Dynamic Programming II

Inge Li Gørtz

Dynamic Programming

- Optimal substructure
- Last time
 - Weighted interval scheduling
 - Segmented least squares
- Today
 - Sequence alignment
 - Shortest paths with negative weights

- How similar are ACAAGTC and CATGT.
- Align them such that
 - all items occurs in at most one pair.
 - no crossing pairs.
- Cost of alignment
 - gap penalty δ
 - mismatch cost for each pair of letters α(p,q).
- Goal: find minimum cost alignment.

• Subproblem property.

- SA(X_i,Y_j) = min cost of aligning strings X[1...i] and Y[1...j].
- Case 1. Align x_i and y_j.
 - Pay mismatch cost for x_i and y_j + min cost of aligning X_{i-1} and Y_{j-1} .
- Case 2. Leave x_i unaligned.
 - Pay gap cost + min cost of aligning X_{i-1} and Y_j.
- Case 3. Leave y_j unaligned.
 - Pay gap cost + min cost of aligning X_i and Y_{j-1}.

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$SA(X_i, Y_j) = \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases}$$
 otherwise

	Α	С	Α	Α	G	Т	С	
С								$\delta = 1$
Α								O = 1
Т					+			$SA(X_5, Y_3)$
G								
Т								

	А	С	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$SA(X_i, Y_j) = \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases}$$
 otherwise

	А	С	А	Α	G	Т	С	
С								$\delta = 1$
Α								O = 1
Т					4			$SA(X_5, Y_3)$
G								Depends on ?
Т								

	А	С	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$SA(X_i, Y_j) = \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases}$$
 otherwise

	А	С	А	Α	G	Т	С	
С								$\delta = 1$
Α								O = I
Т					4			$SA(X_5, Y_3)$
G								Depends on ?
Т								

	А	С	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$SA(X_i, Y_j) = \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases}$$
 otherwise

		Α	С	Α	Α	G	H	С
	0	1	2	3	4	5	6	7
С	1							
Α	2							
Т	3							
G	4							
Т	5							

	Α	С	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

$$SA(X_i, Y_j) = \begin{cases} j\delta \\ i\delta \end{cases}$$

$$\min \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases}$$

$$if i = 0$$

$$if j = 0$$

otherwise

		Α	С	Α	Α	G	Τ	С
	0	1	2	თ	4	5	6	7
С	1							
Α	2							
Т	3							
G	4							
Т	5							

	Α	О	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$SA(X_i, Y_j) = \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases}$$
 otherwise

		Α	С	Α	Α	G	Τ	С
	0	1	2	თ	4	5	6	7
С	1	1						
Α	2							
Т	3							
G	4							
Т	5							

	Α	О	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$\min \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases} \text{ otherwise}$$

min(0+1, 1+2, 1+1)

		Α	С	Α	Α	G	Τ	С
	0	1	2	თ	4	5	6	7
С	Τ-	1						
Α	2							
Т	3							
G	4							
Т	5							

	Α	С	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$SA(X_i, Y_j) = \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases}$$
 otherwise

		А	С	Α	А	G	Т	С
	0	1	2	3	4	5	6	7
С	٦-	1	1					
Α	2							
Т	3							
G	4							
Т	5							

	Α	О	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$SA(X_i, Y_j) = \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases}$$
 otherwise

		Α	С	Α	Α	G	Т	С
	0	1	2	3	4	5	6	7
С	1	1	1					
Α	2							
Т	3							
G	4							
Т	5							

	Α	O	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$SA(X_i, Y_j) = \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases}$$
 otherwise

		А	С	А	Α	G	Τ	С
	0	1	2	3	4	5	6	7
С	1	1	1	2				
Α	2							
Т	3							
G	4							
Т	5							

	Α	С	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$SA(X_i, Y_j) = \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases}$$
 otherwise

