MMD GAN: Towards Deeper Understanding of Moment Matching Network

Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, Barnabás Póczos

Coby Penso

What we'll see

- 1 Introduction
- 2 Preliminary
- 3 MMD with Kernal Learning
- 4 MMD GAN
- 5 Experiments

Introduction

Generative moment matching network (GMMN) is a deep generative model that differs from GAN by replacing the discriminator with a two-sample test based on **kernel maximum discrepency (MMD)**

In this paper we'll see an improvement of model expressiveness of GMMN and its computational efficiency by **adversarial kernel learning** techniques. Combining key ideas from GMMN and GAN, hence called **MMD-GAN**.

GAN

Given $x_{i,i=1}^n$, $x_i \in X$ and $x_i \sim P_X$.

Two ways to sample from P_X Estimate the density of P_X

Use Generative Adversarial Network to train a generator g_{θ} , to transform $z \sim P_Z$ into $g_{\theta}(z) \sim P_{\theta}$ such that $P_{theta} \approx P_X$. To measure similarity a discriminator trained to distinguish x_i and $g_{\theta}(z_j)$

Two-Sample Test

Distinguishing two distributions by finite samples is known as Two-Sample Test in statistics. One way is done via a kernel maximum mean discrepancy (MMD)

Preliminary

MMD

Given two distibutions P and Q, and a kernel k, the square of MMD distance is defined as

$$M_k(P,Q) = ||\mu_P - \mu_Q||_{\mathcal{H}}^2 = \mathbb{E}_P[k(x,x')] - 2\mathbb{E}_{P,Q}[k(x,y)] + \mathbb{E}_Q[k(y,y')]$$

Theorem: Given a kernel k, if k is a characteristic kernel, then $M_k(P,Q)=0$ iff P=Q

GMMN

One example of characteristic kernel is Gaussian kernel $k(x, x') = \exp ||x - x'||^2$. Based of Theorem 1, training g_{θ} by

$$\min_{\theta} M_k(P_X, P_{\theta})$$

with a fixed Gaussian kernel k rather than training an additional discriminator f as GAN.

MMD is a distance (difference) between feature means.

Kernel

Let X be non-empty set. A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel if there exist a Hilbert space \mathbb{H} and a feature map $\phi: \mathcal{X} \to \mathcal{H}$ such that $\forall x, x' \in \mathcal{X}$,

$$k(\mathbf{x}, \mathbf{x}') := \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle_{\mathcal{H}}$$

$$\begin{split} \textit{MMD}^2(P,Q) &= ||\mu_P - \mu_Q||_{\mathcal{H}}^2 \\ \textit{MMD}^2(P,Q) &= \langle \mu_P - \mu_Q, \mu_P - \mu_Q \rangle = \langle \mu_P, \mu_P \rangle - 2 \, \langle \mu_P, \mu_Q \rangle + \langle \mu_Q, \mu_Q \rangle \\ \textit{MMD}^2(P,Q) &= \mathbb{E}_P[k(X,X)] - 2\mathbb{E}_{P,Q}[k(X,Y)] + \mathbb{E}_Q[k(Y,Y)] \end{split}$$

MMD with Kernal Learning

In practice, Given $X = x_1, ..., x_n \sim P$ and $Y = y_1, ..., y_n \sim Q$ then

$$M'_k(X,Y) = \frac{1}{\binom{n}{2}} \sum_{i=i'} k(x_i, x_i') - \frac{2}{\binom{n}{2}} \sum_{i=i'} k(x_i, y_i) + \frac{1}{\binom{n}{2}} \sum_{i=i'} k(y_i, y_i')$$

Note: due to sampling variance M'(X, Y) may not be zero even when P = Q.

Conduct hypothesis test with null hypothesis $H_0: P = Q$. For a given allowable probability of false rejection α , reject H_0 .

- $P \neq Q$ if $M'(X, Y) > c_{\alpha}$
- Otherwise Q pass the test and indistinguishable from P under the test.

MMD with Kernal Learning

If kernel k cannot result high MMD when $P \neq Q$, then M' has more chance to be smaller than c_{α} , unlikely to reject null hypothesis and those Q is not distinguishable from P.

Therefore, instead of using pre-specified kernel k as GMMN, we consider training g_{θ} via

$$\min_{\theta} \max_{k \in K} M_k(P_X, P_{\theta})$$

which takes different possible characteristic kernels $k \in K$ into account. Could views as replacing the fixed kernel k with the adversarially learned kernel $\underset{k \in K}{\operatorname{argmax}} M_k(P_X, P_\theta)$ to have a stronger signal where $P \neq P_\theta$

MMD with Kernal Learning

However, it is difficult to optimize over all characteristic kernels.

