Cheat Sheet

1. 条件概率

事件的差:

$$A - B = A - AB = A\bar{B}$$

乘法公式:

$$P(AB) = P(A)P(B|A)$$

全概率公式:

$$P(B) = \sum_{i=1}^{n} P(BA_i) = \sum_{i=1}^{n} P(A_i)P(B|A_i)$$

贝叶斯公式:

$$P(A_i|B) = \frac{P(A_iB)}{P(B)} = \frac{P(A_i)P(B|A_i)}{P(B)} = \frac{P(A_i)P(B|A_i)}{\sum_{j=1}^{n} P(A_j)P(B|A_j)}$$

独立性:

$$P(AB) = P(A)P(B)$$

2. 离散型随机变量

琴生不等式:

利用琴生不等式有,对于连续凸函数 g 有

$$g(E(X)) \leqslant E(g(X))$$

例如有

$$(E(X))^2 \leqslant E(X^2)$$
 和 $e^{E(X)} \leqslant E(e^X)$

方差:

$$Var(X) = D(X) = E[(X - E(X))^{2}] = E(X^{2}) - [E(X)]^{2}$$

Bhatia-Davis 不等式:

对于 $X \in [a,b]$, 有

$$Var(X) \le (b - E(X))(E(X) - a) \le (b - a)^2/4$$

Bernoulli 分布:

分布列为
$$P(X=1)=p, P(X=0)=1-p$$
, 记作 $X\sim \mathrm{Ber}(p)$

有
$$E(X) = p$$
, $Var(X) = p(1-p)$

二项分布:

重复进行了 n 次 Bernoulli 试验, 记作事件 A, 随机变量 X 表示事件 A 发生的次数.

分布列为
$$P(X=k)=inom{n}{k}p^k(1-p)^{n-k}$$
,记作 $X\sim B(n,p)$

有
$$E(X) = np$$
, $Var(X) = np(1-p)$

用级数求和, 两边求导的方法进行计算证明. 用到二项展开式 $(1+x)^n = \sum_{i=1}^n \binom{n}{k} x^k$

几何分布:

重复进行了 n 次 Bernoulli 试验, 记作事件 A, 随机变量 X 表示事件 A 首次发生的试验次数.

分布列为
$$P(X=k)=(1-p)^{k-1}p$$
, 记作 $X\sim G(p)$

有
$$E(X) = \frac{1}{p}$$
 和 $\mathrm{Var}(X) = \frac{1-p}{p^2}$

等比数列求和
$$S_n = a_1 \frac{1-q^n}{1-q}$$

依旧使用级数
$$(1-x)^{-1}=\sum_{k=1}^{\infty}x^k$$
 和两边求导来证明.

几何分布拥有无记忆性:
$$P(X>m+n|X>m)=P(X>n)$$

Pascal / 负二项分布:

重复进行了 n 次 Bernoulli 试验, 记作事件 A, 随机变量 X 表示事件 A 第 r 次发生的试验 次数.

分布列为 $P(X=k)=\binom{k-1}{r-1}p^{r-1}(1-p)^{k-r}\cdot p=\binom{k-1}{r-1}p^r(1-p)^{k-r}$,则称 X 为服从参数 p 和 r 的负二项分布.

重点在于
$$(1-q)^{-r} = \sum_{t=0}^{\infty} \binom{t+r-1}{r-1} q^t$$
,即 $p^{-r} = \sum_{k=r}^{\infty} \binom{k-1}{r-1} (1-p)^{k-r}$

有
$$E(X) = \frac{r}{p}$$
 和 $Var(X) = \frac{r(1-p)}{p^2}$

证明的时候只要想办法往概率求和等于一上转化即可.

还需要一个性质:
$$\frac{k}{r} \cdot \binom{k-1}{r-1} = \binom{k}{r}$$

泊松分布:

分布列为
$$P(X=k)=rac{\lambda^k}{k!}e^{-\lambda}$$
,记作 $X\sim P(\lambda)$

我们知道泰勒展开式
$$e^{\lambda} = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}$$

有
$$E(X) = \lambda$$
 和 $Var(X) = \lambda$

泊松定理:

对任意给定的常数 $\lambda > 0$, n 为任意正整数, 设 $np = \lambda$, 则对任意给定非负整数 k 有

$$\lim_{n o\infty}inom{n}{k}p^k(1-p)^{n-k}=rac{\lambda^k}{k!}e^{-\lambda}$$

对于随机变量 $X \sim B(n,p)$, 当 n 较大而 p 较小时, 令 $\lambda = np$, 则有

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \approx \frac{\lambda^k}{k!} e^{-\lambda}$$

即可以用泊松分布来近似计算二项分布.

