Westfälische Wilhelms-Universität Münster

Übung Modellierung und Analyse von Dynamischen Systemen, WiSe 17/18

Betreuer: Carina Pilch

Autoren: Edenfeld, Lemke, Moser, Schinke

Blatt 1

Aufgabe 1

 ϕ_1 : $true \mathcal{U} \mathcal{X} a$ matches to π_1 . ϕ_2 : $\mathcal{G} \mathcal{X} a$ matches to π_2 . ϕ_3 : $a \mathcal{U} a$ matches to π_3 . ϕ_4 : $a \wedge a$ matches to π_4 . ϕ_5 : $\mathcal{F} \mathcal{G} a$ matches to π_5 . ϕ_6 : $(\mathcal{X} b) \mathcal{U} a$ matches to π_6 .

Aufgabe 2

Counterexample:

While the CTL formulae AXAFp is accepted by the example above. The path $s_0s_1s_3$ however is not accepted by the formular AFAXp. Thus AXAFp and AFAXp are not equivalent.

Aufgabe 3

$$\begin{split} \forall s_0: \mathcal{AG}(p \to \mathcal{AF}q) \\ \Leftrightarrow \forall s_0: \forall \pi = s_0 s_1 ...; \mathcal{G}(p \to \mathcal{AF}q) \\ \Leftarrow \forall s_0: \forall \pi = s_0 s_1 ...: \mathcal{G}(\neg p \lor \mathcal{AF}q) \\ \Leftarrow \forall s_0: \forall \pi = s_0 s_1 ...: \neg \mathcal{F}(p \land \neg \mathcal{AF}q) \\ \Leftarrow \forall s_0: \forall \pi = s_0 s_1 ...: \neg \mathcal{F}(p \land \exists \neg \mathcal{F}q) \\ \Leftarrow \forall s_0: \forall \pi = s_0 s_1 ...: \neg \mathcal{F}(p \land \neg \mathcal{F}q) \\ \Leftarrow \forall s_0: \forall \pi = s_0 s_1 ...: \mathcal{F}(p \land \neg \mathcal{F}q) \\ \Leftarrow \forall s_0: \forall \pi = s_0 s_1 ...: \mathcal{G}(\neg p \lor \mathcal{F}q) \\ \Leftarrow \forall s_0: \forall \pi = s_0 s_1 ...: \mathcal{G}(p \to \mathcal{F}q) \end{split}$$