Package 'molaR'

April 7, 2016

2 bgplot3d_XQuartz

	ex_tooth1	7
	ex_tooth2	8
	face_areas	9
	Face_Normals	9
	index_paired_directed_faces	9
	molaR_Batch	10
	molaR_Clean	11
	OPC	11
	OPC3d	12
	OPCr	13
	OPC_Legend	14
	patches_for_each_direction	14
	patches_per	15
	patch_details	15
	read.AVIZO.ply	16
	remove_boundary_faces	16
	remove_outliers	17
	RFI	17
	RFI3d	18
	RFI_Legend	19
	tr	19
	vertex_to_face_list	19
Index		20

bgplot3d_XQuartz

function for correcting new XQuartz issues

Description

crucial for plotting in Mac OS Yosemite and El Capitan

Usage

bgplot3d_XQuartz(expression)

Arguments

expression

expression calls from DNE3d RFI3d and OPC3d bgplot3d_XQuartz()

clustered_patches 3

clustered_patches

A clustering function

Description

This function gathers linked faces into patches

Usage

```
clustered_patches(Directional_Bin_Face_Pairs)
```

Arguments

```
compute_energy_per_face
```

Function will compute the DNE per face.

Description

This will generate each Dirichlet's normal energy for each triangular face on the surface.

Usage

```
compute_energy_per_face(plyFile)
```

Arguments

plyFile

a stanford PLY file compute_energy_per_face()

cSize

Centroid Size Function

Description

Get the centroid size

Usage

cSize(x)

Arguments

Х

point cloud cSize

4 DNE

Directional_Bins	This bins the faces into directional categories

Description

bins into 8 directional categories on the basis of their orientations

Usage

```
Directional_Bins(plyFile, rotation = 0)
```

Arguments

plyFile a stanford PLY file

rotation the amount to rotate the specimen by Directional_Bins()

DNE Calculate Dirichlet normal energy of a surface

Description

A function that calculates Dirichlet normal energy following the method of Bunn et al. (2011) Comparing Dirichlet normal surface energy of tooth crowns, a new technique of molar shape quantification for dietary inference, with previous methods in isolation and in combination. Am J Phys Anthropol 145:247-261 doi: 10.1002 ajpa.21489

Usage

```
DNE(plyFile, outliers = 0.1)
```

Arguments

plyFile An object of class 'mesh3d' and 'shape3d' with calculated normals

outliers The percentile of Dirichlet energy density values to be excluded defaults to top

0.1 percent

Details

The function requires an object created by reading in a ply file utilizing either the read.ply or the read.AVIZO.ply function, with calculated normals.

Dirichlet normal energy is calculated on meshes that represent specimen surfaces and have already been simplified to 10,000 faces and pre-smoothed in a 3D data editing program.

The function does not include boundary vertices in the calculation, and therefore the analyzed surface cannot be closed (i.e., it must contain a hole). The function defaults to remove the top 0.1 percent of calculated energy densities as outliers. Mesh orientation does not affect for this calculation.

DNE3d 5

D	NE3d	Plot results of a DNE analysis of a surface

Description

plotting function

Usage

```
DNE3d(DNE_File, setRange = c(0, 0), logColors = TRUE, edgeMask = TRUE,
  outlierMask = TRUE, showEdgePts = FALSE, legend = TRUE,
  legendScale = 1, leftOffset = 0.75, fieldofview = 0)
```

Arguments

DNE_File	An object that stores the output of the DNE function
setRange	User-defined range for plotting color scheme, see Details
logColors	Logical that log transforms the color scheme
edgeMask	Logical that colors edge faces black to indicate their lack of contribution to the total Dirichlet normal energy
outlierMask	Logical that colors outlier faces dark gray to indicate their lack of contribution to the Dirichlet normal energy
showEdgePts	Logical that highlights the edge vertices in red to indicate their lack of contribution ot the total Dirichlet normal energy
legend	Logical indicating whether or not a legend shold be displayed
legendScale	numeric value setting the relative size of the legend similar in function to cex
leftOffset	numeric value between -1 and 1 setting the degree of offset for the plotted surface to the left. Larger values set further to right.
fieldofview	Passes an argument to par3d changing the field of view in degrees of the resulting rgl

Details

This function creates a heat map on the mesh surface corresponding to the Dirichlet normal energy of each face calculated by the DNE function. Hottest colors represent highest normal energy values

Dirichlet normal energies for the faces of a mesh surface tend to be positively skewed, with a small proportion of the faces contributing much of the total energy for the surface. When logColors is enabled the function colorizes based on the log transformed Dirichlet normal energies, allowing for finer resolution between faces near the mode of the energy per face distribution. Disabling logColors will display the untransformed Dirichlet normal energies.