3. 连续型随机变量

非负随机变量期望:

$$E[X] = \int_0^\infty P(X > t) \mathrm{d}t$$

证明:

首先观察得到
$$X = \int_0^X 1 \mathrm{d}t = \int_0^\infty 1(X > t) \mathrm{d}t$$

$$E[X] = E[\int_0^\infty 1(X > t) \mathrm{d}t]$$

$$= \int_{-\infty}^{+\infty} \int_0^\infty 1(x > t) f(x) \mathrm{d}t$$

$$= \int_0^{+\infty} [\int_{-\infty}^{+\infty} 1(X > t) f(x) \mathrm{d}x] \mathrm{d}t$$

$$= \int_0^{+\infty} [\int_{-\infty}^t 1(X > t) f(x) \mathrm{d}x + \int_t^{+\infty} 1(X > t) f(x) \mathrm{d}x] \mathrm{d}t$$

$$= \int_0^{+\infty} [\int_t^{+\infty} f(x) \mathrm{d}x] \mathrm{d}t$$

$$= \int_0^{+\infty} P(X > t) \mathrm{d}t$$

均匀分布:

概率密度
$$f(x)=rac{1}{b-a}, x\in [a,b]$$
, 则记作 $X\sim U(a,b)$

而分布函数则为
$$F(x) = \frac{x-a}{b-a}, a < x < b$$

期望和方差分别为
$$E(X)=rac{a+b}{2}, \mathrm{Var}(X)=rac{(b-a)^2}{12}$$

指数分布:

$$f(x)=\lambda e^{-\lambda x}, x\geqslant 0$$
,而 $F(x)=1-e^{-\lambda x}$,记作 $X\sim e(\lambda)$

期望和方差为
$$E(X)=rac{1}{\lambda}, {
m Var}(X)=rac{1}{\lambda^2}$$

证明用分部积分法.

指数分布具有无记忆性, 且是唯一具有无记忆性的连续型随机变量:

$$P(X > s + t | X > t) = P(X > s)$$

正态分布:

概率密度为
$$f(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$
 , 记作 $X\sim N(\mu,\sigma^2)$

标准正态分布为
$$f(x)=rac{1}{\sqrt{2\pi}}e^{-rac{x^2}{2}}$$
 , 记作 $X\sim N(0,1)$

期望和方差为
$$E(X)=\mu, \mathrm{Var}(X)=\sigma^2$$

正态分布的估计:

对于标准正态分布 $X \sim N(0,1)$ 和任意 $\epsilon > 0$, 有

$$P(X \geqslant \epsilon) \leqslant \frac{1}{2}e^{-\frac{\epsilon^2}{2}}$$

还有
$$P(|X|\geqslant\epsilon)\leqslant\min\{1,\sqrt{rac{2}{\pi}}rac{1}{\epsilon}e^{-rac{\epsilon^2}{2}}\}$$

4. 多维随机变量及其分布

随机变量独立性:

$$F(x,y) = F_X(x)F_Y(y)$$

对于离散型随机变量来说, 即等价于 $p_{i,j}=p_{i\cdot}p_{\cdot j}$

对于连续型随机变量来说, 即等价于 $f(x,y)=f_X(x)f_Y(y)$

二维正态分布:

$$\diamondsuit \, \mu = \begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix} \, \maltese \, \Sigma = \begin{pmatrix} \sigma_x^2 & \rho \sigma_x \sigma_y \\ \rho \sigma_x \sigma_y & \sigma_y^2 \end{pmatrix}$$

则 X 和 Y 的联合概率密度函数为

$$f(x,y) = (2\pi)^{-2/2} |\Sigma|^{-\frac{1}{2}} \exp(-\frac{1}{2}(\xi-\mu)^T \Sigma^{-1}(\xi-\mu))$$

其中
$$\Sigma^{-1} = rac{1}{(1-
ho^2)\sigma_x^2\sigma_y^2} egin{pmatrix} \sigma_y^2 & -
ho\sigma_x\sigma_y \ -
ho\sigma_x\sigma_y & \sigma_x^2 \end{pmatrix}$$

极大极小分布:

假设 X, Y 相互独立.

