Théorèmes de l'énergie et encadrement de la solution d'un problème d'élasticité

Samuel Forest

Centre des Matériaux/UMR 7633 Mines ParisTech /CNRS BP 87, 91003 Evry, France Samuel.Forest@ensmp.fr

Outline

- Potentiel d'élasticité
- 2 Théorème des travaux virtuels
- 3 Théorème de l'énergie potentielle
- 4 Théorème de l'énergie complémentaire
- **5** Encadrement de la solution
- 6 Cas de l'élasticité linéarisée

Plan

- 1 Potentiel d'élasticité
- 2 Théorème des travaux virtuels
- 3 Théorème de l'énergie potentielle
- 4 Théorème de l'énergie complémentaire
- **5** Encadrement de la solution
- 6 Cas de l'élasticité linéarisée

Potentiel d'élasticité

- Contexte infinitésimal tenseur des déformations infinitésimales : ε
- Elasticité non linéaire

$$\underline{\sigma} = \frac{\partial W}{\partial \underline{\varepsilon}}(\underline{\varepsilon}) = W'(\underline{\varepsilon})$$

 $W(\varepsilon)$ potentiel d'élasticité

• Elasticité linéarisée (état naturel)

$$W(\underline{\varepsilon}) = \frac{1}{2}\underline{\varepsilon} : \underline{\boldsymbol{c}} : \underline{\varepsilon}$$

C tenseur des modules d'élasticité

loi de Hooke

Potentiel dual

Elasticité non linéaire

$$\varepsilon = \frac{\partial W^{\star}}{\partial \boldsymbol{\sigma}}(\boldsymbol{\sigma}) = W^{\star\prime}(\boldsymbol{\sigma})$$

 $W^{\star}(\sigma)$ potentiel dual

• Elasticité linéarisée (état naturel)

$$W^{\star}(\overset{oldsymbol{\sigma}}{\sim})=rac{1}{2}\overset{oldsymbol{\sigma}}{\sim}:\overset{oldsymbol{\mathcal{S}}}{\stackrel{\sim}{\sim}}:\overset{oldsymbol{\sigma}}{\sim}$$

 \mathbf{S} tenseur des souplesses

$$\underline{\varepsilon} = \underline{\underline{S}} : \underline{\sigma}, \quad \underline{\underline{S}} = \underline{\underline{C}}^{-1}$$

Potentiel d'élasticité et potentiel dual

aire complémentaire

$$W(\underline{\varepsilon}) + W^*(\underline{\sigma}) = \underline{\sigma} : \underline{\varepsilon}$$
 $W^*(\underline{\sigma}) = \underline{\sigma} : \underline{\varepsilon} - W(\underline{\varepsilon}), \text{ avec } \underline{\sigma} = W'(\underline{\varepsilon})$

Convexité du potentiel d'élasticité

Par conséquent,

$$W^{\star}(\underline{\sigma}) = \max_{\underline{\varepsilon}} (\underline{\sigma} : \underline{\varepsilon} - W(\underline{\varepsilon}))$$

Plan

- 1 Potentiel d'élasticité
- 2 Théorème des travaux virtuels
- 3 Théorème de l'énergie potentielle
- 4 Théorème de l'énergie complémentaire
- **5** Encadrement de la solution
- 6 Cas de l'élasticité linéarisée

Soit $\underline{\sigma}(\underline{x})$ un champ de contraintes auto-équilibré

$$\operatorname{div} \boldsymbol{\underline{\sigma}} + \rho \underline{\boldsymbol{f}} = 0, \quad \sigma_{ij,j} + \rho f_i = 0$$

On calcule le produit scalaire du vecteur précédent par un champ test \underline{u}^* (à dérivées premières bornées) :

Soit $\underline{\sigma}(\underline{x})$ un champ de contraintes auto-équilibré

$$\operatorname{div} \boldsymbol{\underline{\sigma}} + \rho \underline{\boldsymbol{f}} = 0, \quad \sigma_{ij,j} + \rho f_i = 0$$

On calcule le produit scalaire du vecteur précédent par un champ test $\underline{\pmb{u}}^*$ (à dérivées premières bornées) :

$$\sigma_{ij,j}u_i^* + \rho f_i u_i^* = 0, \quad \forall \underline{\boldsymbol{x}} \in \Omega, \forall \underline{\boldsymbol{u}}^*$$

Soit $\sigma(\underline{x})$ un champ de contraintes auto-équilibré

$$\operatorname{div} \boldsymbol{\underline{\sigma}} + \rho \underline{\boldsymbol{f}} = 0, \quad \sigma_{ij,j} + \rho f_i = 0$$

On calcule le produit scalaire du vecteur précédent par un champ test $\underline{\pmb{u}}^*$ (à dérivées premières bornées) :

$$\sigma_{ij,j}u_i^* + \rho f_i u_i^* = 0, \quad \forall \underline{\boldsymbol{x}} \in \Omega, \forall \underline{\boldsymbol{u}}^*$$

$$\int_{\Omega} \sigma_{ij,j} u_i^* + \rho f_i u_i^* dV = 0, \quad \forall \underline{\boldsymbol{u}}^*$$

