BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 32 746.7

Anmeldetag:

19. Juli 2002

Anmelder/Inhaber:

Leica Microsystems Semiconducter GmbH,

Wetzlar/DE

Bezeichnung:

Verfahren zur automatischen Ermittlung optischer

Parameter eines Schichtstapels

IPC:

G01 N, G 01 B

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 24. März 2003

Deutsches Patent- und Markenamt

Der Präsident Im Auftrag

Hiebinger

25

Verfahren zur automatischen Ermittlung optischer Parameter eines Schichtstapels

Die Erfindung bezieht sich auf ein Verfahren zur automatischen Ermittlung optischer Parameter eines Schichtstapels, wie Schichtdicken, Brechungsindizes oder Absorptionskoeffizienten, durch Vergleich eines von einem Ort des Schichtstapels aufgenommenen optischen Meßspektrums mit einem anhand vorgegebener optischer Parameterwerte berechneten Analysespektrum und Optimierung des berechneten Analysespektrums auf das Meßspektrum hin. Die Erfindung bezieht sich weiterhin auf ein Computerprogramm (-produkt) zur Durchführung eines solchen Verfahrens.

Derartige Verfahren spielen insbesondere bei der Messung der Schichtdicke von dünnen Schichten und weiterer optischer Parameter, wie Brechungsindex und Extinktionsfaktor, von Ein- und Mehrschichtsystemen, wie sie beispielsweise strukturierte Wafer darstellen, eine wichtige Rolle.

In vorliegender Beschreibung umfasst der Begriff "Schichtstapel" sowohl den Schichtstapel im engeren Sinne (Abfolge einzelner Schichten, wie SiO2, Si3N4, Resist-Filme, etc. auf einem Substrat, wie Silizium oder Aluminium) als auch die Kombination aus Schichtstapel (Layer) und Substrat.

Eine optische Messeinrichtung zur Messung der genannten Eigenschaften an Ein- und Mehrfachschichtsystemen in einem Schichtdickenbereich von etwa 1 nm bis zu etwa 50 µm ist aus der DE 100 21 379 A1 bekannt. Vorgesehen ist dort eine Beleuchtungseinrichtung, beispielsweise eine Halogen- und eine Deuteriumlampe, um einen Messlichtstrahl eines ausreichend breiten

Wellenlängenbereichs, beispielsweise zwischen 190 nm und 800 nm, zu erzeugen. Mittels eines Strahlteilers wird der Messlichtstrahl in einen Objektlichtstrahl und einen Referenzlichtstrahl aufgeteilt. Der Messlichtstrahl wird mittels eines Messobjektivs in annähernd senkrechtem Einfall auf den Messort einer Probe gelenkt und der von der Probe reflektierte Strahl wird zusammen mit dem Referenzlichtstrahl einer Auswerteeinrichtung zugeführt. Eine geeignete Auswerteeinrichtung ist hierbei ein Spiegel-Gitter-Spektograph, der die Wellenlängen des auftreffenden Lichtes räumlich getrennt auf einen CCD-Detektor abbildet. Dieser ist im gesamten Wellenlängenbereich empfindlich und erlaubt ein schnelles Auslesen der Messspektren. In der genannten Schrift wird der reflektierte Objektlichtstrahl sowie der Referenzlichtstrahl über Lichtleiter der Auswerteeinheit zugeführt. Die beschriebene Messanordnung kann zusätzliche eine einkoppelbare Einrichtung zur visuellen Darstellung und Überwachung enthalten.

15

20

25

30

10

5

Mit einer Messanordnung gemäß DE 100 21 379 A1 lassen sich zur Ermittlung der optischen Schichteigenschaften die aufgrund Interferenzen entstehenden Intensitätswerte im Spektrum des von der Probe reflektierten Objektlichtstrahls detektieren und auswerten. Wegen der Vieldeutigkeit (die Intensitätswerte berechnen sich je nach Schichtfolge aus mehreren Termen, die eine Funktion zum Sinus der Phase aus dem Produkt von jeweiliger Schichtdicke und (spektral abhängigen) Brechungsindex, sowie den Brechungs- und Absorptionsindizes selbst sind) können, von Sonderfällen abgesehen, aus der Kurvenform die optischen Parameter analytisch nicht zurückgerechnet werden. In der Regel müssen rechenintensive Fitverfahren eingesetzt werden.

Aus dem Stand der Technik sind verschiedene Verfahren zur Auswertung des Spektrums des reflektierten Objektlichtstrahls bekannt. Beispielsweise lässt sich gemäß der europäischen Patentschrift EP 0 644 399 B1 die Schichtdicke d einer dünnen Einfachschicht aus der Anzahl m der Extremwerte (Maxima und Minima) im Spektrum des reflektierten Objektlichtstrahls im beobachteten Wellenlängenbereich von $\lambda 1$ bis $\lambda 2$ aus der bekannten Formel

$$d = 0.25x \frac{m-1}{\frac{n1}{\lambda 1} - \frac{n2}{\lambda 2}}$$

bestimmen, wobei n1 und n2 jeweils der Brechungsindex der dünnen Schicht bei der Wellenlänge $\lambda 1$ bzw. $\lambda 2$ ist.

5

10

15

20

25

30

Bei Mehrfachschichtsystemen erhält man jedoch ein Spektrum, in dem die Interferenzspektren der einzelnen Schichten sowie der Schichten untereinander überlagert sind, so dass die Gleichung (1) nicht mehr unmittelbar anwendbar ist. In einem solchen Fall können globale und lokale Optimierverfahren eingesetzt werden, die von theoretischen Modellen mit vorgegebenen Schichtdickenbereichen ausgehen und diese hinsichtlich des ermittelten Spektrums optimieren. Das Verfahren gemäß der genannten Patentschrift geht von einem möglichen Schichtdickenbereich aus, der von der Gesamtzahl der Extrema, der Wellenlänge des untersten und des obersten Extremums sowie einem über den Wellenlängenbereich gemittelten Brechungsindex einer Schicht abhängt. Durch Veränderung der Schichtdicke im jeweiligen Schichtdickenbereich mit vorbestimmten Schrittweiten für jede einzelne Schicht wird die Schichtdickenkombination bestimmt, deren berechnete spektrale Reflexion die geringste Abweichung zur gemessenen aufweist.

Das Verfahren der EP 0 644 399 B1 stellt kein allgemeines Verfahren mit Variationsmöglichkeiten von Brechungs- und Absorptionsindex dar, da diese optischen Eigenschaften einer jeden Schicht sowie die Anzahl der Schichten bekannt sein müssen. Die Schichtdickenbereiche besitzen immer 0 als untere Grenze, ausgewertet werden nur die Extrema-Lagen.

Die US-4,984,894 misst die Dicke der obersten Schicht eines Mehrschichtsystems unter der Voraussetzung, dass von der darunter liegenden zweiten Schicht kein Licht reflektiert wird.

Das genannte Verfahren ist auf die oberste Schicht einer bestimmten Schichtenfolge sowie auf bestimmte Schichtenparameter eingeschränkt und lässt nur näherungsweise Ergebnisse zu.

