

KR in digital healthcare

Stavros Kanias University of Patras, Greece

Introduction

Medical appointments reamaining unclaimed after a cancelation have a significant cost in many aspects. ASP can help with that but further software integration steps are essential. Using Python, Clingo and SQL a solution to the problem was developed. Results seem promising.

04

The problem

Why fair and optimized rescheduling of medical appointments matters

Technical constraints

Without the ability to provide an AS

Without the ability to provide an ASP solver with large scale data from a database no real-world solution can be developed

The AI solution

Description and

Description and evaluation of the proposed ASP application

From concept to reality

Implementing the proposed solution in a real-world healthcare system

01 The problem

It's not that bad, right?

"An estimated 41% of U.S. adults had delayed medical care including urgent or emergency care (12%)."

—MMWR 2020

51.7% below 50k

Delayed treatments due to unavailable appointments mostly concern low-income households

26 days

Average waiting time for an appointment in the US for 2022

\$150 billion

The monetary loss for the US healthcare system due to unclaimed medical appointments

An example

Conventional vs Al approach

Maximize the individual benefit

Initial state

Timeslots

Despoina - 70

Appointment Schedule

Tillie	51015		А	ppointment	Schedule		
Monday	Patient - Score		Monday	Tuesday	Wednesday	Thursday	Friday
	Nikos – 90						
9-10	Giorgos – 87	9-10	Nikos				
	Kostas – 86	10-11					
Tuesday	Patient - Score	11-12				Ioannis	
	Giorgos - 72	12-13					
13-14	Ioannis - 60	13-14		Giorgos			
	Maria - 55			0.0.900			
Thursday	Patient - Score	14-15					
11-12	Ioannis - 45	15-16					Kostas
	Maria - 40	16-17					
Friday	Patient - Score						
15-16	Kostas - 71			0.3			

$$Score = \frac{0.3}{preference} + 0.7 \cdot priority$$

Community Benefit = 90 + 72 + 45 + 71 = 278

Nikos cancels his appointment

Timeslots

Appointment Schedule

Community Benefit =?

New timeslots become available for Giorgos and Ioannis

Timeslots

Despoina - 70

Appointment Schedule

			•	•			
Monday	Patient - Score		Monday	Tuesday	Wednesday	Thursday	Friday
9-10	Giorgos – 87						
	Kostas – 86	9-10	Giorgos				
Tuesday	Patient - Score	10-11					
13-14	Ioannis - 60	11-12				?	
	Maria - 55	12-13					
Thursday	Patient - Score	13-14		Ioannis			
11-12	loan - 45	14-15					
	Maria - 40	15-16					Kostas
Friday	Patient - Score	16-17					
15-16	Kostas - 71						

Community Benefit =?

Now Maria can receive an appointment

Timeslots

Appointment Schedule

	0.010	Appointment concurre						
Monday	Patient - Score		Monday	Tuesday	Wednesday	Thursday	Friday	
9-10	Giorgos – 87							
	Kostas – 86	9-10	Giorgos					
Tuesday	Patient - Score	10-11						
13-14	Ioannis - 60	11-12				Maria		
	Maria - 55	12-13						
Thursday	Patient - Score	13-14		Ioannis				
11-12	Maria - 40	14-15						
Polision	Detient Coore	15-16					Kostas	
Friday	Patient - Score	10.1=						
15-16	Kostas - 71	16-17						
	Despoina - 70		0 '1	D ('' 07	00 /0 71	050		

Community Benefit = 87 + 60 + 40 + 71 = 258

Maximize the community benefit

The same initial state

Timpelate

Despoina - 70

Tillle	Siots		Ар	Appointment Schedule				
Monday	Patient - Score		Monday	Tuesday	Wednesday	Thursday	Friday	
	Nikos – 90							
9-10	Giorgos – 87	9-10	Nikos					
	Kostas – 86	10-11						
Tuesday	Patient - Score	11-12				Ioannis		
	Giorgos - 72	12-13						
13-14	Ioannis - 60	13-14		Giorgos				
	Maria - 55			Clorgos				
Thursday	Patient - Score	14-15						
11-12	Ioannis - 45	15-16					Kostas	
	Maria - 40	16-17						
Friday	Patient - Score			<i>(</i> '. 00 5	70 (F FF :			
15-16	Kostas - 71		Common Be	enefit = 90 + 7	70 + 45 + 75 = 3	280		

Again, Nikos cancels his appointment but ...

