

NeckProtec Gruppe 8 Pia Becker, Felix Riedel | Gruppe 8

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Agenda

1	Rückblick
2	Hardware
3	Daten
4	Modelle
5	Umsetzung
6	Resultat
7	Ausblick

1. Rückblick

Rückblick – Motivation

NeckProtec als Lösung für schlechte Nackenposition im Alltag

How texting could damage your spine

Forces on the neck increase the more we tilt our heads, causing spine curvature

Force 10-12lb on neck	27lb	40lb	49lb	60lb
Neck tilt 0 degrees	15 degrees	30 degrees	45 degrees	60 degrees

Fig.: 2

Rückblick – Motivation

NeckProtec als Lösung für schlechte Nackenposition

im Alltag

How texting could damage your spine

Forces on the neck increase the more we tilt our heads, causing spine curvature

Fig.: 2

Rückblick – Product Goals

2. Hardware

Hardware

LSM9DS1 -

Accelorometer, Gyroscope,
Magnetometer

nRF52840-Chip Bluetooth Low Energy Modul

Fig.: 4

3. Daten

Bewertungskriterien

Accelerometer:

Messung von linearen Bewegungen (X, Y, Z-Achse)

Gyroscope:

Messung der Drehgeschwindigkeit

Magnetometer:

Misst das Magnetfeld

Accelerometer

Boxplot der Sensorachse Accelerometer in m/s2 – Sensorposition 'Front'

Accelerometer

Boxplot der Sensorachse Accelerometer in m/s2 – Sensorposition 'Side'

Accelerometer

Boxplot der Sensorachse Accelerometer in m/s2 – Sensorposition 'Back'

Bewertungskriterien

Accelerometer:

Messung von linearen Bewegungen (X, Y, Z-Achse)

Gyroscope:

Messung der Drehgeschwindigkeit

Magnetometer:

Misst das Magnetfeld

Gyroscope

Boxplot der Sensorachse Gyroscope in deg/s - Sensorposition 'Front'

Gyroscope

Gyroscope

Boxplot der Sensorachse Gyroscope in deg/s – Sensorposition 'Back'

Bewertungskriterien

Accelerometer:

Messung von linearen Bewegungen (X, Y, Z-Achse)

Gyroscope:

Messung der Drehgeschwindigkeit

Magnetometer:

Misst das Magnetfeld

Magnetometer

Boxplot der Sensorachse Magnetometer in uT – Sensorposition 'Front'

Magnetometer

Magnetometer

Bewertungskriterien

Accelerometer Gyroscope Magnetometer Beste Side Back Back Position Stärke **Absolute Kopfposition Genaue Erkennung** Plötzliche Bewegung Schwäche Große Schwankungen **Keine Rotation** Ausreißer

4. Modelle

Erstes Modell

- 20 Datenfrequenzen á 30
 Sekunden
- Jeweils 10 NNB und 10NDB
- o 80 / 20 Trains-Test-Split
- Modell: Neuronales Netz
 - Classifier
- Signal VerarbeitungSpectral Features
- Fenstergröße 2,5
 Sekunden

	NDB	NNB	UNCERTAIN
NDB	100%	0%	0%
NNB	43.3%	56.1%	0.6%
F1 SCORE	0.62	0.72	

Accuracy:

Anteil der Korrekten Vorhersagen insgesamt 67 %

Precision:

Tatsächlich korrekte Warnungen **86 %**

Recall:

Erkennung von gekrümmter Haltung 68 %

Modellkonfiguration - Ausgeblendet

Fenstergröße: Kurze Fenster zeigen weniger Kontraste und lange Fenster sind gut für langsame Bewegungen (häufig zwischen 2,5 und 3 Sek.)

- Vergrößerung des Fensters auf 5 Sekunden hat keinen Einfluss

Signal Verarbeitung: Alternativ kann man Raw Data nutzen, hierbei ist allerdings die Performance schlechter. Andere Prozessblocks machen in dem Kontext keinen Sinn

Modelle: Classifier – perfekt geeignet; K-means – Unterscheidet alle Haltung von neutraler Haltung; Regression – Winkel statt Klassen; FOMO – nicht anwendbar

Spectral Features:

- o Scale Axis: Skaliert die Werte; 1 keine Änderung bei anderen Werten
- o Input decimation ratio: Anzahl der übersprungenen Daten; 1 keine Daten werden übersprungen
- o Type: Welche Frequenzen behalten bleiben; low langsame Bewegungen bleiben drin
- Cut-off frequency: Grenze, bis zu welcher Frequenz noch durchgelassen wird (unter 4 Hz bleibt) sonst gedämpft
- o Order: Stärke des Filters; 6 Mittelmaß
- Type: FFT (spectral), da es sich um gleichmäßige Bewegungen handelt; Wavelet generiert schlechtere Ergebnisse 93% Accuracy, da mehr Details, wie Zeit eine Rolle spielen, dadurch schlechtere Generalisierung

Quelle: Studio - Edge Impulse, o. D.