Soit $\underline{\sigma}(\underline{x})$ un champ de contraintes auto-équilibré

$$\operatorname{div} \boldsymbol{\underline{\sigma}} + \rho \underline{\boldsymbol{f}} = 0, \quad \sigma_{ij,j} + \rho f_i = 0$$

On calcule le produit scalaire du vecteur précédent par un champ test \underline{u}^* (à dérivées premières bornées) :

$$\sigma_{ij,j}u_i^* + \rho f_i u_i^* = 0, \quad \forall \underline{\boldsymbol{x}} \in \Omega, \forall \underline{\boldsymbol{u}}^*$$

$$\int_{\Omega} \sigma_{ij,j} u_i^* + \rho f_i u_i^* \, dV = 0, \quad \forall \underline{\boldsymbol{u}}^*$$

$$\int_{\Omega} (\sigma_{ij} u_i^*)_{,j} - \sigma_{ij} u_{i,j}^* + \rho f_i u_i^* \, dV = 0, \quad \forall \underline{\boldsymbol{u}}^*$$

Soit $\sigma(\underline{x})$ un champ de contraintes auto-équilibré

$$\operatorname{div} \boldsymbol{\sigma} + \rho \underline{\boldsymbol{f}} = 0, \quad \sigma_{ii,j} + \rho f_i = 0$$

On calcule le produit scalaire du vecteur précédent par un champ test $\underline{\pmb{u}}^*$ (à dérivées premières bornées) :

$$\sigma_{ij,j}u_i^* + \rho f_i u_i^* = 0, \quad \forall \underline{\boldsymbol{x}} \in \Omega, \forall \underline{\boldsymbol{u}}^*$$

$$\int_{\Omega} \sigma_{ij,j} u_i^* + \rho f_i u_i^* \, dV = 0, \quad \forall \underline{\boldsymbol{u}}^*$$

$$\int_{\Omega} (\sigma_{ij} u_i^*)_{,j} - \sigma_{ij} u_{i,j}^* + \rho f_i u_i^* \, dV = 0, \quad \forall \underline{\boldsymbol{u}}^*$$

$$\int_{\partial \Omega} \sigma_{ij} u_i^* n_j \, dS - \int_{\Omega} \sigma_{ij} u_{i,j}^* \, dV + \int_{\Omega} \rho f_i u_i^* \, dV = 0, \quad \forall \underline{\boldsymbol{u}}^*$$

$$\begin{split} \int_{\Omega} \underline{\sigma} : \underline{\varepsilon}^* \, dV &= \int_{\Omega} \rho \underline{\boldsymbol{f}} \, \cdot \underline{\boldsymbol{u}}^* \, dV + \int_{\partial \Omega} \underline{\boldsymbol{t}} \, \cdot \underline{\boldsymbol{u}}^* \, dS, \quad \forall \underline{\boldsymbol{u}}^* \\ \text{avec } \underline{\boldsymbol{t}} &= \underline{\sigma} \cdot \underline{\boldsymbol{n}} \\ W^{int} + W^{ext} + W^{contact} &= 0 \\ \mathcal{P}^{int} + \mathcal{P}^{ext} + \mathcal{P}^{contact} &= 0 \end{split}$$

théorème des travaux/puissances virtuelles dans le cas statique

 $\underline{\sigma}$ et $\underline{\varepsilon}^*$ non nécessairement liés par la loi de comportement, et sans restriction sur les CI

En particulier, pour $\underline{\pmb{u}}^* = \underline{\pmb{u}}$, le champ solution, en l'absence de discontinuités :

$$\int_{\Omega} \underline{\sigma} : \underline{\varepsilon} \, dV = \int_{\Omega} \rho \underline{\mathbf{f}} \cdot \underline{\mathbf{u}} \, dV + \int_{\partial \Omega} \underline{\mathbf{t}} \cdot \underline{\mathbf{u}} \, dS$$

Plan

- 1 Potentiel d'élasticité
- 2 Théorème des travaux virtuels
- 3 Théorème de l'énergie potentielle
- 4 Théorème de l'énergie complémentaire
- **5** Encadrement de la solution
- 6 Cas de l'élasticité linéarisée

Problème aux limites

- déplacements imposés $\underline{{\pmb u}} = \underline{{\pmb u}}^d$ sur $\partial \Omega_u$
- efforts surfaciques imposés $\underline{\boldsymbol{t}} = \underline{\boldsymbol{t}}^{\,d}$ sur $\partial\Omega_{td}$

$$\partial\Omega_u\cup\partial\Omega_{td}=\partial\Omega$$

$$\partial\Omega_u\cap\partial\Omega_{td}=\emptyset$$

Un champ $\underline{\boldsymbol{u}}^*(\underline{\boldsymbol{x}})$ sur Ω est cinématiquement admissible (C.A.) ssi $\boldsymbol{u}^* = \boldsymbol{u}^d, \ \forall \boldsymbol{x} \in \partial \Omega_u$.

