东南大学电工电子实验中心 实验报告

第 8 次实验

实验名称:	黑箱电	路元位	牛判别。	及参数测试
院 (系):	电气工程学院	专	业: _	电气工程及其自动化
姓 名:	王皓冬	学	号:	16022627
实验室:	103室	实验	组别:	
同组人员:	无	实验	时间:	2023年12月25日
评定成绩:		宙门	副教师	<u> </u>

一、实验目的

- (1) 运用欧姆定律和元件的阻抗特性解决实际问题。
- (2) 学会根据需要选择激励源的类型、设定频率的高低,简化测量过程、提高测量精度。
- (3)尝试从分析任务要求着手,应用已经学习过的知识,寻找解决问题的方法;同时也希望 拓宽视野,体验解决问题方法的多样性。学习体验"分析任务-调查研究-设计电路-构建平台实验测试-总结分析"的科学研究方法

二、实验原理(预习报告内容,如无,则简述相关的理论知识点。)

在黑箱电路中,由三个元件构成的 Y/△的网络结构。这三个元件分别可能是电阻、电容或者电感等单一元件且不会是同一种元件。采用实验测量的方法,通过测试判断"Y"、 "△"型网络中各元件的性质,计算元件的参数。

图 1 黑箱电路 "Y"型网络

图 2 黑箱电路"△"网络

(Z1、Z2、Z3为R、L、C中的某一元件且不会是同一种元件。)

(1)至少一个电阻条件下,枚举由 R、L、C 所有可能构成的"Y"型网络,分析每种可能网络各端口之间(1-2,2-3,1-3)的直流特性和交流特性(交流阻抗、幅度-频率,相位-频率);

1. 仅一个电阻时

1.1 R-C-C

1, 2	隔断	$\frac{1}{j\omega C_2}$	$ \dot{U} \propto \frac{1}{\sqrt{R^2 + (\frac{1}{\omega C_2})^2}}$	$tan\theta = -\frac{1/\omega C_2}{R}$
1, 3	隔断	$\frac{1}{j\omega C_1}$	$ \dot{U} \propto \frac{1}{\sqrt{R^2 + (\frac{1}{\omega C_1})^2}}$	$tan\theta = -\frac{1/\omega C_1}{R}$
2, 3	隔断	$\frac{1}{j\omega \frac{C_1 C_2}{C_1 + C_2}}$	$ \dot{U} \propto \frac{1}{\sqrt{R^2 + (\frac{1}{\omega \frac{C_1 C_2}{C_1 + C_2}})^2}}$	$tan\theta = -\frac{1/\omega \frac{C_1 C_2}{C_1 + C_2}}{R}$

1.2 R-L-C

端口 直流特性		交流特性					
		交流阻抗 幅频		相频			
1, 2	隔断	1/jωC	$ \dot{U} \propto \frac{1}{\sqrt{R^2 + (1/\omega C)^2}}$	$tan\theta = -\frac{1/\omega C}{R}$			
1, 3	$U \propto \frac{1}{R}$	jωL	$ \dot{U} \propto \frac{1}{\sqrt{R^2 + (\omega L)^2}}$	$tan\theta = \frac{\omega L}{R}$			
2, 3	隔断	$\frac{1}{j\omega C} + j\omega L$	$ \dot{U} \propto \frac{1}{\frac{1}{j\omega C} + j\omega L}$	$\theta = \pm 90^{\circ}$			

1.3 R-L-L

端口 直流特性		交流特性			
地口	且派付注	交流阻抗	幅频	相频	
1, 2	$U \propto \frac{1}{R}$	$j\omega L_2$	$ \dot{U} \propto \frac{1}{\sqrt{R^2 + (\omega L_2)^2}}$	$tan\theta = \frac{\omega L_2}{R}$	

1, 3	$U \propto \frac{1}{R}$	$j\omega L_1$	$ \dot{U} \propto \frac{1}{\sqrt{R^2 + (\omega L_1)^2}}$	$tan\theta = \frac{\omega L_1}{R}$
2, 3	$U=U_S$	$j\omega(L_1+L_2)$	$ \dot{U} \propto \frac{1}{j\omega(L_1 + L_2)}$	θ = 90°

2. 两个电阻时

2.1 R-R-L

端口	直流特性	交流特性			
地口	且流行性	交流阻抗	幅频	相频	
1, 2	$U \propto \frac{1}{R_1 + R_2}$	0	$ \dot{U} \propto \frac{1}{R_1 + R_2}$	$tan\theta = 0^{\circ}$	
1, 3	$U \propto \frac{1}{R_1}$	jωL	$ \dot{U} \propto \frac{1}{\sqrt{{R_1}^2 + (\omega L)^2}}$	$tan\theta = \frac{\omega L}{R_1}$	
2, 3	$U \propto \frac{1}{R_2}$	jωL	$ \dot{U} \propto \frac{1}{\sqrt{{R_2}^2 + (\omega L)^2}}$	$tan\theta = \frac{\omega L}{R_2}$	

