# ECSE 543 NUMERICAL METHODS IN ELECTRICAL ENGINEERING

## ECSE 543 Assignment 2

| Question 1 | 7 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|            | In figure (a) (0, 0.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|            | A = 0.02 x0.02 = 0.0002 m2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|            | (0,0) 2 3 (0.02,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|            | We want to minimize the energy in this triangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|            | W(e) = = 1   > U  2 ds = = 5 \ \ \frac{1}{2} |  |  |  |
|            | ae i j se a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|            | where Sie = [Dai Daj ds = Dai Daj · A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|            | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|            | $\nabla a_1 = \langle Y_2 - Y_3 \mid X_3 - X_1 \rangle \cdot \frac{1}{2A}$ $\lambda_1 = 0$ $Y_1 = 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|            | $\nabla_{2} = \langle y_{2} - y_{1}, x_{1} - x_{2} \rangle \cdot \frac{1}{2A} \qquad x_{2} = 0$ $y_{2} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|            | $\nabla x_3 = \langle y_1 - y_2, x_1 - x_1 \rangle \cdot \frac{1}{2A}$ $x_3 = 0.02$ $y_3 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|            | Plug in the values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|            | Trough In the volumes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| ***        | 5" [0.5, -0.5, 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|            | -0.5. 1, -0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|            | D, -0.5, 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|            | Similarly, for (4 (0.02, 0.02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|            | [0.00,0.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|            | A = 0.0002 m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|            | (0.02, 0.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|            | 724 = (x-y, x6-x7). 1 X4 = 0.02 Y4 = 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|            | Das = < 1/6 - 1/4, 14 - 1/6 > . 1/4 15 = 0 1/5 = 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|            | $\nabla a_6 = \langle 1/4 - 1/5 \rangle,  x_5 - x_4 > \frac{1}{24} \qquad x_6 = 0.02 \qquad y_6 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|            | 5(2) = [1, -0.5, -0.5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|            | $S^{(2)} = \begin{bmatrix} 1 & -0.5 & -0.5 \\ -0.5 & 0.5 & 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|            | -0.5 , 0 , 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |

|                    | Assignment 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                    | Global matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                    | $Sdis = \begin{bmatrix} 0 & s^{(1)} \\ 0 & 5 & -0.5 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ 0 & -0.5 & 0.0 \\ $ |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 1                  | 0,0,0,1,-05,-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                    | 0,0,0,-0.5,0,0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                    | 0,0,1,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                    | V4 10,0,0,1 L*1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| -                  | Ub (1,0,0,6) Uy ) (0,0,1,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                    | Udis Viong W= 1 Volis Salis Udis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                    | And $S = C^T S dis C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                    | Ana S = C Sdis C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                    | <b>\( \)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                    | S(global) = 1, -0.5, 0, -0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                    | -0.5, 1, -0.5, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                    | 0,-0.5,1,-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                    | 0.5, 0, -0.5, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                    | Single of the American State of the State of                                                                                                                                       |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                    | Louis towards the state of the                                                                                                                                        |  |  |  |  |
|                    | Sunta Karaman                                                                                                                                        |  |  |  |  |
| Part of the second | Constitution of the second sec                                                                                                                                       |  |  |  |  |
|                    | Land Company C                                                                                                                                       |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                    | The second secon                                                                                                                                       |  |  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| The second second  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |

- 2) Figure 2 shows the cross-section of an electrostatic problem with translational symmetry: a rectangular coaxial cable. The inner conductor is held at 110 volts and the outer conductor is grounded. (This is similar to the system considered in Question 3, Assignment 1.)
- (a) Use the two-element mesh shown in Figure 1(b) as a "building block" to construct a finite element mesh for one-quarter of the cross-section of the coaxial cable. Specify the mesh, including boundary conditions, in an input file following the format for the SIMPLE2D program as explained in the course notes. (Hint: Your mesh should consist of 46 elements.)

Choosing the upper-right one quarter of the cross-section, it is a  $0.1 \text{m} \times 0.1 \text{m}$  square, we therefore divide it into 25 meshes, each has a size of  $0.02 \text{m} \times 0.02 \text{m}$ . But in this case, the bottom-left two meshes, as Figure 2(a)1 shows, lie in the region where U = 110 V and we do not need to solve for their potentials.

So, in total we have (25-2) \*2 = 46 elements. And the I typed the input file according to the SIMPLE2D help file manually and include it in the appendix.

Notice that here I put the center point of the whole cross-section as the zero point while the actual zero point lies at the bottom-left corner of the coaxial cable.



Figure 2(a)1: two-element meshes for one-quarter of the cross-section of the coaxial cable

(b) Use the SIMPLE2D program with the mesh from part (a) to compute the electrostatic potential solution. Determine the potential at (x, y) = (0.06, 0.04) from the data in the output file of the program.