Un champ $\underline{\sigma}^{\dagger}(\underline{x})$ sur Ω est **statiquement admissible** (S.A.) ssi $\operatorname{div} \underline{\sigma}^{\dagger} + \rho \underline{f} = 0$ et $\underline{t} = \underline{\sigma}^{\dagger} \cdot \underline{n} = \underline{t}^{d}, \ \forall \underline{x} \in \partial \Omega_{td}$.

Problème aux limites

- déplacements imposés $\underline{{\pmb u}} = \underline{{\pmb u}}^d$ sur $\partial \Omega_u$
- efforts surfaciques imposés $\underline{\boldsymbol{t}} = \underline{\boldsymbol{t}}^{d}$ sur $\partial\Omega_{td}$

$$\partial\Omega_{u} \cup \partial\Omega_{td} = \partial\Omega$$
$$\partial\Omega_{u} \cap \partial\Omega_{td} = \emptyset$$

Un champ $\underline{\boldsymbol{u}}^*$ C.A. et un champ $\underline{\boldsymbol{\sigma}}^\dagger$ S.A. remplissent les conditions du théorème des travaux virtuels

$$\int_{\Omega} \underline{\sigma}^{\dagger} : \underline{\varepsilon}^{*} dS = \int_{\Omega} \rho \underline{\mathbf{f}} \cdot \underline{\mathbf{u}}^{*} dV + \int_{\partial \Omega} (\underline{\sigma}^{\dagger} \cdot \underline{\mathbf{n}}) \cdot \underline{\mathbf{u}}^{*} dV$$

On définit l'énergie potentielle d'un corps élastique Ω associée au champ C.A. $\underline{\pmb{u}}^*$, pour des efforts $\rho \underline{\pmb{f}}$ et $\underline{\pmb{t}}^d$ donnés :

$$\mathcal{E}(\underline{\boldsymbol{u}}^*) = \int_{\Omega} W(\underline{\varepsilon}^*) \, dV - \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot \underline{\boldsymbol{u}}^* \, dV - \int_{\partial \Omega_{td}} \underline{\boldsymbol{t}}^{d} \cdot \underline{\boldsymbol{u}}^* \, dS$$

On définit l'énergie potentielle d'un corps élastique Ω associée au champ C.A. $\underline{\pmb{u}}^*$, pour des efforts $\rho \underline{\pmb{f}}$ et $\underline{\pmb{t}}^d$ donnés :

$$\mathcal{E}(\underline{\boldsymbol{u}}^*) = \int_{\Omega} W(\underline{\varepsilon}^*) \, dV - \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot \underline{\boldsymbol{u}}^* \, dV - \int_{\partial \Omega_{td}} \underline{\boldsymbol{t}}^d \cdot \underline{\boldsymbol{u}}^* \, dS$$

Soit $\mathcal{E}(\underline{\pmb{u}})$ l'énergie potentielle du corps Ω pour le champ solution $\underline{\pmb{u}}$. On considère la différence :

$$\mathcal{E}(\underline{\boldsymbol{u}}^*) - \mathcal{E}(\underline{\boldsymbol{u}}) = \int_{\Omega} (W(\underline{\varepsilon}^*) - W(\underline{\varepsilon})) \, dV$$
$$- \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot (\underline{\boldsymbol{u}}^* - \underline{\boldsymbol{u}}) \, dV - \int_{\partial \Omega_{td}} \underline{\boldsymbol{t}}^d \cdot (\underline{\boldsymbol{u}}^* - \underline{\boldsymbol{u}}) \, dS$$

On définit l'énergie potentielle d'un corps élastique Ω associée au champ C.A. $\underline{\pmb{u}}^*$, pour des efforts $\rho \underline{\pmb{f}}$ et $\underline{\pmb{t}}^d$ donnés :

$$\mathcal{E}(\underline{\boldsymbol{u}}^*) = \int_{\Omega} W(\underline{\varepsilon}^*) \, dV - \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot \underline{\boldsymbol{u}}^* \, dV - \int_{\partial \Omega_{td}} \underline{\boldsymbol{t}}^d \cdot \underline{\boldsymbol{u}}^* \, dS$$

