一份速通性质的近世代数讲义

魔法少女 Alkali

最后编译: 2023 年 7 月 28 日

目录

前言		iii
预备知识	Д	\mathbf{v}
第一章	群与环的结构	1
1.1	同态	1
1.2	等价关系与商	3
	1.2.1 Lagrange 定理	3
	1.2.2 商群与商环	4
1.3	乘积	6
	1.3.1 乘积群	6
	1.3.2 环上的乘积	7
1.4	生成关系	9
1.5	例题与习题	11
第二章	群的更多性质	15
2.1	群作用	15
2.2	单群	17
2.3	Sylow 定理	19
2.4	例题与习题	20
第三章	交换环	23
3.1	理想与整环	23
	3.1.1 素理想与极大理想	23

ii	目录
ii	目录

	3.1.2 整环与域	24
3.2	三种特殊的整环	25
	3.2.1 唯一分解整环	25
	3.2.2 主理想整环	27
	3.2.3 Euclid 整环	29
3.3	例题与习题	29
第四章	域	33
4.1	域扩张	33
4.2	代数闭包与分裂域	36
4.3	有限域	37
4.4	例题与习题	39
第五章	Galois 理论	41
5.1	三类域扩张	41
	5.1.1 正规扩张与可分扩张	41
	5.1.2 Galois 扩张	42
5.2	Galois 理论基本定理	44
附录 A	正文中省略的证明	45
A.1	Sylow 定理	45
A.2	代数闭包的存在性	45
A.3	同构延拓定理	46
糸老 立は	áP	4 0

前言

本讲义是 2023 年 7 月作者举办的面向新二年级同学的近世代数讲义. 使用讲义的时候, 作者默认了读者学习了北师大的高等代数 I, II 课程.

一部分出于懒惰,一部分美其名曰出于对效率的追求,本讲义带有很强的"速通"性质.在这个意义下,本讲义在尝试如何给出一份极小的近世代数入门.因此读者可以发现,在正文中我们几乎没有给出例子,关于各种技术性的细节与结论也给的不多,我们给出的命题也不一定是最一般的.为了弥补例子缺乏这个缺陷,作者讲讨论班时在每次讨论班的结尾会补充一些例子.这些例子也包括在了每一章的末尾.

本讲义采用的讲法与标准的教科书不完全相同. 首先我们以一种范畴化的视角给出最初的定义,即我们定义群与环之后立刻给出同态的定义. 通过同态,我们可以给出子结构的定义以及正规子群与理想的定义. 接下来我们考虑群和环共通的结构: 商结构,乘积结构与生成结构,这些结构给出了代数学最基本的观念. 在考虑完群和环共通的结构之后,我们分别考虑群和环进一步的性质: 群则讨论群作用,单群, Sylow 定理与低阶有限群的分类;而环则讨论交换环的素理想,极大理想,以及三类具有分解性质的整环. 结束群与环的讨论之后,我们进入域的部分. 我们分别用两章介绍域的扩张与 Galois 理论,我们仍然在这里采用极小的讲法,为此,我们直接引入域上任意一族多项式的分裂域,通过这个得到代数闭域与正规扩张的性质.

本讲义的内容远非作者原创,我们也参考了许多书籍及课程等等.部分参考书籍与我们推荐阅读的书籍如下:对于中文书籍,[1] 是北师大近世代数课程的教材;而 [2] 则是一本比较"升级"的教材,介绍了更加现代的内容.对于英文书籍,[3] 是标准的教材; [4] 是一本偏向入门的书籍,但在一开始便以较高观点引入范畴等内容,适合作为研究生级别教材学习; [5] 是著名的字典,以大而全闻名,适合用

iv

来查阅.

作者认为前言应当是在一本书的创作结束时撰写的. 现在讲义的编写接近尾声,作者感到了一阵阵空虚—因为作者不知道这份讲义还会在什么场景下被人使用. 也许这份讲义编写出来就是作者的自娱自乐罢了. 因此,只要有读者愿意读作者的这份讲义,作者就会很开心了. 如果进一步真的有人能够通过这份讲义速成或复习近世代数,那么就更好了.

魔法少女 Alkali 2023 年 7 月 28 日

预备知识

我们具体列举希望读者掌握的预备知识如下.

首先,讲义中会使用与北师大高等代数课程不同的记号 $\mathbb{Z}/n\mathbb{Z}$ 表示模 n 剩余 类环,并且会直接使用同余记号 mod 记属于同一等价类的元素.

接下来我们定义群环域.

定义 0.1. 设 X 是一个集合, 具有二元运算 $*: X \times X \to X$, 并有公理

- G1 对 $a, b, c \in X$ 有 (a * b) * c = a * (b * c);
- G2 存在 $e \in X$, 使得对任意 $a \in X$ 有 a * e = e * a = a;
- G3 对 $a \in X$, 存在 $b \in X$ 使得 a * b = b * a = e;
- Ab 对任意 $a, b \in X$, 有 a * b = b * a;

如果 X 上还有另一二元运算 $\cdot: X \times X \to X$, 此时还有公理

- R1 对 $a, b, c \in X$ 有 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$;
- R2 存在 $1 \in X$, 使得对任意 $a \in X$ 有 $a \cdot 1 = 1 \cdot a = a$;
- R3 对任意 $a, b \in X$, 有 $a \cdot b = b \cdot a$;
- Ds $\forall a, b, c \in X \neq (a * b) \cdot c = a \cdot c * b \cdot c, a \cdot (b * c) = a \cdot b * a \cdot c;$
 - F 对任意 $a \in X \setminus \{e\}$, 存在 $b \in X$ 使得 $a \cdot b = 1$;

如果 X 满足 $G1\sim G3$, 那么称 X 是一个**群**; 如果群 X 还满足 Ab, 则称 X 是一个 **Abel 群**. 如果 X 是 Abel 群, 且满足 R1 与 Ds, 那么称 X 是一个**环**; 如果环 X 满足 R2, 那么称 X **含幺**; 如果环 X 满足 R3, 那么称 X 是**交换环**. 如果 X 是 X 交换环且满足 X 形公称 X 是一个**域**.

记号 0.2. 习惯上,一般对群的运算会采用两种记号:一种是乘法记号·,在实际书写中会直接省略这个点;另一种是加法记号 +. 乘法记号会用在一般的群或者环满足 R1 与 Ds 的运算上,加法记号会用在 Abel 群的运算上.运用乘法记号时,

vi 预备知识

G3 中定义的逆元会记作 a^{-1} . 运用加法记号时, G2 中定义的加法零元记为 0, G3 中定义的逆元记为 -a. 对域而言, F 中定义的逆元记为 a^{-1} .

本讲义中如果不另外说明, 环都是含幺的.

习惯上会用一些特定的字母表示特定的代数结构, 例如群用 G 表示, 环用 R 表示, 交换环用 A 表示, 域用 F 或 k 表示.

然后是置换群的基本概念.

命题 0.3. 集合 $\{1, 2, \dots, n\}$ 到自身的双射构成群, 记为 S_n , 称为n **阶置换群**.

记号 0.4. 对 $\sigma \in S_n$, 我们会用

$$\begin{pmatrix} 1 & \cdots & n \\ \sigma(1) & \cdots & \sigma(n) \end{pmatrix}$$

来表示一个置换.

命题 0.5. 一个轮换定义为

$$\begin{pmatrix} a_1 & a_2 & \cdots & a_n \\ a_2 & a_3 & \cdots & a_1 \end{pmatrix}$$

记为 $(a_1a_2\cdots a_n)$. 每一个置换都可以写成不相交轮换的乘积,这种写法在不计次序的意义下唯一.

最后是关于矩阵的两种群.

定义 0.6. 域 k 上的 n 阶**一般线性群** $\mathrm{GL}_n(k)$ 定义为 k 上所有可逆的 n 阶矩阵构成的群. 域 k 上的 n 阶**特殊线性群** $\mathrm{SL}_n(k)$ 定义为 k 上所有行列式为 1 的 n 阶矩阵构成的群.

第一章 群与环的结构

1.1 同态

代数学研究代数对象及它们之间的态射. 这里的"态射"指的是保持代数运算结构的映射, 一般称为同态. 严格的定义如下:

- **定义 1.1.** 设 G, G' 是两个群, 映射 $f: G \to G'$ 称为 $(G \to G')$ 的) 一个**群** 同态, 如果 f 满足对任意 $a, b \in G$ 有 f(ab) = f(a)f(b).
 - 设 R, R' 是两个环, 映射 $f: R \to R'$ 称为 $(R \to R')$ 称为 $(R \to R')$ 的) 一个**环同态**, 如果 f 满足
 - (1) f(a+b) = f(a) + f(b);
 - (2) f(ab) = f(a)f(b);
 - (3) $f(1_R) = 1_{R'}$.

其中 1_R , $1_{R'}$ 分别是 R 与 R' 的乘法幺元.

在本讲义中, 我们会直接使用同态的相关运算性质而不加证明, 读者有疑问时不妨自行证明, 大部分的证明都与线性映射类似¹.

使用同态, 我们可以定义子群及子环:

定义 1.2. 设 X, X' 是群 $(环), X' \subset X$, 如果包含映射 $i: X' \to X$ 是群 (环) 同态, 那么称 X' 是 X 的子群 (环). 如果 $X' \neq \{e\}(\{0\}), X$, 那么称 X' 是真子群 (环).

定义 1.2 无外乎就是说 X' 在 X 的运算下成群或者环, 请读者自行证明这一点. 等价的一些检验方法有

¹实际上,线性映射就是向量空间之间的同态.

- (对群) 关于除法封闭;
- (对环) 关于减法和乘法封闭, 包含幺元.

等价性在高等代数 I 课程中有过证明.

对于两个群或者环, 我们可以定义他们之间的同构, 这时它们在代数运算的 意义下可以看作是一样的.

定义 1.3. 设 X, X' 是两个群或者环, 如果存在同态 $f: X \to X', g: X' \to X$ 使 得 $f \circ g = \mathrm{id}_{X'}, g \circ f = \mathrm{id}_{X},$ 那么称 $X \vdash X'$ 同构.

定义 1.4. 一个群 G 的所有自同构构成一个群, 称为 G 的自同构群, 记为 Aut(G).

习题 1.1. 如果 $f: X \to X'$ 是同态且是双射, 证明 f 是同构.

对同态, 我们会考虑同态的核.

定义 1.5. 对群而言,设 $f: G \to G'$ 是一个群同态,定义 f 的核 $\ker f := f^{-1}(e)$. 对环而言,设 $g: R \to R'$ 是一个环同态,定义 g 的核为 $\ker g := g^{-1}(0)$.

核的定义与线性映射的核的定义是相同的. 同态的核是很重要的研究对象, 我们将要用核定义两种很重要的子集.

引理 1.6. 如果 $f: G \to G'$ 是同态, 那么 ker f 是 G 的子群.

证明. 我们证明 $\ker f$ 在 G 的运算下成群. 这只需要证明 $\ker f$ 关于除法封闭. 对 $a,b \in \ker f$, 考虑 $f(ab^{-1})$. 由于 $f(b)f(b^{-1}) = f(bb^{-1}) = f(e)$, 而 f(e) = f(ee) = f(e)f(e) 得出 f(e) = e, 所以 $f(b^{-1}) = (f(b))^{-1}$. 因此 $f(ab^{-1}) = f(a)(f(b))^{-1} = ee^{-1} = e$, 即 $ab^{-1} \in \ker f$.

定义 1.7. 设 G 是一个群, 如果 $N \subset G$ 是一个同态的核, 那么称 N 是 G 的一个**正规子群**, 并记作 $N \triangleleft G$. 设 R 是一个环, 如果 $\mathfrak{a} \subset R$ 是一个同态的核, 那么称 \mathfrak{a} 是 R 的一个**理想**.

同样的, 当 $N \neq \{e\}$, G, $\mathfrak{a} \neq \{0\}$, R 时, 称 N 或 \mathfrak{a} 为真正规子群或真理想.

命题 1.8 (正规子群的性质). 设 $N \triangleleft G$, 那么对任意 $g \in G$ 及 $n \in N$, 有 $gng^{-1} \in N$.

证明. 设 $N = \ker f$, 那么有 $f(gng^{-1}) = f(g)f(n)(f(g))^{-1} = f(n) = e$, 所以 $gng^{-1} \in \ker f = N$.

1.2 等价关系与商 3

命题 1.9 (理想的性质). 设 $a \neq R$ 的理想.

- (1) a 是 R 的子加群;
- (2) 对任意的 $a \in \mathfrak{a}$ 与 $r \in R$, 有 $ar, ra \in \mathfrak{a}$.

证明. (1) 环同态是两个环之间关于加法的群同态.

(2) 设 $\mathfrak{a} = \ker f$, 那么有 $f(ar) = f(a)f(r) = 0 \cdot f(r) = 0$, 因此 $ar \in \mathfrak{a}$. 同理 $ra \in \mathfrak{a}$.

评注 1.10. 从以上命题可以看出, 我们定义的理想在一些教材中会被合理地称作 "双侧理想", 除此之外还有所谓的 "左理想" 和 "右理想", 不过我们目前不讨论这 些精细的定义.

1.2 等价关系与商

我们熟悉如下的一个命题:

命题 1.11. 集合 X 上的一个等价关系 \sim 唯一决定 X 的一个分划,这个分划得到的等价类集称为 X 的**商集**,记为 X/\sim .

我们在本节考虑两种等价关系: 首先是子群诱导的等价关系, 这种等价关系 可以得到关于有限群子群阶数 (即元素个数) 的整除关系; 其次是正规子群和理想 诱导的等价关系, 这种等价关系可以使得商集上具有良定义的代数运算.

