Chapitre 5 Fonctions trigonométriques

Table 5.1 – Objectifs. À fin de ce chapitre 5...

	Pour m'entraîner <u></u>						
Je dois connaître/savoir faire	6	•	Ö				
Enroulement de la droite des réels sur le cercle trigonométrique							
équation du cercle unité et utilisation	1	2, 3					
réel t et coordonnées du point correspondant du cercle unité		4, 5, 6					
valeur principale		7					
Angles orientés et mesure en radians							
problèmes de conversion et calcul d'aire et de longueur d'arcs		9, 10	11, 12				
mesure principale d'angles orientés		13, 14					
Définitions des fonctions cos et sin sur $\mathbb R$							
propriétés des fonctions trigonométries (identité de Pythagore, périodicité, parité)	15, 16, 17	18, 5.8, 19					
valeurs particulières et résolution d'équations simples.		20 21					
fonctions trigonométriques :parité et période		22 23					

5.1 Le cercle unité

Dans ce chapitre, le plan est muni d'un repère orthonormé. Les portions du plan délimitées par les axes du repères s'appellent **quadrants** et sont numérotés de I à IV (cf. figure 5.1).

Figure 5.1 – Les quadrants de I à IV

Définition 5.1 Le cercle trigonométrique (ou simplement cercle unité) est le cercle de rayon 1 centré à l'origine et d'équation \mathscr{C} : $x^2 + y^2 = 1$.

Le cercle unité est orienté dans le sens direct (antihoraire).

■ Exemple 5.1 — justifier l'appartenance au cercle unité.

Montrer que point $P(\frac{\sqrt{3}}{3}; \frac{\sqrt{6}}{3}) \in \mathscr{C}$.

Il suffit de vérifiez que les cordonnées de P vérifient l'équation du cercle unité : $\left(\frac{\sqrt{3}}{3}\right)^2 + \left(\frac{\sqrt{6}}{3}\right)^2 = \frac{3}{9} + \frac{6}{9} = 1$

Figure 5.2 – Le cercle unité

Déterminer y sachant que le point $P\left(\frac{\sqrt{3}}{2}; y\right)$ appartient au cercle unité et au quadrant IV.

solution. $P \in \mathcal{C}$, donc y vérifie $\left(\frac{\sqrt{3}}{2}\right)^2 + y^2 = 1 \iff y^2 = 1 - \frac{3}{4} = \frac{1}{4} \iff y = \pm \frac{1}{2}$ Le point $P \in \text{Quadrant IV}$, $y \leqslant 0$. Donc $y = -\frac{1}{2}$.

Définition 5.2 — L'enroulement de la droite des réels sur le cercle unité. Soit $t \in \mathbb{R}$.

Si $t \ge 0$, on place le point P(x; y) à la distance t le long du cercle \mathscr{C} , en partant de I(1; 0)et en se déplaçant dans le sens positif.

Si t < 0, on se déplace d'une distance |t| dans le sens *négatif*.

t est la mesure de l'arc orienté \widehat{IP} .

Le périmètre du cercle unité étant égale à 2π , les réels t = 0, 2π , 4π , 8π ... mais encore -2π , -4π ... correspondent tous avec le point P(1; 0).

Figure 5.3 – Point P(x ; y) du cercle unité représentant le réel tdans les cas t>0 et t<0.

LG Jeanne d'Arc, $1^{\rm ère}{\rm SPE}$

5.1 Le cercle unité 3

Figure 5.4 – Points associés aux réels $t=\frac{\pi}{2}=\frac{2\pi}{4}$ quart de tour, $\pi=\frac{2\pi}{2}$ demi tour, $\frac{3\pi}{2}$ (3 quarts de tour) et 2π (tour complet).

Figure 5.5 – Les points correspondant aux réels $t=3\pi$, $-\pi$ et $-\frac{\pi}{2}$.

■ Exemple 5.3 Donner les coordonnées du point associé à $t = \frac{\pi}{4}$.

solution. P(x ; y) est sur la droite d'équation y = x.

$$x$$
 vérifie $x^2 + x^2 = 1$

$$2x^2 = 1$$

$$x = \pm \frac{\sqrt{2}}{2}$$

P est dans le quadrant I, x et y sont positifs et $x=y=\frac{\sqrt{2}}{2}$.