极大分布:

$$F_Z(z) = P(Z \leqslant z) = P(\max(X,Y) \leqslant z) = P(X \leqslant z, Y \leqslant z) = F_X(z) F_Y(z)$$

极小分布:

$$F_Z(z) = 1 - (1 - F_X(z))(1 - F_Y(z))$$

和的分布:

对于 Z = X + Y,

通用的有
$$F_Z(z)=\iint_{x+y\leqslant z}f(x,y)\mathrm{d}x\mathrm{d}y=\int_{-\infty}^{+\infty}\mathrm{d}x\int_{-\infty}^zf(x,u-x)\mathrm{d}u=\int_{-\infty}^z\int_{-\infty}^{+\infty}f(x,u-x)\mathrm{d}x\mathrm{d}u$$

两边求导可得
$$f_Z(z) = \int_{-\infty}^{+\infty} f(x,z-x) \mathrm{d}x$$

假设 X, Y 相互独立, 有著名的卷积公式

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) \mathrm{d}x = \int_{-\infty}^{+\infty} f_X(z-y) f_Y(y) \mathrm{d}y$$

乘除的分布:

$$f_{XY}(z) = \int_{-\infty}^{+\infty} rac{1}{|x|} f(x,rac{z}{x}) \mathrm{d}x$$

$$f_{X/Y}(z) = \int_{-\infty}^{+\infty} |x| f(x,xz) \mathrm{d}x$$

联合分布函数:

设有
$$U = u(X,Y), V = v(X,Y)$$

$$f_{UV}(u,v) = f_{XY}(x(u,v),y(u,v)) egin{bmatrix} rac{\partial u}{\partial x} & rac{\partial u}{\partial y} \ rac{\partial v}{\partial x} & rac{\partial v}{\partial y} \end{bmatrix}$$

多维随机变量柯西不等式:

$$E[XY] \leqslant \sqrt{E[X^2]E[Y^2]}$$

协方差:

定义协方差为
$$\operatorname{Cov}(X,Y) = E[(X-E[X])(Y-E[Y])] = E[XY] - E[X]E[Y]$$

则有
$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

对任意 X_1, X_2, Y 还有性质 $\operatorname{Cov}(X_1 + X_2, Y) = \operatorname{Cov}(X_1, Y) + \operatorname{Cov}(X_2, Y)$

并且
$$Cov(aX, bY) = abCov(X, Y)$$

若 X 和 Y 独立,则 Cov(X,Y)=0,反之则不然.

协方差不等式:

 $[\operatorname{Cov}(X,Y)]^2 \leqslant \operatorname{Var}(X)\operatorname{Var}(Y)$, 当且仅当 Y = aX + b 等号成立.

相关系数:

$$\rho_{XY} = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X)\text{Var}(Y)}}$$

条件概率:

先有
$$f_{X|Y}(x|y) = rac{f(x,y)}{f_Y(y)}$$

再有
$$F_{X|Y}(x|y) = P(X \leqslant x|Y=y) = \int_{-\infty}^x f_{X|Y}(u|y) \mathrm{d}u$$

乘法公式:

$$f(x,y)=f_X(x)f_{Y|X}(y|x)=f_Y(y)f_{X|Y}(x|y)$$

5. 集中不等式

Markov 不等式:

对任意随机变量 $X\geqslant 0, \epsilon>0$, 有

$$P(X \geqslant \epsilon) \leqslant \frac{E(X)}{\epsilon}$$

证明:

$$E[X] = E[X|X\geqslant \epsilon]P(X\geqslant \epsilon) + E[X|X\leqslant \epsilon]P(X\leqslant \epsilon)\geqslant \epsilon P(X\geqslant \epsilon)$$

推论: 对于单调增的非负函数 g 有 $P(X \geqslant \epsilon) \leqslant \frac{E[g(X)]}{g(\epsilon)}$

Chebyshev 不等式:

$$P(|X - \mu| > \epsilon) \leqslant \frac{\operatorname{Var}(X)}{\epsilon^2}$$

Cantelli 不等式:

$$P(X - \mu \geqslant \epsilon) \leqslant \frac{\sigma^2}{\sigma^2 + \epsilon^2} \not \exists \square P(X - \mu \leqslant -\epsilon) \leqslant \frac{\sigma^2}{\sigma^2 + \epsilon^2}$$

证明过程中令 $Y=X-\mu$, 并添加了一个 t 变量, 用以之后求最值.

