Documents autorisés: cours, TD, notes manuscrites, calculatrice. Barème indicatif: 4+3+4+3+6 Durée: 1h 30.

Les résultats sont présentés avec trois chiffres significatifs, sauf indication particulière.

Exercice 1

Changement de variable et intégrale généralisée

On note f la fonction définie et continue par morceaux par $f(x) = \frac{2e^x}{(1+e^x)^2}$ sur $[0, +\infty[$ et f(x) = 0 sinon.

1. Soit
$$x \ge 0$$
. Calculer $F(x) = \int_0^x \frac{2e^y}{(1+e^y)^2} dy$ en posant $t = e^y$.

Indication: $\left(\frac{1}{1+t}\right)' = -\frac{1}{(1+t)^2}$.

2. En déduire
$$\int_0^{+\infty} \frac{2e^x}{(1+e^x)^2} dx$$
.

Indication: préciser $\lim_{x\to +\infty} \int_0^x \frac{2e^y}{(1+e^y)^2} dy$, si cette limite existe.

- 3. Montrer que f est une densité de probabilité. Indication : comme f est positive et continue par morceaux sur \mathbb{R} , on pourra vérifier $\int_{-\infty}^{+\infty} f(x) dx = 1.$
- 4. On note X une variable aléatoire de densité de probabilité f. La fonction de répartition F de X est donc définie par $F(x) = P(X \le x) = \int_0^x \frac{2e^y}{(1+e^y)^2} \, dy$ pour $x \ge 0$ et F(x) = 0 sinon.
 - (a) Calculer $P(1 \le X \le 3)$, puis interpréter graphiquement en utilisant la représentation graphique de f (annexe à rendre).
 - (b) Calculer $P(X \ge 2)$, puis interpréter graphiquement en utilisant la représentation graphique de f (annexe à rendre).

Exercice 2

Loi conjointe

On suppose que X et Y sont des variables aléatoires indépendantes ayant pour lois de probabilités respectives :

x_i	1	2
$P(X=x_i)$	0,4	0,6

y_j	3	4	5
$P(Y=y_j)$	0,2	0,3	0,5

1. Déterminer la loi de probabilité conjointe de X et Y. Reproduire et compléter le tableau suivant.

Xackslash Y	3	4	5	$P\left(X=x_{i}\right)$
1				
2				
$P\left(Y=y_{j}\right)$				

- 2. Quelle est la probabilité que X et Y soient impairs?
- 3. Calculer E(XY).

Exercice 3

Intervalle de fluctuation et loi binomiale

Un responsable d'auto-école affirme que pour l'année 2019, la probabilité d'être reçu à l'examen est égale à 0,60. Ayant des doutes sur cette affirmation, une association d'automobilistes décide d'interroger 25 candidats à l'examen parmi ceux de 2019. Il s'avère que 9 d'entre eux ont effectivement obtenu le permis de conduire.

Est-ce qu'on doit remettre en question l'affirmation du responsable d'auto-école?

Pour répondre à la question, on va déterminer l'intervalle de fluctuation au seuil de risque α (ou de niveau $1-\alpha$) du nombre de personnes reçues par une détermination directe. On prendra $\alpha=0,05$.

On note X_i $(1 \le i \le 25)$ la variable aléatoire prenant la valeur 1 pour une personne reçue et la valeur 0 pour une personne non reçue. On suppose $X_i \sim \mathcal{B}(1; 0, 60)$ et que les X_i sont indépendantes $(1 \le i \le 25)$.

On pose $X = \sum_{i=1}^{25} X_i$ (nombre de personnes reçues).

X suit la loi binomiale $\mathcal{B}(25; 0, 60) : X \sim \mathcal{B}(25; 0, 60)$.

1. Déterminer l'intervalle de fluctuation $[n_1, n_2]$ au seuil de risque $\alpha = 0,05$ (ou de niveau $1-\alpha$) qui est le plus petit intervalle $[n_1, n_2]$ tel que $P(X < n_1) \le \frac{\alpha}{2}$ et $P(X > n_2) \le \frac{\alpha}{2}$. Indication:

 n_1 est l'entier vérifiant $P(X \le n_1 - 1) \le \frac{\alpha}{2}$ et $P(X \le n_1) > \frac{\alpha}{2}$, n_2 est l'entier vérifiant $P(X \le n_2 - 1) < 1 - \frac{\alpha}{2}$ et $P(X \le n_2) \ge 1 - \frac{\alpha}{2}$. On pourra utiliser la table donnée en annexe.