Figure 5.6 – $t = \frac{\pi}{4}$

Table 5.2 − Valeurs à retenir ♥

t	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
point P	(1; 0)	$\left(\frac{\sqrt{3}}{2};\frac{1}{2}\right)$	$\left(\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2}\right)$	$\left(\frac{1}{2}; \frac{\sqrt{3}}{2}\right)$	(0; 1)

4

5.2 Mesure d'angles orientés

Définition 5.3 L'angle \widehat{AOB} est une partie du plan délimité par deux deux demi-droites [OA) et [OB).

On trace un cercle de rayon 1 et de centre O.

La mesure en rad de l'angle \widehat{AOB} est égale à longueur de l'arc intercepté.

Un angle plat correspond à 180° et intercepte un demi-cercle. Sa mersure en radian est π :

$$180^{\circ} = \pi \text{ rad}$$
 $1^{\circ} = \frac{\pi}{180} \text{ rad} \approx 0.017 \text{ 45 rad}$ $1 \text{ rad} = \left(\frac{180}{\pi}\right)^{\circ} \approx 57,296^{\circ}$

■ Exemple 5.4 — conversion rad ↔ degrés. se fait par simple proportionnalité.

Compléter et retenir les mesures en rad d'angles particuliers.

<u>U</u>								
mesure en degrés°	360	180	90	60	45			
mesure en rad	2π	π	$\frac{\pi}{2}$			$\frac{\pi}{6}$		

solution.
$$60^{\circ} = 60 \times \frac{\pi}{180} \text{ rad} = \frac{\pi}{3} \text{ rad et } \frac{\pi}{6} \text{ rad} = \frac{\pi}{6} \times \frac{180}{\pi} = 30^{\circ}.$$

La longueur s d'un arc d'angle au centre θ (en rad) vaut $s = r\theta$.

Démonstration.
$$s = \frac{\theta}{2\pi} \times \text{périmètre} = \frac{\theta}{2\pi} \times 2\pi r = r\theta$$
.

- Exemple 5.5 longueur d'un arc \leftrightarrow angle au centre.
- a) Détermine la longueur de l'arc d'un cercle de rayon 10 m d'angle au centre 30°.
- b) Détermine l'angle au centre en rad et en degrés pour un arc de longueur 6 m sur un cercle de rayon 4 m.

solution. a) D'après l'exemple 5.4 : $30^\circ = \frac{\pi}{6}$ rad d'où $s = r\theta = 10 \times \frac{\pi}{6} = \frac{5\pi}{3}$ m.

b)
$$\theta = \frac{s}{r} = \frac{6}{4} = \frac{3}{2} \text{ rad} = \frac{3}{2} \times \frac{180}{\pi} \approx 86^{\circ}$$
.

Définition 5.4 L'angle orienté $(\overrightarrow{OR_1}; \overrightarrow{OR_2})$ est défini par un sommet O, une demi-droite $[OR_1)$ initiale, et une demi-droite finale $[OR_2)$.

Pour mesurer un angle orienté, on détermine l'angle en rad d'une rotation qui transforme $[OR_1)$ en $[OR_2)$.

Si cette rotation se fait dans le sens positif, la **Figure 5.7** – Angle orienté $(\overrightarrow{OA}; \overrightarrow{OB})$ avec une mesure de l'angle est positive.

Si cette rotation se fait dans le sens négatif, la mesure de l'angle est négative.

Figure 5.8 – L'angle orienté $(\overrightarrow{OA}; \overrightarrow{OB})$ a une infinité de mesures, positives et négatives.

Figure 5.9 — Dans un plan repéré et orienté, il est usuel de représenter un angle orienté en prenant comme demi-droite initiale l'axe [Ox) des abscisses.

Définition 5.5 — mesure principale en radian d'un angle $(\overrightarrow{OA}~;~\overrightarrow{OB})$.

On trace le cercle de centre $\mathcal O$ et de rayon 1.

La mesure principale θ de l'angle $(\overrightarrow{OA}\;;\;\overrightarrow{OB})$ est la longueur du plus court arc de cercle orienté intercepté.

La mesure principale vérifie $-\pi < \theta \leqslant \pi$.

L'angle $(\overrightarrow{OA}~;~\overrightarrow{OB})$ a une infinité de mesures de la forme $\theta + 2k\pi$ ($k \in \mathbb{Z}$). k est le nombre de tours effectués en plus de l'angle θ dans le sens direct si k > 0, ou indirect si k < 0.

