

Общероссийский математический портал

Р. Б. Салимов, Е. В. Стрежнева, К решению обратной смешанной краевой задачи, $Tp.~ceм.~no~\kappa paee.~sadaчam,~1992,$ выпуск 27,~95-117

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 178.205.19.235

7 июня 2024 г., 16:25:13

- 2. Насыров С. Р. Топологическое пространство римановых поверхностей над сферой, связанное со сходимостью к ядру // ДАН УССР. Сер. А. Физ.—мат. и техн. науки. 1988.— № 5.— С.19—22.
- 3. Кроуэлл Р., Фокс Р. Введение в теорию узлов.— М.: Мир. 1967. — 348 с.
- 4. Масси У., Столлингс Дж. Алгебраическая топология. Введение. М.: Мир. 1977. 343 с.
- 5. Спеньер Э. Алгебраическая топология. М.: Мир, 1971. 680 с.
- 6. Спрингер Дж. Введение в теорию римановых поверхностей. - М.: ИЛ, 1960. - 343 с.

Р.Б.Салимов. Е.В.Стрежнева

К РЕШЕНИЮ ОБРАТНОЙ СМЕШАННОЙ КРАЕВОЙ ЗАЛАЧИ

I. Пусть $\mathcal{Q}_{\mathcal{Z}}$ — односвязная конечная область, расположен — ная в плоскости комплексного переменного $\mathcal{Z}=x+\iota_{\mathcal{Y}}$ и ограниченная кривой $\mathcal{Z}_{\mathcal{Z}}$, состоящей из двух жордановых линий — ломаной $\mathcal{Z}_{\mathcal{Z}}^{1}$, содержащей $\mathcal{Z}_{\mathcal{Z}}$ прямолинейных звеньев, и кривой $\mathcal{Z}_{\mathcal{Z}}^{2}$, соединяющей конци $\mathcal{A}_{\mathcal{Z}}$, ломаной $\mathcal{Z}_{\mathcal{Z}}^{2}$.

Пусть $w = w(\mathscr{Z})$ — функция, аналитическая в области $\mathscr{Q}_{\mathfrak{Z}}$ и отображающая конформно область $\mathscr{Q}_{\mathfrak{Z}}$ на однолистную область $\mathscr{Q}_{\mathfrak{W}}$, расположенную внутри кривой $\mathscr{L}_{\mathfrak{W}}$ в плоскости переменного $w = \mathscr{G} + \iota \mathscr{L}$; обозначим через $\mathscr{L}_{\mathfrak{W}}^{\mathfrak{L}}$ и $\mathscr{L}_{\mathfrak{W}}^{\mathfrak{L}}$ части $\mathscr{L}_{\mathfrak{W}}$, отвечающие соответственно $\mathscr{L}_{\mathfrak{Z}}^{\mathfrak{L}}$ и $\mathscr{L}_{\mathfrak{Z}}^{\mathfrak{L}}$ при указанном отображении.

Рассмотрим решение следующей задачи, называемой обратной смешанной краевой задачей. Дана часть кривой $\mathcal{L}_{\mathcal{Z}}$ в виде лома — ной $\mathcal{L}_{\mathcal{Z}}^{\mathcal{I}}$, остальная часть $\mathcal{L}_{\mathcal{Z}}^{\mathcal{I}}$ неизвестна. На $\mathcal{L}_{\mathcal{Z}}^{\mathcal{I}}$ заданы зна — чения функции $W = W(\mathcal{E})$ в виде

$$W = \varphi(x) + i\varphi(x) \quad , \tag{I}$$

где \mathcal{X} — абсилсса точки $\mathcal{Z}_{\mathcal{Z}}^2$. Задана кривая $\mathcal{Z}_{\mathcal{W}}^1$, которая вместе с кривой $\mathcal{Z}_{\mathcal{W}}^2$, определяемой уравнением (I), образует замкнутую жорданову кривую $\mathcal{Z}_{\mathcal{W}}$, причем положительному направ — лению обхода на $\mathcal{Z}_{\mathcal{Z}}$, при котором область $\mathcal{Q}_{\mathcal{Z}}$ остается слева,

отвечает положительное направление обхода на \mathcal{Z}_{w} , при котором область \mathcal{O}_{w} остается слева. Требуется определить форму линии . \mathcal{Z}_{x}^{2} и функцию $w(\mathcal{Z})$.

Эта задача поставлена и исследована В.Н.Монаховым [3], [4] (с.108), она является естественным обобщением известных в гидромеханике и теории фильтрации обратных смещанных задач [10] (с.23, 24), последнее обстоятельство отмечено также в статье [3]. В связи с тем, что область $\mathcal{Q}_{\mathcal{Z}}$ является конечной, задачу будем называть внутренней.

Вершины ломаной $\mathcal{Z}_{\mathcal{Z}}^{1}$ обозначим через \mathcal{A}_{i} , $j=\overline{2,\pi-1}$, внутренний по отношению к области $\mathcal{D}_{\mathcal{Z}}$ угол при вершине \mathcal{A}_{i} , через \mathcal{L}_{i}^{1} , $0<\mathcal{L}_{i}<2$. Примем, что при обходе $\mathcal{L}_{\mathcal{Z}}^{1}$ в положительном направлении точки \mathcal{A}_{i} , \mathcal{A}_{2} , \mathcal{A}_{3} , ..., \mathcal{A}_{n} следуют друг за другом. Пусть \mathcal{X}_{i} , \mathcal{X}_{n} – абсписсы точек соответственно \mathcal{A}_{i} , \mathcal{A}_{n} .

Здесь нужно рассмотреть следующие два случая задания функ - ции (I):

I) функция (I) задана в интервале $[x_n, x_i]$ (в интервале $[x_i, x_n]$ при $x_i < x_n$, для простоти в дальнейшем этот вариант виделять не будем), то есть искомая кривая $\mathcal{L}^{\mathcal{L}}_{\mathcal{A}}$ расположена в полосе $x_n \leq x \leq x_i$;

полосе $x_n \le x \le x_1$; 2) функция (I) задана в интервале $[\hat{x}_n, \hat{x}_1], \hat{x}_n \le x_n, \hat{x}_1 \ge x_1$, причем котя бы одно из этих неравенств является строгим, то есть искомая кривая $\mathcal{X}^2_{\mathcal{Z}}$ имеет участки, лежащие вне полосы $x_n \le x \le x_1$ (здесь возможен случай, когда $x_n = x_1$). Обозначим $\hat{\mathcal{H}}_1$, $\hat{\mathcal{H}}_n$, точки кривой $\mathcal{X}^2_{\mathcal{Z}}$, абсциссы которых равны соответственно \hat{x}_1, \hat{x}_n . Пусть \mathcal{H}_0 — некоторая точка кривой $\mathcal{Z}^2_{\mathcal{Z}}$ с заранее выбран—

Пусть \mathcal{A}_0 — некоторая точка кривой \mathcal{X}_2^2 с заранее выбранной абсциссой из интервала (\mathcal{X}_n , \mathcal{X}_1), отличная от концов линии \mathcal{X}_2^2 при $\mathcal{X}_n = \mathcal{X}_1$.

В случае задания функции (I) в интервале [x_n , x_i] будем считать, что она однозначна и имеет производную, отличную от нули и удовлетворяющую условию Гельдера в интервале [x_n , x_i].

Во втором случае функцию (I) будем задавать отдельно для участков \mathcal{A}_n \mathcal{A}_n , \mathcal{A}_n \mathcal{A}_n , \mathcal{A}_1 , \mathcal{A}_1 \mathcal{A}_2 кривой \mathcal{Z}_2^2 в виде однозначних ветвей, непрерывно переходящих друг в друга в точках \mathcal{A}_n , \mathcal{A}_1 , для которых выражение $[\varphi'(x)+i\psi'(x)](x-\hat{x}_n)^{z_n}\mid x-\hat{x}_1\mid^{z_1}$ (z_1 , $z_n=const$, $0< z_1<1$, $0< z_n<1$) является функцией, отличной от нуля и удовлетворяющей условию Гельдера в соответствующих интервалах

 $[\,\hat{x}_n,x_n\,],[\,\hat{x}_n,\hat{x}_i\,],[\,x_i,\hat{x}_i\,]$ для $\,\hat{x}_n^{}< x_n^{},\,x_i^{}<\hat{x}_i^{}\,$, причем это выражение для соответствующей пары ветвей функции (I) в точке \widehat{x}_{μ} , как и в точке \widetilde{x}_{ℓ} , имеет значения, отличающиеся лишь знаком.

Примем, что \mathcal{Z}_{w}^{I} является кривой Ляпунова (см., напр., [2], с. II6, II7). В сиду сделанных выше предположений относительно функции (I) линия \mathcal{Z}_{w}^{2} также является кривой Ляпунова. Концы линии \mathcal{X}_{w}^{2} обозначим \mathcal{A}_{x} и \mathcal{A}_{x} (здесь и всюду в дальнейшем соответственные точки в разных плоскостях будем обозначать одной и той же буквой). Пусть $\gamma_{\mathcal{M}}$ есть внутренний по отношению к об ласти \mathscr{Q}_{w} угол, образованный касательными к линиям $\mathscr{X}_{\mathsf{w}}^{1}$ и $\mathscr{X}_{\mathsf{w}}^{2}$ в точке \mathcal{A}_j , j=1,n , причем $\mathcal{O}<\mathcal{N}_j<\mathcal{Z}$.

