Main idea

• Define action a to be $Q^{(2)}[r^{(1)}]$ as a function of the response $r^{(1)}$

Define loss function

Using Bayes risk lower bounds, argue that loss is close to 1 in expectation

• Second round query doesn't have a large information about (u, v) as well

Induct using Bayes risk

 $L((u, v), Q^{(2)}[r^{(1)}]) = 1[\|Q^{(2)}[r^{(1)}] \cdot (u \otimes v)\|_2^2 < \text{some value}]$

Main idea

- Define action a to be $Q^{(2)}[r^{(1)}]$ as a function of the response $r^{(1)}$
- Define loss function

$$L((u, v), Q^{(2)}[r^{(1)}]) = 1[||Q^{(2)}[r^{(1)}] \cdot (u \otimes v)||_2^2 < \text{some value}]$$

- Using Bayes risk lower bounds, argue that loss is close to 1 in expectation
- Second round query doesn't have a large information about (u, v) as well
 - Induct using Bayes risk

Next Steps