Introduction to Audio Content Analysis

Module 8.3: Mood Recognition

alexander lerch

introduction

overview

corresponding textbook section

Chapter 8: Musical Genre, Similarity, and Mood (pp. 158–161)

lecture content

- introduction to emotion and mood
- models for mood
- linear regression

learning objectives

- describe Russel's arousal-valence plane
- discuss commonalities and differences between mood recognition and genre classification
- implement linear regression in Matlab

introduction

overview

corresponding textbook section

Chapter 8: Musical Genre, Similarity, and Mood (pp. 158–161)

lecture content

- introduction to emotion and mood
- models for mood
- linear regression

learning objectives

- describe Russel's arousal-valence plane
- discuss commonalities and differences between mood recognition and genre classification
- implement linear regression in Matlab

mood recognition introduction

- **objective**:identify mood/emotion of a song
- terminology
 - Music Mood Recognition and Music Emotion Recognition usually used synonymously
- processing steps (similar to genre and similarity tasks)
 - extract features
 - classify (possibly regression)

mood recognition introduction

- **objective**:identify mood/emotion of a song
- terminology:
 - Music Mood Recognition and Music Emotion Recognition usually used synonymously
- processing steps (similar to genre and similarity tasks)
 - extract features
 - classify (possibly regression)

mood recognition introduction

- **objective**:identify mood/emotion of a song
- terminology:
 - Music Mood Recognition and Music Emotion Recognition usually used synonymously
- processing steps (similar to genre and similarity tasks)
 - extract features
 - classify (possibly regression)

Georgia Center for Music Tech Technology
College of Design

What is the difference between mood and emotion

What is the difference between mood and emotion

- emotion:
 - temporary, evanescent
 - (directly) related to external stimuli
- mood:
 - longer term, stable
 - diffuse affect state

ground truth data

- verbalization of emotions/moods usually misleading
- not easily *quantifiable*/categorizable
- change over time?

research focus

- are established basic emotions (happiness, anger, fear, ...) representative for music perception
- aroused vs. transported moods?

ground truth data

- verbalization of emotions/moods usually misleading
- not easily *quantifiable*/categorizable
- change over time?

research focus

- are established *basic emotions* (happiness, anger, fear, ...) representative for music perception
- aroused vs. transported moods?

ground truth data

- verbalization of emotions/moods usually misleading
- not easily *quantifiable*/categorizable
- change over time?

research focus

- are established *basic emotions* (happiness, anger, fear, ...) representative for music perception
- aroused vs. transported moods?

mood recognition

classification into label clusters¹

Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5
Rowdy	Amiable/Good Natured	Literate	Witty	Volatile
Rousing	Sweet	Wistful	Humorous	Fiery
Confident	Fun	Bittersweet	Whimsical	Visceral
Boisterous	Rollicking	Autumnal	Wry	Aggressive
Passionate	Cheerful	Brooding	Campy	Tense/Anxious
		Poignant	Quirky	Intense
			Silly	

mood model, circumplex model²

¹X. Hu and J. S. Downie, "Exploring Mood Metadata: Relationships with Genre, Artist and Usage Metadata," in *Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)*, Vienna, 2007.

²J. A. Russel, "A Circumplex Model of Affect," Journal of personality and social psychology, vol. 39, no. 6, pp. 1161–1178, 1980, ISSN 1939-1315(Electronic):0022-3514(Print), DOI: 10.1037/b0077714.

models

classification into label clusters¹
 mood model, circumplex model²

1939-1315(Electronic):0022-3514(Print), DOI: 10.1037/h0077714.

AROUSAL

OUTPERS

EXCITEMENT

mood

¹X. Hu and J. S. Downie, "Exploring Mood Metadata: Relationships with Genre, Artist and Usage Metadata," in *Proceedings of the International Society for Music Information Retrieval Conference (ISMIR)*, Vienna, 2007.

results

² J. A. Russel, "A Circumplex Model of Affect," *Journal of personality and social psychology*, vol. 39, no. 6, pp. 1161–1178, 1980, ISSN:

mood recognition

Georgia Center for Music Tech College of Design

mood model: regression modeling

- mapping
 - (N-dimensional) observation (feature) to 2-dimensional coordinate (valence/arousal)
- training
 - find model to minimize error between data points and "prediction"

regression 000

linear regression

introduction to regression 1/2

Georgia Center for M Tech Technology **Center for Music** College of Design

• fit a linear function to a series of points (x_i, y_i)

