Polynomial Approximation

Determination of f(x) at point x not on discrete data points

Interpolation- x inside the interval of data points

Extrapolation - x outside the interval of data points

<u>Differentiation and Integration</u>

Polynomial Fits

Exact Fit

Direct Lagrange

Approximate Fits

Cubic Spline
Least Square Approximation

<u>Polynomials</u>

Polynomial $P_n(x)$ of *n*th degree has (n + 1) coefficients in the form

$$P_n(x) = a_o + a_1 x + a_2 x^2 + \dots + a_n x^n$$

For a given x, how many operations to determine $P_n(x)$ from above polynomial?

Nested operations- by successive factorization, $P_n(x)$ written as

$$P_n(x) = a_o + x(a_1 + x(a_2 + x(a_3 + \cdots + x(a_{n-1} + a_n x))))$$

For a given x, how many operations to determine $P_n(x)$ from above nested polynomial?

Weierstrass Theorem

For any small ε , there exist a positive integer N such that a smooth function f(x) in interval [a,b] can be approximated by a polynomial of degree N

$$|f(x) - P_N(x)| < \varepsilon$$

Approximation Error

With (n + 1) descrite data points $(x_i, f(x_i))$, $P_n(x)$ can be found that passes through all (n + 1) points with $x = x_i$, $P_n(x_i) = f(x_i)$

When $x \neq x_i$, $P_n(x)$ will approximate f(x) with error

$$P_n(x) - f(x) = \frac{1}{n+1} (x - x_o)(x - x_1)(x - x_2) \dots (x - x_n) f^{n+1}(\xi)$$

$$x_o < \xi < x_n$$

Direct Fit

With (n + 1) descrite data points $(x_i, f(x_i))$, an nth order polynomial $P_n(x)$ can be specified that exactly fits all (n+1)points.

To specify $P_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$, the (n + 1)unknown coefficients $(a_0, a_1 \dots a_n)$ can be determined

$$\begin{vmatrix} a_o + a_1 x_o + a_2 x_o^2 + a_3 x_o^3 + \dots + a_n x_o^n = f(x_o) \\ a_o + a_1 x_1 + a_2 x_1^2 + a_3 x_1^3 + \dots + a_n x_1^n = f(x_1) \\ a_o + a_1 x_2 + a_2 x_2^2 + a_3 x_2^3 + \dots + a_n x_2^n = f(x_2) \\ & \cdot \\ a_o + a_1 x_n + a_2 x_n^2 + a_3 x_n^3 + \dots + a_n x_n^n = f(x_n) \end{vmatrix}$$

Vector notation

$$\overline{a = [a_o, a_1, a_2, \dots a_n]^T}$$

$$G = \begin{bmatrix} 1 & x_0^1 & x_0^2 & x_0^3 \dots x_0^n \\ 1 & x_1^1 & x_1^2 & x_1^3 \dots x_1^n \\ 1 & x_1^2 & x_2^2 & x_2^3 \dots x_2^n \\ & & & & & & \\ 1 & x_n^1 & x_n^2 & x_n^3 \dots x_n^n \end{bmatrix} \qquad P_{\mathcal{A}}(\mathbf{x}) G = F$$

$$Pq(x) G^{-}f(BG)a = F$$

$$F = [f(x_0), f(x_1), f(x_2), ..., f(x_n)]^T$$

Lagrange Polynomials

Passing a polynomial through (n + 1) points

Two-point fit (x_1, f_1) and (x_2, f_2)

$$f(x) = \frac{x - x_2}{x_1 - x_2} f_1 + \frac{x - x_1}{x_2 - x_1} f_2 = P_2(x)$$

Three-point fit $(x_1, f_1), (x_2, f_2), (x_2, f_2)$

$$f(x) = \frac{x - x_2}{x_1 - x_2} \frac{x - x_3}{x_1 - x_3} f_1 + \frac{x - x_1}{x_2 - x_1} \frac{x - x_3}{x_2 - x_3} f_2 + \frac{x - x_1}{x_3 - x_1} \frac{x - x_2}{x_3 - x_2} f_3 = P_3(x)$$

Determine $P_n(x)$ that passes through 3 points

Lagrange Polynomials

Passing a polynomial through (n) points

n-point fit

$$P_{n-1}(x) = \frac{(x - x_2)(x - x_3)(x - x_4) \dots (x - x_n)}{(x_1 - x_2)(x_1 - x_3)(x_1 - x_4) \dots (x_1 - x_n)} f_1$$

$$\frac{(x - x_1)(x - x_3)(x - x_4) \dots (x - x_n)}{(x_2 - x_1)(x_2 - x_3)(x_2 - x_4) \dots (x_2 - x_n)} f_2 +$$

$$\frac{(x - x_1)(x - x_2)(x - x_4) \dots (x - x_n)}{(x_3 - x_1)(x_3 - x_2)(x_3 - x_4) \dots (x_3 - x_n)} f_3 +$$

