Schaltungstechnik 1

Kirchhoff-Gesetze

Anwendbarkeit

Konzentriertheitshypothese muss erfüllt sein:

 $d << \lambda = \frac{c}{f}$

d: Größe der Schaltung

 λ : Wellenlänge

Netzwerktheorie

Zweige: Anzahl Kanten

Knoten: Anzahl Spannungsknoten (inklusive Masse wenn

existiert).

Richtung Kantenpfeil

Richtung Kantenstrom und Kan-

tenspannung.

Graph besteht aus Baum und Verbindungskanten.

Knoteninzidenzmatrix

Matrix $A \in \{-1, 0, 1\}^{(n-1) \times (b)}$

 $\text{Eintrag } a_{\alpha\beta} = \begin{cases} +1, & \text{Outgoing, Zweig } \beta \leftarrow \text{Knoten } \alpha \\ -1, & \text{Incoming, Zweig } \beta \rightarrow \text{Knoten } \alpha \\ \pm 0, & \text{Kein Zweig } \beta \leftrightarrow \text{Knoten } \alpha \end{cases}$

Beinhaltet nicht den Bezugsknoten (da linear abhängig).

0.1 KVL Matrix

Matrix $B \in \{-1, 0, 1\}^{b \times b - (n-1)}$

Eintrag $b_{\alpha\beta} = \begin{cases} +1, & \text{Zweig in Richtung Masche} \\ -1, & \text{Zweig entgegen Masche} \\ \pm 0, & \text{Kein Zweig in Masche} \end{cases}$

Knotenregel (KCL)

Für jeden Knoten gilt:

Die Summe aller Ströme ist Null.

$$\sum_{Knoten} i_j(t) = 0$$

(herausfließende Ströme positiv)

Anzahl linear unabhängiger Knotengleichungen: (n-1)

n: Anzahl der Knoten

KCL in Matrixform:

Nullraumdarstellung: $\mathbf{A} \cdot i = 0$

Mit Knoteninzidenzmatrix \mathbf{A}

Maschenregel (KVL)

Für jede Masche gilt:

Die Summe der Teilspannungen ist Null.

$$\sum_{Umlauf} u_j(t) = 0$$

(Spannungen in Umlaufrichtung positiv)

Anzahl linear unabhängiger Schleifengleichungen: b-(n-1)

b: Anzahl der Zweige

n: Anzahl der Knoten

KVL in Matrixform:

Nullraumdarstellung: $\mathbf{B}u = 0$

 \underline{u} ist Spannungen der Kanten

$$\underline{u} - \mathbf{A}^{\bar{T}} \cdot \underline{u_k} = \underline{0}$$

Bildraumdarstellung: $\underline{u} = \mathbf{A}^T \cdot u_k$

 $(\mathbf{M} = \mathbf{A}^T)$ Mit Inzidenzmatrix \mathbf{A}

Resistive Eintore

Darstellungsformen

Implizit: $f_F(u,i) = 0$

u = r(i), i = g(u)Explizit:

Parametrisiert: $u = u(\lambda), i = i(\lambda)$

Eigenschaften

F ist...

Kennlinie von F...

 \exists Darstellung u = r(i)- stromgesteuert - spannungsgesteuert \exists Darstellung i = g(u)

- ungepolt ... ist punktsymmetrisch zu (0/0)

... verläuft nur im I. oder III. Quadr. - passiv

- aktiv ... ist nicht passiv

... liegt nur auf den Achsen - verlustlos - quellenfrei ... geht durch den Ursprung ... ist Ursprungsgerade, Ursprung - streng linear

oder ganze u-i-Ebene

... ist eine beliebige Gerade - linear ... besteht aus Geradenstücken - stückweise linear

Umpolung

Punktspiegelung der Kennline am Ursprung

 $(u,i) \in F \Leftrightarrow (-u,-i) \in \overline{F}$

Dualität

Für $R_d = 1\Omega$: Spiegelung an der Winkelhalbierenden.

 $(u,i) \in F \Leftrightarrow (R_d i, \frac{u}{R_d}) \in F^d$

Widerstände

 $u = R \cdot i$ $R = \frac{1}{G}$ $R_1 || R_2 = \frac{R_1 \cdot R_2}{R_1 + R_2}$ (Parallel)

Reihenschaltung: $R_{gesamt} = R_1 + ... + R_i$ Parallelschaltung: $\frac{1}{R_{gesamt}} = \frac{1}{R_1} + ... + \frac{1}{R_i}$

Leitwerte

 $i = G \cdot u$ $G = \frac{1}{R}$ $G_1 || G_2 = \frac{G_1 \cdot G_2}{G_1 + G_2}$ (Seriell)

Reihenschaltung: $\frac{1}{G_{gesamt}} = \frac{1}{G_1} + \dots + \frac{1}{G_i}$ Parallelschaltung: $G_{qesamt} = G_1 + \dots + G_i$

Spannungsteiler / Stromteiler

Spannungsteiler

$$\begin{aligned} u_i &= u_{ges} \cdot \frac{R_i}{R_{ges}} = u_{ges} \cdot \frac{G_{ges}}{G_i} \\ R_{ges} &= R_1 + \ldots + R_n \\ G_{1+2} &= \frac{G_1 \cdot G_2}{G_1 + G_2} \end{aligned}$$

$$\begin{split} i_i = i_{ges} \cdot \frac{R_{ges}}{R_i} = i_{ges} \cdot \frac{G_i}{G_{ges}} \\ G_{ges} = G_1 + \ldots + G_n \\ R_{1+2} = \frac{R_1 \cdot R_2}{R_1 + R_2} \end{split}$$

$$u_{ges} = R_{ges} i_{ges}$$

 $R_{ges} = R_2 + \frac{R_2 R_3}{R_2 + R_3}$

$$u_{R1} = \frac{1}{1 + \frac{R_2 R_3}{R_1 (R_2 + R_3)}} u_{ges}$$

$$u_{R2} = \frac{1}{1 + \frac{R_1 (R_2 + R_3)}{R_2 R_3}} u_{ges}$$

$$u_{R3} = u_{R2}$$

Quellwandlung linearer Quellen

Wichtig: Pfeilrichtung I_0

Für jede lineare Quelle gilt:

$$u = R_i \cdot i + U_0$$
 bzw. $i = G_i \cdot u - I_0$

Kennlinienbestimmung von verschalteten Bauteilen

Parallel

Die Spannung ist an jedem Bauteil gleich. Die Ströme werden nach der Knotenregel addiert.

