OpenGeoProver Output for conjecture "Chou 336 (Gergonne's point theorem)"

Wu's method used February 23, 2012

1 Validation of Construction Protocol

Construction steps:

- Free point P
- Free point Q
- Free point R
- Circumscribed circle k around triangle PQR
- Tangent line a through point P of set of points k
- Tangent line b through point R of set of points k
- Tangent line c through point Q of set of points k
- Intersection point A of point sets b and c
- Intersection point B of point sets a and c
- Intersection point C of point sets a and b
- Line ap through two points A and P
- Line br through two points B and R
- Intersection point G of point sets ap and br

Theorem statement:

• Points C, Q, G are collinear

Validation result: Construction protocol is valid.

2 Transformation of Construction Protocol to algebraic form

Transformation of Construction steps

2.1 Transformation of point P:

• Point P has been assigned following coordinates: (0, 0)

2.2 Transformation of point Q:

• Point Q has been assigned following coordinates: $(0, u_1)$

2.3 Transformation of point R:

• Point R has been assigned following coordinates: (u_2, u_3)

2.4 Transformation of point A:

- Point A has been assigned following coordinates: (x_1, x_2)
- Polynomial that point A has to satisfy is:

$$p = (u_3u_2 - 0.5u_2u_1)x_2 + (-0.5u_3^2 + 0.5u_3u_1 + 0.5u_2^2)x_1 + (-0.5u_3^2u_2 - 0.5u_3^2)$$

• Processing of polynomial

$$p = (u_3u_2 - 0.5u_2u_1)x_2 + (-0.5u_3^2 + 0.5u_3u_1 + 0.5u_2^2)x_1 + (-0.5u_3^2u_2 - 0.5u_3^2)$$

Info: Polynomial

$$p = (u_3u_2 - 0.5u_2u_1)x_2 + (-0.5u_3^2 + 0.5u_3u_1 + 0.5u_2^2)x_1 + (-0.5u_3^2u_2 - 0.5u_3^2)$$

added to system of polynomials that represents the constructions

- New polynomial added to system of hypotheses
- Polynomial that point A has to satisfy is:

$$p = u_2 u_1 x_2 + (-u_3^2 + u_3 u_1 - u_2^2) x_1 - u_2 u_1^2$$

• Processing of polynomial

$$p = u_2 u_1 x_2 + (-u_3^2 + u_3 u_1 - u_2^2) x_1 - u_2 u_1^2$$

Info: Polynomial

$$p = u_2u_1x_2 + (-u_3^2 + u_3u_1 - u_2^2)x_1 - u_2u_1^2$$

added to system of polynomials that represents the constructions

• New polynomial added to system of hypotheses

2.5 Transformation of point B:

- Point B has been assigned following coordinates: (x_3, x_4)
- Polynomial that point B has to satisfy is:

$$p = u_2 u_1 x_4 + (u_3^2 - u_3 u_1 + u_2^2) x_3$$

• Processing of polynomial

$$p = u_2 u_1 x_4 + (u_3^2 - u_3 u_1 + u_2^2) x_3$$

Info: Polynomial

$$p = u_2 u_1 x_4 + (u_3^2 - u_3 u_1 + u_2^2) x_3$$

added to system of polynomials that represents the constructions

- New polynomial added to system of hypotheses
- Polynomial that point B has to satisfy is:

$$p = u_2 u_1 x_4 + (-u_3^2 + u_3 u_1 - u_2^2) x_3 - u_2 u_1^2$$

• Processing of polynomial

$$p = u_2 u_1 x_4 + (-u_3^2 + u_3 u_1 - u_2^2) x_3 - u_2 u_1^2$$

Info: Polynomial

$$p = u_2 u_1 x_4 + (-u_3^2 + u_3 u_1 - u_2^2) x_3 - u_2 u_1^2$$

added to system of polynomials that represents the constructions

• New polynomial added to system of hypotheses

2.6 Transformation of point C:

- Point C has been assigned following coordinates: (x_5, x_6)
- Polynomial that point C has to satisfy is:

$$p = u_2u_1x_6 + (u_3^2 - u_3u_1 + u_2^2)x_5$$

• Processing of polynomial

$$p = u_2 u_1 x_6 + (u_3^2 - u_3 u_1 + u_2^2) x_5$$

Info: Polynomial

$$p = u_2 u_1 x_6 + (u_3^2 - u_3 u_1 + u_2^2) x_5$$

added to system of polynomials that represents the constructions

• New polynomial added to system of hypotheses

• Polynomial that point C has to satisfy is:

$$p = (u_3u_2 - 0.5u_2u_1)x_6 + (-0.5u_3^2 + 0.5u_3u_1 + 0.5u_2^2)x_5 + (-0.5u_3^2u_2 - 0.5u_3^2)$$

