

Prof.José Claudio

jcsousa@cruzeirodosul.edu.br

Hieraquia de Chomsky

É uma classificação de gramáticas formais (e das linguagens que elas geram) em **quatro níveis**, do mais restritivo (Tipo 3) ao mais geral (Tipo 0). Cada nível tem regras específicas para suas produções e um tipo de autômato correspondente que reconhece a linguagem.

Hieraquía de Chomsky

Hieraquia de Chomsky

É uma classificação de gramáticas formais (e das linguagens que elas geram) em **quatro níveis**, do mais restritivo (Tipo 3) ao mais geral (Tipo 0). Cada nível tem regras específicas para suas produções e um tipo de autômato correspondente que reconhece a linguagem.

Hieraquia de Chomsky

Tipo 3: Gramáticas Regulares

Formato das Produções:

 $A \rightarrow aB$ ou $A \rightarrow a$ (lineares à direita)

 $A \rightarrow Ba$ ou, $A \rightarrow a$ (lineares à esquerda)

Onde A,B são não-terminais e aa é terminal.

Linguagem Gerada: Linguagens Regulares.

Reconhecedor: Autômatos Finitos (AFD ou AFN).

Exemplo: Palavras com número par de 'a's: $S \rightarrow aA \mid \epsilon A \rightarrow aS$

Hieraquia de Chomsky

2. Tipo 2: Gramáticas Livres de Contexto

Formato das Produções:

 $A \rightarrow \gamma$

Onde A é não-terminal e γ é uma cadeia de terminais e não-terminais.

Linguagem Gerada: Linguagens Livres de Contexto.

Reconhecedor: Autômatos com Pilha (AP).

Exemplo: anbn*anbn*: $S \rightarrow aSb | \epsilon$.

Hieraquia de Chomsky

Tipo 1: Gramáticas Sensíveis ao Contexto

Formato das Produções:

 $\alpha A\beta \rightarrow \alpha \gamma \beta$

Onde A é não-terminal, $\gamma \neq \epsilon$, e α , β são contextos que não podem ser alterados.

Linguagem Gerada: Linguagens Sensíveis ao Contexto.

Reconhecedor: Autômatos Linearmente Limitados (ALL).

Exemplo: $a^nb^nc^n$: $S \rightarrow aSBC \mid abcS \rightarrow aSBC \mid abc$, $CB \rightarrow BCCB \rightarrow BC$, $bB \rightarrow bbbB \rightarrow bb$, $cC \rightarrow cccC \rightarrow cc$.

Hieraquia de Chomsky

Tipo 0: Gramáticas com Estruturas de Frase (Irrestritas)

Formato das Produções:

 $\alpha \rightarrow \beta$

Onde α e β são cadeias arbitrárias, com $\alpha \neq \epsilon$.

Linguagem Gerada: Linguagens Recursivamente Enumeráveis.

Reconhecedor: Máquinas de Turing (MT).

Exemplo: Qualquer linguagem computável (ex.: problema da parada).

A IMPORTÂNCIA DA HIERARQUIA

- Define limites computacionais: problemas diferentes exigem modelos diferentes.
- Compiladores: usam gramáticas Livres de Contexto para análise sintática.
- Verificação de protocolos: usam Linguagens Regulares.
- Inteligência Artificial: modelos mais complexos (como MT) são usados para problemas gerais.

Autômato Finito Determinístico (AFD)

Formalmente, um Autômato Finito Determinístico (AFD) é uma 5-tupla ordenada:

$$M = (\Sigma, Q, \delta, q_0, F)$$

onde,

Σ é o alfabeto de entrada

Q é o conjunto finito de estados possíveis do autômato

δ é uma função programa, também chamada de função transição. Por exemplo, vamos supor que a função programa é definida para um estado p e um símbolo a, resultando no estado q, então temos;

$$\delta(p,a) = q$$

Autômato para Gramática Regular

Computação de Autômatos Finito

O autômato M₁ é representado pelo diagrama a seguir:

Gram Reg, G

Exercícios

Validar se as 5 palavras são aceitas pelo autômato

- 1. abbababab
- 2. bababbaaba
- 3. ababaabbab
- 4. ababaabbab
- 5. aabbababaa

Material - Prof. Dr. Cleber Silva