A Network Tour of Inter-County Migration in the United States

Final Project Presentation - Team 22

Course: A Network Tour Of Data Science

Students: Fatima Ezzahra, Xiaoyan Zou, Paul Mansat, Anshul Toshniwal

Timeline

I. Motivation and objectives

II. Data Acquisition

III. Data Exploration

IV. Data Exploitation

Objective

Predict the result of the 2016 Presidential Elections at the county level according to migration data

Why migration can influence an election?

More and more migration

Migration is a key subject in politics

Why migration can influence an election?

More and more migration

Migration is a key subject in politics

Background

County:

- geographical subdivision of a US states
- 3007 counties in 2019
- define uniquely by FIPS

Republicans vs Democrats:

- main political forces in the US
- in 2016, 82% of counties were Republican, 28% were Democrat

Republican

Background

County:

- geographical subdivision of a US states
- 3007 counties in 2019
- define uniquely by FIPS

Republicans vs Democrats:

- main political forces in the US
- in 2016, 82% of counties were Republican, 28% were Democrat

Republican

Background

County:

- geographical subdivision of a US states
- 3007 counties in 2019
- define uniquely by FIPS

Republicans vs Democrats:

- main political forces in the US
- in 2016, 82% of counties were Republican, 28% were Democrat

Republican

Background

County:

- geographical subdivision of a US states
- 3007 counties in 2019
- define uniquely by FIPS

Republicans vs Democrats:

- main political forces in the US
- in 2016, 82% of counties were Republican, 28% were Democrat

Republican

Background

County:

- geographical subdivision of a US states
- 3007 counties in 2019
- define uniquely by FIPS

Republicans vs Democrats:

- main political forces in the US
- in 2016, 82% of counties were Republican, 28% were Democrat

Republican

Background

County:

- geographical subdivision of a US states
- 3007 counties in 2019
- define uniquely by FIPS

Republicans vs Democrats:

- main political forces in the US
- in 2016, 82% of counties were Republican, 28% were Democrat

Republican

Background

County:

- geographical subdivision of a US states
- 3007 counties in 2019
- define uniquely by FIPS

Republicans vs Democrats:

- main political forces in the US
- in 2016, 82% of counties were Republican, 28% were Democrat

Republican

Timeline

I. Motivation and objectives

II. Data Acquisition

III. Data Exploration

IV. Data Exploitation

Source and pre-processing of the data

Migration Data:

From IRS database. Extract two kind of tables:

1	FIPS origin	FIPS dest.	Returns	Exempt	AGI
1.	• • •	• • •			0 0 0

9	FIPS	Total mig.	US. mig	Inter. mig.	Ret./Exem.
4.			• • •		

Election data:

FIPS	Dem. pct.	Rep. pct.
• • •	• • •	• • •

Source and pre-processing of the data

Migration Data:

From IRS database. Extract two kind of tables:

1	FIPS origin	FIPS dest.	Returns	Exempt	AGI	
1.	•••		•••		•••	

9	FIPS	Total mig.	US. mig	Inter. mig.	Ret./Exem.
4.	• • •	• • •			

Election data:

FIPS	Dem. pct.	Rep. pct.
• • •	• • •	• • •

Source and pre-processing of the data

Migration Data:

From IRS database. Extract two kind of tables:

1	FIPS origin	FIPS dest.	Returns	Exempt	AGI	
1.		•••				

9	FIPS	Total mig.	US. mig	Inter. mig.	$oxed{\mathbf{Ret.}/\mathbf{Exem.}}$
2.			•••		

Election data:

FIPS	Dem. pct.	Rep. pct.
• • •	• • •	• • •

Source and pre-processing of the data

Migration Data:

From IRS database. Extract two kind of tables:

1	FIPS origin	FIPS dest.	Returns	Exempt	AGI	
1.	•••				•••	

9	FIPS	Total mig.	US. mig	Inter. mig.	$oxed{Ret./Exem.}$
2.					

Election data:

FIPS	Dem. pct.	Rep. pct.
•••		

Timeline

I. Motivation and objectives

II. Data Acquisition

III. Data Exploration

IV. Data Exploitation

Exempt and return graph

Unweighted graph

Nodes are the county

Edge between two counties τ_1 and τ_2 if migration between counties and based on percent of migrant exempt from taxes or filling returns

Exempt and return graph

Graphs are scale free:

paying taxes

Figure 2: >35% migrant filling Figure 3: total migration returns graph

Properties of the graph

Exemption graph sparser than the return graph and has lower clustering coefficient

Exemption and return graph are best simulated with BA network

Timeline

I. Motivation and objectives

II. Data Exploration

III. Data Acquisition

IV. Data Exploration

First Attempt: prediction according to degree

Predict according to degree of node:

Predict according to degree of average degree of neighbours of node

Second Attempt: Graph Construction

Creation of **3 similarity graph**:

Second Attempt: Structure of the Graph

Structure: 3 weighted adjacency matrix, nodes are the counties

Building process:

Second Attempt: Adjacency Matrix

Kernel width: $\mathbb{E}[d_{ij}] \cdot 0.1$

Figure 1: Adjacency matrix of the total migration flow

Figure 2: Adjacency matrix of the US citizen migration flow

Second Attempt: NetworkX force layout for the similarity graph

Plotting the graph using spring layout simultaneously with the election result of each node:

Figure 1: Total migration

Figure 2: US citizen migration

Figure 3: foreigner migration

Second Attempt: Fourier Analysis

Process:

county_id	agi	prop_ret/exempt
1.0	-0.13	0.43
2.0	0.45	0.50
3.0	-0.28	0.47
4.0	-0.28	0.43
5.0	-0.23	0.46
6.0	-0.30	0.45
7.0	-0.29	0.50
8.0	-0.16	0.50
9.0	-0.26	0.49
10.0	-0.27	0.46

Second Attempt: Fourier Analysis

Process:

county_id	agi	prop_ret/exempt	winner
1.0	-0.13	0.43	1.0
2.0	0.45	0.50	1.0
3.0	-0.28	0.47	1.0
4.0	-0.28	0.43	1.0
5.0	-0.23	0.46	-1.0
6.0	-0.30	0.45	1.0
7.0	-0.29	0.50	1.0
8.0	-0.16	0.50	1.0
9.0	-0.26	0.49	1.0
10.0	-0.27	0.46	-1.0

Second Attempt: Fourier Analysis

Process:

county_id	agi	prop_ret/exempt	winner	masked_winner
1.0	-0.13	0.43	1.0	1.0
2.0	0.45	0.50	1.0	1.0
3.0	-0.28	0.47	1.0	1.0
4.0	-0.28	0.43	1.0	1.0
5.0	-0.23	0.46	-1.0	0.0
6.0	-0.30	0.45	1.0	1.0
7.0	-0.29	0.50	1.0	0.0
8.0	-0.16	0.50	1.0	1.0
9.0	-0.26	0.49	1.0	1.0
10.0	-0.27	0.46	-1.0	-1.0

Second Attempt: Fourier Analysis

Process:

county_id	agi	prop_ret/exempt	winner	masked_winner
1.0	-0.13	0.43	1.0	1.0
2.0	0.45	0.50	1.0	1.0
3.0	-0.28	0.47	1.0	1.0
4.0	-0.28	0.43	1.0	1.0
5.0	-0.23	0.46	-1.0	0.0
6.0	-0.30	0.45	1.0	1.0
7.0	-0.29	0.50	1.0	0.0
8.0	-0.16	0.50	1.0	1.0
9.0	-0.26	0.49	1.0	1.0
10.0	-0.27	0.46	-1.0	-1.0

