Introduction

CSC 535/635

Other Names

- Knowledge Discovery in Databases (KDD)
- Exploratory data analysis
- Deductive Learning

Data Mining vs. Knowledge Discovery

- Data mining is an important part of knowledge discovery in databases (KDD)
- KDD is the overall process of converting raw data into useful information

The Process of KDD

What is data mining?

- Data mining is
 - extraction of useful patterns from large volumes of data
- Data mining is the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data [Fayyad, Piatetsky-Shapiro, Smyth, 96]

What is (not) Data Mining?

- What is not Data Mining?
 - Look up phone number in phone directory
 - Query a Web search engine for information about "Amazon"

What is Data Mining?

- Certain names are more prevalent in certain US locations (O'Brien, O'Rurke, O'Reilly... in Boston area)
- Group together similar documents returned by search engine according to their context (e.g. Amazon rainforest, Amazon.com,)

Why data mining?

- The data is abundant (big data)
- The computing power is not an issue
- Data mining tools are available
- The competitive pressure is very strong
 - almost every company is doing (or has to do) it
- Data mining may help scientists

Why is data mining necessary? – Motivation for Mining Large Data Sets

- Make use of your data assets
- There is a big gap from stored data to knowledge; and the transition won't occur automatically
- Many interesting things that one wants to find cannot be found using traditional techniques
 - "Find people likely to buy my products"
 - "Who are likely to respond to my promotion"
 - "Which movies should be recommended to each customer?"
- Solution: Data Mining

Related fields

- Data mining is a multi-disciplinary field:
 - Machine learning, Pattern recognition, Al
 - Statistics
 - Databases
 - Information retrieval
 - Visualization
 - Natural language processing
 - etc.

Data mining (KDD) process

- Understand the application domain
- Identify data sources and select target data
- Pre-processing: cleaning, attribute selection, etc.
- Data mining to extract patterns or models
- Post-processing: identifying interesting or useful patterns/knowledge
- Incorporate patterns/knowledge in real world tasks

Data mining applications

- Marketing
- Customer profiling and retention
- Market segmentation
- Engineering: identify causes of problems in products
- Scientific data analysis, e.g., bioinformatics
- Fraud detection
- Text and web mining
- Any application that involves a large amount of data ...

Challenges of Data Mining

- Scalability (huge amounts of data)
- Dimensionality (hundreds or thousands of attributes)
- Complex and Heterogeneous (different domains)
 Data
- Data Quality (missing values, uncertain data)
- Data Ownership and Distribution
- Privacy Preservation

Data Mining Tasks

Data mining tasks are usually divided into two major categories

- Predictive Methods
 - Use some variables to predict unknown or future values of other variables. (classification)
- Descriptive Methods
 - Find human-interpretable patterns that describe the data. (clustering, association rules)

Data Mining Tasks

Classification: Definition

- Given a collection of records (training set)
 - Each record contains a set of attributes, one of the attributes is the class.
- Find a model for class attribute as a function of the values of other attributes.
- Goal: <u>previously unseen</u> records should be assigned a class as accurately as possible.
 - A test set is used to determine the accuracy of the model.

Classification Example

categorical categorical continuous

				<u> </u>
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Clustering Definition

- Given a set of data points, each having a set of attributes, and a similarity measure among them, find clusters such that
 - Data points in one cluster are more similar to one another.
 - Data points in separate clusters are less similar to one another.
- Similarity Measures:
 - Euclidean Distance if attributes are continuous.
 - Other Problem-specific Measures.

Illustrating Clustering

Euclidean Distance Based Clustering in 3-D space.

Intracluster distances are minimized

Intercluster distances are maximized

Association Rule Discovery: Definition

- Given a set of records each of which contain some number of items from a given collection;
 - Produce dependency rules which will predict occurrence of an item based on occurrences of other items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

```
Rules Discovered:
{Milk} --> {Coke}
{Diaper, Milk} --> {Beer}
```

Association Rule Discovery: Application

- Marketing and Sales Promotion:
 - Let the rule discovered be

```
{Bagels, ...} --> {Potato Chips}
```

- Potato Chips as consequent => Can be used to determine what should be done to boost its sales.
- Bagels in the antecedent => Can be used to see which products would be affected if the store discontinues selling bagels.
- Bagels in antecedent and Potato chips in consequent
 Can be used to see what products should be sold with Bagels to promote sale of Potato chips!

Supervised and Unsupervised Learning

- Supervised: classification
- Unsupervised: clustering
- Semi-supervised

Data Mining Resources

- ACM SIGKDD: http://www.kdd.org
 - ACM Special Interest Group on Knowledge Discovery and Data Mining
- Kdnuggets: http://www.kdnuggets.com/
 - News and resources.
- Data mining related conferences
 - Data mining: KDD, ICDM, SDM, ...
 - AI: ICML, NIPS, AAAI, IJCAI, ACL, ...
 - Databases: SIGMOD, VLDB, ICDE, ...
 - Web: WWW, WSDM, ...
 - Information retrieval: SIGIR, CIKM, ...