编译原理

第五章 语法分析——自下而上分析

- ■自下而上分析的基本问题
- ■算符优先分析算法
- ■LR 分析法

第五章 语法分析——自下而上分析

- ■自下而上分析的基本问题
- ■算符优先分析算法
- ■LR 分析法
 - □LR(0) 项目集规范族和 LR(0) 分析表的构造
 - □SLR 分析表的构造

LR(0) 分析表的构造

- 假若一个文法 G 的拓广文法 G' 的活前缀识别自动机中的每个状态(项目集)不存在下述情况:
 - 1) 既含移进项目又含归约项目,
 - 2) 含有多个归约项目 则称 G 是一个 LR(0) 文法。

构造 LR(0) 分析表的算法

- 令每个项目集 I_k 的下标 k 作为分析器的状态,包含项目 $S' \rightarrow \cdot S$ 的集合 I_k 的下标 k 为分析器的初态。
- □在任何时候,分析栈中的活前缀 X_1X_2 ··· X_m 的有效项目也正是从识别活前缀的 DFA 的初态出发,读出 X_1X_2 ··· X_m 后到达的那个项目集 (状态)
- □也正是栈顶状态Sm所代表的那个集合

LR(0) 分析表的 ACTION 和 GOTO 子表构

- 1. 若项目 $A \rightarrow \alpha \cdot a\beta$ 属于 I_k 且 $GO(I_k, a) = I_j$, a 为终结符,则置 ACTION[k,a] 为 " sj" 。
- 2. 若项目 $A \rightarrow \alpha$ · 属于 I_k ,那么,对任何终结符 a(或结束符 #),置 $A \subset ION[k,a]$ 为 "rj"(假定产生式 $A \rightarrow \alpha$ 是文法 G' 的第 j 个产生式)。
- 3. 若项目 S'→S·属于 I_k,则置 ACTION[k,#] 为 "acc"。
- 4. 若 $GO(I_k,A) = I_j$, A 为非终结符,则置 GOTO[k,A]=j 。
- 5. 分析表中凡不能用规则 1 至 4 填入信息的空白格均

■文法 G(S')

S′→E

E→aA|bB

 $A \rightarrow cA|d$

B→cB|d

0:S'→E 1:E→aA ■ LR(0) 分析表为 **2:E**→ **bB** 3:A→cA **GOTO ACTION 4:A**→ **d** 状态 d # \mathbf{E} \mathbf{B} b A a C **5:**B→**c**B 0 **s2 s3** 1 **6**:**B**→ **d** 1 A **8:** A→cA· 2 4: A→c·A $A \rightarrow cA$ 3 10: A→d· $A \rightarrow d$ C 4 $2: E \rightarrow a \cdot A$ a 5 **6:** E→aA· $A \rightarrow cA$ 6 **r1 r1** $A \rightarrow d$ $0: \mathbf{S'} \rightarrow \cdot \mathbf{E}$ **r2** $E \rightarrow aA$ → 1: S'→E· **r2** $E \rightarrow bB$ 8 **r3 r3** 3: E→b·B B **7:** E→**b**B· b 9 **r**5 **r**5 $B \rightarrow cB$ $\mathbf{B} \rightarrow \mathbf{d}$ **10 r4 r4** d C 11: B→d· 5: B→c·B 11 **r6 r6** d $B \rightarrow cB$ 9: B→cB· $\mathbf{B} \rightarrow \mathbf{d}$ B

■例:按上表对 bcd 进行分析

■ <u>步骤</u>	<u>状态</u>	<u>符号</u>	<u>输入串</u>
1	0	#	bcd#
2	03	#b	cd#
3	035	#bc	d#

0:S′→E	
1:E→aA	
2:E→ bB	
3:A→cA	
4:A → d	
5:B→cB	
6:B → d	

		A	CTIC	GOTO				
状态	a	b	c	d	#	E	A	В
0	s2	s3				1		
1					acc			
2			s4	s10			6	
3			s 5	s11				7
4			s4	s10			8	
5			s 5	s11				9
6	r1	r1	r1	r1	r1			
7	r2	r2	r2	r2	r2			
8	r3	r3	r3	r3	r3			

