

לא לשכוח להפעיל הקלטה!

מה נלמד בשיעור זה?

- ע פונקציה לוגיסטית ✓
- לרגרסיה לוגיסטית Cost function ✓
- עבור רגרסיה לוגיסטית gradient descent ✓
 - ∠ בעיות סיווג לשתי מחלקות

רגרסיה לוגיסטית

רגרסיה לוגיסטית

- אלגוריתם סיווג •
- מחשב את ההסתברות שדוגמא לא ידועה שייכת
 לכל אחד מהסוגים
 - b- שיטת החישוב: מציאת ערכי המשקולות w ו-b
 כאשר ערך הטעות מפונקציית המחיר היא
 מינימלית

פונקציה לוגיסטית

פונקציה לוגיסטית

כאשר z הינו הקלט המשוקלל לנוירון

$$\widehat{y} = \frac{1}{1 + e^{-z}}$$

 $\sum_{i=1}^{n} \mathbf{w}(i)\mathbf{x}(i)$ +b

n–מספר התכונות לא כולל הטיה

פונקציה לוגיסטית - משמעות

0 = z אם ערך הפונקציה שווה ל-0.5. אם z חיובי מאד – ערך הפונקציה שואף ל-1. אם z שלילי מאד – ערך הפונקציה שואף ל-0. בין לבין, ערכי הפונקציה רציפים קיבלנו את הפונקציה הלוגיסטית פונקציה רציפה בין 0 ל-1, הניתנת לגזירה

ארכיטקטורה של ניורון בודד

תרגיל 1

סיווג על ידי רגרסיה לוגיסטית

- נתונות תמונות בעלות שני מאפיינים:
 - ממוצע האדום בתמונה x1
 - x2 ממוצע הכחול בתמונה
- נתון מסווג מסוג רגרסיה לוגיסטית בעל הפרמטרים הבאים:

Image	X ₁	X ₂	$z = w_1 \cdot x_1 + w_2 \cdot x_2 + b$	$\hat{y} = \sigma(z)$	סוג
	(red)	(blue)			0=יער
					1=עיר
10 10 10 10 10 10 10 10 10 10 10 10 10 1	153	173			
8 20 20 20 20 20 20 20 20 20 20 20 20 20	93	83			
25 25 20 20 20 20 20 20 20 20 20 20 20 20 20	81	124			
0 20 0 0 0 10 10 10 10 10 10 10 10 10 10 10	90	18			

W.	1=	\cap	NE	5
VV.	ь—	v.	U	,

$$w2=0.04$$

פונקציות טווחים ב PYTHON

ויזואליזציה	רציפה	טווח	שם
1 1 0.8 0.6 0.4 0.2 0 10 -5 0 5 10	D	1 עד 0	לוגיסטית
heaviside 0.8 0.6 0.4 0.2 0.10 -5 0 5 10	לא	1 עד 0	מדרגה
1 0.5 0 0.5 -1 -10 -5 0 5 10	[D	1 עד 1	טנגנס היפרבולי
-0.5	לא	1 - עד	סימן

תרגיל 2

פונקציות טווחים ב PYTHON

(מחברת Colab):

הציגו על המסך 4 גרפים שמייצגים את פונקציות הטווחים צרו וקטור ערכים לציר ה X מ -10 עד 10 במרווחים של 1

סיווג לשתי מחלקות

משמעות הפלט של הניורון בפונקציה לוגיסטית

1 הערכים בפלט: כל ערך בין

נניח שיש לנו בעיית סיווג:

נתונים של קוטר האבטיח. וכתשובה האם הפרי בשל או לא

- עם הפלט 1 הפרי בשל, אם הפלט 0 הפרי לא בשל √
 - ?המודל סיווג 0.83 מה המשמעות ✓

0.83 אומר שיש סיכוי של 83% שהפרי בשל, ושל 17% שהפרי אינו בשל.

?המודל סיווג 0.83 – האם הפרי בשל ✓

מעל 0.5 – נקבע שהפרי בשל, מתחת ל 0.5 נקבע שהפרי לא בשל.