1.2.1 Lagrange 定理

设群 G 具有子群 G'. 考虑关系 $a \sim b \iff a^{-1}b \in G'$. 我们验证这是一个等价关系:

自反性 $a^{-1}a = e \in G'$;

对称性 如果 $a^{-1}b \in G'$, 那么 $b^{-1}a = (ab^{-1})^{-1} \in G'$;

传递性 如果 $a^{-1}b, b^{-1}c \in G$, 那么 $a^{-1}c = a^{-1}bb^{-1}c \in G$.

因此 \sim 给出 G 的一个分划. 这个分划具有如下的一个性质:

命题 1.12. G/\sim 的每个等价类的基数均相等,且都等于 |G'|.

证明. 设 C 是一个等价类, 我们建立 G' 到 C 的一个双射. 任取 $a \in C$, 定义

$$\varphi:G'\to C$$

$$g\mapsto ag$$

首先这个映射是良定义的,因为有 $a^{-1}ag = g \in G'$. 其次这个映射一定是单射,因为 $ag = ag' \implies g = g'$. 最后这个映射一定是满射,因为对任意 $b \in C$,设 $a^{-1}b = g'$,那么就有 $b = aa^{-1}b = ag'$. 因此 φ 是一个双射,有 |C| = |G'|.

通过命题 1.12 的证明, 我们可以看出 G/\sim 的每一个等价类都由 G 中的一个元素左乘 G' 中所有元素得到. 于是我们定义

定义 1.13. 定义 G' 的一个左陪集为 $aG' := \{ag' \in G | g' \in G'\}$.

将等价关系与商集翻译称陪集的语言就是

命题 1.14. 左陪集 aG' 与 bG' 相等当且仅当 $a^{-1}b \in G'$.

命题 1.15. 设 G' 是 G 的子群, 那么适当选取代表元, G 有陪集分解 $G = \prod aG'$.

当 G 是有限群时, 通过陪集分解, 我们能立刻得到

定理 1.16 (Lagrange). 设 G 是有限群, G' 是 G 的子群, 那么 G' 的阶整除 G 的 阶.

与左陪集相同, 我们也可以定义右陪集:

定义 1.17. 定义 G' 的一个右陪集为 $G'a := \{g'a \in G | g' \in G'\}$.

命题 1.18. 右陪集 G'a 与 G'b 相等当且仅当 $ab^{-1} \in G'$.

命题 1.19. 设 G' 是 G 的子群, 那么适当选取代表元, G 有陪集分解 $G = \prod G'a$.

1.2.2 商群与商环

首先,我们证明正规子群的陪集类上将会存在群的乘法.

定理 1.20. 设群 G 与子群 $N \subset G$ 满足对任意 $g \in G$ 及 $n \in N$ 有 $gng^{-1} \in N$, 那么 N 的陪集类构成一个群, 记为 G/N, 并且 $\pi: G \to G/N$, $a \mapsto aN$ 构成典范 同态.

1.2 等价关系与商 5

证明. 我们在 G/N 上定义乘法

$$(aN, bN) \mapsto abN$$

一旦证明这个乘法是良定义的, 将立刻得到 φ 是同态. 如果 $c \in aN, d \in bN$, 有

$$(ab)^{-1}cd = b^{-1}a^{-1}cd = b^{-1}(a^{-1}c)b(b^{-1}d) \in N$$

所以乘法是良定义的. G/N 显然在这个乘法下成群.

推论 1.21. $N \triangleleft G$ 当且仅当对任意 $g \in G$ 及 $n \in N$, 有 $gng^{-1} \in N$.

习题 1.2. 证明正规子群的左陪集与右陪集相等, 即 $N \triangleleft G$ 时有 aN = Na.

对环而言, 也有类似结论, 证明也是类似的.

定理 1.22. 设 \mathfrak{a} 是环 R 的子加群,满足命题 1.9 中的性质,那么 \mathfrak{a} 的陪集类构成一个环,记为 R/\mathfrak{a} ,并且 $\pi:R\to R/\mathfrak{a}$, $r\to r+\mathfrak{a}$ 构成典范同态.

推论 1.23. 命题 1.9 给出了子加群为理想的充分必要条件.

关于商结构, 我们有如下的一些定理.

定理 1.24 (第一同构定理). 设 $\varphi: G \to H$ 是群的满同态, 那么一定有 $G/\ker \varphi$ 与 H 同构, 且同构映射 $\overline{\varphi}$ 使得以下图表交换

证明. 定义映射

$$\overline{\varphi}: G/\ker \varphi \to H$$

$$a \ker \varphi \mapsto \varphi(a)$$

对 $b \in G$ 满足 $a \ker \varphi = b \ker \varphi$, 有 $b^{-1}a \in \ker \varphi$,

$$b \ker \varphi \mapsto \varphi(b) = \varphi(b)\varphi(b^{-1}a) = \varphi(a)$$

从而 φ 是良定义的,并且易于发现是同态. 并且由定义, φ 使得上述图表交换,从而由 φ 满知 φ 是满射. 最后我们说明 φ 是单射,如果 $\varphi(a) = \varphi(b)$,那么 $\varphi(a^{-1}b) = e$,从而 $a^{-1}b \in \ker \varphi$,即 $a \ker \varphi = b \ker \varphi$.

定理 1.25 (对应定理). 设 $f: G \to G'$ 是满的群同态, 那么对 G 包含 $\ker f$ 的子 群 H, 及 G' 的子群 H', 有

- (1) $f(H) \neq G'$ 的子群, $f^{-1}(H') \neq G$ 包含 ker f 的子群;
- (2) G 包含 $\ker f$ 的子群与 G' 的子群通过 f ——对应;
- (3) 如果 $H \triangleleft G$, 那么也有 $f(H) \triangleleft G'$;
- (4) 如果进一步地 G 是有限群, 那么 $|H| = |\ker f||f(H)|$.

证明. (1) 注意到 $f(h_1)(f(h_2))^{-1} = f(h_1h_2^{-1})$ 即可.

- (2) 只需验证不同的子群对应的子群不同. 设 $H_1 \neq H$ 是 G 包含 ker f 的子群, 那 么至少存在两个陪集 $a \ker f$ 与 $b \ker f$ 分属于两个子群, 此时 $f(a) \neq f(b)$. 反过来也同理.
- (3) 设 $h \in H$, 那么对 $f(a) \in G'$ (f 满) 有 $f(a)f(h)(f(a))^{-1} = f(aha^{-1}) \in f(H)$, 从而 $f(H) \triangleleft G'$.

习题 1.3. 陈述并证明环的第一同构定理和对应定理. (注意对应定理是理想间的对应)

1.3 乘积

我们分别讨论群和环上的乘积结构.

1.3.1 乘积群

设 G, G' 是两个群,一种简单的构造新群的方式是考虑它们的 Descartes 积,即在 $G \times G'$ 上定义乘法

$$(g_1, g_1') \cdot (g_2, g_2') = (g_1g_2, g_1'g_2')$$

容易验证这个乘法使得 $G \times G'$ 成为一个群.

定义 1.26. 上述构造称为 G 与 G' 的直积.

而另一种更有趣且更重要的构造是子群间的乘积.

1.3 乘积 7

定理 1.27. 设 $H, K \in G$ 的子群, 定义映射 $f: H \times K \to G$, $(h, k) \mapsto hk$. 记 f 的像集为 HK.

- (1) f 是单射当且仅当 $H \cap K = \{e\}$;
- (2) f 是同态当且仅当 H 中所有的元素与 K 中所有元素交换;
- (3) 如果 H 是 G 的正规子群, 那么 HK 是 G 的子群;
- (4) f 是 $H \times K$ 到 G 的同构, 当且仅当 HK = G, $H \cap K = \{e\}$ 且 H,K 为 G 的正规子群.

证明. (1) $h_1k_1 = h_2k_2 \iff h_1h_2^{-1} = k_2k_1^{-1} \in H \cap K$, 那么就有 f 是单射当且 仅当 $H \cap K = \{e\}$.

- (2) 注意到 $f(h_1h_2, k_1k_2) = h_1h_2k_1k_2$, $f(h_1, k_1)f(h_2, k_2) = h_1k_1h_2k_2$, 两者相等 当且仅当 $h_2k_1 = k_1h_2$, 由任意性, 此即 H, K 中所有元素交换.
- (3) 只需验证 HK 中的元素关于除法封闭. 取 h_1k_1, h_2k_2 , 有

$$h_1k_1(h_2k_2)^{-1} = h_1((k_1k_2^{-1})h_2^{-1}(k_2k_1^{-1}))(k_1k_2^{-1}) \in HK$$

(4) 又假设可知 f 满且单, 从而是双射. 而 $H, K \triangleleft G$, 考虑 $hkh^{-1}k^{-1}$, 有

$$(hkh^{-1})k^{-1} = h(kh^{-1}k^{-1}) \in H \cap K$$

1.3.2 环上的乘积

我们首先类似群定义环的直积.

定义 1.28. 两个环的直积是它们的 Descartes 积及其上自然的运算.

设 $\mathfrak{a},\mathfrak{b}$ 是环 R 的理想. 定义一个新的理想 $\mathfrak{a}+\mathfrak{b}=\{a+b\in R|\ a\in\mathfrak{a},b\in\mathfrak{b}\},$ 容易证明这确实是一个理想. 类似于定理 1.27, 我们可以定义理想的直和.

定义 1.29. 设 $\mathfrak{a}, \mathfrak{b}$ 是环 R 的理想. 如果 $\mathfrak{a} \cap \mathfrak{b} = \{0\}, \mathfrak{a} + \mathfrak{b} = R$, 那么称 R 是 \mathfrak{a} 与 \mathfrak{b} 的**直和**, 并记 $R = \mathfrak{a} \oplus \mathfrak{b}$.

习题 1.4. 证明当 $R = \mathfrak{a} \oplus \mathfrak{b}$ 时, \mathfrak{a} 与 \mathfrak{b} 均包含单位元.

²这个技巧叫做取**交换子**.

按照习题 1.4 中的结论, \mathfrak{a} , \mathfrak{b} 可以看成是环. 那么按照定理 1.27, 我们有 $\mathfrak{a} \times \mathfrak{b}$ 与 $\mathfrak{a} \oplus \mathfrak{b}$ 作为加群同构, 并且这个同构可以延拓为环同构. 因此, 我们认为两个环的直积和直和是一样的.

环的直积有一个重要的结论,即中国剩余定理.

定义 1.30. 设 $\mathfrak{a},\mathfrak{b}$ 是交换环 A 的理想, 如果 $\mathfrak{a} + \mathfrak{b} = A$, 那么称 $\mathfrak{a},\mathfrak{b}$ 互素.

定理 1.31 (中国剩余定理). 设交换环 A 的理想 $\mathfrak{a},\mathfrak{b}$ 互素, 那么有同构 $A/(\mathfrak{a}\cap\mathfrak{b})\simeq A/\mathfrak{a}\times A/\mathfrak{b}$.

证明. 定义同态

$$\varphi: A \to A/\mathfrak{a} \times A/\mathfrak{b}$$

 $a \mapsto (a + \mathfrak{a}, a + \mathfrak{b})$

对 $(x + \mathfrak{a}, y + \mathfrak{b})$, 取 a + b = 1 及 z = ay + bx, 就有

$$z \equiv bx \equiv x \pmod{\mathfrak{a}}$$

$$z \equiv ay \equiv y \pmod{\mathfrak{b}}$$

从而 $\varphi(z) = (x + \mathfrak{a}, y + \mathfrak{b})$,即 φ 是满射. 另一方面, $a \in \ker \varphi$ 当且仅当 $a \in \mathfrak{a} \cap \mathfrak{b}$, 所以第一同构定理给出了 $A/(\mathfrak{a} \cap \mathfrak{b}) \simeq A/\mathfrak{a} \times A/\mathfrak{b}$.

需要指出的是,上面有关环的定义与结论都不局限在两项. 特别地,中国剩余定理也有一般的有限多个理想的形式,我们陈述整数的版本,并直接给出一个常用的计算公式:

定理 1.32. 设 n_1, \dots, n_m 是两两互素的整数, 那么同余方程组

$$x \equiv a_1 \pmod{n_1}$$

 $x \equiv a_2 \pmod{n_2}$
 \cdots
 $x \equiv a_m \pmod{n_m}$

有模 $N = n_1 \cdots n_m$ 意义下的唯一解

$$x \equiv \sum_{i=1}^{m} a_i \frac{N}{n_i} l_i \pmod{N}$$

其中 l_i 满足 $l_i N/n_i \equiv 1 \pmod{n_i}$.

1.4 生成关系 9

证明是直接的,代入计算即可.

1.4 生成关系

首先我们定义由一个集合生成的子群.

定义 1.33. 设 G 是一个群, 集合 $X \subset G$, 称X **生成的子群**为

$$\langle X \rangle := \{ a_1^{\varepsilon_1} a_2^{\varepsilon_2} \cdots a_n^{\varepsilon_m} | a_i \in X, \varepsilon_i = \pm 1, i = 1, 2 \cdots, m, m \in \mathbb{N} \}$$

其中的 a_i 一般有重复. 如果 $G = \langle X \rangle$, 则称 G 由 X 生成. 当 X 是有限集时, 称 G 是有限生成群.

我们考虑由一个元素生成的群.

定义 1.34. 设 $C = \langle a \rangle$, 那么称 C 是循环群.

循环群的结构是简单的.

命题 1.35. 设 C 是循环群, 那么 C 的阶数为无穷大时, C 同构于 \mathbb{Z} ; C 的阶数 为 n 时, C 同构于 $\mathbb{Z}/n\mathbb{Z}$.

定义 1.36. 设 G 是群, $a \in G$, 那么定义 a 的**阶**为 $\langle a \rangle$ 的阶.

由 Lagrange 定理可以得到:

推论 1.37. 有限群中元素的阶整除群的阶.

定理 1.38 (Fermat 小定理). 设 p 是素数, 那么对整数 a 有 $a^p \equiv a \pmod{p}$.

