

재정조종단

투자 성향 기반 금융 상품 추천

서울 2반 이반이조 이규석 송창용

재정조종단

01 프로젝트설명

도입배경 프로젝트 기능 02 팀구성및역할

팀 구성, 역할 상세

03 기능설명

데이터베이스 Django 구조

04 기능상세

시연 예시

05 추천 알고리즘

머신러닝이란? LightGBM 06 느낀점

소개할 내용을 입력해 보세요. 포함되는 내용을 나열해 보세요.

도입배경

도입 배경

코로나19 이후 비대면 거래 증가에 따라 디지털 전환이 가속화

디지털 자산관리가 **전 연령층으로 확대**but 서비스는 비교적 단순한 수준이며 만족률이 높지 않음

고객 맞춤별 정보와 서비스를 선별하는개인화된 자산관리가 필요

결과

비슷한 투자 성향, 조건을 가진 사람들을 기반으로 **투자 상품을 추천**

프로젝트 기능

투자 성향 기반 금융 상품 추천

투자성향

얼마나 위험을 감수할 것인가?

재정 조건, 관심사, 개인정보....

사용자의 개인정보

금융 상품 추천

- O1 머신러닝을 활용한 종목 추천 LGBMClassifier
- 02 비슷한 조건을 가진 고객들의 상품 추천 Data Analysis

역할 분담

이규석

예금, 적금 상품 DataBase Front-End CRUD

금융 상품 API, DB 작성, 회원가입, 로그인, 마이페이지, CSS, Vue

송창용

맡은 역할

상세 기능

주식 상품 DataBase 추천 알고리즘 작성

주식 정보, DB 작성, 추천 알고리즘 구현, Vue

데이터베이스

데이터베이스 - Portfolio

```
class PortfolioBase(models.Model):
   user = models.OneToOneField(get_user_model(), on_delete=models.CASCADE)
   year = models.PositiveSmallIntegerField()
   target = models.PositiveIntegerField()
   seed money = models.BigIntegerField()
   invest aggresive = models.IntegerField()
   invest_conservative = models.IntegerField()
   salary = models.PositiveIntegerField()
   age = models.PositiveSmallIntegerField()
   kor co nm = models.CharField(max_length=30)
   industry = models.CharField(max length=20)
   is_prime_rate = models.BooleanField()
   income bracket = models.IntegerField(blank=True, null=True) # 소득분위
class Portfolio(models.Model):
   user = models.ForeignKey(get user model(), on delete=models.CASCADE)
   deposit = models.ManyToManyField(DepositProductJoinInfo, related_name='deposit_comb')
   saving = models.ManyToManyField(SavingProductJoinInfo, related name='saving comb')
   stock = models.ManyToManyField(StockProductBuyInfo, related name='stock comb')
```

PortfolioBase : 유저에게 금융 상품을 추천하기 위해 입력받는 정보 Portfolio : 유저에게 추천된 종목에 대한 정보

데이터베이스 - 예금

```
# 예금 상품
class DepositProduct(models.Model):
    fin prdt cd = models.TextField(unique=True)
    fin prdt nm = models.CharField(max length=50)
    kor_co_nm = models.CharField(max_length=20)
    max limit = models.PositiveIntegerField(null=True)
    join way = models.CharField(max length=50)
    join_deny = models.IntegerField()
    join member = models.TextField()
    spcl cnd = models.TextField()
    etc note = models.TextField()
# 예금 상품 옵션
class DepositOption(models.Model):
    deposit = models.ForeignKey(DepositProduct, on delete=models.CASCADE)
    fin_co_no = models.CharField(max_length=20)
    intr rate type = models.CharField(max length=2, null=True)
    intr rate = models.FloatField(null=True)
    intr rate2 = models.FloatField(null=True)
    save trm = models.CharField(max length=3, null=True)
```

DepositProduct : 예금 상품(상품명, 한도, 가입 방법...)
DepositOption : 상품 정보(금리, 우대금리, 우대 조건...)

데이터베이스 - 적금

```
적금 상품
class SavingProduct(models.Model):
    fin prdt cd = models.TextField(unique=True)
    fin prdt nm = models.CharField(max length=50)
    kor_co_nm = models.CharField(max_length=20)
   max_limit = models.PositiveIntegerField(null=True)
    join way = models.CharField(max length=50)
   join_deny = models.IntegerField()
    join member = models.TextField()
    spcl_cnd = models.TextField()
    etc note = models.TextField()
 : 적금 상품 옵션
class SavingOption(models.Model):
    saving = models.ForeignKey(SavingProduct, on_delete=models.CASCADE)
   fin co no = models.CharField(max length=20)
    intr rate type = models.CharField(max length=2, null=True)
    rsrv type = models.CharField(max length=2)
    intr_rate = models.FloatField(null=True)
    intr rate2 = models.FloatField(null=True)
    save trm = models.CharField(max length=3, null=True)
```

SavingProduct : 적금 상품(상품명, 한도, 가입 방법...)
SavingOption : 상품 정보(금리, 우대금리, 우대 조건...)

