Natural Language Question Answering Over Knowledge Graph—A Data-Driven Approach

Lei Zou

Peking University
Institute of Computer Science and Technology

Joint work with Jeffery Xu Yu(CUHK), Haixun Wang (Google), Tamer Ozsu (UW), Lei Chen (HKUST), Ruizhe Huang, Shuo Han, Youhuan Li, Dongyan Zhao (PKU)

RDF and Semantic Web

- ▶ RDF is a language for the conceptual modeling of information about web resources
- A building block of semantic web
 - ▶ Facilitates exchange of information
 - Search engines can retrieve more relevant information
 - Facilitates data integration (mashes)
- Machine understandable
 - Understand the information on the web and the interrelationships among them

Outline

RDF Introduction

gAnswer: Natural Language Question Answering over RDF A Data Driven Approach [Zou et al., SIGMOD 2014; Zheng et al., SIGMOD 2015]

Outline

RDF Introduction

gAnswer: Natural Language Question Answering over RDF

A Data Driven Approach [Zou et al., SIGMOD 2014; Zheng et al., SIGMOD 2015]

Everything is an uniquely named resource

- Everything is an uniquely named resource
- Namespaces can be used to scope the names

- Everything is an uniquely named resource
- Namespaces can be used to scope the names
- Properties of resources can be defined

xmlns:y=http://en.wikipedia.org/wiki y:Abraham_Lincoln

Abraham_Lincoln:hasName "Abraham Lincoln' Abraham_Lincoln:BornOnDate: "1809-02-12" Abraham_Lincoln:DiedOnDate: "1865-04-15"

- Everything is an uniquely named resource
- Namespaces can be used to scope the names
- Properties of resources can be defined
- Relationships with other resources can be defined

xmlns:y=http://en.wikipedia.org/wiki y:Abraham_Lincoln

Abraham_Lincoln:hasName "Abraham Lincoln' Abraham_Lincoln:BornOnDate: "1809-02-12" Abraham_Lincoln:DiedOnDate: "1865-04-15"

Abraham_Lincoln:DiedIn

y:Washington_DC

- Everything is an uniquely named resource
- Namespaces can be used to scope the names
- Properties of resources can be defined
- Relationships with other resources can be defined
- Resources can be contributed by different people/groups and can be located anywhere in the web
 - Integrated web "database"

xmlns:y=http://en.wikipedia.org/wiki y:Abraham_Lincoln

Abraham_Lincoln:hasName "Abraham Lincoln' Abraham_Lincoln:BornOnDate: "1809-02-12" Abraham_Lincoln:DiedOnDate: "1865-04-15"

Abraham_Lincoln:DiedIn

y:Washington_DC

RDF Data Model

► Triple: Subject, Predicate (Property), Object (s, p, o)

Subject: the entity that is described

(URI or blank node)

Predicate: a feature of the entity (URI)

Object: value of the feature (URI,

blank node or literal)

 $(s, p, o) \in (U \cup B) \times U \times (U \cup B \cup L)$

► Set of RDF triples is called an RDF graph

		U
	-	
Sub	ject)	Predicate Object
	1	/ 1 \
1	7	7 1 7
U	В	UBL
		. CUDI

B UBL
U: set of URIs
B: set of blank nodes
L: set of literals

Subject	Predicate	Object
Abraham_Lincoln	hasName	"Abraham Lincoln"
Abraham_Lincoln	BornOnDate	"1809-02-12"
Abraham_Lincoln	DiedOnDate	"1865-04-15"

RDF Example Instance

v:Marilvn_Monroe

Prefix: y=http://en.wikipedia.org/wiki Subject Predicate Object v: Abraham_Lincoln basName "Abraham Lincoln" Literal v: Abraham_Lincoln BornOnDate "1809-02-12"" v: Abraham_Lincoln DiedOnDate "1865-04-15" URI v:Abraham_Lincoln bornIn v:Hodgenville_KY v: Abraham Lincoln DiedIn y: Washington_DC y:Abraham_Lincoln title "President" y:Abraham_Lincoln gender "Male" y: Washington_DC hasName "Washington D.C." URI y:Washington_DC founding Year "1790" y:Hodgenville_KY hasName "Hodgenville" y:United_States hasName "United States" y:United_States hasCapital < y:Washington_DC y:United_States foundingYear "1776" y:Reese_Witherspoon bornOnDate "1976-03-22" y:Reese_Witherspoon bornIn y:New_Orleans_LA y:Reese_Witherspoon hasName "Reese Witherspoon" y:Reese_Witherspoon gender "Female" y:Reese_Witherspoon title "Actress" v:New_Orleans_LA foundingYear "1718" v:New_Orleans_LA locatedIn v:United_States v:Franklin_Roosevelt hasName "Franklin D. Roosevelt" v:Franklin_Roosevelt v:Hvde_Park_NY bornIn v:Franklin_Roosevelt title "President" v:Franklin_Roosevelt "Male" gender v:Hvde_Park_NY foundingYear "1810" v:Hvde_Park_NY locatedIn v:United_States v:Marilvn_Monroe "Female" gender v:Marilvn_Monroe hasName "Marilyn Monroe" v:Marilvn_Monroe hornOnDate "1926-07-01"

diedOnDate

"1962-08-05"

