Proiectarea algoritmilor

Lucrare de laborator nr. 9

Paradigma Divide_et_Impera

Înmulțirea numerelor întregi mari

Cuprins

1	Algoritm Divide_et_Impera clasic	1
2	Algoritm $Divide_et_Impera$ îmbunătățit	1
3	Sarcini de lucru si barem de notare	2

1 Algoritm Divide_et_Impera clasic

Să presupunem că dorim să înmulțim două numere întregi x și y, formate din n cifre, in baza b.

Putem presupune ca x si y sunt pozitive. Algoritmul clasic necesită $O(n^2)$ operații.

De exemplu, dacă baza b=10 și x=61,438,521 și y=94,736,407, atunci xy=5,820,464,730,934,047.

Să spargem acum x și y în două jumătăți. Rezultă $x_s=6,143,\,x_d=8,521,\,y_s=9,473,$ și $y_d=6,407.$

Vom avea $x = x_s 10^4 + x_d$ şi $y = y_s 10^4 + y_d$. Urmează că $xy = x_s y_s 10^8 + (x_s y_d + x_d y_s) 10^4 + x_d y_d$. Astfel, pentru înmulţirea numerelor întregi x şi y, sunt necesare 4 înmulţiri de numere formate din n/2 cifre: $x_s y_s$, $x_s y_d$, $x_d y_s$ şi $x_d y_d$.

Inmulţirea cu 10^8 şi 10^4 înseamnă adăugarea de zerouri, ceea ce implică ${\cal O}(n)$ operaţii suplimentare.

2 Algoritm $Divide_et_Impera$ îmbunătățit

Dacă înmulțim recursiv obținem recurența T(n) = 4T(n/2) + O(n)

Din teorema complexității $Divide_-et_-Impera$ rezultă $T(n) = O(n^2)$.

Pentru a obține un algoritm subpătratic, trebuie să reducem numărul apelurilor recursive.

Observația cheie este $x_s y_d + x_d y_s = (x_s - x_d)(y_d - y_s) + x_s y_s + x_d y_d$

În locul a două înmulțiri pentru a obține coeficientul lui 10^4 , putem face o înmulțire și apoi să folosim rezultatul a două înmultiri deja efectuate.

Astfel, pentru înmulţirea numerelor întregi x şi y, sunt necesare 3 înmulţiri de numere formate din n/2 cifre: x_sy_s , x_dy_d şi $(x_s-x_d)(y_d-y_s)$.

În acest fel, numărul apelurilor recursive este redus la 3.

Rezultă T(n) = 3T(n/2) + O(n), adică $T(n) = O(n^{\log_2 3}) = O(n^{1.59})$.

3 Sarcini de lucru și barem de notare

Sarcini de lucru:

1. Scrieți un program C/C++ care implementează o metodă $Divide_et_Impera$ pentru înmulțirea a două numere întregi formate din 128 cifre binare.

Barem de notare:

- 1. Aplicarea corectă a metodei $Divide_et_Impera$: 6p
- 2. Funcția de înmulțire conține 3 apeluri recursive: 3p
- 3. Baza: 1p

Bibliografie

[1] M. A. Weiss, *Data Structures and Algorithm Analysis in C*, The Benjamin/Cummings Publishing Company, Inc., 1992.