Experiment 1: Solving XOR Problem using Multilayer Perceptron

Aim:

To demonstrate the ability of a multilayer perceptron to solve the XOR problem, highlighting the power of deep architectures in handling non-linear relationships.

Algorithm:

- **STEP 1:** Prepare a dataset with input features (0 or 1) and corresponding XOR outputs.
- STEP 2: Design a multilayer perceptron with input, hidden, and output layers.
- **STEP 3:** Randomly initialize the network's weights and biases.
- **STEP 4:** Choose a loss function (e.g., mean squared error) and an optimization algorithm (e.g., stochastic gradient descent).
- **STEP 5:** Train the network using the dataset, adjusting weights and biases iteratively.
- **STEP 6:** Evaluate the trained network's performance on XOR inputs and compare with expected outputs.

Program:

```
import numpy as np
import tensorflow as tf

# Define the XOR dataset

x_train = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])

y_train = np.array([[0], [1], [1], [0]])

# Build the Multilayer Perceptron model

model = tf.keras.Sequential([
    tf.keras.layers.Dense(2, input_dim=2, activation='sigmoid'), # Hidden layer
    tf.keras.layers.Dense(1, activation='sigmoid') # Output layer

])

# Compile the model

model.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy'])

# Train the model

model.fit(x_train, y_train, epochs=10000, verbose=0)
```

```
# Evaluate the model
loss, accuracy = model.evaluate(x train, y train)
# Predict using the trained model
predictions = model.predict(x train)
print("Model Loss:", loss)
print("Model Accuracy:", accuracy)
print("Predictions:")
for i in range(len(x train)):
  print(f''Input: {x_train[i]} | Predicted Output: {predictions[i]} | Actual Output:
{y train[i]}")
Sample Output:
                4/4 [======
1.0000
Model Loss: 0.0029488941383951902
Model Accuracy: 1.0
Predictions:
Input: [0 0] | Predicted Output: [0.00200376] | Actual Output: [0]
Input: [0 1] | Predicted Output: [0.99755025] | Actual Output: [1]
Input: [1 0] | Predicted Output: [0.9976636] | Actual Output: [1]
Input: [1 1] | Predicted Output: [0.00268477] | Actual Output: [0]
```

Experiment 2: Implement Character and Digit Recognition using ANN

Aim:

To develop an artificial neural network (ANN) capable of accurately recognizing characters and digits in images, showcasing the effectiveness of neural networks in pattern recognition tasks.

Algorithm:

STEP 1: Prepare a dataset of character and digit images along with their labels.

STEP 2: Design an artificial neural network (ANN) with input, hidden, and output layers.

STEP 3: Initialize weights and biases randomly.

STEP 4: Choose an appropriate activation function and loss function.

STEP 5: Use backpropagation and gradient descent to optimize the network's parameters.

STEP 6: Evaluate the trained ANN's accuracy on a test dataset of character and digit images.

Program:

```
import tensorflow as tf
```

from tensorflow import keras

from sklearn.model selection import train test split

import numpy as np

Load the dataset (you may need to replace this with your own dataset)

mnist = keras.datasets.mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

Preprocess the data

train images = train images / 255.0

test images = test images / 255.0

Build the ANN model

model = keras.Sequential([

keras.layers.Flatten(input shape=(28, 28)), # Flatten the 28x28 input images

keras.layers.Dense(128, activation='relu'), # Hidden layer with 128 neurons

keras.layers.Dense(10, activation='softmax') # Output layer with 10 classes (digits 0-9)

```
])
# Compile the model
model.compile(optimizer='adam',
        loss='sparse categorical crossentropy',
        metrics=['accuracy'])
# Split the data for training and validation
train images, val images, train labels, val labels = train test split(train images,
train labels, test size=0.1)
# Train the model
model.fit(train images, train labels, epochs=5, validation data=(val images, val labels))
# Evaluate the model on test data
test loss, test acc = model.evaluate(test images, test labels)
print("\nTest accuracy:", test acc)
# Make predictions on a sample test image
sample image = test images[0]
sample label = test labels[0]
predictions = model.predict(np.expand dims(sample image, axis=0))
predicted label = np.argmax(predictions)
print("\nSample Test Image Label:", sample label)
print("Predicted Label:", predicted label)
Sample Output:
Train on 54000 samples, validate on 6000 samples
Epoch 1/5
54000/54000 [======
                                     accuracy: 0.9170 - val loss: 0.1373 - val accuracy: 0.9595
Epoch 2/5
54000/54000 [======] - 4s 66us/sample - loss: 0.1249 -
accuracy: 0.9640 - val loss: 0.0970 - val accuracy: 0.9712
```

