	TIOVA UC MATEMATICA - MOUCIO E							
		NOTAÇÕES MATEMÁTICAS UTILIZADAS						
	\Re	- conjunto dos números reais						
	\Re^*	- conjunto dos números reais não nulos						
I	$\mid \mathfrak{R}_{_{+}}$	- conjunto dos números reais não negativos						
I	\mathfrak{R}_+^*	- conjunto dos números reais positivos						
I	\mathfrak{R}_{-}	- conjunto dos números reais não positivos						
I	$egin{array}{c} \mathfrak{R}_{-}^{^{*}} \ \mathbf{Q} \ \mathbf{Q}^{*} \end{array}$	- conjunto dos números reais negativos						
I	Q	- conjunto dos números racionais						
I		- conjunto dos números racionais não nulos						
I		- conjunto dos números inteiros						
I	$\mathbf{Z}_{\scriptscriptstyle{+}}$	- conjunto dos números inteiros não negativos						
I	\mathbf{Z}^*	- conjunto dos números inteiros não nulos						
I	N .	- conjunto dos números naturais						
I	$ \mathbf{N}^* $	- conjunto dos números naturais não nulos						
I	Ø	- conjunto vazio						
I	U	- símbolo de união entre dois conjuntos						
I	\cap	- símbolo de intersecção entre dois conjuntos						
I	€	- símbolo de pertinência entre elemento e conjunto						
I		- símbolo de inclusão entre dois conjuntos (contido)						
I	∣⊃	- símbolo de inclusão entre dois conjuntos (contém)						
I	\forall	- qualquer que seja						
I	$\int f(x)$	- função na variável x						
I	f(a)	- valor numérico da função no ponto $x = a$						
I	log a	- logarítmo decimal de a						
I	sen α	- seno do ângulo α						
I	cos α	- cosseno do ângulo α						
I	tg α	- tangente do ângulo α						
	cotg α	- cotangente do ângulo α						
	cossec α	- cossecante do ângulo α						
	x	- módulo de x						
	n!	- fatorial de n						
10								

PROVA DE MATEMÁTICA

OUESTÃO 01

Os números a, b e c determinam, nessa ordem, uma progressão aritmética (PA) de razão r (r ≠ 0). Na ordem b, a, c determinam uma progressão geométrica (PG). Então a razão da PG é

- **A** -3
- **B** -2
- $|\mathbf{D}|$ 1

QUESTÃO 02

O valor numérico da expressão sen $\frac{13\pi}{12}$.cos $\frac{11\pi}{12}$ é

- **A** $\frac{1}{2}$ **B** $\frac{1}{3}$ **C** $\frac{1}{4}$ **D** $\frac{1}{6}$ **E** $\frac{1}{8}$

OUESTÃO 03

O valor de $\cos x + \sin x$, sabendo que $3.\sin x + 4.\cos x = 5$, é

- **A** $\frac{3}{5}$ **B** $\frac{4}{5}$ **C** 1 **D** $\frac{6}{5}$ **E** $\frac{7}{5}$

OUESTÃO 04

Se o cosseno de um ângulo de medida k é o dobro do cosseno de um outro ângulo de medida w, ambos pertencentes ao 1º quadrante, pode-se afirmar que todos os valores de w que satisfazem essa condição pertencem ao intervalo

- \mathbf{A} [0°, 15°]
- **B** [15°, 30°]
- C [30°, 45°]
- **D** [45°, 60°]
- **E** [60°, 90°]

No Brasil, três turistas trocaram por reais, no mesmo dia e pelas mesmas cotações, as quantias que possuíam em dólares, libras e euros, da seguinte forma:

Turista A: 10 dólares, 20 libras e 15 euros por 122 reais; Turista B: 15 dólares, 10 libras e 20 euros por 114 reais;

Turista C: 20 dólares, 10 libras e 10 euros por 108 reais.

