THRESHOLDED LASSO: MONTE CARLOS.

CALLOT, CANER, KOCK, RIQUELME.

Reported statistics. This document contains the Monte Carlo results. Note S and \hat{S} be the active set and the estimated active set. The statistics reported (all averaged across iterations) are:

- MSE: mean square prediction error.
- $|\hat{S} \cap S^c|$: number of false non zero.
- $|S \cap \hat{S}^c|$: number of false zero.
- Perfect Sel. (%): the share of iterations for which we have perfect model selection.
- $\|\hat{\alpha} \alpha_0\|_1$: ℓ_1 estimation error for the parameters.
- $\|\hat{\alpha} \alpha_0\|_{\infty}$: ℓ_{∞} estimation error for the parameters.
- $\|\hat{\tau} \tau_0\|_1$: absolute threshold parameter estimation error.
- C: selected (BIC) thresholding parameter.
- $\hat{\lambda}$: selected (BIC) penalty parameter.

Rows with a white background give results for the Lasso, those with a grey background for the thresholded Lasso.

DGP, **Estimation settings**. The specifics of each DGP are detailed below the corresponding table. The global settings are described below:

- The regressors are generated by independent draws from a $X_i \sim \mathcal{N}(0, I_m)$.
- The threshold variable is generated by independent draws from a $Q_i \sim \mathcal{U}[0,1]$.
- The residuals are drawn from a $U_i \sim \mathcal{N}(0, \sigma^2)$.
- An intercept is always estimated.
- The grid we use to search for τ is [0.15, ..., 0.85] by steps of 0.05.
- The grid we use to search for C is [0.1, 0.2, ..., 5]. C is selected by BIC.

Experiments. This document contains 5 tables:

- (1) A quasi replication of Lee, Seo, and Shin, table 3. Also increasing number of zero parameters
- (2) Experiments with no jumps ($\delta = 0$).
- (3) Increasing sample size.
- (4) Different parameter scale.
- (5) Increasing number of non zero parameters.

Date: February 8, 2015.

		$\mathcal{A}_{SN_{\ell}}$	16)01(a)0/	(ag)1.2(a)c/	$^{Perfect}S_{el}$	//&	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1//02 _		
	$ au_0$	Ž	2)	5	$Q_{i}^{O'}$	16	$/\!\!/\tilde{Q}$	*	\mathbf{C}	$\hat{\lambda}$
	0.0	1.20	4.50	0.06	3	3.39	0.85	0.27	-	0.06
	0.3	1.22	0.04	0.11	86	3.29	0.85	-	1.46	-
m = 50	0.4	1.42	5.23	0.07	1	3.68	0.94	0.22	-	0.05
m = 50	0.4	1.45	0.04	0.16	81	3.55	0.94	-	1.49	-
	0.5	1.55	5.72	0.07	0	3.99	1.00	0.18	-	0.05
	0.0	1.58	0.06	0.14	82	3.85	1.01	-	1.45	-
	0.2	1.34	5.59	0.05	1	3.99	0.95	0.25	-	0.07
	0.3	1.38	0.04	0.13	85	3.86	0.95	-	1.27	-
100	0.4	1.56	6.26	0.08	0	4.29	1.03	0.22	-	0.07
m = 100	0.4	1.60	0.05	0.16	82	4.15	1.03	-	1.25	-
	0.5	1.77	7.27	0.12	0	4.77	1.10	0.19	-	0.07
	0.5	1.83	0.07	0.21	78	4.60	1.11	-	1.22	-
	0.3	1.57	7.06	0.10	0	4.65	1.06	0.25	-	0.09
		1.62	0.03	0.19	82	4.49	1.06	-	1.15	-
m = 200	0.4	1.80	8.10	0.12	0	5.04	1.14	0.22	-	0.09
m = 200	0.4	1.87	0.03	0.22	79	4.86	1.15	-	1.12	-
	0.5	2.22	9.20	0.26	0	5.82	1.27	0.18	-	0.09
	0.5	2.30	0.06	0.40	71	5.60	1.28	-	1.07	-
	0.2	1.73	8.81	0.15	0	5.38	1.16	0.26	-	0.10
	0.3	1.81	0.03	0.23	81	5.18	1.17	-	1.04	-
400	0.4	2.16	9.35	0.33	0	6.17	1.30	0.22	-	0.12
m = 400	0.4	2.26	0.04	0.47	73	5.94	1.31	-	0.98	-
	0.5	2.84	9.81	0.66	0	7.26	1.46	0.19	-	0.13
	0.5	2.96	0.03	0.91	60	7.02	1.47	-	0.90	-

Table 1. Lasso (white background) and Thresholded Lasso (grey background). Increasing number of zero parameters and 3 locations of τ_0 .