Grafisch: Kennlinien entlang der i-Achse addieren.

Seriell

Der Strom ist in jedem Bauteil gleich. Die Spannungen werden nach der Maschenregel addiert.

Grafisch: Kennlinien entlang der u-Achse addieren.

Arbeitspunktbestimmung

Q: Quelleneintor

 Q^x : Quelleneintor gespiegelt an der u-Achse

F: Lasteintor

Rechnerisch: $i_Q = -i_F$

Graphisch: $AP = F \cap Q^x$

Linearisierung im Arbeitspunkt

z.B. Leitwertsbeschreibung:

$$\begin{split} \Delta i_F &= \left. \frac{\partial i_F}{\partial u_F} \right|_{AP} \cdot \Delta u_F \\ (i_F &= I_{AP} + \Delta i_F; \quad u_F = U_{AP} + \Delta u_F) \\ i_{F,lin} &= \left. \frac{\partial i_F}{\partial u_F} \right|_{AP} \cdot (u_F - U_{AP}) + I_{AP} \\ i_{F,lin} &= \left. \underbrace{\frac{\partial i_F}{\partial u_F}} \right|_{AP} \cdot u_F - \underbrace{\frac{\partial i_F}{\partial u_F}} \right|_{AP} \cdot U_{AP} + I_{AP} \end{split}$$

Ersatzschaltbilder

Zuerst alle Bauteile im Arbeitspunkt linearisieren. Erhalte $u_1 = U + \Delta u$

Großsignal: Alle Wechselquellen weglassen. $u_1 = U$ **Kleinsignal:** Alle Konstantquellen weglassen. $U_1 = \Delta u$

Ersetzen von Quellen

Bauelemente

Nullator

Strom/spannungsgesteuert, ungepolt, passiv, verlustlos, quellenfrei, streng linear. Dual zu Nullator.

Norator

Ungepolt, aktiv, quellenfrei, streng linear. Dual zu Norator.

Leerlauf

Spannungsgesteuert, ungepolt, passiv, verlustlos, quellenfrei, streng linear. Dual zu Kurzschluss.

Kurzschluss

$$\begin{array}{c|c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

Stromgesteuert, ungepolt, passiv, verlustlos, quellenfrei, streng linear. Dual zu Leerlauf.

Ohmscher Widerstand

Spannungs-/Stromgesteuert (R > 0/G > 0), ungepolt, passiv für $R \geq 0$, aktiv für R < 0, quellenfrei, streng linear. Dual zu Widerstand mit $R_2 = \frac{1}{R_1}$.

$Ideale\ Stromquelle$

Für I > 0: Spannungsgesteuert, gepolt, aktiv, nicht verlustlos, nicht quellenfrei, linear. Dual zu Spannungsquelle.

$Ideale\ Spannung squelle$

Für U > 0: Stromgesteuert, gepolt, aktiv, nicht verlustlos, nicht quellenfrei, linear. Dual zu Stromquelle.

Ideale Diode

Nicht Strom/Spannungsgesteuert, gepolt, passiv, quellenfrei, stückweise linear. Dual zu umgepoltem selbst.

Reale Diode

Spannungs/Stromgesteuert, gepolt, passiv, quellenfrei, nicht linear.

Photodiode

Nicht Strom/Spannungsgesteuert, gepolt, aktiv, nicht line-

Zenerdiode

Strom/Spannungsgesteuert, gepolt, passiv, quellenfrei, nicht linear.

Tunneldiode

Spannungsgesteuert, gepolt, passiv, quellenfrei, nicht line-

Konkaver Widerstand

i=0 für $u \leq U_0$ $i = G \cdot (u - U_0)$ für $u \ge U_0$

Spannungsgesteuert, gepolt, passiv, quellenfrei $(U_0 \geq 0)$, stückweise linear. Dual zu konvexem Widerstand.

Konvexer Widerstand

u = 0 für $i \le I_0$ $u = R \cdot (i - I_0)$ für $i \ge I_0$

Stromgesteuert, gepolt, passiv, quellenfrei ($I_0 \geq$ stückweise linear.

Lineare Quellen

 $U_0 = I_0 \cdot R;$ $I_0 = U_0 \cdot G$ Spannungs/Stromgesteuert (R > 0/G > 0), gepolt, aktiv $(I_0 > 0 \Leftrightarrow U_0 > 0)$, linear.

