WHAT IS CLAIMED IS:

1	1. A method of increasing the half life of a viral-specific ligand on a			
2	mucosal membrane of an animal wherein said membrane is colonized with bacteria, said			
3	method comprising: contacting the mucosal membrane with a viral-specific ligand			
4	modified to bind to the surface of the bacteria colonizing the membrane.			
1	2. The method of claim 1, wherein said viral-specific ligand is			
2	modified to bind to a bacteria colonizing the mucosal membrane said bacteria selected			
3	from the genera consisting of Lactobacillus, Streptococcus, Staphylococcus, Lactococcus,			
4	Bacteriodes, Bacillus, and Neisseria.			
•	2400, 10400, 240,000, 410,000, 410			
1	3. The method of claim 1, wherein said viral-specific ligand is			
2	modified by binding a bacterial-specific ligand.			
	4. The method of claim 3, wherein said bacterial-specific ligand is an			
1				
2	antibody.			
1	5. The method of claim 4, wherein said antibody is an antibody			
2	selected from the group consisting of: a single chain antibody, a F(ab), and a F(ab)2.			
1	6. The method of claim 3, wherein said bacterial-specific ligand is			
2	comprised of a peptide, a polypeptide, a protein, a carbohydrate, or a combination thereof			
1	7. The method of claim 3, wherein said bacterial-specific ligand is			
2	selected from the group consisting of:			
3	a C-terminal choline binding domain of LytA, a C-terminal choline			
4	binding domain of PspA, a C-terminal domain of lysostaphin (SPA _{CWT}), a C-terminal			
5	domain of InIB, an anti-S-layer protein antibody, and an anti-peptidoglycan antibody.			
1	8. The method of claim 1, wherein said viral-specific ligand is			
2	modified by binding a bacterial-specific ligand to said viral-specific ligand via a			
3	bifunctional linking reagent.			

1		9.	The method of claim 1, wherein said viral-specific ligand is		
2	modified by covalently binding a bacterial-specific ligand to said viral-specific ligand.				
1		10.	The method of claim 1, wherein said viral-specific ligand and the		
2	bacterial-specific ligand are joined through a peptide linker.				
1		11.	The method of claim 3, wherein said viral-specific ligand is an		
2	antibody.				
1		12.	The method of claim 11, wherein said antibody is selected from the		
2	group consist	ing of: a	a single-chain antibody, a F(ab), and a F(ab)2.		
_		10			
1		13.	The method of claim 1, wherein said viral-specific ligand is		
2	comprised of	a peptio	le, a polypeptide, a protein, a carbohydrate, or a combination thereof.		
1		14.	The method of claim 3, wherein said viral-specific ligand is		
2	comprised of CD4, DC-SIGN, ICAM-1, HveA, HveC, poliovirus receptor, vitronectin				
3	receptor, CD2	21, or Ig	A receptor sequences.		
1		15.	The method of claim 3, wherein said viral-specific ligand is a		
2	carbohydrate.				
1		16.	The method of claim 15, wherein said carbohydrate is selected		
1	C 41				
2	from the grou	p comp	rising sialic acid and heparin sulfate.		
1		17.	A chimeric molecule comprising a viral-specific ligand and a		
2	bacterial-specific ligand wherein said bacterial-specific ligand binds to a bacteria that is				
3	an inhabitant of a mucosal membrane.				
1		18.	The chimeric molecule of claim 17, wherein said bacterial-specific		

1 19. The chimeric molecule of claim 17, wherein said antibody is selected from the group consisting of: a single chain antibody, a F(ab), and a F(ab)2.

ligand is an antibody.

2

physiologically compatible solution.