990

RDF Graph

RDF Query Model

- Query Model SPARQL Protocol and RDF Query Language
- ► Given *U* (set of URIs), *L* (set of literals), and *V* (set of variables), a SPARQL expression is defined recursively:
 - an atomic triple pattern, which is an element of

$$(U \cup V) \times (U \cup V) \times (U \cup V \cup L)$$

- ?x hasName "Abraham Lincoln"
- ▶ P FILTER R, where P is a graph pattern expression and R is a built-in SPARQL condition (i.e., analogous to a SQL predicate)
 - ?x price ?p FILTER(?p < 30)</p>
- ▶ P1 AND/OPT/UNION P2, where P1 and P2 are graph pattern expressions
- Example:

```
SELECT ?name
WHERE {
    ?m <bornIn > ?city. ?m <hasName > ?name.
    ?m<bornOnDate > ?bd. ?city <foundingYear > ''1718''.
    FILTER(regex(str(?bd),''1976''))
}
```

SPARQL Queries

```
SELECT ?name
WHERE {
  ?m <bornIn> ?city. ?m <hasName> ?name.
  ?m<bornOnDate> ?bd. ?city <foundingYear> ''1718''.
  FILTER(regex(str(?bd), ''1976''))
            FILTER(regex(str(?bd), "1976"))
                                          "1718"
  ?name
                        ?bd
                                        foundingYear
                     bornOnDate
  hasName
                     bornIn
                               ?city
              ?m
```

Naïve Triple Store Design

```
SELECT ?name
WHERE {
    ?m <bornIn > ?city. ?m <hasName> ?name.
    ?m<bornOnDate> ?bd. ?city <foundingYear> ''1718''.
    FILTER(regex(str(?bd), ''1976''))
Subject
                   Property
                                Object
 v:Abraham Lincoln
                   hasName
                                "Abraham Lincoln"
 v:Abraham_Lincoln
                   hornOnDate
                                 "1800_02_12"
 y:Abraham_Lincoln
                  diedOnDate
                                "1865-04-15"
 v:Abraham_Lincoln
                  bornIn
                                v:Hodgenville_KY
 y:Abraham_Lincoln
                  diedIn
                                y:Washington_DC
 v:Abraham_Lincoln
                  title
                                "President"
 y:Abraham_Lincoln
                  gender
                                 "Male"
 v:Washington_DC
                  hasName
                                 "Washington D.C."
 y:Washington_DC
                  foundingYear
                                "1790"
 v:Hodgenville_KY
                  hasName
                                "Hodgenville"
 y:United_States
                  hasName
                                 "United States"
 v:United_States
                   hasCapital
                                v:Washington_DC
 v-United States
                  foundingYear
                                "1776"
 v:Reese_Witherspoon bornOnDate
                                 "1976-03-22"
                                v-New Orleans I A
 y:Reese_Witherspoon bornIn
 v:Reese_Witherspoon hasName
                                "Reese Witherspoon"
                                "Female"
y:Reese_Witherspoon gender
 v:Reese_Witherspoon title
                                "Actross"
                                "1718"
 v-New Orleans I A
                  foundingYear
 v:New_Orleans_LA
                  locatedin
                                v:United_States
 v:Franklin Roosevelt hasName
                                "Franklin D
                                               Roo-
                                sovolt"
                                v:Hyde Park NY
 v:Franklin Roosevelt bornin
 v:Franklin_Roosevelt | title
                                 "President"
                                "Male"
 v:Franklin Roosevelt gender
 v:Hvde_Park_NY
                   foundingYear
                                 "1810"
 v:Hvde_Park_NY
                   locatedIn
                                v:United_States
 v:Marilyn_Monroe
                                "Female"
                   gender
 v:Marilyn_Monroe
                  hasName
                                 "Marilvn Monroe"
v:Marilyn_Monroe
                  bornOnDate
                                "1926-07-01"
```

diedOnDate

"1062_08_05"

v:Marilyn_Monroe

Naïve Triple Store Design

```
SELECT ?name
WHERE {
    ?m <bornIn > ?city. ?m <hasName> ?name.
    ?m<bornOnDate> ?bd. ?city <foundingYear> (1718''.
    FILTER(regex(str(?bd), ''1976''))
Subject
                   Property
                                Object
 v:Abraham_Lincoln
                   hasName
                                 "Abraham Lincoln"
 v:Abraham Lincoln
                  bornOnDate
                                "1809-02-12"
 v:Abraham_Lincoln
                  diedOnDate
                                 "1865_04_15"
 v:Abraham Lincoln
                  bornin
                                v:Hodgenville KY
 v:Abraham_Lincoln
                 diedIn
                                v:Washington_DC
 v:Abraham Lincoln
                  title
                                 "President"
 v:Abraham_Lincoln
                                "Male"
                  gender
 v-Washington DC
                  hasName
                                 "Washington D.C."
 v:Washington_DC
                                "1790"
                  foundingYear
 y:Hodgenville_KY
                  hasName
                                "Hodgenville"
 v:United_States
                  hasName
                                "United States"
 v-United States
                   hasCanital
                                v:Washington DC
 v:United_States
                  foundingYear
                                "1776"
 v:Reese Witherspoon bornOnDate
                                "1976-03-22"
                                v:New_Orleans_LA
 v:Reese_Witherspoon bornIn
                                "Reese Witherspoon"
 v:Reese Witherspoon hasName
 v:Reese_Witherspoon gender
                                "Female"
 v-Reese Witherspoon title
                                 "Actress"
 v:New_Orleans_LA
                  foundingYear
                                "1718"
 v:New Orleans I A
                  locatedIn
                                v:United States
 v:Franklin_Roosevelt | hasName
                                "Franklin D Roo-
                                sevelt"
 v:Franklin_Roosevelt | bornIn
                                v:Hvde_Park, NY
 v-Franklin Roosevelt title
                                "President"
 v:Franklin_Roosevelt | gender
                                 "alcM"
 v:Hyde Park NY
                   founding Year
                                 "1810"
 v:Hvde_Park_NY
                   locatedIn
                                v:United_States
v-Marilyn Monroe
                  gender
                                "Female"
 v:Marilyn_Monroe
                   hasName
                                 "Marilyn Monroe"
 v:Marilyn Monroe
                  bornOnDate
                                "1926-07-01"
v:Marilyn_Monroe
                  diedOnDate
                                "1062_08_05"
```

```
SELECT T2. object
FROM T as T1. T as T2. T as T3.
      T as T4
WHERE T1. property="bornIn"
AND T2. property="hasName"
AND T3. property="bornOnDate"
AND T1. subject=T2. subject
AND T2. subject=T3. subject
AND T4. propety="foundingYear"
AND T1.object=T4.subject
```

