AP Physics C: Chapter 24

Zach Baylin

February 21, 2019

1 Gauss' Law

- Symmetry remains important
- Symmetry of E_1 must be similar symmetry of charge distribution
 - cylindrical infinitely long
 - planar infinitely wide
 - spherical
- Flux (Φ_E) : amount of electric field lines that pass through a surface

 $\xrightarrow{\longrightarrow} E \text{ implies charge}$

- if Φ_E is only in, $q_{\text{net}} = (-)$
- if Φ_E is only out, $q_{\text{net}} = (+)$
- if in matches out $q_{\rm net} = \phi$
- $\bullet\,$ imaginary surface = Gaussian surface encloses a region of space around a charge

- choose the Gaussian surface closest to the symmetry of the distribution
 - point charge \rightarrow sphere
 - cylinder \rightarrow cylinder
 - cylinder \rightarrow plane
- ex.

- $\phi_E = \vec{E} \cdot \vec{A} = |E||A|\cos(\theta)$
- $\phi_E = \int_{\text{Surface}} \vec{E} \cdot dA = \int |E| \cos \theta \, dA = EA \cos \theta$
- Closed Surface: a surface that is contained

$$-\Phi_E = \oint \vec{E} \cdot d\vec{A}$$

– ex.

- Summary:
 - $\hat{A} = \text{normal to the surface of area } A$
 - E_{\perp} to the surface and has the same magnitude, then $\vec{E}\cdot \mathrm{d}\vec{A} = EA$
 - Φ_E is MAX when $\theta=0$ when E_{\perp} to the surface
 - $-\Phi_E = 0$ when $\theta = 90^{\circ} = \frac{\pi}{4}$
- ex. for two point charges:

(q)

surround both in a single sphere

- Charge densities:
 - Linear Charge Density (λ): $\frac{Q}{L}$
 - Area Charge Density (σ): $\frac{Q}{A}$
 - Volume Charge Density (ρ) : $\frac{V}{A}$
- Electric field as distance increases:

2 Capacitors

• Work done on a charge q in a constant electric field E

$$F_E = qE$$

$$= q\frac{V}{d}$$

$$W_{\rm done} = F_E \cdot d = q\Delta V = \Delta k$$

$$W = \Delta k$$

$$W_{\rm done~by~external~force} = \Delta U_E$$

$$W_{\rm done~by~field} = -\Delta U_E$$

- Objects with non-constant E
 - point charge
 - sphere
 - rod

- To solve with non-constant E
 - Find E, either using superposition or Gauss' law
 - Find $\Delta V = \oint E \cdot dr$
- Electic field is the negative slope of potential: $E = \frac{-\mathrm{d}v}{\mathrm{d}r}$
- Calculating U_E

$$+q \underline{\qquad \qquad} U_E = \frac{kQ_1Q_2}{r}$$

Figure 1: A diagram of U_e

3 Capacitors

Figure 2: A diagram of metal plates

- Parallel plates

Figure 3: A diagram of parallel plates

• To find the electric potential between the plates:

$$\begin{split} \Delta V &= V_{\rm f} - V_{\rm i} = -\int_0^x E \cdot \mathrm{d}s \\ &= -\int_0^x \frac{-Q}{\varepsilon_0 A} \cdot x \\ &= \frac{Q}{\varepsilon_0 A} \cdot x \\ &= \frac{Q}{\varepsilon_0 A} \cdot d \end{split}$$

• Capacitance: ratio of charge to change in electric potential

Figure 4: A plot demonstrating capacitance

• Dialectric: insulator between plates polarizes to create an \vec{E} opposite E_C

- Dialectric constant: $K = \frac{E_0}{E}$
 - air: ≈ 1
 - water: ≈ 80
- Amt. of charge is a function of the capacitance and the battery: $Q = C\Delta V$

•