Algebra

D. Zack Garza

August 15, 2019

Contents

1	1 Lecture 1 (Thu 15 Aug 2019)			1
	1.1	Cyclic	Groups	2
	1.2	Homo	morphisms	3
	1.3	Direct	Products	3
	1.4	Finite	ly Generated Abelian Groups	3
	1.5	Funda	mental Homomorphism Theorem	4
		1.5.1	The First Homomorphism Theorem	4
		1.5.2	The Second Theorem	4
2	Lect	ure 2		4

1 Lecture 1 (Thu 15 Aug 2019)

Definition 1. > $\{\{\{\}\}\}\{\{\{\}\}\}\}\{\{\{\}\}\}\}$ A **group** is an ordered pair $(G, \cdot : G \times G \to G)$ where G is a set and \cdot is a binary operation, which satisfies the following axioms:

- Associativity: $(g_1g_2)g_3 = g_1(g_2g_3)$,
- Identity: $\exists e \in G \ni ge = eg = g$,
- Inverses: $g \in G \implies \exists h \in G \ni gh = gh = e$.

> {{{}}}}{{{{}}}}

Example 1.
$$> \{\{\{\}\}\}\{\{\{\}\}\}\{\{\{\}\}\}\}\}$$
 $- (\mathbb{Z}, +) - (\mathbb{Q}^{\times}, \times) - (\mathbb{R}^{\times}, \times) - (\mathbb{Z}, +) - (\mathbb{Q}^{\times}, \times) - (\mathbb{R}^{\times}, \times) - (\mathbb{Q}^{\times}, \times)$

Definition 2. $> \{\{\{\}\}\}\{\{\{\}\}\}\}$ A subset $S \subseteq G$ is a **subgroup** of G iff

- $1. \ s_1, s_2 \in S \implies s_1 s_2 \in S$
- $2. e \in S$
- $3. \ s \in S \implies s^{-1} \in S$
- > {{{}}}}{{{{}}}}

We denote such a subgroup $S \leq G$.

Examples of subgroups:

- $(\mathbb{Z},+) \leq (\mathbb{Q},+)$
- $SL(n,\mathbb{R}) \leq GL(n,\mathbb{R})$, where $SL(n,\mathbb{R}) = \{A \in GL(n,\mathbb{R}) \ni \det(A) = 1\}$

1.1 Cyclic Groups

Definition 3. $> \{\{\{\}\}\}\{\{\{\}\}\}\}\{\{\{\}\}\}\}$ A group G is **cyclic** iff G is generated by a single element.

> {{{}}}}{{{}}}

Exercise 1. $> \{\{\{\}\}\}\{\{\{\}\}\}\}\{\{\{\}\}\}\}$ Show $\langle g \rangle = \{g^n \ni n \in \mathbb{Z}\} \cong \bigcap \{H \leq G \ni g \in H\}.$

> {{{}}}}{{{}}}

Theorem 1. > $\{\{\{\}\}\}\{\{\{\}\}\}\}\{\{\{\}\}\}\}$ Let G be a cyclic group, so G(g).

- If $|G| = \infty$, then $G \cong \mathbb{Z}$.
- If $|G| = n < \infty$, then $G \cong \mathbb{Z}_n$.
- > {{{}}}}{{{}}}

Definition 4. > $\{\{\{\}\}\}\{\{\{\}\}\}\}\{\{\{\}\}\}\}$ Let $H \leq G$, and define a **right coset of** G by $aH = \{ah \ni H \in H\}$. A similar definition can be made for **left cosets**.

> {{{}}}}{{{}}}

Then $aH = bH \iff b^{-1}a \in G \text{ and } Ha = Hb \iff ab^{-1} \in H.$

Some facts:

- Cosets partition H, i.e. $b \notin H \implies aH \cap bH = \{e\}$.
- |H| = |aH| = |Ha| for all $a \in G$.

Theorem 2 (Lagrange). $> \{\{\{\}\}\}\{\{\{\}\}\}\}\{\{\{\}\}\}\}$ If G is a finite group and $H \leq G$, then $|H| \mid |G|$.

> {{{}}}}{{{{}}}}

Definition 5. > $\{\{\{\}\}\}\{\{\{\}\}\}\}\{\{\{\}\}\}\}$ A subgroup $N \leq G$ is **normal** iff gN = Ng for all $g \in G$, or equivalently $gNg^{-1} \subseteq N$. I denote this $N \leq G$.

When $N \leq G$, the set of left/right cosets of N themselves have a group structure. So we define

$$G/N = \{gN \ni g \in G\}$$
 where $(g_1N)(g_2N) = (g_1g_2)N$.

Given $H, K \leq G$, define $HK = \{hk \ni h \in H, k \in K\}$. We have a general formula,

$$|HK| = \frac{|H||K|}{|H \cap K|}.$$

1.2 Homomorphisms

Definition 6. > {{{}}}{{{}}}{{{}}}{{{}}}}{{{}}}{{{}}}} Let G, G' be groups, then $\varphi : G \to G'$ is a **homomorphism** if $\varphi(ab) = \varphi(a)\varphi(b)$.