Для простоты предположим, что малые прилегающие к концам участки линий $\mathcal{Z}_{_{\mathbf{W}}}^{^{2}}$ и $\mathcal{Z}_{_{\mathbf{W}}}^{^{2}}$, включающие в себя эти концы, являются аналитическими кривыми (см., напр., [2], с.162), в частности, на соответствующих интервалах изменения аргумента \boldsymbol{x} функция (I) имеет производные любого порядка.

Здесь для простоты, в отличие от работ [3], [4], вышеуказанную задачу рассмотрим в видоизменной постановке, считая, что на \mathcal{Z}_{w}^{1} заданы образы вершин \mathcal{A}_{j} , $j=\overline{2,n-1}$, ломаной \mathcal{Z}_{w}^{1} , а длины звеньев линии $\mathcal{Z}_{\mathcal{Z}}^{2}$ (и, следовательно, положения точек \mathcal{A}_{2} , \mathcal{A}_{3} , ..., \mathcal{A}_{n} этой линии относительно \mathcal{A}_{1}) определяются в процессе решения, и более подробно, чем в книге [4], исследуем картину разрешимости задачи, учитывая также, что ряд вопросов, относящихся сюда, В.Н.Монаховым оставлен без исследования [4] (с. 114).

2. Область \mathcal{Q}_{w} отобразим конформно функцией $w=w(\zeta)$ на круг |z| < 1 в плоскости комплексного переменного $z = \rho e^{i\theta}$, o < 1 $<\gamma<2\pi$, так, чтобы точки \mathcal{A}_n , \mathcal{A}_s , \mathcal{A}_s кривой \mathcal{I}_w^2 пере — шли в заданные точки окружности $\mathcal{E}=e^{i\mathcal{T}_s}$ соответственно $e^{i\mathcal{T}_n}$, I, $e^{i\mathcal{T}_1}$, $O<\mathcal{T}_1<\mathcal{T}_n<2\mathcal{T}_n$. Части этой окружности, отвечающие \mathcal{Z}_w^1 , \mathcal{Z}_w^2 , обозначим соответственно \mathcal{Z}_ζ^2 , \mathcal{Z}_ζ^2 .

Пусть $\mathscr{X} = \mathscr{X}(\mathcal{C})$ есть функция, отображающая конформно область $\mathcal{Q}_{_{\!\mathcal{J}}}$ на круг $| \gtrsim | < 1$, для которой

$$W[\mathcal{L}(\zeta)] = \omega(\zeta) . \tag{2}$$

Ясно, что рассматриваемая задача будет решена, если найдена функция $\mathscr{Z}(\mathcal{Z})$, при этом функция $\mathscr{W}(\widehat{\mathscr{Z}})$ определяется из соотношений $W = \omega(\mathcal{E})$, $\mathcal{Z} = \mathcal{E}(\mathcal{E})$.

Как будет ясно из дальнейшего, целесообразнее искать функцию $\mathscr{Z}(\zeta)$ непосредственно, а ее производную $\mathscr{Z}(\zeta)$.

Граничное значение функции $\mathcal{Z}(z)$ обозначим $\mathcal{Z}(t) = x(\gamma) + iy(\gamma)$ $(t = e^{i\gamma})$. Тогда $it x'(t) = x'(\gamma) + iy'(\gamma) = \left[\mathcal{Z}(e^{i\gamma})\right]_{\gamma}'(t = e^{i\gamma})$ есть граничное значение функции $i \in \mathcal{Z}'(\mathcal{Z})$, аналитической в кру $re |\zeta| < 1$ (и обращающейся в нуль в точке $\zeta = 0$).

3. Пусть $\eta_1\mathcal{K}$ есть угол, образованный звеном $\mathcal{A}_1\mathcal{A}_2$ ло ной \mathcal{X}_2 с действительной осью, $-\pi/2 < \eta_1\mathcal{K} < 5\mathcal{K}/2$. Тогда, обозначая через γ_j значение γ для точки \mathcal{A}_j окружности $\zeta=$ = $e^{i\gamma}$, $j=\overline{2,n-1}$, для точек линии \mathcal{Z}_{ζ} запишем

$$itx'(t) = |x'(\gamma) + iy'(\gamma)| e^{i\varphi(\gamma)}$$
 $(t = e^{i\gamma})$,

$$\mathcal{Q}(\gamma) = \begin{cases} \eta_1 \mathcal{R} & \text{при } \gamma_1 < \gamma < \gamma_2 \\ \eta_1 \mathcal{R} + \sum_{j=2}^{\kappa} (1 - \alpha_j) \mathcal{R} & \text{при } \gamma_{\kappa} < \gamma < \gamma_{\kappa+1} , \kappa = \overline{2, n-1} \end{cases}$$
(3)

$$i t x'(t) = -i |x'(\gamma) + i y'(\gamma)|, \qquad (4)$$

следовательно,

$$Re\left[e^{-i(\Re/2 + \Phi(\gamma))} i t x'(t)\right] = 0 , \qquad (5)$$

$$\Im m \left[e^{-i(\pi/2 + \varphi(\gamma))} i t_{\mathcal{Z}}'(t) \right] \leq 0 , \qquad (6)$$

поскольку последние два соотношения равносильны (4). Отметим, что $arPhi(\gamma)$ есть угол, образованный с действительной осью каса тельной к кривой $\mathcal{Z}_{_{\mathcal{I}}}^{^{I}}$. В дальнейшем этот угол для звена $\mathcal{A}_{_{\mathcal{I}_{-I}}}\mathcal{A}_{_{\mathcal{I}_{-I}}}$ будем обозначать

$$\eta_{n-1} \mathcal{H} = \mathcal{P}(\eta_n - 0) = \eta_1 \mathcal{H} + \sum_{j=2}^{n-1} (1 - \alpha_j) \mathcal{H} .$$
(7)

Так как значения функции $W=W(\mathcal{Z})$ на $\mathcal{Z}_{\mathcal{Z}}^{\mathcal{Z}}$ заданы (в виде ($\mathcal{Z}_{\mathcal{Z}}^{\mathcal{Z}}$), то в силу (2) на $\mathcal{Z}_{\mathcal{Z}}^{\mathcal{Z}}$ имеем

$$\varphi(x) + i\varphi(x) = \omega \left(e^{i\gamma}\right), \tag{8}$$

это соотношение определяет функцию $x=x(\gamma)$ для точек \mathcal{L}^2_{ξ} .По- этому на \mathcal{L}^2_{ξ} известна

$$Re[itz'(t)] = x'(\gamma) \qquad (t = e^{i\gamma}) \qquad (9)$$

Таким образом, нахождение функции $i \not\in \mathscr{E}'(\mathcal{E})$ приводится отнсканию решения краевой задачи Гильберта (по терминологии

Ф.Д.Гахова [I], с.264) с краевыми условиями (5) на $\mathcal{Z}_{\xi}^{\mathcal{I}}$ и (9) — на $\mathcal{Z}_{\xi}^{\mathcal{I}}$, причем это решение должно удовлетворять неравенству (6) на Zź.

Как известно (см., напр., [2], с.171), в окрестности точки $t_i = e^{i j}$, $j = \overline{2,\pi-1}$, для производной $\mathcal{Z}'(\mathcal{Z})$ справедливо пред —

$$a'(c) = (c - t_i)^{d_i - 1} B_i(c)$$
, (I0)

где $\mathcal{B}_{j}(\mathcal{E})$ - функция, аналитическая в окрестности точки \mathcal{E}_{j} . $B_j(t_j) \neq 0$.

Для граничных значений $\omega'(t)$ производной $\omega'(\xi)$ волизи точек $t_j=e^{z^2}$, $j=1,\pi$, справедливо представление [81]

$$\omega'(t) = (t - t_j)^{\gamma_j - 1} Q_j(t) , \qquad (II)$$

где $Q_i(t)$ — функция, удовлетворяющая условию $\mathcal{H}(v_i)$ — условию Гельдера с показателем v_i при $v_i < 1$, условию $\mathcal{H}(t-c)$ при $\lambda_j \gg 1$, $\mathcal{E} > \mathcal{O}$ — сколь угодно малое число, $\mathcal{Q}_j (t_j) \neq \mathcal{O}$. Производная функции $\mathcal{X}(\gamma)$, определяемой из соотношения

(8), выражается формулой

$$x'(\gamma) = \frac{\omega'(e^{i\gamma})ie^{i\gamma}}{\varphi'(x) + i\varphi'(x)} \qquad (x = x(\gamma)) , \quad (12)$$

 $\mathcal{J}_n < \gamma < 2\pi$, $\mathcal{O} < \gamma < \gamma$. Отсюда с учетом (II), замечая, что $|t-t_j|=|e^{iT}-e^{iT_j}|=|2\sin\frac{\sigma-\sigma}{2}|$, для рассматриваемой полуокрестности

 \mathcal{J}_{j} (правой для \mathcal{J}_{n} и левой для \mathcal{J}_{i}) будем иметь

$$x'(\gamma) = \left| \sin \frac{\gamma - \gamma_j}{2} \right|^{\gamma_j - 1} \chi_j(\gamma) , \qquad (13)$$