Figure 5.10 – $(\overrightarrow{OA}~;~\overrightarrow{OB})$ a pour mesure principale $-\frac{5\pi}{6}$. D'où $(\overrightarrow{OA}~;~\overrightarrow{OB}) = -\frac{5\pi}{6} + 2k\pi$

6

5.3 Fonctions trigonométriques

Définition 5.6 Pour tout $t \in \mathbb{R}$, on désigne par P le point du cercle unité correspondant à t.

Le cosinus de t est l'abscisse de P : $\cos t = x$

Le sinus de t est l'ordonnée de P : $\sin t = y$

Les coordonnées de P sont $P(\cos(t); \sin(t))$.

Propriété 5.3 — Identité trigonométrique de Pythagore. Pour tout $t \in \mathbb{R}$ on a $\cos^2(t) + \sin^2(t) = 1$.

Propriété 5.4 Les fonctions cos et sin sont périodiques de **période** 2π :

pour tout
$$t \in \mathbb{R}$$
 et $n \in \mathbb{Z}$

$$\cos(t + 2n\pi) = \cos(t)$$

$$\sin(t + 2n\pi) = \sin(t)$$

Propriété 5.5 — parité. Pour tout $t \in \mathbb{R}$

$$cos(-t) = cos(t)$$
 la fonction cos est paire

sin(-t) = -sin(t) la fonction sin est impaire

Propriété 5.6 Pour tout $t \in \mathbb{R}$:

$$\cos(\pi + t) = -\cos(t)$$
 $\sin(\pi + t) = -\sin(t)$

$$\cos(\pi - t) = -\cos(t)$$
 $\sin(\pi - t) = \sin(t)$

Propriété 5.7 — Équation $\cos t = \cos a$ et $\sin t = \sin a$. Soit t et $a \in \mathbb{R}$:

• $\sin(t) = \sin(a) \iff t = a + 2k\pi$ ou $t = \pi - a + 2k\pi$, $k \in \mathbb{Z}$

$$\iff x = -\frac{\pi}{3} + 2k\pi$$
 ou $x = \pi - \frac{\pi}{3} + 2k'\pi$

Figure 5.11 – Représentations graphiques des fonctions cos et sin. $k \in [-1;1]$ a une infinité d'antécédents par cos ou sin. $\arccos(k)$ est l'antécédent de k par cos sur $[0;\pi]$. $\arcsin(k)$ est l'antécédent de k par sin sur $[-\frac{\pi}{2};\frac{\pi}{2}]$.

Figure 5.12 − à mémoriser ♥ Coordonnées des points du cercle unité et valeurs particulières de cos et sin

5.4 Exercices

5.4.1 Exercices cercle trigonométrique

Exercice 1 — concepts. Complétez

Le cercle trigonométrique est un cercle de centre et de rayon

Dans un repère orthonormé, l'équation du cercle trigonométrique est

Les points $A(1; \ldots)$, $B(-1; \ldots)$, $C(\ldots; 1)$ et $D(\ldots; -1)$ sont sur \mathscr{C} .

Les points correspondants aux réels $\frac{\pi}{2}$; π ; $-\frac{\pi}{2}$ et 2π ont respectivement pour coordonnées . ,

.....etet

Exercice 2 Montrer que le point donné est sur le cercle unité.

1)
$$A\left(\frac{3}{5}; -\frac{4}{5}\right)$$

2)
$$B\left(\frac{-24}{25}; -\frac{7}{25}\right)$$

3)
$$C\left(\frac{3}{4}; -\frac{\sqrt{7}}{4}\right)$$

2)
$$B\left(\frac{-24}{25}; -\frac{7}{25}\right)$$
 3) $C\left(\frac{3}{4}; -\frac{\sqrt{7}}{4}\right)$ **4)** $D\left(-\frac{5}{7}; -\frac{2\sqrt{6}}{7}\right)$

Exercice 3 Déterminer la coordonnée manquante sachant que $P \in \mathscr{C}$ et le quadrant indiqué.

