Recap: ML basics

Different settings of learning

UnsupervisedClustering

Self-supervised Proxy task

Model + Data + Optimisation

Supervised ML problem

Supervised ML problem

Supervised ML problem

estimate f from finite sample

Function approximation

Function approximation

 $f \in \text{hypothesis class (typically parametric)}$

Function approximation

 $f \in \text{hypothesis class (typically parametric)}$

Probabilistic estimation

estimate $P(y|\mathbf{x})$ from finite sample

Probabilistic estimation

Parametric model with parameters $oldsymbol{ heta}$

Estimate $p_{\theta}(y|\mathbf{x})$ from finite sample by minimizing the loss

$$L(\mathbf{\theta}) = -\mathbb{E}_{y|\mathbf{x}\sim p}\log p_{\mathbf{\theta}}(y|\mathbf{x})$$

$$\approx -\frac{1}{n} \sum_{i=1}^{n} \log p_{\boldsymbol{\theta}}(y_i | \mathbf{x}_i) = \widehat{L}_n(\boldsymbol{\theta})$$

Estimation error (or generalization gap): incurred by using empirical finite-sample loss \hat{L} instead of expected loss L

Generalization gap

 $\widehat{L}_n(\boldsymbol{\theta})$ is a random variable (depends on sampling)

For given parameters θ_0 , $\hat{L}_n(\theta_0)$ concentrates around expected value $L(\theta_0)$ as $n \to \infty$ (law of large numbers)

Generalization gap

Hoeffding inequality

$$P(|L(\mathbf{\theta}_0) - \hat{L}_n(\mathbf{\theta}_0)| > \epsilon) \le 2e^{-2\epsilon^2 n}$$

"probably approximately correct"

• reducing tolerance ϵ 10 fold requires 100 times larger sample n

Generalization bound

Search over the whole space of parameters $\mathbf{\theta} \in \mathcal{H}$

$$P(|L(\mathbf{\theta}^*) - \hat{L}_n(\mathbf{\theta}^*)| > \epsilon) \le P\left(\sup_{\mathbf{\theta} \in \mathcal{H}} |L(\mathbf{\theta}) - \hat{L}_n(\mathbf{\theta})| > \epsilon\right)$$

$$= P\left(\bigcup_{\mathbf{\theta} \in \mathcal{H}} \{|L(\mathbf{\theta}) - \hat{L}_n(\mathbf{\theta})| > \epsilon\}\right)$$

$$\le \sum_{\mathbf{\theta} \in \mathcal{H}} P(|L(\mathbf{\theta}) - \hat{L}_n(\mathbf{\theta})| > \epsilon)$$

$$\le 2|\mathcal{H}|e^{-2\epsilon^2 n}$$

More meaningful bounds: Vapnik-Chervonenkis, Rademacher

Approximation error vs Estimation error

- Incurred by restricting model to hypothesis class
- Decreased by using richer hypothesis class

- Incurred by using empirical loss instead of expected loss
- Increased by using richer hypothesis class
- **Decreased** by using larger sample size n

Overfitting and underfitting

Main ingredients of an ML problem

$$\widehat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \ \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\boldsymbol{\theta}}(\mathbf{x}_i), y_i)$$

- Data (training/test set, features)
- Model/hypothesis class $f_{\mathbf{\theta}}$ and loss function ℓ
- Optimisation (how to find best model parameters $\widehat{\boldsymbol{\theta}}$)

Function approximation estimation

Statistical Optimisation theory

Optimisation error

Optimisation error

Parameter space ${\mathcal H}$

Optimisation error

Parameter space ${\mathcal H}$

Estimation error vs Optimisation error

- Incurred by using empirical loss instead of expected loss
- **Decreased** by using larger sample size n

- Incurred by not finding exact minimiser of empirical loss
- Decreased by longer compute time (number of iterations)