где $\chi_j(\gamma)$ есть функция, удовлетворяющая условию $\mathcal{H}(1-\mathcal{E})$ при $\chi_j\geqslant 1$ и условию $\mathcal{H}(\gamma_j)$ при $\gamma_j< 1$ в указанной полуокрестности, включая точку γ_j , χ_j $(\gamma_j) \neq 0$, j = 1, n . В самом деле, рассматриваемой (правой или левой в зависимости от постановки задачи) полуокрестности точки x_j , включая эту точку, функция $\varphi(x)+i\psi(x)$ имеет производные любого порядка, следовательно, $\varphi'(x)$ + $i\psi'(x)$ удовлетворяет условию H(I). При x>Iмул (II), (I2) видно, что производная $x'(\gamma)$ существует всюду

в рассматриваемой полуокрестности точки γ_j , включая γ_j , поэтому в этой полуокрестности $x(\gamma)$ удовлетворяет условию $\mathcal{H}(1)$, но тогда $\varphi'[x(\gamma)]+i\varphi'[x(\gamma)]$ и $(\varphi'[x(\gamma)]+i\varphi'[x(\gamma)])^{-1}$ также удовлетворяют условию $\mathcal{H}(1)$ (см., напр., [5], с.19, 22). Теперь из формул (II), (I2) видно, что функция $\mathcal{X}_j(\gamma)$ удовлетворяет условию $\mathcal{H}(1-\mathcal{E})$ в указанной полуокрестности; при $\psi_j < 1$ вначале с учетом (II) убедимся в том, что в рассматриваемой полуокрестности точки ψ_j , включая ψ_j , функция ψ_j , удов —
летворяет условию ψ_j , затем на основании (8) проверим, что функция ψ_j , обладает этим же свойством, поэтому ($\psi'[x(\gamma)+$ + $\psi'[x(\gamma)])^{-1}$, а, следовательно, и ψ'_j , удовлетворяет условию ψ'_j , в указанной полуокрестности.

Аналогичным образом, используя теорему Келлога (см., напр., [2], с. II7) и формулу (I2), усеждаемся в том, что производная $x'(\gamma)$ удовлетворяет условию Гельдера на \mathcal{Z}_{z}^{2} всюду, включая концы при $x'(\gamma)$, $y'(\gamma)$, $y'(\gamma)$, причем в случае, когда функция (I) является двузначной, производная $x'(\gamma)$ обращается в нуль при значениях $x'(\gamma)$, отвечающих точкам $x'(\gamma)$ с абсциссами $x'(\gamma)$, $x'(\gamma)$. Как видно из формулы (I0), решение вышеуказанной краевой

Как видно из формулы (IO), решение вышеуказанной краевой задачи Гильберта мы должны искать в классе функций, ограничен — ных при $d_i > 1$ и не ограниченных при $d_j < 1$ волизи точки t_j , j=2,n-1; кроме того, для большей общности будем предполагать, что искомая функция $i \in \mathcal{Z}(\mathcal{C})$ обращается в бесконечность интерируемого порядка волизи точек t_j , t_n , когда последние являются неособенными точками (по терминологии Н.И.Мусхелишвили [5], c.256). Отметим, что при $d_i < 1$, как показывают формулы (9), (I3), функция $i \in \mathcal{Z}(\mathcal{C})$ не может быть ограниченной волизи точки t_i , j=1,n.

Ясно, что рассматриваемая обратная смешанная краевая задача может быть сведена к краевой задаче Гильберта для функции $\mathcal{Z}(\zeta)$. Но рассуждения и выкладки при этом будут более сложными.

4. Для нахождения решения вышеупомянутой краевой задачи Гильберта воспользуемся результатами статьи [9].

Число $\eta_{n-1} \mathcal{M}$, определяемое формулой (7), представим следующим образом:

$$\eta_{n-1} \, \mathcal{R} = N\mathcal{R} + \eta_n \, \mathcal{R} \quad , \tag{I4}$$

где
$$N$$
 — целое число, и
$$-\pi/2 < \eta_m \, \pi \leq \pi/2 \tag{15}$$

С учетом (3), (7), (14) краевые условия (5), (9) запишем так

$$Re\left[e^{-i\left(\pi/2+\varphi(\gamma)\right)} it \, x'(t)\right] = c(\gamma) \quad (t = e^{i\gamma}) , \quad (16)$$

где

здесь и всюду в дальнейшем верхние знаки берутся для случая $-\pi/2 \le \gamma_1 \pi < \pi/2$, нижние — для случая $\pi/2 \le \gamma_1 \pi < 3\pi/2$. В част — ности, в силу такого выбора имеем $O \le \gamma_1 \pm 1/2 < 1$. Из (I5) следует, что $O \le 1/2 - \gamma_2 < 1$.

Пусть $arg(\xi - t_j)$ есть непрерывная в круге $|\xi| < \ell$ ветвь, которая на окружности $t = e^{i t}$ принимает значение

$$\beta_{j}(\gamma) = \begin{cases} 3\pi/2 + (\gamma + \gamma_{j})/2 & \text{при } 0 < \gamma < \gamma_{j} \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 + (\gamma + \gamma_{j})/2 & \text{при } \gamma_{j} < \gamma < 2\pi \\ \pi/2 +$$

$$\mathcal{H} = \begin{cases} N+1 & \text{inpu} - \pi/2 \le \eta_x \pi < \pi/2 ,\\ N & \text{inpu} \pi/2 \le \eta_x \pi < 3\pi/2 .\\ -101 - \end{cases}$$

Отсюда видно, что $\mathcal{X}=N+1/2\pm\frac{1}{n-1}/2$, поэтому в сиду (7),(I4) имеем $\mathcal{X}=1/2-\eta_n+\eta_1\pm1/2+\sum_{j=2}^{n-1}\left(1-d_j\right)$.

Из этой формулы находятся целое число $\frac{2\ell}{2\pi}$ и число $\frac{2/2}{2\pi}$, $0 \le 1/2 - \eta_{\pi} \le 1$, когда η_{π} , d_{j} , $j = \overline{2\pi-1}$, известны.

$$H_{0}(\xi) = (\xi - t_{1})^{\frac{n}{2} \pm 1/2} \prod_{j=2}^{n-1} (\xi - t_{j})^{1-d_{j}} (\xi - t_{n})^{1/2 - \eta_{n}}.$$
 (I9)

В случае, когда \mathscr{X} — четное число, условие (I6) запишем в виде

 $c_{\epsilon}(t) = c(f)/H_{0}(t)/$

$$Re\left[e \begin{array}{cc} -i(\Im/2 + \Psi) & -ie/2 \\ H_0(t) \cdot t & itz'(t) \right] = c_1(t) , \qquad (20)$$

где

$$\Psi = \mathcal{P}(f) + (\gamma_i \pm 1/2)\theta_i(f) + \sum_{j=2}^{n-1} (1 - \alpha_j)\theta_j(f) + \\
+ (1/2 - \gamma_n)\theta_n(f) - (\alpha/2) \cdot f = const, \quad 0 \le f \le 2\pi.$$
(21)

При 2e > 2 выражение в квадратных скобках в левой части условия (20) представляет собой граничные значения функции, аналитической всюду в круге $|\zeta| < 1$, исключая точку $\xi = 0$, в которой она имеет полюс порядка 2e/2 - 1; так как согласно (20) действительная часть этих значений известна, то указанная функ — ция определяется формулой [I] (с. 269 — 27I)

$$e^{-i(\pi/2 + \Psi)}$$

$$e^{-i(\pi/2 + \Psi)}$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} c_{1}(e^{i\theta}) \frac{e^{i\theta} + g}{e^{i\theta} - g} d\eta + ig + ig + \frac{g}{2\pi}$$

$$+ \sum_{\kappa} \left[(a_{\kappa} + ig_{\kappa}) g_{\kappa}^{\kappa} - (a_{\kappa} - ig_{\kappa}) g_{\kappa}^{\kappa} \right] , \qquad (22)$$

где b_0 , a_K , b_K — произвольные действительные постоянные, $K=\frac{1}{1}$, $\frac{2\ell/2-1}{2\ell}$. Отсюда находится производная $\mathcal{Z}'(\xi)$, она зави — сит от $\mathcal{Z}-1$ действительных произвольных постоянных.

При $\alpha = 2$ в формуле (22) надо положить равными нулю все

 \mathcal{A}_{κ} , \mathcal{B}_{κ} , $\kappa = \overline{1,\varkappa/2-1}$, в этом сдучае $\mathscr{X}'(\mathcal{Z})$ будет зависеть от одной произвольной постоянной \mathcal{B}_{κ}

При $\mathscr{R} \leq \mathcal{O}$ производная $\mathscr{Z}'(\mathcal{C})$ определяется формулой, получаемой из (22) отбрасыванием слагаемых, содержащих \mathscr{C}_0 , \mathscr{C}_{κ} , $\mathscr{C$

$$\int_{0}^{2\pi} c_{1}(e^{i\eta}) d\eta = 0, \int_{0}^{2\pi} c_{1}(e^{i\eta}) \begin{cases} \cos \kappa \gamma \\ \sin \kappa \gamma \end{cases} d\gamma = 0, \kappa = 1, 2, \dots, -\infty/2. (23)$$

В случае, когда \mathscr{H} — нечетное число, условие (I6) пред — ставим так

$$Re\left[e^{-i(\pi+\psi)}H_{0}(t)\frac{t-1}{t^{(\alpha+1)/2}}itx'(t)\right] = c_{1}(t)|t-1|, \qquad (24)$$

где Ψ , $H_0(t)$, $c_1(t)$ обозначают то же, что и выше, t-1=t-1 $e^{i\sqrt{t}}$ при $t=e^{i\sqrt{t}}$, $0\le \gamma\le 2\pi$.

