19 The data below are taken from a test of a petrol engine for a motor car.

power output 150 kW

fuel consumption 20 litres per hour

energy content of fuel 40 MJ per litre

Which expression will evaluate the efficiency of the engine?

$$\textbf{A} \quad \frac{150 \times 10^3}{40 \times 10^6 \times 20 \times 60 \times 60}$$

$$\textbf{B} \quad \frac{150 \times 10^3 \times 60 \times 60}{20 \times 40 \times 10^6}$$

$$C \quad \frac{150 \times 10^3 \times 40 \times 10^6 \times 20}{60 \times 60}$$

$$\textbf{D} \quad \frac{150 \!\times\! 10^3 \!\times\! 20}{40 \!\times\! 10^3 \!\times\! 60 \!\times\! 60}$$

- **20** What is represented by the gradient of a graph of force (vertical axis) against extension (horizontal axis)?
 - A elastic limit
 - **B** spring constant
 - C stress
 - **D** Young modulus

Space for working