Quick aside: Sampled data and numerical derivatives

- Use Taylor's series to derive:
 - Forward difference
 - Backward difference
 - Two-sided difference (symmetric difference)
- Note truncation error from each

Computing the first derivative

Derive on blackboard:

- Backward difference

Drop

$$\frac{df}{dx}\Big|_{x} = \frac{f(x) - f(x - h)}{h} - \frac{h}{2}f''(x) + \frac{h^{2}}{6}f'''(x) + \cdots$$

- Two-sided difference Drop
$$\frac{df}{dx}\Big|_{x} = \frac{f(x+h) - f(x-h)}{2h} - \frac{h^{2}}{6}f'''(x) + \cdots$$

Approximations using more points

Table 1. Compact central differencing formulas for the first derivative, $f_0^{\rm I}$, with the leading term of its systematic error, for j = 3(2)17, where the number of data points j listed in the first column includes f_0 . The term *compact* indicates use of the smallest possible number j of equidistant data. The results shown in tables 1 through 4 were computed with the spreadsheet approach illustrated in section 9.2.5 of ref. 6. For j > 9 this required higher-precision matrix inversion to get sufficiently accurate answers, for which we used Volpi's BigMatrix freeware, see ref. 6 section 11.9.

j	Formula for f_0^{I}	Leading term of systematic error
3	$(-f_{-1} + f_1)/(2\delta)$	$-f^{\text{III}} \delta^2/6$
5	$(f_{-2} - 8f_{-1} + 8f_1 - f_2)/(12\delta)$	$+f^{\mathrm{V}}\delta^4/30$
7	$(-f_{-3} + 9f_{-2} - 45f_{-1} + 45f_1 - 9f_2 + f_3)/(60\delta)$	$-f^{\text{VII}} \delta^6/140$
9	$(3f_{-4} - 32f_{-3} + 168f_{-2} - 672f_{-1} + 672f_1 - 168f_2 + 32f_3 - 3f_4)/(840\delta)$	$+f^{\text{IX}}\delta^8/630$
11	$(-2f_{-5} + 25f_{-4} - 150f_{-3} + 600f_{-2} - 2100f_{-1} + 2100f_{1} - 600f_{2} + 150f_{3} - 25f_{4} + 2f_{5})/(2520\delta)$	$+f^{XI} \delta^{10}/2772$
13	$(5f_{-6} - 72f_{-5} + 495f_{-4} + 2200f_{-3} + 7425f_{-2} - 23760f_{-1} + 23760f_{1} - 7425f_{2} + 2200f_{3} - 495f_{4} + 72f_{5} - 5f_{6})/(27720\delta)$	$+f^{XIII} \delta^{12}/12012$
15	$\begin{array}{l} (-15f_{-7}+245f_{-6}-1911f_{-5}+9555f_{-4}-35035f_{-3}+105105f_{-2}-315315f_{-1}+315315f_{1}\\ -105105f_{2}+35035f_{3}-9555f_{4}+1911f_{5}-245f_{6}+15f_{7})/(360360\delta) \end{array}$	$+f^{XV}\delta^{14}/51480$
17	$\begin{array}{l} (7f_{-8}-128f_{-7}+1120f_{-6}-6272f_{-5}+25480f_{-4}-81536f_{-3}+224224f_{-2}-\\ 640640f_{-1}+640640f_{1}-224224f_{2}+81536f_{3}-25480f_{4}+6272f_{5}-1120f_{6}\\ +128f_{7}-7f_{8})/(720720\delta) \end{array}$	$+f^{XVII} \delta^{16}/218790$

An improved numerical approximation for the first derivative

ROBERT DE LEVIE

Chemistry Department, Bowdoin College, Brunswick ME 04011, USA

J. Chem. Sci., Vol. 121, No. 5, September 2009, pp. 935–950.

Second derivative

Derived on blackboard

$$\frac{d^{2}f}{dx^{2}}\bigg|_{x} = \frac{f(x+h)-2f(x)+f(x-h)}{h^{2}} + \frac{h^{2}}{12}f^{(4)}(x) + \cdots$$

