

<u>Gameboard</u>

Maths

Complex Numbers: Polar Form 3ii

Complex Numbers: Polar Form 3ii

Part A Expression for z_1z_2

Given that $z_1=2\mathrm{e}^{\frac{1}{6}\pi\mathrm{i}}$ and $z_2=3\mathrm{e}^{\frac{1}{4}\pi\mathrm{i}}$, express z_1z_2 in the form $r\mathrm{e}^{\mathrm{i}\theta}$.

r>0 and $0\leqslant heta<2\pi$.

The following symbols may be useful: e, i, pi

Part B Expression for $\frac{z_1}{z_2}$

Express $rac{z_1}{z_2}$ in the form $r\mathrm{e}^{\mathrm{i} heta}$, where r>0 and $0\leqslant heta < 2\pi$.

The following symbols may be useful: e, i, pi

Part C Expression for w^{-5}

Given that $w=2\left(\cos\frac{1}{8}\pi+\mathrm{i}\sin\frac{1}{8}\pi\right)$, express w^{-5} in the form $r(\cos\theta+\mathrm{i}\sin\theta)$, where r>0 and $0\leqslant\theta<2\pi$.

The following symbols may be useful: cos(), i, pi, sin()

Adapted with permission from UCLES, A Level, June 2006, Paper 4727, Question 2.

<u>Gameboard</u>

Maths

Complex Numbers: Polar Form 1i

Complex Numbers: Polar Form 1i

Part A $z^6=1$

Solve the equation $z^6=1$, giving your answers in the form $r\mathrm{e}^{\mathrm{i}\theta}$ where $0 \leq \theta < 2\pi$ and 0 < r.

Write your answer in terms of k where k=0,1,2,3,4,5.

The following symbols may be useful: e, i, k, pi

Part B Argand diagram

Sketch an Argand diagram showing the solutions to $z^6=1$.

When you have made your sketch, answer this question to see an example sketch: Which of the four sketches in **Figure 1** is most accurate?

Figure 1: Four Argand diagram sketches.

Sketch A
Sketch B
Sketch C

Home (

<u>Gameboard</u>

Maths

Complex Numbers: De Moivre 3ii

Complex Numbers: De Moivre 3ii

Part A $\cos 5\theta$

Use de Moivre's theorem to show that $\cos 5\theta \equiv f(\cos \theta)$.

What is $f(\cos \theta)$?

The following symbols may be useful: cos(), theta

Part B Quartic roots

Hence find the roots of $16x^4-20x^2+5=0$ in the form $\cos\alpha$ where $0\leqslant\alpha\leqslant\pi$.

Give the solutions x_i in order of increasing value of α .

State x_1 .

The following symbols may be useful: cos(), pi

State x_2 .

The following symbols may be useful: cos(), pi

State x_3 .

The following symbols may be useful: cos(), pi

State x_4 .

The following symbols may be useful: cos(), pi

Part C $\cos \frac{1}{10}\pi$

Hence find the exact value of $\cos \frac{1}{10}\pi$.

Home Gameboard

Maths

Complex Numbers: De Moivre 1i

Complex Numbers: De Moivre 1i

The series C and S are defined for $0<\theta<\pi$ by

$$C = 1 + \cos \theta + \cos 2\theta + \cos 3\theta + \cos 4\theta + \cos 5\theta,$$
 $S = \sin \theta + \sin 2\theta + \sin 3\theta + \sin 4\theta + \sin 5\theta.$

Part A $C + \mathrm{i} S$

Write $C + \mathrm{i} S$ in terms of exponentials.

The following symbols may be useful: e, i, theta

Part B Expression for C

Deduce that C can be written as a product of trigonometric functions of the form $\sin a\theta \cos b\theta \csc c\theta$ where a, b and c are rational numbers. Write down that expression for C.

The following symbols may be useful: cos(), cosec(), sin(), theta

${\bf Part \ C} \qquad {\bf Expression \ for \ } S$

Write down a corresponding expression for ${\cal S}$ as a product of trigonometric functions.