In der US-5,440,141 werden die Schichtdicken eines 3-fach-Schichtsystems bekannter Zusammensetzung bestimmt, indem für die oberste Schicht die bereits behandelte Extrema-Methode und für die beiden folgenden Schichten eine Fouriertransformations-Methode zusammen mit Optimierungsverfahren für die erhaltenen Schichtdicken eingesetzt werden. Bei der Fourier-Methode wird das in Abhängigkeit der Wellenlänge gemessene Reflexionsspektrum in ein von der Wellenzahl abhängiges Spektrum konvertiert und anschließend Fourier-transformiert. Der Absolutbetrag des Fourier-transformierten Spektrums zeigt im Falle einer 2-fach-Schicht drei Peaks, einen für jede Schicht und einen Summenpeak. Diese Peaks genügen der Summenrelation, so dass unpassende Peaks ausgeschlossen werden können. Einem Peak im Fourier-transformierten Spektrum lässt sich ein Wert der optischen Dicke (nd) zuordnen, wenn die optischen Dicken in Relation zum gemessenen Spektralbereich genügend dick (mindestens eine Periode im Spektralbereich) sind.

20

5

10

15

Das geschilderte Verfahren der US-5,440,141 ist auf bestimmte Schichtenkombinationen bekannter Zusammensetzung eingeschränkt und lässt sich nicht für allgemeine Messungen heranziehen.

Schließlich ist aus der US-5,864,633 ein Verfahren zur optischen Inspektion eines Filmstacks (Dünnschichtstapel) bekannt, bei dem optische Daten und dazu korrespondierende theoretische Daten verglichen und die theoretischen Daten mittels genetischer Algorithmen angepasst werden. Jedes theoretische Modell repräsentiert hierbei einen sogenannten Genotyp (Satz von Dünnschichtparametern), der eine geordnete Liste von Genen (verschiedene Schichtparameter wie Dicke, Brechungsindex, Extinktionskoeffizient) darstellt. Ein Genotyp enthält somit die verschiedenen Schichtparameter sämtlicher Schichten. Zunächst wird eine Anzahl von Genotypen definiert und für jeden

25

30

Genotyp ein Fit-Level bestimmt, der sich aus dem Vergleich der berechneten theoretischen Daten mit Messdaten der optischen Inspektion ergeben. Je nach Fit-Level werden die Genotypen einer genetischen Operation (Kopieren, Kreuzung, Mutation) unterzogen. Aus dem vorhandenen Satz von Genotypen kann auf diese Weise ein neuer Satz von Genotypen (neue Generation) erzeugt werden. Verbessert sich der Fit-Level des besten Genotyps über eine Anzahl von Generationen nicht mehr wesentlich, so wird das Verfahren abgebrochen.

10 Aufgrund der hohen Anzahl von Rechenoperationen und der daraus resultierenden Rechenzeit ist dieses Verfahren für den industriellen Einsatz der Überprüfung und Vermessung von Schichtensystemen nicht geeignet.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur automatischen Ermittlung optischer Materialeigenschaften eines Schichtstapels anzugeben, das ohne Einschränkungen hinsichtlich Anzahl, Beschaffenheit oder Dicke der Schichten mit möglichst wenig Rechenoperationen und somit in kurzer Zeit Ergebnisse liefert, die den Einsatz dieses Verfahrens insbesondere in der kontinuierlichen Produktionslinie, beispielsweise bei der Wafer-Fertigung, erlauben.

Diese Aufgabe wird durch ein Verfahren der eingangs genannten Art gelöst, bei dem das aufgenommene Meßspektrum anhand von Kurvenformparametern, die das Meßspektrum charakterisieren und aus diesem ermittelt werden, klassifiziert wird und diese Kurvenformparameter mit entsprechenden für bekannte Schichtstapel berechnete Kurvenformparameter von Spektren verglichen werden, um Werte oder Wertebereiche für die zu bestimmenden optischen Parameter zu ermitteln, anhand derer das oder die Analysespektren zum Vergleich mit dem Meßspektrum berechnet werden. Aus der Liste der berechneten Kurvenformparameter werden relevante Werte oder Wertebereiche durch den Vergleich mit den gemessenen heraus gefiltert.

5.

10

15

20

25

30

Die erfindungsgemäße Klassifizierung des aufgenommen Meßspektrums anhand charakteristischer Kurvenformparameter und der anschließende Vergleich mit entsprechenden für bekannte Schichtstapel berechneten Kurvenformparametern führt unmittelbar zu einem ersten Ergebnis für die zu bestimmenden optischen Parameter. Hieraus wird das Analysespektrum berechnet und mit dem gemessenen Meßspektrum verglichen. Je nach Qualität der Übereinstimmung schließen sich hieran weitere Fit-Verfahren, wie weiter unten erläutert wird, an. Der genannte Vergleich der Kurvenformparameter der klassifizierten optischen Spektren kann auch Wertebereiche für die zu bestimmenden optischen Parameter ergeben, die den nachfolgenden Fit-Verfahren zugrunde gelegt werden.

Entscheidender Vorteil des erfindungsgemäßen Verfahrens ist die Einschränkung des möglichen Wertebereichs für die zu bestimmenden optischen Parameter eines Schichtstapels mittels Vergleich von Spektrenparametern (Kurvenformparameter), wobei dieser Vergleich durch Verwendung von zuvor berechneten und vorsortierten Tabellen in vergleichsweise kurzer Zeit bewerkstelligt werden kann. Für nachfolgende Fit-Verfahren stehen folglich im Vergleich zu bisherigen Methoden wesentlich reduzierte Wertebereiche für die zu bestimmenden optischen Parameter zur Verfügung, so dass diese Fit-Verfahren in wesentlich kürzerer Zeit zu bewerkstelligen sind.

Im folgenden sei die Erfindung einer herkömmlichen Näherungsmethode, wie sie in der bereits erwähnten EP 0 644 399 B1 behandelt ist, am Beispiel einer Dreifachschicht gegenübergestellt. Zum Einsatz kommt die Untersuchung des Reflexionsspektrums im Bereich von 400 bis 800 nm. Die Gesamtdicke sei derart, dass mehrere Extrema entstehen:

 a) Zunächst werden alle 401 Spektrenkanäle ausgewertet und die Anzahl der Extrema bestimmt;

10

25

30

- b) Die Schichtdickenabschätzung gemäß genanntem Patent ergebe obere Grenzwerte von 700nm, 500nm und 400nm;
- c) Für den Grob-Fit werde die Schichtdicke im Bereich von Null bis zum jeweiligen oberen Grenzwert in Schrittweiten von 10nm variiert;
 - d) Es ergeben sich 70 x 50 x 40= 140.000 Stützstellen für die Dickenberechnung, das heißt es müssen 140.000 Spektren berechnet und verglichen werden. Daran anschließend folgt der sogenannte Fein-Fit, indem in einem weiteren Iterationsverfahren das lokale Minimum genau bestimmt wird. Auch hierbei wird in jedem Iterationsschritt ein Theoriespektrum berechnet.

