2nd ImageNet and COCO Visual Recognition Challenges Joint Workshop

MCG-ICT-CAS Object Detection **at ILSVRC 2016**

Tang Sheng, Li Yu, Wang Bin, Xiao Junbin, Zhang Rui, Zhang Yongdong, Li Jintao

Corresponding Email: ts@ict.ac.cn

Institute of Computing Technology, Chinese Academy of Sciences October 9th. 2016

Team Members

Results of our 3 tasks

- Three tasks with provided data:
 - Object detection (DET): 4th
 - Object detection from video (VID):3rd
 - Scene Parsing: 3rd

Object detection(DET): mAP(%)

模的

Object Detection (DET)

DET: Overview

- Improvements of loss function
 - Implicit sub-categories of background class
 - Sink class when necessary
- Other training and testing tricks
 - Segmentation feature
 - Dilation as context
 - Multi-scale testing
 - Box refinement && box voting

Implicit subcategories of BG

- Background(BG): Indiscrimination
 - As ONE class equally as other object classes
 - But: varies greatly
 - Unreasonable to describe as one pattern

Implicit subcategories of BG

- Add N output nodes in last FC layer
 - Represent N subcategories of BG, Cross entropy loss
 - Allocate more parameters to many BG class by adding latent BG subclasses. Improve identification capability.
 - Voc 2007 with Resnet50: ↑ 1%

Model	mAP on VOC07	
Res50 baseline	77.5%	
Res50+Implicit Sub categories-5 nodes	78.5% ↑1%	

INSTITUTE OF COMPUTING TECHNOLOG

Sink class when necessary

- Flow diversion of score to wrong classes
 - Scores of true classes become relatively low

Sink class when necessary

с3

c1(gt) ■ c2 = c3 ■ c4 ■ background

c2

c1(gt)

New scores with sink class

c4

background

INSTITUTE OF COMPUTING TECHNOL

Sink class when necessary

Add a Sink class

- Optimize: Minimize((loss (target) && loss (target+sink)), only if all the Top-K results are wrong during training
- Flow diversion of high wrong scores during testing
- Give true class with low scores more chances to win

Voc 2007 with Resnet50: ↑ 0.7%

Softmax

N: neg_num		
	Conv5	
a in l	towest	bbox_pred
sink		Smooth L1
C+1+1	cls_score	
	_	When necessary
√ Softmax		
		sink_score
22σο:10		₩

Model	mAP on VOC07
Res50 baseline	77.5%
Res50+Sink-top5	78.2% ↑0.7%

Tricks: Segmentation+Dilation

VOC 2007: Segmentation ↑ 0.8%, Dilation ↑ 0.8%

All together

Cross Entropy

Model	mAP on VOC07
Res50 baseline	77.5%
+dilation as context +sink class when necessary +implicit sub-categoris +segmentation feature +testing tricks	80.62% +3.1%

Model	mAP on val	mAP on test
Res200 baseline+tt(testing tricks)	62.9	59.1
Res200+all+tt	62.3	57.7 T_T
Res101	58.0	
Res152	57.8	
Res200	60.5	
Res101+all	57.8	
Res152+all	58.0	61.6(with tt)
Res200+all	60.3	
Res152+scene parsing feature	55.6	
Res200+all in half	60.2	
Res200+logistic	57.9	

Model	mAP on val2	mAP on test
Res200 baseline+tt(testing tricks)	62.9 ↑ 2.4 %	59.1 ↑0.3 %
Res200+all+tt	62.3	57.7
Res101+Res152+Res200	64.0 ↑ 0.4 %	60.6 ↓1.5 %
Res101	58.0	
Res101+all	57.8	
Res152	57.8	
Res152+all	58.0	
Res200	60.5	61.6(with tt)
Res200+all	60.3	
Res152+scene parsing feature	55.6	
Res200+all in half	60.2	
Res200+logistic	57.9	

