Normalização

Banco de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri

Dependência Funcional

- → Um atributo B de um esquema de relação R é <u>funcionalmente dependente</u> de um outro atributo A de R se um valor para A <u>determina um único valor para B em</u> qualquer momento.
- → Se B é <u>funcionalmente dependente</u> de A, então A determina funcionalmente B.
- ♦ Notação: A → B

Dependência Funcional

relaçãoR (atributoA, atributoB, atributoC) atributo A → atributo B


```
cliente (<u>nro_cliente</u>, nome, endereço}
nro_cliente → {nome, endereço}
```



```
pp (<u>nro_pedido</u>, <u>nro_peça</u>, <u>qtidade_comprada</u>, <u>preço_cotado</u>} {nro_pedido, nro_peça} → {qtidade_comprada, preço_cotado}
```


Dependência Multivalorada

- → Um atributo B de um esquema de relação R é <u>multidependente</u> de um outro atributo A de R se um valor para A é associado a uma coleção específica de valores para B, independentemente de qualquer valor que um terceiro atributo C de R possa assumir
- ★ Se B é <u>multidependente</u> de A, então A <u>multidetermina</u> B
- ♦ Notação: A → → B

Dependência Multivalorada

relaçãoR (atributoA, {atributoB}, {atributoC})

independentemente dos valores do atributo C

Normalização

- → Processo de normalização:
 - inicia com um esquema de relação ou coleção de esquemas de relação
 - produz uma nova coleção de esquemas de relação
 - equivalente à coleção original (representa a mesma informação)
 - livre de problemas

Normalização por Decomposição

- → Propriedades
 - junção sem perda ou junção não aditiva
 - garante que o problema de tuplas ilegítimas não ocorra nos esquemas de relação criados após a decomposição
 - preservação da dependência
 - garante que cada dependência funcional será representada em algum esquema de relação individual resultante da decomposição

Primeira Forma Normal (1FN)

- → Uma relação R está na 1FN se:
 - todo valor em R for <u>atômico</u>
 - > ou seja, R não contém nenhum grupo de repetição/dependência multivalorada
- **→** Considerações:
 - geralmente considerada parte da definição formal de uma relação
 - não permite atributos multivalorados,
 compostos ou suas combinações
 - um único grupo de repetição

Método para Corrigir o Problema

♦ Passos

- gerar uma nova relação contendo o grupo de repetição e a chave primária da relação original
- determinar a chave primária da nova relação, a qual será a concatenação do atributo chave primária da relação original com o atributo chave para o grupo de repetição

- → Dependências funcionais
 - nro emp → nome emp
- → Dependências multivaloradas
 - nro_emp → → projeto (nro_proj, nome_proj)
- → Solução
 - emp (<u>nro_emp</u>, nome_emp)
 - emp proj (nro emp, nro proj, nome proj)

Segunda Forma Normal (2FN)

- → Uma relação R está na 2FN se:
 - está na 1FN
 - não existe <u>atributo não chave</u> que é dependente de somente uma parte da chave primária
 - > dependência funcional total

Segunda Forma Normal (2FN)

- → Método para corrigir o problema:
 - para cada sub-conjunto do conjunto de atributos que constitui a chave primária, começar uma relação com esse sub-conjunto como sua chave primária
 - incluir os atributos da relação original na relação correspondente à chave primária apropriada, isto é, colocar cada atributo junto com a coleção mínima da qual ele depende, atribuindo um nome a cada relação

emp_proj (nro_emp, nro_proj, nome_proj)

- → Dependências funcionais
 - nro_emp →
 - nro_proj → nome_proj
 - {nro_emp, nro_proj} →
- → Solução
 - emp (nro emp, ...) relação já existente
 - proj (<u>nro proj</u>, nome proj)
 - emp_proj (nro_emp, nro_proj)

Terceira Forma Normal (3FN)

- → Uma relação R está na 3FN se:
 - está na 2FN
 - não existem <u>atributos não chave</u> que sejam dependentes de outros <u>atributos não chave</u>
 (determinante não chave)
 - >dependência transitiva

Terceira Forma Normal (3FN)

- → Método para corrigir o problema:
 - para cada determinante que não é uma chave candidata, remover da relação os atributos que dependem desse determinante
 - criar uma nova relação contendo todos os atributos da relação original que dependem desse determinante
 - tornar o determinante a chave primária da nova relação

```
cliente (<u>nro_cliente</u>, nome_cliente, nro_vendedor, nome_vendedor)
```

- → Dependências funcionais
 - nro_cliente → {nome_cliente, nro_vendedor, nome_vendedor}
 - nro_vendedor → nome_vendedor
- → Solução
 - cli (<u>nro_cliente</u>, nome_cliente, nro_vendedor)
 - vend (nro vendedor, nome vend)

Quarta Forma Normal (4 FN)

- → Uma relação R está na 4FN se:
 - todo valor em R for <u>atômico</u>
 - > ou seja, R não contém nenhum grupo de repetição/dependência multivalorada
- **→** Considerações:
 - geralmente considerada parte da definição formal de uma relação
 - não permite atributos multivalorados,
 compostos ou suas combinações
 - vários grupos de repetição

Quarta Forma Normal (4FN)

- → Método para corrigir o problema
 - para cada grupo de repetição separado, gera-se uma nova relação correspondente contendo este grupo de repetição e a chave primária da relação original
 - determinar a chave primária da nova relação, a qual será a concatenação da chave primária da relação original com a chave para o grupo de repetição

→ Dependências funcionais

→ Dependências multivaloradas

```
nro_vend \rightarrow cliente {nro_cli, nome_cli}
```

nro_vend
$$\rightarrow \rightarrow$$
 filho {nome_filho, parentesco}

- → Solução
 - vendedor (<u>nro_vend</u>, nome_vend)
 - vendCli (nro_vend, nro_cli, nome_cli)
 - vendFilho (nro vend, nome filho, parentesco)