Machine Vision

Homework#3

Deadline: 2024/05/01 23:59:59

Robot Vision Lab (Room 1421)

TAs: 魏士涵 t112598058@ntut.edu.tw

賴靖嫺 t112598008@ntut.edu.tw

- Medial axis skeletonization
 - 1-1. Do the 8-distance transform.

(u, v) should be in the 8-neighbor of (i, j)

$$f^{0}[i,j] = f[i,j]$$

$$f^{m}[i,j] = f^{0}[i,j] + \min(f^{m-1}[u,v])$$

0th pass

1st pass

2nd pass

The figure left shows the 4-distance transform, you should do the 8-distance transform.

- Medial axis skeletonization
 - \triangleright 1-2. Find the medial axis.
 - 1. Remove pixels that are not local maximum (of distance) in their neighbors.
 - 2. You need to keep the connectivity (8-connectivity), of every 3x3 neighbors of each pixel.
 - 3. After removing pixels that are not local maximum without losing the connectivity, redundant pixels should be removed.

• Examples for removing pixels

	1			1	1				1		
1	1	→		1		1	1	→			1
1	2		1	2		1	2			1	2

Can be removed

Can not be removed

• Examples for removing redundant pixels

	3	3				3	
	3	3				3	
	3	3				3	
	3	3				3	
	3	3				3	

3	3	3	3	3	3
3	3	3	3	3	3

3	3	3	3	3	3

	3				
	3				
	3	3	3	3	_

3	3	3			
		3	3	3	3

3	3	3			
			3	3	3

* Note that the binary image should be the following:

• Images

Machine Vision

- Report
 - Student ID
 - Name
 - Describe the main part of your method (or explain your code)
 - Result images
 - Explain the results you get

- Rules in using C/C++ OpenCV Lib
 - ➤ Use OpenCV-2.x version
 - ➤ Allow use:
 - 1. Read, save, show image (cvLoadImage, cvShowImage, ...)
 - 2. Define image (Mat)
 - 3. Get image size (cvSize, cvGetSize)

➤ Not Allow use :

- 1. Cannot use the function of Lib to do the main part of homework.
 - Example: cv::distanceTransform(image, distance, DIST_L2, 3)
 - X Other libs also not allow use to do the main part of homework

• Rules in using Python OpenCV Lib

>Allow use:

- 1. Read, save, show image (cv2.imread, cv2.imshow, ...)
- 2. Define image
- 3. Get image size

➤ Not Allow use:

1. Cannot use the function of Lib to do the main part of homework.

Example: cv2.distanceTransform(image, cv2.DIST_L2, 3)

2. Other libs also not allow use to do the main part of homework

Example: skimage.morphology.medial_axis(image, return_distance=True)

- Grade
 - Program(80%)
 - Q1-1(40%)
 - Q1-2(40%)
 - Report(20%)
 - Additional(10%)

- Folder Structure
 - There are 8 images in the results folder.
 - ➤ Write all questions in one program

112598058 hw3/ images/ img1.jpg - img2.jpg img3.jpg - img4.jpg results/ img1 q1-1.jpg img1 q1-2.jpg - img2 q1-1.jpg img2 q1-2.jpg img3 q1-1.jpg img3 q1-2.jpg img4 q1-1.jpg - img4 q1-2.jpg 112598058_hw3.py 112598058 hw3.pdf

Readme.txt (Optional)

Python

- Please compress your files.
 - > Example: 112598058_hw3.zip
- Deadline: 2024/05/01 23:59:59
 - For each hour late, 10% of the total score will be deducted.
- Don't share your code and your report with other students.
 - Do it by yourself.