PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets 6: WO 98/11213 (11) Numéro de publication internationale: C12N 15/12, A61K 48/00 À1 (43) Date de publication internationale: 19 mars 1998 (19.03.98) (74) Mandataire: LE PENNEC, Magali; Rhône-Poulenc Rorer S.A., (21) Numéro de la demande internationale: PCT/FR97/01589 Direction Brevets, 20, avenue Raymond Aron, F-92165 Antony Cedex (FR). (22) Date de dépôt international: 10 septembre 1997 (10.09.97) (30) Données relatives à la priorité: 96/11186 13 septembre 1996 (13.09.96) FR

(71) Déposants (pour tous les Etats désignés sauf US): RHONE-POULENC RORER S.A. [FR/FR]; 20, avenue Raymond Aron, F-92160 Antony (FR). INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE [FR/FR]; 101, rue de Tolbiac, F-75654 Paris Cedex 13 (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (US seulement): HAASE, Georg [DE/FR]; 8, avenue du Maine, F-75015 Paris (FR). KAHN, Axel [FR/FR]; 10, rue du Docteur Roux, F-75015 Paris (FR). KENNEL, Philippe [FR/FR]; 6, allée Henri Matisse, F-92130 Issy les Moulineaux (FR). MALLET, Jacques [FR/FR]; 18, rue Charcot, F-75013 Paris (FR). REVAH, Frédéric [FR/FR]; 137, rue de Grenelle, F-75007 Paris (FR).

(81) Etats désignés: AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GE, GH, HU, ID, IL, IS, JP, KP, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, ZW, brevet ARIPO (GH, KE, LS, MW, SD, SZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si de telles modifications sont reçues.

(54) Title: METHOD FOR TREATING AMYOTROPHIC LATERAL SCLEROSIS

(54) Titre: METHODE DE TRAITEMENT DE LA SCLEROSE LATERALE AMYOTROPHIQUE

(57) Abstract

The invention concerns a novel method for treating motor neuron diseases and particularly amyotrophic lateral sclerosis. It consists more particularly in the systemic administration of expression systems of neurotrophic factors.

(57) Abrégé

La présente demande concerne une nouvelle méthode pour le traitement de maladies motoneurales et en particulier de la sclérose latérale amyotrophique. Elle repose plus particulièrement sur l'administration systémique de systèmes d'expression de facteurs neurotrophiques.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
ΑT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
ΑU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ	Azerbaïdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	ТJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
ВJ	Bénin	IE	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	Israël	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JР	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Has	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tcheque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	LI	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie	LR	Libéria	SG	Singapour		

l

METHODE DE TRAITEMENT DE LA SCLEROSE LATERALE AMYOTROPHIQUE

La présente invention concerne une nouvelle méthode pour le traitement de maladies motoneurales et en particulier de la sclérose latérale amyotrophique. Elle concerne également des vecteurs et des compositions pharmaceutiques permettant l'expression prolongée de facteurs thérapeutiques, utilisables pour le traitement de la SLA. Plus précisément, la présente invention concerne le traitement de la SLA par administration systémique de gènes thérapeutiques.

5

10

15

20

25

La sclérose latérale amyotrophique (SLA), aussi connue sous le nom de maladie de Charcot et maladie de Lou Gehrig a été décrite pour la première fois par Charcot en 1865. La SLA est une maladie mortelle résultant de la dégénérescence des motoneurones et des voies corticospinales. Avec une incidence actuellement de 2,5/100 000 et en constante augmentation, une prévalance de 6-10/100 000, la SLA affecte 90 000 personnes dans les pays développés, pour la plupart des adultes encore jeunes (entre 50 et 60 ans). La maladie s'accompagne d'une paralysie progressive, conduisant à la perte totale des fonctions motrices et respiratoires puis à la mort dans un délai de deux à huit ans après l'apparition des premiers symptômes (trois ans en moyenne).

5 % des cas de SLA sont d'origine familiale et 95 % des cas sont sporadiques. L'origine physiopathologique des formes sporadiques de SLA demeure inconnue. Plusieurs hypothèses ont été proposées. La dégénérescence motoneuronale pourrait résulter d'une altération du métabolisme du glutamate conduisant à une augmentation des concentrations de cet acide aminé excitateur dans le cortex moteur et la moelle épinière (hypothèse "excitotoxique", revue dans Rothstein, 1995). La possibilité d'une composante autoimmune a également été invoquée sur la base de la présence d'auto-anticorps contre les canaux calciques sensibles au voltage chez certains patients (revue dans Appel et coll., 1995). L'implication de facteurs environnementaux tels l'exposition à certains virus (revue dans Gastaut, 1995), ou à l'aluminium (Yase, 1984) est également possible.

15

20

25

30

Les études portant sur les formes héréditaires de SLA ont permis de montrer que des mutations ponctuelles dans le gêne de la superoxyde dismutase à cuivre et zinc, localisée sur le chromosome 21q22-1, sont responsables de la pathologie dans 20 % des formes familiales (Rosen et coll., 1993, revue dans Rowland, 1995). Ces mutations ne provoquent pas de diminution de l'activité dismutase de la SOD (revue dans Rowland, 1995). Les enzymes mutées produisent des radicaux hydroxyl potentiellement cytotoxiques qui ne sont pas produits par la SOD sauvage (Yim et coll., 1996). L'étude approfondie de l'effet fonctionnel des mutations sur l'activité enzymatique de la SOD et sur la viabilité cellulaire devrait permettre à terme de comprendre la physiopathologie des formes familiales de SLA, et par extension d'éclairer la physiopathologie de l'ensemble des formes de SLA.

2

Des travaux portant sur les facteurs susceptibles d'influencer la survie des motoneurones ont permis de mettre en évidence un rôle neuroprotecteur potentiel de plusieurs facteurs neurotrophiques (revue dans Windebank, 1995; Henderson, 1995). Ainsi, des effets de protection motoneuronale in vitro ont été observés avec notamment le BDNF (Oppenheim et coll., 1992, Yan et coll., 1992, Sendtner et coll., 1992, Henderson et coll., 1993, Vejsada et coll., 1995), le NT-3 (Henderson et coll., 1993), le GDNF (Henderson et coll., 1994, Oppenheim et coll., 1995), trois cytokines, le CNTF, le LIF (revue dans Henderson, 1995) et la cardiotrophine-1 (Pennica et coll., 1996), avec l'IGF-1 (Lewis et coll., 1993) et des membres de la famille des FGFs (Hughes et coll., 1993). L'ensemble de ces données suggère que les facteurs neurotrophiques cités renforcent la survie des motoneurones dans diverses conditions expérimentales. Toutefois l'utilisation de facteurs neurotrophiques dans des modèles animaux de SLA ou en clinique humaine n'a pas donné jusqu'à présent de résultats probant. Cette utilisation n'a jamais démontré d'effet thérapeutique et s'est toujours accompagnée d'effets secondaires indésirables tels que perte de poids, inflammation, fièvre, etc, qui limitent l'intérêt des facteurs trophiques dans le traitement de la SLA et ont conduit à l'interruption prématurée des premiers essais cliniques SLA-CNTF par Regeneron (administration systémique) (Barinaga et al., 1994). Il n'a donc pas été possible jusqu'à présent ni de confirmer l'intérêt des

facteurs neurotrophiques pour le traitement de la SLA, ni d'exploiter leurs propriétés pour une éventuelle approche thérapeutique.

3

PCT/FR97/01589

WO 98/11213

5

10

15

20

25

De ce fait, il n'existe à l'heure actuelle aucun moyen permettant de guérir la SLA et très peu de médicaments ayant un effet thérapeutique. Le Rilutek (Rilutek) constitue le seul traitement disponible aujourd'hui. L'administration de riluzole (Rilutek) permet de ralentir la progression de la maladie, mais il n'a pas été démontré d'effet thérapeutique sur la fonction moteur. Par ailleurs, des essais cliniques basés sur l'administration de CNTF ont été interrompus prématurément, faute de résultats (Barinaga et al., 1994). Il existe donc aujourd'hui un besoin réel et important de disposer d'une méthode permettant de traiter les troubles des motoneurones, et en particulier la SLA.

La présente invention a notamment pour objectif de proposer une approche nouvelle pour le traitement des pathologies des motoneurones, telles que la SLA, basée sur la thérapie génique. Plus particulièrement, la présente invention décrit des systèmes vecteurs permettant de promouvoir directement la survie des neurones moteurs impliqués dans ces pathologies, par l'expression efficace et prolongée de certains facteurs trophiques.

Un premier aspect de l'invention concerne une méthode de traitement de la SLA comprenant l'administration systèmique d'un acide nucléique codant pour un facteur neurotrophique. Un autre aspect de l'invention concerne l'utilisation d'un acide nucléique codant pour un facteur neurotrophique pour la préparation d'une composition pharmaceutique destinée au traitement de la SLA. Un autre aspect de l'invention réside dans la construction de vecteurs particuliers, permettant l'expression de quantités thérapeutiquement effectives vis-à-vis de la SLA de facteurs trophiques. Un autre aspect de l'invention concerne l'administration de systèmes d'expression permettant la production d'un ou plusieurs facteurs trophiques, ainsi que des compositions pharmaceutiques comprenant les dits systèmes d'expression. Elle

concerne également la création de nouveaux vecteurs permettant la co-expression de facteurs trophiques in vivo.

4

La présente invention concerne donc plus précisement une nouvelle méthode de traitement de la SLA basée sur l'expression continue in vivo de facteurs trophiques.

