Отчёт по лабораторной работе №1 по дисциплине Компьютерный практикум по статистическому анализу данных

Julia. Установка и настройка. Основные принципы.

Шаповалова Диана Дмитриевна

Содержание

1	Цел	ь работы	5
2	Вып	полнение лабораторной работы	6
	2.1	Подготовка инструментария к работе	6
	2.2	Основы работы в блокноте Jupyter	9
	2.3	Основы синтаксиса Julia на примерах	10
	2.4	Задания для самостоятельной работы	11
3	Выв	воды	16
4	Спи	сок литературы	17

Список иллюстраций

2.1	Установка Chocolatey	•						7
2.2	Far уже был установлен							7
2.3	Установка полезных пакетов							8
2.4	Установка Anaconda							8
2.5	Запускаем Julia							9
2.6	Открываем Jupyter Lab							10
2.7	Примеры основ синтаксиса Julia							11
2.8	Примеры read, readline, readlines							12
2.9	Примеры print, println							12
2.10	Примеры show, write							12
2.11	Пример parse							13
2.12	Примеры базовых математических операций.							14
2.13	Примеры операций над матрицами и веторами							15

Список таблиц

1 Цель работы

Основная цель работы — подготовить рабочее пространство и инструментарий для работы с языком программирования Julia, на простейших примерах познакомиться с основами синтаксиса Julia.

2 Выполнение лабораторной работы

2.1 Подготовка инструментария к работе

Установите Julia (https://julialang.org/) и Jupyter (https://jupyter.org/) под вашу операционную систему.

Для ОС типа Windows рекомендуется для установки использовать менеджер пакетов Chocolatey (https://chocolatey.org/), устанавливаемый через Administrative Shell. Далее рекомендуется посредством данного менеджера установить Far Manager, Notepad++, Julia, Anaconda Distribution (Python 3.x). (рис. 2.1 - рис. 2.4)

Рис. 2.1: Установка Chocolatey

Рис. 2.2: Far уже был установлен

Рис. 2.3: Установка полезных пакетов

```
See the log for details (C:\ProgramData\chocolatey\logs\chocolatey.log).
PS C:\Windows\system32> choco install anaconda3
Chocolatey v2.3.
Installing the following packages:
anaconda3
By installing, you accept licenses for the packages.
Downloading package from source 'https://community.chocolatey.org/api/v2/'
Progress: Downloading anaconda3 2024.10.0... 100%
anaconda3 v2024.10.0 [Approved]
anaconda3 package files install completed. Performing other installation steps.
The package anaconda3 wants to run 'chocolateyinstall.psi'.
Note: If you don't run this script, the installation will fail.
Note: To confirm automatically next time, use '-y' or consider:
Do you want to run the script?([Y]es/[A]ll - yes to all/[N]o/[P]rint): Y
WARNING: The Anaconda3 installation can take a long time (up to 30 minutes).
WARNING: Please be patient and let it finish.
WARNING: If you want to verify the install is running, you can watch the installer process in Task Manager
Downloading anaconda3 64 bit
 from 'https://repo.anaconda.com/archive/Anaconda3-2024.10-1-Windows-x86_64.exe'
Progress: 0% - Saving 8.3 MB of 950.52 MB
```

Рис. 2.4: Установка Anaconda

Рис. 2.5: Запускаем Julia

2.2 Основы работы в блокноте Jupyter

Запустите Jupyter Lab. (рис. 2.6)

- а или b создать новую ячейку соответственно выше или ниже текущей;
- x удалить ячейку;
- z отмена удаления ячейки;
- m перевести ячейку в режим текста;
- y перевести ячейку в режим набора кода

Рис. 2.6: Открываем Jupyter Lab

2.3 Основы синтаксиса Julia на примерах

В Julia преобразование типов можно реализовать или прямым указанием, например вещественное число 2.0 преобразовать в целое, а число 2 в символ: Int64(2.0), Char(2)

или использовать обобщённый оператор преобразования типов convert(), например: convert(Int64, 2.0), convert(Char,2)