Beim geschilderten Beispiel sollten als optische Parameter nur die

Schichtdicken bestimmt werden. Weitere Parameter wie Brechungsindex oder Absorptionskoeffizient gehen beim Grob- als auch beim Fein-Fit multiplikativ ein, so dass die Anzahl der Stützstellen schnell mehrere Millionen betragen kann. Die typischen Auswertezeiten liegen bei dem genannten Beispiel oberhalb derjenigen, die das Verfahren für den kontinuierlichen industriellen Einsatz tauglich machen.

Die beispielhaft beschriebene Methode des genannten Patents hat weiterhin den Nachteil, dass als untere Grenze immer der Wert Null für die Schichtdicke angenommen werden muss, wenn keine weiteren Beschränkungen vorgegeben sind. Wird der Parameterraum zu stark eingeschränkt, um die Analysezeit zu verkürzen, so kann es zu Fehlauswertungen kommen. Wird der Parameterraum zu grob nach lokalen Minima abgesucht, besteht ein großes Restrisiko hinsichtlich der Fehlinterpretation der Daten und einer Auswertung, die zu einem falschen Ergebnis führt. Des weiteren kann durch die Interferenzeffekte die Bestimmung der Anzahl der Extrema falsch sein, ein Fehler, der sich bei der Bestimmung der oberen Grenzwerte für die Schichtdicken auswirkt und entsprechend fortpflanzt.

25

30

Eine Einschränkung des Parameterraumes ist aus Zeitgründen bei der Auswertung dringend erforderlich, insbesondere wenn die Anzahl der Schichten ansteigt.

5 Gemäß vorliegender Erfindung wird das aufgenommene Meßspektrum mittels charakteristischer Kurvenformparameter klassifiziert, wobei in der Regel in der Größenordnung 5 bis 15 solcher Parameter ausreichend sind. Die Kurvenformparameter des aufgenommenen Meßspektrums werden nun mit den tabellierten Kurvenformparametern bekannter Spektren verglichen, wobei 10 man als Ergebnis für jeden zu bestimmenden optischen Parameter einzelne Werte oder einen Wertebereich erhält. Folglich werden bei der Erfindung zunächst nicht Spektren im Umfang von 400 bis 600 Werten miteinander verglichen, sondern Tabelleneinträge (von ca. 10 Werten), womit eine erhebliche Reduktion von Rechenkapazität und -zeit verbunden ist. 15 Ausschlaggebend bei der Zeitersparnis ist, dass die Berechnung eines Spektrums über eine komplexe Formel eine wesentlich grössere Zeit (> Faktor 100000) in Anspruch nimmt als der Vergleich mit den Tabelleneinträgen.

Die Klassifizierung des Meßspektrums erfolgt anhand eines oder mehrerer der folgenden charakteristischen Kurvenformparameter: das lokale Rauschen des Spektrums, der Mittelwert, die Standardabweichung des Mittelwerts, die Anzahl und Lage der Extrema, eine Klassifizierung der Extrema, beispielsweise nach spektraler Lage, den Intensitätswerten oder den relativen Abständen zueinander, Parameter der einhüllenden Kurven der Minima und Maxima, der gemittelte Kurvenverlauf, Schwebungen sowie mögliche weitere Parameter, wie die Anzahl der Peaks im Fourier-transformierten Spektrum.

Eine Einschränkung bzw. Filterung der Wertebereiche für die zu bestimmenden optischen Parameter erfolgt vorzugsweise durch Vergleich der Spektrenparameter mit vorgefertigten Parameterlisten (Tabellen) und je nach Schichtstapel zusätzlich noch durch eine Extremamethode und/oder durch eine Fourier-Transformations-Methode. Beispiele solcher Methoden sind aus dem Stand der Technik – wie eingangs erwähnt – bekannt.

P

5

15

20

25

30

Die Ermittlung der optischen Parameter des untersuchten Schichtstapels kann auf der Grundlage des eingeschränkten Parameterraumes vorteilhaft anschließend mit bekannten Grob- und Fein-Fit-Verfahren, beispielsweise mittels Raster, Intervallmethode- und/oder Powell-Methode, erfolgen. Die Übereinstimmung von Meß- und Analysespektrum wird daraufhin bewertet und der "best fit" ausgewählt.

Sollte die beschriebene Methode nicht zu plausiblen Ergebnissen führen, kann gegebenenfalls der eingeschränkte Parameterraum erweitert und das Verfahren von Neuem durchlaufen werden.

Häufig ist der Aufbau des Schichtstapels, das heißt die Abfolge der Zusammensetzung der einzelnen Schichten bekannt. Andernfalls kann in einer Ausgestaltung des erfindungsgemäßen Verfahrens, für die gesondert Schutz beansprucht wird, in einem ersten Schritt eine automatische Bestimmung der Abfolge der Zusammensetzung des Schichtstapels erfolgen, indem wiederum ein Meßspektrum aufgenommen und anhand charakteristischer Kurvenformparameter klassifiziert wird und durch Vergleich mit entsprechenden Kurvenformparametern von zu Schichtstapeln bekannter Zusammensetzung gehörenden Spektren eine oder mehrere mögliche Abfolgen der Schichtstapelzusammensetzung bestimmt werden.

Weiterhin kann auch in diesem Fall anhand der Ergebnisse der Schichtstapelzusammensetzung ein Analysespektrum berechnet werden, das mittels Fit-Verfahren auf das Meßspektrum hin optimiert wird. Gleichzeitig können neben einer möglichen Abfolge der Schichtstapelzusammensetzung auch die Schichtdicken-Bereiche, Brechungsindex-Bereiche sowie weitere Bereiche für die in Frage kommenden optischen Parameter bestimmt werden. In diesem Fall muss in einem wesentlich größeren Parameterraum gesucht werden, so dass es vorteilhaft ist, diese Vorabbestimmung der Schichtstapelzusammensetzung und seiner optischen Parameter im

15

20

25

30

Hintergrund, beispielsweise simultan zum Einlernen der Tischpositionen, vorzunehmen.

Häufig kann der zu durchsuchende Spektrenparameterraum eingeschränkt werden, indem der Kunde die bei ihm zum Einsatz kommenden möglichen Layer-Substrat-Kombinationen vorgibt. Aus den vorhandenen Möglichkeiten sucht das erfindungsgemäße Verfahren dann vorab die wahrscheinlichsten Kombinationen (sowie die zugehörigen optischen Parameterbereiche) heraus.

10 Es ist vorteilhaft, die in dieser Vorabbestimmung gefundenen Ergebnisse dem Kunden anzuzeigen und ihm die Möglichkeit zu geben, das Ergebnis zu übernehmen oder zu korrigieren.

Die erfindungsgemäße Ermittlung optischer Parameter eines Schichtstapels mit der etwaigen Ermittlung der Abfolge der chemischen Zusammensetzung des Schichtstapels wird in vorteilhafterweise mittels eines Computerprogramms durchgeführt, das auf einer geeigneten Rechnereinheit ausgeführt wird. Ermittelte Daten (Wertebereiche für die optischen Parameter, Schichtzusammensetzung) können in gängiger Weise auf einem Monitor angezeigt werden. Weiterhin kann die Möglichkeit einer Beeinflussung der angezeigten Daten dem Kunden eingeräumt werden. Das Computerprogramm kann auf geeigneten Datenträgern, wie EEPROMs, Flash-Memories, aber auch CD-ROMs, Disketten oder Festplattenlaufwerken gespeichert sein. Auch eine Übertragung des Computerprogramms über ein Kommunikationsmedium (wie das Internet) zum Kunden (Anwender) ist möglich.

