

Chapter 13 (Chapter 20 in the textbook)

Brownian Motion and Itô's Lemma

ROBERT L. McDONALD

Points to Note

- 1. Definition of the Standard Brownian motion. See P.3 4.
- 2. Stochastic Processes which are constructed from the standard Brownian motion. See P.5 11.
- 3. Modelling the correlated asset prices through correlated Brownian motions. See P.12 16.
- 4. Ito's lemma: univariate and multivariate versions. See P.17 28.
- 5. Sharpe ratios of two perfectly correlated assets. See P.29 31.

Brownian Motion

- A <u>stochastic process</u> is a random process that is a function of time.
- Brownian motion is a stochastic process that evolves in continuous time, with movements that are continuous.
 - A random walk can be generated by flipping a coin each period and moving one step, with the direction determined by whether the coin is heads or tails.
 - To generate Brownian motion, we would flip the coins infinitely fast and take infinitesimally small steps at each point.

Brownian Motion (cont'd)

- Brownian motion is a continuous stochastic process,
 Z(t), with the following characteristics:
 - Z(0) = 0.
 - Z(t + s) Z(t) is normally distributed with mean 0 and variance s.
 - $Z(t + s_1)$ Z(t) is independent of Z(t) $Z(t s_2)$, where $s_1, s_2 > 0$. That is, nonoverlapping increments are independently distributed.
 - -Z(t) is continuous.
- These properties imply that Z(t) is a martingale: a stochastic process for which

$$E[Z(t+s)|\{Z(u), 0 \le u \le t\}] = Z(t).$$

Arithmetic Brownian Motion

 With pure Brownian motion, the expected change in Z is 0, and the variance per unit time is 1. We can generalize this to allow an arbitrary variance and a nonzero mean

$$dX(t) = \alpha dt + \sigma dZ(t)$$
(20.8)

- This process is called arithmetic Brownian motion
 - α is the instantaneous mean per unit time.
 - σ^2 is the instantaneous variance per unit time.
 - The variable X(t) is the sum of the individual changes dX. X(t) is normally distributed, i.e., $X(T) X(0) \sim N(\alpha T, \sigma^2 T)$.

Arithmetic Brownian Motion (cont'd)

An integral representation of equation (20.8) is

$$X(T) = X(0) + \int_0^T \alpha \, dt + \int_0^T \sigma \, dZ(t)$$

- Here are some properties of the process in equation (20.8)
 - X(t) is normally distributed because it is a scaled Brownian process.
 - The random term is multiplied by a scale factor that enables us to specify the variance of the process.
 - The αdt term introduces a nonrandom *drift* into the process.

Arithmetic Brownian Motion (cont'd)

- Arithmetic Brownian motion has several drawbacks
 - There is nothing to prevent X from becoming negative, so it is a poor model for stock prices.
 - The mean and variance of changes in dollar terms are independent of the level of the stock price.
- Both of these criticisms will be eliminated with geometric Brownian motion.

The Ornstein-Uhlenbeck Process

 We can incorporate mean reversion by modifying the drift term

$$dX(t) = \lambda [a - X(t)] dt + \sigma dZ(t)$$
 (20.9)

- This equation is called an Ornstein-Uhlenbeck process.
 - The parameter λ measures the speed of the reversion: If λ is large, reversion happens more quickly.
 - In the long run, we expect X to revert toward α .
 - As with arithmetic Brownian motion, X can still become negative.

Geometric Brownian Motion

- An equation, in which the drift and volatility depend on the stock price, is called an Itô process.
 - Suppose we modify arithmetic Brownian motion to make the instantaneous mean and standard deviation proportional to X(t)

$$dX(t) = \alpha X(t) dt + \sigma X(t) dZ(t)$$

- This is an Itô process that can also be written

$$\frac{dX(t)}{X(t)} = a dt + \sigma dZ(t)$$
(20.11)

 This process is known as geometric Brownian motion (GBM).

Geometric Brownian Motion (cont'd)

- The percentage change in the asset value is normally distributed with instantaneous mean α and instantaneous variance σ^2 .
- The integral representation for equation (20.11) is

$$X(T) - X(0) = \int_0^T \alpha X(t)dt + \int_0^T \sigma X(t)dZ(t)$$

Multiplication Rules

 We can simplify complex terms containing dt and dZ by using the following "multiplication rules":

$$dt \times dZ = 0$$
 (20.15a)
 $(dt)^2 = 0$ (20.15b)
 $(dZ)^2 = dt$ (20.15c)

Modeling Correlated Asset Prices

Suppose that we have m asset processes

$$\frac{dX_i}{X_i} = (\alpha_i - \delta_i)dt + \sigma_i dZ_i \qquad i = 1, ..., m$$

The correlation between X_i and X_j will be generated by correlation between $Z_i(t)$ and $Z_i(t)$.

Next, we illustrate how we can create <u>correlated</u> diffusion processes by expressing dZ_i and dZ_j as <u>sums</u> of <u>independent</u> diffusions.