习题 1.5. 证明费马小定理.

然后我们来定义一个集合生成的理想. 为了方便, 我们只讨论交换环.

定义 1.39. 设 X 是交换环 A 的子集, 那么 X 生成的理想定义为

$$\langle X \rangle = \left\{ \sum_{i=1}^{m} r_i a_i \middle| r_i \in A, a_i \in X, i = 1, 2, \cdots, m, m \in \mathbb{N} \right\}$$

当 X 有限时, 称 $\langle X \rangle$ 是有限生成的.

关于理想的有限生成有两个等价的条件. 第一个是

定义 1.40. 称交换环 A 满足**升链条件**, 如果对于任意上升的理想链 $\mathfrak{a}_1 \subset \mathfrak{a}_2 \subset \cdots$, 都存在正整数 n 使得 $\mathfrak{a}_n = \mathfrak{a}_{n+1} = \cdots$.

关于第二个条件, 我们需要回忆偏序关系.3

定义 1.41. 非空集合 P 上的一个偏序关系 \prec 满足传递性, 自反性与反对称性, 即

- (1) $a \prec b, b \prec c \implies a \prec c$;
- (2) $a \prec a$;
- (3) $a \prec b, b \prec a \implies a = b$.

一个具有偏序关系的集合称为**偏序集**. 偏序集 P 上的一个**极大元** m 满足对任意 $a \in P$, 如果 $m \prec a$, 那么 a = m.

命题 1.42. 设 A 是交换环,则如下三个命题等价:

- (1) A 满足升链条件;
- (2) A 中任意理想的集合存在极大元 (以包含关系为偏序);
- (3) A 中任意的理想都是有限生成的.

证明. $(1) \implies (2)$: 用反证法, 假设 \mathscr{I} 是 A 中一些理想构成的非空集合, 且其中没有极大元. 我们归纳地构造一列理想列: 取 $\mathfrak{a}_1 \in \mathscr{I}$; 假定 \mathfrak{a}_n 已经构造, 那么由于 \mathfrak{a}_n 不是极大元, 存在 \mathfrak{a}_{n+1} 使得 $\mathfrak{a}_n \subsetneq \mathfrak{a}_{n+1}$. 因此 A 中存在严格上升的理想列

$$\mathfrak{a}_1 \subsetneq \mathfrak{a}_2 \subsetneq \cdots \subsetneq \mathfrak{a}_n \subsetneq \cdots$$

这与升链条件矛盾.

(2) ⇒ (3): 取理想集

$$\mathscr{F} = \{\langle X \rangle | X \subset A \text{ fig} \}$$

那么由假设, \mathscr{F} 有极大元,设为 $\langle x_1, \cdots, x_n \rangle$. 断言 $A = \langle x_1, \cdots, x_n \rangle$. 如若不然,存在 $x \in A$ 使得 $x \notin \langle x_1, \cdots, x_n \rangle$,那么 $\langle x_1, \cdots, x_n \rangle \subsetneq \langle x_1, \cdots, x_n \rangle$,这与 $\langle x_1, \cdots, x_n \rangle$ 的极大性矛盾。所以 $A = \langle x_1, \cdots, x_n \rangle$ 是有限生成的.

 $(3) \Longrightarrow (1)$: 设 $\mathfrak{a}_1 \subset \mathfrak{a}_2 \subset \cdots$ 是上升的理想链, 取

$$\mathfrak{a} = \bigcup_{n \geq 1} \mathfrak{a}_n$$

³如果读者跳过了 Nother 性这一节, 那么偏序关系可以在环的极大理想处学习.

1.5 例题与习题 11

容易验证 \mathfrak{a} 是一个理想. 设 $\mathfrak{a} = \langle x_1, \cdots, x_m \rangle$. 那么每个 x_i 一定属于某个理想 \mathfrak{a}_{n_i} , 取 $N = \max\{n_i | i = 1, 2, \cdots, m\}$, 就有 $\langle x_1, \cdots, x_m \rangle \subset \mathfrak{a}_N$. 那么对任意 $n \geq N$, 都有

$$\langle x_1, \cdots, x_m \rangle = \mathfrak{a}_N \subset \mathfrak{a}_n \subset \mathfrak{a} = \langle x_1, \cdots, x_m \rangle$$

从而 $\mathfrak{a}_n = \mathfrak{a}_N$, 即 A 满足升链条件.

定义 1.43. 如果交换环 A 满足升链条件, 那么称 A 是 Noerther 的.

1.5 例题与习题

例 1.1. 设 p < q 是两个素数,我们证明 pq 阶群 G 至多只有一个 q 阶子群. 假设 Q,S 是两个 G 的 q 阶子群,由于素数阶群都是循环群,所以他们的交为 $\{e\}$ (请读者证明这两个断言).对任意 $q_1,q_2\in Q$,有 $q_1^{-1}q_2\in S \implies q_1^{-1}q_2=e$,则 $q_1=q_2$,从而 Q 中的元素分属于不同的 S 的陪集中. 因此对 G 做陪集分解,G 至少有 q 个 S 的陪集,从而 $|G|\geq |Q||S|=q^2>pq$,矛盾. 所以 G 至多有一个 q 阶子群.

例 1.2. 我们将在本例中计算 $\mathbb Q$ 的自同构群. 设 $f \in \operatorname{Aut} \mathbb Q$, 我们先验地给出 $f(1) = r(r \neq 0)$. 对于正整数 n, 通过归纳法可以得到 f(n) = rn. 而对负整数 m, 有

$$0 = f(0) = f(m) + f(-m) \implies f(m) = -f(-m) = -(-rm) = rm$$

对有理数 p/q, 我们有

$$qf(p/q) = \underbrace{f(p/q) + \dots + f(p/q)}_{q \uparrow} = f(p) = pr$$

从而 f(p/q) = r(p/q). 因此对所有 $x \in \mathbb{Q}$ 有 f(x) = rx. 注意到如果 g(x) = sx 是另一个自同构, 那么有 $f \circ q(x) = rsx$. 从而有 Aut $\mathbb{Q} \simeq \mathbb{Q}^*$, 即有理数乘法群.

例 1.3. 我们将在本例中证明第三同构定理,以演示如何使用第一同构定理. 第三 同构定理断言,如果 H,N 是 G 的正规子群且 $N\subset H$,那么有

$$\frac{G}{H} \simeq \frac{G/N}{H/N} \tag{1.1}$$

首先需要证明 $H/N \triangleleft G/N$, 这只需要注意到

$$(gN)(hN)(g^{-1}N) = N(ghg^{-1})NN = ghg^{-1}N \in H/N$$

即可. 而定义同态

$$\varphi: G/N \to G/H$$
$$gN \mapsto gH$$

由于 $N \subset H$, 上述定义是良好的. 我们考虑 $\ker \varphi$, 有 $\varphi(gN) = H \iff g \in H$, 那么等价于 $gN \in H/N$. 所以 $\ker \varphi = H/N$, 第一同构定理给出 (1.1) 式.

例 1.4. 我们将在本例中讨论根式理想. 设 A 是交换环, \mathfrak{a} 是 A 的理想. 定义 $\sqrt{\mathfrak{a}} = \{a \in A | a^n \in \mathfrak{a}, \exists n \in \mathbb{N}\}$. 我们证明 $\sqrt{\mathfrak{a}}$ 是 A 的理想. 首先对于 $a, b \in \sqrt{\mathfrak{a}}$, 设 $a^n \in \mathfrak{a}$, $b^m \in \mathfrak{a}$. 由于 A 是交换环, A 上二项式定理成立, 从而有

$$(a-b)^{m+n} = \sum_{i=0}^{m+n} (-1)^{m+n-i} {m+n \choose i} a^i b^{m+n-i}$$
 (1.2)

在以上 m+n 个求和项中, $0 \le i \le n$ 时 $b^{m+n-i} \in \mathfrak{a}$, $n+1 \le i \le m+n$ 时 $a^i \in \mathfrak{a}$, 所以求和式 $(a-b)^{m+n}$ 在 \mathfrak{a} 中,即 $\sqrt{\mathfrak{a}}$ 是 A 的子加群. 其次对于 $a \in \sqrt{\mathfrak{a}}, r \in A$, 有 $(ra)^n = r^n a^n \in \sqrt{\mathfrak{a}}$. 综上可知 $\sqrt{\mathfrak{a}}$ 是 A 的理想.

例 1.5. 我们将在本例讨论环的直和作为余积的性质. 设 $\mathfrak{a},\mathfrak{b}$ 是环 R 的理想, $R=\mathfrak{a}\oplus\mathfrak{b}$. 假设对环 A 有同态 $f:\mathfrak{a}\to A,g:\mathfrak{b}\to A$, 那么存在唯一的同态 $\varphi:R\to A$ 使得下图交换

图中 i_1, i_2 分别是 $\mathfrak{a}, \mathfrak{b}$ 的典范嵌入映射. 事实上, 对 r = a + b, 定义 $\varphi : r \mapsto f(a) + g(b)$. 那么显然 φ 使得图表交换, 只需说明唯一性. 假设 ψ 也使图表交换,

1.5 例题与习题 13

那么考虑 $\varphi - \psi$, 对 r = a + b 有

$$\varphi(r) - \psi(r) = f(a) + g(b) - \psi(a) - \psi(b)$$

$$= f(a) - \psi(i_1(a)) + g(b) - \psi(i_2(b))$$

$$= f(a) - f(a) + g(b) - g(b)$$

$$= 0$$

因此 $\varphi = \psi$, 即同态是唯一的.

习题 1.6. 证明在偶数阶群中, 方程 $x^2 = e$ 有偶数个解.

习题 1.7. 证明群 G 是 Abel 群当且仅当 $g \to g^{-1}$ 是 G 的自同构, 即 $G \to G$ 的同构.

习题 1.8. 设 G 是群, Z(G) 是 G 的中心, 即 $Z(G) := \{z \in G | \forall g \in G : gz = zg\}$.

- (1) Z(G) 是 G 的正规子群;
- (2) G/Z(G) 同构于 G 的自同构群 Aut(G) 的子群. [提示: 考虑内自同构, 即每个 g 诱导了一个 $int_g: G \to G, x \mapsto gxg^{-1}$.]

习题 1.9. 设 R_1, R_2 是两个环, $p_1: R_1 \times R_2 \to R_1, p_2: R_1 \times R_2 \to R_2$ 是典范 投影映射. 假设对环 A 存在同态 $f: A \to R_1, g: A \to R_2$, 那么存在唯一的同态 $\varphi: A \to R_1 \times R_2$ 使得下图交换

习题 1.10. 设 A 是交换环, X 是 A 的非空子集, 定义 $Ann(X) = \{a \in A | \forall x \in X : ax = 0\}$. 证明 Ann(X) 是 A 的理想.

习题 1.11. 设 A 是交换环, $\mathfrak{a},\mathfrak{b}$ 是 A 的理想, 定义**乘积理想**

$$\mathfrak{ab} = \left\{ \sum_{i=1}^{m} a_i b_i \middle| a_i \in \mathfrak{a}, b_i \in \mathfrak{b}, i = 1, 2 \cdots, m, m \in \mathbb{N} \right\}$$

证明 $ab \subset a \cap b$, 并给出严格包含的例子, 并进一步证明 $\sqrt{ab} = \sqrt{a \cap b}$.

习题 1.12. 设 R 是 Noether 环, \mathfrak{a} 是 R 的理想, 证明 R/\mathfrak{a} 也是 Noether 环.

第二章 群的更多性质

我们在本章讨论群的更多的性质. 我们关心群的作用, 以及有限群的分类. 在此之中我们遇到的最重要的定理将会是三条 Sylow 定理.

2.1 群作用

我们在接下来几节中关注群作用和群作用的一些应用. 首先给出群作用的定义

定义 2.1. 群 G 在一个集合 S 上的作用是 G 到 S 的置换群的一个同态 $G \to \operatorname{Aut}_{\mathsf{Set}}(S)^{\mathsf{1}}$. 当同态是单态射时, 称作用是**忠实**的.

群作用的等价定义是

定义 2.2. 群 G 在集合 S 上的一个作用是为每个 $g \in G$ 赋予一个映射 $\varphi_g : S \to S$, 满足

- (1) $\varphi_g \circ \varphi_h = \varphi_{gh}$;
- (2) $\varphi_e = \mathrm{id}_S$.
- 记号 2.3. 为简单起见, 在不会引起混淆时一般将 $\varphi_g(a)$ 记作 ga.

最简单的群作用是群在自身的作用,这样的作用有两种.

定义 2.4. 群 G 中的元素 a 在 G 自身的一个左平移为 $g \mapsto ag$; a 在 G 自身的一个内自同构或共轭作用为 $g \mapsto aga^{-1}$.

习题 2.1. 验证左平移和内自同构都是群作用.

 $^{^{1}}$ 这个记号表示 S 的排列, 与一个群的自同构群区分.

通过群作用, 我们可以得到如下一条基本的定理

定理 2.5 (Cayley). 任意有限群都同构于某个置换群的子群.

证明. 考虑 G 的左平移. 对 $a,b \in G$, ag = bg 可以推出 a = b, 所以不同的元素 给出不同的变换. 因此 G 是忠实的, 从而 G 同构于 $Aut_{Set}(G)$ 的某个子群. 将 G 的元素——对应于 $\{1,\cdots,n\}$ (n 为 G 的阶), 那么 $Aut_{Set}(G) \simeq S_n$, 可以得到 G 同构于 S_n 的子群.

定义 2.6. 设群 G 作用在 S 上,定义 S 上的等价关系 \sim 为 $a \sim b$ 当且仅当存在 $g \in G$ 使得 ga = b. 定义该群作用的**轨道**为 \sim 的等价类. 如果 S 上仅有一条轨道,那么称群作用是**可迁**的.