• Processing of polynomial

$$p = (u_3u_2 - 0.5u_2u_1)x_6 + (-0.5u_3^2 + 0.5u_3u_1 + 0.5u_2^2)x_5 + (-0.5u_3^2u_2 - 0.5u_3^2)$$

Info: Polynomial

$$p = (u_3u_2 - 0.5u_2u_1)x_6 + (-0.5u_3^2 + 0.5u_3u_1 + 0.5u_2^2)x_5 + (-0.5u_3^2u_2 - 0.5u_3^2)$$

added to system of polynomials that represents the constructions

• New polynomial added to system of hypotheses

2.7 Transformation of point G:

- Point G has been assigned following coordinates: (x_7, x_8)
- Polynomial that point G has to satisfy is:

$$p = x_8 x_1 - x_7 x_2$$

• Processing of polynomial

$$p = x_8 x_1 - x_7 x_2$$

Info: Polynomial

$$p = x_8 x_1 - x_7 x_2$$

added to system of polynomials that represents the constructions

- New polynomial added to system of hypotheses
- Polynomial that point G has to satisfy is:

$$p = x_8x_3 - u_2x_8 - x_7x_4 + u_3x_7 + u_2x_4 - u_3x_3$$

• Processing of polynomial

$$p = x_8x_3 - u_2x_8 - x_7x_4 + u_3x_7 + u_2x_4 - u_3x_3$$

Info: Polynomial

$$p = x_8x_3 - u_2x_8 - x_7x_4 + u_3x_7 + u_2x_4 - u_3x_3$$

added to system of polynomials that represents the constructions

• New polynomial added to system of hypotheses

Transformation of Theorem statement

• Polynomial for theorem statement:

$$p = x_8x_5 - x_7x_6 + u_1x_7 - u_1x_5$$

Time spent for transformation of Construction Protocol to algebraic form

• 0.324 seconds

3 Invoking the theorem prover

The used proving method is Wu's method.

The input system is:

$$\begin{array}{rcl} p_1 & = & (u_3u_2 - 0.5u_2u_1)x_2 + (-0.5u_3^2 + 0.5u_3u_1 + 0.5u_2^2)x_1 + \\ & & (-0.5u_3^2u_2 - 0.5u_2^3) \\ p_2 & = & u_2u_1x_2 + (-u_3^2 + u_3u_1 - u_2^2)x_1 - u_2u_1^2 \\ p_3 & = & u_2u_1x_4 + (u_3^2 - u_3u_1 + u_2^2)x_3 \\ p_4 & = & u_2u_1x_4 + (-u_3^2 + u_3u_1 - u_2^2)x_3 - u_2u_1^2 \\ p_5 & = & u_2u_1x_6 + (u_3^2 - u_3u_1 + u_2^2)x_5 \\ p_6 & = & (u_3u_2 - 0.5u_2u_1)x_6 + (-0.5u_3^2 + 0.5u_3u_1 + 0.5u_2^2)x_5 + \\ & & (-0.5u_3^2u_2 - 0.5u_2^3) \\ p_7 & = & x_8x_1 - x_7x_2 \\ p_8 & = & x_8x_3 - u_2x_8 - x_7x_4 + u_3x_7 + u_2x_4 - u_3x_3 \end{array}$$

3.1 Triangulation, step 1

Choosing variable: Trying the variable with index 8.

Variable x_8 **selected:** The number of polynomials with this variable, with indexes from 1 to 8, is 2.

Minimal degrees: 2 polynomial(s) with degree 1.

Polynomial with linear degree: Removing variable x_8 from all other polynomials by reducing them with polynomial p_7 from previous step.

