Class 8 Mini project

Linh Tran (PID:A16435846)

About

In today's lab, we will work with fine needle aspiration (FNA) of breast mass data from the University of Wisconsin.

Data Import

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names=1)
head(wisc.df)</pre>
```

	diagnosis radius	s_mean	texture_mean p	perimeter_mean	area_mea	n
842302	M	17.99	10.38	122.80	1001.	0
842517	M	20.57	17.77	132.90	1326.	0
84300903	M	19.69	21.25	130.00	1203.	0
84348301	M	11.42	20.38	77.58	386.	1
84358402	M	20.29	14.34	135.10	1297.	0
843786	M	12.45	15.70	82.57	477.	1
	${\tt smoothness_mean}$	compa	ctness_mean con	ncavity_mean o	concave.po	ints_mean
842302	0.11840		0.27760	0.3001		0.14710
842517	0.08474		0.07864	0.0869		0.07017
84300903	0.10960		0.15990	0.1974		0.12790
84348301	0.14250		0.28390	0.2414		0.10520
84358402	0.10030		0.13280	0.1980		0.10430
843786	0.12780		0.17000	0.1578		0.08089
	symmetry_mean for	ractal	_dimension_mean	n radius_se te	exture_se	perimeter_se
842302	0.2419		0.07871	1.0950	0.9053	8.589
842517	0.1812		0.05667	7 0.5435	0.7339	3.398
84300903	0.2069		0.05999	0.7456	0.7869	4.585
84348301	0.2597		0.09744	0.4956	1.1560	3.445
84358402	0.1809		0.05883	0.7572	0.7813	5.438

843786	0	.2087		0.07613	0.3345	0.8902	2.217
	area_se	${\tt smoothness}$	_se compa	ctness_se	concavity_se	concave.po	oints_se
842302	153.40	0.006	399	0.04904	0.05373		0.01587
842517	74.08	0.005	225	0.01308	0.01860	1	0.01340
84300903	94.03	0.006	150	0.04006	0.03832		0.02058
84348301	27.23	0.009	110	0.07458	0.05661		0.01867
84358402	94.44	0.011	490	0.02461	0.05688	l	0.01885
843786	27.19	0.007	510	0.03345	0.03672		0.01137
	symmetry	_se fracta	l_dimensi	on_se radi	ius_worst tex	ture_worst	
842302	0.03	8003	0.0	06193	25.38	17.33	
842517	0.01	.389	0.0	03532	24.99	23.41	
84300903	0.02	250	0.0	04571	23.57	25.53	
84348301	0.05	963	0.0	09208	14.91	26.50	
84358402	0.01	756	0.0	005115	22.54	16.67	
843786	0.02	2165	0.0	05082	15.47	23.75	
	perimete	r_worst ar	ea_worst	smoothness	s_worst compa	.ctness_wor	st
842302		184.60	2019.0		0.1622	0.66	56
842517		158.80	1956.0		0.1238	0.18	66
84300903		152.50	1709.0		0.1444	0.42	45
84348301		98.87	567.7		0.2098	0.86	63
84358402		152.20	1575.0		0.1374	0.20	50
843786		103.40	741.6		0.1791	0.52	49
	concavit	y_worst co	ncave.poi	.nts_worst	symmetry_wor	st	
842302		0.7119		0.2654	0.46	01	
842517		0.2416		0.1860	0.27	50	
84300903		0.4504		0.2430	0.36	13	
84348301		0.6869		0.2575	0.66	38	
84358402		0.4000		0.1625	0.23	64	
843786		0.5355		0.1741	0.39	85	
	fractal_	dimension_	worst				
842302		0.	11890				
842517		0.	08902				
84300903		0.	08758				
84348301		0.	17300				
84358402		0.	07678				
843786		0.	12440				

 ${\bf Q1}.$ How many patients/individuals/samples are in this dataset

nrow(wisc.df)

[1] 569

```
Use table() function
  table(wisc.df$diagnosis)
  В
      Μ
357 212
This can also be used
  sum(wisc.df$diagnosis == "M")
[1] 212
  colnames(wisc.df)
 [1] "diagnosis"
                                 "radius_mean"
 [3] "texture_mean"
                                 "perimeter_mean"
 [5] "area_mean"
                                 "smoothness_mean"
                                 "concavity_mean"
 [7] "compactness_mean"
 [9] "concave.points_mean"
                                 "symmetry_mean"
[11] "fractal_dimension_mean"
                                 "radius_se"
[13] "texture_se"
                                 "perimeter_se"
                                 "smoothness_se"
[15] "area_se"
[17] "compactness_se"
                                 "concavity_se"
[19] "concave.points_se"
                                 "symmetry_se"
[21] "fractal_dimension_se"
                                 "radius_worst"
                                 "perimeter_worst"
[23] "texture_worst"
[25] "area_worst"
                                 "smoothness_worst"
                                 "concavity_worst"
[27] "compactness_worst"
[29] "concave.points_worst"
                                 "symmetry_worst"
[31] "fractal_dimension_worst"
     Q3. How many variables/features in the data are suffixed with _mean?
  ncol(wisc.df)
```

Q2. How many of the observations have a malignant diagnosis?

[1] 31

Initial Analysis

Befoe analysis, I want to take out the expert diagnoses column(a.k.a. the answer) from out dataset

