Visualizing Deep Neural Network Decisions: Prediction Difference Analysis

Luisa M. Zintgraf Taco S. Cohen Tameem Adel Max Welling

University of Amsterdam

Canadian Institute of Advanced Research

Vrije Universiteit Brussel

ICLR, 2017

Presenter: Ritambhara Singh

- Introduction
 - Motivation
 - State-of-the-art
 - Drawbacks
- Proposed Approach
 - Conditional Sampling + Multivariate Analysis
 - Algorithm
 - Deep Visualization of Hidden Layers
- Results
 - ImageNet
 - MRI Data

- Introduction
 - Motivation
 - State-of-the-art
 - Drawbacks
- Proposed Approach
 - Conditional Sampling + Multivariate Analysis
 - Algorithm
 - Deep Visualization of Hidden Layers
- Results
 - ImageNet
 - MRI Data

Motivation

- Making neural network decisions interpretable through visualization.
- Propose prediction difference analysis method.

Motivation

- Making neural network decisions interpretable through visualization.
- Propose prediction difference analysis method.
- Visualizes the response of a deep neural network to a specific input.

Motivation

- Making neural network decisions interpretable through visualization.
- Propose prediction difference analysis method.
- Visualizes the response of a deep neural network to a specific input.

- Introduction
 - Motivation
 - State-of-the-art
 - Drawbacks
- Proposed Approach
 - Conditional Sampling + Multivariate Analysis
 - Algorithm
 - Deep Visualization of Hidden Layers
- Results
 - ImageNet
 - MRI Data

State-of-the-art

Robnik-Sikonja and Kononenko (2008)

• Assigns a relevance value to each input feature with respect to a class c.

State-of-the-art

Robnik-Sikonja and Kononenko (2008)

- Assigns a relevance value to each input feature with respect to a class c.
- Basic idea: Relevance of a feature x_i can be estimated by measuring how the prediction changes if the feature is unknown.

State-of-the-art

Robnik-Sikonja and Kononenko (2008)

- Assigns a relevance value to each input feature with respect to a class
 c.
- Basic idea: Relevance of a feature x_i can be estimated by measuring how the prediction changes if the feature is unknown.
- Difference between p(c|x) and $p(c|x_{i*})$, where x_{i*} denotes the set of all input features except x_i .

- Introduction
 - Motivation
 - State-of-the-art
 - Drawbacks
- Proposed Approach
 - Conditional Sampling + Multivariate Analysis
 - Algorithm
 - Deep Visualization of Hidden Layers
- Results
 - ImageNet
 - MRI Data

To find $p(c|x_{i*})$

- Label the feature as unknown (only few classifiers allow e.g. Naive Bayesian classifier).
- Re-train the classifier with the feature left out (infeasible for DNNs and high-dimensional data like images)

To find $p(c|x_{i*})$

• Simulate the absence of a feature by marginalizing the feature:

$$p(c|x_{i*}) = \sum_{x_i} p(x_i|x_{i*})p(c|x_i, x_{i*})$$
(1)

To find $p(c|x_{i*})$

Simulate the absence of a feature by marginalizing the feature:

$$p(c|x_{i*}) = \sum_{x_i} p(x_i|x_{i*})p(c|x_i, x_{i*})$$
 (1)

• Modeling $p(x_i|x_{i*})$ can become infeasible with a large number of features.

To find $p(c|x_{i*})$

• Approximate equation (1) by assuming feature x_i is independent of the other features, x_{i*} :

$$p(c|x_{i*}) \sim \sum_{x_i} p(x_i)p(c|x_i, x_{i*})$$
 (2)

To find $p(c|x_{i*})$

• Approximate equation (1) by assuming feature x_i is independent of the other features, x_{i*} :

$$p(c|x_{i*}) \sim \sum_{x_i} p(x_i)p(c|x_i, x_{i*})$$
 (2)

• Weight of evidence:

$$WE_i(c|x) = log_2(odds(c|x)) - log_2(odds(c|x_{i*}))$$
 (3)

• Here, odds(c|x) = p(c|x)/(1 - p(c|x)).

