SUBSTITUTING RELUS WITH HERMITE POLYNOMIALS GIVES FASTER CONVERGENCE FOR SSL

CIFAR I O

CIFAR I O

TRUE LABELS

Bird Horse Ship

CIFAR I O

TRUE LABELS

Bird Horse Ship

RANDOM LABELS

Cat Truck Dog

Good Labels
Least Training Time

CIFAR I O

TRUE LABELS

Bird Horse Ship

RANDOM LABELS

Cat Truck Dog

Good Labels
Least Training Time

CIFAR I O

TRUE LABELS

Bird Horse Ship

RANDOM LABELS

Cat Truck Dog

SaaS: Find labels with least training time

 Ge et al showed that we can avoid spurious local minima using Hermites

- Ge et al showed that we can avoid spurious local minima using Hermites
- · Other orthogonal polynomial bases are possible

- Ge et al showed that we can avoid spurious local minima using Hermites
- · Other orthogonal polynomial bases are possible
- Idea: use the lower order terms in the Hermite polynomial series Expansion of ReLU as Activation Functions

HERMITES CAN DO WHAT? THEORETICAL RESULT

	Train Test	Train
ReLU	High Confidence	High Confidence
Hermite	High Confidence	Low Confidence

HERMITES CAN DO WHAT? THEORETICAL RESULT

 When the test data is somewhat different from the training data, the predictions made by Hermite networks are approximately (uniformly) random.

	Train Test	Train
ReLU	High Confidence	High Confidence
Hermite	High Confidence	Low Confidence

HERMITES CAN DO WHAT? THEORETICAL RESULT

- When the test data is somewhat different from the training data, the predictions made by Hermite networks are approximately (uniformly) random.
- This enables the network to make lower confidence prediction on the testing data dissimilar to the training data which can later be labelled manually.

	Train Test	Train Test
ReLU	High Confidence	High Confidence
Hermite	High Confidence	Low Confidence

COMPUTATIONAL BENEFITS

Hermite-SaaS TRAINS FASTER than ReLU-SaaS

On AVVS p3.2xlarge

Hermite-SaaS TRAINS FASTER than ReLU-SaaS

SVHN

On AWS p3.2xlarge

Hermite-SaaS TRAINS FASTER than ReLU-SaaS

CIFAR 10

On AVVS p3.2xlarge

Hermite-SaaS TRAINS FASTER than ReLU-SaaS

SmallNorb

On AWS p3.2xlarge

Hermite-SaaS TRAINS FASTER than ReLU-SaaS

MNIST

Hermite-SaaS COSTS LESS than ReLU-SaaS

Hermite-SaaS COSTS LESS than ReLU-SaaS

SVHN

On AWS p3.2xlarge

Hermite-SaaS COSTS LESS than ReLU-SaaS

CIFAR 10

Hermite-SaaS More Resilient to Noise than ReLU-SaaS

Adding 30% uniform noise to labelled data

Hermite-SaaS More Resilient to Noise than ReLU-SaaS

Hermite-SaaS GENERALIZES BETTER than ReLU-SaaS

Hermite-SaaS GENERALIZES BETTER than ReLU-SaaS

Please come to our poster!