Санкт-Петербургский государственный университет Факультет математики и компьютерных наук

Можаев Андрей Михайлович

Выпускная квалификационная работа

Разработка метода построения упрощенной динамической модели для задачи оптимального управления микроклиматом помещения

Уровень образования: бакалавриат Направление 01.03.02 «Прикладная математика и информатика» Основная образовательная программа СВ.5156.2019 «Прикладная математика, фундаментальная информатика и программирование» Профиль «Современное программирование»

Научный руководитель: к.ф.-м.н. Дмитрий Сергеевич Шалымов

Рецензент:

зав. лаб. 37 в ИПУ РАН, д.т.н Антон Викторович Уткин,

Санкт-Петербург 2023 г.

Содержание

Введение								
П	станов	ка задачи	4					
1.	Постро	оение модели	5					
	1.1.	Построение модели куба	5					
	1.2.	Построение модели помещения	7					
	1.3.	Добавление солнечной радиации	8					
	1.4.	Моделирование с реальными данными температур	9					
2.	Анали	тическая часть	10					
	2.1.	Экспортирование результата в таблицу	10					
	2.2.	Критерий оптимальности точки	12					
	2.3.	Предсказание температуры	12					
Заключение								
Ст	Список литературы							

Введение

При постановке задачи регулирования для систем отопления, кондиционирования и вентиляции эксплуатирующие службы руководствуются двумя конкурирующими критериями: экономичностью работы системы и комфортностью внутренней среды. По различным оценкам, от 50 до 70 процентов всей расходуемой энергии приходится на системы отопления, вентиляции и кондиционирования воздуха (ОВК). Таким образом, оптимизация потребления этого класса устройств, пусть даже на 5-10 процентов, повлечет за собой ощутимое снижение общего уровня расхода энергии.

В основе данной работы лежит идея скомбинировать два основных подхода к моделированию микроклимата помещений: методы вычислительной термодинамики (CFD) и методы сетевых воздушных потоков (NAF). Точное решение задачи CFD на небольшом временном промежутке позволит смоделировать работу измерительного комплекса, оптимизировать вектор измеряемых величин, количество датчиков и их расположение в помещении.

Эта задача решается численными методами, так как сбор данных эмпирическим путем займет много времени и ресурсов. В стандартных офисных зданиях число отдельных зон может доходить до нескольких сотен, поэтому расстановка датчиков и считывание показаний очень трудоемкий процесс. При этом, используя сгенерированную модель, мы можем определить значения на датчиках одновременно для всех интересующих расположений.

Постановка задачи

Целью является разработка метода построения упрощенной динамической модели характеристик воздуха в помещении, на основе которой может быть реализован последующий сбор реальных данных.

Достижение поставленной цели делится на два этапа, численное моделирование и анализ полученных результатов.

Первоначальное моделирование проводится методами вычислительной гидрогазодинамики (CFD), которые основаны на решении нелинейных уравнений тепло-массопереноса (Навье-Стокса). Результаты численного моделирования становятся основой для второго, аналитического этапа.

На втором этапе определяются параметры усовершенствованных моделей динамики характеристик воздуха в данном помещении, а также оптимальная пространственная конфигурация для измерительных приборов.

1. Построение модели

Целью данного этапа является построение модели «демонстрационного стенда Умного дома», которая затем будет использована для определения оптимального расположения датчика температуры. В качестве платформы для моделирования был выбран COMSOL Multiphysics.

1.1. Построение модели куба

В начале работы было решено создать простую модель деревянного куба с ребром 1 метр и толщиной стен 15 сантиметров, а затем проанализировать изменение температуры внутри. Для создания физической модели использовался SolidWorks, а затем модель была импортирована в COMSOL. В COMSOL внутренность куба заполнили воздухом (куб воздуха с ребром 0.7 м), материал стен выбран как Wood (pine).

Начальная температура стен и воздуха внутри 293 К. Температура, действующая на внешнюю поверхность стен куба, задана по формуле:

$$300 + 50 \cdot \sin(\frac{\pi \cdot t[s]}{500})K$$

Промоделлирован промежуток времени длиной 1000 секунд с шагом 50. Были рассмотрены различные размеры сетки разбиения: Normal (Puc. 1), Fine (Puc. 2), Finer (Puc. 3) и Extra fine (Puc. 4).