Soit $\mathcal{E}(\underline{\boldsymbol{u}})$ l'énergie potentielle du corps Ω pour le champ solution $\underline{\boldsymbol{u}}$. On considère la différence :

$$\mathcal{E}(\underline{\boldsymbol{u}}^{*}) - \mathcal{E}(\underline{\boldsymbol{u}}) = \int_{\Omega} (W(\underline{\varepsilon}^{*}) - W(\underline{\varepsilon})) \, dV$$

$$- \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot (\underline{\boldsymbol{u}}^{*} - \underline{\boldsymbol{u}}) \, dV - \int_{\partial \Omega_{td}} \underline{\boldsymbol{t}}^{d} \cdot (\underline{\boldsymbol{u}}^{*} - \underline{\boldsymbol{u}}) \, dS$$

$$\geq \int_{\Omega} W'(\underline{\varepsilon}) : (\underline{\varepsilon}^{*} - \underline{\varepsilon}) \, dV$$

$$- \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot (\underline{\boldsymbol{u}}^{*} - \underline{\boldsymbol{u}}) \, dV - \int_{\partial \Omega_{td}} \underline{\boldsymbol{t}}^{d} \cdot (\underline{\boldsymbol{u}}^{*} - \underline{\boldsymbol{u}}) \, dS$$

On définit l'énergie potentielle d'un corps élastique Ω associée au champ C.A. $\underline{\pmb{u}}^*$, pour des efforts $\rho \underline{\pmb{f}}$ et $\underline{\pmb{t}}^d$ donnés :

$$\mathcal{E}(\underline{\boldsymbol{u}}^*) = \int_{\Omega} W(\underline{\varepsilon}^*) \, dV - \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot \underline{\boldsymbol{u}}^* \, dV - \int_{\partial \Omega_{td}} \underline{\boldsymbol{t}}^d \cdot \underline{\boldsymbol{u}}^* \, dS$$

Soit $\mathcal{E}(\underline{\pmb{u}})$ l'énergie potentielle du corps Ω pour le champ solution $\underline{\pmb{u}}$. On considère la différence :

$$\mathcal{E}(\underline{\boldsymbol{u}}^{*}) - \mathcal{E}(\underline{\boldsymbol{u}}) = \int_{\Omega} (W(\underline{\varepsilon}^{*}) - W(\underline{\varepsilon})) \, dV$$

$$- \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot (\underline{\boldsymbol{u}}^{*} - \underline{\boldsymbol{u}}) \, dV - \int_{\partial \Omega_{td}} \underline{\boldsymbol{t}}^{d} \cdot (\underline{\boldsymbol{u}}^{*} - \underline{\boldsymbol{u}}) \, dS$$

$$\geq \int_{\Omega} \underline{\boldsymbol{\sigma}} : (\underline{\varepsilon}^{*} - \underline{\varepsilon}) \, dV$$

$$- \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot (\underline{\boldsymbol{u}}^{*} - \underline{\boldsymbol{u}}) \, dV - \int_{\partial \Omega_{td}} \underline{\boldsymbol{t}}^{d} \cdot (\underline{\boldsymbol{u}}^{*} - \underline{\boldsymbol{u}}) \, dS$$

On définit l'énergie potentielle d'un corps élastique Ω associée au champ C.A. $\underline{\pmb{u}}^*$, pour des efforts $\rho \underline{\pmb{f}}$ et $\underline{\pmb{t}}^d$ donnés :

$$\mathcal{E}(\underline{\boldsymbol{u}}^*) = \int_{\Omega} W(\underline{\varepsilon}^*) \, dV - \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot \underline{\boldsymbol{u}}^* \, dV - \int_{\partial \Omega_{td}} \underline{\boldsymbol{t}}^d \cdot \underline{\boldsymbol{u}}^* \, dS$$

Soit $\mathcal{E}(\underline{\pmb{u}})$ l'énergie potentielle du corps Ω pour le champ solution $\underline{\pmb{u}}$. On considère la différence :

$$\mathcal{E}(\underline{\boldsymbol{u}}^*) - \mathcal{E}(\underline{\boldsymbol{u}}) = \int_{\Omega} (W(\underline{\varepsilon}^*) - W(\underline{\varepsilon})) \, dV$$

$$- \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot (\underline{\boldsymbol{u}}^* - \underline{\boldsymbol{u}}) \, dV - \int_{\partial \Omega_{td}} \underline{\boldsymbol{t}}^d \cdot (\underline{\boldsymbol{u}}^* - \underline{\boldsymbol{u}}) \, dS$$

$$\geq \int_{\Omega} \underline{\boldsymbol{\sigma}} : (\underline{\varepsilon}^* - \underline{\varepsilon}) \, dV$$

$$- \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot (\underline{\boldsymbol{u}}^* - \underline{\boldsymbol{u}}) \, dV - \int_{\partial \Omega_{td}} \underline{\boldsymbol{t}}^d \cdot (\underline{\boldsymbol{u}}^* - \underline{\boldsymbol{u}}) \, dS = 0$$
par application du TTV pour $\underline{\boldsymbol{\sigma}}$ et $\underline{\boldsymbol{u}}^* - \underline{\boldsymbol{u}}$