The legend will update to reflect the other arguments chosen by the user. Colors currently display in the legend in bins, however the colors used in the displayed mesh surface are on a continuum. Ideally, the legend should reflect a continuous stretch of color from the lowest calculated Dirichlet normal energy to the highest. Future versions will adjust the legend to this more intuitive display.

By default, the function sets the lowest Dirichlet normal energy calculated among all faces to a cool color and the highest normal energy calculated among all faces to red, and then colors the remaining faces on a continuous color spectrum between these two end points using either absolute

6 DNE_Legend

or log transformed Dirichlet normal energy values (depending on the status of logColors). Since the scale is relative to the energies of the input surface, visual comparisons cannot directly be made between multiple plots of different surfaces. The setRange argument allows users to define the minimum and maximum of the plotting color scheme and use it in multiple plots. This enables the direct comparison of different surfaces to one another with red equal to the user-defined maximum and a cool color equal to the user-defined minimum. The user should choose reasonable bounds for the maximum and minimum that are near the maximum and minimum Dirichlet normal energies calculated for their surfaces. setRange will not accept negative values.

The leftOffset value sets how far to the left the surface will appear, intended to help avoid overlap with the legend. Defaults to 0.75.

legendScale sets the relative size of the scale in the same way cex works

fieldofview is set to a default of 0, which is an isometric projection. Increasing it alters the degree of parallax in the perspective view, up to a maximum of 179 degrees.

DNE_Legend

Make legend for DNE3d plot

Description

plotting subfunction

Usage

```
DNE_Legend(start, end, colors, DNELabels, scaled = F, edgeMask = F,
  outlierMask = F, logColors = F, lineSize = 2, textSize = 1.75,
  rectSize = 1)
```

Arguments

start	tart value for the legend to start with, i.e. bottome value	
end	value for the legend to end with, i.e. top value	
colors	range of values, defaulting to heat colors	
DNELabels	values for the labels	
scaled	logical indicating whether the values are scaled	
edgeMask	logical indicating whether of not edges are being masked and that information to be included in the legend	
outlierMask	logical indicating whether outliers are masked	
logColors	logical indicating colors are on log scale	
lineSize	numerical value to determine line thickness in the legend	
textSize	numerical value determining the size of the text	

Details

rectSize

This is an internal function which builds a better DNE plot legend

The legend will reflect the elements used in the plot. This is an internal function. Users will have little need or call to interact with it. DNE_Legend()

numerical value setting size of the legend box

edge_vertices 7

adaa	vertices
eage	vertices

Function for finding the edge vertices

Description

Function will sort through all the vertices of the surface and find the ones which are on the edge. This will be needed for identifying which should be masked and not included in the calculation of the final DNE value.

Usage

```
edge_vertices(plyFile)
```

Arguments

plyFile

a stanford PLY file edge_vertices()

Equal_Vertex_Normals

Important function for re-doing the vertex normals for the DNE calculation.

Description

The geomorph import function does not generate the correct vertex normals.

Usage

```
Equal_Vertex_Normals(plyFile)
```

Arguments

plyFile

a stanford PLY file Equal_Vertex_Normals()

ex_tooth1

4149_DU-LP-09_LM1

Description

Lower M1 of a male mantled howler monkey, Aloutta palliata. Catalogue Number DU-LP 09

Usage

ex_tooth1

8 ex_tooth2

Format

A list of five objects, as follows: vb, a 4 x 5118 dataframe. it, a 3 x 10000 dataframe. primitivetype, a character string material, a NULL field normals, a 4 x 5118 dataframe

Source

MorphoSource

References

http://www.morphosource.com/index.php/Detail/SpecimenDetail/Show/specimen_id/22

ex_tooth2

4147_DU-LP-07_LM1

Description

Lower M1 of a female manteled howler monkey, Aloutta palliata. Catalogue Number DU-LP 07

Usage

ex_tooth1

Format

A list of five objects, as follows: vb, a 4 x 5135 dataframe. it, a 3 x 9997 dataframe. primitivetype, a character string material, a NULL field normals, a 4 x 5135 dataframe

Source

MorphoSource

References

http://www.morphosource.com/index.php/Detail/SpecimenDetail/Show/specimen_id/29

face_areas 9

face_areas

Function to calculate face areas.

