iv) en el mismo conjunto que en iii);
$$\mathbf{w} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\mathbf{v} \left\{ \begin{pmatrix} 4 \\ 5 \\ 3 \\ -9 \end{pmatrix}, \begin{pmatrix} 3 \\ 8 \\ -5 \\ -1 \end{pmatrix}, \begin{pmatrix} 5 \\ 2 \\ 11 \\ -17 \end{pmatrix}, \begin{pmatrix} -3 \\ -7 \\ 0 \\ 8 \end{pmatrix} \right\} \qquad \mathbf{w} = \begin{pmatrix} -19 \\ -9 \\ -46 \\ 74 \end{pmatrix}$$

vi) en el mismo conjunto que en i);
$$\mathbf{w} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

vii)
$$\left\{ \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} -1\\0 \end{pmatrix}, \begin{pmatrix} 1\\-1 \end{pmatrix} \right\}, \mathbf{w} = \begin{pmatrix} 3\\2 \end{pmatrix}$$

5. a) Para $\{\mathbf{v}_1, ..., \mathbf{v}_k\}$ dados, sea $A = [\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k]$ y encuentre rref (A). Argumente por qué habrá una solución al sistema [A | w] para cualquier \mathbf{w} en el \mathbb{R}^n indicado. Explique por qué se puede concluir que el conjunto genera a todo ese \mathbb{R}^n .

$$\mathbf{i)} \mathbb{R}^3 \left\{ \begin{pmatrix} 4\\2\\9 \end{pmatrix}, \begin{pmatrix} 7\\1\\-8 \end{pmatrix}, \begin{pmatrix} 3\\-2\\4 \end{pmatrix} \right\}$$

ii)
$$\mathbb{R}^3$$
 $\left\{ \begin{pmatrix} 9 \\ -9 \\ 5 \end{pmatrix}, \begin{pmatrix} 5 \\ 7 \\ -7 \end{pmatrix}, \begin{pmatrix} -10 \\ 4 \\ 7 \end{pmatrix}, \begin{pmatrix} 3 \\ 5 \\ 5 \end{pmatrix} \right\}$

b) Para $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}$ dados, sea $\mathbf{A}=[\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_k]$ y encuentre rref (A). Argumente por qué habrá alguna \mathbf{w} en el \mathbb{R}^n indicado para el que no hay una solución al sistema $[\mathbf{A}\,|\,\mathbf{w}]$. Experimente usando MATLAB para encontrar dicha \mathbf{w} . Explique por qué puede concluir que el conjunto no genera todo \mathbb{R}^n .

$$\mathbf{i)} \mathbb{R}^4 \left\{ \begin{pmatrix} 10\\0\\-5\\-8 \end{pmatrix}, \begin{pmatrix} 9\\-9\\0\\-2 \end{pmatrix}, \begin{pmatrix} -4\\8\\1\\-1 \end{pmatrix} \right\}$$

ii)
$$\mathbb{R}^4 \left\{ \begin{pmatrix} 4 \\ 5 \\ 3 \\ -9 \end{pmatrix}, \begin{pmatrix} 3 \\ 8 \\ -5 \\ -1 \end{pmatrix}, \begin{pmatrix} 5 \\ 2 \\ 11 \\ -17 \end{pmatrix}, \begin{pmatrix} -3 \\ -7 \\ 0 \\ 8 \end{pmatrix} \right\}$$

iii)
$$\mathbb{R}^3 \left\{ \begin{pmatrix} 9 \\ -9 \\ 5 \end{pmatrix}, \begin{pmatrix} 5 \\ 7 \\ 7 \end{pmatrix}, \begin{pmatrix} 14 \\ -2 \\ 12 \end{pmatrix}, \begin{pmatrix} -4 \\ 16 \\ 2 \end{pmatrix} \right\}$$

6. Considere las matrices en el problema 2 de MATLAB 2.4. Pruebe la invertibilidad de cada matriz. Para cada matriz, decida si las columnas de A generarían o no todo \mathbb{R}^n (el tamaño de la