AND T4. object="1718"

AND T3. object **LIKE** '%1976%'

Naïve Triple Store Design

```
SELECT ?name
WHERE {
    ?m < bornIn > ?city . ?m < hasName > ?name .
    ?m<bornOnDate > ?bd . ?city < foundingYear > .
```

FILTER(regex(str(?bd),''1976''))

Subject	Property	Object
y:Abraham_Lincoln	hasName	"Abraham Lincoln"
y:Abraham_Lincoln	bornOnDate	"1809-02-12"
y:Abraham_Lincoln	diedOnDate	"1865-04-15"
y:Abraham_Lincoln	bornIn	y:Hodgenville_KY
y:Abraham_Lincoln	diedIn	y:Washington_DC
y:Abraham_Lincoln	title	"President"
y:Abraham_Lincoln	gender	"Male"
y:Washington_DC	hasName	"Washington D.C."
y:Washington_DC	foundingYear	"1790"
y:Hodgenville_KY	hasName	"Hodgenville"
y:United_States	hasName	"United States"
y:United_States	hasCapital	y:Washington_DC
y:United_States	foundingYear	"1776"
y:Reese_Witherspoon	bornOnDate	"1976-03-22"
y:Reese_Witherspoon	bornIn	y:New_Orleans_LA
y:Reese_Witherspoon	hasName	"Reese Witherspoon"
y:Reese_Witherspoon		"Female"
y:Reese_Witherspoon		"Actress"
y:New_Orleans_LA	foundingYear	"1718"
y:New_Orleans_LA	locatedIn	y:United_States
y:Franklin_Roosevelt	hasName	"Franklin D. Roo-
		sevelt"
y:Franklin_Roosevelt	bornIn	y:Hyde_Park_NY
y:Franklin_Roosevelt	title	"President"
y:Franklin_Roosevelt	gender	"Male"
y:Hyde_Park_NY	foundingYear	"1810"
y:Hyde_Park_NY	locatedIn	y:United_States
y:Marilyn_Monroe	gender	"Female"
y:Marilyn_Monroe	hasName	"Marilyn Monroe"
y:Marilyn_Monroe	bornOnDate	"1926-07-01"
y:Marilyn_Monroe	diedOnDate	"1962-08-05"

Too many self-joins!

```
SELECT T2. object
FROM T as T1, T as T2, T as T3,
T as T4
WHERE T1. property="bornin"
AND T2. property="hasName"
```

AND T3. property="bornOnDate" **AND** T1. subject=T2. subject

AND T1. subject=12. subject
AND T2. subject=T3. subject

AND T4. propety="foundingYear"

AND T1. object=T4. subject

AND T4.object="1718"

AND T3. object **LIKE** '%1976%'

1. Property table

- ► Each class of objects go to a different table ⇒ similar to normalized relations
- Eliminates some of the joins

2. Vertically partitioned tables

- For each property, build a two-column table, containing both subject and object, ordered by subjects
- Can use merge join (faster)
- Good for subject-subject joins but does not help with subject-object joins

3. Exhaustive indexing

- Create indexes for each permutation of the three columns
- Query components become range queries over individual relations with merge-join to combine
- Excessive space usage

gStore [Zou et al., VLDB 11], [Zou et al., VLDB J 14] – General Idea

- We work directly on the RDF graph and the SPARQL query graph
 - ► Answering SPARQL query ≡ subgraph matching
 - Subgraph matching is computationally expensive
- Use a signature-based encoding of each entity and class vertex to speed up matching
- Filter-and-evaluate
 - Use a false positive algorithm to prune nodes and obtain a set of candidates; then do more detailed evaluation on those
- ► We develop an index (VS*-tree) over the data signature graph (has light maintenance load) for efficient pruning

0. Start with RDF Graph G

0. Start with RDF Graph G

Outline

RDF Introduction

gAnswer: Natural Language Question Answering over RDF A Data Driven Approach [Zou et al., SIGMOD 2014; Zheng et al., SIGMOD 2015]

gAnswer: Natural Language Question Answering Over Knowledge Graph–A Graph Data Driven Approach

- An Easy-to-Use Interface to Access Knowledge Graph
 - It is interesting to both academia and industry.
 - ► Interdisciplinary research between database and NLP (natural language processing) communities.

gAnswer: Natural Language Question Answering Over Knowledge Graph–A Graph Data Driven Approach

- ► An Easy-to-Use Interface to Access Knowledge Graph
 - It is interesting to both academia and industry.
 - Interdisciplinary research between database and NLP (natural language processing) communities.