Chebyshev 不等式推论:

独立同分布随机变量 $E[X_i] = \mu, \operatorname{Var}(X_i) \leqslant \sigma^2$

$$P(|rac{1}{n}\sum_{i=1}^n X_i - \mu| \geqslant \epsilon) \leqslant rac{\sigma^2}{n\epsilon^2}$$

Young 不等式:

对于
$$\frac{1}{p} + \frac{1}{q} = 1$$
, 有

$$ab\leqslant rac{1}{p}a^p+rac{1}{q}b^q$$

Holder 不等式:

$$E[|XY|] \leqslant (E[|X|^p])^{\frac{1}{p}} (E[|Y|^q])^{\frac{1}{q}}$$

Chernoff 不等式:

矩生成函数为 $M_X(t) = E[e^{tX}]$

Chernoff 方法为:

$$P(X\geqslant E[X]+\epsilon)=P(e^{tX}\geqslant e^{tE[X]+t\epsilon})\leqslant e^{-t\epsilon-tE[X]}E[e^{tX}]$$

Chernoff 引理:

对于 $X \in [0,1]$ 的期望 $\mu = E[X]$, 对任意 t>0 有

$$E[e^{tX}] \leqslant \exp(t\mu + \frac{t^2}{8})$$

使用凸函数性质
$$e^{tX} = e^{tX + (1-X)0} \leqslant Xe^t + (1-X)e^0$$

因此对
$$X \in [a,b]$$
 有 $E[e^{tX}] \leqslant \exp(\mu t + \frac{t^2(b-a)^2}{8})$

亚高斯随机变量:

将有界随机变量和高斯随机变量统一起来.

若
$$X$$
 满足 $E[e^{(X-E[X])t}] \leqslant \exp(\frac{bt^2}{2})$

则称为亚高斯随机变量.

高斯分布是参数为 σ^2 的亚高斯分布.

对于满足 $E[X_i]=0$ 的亚高斯随机变量有

$$E[\max_{i \in [n]} X_i] \leqslant \sqrt{2b \ln n}$$

根据 Jensen 不等式有 $\exp(tE[\max_{i\in[n]}X_i])\leqslant E[\exp(t\max_{i\in[n]}X_i)]$

6. 大数定理以及中心极限定理

依概率收敛:

$$\lim_{n \to \infty} P(|X_n - a| < \epsilon) = 1$$
 或 $\lim_{n \to \infty} P(|X_n - a| \geqslant \epsilon) = 0$

则称 $\{X_n\}$ 依概率收敛于 a, 记作 $X_n \stackrel{P}{\longrightarrow} a$

大数定律:

$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \stackrel{P}{\longrightarrow} \frac{1}{n}\sum_{i=1}^{n}E[X_{i}]$$

即看
$$P(|rac{1}{n}\sum_{i=1}^n(X_i-E[X_i])|\geqslant\epsilon) o 0$$

Markov 大数定律:

$$rac{1}{n^2} \mathrm{Var}(\sum_{i=1}^n X_i) o 0$$

Chebyshev 大数定律:

$$\operatorname{Var}(X_n)\leqslant c\ \mathbb{P}rac{c}{n\epsilon^2} o 0$$

辛钦大数定律:

每个随机变量的期望 $E[X_i] = \mu$ 存在.

Bernoulli 大数定律:

对于 $X_n \sim B(n,p)$ 可以看作是一系列的 Bernoulli 随机变量, 然后就有 $\dfrac{X_n}{n} \overset{P}{\longrightarrow} p$

判断随机变量序列满足大数定律:

独立同分布,则用辛钦大数定律;否则用 Markov 大数定律.

