МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2 по дисциплине «Организация ЭВМ»

Тема: Изучение режимов адресации и формирования исполнительного адреса

Студент гр. 0382	 Тюленев Т.В.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2021

Цель работы.

Изучение работы режимов адресации, с помощью программы на языке Ассемблера.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2 comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме. В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции. Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя. На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Порядок выполнения работы.

- 1. Получить у преподавателя вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и занести свои данные вместо значений, указанных в приведенной ниже программе.
- 2. Протранслировать программу с созданием файла диагностических сообщений; объяснить обнаруженные ошибки и закомментировать соответствующие операторы в тексте программы.
- 3. Снова протранслировать программу и скомпоновать загрузочный модуль.
- 4. Выполнить программу в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.

5. Результаты прогона программы под управлением отладчика должны быть подписаны преподавателем и представлены в отчете.

Вариант №9:

vec1 DB 31,32,33,34,38,37,36,35 vec2 DB 50,60,-50,-60,70,80,-70,-80 matr DB -4,-3,7,8,-2,-1,5,6,-8,-7,3,4,-6,-5,1,2

Выполнение работы.

Описание ошибок, обнаруженных при первой трансляции:

1. lr2_comp.asm(42): error A2052: Improper operand type mov mem3,[bx]

Перемещение данных из памяти в память запрещено. Возможно только между двумя регистрами или регистрами и памятью.

2. lr2_comp.asm(54): error A2055: Illegal register value mov ax,matr[bx*4][di]

Недопустимое значение регистра, так как невозможно умножать 2х-байтные регистры.

3. lr2_comp.asm(73): error A2046: Multiple base registers mov ax,matr[bp+bx]

Нельзя использовать более одного базового регистра для адресации.

4. lr2_comp.asm(74): error A2047: Multiple index registers mov ax,matr[bp+di+si]

Нельзя использовать более одного индексного регистра для адресации.

5. lr2_comp.asm(81): error A2006: Phase error between passes Main ENDP

Фактический адрес, назначенный метке на первом проходе и сохраненный в таблице символов, оказался неверным для контекста, в котором метка должна соответствовать окончательной сборке (второй проход).

Описание предупреждений, обнаруженных при первой трансляции:

1. lr2_comp.asm(49): warning A4031: Operand types must match mov cx,vec2[di]

Некорректное использование операндов – с разной размерностью. Регистр CX имеет размер в 2 байта, а элемент массива vec2-1 байт.

2. lr2_comp.asm(53): warning A4031: Operand types must match mov cx,matr[bx][di]

Некорректное использование операндов – с разной размерностью. Регистр СХ имеет размер в 2 байта, а элемент массива(матрицы) matr – 1 байт.

Таблица 1. Результат выполнения программы в пошаговом режиме.

Адрес	Символический код	16-ричный код	Содержимое	
коман	команды	команды	регистров и	
ды			ячеек памяти	
			до	После
			выполнения	выполнения
0000	PUSH DS	1E	(SP) = 0018	(SP) = 0016
			(DS) = 19F5	(DS) = 19F5
			Stack:+0 0000	Stack: +0 19F5
0001	SUB AX, AX	2BC0		
0003	PUSH AX	50	(SP) = 0016	(SP) = 0014
			(AX) = 0000	(AX) = 0000
			Stack: +0	Stack: +0 0000
			19F5	+2 19F5
0004	MOV AX, 1A07	B8071A	(AX) = 0000	(AX) = 1A07
0007	MOV DS, AX	8ED8	(DS) = 19F5	(DS) = 1A07
0009	MOV AX, 01F4	B8F401	(AX) = 1A07	(AX) = 01F4
000C	MOV CX, AX	8BC8	(CX) = 00B0	(CX) = 01F4
000E	MOV BL, 24	B324	(BX) = 0000	(BX) = 0024
0010	MOV BH, CE	B7CE	(BX) = 0024	(BX) = CE24
0012	MOV [0002], FFCE	C7060200CEFF		
0018	MOV BX, 0006	BB0600	(BX) = CE24	(BX) = 0006
001B	MOV [0000], AX	A30000		

