11. Hausaufgabe – Theoretische Grundlagen der Informatik 3

WS 2012/2013

Stand: 11.1.2013

Abgabe: 24.1.2013 in der Vorlesung

Für alle Aufgaben gilt: Solange in der Aufgabenstellung nichts anderes steht, erwarten wir zu jeder Antwort eine Begründung. Es genügt nicht, nur eine Formel zu schreiben ohne Begründung.

Hausaufgabe 1 5 Punkte

(i) Sei $\sigma = \{E\}$ die Signatur der Graphen und sei G ein endlicher Graph. Konstruieren Sie einen Satz $\varphi \in FO[\sigma]$, sodass für alle Graphen H gilt

$$H \models \varphi \Leftrightarrow G \cong H$$
.

Begründen Sie ihre Antwort.

(ii) Seien G_1, \ldots, G_k endliche Graphen. Zeigen Sie, dass die Klasse

 $\mathcal{C} = \{H : H \text{ ist } \sigma\text{-Struktur und isomorph zu einem Subgraphen von } G_i \text{ für ein } 1 \leq i \leq k\}$

endlich axiomatisierbar ist.

Hausaufgabe 2 5 Punkte

Sei $\sigma = \{<\}$. Zeigen Sie, dass es keine Menge Φ von $FO[\sigma]$ -Sätzen gibt, sodass $Mod(\Phi)$ genau die Klasse aller zu $(\mathbb{Q}, <)$ isomorphen Strukturen ist.

Hausaufgabe 3 5 Punkte

(i) Sei $\sigma=\{<\}$ und sei $T=\Phi^{\models}:=\{\varphi:\Phi\models\varphi\}$ die Theorie der linearen Ordnungen, wobei

$$\Phi := \{ \forall x \neg x < x, \ \forall x \forall y \forall z (x < y \land y < z \rightarrow x < z), \ \forall x \forall y (x < y \lor x = y \lor y < x) \}.$$

Zeigen oder widerlegen Sie, dass T eine vollständige Theorie ist.

(ii) Sei σ eine Signatur und $\mathcal A$ eine $\sigma\text{-Struktur}.$ Zeigen oder widerlegen Sie, dass

$$Th(\mathcal{A}) := \{ \varphi \in FO[\sigma] : \mathcal{A} \models \varphi \}$$

eine vollständige Theorie ist.

Hausaufgabe 4 5 Punkte

Sei σ eine relationale Signatur. Zeigen Sie, dass die Klasse der unendlichen σ -Strukturen axiomatisierbar ist. Zeigen Sie, dass diese Klasse nicht endlich axiomatisierbar ist.