Student: Phong Vo Date: 02/06/18

Instructor: Chuck Ormsby

Course: Multi-Variable and Vector Calculus -- Calculus III Spring 2018

Assignment: Section 12.3 Homework

Define the dot product of **u** and **v** in terms of their magnitudes and the angle between them.

Choose the correct answer below.

- $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}_1 \cdot \mathbf{v}_1 + \mathbf{u}_2 \cdot \mathbf{v}_2 + \mathbf{u}_3 \cdot \mathbf{v}_3$
- $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$
- $u \cdot v = |u| \cos \theta \left(\frac{v}{|v|}\right)$
- Define the dot product of **u** and **v** in terms of the components of the vectors.

Choose the correct answer below.

- $u \cdot v = |u| \cos \theta \left(\frac{v}{|v|}\right)$
- $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}_1 \cdot \mathbf{v}_1 + \mathbf{u}_2 \cdot \mathbf{v}_2 + \mathbf{u}_3 \cdot \mathbf{v}_3$
- $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$
- 3. Compute $\langle -3,5,-6 \rangle \cdot \langle -5,-4,-4 \rangle$.

 $\langle -3,5,-6 \rangle \cdot \langle -5,-4,-4 \rangle =$ (Simplify your answer.)

4. Consider the vectors $\mathbf{u} = 6\mathbf{i}$ and $\mathbf{v} = -7\mathbf{j}$. Sketch the vectors, find the angle between the vectors, and compute the dot product using the definition $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta$.

Sketch the vectors. Choose the correct graph below.

A.

B.

O D.

From the sketch, what is the angle between the vectors?

 $\theta =$ (Type an exact answer, using π as needed.)

What is the dot product?

 $6i \cdot - 7i =$ (Simplify your answer.)

- 5. Given $\mathbf{v} = 2\mathbf{i} + \mathbf{j}$ and $\mathbf{w} = \mathbf{i} + 2\mathbf{j}$
 - (a) find the dot product v w;
 - (b) find the angle between v and w.
 - (a) $\mathbf{v} \cdot \mathbf{w} =$
- 4

(Simplify your answer.)

(b) What is the angle between **v** and **w**?

36.9

(Do not round until the final answer. Then round to the nearest tenth as needed.)

6. Find the dot product **v** • **w** and the angle between **v** and **w**.

$$v = -i + 4j - 2k$$
, $w = 4i + 4j + k$

(Simplify your answer. Type an exact value, using radicals as needed.)

The angle between \mathbf{v} and \mathbf{w} is θ =

67.7

(Do not round until the final answer. Then round to the nearest tenth as needed.)

7. Find proj_vu and scal_vu by inspection without using formulas.

proj_vu = 6i

(Type your answer in terms of i and j.)

scal_vu =

8. For the vectors $\mathbf{u} = \langle -4.5 \rangle$ and $\mathbf{v} = \langle -5.2 \rangle$, calculate $\text{proj}_{\mathbf{v}} \mathbf{u}$ and $\text{scal}_{\mathbf{v}} \mathbf{u}$.

$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \begin{pmatrix} -\frac{150}{29} \end{pmatrix}$$

$$\operatorname{scal}_{\mathbf{v}} \mathbf{u} = \frac{30}{\sqrt{20}}$$

(Type an exact answer, using radicals as needed.)

9. Find the components of the vertical force $\mathbf{F} = \langle 0, -4 \rangle$ in the directions parallel to and normal to the plane that makes an angle of $\theta = \tan^{-1}(1)$ with the positive x-axis as shown. Show that the total force is the sum of the two component forces.

	What is the appropriate of the force populated the plane?
	What is the component of the force parallel to the plane?
	<u></u>)
	What is the component of the force perpendicular to the plane?
	<u></u>
	Find the sum of these two forces.
	<u>\</u> }
10.	Find three mutually orthogonal unit vectors in \mathbf{R}^3 besides $\pm \mathbf{i}$, $\pm \mathbf{j}$, and $\pm \mathbf{k}$.
	There are multiple ways to do this and an infinite number of answers. For this problem, we choose a first vector \mathbf{u} randomly, choose all but one component of a second vector \mathbf{v} randomly, and choose the first component of a third vector \mathbf{w} randomly. The other components \mathbf{x} , \mathbf{y} , and \mathbf{z} are chosen so that \mathbf{u} , \mathbf{v} , and \mathbf{w} are mutually orthogonal. Then unit vectors are found based on \mathbf{u} , \mathbf{v} , and \mathbf{w} .
	Start with $\mathbf{u} = \langle 1,0,3 \rangle$, $\mathbf{v} = \langle x, -1,1 \rangle$, and $\mathbf{w} = \langle 1,y,z \rangle$.
	The unit vector based on u is \(,,\). (Type exact answers, using radicals as needed.)
	The unit vector based on \mathbf{v} is \langle

(Type exact answers, using radicals as needed.)

(Type exact answers, using radicals as needed.)

The unit vector based on w is \