Temas 3 y 4: Conjuntos, funciones y relaciones. Quinta parte

David de Frutos Escrig versión original elaborada por María Inés Fernández Camacho

MATEMÁTICA DISCRETA Y LÓGICA MATEMÁTICA (Ingeniería Informática - Ciencias Matemáticas) UCM Curso 18/19

CARDINALES Y CONJUNTOS FINITOS E INFINITOS

DEF:

Un conjunto A es finito si existe $n \in \mathbb{N}$ y una biyección $\mathbf{n} \longrightarrow A$.

En este caso se dice que el cardinal de A es n y se denota por |A| = n.

Un conjunto es infinito si no es finito.

Prop.: Para cualesquiera conjuntos finitos *A* y *B*, se verifica:

- **1.** Si $S \subseteq A$, entonces S es finito $y \mid S \mid \leq |A|$
- **2.** $|A \cup B| = |A| + |B| |A \cap B|$
- **3.** $|A \setminus B| = |A| |A \cap B|$
- **4.** $|A \times B| = |A| \cdot |B|$
- **5.** $|(A \longrightarrow B)| = |B|^{|A|}$
- **6.** Si existe $f: A \rightarrow B$ biyectiva, entonces |A| = |B|
- 7. $|\wp(A)| = 2^{|A|}$

Dem 7.):

Tomando como universo el conjunto A cada subconjunto $S \subseteq A$ tiene como función característica la función $\chi_S : A \longrightarrow \{0,1\}$ definida por:

$$\chi_{S}(x) = \begin{cases} 0 & \text{si} \quad x \notin S \\ 1 & \text{si} \quad x \in S \end{cases}$$

Al asignar a cada subconjunto de A su función característica se obtiene una biyección entre $\wp(A)$ y $(A\longrightarrow 2)$ y basta aplicar 6. y 5. para concluir 7.

LEMA DEL PALOMAR.

Para cualesquiera conjuntos finitos A y B,

Si $f: A \longrightarrow B$ y |A| > |B|, entonces f no es inyectiva.

Corolario: Un mismo conjunto A no puede estar en biyección a la vez con m y n, siendo $m \neq n$, y por tanto el cardinal de todo conjunto finito está unívocamente definido.

Ej. de aplicación:

Demostremos que en un garaje en el que haya dos o más coches, siempre pueden encontrarse dos coches distintos, tales que coincidan los números de coches de la marca de cada uno de ellos presentes en el garaje.

Dem:

Sea A el conjunto de coches del garaje y $f:A\longrightarrow \mathbb{N}$ la función que asigna a cada coche x el número de coches de su misma marca distintos a él presentes en el garaje.

Sabemos que $|A| = n \ge 2$.

Si todos los coches son de la misma marca, f(x) = n - 1 para todo $x \in A$, y entonces dos coches (distintos) cualesquiera resuelven el problema.

En otro caso, $f(x) < n-1 \quad \forall x \in A$, con lo que $f: A \longrightarrow \mathbf{n-1}$, y por el lema del palomar tiene que haber dos coches diferentes $x, y \in A$ tales que f(x) = f(y).

DEF:

Sean A y B dos conjuntos cualesquiera (finitos o infinitos). Decimos que:

- **1.** A y B son equipotentes $(A \sim_c B)$ si existe una biyección $f : A \longrightarrow B$.
- **2.** A está dominado por B $(A \le_c B)$ si existe una inyección $f: A \longrightarrow B$.
- **3.** A está dominado estrictamente por B, $(A <_c B)$, si $A \leq_c B$ pero $A \not\sim_c B$

Ejs.

- **1.** $\mathbb{N}^+ \leq_c \mathbb{N}$, vía la inyección $id_{\mathbb{N}^+} : \mathbb{N}^+ \longrightarrow \mathbb{N}$.
- **2.** $\mathbb{N}^+ \sim_c \mathbb{N}$, vía la biyección *pred* : $\mathbb{N}^+ \longrightarrow \mathbb{N}$ definida por pred(n) = n 1.

