

集成 7A Buck 控制器与 PD 3.1 等多快充协议的 C+C 双口 SoC

1. 概述

SW3566 是一款集成 7A Buck 控制器,支持 140W (28V@5A) 功率输出,且支持 PD3.1 等 多快充协议的 C+C 双口 SoC。SW3566 内嵌 ARM Cortex-M0 内核,集成 Type-C 接口逻辑, PD 3.1 PHY, UFCS PHY, SCP/AFC PHY, TFCP PHY 以及 QC/PE/SFCP 等快充协议检测电路,外围只需少量的器件,即可组成完整的高性能的 C+C 双口快速充电解决方案。

2. 规格

• 系统控制

- ➤ Cortex-M0 CPU, 频率最高 40MHz
- ➤ 1M/2Mbit Flash
- > 4KB SRAM
- ➤ I2C
- ➤ UART
- ▶ 支持在线升级,固件加密
- ▶ 支持多路 GPIO 和 GPADC
- > 支持低功耗

• 快充协议

- ▶ 支持 PD3.1 SPR and EPR
- ▶ 支持 UFCS
- ▶ 支持 SCP/FCP
- ➤ 支持 QC5/QC4+/QC4/QC3+/QC3.0/QC2.0
- ▶ 支持 AFC
- ➤ 支持 PE2.0/PE1.1
- > 支持 SFCP
- ▶ 支持 TFCP
- > 支持私有协议定制

• QFN-32(4mmx4mm) 封装

3. 应用领域

- 车充
- 适配器
- 插排
- 电动工具

• 电源管理

- ▶ 集成开关降压变换器
- ▶ 支持最大 7A 输出电流
- ▶ 支持 140W (28V@5A) 功率输出
- ➤ 宽输入电压范围 5~36V
- ➤ 支持 CV/CC 环路
- ➤ 集成 VBUS 和 VOUT 快速放电
- ▶ 支持线路阻抗补偿
- ▶ 支持双口通路控制

• 保护机制

- ▶ 软启动
- ▶ 输出过压/欠压保护
- ▶ 输入过压/欠压保护
- ▶ 输出过流/短路保护
- ➤ 芯片/NTC 过温保护
- ➤ DP/DM/CC1/CC2 过压保护
- ➤ DP/DM 弱短路保护
- ➤ VCONN 过流保护

• 储能设备

4. 功能框图

5. 引脚定义及功能描述

5.1. 引脚定义

5.2. 引脚描述

Pin	Name	Function Description
1	DM1	1 口 DM 信号
2	CC11	1 口 CC1 信号
3	CC21	1 口 CC2 信号
4	DP2	2 口 DP 信号
5	DM2	2 口 DM 信号
6	CC12	2 口 CC1 信号
7	CC22	2 口 CC2 信号
8	COMP	外部补偿引脚
9	GPIO0	通用 GPIO0
10	GPIO1	通用 GPIO1
11	GPIO2	通用 GPIO2
12	GPIO3	通用 GPIO3
13	GPIO6	通用 GPIO6
14	GPIO7	通用 GPIO7

集成 7A Buck 控制器与 PD3. 1 等多快充协议的 C+C 双口 SoC

1.5	VDD5V	世上 5X1 山湄	
15	VDD5V	芯片 5V 电源	
16	VD	母线电压检测	
17	VDD3V3	芯片 3.3V 电源	
18	LG	下 N 管驱动信号	
19	BST	上N管驱动 Bootstrap 引脚	
20	SW	开关节点电压检测引脚	
21	HG	上 N 管驱动信号	
22	VIN	输入电源	
23	GATE1	1口通路控制	
24	VBUS1	1口 VBUS 放电及 VBUS 检测引脚	
25	CSN1	1 口电流检测负端输入引脚	
26	CSP1	1 口电流检测正端输入引脚	
27	DSC	VOUT 放电引脚	
28	CSP2	2 口电流检测负端输入引脚	
29	CSN2	2 口电流检测正端输入引脚	
30	GATE2	2 口通路控制	
31	VBUS2	2口 VBUS 放电及 VBUS 检测引脚	
32	DP1	1 口 DP 信号	
	EPAD	接地	

