BASIC NUMBER THEORY: LECTURE 2

WENHAN DAI

1. Quadratic forms

Definition 1. A quadratic form on \mathbb{Z} is a function in two variables $f(x,y) = ax^2 + bxy + cy^2 \in \mathbb{Z}[x,y]$ with $a,b,c \in \mathbb{Z}$.

- (1) f(x,y) is called *primitive* if $(a,b,c) := \gcd(a,b,c) = 1$.
- (2) Two quadratic forms f(x, y) and g(x, y) are equivalent, denoted by $f(x, y) \sim g(x, y)$, if

$$\exists \begin{pmatrix} p & r \\ q & s \end{pmatrix} \in \mathrm{GL}_2(\mathbb{Z}), \quad g(x,y) = f\left((x,y)\begin{pmatrix} p & r \\ q & s \end{pmatrix}\right) = f(px + qy, rx + sy).$$

Moreover, they are properly equivalent if the matrix lies in $SL_2(\mathbb{Z})$.

- (3) An integer $m \in \mathbb{Z}$ is represented by f if there exist $x, y \in \mathbb{Z}$ such that f(x, y) = m. It is properly represented by f if moreover $(x, y) := \gcd(x, y) = 1$.
- Remark 2. (1) It can be proved that (proper) equivalence is actually an equivalence relation.
 - (2) Suppose $f \sim g$. Then they represent the same set of integers in \mathbb{Z} . Moreover, if this is a proper equivalence, then they properly represent the same set.

Lemma 3. A quadratic form f properly represents some integer m if and only if $f \sim mx^2 + Bxy + Cy^2$ for some $B, C \in \mathbb{Z}$.

Proof. The necessity is obvious as one may take x=1 and y=0. Conversely, suppose f(p,q)=m with some p,q satisfying (p,q)=1. Choose $r,s\in\mathbb{Z}$ with p,q given such that the matrix $\begin{pmatrix} p & q \\ r & s \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$. Then

$$f\left((x,y)\begin{pmatrix} p & q \\ r & s \end{pmatrix}\right) = f(px + ry, qx + sy) = f(p,q)x^2 + \underbrace{f(r,s)}_{P}y^2 + Cxy$$

for some $C \in \mathbb{Z}$ that is computable.

Definition 4. The discriminant of a quadratic form $f(x,y) = ax^2 + bxy + cy^2$ is

$$D(f) = b^2 - 4ac \equiv 0, 1 \mod 4.$$

Exercise 5. Check that if $g(x,y) = f\left((x,y)\begin{pmatrix} p & r \\ q & s \end{pmatrix}\right)$, then $D(g) = D(f)(ps - qr)^2$.

From this, we see whenever f is properly equivalent to g, then D(f) = D(g). Namely, the discriminant is a invariant under the proper equivalence.

Date: September 25, 2020.

The definition of discriminant together with Exercise 5 gives arise of a natural map

{proper equivalence classes of quadratic forms over \mathbb{Z} } \longrightarrow { $D \in \mathbb{Z} : D \equiv 0, 1 \mod 4$ }.

It is natural to ask for a formal converse of this map, even if it is not well-defined.

Lemma 6. Let $D \equiv 0, 1 \mod 4$ and m be an odd integer with (m, D) = 1. Then the following are equivalent.

- m is properly represented by some f with D(f) = D, and
- $(\frac{D}{m}) = 1$, i.e. D is a quadratic residue of m.

Proof. Supposing the first condition, by Lemma 3 we have $f \sim mx^2 + Bxy + Cy^2$ for some $B, C \in \mathbb{Z}$. Taking the discriminant, we have $D = D(f) = B^2 - 4mC \equiv B^2 \mod m$. Hence D is a quadratic residue modulo m. Conversely, say $D \equiv B^2 \mod m$ with m odd, then (replacing B' = B + 2m if necessary) $D \equiv B'^2 \mod 4m$ for some B'. Thus, there exists $C \in \mathbb{Z}$ such that $D = B'^2 - 4mC$ with $f \sim mx^2 + Bxy + Cy^2$.