Epoch 3/5

54000/54000 [===========] - 3s 61us/sample - loss: 0.0845 - accuracy: 0.9752 - val_loss: 0.0812 - val_accuracy: 0.9758

Epoch 4/5

54000/54000 [======] - 4s 70us/sample - loss: 0.0619 - accuracy: 0.9810 - val_loss: 0.0740 - val_accuracy: 0.9782

Epoch 5/5

54000/54000 [======] - 4s 69us/sample - loss: 0.0483 - accuracy: 0.9850 - val_loss: 0.0745 - val_accuracy: 0.9782

10000/10000 [======] - 0s 30us/sample - loss: 0.0789 - accuracy: 0.9755

Test accuracy: 0.9755

Sample Test Image Label: 7

Predicted Label: 7

Experiment 3: Implement Analysis of X-ray Image using Autoencoders

Aim:

To apply autoencoders to X-ray images for feature extraction and anomaly detection, illustrating the potential of unsupervised learning in medical image analysis.

Algorithm:

STEP 1: Gather a dataset of X-ray images for analysis.

STEP 2: Design an autoencoder architecture with an encoder and a decoder.

STEP 3: Define a suitable loss function, often using mean squared error.

STEP 4: Train the autoencoder using X-ray images to learn compact representations.

STEP 5: Evaluate the reconstruction quality and encoded representations.

STEP 6: Use encoded representations for tasks like anomaly detection or image denoising.

Program:

import numpy as np

import tensorflow as tf

from tensorflow.keras.layers import Input, Dense

from tensorflow.keras.models import Model

import matplotlib.pyplot as plt

Load a sample X-ray image (you may need to replace this with your own dataset)

x ray image = np.random.rand(256, 256) # Example grayscale image

Add noise to the image

noisy_x_ray = x_ray_image + np.random.normal(0, 0.1, x_ray_image.shape)

Normalize the images

x ray image = x ray image / 255.0

noisy x ray = noisy x ray / 255.0

Build the autoencoder architecture

input layer = Input(shape=(256, 256))

encoded = Dense(128, activation='relu')(input layer)

```
decoded = Dense(256, activation='sigmoid')(encoded)
autoencoder = Model(input layer, decoded)
autoencoder.compile(optimizer='adam', loss='mean squared error')
# Train the autoencoder
autoencoder.fit(noisy x ray, x ray image, epochs=100)
# Denoise a noisy image using the trained autoencoder
denoised x ray = autoencoder.predict(np.expand dims(noisy x ray, axis=0))
# Plot the original, noisy, and denoised images
plt.figure(figsize=(10, 5))
plt.subplot(1, 3, 1)
plt.imshow(x ray image, cmap='gray')
plt.title("Original X-ray")
plt.subplot(1, 3, 2)
plt.imshow(noisy x ray, cmap='gray')
plt.title("Noisy X-ray")
plt.subplot(1, 3, 3)
plt.imshow(denoised x ray[0], cmap='gray')
plt.title("Denoised X-ray")
plt.tight layout()
plt.show()
```

The sample output will display three images in a single figure:

- 1. The original X-ray image.
- 2. The noisy X-ray image (original image with added noise).
- 3. The denoised X-ray image, reconstructed using the autoencoder.

Experiment 4: Implement Speech Recognition using NLP

Aim:

To create a speech recognition system using natural language processing (NLP) techniques, demonstrating the fusion of audio data and language understanding in enabling voice-controlled applications.

Algorithm:

STEP 1: Collect a dataset of spoken audio samples and their corresponding transcripts.

STEP 2: Preprocess the audio data by converting it into spectrograms or other suitable representations.