Despoina - 70

Time	eslots		Appointment Schedule					
Monday	Patient - Score		Monday	Tuesday	Wednesday	Thursday	Friday	
	Nik 90		~~					
9-10	Giorgos – 87	9-10	N S					
	Kostas – 86	10-11	•					
Tuesday	Patient - Score	11-12				Ioannis		
	Giorgos - 72	12-13						
13-14	Ioannis - 60	13-14		Giorgos				
	Maria - 55			0.0.900				
Thursday	Patient - Score	14-15						
11-12	Ioannis - 45	15-16					Kostas	
	Maria - 40	16-17						
Friday	Patient - Score		_	_				
11-12	Kostas - 71		C	Common Ben	efit = ?			

This time the system chooses Kostas

Timeslots Appointmen

Despoina - 70

lime	eslots			Appointment			
Monday	Patient - Score		Monday	Schedule _{ay}	Wednesday	Thursday	Friday
9-10	Kostas – 86						
	Giorgos – 87	9-10	Kostas				
Tuesday	Patient - Score	10-11					
	Giorgos - 72	11-12				Ioannis	
13-14	Ioannis - 60	12-13					
	Maria - 55	13-14		Giorgos			
Thursday	Patient - Score	14-15					
11-12	Ioannis - 45	15-16					?
	Maria - 40	16-17					
Friday	Patient - Score						
15-16	Kos - 71			Common Ben	efit = ?		

And a greater community benefit is provided

- .		
Tim	าesl	lots

15-16

Despoina - 70

Appointment Schedule

Monday	Patient - Score		Monday	Tuesday	Wednesday	Thursday	Friday
9-10	Kostas – 86						
	Giorgos – 87	9-10	Kostas				
Tuesday	Patient - Score	10-11					
	Giorgos - 72	11-12				Ioannis	
13-14	Ioannis - 60	12-13					
	Maria - 55	13-14		Giorgos			
Thursday	Patient - Score	14-15					
11-12	Ioannis - 45	15-16					Despoina
	Maria - 40	16-17					Dooponia
Friday	Patient - Score	10-17					

Common Benefit = 80 + 70 + 45 + 70 = 273 > 258

Solution requirements

A real-world digital solution to this problem should be characterized by the following features:

- High performance (large sets of data in healthcare)
- Integration with existing digital healthcare software
- Fairness and optimality
- Pleasant user experience
- Scalability
- Ability to express complex scenarios

02

Technical constraints

Yes, but first...

ASP must be integrated with standard software

The three points of data flow

PostgreSQL DB

By being the software component where data is stored, a solid database is indeed the base of every modern application

Python

The Python programming language with its clorm, clingo and psycopg2 modules can be used to enable the communication between the batabase and the ASP solver

Clingo Solver

The clingo solver created by Potassco offers outstanding performance and rule formulation capabilities

Python and postgreSQL

DataModel

dbName:str dbKey:str schema:dict con:connection object (psycopg2)

connect()
close()
isEmpty():boolean
create(tablename,tabledict):creation query as str
createTables()
loadTestData()
getTables()
getAttributes(table)
dropTables()
dropData()

executeSQL(query,values,show,txtFile,fetch):list

conditions(cond,sep):str select(table,attributes,conditions,joins):list insert(table,val):bool update(table,new,conditions,joins):bool delete(table,conditions,joins):bool

values(val):list

Python and clingo

KnowledgeBase

name:str schema:dict kb:factbase object(clorm) type2field:dict splitPreds:dict mergedPreds:dict foreignPaths:dict

showPredContent(p) isPrimary(entity,attribute) getPrimary(entity) getPrimaryData(entity,attributes,data) getSplitPredName(schemaName) createPrimaryPredicate(entity, attributes, predicates) createSplitPreds() createSplitPred(name,attributes,primary) createMergedPreds() createMergedPred(entity,attributes) split(mergedPred) merge(splitPreds) isForeign(entity,attribute) getForeign(e1,e2) clear2dDict(dict) getForeignPath(jent,entity,attribute) getForeignPaths() in2out(inPaths) getInwardForeigns(entity,attribute) getOutwardForeigns(entity) getAllDeps(ent,cond) getDepChain(e1,e2) getJoinPreds(e1.e2) getJoinEntities(entities,conditions) aetJoins() getJoinedConditions(entity, joins) getDbConditions() bind2db(dbInfo) db2kb() getCompExp(entity,conditions) select(entities,conditions,order,pOut,getQuery) insert(entity,data,toDb) update(upd,conditions,cascade,toDb) delete(entities,conditions,getData,cascade,fromDb) extract(ent,split,cond,order)

run(asp,outPreds,searchduration,show,limit,subKB,subKBCond,merged,symbOut

From record to predicate

Split

patient_id(2,26057784758)

 $timeslot_id(2,1251)$

preference(2,1) score(2,37) status(2,0)

request(2)

