TD Matériaux semi-conducteurs

Objectifs

- Expliquer que les porteurs mobiles de charges dans un semi-conducteur se comportent essentiellement comme des particules classiques.
- Relier les densités de porteurs et de charges dans un semi-conducteur à son diagramme de bandes.

I Porteurs et particules classiques

Rappel : dans un matériau semi-conducteur, les électrons occupent des états stationnaires dont les valeurs possibles de l'énergie forment des bandes permises, séparées par des bandes interdites. À température nulle, le niveau de Fermi E_F est dans une bande interdite de largeur E_g . Comme illustré figure 1, l'énergie permise la plus basse possible au-dessus de E_F est notée E_c , c'est le niveau le plus bas d'une bande permise appelée bande de conduction (BC). L'énergie permise la plus haute possible en-dessous de E_F est notée E_v , c'est le niveau le plus haut d'une bande permise appelée bande de valence (BV).

Question 1 Quelles bandes sont pleines, quelles bandes sont vides, quelles bandes sont partiellement remplies (préciser si elles sont presque pleines ou presque vides), à température nulle et à température non nulle?

Réponse 1 La bande interdite est toujours vide : par définition, il n'y a pas d'état dont l'énergie soit dans cette bande. À température nulle, tous les niveaux d'énergie au-dessous de E_F sont occupés par un électron, et ceux au-dessus sont vides, donc la BV est pleine (ainsi que toutes les autres bandes permises au-dessous, dont il est inutile de se soucier) et la BC est vide (ainsi que toutes les autres bandes permises au-dessus, dont il est inutile de se soucier). À température non nulle, ce n'est plus vrai, l'agitation thermique fait passer quelques électrons dans des états d'énergie au-dessus de E_F , qui laissent « derrière eux » des trous : états inoccupés en-dessous de E_F . Donc la BC et la BV sont partiellement remplies à température non nulle : la BC est presque vide, la BV est presque pleine.

Question 2 (En leçon de groupe) Justifier que les électrons en bas de la BC peuvent satisfaire approximativement les propriétés suivantes, caractéristiques des particules classiques :

1. peu de contraintes sur la valeur de l'énergie, en particulier pas de quantification apparente;

FIGURE 1 – Diagramme de bandes d'un matériau semi-conducteur (non dopé).

- 2. énergie quadratique en la quantité de mouvement (à une constante additive près);
- 3. pour un ensemble de beaucoup de particules à l'équilibre avec un thermostat de température T, elles suivent la loi de Boltzmann : le nombre moyen de particules d'énergie E est en $\exp\left(-\frac{E}{k_BT}\right)$.

Réponse 2 On considère les électrons d'énergie $E \ge E_c$, avec $E - E_c$ faible.

Critère 1 (énergie peu contrainte). Dans un puits de potentiel les valeurs de l'énergie sont discrètes, dans 2 puits couplés elles se dédoublent, dans $N\gg 1$ puits il y en a tellement qu'elles sont très proches; la quantification ne se voit plus en pratique. De plus, les états de la BC sont peu occupés en moyenne, puisqu'on est au-dessus de E_F . Donc il y a beaucoup d'états disponibles, donc peu de contraintes liées au principe d'exclusion de Pauli.

Critère 2 (énergie quadratique). On a vu dans le TD sur les bandes d'énergie que E(k) était de tangente horizontale aux extrema des bandes, au voisinage de k=0. Donc en bas de la BC : $E(k) \simeq E_c + \frac{(\hbar k)^2}{2m_c}$ où m_c est la masse effective en bas de la BC ; et $\hbar k$ est la quantité de mouvement.

Critère 3 (**loi de Boltzmann**). À l'équilibre, le nombre moyen d'électrons par état d'énergie E suit la loi de Fermi-Dirac. Mais comme E_F est dans la bande interdite, $E - E_F \geqslant E_c - E_F \gg k_B T$ on peut l'approcher par :

$$f(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{k_B T}\right)} \simeq \frac{1}{\exp\left(\frac{E - E_F}{k_B T}\right)} \propto \exp\left(-\frac{E}{k_B T}\right).$$

II Densités de porteurs

On rappelle un résultat du cours : on peut calculer la densité n d'électrons dans la BC, et la densité p de trous dans la BV, en fonction de l'écart entre E_F , E_c et E_v (ainsi que la température et des constantes du matériau).

$$n = N_c \exp\left(\frac{E_F - E_c}{k_B T}\right) \tag{1}$$

$$p = N_v \exp\left(\frac{E_v - E_F}{k_B T}\right). \tag{2}$$

Question 3 Relier le produit $n \cdot p$ à E_g sous une forme qui ne dépend pas de E_F , E_c , E_v .