Drop

• Truncation error is of order h^2

Derivatives as Matrix Multiplications

- f(x) is a vector of values evaluated at each x_i : $[f_0, f_1, f_2, f_3, \cdots]$
- Derivative (one-sided): $\frac{1}{h}[f_1-f_0,f_2-f_1,f_3-f_2,\cdots]$

$$\frac{\partial f}{\partial x} = \frac{1}{h} \begin{vmatrix} -1 & 1 & 0 & 0 & \cdots \\ 0 & -1 & 1 & 0 & \cdots \\ 0 & 0 & -1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{vmatrix} \begin{vmatrix} f_0 \\ f_1 \\ f_2 \\ f_3 \\ \vdots \end{vmatrix}$$

Second derivative

$$\frac{\partial^{2} f}{\partial x^{2}} = \frac{1}{2h} \begin{vmatrix} -2 & 1 & 0 & 0 & \cdots \\ 1 & -2 & 1 & 0 & \cdots \\ 0 & 1 & -2 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{vmatrix} \begin{vmatrix} f_{0} \\ f_{1} \\ f_{2} \\ f_{3} \\ \vdots \end{vmatrix}$$

$$\frac{1}{2h} [f_{1} - 2f_{0}, f_{2} - 2f_{1} + f_{0}, f_{3} - 2f_{2} + f_{1}, \cdots]$$

- We will see this again shortly
- Note issue with boundary.
- A matrix is a linear operator, so is a derivative.

Main topic: Iterative Matrix Solvers

- Our equation to solve: Ax = b
 - We know A, b. Want to find x.
- We have done a few "direct methods":
 - Gaussian elimination
 - LU
 - Cholesky
- Direct methods are typically used for dense systems.
- Iterative solvers are really good for sparse systems.

Example sparse equation: steady-state heat equation in 1D

$$-k\frac{\partial^2 T}{\partial x^2} = Q(x)$$

Consider iron bar with fire under middle. What is temperature profile T(x)?

BCs on end

Discretize in x:

$$-k\frac{(T_{n+1}-2T_n+T_{n-1})}{h^2}=Q(x_n)$$

Written in matrix format

$$\frac{-1}{h^2} \begin{vmatrix} -2 & 1 & 0 & 0 & 0 & \cdots \\ 1 & -2 & 1 & 0 & 0 & \cdots \\ 0 & 1 & -2 & 1 & 0 & \cdots \\ 0 & 0 & 1 & -2 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{vmatrix} T = \begin{vmatrix} Q_1/k \\ Q_2/k \\ Q_3/k \\ Q_4/k \\ \vdots \end{vmatrix}$$

- This is linear system of form Ax = b.
- We know Q and k, want to find T.
- We might want to simulate 1000s of points -->
 This creates sparse matrices of dimension
 1000s x 1000s
- Dense solvers can run out of memory!

1D Laplacian operator and Matlab spy() function

```
% Create tridiagonal Laplacian
n = 25;
v = ones(n,1);
A = spdiags([v, -2*v, v], [-1, 0, 1], n, n);
spy(A)
```

Visualizing the 1D Laplacian operator

```
 \begin{bmatrix} -2 & 1 & 0 & 0 & 0 & \cdots \\ 1 & -2 & 1 & 0 & 0 & \cdots \\ 0 & 1 & -2 & 1 & 0 & \cdots \\ 0 & 0 & 1 & -2 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}
```


Direct solvers can be problematic for sparse

- Generally, when you are dealing with a sparse matrix, it is very large. You are killed by the O(N³) scaling of Gauss elimination.
- For some matrices, Gauss elimination can decrease sparsity ("fill-ins").
- Fill-ins and removals take time in a list-like data structure.