Corollary 7. Let p be an odd prime with $p \nmid n$. Then p is represented by a primitive form f with discriminant D(f) = -4n if and only if

$$\left(\frac{-n}{p}\right) = 1.$$

Proof. First we observe that

$$\left(\frac{-4n}{p}\right) = \left(\frac{2}{p}\right)^2 \left(\frac{-n}{p}\right) = \left(\frac{-n}{p}\right).$$

So we are in the case of Lemma 6. Hence the equivalence goes to say p is represented by some f such that D(f) = D = -4n. Again, using Lemma 3, can choose $f = px^2 + B'xy + Cy^2$ with $B', C \in \mathbb{Z}$. Moreover, as p is odd and $p \nmid n$, we see (p, B', C) = 1 and the primitivity follows.

Definition 8. (1) A primitive quadratic form f(x, y) is positive definite if for all $(x, y) \in \mathbb{Z}$, f(x, y) > 0.

(2) A primitive positive definite form (ppdf) $ax^2+bxy+cy^2$ is called reduced if $|b| \le a \le c$ and $b \ge 0$ if either |b| = a or a = c.

Note from the definition that if f is a reduced ppdf, then D(f) < 0 and $D(f) \equiv 0, 1 \mod 4$. On the other hand, it turns out that the inverse of our desired map

$$\{D \in \mathbb{Z} : D \equiv 0, 1 \mod 4\} \longrightarrow \{\text{proper equivalence classes of quadratic forms over } \mathbb{Z}\}$$

is formally one-to-many. The main issue is that it is almost impossible to restrict the formal converse into a one-to-one map even if some conditions (like representing some integer m in Lemma 6) inserted. We are thus forced to rather consider

$$\{D\in\mathbb{Z}:D\equiv 0,1\bmod 4\}\longrightarrow \begin{cases} \text{families of proper equivalence classes of primitive} \\ \text{positive definite forms with discriminant } D \end{cases}$$

Moreover, using the reduced primitive positive definite forms, the representatives of each proper equivalence class can be chosen uniquely. See the following theorem.

Theorem 9. Each primitive positive definite form is properly equivalent to a unique reduced form.

Proof. We only sketch the idea of the proof in the most typical cases.

(1) Existence.

Suppose $f = ax^2 + bxy + cy^2$ is a ppdf, and then a, c > 0. Consider via the proper equivalence relation that

$$g(x,y) = f\left((x,y)\begin{pmatrix} 1 & 0 \\ m & 1 \end{pmatrix}\right) = f(x+my,y) = ax^{2} + (2am+b)xy + c'y^{2}$$

for some computable $c' \in \mathbb{Z}$. One can take each of the following two operations:

- (i) Choose some m such that $|2am + b| \le a$ and replace b with 2am + b. Hence we have $ax^2 + bxy + cy^2$ with $|b| \le a$.
- (ii) If a > c, use the change of variables

$$(x,y)\mapsto (y,-x)=\begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix} \quad \Rightarrow \quad ax^2+bxy+cy^2\mapsto cx^2-bxy+ay^2.$$

By swapping a and c, we get $a \leq c$.

After taking finitely many operators (i) and (ii), we get $ax^2 + bxy + cy^2$ with $|b| \le a \le c$ using $\mathrm{SL}_2(\mathbb{Z})$ -actions, i.e., via the proper equivalence. It remains to deal with the second condition in Definition 8(2). If $ax^2 + bxy + cy^2$ is still non-reduced, then either b < 0, -b = a or b < 0, a = c. For the former case, choose m = 1 in (i); for the latter case, use the transform $(x, y) \mapsto (-y, x)$. Then the existence follows.

(2) Uniqueness.

