Radijske pristupne mreže

dr. sc. Jelena Božek

Norme za WLAN

Normizacija u svijetu

- IEEE 802 je skupina IEEE normi koja propisuje tehnologije mreža kako slijedi:
 - IEEE 802.11 WLAN (Wireless Local Area Network)
 - IEEE 802.15 WPAN (Wireless Personal Area Network)
 - IEEE 802.16 WMAN (Wireless Metropolitan Area Network)
 - IEEE 802.18 RR TAG (Radio Regulatory Technical Advisory Group)
 - IEEE 802.20 MBWA (Mobile Broadband Wireless Access)
 - IEEE 802.21 Media Independent Handoff Working Group
 - IEEE 802.22 WRAN (Wireless Regional Area Network)
- BRAN (Broadband Radio Access Networks) je radna grupa ETSI
 (European Telecommunication Standards Institute). Norme za mreže:
 - HiperLAN2
 - HiperACCESS
 - HiperMAN
 - HiperLINK

OSI referentni model

- Referentni model za povezivanje otvorenih sustava (OSI, *Open System Interconnection*) definira funkcije neophodne za povezivanje jednog ponajprije računalskog sustava s drugim bez obzira na njihovu različitost
- Model je 1977. godine razvila Međunarodna organizacija za normizaciju (ISO, International Organization for Standardization), a 1983. godine model je postao ISO norma 7498
- ISO model sastoji se od sedam slojeva:
 - Fizički sloj
 - osigurava prijenos bita komunikacijom preko medija ili kanala i definira električne, mehaničke i proceduralne specifikacije

OSI referentni model (nastavak)

Sloj veze

- osigurava upravljanje pogreškama i sinkronizacijom između sudionika povezivanja
- sastoji se od dva podsloja:

Podsloj za upravljanje pristupom prijenosnom mediju (MAC, Medium Access Control) uključuje funkcije autentikacije, roaminga, ponovnog prijenosa i višestrukog pristupa

Podsloj za upravljanje logičkom vezom (LLC, Logical Link Control) uključuje funkcije sigurnosti, upravljanja snagom itd.

- Sloj mreže
 - osigurava usmjeravanje (routing) paketa podataka od izvora do odredišta preko usmjerivača (router)
 - protokoli, kao npr. IP, funkcioniraju na ovom sloju
- Povezivanje radijskih sustava obavlja se na razinama prva tri sloja, dok se kod WLAN-a koriste samo prva dva sloja

OSI referentni model (nastavak)

U povezivanju radijskih sustava sudjeluju funkcije prva tri sloja OSI modela

OSI referentni model (nastavak)

802.11 mreže u OSI modelu

WLAN u OSI modelu

- LLC podsloj je zajednički za sve LAN-ove obuhvaćene IEEE normama 802 i opisan je u IEEE normi 802.2
- MAC podsloj specifičan je za WLAN i normu 802.11
 - MAC podsloj mreže određuje pravila za pristupanje zajedničkom radijskom prijenosnom mediju uključujući prioritete i određivanje frekvencije kanala
 - Funkcije MAC protokola zajedničke su za sve vrste fizičkog sloja koje su predviđene normom IEEE 802.11 i neovisne su o brzinama prijenosa
 - Kao dio mehanizma izbjegavanja sudara, koji je dio IEEE 802.11 MAC-a, mrežni čvorovi odgađaju odašiljanje svojih podataka sve dok prijenosni medij ne postane slobodan
 - Različiti razmaci između okvira omogućuju uspostavljanje različitih razina prioriteta za različite vrste prometa

WLAN u OSI modelu

- U IEEE normi 802.11 mogu se rabiti pet različitih fizičkih slojeva (PHY, Physical Layer):
 - PHY koji se temelji na tehnici proširenog spektra uz primjenu skakanja frekvencija (FHSS)
 - PHY koji se temelji na tehnici proširenog spektra uz primjenu izravnog slijeda (DSSS)
 - PHY koji se temelji na OFDM tehnici
 - PHY koji se temelji na prijenosu u infracrvenom području (IR, Infrared)
 - PHY koji se temelji na prijenosu korištenju MIMO (Multiple Input Multiple Output) – OFDM

IEEE 802.11

- 1997. godine IEEE norma 802.11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications
 - Brzine prijenosa do 2 Mbit/s i rad u ISM frekvencijskom području od 2,4 GHz uz uporabu tehnologije proširenog spektra
- 1999. godine dva dodatka IEEE normi 802.11-1999:
 - IEEE 802.11a: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications—Amendment 1: High-speed Physical Layer in the 5 GHz Band
 - IEEE 802.11b: Supplement to 802.11-1999, Wireless LAN MAC and PHY Specifications: Higher Speed Physical Layer (PHY) Extension in the 2.4 GHz Band
- 2003. godine IEEE norma 802.11g:
 - Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications – Amendment 4: Further Higher Data Rate Extension in the 2.4 GHz Band

IEEE 802.11 (nastavak)