Running Example

Question: Who was married to an actor that play in Philadelphia?

Subject	Property	Object
Antonio_Banderas	type	actor
Antonio_Banderas	spouse	Melanie_Griffith
Antonio_Banderas	starring	Philadelphia_(film)
Philadelphia_(film)	type	film
Jonathan_Demme	director	film
Philadelphia	type	city
Aaron_McKie	bornIn	Philadelphia
James_Anderson	playForTeam	Philadelphia_76ers
Constantin_Stanislavski	create	An_Actor_Prepares
Philadelphia_76ers	type	Basketball_team
An_Actor_Prepares	type	Book

Running Example

Question: Who was married to an actor that play in Philadelphia?

Subject	Property	Object	
Antonio_Banderas	type	actor	
Antonio_Banderas	spouse	Melanie_Griffith	
Antonio_Banderas	starring	Philadelphia_(film)	
Philadelphia_(film)	type	film	
Jonathan_Demme	director	film	
Philadelphia	type	city	
Aaron_McKie	bornIn	Philadelphia	NA 1 1 C 10011
James_Anderson	playForTeam	Philadelphia_7	Melanie Griffith
Constantin_Stanislavski	create	An_Actor_Prepa	
Philadelphia_76ers	type	Basketball_team	
An_Actor_Prepares	type	Book	

Search Needs a Shake-Up

Search needs a shake-up
On the twentieth anniversary of the World Wide Web's public release, Oren Etzkoni
calls on researchers to think outside the keyword box and improve Internet trawling

Two focusion after interest primary Tens formers are incorduced in world with Wide Wife project to Mound would wind the although the second world using the although the second change —focus simple document ration to question answering, interest of own ring list of documents that contain own ring list of documents that contain requested keywords, users need clims answers to their questions. With sufficient scientific and financial inventment, we can come view todally heyword accurating with scientific and financial inventment, we can see the contraction of the contrac for typone technologies such as electric typerettes and visig records.

But this transfermation could be unexammely deliqued. As a comment, computer scientists have underiversed in tools that can syrchosize supolistican names to questions, and have instanforced on incremental progress in lower commons densembles enters. The climtomation densembles enters in lower commons densembles enters in lower commons densembles enters. The climgreshization pall, Academic and indust researchers used to address the interesttionage visitority in consumy to revolutionis.

seath. They must invest much more in he strategies that can adhere natural language and the strategies that can adhere natural language and the strategies that can adhere natural language. The strategies of the sub-strategies of the sub-strat

"Academics and industry researchers must invest much more in bold strategies that can achieve natural-language searching and answering."

—Oren Etzioni, NATURE, Vol 476, p25-26, 2011.

Some Interesting Products

EVI— acquired by Amazon on October 2012.

William Tunstall-Pedoe: True Knowledge: Open-Domain Question Answering Using Structured Knowledge and Inference. Al Magazine 31(3): 80-92 (2010)

Some Interesting Products

WolframAlpha

Who was married to an actor that play in Philadelphia? **SELECT** ?y Translate NL Question to structured queries WHERE { ?x starring Philadelphia_(film). ?x type actor. ?x spouse ?y . } **Query Processing** Melanie Griffith


```
SELECT ?y
                Translate NL Question to structured queries
WHERE {
?x starring Philadelphia_(film).
?x type actor.
?x \text{ spouse } ?y .
```

Query Processing

Philadelpha_(film) Philadelpha_76ers

Who was married to an actor that play in Philadelphia? **SELECT** ?y Translate NL Question to structured queries WHERE { ?x starring Philadelphia_(film). playForTeam ?x type actor. ?x spouse ?y .starring **Query Processing** director Melanie Griffith

Our Method: Framework

- ► **TASK**: Building a paraphrase dictionary to map relation phrases to predicates in RDF graph.
- ▶ **METHOD**: Data Driven Approach

Relation Phrases	Predicates or Predicate Paths	Confidence Probability
"be married to"	<spouse> ⊕———</spouse>	1.0
"play in"	<starring></starring>	0.9
"play in"	<director></director>	0.5
"uncle of"	hasChild hasChild	0.8
	····	

- ▶ **INPUT**: Relation Phrases and Supporting Entity Pairs.
- ▶ **OUTPUT**: Possible Mapping Predicates / Predicate Paths

Relation Phrase	Supporting Entity Pairs		
	$(\langle Antonio_Banderas \rangle, \langle Philadelphia(film) \rangle),$		
	(〈 Julia_Roberts 〉, 〈 Runaway_Bride 〉),		
"uncle of"	(〈 Ted_Kennedy 〉, 〈 John_FKennedy,_Jr. 〉)		
	$(\langle Peter_Corr \rangle, \langle Jim_Corr \rangle),$		

- ▶ **INPUT**: Relation Phrases and Supporting Entity Pairs.
- ▶ **OUTPUT**: Possible Mapping Predicates / Predicate Paths

- ▶ **INPUT**: Relation Phrases and Supporting Entity Pairs.
- ▶ **OUTPUT**: Possible Mapping Predicates / Predicate Paths

Relation Phrase	Supporting Entity Pairs		
	$(\langle Antonio_Banderas \rangle, \langle Philadelphia(film) \rangle)$,		
	(〈 Julia_Roberts 〉, 〈 Runaway_Bride 〉),		
"uncle of"	$(\langle Ted_Kennedy \rangle, \langle John_F._Kennedy,_Jr. \rangle)$		
	(〈 Peter_Corr 〉, 〈 Jim_Corr 〉),		

- ▶ **INPUT**: Relation Phrases and Supporting Entity Pairs.
- ▶ **OUTPUT**: Possible Mapping Predicates / Predicate Paths

▶ INPUT: Relation Phrases and Supp

OUTPUT: Possible Mapping Predica

Which Path is Better?

