Алгебра 3 2023 Кузнецов

1 Листок 1

1. Существует ли функтор из Grp в Ab, переводящий группу в её центр? Покажем, что нет такого функтора. Предположим, что это функтор \mathcal{F} . Рассмотрим группы $G=S_2$ и $H=S_n$ с таким n, что центр S_n тривиален (например, n=5). Рассмотрим гомоморфизмы $g\colon G\to H$, являющийся просто вложением, и $h\colon H\to G$, переводящий чётные перестановки в e, а нечётные в (12). Тогда $hg=id_G$. Отсюда

$$\mathcal{F}(h)\mathcal{F}(g) = id_{\mathcal{F}(G)}.$$

Но $\mathcal{F}(G)$ — это центр группы G, то есть в нашем случае вся G. А $\mathcal{F}(g)$ действует из G в центр H, то есть обязана быть тривиальным гомоморфизмом (всё в e). Но тогда

$$\mathcal{F}(h)\mathcal{F}(g)$$

тоже обязано всё переводить в e, а это не так $(id_{\mathcal{F}(G)})$ тождественно, а не переводит всё в e).

2. а) $\mathbb{Z} \to \mathbb{Q}$ — эпиморфизм колец. Я так понимаю, колец с единицей. Допустим, есть $f_1, f_2 \colon \mathbb{Q} \to K$, совпадающие на \mathbb{Z} . Надо показать, что они совпадают на всём \mathbb{Q} . Предположим,

$$f_1\left(\frac{m}{n}\right) \neq f_2\left(\frac{m}{n}\right).$$

Пусть $a = f_2(m/n) - f_1(m/n)$. Имеем na = 0. Тогда

$$f_1\left(\frac{1}{n}\right)na=0,$$

$$f_1\left(\frac{1}{n}\right)f_1(n)a = 0,$$

Вот и доказали.

б) Пусть P — некоторое подмножества множества простых целых чисел. Обозначим множество натуральных чисел, у которых все простые делители лежат в P, через A(P). Рассмотрим кольцо $K_P = \mathbb{Q}/A(P)$, полученное как подкольцо кольца \mathbb{Q} , состоящее из всех рациональных чисел со знаменателями, у которых все простые делители лежат в P (конструкция локализации). Тогда аналогично предыдущему пункту

проверяем, что $\mathbb{Z} \to K_P$ — эпиморфизм колец. Действительно, допустим, есть $f_1, f_2 \colon K_P \to K$, совпадающие на \mathbb{Z} . Надо показать, что они совпадают на всём K_P . Предположим,

$$f_1\left(\frac{m}{n}\right) \neq f_2\left(\frac{m}{n}\right), n \in A(P).$$

Пусть $a = f_2(m/n) - f_1(m/n)$. Имеем na = 0. Тогда

$$f_1\left(\frac{1}{n}\right)na=0,$$

$$f_1\left(\frac{1}{n}\right)f_1(n)a = 0,$$

$$a = 0.$$

Вот и доказали.

А таких различных множеств P несчетно много, и для разных P кольца K_P неизоморфны (в кольце K_P для данного простого p тогда и только тогда существует элемент $h \in K_P$, такой, что ph = 1, когда $p \in P$).

3. Это несложная задача. $\mathcal{T}\colon C\to B$ — строгий функтор. $\mathcal{T}f$ — мономорфизм. Тогда и f— мономорфизм. Действительно, пусть g_1,g_2 такие, что $fg_1=fg_2$. Тогда $\mathcal{T}f\cdot\mathcal{T}g_1=\mathcal{T}f\cdot\mathcal{T}g_2$. Отсюда с учётом мономорфности $\mathcal{T}f$ следует, что $\mathcal{T}g_1=\mathcal{T}g_2$. Но тогда из строгости \mathcal{T} следует, что $g_1=g_2$.

4.

5. Идемпотентный морфизм в категории **Set** ращепим. Пусть $f: X \to X$ — идемпотентный морфизм, то есть $f^2 = f$. Рассмотрим множество

$$A = \{x \in X \mid f(x) = x\}.$$

Это множество непустое, поскольку, взяв любой элемент $x \in X$, имеем $f(x) \in A$. Пусть $B = X \setminus A$. Ясно, что

$$\forall x \in B \ f(x) \in A.$$

Рассмотрим морфизм $g: A \to X$, определяемый равенством

$$g(x) = x, x \in A$$

и $h: X \to A$, определяемый равенством

$$h(x) = f(x), x \in X.$$

Тогда $hg = id_A$, а gh = f. Это и означает расщепимость f. Вот всё и доказали.