Обучение без учителя. Кластеризация.

Обучение без / с учителем

Обучение с учителем

- Есть размеченная выборка
- Классификация
- Регрессия

Обучение без учителя

- Нет размеченной выборки
- Кластеризация
- Снижение размерности
- Векторное кодирование (обучение с частичным привлечением учителя)

Снижение размерности методом выделения главных компонент

Главные компоненты — новые переменные, линейные комбинации старых, построенные таким образом, чтобы они были не коррелирующими и большая часть информации (дисперсии) сжата в первую компоненту.

PCA

- Центрируем данные z = x E(x)
- Вычисляем матрицу ковариации $cov(X,Y) = \mathrm{E}[(X-\mathrm{E}X)(Y-\mathrm{E}Y)] = \mathrm{E}(X,Y) \mathrm{E}(X)\cdot\mathrm{E}(Y)$
- cov(X,X) = var(X), cov(X,Y) = cov(Y,X)
- Ищем собственные вектора и значения $Ax = \lambda x$
- Отбираем по собственным значениям топ
- $Result = EigenVectors.T \cdot DataSet.T$
- Объясненная дисперсия $\max(e_{val})$ / $sum(e_{val})$

Кластеризация

- Задача упорядочить объекты в сравнительно однородные группы.
- Формально: если задано пространство объектов X, с обучающей выборкой $X^l = \{x_i\}_{i=1}^l$ и расстоянием $\rho: X \times X \to [0, \infty)$, то надо найти Y множество кластеров и $a: X \to Y$ алгоритм кластеризации, такие что:
 - каждый кластер состоит из близких объектов
 - объекты разных кластеров существенно различны.

Постановка задачи некорректна

Решение задачи кластеризации принципиально неоднозначно:

- точной постановки задачи кластеризации нет
- существует много критериев качества кластеризации
- существует много эвристических методов кластеризации
- число кластеров |Y|, как правило, неизвестно заранее
- результат кластеризации существенно зависит
- от метрики р, которую эксперт задаёт субъективно

Цели кластеризации

- Упростить дальнейшую обработку данных,
- Сократить объём хранимых данных
- Выделить нетипичные объекты
- Построить иерархию множества объектов

Первоначальные проблемы

Кластеры могут быть

- различной формы (размытые кластеры, ленточные кластеры, кластеры с центром)
- подвержены шуму (разреженный фон, перекрытие кластеров, соединения перемычками)

Бонусом – кластеров может не быть

Каждый метод кластеризации имеет свои ограничения и выделяет кластеры лишь некоторых типов.

Чувствительность к нормировке

А – студентки

В – студенты

После нормировки сжимаем ось веса вдвое

Алгоритмы кластеризации

K-means (метод k-средних)

- Алгоритм разделяет выборку на К непересекающихся кластеров, каждый из которых описывается средним μ_i (центройды) всех элементов в кластере.
- Центройды выбираются так, чтобы минимизировать суммарное квадратичное отклонение точек кластеров от центройдов

$$\sum_{i=0}^{n} \min_{\mu_i \in C} \left(\left\| x_i - \mu_j \right\|^2 \right)$$

K-means (метод k-средних)

- 1. Выбрать гиперпараметр k (число кластеров)
- 2. Инициализировать к центройдов
- 3. Отнести каждый элемент выборки к ближайшему центройду
- 4. Обновить центройды
- 5. Повторять шаги 3-4 n итераций или пока центройды не перестанут меняться

K-means (метод k-средних)

https://en.wikipedia.org/wiki/K-means_clustering#/media/File:K-means_convergence.gif

K-means (выбор k)

- Как выбрать число k?
- Хотим, чтобы суммарное квадратичное отклонение было минимальным

K-means (выбор k)

- Как выбрать число k?
- Хотим, чтобы суммарное квадратичное отклонение было минимальным

•
$$J(C) = \sum_{i=0}^{n} \min_{\mu_j \in C} (\|x_i - \mu_j\|^2)$$

• Будем выбирать то k, после которого J(C) уменьшается не сильно (правило локтя)

•
$$D(k) = \frac{|J(C_k) - J(C_{k+1})|}{|J(C_{k-1}) - J(C_k)|} \to \min_k$$

K-means (выбор k)