데이터베이스 - 주식

```
# 주식 정보
class StockProduct(models.Model):
    prdt cd = models.CharField(max length=10) # 종목 코드
    prdt name = models.CharField(max length=60) # 종목명
    end price = models.IntegerField() # 조회일 종가
   fluctuation rate = models.FloatField() # 등락률
   trade amount = models.IntegerField() # 거래량
    trade price amount = models.IntegerField() # 거래대금
    capitalization = models.IntegerField() # 시가총액
    shared amount = models.IntegerField() # 상장주식수
    idx bztp mcls cd name = models.CharField(max length=60, blank=True) # 업종명
    one before end price = models.IntegerField(blank=True, null=True) # 1년전 종가
    one before end rate = models.FloatField(blank=True, null=True)
    two before end price = models.IntegerField(blank=True, null=True) # 2년전 종가
    two before end rate = models.FloatField(blank=True, null=True)
    three before end price = models.IntegerField(blank=True, null=True) # 3년전 종가
    three_before_end_rate = models.FloatField(blank=True, null=True)
```

StockProduct : 주식 상품에 대한 정보 (조회일 기준 종가, N년전 종가, 거래 정보)

Django - Finance

```
urlpatterns = [
    path('create/data/', views.create_data), # 데이터 생성
    path('create/data/dummy/', views.create_dummy_data), # 더미데이터 생성
    path('create/data/dummy2/', views.create_dummy_data2), # 통합 더미데이터
    path('deposit/', views.deposit_list), # 적금정보
    path('saving/', views.saving_list), # 예금정보
    path('stock/', views.stock_list), # 주식정보
    path('myportfolio/', views.my_portfolio),
    path('user/product/', views.get_user_product_list) # 유저 - 금융 정보
]
```

create/data : 금융 상품 DB 생성

create/data/dummy/: 예금, 적금, 주식별 더미 데이터 생성

create/data/dummy2/: 통합 더미 데이터 생성

deposit/: 적금 데이터 반환

saving/: 예금 데이터 반환

myportfolio/: 포트폴리오 데이터 반환

user/product/: 임의의 유저 - 상품 가입 데이터 생성

Django - User

```
urlpatterns = [
    path('admin/', admin.site.urls),
    path('accounts/', include('dj_rest_auth.urls')), # 로그인, 로그아웃
    path('accounts/signup/', include('dj_rest_auth.registration.urls')), # 회원가입
    path('accounts/portfolio/', views.portfolio), # 포트폴리오 데이터 생성
]
```

admin/ : 데이터 관리

accounts/: 로그인, 로그아웃

accounts/signup/: 회원가입

accounts/portfolio/: 포트폴리오 생성

기능 상세 - 메인페이지

재정조종단(재종단)

기능 상세 - 상품 추천

추천 알고리즘

머신러닝이란?

딥 러닝과 머신 러닝 비교

머신러닝

컴퓨터가 명시적으로 프로그래밍 되지 않고도 데이터를 통해 특징을 학습하고 예측할 수 있는 인공지능의 한 분야

> 대량의 데이터를 분석하여 패턴을 발견하고, 이를 바탕으로 새로운 데이터에 대한 예측을 진행

사용배경

1. 딥러닝을 사용한 추천시스템은 사용자와 상품의 상호작용을 바탕으로 추천이 진행되는데 새로 가입한 유저는 이에 관한 정보가 없음

2. 사용자의 부가 정보(나이, 관심 산업, 재무 정보)를 학습에 활용할 수 있는 머신러닝이 효과적이라고 판단

추천 알고리즘

LightGBM

LGBM의 특징

트리 기반의 알고리즘 메모리를 적게 차지하고 속도가 빠름 결과의 정확성이 높음

느낀점

이곳에는 표의 내용을 요약하는 문장을 입력해 보세요.

항목	항복의 세부 내용
이규석	지난 5개월동안 배운 내용을 모두 활용하여 하나의 완성된 프로젝트를 만들어서 의미있는 경험이었습니다. 프로젝트를 진행하며 여러 문제들을 경험하고 직접 해결해나가면서 개발자로 한 단계 성장할 수 있는 시간이었습니다.
송창용	구현하고 싶은 기능이 많았는데 시간이 촉박해서 하고 싶었던 것을 모두 완벽하게 구현하지 못한 점이 아쉬웠습니다. 프로젝트를 진행하면서 어떤 점이 부족하고 더 보완해야 할 지 알 수 있는 시간이었고, 2학기가 시작하기 전에 더욱 보완해나가야겠다고 생각했습니다.