GRAFOS

Qué es un grafo?

Está compuesto por:

Un conjunto de nodos (vértices).

Un conjunto de enlaces (aristas) que unen a los nodos de diversas formas.

Si dos nodos son los extremos de un enlace se dice que son nodos adyacentes.

GRAFO

Grafo Etiquetado

Grafo donde cada enlace tiene asociado una etiqueta, ya sea un símbolo o un número.

Clasificación de los grafos.

Pesos (etiquetados)

- Vértices
- Aristas

Aristas

Dirigidos vs. no dirigidos

Conectividad

Conexos vs. no conexos

Etiquetados especiales

- Simples
- Completos

Multigrafos

 Múltiples aristas entre dos vértices

Ciclos

- Árboles y bosques
- Dirigidos sin ciclos (DAG)

Pesos

ARISTAS

NO DIRIGIDO

Conectividad

NO CONEXO
DOS **COMPONENTES CONEXOS**

Grado: el grado de un vértice es el número de aristas incidentes al vértice.

CONEXO: κ (G)=1

CONEXO: $\kappa(G)=?$

CONEXO: κ (G)=2

CONEXO: κ (G)=?

Multigrafos

Grafos con mas de una arista entre dos vértices

Especiales: simple

No dirigido

Sin lazos

Sin pesos

No es un multigrafo

Especiales: completos

• K_n: Simples con todos los vértices

Ciclos

Árbol: Grafo no dirigido tal que dos vértices cualesquiera están conectados por un camino simple.

Bosque: Unión disjunta de árboles.

Ciclo: Camino en que coinciden el primero y ultimo vértice.

Ciclo dirigido: Ciclo en grafo dirigido coherente con el sentido de las aristas.

DAG: Directed Acyclic Graph, un grafo dirigido sin ciclos.

Grafos

ARBOL

Entre cada par de nodos existe un único camino.

Nodo Raíz: nodo desde el que parten todos los caminos.

Nodo Interno: nodo intermedio de un camino.

Nodo Hoja: nodo donde termina un camino.

Frontera: conjunto de todos los nodos hoja de un árbol.

Jerarquía dentro de un árbol

Nodos Hijos: nodos destino de los enlaces que parten de un nodo.

- Ramificación: número de hijos de un nodo.
- Expandir Nodo: crear y asignar nodos hijos.

Nodo Padre: nodo origen del enlace que llega hasta un nodo.

Nodos Ascendentes: todos los nodos que hay desde un nodo hasta el nodo raíz.

Nodos Descendentes: todos los nodos que hay desde un nodo hasta sus nodos hojas.

EJEMPLO DE ÁRBOL

REPRESENTACIÓN DE GRAFOS

Matriz de Adyacencia:

Para representar los grafos a menudo se utiliza la llamada matriz de adyacencia Se construye imaginando que en las filas y las columnas corresponden a los vértices. Se pone un 0 para indicar que 2 vértices no son adyacentes, y un 1 para indicar que sí lo son:

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Matriz de Adyacencia de G

Para representarla en un ordenador se utilizan matriz de valores lógicos (*booleanos*). True

→ hay arista, False → no hay arista

REPRESENTACIÓN DE GRAFOS

Matriz de Incidencias:

Está representado por una matriz de V (vértices) por A (aristas)