■例:按上表对 bccd 进行分析

■ <u>歩骤</u> <u>状态</u> <u>符号</u> <u>输入串</u> 3 035 #bc d# 4 035<u>11</u> #bcd # 5 0359 ___#bcB #

0:S'→E
l1:E→aA
I.L—AAA
2:E→ bB
$Z. \square \longrightarrow DD$
2. 4 - 4
3:A→cA
4
4:A → d
5:B→cB
3.D-/CD
6:B→ d
$\mathbf{0.D} \rightarrow 0$

		A	CTIC	(СОТ	O		
状态	a	b	c	d	#	E	A	В
0	s2	s3				1		
1					acc			
2			s4	s10			6	
3			s 5	s11				7
4			s4	s10			8	
5			s 5	s11				9
6	r1	r1	r1	r1	r1			
7	r2	r2	r2	r2	r2			
8	r3	r3	r3	r3	r3			
9	r5	r5	r5	r5	r5			
10	r4	r4	r4	r4	r4			
11	r6	r6	r6	r6	r6			

■例:按上表对 bccd 进行分析

■ <u>步骤</u> <u>状态</u> <u>符号</u> <u>输入串</u> 5 0359 #bcB #

6 037 #bB #

7 01 #E #

8 接受

0:S′→E	
1:E→aA	
2:E → bB	
3:A→cA	
4:A → d	
5:B→cB	
6:B → d	

		A	GOTO						
状态	a	b	c	d	#	${f E}$	A	В	
0	s2	s 3				1			
1					acc				
2			s4	s10			6		
3			s 5	s11				7	
4			s4	s10			8		
5			s 5	s11				9	
6	r1	r1	r1	r1	r1				
7	r2	r2	r2	r2	r2				
8	r3	r3	r3	r3	r3				
9	r5	r 5	r5	r 5	r5				
10	r4	r4	r4	r4	r4				

第五章 语法分析——自下而上分析

- ■自下而上分析的基本问题
- ■算符优先分析算法
- ■LR 分析法
 - □LR(0) 项目集族和 LR(0) 分析表的构造
 - □SLR 分析表的构造

5.3.3 SLR 分析表的构造

- LR(0) 文法太简单,没有实用价值
- 例 5.11 考察下面的拓广文法:
 - (0) S'→E
 - (1) $E \rightarrow E + T$
 - (2) E→T
 - (3) T→T*F
 - (4) T→F
 - $(5) F \rightarrow (E)$
 - (6) F→i

■ 这个文法的 LR(0) 项目集规范族为:

I₀:
$$S' \rightarrow \cdot E$$

$$E \rightarrow \cdot E + T$$

$$E \rightarrow \cdot T$$

$$T \rightarrow \cdot T * F$$

$$T \rightarrow \cdot F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow \cdot i$$

$$I_1: S' \rightarrow E \cdot E \rightarrow E \cdot + T$$

$$I_2$$
: $E \rightarrow T$:
 $T \rightarrow T \cdot *F$

$$I_3$$
: $T \rightarrow F$

I₄:
$$F \rightarrow (\cdot E)$$
 $E \rightarrow \cdot E + T$
 $E \rightarrow \cdot T$
 $T \rightarrow \cdot T * F$
 $T \rightarrow \cdot F$
 $F \rightarrow \cdot (E)$
 $F \rightarrow \cdot i$

$$I_5$$
: $F \rightarrow i$

I₆:
$$E \rightarrow E + \cdot T$$

$$T \rightarrow \cdot T * F$$

$$T \rightarrow \cdot F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow \cdot i$$

$$I_{7}: \ T \rightarrow T^{*} \cdot F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow \cdot i$$

$$I_8: F \rightarrow (E \cdot)$$

$$E \rightarrow E \cdot + T$$

$$I_9$$
: $E \rightarrow E + T$ ·
 $T \rightarrow T \cdot *F$

$$I_{10}: T \rightarrow T*F$$

$$I_{11}$$
: $F \rightarrow (E)$

■ 这个文法的 LR(0) 项目集规范族为:

I₀: S'
$$\rightarrow$$
·E
$$E\rightarrow$$
·E+T
$$E\rightarrow$$
·T
$$T\rightarrow$$
·T*F
$$T\rightarrow$$
·F
$$F\rightarrow$$
·(E)
$$F\rightarrow$$
·i

$$I_1: S' \rightarrow E \cdot E \cdot E \rightarrow E \cdot + T$$

$$I_2$$
: $E \rightarrow T$:
 $T \rightarrow T \cdot *F$

$$I_3$$
: $T \rightarrow F$

I₄:
$$F \rightarrow (\cdot E)$$
 $E \rightarrow \cdot E + T$
 $E \rightarrow \cdot T$
 $T \rightarrow \cdot T * F$
 $T \rightarrow \cdot F$
 $F \rightarrow \cdot (E)$
 $F \rightarrow \cdot i$

$$I_5$$
: $F \rightarrow i$

I₆:
$$E \rightarrow E + \cdot T$$

$$T \rightarrow \cdot T * F$$

$$T \rightarrow \cdot F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow \cdot i$$

$$I_7: \ T \rightarrow T^* \cdot F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow \cdot i$$

$$I_8: F \rightarrow (E \cdot)$$

$$E \rightarrow E \cdot + T$$

$$I_9$$
: $E \rightarrow E + T \cdot T \cdot *F$

$$I_{10}$$
: $T \rightarrow T*F$

$$I_{11}$$
: $F \rightarrow (E)$

■ I₁、 I₂和 I₉都含有"移进 - 归约"冲突

$$I_1: S' \rightarrow E \cdot E \cdot E \rightarrow E \cdot + T$$

$$I_2$$
: $E \rightarrow T$:
 $T \rightarrow T \cdot *F$

$$I_9$$
: $E \rightarrow E + T \cdot T \rightarrow T \cdot *F$

讨论: 有没有办法消除冲突?

$$FOLLOW(A) = \{a \mid S \Rightarrow ...Aa..., a \in V_T\}$$

$$FOLLOW(S') = \{\#\}$$

$$FOLLOW(E) = \{\#, \}, +\}$$

5.3.3 SLR 分析表的构造

- LR(0) 文法太简单,没有实用价值
- 假定一个 LR(0) 规范族中含有如下的一个项目集 (状态)I =
 - $\{X \rightarrow \alpha \cdot b\beta , A \rightarrow \alpha \cdot , B \rightarrow \alpha \cdot \}$ o FOLLOW(A
 -)和 FOLLOW(B)的交集为∅,且不包含 b ,那么
 - ,当状态 I 面临任何输入符号 a 时,可以:
 - 1. 若 a=b ,则移进;
 - 2. 若 a∈FOLLOW(A),用产生式 $A\rightarrow \alpha$ 进行归约;
 - 3. 若 a∈FOLLOW(B) ,用产生式 B→ α 进行归约;
 - 4. 此外,报错。

Ŋ٩

■ 假定 LR(0) 规范族的一个项目集

$$I=\{A_1\rightarrow\alpha\cdot a_1\beta_1, A_2\rightarrow\alpha\cdot a_2\beta_2,$$

- \cdots , $A_m \rightarrow \alpha \cdot a_m \beta_m$, $B_1 \rightarrow \alpha \cdot$, $B_2 \rightarrow \alpha \cdot$,
- \cdots , $B_n \rightarrow \alpha \cdot \}$ 如果集合 $\{a_1, a_2, a_3\}$
- \cdots , a_m , FOLLOW(B_1),
- ···, FOLLOW(B_n) 两两不相交 (包括不得有两个 FOLLOW 集合有 #),则:
 - 1. 若 a 是某个 a_i , i=1,2,···,m ,则移进;
 - 若 a∈FOLLOW(B_i) , i=1,2,···,n , 则用产生 式 B_i→α 进行归约;
 - 3. 此外,报错。

