## MICCAI 2019 Ocular Disease Related Work

Wenting, Jiang SRIBD 2019/11/28

### Images of Ocular Disease Dtection:

- 彩色眼底照相:可快速获得不同视野范围的彩色眼底图,包含活体信息和特征,能较全面反映后极部视网膜损害;(公开数据集多)
- FFA0(荧光眼底血管造影): 从血管循环生理角度反应视网膜屏障损坏状态, 动态捕捉毛细血管循环状态, 可连续采集动态影像;
- OCT (光学相干断层扫描): 以显微级别分辨率直接测量视网膜神经纤维层厚度变化, 能发现眼底照相和FFA不易检测的DR引起的轻微黄斑水肿, 但不能确定微血管瘤存在与否。



### Tasks in Ocular Disease Images:

- Classification:
  - Single disease grading (DR, glaucoma, cataract grading)
  - Diverse disease classification
- Segmentation:
  - Retinal Vessel Segmentation
  - Microaneurysms Segmentation
  - Optic Disc Segmentation
  - etc....
- others:
  - Optic Disc Localization
  - Enhancement of Blurry Retinal Images

### Challenges in Ocular Disease Classification:

- Lack of Labeled Images:
  - Semi-supervised, weakly supervised...
  - Data augmentation
- Imbalanced Dataset:
  - Data augmentation
- Mciro-lesions and diverse:
  - global-local
  - segmentation

### Paper List

- Retinal Abnormalities Recognition Using Regional Multitask Learning, MICCAI 2019
- Retinopathy Diagnosis Using Semi-supervised Multi-channel Generative Adversarial Network, OMIA 2019
- DME-Net: Diabetic Macular Edema Grading by Auxiliary Task Learning, MICCAI 2019

### Retinal Abnormalities Recognition Using Regional Multitask Learning

Xin Wang<sup>1</sup>, Lie Ju<sup>1</sup>, Xin Zhao<sup>1</sup>, and Zongyuan Ge<sup>1,2(⋈)</sup>

Airdoc LLC, Beijing, China

{wangxin, julie, zhaoxin, gezongyuan}@airdoc.com

sh. aPassarah Center, Managh University, Clayton, Augt

<sup>2</sup> Monash eResearch Center, Monash University, Clayton, Australia

#### Overview of the Framework

- Regions of the retina with three sub-networks
  - optic-disc
  - macula
  - entire retina
- Two Principal Components:
  - macular and optic-disc region detection; joint CNN detector
  - semantic multitask learning for retinal disease classification.



**Fig. 1.** The multi-label classification network has been split into three sub-networks and trained for three mutual exclusive tasks: a general task to detect diseases affect the whole retina (DR, CRVO/BRVO etc.), a **macular** sub-network to identify macular diseases (drusen, macular edema etc.) and a **optic-disc** network component to detect optic-disc related diseases (glaucoma, optic atrophy etc.). Because the features representing each of these region tasks are relevant, we design a hierarchical fusion strategy to combine late semantic representations.

### 1. Macular and Optic-Disc Region Detection

Geometric Constraints



Fig. 2. Illustration of auxiliary bounding box AUX. (a) annotations of optic-disc bounding box OD in red, macular box MA in blue and the auxiliary bounding box AUX of joint region in yellow; (b) the detection result with missing macula MA because of low quality/blurry region; (c) localisation of macula MA in dash blue from (b) through AUX post-processing described in Sect. 3.1 (Color figure online)

 the centre distance between optic-disc and macula is approximately equivalent to two and half times as the diameter of the optic disc

# 2. Semantic Multitask Learning for Retinal Disease Classification

- Macular Diseases: age-related macular degeneration (AMD) 年龄相关性黄斑变性, macular edema黄斑水肿 and macular hole黄斑裂孔;
- Optic-disc Diseases: glaucoma青光眼, optic-disc edema视盘水肿, optic atrophy视神经萎缩;
- Entire Retina Diseases: DR糖尿病, hypertensive retinopathy高血压性视网膜病 and CRVO/BRVO视网膜动脉/静脉阻塞 etc.

# 2. Semantic Multitask Learning for Retinal Disease Classification

Collaborative Multi-Task Learning Framework With Three Streams:

General task stream: features from optic-disc, macular regions and the whole fundus image;

Macular task stream: features from macular region and entire retina (some sub-type macular edema diseases are closely correlated to general retinal disease such as DR)

**Optic-disc task stream:** relatively **independent task** (its categories are self-contained and the regionally independent compared to other region).

