

# Feature engineering



**OUARDINI OUSSAMA** 

@oussamaouardini

Data & Al Engineering Student

Feature engineering is an informal topic, but one that is absolutely known and agreed to be key to success in applied machine learning

### <u>- Jason Brownlee</u>

Coming up with features is difficult,
time-consuming,
requires expert knowledge.
'Applied machine learning' is basically
feature engineering

- Andrew Ng

### The Dream...



### The Reality...



Raw data



How do we get the most out of our data for predictive modeling?

This is the problem that the process and practice of feature engineering solves.

Actually the success of all Machine Learning algorithms depends on how you present the data. - Mohammad Pezeshk

Hmm, But How???

# Let's see some Feature Engineering techniques for your Data Science toolbox...





# Case study

### <u>Titanic survival prediction</u> - Kaggle competition





#### Dataset

sample\_submission.csv

test.csv

train.csv

#### Summary

□ 3 files
□ .csv 3
□ 25 columns
Δ String 10
□ Integer 8
□ Decimal 4

Other

### <u>Titanic survival prediction</u> - Kaggle competition



I got 987th position From about 1244 competitors :(

Mostly due to
Feature Engineering
techniques

First of all ... a closer look at your data

### What does the data model look like?





Categorical

Temporal

Spacial

Numerical

Target

### Data Cleaning: process of detecting and correcting corrupt or inaccurate records

| Name          | Date       | Duration (s) | Genre   | Plays |
|---------------|------------|--------------|---------|-------|
| Highway star  | 1984-05-24 | -            | Rock    | 139   |
| Blues alive   | 1990/03/01 | 281          | Blues   | 239   |
| Lonely planet | 2002-11-19 | 5:32s        | Techno  | 42    |
| Dance, dance  | 02/23/1983 | 312          | Disco   | N/A   |
| The wall      | 1943-01-20 | 218          | Reagge  | 83    |
| Offside down  | 1965-02-19 | 4 minutes    | Techno  | 895   |
| The alchemist | 2001-11-21 | 418          | Bluesss | 178   |
| Bring me down | 18-10-98   | 328          | Classic | 21    |
| The scarecrow | 1994-10-12 | 269          | Rock    | 734   |

**Original Data** 

| Name          | Date       | Duration (s) | Genre   | Plays |
|---------------|------------|--------------|---------|-------|
| Highway star  | 1984-05-24 |              | Rock    | 139   |
| Blues alive   | 1990-03-01 | 281          | Blues   | 239   |
| Lonely planet | 2002-11-19 | 332          | Techno  | 42    |
| Dance, dance  | 1983-02-23 | 312          | Disco   |       |
| The wall      | 1943-01-20 | 218          | Reagge  | 83    |
| Offside down  | 1965-02-19 | 240          | Techno  | 895   |
| The alchemist | 2001-11-21 | 418          | Blues   | 178   |
| Bring me down | 1998-10-18 | 328          | Classic | 21    |
| The scarecrow | 1994-10-12 | 269          | Rock    | 734   |

### **Cleaned Data**

### **Feature Engineering**

**Numerical Features** 

Let's start with the first set of slides



### Imputation for missing values

- Datasets contain missing values, often encoded as blanks, NaNs or other placeholders
- Ignoring or deleting rows and/or columns with missing values is possible, but at the price of losing data which might be valuable (Not recommended if data is too small)
- Better strategy is to infer them from the known part of data
- Strategies
  - Mean: Basic approach
  - Median: More robust to outliers
  - Mode: Most frequent value
  - **Using a model** (Predicting missing values of Data by Linear Regression Model): Can expose algorithmic bias



#### Binarization

• Transform discrete or continuous numeric features in binary features

Example: Number of user views of the same document

| document_id                      | uuid                                               | views_count |
|----------------------------------|----------------------------------------------------|-------------|
| 25792                            | 6d82e412aa0f0d                                     | 8           |
| 25792                            | 571016386ffee7                                     | 6           |
| 25792                            | 6a91157d820e37                                     | 6           |
| 25792                            | ad45fc764587b0                                     | 6           |
| 25792                            | a743b03f2b8ddc                                     | 3           |
|                                  |                                                    |             |
| document id                      | uuid                                               | viewed      |
| document_id<br>25792             | uuid<br>6d82e412aa0f0d                             | viewed 1    |
| 25792                            |                                                    | viewed 1    |
| 25792<br>25792                   | 6d82e412aa0f0d                                     | 1           |
| 25792<br>25792<br>25792          | 6d82e412aa0f0d<br>571016386ffee7                   | 1           |
| 25792<br>25792<br>25792<br>25792 | 6d82e412aa0f0d<br>571016386ffee7<br>6a91157d820e37 | 1<br>1<br>1 |

```
from sklearn import preprocessing
     ✓ 0.1s
       X = [
       binarizer = preprocessing.Binarizer(threshold=1.0)

√ 0.4s

       binarizer.transform(X)
... array([[0., 1., 1.],
           [1., 0., 0.],
           [0., 0., 0.]])
```



### Log transformation

• Compresses the range of large numbers and expand the range of small numbers. Eg. The larger x is, the slower log(x) increments

| user_id | views_count |
|---------|-------------|
| а       | 1000        |
| b       | 500         |
| С       | 300         |
| d       | 200         |
| е       | 150         |
| f       | 100         |
| g       | 70          |
| h       | 50          |
| i       | 30          |
| j       | 20          |
| k       | 10          |
| 1       | 5           |
| m       | 1           |



| log(1+views_count) |
|--------------------|
| 6.91               |
| 6.22               |
| 5.71               |
| 5.30               |
| 5.02               |
| 4.62               |
| 4.26               |
| 3.93               |
| 3.43               |
| 3.04               |
| 2.40               |
| 1.79               |
| 0.69               |

### Feature Engineering

**Categorical Features** 



### **Categorical Encoding**



### Feature Engineering

**Temporal Features** 



Apply binning on time data to make it categorial and more general.
 Binning a time in hours or periods of day, like below.

| Hour range           | Bin ID | Bin Description |
|----------------------|--------|-----------------|
| [5, 8]               | 1      | Early Morning   |
| [8, 11]              | 2      | Morning         |
| [11, 14]             | 3      | Midday          |
| [14, 19]             | 4      | Afternoon       |
| [19, 22]             | 5      | Evening         |
| [22, 00] and [00, 5] | 6      | night           |

### **Feature Engineering**

**Textual Features** 



### **Natural Language Processing**

### Cleaning

- Lowercasing
- Convert accented characters
- Removing non-alphanumeric
- Repairing

### **Tokenizing**

- Encode punctuation marks
- Tokenize
- N-Grams
- Skip-grams
- Char-grams
- Affixes

#### Removing

- Stopwords
- Rare words
- Common words

#### **Roots**

- Spelling correction
- Chop
- Stem
- Lemmatize

#### Enrich

- Entity Insertion / Extraction
- Parse Trees
- Reading Level

### **Practical Session**

#### Références

#### O'REILLY'



<u>Discover Feature Engineering, How to</u>
<u>Engineer Features and How to Get Good at It</u>

**Scikit-learn** 

Feature Engineering for Machine Learning

Alice Zheng & Amanda Casari



# Thanks!

## Any questions?

You can find me at

- @oussamaouardini
- ouss.ouardini@gmail.com