Description

This function calculates the area of each face on a ply file

Usage

```
face_areas(plyFile)
```

Arguments

plyFile

a stanford PLY file face_areas()

Face_Normals

Function to find Face Normals

Description

This function re-computes the face normals in a way consistent with MorphoTester.

Usage

```
Face_Normals(plyFile)
```

Arguments

plyFile

a stanford PLY file Face_Normals()

 ${\tt index_paired_directed_faces}$

Index of paired faces with directions

Description

This does some heavy lifting to pull together faces which are paired together. This is needed for many later functions for compiling OPC

Usage

```
index_paired_directed_faces(plyFile)
```

Arguments

plyFile a stanford PLY file

index_paired_directed_faces()

10 molaR_Batch

Description

A function which automats molaR analyses. User simply sets up the functions they want run and can leave the computer to do the rest.

Usage

```
molaR_Batch(pathname = getwd(), DNE = TRUE, RFI = TRUE, OPCr = TRUE,
   OPC = FALSE, Details = FALSE, DNE_outliers = 0.1, RFI_alpha = 0.01,
   OPCr_steps = 8, OPCr_stepSize = 5.626, OPCr_minimum_faces = 3,
   OPCr_minimum_area = 0, OPC_rotation = 0, OPC_minimum_faces = 3,
   OPC_minimum_area = 0)
```

Arguments

pathname	The path to the file containing all the PLY surfaces to be analyzed. Defaults to the working directory		
DNE	logical indicating whether or not to perform DNE calculation Defaults to true		
RFI	logical indicating whether or not to perform RFI calculation Defaults to true		
OPCr	logical indicating whether or not to perform OPCr calculation Defaults to true		
OPC	logical indicating whether or not to perform OPC calculation Defaults to false		
Details	logical indicating whether or not to save the details of the RFI and OPCr calculations		
DNE_outliers	the percentile at which outliers will be excluded is passed to the DNE function, defaults to 0.1		
RFI_alpha	the size of the alpha passed to RFI function, defaults to 0.01		
OPCr_steps	the number of steps the OPCr function should take, is passed to the OPCr function. Defaults to $\$$		
OPCr_stepSize	the size of each rotation. Passed to the OPCr function. Defaults to 5.626 degrees		
OPCr_minimum_faces			
	sets the lower boundary for number of faces a patch must have for inclusion in total count. Defaults to 3 or more.		
OPCr_minimum_area			
	sets the lower boundary for percentage of the surface area a patch must make up for inclusion in the total patch count. Cannot be used with minimum_faces on. Defaults to zero		

OPC_rotation amount of rotation to apply during OPC calculation. Defaults to zero

OPC_minimum_faces

minimum number of faces a patch must contain to be counted in the OPC function. Defaults to 3.

OPC_minimum_area

minimum percentage of the surface area a patch must make up to be counted in the OPC function. Defaults to off

molaR_Clean 11

Details

This function allows a user to set the analyses from molaR they want to run, along with the specific parameters for each function and have a whole batch of PLY files analyzed and saved to a csv file. Function will perform analyses on all PLY files in the working directory or user can specify a file path.

molaR_Clean

Clean up problem ply files

Description

Function will remove floating verticies, and faces with zero area. These can cause issues when using molaR's primary functions of DNE, RFI, and OPC

Usage

```
molaR_Clean(plyFile, cleanType = "Both")
```

Arguments

plyFile An object of classes 'mesh3d' and 'shape3d'

cleanType logical asking what to clean, Verticies, Faces or Both. Defaults to Both.

Details

This function cleans up problematic ply files. Some smoothed files will have faces of zero area, or floating verticies. DNE and OPC cannot be calculated on these files. Running the plys through this function will allow those calculations to be made.