STEP 3: Design a deep learning model, such as a recurrent neural network (RNN) or a transformer, for speech recognition.

STEP 4: Implement a suitable loss function, like connectionist temporal classification (CTC) loss.

STEP 5: Train the model on the audio-transcript pairs.

STEP 6: Evaluate the model's performance by measuring word error rate or other relevant metrics.

Program:

import tensorflow as tf

from tensorflow.keras.layers import Input, Embedding, LSTM, Dense

from tensorflow.keras.models import Model

import numpy as np

Generate sample audio features (you would use actual audio features in practice)

sample audio features = np.random.rand(100, 20) # 100 time steps, 20 features each

Define the speech recognition model

input layer = Input(shape=(100, 20)) # Input shape: (time steps, features)

embedding = Embedding(input dim=10000, output dim=128)(input layer)

1stm = LSTM(128)(embedding)

output layer = Dense(10, activation='softmax')(lstm) # 10 possible words

```
speech recognition model = Model(inputs=input layer, outputs=output layer)
# Compile the model
speech recognition model.compile(optimizer='adam', loss='categorical crossentropy',
metrics=['accuracy'])
# Generate sample labels (you would use actual labels in practice)
sample labels = np.random.randint(10, size=(100, 10)) # 10 possible words
# Train the model
speech recognition model.fit(sample audio features, sample labels, epochs=10,
batch size=32)
# Sample audio input for prediction (you would use actual audio input in practice)
sample input audio = np.random.rand(1, 100, 20) # Single input, 100 time steps, 20 features
each
# Predict using the trained model
predicted probs = speech recognition model.predict(sample input audio)
# Get the predicted word index
predicted word index = np.argmax(predicted probs)
print("Predicted Word Index:", predicted word index)
```

The output will display the predicted word index based on the sample audio input.

Experiment 5: Develop Object Detection and Classification for Traffic Analysis using CNN

Aim:

To construct a convolutional neural network (CNN) that can simultaneously detect and classify objects in traffic images, highlighting the role of CNNs in complex tasks like traffic analysis and surveillance.

Algorithm:

STEP 1: Assemble a dataset of traffic images with object annotations and labels.

STEP 2: Design a convolutional neural network (CNN) architecture for object detection and classification.

STEP 3: Implement non-maximum suppression for eliminating duplicate object detections.

STEP 4: Choose appropriate loss functions for object detection and classification, such as region proposal network (RPN) loss and categorical cross-entropy.

STEP 5: Train the CNN on the dataset and fine-tune the model.

STEP 6: Evaluate the model's performance in terms of object detection accuracy and classification accuracy.

Program:

```
import numpy as np
```

import tensorflow as tf

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

from tensorflow.keras.models import Sequential

Generate sample traffic images and labels (you would use actual data in practice)

sample_images = np.random.rand(100, 64, 64, 3) # 100 images of size 64x64 with 3 channels (RGB)

sample labels = np.random.randint(2, size=100) # Binary labels (0 or 1)

Build the CNN model for object detection and classification

```
model = Sequential([
```

Conv2D(32, (3, 3), activation='relu', input shape=(64, 64, 3)),

MaxPooling2D((2, 2)),

Conv2D(64, (3, 3), activation='relu'),

```
MaxPooling2D((2, 2)),
  Conv2D(128, (3, 3), activation='relu'),
  MaxPooling2D((2, 2)),
  Flatten(),
  Dense(128, activation='relu'),
  Dense(1, activation='sigmoid') # Binary classification output
1)
# Compile the model
model.compile(optimizer='adam', loss='binary crossentropy', metrics=['accuracy'])
# Train the model
model.fit(sample images, sample labels, epochs=10, batch size=32)
# Sample traffic image for prediction (you would use actual images in practice)
sample traffic image = np.random.rand(1, 64, 64, 3) # Single image of size 64x64 with 3
channels (RGB)
# Predict using the trained model
prediction = model.predict(sample traffic image)
print("Predicted Probability:", prediction)
```

The output will display the predicted probability of the sample traffic image belonging to the positive class (1) based on the trained model. This is a simplified example, and in practice, you would use real traffic images and labels for training and testing.