The input file can be find in appendix. And from the data in the output file, the potential at potential at global (x, y) = (0.06, 0.04) is **40.5265V**. (Notice that, in the input file, we define node 14 as 0.06, 0.04, this is because when writing the input file, I put the center of the coaxial cable cross-section as the zero point (See figure 2a)1) for analysis. However, by symmetry, the global (x, y) = (0.06, 0.04), as defined in the problem where the left-bottom corner is the zero point, should actually equal the value on node 19)

Potential =

| 1.0000  | 0.0400 | 0      | 110.0000 |
|---------|--------|--------|----------|
| 2.0000  | 0.0600 | 0      | 66.6737  |
| 3.0000  | 0.0800 | 0      | 31.1849  |
| 4.0000  | 0.1000 | 0      | 0        |
| 5.0000  | 0      | 0.0200 | 110.0000 |
| 6.0000  | 0.0200 | 0.0200 | 110.0000 |
| 7.0000  | 0.0400 | 0.0200 | 110.0000 |
| 8.0000  | 0.0600 | 0.0200 | 62.7550  |
| 9.0000  | 0.0800 | 0.0200 | 29.0330  |
| 10.0000 | 0.1000 | 0.0200 | 0        |
| 11.0000 | 0      | 0.0400 | 77.3592  |
| 12.0000 | 0.0200 | 0.0400 | 75.4690  |
| 13.0000 | 0.0400 | 0.0400 | 67.8272  |
| 14.0000 | 0.0600 | 0.0400 | 45.3132  |
| 15.0000 | 0.0800 | 0.0400 | 22.1921  |
| 16.0000 | 0.1000 | 0.0400 | 0        |
| 17.0000 | 0      | 0.0600 | 48.4989  |
| 18.0000 | 0.0200 | 0.0600 | 46.6897  |
| 19.0000 | 0.0400 | 0.0600 | 40.5265  |
| 20.0000 | 0.0600 | 0.0600 | 28.4785  |
| 21.0000 | 0.0800 | 0.0600 | 14.4223  |
| 22.0000 | 0.1000 | 0.0600 | 0        |
| 23.0000 | 0      | 0.0800 | 23.2569  |
| 24.0000 | 0.0200 | 0.0800 | 22.2643  |
| 25.0000 | 0.0400 | 0.0800 | 19.1107  |
| 26.0000 | 0.0600 | 0.0800 | 13.6519  |
| 27.0000 | 0.0800 | 0.0800 | 7.0186   |
| 28.0000 | 0.1000 | 0.0800 | 0        |
| 29.0000 | 0      | 0.1000 | 0        |
| 30.0000 | 0.0200 | 0.1000 | 0        |
| 31.0000 | 0.0400 | 0.1000 | 0        |
| 32.0000 | 0.0600 | 0.1000 | 0        |
| 33.0000 | 0.0800 | 0.1000 | 0        |
| 34.0000 | 0.1000 | 0.1000 | 0        |
|         |        |        |          |

Figure 2(b)1: output file of SIMPLE2D

## (c) Compute the capacitance per unit length of the system using the solution obtained from SIMPLE2D.

The energy of the system is given by  $E = 1/2*C_{unitlength}V^2$ . And we know that for one quarter of the cross section where we do the analysis,  $E_{quater} = \varepsilon_0*W$ . W for each single mesh, in our case, equals  $1/2*U^T_{con}SU_{con}$ , where  $S = C^TSC$ . We should add up all W of the meshes, and then,  $E = 4*E_{quater}$ 

From problem 1), we can see that the S for a single mesh is

$$S = \begin{bmatrix} 1 & -0.5 & 0 & -0.5 \\ -0.5 & 1 & -0.5 & 0 \\ 0 & -0.5 & 1 & -0.5 \\ -0.5 & 0 & -0.5 & 1 \end{bmatrix}$$

And finally,  $C_{unitlength} = 2*E/V^2 = 4*~\epsilon_0*(U^T{}_{con}SU_{con})\!/~V^2$ 

From the **capacitance.m**(see appendix) file, the final capacitance we get is: 5.2136\*10<sup>11</sup>F/m

c = 5.2136e-11

Figure 2(c)1: output file of matlab capacitance computation

3) Write a program implementing the conjugate gradient method (unpreconditioned). Solve the matrix equation corresponding to a finite difference node-spacing, h = 0.02m in x and y directions for the same one-quarter cross-section of the system shown in Figure 2 that considered in Question 2 above. Use a starting solution of zero. (Hint: The program you wrote for Question 3 of Assignment 1 may be useful for generating the matrix equation.)

First of all, we need to define the A and b matrix before using the conjugate gradient method. Both are based on the five-point difference formula.



Figure 3(1): two-element meshes for one-quarter of the cross-section of the coaxial cable Take Figure 3(1). There are 19 free nodes in total: 2, 3, 8, 9, 11-15, 17-21, 23-27. They are called free nodes since their voltages are to be determined. So, to characterize all these nodes, we need A to be a 19x19 square matrix, and b to be a 19x1 vector. For matrix A, row A gives the characterization of a node, while column A represents the nodes.

By five-point different method:  $-4\varphi_{i,j} + \varphi_{i+1,j} + \varphi_{i-1,j} + \varphi_{i,j+1} + \varphi_{i,j-1} = 0$ . Also, if a node is lies at the left or bottom border, of which the gradient of potential is 0, we know by symmetry its up point and bottom point are have the same value. The formula changes to:  $-4\varphi_{i,j} + 2*\varphi_{i+1,j} + \varphi_{i,j+1} + \varphi_{i,j-1} = 0$  for the bottom-boundary node or  $-4\varphi_{i,j} + \varphi_{i+1,j} + \varphi_{i-1,j} + 2*\varphi_{i,j+1} = 0$  for a left-boundary node.

