Renata Gomes Cordeiro

Desenvolvimento de um aplicativo para resolução de problemas de programação linear utilizando o método simplex revisado

Renata Gomes Cordeiro

Desenvolvimento de um aplicativo para resolução de problemas de programação linear utilizando o método simplex revisado

Monografia apresentada ao Curso de Graduação em Ciência da Computação da Universidade Estadual do Norte Fluminense Darcy Ribeiro como requisito para obtenção do título de Bacharel em Ciência da Computação, sob orientação do Prof^o. Fermín Alfredo Tang Montané.

Tutor: Fermín Alfredo Tang Montané.

Universidade Estadual do Norte Fluminense Darcy Ribeiro

Sum'ario

1	A P	Programação Linear e as suas Aplicações	2
	1.1	Introdução	2
	1.2	Descrição do Problema de Programação Linear	2
	1.3	Métodos de Solução	5
$\mathbf{R}_{\mathbf{c}}$	eferê	ncias Bibliográficas	6

1 A Programação Linear e as suas Aplicações

1.1 Introdução

Na pesquisa operacional, a programação linear é uma das técnicas mais utilizadas em problemas de otimização. Os problemas de programação linear geralmente buscam a distribuição eficiente de recursos limitados para atender um determinado objetivo, por isso suas aplicações estão presentes em diversas áreas como administração, indústria e transporte (PAMPLONA, 2005).

Um problema de programação linear é expresso através de um modelo que é composto por equações e inequações lineares. Esse tipo de problema busca a distribuição eficiente de recursos com restrições para alcançar um objetivo, em geral, maximizar lucros ou minimizar custos. Em um problema de programação linear esse objetivo é expresso através de uma equação linear denominada função objetivo. Para a formulação do problema, é necessário também definir os recursos necessários e em que proporção são requeridos. Essas informações são expressas em equações ou inequações lineares, uma para cada recurso. Esse conjunto de equações ou inequações é denominado restrições do modelo (PAMPLONA, 2005).

1.2 Descrição do Problema de Programação Linear

O modelo de um problema de programação linear normalmente é apresentado em uma das formas a seguir (PASSOS, 2009):

 $Max \ z = c^T x$

$$s.a. \begin{cases} Ax \le b \\ x \ge 0 \end{cases}$$
 ou

$$Min \ z = c^T x$$

$$s.a. \begin{cases} Ax \ge b \\ x \ge 0 \end{cases}$$

Um problema de programação linear com até três variáveis pode ser representado graficamente utilizando três eixos cartesianos. Os problemas com duas variáveis podem ainda ser facilmente resolvidos por meio da representação gráfica (PASSOS, 2009).

A seguir é apresentado um problema com duas variáveis e sua representação. Apesar de, na prática os problemas de programação linear possuir um número de variáveis muito maior que dois ou três, a visualização gráfica de modelo, mesmo que simples, contribui para o entendimento dos métodos de resolução apresentados nas seções a seguir. No problema exemplo, uma empresa, que fabrica vários produtos, deseja maximizar o lucro na vendo de 2 desses produtos (HILLIER; LIEBERMAN, 2006).

$$Maximize \ z = 3x_1 + 5x_2$$

 $Sujeito \ a$

$$1x_1 \le 4(a)$$
$$2x_2 \le (b)$$
$$3x_1 + 2x_2 \le 8(c)$$
$$x_1 \ge 0, x_2 \ge 0$$

Onde,

- x1 representa a quantidade do produto 1 produzido em uma semana
- x2 representa a quantidade do produto 2 produzido em uma semana
- **Z** representa o lucro total por semana de produção desses dois produtos (em milhões de dólares), sendo o lucro do produto 1 de 3 milhões e o do produto 2 de 5 milhões.

E as restrições representam as restrições de tempo de cada máquina utilizada no processo de produção,

- (a) representa que, durante o processo de produção, cada produto 1 necessita de 1 hora na máquina 1, e a máquina só tem disponível 4 horas por semana
- (b) representa que, durante o processo de produção, cada produto 2 necessita de 2 horas na máquina 2, e a máquina só tem disponível 12 horas por semana
- (c) representa que, durante o processo de produção, cada produto 1 necessita de 3 horas na máquina 3, e cada produto 2 necessita de 2 horas na máquina 3, e a máquina só tem disponível 8 horas por semana

Graficamente representado o problema ficaria da seguinte forma:

Figura 1: teste

Onde cada reta representa uma restrição do modelo, e a área cinza representa a região viável, ou seja nessa área estão contidas os valores ótimos de x_1 e x_2 para a maximização do lucro.

Os método para resolução problemas de programação linear buscam a esse valores de x_1 e x_2 para determinação da solução ótima.

1.3 Métodos de Solução

Entre os métodos mais famosos para a resolução de problemas de programação linear estão o método simplex e o método de pontos interiores. Depois da apresentação do método simplex,outros métodos com diferentes abordagens foram propostos (Todd, 2002, apud, Munari, 2009). Porém, dentre os métodos existentes apenas o método de pontos interiores é atualmente competitivo em relação ao método simplex (Bixby, 2002, apud, Munari, 2009). (MACULAN; FAMPA, 2006 apud PAMPLONA, 2005) A principal diferença entre esse dois métodos é o que o método simplex caminha pelos vértices da região viável, enquanto o método de pontos interiores caminha pelo interior da região viável (Maculan, 2006). Além disso, uma outra diferença é que o simplex exige muitas iterações com cálculos simples, enquanto o método de pontos interiores poucas iterações são exigidas, porém com cálculos mais elaborados. Apesar das vantagens do método de pontos interiores em relação ao método estudado neste trabalho, o método simplex possui melhor desempenho na resolução de problemas de pequeno porte em relação ao método de pontos interiores, tornando-se um método indispensável em ferramentas de programação linear.

$Referências\ Bibliográficas$

HILLIER, F.; LIEBERMAN, G. Introdução à Pesquisa Operacional. 8^{0} . ed. [S.l.]: Mc-Graw-Hill, 2006.

MACULAN, N.; FAMPA, M. H. C. *Otimização Linear*. [S.l.]: Editora Universidade de Brasília, 2006.

PAMPLONA, E. de O. Engenharia Econômica II. 2005. Disponível em: http://www.iepg.unifei.edu.br/edson/download/Engecon2/CAP5EE2PLapost.pdf. Acesso em: 04/06/2012.

PASSOS, A. N. Estudos em Programação Linear. Dissertação (Mestrado) — Instituto de Matemática, Estatística e Computação Científica, UNICAMP, 2009.