6. 极限参数

Parameters	Symbol	MIN	MAX	UNIT
输入电压	VIN	-0.3	45	V
输出电压	输出电压		40	V
SW管脚电压	SW	-0.3	45	V
BST/HG 管脚电压	BST-SW/HG-SW	-0.3	6	V
通路控制电压	GATE1/GATE2	-0.3	45	V
接口通信管脚电压	DP1/DM1/CC11/CC21/ DP2/DM2/CC12/CC22	-0.3	32	V
芯片 5V 电源电压	包源电压 VDD5V		7	V
5V IO 电压	COMP/VD/LG	-0.3	7	V
芯片 3.3V 电源电压	3.3V 电源电压 VDD3V3		3.9	V
其它管脚电压	其它管脚电压 GPIO0/GPIO1/GPIO2/ GPIO3/GPIO6/GPIO7		3.9	V
结温		-40	+150	°C
存储温度		-60	+150	°C
接口通信管脚 ESD(HBM)	DP1/DM1/CC11/CC21/ DP2/DM2/CC12/CC22	-4	+4	KV

【备注】超过此范围的电压电流及温度等条件可能导致器件永久损坏。

7. 推荐参数

Parameters	Symbol	MIN	Typical	MAX	UNIT
输入电压	VIN	5		36	V

8. 电气特性

(V_{IN} = 12V, T_A = 25°C, **除特别说明**。)

Parameters	Symbol Test Conditions		MIN	TYP	MAX	UNIT
供电电源		•				
VIN 输入电源	V_{IN}		5		36	V
VDD5V 输出电压	V_{DD5V}	$V_{IN}=12V$	4.9	5	5.1	V
VDD5V 输出电流	I_{DD5V}	$V_{IN}=12V$		50		mA
VDD3V3 输出电压	V_{DD3V3}	$V_{IN}=12V$	3.2	3.3	3.4	V
VDD3V3 输出电流	I_{DD3V3}	V _{IN} =12V		25		mA
待机电流	I_Q	V _{IN} =12V, I _{OUT} =0mA	300	360	460	uA
开关降压变换器						
		F _{CHG_SET} =125KHz	110	125	140	KHz
工不限等	F _{CHG}	F _{CHG_SET} =180KHz	160	180	200	KHz
开关频率		F _{CHG_SET} =333KHz	310	333	360	KHz
		F _{CHG_SET} =500KHz	470	500	530	KHz
			3.0		32.0	V
		V _{IN} =30V,V _{OUT} =5V, I _{OUT} =0V	4.9	5.0	5.1	V
		V _{IN} =30V,V _{OUT} =9V, I _{OUT} =0V	8.9	9.0	9.1	V
输出电压	$V_{ m OUT}$	V _{IN} =30V,V _{OUT} =12V, I _{OUT} =0V	11.8	12.0	12.2	V
		V _{IN} =30V,V _{OUT} =15V, I _{OUT} =0V	14.7	15.0	15.3	V
		V _{IN} =30V,V _{OUT} =20V, I _{OUT} =0V	19.5	20.0	20.5	V
		V _{IN} =30V,V _{OUT} =28V, I _{OUT} =0V	27.5	28.0	28.5	V
最大占空比	D_{MAX}				98	%
CC 限流电流范围	I_{CC}	$R_{CS}=3m\Omega$	0.3		7.5	A
VD 74 51 VA		V _{OUT_WDC_SET} =65mV/A	40	65	75	mV/A
线损补偿	V _{OUT_WDC}	$V_{OUT_WDC_SET} = 100 \text{mV/A}$	70	100	120	mV/A