Relation Phrase	Supporting Entity Pairs	
"play in"	$(\langle Antonio_Banderas \rangle, \langle Philadelphia(film) \rangle)$,	
	(〈 Julia_Roberts 〉, 〈 Runaway_Bride 〉),	
"uncle of"	((Ted_Kennedy), (John_FKennedy,_Jr.))	
	(〈 Peter_Corr 〉, 〈 Jim_Corr 〉),	

hasChild hasChild

relation phrase: rel;

"uncle of"

- ▶ INPUT: Relation Phrases and Supporting Entity Pairs.
- ▶ **OUTPUT**: Possible Mapping Predicates / Predicate Paths

Definition

Given a predicate path L, the tf-value of L in $PS(rel_i)$ is defined as follows:

$$\mathit{tf}(\mathit{L}, \mathit{PS}(\mathit{rel}_i)) = |\{\mathit{Path}(v_i^j, v_i'^j) | \mathit{L} \in \mathit{Path}(v_i^j, v_i'^j)\}|$$

The *idf-value* of L over the whole relation phrase dictionary $T = \{rel_1, ..., rel_n\}$ is defined as follows:

$$idf(L, T) = \log \frac{|T|}{|\{rel_i \in T | L \in PS(rel_i)\}| + 1}$$

The tf-idf value of L is defined as follows:

$$tf-idf(L, PS(rel_i), T) = tf(L, PS(rel_i)) \times idf(L, T)$$

We define the confidence probability of mapping relation phrase rel to predicate or predicate path L as follows.

$$\delta(rel, L) = tf - idf(L, PS(rel_i), T)$$
(1)

Online: Framework

Who was married to an actor that play in Philadelphia ?

```
("(be) married to", "who", "actor")

("play in", "that", "Philadelphia")
```


Who was married to an actor that play in Philadelphia? "Who" "Philadelphia" ("(be) married to", "who", "actor") "(be) married to" "pla√ in" ("play in", "that", "Philadelphia") "actor" / "that"

Online: Step 2.1 Mapping Edge

Online: Step 2.1 Mapping Edge

Online: Step 2.1 Mapping Edge

```
(director, 1.0)

(starring, 0.9)

(playForTeam, 1.0)

(spouse, 1.0)

"Who"

"be manied to" "play in"

"actor"/"that"
```

Online: Step 2.2 Mapping Vertices

Online: Step 2.2 Mapping Vertices

```
(director, 1.0)
                    (starring, 0.9)
                  (playForTeam, 1.0)
    (spouse, 1.0)
                             "Philadelphia"
"Who"
   "be married to"
            "actor" /" that"
?Who
              (actor, 1.0)
       (An_Actor_Prepares, 0.9)
```

Online: Step 2.2 Mapping Vertices

Theorem

Finding Top-k subgraph matches of Q^S over RDF graph G is an NP-hard problem.

Theorem

Finding Top-k subgraph matches of Q^S over RDF graph G is an NP-hard problem.

```
Require: Input: A semantic query graph Q<sup>S</sup> and a RDF G. Output: Top-k SPARQL Queries, i.e., the top-k
       matches from Q^S to G.
  1: for each candidate list L_{r_i}, i = 1, \ldots, |E(Q^S)| do
           Sorting all candidate relations in L_{r_i} in a non-ascending order
  3: for each candidate list L_{arg_i}, j = 1, \ldots, |V(Q^S)| do
  4:
           Sorting all candidate entities/classes (i.e., vertices in G') in L_{arg_i} in a non-ascending order.
       Set cursor c_i to the head of L_{r_i} and cursor c_j to the head of L_{arg_i}, respectively.
       Set the upper bound Upbound(Q) and the threshold \theta = -\infty
       while true do
           for each cursor c_j in list L_{arg_j}, j = 1, \ldots, |V(Q^S)| do
  9:
               Performance a exploration based subgraph isomorphism algorithm from cursor c_i, such as VF2, to
               find subgraph matches (of Q^S over G), which contains c_i.
10:
           Update the threshold \theta to be the top-k match sore so far.
11:
           Move all cursors c_i and c_i by one step forward in each list.
12:
           Update the upper bound Upbound(Q) according to Equation ??.
13:
           if \theta > Upbound(Q) then
14:
               Break // TA-style stopping strategy
```

Theorem

Finding Top-k subgraph matches of Q^S NP-hard problem.