Resistive Zweitore

Darstellungsformen

Implizit

$$\underbrace{\begin{bmatrix} \mathbf{M} & \mathbf{N} \end{bmatrix} \cdot \frac{u}{\underline{i}}}_{Kern} \underbrace{\begin{bmatrix} \mathbf{M} & \mathbf{N} \end{bmatrix}}_{}$$
quellenfrei

$$F=Kern\left[\mathbf{M}\quad\mathbf{N}\right]+\frac{u_0}{\underline{i_0}}\right]\quad\text{nicht quellenfrei}$$
 Explizit \Rightarrow Implizit: $i=Gu\Rightarrow 0=Gu-1\Rightarrow [MN]=[G-1]$

Explizit

Größe mit konstantem Nullwert (KS, LL, Nullator) kann keine Steuergröße sein. Größe mit beliebigem Wert (Norator) kann nicht gesteuert werden. Leitwertsbeschr.

$$\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \mathbf{G} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} g_{11}u_1 + g_{12}u_2 \\ g_{21}u_1 + g_{22}u_2 \end{bmatrix}$$
 Let

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \mathbf{R} \cdot \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} r_{11}i_1 + r_{12}i_2 \\ r_{21}i_1 + r_{22}i_2 \end{bmatrix}$$
 Widerstandsbeschr.

$$\begin{bmatrix} u_1 \\ i_2 \end{bmatrix} = \mathbf{H} \cdot \begin{bmatrix} i_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} h_{11}i_1 + h_{12}u_2 \\ h_{21}i_1 + h_{22}u_2 \end{bmatrix}$$
 hybride Beschr.

$$\begin{bmatrix} i_1 \\ u_2 \end{bmatrix} = \mathbf{H'} \cdot \begin{bmatrix} u_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} h'_{11}u_1 + h'_{12}i_2 \\ h'_{21}u_1 + h'_{22}i_2 \end{bmatrix} \quad \text{inverse hybride Beschr.}$$

$$\begin{bmatrix} u_1 \\ i_1 \end{bmatrix} = \mathbf{A} \cdot \begin{bmatrix} u_2 \\ -i_2 \end{bmatrix} = \begin{bmatrix} a_{11}u_2 - a_{12}i_2 \\ a_{21}u_2 - a_{22}i_2 \end{bmatrix} \qquad \text{Kettenbeschr.}$$

$$\begin{bmatrix} u_2 \\ i_2 \end{bmatrix} = \mathbf{A'} \cdot \begin{bmatrix} u_1 \\ -i_1 \end{bmatrix} = \begin{bmatrix} a'_{11}u_1 - a'_{12}i_1 \\ a'_{21}u_1 - a'_{22}i_1 \end{bmatrix}$$
 inverse Kettenbeschr.

Parametrisiert

$$\underbrace{\frac{\underline{u}}{\underline{i}} = \begin{bmatrix} \mathbf{U} \\ \mathbf{I} \end{bmatrix} \cdot \underline{c}}_{Bild} = \begin{bmatrix} \underline{u}^{(1)} & \underline{u}^{(2)} \\ \underline{i}^{(1)} & \underline{i}^{(2)} \end{bmatrix} \cdot \underline{c} \quad \text{quellenfrei}$$

$$F = Bild \begin{bmatrix} \mathbf{U} \\ \mathbf{I} \end{bmatrix} + \frac{u_0}{i_0}$$
 nicht quellenfrei

mit
$$\frac{1}{V}\underline{u}, \frac{1}{A}\underline{i}, \underline{c} \in \mathbb{R}^{n \times 1}$$
 und $\frac{1}{V}\mathbf{U}, \frac{1}{A}\mathbf{I} \in \mathbb{R}^{n \times n}$

Eigenschaften

$$F \text{ ist...} \qquad \text{wenn...}$$
 - passiv
$$\forall \frac{\underline{u}}{\underline{i}} \Big] \in F : P = \underline{u}^T \cdot \underline{i} \geq 0$$

- aktiv
$$\exists \, \frac{\underline{u}}{\underline{i}} \bigg] \in F : P = \underline{u}^T \cdot \underline{i} < 0$$

- verlustlos
$$\forall \, \frac{\underline{u}}{\underline{i}} \bigg] \in F : \underline{u}^T \cdot \underline{i} = 0$$

$$\mathbf{U}^T \mathbf{I} + \mathbf{I}^T \mathbf{U} = \mathbf{0}$$

$$\mathbf{R} = -\mathbf{R}^T; \quad \mathbf{G} = -\mathbf{G}^T$$

- umkehrbar
$$\mathbf{G} = \mathbf{P} \cdot \mathbf{G} \cdot \mathbf{P}; \ \mathbf{R} = \mathbf{P} \cdot \mathbf{R} \cdot \mathbf{P}; \ \mathbf{A} = \mathbf{A}'$$
Symmetrisch

$$\mathbf{P} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 "Zeilentausch + Spaltentausch"

- reziprok
$$\begin{aligned} \mathbf{U}^T \mathbf{I} - \mathbf{I}^T \mathbf{U} &= \mathbf{0}; \mathbf{G} = \mathbf{G}^T; \mathbf{R} = \mathbf{R}^T \\ det(\mathbf{A}) &= det(\mathbf{A}') = 1 \\ \text{Netzwerk besteht nur aus R, C und L} \end{aligned}$$

Dualität
$$\begin{bmatrix} \mathbf{U} \\ \mathbf{I} \end{bmatrix}^d = \begin{bmatrix} R_d \mathbf{I} \\ \frac{1}{R_d} \mathbf{U} \end{bmatrix} = \begin{bmatrix} 0 & R_d \mathbf{1} \\ \frac{1}{R_d} \mathbf{1} & 0 \end{bmatrix} \cdot \mathbf{U}$$
$$\mathbf{G}^d = \frac{1}{R_d^2} \mathbf{R}; \quad \mathbf{R}^d = R_d^2 \mathbf{G}$$

Kurzschluss/Leerlauf-Methode

Verfahre nach "Berechnung Beschreibungsmatrix". Jeweils eine steuernde Größe auf Null setzen (Spannungsquelle \rightarrow KS; Stromquelle \rightarrow LL).

