Лабораторная работа №8

Выполнила: Леонтьева Анна Викторовна, студент 1 курса ИВТ, группа 1, подгруппа 2

Tema: Итерационные циклические вычислительные процессы управлением по индексу/аргументу и функции.

Цель работы: реализовать итерационные циклические вычислительный процессы с управление по индексу/аргументу и функции с помощью компилятора PascalABC.

Оборудование: ПК, PascalABC

Задание 1.1

Задача:

Дан процесс, связанный с изменением выходного напряжения Uвых на обкладках конденсатора электрической цепи, которая включает активное сопротивление R=2 Ом и конденсатор с емкостью C=0.01 Ф. Построить переходную характеристику заряда конденсатора по схеме RC цепочки с заданной точностью $\varepsilon=10-3$, Uвх = 50 В:

$$U_{\text{esix}} = U_{\text{ex}} \left(1 - e^{-\frac{t}{RC}} \right)$$

начальное значение t = 0.01, с шагом 0.01

Математическая модель (+обоснование):

$$e^{x} \approx \frac{x^{0}}{0!} + \frac{x^{1}}{1!} + \frac{x^{2}}{2!} + ... + \frac{x^{R}}{R!} \approx \sum_{k=0}^{\infty} \frac{x^{k}}{R!}$$

1 Замена $\frac{x^{R}}{R!}$ на U_{R}

Нахохдение рек- \bar{u} зависимости:

 $M = \frac{U_{R}}{U_{R-1}} \Rightarrow U_{R} = M \cdot U_{R-1}$

Найдем M ири $\underline{K!} = (R-1)! \cdot R$; $\underline{x^{R}} = \underline{x^{R-1}} \cdot \underline{x}$:

 $M = \frac{U_{R}}{U_{R-1}} = \frac{x^{R}}{X^{R-1}} = \frac{x^{R} \cdot (R-1)!}{(R-1)!} = \frac{x^{R} \cdot x \cdot (R-1)!}{(R-1)!} = \frac{x}{R!}$

Блок-схема:

Список идентификаторов:

Имя	Тип	Смысл
t	real	время
С	real	емкость конденсатора
eps	real	точность вычисления выходного напряжения
h	real	шаг
Uout	real	входное напряжение
Uent	integer	выходное напряжения
R	integer	сопротивление
f	real (function)	пользовательская функция для вычисления e^{x}
Х	real	значение степени е
eps1	real	точность вычисления e^{x}
U1	real	промежуточная переменная для вычисления
		e^x (нынешний элемент математического ряда)
U2	real	промежуточная переменная для вычисления
		e^x (следующий элемент математического ряда)
S	real	промежуточная переменная для вычисления
		e^x (сумма элементов математического ряда)
razn	real	промежуточная переменная для вычисления e^x
k	integer	промежуточная переменная для вычисления e^x

Код программы:

```
program lr81 1;
var
  t, C, eps, h, Uout: real;
  Uent, R: integer;
function f(t: real): real;
    var x, eps1, U1, U2, S, razn: real;
    k: integer;
  begin
  eps1:=0.0001;
  S := 1;
  k := 1;
  x := (-t) / (R*C);
  U1:=1;
  repeat
    U2:=U1*(x/k);
    S:=S+U2;
    razn:= abs(U2-U1);
    k := k+1;
    U1:=U2;
  until razn<eps;</pre>
    f := S;
  end;
begin
  Uent:=50;
  R := 2;
  C:=0.01;
  t:=0.01;
  eps:=0.001;
  h:=0.01;
  while abs(Uout-Uent)>eps do begin
    Uout:=Uent*(1-f(t));
    writeln('t=',t,' Uвых=', Uout:0:5);
    t:=t+h;
  end;
end.
```

Результат:

```
Окно вывода
t=0.01 Uвыx=19.67339
t=0.02 Uвых=31.60590
t=0.03 UBMX=38.84419
t=0.04 UBMX=43.23361
t=0.05 UBMX=45.89474
t=0.06 UBMX=47.51019
t=0.07 UBыx=48.49113
t=0.08 UBMX=49.08466
t=0.09 UBMX=49.44369
t=0.1 UBMX=49.66468
t=0.11 UBMX=49.79636
t=0.12 UBbx=49.87484
t=0.13 UBMX=49.92689
t=0.14 UBыx=49.95533
t=0.15 UBMX=49.97082
t=0.16 UBMX=49.98571
t=0.17 UBWX=49.99095
t=0.18 UBMX=49.99202
t=0.19 UBMX=49.99543
t=0.2 Uвыx=49.99905
```

Анализ: программа была реализована с помощью цикла while, так как реализовывался ИЦВП. Для удобства была реализована пользовательская функция для вычисления e^x (приближенное вычисление элементарных функций).