So, take node 8 as an example, in the way I order the node, it should represent the third column of the A matrix, and is characterized by the third row of the A matrix. By the five-point difference formula:  $-4\phi_8 + \phi_7 + \phi_2 + \phi_{14} + \phi_9 = 0$ . So, the third row of A should be: 1, 0, -4, 1, 0, 0, 0, 1, 0... (11 zeros). Here there rises a problem:  $\phi_7$  is not a free node, it has a voltage of 110V, so it cannot be characterized by A. In this case, considering Ax = b, the result of multiplying the third row of A (which characterizing node 8) by the x potential vector should be  $-4\phi_8 + \phi_2 + \phi_{14} + \phi_9$ , which should equal  $-\phi_7$ .

This simply means, on the third row of b vector the value is  $-\phi_7 = -110$ V. In general, if some of the neighbors of a node is not a free node, they will be "moved" to the right-hand side of the equation and therefore be the entries of b vector. Below are the A and b generated:

```
[1, 0, -4, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 1, 1, -4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, -4, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 1, -4, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, -4, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 1, -4, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 1, 0, 0, 0, 1, -4, 0, 0, 0, 0, 1, 0, 0, 0, 0,
[0, 0, 0, 0, 0, 0, 1, 0, 0, 1, -4, 1, 0, 0, 0, 1, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, -4, 1, 0, 0, 0, 1, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, -4, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -4, 2, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, -4, 1, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
```

Figure 3(2): A matrix

```
[-110, 0, -110, 0, -110, -110, -110, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
```

Figure 3(3): b vector

The only thing left is to solve Ax = b with the numerical methods

(a) Test your matrix using your Choleski decomposition program that you wrote for Question 1 of Assignment 1 to ensure that it is positive definite. If it is not, suggest how you could modify the matrix equation in order to use the conjugate gradient method for this problem.

The A matrix is not positive definite by nature. This can be shown when testing it with the Choleski function in Assignment 1, it will return an error "the matrix A is not positive definite".

One way to resolve this issue is to multiply both A and b by  $A^T$ , which gives  $A^T *A *x = A^T *b$ .

 $A^{T} *A$  creates a positive definite matrix, which can then be decomposed.

(b) Once you have modified the problem, if necessary, so that the matrix is positive definite, solve the matrix equation first using the Choleski decomposition program from Assignment 1, and then the conjugate gradient program written for this assignment.

Solving  $A^T*A*x = A^T*b$  and we will get all potentials. The corresponding method should be found in **conjugateGradient.py**(see Appendix).

(c) Plot a graph of the infinity norm and the 2-norm of the residual vector versus the number of iterations for the conjugate program.

The infinity norm is the max absolute value of all the entries in a vector, and the 2-norm is the square root of the squared sum of all the entries of a vector.

There are 19 iterations in total, and the result is as follows, where the iteration number 0 is the norms of the initial r vector:

```
iteration number: 0 infinity norm: 330 2-norm: 704.3436661176133
iteration number: 1 infinity norm: 325.87322121604143 2-norm: 555.1319626396321
iteration number: 2 infinity norm: 165.26427050805898 2-norm: 343.081258646778
iteration number: 3 infinity norm: 103.46544796118692 2-norm: 236.7037429776329
iteration number: 4 infinity norm: 90.15753512019211 2-norm: 187.16064220303159
iteration number: 5 infinity norm: 67.5360794583475 2-norm: 159.28244681199075
iteration number: 6 infinity norm: 64.62750605382222 2-norm: 120.25689601505596
iteration number: 7 infinity norm: 83.36937732748945 2-norm: 110.14502550299132
iteration number: 8 infinity norm: 58.57329837596377 2-norm: 131.79437283412844
iteration number: 9 infinity norm: 67.17612168576997 2-norm: 113.34622176916562
iteration number: 10 infinity norm: 50.07314806966935 2-norm: 93.30339827865464
iteration number: 11 infinity norm: 28.5509019736935 2-norm: 80.07526259090709
iteration number: 12 infinity norm: 32.57103069273211 2-norm: 69.767369265133
iteration number: 13 infinity norm: 15.218850244048497 2-norm: 33.752125203992804
iteration number: 14 infinity norm: 9.183048938382768 2-norm: 19.895424913822932
iteration number: 15 infinity norm: 11.781576755730327 2-norm: 22.75210701105059
iteration number: 16 infinity norm: 7.90358990314968 2-norm: 18.519141846254463
iteration number: 17 infinity norm: 2.4732151877490764 2-norm: 5.653268684857672
iteration number: 18 infinity norm: 0.06556978165893668 2-norm: 0.15375509316124786
iteration number: 19 infinity norm: 1.8321983645819273e-06 2-norm: 4.361120238227362e-06
```

Figure 3(c)1: infinity norm and 2-norm

The plots are in the next page:



Figure 3(c)2: infinity norm vs number of iterations



Figure 3(c)1: 2-norm vs number of iterations

Both infinity norm and 2-norm of the r vector decrease in general.

(d) What is the potential at (x,y) = (0.06, 0.04), using the Choleski decomposition and the conjugate gradient programs, and how do they compare with the value you computed in Question 2(b) above. How do they compare with the value at the same (x,y) location and for the same node spacing that you computed in Assignment 1 using SOR.

For the potential at the point (0.06, 0.04):

The result from the Choleski decomposition method is: 40.5265V

The result from the conjugate gradient method is: 40.5265V

Both are consistent with the result in question 2(b)(40.5265V). The value I computed in Assignment 1 using SOR is 40.5265V as well.

```
Choleski result of the potential equals 40.526502611225915 V Conjugate result of the potential equals 40.526502637841645 V
```

Figure 3(d)1: Result for both Choleski and Conjugate gradient method

(e) Suggest how you could compute the capacitance per unit length of the system from the finite difference solution.