定义 2.7. 设群 G 作用在 $S \perp$, $s \in S$. 定义 s 的稳定化子为 $G_s := \{g \in G | gs = s\}$.

引理 2.8. 设群 G 作用在 S 上, $s \in S$. 如果 t = gs, 那么 $G_t = gG_sg^{-1}$.

命题 2.9 (计数公式). 设有限群 G 作用在有限集合 S 上, $s \in S$. 用 O_s 记 s 所在的轨道, 那么有 $|O_s||G_s| = |G|$.

证明. 轻微滥用记号, 用 G/G_s 表示 G_s 所有左陪集的集合. 定义映射

$$\varphi: O_s \to G/G_s$$
$$t = gs \mapsto gG_s$$

我们验证上述映射是良定义的: 如果另有 t = g's, 那么 $g's = gs \implies g^{-1}g' \in G_s$, 即 $gG_s = g'G_s$. 显然 φ 是满射. 如果 $gG_s = g'G_s$, 那么可以得出 $g^{-1}g' \in G_s$, 从 而 gs = g's, 即 φ 是单射. 因此 $|O_s||G_s| = |G/G_s||G_s| = |G|$.

我们给出共轭作用的一些应用. 共轭作用的轨道也称为**共轭类**, 在有限群中, 将所有共轭类的元素个数相加可以得到群的阶数, 这样我们就得到了

命题 2.10. 有限群 G 的类方程为

$$|G| = \sum_{O \notin H, w \notin |O|} |O|$$

2.2 单群 17

特别地,单位元的共轭类 $|O_e|=1$,从而方程也能写成

$$|G| = 1 + \sum_{O \notin P} |O|$$

定义 2.11. 有限群 G 称为p—**群**, 如果 G 的阶数是 p 的方幂.

我们通过类方程给出一些简单的 p-群的结构. 回忆我们在习题 1.8 中定义了群的中心, 它包含了与群中所有元素交换的元素.

命题 2.12. p-群的中心至少有 p 个元素.

证明. 设 G 是 p-群. 注意到中心 Z(G) 中的元素的共轭类仅包含本身, 所以类方程写作

$$|G| = \sum_{x \in Z(G)} 1 + \sum_{O \notin G \setminus Z(G) \neq \overrightarrow{\pi} = x} |O|$$
 (2.1)

注意到 Z(G) 之外的元素轨道长度一定大于 1, 而由计数公式, 轨道长度一定整除 $|G| = p^n$, 所以长度一定是 p 的倍数. 因此 $\sum_{O \in G \setminus Z(G) + r = n, n} |O|$ 被 p 整除. 而 (2.1) 左端为 p^n , 所以 $\sum_{x \in Z(G)} 1$ 被 p 整除, 且至少是 p, 即 $|Z(G)| \geq p$.

对于 p^2 阶群, 还有更强的结论

命题 2.13. p^2 阶群是 Abel 群.

证明. 设群 G 满足 $|G|=p^2$. 由命题 2.12, $|Z(G)|\geq p$, 从而 |Z(G)|=p 或 $|Z(G)|=p^2$. 对于后一种情况,命题得证. 对于前一种情况,我们考虑一个 $x\notin Z(G)$,取 $Z_x=\{y\in G|\ xy=yx\}^2$,容易验证 Z_x 是 G 的一个子群. 又因为 $x\notin Z(G)$,所以 Z_x 真包含 Z(G),从而 $|Z_x|=p^2$. 而这说明 x 与 G 中所有元素交换,有 $x\in Z(G)$,矛盾. 因此 G 是 Abel 群.

习题 2.2. 证明 p^2 阶群是循环群或者是两个 p 阶群的直积.

2.2 单群

定义 2.14. 如果群 G 没有非平凡的正规子群, 那么称 G 为单群.

²这个群叫做中心化子.

比较简单的情况是 Abel 群的情况.

命题 2.15. Abel 群 G 是单群当且仅当 G 是素数阶循环群.

证明. 注意到 Abel 群的任意子群都是正规的, 所以 G 是单群等价于 G 没有非平凡子群. 由 Lagrange 定理, G 是素数阶循环群时 G 没有非平凡子群. 反过来, \mathbb{Z} 不是单群; 如果 G 不是循环群, 那么存在 $g \in G \setminus \{e\}$ 使得 $\langle g \rangle \subsetneq G$; 如果 G 是循环群而不是素数阶的, 设 |G| = mn, $G = \langle g \rangle$, 那么 $\langle g^m \rangle \subsetneq G$. 综上可知命题成立.

而对一般的有限群来说,另一个常见的结论是

定理 2.16. 设 $n \geq 5$, 那么交错群 A_n 是单群.

我们首先需要两个引理.

引理 2.17. A_n 由 3-循环生成.

证明. A_n 中的元素都可以写成偶数个 2-循环的乘积. 而对两个 2-循环 (ij),(rs) 有 (ij)(rs)=(ijr)(jrs),所以 3-循环生成了 A_n .

引理 2.18. $n \geq 5$ 时 A_n 中的 3-循环两两共轭.

证明. 设 (ijk), (i'j'k') 是两个 3-循环, 那么存在一个置换 σ 使得 $\sigma(i)=i'$, $\sigma(j)=j'$, $\sigma(k)=k'$. 如果 σ 是偶置换, 那么就有 $\sigma(ijk)\sigma^{-1}=(i'j'k')$, 从而 (ijk), (i'j'k') 共轭. 如果 σ 是奇置换, 由于 $n\geq 5$, 存在与 i,j,k 不同的 r,s, 那么用 $\sigma\cdot(rs)$ 代替 σ , 仍然得到 (ijk), (i'j'k') 共轭.

定理 2.16 的证明. 由前面的两个引理, 我们只需要证明 A_n 的任意非平凡正规子 群 N 均包含一个 3-循环即可.

设 σ 是 id 之外不动点最多的置换. 考虑 $\langle \sigma \rangle$ 作用下的轨道, 那么存在轨道 其中含有超过一个元素. 假设除了一个元素构成的轨道外, 所有轨道都只有两个元素. 由于 σ 是偶置换, 所以至少有两个这样的轨道, 那么 $\sigma=(ij)(rs)\cdots$. 设 $k \neq i, j, r, s, \tau=(krs)$, 取 $\sigma'=\tau\sigma\tau^{-1}\sigma^{-1}$. 那么简单计算可以得到 $\sigma'(i)=i,\sigma'(j)=j$, 并且对 $t \neq i, j, k, r, s$, 如果 t 被 σ 固定, 那么也被 σ' 固定. 因此 σ' 有更多的不动点, 矛盾.

2.3 SYLOW 定理 19

由上述论证, $\langle \sigma \rangle$ 的轨道中至少存在一个有至少 3 个元素,设轨道为 $O = \{i, j, k, \cdots\}$. 如果 σ 不是 3-循环,那么 O 中至少还有两个元素,否则 σ 中包含 (ijkr),是一个奇置换. 因此 σ 移动 i, j, k 以外的 r, s,同理地取 $\tau = (krs)$ 及 $\sigma' = \tau \sigma \tau^{-1} \sigma^{-1}$,那么 σ' 固定 i, j 且固定 i, j, k, r, s 以外的其他不动点,仍然矛盾:综合以上两点,可以知道 σ 是一个 3-循环.

习题 2.3. 证明 A₄ 不是单群.

2.3 Sylow 定理

有限群理论中一个重要的工具是我们即将陈述的三个 Sylow 定理. 本节中的群均默认是有限群.

定义 2.19. 设素数 p 整除群 G 的阶, 那么群 G 的一个 **Sylow** p—**子群**是一个 p^n 阶子群, 其中 n 是 p 整除 |G| 的最高次幂.

定理 2.20 (Sylow 第一定理). 设素数 p 整除群 G 的阶, 那么群 G 中存在 Sylow p—子群.

推论 2.22. Sylow p-子群两两共轭.

Sylow 定理的证明比较复杂, 我们将其留在附录 A.1 中. 读者也可以阅读 [5, pp. 33–36]. Sylow 定理的应用十分重要, 我们给出几个例子.

例 2.1. 第零个例子是关于如何分类低阶有限群的. 比如我们分类 4 阶群, 这用不到 Sylow 定理: 按照 Lagrange 定理, 群中元素的阶只能是 1,2,4 其一. 如果群中存在 4 阶元, 那么这个群是循环群. 不然群中除单位元外都是 2 阶元, 设群 $G:=\{e,a,b,c\}$. 那么 $\{e,a\} \lhd G, \{e,b\} \lhd G,$ 并且有 ab=c, 所以 $G\simeq \{e,a\} \times \{e,b\}$. 因此 4 阶群同构于 C_4 或 $C_2 \times C_2$.

例 2.2. 我们证明 15 阶群是循环群. 设 |G|=15, 考虑 Sylow 3—子群与 Sylow 5—子群. 由 Sylow 第三定理, Sylow 3—子群的个数整除 5, 且模 3 余 1, 因此个数 只能是 1. 由 Sylow 第二定理, 这说明 Sylow 3—子群是正规的, 设为 $H \triangleleft G$. 同理 Sylow 5—子群也是正规的, 设为 $K \triangleleft G$. 而显然 $H \cap K = \{e\}$, 所以 $G \simeq H \times K$. 由于 H, K 是阶数互素的素数阶循环群, 所以 $H \times K$ 是循环群 (请读者验证), 即 G 是循环群.

例 2.3. 我们证明 72 阶群不是单群. 首先有 $72 = 2^3 \times 3^2$. 设群 G 的阶为 72. 由 Sylow 第一定理, G 存在 Sylow 3—子群, 并且由 Sylow 第三定理, Sylow 3—子群的 个数整除 8 而模 3 余 1, 从而为 1 或 4. 如果 Sylow 3—子群恰好只有一个, 那么由 Sylow 第二定理可知它是正规的, 从而 G 有非平凡正规子群; 如果 Sylow 3—子群有四个, 那么由 Sylow 第二定理可知 G 的共轭作用是这四个子群上的一个可迁作用, 从而诱导了一个同态 $\varphi: G \to S_4$. 由于 $|S_4| = 24$, 由对应定理可知 $\ker \varphi$ 的 阶至少为 3, 而 $\ker \varphi \triangleleft G$, 所以 G 有非平凡正规子群. 综上, G 一定不是单群.

2.4 例题与习题

例 2.4. 我们证明 2n 阶群有阶为 n 的正规子群. 由 Cayley 定理, 不妨设 G 是 S_{2n} 的 2n 阶子群. 如果 G 中存在一个奇置换, 那么 G 中奇置换与偶置换一定一样多 (请读者验证), 那么 $A_{2n} \cap G$ 就是 G 的 n 阶正规子群. 因此我们只需要找一个奇置换. 注意到对任意 $g \in G\setminus \{\mathrm{id}\}$, g 没有不动点, 且若 g 的阶为 d, 那么任意一个元素在 $\langle g \rangle$ 作用下的轨道长为 d. 因此 $\langle g \rangle$ 的轨道是 2n/d 个 d 元集, 从而 g 的符号为 $(-1)^{2n-2n/d} = (-1)^{2n/d}$. 而 G 中阶数超过 3 的元素一定有偶数个 (考虑对应 $a \mapsto a^{-1}$), G 中单位元是 1 阶的, 所以 G 中一定存在 2 阶元, 此时它的符号为 $(-1)^n = -1$, 从而找到一个奇置换.

例 2.5. 我们将在本例中证明 Burnside 引理. 设有限群 G 作用在有限集合 X 上,记 $S^g:=\{s\in X|\ gs=s\}$ 为 g 的不动点集, X 在 G 的作用下有 n 条轨道, 那么 Burnside 引理断言

$$n = \frac{1}{|G|} \sum_{g \in G} |S^g|$$

2.4 例题与习题 21

证明用到了交换求和号的技巧. 我们有

$$\begin{split} \sum_{g \in G} |S^g| &= \sum_{g \in G} \sum_{s \in X, gs = s} 1 = \sum_{s \in X} \sum_{g \in G, gs = s} 1 \\ &= \sum_{s \in X} |G_s| = \sum_{s \in X} \frac{|G|}{|O_s|} \\ &= \sum_{O \in \mathfrak{A} \wr \check{\mathfrak{U}}} \sum_{s \in O} \frac{|G|}{|O|} = \sum_{O \in \mathfrak{A} \wr \check{\mathfrak{U}}} |G| \\ &= n|G| \end{split}$$

例 2.6. 我们证明 $n \geq 5$ 时, S_n 没有 n!/4 阶子群. 假设存在子群 G 使得 |G| = n!/4. 如果 G 中不存在奇置换, 有 $G \subset A_n$, 那么 G 的阶是 A_n 的一半, 从而 $G \triangleleft A_n$, 与 A_n 的单性矛盾. 如果 G 中存在奇置换, 那么 $G' = G \cap A_n$ 阶为 n!/8. 考虑 A_n 在 G' 在 A_n 中的陪集类上的左平移作用: 陪集类中有 4 个元素, 从而 这个作用给出一个同态 $\varphi: A_n \to S_4$. 而 $n \geq 5$ 时 $|A_n|/|S_4| > 1$, 由对应定理知 $\ker \varphi$ 非平凡, 从而 $\ker \varphi \triangleleft A_n$, 与 A_n 的单性矛盾. 因此 G 是不存在的.

习题 2.4. 给定一个正整数 n, 证明互不同构的 n 阶群只有有限个.

习题 2.5. 设有限群 G 可迁地作用在有限集 X 上, $N \triangleleft G$, 证明 X 在 N 的作用下每个轨道有同样多的元素.

习题 2.6. 分类 10 阶群.

第三章 交换环

在第一章讨论了环的理想之后,我们开始具体地讨论交换环的结构.

3.1 理想与整环

3.1.1 素理想与极大理想

定义 3.1. 称环 A 的子集 S 为乘闭子集, 如果 S 满足 $0 \notin S, 1 \in S$, 且对 $x, y \in S$ 有 xy = S.

