		6
	MATHEMATICS ASSIGNMENT - IT	6
	Name: Subhojit Chimire	-
	Sch Td.: 1912160	30
	Branch: CSE-B	
	B. Tech. TTrd Sem.	
	B. lech. III Sem.	-
<i>~</i> .		
(40) o	Find fourier transform of the following functions:	30
(a)	$f(n) = \frac{1}{\sqrt{n}}$	
San'-	F\{ f(n)\} = \int_{-\infty} f(n) e^{isn} dn	
	for n>0,	
	$F\{\{cn\}\} = \int_0^\infty \frac{1}{\sqrt{n}} e^{isn} dn \mid let, -t=isn$	
		-6
	Jolis -is dn=dt	2
	= 1:2	2
		-
	$=\sqrt{\frac{\pi^{2}}{S}}$	-
	V 2	-
	<u>.</u>	6
(b)	$f(n) = \int e^{-ikn}$, if $\alpha < \alpha < b$	6
	${0 \atop 0}$, if $n < a \ and \ n > b$	-
801/-	$F \S f(n) \S = \int_{-\infty}^{\infty} f(n) e^{isn} dn$	
	-ikn pisa	
	Ja	
	= (b i(s-k) n dn	4
	= 1 [e;(s-k)n]b	1
	i(s-k)	-
	= ei(s-k)b = ei(s-k)a	K
	i(s-k)	1
		1
		6

(c) $f(n) = \begin{cases} 2^2 - n^2 \end{cases}$ if $|n| < \alpha$. Deduce $\int_0^\infty n^{2n} dn dn = \int_0^\infty f(n) e^{isn} dn$ $= \int_0^\infty f(n) e^{isn} dn$ $= \int_0^\infty (\alpha^2 - n^2) e^{isn} dn$ $= \frac{a^2}{is} \left(e^{isa} - e^{-isa} \right) - \left[\frac{n^2}{n^2} e^{isa} - \frac{2ne^{isn}}{(is)^2} \right] = \frac{a^2}{(is)^3} = \frac{a^2}{a}$ - a² (eisa e-isa) - a² eisa deisa deisa deisa (2º isa de-isa de-sa) = 2a (eisa+e-is) -2 (eisa-e-isa) = 4a cos(sa) - 4 8in(sa) $= \frac{4}{i^2-s^3} \left(a.s. \cos(sa) - \sin(sa) \right)$ = 4 [sin(sa) - as (cos(sa))] By inverse fourier transform, fcn) = 1 (Sin sa - as cos sa) e isa ds Putting Sa=t,

for = 1 (~ 4a3 (sint-tcost) dt. e a $\frac{2a^2}{\pi} \int_{-\infty}^{\infty} \frac{Sint-t\cos t}{t^3} \cdot e^{\frac{-itx}{a}} dt$ Putting n=0, f(0) = a2 a2 = 2a2. 2 Co Sint-tcost dt ("Sint-tcost is even). on I = So Sint - tcost dt Sinn-ncosn dn - A verified

__/__/___