1	20.	The chimeric molecule of claim 17, wherein said bacterial-specific				
2	ligand is comprised of a peptide, a polypeptide, a protein, a carbohydrate, or a					
3	combination thereof	· ·				
1	21.	The chimeric molecule of claim 17, wherein said bacterial-specific				
2	ligand is selected from the group consisting of:					
3		a C-terminal choline binding domain of LytA, a C-terminal cholin				
4	binding domain of PspA, a C-terminal domain of lysostaphin (SPA _{CWT}), a C-terminal					
5	domain of InIB, an anti-S-layer protein antibody, and an anti-peptidoglycan antibody.					
1	22.	The chimeric molecule of claim 17, wherein said bacterial-specific				
2	ligand binds to a bacteria selected from the genera consisting of Lactobacillus,					
3	Streptococcus, Staphylococcus, Lactococcus, Bacteriodes, Bacillus and Neisseria.					
1	23.	The chimeric molecule of claim 17, wherein said viral-specific				
2	ligand is an antibody.					
1	24.	The chimeric molecule of claim 17, wherein said viral-specific				
2	ligand is an antibody selected from the group comprising: a single chain antibody, a					
3	F(ab), a F(ab)2.					
1	25.	The chimeric molecule of claim 17, wherein said viral-specific				
2	ligand is comprised of a peptide, a polypeptide, a protein, a carbohydrate, or a					
3	combination thereof					
1	26.	The chimeric molecule of claim 17, wherein said viral-specific				
2	ligand is comprised of CD4, DC-SIGN, ICAM-1, HveA, HveC, poliovirus receptor,					
3	vitronectin receptor, CD21 or IgA receptor sequences.					
1	27.	The chimeric molecule of claim 17, wherein said chimeric				
2	molecule is combined with a sterile aqueous solution.					
1	28.	The chimeric molecule of claim 27, wherein said solution is a				

5

6

1		29.	A method of manufacturing a chimeric molecule comprising the			
2	step of joining a viral-specific ligand with a bacterial-specific ligand wherein said					
3	bacterial-specific ligand binds to a bacteria that is an inhabitant of a mucosal membrane					
4	and said viral-	specific	c ligand binds to infectious viral particles.			
1		30.	The method of claim 29, wherein said viral-specific ligand is			
2	comprised of		C-SIGN, ICAM-1, HveA, HveC, poliovirus receptor, vitronectin			
3	receptor, CD21, or IgA receptor sequences.					
•	receptor, con	1, 01 18	, rrooptor ooquonoos.			
1		31.	The method of claim 29, wherein said chimeric molecule is			
2	solubilized as a unit dose in a sterile, pharmaceutically acceptable solution.					
1		32.	The method of claim 29, wherein said viral-specific ligand and the			
2	hacterial-speci		and are joined through a peptide linker.			
_	ouotoriai opoo		and and joined the again a popular in-			
1		33.	The method of claim 29, wherein said viral-specific ligand and the			
2	bacterial-specific ligand are joined through a bifunctional linking reagent.					
1		34.	The method of claim 29, wherein said bacterial-specific ligand is			
2	an antibody.					
	•					
1		35.	The method of claim 29, wherein said bacterial-specific ligand is a			
2	carbohydrate.					
1		36.	A method of binding viral particles to bacteria inhabiting the			
2	mucosal mem	brane o	f an animal comprising the steps of: (i) contacting the bacteria with			
3	viral-specific ligand having a bacterial-specific ligand; and, (ii) permitting viral particles					
4	specifically re	cognize	ed by said viral-specific ligand to bind to said bacteria.			
		07				
1		37.	A system for delivering a unit dose of a chimeric molecule to nasal			
2	mucosa in a physiologically compatible solution comprising: (i) a chimeric molecule in a					
3	sterile, pharmaceutically acceptable solution, said chimeric molecule comprising a viral-					
4	specific ligand able to bind viral particles and a bacterial-specific ligand, wherein said					

bacterial-specific ligand binds to a bacteria that is a natural inhabitant of a healthy

mucosal membrane and (ii) a container having first and second ends, wherein the first

1

2

3

4

1

2

- end is a base for containing the solution and the second end is a tapered tip having an opening for delivering a metered and aerosol spray of the solution into a nasal passage.
- 1 38. The system of claim 37 where said first end is flexible and allows 2 for the transfer of pressure from the container to the solution allowing the fluid to be 3 emitted from said second end of the container.
- 1 39. A pharmaceutical composition comprising a therapeutically
 2 effective amount of a chimeric molecule or a viral-specific ligand modified by binding a
 3 bacterial-specific ligand.
 - 40. The pharmaceutical composition of claim 39, wherein said pharmaceutical composition is formulated as a member selected from the group consisting of: a solution, a powder, a cream, a gel, an ointment, a douche, a suspension, a tablet, a pill, a capsule, a nasal spray, a nasal drop, a suppository and an aerosol.
 - 41. The pharmaceutical composition of claim 39, wherein said pharmaceutical composition is formulated as a member selected from the group consisting of: a pessary, a tampon, a gel, a paste, a foam, and a spray.