Totally different solver: Jacobi method

Derivation on blackboard

$$Ax = b$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{12} & a_{13} \\ a_{11} & a_{12} & a_{13} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

$$a_{11} x_1 + a_{12} x_2 + a_{13} x_3 = b_1$$

 $a_{21} x_1 + a_{22} x_2 + a_{23} x_3 = b_2$
 $a_{31} x_1 + a_{32} x_2 + a_{33} x_3 = b_3$

Consider 3x3 system

Want to solve for X, y, z.

$$5x+6y+7z=2$$

$$-3x+8y-2z=3$$

$$-2x+2y-10z=4$$

 Rearrange to isolate x, y, z on LHS.

$$5x=2-6y-7z$$

 $8y=3+3x+2z$
 $10z=-4-2x+2y$

Solve for x, y, z

$$x=(2-6y-7z)/5$$

$$y=(3+3x+2z)/8$$

$$z=(-4-2x+2y)/10$$

Done, right?

- Maybe not...
- What about x, y, z, on RHS?

$$x=(2-6y-7z)/5$$

$$y=(3+3x+2z)/8$$

$$z=(-4-2x+2y)/10$$

 What if we stick random values in for x, y, z and then iterate?

$$x_1 = (2-6y_0 - 7z_0)/5$$

$$y_1 = (3+3x_0 + 2z_0)/8$$

$$z_1 = (-4-2x_0 + 2y_0)/10$$

Try it!

- Iteration code: jacobi.m
- Test harness: test_jacobi_heat
- Seems like magic!
 - But convergence is slow.

```
n = 7;
v = ones(n,1);
A = spdiags([v, -2*v, v], [-1, 0, 1], n, n);
% Make single heat source at middle of bar
b = zeros(1, n);
spike = floor(n/2);
b(spike) = 5;
% Now iterate
x = jacobi(A, b', 300);
```

Jacobi iterations solving Ax = b

```
X_{true} = A \setminus b
                                     \chi^{(1)}_{jacobi}
                        jacobi
              2.5000
                                            10.0000
                         5.0000
                                   7.5000
                                                        7.5000
                                                                  5.0000
                                                                            2.5000
x true = 
                         0.0000
                                   0.0000
x jacobi =
              0.0000
                                            -5.0000
                                                        0.0000
                                                                  0.0000
                                                                            0.0000
iteration 1
              2.5000
                         5.0000
                                   7.5000
                                            10.0000
                                                        7.5000
                                                                  5.0000
                                                                            2.5000
x true =
             -0.0000
                         Ø.0000
                                  -2.5000
                                             2.5000
                                                       -2.5000
                                                                 -0.0000
                                                                           -0.0000
x jacobi =
iteration 2
x true =
              2.5000
                         5.0000
                                   7.5000
                                            10.0000
                                                        7.5000
                                                                  5.0000
                                                                            2.5000
             -0.0000
                                             0.0000
                                                        1.2500
                                                                 -1.2500
x jacobi<del></del>∕
                        -1.2500
                                   1.2500
                                                                           -0.0000
iteration 3
              2.5000
                         5.0000
                                   7.5000
                                            10.0000
                                                        7.5000
                                                                  5.0000
                                                                            2.5000
x true =
x jacobi =
             -0.6250
                         0.6250
                                  -0.6250
                                             3.7500
                                                       -0.6250
                                                                  0.6250
                                                                           -0.6250
iteration 4
                         5.0000
                                   7.5000
                                            10.0000
                                                        7.5000
                                                                  5.0000
                                                                            2.5000
x true =
              2.5000
x jacobi =
              0.3125
                                   2.1875
                        -0.6250
                                              1.8750
                                                        2.1875
                                                                 -0.6250
                                                                            0.3125
```

