Bertini smoothness theorem over Fa X < P over Fq Smooth of dim m quasi-proj. subscheme $P := \{ f \in S_{homog} \circ H_f \cap X \text{ is smooth of dim m-1} \}$ Then $\mu(P) = \sum_{x} (m+1)^{-1}$.

Proof of theorem for $X = A^2$ in P^2 : Identify $f \in S_{homog}$ with $f \in F_q[x,y]$ $f \in F(1,x,y) \in F_q[x,y]$ f∈P ⇒ H_f is smooth [of dim 1] of each closed pt. P6A² For each P, H_f is smooth at $P \iff f(P), \frac{\partial f}{\partial x}(P), \frac{\partial f}{\partial y}(P)$ in X(P) = F deg P

Prob (H_f is smooth at P) = $1 - \frac{1}{\sqrt{3 \deg P}}$.. Prob(H₄ is smooth at all $P \in A^2$) = TI ($I - \frac{1}{\sqrt{3 \deg P}}$) $= \int_{\mathbb{A}^2} (3)^{-1}.$

Medium May Low degree $P_r := \{ f \in S_{homog} : H_f \text{ is smooth at } P \in A^2 \text{ of } deg \leq r \}$ Lemma $\mu(P_r) = \prod_{P \in A^2} \left(1 - \frac{1}{q^3 \text{deg } P}\right)$. deg Psr mp = Fq[x,y] Max. ideal corresponding to P

I:= TT mp

degP≤r Fe Sol belongs to Pr ⇒ the image of f under

Fa[x,y] < 1 → Fa[x,y]

Fa[x,y] The [xy]

deg PSr mp

is nonzero in each factor Ø is surjective if d is large.

How large? Let $V_d := im \phi_d$. Then V1+1 = V1 + x V2 + y V2 V₀ ⊊ V₁ ⊊ ···· ⊋ V_{D+1} =···· D < dim Fq [x,y] is surjective for $d \ge d_{1m} + 1$

. . .

2) <u>Medium degree</u> $Q_r := \bigcup \{ f \in S_d : \exists P \text{ with } r < deg P \leq \frac{d}{3} \}$ of which H_f is not smooth) Lemma: $\overline{\mu}(Q_r) \rightarrow 0$ as $r \rightarrow \infty$.

Proof: $\overline{F_q[x,y]} \leq J$ \longrightarrow $\overline{F_p[x,y]}$ since $J_{23} deg^{p}$ So $\overline{\mu}(Q_r) \leq \frac{1}{\ln \sup} = \frac{1}{3 \operatorname{deg} p}$

Lemma Z = A dim Z=1 # $\{f \in \mathbb{F}_2[x,y] \leq J : f_2=0\}$ # Falxy] < 1 Choose 10 9 coordinate, say x, such that x is nonconstant on 7. functions & Z O DNum. -> Fq[x,y] <d $1, x, x^2, x^3, \dots, x^d$

(3) High degree

$$R = \bigcup \{f \in S_j : \exists P \text{ with } deg P > \frac{d}{3} \}$$

Lemma: $\mu(g_R) = 0$.

Proof: $f := f_0 + g_1^p \times + g_2^p y + h^p$

for random f_0, g_1, g_2, h^p

of degrees $\leq d, \leq d-1, \leq d-1, \leq d$

Then $\frac{\partial f}{\partial x} = \frac{\partial f_0}{\partial x} + g_1^p$
 $\frac{\partial f}{\partial y} = \frac{\partial f_0}{\partial y} + g_2^p$

Given for there is at most one go such that if =0. (i) Prob (conditioned on a choice of f.

That g. is such that $\lim_{h \to \infty} \left\{ \frac{\partial f}{\partial x} = 0 \right\} \leq 1$ That h is such that $\begin{cases}
f = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0
\end{cases}$ has no pts. of deg > $\frac{\partial}{\partial y}$ $\begin{cases}
f = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0
\end{cases}$ fails $\Rightarrow \frac{\partial f_0}{\partial y} + g_2^T$ vanishes on some comp.

End of proof:

$$P = G_r \longrightarrow R$$

As $r \rightarrow \infty$

$$\mu(G_r) \longrightarrow 5_{\mathbb{A}^2}(3)^{-1}$$

$$\mu(Q_r) \longrightarrow 0$$

$$\mu(R) \longrightarrow 0$$

$$\mu(R) \longrightarrow 0$$

$$So \quad \mu(P) = 5_{\mathbb{A}^2}(3)^{-1}$$

Applications Variants 1) same thm., but prescrible Taylor coefficients
of finitely many P (2) Space-filling curves: Given nice X/Fq of dim21, I nice curve Y = X passing through all pts. in X(Fg). (3) Ab. vars. as quotients of Jacobians Given A/Fa of dim >1,

Jacx > A

Jacx > A

Jacx > A

St. Jacx > A

is surjective. Proof: Find X passing through all e-torsion pts. of A.

Then in (JacX -> A) has e 2-torsion pts. Nghi Nguyen's thesis: Whitney embedding theorem / Fq. X nice whe /Fa Then 3 closed immersion X > PB for each cell # closed pts. of deg e on X <# - P3