OPC

Calculate orientation patch count of a surface

Description

A function that bins patches of a mesh surface that share general orientation and sums the number of unique patches given certain parameters Modified into 3D from the original 2.5D method described by Evans et al. (2007) High-level similarity of dentitions in carnivorans and rodents. Nature 445:78-81 doi: 10.1038 nature05433

Usage

```
OPC(plyFile, rotation = 0, minimum_faces = 3, minimum_area = 0)
```

Arguments

plyFile An object of classes "mesh3d" and "shape3d" with calculated normals

rotation Rotates the file in degrees about the center vertical axis

minimum_faces Minimum number of ply faces required for a patch to be counted towards the

total patch count

minimum_area Minimual percentage of total surface area a patch must occupy to be counted

towards the total patch count

12 OPC3d

Details

The function requires a mesh object created by reading in a ply file utilizing either the read.ply, vcgPlyread, or read.AVIZO.ply function

Orientation patch count is calculated on meshes that represent specimen surfaces and have already been downsampled to 10,000 faces and pre-smoothed in a 3D data editing program. Alignment of the point cloud will have a large effect on patch orientation and must be done in a 3D data editing program such as Avizo, or using the R package auto3dgm prior to creating and reading in the ply file. The occlusal surface of the specimen must be made parallel to the X- and Y-axes and perpendicular to the Z-axis.

The default for minimum_faces is to ignore patches consisting of only a single face on the mesh. Changing the minimum_area value will disable minimum_faces.

OPC3d

Plot results of OPC analysis of a surface

Description

A function that produces a three-dimensional rendering of face orientation on a surface. The OPC function will identify the orientations of mesh faces and assign them to patches. It must be performed prior to using the OPC3d function.

Usage

```
OPC3d(OPC_Output_Object, binColors = hsv(h = (seq(10, 290, 40)/360), s = 0.9,
v = 0.85), patchOutline = FALSE, outlineColor = "black",
maskDiscard = FALSE, legend = TRUE, legendScale = 1,
legendTextCol = "black", legendLineCol = "black", leftOffset = 1,
fieldofview = 0)
```

Arguments

OPC_Output_Object

An object that stores the output of the OPC function

binColors Allows the user to change the colors filled in for each directional bin

patchOutline logical whether or not to outline the patches

outlineColor parameter designating which color to outline the patches in maskDiscard logical indicating whether to discard the unused patches

legend Logical indicating whether or not a legend should be displayed

legendScale cex style scaling factor for the legend

legendTextCol parameter designating color for the legend text legendLineCol parameter designating the color for the legend lines

leftOffset numeric parameters disginating how far to offset the surface

fieldofview Passes an argument to par3d changing the field of view in dregrees of the result-

ing rgl window

OPCr 13

Details

This function will assign a uniform color to all faces on the mesh surface that share one of the 8 orientations identified by the OPC function. The function returns a colored shade3d of the mesh so that patches can be visually inspected. Future versions will include the option to black out patches not included in the orientation patch count.

Several legend plotting options are availble including customizing the line and text colors using color names with legendTextCol and legendLineCol, both default to black. legendScale works like cex for setting the size of the relative size of the legend.

leftOffset will determine how far the plotted surface is moved to the left to avoid obstructing the legend. Users shold choose between -1 and 1.

fieldofview is set to a default of 0, which is an isometric projection. Increasing it alters the degree of parallax in the perspective view, up to a maximum of 179 degrees.

colors will support any vector of 8 colors, in any coloration scheme. Default draws from the hsv color space to evenly space color information, however user can supply a list of RGB values, character strings, or integers in place.

0PCr

Calculate average orientation patch count after several rotations

Description

A function that calls OPC iteratively after rotating mesh a selected number of degrees around the Z-axis following Evans and Jernvall (2009) Patterns and constraints in carnivoran and rodent dental complexity and tooth size. J Vert Paleo 29:24A

Usage

```
OPCr(plyFile, Steps = 8, stepSize = 5.625, minimum_faces = 3,
  minimum_area = 0)
```

Arguments

plyFile An object of classes 'mesh3d' and 'shape3d' with calculated normals

Steps Number of iterations to run the OPC function on the mesh

stepSize Amount of rotation in degrees about the Z-axis to adjust mesh surface by be-

tween each iteration of OPC

minimum_faces Argument to pass to the OPC function
minimum_area Argument to pass to the OPC function

Details

The function requires an object created by reading in a ply file utilizing either the read.ply or the read.AVIZO.ply function, with calculated normals.