Increasing number of zeros.

- Sample size: n = 200.
- $\bullet \ \beta = [2, 2, 2, 2, 2, 0, ..., 0]$
- $\delta = [2, -2, 2, -2, 2, 0, ..., 0]$
- The length β and δ is m = 50, 100, 200, 400 so that each model has 2m + 1 parameters.
- The intercept is set to 0.
- The results are based on 1000 replications.
- $\sigma^2 = 0.25$.
- We experiment with $\tau = 0.3, 0.4, 0.5$.

	MSE	1/60)1/60)4	17(90)17(9)01	Perfect Sel	//á_a_ao//1	//¢_q0// _{\\\\}	С	λ
m = 50	0.29	1.56	0.00	23	0.60	0.16	-	0.07
	0.29	0.21	0.00	81	0.56	0.16	0.73	-
m = 100	0.30	1.56	0.00	23	0.65	0.17	-	0.08
<i>m</i> = 100	0.31	0.18	0.00	83	0.61	0.17	0.61	-
200	0.31	1.45	0.00	27	0.70	0.18	-	0.09
m = 200	0.32	0.15	0.00	86	0.66	0.18	0.53	-
	0.32	1.44	0.00	27	0.74	0.19	-	0.10
m = 400	0.33	0.12	0.00	89	0.71	0.19	0.46	-

Table 2. Lasso (white background) and Thresholded Lasso (grey background). No threshold effect ($\delta = 0$), n = 200, 4 different length of the parameter vector.

No Jumps.

- Sample size: n = 200.
- $\beta = [2, 2, 2, 2, 2, 0, ..., 0]$
- $\delta = [0, ..., 0]$
- The length β and δ is m=50,100,200,400 so that each model has 2m+1 parameters.
- The intercept is set to 0.
- \bullet The results are based on 1000 replications.
- $\tau_0 = 0.5$.
- $\sigma^2 = 0.25$.

		MSE	126901/06951	12(90)12(9)c/	Perfect Sey	//¢qo// ₁	//¢_40// _{\$}	//s5//	C	λ
	n = 50	10.04	1.83	4.92	0	14.72	1.99	0.30	-	0.58
	n = 50	10.64	0.29	5.51	0	14.66	1.99	-		-
	n = 100	3.34	7.22	1.09	0	7.92	1.51	0.27		0.15
	n = 100	3.53	0.12	1.38	45	7.63	1.51	-	1.32	-
$ au_0 = 0.3$	n = 200	1.46	5.56	0.08	1	4.07	1.00	0.25	-	0.07
$r_0 = 0.5$	n = 200	1.50	0.04	0.16	82	3.95	1.00		1.25	-
	n = 500	0.76	3.31	0.01	6	2.27	0.64	0.17		0.04
		0.76	0.01	0.02	97	2.23	0.64		0.95	-
	n = 1000	0.50	2.62	0.00	10	1.51	0.45	0.06		0.03
		0.50	0.00	0.01	98	1.49	0.45	-	0.81	-
	n = 50	8.98	1.81	4.84	0	14.56	2.00	0.21	-	0.48
		9.52	0.24	5.43	0	14.48	2.00	-	0.62	-
	n = 100	4.73	5.41	2.15	0	10.05	1.75	0.20	-	0.21
	n = 100	4.94	0.12	2.62	23	9.84	1.75	-	1.00	-
$\tau_0 = 0.5$	n = 200	1.83	7.41	0.12	0	4.83	1.14	0.18	-	0.07
$\tau_0 = 0.5$	n = 200	1.89	0.06	0.21	78	4.66	1.14	-	1.22	-
	n = 500	0.86	4.32	0.01	2	2.53	0.69	0.18	-	0.04
	n = 500	0.87	0.01	0.04	96	2.48	0.69	-	0.96	-
	n = 1000	0.55	3.27	0.00	8	1.70	0.49	0.08	-	0.03
	n = 1000	0.55	0.01	0.01	98	1.67	0.49	-	0.80	-

Table 3. Lasso (white background) and Thresholded Lasso (grey background). Increasing sample size with m = 100 and 2 locations of τ_0 .