依分布收敛:

$$\lim_{n o\infty}F_{Y_{n}}\left(y
ight) =F_{Y}\left(y
ight)$$

中心极限定理:

对于独立同分布的随机变量 $X_1, X_2, \cdots, X_n, \cdots$ 的期望 $E[X_i] = \mu$ 和方差 $\mathrm{Var}(X_i) = \sigma^2$

则
$$Y_n = rac{\sum_{i=1}^n X_i - n \mu}{\sigma \sqrt{n}} \stackrel{d}{\longrightarrow} N(0,1)$$

变形公式为:

7. 统计基本概念

样本均值:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

且有
$$E[\bar{X}] = \mu, \operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}, \bar{X} \stackrel{d}{\longrightarrow} N(\mu, \frac{\sigma^2}{n})$$

样本方差:

$$S_0^2 = rac{1}{n} \sum_{i=1}^n (X_i - ar{X})^2 = rac{1}{n} \sum_{i=1}^n X_i^2 - ar{X}^2$$

则有
$$E[S_0^2] = \frac{n-1}{n}\sigma^2$$

修正后的样本方差:

$$S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 \ \mathbb{P} \ S^2 = rac{n}{n-1} S_0^2$$

则有
$$E[S^2] = \sigma^2$$

样本 k 阶原点矩:

$$A_k = rac{1}{n} \sum_{i=1}^n X_i^k$$

样本 k 阶中心矩:

$$A_k=rac{1}{n}\sum_{i=1}^n(X_i-ar{X})^k$$

第 k 次序统计量:

$$F_k(x) = \sum_{r=k}^n inom{n}{r} [F(x)]^r [1-F(x)]^{n-r}$$

$$f_k(x) = rac{n!}{(k-1)!(n-k)!} [F(x)]^{k-1} [1-F(x)]^{n-k} f(x)$$

Beta 函数:

$$\mathrm{Beta}(lpha_1,lpha_2) = \int_0^1 x^{lpha_1-1} (1-x)^{lpha_2-1} \mathrm{d}x$$

Gamma 函数:

$$\Gamma(lpha) = \int_0^{+\infty} x^{lpha-1} e^{-x} \mathrm{d}x$$

$$\Gamma(1)=1, \Gamma(\frac{1}{2})=\sqrt{\pi}, \Gamma(\alpha)=(\alpha-1)\Gamma(\alpha-1), \Gamma(n+1)=n!$$

$$\mathrm{Beta}(lpha_1,lpha_2) = rac{\Gamma(lpha_1)\Gamma(lpha_2)}{\Gamma(lpha_1+lpha_2)}$$

$$\mathrm{Beta}(lpha_1,lpha_2) = rac{lpha_1-1}{lpha_1+lpha_2-1}\mathrm{Beta}(lpha_1-1,lpha_2)$$

Beta 分布:

$$f(x)=rac{x^{lpha_1-1}(1-x)^{lpha_2-1}}{\mathrm{Beta}(lpha_1,lpha_2)}, x\in (0,1)$$

记作 $X \sim B(\alpha_1, \alpha_2)$

有
$$E[X] = \frac{\alpha_1}{\alpha_1 + \alpha_2}, Var(X) = \frac{\alpha_1 \alpha_2}{(\alpha_1 + \alpha_2)^2(\alpha_1 + \alpha_2 + 1)}$$

均匀分布第 k 次序统计量:

若 X_1, X_2, \cdots, X_n 服从U(0,1),则

$$X_{(k)} \sim B(k, n-k+1)$$

Gamma 分布:

$$f(x) = rac{\lambda^{lpha}}{\Gamma(lpha)} x^{lpha-1} e^{-\lambda x}, x>0$$

记作 $X \sim \Gamma(\alpha, \lambda)$

有
$$E[X] = \frac{\alpha}{\lambda}, \operatorname{Var}(X) = \frac{\alpha}{\lambda^2}$$

和指数分布比较类似.

