Week 2: Regression with Multiple Input Variables

Contents

1. Multiple Linear Regression

- Multiple Features
- Vectorization Part 1
- Vectorization Part 2
- Gradient Descent for Multiple Linear Regression
- Running Gradient Descent

Contents

2. Gradient Descent in Practice

- Feature Scaling Part 1
- Feature Scaling Part 2
- Checking Gradient Descent for Convergence
- Choose the Learning Rate
- Feature Engineering
- Polynomial Regression

1. Multiple Regression

one ->	Size in feet 2 (x)	Price (\$) in 1000's (y)
feature	2104	400
	1416	232
	1534	315
	852	178
	•••	

$$f_{w,b}(x) = wx + b$$

Size in feet ²	Number of bedrooms	Number of floors	Age of home in years	Price (\$) in \$1000's
X1	X ₂	Хз	X4	e
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

	Size in feet²	Number of bedrooms	Number of floors	Age of home in years	Price (\$) in \$1000's	j=14
	X ₁	X ₂	Хз	X4		n=4
0 .	2104	5	1	45	460	-
i=2	1416	3	2	40	232	
	1534	3	2	30	315	
	852	2	1	36	178	

 $x_i = j^{th}$ feature

n = number of features

 $\vec{\mathbf{x}}^{(i)}$ = features of i^{th} training example

 $\mathbf{x}_{i}^{(i)}$ = value of feature j in i^{th} training example

$$\vec{x}^{(2)} = \begin{bmatrix} 1416 & 3 & 2 & 40 \end{bmatrix}$$

$$\vec{x}^{(2)} = \begin{bmatrix} 2 & 40 & 40 \end{bmatrix}$$

Model:

Previously:
$$f_{w,b}(x) = wx + b$$

$$f_{w,b}(x) = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4 + b$$
example
$$f_{w,b}(x) = 0.1 x_1 + 4 x_2 + 10 x_3 + -2 x_4 + 80$$

$$f_{w,b}(x) = 0.1 x_1 + 4 x_2 + 10 x_3 + -2 x_4 + 80$$
size #bedrooms #floors years price

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1x_1 + w_2x_2 + \cdots + w_nx_n + b$$

$$\overrightarrow{w} = \begin{bmatrix} w_1 & w_2 & w_3 & \cdots & w_n \end{bmatrix} \quad \text{parameters}$$

$$b \text{ is a number}$$

$$vector \overrightarrow{\chi} = \begin{bmatrix} \chi_1 & \chi_2 & \chi_3 & \cdots & \chi_n \end{bmatrix}$$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b = w_1\chi_1 + w_2\chi_2 + w_3\chi_3 + \cdots + w_n\chi_n + b$$

$$dot \text{ product} \qquad \text{multiple linear regression}$$

Vectorization Part 1

Parameters and features

```
\vec{w} = [w_1 \ w_2 \ w_3] \ \eta = 3
b is a number
                                               NumPy ®
\vec{\mathbf{x}} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 \end{bmatrix}
```

linear algebra: count from 1

$$w = \text{np.array}([1.0, 2.5, -3.3])$$

 $b = 4$
 $x[0] x[1] x[2]$

$$x = np.array([10,20,30])$$

code: count from 0

Without vectorization $\Lambda = 100,000$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

$$f = w[0] * x[0] + w[1] * x[1] + w[2] * x[2] + b$$

Without vectorization

$$f_{\vec{w},b}(\vec{x}) = \left(\sum_{j=1}^{n} w_j x_j\right) + b = \sum_{j=1}^{n} j = 1...n$$

range(
$$o, n$$
) $\rightarrow j = 0 \dots n-1$

Vectorization

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

$$f = np.dot(w,x) + b$$

Vectorization Part 2

Without vectorization

```
for j in range(0,16):
    f = f + w[j] * x[j]
```

$$t_0$$
 f + w[0] * x[0]

$$t_1$$
 f + w[1] * x[1]

•••

$$t_{15}$$
 f + w[15] * x[15]

efficient -> scale to large datasets

Vectorization Part 2

```
Gradient descent \overrightarrow{w} = (w_1 \ w_2 \ \cdots \ w_{16}) parameters derivatives \overrightarrow{d} = (d_1 \ d_2 \ \cdots \ d_{16})
w = \text{np.array}([0.5, 1.3, ... 3.4])
d = \text{np.array}([0.3, 0.2, ... 0.4])
\text{compute } w_j = w_j - 0.1d_j \text{ for } j = 1 ... 16
```

