On the Equivalence of Decoupled GCN and Label Propagation

Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding, Peng Cui

WWW2021

Background

Semi-supervised node classification task:

Graph convolution network (GCN):

$$\boldsymbol{H}^{(k+1)} = \sigma \left(\hat{\boldsymbol{A}} \boldsymbol{H}^{(k)} \boldsymbol{W}^{(k)} \right)$$

Aggregation: $P^{(k)} = \hat{A}H^{(k)}$

coupling

Transformation: $\sigma(P^{(k)}W^{(k)})$

DECOUPLED GCN- APPNP

DECOUPLED GCN!

APPNP decouples neighborhood aggregation and feature transformation:

- High efficiency
- > SOTA performance

APPNP (ICLR 2019), DAGNN (KDD 2020) SGCN (ICML 2019), lightGCN (SIGIR 2020)

DECOUPLED GCN

The general architecture of decoupled GCN:

$$\hat{Y} = \operatorname{softmax} \left(\bar{A} f_{\theta}(X) \right) \tag{1}$$

APPNP:

$$H^{(0)} = f_{\theta}(X)$$

$$H^{(k)} = (1 - \alpha)\hat{A}H^{(k-1)} + \alpha H^{(0)}, \quad k = 1, 2, ...K - 1$$

$$\hat{A} = (1 - \alpha)^K \hat{A}^K + \alpha \sum_{k=0}^{K-1} (1 - \alpha)^k \hat{A}^k \qquad (2$$

$$\hat{Y}_{APPNP} = \operatorname{softmax} \left(H^{(K)}\right).$$

SGCN:
$$\hat{Y}_{SGCN} = \operatorname{softmax} \left(s^K X \Theta \right)$$
 $f_{\theta}(X) = X \Theta$ $\bar{A} = S^K$ (3)

DAGNN:
$$\bar{A} = \sum_{k=0}^{K} s_k \hat{A}^k$$
 (4)

Propagation then Training

LPA:

$$Y_{soft} = \hat{Y} = \bar{A}Y. \tag{5}$$

PT: The objective function

$$L(\theta) = \ell(f_{\theta}(X), \bar{A}Y),$$
 (6)

Step 2: Training

PT and DECOUPLED GCN

PT: The objective function

$$L_{PT} = \ell(f_{\theta}(X), \bar{A}Y)$$
 (7)

Decoupled GCN: The objective function

$$L_{DGCN} = \ell(\bar{A}f_{\theta}(X), Y)$$
 (8)

PT

PT: The objective function

$$L_{PT} = \ell(f_{\theta}(X), \bar{A}Y)$$
 (9)

$$L(\theta) = -\sum_{i \in \mathcal{V}, k \in C} \left(\sum_{j \in \mathcal{V}_l} \bar{a}_{ij} y_{jk} \right) \log f_{ik}$$

$$= -\sum_{i \in \mathcal{V}, j \in \mathcal{V}_l} \bar{a}_{ij} \sum_{k \in C} y_{jk} \log f_{ik}$$

$$= \sum_{i \in \mathcal{V}, j \in \mathcal{V}_l} \bar{a}_{ij} \operatorname{CE} (f_i, \mathbf{y}_j),$$

$$(10)$$

$$L_{PT} = L(\theta) = \sum_{i \in \mathcal{V}, j \in \mathcal{V}_l} w_{ij} \operatorname{CE}(f_i, \mathbf{y}_j), \quad (11)$$

$$\nabla_{\theta} L_{PT} = \sum_{j \in \mathcal{V}_l, i \in \mathcal{V}} w_{ij} \nabla_{\theta} \operatorname{CE} \left(f_i, \boldsymbol{y}_j \right)$$
 (12)

DECOUPLED GCN

Decoupled GCN: The objective function

$$L_{DGCN} = \ell(\bar{A}f_{\theta}(X), Y)$$
 (13)

