考试科目代码: 801 考试科目名称: 数据结构

试题适用招生专业 : 地图学与地理信息系统

考生答题须知

- 1. 所有题目(包括填空、选择、图表等类型题目)答题答案必须做在考点发给的答题纸上,做在本试题册上无效。 请考生务必在答题纸上写清题号。
- 2. 评卷时不评阅本试题册,答题如有做在本试题册上而影响成绩的,后果由考生自己负责。
- 3. 答题时一律使用蓝、黑色墨水笔或圆珠笔作答(画图可用铅笔),用其它笔答题不给分。

4. 答题时不准使用涂改液等具有明显标记的涂改用品。
一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在答
题纸上。每小题 3 分, 共 45 分)
1.下面几个符号串编码集合中,不是前缀编码的是()。
A. {0, 10, 110, 111} B. {11, 10, 001, 101, 0001}
C. {00, 010, 0110, 1000} D. {b,c,aa,ac,aba,abb,abc}
2. 在长度为 n 的顺序表中删除第 i 个元素($1 \le i \le n$)时,元素移动的次数为()
A. n-i+1 B. i
C. i+1 D. n-i
3. 若不带头结点的单链表的头指针为 head,则该链表为空的判定条件是()
A. head==NULL B. head->next==NULL
C. head!=NULL D. head->next==head
4. 引起循环队列队头位置发生变化的操作是()
A. 出队 B. 入队
C. 取队头元素 D. 取队尾元素
5. 若进栈序列为 1, 2, 3, 4, 5, 6, 且进栈和出栈可以穿插进行,则不可能出现的出栈序列是()
A. 2, 4, 3, 1, 5, 6 B. 3, 2, 4, 1, 6, 5
C. 4, 3, 2, 1, 5, 6 D. 2, 3, 5, 1, 6, 4
6. 字符串通常采用的两种存储方式是()
A. 散列存储和索引存储 B. 索引存储和链式存储
C. 顺序存储和链式存储 D. 散列存储和顺序存储
7. 设主串长为 n ,模式串长为 $m(m \le n)$,则在匹配失败情况下,朴素匹配算法进行的无效位移次
数为()
A. m B. n-m
C. n-m+1 D. n
8. 二维数组 A [12] [18] 采用列优先的存储方法,若每个元素各占 3 个存储单元,且第 1 个元
素的地址为 150,则元素 A [9] [7] 的地址为()

A. 429 B. 432 C. 435 D. 438 9. 对广义表 L=((a,b),(c,d),(e,f))执行操作 tail(tail(L))的结果是(A. (e,f) B.((e,f))C. (f) D.() 10. 下列图示的顺序存储结构表示的二叉树是() В. D. 11.n个顶点的强连通图中至少含有(A. n-1 条有向边 B. n 条有向边 D. n(n-1)条有向边 C. n(n-1)/2 条有向边 12. 对关键字序列(56, 23, 78, 92, 88, 67, 19, 34)进行增量为 3 的一趟希尔排序的结果为 () A. (19, 23, 56, 34, 78, 67, 88, 92) B. 23, 56, 78, 66, 88, 92, 19, 34) C. (19, 23, 34, 56, 67, 78, 88, 92) D. (19, 23, 67, 56, 34, 78, 92, 88) 13. 设树 T 的度为 4, 其中度为 1, 2, 3 和 4 的结点数分别为 4、2、1、1, 则 T 中的叶子数为() A. 5 B. 6 C. 7 D. 8 14. 由同一关键字集合构造的各棵二叉排序树() A. 其形态不一定相同, 但平均查找长度相同 B. 其形态不一定相同, 平均查找长度也不一定相同 C. 其形态均相同, 但平均查找长度不一定相同 D. 其形态均相同, 平均查找长度也都相同 15. 某二叉树中序序列为 ABCDEFG,后序序列为 BDCAFGE,则前序序列是() A. EGFACDB B. EACBDGF C. EAGCFBD D. 以上都不对 二、填空题(每小题 3 分, 共 30 分)