- 2. Est-ce que $9 \in [n_1, n_2]$?
- 3. Est-ce qu'on doit remettre en question l'affirmation du responsable d'auto-école?
- 4. Préciser
 - (a) $P(X < n_1)$
 - (b) $P(n_1 \le X \le n_2)$
 - (c) $P(X > n_2)$

Reproduire et compléter le tableau suivant.

$P(X < n_1)$	
$P(n_1 \le X \le n_2)$	
$P\left(X > n_2\right)$	

Loi de probabilité de \mathcal{B} (25; 0,60)

Exercice 4

Intervalle de confiance et loi de Student

Un échantillon aléatoire de n=14 véhicules est soumis à un contrôle de vitesse. On mesure les vitesses suivantes en km/h : 71, 78, 58, 83, 74, 64, 86, 56, 66, 55, 64, 65, 73, 87. Soit X_i la vitesse du i-ème véhicule $(1 \le i \le 14)$.

On suppose les X_i indépendantes et de loi normale $\mathcal{N}(\mu, \sigma)$, μ et σ étant inconnus. Les estimateurs des paramètres la moyenne μ et la variance σ^2 sont respectivement

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \text{ et } S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 \text{ avec } n = 14.$$

On obtient une moyenne empirique de $\overline{x} = 70,0$ km/h et une variance empirique de $s^2 = 114,0$ (km/h)².

Donner un intervalle de confiance I pour la moyenne des vitesses μ de niveau de confiance 95 %. Expliquer.

Indications:

- 1. $\frac{\overline{X} \mu}{S/\sqrt{n}} \sim \mathcal{T}_{n-1}$, loi de Student à n-1=13 degrés de liberté.
- 2. L'intervalle de confiance pour la moyenne des vitesses μ de niveau de confiance $1-\alpha=0,95$ est défini par $P\left(\left|\frac{\overline{X}-\mu}{S/\sqrt{n}}\right| \leq t_{n-1;1-\alpha/2}\right)=1-\alpha$.

Densité de probabilité f d'une variable suivant la loi de Student à 13 degrés de liberté \mathcal{T}_{13}

Exercice 5

Partie I Générateur de nombres aléatoires

Un générateur de nombres aléatoires fournit des suites de n bits de valeur 0 ou 1. On souhaite vérifier que ces nombres apparaissent dans les mêmes proportions.

On note X_i la valeur du ième bit : $X_i \in \{0,1\}$ $(1 \le i \le n)$ et π la proportion de 1 donnée par le générateur (proportion inconnue).

$$X_i \sim \mathcal{B}(1,\pi)$$
 (loi de Bernoulli) : $P(X_i = 1) = \pi$ et $P(X_i = 0) = 1 - \pi$.

On pose $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ (proportion de 1 dans la suite de n bits obtenue).

On suppose $n \geq 30$, $n\pi \geq 5$ et $n(1-\pi) \geq 5$.

On peut alors utiliser une approximation par une loi normale :

$$\frac{\overline{X} - \pi}{\sqrt{\pi(1-\pi)/n}} \sim \mathcal{N}(0,1).$$

On veut tester l'hypothèse nulle $H_0: \pi=0,5$ contre l'hypothèse alternative $H_1: \pi\neq 0,5$ au niveau $\alpha=5$ %.

Application numérique : $n = 1\,000$ bits parmi lesquels on a $n_1 = 508$ bits de valeur 1 et $n_0 = 492$ bits de valeur 0.

- 1. On a $n \geq 30$. Vérifier que sous $H_0: n\pi \geq 5$ et $n(1-\pi) \geq 5$.
- 2. Préciser la région de rejet $\mathfrak R$ du test au niveau $\alpha=5$ %. Indication :

La région de rejet \mathcal{R} est définie par $P_{H_0}\left(\left|\frac{\overline{X}-\pi}{\sqrt{\pi(1-\pi)/n}}\right| \geq u_{1-\frac{\alpha}{2}}\right) = 1-\alpha$, c'est-à-dire par $\left|\frac{\overline{X}-\pi}{\sqrt{\pi(1-\pi)/n}}\right| \geq u_{1-\frac{\alpha}{2}}$, et donc $\frac{\overline{X}-\pi}{\sqrt{\pi(1-\pi)/n}} \leq -u_{1-\frac{\alpha}{2}}$ ou $\frac{\overline{X}-\pi}{\sqrt{\pi(1-\pi)/n}} \geq u_{1-\frac{\alpha}{2}}$.

- 3. Quelle est la proportion \overline{x} de 1 dans la suite?
- 4. Est-ce que $\overline{x} \in \Re$?
- 5. Est-ce qu'on rejette l'hypothèse nulle $H_0: \pi=0,5$ au niveau 5 %?

