Overview

CSCI 330: Computer Architecture

Dr. Paul E. West

Department of Computer Science Charleston Southern University

January 13, 2020

Complex Yet Simple

- Computers are some of the more complex devices humans have created.
- Yet, are simple in many ways. EX:
 - A CPU (where a lot of the "work" occurs) is basically a bunch of transistors etched on silicon.
 - by 'a bunch' I mean billions

From C to Execution

- How does the code that you type in go from text to executing on the computer?
- How does a piece of silicon turn you "English-like" C code into a dynamic computation?
- We will explore these in more depth.

Logic

- The computer executes your program (set of instructions) through electronic signals.
- These signals (in general) are executed in steps (clock cycle).
- Our job here is to see how this is done and give you an idea of how a computer can be built to do computations.

The Computer Revolution

Overview

- Progress in computer technology
 - Underpinned by Moore's Law
- Makes novel applications feasible
 - Computers in automobiles
 - Cell phones
 - Human genome project
 - World Wide Web
 - Search Engines
- Computers are pervasive

Classes of Computers

- Personal computers
 - General purpose, variety of software
 - Subject to unit cost vs performance tradeoff
- Server computers
 - Network based
 - High capacity, performance, reliability
 - Range from small servers to building sized

Classes of Computers

- Supercomputers
 - High-end scientific and engineering calculations
 - Highest capability but represent a small fraction of the overall computer market
 - http://www.top500.org maintains a list
- Embedded computers
 - Hidden as components of systems
 - Stringent power/performance/cost constraints

PC Mobile Tablet Console Market Share

Mobile Devices and Cloud

- Personal Mobile Device (PMD)
 - Battery operated
 - Connects to the Internet
 - Hundreds of dollars
 - Smart phones, tablets, electronic glasses, smart watches
- Cloud computing
 - Warehouse Scale Computers (WSC)
 - Software as a Service (SaaS)
 - Portion of software run on a PMD and a portion run in the Cloud
 - Amazon and Google

What you Will Learn

- How programs are translated into the machine language
- And how the hardware executes them
- The hardware/software interface
- What determines program performance
- And how it can be improved
- How hardware designers improve performance
- What is parallel processing

Patterns to Keep in Mind

- The three Ps for improving performance:
 - Parallelism
 - Pipelining
 - Prediction
- Small is fast, Big is slow
- You must think in parallel!
- Verilog
 - A different language used to describe processors

About the Professor

- PhD from Florida State University in Computer Science
- Faculty Experience:
 - Charleston Southern: Assistant 2015-Present
 - College of Charleston: Adjunct 2013-2014
- Work Experience:
 - Naval Research Lab: 2018 Present
 - Google (2014): Android Bluetooth/Wi-Fi/Telephony
 - SPAWAR (2009-2014, 2015): Communication systems
 - DenimGroup (2004-2005): Start-up; web design and network security

Github

- The programming parts of your assignments will be submitted through Github.
- Please create an account on Github and email me your username.
- More instruction to follow...

ScrumDo

- A board to organize our workflow for this course.
- We will use if it will allow us to create enough users.
- Lets find out...

Syllabus

Lets go over the syllabus...

Discussion

- Any questions about the syllabus or the course?
- Have you seen anything in the news?

Below Your Program

- Application software
 - Written in high-level language
- System software
 - Compiler: translates HLL code to machine code
 - Operating System: service code
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks and sharing resources
- Hardware
 - Processor, memory, CHARLESTON CONTrollers

Levels of Code

- High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- Assembly language
 - Textual representation of instructions
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data

```
High-level
                      swap(int v[], int k)
language
                       lint temp:
program
                          temp = v[k];
(in C)
                          v[k] = v[k+1];
                          v[k+1] = temp:
                         Compiler
Assembly
                      swap:
language
                             muli $2, $5.4
                                  $2. $4.$2
program
(for MIPS)
                                  $15, 0($2)
                                  $16, 4($2)
                                  $16, 0($2)
                                  $15. 4($2)
                                  $31
```

Binary machine language program (for MIPS)

Assemble

Inside the Processor (CPU)

- Datapath: performs operations on data
- Control: sequences datapath, memory, ...
- Cache memory
 - Small fast SRAM memory for immediate access to data

Intel Haswell

verview State of Computers Course Administrativa Architecture Overview Verilog

Apple A13

Safe Place for Data

- Volatile main memory
 - Loses instructions and data when power off
- Non-volatile secondary memory
 - Magnetic disk
 - Flash memory
 - Optical disk (CDROM, DVD)

Networks

- Communication, resource sharing, nonlocal access
- Local area network (LAN): Ethernet
- Wide area network (WAN): the Internet
- Wireless network: WiFi, Bluetooth

Technology Trends

- Electronics technology continues to evolve
 - Increased capacity and performance

	poriormanos
•	Reduced cost
Year	Technology
1951	Vacuum tube
1965	Transistor
1975	Integrated circuit (IC)
1995	Very large scale IC (VLSI)
2013	Ultra large scale IC

There is the index index

Semiconductor

- Silicon: semiconductor
- Add materials to transform properties:
 - Conductors
 - Insulators
 - Switch

Manufacturing ICs

Yield: proportion of working dies per wafer

Intel Core i7 Wafer

- 300mm wafer, 280 chips, 32nm technology
- Each chip is 20.7 x 10.5 mm

We will be using Verilog throughout the course

Overview

- I highly recommend Virtualizing Ubuntu and running everything from there.
- Homework: Please download iVerilog (Icarus Verilog) and be ready to start coding next class
 - Icarus Verilog: Open source/free Verilog tool chain
 - Linux: use your package manager or http://iverilog.icarus.com/
 - Windows: http://bleyer.org/icarus/
- Verilog is a industry language used to design processors
- We will be building a simplified x86 processor
 - x86 = 32-bit processor, which is the root of virtually all PCs today.
 - modern day CPUs use x86_64, a 64-bit version of x86.