On définit l'énergie potentielle d'un corps élastique Ω associée au champ C.A. $\underline{\pmb{u}}^*$, pour des efforts $\rho \underline{\pmb{f}}$ et $\underline{\pmb{t}}^d$ donnés :

$$\mathcal{E}(\underline{\boldsymbol{u}}^*) = \int_{\Omega} W(\underline{\varepsilon}^*) \, dV - \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot \underline{\boldsymbol{u}}^* \, dV - \int_{\partial \Omega_{td}} \underline{\boldsymbol{t}}^d \cdot \underline{\boldsymbol{u}}^* \, dS$$

Soit $\mathcal{E}(\underline{\pmb{u}})$ l'énergie potentielle du corps Ω pour le champ solution $\underline{\pmb{u}}$. On considère la différence :

$$\mathcal{E}(\underline{\boldsymbol{u}}^*) - \mathcal{E}(\underline{\boldsymbol{u}}) = \int_{\Omega} (W(\underline{\varepsilon}^*) - W(\underline{\varepsilon})) \, dV$$

$$- \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot (\underline{\boldsymbol{u}}^* - \underline{\boldsymbol{u}}) \, dV - \int_{\partial \Omega_{td}} \underline{\boldsymbol{t}}^d \cdot (\underline{\boldsymbol{u}}^* - \underline{\boldsymbol{u}}) \, dS$$

$$\geq 0$$

La solution $\underline{\textbf{\textit{u}}}$ minimise l'énergie potentielle ${\mathcal E}$

Unicité du minimum de l'énergie potentielle

Soient $\underline{\boldsymbol{u}}$ le champ solution du problème et $\underline{\boldsymbol{u}}^*$ un champ C.A. tel que

$$\mathcal{E}(\underline{\boldsymbol{u}}^*) - \mathcal{E}(\underline{\boldsymbol{u}}) = 0$$

Cela implique que

$$\int_{\Omega} (W(\underline{\varepsilon}^*) - W(\underline{\varepsilon})) \, dV - \int_{\Omega} \rho \underline{f} \cdot (\underline{u}^* - \underline{u}) \, dV - \int_{\partial \Omega_{td}} \underline{t}^d \cdot (\underline{u}^* - \underline{u}) \, dS = 0$$

$$\int_{\Omega} (W(\underline{\varepsilon}^*) - W(\underline{\varepsilon})) \, dV = \int_{\Omega} \underline{\sigma} : (\underline{\varepsilon}^* - \underline{\varepsilon})$$

d'après le TTV pour le couple $(\underline{\sigma}, \underline{\boldsymbol{u}}^* - \underline{\boldsymbol{u}})$.

$$\int_{\Omega} (W(\underline{\varepsilon}^*) - W(\underline{\varepsilon}) - W'(\underline{\varepsilon}) : (\underline{\varepsilon}^* - \underline{\varepsilon})) \ dV = 0$$

La stricte convexité de W permet de conclure que $\underline{\varepsilon}^* = \underline{\varepsilon}$. Elle assure égalemet l'existence du minimum (l'ensemble des champs C.A. est un espace affine convexe). Il s'agit de la Formulation variationnelle du problème aux limites d'élasticité non linéaire.

Plan

- Potentiel d'élasticité
- 2 Théorème des travaux virtuels
- 3 Théorème de l'énergie potentielle
- 4 Théorème de l'énergie complémentaire
- **5** Encadrement de la solution
- 6 Cas de l'élasticité linéarisée

On définit l'énergie complémentaire d'un corps élastique Ω associée au champ S.A. $\underline{\sigma}^\dagger$, pour des déplacements $\underline{\pmb{u}}^d$ donnés :

$$\mathcal{E}^{\star}(\underline{\sigma}^{\dagger}) = \int_{\Omega} W^{\star}(\underline{\sigma}^{\dagger}) \, dV - \int_{\partial \Omega_{u}} (\underline{\sigma}^{\dagger} \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}}^{d} \, dS$$

On définit l'énergie complémentaire d'un corps élastique Ω associée au champ S.A. $\underline{\sigma}^\dagger$, pour des déplacements $\underline{\pmb{u}}^d$ donnés :

$$\mathcal{E}^{\star}(\underline{\sigma}^{\dagger}) = \int_{\Omega} W^{\star}(\underline{\sigma}^{\dagger}) \, dV - \int_{\partial \Omega_{u}} (\underline{\sigma}^{\dagger} \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}}^{d} \, dS$$

Soit $\mathcal{E}^\star(\underline{\sigma})$ l'énergie complémentaire du corps Ω pour le champ solution $\underline{\sigma}$. On considère la différence :

$$\mathcal{E}^{\star}(\underline{\sigma}^{\dagger}) - \mathcal{E}^{\star}(\underline{\sigma}) = \int_{\Omega} (W^{\star}(\underline{\sigma}^{\dagger}) - W^{\star}(\underline{\sigma})) dV - \int_{\partial \Omega_{u}} ((\underline{\sigma}^{\dagger} - \underline{\sigma}) \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}}^{d} dS$$