Example 2. $> \{\{\{\}\}\}\{\{\{\}\}\}\}\{\{\{\}\}\}\}$

- $\exp: (\mathbb{R}, +) \to (\mathbb{R}^{>0}, \cdot)$ where $\exp(a+b) = e^{a+b} = e^a e^b = \exp(a) \exp(b)$.
- det: $(GL(n,\mathbb{R}),\times) \to (\mathbb{R}^{\times},\times)$ where det(AB) = det(A) det(B).
- Let $N \leq G$ and $\varphi G \to G/N$ given by $\varphi(g) = gN$.
- Let $\varphi: \mathbb{Z} \to \mathbb{Z}_n$ where $\phi(g) = [g] = g \mod n$ where $\mathbb{Z}_n \cong \mathbb{Z}/n\mathbb{Z}$

Definition 7. > $\{\{\{\}\}\}\{\{\{\}\}\}\}\{\{\{\}\}\}\}$ Let $\varphi: G \to G'$. Then φ is a **monomorphism** iff it is injective, an **epimorphism** iff it is surjective, and an **isomorphism** iff it is bijective.

1.3 Direct Products

Let G_1, G_2 be groups, then define

$$G_1 \times G_2 = \{(g_1, g_2) \ni g_1 \in G, g_2 \in G_2\}$$
 where $(g_1, g_2)(h_1, h_2) = (g_1h_1, g_2, h_2)$.

We have the formula $|G_1 \times G_2| = |G_1||G_2|$.

1.4 Finitely Generated Abelian Groups

Definition 8. > {{{}}}{{{}}}{{{}}}{{{}}}}{{{}}}{{{}}}} We say a group is **abelian** if G is commutative, i.e. $g_1, g_2 \in G \implies g_1g_2 = g_2g_1$.

Definition 9. > $\{\{\{\}\}\}\{\{\{\}\}\}\}\{\{\{\}\}\}\}$ A group is **finitely generated** if there exist $\{g_1, g_2, \dots g_n\} \subseteq G$ such that $G = \langle g_1, g_2, \dots g_n \rangle$.

This generalizes the notion of a cyclic group, where we can simply intersect all of the subgroups that contain the g_i to define it.

We know what cyclic groups look like – they are all isomorphic to \mathbb{Z} or \mathbb{Z}_n . So now we'd like a structure theorem for abelian finitely generated groups.

Theorem 3. $> \{\{\{\}\}\}\{\{\{\}\}\}\}\{\{\{\}\}\}\}$ Let G be a finitely generated abelian group. Then

$$G \cong \mathbb{Z}^r \times \prod_{i=1}^s \mathbb{Z}_{p_i^{\alpha_i}}$$

for some finite $r, s \in \mathbb{N}$ and p_i are (not necessarily distinct) primes.

Example 3. > $\{\{\{\}\}\}\{\{\{\}\}\}\}\{\{\{\}\}\}\}$ Let G be a finite abelian group of order 4. Then $G \cong \mathbb{Z}_4$ or \mathbb{Z}_2^2 , which are not isomorphic because every element in \mathbb{Z}_2^2 has order 2 where \mathbb{Z}_4 contains an element of order 4.

1.5 Fundamental Homomorphism Theorem

Let $\varphi: G \to G'$ be a group homomorphism and define $\ker \varphi = \{g \in G \ni \varphi(g) = e'\}$.

1.5.1 The First Homomorphism Theorem

Theorem 4. $> \{\{\{\}\}\}\{\{\{\}\}\}\}\{\{\{\}\}\}\}$ There exists a map $\varphi': G/\ker \varphi \to G'$ such that the following diagram commutes:

That is, $\varphi = \varphi' \circ \eta$, and φ' is an isomorphism onto its image, so $G/\ker \varphi = \operatorname{im} \varphi$. This map is give by $\varphi'(g(\ker \varphi)) = \varphi(g)$.

Exercise 2. $> \{\{\{\}\}\}\{\{\{\}\}\}\}\$ Check that φ is well-defined.

1.5.2 The Second Theorem

Theorem 5. > $\{\{\{\}\}\}\{\{\{\}\}\}\}\{\{\{\}\}\}\}$ Let $K, N \leq G$ where $N \subseteq G$. Then

$$\frac{K}{N\cap K}\cong \frac{NK}{N}$$

Proof. > {{{}}}{{{}}}{{{}}}{{{}}}}{{{}}}{{{}}}} Define a map $K \xrightarrow{\varphi} NK/N$ by $\varphi(k) = kN$. You can show that φ is onto by looking at ker φ ; note that $kN = \varphi(k) = N \iff k \in N$, and so ker $\varphi = N \cap K$.

2 Lecture 2