我们首先定义两种重要的理想.

定义 3.2. 设 \mathfrak{p} 是环 A 的真理想, 如果 \mathfrak{p} 满足对 $a,b \in R$, $ab \in \mathfrak{p}$ 可以推出 $a \in \mathfrak{p}$ 或 $b \in \mathfrak{p}$, 那么称 \mathfrak{p} 为**素理想**. 所有素理想的集合记为 Spec A.

素理想有一种等价的刻画:

命题 3.3. 设 \mathfrak{p} 是环 A 的理想, 那么以下命题等价:

- (1) p 是素理想:
- (2) *R*\p 是乘闭的;

证明, 仅仅是重述了一遍素理想的定义.

定义 3.4. 设 m 是环 A 的真理想, 如果对任意真理想 \mathfrak{a} , $\mathfrak{m} \subset \mathfrak{a}$ 可以推出 $\mathfrak{m} = \mathfrak{a}$, 那么称 \mathfrak{m} 为 A 的一个**极大理想**. 换言之, 极大理想是环 A 的真理想以包含关系为偏序的极大元. 所有极大理想的集合记为 MaxSpec A.

П

我们在本小节需要证明的中心结论是极大理想的存在性.

引理 3.5 (Zorn). 设 (X, \prec) 是非空偏序集, 如果 X 中任意一条链均有上界, 那 X 中存在极大元.

证明. Zorn 引理等价于选择公理, 参阅 [5, 附录 2.2].

命题 3.6. 设 \mathfrak{a} 是 A 的一个真理想, 那么存在极大理想 \mathfrak{m} 使得 $\mathfrak{a} \subset \mathfrak{m}$.

证明. 定义 \mathscr{I} 是 A 的所有包含 \mathfrak{a} 的真理想的集合. 那么 $\mathfrak{a} \in \mathscr{I}$, \mathscr{I} 非空. 对于 \mathscr{I} 中任意一条链

$$\mathfrak{a}_1 \subset \mathfrak{a}_2 \subset \cdots$$

考虑 $\bigcup_{n\geq 1}\mathfrak{a}_n$,容易验证它构成一个理想. 我们需要验证 $\bigcup_{n\geq 1}\mathfrak{a}_n$ 是一个真理想,否则 $1\in\bigcup_{n\geq 1}\mathfrak{a}_n$,那么对某个 \mathfrak{a}_i 有 $1\in\mathfrak{a}_i$,矛盾. 所以 $\bigcup_{n\geq 1}\mathfrak{a}_n$ 是这条链的上界. 因此 \mathscr{I} 满足 Zorn 引理的条件,其中存在极大元 \mathfrak{m} . 断言 \mathfrak{m} 是极大理想: 如果 \mathfrak{b} 满足 $\mathfrak{m}\subset\mathfrak{b}$,那么 $\mathfrak{b}\in\mathscr{I}$,从而由 \mathfrak{m} 在 \mathscr{I} 中的极大性知 $\mathfrak{b}=\mathfrak{m}$. 因此 \mathfrak{m} 是极大理想,且包含 \mathfrak{a} .

推论 3.7. 环 A 中存在极大理想.

评注 3.8. 我们强调我们处理的都是含幺交换环, 如果环不含幺元, 那么极大理想 很有可能就不存在了, 见下面的例子.

例 3.1. 考虑在 $\mathbb Q$ 上赋予平凡乘法,即对任意 $a,b\in\mathbb Q$ 有 ab=0. 那么此时 $\mathbb Q$ 构成一个不含幺元的交换环. 假设 $\mathbb Q$ 有一个极大理想 $\mathfrak a$,那么由对应定理, $\mathbb Q/\mathfrak a$ 没有非平凡理想. 因此 $\mathbb Q/\mathfrak a$ 没有非平凡子群,从而是单群,但单的 Abel 群只有素数阶循环群,不妨设 $\mathbb Q/\mathfrak a\simeq\mathbb Z/p\mathbb Z$. 取 $a\notin\mathfrak a$,a=pb,由 Lagrange 定理可知 $p(b+\mathfrak a)=\mathfrak a$,这与 $a\notin\mathfrak a$ 矛盾. 所以 $\mathfrak a$ 不是极大理想.

3.1.2 整环与域

定义 3.9. (不一定交换的) 环 R 的**零因子**定义为满足存在元素与其相乘为 0 的元素.

定义 3.10. 整环是含幺交换无零因子的环.

通过整环可以构造出一个域. 类似通过 $\mathbb Z$ 构造 $\mathbb Q$ 的方法, 我们定义整环的商域如下.

定义 3.11. 设 A 是整环, 在 $A \times A$ 上定义等价关系

$$(r_1, s_1) \sim (r_2, s_2) : \iff r_1 s_2 = r_2 s_1$$

将等价类记为 [r/s], 那么 $A \times A/\sim$ 构成一个域, 称为 A 的**商域**, 并记为 Quot A. A 可以看作 Quot A 的一个子环, 同构映射由 $a \mapsto [a/1]$ 给出.

习题 3.1. 证明一个域的商域是其自身.

整环与素理想之间可以通过商环建立起联系.

命题 3.12. 设 p 是环 A 的理想, 那么 p 是素理想当且仅当 A/p 是整环.

证明. 假设 A/\mathfrak{p} 是整环, 那么 $ab \in \mathfrak{p}$ 推出 $ab + \mathfrak{p}$, 而 $ab + \mathfrak{p} = (a + \mathfrak{p})(b + \mathfrak{p})$, 且对 满足 $(a + \mathfrak{p})(b + \mathfrak{p}) = \mathfrak{p}$ 的 a, b 一定有 $a + \mathfrak{p} = \mathfrak{p}$ 或 $b + \mathfrak{p} = \mathfrak{p}$, 即 $a \in \mathfrak{p}$ 或 $b \in \mathfrak{p}$. 反过来如果 \mathfrak{p} 是素理想, 那么 $ab + \mathfrak{p} = \mathfrak{p}$ 推出 $ab \in \mathfrak{p}$, 就有 $a \in \mathfrak{p}$ 或 $b \in \mathfrak{p}$, 从而得到 $a + \mathfrak{p} = \mathfrak{p}$ 或 $b + \mathfrak{p} = \mathfrak{p}$.

命题 3.13. 设 m 是环 A 的理想, 那么 m 是极大理想当且仅当 A/m 是域.

引理 3.14. 一个整环是域当且仅当其只有平凡理想.

证明. 设 k 是整环. 如果 k 是域, 那么 k 的理想 $\mathfrak a$ 要么是零理想, 要么存在非零元 $a \in \mathfrak a$, 那么 $1 = a^{-1}a \in \mathfrak a$, 从而 $\mathfrak a = k$. 如果 k 只有平凡理想, 那么对任意 $a \neq 0$ 有 $\langle a \rangle = k$, 从而 $1 \in \langle a \rangle$, 即 a 可逆.

命题 3.13 的证明. 假设 \mathfrak{m} 是极大理想, 那么由对应定理, A/\mathfrak{m} 只有平凡理想, 从而由引理知 A/\mathfrak{m} 是域. 反过来, 如果 A/\mathfrak{m} 是域, 那么 A/\mathfrak{m} 只有平凡理想, 从而由对应定理, A 中不存在更大的理想包含 \mathfrak{m} , 即 \mathfrak{m} 是极大理想. □

推论 3.15. 极大理想都是素理想.

证明. 域都是整环.

3.2 三种特殊的整环

3.2.1 唯一分解整环

我们在本小节将推广 \mathbb{Z} 上的唯一分解性,得到一类具有唯一分解性的整环. 为此,我们将给出更广泛的整除与唯一分解的定义. **定义 3.16.** 设 A 是整环.

- (1) 设 $u \in A$ 满足存在 $v \in A$ 使得 uv = 1, 那么称 u 是一个单位.
- (2) 设 $f,g \in A$ 满足存在 $h \in A$ 使得 f = gh, 那么称 g 整除 f, 并记 g|f. 此时 称 $g \notin f$ 的因子, $f \notin g$ 的倍元.
- (3) 如果 $f|g \perp g|f$, 那么称 $f \mid a \mid g \mid d \mid d \mid e$, 此时存在单位 $u \mid g \mid d \mid g \mid d \mid e$

定义 3.17. 设 A 是整环.

- (1) 如果 $f \in A$ 满足 f = gh 且 g, h 都不是单位, 那么称 f 是**可约的**, 否则称 f 是**不可约的**.
- (2) 设 $f \in A$, 称 f 可以分解为不可约元的乘积, 如果 $f = f_1 f_2 \cdots f_n$, 其中 f_i 都是不可约元.
- (3) 设 $f \in A$, 称 f 唯一分解为不可约元的乘积, 如果对两个分解

$$f = f_1 f_2 \cdots f_l = g_1 g_2 \cdots g_m$$

有 l = m, 且适当调整顺序之后有 f_i 与 g_i 相伴.

定义 3.18. 整环 A 称为是**唯一分解整环 (UFD)**, 如果 A 中的任意非零且非单位的元素都可以唯一分解为不可约元的乘积.

在整数中,素数具有性质 $p|ab \implies p|a$ 或 p|b, 依此我们可以类似地在整环上定义素元的概念.

定义 3.19. 设 A 是整环, 如果 $p \in A$ 满足对任意 $a,b \in A$ 有 $p|ab \implies p|a$ 或 p|b, 则称 p 是素元.

引理 3.20. 整环上的素元都是不可约元.

证明. 假设 p = ab 且 a, b 都不是单位, 那么 p|ab, 得出 p|a 或 p|b, 不妨设前者成立, 那么 a|p 且 p|a, 可知 p, a 相伴, 从而 b 是单位, 矛盾. 所以 p 不可约.

命题 3.21. 设 A 是整环, 那么 A 是唯一分解整环的充分必要条件是

- (1) A 中的每个非零, 非单位的元素都可以分解为不可约元的乘积;
- (2) A 中每个不可约元都是素元.

证明. 必要性: 设 p|ab, 进一步设 ab = pr, 那么作不可约元的分解有

$$a_1 \cdots a_l b_1 \cdots b_m = p r_1 \cdots r_n$$

由分解的唯一性, p 必然与某个 a_i 或者 b_i 相伴, 即 p|a 或 p|b. 因此 p 是素元. 充分性: 设 $f \in A$ 有分解

$$f_1 f_2 \cdots f_l = g_1 g_2 \cdots g_m$$

我们对 $\max\{l,m\}$ 用归纳法. $\max\{l,m\}=1$ 时有 $f_1=g_1$, 无需证明. 假设 $\max\{l,m\}=n$, 不妨设 m=n, 那么有

$$f_1|g_1g_2\cdots g_n$$

由于 f_1 是素元,一定存在某个 g_i 使得 $f_1|g_i$,而 g_i 是不可约元,所以 f_1 与 g_i 相伴. 那么设 $f_1 = ug_i$,在分解中约去 f_1 与 g_i 后得到

$$f_2 \cdots f_l = ug_1 \cdots \widehat{g_i} \cdots g_m$$

此时两侧不可约元个数最大值为 n-1, 由归纳假设有 l-1=m-1, 即 l=m, 且调整顺序后不可约元对应相伴. 因此 A 是唯一分解整环.

在唯一分解整环中,可以定义两个元素的最大公因子和最小公倍式.

定义 3.22. 设 A 是唯一分解整环, $a_1, \dots, a_n \in A$.

- (1) a_1, \dots, a_n 的**最大公因子**定义为满足 $d|a_i(i=1,\dots,n)$, 且对任意 $d'|a_i(i=1,\dots,n)$ 的 d' 有 d'|d 的 $d \in A$, 记为 (a_1,\dots,a_n) .
- (2) a_1, \dots, a_n 的**最小公倍式**定义为满足 $a_i | l(i = 1, \dots, n)$, 且对任意 $a_i | l'(i = 1, \dots, n)$ 的 l' 有 l | l' 的 $d \in A$, 记为 $[a_1, \dots, a_n]$.

最大公因子和最小公倍式一般来说不唯一,会相差一个单位. 例如在 \mathbb{Z} 中, (4,6) 既可以是 2 也可以是 -2.

习题 3.2. 证明唯一分解整环 A 中最大公因子和最小公倍式存在, 并且存在单位 $u \in A$ 使得 $a_1 \cdots a_n = u(a_1, \cdots, a_n)[a_1, \cdots, a_n]$.

3.2.2 主理想整环

定义 3.23. 由一个元素生成的理想称为**主理想**. 如果整环 A 的每个理想都是主理想,那么称 A 为**主理想整环 (PID)**.

我们希望证明主理想整环是唯一分解整环. 为此, 我们需要建立主理想整环的一些性质:

命题 3.24. 在主理想整环 $A \to p \in A \setminus \{0\}$, 那么下列命题等价:

- (1) *p* 是不可约元;
- (2) $\langle p \rangle$ 是极大理想;
- (3) $\langle p \rangle$ 是素理想;
- (4) p 是素元.

证明. (1) \Longrightarrow (2): 假设 $\langle p \rangle \subset \mathfrak{a} \neq A$, 那么由于 A 是主理想整环, $\mathfrak{a} = \langle a \rangle$, 从而 a|p. 而 p 是不可约元, 这说明 a 是单位或 a=p, 即 $\mathfrak{a} = \langle p \rangle$, 从而 $\langle p \rangle$ 是极大理想.

- (2) ⇒ (3): 这是推论 3.15.
- (3) \Longrightarrow (4): 设 p|ab, 那么 $ab \in \langle p \rangle$, 从而有 $a \in \langle p \rangle$ 或 $b \in \langle p \rangle$, 即 p|a 或 p|b.

$$(4) \Longrightarrow (1)$$
: 这是引理 3.20.