Berechnung Beschreibungsmatrix

Bei quellenbehafteten Zweitoren:

z.B.
$$\underline{i} = \mathbf{G} \cdot \underline{u} + I_0$$

1) Setze interne Quellen zu Null (Spannungsquelle \rightarrow KS;

Stromquelle \to LL) \to bestimme Funktionen der Matrix (hier: $i = \mathbf{G} \cdot u$)

2) Setze Steuergrößen zu Null \to bestimme Quellenvektor (hier: $\underline{i} = \underline{I}_0$ für $\underline{u} = 0$)).

Linearisierung im AP

Explizit

z.B. Leitwertsbeschreibung:
$$\begin{split} i_{lin}(u) &= G_{lin}(u-U_{AP}) + I_{AP}, \\ G_{lin} &= \frac{\partial i}{\partial u}] \text{ mit } u = U_{AP} \text{ einsetzen.} \end{split}$$

$$\underline{\underline{\Delta}i} = \mathbf{J} \cdot \underline{\Delta}\underline{u}$$

$$(\underline{i} = \underline{I} + \underline{\Delta}\underline{i}; \quad \underline{u} = \underline{U} + \underline{\Delta}\underline{u})$$

$$\begin{aligned} i_1 \\ i_2 \end{bmatrix} = \underbrace{ \begin{bmatrix} \frac{\partial g_1}{\partial u_1} & \frac{\partial g_1}{\partial u_2} \\ \frac{\partial g_2}{\partial u_1} & \frac{\partial g_2}{\partial u_2} \end{bmatrix} \bigg|_{AP}}_{\mathbf{J}(Jacobimatrix)} \cdot \frac{\Delta u_1}{\Delta u_2} \end{bmatrix} + \underbrace{I_1}_{I_2}]$$

Implizit

$$\underbrace{\begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \frac{\partial f_1}{\partial u_2} \\ \frac{\partial f_2}{\partial u_1} & \frac{\partial f_2}{\partial u_2} \end{bmatrix}}_{\mathbf{M}} \cdot \underbrace{\frac{\Delta u_1}{\Delta u_2}}_{\mathbf{A}u_2} + \underbrace{\begin{bmatrix} \frac{\partial f_1}{\partial i_1} & \frac{\partial f_1}{\partial i_2} \\ \frac{\partial f_2}{\partial i_1} & \frac{\partial f_2}{\partial i_2} \end{bmatrix}}_{\mathbf{N}} \cdot \underbrace{\frac{\Delta i_1}{\Delta i_2}}_{\mathbf{N}} = \mathbf{0}$$

Zusammenschaltung von Zweitoren

Es muss immer darauf geachtet werden, dass die Torbedingungen eingehalten werden (außer bei Kettenschaltung)!

Parallel schaltung

$$\mathbf{G}_{ges} = \mathbf{G}_1 + \mathbf{G}_2$$

Serienschaltung

$$\mathbf{R}_{ges} = \mathbf{R}_1 + \mathbf{R}_2$$

Hybride Verschaltung

$$\mathbf{H}_{ges} = \mathbf{H}_1 + \mathbf{H}_2$$

Inverse hybride Verschaltung

$$\mathbf{H'}_{ges} = \mathbf{H'}_1 + \mathbf{H'}_2$$

Kettenschaltung

$Inverse\ Kettenschaltung$

Umrechnung der Zweitor-Matrizen

Implizit ightarrow explizit

$$\begin{split} \left[\mathbf{M} \quad \mathbf{N} \right] \cdot \frac{\underline{u}}{\underline{i}} &= \underline{0} \quad |M^{-1} \cdot \quad \left[\mathbf{M} \quad \mathbf{N} \right] \cdot \frac{\underline{u}}{\underline{i}} \right] = \underline{0} \quad |N^{-1} \cdot \underline{u}| \\ \underline{u} + \mathbf{M}^{-1} \mathbf{N} \cdot \underline{i} &= \underline{0} \quad \mathbf{N}^{-1} \mathbf{M} \cdot \underline{u} + \underline{i} &= \underline{0} \\ \underline{u} &= \underbrace{-\mathbf{M}^{-1} \mathbf{N}}_{\mathbf{R}} \cdot \underline{i} \quad \underline{i} &= \underbrace{-\mathbf{N}^{-1} \mathbf{M}}_{\mathbf{G}} \cdot \underline{u} \end{split}$$

$Explizit \rightarrow implizit$

$$\underline{\underline{u}} = \mathbf{R} \cdot \underline{\underline{i}}$$

$$\underline{\underline{i}} = \mathbf{G} \cdot \underline{\underline{u}}$$

$$\underline{\underline{\mathbf{G}}} \cdot \underline{\underline{u}} - \underline{\mathbf{R}} \cdot \underline{\underline{i}} = \underline{\underline{0}}$$

$$\underline{\underline{\mathbf{G}}} \cdot \underline{\underline{u}} + \underline{\underline{\mathbf{I}}} \cdot \underline{\underline{i}} = \underline{\underline{0}}$$

$Parametrisiert \rightarrow explizit$

$$\begin{array}{ll} \underline{u} \\ \underline{i} \end{bmatrix} = \begin{bmatrix} \mathbf{U} \\ \mathbf{I} \end{bmatrix} \cdot \underline{c} \quad \Rightarrow \quad \underline{u} \\ \underline{i} = \mathbf{I} \cdot \underline{c} \\ \underline{i} = \mathbf{I} \cdot \underline{c} \quad |\mathbf{I}^{-1} \cdot \underline{i} \\ \Rightarrow \mathbf{I}^{-1} \cdot \underline{i} = \underline{c} \\ \Rightarrow \underline{u} = \underline{\mathbf{U}} \cdot \underline{\mathbf{I}}^{-1} \cdot \underline{i} \\ R \end{array} \qquad \begin{array}{ll} \underline{u} = \mathbf{U} \cdot \underline{c} \quad |\mathbf{U}^{-1} \cdot \underline{c} \\ \Rightarrow \underline{u} = \underline{\mathbf{U}} \cdot \underline{\mathbf{I}}^{-1} \cdot \underline{i} \\ R \end{array}$$