$$y_n = m \cdot x_n + b$$

linear regression introduction to regression 2/2

Georgia Center for Music Technology

$$e_n^2 = (y_n - mx_n - b)^2$$

$$E = \sum (y_n - mx_n - b)^2$$

linear regression introduction to regression 2/2

Georgia Center for Music Technology

$$e_n^2 = (y_n - mx_n - b)^2$$

$$E = \sum (y_n - mx_n - b)^2$$

$$\frac{\partial E}{\partial b} = \sum -2(y_n - mx_n - b) = 0 \qquad \frac{\partial E}{\partial m} = \sum -2x_n(y_n - mx_n - b) = 0$$

linear regression

Georgia Center for Music Tech Technology

introduction to regression 2/2

$$e_n^2 = (y_n - mx_n - b)^2$$

$$E = \sum (y_n - mx_n - b)^2$$

$$\frac{\partial E}{\partial b} = \sum -2(y_n - mx_n - b) = 0$$

$$\frac{\partial E}{\partial m} = \sum -2x_n(y_n - mx_n - b) = 0$$

$$-2\sum y_n + 2\sum mx_n + 2\sum b = 0$$

$$-2\sum x_n y_n + 2\sum mx_n^2 + 2\sum bx_n = 0$$

linear regression introduction to regression 2/2

Georgia Center for Music Tech Technology

$$e_n^2 = (y_n - mx_n - b)^2$$

$$E = \sum (y_n - mx_n - b)^2$$

$$\frac{\partial E}{\partial b} = \sum -2(y_n - mx_n - b) = 0$$

$$-2\sum y_n + 2\sum mx_n + 2\sum b = 0$$

$$\sum mx_n + \sum b = \sum y_n$$

$$\frac{\partial E}{\partial m} = \sum -2x_n(y_n - mx_n - b) = 0$$

$$-2\sum x_ny_n + 2\sum mx_n^2 + 2\sum bx_n = 0$$

$$\sum mx_n^2 + \sum bx_n = \sum x_ny_n$$

linear regression introduction to regression 2/2

Georgia Center for Music Tech Technology

$$e_n^2 = (y_n - mx_n - b)^2$$

$$E = \sum (y_n - mx_n - b)^2$$

$$\frac{\partial E}{\partial b} = \sum -2(y_n - mx_n - b) = 0$$

$$-2\sum y_n + 2\sum mx_n + 2\sum b = 0$$

$$\sum mx_n + \sum b = \sum y_n$$

$$m\sum x_n + Nb = \sum y_n$$

$$m\sum x_n^2 + b\sum x_n = \sum x_n y_n$$

$$m\sum x_n^2 + b\sum x_n = \sum x_n y_n$$

models

 $e_n^2 = (v_n - mx_n - b)^2$

 $b = \frac{\sum y_n}{\sum x_n} - m \frac{\sum x_n}{\sum x_n}$

minimize error between model and data (here: least squares)

$$E = \sum (y_n - mx_n - b)^2$$

$$\frac{\partial E}{\partial b} = \sum -2(y_n - mx_n - b) = 0$$

$$\frac{\partial E}{\partial m} = 0$$

$$-2\sum y_n + 2\sum mx_n + 2\sum b = 0$$

$$\sum mx_n + \sum b = \sum y_n$$

 $m\sum x_n + \mathcal{N}b = \sum y_n$

mood

introduction to regression 2/2

$$\Rightarrow m = \frac{N \sum x_n y_n - \sum x_n \sum y_n}{N \sum x_n^2 - (\sum x_n)^2}$$

$$b = \frac{\sum y_n}{N} - m \frac{\sum x_n}{N}$$

regression

$$\frac{\partial E}{\partial m} = \sum -2x_n(y_n - mx_n - b) = 0$$

$$-2\sum x_n y_n + 2\sum mx_n^2 + 2\sum bx_n = 0$$

$$\sum mx_n^2 + \sum bx_n = \sum x_n y_n$$

$$m\sum x_n^2 + b\sum x_n = \sum x_n y_n$$

results

mood recognition

Georgia Center for Music Tech Techology

College of Design

- highly dependent on data
- 5 mood clusters: 40–60% classification rat
- mood model:
 0.1–0.4 absolute prediction error (unit circle

mood recognition

- highly dependent on data
- 5 mood clusters:
 - 40-60% classification rate
- mood model:
 - 0.1–0.4 absolute prediction error (unit circle)

summary

lecture content

- emotion and mood
 - emotion: temporary, related to external stimuli
 - mood: long term, diffuse affective state
- features
 - baseline features are identical to genre and similarity tasks
- inference
 - often done as regression (as opposed to classification)