Finished a triangulation step, the current system is:

$$\begin{array}{rcl} p_1 & = & (u_3u_2 - 0.5u_2u_1)x_2 + (-0.5u_3^2 + 0.5u_3u_1 + 0.5u_2^2)x_1 + \\ & & (-0.5u_3^2u_2 - 0.5u_2^3) \\ p_2 & = & u_2u_1x_2 + (-u_3^2 + u_3u_1 - u_2^2)x_1 - u_2u_1^2 \\ p_3 & = & u_2u_1x_4 + (u_3^2 - u_3u_1 + u_2^2)x_3 \\ p_4 & = & u_2u_1x_4 + (-u_3^2 + u_3u_1 - u_2^2)x_3 - u_2u_1^2 \end{array}$$

$$p_5 = u_2u_1x_6 + (u_3^2 - u_3u_1 + u_2^2)x_5$$

$$p_6 = (u_3u_2 - 0.5u_2u_1)x_6 + (-0.5u_3^2 + 0.5u_3u_1 + 0.5u_2^2)x_5 + (-0.5u_3^2u_2 - 0.5u_2^3)$$

$$p_7 = -x_7x_4x_1 + x_7x_3x_2 - u_2x_7x_2 + u_3x_7x_1 + u_2x_4x_1 - u_3x_3x_1$$

$$p_8 = x_8x_1 - x_7x_2$$

3.2 Triangulation, step 2

Choosing variable: Trying the variable with index 7.

Variable x_7 **selected:** The number of polynomials with this variable, with indexes from 1 to 7, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_7 . No reduction needed.

The triangular system has not been changed.

3.3 Triangulation, step 3

Choosing variable: Trying the variable with index 6.

Variable x_6 selected: The number of polynomials with this variable, with indexes from 1 to 6, is 2.

Minimal degrees: 2 polynomial(s) with degree 1.

Polynomial with linear degree: Removing variable x_6 from all other polynomials by reducing them with polynomial p_5 from previous step.

Finished a triangulation step, the current system is:

$$\begin{array}{rcl} p_1 & = & (u_3u_2 - 0.5u_2u_1)x_2 + (-0.5u_3^2 + 0.5u_3u_1 + 0.5u_2^2)x_1 + \\ & & (-0.5u_3^2u_2 - 0.5u_2^3) \\ p_2 & = & u_2u_1x_2 + (-u_3^2 + u_3u_1 - u_2^2)x_1 - u_2u_1^2 \\ p_3 & = & u_2u_1x_4 + (u_3^2 - u_3u_1 + u_2^2)x_3 \\ p_4 & = & u_2u_1x_4 + (-u_3^2 + u_3u_1 - u_2^2)x_3 - u_2u_1^2 \\ p_5 & = & (-u_3^3u_2 + u_3^2u_2u_1 - u_3u_2^3 + u_2^3u_1)x_5 + \\ & & (-0.5u_3^2u_2^2u_1 - 0.5u_2^4u_1) \\ p_6 & = & u_2u_1x_6 + (u_3^2 - u_3u_1 + u_2^2)x_5 \\ p_7 & = & -x_7x_4x_1 + x_7x_3x_2 - u_2x_7x_2 + u_3x_7x_1 + u_2x_4x_1 \\ & & -u_3x_3x_1 \\ p_8 & = & x_8x_1 - x_7x_2 \end{array}$$

3.4 Triangulation, step 4

Choosing variable: Trying the variable with index 5.

Variable x_5 **selected:** The number of polynomials with this variable, with indexes from 1 to 5, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_5 . No reduction needed.

The triangular system has not been changed.

3.5 Triangulation, step 5

Choosing variable: Trying the variable with index 4.

Variable x_4 selected: The number of polynomials with this variable, with indexes from 1 to 4, is 2.

Minimal degrees: 2 polynomial(s) with degree 1.

Polynomial with linear degree: Removing variable x_4 from all other polynomials by reducing them with polynomial p_3 from previous step.

