Problem 1.

[20 points]

Define following terms in your own words:

(a) Uncountable set

Solution: A set that cannot be bijectively mapped to \mathbb{N} .

(b) Function f(n) is in o(g(n)) [little-o]

Solution: f(n) < c.g(n), $\forall c > 0$, $\exists n_0$ such that $n \ge n_0$

(c) Class NP

Solution: The set of languages that can be decided in

 $NTIME(n^k), n \in \mathbb{N}, k \geqslant 0.$

(d) Halting problem

Solution: Deciding the language of Turing Machine and string pairs:

 $\{\langle TM, w \rangle : TM \text{ halts on input } w\}.$

(e) Turing recognizability

Solution: A property of a language whose 'yes' instances (strings) can be known through a Turing Machine.

Problem 2. [10 points]

Design a Turing machine that accepts the following language:

$$L = \{ab(a \cup b)^*\}.$$

Solution:

 $\Gamma = \{a, b, \sqcup\}$

Problem 3. [10 points]

Describe the algorithm for a three-tape Turing machine that computes the function $f(x) = x^2$. One of the tapes should have the value x^2 at the end.

Solution: On input w:

- 1. Print w in unary on Tape1 and Tape2.
- 2. Cross-out the left-most 1 on Tape1:
 - (a) Append the contents of Tape2 (w in unary) to the contents of Tape3.
- 3. Repeat step 2 until all 1's are crossed out on Tape1.
- 4. Tape 3 contains w^2 in unary.

Problem 4. [20 points]

Let $\Sigma = \{0, 1\}$. Consider the following eight classes of languages over Σ :

- 1. $\mathbf{ALL} = \mathcal{P}(\Sigma^*)$
- 2. TR = Turing-recognizable
- 3. TD = Turing-decidable
- 4. NP
- 5. **P**
- 6. CF = Context-free
- 7. REG = Regular
- 8. FIN = Finite

[Here \mathcal{P} represents the power-set.]

Each class is a superclass of the next one, and all inclusions except $P \subseteq NP$ are known to be proper. Situate each of the following languages as low as you can in the hierarchy (e.g., if a language is in P but not context-free, the answer is P).

(a) $\{0^n 1^n 0^n : n \ge 2\}$

Solution: 5. P

(b) $\{0^n 1^n : n \ge 2\}$

Solution: 6. CF

(c) $\{0^n1^n : n \ge 0 \text{ and } n \ne 2\}$

Solution: 6. CF

(d) Σ^* without ϵ

Solution: 7. REG

(e) $\{\langle M, w \rangle : M \text{ is a TM that accepts } w\}$

Solution: 2. TR

Problem 5. [20 points]

Each of the following languages below are one of three types:

• DEC: Turing-decidable

• REC: Turing-recognizable (but not decidable)

• N-REC: Not Turing-recognizable

For each of the following languages, specify which type it is. Also, follow these instructions:

- If a language L is of type DEC, give a description of a Turing machine that decides L.
- If a language L is of type REC, give a prove that L is not Turing-decidable.
- If a language L is of type N-REC, give a proof that L is not Turing-recognizable.
- (a) $EQ_{DFA} = \{\langle M_1, M_2 \rangle : M_1, M_2 \text{ are DFAs with } L(M_1) = L(M_2)\}.$

Solution: EQ_{DFA} is DEC:

 M_1 and M_2 are equal $iff \overline{M_1} \cap M_2 = \emptyset$

Therefore, we can use the decider for $E_{ extsf{DFA}}$ on $\overline{\mathsf{M}_1} \cap \mathsf{M}_2$ to decide $EQ_{ extsf{DFA}}$

TM_{Decider}:

On input $\langle M_1, M_2 \rangle$:

- 1. Use M_1 and M_2 to create $M_3 = \overline{M_1} \cap M_2$.
- 2. Run M_3 on the decider D for E_{DFA} .
 - (a) If D accepts, accept.
 - (b) If D rejects, reject.
- (b) $\overline{A_{TM}}$ where $A_{TM} = \{\langle M, w \rangle : M \text{ is a TM that accepts } w\}$.

Solution: $\overline{A_{\text{TM}}}$ is N-REC:

If a language is both recognizable and co-recognizable, then it decidable. We know that $A_{\rm TM}$ is recognizable. If $A_{\rm TM}$ were co-recognisable, then it would be decidable. But we know that $A_{\rm TM}$ is not decidable. Therefore, $\overline{A_{\rm TM}}$ must be N-REC.

Problem 6. [10 points]

Show that $ISO \in \mathbf{NP}$, where ISO is defined as:

 $ISO = \{\langle G_1, G_2 \rangle : G_1 \text{ and } G_2 \text{ are isomorphic graphs}\}.$

[Two graphs $G_1=(V_1,E_1)$ and $G_2=(V_2,E_2)$ are isomorphic if there exists a one-to-one correspondence f between V_1 and V_2 with the property that α and b are adjacent in G_1 if and only if $f(\alpha)$ and f(b) are adjacent in G_2 , for all α and b in V_1 .]

Solution: Here's a verifier for ISO:

 V_{ISO} :

On input $(\langle G_1, G_2 \rangle, c)$ where c is the set of vertex pairs (a, b) where $a \in G_1$ and $b \in G_2$:

- 1. Compute $PAIRS \leftarrow c \times c$.
- 2. For each element $\{(a_1, b_1), (a_2, b_2)\}$ in *PAIRS*:
 - (a) If (a_1, a_2) are adjacent, but (b_1, b_2) are not, reject.
 - (b) If (a_1, a_2) are not adjacent, but (b_1, b_2) are adjacent, reject.

3. Accept

Steps 1 and 2 have runtime in $O(n^2)$ where n is the number of nodes in either graph. Therefore, V has runtime in $O(n^2)$ and $V_{ISO} \in \mathbf{P}$.