

- Introduction to AML
- What is AML?
 - AML refers to regulations and techniques used to prevent financial crimes.
- Why is it Important?
 - Protects financial institutions from illicit activities.
 - Identifies suspicious transaction patterns.
- Project Goal:
 - Develop an end-to-end AML detection system using MySQL.

Database Schema

- Tables in MySQL:
 - Customers_final: Stores customer details.
 - Transactions: Contains all financial transactions.
 - Risk_Parameters: Defines thresholds for suspicious activities.
- Indexes for Performance Optimization:
 - CustomerID, SenderID, ReceiverID,
 Date indexed for efficient queries

18752 18747.50 18742.51-4.

- Risk Parameters & Thresholds
- Risk Rules Implemented:
 - Suspicious Transaction:
 Amount between 9000 9999.
 - High-Risk Customers: Transactions exceed
 2,500,000.
 - Smurfing Pattern: More than 3 transactions, total >150,000 in 30 days

Suspicious Transactions View • Query Logic:

- Extract transactions where amount is in suspicious range.
- Uses Risk_Parameters table for dynamic thresholding.

·Use Case:

 Identify transactions just below regulatory reporting limits.

```
/* Suspicious Transactions View*/
CREATE VIEW Suspicious_Transactions AS
SELECT TransactionID, SenderID, ReceiverID, Amount, Date, Mode, Location
FROM Transactions
WHERE Amount BETWEEN
    (SELECT Value FROM Risk_Parameters WHERE Parameter_Name = 'Suspicious_Threshold_Min')
    AND
    (SELECT Value FROM Risk_Parameters WHERE Parameter_Name = 'Suspicious_Threshold_Max');
```


Squillion

Wendy Wilson

Take your vision to the next level with Squillion!

Registered Location

Panama

Cross Location Transaction s

High Risk Txn Amount # High Risk Txn Location wise Total Amount

CustomerID	Name	# High Risk Transactions	Amount involved
844	Wendy Wilson	π	\$4,126,324.91
752	Miss Terri Perez	84	\$3,923,124.36
27	Corey Jones	70	\$3,716,798.10
477	Zoe Long	61	\$3,709,836.51
89	Juan Mckee	70	\$3,705,988.54
492	Leon Weber	64	\$3,701,815.02
104	Sydney Williams	66	\$3,655,368.18
850	Richard Ross	67	\$3,649,847.95
577	Dennis Ball	65	\$3,559,707.99
783	Ryan Rosales	68	\$3,512,125.67
999	David Gardner	57	\$3,472,284.58
707	Jennifer Brown	62	\$3,466,542.80
888	April Hayes	59	\$3,465,690.74
408	Barbara Martinez	65	\$3,458,984.77
827	Sandy Moses	72	\$3,450,141.11
911	Erica Garcia	62	\$3,447,409.05
813	Emily Wyatt	59	\$3,445,181.13
944	Kathy Cox PhD	65	\$3,430,205.78
446	Sandra Holmes	59	\$3,387,140.58
184	Jessica Phillips	62	\$3,383,670.01
Total		27186	\$1,406,415,068.25

High-Risk Customers Analysis • Query Logic:

- Aggregates transaction amounts per customer.
- Flags customers exceeding 100,000 in transactions.

·Use Case:

 Identifies individuals engaging in high-risk financial activity.

```
/*High-Risk Customers View*/
CREATE VIEW High_Risk_Customers AS
SELECT c.CustomerID, c.Name, c.Location AS RegisteredLoc, COUNT(t.TransactionID) AS Total_Transactions,
SUM(t.Amount) AS Total_Amount
FROM Customers_final c
JOIN Transactions t ON c.CustomerID = t.SenderID
GROUP BY c.CustomerID, c.Name, c.Location
HAVING Total_Amount > (SELECT Value FROM Risk_Parameters WHERE Parameter_Name = 'High_Risk_Transaction_Limit')
ORDER BY Total_Amount DESC;
select * from High_Risk_Customers;
```


Smurfing Pattern Detection •Query Logic:

- Detects frequent small transactions adding up to large sums.
- Rolling 30-day window to ensure real-time tracking.