16. 数据的逻辑结构在计算机存储器内的表示, 称为数据的

17. 删除双向循环链表中 p 的前驱结点(存在)应执行的语句是。
18. 栈下溢是指在时进行出栈操作。
19. 己知 substr(s, i, len)函数的功能是返回串 s 中第 i 个字符开始长度为 len 的子串, strlen(s)
函数的功能是返回串 s 的长度。若 s=" ABCDEFGHIJK", t=" ABCD", 执行运算
substr(s, strlen(t), strlen(t))后的返回值为。
20. 去除广义表 LS=(a1, a2, a3,, an)中第 1 个元素,由其余元素构成的广义表称为 LS 的
°
21. 已知完全二叉树 T 的第 5 层只有 7 个结点,则该树共有个叶子结点。
22. 在有向图中,以顶点 v 为终点的边的数目称为 v 的。
23. G是一个非连通无向图,共有28条边,则该图至少有个顶点。
24. 具有 n 个结点的二叉树,采用二叉链表存储,共有个空链域。
25. 对 n 个记录的表 $r[1n]$ 进行简单选择排序,所需进行的关键字间的比较次数为。
三、解答题 (每小题 10 分, 共 20 分)
26. 假设以数组 seqn [m] 存放循环队列的元素,设变量 rear 和 quelen 分别指示循环队列中队
尾元素的位置和元素的个数。
(1)写出队满的条件表达式;
(2) 写出队空的条件表达式;
(3)设 m=40, rear=13, quelen=19, 求队头元素的位置;
(4)写出一般情况下队头元素位置的表达式。
(1)
(2)
(3)
(4)
27. 对二叉排序树的查找都是从根结点开始的,查找失败时是否一定落在叶子上?为什么?
四、算法阅读题 (每小题 10 分, 共 40 分)
28. 阅读下列算法,并回答问题:
(1)设顺序表 L=(3,7,11,14,20,51), 写出执行 f30(&L,15)之后的 L;
(2)设顺序表 L=(4,7,10,14,20,51), 写出执行 f30(&L,10)之后的 L;
(3)简述算法的功能。
void f30(SeqList*L, DataType x)
$\{ \text{int i = 0, j;} $
while (i <l->length && x>L->data [i])i++;</l->
$if(ilength && x==L->data [i])$ {

```
for(j=i+1;j< L->length;j++)
                 L->data [j-1] =L->data [j];
              L->length--;
          }
          else
              for(j=L->length;j>i;j--)
                 L->data [j] =L->data [j-1];
              L->data [i] = x;
              L->length++;
           }
       (1)
       (2)
       (3)
29. 己知图的邻接表表示的形式说明如下:
       #define MaxNum 50 //图的最大顶点数
       typedef struct node {
          int adjvex; //邻接点域
          struct node *next; //链指针域
       } EdgeNode; //边表结点结构描述
       typedef struct {
          char vertex; //顶点域
          EdgeNode *firstedge; //边表头指针
       } VertexNode; //顶点表结点结构描述
       typedef struct {
          VertexNode adjlist [MaxNum]; //邻接表
          int n, e; //图中当前的顶点数和边数
       } ALGraph; //邻接表结构描述
    下列算法输出图 G 的深度优先生成树(或森林)的边。阅读算法,并在空缺处填入合适的内容,
使其成为一个完整的算法。
       typedef enum {FALSE, TRUE} Boolean;
       Boolean visited [MaxNum];
       void DFSForest(ALGraph *G){
          int i;
```

```
for(i=0;i< G->n;i++)
          visited [i] = (1);
          for(i=0;i<G->n;i++) if (!visited [i] ) DFSTree(G,i);
       }
       void DFSTree(ALGraph *G, int i) {
          EdgeNode *p;
          visited [i] =TRUE;
          p=G->adjlist [i] . firstedge;
          while(p!=NULL){
             if(!visited [p->adjvex]){
                printf("<%c,%c>",G->adjlist [i] . vertex,G->adjlist [p->adjvex] .vertex);
                     (2) ;
             }
               (3)
          }
       (1)
       (2)
       (3)
30. 阅读下列算法,并回答问题:
   (1)假设数组 L[8] = \{3,0,5,1,6,4,2,7\},写出执行函数调用 f32(L,8)后的 L;
   (2)写出上述函数调用过程中进行元素交换操作的总次数。
       void f32(int R [ ] ,int n){
          int i,t;
          for (i=0;i< n-1;i++)
          while (R [i] !=i){
             t=R[R[i]];
             R[R[i]]=R[i];
             R[i] = t;
          }
       (1)
       (2)
31. 已知单链表的结点结构为
data
       next
```

下列算法对带头结点的单链表 L 进行简单选择排序, 使得 L 中的元素按值从小到大排列。 请在空缺处填入合适的内容, 使其成为完整的算法。 void SelectSort(LinkedList L) { LinkedList p,q,min; DataType rcd; while(p!=NULL) { min=p; q=p->next; while(q!=NULL){ if(______)min=q; q=q->next; if(______){ rcd=p->data; p->data=min->data; min->data=rcd; (4) ; } 五、算法设计题 (本题 15 分) 32. 设线性表 A=(a1,a2,a3,...,an) 以带头结点的单链表作为存储结构。编写一个函数,对 A 进行调整, 使得当 n 为奇数时 A=(a 2 ,a 4 , ... ,a n-1 ,a 1 ,a 3 , ... ,a n) , 当 n 为偶数时 A=(a 2 ,a 4, ..., an, a1, a3, ..., an-1) \circ