Densité de probabilité f d'une variable suivant la loi normale $\mathcal{N}\left(\pi,\sqrt{\pi(1-\pi)/n}\right)$

Partie II Test d'indépendance

On s'intéresse à présent à l'indépendance des valeurs successives X_k et X_{k+1} $(1 \le k \le n-1)$. En utilisant un test du χ^2 d'indépendance, on teste alors H_0 : il y a indépendance entre les valeurs X_k et X_{k+1} $(1 \le k \le n-1)$ contre H_1 : il n'y a pas indépendance entre les valeurs X_k et X_{k+1} $(1 \le k \le n-1)$ au niveau $\alpha = 5$ %.

Pour la suite observée, on obtient

$X_k \setminus X_{k+1}$	$0:n_{i1}$	$1:n_{i2}$	Total $\sum_{j=1}^{2} n_{ij}$
$0:n_{1j}$	233	259	492
$1:n_{2j}$	258	249	507
Total $\sum_{i=1}^{2} n_{ij}$	491	508	n-1 = 999

1. Calculer les effectifs théoriques attendus :

$$(n-1)q_{ij} = (n-1)\frac{1}{n-1}\sum_{i=1}^{2}n_{ij} \times \frac{1}{n-1}\sum_{j=1}^{2}n_{ij} = \frac{1}{n-1}\sum_{i=1}^{2}n_{ij} \times \sum_{j=1}^{2}n_{ij}.$$

 $Indication: Calcul de (n-1)q_{11}$

$$(n-1)q_{11} = \frac{1}{n-1} \sum_{i=1}^{2} n_{i1} \times \sum_{j=1}^{2} n_{1j} = \frac{491 \times 492}{999} \approx 241,81.$$

Reproduire et compléter le tableau suivant.

$X_k \setminus X_{k+1}$	$0:(n-1)q_{i1}$	$1:(n-1)q_{i2}$	Total
$0:(n-1)q_{1j}$	241,81		492
$1:(n-1)q_{2j}$			507
Total	491	508	999

2. Vérifier:

- (a) n-1 > 30,
- (b) pour tout $i \ (1 \le i \le 2)$, tout $j \ (1 \le j \le 2)$, $(n-1)q_{ij} \ge 5$.
- 3. Calculer la réalisation d de D : $d = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(n_{ij} (n-1)q_{ij})^2}{(n-1)q_{ij}}$.

Indication:

On peut d'abord placer dans un même tableau les effectifs observés n_{ij} et les effectifs théoriques attendus $(n-1)q_{ij}$:

$X_k \setminus X_{k+1}$	0	1	Total
0	233/241,81	259/	492
1	258/	249/	507
Total	491	508	999

puis calculer
$$d = \sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(n_{ij} - (n-1)q_{ij})^2}{(n-1)q_{ij}} = \frac{(233 - 241, 81)^2}{241, 81} + \dots$$

- 4. Préciser le nombre δ vérifiant $P(D \leq \delta) = 0,95$ avec $D \sim \chi^2_{(2-1)\times(2-1)}$. Indication : utiliser une table de probabilités.
- 5. En déduire la région de rejet au niveau 5 %. Indication : la région de rejet est $\mathcal{R} = [\delta, +\infty[$.
- 6. Faire le test du χ^2 au niveau 5 % en expliquant la décision.
- 7. Donner un encadrement de la p-value $P_c(d) = P_{H_0}(D \ge d)$. Indication : utiliser une table de probabilités.
- 8. Si le test est significatif, quel est le degré de signification du test (test significatif, très significatif, hautement significatif)?
- 9. En utilisant ce dernier résultat, quelle est la décision au niveau 1 %?

Densité de probabilité f d'une variable suivant la loi du χ^2 à 1 degré de liberté χ^2_1

Annexe: Loi binomiale
$$\mathcal{B}(n, p)$$

$$F(i) = P(X \le i) = \sum_{k=0}^{i} C_n^k p^k (1-p)^{n-k} = \sum_{k=0}^{i} \binom{n}{k} p^k (1-p)^{n-k} \text{ (n = 25; p = 0,60)}$$

i	$P(X \le i)$
0	0,0000
1	0,0000
2	0,0000
3	0,0000
4	0,0000
5	0,0001
6	0,0003
7	0,0012
8	0,0043
9	0,0132
10	0,0344
11	0,0778
12	0,1538
13	$0,\!2677$
14	0,4142
15	$0,\!5754$
16	0,7265
17	0,8464
18	0,9264
19	0,9706
20	0,9905
21	0,9976
22	0,9996
23	0,9999
24	1,0000
25	1,0000

Annexe à rendre

Question 4. (a)

Question 4. (b)

Nom: