SOLUGONARIO EXAMEN PARCIAL ESTADÍSTICA Y PROBABILIDADES CICLO 2020-II.

1) Título: Ingreso de ing. industriales en Lima

It	Xt	ft	Fi	hi %	Hi%-
[560-640)	600	30	30	15%	15%
[640 - 720)	680	12	42	6%	21%
[720 - 800)	760	56	98	28%	49%.
[80- 480)	840	60	158	30%	79%
[880-960>	920	12	170	6%	85%
[960 - 1040)	1000	30	200	15%	100%
Total.		η=200		100%	

Frente: RR. 44.

El estudio es principalmente discriptivo.

c) Comparando por dispersión relativa.

$$CV_1 = \frac{121.05}{900.8} \times 100 = 15.11 \%. \quad (Industriroles)$$

$$CV_2 = \frac{280}{1200} \times 100 = 23.33\%. \quad (sistemas)$$

El ingreso de ing. industricales es mas homogenio que el ingreso de los ing de sistema. Esto indica que hay una dispersión mayor en los ingresos de los ing. de sistemas.

(2) a).
$$\eta(\Omega) = 6 \times 6 \times 6 = 216$$

b)
$$CR_3^6 = C_3^{6+3-1} = C_3^8 = 56$$
.

(3). A).
$$\frac{1}{61 | 62 | 63 | 64 | 65 |}$$
 $m(\Omega) = 56$
 $\Rightarrow P = \frac{5}{56} = \frac{1}{54}$

B) .

D).
$$G_1 G_2 G_3 G_4 G_5 \Rightarrow p = \frac{4^6}{5^6}$$

E2: éxito moderado M: mala waluación. E3: Mayor éxito

b).
$$C_2^4 P(E_3/B)^2 P(E_3/M)^2$$

= $6 \times (0.3617) \cdot (0.00269)$
= 0.006161

c)
$$\rho(E_{10}E_{2}/M)$$

= $\rho(E_{1}/M) + \rho(E_{2}/M)$
= 0.94805.

Sea: D: pego anticipado de decida

P: expansión de capacidad de productividad.

· Otra forma :

$$P = C_2^3 P(P/D)^2 P(P'/D)$$

$$= C_2^3 (0.26)^2 (0.74)$$

$$= 0.150072 = 15.0072^4$$

$$\Rightarrow p = \frac{C_1^{44} \times C_2^{16}}{C_3^{60}} = \frac{15.42^{1/3}}{100}$$