Book 3 Proposition 8

If some point is taken outside a circle, and some straight-lines are drawn from the point to the (circumference of the) circle, one of which (passes) through the center, the remainder (being) random, then for the straight-lines radiating towards the concave (part of the) circumference, the greatest is that (passing) through the center. For the others, a (straight-line) nearer† to the (straight-line) through the center is always greater than one further away. For the straight-lines radiating towards the convex (part of the) circumference, the least is that between the point and the diameter. For the others, a (straight-line) nearer to the least (straight-line) is always less than one further away. And only two equal (straight-lines) will radiate from the point towards the (circumference of the) circle, (one) on each (side) of the least (straight-line).

Let ABC be a circle, and let some point D have been taken outside ABC, and from it let some straight-lines, DA, DE, DF, and DC, have been drawn through (the circle), and let DA be through the center. I say that for the straight-lines radiating towards the concave (part of the) circumference, AEFC, the greatest is the one (passing) through the center, (namely) AD, and (that) DE (is) greater than DF, and DF than DC. For the straight-lines radiating towards the convex (part of the) circumference, HLKG, the least is the one between the point and the diameter AG, (namely) DG, and a (straight-line) nearer to the least (straight-line) DG is always less than one farther away, (so that) DK (is less) than DL,

and DL than than DH.

For let the center of the circle have been found [Prop. 3.1], and let it be (at point) M [Prop. 3.1]. And let ME, MF, MC, MK, ML, and MH have been joined.

And since AM is equal to EM, let MD have been added to both. Thus, AD is equal to EM and MD. But, EM and MD is greater than ED [Prop. 1.20]. Thus, AD is also greater than ED. Again, since ME is equal to MF, and MD (is) common, the (straight-lines) EM, MD are thus equal to FM, MD. And angle EMD is greater than angle FMD. Thus, the base ED is greater than the base FD [Prop. 1.24]. So, similarly, we can show that FD is also greater than CD. Thus, AD (is) the greatest (straight-line), and DE (is) greater than DF, and DF than DC.

And since MK and KD is greater than MD [Prop. 1.20], and MG (is) equal to MK, the remainder KD is thus greater than the remainder GD. So GD is less than KD. And since in triangle MLD, the two internal straightlines MK and KD were constructed on one of the sides,

MD, then MK and KD are thus less than ML and LD [Prop. 1.21]. And MK (is) equal to ML. Thus, the remainder DK is less than the remainder DL. So, similarly, we can show that DL is also less than DH. Thus, DG (is) the least (straight-line), and DK (is) less than DL, and DL than DH.

I also say that only two equal (straight-lines) will radiate from point D towards (the circumference of) the circle, (one) on each (side) on the least (straight-line), DG. Let the angle DMB, equal to angle KMD, have been constructed on the straight-line MD, at the point M on it [Prop. 1.23], and let DB have been joined. And since MK is equal to MB, and MD (is) common, the two (straight-lines) KM, MD are equal to the two (straightlines) BM, MD, respectively. And angle KMD (is) equal to angle BMD. Thus, the base DK is equal to the base DB [Prop. 1.4]. [So] I say that another (straightline) equal to DK will not radiate towards the (circumference of the) circle from point D. For, if possible, let (such a straight-line) radiate, and let it be DN. Therefore, since DK is equal to DN, but DK is equal to DB, then DB is thus also equal to DN, (so that) a (straightline) nearer to the least (straight-line) DG [is] equal to one further away. The very thing was shown (to be) impossible. Thus, not more than two equal (straight-lines) will radiate towards (the circumference of) circle ABCfrom point D, (one) on each side of the least (straightline) DG.

Thus, if some point is taken outside a circle, and some straight-lines are drawn from the point to the (circumference of the) circle, one of which (passes) through the center, the remainder (being) random, then for the straight-lines radiating towards the concave (part of the) circumference, the greatest is that (passing) through the center. For the others, a (straight-line) nearer to the (straight-line) through the center is always greater than one further away. For the straight-lines radiating towards the convex (part of the) circumference, the least is that between the point and the diameter. For the others, a (straight-line) nearer to the least (straight-line) is always less than one further away. And only two equal (straight-lines) will radiate from the point towards the (circumference of the) circle, (one) on each (side) of the least (straight-line). (Which is) the very thing it was required to show.