5

10

15

20

25

La présente invention montre maintenant qu'il est possible d'obtenir in vivo un effet thérapeutique particulièrement prononcé par production in vivo de facteurs neurotrophiques. La demanderesse a notamment montré que l'injection in vivo de systèmes d'expression de facteurs neurotrophiques, par la voie systémique, permettait d'obtenir une production continue de facteur thérapeutique, et que cette production était suffisante pour obtenir un bénéfice thérapeutique dans les pathologies motoneuronales, en particulier la SLA. Ainsi, la demanderesse a montré que l'administration systémique de ces systèmes d'expression conduisait à une augmentation très significative de la durée de vie, accompagnée d'une amélioration de la réponse évoquée motrice telle que déterminée par électromyographie. Les résultats décrits démontrent que cette voie d'administration permet d'obtenir une biodisponibilité appropriée des facteurs neurotrophiques, sans effet de toxicité. Cette approche thérapeutique permet donc de produire des quantités thérapeutiquement actives de molécules, tout en restant en deçà du seuil de toxicité de ces molécules. Ainsi, alors qu'une protéine de la taille d'un facteur neurotrophique, administrée de manière systémique, ne pénètre le système nerveux qu'avec une faible efficacité en raison de l'existence de la barrière hémato-encéphalique, la méthode de l'invention permet d'obtenir, de façon inattendue, un effet thérapeutique important. Par ailleurs, la méthode de l'invention permet d'utiliser des doses de facteurs thérapeutiques qui sont en deçà du seuil de toxicité, et n'induisent pas d'effets secondaires.

Un premier objet de l'invention réside donc dans un procédé de traitement de la SLA comprenant l'administration, par voie systémique, d'un système d'expression d'un facteur neurotrophique. Un autre objet de l'invention réside également dans l'utilisation d'un système d'expression d'un facteur neurotrophique pour la préparation

5

10

15

20

25

d'une composition pharmaceutique destinée au traitement de la SLA, par administration par voie systémique. L'invention concerne également une méthode pour prolonger la durée de vie de mammifères atteints de la SLA comprenant l'administration, par voie systémique, d'un système d'expression d'un facteur neurotrophique.

5

Au sens de l'invention, le terme "système d'expression" désigne toute construction permettant l'expression in vivo d'un acide nucléique codant pour un facteur neurotrophique. Avantageusement, le système d'expression comprend un acide nucléique codant pour un facteur neurotrophique sous le contrôle d'un promoteur transcriptionnel (cassette d'expression). Cet acide nucléique peut être un ADN ou un ARN. S'agissant d'un ADN, on peut utiliser un ADNc, un ADNg ou un ADN hybride, c'est-à-dire un ADN contenant un ou plusieurs introns de l'ADNg, mais pas tous. L'ADN peut également être un synthétique ou semi-synthétique, et en particulier un ADN synthétisé artificiellement pour optimiser les codons ou créer des formes réduites.

Le promoteur transcriptionnel peut être tout promoteur fonctionnel dans une cellule mammifère, de préférence humaine. Il peut s'agir de la région promotrice naturellement responsable de l'expression du facteur neurotrophique considéré lorsque celle-ci est susceptible de fonctionner dans la cellule ou l'organisme concernés. Il peut également s'agir de régions d'origine différente (responsables de l'expression d'autres protéines, ou même synthétiques). Notamment, il peut s'agir de régions promotrices de gènes eucaryotes ou viraux. Par exemple, il peut s'agir de régions promotrices issues du génome de la cellule cible. Parmi les promoteurs eucaryotes, on peut utiliser tout promoteur ou séquence dérivée stimulant ou réprimant la transcription d'un gène de façon spécifique ou non, inductible ou non, forte ou faible. Il peut s'agir en particulier de promoteurs ubiquitaires (promoteur des gènes HPRT, PGK, α-actine, tubuline, etc), de promoteurs des filaments intermédiaires (promoteur des gènes GFAP, desmine, vimentine, neurofilaments, kératine, etc), de promoteur des

15

25

genes MDR. CFTR. Facteur VIII. ApoAI, etc), de promoteurs spécifiques de tissus (promoteur du gene pyruvate kinase, villine, proteine intestinale de liaison des acides gras, α-actine du muscle lisse, etc) ou encore de promoteurs répondant à un stimulus (récepteur des hormones stéroïdes, récepteur de l'acide rétinoïque, etc). De même, il peut s'agir de séquences promotrices issues du génome d'un virus, tel que par exemple les promoteurs des gènes E1A et MLP d'adénovirus, le promoteur précoce du CMV, ou encore le promoteur du LTR du RSV, etc. En outre, ces régions promotrices peuvent être modifiées par addition de séquences d'activation, de régulation, ou permettant une expression tissu-spécifique ou majoritaire.

On utilise avantageusement dans le cadre de l'invention un promoteur constitutif eucaryote ou viral. Il s'agit plus particulièrement d'un promoteur choisi parmi le promoteur des gènes HPRT. PGK, α-actine, tubuline ou le promoteur des gènes E1A et MLP d'adénovirus, le promoteur précoce du CMV, ou encore le promoteur du LTR du RSV.

Par ailleurs, la cassette d'expression comporte avantageusement une séquence signal dirigeant le produit synthétisé dans les voies de sécrétion de la cellule cible. Cette séquence signal peut être la séquence signal naturelle du produit synthétisé, mais il peut également s'agir de toute autre séquence signal fonctionnelle, ou d'une séquence signal artificielle.

20 Enfin, la cassette d'expression comprend généralement une région située en 3', qui spécifie un signal de fin transcriptionnelle et un site de polyadénylation.

Les facteurs trophiques utilisables dans le cadre de l'invention se classent essentiellement dans trois familles : la famille des neurotrophines, la famille des neurokines, et la famille du TGF béta (pour revue, voir Henderson Adv. Neurol. 68 (1995) 235).

Plus préférentiellement, dans la famille des neurotrophines, on préfère utiliser dans le cadre de l'invention le BDNF, le NT-3 ou le NT-4/5.

5

10

15

20

25

7

Le facteur neurotrophique dérivé du cerveau (BDNF), décrit par Thoenen (Trends in NeuroSci. 14 (1991) 165), est une protéine de 118 acides amines et de poids moléculaire 13,5 kD. In vitro, le BDNF stimule la formation de neurites et la survie en culture des neurones ganglionaires de la rétine, des neurones cholinergiques du septum ainsi que des neurones dopaminergiques du mésencéphale (revue par Lindsay in Neurotrophic Factors, Ed, (1993) 257, Academic Press). La séquence d'ADN codant pour le BDNF humain et pour le BDNF de rat a été clonée et séquencée (Maisonpierre et al., Genomics 10 (1991) 558), ainsi que notamment la séquence codant pour le BDNF de porc (Leibrock et al., Nature 341 (1989) 149). Bien que ses propriétés soient potentiellement intéressantes. l'application thérapeutique du BDNF se heurte à différents obstacles. En particulier, l'absence de biodisponibilité du BDNF limite toute utilisation thérapeutique. Le facteur neurotrophique dérivé du cerveau (BDNF) produit dans le cadre de la présente invention peut être le BDNF humain ou un BDNF animal.

La neurotrophine 3 (NT3) est une protéine secrétée de 119 aa qui permet la survie in vitro de neurones même à des concentrations très faibles. (Henderson et al. Nature 363,266-270 (1993)). La séquence du cDNA codant pour la NT3 humaine a été décrite (Hohn et al., Nature 344 (1990) 339).

La famille du TGF-B comprend notamment le facteur neurotrophique dérivé des cellules gliales. Le facteur neurotrophique dérivé des cellules gliales. GDNF (L.-F. Lin et al., Science, 260, 1130-1132 (1993)) est une protéine de 134 acides aminés et de poids moléculaire de 16 kD. Il a la capacité essentielle de promouvoir in vitro la survie des neurones dopaminergiques et des motoneurones (revue dans Henderson. 1995). Le facteur neurotrophique dérivé des cellules gliales (GDNF) produit dans le cadre de la présente invention peut être le GDNF humain ou un GDNF animal. Les séquences d'ADNc codant pour le GDNF humain et le GDNF du rat ont été clonées et séquencées (L.-F. Lin, D. Doherty, J. Lile, S. Besktesh, F. Collins, Science, 260, 1130-1132 (1993)).

Un autre facteur neurotrophique utilisable dans le cadre de la présente invention est notamment le CNTF ("Ciliary NeuroTrophic Factor"). Le CNTF est une neurokine susceptible d'empécher la mort des neurones. Comme indiqué précédemment, des essais cliniques ont été interrompus prématurément faute de résultats. L'invention permet maintenant la production prolongée et continue in vivo de CNTF, seul ou en combinaison avec d'autres facteurs trophiques, pour le traitement de la SLA. Le cDNA et le gène du CNTF humain et murin ont été clonés et séquencés (EP385 060; WO91/04316.

5

10

20

25

D'autres facteurs neurotrophiques utilisables dans le cadre de la présente invention sont par exemple l'IGF-1 (Lewis et al., 1993) et les Facteurs de Croissance des Fibroblastes (FGFa, FGFb). En particulier, l'IGF-I et le FGFa sont des candidats très interessants. La séquence du gène du FGFa a été décrite dans la littérature, ainsi que des vecteurs permettant son expression in vivo (WO95/25803).

Les genes codant pour le BDNF, le GDNF, le CNTF et la NT3 sont tout particulièrement intéressants pour la mise en oeuvre de la présente invention.

Selon un premier mode de réalisation, le système d'expression de l'invention permet la production d'un seul facteur neurotrophique in vivo. Dans ce cas, le système d'expression ne comporte qu'une cassette d'expression. Préférentiellement, le système d'expression de l'invention permet la production in vivo d'un facteur neurotrophique choisi parmi les neurotrophines, les neurokines et les TGF. Il s'agit plus préférentiellement d'un facteur choisi parmi le BDNF, le GDNF, le CNTF, la NT3, le FGFa et l'IGF-I.

Selon un autre mode de réalisation, le système d'expression de l'invention permet la production de deux facteurs neurotrophiques in vivo. Dans ce mode de réalisation, le système d'expression comporte soit deux cassettes d'expression, soit une seule cassette permettant l'expression simultanée de deux acides nucléiques (unité bicistronique). Lorsque le système comprend deux cassettes d'expression, celles-ci peuvent utiliser des promoteurs identiques ou différents.

5

10

15

20

25

Préférentiellement, le système d'expression de l'invention permet la production in vivo des combinaisons de facteurs neurotrophiques suivantes : BDNF et GDNF ; BDNF et NT3 ; GDNF et NT3, CNTF et BDNF, CNTF et NT3, CNTF et GDNF.

