DEPARTMENT OF COMPUTER SCIENCE

Gopinath Bordoloi Nagar, Gauhati University
Guwahati-781014, Assam, India

LESSON PLAN

Subject Name : Advanced Database Management System

Paper Code : **CSC1056/INF1056** Session: **2022-2023**

Program Name: M.Sc. (CS/IT) Semester: First

Faculty Name : **Dwipen Laskar**

Date : 01/08/2022 to 12/12/2022

Detailed Lesson Plan

UNIT-I (Relational Model)

Lecture No	Topics to be Covered
1	Introduction to DBMS, File Processing System, Advantages and Disadvantages of DBMS
2	Relational model concepts, Data Models in DBMS, Relational databases, schemas, Instances
3	Three-tier architecture of a DBMS, Data Independence (Physical and Logical)
4	Basic concepts of Relational Data Model, Types of Constraints in Relational Model,
5	Various types of Keys in DBMS, Relational algebra operations (SELECT, PROJECT)
6	Relational algebra operations (RENAME, UNION, INTERECTION, DIFFERENCE, CARTESIAN PRODUCT)
7	JOIN operations-INNER JOIN (THETA, NATURAL, EQUI)
8	JOIN operations-OUTER JOIN (LEFT, RIGHT, FULL, DIVISON)
9	Extended Relational Operators (Extended Projections, Aggregate Functions)
10	Relational Calculus (Tuple Relational Calculus, Domain Relational Calculus)
11	Database Languages(DDL, DML, TCL, DCL), SQL statements (CREATE, DROP)
12	SQL statements (ALTER, DELETE, SELECT, WHERE, LIKE, BETWEEN, IN)

UNIT-II (Semantic Modelling)

13	Introduction to E-R model, Query Tree, Modeling using ER diagram
14	Primitives of E-R diagrams, Relationship in ER diagram, Types of Relationships (Unary, Binary, Ternary, Recursive, N-ary),
	Types of Entities (Strong and Weak), Types of Attributes

15	Constraints on Binary Relationships: Cardinality ratio, Mapping Cardinalities (One to One, One to Many, Many to One, Many to Many)
16	Participation Constraints (Total and Partial), Design of database with E-R model
17	Transformation of ER model to relational schema (Strong Entity, Weak Entity, Composite and Multi-valued Attribute)
18	Transformation of ER model to relational schema (One to One relationship, Many to One,
	One to many and Many to Many Relationship)
19	Enhanced ER diagram, Generalization, Specialization, Constraints on Specialization and
	Generalization, Membership Constraints, User Defined, attribute-defined
20	Completeness Constraint, Hierarchy and lattice, Union or Category, Aggregation,
21	Mapping specialization/generalization to relational tables, Relational Database Design by ER-
	to-Relational Mapping, Transformation of EER model to relational schema

UNIT-III (Normalization and Functional Dependency)

20	Concept of Functional Dependency, Types of Functional Dependency,
21	Armstrong's Axioms of Functional Dependency, Dependency-preserving property
22	Lossless join property, Equivalence of sets of functional dependencies
23	Algorithms to ensure dependency -preserving property and lossless join property
24	Finding out Candidate keys from a given FD set, Cover of Functional Dependency, Equivalent set of Functional Dependency Sets with Examples,
25	Canonical Cover of a Functional Dependency Set, Algorithm of minimal cover, Closure of Functional Dependency, Cover of FD
27	Definition of Normalization, Concept of Insertion, Deletion, Updation anomalies
28	Definition and Concept of 1NF, 2NF, Conversion of a relational into 1NF and 2NF
29	Definition and Concept of 3NF, BCNF, Conversion of a relational into 3NF and BCNF
30	Definition and Concept of 4NF, 5NF, Conversion of a relational into 4NF and 5NF

UNIT-IV (System implementation techniques)

31	Query processing and optimization- translation between SQL queries and relational algebra
32	Transaction processing- transaction and system concepts, desirable properties, Transaction States, Concurrent Transactions,
33	Serializable Schedules (Serializability: Serial, Nonserial, and conflict Serialiable),
2.4	Locking Techniques: Types of Locks, Two Phase Locking (2PL), Guaranteeing Serializability
34	by Two Phase Locking, Timestamp based protocols
25	Database Recovery- concepts and techniques, recovery in multi-database systems Kinds of
35	failures, Failure controlling methods (Log base recovery, shadow copy scheme, heckpoints,
36	Concurrency control- locking techniques, concurrency control based on timestamp ordering,
	multiversion concurrency control techniques
37	Database recovery concepts, Log Based Recovery, Shadow Paging, Security and
	authentication- issues
38	Access control techniques: Types of Discretionary Privileges, Mandatory Access Control for
	Multilevel Security

UNIT-V (Object Oriented Database System)

39	Concepts of object-oriented databases; Standards, languages(Object Data Management Group
	(ODMG)), Advantages and Disadvantages of OODBMS
40	Limitation of Relational Databases, The Need for Object Oriented Databases, Object Oriented
	Data Model
41	Need of Complex Data Types, Object Structure, Message and Methods, Object and Classes
42	Inheritance, Polymorphism, Inheritance, Encapsulation, Abstraction, Associations
43	ODMG Object Definition Language, Mapping Object-Oriented Conceptual Models
	to ODL

UNIT-VI (Distributed Database System)

44	Introduction of Distributed Databases, Distributed System Architecture, Design Issues, Data Fragmentation, Data fragmentation, replication, and allocation techniques
45	Features of Distributed Databases-Distributed databases versus Centralized Databases
46	Types of distributed database systems, Principles—Levels Of Distribution- Transparency-Reference Architecture- Types of Data Fragmentation
47	Integrity Constraints in Distributed Databases- Architectural Issues- Alternative Client/Server Architecture
48	Query processing in distributed databases, Overview of concurrency control and recovery in distributed databases.
49	Distributed Query Processing: Query Transformation, Simple JOIN processing,
50	Distributed Transaction Processing, Transaction System Structure, Types of transactions (Local and Global Transactions), System Failure Models,
51	Distributed Concurrency Control, Approaches: Single lock Manager Approach 2), Distributed lock Manager Approach
52	Deadlock Handling in Distributed Database System

UNIT-VII (Image, multimedia, and spatial databases)

53	Concepts of Image, multimedia, and spatial databases
54	Content-based indexing and retrieval
55	Indexing techniques- R trees, Properties of R-tree, Applications of R-Tree
56	Indexing techniques-R+ trees, KD trees.

(Dwipen Laskar)

(Assistant Professor, Dept. of Computer Sc., GU)