Отсюда видно, что при e>1 будет справедлива формула, аналогичная (22),

$$e^{-i(\bar{\mathcal{I}}_{+}\Psi)} \mathcal{H}_{o}(\mathcal{E}) \xrightarrow{\mathcal{E}-1} \frac{\mathcal{E}-1}{\mathcal{E}(x-1)/2} i\mathcal{Z}'(\mathcal{E}) =$$

$$= \frac{1}{2\bar{\mathcal{I}}_{-}} \int_{\mathcal{C}_{1}} (e^{i\bar{\mathcal{I}}_{-}}) |e^{i\bar{\mathcal{I}}_{-}}| \frac{e^{i\bar{\mathcal{I}}_{+}}\mathcal{E}}{e^{i\bar{\mathcal{I}}_{-}}\mathcal{E}} d\gamma + ib_{0} +$$

$$+ \sum_{k=1}^{(2e-1)/2} [(\alpha_{k} + ib_{k}) \mathcal{E}_{-}^{\kappa} - (\alpha_{k} - ib_{k}) \mathcal{E}_{-}^{\kappa}] .$$
(25)

Ясно, что граничное значение правой части этой формулы в точке t=1 должно обращаться в нуль, но действительная часть его $c_{\ell}(t)\cdot |t-1|$ будет равна нулю при t=1, следовательно, в точке t=1 должно обращаться в нуль мнимая часть указанного граничного значения, то есть, должно выполняться соотношение

$$\frac{1}{2\pi} \int_{0}^{2\pi} c_{1}(e^{i\theta}) |e^{i\theta}-1| ctg \frac{\pi}{2} d\gamma - \delta_{0} - \sum_{\kappa=1}^{(2e-1)/2} 2\delta_{\kappa} = 0.$$

Из последней формуль выразим ℓ_o , полученное подставим оформулу (25), тогда при $\varkappa > 1$ придем к соотношению

$$e^{-i(\mathcal{F}+\mathcal{V})}\mathcal{H}_{0}(\mathcal{E}) \frac{\mathcal{E}-1}{|\mathcal{E}|^{(2e-1)/2}} i\alpha'(\mathcal{E}) =$$

$$= \frac{1}{2\pi} \int_{0}^{\infty} c_{1}(e^{i\mathcal{T}})|e^{i\mathcal{T}}-1| \frac{e^{i\mathcal{T}}+\mathcal{E}}{e^{i\mathcal{T}}-\mathcal{E}} d\mathcal{T} + i\frac{1}{2\pi} \int_{0}^{\infty} c_{1}(e^{i\mathcal{T}})|e^{i\mathcal{T}}-1| ctg \frac{\mathcal{T}}{2} d\mathcal{T} +$$

$$(26)$$

$$= \frac{1}{2\pi} \int_{0}^{\infty} c_{1}(e^{i\mathcal{T}})|e^{i\mathcal{T}}-1| \frac{e^{i\mathcal{T}}+\mathcal{E}}{e^{i\mathcal{T}}-\mathcal{E}} d\mathcal{T} + i\frac{1}{2\pi} \int_{0}^{\infty} c_{1}(e^{i\mathcal{T}})|e^{i\mathcal{T}}-1| ctg \frac{\mathcal{T}}{2} d\mathcal{T} +$$

$$= \frac{1}{2\pi} \left[a_{\kappa}(\mathcal{E}^{\kappa}-\mathcal{E}^{-\kappa}) + ib_{\kappa}(\mathcal{E}^{\kappa}+\mathcal{E}^{-\kappa}-2) \right].$$

Отсюда определяется производная $\mathscr{E}'(\mathcal{E})$, она зависит от \mathscr{H}^{-1} произвольных действительных постоянных.

При $\mathscr{X}=1$ в формуле (26) надо взять равными нулю все величины α_{κ} , \mathcal{E}_{κ} , в этом случае $\mathscr{X}'(\mathcal{E})$ определяется единственным образом.

При $\mathscr{X} \leq -1$ производная $\mathscr{Z}'(\mathcal{C})$ определяется формулой, получаемой из (26) отбрасыванием слагаемых, содержащих $\mathscr{Q}_{\mathcal{K}}$, $\mathscr{E}_{\mathcal{K}}$, если выполняются условия

$$\int_{0}^{2\pi} c_{1}(e^{iT})|e^{iT-1}|d\gamma=0, \int_{0}^{2\pi} c_{1}(e^{iT})|e^{iT-1}|ctg\frac{\gamma}{2}d\gamma=0,$$

$$\int_{0}^{2\pi} c_{1}(e^{iT})|e^{iT-1}| \begin{cases} \cos \kappa \gamma \\ \sin \kappa \gamma \end{cases} d\gamma=0, \kappa=1,2,...,(-\infty-1)/2.$$
(27)

Следовательно, здесь $\mathscr{L}'(\mathcal{C})$ может быть найдена лишь при выпол – нении $-\mathscr{X}+1$ действительных условий разрешимости.

После того, как найдена производная $\mathcal{Z}'(\mathcal{Z})$, определяется функция $\mathcal{Z}(\mathcal{Z}) = \int_{\mathcal{Z}} \mathcal{Z}'(\mathcal{Z}) \, d\mathcal{Z} + \mathcal{Z}_1 + i \mathcal{Y}_1$, где \mathcal{Y}_1 – произвольная действительная постоянная, равная ординате точки \mathcal{A}_1 . В дальнейшем для определенности будем считать $\mathcal{Y}_1 = 0$. Граничные значения $\mathcal{Z}(e^{i\mathcal{T}})$ этой функции при $\mathcal{O} < \mathcal{T} < \mathcal{T}_1$ и $\mathcal{T}_n \leq \mathcal{T} < \mathcal{Z}_n$ выражают комплексные координаты точек кривой $\mathcal{Z}_{\mathcal{Z}}^2$, а длины

звеньев A_j A_{j+1} ломаной $\mathcal{L}^{\,\,1}_{Z}$ івичисляются по формуле

$$\mathcal{L}_{j} = \int_{\mathcal{J}_{j}}^{\mathcal{T}_{j+1}} |\mathcal{X}'(e^{i\mathcal{T}})| d\mathcal{T}, \quad j = \overline{I, n-1} . \tag{28}$$

5. Принимая во внимание (10), (19), заключаем, что гранич — ные значения правых частей формул (22), (26) должны быть отличны от нуля во всех внутренних точках линии \mathcal{Z}_{5}^{I} . Следовательно, неравенство (6) можно записать в виде

$$\Im m \left[e^{-i(\overline{\eta}/2 + \mathcal{P}(\gamma)) \frac{n_1}{\prod_{j=2}^{n_1}} \left(t - t_j \right)^{1 - \alpha_j} i t x'(t)} \right] < 0, t = e^{i\gamma}, \gamma_i < \gamma < \gamma_n$$
(29)

Найденная выше производная $\mathcal{X}(\mathcal{C})$ должна удовлетворять этому неравенству.

При четном $\mathcal{H}>2$, переходя к пределу при $\mathcal{E}\to t=e^{i\mathcal{T}}$, $0\le\mathcal{T}\le2\mathcal{T}$ из соотношения (22) получим

$$e^{-i(\pi/2 + \Phi(z))} |H_0(t)| it z'(t) = c_1(e^{iz}) - \frac{i}{2\pi} \int_0^{2\pi} c_1(e^{i\delta}) ctg \frac{6-z}{2} d\delta + (30)$$

+ib₀ +i2
$$\sum_{\kappa=1}^{\infty} (a_{\kappa} \sin \kappa \gamma + b_{\kappa} \cos \kappa \gamma)$$
,

поэтому условие (29) можно записать так

$$\frac{1}{2\pi} \int_{0}^{2\pi} c_{1}(e^{i\theta}) ctg \frac{6-\gamma}{2} d\theta - \theta_{0} - 2\sum_{\kappa=1}^{2\kappa/2-1} (a_{\kappa} \sin \kappa \gamma + \theta_{\kappa} \cos \kappa \gamma) > 0,$$
(3I)

$$\gamma_1 < \gamma < \gamma_n$$

При $\mathcal{X}=2$ условие (29), поступая аналогично предыдущему, запишем следующим образом:

$$\frac{1}{2\pi} \int_{0}^{2\pi} c_{1}(e^{i\delta}) ctg \frac{6-\gamma}{2} d\delta - \delta_{0} > 0 \quad , \quad \gamma_{1} < \gamma < \gamma_{n} \quad , \tag{32}$$

а при четном $\mathcal{H} \leq \mathcal{O}$ — в виде

$$\int_{0}^{2\pi} c_{1}(e^{i\theta}) ctg \frac{6-\gamma}{2} d\theta > 0 , \quad \gamma_{1} < \gamma < \gamma_{n}$$

$$= 105 -$$
(33)

При нечетном 2e > 1 из соотношения (26) будем иметь

$$e^{-i(\pi/2 + \Phi(\gamma))} |H_{o}(t)||t-1|itx'(t) = c_{1}(e^{i\delta})|e^{i\gamma}-1|-\frac{i}{2\pi}\int_{0}^{2\pi} c_{1}(e^{i\delta})|e^{i\delta}-1|cty\frac{6-\gamma}{2\pi}\int_{0}^{2\pi} c_{1}(e^{i\delta})|e^{-1}|cty\frac{6}{2\pi}\int_{0}^{2\pi} c_{1}(e^{i\delta})|e^{-1}|cty\frac{6}{2\pi}d6+\frac{i}{2\pi}\int_{0}^{2\pi} c_{1}(e^{-1})|e^{-1}|cty\frac{6}{2\pi}d6+\frac{i}{2\pi}\int_{0}^{2\pi} c_{1}(e^{-1})|e^{-1}|cty\frac{6}{2\pi$$