Experiment 6: Implement Online Fraud Detection of Share Market Data using Data Analytics Tools

Aim:

To implement a data analytics solution for real-time fraud detection in share market transactions, showcasing the application of data analytics in financial security.

Algorithm:

- **STEP 1:** Acquire a dataset of share market transaction data.
- STEP 2: Preprocess the data by cleaning, transforming, and aggregating relevant features.
- **STEP 3:** Choose a suitable data analytics tool, such as Pandas, R, or SQL.
- **STEP 4:** Implement data exploration and visualization to identify potential patterns of fraudulent transactions.
- **STEP 5:** Apply machine learning algorithms, like isolation forests or clustering, to detect anomalies.
- **STEP 6:** Evaluate the effectiveness of the fraud detection method using metrics like precision, recall, and F1-score.

Program:

import pandas as pd

from sklearn.ensemble import IsolationForest

from sklearn.model selection import train test split

Load sample share market data (you would use actual data in practice)

 $data = pd.read_csv('sample_market_data.csv')$

Select relevant features (you would choose appropriate features in practice)

features = ['price', 'volume']

Split data into train and test sets

train data, test data = train test split(data[features], test size=0.2, random state=42)

Train an Isolation Forest model for fraud detection

model = IsolationForest(contamination=0.05) # Assuming 5% of data is fraudulent

model.fit(train data)

Predict anomalies on the test set

```
predictions = model.predict(test_data)
# Count the number of anomalies detected
num_anomalies = len(predictions[predictions == -1])
print("Number of Anomalies Detected:", num_anomalies)
```

The output will display the number of anomalies detected by the Isolation Forest model.

Experiment 7: Implement Image Augmentation using Deep RBM

Aim:

To enhance the dataset by generating augmented images using deep restricted Boltzmann machines (RBMs), emphasizing the importance of data augmentation in improving model robustness.

Algorithm:

STEP 1: Collect a dataset of images for augmentation.

STEP 2: Design a deep restricted Boltzmann machine (RBM) architecture.

STEP 3: Train the RBM using the input images to learn patterns and features.

STEP 4: Implement image augmentation techniques using the learned RBM representations, such as noise injection or distortion.

STEP 5: Apply the augmented images for training a separate deep learning model (e.g., CNN).

STEP 6: Compare the performance of the model trained with and without image augmentation.

Program:

```
import numpy as np
from sklearn.neural_network import BernoulliRBM
import matplotlib.pyplot as plt

# Generate a sample dataset of images (you would use actual images in practice)
num_samples = 100
image_size = 28 * 28
original_images = np.random.randint(0, 2, size=(num_samples, image_size))

# Define a deep RBM with two hidden layers
rbm = BernoulliRBM(n_components=128, n_iter=10, batch_size=10)
rbm2 = BernoulliRBM(n_components=64, n_iter=10, batch_size=10)

# Fit the RBM layers
rbm.fit(original_images)
hidden features = rbm.transform(original_images)
```

```
rbm2.fit(hidden_features)
augmented features = rbm2.transform(hidden features)
# Reconstruct augmented images
reconstructed hidden features = rbm2.inverse transform(augmented features)
reconstructed images = rbm.inverse transform(reconstructed hidden features)
# Plot original and augmented images
plt.figure(figsize=(10, 4))
for i in range(5):
  plt.subplot(2, 5, i + 1)
  plt.imshow(original images[i].reshape(28, 28), cmap='gray')
  plt.title("Original")
  plt.subplot(2, 5, i + 6)
  plt.imshow(reconstructed images[i].reshape(28, 28), cmap='gray')
  plt.title("Augmented")
plt.tight layout()
plt.show()
```

The output will display a figure with rows of images:

- 1. The top row contains the original images.
- 2. The bottom row contains the augmented images generated using the deep RBM.

Experiment 8: Implement Sentiment Analysis using LSTM

Aim:

To develop a sentiment analysis model using long short-term memory (LSTM) networks, demonstrating the use of recurrent neural networks in understanding and classifying emotions in text data.

Algorithm:

STEP 1: Gather a dataset of text samples labeled with sentiment labels.