		А	С	А	А	G	Т	С
	0	1	2	3	4	5	6	7
С	1	1	1	2				
Α	2							
Т	3							
G	4							
Т	5							

	Α	С	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$SA(X_i, Y_j) = \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), & \text{otherwise} \\ \delta + SA(X_i, Y_{j-1}), & \text{otherwise} \end{cases}$$

		Α	С	А	Α	G	Τ	С
	0	1	2	3	4	5	6	7
С	1	1	1	2	3			
Α	2							
Т	3							
G	4							
Т	5							

	Α	С	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$SA(X_i, Y_j) = \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases}$$
 otherwise

		А	С	А	А	G	Т	С
	0	1	2	3	4	5	6	7
С	1	1	1	2	3	4		
Α	2							
Т	3							
G	4							
Т	5							

	А	О	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$SA(X_i, Y_j) = \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), \\ \delta + SA(X_i, Y_{j-1}), \\ \delta + SA(X_{i-1}, Y_j) \end{cases}$$
 otherwise

		Α	С	Α	Α	G	H	С
	0	1	2	3	4	5	6	7
С	1	1	1	2	3	4	5	6
Α	2	1	2	1	2	3	4	5
Т	3	2	3	2	3	3	3	4
G	4	3	4	3	4	3	4	5
T	5	4	5	4	5	4	3	4

	Α	O	G	Т
Α	0	1	2	2
С	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

```
SA(X[1...m], Y[1...n], \delta, A)
 for i=0 to m
   M[i,0] := i\delta
 for j=0 to n
   M[0,j] := j\delta
 for i=1 to m
   for j = 1 to n
    M[i,j] := min\{ A[i,j] + M[i-1,j-1],
                        \delta + M[i-1,j],
                        \delta + M[i, j-1]
 Return M[m,n]
```

• Time: ⊖(mn)

• Space: Θ(mn)

Sequence alignment: Finding the solution

$$SA(X_i, Y_j) = \begin{cases} j\delta & \text{if } i = 0\\ i\delta & \text{if } j = 0 \end{cases}$$

$$SA(X_i, Y_j) = \begin{cases} \alpha(x_i, y_j) + SA(X_{i-1}, Y_{j-1}), & \text{otherwise} \\ \delta + SA(X_i, Y_{j-1}), & \text{otherwise} \\ \delta + SA(X_{i-1}, Y_j) \end{cases}$$

	Α	C	G	Τ
Α	0	1	2	2
C	1	0	2	3
G	2	2	0	1
Т	2	3	1	0

		А	С	Α	Α	G	Т	С
	0	1	2	3	4	5	6	7
С	٦-	1	1	2	3	4	5	6
Α	2	1	2	1	2	3	4	5
Т	3	2	3	2	3	3	3	4
G	4	3	4	3	4	3	4	5
Т	5	4	5	4	5	4	3	4

		Α	С	Α	Α	G	Т	С
		←	←	←	↓	↓	\	←
С	1	ζ,	Γ,	←		←	←	7
Α	1	~	~	ζ,	~	←	←	←
Т	1	1	1	1	Γ,	<	~	←
G	1	1	~	1	<u></u>	Γ,	~	~
Т	1	1	1	1	~	1	Γ,	←

- Use dynamic programming to compute an optimal alignment.
 - Time: ⊖(mn)
 - Space: Θ(mn)
- Find actual alignment by backtracking (or saving information in another matrix).
- Linear space?
 - Easy to compute value (save last and current row)
 - How to compute alignment? Hirschberg. (not part of the curriculum).

Shortest paths

Shortest Paths

- All-Pairs Shortest Path Problem (APSP)
 - Given directed weighted graph G=(V,E).
 - Weights of edges c_{ij} are real numbers (might be negative).
 - Let n = |V| and m = |E|.
 - Weight of a path is the sum of the weights on its edges.
 - · Goal: Compute the shortest path for from node s to node t.

