(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

الإلاث

特開平7-56054

(43)公開日 平成7年(1995)3月3日

(51) Int.Cl.6

識別記号

庁内整理番号

FΙ

技術表示箇所

G02B 6

6/36 6/40 7139-2K

7139-2K

審査請求 未請求 請求項の数2 FD (全 4 頁)

(21)出願番号

特願平5-220607

(22)出願日

平成5年(1993)8月12日

(71)出顧人 000005186

株式会社フジクラ

東京都江東区木場1丁目5番1号

(72)発明者 小堀 資生

千葉県佐倉市六崎1440番地 株式会社フジ

クラ佐倉工場内

(72)発明者 菊地 佳夫

千葉県佐倉市六崎1440番地 株式会社フジ

クラ佐倉工場内

(72)発明者 平尾 秀夫

千葉県佐倉市六崎1440番地 株式会社フジ

クラ佐倉工場内

(74)代理人 弁理士 国平 啓次

(54) 【発明の名称】 光コネクタ用フェルールとその製造方法

(57) 【要約】

【目的】 光角型多心コネクタ用等のフェルールを成形により製造する場合、ファイバ穴12の位置高精度に保つ必要がある。ファイバ穴12は、金型の中にファイバ穴用ピン46を中型40として入れておき、後で抜き取って形成する。ところが、成形、離型を繰り返しているうちに、ファイバ穴用ピン46が変形して、ファイバ穴12が傾斜することがある。これを解決する。

【構成】 ファイバ孔用ピン46の基部462と前記窓用駒26との間に、成形材料の流れ込む隙間62を設ける 成形時、成形材料60が隙間62に回り込むと、キャピティ24の内圧が一定になり、ファイバ穴用ピン46の変形は起きない。したがって、フェルール10のファイバ穴12の傾斜がなくなる。なお、成形により、窓18内に薄板状の張出し部分15が残る(c)。しかしこれは窓18から適当な工具を入れて、折って除くことができる。

【特許請求の範囲】

ファイパ孔とそれに続くガイド溝を有 【請求項1】 し、かつ前記ガイド溝に向かって開いている窓を有する フェルールにおいて、前記窓内の前記ガイド溝の底から 離れた位置に、薄板状の張出し部分が設けられている、 光コネクタ用フェルール。

【請求項2】 端末形成具と、その先端において保持す るファイバ孔用ピンと、窓用駒とをキャピティ内に突出 させている金型を用いて、光コネクタ用フェルールを成 形するに際して、前記ファイバ孔用ピンの基部と前記窓 10 用駒との間に、成形材料の流れ込む隙間の設けてある金 型を用いて成形する、光コネクタ用フェルールの製造方 法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、光コネクタ用フェル ールとその製造方法に関するものである。

[0002]

【従来の技術】図4に、4心光ファイバテープ心線用の フェルールの一例を示す。(a)は斜視図、(b)は縦 20 断面図である。10はフェルールの全体、11はその本 体である。12はファイバ穴で、ここには、光ファイバ (ガラス部分)が入る。14はガイド溝で、ここには、 素線部分が入る。16は端末穴で、ここには、心線の被 覆部分が入る。18は窓で、接着剤を注入するためのも のであり、上記のガイド溝14に向かう位置に設けられ る。19,19はガイド穴である。

【0003】フェルール10は、プラスチックやセラミ ックス(プラスチックパインダ)のトランスファ成形や インジェクション成形により作られる。その成形に用い 30 る金形の一例を図5~7に示す。図5は分解斜視図、図 6は上型を除いた状態の平面図、図7は縦断立面図であ る。20は金型の全体を示す(図5,図7)。これは、 下型22と中型40と上型50とからなる。

【0004】[下型22について]24はキャビティ (図5では下半分だけ示されている)、26は窓用駒 で、フェルール10の窓18を形成するためのもの。他 に、U溝28、V溝30、V溝32を有する。

【0005】[中型40について]42はガイド穴用ピ ンで、フェルール10のガイド穴19を形成するための 40 もの。44は端末形成具である。その本体440は四角 厚板状で、フェルール10の端末穴16を形成する。そ の先端部442は、本体440の半分の厚さで、表面に 半丸溝が切ってある。この先端部442は、上記の窓用 駒26とともにフェルール10の窓18を形成する。4 6はファイパ穴用ピンで、その先端部460は、フェル ール10のファイバ穴12を形成する。またその基部4 62は少し太くなっていて、下半分が端末形成具44の 先端部442の丸溝に納まり、上半分がフェルール10 のガイド溝14を形成する。基部462の後部は、端末 50 み、キャピティ24の内圧が一定になっていれば、ファ