поэтому условие (29) может быть записано так

$$\frac{1}{2\pi} \int_{0}^{2\pi} c_{1}(e^{i\delta})|e^{i\delta}-1| c \log \frac{6-7}{2} d\delta - \frac{1}{2\pi} \int_{0}^{2\pi} c_{1}(e^{i\delta})|e^{i\delta}-1| c \log \frac{\delta}{2} d\delta + \frac{1}{2\pi} \int_{0}^{2\pi} c_{1}(e^{$$

$$-2\sum_{\kappa=1}^{\infty} \left[a_{\kappa} \sin \kappa \gamma + b_{\kappa} (\cos \kappa \gamma - 1) \right] > 0, \quad \gamma_{1} < \gamma < \gamma_{n}, \quad (35)$$

а при нечетном $\mathscr{X} \leq 1$ — в виде

$$\int_{0}^{2\pi} c_{1}(e^{i\delta})|e^{i\delta}| \cot \frac{6-\gamma}{2} d\delta - \int_{0}^{2\pi} c_{1}(e^{i\delta})|e^{i\delta}| \cot \frac{6}{2} d\delta > 0 ,$$

$$(36)$$

$$T_{1} < \gamma < \gamma_{2} .$$

Поведение сингулярных интегралов с ядром Гильберта, входя — ших в полученные формулы (30) — (36) вблизи \mathcal{J}_{ℓ} и \mathcal{J}_{n} , можно вняснить, пользуясь результатами Н.М.Мусхелишвили [5] (с.73 — 78), а также результатами работ [6], [7] (с.128 — 131), если плотности этих интегралов терпят разрыв в точках \mathcal{J}_{ℓ} , \mathcal{J}_{n} . Как видно из формул (18), (21), плотности указанных интегралов тождественно равны нулю в интервале (\mathcal{J}_{ℓ} , \mathcal{J}_{n}).

Для левой окрестности точки \mathcal{J}_{I} в силу (I3), (I8),(I9),(2I)

$$c_{\underline{I}}(e^{i\mathcal{T}_{1}})|e^{i\mathcal{T}_{-1}}| \stackrel{\underline{I-(-1)}^{2}}{=} \pm |\sin\frac{\mathcal{T}-\mathcal{T}_{1}}{2}| \stackrel{\lambda_{1}-1+\mathcal{T}_{1}}{=} \pm \frac{1}{2} \chi_{1}(\mathcal{T}) \mathcal{T}_{1}(\mathcal{T}), \quad (37)$$

$$T_{1}(\gamma) = 2 \int_{j=2}^{n+1/2} \frac{n-1}{j-2} |t-t_{j}|^{1-\alpha_{j}} |t-t_{n}|^{1/2-n} |t-1|^{\frac{1-(-1)^{2}}{2}} (t-e^{i\zeta}).$$

Для правой окрестности точки

Пля правой окрестности точки
$$\gamma_n$$
 получим
$$c_1(e^{i\eta})|e^{i\eta}_{-1}| \frac{1-(-1)^{2e}}{2} = (-1)^{N+1}|\sin\frac{\gamma-\gamma_n}{2}|^{\frac{1}{n}-1+1/2-\gamma_n} \frac{1}{n}(\eta)^{\frac{1}{n}}(\eta)^{$$

где

FIRE
$$T_{n}(\gamma) = 2^{\frac{1/2 - \eta_{n}}{n}} |t - t_{1}|^{\frac{\eta_{1} \pm 1/2}{n}} |t - t_{1}|^{1 - d_{j}} |t - t_{1}|^{\frac{1 - (-t)^{2}}{2}} (t = e^{i\overline{t}}).$$
6. Hyerf $1 - \eta_{1} < \eta_{2} \pm 1/2$, $1 - \eta_{n} < 1/2 - \eta_{m}$. B stom

6. Пусть 1-i, $< p_1 \pm 1/2$, 1-i, $< 1/2 - p_2$ случае плотности сингулярных интегралов, входящих в формулы (30)-(36), как показывают соотношения (37), (38), удовлетворяют условию Гельдера в окрестностях точек γ_{1} , γ_{n} , следовательно, вишеуказанные интегралы являются функциями, удовлетворяющими условию Гельдера в окрестностях точек \mathcal{J}_1 , \mathcal{J}_n [5] (c.64).

В рассматриваемом случае выполнения условий (31), (32), (35) можно добиться подбором входящих в них произвольных постоянных, в чем легко убедиться.

7. Hyctb $1 - \frac{1}{2} > \frac{1}{2} \pm \frac{1}{2}$, $1 - \frac{1}{2} > \frac{1}{2} - \frac{1}{2}$ Положим $\mathcal{X}_1 = 1 - \mathcal{Y}_1 - (\mathcal{Y}_1 \pm 1/2)$, $\mathcal{X}_n = 1 - \mathcal{Y}_n - (1/2 - \mathcal{Y}_n)$ (будем помнить, что $\mathcal{Y}_1 \pm 1/2 \geqslant 0$, $1/2 - \mathcal{Y}_n \geqslant 0$). Тогда $0 < \mathcal{X}_1 < 1$, плотности вышеуказанных сингулярных интегралов, как это видно из формул (37), (38), в точках χ , χ ются в бесконечность интегрируемого порядка.

будем иметь для $\gamma > \gamma_1$ окрестности точки // $\int |e^{i\delta} - 1|^{\frac{1-(-1)^{-1}}{2}} c_1(e^{i\delta}) ctg \frac{6-\gamma}{2} d\delta =$ $= \mp 2\pi \frac{\chi_{I}(T_{I})T_{I}(T_{I})}{\sin 2\pi} \left| \sin \frac{\gamma - \gamma_{I}}{2} \right|^{-2\epsilon_{I}} + \chi_{I}(\gamma) \left| \sin \frac{\gamma - \gamma_{I}}{2} \right|^{-2\epsilon_{I}},$

В ОКРЕСТНОСТИ ТОЧКИ
$$\mathcal{J}_n$$
 для $\mathcal{J} < \mathcal{J}_n$ получим
$$\int_{0}^{2\pi} \left| e^{i\delta} - 1 \right|^{\frac{1-(-1)}{2}} c_f(e^{i\gamma}) ctg \frac{6-\gamma}{2} d6 =$$

$$- 107 -$$
(40)

$$=2\pi(-1)^{N+1}\frac{\chi_n(\eta_n)\eta_n(\eta_n)}{\sin \varkappa_n\pi}\Big|\sin \frac{\gamma-\eta_n}{\ell}\Big|^{-\varkappa_n}+\chi_n(\gamma)\Big|\sin \frac{\gamma-\eta_n}{\ell}\Big|^{-\widetilde{\varkappa}_n},$$

где $\widetilde{\mathscr{X}}_j$ — положительное число, меньшее \mathscr{X}_j , X_j (\mathcal{T}) — функция, удовлетворяющая условию Гельдера в омрестности точки \mathscr{T}_j , $j=1,\pi$.

Из формулы (39) видно, что если имеет место условие $\mathcal{X}_1(T_1) > 0$ при $-\mathcal{K}/2 \le \eta_1 \mathcal{K} < \mathcal{K}/2$ или условие $\mathcal{X}_2(T_1) < 0$ при $\mathcal{K}/2 \le \eta_2 \mathcal{K} < \mathcal{K}/2$, сингулярный интеграл этой формулы стремится к — ∞ при $\mathcal{T} \to \mathcal{T}_2$. Следовательно, неравенства (31) — (33), (35), (36) не могут быть выполнеды.

Формула (40) показывает, что эти неравенства не будут выполнены также, если имеет место условие $\mathcal{X}_n\left(\gamma_n\right)>0$ при четном N или условие $\mathcal{X}_n\left(\gamma_n\right)<0$ при нечетном N .

Из формулы (I4) видно, что при четном N звено $\mathcal{A}_{n-1}\mathcal{A}_n$ лежит в полуплоскости $x \leq x_n$, при нечетном N — в полуплоскости $x \geq x_n$.

Можно показать, что если имеет место хотя бы одно из только что указанных условий, то неравенства (3I) – (33), (35), (36) не могут быть выполнены и в случае, когда $1-v_{\chi}=2 \pm 1/2$, $1-v_{\chi}=1/2-2$,

На основании формулы (I3) заключаем, что знак производной $\mathcal{X}'(\mathcal{T})$ в соответствующей полуокрестности сколь угодно малой длины \mathcal{E} точки \mathcal{T}_j совпадает со знаком $\mathcal{X}_j(\mathcal{T}_j)$, j=1,n. Таким образом, приходим к следующему результату:

Теорема І. В случае, когда имеют место соотношения $1 - \frac{1}{2} > \frac{1}{2} + \frac{1}{2}$, $1 - \frac{1}{2}$, $2 + \frac{1}{2} + \frac{1}{2}$, $1 - \frac{1}{2}$, $2 + \frac{1}{2} + \frac{1}{2}$, рассматриваемая обратная смешан — ная краевая задача неразрешима, если выполняется хотя бы одно из условий

$$x'(\gamma) > 0$$
 для $\gamma_1 - \varepsilon < \gamma < \gamma_1$ при $-\pi/2 \le \gamma_1 \pi < \pi/2$, $x'(\gamma) < 0$ для $\gamma_1 - \varepsilon < \gamma < \gamma_1$ при $\pi/2 \le \gamma_1 \pi < 3\pi/2$, $x'(\gamma) > 0$ для $\gamma_n < \gamma < \gamma_n + \varepsilon$ при четном N , $x'(\gamma) < 0$ для $\gamma_n < \gamma < \gamma_n + \varepsilon$ при нечетном N

Выполнение последних условий проверяется непосредственно по заданным функциям и величинам. Например, если достаточно малой длины участок $\mathcal{L}_{\mathcal{Z}}^2$ с концом $\mathcal{A}_{\mathcal{I}}$ лежит в полуплоскости $x < x_{\mathcal{I}}$ и, следовательно, соответствующие значения функции (I) заданы в левой полуокрестности точни $x_{\mathcal{I}}$, то в левой полуокрестности точни $x_{\mathcal{I}}$ будет $x'(\mathcal{T}) > \mathcal{O}$.