- o FFT length: Anzahl der Punkte, die bei der Frequenzanalyse gleichzeitig betrachtet werden, kleine Fenster schnelle grobe Auflösung
- o Improve low frequency resolution: wenn Frequenzen unter 1Hz erfasst werden sollen (liefert schlechtere Accuracy)

Neurolanes Netzwerk:

Input (36)Liefert Rohdaten (z. B. aus FFT)

Dense (20 Neuronen) Lernt erste Muster aus allen Features

Dense (10 Neuronen) Verfeinert diese Muster

Output (2 Klassen) Gibt Entscheidung: "gut" oder "schlecht" (z. B. Haltung)

Verbesserung des Modells

Neck Neutral wurde falsch klassifiziert → Neuer Split in Test- und Trainingsdaten, für bessere Ausgewogenheit

	NDB	NNB	UNCERTAIN
NDB	97.8%	0.9%	1.4%
NNB	0%	100%	0%
F1 SCORE	0.99	0.99	

Accuracy:

Anteil der Korrekten Vorhersagen insgesamt 98.7 %

Precision:

Tatsächlich korrekte Warnungen 99 %

Recall:

Erkennung von gekrümmter Haltung

99 %

Finales Modell

- 114 Datenfrequenzen á
 30 Sekunden
- Jeweils 57 NNB und 57NDB
- o 80 / 20 Trains-Test-Split
- Modell: Neuronales Netz
 - Classifier
- Signal VerarbeitungSpectral Features
- Fenstergröße 2,5
 Sekunden

	NDB	NNB	UNCERTAIN
NDB	97.3%	2.1%	0.5%
NNB	0%	100%	0%
F1 SCORE	0.99	0.98	

Accuracy:

Anteil der Korrekten Vorhersagen insgesamt 98,2 %

Precision:

Tatsächlich korrekte Warnungen

99 %

Recall:

Erkennung von gekrümmter Haltung

98 %

5. Umsetzung

Ansätze

Ansatz 1: Edge Impulse – Arduino – BLE – Python Ansatz 2: Edge Impulse – Arduino – BLE – WebApp

Ansatz 1

Modelltraining (mit Edge Impulse)

Arduino Integration

- Modelleinbindung in Arduino IDE
- Ergänzung BLE-Ausgabe
- Upload auf das Board

Light Blue Verbindung

Verbindung von
Arduino zu
iPhone via BLE in
Light Blue
Aktivierung der

Charakteristik

Cloud Anbindung

- Cloud Connect
 Anbindung über
 Light Blue
 Datenweiterleitung
- Datenweiterleitung an Adafruit IO

Python Auswertung

- Nutzung der Adafruit IO API
- Regelmäßige Abfrage der Haltung
- Sprachausgabe bei schlechter Haltung

Ansatz 1

Modelltraining (mit Edge Impulse)

Arduino Integration

- Modelleinbindung in Arduino IDE
- Ergänzung BLE-Ausgabe
- Upload auf das Board

Light Blue Verbindung

- Verbindung von
 Arduino zu
 iPhone via BLE in
 Light Blue
 Aktivierung der
- Light Blue Charakteristik

Cloud Anbindung

- Cloud Connect
 Anbindung über
 Light Blue
 Datenweiterleitung
- Datenweiterleitun an Adafruit IO

Python Auswertung

- Nutzung derAdafruit IO API
- RegelmäßigeAbfrage derHaltung
- Sprachausgabe
 bei schlechter
 Haltung

Anzeigen der Charakterstik und entsprechender Cloud Verbindung haben unzuverlässig funktioniert

Ansätze

Ansatz 1: Edge Impulse – Arduino – BLE – Python Ansatz 2:
Edge Impulse – Arduino
– BLE – WebApp

Ansatz 2

Visualisierung Web Bluetooth Vue Web Modell-Arduino **Notifications** des Integration training API (mit Edge Modellein-Auslesen der Anzeigen von Nackenwinke<u>ls</u> Impulse) bindung in **BLE Charakte-**Benachrichti-Kopf bewegt Arduino IDE ristiken für gungen sich auf Basis Ergänzung BLE-**Nackenposition** des Y-Winkels Ausgabe und Winkel des Accelerators Upload auf das Debugging mit Board NRFConnect

Ansatz 2

Modelltraining (mit Edge Impulse) Arduino Integration

- Modelleinbindung in Arduino IDE
- Ergänzung BLE-Ausgabe
- Upload auf das Board

Web Bluetooth
API

- Auslesen der BLE Charakteristiken für Nackenposition und Winkel
- Debugging mit
 NRFConnect