Does Jacobi work on any random matrix?

```
>> jacobi(A, b, tol)
x_{true} = 0.2121 - 0.4985 - 0.9994 0.0927 1.2020 - 0.7253 1.0983
x_{jacobi} = 0.5430 \quad 1.2574 \quad -1.0717 \quad 0.0206 \quad 0.5124 \quad -0.1673 \quad -0.9431
iteration 1
x_{true} = 0.2121 - 0.4985 - 0.9994 0.0927 1.2020 - 0.7253 1.0983
x_{jacobi} = 0.4773 23.0403 -0.8990 -1.3236 -2.5008 -0.6296
                                                                  9.6929
iteration 2
x_{true} = 0.2121 - 0.4985 - 0.9994 0.0927 1.2020 - 0.7253 1.0983
x_{jacobi} = 65.5693 - 33.2449 - 15.8157 38.4691 - 1.2810 - 12.4624 74.8363
iteration 3
x_{true} = 0.2121 - 0.4985 - 0.9994 0.0927 1.2020 - 0.7253 1.0983
x_{jacobi} = -46.4463 - 1038.5696 75.3368 4.5241 90.7926 - 77.7423 191.9649
iteration 4
x_{true} = 0.2121 - 0.4985 - 0.9994 0.0927 1.2020 - 0.7253 1.0983
x_{jacobi} = -1917.1752 - 2956.7999 384.5904 - 787.8674 978.1561 311.4677 - 3317.6243
iteration 5
x_{true} = 0.2121 - 0.4985 - 0.9994 0.0927 1.2020 - 0.7253 1.0983
x \text{ jacobi} = -9037.1542 30479.2495 356.4004 -6033.4404 -2113.5948 4004.8109 -
18295.9981
```

• Solve for vector $[x_1^{(0)}, x_2^{(0)}, x_3^{(0)}]$

$$x_{1} = (b_{1} - a_{12}x_{2} - a_{13}x_{3})/a_{11}$$

$$x_{2} = (b_{2} - a_{21}x_{1} - a_{23}x_{3})/a_{22}$$

$$x_{3} = (b_{3} - a_{31}x_{1} - a_{32}x_{2})/a_{33}$$

- Choose initial guess $[x_1^{(0)}, x_2^{(0)}, x_3^{(0)}] = [b_1, b_2, b_3]$
- Then iterate

$$\begin{aligned} x_1^{(n+1)} &= (b_1 - a_{12} x_2^{(n)} - a_{13} x_3^{(n)}) / a_{11} \\ x_2^{(n+1)} &= (b_2 - a_{21} x_1^{(n)} - a_{23} x_3^{(n)}) / a_{22} \\ x_3^{(n+1)} &= (b_3 - a_{31} x_1^{(n)} - a_{32} x_2^{(n)}) / a_{33} \end{aligned}$$

This is called Jacobi's method

Jacobi iteration

Works for some matrices

Fails for other matrices

What's going on???

Jacobi Method – Matrix Derivation

Start with

$$Ax = b$$

Separate diagonal from non-diagonal elements

$$(D+N)x=b$$

Move Nx to rhs, and multiply through by D^{-1} . Note taking inverse of diagonal matrix is trivial.

$$x = D^{-1}(b - Nx)$$

Iterate

$$x_{n+1} = D^{-1}(b - Nx_n)$$

Jacobi method -- algorithm

- 1. Decompose A into N and D.
- 2. Compute D^{-1} .
- 3. Select initial guess: $x_o = b$ (or any value)
- 4. For loop:
- 5. Compute next x value: $x_{n+1} = D^{-1}(b Nx_n)$
- 6. If $norm(x_{n+1} x_n) < tol$, return x_{n+1}
- 7. Else loop again.

Why does Jacobi work?

- We must show two things:
 - The iteration converges, i.e. $x_{n+1} = x_n$
 - The iteration converges to the correct solution.
- The second is easy. The iteration expresses an identity:

$$A_X = b \rightarrow x = D^{-1}(b - N_X) \rightarrow x_{n+1} = D^{-1}(b - N_{X_n})$$

so if $x_{n+1} = x_n$, then x_n must be the solution.

Proving convergence is more involved....

