

Figure 15-22 The transmembrane potential changes (A) that occur in SA node cells are produced by three principal currents (B): (1) an inward Ca²⁺ current, i_{Ca}; (2) a hyperpolarization-induced inward current, i_f; and (3) an outward K⁺ current, i_K.

EN 585.405

Module 6, Video 4

2

Figure 16-19 The transmembrane potential changes (top half) that occur in SA node cells are produced by three principal currents (bottom half): (1) the current i_{Ca} ; (2) a hyperpolarization-induced inward current, i_f ; and (3) an outward K⁺ current, i_K . The thin noisy green trace shows net membrane current and the approximate time course of (1) the repolarizing outward K⁺ current i_K , (2) the hyperpolarization-induced inward current i_f , and (3) the L-type Ca⁺⁺ current i_{Ca} . The thick bold red line in the current trace indicates the magnitude and direction of estimated i_f . (Redrawn from van Ginneken ACG, Giles W: J Physiol 434:57, 1991.)

Figure 16-18 Mechanisms involved in the changes in frequency of pacemaker firing. In A, a reduction in the slope (from a to b) of slow diastolic depolarization diminishes the firing frequency. In B, an increase in the threshold potential (from TP-1 to TP-2) or an increase in the magnitude of the maximum diastolic potential (from a to d) also diminishes the firing frequency. (From Hoffman BF, Cranefield PF: Electrophysiology of the Heart. New York, McGraw-Hill, 1960.)

Koeppen & Stanton: Berne and Levy Physiology, 6th Edition. Copyright © 2008 by Mosby, an imprint of Elsevier, Inc. All rights reserved

END

Video 4, Module 6