Shortest Paths

- All-Pairs Shortest Path Problem (APSP)
 - Given directed weighted graph G=(V,E).
 - Weights of edges c_{ij} are real numbers (might be negative).
 - Let n = |V| and m = |E|.
 - Weight of a path is the sum of the weights on its edges.
 - · Goal: Compute the shortest path for from node s to node t.

Shortest Paths

- All-Pairs Shortest Path Problem (APSP)
 - Given directed weighted graph G=(V,E).
 - Weights of edges c_{ij} are real numbers (might be negative).
 - Let n = |V| and m = |E|.
 - Weight of a path is the sum of the weights on its edges.
 - · Goal: Compute the shortest path for from node s to node t.

Failed attempts

Dijkstra

Re-weighting

Observations

• Negative cycle. If some path from s to t contains a negative cost cycle, then there does not exist a shortest s-t path. Otherwise, there exists one that is simple.

• Optimal substructure. Subpaths of shortest paths are shortest paths

Recurrence

- OPT(i,v) = length of shortest v-t path P using at most i edges.
 - Case 1: P uses at most i-1 edges.

Case 2: P uses exactly i edges.

$$OPT(i,v) = \begin{cases} 0 & \text{if } i = 0 \\ \min\{OPT(i-1,v), \min_{(v,w) \in E}\{OPT(i-1,w) + c_{vw}\}\} \end{cases} \text{ otherwise}$$

If no negative cycles then OPT(n-1,v) = length of shortest path

Bellman-Ford

$$OPT(i,v) = \begin{cases} 0 & \text{if } i = 0 \\ \min\{OPT(i-1,v), \min_{(v,w) \in E}\{OPT(i-1,w) + c_{vw}\}\} \end{cases} \text{ otherwise}$$

```
Bellmann-Ford(G,s,t)

for each node v ∈ V

M[0,v] = ∞

M[0,t] = 0.
for i=1 to n-1
  for each node v ∈ V

    M[i,v] = M[i-1,v]
    for each edge (v,w) ∈ E

    M[i,v] = min(M[i,v], M[i-1,w] + c<sub>vw</sub>)
```

```
Bellmann-Ford(G,s,t)

for each node v ∈ V

   M[0,v] = ∞

M[0,t] = 0.
for i=1 to n-1
   for each node v ∈ V

   M[i,v] = M[i-1,v]
   for each edge (v,w) ∈ E

   M[i,v] = min(M[i,v], M[i-1,w] + c<sub>vw</sub>
```

	0	1	2	3	4	5	6	7
S	8							
а	8							
b	8							
С	8							
d	8							
е	8							
f	8	·		·				
t	0							


```
Bellmann-Ford(G,s,t)

for each node v ∈ V
    M[0,v] = ∞

M[0,t] = 0.
for i=1 to n-1
    for each node v ∈ V
    M[i,v] = M[i-1,v]
    for each edge (v,w) ∈ E
    M[i,v] = min(M[i,v], M[i-1,w] + Cvw
```

	0	1	2	3	4	5	6	7
S	8	8						
а	8	8						
b	8	8						
С	8	44						
d	8	16						
е	8	6						
f	8	19	·					
t	0	0						


```
Bellmann-Ford(G,s,t)

for each node v ∈ V
    M[0,v] = ∞

M[0,t] = 0.
for i=1 to n-1
    for each node v ∈ V
    M[i,v] = M[i-1,v]
    for each edge (v,w) ∈ E
    M[i,v] = min(M[i,v], M[i-1,w] + Cvw
```

	0	1	2	3	4	5	6	7
S	8	8	59					
а	8	8	29					
b	8	8	36					
С	8	44	44					
d	8	16	16					
е	8	6	6					
f	8	19	0		·			
t	0	0	0					


```
Bellmann-Ford(G,s,t)

for each node v ∈ V

    M[0,v] = ∞

M[0,t] = 0.
for i=1 to n-1
    for each node v ∈ V

    M[i,v] = M[i-1,v]
    for each edge (v,w) ∈ E

    M[i,v] = min(M[i,v], M[i-1,w] + c<sub>vw</sub>
```

