Électromagnétisme S01 Rappels, force et champ électrostatiques

Iannis Aliferis

Université Nice Sophia Antipolis

ÉLECTROSTATIQUE	2
Rappels sur les vecteurs	3
Vecteurs	4
Addition, soustraction	5
Le produit scalaire: une projection	6
Le produit vectoriel: un vecteur	
Vecteurs unitaires	8
Rappels sur les systèmes de coordonnées	9
Coordonnées cartésiennes	10
Coordonnées cylindriques	
Coordonnées sphériques	12
Force et champ électrostatiques	13
Force électrostatique	14
Champ électrostatique	15
Champs scalaires et vectoriels	16
La notion de champ	17
Champ scalaire	18
Champ vectoriel	
Charges électriques	20
L'essentiel	21
Modèles utilisés	
Pourquoi les champs électromagnétiques?	23
Champ électrique, champ magnétique	24

ÉLECTROSTATIQUE

Rappels sur les vecteurs

3

2

Vecteurs

▼ Objet mathématique ayant une longueur (norme), une direction et un sens (orientation).

▼ Notation :

le vecteur : $ec{A}$

sa norme : $\|\vec{A}\|$ ou A (un nombre ≥ 0)

▼ Un vecteur est défini par ses trois *composantes* :

$$ec{oldsymbol{A}} = egin{pmatrix} A_1 \ A_2 \ A_3 \end{pmatrix} = A_1 \hat{oldsymbol{e}}_1 + A_2 \hat{oldsymbol{e}}_2 + A_3 \hat{oldsymbol{e}}_3$$

Les A_1,A_2,A_3 dépendent du système de coordonnées choisi

4

Le produit scalaire : une projection

lacktriangledown Le produit scalaire de \vec{A} et \vec{B} , deux vecteurs formant un angle heta :

$$\vec{A} \cdot \vec{B} = \|\vec{A}\| \|\vec{B}\| \cos \theta = \vec{B} \cdot \vec{A}$$

$$ec{A} \cdot ec{B} = AB\cos heta$$
 (notation plus simple)

(Ne pas oublier le point · entre les vecteurs!)

- $lacktriangledown A\cos heta$: la projection de $ec{m{A}}$ sur la direction de $ec{m{B}}$
- lacktriangle Si \hat{u} un vecteur unitaire (orientation) :

$$ec{A} \cdot \hat{u} =$$
 projection de $ec{A}$ sur la direction de \hat{u}

▼ Dans tous les systèmes de coordonnées :

$$\vec{A} \cdot \vec{B} = A_1 B_1 + A_2 B_2 + A_3 B_3$$

▼ Cas spécial :

$$\vec{A} \cdot \vec{A} = A_1^2 + A_2^2 + A_3^2 = AA\cos(0) = A^2$$

6

Le produit vectoriel : un vecteur

lacktriangledown Le produit vectoriel de $ec{A}$ et $ec{B}$, deux vecteurs formant un angle heta :

 $ec{A} \wedge ec{B}$ ou $ec{A} imes ec{B}$: un vecteur perpendiculaire à $ec{A}$ et $ec{B}$

 $ec{A}\wedgeec{B}=-ec{B}\wedgeec{A}$ orientation : règle de la main droite

$$\|\vec{A} \wedge \vec{B}\| = \|\vec{A}\| \|\vec{B}\| \sin \theta = AB \sin \theta$$

- $lackbreak A\sin heta$: la projection de $ec{m{A}}$ sur la direction perpendiculaire à $ec{m{B}}$!
- lacktriangle Conséquence : si $ec{A} \parallel ec{B}$ alors $ec{A} \wedge ec{B} = ec{0}$
- lacktriangle Si \hat{u} un vecteur unitaire (orientation) :

 $\|ec{A}\wedge\hat{m{u}}\|=$ projection de $ec{A}$ sur la direction perpendiculaire à $\hat{m{u}}$

▼ Dans tous les systèmes de coordonnées : $\vec{A} \wedge \vec{B} = \begin{vmatrix} \hat{e}_1 & \hat{e}_2 & \hat{e}_3 \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix}$

Vecteurs unitaires

- $m{\Psi}$ $\hat{m{u}}_{m{A}}=rac{1}{\|m{\hat{A}}\|}m{\hat{A}}$: même orientation que $m{A}$ mais $\boxed{\|\hat{m{u}}_{m{A}}\|=1}$
- ▼ Des vecteurs « à part »
- ▼ Notation : lettre minuscule + accent circonflexe \hat{u} , \hat{e} , \hat{t} , \hat{n} , ...
- ▼ Information *uniquement* sur l'orientation :
 - Systèmes de coordonnées : \hat{e}_x , \hat{e}_ρ , \hat{e}_θ , ... montrent le sens d'augmentation de la coordonnée en indice
 - lackbox Courbes : \hat{t} montre le sens de la tangente à chaque point de la courbe
 - ➤ Surfaces : n̂ montre le sens de la normale par rapport à la surface (donc la définit + entrée/sortie)
- lacktriangledown « Extraire » la composante d'un vecteur $ec{A}$:
 - lacksquare sur la direction du vecteur unitaire $\hat{u}: ec{A} \cdot \hat{u}$
 - lacktriangle sur la direction perpendiculaire au vecteur unitaire $\hat{m{u}}: ec{m{A}} \wedge \hat{m{u}}$
- lacktriangle Les composantes d'un vecteur : $A_i = \vec{A} \cdot \hat{e}_i$

