МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э. БАУМАНА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Методы хранения данных с защитой от неправомерного доступа

Студент: Пересторонин Павел Геннадьевич

Группа: ИУ7-73Б

Руководитель: преподаватель кафедры ИУ7

Александр Сергеевич Григорьев

Цель и задачи

Цель — рассмотреть существующие методы хранения информации с защитой от неправомерного доступа.

Задачи:

- описать способы защиты информации от неправомерного доступа;
- рассмотреть базовые элементы и понятия, используемые при проектировании методов хранения информации с возможностью защиты от неправомерного доступа;
- провести анализ существующих методов хранения информации с защитой от неправомерного доступа.

Можно выделить 3 уровня защиты от неправомерного доступа:

- 1. отсутствие возможности неправомерного доступа;
- 2. наличие возможности устранения последствий неправомерного доступа;
- 3. наличие возможности доказательства неправомерного доступа.

Основные операции при работе с хранилищем данных:

- чтение;
- изменение;
- удаление;
- частичное изменение (при наличии резервного копирования или репликации);
- частичное удаление (при наличии резервного копирования или репликации).

Таким образом при построении метода хранения данных можно выделить следующие возможные методы защиты информации от неправомерного доступа:

- исключение неправомерного чтения;
- исключение неправомерного изменения;
- исключение неправомерного удаления;
- возможность устраненения последствий частичного неправомерного удаления;
- возможность устраненения последствий частичного неправомерного изменения;
- доказательство неправомерного удаления;
- доказательство неправомерного изменения.

Можно выделить 3 уровня защиты от неправомерного доступа:

- 1. обеспечение невозможности неправомерного доступа;
- 2. обеспечение возможности устранения последствий неправомерного доступа;
- 3. обеспечение возможности доказательства неправомерного доступа.

Базовые понятия

Можно выделить 3 базовых понятия, которые используются в построении методов хранения с обеспечением защиты от неправомерного доступа:

- 1. хэш-функция;
- 2. блокчейн;
- 3. дерево и ациклический граф Меркла.

Хэш-функция

Хэш-функция — функция, осуществляющая преобразование массива входных данных произвольной длины в выходную битовую строку установленной длины, выполняемое определенным алгоритмом.

Свойства:

- используется для расчета контрольных сумм;
- при использовании криптографически стойкой хэш-функции для расчета контрольных сумм цена атаки ниже ценности данных.

Блокчейн

Блокчейн — выстроенная по определенным правилам непрерывная по следовательная цепочка блоков — элементов, содержащих информацию. В общем случае такая цепочка поддерживает 2 операции:

- 1. добавление нового элемента в конец цепочки;
- 2. проверка целостности всей цепочки.

Блокчейн

Дерево Меркла

Дерево Меркла — двоичное дерево, в листовые вершины которого по мещены хэши блоков данных, а внутренние вершины содержат хэши суммы значений в дочерних вершинах.

PASIS

Система хранения данных на N серверах, называемых узлами.

Применяемые методы защиты:

- распределенная система;
- стирающие коды (возможность восстановления данных из любых m фрагментов (при общем числе фрагментов N, N > m);
- объединенные контрольные суммы (возможность контроля корректности данных в целом).

Криптографические файловые системы

Реализуется как дополнительный слой шифрования между ВФС и драйвером файловой системы.

Свойства:

- использование шифрования с ключом;
- без наличия ключа прочитать данные или записать нужные данные в нужную ячейку невозможно;
- возможно повредить данные записью при доступе к устройству напрямую (не через драйвер).

OceanStore

Система хранения данных на N серверах, называемых узлами.

Отличия от PASIS:

- валидация не только целых данных, но и фрагментов;
- имя ресурса контрольная сумма от его содержимого;
- контрольная сумма в формате дерева Меркла;
- не поддерживает изменение данных.

OceanStore

Git

Система версионного контроля.

Свойства:

- контроль целостности с помощью контрольных сумм;
- внутренняя структура в формате ациклического направленного графа Меркла;
- иерархическая структура поверх ассоциативного массива;

Git

Bitcoin

Bitcoin — одноранговая децентрализованная система электронных транзакций.

Свойства:

- использование РКІ на уровне транзакций;
- использование корня дерева Меркла в качестве контрольной суммы на уровне набора транзакций в блоке;
- использование концепта proof-of-work на уровне блоков;
- использование блокчейна для контроля целостности цепочки блоков (состояния системы).

Заключение

Сокращения:

- НД неправомерное действие;
- КФС криптографические файловые системы;
- ЧУ частичное удаление;
- УЗ уровень защиты;
- ЧИ частичное изменение.

Заключение

НД (УЗ)	PASIS	КФС	OceanStore	Git	Bitcoin
чтение (исключение)	-	+	-	-	-
ЧУ или ЧИ (восстановление)	+	-	+	-	-
изменение (исключение)	-	-	-	-	+
удаление (исключение)	-	-	-	-	+
изменение (доказательство)	+	-	+	+/-	+
удаление (доказательство)	-	-	-	+/-	+

Заключение

В ходе выполнения данной работы:

- 1. были описаны способы защиты информации от неправомерного доступа;
- 2. были рассмотрены базовые элементы и понятия, используемые при проектировании методов хранения информации с возможностью защиты от неправомерного доступа;
- 3. был проведен анализ существующих методов хранения информации с защитой от неправомерного доступа.

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э.

БАУМАНА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

МОСКВА, 2021 ГОД