9

De manière avantageuse, la demanderesse a en effet montré que l'administration de 2 systèmes d'expression de facteurs neurotrophiques se traduisait par un effet thérapeutique important. Dans les systèmes d'expression de 2 facteurs neurotrophiques, on utilise généralement des promoteurs de force identique ou similaire, et un nombre de copie d'acides nucléiques identique ou similaire. De façon générale, la quantité respective des deux facteurs produits in vivo est assez proche. Il peut cependant être préférable dans certaines situations de produire des quantités différentes de chaque facteur. Dans ce cas, on peut utiliser soit des promoteurs de force différente, soit un système dans lequel sont présents des nombres de copies de gènes différents, soit varier les doses administrées.

Dans les systèmes d'expression de l'invention, la ou les cassettes d'expression font avantageusement partie d'un vecteur. Il peut s'agir en particulier d'un vecteur viral ou plasmidique. Dans le cas d'un système d'expression comportant plusieurs cassettes d'expression, les cassettes peuvent être portées par des vecteurs séparés, ou par le même vecteur.

Le vecteur utilisé peut être un vecteur plasmidique standard, comportant, en plus de la ou des cassettes d'expression selon l'invention, une origine de réplication et un gène marqueur. Différents types de vecteurs améliorés ont par ailleurs été décrits, dépourvus de gène marqueur et d'origine de réplication (PCT/FR96/00274) ou possédant par exemple une origine de réplication conditionnelle (FR95 10825). Ces vecteurs sont utilisables avantageusement dans le cadre de la présente invention.

Le vecteur utilisé peut également être un vecteur viral. Différents vecteurs ont été construits à partir de virus, ayant des propriétés de transfert de gènes remarquables. On peut citer plus particulièrement les adénovirus, les rétrovirus, les

10

15

20

25

AAV et le virus de l'herpès. Pour leur utilisation comme vecteurs de transfert de gènes, le génome de ces virus est modifié de manière à les rendre incapable de réplication autonome dans une cellule. Ces virus sont dits défectifs pour la réplication. Généralement, le génome est modifié par substitution des régions essentielles en trans à la réplication virale par la ou les cassettes d'expression.

Dans le cadre de l'invention, on préfère utiliser un vecteur viral dérivé des adénovirus. Les adénovirus sont des virus à ADN double brin linéaire d'une taille de 36 (kilobases) kb environ. Leur génome comprend notamment une séquence inversée répétée (ITR) à chaque extrémité, une séquence d'encapsidation (Psi), des gènes précoces et des gènes tardifs. Les principaux gènes précoces sont contenus dans les régions E1, E2, E3 et E4. Parmi ceux-ci, les gènes contenus dans la région E1 notamment sont nécessaires à la propagation virale. Les principaux gènes tardifs sont contenus dans les régions L1 à L5. Le génome de l'adénovirus Ad5 a été entièrement séquencé et est accessible sur base de données (voir notamment Genebank M73260). De même des parties, voire la totalité d'autres génomes adénoviraux (Ad2, Ad7, Ad12, etc) ont également été séquencées.

Pour leur utilisation comme vecteurs de transfert de gênes, différentes constructions dérivées des adénovirus ont été préparées, incorporant différents gênes therapeutiques. Plus particulièrement, les constructions décrites dans l'art antérieur sont des adénovirus délétés de la région E1, essentielle à la réplication virale, au niveau de laquelle sont insérées les séquences d'ADN hétérologue (Levrero et al., Gene 101 (1991) 195 ; Gosh-Choudhury et al., Gene 50 (1986) 161). Par ailleurs, pour améliorer les propriétés du vecteur, il a été proposé de créer d'autres délétions ou modifications dans le génome de l'adénovirus. Ainsi, une mutation ponctuelle thermosensible a été introduite dans le mutant ts125, permettant d'inactiver la protéine de 72kDa de liaison à l'ADN (DBP) (Van der Vliet et al., 1975). D'autres vecteurs comprennent une deletion d'une autre région essentielle à la réplication et/ou à la propagation virale, la région E4. La région E4 est en effet impliquée dans la régulation de l'expression des gênes tardifs, dans la stabilité des ARN nucléaires

tardifs. dans l'extinction de l'expression des protéines de la cellule hôte et dans l'efficacité de la réplication de l'ADN viral. Des vecteurs adénoviraux dans lesquels les régions E1 et E4 sont délétées possèdent donc un bruit de fond de transcription et une expression de gènes viraux très réduits. De tels vecteurs ont été décrits pas exemple dans les demandes WO94/28152, WO95/02697, WO96/22378. En outre, des vecteurs portant une modification au niveau du gène IVa2 ont également été décrits (WO96/10088).

5

10

15

20

25

11

Les adénovirus recombinants décrits dans la littérature sont produits à partir de différents sérotypes d'adénovirus. Il existe en effet différents sérotypes d'adénovirus, dont la structure et les propriétés varient quelque peu, mais qui présentent une organisation génétique comparable. Plus particulièrement, les adénovirus recombinants peuvent être d'origine humaine ou animale. Concernant les adénovirus d'origine humaine, on peut citer préferentiellement ceux classés dans le groupe C, en particulier les adénovirus de type 2 (Ad2), 5 (Ad5), 7 (Ad7) ou 12 (Ad12). Parmi les différents adénovirus d'origine animale, on peut citer préférentiellement les adénovirus d'origine canine, et notamment toutes les souches des adénovirus CAV2 [souche manhattan ou A26/61 (ATCC VR-800) par exemple]. D'autres adénovirus d'origine animale sont cités notamment dans la demande WO94/26914 incorporée à la présente par référence.

Dans un mode préféré de mise en oeuvre de l'invention, l'adénovirus recombinant est un adénovirus humain du groupe C. De manière plus préférentielle, il s'agit d'un adénovirus Ad2 ou Ad5.

Les adénovirus recombinants sont produits dans une lignée d'encapsidation, c'est-à-dire une lignée de cellules capables de complémenter en trans une ou plusieurs des fonctions déficientes dans le génome adénoviral recombinant. L'une de ces lignées est par exemple la lignée 293 dans laquelle une partie du génome de l'adénovirus a été intégrée. Plus précisément, la lignée 293 est une lignée de cellules embryonnaires humaines de rein contenant l'extrémité gauche (environ 11-12 %) du génome de l'adénovirus sérotype 5 (Ad5), comprenant l'ITR gauche, la région

12

d'encapsidation, la région E1, incluant E1a et E1b, la région codant pour la protéine pIX et une partie de la région codant pour la protéine pIVa2. Cette lignée est capable de trans-complémenter des adénovirus recombinants défectifs pour la région E1. c'est-à-dire dépourvus de tout ou partie de la région E1, et de produire des stocks viraux ayant des titres élevés. Cette lignée est également capable de produire, à température permissive (32°C), des stocks de virus comportant en outre la mutation E2 thermosensible. D'autres lignées cellulaires capables de complémenter la région El ont été décrites, basées notamment sur des cellules de carcinome de poumon humain A549 (WO94/28152) ou sur des rétinoblastes humains (Hum. Gen. Ther. (1996) 215). Par ailleurs, des lignées capables de trans-complémenter plusieurs fonctions de l'adénovirus ont également été décrites. En particulier, on peut citer des lignées complémentant les régions E1 et E4 (Yeh et al., J. Virol. 70 (1996) 559 : Cancer Gen. Ther. 2 (1995) 322; Krougliak et al., Hum. Gen. Ther. 6 (1995) 1575) et des lignées complémentant les régions E1 et E2 (WO94/28152, WO95/02697, WO95/27071). Les adénovirus recombinants sont habituellement produits par introduction de l'ADN viral dans la lignée d'encapsidation, suivie d'une lyse des cellules après environ 2 ou 3 jours (la cinétique du cycle adénoviral étant de 24 à 36 heures). Après la lyse des cellules, les particules virales recombinantes sont isolées par centrifugation en gradient de chlorure de césium. Des méthodes alternatives ont été décrites dans la demande FR96 08164 incorporée à la présente par référence.

10

15

20

25

La cassette d'expression du ou des gènes thérapeutiques peut être insérée en différents sites du génome de l'adénovirus recombinant, selon les techniques décrites dans l'art antérieur. Elle peut tout d'abord être insérée au niveau de la délétion E1. Elle peut également être insérée au niveau de la région E3, en addition ou en substitution de séquences. Elle peut également être localisée au niveau de la région E4 délétée. Pour la construction de vecteurs portant deux cassettes d'expression, l'une peut être insérée au niveau de la région E1. l'autre au niveau de la région E3 ou E4. Les deux cassettes peuvent également être introduites au niveau de la même région.

Comme indiqué ci-avant, dans le cas de systèmes d'expression comportant plusieurs cassettes d'expression, les cassettes peuvent être portées par des vecteurs séparés, ou par le même vecteur. La présente invention vise plus spécifiquement la mise au point de vecteurs particulièrement efficaces pour délivrer in vivo et de manière localisée, des quantités thérapeutiquement actives de GDNF, de BDNF, de NT3 et de CNTF. Plus précisement la présente invention concerne l'injection par voie systémique d'un système d'expression comprenant deux vecteurs de transferts de gênes portant chacun un gêne codant pour un facteur neurotrophique. L'invention concerne également l'injection par voie systémique d'un système d'expression comprenant un vecteur bicistronique permettant la coexpression des deux gènes. Préférentiellement la présente invention concerne l'injection par voie systémique, d'un système d'expression comprenant deux vecteurs, l'un portant le gène codant pour le CNTF et l'autre le gène codant pour la NT3, ou l'un le gène codant pour la CNTF et l'autre le gène codant pour le BDNF, ou l'un le gène codant pour le GDNF et l'autre le gène codant pour la NT3.

D'une manière plus préférée, les vecteurs de transfert utilisés sont des vecteurs adénoviraux. La demanderesse à en effet montré l'efficacité de l'utilisation d'adénovirus codant pour des facteurs neurotrophiques injectés par voie i.v. lors du traitement de différents modèles animaux de la SLA. En particulier, les résultats présentés dans les exemples montrent, pour la première fois sur un modèle animal d'une forme familiale de la SLA, les souris FALS_{093A}, une augmentation importante de la durée de vie, accompagnée de performances électromyographiques meilleures. Le seul traitement aujourd'hui proposé aux patients atteints de SLA est le riluzole (Rilutek®) qui augmente de quelques mois l'espérance de survie des malades. Il a également été démontré que le riluzole administré aux souris FALS_{093A} pouvait augmenter de 13 jours leur durée de vie moyenne (Gurney et coll., 1996). On peut donc prédire que tout traitement augmentant de plus de 13 jours la durée de vie des souris FALS_{093A} est susceptible d'apporter aux patients un bénéfice thérapeutique supérieur à celui du riluzole. Les résultats présentés dans les exemples montrent que l'approche thérapeutique selon l'invention permet d'augmenter la durée de vie

10

15

20

25

moyenne de souris FALS_{coux} jusqu'à 30 jours environ. Ceci constitue une amélioration très significative de la durée de vie, et représente la mise en évidence d'un bénéfice thérapeutique important sur des modèles de la SLA.

Les souris *pmn* constituent un autre modèle de la SLA, caractérisé par une dégénérescence plus précoce et plus rapide des motoneurones et par une durée de vie moyenne de 40 jours environ. Les résultats présentés dans les exemples montrent que l'approche thérapeutique selon l'invention permet de prolonger la durée de vie moyenne des souris *pmn* de 40 à 53 jours, ce qui constitue une amélioration significative de plus de 30 %. Cette prolongation des souris *pmn* traitées s'accompagne également d'une réduction significative de leur dégénérescence motoneuronale.

L'ensemble des résultats obtenus par cette nouvelle approche thérapeutique démontre pour la première fois une amélioration importante de différents paramètres cliniques, électromyographiques et histologiques, dans deux modèles différents de la SLA.

Selon l'invention, la production in vivo de facteurs trophiques est obtenue par administration systémique. Les résultats présentés dans les exemples montrent que ce mode d'administration permet d'obtenir une production régulière et continue d'un facteur trophique par l'organisme du patient lui même, et que cette production est suffisante pour générer un effet thérapeutique significatif. L'administration systémique est préférentiellement une injection intraveineuse ou intra artérielle. L'injection intra veineuse est particulièrement préférée. Ce mode d'injection est également avantageux en terme de tolérance et de facilité d'accès. Il permet en outre d'injecter de plus grands volumes que l'injection intramusculaire, et de façon répétée.

La présente invention concerne également toute composition pharmaceutique comprenant un système d'expression de deux facteurs neurotrophiques. Les compositions pharmaceutiques de l'invention contiennent avantageusement des véhicules pharmaceutiquement acceptables pour une formulation injectable. Il peut

5

10

15

20

25

30

15

s'agir en particulier de solutions salines (phosphate monosodique, disodique, chlorure de sodium, potassium, calcium ou magnésium, etc, ou des mélanges de tels sels), stériles, isotoniques, ou de compositions seches, notamment lyophilisées, qui, par addition selon le cas d'eau stérilisée ou de sérum physiologique, permettent la constitution de solutés injectables. D'autres excipients peuvent être utilisés tels que par exemple des protéines stabilisatrices (sérum-albumine humaine notamment : FR96 03074) ou un hydrogel. Cet hydrogel peut être préparé à partir de tout polymère (homo ou hétéro) bio-compatible et non cytotoxique. De tels polymères ont par exemple été décrits dans la demande WO93/08845. Certains d'entre eux, comme notamment ceux obtenus à partir d'oxyde d'éthylène et/ou de propylène sont commerciaux. Par ailleurs, lorsque le système d'expression est composé de vecteurs plasmidiques, il peut être avantageux, dans les compositions pharmaceutiques de l'invention, d'ajouter des agents chimiques ou biochimiques favorisant le transfert de gènes. A cet égard on peut citer plus particulièrement les polymères cationiques de type polylysine, (LKLK)n, (LKKL)n tels que décrits dans la demande WO95/21931. polyéthylène immine (WO96/02655) et DEAE dextran ou encore les lipides cationiques ou lipofectants. Ils possèdent la propriété de condenser l'ADN et de promouvoir son association avec la membrane cellulaire. Parmi ces derniers, on peut citer les lipopolyamines (lipofectamine, transfectam, tels que décrits dans la demande WO95/18863 ou WO26/17823) différents lipides cationiques ou neutres (DOTMA. DOGS, DOPE, etc) ainsi que des peptides d'origine nucléaire (WO96 25508). éventuellement fonctionnalisés pour cibler certains tissus. La préparation d'un composition selon l'invention utilisant un tel vecteur chimique est réalisée selon toute technique connue de l'homme du métier, généralement par simple mise en contact des différents composants.

Les doses de système d'expression administrées dépendent de plusieurs facteurs, et notamment du vecteur utilisé, du ou des facteurs neurotrophiques impliqués, du type de promoteur utilisé, du stade de la pathologie ou encore de la durée du traitement recherché. D'une manière générale, le système d'expression est administré sous forme de doses comprenant de 0,1 à 500 mg d'ADN par kilogramme.

10

15

20

de préférence de 1 à 100 mg d'ADN par kilogramme. On utilise généralement des doses de 10 mg d'ADN /kg environ.

S'agissant d'adénovirus recombinants, ils sont avantageusement formulés et administrés sous forme de doses comprises entre 10^4 et 10^{14} pfu, et de préférence 10^6 à 10^{10} pfu. Le terme pfu ("plaque forming unit") correspond au pouvoir infectieux d'une solution d'adénovirus, et est déterminé par infection d'une culture cellulaire appropriée, et mesure, généralement après 15 jours, du nombre de plages de cellules infectées. Les techniques de détermination du titre pfu d'une solution virale sont bien accumentées dans la littérature.

L'injection peut être réalisée au moyen de différents dispositifs, et en particulier de seringues ou par perfusion. L'injection au moyen de seringues est préférée. Par ailleurs, des injections répétées peuvent être pratiquées pour acroitre encore l'effet thérapeutique.

Selon une variante de l'invention, ce traitement peut également être appliqué en combinaison avec du riluzole. L'invention concerne ainsi une composition pharmaceutique comprenant un système d'expression selon l'invention et une quantité pharmacologiquement effective de riluzole, en vue d'une administration simultanée ou espacée dans le temps.

Les résultats présentés ci-après illustrent la présente invention sans pour autant limiter sa portée. Ils démontrent les propriétés particulièrement avantageuses de la méthode de l'invention qui constitue, à notre connaissance, la première mise en évidence, sur un modèle animal, d'un tel bénéfice thérapeutique pour la SLA.

LEGENDE DES FIGURES

Figure 1: Comparaison des performances électromyographiques de souris FALS₆₉₃₄
25 avec ou sans administration d'un système d'expression d'une combinaison CNTFGDNF.

<u>Figure 2</u>: Comparaison des performances électromyographiques de souris FALS_{GONA} avec ou sans administration d'un système d'expression de NT3.

17

<u>Figure 3</u>: Comparaison de la survie de souris *pmn* avec ou sans administration d'un système d'expression de CNTF. La survie des souris *pmn* (en jours) est exprimée en pourcentage des animaux analysés. Souris *pmn* traitées par administration d'un système d'expression de CNTF: 100 %, n=7 (courbe en gras); Souris *pmn* non traitées 100 %, n=14 (courbe trait normal).

<u>Figure 4</u>: Comparaison de la dégénérescence motoneuronale chez la souris *pmn* avec ou sans administration d'un système d'expression de CNTF. le nombre de fibres myélinisées dans le nerf phrénique de souris est examiné à 25 jours d'âge. Résultats : souris *pmn* avec système d'expression CNTF (145, n=10) ; souris *pmn* sans système d'expression CNTF "non traitées" (122, n=8) ; souris *pmn* traitées par AdlacZ (111, n=8) ; souris Xt "normal" (263, n=4). Les barres verticales représentent l'erreur standard des moyennes (SEM).

15

20

25

10

EXEMPLES

1. Matériel et Méthodes

L'ensemble des expériences décrites ci dessous (construction d'adénovirus, injection aux souris, mesures fonctionnelles) ont été effectuées en laboratoire de confinement L3.

1-Animaux.

Plusieurs lignées de souris transgéniques exprimant des formes mutées de SOD responsables des formes familiales de SLA ont été construites pour tenter d'obtenir un modèle murin de la pathologie. Des souris transgéniques surexprimant la SOD humaine mutée portant une substitution de la glycine 93 en alanine (souris FALS_{GOVA}) présentent une dégénérescence motoneuronale progressive se traduisant par une paralysie des membres, et meurent à l'âge de 4-6 mois (Gurney et coll.,

15

20

1994). Les premiers signes cliniques consistent en un tremblement des membres à environ 90 jours, puis à une réduction de la longueur des pas à 125 jours (Chiu et coll., 1995). Au plan histologique des vacuoles d'origine mitochondriale sont observables dans les motoneurones à partir d'environ 37 jours, et une perte motoneuronale peut être observée à partir de 90 jours (Chiu et coll., 1995). Des atteintes des axones myélinisés sont observées principalement dans la moelle ventrale et peu dans la région dorsale. Des phénomènes de réinervation collatérale compensatoire sont observés au niveau des plaques motrices (Chiu et coll., 1995).

Pour les exemples 2 à 10 nous avons choisi d'utiliser les souris FALS

Les souris FALS_{693A} constituent un très bon modèle animal pour l'étude des mécanismes physiopathologiques de la SLA ainsi que pour le développement de stratégies thérapeutiques. Elle partagent en effet avec les formes familiales de SLA une origine physiopathologique commune (mutation SOD), un grand nombre de caractéristiques histopathologiques et électromyographiques.

Ainsi. caractérisé nous avons au laboratoire les performances électromyographiques des souris FALS_{G93A}·et montré que les souris FALS_{G93A} remplissent les critères de Lambert pour la SLA (Kennel et coll., 1996): (1) réduction du nombre d'unités motrices avec une réinervation collatérale concomitante; (2) présence d'activité spontanée de dénervation (fibrillations) et de fasciculation dans les membres postérieurs et antérieurs; (3) modification de la vitesse de conduction motrice corrélée avec une diminution de la réponse évoquée motrice; (4) pas d'atteinte sensorielle. De plus nous avons montré que les atteintes des nerfs faciaux étaient rares, mêmes chez les souris FALS agées, ce qui est aussi le cas chez les patients.

