CALLING FUNCTIONS - FUNCTION ARGUMENTS

 DSC 205 - Advanced introduction to data science

 ${\bf Marcus\ Birkenkrahe}$

January 27, 2023

README

You will learn:

- \square The meaning of function argument matching: f(args)
- □ Difference between exact, partial, positional, mixed arguments
- \square Use of ellipses in functions

Download the raw practice file from GitHub and save it as 2_argument_practice.org. To test your Emacs mettle, open it on the CMD line with the command emacs -nw (no graphics - not needed for this exercise).

Argument matching

- Argument matching conditions allow you to provide arguments to functions either with abbreviated names or without names at all.
- Exact argument matching means that the argument tag is written out in full.
- Partial argument matching means that the argument tags are abbreviated, e.g. nr instead of nrow.
- **Positional** argument matching means that the arguments are inferred by their position only (no tags, e.g. 3 instead of nrow=3).
- Mixed argument matching means that different matching styles are mixed in one function argument list.

• Elliptic arguments stand for any type and number of argument.

Exact argument matching

Def: All argument tags are spelled out in full.

PRO:

- Safe less prone to wrong argument specifications
- Order of arguments is irrelevant
- Useful when many arguments are possible

CON:

- Can be cumbersome for simple operations
- Need to know the full, case-sensitive tags

Example:

```
foo <- matrix(</pre>
  data=1:9,
  nrow=3,
  dimnames=list(LETTERS[1:3], # 'dimnames' must be a list
LETTERS [4:6]))
foo
  DEF
A 1 4 7
B 2 5 8
C 3 6 9
   Switching around the arguments:
bar <- matrix(</pre>
  nrow=3,
  dimnames=list(LETTERS[1:3],
LETTERS[4:6]),
  data=1:9)
bar
```

```
D E F
A 1 4 7
B 2 5 8
C 3 6 9

What is foo == bar?

foo==bar

D E F
A TRUE TRUE TRUE
B TRUE TRUE TRUE
C TRUE TRUE TRUE
```

Partial argument matching

Def: Argument tags are abbreviated, e.g. nr instead of nrow. **PRO:**

- Requires less code than exact matching
- Argument tags are still visible
- Order of arguments does not matter

CON:

- Must be aware of other potentially matching arguments
- Each tag must have a unique identification

Example:

```
baz <- matrix(
  da=1:9,
  nr=3,
  di=list(LETTERS[1:3],
  LETTERS[4:6]))
baz
  D E F
A 1 4 7
B 2 5 8
C 3 6 9</pre>
```

 \Box Change da to d - what happens and why?¹

```
baz <- matrix(
  d=1:9,
  nr=3,
  di=list(LETTERS[1:3],
  LETTERS[4:6]))
baz

Error in matrix(d = 1:9, nr = 3, di = list(LETTERS[1:3], LETTERS[4:6])):
  argument 1 matches multiple formal arguments
  D E F
A 1 4 7
B 2 5 8
C 3 6 9</pre>
```

Positional argument matching

Def: Arguments are inferred by their position.

PRO:

- Shorter, cleaner code
- Faster for routine tasks and simple code
- No need to remember specific argument tags

CON:

- Must look up and be aware of the exact defined order of arguments
- Reading code written by others might be more difficult
- Unfamiliar functions written by you or others will slow you down
- The argument order information can be found in the Usage section of the function's help file
- The argument order can be shown with args or by printing the function name without arguments:

 $^{^{1}\}mathrm{The}$ argument tag d could belong to dimmames or data - R cannot resolve this ambiguity on it own and returns an error.

```
args(matrix)
    function (data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)
    NULL
   Example:
bar <-
  matrix(
   1:9, # data
    3,
         # nrow
          # ncol
    3.
          # byrow
   F,
    list(LETTERS[1:3],LETTERS[4:6])) #dimnames
bar
 DEF
A 1 4 7
B 2 5 8
C 3 6 9
  ☐ What happens if you leave out the byrow argument value?
    bar <-
      matrix(
        1:9, # data
        3,
               # nrow
               # ncol
         list(LETTERS[1:3],LETTERS[4:6])) #dimnames
    bar
    Error in matrix(1:9, 3, 3, list(LETTERS[1:3], LETTERS[4:6])) :
      invalid 'byrow' argument
      DEF
    A 1 4 7
    B 2 5 8
    C 3 6 9
```

Mixed argument matching

Def: Mixing exact, partial, and positional argument matching styles **Example:**

```
bar <-
   matrix(1:9,3,3,
  dim = list(c("A","B","C"),c("C","D","E")))
bar

C D E
A 1 4 7
B 2 5 8
C 3 6 9</pre>
```

Use of ellipses in arguments

- Many functions exhibit *variadic* behavior, i.e. they accept a variable number of arguments, or no arguments at all
- E.g. when you call data.frame, you can specify any number of members as arguments:

□ What happens when you specify NO arguments for data.frame?

```
df <- data.frame()
df</pre>
```

data frame with 0 columns and 0 rows

- The ellipsis in the Usage section of the help signifies this
- args will also tell you:

```
args(data.frame)
     function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,
         fix.empty.names = TRUE, stringsAsFactors = FALSE)
     NULL
   • R functions fall into two groups:
       1. ellipsis is the main ingredient (like c or data.frame)
       2. ellipsis is a supplement (like plot)
   • plot is not variadic but accepts ellipsis arguments:
     args(plot)
     function (x, y, ...)
     NULL
Exercises
  1. □ Is matrix elliptic?
  2. \square Use positional matching with seq to create a sequence of values
     between -4 and 4 that progresses in steps of 0.2.
  3. □ Identify, which style of argument matching is being used: exact,
     partial, positional, or mixed. If mixed, which arguments are specified?
     Write your answer as a comment after the command.
      (a) array
          array(8:1,dim=c(2,2,2))
          , , 1
               [,1] [,2]
          [1,]
                   8
          [2,]
                   7
```

, , 2

```
[,1] [,2]
   [1,]
   [2,]
          3
(b) rep
   rep(1:2,3)
   [1] 1 2 1 2 1 2
(c) seq
   seq(from=10,to=8,length=5)
   [1] 10.0 9.5 9.0 8.5 8.0
(d) sort
   sort(decreasing=T,x=c(2,1,1,2,0.3,3,1.3))
   [1] 3.0 2.0 2.0 1.3 1.0 1.0 0.3
(e) which
   which(matrix(c(T,F,T,T),2,2))
   [1] 1 3 4
(f) which
   which(matrix(c(T,F,T,T),2,2),a=T)
       row col
   [1,] 1 1
   [2,]
              2
   [3,] 2 2
```

Glossary

	TERM	MEANING
•	Exact arguments	Full argument tag
	Partial argument	Argument tags abbreviated
	Positional argument	Arguments inferred by position alone
	Mixed arguments	Different matching styles are mixed
	Ellipsis	Variable number of arguments is accepted
	args	Return exact argument tags with defaults
	• • •	Ellipsis in the args or Usage section of the help

References

• Davies, T.D. (2016). The Book of R. NoStarch Press.