데이터베이스론

- 1. 다음에서 설명하는 데이터 마이닝 분석 기법은?
 - 장바구니 분석이라고도 한다.
 - 데이터 간의 발생 빈도를 분석하여 그 속에 숨겨진 규칙을 파악하는 방법으로, 상품이나 서비스 간의 관계를 분석하여 마케팅에 주로 활용한다.
 - ① 분류 분석
 - ② 군집 분석
 - ③ 연관 분석
 - ④ 회귀 분석

- 2. 시스템 카탈로그에 대한 설명으로 옳지 않은 것은?
 - ① 데이터 사전(data dictionary)이라고도 한다.
 - ② 각 릴레이션의 튜플 수와 블록 수가 저장된다.
 - ③ 일반 사용자도 시스템 카탈로그에 내용을 추가하거나 수정할 수 있다.
 - ④ RDBMS마다 서로 다른 형태로 시스템 카탈로그를 제공한다.

- 3. 다음에서 설명하는 데이터베이스 무결성 제약조건(integrity constraint)은?
 - 기본키 제약(primary key constraint)이라고도 한다.
 - 기본키는 널(NULL) 값을 가져서는 안되며 릴레이션 내에 오직 하나의 값만 존재해야 한다.
 - ① 개체 무결성 제약조건
 - ② 고유 무결성 제약조건
 - ③ 도메인 무결성 제약조건
 - ④ 참조 무결성 제약조건

- 4. 데이터베이스 모델에서 사용되는 키(key)에 대한 설명으로 옳지 않은 것은?
 - ① 후보키(candidate key)는 유일성과 최소성의 특성을 만족하는 속성 또는 속성들의 집합이다.
 - ② 슈퍼키(super key)는 유일성의 특성을 만족하는 속성 또는 속성들의 집합이다.
 - ③ 대체키(alternate key)는 기본키(primary key)로 선택되지 못한 외래키(foreign key)들이다.
 - ④ 널(NULL) 값을 가질 수 있는 속성이 포함된 후보키는 기본키로 부적합하다.

- 5. 릴레이션 R₁, R₂, R₃의 스키마는 R₁(A, B, C), R₂(C, D, E), R₃(E, F)이고, 기본키는 각각 A, C, E이다. 튜플의 수가 R₁은 100개, R₂는 150개, R₃은 75개라고 할 때, R₁ ⋈_N R₂ ⋈_N R₃의 결과에 대한 설명으로 옳은 것만을 모두 고르면?
 - ㄱ. R₁ ⋈_N (R₂ ⋈_N R₃)의 결과와 동일하다.
 - ㄴ. 결과 릴레이션의 튜플은 최대 100개이다.
 - ㄷ. 결과 릴레이션의 속성은 8개이다.
 - \bigcirc
 - ② L
 - ③ ७, ∟
 - ④ 7, ∟, ⊏
- 6. 데이터베이스의 스키마와 인스턴스에 관한 설명을 바르게 연결한 것은?
 - ㄱ. 데이터베이스의 논리적, 물리적 구조 정의
 - ㄴ. 특정 시점에 데이터베이스에 저장되어 있는 실제 값
 - 다. DML(Data Manipulation Language)을 활용하여 생성 및 변환
 - ㄹ. DDL(Data Definition Language)을 활용하여 생성 및 변환

<u> 스키막</u>	<u>인스턴스</u>
① ㄱ, ㄴ	ㄷ, ㄹ
② ㄱ, ㄹ	ㄴ, ㄷ
③ ∟, ⊏	ㄱ, ㄹ
④ ㄴ, ㄹ	7, ⊏

- 7. 데이터베이스 회복(recovery) 기법에 대한 설명으로 옳은 것은?
 - ① 트랜잭션이 갱신한 캐시 버퍼 페이지를 트랜잭션이 완료되기 전에 디스크에 기록할 수 있는 방식을 steal이라고 한다.
 - ② 트랜잭션이 갱신한 모든 페이지가 트랜잭션이 완료되기 전에 즉시 디스크에 반영되는 것을 no-force 방식이라고 한다.
 - ③ 지연갱신을 기반으로 하는 회복 기법에서 로그 레코드는 〈트랜잭션 ID, 데이터 아이템, 변경 이전 값〉의 형식을 갖는다.
 - ④ 즉시갱신에 기반을 둔 회복 기법은 NO-UNDO/REDO에 의해 수행된다.

8. SQL에서 다음 상품 테이블에 대한 ANY와 ALL 연산의 결과로 옳지 않은 것은?

상품	
상품번호	가격
1	25000
2	30000
3	40000

- ① '40000 = ANY (SELECT 가격 FROM 상품)'은 참이다.
- ② '40000 <> ANY (SELECT 가격 FROM 상품)'은 참이다.
- ③ '30000 <> ALL (SELECT 가격 FROM 상품)'은 참이다.
- ④ '30000 > ALL (SELECT 가격 FROM 상품)'은 거짓이다.

