图论专题(一)

时间: 2021.7.8 8: 00—12: 00 (请选手务必仔细阅读此页内容)

题目名称	旅游	超级邮递员	哨兵侦察	薪水
文件名	travel	messenger	sentinel	salary
输入文件名	travel.in	messenger.in	sentinel.in	salary.in
输出文件名	travel.out	messenger.out	sentinel.out	salary.out
测试点时限	1s	1s	1s	1s
测试点空间限制	512MB	512MB	512MB	512MB
测试点数目	20	20	20	20
每个测试点分值	5	5	5	5
是否有部分分	否	否	否	否
题目类型	传统	传统	传统	传统
结果比较方式	全文比较	全文比较	全文比较	全文比较
	忽略行末空格	忽略行末空格	忽略行末空	忽略行末空格

二. 提交源程序文件名

对于 C++语言	travel.cpp	messenger.cpp	sentinel.cpp	salary.cpp

三. 编译命令

对于 C++语言	g++ -o triangle	g++ -o messenger	g++ -o sentinel	g++ -o salary
	triangle.cpp	messenger.cpp	sentinel.cpp	salary.cpp

注意事项:

- 1、文件名(程序名和输入输出文件名)必须使用小写。
- 2、 C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3、题目简单,请认真对待。

旅游

【题目描述】

小明在打完NOI后为了放松来到了A国旅游,A国有 n 座城市(城市编号从 1 到 n)以及 m 条公路,每条公路将两个不同的城市 u 与 v 连接起来使之可以互相到达,同时每条公路都有一个权重 w_{uv} 。由于A 国是一个旅游城市,所以在通过公路时要收取一定的过路费,在不同城市之间的移动也要遵守以下规则:当你从城市 a 出发前往城市 c 时,必须先从 a 出发前往另一个相邻的城市 b ,然后从 b 出发前往与 b 相邻的 c ,以上过程被视作一次移动,并且这次移动要收取过路费 $(w_{ab}+w_{bc})^2$ 。注意,在这一次移动中即使可以通过一条公路从 a 直接到达 c ,也不能直接走,中间必须途径 b ,并且在城市 b 不能做任何停留,只能经过。现在小明位于城市1,他想先做出一个旅游规划来决定自己的行程,因此他需要知道从城市1出发前往能否到达其他任一城市,如果能到达那么最少需要多少过路费,请你帮小明求出这些结果。

【输入】

第一行输入2个正整数 n, m, 表示城市总数和公路总数。

接下来的 m 行,每行输入三个正整数u,v,w,表示连接城市 u 和城市 v 的一条权重为 w 的公路。数据保证任意两个城市之间最多只有一条直接相连的公路。

【输出】

输出17 n个整数,第i个整数表示从城市1出发前往i花费的最小路费,如果无法到达输出-1。

【样例输入】

```
5 6
1 2 3
2 3 4
3 4 5
4 5 6
1 5 1
2 4 2
```

【样例输出】

0 98 49 25 114

【样例输入】

```
3 2
1 2 1
2 3 2
```

【样例输出】

0 -1 9

【数据范围】

对于50%的数据,有 $2 \le n \le 1000, 1 \le m \le 10^4$

对于全部的数据,有 $2 \le n \le 10^5, 1 \le m \le 2 \times 10^5, 1 \le w \le 50$

【样例说明】

对于第一组样例:

到达2的路径: 1-2-4-3-2

到达3的路径: 1-2-3

到达4的路径: 1-2-4

到达5的路径: 1-2-4-3-2-1-5

对于第二组样例,由于我们每次移动必须走2步,所以我们只能**途径**2点而无法**到达**2点,因此第二个数要输出-1

超级邮递员

【题目描述】

小明是一名来自A市的邮递员,他拥有瞬间移动的能力,但是这个能力有着很大的限制: 当他送信的时候,他不能够使用瞬间移动,并且他一次只能携带一封信件。于是小明每天送信的日常就是从邮局拿到一封信,然后走路去送信,再瞬间移动回到邮局拿到下一封信,开始送信……直到所有的信件都送完为止。A市有多个邮局,小明需要为所有的邮局送信。

A市的邮政地图可以被描述为一张有 n 个点和 m 条边的无向图,其中图上的节点表示邮局或信箱,第 i 条边表示一条长度为 2^i 的路,它连接了两个节点(可以是邮局或信箱)。每个邮局都有且只有一封发往其他所有信箱的信。现在小明想要知道他送完所有的信需要走的最短长度是多少,由于小明会瞬移,因此他可以任意选择一个邮局开始送信。这个结果可能很大,请输出其对 10^9+7 取模后的结果。