Ниже можно увидеть полученные результаты. На первой картинке изображена сама сетка, на второй и третьей температура в разрезе в момент 250 и 750 секунд соответственно.

Рис. 1: Normal

Можно видеть, что у Normal и Fine сеток большая погрешность, тогда как начиная с Finer результат выглядит достаточно гладко. Время вычисления для Finer составило 20 секунд, для Extra fine - 80 секунд.

Была попытка запустить вычисления на сетке размером Extremely fine, но ожидаемое время было слишком большим и требовалось много памяти, поэтому было решено остановиться на Extra fine, как наиболее точной при приемлемых затратах

1.2. Построение модели помещения

За основу было выбрано помещение, смоделированное в программе FreeCAD, экспортированное сначала в формат STL (но из-за особенности формата не подошло), затем в STEP (не удалось построить сетку разбиения из-за неточностей в геометрии помещения). В итоге было принято решение построить упрощенную модель сразу в COMSOL.

Помещение размером $10 \times 6 \times 3$ м 3 с окном, дверью и внутренней стеной с проходом. Начальная температура комнаты 293K, на все стены, окно и дверь снаружи задана температура 330K. Временной промежуток 1000 секунд.

Размер сетки Extra fine. Полученные результаты можно увидеть на изображениях снизу

Puc. 5: Temperature at 150s and 350s

Рис. 6: Temperature at 550s and 750s

1.3. Добавление солнечной радиации

Следующим шагом стало добавление солнечной радиации. Все внешние стены комнаты и потолок, а также внутренние стены, на которые могло светить солнце сквозь стекло, были подвержены тепловому излучению.

В качестве источника радиации выбрано солнце, географическое расположение помещения - город Москва, дата 14.03.2023, солнечное излучение $1000[W/m^2]$. Смоделирован промежуток времени протяженностью 24 часа. Полученные результаты ниже

Puc. 7: Temperature at 12, 14, 16, 18, 20 hours

На этих изображениях можно отметить нагрев части стены и пола, на которую светит солнце через окно

1.4. Моделирование с реальными данными температур

Для моделирования погодных условий был использован датасет с температурами, использованный для прошлых исследований, за май-август 2020 года. В нем с шагом примерно 1 секунда записаны показания датчика, расположенного снаружи. Было решено промоделировать 4 дня с шагом в 5 минут. Сетка выбрана finer, как наиболее сбалансированная по времени подсчета и качеству.

Рис. 8: Ambient temperature plot

2. Аналитическая часть

2.1. Экспортирование результата в таблицу

Для построения таблицы температур было решено выбрать 27 точек (3x3x3).

Рис. 9: 27 points

Далее нужно уменьшить шаг с 1 часа до 5 минут. Сетка Normal с шагом 5 минут считалась 3 минуты, сетка Finer - 8 минут. Если выбрать сетку Coarse (более грубую, чем Normal), то расчет с шагом 30 секунд на протяжении суток занимает 11 минут.

Для выбора оптимального варианта по времени и качеству, нужно сравнить температуры в точках на шагах в 5 минут. Для этого можно рассмотреть значения температур в некоторых точках при значении времени 86100 сек (5 минут до окончания расчета). Для соагser значения в первых 5 точках:

Mesh type	Time	(0.15, 0.15, 0.15)	(5, 0.15, 0.15)	(9.85, 0.15, 0.15)	(0.15, 3, 0.1)
Finer	86100	307,57	305,54	296,95	308,44
Coarse	86100	306,17	299,38	296,72	308,11

Можно видеть, что в некоторых точках значения могут отличаться на 5 градусов, что достаточно большая погрешность. Скорее всего связано это с

тем, что внешняя часть стен была нагрета солнцем, поэтому имеет большую температуру, а из-за грубости сетки эта температура была передана и внутренней части, в которой находиться точка.

Поэтому варианты либо уменьшить сетку и пожертвовать временем (увеличить длительность вычислений или увеличить временной шаг), либо рассматривать точки на некотором расстоянии от стен

- 2.2. Критерий оптимальности точки
- 2.3. Предсказание температуры

Заключение

Заключение должно подводить итоги работы и содержать информацию о полученных в рамках работы результатах.

Список литературы

[1] COMSOL Multiphysics®. URL: https://www.comsol.ru.