DISCIPLINE SPECIFIC CORE COURSE - 14 (DSC-14): Nucleic Acids, Amino Acids, Proteins and Enzymes

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title &	Credits	Credit distribution of the course			Eligibility	Pre-requisite
Code		Lecture	Tutorial	Practical/	criteria	of the course
				Practice		(if any)
Nucleic Acids,	04	02		02	Class 12 th	
Amino Acids,					with	
Proteins and					Physics,	
Enzymes					Chemistry	
(DSC-14,						
Organic						
Chemistry- V)						

Learning Objectives

The objectives of this course are as follows:

- To familiarize students with the fascinating chemistry and biology of biomolecules, *i.e.*, nucleic acids and proteins etc..
- To develop the interest of students in the basic concepts of heredity, which are imparted through replication, transcription, and translation processes.
- To discuss basic fundamentals of enzyme action and inhibition, which forms the basis of drug action.

Learning outcomes

By studying this course, the students will be able to:

- Demonstrate how structure of biomolecules determines their reactivity and biological role.
- Gain insight into concepts of heredity through the study of genetic code, replication, transcription, and translation
- Demonstrate basic understanding of enzyme action and role of inhibitors
- Use knowledge gained to solve real world problems.

SYLLABUS OF DSC-14

Unit-1: Nucleic Acids (Hours: 8)

Structure of components of nucleic acids: Bases, Sugars, Nucleosides and Nucleotides. Nomenclature of nucleosides and nucleotides, structure of polynucleotides (DNA and RNA) and factors stabilizing them, biological roles of DNA and RNA; Concept of heredity: Genetic Code, Replication, Transcription and Translation.

Unit-2: Amino Acids, Peptides and Proteins

Amino acids and their classification; α-amino acids - Synthesis, ionic properties, and reactions. zwitterions, pKa values, isoelectric point, and electrophoresis; Study of peptides: determination of their primary structure-end group analysis; Synthesis of peptides using N-protecting, C-protecting and C-activating groups, Solid-phase synthesis; Overview of primary, secondary and tertiary structures of proteins, protein denaturation.

(Hours: 14)

Unit-3: Enzymes (Hours: 8)

Introduction, classification, and characteristics of enzymes. Salient features of active site of enzymes. Mechanism of enzyme action (taking trypsin as an example), factors affecting enzyme action, coenzymes, and cofactors (including ATP, NAD, FAD), specificity of enzyme action (including stereospecificity). Enzyme inhibitors and their importance, phenomenon of inhibition (competitive, uncompetitive, and non-competitive inhibition including allosteric inhibition).

Practical component

Practical: Credits: 02

(Laboratory periods: 15 classes of 4 hours each)

- 1. Study of the titration curve of glycine.
- 2. Estimation of glycine by Sorenson Formol Titration
- 3. Qualitative analysis of proteins- Ninhydrin test, Biuret test, Millon's reagent test, Xanthoproteic test.
- 4. Estimation of proteins by Lowry's method.
- 5. Study of the action of salivary amylase on starch at room temperature.
- 6. Effect of temperature on the action of salivary amylase.
- 7. Effect of pH on the action of salivary amylase
- 8. Study the inhibition of α -Amylase by copper sulphate
- 9. Isolation and estimation of DNA using cauliflower/onion.

Essential/recommended readings

Theory:

- 1. Berg, J.M., Tymoczko, J.L., Stryer, L. (2019), **Biochemistry**, Nineth Edition W.H. Freeman and Co.
- 2. Nelson, D.L., Cox, M.M., Lehninger, A.L. (2017), **Principles of Biochemistry**. W.H. Freeman and Co., International Edition.
- 3. Murray, R.K., Granner, D.K., Mayes, P.A., Rodwell, V.W. (2009), **Harper's Illustrated Biochemistry**. Lange Medical Books/McGraw-Hill.
- 4. Brown, T.A. (2018), **Biochemistry**, (First Indian Edition) Viva Books.
- 5. Kuashik, S., Singh, A. (2023), **Biomolecules: From Genes to Proteins**, First Edition, Berlin, Boston: De Gruyter.
- 6. Voet, D., Voet, J.G. (2010), **Biochemistry**, Fourth Edition, Wiley.

7. Singh J, Awasthi S K, Singh J, **Fundamentals of Organic Chemistry**, Pragati Prakashan Meerut.

Additional Resources:

- 1. Finar, I.L. (2008), Organic Chemistry, Volume 2, Fifth Edition, Pearson Education.
- 2. Bruice, P.Y. (2020), Organic Chemistry, Egighth Edition, Pearson Education.

Practicals:

- 1. **Manual of Biochemistry Workshop** (2012), Department of Chemistry, University of Delhi
- 2. Kumar, A., Garg, S., Garg, N. (2015), **Biochemical Tests: Principles and Protocols**. Viva Books.
- 3. Pasricha, S., Chaudhary, A. (2021), **Practical Organic Chemistry: Volume–II**, I K International Publishing house Pvt. Ltd, New Delhi

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.