Consider Jacobi iteration

$$\begin{split} x_1 &= D^{-1}(b - Nx_0) \\ x_2 &= D^{-1}(b - ND^{-1}(b - Nx_0)) \\ x_3 &= D^{-1}(b - ND^{-1}(b - ND^{-1}(b - Nx_0))) \\ &= D^{-1}b - D^{-1}ND^{-1}b - D^{-1}ND^{-1}b - D^{-1}ND^{-1}ND^{-1}Nx_0 \\ &\qquad \qquad \text{Notice powers of} \quad D^{-1}N \end{split}$$

Recognize there are two types of terms:

$$term0 = (D^{-1}N)(D^{-1}N)\cdots(D^{-1}N)x_0 \quad \text{Multiplies x}_0$$

$$term1 = ... - D^{-1}b - D^{-1}ND^{-1}b - D^{-1}ND^{-1}ND^{-1}b \quad \text{Multiplies b}$$

Consider matrix powers (square matrix)

What is $A^n, n \to \infty$?

A can be decomposed

$$A^{n} = (USU^{-1})(USU^{-1})(USU^{-1})...$$

where U is unitary and S is diagonal (eigenvalues on diagonal). Next note U⁻¹*U is identity, so

$$A^{n} = U(SSS...S)U^{-1} = US^{n}U^{-1}$$

Behavior of Aⁿ depends upon its eigenvalues.

$$\left|\lambda_{max}\right| < 1, A^n \to 0, n \to \infty$$
 $\left|\lambda_{min}\right| > 1, A^n \to \infty, n \to \infty$

Term0 should decay to zero

$$term0 = (D^{-1}N)(D^{-1}N)\cdots(D^{-1}N)x_0$$

= $(D^{-1}N)^n x_0 \to 0$ for $n \to \infty$

For this to go to zero, max eigenvalue must satisfy

$$|\lambda_{max}| < 1$$

Also, note that convergence speed depends upon eigenvalue. The closer the eigenvalue is to 1, the slower the convergence.

Term1 must tend to a finite value

$$term1 = D^{-1}b - D^{-1}ND^{-1}b - D^{-1}ND^{-1}ND^{-1}b \dots$$

$$= D^{-1}b - (D^{-1}N)D^{-1}b - (D^{-1}N)(D^{-1}N)D^{-1}b \dots$$

$$= D^{-1}b - (D^{-1}N)D^{-1}b - (D^{-1}N)^2D^{-1}b \dots$$

Again, this requires

$$(D^{-1}N)^n x_0 \rightarrow 0$$
 for $n \rightarrow \infty$

For this to go to zero, max eigenvalue must satisfy

$$|\lambda_{max}| < 1$$

What are the eigenvalues of D⁻¹N?

$$D^{-1} = \begin{bmatrix} -1/2 & 0 & 0 & 0 & 0 & \cdots \\ 0 & -1/2 & 0 & 0 & 0 & \cdots \\ 0 & 0 & -1/2 & 0 & 0 & \cdots \\ 0 & 0 & 0 & -1/2 & 0 & \cdots \\ 0 & 0 & 0 & 0 & -1/2 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix} \qquad N = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & 0 & 1 & \cdots \\ 0 & 0 & 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

$$N = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 1 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 1 & 0 & \cdots \\ 0 & 0 & 1 & 0 & 1 & \cdots \\ 0 & 0 & 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

So:
$$(D^{-1}N) = \begin{bmatrix} 0 & -1/2 & 0 & 0 & 0 & \cdots \\ -1/2 & 0 & -1/2 & 0 & 0 & \cdots \\ 0 & -1/2 & 0 & -1/2 & 0 & \cdots \\ 0 & 0 & -1/2 & 0 & -1/2 & \cdots \\ 0 & 0 & 0 & -1/2 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

This is a Toeplitz matrix

Eigenvalues of D⁻¹N

$$(D^{-1}N) = \begin{bmatrix} 0 & -1/2 & 0 & 0 & 0 & \cdots \\ -1/2 & 0 & -1/2 & 0 & 0 & \cdots \\ 0 & -1/2 & 0 & -1/2 & 0 & \cdots \\ 0 & 0 & -1/2 & 0 & -1/2 & \cdots \\ 0 & 0 & 0 & -1/2 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

$$\lambda = -\cos\left(\frac{s\pi}{N+1}\right) \quad s = 1 \cdots N$$

Clearly, $|\lambda_{max}| < 1$ so Jacobi iteration will work for the original matrix. $\begin{bmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \end{bmatrix}$

However, max eigenvalue gets close to 1. And as N grows, the max eigenvalue asymptotes to 1.