■ \市家州元州作的\宁和部\土 办、土口口供 CI R(1) 部\土

构造 SLR(1) 分析表方法

- 首先把 G 拓广为 G', 对 G' 构造 LR(0) 项目集规范族 C 和活前缀识别自动机的状态转换函数 GO
- 然后使用 C 和 GO ,按下面的算法构造 SLR 分析表
 - □令每个项目集 I_k 的下标 k 作为分析器的状态,包含项目 $S' \rightarrow \cdot S$ 的集合 Ik 的下标 k 为分析器的初态。

SLR(1) 分析表的 ACTION 和 GOTO 子表构造

- 1. 若项目 $A \rightarrow \alpha$ · aβ 属于 I_k 且 $GO(I_k,a)=I_j$, a 为终结符,则置 ACTION[k,a] 为 " sj" ;
- 2. 若项目 $A \rightarrow \alpha$ · 属于 I_k ,那么,对任何终结符 a , $a \in FOLLOW(A)$,置 ACTION[k,a] 为 " rj" ; 其中,假定 $A \rightarrow \alpha$ 为文法 G' 的第 j 个产生式;
- 3. 若项目 S'→S·属于 I_k,则置 ACTION[k,#] 为"acc";
- 4. 若 $GO(I_k,A) = I_j$, A 为非终结符,则置 GOTO[k,A]=j ;
- 5. 分析表中凡不能用规则 1 至 4 填入信息的空白格均

LR(0) 分析表的 ACTION 和 GOTO 子表构

- 1. 若项目 $A \rightarrow \alpha \cdot a\beta$ 属于 I_k 且 $GO(I_k, a) = I_j$, a 为终 结符,则置 ACTION[k,a] 为 " sj" 。
- 若项目 A→α·属于 I_k,那么,对任何终结符 a(或结束符#),置 ACTION[k,a]为"rj"(假定产生式A→α是文法 G′的第 j 个产生式)。
- 3. 若项目 S'→S·属于 I_k,则置 ACTION[k,#] 为 "acc"。
- 4. 若 $GO(I_k,A) = I_j$, A 为非终结符,则置 GOTO[k,A]=j 。
- 5. 分析表中凡不能用规则 1 至 4 填入信息的空白格均

SLR(1) 分析表的 ACTION 和 GOTO 子表构造

- 1. 若项目 $A \rightarrow \alpha$ · aβ 属于 I_k 且 $GO(I_k,a)=I_j$, a 为终结符,则置 ACTION[k,a] 为 " sj" ;
- 2. 若项目 $A \rightarrow \alpha$ · 属于 I_k ,那么,对任何终结符 a , $a \in FOLLOW(A)$,置 ACTION[k,a] 为 " rj" ; 其中,假定 $A \rightarrow \alpha$ 为文法 G' 的第 j 个产生式;
- 3. 若项目 S'→S·属于 I_k,则置 ACTION[k,#] 为"acc";
- 4. 若 $GO(I_k,A) = I_j$, A 为非终结符,则置 GOTO[k,A]=j ;
- 5. 分析表中凡不能用规则 1 至 4 填入信息的空白格均

SLR(1) 文法

- 按上述方法构造出的 ACTION 与 GOTO 表如果不含多重入口,则称该文法为 SLR(1) 文法
- ■使用 SLR 表的分析器叫做一个 SLR 分析器
- 每个 SLR(1) 文法都是无二义的。但也存在许多无二义文法不是 SLR(1) 的
- LR(0) ⊂ SLR(1) ⊂ 无二义文法

- 例 5.11 考察下面的拓广文法:
 - (0) S'→E
 - (1) $E \rightarrow E + T$
 - (2) E→T
 - (3) T→T*F
 - (4) T→F
 - $(5) F \rightarrow (E)$
 - (6) F→i

■ 这个文法的 LR(0) 项目集规范族为:

I₀:
$$S' \rightarrow \cdot E$$

$$E \rightarrow \cdot E + T$$

$$E \rightarrow \cdot T$$

$$T \rightarrow \cdot T * F$$

$$T \rightarrow \cdot F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow \cdot i$$

$$I_1: S' \rightarrow E \cdot E \rightarrow E \cdot + T$$

$$I_2$$
: $E \rightarrow T$:
 $T \rightarrow T \cdot *F$

$$I_3$$
: $T \rightarrow F$

I₄:
$$F \rightarrow (\cdot E)$$
 $E \rightarrow \cdot E + T$
 $E \rightarrow \cdot T$
 $T \rightarrow \cdot T * F$
 $T \rightarrow \cdot F$
 $F \rightarrow \cdot (E)$
 $F \rightarrow \cdot i$

$$I_5$$
: $F \rightarrow i$

I₆:
$$E \rightarrow E + \cdot T$$

$$T \rightarrow \cdot T * F$$

$$T \rightarrow \cdot F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow \cdot i$$

$$I_{7}: \ T \rightarrow T^{*} \cdot F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow \cdot i$$

$$I_8: F \rightarrow (E \cdot)$$

$$E \rightarrow E \cdot + T$$

$$I_9$$
: $E \rightarrow E + T$ ·
 $T \rightarrow T \cdot *F$

$$I_{10}$$
: $T \rightarrow T*F$

$$I_{11}$$
: $F \rightarrow (E)$

■ 这个文法的 LR(0) 项目集规范族为:

I₀:
$$S' \rightarrow \cdot E$$

$$E \rightarrow \cdot E + T$$

$$E \rightarrow \cdot T$$

$$T \rightarrow \cdot T * F$$

$$T \rightarrow \cdot T * F$$

$$T \rightarrow \cdot F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow \cdot i$$

$$I_1: S' \rightarrow E \cdot E \cdot T$$

$$I_2$$
: $E \rightarrow T$:
 $T \rightarrow T \cdot *F$

$$I_3$$
: $T \rightarrow F$

I₄:
$$F \rightarrow (\cdot E)$$
 $E \rightarrow \cdot E + T$
 $E \rightarrow \cdot T$
 $T \rightarrow \cdot T * F$
 $T \rightarrow \cdot F$
 $F \rightarrow \cdot (E)$
 $F \rightarrow \cdot i$

$$I_5$$
: $F \rightarrow i$

I₆:
$$E \rightarrow E + \cdot T$$

$$T \rightarrow \cdot T * F$$

$$T \rightarrow \cdot F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow \cdot i$$

$$I_7: \ T \rightarrow T^* \cdot F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow \cdot i$$

$$I_8: F \rightarrow (E \cdot)$$

$$E \rightarrow E \cdot + T$$

$$I_9$$
: $E \rightarrow E + T$ ·
 $T \rightarrow T \cdot *F$

$$I_{10}$$
: $T \rightarrow T*F$

$$I_{11}$$
: $F \rightarrow (E)$

■ I₁、 I₂和 I₃都含有"移进 – 归约"冲突

$$I_2$$
: $E \rightarrow T$:
 $T \rightarrow T \cdot *F$

$$I_9$$
: $E \rightarrow E + T$ ·
 $T \rightarrow T \cdot *F$

采取 SLR (1) 冲突消解

FOLLOW(S') = {#}

其分析表如下:

 $I_1: S' \rightarrow E \cdot E \cdot E \rightarrow E \cdot + T$

			ACT		GOTO)			
状态	i	+	*	()	#	${f E}$	T	F
0	s 5			s4			1	2	3
1		s6				acc			
2		r2	s 7		r2	r2			
3		r4	r4		r4	r4			
4	s 5			s4			8	2	3
5		r6	r6		r6	r6			
6	s 5			s4				9	3
7	s 5			s4					10
8		s6			s11				
9		r1	s 7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			32

FOLLOW(E) = {#,), +} I₂: $E \rightarrow T$ · $T \rightarrow T \cdot *F$

 I_9 : $E \rightarrow E + T \cdot T \rightarrow T \cdot *F$

			ACT	GOTO					
状态	i	+	*	()	#	E	T	F
0	s 5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s 5			s4			8	2	3
5		r6	r6		r6	r6			
6	s 5			s4				9	3
7	s 5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			33

小结

- 根据识别活前缀的 DFA 、 LR(0) 项目集规 范族
 - □构造 LR(0) 分析表
 - □构造 SLR(1) 分析表

作业

■ P134—5 (1), (2), (3), (4)