形成具44の本体440内にはまり込み保持されてい る。

【0006】 [上型50、金型の組立及び成形につい て] 上型50はスプルー52を有する。端末形成具44 の本体440を下型22のU溝28に納める(図6,図 7)。ファイパ穴用ピン46の先端部460はV溝32 に納まる。ガイド穴用ピン42をV溝30に納める。そ して上型50をかぶせる。そして、成形を行なう。成形 後、中型40を抜き取ると、フェルール10ができ上が る。金型を精度よく製作しておけば、ファイバ穴用ピン 46や端末形成具44に変形の無い限り、成形品である フェルールのファイバ穴12の位置が狂うことはない。 [0007]

【発明が解決しようとする課題】従来の金型において は、上記のように、ファイパ穴用ピン46の基部462 の後部は端末形成具44の本体440内にはまり込んで 保持されているが、基部462の前部は下半分が端末形 成具44の先端部442の丸溝に納まった状態になって いる(図7)。そのため、樹脂がキャピティ24内に注 入成形され、離型する工程を繰り返すと、図8のよう に、端末形成具44の先端部442とファイパ穴用ピン 46との隙間に成形材料60が侵入してくる。そうなる と、ファイバ穴用ピン46が変形し、結果として、形成 されるフェルール10のファイバ穴12が傾斜する。そ のようになると、フェルール接合面を研磨するにつれ て、ファイバ穴12がガイド穴19に対して偏心するこ とになり、性能上問題となる。

[0008]

【課題を解決するための手段】図1 (b) に例示するよ うに、ファイパ孔用ピン46の基部462と窓用駒26 との間に、成形材料の流れ込む隙間62を設ける。

【0009】この隙間62は、積極的に成形材料が充填 される寸法にする。図1 (b) の場合は、従来の端末形 成具44の先端部442を薄くして、ファイパ穴用ピン 46との間に隙間62を作るようにしている。あるい は、図2のように、端末形成具44の先端部442を全 部無くして、ファイパ穴用ピン46と窓用駒26との間 に隙間62を作るようにしてもよい。

【0010】上記の隙間62を有する金型20により成 形すると、図1 (c) のように、窓18内の、ガイド溝 14の底から離れた位置に、薄板状の張出し部分15が できた状態になる。

【0011】この張出し部分15は、フェルールを使用 する際、接着剤注入の邪魔になるので使用する前に、図 3のように、工具64の先端で本体11から断ち切るよ うにする。

[0012]

【発明の作用効果】成形時、金型20内に注入されてい る成形材料は粘度が低い。成形材料が隙間62に回り込

イバ穴用ピン46の変形は起きない。したがって、フェルール10のファイバ穴12が傾斜することはなく、コネクタの性能が向上し、製造歩留まりも高くなる。

【図面の簡単な説明】

17

【図1】本発明の実施例に係り、(a)は上型を除いた 状態の金型の平面図、(b)は金型の縦断面図、(c) は上記の金型により製造したフェルールの縦断面図。

【図2】本発明の金型の別例の説明図。

【図3】本発明のフェルールから張出し部分15を除く 方法の説明図。

【図4】従来のフェルールの説明図。

【図5】従来の金型の分解斜視図。

【図6】従来の金型の上型を除いた状態の平面図。

【図7】従来の金型の縦断立面図。

【図8】従来技術の問題点の説明図。

【符号の説明】

10 フェルール

11 本体

12 ファイパ穴

14 ガイド溝

15 張出し部分

16 端末穴

- 18 窓
- 19 ガイド穴
- 20 金型
- 22 下型
- 24 キャピティ
- 26 窓用駒
- 28 U溝
- 30,32 V溝
- 40 中型
- 10 42 ガイド穴用ピン
 - 44 端末形成具
 - 440 本体
 - 442 先端部
 - 46 ファイパ穴用ピン
 - 460 先端部
 - 462 基部
 - 50 上型
 - 52 スプルー
 - 60 成形材料
- 20 62 隙間
 - 64 工具

【図1】

4 4 0

【図2】

【図3】

[図4]

[図5]

【図6】

[図7]

