Uniform Lyndon Interpolation for $N^+A_{m,n}$

Yuta Sato 18th Asian Logic Conference in Kyoto Sangyo Univ. September 12th, 2025

Kobe University, Japan

A PDF is available!

The slides are available online at:

cannorin.net/math/alc2025.pdf

(will be displayed again at the end)

Bonus: the Kripke game!

I made a Wordle-like game where you guess the shape of a Kripke frame, just with formulas. Give it a try!

cannorin.net/kripke

Outline

I proved that the logic $\underline{\mathbf{N}^+\mathbf{A}_{m,n}}$ enjoys $\underline{\mathbf{U}}$ uniform Lyndon interpolation property, with a new method called propositionalization.

This talk is based on:

Yuta Sato. Uniform Lyndon interpolation for the pure logic of necessitation with a modal reduction principle. *Journal of Logic and Computation, to appear. arXiv:2503.10176.*

Table of contents

The Logic $\mathbf{N}^+\mathbf{A}_{m,n}$

Uniform Lyndon Interpolation Property

The Propositionalization Method

The Main Theorem

The Logic $\mathbf{N}^+\mathbf{A}_{m,n}$

What is $N^+A_{m,n}$?

$$\mathbf{N} := \mathbf{Cl} + \frac{\varphi}{\Box \varphi}$$

$$\mathbf{N}^{+} \mathbf{A}_{m,n} := \mathbf{N} + \frac{\neg \Box \varphi}{\neg \Box \Box \varphi} + \Box^{n} \varphi \rightarrow \Box^{m} \varphi$$

- Cl: the classical propositional logic
- N: the pure logic of necessitation (Fitting et al. 1992)
 - ullet also obtained from the logic ${f K}$ by removing its K axiom
- $\frac{\neg \Box \varphi}{\neg \Box \Box \varphi}$: required by the semantics*
- $\Box^n \varphi \to \Box^m \varphi$: a generalized reflexivity/transitivity axiom

^{*}the completeness does not hold without it. no deep dive today

$\mathbf{N}^+\mathbf{A}_{m,n}$ vs. normal modal logics

Fact (Kurahashi and S.)

$$\mathbf{N}^+\mathbf{A}_{m,n} \subseteq \mathbf{K} + \Box^n \varphi \to \Box^m \varphi$$

Proof.

The rule $\frac{\neg \Box \varphi}{\neg \Box \Box \varphi}$ is admissible in \mathbf{K} . The rest is trivial.

Fact (Kurahashi and S.)

 $\mathbf{N}^+\mathbf{A}_{m,n}$ has the finite frame property (ffp) for every $m,n\in\mathbb{N}$

It is still unknown to this day whether $\mathbf{K} + \Box^n \varphi \to \Box^m \varphi$ has ffp

→ The lack of the K axiom is indeed a massive difference

The sequent calculus for $N^+A_{m,n}$

A sequent calculus $\mathbf{G}_{\mathbf{N}^+\mathbf{A}_{m,n}}$ is obtained from $\mathbf{L}\mathbf{K}$ by adding:

$$\frac{\Rightarrow \varphi}{\Rightarrow \Box \varphi} \text{ (nec)}$$

$$\frac{\Box \varphi \Rightarrow}{\Box \Box \varphi \Rightarrow} \text{ (rosbox, when } m = 0 \text{ and } n \geq 2\text{)}$$

$$\frac{\Box^m \varphi, \Box^n \varphi, \Gamma \Rightarrow \Delta}{\Box^n \varphi, \Gamma \Rightarrow \Delta} \text{ (accL, when } n > m\text{)}$$

$$\frac{\Gamma \Rightarrow \Delta, \Box^m \varphi, \Box^n \varphi}{\Gamma \Rightarrow \Delta, \Box^m \varphi} \text{ (accR, when } m > n\text{)}$$

Proposition (S.)

- $G_{\mathbf{N}^+\mathbf{A}_{m,n}}$ proves $\Gamma \Rightarrow \Delta$ iff $\mathbf{N}^+\mathbf{A}_{m,n}$ proves $\bigwedge \Gamma \to \bigvee \Delta$
- ullet $\mathbf{G}_{\mathbf{N}^{+}\mathbf{A}_{m,n}}$ admits cut elimination

Uniform Lyndon Interpolation

Property

CIP and LIP (1/2)

Let $V^+(\varphi)$ and $V^-(\varphi)$ denote the set of variables that occur in φ positively and negatively, resp. Let also $V(\varphi) = V^+(\varphi) \cup V^-(\varphi)$.

