Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет безопасности информационных технологий

Дисциплина:

«Электротехника»

ДАМАШНЕЕ ЗАДАНИЕ №1

Расчет цепей постоянного тока

Группа N3246 Таблица 1.4

Вариант 3.

Работу выполнил:

студент Суханкулиев М., группа N3246, поток ЭЛТЕХ. N23 1.4.1

Дата сдачи:

23.03.2025

Контрольный срок сдачи: 24.03.2025

Количество баллов:

Санкт-Петербург 2025 г.

СОДЕРЖАНИЕ

1		Расчет цепей постоянного тока							
	1.1		Расчет значений всех неизвестных токов						
		1.1.1	Расчет цепей постоянного тока по законам Кирхгофа	4					
		1.1.2	Расчет цепей постоянного тока методом контурных токов (МКТ)	6					
	1.2	Pac	счет тока ветви, содержащей источник ЭДС, методом эквивален	тного					
	генератора (МЭГ)								
	1.3	Наг	Напряжение, приложенное к источнику тока						
	1.4	Мощность всех источников энергии, всех резистивных элементов, суммарная							
	мош	цность	ь источников цепи и суммарная мощность потребителей цепи	9					
	1.5	Све	ерка полученных ответов в LTspice	10					
Ci	писо	к испо	ользованных источников	11					

1 РАСЧЕТ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

Таблица 1 — **Таблица 1.4**

Вариант	Схема	Параметры источников энергии:			Параметры резисторов [Ом]					
Бириши			J[A], E[B]		1	2	3	4	5	6
3	2	$\uparrow J_4 = 0.35$	$\leftarrow E_1 = 8$	$\rightarrow E_2 = 24$	2	3	4	-	7	

Рисунок 1 – Схема 2

1.1 Расчет значений всех неизвестных токов

1.1.1 Расчет цепей постоянного тока по законам Кирхгофа

Дано:

$$E_1 = 8 \text{ [B]}, E_2 = 24 \text{ [B]}, J_4 = 0.35 \text{ [A]},$$

$$R_1 = 2 \text{ [OM]}, R_2 = 3 \text{ [OM]}, R_3 = 4 \text{ [OM]}, R_5 = 7 \text{ [OM]}.$$

Найти: все неизвестные токи, используя законы Кирхгофа (ЗК).

Рисунок 2 – Схема электрической цепи для использования ЗК

Решение:

Топология цепи

 $p^* = 5$ (общее количество ветвей),

 $p_{\rm ut} = 1$ (количество ветвей с ист. тока),

 $p = p^* - p_{\text{ит}} = 5 - 1 = 4$ (количество неизвестных токов),

q = 3 (количество узлов),

n = p - (q - 1) = 4 - (3 - 1) = 2 (количество независимых контуров),

 $m_I = q - 1 = 2$ (количество уравнений по 3КI),

 $m_{II}=m=2$ (количество уравнений по ЗКII).

Система равнений из m_I уравнений по ЗКІ и m_{II} уравнений по ЗКІІ

3KI. 1,
$$J_1 - J_2 - J_3 = 0$$

3KI. 2, $-J_1 + J_2 - J_5 = -J_4$
3KII. I, $R_1J_1 + R_2J_2 = E_1 + E_2$
3KII. II, $-R_2J_2 + R_3J_3 - R_5J_5 = -E_2$

В матричной форме:

$$\begin{pmatrix} 1 & -1 & -1 & 0 \\ -1 & 1 & 0 & -1 \\ R_1 & R_2 & 0 & 0 \\ 0 & -R_2 & R_3 & -R_5 \end{pmatrix} \cdot \begin{pmatrix} J_1 \\ J_2 \\ J_3 \\ J_5 \end{pmatrix} = \begin{pmatrix} 0 \\ -J_4 \\ E_1 + E_2 \\ -E_2 \end{pmatrix}$$