Beginnings of proof: Eigenvalues of D⁻¹N are cosines

Eigenvalue equation

$$-\frac{1}{2} \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{bmatrix} = \lambda \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \end{bmatrix}$$

Implies recurrence relations:

$$u_{2} = \lambda u_{1}$$

$$u_{1} + u_{3} = \lambda u_{2}$$

$$u_{n-1} + u_{n+1} = \lambda u_{n}$$

$$u_{N-1} = \lambda u_{N}$$

Outline of proof

Make guess for eigenvector

$$u_s = A \sin(s \theta) + B \cos(s \theta)$$

Substitute into recurrence equations to get

$$\lambda u_s = (2\cos\theta)u_s$$

 Use boundary conditions (recurrence equations at s = 1 and s = N) to find θ

$$\theta_s = \frac{s\pi}{N+1}$$

Finishing the proof is your homework....

That's great, but.....

- What if you don't have the eigenvalues of your matrix?
- Require diagonally dominant matrix
 - For each row j, require $\sum_{i\neq j} |a_{ij}| < |a_{jj}|$

$$\begin{bmatrix} 4.5 & 1.1 & -0.6 \\ 3.2 & -7.3 & 1.1 \\ -3.2 & 2.2 & 6.7 \end{bmatrix}$$

Diagonally dominant

$$\begin{bmatrix} -3.5 & 4.1 & -0.6 \\ 4.7 & -2.3 & 1.1 \\ -3.2 & 4.3 & 8.7 \end{bmatrix}$$

Not diagonally dominant

This works because of the Gershgorin circle theorem

Remarks on Jacobi's Method

- Works as long as $|\lambda_{max}| < 1$ for iteration matrix $(D^{-1}N)$
- Not all matrices satisfy this criterion, but many important ones do.
- Convergence is slow.
 - "High frequency" components converge faster.
 - "Low frequency" components converge more slowly.

What's so great about iteration?

- Consider Gaussian elimination:
 - Choose pivot, iterate over rows below.
 - For each row, iterate over elements in columns and subtract.
 - Do this for each pivot
- This algorithm is O(N³)

$$\begin{bmatrix} 10 & 4 & -3 \\ 5 & -2 & 1 \\ -8 & 2 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 4 & -3 \\ 0 & 8 & -5 \\ 0 & \frac{52}{8} & -\frac{54}{8} \end{bmatrix} \rightarrow \begin{bmatrix} 10 & 4 & -3 \\ 0 & 8 & -5 \\ 0 & 0 & \frac{43}{13} \end{bmatrix}$$

What's so great about iteration?

- Sparse matrices show up frequently in engineering problems.
- Sparse matrices typically have large (NxN), but far fewer elements.
- An iterative method typically has time complexity O(N*m*k)
 - N = number of rows
 - m = number of non-zeros in each col.
 - k = number of iterations
- Number of iterations is related to accuracy.
 You can trade accuracy off against computation time.

Next topic: Gauss-Seidel iteration

Jacobi iteration:

$$\begin{aligned} x_1^{(n+1)} &= (b_1 - a_{12} x_2^{(n)} - a_{13} x_3^{(n)}) / a_{11} \\ x_2^{(n+1)} &= (b_2 - a_{21} x_1^{(n)} - a_{23} x_3^{(n)}) / a_{22} \\ x_3^{(n+1)} &= (b_3 - a_{31} x_1^{(n)} - a_{32} x_2^{(n)}) / a_{33} \end{aligned}$$

Jacobi: Collect all new x values before using them.