TA-style Top-k Algorithm!

```
Require: Input: A semantic query graph Q^S and a RDF G. Output
       matches from Q^S to G.
  1: for each candidate list L_{r_i}, i = 1, \ldots, |E(Q^S)| do
           Sorting all candidate relations in L_{r_i} in a non-ascending order
     for each candidate list L_{arg_j}, j = 1, \ldots, |V(Q^S)| do
  4:
           Sorting all candidate entities/classes (i.e., vertices in G') in L_{arg_i} in a non-ascending order.
       Set cursor c_i to the head of L_{r_i} and cursor c_j to the head of L_{arg_j}, respectively.
       Set the upper bound Upbound(Q) and the threshold \theta = -\infty
       while true do
           for each cursor c_j in list L_{arg_j}, j = 1, \ldots, |V(Q^S)| do
  9:
               Performance a exploration based subgraph isomorphism algorithm from cursor c_j, such as VF2, to
               find subgraph matches (of Q^S over G), which contains c_i.
10:
           Update the threshold \theta to be the top-k match sore so far.
11:
           Move all cursors c; and c; by one step forward in each list.
12:
           Update the upper bound Upbound(Q) according to Equation ??.
13:
           if \theta > Upbound(Q) then
14:
               Break // TA-style stopping strategy
```

Experiments: Datasets

▶ RDF repository: DBPedia

Table: Statistics of RDF Graph

	DBpedia
Number of Entities	5.2 million
Number of Triples	60 million
Number of Predicates	1643
Size of RDF Graphs (in GB)	6.1

▶ Relation Phrase Dictionary: Patty

Table: Statistics of Relation Phrase Dataset

	wordnet-wikipedia	freebase-wikipedia
Number of Textual Patterns	350,568	1,631,530
Number of Entity Pairs	3,862,304	15,802,947
Average Entity Pair	11	9
Number For Each Pattern		

Experiments: Online

Benchmark: QALD-3, 99 Natural Language Questions

Table: Evaluating QALD-3 Testing Questions (on DBpedia)

	Processed	Right	Partially	Recall	Precision	F-1
Our	76	32	11	0.40	0.40	0.40
Method						
squall2sparql	96	77	13	0.85	0.89	0.87
CASIA	52	29	8	0.36	0.35	0.36
Scalewelis	70	1	38	0.33	0.33	0.33
RTV	55	30	4	0.34	0.32	0.33
Intui2	99	28	4	0.32	0.32	0.32
SWIP	21	14	2	0.15	0.16	0.16
DEANNA	27	21	0	0.21	0.21	0.21

Experiments: Online

ID	Questions	Response Time (in ms)
Q2	Who was the successor of John F. Kennedy?	1699
Q3	Who is the mayor of Berlin?	677
Q14	Give me all members of Prodigy?	811
Q17	Give me all cars that are produced in Germany ?	297
Q19	Give me all people that were born in Vienna and died in Berlin ?	2557
Q20	How tall is Michael Jordan ?	942
Q21	What is the capital of Canada ?	1342
Q22	Who is the governor of Wyoming ?	796
Q24	Who was the father of Queen Elizabeth II?	538
Q27	Sean Parnell is the governor of which U.S. state ?	1210
Q28	Give me all movies directed by Francis Ford Coppola.	577
Q30	What is the birth name of Angela Merkel ?	250
Q35	Who developed Minecraft ?.	2565
Q39	Give me all companies in Munich.	1312
Q41	Who founded Intel?	1105
Q42	Who is the husband of Amanda Palmer ?	1418
Q44	Which cities does the Weser flow through ?	1139
Q45	Which countries are connected by the Rhine ?	736
Q54	What are the nicknames of San Francisco ?	321
Q58	What is the time zone of Salt Lake City ?	316
Q63	Give me all Argentine films.	427
Q70	Is Michelle Obama the wife of Barack Obama ?	316
Q74	When did Michael Jackson die ?	258
Q76	List the children of Margaret Thatcher.	1139
Q77	Who was called Scarface?	719
Q81	Which books by Kerouac were published by Viking Press?	796
Q83	How high is the Mount Everest ?	635
Q84	Who created the comic Captain America ?	589
Q86	What is the largest city in Australia ?	1419
Q89	In which city was the former Dutch queen Juliana buried ?	1700
Q98	Which country does the creator of Miffy come from ?	2121
Q100	Who produces Orangina ?	367

Experiments: Online

Figure : Online Running Time Comparison

Experiments: Online

QUESTION ANSWERING OVER LINKED DATA

QALD-4: Evaluation results

Workshop website: http://www.sc.cit-ec.uni-bielefeld.de/qald

Results 1 for Task 1: Multilingual question answering over DBpedia

	Total	Processed	Right	Partially	Recall	Precision	F-measure
Xser	50	40	34	6	0.71	0.72	0.72
gAnswer	50	25	16	4	0.37	0.37	0.37
CASIA	50	26	15	4	0.40	0.32	0.36
Intui3	50	33	10	4	0.25	0.23	0.24
ISOFT	50	28	10	3	0.26	0.21	0.23
RO_FII	50	50	6	0	0.12	0.12	0.12

Figure: QALD-4 Results

How to Build Templates for RDF Q/A — An Uncertain Graph Similarity Join Approach [Zheng et al., SIGMOD 15]

Template

syntactic dependency tree

How to Build Templates for RDF Q/A — An Uncertain Graph Similarity Join Approach [Zheng et al., SIGMOD 15]

Template

How to Build Templates for RDF Q/A

— An Uncertain Graph Similarity Join Approach

[Zheng et al., SIGMOD 15]

What do we have at hand?

