

ElasticHash: Semantic Image Similarity Search by Deep Hashing with Elasticsearch

Nikolaus Korfhage Markus Mühling Bernd Freisleben

Department of Mathematics and Computer Science, University of Marburg, Marburg, Germany {korfhage,muehling,freisleb}@informatik.uni-marburg.de

Image Similarity Search: Query by Example

Motivation

- ElasticSearch is a full-text search system
- ElasticSearch advantages:
 - Fast due to inverted indices
 - Scalable to hundreds of server
 - Load balancing
 - **–** ...
- Idea:
 - Integrate Image Similarity Search into ElasticSearch
 - Multi-modal queries

Similarity Search System

Deep Hashing Model

- ImageNet-pretrained EfficientNetB3
- Trained on all ImageNet Images with >= 1000 examples and PlacesV2
- 256-bit coding layer
- Combination of Log-loss and triplet-loss

$$\mathcal{L} = \alpha \sum_{i=1}^{k} y_i \log_{p_i} + \beta \max(d(a, p) - d(a, n) + \gamma, 0)$$

Review: Multi-Index Hashing (MIH)

- Binary codes:
 - $h = (h^1, ..., h^m)$
 - $g = (g^1, ..., g^m)$
- m: number of partitions
- H: Hamming distance
- Proposition:

$$||h - g||_H \le r \Rightarrow \exists k \in \{1..m\} \ ||h^k - g^k||_H \le \left\lfloor \frac{r}{m} \right\rfloor$$

• Example: 64-bit codes decomposed into m=4 subcodes Within Hamming radius r=4 at least one of the subcodes has distance $d \leq \left|\frac{r}{m}\right|=2$

Two-Stage Approach

- Hamming distance computation on complete data set of long hashcodes (256 bit) → does not scale
- 1st Step: Filtering (64 bit codes):
 - Find all 64 bit codes with distance < 12
 - Select 64 most important bits from 256 bit codes
 - Apply Multi-Index Hashing [Norouzi et al. 2012]:
 - Partition 64 bit codes into m = 4 subcodes
 - Within Hamming radius r=11 at least one of the subcodes has distance $d \le \left| \frac{r}{m} \right| = 2$
 - Searching subcode radii d = 2 much faster (ES inverted index)
- 2nd Step: Re-Ranking (256 bit codes):
 - More accurate
 - Hamming distance computation only on small subset

Integration into ElasticSearch

Re-Ranking

```
POST _scripts/hd64

{
    "script":
        {
            "lang": "painless",
            "source":
            64-Long.bitCount(params.subcode^doc[params.field].value)
        }
}
```


Images Index

```
PUT /es-retrieval
PUT /es-retrieval/default/ mapping
  "properties": {
    "image": {"type": "text"},
    "f 0": {"type": "keyword"},
    "f 1": {"type": "keyword"},
                                 1. Filtering:
    "f 2": {"type": "keyword"},
                                       4 x 16-bit subcodes
    "f 3": {"type": "keyword"},
      0": {"type": "long"},
    "r 1": {"type": "long"},
    "r 2": {"type": "long"}, 2. Re-ranking:
    "r 3": {"type": "long"} 4 x 64-bit subcodes
```


Neighbors index

- Created once
- Contains neighboring hashcodes for each subcode f_i
- 2¹⁶ documents (subcodes)
- Example: all possible neighbors of 01 are 01, 10,00,11, i.e. 1,2,0,3

```
POST/nbs-d2/_doc/<16 bit subcode>
{
   "nbs" : [ <d2 neighbors of 16 bit subcode> ]
}
```


Search Query

```
GET /es-retrieval/ search
{ "query": { "function score": {"boost mode": "sum", "score mode":
"sum", "functions":
  [ ..., { "script_score": {"script": {"id": "hd64",
    "params": {
                                                          2. Re-ranking
       "field": "r <i>",
       "subcode": <64 bit subcode for re-ranking>} } },
        "weight": 1}, ... ],
  "query": {"constant score": {"boost": 0.,
    "filter":{"bool":{"minimum should match": 1, "should":
    [..., {"terms":
                                                            1. Filtering
       {"f <j>":
          {"id": "<16 bit subcode for lookup>",
          "index": "nbs-d2",
           "path": "nbs"} }, ... ]
} } } } }
```


Evaluation

- OpenImages:
 - Multi-label
 - 9.2M Flickr images
 - ~20K different labels
 - Train/val/test splits
- Evaluation of ElasticHash:
 - Available database images: ~7M
 - Query images (quality): ~120K
 - Query images (latency): 10K
- Intel Core i7-4771 CPU @ 3.50GHz and 32 GB RAM

Results: Search Quality

- Mean AP@k for 121,588 query images
- Database images: ~7M
- Query images: ~120K

Top k	10	25	50	100	250	500	1000
Short	87.94	86.08	84.44	82.54	79.41	76.44	72.86
Long	95.35	94.72	94.23	93.71	92.90	92.09	90.95
Two-stage	95.21	94.48	93.90	93.22	92.02	90.61	88.42

Results: Search Latency

• Milliseconds (ms)

Database images: ~7M

• Query images: 10K

Top k		10	25	50	100	250	500	1000
Short	μ	23.09	23.98	24.45	25.58	28.38	33.09	42.20
	σ	4.74	4.65	4.70	4.72	4.86	5.20	6.07
Long	μ	111.83	111.58	111.99	113.05	116.77	121.98	132.60
	σ	16.50	16.58	16.72	16.54	17.04	17.13	17.99
Two-stage	μ	36.12	36.75	37.28	38.17	40.88	45.73	55.23
	σ	7.80	7.96	7.81	7.89	7.93	8.12	8.64

Conclusion

- Deep hashing based image similarity search in ElasticSearch
- Seamless integration into ES by terms queries and neighbors index
- Evaluation on OpenImages dataset
- Low search latencies: short hash codes for filtering (64 bit)
- High retrieval quality: long hash codes for re-ranking (256 bit)
- Code, indices, models etc.: https://github.com/umr-ds/ElasticHash

References

- Tan, M., & Le, Q. (2019, May). Efficientnet: Rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning (pp. 6105-6114). PMLR.
- Norouzi, M., Punjani, A., & Fleet, D. J. (2012, June). Fast search in hamming space with multi-index hashing. In 2012 IEEE conference on computer vision and pattern recognition (pp. 3108-3115). IEEE.
- Kuznetsova, Alina, et al. "The open images dataset v4." International Journal of Computer Vision 128.7 (2020): 1956-1981.

