a) Organosilanes of the type $(RO)_3Si(C_nH_{2n+1})$ and $(RO)_3Si(C_nH_{2n-1})_{a}$

R = alkyl,

n = 1 - 20;

b) Organosilanes of the type $R'_x(RO)_ySi(C_nH_{2n+1})$ and $(RO)_3Si(C_nH_{2n+1})$

R = alkyl,

R' = alkyl

R' = cycloalkyl

N = 1 - 20

x+y=3

x = 1, 2,

y = 1, 2;

c) Halogen organosilanes of the type $X_3 \, Si(C_n H_{2n+1})$ and $X_3 \, Si(C_n H_{2n-1})$

X = Cl, Br,

n = 1 - 20;

d) Halogen organosilanes of the type $X_2\left(R'\right) Si(C_nH_{2n+1})$ and

 $X_{2}\left(R^{\prime}\right) \,Si(C_{n}H_{2n\text{-}1})$,

X = Cl, Br

R' = alkyl

CARLOS ANCHE, LANGER PROMISE BANKER ANCHES OF THE PARTY AND THE PARTY AN

$$R' = cycloalkyl$$

 $n = 1 - 20;$

e) Halogen organosilanes of the type $X(R')_2 Si(C_nH_{2n+1})$ and

$$X(R')_2 Si(C_nH_{2n-1})$$
,

$$X = Cl, Br;$$

$$R' = alkyl$$

$$R' = cycloalkyl$$

$$n = 1 - 20;$$

f) Organosilanes of the type $(RO)_3Si(CH_2)_m-R'$

$$R = alky,l$$

$$m = 0.1 - 20,$$

R' = methyl-, aryl (e.g.,
$$-C_6H_5$$
, substituted phenyl groups)

$$-NH_2$$
, $=N_3$, $-SCN$, $-CH=CH_2$, $-NH-CH_2-CH_2-NH_2$,

$$-OOC(CH_3)c = CH_2$$
,

$$\hbox{-NH-COO-CH$_3$, -NH-COO-CH$_2$-CH$_3$, -NH-(CH$_2$)$_3Si(or)$_3$,}$$

$$-S_x$$
-(CH₂)₃Si(OR)₃,

Merch Lotter, and the court of the court of

-SH, and

-NR'R''', wherein R' = alkyl, aryl; R'' = H, alkyl, aryl; and R''' = H, alkyl, aryl, benzyl, or C_2H_4NR '''' R'''' with R'''' = H, alkyl and R'''' = H, alkyl;

g) Organosilanes of the type $(R'')_x (RO)_y Si(CH_2)_m$ -R'

$$R'' = alkyl, cycloalkyl,$$

$$x+y=2$$
,

$$x = 1, 2,$$

$$y = 1, 2,$$

$$m = 0.1$$
 to 20,

R' = methyl-, aryl, $-C_6H_5$, substituted phenyl groups

-C₄F₉, -OCF₂-CHF-CF₃, -C₆F₁₃, -O-CF₂-CHF₂,

 $-NH_2$, $-N_3$, SCN, $-CH = CH_2$, $-NH-CH_2-CH_2-NH_2$,

-N-(CH₂-CH₂-NH₂)₂,

 $-OOC(CH_3)C = CH_{2a}$

-OCH₂-CH(O) CH₂,

-NH-CO-N-CO-(CH₂)₅

 $\hbox{-NH-COO-CH$_3$, -NH-COO-CH$_2$-CH$_3$, -NH-(CH$_2$)$_3Si(OR)$_3$,}$

 $-S_x$ -(CH₂)₃Si(OR)₃

-SH, and

-NR'R''R''', wherein R' = alkyl, aryl; R'' = H,

355402v1

alkyl, aryl; and R''' = H, alkyl, aryl, benzyl, or $C_2H_4NR''''R'''''$ with R''''' = H, alkyl and R'''''' = H, alkyl);

h) Halogen organosilanes of the type X₃Si (CH₂)_m-R'

$$X = Cl, Br,$$

$$m = 0, 1 - 20,$$

R' = methyl-, aryl., $-C_6H_5$, substituted phenyl groups

-C₄F₉, -OCF₂-CHF-CF₃, -C₆F₁₃, -O-CF₂-CHF₂,

-NH₂, -N₃, SCN, -CH=CH₂, -NH-CH₂-CH₂-NH₂,

 $-N-(CH_2-CH_2-NH_2)_2$,

-OOC (CH₃)C = CH₂,

 $-OCH_2$ -CH(O) CH₂,

-NH-CO-N-CO-(CH₂)₅,

 $\hbox{-NH-COO-CH$_3$, -NH-COO-CH$_2$-CH$_3$, -NH-(CH$_2$)$_3Si(OR)$_3$,}$

 $-S_x$ -(CH₂)₃Si(OR)₃, and

-SH;