Im folgenden soll anhand der beigefügten Figuren ein Ausführungsbeispiel die Erfindung und deren Vorteile näher erläutern. Es zeigt

Figur 1 Zwei Meßspektren einer Zweifachschicht (Fig. 1a) und einer Einfachschicht (Fig. 1b) auf einem Substrat,

Figur 2 den Kurvenformparameter der Anzahl der Extrema aufgetragen über die optische Dicke einer berechneten Parameterliste für die genannte Zweifach-Schicht,

Figur 3 den Mittelwert des Spektrums als Kurvenformparameter aufgetragen über die optische Dicke einer für die genannte Zweifach-Schicht berechneten Parameterliste.

Figur 4 den Wellenlängenwert des Maximums, der dem langwelligen Ende der Meßspekrums am nächsten liegt, des berechneten Spektrums als Kuvenformparameter aufgetragen über die optische Dicke der für die genannte Zweifach-Schicht berechneten Parameterliste,

Figur 5 der Maximalwert als Kurvenformparameter aufgetragen über die optische Dicke der für die genannte Zweifach-Schicht berechneten Parameterliste.

Figur 6 theoretische Spektren ähnlichen Aussehens

Die Erfindung soll im Folgenden anhand des einfachen Beispiels einer Zweifach-Schicht auf einem Substrat erläutert werden, sie ist jedoch keinesfalls auf diesen Spezialfall beschränkt. Das Beispiel bedient sich einer Si3N4-SiO2-Si-Kombination (Si als Substrat). Für das nachfolgend geschilderte erfindungsgemäße Verfahren ist folglich in diesem Fall die Abfolge der Zusammensetzung des Schichtstapels bekannt.

Die unten stehende Tabelle stellt ein Beispiel einer vorgefertigten berechneten Parameterliste für die genannte Zweifach-Schicht dar, wobei zu vorgegebenen Dickenwerten D1 (Dicke der Schicht Si3N4) und D2 (Dicke der Schicht SiO2) und der daraus resultierenden optischen Gesamtdicke die darauffolgenden Kurvenformparameter aus den zugehörigen berechneten Analysespektren abgeleitet wurden:

		"D1"	Vorgegebene Dicke der ersten Schicht
•		"D2"	Vorgegebene Dicke der zweiten Schicht
	5	"Opt.Thick."	Optische Dicke (Optical Thickness) berechnet aus der Summe der Produkte von mittlerem Brechungsindex und Dicke im Wellenlängenbereich von 200 nm bis 800 nm, also Optische Dicke = $<$ n1(λ)> D1 + $<$ n2(λ)> D2
,	10	"NoE"	Anzahl der Extrema (Number of Extrema)
		"Mean"	Mittelwert des berechneten Spektrums
	15	"Sigma"	Standardabweichung zum Mittelwert des berechneten Spektrums
		"Min"	Intensitätswert des Minimums im Wellenlängenbereich
	00	"Max"	Intensitätswert des Maximums im Wellenlängenbereich
.	20	"WL-MaxEx"	Wellenlänge, bei der das letzte Maximum auftritt, beginnend bei der kleinsten Wellenlänge <in nm=""></in>
	25	"MDEx"	Mittlerer Abstand der Extrema (= "MeanDistExtrema") bei mehr als einem Extremum <in nm=""></in>

Weitere sinnvolle Kurvenformparameter wären, insbesondere bei dickeren Schichten, die sich aus einer Fast-Fourier-Transformation ergebenden Werte, wie Lage der Einzelpeaks und des Summenpeaks. Ebenso suchen könnte man nach auftretenden Schwebungen oder nach Lage und Intensität der auftretenden Extrema

Nachfolgend wiedergegeben ist die der Auswertesoftware als Look-Up-Tabelle vorliegende Kurvenformparameterliste.

Tabelle 1

		Si3N4S	iO2Si						
Input		Output							
Dİ	D2	Opt. Thick	NoE	Mean	Sigma	Min	Max	WI-MaxEX	MDEx
0	0	0	0	1.000	0.000	1.000	1.000	0	0
0	20	30	0	0.909	0.071	0.663	0.971	0	0
20	0	43	1	0.752	0.192	0.264	0.933	245	0
0	40	60	1	0.753	0.091	0.559	0.892	315	0
20	20	73	1	0.571	0.255	0.236	1.182	393	0
40	0	86	2	0.514	0.262	0.116	1.066	383	147
0	60	89	1	0.628	0.167	0.417	1.042	421	0
20	40	103	2	0.516	0.370	0.131	1.273	488	251
40	20	116	2	0.431	0.401	0.015	1.191	510	263
0	80	119	2	0.552	0.236	0.300	1.017	499	241
60	0	130	3	0.357	0.323	0.001	1.021	495	138
20	60	133	2	0.531	0.409	0.051	1.241	611	297
40	40	146	2	0.538	0.483	0.027	1.323	322	104
0	100	149	3	0.531	0.272	0.255	1.006	602	190
60	20	159	2	0.489	0.441	0.000	1.189	335	89
20	80	162	2	0.629	0.408	0.143	1.221	343	96
80	0	173	4	0.404	0.370	0.002	1.012	646	141
40	60	176	2	0.730	0.479	0.046	1.370	400	154
0	120	179	2	0.583	0.290	0.234	1.034	362	110
60	40	189	3	0.758	0.456	0.010	1.337	408	91
20	100	192	2	0.767	0.371	0.169	1.247	419	135
80	20	203	3	0.645	0.401	0.006	1.233	416	90
40	80	206	3	0.915	0.408	0.178	1.471	440	103
0	140	208	3	0.663	0.273	0.226	1.032	413	94
100	0	216	4	0.509	0.362	0.006	1.053	416	67
60	60	219	3	0.966	0.399	0.001	1.502	455	107
20	120	222	3	0.854	0.325	0.203	1.268	470	116
80	40	232	4	0.911	0.356	0.069	1.361	473	87
40	100	235	3	1.016	0.388	0.100	1.498	486	120
0	160	238	3	0.727	0.224	0.292	1.022	470	109
100	20	246	4	0.762	0.303	0.203	1.159	491	88
60	80	249	4	1.089	0.394	0.195	1.588	503	91
20	140	252	4	0.890	0.285	0.116	1.220	528	102
120	0	259	5	0.636	0.289	0.104	1.025	492	69
80	60	262	4	1.089	0.334	0.109	1.518	524	98
40	120	265	4	1.069	0.364	0.119	1.489	544	106
0	180	268	4	0.778	0.175	0.440	1.008	527	98
100	40	276	5	0.996	0.270	0.396	1.327	549	83
60	100	278	4	1.163	0.397	0.196	1.625	556	103
20	160	281	4	0.913	0.297	0.186	1.231	586	114
120	20	289	5	0.832	0.279	0.132	1.195	569	85
80	80	292	5	1.171	0.379	0.225	1.616	575	87