On définit l'énergie complémentaire d'un corps élastique Ω associée au champ S.A. $\underline{\sigma}^\dagger$, pour des déplacements $\underline{\pmb{u}}^d$ donnés :

$$\mathcal{E}^{\star}(\underline{\sigma}^{\dagger}) = \int_{\Omega} W^{\star}(\underline{\sigma}^{\dagger}) \, dV - \int_{\partial \Omega_{u}} (\underline{\sigma}^{\dagger} \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}}^{d} \, dS$$

Soit $\mathcal{E}^\star(\underline{\sigma})$ l'énergie complémentaire du corps Ω pour le champ solution $\underline{\sigma}$. On considère la différence :

$$\mathcal{E}^{\star}(\underline{\sigma}^{\dagger}) - \mathcal{E}^{\star}(\underline{\sigma}) = \int_{\Omega} (W^{\star}(\underline{\sigma}^{\dagger}) - W^{\star}(\underline{\sigma})) \, dV$$
$$- \int_{\partial \Omega_{u}} ((\underline{\sigma}^{\dagger} - \underline{\sigma}) \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}}^{d} \, dS$$
$$\geq \int_{\Omega} W^{\star\prime}(\underline{\sigma}) : (\underline{\sigma}^{\dagger} - \underline{\sigma}) \, dV$$
$$- \int_{\partial \Omega_{u}} ((\underline{\sigma}^{\dagger} - \underline{\sigma}) \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}}^{d} \, dS$$

On définit l'énergie complémentaire d'un corps élastique Ω associée au champ S.A. $\underline{\sigma}^\dagger$, pour des déplacements $\underline{\pmb{u}}^d$ donnés :

$$\mathcal{E}^{\star}(\underline{\sigma}^{\dagger}) = \int_{\Omega} W^{\star}(\underline{\sigma}^{\dagger}) \, dV - \int_{\partial \Omega_{u}} (\underline{\sigma}^{\dagger} \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}}^{d} \, dS$$

Soit $\mathcal{E}^\star(\underline{\sigma})$ l'énergie complémentaire du corps Ω pour le champ solution $\underline{\sigma}$. On considère la différence :

$$\mathcal{E}^{\star}(\underline{\sigma}^{\dagger}) - \mathcal{E}^{\star}(\underline{\sigma}) = \int_{\Omega} (W^{\star}(\underline{\sigma}^{\dagger}) - W^{\star}(\underline{\sigma})) \, dV$$
$$- \int_{\partial \Omega_{u}} ((\underline{\sigma}^{\dagger} - \underline{\sigma}) \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}}^{d} \, dS$$
$$\geq \int_{\Omega} \underline{\varepsilon} : (\underline{\sigma}^{\dagger} - \underline{\sigma}) \, dV$$
$$- \int_{\partial \Omega} ((\underline{\sigma}^{\dagger} - \underline{\sigma}) \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}}^{d} \, dS$$

On définit l'énergie complémentaire d'un corps élastique Ω associée au champ S.A. $\underline{\sigma}^\dagger$, pour des déplacements $\underline{\boldsymbol{u}}^{\,d}$ donnés :

$$\mathcal{E}^{\star}(\underline{\sigma}^{\dagger}) = \int_{\Omega} W^{\star}(\underline{\sigma}^{\dagger}) \, dV - \int_{\partial \Omega_{u}} (\underline{\sigma}^{\dagger} \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}}^{d} \, dS$$

Soit $\mathcal{E}^{\star}(\underline{\sigma})$ l'énergie complémentaire du corps Ω pour le champ solution $\underline{\sigma}$. On considère la différence :

$$\mathcal{E}^{\star}(\underline{\sigma}^{\dagger}) - \mathcal{E}^{\star}(\underline{\sigma}) = \int_{\Omega} (W^{\star}(\underline{\sigma}^{\dagger}) - W^{\star}(\underline{\sigma})) dV$$
$$- \int_{\partial \Omega_{u}} ((\underline{\sigma}^{\dagger} - \underline{\sigma}) \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}}^{d} dS$$
$$> 0$$

par application successive du TTV pour $(\underline{\sigma}^\dagger, \underline{\boldsymbol{u}})$ et $(\underline{\sigma}, \underline{\boldsymbol{u}})$ et différence entre ces deux équations

On définit l'énergie complémentaire d'un corps élastique Ω associée au champ S.A. $\underline{\sigma}^\dagger$, pour des déplacements $\underline{\pmb{u}}^d$ donnés :

$$\mathcal{E}^{\star}(\underline{\sigma}^{\dagger}) = \int_{\Omega} W^{\star}(\underline{\sigma}^{\dagger}) \, dV - \int_{\partial \Omega_{u}} (\underline{\sigma}^{\dagger} \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}}^{d} \, dS$$

Soit $\mathcal{E}^{\star}(\underline{\sigma})$ l'énergie complémentaire du corps Ω pour le champ solution $\underline{\sigma}$. On considère la différence :

$$\mathcal{E}^{\star}(\underline{\sigma}^{\dagger}) - \mathcal{E}^{\star}(\underline{\sigma}) = \int_{\Omega} (W^{\star}(\underline{\sigma}^{\dagger}) - W^{\star}(\underline{\sigma})) dV$$
$$- \int_{\partial \Omega_{u}} ((\underline{\sigma}^{\dagger} - \underline{\sigma}) \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}}^{d} dS$$
$$> 0$$

Le champ de contraintes solution σ minimise l'énergie complémentaire $\mathcal{E}^\star.$

La solution en contraintes du problème d'élasticité est le minimum de l'énergie complémentaire.