2.2 R-R-C

端口	直流特性	交流特性				
		交流阻抗	幅频	相频		
1、2	$U \propto \frac{1}{R_1 + R_2}$	0	$ \dot{U} \propto \frac{1}{R_1 + R_2}$	$tan\theta = 0^{\circ}$		
1, 3	隔断	<u>1</u> <i>jωC</i>	$ \dot{U} \propto \frac{1}{\sqrt{{R_1}^2 + (\frac{1}{\omega C})^2}}$	$tan\theta = -\frac{\frac{1}{\omega C}}{R_1}$		
2、3	隔断	<u>1</u> <i>jωC</i>	$ \dot{U} \propto \frac{1}{\sqrt{{R_2}^2 + (\frac{1}{\omega C})^2}}$	$tan\theta = -\frac{\frac{1}{\omega C}}{R_2}$		

(2) 至少一个电阻条件下, 枚举由 R、L、C 所有可能的" \triangle "型网络, 分析每种可

能网络各 端口之间(1-2, 2-3, 1-3)的直流特性和交流特性(交流阻抗、幅度-频率,相位-频率);

1. 仅一个电阻时

1.1 R-L-C

端口 直流特性		交流特性			
		交流阻抗	幅频	相频	
1、2	$U \propto \frac{1}{R}$	$\frac{1}{j\omega C} //(R + j\omega L)$	谐振时最大	反相	
1, 3	$U \propto \frac{1}{R}$	$R//(\frac{1}{j\omega C} + j\omega L)$	$ \dot{U} \propto \frac{1}{R}$	$\theta = 0^{\circ}$	
2、3	$U=U_S$	$j\omega L//(R + \frac{1}{j\omega C})$	谐振时最大	反相	

1.2 R-L-L

端口 直流特性		交流特性				
		交流阻抗	幅频	相频		
1, 2	$U=U_S$	$j\omega L_2//(R+j\omega L_1)$	$ \dot{U} \propto \frac{1}{\omega}$	超前		
1, 3	$U \propto \frac{1}{R}$	$R//(j\omega L_2 + j\omega L_1)$	$ \dot{U} \propto \frac{1}{\omega}$	超前		
2, 3	$U=U_S$	$j\omega L_1//(R+j\omega L_2)$	$ \dot{U} \propto \frac{1}{\omega}$	超前		

1.3 R-C-C

端口 直流特性		交流特性				
		交流阻抗	幅频	相频		
1、2	断路	$\frac{1}{j\omega C_1} / / (R + \frac{1}{j\omega C_2})$	$ \dot{U} \propto \omega$	滞后		
1, 3	$U \propto \frac{1}{R}$	$R//\frac{1}{j\omega(C_1+C_2)}$	$ \dot{U} \propto \omega$	滞后		
2、3	断路	$\frac{1}{j\omega C_2} //(R + \frac{1}{j\omega C_1})$	$ \dot{U} \propto \omega$	滞后		

2. 两个电阻时

2.1 R-R-L

端口	直流特性	交流特性				
物口 且流行注		交流阻抗	幅频	相频		
1、2	$U \propto \frac{1}{R_2}$	$R_2//(R_1 + j\omega L)$	$ \dot{U} \propto \frac{1}{\omega}$	超前		
1, 3	$U \propto \frac{1}{R_1}$	$R_1//(R_2 + j\omega L)$	$ \dot{U} \propto \frac{1}{\omega}$	超前		
2、3	$U=U_S$	$j\omega L//(R_1+R_2)$	$ \dot{U} \propto \frac{1}{\omega}$	超前		

2.2 R-R-C

端口	直流特性	交流特性		
地口		交流阻抗	幅频	相频
1, 2	$U \propto \frac{1}{R_2}$	$R_2//(R_1 + \frac{1}{j\omega C})$	$ \dot{U} \propto \omega$	滞后
1, 3	$U \propto \frac{1}{R_1}$	$R_1//(R_2 + \frac{1}{j\omega C})$	$ \dot{U} \propto \omega$	滞后
2, 3	隔断	$\frac{1}{j\omega\mathcal{C}}//(R_1+R_2)$	$ \dot{U} \propto \omega$	滞后

- (3)复习元件参数测量、三电压法测交流阻抗测量、电路频率响应实验的相关内容;
- (4)复习 RLC 串联谐振相关知识及串联判断测量方法; 查找资料,了解 RLC 并联谐振相关 知识及并联谐振判断测量方法。
- (5)"Y"型连接,假设三个元件分别为 RLC,写出该电路中各元件性质的判断过程和各元件参数计算过程;如图。