- 2009. godine IEEE norma 802.11n:
 - Uporabom do 4 MIMO (Multiple-input multiple output) antena i kanala širine 40 MHz te 64-QAM modulacije moguće su brzine prijenosa do 600 MBit/s
- 2014. godine IEEE norma 802.11ac:
 - Uporabom do 8 MIMO (*Multiple-input multiple output*) antena i kanala širine 160 MHz te 256-QAM modulacije moguće su brzine prijenosa do 1 GBit/s

802.11 a, b i g

IEEE 802.11 FHSS

- IEEE 802.11 FHSS radi u području 2,4 GHz i na fizičkom sloju koristi Gaussovu diskretnu modulaciju frekvencije (GFSK):
 - 2-GFSK, za prijenos podataka brzinama 1 Mbit/s
 - 4-GFSK, za prijenos podataka brzinama 2 Mbit/s
 - Brzina signaliziranja je onda u oba slučaja jednaka i iznosi R_S = 1 MBd
 - Signali podataka u formatu NRZ (*Non Return to Zero*) filtriraju se u niskopropusnom Gaussovom filtru normirane širine pojasa $B \cdot T_0 = 0.5$
 - Kako je T_0 = 1/ R_S = 1 μs, slijedi da upotrijebljeni Gaussov filtar mora imati 3-dB širinu pojasa propuštanja od 500 kHz

IEEE 802.11 FHSS (nastavak)

- Sheme skakanja frekvencije obilježava:
 - skakanje na temelju računalom generiranog pseudoslučajnog koda u kojem se nalazi do 79 frekvencija
 - najmanji razmak frekvencija između kojih se skače je 6 kanala
 - 79 shema skakanja podijeljena su u tri skupa s 26 u svakom skupu
- Europske norme ETS EN 300-328 i ETS EN 300-339 određuju parametre FHSS sustava. Navodimo samo neke od njih:
 - frekvencijsko područje: 2400 2483,5 MHz
 - najmanje 20 frekvencija skakanja
 - najviše 100 mW EIRP

IEEE 802.11 DSSS

- Podaci o fizičkom sloju IEEE 802.11 DSSS:
 - brzina prijenosa podataka: 1 ili 2 Mbit/s (modulacija: DBPSK za 1 Mbit/s, a DQPSK za 2 Mbit/s)
 - brzina signaliziranja: 1 MBd
 - frekvencija podimpulsa: 11 Mchip/s (Barkerov kod od 11 podimpulsa)
 - 13 kanala u pojasu 2,4 do 2,4835 GHz

Usporedba verzija s FHSS i DSSS

Tehnologija na PHY sloju	Frekvencijsko područje [MHz]	Modulacijski postupak	Brzina prijenosa [Mbit/s]
DSSS	- 2400 – 2483,5	DBPSK	1
		DQPSK	2
FHSS		2-GFSK	1
		4-GFSK	2

- FHSS je manje osjetljiv na smetnje i višestazno prostiranje
- Kvaliteta FHSS se postepeno kvari, dok kod DSSS to nastupa naglo
- S FHSS može se imati 10 do 15 kanala, dok su kod DSSS moguća najviše 3 kanala
- S DSSS mogu se postići znatno veće brzine prijenosa od 2 Mbit/s, a to je maksimum za FHSS
- Kod DSSS, pravilo je da faktor proširenja bude jednak 11 kako bi se ispunio uvjet o potrebnom procesnom dobitku

IEEE 802.11b

- Sustavi po normi 802.11b na tržištu su postali poznati kao Wi-Fi (Wireless Fidelity)
 - U početku se oznaka Wi-Fi odnosila samo na IEEE normu 802.11b,
 ali kasnije se termin proširio na bilo koju vrstu IEEE mreže 802.11
- Proširena norma 802.11b u 2,4 GHz području omogućava brzine:
 - 1 Mbit/s i 2 Mbit/s kao i izvorna IEEE norma 802.11
 - 5,5 Mbit/s i 11 Mbit/s kao dodatne mogućnosti
- IEEE sustav 802.11b povratno je kompatibilan s ranijim proizvodima rađenim na temelju izvorne IEEE norme 802.11

CCK postupak u IEEE 802.11b

- IEEE norma 802.11b koristi CCK-tehniku (CCK, Complementary Code Keying) na fizičkom sloju za brzine od 5,5 i 11 Mbit/s
 - CCK je oblik tehnike proširenog spektra (DSSS tehnike) koja združuje DSSS postupak proširenja spektra i modulaciju
 - Radi postizanja brzina od 5,5 i 11 Mbit/s u istom rasteru kanala širine
 22 MHz treba smanjiti faktor proširenja s 11 na 8. Zbog toga se
 povećava brzina signaliziranja s 1 MBd na 1,375 MBd.
 - Za postizanje R_D = 5,5 Mbit/s uz R_S = 1,375 MBd potrebno je prenositi 5,5/1,375 = 4 bit/simbol. Za 11 Mbit/s potrebno je onda 8 bit/simbol
- Zašto CCK?
- Zato jer ga je lako integrirati s DSSS-om za brzine od 1 i 2 Mbit/s iz izvorne verzije IEEE 802.11. Osim toga CCK povećava propusnost mreže

Što je CCK?