Réponse 3

$$n \cdot p = N_c N_v \exp\left(\frac{\cancel{E_F} - E_c + E_v - \cancel{E_F}}{k_B T}\right) = N_c N_v \exp\left(-\frac{E_g}{k_B T}\right)$$

Question 4 Si n_i est la valeur de n dans un semi-conducteur intrinsèque, justifier que : $n \cdot p = n_i^2$. Cette relation reste-t-elle valable pour un semi-conducteur dopé?

Réponse 4 Dans un semi-conducteur intrinsèque, les électrons de la BC proviennent de la BV par agitation thermique. Chaque électron a donc laissé un trou « derrière lui » dans la BV. Donc la densité de trous est égale à celle d'électrons : $p = n = n_i$, donc leur produit est bien égal à n_i^2 .

Dans un semi-conducteur dopé, n et p changent par rapport au cas intrinsèque (de fait, c'est le but du dopage), on n'a plus l'égalité n=p. Toutefois, on a vu que le produit $n \cdot p$ ne dépendait pas de E_F ; et le dopage, en pratique, ne change pas la structure de bandes, il n'agit que sur E_F . Donc la relation $n \cdot p = n_i^2$ reste valable!

Question 5 Ordres de grandeur. Pour le silicium, on donne : $E_g \simeq 1$ eV, $n_i \simeq 10^{16}$ m⁻³ à température ambiante ($k_BT \simeq 25 \cdot 10^{-3}$ eV). Quel est l'ordre de grandeur de N_c et N_v , en supposant que c'est le même pour les deux? Et en négligeant leur variation avec T, si T augmente de 20 %, que devient n_i (et quelle est la nouvelle température en °C?) Comparer à la densité du matériau lui-même (5 · 10^{28} atomes/m³).

Réponse 5 Explicitons l'expression de n_i à partir de $n \cdot p$:

$$\underbrace{n_i}_{10^{16} \text{ m}^{-3}} = \sqrt{n \cdot p} = \sqrt{N_c N_v} \underbrace{\exp\left(-\frac{E_g}{2k_B T}\right)}_{\approx 2 \cdot 10^{-9}}.$$

On en déduit que $\sqrt{N_c N_V} \simeq 5 \cdot 10^{24} \text{ m}^{-3}$, et si N_c et N_v sont du même ordre de grandeur, c'est $\sim 10^{25} \text{ m}^{-3}$. Si T augmente de 20 % (un cinquième, ce qui correspond à une température de ≈ 80 °C), l'exponentielle est multipliée par 28, donc : $n_i(T=360 \text{ K}) \simeq 3 \cdot 10^{17} \text{ m}^{-3}$.

Le matériau lui-même a une densité de $5\cdot 10^{28}$ m $^{-3}$ (se retrouve via la taille d'un atome $\sim 3\cdot 10^{-10}$ m, ou plus précisément via la densité et la masse atomique du silicium). Ça ne fait qu'un porteur pour plus de 10^{11} atomes à 300 K!

Question 6 On considère maintenant du silicium dopé N, avec une densité $N_D = 10^{22}$ m⁻³ de donneurs, que l'on considère tous ionisés à température ambiante. Calculer n et p en fonction de n_i et N_D et faire l'application numérique à température ambiante. Comparer aux valeurs pour le silicium intrinsèque. Remarquer que $p \neq 0$ mais justifier qu'on puisse négliger les trous.

Réponse 6 Les dopants sont tous ionisés, chacun donne 1 électron dans la BC. La densité n est donc imposée par N_D . (Stricto sensu les électrons s'ajoutent aux n_i provenant de l'agitation thermique, mais $N_D \gg n_i$ de 6 ordres de grandeur.)

$$n = N_D + n_i \simeq N_D = 10^{22} \text{ m}^{-3}.$$

Pour p, il suffit de passer par le produit $n \cdot p = n_i^2$:

$$p = \frac{n_i^2}{N_D} = 10^{10} \text{ m}^{-3}.$$

Il reste donc bien des trous dans le matériau $(p \neq 0)$ mais il y en a 10^{12} fois moins que d'électrons (1 par billion), et même 10^6 fois moins qu'il n'y en avait dans le matériau intrinsèque. On peut donc bien les négliger.

III Niveau de Fermi, diagramme de bandes

Question 7 Relier la position de E_F par rapport au milieu de la bande interdite au rapport $\frac{n}{n}$.