Used for solving

Code resembles natural language

• Easier to express more complex rules

• More predicates in KB

 Much higher complexity of SQL type transactions in the KB

Two types of encoding were tested for the purpose of translating an SQL record to an ASP predicate

	id [PK] integer	patient_id /	timeslot_id integer	preference integer	score integer	status integer
1	2	26057784758	1251	1	37	0

2

Merged

Used for KBMS

• Smaller KB

• Much easier to use with SQL type transactions in the KB

• Less readable code

Can cause a slight drop in performance due to more complex rule expression and the many anonymous variables

request(2,26057784758,1251,1,37)

03 The AI solution

Solving the problem with PostgreSQL, Python and ASP

Database design

PostgreSQL, ideal for modern web applications

Entity Relation Diagram (ERD)

Database schema

Data fabrication

The DataFabricator class was developed for testing purposes

- Dynamically create pseudo realistic healthcare systems
- Assumes 2 appointments per patient
- Assumes an 9 to 5, five days a week schedule for doctors
- Schedules the appointments by choosing the highest (best case) or the lowest (worst case) score

DataFabricator

schema:dict tSpan:int quantities:dict tAvailability:bool

write2csv(entity,entityDiction,listOfDicts)

handleIntPrimaries(primaries,primaryKey,tempDict,attribute) loadNonForeign()

loadForeign(entityDiction, attribute)

chooseForeign(foreign_lists, attribute,remove, getIndex)

calculateScore(request,patientInfo)

handleStatus(requests, patientInfo)

fabricatePerson(quantity)

fabricateSpecialty(quantity)

fabricateDoctor(quantity)

fabricatePatient(quantity)

fabricateTimeslot(quantity)

fabricateRequest(quantity)

fabricate(entity)

Output and auxiliary predicates

Grant

The appointment will be granted The appointment is granted and is in the next schedule. the first choice of a patient. Represents the effect axiom

Granted

The appointment is currently appointed to a patient.

Best

The appointment is the first choice of a patient

Claimed

Represents the frame axiom.

OnlyOption

The appointment is a patient's only option

an appointment

Appointed

The patient has booked

SingleRequest

This request is the only one for a specific appointment

BestSingleRequest

This is the highest scoring of the patient's single requests

Set generation rules

01

0 {grant(R)} 1:- granted(R), not best(R)

Include the **granted** but **not best** requests as a patient can retain their currently owned appointment if it appears in the answer set that maximizes the common benefit.

02

 $0 \{ grant(R) \} \ 1 :- patient_id(R, P), score(R, S), not \ granted(R), patient_id(X, P), score(X, SX), granted(X), S > SX, R != X.$

Include the **not granted** requests of a patient **already having a granted request**, that **present a higher score** than the one **currently appointed** to the patient. This enables a patient to receive a request with higher priority if it helps to maximize the common benefit.

03

0 {grant(R)} 1:- patient_id(R, P), not appointed(P).

Include all the requests that belong to a patient who has not been appointed a timeslot if this leads to the optimal answer set.

Logic constraints

01

:- grant(R1), timeslot_id(R1, T), grant(R2), timeslot_id(R2, T), R1 != R2.

Each **timeslot** can be appointed to **only one patient**.

02

:- grant(R1), patient_id(R1, P), timeslot_id(R1, T1), doctor_id(T1, D1), specialty_title(D1, S), grant(R2), patient_id(R2, P), timeslot_id(R2, T2), doctor_id(T2,D2), specialty_title(D2, S), R1 != R2.

Each **patient** can only **receive one timeslot** (from a specific specialty if the general scope is used).

Fairness constraints

01

:- granted(R), patient_id(R, P), not claimed(R), 0 { grant(X) : patient_id(X, P) } 0.

If a patient had an appointment in the previous schedule a timeslot must also be granted to that patient after the rescheduling.

02

:- timeslot_id(R, T), patient_id(R, P), score(R,S), grant(R), not granted(R), appointed(P), timeslot_id(X, T), score(X, SX), onlyOption(X), S < SX, R != X.

If a request is a patient's **only option**, it **cannot be dismissed** for the sake of a lower scoring request even if it leads to a chain reaction that maximizes common benefit. If we don't apply this constraint a patient with only one request will most probably never receive an appointment.

Set exclusion to increase performance

01

:- grant(R), timeslot_id(R,T), claimed(X), timeslot_id(X,T), R != X.

All requests that claim an already claimed timeslot will not be taken into consideration.

02

:- timeslot_id(R, T), patient_id(R, P), score(R,S), grant(R), not granted(R), appointed(P), timeslot_id(X, T), score(X, SX), onlyOption(X), S < SX, R != X.

All the single requests that are not the patient's best single request will not be taken into consideration.