Table 1. Results on task based classification

| Methods                       | Average recall | Average precision |  |
|-------------------------------|----------------|-------------------|--|
| MA-One-Stream (single task)   | 68.8%          | 61.3%             |  |
| MA-Two-Stream (single task)   | 73.6%          | 67.6%             |  |
| MA-Two-Stream (multitask)     | 73.1%          | 68.6%             |  |
| GC-One-Stream (single task)   | 65.2%          | 60.8%             |  |
| GC-Three-Stream (single task) | 67.5%          | 61.5%             |  |
| GC-Three-Stream (multitask)   | 67.8%          | 62.2%             |  |

Table 2. Results on 36 category classification on different disease regions

| Methods      | Regions | Average recall | Average precision |
|--------------|---------|----------------|-------------------|
| One-Stream   | Macula  | 60.9%          | 61.1%             |
| Three-Stream | Macula  | 62.6%          | 63.0%             |
| One-Stream   | Disc    | 57.5%          | 69.7%             |
| Three-Stream | Disc    | 62.4%          | 70.0%             |
| One-Stream   | General | 69.2%          | 60.5%             |
| Three-Stream | General | 70.6%          | 61.4%             |

#### Visualization



**Fig. 3.** Class activation maps (CAM) of a challenging multi-label sample, CAM generated for each task from a fundus image with PDR, macular edema and other optic-disc disease.

#### tes

### Retinopathy Diagnosis Using Semi-supervised Multi-channel Generative Adversarial Network

Yingpeng Xie<sup>1</sup>, Qiwei Wan<sup>1</sup>, Guozhen Chen<sup>1</sup>, Yanwu Xu<sup>2</sup>, and Baiying Lei<sup>1(⊠)</sup>

<sup>1</sup> National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China

leiby@szu.edu.cn

Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, China

# Semi-supervised Multi-channel Generative Adversarial Network

#### • Highlights:

- Feature Extractor: compress the input images with low distortion, alleviating the dispersion problem of tiny lesions information;
- Semi-supervised learning in GAN: learn extra effective information in unlabeled images;
- Multi-channel generator: cooperatively generate new samples, increase the diversity of the training set.



Fig. 1. Multi-channel semi-supervised generative adversarial network

# Semi-supervised Multi-channel Generative Adversarial Network

Loss Function. Based on the analysis on the theoretical basis, the loss function of our network is divided into two parts: the cross entropy loss of the supervised network and the unsupervised game loss of the GAN [15].

$$L = L_{\text{Supervised}} + L_{\text{GAN}} \tag{3}$$

where:

$$L_{\text{Supervised}} = -\mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log p_{\text{model}}(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{y} < K + 1)$$

$$L_{\text{GAN}} = L_{\text{Classifier}} + L_{\text{Generator}}$$

$$= -\{\mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log[D(\boldsymbol{x})]$$

$$+ \mathbb{E}_{\boldsymbol{z} \sim noise} \log[(1 - D(G(\boldsymbol{z})))]\}$$

$$- \mathbb{E}_{\boldsymbol{z} \sim noise} \log[D(G(\boldsymbol{z}))]$$

### Details & Results

• Details:

Feature Extractor:
 train Inception Resnet
 V2 on ImageNets
 ( resize...normalize...)

 Use labeled images: fine-tune Inception
 Resnet V2

| Classification           | Classification DataSource                                                       |      |
|--------------------------|---------------------------------------------------------------------------------|------|
| Normal                   | ISBI 2019 $Palm(184) + HRF(15)[2] +$<br>iChallenge-AMD(195) + Diaretdbv0(20)[8] | 414  |
| PM                       | ISBI 2019 Palm                                                                  | 213  |
| Glaucoma                 | MICCAI 2018 REFUGE(40) + HRF(15) + Share(97)                                    | 152  |
| Cataract                 | Share                                                                           | 75   |
| AMD                      | iChallenge-AMD                                                                  | 87   |
| $\overline{\mathrm{DR}}$ | Diaretdbv0(110) + HEI-MED(169)[5] + HRF(15)                                     | 294  |
| Unlabeled                | Diaretdbv1(89)[7] + ISBI 2019 Palm(400) + Share(276) + MICCAI 2018 REFUGE(1153) | 1918 |

Table 1. Datasets

Table 2. Quantitative analysis on test set

| Method                                     | Accuracy/% |  |
|--------------------------------------------|------------|--|
| Fine-tuning $(RAW + No \text{ unlabeled})$ | 78.4       |  |
| Fine-tuning (AUG + No unlabeled)           | 80.2       |  |
| Our method (RAW + No unlabeled)            | 86.7       |  |
| Our method (AUG + No unlabeled)            | 87.5       |  |
| Our method (RAW + Unlabeled)               | 87.8       |  |
| Our method (AUG + Unlabeled)               | 88.9       |  |

