Infraestrutura Ágil e Orquestração Inteligente com Python e Containers

Pós-graduação em Engenharia Elétrica – UFF

Objetivo Geral

Capacitar alunos de doutorado a desenvolver pipelines de automação e orquestração para projetos de pesquisa, utilizando StackStorm, PREFECT, Python, Docker, Git, GitHub Actions e princípios de desenvolvimento ági

Objetivos específicos

- Dominar a criação de fluxos de automação orientados a eventos com StackStorm e Prefect.
- Desenvolver ações e sensores em Python para orquestração de tarefas científicas.
- Integrar pipelines com containers e bancos de dados.
- Utilizar Git e GitHub para versionamento e colaboração.
- Empregar CI/CD com GitHub Actions para automação de testes e publicação.
- Documentar experimentos e processos com ferramentas padronizadas.
- Aplicar metodologias ágeis, especialmente Scrum, em projetos de pesquisa.

Estrutura modular do curso

Módulo	Título	Conteúdo	Carga Horária
0	Fundamentos para Pesquisa Ágil	Python para automação, APIs REST, Git, GitHub, Markdown, Notebooks, Scrum aplicado à pesquisa	6h
1	Introdução ao StackStorm	Conceitos, arquitetura, casos aplicados em Engenharia Elétrica	4h
2	Ações, Regras e Packs com Python	Criação de ações e workflows orientados a eventos	6h
3	Sensores e Integrações	Desenvolvimento de sensores e integrações com APIs externas	6h
4	Docker e Ambientes Isolados	Construção e execução de ambientes Docker + integração StackStorm	5h
5	CI/CD com GitHub Actions	Pipelines de testes, publicação de dados, validação contínua	5h
6	Projeto de Pesquisa Automatizado	Estruturação de pipeline de pesquisa científica automatizado	5h
7	Projeto Final	Desenvolvimento e apresentação de um projeto integrado com StackStorm + Docker + Git + API + documentação	8h

Metodologia

Aulas expositivas com demonstrações práticas.

Laboratórios semanais para aplicação imediata.

Estudo de casos em contextos reais de pesquisa.

Projeto final em grupo com integração completa do conteúdo.

Bibliografia recomendada

StackStorm Documentation – https://docs.stackstorm.com/

Robinson, M. *Mastering Python for DevOps*. Packt, 2022.

Poulton, N. *Docker Deep Dive*, 2020.

Kim, G. et al. *The DevOps Handbook*, 2016.

Kalliamvakou, E. *Research Software Engineering with GitHub*, 2021.

Schwaber, K. *Scrum Guide™*, última edição.

Avaliação

PARTICIPAÇÃO E ENVOLVIMENTO – 20%

ENTREGAS MODULARES – 30%

PROJETO FINAL DOCUMENTADO – 50%

Por que estudar StackStorm?

O **STACKSTORM** PERMITE ORQUESTRAR TAREFAS DE FORMA REPRODUTÍVEL, CONECTANDO SENSORES, ALGORITMOS, BANCOS DE DADOS E SERVIÇOS EM NUVEM COM LÓGICA BASEADA EM EVENTOS.

O USO DE CONTAINERS (COMO DOCKER) GARANTE QUE EXPERIMENTOS E SISTEMAS POSSAM SER EXECUTADOS DE FORMA IDÊNTICA EM DIFERENTES AMBIENTES, PROMOVENDO PORTABILIDADE, CONFIABILIDADE E ESCALABILIDADE EM PESQUISAS AVANÇADAS.

Aplicações na Engenharia Elétrica

Monitoramento inteligente de redes elétricas Utilização de sensores e automação para detectar eventos, coletar dados e gerar respostas em tempo real.

Automação de laboratórios e ensaios experimentais Execução automatizada de testes, simulações e coleta de resultados com reprodutibilidade garantida via containers e workflows.

Integração com sistemas embarcados e dispositivos IoT Comunicação com microcontroladores, aquisição de dados em campo, e controle remoto de equipamentos usando APIs e protocolos industriais.

O que é StackStorm?

Um framework de automação orientado a eventos, ideal para orquestrar processos complexos em tempo real, com base em gatilhos e condições lógicas definidas.

Permite a criação de **ações (em Python), sensores personalizados, regras e workflows** encadeados para automação científica, testes, coleta de dados e análise.

Oferece alta integração com APIs, ferramentas

DevOps e sistemas externos, como bancos de dados, serviços web, sensores físicos, dispositivos embarcados e plataformas em nuvem.

Arquitetura do StackStorm

- Fluxo principal: Sensores → Triggers → Regras → Ações
 Os sensores detectam eventos externos, os triggers os
 formalizam, as regras avaliam condições, e as ações
 executam tarefas automatizadas.
- Componentes principais do StackStorm
 - st2sensorcontainer: coleta eventos externos (ex: API, hardware, sistema de arquivos)
 - st2rulesengine: aplica regras para decidir o que fazer
 - st2actionrunner: executa ações definidas, geralmente em Python ou shell
- Workflows com Mistral/Orquesta
 Permitem encadear múltiplas ações de forma condicional e dinâmica, estruturando processos científicos complexos e reprodutíveis.

Python como linguagem central

As **ações e sensores** desenvolvidos no StackStorm são escritos em **Python**, permitindo total controle e flexibilidade sobre os fluxos de automação.

