Isabel Hernandez-Fuerte

HW 2

1.

	Babel Hernanck z-Fruck
dn r	
1. 4.1) at = N [1-(N/K)]	0= RN E1-(N/K)-13 N7 = 0
a)	0=1N[1-0]
0 = rN[1-(N/K) 0]	0 = YN (1)
0 = 1 - (N/10)0	T.O = N
-1 = - (N/E)0	
In(1) = In (NIK)	
, 0 = 0 (U/K)	
0	
0 = en (W/K)	
1 = N	
K	
N= K The population = the cornging capacity	
b) dN/4+ = + [1-6/K) 0]	
N - F L1-612 1	
0/20/1.5	· Should be a parubola
Aragint mile	· As the O increases the
021	value of (NIK) & Should increase
	Caugny [1-Wik] 12 to decrear.
Ν	leading to as make the
C) The logistic model appears to show how	
population growth reaches an equilibrium overtime.	
This theta model looks at the stuble effects of population	
on growth rate. The theta model accounts for stability	
In carrying capacity that may occur in a confined area	
b space. It is useful for determining the max rofa	
population In our nonewah, we use it for fishing	
while the grown rate may would be an important	
paramete to hnew.	

2. a)

b)

Plot for K= 50

Plot for K = 25

Same Graph


```
plot (K ~ time, dat = sim, type = 'p', col = 'red')

?diff
diff(N = sim, 1, 1)|
diff(N = sim.2, 1, 1)
diff(N = sim.3, 1, 1)
points(x = diff(N = sim, 1, 1), y = NULL, type = 'l', col = 'red')

[Top Level) †

| e ~/ |
| rc(v)
| nts(x = diff(N = sim. 1, 1), y = NULL, type = 'l', col = 'red')
| : unexpected numeric constant in "points(x = diff(N = sim. 1")
nts(x = diff(N = sim, 1, 1), y = NULL, type = 'l', col = 'red')
nts(x = diff(N = sim, 1, 1), y = NULL, type = 'l', col = 'red')
t (N ~ sim, dat = sim, type = 'p', col = 'red')
in (function (formula, data = NULL, subset = NULL, na.action = na.fail, : alid type (list) for variable 'sim'
t (N ~ K, dat = sim, type = 'p', col = 'red')
in eval(expr, envir, enclos) : object 'K' not found
```

```
K = 100; r= 0.0694
K = 50; r=0.0281
K = 25; r=0.0155
```

3. Table showed that the highest derivative for species b was 8.17.

R Code:

```
\label{eq:log_growth} $$ <- \operatorname{function}(t, y, p) $$ \\ N <- y[1] \\ \text{with}(\operatorname{as.list}(p), {$} \\ dN.dt <- r * N * (1 - (N / K)^{\text{theta}}) \\ \text{return}(\operatorname{list}(dN.dt)) \\ $$ \} $$ \\ p <- c('r' = 0.5, 'K' = 100, 'theta' = 0.5) \\ y0 <- c('N' = 0.05) \\ t <- 1:100 \\ \text{sim} <- \operatorname{ode}(y = y0, \operatorname{times} = t, \operatorname{func} = \operatorname{log.growth}, \operatorname{parms} = p, \operatorname{method} = '\operatorname{lsoda'}) \\ \text{sim} <- \operatorname{as.data.frame}(\operatorname{sim}) \\ \text{sim} & \text{sim} <- \operatorname{c}(\operatorname{diff}(\operatorname{sim}, N, NA)) \\ \text{plot}(\operatorname{deriv} \sim N, \operatorname{data} = \operatorname{sim}, \operatorname{type} = '\operatorname{l'}, \operatorname{col} = '\operatorname{blue'}, \operatorname{bty} = '\operatorname{l'}) \\ \end{aligned}
```

```
sim$N[which(sim$deriv == max(sim$deriv, na.rm = TRUE))]
## Species B
p2 <- c('r' = 0.5, 'K' = 100, 'theta' = 1)
sim.2 <- ode(y = y0, times = t, func = log.growth, parms = p2, method = 'lsoda')
sim.2 <- as.data.frame(sim.2)
plot(N ~ time, data = sim.2, type = 'I', col = 'green')
sim.2$deriv <- c(diff(sim.2$N), NA)
plot(deriv ~ N, data = sim.2, type = 'l', col = 'green', bty = 'l')
sim.2$N[which(sim.2$deriv == max(sim.2$deriv, na.rm = TRUE))]
p3 <- c('r' = 0.5, 'k'= 100, 'theta' = 1.8)
sim.3 <- ode(y = y0, times = t, func = log.growth, parms = p3, method = 'lsoda')
sim.3 <- as.data.frame(sim.3)
sim.3$deriv <- c(diff(sim.3$N, NA))
plot(deriv ~ N, data = sim.3, type = 'p', col = 'purple')
```

4. E.C attempt on page 2.