1)
$$P(-\frac{3}{5}; \ldots) \in \text{Quadrant III}$$

1)
$$P(-\frac{3}{5}; \ldots) \in \text{Quadrant III} \mid 2$$
) $P(\ldots; -\frac{7}{25}) \in \text{Quadrant IV} \mid 3$) $P(\ldots; \frac{1}{3}) \in \text{Quadrant II}$

3)
$$P(\ldots; \frac{1}{3}) \in \mathbf{Quadrant}$$

Exercice 4 Les cercles trigonométriques sont marqués avec t augmentant par incréments de $\frac{\pi}{4}$ et $\frac{\pi}{6}$ respectivement. Complétez les coordonnées des points indqués.

Exercice 5 — modèle. Compléter pour déterminer les coordonnées des points correspondants aux réels.

a)
$$t = -\frac{\pi}{4}$$

b)
$$t = \frac{3\pi}{4}$$

c)
$$t = -\frac{5\pi}{6}$$

solution. Complétez:

a) P le point correspondant à $-\frac{\pi}{4}$, et Q le point correspondant à $\frac{\pi}{4}$. (placer P et Q sur le cercle trigonométrique)

Les points sont symétriques par rapport Comme $Q\left(\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right)$, on a donc P.....

b) P le point correspondant à $\frac{3\pi}{4}$, et Q le point correspondant à $\frac{\pi}{4}$. (placer P et Q sur le cercle trigonométrique)

Les points sont symétriques par rapport Comme $Q\left(\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}\right)$, on a donc P......

c) P le point correspondant à $-\frac{5\pi}{6}$, et Q le point correspondant à $\frac{\pi}{6}$. (placer P et Q sur le cercle trigonométrique)

Les points sont symétriques par rapport

), on a donc P..... Comme Q (

Exercice 6 Pour chaque $t \in \mathbb{R}$, tracer un cercle trigonométrique à main levée et retrouver les coordonnées du point associé:

1)
$$t = 4\pi$$

3)
$$t = \frac{3\pi}{2}$$

5)
$$t = \frac{4\pi}{3}$$

7)
$$t = \frac{5\pi}{4}$$

9)
$$t = \frac{11\pi}{6}$$

2)
$$t = -\frac{\pi}{6}$$

1)
$$t = 4\pi$$
 | 3) $t = \frac{3\pi}{2}$ | 5) $t = \frac{4\pi}{3}$ | 7) $t = \frac{5\pi}{4}$ | 9) $t = \frac{11\pi}{6}$ | 2) $t = -\frac{\pi}{6}$ | 6) $t = \frac{5\pi}{2}$ | 8) $t = -\frac{7\pi}{4}$ | 10) $t = \frac{5\pi}{3}$

6)
$$t = \frac{5\pi}{2}$$

8)
$$t = -\frac{7\pi}{4}$$

10)
$$t = \frac{5\pi}{3}$$

■ Exemple 5.7 — modèle. Pour chaque t, retrouver $-\pi < t' \leqslant \pi$ tel que $t = t' + 2k\pi$ ou $k \in \mathbb{Z}$. En déduire les coordonnées du point associé à t.

solution. Point de reflexion : pouquoi avoir entouré 4π et -10π ?

$$t = \frac{19\pi}{6}$$

$$3\pi < \frac{19\pi}{6} \leqslant \boxed{4\pi}$$

$$-\pi < \frac{19\pi}{6} - 4\pi \leqslant 0$$

$$-\pi < \frac{-5\pi}{6} \leqslant 0$$

$$19\pi$$

 $0 < \frac{\pi}{4} \leqslant \pi$

Le point associé à $\frac{19\pi}{6}$ est $P(-\frac{\sqrt{3}}{2}; -\frac{1}{2})$. Le point associé à $\frac{\pi}{4}$ est $P(\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2})$.

Exercice 7 — à vous. Mêmes consignes

1.
$$t = \frac{13\pi}{6}$$

2.
$$t = \frac{41\pi}{6}$$

1.
$$t = \frac{13\pi}{6}$$
 | 2. $t = \frac{41\pi}{6}$ | 3. $t = -\frac{11\pi}{3}$ | 4. $t = \frac{31\pi}{6}$ | 5. $t = -\frac{41\pi}{4}$

4.
$$t = \frac{317}{6}$$

5.
$$t = -\frac{41\pi}{4}$$

5.4.2 Exercices angles et radians

Exercice 8 — concepts. Complétez

La mesure en radian d'un angle θ est de l'arc intercepté par l'angle sur un cercle de rayon Pour convertir en radians il faut multiplier les mesures données en degrés par Si l'angle au centre est θ et le rayon du cercle r, alors la longueur de l'arc intercepté est La mesure principale d'un angle orienté est toujours comprise entre $(\overrightarrow{OI}\;;\;\overrightarrow{OP})=\theta+2k\pi.$ Si $\theta\in [\frac{\pi}{2};\pi]$ alors $P\in \mathbf{Quadrant}$