_	直流特性	交流特性			
端口		交流阻抗	幅频	相频	
1、2	隔断	1/jωC	$ \dot{U} \propto \frac{1}{\sqrt{R^2 + (1/\omega C)^2}}$	$tan\theta = -\frac{1/\omega C}{R}$	
1, 3	$U \propto \frac{1}{R}$	jωL	$ \dot{U} \propto \frac{1}{\sqrt{R^2 + (\omega L)^2}}$	$tan\theta = \frac{\omega L}{R}$	
2, 3	隔断	$\frac{1}{j\omega C} + j\omega L$	$ \dot{U} \propto \frac{1}{\frac{1}{j\omega C} + j\omega L}$	$\theta = \pm 90^{\circ}$	

首先测量直流特性。12、23端口均隔断,判断为如下三种电路:

随后在测量未隔断支路两端串联已知电阻,并加入交流信号源,测量端口分压波形。

改变频率, 若分压改变, 可以排除 a 情况。

同时接入信号源波形,若波形相对信号源波形超前,说明阻抗呈感性,可排除情况 c。

即可说明为RLC星形连接电路。

测量过程如下。

首先在刚才未隔断支路,即 RL 支路接入直流信号,测出端口电压与电流 U_1 、 I_1 ,可计算出

$$R = \frac{U}{I}$$

随后加入频率为 ω 的交流信号,测出相位偏移 φ ,由

$$tan\varphi = \frac{\omega L}{R}$$

可得

$$L = \frac{Rtan\varphi}{2\pi f}$$

最后对其余两支路分别施加交流源,改变频率,其中一个支路波形始终超前激励,另一个支路呈现低频滞后、高频超前特性,后者为LC支路,前者为RC支路。

RC 支路串联已知电感 L_0 ,调节频率至万用表电流有最大值,此时支路谐振。记录此时信号源的频率 f_0 ,由

$$f_0 = \frac{1}{2\pi\sqrt{L_0C}}$$

可得

$$C = \frac{1}{L_0} \left(\frac{1}{2\pi f_0} \right)^2$$

(6) "△"型连接,假设三个元件分别为 RLC,写出该电路中各元件性质的判断过程和各元件参数计算过程。

端口	直流特性	交流特性		
淅山		交流阻抗	幅频	相频
1, 2	$U \propto \frac{1}{R}$	$\frac{1}{j\omega C} //(R + j\omega L)$	谐振时最大	反相
1, 3	$U \propto \frac{1}{R}$	$R//(\frac{1}{j\omega C} + j\omega L)$	$ \dot{U} \propto \frac{1}{R}$	$\theta = 0^{\circ}$
2, 3	$U=U_S$	$j\omega L//(R + \frac{1}{j\omega C})$	谐振时最大	反相

首先测量直流特性。一端口短路(图中23端口),其余两端口呈阻性,且根据信号源U与所测电流I两次得到的两支路电阻有:

$$R_1 = R_2 = R$$

即两支路电阻相等,则判断为如下三种电路:

接下来利用谐振排除与测量。在呈阻性的端口分别接入交流信号源,同时测量电流。图 b、c 所示电路在频率变化时,阻抗均单调改变。而图 a 在改变阻抗时会有谐振点,无论测到的是 R//LC 支路还是 C//RL 支路,其电流均不会单值变化。可利用这点说明为 RLC 三角形连接电路。

在此基础上,具体找到应有某一频率f,使得电路谐振。找到使电路串联谐振的特性电路(即电流出现峰值,且曲线与电源同相位),此时该支路为 R 支路,阻值已由直流特性求出。

R 支路串联已知电阻 R_0 ,调节频率至万用表电流有最大值,此时支路谐振。记录此时信号源的频率 f_0 ,由

$$f_0 = \frac{1}{2\pi\sqrt{L_0C}}$$

可得

$$LC = (\frac{1}{2\pi f_0})^2$$

改变频率为 f, 此时有

$$Z = R//(\frac{1}{j\omega C} + j\omega L)$$

记录对应电流 I 及其幅角 φ 。应有

$$\dot{I} = \frac{\dot{U}}{Z}$$

$$tan\varphi = \frac{-\frac{1}{\omega C} + \omega L}{R}$$

根据上式可利用 Casio 解方程功能解出具体数值。

三、实验内容

已知黑箱电路元件标称值范围:

电阻: $100\,\Omega^{\sim}1000\,\Omega$; 电容: $0.\,001\mathrm{uF}^{\sim}0.\,22\mathrm{uF}$; 电感: $0.\,047\mathrm{mH}^{\sim}0.\,47\mathrm{mH}$ 实验要求

