Op.155. No.11 稀溶液粘度法测定聚合物的分子量

孙肇远 PB22030708, Dec. 2024

University of Science and Technology of China, Hefei, Anhui, China

1. 引言

本实验基于流体力学理论,利用稀溶液粘度法,通过不同浓度乙二醇溶液的流动速率得到相对粘度,通过 Huggins 方程与 Kraemer 方程得到了对应的特性粘数,由此算得高分子的分子量.

2. 实验

2.1. 实验过程

称取聚乙二醇 1.1001~g, 在烧杯中溶解, 转移至 25~mL 容量瓶定容, 将溶液用熔砂漏斗过滤 25~mL 容量瓶, 恒温至 30~C;

利用熔砂漏斗得到无尘蒸馏水, 恒温至 30 ℃;

安装粘度计, 注入 10 mL 聚乙二醇溶液, 抽气使得液面高于上方小球一般, 释放大气使得通路, 测量液面在刻度间时间, 重复测量三次, 使得误差不超过 0.2 s;

加入 5 mL 上述无尘蒸馏水, 重复操作;

加入 5 mL 上述无尘蒸馏水, 重复操作;

加入 10 mL 上述无尘蒸馏水, 重复操作;

加入 10 mL 上述无尘蒸馏水, 重复操作;

将粘度计中溶液倒出,利用无尘蒸馏水洗涤粘度计,加入纯水,重复操作.

3. 结果与讨论

3.1. 实验数据

实验结果与数据处理如下表所示:

相对浓度	时间/s	相对粘度 η _r	特性粘度 η_{sp}	$\frac{\ln \eta_{\rm r}}{C'}$	$\frac{\eta_{\rm sp}}{C'}$
1	174.72	1.57704	0.57704	0.45555	0.57704
0.66667	151.11	1.36393	0.36393	0.46556	0.5459
0.5	139.63	1.26031	0.26031	0.46272	0.52062
0.33333	129.38	1.16779	0.16779	0.46536	0.50339
0.25	124.84	1.12682	0.12682	0.47759	0.50727

Table 1. 外推关系式计算表

根据表中数据进行拟合可得到方程

$$\frac{\ln \eta_{\rm r}}{C'} = 0.4701 - 0.01468C',\tag{1}$$

$$\frac{\eta_{\rm sp}}{C'} = 0.46564 + 0.11077C,$$

分别使用 Huggins 方程与 Kraemer 方程, 得到分子量数据

$$M_1 = 13952,$$
 [3]

$$M_2 = 13782.$$

此外, 可以利用已知数据外推 0 浓度时的时间, 得到 $t_0 = 105.87737$, 此时重复上述操作, 得到方程

$$\frac{\ln \eta_{\rm r}}{C'} = 0.63533 - 0.14297C',\tag{5}$$

$$\frac{\eta_{\rm sp}}{C'} = 0.65627 - 0.01533C,$$
 [6]

类似地,得到

$$M_3 = 20528,$$
 [7]

$$M_4 = 21399.$$

3.2. 结果讨论

在实验过程中, 可能由于操作的失误, 导致 C' = 1/4 的数据明显偏离拟合直线, 故全程未采用其.

在拟合过程中, 使用实验测得的 t_0 时, 拟合数据具有较好的线性, 通过两直线得到的分子量具有相对误差 0.61%, 较为精确, 实验具有可靠性.

而使用外推法时, 其数据点几乎不具有线性, 且得到分子量与上文方法具有相当大差异, 尽管其相对误差为 2%. 或许我们可以采用持续稀释溶液浓度, 由此获得 $t \sim C'$ 曲线, 从而考察其对直线的偏离.

3.3. 误差分析讨论

本实验可能误差如下:

4. 附件 3

1°假定液体流动时无动能损失,压力全部用于克服粘滞阻力做功,同时我们也假定溶液能润湿管壁,溶液与管壁间无滑动,这些假设会引入误差;

- 2° 假定不同浓度的溶液与水的密度近似相等, 从而估算相对粘度从而导致误差;
- 3°采用秒表计时, 而通过人眼进行判断存在一定的延迟性与主观性, 这回导致时间测定不准, 而引入误差, 这一项的误差的影响是相当大的;
- 4° 粘度计内部的残留溶液, 灰尘等杂质会对溶液的流动产生阻力, 影响测定的粘度;
- 5°若恒温水浴温度控制不稳定或实验室内温度波动较大,将会直接影响到粘度的测定.可能可行的改进方式:
 - 1°采用高精度控温设备;
 - 2°测量时间时可使用高速摄像机;或使用光学仪器,在切线刻度处投射激光,像发生位移时即为溶液最低处表面经过其的时刻;
 - 3°使用细绳系挂乌氏粘度计,使得其根据重力自然下垂,同时采用其他方法稳定之;
 - 4°稀释粘度计内部溶液时多润洗几次,同时改善实验的无尘条件,确保没有灰尘阻塞粘度计;
 - 5°尝试使用更高精度的公式.