Finished a triangulation step, the current system is:

$$\begin{array}{rcl} p_1 & = & (u_3u_2 - 0.5u_2u_1)x_2 + (-0.5u_3^2 + 0.5u_3u_1 + 0.5u_2^2)x_1 + \\ & & (-0.5u_3^2u_2 - 0.5u_2^3) \\ p_2 & = & u_2u_1x_2 + (-u_3^2 + u_3u_1 - u_2^2)x_1 - u_2u_1^2 \\ p_3 & = & (-2u_3^2u_2u_1 + 2u_3u_2u_1^2 - 2u_2^3u_1)x_3 - u_2^2u_1^3 \\ p_4 & = & u_2u_1x_4 + (u_3^2 - u_3u_1 + u_2^2)x_3 \\ p_5 & = & (-u_3^3u_2 + u_3^2u_2u_1 - u_3u_2^3 + u_2^3u_1)x_5 + \\ & & (-0.5u_3^2u_2^2u_1 - 0.5u_2^4u_1) \\ p_6 & = & u_2u_1x_6 + (u_3^2 - u_3u_1 + u_2^2)x_5 \\ p_7 & = & -x_7x_4x_1 + x_7x_3x_2 - u_2x_7x_2 + u_3x_7x_1 + u_2x_4x_1 \\ & & -u_3x_3x_1 \\ p_8 & = & x_8x_1 - x_7x_2 \end{array}$$

3.6 Triangulation, step 6

Choosing variable: Trying the variable with index 3.

Variable x_3 selected: The number of polynomials with this variable, with indexes from 1 to 3, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_3 . No reduction needed.

The triangular system has not been changed.

3.7 Triangulation, step 7

Choosing variable: Trying the variable with index 2.

Variable x_2 selected: The number of polynomials with this variable, with indexes from 1 to 2, is 2.

Minimal degrees: 2 polynomial(s) with degree 1.

Polynomial with linear degree: Removing variable x_2 from all other polynomials by reducing them with polynomial p_1 from previous step.

Finished a triangulation step, the current system is:

$$\begin{array}{rcl} p_1 & = & (-u_3^3u_2 + 2u_3^2u_2u_1 - u_3u_2^3 - u_3u_2u_1^2)x_1 + \\ & & (0.5u_3^2u_2^2u_1 - u_3u_2^2u_1^2 + 0.5u_2^4u_1 + 0.5u_2^2u_1^3) \\ \end{array}$$

$$\begin{array}{rcl} p_2 & = & (u_3u_2 - 0.5u_2u_1)x_2 + (-0.5u_3^2 + 0.5u_3u_1 + 0.5u_2^2)x_1 + \\ & & (-0.5u_3^2u_2 - 0.5u_2^3) \\ p_3 & = & (-2u_3^2u_2u_1 + 2u_3u_2u_1^2 - 2u_2^3u_1)x_3 - u_2^2u_1^3 \\ p_4 & = & u_2u_1x_4 + (u_3^2 - u_3u_1 + u_2^2)x_3 \\ p_5 & = & (-u_3^3u_2 + u_3^2u_2u_1 - u_3u_2^3 + u_2^3u_1)x_5 + \\ & & (-0.5u_3^2u_2^2u_1 - 0.5u_2^4u_1) \\ p_6 & = & u_2u_1x_6 + (u_3^2 - u_3u_1 + u_2^2)x_5 \\ p_7 & = & -x_7x_4x_1 + x_7x_3x_2 - u_2x_7x_2 + u_3x_7x_1 + u_2x_4x_1 \\ & & -u_3x_3x_1 \\ p_8 & = & x_8x_1 - x_7x_2 \end{array}$$

3.8 Triangulation, step 8

Choosing variable: Trying the variable with index 1.

Variable x_1 selected: The number of polynomials with this variable, with indexes from 1 to 1, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_1 . No reduction needed.

The triangular system has not been changed.