Without vectorization

$$w_1 = w_1 - 0.1d_1$$

 $w_2 = w_2 - 0.1d_2$
 \vdots
 $w_{16} = w_{16} - 0.1d_{16}$

With vectorization

$$\vec{w} = \vec{w} - 0.1\vec{d}$$

$$\mathbf{w} = \mathbf{w} - 0.1 * \mathbf{d}$$

Gradient Descent for Multiple Linear Regression

```
Vector notation
                                                Previous notation
                                                                                                                                       \overrightarrow{w} = [w_1 \cdots w_n]
Parameters
                                                       W_1, \cdots, W_n
                                                                                                                                        b still a number
                                                                                                                                     f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b
\text{dot product}
 Model
                           f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = w_1 x_1 + \cdots + w_n x_n + b
Cost function J(w_1, \dots, w_n, b)
Gradient descent
                                repeat {
                                                                                                                                        repeat {
                                          w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\underline{w_{1}, \dots, w_{n}, b}) 
w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\underline{w_{1}, \dots, w_{n}, b}) 
w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\underline{w_{1}, \dots, w_{n}, b}) 
b = b - \alpha \frac{\partial}{\partial b} J(\underline{w_{1}, \dots, w_{n}, b}) 
b = b - \alpha \frac{\partial}{\partial b} J(\underline{w_{2}, \dots, w_{n}, b})
```

Gradient Descent for Multiple Linear Regression

Gradient descent

One feature repeat {
$$w = w - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$\frac{\partial}{\partial w} J(w,b)$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(\mathbf{x}^{(i)}) - \mathbf{y}^{(i)})$$
 simultaneously update w , b

```
n features (n \ge 2)
simultaneously update
w_i (for j = 1, \dots, n) and b
```

2. Gradient Descent in Practice

Feature and parameter values

```
price = w_1x_1 + w_2x_2 + b range: 300 - 2,000 range: 0 - 5 range: 300 - 2,000 range: 0 - 5 range: x_1 = 2000, x_2 = 5, price = $500k one training example size of the parameters w_1, w_2?

w_1 = 50, w_2 = 0.1, b = 50 w_1 = 0.1, w_2 = 50, b = 50
```

$$w_1 = 50$$
, $w_2 = 0.1$, $b = 50$
 $price = 50 * 2000 + 0.1 * 5 + 50$
 $price = $100,050.5k = $100,0$

Feature size and parameter size

	size of feature x_j	size of parameter w_j
size in feet ²	←	←→
#bedrooms	\leftrightarrow	←

Feature size and gradient descent

Mean normalization

Z-score normalization

$$300 \le x_1 \le 2000 \qquad 0 \le x_2 \le 5$$

$$x_1 = \frac{x_1 - \mu_1}{\sigma_1} \qquad x_2 = \frac{x_2 - \mu_2}{\sigma_2}$$

$$-0.67 \le x_1 \le 3.1 \quad -1.6 \le x_2 \le 1.9$$

Feature scaling

aim for about
$$-1 \le x_j \le 1$$
 for each feature x_j

$$-3 \le x_j \le 3$$

$$-0.3 \le x_j \le 0.3$$

$$0 \le x_1 \le 3$$

$$-2 \le x_2 \le 0.5$$

$$-100 \le x_3 \le 100$$

$$-100 \le x_4 \le 0.001$$

$$0 \le x_5 \le 105$$

$$0 \le x_5 \le 105$$

$$0 \le x_5 \le 105$$

Checking Gradient Descent for Convergence

Make sure gradient descent is working correctly


```
Automatic convergence test Let \varepsilon "epsilon" be 10^{-3}.

0.001

If J(\vec{w}, b) decreases by \leq \varepsilon in one iteration, declare convergence.

(found parameters \vec{w}, b to get close to global minimum)
```

Choosing the Learning Rate

or learning rate is too large

$$w_1 = w_1 + \alpha d_1$$
 use a minus sign $w_1 = w_1 - \alpha d_1$

Adjust learning rate

With a small enough α , $J(\vec{w}, b)$ should decrease on every iteration

If α is too small, gradient descent takes a lot more iterations to converge

Choosing the Learning Rate

Values of α to try:

Feature Engineering

Feature engineering

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = w_1 x_1 + w_2 x_2 + b$$

frontage depth

 $area = frontage \times depth$

$$x_3 = x_1 x_2$$

new feature

$$f_{\vec{w},b}(\vec{x}) = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

Feature engineering:
Using intuition to design
new features, by
transforming or combining
original features.

Polynomial Regression

Polynomial Regression

Choice of features