Les souris FALS_{G93A} proviennent de Transgenic Alliance (L'Arbresle, France). Des femelles gestantes sont livrées chaque semaines. Elles mettent bas dans l'animalerie du laboratoire. Les souriceaux hétérozygotes développant la maladie sont identifiés par PCR après prélèvement d'un morceau de queue et extraction d'ADN.

Il existe d'autres modèles animaux présentant des dégénérescences motoneuronales (Sillevis-Smitt & De Jong, 1989; Price et coll., 1994), soit suite à une lésion neurotoxique aigue (traitement à l'IDPN, aux excitotoxines) soit dues à un défaut génétique (souris wobbler, pmn. Mnd. Chien HCSMA). Parmi les modèles génétiques, les souris pmn sont particulièrement bien caractérisées sur le plan clinique, histologique (Schmalbruch 1991) et électromyographique (Kennel, 1996). La mutation pmn est transmise sur le mode autosomique récessif et a été localisée sur le chromosome 13. Les souris pmn homozygotes développent une atrophie et paralysic musculaires qui se manifestent aux membres postérieurs dès l'âge de deux à trois semaines et qui ensuite se géneralisent. Toutes les souris pmn non-traitées meurent avant six à sept semaines d'âge. La dégénérescence de leurs motoneurones débute au niveau des terminaisons nerveuses et aboutit à une perte massive de fibres myélinisées dans les nerfs moteurs et notamment dans le nerf phrénique qui assure l'inervation du diaphragme (Schmalbruch 1991). Contrairement à la souris FALS_{G93A}, cette dénervation musculaire est très rapide et ne s'accompagne pratiquement pas de signes de réinervation par repousse de collatérales axonales. Sur le plan électromyograhique, le processus de dénervation musculaire est caractérisé par l'apparition de fibrillations et par une réduction importante de l'amplitude de la réponse musculaire évoquée après stimulation électrique supramaximale du nerf (Kennel et al 1996).

Une ligné de souris transgéniques Xt/pmn a été également utilisée comme autre modèle murin de la SLA. Ces souris ont été obtenues par un premier croisement entre des souris femelles C57/Bl56 ou DBA2 et de souris mâles Xt pmn / Xt pmn (souche 129), suivi d'un second entre des femelles hétérozygotes Xt pmn / Xt pmn descendantes (N1) avec des mâles initiaux. Parmi les souris descendantes (N2), les double- hétérozygotes Xt pmn / Xt pmn (dénommé "souris Xt pmn") portant un allèle Xt (mis en évidence par le phénotype Extra-doigt) et un allèle pmn (déterminé par PCR) ont été choisi pour les croisements futurs.

2. Systèmes d'expression

5

10

15

20

25

10

15

20

25

2.1. Vecteurs plasmidiques

Différents vecteurs plasmidiques permettant l'expression de un ou deux facteurs neurotrophiques peuvent être utilisés. On peut citer par exemple les plasmides pCRII-BDNF et pSh-Ad-BDNF, qui comportent une cassette d'expression et de sécrétion du BDNF (WO95/25804). On peut également mentionner les plasmides p-LTR-IX-GDNF contenant un acide nucléique codant pour le GDNF sous contrôle du promoteur LTR (WO95/26408) ainsi que le plasmide p-LTR-IX-preNGF/CNTF contenant la séquence du gène CNTF derrière la séquence signal du betaNGF ainsi que les séquences inversées répétées (ITR) du génome adénoviral, les séquences LTR du promoteur du virus du Sarcome de Rous (RSV), des séquences d'encapsidation ainsi que des séquences adénovirales nécessaires à la recombinaison homologue. Il est entendu que tout plasmide comportant une origine de réplication et un gene marqueur peut être utilisé pour construire un système d'expression selon l'invention, par insertion d'une ou plusieurs cassettes d'expression d'un facteur neurotrophique. Les plasmides peuvent être préparés chez un hôte cellulaire eucaryote ou procaryote.

2.2.-Adénovirus.

Comme indiqué précédemment, les vecteurs viraux, et notamment les adénovirus, constituent un mode de réalisation particulièrement préféré de l'invention.

Les adénovirus recombinants utilisés ci-après ont été obtenus par recombinaison homologue selon les techniques décrites dans l'art antérieur. En bref, il sont construits dans les cellules 293, par recombinaison entre un fragment de génome viral linéarisé (dl324) et un plasmide contenant l'ITR gauche, les séquences d'encapsidation, le transgène ainsi que son promoteur et des séquences virales permettant la recombinaison. Les virus sont amplifiés sur cellules 293. Il sont régulièrement repurifiés dans le P3 de notre laboratoire. Les génomes viraux peuvent également être préparés dans une cellule procaryote selon la technique décrite dans la demande WO96/25506. Les virus suivants ont été plus particulièrement utilisés:

5

10

25

21

- Ad-CNTF: Adénovirus recombinant de sérotype Ad5 comprenant, inséré dans son génome à la place de la région E1 délétée, une cassette d'expression du gène CNTF composée du cDNA codant pour le CNTF sous contrôle d'un promoteur transcriptionnel (en particulier le LTR du RSV). Les détails de la construction sont données dans la demande WO94/08026. Des constructions alternatives comprennent une délétion supplémentaire dans la région E4, telle que décrite dans la demande WO96/22378 ou dans la région E3.

- Ad-GDNF: Adénovirus recombinant de sérotype Ad5 comprenant, inséré dans son génome à la place de la région E1 délétée, une cassette d'expression du GDNF composée du cDNA codant pour le GDNF sous contrôle d'un promoteur transcriptionnel (en particulier le LTR du RSV). Les détails de la construction sont données dans la demande WO95/26408). Une construction alternative comprend une délétion supplémentaire dans la région E4, telle que décrite dans la demande WO96/22378.
- Ad-NT3 : Adénovirus recombinant de sérotype Ad5 comprenant, inséré dans son génome à la place de la région E1 délétéc, une cassette d'expression du gène NT3 composée du cDNA codant pour le NT3 sous contrôle d'un promoteur transcriptionnel (en particulier le LTR du RSV). Une construction alternative comprend une délétion supplémentaire dans la région E4, telle que décrite dans la demande WO96/22378.
 - Ad-BDNF: Adénovirus recombinant de sérotype Ad5 comprenant, inséré dans son génome à la place de la région E1 délétée, une cassette d'expression du BDNF composée du cDNA codant pour le BDNF sous contrôle d'un promoteur transcriptionnel (en particulier le LTR du RSV). Les détails de la construction sont données dans la demande WO95/25804). Une construction alternative comprend une délétion supplémentaire dans la région E4, telle que décrite dans la demande WO96/22378.
 - Ad-FGFa : Adénovirus recombinant de sérotype Ad5 comprenant, inséré dans son génome à la place de la région E1 délétée, une cassette d'expression du FGFa

10

composée du cDNA codant pour le FGFa sous contrôle d'un promoteur transcriptionnel (en particulier le LTR du RSV). Les détails de la construction sont données dans la demande WO95/25803). Une construction alternative comprend une délétion supplémentaire dans la région E4, telle que décrite dans la demande WO96/22378.

La fonctionnalité des virus construits est vérifiée par infection de fibroblastes en culture. La présence du facteur neurotrophique correspondant est analysée dans le surnageant de culture par ELISA et/ou en mettant en évidence les propriétés trophiques de ce surnageant sur des cultures primaires neuronales.

3-Administration d'adénovirus recombinants.

Les adénovirus codant pour les facteurs neurotrophiques sont administrés par voie intraveineuse chez des animaux adultes ou nouveau-nés. Chez les souris FALS_{G93A} adultes 10⁹ pfu de chacun des adénovirus (volume final 200 ul) sont ainsi injectés dans la veine caudale à l'aide d'une microseringue de type Hamilton B. Chez les souris *pmn* nouveau-nées (âge 2-3jours), identifiées par l'absence d'un doigt surnuméraire, 2x10⁹ pfu (volume final 20 µl) de la suspension adénovirale sont injectés dans la veine rétinienne à l'aide d'une microseringue de type insuline équipée d'une aiguille 30 G. Les animaux nouveau-nés sont légèrement anaesthésies avec de l'ether et en état d'hypothermie.

20

25

15

4-Techniques diverses.

Electromyographie

Tant que leur état physique le permet, les animaux sont anesthésiés par injection intrapéritonéale d'un mélange de diazépam (Valium[®], Roche, France) et de chlorhydrate de kétamine (Kétalar[®], Parke-Davis, France) à raison de 2 μ g/g et 60 μ g/g de poids corporel respectivement.

23

L'électromyographe utilisé est un appareil de dernière génération (Keypoint®) possédant l'ensemble des logiciels nécessaires à l'acquisition et au traitement des signaux électromyographiques. Ce matériel est loué à la société Dantec (Les Ulis, France).

Electromyographie de stimulo-détection : réponse évoquée motrice (REM)

Lorsqu'un choc électrique est appliqué sur un nerf, les muscles innervés par ce nerf sont le siège d'une réponse électrique. Celle-ci survient après un certain temps (latence distale) qui correspond au temps de conduction de la stimulation jusqu'aux synapses, auquel s'ajoute le temps de transmission du signal dans la synapse. L'amplitude de la réponse est proportionnelles à la quantité de fibres musculaires innervées.

Pour des raisons purement pratiques, nous avons choisi de stimuler le nerf sciatique en recueillant la réponse évoquée motrice au niveau du muscle gastrocnémien du mollet. Cinq électrodes aiguilles (Dantec) sont directement implantées et reliées à l'électromyographe selon le schéma suivant : (a) 2 électrodes de stimulation sont placées, l'une (électrode active) sur le trajet du nerf sciatique. l'autre (électrode de référence) à la racine de la queue ; (b) 2 électrodes de détection sont implantées, l'une dans le muscle gastrocnémien (électrode active), l'autre sur le tendon correspondant (électrode de référence) ; (c) enfin une électrode est reliée à la terre et est implantée entre les 2 électrodes actives, dans la cuisse de l'animal. On mesure l'amplitude et la latence de la REM du muscle à une stimulation de son nerf moteur. Celle-ci dure 200 ms à une intensité dite supramaximale qui correspond à 150 % de l'intensité permettant d'obtenir le potentiel d'action maximum. Chez la souris adulte, si le muscle et le nerf étudiés sont sains, et dans les conditions décrites ci-dessus, l'amplitude de la réponse évoquée est supérieure ou égale à 80 mV, et le temps de latence est en général égal à 0,6 ms.