- 9. SQL 명령어 중에서 데이터 제어어(DCL)만을 모두 고르면?
 - ¬. CREATE
 - ∟. GRANT
 - ⊏. DROP
 - ⊒. REVOKE
 - ① 7, ∟
 - ② ㄴ, ㄹ
 - ③ ⊏. ⊒
 - ④ ∟, ⊏, ⊒

- 10. 역정규화(denormalization)에 대한 설명으로 옳지 않은 것은?
 - ① 중복된 데이터를 일관성 있게 유지하기 위한 추가적인 작업이 필요하다.
 - ② 갱신 시간이 중요한(time critical) 연산을 지원하기 위해 사용된다.
 - ③ 더 높은 정규형 릴레이션들을 조인한 결과를 저장하여 더 낮은 정규형으로 되돌아가는 과정이다.
 - ④ 여러 테이블을 결합하는 데 시간이 오래 걸리는 경우, 역정규화를 통해 검색 시간을 단축할 수 있다.

11. 다음은 CLUB 테이블과 MEETING 테이블에 대한 SQL문이다. 실행 결과에 대한 설명으로 옳은 것은?

CLUB			
CID	이름	도시	회비
10	Tennis	Atlanta	50
12	Music	New York	30
13	Art	Atlanta	40
15	Book	Dallas	10
17	Audio	Macon	20

MEETING		
CID	날짜	참석수
10	2023-02-10	2
10	2023-04-10	1
13	2023-01-21	3
13	2023-02-21	4
15	2023-09-30	2

(SELECT CID

FROM CLUB

WHERE 회비<30)

UNION

(SELECT CID

FROM MEETING

WHERE 참석수>=3);

- ① '회비<30'와 '참석수>=3'를 동시에 만족하는 '회비'와 '참석수'가 검색된다.
- ② '회비<30'와 '참석수>=3'를 동시에 만족하는 'CID'가 검색된다.
- ③ 결과 테이블의 레코드 수는 총 4개이다.
- ④ 검색된 레코드의 합은 45이다.

12. 다음 릴레이션 고객과 주문에 대한 완전외부조인(full outer join) 연산의 결과로 (가), (라)에 들어갈 내용은?

고객		
고객ID	고객이름	주소
ok	홍길동	서울
pk	강감찬	경기

주문		
주문번호	고객ID	주문제품
100	ok	운동화
101	ak	장갑

[완전외부조인 연산 결과]

고객ID	고객이름	주소	주문번호	주문제품
(가)	홍길동	서울	100	운동화
(나)	강감찬	경기	(라)	(라)
(다)	(라)	(라)	101	장갑

<u>(가)</u> <u>(라)</u> ① ak 0

② ak NULL

③ ok 0

④ ok NULL

- 13. 분산 데이터베이스에 대한 설명으로 옳지 않은 것은?
 - ① 컴퓨터 네트워크를 통해서 데이터베이스 노드들이 연결된다.
 - ② 수평적 단편화는 릴레이션을 속성 단위로 나눈다.
 - ③ 다양한 데이터베이스 노드 내의 정보는 논리적으로 연관된다.
 - ④ 각 노드들은 독립적으로 동작할 수 있는 자치성을 가진다.

- 14. 다음은 인덱스에 관한 내용이다. (가), (나)에 들어갈 용어를 바르게 연결한 것은?
 - (가) 는/은 많은 수의 행을 가진 릴레이션을 위해 사용하는 기법으로, 하나 이상의 열에 대해 인덱스를 생성하며 적은 수의 유일한 값들을 갖는 열들에 적합하다.
 - (나) 는/은 디렉터리(directory)와 버킷(bucket) 집합을 사용하는 기법으로, 데이터베이스가 증가하고 축소되는 변화에 유연하다.

(가)

(나)

① 그리드 파일 비트맵 인덱스

② 그리드 파일

확장성 해싱

③ 비트맵 인덱스

그리드 파일

④ 비트맵 인덱스

확장성 해싱

15. 다음 도서 테이블에 대한 SQL문을 수행하였을 때, 결과 테이블의 튜플 수는?

도서			
도서번호	도서명	저자명	출판사
1	국어 기초	Anderson	Blue
2	국어 심화	Bella	White
3	국어 심화	Anderson	White
4	영어 기초	Anderson	White
5	영어 심화	Cooper	Green
6	영어 심화	Cooper	Green
7	수학 기초	Anderson	Green
8	수학 기초	Frank	White
9	수학 심화	Davis	Blue
10	수학 심화	Frank	Red

SELECT DISTINCT 출판사

FROM 도서

WHERE 저자명 = 'Anderson';

- 1
- ② 2
- ③ 3
- 4

16. 다음 릴레이션 R1과 R2에 대한 디비전 연산(R1 ÷ R2)의 결과는?