The triangular system is:

$$p_1 = (-u_3^3 u_2 + 2u_3^2 u_2 u_1 - u_3 u_2^3 - u_3 u_2 u_1^2) x_1 + (0.5u_3^2 u_2^2 u_1 - u_3 u_2^2 u_1^2 + 0.5u_2^4 u_1 + 0.5u_2^2 u_1^3)$$

$$p_2 = (u_3 u_2 - 0.5u_2 u_1) x_2 + (-0.5u_3^2 + 0.5u_3 u_1 + 0.5u_2^2) x_1 + (-0.5u_3^2 u_2 - 0.5u_3^2)$$

$$\begin{array}{rcl} p_3 & = & (-2u_3^2u_2u_1 + 2u_3u_2u_1^2 - 2u_2^3u_1)x_3 - u_2^2u_1^3 \\ p_4 & = & u_2u_1x_4 + (u_3^2 - u_3u_1 + u_2^2)x_3 \\ p_5 & = & (-u_3^3u_2 + u_3^2u_2u_1 - u_3u_2^3 + u_2^3u_1)x_5 + \\ & & (-0.5u_3^2u_2^2u_1 - 0.5u_2^4u_1) \\ p_6 & = & u_2u_1x_6 + (u_3^2 - u_3u_1 + u_2^2)x_5 \\ p_7 & = & -x_7x_4x_1 + x_7x_3x_2 - u_2x_7x_2 + u_3x_7x_1 + u_2x_4x_1 \\ & & -u_3x_3x_1 \\ p_8 & = & x_8x_1 - x_7x_2 \end{array}$$

4 Final Remainder

4.1 Final remainder for conjecture Chou 336 (Gergonne's point theorem)

Calculating final remainder of the conclusion:

$$g = x_8 x_5 - x_7 x_6 + u_1 x_7 - u_1 x_5$$

with respect to the triangular system.

1. Pseudo remainder with p_8 over variable x_8 :

$$g = -x_7x_6x_1 + x_7x_5x_2 + u_1x_7x_1 - u_1x_5x_1$$

2. Pseudo remainder with p_7 over variable x_7 :

$$g = u_2x_6x_4x_1^2 - u_3x_6x_3x_1^2 - u_2x_5x_4x_2x_1 + u_1x_5x_4x_1^2 + (u_3 - u_1)x_5x_3x_2x_1 + u_2u_1x_5x_2x_1 - u_3u_1x_5x_1^2 - u_2u_1x_4x_1^2 + u_3u_1x_3x_1^2$$

3. Pseudo remainder with p_6 over variable x_6 :

$$g = -u_2^2 u_1 x_5 x_4 x_2 x_1 + (-u_3^2 u_2 + u_3 u_2 u_1 - u_2^3 + u_2 u_1^2) x_5 x_4 x_1^2 + (u_3 u_2 u_1 - u_2 u_1^2) x_5 x_3 x_2 x_1 + (u_3^3 - u_3^2 u_1 + u_3 u_2^2) x_5 x_3 x_1^2 + u_2^2 u_1^2 x_5 x_2 x_1 - u_3 u_2 u_1^2 x_5 x_1^2 -u_2^2 u_1^2 x_4 x_1^2 + u_3 u_2 u_1^2 x_3 x_1^2$$

4. Pseudo remainder with p_5 over variable x_5 :

$$\begin{array}{ll}g&=&(-0.5u_3^2u_2^4u_1^2-0.5u_2^6u_1^2)x_4x_2x_1+\\&&(-0.5u_3^4u_2^3u_1+1.5u_3u_2^3u_1^2-u_3^2u_2^5u_1\\&&-0.5u_3^2u_2^3u_1^3+1.5u_3u_2^5u_1^2-0.5u_2^7u_1\\&&-0.5u_2^5u_1^3)\\&&x_4x_1^2\\&&+\\&&(0.5u_3^3u_2^3u_1^2-0.5u_3^2u_2^3u_1^3+0.5u_3u_2^5u_1^2\\&&-0.5u_2^5u_1^3)\\&&x_3x_2x_1\\&&+\\&&(0.5u_3^5u_2^2u_1-1.5u_3^4u_2^2u_1^2+u_3^3u_2^4u_1+u_3^2u_2^2u_1^3-1.5u_3^2u_2^4u_1^2+0.5u_3u_2^6u_1+u_3u_2^4u_1^3)\\&&x_3x_2^2\\&&+\\&&(0.5u_3^2u_2^4u_1^3+0.5u_2^6u_1^3)x_2x_1+\\&&(-0.5u_3^3u_2^4u_1^3-0.5u_3u_2^5u_1^3)x_1^2\end{array}$$