- CCK je napredna tehnika kodiranja
 - Za proširenje se umjesto binarnoga 11-chipnog Barkerovog koda koristi skup od 64 8-chipnih kodnih riječi
 - Elementi tih 8-chipnih kodnih riječi su kompleksni (kofazna I i kvadraturna Q arhitektura koristi se za prikaz kodnih riječi) nasuprot realnim vrijednostima elemenata Barkerovog koda (elementi koda su: +1 i -1)
 - Kodne riječi u skupu od njih 64 su ortogonalne. Na temelju tog svojstva one se međusobno mogu razlikovati i u uvjetima jake prisutnosti šuma odnosno izraženoga višestaznog prostiranja (refleksije od zidova)
 - Uz proširenje spektra kod obje se brzine prijenosa koristi modulacijski postupak QPSK. Zbog osobina samog postupka CCK modulacijski postupak ima obilježja diferencijalnog QPSK, odnosno DQPSK

Temeljna obilježja postupka CCK

CCK postupak za brzine 5,5 i 11 Mbit/s

- Za brzinu od 11 Mbit/s modulator koristi 6 bita iz svakog bajta za odabir jedne od 64 ortogonalne 8-chipne kodne riječi
- Preostala 2 bita iz bajta koristi se u QPSK postupku (I–Q-modulator) za dodatnu rotaciju cijele kodne riječi u kompleksnoj ravnini za 0°, 90°, 180° ili 270°
- Kod brzine od 5,5 Mbit/s moguć je odabir samo između četiri 8-chipnih kodnih riječi. Za to služe 2 bita, a preostala su 2 bita za QPSK rotaciju

Temeljna obilježja postupka CCK (nastavak)

- CCK-modulatoru se u oba slučaja privode podaci brzine 1,375 MBd
- Nakon odabira 8-chipne kompleksne riječi realni i imaginarni dio te riječi 11
 milijuna puta u sekundi privodi se kofaznom, ili I-ulazu, odnosno kvadraturnom, ili
 Q-ulazu QPSK modulatora (I–Q-modulator)
- U tom modulatoru množe se kompleksne kodne riječi za proširenje s odgovarajućim kompleksnim brojem koji odgovara stanju faze QPSK, a kojeg određuju preostala dva bita

Tehnologije na fizičkom sloju 802.11b

Pregled mogućih režima rada sustava IEEE 802.11b

Brzina prijenosa [Mbit/s]	Broj podimpulsa	Modulacijski postupak	Brzina signaliziranja [MBd]	Bit/simbol
1 Mbit/s	11 (Barker kod)	BPSK	1	1
2 Mbit/s	11 (Barker kod)	QPSK	1	2
5,5 Mbit/s	8 (CCK)	(D)QPSK	1,375	4
11 Mbit/s	8 (CCK)	(D)QPSK	1,375	8

Upotreba raspoloživih kanala za 802.11b

- Pri konačnoj brzini od 11 Mbit/s zauzima se pojas jednog kanala od 22 MHz
 - CCK može koegzistirati s izvornim 802.11 DSSS
 - CCK može raditi u postojećoj shemi kanala u području 2,4 GHz
 - 13 kanala u Europi (ETSI) od 2412 MHz do 2472 MHz na razmaku od po 5 MHz (U USA raspoloživo je samo prvih 11 kanala)
 - Postoje samo 3 4 nepreklapajuća kanala (USA: 1, 6 i 11; ETSI: 1, 5, 9 i 13)
 - U nekim europskim zemljama preporuča se koristiti samo 3 kanala (1, 7 i 13)
- U planiranju pokrivanja WLAN sustavima koriste se ćelije koje se preklapaju za razliku od uobičajenog ćelijskog sustava
 - Ako se pri normi 802.11b želi osigurati izolacija kanala, tada se mogu u jednoj topologiji istodobno koristiti samo tri frekvencije

Planiranje topologije mreže

Primjer frekvencijskog plana za 802.11b

- Preklapajuće ćelije nose sa sobom povećanu mogućnost interferencije i smanjenu propusnost na obje frekvencije
- Istodobno one osiguravaju vrlo fleksibilni razmještaj pristupnih točaka koji je najčešće uvjetovan okolinom (prostorije, hodnici)
- Sustavi po 802.11b trpe interferenciju i od drugih komunikacijskih i nekomunikacijskih sustava i uređaja s kojima dijele frekvencijski pojas
- Izvorna norma 802.11 potiskivanje susjednog kanala temelji na razmaku od 30 MHz. Kod "b" verzije norme, a kada se koristi 4 kanala, problem je još izraženiji s obzirom na razmak kanala od 20 MHz (u USA 25 MHz već kod 3 kanala)