Analyse histologique

5

10

15

20

25

Les animaux sont tués par overdose de chloroforme et perfusé en intracardiaque avec une solution de glutaraldehyde. Les nerfs phréniques sont isolés, prélevés, postfixés

24

par tetroxide d'osmium et inclus dans l'epoxy. Les nerfs phréniques sont coupés proche du diaphragme, des sections d'une épaisseur de 3 µm sont colorées à la paraphenyldiamine et analysées par microscopie optique.

5. Administration d'un système d'expression exprimant le gène CNTF

5 <u>Injection de vecteur adénoviral</u>:

Des souris homozygotes Xt pmn/Xt pmn ("souris pmn") agées de 2 à 3 jours, identifiées par l'absence de doigt surnuméraire, ont été utilisées pour l'injection de vecteur adénoviral. Une suspension de CNTF adénoviral a été prépare par dilution du stock adénoviral dans un tampon salin-phosphate (PBS)à 2x10' pfu μl et administrée selon les conditions décrites au point 3. L'AdlacZ codant chez E. coli pour la β-galactosidase (Stratford-Perricaudet, 1992), a été utilisé comme vecteur adénoviral contrôle.

Résultats:

10

20

25

(SEM)).

Des analyse par Northern blot de fibroblastes humains infectés par l'AdCNTF démontrent la presence de deux transcripts recombinants d'une taille respective de 1.1 et 1.6 kb. Les analyses par ELISA révèlent la présence de protéines recombinantes dans les surnageants après infection de différents types de cellules.

Toutes les souris pmn non traitées dans les séries expérimentales sont décédées avant l'age de deux mois et la moyenne de leur survie a été de 40.4 ± 2.4 jours (n=14).

L'administration du vecteur contrôle AdlacZ n'a pas modifié la survie des souris pmn. Par opposition, les souris pmn traitées par des injections intraveineuses de AdCNTF ont survécu jusqu'à 73 jours (Fig.3). La moyenne de la survie des souris pmn traitées par l'AdCNTF a été significativement améliorée et représente 52.7 ± 3.9 jours (n=7, p< 0.011) (Les différences entre les résultats des souris saines Xt/pmn, des souris homozygotes non traitées et des souris pmn traitées ont été analysées par le test de Student t, les valeurs sont données en moyenne \pm erreur standard des moyennes

25

Afin de déterminer si la prolongation de la survie des souris pmn traitées par l'AdCNTF reflétait une augmentation du nombre de fibres des nerfs phréniques, une microscopie optique au jour 25 a été réalisée et a montré que chez les souris pmn non traitées et chez les souris pmn ayant reçu en intraveineuse l'AdlacZ, le nombre de fibres myélinisées dans les nerfs phréniques avait diminué respectivement à 122 ± 13 (n=6) et 111 ± 11 (n=8) comparé aux 263 ± 8 fibres myélinisées chez des souris saines (n=4). Le nombre de fibres myélinisées dans les nerfs phréniques de souris pmn auxquelles l'AdCNTF a été injecté, était significativement supérieur à celui des animaux contrôle (145 ± 11 , n=10, p<0,05). Ainsi, un traitement des souris pmn par l'AdCNTF induit une réduction de 20% dans la perte des fibres myélinisées (Fig.4).

6. Administration d'un système d'expression produisant une combinaison CNTF - GDNF

109 pfu de chacun des adénovirus Ad-CNTF et Ad-GDNF ont été injectés (veine caudale) à l'aide de microseringue dans un volume final de 200 μl à 4 souris FALS_{G93A} agées de 99 jours. Au cours du temps, les performances électromyographiques des animaux ont été suivies et comparées à un groupe témoin. La durée de vie moyenne a également été enregistrée.

Electromyographie

5

10

15

Les résultats obtenus sont présentés sur la Figure 1. On observe une baisse de l'amplitude de la réponse évoquée motrice (REM) dans le gastrocnémien des souris FALS_{G93A} traitées (AdCNTF+AdGDNF) ainsi que des souris FALS_{G93A} non traitées. Cette baisse reflète le processus de dénervation progressive qui est une des caractéristiques de la SLA. Toutefois les souris traitées présentent une amplitude de REM systématiquement supérieure à celle des contrôles, démontrant un ralentissement de l'atteinte fonctionnelle suite au traitement.

Longévité

La durée de vie des animaux est indiquée dans les tableaux ci-dessous.

Animaux traités

Animal n°	Age de décès
1779-5	188
1779-6	170
1779-7	176
1779-8	155
Moyenne	172.2
SEM	6.86

Animaux non traités:

Animal n°	âge de décès
35-5	142
35-8	135
35-9	151
35-50	125
35-60	147
35-90	155
Moyenne	142.5
SEM	4.51

Les résultats montrent que tous les animaux du groupe traités sont morts à un âge supérieur ou égal à l'âge de l'animal vivant le plus vieux dans le groupe contrôle. Ces résultats montrent également une augmentation de la durée de vie chez les animaux traités de 30 jours en moyenne, par rapport aux animaux contrôle. Ces résultats sont particulièrement inattendus et, comparés aux 13 jours obtenus avec le Rilutek®, démontrent le potentiel thérapeutique de la méthode de l'invention.

7. Administration d'un système d'expression produisant de la NT3

- 7 (a) <u>Administration d'un système d'expression produisant de la NT3 (souris agées de 99 jours)</u>
- 109 pfu d'adénovirus Ad-NT3 ont été injectés (veine caudale) à l'aide de microseringue dans un volume final de 200 μl à 4 souris FALS_{coss} agées de 99 jours.

Au cours du temps, les performances électromyographiques des animaux sont suivies et comparées à un groupe témoin. Les résultats obtenus sont présentés sur la Figure 2 et montrent que les souris traitées présentent une amplitude de REM supérieure à celle des contrôles, démontrant un ralentissement de l'atteinte fonctionnelle suite au traitement.

7 (b) - <u>Administration d'un système d'expression produisant de la NT3 (souris agées de 3 jours)</u>

 5.10^8 pfu d'adénovirus Ad-NT3 ont été injectés (veine temporale) à l'aide de microseringue dans un volume final de $20~\mu l$ à des souris FALS_{693A} agées de 3 jours.

10 La durée de vie des animaux est indiquée dans les tableaux ci-dessous.

Animaux traités

Animal n°	Age de décès
73-1	161
73-2	173
73-3	178
73-4	184
73-5	186
73-6	187
73-7	187
73-8	191
73-9	196
73-10	197
74-1	162
74-2	177
74-3	177
74-4	179
74-5	180
74-6	183
74-7	186
37-1	162
37-2	176
37-3	181
37-4	189
37-5	190
37-6	190
Moyenne	181.4
SEM	2.1

Animaux non traités:

Animal n°	âge de décès
1-1	130
1-2	150
1-3	158
1-4	156
1-5	162
1-6	142
1-7	170
39-1	157
39-2	157
39-3	164
39-4	147
39-5	161
43-1	150
43-2	168
43-3	170
43-4	193
43-5	147
43-6	161
43-7	191
45-1	154
45-2	174
45-3	179
45-4	176
45-5	157
45-6	188
45-7	178
45-8	182
59-1	150
59-2	186
59-3	171
59-4	172
34-1	172
34-2	189
34-3	170
34-4	191
34-5	195
34-6	174
34-7	147
34-8	150
34-9	151
34-10	165
34-11	165
34-12	155
34-13	148
Moyenne	165.3
SEM	2.3
JE:**	1 40.007

10

15

20

Les résultats montrent une augmentation de 16.1 jours de la durée de vie moyenne entre les animaux ayant été traités par l'Ad-NT3 par voie intraveineuse et les animaux non-traités.

8. Administration d'un système d'expression produisant une combinaison CNTF - NT3

109 pfu de chacun des adénovirus Ad-CNTF et Ad-NT3 ont été injectés (veine caudale) à l'aide de microseringue dans un volume final de 200 μl à 4 animaux agés de 99 jours. Au cours du temps, les performances électromyographiques des animaux sont suivies et comparées à un groupe témoin. La durée de vie moyenne est également enregistrée.

9. Administration d'un système d'expression produisant une combinaison BDNF - NT3

109 pfu de chacun des adénovirus Ad-BDNF et Ad-NT3 ont été injectés (veine caudale) à l'aide de microseringue dans un volume final de 200 µl à 4 animaux agés de 99 jours. Au cours du temps, les performances électromyographiques des animaux sont suivies et comparées à un groupe témoin. La durée de vic moyenne est également enregistrée.

10. Administration d'un système d'expression produisant le BDNF

109 pfu d'adénovirus Ad-BDNF ont été injectés (veine caudale) à l'aide de microseringue dans un volume final de 200 µl à 4 animaux agés de 99 jours. Au cours du temps, les performances électromyographiques des animaux sont suivies et comparées à un groupe témoin. La durée de vie moyenne est également enregistrée.

Bibliographie

- AKLI S., et al., Nature genet., 3, 224-228, 1993.
- APPEL S.H.. et al. Autoimmunity as an etiological factor in sporadic amyotrophic lateral sclerosis. In Serratrice G.T. and Munsat T.L. eds. Pathogenesis and therapy of
- 5 amyotrophic lateral sclerosis. Advances in Neurology, <u>68</u>, pp. 47-58, 1995. Lippincott-Raven publishers, Philadelphia.
 - -BAJOCCHI G. et al. Nature genet., <u>3</u>, 229-234, 1993.
 - -BARKATS M., et al. Neuroreport, <u>7</u>, 497-501, 1996.
 - -BARINAGA M. Science <u>264</u>, 772-774, 1994.
- 10 -CASTEL BARTHE M.N. et al. Neurobiology of Disease, 3, 76-86, 1996.
 - -CHIU A.Y., et al. Mol. Cell. Neurosci., <u>6</u>, 349-362, 1995.
 - -DAVIDSON B.L., et al. Nature genet., <u>3</u>, 219-223, 1993.
 - -DITTRICH F., Ann. Neurol., <u>35</u>, 151-163, 1994.
 - -FINIELS F. et al. Neuroreport, 7, 373-378, 1995.
- -GASTAUT J.L. The viral hypothesis. *In* Serratrice G.T. and Munsat T.L. eds. *Pathogenesis and therapy of amyotrophic lateral sclerosis.* Advances in Neurology, 68, pp. 135-138, 1995. Lippincott-Raven publishers. Philadelphia.
 -GURNEY M.E., PU H., CHIU A.Y. *et al.* Science, 264, 1772-1775, 1994.