40	140	295	5	1.062	0.395	0.050	1.461	601	96
0	200	298	4	0.811	0.174	0.408	1.039	584	111
140	0	302	6	0.706	0.278	0.008	1.018	569	71
100	60	305	5	1.106	0.345	0.017	1.487	601	93
60	120	308	5	1.160	0.437	0.075	1.626	612	95
20	180	311	5	0.910	0.323	0.145	1.247	647	104
120	40	319	5	0.980	0.334	0.004	1.327	630	98
80	100	322	5	1.166	0.461	0.033	1.667	629	98
40	160	325	5	1.019	0.425	0.022	1.428	664	108
0	220	328	5	0.812	0.198	0.345	1.031	641	102
140	20	332	6	0.811	0.332	0.047	1.201	650	86
100	80	335	6	1.124	0.424	0.088	1.597	654	87
60	140	338	6	1.088	0.487	0.016	1.612	673	91
20	200	341	5	0.857	0.348	0.066	1.264	474	65
160	0	346	7	0.702	0.312	0.009	1.040	647	72
120	60	349	6	1.044	0.379	0.003	1.441	684	92
80	120	351	5	1.102	0.518	0.027	1.689	435	54
40	180	354	5	0.956	0.435	0.033	1.394	433 479	66
0	240	357	5	0.786	0.433	0.309			64
140	40	362	5		0.221		1.025	473	
	100	365		0.914 1.085		0.121	1.284	484	64 57
100			5	1.005	0.479	0.151	1.666	456 475	57
60	160	368	5		0.480	0.003	1.585	475	61
20	220	371	5	0.807	0.355	0.129	1.225	514	72
160	20	375	6	0.758	0.350	0.019	1.151	495	54
120	80	378	6	1.036	0.424	0.159	1.557	487	53
80	140	381	6	1.022	0.519	0.029	1.689	473	51
40	200	384	5	0.889	0.438	0.016	1.396	522	73
0	260	387	5	0.756	0.236	0.286	1.043	510	69
180	0	389	7	0.655	0.340	0.001	1.026	491	47
140	60	392	6	0.953	0.395	0.053	1.403	517	59
100	120	395	6	1.014	0.503	0.151	1.703	485	53
60	180	398	6	0.949	0.463	0.000	1.553	518	60
20	240	401	5	0.778	0.359	0.129	1.246	553	77
160	40	405	6	0.841	0.384	0.018	1.342	538	62
120	100	408	6	0.994	0.452	0.002	1.638	514	56
80	160	411	6	0.949	0.491	0.006	1.675	514	57
40	220	414	6	0.836	0.440	0.017	1.455	564	68
0	280	417	6	0.730	0.238	0.270	1.035	548	65
180	20	419	7	0.703	0.366	0.007	1.169	548	55
140	80	422	7	0.944	0.417	0.016	1.507	546	55
100	140	424	7	0.925	0.499	0.009	1.716	519	51
60	200	427	7	0.879	0.458	0.000	1.487	561	58
20	260	430	6	0.751	0.362	0.044	1.263	593	72
200	0	432	7	0.614	0.336	0.000	1.017	543	53
160	60	435	7	0.884	0.403	0.001	1.482	574	59
120	120	438	7	0.931	0.449	0.017	1.674	541	54
80	180	441	7	0.886	0.454	0.000	1.614	556	57
40	240	444	7	0.803	0.447	0.021	1.486	605	66
0	300	447	6	0.702	0.235	0.257	1.031	586	70
180	40	448	7	0.790	0.400	0.046	1.363	593	62
140	100	451	7	0.916	0.406	0.141	1.549	573	58
100	160	454	7	0.855	0.456	0.027	1.665	556	55

60	220	457	7	0.834	0.451	0.000	1.527	605	64
20	280	460	7	0.724	0.369	0.098	1.263	633	69
200	20	462	8	0.658	0.366	0.002	1.202	600	55
160	80	465	8	0.886	0.401	0.098	1.537	604	55
120	140	468	8	0.847	0.430	0.045	1.633	572	51
80	200	471	7	0.830	0.424	0.001	1.465	599	63
40	260	474	7	0.784	0.462	0.025	1.498	647	71
220	0	475	8	0.563	0.327	0.001	1.034	595	53
180	60	478	.8	0.835	0.423	0.060	1.515	630	59
140	120	481	8	0.856	0.383	0.106	1.511	600	55
100	180	484	8	0.795	0.408	0.006	1.529	596	54
60	240	487	7	0.808	0.466	0.000	1.572	648	69
20	300	490	7	0.707	0.383	0.135	1.239	672	74
200	40	492	8	0.741	0.422	0.028	1.358	648	61
160	100	495	8	0.852	0.395	0.026	1.517	632	58
120	160	497	8	0.759	0.407	0.033	1.507	605	54
80	220	500	8	0.781	0.428	0.002	1.466	643	60
40	280	503	8	0.769	0.483	0.030	1.498	689	67
220	20	505	9	0.608	0.383	0.000	1.189	653	55
180	80	508	9	0.835	0.436	0.007	1.585	663	56
140	140	511	9	0.763	0.378	0.003	1.390	628	52
100	200	514	9	0.734	0.389	0.000	1.290	638	54
60	260	517	8	0.794	0.500	0.000	1.602	691	67
240	0	518	9	0.517	0.335	0.002	1.002	647	53
200	60	521	9	0.801	0.457	0.002	1.521	687	59
160	120	524	. 9	0.794	0.390	0.005	1.437	660	56
120	180	527	9	0.695	0.384	0.005	1.331	641	54
80	240	530	8	0.762	0.464	0.003	1.534	686	65
40	300	533	8	0.773	0.496	0.026	1.492	730	72
220	40	535	9	0.722	0.444	0.010	1.343	702	60
180	100	538	9	0.821	0.440	0.035	1.588	692	59
140	160	541	9	0.694	0.364	0.036	1.284	658	55
100	220	544	9	0.709	0.400	0.001	1.317	681	58
60	280	546	9	0.808	0.524	0.001	1.620	734	65
240	20	548	10	0.599	0.324	0.000	1.160	70 4	54
200	80	551	10	0.834	0.333	0.042	1.609	700	56
160	140	554	10	0.739	0.472	0.042	1.322	687	53
120	200	557	9	0.669	0.373	0.009	1.290	680	58
80	260	560	9 .	0.789	0.381	0.003	1.587	730	64
260	0	562	10	0.703	0.455	0.003	1.018	699	53
220	60	565	10	0.822	0.331	0.004	1.513	743	58 ·
180	120	567	10	0.822	0.473			743 720	56
	180					0.076	1.535		
140	240	570 572	10	0.660	0.375	0.061	1.341	691	53
100		573 576	9	0.736	0.435	0.003	1.407	724 560	62
60	300	576 570	8	0.862	0.514	0.002	1.628	568	49
240	40	578	9	0.756	0.447	0.010	1.323	562	43
200	100	581	10	0.855	0.474	0.066	1.634	751	59
160	160	584	10	0.704	0.374	0.007	1.229	715	55
120	220	587	10	0.683	0.402	0.001	1.299	721	56
80	280	590	9	0.848	0.502	0.003	1.626	571	45
260	20	591	10	0.632	0.401	0.000	1.191	571	40
220	80	594	10	0.888	0.477	0.025	1.616	572	40