O valor em reais recebido por uma libra foi

A 2,60

B 2,80

C 3,00

D 3,20

E 3,40

OUESTÃO 06

As matrizes A, B e C são do tipo r x s, t x u e 2 x w, respectivamente. Se a matriz (A-B).C é do tipo 3 x 4, então r + s + t + u + w é igual a

A 10

B 11

C 12

D 13

E 14

QUESTÃO 07

Na tabela abaixo, em que os números das linhas 1 e 2 encontram-se em progressão aritmética, seja \boldsymbol{n} o número da coluna em que pela primeira vez o número $\boldsymbol{b_n}$ da linha 2 é maior que o $\boldsymbol{a_n}$ da linha 1.

	1	2	3	4	 n
linha 1	1000	1004	1008	1012	 an
linha 2	20	27	34	41	 b _n

A soma dos algarismos de **n** é

A 13

B 12

C 11

D 10

E 9

A figura mostra uma função quadrática, definida por $f(x) = -x^2 + 6x + 7$, e uma função afim g(x). O ponto V é o vértice da parábola e P é uma raiz da função f(x). O gráfico de g(x) passa por esses dois pontos. O valor da ordenada onde o gráfico da função g(x) corta o eixo y é

- **A** 2
- $\mathbf{B} \frac{7}{2}$
- **C** 4
- $\mathbf{D} \quad \frac{9}{2}$
- \mathbf{E}_{6}

QUESTÃO 09

Em uma empresa, o acesso a uma área restrita é feito digitando uma senha que é mudada diariamente. Para a obtenção da senha, utiliza-se uma operação matemática "#" definida por a # b = 4a (a + 2b).

A senha a ser digitada é o resultado da conversão de um código formado por três algarismos, xyz, através da expressão x#(y#z). Sabendo que a senha a ser digitada é 2660, e o código correspondente é 52z, então o algarismo z é

- A 1
- **B** 3
- **C** 5
- **D** 7
- **E** 9

QUESTÃO 10

O número de raízes reais distintas da equação x|x|-3x+2=0 é

- **A** 0
- **B** 1
- **C** 2
- **D** 3
- **E** 4

Duas grandezas são tais que: se x=5, então y=11. Dessa forma, pode-se concluir que

- \mathbf{A} se $x \neq 5$, então $y \neq 11$
- $lackbox{\bf B}$ se y = 11, então x = 5
- $\boxed{\mathbf{C}}$ se $y \neq 11$, então $x \neq 5$
- **D** se $y \ne 11$, então x = 5
- $\boxed{\mathbf{E}}$ se y = 5, então x = 5

QUESTÃO 12

Se $z=\frac{2-3\,\mathrm{sen}\;x}{4}$, pode-se afirmar que todos os valores de z que satisfazem essa igualdade estão compreendidos em

- $\boxed{\mathbf{A}} \quad -2 \le z \le -1$
- $\boxed{\mathbf{B}} \quad -1 \le z \le \frac{-1}{4}$
- $\boxed{\mathbf{C}} \quad \frac{-1}{4} \le \mathbf{z} \le \frac{5}{4}$
- $\boxed{\textbf{D}} \quad 0 \le z \le \frac{3}{2}$
- $\boxed{\mathbf{E}} \quad \frac{1}{4} \le \mathbf{z} \le 2$

O gráfico que melhor representa a função $f \colon \: \mathfrak{R} \to \mathfrak{R}$, definida por $\: f(x) = 2^{\left|x\right|} \: \: \acute{e}$

O gráfico que melhor representa a parábola da função $\,y = px^2 + px - p$, $\,p \in \mathfrak{R}^*$, é

A solução de $\,2^{\left(rac{48}{x}
ight)}=8\,\,$ é um

- A múltiplo de 16.
- **B** múltiplo de 3.
- C número primo.
- D divisor de 8.
- E divisor de 9.

