TP - Distributed-memory programming: MPI (II)

ING2-GSI-MI – Architecture et programmation parallèle Academic year 2023–2024

First steps with collective communication calls

(1)	From the skeletons.zip file on Arel, open the 01-showroom.c file. It contains some
	MPI collective operations. Compile it and execute it with 4 processes. Make sure that
	you understand the code and how each collective call uses the ids and $rxids$ arrays in a
	different way.
N / - 4	•
Matr	ix operations
(2)	Revisit the code of the matrix product from exercise 5 in the previous TP. Rewrite it using
	collective operations when possible. Note that:
	— Matrix <i>B</i> will be sent to all slave processes (<i>broadcast</i>)
	— Matrix <i>A</i> will be distributed by row chunks (<i>scatter</i>)
(2)	Following the process described in pages 19 and 20 from the course slides, use the
(3)	Tollowing the process described in pages 19 and 20 from the course sides, use the

MPI_Reduce_scatter function to implement a matrix-vector product.

Normalisation

Let us normalise a v_i vector using MPI:

$$v_i = \frac{v_i}{\sum_j v_j}$$

Programmatically, we can implement it using the following sequential code:

```
sum = 0;
for(j=0;j<N;j++) sum = sum + v[j];
for(i=0;i<N;i++) v[i] = v[i] / sum;</pre>
```

To implement it in MPI, follow these steps:

- 1. Generate an array of size N (Process 0)
- 2. Broadcast N or N/NProcs (size of the local vector)
- 3. Scatter vector v (only the chunk corresponding to each process)
- 4. Compute locally the partial sum (i.e. each process computes the sum on its chunk)
- 5. Allreduce of the partial sums (so that in the end all processes receive all values)
- 6. Compute locally $\frac{v_i}{\sum_i v_i}$
- 7. Gather of the local vector (to Process 0)
- 8. Result output (Process 0)