Examenul național de bacalaureat 2021 Proba E. c)

Matematică *M_şt-nat*BAREM DE EVALUARE ȘI DE NOTARE

Varianta 1

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$b_5^2 = b_4 b_6 \Rightarrow 36 = 18b_4$	3p
	$b_5^2 = b_4 b_6 \Rightarrow 36 = 18b_4$ $b_4 = 2$	2p
2.	$m^2 + m - 4 = m \Leftrightarrow m^2 - 4 = 0$	3p
	m = -2 sau $m = 2$	2p
3.	$10^{2x+2} = 10^{3x} \Leftrightarrow 2x+2=3x$	3 p
	x = 2	2 p
4.	Cifra unităților, fiind pară, se poate alege în 3 moduri	2p
	Pentru fiecare alegere a cifrei unităților, cifra zecilor, fiind nenulă, se poate alege în câte 4 moduri, deci se pot forma $3 \cdot 4 = 12$ numere	3 p
5.	OA = 4, $OB = 4$, $OC = 4$	3p
	Centrul cercului circumscris $\triangle ABC$ are coordonatele $x = 0$, $y = 0$	2 p
6.	Cum $\operatorname{tg} x = 1$ și $x \in \left(0, \frac{\pi}{2}\right)$, obținem $x = \frac{\pi}{4}$	2p
	$\sin 2x = \sin \frac{2\pi}{4} = \sin \frac{\pi}{2} = 1$	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 2 & 3 \\ -1 & -2 \end{vmatrix} = 2 \cdot (-2) - (-1) \cdot 3 =$	3 p
	=-4+3=-1	2 p
b)	$\det(A(x)) = \begin{vmatrix} x+2 & 3 \\ -1 & x-2 \end{vmatrix} = x^2 - 1, \text{ pentru orice număr real } x$	2p
	Matricea $A(x)$ este inversabilă $\Leftrightarrow \det(A(x)) \neq 0$, deci $x \in \mathbb{R} \setminus \{-1,1\}$	3 p
c)	$A(a) \cdot A(b) = A(c) \Leftrightarrow \begin{pmatrix} ab + 2a + 2b + 1 & 3a + 3b \\ -a - b & ab - 2a - 2b + 1 \end{pmatrix} = \begin{pmatrix} c + 2 & 3 \\ -1 & c - 2 \end{pmatrix} \Leftrightarrow a + b = 1 \text{si}$	3p
	c = ab + 1	
	$a^{2} + b^{2} + 2c = a^{2} + b^{2} + 2ab + 2 = (a+b)^{2} + 2 = 1 + 2 = 3$	2p
2.a)	$0 \circ 1 = 0 \cdot \sqrt{1 - 1} + 1 \cdot \sqrt{1 - 0} =$	3 p
	=0+1=1	2p
b)	$x \circ x = 2x\sqrt{1-x^2}$, pentru orice $x \in M$	2 p
	$2x\sqrt{1-x^2}=0$, deci $x=-1$, $x=0$ sau $x=1$, care convin	3 p
c)	$x \circ \sqrt{1-x^2} = x\sqrt{1-(1-x^2)} + \sqrt{1-x^2} \cdot \sqrt{1-x^2} = x\sqrt{x^2} + 1 - x^2 = x x + 1 - x^2$, pentru orice $x \in M$	3p
	Cum $ x = x$ pentru orice $x \in [0,1]$, obținem $x \circ \sqrt{1 - x^2} = x^2 + 1 - x^2 = 1$, pentru orice $x \in [0,1]$	2p

SUBIECTUL al III-lea (30 de puncte)

	So de punct	
1.a)	$f'(x) = (e^x)' + x' \cdot \ln x + x \cdot (\ln x)' - 1' =$	2p
	$= e^{x} + 1 \cdot \ln x + x \cdot \frac{1}{x} = e^{x} + \ln x + 1, \ x \in (0, +\infty)$	3 p
b)	f(1) = e - 1, f'(1) = e + 1	2p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = (e+1)x-2$	3 p
c)	$x \in \left[\frac{1}{2}, +\infty\right) \Rightarrow \ln x \ge \ln \frac{1}{2}$, deci $f'(x) = e^x + \ln x + 1 \ge e^x + \ln \frac{e}{2} > e^x > 0$, de unde obţinem că f este crescătoare pe $\left[\frac{1}{2}, +\infty\right)$	3p
	Pentru orice $x \in \left[\frac{1}{2}, +\infty\right]$, $f(x) \ge f\left(\frac{1}{2}\right)$, deci $e^x + x \ln x - 1 \ge \sqrt{e} + \frac{1}{2} \ln \frac{1}{2} - 1$, de unde obţinem $e^x + x \ln x \ge \sqrt{e} + \frac{1}{2} \ln \frac{1}{2}$, pentru orice $x \in \left[\frac{1}{2}, +\infty\right]$	2 p
2.a)	$\int_{0}^{1} f(x)\sqrt{x^{2} + 2} dx = \int_{0}^{1} \left(x^{2} + 2 + x\right) dx = \left(\frac{x^{3}}{3} + 2x + \frac{x^{2}}{2}\right) \Big _{0}^{1} =$	3p
	$= \frac{1}{3} + 2 + \frac{1}{2} = \frac{17}{6}$	2p
b)	$F'(x) = f(x) = \frac{x^2 + x + 2}{\sqrt{x^2 + 2}}$, unde $F: \mathbb{R} \to \mathbb{R}$ este o primitivă a funcției f	3р
	$x^2 + x + 2 > 0$, pentru orice număr real x , deci $F'(x) > 0$, pentru orice număr real x , de unde obținem că F este crescătoare pe \mathbb{R}	2p
c)	$\int_{0}^{1} g(x) dx = \int_{0}^{1} x' \sqrt{x^{2} + 2} dx = x \sqrt{x^{2} + 2} \left \int_{0}^{1} -\int_{0}^{1} x \cdot \frac{x}{\sqrt{x^{2} + 2}} dx = \sqrt{3} - \int_{0}^{1} \left(\sqrt{x^{2} + 2} - \frac{2}{\sqrt{x^{2} + 2}} \right) dx,$ $\det \int_{0}^{1} g(x) dx = \frac{1}{2} \left(\sqrt{3} + 2 \ln \left(x + \sqrt{x^{2} + 2} \right) \right) \left \int_{0}^{1} = \frac{\sqrt{3}}{2} + \ln \frac{1 + \sqrt{3}}{\sqrt{2}} \right $	3р
	$\frac{\sqrt{3}}{2} + \ln \frac{1 + \sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3}}{2} + \ln \frac{a + \sqrt{3}}{\sqrt{2}}, \text{ de unde obținem } a = 1, \text{ care convine}$	2p