Plan

- 1 Potentiel d'élasticité
- 2 Théorème des travaux virtuels
- 3 Théorème de l'énergie potentielle
- 4 Théorème de l'énergie complémentaire
- **5** Encadrement de la solution
- 6 Cas de l'élasticité linéarisée

L'addition de l'énergie potentielle et de l'énergie complémentaire fournit

$$\mathcal{E}(\underline{\boldsymbol{u}}) + \mathcal{E}^{\star}(\underline{\boldsymbol{\sigma}}) = \int_{\Omega} W(\underline{\boldsymbol{\varepsilon}}) + W^{\star}(\underline{\boldsymbol{\sigma}}) \, dV$$
$$- \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot \underline{\boldsymbol{u}} \, dV - \int_{\partial \Omega} (\underline{\boldsymbol{\sigma}} \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}} \, dS$$

L'addition de l'énergie potentielle et de l'énergie complémentaire fournit

$$\mathcal{E}(\underline{\boldsymbol{u}}) + \mathcal{E}^{*}(\underline{\boldsymbol{\sigma}}) = \int_{\Omega} \underline{\boldsymbol{\sigma}} : \underline{\boldsymbol{\varepsilon}} \, dV$$
$$- \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot \underline{\boldsymbol{u}} \, dV - \int_{\partial \Omega} (\underline{\boldsymbol{\sigma}} \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}} \, dS$$

L'addition de l'énergie potentielle et de l'énergie complémentaire fournit

$$\mathcal{E}(\underline{\boldsymbol{u}}) + \mathcal{E}^{\star}(\underline{\boldsymbol{\sigma}}) = \int_{\Omega} \underline{\boldsymbol{\sigma}} : \underline{\boldsymbol{\varepsilon}} \, dV$$

$$- \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot \underline{\boldsymbol{u}} \, dV - \int_{\partial \Omega} (\underline{\boldsymbol{\sigma}} \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}} \, dS$$

$$= 0$$

L'addition de l'énergie potentielle et de l'énergie complémentaire fournit

$$\mathcal{E}(\underline{\boldsymbol{u}}) + \mathcal{E}^{\star}(\underline{\boldsymbol{\sigma}}) = \int_{\Omega} \underline{\boldsymbol{\sigma}} : \underline{\boldsymbol{\varepsilon}} \, dV$$
$$- \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot \underline{\boldsymbol{u}} \, dV - \int_{\partial \Omega} (\underline{\boldsymbol{\sigma}} \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}} \, dS$$
$$= 0$$

On obtient un encadrement de la solution de la manière suivante :

$$\mathcal{E}(\underline{\boldsymbol{u}}) \leq \mathcal{E}(\underline{\boldsymbol{u}}^*), \quad \forall \underline{\boldsymbol{u}}^* C.A.$$

L'addition de l'énergie potentielle et de l'énergie complémentaire fournit

$$\mathcal{E}(\underline{\boldsymbol{u}}) + \mathcal{E}^{*}(\underline{\boldsymbol{\sigma}}) = \int_{\Omega} \underline{\boldsymbol{\sigma}} : \underline{\boldsymbol{\varepsilon}} \, dV$$

$$- \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot \underline{\boldsymbol{u}} \, dV - \int_{\partial \Omega} (\underline{\boldsymbol{\sigma}} \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}} \, dS$$

$$= 0$$

On obtient un encadrement de la solution de la manière suivante :

$$-\mathcal{E}^{\star}(\underline{\sigma}) = \mathcal{E}(\underline{\boldsymbol{u}}) \leq \mathcal{E}(\underline{\boldsymbol{u}}^{*}), \quad \forall \underline{\boldsymbol{u}}^{*} C.A.$$

L'addition de l'énergie potentielle et de l'énergie complémentaire fournit

$$\mathcal{E}(\underline{\boldsymbol{u}}) + \mathcal{E}^{\star}(\underline{\boldsymbol{\sigma}}) = \int_{\Omega} \underline{\boldsymbol{\sigma}} : \underline{\boldsymbol{\varepsilon}} \, dV$$

$$- \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot \underline{\boldsymbol{u}} \, dV - \int_{\partial \Omega} (\underline{\boldsymbol{\sigma}} \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}} \, dS$$

$$= 0$$

On obtient un encadrement de la solution de la manière suivante :

$$\forall \underline{\sigma}^{\dagger} \text{ S.A.}, \quad -\mathcal{E}^{\star}(\underline{\sigma}^{\dagger}) \leq -\mathcal{E}^{\star}(\underline{\sigma}) = \mathcal{E}(\underline{\boldsymbol{u}}) \leq \mathcal{E}(\underline{\boldsymbol{u}}^{*}), \quad \forall \underline{\boldsymbol{u}}^{*} \text{ C.A.}$$