5. Pseudo remainder with p_4 over variable x_4 :

$$\begin{array}{ll} g&=&(0.5u_3^4u_2^4u_1^2+u_3^2u_2^6u_1^2-0.5u_3^2u_2^4u_1^4+\\ &&0.5u_2^8u_1^2-0.5u_2^6u_1^4)\\ &&x_3x_2x_1\\ &&+\\ &&(0.5u_3^6u_2^3u_1-1.5u_3^5u_2^3u_1^2+1.5u_3^4u_2^5u_1+\\ &&0.5u_3^4u_2^3u_1^3-3u_3^3u_2^5u_1^2+0.5u_3^3u_2^3u_1^4+\\ &&1.5u_3^2u_1^7u_1+u_3^2u_2^5u_1^3-1.5u_3u_2^7u_1^2+\\ &&0.5u_3u_2^5u_1^4+0.5u_2^9u_1+0.5u_2^7u_1^3)\\ &&x_3x_1^2\\ &&+(0.5u_3^2u_2^5u_1^4+0.5u_2^7u_1^4)x_2x_1+\\ &&(-0.5u_3^3u_2^4u_1^4-0.5u_3u_0^6u_1^4)x_1^2\\ \end{array}$$

6. Pseudo remainder with p_3 over variable x_3 :

$$\begin{array}{lll} g & = & (-0.5u_3^4u_2^6u_1^5 + u_3^3u_2^6u_1^6 - u_3^2u_2^8u_1^5 \\ & & -0.5u_3^2u_2^6u_1^7 + u_3u_2^8u_1^6 - 0.5u_2^{10}u_1^5 \\ & & & -0.5u_2^8u_1^7) \\ & & & x_2x_1 \\ & & + \end{array}$$

$$\begin{array}{l} (0.5u_3^6u_2^5u_1^4 - 0.5u_3^5u_2^5u_1^5 + \\ 1.5u_3^4u_2^7u_1^4 - 0.5u_3^4u_2^5u_1^6 - u_3^3u_2^7u_1^5 + \\ 0.5u_3^3u_2^5u_1^7 + 1.5u_3^2u_2^9u_1^4 - 0.5u_3u_2^9u_1^5 + \\ 0.5u_3u_2^7u_1^7 + 0.5u_2^{11}u_1^4 + 0.5u_2^9u_1^6) \\ x_1^2 \end{array}$$

7. Pseudo remainder with p_2 over variable x_2 :

$$\begin{array}{ll} g&=&(0.5u_3^7u_2^6u_1^4-u_3^6u_2^6u_1^5+1.5u_3^5u_2^8u_1^4+\\ &0.5u_3^5u_2^6u_1^6-2u_3^4u_2^8u_1^5+1.5u_3^3u_2^{10}u_1^4+\\ &u_3^3u_2^8u_1^6-u_3^2u_2^{10}u_1^5+0.5u_3u_2^{12}u_1^4+\\ &0.5u_3u_2^{10}u_1^6)\\ &x_1^2\\ &+\\ &(-0.25u_3^6u_2^7u_1^5+0.5u_3^5u_2^7u_1^6\\ &-0.75u_3^4u_2^9u_1^5-0.25u_3^4u_2^7u_1^7+\\ &u_3^3u_2^9u_1^6-0.75u_3^2u_2^{11}u_1^5\\ &-0.5u_3^2u_2^9u_1^7+0.5u_3u_2^{11}u_1^6-0.25u_2^{13}u_1^5\\ &-0.25u_2^{11}u_1^7)\\ &x_1\end{array}$$

8. Pseudo remainder with p_1 over variable x_1 :

$$g = 0$$

5 Prover results

Status: Theorem has been proved.

Space Complexity: The biggest polynomial obtained during prover execution contains 9 terms.

Time Complexity: Time spent by the prover is 0.089 seconds.

6 NDG Conditions

NDG Conditions in readable form

- Points Q, P and R are not collinear
- Points Q, P and R are not collinear
- Points Q, P and R are not collinear
- Points Q, P and R are not collinear

- $\bullet\,$ Points Q and P are not identical
- Points Q, P and R are not collinear
- Points Q, P and R are not collinear
- Line through points P and A is not parallel with line through points B and R
- Points P and A are not identical

Time spent for processing NDG Conditions

 \bullet 1.025 seconds