命题 3.25. 主理想整环 A 的主理想满足升链条件, 即对主理想的升链

$$\langle a_1 \rangle \subset \langle a_2 \rangle \subset \cdots$$
 (3.1)

存在 $n \in \mathbb{N}$ 使得 $\langle a_n \rangle = \langle a_{n+1} \rangle = \cdots$.

证明. 在 (3.1) 中取 $\mathfrak{a} = \bigcup_{i \geq 1} \langle a_i \rangle$, 那么我们熟悉这一定是一个理想. 由于 A 是主理想整环, 那么存在 $a \in \mathfrak{a}$ 使得 $\mathfrak{a} = \langle a \rangle$. 由于 $a \in \bigcup_{i \geq 1} \langle a_i \rangle$, 设 $a \in \langle a_n \rangle$, 那么

$$\langle a \rangle \subset \langle a_n \rangle \subset \langle a_{n+1} \rangle \subset \cdots \subset \langle a \rangle$$

从而就有 $\langle a_n \rangle = \langle a_{n+1} \rangle = \cdots$.

命题 3.26. 主理想整环是唯一分解整环.

证明. 设 A 是主理想整环, 我们证明 A 中非零非单位的元素都能分解为不可约元的乘积. 否则设存在一个 a 不可以分解为不可约元的乘积, 设 $a=a_1b_1$, 其中 a_1 不是不可约元, 不妨设其也不能分解为不可约元的乘积. 又设 $a_1=a_2b_2$, a_2 不可以分解为不可约元的乘积. 如此归纳定义得到序列 a_1,a_2,\cdots , 每一项中后者都整除前者且不与前者相伴, 因此我们得到严格递增的主理想链

$$\langle a_1 \rangle \subsetneq \langle a_2 \rangle \subsetneq \cdots$$

这与命题 3.25 矛盾. 所以 A 中的元素都可以分解为不可约元的乘积. 而由命题 3.24, A 中的不可约元都是素元, 那么由命题 3.21, 可知 A 是唯一分解整环. \square

3.3 例题与习题 29

反过来一般是不成立的. 例如可以证明 $\mathbb{Z}[x]$ 是唯一分解整环 ([5, p. 182 定理 2.3]), 但是容易发现 $\langle 2, x \rangle$ 不是主理想.

3.2.3 Euclid 整环

在本小节我们推广 ℤ 上的带余除法.

定义 3.27. 设 A 是整环, 映射 $\delta: A \setminus \{0\} \to \mathbb{N}$, 满足对任意 $a, b \in A$, 存在 $q, r \in A$ 使得

$$a = bq + r$$

且 r=0 或 $\delta(r)<\delta(b)$, 则称 A 为 Euclid 整环, δ 为 Euclid 映射.

我们熟知两种 Euclid 整环 \mathbb{Z} 与 k[x]. 当 $A = \mathbb{Z}$ 时, Euclid 映射就是恒等映射; 当 A = k[x] 时, Euclid 映射是多项式的度数.

我们证明本小节最主要的结论:

命题 3.28. Euclid 整环是主理想整环.

证明. 设 A 是 Euclid 整环, \mathfrak{a} 是 A 的理想. 取集合 $S = \{\delta(x) | x \in \mathfrak{a}\}$, 那么 $S \subset \mathbb{N}$, 由最小数原理, 存在 $a \in \mathfrak{a}$ 使得 $\delta(a) = \min S$. 断言 $\mathfrak{a} = \langle a \rangle$. 设 $b \in \mathfrak{a}$, 那么 $\Delta A \in \mathfrak{a}$ 使得 $\Delta A \in \mathfrak{a}$ 使用 $\Delta A \in \mathfrak{A}$

本小节与前一小节证明了如下的包含关系:

Euclid 整环 ⊊ 主理想整环 ⊊ 唯一分解整环

而证明这两个包含关系是严格的则超出了本讲义的范围.

3.3 例题与习题

例 3.2. 我们证明交换环 A 的诣零根满足

$$\sqrt{\{0\}} = \bigcap_{\mathfrak{p} \in \text{Spec } A} \mathfrak{p} \tag{3.2}$$

一方面, 容易验证素理想都是根式理想, 所以 $\sqrt{\{0\}} \subset \sqrt{\mathfrak{p}} = \mathfrak{p}, \forall \mathfrak{p} \in \operatorname{Spec} A$, 即

$$\sqrt{\{0\}}\subset\bigcap_{\mathfrak{p}\in\operatorname{Spec} A}\mathfrak{p}$$

另一方面,如果 $a \in A \setminus \sqrt{\{0\}}$,那么 $S := \{1, a, a^2, \cdots\}$ 是一个乘闭子集,从而 $A \setminus S \in \operatorname{Spec} A$, $a \notin \bigcap_{\mathbf{p} \in \operatorname{Spec} A} \mathbf{p}$,因此

$$A \setminus \sqrt{\{0\}} \subset A \setminus \bigcap_{\mathfrak{p} \in \operatorname{Spec} A} \mathfrak{p}$$

因此有 (3.2) 成立.

例 3.3. 我们在本例中证明素理想躲避引理. 设 A 是交换环, $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ 是素理想, 理想 \mathfrak{a} 满足

$$\mathfrak{a}\subsetigcup_{i=1}^n\mathfrak{p}_i$$

那么存在 $i \in \{1, \dots, n\}$ 使得 $\mathfrak{a} \subset \mathfrak{p}_i$.

事实上,对 n 用归纳法. n=1 时命题显然成立. 对 n>1,考虑集合 $A_i:=\mathfrak{a}\setminus\bigcup_{j\neq i}\mathfrak{p}_j$. 如果某个 $A_i=\varnothing$,那么 $\mathfrak{a}\subset\bigcup_{j\neq i}\mathfrak{p}_j$,由归纳假设知命题成立. 现假设每个 A_i 均非空,反设命题不成立,那么取 $x_i\in A_i$,易知 $x_i\in\mathfrak{p}_i$. 考虑 $x_1\cdots x_{n-1}+x_n\in\mathfrak{a}$,当 $1\leq i\leq n-1$ 时,

$$x_1 \cdots x_{n-1} + x_n \in \mathfrak{p}_i \implies x_n \in \mathfrak{p}_i$$

矛盾: 当 i=n 时,

$$x_1 \cdots x_{n-1} + x_n \in \mathfrak{p}_n \implies \exists x_i \in \mathfrak{p}_n$$

仍然矛盾. 因此由归纳法可知命题成立.

例 3.4. 设 A 是整环,我们证明 A[x] 是主理想整环当且仅当 A 是域. 熟知 A 是域时 A[x] 是主理想整环. 反过来,假设 A[x] 是主理想整环,对 $a \in A\setminus\{0\}$,考虑理想 $\langle a,x\rangle$. 由于 A[x] 是主理想整环,设 $\langle a,x\rangle=\langle b\rangle$. 那么 b|a,考虑度数可知 $b\in A$. 而 b|x,设 b(cx+d)=x,比较系数可知 bc=1,即 b 可逆. 所以 $\langle a,x\rangle=A[x]$,那么存在 $f(x),g(x)\in A[x]$ 使得

$$af(x) + xg(x) = 1$$

令 x = 0 有 af(0) = 1, 即 a 可逆, 从而 A 是一个域.

3.3 例题与习题 31

例 3.5. 我们证明 $\mathbb{Z}[i]/\langle 1+i\rangle \simeq \mathbb{F}_2$. 而这只需要观察如下图表:

$$\mathbb{Z}[x] \xrightarrow{x^2+1} \mathbb{Z}[i]$$

$$\downarrow^{x+1} \qquad \downarrow^{i+1}$$

$$\mathbb{Z} \xrightarrow{2} \mathbb{F}_2$$

习题 3.3. 设 A 是交换环, 如果 $e \in A$ 满足 $e^2 = e$, 则称 e 是幂等元.

- (1) 如果 e 是幂等元, 证明 1-e 也是幂等元.
- (2) 证明 $A \simeq \langle e \rangle \oplus \langle 1 e \rangle$.

习题 3.4. 一个交换环称为**局部环**, 如果它有唯一的极大理想. 证明一个交换环是局部环当且仅当它的所有不可逆元构成一个理想.

习题 3.5. 交换环 A 上的**形式幂级数环** A[[x]] 是所有形如

$$\sum_{n=0}^{\infty} a_n x^n$$

的元素构成的环, 其中加法与乘法与多项式的定义类似.

- (1) 证明 $a_0 + a_1 x + a_2 x^2 + \cdots$ 可逆当且仅当 a_0 是单位.
- (2) 设 k 是域, 证明 k[[x]] 是局部环.

习题 3.6. (1) 证明 $\mathbb{Z}[\sqrt{-5}]$ 不是唯一分解整环.

(2) 证明 $\mathbb{Z}[\sqrt{-1}]$, $\mathbb{Z}[\sqrt{-2}]$ 是唯一分解整环. [提示: 考虑 $\mathbb{Z}[\sqrt{-1}]$ 的模 $|a+b\sqrt{-1}|^2 = a^2 + b^2$, $\mathbb{Z}[\sqrt{-2}]$ 的模类似定义.]

32 第三章 交换环

我们在本章及下一章讨论域这种更强的代数结构.

4.1 域扩张

定义 4.1. 设 K, L 是域, 满足 $K \subset L$, 那么称 $L \in K$ 的一个**扩域**, 并记为 L/K.

我们首先引进两个记号

记号 4.2. 设有域扩张 L/K, $S \subset L$, 那么记 K(S) 为包含 S 的最小的域 (即所有包含 S 的域的交). 如果 $S = \{a_1, \dots, a_n\}$, 也记 $K(S) = K(a_1, \dots, a_n)$.

对 L/K, L 自然构成了一个 K-向量空间, 所以我们可以定义

定义 4.3. 定义域扩张 L/K 的**度数**为 $[L:K] := \dim_K L \in \mathbb{N} \cup \{\infty\}$.

我们定义几类扩张如下

定义 4.4. 给定域扩张 L/K.

- (1) 如果 $[L:K] < \infty$, 那么称 L/K 是**有限扩张**.
- (2) 设 $a \in L$, 如果 $\alpha \in K[x]$ 中某个多项式的根, 那么称 $\alpha \in K$ 上的**代数元**, 否则称为**超越元**. 如果 α 是代数元, 所有满足 $f(\alpha) = 0$ 的多项式中次数最低的称为 α 的**极小多项式**.
- (3) 如果 L 中任意一个元素都是代数元,那么称 L/K 是**代数扩张**,否则称为超越扩张.

考虑由单个代数元 α 生成的扩域, 我们有如下的引理

引理 4.5. 设 L/K, $\alpha \in L$ 是 K 上的代数元,有极小多项式 $m(x) \in K[x]$,那么 $K(\alpha) \simeq K[x]/\langle m(x) \rangle$,其中 $\langle m(x) \rangle$ 是 p(x) 生成的理想.

证明. 定义同态

$$\varphi: K[x] \to K(\alpha)$$

$$p(x) \mapsto p(\alpha)$$

考虑核 $\ker \varphi$, 显然 $\ker \varphi \neq K[x]$, 且极小多项式 $m(x) \in \ker \varphi$. 由于 K[x] 是主理想整环, $\ker \varphi$ 单生成,且生成元整除 m(x). 但容易证明 m(x) 是不可约多项式,结合 $\ker \varphi \neq K[x]$ 可知生成元与 m(x) 相伴,从而 $\ker \varphi = \langle m(x) \rangle$. 由第一同构定理即知

$$K(\alpha) \simeq \frac{K[x]}{\langle m(x) \rangle}$$

关于有限扩张与代数扩张,有如下的结论

命题 4.6. 设有域扩张 M/K, $\alpha \in M$ 是 K 上的代数元当且仅当 α 包含在 K 的一个有限扩张中.

证明. 一方面,假设 α 是代数元. 设 $\deg \alpha = n$,那么 $1,\alpha,\cdots,\alpha^{n-1}$ 是 $K(\alpha)$ 的一组基, $K(\alpha)/K$ 是有限扩张. 另一方面,假设 α 包含在 K 的有限扩张中,不妨设 $[M:K]=n<\infty$. 那么 $1,\alpha,\cdots,\alpha^{n-1},\alpha^n$ 一定线性相关,从而 α 是一个多项式的根,是一个代数元.

推论 4.7. 任意有限扩张都是代数扩张.

定理 4.8 (望远镜公式). 设 $K \subset L \subset M$ 均为有限扩张, 那么有 [M:K] = [M:L][L:K]

证明. 设 x_1, \dots, x_m 是 L/K 的一组基, y_1, \dots, y_n 是 M/L 的一组基. 我们考虑 $\{x_iy_j\}_{(i,j)\subset [m]\times [n]}^1$. 首先对 $a_{ij}\in K$ 及指标 $(i,j)\in R\times S\subset [m]\times [n]$ 有

$$\sum_{(i,j)\in R\times S} a_{ij}(x_i y_j) = 0$$

$$\implies \sum_{j\in S} a_{ij} y_j = 0, \ \forall i \in R$$

$$\implies a_{ij} = 0, \ \forall (i,j) \in R \times S$$

 $^{^{1}[}m] = \{1, \dots, m\}$, 组合数学中的常用记号.

4.1 域扩张 35

所以 $x_i y_j$ 线性无关. 其次, 显然 M 中的每个元素可以表示为 $x_i y_j$ 的 K-线性组合, 所以 $\{x_i y_j\}_{(i,j) \subset [m] \times [n]}$ 是 M/L 的一组基. 从而命题得证.

通过望远镜公式, 我们可以证明

定理 4.9. 设 α, β 是 K 上的代数元, 那么 $\alpha \pm \beta, \alpha\beta, \alpha/\beta(\beta \neq 0)$ 均为 K 上的代数元.