Проблемы K-means

- Метрика суммарного квадратичного отклонения предполагает, что кластеры выпуклые и равномерные
- Не гарантируется глобальный минимум
- Алгоритм нестабилен из-за начальной инициализации
- Долго сходится

Проблемы K-means

Сложные случаи

Проблемы K-means

K-means++ (выбор кластеров)

- Результат зависит от выбора исходных центров кластеров, их оптимальный выбор неизвестен
- Алгоритм нестабилен
- Попробуем найти хорошие начальные кластеры
 - Выбираем случаные точки
 - Выбираем случайные элементы
 - Выбираем случайные элементы несколько раз, делая пару итераций смотрим где лучше сходимость
 - kmeans++

K-means++ (выбор кластеров)

- Попробуем найти хорошие начальные кластеры
- 1. Выбрать первый центроид случайным образом (среди всех точек)
- 2. Для каждой точки найти значение квадрата расстояния до ближайшего центроида dx²
- 3. Выбираем следующую точку в зависимости от расстояния
- 4. Повторяем шаги 2-3 пока не выберем все центройды

MiniBatch K-means

KMeans

train time: 0.05s inertia: 2470.588436

MiniBatchKMeans

Difference

Иерархическая кластеризация

Иерархическая кластеризация

Иерархическая кластеризация

Clustered Iris data set (the labels give the true flower species)

Как понять какие кластеры близки?

complete-linkage

• $\max\{d(a,b): a \in A, b \in B\}$

• single-linkage

• $\min\{d(a,b): a \in A, b \in B\}$

• average-linkage

•
$$\frac{1}{|A|\cdot|B|}\sum_{a\in A}\sum_{b\in B}d(a,b)$$

• ward-linkage

$$\Delta(A,B) = \sum_{i \in A \bigcup B} ||\overrightarrow{x_i} - \overrightarrow{m}_{A \bigcup B}||^2 - \sum_{i \in A} ||\overrightarrow{x_i} - \overrightarrow{m}_{A}||^2 - \sum_{i \in B} ||\overrightarrow{x_i} - \overrightarrow{m}_{B}||^2 = \frac{n_A n_B}{n_A + n_B} ||\overrightarrow{m}_A - \overrightarrow{m}_B||^2$$

- Будем объединять точки в областях в высокой плотностью
- Разделим их на основные, достижимые по плотности и выпадающие точки
- Точка p является основной точкой, если как минимум $\min_samples$ точек находятся на расстоянии, не превосходящем eps
- Точка q достижима из p, если имеется путь p_1, \dots, p_n, q , где каждая точка p_{i+1} достижима прямо из p_i
- Все точки, не достижимые из основных точек, считаются выбросами.

Оценка качества кластеризации

- Нет таргета -> нельзя посчитать стандартные метрики
- Нельзя брать метку кластера как истину
- Будем оценивать как хорошо наши данные разделяются на кластеры
- Помним: объекты в одном классе более похожи, чем в другом

Adjusted Rand index

- Если мы знаем истинные метки
- п число объектов
- а число пар с одинаковыми метками в одном кластере
- b число пар с разными метками в разных кластерах
- Rand Index $(RI) = \frac{2(a+b)}{n(n-1)}$
- Adjusted Rand Index $(ARI) = \frac{RI E[RI]}{\max(RI) E[RI]}$

Adjusted Rand index

• Плюсы

- У случайных (равномерно) меток ARI=0
- От -1 до 1
- Не зависит от структуры кластеров

• Минусы

• Нужно знать истинные метки

Silhouette

- а среднее расстояние между объектом и другими в одном кластере
- b среднее расстояние между объектом и ближайшим другим кластером

•
$$S = \frac{b-a}{\max(a,b)}$$

- Насколько далеко другой кластер от текущего?
- Чем больше, тем лучше

Silhouette analysis for KMeans clustering on sample data with n_clusters = 2

Silhouette analysis for KMeans clustering on sample data with n_clusters = 3

Silhouette analysis for KMeans clustering on sample data with n_clusters = 4

Silhouette analysis for KMeans clustering on sample data with n_clusters = 5

Silhouette analysis for KMeans clustering on sample data with n clusters = 6