תרגול

- אימנת מודל סיווג שמנבא האם תלמיד יסיים תואר ראשון על סמך נתוני הבחינה הפסיכומטרית
 - h=0.7 הפלט עבור דוגמא חדשה חזה
 - אילו מההגדים נכונים?
 - I שהתלמיד יסיים תואר 70% □ A
 - ו שהתלמיד יסיים תואר B ₪ 30% B
 - ושרתלמיד יסיים תואר I □ C
 - שהתלמיד לא יסיים תואר ראשון D

תרגול - פתרון

אימנת מודל סיווג שמנבא האם תלמיד יסיים תואר ראשון על סמך נתוני הבחינה הפסיכומטרית

h=0.7 הפלט עבור דוגמא חדשה חזה

אילו מההגדים נכונים?

I שהתלמיד יסיים תואר → 70% שהתלמיד יסיים אר

ו שהתלמיד יסיים תואר B שהתלמיד יסיים ו

ו שהתלמיד יסיים תואר I □ C

שהתלמיד לא יסיים תואר ראשון D

נכון

נכון

משמעות הפלט של הניורון

בפונקציה לוגיסטית

ערך הפונקציה הלוגיסטית שווה ל-50% כאשר הקלט המשוקלל שווה ל-0.

לכן:

$$(y=1)$$
 אם z גדול שווה מ 0 – נסווג למחלקה אחת z אם z קטן מ z קטן מ z קטן מ z קטן

$$Z = \sum_{i=1}^{n} w(i)x(i) + b = 0$$
 הוא (decision boundary-קו ההחלטה

$$w = [-1 \ 0], b = 5$$

 $y = 1 if (-1)x_1 + 0x_2 + 5 \ge 0$
 $5 - x_1 \ge 0$
 $-x_1 \ge -5$
 $x_1 \le 5$

$$y = 1, Z \ge 0$$
 אם $y = 0, Z < 0$

קיבלנו קו הפרדה ליניארי.

תרגול

אימנת מודל סיווג שמנבא האם תלמיד יסיים תואר ראשון על סמך נתוני הבחינה הפסיכומטרית x1 ונתוני ציוני הבגרות x2:

$$\hat{y} = \frac{1}{1 + e^{-z}}$$
 , $z = w1x1 + w2x2 + b$

המשקולות של המודל שלך הם:

$$0 = w1$$

$$-1 = w2$$

$$6 = b$$

איזה גרף מציין נכון את קו ההפרדה של הנתונים:

תרגול - פתרון

אימנת מודל סיווג שמנבא האם תלמיד יסיים תואר ראשון על סמך נתוני הבחינה הפסיכומטרית x1 ונתוני ציוני הבגרות x2:

$$\hat{y} = \frac{1}{1 + e^{-z}}$$
 , $z = w1x1 + w2x2 + b$

המשקולות של המודל שלך הם:

$$0 = w1$$

$$-1 = w2$$

$$6 = b$$

איזה גרף מציין נכון את קו ההפרדה של הנתונים:

עבור רגרסיה לוגיסטית Cost function

BINARY CROSS - פונקציית המחיר ENTROPY

$$l^{(i)} = -y^{(i)}\log \hat{y}^{(i)} - (1 - y^{(i)})\log(1 - \hat{y}^{(i)})$$

$$J = \frac{1}{m} \sum_{i=1}^{m} l^{(i)}$$

הערך החזוי בכל דגימה $-\, \widehat{y}(\mathsf{i})$

$$\hat{y}^{(i)} = \left(\frac{1}{1 + e^{-z(i)}}\right)$$

הערך האמיתי בכל דגימה *y*(i) m – מספר הדגימות i – אינדקס על כל הדגימות

תרגיל 3 חישוב פונקציית מחיר

נתונות הדוגמאות הבאות. חשבו את פונקציית המחיר על כל אחת מהדוגמאות ואת המחיר הכולל J