After we compute the matrix A and b using finite difference method, we can compute the potential at each node using whether Choleski or conjugate gradient program. Once we have the voltages at each node, we can use the same method in problem 2(c), with **capacitance.m** to solve the capacitance per unit length of the system.

### Appendix:

#### Question 2:

#### 1. capacitance.m:

```
function Capacitance = capacitance(filename1,filename2,filename3)
  clc;
  % The total potential across the system
  W = 0;
  U = zeros(1,4);
  V = 110 - 0;
  potentials = SIMPLE2D M(filename1,filename2,filename3);
  S = [1, -0.5, 0, -0.5; -0.5, 1, -0.5, 0; 0, -0.5, 1, -0.5; -0.5, 0, -0.5, 1];
  e0 = 8.854e-12;
  for i = 1:length(potentials)
     if potentials(i, 2) < 0.1 && potentials(i, 3) < 0.1
          U(1) = potentials(i, 4);
          U(2) = potentials(i + 1, 4);
          U(3) = potentials(i + 7, 4);
          U(4) = potentials(i + 6, 4);
          W = W + 0.5*U*S*transpose(U);
     end
  end
  Capacitance = 8*W*e0/V^2;
  return
end
2. input files:
1)file.dat:
1 0.04 0.0
2 0.06 0.0
3 0.08 0.0
4 0.1 0.0
5 0.0 0.02
6 0.02 0.02
7 0.04 0.02
8 0.06 0.02
9 0.08 0.02
10 0.1 0.02
11 0.0 0.04
12 0.02 0.04
13 0.04 0.04
14 0.06 0.04
```

- 15 0.08 0.04
- 16 0.1 0.04
- 17 0.0 0.06
- 18 0.02 0.06
- 19 0.04 0.06
- 20 0.06 0.06
- 21 0.08 0.06
- 22 0.1 0.06
- $23\ 0.0\ 0.08$
- 24 0.02 0.08
- 25 0.04 0.08
- 26 0.06 0.08
- 27 0.08 0.08
- 28 0.1 0.08
- 29 0.0 0.1
- 30 0.02 0.1
- 31 0.04 0.1
- 32 0.06 0.1
- 33 0.08 0.1
- 34 0.1 0.1

#### 2)file1.dat:

- 1 2 7 0.000
- 2 8 7 0.000
- 2 3 8 0.000
- 3 9 8 0.000
- 3 4 9 0.000
- 4 10 9 0.000
- 5 6 11 0.000
- 6 12 11 0.000
- 6 7 12 0.000
- 7 13 12 0.000
- 7 8 13 0.000
- 8 14 13 0.000
- 8 9 14 0.000
- 9 15 14 0.000
- 9 10 15 0.000
- 10 16 15 0.000
- 11 12 17 0.000
- 12 18 17 0.000
- 12 13 18 0.000
- 13 19 18 0.000
- 13 14 19 0.000
- 14 20 19 0.000

- 14 15 20 0.000
- 15 21 20 0.000
- 15 16 21 0.000
- 16 22 21 0.000
- 17 18 23 0.000
- 18 24 23 0.000
- 18 19 24 0.000
- 19 25 24 0.000
- 19 20 25 0.000
- 20 26 25 0.000
- 20 21 26 0.000
- 21 27 26 0.000
- 21 22 27 0.000
- 22 28 27 0.000
- 23 24 29 0.000
- 25 2 . 25 0.000
- 24 30 29 0.000
- 24 25 30 0.000
- 25 31 30 0.000
- 25 26 31 0.000
- 26 32 31 0.000
- 26 27 32 0.000
- 27 33 32 0.000
- 27 28 33 0.000
- 28 34 33 0.000

#### 3)file2.dat:

- 1 110.0
- 5 110.0
- 6 110.0
- 7 110.0
- 29 0.000
- 30 0.000
- 31 0.000
- 32 0.000
- 33 0.000
- - - -
- 34 0.000
- $28\ 0.000$
- 22 0.000
- 16 0.000
- 10 0.000
- 40.000

