Assignment 14

Kotikalapudi Karthik (CS21BTECH11030)

June 13, 2022

Outline

- Question
- Chi Square Test
- Chi Square Test Proof
- Solution

Question

Probability, Random Variables and Stochastic Processes Chapter 8, Problem 8-31

A die is tossed 102 times, and the i^{th} face shows $k_i = 18, 15, 19, 17, 13$, and 20 times. Test the hypothesis that the die is fair with $\alpha = 0.05$ using the chi-square test

Chi Square Test

Let the total number of trails be n. In this test we a introduce a sum **q** known as *Pearson's test static*.

$$\mathbf{q} = \sum_{i=1}^{m} \frac{(k_i - np_{0i})^2}{np_{0i}}$$
 (1)

where.

$$k_i$$
 = Observed value for the event i (2)

$$p_{0i} =$$
Expected probability of the event i (3)

If this sum **q** is less than $\chi^2_{1-\alpha}$ (m-1), where α is significance level, we can accept the hypothesis.

Chi Square Test

let p_i denote observed probability of the event i.

We know that,

The ratio, $\frac{k_i}{n} \to p_{0i}$ as $n \to \infty$

From this, $|k_i - np_{0i}|$ is small if $p_i = p_{0i}$ and increases as $|p_i - p_{0i}|$ increases.

This justifies the use of random variable \mathbf{q} and the set q > c as critical region of the test.

For large value of n, **q** has χ^2 distribution.

Because of the constraint $\sum p_{0i} = 1$, the distribution of **q** has only m-1 degrees of freedom.

 \implies **q** has χ^2 (m-1) distribution.

If X is a random variable having χ^2 distribution with n degrees of freedom, then $\chi^2_{1-\alpha}(n)$ can be calculated by $\Pr(X \ge \chi^2_{1-\alpha}(n)) = \alpha$

Therefore, if this sum **q** is less than $\chi^2_{1-\alpha}$ (m-1), we can accept the hypothesis.

Solution

Let's denote the random variable $X_1 = \{1, 2, 3, 4, 5, 6\}$ where each $X_1 = i$ denote that i appeared on top of the die theoretically.

Let's denote the random variable $X_2 = \{1, 2, 3, 4, 5, 6\}$ where each $X_2 = i$ denote that i appeared on top of the die in the given case.

Here no. of times die was thrown(n) = 102

We know that the sum,

$$\mathbf{q} = \sum_{i=1}^{6} \frac{(n \Pr(X_2 = i) - n \Pr(X_1 = i))^2}{n \Pr(X_1 = i)}$$
(4)

Here,
$$\Pr(X_1 = i) = \frac{1}{6}, \forall i \in \{1, 2, 3, 4, 5, 6\}$$
 (5)

$$\implies \mathbf{q} = \sum_{i=1}^{6} \frac{(6 \times \Pr(X_2 = i) - 17)^2}{17}$$
 (6)

$$=\frac{1+4+4+0+16+9}{17}=2\tag{7}$$

Solution

If the die is fair,

$$\mathbf{q} < \chi_{1-\alpha}^2(6-1) \tag{8}$$

$$\implies \mathbf{q} < \chi^2_{0.95}(5) \tag{9}$$

The value of
$$\chi^2_{0.95}(5) = 11.07$$
 (10)

Clearly,
$$\mathbf{q} < 11.07$$
 (11)

Therefore, we can accept that the die is fair.