IEEE 802.11a

- Sustavi po IEEE normi 802.11a rade u području 5 GHz
 - Središnja frekvencija $f_{\rm ch}$ i redni broj kanala $n_{\rm ch}$ za područje od 5 6 GHz povezani su izrazom:

$$f_{\rm ch} = 5000 + 5 n_{\rm ch} \, [{\rm MHz}], \quad n_{\rm ch} = 0, 1, ..., 200.$$

- Na fizičkom sloju koristi se OFDM-postupak uz sljedeće parametre prijenosa:
 - brzina prijenosa: 6, 9, 12, 18, 24, 36, 48 i 54 Mbit/s
 - modulacijski postupak: BPSK, QPSK, 16-QAM i 64-QAM
 - širina kanala: 20 MHz

IEEE 802.11a (nastavak)

Dopuštena izračena snaga odašiljača

HRVATSKA AGENCIJA ZA POŠTU I ELEKTRONIČKE KOMUNIKACIJE

OPĆA DOZVOLA ZA RADIJSKU POSTAJU

Broj OD - 85

1.	OPĆI PODACI O RADIJSKOJ POSTAJI		
1.1.	Vrsta radijske postaje (uređaja)	SRD WAS/RLAN	
1.2.	Oznaka radijske postaje (uređaja)	-	
1.3.	Odluka CEPT-a o izuzeću od izdavanja pojedinačne dozvole za radijsku postaju	ERC/REC 70-03	
1.4.	Odgovarajuće CEPT-ove preporuke, odluke i/ili izvješća	ERC/REC 70-03 Annex 3, ECC/DEC/(04)08	
1.5.	Odgovarajuće harmonizirane norme	EN 301 893	
1.6.	Razred uređaja prema Direktivi 1999/5/EC	2	
2.	UPORABA FREKVENCIJE		
2.1.	Frekvencijski pojas (MHz)	5150 - 5250	
2.2.	Razmak kanala i širina kanala (kHz/MHz)	-	
2.3.	Dupleksni razmak i upareni radiofrekvencijski spektar	-	
2.4.	Vrsta radiokomunikacijske službe	Pokretna služba	
3.	UREĐAJ		
3.1.	Dopuštena snaga odašiljača (mW/W)	-	
3.2.	Najveća efektivna izračena snaga - EIRP	200 mW maksimalna srednja efektivna izotropno izračena snaga (e.i.r.p.)	
3.3.	Dopuštena vrsta emisije	-	
3.4.	Brzina prijenosa (kbit/s)	-	
3.5.	Dopuštena vrsta antene	-	

4.	LOKACIJA RADIJSKE POSTAJE			
4.1.	Naziv lokacije i oznaka županije	-		
4.2.	Zemljopisna duljina i širina	-		
4.3.	Nadmorska visina (m)	-		
4.4.	Zemljopisno područje uporabe radijske postaje	Republika Hrvatska		
5.	5. OPĆI I POSEBNI UVJETI UPORABE RADIJSKE POSTAJE			
5.1.	Opći uvjeti uporabe radijske postaje	Isključivo uporaba u zatvorenim prostorima. Maksimalna srednja e.i.r.p. gustoća je ograničena na 0.25 mW/25 kHz u bilo kom pojasu od 25 kHz.		
5.2.	Posebni uvjeti uporabe radijske postaje			
5.3.	Posebni uvjeti uvoza i stavljanja na tržište radijske postaje			
6.	NAPOMENE			
6.1.	Ova Opća dozvola za rad SRD WAS/RLAN uređaja ne jamči zaštitu od mogućih smetnji uzrokovanih od radijskih postaja iste ili drugih radijskih službi.			
Dozvola vrijedi na neodređeno vrijeme. ČLAN VIJEĆA M.P. Miljenko Krvišek, dipl.ing.el., v.r.				
	Zagreb, 30.04.2008.			

Obrazac AG030401-OD

IEEE 802.11a (nastavak)

Dopuštena izračena snaga odašiljača

Planiranje topologije mreže

Primjer frekvencijskog plana za 802.11a

 Moguće je koristiti 8 frekvencija u preklapajućoj topologiji (što je osjetno više od 3 kanala kod 802.11b) u pojasu od 5,150 do 5,350 GHz

Usporedba IEEE 802.11b i 802.11a

Domet i ostvarive brzine

- 802.11b dobro je koristiti ako je potrebno postići pokrivanje većeg područja tj. kad nije moguće gusto postaviti pristupne točke
- Gleda li se na trošak, "b" je jeftinija, jer ima manji broj pristupnih točaka na nekoj površini

- Smetnje u ISM području 2,4 GHz (Bluetooth ili drugih radijskih sustava, industrijski izvori) smanjuju propusnost
- Pri velikoj gustoći terminala, uz korištenje velikih brzina, jedino "a" mreža može dati zadovoljavajuću propusnost