8

9

Rappels sur les systèmes de coordonnées

Système de coordonnées cartésiennes

Variable	valeurs	longueur élémentaire
x	$]-\infty,\infty[$	$\mathrm{d}x$
$egin{array}{c} y \ z \end{array}$	$]-\infty,\infty[$ $]-\infty,\infty[$	$\mathrm{d} y \ \mathrm{d} z$

- lacktriangle Surface élémentaire $\mathrm{d}S$
 - x constant: dy dz
 - y constant : dz dx
 - z constant : dx dy
- lacktriangledown Volume élémentaire $\mathrm{d}\mathcal{V} = \mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z$
- **▼** Vecteur de position : $\vec{r} = x\hat{e}_x + y\hat{e}_y + z\hat{e}_z$
- ▼ Un système d'exception!
 - ▶ trois coordonnées : mêmes unités
 - ▶ trois coordonnées : équivalentes
 - $ightharpoonup \hat{e}_x$, \hat{e}_y , \hat{e}_z constants

Système de coordonnées cylindriques

Variable	valeurs	longueur élémentaire
ρ	$[0,\infty[$	$\mathrm{d} ho$
ϕ	$[0, 2\pi]$	$ ho\mathrm{d}\phi$
z	$]-\infty,\infty[$	$\mathrm{d}z$

lacktriangle Surface élémentaire $\mathrm{d}S$

 $\begin{array}{l} \rho \; \mathsf{constant} \, : \; \rho \, \mathrm{d}\phi \, \mathrm{d}z \\ \phi \; \mathsf{constant} \, : \; \mathrm{d}\rho \, \mathrm{d}z \\ z \; \mathsf{constant} \, : \; \rho \, \mathrm{d}\rho \, \mathrm{d}\phi \end{array}$

lacktriangle Volume élémentaire $\mathrm{d}\mathcal{V} = \rho\,\mathrm{d}\rho\,\mathrm{d}\phi\,\mathrm{d}z$

lacktriangle Vecteur de position : $ec{r}=
ho\hat{e}_{oldsymbol{
ho}}+z\hat{e}_{oldsymbol{z}}$

11

Système de coordonnées sphériques

Variable	valeurs	longueur élémentaire
r	$[0,\infty[$	$\mathrm{d}r$
heta	$[0,\pi]$	$r d\theta$
ϕ	$[0, 2\pi]$	$r\sin\theta\mathrm{d}\phi$

lacktriangle Surface élémentaire $\mathrm{d}S$

 $\begin{array}{l} r \; \text{constant} : \, r^2 \sin \theta \; \mathrm{d}\phi \, \mathrm{d}\theta \\ \theta \; \text{constant} : \, r \sin \theta \; \mathrm{d}r \, \mathrm{d}\phi \\ \phi \; \text{constant} : \, r \, \mathrm{d}r \, \mathrm{d}\theta \end{array}$

lacktriangle Volume élémentaire $\mathrm{d}\mathcal{V} = r^2 \sin\theta \,\mathrm{d}r \,\mathrm{d}\theta \,\mathrm{d}\phi$

lacktriangledown Vecteur de position : $ec{m{r}} = r \hat{m{e}}_{m{r}}$

Force et champ électrostatiques

Force électrostatique

▼ « Statique » : les charges ne se déplacent pas

▼ Loi de Coulomb (1785)

▼ Force exercée par la charge 1 sur la charge 2 :

$$\vec{F}_{1\to 2} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r_{1\to 2}^2} \hat{r}_{1\to 2} \qquad (\vec{r}_{1\to 2} = \vec{r}_2 - \vec{r}_1)$$
 (1)

- \bullet $\epsilon_0 = 8.854 \times 10^{-12} \, \mathrm{F \, m^{-1}}$ « constante électrique » (permittivité du vide)
- $oldsymbol{\check{ec{F}}_{2
 ightarrow1}}=-ec{ec{F}}_{1
 ightarrow2}$

14

13

Champ électrostatique

▼ Champ électrique créé par la charge 1 :

$$\vec{E}_{1} \triangleq \frac{\vec{F}_{1 \to 2}}{q_{2}} = \frac{1}{4\pi\epsilon_{0}} \frac{q_{1}}{r_{1 \to 2}^{2}} \hat{r}_{1 \to 2} \quad (N C^{-1})$$
(2)