Gamma 分布具有可加性: $X+Y\sim \Gamma(lpha_1+lpha_2,\lambda)$

特别的,
$$X\sim \Gamma(rac{1}{2},rac{1}{2})$$
 有 $f(x)=rac{1}{\sqrt{2\pi}}x^{-rac{1}{2}}e^{-rac{1}{2}x}, x>0$

且有若 $X \sim N(0,1)$, 则 $X^2 \sim \Gamma(rac{1}{2},rac{1}{2})$

卡方分布:

若 X_1,X_2,\cdots,X_n 是来自总体 $X\sim N(0,1)$ 的一个样本,称 $Y=X_1^2+X_2^2+\cdots+X_n^2$ 为服从自由度为 n 的 χ^2 分布,记作 $Y\sim\chi^2(n)$

所以也就有 $Y \sim \Gamma(rac{n}{2},rac{1}{2})$

$$E[Y] = n, Var(Y) = 2n$$

可加性: $X + Y \sim \chi^2(m+n)$

若随机变量
$$X \sim N(0,1)$$
, 则 $E[X^k] = egin{cases} (k-1)!!, & k ext{ is even} \\ 0, & k ext{ is odd} \end{cases}$

t 分布:

设 $X \sim N(0,1)$ 和 $Y \sim \chi^2(n)$ 相互独立, 则称

$$T = rac{X}{\sqrt{Y/n}}$$
 服从自由度为 n 的 t 分布, 记作 $T \sim t(n)$

F 分布:

设随机变量 $X \sim \chi^2(m)$ 和 $Y \sim \chi^2(n)$ 相互独立, 则称

$$F = rac{X/m}{Y/n}$$
 为服从自由度 m,n 的 F 分布, 记作 $F \sim F(m,n)$

五大抽样定理其一:

设 X_1, X_2, \cdots, X_n 是来自总体 $N(\mu, \sigma^2)$ 的样本, 则有

$$ar{X} = \sum_{i=1}^n X_i \sim N(\mu, rac{\sigma^2}{n})$$
, $rac{ar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

在知方差 σ 时能用于估计 μ ; 知期望 μ 时能用于估计 σ^2 .

五大抽样定理其二:

$$S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - ar{X})^2$$

则有
$$\dfrac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1)$$

即
$$rac{\sum_{i=1}^n (X_i - ar{X})^2}{\sigma^2} \sim \chi^2(n-1)$$

能用于估计方差 σ^2

五大抽样定理其三:

$$rac{ar{X}-\mu}{S/\sqrt{n}} \sim t(n-1)$$

可用于估计期望 μ

五大抽样定理其四:

设 X_1,X_2,\cdots,X_m 和 Y_1,Y_2,\cdots,Y_n 分别来自总体 $N(\mu_X,\sigma^2),N(\mu_Y,\sigma^2)$,其中两者方差一致,则

$$rac{ar{X} - ar{Y} - (\mu_X - \mu_Y)}{\sqrt{rac{(m-1)S_X^2 + (n-1)S_y^2}{m+n-2}} \sqrt{rac{1}{m} + rac{1}{n}}} \sim t(m+n-2)$$

五大抽样定理其五:

设 X_1,X_2,\cdots,X_m 和 Y_1,Y_2,\cdots,Y_n 分别来自总体 $N(\mu_X,\sigma_X^2),N(\mu_Y,\sigma_Y^2)$, 其中两者方差不一定一致, 则

$$rac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2} \sim F(m-1,n-1)$$

分位点:

给定 $\alpha \in (0,1)$ 和随机变量 X, 称 $P(X>\lambda_{\alpha})=\alpha$ 的实数 λ_{α} 为上侧 α 分位点.

8. 参数估计

矩估计:

使用样本 k 阶矩和样本 k 阶中心矩相等进行估计.

最大似然估计

似然函数
$$L(heta) = L(x_1, x_2, \cdots, x_n; heta) = \prod_{i=1}^n P(x_i; heta)$$

取其对数
$$\ln L(heta) = \sum_{i=1}^n \ln P(x_i; heta)$$
 然后进行求导等于零

并令其等于零, 即可解出 $\hat{ heta}$

我们有 $\hat{\mu} = \mu(\hat{\theta})$ 是 μ 的最大似然估计.

无偏性:

$$E[\hat{\theta}(X_1, X_2, \cdots, X_n)] = \theta$$

则 $\hat{\theta}$ 是 θ 的无偏估计.

有效性:

$$Var(\hat{\theta}) = E[(\hat{\theta} - \theta)^2]$$

一般方差越小, 无偏估计越好.