180	140	597	11	0.776	0.426	0.019	1.440	747	54
140	200	600	10	0.653	0.406	0.035	1.420	727	56
100	260	603	9	0.796	0.454	0.005	1.484	577	45
280	0	605	11	0.530	0.358	0.004	1.031	752	53
240	60	608	10	0.890	0.448	0.043	1.497	588	41
200	120	611	10	0.864	0.462	0.036	1.604	580	41
160	180	614	11	0.695	0.394	0.012	1.360	746	54
120	240	617	10	0.737	0.415	0.000	1.273	763	60
80	300	619	9	0.916	0.477	0.028	1.654	600	47
260	40	621	10	0.821	0.411	0.007	1.344	602	43
220	100	624	10	0.934	0.461	0.000	1.658	595	42
180	160	627	10	0.770	0.401	0.002	1.324	597	42
140	220	630	10	0.689	0.416	0.014	1.447	603	43
100	280	633	10	0.866	0.440	0.011	1.546	605	43
280	20	635	11	0.686	0.370	0.010	1.202	610	40
240	80	638	11	0.973	0.434	0.011	1.610	612	40
200	140	640	11	0.859	0.436	0.003	1.531	607	40
160	200	643	10	0.709	0.407	0.002	1.460	616	44
120	260	646	10	0.814	0.392	0.006	1.330	615	44
300	0	648	11	0.577	0.339	0.001	1.025	608	39
260	60	651	11	0.960	0.400	0.004	1.475	629	41
220	120	654	11	0.948	0.445	0.011	1.649	621	41
180	180	657	11	0.778	0.381	0.001	1.297	626	42
140	240	660	10	0.760	0.387	0.006	1.433	629	45
100	300	663	10	0.927	0.426	0.111	1.596	635	46
280	40	664	11	0.871	0.371	0.049	1.361	643	43
240	100	667	11	1.008	0.439	0.087	1.669	637	42
200	160	670	11	0.850	0.403	0.004	1.432	636	42
160	220	673	11	0.741	0.399	0.034	1.519	644	43
120	280	676	11	0.877	0.373	0.035	1.411	644	43
300	20	678	12	0.724	0.345	0.011	1.189	650	40
260	80	681	12	1.023	0.420	0.051	1.599	653	40
220	140	684	12	0.926	0.448	0.022	1.602	647	40
180	200	687	11	0.784	0.380	0.004	1.426	655	44
140	260	690	11	0.826	0.352	0.062	1.383	657	44
280	60	694	12	0.989	0.391	0.035	1.504	670	42
240	120	697	12	0.998	0.460	0.077	1.680	661	41
200	180	700	12	0.843	0.376	0.000	1.331	664	41
160	240	703	11	0.786	0.383	0.024	1.538	671	45
120	300	706	11	0.911	0.393	0.002	1.481	672	45
300	40	708	12	0.888	0.368	0.036	1.363	683	43
260	100	711	12	1.035	0.454	0.015	1.671	678	42
220	160	713	12	0.896	0.437	0.004	1.522	674	42
180	220	716	12	0.794	0.389	0.009	1.519	684	43
140	280	719	12	0.864	0.348	0.005	1.309	684	43
280	80	724	13	1.031	0.434	0.004	1.582	695	40
240	140	727	12	0.958	0.476	0.017	1.652	686	43
200	200	730	12	0.835	0.371	0.000	1.339	694	44
160	260	733	12	0.830	0.370	0.003	1.522	699	44
300	60	737	13	0.985	0.405	0.003	1.522	711	41
260	120	740	13	1.008	0.482	0.019	1.697	702	41
220	180	743	12	0.874	0.402	0.009	1.423	702	44
220	100	170	14	0.017	U. ~ 13	0.000	1.744	, 00	

180	240	746	12	0.812	0.401	0.023	1.574	713	45
140	300	749	12	0.882	0.368	0.034	1.335	711	45
280	100	754	13	1.025	0.470	0.018	1.664	718	42
240	160	757	13	0.910	0.474	0.027	1.592	713	42
200	220	760	13	0.827	0.388	0.001	1.462	723	42
160	280	762	13	0.855	0.366	0.002	1.477	725	43
300	80	767	14	1.008	0.447	0.018	1.585	736	40
260	140	770	13	0.952	0.495	0.002	1.686	733 727	42
220	200	773	13	0.847	0.401	0.002	1.351	732	43
180	260	776	13	0.827	0.413	0.064	1.593	732 740	44
280	120	784	13	0.984	0.413	0.004	1.703	587	31
240	180	786	13	0.869	0.453	0.040	1.703	741	44
200	240	789	12	0.821	0.433	0.004	1.551	620	37
160	300	792	12	0.856	0.413	0.008		617	36
300	100	797	13	0.830	0.373	0.009	1.412	604	
260	160	800	13	0.892		0.048	1.651		33
220	220	803		0.824	0.485	0.014	1.643	591	31
	280	806	13		0.403		1.366	618 636	34
180			13	0.831	0.418	0.022	1.585		35
280	140	813	13	0.921	0.485	0.016	1.706	603	32
240	200	816	13	0.833	0.427	0.000	1.432	614	33
200	260	819	13	0.817	0.434	0.025	1.607	646	36
300	120	827	13	0.946	0.472	0.029	1.701	620	34
260	180	830	13	0.842	0.460	0.006	1.576	614	33
220	240	833	13	0.812	0.412	0.000	1.484	647 657	36
180	300	835	13	0.828	0.412	0.011	1.550	657	37
280 240	160 220	843 846	14 14	0.855	0.464	0.004	1.680	622	31
200	280	849	14 14	0.804 0.808	0.411 0.449	0.001	1.447	644	33
300	140	856	14	0.877	0.449	0.009 0.007	1.632 1.716	670 636	35 32
260	200	859	14	0.799	0.433	0.007	1.489	641	33
220	260	862	14	0.799	0.436	0.001	1.409	675	36
280	180	873	14	0.798	0.439	0.004	1.613	644	33
240	240	876	14	0.789	0.433	0.002	1.407	673	35
200	300	879	14	0.789	0.413	0.002	1.629	693	37
300	160	886	15	0.799	0.433	0.037	1.661	654	32
260	220	889	15	0.768	0.432	0.003	1.509	669	33
220	280	892	15	0.700	0.413	0.002	1.628	702	35 35
280	200	903	15	0.754	0.404	0.016	1.460	668	33
240	260	906	15	0.786	0.420			703	35
						0.000	1.498		
300 260	180	916	. 15 15	0.754	0.403 0.417	0.002 0.004	1.521	674 699	33
	240	919	15 15	0.759			1.503		35
220	300	922	15 16	0.787	0.482	0.004	1.656	727 605	37
280	220	932	16 16	0.729	0.412	0.000	1.527	695	32
240	280	935	16 16	0.791	0.463	0.002	1.583	731	35
300	200	946	16 16	0.715	0.401	0.011	1.393	697	32
260	260	949	16	0.772	0.437	0.003	1.447	729	35
280	240	962	16 16	0.734	0.424	0.003	1.557	724 757	34
240	300	965	16	0.804	0.487	0.007	1.639	757 722	36
300	220	976	17	0.701	0.417	0.002	1.510	723	32
260	280	979	17	0.798	0.459	0.001	1.507	758 754	34
280	260	992	17	0.766	0.441	0.005	1.537	754	34
300	240	1005	17	0.724	0.433	0.001	1.574	750	34