集成 7A Buck 控制器与 PD3. 1 等多快充协议的 C+C 双口 SoC

Type-C 接口 CC 管脚输出电流	I _{CC_SOURCE}	Power Level=1.5A				
CC 管脚输出电流	I _{CC_SOURCE}	Power Level=1.5A				Ų
CC 管脚输出电流	I_{CC_SOURCE}		160	180	200	uA
		Power Level=3.0A	310	330	350	uA
		Power Level=Default USB Power	70	80	90	uA
BMC 码率	$f_{BitRate}$		270	300	330	Kbps
BMC 幅度	V_{Swing}		1.050	1.125	1.200	V
TX 输出阻抗	Z_{Driver}		30	54	70	Ω
BC1.2						
Apple 2.4A mode	V_{DP}/V_{DM}	Apple 2.4A mode 电压	2.65	2.7	2.75	V
Samsung 2A mode	V_{DP}/V_{DM}	Samsung 2A mode 电压	1.15	1.2	1.25	V
Samsung 2A mode	R_{DP}/R_{DM}	Samsung 2A mode 阻抗	90	100	110	ΚΩ
芯片保护						
	V _{IN_UVLO}	V _{IN_UVLO_SET} =26V	25.2		26.8	V
		V _{IN_UVLO_SET} =19V	18.2		19.8	V
		V _{IN_UVLO_SET} =18V	17.2		18.8	V
VIN 输入欠压门限		V _{IN_UVLO_SET} =14V	13.2		14.8	V
VIIV和八人压门限		V _{IN_UVLO_SET} =13V	12.2		13.8	V
		$V_{IN_UVLO_SET} = 10V$	9.2		10.8	V
		V _{IN_UVLO_SET} =7V	6.2		7.8	V
		V _{IN_UVLO_SET} =5V	4.2		5.8	V
VIN 输入欠压门限迟滞	V _{IN_UVLO_HYS}	VIN 输入电压上升	0.5	1	1.5	V
		V _{IN_OVP_SET} =42V	41.2		42.8	V
VIN 输入过压门限		V _{IN_OVP_SET} =40V	39.2		40.8	V
		V _{IN_OVP_SET} =38V	37.2		38.8	V
	3.7	V _{IN_OVP_SET} =36V	35.2		36.8	V
	$ m V_{IN_OVP}$	V _{IN_OVP_SET} =34V	33.2		34.8	V
		V _{IN_OVP_SET} =32V	31.2		32.8	V
		V _{IN_OVP_SET} =26V	25.2		26.8	V
		V _{IN_OVP_SET} =24V	23.2		24.8	V

集成 7A Buck 控制器与 PD3. 1 等多快充协议的 C+C 双口 SoC

VIN 输入过压门限迟滞	$V_{\text{IN_OVP_HYS}}$	VIN 输入电压下降	¥	1.5	2	2.5	V
VOUT 输出过压		V.	V _{OUT} ≤10V	28	31	34	%
快速保护门限	$ m V_{OUT_FOVP}$	V _{OUT_FOVP_SET}	$V_{OUT}>10V$	18.5	21.5	24.5	%
VOUT 输出过压	N	1 7	V _{OUT} ≤10V	23.6	25.6	28.6	%
慢速保护门限	$ m V_{OUT_SOVP}$	V _{OUT_SOVP_SET}	$V_{OUT}>10V$	13.1	16.1	19.1	%
VOUT 输出欠压门限	V	V _{OUT_UVP_SET} =V _{OUT}	_SET*70%	60		80	%
VOOT 棚山入压门院	$ m V_{OUT_UVP}$	V _{OUT_UVP_SET} =3.1V		2.9		3.3	V
VOUT 短接保护门限	$ m V_{OUT_SCP}$	V _{OUT_SCP_SET} =2.7V		2.5		2.9	V
VOOT 应按队11版	V OUT_SCP	V _{OUT_SCP_SET} =3.0V		2.8		3.2	V
		Totp_warn_set=110	°C		110		°C
 芯片过温报警门限	T _{otp_warn}	Totp_warn_set=120	°C		120		°C
	TOTP_WARN	T _{OTP_WARN_SET} =130°C			130		°C
		T _{OTP_WARN_SET} =140°C			140		°C
芯片过温报警迟滞	Totp_warn_hys	温度下降			20		°C
	T _{otp_shdt}	$T_{\text{OTP_SHDT_SET}} = 130^{\circ}$	C		130		°C
芯片过温关机门限		Totp_shdt_set=140°C			140		°C
	TOTP_SHDT	T _{OTP_SHDT_SET} =150°	C		150		°C
		T _{OTP_SHDT_SET} =160°	C		160		°C
芯片过温关机迟滞	Totp_shdt_hys	温度下降			40		°C
GPIO							
输入高电平	$ m V_{IH}$			1.3			V
输入低电平	V_{IL}					0.5	V
输出高电平	V _{OH}			3.0			V
输出低电平	V _{OL}					0.3	V
上拉电阻	$ m R_{PU}$	$R_{PU_SET}=10K \Omega$			10		ΚΩ
工.1年 巴阻	Кр	$R_{PU_SET}=4K \Omega$			4		ΚΩ
下拉电阻	R_{PD}				10		ΚΩ
I2C Slave							
时钟频率	F _{I2C_SLAVE}	F _{CPU} =25MHz			100	130	KHz