i	$y^{(i)}$	$\hat{y}^{(i)}$	$-y^{(i)}\log \hat{y}^{(i)} - (1-y^{(i)})\log(1-\hat{y}^{(i)})$
1	0	0.1	
2	0	0.5	
3	0	0.6	
4	1	0.9	
5	1	0.5	
6	1	0.4	

$$J = \frac{1}{6} \sum_{i=1}^{6} l^{(i)} = ?$$

המטרה – למזער את הטעות עבור ערכי המשקולות השונים

$$\hat{y} = \frac{1}{1+e^{-z}}$$
 $\begin{cases} if \hat{y} \ge 0.5, y_predicted = 1 \\ if \hat{y} < 0.5, y_predicted = 0 \end{cases}$

Cost Function
$$-\log(\hat{y}) \quad if \ y = 1$$

$$-\log(1 - \hat{y}) \quad if \ y = 0$$

Y=1 פונקציית העלות עבור

 $-\log(\hat{y})$

 $0<\hat{y}<1$

.0 הוא y=1 הוא y=1 כאשר y=1 וגם הפלט הוא y=1 אבל הפלט הוא y=1 אבל הפלט הוא y=1

פונקציית העלות עבור Y=0 $-\log(1-h(w,x))$ 4.5 **Cost Function** 3.5 2.5 1.5 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 < h(w,x) < 1

.0 הוא y=0 הוא y=0 וגם הפלט הוא y=0 אבל הפלט הוא y=0 אבל הפלט הוא y=0 אבל הפלט הוא y=0

תרגיל 4 ויזואליזציה של פונקצית המחיר

- שרטטו את פונקציית המחיר עבור דוגמאות מסוג
 "0" שהחיזוי עבורן בתחום 0.0-0.99
- שרטטו את פונקציית המחיר עבור דוגמאות מסוג
 "1" שהחיזוי עבורן בתחום 0.01-1.0

ויזואליזציה של פונקציית המחיר

$$J = -\log(1 - \hat{y}^{(i)})$$

$$J = -\log(\hat{y})$$

GRADIENT DESCENT אלגוריתם

• הגדרנו את פונקציית המחיר

:נאתחל

$$w \leftarrow 0, b \leftarrow 0$$

• נתקדם לכיוון המינימום:

$$w \leftarrow w - \alpha \frac{\partial J(w, b)}{\partial w}$$

$$b \leftarrow b - \alpha \frac{\partial J(w, b)}{\partial b}$$

לאימון GRADIENT DESCENT אלגוריתם אלגוריתם רגרסיה לוגיסטית

• הגדרנו את פונקציית המחיר

:נאתחל

$$w \leftarrow 0, b \leftarrow 0$$

• נתקדם לכיוון המינימום:

השגיאה בין הערך החזוי לאמיתי

$$w \leftarrow w - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(\hat{y}^{(i)} - y^{(i)} \right) x^{(i)}$$

$$b \leftarrow b - \alpha \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})$$

שאלות למחשבה:

- מהם ההבדלים בין נוסחאות האימון של רגרסיה לוגיסטית לרגרסיה לינארית?
 - מהם ההבדלים בין נוסחאות האימון של רגרסיה לוגיסטית לפרספטרון?

עבור רגרסיה לוגיסטית gradient descent

האם GRADIENT DESCENT עבור רגרסיה לינארית ועבור רגרסיה לוגיסטית זהה?

$$w(j) = w(j) - (\alpha/m) \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)}) x(j)(i)$$

ברגרסיה לוגיסטית:

$$\widehat{y}^{(i)} = \frac{1}{1 + e^{-\sum_{j=1}^{n} w(j)x(j) + b}}$$

ברגרסיה לינארית: $\widehat{y}^{(i)} = \sum_{j=1}^{n} w(j)x(j) + b$

הערכת ביצועים עבור רגרסיה לוגיסטית

חישוב אחוז הדגימות שהמודל צדק בהם

1 או 0 וקטור הערכים האמיתיים, ערכים בדידים -y

Accuracy = all correct samples / all samples = 8/10, 80%

רגרסיה לוגיסטית ב SKLEARN

clf.fit(X, y)

ייבוא ספריה # •