#### Question 3:

#### 1. conjugateGradient.py:

```
from potentialSolver import *
from methods import *
import math
def generateAandb(mesh, numNode, innerPotential, outerPotential):
     A = [[-4 \text{ if } a == b \text{ else } 0 \text{ for a in range(numNode)}] \text{ for b in range(numNode)}]
     b = [0 \text{ for a in range(numNode)}]
     k = 0
     for i in range(0, len(mesh) - 1):
          for j in range(0, len(mesh[0]) - 1):
               if j > 1 and mesh[i][j] == 0 and mesh[i][j - 1] == innerPotential:
                    if i == 0:
                         A[k][k+1] = 1
                         A[k][k+2] = 2
                         b[k] = -innerPotential
                    elif i == 1:
                         A[k][k+1] = A[k][k-2] = A[k][k+5] = 1
                         b[k] = -innerPotential
                    k += 1
               elif j + 2 == len(mesh[0]):
                    if i == 0:
                         A[k][k-1] = 1
                         A[k][k+2] = 2
                         b[k] = -outerPotential
                    elif i == 1:
                         A[k][k-1] = A[k][k+5] = A[k][k-2] = 1
                         b[k] == 0
                    elif i == len(mesh) - 2:
                         A[k][k-1] = A[k][k-5] = 1
                         b[k] = -outerPotential * 2
                    else:
                         A[k][k-1] = A[k][k+5] = A[k][k-5] = 1
                    k += 1
               elif j == 0 and i > 1:
                    if mesh[i - 1][j] == innerPotential:
                         A[k][k+1] = 2
                         A[k][k + 5] = 1
                         b[k] = -innerPotential
                    elif i + 2 == len(mesh):
                         A[k][k+1] = 2
```

```
A[k][k - 5] = 1
                        b[k] = -outerPotential
                   else:
                        A[k][k+1] = 2
                        A[k][k+5] = A[k][k-5] = 1
                        b[k] = 0
                   k += 1
              elif i == 2 and mesh[i - 1][j] == innerPotential:
                   A[k][k-1] = A[k][k+1] = A[k][k+5] = 1
                   b[k] = -innerPotential
                   k += 1
              elif i + 2 == len(mesh):
                   A[k][k-1] = A[k][k+1] = A[k][k-5] = 1
                   b[k] = -outerPotential
                   k += 1
              elif 1 < i and 1 <= i:
                   A[k][k-1] = A[k][k+1] = A[k][k-5] = A[k][k+5] = 1
                   b[k] = 0
                   k += 1
    return A, b
def conjugateGradient(A, b, numNode):
    x = numColumnCheck([0 for a in range(numNode)])
    r = matrixAddOrSub(b, multiplyMatrix(A, x), 'sub')
    p = [0 \text{ for a in range}(len(r))]
    for i in range(0, len(r)):
         p[i] = r[i]
    r = numColumnCheck(r)
    p = numColumnCheck(p)
    \inf Norm \quad ini = 0
    twoNorm ini = 0
    print(r)
    for 1 in range(numNode):
         if abs(r[1][0]) > infNorm_ini:
              \inf Norm ini = abs(r[1][0])
         twoNorm_ini += r[1][0] ** 2
    twoNorm ini = math.sqrt(twoNorm ini)
    print("iteration number: 0" + " infinity norm: " + str(infNorm ini) + " 2-norm:
" + str(twoNorm ini))
    for k in range(numNode):
                                                 multiplyMatrix(transposeMatrix(p),
r)[0][0]/(multiplyMatrix(transposeMatrix(p), multiplyMatrix(A, p))[0][0])
         x = matrixAddOrSub(x, scalarmultiplier(alpha, p), 'add')
         r = matrixAddOrSub(b, multiplyMatrix(A, x), 'sub')
```

```
-((multiplyMatrix(transposeMatrix(p),
                                                                 multiplyMatrix(A,
         beta
r))[0][0])/(multiplyMatrix(transposeMatrix(p), multiplyMatrix(A, p))[0][0]))
         p = matrixAddOrSub(r, scalarmultiplier(beta, p), 'add')
         # finding the norms
         infNorm = 0
         twoNorm = 0
         for j in range(numNode):
              if abs(r[i][0]) > infNorm:
                   infNorm = abs(r[j][0])
              twoNorm += r[i][0] ** 2
         twoNorm = math.sqrt(twoNorm)
         print("iteration number: " + str(k + 1) + " infinity norm: " + str(infNorm) +
   2-norm: " + str(twoNorm))
    return x
h = 0.02
innerPotential = 110
outerPotential = 0
potentials = potentialMesh(h, 0)
mesh = potentials.mesh
print(mesh)
numNode = 19
(A, b) = generateAandb(mesh, numNode, innerPotential, outerPotential)
print(b)
for n in range(0, numNode):
    print(A[n])
choleskiTest = choleski(A, b)
Afinal = multiplyMatrix (transposeMatrix(A), A)
bfinal = multiplyMatrix(transposeMatrix(A), b)
conjugateSolution = conjugateGradient(Afinal, bfinal, numNode)
choleskiOutput = choleski(Afinal, bfinal)
choleskiSolution = backwardElim(choleskiOutput[0], choleskiOutput[1])
print("Choleski result of the potential equals " + str(choleskiSolution[11]) + "V")
print("Conjugate result of the potential equals " + str(conjugateSolution[11][0]) + "V")
2. methods.py
import math
from scipy import random
import csv
# Function to check the number of columns of a matrix
def numColumnCheck (A):
    numOfColumuns = 0
    try:
```

```
numOfColumuns = len(A[0])
          return A
     except TypeError:
          B = [[0] \text{ for a in range}(len(A))]
          for i in range(0, len(A)):
               B[i][0] = A[i]
          return B
# Function to multiply a scalar and a matrix
def scalarmultiplier(a, A):
     A = numColumnCheck(A)
     B = [[0 \text{ for i in range}(len(A[0]))] \text{ for k in range}(len(A))]
     for i in range(len(A)):
          for j in range(len(A[0])):
               B[i][j] = a*A[i][j]
     return B
# Function to multiply two matrices
def multiplyMatrix (A, B):
     A = numColumnCheck(A)
     B = numColumnCheck(B)
     if len(A[0]) == len(B):
          C = [[0 \text{ for i in range}(len(B[0]))] \text{ for k in range}(len(A))]
          for i in range(len(A)):
               for j in range(len(B[0])):
                    for k in range(len(A[0])):
                         C[i][j] += A[i][k]*B[k][j]
          return C
     else:
          print('cannot multiply this two matrices, incorrect dimensions')
# Function to transpose a matrix
def transposeMatrix (A):
   numOfRows = len(A)
   numOfColumns = len(A[0])
   C = [[0 for i in range(numOfRows)]for k in range(numOfColumns)]
   for i in range(numOfRows):
        for j in range(numOfColumns):
             C[j][i] = A[i][j]
   return C
# Function to create a symmetric matrix
def symmetricMatrix(size, n):
```

```
A = [[0 \text{ for i in range(size)}] \text{ for k in range(size)}]
     # assign the lower part of A a value
     for i in range(len(A)):
          for j in range(0, i + 1):
               A[i][j] = n * random.random() - n
     B = transposeMatrix (A)
     C = multiplyMatrix (A, B)
     return C
# Function to use the choleski decomposition to find L and y
def choleski(A, b, halfBandwidth=None):
     A = numColumnCheck(A)
     b = numColumnCheck(b)
     if len(b[0])!= 1:
          print('invalid b input')
          return
     try:
          numOfColumuns = len(A[0])
     except TypeError:
          print('A only has one column')
          return
     if len(A) != len(A[0]):
          print('A is not a nxn matrix')
          return
     size = len(A)
     for j in range (size):
          if A[j][j] < 0:
               print("the matrix A is not positive definite")
               return
          A[j][j] = math.sqrt(A[j][j])
          b[j][0] = b[j][0]/A[j][j]
          for i in range (j+1, size):
               if halfBandwidth and i \ge j + halfBandwidth:
                    break
               A[i][j] = A[i][j]/A[j][j]
               b[i][0] = b[i][0]-A[i][j]*b[j][0]
               for k in range (j+1, i+1):
                    if halfBandwidth and k \ge j + halfBandwidth:
                          break
                    A[i][k] = A[i][k] - A[i][j] * A[k][j]
     return [b,A]
```

