F.15	-10	* -	HATTER	JUG
EXP	NO.	2	PITTERS	

AIM:

to implement DE Algorithm for natur Jug problem.

ALGORATHM :

1) start

- 2) Initiate the start with both Jugs empty.
- 3) Mark current state or visited
- 4) It both jugs have equal amount of water then print the solution and terminate.
- 5) Generate all possible neut states
- 6) Recursively apply DFS to each & unvisited state
- 7) 8top.

CODE:

det water Tug DFS (jug-capacity , jug2-capacity , target , current-state = None , visited = None):

it visited is None:

visited = set c)

if current-state is None:

cumont_state = (0,0)

it current - state is visited:

return false.

visit add (current - state)

C342

Jugi, Juga = current, - stote print ("Jug1 : & Jug1 y, Jug2: + Jug2 y") if Jug1 == target or Jug2 == target: print (" solution round") return True

Passible - moves = [(Jug 1 - capacity, Jugs) (Jug , Jug 2 - capecity (0 , Jug2) (Jug 1, 0) (min (Jug 1 - capacity, Jug 1 + Jug 2),

max (0, Jug2 - (Jug1 - corocty - Jug1))), (max (0, Tug) - (Jugo- capacity - Jugo), (a) min (Jug2- copolity, Jug1 + Jug2)))

for nont-state in possible-moves:

if wotor Jugoff (Jugi-capacity, Jugz-capacity, target, next-state, visited):

return True

if -- nome = = " main " Jugi - capocity = 4

> Jug 2 - copacity = 3- motion on motion and and wently and output is writing

target = 2

print (" DFS Transport")

it (not water Jug DFS (Jug 1- capacity, Jug 2- capacity, target):

print ("No solution is found").

OUTPUT :

(010)

(013)

(4,0)

(413)

(310)

(1137

(3137

(412)

(012)

RESULT:

axecuted and output is twritised.