# Actividad 9: Aproximación al cálculo del periodo del péndulo

Luisa Fernanda Orci Fernández

1 de Mayo de 2016

## Descripción de la actividad

Para esta actividad se nos pidió demostrar utilizando Maxima que el periodo del péndulo se puede expresar de la siguiente manera:

$$T = 2\pi\sqrt{\frac{l}{g}}(1 + \frac{1}{16}\theta_0^2 + \frac{11}{3072}\theta_0^4 + \frac{173}{737280}\theta_0^6 + \frac{22931}{1321205760}\theta_0^8 + \frac{1319183}{951268147200}\theta_0^1 0 + \ldots)$$

, utilizando como referencia la integral que resolvimos para la actividad anterior, así como también reproducir una gráfica en Python que se asemejara a la propuesta por el artículo de Wikipedia, la cual representa los errores relativos de los periodos.

A continuación se presentan los códigos utilizados para cada una de estas actividades, así como los resultados obtenidos.

### Procedimiento

#### Demostración de la expresión del periodo

Utilizamos Maxima como herramienta para reducir la expresión y seguimos una serie de pasos que a continuación se presentan:

• Comenzamos por definir una función que depende de un parámetro k:

/\* Funcion L que depende de un parametro k \*/

L1(k) := 
$$1/sqrt(1-(k*sin(u))**2)$$
;

L1 (k) := 
$$\frac{1}{\sqrt{1 - (k \sin(u))^2}}$$

• Seguimos con una expansión de Taylor...

/\* Desarrollo por Taylor\*/

taylor(1/sqrt(1-k^2\*sin(u)^2),u,0,8);

$$(\%o2)/T/1 + \frac{k^2 u^2}{2} + \frac{(9 k^4 - 4 k^2) u^4}{24} + \frac{(225 k^6 - 180 k^4 + 16 k^2) u^6}{720} + \frac{(11025 k^8 - 12600 k^6 + 3024 k^4 - 64 k^2) u^8}{40320} + \dots$$

- Seguimos desarrollando la expresión a partir de los siguientes pasos que se incluyen:
- /\* Definimos otra funcion L2\*/

define(L2(k), %);

$$(\%03)/T/\text{L2}(k) := 1 + \frac{k^2 u^2}{2} + \frac{(9 k^4 - 4 k^2) u^4}{24} + \frac{(225 k^6 - 180 k^4 + 16 k^2) u^6}{720} + \frac{(11025 k^8 - 12600 k^6 + 3024 k^4 - 64 k^2) u^8}{40320} + \dots$$

■ /\* Seno del angulo theta \*/

define(x(%theta), sin(%theta));

$$(\%o13)x(\theta) := \sin(\theta)$$

\* /\* Integral de L2(k) de cero a 90 grados \*/
expand(integrate(K2(k),u,0,%pi/2));

$$(\%o14)\frac{\pi\operatorname{K2}\left(k\right)}{2}$$

\* /\* Sustituimos en la integral anterior el seno de theta \*/
subst(x(%theta/2), k, %);

$$(\%o15)\frac{\pi \operatorname{K2}\left(\sin\left(\frac{\theta}{2}\right)\right)}{2}$$

\* /\* Factorizamos pi/2 \*/
% \*2/%pi;

$$(\%o16)$$
K2  $\left(\sin\left(\frac{\theta}{2}\right)\right)$ 

\* /\* Definimos ahora una funcion L que depende solo del angulo theta \*/
define(L(%theta),expand(%));

$$(\%o26)L(\theta) := K2\left(\sin\left(\frac{\theta}{2}\right)\right)$$

\* /\* Definimos la funcion\*/
define(T(%theta),(2\*%pi)\*sqrt(1/g)\*(F(%theta)));

$$(\%o27)$$
T $(\theta) := 2\pi$  K2 $\left(\sin\left(\frac{\theta}{2}\right)\right)\sqrt{\frac{l}{g}}$ 

Así fue que obtuvimos el desarrollo para llegar a la expresión sugerida.

#### Gráfica de los errores relativos

```
Para obtener esta gráfica, se utilizó el siguiente código:
import numpy as gatito
import math
#PARAMETROS
g = 9.806
1 = 1.00
n = 500
radianesagrad = 180.0/gatito.pi
epsilon = 0.001
#DEFINIMOS ALGUNOS VALORES PARA EL ANGULO INICIAL
theta0 = gatito.linspace(epsilon, gatito.pi-epsilon, n)
#ARREGLOS
Integral = [0 for i in range(n)]
Integral0 = [0 for i in range(n)]
periodonnum = [0 for i in range(n)]
sine = [0 for i in range(n)]
ere12 = [0 for i in range(n)]
#PERIODO APROXIMADO TEORICO PARA ANGULOS PEQUE;OS
periodot = 2.0*(gatito.pi)*(gatito.sqrt(1/g))
#CALCULAR UN ERROR CON RESPECTO AL TEORICO PARA UNA SERIE DE TERMINOS L
L = 2
for i in range(0, L):
    for j in range(0,n):
        fac1 = float(math.factorial(2*(i)))
        fac2 = float((2**(i)*math.factorial(i))**2)
```

```
sine[j] = gatito.sin(theta0[j]/2)**(2*(i))
Integral[j] = ((fac1/fac2)**2)*sine[j]
Integral0[j] = Integral0[j] + Integral[j]
periodonnum[j] = 2.0*(gatito.pi)*(gatito.sqrt(1/g)*Integral0[j])
ere12[j] = periodonnum[j]/periodot
```

Basándonos en una expresión propuesta por el profesor en la página del curso. Al ejecutar dicho código obtuvimos la siguiente gráfica:



## Conclusión

Esta actividad se me hizo dificil al principio por la demostración, pero al momento de poderla terminar, se me fue facilitando poco a poco.

## Referencias

[1] Matplotlib Animation example code: double pendulum, (2016, 20 de Abril). Desde: http://matplotlib.org/examples/animation/double\_pendulum\_animated.html