STATS 210

Tutorial 9

1. Mr Fixit offers his services as a mender of stuck windows and doors. He says he can fix any stuck window in just 10 to 20 minutes. The time it takes him to fix a stuck window is X minutes, where X is a continuous random variable with probability density function:

(2)

(2)

(2)

- ction: $f_X(x) = \begin{cases} \frac{k}{x^2} & \text{for } 10 < x < 20, \\ 0 & \text{otherwise.} \end{cases}$
- (a) Show that the constant k is k = 20.
- (b) Sketch the probability density function, $f_X(x)$, for $-\infty < x < \infty$. (2)
- (c) Find the probability that Mr Fixit takes more than 15 minutes to fix a stuck window. (2)
- (d) Find the cumulative distribution function of X, $F_X(x) = \mathbb{P}(X \leq x)$. Remember to give the value of $F_X(x)$ for **all** $x \in (-\infty, \infty)$.
- (e) Using the distribution function, $F_X(x)$, check your answer to part (c) for $\mathbb{P}(X > 15)$, and find also $\mathbb{P}(12 < X < 14)$.
- (f) Find the average time taken for Mr Fixit to fix a window, $\mathbb{E}(X)$. (2)
- (g) Find $\mathbb{E}(X^2)$, and hence find Var(X).
- (h) Mr Fixit has 10 stuck windows he needs to fix today. Let T be the total time he spends fixing stuck windows today. Say which of the following is the **correct** description of T: description A or description B.

A.
$$T = 10X$$
.

- B. $T = X_1 + X_2 + ... + X_{10}$, where each X_i has the same distribution as X for i = 1, ..., 10.
- (i) Assuming the times taken to fix the 10 windows are independent, find $\mathbb{E}(T)$ and $\mathrm{Var}(T)$. You will need to use your answers to (f), (g), and (h). Specify when you **do** need to use independence, and when you **do not** need to use independence. (2)

2. Exam Question, 2008

A shuttle bus waits at the airport until it is loaded with passengers. Passengers arrive by themselves, according to a Poisson process with rate $\lambda=20$ passengers per hour. The bus is full when 8 passengers have arrived.

Note: for the exam you will need to have the pdf, cdf, and mean of the Exponential distribution from memory, so you can state them WITHOUT calculation here!

- (a) Let T be the **time** the bus driver has to wait for the first passenger to arrive, in hours. State with parameters the distribution of T.
- (b) State $\mathbb{E}(T)$, the expected time waited for the first passenger to arrive, in hours. (2)
- (c) Find the probability the bus driver has to wait more than 5 **minutes** for the first passenger to arrive.
- (d) Find the expected time waited for 8 passengers to arrive. (2)

Total:

(2)

(2)

26