Automatic assignments to increase the number of served patients

01

:- patient_id(R, P), score(R, S), bestSingleRequest(R), patient_id(X, P), score(X, SX), granted(X), R != X, S > SX, patient_id(Y, P), Y != R, grant(Y), not grant(R).

If a request is a patient's **best single** request and it has a better score than the one already granted to the patient **it will automatically be assigned to the patient** blocking all the other requests made by the patient.

02

:- patient_id(R, P), bestSingleRequest(R), not appointed(P), patient_id(Y, P), Y != R, grant(Y), not grant(R).

If a **single request** is attributed to an **unappointed patient**, the system should **grant it automatically** and block all the other requests made by the patient.

Evaluation

Parameters that affect the performance

- The previous state of the canceled appointment (granted or not granted)
- The type of prior scheduling (close or far from optimality)
- The total number of timeslots
- The patients to request and the request to timeslot ratio (demand)
- The path followed to reach optimality
- The difference in the number of predicates in the KB caused by the choice of encoding

Evaluation

Execution times for 3 different datasets

Timeslots	Patients	Requests	Exec	ution Time (s)
			Best	Worst
400	500	1000	0.06	2.79
960	1200	2400	0.18	152.07
2000	2500	5000	421.4	>1800

Timeslots	Patients	Requests	Exec	ution Time (s)
			Best	Worst
400	500	1000	0.09	4.19
960	1200	2400	0.15	448.9
2000	2500	5000	516.9	> 1800

Split encoding

Merged encoding

04

From concept to reality

Facing the challenges of a real-world implementation

Performance limitations

Although very powerful, ASP solvers have their limitations. Possible paths to further scalability are:

Further code optimization

More constraints can be added and less set can be created with further code optimization

Set time limit

Sacrificing optimality an interrupt signal can be given to the solver if a model occurs after a certain time limit

Limit models

Again, at the cost of optimality a limit for the number of examined models can be set

Batching

The most practical path to scalability is to search for a more localized optimality through batching according to a specific unit. The lowest level of clustering will always be the fundamental resource, in this case the doctors and their time. The total optimality will be sacrificed but the level of specialization can be tuned to get a high enough benefit for a low enough execution time

Applying batching for 2000 timeslots

Time(s)

Benefit

General

Specialty

Doctor

315,64	8161
3,51	7339
1,73	5831

Web App UI

1

Log in

3

Store the requests and their score in the database

2

Display the current schedule

4

Actively listen for a cancelation

In the event of a cancelation

1

Delete the request from DB

2

Inform the KB

3

Run the rescheduler

4

Contact the patiens of the action chain

Managing action chains

The explainability of ASP provides us with an action chain of request to grant at the end of the optimization process. To realize the chain, patients should give their consent. The process will use only automated contact methods with binary (yes/no) answers.

The system finds the patient behind the first request of the solver's output An automated

text is sent asking
for permission to
reschedule the patient to
a better request

The process continues

Managing action chains

S

What if in the meantime another cancelation happens?

01

Immediately break the chain sacrificing part of the previous rescheduling

Take into consideration only the confirmed part of the previous chain. Update the database and then reschedule with the new cancelation.

02

Wait for the confirmation process of the previous chain to finish

Wait for the previous rescheduling to be fully realized before the new rescheduling starts.

03

Set a timeout for the patient's response and reschedule after it expires for the first time breaking the previous action chain

A happy medium between solutions 1 and 2, the previous action chain will be taken into consideration only If its confirmation process progresses at a reasonable rate

Do you have any questions?

stavroskanias@gmail.com - up1066563@upnet.gr

https://github.com/StavrosKanias/Medical_Appointment_Rescheduling_App +30 694 755 3976

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, infographics & images by **Freepik** and illustrations by **Storyset**

Please keep this slide for attribution

Resources

Bibliography

- M. Hawkins, "Survey of Physician Appointment Wait Times and Medicare and Medicaid Acceptance Rates," AMN Healthcare, 2022.
- A. H. Gertz, C. C.Pollack, M. D.Schultheiss and J. S. Brownstein, "Delayed medical care and underlying health in the United States during the COVID-19 pandemic: A cross-sectional study," Preventive Medicine Reports, 2022.
- S. Kanias, "An Al approach to Large Scale Medical Appointment (Re)Scheduling Using ASP," University of Patras, Patra, 2023.

Icons

Icon Pack: Medicine | Lineal

Online

 J. Gier, "Healthcare Innovation," SCI Solutions, [Online]. Available: https://www.hcinnovationgroup.com/clinicalit/article/13008175/missed-appointments-cost-theus-healthcare-system-150b-each-year. [Accessed August 2023].

slidesgo