```
diagnosis <- as.factor(wisc.df$diagnosis)
diagnosis</pre>
```

```
[75] В М В М М В В В М М В М М В В В М В В М М В В В М М В В В М В В М В В
[149] B B B B B B B B B B B B B B B B M M B B B M M B B B M M B B B B M B B M M M B M
[556] B B B B B B B M M M M M B
Levels: B M
```

4

```
wisc.data <- wisc.df[,-1]
```

Clustering

```
We can try a kmean() clustering first
```

```
km <- kmeans(wisc.data, centers=2)
table(km$cluster)

1  2
438  131</pre>
```

Cross-table

```
table(km$cluster, diagnosis)

diagnosis
    B M
1 356 82
2 1 130
```

Let's try hclust() the key input required for hclust() is a distance matrix as produced by the dist() function.

```
hc <- hclust(dist(wisc.data))
plot( hc)</pre>
```

Cluster Dendrogram

dist(wisc.data) hclust (*, "complete")

PCA

Do we need to scale the data?

We can loook at the sd of each column

round(apply(wisc.data,2,sd))

radius_mean	texture_mean	perimeter_mean
4	4	24
area_mean	${\tt smoothness_mean}$	compactness_mean
352	0	0
${\tt concavity_mean}$	concave.points_mean	symmetry_mean
0	0	0
$fractal_dimension_mean$	radius_se	texture_se
0	0	1
perimeter_se	area_se	${\tt smoothness_se}$
2	45	0
compactness_se	concavity_se	concave.points_se
0	0	0
symmetry_se	fractal_dimension_se	radius_worst
0	0	5

```
texture_worst perimeter_worst area_worst
6 34 569
smoothness_worst concavity_worst
0 0 0
concave.points_worst symmetry_worst fractal_dimension_worst
0 0 0
```

Yes we need ot scale. We will run pcomp() with scale=TRUE.

```
wisc.pr <- prcomp(wisc.data, scale=TRUE)
summary(wisc.pr)</pre>
```

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion
                       0.4427\ 0.6324\ 0.72636\ 0.79239\ 0.84734\ 0.88759\ 0.91010
                                         PC10
                           PC8
                                  PC9
                                                PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                          PC26
                                                                  PC27
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Generate our main PCA plot (score plot, PC1 vs PC2 plot)...

```
library(ggplot2)
res <- as.data.frame(wisc.pr$x)</pre>
```

```
ggplot(res) +
  aes(x=PC1, y=PC2, col=diagnosis)+
  geom_point()
```



```
ggplot(res) +
  aes(x=PC1, y=PC4, col=diagnosis)+
  geom_point()
```


Combining methods

Clustering on PCA results Using the minimum number of principal components required to describe at least 90% of the variability in the data, create a hierarchical clustering model with the linkage method="ward.D2". We use Ward's criterion here because it is based on multidimensional variance like principal components analysis. Assign the results to wisc.pr.hclust.

```
d <- dist(wisc.pr$x[,1:3])
hc <- hclust(d, method="ward.D2")
plot(hc)</pre>
```

Cluster Dendrogram

d hclust (*, "ward.D2")

To get my clustering result/membership vector, I need to "cut" the tree with the ${\tt cutree}$ () function

plot(res\$PC1, res\$PC2, col=grps)

Prediction

We can use our PCA result (model) to do predictions, that is take new unseen data and project it onto our new PC variables

```
#url <- "new_samples.csv"
url <- "https://tinyurl.com/new-samples-CSV"
new <- read.csv(url)
npc <- predict(wisc.pr, newdata=new)
npc</pre>
```

```
PC1
                     PC2
                                PC3
                                           PC4
                                                     PC5
                                                                PC6
                                                                            PC7
     2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945
                                                                      0.8193031
            PC8
                      PC9
                                PC10
                                          PC11
                                                    PC12
                                                              PC13
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
          PC15
                     PC16
                                 PC17
                                             PC18
                                                          PC19
                                                                     PC20
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
[2,] 0.1299153 0.1448061 -0.40509706 0.06565549 0.25591230 -0.4289500
           PC21
                      PC22
                                                        PC25
                                 PC23
                                            PC24
                                                                      PC26
```


Summary

Principal Component Analysis (PCA) is a super useful method for analyzing large datasets. It works by finding new variables (PCs) that capture the most variance from the original variables in your dataset.