8. Изложенные выше результаты можно сформулировать в виде следующего утверждения:

Теорема 2. Пусть выполняются неравенства $1-\eta_1 < \eta_1 \pm 1/2$, $1-\eta_n < 1/2 - \eta_n$, или имеют место условия $1-\eta_1 > \eta_1 \pm 1/2$, $1-\eta_n > 1/2 - \eta_n$, в интервале $\eta_1 - C < \eta < \eta_1 - \chi$ (γ) < 0 при $-\pi/2 < \eta_2 < \pi/2$ и χ (γ) < 0 при $\pi/2 < \eta_1 \pi < 3\pi/2$, в интервале $\eta_2 < \tau < \eta_1 \pi < 3\pi/2$, в интервале $\eta_2 < \tau < \eta_1 \pi < 3\pi/2$, в интервале $\eta_2 < \tau < \eta_1 \pi < 3\pi/2$, в интервале $\eta_2 < \tau < \eta_1 \pi < 3\pi/2$ и χ (χ) $< \chi$ при четном χ и χ (χ) $< \chi$ при нечетном χ . Тогда рассматриваемая обратная смещанная краевая задача в случае χ 1 разрешима и ее решение зависит от χ 1 действительных произвольных постоянных, удовлетворяющих неравенству (31) для четного χ 2 неравенству (32) — для χ 2 неравенству (35) — для нечетного χ 3 в случае χ 1 разрешима лишь при виполнении χ 2 действительных условий: χ 1 разрешима лишь при винеравенства (33) для четного χ 1 разрешима (27) и неравенства (36) для нечетного χ 3 неравенства (27) и неравенства (36) для нечетного χ 3 неравенства (27) и неравенства (36) для нечетного χ 3 неравенства (37) для нечетного χ 3 неравенства (38) для нечетного χ 3 неравенства (39) для нечетного χ 4 неравенства (39) для нечетного χ 5 неравенства (39) для нечетного χ 5 неравенства (39) и неравенства (39) для нечетного χ 5 неравенства (39) и неравенства (39)

Отметим, в частности, что в случае, когда $\mathcal{I}/2 \leq p_1 \mathcal{I} < 3\mathcal{I}/2$, функция (I) задана в интервале (\mathcal{X}_n , \mathcal{X}_1) и является однознач — ной, для нечетного $\mathcal{X}=\mathcal{N}\leq 1$ неравенство (36) будет выполняться автоматически.

Ясно, что найденная область $\mathcal{Q}_{\mathcal{J}}$ может оказаться неоднолистной. Вопрос об однолистности области $\mathcal{Q}_{\mathcal{J}}$ требует особого рассмотрения.

9. Рассмотрим теперь внешнюю обратную смешанную краевую задачу. Постановка задачи отличается от приведенной выше только тем, что область $\mathcal{Q}_{\mathcal{Z}}$ теперь содержит бесконечно удаленную точку $\mathcal{Z}=\infty$, в которой функция $w(\mathcal{Z})$ принимает значение $w(\infty)=w_{o}$, причем точка w_{o} является внутренней для области \mathcal{O}_{w} . Примем, что в окрестности точки $\mathcal{Z}=\infty$ справедливо разложение

$$W(Z) = W_0 + \frac{C_{-1}}{Z} + \frac{C_{-2}}{Z^2} + \dots , C_{-1} \neq 0 .$$
 (41)

Будем считать, что значение W_o задано.

Функцию $W=\mathcal{Q}(\mathcal{Z})$, отображающую конформно круг $|\mathcal{Z}|<1$ на область \mathcal{Q}_W , определим так, чтобы $\mathcal{Q}(\mathcal{Q})=W_0$ и, как и више, точке \mathcal{A}_Q кривой \mathcal{Z}_W^2 отвечала точка $\mathcal{Z}=1$

Задача решается так же, как и выше, в полученные там формулы нужно внести очевидные изменения.

Обозначим $H_1(\xi) = H_0(\xi)(\xi - 1)$, где $H_0(\xi)$ — функция, определяемая формулой (19).

В случае, когда \mathscr{X} — четное число, на основании краевого условия (20), учитывая, что функция $\mathscr{Z}'(\mathcal{Z})/\mathcal{Z}^{\mathscr{U}/2-1}$ в точке $\mathcal{Z}=0$ теперь имеет полюс порядка $\mathscr{U}/2+1$ и ее разложение в ряд Лорана в окрестности точки $\mathcal{Z}=0$ не должно иметь слагаемого, содержащего $\mathcal{Z}^{-\mathscr{U}/2}$, при $\mathscr{U}>2$ придем к формуле, аналогичной (22),

$$e^{-i(\pi/2 + \psi)} = \frac{i\pi}{H_0(z)iz'(z)/z} = \frac{1}{2\pi} \int_0^{2\pi} c_1(e^{i\tau}) \frac{e^{i\tau} + z}{e^{i\tau} - z} d\tau + ib_0 + \sum_{\kappa=1}^{2\pi} \left[(a_{\kappa} + ib_{\kappa})z^{\kappa} - (a_{\kappa} - ib_{\kappa})z^{-\kappa} \right], \qquad (42)$$

в которой постоянные \mathcal{Q}_{κ} , \mathcal{G}_{κ} для $\kappa=\varkappa/2$, $\varkappa/2+1$ связани соотношением

$$H_{0}(0)(a_{2e/2}-ib_{2e/2})-H_{0}(0)(a_{2e/2+1}-ib_{2e/2+1})=0 . \tag{43}$$

Отсида видно, что постоянные $a_{2e/2}$, $b_{2e/2}$ (в силу того, что $H_0(0) \neq 0$) выражаются через $a_{2e/2+1}$, $b_{2e/2+1}$; следо — вательно, производная $\mathcal{Z}'(\mathcal{Z})$, определяемая формулой (42), зависит от $\mathcal{X}+1$ действительных произвольных постоянных.

При $\mathcal{H} = \mathcal{O}$ мы должны принять, что постоянные, входящие в формулу (42), удовлетворяют соотношению

$$\left(\frac{1}{2\pi}\int_{0}^{2\pi}c_{\mathbf{i}}(e^{i\theta})d\eta + i\theta_{0}\right)\mathcal{H}_{0}(0) + (\alpha_{i} - i\theta_{i})\mathcal{H}_{0}'(0) = 0 \quad . \tag{44}$$

При $\mathcal{H}_{o}(O) \neq O$ из соотношения постоянные a_{1} , b_{1} выражаются через b_{0} , и производная $\mathcal{Z}'(\mathcal{C})$, определяемая из (42), будет зависеть от одной произвольной постоянной b_{0} . При $\mathcal{H}_{o}'(O) = O$ мы должны положить $b_{0} = O$ и принять, что выполняется условие $\int\limits_{0}^{2\pi} c_{1}(e^{it})dt=0$, которое представляет собой условие разрешимости задачи. Следовательно, $\mathcal{Z}'(\mathcal{C})$ может быть найдена лишь при

выполнении одного условия разрешимости и в этом случае зависит от двух произвольных постоянных a_{\star} . ℓ_{\star} .

При $\mathcal{H}=-2$ производная $\mathcal{L}'(\mathcal{E})$ определяется формулой, получаемой из (42) отбрасыванием в правой части выражений в квад ратных скобках, если имеет место равенство

$$H_{0}(0) = \frac{1}{\pi} \int_{0}^{2\pi} c_{1}(e^{i\theta})e^{-i\theta}dy - H_{0}'(0)(i\theta_{0} + \frac{1}{2\pi}\int_{0}^{2\pi} c_{1}(e^{i\theta})dy) = 0. \quad (45)$$

Отсюда получаем два действительных соотношения, одно из которых в случае $H_o'(O) \neq O$ служит для определения θ_o , другое является условием разрешимости задачи. Следовательно, здесь в случае $H_o'(O) \neq O$ производная $\mathscr{Z}(C)$ может быть найдена лишь при выполнении одного условия разрешимости, в случае $H_o'(O) = O$ производная $\mathscr{Z}(C)$ определяется формулой, зависящей от одной произвольной постоянной θ_o , если выполняется условие $\int_{C} (e^{it}) e^{-it} dt = O$, равносильное двум действительным условиям разрешимости задачи.