【输入】

第一行输入2个正整数 n, m,表示图的节点个数和边的个数。

第二行输入 n 个整数 a_1,a_2,\ldots,a_n ,其中 $a_i=1$ 表示第 i 个节点是邮局, $a_i=0$ 表示第 i 个节点是信箱。

接下来的 m 行,每行输入2个正整数 $u,v(1\leq u,v\leq n)$,表示连接了节点 u 和 v 的一条无向边,其中 第 i 条边的长度是 2^i 。

【输出】

输出1个正整数,表示小明最少需要走的长度对 $10^9 + 7$ 取模后的结果。

【样例输入】

3 2

0 1 0

3 1

3 2

【样例输出】

10

【数据范围】

对于前30%的数据,有 $1 \le n \le 500$

对于前50%的数据,有 1 < n < 2000

对于全部的数据,有 $1 \leq n \leq 10^5$, $1 \leq m \leq min(2 \times 10^5, \frac{n(n+1)}{2})$

【样例说明】

邮局在节点2,小明需要从2出发向1,3送信。他一开始从2点出发,走到3点送信,最短距离为4;然后瞬移回到邮局,走到2点送信,最短距离为6,总共走过的长度为10.

哨兵侦察

【题目描述】

A国和B国两军对阵,进入了僵持阶段。A国修建了一条很长的战壕(可以被视为无限延伸的一维坐标轴),并安排了许多哨兵在战壕内巡逻。一个哨兵的一次巡逻有固定的起始时间和结束时间,以及一个行进方向(正方向或负方向),以及巡逻的初始位置,当这个哨兵开始巡逻时,会在起始时间准时到达战壕上的巡逻初始位置,并以 1m/s 的速度按照定好的方向行进,巡逻时间结束时离开战壕。B国对这条战壕十分头疼,但所幸他们的侦察兵获得了 n 条情报,每条情报由整数 t 和 x 组成,表示在 t 时刻有一个哨兵出现在了战壕上的 x 位置。现在小明作为B国的参谋想要知道A国最少有几个哨兵,你能帮助他求出这个结果吗。

【输入】

第一行输入1个正整数 n,表示情报总数。

接下来的 n 行,每行输入2个正整数 t_i, x_i ,表示在 t_i 时刻有一个哨兵出现在了战壕上的 x_i 位置(单位分别是 s 和 m)。

【输出】

输出1个正整数,表示A国最少的哨兵数量。

【样例输入】

3

1 1

231

【样例输出】

2

【样例输入】

4

1 1

2 2

3 3

5 5

【样例输出】

1

【数据范围】

对于前30%的数据,有 $1 \le n \le 20$

对于前60%的数据,有 $1 \le n \le 5000$

对于全部的数据,有 $1 \leq n \leq 10^5$, $1 \leq t_i, x_i \leq 10^9$

【样例说明】

对第一组样例来说,情报(1,1)和(2,2)可能是同一个哨兵,而(3,1)一定是另一个,所以结果是2。 对第二组样例来说,这4组情报均有可能是同一个人,结果是1。

薪水

【题目描述】

小明在暑假期间勤工俭学,来到了一家公司打工,这家公司的工资每个月发工资的数额是由以下方式决定的:在一个n个点m条边(边有权重)的无向**连通**图上,随机选取一个生成树,工资发放的数额就是这棵生产树上所有边的权值的按位与(即c++中的&运算)。小明想要知道他每个月能收到的工资的期望是多少,你能帮他计算这个结果吗?这个结果可能很大,请输出其对 998244353 取模后的结果。如果你的答案是一个形如 $\frac{a}{b}$ 的分式,请输出 $a \times b^{-1} \mod 998244353$,其中 b^{-1} 是 b在模 998244353 意义下的乘法逆元。

一个有n个结点的连通图的生成树是一个包含原图中的所有n个结点的子图,并且有保持图连通的最少的边。

【输入】

第一行输入2个正整数 n, m,表示节点个数和边的总数。

接下来的 m 行,每行输入三个正整数 $u,v,w(1\leq u,v\leq n,u\neq v)$,表示连接节点 u 和 v 的一条权重为 w 的双向边。

【输出】

输出1个整数,表示小明能收到的薪水的期望值对998244353取模后的结果。

【样例输入】

3 3

1 2 1

1 3 2

2 3 3

【样例输出】

1

【数据范围】

对于前20%的数据,有 $2 \le n \le 5, 1 \le m \le 10$

对于全部的数据,有 $2 \le n \le 100, 1 \le m \le 10^4, 1 \le w \le 10^9$

【样例说明】

如图所示,生成树共以上3种不同的情况,第一种情况的边权按位与是0,第二种情况的是2,第三种情况的是1,因此期望为 $\frac{1+2+0}{3}=1$