IEEE 802.11g

- Norma je zadržala sva obilježja tehnologije iz 802.11a, a koristi frekvencijsko područje rada 802.11b (2,4 GHz)
- 802.11g potpuno je povratno kompatibilna s 802.11b,
 - za brzine od 1, 2, 5,5 i 11 Mbit/s koristi se DSSS tehnologija i CCK ili QPSK/BPSK modulacijska shema (potpuno jednako kao i kod 802.11b)
 - za brzine od 6, 9, 12, 18, 24, 36, 48 i 54 Mbit/s koristi se OFDM tehnologija s 52 podnosioca i modulacijska shema ovisna o brzini
 - Omogućen je prijelaz iz mreže koja zahtijeva veliku širinu prijenosnog pojasa i visoku brzinu prijenosa u mrežu u kojoj se rabe niže brzine prijenosa, bez prekidanja usluge
 - Korisnici opremljeni 802.11b uređajima mogu se kretati i koristiti usluge pristupnih točaka "g" mreže (uz brzinu od 11 Mbit/s) kao da su u području s pristupnom "b" točkom

IEEE 802.11g (nastavak)

- Prednosti mreže po normi 802.11g:
 - zadržana brzina protoka jednakom onoj u 802.11a
 - moguć je neprimjetni prijelaz (roaming) između 802.11g i 802.11b
 - postojeći korisnici sustava po normi 802.11b mogu koristiti pristupne točke mreže 802.11g
 - korisnici 802.11g mreže mogu se vezati na pristupne točke 802.11b mreže (najviše uz brzinu od 11 Mbit/s)
 - bolje je pokrivanje nego kod 802.11a uz istu brzinu podataka
 - koristi se u cijelom svijetu
- Nedostaci mreže po normi 802.11g:
 - isti su izvori smetnji kao i kod sustava po 802.11b (ISM pojas)
 - povećana je potrošnja snage
 - visoka su početna ulaganja

MIMO sustavi

MIMO sustavi

- postoji nekoliko osnovnih sustava odašiljanja i prijama radiosignala
- razlika među njima je u drugačijim svojstvima kanala koja nastaju zbog uporabe odašiljača i prijamnika s jednom ili više antena

S = single

M = multiple

I = input

O = output

MIMO sustavi

MIMO – Multiple Input Multiple Output

- prijamnik i odašiljač imaju više od jedne antene
- u istom kanalu omogućava se prijenos nezavisnih tokova podataka
- digitalni procesor signala (DSP) rekonstruira primljeni signal

SISO sustavi

 kapacitet kanala u klasičnim sustavima s jednom antenom definiran je Shannonovom formulom:

$$C = \log_2(1 + SNR)$$
 [bit/s/Hz]

- vidljivo je da je kapacitet veze ograničen odnosom signal/ šum
- odnos signal/šum moguće je mijenjati povećanjem snage odašiljača, gdje kapacitet raste logaritamski
- primjer: za povećanje kapaciteta s 1 bit/s/Hz na 10 bit/s/Hz, potrebno je povećati snagu odašiljača cca. 1000 puta
- nemoguće u WLAN-u!

MIMO sustavi (nastavak)

 paralelni prijenos između M odašiljača i prijamnika povećava kapacitet kanala

 kad bi kanali bili međusobno nezavisni (informacija o jednom kanalu sadržana je samo o njemu), ukupni kapacitet bio bi M puta veći od onog definiranog Shannonovom formulom

- MIMO sustavi oslanjaju se na više paralelnih sljedova podataka
- prva izvedba datira iz perioda od 1995. do 1997. godine (Bell Labs)
- SISO sustavi su jednostavni za konstrukciju, ali problemi koji se javljaju su feding i relativno nizak tok podataka (Shannon)
- mogućnost povećanja kapaciteta kanala uporabom diverziti prijama
 - problem: i dalje malo povećanje brzine prijenosa djeluje se samo na odnos signal/šum, a i dalje postoji samo jedan tok (slijed) podataka

- broj antena na prijamniku i odašiljaču ograničava maksimalni broj sljedova koji se mogu stvoriti
- standardno označavanje takvih sustava je 2×2, 3×2, 4×4
 - prva brojka označava broj odašiljačkih, a druga broj prijamnih antena

- prijenosnu matricu potrebno je dijagonalizirati kako bi mogli ostvariti maksimalnu brzinu prijenosa
- to nije sasvim moguće kod koreliranih kanala
 - povećava se feding
 - smanjuje se kapacitet

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{32} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} h_{11} & 0 & 0 \\ 0 & h_{22} & 0 \\ 0 & 0 & h_{33} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

princip slanja i dekodiranja simbola u MIMO sustavu

$$r_0 = h_{00} s_0 + h_{01} s_1$$

$$r_1 = h_{10}s_0 + h_{11}s_1$$

$$s_0 = B(h_{11}r_0 - h_{01}r_1)$$

$$s_1 = B(-h_{10}r_0 + h_{00}r_1)$$

$$B = \frac{1}{h_{00}h_{11} - h_{01}h_{10}}$$

spektralna učinkovitost (kapacitet kanala) pojedinih sustava

IEEE 802.11n

IEEE 802.11n

- cilj razvoja 802.11n je povećanje brzine prijenosa u WLAN mrežama
- maksimalna teorijska brzina prijenosa IEEE 802.11n je 600 Mbit/s
- koristi kanale širine 40 MHz, za razliku od kanala širine 20 MHz koliki se koriste u prijašnjim WLAN normama
- omogućena uporaba u pojasu od 2,4 GHz i 5 GHz
- glavna značajka koju je norma 802.11 n uvela je korištenje diverziti načina odašiljanja i prijama signala (diversity)
 - dvije ili više antena koriste se u svrhu poboljšanja kvalitete i korisnosti radijske veze