- ▶ Natural language question workload, such as Yahoo WebQuestions.
- SPARQL workload, such as DBpeida SPARQL workload.

NLQ Workload

what is the name of justin bieber brother?

Who is the daughter of Ingrid Bergman married to?

Where did saki live?

Which river does the Tower Bridge cross?

who does joakim noah play for?

In which city did John F. Kennedy die?

where are the nfl redskins from?

In which country does the Yangtze River start?

how old is sacha baron cohen?

Give me the birthdays of all actors of the television show Charmed.

who did draco malloy end up marrying?

which countries border the us?

where is rome italy located on a map?

SPARQL Query Workload

```
1 SELECT DISTINCT 2uri
WHERE {
     res:Albert Einstein dbo:deathPlace ?uri .
     ?uri rdf:type dbo:City .
     SELECT DISTINCT ?uri
WHERE {
     res:Bill Clinton dbo:child ?child .
     ?child dbo:spouse ?uri .
     PREFIX dbo: <a href="http://dbpedia.org/ontology/">http://dbpedia.org/ontology/>
PREFIX res: <a href="http://dbpedia.org/resource/">http://dbpedia.org/resource/</a>
SELECT DISTINCT ?uri
WHERE {
     res:Brooklyn Bridge dbo:crosses ?uri .
      SELECT DISTINCT ?date
WHERE (
     res:The Truman Show dbo:starring ?actor .
     ?actor dbo:birthDate ?date
     PREFIX dbo: <a href="http://dbpedia.org/ontology/">http://dbpedia.org/ontology/</a>
PREFIX res: <a href="http://dbpedia.org/resource/">http://dbpedia.org/resource/</a>
SELECT DISTINCT ?uri
WHERE {
     res:Nile dbo:sourceCountry ?uri .
```


What do we have at hand?

- ▶ Natural language question workload, such as Yahoo WebQuestions.
- SPARQL workload, such as DBpeida SPARQL workload.

NLQ Workload SPARQL Query Workload 1 SELECT DISTINCT 2uri WHERE { what is the name of justin bieber brother? res:Albert Einstein dbo:deathPlace ?uri . ?uri rdf:type dbo:City . Who is the daughter of Ingrid Bergman married to? Where did saki live? SELECT DISTINCT ?uri WHERE { Which river does the Tower Bridge cross? res:Bill Clinton dbo:child ?child . ?child dbo:spouse ?uri . who does joakim noah play for? PREFIX dbo: http://dbpedia.org/ontology/> In which city did John F. Kennedy die? PREFIX res: http://dbpedia.org/resource/ SELECT DISTINCT ?uri where are the nfl redskins from? WHERE { res:Brooklyn Bridge dbo:crosses ?uri . In which country does the Yangtze River start? SELECT DISTINCT ?date how old is sacha baron cohen? WHERE (Give me the birthdays of all actors of the television res:The Truman Show dbo:starring ?actor . show Charmed. ?actor dbo:birthDate ?date who did draco malloy end up marrying? PREFIX dbo: http://dbpedia.org/ontology/ PREFIX res: http://dbpedia.org/resource/ which countries border the us? SELECT DISTINCT ?uri WHERE ! where is rome italy located on a map? res:Nile dbo:sourceCountry ?uri .

Framework

Step1: Uncertain Graph Generation

Step2: Finding Similar Graph Pairs

Step3: Template Generation

Problem Formulation

Definition (Finding Similar Graph Pairs)

Given a set of deterministic graphs D (derived from the SPARQL query workload), a set of uncertain graphs U (derived from natural language question workload), a graph edit distance threshold τ , and a similarity probability threshold $\alpha \in (0,1]$, a SimJ query returns the graph pairs $\langle q,g \rangle$ ($q \in D$ and $g \in U$) with $SimP_{\tau}(q,g) \geq \alpha$.

Problem Formulation

Definition (Finding Similar Graph Pairs)

Given a set of deterministic graphs D (derived from the SPARQL query workload), a set of uncertain graphs U (derived from natural language question workload), a graph edit distance threshold τ , and a similarity probability threshold $\alpha \in (0,1]$, a SimJ query returns the graph pairs $\langle q,g \rangle$ ($q \in D$ and $g \in U$) with $SimP_{\tau}(q,g) \geq \alpha$.

Similarity Probability

Existing GED Lower Bounds

- Global Filters
 - vertex/edge counting [Zeng et al., 2009]:
 - $ged(q,g) \ge ||V(g)| |V(q)|| + ||E(g)| |E(q)||$
 - ♦ label-based lower bounds [Zhao et al., 2012]: $ged(q,g) > \Gamma(M_V(q), M_V(g)) + \Gamma(M_F(q), M_F(g))$
- n-gram based Lower Bounds
 - ⋄ path-based fliter [Zhao et al., 2012]

$$dist_P(q,g) = max(|MG(q)| - \tau \cdot D_p, |MG(g)| - \tau \cdot D_p(g))$$

♦ tree-based fliter [Wang et al., 2012]

$$dist_T(q, g) = max(|V(q)| - \tau \cdot D_t, |V(g)| - \tau \cdot D_t(g))$$

♦ star-based fliter [Zeng et al., 2009]

$$dist_{S}(q,g) = \frac{\mu(q,g)}{\max\{4, \lceil \max\{\delta(q), \delta(g)\} \rceil + 1\}}$$

