Analysis II

Sommersemester 2020

Blatt 4 - Update-Nr.: 1

15. Mai 2020

Abgabe bis Fr. 22.05.20, 09:00Uhr, online in Moodle!

Informationen:

- Achtet bei der Abgabe darauf, Eure Abgabe tatsächlich zu bestätigen.
- Genau eine (beliebige) Person pro Abgabegruppe gibt bitte die Lösungen ab, wobei aus denen der Name der zweiten Person, falls vorhanden, klar hervorgeht.
- Bitte gebt Eure Lösungen in **einer PDF-Datei** ab und nennt die Datei: Ana2_< Vorname1Nachname1>_< Vorname2Nachname2>_Blatt< Blattnr (zweistellig!)>.pdf. Also bspw. Ana2_IhnoSchrot_EkaterinaKostina_Blatt01.pdf oder im Falle einer Einzelabgabe: Ana2_IhnoSchrot_Blatt01.pdf. Nichtbeachten des Benennungsschemas kann zu Punktabzug führen.

Themen:

- Offene und abgeschlossene Mengen
- Skalarprodukte
- Inneres, Rand und Abschluss
- Gram-Schmidt-Verfahren

Aufgabe 4.1 (6 Punkte): Aussagen über Mengen

Sei \mathbb{K}^n ein metrischer Raum. Man beweise oder widerlege jeweils:

(a) Sei $d(\cdot,\cdot): \mathbb{K}^n \times \mathbb{K}^n \to \mathbb{R}$ eine Metrik und $\varphi: \mathbb{R}_{\geq 0} \to \mathbb{R}$ eine stetige Funktion. Sei außerdem $\rho: \mathbb{K}^n \to \mathbb{R}$ definiert durch

$$\rho(x) = \varphi(\|x\|_2),$$

wobei $\|\cdot\|_2$ die euklidische Norm bezeichne, und erfülle zusätzlich

$$d(x, y) = \rho(x - y) \quad \forall x, y \in \mathbb{K}^n.$$

Dann ist ρ eine Norm.¹

3

(b) Eine Teilmenge $O \subset \mathbb{K}^n$ ist genau dann offen, wenn sie keinen ihrer Randpunkte enthält.

1

(c) Der Rand ∂M einer Teilmenge $M \subset \mathbb{K}^n$ ist abgeschlossen.

1

(d) Für Teilmengen $M \subset \mathbb{K}^n$ gilt $(\overline{M})^{\circ} = \overline{(M^{\circ})}$.

1

¹Nicht verwirren lassen, es kann durchaus mehrere Normen für einen Vektorraum geben. Man denke bspw. an die euklidische Norm und die Maximumsnorm.

Aufgabe 4.2 (5 Punkte): Inneres, Rand und Abschluss

Man bestimme das Innere M° , den Rand ∂M und den Abschluss \overline{M} für die folgenden Mengen im \mathbb{R}^n :

(a)
$$M := \{x \in \mathbb{R}^n \mid ||x||_{\infty} < 1, \ x \in \mathbb{Q}^n\},$$

(b)
$$M := \{x \in \mathbb{R}^n \mid ||x||_2 \le 1, \ x_1 = 0\},$$

(c)
$$M := \{x \in \mathbb{R}^n \mid f(x) < 1\} \text{ mit } f(x) := \begin{cases} 1, & x \in (-1,1)^n \\ 0, & \text{sonst} \end{cases}$$

(d)
$$M := \{x \in \mathbb{R}^n \mid g(x) \le 1\}$$
 mit $g(x) := \frac{3}{2} - f(x)$, wobei f wie in (c) definiert ist.

Dabei bezeichne $\left\|\cdot\right\|_2$ die euklidische Norm und $\left\|\cdot\right\|_\infty$ die Maximumsnorm.

Aufgabe 4.3 (6 Punkte): Skalarprodukte

Sei $a < b \in \mathbb{R}$. Wir betrachten einen \mathbb{R} -Vektorraum \tilde{V} und einen linearen Unterraum $V \subset \tilde{V}$. Dabei sind \tilde{V} und V wiederum Teilmengen des Raumes C([a,b]), also des Raumes der stetigen Funktionen von $[a,b] \subset \mathbb{R}$ nach \mathbb{R} . Dabei ist \tilde{V} definiert als

$$\tilde{V} := \{ f \in C([a,b]) \mid \text{Es gibt eine Zerlegung } \Delta \text{ (abhängig von } f) \text{ von } [a,b], \text{ sodass } f \text{ auf den abgeschlossenen Teilintervallen differenzierbar ist} \}.$$

In anderen Worten: \tilde{V} ist der Raum der stetigen Funktionen, die stückweise differenzierbar sind. Weiter ist $V \subset \tilde{V}$ definiert als

$$V := \left\{ f \in \tilde{V} \mid f(a) = f(b) = 0 \right\}.$$

Weiter sei eine Abbildung $(\cdot,\cdot):\tilde{V}\times\tilde{V}\to\mathbb{R}$ definiert durch

$$(f,g) := \int_{\tilde{a}}^{b} f'(x)g'(x)dx \quad \forall f,g \in \tilde{V}.$$

Dabei werden f' und g' stückweise gebildet. Man zeige

(a)
$$(\cdot,\cdot)$$
 ist kein Skalarprodukt auf \tilde{V} .

(b)
$$(\cdot,\cdot)$$
 ist ein Skalarprodukt auf V .

Aufgabe 4.4 (3 Punkte): Gram-Schmidt-Verfahren

Man orthonormalisiere die Polynome 1, t, t^2 , $t^3 \in C([0,1])$ mithilfe des Gram-Schmidt-Orthonormalisierungsverfahren bzgl. des Skalarpodukts

$$(f,g) := \int_0^1 f(t)g(t)dt.$$