IEEE 802.11n modulacijske tehnike

- u normi 802.11 n koriste se slijedeće modulacijske tehnike koje u idealnom slučaju imaju navedene spektralne korisnosti:
 - BPSK (Binary Phase Shift Keying), 1 bit/s/Hz
 - QPSK (Quadrature Phase Shift Keying), 2 bit/s/Hz
 - 16-QAM (16 Quadrature Amplitude Modulation), 4 bit/s/Hz
 - 64-QAM (64 Quadrature Amplitude Modulation), 6 bit/s/Hz
- ovisno o propusnosti kanala, WLAN odašiljač i prijamnik sami odabiru koji modulacijski postupak će koristit
- ako su uvjeti u kanalu povoljni, koristit će se modulacijski postupak s većom spektralnom korisnošću, a ako su lošiji s manjom
- razlog za to je veća otpornost na pogrešku modulacijskog postupka s manjom spektralnom korisnošću

IEEE 802.11n modulacijske tehnike (nastavak)

- dijagrami prikazuju spektralnu korisnost pojedinog modulacijskog postupka i otpornost na pogrešku za neki odnos signal/šum
- veća spektralna korisnost = veća brzina = manja otpornost na pogrešku

IEEE 802.11n modulacijske tehnike (nastavak)

- norme IEEE 802.11 a, g i n koriste OFDM postupak multipleksiranja (Orthogonal Frequency Division Multiplexing)
- svaki podnosilac modulira se nekim od ranije navedenih modulacijskih postupaka, nakon čega se podnosioci primjenom inverzne brze Fourierove transformacije (IFFT) multipleksiraju unutar unaprijed određenog kanala
- svaki podnosilac zasebno nosi manje dio ukupne informacije koju želimo prenijeti, pa njegov gubitak lakše nadomještamo nego u slučaju da izgubimo cijelu informaciju
- ovakav postupak modulacije i multipleksiranja otporniji je na smetnje koje mogu nastati zbog propagacije signala kroz i oko zidova i namještaja, što je tipično za rad WLAN mreža
- u 20 MHz-nom kanalu smještaju se 64 podnosioca, a u 40 MHz-nom 128 podnosioca

IEEE 802.11n prostorni diverziti

- shema za opisivanje MIMO sustava u kojima su navedeni svi bitni parametri može se napisati u sljedećem obliku:
 - izraz oblika a × b : c u sebi sadrži tri parametra koja opisuju neki MIMO sustav
 - a = broj odašiljačkih antena
 - b = broj prijamnih antena
 - c = broj različitih sljedova podataka koji se prenose
 c ≤ min (a, b)
- primjer sustava 2×3:2 nam govori da sustav ima dvije odašiljačke i 3 prijamne antene kojima se prenose dva slijeda podataka
- najčešće korištene prijenosne sheme unutar 802.11n standarda su 2×2:2, 2×3:2 i 3×3:2
- dopuštena uporaba svih smislenih konfiguracija do 4×4:4

Izmjene na MAC sloju

- u 802.11n standardu potrebno je bilo uvesti izmjene u MAC sloju u svrhu povećanja brzine prijenosa
- uvedene su sljedeće izmjene:
 - skraćeno vrijeme između okvira
 - prikupljanje okvira
 - implicitni zahtjev potvrde bloka

Izmjene na MAC sloju (nastavak)

 skraćeno vrijeme između okvira, RIFS (Reduced Inter-Frame Space) u odnosu na SIFS (Standard Inter-Frame Space)

- idući stupanj je potpuno uklanjanje razmaka među okvirima
- postiže se brzina propusnosti do 370 Mbit/s

Izmjene na MAC sloju (nastavak)

- prikupljanje okvira
 - slanje više okvira u jednom prijenosu
 - smanjuje se vrijeme čekanja da prijenosni medij bude slobodan
- 2 tipa prikupljanja okvira
 - MSDU MAC Service Data Unit
 - MPDU MAC Protocol Data Unit

- implicitni zahtjev potvrde bloka
 - umjesto potvrde svakog okvira, potvrđuje se prijam cijelog bloka