- (1)分析电路结构及元件阻抗随频率变化规律,给出解决问题的思路,提出实验方案:
- (2) 制定实验计划,明确各步骤中施加激励的方式、激励类型和状态,电路的连接方式,需要测量的参数等;
- (3)根据电路阻抗、电流与电压相位差变化规律,判定元件性质、计算元件参数。

黑箱按如下方式标号。

上图是测量直流特性时的连接图,下文不再复制。

1. 电路结构测定

1.1 直流特性

首先测量各端口直流特性。利用信号源在各端口两端加上 5V 直流电压,利用万用表直流电流档检测支路电流值。

发现各端口电流值均为约 0.095mA。如下:

由于将万用表表笔悬空时,电流也约为 0.09mA,判断三条支路的直流特性**均 为断路**。因此,可以直接判断出电路的元器件组合方式: *C-C-R 星形连接*。如下。

1.2 各元件位置判断

在端口接入交流激励,参数为 Vpp=10V,f=1kHz。在各支路外串联一已知电容,并测量各端口间电压相位。发现,1、2 端口与 2、3 端口间电压与电源电压存在一定相位差,而 1、3 端口间电压恰好与电源同相。改变频率,继续测量电压波形,相位差维持在0°。如图。

上图为1、2与2、3端电压波形。黄色为端口电压波形,蓝色为电源电压波形。

上图为1、3 端口电压波形。黄色为端口电压波形,蓝色为电源电压波形。 这说明: 1、3 端间阻抗显纯容性,即 *1、3 端间为两电容*,电路图如下。

至此,已判断出除参数外的内容。接下来进行具体参数测定。

2. 元件参数测定

参数测定采用了谐振的思路。首先在 1、3 端串联一已知电感 (330nH),并在电路两端接入交流信号源,参数 Vpp=10V。用万用表测量电路电流。这时,电路组成串联 RLC 电路,连接图如下。

等效电路图如下。

连续调节信号源频率,发现将频率旋到 $f_0=4.08kHz$ 附近电流有峰值:

$$I_0 = 4.94mA$$

如图。

记录这两组数据。此时,由于电流有峰值,电路应为串联谐振状态,LC部分整体等效为短路。因此,此时的等效电路图如下:

因而有

$$R = \frac{Vpp}{2\sqrt{2}I_0} \tag{1}$$

式(1)中分母有 $2\sqrt{2}$ 的原因是 Vpp 为峰峰值,除以 2 得到峰值,再除以 $\sqrt{2}$ 得到有效值。万用表电流档显示的结果为有效值,因此需用有效值计算。

又:谐振时的频率 f_0 满足

$$f_0 = \frac{1}{2\pi\sqrt{LC}}\tag{2}$$

上述两个一元方程可分别解出 R、C。分别代入已知数值,得到

$$\begin{cases} R = 705\Omega \\ C_{1.2} = 46nF \end{cases}$$

利用同样的方式计算 3 端口的电容 $C_{2,3}$,其参数为

$$f_0 = 28.73kHz$$

这里已经得到了 R 的数值,因此不需要记录电流 I。代入式(2),得到

$$C_{2,3} = 93nF$$

元件参数完成计算,实验所得黑箱电路如图。

四、实验总结

(实验出现的问题及解决方法、思考题(如有)、收获体会等)

这次实验在实验 7 时就做完了。无疑,黑箱的难易程度功不可没,我选的黑箱是 RCC 连接,难度较为简单,因此判断与参数测量都比较快。实验中,思考了多种测量方法,最后选择了串联谐振的方法,并认为该方法比较巧妙。原因如下:

- 1. 对于两条支路,分别有一个谐振点 f0,因此电阻的测量可以有两个值,通过这种方式能够减小误差。事实上,实验时我在第二条支路也测量了电阻阻值,不过由于相差不是很大,并且该实验对精度要求不高,所以没有计入。
- 2. 能够用一次实验分别测出 R 与 C 的值。 因此,该方法可行性较高。

本次实验中遇到的最大困难反而在实验后补充预习报告时。这次预习报告我写了4个小时,除开编辑公式的时间外,有很大一部分时间花在了三角形连接电路各种情况的分析上。分析三角形连接的RLC电路时,我最初并没能分析出具体特性,借助了multisim的AC分析功能,从而得出结论。并且在具体帮别人分析可能为RLC电路的黑箱时,发现由于实际实验时在电流灵敏范围内会产生较大误差,因此预习时设想的方法其实很难进行。在这里提出一种较为麻烦、但精度较高的实验方法:

- 1. 选取多个频率值,测量对应电流幅值;
- 2. 利用 origin 处理数据,进行函数模拟。由于我们已知电路的方程,将已知量代入方程得到函数,即可进行含参函数的拟合。

五、参考资料 (预习、实验中参考阅读的资料)

电路教学计划 2023