Example

$$V^+(\psi \rightarrow \chi) = V^-(\psi) \cup V^+(\chi), \ V^-(\psi \rightarrow \chi) = V^+(\psi) \cup V^-(\chi)$$

L is said to enjoy Craig interpolation property (CIP) if for every φ, ψ s.t. $L \vdash \varphi \rightarrow \overline{\psi}$, there is χ s.t.:

- 1. $V(\chi) \subseteq V(\varphi) \cap V(\psi)$;
- 2. $L \vdash \varphi \rightarrow \chi$ and $L \vdash \chi \rightarrow \psi$.

Such χ is called an interpolant of $\varphi \to \psi$ in L.

CIP and LIP (2/2)

Let $V^+(\varphi)$ and $V^-(\varphi)$ denote the set of variables that occur in φ positively and negatively, resp. Let also $V(\varphi) = V^+(\varphi) \cup V^-(\varphi)$.

Example

$$V^+(\psi \rightarrow \chi) = V^-(\psi) \cup V^+(\chi), \ V^-(\psi \rightarrow \chi) = V^+(\psi) \cup V^-(\chi)$$

L is said to enjoy Lyndon interpolation property (LIP) if for every φ, ψ s.t. $L \vdash \varphi \rightarrow \psi$, there is χ s.t.:

- 1. $V^{\bullet}(\chi) \subseteq V^{\bullet}(\varphi) \cap V^{\bullet}(\psi) \ (\bullet \in \{+, -\});$
- 2. $L \vdash \varphi \rightarrow \chi$ and $L \vdash \chi \rightarrow \psi$.

Such χ is called an interpolant of $\varphi \to \psi$ in L.

UIP and ULIP (1/2)

L is said to enjoy Uniform interpolation property (UIP) if for any φ and any finite set of variables P, there is χ s.t.

- 1. $V(\chi) \subseteq V(\varphi) \setminus P$;
- 2. $L \vdash \varphi \rightarrow \chi$;
- 3. $L \vdash \chi \to \psi$ for any ψ s.t. $L \vdash \varphi \to \psi$ and $V(\psi) \cap P = \emptyset$.

Such χ is called a post-interpolant of (φ, P) in L.

UIP and ULIP (2/2)

L is said to enjoy Uniform Lyndon interpolation property (ULIP) if for any φ and any finite sets of variables P^+, P^- , there is χ s.t.

- 1. $V^{\bullet}(\chi) \subseteq V^{\bullet}(\varphi) \setminus P^{\bullet} (\bullet \in \{+, -\});$
- 2. $L \vdash \varphi \rightarrow \chi$;
- 3. $L \vdash \chi \to \psi$ for any ψ s.t. $L \vdash \varphi \to \psi$ and $V^{\bullet}(\psi) \cap P^{\bullet} = \emptyset$ $(\bullet \in \{+, -\}).$

Such χ is called a <u>post-interpolant</u> of (φ, P^+, P^-) in L.

Several facts on the interpolation properties (1/2)

Fact

- ullet If L has UIP, then L has CIP
- ullet If L has LIP, then L has CIP
- ullet If L has ULIP, then L has both UIP and LIP (Kurahashi 2020)

Fact (Kurahashi 2020)

- The classical propositional logic Cl enjoys ULIP
- ullet The modal logic ${f K}$ enjoys ULIP

Several facts on the interpolation properties (2/2)

The situation is complicated for the extensions of K:

Fact

- $\mathbf{KT} = \mathbf{K} + \Box \varphi \rightarrow \varphi$ enjoys ULIP (Kurahashi 2020)
- For m>0, ${\bf K}+\Box\varphi\to\Box^m\varphi$ enjoys CIP (Gabbay 1972) and LIP (Kuznets 2016)
- $\mathbf{K4} = \mathbf{K} + \Box \varphi \rightarrow \Box \Box \varphi$ lacks UIP (Bílková 2007)
- $\mathbf{K} + \Box\Box\varphi \rightarrow \Box\varphi$ lacks even CIP (Marx 1995)

 $\mathbf{K} + \Box^n \varphi \to \Box^m \varphi$, in general, may or may not enjoy them

 \Rightarrow What happens if we weaken it to $\mathbf{N}^+\mathbf{A}_{m,n}$?