IEEE 802.11n brzina prijenosa

- brzina prijenosa digitalnog komunikacijskog sustava općenito ovisi o modulacijskoj tehnici i širini kanala
- u WLAN-u primjenjuju se dvije širine kanala: 20 MHz i 40 MHz
- IEEE 802.11n omogućava uporabu obje širine kanala također uz četiri slijeda podataka uporabom prostornog divrzitija
- postoji nekoliko modova u kojima IEEE 802.11n može raditi:
 - LM (Legacy Mode) ekvivalentno a i g standardu
 - HT-Mode (High Throughput) uređaji mogu raditi s 20 MHz i 40 MHz
 širinom kanala uz prijenos od 4 slijeda podataka
 - Dvostruki LM 40 MHz širina kanala koji je sastavljen od dva kanala širine 20 MHz, paketi se šalju u IEEE802.11a formatu u svakom 20 MHz-nom kanalu
 - Gornji mod podaci se šalju gornjim podkanalom od 20 MHz unutar 40 MHz-nog kanala
 - Donji mod podaci se šalju donjim podkanalom od 20 MHz unutar 40 MHz-nog kanala

IEEE 802.11n brzina prijenosa (nastavak)

- s obzirom na prijenosnu shemu, širinu kanala (mod prijenosa) i korištenu modulaciju, 802.11n standard može imati maksimalne teorijske brzine od 6,5 Mbit/s do 600 Mbit/s
- najniža brzina postiže se uz jedan slijed podataka,
 20 MHz-nu širinu kanala i BPSK modulacijski postupak
- za ostvarenje najveće brzine prijenosa koristi se modulacijski postupak s najvećom korisnošću i omjerom koda od 5/6
- uz te uvjete brzina po jednom slijedu je teoretski jednaka 150 Mbit/s
- najviša brzina prijenosa postiže se uz četiri paralelna slijeda podataka,
 40 MHz-nu širinu kanala i 64-QAM modulacijski postupak

IEEE 802.11n brzina prijenosa (nastavak)

Broj slijedova podataka	Modulacijski postupak	Zaštitni bitovi/ ukupni bitovi	Brzina prijenosa [Mbit/s]			
			20 MHz-ni kanal		40 MHz-ni kanal	
			ZI: 800ns	ZI: 400ns	ZI: 800ns	ZI: 400ns
1	BPSK	1/2	6,50	7,20	13,50	15,00
1	QPSK	1/2	13,00	14,40	27,00	30,00
1	QPSK	3/4	19,50	21,70	40,50	45,00
1	16-QAM	1/2	26,00	28,90	54,00	60,00
1	16-QAM	3/4	39,00	43,30	81,00	90,00
1	64-QAM	2/3	52,00	57,80	108,00	120,00
1	64-QAM	3/4	58,50	65,00	121,50	135,00
1	64-QAM	5/6	65,00	72,20	135,00	150,00
2	BPSK	1/2	13,00	14,40	27,00	30,00
2	QPSK	3/4	39,00	43,30	81,00	90,00
2	16-QAM	3/4	78,00	86,70	162,00	180,00
2	64-QAM	5/6	130,00	144,40	270,00	300,00
3	BPSK	1/2	19,50	21,70	40,50	45,00
3	QPSK	1/2	39,00	43,30	81,00	90,00
3	16-QAM	3/4	117,00	130,70	243,00	270,00
3	64-QAM	5/6	195,00	216,70	405,00	450,00
4	64-QAM	5/6	260,00	288,90	540,00	600,00

ZI = zaštitni interval u OFDM-u

IEEE 802.11n prednosti i nedostaci

prednosti:

- velika teorijska brzina prijenosa (mnogo manja u praksi)
- kompatibilnost s prijašnjim standardima (a, b, g)
- uporaba 20 MHz-nih i 40 MHz-nih kanala
- rad na 2,4 GHz i 5 GHz

nedostaci:

- potreban je novi hardver
- za postizanje veće brzine potrebno je više od jedne antene, više predajnih i prijamnih lanaca (razlika u odnosu na 802.11g standard nije značajna)
- uporaba 40 MHz-nog kanala na 2,4 GHz nije često moguća zbog velike okupiranosti drugim sustavima koji koriste slobodni ISM pojas

Budućnost n-standarda

- IEEE 802.11n koristi većinu modernih sustava za modulaciju i prijenos podataka
- maksimalna podržana brzina je dovoljna za većinu primjena
- spektralna korisnost 64-QAM modulacijskog postupka predstavlja dobar omjer između otpornosti na pogreške i brzine prijenosa u uvjetima bolje razine signala u odnosu na šum
- širina kanala od 40 MHz je maksimum koji se može koristiti na 2,4 GHz
- moguće je proširenje kanala na frekvenciji od 5 GHz, ali to se još ne razmatra jer nema potrebe za povećanjem brzine
- trenutna verzija koja se primjenjuje je IEEE 802.11n-2009
- IEEE 802.11n predstavlja osnovu za WLAN mreže koja se neće temeljno mijenjati 10-ak godina, ako promatramo vrijeme potrebno za stvaranje standarda od prijedloga tog standarda

IEEE 802.11ac

IEEE 802.11ac

- norma odobrena u siječnju 2014.
- zahtjev za brzinom većom od 1 Gbit/s (maksimalno 6,93 Gbit/s)
- rad isključivo u pojasu 5 GHz, ali podržava rad u 2,4 GHz pojasu (kompatibilnost s 802.11n)
- širine kanala od 20 MHz do 160 MHz (80 MHz standardno)
- modulacijski postupci do 256-QAM
- više paralelnih sljedova podataka (do 8)
- više-korisnički MIMO (Multi-user MIMO)