Exercice 9 Convertir en degrés les mesures données en rad

$$\theta_1 = \frac{5\pi}{3} \text{ rad}$$

$$\theta_2 = \frac{3\pi}{4} \operatorname{rad}$$

$$\theta_1 = \frac{5\pi}{3} \text{ rad}$$
 $\theta_2 = \frac{3\pi}{4} \text{ rad}$ $\theta_3 = \frac{5\pi}{6} \text{ rad}$ $\theta_4 = 3 \text{ rad}$ $\theta_5 = 2 \text{ rad}$

$$\theta_4 = 3 \text{ rad}$$

$$\theta_5 = 2 \text{ rad}$$

Exercice 10 Convertir en rad les mesures données en degrés

$$\theta_1 = 15^{\circ}$$

$$\theta_2 = 36^{\circ}$$

$$\theta_3 = 54$$

$$\theta_{\rm A}=75^{\rm o}$$

Exercice 11

1. Dans chaque cas déterminer la longueur $s \mid 2$. Déterminer la mesure de θ en rad puis en de l'arc

degrés :

Exercice 12 \mathscr{C} est le cercle unité dans le repère (O; I, J) Placer les points P_i sur \mathscr{C} sachant que :

$$(\overrightarrow{OI} \; ; \; \overrightarrow{OP_1}) = -\frac{5\pi}{6}$$

$$(\overrightarrow{OA}; \overrightarrow{OP_2}) = \frac{\pi}{2} - 6\pi$$

$$(\overrightarrow{OI} \; ; \; \overrightarrow{OP_3}) = \pi - (\overrightarrow{OI} \; ; \; \overrightarrow{OA}) \qquad (\overrightarrow{OA} \; ; \; \overrightarrow{OP_7}) = -\frac{3\pi}{2} + 5\pi$$

$$(\overrightarrow{OI} \; ; \; \overrightarrow{OP_4}) = \pi + (\overrightarrow{OI} \; ; \; \overrightarrow{OA}) \qquad (\overrightarrow{OI} \; ; \; \overrightarrow{OP_8}) = -\frac{5\pi}{4} + 7\pi$$

$$(\overrightarrow{OI}; \overrightarrow{OP_1}) = -\frac{5\pi}{6}$$
 $(\overrightarrow{OJ}; \overrightarrow{OP_5}) = \frac{7\pi}{4} + 10\pi$
 $(\overrightarrow{OA}; \overrightarrow{OP_2}) = \frac{\pi}{2} - 6\pi$ $(\overrightarrow{OA}; \overrightarrow{OP_6}) = 2023\pi$

$$(\overrightarrow{OA} \; ; \; \overrightarrow{OP_6}) = 2023\pi$$

$$(O\acute{A} \; ; \; O\acute{P_7}) = -\frac{3\pi}{2} + 5\pi$$

$$(\overrightarrow{OI}; \overrightarrow{OP_8}) = -\frac{5\pi}{4} + 7\pi$$

Exercice 13 Déterminer la mesure principale des angles orientés donnés en rad.

 $\theta_1 = 173\pi$

 $\theta_2 = -250\pi \qquad \theta_3 = \frac{7\pi}{3} \qquad \theta_4 = -\frac{17\pi}{6} \qquad \theta_5 = \frac{53\pi}{2}$

Exercice 14 P est un point du plan repéré. Déterminez à quel quadrant il appartient.

1) $(\overrightarrow{OI} \; ; \; \overrightarrow{OP}) = \frac{21\pi}{4}$ | 2) $(\overrightarrow{OI} \; ; \; \overrightarrow{OP}) = \frac{14\pi}{3}$ | 3) $(\overrightarrow{OI} \; ; \; \overrightarrow{OP}) = \frac{-13\pi}{4}$ | 4) $(\overrightarrow{OI} \; ; \; \overrightarrow{OP}) = \frac{5\pi}{3} - 2\pi$

5.4 Exercices 11

5.4.3 Exercices fonctions trigonométriques

Dans ses exercices, le plan est muni d'un repère orthonormé (O; I, J) et du cercle unité orienté \mathscr{C} .