Second Attempt: Fourier Analysis

Process:

cou	ınty_id	agi	prop_ret/exempt	winner	masked_winner	filtered_winner
	1.0	-0.13	0.43	1.0	1.0	0.29
	2.0	0.45	0.50	1.0	1.0	0.36
	3.0	-0.28	0.47	1.0	1.0	0.78
	4.0	-0.28	0.43	1.0	1.0	0.67
	5.0	-0.23	0.46	-1.0	0.0	-0.12
	6.0	-0.30	0.45	1.0	1.0	0.69
	7.0	-0.29	0.50	1.0	0.0	0.78
	8.0	-0.16	0.50	1.0	1.0	0.44
	9.0	-0.26	0.49	1.0	1.0	0.78
	10.0	-0.27	0.46	-1.0	-1.0	-0.76

Second Attempt: Fourier Analysis

Process:

cou	nty_id	agi	prop_ret/exempt	winner	masked_winner	filtered_winner	prediction
	1.0	-0.13	0.43	1.0	1.0	0.29	1.0
	2.0	0.45	0.50	1.0	1.0	0.36	1.0
	3.0	-0.28	0.47	1.0	1.0	0.78	1.0
	4.0	-0.28	0.43	1.0	1.0	0.67	1.0
	5.0	-0.23	0.46	-1.0	0.0	-0.12	-1.0
	6.0	-0.30	0.45	1.0	1.0	0.69	1.0
	7.0	-0.29	0.50	1.0	0.0	0.78	1.0
	8.0	-0.16	0.50	1.0	1.0	0.44	1.0
	9.0	-0.26	0.49	1.0	1.0	0.78	1.0
	10.0	-0.27	0.46	-1.0	-1.0	-0.76	-1.0

Second Attempt: Fourier Results

Granh	Low pass filter		Hea	t kernel
Graph	Mean	Variance	Mean	Variance
Return	0.89	0.008	0.88	0.010
Exempt	0.91	0.007	0.95	0.007
Total_migration	0.93	0.006	0.93	0.009
US_citizen	0.92	0.007	0.93	0.009
Foreigner_individuals	0.85	0.030	0.83	0.020

Figure 1: Results of Fourier's analysis

Third Attempt: Graph convolutional Network

Applied on the return & exempt graphs as well as the 3 similarity graphs

Figure 1: Structure of the convolution network

Third Attempt: Graph convolutional Network

Randomly splitting the data into a training and testing set

Masking 20% of the election results labels

Polynomial filter of order 3

Decay rate: 5.10^{-6}

Third Attempt: Graph convolutional Network

Randomly splitting the data into a training and testing set

Masking 20% of the election results labels

Polynomial filter of order 3

Decay rate: 5.10^{-6}

Third Attempt: Graph convolutional Network

Randomly splitting the data into a training and testing set

Masking 20% of the election results labels

Polynomial filter of order 3

Decay rate: 5.10^{-6}

Third Attempt: Graph convolutional Network

Randomly splitting the data into a training and testing set

Masking 20% of the election results labels

Polynomial filter of order 3

Decay rate: 5.10^{-6}

Third Attempt: Graph convolutional Network

Randomly splitting the data into a training and testing set

Masking 20% of the election results labels

Polynomial filter of order 3

Decay rate: 5.10^{-6}

Third Attempt: Graph convolutional Network

Graph	Accuracy Score
Return graph	91.3%
Exempt graph	92%
Total immigration sim. graph	93%
US citizen migration graph	92%
Foreigner migration graph	82%

Third Attempt: Graph convolutional Network

Graph	Accuracy Score
Return graph	91.3%
Exempt graph	92%
Total immigration sim. graph	93%
US citizen migration graph	92%
Foreigner migration graph	82%

Conclusion

Third Attempt: Graph convolutional Network

No two-party clustering opportunity with all the studied features

The return and exempt graphs are scale free

GCNN performed better when large and rich data sets were used

Further improvement:

- optimise the parameters of GCNN
- add more socio-economic features on counties

A Network Tour of Inter-County Migration in the United States

Q&A

A Network Tour of Inter-County Migration in the United States

Final Project Presentation - Team 22

Course: A Network Tour Of Data Science

Students: Fatima Ezzahra, Xiaoyan Zou, Paul Mansat, Anshul Toshniwal