9. 功能描述

9.1. 开关降压变换器

SW3566 集成了高效率的开关降压变换器。采用外置双 N 功率管,负载能力可达 7A,效率>95%(V_{IN}=12V,V_{OUT}=5V,I_{OUT}=5A)。

降压变换器开关频率默认使用 180KHz。采用 PFM/PWM 自动切换模式,轻载时工作在 PFM 模式,中载及重载时工作在 PWM 模式。

降压变换器支持 CC/CV 模式。输出电压支持 3.0~32V,限流范围支持 0.3~7.5A, 当负载电流小于 CC 限流时,降压电路输出设定电压。当负载达到 CC 限流值时,将限定输出电流在 CC 限流值,输出电压将下降。

降压变换器支持线损补偿。输出补偿电压根据负载电流线性增加,增加电压默认为65mV/A。

降压变换器支持温度控制,当芯片温度超过 120℃时,输出电压开始下降;如果继续过温超过 150℃,则芯片进入过温关机模式。进入过温关机模式后,温度降低到过温门限迟滞以下,芯片自动开机,降压变换器启动回到默认状态。

降压变换器包含了输入过压/输入欠压/输出过压/输出欠压/输出过流/输出短路等保护。

9.2. 通路控制

SW3566 支持双 Type-C 口输出,任意口支持快充输出。每个 Type-C 口均支持 PD3.1 /PPS/QC5/QC4/QC3+/QC3.0/QC2.0/AFC/SCP/UFCS 等快充协议。

默认状态下,双 Type-C 口无输出。单口输出时,支持快充输出。双口输出时,支持 5V 输出,同时各口单独限流。

UFP 设备接入打开 Type-C 口对外放电,UFP 设备移出关闭 Type-C 口,同时 Type-C 口空载时也会关闭 Type-C 口通路。

9.3. Type-C 接口

SW3566 集成了 Type-C 接口控制器,支持 DFP/Source 角色,支持在 CC 引脚上广播 3A/1.5A/Default USB Power 电流能力。当 UFP 设备接入时自动对其放电,UFP 设备移出时自动关闭通路。

9.4. PD 快充

SW3566 集成了 PD3.1 PHY,可以支持 SPR/EPR/PPS 等类型的 PDO,最大支持 140W 输出功率(28V@5A)。

9.5. UFCS 快充

SW3566 集成了 UFCS 快充协议,输出支持 3.4~21V@5A。

9.6. QC 快充

SW3566 集成了 QC 快充协议,支持 QC5/QC4+/QC4/QC3+/QC3.0/QC2.0,支持 ClassA/ClassB。 QC2.0 支持 5V/9V/12V/20V。QC3.0 支持 3.6V~20V,200mV/Step。QC3+支持 3.6V~20V,20mV/Step。