证明. 考虑扩张链 $K \subset K(\alpha) \subset K(\alpha,\beta)$, 两个扩张均为代数扩张, 所以都是有限扩张. 由定理 4.8, $K(\alpha,\beta)/K$ 是代数扩张. 而 $\alpha \pm \beta, \alpha\beta, \alpha/\beta$ 均包含在 $K(\alpha,\beta)$ 中, 所以都是代数元.

定理 4.10. 设 α 是一个由 K 上代数元系数构成的多项式的根, 那么 α 是代数的.

证明.设

$$\alpha^n + a_{n-1}\alpha^{n-1} + \dots + a_0 = 0$$

且 a_{n-1}, \cdots, a_0 均为 K 上代数元. 考虑域扩张链

$$K \subset K(a_0)$$

$$\subset K(a_0, a_1)$$

$$\cdots$$

$$\subset K(a_0, \cdots, a_{n-1})$$

$$\subset K(a_0, \cdots, a_{n-1}, \alpha)$$

前 n 步扩张每一步都是添加一个代数元 a_i ,所以都是有限的,因此 K 上的扩域 $K(a_0,\cdots,a_{n-1})$ 是有限的。而由假设, α 在 $K(a_0,\cdots,a_{n-1})$ 上代数,所以最后一步扩张也是有限的。因此扩张 $K(a_0,\cdots,a_{n-1},\alpha)/K$ 是有限的,从而 α 是 K 上代数元.

推论 4.11. 假设 E/L, L/K 均为代数扩张, 那么 E/K 也是代数扩张.

4.2 代数闭包与分裂域

对于一个代数方程, 我们总希望能够找到一个域使得它"有根". 而严格地描述这一点则需要定义分裂域的概念.

定义 4.12. 设 K 是域, $S \subset K[x]$, 如果扩域 L/K 使得 S 中的任意 p(x) 在 L 上可以分解为一次因式的乘积 (简称为 p(x) 在 L 中**分裂**)

$$p(x) = (x - \alpha_1) \cdots (x - \alpha_n)$$

且 L 由 S 中多项式的根生成, 那么称 L 是 S 在 K 上的**分裂域**.

为了更加方便地处理事情, 我们直接"添加域中所有多项式的根". 这样就定义了代数闭包.

定义 4.13. 设 K 是域, K 的**代数闭包**是 k[x] 的分裂域.

我们期待的结果自然是

命题 4.14. 任意域 K 的代数闭包存在.

以及

定理 4.15 (同构延拓定理). 设 K 是一个域, $S \subset K[x]$ 是一族多项式, K' 与 K 同构且 S 在同构映射下的像为 S'. 设 E, E' 分别是 S, S' 的分裂域, 那么存在同构 $S \to S'$ 使得下图交换

$$E \xrightarrow{\sim} E'$$

$$\uparrow \qquad \uparrow$$

$$K \xrightarrow{\sim} K$$

代数闭包的存在性与同构延拓定理的证明较为复杂, 我们将其留在附录 A.2 与 A.3 中.

推论 4.16. 设 K 是域, $S \subset K[x]$, 那么 S 的分裂域存在.

证明. 注意到 S 中的多项式均在 \overline{K} 中分裂, 那么取 R 为 S 中所有多项式根的集合, $K(R) \subset \overline{K}$ 即为 S 的分裂域.

推论 4.17. 任意集合的分裂域在同构意义下唯一.

4.3 有限域 37

关于代数闭包,有一个密切相关的概念是代数闭域:

定义 4.18. 域 L 被称为是代数闭域, 如果 L[x] 中的任意多项式都在 L 中有根.

命题 4.19. 域 K 的代数闭包 \overline{K} 是代数闭域.

证明. 设 $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$, $a_i \in \overline{K}$. 由于 \overline{K} 由 K[x] 中多项式的 根生成, 因此 a_i 均为 K 上的代数元. 对 p(x) 在某个根 α , 考虑扩张链

$$K \subset K(a_0, \cdots, a_{n-1}) \subset K(a_0, \cdots, a_{n-1}, \alpha)$$

容易发现两个扩张都是有限的,所以 α 也是 K 上的代数元,从而在 \overline{K} 内. 因此 \overline{K} 是代数闭域.

这说明在 \overline{K} 中不仅 K[x] 中的多项式分裂, $\overline{K}[x]$ 中的多项式也分裂, 这是强于代数闭包的定义的.

4.3 有限域

我们在本节讨论元素个数有限的域,也即有限域.

假设 F 是有限域, 那么 F 一定有正的特征 p>0. 那么此时素域 $\mathbb{F}_p\subset F$, F 是 \mathbb{F}_p 上的向量空间. 如果 $\dim_{\mathbb{F}_p}F=n$, 那么每个坐标分量有 p 种取法, 则 $|F|=p^n$. 因此我们得到

命题 4.20. 有限域 F 的阶为 p^n , 其中 $p = \operatorname{char} F$ 是素数, $n = [F : \mathbb{F}_p]$.

相同的论证我们可以得到

命题 4.21. 设 K, L 分别是 p^n, q^m 元域, 那么 $K \subset L$ 当且仅当 p = q 且 $n \mid m$.

与分裂域一样, 我们也要讨论有限域的存在性与同构唯一性. 首先我们证明有限域的存在性.

定理 4.22. 对素数 $p \ Q \ q = p^n$, 存在 q 阶有限域.

证明. 取 $x^q - x$ 在 \mathbb{F}_p 上的一个分裂域 L, 我们证明 L 恰好由 $x^q - x$ 的所有根构成. 我们先证明 $x^q - x$ 的根构成一个域. 对根 x, y, 由 $\mathrm{char}\, L = p$ 可知

$$\binom{q}{k} = 0, \ k = 1, \cdots, q-1,$$
 从而
$$(x-y)^q = x^q - y^q \quad (p = 2 \text{时}1 = -1, \ \text{所以均写为减号})$$

$$= x-y$$

所以 x-y 是 x^q-x 的一个根; 而当 $y\neq 0$ 时

$$\left(\frac{x}{y}\right)^{q} - \frac{x}{y} = \frac{x^{q}y - xy^{q}}{y^{q+1}}$$
$$= \frac{xy - yx}{y^{q+1}}$$
$$= 0$$

所以 x/y 也是一个根. 因此 x^q-x 的根在减法与除法下封闭, 构成一个域. 由于分裂域由根生成, 所以 L 恰好由 x^q-x 的根构成. 另一方面, 由于 $(x^q-x)'=qx^{q-1}-1=-1$, 与 x^q-x 互素, 所以 x^q-x 没有重根². 因此 $|L|=\deg(x^q-x)=q$.

然后我们证明有限域的唯一性.

定理 4.23. 两个有限域同构当且仅当他们阶数相同.

证明. 设有限域 F 的阶数为 q, 我们证明 F 一定是 $x^q - x$ 的分裂域. 这只需要证明对任意 $a \in F$ 有 $a^q = a$ 即可. a = 0 时这是平凡的. 对 $a \in F^*$, 由 Lagrange 定理, $a^{|F^*|} = 1$, 即 $a^{q-1} = 1$, 从而 $a^q = a$. 因此 F 是 $x^q - x$ 的分裂域, 在同构意义下是唯一的.

最后我们证明有限域最重要的结论之一

定理 4.24. 有限域的乘法群是循环群.

我们首先需要一个引理

引理 4.25 (多项式的 Lagrange 定理). 设 $f(x) \in k[x]$, $\deg f(x) = d$, 那么 f(x) = 0 在 k 中至多有 d 个根.

证明. 对 d 用归纳法. 当 d=1 时命题是显然的. 假设命题对 d=n-1 成立,那么此时 n 次多项式 f(x) 在 k 上要么没有根,要么有一个根 α ,此时存在一个n-1 次多项式 g(x) 使得 $f(x)=(x-\alpha)g(x)$. 而由归纳假设,g(x) 至多有 n-1 个根,所以 $f(x)=(x-\alpha)g(x)$ 至多有 n 个根. 由归纳原理知命题得证.

 $^{^{2}}$ 作为习题, 请证明 $f(x) \in K[x]$ 是可分多项式当且仅当它的形式导数 f'(x) 与其互素.

4.4 例题与习题 39

定理 4.24 的证明. 设 k 是一个 q 元域, 那么它的乘法群 k^* 阶为 q-1. 设 m 是 k^* 中元素的最大值, 并设 α 的阶为 m. 那么对任意 $\beta \in k^*$, 设其阶为 d, 则 $\alpha\beta$ 的 阶为 $[m,d] \leq m$, 从而 d|m. 因此 $\beta^m = 1$, 方程 $x^m - 1$ 有至少 q-1 个根, 由多 项式的 Lagrange 定理可知 $m \geq q-1$. 而由群的 Lagrange 定理知 m|q-1, 所以 m=q-1, 即 $\langle \alpha \rangle = k^*$.

4.4 例题与习题

例 4.1. 我们证明一个代数闭域一定有无穷多个元素. 否则假设 $K = \{a_1, \cdots, a_n\}$ 是代数闭域, 我们考察多项式

$$(x-a_1)(x-a_2)\cdots(x-a_n)+1$$

K 中任意元素都不是它的根, 所以它不在 K 上分裂, 与 K 代数闭矛盾. 因此代数闭域一定有无穷多个元素.

例 4.2. 设 x 是 \mathbb{Q} 上的超越元, $u = x^3/(x+1)$, 我们求 $[\mathbb{Q}(x):\mathbb{Q}(u)]$. 注意到 x 满 足 $x^3 - ux - u = 0$, 所以 x 是 $\mathbb{Q}(u)$ 上的代数元. 断言 u 必然是超越元, 否则如果 多项式 $f(u) \in \mathbb{Q}[u]$ 是 u 的零化多项式, 设 $\deg f = d$, 那么 $(x+1)^d f(x^3/(x+1)) \in \mathbb{Q}[x]$ 便是 x 的零花多项式, 矛盾. 又断言 $t^3 - ut - u \in \mathbb{Q}(u)[t]$ 是 x 的极小多项式, 只需要证明 $t^3 - ut - u$ 不可约. 如果 $t^3 - ut - u$ 可约的话, 那么一定存在一个 f(u)/g(u) 作为它的根, 但此时有

$$(f(u))^3 - uf(u)(g(u))^2 - (g(u))^3 = 0$$

与 u 是超越元矛盾. 因此 $t^3 - ut - u \in \mathbb{Q}(u)[t]$ 是 x 的极小多项式,可以得到 $[\mathbb{Q}(x):\mathbb{Q}(u)]=3$.

例 4.3. 我们证明 $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$. 显然 $\mathbb{Q}(\sqrt{2} + \sqrt{3}) \subset \mathbb{Q}(\sqrt{2}, \sqrt{3})$. 而设 $u = \sqrt{2} + \sqrt{3}$, 有 $u^2 = 5 + 2\sqrt{6}$, $(u^2 - 5)^2 = 24$. 容易验证 $(x^2 - 5)^2 - 24 = x^4 - 10x^2 + 1$ 是不可约的四次多项式,因此 u 的次数为 4,即 $[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] = 4$. 而显然 $[\mathbb{Q}[\sqrt{2}, \sqrt{3}] : \mathbb{Q}] = 4$,所以 $[\mathbb{Q}(\sqrt{2}, \sqrt{3}), \mathbb{Q}(\sqrt{2} + \sqrt{3})] = 1$,即 $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$.

例 4.4. 我们证明无限域的乘法群不是循环群. 设 K 是无限域, 假设 K 的乘法群是循环群, 设 $K^* = \langle a \rangle$. 设 K 的素域为 k, 那么 K = k(a). 如果 K 的特征

为 0, 那么 $k^* \simeq \mathbb{Q}^*$ 是 K^* 的子群, 从而 \mathbb{Q}^* 是循环群, 矛盾. 如果 K 的特征为 p, 此时 $k \simeq \mathbb{F}_p$. 考虑 $a + a^2$, 一定有 $a + a^2 \in K = 0 \cup \langle a \rangle$, 即 $a + a^2 = 0$ 或 $a + a^2 = a^m (m > 2)$, 这说明 a 是代数元, K = k(a) 是有限域, 矛盾. 因此无限域的乘法群不能是循环群.

例 4.5. 设 $a,b \in \mathbb{F}_{2^n}$, n 是奇数, 并且 a,b 满足 $a^2 + ab + b^2 = 0$, 我们证明 a = b = 0. 事实上, 如果 a,b 其一为 0 也能推出另一个为 0, 于是我们假设 a,b 均不为 0. 此时我们可以得到 $(a/b)^2 + (a/b) + 1 = 0$, 设 $a/b = \omega$, 那么 $\omega^3 = 1$. 由于 $\mathbb{F}_{2^n}^*$ 是循环群, 我们设其由 u 生成. 此时设 $\omega = u^k$, 那么 $1 = \omega^3 = u^{3k}$, 从而 $2^n - 1 = 3k$. 但当 n 是奇数时有 $2^n - 1 \equiv (-1)^n - 1 \equiv 1 \pmod{3}$, 不可能有 $2^n - 1 = 3k$, 矛盾. 所以 a,b 均为 0.

习题 4.1. 设 L/K 是域扩张, $\alpha \in L$ 是 K 上的奇数次代数元, 证明 α^2 也是 K 上的奇数次代数元, 且 $K(\alpha) = K(\alpha^2)$.

习题 4.2. 设 α , β 分别是域 K 上的 m, n 次代数元.

- (1) 证明 $[K(\alpha, \beta), K] \leq mn$;
- (2) 当 (m, n) = 1 时, 证明 $[K(\alpha, \beta), K] = mn$.

习题 4.3. 构造一个 8 元域, 并给出它的加法表与乘法表.

第五章 Galois 理论

我们在本章讨论有限 Galois 理论. Galois 理论的中心是 Galois 对应,即一个 Galois 扩张的中间域与其 Galois 群的子群反序——对应. 同时作为应用, 我们会证明关于 5 次一般方程不可根式解的 Abel–Ruffini 定理.