Suppose |b| < a < c. If $xy \neq 0$ then $f(x,y) \geqslant a + c - |b|$ and $\min\{x^2, y^2\} > \max\{a, c\}$, with $f(x,0) = ax^2$ and $f(0,y) = cy^2$. Thus, a is the smallest nonzero value of f and c is the next smallest nonzero value which is properly represented by f (which is still valid if $|b| \leq a < c$). They are reached via

$$f(x,y) = a \iff (x,y) = (\pm 1,0), \quad f(x,y) = c \iff (x,y) = (0,\pm 1).$$

Now suppose $f \sim g = a'x^2 + b'xy + c'y^2$ is reduced. Then a' is the smallest nonzero value of g, so a' = a. If a' = c' then $g(\pm 1, 0) = g(0, \pm 1) = c' = a$. However, f has only two ways to properly represent an integer, which leads to a contradiction. So a' < c', and $g(0, \pm 1) = c'$ is the next smallest nonzero value that is properly represented by g. We infer that c = c', and g(x, y) = c' with (x, y) = 1 if and only if $(x, y) = (0, \pm 1)$.

Again, we then suppose $g(x,y) = f\left((x,y)\begin{pmatrix} p & r \\ q & s \end{pmatrix}\right)$. Plugging conditions on a and c into this, we see

$$(\pm 1,0) = (\pm 1,0) \begin{pmatrix} p & r \\ q & s \end{pmatrix}, (0,\pm 1) \begin{pmatrix} p & r \\ q & s \end{pmatrix} = (0,\pm 1) \implies \begin{pmatrix} p & r \\ q & s \end{pmatrix} = \pm I_2.$$

This almost completes the proof, and the argument in remaining cases is left as an exercise.

2. Class number

Definition 10. For an integer D < 0 such that $D \equiv 0, 1 \mod 4$, define the *class number* h(D) to be the number of properly equivalent classes of primitive positive definite forms of discriminant D (or equivalently, by Theorem 9, the number of different reduced forms with discriminant D).

Theorem 11. For all $D \in \{D \in \mathbb{Z}_{\leq 0} : D \equiv 0, 1 \mod 4\}$, h(D) is finite.

Proof. By definition, we regard h(D) as the number of different reduced forms with discriminant D. For each reduced ppdf $f = ax^2 + bxy + cy^2$ with $D = D(f) = b^2 - 4ac$, the condition $|b| \leq a \leq c$ implies $D \leq -3a^2 \leq 0$. Hence for a fixed D, there are only finitely many possibilities of a, and hence finitely many choices of b. The value of c is totally determined whenever a, b, D are given.

The following table lists out some numerical results for the cases where $D(x^2 + ny^2) = -4n$.

D	h(D)	Reduced forms
-4	1	$x^2 + y^2$
-8		$x^2 + 2y^2$
-12	1	$x^2 + 3y^2$
-20	2	$x^2 + 5y^2$, $2x^2 + 2xy + 3y^2$
-28	1	$x^2 + 7y^2$
-56	4	$x^2 + 14y^2$, $2x^2 + 7y^2$, $3x^2 \pm 2xy + 5y^2$
-108	3	$x^2 + 27y^2, \ 4x^2 \pm 2xy + 7y^2$
-256	4	$x^2 + 64y^2$, $4x^2 + 4xy + 17y^2$, $5x^2 \pm 2xy + 13y^2$

Theorem 12. Suppose $n \in \mathbb{Z}_{>0}$. Then h(-4n) = 1 if and only if $n \in \{1, 2, 3, 4, 7\}$.

Remark 13. More generally, given $D \in \mathbb{Z}_{<0}$ that $D \equiv 0, 1 \mod 4$, then h(D) = 1 if and only if

$$D \in \{-4, -8, -12, -16, -28\} \cup \{-3, -7, -11, -19, -27, -43, -67, -143\}.$$

For a given negative integer D, we will associate an order of discriminant D in $K = \mathbb{Q}(\sqrt{D})$. In particular, \mathcal{O}_K is the maximal order.

School of Mathematical Sciences, Peking University, 100871, Beijing, China $\it Email\ address$: daiwenhan@pku.edu.cn