# SABANCI UNIVERSITY Faculty of Engineering and Natural Sciences CS 302 Automata Theory

#### Final Examination

# Closed (Book+Notes+All Electronic Devices)

Duration: 150 minutes

| Q1        |  |
|-----------|--|
| Q2        |  |
| <i>Q3</i> |  |
| Q4        |  |
| Q5        |  |
| Total     |  |

#### **Question 1** (20 points)



A DFA  $A = (Q_A, \Sigma, \delta_A, q_{0A}, F_A)$  is given by the figure above where  $q_{0A} = 1$  and  $F_A = \{2,3\}$ .

- (a) Express the transition function  $\delta_A$  in *tabular* form.
- (b) Write down the language  $L_A$  accepted by A and its complement  $L_A^c$  as two regular expressions.
- (c) Compute a minimal state machine that accepts the language  $L_A$

# Question 2 (20 points)



Consider the  $\varepsilon$ -NFA **P** with  $\varepsilon$ -transitions given above.

- (a) Construct an NFA (without  $\varepsilon$  transitions) that accepts the same language as P either in graphical or in tabular form.
- (b) Compute an equivalent DFA X to the  $\varepsilon$ -NFA P using your result in (a).

### **Question 3** (20 points)

Consider the CFG  $G = (\{S, A, B\}, \{0, 1\}, R, S)$  where the production set R is given below:

$$R: S \rightarrow AB ; A \rightarrow 0A1/e ; B \rightarrow 1B0/e$$

- (a) Compute the Chomsky Normal Form G1 = (V1, T, R1, S) for G.
- **(b)** Compute a PDA **P** that accepts the language  $L_G$
- (c) State whether your **P** is a deterministic PDA (**DPDA**) or not?

### **Question 4** (20 points)

Consider the following CFG  $G = (\{S, A, B\}, \{0,1\}, R, S)$  where R is given below  $R: S \to \partial S/1A$ ;  $A \to 1B/1S/e$ ;  $B \to \partial B/\partial S/e$ 

- (a) Is the language  $L_G$  a regular language? If so compute an NFA that accepts it; if not explain why not. (Hint: Note that G is a right linear CFG)
- (b) Sketch a parse tree for the string  $00110 \in L_G$ . Based on your parsing diagram discuss whether G is an ambiguous or a non-ambiguous grammar.

# **Question 5** (20 points)

Sketch in *graphical* or *tabular* form:

- (a) A Turing Machine M that performs the computation (s,  $\# \theta^n I^n$ ) --  $|_M$  (h,  $\# I^n \theta^n$ )
- (b) A Turing Machine T that semidecides the language  $L = \{0^n 1^n, n > 0 \text{ integer}\}$ In both cases you are allowed to use multitape or nondeterministic TMs.