Vue Web Notifications

Anzeigen von Benachrichtigungen Visualisierung des

Nackenwinkels

Kopf bewegt sich auf Basis des Y-Winkels des Accelerators

Web Bluetooth nur in Chromium Browsern verfügbar bzw. Bluefy auf IOS Benachrichtigungen aktuell nur auf Android und Desktop möglich

Ansatz 2: TechStack

5. Resultat

Resultat – WebApp

Resultat – WebApp

Resultat – Ziel

Vorhersage	Reales Ergebnis			
	Nacken gerade		Nacken gekrümmt	
	Nacken gerade	True Positiv: Korrekt erkannte gerade Haltung; keine Warnung	False Positiv: Gekrümmte Haltung nicht erkannt; keine Warnung	
	Nacken gekrümmt	False Negative: Gerade Haltung nicht erkannt; Warnung	True Negative: Korrekt erkannte gekrümmte Haltung; Warnung	

Accuracy:

Anteil der Korrekten Vorhersagen insgesamt

80 – 95 %

Precision:

Tatsächlich korrekte Warnungen

60 – 80 %

Quelle: Sawadski (2025)

Recall:

Erkennung von gekrümmter Haltung

90 – 100 %

Resultat - Ergebnis

Vorhersage	Reales Ergebnis			
		Nacken gerade	Nacken gekrümmt	
	Nacken gerade	97, 3 %	2,1 %	
	Nacken gekrümmt	0 %	100 %	

Accuracy:

Anteil der Korrekten Vorhersagen insgesamt 98,22 %

Precision:

Tatsächlich korrekte Warnungen

99 %

Recall:

Erkennung von gekrümmter Haltung 98 %

6. Ausblick

Ausblick: weitere Haltungen

Version 1

Version 2

Ausblick: Verwendung mehrere Arduinos

Ausblick: Herausforderungen

Tonausgabe nur über Umwege

Extra Module

App

BLE-Charakteristiken

BLE-Anbindung

Unzuverlässigkeit des Bluetooth Moduls

Web-Entwicklung Browserunterstützung

Nachvollziehbarkeit der EI-Bibliothek

Erweiterung des Modells mit eigener Logik

Verbindungsprobleme mit Arduino

Flashen / Code-Deployment teilweise unzuverlässig

Vielen Dank.

Textquellen

- o a Nano 33 BLE Sense. (o. D.). Docs.Arduino. Abgerufen am 18. März 2025, von https://docs.arduino.cc/tutorials/nano-33-ble-sense/imu-accelerometer/
- b Nano 33 BLE Sense. (o. D.). Docs.Arduino. Abgerufen am 18. März 2025,
 von https://docs.arduino.cc/tutorials/nano-33-ble-sense/ble-device-to-device/
- Sawadski, B. (2025, 7. März). Performance-Metriken des überwachten Lernens für Klassifikationsprobleme.
 Synvert. https://synvert.com/synvert-blog/performance-metriken-klassifikation-2-2/
- Studio Edge Impulse. (o. D.). https://studio.edgeimpulse.com/

Bildquellen

Fig. 1	Benevida. (2023, 5. August). The Best Ways to Fix Forward Head Posture (Nerd Neck). https://benevidawellness.com/. https://benevidawellness.com/how-to-fix-forward-head-posture/
Fig. 2	Physiotherapy Treatment, Exercise Physio, Massage, and Pilates Care Our Clinic. (o. D.). Physio Labs. https://www.physiolabs.com.au/uploads/2/1/8/9/21894396/1311220-orig_orig.png
Fig. 3	Bild generiert mit Open Al ChatGPT, 19.03.2025
Fig. 4	Nano 33 BLE Sense. (o. D.). Docs.Arduino. Abgerufen am 18. März 2025, von https://docs.arduino.cc/hardware/nano-33-ble-sense/
Fig. 5	Arduino (o.D.) e7.pngegg. Abgerufen 26. März 2025, von https://e7.pngegg.com/pngimages/758/841/png-clipart-arduino-max-electronic-circuit-pure-data-oscilloscope-raspberry-pi-icons-logo-microcontroller.png
Fig. 6	Vue.js (o. D.) Wikipedia. Abgerufen 26. März 2025, von https://de.m.wikipedia.org/wiki/Datei:Vue.js_Logo_2.svg
Fig. 7	BlueFy (o. D.) Apple. Abgerufen 26.März 2025, von https://is1-ssl.mzstatic.com/image/thumb/Purple211/v4/3a/85/7c/3a857cfe-940c-e651-93bd-4a7889976582/Applcon-0-0-1x_U007emarketing-0-10-0-sRGB-85-220.png/1200x630wa.png
Fig. 8	Branding. (o. D.). Abgerufen am 26. März 2025, von https://edgeimpulse.com/branding
Fig. 9	nRF Connect for Mobile. (o. D.). nordicsemi.com. https://www.nordicsemi.com/Products/Development-tools/nRF-Connect-for-mobile
Fig. 10	Firebase. (o. D.). Firebase. https://firebase.google.com/

