Exeter Density

Bryan Ellerbrock

11/2/2021

Calibration Data

length	pixelLength	weight	pixelVolume
463	181	100	5637083
525	193	116	6031855
650	198	120	6335393
600	222	118	6716032
600	222	122	7034454
425	266	131	7480873
575	332	164	8853113
550	346	175	9449946
550	346	190	10855547
700	383	190	10855547
650	392	237	12538366

length in inches x 100 and weight in ounces x 10 $\,$

Calculating Density

Multiplying length by 0.0254 to get lengthCm (0.0254cm per 100th of an inch)

length	lengthCm
463	11.7602
525	13.3350
650	16.5100
600	15.2400
600	15.2400
425	10.7950
575	14.6050
550	13.9700
550	13.9700
700	17.7800
650	16.5100

Dividing pixelLength by lengthCm to get pixels/cm estimates

:1-DC	1	
pixelsPerCm	lengtnCm	pixelLength
15.39089	11.7602	181
14.47319	13.3350	193

pixelLength	lengthCm	pixelsPerCm
198	16.5100	11.99273
222	15.2400	14.56693
222	15.2400	14.56693
266	10.7950	24.64104
332	14.6050	22.73194
346	13.9700	24.76736
346	13.9700	24.76736
383	17.7800	21.54106
392	16.5100	23.74319

Calculating mean number of pixels/cm, then raising to power of three to get cubic pixels/cubic cm

```
meanPixelsPerCm = mean(cdata$pixelsPerCm)
cubedPixelsPerCmCubed = meanPixelsPerCm 3
```

Dividing pixelVolume by cubic pixels/cubic cm to get volume in cubic cm

pixelVolume	$\operatorname{cmCubed}$
5637083	774.4210
6031855	828.6547
6335393	870.3547
6716032	922.6468
7034454	966.3915
7480873	1027.7204
8853113	1216.2384
9449946	1298.2312
10855547	1491.3323
10855547	1491.3323
12538366	1722.5175

Multiplying weight by 2.83495 to get weight in grams (2.83495 g per 10th of an oz)

weight	weightGrams
100	283.4950
116	328.8542
120	340.1940
118	334.5241
122	345.8639
131	371.3784
164	464.9318
175	496.1162
190	538.6405
190	538.6405
237	671.8832

Dividing weight in grams by volume in cubic cms to get density estimates, then calculating mean density

$\overline{\text{cmCubed}}$	weightGrams	densityCmCubed
774.4210	283.4950	0.3660735
828.6547	328.8542	0.3968531
870.3547	340.1940	0.3908682
922.6468	334.5241	0.3625701
966.3915	345.8639	0.3578921
1027.7204	371.3784	0.3613614
1216.2384	464.9318	0.3822703
1298.2312	496.1162	0.3821479
1491.3323	538.6405	0.3611807
1491.3323	538.6405	0.3611807
1722.5175	671.8832	0.3900588

meanDensityCmCubed= mean(cdata\$densityCmCubed)
meanDensityCmCubed

[1] 0.3738597