IEEE 802.11ac

- primjer izgleda više-korisničkog MIMO sustava
- 4 slijeda podataka i 3 korisnika u istom sustavu

IEEE podnorme 802.11 grupe

- IEEE norma 802.11e definira uspostavu usluge zagarantirane kvalitete preko Wi-Fi mreža
- IEEE norma 802.11h unosi poboljšanja 802.11 MAC sloja i 802.11a fizičkog sloja za rad u licenciranom frekvencijskom području od 5 GHz u europskim zemljama
- **IEEE norma 802.11i** uvela je dodatna poboljšanja sigurnosnih karakteristika radijskih mreža korištenjem AES (*Advanced Encryption Standard*) sigurnosnog protokola
- IEEE norma 802.11p Wireless Access for the Vehicular Environment (WAVE) bavi se poboljšanjima osnovne norme za potrebe Intelligent Transportation Systems (ITS)
- IEEE norma 802.11r ili Fast BSS Transition (FT) omogućuje brzo i sigurno prekapčanje između baznih postaja za sustave koja se kreću velikom brzinom
- IEEE norma 802.11s bavi se dodavanjem *mesh* funkcionalnosti osnovnoj normi
- IEEE 802.11T ili projekt Wireless Performance Prediction (WPP) i pripadajuća radna grupa bave se metodama testiranja i mjerenja sustava

HiperLAN

Europska norma HiperLAN

- U Europi su razvijene HiperLAN/1 i HiperLAN/2 norme (High Performance Radio Local Area Network)
 - Koristi se frekvencijsko područje 5 GHz
 - Norme HiperLAN nisu kompatibilne s IEEE normom 802.11a
- HiperLAN/1 i HiperLAN/2 razvijene su unutar Europskog instituta za telekomunikacijske norme (ETSI, European Telecommunications Standards Institute) u okviru projekta BRAN (BRAN, Broadband Radio Access Network)

HiperLAN/1

- HiperLAN/1 prva je ETSI norma za WLAN:
 - podržava brzine prijenosa od 2 do 23 Mbit/s
 - radno područje frekvencija: 5150 5300 MHz
 - koristi uskopojasne modulacijske postupke
 - nije u komercijalnoj uporabi

Frekvencijsko područje	5150 – 5300 MHz		
Snaga	10 – 1000 mW		
Osjetljivost prijamnika	-50 do -70 dBm		
Broj kanala	5		
Širina pojasa	23,5294 MHz		
Maksimalna brzina korisnika	1,4 m/s (5 km/h)		
Modulacija	HBR – GMSK LBR – FSK		
Propusnost	HBR - 23,5294 Mbit/s LBR - 1,47060 Mbit/s		
Maksimalno trajanje vremenskog odsječka	1 ms		

HBR — High Bit Rate,

LBR — Low Bit Rate

HiperLAN/2

- HiperLAN/2 služi za pristup ATM (Asynchronous Transfer Mode), IP (Internet Protocol) i UMTS-mrežama (Universal Mobile Telecommunications System)
 - HiperLAN/2 namijenjen je i za fleksibilnu aplikaciju unutar poslovnih prostora i mjesta stanovanja osiguravajući pri tome multimedijski prijenos do 54 Mbit/s

HiperLAN/2 (nastavak)

- Norme HiperLAN/2 i IEEE 802.11a su na fizičkom sloju gotovo jednake
 - obje koriste OFDM tehnologiju i jednake brzine prijenosa
 - razlika je u višim slojevima mreže koji su u IEEE normi 802.11a
 prilagođeni Ethernet mrežama, a u normi HiperLAN/2 ATM mrežama,
 UMTS-u i dr.
- Glavna obilježja HiperLAN/2 mreže:
 - podržava nezavisno pridjeljivanje kvalitete usluge (QoS, Quality of Service) svakoj vezi
 - automatsko pridjeljivanje radnih frekvencija
 - podržava protokole za siguran rad (provjera vjerodostojnosti i šifriranje)
 - podržava protokole za mobilnost
 - rad neovisan o mreži i aplikaciji (primjeni)
 - podržava način rada s uštedom snage (power save)

Načela dodjele frekvencija za HiperLAN

- HiperLAN mreža ima implementiran postupak dinamičkog odabira frekvencije (DFS, Dynamic Frequency Selection)
 - Pomoću DFS mreža dinamički prilagođava rad lokalnim uvjetima interferencije
 - svakoj pristupnoj točki dodjeljuje se dinamički određena frekvencija (kanal) u smislu optimizacije iskorištenja kanala i smanjenja smetnji
 - HiperLAN ima mogućnost raspršenja odašiljačke snage na raspoloživi broj frekvencijskih kanala. Time se smanjuje mogućnost koncentriranja snage na jednom određenom kanalu, koji bi u tom slučaju djelovao kao izražena smetnja radu drugih sustava.