Gauss-Seidel iteration:

$$\begin{aligned} x_1^{(n+1)} &= (b_1 - a_{12} x_2^{(n)} - a_{13} x_3^{(n)}) / a_{11} \\ x_2^{(n+1)} &= (b_2 - a_{21} x_1^{(n+1)} - a_{23} x_3^{(n)}) / a_{22} \\ x_3^{(n+1)} &= (b_3 - a_{31} x_1^{(n+1)} - a_{32} x_2^{(n+1)}) / a_{33} \end{aligned}$$

Gauss-Seidel: Use each new x value as soon as you have it.

What's so great about iteration?

- For Jacobi and Gauss-Seidel iteration:
 - There is an overall loop.
 - For each outer loop, iterate over rows
 - For each row, do operation on k non-zero entries. For sparse, K is usually a small constant, and doesn't grow with N.
- This is O(N*k*something), where "something" depends on the outer loop. What is "something"?
- "Something" depends upon the accuracy you demand. If you use a good algorithm, it can be a small constant number.

Gauss-Seidel

- Convergence is twice as fast as Jacobi iteration
- Same convergence criteria apply:

$$|\lambda_{max}| < 1$$

Demo: HeatCountIterations

Next topic: Advanced solvers --solve Ax = b as an optimization

Consider f(x) and SPD matrix A:

$$f(x) = \frac{1}{2} x^T \cdot A \cdot x - x^T \cdot b$$

• f(x) is minimized by the x which makes the gradient = 0 (true for symmetric positive-definite A). $\nabla f(x) = A \cdot x - b = 0$

• Therefore, solving the linear equation Ax = b for x is equivalent to extremizing f(x).

Minimizing for SPD A

Solve for x \Leftrightarrow Find x minimizing $A \cdot x - b = 0$ \Leftrightarrow $f(x) = \frac{1}{2}x^T \cdot A \cdot x - x^T \cdot b$

Quadratic form displaced from origin

Quadratic form

$$f(x) = \frac{1}{2} x^T \cdot A \cdot x - x^T \cdot b$$

Gradient

$$\nabla f(x) = A \cdot x - b = 0$$

 Gradient is linear system we want to solve.

When can f(x) be minimized?

$$f(x) = \frac{1}{2} x^T \cdot A \cdot x - x^T \cdot b$$

- Matrix A must be positive definite for f(x) be upward-facing parabola
 - $-x^T A x$ is parabola (quadratic form)
 - x^T b term simply shifts the parabola's bottom point.
- For many of the coming algorithms, matrix
 A should be symmetric (or Hermitian) so
 that

$$\nabla f(x) = A \cdot x - b = 0$$

These conditions mean A should be symmetric positive definite (SPD).

Minimization via iteration

- Draw picture on blackboard
- Use iteration to find minimum of f(x).
 - Alpha is (scalar) step length
 - r is direction vector

$$\vec{x}_{n+1} = \vec{x}_n + \alpha_n \vec{r}_n$$

What direction to use? A simple answer:

$$\vec{r}_n = -\nabla f(\vec{x}_n)$$

Take step in same direction as gradient.
 Method of steepest descent (gradient descent).

Method of steepest descent

Solve for x

Find x minimizing

$$A \cdot x - b = 0$$

$$f(x) = \frac{1}{2} x^T \cdot A \cdot x - x^T \cdot b$$

Also called "method of gradient descent"

$$\vec{x}_{n+1} = \vec{x}_n + \alpha_n \vec{r}_n$$

$$\vec{r}_n = -\nabla f(\vec{x}_n)$$

Needs gradient at x

$$f(x) = \frac{1}{2} x^T \cdot A \cdot x - x^T \cdot b$$

$$\nabla f(\vec{x}) = A \cdot \vec{x} - \vec{b} = \vec{r}$$

 $\nabla f(\vec{x}) = A \cdot \vec{x} - \vec{b} = \vec{r}$ Gradient = residual!

What to use for alpha?

How to get alpha?

