Only one handout today!

(But first: finish previous hondout)

Classical Propositional Logic:

Natural Deduction

August 30, 2023 CS 81: Computability and Logic

Euclid taught me that without assumptions there is no proof. Therefore, in any argument, examine the assumptions.

—E. t. Bell

THE STORY SO FAR...

We were investigating Classical Propositional Logic.

- Language of Propositional Logic
 - \blacktriangleright We defined a special set of strings (containing P's, Q's, \land 's, \perp 's, etc.).
 - ► We called the strings in this set Well-Formed Formulas (WFFs).
- Classical Semantics (meaning/truth)
 - ► We defined a model to be a value of t or f for each propositional variable.
 - The truth of a WFF relative to a model is calculated using truth-table lookups.

\mathcal{A}	\mathfrak{B}	$(\mathcal{A} \wedge \mathcal{B})$	$(A \vee B)$	$(\mathcal{A} \to \mathcal{B})$		\mathcal{A}	$\neg \mathcal{A}$
t	t	t	t	t	-	t	f
t	f	f	t	f		f	t
f	t	f	t	t		'	'
f	f	f	f	t			

Translating to Classical Propositional Logic

1. I have vanilla, and I have chocolate.

```
(P \land Q)
P \text{ is "I have vanilla"}
Q \text{ is "I have chocolate."}
```

2. The weather today is hot and humid.

$$\begin{array}{c} (P \wedge Q) \\ P \text{ is "The weather today is hot"} \\ Q \text{ is "The weather today is humid" (not: Q is "humid")} \end{array}$$

3. Prof Dodds and Prof O'Neill like coffee and tea (respectively).

$$\begin{array}{c} (P \land Q) \\ P \text{ is "Prof Dodds likes coffee"} \\ Q \text{ is "Prof O'Neill likes tea"} \end{array}$$

4. I don't like chocolate.

6. Neutral molecules have no positive or negative charge.

P is "Neutral molecules have a positive charge"

Q is "Neutral molecules have a negative charge"

7. If the weather is warm, then I drink soda.

P-DQ

8. I drink soda if the weather is warm.

Q-P

9. I drink soda only if the weather is warm.

POD

- 10. I drink soda if and only if the weather is warm.
- P (P-) (Q-P)

11. I drink soda iff the weather is warm.

P=Q (P=Q) 1(Q=P)

12. (Definition) n is even if n is divisible by 2 with no remainder.

13. If you clean your room, we will have ice cream.

14. The spirit is willing, but the flesh is weak.

RECALL: THE ENTAILMENT RELATION

Assumptions $\mathcal{A}_1,\ldots,\mathcal{A}_n$ entail a conclusion \mathcal{B}

when

in <u>every</u> situation where all the assumptions are true, the conclusion is true.

Equivalently:

there's <u>no</u> counterexample situation where the assumptions are true, but the conclusion is false.

In this case we write

$$A_1, \ldots, A_n \models \mathcal{B}$$

and say the inference from A_1, \ldots, A_n to $\mathcal B$ is valid.

IMPORTANT EQUIVALENCES

Definition: \mathcal{A} and \mathcal{B} are logically equivalent if $\mathcal{A} \models \mathcal{B}$ and $\mathcal{B} \models \mathcal{A}$.

That is, $\mathcal{A} \equiv \mathcal{B}$ if they have the same truth value in every model.

Memorize the following equivalences:

CHECKING FOR ENTAILMENT

Suppose I want to know whether

$$(P \rightarrow Q)$$
, $\neg Q \models \neg P$

We can consider all (four) relevant models.

Check: is the conclusion true in every model where no assumption is false?

	P	Q	$\mid (P \to Q)$	$\neg Q$	$\neg P$	
(Model 1)	t	t	t	f	f	
(Model 2)	t	f	f	t	f	
(Model 3)	f	t	t	f	t	
(Model 4)	f	f	t	t	t	

THE PROBLEM WITH ENTAILMENT

If we want to show

$$(P \rightarrow Q)$$
, $(Q \rightarrow R)$, $(R \rightarrow S)$, $(S \rightarrow T)$, $(T \rightarrow U) \models (P \rightarrow U)$

it is annoying to enumerate all $2^5 = 32$ truth assignments.

[When we later add quantifiers (\forall and \exists) there will be infinitely many models to check!]

THE PROVABILITY RELATION

Assumptions A_1, \ldots, A_n prove a conclusion $\mathcal B$ if

we can validate the conclusion using the assumptions and a fixed set of rules.

In this case we write

$$\mathcal{A}_1, \ldots, \mathcal{A}_n \vdash \mathcal{B}$$

Formal proof is pure symbol manipulation. No need for truth tables!

EXAMPLE

• Option 1. Check all models.

	P	Q	R	Р	$P\toQ$	$Q\toR$	R	then 13
•	t	t	t	t	t	t	t	17101
	t	t	f	t	t	f	f	
	t	f	t	t	f	t	t	
	t	f	f	t	f	t	f	
	f	t	t	f	t	t	t	
	f	t	f	f	t	f	f	
	f	f	t	f	t	t	t	
	f	f	f	f	t	t	f	

- Option 2. Show P, P \rightarrow Q, Q \rightarrow R \vdash R using sound (truth-preserving) rules.
 - 1. P assumption
 - 2. $P \rightarrow Q$ assumption
 - 3. $Q \rightarrow R$ assumption
 - 4. Q Modus Ponens (lines 1 and 2)

EXAMPLE

Suppose we want to verify that $P,\ P \to Q,\ Q \to R \vDash R$.