Explizit ightarrow parametrisiert

$$\underline{u} = \mathbf{R} \cdot \underline{i}$$
 $\underline{i} = \mathbf{G} \cdot \underline{u}$
$$\mathbf{U} = \mathbf{R}; \quad \mathbf{I} = \mathbf{1} \qquad \qquad \mathbf{U} = \mathbf{1}; \quad \mathbf{I} = \mathbf{G}$$

$Implizit \rightarrow parametrisiert$

$$\mathbf{U} = -\mathbf{M}^{-1}\mathbf{N}; \quad \mathbf{I} = \mathbf{1} \quad \text{oder} \quad \mathbf{U} = \mathbf{1}; \quad \mathbf{I} = -\mathbf{N}^{-1}\mathbf{M}$$

Parametrisiert o implizit

$$\mathbf{M} = -\mathbf{I} \cdot \mathbf{U}^{-1}; \quad \mathbf{N} = \mathbf{1} \quad \mathrm{oder} \quad \mathbf{M} = \mathbf{1}; \quad \mathbf{N} = -\mathbf{U} \cdot \mathbf{I}^{-1}$$

Explizit ightarrow explizit

$$\underline{i} = \mathbf{G} \cdot \underline{u} + \underline{I}_{0} \quad | \mathbf{R} \cdot \underline{i} = \mathbf{R} \cdot \underline{i} + \underline{U}_{0} \quad | \mathbf{G} \cdot \underline{u} = \mathbf{R} \cdot \underline{i} + \underline{U}_{0} \quad | \mathbf{G} \cdot \underline{u} = \mathbf{G} \cdot \underline{\mathbf{R}} \cdot \underline{i} + \mathbf{G} \cdot \underline{U}_{0}$$

$$\underline{u} = \mathbf{R} \cdot \underline{i} - \mathbf{R} \cdot \underline{I}_{0} \qquad \qquad \underline{i} = \mathbf{G} \cdot \underline{u} - \mathbf{G} \cdot \underline{U}_{0}$$

	R					G		Н			
\mathbf{R}		$\begin{bmatrix} r_{11} \\ r_{21} \end{bmatrix}$	$\begin{bmatrix} r_{12} \\ r_{22} \end{bmatrix}$		$\frac{1}{det(\mathbf{C})}$	$\overline{\mathfrak{G}} \begin{bmatrix} g_{22} \\ -g_{21} \end{bmatrix}$	$\begin{bmatrix} -g_{12} \\ g_{11} \end{bmatrix}$	$\frac{1}{h_{22}}$	$\begin{bmatrix} det(\mathbf{H}) \\ -h_{21} \end{bmatrix}$	$\begin{bmatrix} h_{12} \\ 1 \end{bmatrix}$	
\mathbf{G}	$\frac{1}{det(\mathbf{R})}$	$\left[egin{array}{c} r_2 \\ -r_1 \end{array} ight]$				-	12 22	$\frac{1}{h_{11}}$	h_{21} a	$\begin{bmatrix} -h_{12} \\ let(\mathbf{H}) \end{bmatrix}$	
н	$\frac{1}{r_{22}}$	$\begin{bmatrix} det(\mathbf{l} -r_2) \end{bmatrix}$			$\frac{1}{g_{11}}$		$\begin{bmatrix} -g_{12} \\ et(\mathbf{G}) \end{bmatrix}$			$\begin{bmatrix} u_{12} \\ u_{22} \end{bmatrix}$	
н,	$\frac{1}{r_{11}}$	$\begin{bmatrix} 1 \\ r_{21} \end{bmatrix}$	$-r_{12}$ $det(\mathbf{R})$		$\frac{1}{g_{22}}$	$\begin{bmatrix} det(\mathbf{G}) \\ -g_{21} \end{bmatrix}$	$\begin{bmatrix} g_{12} \\ 1 \end{bmatrix}$	$\frac{1}{det(\mathbf{H})}$	$ \begin{bmatrix} h_{22} \\ -h_{21} \end{bmatrix} $	$\begin{bmatrix} -h_{12} \\ h_{11} \end{bmatrix}$	
A	$\frac{1}{r_{21}}$	$\begin{bmatrix} r_{11} \\ 1 \end{bmatrix}$	$\frac{det(\mathbf{R})}{r_{22}}$		$\frac{1}{g_{21}}$	$-g_{22} - det(\mathbf{G})$	$\begin{bmatrix} -1 \\ -g_{11} \end{bmatrix}$	$\frac{1}{h_{21}}$	$-det(\mathbf{H})$ $-h_{22}$		
A,	$\frac{1}{r_{12}}$	$\begin{bmatrix} r_{22} \\ 1 \end{bmatrix}$	$\det(\mathbf{R})$ r_{11}		$\frac{1}{g_{12}}$	$-g_{11} - det(\mathbf{G})$	$\begin{bmatrix} -1 \\ -g_{22} \end{bmatrix}$	$\frac{1}{h_{12}}$	$\begin{bmatrix} 1 \\ h_{22} & a \end{bmatrix}$	$\begin{bmatrix} h_{11} \\ let(\mathbf{H}) \end{bmatrix}$	