The Propositionalization Method

Propositionalization, in short

ULIP of a logic is sometimes proven by embedding it to some weaker logic where ULIP is already known:

Example

Through the boxdot translation, ULIP of K implies ULIP of KT, and the failure of it in S4 implies that of K4

I gave a sufficient condition on such embeddings:

Theorem (S.)

For any logics $L\subseteq M$, if there is a translation with certain properties, propositionalization, of M into L, and L has ULIP, then so does M

Propositionalization, in detail (1/3)

Given a logic X, let \mathscr{L}_X designate the language of X.

Consider logics L and M s.t. $\mathscr{L}_L \subseteq \mathscr{L}_M$ and $L \subseteq M$.

Now we want to propositionalize any \mathscr{L}_M -formula that is not expressible in \mathscr{L}_L :

Definition

Let L' be the same logic as L, but its propositional variables extended by adding a fresh one p_{φ} for every $\varphi \in \mathscr{L}_{M}$.

Definition

Let $\sigma: \mathscr{L}'_L \to \mathscr{L}_M$ be the substitution that replaces every p_{φ} with φ , then $L' \vdash \rho$ implies $M \vdash \sigma(\rho)$ for any $\rho \in \mathscr{L}'_L$.

Propositionalization, in detail (2/3)

Definition

A pair of translations $\sharp, \flat: \mathscr{L}_M \to \mathscr{L}'_L$ is called a propositionalization of M into L if the following are met:

(Embeddable)
$$M \vdash \varphi \to \psi$$
 implies $L' \vdash \varphi^{\flat} \to \psi^{\sharp}$;

(Invertible)
$$M \vdash \sigma(\varphi^{\sharp}) \to \varphi$$
 and $M \vdash \varphi \to \sigma(\varphi^{\flat})$;

(Polarity-preserving) For
$$(\bullet, \circ) \in \{(+, -), (-, +)\}$$
, $\natural \in \{\sharp, \flat\}$:

- $p \in V^{\bullet}(\varphi^{\natural})$ implies $p \in V^{\bullet}(\varphi)$;
- $p_{\psi} \in V^{\bullet}(\varphi^{\natural})$ implies $V^{\bullet}(\psi) \subseteq V^{\bullet}(\varphi)$, $V^{\circ}(\psi) \subseteq V^{\circ}(\varphi)$.

Propositionalization, in detail (3/3)

Theorem (S.)

If there is a propositionalization (\sharp, \flat) of M into L, and L has ULIP, then M does also

Proof (outline).

Take any φ , P^+ , P^- . We extend P^{\bullet} to Q^{\bullet} by adding every $p_{\psi} \in V(\varphi^{\flat})$ s.t. $V^{\bullet}(\psi) \cap P^{\bullet} \neq \emptyset$. By ULIP of L, we get a post-interpolant χ' of $(\varphi^{\flat}, Q^+, Q^-)$. Then, embeddability, invertibility, and polarity-preservingness of \sharp, \flat assert that $\chi = \sigma(\chi')$ is indeed a post-interpolant of (φ, P^+, P^-) in M.

The Main Theorem

The Main Theorem

Theorem (S.)

There is a propositionalization (\sharp, \flat) of $\mathbf{N}^+\mathbf{A}_{m,n}$ into \mathbf{Cl}

Proof (outline).

We construct such \sharp , \flat that each additional rule in $G_{\mathbf{N}^+\mathbf{A}_{m,n}}$ can be *emulated* in $\mathbf{L}\mathbf{K}$: $G_{\mathbf{N}^+\mathbf{A}_{m,n}} \vdash \Gamma \Rightarrow \Delta$ implies $\mathbf{L}\mathbf{K} \vdash \Gamma^{\flat} \Rightarrow \Delta^{\sharp}$, then embeddability natually holds. We also ensure invertibility and polarity-preservingness by adding just the right amount of information to enable such emulation.

Corollary

 $\mathbf{N}^+\mathbf{A}_{m,n}$ enjoys ULIP!

