

24AIM113 Introduction to NN, CNN and GNN 24AIM114 Analog system design

Presented By

A. Guru Jaya Surya Yadav

J. Tej Krishna Sai

P. Teja Prakash Royal

S. Ankith

CB.AI.U4AIM24101. CB.AI.U4AIM24117. CB.AI.U4AIM24136. CB.AI.U4AIM24147.

GUIDED BY: Dr.AmruthaV Dr.Snigdhatanu Acharya

INTRODUCTION

I.What is a prosthetic hand?

2.Why realtime feedback?

3.What is the role of CNN

Bringing Intelligence to Prosthetics – Al for a Better Grip!

LITERATURE REVIEW

S. No.	Title	Year	Methodology	Key Contributions
I.	Advances in Al-based prosthetics development: editorial	2023	Overview of Al in prosthetics	Discusses the evolution from basic prosthetics to advanced AI-integrated devices, highlighting the role of AI in enhancing prosthetic functionality.
2.	The Latest Research Progress on Bionic Artificial Hands	2023	Development of a 19-DOF prosthetic hand	Reviews advancements in bionic prosthetic hands, focusing on control mechanisms, sensory feedback integration, and mechanical design innovations.
3.	A lightweight prosthetic hand with 19-DOF dexterity and human-like appearance	2025	Development of semi- autonomous prosthetic hand	Introduces a lightweight, biomimetic prosthetic hand employing 19 pairs of highly integrated SMA actuators, enabling precise control and human-like appearance.

4	. Designing Prosthetic Hands With Embodied Intelligence: The KIT Prosthetic Hand	2022	Development of semi-autonomous prosthetic hand	Presents the development of prosthetic hands that provide intelligent mechatronics including adaptive actuation, multi-modal sensing, and on-board computing resources to enable autonomous and intuitive control
5	A highly integrated bionic hand with neural control and feedback for dexterous manipulation	2024	Integration of neural control and feedback	Prioritizes research on prosthetic control over the provision of sensory feedback, emphasizing the importance of control mechanisms in prosthetic development.
6	Liquid Metal Sensors and Al Could Help Prosthetic Hands to 'Feel'	2021	Development of liquid metal sensors	Introduces new technology combining liquid metal sensors and AI to improve the control of prosthetic hands and provide haptic feedback, enhancing the experience of touch for amputees.

7.	A Perspective on Prosthetic Hands Control: From the Brain to the Hand	2023	Neuroscientific review	Reviews the current state of the art in hand and grasp control from a neuroscientific perspective, focusing on brain mechanisms that underlie sensory integration for hand control and engineering implications for developing artificial hands.
8.	A multiarticulate pediatric prosthetic hand for clinical and research applications	2022	Development of pediatric prosthetic hand	Discusses and evaluates a pediatric- sized multiarticulate prosthetic hand that provides 6 degrees of actuation, designed for ease of implementation in research or clinical-research settings.
9.	Artificial Intelligence Enables Real-Time and Intuitive Control of Prostheses via Nerve Interface	2022	Al-based neural control	Demonstrates an Al agent employing a recurrent neural network to decode six degrees-of-freedom from multichannel nerve data in real-time, enabling intuitive control of a prosthetic hand.

10. **Smart Hand:Towards** Focuses on **Development** designing a **Embedded Smart 2021** of smart smart **Hands for Prosthetic** embedded embedded and Robotic system enabling system the acquisition **Applications** and real-time processing of high-resolution tactile information from a handshaped multisensor array for prosthetic and robotic applications

RESEARCH GAPS

No real-time adaptability in existing prosthetics.

Lack of datasets for training AI models.

Inefficient sensor integration.

High Cost and Energy Consumption

PROBLEM STATEMENT

- Expensive (\$10,000 \$100,000)
- V Lack of real-time feedback
- V Limited adaptive control
- V Difficult to use

HARDWARE IMPLEMENTATION

- Force Sensitive Resistors (FSR)
- Electromyography (EMG) Sensors:
- Microcontroller (ESP32)
- Rasberrypi
- Servo Motors (SG90, MG996R)
- Vibration Motors (Coin vibration motors)
- 3D Prosthetic hand.

ELECTROMYOGRAPHY (EMG) SENSOR

Reads muscle signals from the user's arm.

Converts these signals into electrical commands to control the prosthetic hand.

Force Sensors (FSR)

- Detects how much pressure the user is applying when gripping an object.
- Helps prevent too much or too little force.

Microcontroller (ESP32/ARDUINO)

- Acts as the "brain" of the prosthetic hand.
- Processes signals from sensors and tells the motors how to move.

Raspberrypi

Used for training the model

Servo Motors(SG90, MG996R)

- Small motors that control the movement of the fingers.
- They help open and close the hand smoothly.

3D-Printed Hand Frame

- A lightweight, custom-designed structure that holds all the components together.
- Made using a 3D printer to match the user's needs.

DEEP LEARNING APPROACH

HOW CNN WORKS IN THE PROSTHETIC HAND

Input: EMG signals & force sensor data

Feature Extraction: CNN detects muscle patterns

Classification: Predicts correct hand movement

Output: Adjusts grip force in real-time

OUR APPROACH OF USING CNN

WORK FLOW

Research and Conceptualization	Week I
Hardware Design and Procurement	Week 2-3
CNN model building	Week 3-6
Integration and Assembly	Week 7-8
Testing and Calibration	Week 9-10
Documentation and Presentation	Week 11-12

FUTURE SCOPE

Enhancements:

- Reinforcement Learning for self-improvement.
- Cloud integration for real-time analytics.
- Improved sensor accuracy.

REFERENCES

Advances in Al-based prosthetics development: editorial (2023)

https://pmc.ncbi.nlm.nih.gov/articles/PMC11325936/.com

• A lightweight prosthetic hand with 19-DOF dexterity and human-like appearance (2025)

https://www.nature.com/articles/s41467-025-56352-5?.com

• SmartHand:Towards Embedded Smart Hands for Prosthetic and Robotic Applications (2021)

https://arxiv.org/abs/2107.14598?.com

• The Latest Research Progress on Bionic Artificial Hands (2023)

https://www.mdpi.com/2072-666X/15/7/891?.com