Default number of Steps is 8, with a stepSize of 5.625 degrees, following the original definition of OPCR.

See the details for the OPC function for more information about preparing mesh surfaces and the effects of minimum_faces and minimum_area.

UPC	Legend
	LEECHU

function for building a legend in OPC plots

Description

crucial graphics subfunction

Usage

```
OPC_Legend(binColors = c(1:8), binNumber = 8, maskDiscard = F,
  lineSize = 2, textSize = 1.75, circSize = 1, textCol = "black",
  lineCol = "black")
```

Arguments

binColors	number sequence for bins and their colors
binNumber	numeric number of different bins
maskDiscard	logical determining whether faces will be blacked out because they are discarded
lineSize	numeric determining the thickness of the legend lines
textSize	numeric determining the size of the font
circSize	numeric for plotting size of the circle in pie chart legend
textCol	color for the text in the circle legend
lineCol	color for the lines in the legend OPC_Legend()

```
patches_for_each_direction
```

Function for gathering the patches for each direction

Description

This function will gather the patches in each of the 8 bins and ready it for patches_for_each_direction()

Usage

```
patches_for_each_direction(indexed_pairs)
```

Arguments

indexed_pairs Pairs of touching faces

patches_per 15

patches_per A function for patches within each face

Description

this gets some important information out of each patch

Usage

```
patches_per(patch_details, plyFile, minimum_faces = 3, minimum_area = 0)
```

Arguments

patch_details information on each patch

plyFile a stanford PLY file

minimum_faces minimum number of faces in each counted patch

minimum_area minimum area for a patch to be counted patches_per()

patch_details Function for gathering patch details for each Orientation patch

Description

This function does some simple math to lets us know about the patches

Usage

```
patch_details(clusterlist, plyFile)
```

Arguments

clusterlist a list of faces in the cluster patch_details()

plyFile a stanford PLY file

read.AVIZO.ply

Read mesh data from ply files saved by AVIZO

Description

A function that reads Stanford ply files as saved by the 3D data visualization software Avizo

Usage

```
read.AVIZO.ply(file, ShowSpecimen = TRUE, addNormals = TRUE)
```

Arguments

file An ASCII PLY file generated by Avizo

ShowSpecimen Logical indicating whether or not the mesh should be displayed

addNormals Logical indicating whether or not normals of mesh vertices shold be calculated

and appended to object

Details

If ShowSpecimen is True, a gray shade3d of the mesh is generated in a new rgl window for previewing the specimen. When saving to the ply file type, Avizo inserts additional property parameters into the file heading that sometimes describe various components of the mesh. These additional properties cause the read.ply function native to the geomorph package to fail. This function properly reads ply files generated by Avizo (like read.ply) and can be stored as an object accepted as input in the other molaR functions. Ply files generated through other software (such as MeshLab) can be read using read.ply.

Description

Important function for masking the edge faces

Usage

```
remove_boundary_faces(Energy_Per_Face_Values, plyFile)
```

Arguments

Energy_Per_Face_Values

information on E per face remove_boundary_faces()

plyFile a stanford PLY file

remove_outliers 17

remove	out 1	iers

Mask outliers on some faces

Description

This function will block out the top 0.1 percent of the faces

Usage

```
remove_outliers(Energy_values, X)
```

Arguments

Energy_values energy density values on faces

X percentile above which to remove remove outliers()

RFI

Calculate Boyer's (2008) relief index for a surface

Description

A function that calculates relief index following Boyer (2008) Relief index of second mandibular molars is a correlate of diet among prosimian primates and other mammals. J Hum Evol 55:1118-1137 doi: 10.1016/j.jhevol.2008.08.002

Usage

```
RFI(plyFile, alpha = 0.01)
```

Arguments

plyFile An object of classes 'mesh3d' and 'shape3d' alpha Step size for calculating the outline. See details

Details

The function requires an object created by reading in a ply file utilizing either the read.ply or the read.AVIZO.ply function, with calculated normals.

Relief index is calculated by the ratio of three-dimensional surface area to two dimensional area on meshes that represent specimen surfaces and have already been pre-smoothed in a 3D data editing program. Alignment of the point cloud will have a large effect on patch orientation and must be done in a 3D data editing program or auto3dgm prior to creating and reading in the ply file. The mesh must be oriented such that the occlusal plane is parallel to the X- and Y-axes and perpendicular to the Z-axis.

