Niedrigdimensionale Elektronengase (2D, 1D, 0D)

- Elektronen wechselwirken nicht mit den Atomrümpfen
- Elektronen wechselwirken nicht untereinander

Gas von nicht wechselwirkenden Teilchen

Zustandsdichten für 1-D, 2-D und 3-D Elektronengas:

GaN Nanodraht

2DEG: GaAs/AlGaAs MOSFET

2DEG vs Graphene

Figure 1.3: a, Simplified 2D band structure of GaAs/AlGaAs 2DEG near Γ point. **b**, Simplified 2D band structure of monolayer graphene near a Dirac point (K or K').

Figur Table 1.1: $E_{\rm F}$, $k_{\rm F}$, $v_{\rm F}$, and D(E) for 2DEG, graphene, and 3D metal (free electron model) at T=0 K. g is the ructure of mc spin and valley degeneracy (g=2 for GaAs/AlGaAs 2DEG; g=4 for graphene; g=2 for 3D metal).

g is the

Table spin a

-					
-		E_{F}	$k_{ m F}$	$v_{ m F}$	D(E)
-	2DEG	$\frac{\hbar^2 k_{\rm F}^2}{2m^*}$	$\left(\frac{4\pi n_0}{g}\right)^{1/2}$	$\frac{\hbar k_{\mathrm{F}}}{m^*}$	$\frac{gm^*}{2\pi\hbar^2}$
	Graphene	$\hbar v_{ m F} k_{ m F}$	$\left(\frac{4\pi n_0}{g}\right)^{1/2}$	$v_{ m F}$	$\frac{gE}{2\pi(\hbar v_{\rm F})^2}$
	3D metal	$\frac{\hbar^2 k_{\rm F}^2}{2m^*}$	$\left(\frac{6\pi^2 n_{\rm 3D}}{g}\right)^{1/3}$	$\frac{\hbar k_{ ext{F}}}{m^*}$	$\frac{gm^*}{2\pi^2\hbar^2}\sqrt{\frac{2m^*E}{\hbar^2}}$
ر ک	DLO	$2m^*$	\ g /	m^*	$2\pi\hbar^2$
Gra	aphene	$\hbar v_{\rm F} k_{\rm F}$	$\left(\frac{g}{4\pi n_0}\right)^{1/2}$	v_{F}	$\frac{gE}{2\pi(\hbar v_{\mathrm{F}})^2}$
3D	metal	$\frac{\hbar^2 k_{\rm F}^2}{2m^*}$	$\left(\frac{6\pi^2 n_{\rm 3D}}{g}\right)^{1/3}$	$rac{\hbar k_{ m F}}{m^*}$	$\frac{gm^*}{2\pi^2\hbar^2}\sqrt{\frac{2m^*E}{\hbar^2}}$

Graphene

Graphene E(k) Bandstruktur

Effektive Masse in Graphene

Structure	Effective mass (m^*/m_e)	Velocity (10 ⁶ m/s)
Graphite	0.043 (0.045)[8,17]	0.94 (0.91)[19]
Monolayer graphene 'electrons'	0.0	1.11 (1.093-1.10) ^[3,26]
Monolayer graphene 'holes'	0.0	1.04
Bilayer graphene	0.022	1.10 (1.07) ^[28]
Multilayer graphene	0.031	1.00 (1.03)[29]

TABLE 1: Electron and hole effective masses and velocities in monolayer graphene, bilayer graphene, multilayer graphene, and graphite. Available experimentally measured results are presented in parentheses.