Gradient analysis:

$$\nabla_{\theta} L_{PT} = \sum_{j \in \mathcal{V}_{l}, i \in \mathcal{V}} w_{ij} \nabla_{\theta} \operatorname{CE} (f_{i}, \boldsymbol{y}_{j})$$
 (17)

$$L_{DGCN} = \ell(Af_{\theta}(X), Y)$$

$$= -\sum_{j \in \mathcal{V}_{l}, k \in C} y_{jk} (\log \sum_{i \in \mathcal{V}} \bar{a}_{ji} f_{ik}). \tag{14}$$

$$\nabla_{\theta} L_{DGCN} = -\sum_{j \in \mathcal{V}_{l}, k \in C} y_{jk} \nabla_{\theta} (\log \sum_{i \in \mathcal{V}} \bar{a}_{ji} f_{ik})$$

$$= -\sum_{j \in \mathcal{V}_{l}, k \in C} y_{jk} \frac{\sum\limits_{i \in \mathcal{V}} \bar{a}_{ji} \nabla_{\theta} f_{ik}}{\sum\limits_{q \in \mathcal{V}} \bar{a}_{jq} f_{qk}}.$$
(15)

$$\nabla_{\theta} L_{DGCN} = -\sum_{j \in \mathcal{V}_{l}} y_{j,h(j)} \frac{\sum_{i \in \mathcal{V}} \bar{a}_{ji} \nabla_{\theta} f_{i,h(j)}}{\sum_{q \in \mathcal{V}} \bar{a}_{jq} f_{q,h(j)}}$$

$$= -\sum_{i \in \mathcal{V}, j \in \mathcal{V}_{l}} \frac{\bar{a}_{ji} f_{i,h(j)}}{\sum_{q \in \mathcal{V}} \bar{a}_{jq} f_{q,h(j)}} y_{j,h(j)} \frac{\nabla_{\theta} f_{i,h(j)}}{f_{i,h(j)}}$$

$$= \sum_{i \in \mathcal{V}, j \in \mathcal{V}_{l}} \frac{\bar{a}_{ji} f_{i,h(j)}}{\sum_{q \in \mathcal{V}} \bar{a}_{jq} f_{q,h(j)}} \nabla_{\theta} \operatorname{CE}(f_{i}, \mathbf{y}_{j}).$$

$$(16)$$

DECOUPLED GCN

Weight of decoupled GCN:

Weaknesses:

- ➤ Unstable to initialization ~ $f_{i,h(j)}$ is reliable?
- Sensitive to label noise ~ equal weight?

$$\sum_{i \in \mathcal{V}} w_{ij} = 1$$

The accumulated weight of the pseudolabeled data generated from a specific labeled source node **equals 1.**

PTA: How to improve d-GCN

Weight of decoupled GCN:
$$w_{ij} = \frac{\bar{a}_{ji} f_{i,h(j)}}{\sum\limits_{q \in \mathcal{V}} \bar{a}_{jq} f_{q,h(j)}}$$

Design 1 - remove normalization:

- $w_{ij} = \bar{a}_{ji} f_{i,h(j)}$ Different label weight
- Robust to label noise

$$w_{ij} = \bar{a}_{ji} f_{i,h(j)}^{\gamma}$$

- - stable to initialization

In the early stage of training, when the neural network generates relatively unreliable prediction, PTA reduces the impact of model prediction on weighting pseudo-labeled data.

PTA:

Element form of loss function:

$$L_{PTA}(\theta) = \sum_{i \in V, j \in V_I} w_{ij} \operatorname{CE} (f_i, y_j), \qquad w_{ij} = \bar{a}_{ji} f_{i,h(j)}^{\gamma}.$$

Matrix form of loss function:

$$L_{PTA}(\theta) = -SUM\left(Y_{soft} \otimes f(X)^{\gamma} \otimes log\left(f_{\theta}(X)\right)\right),$$

No neighborhood aggregation. Much faster!

f(x) does not propagate gradients backword

- Decoupled GCN aggregates neighborhood
- > Neighborhood aggregation is hard to parallelly compute

Advantages: stable, robust to label noise.

Table 2: Statistics of the datasets.

