

# DEBRE BERHAN UNIVERSITY INSTITUTION OF TECHNOLOGY COLLAGE OF COMPUTING DEPARTMENT OF SOFTWARE ENGINEERING Fundamentals of Big Data Analytics and BI

NAME: Kidist Dejene ID: DBUR/0318/13

Submitted to MR. Derbew Felasman(MSc)

January, 2025

Debre Berhan, Ethiopia

# Report: Building an End-to-End Data Pipeline

# **Project Guide**

I built a complete data pipeline, from data extraction to visualization. I obtained a dataset from Kaggle, extracted and transformed it using PySpark, stored it in a DuckDB database, and then visualized it using Microsoft Power BI to extract meaningful insights.

# 1. Data Source Identification & Understanding

#### **Data Source:**

• Large Dataset: A suitable e-commerce-related dataset containing 1,051,784 rows was identified from Kaggle. The dataset includes detailed information on e-commerce transactions, such as sales, customer data, product data, and more. The dataset is stored in ShopSpectra Transaction Dataset.csv.

#### **Overview of Columns:**

- **TransactionID:** Unique identifier for each transaction.
- **UserID:** Unique identifier for each user.
- **TransactionAmount:** Amount of the transaction.
- **TransactionDate1:** Date and time of the transaction.
- **PaymentMethod:** Method of payment used.
- **MerchantCategory:** Category of the merchant.
- Quantity: Quantity of items purchased.
- **CustomerAge:** Age of the customer.
- Location: Location of the customer.
- **DeviceType:** Type of device used for the transaction.
- **TransactionStatus:** Status of the transaction (e.g., Pending, Completed).
- **Is Declined:** Indicator if the transaction was declined.
- Is Fraud: Indicator if the transaction was fraudulent.
- AccountAgeDays: Age of the customer's account in days.
- **TransactionDate:** Date of the transaction.
- Latitude: Latitude of the transaction location.
- **Longitude:** Longitude of the transaction location.
- **TransactionHour:** Hour of the transaction.

# 2. Data Extraction

#### **Tools Used:**

• PySpark for handling large datasets efficiently.

#### **Process:**

- The e-commerce dataset was loaded from the specified path using PySpark.
- Displayed the first few rows of the loaded dataset to understand its structure.

# 3. Data Transformation

#### **Cleaning Processes:**

### 1. Handling Missing Values:

- > **UserID** and **TransactionID**: Removed rows where these values were missing, as they are critical identifiers.
- > **TransactionDate1**: Interpolated missing values using the closest valid date from the same UserID.
- > Numerical Columns: Filled missing values with the median of the column.
- **Categorical Columns**: Filled missing values with the mode (most frequent value).
- > **Is\_Declined** and **Is\_Fraud**: Filled missing values with 0 (not declined, not fraudulent).

## **Rows Removed Due to Missing Values:**

• Removed 34,506 rows where UserID or TransactionID was missing.

#### 2. Removing Duplicates:

> Removed 12,000 duplicate rows to ensure data integrity.

### 3. Correct Formatting Errors:

- > Standardized date formats.
- > Cleaned numerical columns of non-numeric characters.

#### 4. Column Renaming:

> Renamed columns for consistency and clarity.

#### 5. Feature Engineering:

- Created new features such as total transactions per user and average transaction amount per user.
- > Joined the new features with the original dataset.

#### **Summary Statistics for Clean Data:**

- The clean dataset contains 1,040,800 rows and 18 columns.
- Key columns and their statistics:
  - o **TransactionAmount:** Mean = 7,506.12, Std = 4,333.60, Min = 1.02, Max = 14.999.97
  - $\circ$  **Quantity:** Mean = 5.50, Std = 2.87, Min = 1.00, Max = 10.00
  - $\circ$  CustomerAge: Mean = 43.01, Std = 24.55, Min = 1.00, Max = 85.00
  - o **AccountAgeDays:** Mean = 182.88, Std = 105.37, Min = 1.00, Max = 365.00
  - $\circ$  **Latitude:** Mean = 36.09, Std = 4.64, Min = 29.42, Max = 47.61
  - $\circ$  Longitude: Mean = 95.85, Std = 15.83, Min = 71.06, Max = 122.42
  - o **TransactionHour:** Mean = 11.26, Std = 6.93, Min = 0.00, Max = 23.00

# 4. Data Loading

## **Database Schema Design:**

• Designed a relational database schema in PostgreSQL to effectively store the transformed data.