### DME-Net: Diabetic Macular Edema Grading by Auxiliary Task Learning

Xiaodong He<sup>(⊠)</sup>, Yi Zhou, Boyang Wang, Shanshan Cui, and Ling Shao

Inception Institute of Artificial Intelligence (IIAI), Abu Dhabi, United Arab Emirates {xiaodong.he,yi.zhou,boyang.wang,shanshan.cui,ling.shao}@inceptioniai.org

### DME-Net: Diabetic Macular Edema Grading by Auxiliary Task Learning

- 检测黄斑和硬渗出物
- Highlights:
  - Mask SegmentationModel (based on U-Net)
  - Multi-scale FeatureIntegration Model
  - XGBoost (a scalable tree boosting system; classifier)



**Fig. 1.** The pipeline of the proposed method. The input data consists of pixel-level annotated lesion images and DME grading images. The segmentation model is proposed for learning the hard exudate and macular masks.

### compared with one paper in CVPR





**Fig. 2.** Segmentation mask of the macula and hard exudates. Red contours in the images of the first row are macula predictions, green contours are ground-truths. The masks in the second row are ground-truths and hard exudate predictions, yellow areas show overlap between prediction and ground-truth, green areas are ground-truths, red areas are predictions (Color figure online)

Table 2. The DME grading accuracy of different models.

| Model       | Image(test/train)      | Masks(test/train)     | Macular(test/train)   |
|-------------|------------------------|-----------------------|-----------------------|
| VGG13       | 0.7859/0.7915          | 0.7968/0.8159         | 0.6564/0.6865         |
| VGG16       | <b>0.7904</b> / 0.8202 | <b>0.8294</b> /0.8502 | <b>0.6758</b> /0.6859 |
| ResNet18    | 0.7857/0.9027          | 0.7970/0.8560         | 0.6692/0.7590         |
| ResNet34    | 0.7764/0.9198          | 0.7954/0.9383         | 0.6487/0.6724         |
| ResNet50    | 0.7442/0.9187          | 0.7512/0.9357         | 0.6162/0.7423         |
| DenseNet121 | 0.7231/ <b>0.9709</b>  | 0.7447/ <b>0.9430</b> | 0.6011/ <b>0.7642</b> |

Table 3. The DME grading Accuracy of IDRiD testing set.

| Input feature                         | Fully-connected | SVM    | XGBoost |  |
|---------------------------------------|-----------------|--------|---------|--|
| Last feature of image                 | 0.8058          | 0.8058 | 0.7961  |  |
| Last feature of masks                 | 0.8349          | 0.8543 | 0.8447  |  |
| Last feature of macula                | 0.6796          | 0.6796 | 0.6796  |  |
| Multi-Scale (MS) features of image    | 0.8155          | 0.8349 | 0.8447  |  |
| MS features of masks                  | 0.8447          | 0.8543 | 0.8741  |  |
| MS features of macula                 | 0.6990          | 0.7282 | 0.7379  |  |
| Last feature of image, masks & macula | 0.8543          | 0.8640 | 0.9080  |  |
| MS feature of image, masks & macula   | 0.8543          | 0.8741 | 0.9417  |  |

Table 4. Comparision with State-of-the-arts.

| Model & dataSet                 | Specificity | Sensitivity | AUC    | Accuracy |
|---------------------------------|-------------|-------------|--------|----------|
| Mammoth [1] in IDRiD            |             |             | _      | 0.9322   |
| SDNU [1] in IDRiD               | _           | _           | -      | 0.8789   |
| HarangiM1 [1] in IDRiD          | 5           | -           | -      | 0.8741   |
| Fundus Image (Ours) in IDRiD    | 0.8352      | 0.8568      | 0.8715 | 0.8447   |
| All Features (Ours) in IDRiD    | 0.9384      | 0.9553      | 0.9637 | 0.9417   |
| Deepak et al. in Messidor       |             | _           | 0.96   | -7       |
| Akram et al. in Messidor        | 0.9730      | 0.9590      | -      | 0.9680   |
| All Features (Ours) in Messidor | 0.9591      | 0.9712      | 0.9824 | 0.9633   |

### Summary

- Fundus image classification trends:
  - Semi-supervise (combined with GAN)
  - multi-label (more than two lables in the same image)
  - multi-catergories (covering most of the possible diseases)
  - multi-scale (global, local; according to pathological structure)
  - multi-task (combined with segmentation, location)
  - Multi-modal (combined with FFA, OCT....maybe.. )
  - 视网膜眼底图像预测心脏病风险....

## Thanks!