		н'		A				Α',		
\mathbf{R}	$\frac{1}{h'_{11}}$		$egin{array}{c} h'_{12} \ (\mathbf{H}') \end{array}$	$\frac{1}{a_{21}}$	$\begin{bmatrix} a_{11} \\ 1 \end{bmatrix}$	$det(a_2)$		$\frac{1}{a_{21}'}$	$\begin{bmatrix} a'_{22} \\ det(\mathbf{A'}) \end{bmatrix}$	$\begin{bmatrix} 1 \\ a'_{11} \end{bmatrix}$
\mathbf{G}	$\frac{1}{h'_{22}}$	$det(\mathbf{H}') \\ -h'_{21}$	$\begin{bmatrix} h'_{12} \\ 1 \end{bmatrix}$	$\frac{1}{a_{12}}$	$a_{22} - 1$	$-det$ a_1	$t(\mathbf{A})$	$\frac{1}{a'_{12}}$	$-det(\mathbf{A}')$	$\begin{bmatrix} -1 \\ a'_{22} \end{bmatrix}$
Н	$\frac{1}{det(\mathbf{H'})}$	$\begin{bmatrix} h'_{22} \\ -h'_{21} \end{bmatrix}$	$\begin{bmatrix} -h'_{12} \\ h'_{11} \end{bmatrix}$	$\frac{1}{a_{22}}$	$\begin{bmatrix} a_{12} \\ -1 \end{bmatrix}$	$det(a_2)$	` ' [$\frac{1}{a'_{11}}$	$\begin{array}{c} a'_{12} \\ -det(\mathbf{A}') \end{array}$	$\begin{bmatrix} 1 \\ a'_{21} \end{bmatrix}$
н		$egin{array}{ccc} h'_{11} & h'_{12} \ h'_{21} & h'_{22} \end{array}$		$\frac{1}{a_{11}}$	a_{21} 1	-det	$t(\mathbf{A})$	$\frac{1}{a_{22}'}$	$\begin{bmatrix} a'_{21} \\ det(\mathbf{A}') \end{bmatrix}$	$\begin{bmatrix} -1 \\ a'_{12} \end{bmatrix}$
A	$\frac{1}{h'_{21}}$		$egin{pmatrix} n'_{22} \ (\mathbf{H}') \end{bmatrix}$		$\begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$	$a_{12} \\ a_{22}$		$\frac{1}{\det(}$	$\begin{bmatrix} a_{22}' \\ a_{21}' \end{bmatrix}$	$\begin{bmatrix} a'_{12} \\ a'_{11} \end{bmatrix}$
Α,		$det(\mathbf{H}') \\ -h'_{11}$	$\begin{bmatrix} -h'_{22} \\ -1 \end{bmatrix}$	$\frac{1}{det}$	<u> </u>		$\begin{bmatrix} a_{12} \\ a_{11} \end{bmatrix}$		$\begin{bmatrix} a'_{11} & a'_{12} \\ a'_{21} & a'_{22} \end{bmatrix}$	

Spezielle Zweitore

$VCCS\ Spannungsgesteuerte\ Stromquelle$

$$\mathbf{A} = \begin{bmatrix} 0 & -\frac{1}{g} \\ 0 & 0 \end{bmatrix} \quad \mathbf{G} = \begin{bmatrix} 0 & 0 \\ g & 0 \end{bmatrix} \quad \mathbf{M} = \begin{bmatrix} 0 & 0 \\ -g & 0 \end{bmatrix} \quad \mathbf{N} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$CCCS\ Stromggesteuerte\ Stromquelle$

$$\mathbf{u}_{1} = 0$$

$$\mathbf{d}_{1} = 0$$

$$\mathbf{d}_{2} = \mathbf{d}_{1}$$

$$\mathbf{d}_{2} = \mathbf{d}_{2}$$

$$\mathbf{d}_{3} = \begin{bmatrix} 0 & 0 \\ 0 & -\frac{1}{\beta} \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} 0 & 0 \\ \beta & 0 \end{bmatrix}$$

$VCVS\ Spannungsgesteurte\ Spannungsquelle$

CCVS Stromgesteuerte Spannungsquelle

$$\mathbf{A} = \begin{bmatrix} 0 & 0 \\ \frac{1}{r} & 0 \end{bmatrix} \ \mathbf{R} = \begin{bmatrix} 0 & 0 \\ r & 0 \end{bmatrix} \ \mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \ \mathbf{N} = \begin{bmatrix} 0 & 0 \\ -r & 0 \end{bmatrix}$$

Nullor

Quellenfrei, streng linear, nicht verlustlos

Gyrator

Dualwandler, Positiv-Immittanz-Inverter (PII)

$$\mathbf{G} = \begin{bmatrix} 0 & \frac{1}{R_2} \\ -\frac{1}{R_1} & 0 \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} 0 & -R_1 \\ R_2 & 0 \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} 0 & R_1 \\ \frac{1}{R_2} & 0 \end{bmatrix}$$

$$\mathbf{A'} = \begin{bmatrix} 0 & -R_2 \\ -\frac{1}{R_1} & 0 \end{bmatrix} \quad \mathbf{N} = \begin{bmatrix} 0 & R_1 \\ -R_2 & 0 \end{bmatrix} \quad \mathbf{M} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Idealer Übertrager

