Problem 1

Consider the following rather contrived dataset:

$$\leq$$
s \geq Kim I am \leq /s \geq

$$<_S>$$
 am I Kim $$

$$<$$
s $>$ Kim I am $<$ /s $>$

$$<_{S}>I$$

The vocabulary size |V|=3. Consider the second sentence "<s> am I Kim </s>". Under model U, the probability

$$p_{u} = p(\operatorname{am} | < s >) p(\operatorname{I} | \operatorname{am}) p(\operatorname{Kim} | \operatorname{I}) p(< / s > | \operatorname{Kim})$$

$$p(\operatorname{am} | < s >) = \frac{1}{4}$$

$$p(\operatorname{I} | \operatorname{am}) = \frac{1}{3}$$

$$p(\operatorname{Kim} | \operatorname{I}) = \frac{1}{4}$$

$$p(< / s > | \operatorname{Kim}) = \frac{1}{3}$$

However, under the model S, we have

$$p(am \mid \le s \ge) = \frac{2}{7} > \frac{1}{4}$$
$$p(Kim \mid I) = \frac{2}{7} > \frac{1}{4}$$

So in this case, we have $p_s > p_u$.