Подставив численные значения, получим:

$$\begin{pmatrix} 1 & -1 & -1 & 0 \\ -1 & 1 & 0 & -1 \\ 2 & 3 & 0 & 0 \\ 0 & -3 & 4 & -7 \end{pmatrix} \cdot \begin{pmatrix} J_1 \\ J_2 \\ J_3 \\ J_5 \end{pmatrix} = \begin{pmatrix} 0 \\ -0.35 \\ 8 + 24 \\ -24 \end{pmatrix}$$

Решим систему уравнений:

$$\begin{pmatrix}
J_1 \\
J_2 \\
J_3 \\
J_5
\end{pmatrix} = \begin{pmatrix}
1 & -1 & -1 & 0 \\
-1 & 1 & 0 & -1 \\
2 & 3 & 0 & 0 \\
0 & -3 & 4 & -7
\end{pmatrix}^{-1} \cdot \begin{pmatrix}
0 \\
-0.35 \\
32 \\
-24
\end{pmatrix} \approx$$

$$\approx \begin{pmatrix}
0.1967 & -0.3443 & 0.2295 & 0.0492 \\
-0.1311 & 0.2295 & 0.1803 & -0.0328 \\
-0.6721 & -0.5738 & 0.0492 & 0.082 \\
-0.3279 & -0.4262 & -0.0492 & -0.082
\end{pmatrix} \cdot \begin{pmatrix}
0 \\
-0.35 \\
32 \\
-24
\end{pmatrix} \approx \begin{pmatrix}
6.2844 \\
6.477 \\
-0.1926 \\
0.5426
\end{pmatrix}$$

Otbet: $J_1 \approx 6.284 \, [A], J_2 \approx 6.477 \, [A], J_3 \approx -0.193 \, [A], J_5 \approx 0.543 \, [A].$

1.1.2 Расчет цепей постоянного тока методом контурных токов (МКТ)

Дано: (из предыдущего пункта) (1.1.1)

Найти: все неизвестные токи МКТ.

Рисунок 3 – Схема электрической цепи для МКТ

Решение:

Топология цепи

(1.1.1)

 $m = p_{\text{\tiny MT}} = 1$ (количество известных контурных токов)

$$I_{33} = -J_4 = -0.35$$
 [A]

Система уравнений

$$\begin{split} I_{11}(R_1+R_2) - I_{22}R_2 + I_{33}R_2 &= E_1 + E_2 \\ I_{22}(R_2+R_3+R_5) - I_{11}R_2 - I_{33}(R_2+R_3) &= -E_2 \end{split}$$

Подставив численные значения решим систему уравнений:

$$\begin{cases} I_{11}(2+3) - I_{22} \cdot 3 + (-0.35) \cdot 3 = 8 + 24 \\ -I_{11} \cdot 3 + I_{22}(3+4+7) - (-0.35)(3+4) = -24 \\ \begin{cases} 5I_{11} - 3I_{22} = 33.05 \\ -3I_{11} + 14I_{22} = -26.45 \end{cases}$$

$$I_{11} \approx 6.2844 \text{ [A]}, \qquad I_{22} = -0.5426 \text{ [A]}.$$

Найдем искомые токи через контурные токи

$$J_1 = I_{11} \approx \mathbf{6.2844} \, [A],$$

 $J_2 = I_{11} - I_{22} + I_{33} \approx 6.2844 + 0.5426 - 0.35 \approx \mathbf{6.477} \, [A],$
 $J_3 = I_{22} - I_{33} \approx -0.5426 + 0.35 \approx \mathbf{0.1926} \, [A],$
 $J_5 = -I_{22} \approx \mathbf{0.5426} \, [A].$

Ответ: $J_1 \approx 6.284$ [A], $J_2 \approx 6.477$ [A], $J_3 \approx -0.193$ [A], $J_5 \approx 0.543$ [A].