Positiv-Immittanz-Konverter (PIK)

$$\mathbf{A} = \begin{bmatrix} \ddot{u} & 0 \\ 0 & \frac{1}{\ddot{u}} \end{bmatrix} \qquad \mathbf{A'} = \begin{bmatrix} \frac{1}{\ddot{u}} & 0 \\ 0 & \ddot{u} \end{bmatrix} \qquad \mathbf{H} = \begin{bmatrix} 0 & \ddot{u} \\ -\ddot{u} & 0 \end{bmatrix}$$
$$\mathbf{H'} = \begin{bmatrix} 0 & -\frac{1}{\ddot{u}} \\ \frac{1}{\ddot{u}} & 0 \end{bmatrix} \qquad \mathbf{M} = \begin{bmatrix} 1 & -\ddot{u} \\ 0 & 0 \end{bmatrix} \qquad \mathbf{N} = \begin{bmatrix} 0 & 0 \\ \ddot{u} & 1 \end{bmatrix}$$

NIK

Negativ-Immittanz-Konverter (NIK)

Aktiv, antireziprok, für |k| = 1 symmetrisch

k=1 F ist an der i_1 -Achse gespiegelter Zweipol k=-1 F ist an der u_1 -Achse gespiegelter Zweipol

$$\mathbf{A} = \begin{bmatrix} -k & 0 \\ 0 & \frac{1}{k} \end{bmatrix} \qquad \mathbf{A'} = \begin{bmatrix} -\frac{1}{k} & 0 \\ 0 & k \end{bmatrix} \quad \mathbf{H} = \begin{bmatrix} 0 & -k \\ -k & 0 \end{bmatrix}$$

$$\mathbf{H'} = \begin{bmatrix} 0 & -\frac{1}{k} \\ -\frac{1}{k} & 0 \end{bmatrix} \quad \mathbf{M} = \begin{bmatrix} 1 & k \\ 0 & 0 \end{bmatrix} \qquad \mathbf{N} = \begin{bmatrix} 0 & 0 \\ 1 & \frac{1}{k} \end{bmatrix}$$

Bipolar-Transistoren

Kennlinien eines npn-Transistors

Basisschaltung

Emitterschaltung

Ebers-Moll-Modell (Basisschaltung, npn)

$$i_e = -I_{es} \cdot (e^{-\frac{u_{eb}}{U_T}} - 1) + \alpha_R I_{cs} \cdot (e^{-\frac{u_{cb}}{U_T}} - 1)$$
$$i_c = \alpha_F I_{es} \cdot (e^{-\frac{u_{eb}}{U_T}} - 1) - I_{cs} \cdot (e^{-\frac{u_{cb}}{U_T}} - 1)$$

Vereinfachung für Vorwärtsbetrieb (npn)

Bedingung für den Vorwärtsbetrieb: $u_{be} > 0 \land u_{cb} \ge 0$

Basisschaltung

Emitter schaltung

Linearisierung

(Emitterschaltung, Vorwärtsbetrieb, npn)

Großsignal-ESB:

Kleinsignal-ESB:

$$\beta_F = \frac{i_c}{i_b} = \frac{\alpha_F}{1 - \alpha_F}$$

$$\alpha_F = \frac{\beta_F}{1 + \beta_F}$$

$$g = \frac{\partial i_b}{\partial u_{be}} \Big|_{AP} \approx -\frac{I_e}{\beta_F \cdot U_T}$$

$$g \approx \frac{I_b}{U_T} = \frac{I_c}{\beta_F \cdot U_T}$$

Wenn $\beta_F \to \infty$:

Dreipol Nullor $\mathbf{A} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Wie normaler Nullor.

Feldeffekt-Transistoren (FET)

nMOS

Guter Pull-Down Source am niedrigeren Potential $(u_{DS} > 0)$

 $i_G = 0A$

$$i_D = \begin{cases} 0 & u_{GS} < U_t(aus) \\ & \wedge u_{DS} \geq 0 \\ \beta \left(u_{GS} - U_t - \frac{u_{DS}}{2}\right) u_{DS} & u_{GS} > U_t \text{ (linear)} \\ & & \wedge 0 < u_{DS} < u_{GS} - U_t \\ \frac{\beta}{2} \left(u_{GS} - U_t\right)^2 & u_{GS} > U_t \text{ (S\"{a}ttigung)} \\ & & \wedge 0 < u_{GS} - U_t < u_{DS} \end{cases}$$

Enhancement-Typ (selbs sperrend): $U_t \approx 1V$ Depletion-Typ (selbstleitend): $U_t \approx -1V$

Kanallängenmodulation: $i_D' = i_D \cdot (1 + \lambda \cdot u_{DS})$

pMOS

Guter Pull-Up Source am höheren Potential $(u_{DS} < 0)$

$$i_D = \begin{cases} 0 & u_{GS} > U_t(aus) \\ & \wedge u_{DS} \leq 0 \\ -\beta \left(u_{GS} - U_t - \frac{u_{DS}}{2}\right) u_{DS} & u_{GS} < U_t \text{ (linear)} \\ & \wedge 0 > u_{DS} > u_{GS} - U_t \\ \frac{-\beta}{2} \left(u_{GS} - U_t\right)^2 & u_{GS} < U_t \text{ (S\"{a}ttigung)} \\ & \wedge 0 > u_{GS} - U_t > u_{DS} \end{cases}$$

Enhancement-Typ (selbstsperrend): $U_t \approx -1V$

Kanallängenmodulation: $i'_D = i_D \cdot (1 - \lambda \cdot u_{DS})$

Kleinsignal-Ersatzschaltbilder (nMOS)

Linearer Bereich

$$g_m = \frac{\partial i_d}{\partial u_{gs}} \Big|_{AP} = \beta \cdot U_{ds}$$

$$g_0 = \frac{\partial i_d}{\partial u_{ds}} \Big|_{AP} = \beta \cdot (U_{gs} - U_T - U_{ds})$$

$S\"{a}ttigungsbereich$

$$g_m = \frac{\partial i_d}{\partial u_{gs}} \Big|_{AP}$$

$$g_m = \beta \cdot (U_{gs} - U_T)$$

Operationsverstärker

Operationsverstärker müssen immer über ihren invertierenden Eingang rückgekoppelt werden, da sich sonst eine Z-Kennlinie ergibt und der Arbeitspunkt somit nicht mehr eindeutig ist.