Increasing sample size.

- Sample size: n = 50, 100, 200, 500, 1000.
- $\beta = [2, 2, 2, 2, 2, 0, ..., 0]$
- $\delta = [2, -2, 2, -2, 2, 0, ..., 0]$
- The length β and δ is m = 100 so that each model has 2m + 1 parameters.
- The intercept is set to 0.
- \bullet The results are based on 1000 replications.
- $\sigma^2 = 0.25$.

		MSE	17(4)17(40)6/	17(00)11(0)01	Porfect Sel	//àao//1	//¢qo// _{\\\\}	//*5// ₁	С	$\hat{\lambda}$
	n = 100	0.75	0.57	4.49	0	3.43	0.50	0.25	_	0.15
	70 100	0.78	0.03	5.15	0	3.45	0.50	-	0.47	-
a = 0.5	n = 200	0.57	0.50	3.21	0	2.92	0.50	0.27	-	0.10
		0.58	0.01	3.95	0	2.93	0.50	- 0.10	0.48	-
	n = 1000	0.31	2.75	0.04	9	1.37	0.32	0.10	-	0.03
		0.31	0.00	0.06	94	1.35	0.32	-	0.75	-
	n = 100	0.34	0.01	9.73	0	1.03	0.10	0.30	-	0.18
		0.34	0.00	9.78	0	1.03	0.10	-	0.12	-
a = 0.1	n = 200	0.32	0.04	8.60	0	0.94	0.10	0.34	-	0.13
u = 0.1	n = 200	0.32	0.00	8.97	0	0.95	0.10	-	0.23	-
	n = 1000	0.27	0.15	4.20	0	0.64	0.10	0.10	-	0.04
		0.27	0.00	4.80	0	0.65	0.10	-	0.39	-
	n = 100	0.50	0.41	5.50	0	2.27	0.30	0.28		0.15
		0.52	0.02	6.22	0	2.30	0.30	-	0.46	-
a = 0.3	n = 200	0.38	0.29	4.00	0	1.89	0.30	0.32	-	0.10
a = 0.0		0.39	0.01	4.56	0	1.91	0.30	-		-
	n = 1000	0.31	0.60	1.74	1	1.38	0.30	0.10	-	0.04
		0.31	0.00	2.21	5	1.38	0.30	-	0.51	-
	n = 100	1.87	1.12	3.52	0	6.31	1.00	0.22	-	- 0.15 7
	n = 1000 $n = 100$ $n = 200$	1.94	0.05	4.21	0	6.31	1.00	-	0.56	
a = 1	n = 200	1.09	3.95	1.16	0	4.46	0.86	0.21	-	0.09
a-1	11 — 200	1.12	0.04	1.54	39	4.39	0.86	-	0.88	
	n = 1000	0.34	2.98	0.00	9	1.43	0.35	0.08	-	0.03
	<i>W</i> = 1000	0.34	0.00	0.01	99	1.41	0.35	-	0.83	-
a=2	100	4.68	5.32	2.12	0	10.01	1.76	0.20	-	0.21
	n = 100	4.89	0.10	2.61	21	9.80	1.76	-	1.02	-
	n = 200	1.81	7.44	0.11	0	4.74	1.12	0.18	-	0.07
u = Z	n = 200	1.87	0.05	0.21	78	4.57	1.12	-	1.23	-
	n = 1000	0.56	3.18	0.00	7	1.70	0.49	0.07	-	0.03
	n - 1000	0.56	0.01	0.01	98	1.68	0.49	-	0.79	-

Table 4. Lasso (white background) and Thresholded Lasso (grey background). Increasing parameter scale, 3 sample sizes, $\tau_0 = 0.5$.