001E	MOV AL, [BX]	8A07	(AX) = 01F4	(AX) = 011F		
0020	MOV AL, [BX+03]	8A4703	(AX) = 011F	(AX) = 0122		
0023	MOV CX, [BX+03]	8B4F03	(CX) = 01F4	(CX) = 2622		
0026	MOV DI, 0002	BF0200	(DI) = 0000	(DI) = 0002		
0029	MOV AL,	8A850E00	(AX) = 0122	(AX) = 01CE		
	[000E+DI]					
002D	MOV BX, 0003	BB0300	(BX) = 0006	(BX) = 0003		
0030	MOV AL,	8A811600	(AX) = 01CE	(AX) = 01FF		
	[0016+BX+DI]					
0034	MOV AX, 1A07	B8071A	(AX) = 01FF	(AX) = 1A07		
0037	MOV ES, AX	8EC0	(ES) = 19F5	(ES) = 1A07		
0039	MOV AX, ES:[BX]	268B07	(AX) = 1A07	(AX) = 00FF		
003C	MOV AX, 0000	B80000	(AX) = 0000			
003F	MOV ES, AX	8EC0	(ES) = 1A07	(ES) = 0000		
0041	PUSH DS	1E	(SP) = 0014	(SP) = 0012		
			Stack:+0 0000	Stack: +0 1A07		
			+2 19F5	+2 0000		
				+4 19F5		
0042	POP ES	07	(ES) = 0000	(ES) = 1A07		
			(SP) = 0012	(SP) = 0014		
			Stack: +0	Stack: +0 0000		
			1A07	+2 19F5		
0043	MOV CX, ES:[BX-	268B4FFF	(CX) = 2622	(CX) = FFCE		
	01]					
0047	XCHG AX, CX	91	(AX) = 0000	(AX) = FFCE		
			(CX) = FFCE	(CX) = 0000		
0048	MOV DI, 0002	BF0200				
004B	MOV ES:[BX+DI],	268901	DS:0000	DS:0000		
	AX					

			F4 01 CE FF	F4 01 CE FF 00
			00 00 00	CE FF
004E	MOV BP, SP	8BEC	(BP) = 0000	(BP) = 0014
0050	PUSH 01F4	FF360000	(SP) = 0014	(SP) = 0012
			Stack: +0	Stack: +0 01F4
			0000	+2 0000
			+2 19F5	+4 19F5
			+4 0000	
0054	PUSH FFCE	FF360200	(SP) = 0012	(SP) = 0010
			Stack: +0	Stack: +0 FFCE
			01F4	+2 01F4
			+2 0000	+4 0000
			+4 19F5	+6 19F5
			+6 0000	
0058	MOV BP, SP	8BEC	(BP) = 0014	(BP) = 0010
005A	MOV DX, [BP+02]	8B5602	(DX) = 0000	(DX) = 01F4
005D	RET far 0002	CA0200	(CS) = 1A0A	(CS) = 01F4
			(SP) = 0010	(SP) = 0018
			Stack:	Stack: +0 19F5
			+0 FFCE	+2 0000
			+2 01F4	+4 0000
			+4 0000	+6 0000
			+6 19F5	

Файл листинга успешной трансляции см. в приложении Б.

Исходный код см. в приложении А

Вывод.

В результате работы была изучена работа режимов адресации с использованием программы на языке Ассемблера.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

; Программа изучения режимов адресации процессора

Файл 1. lb2.asm

```
IntelX86
EOL EQU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
 DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 31,32,33,34,38,37,36,35
vec2 DB 50,60,-50,-60,70,80,-70,-80
matr DB -4, -3, 7, 8, -2, -1, 5, 6, -8, -7, 3, 4, -6, -5, 1, 2
DATA ENDS
; Код программы
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
 push DS
 sub AX, AX
 push AX
```

```
mov AX, DATA
mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax, n1
mov cx, ax
mov bl, EOL
mov bh, n2
; Прямая адресация
mov mem2, n2
mov bx, OFFSET vec1
mov mem1, ax
; Косвенная адресация
mov al,[bx]
mov mem3, [bx]
; Базированная адресация
mov al, [bx]+3
mov cx, 3[bx]
; Индексная адресация
mov di, ind
mov al, vec2[di]
mov cx, vec2[di]
; Адресация с базированием и индексированием
mov bx, 3
mov al, matr[bx][di]
mov cx, matr[bx] [di]
mov ax, matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ---- вариант 1
```

```
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es: [bx-1]
xchg cx, ax
; ----- вариант 3
mov di, ind
mov es:[bx+di],ax
; ---- вариант 4
mov bp, sp
mov ax, matr[bp+bx]
mov ax, matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx, [bp] + 2
 ret 2
Main ENDP
CODE ENDS
END Main
```

