Torsion Balances

M.P.Ross for the Eöt-Wash Group

April 29, 2021

Contents

1	His	tory	2	
2	Intr	oduction 2		
	2.1	Simple Torsion Pendulum	2	
	2.2	Equation of Motion	2	
3	Mechanics			
	3.1	Torque Sensing	2	
	3.2	Inertial Sensing	2	
	3.3	Fiber Mechanics	2	
	3.4	Pendulum Design	2	
4	Noise Sources and Mitigation 2			
	4.1	Thermal Noise	2	
	4.2	Seismic Motion	2	
	4.3	Electrostatic Couplings	2	
	4.4	Magnetic Noise	2	
	4.5	Gas Damping	$\overline{2}$	
	4.6	Gravity Gradients	2	
5	Case Study Experiments 2			
	5.1	Inverse Square Law	2	
	5.2	Equivalence Principle	2	
	5.3	Gravitational Wave Detection	2	

- 1 History
- 2 Introduction
- 2.1 Simple Torsion Pendulum
- 2.2 Equation of Motion
- 3 Mechanics
- 3.1 Torque Sensing
- 3.2 Inertial Sensing
- 3.3 Fiber Mechanics
- 3.4 Pendulum Design
- 4 Noise Sources and Mitigation
- 4.1 Thermal Noise
- 4.2 Seismic Motion
- 4.3 Electrostatic Couplings
- 4.4 Magnetic Noise
- 4.5 Gas Damping
- 4.6 Gravity Gradients
- 5 Case Study Experiments
- 5.1 Inverse Square Law
- 5.2 Equivalence Principle
- 5.3 Gravitational Wave Detection