Dataset	Nodes	Edges	Features	Classes
CITESEER	2,110	3,668	3,703	6
CORA_ML	2,810	7,981	2,879	7
PUBMED	19,717	44,324	500	3
MS_ACADEMIC	18,333	81,894	6,805	15

Method	CITESEER	CORA_ML	PUBMED	MS_ACA
MLP	63.98 ± 0.44	68.42 ± 0.34	69.47 ± 0.47	89.69 ± 0.10
GCN	73.62 ± 0.39	82.70 ± 0.39	76.84 ± 0.44	91.39 ± 0.10
SGCN	75.57 ± 0.28	75.97 ± 0.72	71.24 ± 0.86	91.03 ± 0.16
APPNP #	75.73 ± 0.30	85.09 ± 0.25	79.73 ± 0.31	93.27 ± 0.08
DAGNN	74.53 ± 0.38	85.75 ± 0.23	79.59 ± 0.37	92.29 ± 0.07
APPNP	75.48 ± 0.29	85.07 ± 0.25	79.61 ± 0.33	93.31 ± 0.08
PTA	75.98 ± 0.24	85.90 ± 0.21	79.89 ± 0.31	93.64 ± 0.08
p-value	5.56×10^{-4}	1.81×10^{-9}	1.09×10^{-2}	1.57×10^{-8}

PTA is better than APPNP with t-test.

Box plot of accuracy of different models:

PTA>APPNP, PTD: adaptive strategy in PTA is useful

$$L_{PTA}(\theta) = -SUM\left(Y_{soft} \otimes f(X)^{\gamma} \otimes log\left(f_{\theta}(X)\right)\right),$$

```
if self.mode == 2:
    loss = - torch.sum(torch.mul(torch.log_softmax(y_hat, dim=-1), torch.mul(y_soft, y_hat_con**exp))) / self.number_class # PTA
elif self.mode == 1:
    loss = - torch.sum(torch.mul(torch.log_softmax(y_hat, dim=-1), torch.mul(y_soft, y_hat_con))) / self.number_class # PTD
else:
    loss = - torch.sum(torch.mul(torch.log_softmax(y_hat, dim=-1), y_soft)) / self.number_class # PTS
```

- Simulate label noise
 - Add noise to label in the training set

The margins of PTA and APPNP become larger with noise increasing: PTA is more robust to label noise.

PTA>others for all different label noise rate.

Compare the efficient of PTA and APPNP

Table 6: The training time per epoch of PTA and APPNP.

Method	CITESEER	CORA_ML	PUBMED	MS_ACA
APPNP	34.73ms	28.60ms	34.98ms	30.51ms
PTA	3.33 ms	3.35ms	3.27ms	3.33ms

Table 7: The total training time of PTA and APPNP.

Method	CITESEER	CORA_ML	PUBMED	MS_ACA
APPNP	52.75s	75.30s	49.39s	134.23s
PTA	10.14s	11.95s	10.59s	17.12s
PTA(F)	1.19s	1.25s	1.40s	3.92s

Table 8: The accuracy of PTA(F).

Method	CITESEER	CORA_ML	PUBMED	MS_ACA
APPNP	75.48 ± 0.29	85.07 ± 0.25	79.61 ± 0.33	93.31 ± 0.08
PTA(F)	75.51 ± 0.24	85.73 ± 0.22	79.45 ± 0.40	93.62 ± 0.08
PTA	75.98 ± 0.24	85.90 ± 0.21	79.89 ± 0.31	93.64 ± 0.08

two models. Note that estimating performance of PTA on the early-stopping set is time-consuming, we further design a fast mode of PTA (PTA(F)), which directly use $f_{\theta}(x)$ instead of ensemble results for early-stopping estimation. The performance of PTA(F) comparing with PTA and APPNP is presented in Table 8. From the tables, We can conclude that PTA is much faster than APPNP: on average,

$$L_{PTA}(\theta) = -SUM\left(Y_{soft} \otimes f(X)^{\gamma} \otimes log\left(f_{\theta}(X)\right)\right),$$

10-times faster

PTA: 5 times faster PTA(F): 50 times faster