Réponse 7 On divise les équations (1) et (2) l'une par l'autre et on passe au logarithme :

$$\frac{n}{p} = \frac{N_c}{N_v} \exp\left(\frac{E_F - E_c - E_v + E_F}{k_B T}\right)$$

$$\ln\left(\frac{n}{p}\right) = \ln\left(\frac{N_c}{N_v}\right) + \frac{2E_F - (E_c + E_v)}{k_B T}$$

$$E_F - \frac{E_c + E_v}{2} = \frac{k_B T}{2} \left[\ln\left(\frac{n}{p}\right) - \ln\left(\frac{N_c}{N_v}\right)\right].$$

Question 8 En considérant toujours N_c et N_v du même ordre de grandeur, dessiner l'allure du diagramme de bandes (E_F, E_c, E_v) pour le silicium intrinsèque, et pour le silicium dopé N comme ci-dessus.

Réponse 8 Pour le silicium intrinsèque, $n=p=n_i$, donc : $\ln\left(\frac{n}{p}\right)=0$. D'autre part, si $N_c\sim N_v$, alors $\ln\left(\frac{N_c}{N_v}\right)$ ne vaudra pas plus de quelques unités en valeur absolue. Donc l'écart entre E_F et $\frac{E_c+E_v}{2}$ est de l'ordre de k_BT , faible devant le gap E_g . E_F est donc sensiblement au milieu de la bande interdite pour le silicium intrinsèque, on notera sa valeur E_i .

Pour le silicium dopé N, ce n'est plus le cas : $\frac{n}{p}=10^{12}$, $\ln\left(\frac{n}{p}\right)\simeq 28$. Le niveau E_F remonte de $14k_BT\simeq 0,35$ eV par rapport à E_i , inférieur au gap mais pas négligeable.

$$E_{g} \simeq 1 \text{ eV}$$

$$E_{F} = E_{i} \simeq \frac{E_{c} + E_{v}}{2}$$

$$E_{g} \simeq 1 \text{ eV}$$

IV Diagramme de bandes et densité de charges

À l'intérieur d'un composant électronique, on considère une zone de matériau semi-conducteur dopé, avec une densité de dopants $N_{\text{dopants}} \gg n_i$ uniforme. Le long d'un axe x, E_F sera constant (condition d'équilibre), mais E_c et E_v peuvent varier, notamment au voisinage d'une jonction avec une autre zone. Le diagramme de bandes a l'allure suivante :

Question 9 Vu le diagramme de bandes à gauche de x_1 , s'agit-il d'un matériau dopé N ou dopé P? Que valent les densités de porteurs n et p de ce côté, en fonction de n_i et N_{dopants} ?

Réponse 9 À gauche de x_1 , le niveau de Fermi est nettement plus proche de E_v que de E_c , donc c'est la situation inverse des questions ci-dessus : on a un dopage P. C'est la densité de trous qui est imposée par la densité de dopants, et la densité d'électrons s'en déduit via le produit $n \cdot p$:

$$p = N_{\text{dopants}}$$
 $n = \frac{n_i^2}{N_{\text{dopants}}}$.

Question 10 À droite de x_1 , comparer n, p et N_{dopants} . Lesquelles seront-elles négligeables devants d'autres? Les variations de n et p seront-elles abruptes ou progressives?

Réponse 10 n et p sont en $\exp\left(\frac{\pm E_F}{k_B T}\right)$, donc dès que l'écart entre E_F et les bandes permises change de quelques $k_B T$ (très petit à l'échelle de E_g), les densités varient très vite. Elles sont donc abruptes.

Dans toute la zone $x>x_1$, E_F reste plus écarté de E_c que de E_v , donc on gardera : $n\ll p$. D'autre part, E_F est aussi plus écarté de E_v qu'il ne l'est à gauche de x_1 , donc p est faible devant la valeur qu'il avait à gauche, c'est-à-dire $N_{\rm dopants}$. Au final :

$$n \ll p \ll N_{\text{dopants}}$$
.

Question 11 Dans ce matériau, quelle est la charge électrique des électrons, des trous, et des dopants? Au vu des questions 9 et 10, tracer l'allure de la densité de charge électrique selon x.

Réponse 11

- Électrons : -q.
- Trous : +q car ce sont des absences d'électrons dans la BV.
- Dopants : on a vu plus haut qu'ils étaient ionisés. Ici, comme on a un dopage P, ce sont des accepteurs qui ont capté un électron chacun. Ils ont donc une charge -q.

On a vu question 10 qu'à droite de x_1 les densités d'électrons et de trous étaient négligeables devant N_{dopants} , ce sont donc les dopants qui imposent la densité de charge : $\rho(x>x_1)=-qN_{\text{dopants}}$. En revanche, à gauche de x_1 , on a vu question 9 que : $p=N_{\text{dopants}}\gg n$. La charge des trous compense celle des dopants : $\rho(x< x_1)=0$. L'allure est donc simple à tracer :