·Use Case:

 Identifies potential structuring to avoid detection

```
/*Smurfing Pattern Detection (Rolling 30-Day Window)*/
CREATE VIEW Smurfing_Detection AS
SELECT t.SenderID, c.Name, COUNT(t.TransactionID) AS Txn_Count, SUM(t.Amount) AS Total_Amount
FROM Transactions t

JOIN Customers_final c ON t.SenderID = c.CustomerID
WHERE t.Date >= NOW() - INTERVAL 30 DAY
GROUP BY t.SenderID, c.Name
HAVING Txn_Count > (SELECT Value FROM Risk_Parameters WHERE Parameter_Name = 'Smurfing_Min_Transactions')
    AND Total_Amount > (SELECT Value FROM Risk_Parameters WHERE Parameter_Name = 'Smurfing_Min_Amount')
ORDER BY Total_Amount DESC;
SELECT * FROM Smurfing_Detection;
```

10K#CrossLocational Txn

\$908M Total Amount

Suspicious Transaction

Smurfing

Activty

High Risk Customers Cross Location Transaction Multihop Transactions

TransactionID	SenderID	Total Txn Amount
8	541	\$96,644
9	620	\$87,364
11	867	\$85,191
18	40	\$91,781
20	631	\$90,633
24	65	\$83,750
30	21	\$87,396
42	451	\$95,670
Total		\$908,270,921

Registered_Location	Berlin	Dubai	Hong Kong	London	New York	Singapore	Zurich	Total
Afghanistan	6	7	7	11	13	7	8	59
Albania	5	3	2	5	2	8	5	30
Algeria			1	1	1	2	2	7
American Samoa	4	4	9	5	8	12	6	48
Andorra	8	10	6	6	3	10	5	48
Angola	3	9	8	6	9	12	5	52
Anguilla	5	1	12	10	4	9	5	46
Antarctica (the territory	10	11	7	10	8	12	6	64
Total	1465	1506	1417	1412	1406	1431	1458	10095

Cross-Location Transaction Analysis •Query Logic:

- Flags transactions where sending & receiving locations differ.
- Filters for high-value transactions (>80,000).

·Use Case:

Identifies possible cross-border money laundering activities

Multi-Hop Transaction Analysis •Recursive CTE for Multi-Hop Transactions

- Tracks money flow across multiple transactions.
- Detects loops where money returns to the original sender within ±20% of the initial amount.

•Use Case:

Identifies layering techniques used to obscure money trails

Customer ID	Initial Amount	Received Amount	Path
682	\$98,313	\$81,800.16	682 -> 982 -> 932 -> 682
191	\$97,030	\$79,303.88	191 -> 225 -> 191
642	\$95,758	\$96,090.58	642 -> 406 -> 933 -> 642
996	\$94,262	\$87,049.12	996 -> 48 -> 550 -> 996
159	\$93,733	\$91,171.02	159 -> 232 -> 802 -> 159
870	\$93,064	\$83,565.21	870 -> 526 -> 950 -> 870
802	\$91,171	\$83,080.26	802 -> 54 -> 365 -> 802
931	\$91,092	\$96,536.5	931 -> 145 -> 931
540	\$90,405	\$83,041.2	540 -> 514 -> 540
791	\$90,198	\$78,398.36	791 -> 420 -> 662 -> 791
488	\$87,791	\$76,665.15	488 -> 492 -> 357 -> 488
184	\$87,024	\$71,151.33	184 -> 897 -> 196 -> 184
175	\$86,633	\$84,422.39	175 -> 465 -> 175
209	\$86,252	\$71,899.55	209 -> 141 -> 469 -> 209
321	\$85,958	\$95,967.79	321 -> 30 -> 512 -> 321
104	\$84,911	\$78,681.69	104 -> 777 -> 799 -> 104

```
WITH RECURSIVE MultiHop_Loop_Detection AS (
     SELECT
         t.TransactionID, t.SenderID, t.ReceiverID, t.Amount, t.Date, t.Mode,
         t.Location,t.SenderID AS StartNode, t.ReceiverID AS CurrentNode,
         CAST(t.SenderID AS CHAR(100)) AS Path,
         1 AS Depth, t.Amount AS InitialAmount, t.Amount AS CurrentAmount,
         FALSE AS ISLOOP
     FROM Transactions t
     WHERE t.Date >= NOW() - INTERVAL 45 DAY
     AND t.Amount >= 9000
     UNION ALL
     SELECT t.TransactionID,t.SenderID,t.ReceiverID,t.Amount,t.Date,
         t.Mode, t.Location, mt.StartNode, t.ReceiverID AS CurrentNode,
         CONCAT(mt.Path, ' -> ', t.ReceiverID) AS Path, mt.Depth + 1,
         mt.InitialAmount, t.Amount AS CurrentAmount,
         CASE WHEN t.ReceiverID = mt.StartNode AND t.Amount BETWEEN mt.InitialAmount * 0.8 AND mt.InitialAmount * 1.2
             THEN TRUE ELSE FALSE
         END AS ISLOOP
     FROM MultiHop Loop Detection mt
     JOIN Transactions t ON mt.CurrentNode = t.SenderID
     WHERE LOCATE(CONCAT(',', t.ReceiverID, ','), CONCAT(',', mt.Path, ',')) = 0
       AND mt.Depth < 3 -- Limit depth to prevent excessive recursion
       AND t.Date >= NOW() - INTERVAL 45 DAY
     SELECT DISTINCT
          mt.TransactionID,
          mt.StartNode AS OriginalSender,
          mt.CurrentNode AS FinalReceiver,
          mt.Path,
          mt.Depth,
          mt.InitialAmount,
          mt.CurrentAmount.
          mt.IsLoop
     FROM MultiHop_Loop_Detection mt
     WHERE mt.IsLoop = TRUE
     ORDER BY mt.StartNode, mt.Depth;
```

Key Findings: AML Risk Analysis Dashboard

Powered by MySQL & Power BI | 45-day transaction window

1. Suspicious Transaction Detected

- •Identified \$9,000-\$9,999 transactions clustering just below reporting thresholds.
- •Top channels: Online Banking transfers showed elevated frequency of suspicious activity.
- •High-risk zones: New York is the top location by volume of flagged transactions.

2. High-Risk Customer Profiles

- •Customers with cumulative **outflows exceeding \$2500000** flagged for priority review.
- •Transaction patterns suggest potential layering and structuring tactics.

3. Smurfing Activity Uncovered

- •Several accounts engaged in >3 micro-transactions within 30 days totaling over \$150,000.
- •Indicates **possible structuring behavior** to evade single transaction thresholds

4. Multi-Hop Transaction Loops

- •Traced funds flowing through **2–3 intermediary accounts**, eventually returning to origin.
- •Looping transactions-maintained value consistency within ±20%, a classic layering red flag.

5. Cross-Location Transaction Anomalies

- •Detected **high-value** (\$80K+) transfers originating from customers operating in locations different from their registration.
- •Suggests **potential proxy usage**, identity misuse, or transactional laundering.

Key Insights from Analysis

- •Identified patterns of structuring (Smurfing).
- •Detected high-risk customers engaging in large transactions.
- •Mapped complex money movement networks via Multi-Hop Analysis.
- ·Highlighted unusual geographic transaction flows.

Conclusion

- •AML analysis is essential for fraud detection.
- •MySQL enables structured and efficient risk monitoring.
- •By leveraging advanced SQL techniques, financial institutions can proactively identify and mitigate money laundering risks.
- •Continuous improvement in AML frameworks ensures better regulatory compliance and security.

Analyst Role Description

•Role: AML Data Analyst

Key Responsibilities:

- Data Processing & Analysis: Extract, clean, and analyze transaction data for AML insights.
- Risk Assessment: Identify suspicious patterns, high-risk customers, and cross-border transactions.
- SQL Querying: Develop optimized queries and views for AML rule implementation.
- Report Generation: Provide actionable insights and reports for financial risk teams.
- Regulatory Compliance Support: Ensure data aligns with AML laws and guidelines.

Skills Required:

- Strong SQL and MySQL knowledge
- Experience in financial data analysis
- Understanding of AML regulations
- Proficiency in data visualization tools (optional)

THANK YOU