isinx ix + cu-o T(x)~ logx eix= cosx+isinx n + = Zn + CU- = II(x)~ logx WINASSAU ser NOÇÃO DE CONJUNTOS (1+1) Z M = Zn SINX TO Z(k)~ LogX

VII COSX+USAX

AV=0

\*\*BRETCIM (1+1) -ex=e e= lim (1+=) = 1 12  $2 \overline{J}(x) \sim \frac{\pi}{2} Ax = Lx + 1 = -$ V-E+F=2 JI(x)~=

 $e^{ix} = \cos x + i \sin x$   $e^{ix} = \cos x + i \sin x$   $e^{-x^2} = \cos x + i \sin x$ 

### DEFINIÇÃO E CARACTERÍSTICAS

• Conjunto é uma coleção ou grupo de elementos.

A = {tango, salsa, frevo, samba}

- Todo conjunto é representado por uma letra MAIÚSCULA;
- Os elementos do conjunto são representados por letras MINÚSCULAS;
- A ordem em que os elemento são enumerados não importa, porém normalmente estarão dispostos em ordem alfabética.



# FORMAS DE REPRESENTAR UM CONJUNTO

#### **CONDIÇÃO**

Por meio de uma característica comum a todos os elementos.

**EXEMPLO:** O conjunto dos números pares maiores que zero e menores que quinze.

#### **PROPRIEDADE**

Por meio de uma ou mais propriedades comum a todos os elementos.

**EXEMPLO:** A =  $\{x \in N / x \in \text{impar } e \times < 20\}$ 

$$e^{ix} = \cos x + i \sin x$$

$$e^{ix} = \cos x + i \sin x$$

$$e^{-x^2} dx = \sqrt{\pi} e^{ix} = \cos x + i \sin x$$

$$e^{-x^2} dx = \sqrt{\pi} e^{-x^2} dx = \sqrt{\pi} e^{-x^2} dx = e^{-x^2} dx =$$

#### **ENUMERAÇÃO DOS ELEMENTOS**

Quando a lista de elementos já está apresentada.

#### **DIAGRAMA**

Quando os elementos já são apresentados num conjunto (balão).

#### **EXEMPLO:**

$$A = \{x / 2 < x \le 12\} e B = \{x / 4 < x < 8\}$$



### PROPRIEDADES E RELAÇÕES

#### RELAÇÃO DE IGUALDADE DE CONJUNTO

Dois conjuntos são iguais quando possuem exatamente os mesmos elementos, não importando a ordem que estão listados.

**EXEMPLOS:** A = {0, 1, 2, 3, 4, 5} e  $B = \{x \in N | x < 6\}$ .

#### RELAÇÃO DE PERTINÊNCIA

SÍMBOLO → ∈

Esta relação é utilizada quando comparamos um elemento (solto) com um conjunto (letra maiúscula ou elementos entre { })

**EX**: 3 ∈ N.



### PROPRIEDADES E RELAÇÕES

#### **RELAÇÃO DE CONTINÊNCIA**

```
SÍMBOLO → C
Esta relação é utilizada quando comparamos dois conjuntos (letra maiúscula ou elementos entre { })
EX: {-2, -1, 3, 5} (N.
```

#### **CONJUNTO DAS PARTES DE UM CONJUNTO**

```
CÁLCULO: 2^N \rightarrow indica a quantidade de subconjuntos (n \in o \ n umero \ de \ elementos \ do \ conjunto \ original)

EX: A = \{1, 2, 3\}
\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\} \in \{1, 2, 3\}
```

 $e^{ix} = \cos x + i \sin x \qquad 4 \psi = 0$   $= \cos x + i \sin x \qquad 4 \psi = 0$   $= \cos x + i \sin x \qquad e^{-x^2} dx = \sqrt{\pi} \qquad e^{ix} = \cos x + i \sin x \qquad 4 \psi$   $= \cos x + i \sin x \qquad e^{-x^2} dx = \sqrt{\pi} \qquad e^{-x^2} dx = -i \sin x \qquad e^{-x^2} dx = 0$ 

### **OPERAÇÕES ENTRE CONJUNTOS**

#### **REUNIÃO OU UNIÃO DE CONJUNTOS (símbolo = ∪ )**

Ao formar-se um novo conjunto com todos os elementos de outros conjuntos, denomina-se esse novo conjunto de conjunto união.