.....

$$+\frac{(x-x_1)(x-x_2)(x-x_3)\dots(x-x_{n-1})}{(x_n-x_1)(x_n-x_2)(x_n-x_3)\dots(x_n-x_{n-1})}f_n$$

No of operations

Lagrange

Direct method

Gauss-Seidel

Use Lagrange method for $P_2(x)$ passing through 3 points

(0,1); (1,0.75); (2,0)

Navielle Method

This a successive linear interpolation between adjacent points With n points (x_k, f_k) ,

$$f_k^o = f_k$$

With

$$f_k^1 = \frac{x - x_k}{x_{k+1} - x_k} f_{k+1}^o + \frac{x - x_{k+1}}{x_k - x_{k+1}} f_k^o$$

And continuing

$$f_k^2 = \frac{x - x_k}{x_{k+1} - x_k} f_{k+1}^1 + \frac{x - x_{k+1}}{x_k - x_{k+1}} f_k^1$$

$$f_k^n = \frac{x - x_k}{x_{k+1} - x_k} f_{k+1}^{n-1} + \frac{x - x_{k+1}}{x_k - x_{k+1}} f_k^{n-1}$$

$\overline{x_i}$	$f_i^{(0)}$	$f_i^{(1)}$	$f_i^{(2)}$	$f_i^{(3)}$
x_1 x_2 x_3 x_4	$f_{1}^{(0)}$ $f_{2}^{(0)}$ $f_{3}^{(0)}$ $f_{4}^{(0)}$	$f_1^{(1)}$ $f_2^{(1)}$ $f_3^{(1)}$	$f_1^{(2)}$ $f_2^{(2)}$	$f_1^{(3)}$

$$f_k^n(x) = P_n(x)$$

Advantage: No. of operations?

Determine $P_n(x)$ that passes through 3 points

(0,1); (1, 0.75); (2,0)

Divided Difference Method

For (n + 1) points (x_i, f_i) , with $f_i = f(x_i)$, the divided difference is the difference between the f value at two adjacent points divided by the distance between these two points.

Set f_i^o as the original values of f at x_i

$$f_i^o = f_i$$

The next set of divided difference f_i^1 will be

$$f_i^1 = \frac{f_{i+1}^o - f_i^o}{x_{i+1} - x_i}$$

And for kth iteration

$$f_i^{k+1} = \frac{f_{i+1}^k - f_i^k}{x_{i+1} - x_i}$$

At each step of differencing, number of points for next differencing will be reduced by one.

$\overline{x_i}$	$f_i^{(0)}$	$f_i^{(1)}$	$f_i^{(2)}$	$f_i^{(3)}$
x_1 x_2 x_3 x_4	$ \begin{array}{c} f_1^{(0)} \\ f_2^{(0)} \\ f_3^{(0)} \\ f_4^{(0)} \end{array} $	$f_1^{(1)}$ $f_2^{(1)}$ $f_3^{(1)}$	$f_1^{(2)}$ $f_2^{(2)}$	$f_1^{(3)}$

Divided Difference Polynomial

Polynomial $P_n(x)$ can be constructed from divided difference values f_i^k

$$P_n(x) = f_i^o + (x - x_o)f_i^1 + (x - x_o)(x - x_1)f_i^2 + \dots + (x - x_o)(x - x_1)(x - x_3)\dots(x - x_n)f_i^n$$

For any (n + 1) points, $P_n(x)$ is unique. The polynomial above passes through all the points, so this expression is equal to Lagrange's.

Differencing

With equal spacing for all points, function f differences correspond to $\frac{df}{dx}$.

Successive differencing of two neighboring values: which neighbor to count for differencing method? Forward, backward or taking a half-step.