Задача 1.2

Задача: вычислить e^x с точность 10-4. Начальные условия: k = 1, U0 = 1, S0 = 1, x = 0.5

Математическая модель:

$$e^{x} \approx \frac{x^{\circ}}{0!} + \frac{x^{1}}{1!} + \frac{x^{2}}{2!} + ... + \frac{x^{\kappa}}{\kappa!} \approx \sum_{k=0}^{\infty} \frac{x^{\kappa}}{k!}$$

1 Замена $\frac{x^{\kappa}}{k!}$ на U_{κ}

Нахохдение рек- \bar{u} зависимости:

 $H = \frac{U_{\kappa}}{U_{\kappa-1}} \Rightarrow U_{\kappa} = M \cdot U_{\kappa-1}$

Найден M ири $\underline{K!} = (K-1)! \cdot K$; $\underline{x^{\kappa}} = \underline{x^{\kappa-1}} \cdot \underline{x}$:

 $M = \frac{U_{\kappa}}{U_{\kappa-1}} = \frac{x^{\kappa}}{K!} = \frac{x^{\kappa} \cdot (K-1)!}{(K-1)!} = \frac{x^{\kappa} \cdot x \cdot (\kappa-1)!}{(K-1)!} = \frac{x^{\kappa}}{K!} \cdot x \cdot K \cdot x^{\kappa-1} = \frac{x^{\kappa}}{K!}$

Блок-схема:

Список идентификаторов:

Имя	Тип	Смысл
Х	real	значение степени е
eps	real	точность
U1	real	промежуточная переменная для вычисления e^{x}
		(нынешний элемент математического ряда)
U2	real	промежуточная переменная для вычисления e^{x}
		(следующий элемент математического ряда)
S	real	Сумма элементов математического ряда
razn	real	промежуточная переменная для проверки точности
k	integer	промежуточная переменная

Код программы:

```
program 1r81 2;
var x, eps, U1, U2, S, razn: real;
k: integer;
begin
  eps:=0.0001;
  S := 1;
  k := 1;
  x := 0.5;
  U1:=1;
  repeat
    U2:=U1*(x/k);
    S:=S+U2;
    razn:= abs(U2-U1);
    k := k+1;
    U1:=U2;
  until razn<eps;</pre>
  writeln(S:0:5);
end.
```

Результат:

Окно вывода

1.64872

Анализ: программа была реализована с помощью цикла repeat until, так как реализовывался ИЦВП. Функция e^x вычислялась с точностью 10^{-4} (приближенное вычисление элементарных функций). Результат (1.64872) сходится с табличным значением (1.64872).

Задача 2.1

Задача: вычислить Sin(x) с точностью 10-4. Начальные условия: k = 1, U0 = x, S0 = x, $x = \pi/6$.

Математическая модель:

② Pagnoxenue & pag αρμικημι
$$8iN(x)$$
. Maxotgettle petr-of 3ab tu.

 $8iN(x) \approx (-1)^0 \cdot \frac{\chi^{2\cdot O+1}}{(2\cdot O+1)!} + (-1)^1 \frac{\chi^{2\cdot N+1}}{(2\cdot N+1)!} + ... + (-1)^n \frac{\chi^{2\cdot N+1}}{(2\cdot N+1)!} \approx \sum_{k=0}^{-1} (-1)^k \frac{\chi^{2\cdot N+1}}{(2\cdot N+1)!}$

| 3ahena: $(-1)^k \cdot \frac{\chi^{2\cdot N+1}}{(2\cdot N+1)!}$ Ha Ux

| Haxotgettle petr 3ab-ty:

 $M = \frac{U_{1x}}{U_{1x-1}} \Rightarrow U_{1x} \approx M \cdot U_{1x-1}$

| Haugen M upu $\frac{(2\cdot N+1)!}{(2\cdot N+1)!} = \frac{(-1)^k \cdot \chi^{2\cdot N+1}}{(2\cdot N+1)!} = \frac{(-1)^k \cdot \chi^{2\cdot$

Блок-схема:

Список идентификатора:

Имя	Тип	Смысл
Х	real	аргумент функции х
eps	real	точность
U1	real	промежуточная переменная для вычисления sin x (нынешний элемент математического ряда)
U2	real	промежуточная переменная для вычисления sin x(следующий элемент математического ряда)
S	real	Сумма элементов математического ряда
razn	real	промежуточная переменная для проверки точности
k	integer	промежуточная переменная

Код программы:

```
program 1r81 2;
var x, eps, U1, U2, S, razn: real;
k: integer;
begin
  eps:=0.0001;
  x := Pi/6;
  S:=x;
  k := 1;
  U1:=x;
  repeat
    U2:=U1*((-1)*(x*x)/(2*k*(2*k+1)));
    k := k+1;
    S:=S+U2;
    razn:= abs(U2-U1);
    U1:=U2;
  until razn<eps;</pre>
  writeln(S:0:5);
end.
```

Результат:

Окно вывода

0.50000

Анализ: программа была реализована с помощью цикла repeat until, так как реализовывался ИЦВП. Функция $\sin(x)$ вычислялась с точностью 10^{-4} (приближенное вычисление элементарных функций). Результат (0.50000) сходится с табличным значением (0.5).

Задание 2.2

Задача: вычислить Cos(x) с точностью 10-4. Начальные условия: k = 1, U0 = 1, S0 = 1, $x = \pi/6$.

Математическая модель:

3) Pagnoxerue & pag apyracyum
$$\cos(x)$$
. Haxo xgenule pen-où zab-ty $\cos(x) \approx [-1)^0 \cdot \frac{x^{2\cdot 0}}{2\cdot 0} + (-1)^1 \cdot \frac{x^{2\cdot 1}}{(2\cdot 1)!} + \dots + (-1)^K \cdot \frac{x^{2K}}{(2K)!} \approx \sum_{k=0}^{\infty} [-1)^K \cdot \frac{x^{2K}}{(2K)!}$

| Banena $\frac{1}{2}$ | $\frac{x^{2K}}{(2K)!}$ | Ha $\frac{1}{2}$ | $\frac{1}{$

Блок-схема:

Список идентификаторов:

Имя	Тип	Смысл
х	real	аргумент функции х
eps	real	точность
U1	real	промежуточная переменная для вычисления cos x
		(нынешний элемент математического ряда)
U2	real	промежуточная переменная для вычисления cos x
		(следующий элемент математического ряда)
S	real	Сумма элементов математического ряда
razn	real	промежуточная переменная для проверки точности
k	integer	промежуточная переменная

Код программы:

```
program 1r81 2;
var x, eps, U1, U2, S, razn: real;
k: integer;
begin
  eps:=0.0001;
  x := Pi/6;
  S := 1;
  k := 1;
  U1:=1;
  repeat
    U2:=U1*((-1)*(x*x)/((2*k-1)*2*k));
    k := k+1;
    S:=S+U2;
    razn:= abs(U2-U1);
    U1:=U2;
  until razn<eps;</pre>
  writeln(S:0:5);
end.
```

Результат:

Окно вывода

0.86603

Анализ: программа была реализована с помощью цикла repeat until, так как реализовывался ИЦВП. Функция $\cos(x)$ вычислялась с точностью 10^{-4} (приближенное вычисление элементарных функций). Результат (0.86603) сходится с табличным значением (0.86602).

Вывод: в ходе лабораторной работы были реализованы ИЦВП с управлением по индексу/аргументу и функции. Было реализовано построение переходной характеристики заряда конденсатора по схеме RC и вычисление функций e^x , $\sin(x)$, $\cos(x)$ с помощью приближенного вычисление элементарных функций. Результаты вычисления значений функций сошлись с табличными значениями.