• Option 1. Check all models.

Р	Q	R	P	$P\toQ$	$Q\toR$	R
t			t	t	t	t
t	t	f	t	t	f	f
t	f	t	t	f	t	t
t	f	f	t	f	t	f
f	t	t	f	t	t	t
f	t	f		t	f	f
f	f	t	f	t	t	t
f	f	f	f	t	t	f

- Option 2. Show P, P \rightarrow Q, Q \rightarrow R \vdash R using sound (truth-preserving) rules.
 - 1. P assumption
 - 2. $P \rightarrow Q$ assumption
 - 3. $Q \rightarrow R$ assumption
 - 4. Q Modus Ponens (lines 1 and 2)
 - 5. R Modus Ponens (lines 3 and 4)

WHICH RULES SHOULD BE "BUILT IN" AS A SINGLE STEP?

- Modus Ponens: "if $A \to B$ and A, then B". Seems useful.
- What about "if $A \to B$ and $B \to C$, then $A \to C$ "?
- What about "if $A \to B$ and $B \to C$ and $C \to D$, then $A \to D$ "?
- What about "if $(A \lor D) \to (B \lor C)$ and $\neg B$ and $\neg C$, then $(A \to \neg D)$ "?

Logicians study various proof systems.

- Small sets of built-in rules that never steer us wrong.
- Lots of room for choice. E.g., is $\vdash \mathcal{P} \to (\mathcal{Q} \to \mathcal{P})$ built-in, or something to be proved?

RELATING PROOF AND ENTAILMENT

A proof system is said to be sound if

$$(A_1, \ldots, A_n \vdash B)$$
 implies $(A_1, \ldots, A_n \models B)$

(i.e., if all provable conclusions are correct conclusions).

A proof system is said to be complete if

$$(A_1, \ldots, A_n \models B)$$
 implies $(A_1, \ldots, A_n \vdash B)$

(i.e., if all correct conclusions things are provable conclusions).

NATURAL DEDUCTION

Small toolkit of proof rules that mimic human reasoning!

Today: the constructive rules of Natural Deduction

• Organized into introduction and elimination rules:

How do we prove a conjunction? $\wedge I$

What can we conclude from a conjunction? $\triangle E$

How do we prove a disjunction? $\vee I$

What can we conclude from a disjunction? $\vee E$

 Rules are (mostly) independent: the ∧ rules only mention ∧, the → rules only mention →, etc.

Next Week: the non-constructive (or classical) rules of Natural Deduction.

INFERENCE RULE NOTATION

It is traditional to describe "single step" inferences as follows:

$$\frac{\text{Premise}_1 \cdots \text{Premise}_n}{\text{Conclusion}}$$

meaning, "if the specified premises are true, we can immediately claim the specified conclusion is true."

Conjunction: $\triangle E$ and $\triangle I$

$$\frac{A}{A \wedge B} \wedge I$$
 $\frac{A \wedge B}{A} \wedge E$ $\frac{A \wedge B}{B} \wedge E$

Prove: $P \wedge Q \vdash Q \wedge P$

1_	PAQ	Assumption.
2.	P	1 /E
3.	PQ	VE 1
4 4.	QAP	^T 2,3

PROVE: $P \wedge (Q \wedge R) \vdash (P \wedge Q) \wedge R$

Implication: $\rightarrow E$ and $\rightarrow I$

$$\frac{\frac{A}{B}}{A \to B} \to I \qquad \frac{A \to B}{B} \to E$$

Prove:
$$P o Q$$
, $Q o R \vdash P o R$

1.
$$P \rightarrow Q$$

2. $Q \rightarrow R$
3. $P \rightarrow E = 1,3$
 $\Rightarrow E = 2,4$
 $\Rightarrow P \rightarrow R \rightarrow T = 3-5$

PROVE:
$$\vdash ((P \land Q) \rightarrow R) \rightarrow (P \rightarrow (Q \rightarrow R))$$

DISJUNCTION: VI AND VE

$$\frac{A}{A \vee B} \vee I \qquad \frac{B}{A \vee B} \vee I \qquad \frac{A \vee B}{C} \vee E$$

PROVE: $P \lor Q \vdash Q \lor P$

Negation and Contradiction: $\neg I$, $\neg E$, $\bot E$

$$\frac{A}{A} = \frac{A}{A} = \frac{A}{A} = \frac{A}{A} = \frac{A}{A} = A$$

$$\frac{A}{A} = \frac{A}{A} = A$$

$$\frac{A}{A} = A$$

$$\frac{A}{A$$

PROVE:
$$P \lor Q$$
, $\neg P \vdash Q$

Prove: $\vdash P \rightarrow \neg \neg P$

Prove: $\neg (P \lor Q) \vdash \neg P \land \neg Q$