#### **EXEMPLO:**

Considere A =  $\{1, 2, 4, 5, 7, 8\}$  e B =  $\{-3, -2, 0, 2, 3, 4, 5, 6\}$ , determine AUB.



$$AUB = \{-3, -2, 0, 1, 2, 3, 4, 5, 6, 7, 8\}$$

$$e^{ix} = \cos x + i \sin x$$

$$e^{ix} = \cos x + i \sin x$$

$$e^{-x^2} dx = \sqrt{\pi}$$

$$e^{-x^2} dx = \sqrt{\pi}$$

$$e^{-x^2} dx = -e^{-x^2} dx = -e^{-x^$$

#### INTERSECÇÃO DE CONJUNTOS (símbolo = ∩ )

A interseção dos conjuntos A e B é o conjuntos formado pelos elementos que estão simultaneamente nos conjuntos A e B.

#### **EXEMPLO:**

Considere A =  $\{1, 2, 4, 5, 7, 8\}$  e B =  $\{-3, -2, 0, 2, 3, 4, 5, 6\}$ , determine A\OB.



$$A \cap B = \{ 2, 4, 5 \}$$

$$e^{ix} = \cos x + i \sin x$$

$$e^{ix} = \cos x + i \sin x$$

$$e^{-x^2} dx = \sqrt{\pi} e^{ix} = \cos x + i \sin x$$

$$e^{-x^2} dx = \sqrt{\pi} e^{-x^2} dx = \sqrt{\pi} e^{-x^2} dx = -x^2 dx = -x^2$$

#### SUBTRAÇÃO OU DIFERENÇA ENTRE CONJUNTOS (símbolo = -)

É um conjunto C formado pelos elementos que pertencem ao conjunto A mas não pertencem ao conjunto B.

#### **EXEMPLO:**

Considere A = { 1, 2, 4, 5, 7, 8} e B = {-3, -2, 0, 2, 3, 4, 5, 6}, determine A—B e B—A ...

$$A-B = \{1, 7, 8\}$$

$$B-A = \{-3, -2, 0, 3, 6\}$$



Dados os conjuntos A, B e C, representados abaixo determine o que se pede.

- a) A ∪ B ∪ C
- b) A ∩ B ∩ C
- c) (A − B) ∩ C
- d) (A − C) ∩ B



$$e^{ix} = \cos x + i \sin x$$

$$e^{ix} = \cos x + i \sin x$$

$$e^{-x^2} = \cos x + i \sin x$$

- 2. Sejam os conjuntos definidos por:  $A = \{0, 1, 3, 6, 8, 10\}$  e  $B = \{0, 1, 8, 10\}$ .
- É incorreto afirmar que:

a. 
$$A \subset B$$

b. 
$$A\supset B$$

c. 
$$B \subset A$$

d. 
$$A \not\subset B$$

$$e^{ix} = \cos x + i \sin x$$

$$e^{ix} = \cos x + i \sin x$$

$$e^{-x^2} = \cos x + i \sin x$$

# **INTERVALOS NÚMEROS REAIS**

$$e^{ix} = \cos x + i \sin x$$

$$e^{ix} = \cos x + i \sin x$$

$$e^{-x^2} = \cos x + i \sin x$$

### **INTERVALOS**

Quando trabalhamos com os números reais podemos representá-los na forma de conjuntos ou intervalos, pois considera-se uma parte da reta numérica e não apenas elementos soltos como trabalhados anteriormente.

