פרוייקט 2 - שדות וגלים אלקטרומגנטיים

<u>חלק א'</u>

<u>'סעיף א</u>

$$\vec{\mathbf{E}} = \begin{pmatrix} A_p \\ A_s e^{j\delta} \end{pmatrix} e^{j(\omega t - \vec{k} \cdot \vec{r})}$$

כפי שראינו בתרגול, כיוון \hat{s} הוא הכיוון בו השדה החשמלי מאונך למישור הפגיעה (TE) וכיוון \hat{p} הוא הכיוון בו השדה החשמלי מקביל למישור הפגיעה (TM).

הקיטוב של הגל הוא סופרפוזיציה של שני הכיוונים האלו, כלומר נפרק את הגל לרכיב בכיוון \hat{p} ולרכיב של הגל הוא סופרפוזיציה של שני הכיוונים האלו, כאשר A_s ו ו- A_p אמפליטודות הגל בכיוונים המתאימים. בכיוון \hat{s} וכך נקבל את השדה בצורה הנתונה, בין שני הגלים בכיוונים שצוינו לעיל.

 $\delta = 0, \pi$ קיטוב לינארי יתקבל עבור

 $A_p=A_s$ קיטוב מעגלי ימני יתקבל עבור א $\delta=-rac{\pi}{2}$ ו- $\delta=-rac{\pi}{2}$ קיטוב מעגלי ימני יתקבל עבור

$$.\delta = \frac{\pi}{2}$$

קיטוב אליפטי יתקבל במקרה הכללי עבור ערכים אחרים.

<u>'סעיף ב</u>

:עבור B = 4 ו-A = 9 נקבל

$$A_p = A_s = 4, \delta = -\frac{\pi}{2}$$

והשדה יהיה:

$$\vec{E} = \begin{pmatrix} 4 \\ 4e^{-\frac{j\pi}{2}} \end{pmatrix} e^{j(\omega t - \vec{k} \cdot \vec{r})}$$

כפי שראינו לעיל, קיבלנו קיטוב מעגלי ימני.

<u>'סעיף ג</u>

```
def fieldDirection(t, w):
    Ep = 4*cos(w*t)
    Es = 4*cos(w*t-math.pi/2)
    return (Ep,Es)
```

<u>'סעיף ד</u>

:בבחירת נקבל
$$t \in \{0,1,2,3\}$$
 sec-ו $\omega = 1 \frac{rad}{sec}$ נקבל

<u>'סעיף ה</u>

כפי שהראינו בסעיף ב', ציפינו לקבל קיטוב מעגלי ימני. במערכת הצירים שהצגנו בתרגול (עבור הציר $\omega=1rac{rad}{sec}$ ונקבל שקיטוב ימני משמעו סיבוב נגד כיוון השעון. עבור \hat{p} נצפה שבכל שנייה הקיטוב יתקדם radian אחד נגד כיוון השעון, כפי שניתן לראות בגרפים שהתקבלו.

<u>חלק ב'</u>

<u>'סעיף א</u>

נסמן, כמו בתרגול:

. קורדינטות מיקום -
$$oldsymbol{u} = \begin{pmatrix} u \\ v \end{pmatrix}$$

. קורדינטות מיקום במישור
$$z$$
 אחרי מיקום החלון - $x = \begin{pmatrix} x \\ y \end{pmatrix}$

בנוסף, מתקיים:

$$|\mathbf{u}| = \sqrt{u^2 + v^2}$$
 $|\mathbf{x}| = \sqrt{x^2 + y^2}$

קיימים שני קירובים לשימוש בנוסחה לעקיפת פראונהופר:

.1 הקירוב הפראקסיאלי (קירוב זוויות קטנות) -
$$\frac{|u|}{z} \ll 1$$
 . 1. הקירוב הפראקסיאלי

$$|u|_{max} \ll \sqrt{2\lambda z}$$
 קירוב נוסף של .2

<u>'סעיף ב</u>

כפי שראינו בתרגול, הנוסחה לעקיפת פראונהופר היא:

$$E(\boldsymbol{x}, z) = \frac{j}{\lambda z} e^{-jk_0 z} e^{-\frac{jk_0}{2z}x^2} \int E(\boldsymbol{u}, 0) e^{j2\pi \frac{x \cdot \boldsymbol{u}}{2\lambda}} d^2 \boldsymbol{u}$$

כמו כן, בשימוש בביטויים המבוקשים:

$$E(x,z) = \frac{j}{\lambda} E_{sphere}(x,z) S\left(\frac{x}{\lambda z}\right)$$

:כאשר

$$E_{sphere}(x,z) = \frac{1}{z}e^{-jk_0z}e^{-\frac{jk_0}{2z}x^2}$$

$$S(\mathbf{v}) = \int E(\mathbf{u}, 0) e^{j2\pi\mathbf{v}\cdot\mathbf{u}} d^2\mathbf{u}$$

<u>'סעיף ג</u>

B = 4, A = 9 נקבל:

<u>'סעיף ד</u>

החלון שקיבלנו יהיה עיגול שקוף (פונקציית ההעברה T היא 1 בתוכו), בעל רדיוס 500 מיקרון, ומרכזו בראשית.

```
<u>'סעיף ה</u>
```

```
def circle(u,v):
    R = 500
    phi = math.arctan(v/u)
    r = math.sqrt(u**2 + v**2)
    if (r <= R):
        return 1
    else:
        return 0</pre>
```

<u>'סעיף ו</u>

```
for i in range(len(U)):
    for j in range(len(U[i])):
        u = U[i][j]
        v = V[i][j]

T[i][j] = circle(u,v)
```

<u>'סעיף ז'</u>

 $E_0 = 1 * T$

<u>'סעיף ט</u>

<u>'סעיף י</u>

```
E = (j/wave_length) * E_sphere * S
```

<u>סעיף י"ב</u>