# Function to find the solution through backward elimination, notice here L should be

```
a lower matrix
def backwardElim(y, L):
     y = numColumnCheck(y)
     L = numColumnCheck(L)
     x = [0 \text{ for a in range}(len(y))]
     for i in range(len(L)-1, -1, -1):
          for j in range(len(L)-1, i, -1):
               y[i][0] = y[i][0] - L[j][i]*x[j]
          x[i] = y[i][0] / L[i][i]
     return x
def matrixAddOrSub(A, B, option):
     A = numColumnCheck(A)
     B = numColumnCheck(B)
     if len(A)! = len(B) or len(A[0])! = len(B[0]):
          print('cannot add or subtract two matrices with different sizes!')
          return
     C = [[0 \text{ for a in range}(len(A[0]))] \text{ for b in range}(len(A))]
     if option == 'add':
          for i in range(0, len(A)):
                for j in range(0, len(A[0])):
                     C[i][j] = A[i][j] + B[i][j]
     elif option == 'sub':
          for i in range(0, len(A)):
                for j in range(0, len(A[0])):
                     C[i][j] = A[i][j] - B[i][j]
     return C
def getCircuit(r):
     with open('test circuit.csv')as circuitData:
          reader = csv.reader(circuitData)
          for n in reader:
                if (n[0].startswith('#')):
                     cirNumber = int(n[0].replace('#', "))
                     if cirNumber == r:
                          A pre = n[1].split(';')
                          J_pre = n[2].split(';')
                          R pre = n[3].split(';')
                          E pre = n[4].split(';')
                          A = [0 \text{ for i in range}(len(A pre))]
                          for i in range(len(A)):
                                rowA pre = A pre[i].split(',')
                                rowA = []
```

```
for j in range(len(rowA pre)):
                                  rowA.append(int(rowA pre[j]))
                             A[i] = rowA
                        J, E = [], []
                        y = [[0 \text{ for a in range}(len(R pre))] \text{ for b in range}(len(R pre))]
                        for i in range(len(J pre)):
                             J.append(int(J pre[i]))
                             E.append(int(E pre[i]))
                             y[i][i] = 1/int(R pre[i])
                        return [A, J, y, E]
def solveCircuitProblem(A,J, y, E, halfBandwidth=None):
    A = numColumnCheck(A)
    J = numColumnCheck(J)
    y = numColumnCheck(y)
    E = numColumnCheck(E)
    A final = multiplyMatrix(A, multiplyMatrix (y, transposeMatrix(A)))
    b final = multiplyMatrix(A, matrixAddOrSub(J, multiplyMatrix(y, E), 'sub'))
    choleskiOutput = choleski(A final, b final, halfBandwidth)
    voltage = backwardElim(choleskiOutput[0], choleskiOutput[1])
    return voltage
3. potentialSolver.py:
class potentialMesh:
    def init (self, h, residual limit, width index = None, height index = None):
         # define the size of the symmetry plane
         self.h = h
         self.residual limit = residual limit
         self.outerLength = 0.1
         self.innerHeight = 0.02
         self.innerWidth = 0.04
         self.outerPotential = 0
         self.innerPotential = 110
         self.numColumns = int(self.outerLength/h + 1)
         self.numRows = int(self.outerLength/h + 1)
         self.mesh = None
         self.x interest = None
         self.y interest = None
         self.x inner = None
         self.y inner = None
         self.width index = width index
         self.height index = height index
         if width index and height index:
```

```
self.x interest = width index.index(0.06)
                     self.y interest = height index.index(0.04)
                      for i in range(len(width index)):
                                if width index[i] > self.innerWidth:
                                            self.x inner = i
                                           break
                      for j in range(len(width index)):
                                if height index[j] > self.innerHeight:
                                           self.y inner = i
                                           break
                     self.mesh = [[self.innerPotential if x < self.x inner and y < self.y inner]
                                else self.outerPotential if x == self.numColumns - 1 and y ==
                                self.numRows - 1 else 0.0 for x
                                in range(self.numColumns)] for y in range(self.numRows)]
          else:
                     self.mesh = [[self.innerPotential if x \le self.innerWidth / self.h and y \le self.mesh = [[self.innerPotential if x \le self.innerWidth / self.h and y \le self.mesh = [[self.innerPotential if x \le self.innerWidth / self.h and y \le self.mesh = []self.innerPotential if x < self.mesh = []self.mesh = []self.m
                                      self.innerHeight / self.h
                                else self.outerPotential if x == self.numColumns - 1 or y ==
                                                    self.numRows - 1 else 0.0 for x
                                in range(self.numColumns)] for y in range(self.numRows)]
def SOR(self, w):
          # we should keep in mind that the most 'outer' node has V = 0
          for y in range(self.numRows - 1):
                      for x in range(int(self.numColumns - 1)):
                                if x == 0 and y > int(self.innerHeight/self.h):
                                           # we can assume this formula since when x = 0 d(potential)/dx
                                              = 0, we have mesh[x - 1][y] = mesh[x+1][y]
                                           self.mesh[y][x] = (1 - w) * self.mesh[y][x] + (w / 4) *
                                                   (2*self.mesh[y][x+1] + self.mesh[y-1][x] + self.mesh[y]
                                                   +1][x]
                                elif y == 0 and x > int(self.innerWidth/self.h):
                                           # same argument as above
                                           self.mesh[y][x] = (1 - w) * self.mesh[y][x] + (w / 4) * (
                                                       self.mesh[y][x - 1] + self.mesh[y][x + 1] + 2*self.mesh[y]
                                                      +1][x]
                                elif x > int(self.innerWidth/ self.h) or y > int(self.innerHeight/
                                self.h):
                                            self.mesh[y][x] = (1 - w) * self.mesh[y][x] + (w / 4) * (
                                                       self.mesh[y][x - 1] + self.mesh[y][x + 1] + self.mesh[y -
                                                       1[x] + self.mesh[y + 1][x])
          return self.mesh
          # Equation that computes the residue
```

```
def residual(self):
                      res = 0
                      finalRes = 0
                      if self.width index and self.height index:
                                             for y in range(1, self.numRows - 1):
                                                                     for x in range(1, self.numColumns - 1):
                                                                                           if x == 0 and y >= self.y inner:
                                                                                                                  a2 = self.width index[x + 1] - self.width index[x]
                                                                                                                  a1 = a2
                                                                                                                  b1 = self.height index[y] - self.height index[y - 1]
                                                                                                                  b2 = self.height_index[y + 1] - self.height_index[y]