- Partition-based Lower Bound
 - ♦ Pars [Zhao et al., 2013]
 - ♦ Disjoint-Partition [Zheng et al., 2015]

Challenges

Challenges

Existing lower bounds are designed for deterministic graphs

Two Possible Variants

- ▶ ignoring all the vertex/edge labels
- enumerating all possible worlds

Common Structural Subgraph (CSS)

CSS-based Lower Bound

The relationship between GED and CSS[Brun et al., 2012]:

$$ged(q, g^{c})$$

$$= \min_{\forall s} \{(|V(q)| + |E(q)|) - (|V(s)| + |E(s)|) \quad (part 1)$$

$$+ (|V(g^{c})| + |E(g^{c})|) - (|V(s)| + |E(s)|) \quad (part 2)$$

$$+ (|V_{s}| + |E_{s}|)\} \quad (part 3)$$

$$= |V(q)| + |E(q)| + |V(g^{c})| + |E(g^{c})| - F(q, g^{c}) \quad (3)$$

where V_s and E_s are the subsets of vertices and edges in CSS, whose labels need to be substituted, and we have

$$F(q, g^{c}) = \max_{\forall s} \{ 2 \cdot (|V(s)| + |E(s)|) - (|V_{s}| + |E_{s}|) \}. \tag{4}$$

$$ged(q,g) \ge |V| + |E| - \lambda_E(q,g) + \frac{dif(q,g)}{2} - \lambda_V(q,g), \tag{5}$$

CSS-based Similarity Probability Upper Bound

$$\begin{aligned} \textit{SimP}_{\tau}(q,g) &= \sum_{pw(g) \in PW(g)} Pr\{pw(g)|ged(q,pw(g)) \leq \tau\} \\ \text{Let } C(q,g) \text{ be } |V| + |E| - \lambda_E(q,g) + \frac{dif(q,g)}{2} \text{(constant)}. \\ \\ \textit{SimP}_{\tau}(q,g) &\leq \sum_{pw(g) \in PW(g)} Pr\{pw(g)|\lambda_V(q,pw(g)) \geq C(q,g) - \tau\} \\ &= Pr\{\lambda_V(q,g) \geq C(q,g) - \tau\}. \end{aligned}$$

CSS-based Similarity Probability Upper Bound

m independent variables y_1, y_2, \ldots , and y_m denote $(y_1 + y_2 + \ldots + y_m)$ as a single random variable Y by applying the Markov's inequality

$$SimP_{\tau}(q,g) \leq ub_SimP_{\tau}(q,g) = \frac{E(Y)}{C(q,g) - \tau}$$

where
$$E(Y) = \sum_{i=1}^m E(y_i)$$
 and $E(y_i) = \sum_{l_i \in l(v_i)} Pr(l_i | l_i \cap \sum_{V} (q) \neq \emptyset)$

Cost-based Query Optimization

divide all possible worlds of an uncertain graph g into disjoint possible world groups

```
Algorithm 2 SimJ_OPT( q, g, \tau, \alpha)

Require: uncertain graph q, deterministic graph g, graph edit distance threshold \tau, and similarity probability threshold \alpha

Ensure: ub\_SimP_{\tau}(q,g)
1: SimP_{\tau}(q,g) \leftarrow 0
2: divide g into k possible world groups PWG_1, \ldots, PWG_k
3: for i = 1 to k do
4: compute lb\_ged_{CSS}(q, PWG_i) according to Theorem 3
5: if lb\_ged_{CSS}(q, PWG_i) \leq \tau then
6: compute ub\_SimP_{\tau}(q, PWG_i) according to Theorem 4
7: t \leftarrow ub\_SimP_{\tau}(q, PWG_i)
8: ub\_SimP_{\tau}(q, g) \leftarrow ub\_SimP_{\tau}(q, g)
9: return ub\_SimP_{\tau}(q, g)
```

Conclusions

Graph Database is a Possible Way for RDF Knowledge Base Management.

Conclusions

- ► Graph Database is a Possible Way for RDF Knowledge Base Management.
- Subgraph Matching is a Strong Tool.

Conclusions

- Graph Database is a Possible Way for RDF Knowledge Base Management.
- Subgraph Matching is a Strong Tool.
- Using RDF repository, how to Provide Knowledge Services for Applications and Common Users?

Thank you!

gStore

gAnswer

Reference I

Brun, L., Gaüzère, B., and Fourey, S. (2012).

Relationships between graph edit distance and maximal common structural subgraph.

In SSPR/SPR, pages 42-50.

Wang, G., Wang, B., Yang, X., and Yu, G. (2012). Efficiently indexing large sparse graphs for similarity search. *TKDE*, 24(3):440–451.

Zeng, Z., Tung, A. K. H., Wang, J., Feng, J., and Zhou, L. (2009). Comparing stars: On approximating graph edit distance. *PVLDB*, 2(1):25–36.

Zhao, X., Xiao, C., Lin, X., Liu, Q., and Zhang, W. (2013). A partition-based approach to structure similarity search. *PVLDB*, 7(3):169–180.

Zhao, X., Xiao, C., Lin, X., and Wang, W. (2012). Efficient graph similarity joins with edit distance constraints. In *ICDF*

Reference II

Zheng, W., Zou, L., Lian, X., Wang, D., and Zhao, D. (2015). efficient graph similairty search over large graph databases. *TKDE*, 24(3):440–451.