При $\mathscr{A} < -2$ производная $\mathscr{E}(\mathcal{E})$ находится по формуле, получаемой из (42) отбрасыванием в правой части выражений в квадратных скобках и слагаемого $\mathscr{E}(\mathcal{E})$, если выполняются условия

$$\int_{0}^{2\pi} c_{1}(e^{i\tau}) d\tau = 0 , \int_{0}^{2\pi} c_{1}(e^{i\tau}) e^{-i\kappa} d\tau = 0 , \kappa = 1, 2, ..., -\infty/2 - 2 ,$$

$$H_{0}(0) \int_{0}^{2\pi} c_{1}(e^{i\tau}) e^{i\frac{2\pi}{2}} d\tau - H_{0}'(0) \int_{0}^{2\pi} c_{1}(e^{i\tau}) e^{i\frac{2\pi}{2}} d\tau = 0 .$$

Поэтому $\mathscr{X}(\mathcal{E})$ может быть найдена лишь при выполнении – \mathscr{X} -1 действительных условий разрешимости.

В случае, когда \mathscr{H} — нечетное число, на основании краевого условия (24) при $\mathscr{H} > 1$ придем к формуле, аналогичной (26),

$$e^{-i(\pi+\psi)}e^{-i(\pi+\psi)} = \frac{1}{2\pi} \int_{-i\pi}^{i\pi} c_{i}(e^{i\pi})|e^{i\pi}| \frac{e^{i\pi}+c\pi}{e^{i\pi}-c\pi} d\gamma + (46)$$

$$+i\frac{1}{2\pi}\int_{0}^{2\pi}c_{1}(e^{iT}|e^{iT}|\cot g\frac{T}{2}dT+\sum_{k=1}^{\infty}\left[a_{k}(E^{k}-E^{k})+ib_{k}(E^{k}+E^{k}-2)\right],$$

причем здесь постоянные a_{κ} , b_{κ} для $\kappa = (2e+1)/2$, $\kappa = (2e+3)/2$ должны удовлетворять условию

$$H_{1}(0)(a_{(2e+1)/2}-ib_{(2e+1)/2})-H_{1}'(0)(a_{(2e+3)/2}-ib_{(2e+3)/2})=0.$$
 (47)

Поскольку в силу последнего соотношения постоянные $a_{(2e+1)/2}$, $b_{(2e+1)/2}$ выражаются через $a_{(2e+3)/2}$, $b_{(2e+3)/2}$, то производная $a_{(2e+3)/2}$, определяемая по формуле (46), зависит от $a_{(2e+1)/2}$ ствительных произвольных постоянных.

При $\mathscr{X}=-1$ постоянн<u>ие</u>, входящие в формулу (46), мы должны подчинить **ус**ловию

$$H_{s}(0) = \frac{1}{2\pi} \left(\int_{0}^{\infty} c_{s}(e^{i\gamma}) |e^{i\gamma}| d\gamma + i \int_{0}^{\infty} c_{s}(e^{i\gamma}) |e^{i\gamma}| \cot \frac{\gamma}{2} d\gamma \right) - (48)$$

$$-H_1(0) 2 \delta_1 i + H_1(0) (a_1 - i \delta_1) = 0$$
,

из которого в случае $H_{\underline{I}}'(0) \neq 0$ и $1 + 2Re \frac{H_{\underline{I}}(0)}{H_{\underline{I}}'(0)} \neq 0$ находятся постоянные $a_{\underline{I}}$, $b_{\underline{I}}$. При этом производнай $a_{\underline{I}}'(0) \neq 0$ определяется единственным образом. В случае $H_{\underline{I}}'(0) \neq 0$ и $1 + 2Re \frac{H_{\underline{I}}(0)}{H_{\underline{I}}'(0)} = 0$ в силу (48) должно выполняться условие $a_{\underline{I}}'(0) \neq 0$ и $a_{\underline{I}}'(0) \neq 0$ в

$$J_{m} \frac{H_{1}(0)}{H_{1}'(0)} \int_{0}^{2\pi} C_{1}(e^{i\theta}) |e^{i\theta}|^{2} |d\theta + Re \frac{H_{1}(0)}{H_{1}'(0)} \int_{0}^{2\pi} C_{1}(e^{i\theta}) |e^{i\theta}|^{2} |d\theta + Re \frac{H_{2}(0)}{H_{2}'(0)} |\theta + Re \frac{H_{2}(0)}$$

представляющее собой условие разрешимости задачи, и имеет место соотношение

$$Re \frac{H_{1}(0)}{H_{1}'(0)} \cdot \frac{1}{2\pi} \int_{C} c_{1}(e^{i\tau}) |e^{i\tau}| d\tau - \Im \frac{H_{2}(0)}{H_{1}'(0)} \cdot \frac{1}{2\pi} \int_{C} c_{1}(e^{i\tau}) |e^{i\tau}| 1|ctg \frac{\pi}{2} d\tau + a_{1} + 2b_{1} \Im \frac{H_{2}(0)}{H_{1}'(0)} = 0 ,$$

из которого находится выражение для \mathcal{Q}_{1} . При этом производная $\mathcal{Z}'(\mathcal{Z})$ определяется формулой, содержащей одну произвольную пос — тоянную \mathcal{B}_{1} . В случае $\mathcal{H}_{1}'(\mathcal{O}) = \mathcal{O}$ производная $\mathcal{Z}'(\mathcal{E})$ может быть

найдена лишь при выполнении одного действительного условия

$$\int_{0}^{2\pi} c_{1}(e^{iT})|e^{iT}-1|d\gamma=0$$
, и при этом $\mathscr{Z}(\zeta)$ определяется форму — лой, зависящей от одной произвольной постоянной a_{1} , в которой
$$b_{1}=\frac{1}{4\pi}\int_{0}^{2\pi} c_{1}(e^{iT})|e^{iT}-1|ctg\frac{T}{2}d\gamma$$
.

При $\mathcal{X} \leq -3$ производная $\mathcal{Z}'(\zeta)$ определяется формулой, получаемой из (46) отбрасыванием в правой части выражений в квадратных скобках, если имеет место равенство

$$2H_{1}(0)\int_{C_{1}}(e^{i\theta})|e^{i\theta}|e^{-i\eta}d\eta - H_{1}'(0)(\int_{0}^{c}c_{1}(e^{i\theta})|e^{i\theta}||d\eta + i\int_{0}^{c}c_{1}(e^{i\theta})|e^{i\theta}||e^{i\theta}||d\eta + i\int_{0}^{c}c_{1}(e^{i\theta})|e^{i\theta}||e^{i\theta}||d\eta + i\int_{0}^{c}c_{1}(e^{i\theta})|e^{i\theta}||d\eta + i\int_{0}^{c}c_{1}(e^{i\theta})|d\eta + i\int_{0}^{c}c_{1}(e^{i$$

в случае $\mathcal{H}=-3$. и если выполняются условия

$$\int_{0}^{2\pi} c_{1}(e^{i\theta})|e^{i\theta}|d\eta=0 \qquad \int_{0}^{2\pi} c_{1}(e^{i\theta})|e^{i\theta}|-1|ctg \frac{\tau}{2}d\eta=0,$$

$$\int_{0}^{2\pi} c_{1}(e^{i\theta})|e^{i\theta}|-1|e^{-i\kappa\tau}d\eta=0, \quad \kappa=1,2,..., (-\varkappa-5)/2,$$

$$\int_{0}^{2\pi} c_{1}(e^{i\theta})|e^{i\theta}|-1|e^{i\tau}\frac{\varkappa+1}{2}d\tau-H_{1}(0)\int_{0}^{2} c_{1}(e^{i\theta})|e^{i\theta}|-1|e^{i\tau(\varkappa+3)/2}d\eta=0$$

в случае $\mathscr{R} \leq -5$. Следовательно, $\mathscr{Z}(\mathcal{C})$ может быть найдена лишь при выполнении $-\mathscr{R}-1$ действительных условий разрешимости.

Ясно, что найденная производная должна, как и в случае внутренней задачи, удовлетворять условию (29), то есть, при четном ж должны выполняться неравенства

$$\frac{1}{2\pi} \int_{0}^{2\pi} c_{1}(e^{i\delta}) ctg \frac{6-\gamma}{2} d6-\delta_{0}-2 \sum_{\kappa=1}^{2\pi} (a_{\kappa} \sin \kappa \gamma + b_{\kappa} \cos \kappa \gamma) > 0, \quad (49)$$

$$\frac{2\pi}{2\pi} \int_{0}^{2\pi} c_{1}(e^{i\delta}) ctg \frac{6-\gamma}{2} d6-\delta_{0} > 0, \quad (49)$$

$$\int_{0}^{2\pi} c_{1}(e^{i\theta}) ctg \frac{6-\gamma}{2} > 0,$$

$$\gamma_1 < \gamma < \gamma_n$$
, для $2e < -2$,

а при нечетном ж должны иметь место соотношения

$$\frac{1}{2\pi} \int_{C_{1}}^{2\pi} (e^{i\delta}) |e^{i\delta}| |e^{i\delta}| |ctg| \frac{6-\gamma}{2} d\delta - \frac{1}{2\pi} \int_{C_{1}}^{2\pi} (e^{i\delta}) |e^{i\delta}| |ctg| \frac{6}{2} d\delta - \frac{1}{2\pi} \int_{C_{1}}^{2\pi} (e^{i\delta}) |e^{i\delta}| |ctg| \frac{6}{2} d\delta - \frac{1}{(52)}$$

$$-2 \sum_{K=1}^{2\pi} \left[a_{K} \sin \kappa \gamma + b_{K} (\cot \kappa \gamma, -1) \right] > 0 ,$$

$$\int_{C_{1}}^{2\pi} \langle \gamma < \gamma_{n}, \text{ MMF } xe > -1 ,$$

$$\int_{C_{1}}^{2\pi} (e^{i\delta}) |e^{i\delta}| |ctg| \frac{6-\gamma}{2} d\delta - \int_{C_{1}}^{2\pi} (e^{i\delta}) |e^{i\delta}| |ctg| \frac{6}{2} d\delta > 0 ,$$

$$\int_{C_{1}}^{2\pi} \langle \gamma < \gamma_{n}, \text{ MMF } xe < -3 .$$

Произвольные постояные, входящие в эти неравенства, связаны равенствами (43), (44), (45) соответственно для $\mathcal{X} \ge 2$, $\mathcal{X} = 0$, $\mathcal{X} = -2$ в случае четного \mathcal{X} и равенствами (47), (48) соответственно при $\mathcal{X} \ge 1$. $\mathcal{X} = -1$ в случае нечетного \mathcal{X}