The following symbols may be useful: cosec(), sin(), theta

Solving ${\cal C}={\cal S}$ Part D Hence find the values of θ , in the range $0 < \theta < \pi$, for which C = S. Write your answers, θ_i , in increasing order. What is θ_1 ? The following symbols may be useful: pi What is θ_2 ? The following symbols may be useful: pi What is θ_3 ? The following symbols may be useful: pi What is θ_4 ? The following symbols may be useful: pi What is θ_5 ? The following symbols may be useful: pi

Adapted with permission from UCLES, A Level, June 2006, Paper 4727, Question 7.

Gameboard:

STEM SMART Double Maths 32 - Complex Exponentials & Hyperbolic Functions

<u>Home</u> <u>Ga</u>

<u>Gameboard</u>

Maths

Complex Numbers: De Moivre 5i

Complex Numbers: De Moivre 5i

Part A $\sin^6 \theta$

By expressing $\sin\theta$ in terms of $e^{i\theta}$ and $e^{-i\theta}$, show that

$$\sin^6 \theta \equiv f(\cos 6\theta, \cos 4\theta, \cos 2\theta).$$

What is $f(\cos 6\theta, \cos 4\theta, \cos 2\theta)$?

The following symbols may be useful: cos(), theta

Part B $\cos^6 heta$

Replace heta by $\left(\frac{1}{2}\pi- heta
ight)$ in the identity in part A to obtain a similar identity for $\cos^6 heta$ of the form

$$\cos^6 \theta = g(\cos 6\theta, \cos 4\theta, \cos 2\theta).$$

What is $g(\cos 6\theta, \cos 4\theta, \cos 2\theta)$?

The following symbols may be useful: cos(), theta

Part C Value of an integral

Hence find the exact value of

$$\int_0^{rac{1}{4}\pi} \left(\sin^6 heta - \cos^6 heta
ight) \; \mathrm{d} heta.$$

Adapted with permission from UCLES, A Level, January 2009, Paper 4727, Question 8.

Gameboard:

STEM SMART Double Maths 32 - Complex Exponentials & Hyperbolic Functions

<u>Gameboard</u>

Maths

Hyperbolic Functions: Manipulations 1ii

Hyperbolic Functions: Manipulations 1ii

Part A $\cosh x \cosh y - \sinh x \sinh y$

Using the definitions of hyperbolic functions in terms of exponentials, prove that

$$\cosh x \cosh y - \sinh x \sinh y = \cosh(f(x, y)).$$

What is f(x, y)?

The following symbols may be useful: x, y

Part B Solving for y

Given that $\cosh x \cosh y = 9$ and $\sinh x \sinh y = 8$, write an expression for y in terms of x.

The following symbols may be useful: x, y

Part C Possible values of x and y

What are the values of x? Write your answer using the \pm symbol.

The following symbols may be useful: ln(), log()

What are the values of y? Write your answer using the \pm symbol.

The following symbols may be useful: ln(), log()

Adapted with permission from UCLES, A Level, June 2007, Paper 4726, Question 7.

Gameboard:

STEM SMART Double Maths 32 - Complex Exponentials & Hyperbolic Functions

<u>Home</u> <u>Ga</u>

<u>Gameboard</u>

Maths

Hyperbolic Functions: Manipulations 3i

Hyperbolic Functions: Manipulations 3i

Part A Defining tanh y	Part A	Defining	$t \tanh u$
------------------------	--------	----------	-------------

Write an expression for $\tanh y$ in terms of e^y and e^{-y} .

The following symbols may be useful: e, y

Part B Log form of $\operatorname{artanh}\,x$

Given that $y = \operatorname{artanh} x$, where -1 < x < 1, write an expression for y as a logarithm in terms of x.

The following symbols may be useful: ln(), log(), x

Part C Solve $3 \cosh x = 4 \sinh x$

Find the exact solution of the equation $3\cosh x = 4\sinh x$, giving the answer in terms of a logarithm.