Theorem

Given f an injective function and k is characteristic, then the resulted kernel $\hat{k} = k \circ f$, where $\hat{k}(x, x') = k(f(x), f(x'))$ is still characteristic.

Given family of injective functions parametrized by $\{\phi\,,f_\phi\}$, then the objective can changed to

$$\min_{\theta} \max_{\phi} M_{k \circ f_{\phi}}(P_X, P_{\theta})$$

In this paper - combining Gaussian kernels with injective functions

$$\hat{k}(x, x') = \exp(-||f_{\phi}(x) - f_{\phi}(x')||^2)$$

Example:

$$\{f_{\phi}|f_{\phi}(x)=\phi x,\phi>0\}$$

Equivalent to the kernel bandwidht tuning (length scale tuning).

Assumption

 $g: \mathbb{Z} \times \mathbb{R}^m \to \mathcal{X}$ is locally Lipschits. Given f_ϕ and a probability distribution \mathbb{P}_z over \mathcal{Z} , if there are local Lipschits constants $L(\theta,z)$ for $f_\phi \circ g$, which is independent of ϕ , such that $\mathbb{E}_{z \sim \mathbb{P}_z}[L(\theta,z)] < +\infty$

Theorem 3

The generator function g_{θ} parametrized by θ is under the above assumption. Let $\mathbb{P}_{\mathcal{X}}$ be a fixed distribution over \mathcal{X} and Z be a random variable over the space \mathcal{Z} . We denote \mathbb{P}_{θ} the distribution of $g_{\theta}(Z)$, then $\max_{\phi} M_{f_{\phi}}(\mathbb{P}_{\mathcal{X}}, \mathbb{P}_{\theta})$ is continuous everywhere and differentiable almost everywhere in θ

Properties of MMD with Kernel Learning

If g_{θ} parametrized by feed-forward neural network, it satisfies the above assumption and can be trained via gradient decesnt as well as propagation, since the objective is continuous and differentiable by Theorem 3.

Theorem 4

(weak* topology) Let $\{\mathbb{P}_n\}$ be a sequence of distributions. Considering $n \to \infty$, under mild assumption, $\max_{\phi} M_{f_{\phi}}(\mathbb{P}_{\mathcal{X}}, \mathbb{P}_n) \to 0 \iff \mathbb{P}_n \xrightarrow[D]{} \mathbb{P}_{\mathcal{X}}$, where $\xrightarrow[D]{}$ means converging in distribution

Theorem 4 shows that $\max_{\phi} M_{f_{\phi}}(\mathbb{P}_{\mathcal{X}}, \mathbb{P}_n)$ is a sensible cost function to the distance between $\mathbb{P}_{\mathcal{X}}$ and \mathbb{P}_n .

To approximate $\min_{\theta} \max_{\phi} M_{f_{\phi}}(P(X), P(g_{\theta}(Z)))$, we use NNs to parametrize - g_{θ} and f_{ϕ} . The following has to hold:

- g_{ϕ} is locally Lipschits, where commonly used Feed Forward NN satisfy this constraint.
- $\nabla_{\theta}(\max_{\phi} f_{\phi} \circ g_{\theta})$ has to be bounded done by clipping ϕ or gradient penalty.
- f_{ϕ} injective function Non trivial (tackle that next slide)

Injective function requirement

Theorem: For an injective function there exists an function f^{-1} such that $f^{-1}(f(x)) = x \ \forall x \in X \ \text{and} \ f^{-1}(f(g(z))) = g(z) \ \forall z \in Z$, which can be approx by an autoencoder.

Denote $\phi=(\phi_{\rm e},\phi_{\rm d})$ to be the parameter of discriminator networks, with $f_{\phi_{\rm e}}$ and train the corresponding decoder $f_{\phi_{\rm d}}\approx f^{-1}$ to regularize f.

$$\min_{\theta} \max_{\phi} M_{f_{\phi_e}}(P(X), P(g_{\theta}(Z))) - \lambda E_{y \in X \cup g(Z)} ||y - f_{\phi_d}(f_{\phi_e}(y))||^2$$

Note: Ignore the autoencoder objective when train .

<u>Note:</u> Empirical study suggests autoencoder objective is not necessary to lead to successful GAN training.