i) Halogen organosilanes of the type (R)X₂Si(CH₂)_m-R'

$$X = C1, Br,$$

R = alkyl such as methyl, - ethyl-, propyl-,

m = 0, 1 - 20,

R' = methyl-, aryl [(e.g]., - C_6H_5 , substituted phenyl groups,

 $-C_4F_9$, $-OCF_2$ -CHF-CF₃, $-C_6F_{13}$, -O-CF₂-CHF₂,

-NH₂, -N₃, SCN, -CH=CH₂, -NH-CH₂-CH₂-NH₂,

-N-(CH₂-CH₂-NH₂)₂,

-OOC (CH₃)C = CH₂,

-OCH₂-CH(O) CH₂,

-NH-CO-N-CO-(CH₂)₅,

-NH-COO-CH₃, -NH-COO-CH₂-CH₃, -NH-

 $(CH_2)_3Si(OR)_3$,

 $-S_x$ -(CH₂)₃Si(OR)₃,

-SH;

(j) Halogen organosilanes of the type (R)₂X Si(CH₂)_m-R'

X = Cl, Br,

R = alkyl,

m = 0, 1 - 20,

R' = methyl-, aryl., $-C_6H_5$, substituted phenyl groups,

 $-C_4F_9$, $-OCF_2$ -CHF-CF₃, $-C_6F_{13}$, $-O-CF_2$ -CHF₂,

 $-NH_2$, $-N_3$, SCN, $-CH=CH_2$, $-NH-CH_2-CH_2-NH_2$,

-N-(CH₂-CH₂-NH₂)₂,

-OOC (CH_3) $C = CH_2$,

-OCH₂-CH(O) CH₂,

-NH-CO-N-CO-(CH₂)₅,

 $\hbox{-NH-COO-CH$_3$, -NH-COO-CH$_2$-CH$_3$, -NH-(CH$_2$)$_3Si(OR)$_3$,}$

 $-S_x$ -(CH₂)₃Si(OR)₃

-SH;

(k) Silazanes of the type R'R₂Si-N-SiR₂R'

H

R = alkyl,

R' = alkyl, vinyl; or

(l) Cyclic polysiloxanes of the type D 3, D 4 or D 5:

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

m) Polysiloxanes or silicone oils of the type

$$Y-O-\begin{pmatrix} R \\ | \\ Si-O \\ | \\ R' \end{pmatrix} - \begin{pmatrix} R'' \\ | \\ Si-O \\ | \\ R''' \end{pmatrix} - Y$$

$$m \qquad n \qquad u$$

$$m = 0, 1, 2, 3, \dots \infty$$

 $n = 0, 1, 2, 3, \dots \infty$
 $u = 0, 1, 2, 3, \dots \infty$

$$Y=CH_3$$
, H, C_nH_{2n+1} $n=1-20$
 $Y=Si(CH_3)_3$, $Si(CH_3)_2H$

Si(CH₃)₂OH, Si(CH₃)₂ (OCH₃),
Si(CH₃)₂ (C_nH_{2n+1})
$$n=1-20$$
,

Al

R = alkyl, aryl, (CH₂)_n-NH₂, H,

R' = alkyl, aryl, $(CH_2)_n$ - NH_2 , H_1

R'' = alkyl, aryl, (CH₂)_n-NH₂, H,

R'''= alkyl, aryl, $(CH_2)_n$ - NH_2 , H.,

4. (Amended) A method of producing the surface-modified oxides in accordance with claim 1 or 2, comprising placing pyrogenically produced oxides doped by aerosol in a suitable mixing container, spraying the oxides under intensive mixing with the surface-modification reagent or a mixture of several surface-modification reagents.

5.(Amended) In a reinforcing filler composition wherein the improvement comprises the surface-modified oxides according to claim 1 or 2 as reinforcing filler.

355402v1

- 6. (New) The method of claim 4 wherein the spraying step includes spraying with water and/or acid prior to the spraying with the surface-modification reagent or a mixture of several surface-modification reagents.
- 7. (New) The method of claim 4 further comprising re-mixing at 15 to 30 minutes and tempering at a temperature of 100 to 400 °C for a period of 1 to 6 hours.
- 8. (New) The surface-modified, pyrogenically produced oxides according to claim 3 wherin the cyclic polysiloxanes is type D 4.
- 9. (New) The surface-modified, pyrogenically produced oxides according to claim 8 wherin the type D4 cyclic polysiloxanes is octamethylcyclotetrasiloxane.