260	300	1008	16	0.836	0.464	0.001	1.590	643	29
280	280	1022	17	0.814	0.442	0.004	1.472	651	28
300	260	1035	17	0.773	0.436	0.005	1.589	659	28
280	300	1051	17	0.864	0.425	0.002	1.514	670	29
300	280	1065	18	0.829	0.420	0.013	1.561	678	28
300	300	1095	18	0.876	0.405	0.006	1.493	696	28

Die in Figur 1 dargestellten Meßspektren können beispielsweise mit einer optischen Messeinrichtung aufgenommen werden, wie sie aus der eingangs behandelten DE 100 21 379 A1 bekannt ist. Zu Einzelheiten der Messung wird

5 voll umfänglich auf diese Schrift verwiesen. Aus dem aufgenommen Meßspektrum werden erfindungsgemäß die in diesem Beispiel genannten charakteristischen Kurvenformparameter abgeleitet und die Ergebnisse mit den Werten der oben stehenden Tabelle verglichen. Als Ergebnis erhält man nun eine oder mehrere optische Dicken und somit Schichtdicken-10 Kombinationen, für die eine besonders gute Übereinstimmung der aus dem Meßspektrum abgeleiteten Kurvenformparameter mit den berechneten Parametern der Liste gegeben ist. Für diese Dickenkombination werden nun zugehörige Analysespektren berechnet, die mit einem aufgenommenen, wie in Figur 1a dargestellten, Meßspektrum verglichen werden. Da in der Regel nicht 15 davon auszugehen ist, dass die mit dem erfindungsgemäßen Verfahren gefundene Dickenkombination bereits der vorhandenen entspricht, schließen sich zur Ermittlung der genauen Schichtdicken vorteilhafterweise bekannte Grob- und Fein-Fit-Verfahren, wie Raster-, Intervall- und Powell-Methode an. In diesem Fall dient das erfindungsgemäße Verfahren zur Einschränkung des 20 Parameterraums, so dass die anschließenden Fit-Verfahren wesentlich schneller zum Ziel führen.

Es ist vorteilhaft, neben dem erfindungsgemäßen Verfahren zur Einschränkung des Parameterraumes weitere bekannte Methoden
25 hinzuzuziehen, insbesondere um beispielsweise aufgefundene Schichtdicken-Kombinationen (D1, D2) als unplausibel auszuschließen. Hierzu können insbesondere die bereits erwähnte Extrema-Methode und die Fourier-Transformations-Methode verwendet werden.

10

15

20

25

Die Figuren 2 bis 5 zeigen, wie bestimmten charakteristischen Kurvenformparametern der aufgenommenen Messkurve vorgegebene Werte von optischen Parametern (in diesem Fall Schichtdicken-Kombinationen) zugeordnet werden können. In Figur 2 ist der Zusammenhang angenähert linear, d.h. die Anzahl der Extrema (Number of Extrema) nimmt proportional zur optischen Dicke (Opt. Thickness) zu. Der Parameter Mittelwert (Mean) (Figur 3) ändert sich in Form einen gedämpften Schwingung mit der optischen Dicke, wobei die Schwankungsbreite mit zunehmender optischer Dicke zwar abnimmt, der Mittelwert sich jedoch auch immer mehr einer Konstanten nähert. Dies spiegelt natürlich auch die spektrale Auflösung der Meßapparatur und damit das Abtasttheorem wider. Der in Figur 4 über die optische Dicke aufgetragene Parameter WLMaxEx beschreibt die Lage des langwelligsten Maximums. Diese Werte sind natürlich auch durch den Wellenlängenbereich der Meßapparatur (hier 200nm und 800nm) begrenzt. Kurven die kein eindeutiges Maximum zeigen (die Randwellenlängen werden ausgeschlossen, Extrema müssen einen vordefinierten Schwellenwert übersteigen), erhalten als Parameterwert Null zugeordnet. Von der optischen Dicke Null ausgehend wächst dieser Wert an, bis (sozusagen) das Extremum aus dem Meßbereich herausgewandert ist. Figur 5 zeigt, dass der Parameter Maximum (Maximum Value)(Intensitätswert) in dem angezeigten Bereich der optischen Dicke annäherend von Wert zu Wert oszilliert.

Insgesamt folgt, dass die Zuordnung einer optischen Dicke über einen einzelnen aus der Meßkurve gewonnenen Wert vieldeutig ist. Daher müssen mehrere dieser Werte herangezogen werden. Die Schwankungsbreiten in den einzelnen Kurven zeigen an, wie verschieden stark die Wertebereiche der Parameter einzuengen sind. Die Möglichkeit der Einengung und damit der Filterung ist durch die horizontalen Linien in den Figuren als Beispiel einer mögliche Auswertevariante verdeutlicht.

30

Allgemein gilt: Aus den zugeordneten Werten lassen sich die wahrscheinlichsten auswählen (auch mit Hilfe weiterer bekannter Methoden) und zur Berechnung eines Analysespektrums verwenden.

Vereinfachtes Ausführungsbeispiel Filter:

Aus einem Spektrum (175nm Si3N4 auf 190nm SiO2), das nicht dem in Fig. 1a dargestellten entspricht, ergeben sich die in Tabelle 2, Tabellenspalte 1 "Gesuchter Wert" stehenden Such-Werte.

Selektiert man aus den ursprünglich in Tabelle 1 angegebenen 256 Listeneinträge nacheinander die in der Tabelle 2 angegebenen Filterbereiche (dies entspricht den horizontalen Linien in den Figuren 2-5), so reduziert sich sukzessive die Anzahl der Listeneinträge von zunächst 63 auf 4.

Die diesen Listeneinträgen zugeordneten Spektren sind in Fig. 6 zusammen mit dem gesuchten Spektrum (175 – 190) dargestellt.

Die beste Übereinstimmung ergibt sich für die benachbarten Kurven mit den Schichtdicken (180-180) und (160-200).

Tabelle 2: Reduktion durch Filtern. Ausgangswert 256 Listeneinträge

Gesuchter	Filterstufe/	Filter-bereich	Anzahl der
Wert	Filtername		Listeneinträge
11	1 / NoE	10-12	63
628	2 / WL-Max	613 - 643	12
1.4	3 / Max	1.25 – 1.55	9
0.78	4 / Mean	0.74 - 0.82	4

Ein Grobfit in den angegebenen Dickenbereichen (z. B. Schrittweite jeweils ±20nm) wird zu einem Ergebnis mit guter Übereinstimmung der Kurvenform für den Tabelleneintrag mit den Dicken D1 = D2 = 180nm führen. Ein anschliessender Feinfit mittes Raster-, Intervall- oder Powell-Methode führt zu einem Ergebnis der gewünschten Genauigkeit (z.B. 0.1 nm).

5

10

15

20

25

Aus Gründen der Einfachheit beschränkt sich das genannte Beispiel auf die Bestimmung lediglich der Schichtdicken einer Zweifach-Schicht. Dem Fachmann ist verständlich, wie das Beispiel auf die Bestimmung weiterer optischer Parameter, wie Brechungsindex n oder Extinktionskoeffizient k, ausgedehnt werden kann.