Model	mAP on val2	mAP on test
Res200 baseline+tt(testing tricks)	62.9	59.1
Res200+all+tt	62.3	57.7
Res101+Res152+Res200	63.9	60.6
Res101	58.0	
Res101+all	57.8	
Res152	57.8	
Res152+all	58.0	
Res200	→ 60.5	61.6(with tt)
Res200+all	60.3	
Res152+scene parsing feature	55.6	
Res200+all in half	60.2	
Res200+logistic	57.9	

mAP on val2	mAP on test
62.9	59.1
62.3	57.7
63.9	60.6
58.0	
57.8	
57.8	
58.0	
60.5	61.6(with tt)
60.3	
55.6	
60.2	
57.9	
	62.3 63.9 58.0 57.8 57.8 58.0 60.5 60.3 55.6 60.2

Model	mAP on val2	mAP on test
Res200 baseline+tt(testing tricks)	62.9	59.1
Res200+all+tt	62.3	57.7
Res101+Res152+Res200	63.9	60.6
Res101 Res101+all Res152 Res152+all Res200 Res200+all Res152+scene parsing feature Res200+all in half	58.0 57.8 57.8 58.0 60.5 60.3 55.6 60.2	61.6(with tt)
Res200+logistic	57.9	

Object Detection from Video (VID)

Motivation: Tracking-based

- VID: Challenging task
 - Frame detection performance & adjacent motion information
 - Tracking-based tubelet generation is an effective solution

Drifting location!

Our Detection-based

- Detection Box Sequentialization
- Adjacent Checking with optical-flow

Target missing & discrete trajectory!

Our DAT Framework

- DAT tubelet generation & fusion framework
 - Tubelet generation: complementary Detection And Tracking (DAT)
 - Focused on precision & recall respectively
 - Followed by a novel tubelet merging method

Improve location quality & Recall missing objects

VID: Overview

- Two main contributions:
 - Tubelet generation: sequentialize detection box with optical-flow
 - Overlapping and successive tubelet fusion

Still-image Detection

- Training Data
 - DET train&val + VID train (1/6)
- Architecture
 - Faster R-CNN [1] + ResNet [4]
 - Add RPN anchor with size = 64
- Model Ensemble
 - ResNet101, ResNet200
 - Weighting average for coordinate position and category score.

- Anchor Frame Selection
 - Select the frame with highest detection score object

- Anchor Target Selection
 - Exploit the adjacent information with optical flow [5] to determine the reliable anchor targets

Anchor Target Selection: remove the unreliable

- Multi-target tracking with detection recall
 - Allocate each anchor target with a MDNet tracker [6]
 - Track them in parallel
 - Then use detection results to recall missing tubelets since the anchor frame may not contain all true objects.

Motivation

- Overcome drifting location problem
- Excellent object detectors (Faster R-CNN) can generate precise bounding box of high location quality

- Adjacent Checking:
 - By optical-flow for precise tubelet

If IoU (Red, Green) > a given threshold: same tubelet

else: a new tubelet

Detection Box Sequentialization

- Coherent reclassification
 - Use majority voting to get coherent categories throughout a given tubelet

C_p:S

C_p:S

Tub

Tubelet Fusion

- **Union Fusion**

Union Fusion

Tubelet Fusion

- Concatenation Fusion
 - Merge successive tubelets

Concatenation Fusion

ILSVRC 2016 VID Val Results

Mean Recall v.s. IoU Threshold

Mean Recall:

Lower IoU: tracking-based is higher

Higher IoU: detection-based is higher

ILSVRC 2016 VID Val Results

Mean AP v.s. IoU Threshold

Mean AP: Detection-based is higher than Tracking-based, Fusion is best!

References

- [1] Ren S, He K, Girshick R, Sun J. "Faster R-CNN: Towards real-time object detection with region proposal networks", NIPS 2015: 91-99.
- [2] Gidaris, Spyros, and Nikos Komodakis. "Object detection via a multiregion and semantic segmentation-aware cnn model." ICCV 2015.
- [3] Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions." ICLR 2016.
- [4] He K, Zhang X, Ren S, Sun J. "Deep residual learning for image recognition", CVPR 2016.
- [5] Kang K, Ouyang W, Li H, Wang X. "Object Detection from Video Tubelets with Convolutional Neural Networks", CVPR 2016.
- [6] Nam H, Han B. "Learning multi-domain convolutional neural networks for visual tracking", CVPR 2016.

Welcome:

Questions and Comments

Thank You!