Exercice 15 — concepts. Complétez

- 1. Pour P(x; y) un point du cercle, et si $(\overrightarrow{OI}; \overrightarrow{OP}) = t + 2k\pi$ alors $\sin t = \dots$ et $\cos t = \dots$
- 2. Si $P(x; y) \in \mathscr{C}$ alors $x^2 + y^2 = \dots$ Donc $\cos^2 t + \sin^2 t = \dots$
- 4. Si $P \in \text{Quadrant I et } (\overrightarrow{OI}; \overrightarrow{OP}) = t + 2k\pi, \text{ alors } \cos t \dots 0 \text{ et } \sin t \dots 0.$
 - Si $P \in \text{Quadrant IV et } (\overrightarrow{OI}; \overrightarrow{OP}) = t + 2k\pi, \text{ alors } \cos t \dots 0 \text{ et } \sin t \dots 0.$

- 7. $\sin(\pi) = \dots \cos(\pi \frac{\pi}{4}) = \dots$
 - Si $\cos(t) = -\frac{1}{2}$ et $\sin(t) > 0$, alors la mesure principale de t est
 - Si $\sin(t) = \frac{1}{2}$, alors la mesure principale de t estouou

Exercice 16 Complétez:

- 1. Si $\sin(t) = 0.2$ alors $\sin(-t) = \dots$ | 5. Si $\cos(t) = -0.8$ alors $\cos(\pi t) = \dots$
- **2.** Si $\sin(t) = 0.35$ alors $\sin(\pi t) = \dots$ 6. Si $\cos(t) = 0.1$ alors $\cos(3\pi + t) = \dots$
- 3. Si $\sin(t) = -0.6$ alors $\sin(\pi + t) = \dots$ 7. Si $\cos(t 4\pi) = 0.3$ alors $\cos(t) = \dots$
- 4. Si $\cos(t) = 0.8$ alors $\cos(-t) = \dots$ 8. Si $\sin(\pi t) = 0.4$ alors $\sin(t) = \dots$

Exercice 17 Complétez afin de déterminer

- 1. $\sin\left(\frac{8\pi}{3}\right) = \sin\left(\dots + 2\pi\right) = \sin\left(\dots\right) = \sin\left(\pi \dots\right) = \dots \sin\left(\frac{\pi}{3}\right) = \dots$
- 2. $\cos\left(\frac{7\pi}{6}\right) = \cos\left(\ldots + \pi\right) = \cos\left(\ldots\right) = \ldots$
- 3. $\sin\left(\frac{19\pi}{4}\right) = \dots \sin\left(\frac{3\pi}{4} + \dots\right) = \dots \sin\left(\frac{3\pi}{4}\right) = \sin\left(\pi \dots \right) = \dots \sin\left(\dots \right) = \dots$
- 4. $\cos\left(\frac{17\pi}{6}\right) = \cos\left(-\frac{\pi}{6} + \ldots\right) = \ldots$

Exercice 18 — 🗹 Déterminer les images suivantes en détaillant les étapes.

- 1. $\sin \frac{5\pi}{3}$

- 2. $\cos \frac{11\pi}{3}$

- $\begin{vmatrix} 3. & \sin \frac{11\pi}{4} \\ 4. & \sin(25\pi) \end{vmatrix} = \begin{vmatrix} 5. & \cos(-250\pi) \\ 6. & \cos\left(-\frac{\pi}{3}\right) \end{vmatrix} = \begin{vmatrix} 7. & \cos\left(-\frac{7\pi}{6}\right) \\ 8. & \sin\left(-\frac{2\pi}{3}\right) \end{vmatrix} = \begin{vmatrix} 9. & \sin\left(-\frac{3\pi}{4}\right) \\ 10. & \cos\left(-\frac{11\pi}{3}\right) \end{vmatrix}$

■ Exemple 5.8 — \blacksquare . t est situé dans le Quadrant IV. Déterminer $\sin(t)$ sachant que $\cos(t) = \frac{3}{5}$.

 $\textit{D\'{e}monstration.} \ \cos^2(t) + \sin^2(t) = 1 \ \text{donc} \ \sin^2(t) = 1 - \cos^2(t) = 1 - \left(\tfrac{3}{5}\right)^2 = \tfrac{16}{25}, \ \sin(t) = \pm \tfrac{4}{5}.$ t est dans le Quadrant IV, $\sin(t) < 0$ et on a $\sin(t) = -\frac{4}{5}$.