Преобразование 1 в булевое true, 0 - в булевое false: Bool(1), Bool(0)

Для приведения нескольких аргументов к одному типу, если это возможно, используется оператор promote(), например: promote(Int8(1), Float16(4.5), Float32(4.1))

Рис. 2.7: Примеры основ синтаксиса Julia

2.4 Задания для самостоятельной работы

1. Изучите документацию по основным функциям Julia для чтения / записи / вывода информации на экран: read(), readline(), readlines(), readdlm(), print(), println(), show(), write(). Приведите свои примеры их использования, поясняя особенности их применения. (рис. 2.8 - рис. 2.10)

Функция read() используется для чтения содержимого файла или потока. Она позволяет прочитать данные в бинарном или текстовом формате.

Функция readline() читает одну строку из файла или стандартного потока ввода.

Функция readlines() считывает все строки файла и возвращает их в виде массива строк.

Функция readdlm() (read delimited) используется для чтения данных из файла с разделителями (например, CSV) в виде таблицы.

```
☑ Launcher
                                                  × E hello.txt
                      X 🖪 Untitled.ipynb
✓ 
                                                                                       Notebook ☐ # Julia 1.10.5 ○
     [4]: file = open("hello.txt", "r")
          content = read(file, String)
          println(content)
          Hello, world! D
     [8]: file = open("hello.txt", "r")
          first_line = readline(file)
          println(first_line)
          Hello, world! first line
     [9]: file = open("hello.txt", "r")
          all_lines = readlines(file)
          println(all_lines)
          ["Hello, world! first line", "Hello, world! Second line"]
```

Рис. 2.8: Примеры read, readline, readlines

```
["Hello, world: Tirst line", "Hello, world: Second line"]

[11]: print("это ")
 print("строка.")

это строка.

[12]: println("это ")
 println("2 строки.")

это
 2 строки.
```

Рис. 2.9: Примеры print, println

```
2 строки.

[17]: arr= [1, 2, 3]
show(arr)

[1, 2, 3]

[18]: write("hello.txt", "Зя строка")

[18]: 16

[31]: write("hello.txt", "З-я строка")
```

Рис. 2.10: Примеры show, write

2. Изучите документацию по функции parse(). Приведите свои примеры её использования, поясняя особенности её применения. (рис. 2.11)

Функция parse() в Julia используется для преобразования строки в значение заданного типа. Она особенно полезна, когда нужно перевести текстовое представление числа или другого типа данных в соответствующий числовой или логический формат.

```
[32]: number = parse(Int, "123")
print(typeof(number))
Int64
```

Рис. 2.11: Пример parse

3. Изучите синтаксис Julia для базовых математических операций с разным типом переменных: сложение, вычитание, умножение, деление, возведение в степень, извлечение корня, сравнение, логические операции. Приведите свои примеры с пояснениями по особенностям их применения. (рис. 2.12)

Рис. 2.12: Примеры базовых математических операций

4. Приведите несколько своих примеров с пояснениями с операциями над матрицами и векторами: сложение, вычитание, скалярное произведение, транспонирование, умножение на скаляр. (рис. 2.13)

```
☑ Launcher

                      X 🖪 Untitled.ipynb
1 + % □ □ ▶ ■ C → Code
                                          v 😑
    [51]: 2×2 Matrix{Int64}:
           1 2
    [47]: print(A+B)
          [2 3; 5 6]
    [48]: print(B-A)
          [0 1; 1 2]
    [49]: print(A*B)
          [4 6; 8 12]
    [52]: a = [1, 2, 3] #Bekmop A
    [52]: 3-element Vector(Int64):
           1
           2
           3
    [53]: b = [4, 5, 6] #βeκmop B
    [53]: 3-element Vector(Int64):
           5
           6
```

Рис. 2.13: Примеры операций над матрицами и веторами

3 Выводы

Мы подготовили наше рабочее пространство и интрументарий для работы с языком программирования Julia, а также познакомились с основами синтаксиса Julia

4 Список литературы

[1] Julia Documentation: https://docs.julialang.org/en/v1/