#### **CONJUNTOS:**

$$A = \{x \in R / -3 < x \le 2 \}$$

#### **INTERVALOS:**

$$A = ] -3, 2]$$

$$e^{ix} = \cos x + i \sin x$$

$$e^{-x^2} = \cos x + i \sin$$

### **RELEMBRANDO CONCEITOS**

- $\rightarrow$  MAIOR
- ≥ → MAIOR OU IGUAL
- $< \rightarrow MENOR$
- $\leq \rightarrow$  MENOR OU IGUAL
- QUANDO O NÚMERO FOR IGUAL
- QUANDO O NÚMERO NÃO FOR IGUAL

**EX:** 
$$A = \{x \in R / -3 < x \le 2 \}$$

$$e^{ix} = \cos x + i \sin x$$

$$e^{-x^2} = \cos x + i \sin$$

### **RELEMBRANDO CONCEITOS**

- [ INTERVALO ABERTO EM AMBOS OS LADOS
- ] INTERVALO ABERTO À ESQUERDA
- [ INTERVALO ABERTO À DIREIRA
- [ ] INTERVALO FECHADO
- INTERVALO FECHADO
- INTERVALO ABERTO

**EX:** 
$$A = ] -3, 2]$$



### **TIPOS DE INTERVALOS**

#### **INTERVALO FECHADO**

Números reais maiores ou iguais a "a" e menores ou iguais a "b".

| Notação de Intervalo: | [a, b]                           |
|-----------------------|----------------------------------|
| Notação de Conjunto:  | $\{x \in R \mid a \le x \le b\}$ |

#### Representação Geométrica



#### **INTERVALO ABERTO**

Números reais maiores do que "a" e menores do que "b".

| Notação de Intervalo: | ]a, b[                       |
|-----------------------|------------------------------|
| Notação de Conjunto:  | $\{x \in R \mid a < x < b\}$ |



$$e^{ix} = \cos x + i \sin x$$

$$e^{-x^2} = \cos x + i \sin$$

#### INTERVALO FECHADO À ESQUERDA

Números reais maiores ou iguais a "a" e menores do que "b".

| Notação de Intervalo: | [a, b[                         |
|-----------------------|--------------------------------|
| Notação de Conjunto:  | $\{x \in R \mid a \le x < b\}$ |

#### Representação Geométrica



#### **INTERVALO ABERTO À DIREITA**

Números reais maiores do que "a" e menores ou iguais a "b".

| Notação de Intervalo: | ]a, b]                         |
|-----------------------|--------------------------------|
| Notação de Conjunto:  | $\{x \in R \mid a < x \le b\}$ |



$$e^{ix} = \cos x + i \sin x$$

$$e^{-x^2} = \cos x + i \sin$$

#### SEMI RETA ESQUERDA, FECHADA, DE ORIGEM B

Números reais menores ou iguais a "b".

| Notação de Intervalo: | ]-∞ ,b]                    |
|-----------------------|----------------------------|
| Notação de Conjunto:  | $\{x \in R \mid x \le b\}$ |

#### Representação Geométrica



#### SEMI RETA ESQUERDA, ABERTA, DE ORIGEM B

Números reais menores que "b".

| Notação de Intervalo: | ]-∞ ,b[                  |
|-----------------------|--------------------------|
| Notação de Conjunto:  | $\{x \in R \mid x < b\}$ |



$$e^{ix} = \cos x + i \sin x$$

$$e^{-x^2} = \cos x + i \sin$$

#### SEMI RETA DIREITA, FECHADA, DE ORIGEM A

Números reais maiores ou iguais a "a".

| Notação de Intervalo: | [a,+∞ [                    |
|-----------------------|----------------------------|
| Notação de Conjunto:  | $\{x \in R \mid x \ge a\}$ |

#### Representação Geométrica



#### **SEMI RETA DIREITA, ABERTA, DE ORIGEM A:**

Números reais maiores que "a".

| Notação de Intervalo: | ]a, +∞ [                 |
|-----------------------|--------------------------|
| Notação de Conjunto:  | $\{x \in R \mid x > a\}$ |





#### **RETA NUMÉRICA**

Números reais.

| Notação de Intervalo: | ] ∞- ,+∞ [ |
|-----------------------|------------|
| Notação de Conjunto:  | R          |



### **OPERAÇÕES COM INTERVALOS**

Em diversas situações a resolução de problemas depende de operações com intervalos, como a união e a intersecção.