 - -GURNEY M.E., CUTTING F.B., ZHAI P. et al. Ann. Neurol., <u>39</u>, 147-157, 1996.
- 20 -HENDERSON C.E., CAMU W., METTLING C. et al. Nature. 363, 266-270, 1993.
 - -HENDERSON C.E. et al. Science, <u>266</u>, 1062-1064, 1994.
 - -HENDERSON C.E Neurotrophic factors as therapeutic agents in amyotrophic lateral sclerosis: potential and pitfalls. *In* Serratrice G.T. and Munsat T.L. eds. *Pathogenesis and therapy of amyotrophic lateral sclerosis*. Advances in Neurology,
- 25 68, pp. 235-240, 1995. Lippincott-Raven publishers, Philadelphia.
 - -HORELLOU P., VIGNE E., CASTEL M.N. et al. Neuroreport, <u>6</u>, 49-53, 1994.
 - -HUGHES R.A. et al. Neuron, 10, 369-377, 1993.
 - -KENNEL P.F., FINIELS F., REVAH F. et al. Neuroreport, 7, 1427-1431, 1996a.
 - -KENNEL P.F. et al. Neurobiol Disease 3: 137-147, 1996.

- -Le GAL La SALLE G. et al. Science, 262, 430-433, 1993.
- -LEWIS M.E. et al. Exp. Neurol., 124, 73-88, 1993.
- -OPPENHEIM R.W., YIN Q.W., PREVETTE D. et al. Nature, 360, 755-757, 1992.
- -OPPENHEIM R.W. et al. Nature, 373, 344-346, 1995.
- 5 -PENNICA D., ARCE V., SWANSON T.A. *et al.* Neuron, <u>17</u>, 63-74, 1996.
 - -PRICE D.L. et al., Neurobiol. Disease, 1, 3-11, 1994.
 - -ROSEN D.R., SIDDIQUE T., PATTERSON D. et al. Nature, 362, 59-62, 1993.
 - -ROTHSTEIN J.D. Excitotoxic mechanisms in the pathogenesis of amyotrophic lateral sclerosis. *In Serratrice G.T.* and Munsat T.L. eds. *Pathogenesis and therapy of*
- 10 amyotrophic lateral sclerosis. Advances in Neurology, <u>68</u>, pp. 7-20, 1995. Lippincott-Raven publishers, Philadelphia.
 - -ROWLAND L.P. Proc. Natl. Acad. Sci. USA, 92, 1251-1253, 1995.
 - -RUBIN B.A. and RORKE L.B. Adenovirus vaccines. *In Plotkin and Mortimer eds.* Vaccines, pp. 492-512, 1988. W.B. Saunders, Philadelphia.
- 15 -SCHMALBRUCH H., JENSEN H.S., BJAERG M., KAMIENIECKA Z. et KURLAN L. J. Neuropathol Exp Neurol. <u>50</u>: 192-204, 1991.
 - -SENDTNER M. et al. Nature, <u>353</u>, 502-504, 1992a.
 - -SENDTNER M., HOLTMANN B., KOLBECK R. Nature, <u>360</u>,757-759, 1992b.
 - -SILLEVIS SMITT P.A.E. et al., J. Neurol. Sci., 91, 231-258, 1989.
- -STRATFORD-PERRICAUDET L.D., MAKEH I., PERRICAUDET M., BRIAND P. J. Clin. Invest. <u>90</u>, 626-630, 1992.
 - -VEJSADA R., SAGOT Y. and KATO A.C. Eur. J. Neurosci., <u>7</u>, 108-115, 1995.
 - -WINDEBANK A.J. Use of growth factors in the treatment of motor neuron diseases. In Serratrice G.T. and Munsat T.L. eds. Pathogenesis and therapy of
- 25 amyotrophic lateral sclerosis. Advances in Neurology, <u>68</u>, pp. 229-234, 1995. Lippincott-Raven publishers, Philadelphia.
 - -YAN Q., ELLIOTT J. and SNIDER W.D. Nature, <u>360</u>, 753-755, 1992.
 - -YANG Y., ERTL H.C.J., and WILSON J.M. Immunity, <u>1</u>, 433-442, 1994.
 - -YANQ., MATHESON C., LOPEZ O.T. et al. J. Neurosci., 14, 5281-5291, 1994.

- -YASE Y. Metal metabolism in motor neuron disease. *In* Chen K.M. and Yase Y. eds. *Amyotrophic lateral sclerosis in Asia and Oceania*, Taipei, pp. 337-356, 1984. Taiwan: National Taiwan University Press.
- -YEH P., DEDIEU J.F., ORSINI C. et al. J. Virol., <u>70</u>, 559-565, 1996.
- 5 -YIM M.B., et al. Proc. Natl. Acad. Sci. USA, <u>93</u>, 5709-5714, 1996.

REVENDICATIONS

- 1. Utilisation d'un système d'expression de facteurs neurotrophiques pour la préparation d'une composition pharmaceutique destinée au traitement de la SLA par administration systémique.
- 5 2. Utilisation selon la revendication 1 caractérisée en ce que le système d'expression comprend une cassette d'expression composée d'un acide nucléique codant pour un facteur neurotrophique sous le contrôle d'un promoteur transcriptionnel.
- Utilisation selon la revendication 1 caractérisée en ce que le système d'expression comprend deux cassettes d'expression composées chacune d'un acide nucléique codant chacun pour un facteur neurotrophique différent, sous le contrôle d'un promoteur transcriptionnel.
 - 4. Utilisation selon la revendication 1 caractérisée en ce que le système d'expression comprend une cassette d'expression composée de deux acides nucléiques codant pour un facteur neurotrophique différent, sous le contrôle d'un promoteur transcriptionnel unique (unité bicistronique).
 - 5. Utilisation selon la revendication 2 caractérisée en ce que le facteur neurotrophique est choisi parmi le GDNF, le CNTF, le BDNF et le NT3.
- 6. Utilisation selon la revendication 3 ou 4 caractérisée en ce que chaque acide nucléique code pour un facteur neurotrophique différent choisi parmi le GDNF, le
 20 CNTF, le BDNF et le NT3.
 - 7. Utilisation selon la revendication 6 caractérisée en ce que le système d'expression comprend un acide nucléique codant pour le CNTF et un acide nucléique codant pour le GDNF.
- 8. Utilisation selon l'une des revendications 2 à 4 caractérisée en ce que les cassettes
 d'expression font partie d'un vecteur.

- 9. Utilisation selon la revendication 8 caractérisée en ce que les cassettes d'expression font partie d'un vecteur plasmidique.
- 10. Utilisation selon la revendication 8 caractérisée en ce que les cassettes d'expression font partie d'un vecteur viral.
- 5 11. Utilisation selon la revendication 10 caractérisée en ce que le vecteur viral est un vecteur adénoviral.
 - 12. Utilisation selon l'une des revendications précédentes caractérisée en ce que promoteur est un promoteur constitutif eucaryote ou viral.
- 13. Utilisation selon l'une des revendications précédentes caractérisée en ce que
 l'administration systémique est une administration intraveineuse
 - 14. Composition pharmaceutique destinée au traitement des maladies dégénératives des motoneurones comprenant un système permettant l'expression de deux facteurs neurotrophiques.
- 15. Composition selon la revendication 14 caractérisée en ce que ledit système comprend deux vecteur de transfert de gène portant chacun un acide nucléique codant pour un facteur neurotrophique différent.
 - 16. Composition selon la revendication 14 caractérisée en ce que ledit système comprend un vecteur de transfert de gène portant une cassette permettant l'expression concomittante de deux facteurs neurotrophiques différents.
- 20 17. Composition selon la revendication 15 ou 16 caractérisée en ce que les vecteurs sont des vecteurs viraux.
 - 18. Composition selon la revendication 17 caractérisée en ce que les vecteurs sont des adénovirus.
- 19. Composition selon la revendication 15 ou 16 caractérisée en ce que les vecteurs sont des vecteurs plasmidiques.

WO 98/11213 PCT/FR97/01589

5

35

- 20. Composition selon la revendication 14 caractérisée en ce que les facteurs neurotrophiques sont choisi parmi le GDNF le BDNF, le CNTF et la NT3.
- 21. Composition selon la revendication 20 caractérisée en ce qu'elle contient deux adénovirus recombinants defectifs l'un portant un acide nucléique codant pour le CNTF et l'autre pour le GDNF.
- 22. Composition selon la revendication 20 caractérisée en ce qu'elle contient deux adénovirus recombinants defectifs l'un portant un acide nucléique codant pour le GDNF et l'autre pour la NT3.
- 23. Composition selon la revendication 20 caractérisée en ce qu'elle contient deux
 10 adénovirus recombinants defectifs l'un portant un acide nucléique codant pour le BDNF et l'autre pour la NT3.
 - 24. Composition selon la revendication 14 caractérisée en ce qu'elle est injectée par voie intra-veineuse.
- 25. Composition pharmaceutique comprenant un système d'expression de facteurs
 neurotrophiques et du riluzole, pour une administration simultanée ou espacée dans le temps.