• With m = 2 as an illustration:

Let $W_1(t)$ and $W_2(t)$ be <u>independent</u> Brownian motions and define

$$dZ_{1}(t) = dW_{1}(t)$$

$$dZ_{2}(t) = \rho dW_{1}(t) + \sqrt{1 - \rho^{2}} dW_{2}(t)$$

This is the Cholesky decomposition

Consider

$$dZ_1(t)dZ_2(t) = \rho dW_1(t)^2 + \sqrt{1 - \rho^2} dW_1(t)dW_2(t)$$
$$= \rho dt + \sqrt{1 - \rho^2} dW_1(t)dW_2(t)$$

The independence of $W_1(t)$ and $W_2(t)$ implies that

$$E_{t}\{W_{1}(t+s)-W_{1}(t)[W_{2}(t+s)-W_{2}(t)]\}=0$$

Using the differential notation, we can write

$$dW_1(t) \times dW_2(t) = 0$$

Therefore,

$$dZ_1(t)dZ_2(t) = \rho dt$$

In general, we can construct dZ_i , i = 1, ..., n, as follows:

$$dZ_{i}(t) = \sum_{k=1}^{n} \lambda_{i,k} dW_{k}(t)$$

where we scale the coefficients so that

$$\sum_{k=1}^{n} \lambda_{i,k}^2 = 1$$

Because the Brownian increments are jointly-normally distributed, their sum is normal. We also have

$$Var[dZ_i(t)] = Var\left(\sum_{k=1}^n \lambda_{i,k} dW_k(t)\right) = \sum_{k=1}^n \lambda_{i,k}^2 dW_k(t)^2 = dt$$

$$dZ_{i}(t)dZ_{j}(t) = \sum_{k=1}^{n} \lambda_{i,k} dW_{k}(t) \sum_{k=1}^{n} \lambda_{j,k} dW_{k}(t)$$

$$=\sum_{k=1}^{n}\lambda_{i,k}\lambda_{j,k}dt=\rho_{i,j}dt$$

where

$$\rho_{i,j} = \sum_{k=1}^{n} \lambda_{i,k} \lambda_{j,k}$$

Itô's Lemma

 Suppose that the stock price, S(t), follows the Itô process given by

$$dS(t) = \left[\hat{\alpha}[S(t),t] - \hat{\delta}[S(t),t]\right]dt + \hat{\sigma}[S(t),t]dZ(t)$$

- In this equation, the expected return, α , the dividend yield, δ , and the volatility, σ , can be functions of the stock price and time.
- If

$$\hat{\alpha}[S(t),t] = \alpha S(t), \quad \hat{\delta}[S(t),t] = \delta S(t), \quad \hat{\sigma}[S(t),t] = \sigma S(t),$$

then S(t) follows geometric Brownian motion.

- C[S(t), t] is the value of a derivative claim that is a function of the stock price.
- How can we describe the behavior of this claim in terms of the behavior of S?

Itô's Lemma (Proposition 20.1)

– If C[S(t), t] is a twice-differentiable function of S(t), then the change in C is

$$dC(S, t) = C_S dS + \frac{1}{2} C_{SS} (dS)^2 + C_t dt$$

$$= \left[(\hat{\alpha}(S, t) - \hat{\delta}(S, t)) C_S + \frac{1}{2} \hat{\sigma}(S, t)^2 C_{SS} + C_t \right] dt + \sigma(S, t) C_S dZ$$

- where $C_S = \partial C/\partial S$, $C_{SS} = \partial^2 C/\partial S^2$, and $C_t = \partial C/\partial t$
- The terms in square brackets are the expected change in the option price.

Proof (Proposition 20.1)

Proposition 20.1 can be proved by applying Itô's lemma and the multiplication rule successively.

 In the case where S(t) follows geometric Brownian motion, we have

$$dC(S,t) = \left[(\alpha - \delta)SC_S + \frac{1}{2}\sigma^2S^2C_{SS} + C_t \right] dt + \sigma SC_S dZ$$

Example (The Black-Scholes Assumption of Stock Prices)

The expression for a lognormal stock price is

$$S(t) = S(0)e^{(\alpha - \delta - 0.5\sigma^2)t + \sigma Z(t)}$$

The stock price is a function of the Brownian process Z(t). We can use Itô's Lemma to characterize the behavior of the stock as a function of Z(t). We have

$$\frac{\partial S(t)}{\partial t} = \left(\alpha - \delta - \frac{1}{2}\sigma^2\right)S(t); \quad \frac{\partial S(t)}{\partial Z(t)} = \sigma S(t); \quad \frac{\partial^2 S(t)}{\partial Z(t)^2} = \sigma^2 S(t)$$

Itô's Lemma states that dS(t) is given as

$$dS(t) = \frac{\partial S(t)}{\partial t}dt + \frac{\partial S(t)}{\partial Z(t)}dZ(t) + \frac{1}{2}\frac{\partial^2 S(t)}{\partial Z(t)^2}[dZ(t)]^2$$
$$= (\alpha - \delta)S(t)dt + \sigma S(t)dZ(t)$$

This calculation demonstrates that a variable that follows geometric Brownian motion is lognormally distributed.