1.2 Расчет тока ветви, содержащей источник ЭДС, методом эквивалентного генератора (МЭГ)

Дано: (1.1.1)

Найти: ток через любой источник ЭДС (J)

Решение:

Рисунок 4 – Схема электрической цепи для МЭГ

По ЗКІІ для красного контура:

$$U_{xx} + R_2 J^* = E_2$$
$$U_{xx} = E_2 - R_2 J^*$$

*I** найдем МКТ:

$$I_{11} = -J_4$$

$$I_{22}(R_2 + R_3 + R_5) + I_{11}(R_2 + R_3) = E_2$$

$$I_{22}(3 + 4 + 7) - 0.35(3 + 4) = 24$$

$$14I_{22} = 24 + 2.45$$

$$I_{22} \approx 1.8893 [A]$$

Тогда:

$$J^* = I_{11} + I_{22} \approx -0.35 + 1.8893 \approx 1.5393 \text{ [A]}$$

 $U_{xx} \approx 24 - 3 \cdot 1.5393 \approx 19.3821 \text{ [B]} = E_{r}$

Теперь найдём R_{Γ} :

$$R_3$$
 послед. R_5 , $R_{35}=R_3+R_5=11$ [Ом]
$$R_{35}||R_2, \qquad R_{235}=rac{R_2R_{35}}{R_2+R_{35}}pprox 2.3571 \ [ext{OM}]=R_{\scriptscriptstyle \Gamma}$$

Рисунок 5 – Эквивалентные преобразования резисторов

По ЗКІІ (Рисунок 4 – справа):

$$J_1(R_1 + R_r) = E_1 + E_r$$

$$J_1 = \frac{E_1 + E_r}{R_1 + R_r} \approx \frac{8 + 19.3821}{2 + 2.3571} \approx 6.2845 \text{ [A]}$$

Ответ: $J_1 \approx 6.285$ [A].

1.3 Напряжение, приложенное к источнику тока

Дано: из пункта (1.1.1), и вычисленные значения

$$J_1 \approx 6.2844 [A],$$

$$J_2 \approx 6.477 \, [A],$$

$$J_3 \approx 0.1926 [A],$$

$$J_5 \approx 0.5426 \, [A]$$

Найти: U_{J_4}

Решение:

Так как ток J_4 течёт в узел 2, а после только в R_5 (и оттуда в узел 3) (Рисунок 2 –), то разность потенциалов между узлами, к которым он подключён будет:

$$U_{J_4} = R_5 \cdot J_5 \approx 7 \cdot 0.5426 \approx 3.7982$$
 [B]

Ответ: $U_{J_4} \approx 3.798$ [В].

1.4 Мощность всех источников энергии, всех резистивных элементов, суммарная мощность источников цепи и суммарная мощность потребителей цепи

Дано: такое же, как и в (1.3), и вычисленное значение

$$U_{J_4} \approx 3.7982 \, [\mathrm{Bt}]$$

Найти: $P_{\text{источники}}$, $P_{\text{резисторы}}$.

Решение:

Мощность источника ЭДС определяется по формуле:

$$P_E = E \cdot J$$
 $m{P}_{E_1} = E_1 \cdot J_1 pprox 8 \cdot 6.2844 pprox m{50.2752} \; [\mathrm{BT}]$
 $m{P}_{E_2} = E_2 \cdot J_2 pprox 24 \cdot 6.477 pprox m{155.448} \; [\mathrm{BT}]$
 $m{P}_{J_4} = U_{J_4} \cdot J_4 pprox 3.7982 \cdot 0.35 pprox m{1.3294} \; [\mathrm{BT}]$
 $m{P}_{\mathrm{источники}} = P_{E_1} + P_{E_2} + P_{J_4} pprox m{207.0516} \; [\mathrm{BT}]$