5.1 三类域扩张

我们在本节讨论 Galois 对应所要求的域扩张,即 Galois 扩张及比 Galois 扩张更一般的正规扩张与可分扩张.

5.1.1 正规扩张与可分扩张

首先我们关心一个多项式在扩域中是否有足够多的根,与此相关的是正规扩 张的概念.

命题 5.1. 设 $K \subset L$ 是代数扩张, 那么以下三个命题等价:

- (1) K[x] 中任何在 L 上有根的多项式 p(x) 在 L[x] 中分裂;
- (2) L 是 K 上某一族多项式的分裂域;
- (3) \overline{K} 的所有固定 K 不动的自同构都将 L 映为 L.

定义 5.2. 满足命题 5.1 中三个等价条件中任意一个的代数扩张称为正规扩张.

命题 5.1 的证明. 我们按照 $(1) \Longrightarrow (2) \Longrightarrow (3) \Longrightarrow (1)$ 的顺序证明它们等价. $(1) \Longrightarrow (2)$: 对任意 $\alpha \in L$, 由于 L/K 是代数扩张, 因此可以取 α 在 K 上的极小多项式 $p_{\alpha}(x)$, 那么 L 是 $S = \{p_{\alpha} \in K[x] : \alpha \in L\}$ 的分裂域.

(2) \Longrightarrow (3): 设 $L \not\in S \subset K[x]$ 的分裂域, $\sigma \in \operatorname{Aut} \overline{K}$ 固定 K 不动. 那么 σ 也固

定 S 中多项式的系数不动, 从而 S 中多项式的根被排列. 而 L 由 S 中多项式的根的生成, 所以 L 的元素也被排列, 从而有 $\sigma(L) = L$.

(3) \Longrightarrow (1): 设 $p(x) \in K[x]$ 具有一个根 $\alpha \in L$, 不妨设 p(x) 不可约. 设 $\beta \in \overline{K}$ 是 p(x) 的另一个根, 由于 p(x) 不可约, 所以存在固定 K 不动的同构 $K(\alpha) \to K(\beta)$. 按照同构延拓定理 (定理 4.15), 这个同构可以延拓为 \overline{K} 的自同构 $\sigma : \overline{K} \to \overline{K}$

$$\begin{array}{cccc} K & \longrightarrow & K(\alpha) & \longrightarrow & \overline{K} \\ \downarrow = & & \downarrow \sim & & \downarrow \sigma \\ K & \longrightarrow & K(\beta) & \longrightarrow & \overline{K} \end{array}$$

那么按照假设, σ 将 L 中的 α 映成 L 中的 β , 即 $\beta \in L$. 从而 p(x) 的根均在 L 中, p(x) 在 L[x] 中分裂.

然后我们关心一个多项式的根是不是都是不同的,与此相关的则是可分扩张 的概念.

定义 5.3. 设 K 是域, $f(x) \in K[x]$, 如果 f(x) 在 \overline{K} 中没有重根, 那么称 f(x) 是一个可分多项式. 如果 $K \subset L$, $\alpha \in L$ 是一个可分多项式的根, 那么称 α 是可分元. 如果 L/K 中每个元素都是可分的, 那么称 L/K 是可分扩张.

5.1.2 Galois 扩张

定义 5.4. 设 $K \subset L$ 是域扩张, 如果 L/K 同时是正规且可分的扩张, 那么称 L/K 为 **Galois 扩张**.

我们将会看到, Galois 扩张具有良好的性质.

在讨论 Galois 扩张之前, 我们需要引入 *Galois* 群和不动域的概念. 在同构延 拓定理中我们得到了一类固定底域不动的域同构, 如果这些同构是一个扩域到自 身的自同构, 那么将其收集起来可以得到一个群. 那么我们便得到了定义:

定义 5.5. 设 $K \subset L$ 是域扩张, L 固定 K 不动的 **Galois 群** (当 K 指代明确时, 也称为 L 的 Galois 群) 定义为所有固定 K 不动的 L 自同构, 记为 Gal(L/K).

同时我们还会反过来考虑,Gal(L/K) 或者它的子群 G 固定的元素可能还有 K 之外的元素. 容易证明 G 固定的元素构成一个域,我们便得到了定义

5.1 三类域扩张 43

定义 5.6. 设 $K \subset L$ 是域扩张, Gal(L/K) 的子群 G 的**固定域**是 L 中所有在 G 作用下固定不动的元素构成的子域, 记为 L^G .

有了以上概念之后, 我们可以来讨论有限 Galois 扩张的性质.

命题 5.7. 对有限域扩张 $K \subset L$, 以下命题等价:

- (1) L/K 是 Galois 扩张, 即 L/K 正规且可分;
- (2) $[L:K] = |\operatorname{Gal}(L/K)|;$
- (3) $K = L^{Gal(L/K)}$;
- (4) L 是某个可分多项式的分裂域.

在证明命题 5.7 之前, 我们需要一个引理.

引理 5.8. 设 L/K 是有限扩张, X 是域, $\sigma: K \to X$ 是嵌入. 那么使得下图交换的嵌入 $L \to X$ 至多有 [L:K] 个.

证明. 当 L/K 是单扩张, 即 $L=K(\alpha)$ 时, α 具有 [L:K] 次的极小多项式 p. 对于任意一个嵌入 $f:L\to X$, 有 $f(L)=f(K)(f(\alpha))$, 那么对于不同的嵌入, α 的像均不同. 但 α 的像均为 f(p) 的根, 由 Lagrange 定理, 根至多有 [L:K] 个, 所以嵌入至多有 [L:K] 个. 对一般的 $L=K(\alpha_1,\cdots,\alpha_n)$, 考虑扩张链

$$K \subset K(\alpha_1) \subset \cdots \subset K(\alpha_1, \cdots, \alpha_n) = L$$

我们可以将 σ 提升 n-1 次, 每次从 $K(\alpha_1, \dots, \alpha_i)$ 到 $K(\alpha_1, \dots, \alpha_{i+1})$, 每次提升至多有 $[K(\alpha_1, \dots, \alpha_{i+1}) : K(\alpha_1, \dots, \alpha_i)]$ 种取法. 因此至多有

$$[K(\alpha_1):K]\cdots[K(\alpha_1,\cdots,\alpha_n):K(\alpha_1,\cdots,\alpha_{n-1})]=[L:K]$$

个嵌入. □

命题 5.7 的证明. 我们按照 $(1) \implies (2) \implies (3) \implies (4) \implies (1)$ 的顺序证明 他们等价.

(1) \Longrightarrow (2): 考虑在引理 5.8 中取 $X = \overline{K}$, 不妨设 $L \subset \overline{K}$. 由于 L 是正规扩张,

所有保持 K 不动的嵌入 $L \to \overline{K}$ 均将 L 映为自身, 从而刚好构成 Gal(L/K). 而由于 L 是可分扩张, 每个单扩张的极小多项式在 \overline{K} 中恰好有其次数个根, 所以引理 5.8 中的等号全部成立. 因此就有 Gal(L/K) = [L:K].

(2) \implies (3): 注意到 $K \subset L^{\operatorname{Gal}(L/K)} \subset L$, 而 L 固定 $L^{\operatorname{Gal}(L/K)}$ 不动的自同构有 $|\operatorname{Gal}(L/K)|$ 个, 因此由引理可以得到

$$[L:K] = |\operatorname{Gal}(L/K)| \le [L:L^{\operatorname{Gal}(L/K)}] \le [L:K]$$

因此 $[L:K] = [L:L^{\operatorname{Gal}(L/K)}]$, 所以 $K = L^{\operatorname{Gal}(L/K)}$.

 $(3) \Longrightarrow (4)$: 设 $L = K(\alpha_1, \dots, \alpha_n)$, 为每个 α_i 定义多项式

$$f_i(x) = \prod_{\sigma \in Gal(L/K)} (x - \sigma(\alpha_i))$$

由于 $\alpha_i \notin K$, 所以每个 $\sigma(\alpha_i)$ 均不相同, f_i 是可分的; 而 f_i 的系数被 $\operatorname{Gal}(L/K)$ 中的所有元素固定, 在 $L^{\operatorname{Gal}(L/K)} = K$ 中, 所以 $f_i(x) \in K[x]$. 那么取 $f = f_1 f_2 \cdots f_n$, 可知 $L \not\in f$ 的分裂域, 且 f 是可分的.

$$(4) \Longrightarrow (1)$$
: 平凡.

5.2 Galois 理论基本定理

我们在本节陈述并证明 Galois 理论基本定理.

定理 5.9 (Galois 理论基本定理). 设 $K \subset L$ 是有限 Galois 扩张, 中间域 $K \subset M \subset L$, 子群 $1 \subset H \subset \operatorname{Gal}(L/K)$. 那么存在对应

$$M \longmapsto \operatorname{Gal}(L/M)$$

$$L^H \longleftarrow H$$

满足 $M=L^{\mathrm{Gal}(L/M)}, H=\mathrm{Gal}(L/L^H)$. 特别地, 如果 $\mathrm{Gal}(L/M)\lhd\mathrm{Gal}(L/K)$, 那么 M/K 是正规扩张.

附录 A 正文中省略的证明

A.1 Sylow 定理

A.2 代数闭包的存在性

证明代数闭包存在性之前, 我们需要一个引理.

引理 A.1. 设 L/K 是代数扩张, 那么有 $|L| \le \max\{|K|, |\mathbb{N}|\}$.

证明. 我们有分解

$$L = \bigcup_{n \ge 1} \{ \alpha \in L : \deg \alpha = n \}$$

而对每个 $\{\alpha \in L : \deg \alpha = n\}$ 中的元素 α , α 与另外至多 n-1 个元素与 K 中 n 个系数决定的首一多项式对应, 从而有

$$\{\alpha \in L : \deg \alpha = n\} \subset [n] \times K^n$$

对无限的 K 而言, $|[n] \times K^n| = |K|$, 从而

$$|L| = \left| \bigcup_{n \ge 1} \{ \alpha \in L : \deg \alpha = n \} \right|$$

$$\le |\mathbb{N} \times K|$$

$$= |K|$$

对有限的 F 而言, $|[n] \times K^n| = n|K|^n \le |\mathbb{N}|$, 此时

$$|L| = \left| \bigcup_{n \ge 1} \{ \alpha \in L : \deg \alpha = n \} \right|$$

$$\le |\mathbb{N} \times \mathbb{N}|$$

$$= |\mathbb{N}|$$

综上,可以得到

$$|L| \le \max\{|K|, |\mathbb{N}|\}$$

代数闭包存在性的证明. 设 A 是 K 上所有代数扩域构成的类. 取 S 满足 $F \subset S$ 且 $|S| > \max\{|K|, |\mathbb{N}|\}$,那么由引理,K 的代数扩张均包含在 S 中,从而 $A \subset \mathcal{P}(S)$ 是一个集合. 使用包含关系作为偏序,那么注意到对任意一条链 $c: (\{K_i\}, \subset)$,易见 $\bigcup_{i\geq 1} K_i$ 是 c 的一个上界. 因此由 Zorn 引理,A 中存在极大元 M. 断言在 M 中任意 $p(x) \in K[x]$ 分裂. 否则假设存在一个 p(x) 在 M 上不能分解为一次因式的乘积,那么设 p(x) 在 M 上具有分裂域 E,E/M,E/K 是代数扩张(推论 4.11), $E \in A$. 然而 $M \subsetneq E$,这与 M 在 A 中的极大性矛盾. 因此 M 中任意 $p(x) \in K[x]$ 分裂,取 M 的由 K[x] 中所有多项式的根生成的子域 \overline{K} 即得到 K 的代数闭包. (证明中用到的集合论结论可以参考 $[5, \mathbb{N}]$ 2 第 $[5, \mathbb{N}]$ 第 $[5, \mathbb{N}]$ 2 第 $[5, \mathbb{N}]$ 第

A.3 同构延拓定理

同构延拓定理的证明. 设 A 是由子域与嵌入 (F,τ) 构成的集合, 其中 $K \subset F \subset E$ 且使得下图交换

$$E'$$

$$\sigma \uparrow \qquad \qquad \tau$$

$$K \longrightarrow F \longrightarrow E$$

我们在 A 上定义偏序 $(F,\tau) \prec (F',\tau')$ 当且仅当 $F \subset F'$ 且 $\tau'|_F = \tau$. 对任意一条链 $\{(F_i,\tau_i)\}$, 取 $F = \bigcup_{i\geq 0} F_i$, $\tau: F \to E'$ 满足 $\tau|_{F_i} = \tau_i$. 那么容易验证 (F,τ) 是这条链的一个上界. 由 Zorn 引理, A 中存在一个极大元 $(M,\tilde{\sigma})$. 断言 M = E. 否则的话存在一个 S 中的多项式 p(x) 在 M 上不分裂, 那么对 p(x) 的一个根 α ,

可以按下图延拓得到 $\tilde{\sigma}': M(\alpha) \to E'$

这与 M 的极大性矛盾, 所以 M=E. 注意到 E 包含了 S 中所有多项式的根, 并被 $\tilde{\sigma}$ ——地映到 E' 中. 而 E' 是包含 S' 中所有多项式的根的最小的域, 所以一定有 $\tilde{\sigma}(E)=E'$. 因此命题得证.

参考文献

- [1] 张英伯,王恺顺。代数学基础 (下册)。北京师范大学出版社,2013。
- [2] 李文威。代数学方法 (第一卷)。高等教育出版社, 2019。
- [3] Thomas W. Hungerford. *Algebra*. Springer-Verlag, New York-Berlin, **1980**, Reprint of the 1974 original.: xxiii+502.
- [4] Paolo Aluffi. *Algebra: chapter 0*. American Mathematical Society, Providence, RI, **2009**: xx+713.
- [5] Serge Lang. Algebra. third. Springer-Verlag, New York, 2002: xvi+914.