QUESTÃO 16

O produto dos elementos do conjunto-solução da equação exponencial $2^{\left(x^2+\frac{1}{x^2}\right)} = \frac{1024}{2^{\left(x+\frac{1}{x}\right)}} \ \text{\'e}$

- **A** 1
- **B** 2
- $\overline{\mathbf{C}}$ 3
- **D** 4
- **E** 5

QUESTÃO 17

A intensidade (I) de um terremoto, em uma determinada escala, é definida por $I=\frac{2}{3}\log\frac{E}{E_o}\text{, em que E é a energia instantânea liberada pelo terremoto, em kWh, e}$ $E_o=10^{-3}\text{ kWh}\text{. Um determinado terremoto, cuja duração foi de 8 segundos, variou em função do tempo conforme a equação }I(t)=-\frac{t^2}{4}+2t\text{, t em segundos e I em kWh. No instante em que a intensidade do terremoto era máxima, a energia liberada, em kWh, era de$

- \mathbf{A} 5.10²
- **B** 10^3
- $|C| 2.10^3$
- \mathbf{D} 2,5.10²
- \mathbf{E} 4.10³

Sejam f e g funções de A em \Re , definidas por $f(x) = \sqrt{\frac{x-1}{x+1}}$ e $g(x) = \frac{\sqrt{x-1}}{\sqrt{x+1}}$. Nessas condições, pode-se afirmar que f = g se

- $\boxed{\mathbf{A}} \quad \mathbf{A} = \left\{ \mathbf{x} \in \mathfrak{R} \, / \, \mathbf{x} < -1 \text{ ou } \mathbf{x} \ge 1 \right\}$
- $\mathbf{B} \quad A = \left\{ x \in \Re / x \neq -1 \right\}$
- C $A = \Re$

QUESTÃO 19

Resolvendo um problema que conduzia a uma equação do segundo grau, um aluno errou ao copiar o valor do termo independente dessa equação e obteve as raízes 7 e 1. Outro aluno errou ao copiar o valor do coeficiente de x da mesma equação e obteve as raízes 3 e 4. Sabendo que esses foram os únicos erros cometidos pelos dois alunos, pode-se afirmar que as raízes corretas da equação são

- **A** 3 e 6
- **B** 2 e 6
- C 2 e 4
- **D** 3 e 5
- **E** 4 e 5

OUESTÃO 20

O conjunto-solução da inequação $\frac{x}{x+6} \ge \frac{1}{x-4}$ é

- $\mathbf{A} \quad \left\{ \mathbf{x} \in \Re \, / \, \mathbf{x} < -6 \text{ ou } \mathbf{x} > 4 \right\}$
- $[\mathbf{B}] \{ x \in \Re / x < -6 \text{ ou } -1 \le x < 4 \text{ ou } x \ge 6 \}$
- $\boxed{\mathbf{C}} \quad \left\{ \mathbf{x} \in \mathfrak{R} / -6 < \mathbf{x} < 4 \right\}$
- $\boxed{\mathbf{D}} \quad \left\{ x \in \Re / -6 < x \le 1 \text{ ou } x \ge 6 \right\}$
- $\boxed{\mathbf{E}} \quad \left\{ \mathbf{x} \in \mathfrak{R} / -1 \le \mathbf{x} < 6 \right\}$

Considere as afirmações abaixo:

- ${f I}$ Se um plano encontra outros dois planos paralelos, então as intersecções são retas paralelas.
- Uma reta perpendicular a uma reta de um plano e ortogonal a outra reta desse plano é perpendicular ao plano.
- Se a intersecção de uma reta **r** com um plano é o ponto **P**, reta essa não **III** perpendicular ao plano, então existe uma única reta **s** contida nesse plano que é perpendicular à reta **r** passando por **P**.

Pode-se afirmar que

- A todas são verdadeiras.
- B apenas I e II são verdadeiras.
- $\boxed{\mathbf{C}}$ apenas I e III são verdadeiras.
- **D** apenas II e III são verdadeiras.
- E todas são falsas.

QUESTÃO 22

No desenvolvimento do binômio $\left(x^2 + \frac{k}{x^4}\right)^9$, o termo independente de x é igual a

- 672. Então k é um número
- A primo.
- **B** divisível por 3.
- C múltiplo de 5.
- **D** inteiro quadrado perfeito.
- **E** inteiro cubo perfeito.

