Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	26 october 2023
Team ID	Team-592597
Project Name	Detecting Covid-19 From Chest X-Rays Using Deep Learning Techniques
Maximum Marks	20 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

<u>Sprint</u>	Functional Requirement	User Story	<u>User Story / Task</u>	Story points	<u>Priority</u>	Team members
Sprint-1	(Epic) upload a chest X-ray image	Number USN-1	I want to receive a COVID-19 prediction so that I can quickly and accurately identify potential COVID-19 cases and prioritize their treatment.	1	High	Balu
Sprint-1	chest X-ray processed by the system	USN-2	I want to determine if I have COVID-19, enabling early diagnosis and intervention for my health.	2	Medium	Adarsh
Sprint-2	labeled chest X-ray datasets	USN-4	I want access to the ability to retrain the deep learning model with new data to continuously improve its accuracy and performance.	2	Medium	Balu

Sprint-2	Pre-process X-ray images, such as resizing and normalization	USN-5	I want the system to ensure that they are in the optimal format for deep learning analysis.	3	Low	David
Sprint-3	comprehensive set of performance metrics	USN-10	I want access to a metrics and visualizations for evaluating the deep learning model's performance and assisting in the model's continuous improvement.	4	High	Adarsh
Sprint-3	system to maintain a secure and easily accessible	USN-3	I want the repository of processed X-rays and their corresponding results for auditing, reporting, and quality control purposes.	3	Low	Varshath
Sprint-4	comply with data privacy regulations and security	USN-6	I want the system to protect patients' sensitive medical information.	2	High	David
Sprint-4	run performance tests and validation	USN-8	I want the ability of the deep learning model to ensure that it meets accuracy and reliability standards.	3	High	Varshath
Sprint-5	well-documented API	USN-7	I want access system that allows me to integrate the COVID-19 detection system with our hospital's electronic health record (EHR) system for seamless patient management.	2	Medium	Balu

Sprint-5	collaborate with the system developers	USN-9	I want to investigate and validate the performance and reliability of the deep learning model on a	1	Low	Varshath
			diverse range of chest X-ray datasets.			

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	3	2 Days	18 oct 2023	20 oct 2023	20	18 oct 2023
Sprint-2	5	3 Days	21 oct 2023	23 oct 2023		
Sprint-3	7	5 Days	24 oct 2023	28 oct 2023		
Sprint-4	5	5 Days	29 oct 2023	2 nov 2023		
Sprint-5	3	2 Days	3 nov 2023	5 nov 2023		

Velocity:

Imagine we have a 29-days sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

AV = 29/20 = 1.45

Burndown Chart:

A burndown chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

https://www.visual-paradigm.com/scrum/scrum-burndown-chart/https://www.atlassian.com/agile/tutorials/burndown-charts

Reference:

https://www.atlassian.com/agile/project-management

https://www.atlassian.com/agile/tutorials/how-to-do-scrum-with-jira-software

https://www.atlassian.com/agile/tutorials/epics

https://www.atlassian.com/agile/tutorials/sprints

https://www.atlassian.com/agile/project-

management/estimationhttps://www.atlassian.com/agile/tutorials/burndown-

<u>chart</u>

Burndown Chart:

Sprint burndown

BETA ? V

1 point done, 2 points to go

Board section.

We have completed sprint 1 and 2. So we can see the remaining tasks on board.

Backlog section

Timeline

