Honors Logic, Lecture 13 - Modal Logic

Brian Weatherson

2022-10-12

Six New Steps

- 1. Every line has a world number.
- 2. The rules for non-modal connectives preserve world.
- 3. For negated modals, move negation inside and flip
- 4. For true ♦ sentences, introduce a new world.
- 5. For true \square worlds, do nothing at first, but make boxed sentence true everywhere accessible.
- 6. Only close a branch when a sentence is true and false at same world.

- 1. Every line has a world number.
- 2. The rules for non-modal connectives preserve world.
- 3. For negated modals, move negation inside and flip
- 4. For true ♦ sentences, introduce a new world.
- 5. For true \(\subseteq \text{worlds, do nothing at first, but make boxed sentence true everywhere accessible.} \)
- 6. Only close a branch when a sentence is true and false at same world.

World Numbers

Lines now look like this.

$$p \wedge q, 1$$

Read this as saying that the conjunction $p \wedge q$ is true at world 1.

- 1. Every line has a world number.
- 2. The rules for non-modal connectives preserve world.
- 3. For negated modals, move negation inside and flip
- 4. For true ♦ sentences, introduce a new world.
- 5. For true \(\subseteq \text{worlds, do nothing at first, but make boxed sentence true everywhere accessible.} \)
- 6. Only close a branch when a sentence is true and false at same world.

World Preservation

- All the old rules didn't have line numbers.
- But the way to apply them is just to keep the world numbers the same.

Example 1

```
p \land q, 3
p, 3
q, 3
```

Example 2

$$p \supset q, 4$$

$$\neg p, 4 \qquad q, 4$$

- 1. Every line has a world number.
- 2. The rules for non-modal connectives preserve world.
- 3. For negated modals, move negation inside and flip.
- 4. For true ♦ sentences, introduce a new world.
- 5. For true \(\subseteq \text{worlds, do nothing at first, but make boxed sentence true everywhere accessible.} \)
- 6. Only close a branch when a sentence is true and false at same world.

Negated Modals (\lozenge)

For each of them, the rule is move the negation inside, and invert.

$$\neg \Diamond A, n$$

 $\Box \neg A, n$

Note that the world stays the same, as does what comes after the modal.

Negated Modals (□)

For each of them, the rule is move the negation inside, and invert.

$$\neg \Box A, n$$

 $\Diamond \neg A, n$

Note that the world stays the same, as does what comes after the modal.

- 1. Every line has a world number.
- 2. The rules for non-modal connectives preserve world.
- 3. For negated modals, move negation inside and flip.
- 4. For true \Diamond sentences, introduce a new world.
- 5. For true \(\subseteq \text{worlds, do nothing at first, but make boxed sentence true everywhere accessible.} \)
- 6. Only close a branch when a sentence is true and false at same world.

Example 3

Here is an instance of the true \Diamond rule in action.

 This would only be ok if 5 had not been used on the branch before.

General Rule

When you have a true *Diamond* sentence:

- On a new line, copy down the sentence;
- Delete the ◊;
- Change the world number to a number that didn't previously appear on the tree.
- Write that the world from the original sentence can access the new world.
- That's it; there are no more rules to apply.

Explanation

A true \Diamond sentence says that at some accessible world, what's inside the \Diamond is true.

- Since the world names are arbitrary, we're just giving whatever world that is an arbitrary name.
- And it's accessible, so we say that the original world can see it.
- You have two lines to write down; the order you write them in doesn't matter.

- 1. Every line has a world number.
- 2. The rules for non-modal connectives preserve world.
- 3. For negated modals, move negation inside and flip.
- 4. For true ♦ sentences, introduce a new world.
- 5. For true \square worlds, do nothing at first, but make boxed sentence true everywhere accessible.
- 6. Only close a branch when a sentence is true and false at same world.

Do Nothing

Here is a completed tableau showing that $\Box p \vdash p$ is not a theorem of the basic modal logic K.

 $\Box p$, 0

 $\neg p, 0$

There's nothing more to do.

Example 4 - $\Box p \vdash \Box \Box p$

$$\Box p, 0
\neg \Box \Box p, 0
\Diamond \neg \Box p, 0
0r1
\neg \Box p, 1
p, 1
\Diamond \neg p, 1
1r2
\neg p, 2$$

All the rules are applied. Crucially, because the only 0x is for x=1, just apply line 1 to world 1.

- 1. Every line has a world number.
- 2. The rules for non-modal connectives preserve world.
- 3. For negated modals, move negation inside and flip.
- 4. For true ♦ sentences, introduce a new world.
- 5. For true \(\subseteq \text{worlds, do nothing at first, but make boxed sentence true everywhere accessible.} \)
- 6. Only close a branch when a sentence is true and false at same world.

Don't do this!!!

A tableau that 'shows' the mistaken claim $\vdash \neg(\Diamond p \land \Diamond \neg p)$

$$\neg \neg (\Diamond p \land \Diamond \neg p), 0$$

$$\Diamond p \land \Diamond \neg p, 0$$

$$\Diamond p, 0$$

$$\Diamond \neg p, 0$$

$$0r1$$

$$p, 1$$

$$0r2$$

$$\neg p, 2$$

$$x (since $p \text{ and } \neg p)$$$

More examples

We'll work through some more examples from the exercises at the end of chapter 2