Assignment 5

October 11, 2022

- 1. Suppose $f:[a,b] \to \mathbb{R}$ is continuous. If $c \in (a,b)$ is such that f(c) > 0, and if $0 < \beta < f(c)$, then show that there exists $\delta > 0$ such that $f(x) > \beta$ for all $x \in (c \delta, c + \delta) \subseteq [a,b]$.
- 2. Suppose f is a function from $f: \mathbb{R} \to \mathbb{R}$ is a continuous function such that $\lim_{|x|\to\infty} f(x) = 0$. Prove that f is bounded on \mathbb{R} and attains either an absolute maximum or an absolute minimum!
- 3. There does not exist a continuous function f from [0,1] onto \mathbb{R} Why?
- 4. Find a continuous function f from (0,1) onto \mathbb{R} .
- 5. Let $f:[a,b]\to\mathbb{R}$ be a continuous function such that for each $x\in[a,b]$ there exists $y\in[a,b]$ such that $|f(y)|\leq\frac{1}{2}|f(x)|$. Prove there exists a point c in [a,b] such that f(c)=0.
- 6. $f: A \to \mathbb{R}$ is uniformly continuous on \mathbb{R} , and $|f(x)| \ge k > 0$ for all $x \in A$, show that $\frac{1}{f(x)}$ is uniformly continuous on A.
- 7. $f: \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) := \frac{1}{1+x^2}$ is uniformly continuous on \mathbb{R} .