Question 6 : Convertir la durée de la question 5 en années. (1 s = 3,17 x 10⁻⁸ années). En déduire, sans calcul, la distance entre Andromède et la Terre en a.l.

Durée en s	1 s	0,76 x 10 ¹⁴ s
Durée en années	3,17 x 10 ⁻⁸ années	$3,17 \times 10^{-8} \times 0,76 \times 10^{14} = 2,4 \times 10^{6} \text{ années}$

La distance est de 2.4×10^6 années-lumière car 1 année-lumière est la distance parcourue par la lumière en 1 année.

<u>Question 7</u>: Après avoir converti les distances du document 3 en km, range les astres du plus proche du Soleil au plus éloigné.

Distance	distance
Soleil-Jupiter	$0.82 \times 10^{-4} \text{ a.l} = \frac{7.79 \times 10^8 \text{ km}}{10.000 \text{ km}}$
Soleil-Ruchbah	$627 \times 10^4 \text{ UA} = 9.4 \times 10^{14} \text{ km}$
Soleil-Terre	1,5 x 10 ⁸ km
Soleil-Caph	$54 \text{ a.l} = 5.13 \times 10^{14} \text{ km}$
Soleil-Uranus	$19,14 \text{ UA} = \frac{2,871 \times 10^9 \text{ km}}{100}$
Soleil-Vénus	1,08 x 10 ⁸ km

Soleil-Vénus < Soleil-Terre < Soleil-Jupiter < Soleil-Uranus < Soleil-Caph < Soleil-Ruchbah

<u>Exercice1</u>: Met en notation scientifique

 $36425 \text{ km} = 3,6425 \times 10^4 \text{ km}$

 $0.0063427 \text{ mm} = 6.3427 \times 10^{-3} \text{ mm}$

 $1\,000\,436\,227\,kg$ = 1, 000 436 $227\times10^9\,Kg$

 $3,68 L = 3,68 \times 10^{0} L$

 $6842 \text{ kV} = 6,842 \times 10^3 \text{ kV}$

 $0.044 \text{ mA} = 4.4 \times 10^{-2} \text{ mA}$

0,000634 Ω = 6,34 \times 10⁻⁴ Ω