

PREDICCIÓN DEL VALOR DE LOS JUGADORES DE LA RFEF

David Anaya - 2211714 Yiber Romero - 2221835 Cesar Vanegas - 2220040

Introducción

El dataset utilizado es sobre la Real Federación
Española de Fútbol (RFEF) en la temporada de 20232024 gracias al esfuerzo de Isabelo Castillo. Dicho
conjunto de datos recopila información sobre el
desempeño de los jugadores de las categorias
regionales de España, abarcando aspectos como los
partidos, titularidades, goles, tarjetas que ha recibido,
posición en el campo, entre otros.

Dis	play	data										
	id	nombre	partidos_jugados	partidos_titular	goles	asistencias	tarjeta_amarilla	edad	altura	valor	rating	posicion
0	0	Alberto Varo	34	34	21	1	2	31	191.000000	174640.0	59	Portero
1	2	Dani Parra	5	4	3	0	1	24	188.000000	91220.0	44	Portero
2	4	Joan Oriol	37	36	1	3	9	37	175.000000	119000.0	62	Lateral Izquierdo
3	5	P. Trigueros	37	37	5	1	6	31	188.000000	217500.0	57	Defensa Central
4	6	Nacho González	31	31	2	0	8	29	185.000000	340340.0	61	Defensa Central
5	7	Pol Domingo	29	28	0	0	5	24	180.000000	392580.0	57	Lateral Derecho
6	8	Unai Dufur	18	7	0	0	0	25	187.000000	310340.0	54	Defensa Central

Distribución de Posiciones (etiquetas externas + tabla de leyenda)

Posición	Cantidad	Porcentaje			
Mediocentro	1929	19.1%			
Defensa Central	1788	17.7%			
Portero	1630	16.1% 15.1%			
Delantero Centro	1530				
Lateral Derecho	673	6.7%			
Lateral Izquierdo	636	6.3%			
Extremo Derecho	503	5.0%			
Extremo Izquierdo	464	4.6%			
MP	426	4.2%			
Mediocentro Defensi	vo207	2.0%			
MI	152	1.5%			
MD	136	1.3%			
CAI	14	0.1%			
CAD	10	0.1%			
PT	6	0.1% 0.0%			
MPI	2				
MPD	1	0.0%			

Análisis de regresión para los jugadores de la RFEF

Este modelo permite predecir el valor de mercado de jugadores de fútbol en función de variables como goles, edad, altura, partidos jugados, asistencias y tarjetas amarillas.

Utilizando árboles de decisión, evaluamos diferentes niveles de complejidad para encontrar el equilibrio ideal entre precisión y sobreajuste.

Mediante la métrica de error absoluto medio (MAE), identificamos qué tan buenas son las predicciones del modelo. Además, la visualización del MAE frente a la profundidad del árbol nos ayuda a seleccionar el mejor modelo posible.

→ MAE for max depth 1: 48500.15916793943 Relative MAE for max_depth 1: 1.07 MAE for max depth 2: 45109.12234659425 Relative MAE for max depth 2: 0.99 MAE for max depth 3: 44515.35610367874 Relative MAE for max depth 3: 0.98 MAE for max_depth 4: 43716.73747354037 Relative MAE for max_depth 4: 0.96 MAE for max depth 5: 44250.00035937916 Relative MAE for max depth 5: 0.97 MAE for max depth 6: 41258.61768905903 Relative MAE for max depth 6: 0.91 MAE for max depth 7: 41878.7208796056 Relative MAE for max depth 7: 0.92 MAE for max depth 8: 41794.45640923411 Relative MAE for max depth 8: 0.92 MAE for max depth 9: 41385.470943065484 Relative MAE for max depth 9: 0.91 MAE for max depth 10: 42895.79162914715 Relative MAE for max depth 10: 0.94 MAE for max depth 11: 43370.75091638737 Relative MAE for max depth 11: 0.95 MAE for max_depth 12: 46433.529664969494 Relative MAE for max depth 12: 1.02 MAE for max depth 13: 47856.35253479052 Relative MAE for max depth 13: 1.05 MAE for max depth 14: 48206.42767896451 Relative MAE for max_depth 14: 1.06 MAE for max depth 15: 48814.358284555085 Relative MAE for max depth 15: 1.07 MAE for max depth 16: 49791.66507888634 Relative MAE for max depth 16: 1.1 MAE for max depth 17: 49493.45994641521 Relative MAE for max_depth 17: 1.09 MAE for max depth 18: 51869.77218965484 Relative MAE for max depth 18: 1.14 MAE for max depth 19: 53435.71432125372 Relative MAE for max depth 19: 1.18 MAE for max depth 20: 52833.46453385828 Relative MAE for max_depth 20: 1.16 Best Relative MAE: 0.91

MAE vs Max Depth for DT

Best n-fold for CV

Random Forest

Este modelo utiliza una técnica llamada bosque aleatorio para predecir el valor de mercado de un jugador de fútbol, usando datos como su edad, altura, partidos jugados, asistencias y tarjetas amarillas.

En lugar de un solo árbol de decisión, el modelo combina muchos árboles diferentes y toma el promedio de todos ellos. Esto hace que las predicciones sean más estables, precisas y confiables. Probamos diferentes cantidades de árboles para ver cuántos se necesitan para obtener buenos resultados sin perder eficiencia.

MAE vs n_estimators for RF

Relative MAE for n_estimator 10: 43392.27235989012
Relative MAE for n_estimator 10: 0.95
MAE for n_estimator 50: 42310.31821520568
Relative MAE for n_estimator 50: 0.93
MAE for n_estimator 100: 42367.49445193635
Relative MAE for n_estimator 100: 0.93
MAE for n_estimator 200: 42457.919983990345
Relative MAE for n_estimator 200: 0.93
MAE for n_estimator 300: 42666.3679737579
Relative MAE for n_estimator 300: 0.94
MAE for n_estimator 500: 42606.458878810314
Relative MAE for n_estimator 500: 0.94
Best Relative MAE: 0.93

MAE for kernel linear: 41046.73673334646
Relative MAE for kernel linear: 0.9
MAE for kernel poly: 42415.34798170879
Relative MAE for kernel poly: 0.93
MAE for kernel rbf: 42441.725852636235
Relative MAE for kernel rbf: 0.93
MAE for kernel sigmoid: 42452.61727977079
Relative MAE for kernel sigmoid: 0.93

Best Relative MAE: 0.9

MAE vs kernels for SVM

Clasificación con DNN

Algoritmos K-Means y DBSCAN

##