UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142.

PRACTICA 5. RELACIONES Y FUNCIONES

Problema 1. Considere la función proposicional

En práctica.

$$p(x, y): x^2 + y^2 = 1.$$

- 1.1) Defina en $\mathbb{R} \times \mathbb{R}$ la relación \mathcal{R}_1 de los (x,y) tales que p(x,y) es verdadera.
- 1.2) Defina en $\mathbb{R} \times \mathbb{R}$ la relación \mathcal{R}_2 de los (x,y) tales que p(x,y) es falsa.
- 1.3) Encuentre el dominio y el recorrido de las relaciones \mathcal{R}_1 y \mathcal{R}_2 .
- 1.4) Para $x \in \mathbb{R}$, defina el conjunto $\mathcal{R}(x)$, llamado imágen de x por la relación, de los $y \in \mathbb{R}$ tales que $(x,y) \in \mathcal{R}$. Analice lo que sucede para $x = \frac{2}{3}$ y lo que sucede para x = 4. Esto para ambas relaciones.
- 1.5) Represente graficamente las relaciones definidas anteriormente y también las imágenes indicadas en 1.4.

Problema 2. Dada la relación \mathcal{R} representada por $R \subseteq A \times B$ se define su relación inversa \mathcal{R}^{-1} por

$$R^{-1} = \{(x, y) : (y, x) \in R\}.$$

- 2.1) Defina las relaciones inversas de \mathcal{R}_1 y de \mathcal{R}_2 .
- 2.2) Encuentre dominio y recorrido de \mathcal{R}_1^{-1} y de \mathcal{R}_2^{-1} .

Problema 3. Para la relación definida de
 A en $\mathbb R$ por

$$f: A \subseteq \mathbb{R} \longrightarrow \mathbb{R}, \quad x \mapsto f(x) = x^2 - 4x + 4.$$

- 3.1) Muestre que f es función.
- 3.2) Encuentre dominio y recorrido de f.
- 3.3) Encuentre f([-1,1]), $f([1,5[), f^{-1}([0,5]) \text{ y } f^{-1}([-2,-1])$. [En práctica]

1

3.4) Encuentre, si existe, un conjunto X tal que $f(X) = \phi$.

3.5) Encuentre, si existe, un conjunto Y tal que $f^{-1}(Y) = \phi$. Indique las condiciones que debe cumplir el conjunto Y para que $f^{-1}(Y) = \phi$.

Problema 4. Sea $f:A\longrightarrow B$ una función. Demuestre que

En práctica.

$$g: P(A) \longrightarrow P(B), \quad X \mapsto g(X) = f(X)$$

es función.

Para la función f del ejemplo 3, defina g y evalúe g(X) para X=[1,5[,X=[-1,1] y para $X=\{0\}$ y $X=\{-3\}$.

Problema 5. En los siguientes casos determine Dominio y Recorrido de las funciones reales, definidas por:

5.1)
$$f: Dom(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R} - \{0\}, \quad \text{ $x\!\!\mapsto f(x) = $\frac{1}{1-x^2}$.}$$

$$5.2) \ f:Dom(f)\subseteq \mathbb{R} \longrightarrow \mathbb{R}, \quad \cancel{x} + f(x) = \frac{ax+b}{cx+d}, \quad a,b,c,d \in \mathbb{R}, \quad c \neq 0, d \neq 0.$$

5.3)
$$f: Dom(f) \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$
, $x \mapsto f(x) = \frac{x+3}{2x-4}$.

5.4)
$$f:Dom(f)\subseteq\mathbb{R}\longrightarrow\mathbb{R},\quad x\mapsto f(x)=\frac{x+3}{\sqrt{2x-4}}.$$
 [En práctica.]

5.5)
$$f:Dom(f)\subseteq [2,10]\longrightarrow \mathbb{R}, \quad x\mapsto f(x)=\sqrt{\frac{x+3}{x-1}}.$$
 [En práctica.]

Problema 6. Considere una función $f:A\longrightarrow B$. Probar las siguientes propiedades de la imagen e imagen recíproca de conjuntos por f.

6.1) Para todo
$$X, \tilde{X} \subseteq A: f(X \cap \tilde{X}) \subseteq f(X) \cap f(\tilde{X}).$$

6.2) Para todo
$$Y, \tilde{Y} \subseteq B$$
: $f^{-1}(Y \cap \tilde{Y}) = f^{-1}(Y) \cap f^{-1}(\tilde{Y}).$

17.04.2003.

ACQ/acq.