Al Scale at the Modern Era

R12631055 林東甫 R12631056 劉昕恩

What drove deep learning era?

More compute

Better algorithm

Bigger and better data

Machine Learning at Facebook

- Machine learning is used extensively
 - Ranking posts
 - Content understanding
 - Object detection, segmentation, and tracking
 - · Speech recognition/translation
- From data centers to the edge

Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective. Hazelwood et al. HPCA-2018.

Data Scale at Facebook(and elsewhere)

XXX PB

Replicated daily

XX PB

Ingested daily

X TB/s

Stream processing throughput

XXX PB

Daily shuffle

X M

Machines

X EB

Warehouse size XX K

Pipelines

XK

Pipeline authors

Diversity in DL Use Cases

Image Classification

Must not over-design for GEMM nor convolution Flexibility requires generality

Training Data and Feature Growth for Recommender System

Data Storage Growth

Training data for recommendation models has grown by 1.75x in 2 years

Model Memory Growth

Size of Facebook's production recommendations models has grown by an order of magnitude in 3 years²

A Typical Data Ingestion Pipeline for MLPerf

Dataset downloaded to local storage

Local Storage

Host CPU

Training GPUs

Raw batches read from local storage

NVIDIA DGX

ML Training Storage growth @FB

~1.75x growth in training data *storage size* over past 2 years

~13x growth in training data ingestion *throughput* projected over 3 years

ML Training datasets cannot be stored locally on Trainers

Model	Table Size (PB)	Partition Size (PB)	Used Partition
RMI	13.45	0.15	11.95
RM2	29.18	0.32	25.94
RM3	2.93	0.07	1.95

ML Training Preprocessing @FB

Model	kQPS	Storage RX (GB/s)	Transform RX (GB/s)	Transform TX (GB/s)	# CPU Sockets required
RM1	11.623	0.8	1.37	0.68	24.16
RM2	7.995	1.2	0.96	0.50	9.44
RM3	36.921	0.8	1.01	0.22	55.22

ML training preprocessing compute requirements exceed trainer host capabilities

Disaggregated Training Data Ingestion @FB

Storage tier

Reader tier

Trainers

Disaggregation is not enough: Training Data Ingestion Challenges

Data ingestion (Storage + Preprocessing) represents a significant, and growing, component of training capacity.

End-to-end Co-design for Data Ingestion Efficiency

Regular Map Reads

Hive Table

Row idx	Features (map <str: int="">)</str:>
1	A: 1, B: 1, C: 3, D: 1, E: 3, F: 3
2	A: 2, B: 1, C: 2, D: 1, E: 2, F: 6

A: 1, B: 1, C: 3, D: 1, E: 3, F: 3

A: 2, B: 1, C: 2, D: 1, E: 2, F: 6

Read Features (A, D)

Entire rows are read

A: 1, B: 1, C: 3, D: 1, E: 3, F: 3

A: 1, B: 1, C: 3, D: 1, E: 3, F: 3

Feature Flattening + Merged Reads + Feature Reordering

Hive Table

Row idx	Features (map <str: int="">)</str:>
1	A: 1, B: 1, C: 3, D: 1, E: 3, F: 3
2	A: 2, B: 1, C: 2, D: 1, E: 2, F: 6

Training Data Efficiency Impact through co-design

2X power and cost savings for Data Ingestion

Future Opportunities: Training Data Reuse and Flash Caching

A subset of bytes (20-40%) contribute to most of Storage IO

Opportunity for Flash to absorb the IO more efficiently

High System Diversity for ML at the Edge

The diversity of mobile hardware and software is not found in the controlled datacenter environment.

Conclusion

Ever-Increasing
Al Growth

Diverse ML System Requirement

Compute, Memory, Networking