Ersatzschaltbilder

 u_d mit einzeichnen.

ESBI

 $u_{out} = -U_{SAT}$

ESB II

 $u_d = 0$ $|u_{out}| \le |U_{SAT}|$

ESB III

 $u_{out} = U_{SAT}$

OP-Schaltungen

$Spannungs folger\ (Impedanz wandler)$

 $u_{out} = u_{in}$

 $v_u = 1$

Nichtinvertierender Verstärker

$$u_{out} = (1 + \frac{R_0}{R_1}) \cdot u_{in}$$
$$v_u = 1 + \frac{R_0}{R_1}$$

$$u_{out} = -RC \cdot \dot{u}_{in}$$

Invertierender Verstärker

$$u_{out} = -u_c(t_0) - \frac{1}{RC} \cdot \int_{t_0}^{t_1} u_{in} dt$$

Differenzverstärker/Subtrahierer

Bedingung: $R_1 = R_3; R_2 = R_4$

$$u_{out} = \frac{R_2}{R_1} \cdot (u_2 - u_1)$$

$$u_{out} = \frac{R_4}{R_2} \cdot (u_2 - u_1)$$

Ideale Diode

 $U_0 < U_{SAT}$

Konvexer Widerstand

VCVS Voltage Controlled Voltage Source

Nichtinvertierender Verstärker $\mu \geq 1$

Spannungsfolger und invertierender Verstärker $\mu < 0$ hintereinander

 $0 < \mu < 1$ Spannungsfolger und zwei invertierende Verstärker hintereinander

CCVS Current Controlled Voltage Source

Invertierender Verstärker mit $R_1 = 0\Omega$

Zusätzlich invertierenden Verstärker mit $v_u = -1$ nachschalten

Gyrator

- Parallelschaltung zweier VCCS
- Serienschaltung zweier CCVS
- Kettenschaltung eines NIK (k = -1) mit einem NII

Knotenspannungsanalyse (KSA)

 $\mathbf{Y}_k \cdot \underline{u}_k = \underline{i}_q$

1. Nichtspannungsgesteuerte Elemente ersetzen

$Ideale\ Spannung squelle$

$$I_0 = G \cdot U_0$$

Idealer Übertrager

VCVS Voltage Controlled Voltage Source

$$u_2 = \mu \cdot u_1 \quad i_2 = -\frac{\mu \cdot u_1}{R_D}$$

$$i_2 = -G \cdot \mu \cdot u_1$$

CCCS Current Controlled Current Source

$$i_2 = \beta \cdot i_1$$
 $u = R_d \cdot i_1$ $i_2 = \frac{\beta \cdot u}{R_d}$

CCVS Current Controlled Voltage Source

$$u_2 = \beta \cdot i_1$$
 $u = R_d \cdot i_1$ $i_2 = \frac{u}{R_d}$ $u_2 = -R_d \cdot i_1$

2. Knotenspannungsvektor U_k aufstellen

3. Knotenleitwertsmatrix Y_k aufstellen

Leitwert

Gyrator

Pfeilrichtung wichtig. $i_1 = \widetilde{Gu_2}, i_2 = -\widetilde{Gu_1}$

VCCS Voltage Controlled Current Source

4. Quellvektor I_q aufstellen

5. Reduzierte Knotenleitwertsmatrix Y_k

Nullator

In \mathbf{Y}_k die entsprechenden Spalten addieren und eine davon streichen **UND** entsprechenden Eintrag im \underline{u}_k -Vektor streichen

Falls mit Masse verbunden: Spalte und $\underline{u}_k\text{-Eintrag}$ streichen.

Norator

In \mathbf{Y}_k die entsprechenden Zeilen addieren und eine davon streichen **UND** entsprechenden Eintrag im \underline{i}_q -Vektor streichen.

Falls mit Masse verbunden: Zeile und $\underline{i}_q\text{-}\text{Eintrag}$ streichen.

Sonstiges

Tellegenscher Satz

Der Spannungsvektor steht immer senkrecht zum Stromvektor ($\mathbf{AB}^T = \mathbf{0}$ bzw. $\mathbf{BA}^T = \mathbf{0}$).

Tableau-Gleichungssystem

$$\begin{bmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{A} \\ \mathbf{M} & \mathbf{N} \end{bmatrix} \cdot \underbrace{\underline{u}}_{\underline{i}} \end{bmatrix} = \underbrace{\underline{0}}_{\underline{e}} \end{bmatrix} \text{ Dimension } 2b \times 2b$$

Superpositionsprinzip

Gilt für unabhängige Quellen in linearem Netzwerk für u, i.

- 1) Jeweils alle Quellen bis auf eine auf Null setzen.
- 2) Gesuchte Größe u_{ai} berechnen.
- 3) Resultierende Größe ist $u_a = u_{a1} + ... + u_{an}$

Substitutionsprinzip

Helmholtz/Thévenin

 \mathcal{N}_1 linear + resistiv \rightarrow

Mayer/Norton

Newton-Raphson

Findet Nullstellen, nicht zwingend konvergent.

- 1) Für Schätzwert \tilde{x}_k linearisiere am Punkt $(\tilde{x}_k, f(\tilde{x}_k))$
- 2) Finde Nullstelle der Gerade. Dieser Punkt ist neuer Schätzwert $\tilde{x}_{k+1}.$

Lizenz: CC BY-NC-SA 3.0

http://creative commons.org/licenses/by-nc-sa/3.0/de/