                                                                                                                  # we can assume this formula since when x = 0
                                                                                                                  d(potential)/dx = 0, we have mesh[x - 1][y] =
                                                                                                                  mesh[x+1][y]
                                                                                                                  res = (1 / (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 *
                                                                                                                                                                 2 * self.mesh[y][x + 1] / (a2 * (a1 + a2))
                                                                                                                                                                + self.mesh[y - 1][x] / (b1 * (b1 + b2)) +
                                                                                                                                                                 self.mesh[y + 1][x] / (b2 * (b1 + b2)))
                                                                                                                  print(res)
                                                                                           elif y == 0 and x >= self.x inner:
                                                                                                                  # same argument as above
                                                                                                                  a1 = self.width index[x] - self.width index[x - 1]
                                                                                                                  a2 = self.width index[x + 1] - self.height index[x]
                                                                                                                  b2 = self.height index[y + 1] - self.height index[y]
                                                                                                                  b1 = b2
                                                                                                                  res = (1 / (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 * b2)) * self.mesh[y][x] - (a1 * a2) + 1 / (b1 *
                                                                                                                                                                 self.mesh[y][x - 1] / (a1 * (a1 + a2)) +
                                                                                                                                                                       self.mesh[y][x + 1] / (a2 * (a1 + a2))
                                                                                                                                                                 +2 * self.mesh[y+1][x] / (b2 * (b1 + b2)))
                                                                                                                  print(res)
                                                                                           elif x \ge self.x inner or y \ge self.y inner:
                                                                                                                  a1 = self.width index[x] - self.width index[x - 1]
                                                                                                                   a2 = self.width index[x + 1] - self.width index[x]
                                                                                                                  b1 = self.height index[y] - self.height index[y - 1]
                                                                                                                  b2 = self.height index[y + 1] - self.height index[y]
                                                                                                                  res = (1/(a1*a2) + 1/(b1*b2)) * self.mesh[y][x] - (a1*a2) + 1/(b1*b2)) * self.mesh[y][x] - (a1*a2) + 1/(b1*b2) * self.mesh[y
                                                                                                                                                                 self.mesh[y][x - 1] / (a1 * (a1 + a2)) +
                                                                                                                                                                 self.mesh[y][x + 1] / (a2 * (a1 + a2))
                                                                                                                                                                 + self.mesh[y - 1][x] / (b1 * (b1 + b2)) +
                                                                                                                                                                 self.mesh[y + 1][x] / (b2 * (b1 + b2)))
                                                                                           res = abs(res)
                                                                                           if res > finalRes:
                                                                                                                  # Updates variable with the biggest residue amongst the
```

```
free point
                             finalRes = res
         else:
              for y in range(1, self.numRows - 1):
                   for x in range(1, self.numColumns - 1):
                        if x == 0 and y > int(self.innerHeight/self.h):
                             # we can assume this formula since when x = 0
                             d(potential)/dx = 0, we have mesh[x - 1][y] =
                             mesh[x+1][y]
                             res = 2 * self.mesh[y][x + 1] + self.mesh[y - 1][x] +
                                   self.mesh[y + 1][x] - 4 * self.mesh[y][x]
                        elif y == 0 and x > int(self.innerWidth/self.h):
                             res = self.mesh[y][x - 1] + self.mesh[y][x + 1] +
                                   2*self.mesh[y+1][x] - 4*self.mesh[y][x]
                        elif x > int(self.innerWidth/self.h) or y > int(self.innerHeight/
                        self.h):
                             res = self.mesh[y][x - 1] + self.mesh[y][x + 1] + s
                                   elf.mesh[y - 1][x] + self.mesh[y + 1][x] - 4 *
                                   self.mesh[y][x]
                        res = abs(res)
                        if res > finalRes:
                             # Updates variable with the biggest residue amongst the
free point
                             finalRes = res
         return finalRes
    # The Equation that calculates Jacobian
    def jacobi(self):
         # we should keep in mind that the most 'outer' node has V = 0
         for y in range(self.numRows - 1):
              for x in range(int(self.numColumns - 1)):
                   if x == 0 and y > int(self.innerHeight / self.h):
                        # we can assume this formula since when x = 0 d(potential)/dx
                        = 0, we have mesh[x - 1][y] = mesh[x+1][y]
                        self.mesh[y][x] = 1/4* (2 * self.mesh[y][x + 1] + self.mesh[y]
                            -1[x] + self.mesh[y + 1][x])
                   elif y == 0 and x > int(self.innerWidth / self.h):
                        # same argument as above
                        self.mesh[y][x] = 1/4 * (self.mesh[y][x - 1] + self.mesh[y][x]
                             +1] + 2 * self.mesh[y + 1][x]
                   elif x > int(self.innerWidth / self.h) or y > int(self.innerHeight /
                        self.h):
                        self.mesh[y][x] = 1/4 * (self.mesh[y][x - 1] + self.mesh[y][x
                             +1] + self.mesh[y - 1][x] + self.mesh[y + 1][x])
```

