et} \ u(0) = 1.$$

Exercice 5

Soit E l'espace des suites de nombres réels nulles à partir d'un certain rang.

- 1) Justifier qu'on peut considérer sur E la norme $\|.\|_{\infty}$.
- 2) Montrer que l'application $L: E \to E$ définie par

$$L((x_n)_{n\in\mathbb{N}}) = (\frac{x_n}{n+1})_{n\in\mathbb{N}}$$

est linéaire, bijective et continue.

3) Montrer que L^{-1} n'est pas continue.

Exercice 6

Soit (X, d) un espace métrique compact, et soit f une isométrie de X dans X.

1) Démontrer que f est un homéomorphisme de X sur X.

Indication:

Si $f(X) \neq X$, prendre un point $x_1 \in X \setminus f(X)$ et considérer la suite $(x_n)_{n \in \mathbb{N}^*}$ définie par $\forall n \in \mathbb{N}^*, x_{n+1} = f(x_n)$.

Prouver qu'il existe $\alpha > 0$ tel que $\forall p, q \in \mathbb{N}^*$ tels que $p \neq q$, $d(x_p, x_q) \geq \alpha$.

2) En déduire qu'une isométrie f de \mathbb{R}^n dans \mathbb{R}^n qui admet un point fixe est un homéomorphisme de \mathbb{R}^n sur \mathbb{R}^n .

Exercice 7

Soit $(E, \|.\|)$ un espace vectoriel normé sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Soient A et B deux parties de E.

- 1) Montrer que si A et B sont compactes, alors A + B est compacte.
- 2) Montrer que si A est compacte et si B est fermée, alors A+B est fermée.
- 3) Montrer que si A et B sont connexes, alors A + B est connexe.

Exercice 8

Soit E l'espace vectoriel sur $\mathbb R$ des applications de classe C^1 de [0,1] dans $\mathbb R$. On pose $\forall x \in E$

$$||x|| = |x(0)| + \sup_{t \in [0,1]} |x'(t)|.$$

- 1) Montrer qu'on définit ainsi une norme sur E.
- 2) Montrer que $(E, \|.\|)$ est un espace de Banach.
- 3) On pose $\forall x \in E$

$$N(x) = \sup_{t \in [0,1]} |x(t)| + \sup_{t \in [0,1]} |x'(t)|.$$

- a) Montrer que N est une norme sur E.
- b) Montrer que les normes N et $\|.\|$ sont équivalentes sur E.
- c) Que peut-on en déduire pour (E, N)? Justifier votre réponse.

Exercice 9

Soit E l'espace de Banach réel des applications continues de [-1,4] dans $\mathbb R$ muni de la norme de la convergence uniforme.

Montrer que l'application $L: E \to \mathbb{R}$ définie par $\forall f \in E$,

$$L(f) = f(-1) - 4f(0) + 5f(1) - 3f(2) + 2f(3) - 8f(4)$$

est une forme linéaire continue sur E et calculer sa norme.