

Plano de Ensino para o Ano Letivo de 2020

IDENTIFICAÇÃO					
Disciplina:				Código da Disciplina:	
Resistência dos Materiais I				ETC310	
Course:					
Strength of Materials I					
Materia:					
Resistencia de Materiales I					
Periodicidade: Anual	Carga horária total:	160	Carga horária sema	anal: 00 - 04 - 00	
Curso/Habilitação/Ênfase:	•		Série:	Período:	
Engenharia Civil			2	Diurno	
Engenharia Civil			3	Noturno	
Engenharia Civil			2	Noturno	
Professor Responsável:		Titulação - Gradua	ção	Pós-Graduação	
Cassia Silveira de Assis		Engenheiro Civ	ril	Doutor	
Professores:		Titulação - Gradua	ção	Pós-Graduação	
Cassia Silveira de Assis		Engenheiro Civ	⁄il	Doutor	
Fabio Selleio Prado		Engenheiro Civ	ʻil	Mestre	
Pedro Henrique Cerento de Lyra Engenheiro Civil Mestre		Mestre			
•	JETIVOS - Conhec				

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

Conhecimentos:

- C1 Estática aplicada à Resistência dos Materiais.
- C2 Diagramas de esforços internos solicitantes.
- C3 Tensões provocadas pela força normal, força cortante e momento fletor.
- C4 Deformações provocadas pelos esforços solicitantes.
- C5 Estado duplo de tensões.
- C6 Coeficiente de segurança.

Habilidades:

- H1 Elaborar modelos de cálculo para problemas estruturais elementares.
- H2 Determinar os esforços solicitantes em uma estrutura.
- H3 Calcular tensões e deformações provocadas pelos esforços solicitantes.
- H4 Analisar tensões provocadas por esforços combinados.

Atitudes:

- Al Incorporar o conceito de que as estruturas estão sujeitas a tensões e se deformam sob a ação de cargas, podendo sofrer colapso.
- A2 Ter consciência de que há incertezas quanto ao carregamento e à resistência do material e de que os modelos adotados são aproximações da realidade.

2020-ETC310 página 1 de 9

EMENTA

Estática aplicada à Resistência dos Materiais. Características geométricas das figuras planas. Esforços internos solicitantes. Diagramas de estado. Conceituação de segurança estrutural. Tensão normal e de cisalhamento. Tração e compressão simples. Cisalhamento puro. Flexão normal simples. Tensões de cisalhamento na flexão. Deformações na flexão. Estado duplo de tensões - Círculo de Mohr.

SYLLABUS

Statics applied to Strength of Materials. Geometrical properties of an area. Internal forces and moments Diagrams. Axial load: tensile and compression. Pure shear stress: riveted and welded joints. Stresses in symmetrical bending. Bending deformation of straight beams of constant and variable cross section. Plane Stress. Mohr's Circle.

TEMARIO

Estática aplicada a la Resistencia de Materiales. Propiedades geométricas de áreas planas. Diagramas de momentos y fuerzas internas. Carga uniaxial. Esfuerzo cortante puro: uniones remachadas y soldadas. Flexión simétrica. Desplazamiento en vigas rectas de sección constante y variable. Tensión Plana. Círculo de Mohr.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Exercício - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Ensino Híbrido
- Sala de aula invertida

METODOLOGIA DIDÁTICA

Aulas expositivas.

Aulas de exercícios.

Demonstrações com modelos didáticos.

Utilização de Metodologias Ativas

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Física e Mecânica:- Estática (sistema de esforços equivalentes, polígonos de forças, equações de equilíbrio no plano e no espaço, cálculo de reações de apoio, equilíbrio em corpos formados por vários componentes, cálculo de momentos de inércia).

Cálculo:- Gráficos de funções. Integrais elementares. Conceito de equações diferenciais e condições de contorno.

Desenho: - Desenho esquemático de componentes. Perspectivas elementares.