Forward differencing Δf_i :

$$\Delta f_i = f_{i+1} - f_i$$

Backward differencing ∇f_i

$$\nabla f_i = f_i - f_{i-1}$$

Centered differencing $\delta f_{i+1/2}$

$$\delta f_{i+1/2} = f_{i+1} - f_{i-1}$$

Table of differences

х	f	Δf	$\Delta^2 f$	Δ ³ f
x ₀	f ₀	Δf_0		
$ \mathbf{x}_1 $	f ₁	Δf_1	$\Delta^2 f_0$	$\Delta^3 f_0$
x ₂	f ₂	Δf_2	$\Delta^2 f_1$	<u>α</u> 10
Х3	f ₃	_	tarting fro	$\operatorname{om} x_o$

х	f	∇f	$\nabla^2 f$	$\nabla^3 f$
X_3	f_3	∇f ₋₂		
x_2	f_2	_	$\nabla^2 f_{-1}$	$\nabla^3 f_0$
x_1	f_i	∇f ₋₁	$\nabla^2 f_0$	A 10
x ₀	f ₀	∇f ₀	Starting fr	$\operatorname{om} x_n$

х	f	δf	$\delta^2 f$	$\delta^3 f$
x_1	f_1	8f		
x ₀	f ₀	$\delta f_{-1/2}$ $\delta f_{1/2}$ $\delta f_{3/2}$	$\delta^2 f_0 \\ \delta^2 f_1$	$\delta^3 f_{1/2}$
x _i	f ₁			0 11/2
x ₂	f ₂	Startii	ng from	middle

n - number of spacings

$$\Delta x = \frac{\lim_{\substack{j = 1 \ \text{of} \ (i-1) \ i \ i+1)}}{\int_{\substack{j = 1 \ \text{open} \ (i-1) \ i \ i+1)}}} \frac{f_{n-2} f_{n-1} f_n}{L}$$

$$x_i = x_o + i * h$$
 and $f_i = f(x_i)$

$$(n+1)$$
 = number of nodes

	Derivat	ives	first	second	third
x	f(x)				
$\overline{x_0}$	f_0		<u> </u>	1	
x_1	f_1	$(f_1 - f_2)$ $(f_2 - f_3)$	(₀)	$(f_2 - 2f_1 + f_0)$	(6 26 . 26 . 6)
x_2	f_2	$(f_2-f_3-f_3-f_3)$		$f_3 - 2f_2 + f_1$	$(f_3 - 3f_2 + 3f_1 - f_0)$
x_3	f_3	(f_3-f_3)	(2)		

Forward and backward differencing for 3 points

Round-off errors in differencing

Max. round-off errors in *nth* derivative = $\pm 2^{n-1}$

\overline{x}	f	Δf	$\Delta^2 f$	$\Delta^3 f$	$\Delta^4 f$
_	+1/2	-1			-
_	-1/2	1	_ 2	_4	8
_	+1/2	-1	-2	4	
_	-1/2	1	2	-4	-8
_	+1/2	-1	-2		
	-1/2				

Watch out for round-off errors!

In similar manner constructed for Navielle method, $P_n(x)$ can be constructed from the difference tables and called Newton Polynomials that passes through (n + 1) points.

Newton polynomials depends on the difference method, forward, backward and centered.

Newton Polynomials

With $x_i = x_o + ih$, we can define s instead of x

$$s = \frac{x - x_0}{h}$$

$$s_i = i$$

$$x = x_0 + sh$$

Newton Forward Differencing Polynomials

$$P_n(x) = f_o + s\Delta f_o + \frac{s(s-1)}{2!}\Delta^2 f_o + \frac{s(s-1)(s-2)}{3!}\Delta^3 f_o + \dots + \frac{ss(s-1)(s-2)\dots(s-n+1)}{n!}\Delta^n f_o$$

Or alternatively in terms of binomial coefficients

$$P_n(x) = f_o + \binom{s}{1} \Delta f_o + \binom{s}{2} \Delta^2 f_o + \binom{s}{3} \Delta^3 f_o + \dots + \binom{s}{n} \Delta^n f_o$$

With binomial coefficients defines as
$$\binom{S}{i} = \frac{s(s-1)(s-2)...(s-[i-1])}{i!}$$

Newton Backward Differencing Polynomials

$$P_{n}(x) = f_{o} + s\nabla f_{o} + \frac{s(s+1)}{2!}\nabla^{2}f_{o} + \frac{s(s+1)(s+2)}{3!}\nabla^{3}f_{o} + \dots + \frac{ss(s+1)(s+2)\dots(s+n-1)}{n!}\nabla^{n}f_{o}$$

Or alternatively in terms of binomial coefficients

$$P_n(x) = f_o + {s \choose 1} \nabla f_o + {s \choose 2} \nabla^2 f_o + {s \choose 3} \nabla^3 f_o + \dots + {s \choose n} \nabla^n f_o$$

With binomial coefficients defines as $\binom{S^+}{i} = \frac{s(s+1)(s+2)...(s+[i-1])}{i!}$

Expressions for Newton Centered differencing polynomials use similar formulas.

Determine $P_n(x)$ that passes through 3 points using Newton backward differencing

(0,1); (1, 0.75); (2,0)