Plan

- 1 Potentiel d'élasticité
- 2 Théorème des travaux virtuels
- 3 Théorème de l'énergie potentielle
- 4 Théorème de l'énergie complémentaire
- **5** Encadrement de la solution
- 6 Cas de l'élasticité linéarisée

Théorèmes de l'énergie en élasticité linéarisée

Pour tout champ de déplacements <u>u</u>* C.A.

$$\begin{split} \frac{1}{2} \int_{\Omega} & \boldsymbol{\varepsilon} : \boldsymbol{\varepsilon} : \boldsymbol{\varepsilon} : \boldsymbol{\varepsilon} : \boldsymbol{d}V - \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot \underline{\boldsymbol{u}} \; dV - \int_{\partial \Omega_{td}} \underline{\boldsymbol{t}}^{d} \cdot \underline{\boldsymbol{u}} \; dS \\ & \leq \frac{1}{2} \int_{\Omega} \boldsymbol{\varepsilon}^{*} : \boldsymbol{\varepsilon} : \boldsymbol{\varepsilon}^{*} \; dV - \int_{\Omega} \rho \underline{\boldsymbol{f}} \cdot \underline{\boldsymbol{u}}^{*} \; dV - \int_{\partial \Omega_{td}} \underline{\boldsymbol{t}}^{d} \cdot \underline{\boldsymbol{u}}^{*} \; dS \end{split}$$

Théorèmes de l'énergie en élasticité linéarisée

Pour tout champ de déplacements <u>u</u> * C.A.

$$\frac{1}{2} \int_{\Omega} \underline{\varepsilon} : \underline{\varepsilon} : \underline{\varepsilon} \, dV - \int_{\Omega} \rho \underline{\mathbf{f}} \cdot \underline{\mathbf{u}} \, dV - \int_{\partial \Omega_{td}} \underline{\mathbf{t}}^{d} \cdot \underline{\mathbf{u}} \, dS \\
\leq \frac{1}{2} \int_{\Omega} \underline{\varepsilon}^{*} : \underline{\varepsilon} : \underline{\varepsilon}^{*} \, dV - \int_{\Omega} \rho \underline{\mathbf{f}} \cdot \underline{\mathbf{u}}^{*} \, dV - \int_{\partial \Omega_{td}} \underline{\mathbf{t}}^{d} \cdot \underline{\mathbf{u}}^{*} \, dS$$

Pour tout champ de contraintes σ^{\dagger} S.A.

$$\frac{1}{2} \int_{\Omega} \underline{\sigma} : \underline{S} : \underline{\sigma} \, dV - \int_{\partial \Omega_{u}} (\underline{\sigma} \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}}^{d} \, dS$$

$$\leq \frac{1}{2} \int_{\Omega} \underline{\sigma}^{\dagger} : \underline{S} : \underline{\sigma}^{\dagger} \, dV - \int_{\partial \Omega_{u}} (\underline{\sigma}^{\dagger} \cdot \underline{\boldsymbol{n}}) \cdot \underline{\boldsymbol{u}}^{d} \, dS$$

Formule de Clapeyron

Benoît Paul Emile Clapeyron (1799–1864) études à l'Ecole des Mines (1818–1820)

$$\int_{\Omega} W(\underline{\varepsilon}) \, dV = \int_{\Omega} W^{\star}(\underline{\sigma}) \, dV =$$

Formule de Clapeyron

Benoît Paul Emile Clapeyron (1799–1864) études à l'Ecole des Mines (1818–1820)

$$\int_{\Omega} W(\underline{\varepsilon}) dV = \int_{\Omega} W^{*}(\underline{\sigma}) dV =$$

$$= \frac{1}{2} \int_{\Omega} \underline{\sigma} : \underline{\varepsilon} dV$$

Formule de Clapeyron

Benoît Paul Emile Clapeyron (1799–1864) études à l'Ecole des Mines (1818–1820)

$$\int_{\Omega} W(\underline{\varepsilon}) \, dV = \int_{\Omega} W^{\star}(\underline{\sigma}) \, dV =$$

$$= \frac{1}{2} \int_{\Omega} \underline{\sigma} : \underline{\varepsilon} \, dV$$

$$= \frac{1}{2} \left(\int_{\Omega} \rho \underline{\mathbf{f}} \cdot \underline{\mathbf{u}} \, dV + \int_{\partial \Omega} (\underline{\sigma} \cdot \underline{\mathbf{n}}) \cdot \underline{\mathbf{u}} \, dS \right)$$

L'énergie élastique stockée dans le corps matériel est égale à la moitié du travail de tous les efforts appliqués.