Мощность, выделяемая на резисторе:

$$P_R = J^2 \cdot R$$
 $P_{R_1} = J_1^2 \cdot R_1 \approx 6.2844^2 \cdot 2 \approx 78.9874 [Bt]$ $P_{R_2} = J_2^2 \cdot R_2 \approx 6.477^2 \cdot 3 \approx 125.8546 [Bt]$ $P_{R_3} = J_3^2 \cdot R_3 \approx 0.1926^2 \cdot 4 \approx 0.1484 [Bt]$ $P_{R_5} = J_5^2 \cdot R_5 \approx 0.5426^2 \cdot 7 \approx 2.0609 [Bt]$ $P_{\text{резисторы}} = P_{R_1} + P_{R_2} + P_{R_3} + P_{R_5} \approx 207.0513 [Bt]$

Разница $P_{\text{источники}} - P_{\text{резисторы}} \approx 0.0003$ [Вт] связана с округлениями в расчётах.

Ответ:

$$\begin{split} P_{E_1} &\approx 50.275 \; [\text{Bt}], P_{E_2} \approx 155.448 \; [\text{Bt}], P_{J_4} \approx 1.329 \; [\text{Bt}], \\ P_{\text{источники}} &\approx 207.052 \; [\text{Bt}], \\ P_{R_1} &\approx 78.987 \; [\text{Bt}], P_{R_2} \approx 125.855 \; [\text{Bt}], P_{R_3} \approx 0.1484 \; [\text{Bt}], P_{R_5} \approx 2.061 \; [\text{Bt}], \\ P_{\text{резисторы}} &\approx 207.051 \; [\text{Bt}]. \end{split}$$

1.5 Сверка полученных ответов в LTspice

Рисунок 6 – Схема электрической цепи

D:\Документы\Учеба\2 kurs\4th sem\ЭлТех\дз1\dz1.net								
Op	erating Point							
V(n003):	-8.77049	voltage						
V(n004):	-20.2016	voltage						
V(n002):	3.79836	voltage						
V(n001):	-0.770492	voltage						
I(R3):	-0.192623	device current						
I(E1):	-6.28443	device current						
I(R1):	6.28443	device current						
I(E2):	-6.47705	device current						
I(R2):	6.47705	device current						
I(R5):	0.542623	device_current						
I(J4):	0.35	device_current						

Рисунок 7 – Результаты симуляции

Как мы можем заметить, результаты, вычисленные вручную, совпадают с результатом симуляции.

$$J_1 \approx 6.284 \; [{\rm A}], J_2 \approx 6.477 \; [{\rm A}], J_3 \approx -0.193 \; [{\rm A}], J_5 \approx 0.543 \; [{\rm A}].$$

$$U_{J_4} \approx 3.798 \; [{\rm B}].$$

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Усольцев А. А. Общая электротехника: Учебное пособие. СПб: НИУИТМО, 2013. 305с. URL: ОБЩАЯ ЭЛЕКТРОТЕХНИКА Учебные издания НИУ ИТМО.
- Абдуллин А.А., Горшков К.С., Ловлин С.Ю., Поляков Н.А.). Никитина М. В. Общая электротехника. Методические указания к лабораторному практикуму в программе LTspice: Учебно-методическое пособие. Санкт-Петербург: Университет ИТМО, 2019. 52 с. URL: Общая электротехника. Методические указания к лабораторному практикуму в программе LTspice: Учебно-методическое пособие. Учебные издания НИУ ИТМО
- 3. М. В. Никитина Электротехника: Варианты домашних заданий СПб: Университет ИТМО 60 с.
- 4. М. В. Никитина, Кононова М. Е. Общая электротехника: Расчет цепей постоянного тока по законам Кирхгофа СПб: Университет ИТМО 2021.
- М. В. Никитина, Кононова М. Е. Общая электротехника: Расчет цепей постоянного тока методом контурных токов и методом узловых напряжений – СПб: Университет ИТМО – 2021.
- М. В. Никитина, Кононова М. Е. Общая электротехника: Расчет цепей постоянного тока методом эквивалентных преобразований, методом эквивалентного генератора. Баланс мощностей – СПб: Университет ИТМО – 2021.