• Choose alpha which minimizes $f(x_{n+1})$ along the line defined by direction vector. That is, we step to the deepest point along the line defined by the direction vector r.

- Derivation on blackboard (and next slide).
- Result: $\alpha_n = \frac{\vec{r}_n^T \cdot \vec{r}_n}{\vec{r}_n^T \cdot A \cdot \vec{r}_n}$

To get alpha

Residual at point n+1

$$\vec{r}_{n+1} = A \vec{x}_{n+1} - \vec{b}$$

$$\vec{r}_{n+1} = A (\vec{x}_n - \alpha_n \vec{r}_n) - \vec{b}$$

$$= \vec{r}_n - \alpha_n A \vec{r}_n$$

• Invoke orthogonality $\vec{r}_n^T \cdot \vec{r}_{n+1} = 0$

$$\vec{r}_{n}^{T} \cdot \vec{r}_{n+1} = 0$$

$$\vec{r}_{n}^{T} \cdot (\vec{r}_{n} - \alpha A \cdot \vec{r}_{n}) = 0$$

$$\vec{r}_{n}^{T} \cdot \vec{r}_{n} = (\alpha_{n} \vec{r}_{n}^{T} \cdot A) \cdot \vec{r}_{n}$$

So we get the desired result:

This is because the next step direction n+1 is orthogonal to the last one n. The last step took us to the minumum of f(x) along the direction \vec{r}_n .

$$\alpha_n = \frac{\vec{r}_n^T \cdot \vec{r}_n}{\vec{r}_n^T \cdot A \cdot \vec{r}_n}$$

Gradient descent algorithm

- 1. Start with $\vec{x}_0 = \vec{b}$
- $2. \quad \vec{r}_n = A \cdot \vec{x}_n \vec{b}$
- 3. $\alpha_n = \frac{\vec{r}_n^T \cdot \vec{r}_n}{\vec{r}_n^T \cdot A \cdot \vec{r}_n}$
- $4 \quad \vec{x}_{n+1} = \vec{x}_n \alpha_n \vec{r}_n$

Solve $A\vec{x} = \vec{b}$ Consider $f(x) = \frac{1}{2}x^T \cdot A \cdot x - x^T \cdot b$ Iterate for x $\vec{r}_n = -\nabla f(\vec{x}_n)$

 $\vec{x}_{n+1} = \vec{x}_n + \alpha_n \vec{r}_n$

5. Check for convergence:

Return if converged

Else loop back to 2

How to know when to stop?

- Bad: $||\vec{x}_{n+1} \vec{x}_n|| < tol$ Norm of step
- $\vec{r}_{n} = -\nabla f(\vec{x}_{n})$ $\vec{x}_{n+1} = \vec{x}_{n} + \alpha_{n} \vec{r}_{n}$
- Bad because gradient descent often takes tiny steps even far from the solution point.
- Less bad: $\|\nabla f(\vec{x}_n)\| < \epsilon$ Norm of slope (gradient)
 - Requires knowing about the scale of f(x)
- Another possibility: $\|\nabla f(\vec{x}_n)\| < \epsilon |f(\vec{x}_n)|$ Relative norm of slope
 - Problematic if f(optimum) = 0
- Best: $\|\nabla f(\vec{x}_n)\| < \epsilon(1+|f(\vec{x}_n)|)$

Observations

- If you start on an axis of the ellipse, convergence is fast.
- If the ellipse is close to spherical, convergence is fast.

- Conversely, if the ellipse is very long and narrow, you will likely zig-zag with slow convergence. This is more likely.
 - This effect is characterized by the condition number of the matrix.

Matrix condition number and gradient descent

Low K

- Zig-zag walk.
- Slow convergence.

- GD shoots almost to center of quadratic form in 1 step.
- Fast convergence.

Review of session topics

It's all about solving Ax = b for sparse

- Jacobi iteration.
 - Iterative methods are good for sparse.
 - Slow convergence.
- Gauss-Seidel.
- Solving Ax = b as a minimization problem.
- Steepest descent (a.k.a gradient descent).