Example

Let $Y(t) = \ln[S(t)]$. Then

$$d \ln[S(t)] = \frac{dS(t)}{S(t)} - \frac{1}{2} \frac{dS(t)^{2}}{S(t)^{2}} = \frac{dS(t)}{S(t)} - \frac{1}{2} \sigma^{2} dt$$

This implies that continuously compounded returns – measured as $\ln[S(T)/S(0)]$ – are lower than the instantaneous return, $\alpha - \delta$, by the factor $0.5\sigma^2$.

Multivariate Itô's Lemma

- A derivative may have a value depending on more than one price, in which case we can use a multivariate generalization of Itô's Lemma
- Multivariate Itô's Lemma (Proposition 20.2)
 - Suppose we have n correlated Itô processes

$$\frac{dS_i(t)}{S_i(t)} = \alpha_i dt + \sigma_i dZ_i, \quad i = 1, ..., n$$

Denote the pairwise correlations as

$$dZ_i \times dZ_j = \rho_{i,j} dt$$

Multivariate Itô's Lemma (cont'd)

• If $C(S_1, ..., S_n, t)$ is a twice-differentiable function of the S_i 's, we have

$$dC(S_1, \ldots, S_n, t) = \sum_{i=1}^n C_{S_i} dS_i + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n dS_i dS_j C_{S_i S_j} + C_t dt$$

Multivariate Itô's Lemma (cont'd)

Example

Suppose $C(S_1, S_2) = S_1/S_2$. Then by Itô's Lemma we have

$$d\left(\frac{S_1}{S_2}\right) = dS_1\left(\frac{1}{S_2}\right) - dS_2\left(\frac{S_1}{S_2^2}\right) + 0.5\left[2(dS_2)^2 \frac{S_1}{S_2^3} - 2dS_1 dS_2 \frac{1}{S_2^2}\right]$$

$$d\left(\frac{S_{1}}{S_{2}}\right)\frac{S_{2}}{S_{1}} = (\alpha_{1} - \alpha_{2} + \sigma_{2}^{2} - \rho\sigma_{1}\sigma_{2})dt + \sigma_{1}dZ_{1} - \sigma_{2}dZ_{2}$$

Multivariate Itô's Lemma (cont'd)

From the earlier discussion of correlated Itô's processes, we have

$$d\left(\frac{S_1}{S_2}\right)\frac{S_2}{S_1} = \left(\alpha_1 - \alpha_2 + \sigma_2^2 - \rho\sigma_1\sigma_2\right)dt + \hat{\sigma}dZ$$

where

$$\hat{\sigma} = \sigma_1^2 + \sigma_2^2 - 2\rho\sigma_1\sigma_2$$
 and $dZ = (\sigma_1 dZ_1 - \sigma_2 dZ_2)/\hat{\sigma}$.

Remark:

Even if S_1 and S_2 have equal drifts (i.e., $\alpha_1 = \alpha_2$), the ratio of S_1 and S_2 will have generally have zero drift.

The Sharpe Ratio

• If asset i has (total) expected return α_i , the risk premium is defined as

Risk premium_i =
$$\alpha_i - r$$

- where *r* is the risk-free rate.
- The **Sharpe ratio** for asset *i* is the risk premium, α_i

–
$$r$$
, per unit of volatility, σ_i

Sharpe ratio_i =
$$\frac{\alpha_i - r}{\sigma_i}$$
 (20.25)

The Sharpe Ratio (cont'd)

- We can use the Sharpe ratio to compare two perfectly correlated claims, such as a derivative and its underlying asset.
- Two assets that are perfectly correlated must have the same Sharpe ratio, or else there will be an arbitrage opportunity.
 - Consider the processes for two non-dividend paying stocks

$$dS_{1} = \alpha_{1}S_{1}dt + \sigma_{1}S_{1}dZ \qquad (20.26)$$

$$dS_2 = \alpha_2 S_2 dt + \sigma_2 S_2 dZ \tag{20.27}$$

 Because the two stock prices are driven by the same dZ, it must be the case that

$$(\alpha_1 - r) / \sigma_1 = (\alpha_2 - r) / \sigma_2$$

The Sharpe Ratio (cont'd)

- The arbitrage is straightforward. Suppose that the Sharpe ratio of asset 1 is greater than that of asset 2. We then
 - Buy $1/(\sigma_1 S_1)$ shares of asset 1.
 - Short $1/(\sigma_2 S_2)$ shares of asset 2.
 - Invest (or borrow) $1/\sigma_2$ $1/\sigma_1$, by buying (or borrowing) the risk-free bond, which has the rate of return rdt.
- The return of the above portfolio is

$$\frac{1}{\sigma_1 S_1} dS_1 - \frac{1}{\sigma_2 S_2} dS_2 + \left(\frac{1}{\sigma_2} - \frac{1}{\sigma_1}\right) r dt = \left(\frac{\alpha_1 - r}{\sigma_1} - \frac{\alpha_2 - r}{\sigma_2}\right) dt > 0$$

So, the arbitrage profit is obtained.