QC2.0/QC3.0 根据 DP/DM 电压请求相应的输出电压,如下表:

接入设备		SW	3566
DP	DM	VOUT	Note
3.3V	3.3V	20V	
0.6V	0.6V	12V	
3.3V	0.6V	9V	
0.6V	3.3V	连续模式	200mV/Step

9.7. AFC 快充

SW3566 集成了 AFC 快充协议,输出支持 5V/9V/12V。

9.8. FCP 快充

SW3566 集成了 FCP 快充协议,输出支持 5V/9V/12V。

9.9. SCP 快充

SW3566 集成了 SCP 快充协议,输出支持 3.3V~12V。

9.10. TFCP 快充

SW3566 集成了 TFCP 快充协议,输出支持 ClassA(4V~12V)、ClassB(4V~20V)。支持 25/33/45/68/80/120W 功率曲线。

9.11. SFCP 快充

SW3566 集成了 SFCP 快充协议,输出支持 5V/9V/12V。

9.12. BC1.2

SW3566 包含了 USB 智能自适应功能模块,其不仅支持 BC1.2 功能,以及中国手机充电器标准,还能很好的兼容苹果和三星的大电流输出识别:

Apple 2.4A mode: DP=2.7V, DM=2.7V;

Samsung 2A mode: DP=1.2V, DM=1.2V;

9.13. ADC

SW3566 内部集成了 12 bit ADC, 内部支持 VIN 电压、VOUT 电压、1 口输出电流 IOUT1、2 口输出电流 IOUT2、芯片温度 T_{die} 以及 GPADC0~ GPADC3 共 9 个通道的数据采样, 其中 GPADC0~GPADC3 支持可配置的输出电流源, 输出电流可以各自独立配置成 0、5uA、10uA、20uA、40uA、60uA、80uA 和 100uA。

9.14. GPIO

SW3566 最多支持 15 个 GPIO, Pin 对应关系如下表所示:

Pin Name	GPIOx
DM1	GPIO9
CC11	GPIO4
CC21	GPIO5
DP2	GPIO12
DM2	GPIO13
CC12	GPIO10
CC22	GPIO11
GPIO0	GPIO0
GPIO1	GPIO1
GPIO2	GPIO2
GPIO3	GPIO3
GPIO6	GPIO6
GPIO7	GPIO7
VD	GPIO14
DP1	GPIO8

10. 应用参考

11. 封装信息

11.1. 封装图

11.2. 封装尺寸

C	D	imension in Millimete	ers			
Symbol	MIN	NOM	MAX			
Α	0.70	0.75	0.80			
A1	0	0.02	0.05			
b	0.15	0.20	0.25			
b1		0.14REF				
c	0.18	0.20	0.25			
D	3.90	4.00	4.10			
D2	2.70	2.80	2.90			
e		0.40BSC				
Ne		2.80BSC				
Nd		2.80BSC				
Е	3.90	4.00	4.10			
E2	2.70	2.80	2.90			
L	0.20	0.30	0.40			
h	0.30	0.35	0.40			

12. 订货信息

型号	Flash 容量	Flash 性能
SW3566H	1Mbit	☆☆☆
SW3566Q	1Mbit	☆☆☆☆
SW3566K	2Mbit	☆☆☆

13. 版本历史

版本	日期	详细说明	
V1.0.0	2023.4.25	初始版本	
V1.0.1	2023.10.18	更新 ESD 极限参数	

免责声明

珠海智融科技股份有限公司(以下简称"本公司")将按需对本文件内容作相应修改,且不 另行通知。请客户自行在本公司官网下载最新文本。

本文件仅供客户参考,本公司不对客户产品的设计、应用承担任何责任。客户应保证在将本公司产品集成到任何产品中,不会侵犯第三方知识产权,如客户产品发生侵权行为,本公司将不承担任何责任。

客户转售本公司产品所做的任何虚假宣传,本公司将对此不承担任何责任;如本文件被第三方篡改,篡改后的文本对本公司不产生任何约束力。