2020-ETC310 página 2 de 9

CONTRIBUIÇÃO DA DISCIPLINA

A Resistência dos Materiais é uma das disciplinas fundamentais dentro do curso de Engenharia Civil. Nela são apresentados os conceitos básicos e a terminologia que serão utilizados nos cursos subsequentes dentro da área do Cálculo Estrutural. Apesar das normas e regulamentos serem comentados, o curso procura enfatizar a formação de conceitos, a compreensão dos fenômenos e a origem das expressões analíticas. O dimensionamento de acordo com as normas será visto em cursos posteriores. Ênfase especial é dada ao traçado de diagramas de esforços internos solicitantes, bem como ao cálculo das tensões provocadas por estes esforços solicitantes.

BIBLIOGRAFIA

Bibliografia Básica:

BEER, F. P.; JOHNSTON, E. R.; DEWOLF, J. T. RESISTÊNCIA DOS MATERIAIS. 4. ed. São Paulo: McGraw-Hill, várias edições.

GERE, J. M. - MECÂNICA DOS MATERIAIS. São Paulo: Pioneira Thomson Learning, 2003.

HIBBELER, R. C. RESISTÊNCIA DOS MATERIAIS. 5. ed. São Paulo: Pearson, 2004.

Bibliografia Complementar:

FEODOSIEV, V. I. Resistencia de Materiales. Editorial MIR, 1972.

HIGDON, A. et al. MECÂNICA DOS MATERIAIS. 3. ed. Rio de Janeiro: Guanabara Dois, 1981.

MIRANDA, R. J. P. C. RESISTÊNCIA DOS MATERIAIS. [S.I.: s.n.], 2002. Apostila.

POPOV, E. P. INTRODUÇÃO À MECÂNICA DOS SÓLIDOS. São Paulo: Edgard Blucher, 1978.

RICARDO, O. G. S. INTRODUÇÃO À RESISTÊNCIA DOS MATERIAIS. Campinas: Editora da Universidade de Campinas, 1977.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

2020-ETC310 página 3 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

Disciplina anual, com trabalhos e provas (quatro e duas substitutivas).

Pesos dos trabalhos:

 $k_1: 0,4 k_2: 0,6$

Peso de $MP(k_p)$: 0,8 Pes	so de $MT(k_{_{\mathrm{T}}})$: 0,2						
INFORMAÇÕES SOBRE PROVAS E TRABALHOS							
semestre, que poderão ser ativio	a média das notas dos trabalhos do primeiro dades em classe ou fora dela. A nota do trabalho rabalhos do segundo semestre, que poderão ser la.						

2020-ETC310 página 4 de 9

OUTRAS INFORMAÇÕES

1. Distribuição das aulas entre os professores:

Os tópicos são divididos entre dois professores. Cada um leciona a teoria e apresenta exercícios sobre o assunto lecionado. Os tópicos são ministrados em uma sequência lógica e coordenada entre os professores.

No cronograma da disciplina, a seguir, as aulas do tipo El são ministradas por um professor enquanto que o outro professor leciona as aulas do tipo E2.

- 2. O programa completo de Resistência dos Materiais é dividido em duas partes, ministrado nas disciplinas ETC 310 oferecida na 2ª série para o período diurno e na 3ª série do período noturno e ETC 302 oferecida na 3ª série do período diurno e na 4ª série do período noturno.
- 3. Como a disciplina pode ser ministrada em vários dias da semana e o calendário escolar apresenta alguns dias não letivos em função de feriados, o cronograma a seguir se refere a um dia de semana típico com um feriado durante o ano.

2020-ETC310 página 5 de 9

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA	

2020-ETC310 página 6 de 9

APROVAÇÕES

Responsável pela Disciplina

Prof.(a) Cassia Silveira de Assis
Coordenador(a) do Curso de Engenharia Civil

Prof.(a) Cassia Silveira de Assis

Data de Aprovação:

2020-ETC310 página 7 de 9

	PROGRAMA DA DISCIPLINA	
N° da	Conteúdo	EAA
semana		
1 E	Recepção aos calouros	0
2 E	El - Esforços mecanicamente equivalentesE2 - Introdução ao curso	0
	de Resistência dos Materiais; Figuras Planas - Momento Estático	
3 E	El - Vínculos no plano e equações de equilíbrio; Reações de	11% a 40%
	apoioE2 - Figuras Planas - Baricentro	
4 E	El - Vínculos no Espaço e equações de equilíbrio E2 - Feriado	41% a 60%
5 E	El - Vínculos no Espaço e equações de equilíbrio E2 - Figuras	11% a 40%
	Planas - Momento de Inércia.	
6 E	El - Esforços solicitantes / Diagramas de vigas simples;E2 -	41% a 60%
	Figuras Planas - eixos e momentos principais de inércia	
7 E	El - Diagramas de vigas simples; E2 - Figuras Planas - figuras	41% a 60%
	compostas e perfis.	
8 E	Provas P1	0
9 E	Provas PlFeriado	0
10 E	El - Diagramas de Esforços Internos Solicitantes. Equação	11% a 40%
	Diferencial de EquilíbrioE2 - Tensão e deformação - conceitos.	
	Segurança das Estruturas.	
11 E	El - Diagramas de Esforços Internos Solicitantes. Equação	11% a 40%
	Diferencial de EquilíbrioE2 - Tensão e deformação - conceitos.	
	Segurança das Estruturas.	
12 E	El - Feriado / Diagramas de Esforços Internos Solicitantes de	11% a 40%
	Pórticos; E2 - Tração e compressão - tensões/deformações.	
13 E	El - Diagramas de Esforços Internos Solicitantes de Pórticos; E2 -	41% a 60%
	Tração e compressão - Sistemas Hiperestáticos.	
14 E	El - Diagramas de Estruturas tridimensionais; E2 - Tração e	41% a 60%
	compressão - Tubo de parede fina	
15 E	SMILE	0
16 E	El - Diagramas de Estruturas tridimensionais; E2 - Efeitos de	41% a 60%
	variação de temperatura.	
17 E	El - Diagramas de Estruturas tridimensionais; E2 - Exercício	41% a 60%
18 E	El - Diagramas de Estruturas tridimensionais; E2 - Exercício	41% a 60%
19 E	Provas P2	0
20 E	Provas P2	0
23 E	Prova PS1	0
24 E	El - Flexão Normal Simples - conceitos; Linha Neutra, Tensões	41% a 60%
	Extremas e Módulo de ResistênciaE2 - Cisalhamento Puro -	
	conceitos.	
25 E	El - FNS - Linha Neutra, Tensões Extremas e Módulo de	41% a 60%
	Resistência; DimensionamentoE2 - Solicitações Tangenciais;	
06 -	Ligações	410 500
26 E	E1 - FNS - Dimensionamento; Problemas de verificaçãoE2 -	41% a 60%
07 5	Cisalhamento na Flexão - Conceitos.	410 - 600
27 E	El - FNS - Problemas de verificação; E2 - Cisalhamento na Flexão -	41% a 60%
ļ	Cálculo de Tensões.	

2020-ETC310 página 8 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

28 E	El - FNS - Exercícios; E2 - Cisalhamento na Flexão - Perfis	41% a 60%
	delgados	
29 E	El - FNS - Exercícios; E2 - Cisalhamento na Flexão - Ligações -	61% a 90%
	Exercícios.	
30 E	Provas P3	0
31 E	El - Estado Duplo de Tensões - EDT - Conceitos, definições e	11% a 40%
	formulação ;E2 - Deformação na Flexão - equação da linha elástica	
	- Integração direta.	
32 E	El - Estado Duplo de Tensões - Tensões principais; E2 - Deformação	11% a 40%
	na Flexão - equação da linha elástica.	
33 E	El - Estado Duplo de Tensões - Exercícios; E2 - Deformação na	41% a 60%
	Flexão - funções de singularidade.	
34 E	El - Estado Duplo de Tensões - Círculo de MohrE2 - Deformação na	41% a 60%
	Flexão - funções de singularidade.	
35 E	El - Estado Duplo de Tensões - Exercícios;E2 - Deformação na	41% a 60%
	Flexão - vigas prismáticas de seção variável.	
36 E	El - Estado Duplo de Tensões - Exercícios; E2 - Deformação na	61% a 90%
	Flexão - vigas prismáticas de seção variável.	
37 E	El - Exercícios em salaE2 - Exercícios em sala	61% a 90%
38 E	Provas - P4	0
39 E	Provas - P4	0
40 E	Atendimento/RevisãoProvas - PS2	91% a
		100%
41 E	Provas - PS2	0
Legenda	: T = Teoria, E = Exercício, L = Laboratório	

2020-ETC310 página 9 de 9