- 49. Consider the spreadsheet shown in Example 6. What would this spreadsheet look like if you input .85 into cell A2? (Round your answers to the nearest cent.)
- **50.** Show what you would put into the cells of a spreadsheet to evaluate f[g(x)] for $f(x) = x^2$ and $g(x) = 5x^3$ for values x = -5, 0, 5, 10, and 15.
- **51.** If $f(x) = x^2$, g(x) = 2x 1, and h(x) = 3x + 2, find $f \circ g$ and $g \circ h$.
- **52.** If $f(x) = x^2$, g(x) = 2x 1, and h(x) = 3x + 2, find $(f \circ g) \circ h$.
- **53.** If $f(x) = x^2$, g(x) = 2x 1, and h(x) = 3x + 2, find $f \circ (g \circ h)$.
- **54.** If $f(x) = x^2$, g(x) = 3x 2, and $h(x) = x^2 + 1$, find $f \circ h$ and $g \circ h$.
- **55.** If $f(x) = x^2$, g(x) = 3x 2, and $h(x) = x^2 + 1$, find $(f \circ g) \circ h$.
- **56.** If $f(x) = x^2$, g(x) = 3x 2, and $h(x) = x^2 + 1$, find $f \circ (g \circ h)$.
- **57.** If $f(x) = \sqrt{x}$, $g(x) = x^2 + 2$, and h(x) = x + 2, all with domain $(0, \infty)$, find $f \circ g$ and $g \circ h$.
- **58.** If $f(x) = \sqrt{x}$, $g(x) = x^2 + 2$, and h(x) = x + 2, all with domain $(0, \infty)$, find $(f \circ g) \circ h$.
- **59.** If $f(x) = \sqrt{x}$, $g(x) = x^2 + 2$, and h(x) = x + 2, all with domain $(0, \infty)$, find $f \circ (g \circ h)$.
- **60.** If f(x) = x, g(x) = x, and h(x) = x, find $f \circ g$ and $g \circ h$.
- **61.** If f(x) = x, g(x) = x, and h(x) = x, find $(f \circ g) \circ h$.
- **62.** If f(x) = x, g(x) = x, and h(x) = x, find $f \circ (g \circ h)$.

C

63. Suppose that the volume of a certain cone is given by the function

$$V(h) = \frac{\pi h^3}{12}$$

- where h is the height. Furthermore, suppose that the height is expressed as a function of time by h(t) = 2t.
- **a.** Find the volume for t = 2.
- **b.** Express the volume as a function of time by finding $V \circ h$.
- **c.** If the domain of V is $\{h|0 < h \le 6\}$, find the domain of h; that is, what are the permissible values for t?
- 64. The surface area of a spherical balloon is given by

$$S(r) = 4\pi r^2$$

- Suppose that the radius r is expressed as a function of time as r(t) = 3t.
- a. Find the surface area for t = 2.
- **b.** Express the surface area as a function of time by finding $S \circ r$.
- **c.** If the domain of S is $\{r | 0 < r < 8\}$, find the domain of r; that is, what are the permissible values for t?
- **65.** If $f(x) = x^2$, then $f(1/x) = (1/x)^2 = 1/x^2 = 1/f(x)$. Give an example of a function for which $f(1/x) \neq 1/f(x)$.
- **66.** If f(x) = x, then $f(x^2) = x^2 = [f(x)]^2$. Give an example of a function for which $f(x^2) \neq [f(x)]^2$.
- **67.** If $f(x) = x^2$, then $(f \circ f)(x) = x^4 = f(x) \cdot f(x)$. Give an example of a function for which $(f \circ f)(x) \neq f(x) \cdot f(x)$.
- **68.** If f(x) = 1 + 1/x, find each value:
 - a. $(f \circ f)(x)$
 - **b.** $(f \circ f \circ f)(x)$
 - **c.** $(f \circ f \circ f \circ f)(x)$
 - **d.** Without doing any additional algebra, guess the value of $(f \circ f \circ f \circ f \circ f)(x)$ by noticing a pattern in parts **a-c.**
- **69.** Let $f(x) = \sqrt{x}$. Choose any positive x. Find a numerical value for $(f \circ f)(x)$, $(f \circ f \circ f)(x)$, and $(f \circ f \circ f \circ f)(x)$. If this procedure is repeated a large number of times, $(f \circ f \circ f \circ \cdots \circ f)(x)$, can you predict the outcome for any x?

- B In Problems 27–36, find $f \circ g$ and $g \circ f$.
- **27.** $f = \{(0, 1), (1, 3), (2, 0), (3, 2)\};$ $g = \{(0, 3), (1, 2), (2, 1), (3, 0)\}$
- **28.** $f = \{(0, 2), (1, 0), (2, 3), (3, 1)\};$ $g = \{(0, 1), (1, 3), (2, 0), (3, 2)\}$
- **29.** f(x) = 2x 3; $g(x) = \frac{x + 3}{2}$
- 30. f(x) = 3x + 1; $g(x) = \frac{x 1}{3}$
- **31.** $f(x) = \frac{1}{2}x + 1$; g(x) = 2x 2

- **32.** $f(x) = 2 \frac{1}{3}x$; g(x) = 6 3x
- **33.** f(x) = 2x 3; $g(x) = x^2 + 1$
- **34.** $f(x) = \frac{x-2}{x+1}$; $g(x) = x^2 x 2$
- **35.** $f(x) = x^2$; $g(x) = x^2 x 2$
- **36.** f(x) = 4x + 1; $g(x) = x^3 + 3$
- inverse properties" are very or an inverse property is to think of a number. Call this