Insbesondere ist mit dem genannten erfindungsgemäßen Verfahren auch eine Vorauswahl der in Frage kommenden Schichtarten (chemische Zusammensetzung) möglich, wobei hier aus einem entsprechend größeren Parameterraum (Parameterlisten für verschiedene Zusammensetzungen von Ein- oder Mehrfach-Schichten) gewählt werden muss. Eine Vorab-Beschränkung ist jedoch meist möglich, da dem Kunden (Anwender) meist bekannt ist, um welche möglichen Kombinationen es sich handeln kann. Beispielsweise kann die Bestimmung der vorhandenen Kombination (also der Abfolge der Schichtzusammensetzungen) während des Einlernens der Tischpositionen zur nachfolgenden Messung im Hintergrund erfolgen. Vor dem Beginn der eigentlichen Messung der optischen Parameter wird dann dem Kunden (Anwender) die gefundene Kombination angeboten, die er übernehmen oder korrigieren kann.

Patentansprüche

- Verfahren zur automatischen Ermittlung optischer Parameter eines Schichtstapels, wie Schichtdicken, Brechungsindizes oder
 Absorptionskoeffizienten, durch Vergleich eines von einem Ort des Schichtstapels aufgenommenen optischen Meßspektrums mit einem anhand vorgegebener optischer Parameterwerte berechneten Analysespektrum und Optimierung des berechneten Analysespektrums auf das Meßspektrum hin,
- d a d u r c h g e k e n n z e i c h n e t,
 dass das aufgenommene Meßspektrum anhand von
 Kurvenformparametern, die das Meßspektrum charakterisieren und aus
 diesem ermittelt werden, klassifiziert wird und diese Kurvenformparameter
 mit entsprechenden für bekannte Schichtstapel berechnete
 Kurvenformparametern von Spektren verglichen werden, um Werte oder
 Wertebereiche für die zu bestimmenden optischen Parameter zu
 ermitteln, anhand derer das oder die Analysespektren zum Vergleich mit
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das aufgenommene Meßspektrum anhand eines oder mehrerer der folgenden Kurvenformparameter klassifiziert wird: das lokale Rauschen des Spektrums, der Mittelwert des Spektrums, die Standardabweichung des Mittelwerts, die Anzahl und Lage der Extrema, eine Klassifizierung der Extrema, beispielsweise nach spektraler Lage, den Intensitätswerten oder den relativen Abständen zueinander, Merkmale der einhüllenden Kurven der Minima und Maxima, ein gemittelter Kurvenverlauf,

dem Meßspektrum berechnet werden.

15

20

Schwebungen sowie Parameter aus der Fourier-Transformierten des aufgenommenen Meßspektrums, wie Anzahl, Lage und Werte der dort vorhandenen Extrema.

3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zur Einschränkung der Wertebereiche für die zu bestimmenden optischen Parameter je nach Art des Schichtstapels zusätzlich eine Auswertung des aufgenommenen Meßspektrums nach einer Extremamethode und/oder einer Fourier-Transformations-Methode erfolgt.

 Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Optimierung des berechneten Analysespektrums auf das Meßspektrum hin mittels bekannter Grob- und/oder Feinfitverfahren

vorgenommen wird.

- 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die für die Optimierung des berechneten Analysespektrums ermittelten Werte für die zu bestimmenden optischen Parameter gegebenenfalls korrigiert werden.
- 6. Verfahren zur automatischen Ermittlung der Abfolge der Zusammensetzung eines Schichtstapels, insbesondere gemäß einem Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
- dass ein von einem Ort des Schichtstapels aufgenommenes optisches Meßspektrum anhand von Kurvenformparametern, die das Meßspektrum charakterisieren und aus diesem ermittelt werden, klassifiziert wird und durch Vergleich mit entsprechenden Kurvenformparametern von zu bekannten Schichtstapeln gehörenden klassifizierten Spektren eine oder mehrere mögliche Abfolgen der Zusammensetzung des Schichtstapels bestimmt werden.

10

15

- 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass gleichzeitig zur Bestimmung der Abfolge der Zusammensetzung des Schichtstapels aus dem Vergleich der Kurvenformparameter der klassifizierten Spektren Wertebereiche für die zu bestimmenden weiteren optischen Parameter ermittelt werden.
- 8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass aufgrund der bestimmten Abfolge der Zusammensetzung des Schichtstapels sowie etwaiger weiterer optischer Parameterwerte Analysespektren berechnet werden, die auf das aufgenommene hin optimiert werden.
- 9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die ermittelte Abfolge der Zusammensetzung des Schichtstapels sowie etwaige weitere ermittelte optische Parameter einer Überprüfung unterzogen werden, bevor die automatische Ermittlung optischer Parameter des Schichtstapels gemäß Anspruch 1 erfolgt.
- 10. Computerprogramm mit Programmcode-Mitteln, um alle Schritte eines
 Verfahrens gemäß einem der Ansprüche 1 bis 9 auszuführen, wenn das
 Computerprogramm auf einem Computer oder einer entsprechenden
 Rechnereinheit ausgeführt wird.
- 11. Computerprogramm-Produkt mit Programmcode-Mitteln, die auf einem computerlesbaren Datenträger gespeichert sind, um ein Verfahren nach einem der Ansprüche 1 bis 9 auszuführen, wenn das Computerprogramm auf einem Computer oder einer entsprechenden Rechnereinheit ausgeführt wird.

Zusammenfassung

Die Erfindung betrifft ein Verfahren zur automatischen Ermittlung optischer Parameter eines Schichtstapels, wie Schichtdicken, Brechungsindizes oder Absorptionskoeffizienten, durch Vergleich eines von einem Ort des Schichtstapels aufgenommenen optischen Meßspektrums mit einem anhand vorgegebener optischer Parameterwerte berechneten Analysespektrum und Optimierung des berechneten Analysespektrums auf das Meßspektrum hin. Hierbei wird vorgeschlagen, das aufgenommene Meßspektrum anhand von Kurvenformparametern, die das Meßspektrum charakterisieren und aus diesem ermittelt werden, zu klassifizieren und diese Kurvenformparameter mit entsprechenden für bekannte Schichtstapel berechnete Kurvenformparametern von Spektren zu vergleichen, um (Ausgangs-) Werte oder Wertebereiche für die zu bestimmenden optischen Parameter zu ermitteln, anhand derer das oder die Analysespektren zum Vergleich mit dem Meßspektrum errechnet werden. Die Erfindung erlaubt eine drastische Reduzierung von Rechenkapazität und -zeit.

20

15

5

10

Messspektrum: 170nm Si3N4 auf 22.5nm Si02 auf Si

Fig. 1a

Messspektrum: 284 nm Si02 auf Si

Fig. 1b

Figur 2

Mean Min Mean-Max

→-Mean

Figur 3

Figur 4:

Figur 5

Si3N4Si02-Si

180-180 175-190 160-200 120-260 700 Si3N4SiO2-Si similar opt. thicknesses 009 400 300 Intensity / a.u. O O

Figur 6: