ÁLGEBRA II (61.08 - 81.02)

Evaluación Integradora Duración: 90 minutos.

Segundo cuatrimestre – 2020 27/III/21 - 13:00 hs.

Apellido y Nombres:

Padrón:

1. Sean \mathbb{S}_1 y \mathbb{S}_2 los subespacios de \mathbb{R}^4 definidos por

$$S_1 := \operatorname{gen} \left\{ \begin{bmatrix} 1 & 2 & 2 & 1 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 0 & -1 \end{bmatrix}^T \right\},$$

$$S_2 := \operatorname{gen} \left\{ \begin{bmatrix} 1 & 0 & 1 & 2 \end{bmatrix}^T, \begin{bmatrix} 1 & 2 & 1 & 0 \end{bmatrix}^T \right\}.$$

Construir un subespacio \mathbb{T} de \mathbb{R}^4 tal que

$$\mathbb{S}_1 \oplus \mathbb{T} = \mathbb{S}_2 \oplus \mathbb{T} = \{ x \in \mathbb{R}^4 : x_1 - x_2 + x_3 - x_4 = 0 \}.$$

¿Es único? Si la respuesta es negativa, construir otro.

2. Sea $A=\begin{bmatrix}3&2\\-5&1\end{bmatrix}$ y sea $Y\in C^{\infty}\left(\mathbb{R},\mathbb{R}^{2}\right)$ la solución del problema de valores iniciales

$$\begin{cases} Y' = AY, \\ Y(0) = \begin{bmatrix} 2 & 3 \end{bmatrix}^T. \end{cases}$$

Hallar $Y\left(\frac{\pi}{6}\right)$.

3. Construir una matriz $A \in \mathbb{R}^{2\times 3}$ que tenga las siguientes propiedades: $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T \in \text{nul}(A)$, $v = \begin{bmatrix} -4 & 0 & 4 \end{bmatrix}^T$ es un autovector de A^TA tal que $Av = \begin{bmatrix} 3 & 4 \end{bmatrix}^T$, y $\max_{\|x\|=1} \|Ax\| = \sqrt{2}$.

4. Sean $Q_1,Q_2:\mathbb{R}^2 \to \mathbb{R}$ las formas cuadráticas definidas por

$$Q_1(x) := 2x_1^2 + 2x_2^2 + x_1x_2 \ \ \mathbf{y} \quad Q_2(x) := x_1^2 + x_2^2 + x_1x_2.$$

Hallar el valor máximo de $Q_1(x)$ sujeto a la restricción $Q_2(x) = 1$ y determinar los vectores que lo realizan.