Figure 1

Figure 2

Figure 3

Figure 4

Int. attonal Application No PCT/FR 97/01589

	· · · · · · · · · · · · · · · · · · ·		
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C12N15/12 A61K48/00		
According to	o International Patent Classification(IPC) or to both national class	ification and IPC	
B. FIELDS	SEARCHED		
Minimum do IPC 6	ocumentation searched (classification system followed by classific A61K C07K	ation symbols)	
Documenta	tion searched other than minimumdocumentation to the extent tha	at such documents are included in the fields se	arched
Electronic d	data base consulted during the international search (name of data	base and, where practical, search terms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category ³	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
X	WO 95 25804 A (RHONE POULENC RO; BARNEOUD PASCAL (FR); DELAERE PE) 28 September 1995 cited in the application see the whole document		1,2,5, 8-13
X	WO 95 26408 A (RHONE POULENC RO; HORELLOU PHILIPPE (FR); MALLET (FR) 5 October 1995 cited in the application see the whole document		1,2,5, 8-13
X	WO 94 08026 A (RHONE POULENC RO; INST NAT SANTE RECH MED (FR); (F) 14 April 1994 cited in the application see the whole document		1,2,5, 8-13
X Furti	her documents are listed in the continuation of box C.	X Patent (amily members are listed	in annex.
"A" docume consider of filling docume which citation	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date ent which may throw doubts on pnority claim(s) or is cited to establish the publicationdate of another nor other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	"Y" later document published after the inte or priority date and not in conflict with cited to understand the principle or th invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the document of particular relevance; the cannot be considered to involve an in	the application but eory underlying the claimed invention t be considered to cument is taken alone claimed invention ventive step when the
other r		document is combined with one or moments, such combination being obvious in the art. "&" document member of the same patent	us to a person skilled
	actual completion of theinternational search	Date of mailing of the international sea	
1	6 December 1997	14/01/1998	·
Name and n	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Authorized officer Sitch, W	

1

INTERNATIONAL SEARCH REPORT

In. ational Application No

	PCT/FR 97/01589			
.(Continua ategory	citation of document, with indication, where appropriate, of the relevant passages			
	the research passages	Relevant to claim No.		
Ą	EP 0 558 861 A (RHONE POULENC RORER SA) 8 September 1993 see the whole document	25		
1	WO 91 04316 A (MAX PLANCK INST PSYCHIATR ;REGENERON PHARMACEUTICALS INC (US)) 4 April 1991 see claims 91-94			
Ρ, Χ	HAASE ET AL: "GENE THERAPY OF MURINE MOTOR NEURON DISEASE USING ADENOVIRAL VECTORS FOR NEUROTROPHIC FACTORS" NATURE MEDICINE, vol. 3, no. 4, April 1997, pages 429-436, XP002050329 see the whole document	1-6, 8-20,24		
		·		

INTERNATIONAL SEARCH REPORT

Information on patent family members

in .national Application No PCT/FR 97/01589

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9525804 A	28-09-95	FR 2717496 A AU 1896295 A CA 2184200 A EP 0750676 A FI 963674 A NO 963559 A ZA 9502244 A	22-09-95 09-10-95 28-09-95 02-01-97 17-09-96 26-08-96 16-01-96
₩O 9526408 A	05-10-95	FR 2717824 A AU 2141195 A EP 0752004 A FI 963805 A NO 963907 A ZA 9502433 A	29-09-95 17-10-95 08-01-97 24-09-96 18-09-96 15-01-96
₩O 9408026 A	14-04-94	AU 4818093 A CA 2145535 A EP 0669987 A FI 951404 A HU 72987 A JP 8501686 T NO 951121 A NZ 256018 A ZA 9307051 A	26-04-94 14-04-94 06-09-95 24-03-95 28-06-96 27-02-96 23-03-95 27-07-97 17-03-95
EP 0558861 A	08-09-93	FR 2688138 A AT 149833 T AU 666150 B CA 2117466 A CZ 9402120 A DE 69218255 D DE 69218255 T EP 0627919 A ES 2098558 T WO 9317683 A HU 70946 A IL 103493 A JP 7504655 T MX 9206109 A NO 943256 A	10-09-93 15-03-97 01-02-96 16-09-93 15-12-94 17-04-97 11-09-97 14-12-94 01-05-97 16-09-93 28-11-95 23-07-96 25-05-95 01-09-93 02-09-94

Information on patent family members

PCT/FR 97/01589

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0558861 A		SK 104794 A	10-05-95
		US 5527814 A ZA 9208213 A	18-06-96 3 0-04-9 3
WO 9104316 A	04-04-91	US 5173480 A	22-12-92
		AT 130365 T	15-12-95
		AU 6740290 A	18-04-91
		CA 2040404 A	16-03-91
		CN 1054099 A	28-08-91
		DE 69023637 D	21-12-95
		DE 69023637 T	17-10-96
		EP 0448707 A	02-10-91
		ES 2084045 T	01-05-96
		GR 90100691 A	20-01-92
		LT 910 A	27-03-95
		LV 10308 A	20-10-94

RAPPORT DE RECHERCHE INTERNATIONALE

PCT/FR 97/01589

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 6 C12N15/12 A61K48/00

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 6-A61K-C07K

old o holk out

Documentation consultee autre que la documentationminimale dans la mesure ou ces documents relevent des domaines sur lesquels a porte la recherche

Base de données electronique consultée au cours de la récherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

C.	DOCUME	ENTS CON	SIDERES C	OMME PER	RTINENTS

Catégone °	identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
X	WO 95 25804 A (RHONE POULENC RORER SA :BARNEOUD PASCAL (FR); DELAERE PIA (FR); PE) 28 septembre 1995 cité dans la demande voir le document en entier	1,2,5, 8-13
X	WO 95 26408 A (RHONE POULENC RORER SA ;HORELLOU PHILIPPE (FR); MALLET JACQUES (FR) 5 octobre 1995 cité dans la demande voir le document en entier	1,2,5, 8-13
X	WO 94 08026 A (RHONE POULENC RORER SA; INST NAT SANTE RECH MED (FR); KAHN AXEL (F) 14 avril 1994 cité dans la demande voir le document en entier ————————————————————————————————————	1,2,5, 8-13

Voir la suite du cadre C pour la finde la liste des documents	Les documents de familles de brevets sont indiqués en annexe
° Catégories speciales de documents cités:	
"A" document définissant l'état général de latechnique, non considéré comme particulièrement pertinent	"T" document ulténeur publié après la date de dépôt international ou la date de pnorité et n'appartenenant pas à l'état de la technique pertinent, mais citépour comprendre le principe ou la théorie constituant la base de l'invention
"E" document anteneur, mais publié à la date dedépôt international ou après cette date	"X" document particulièrement pertinent; l'invention revendiquée ne peut
*L" document pouvant jeter un doute sur une revendcation de priorité ou cite pour déterminer la date depublication d'une autre citation ou pour une raison spéciale (felle qu'indiquée)	être considérée comme nouvelle ou comme impiquant une activité inventive par rapport au document considéré isolèment "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive.
"O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens	lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison etant évidente
"P" document publié avant la date de dépôtinternational, mais postérieurement à la date de priorité revendiquée	pour une personne du métier "&" document qui fait partie de la même famillede brevets

Date à laquelle la recherche internationale a étéeffectivement achevée Date d'expédition du present rapport de recherche internationale

16 décembre 1997 14/01/1998

Nom et adresse postale de l'administrationchargée de la recherche internationale Office Europeen des Brevets, P.B. 5818 Patentlaan 2 NL = 2280 HV Rijswrijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016 Sitch, W

Formulaire PCT/ISA/210 (deuxième feuille) (juillet 1992)

1

Fonctionnaire autorisé

RAPPORT DE RECORCHE INTERNATIONALE

		PCI/FR 9.	7701505		
	C.(suite) DOCUMENTS CONSIDERES COMME PERTINENTS				
Catégorie :	Identification des documents cites, avec le cas echéant, l'Indicationdes passages pe	rtinents	no. des revendications visées		
A	EP 0 558 861 A (RHONE POULENC RORER SA) 8 septembre 1993 voir le document en entier		25		
A :	WO 91 04316 A (MAX PLANCK INST PSYCHIATR ;REGENERON PHARMACEUTICALS INC (US)) 4 avril 1991 voir revendications 91-94				
P , X	HAASE ET AL: "GENE THERAPY OF MURINE MOTOR NEURON DISEASE USING ADENOVIRAL VECTORS FOR NEUROTROPHIC FACTORS" NATURE MEDICINE, vol. 3, no. 4, avril 1997, pages 429-436, XP002050329 voir le document en entier		1-6, 8-20,24		

RAPPORT DE RIFERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

e Internationale No PCT/FR 97/01589

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
WO 9525804 A	28-09-95	FR 2717496 A AU 1896295 A CA 2184200 A EP 0750676 A FI 963674 A NO 963559 A ZA 9502244 A	22-09-95 09-10-95 28-09-95 02-01-97 17-09-96 26-08-96 16-01-96
WO 9526408 A	05-10-95	FR 2717824 A AU 2141195 A EP 0752004 A FI 963805 A NO 963907 A ZA 9502433 A	29-09-95 17-10-95 08-01-97 24-09-96 18-09-96 15-01-96
WO 9408026 A	14-04-94	AU 4818093 A CA 2145535 A EP 0669987 A FI 951404 A HU 72987 A JP 8501686 T NO 951121 A NZ 256018 A ZA 9307051 A	26-04-94 14-04-94 06-09-95 24-03-95 28-06-96 27-02-96 23-03-95 27-07-97 17-03-95
EP 0558861 A	08-09-93	FR 2688138 A AT 149833 T AU 666150 B CA 2117466 A CZ 9402120 A DE 69218255 D DE 69218255 T EP 0627919 A ES 2098558 T WO 9317683 A HU 70946 A IL 103493 A JP 7504655 T MX 9206109 A NO 943256 A	10-09-93 15-03-97 01-02-96 16-09-93 15-12-94 17-04-97 11-09-97 14-12-94 01-05-97 16-09-93 28-11-95 23-07-96 25-05-95 01-09-93 02-09-94

RAPPORT DE RECERCHE INTERNATIONALE

Renseignements relatifs aux membres de families de brevets

PCT/FR 97/01589

Document prevet cite au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
EP 0558861 A		SK 104794 A US 5527814 A ZA 9208213 A	10-05-95 18-06-96 30-04-93
WO 9104316 A	04-04-91	US 5173480 A AT 130365 T AU 6740290 A CA 2040404 A CN 1054099 A DE 69023637 D DE 69023637 T EP 0448707 A ES 2084045 T GR 90100691 A LT 910 A LV 10308 A	22-12-92 15-12-95 18-04-91 16-03-91 28-08-91 21-12-95 17-10-96 02-10-91 01-05-96 20-01-92 27-03-95 20-10-94