To find $p(c|x_{i*})$

• Approximate equation (1) by assuming feature x_i is independent of the other features, x_{i*} :

$$p(c|x_{i*}) \sim \sum_{x_i} p(x_i)p(c|x_i, x_{i*})$$
 (2)

• Weight of evidence:

$$WE_i(c|x) = log_2(odds(c|x)) - log_2(odds(c|x_{i*}))$$
 (3)

- Here, odds(c|x) = p(c|x)/(1 p(c|x)).
- Crude approximation

- Introduction
 - Motivation
 - State-of-the-art
 - Drawbacks
- Proposed Approach
 - Conditional Sampling + Multivariate Analysis
 - Algorithm
 - Deep Visualization of Hidden Layers
- Results
 - ImageNet
 - MRI Data

Conditional Sampling + Multivariate Analysis

$$p(x_i|x_{i*}) \sim p(x_i|\hat{x}_{i*}) \tag{4}$$

- Introduction
 - Motivation
 - State-of-the-art
 - Drawbacks
- Proposed Approach
 - Conditional Sampling + Multivariate Analysis
 - Algorithm
 - Deep Visualization of Hidden Layers
- Results
 - ImageNet
 - MRI Data

Algorithm

Algorithm 1 Evaluating the prediction difference using conditional and multivariate sampling

Input: classifier with outputs p(c|x), input image x of size $n \times n$, inner patch size k, outer patch size l > k, class of interest c, probabilistic model over patches of size $l \times l$, number of samples S **Initialization:** WE = zeros(n*n), counts = zeros(n*n)for every patch \mathbf{x}_w of size $k \times k$ in \mathbf{x} do $\mathbf{x}' = \operatorname{copy}(\mathbf{x})$ $sum_{w} = 0$ define patch $\hat{\mathbf{x}}_w$ of size $l \times l$ that contains \mathbf{x}_w for s = 1 to S do $\mathbf{x}'_w \leftarrow \mathbf{x}_w$ sampled from $p(\mathbf{x}_w | \hat{\mathbf{x}}_w \setminus \mathbf{x}_w)$ $\operatorname{sum}_{w} += p(c|\mathbf{x}')$ end for $p(c|\mathbf{x}\backslash\mathbf{x}_w) := \operatorname{sum}_w/S$ WE[coordinates of \mathbf{x}_w] += $\log_2(\text{odds}(c|\mathbf{x})) - \log_2(\text{odds}(c|\mathbf{x}\setminus\mathbf{x}_w))$ counts[coordinates of \mathbf{x}_w] += 1

end for

Output: WE / counts

▶ point-wise division

- Introduction
 - Motivation
 - State-of-the-art
 - Drawbacks
- Proposed Approach
 - Conditional Sampling + Multivariate Analysis
 - Algorithm
 - Deep Visualization of Hidden Layers
- Results
 - ImageNet
 - MRI Data

Deep Visualization of Hidden Layers

- Let h be a vector representation of values in layer H in a network
- Let z = z(h) be a node in subsequent layer
- Analog of equation (2) is :

$$g(z|h_{i*}) = E_{p(h_i|h_{i*})}[z(h)] = \sum_{h_i} p(h_i|h_{i*})z(h_{i*},h_i)$$
 (5)

Deep Visualization of Hidden Layers

- Let h be a vector representation of values in layer H in a network
- Let z = z(h) be a node in subsequent layer
- Analog of equation (2) is :

$$g(z|h_{i*}) = E_{p(h_i|h_{i*})}[z(h)] = \sum_{h_i} p(h_i|h_{i*})z(h_{i*},h_i)$$
 (5)

• Activation Difference: $AD_i(z|h) = g(z|h) - g(z|h_{i*})$

- Introduction
 - Motivation
 - State-of-the-art
 - Drawbacks
- Proposed Approach
 - Conditional Sampling + Multivariate Analysis
 - Algorithm
 - Deep Visualization of Hidden Layers
- Results
 - ImageNet
 - MRI Data

Marginal versus Conditional Sampling

Effect of window size

Visualization of layers

Penultimate versus Output Layer

Different DCNN architectures

- Introduction
 - Motivation
 - State-of-the-art
 - Drawbacks
- Proposed Approach
 - Conditional Sampling + Multivariate Analysis
 - Algorithm
 - Deep Visualization of Hidden Layers
- Results
 - ImageNet
 - MRI Data

Prediction Difference versus Logistic weights

Summary

- New method for visualizing deep neural networks
- Improves on previous methods by using powerful conditional, multivariate model
- Demonstrated how visualization method can be used for analyzing how DCNNs make decisions
- Future Direction
 - Better approximation by using a conditional distribution that takes more information.
 - A better classification algorithm for clinical analysis.