IN THE CLAIMS

-2- 00175927

- 75. (Previously Presented) The substrate structure according to claim 74, wherein said basic substrate comprises a glass substrate.
- 76. (Previously Presented) The substrate structure according to claim 75, wherein said glass substrate is covered with a conductive layer or an electrode arrangement.
- 77. (Previously Presented) The substrate structure according to claim 76, wherein said at least one alignment layer is a polymeric alignment layer.
- 78. (Previously Presented) The substrate structure according to 76, wherein said at least one alignment layer is a polyimide.
- 79. (Previously Presented) The substrate structure according to claim 78, wherein said polyimide is represented by the following repeat unit:

$$- \underset{0}{\stackrel{\circ}{\bigvee}} CH_{\overline{2}}$$

- 80. (Previously Presented) The substrate structure according to claim 74, wherein said liquid crystal material is 4-Octyl-4-biphenyl carbonitrile and/or 4-Pentyl-4-biphenyl carbonitrile.
- 81. (Previously Presented) The substrate structure according to claim 74, wherein said at least one alignment layer has a thickness from 10 to 200 nm.

-3-

00175927

- 82. (Previously Presented) The substrate structure according to claim 74, wherein said at least one alignment layer has a thickness of about 100 nm.
- 83. (Previously Presented) The substrate structure according to claim 74, wherein said liquid crystal material has a thickness from 10 to 150 nm.
- 84. (Previously Presented) The substrate structure according to claim 74, wherein said liquid crystal material has a thickness of about 100 nm.
- 85. (Previously Presented) The substrate structure according to claim 74, wherein that said polymeric material has at least one azobenzene chromophore covalently attached thereto.
- 86. (Previously Presented) Substrate structure according to claim 85, wherein said azobenzene chromophore is represented by the formula:

$$R \longrightarrow N=N \longrightarrow O \longrightarrow (CH_2)_n$$

wherein R is selected from the group consisting of CN, NO₂, OCH₃, H, CH₃, (CH₂)₃CH₃, F, Cl, Br, CF₃, C₆H₅, O(CH₂)₂OCH₃ and (CH₂)₅CH₃, and wherein n is selected from the range: $0 \le n \le 12$.

87. (Previously Presented) The substrate structure according to claim 74, wherein said polyester is a side chain liquid-crystalline polyester.

-4-

00175927

- 88. (Previously Presented) The substrate structure according to claim 87, wherein said side chain liquid-crystalline polyester is an azobenzene side chain liquid-crystalline polyester.
- 89. (Previously Presented) The substrate structure according to claim 88, wherein said azobenzene side chain liquid-crystalline polyester is a Pxnm-polyester selected from the group consisting of P6a12, P6a10, P8a10, P10a10, P8a12 and P10a12, wherein x is a para-substituent, n is the number of methylene groups in a flexible side chain spacer and m is the number of methylene groups in an acidic part of a main chain.
- 90. (Previously Presented) The substrate structure according to claim 74, wherein said polypeptide is selected from the group consisting of polyglutamate, polyproline and polyornithine.
- 91. (Previously Presented) The substrate structure according to claim 90, wherein said polypeptide is selected from the group consisting of:

wherein X is selected from the group consisting of NH and O, the azobenzene chromophore is defined as in claim 86, and wherein k, n and 1 are selected from the range: $1 \le (k \text{ or } 1 \text{ or } n) \le 500$.

92. (Previously Presented) The substrate structure according to claim 74, wherein said polyacrylamide is selected from the group consisting of:

-6-

00175927

wherein x is selected from the range: $0.2 \le x \le 1$, y is selected from the range: $0.1 \le y \le 1$, z is selected from the range: $0.005 \le z \le 0.025$, and x + y + z = 1 for all combinations of x. y and z.

93. (Previously Presented) The substrate structure according to claim 74, wherein said polyvinyl alcohol is selected from the group consisting of:

$$\begin{array}{c|c} - CH & - CH & - CH \\ \hline \\ OH & O \\ \hline \\ C=O \\ \hline \\ (CH_2)_{10} \\ \hline \\ O \\ \hline \\ (CH_2)_5 \\ \hline \\ (CH_3)_5 \\ \hline \\ CH_3 \end{array}$$

wherein x is selected from the range: $0.2 \le x \le 0.6$.

- 94. (Previously Presented) The substrate structure according to claim 74, wherein said combined alignment layer comprises at least one type of azosilane.
- 95. (Previously Presented) The substrate structure according to claim 94, wherein said at least one type of azosilane is of the formula:

wherein R is selected from the group consisting of CN, NO₂, OCH₃, H, CH₃, (CH₂)₃CH₃, F, Cl, Br, CF₃, C₆H₅, O(CH₂)₂OCH₃ and (CH₂)₅CH₃.

- 96. (Previously Presented) The substrate structure according to claim 74, wherein said combined alignment layer has a thickness of 20 nm to 350 nm.
- 97. (Previously Presented) The substrate structure according to claim 74, wherein said combined alignment layer has a thickness of 200 nm.