OUESTÃO 23

Seja f uma função real, de variável real, definida por $f(x) = \begin{cases} 1, \text{ se } x \text{ for racional} \\ 0, \text{ se } x \text{ for irracional} \end{cases}$

Assim, pode-se afirmar que

$$\boxed{\mathbf{A}} \quad \mathbf{f}(\sqrt{2}) = \mathbf{f}(2)$$

B
$$f(\sqrt{3}) - f(\sqrt{2}) = f(1)$$

$$\mathbf{C}$$
 $f(3,14) = 0$

- \mathbf{D} $f(\pi)$ é irracional
- $f(x) = \sqrt{f(x)}$ é racional para todo x real

OUESTÃO 24

Pedro construiu um aquário em forma cúbica. Enquanto o enchia, notou que, colocando 64 litros de água, o nível subia 10 cm. O volume máximo, em litros, que comporta esse aquário é de

- A 216
- **B** 343
- C 512
- **D** 729
- E 1024

QUESTÃO 25

Dois recipientes, um em forma de cilindro e o outro, de paralelepípedo, cujas bases estão num mesmo plano, são unidos por uma tubulação com uma válvula no meio. Inicialmente, a válvula está fechada, o paralelepípedo está vazio e o cilindro é ocupado, em parte, por um líquido cujo volume é de 2000π litros, atingindo uma altura de 2 metros. A válvula é aberta e, após certo tempo, verifica-se que os dois recipientes têm o mesmo nível do líquido. Considerando desprezível o volume da tubulação que une os dois reservatórios e sabendo que a área da base do paralelepípedo é de $1,5\pi$ m², o volume final, em litros, de líquido no paralelepípedo é

- **A** 600π
- **B** 800π
- C 1000π
- **D** 1200π
- **E** 1500π

OUESTÃO 26

O produto cot g x.cos x é positivo, portanto x pertence ao

- $\boxed{\mathbf{A}}$ 1° ou 2° quadrantes.
- f B 1° ou 4° quadrantes.
- $|\mathbf{C}|$ 2º ou 3º quadrantes.
- \mathbf{D} 2º ou 4º quadrantes.
- \mathbf{E} 3° ou 4° quadrantes.

Sejam as funções reais f(x)=2x+1 e $g(x)=x^2-6x+4$. A função composta h(x)=g(f(x)) é

- $|A| 4x^2 6x 1$
- $|\mathbf{B}| 2x^2 + 2x 1$
- $|C| 4x^2 1$
- $|\mathbf{D}| 4x^2 8x 1$
- \mathbf{E} $2x^2 12x 1$

QUESTÃO 28

A soma das soluções reais de $x^{x^2+2x-8}=1$ é

- **A** -2
- B -1
- **C** 0
- D 1
- **E** 2

QUESTÃO 29

Numa classe de 30 alunos da EsPCEx, 10 são oriundos de Colégios Militares (CM) e 20, de Colégios Civis (CC). Pretende-se formar grupos com três alunos, de tal forma que um seja oriundo de CM e dois de CC. O número de grupos distintos que podem ser constituídos dessa forma é

- **A** 200
- **B** 900
- C 1260
- **D** 1900
- E 4060

OUESTÃO 30

Sendo $y = 2^{\log_6 5 \cdot \log_2 6}$, o valor de y é

- **A** 2
- **B** 5
- **C** 6
- **D** 12

Gabarito das Provas 2002

MATEMÁTICA									
МО	D E	MOD G		MOD K					
1	В	1	С	1	Α				
2	С	2	С	2	С				
3	Е	3	С	3	А				
4	E	4	С	4	E				
5	D	5	Α	5	D				
6	E	6	E	6	В				
7	Α	7	D	7	D				
8	С	8	E	8	В				
9	В	9	Α	9	В				
10	D	10	А	10	С				
11	С	11	А	11	E				
12	С	12	В	12	E				
13	С	13	С	13	А				
14	А	14	В	14	Α				
15	Α	15	D	15	В				
16	А	16	С	16	D				
17	В	17	D	17	В				
18	D	18	Α	18	В				
19	В	19	D	19	С				
20	В	20	В	20	D				
21	С	21	В	21	Α				
22	Α	22	В	22	С				
23	E	23	С	23	В				
24	С	24	E	24	D				
25	D	25	E	25	D				
26	А	26	D	26	E				
27	D	27	В	27	А				
28	В	28	D	28	С				
29	D	29	В	29	С				
30	В	30	А	30	С				