3.4. 实验体会与认识

通过本次实验,我们对物理化学中流体力学内容有了更加深刻的认识,了解并掌握了通过 位移时间测量相对粘度,从而计算出分子量的方法,增进了对高分子分子量测量学的理解, 收获较大.同时在实验中学会了判断的标准统一控制,掌握了相关数据需要如何拟合处理.

4. 附件

4.1. 原始数据处理

将记录的原始数据转化为下表:

 操作	相对浓度	No.1	No.2	No.3	Average
10 mL PEG(aq)	1	174.72	174.69	174.75	174.72
$+5~\mathrm{mL~H_2O}$	2/3	151.09	151.14	151.09	151.11
$+5~\mathrm{mL~H_2O}$	1/2	139.57	139.72	139.61	139.63
$+10~\mathrm{mL~H_2O}$	1/3	129.44	129.31	129.38	129.38
$+10~\mathrm{mL~H_2O}$	1/4	124.89	124.78	124.85	124.84
pure H_2O	0	110.77	110.86	110.75	110.79

Table 2. 各相对浓度下的流出时间/s

近似忽略不同浓度高分子溶液密度的区别,由相对粘度和特性粘度的定义,有:

$$C' \equiv \frac{C}{C_0},$$

得到各相对浓度 C' 下的数据:

相对浓度	时间/s	相对粘度 η _r	特性粘度 η _{sp}	$\frac{\ln \eta_{\rm r}}{C'}$	$\frac{\eta_{\rm sp}}{C'}$
1	174.72	1.57704	0.57704	0.45555	0.57704
0.66667	151.11	1.36393	0.36393	0.46556	0.5459
0.5	139.63	1.26031	0.26031	0.46272	0.52062
0.33333	129.38	1.16779	0.16779	0.46536	0.50339
0.25	124.84	1.12682	0.12682	0.47759	0.50727

Table 3. 外推关系式计算表

略去明显偏离的点 (C'=1/4), 得到拟合图像

Fig. 4. $\frac{\ln \eta_{\rm r}}{C'} \sim C'$ 拟合直线

4. 附件 5

Fig. 5. $\frac{\eta_{\rm sp}}{C'} \sim C'$ 拟合直线

直线方程

$$\frac{\ln \eta_{\rm r}}{C'} = 0.4701 - 0.01468C',$$

$$\frac{\eta_{\rm sp}}{C'} = 0.46564 + 0.11077C,$$

根据高分子质量数据,可得

$$C_0 = \frac{1.1001}{50} = 0.022002 \text{ g/mL},$$

由 Polymer Handbook 可知:

$$[\eta] = KM^a \implies$$

$$M = \left(\frac{[\eta]}{K}\right)^{1/a} = \left(\frac{[\eta]}{0.0125 \text{ mL/g}}\right)^{1/0.78},$$

$$M_1 = 13952, \lceil 17 \rfloor$$

$$M_2 = 13782.$$

此外, 可以利用已知数据外推 0 浓度时的时间, 如图

Fig. 6. $t \sim C'$ 拟合直线

得到 $t_0 = 105.87737$, 此时重复上述操作, 得到

4. 附件 7

Fig. 8. $\frac{\eta_{\rm sp}}{C'} \sim C'$ 拟合直线

直线方程

$$\frac{\ln \eta_{\rm r}}{C'} = 0.63533 - 0.14297C',$$

$$\eta_{\rm cp}$$

$$\frac{\eta_{\rm sp}}{C'} = 0.65627 - 0.01533C,$$
 [20]

类似地,得到

$$M_3 = 20528,$$
 $\lceil 21 \rfloor$

$$M_4 = 21399.$$

4.2. 原始数据

Fig. 9. 原始数据记录