Les types

Un type t est défini récursivement par les cas :

• simple char, bool, int, string, float, unit

• produit cartésien $t_1 \times \ldots \times t_n$

• fonctionnel $t_1 o t_2$

parenthésé (t)

• variable libre α , β , γ etc.

ullet type paramétré lpha list

Remarque

Jusqu'à présent, nous n'avons pas rencontré de valeurs de type float, char ou string.

Règles syntaxiques sur les types

- Nous notons × ce qui s'écrit * en ascii.
- Nous notons α , β etc. ce qui s'écrit respectivement 'a, 'b etc. en ascii.
- Le produit cartésien est n-aire, et non binaire comme en mathématiques, car × n'est pas associatif en OCaml:
 t₁ × t₂ × t₃ ≠ (t₁ × t₂) × t₃ ≠ t₁ × (t₂ × t₃)
- La flèche est utilisée aussi dans les expressions. Elle associe à droite : $t_1 \rightarrow t_2 \rightarrow \ldots \rightarrow t_n$ équivaut à $t_1 \rightarrow (t_2 \rightarrow (\ldots (t_{n-1} \rightarrow t_n)) \ldots)$
- Le produit cartésien est prioritaire sur la flèche : $t_1 imes t_2 o t_3$ équivaut à $(t_1 imes t_2) o t_3$

Types, constantes simples et primitives

Les compilateur associe un type à chaque expression du programme : on parle d'*inférence de types statique*. Pour les constantes simples, nous avons

unit	()	
	true false	&& not
int	1 2 max int etc.	+ - * / etc.
float	1.0 2. 1e4 etc.	+ *. /. cos etc.
char	'a' '\n' '\097' etc.	Char.code Char.chr etc.
		$ \text{s.[i]} \text{s.[i]} \leftarrow \text{c} \text{etc.} $

Les opérations sur les flottants sont notées différemment de leurs homologues sur les entiers. Ce que nous notons joliment \leftarrow s'écrit \leftarrow en ascii.

L'évaluation des opérateurs booléens

• Les opérateurs booléens sont *séquentiels*, c.-à-d. qu'ils n'évaluent leurs arguments que si c'est nécessaire, l'évaluation se faisant de la gauche vers la droite.

Extension de la syntaxe des types et des phrases

On étend la syntaxe des phrases pour permettre de lier un type à un nom, comme on peut le faire pour les expressions.

- liaison de type (ou alias) type q=t;; où q dénote une variable de type (commençant par une minuscule).
 - types récursifs type $q_1 = t_1$ [and $q_2 = t_2$...];;

Pour utiliser ces variables, il faut étendre la syntaxe des types :

variable q

```
On peut maintenant écrire

type abscisse = float;;

type ordonnée = float;;

type point = abscisse * ordonnée;;
```

Inférence de types

Les *n*-uplets sont homogènes et leur arité est fixée par leur type :

```
une paire (1,2) de type int \times int et un triplet (1,2,3) de type int \times int \times int
```

sont incompatibles.

```
# let milieu x y = (x+y)/2;;

val milieu : int \rightarrow int \rightarrow int

# let milieu (x,y) = (x+y)/2;;

val milieu : int \times int \rightarrow int
```

Polymorphisme

n-uplets

Les projections sont polymorphes sur les *n*-uplets de *même arité* :

$$\operatorname{fun}(x,y,z) \to x$$
 a pour type $(\alpha \times \beta \times \gamma) \to \alpha$

Fonction puissance

```
# let rec power f n = if n <= 0 then fun x -> x else compose f (power f (n-1));; val power : (\alpha \to \alpha) \to int \to (\alpha \to \alpha) = \langle fun \rangle
```

Polymorphisme (suite)

```
# let compose f g = fun x -> f (g (x));; val compose : (\alpha \to \beta) \to (\gamma \to \alpha) \to \gamma \to \beta = \langle \mathit{fun} \rangle
```

Le type de la fonction compose se construit ainsi :

- le premier argument f est une fonction quelconque, donc de type $\alpha \to \beta$;
- le second argument g est une fonction dont le résultat doit être passé en argument à f, donc de type α ;
- le domaine de g est quelconque, donc g est de type $\gamma \to \alpha$;
- la fonction compose prend un argument x qui doit être passé à g, donc du type γ ; finalement, le résultat de compose est retouné par f, donc de type β .

Égalité structurelle

L'opérateur d'égalité est polymorphe et ne peut être défini en OCaml :

```
# ( = );; - : \alpha \rightarrow \alpha \rightarrow \mathit{bool} = \langle \mathit{fun} \rangle
```

Donc attention à ce qu'il coïncide avec votre notion d'égalité.

C'est l'égalité mathématique : deux valeurs sont égales si elles ont la même structure et si leurs parties respectives sont égales. Ne marche pas avec les expressions fonctionnelles (problème indécidable).

```
# 1 = 1 && "oui" = "oui";;
- : bool = true
# (fun x -> x) = (fun x -> x);;
Exception: Invalid_argument "equal: functional value".
```

On note <> la négation de l'égalité.