Class 5 Data Visualization with ggplot2

Nicole (PID:A16631132)

Using GGPLOT

The ggplot2 package needs to be installed as it does not come with R "out of the box" We use the install.packages() function to do this.

To use ggplot I need to load it up before I can call any of the functions in the package. I do this with the library() function.

```
library(ggplot2)
ggplot()
```

All ggplot figures have at least 3 things: - data (the stuff we want to plot) - aesthetic mapping (aes vales) - geoms

`geom_smooth()` using formula = 'y ~ x'

Speed and Stopping Distances of Cars

Your informative subtitle text here

ggplot is not the only graphing system in R there are lots of others. There is even "base R" graphics.

plot(cars)

url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>

```
Gene Condition1 Condition2 State
1 A4GNT -3.6808610 -3.4401355 unchanging
2 AAAS 4.5479580 4.3864126 unchanging
3 AASDH 3.7190695 3.4787276 unchanging
4 AATF 5.0784720 5.0151916 unchanging
5 AATK 0.4711421 0.5598642 unchanging
6 AB015752.4 -3.6808610 -3.5921390 unchanging
```



```
library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
    filter, lag

The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union

gapminder_2007 <- gapminder %>% filter(year==2007)
    ggplot(gapminder_2007) +
    aes(x=gdpPercap, y=lifeExp) +
    geom_point()
```

library(gapminder)


```
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp, color=continent, size=pop) +
  geom_point(alpha=0.5)
```



```
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, color = pop) +
  geom_point(alpha=0.8)
```



```
ggplot(gapminder_2007) +
aes(x = gdpPercap, y = lifeExp, size = pop) +
geom_point(alpha=0.5)
```



```
gapminder_top5 <- gapminder %>%
  filter(year==2007) %>%
  arrange(desc(pop)) %>%
  top_n(5, pop)

gapminder_top5
```

```
# A tibble: 5 x 6
country continent year lifeExp
<fct> <fct> <fct> <int> <dbl>
```

<dbl> <int> 1 China Asia 2007 73.0 1318683096 4959. 2 India Asia 2007 64.7 1110396331 2452. 3 United States Americas 2007 78.2 301139947 42952. 4 Indonesia Asia 2007 70.6 223547000 3541. 5 Brazil 2007 72.4 190010647 9066. Americas

```
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = pop))
```

pop gdpPercap

gapminder_top5

```
# A tibble: 5 x 6
                continent year lifeExp
                                                pop gdpPercap
  country
  <fct>
                <fct>
                          <int>
                                  <dbl>
                                              <int>
                                                        <dbl>
1 China
                Asia
                           2007
                                   73.0 1318683096
                                                        4959.
2 India
                           2007
                                   64.7 1110396331
                                                        2452.
                Asia
3 United States Americas
                           2007
                                   78.2 301139947
                                                       42952.
                                   70.6 223547000
                                                        3541.
4 Indonesia
                Asia
                           2007
5 Brazil
                Americas
                           2007
                                   72.4 190010647
                                                        9066.
```

```
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = lifeExp ))
```



```
ggplot(gapminder_top5) +
geom_col(aes(x = country, y = pop, fill = lifeExp))
```



```
ggplot(gapminder_top5) +
  aes(x=country, y=pop, fill=gdpPercap) +
  geom_col()
```



```
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=gdpPercap) +
  geom_col()
```



```
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=country) +
  geom_col(col="gray30") +
  guides(fill="none")
```


head(USArrests)

	Murder	${\tt Assault}$	UrbanPop	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

```
USArrests$State <- rownames(USArrests)
ggplot(USArrests) +
  aes(x=reorder(State,Murder), y=Murder) +
  geom_col() +
  coord_flip()</pre>
```


library(gapminder) library(gganimate)

```
# ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, colour = country)) +
# geom_point(alpha = 0.7, show.legend = FALSE) +
# scale_colour_manual(values = country_colors) +
# scale_size(range = c(2, 12)) +
# scale_x_log10() +
# facet_wrap(~continent) +
# labs(title = 'Year: {frame_time}', x = 'GDP per capita', y = 'life expectancy') +
# transition_time(year) +
# shadow_wake(wake_length = 0.1, alpha = FALSE)
```

library(patchwork)

```
p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))
p3 <- ggplot(mtcars) + geom_smooth(aes(disp, qsec))
p4 <- ggplot(mtcars) + geom_bar(aes(carb))
(p1 | p2 | p3) /</pre>
```

 $\ensuremath{\mbox{`geom_smooth()`}}\ \mbox{using method} = \ensuremath{\mbox{'loess'}}\ \mbox{and formula} = \ensuremath{\mbox{'y}}\ \sim \ensuremath{\mbox{x'}}\ \mbox{'}$