Exercice 19 — 🖬. Dans chaque cas, déterminer l'image demandée :

- 1. $\sin(t) = -\frac{4}{5}$, déterminer $\cos(t)$ sachant que t est dans le Quadrant IV.
- 2. $\cos(t) = -\frac{7}{25}$, déterminer $\sin(t)$ sachant que t est dans le Quadrant III.
- 3. $\sin(t) = -\frac{1}{4}$, déterminer $\cos(t)$ sachant que $\cos(t) < 0$.
- 4. $\cos(t) = -\frac{1}{3}$, déterminer $\sin(t)$ sachant que t est dans le Quadrant IV.
- 5. $\sin(t) = 0.8$, déterminer $\cos(t)$ sachant que $t \in [\frac{\pi}{2}; \pi]$.

Exercice 20 — \blacksquare . Trouver dans chaque cas le réel x demandé.

- **2.** $\cos(x) = -\frac{1}{2}$ et $x \in [\pi; 2\pi]$ | **4.** $2\sin(x) = 1$ et $x \in [\frac{\pi}{2}; \pi]$ | **6.** $2\cos(x) = \sqrt{2}$ et $x \in [-\frac{\pi}{2}; 0]$
- **Exemple 5.9** Analyser les résolutions dans $\mathbb R$ des équations d'inconnue x suivantes :

$$\begin{array}{lll} \sqrt{2}\cos(x) + 1 = 0 & 2\sin(x) = 1 \\ \cos(x) = -\frac{1}{\sqrt{2}} = -\frac{\sqrt{2}}{2} & \sin(x) = \frac{1}{2} \\ \cos(x) = \cos(\frac{3\pi}{4}) & \sin(x) = \sin(\frac{\pi}{6}) \\ x = \frac{3\pi}{4} + 2k\pi & \text{ou} & -\frac{3\pi}{4} + 2k'\pi & x = \frac{\pi}{6} + 2k\pi & \text{ou} & \pi - \frac{\pi}{6} + 2k'\pi \end{array} \right) \\ \begin{array}{ll} isoler\cos(x) \text{ ou } \sin(x) \\ \cos(\frac{3\pi}{4}) = -\frac{\sqrt{2}}{2} \text{ et } \sin(\frac{\pi}{6}) = -\frac{1}{2} \\ \cos(\frac{3\pi}{4}) = -\frac{\sqrt{2}}{2} \text{ et } \sin(\frac{\pi}{6}) = -\frac{1}{2} \end{array}$$

Exercice 21 — \blacksquare . Résoudre dans $\mathbb R$ les équations suivantes :

$$(E_1) \cos(x) = -\frac{1}{2}$$
 $\left| (E_2) \cos(x) = -1 \right| \left| (E_3) \sin(x) = \frac{\sqrt{3}}{2} \right| \left| (E_4) 2\sin(x) + \sqrt{3} = 0 \right|$

Exercice 22 — parité. Pour chaque fonction définie sur \mathbb{R} ,

- 1. Comparer les expressions de f(x) et f(-x).
- 2. En déduire la parité ou non de la fonction. Vérifiez graphiquement sur la numworks.

$$f(x) = x^2 \sin(x)$$

$$f(x) = x^3 + \cos(x).$$

$$f(x) = \sin(x) \cos(x)$$

$$f(x) = x^3 + \cos(x).$$

$$f(x) = \sin(x) + \cos(x)$$

$$f(x) = \cos(\sin x)$$

$$f(x) = \sin(x) \cos(x)$$

$$f(x) = x \sin^3(x)$$

$$f(x) = \frac{|\sin(x)|}{x^2}$$

Les fonctions du type $t\mapsto A\sin(\omega t+\varphi)$ on une période $T=\frac{2\pi}{\omega}$ c.f. lien

Exercice 23 Pour chaque fonction définie sur \mathbb{R} , comparer les expressions de f(x+T) avec f(x). En déduire si T est une période.

$$f(x) = \sin(x)\cos(x)$$
 avec $T = \pi \mid f(x) = \cos(5x + 3)$ avec $T = \frac{2\pi}{5} \mid f(x) = 2\sin(3x - 1)$ avec $T = \frac{2\pi}{3}$