	0	1	2	3	4	5	6	7
S	8	8	59	38				
а	8	8	29	10				
b	8	8	36	18				
С	8	44	44	44				
d	8	16	16	16				
е	8	6	6	6				
f	8	19	0	0	·			
t	0	0	0	0	·	·	·	


```
Bellmann-Ford(G,s,t)

for each node v ∈ V
    M[0,v] = ∞

M[0,t] = 0.
for i=1 to n-1
    for each node v ∈ V
    M[i,v] = M[i-1,v]
    for each edge (v,w) ∈ E
        M[i,v] = min(M[i,v], M[i-1,w] + c<sub>vw</sub>
```

	0	1	2	3	4	5	6	7
S	8	8	59	38	19			
а	8	8	29	10	10			
b	8	8	36	18	18			
С	8	44	44	44	44			
d	8	16	16	16	16			
е	8	6	6	6	6			
f	8	19	0	0	0		·	
t	0	0	0	0	0			·


```
Bellmann-Ford(G,s,t)

for each node v ∈ V
    M[0,v] = ∞

M[0,t] = 0.
for i=1 to n-1
    for each node v ∈ V
    M[i,v] = M[i-1,v]
    for each edge (v,w) ∈ E
    M[i,v] = min(M[i,v], M[i-1,w] + Cvw
```

	0	1	2	3	4	5	6	7
S	8	8	59	38	19	19		
а	8	8	29	10	10	10		
b	8	8	36	18	18	18		
С	8	44	44	44	44	44		
d	8	16	16	16	16	16		
е	8	6	6	6	6	6		
f	8	19	0	0	0	0		·
t	0	0	0	0	0	0		·


```
Bellmann-Ford(G,s,t)

for each node v ∈ V
    M[0,v] = ∞

M[0,t] = 0.
for i=1 to n-1
    for each node v ∈ V
    M[i,v] = M[i-1,v]
    for each edge (v,w) ∈ E
    M[i,v] = min(M[i,v], M[i-1,w] + Cvw
```

	0	1	2	3	4	5	6	7
S	8	8	59	38	19	19	19	19
а	8	8	29	10	10	10	10	10
b	8	8	36	18	18	18	18	18
С	8	44	44	44	44	44	44	44
d	8	16	16	16	16	16	16	16
е	8	6	6	6	6	6	6	6
f	8	19	0	0	0	0	0	0
t	0	0	0	0	0	0	0	0

Bellman-Ford

```
Bellmann-Ford(G,s,t)

for each node v ∈ V
   M[v] = ∞

M[t] = 0.
   for i=1 to n-1
   for each node v ∈ V

       M[i,v] = M[i-1,v]
       for each edge (v,w) ∈ E
            M[i,v] = min(M[i,v], M[i-1,w] + c<sub>vw</sub>
```

- Running time. O(mn)
- Space. O(n²)

Bellman-Ford

- Improvements to basic implementation
 - Maintain only one array
 - No need to check edges of form (v,w) if M[w] didn't change in previous iteration.
- Space: O(m+n)
- Running time: O(mn) worst case, but substantially faster in practice.

Detecting negative cycles

- Lemma. If OPT(n,v) < OPT(n-1,v) for some node, then (any) shortest path from v to t contains a cycle C with negative cost.
- Proof. By contradiction.
 - OPT(n,v) < OPT(n-1,v) => P has exactly n edges
 - => P contains a cycle C.
 - Deleting C gives a v-t path with < n edges => C makes v-t path shorter => C has negative cost.

• Lemma. If OPT(n,v) = OPT(n-1,v) for all v, then no negative cycles.

Detecting negative cycles

- Detect negative cost cycles in O(mn) time.
 - Add new node t and connect all nodes to t with 0-cost edge.
 - Check if OPT(n,v) = OPT(n-1,v) for all nodes v.
 - Yes: No negative cycles.
 - No: Can find negative cycle from shortest path from v to t.

