Rating Prediction using Matrix Factorization and SVD

Matrix Factorization

SVD is the factorization of a matrix M into 3 constituent matrices

$$M = U \times \Sigma \times V^T$$

where U and V are called *left* and *right singular vectors* and the values of the diagonal of Σ are called the *singular values*

- We can approximate the full matrix by observing only the most important features – those with the largest singular values
- This can be done by decomposing rating matrix into a user and item matrix using a dimensionality reduction technique

Singular Value Decomposition

$$R = P\Sigma Q^T$$

- R is m x n ratings matrix
- P is m x k user-feature affinity matrix
- Q is n x k item-feature relevance matrix
- Σ is $k \times k$ diagonal feature weight matrix
- SVD defines a shared vector space for item and users (feature space)

Matrix Factorization

 $n_{users} \times n_{item}$

Interpretation of the User and Item matrices

how much user u is susceptible to this attribute k / how much it is important to them.

attribute k an item can possess and a user can be susceptible to

User

Item

Example for SVD-based recommendation

• SVD: $M_k = U_k \times \sum_k \times V_k^T$

				enning to	Oie Haid	Tality It.	OTAL
U_{L}	Dim1	Dim2	V_k^{T}	O.			COME
Alice	0.47	-0.30	Dim1	-0.44	-0.57	0.06	0.38
Bob	-0.44	0.23	Dim2	0.58	-0.66	0.26	0.18
Mary	0.70	-0.06					
Sue	0.31	0.93				Σ_k	Dim1

• Prediction: $\hat{r}_{ui} = \overline{r}_u + U_k(Alice) \times \Sigma_k \times V_k^T(EPL)$

0.57

-0.36

Dim2

$$= 3 + 0.84 = 3.84$$

What does SVD Achieve?

SVD captures hidden relationships between users and items

Solving Problem of Synonymy & Sparsity

• SVD provides lower dimension representation of the original user-item space

Solving Problem of Scalability