Поступая аналогично предыдущему, в частности, легко прове — рить, что в случае, когда имеют место условия теоремы 2, выпол — нения неравенства (49) при $\mathscr{H} \geq 2$ можно добиться подбором пос — тоянной \mathscr{C}_0 , выполнения неравенства (52) при $\mathscr{H} \geq 3$ — подбо — ром постоянной \mathscr{C}_1 .

Нетрудно проверить, что в случае рассматриваемой здесь внешней задачи также справедлива теорема I.

для простоты лишь часть полученных выше результатов сформулируем в следующем виде:

Теорема 3. Пусть выполнены условия теоремы 2. Тогда рассматриваемая внешняя обратная смешанная краевая задача в случае $\mathcal{H} > 2$ разрешима и ее решение зависит от $\mathcal{H} + 1$ произвольных действительных постоянных, удовлетворяющих неравенству (49) для четного \mathcal{H} и неравенству (52) для нечетного \mathcal{H} .

Нетрудно сформулировать аналогичным образом результаты, относящиеся к случаю $\varkappa < 2$, но на этом здесь не будем останавливаться.

Как и в сдучае внутренней задачи, вопрос об однолистности области $\mathcal{Q}_{\mathbf{z}}$ требует особого рассмотрения.

10. Обратимся вновь к внутренней задаче, но в отличие от предыдущего рассмотрим ее в постановке В.Н.Монахова, когда форма ломаной $\mathcal{Z}_{\mathcal{Z}}^{1}$ задана полиостью, а положения точек \mathcal{A}_{2} , \mathcal{A}_{3} , ..., \mathcal{A}_{n-1} на \mathcal{Z}_{w}^{1} — образов вершин ломаной $\mathcal{Z}_{\mathcal{Z}}^{1}$ — подлежат определению.

Задача решается так же, как и выше, только теперь величины f_i , $j=\overline{2,\pi-1}$, неизвестны и для их определения, помня, что длины f_i звеньев f_i f_{i+1} , $j=\overline{1,\pi-1}$, заданы, с учетом (28) полу – чим систему уравнений

$$\int_{j}^{j} |\mathcal{Z}'(e^{ij})| \, d\gamma = \ell_{j} \quad , \quad j = \overline{1, \pi - 2} \quad . \tag{50}$$

При $\eta_n \mathcal{T} \neq \frac{\mathcal{U}}{2}$ в случае разрешимой задачи, когда имеют место соотношения (50), условие

$$\int_{n-1}^{T_n} |\mathcal{Z}'(e^{i\gamma})| d\gamma = \ell_n$$
(51)

булет выполняться автоматически.

При $\eta_n \mathcal{R} = \mathcal{R}/2$ равенство (51) представляет собой дополнительное условие, которому должна удовлетворять искомая производная $\mathcal{Z}'(\mathcal{E})$ (это обстоятельство В.Н.Монаховым не отмечено [3], [4], видимо, в связи с тем, что случай $\eta_n \mathcal{R} = \mathcal{R}/2$ он не исследовал).

При некоторых условиях В.Н.Монаховым [4] (с.II5 - I23) доказана однозначная разрешимость системы (50).

В случае однозначной разрешимости системы (50) при $\chi_n \mathcal{K} \neq \mathcal{K}/2$ картина разрешимости рассматриваемой задачи будет аналогична изложенной выше; в частности, если производная $\mathcal{L}'(\mathcal{L})$ содержит произвольные постоянные, то величины χ_j , j=1,n-2, определяемые из системы (50), будут зависеть от этих постоянных.

Для сравнения отметим, что В.Н.Монаховым [4] (с. I24) дока — зана однозначная разрешимость рассматриваемой в настоящем пункте

внутренней задачи. Этот результат является следствием того, что В.Н.Монахов, по-существу, исследовал лишь случай, когда (в наших обозначениях) $\mathcal{I}/2 < \mathcal{I}_1 \mathcal{R} < 3\mathcal{R}/2$, $\mathcal{R}/2 < \mathcal{I}_{n-1} \mathcal{R} < 3\mathcal{R}/2$, т.е. $\mathcal{N} = 1$, и производная $\mathcal{Z}'(\mathcal{E})$ определяется единственным образом.

Указанний результат нуждается в уточнении, так как при его получении не учтено, что для разрешимости задачи необходимо выполнение условия (36) (или аналогичного ему), обеспечивающего совпадение заданной ломаной $\mathcal{Z}_{\mathcal{Z}}^{1}$ с образом дуги $\mathcal{Z}_{\mathcal{Z}}^{1}$ при отображении найденной функцией $\mathcal{Z}(\mathcal{Z})$, и упомянутое условие выполняется автоматически лишь в отдельных случаях (например, в случае, когда функция (I) является однозначной и задана в интервале ($\mathcal{L}_{\mathcal{X}}$, $\mathcal{L}_{\mathcal{A}}$), $\mathcal{H}/2 \leq \eta$, $\mathcal{K} \leq 3\mathcal{K}/2$, \mathcal{H} — нечетное число).

Из геометрических соображений ясно, что рассматриваемая здесь задача может оказаться неразрешимой и в тех,случаях,когда соответствующая ей задача Гильберта разрешима.

Литература

- І. Гахов Ф. Д. Краевые задачи. М.: Наука, 1977. 640 с.
- 2. Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. — М.: Наука, 1973.— 736 с.
- 3. Монахов В. Н. Об обратной смешанной краевой задаче // Исследования по современным проблемам теории функций комплексного переменного. М.: ГИФИЛ, 1961. С.375 380.
- 4. Монахов В. Н. Краевые задачи со свободными границами для эллиптических систем уравнений. — Новосибирск: Наука, 1977. — 424 с.
- 5. М у с х е л и ш в и л и Н. И. Сингулярные интегральные уравнения. М.: Наука. 1968. 5II с.
- 6. Салимов Р. Б. К вычислению сингулярных интегралов с ядром Гильберта // Изв. вузов. Матем. 1970.- № 12.- С. 93-96.
- 7. Салимов Р.Б. Некоторые основные задачи об изме нении контуров теории аналитических функций и их приложения к механике жидкости. Казань: Изд-во Казанск.выс.ком.-инж. училища, 1970. 364 с.
 - 8. Салимов Р. Б. К вопросу о поведении производной

функции, реализующей конформное отображение, вблизи угловой точки границы области // Изв. вузов. Матем. — 1977. — № 2.— С.100 — IIO.

- 9. Салимов Р.Б., Селезнев В.В.К решению краевой задачи Гильберта с разрывными коэффициентами // Тр. семинара по краев. задачам. Казань: Изд-во Казанск.ун-та. 1979. Вып. 16. С.149 162.
- IO. Тумашев Г. Г., Нужин М. Т. Обратные краевые задачи и их приложения. Казань: Изд-во Казанск.ун-та, 1965. 333 с.

Доложено на семинаре 2.02.89 г.

М.Л.Славутин

ОБРАТНАЯ КРАЕВАЯ ЗАДАЧА ДЛЯ ОБЛАСТЕЙ СО СТИРАЛЕОБРАЗНЫМИ ГРАНИЦАМИ

В настоящей статье рассматривается обратная краевая задача по параметру $\mathcal S$ для случая бесконечного искомого контура. Исследуется связь между точечными особенностями элементарного характера заданных в краевых условиях задачи функций и особенностями получаемого контура.

Работа развивает и уточняет результати, полученние Φ .Д.Га-ковым и И.М.Мельником в [I].

§ I. Предварительные сведения

Пусть $E = \{ \succeq : \succeq = re^{i\theta}, |r| < 1, 0 \le \theta \le 2\pi \}$, $\partial E = \{ \varpi : \varpi = e^{i\theta}, 0 \le \theta \le \theta \le \theta \}$, $\sigma_0 = e^{i\theta}, 0 \le \theta \le \theta \le \theta \le \theta$ будем считать $\varepsilon_0 = |\varepsilon_0| = |\varepsilon_0| = \pi$ (кроме точки ε_0) непрерывную однозначную в E (кроме точки ε_0) ветвь, которая на окружности ∂E принимает значения

$$arg(\tau-\tau_o) = \begin{cases} \frac{3\pi}{2} + \frac{\theta+\theta_o}{2}, & 0 \le \theta < \theta_o, \\ \frac{\pi}{2} + \frac{\theta+\theta_o}{2}, & \theta_o < \theta \le 2\pi. \end{cases}$$

Далее, пусть