Sequences of Functions

Defn: let E, E' be metric spaces. For n=1,2,3,..., let $f_n: E \to E'$ be a function. If $p \in E$, say the sequence $f_1,f_2,...$, converges in E'.

We say the sequence of huntiens fi, fz, fz,...
converges (on E) if $\forall p \in E$, $f_1(p)$, $f_2(p)$, $f_3(p)$,...

Converges. In this case, define

 $f(p) = \lim_{n \to \infty} f_n(p).$ We call f the limit function of $f_1, f_2, f_3...$ By $f_1, f_2, f_3...$ converges to f.

Write $f = \lim_{n \to \infty} f_n.$

Ex 1: $f_n: [o, (] \rightarrow \mathbb{R})$ defined by $f_n(x) = (1 - f_n)x = (n - f_n)x$ $f_n(x) = 0$ $f_2(x) = \frac{x}{2}$ $f_3(x) = \frac{2}{3}x$ $f_n(x) = \frac{x}{3}$ $f_n(x) = \frac{3}{4}x$ $f_n(x) = \frac{3}{4}x$ $f_n(x) = \frac{3}{4}x$

Defin: fi, fz, fz. .. converges uniformly tof if, given any E>0, there is some pos. int. N s.t. d'(f(p), fn(p)) < & whenever n>N, and for all pet

fn: lo,1] →R

Going back to to!: $f_n(x) = (1 - \frac{1}{n})x$.

Claim: $f_1, f_2, f_3 \rightarrow f$ uniformly on lo, 17.

of) Let E > 0. For each $n \in \mathbb{N}$, $\forall x \in \{0, 1]$ $|f_n(x) - f(x)| = |(1 - \frac{1}{n})x - x|$ $= |-\frac{1}{n}x| = \frac{1}{n}|x| \leq \frac{1}{n}$ So if $\mathbb{N} > \frac{1}{6}$, and $n > \mathbb{N}$, then $\forall x \in \{0, 1\}$, $|f_n(x) - f(x)| \leq -2 \leq .$

Claim. In $\xi \times 2$, $f_n: [0,1] \rightarrow \mathbb{R}$ $f_n(x) = x^n$ $f_1, f_2, f_3, dues not converge unihornly to <math>f$.

1 (1,1)
63
64

Unif canv on [0,1]means: $\forall \xi > 0$, $\exists N$ s.t. $\forall n$, $\forall x \in [0,1]$, $|x^n - f(x)| \leq \xi$. In particular, $\forall \xi > 0$, $\exists N$ rt. $\forall n > N$, $\forall x \in (0,1)$, $|x^n - o| \leq \xi$, ie.

x" < E

PF) Let $E = \frac{1}{2}$. Then $E = \frac{1}{2}$.

tixen. Show fi, fz, fz,... does canvege uniformly on [0, a] it of < 1