ПРИЛОЖЕНИЕ В ДИАГНОСТИЧЕСКОЕ СООБЩЕНИЕ

Файл lb2 LIST2.lst

```
#Microsoft (R) Macro Assembler Version 5.10
                                                                 11/3/21
15:16:12
                                                                 Page
1-1
                     ; Программа изучения режиЙ
                     ¼ов адресации процессора I
                     ntelX86
 = 0024
                          EOL EQU '$'
 = 0002
                          ind EQU 2
 = 01F4
                          n1 EQU 500
 =-0032
                          n2 EQU -50
                     ; Стек программы
 0000
                          AStack SEGMENT STACK
 0000
       10000
                           DW 12 DUP(?)
        3333
                 ]
 0018
                          AStack ENDS
                     ; Данные программы
 0000
                          DATA SEGMENT
                     ; Директивы описания даннэ
                     \mathbf{0}_{\mathrm{X}}
 0000
       0000
                          mem1 DW 0
 0002
       0000
                          mem2 DW 0
 0004
       0000
                          mem3 DW 0
 0006
       1F 20 21 22 26 25 vec1 DB 31,32,33,34,38,37,36,35
       32 3C CE C4 46 50 vec2 DB 50,60,-50,-60,70,80,-70,-80
 000E
       BA BO
       FC FD 07 08 FE FF matr DB -4,-3,7,8,-2,-1,5,6,-8,-7,3,4,-6,-
 0016
5,1,2
       05 06 F8 F9 03 04
       FA FB 01 02
 0026
                          DATA ENDS
                     ; Код программы
 0000
                          CODE SEGMENT
                      ASSUME CS:CODE, DS:DATA, SS:AStack
                     ; Головная процедура
 0000
                          Main PROC FAR
                      push DS
 0000
       1E
      2B C0
 0001
                           sub AX, AX
 0003
      50
                      push AX
 0004 B8 ---- R
                           mov AX, DATA
 0007 8E D8
                           mov DS, AX
                     ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЙ
                     ¦ИИ НА УРОВНЕ СМЕЩЕНИЙ
                     ; Регистровая адресация
```

```
0009 B8 01F4
                        mov ax, n1
 000C 8B C8
                         mov cx, ax
 000E B3 24
                         mov bl, EOL
 0010 B7 CE
                         mov bh, n2
                  ; Прямая адресация
 0012 C7 06 0002 R FFCE mov mem2, n2
0018 BB 0006 R
                       mov bx, OFFSET vec1
 001B A3 0000 R
                        mov mem1,ax
                   ; Косвенная адресация
 001E 8A 07
                        mov al, [bx]
                   ; mov mem3, [bx]
                   ; Базированная адресация
#Microsoft (R) Macro Assembler Version 5.10
                                                           11/3/21
15:16:12
                                                           Page
1 - 2
 0020 8A 47 03
                             mov al, [bx]+3
 0023 8B 4F 03
                             mov cx, 3[bx]
                   ; Индексная адресация
                    mov di, ind
 0026 BF 0002
                     mov al, vec2[di]
 0029 8A 85 000E R
                   ; mov cx, vec2[di]
                   ; Адресация с базированиеЙ
                   ¼ и индексированием
                     mov bx,3
 002D BB 0003
 0030 8A 81 0016 R
                     mov al, matr[bx][di]
                   ; mov cx,matr[bx][di]
                   ; mov ax, matr[bx*4][di]
                   ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЙ
                   'INN C YYETOM CETMEHTOB
                   ; Переопределение сегмент
                   ; ----- вариант 1
                        mov ax, SEG vec2
 0034 B8 ---- R
 0037 8E CO
                        mov es, ax
 0039 26: 8B 07
                        mov ax, es:[bx]
 003C B8 0000
                        mov ax, 0
                   ; ---- вариант 2
 003F
      8E C0
                        mov es, ax
 0041
      1E
                    push ds
 0042
      07
                    pop es
 0043
     26: 8B 4F FF mov cx, es:[bx-1]
 0047
                   xchg cx,ax
                   ; ---- вариант 3
 0048 BF 0002
                      mov di,ind
mov es:[bx+di],ax
 004B 26: 89 01
                   ; ---- вариант 4
 004E 8B EC
                        mov bp,sp
                   ; mov ax, matr[bp+bx]
                   ; mov ax,matr[bp+di+si]
                   ; Использование сегмента э
```

	Отека	
0050	FF 36 0000 R push mem1	
0054	FF 36 0002 R push mem2	
0058	8B EC mov bp,sp	
005A	8B 56 02 mov dx,[}	p]+2
005D	CA 0002 ret 2	

0060 Main ENDP 0060 CODE ENDS

END Main

#Microsoft (R) Macro Assembler Version 5.10

15:16:12

Symbols-1

11/3/21

Segments and Groups:

	N a m e										Lengt	th	Alig	n (Combine	Class		
ASTACK CODE . DATA .	•			•	•	•	•			•			0060	PARA	NONE			
Symbols	S:																	
					N	J a	a n	η ∈)				Type	Val	ue	Attr		

N a m e	Type Value Attr
EOL	NUMBER 0024
IND	NUMBER 0002
MAIN	F PROC 0000 CODE Length = 0060 L BYTE 0016 DATA L WORD 0000 DATA L WORD 0002 DATA L WORD 0004 DATA
N1	NUMBER 01F4 NUMBER -0032
VEC1	L BYTE 0006 DATA L BYTE 000E DATA
@CPU	TEXT 0101h TEXT 1b2 TEXT 510

⁸³ Source Lines

47842 + 459418 Bytes symbol space free

⁸³ Total Lines

¹⁹ Symbols

- 0 Warning Errors
- O Severe Errors