Messtechnik und Messdatenverarbeitung - Blatt 7

Maike Meier and Lasse Schuirmann

14. Dezember 2014

THIS PAGE INTENTIONALLY LEFT BLANK.

Aufgabe 1

1.1

Um eine Ablösung des Sensors zu detektieren, kann der χ^2 -Verteilung Anpassungstest durchgeführt werden. (Die Normalverteilung lässt sich ab ca. n=30 durch eine χ^2 -Verteilung approximieren.)

Eine Voraussetzung für diesen Test ist, dass die Messwerte statistisch unabhängig sind und eine große Stichprobe vorhanden ist.

Der Test kann wie folgt durchgeführt werden:

- 1. Voraussetzungen sicherstellen
- 2. Klassen festlegen, Häufigkeiten n_i bestimmen
- 3. Null- und Alternativhypothese aufstellen:
 - H_0 Die Daten sind normalverteilt
 - H_1 Die Daten sind nicht normalverteilt
- 4. Signifikanzniveau wählen
- 5. $\chi^2 \approx \sum_{i=1}^{8} \frac{(n_i np_i)^2}{np_i}$ berechnen
- 6. Nullhypothese annehmen oder ablehnen

1.2

Klasse	≤ 35.0	35.1 - 35.5	35.6 - 36.0	36.1 - 36.5	36.6 - 37.0	37.1 - 37.5	37.6 - 38.0	≥ 38.0
Anzahl n_i	4	9	16	20	16	16	6	8

Diagramm 1.

Das Nebenstehende Diagramm ist eine Visualisierung der Obenstehenden Tabelle. (Hierbei wurde ein Datenpunkt jeweils bei einer Oberen Grenze der Klasse gezeichnet.)

Da jede Klasse nicht zu wenige Elemente enthält, das Diagramm aber aussagekräftig scheint, ist diese Einteilung bei dieser Stichprobenmenge sinnvoll.

1.3

Die p_i s können mithilfe der gegebenen Daten aus einer Normalverteilung errechnet werden. Die gegebene Normalverteilungsfunktion ist im folgenden Diagramm dargestellt:

Ermittelt man die Werte der Dichtefunktion zu den gegebenen Klassengrenzen (mit n multipliziert) erhält man folgendes Diagramm:

(Alle Datenpunkte bis auf der des Graphen für np_i stellen wieder die obere Grenze für die Klasse dar. Der Ausnahmepunkt ist der Klasse $38 - \infty$ zuzuordnen, die in unserer Stichprobe keine Werte > 39 enthält.)

Die dazugehörige Tabelle ist (Werte abgerundet [Informatiker] auf die erste Stelle nach dem Komma):

Klasse	≤ 35.0	35.1 - 35.5	35.6 - 36.0	36.1 - 36.5	36.6 - 37.0	37.1 - 37.5	37.6 - 38.0	≥ 38.0
Anzahl n_i	4	9	16	20	16	16	6	8
p_i	4.6	8.4	14.7	19.2	18.5	13.2	7.0	3.5

1.4

$$\chi^2 \approx \sum_{i=1}^{8} \frac{(n_i - np_i)^2}{np_i} = 6,28 (= 0,18+0,04+0,1+0,02+0,36+0,56+0,15+4,86))$$

Also mit $\mu = 36.44$:

$$P(6.28) = \int_{30.16}^{42.72} \mathcal{N}(x)dx \approx 1$$

Die Differenz des realen Ergebnis' zu 1 ist außerhalb der double Rechnergenauigkeit.

Damit gilt $P > 1 - \alpha$ für übliche α und die Nullhypothese wird abgelehnt.

1.5

Die Ergebnisse, wie auch Anfangs die Diagramme, legen klar dar, dass es sich nicht um eine Normalverteilte Größe handelt. Es ist also sehr Wahrscheinlich, dass sich der Sensor von dem Probanden gelöst hat.