São amplamente utilizadas bibliotecas como:

- subprocess para execução de comandos externos
- requests para integração com APIs REST
- ison para tratamento de dados estruturados
- A escolha por Python se justifica pela sua facilidade de integração com sistemas técnicos e industriais, como equipamentos embarcados, bancos de dados científicos e interfaces de hardware.

Containers e Docker

Isolamento de ambiente: cada experimento ou tarefa automatizada pode ser executado em um container com todas as dependências controladas, garantindo previsibilidade e estabilidade.

Execução de ações do StackStorm em containers dedicados: permite encapsular bibliotecas, ferramentas ou drivers específicos necessários para determinada automação, sem interferir no sistema principal.

Facilidade de integração com pipelines de CI/CD: containers são ideais para testes automatizados, validação contínua de código e publicação de artefatos científicos (dados, gráficos, relatórios).

DevOps e Engenharia Elétrica

Infraestrutura como código (IaC) em redes elétricas inteligentes
Permite versionar e automatizar o provisionamento de componentes físicos e lógicos, promovendo consistência e rastreabilidade.

2

Automação de deploys em sistemas críticos

StackStorm pode gerenciar atualizações controladas em sistemas embarcados, subestações e dispositivos de campo com rollback automatizado.

3

Validação contínua de firmware e simulações

Pipelines CI/CD testam versões de firmware e simuladores automaticamente, gerando relatórios de desempenho e conformidade.

Expectativas para os Alunos

Envolvimento com problemas reais de pesquisa Aplicar os conhecimentos adquiridos em contextos relevantes, como automação de experimentos, análise de dados ou integração de sistemas.

Exploração criativa de soluções com StackStorm Pensar além do trivial: propor abordagens inovadoras para orquestração, integração e automação científica.

Colaboração efetiva e documentação clara Trabalhar em equipe utilizando GitHub, com foco em reprodutibilidade, versionamento e comunicação técnica bem estruturada.

Case 1 – Red Eléctrica de España (REE)

- A **REE**, operadora do sistema elétrico espanhol, automatizou a detecção e resposta a eventos críticos em tempo real utilizando **StackStorm**.
- O sistema monitora centenas de sensores (tensão, frequência, corrente, qualidade de energia) e dispara **workflows preventivos** em containers sempre que um parâmetro foge da faixa segura.
- Com a automação baseada em eventos, a REE reduziu em **mais** de 40% o tempo de resposta a falhas e mitigou riscos de apagões localizados, garantindo confiabilidade, escalabilidade e rastreabilidade nas ações.
- O StackStorm foi integrado com bancos de dados operacionais, sistemas SCADA e dashboards analíticos, provando sua eficácia em um cenário de alta criticidade operacional.

Case 2 – Siemens – Automação de Testes Elétricos com Contai<u>ners</u> A **Siemens** implementou um sistema de automação para testes elétricos em ambientes laboratoriais, utilizando **containers Docker** para encapsular ferramentas de simulação, bibliotecas de instrumentação e controladores virtuais.

Com **StackStorm**, os testes são executados de forma automática e programada, respondendo a eventos como novas versões de firmware, alterações em parâmetros ou falhas detectadas.

O uso de containers garante que os testes sejam **reprodutíveis** em qualquer ambiente, inclusive na nuvem, com **rastreabilidade completa dos resultados**, facilitando auditorias e certificações.

A solução foi integrada com repositórios Git e pipelines de CI/CD, permitindo o disparo automático de simulações e a geração de laudos técnicos como parte do fluxo contínuo de desenvolvimento.

Por que este curso pode transformar sua trajetória?

Em um mundo onde pesquisa de ponta exige reprodutibilidade, automação e integração, dominar ferramentas como StackStorm, Docker e GitHub Actions não é mais diferencial — é essencial.

A ciência está mudando: artigos são rejeitados por falta de pipelines claros, simulações precisam ser auditáveis, e resultados precisam ser reproduzidos — por você, por revisores e pelo mundo.

Por que este curso pode transformar sua trajetória?

Dominar esse ecossistema significa que você poderá:

Criar experimentos automatizados que rodam sozinhos e geram relatórios documentados;

Trabalhar em projetos colaborativos de qualquer lugar do mundo com versionamento seguro;

Apresentar soluções técnicas de alto nível para agências, empresas e universidades;

Publicar mais rápido, com mais qualidade, e com muito mais impacto.

Este curso é o elo entre o pesquisador que executa e o pesquisador que lidera.

Desafios da Engenharia Atual

Estamos vivendo a era dos sistemas elétricos inteligentes e autônomos, cada vez mais interconectados, adaptativos e baseados em dados em tempo real.

A demanda por **automação, resiliência e reprodutibilidade** nas operações de campo, laboratórios e simulações científicas nunca foi tão alta.

Para atender aos novos requisitos da pesquisa e da indústria, é essencial dominar ferramentas que integram **orquestração**, **containers**, **APIs e inteligência artificial**.

Desafios da Engenharia Atual

Este curso conecta você diretamente com tecnologias emergentes como:

IoT industrial para redes elétricas distribuídas

Digital Twins para simulação contínua de ativos críticos

Inteligência Artificial aplicada a tomadas de decisão automatizadas

Infraestrutura como Código para ambientes complexos e replicáveis

Por hoje é só!

Se você dominar essas ferramentas, não estará apenas escrevendo código — estará automatizando ciência, acelerando descobertas e moldando o futuro da Engenharia Elétrica