#### **Database Tables:**

- 1. **Customers Table:** Stores customer information.
  - o Fields: customer id, user id, customer age, location, account age days
- 2. Orders Table: Stores order information.
  - o Fields: order id, transaction id, customer id, order date, total amount
  - o Relationship: Foreign key linking customer\_id to the customers table
- 3. **Products Table:** Stores product information.
  - o Fields: product id, product category
- 4. Order Items Table: Stores order item information.
  - o Fields: order item id, order id, product id, quantity, price
  - o Relationships: Foreign keys linking order\_id to the orders table and product id to the products table

### **Loading Data into PostgreSQL:**

- Leveraged the powerful querying capabilities of DuckDB to efficiently process and transform the cleaned data.
- Created tables in DuckDB to facilitate data processing, ensuring optimal performance and ease of transformation.
- Employed SQLAlchemy to seamlessly load the cleaned and transformed data into the PostgreSQL database, maintaining data integrity and enabling efficient data management.

# 5. Data Visualization and Insights

#### **Tools Used in Power BI:**

- **Power BI Desktop** for creating and designing visualizations.
- Connected Power BI with the SQL database using the PostgreSQL connector to import cleaned and transformed data.

#### Visualizations on the Dashboard



## 1. **Top-Selling Products:**

> Horizontal bar chart showing the count of product IDs for different merchant categories, with categories like Entertainment, Groceries, and Clothing leading the list.

#### 2. Sales by Product Category:

> Vertical bar chart showing the sum of total amounts for different merchant categories, reflecting the revenue contribution from each category.

## 3. Sales Trends Over Time:

➤ Line chart tracking the sum of total amounts over the years 2023 to 2024, indicating overall sales performance and fluctuations.

#### 4. Customer Distribution by Location:

➤ Pie chart showing customer percentage distribution by location, highlighting top cities like New York, Los Angeles, and Chicago.

#### 5. Slice Based on Location:

> Slicer panel listing different cities for filtering data based on location.

#### **Patterns and Trends**

#### 1. Sales Trends Over Time

### • Overall Sales Performance:

 Sales in 2023 reached approximately 4.2 billion, while 2024 sales are projected at 4.16 billion, indicating a slight decline of 10.32%.  This decline suggests a potential challenge in maintaining growth momentum, which could be due to market saturation, increased competition, or changing customer preferences.

# • Quarterly/Monthly Trends:

- Specific figures like 806.39 million and 910.22 million likely represent sales for specific periods (e.g., quarters or months).
- The 11.65% and 11.71% changes indicate fluctuations in sales performance over time.
- These fluctuations could reflect seasonal trends, promotional impacts, or external economic factors.

# 2. Customer Segmentation by Age

- The dashboard includes customer age groups, but exact ranges are unclear. However, age-based segmentation is a critical factor in understanding purchasing behavior.
  - **Potential Trend:** Younger age groups (e.g., millennials, Gen Z) may dominate online shopping, while older demographics might show slower adoption.

# 3. Sales by Product Category

- The total sales amount is 2.0 billion, distributed across various merchant categories.
  - **Pattern:** Certain product categories likely drive the majority of sales, while others underperform.

#### 4. Customer Distribution by Location

#### • Geographical Trends:

- Chicago stands out as the top city, contributing 32,000 customers (34.1%), followed by Houston (30,000, 7.8%), Phoenix (29,000, 7.58%), and San Antonio (25,000, 6.55%).
- Other cities like Detroit, San Diego, and Philadelphia also show significant customer bases but with smaller shares.
- **Pattern:** Urban areas with higher population densities tend to have larger customer bases, while smaller cities contribute less to overall sales.

# **Potential Business Insights**

#### 1. Declining Sales Growth

• The 10.32% decline in sales from 2023 to 2024 highlights a potential issue that needs further investigation. This could be due to factors such as customer churn, reduced marketing effectiveness, or external economic conditions.

#### 2. High-Performing Regions

• Cities like Chicago, Houston, and Phoenix are key markets with large customer bases. These regions likely have strong brand awareness or effective local marketing strategies.

## 3. Underperforming Regions

• Smaller cities like Oklahoma City and El Paso have relatively low customer contributions. This could indicate untapped potential or barriers to customer acquisition in these areas.

## 4. Product Category Optimization

• The uneven distribution of sales across product categories suggests that some categories are more popular than others. Identifying these categories can provide insights into customer preferences and market demand.

# 5. Customer Age Segmentation

• Age-based segmentation reveals differences in purchasing behavior across demographics. Younger customers may prefer trendy or tech-savvy products, while older customers might prioritize reliability and convenience.

#### 6. Seasonal or Periodic Fluctuations

• The 11.65% and 11.71% changes in sales suggest periodic fluctuations. These could be tied to seasonal trends, such as holiday shopping spikes or summer slumps.