Chapter 10

10. Phase Transformation

- phase transformation thermodynamics, nucleation interface, growth
- T-T-T curve
- martenstic transformation
- tempering

Fundamental Concepts

- □ phase diagram ← thermodynamic equilibrium
- □ real system ← non-equilibrium
- ☐ time → kinetics
- phase transformation

Fundamental Concepts

• isothermal transformation - temperature - microstructure

just below eutectoid T coarse pearlite

Phase Transformation

☐ driving force: free energy change

For solidification, $\Delta H^{L \to S} < 0$ (exothermic)

 $T < T_E$, $\Delta T > 0$, $\Delta G^{L \to S} < 0$ thermodynamically favorable

Phase Transformation

opposing force: phase boundary

- phase boundary- a few atoms thick- 2-D defect additional energy- interfacial energy
- undercooling → energy available to create the phase boundary

Phase Transformation

- □ nucleation: homogeneous or heterogeneous
- growth

- change in free energy as a function of r

$$\Delta G(r) = (\frac{4}{3}\pi r^3)\Delta G_V + (4\pi r^2)\gamma_{SL}$$

- critical radius r*

$$\frac{d[\Delta G(r)]}{dr} = 0 = 4\pi r^2 \Delta G_V + 8\pi r_{SL}$$

$$r^* = \frac{-2r_{SL}}{\Delta G_V} = \frac{-2\gamma_{SL}T_E}{\Delta H_V \Delta T}$$
 (r^* decreases as undercooling increases)

$$-\Delta G^* = \frac{16\pi\gamma_{SL}^3 T_E^2}{3\Delta H_V^2} \frac{1}{\Delta T^2}$$
 (energy barrier decreases

as undercooling increases)

■ for nucleation, atomic mobility should be considered in addition to nucleation barrier term

Heterogeneous Nucleation

$$\gamma_{LM} = \gamma_{MS} + \gamma_{LS} \cos \theta$$

 θ : contact angle

 $\theta = 0$ $f(\theta) = 0$

 $\pi /4$ 0.058

 $\pi/2$ 0.500

 $3\pi/4$ 0.943

π 1.000

Heterogeneous Nucleation

$$\Box \Delta G_{het}^* \propto \Delta G_{hom}^* f(\theta), \quad 0 < f(\theta) < 1$$

□ energy barrier for heterogeneous nucleation is always lower than that for homogeneous nucleation

Heterogeneous Nucleation

cast aluminum alloy

grain refiner (TiB₂)

Growth

growth process is diffusional in nature

$$\dot{G} = Ce^{-Q/RT}$$

overall transformation rate

Phase Transformation fraction of transformation

$$y = 1 - \exp(-kt^n)$$

Fe-Fe₃C System

Isothermal Transformation Diagram

Eutectoid Steel

(c)

martensite
habit plane
habit direction

Martenstic Transformation

Effect of Alloying Elements

Cr, Ni, Mo, W

plain carbon steel

4340 alloy steel

Hypoeutectoid

Hypereutectoid

Continuous Cooling Transformation

■ to shift transformation curve downward and toward the right

Continuous Cooling Transformation

4340 alloy steel

Mechanical Properties

plain carbon steel with fine pearlite microstructure $_{\text{\tiny Percent Fe}_3\text{\tiny C}}$

Mechanical Properties

Spheroidite: Another Microstructure for the Fe-Fe₃C System

Spheroidite:

- -- Fe₃C particles within an α -ferrite matrix
- -- formation requires diffusion
- heat bainite or pearlite at temperature just below eutectoid for long times
- driving force reduction
 of α-ferrite/Fe₃C interfacial area

partially transformed to spheroidite

Mechanical Properties

plain carbon steel

eutectoid composition

plain carbon steel

Tempering

Temperature

Time (logarithmic scale)

tempered at 594 °C

oil quenched alloy steel 4340 type

0.5 wt% C

Hardness versus tempering time for a water-quenched eutectoid plain carbon (1080) steel. (Adapted from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 233.)

Spheroidite

0.7 wt% C

Summary: Processing Options