Some files may fail with pancake[TempF,]: subscript out of bounds. In these files it may be necessary to increase the alpha value which is default set to 0.01. Increasing the alpha value can cause the RFI function to over-estimate the size of the footprint. Caution should be exercised when troubleshooting by adjusting alpha

18 RFI3d

_				
$\mathbf{\nu}$	⊢ I	3d		
11	1 Т	. Ju		

Plot 3D and 2D areas of a mesh used to calculate relief index

Description

A function that plots a three-dimensional model of the mesh surface and includes a footprint of the two-dimensional area for visual comparison.

Usage

```
RFI3d(RFI_Output, displacement = -1.9, SurfaceColor = "gray",
FootColor = "red", FootPts = FALSE, FootPtsColor = "black",
Opacity = 1, legend = F, legendScale = 1, leftOffset = 0,
fieldofview = 0)
```

Arguments

RFI_Output	An object that stores the output of the RFI function
displacement	Moves the surface footprint some proportion of the height of the mesh. 0 is no displacement. Expects a value, negative values displace the footprint downward.
SurfaceColor	changes the color of the 3D surface mesh
FootColor	changes color of the 2D surface footprint
FootPts	logical indicating whether to plot the flattened points of the footprint from the original ply file
FootPtsColor	color for the plotted footprint points
Opacity	adjusts the opacity of the 3D mesh surface
legend	Logical indicating whether or not to include a legend of the colors chosen to represent the 3D surface and footprint
legendScale	cex style numeric relative scaling factor for the legend
leftOffset	how numeric between -1 and 1 for which to offset the surface relative to the legend.
fieldofview	Passes an argument to par3d changing the field of view in degrees of the resulting rgl window

Details

This function can help to visualize the three-dimensional and two dimensional areas that are used in calculating the relief index of a surface by displaying both at the same time. The RFI function must be performed first.

Opacity can be adjusted in a range from fully opaque (1) to fully transparent (0) in order to help visualize the footprint. The vertical placement of the footprint along the Z axis can be altered with displace depending on how the user wishes to view the surface, or on the original mesh orientation.

fieldofview is set to a default of 0, which is an isometric projection. Increasing it alters the degree of parallax in the perspective view, up to a maximum of 179 degrees.

RFI_Legend 19

RFI_Legend	function for building a legend for RFI
------------	--

Description

crucial plotting subfunction for RFI3d

Usage

```
RFI_Legend(surfCol = "gray", footCol = "red", lineSize = 2,
  textSize = 1.75, legSize = 1, opac = 1)
```

Arguments

surfCol	color for the 3D surface defaults to gray
footCol	color for the 2D footprint defualts to red
lineSize	numeric for setting size of the line for legend
textSize	numeric for setting the size of the text in the legend works like cex
legSize	sets relative size of legend
opac	sets the value for the opacity of the tooth surface when that is engaged RFI_Legend()

tr Trace function

Description

Matrix algebra

Usage

tr(m)

Arguments

m a square matrix tr()

vertex_to_face_list function for making a list of faces on each vertex

Description

crucial function for getting a list of faces which will gather the faces per vertex.

Usage

```
vertex_to_face_list(plyFile)
```

Arguments

```
plyFile a stanford PLY file vertex_to_face_list()
```

Index

```
*Topic datasets
    ex_tooth1, 7
    ex_tooth2, 8
bgplot3d_XQuartz, 2
{\tt clustered\_patches}, {\tt 3}
compute_energy_per_face, 3
cSize, 3
Directional_Bins, 4
DNE, 4
DNE3d, 5
DNE_Legend, 6
edge_vertices, 7
Equal_Vertex_Normals, 7
ex_tooth1, 7
ex_tooth2, 8
face_areas, 9
Face_Normals, 9
\verb"index_paired_directed_faces", 9
molaR_Batch, 10
molaR_Clean, 11
OPC, 11
OPC3d, 12
OPC_Legend, 14
OPCr, 13
patch_details, 15
\verb|patches_for_each_direction|, 14|
patches_per, 15
read.AVIZO.ply, 16
{\tt remove\_boundary\_faces}, 16
remove_outliers, 17
RFI, 17
RFI3d, 18
RFI_Legend, 19
tr, 19
vertex_to_face_list, 19
```