Response of RL and RC circuits

- we established that inductors and capacitors can store energy.
- We analyze RL and RC circuits for I & V ==> when energy is either released or acquired by an inductor or capacitor in response to an abrupt change in a dc voltage or current source.
- Natural Response: When an inductor or capacitor is abruptly disconnected from its dc source, we find I & V that arise when stored energy in an inductor or capacitor is suddenly released to a resistive network.
- Step Response: We find the I & V that arise when energy is being acquired by an inductor or capacitor when a dc voltage or current source is suddenly applied

Natural Response of RL and RC circuits

• We assume that the independent current source generates a constant current Is and that the switch has been in a closed position for a long time.

Therefore, before the stored energy is released,

- The inductor behaves like a short circuit.
- The whole current is in inductive branch and No current in R or Ro.

- The time constant is an important parameter for first order circuits.
 You can express the time elapsed after switching as an integer multiple of t.
- one-time constant after the inductor begins releasing its stored energy to the resistor, the current has been reduced to approximately 0.37 of its initial value.

 $\left| \frac{1}{n} \left(\frac{1}{n} \right) \right| = \frac{1}{n} + \frac{1}{n}$ Lodi + Ri- D Lidi L di dt = - Rid (in) - Inlio) = - Lt

L di - [-R] t $\frac{1}{1} di = \frac{1}{2} di$ じけーゴー

Natural Response of RL and RC circuits Steps:

- 1- Determine Io (usually @ t < 0)
- 2- Calculate time constant (tau) ==> don't forget Req
- 3- Write equation of Inductor
- 4- Calculate any required quantity.

Solution

The switch in the circuit shown in Fig. 7.6 has been closed for a long time before it is opened at t = 0. Find

- a) $i_L(t)$ for $t \ge 0$,
- b) $i_o(t)$ for $t \ge 0^+$,
- c) $v_o(t)$ for $t \ge 0^+$,
- d) the percentage of the total energy stored in the $2\,\mathrm{H}$ inductor that is dissipated in the $10\,\Omega$ resistor.

The natural response of an RC Circuit

$$C\frac{dv}{dt} + \frac{v}{R} = 0$$

$$v(t) = V_0 e^{-t/\tau}$$

-t/~1

The natural response of an RC Circuit Steps:

- 1- Determine to (usually @ t < 0)
- 2- Calculate time constant (tau) ==> don't forget Req
- 3- Write equation of Inductor (7)
- 4- Calculate any required quantity.

The switch in the circuit shown in Fig. 7.15 has been in position x for a long time. At t = 0, the switch moves instantaneously to position y. Find

a)
$$v_C(t)$$
 for $t \ge 0$,

b)
$$v_o(t)$$
 for $t \ge 0^+$,

c)
$$i_o(t)$$
 for $t \ge 0^+$, and

d) the total energy dissipated in the 60 k Ω resistor.

- V, LE)
- Odrn -50 t 1 - 1 olt) At = 1.2 mJ