R1		
A1	A2	А3
s1	t1	u1
s1	t2	u1
s2	t1	u1
s2	t1	u2
s2	t2	u2
s3	t1	u1
s3	t1	u2
s4	t1	u1
s5	t2	t2

R2	
A2	АЗ
t1	u1
t1	u2

① A1 s1

② A1 s2 s3

3 A1 s2 s4 s5

4 A1 s1 s2 s3 s4 s5

17. 다음은 5개 트랜잭션의 충돌 직렬가능(conflict serializable) 스케줄에 대한 우선순위 그래프이다. 이에 대한 설명으로 옳은 것만을 모두 고르면?

- ㄱ. 동등한 직렬 스케줄은 6개이다.
- L. 모든 동등한 직렬 스케줄은 T1에서 시작하고 T5에서 종료한다.
- C. T2와 T3은 동시에 수행할 수 있지만, T5는 T4가 수행된 후에 수행해야 한다.
- 리. T2와 T5는 같은 데이터 항목에 대한 write 연산이 없다.
- ① ¬, ⊏
- ② ㄱ, ㄹ
- ③ ∟, ⊏
- ④ ∟, ⊒
- 18. 다음 SQL문을 통해 생성된 학생 테이블에 새로운 속성으로 '나이'를 추가하고자 한다. 이를 위한 SQL문으로 옳은 것은? (단, '나이'의 데이터 타입은 CHAR(3)이다)

CREATE TABLE 학생 (

학번 CHAR(10) PRIMARY KEY,

이름 CHAR(20),

주소 CHAR(50),

전화번호 CHAR(13));

- ① INSERT INTO 학생 VALUES 나이 CHAR(3);
- ② ALTER TABLE 학생 INSERT 나이 CHAR(3);
- ③ ALTER TABLE 학생 ADD CONSTRAINT 나이 CHAR(3);
- ④ ALTER TABLE 학생 ADD 나이 CHAR(3);

19. 도서관 데이터베이스의 도서 테이블이 '도서ID', '도서명', '대출횟수'를 포함하여 총 30개의 속성으로 구성되어 있다. 100번 이상 대출된 도서만을 대상으로 별도의 서비스를 준비하기 위해 다음과 같이 '인기도서' 뷰를 생성하였을 때 이에 대한 설명으로 옳지 않은 것은? (단, 도서 테이블의 기본키는 '도서ID'이며, 도서 테이블에 '도서ID'가 123인 레코드는 저장되어 있지 않다)

CREATE VIEW 인기도서

AS SELECT 도서ID, 도서명, 대출횟수

FROM 도서 WHERE 대출횟수 >= 100

WITH CHECK OPTION;

- ① '인기도서' 뷰를 정의할 때 도서 테이블에서 보안이 필요한 속성들은 제외함으로써 보안성을 높일 수 있다.
- ② '인기도서' 뷰를 삭제하더라도 도서 테이블은 삭제되지 않는다.
- ③ 'SELECT 도서명 FROM 인기도서 WHERE 대출횟수 <= 500;'을 수행하면 100번 이상 500번 이하 대출된 도서의 '도서명'이 검색된다.
- ④ 'INSERT INTO 인기도서 VALUES(123, '데이터베이스', 5);'를 수행하면 도서 테이블에 레코드가 추가된다.

20. 다음은 A고객의 포인트 1000점을 B고객에게 전송하는 SQL문이다. 이 SQL문을 하나의 트랜잭션으로 처리할 때 이에 대한 설명으로 옳지 않은 것은? (단, A고객과 B고객의 'ID'는 각각 123과 456이며, 트랜잭션 수행 전 '포인트'는 각각 5000과 200이다)

UPDATE 고객

SET 포인트 = 포인트 - 1000

UPDATE 고객

SET 포인트 = 포인트 + 1000

WHERE ID = 456; ··········· (나)

① 동시 공유라는 데이터베이스의 특성으로 인해 (가)까지 수행된 결과를 다른 트랜잭션에서 접근할 수 있도록 허용해야 한다.

- ② (가)까지 수행한 직후 시스템이 다운되었다면, 시스템이 재가동된 후에 고객 테이블에서 A고객의 포인트는 5000점으로 되돌려야 하다.
- ③ 트랜잭션이 (나)까지 성공적으로 수행된 후에 고객 테이블에서 A고객과 B고객의 포인트 합은 5200점이다.
- ④ 트랜잭션이 (나)까지 성공적으로 완료되면 A고객과 B고객의 포인트 변경 결과는 장애가 발생하더라도 손실되지 않도록 보장되어야 한다.