#### return self.mesh

```
def potentials SOR(self, w):
    iteration = 0
    if self.width index and self.height index:
         self.SOR non uniform(w)
          while self.residual() >= self.residual limit:
               self.SOR non uniform(w)
               iteration = iteration + 1
          print('total iteration is: ' + str(iteration))
    else:
          self.SOR(w)
          while self.residual() >= self.residual limit:
               self.SOR(w)
               iteration = iteration + 1
          print('total iteration is: ' + str(iteration))
    return self.mesh
def potentials jacobi(self):
    iteration = 0
    self.jacobi()
     while self.residual() >= self.residual limit:
          self.jacobi()
         iteration = iteration + 1
     print('total iteration is: ' + str(iteration))
    return self.mesh
def SOR non uniform(self, w):
     # we should keep in mind that the most 'outer' node has V = 0
     for y in range(self.numRows - 1):
          for x in range(int(self.numColumns - 1)):
               if x == 0 and y >= self.y inner:
                    a2 = self.width index[x + 1] - self.width index[x]
                    a1 = a2
                    b1 = self.height index[y] - self.height index[y - 1]
                    b2 = self.height index[y + 1] - self.height index[y]
                    # we can assume this formula since when x = 0 d(potential)/dx
                    = 0, we have mesh[x - 1][y] = mesh[x+1][y]
                    self.mesh[y][x] = (1 - w) * self.mesh[y][x] + w * (2 * w)
                         self.mesh[y][x + 1] / (a2 * (a1 + a2))
                         + self.mesh[y - 1][x] / (b1 * (b1 + b2)) + self.mesh[y +
                         1][x]/(b2*(b1+b2))/(1/(a1*a2)+1/(b1*b2))
               elif y == 0 and x \ge self.x inner:
                    # same argument as above
```

```
a1 = self.width index[x] - self.width index[x - 1]
    a2 = self.width index[x + 1] - self.width index[x]
    b2 = self.height index[y + 1] - self.height index[y]
    b1 = b2
    self.mesh[y][x] = (1 - w) * self.mesh[y][x] + w *
         (self.mesh[y][x - 1] / (a1 * (a1 + a2)) + self.mesh[y][x +
         1] / (a2 * (a1 + a2)) + 2 * self.mesh[y + 1][x] / (b2 * (b1))
         +b2))/(1/(a1*a2)+1/(b1*b2))
elif x >= self.x inner or y >= self.y_inner:
    a1 = self.width index[x] - self.width index[x - 1]
    a2 = self.width index[x + 1] - self.width index[x]
    b1 = self.height_index[y] - self.height_index[y - 1]
    b2 = self.height index[y + 1] - self.height index[y]
    self.mesh[y][x] = (1 - w) * self.mesh[y][x] + w *
    (self.mesh[y][x - 1]/(a1*(a1 + a2)) + self.mesh[y][x +
    1]/(a2*(a1 + a2)) + self.mesh[y - 1][x]/(b1*(b1 + b2)) +
    self.mesh[y + 1][x]/(b2*(b1 + b2)))/(1 / (a1 * a2) + 1 / (b1 * a2))
    b2))
```

return self.mesh