MATH 3110 - Fall 2018 PRACTICE 2

Exercise I:

Let $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ be a 3×3 matrix and suppose that $\det(A) = -4$. Let P be a 3×3 invertible

(a)
$$B = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ 2a_{31} & 2a_{32} & 2a_{33} \\ a_{21} + 3a_{11} & a_{22} + 3a_{12} & a_{23} + 3a_{13} \end{bmatrix}$$

- (c) $E = A^n$, where n is a positive integer
- (d) $F = PAP^{-1}$

Exercise II:

- (1) Let \mathbb{P}_3 be the set of polynomials of degree at most 3. The set \mathbb{P}_3 with the zero polynomial p(t) = 0, with the usual addition and scalar multiplication is a vector space.
 - (a) Let $H = \{p(t) \in \mathbb{P}_3 \mid \deg(p(t)) = 3\} \cup \{0\}$, that is, the zero polynomial is included in H and the nonzero elements of H are exactly of degree 3. Is H a subspace of \mathbb{P}_3 ? Justify your answer.
 - (b) Let $S = \{3t^2 + t 2, -t^2 + 2, 6t^2 2t 7\}$ be a set polynomials in \mathbb{P}_3 . Is S linearly independent? Justify your answer.
- (2) Let $M_{2\times 2}(\mathbb{R})$ be the set of all 2×2 matrices (with real number entries), that is

$$M_{2\times 2}(\mathbb{R}) = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \mid a,b,c,d \text{ in } \mathbb{R} \right\}$$

The set $M_{2\times 2}(\mathbb{R})$ with the zero matrix $\mathbf{0}=\begin{bmatrix}0&0\\0&0\end{bmatrix}$, with the usual addition and scalar multiplication is a vector space. Let $H=\left\{\begin{bmatrix}a&0\\c&d\end{bmatrix}\mid a,c,d \text{ in }\mathbb{R}\right\}$ be a subset of $M_{2\times 2}(\mathbb{R})$.

1

- (a) Give a nonzero element of H. Give an element of $M_{2\times 2}(\mathbb{R})$ which is not in H.
- (b) Is H a subspace of $M_{2\times 2}(\mathbb{R})$? Justify your answer.

Exercise III:

Let
$$H = \left\{ \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} | a = -c \text{ and } b = c \right\}$$
 be a subset of \mathbb{R}^4 .

- (a) Give a nonzero vector \vec{u} that is in H ($\vec{u} \in H$), and a vector \vec{v} in \mathbb{R}^4 that is not in H ($\vec{v} \notin H$).
- (b) Find a matrix A such that H = Nul(A).

Exercise IV:

Let
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$, and $\vec{v}_3 = \begin{bmatrix} -2 \\ -1 \\ 2 \end{bmatrix}$ be vectors in \mathbb{R}^4 , and let $H = \operatorname{Span}(\vec{v}_1, \vec{v}_2, \vec{v}_3)$.

(a) Show that $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$ is a basis for H.

(b) Is
$$\vec{u} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$
 in H . Justify your answer.

(c) Compute the
$$\mathcal{B}$$
-coordinate of $\vec{v}=\begin{bmatrix} -9\\ -4\\ 5 \end{bmatrix}$.

Exercise V:

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation such that

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 - x_2 \\ -x_1 + 3x_2 \\ x_1 + x_2 \end{bmatrix}$$

2

Let A be the standard matrix of T.

- (a) Determine the matrix A.
- (b) Is there a nonzero vector in Ker(T)? Justify.
- (c) Give a basis for im(T). What is the dimension of im(T)?

Exercise VI:

Let
$$A = \begin{bmatrix} 5 & -2 & 3 \\ -1 & 0 & -1 \\ -5 & 7 & 2 \end{bmatrix}$$

(a) Is
$$\vec{u} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
 in Nul(A). Justify.

(b) Give a basis for Nul(A).

(c) Is
$$\vec{v} = \begin{bmatrix} 1 \\ 3 \\ -4 \end{bmatrix}$$
 in Col(A)? Justify.

(d) What is the dimension of Col(A).