Para fazer estas operações devemos:

- 1 Marcar sobre uma mesma reta, em ordem crescente, todos os números que são extremos dos intervalos;
- 2 Abaixo da reta traçamos os intervalos que representam os conjuntos, usando "bolinha aberta" para a exclusão do extremo e "bolinha fechada" para a inclusão dos extremos;
- 3 Os trechos comuns dos intervalos determinam a intersecção e os trechos que estão em pelo menos um dos intervalos indicam a união.



### **OPERAÇÕE COM INTERVALOS**

São as mesmas operações que temos com os conjuntos (união, intersecção e diferença).

**UNIÃO:** juntar todos os elemenos

INTERSECÇÃO: elementos comuns na reta

**DIFERENÇA:** subtrair a parte que é igual do primeiro conjunto

# $e^{ix} = \cos x + i \sin x$ $e^{ix} = \cos x + i \sin x$ $e^{-x^2} dx = \sqrt{\pi}$ $e^{-x^2} dx = \sqrt{\pi}$

### UNIÃO ENTRE INTERVALOS

Fazer a demonstração geométrica dos conjuntos relacionados na operação. Após numa outra reta, fazer a operação de união, marcando todos os elementos presentes nos intervalos.





### INTERSECÇÃO ENTRE INTERVALOS

Fazer a demonstração geométrica dos conjuntos relacionados na operação. Após numa outra reta, fazer a operação de intersecção, marcando todos os elementos comuns presentes nos intervalos .

**EXEMPLO:** Sendo:  $A = \{ x \in IR \mid -5 \le x \le 0 \}, B = [-2, 3[$ 



# $e^{ix} = \cos x + i \sin x$ $e^{ix} = \cos x + i \sin x$ $e^{-x^2} dx = \sqrt{\pi}$ $e^{-x^2} dx = \sqrt{\pi}$ $e^{-x^2} dx = \sqrt{\pi}$ $e^{-x^2} dx = \sqrt{\pi}$ $e^{-x^2} dx = \sqrt{\pi}$

### DIFERENÇA ENTRE INTERVALOS

Fazer a demonstração geométrica dos conjuntos relacionados na operação. Após numa outra reta, fazer a operação de diferença, marcando todos os elementos incomuns presente no primeiro intervalo .



$$e^{ix} = \cos x + i \sin x$$

$$e^{ix} = \cos x + i \sin x$$

$$e^{-x^2} = -x^2 =$$

### **EXEMPLO**

Considere A = [1,3] e B = [2,5), determine:



$$A \cap B = [2, 3]$$
  
 $\{x \in R | 2 \le x \le 3\}$ 

A - B = [1, 2[  
$$\{x \in R | 1 \le x < 2\}$$



#### Dados os intervalos:

$$A = ]-\infty, 3], B = [-2, 1[ e C = [0, +\infty], determine:$$

- a) A ∪ B
- b) B ∩ C

- c) C A
- **d)** (B ∩ C) ∩ A

- 2. Sendo A =  $\{x \in IR; -1 < x \le 3\}$  e B =  $\{x \in IR; 2 < x \le 5\}$ , então:
- a) A  $\cap$  B = {x  $\in$  IR; 2  $\leq$  x  $\leq$  3}
- b)  $A \cup B = \{x \in IR; -1 < x \le 5\}$
- c)  $A B = \{x \in IR; -1 < x < 2\}$
- d) B A =  $\{x \in IR; 3 \le x \le 5\}$
- e)  $C_A^B = \{x \in IR; -1 \le x < 2\}$

3. Dados os conjuntos: 
$$A = \{x \in IR/-1 < x \le 2\}$$
,  $B = \{x \in IR/-2 \le x \le 4\}$ ,  $C = \{x \in IR/-5 < x < 0\}$ . Assinale dentre as afirmações abaixo a correta:

- a)  $(A \cap B) \cup C = \{x \in IR; -2 \le x \le 2\}$
- b)  $C B = \{x \in IR; -5 < x \le -2\}$
- c) A (B  $\cap$  C) = {x  $\in$  IR; -1  $\leq$  x  $\leq$  0}
- d)  $A \cup B \cup C = \{x \in IR; -5 < x \le 2\}$