▼ Force électrique : charge fois champ

$$\vec{F}_{1\to 2} = q_2 \vec{E}_1 \tag{3}$$

Champs scalaires et vectoriels

16

La notion de champ

- **▼** Champ scalaire:
 - l'association à chaque point de l'espace d'un scalaire (un seul nombre) : p.ex. température, altitude, . . .
- **▼** Champ vectoriel:
 - l'association à chaque point de l'espace d'un vecteur (longueur et orientation) : p.ex. vent, vitesse,
- ▼ Il faut d'abord pouvoir se repérer et s'orienter dans l'espace!
- ▼ [rappels sur les systèmes de coordonnées]
- ▼ [rappels sur les vecteurs]

17

Champ scalaire

- ▼ Champ scalaire: l'association à chaque point de l'espace d'un scalaire (un seul nombre): p.ex. température, altitude, potentiel, . . .
- ▼ Un champ scalaire est une fonction de 3 variables

$$\Phi(x,y,z)$$
, $\Phi(\rho,\phi,z)$, $\Phi(r,\theta,\phi)$; en général : $\Phi(\vec{r})$

▼ Visualisation : exemples en 2D, $\Phi(x,y)$:

Champ vectoriel

- ▼ *Champ vectoriel*: l'association à chaque point de l'espace d'un vecteur (module et direction) : p.ex. vent, vitesse, ...
- ▼ Un champ vectoriel est un ensemble de 3 fonctions (les composantes) chacune de 3 variables (les coordonnées) :

$$ec{m{A}}(x,y,z) = egin{pmatrix} A_x(x,y,z) \ A_y(x,y,z) \ A_z(x,y,z) \end{pmatrix} = A_x(x,y,z) \hat{m{e}}_{m{x}} + A_y(x,y,z) \hat{m{e}}_{m{y}} + A_z(x,y,z) \hat{m{e}}_{m{z}}$$

- ▼ Ne pas confondre *composantes* et coordonnées!
- lacktriangledown Visualisation : exemple en 2D, $ec{m{A}}(x,y)=2x\hat{m{e}}_{m{x}}+y\hat{m{e}}_{m{y}}$

[visualisation champs vectoriels]

10

Charges électriques

20

L'essentiel

- ▼ Charge électrique : une propriété fondamentale de la matière
- ▼ Deux types : positive et négative
- ▼ Unité SI : Coulomb (C)
- ▼ Valeurs :
 - électron : $q_e = -1.602 \times 10^{-19} \, \mathrm{C}$
 - ightharpoonup proton : $|q_e|$
 - lacktriangle en général : multiples entiers de $|q_e|$ expérience de Millikan-Fletcher, 1913

(quarks : $\pm \frac{1}{3} |q_e|$, $\pm \frac{2}{3} |q_e|$)

Modèles utilisés

▼ Charges *ponctuelles*Des points dans l'espace, sans dimensions

charge totale :
$$q = \sum_i q_i$$

▼ Charges continues

Étendues dans l'espace : une, deux ou trois dimensions

Distribution	Densité	Charge élémentaire	Charge totale
linéique surfacique volumique	$\rho_l (\mathrm{C} \mathrm{m}^{-1})$ $\rho_s (\mathrm{C} \mathrm{m}^{-2})$ $\rho (\mathrm{C} \mathrm{m}^{-3})$	$dq = \rho_l dl$ $dq = \rho_s dS$ $dq = \rho dV$	$q = \int_{\Gamma} \rho_l \mathrm{d}l$ $q = \int_{S} \rho_s \mathrm{d}S$ $q = \int_{\mathcal{V}} \rho \mathrm{d}\mathcal{V}$

- \blacktriangledown ρ_l , ρ_s , ρ : des champs scalaires [champs scalaires et vectoriels]
- **▼** Notation : ρ ou ϱ ($\neq \rho$ des coordonnées cylindriques)

2

Pourquoi les champs électromagnétiques?

23

Champ électrique, champ magnétique

- lacktriangle Pourquoi utiliser les champs \vec{E} et \vec{B} pour décrire les phénomènes électromagnétiques?
- ▼ [force et champ électrostatiques] : loi de Coulomb

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r_{1\to 2}^2} \hat{r}_{1\to 2}$$

Valable *uniquement* si les charges sont immobiles!

▼ Force électromagnétique (force de Lorentz) :

$$|\vec{F} = q(\vec{E} + \vec{v} \wedge \vec{B})|$$
 (4)

Exercée sur une charge q de vitesse instantannée \vec{v} se déplaçant dans un champ \vec{E} et \vec{B}

Valable toujours

lacktriangle Charges (sources) $\stackrel{\mathsf{cr\'{e}ent}}{\longrightarrow}$ Champs $ec{m{E}}$, $ec{m{B}} \stackrel{\mathsf{agissent}}{\longrightarrow}$ Autres charges