Varying parameter scale.

- Sample size: n = 100, 200.
- $\beta = a[1, 1, 1, 1, 1, 0, ..., 0]$
- $\delta = a[1, -1, 1, -1, 1, 0, ..., 0]$
- a = 0.5, 0.1, 0.3, 1, 2 is the scale of the non zero parameters.
- The length β and δ is m = 100 so that each model has 2m + 1 parameters.
- The intercept is set to 0.
- The results are based on 1000 replications.
- $\tau_0 = 0.5$.
- $\sigma^2 = 0.25$.

		MSE	1/6/07/60/5/	15(00)15(0)°/	Perfect Sel	//à-ao//1	//à-ao// _®	//F_7/	С	$\hat{\lambda}$
	$\tau_0 = 0.3$	0.34	0.10	0.00	90	0.36	0.25	0.25	-	0.09
	$r_0 = 0.5$	0.34	0.01	0.00	99	0.35	0.25	-	0.23	-
$m_1 - 1$	$\tau_0 = 0.4$	0.35	0.09	0.00	91	0.36	0.26	0.22	-	0.09
$m_1 = 1$	70 — 0.4	0.35	0.01	0.00	99	0.36	0.26	-	0.20	-
	$\tau_0 = 0.5$	0.36	0.10	0.00	90	0.37	0.27	0.23	-	0.09
	70 — 0.0	0.36	0.01	0.00	99	0.37	0.27	-	0.19	-
	0.0	1.84	1.11	0.19	31	2.59	0.90	0.19	-	0.08
	$\tau_0 = 0.3$	1.86	0.01	0.28	78	2.57	0.91	-	0.68	-
E	$\tau_0 = 0.4$	2.03	1.11	0.20	32	2.67	0.93	0.18	-	0.08
$m_1 = 5$		2.05	0.02	0.30	76	2.64	0.93	-	0.63	-
	$\tau_0 = 0.5$	2.05	1.01	0.16	35	2.57	0.91	0.17	-	0.08
		2.06	0.02	0.27	79	2.55	0.91	-	0.61	-
	- 0.2	5.08	2.85	0.81	5	6.54	1.36	0.19	-	0.08
	$\tau_0 = 0.3$	5.12	0.06	1.06	51	6.48	1.36	-	1.09	-
m - 10	-0.4	4.84	2.68	0.66	7	6.17	1.28	0.18	-	0.08
$m_1 = 10$	$\tau_0 = 0.4$	4.88	0.05	0.89	57	6.11	1.28	-	1.01	-
	$\tau_0 = 0.5$	5.05	2.56	0.65	7	6.10	1.25	0.18	-	0.08
	$r_0 = 0.5$	5.09	0.04	0.90	59	6.05	1.25	-	0.95	-
	0.2	19.93	9.92	4.35	0	23.72	1.87	0.20	-	0.07
05	$\tau_0 = 0.3$	20.27	0.31	5.56	10	23.45	1.88	-	2.45	-
	-0.4	19.13	10.32	3.56	0	22.76	1.88	0.20	-	0.07
$m_1 - 25$	$\tau_0 = 0.4$	19.48	0.30	4.63	11	22.46	1.88	-	2.31	-
	$\tau_0 = 0.5$	18.32	9.90	3.05	0	21.53	1.75	0.23	-	0.07
	70 = 0.3	18.62	0.30	3.94	19	21.25	1.75		2.09	-

TABLE 5. Lasso (white background) and Thresholded Lasso (grey background). Increasing number of non zero parameters (m_1) , fixed number of zeros $(m_0 = 100)$, and 3 locations of τ_0 .

Varying number of non zero parameters.

- Sample size: n = 200.
- $\beta = [2, ..., 2, 0, ..., 0]$
- $\delta = [2, ..., 2, 0, ..., 0]$
- β and δ contain both $m_0=100$ parameters equal to zero.
- β and δ contain both $m_1 = 1, 5, 10, 50$ parameters equal to one.
- The length β and δ is $m = m_0 + m_1$ so that each model has 2m + 1 parameters.
- The intercept is set to 0.
- The results are based on 1000 replications.
- $\sigma^2 = 0.25$.