Algorithm 1: MMD GAN, our proposed algorithm.

input : α the learning rate, c the clipping parameter, B the batch size, n_c the number of iterations of discriminator per generator update.

initialize generator parameter θ and discriminator parameter ϕ ;

while θ has not converged do

ile
$$\theta$$
 has not converged do for $t=1,\ldots,n_c$ do
$$\begin{bmatrix} \text{Sample a minibatches } \{x_i\}_{i=1}^B \sim \mathbb{P}(\mathcal{X}) \text{ and } \{z_j\}_{j=1}^B \sim \mathbb{P}(\mathcal{Z}) \\ g_{\phi} \leftarrow \nabla_{\phi} M_{f_{\phi_e}}(\mathbb{P}(\mathcal{X}), \mathbb{P}(g_{\theta}(\mathcal{Z}))) - \lambda \mathbb{E}_{y \in \mathcal{X} \cup g(\mathcal{Z})} \|y - f_{\phi_d}(f_{\phi_e}(y))\|^2 \\ \phi \leftarrow \phi + \alpha \cdot \text{RMSProp}(\phi, g_{\phi}) \\ \phi \leftarrow \text{clip}(\phi, -c, c) \\ \text{Sample a minibatches } \{x_i\}_{i=1}^B \sim \mathbb{P}(\mathcal{X}) \text{ and } \{z_j\}_{j=1}^B \sim \mathbb{P}(\mathcal{Z}) \\ g_{\theta} \leftarrow \nabla_{\theta} M_{f_{\phi_e}}(\mathbb{P}(\mathcal{X}), \mathbb{P}(g_{\theta}(\mathcal{Z}))) \\ \theta \leftarrow \theta - \alpha \cdot \text{RMSProp}(\theta, g_{\theta}) \end{bmatrix}$$

Encoding Perspective of MMD GAN

Another way besides from using a kernel selection to explain MMD GAN is viewing f_{ϕ_e} as a feature transformation function, and the kernel two-sample test is performed on this transformed feature space (i.e the code space of the autoencoder).

Feasible Set Reduction

Theorem: For any f_{ϕ} there exists f'_{ϕ} such that $M_{f_{\phi}}(P_r, P_{\theta}) = M_{f'_{\phi}}(P_r, P_{\theta})$ and $E_x[f_{\phi}(x)] \ge E_z[f_{\phi'}(g_{\theta}(z))]$

With this theorem, we can reduce the feasible set of ϕ during the optimization by solving

$$\min_{\theta} \max_{\phi} M_{f_{\phi}}(P_r, P_{\theta}) \ \text{s.t.} \ E[f_{\phi}(x)] \geq E[f_{\phi}(g_{\theta}(z))]$$

which the optimal solution is still equivalent to solving (2)

In practice, the following objective

$$\min_{\theta} \max_{\phi} M_{f_{\phi}}(P_r, P_{\theta}) + \lambda \min(E[f_{\phi}(x)] - E[f_{\phi}(g_{\theta}(z))], 0)$$

Which penalizes the objective when the constraint is violated.

Note: reducing the feasible set makes the training faster and stabler.

Experiments Settings

- MNIST (50K), CIFAR10 (50K), CelebA (160K), LSUN (3M)
- DCGAN architecture based
- Kernel Mixture of K RBF kernels $k(x,x') = \sum_{q=1}^K k_{\sigma_q}(x,x')$ where k_{σ_q} is a Gaussian kernel with bandwidth σ_q . Fixed K=5-1,2,4,8,16 (left the f_ϕ learn under these σ_q
- RMSProp with LR 0.00005 (such has WGAN)
- Ensure boundedness of model parameters of the discriminator by clipping weights point-wish to [-0.01, 0.01]
- batch size set to 64

Qualitative Analysis - GMMN

© Coby Penso

Qualitative Analysis - GANs

Short reminder - WGAN: Change GAN critiria to:

$$\max_{w \in \mathcal{W}} \mathbb{E}_{x \sim \mathbb{P}_r}[f_w(x)] - \mathbb{E}_{z \sim p(z)}[f_w(g_\theta(z))]$$

Such that the discriminator is from a family of functions $\{f_w\}_{w \in \mathcal{W}}$ that are all K-Lipschits for some K.

Short reminder - Inception Score: Higher is Better - Measures diversity and quality of samples.

$$IS = \exp\left(\mathbb{E}_{p_G}[KL(p(y|x)||p_{\theta}(y)]\right)$$

Method	Scores \pm std.
Real data	$11.95\pm.20$
DFM [36]	7.72
ALI [37]	5.34
Improved GANs [28]	4.36
MMD GAN	6.17 ± .07
WGAN	$5.88 \pm .07$
GMMN-C	$3.94 \pm .04$
GMMN-D	$3.47 \pm .03$
Table 1: Inception scores	

Figure 3: Computation time

Moving average of MMD loss through training.

Figure 4: Training curves and generative samples at different stages of training. We can see a clear correlation between lower distance and better sample quality.

Questions?