Summing it up (1/2)

It is known that $\mathbf{K}+\Box^n\varphi\to\Box^m\varphi$ does <u>not</u>, in general, enjoy all of CIP, LIP, UIP, and ULIP:

- $\bullet \ \ \mathbf{K4} = \mathbf{K} + \Box \varphi \to \Box \Box \varphi \ \ \mathsf{lacks} \ \mathsf{UIP}$
- $\mathbf{K} + \Box\Box\varphi \rightarrow \Box\varphi$ lacks even CIP

However, $\mathbf{N}^+\mathbf{A}_{m,n}$ enjoy all of them for every $m,n\in\mathbb{N}!$

Summing it up (1/2)

It is known that $\mathbf{K}+\Box^n\varphi\to\Box^m\varphi$ does <u>not</u>, in general, enjoy all of CIP, LIP, UIP, and ULIP:

- $\mathbf{K4} = \mathbf{K} + \Box \varphi \rightarrow \Box \Box \varphi$ lacks UIP
- $\mathbf{K} + \Box\Box\varphi \rightarrow \Box\varphi$ lacks even CIP

However, $\mathbf{N}^+\mathbf{A}_{m,n}$ enjoy all of them for every $m,n\in\mathbb{N}!$

Open Problem

To what extent the presence of the K axiom is *harmful* for a logic in terms of interpolation properties?

- ullet Is there a logic between N4 and K4 that lacks UIP?
- Is there a logic between $N + \Box\Box\varphi \rightarrow \Box\varphi$ and $K + \Box\Box\varphi \rightarrow \Box\varphi$ that lacks CIP?

Summing it up (2/2)

We also developed a general method for proving ULIP:

Theorem (S.)

For any logics $L\subseteq M$, if there is a propositionalization of M into L, and L has ULIP, then so does M

Summing it up (2/2)

We also developed a general method for proving ULIP:

Theorem (S.)

For any logics $L\subseteq M$, if there is a propositionalization of M into L, and L has ULIP, then so does M

Open Problems

- Can we possibly say that if ULIP holds, then some nontrivial propositionalization exists? For example, can we construct propositionalizations of K into N or Cl?
- Can we characterize a syntactic property on sequent calculi that corresponds to the existence of a propositionalization?
 (e.g. lemhoff 2019, Akbar Tabatabai & Jalali 2025)

Thanks!

That's all!

The Slides

cannorin.net/math/alc2025.pdf

The Kripke Game

cannorin.net/kripke

Appendix & References

References

This talk is based on the paper indicated by \star :

- Yuta Sato. Uniform Lyndon interpolation for the pure logic of necessitation with a modal reduction principle. Journal of Logic and Computation, to appear. arXiv:2503.10176.
- Melvin C. Fitting, V. Wiktor Marek, and Miroslaw Truszczyyński. The pure logic of necessitation. Journal of Logic and Computation, 2(3):349-373, 1992.
- Taishi Kurahashi. The provability logic of all provability predicates. Journal of Logic and Computation, 34(6):1108-1135, 2024.
- Taishi Kurahashi and Yuta Sato. The Finite Frame Property of Some Extensions of the Pure Logic of Necessitation. Studia Logica, to appear.
- Taishi Kurahashi. Uniform Lyndon interpolation property in propositional modal logics. Archive for Mathematical Logic, 59(5-6):659-678, 2020.

References

- Dov M. Gabbay. Craig's interpolation theorem for modal logics. Conference in Mathematical Logic — London '70, 111–127, 1972.
- Roman Kuznets. Proving Craig and Lyndon Interpolation Using Labelled Sequent Calculi. Logics in Artificial Intelligence, 320–335, 2016.
- Marta Bílková. Uniform Interpolation and Propositional Quantifiers in Modal Logics. Studia Logica, 85(1):1-31, 2007.
- Maarten Marx. Algebraic Relativization and Arrow Logic. ILLC Dissertation Series. Institute for Logic, Language and Computation, 1995.
- Rosalie lemhoff. Uniform interpolation and the existence of sequent calculi.
 Annals of Pure and Applied Logic, 170(11):102711, 2019.
- A. Akbar Tabatabai, R. Jalali, Universal proof theory: Semi-analytic rules and Craig interpolation, Annals of Pure and Applied Logic,176(1):103509, 2025.