STEP 2: Preprocess the text data by tokenizing, padding, and converting to word embeddings.

STEP 3: Design a long short-term memory (LSTM) neural network architecture for sentiment analysis.

STEP 4: Choose a suitable loss function, like binary cross-entropy, for sentiment prediction.

STEP 5: Train the LSTM on the preprocessed text data.

STEP 6: Evaluate the model's performance in terms of sentiment classification accuracy.

Program:

```
import numpy as np
import tensorflow as tf

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

# Sample text data for sentiment analysis (you would use actual text data in practice)

texts = [

"I love this product!",

"This is terrible.",

"The movie was amazing.",

"I'm not sure how I feel about it."

]

# Corresponding sentiment labels (0 for negative, 1 for positive)

labels = np.array([1, 0, 1, 0])
```

```
# Tokenize the text data
tokenizer = Tokenizer(num words=1000, oov token="<OOV>")
tokenizer.fit on texts(texts)
word index = tokenizer.word index
# Convert texts to sequences of word indices
sequences = tokenizer.texts to sequences(texts)
# Pad sequences to a uniform length
padded sequences = pad sequences (sequences, maxlen=10, padding='post',
truncating='post')
# Build the LSTM model
model = tf.keras.Sequential([
  tf.keras.layers.Embedding(input dim=len(word index) + 1, output dim=16,
input length=10),
  tf.keras.layers.LSTM(16),
  tf.keras.layers.Dense(1, activation='sigmoid')
])
# Compile the model
model.compile(optimizer='adam', loss='binary crossentropy', metrics=['accuracy'])
# Train the model
model.fit(padded sequences, labels, epochs=10, verbose=1)
# Sample test text for prediction (you would use actual text in practice)
sample test text = ["This is a great product!"]
# Convert the test text to a sequence and pad it
sample test sequence = tokenizer.texts to sequences(sample test text)
sample padded sequence = pad sequences(sample test sequence, maxlen=10,
padding='post', truncating='post')
# Predict sentiment using the trained model
prediction = model.predict(sample_padded_sequence)
```

print("Predicted Sentiment:", "Positive" if prediction > 0.5 else "Negative")

Sample Output:

The output will display the predicted sentiment (positive or negative) of the sample test text based on the trained LSTM model.

Experiment 9: Number Plate Recognition of Traffic Video Analysis (Mini Project)

Aim:

To create a system that can automatically recognize and extract number plate information from traffic videos, showcasing the practical application of computer vision techniques in traffic management and law enforcement.

Algorithm:

- STEP 1: Collect a dataset of traffic videos containing scenes with number plates.
- **STEP 2:** Extract frames from the videos and preprocess them.
- **STEP 3:** Design a pipeline that combines object detection for locating number plates and optical character recognition (OCR) for reading the characters.
- **STEP 4:** Implement a suitable OCR algorithm, such as Tesseract, to extract characters from number plates.
- **STEP 5:** Train and fine-tune the OCR model using labeled character data.
- **STEP 6:** Apply the pipeline to the video frames, recognize number plates, and output the results with accuracy scores.

Progrsm:

```
import cv2
import numpy as np
import pytesseract
# Load a sample traffic video (you would use an actual video in practice)
video_path = 'sample_traffic_video.mp4'
cap = cv2.VideoCapture(video_path)
# Initialize the pytesseract OCR engine
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
# Loop through video frames
while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break
```

```
# Convert the frame to grayscale
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

# Apply image processing techniques (you would use appropriate techniques in practice)
processed_frame = cv2.GaussianBlur(gray, (5, 5), 0)
edges = cv2.Canny(processed_frame, 50, 150)

# Perform text recognition using pytesseract
number_plate_text = pytesseract.image_to_string(edges, config='--psm 6')

# Display the frame and recognized text
cv2.imshow('Number Plate Recognition', frame)
print("Recognized Number Plate:", number_plate_text.strip())
if cv2.waitKey(1) & 0xFF == ord('q'):
    break

cap.release()
cv2.destroyAllWindows()
```

As the code runs, a window will open displaying the traffic video frames. In the terminal, the recognized number plate text will be printed for each frame.