The following symbols may be useful: ln(), log()

Part D Solve $\operatorname{artanh} x + \ln(1-x) = \ln\left(\frac{4}{5}\right)$

Solve the equation

$$\operatorname{artanh} x + \ln(1-x) = \ln\left(\frac{4}{5}\right).$$

You may wish to use the \pm symbol.

Adapted with permission from UCLES, A Level, January 2007, Paper 4726, Question 8.

Gameboard:

<u>STEM SMART Double Maths 32 - Complex Exponentials & Hyperbolic Functions</u>

<u>Gameboard</u>

Maths

Hyperbolic Functions: Differentiation 2ii

Hyperbolic Functions: Differentiation 2ii

The equation of a curve is $y = \cosh x - 2 \sinh 2x$.

Part A
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$

Find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of hyperbolic functions.

The following symbols may be useful: cosech(), cosh(), coth(), sech(), sinh(), tanh()

Part B Turning points

Hence, explain why the curve has no turning points.

Drag six of the items to the right-hand column, and order them correctly to make an example proof.

Available items

The discriminant is > 0, therefore the equation has no real roots.

For the function in this question, the equation for the x coordinate of a turning point is: $\sinh x + 4\cosh 2x = 0$

 $rac{\mathrm{d}y}{\mathrm{d}x}=0$ for all x, so we have no turning points. QED

This is a quadratic equation in $\cosh x$.

This is a quadratic equation in $\sinh x$.

The discriminant is < 0, therefore the equation has no real roots.

This equation rearranges to $8 \sinh^2 x - \sinh x + 4 = 0$.

We begin by stating that at a turning point, $\frac{\mathrm{d}y}{\mathrm{d}x}>0$.

For the function in this question, the equation for the x coordinate of a turning point is: $\sinh x - 4\cosh 2x = 0$.

 $rac{\mathrm{d}y}{\mathrm{d}x}
eq 0$ for all x, so we have no turning points. QED

This equation rearranges to $8 \sinh^2 x - \sinh x - 4 = 0$.

We begin by stating that at a turning point, $\frac{\mathrm{d}y}{\mathrm{d}x}=0$.

Adapted with permission from UCLES, A Level, June 2018, Paper 4726, Question 3.

Gameboard:

<u>STEM SMART Double Maths 32 - Complex Exponentials & Hyperbolic Functions</u>

<u>Gameboard</u>

Maths

Hyperbolic Functions: Integration 1ii

Hyperbolic Functions: Integration 1ii

Part A Definition of $\cosh x$

Using the definition of $\cosh x$ in terms of e^x and e^{-x} , write $\cosh 2x$ in terms of $\cosh^2 x$.

Give your answer in the form $\cosh 2x = f(\cosh^2 x)$

The following symbols may be useful: cosech(), cosh(), coth(), sech(), sinh(), tanh(), x

Part B
$$\int_0^1 \cosh^2 3x \, dx$$

Find

$$\int_0^1 \cosh^2 3x \, \mathrm{d}x,$$

giving your answer in the form $A+B\sinh C$, where A,B and C are constants to be found.

The following symbols may be useful: cosech(), cosh(), coth(), sech(), sinh(), tanh()

Adapted with permission from UCLES, A Level, June 2018, Paper 4726, Question 2.

Gameboard:

<u>STEM SMART Double Maths 32 - Complex Exponentials & Hyperbolic Functions</u>

<u>Home</u> <u>Gameboard</u>

Maths

Hyperbolic Functions: Integration 2i

Hyperbolic Functions: Integration 2i

By first completing the square, find

$$\int_0^1 \frac{1}{\sqrt{x^2 + 4x + 8}} \, \mathrm{d}x$$

giving your answer in an exact form.

The following symbols may be useful: arccosech(), arccosh(), arccoth(), arcsech(), arcsinh(), arctanh(), ln(), log()

Adapted with permission from UCLES, A Level, January 2013, Paper 4726, Question 6.