Esto muestra que un conjunto infinito puede ser equipotente a un subconjunto propio suyo. Para conjuntos finitos esto no es posible.

- **3.** $\mathbb{N}^+ \not<_{\mathbf{c}} \mathbb{N}$, por el apartado anterior.
- **4.** $\mathbb{Z} \sim_{c} \mathbb{N}$, vía la biyección $f : \mathbb{Z} \longrightarrow \mathbb{N}$ definida por

$$f(x) = \begin{cases} 2x & \text{si} \quad x \ge 0 \\ 2 \mid x \mid -1 & \text{si} \quad x < 0 \end{cases}$$

- **5.** $\mathbb{R} \sim_c \mathbb{R}^+$, vía la biyección $f: \mathbb{R} \longrightarrow \mathbb{R}^+$ definida por $f(x) = e^x$.
- **6.** $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \sim_c \mathbb{R}$, vía la biyección $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \longrightarrow \mathbb{R}$ definida por f(x) = tg(x).

LEYES DE COMPARACIÓN DE CARDINALES (LCC)

- **1.** Cuando $A \sim_c B$ escribimos |A| = |B|.
- **2.** Cuando $A \leq_c B$ escribimos $|A| \leq |B|$.
- **3.** Cuando $A <_c B$ escribimos |A| < |B|.

Observese que todas estas afirmaciones son coherentes en los casos en que A y B son finitos, y por tanto tenemos definidos sus cardinales.

En los demás casos leeríamos, respectivamente, que A y B tienen el mismo cardinal; que A tiene a lo sumo el cardinal de B; o que A tiene un cardinal menor al de B.

Prop.(**): Para cualesquiera conjuntos se verifica:

- **1.** $A \leq_c B$, $B \leq_c C \implies A \leq_c C$
- **2.** $A \sim_c B \implies A \leq_c B$
- **3.** $A \subseteq B \implies A \leq_c B$
- **4.** A finito $\implies A <_c \mathbb{N}$
- **5.** A infinito $\iff \mathbb{N} \leq_c A$ Esto viene a decir que el tamaño de \mathbb{N} es "el menor posible para un conjunto infinito".
- **6.** $A \sim_c A$ y por tanto $A \leq_c A$
- **7.** $A \sim_c B$, $B \sim_c C \implies A \sim_c C$
- **8.** $A \sim_c B \implies B \sim_c A$

Dem 3.):

Si $A \subseteq B$ entonces la inyección $id_A : A \longrightarrow B$ prueba $A \leq_c B$.

Dem 4.):

Sea A finito, |A|=n. Entonces existe una biyección $f:\mathbf{n}\longrightarrow A$, lo que nos garantiza que $f^{-1}:A\longrightarrow \mathbf{n}$ es inyectiva, y componiendola con la inmersión inducida por la inclusión $\mathbf{n}\subseteq\mathbb{N}$, obtenemos la función inyectiva que prueba $A\leq_c\mathbb{N}$.

Por otra parte, $A \not\sim_c \mathbb{N}$, pues si existiese una biyección $g:A \longrightarrow \mathbb{N}$, entonces $g^{-1} \mid_{\mathbf{n+1}} : \mathbf{n+1} \longrightarrow A$ sería inyectiva, lo que es imposible en virtud del lema del palomar, ya que $\mid \mathbf{n+1} \mid = n+1 > n = \mid A \mid$.

Dem 5.):

- \Leftarrow) Si A fuese finito tendríamos $A \sim_c \mathbf{n}$, para algún $n \in \mathbb{N}$ y aplicando 2) y 1) tendríamos $\mathbb{N} \leq_c \mathbf{n}$. Ahora bien, por 3) tendríamos $\mathbf{n+1} \leq_c \mathbb{N}$, y aplicando nuevamente 1) llegamos a $\mathbf{n+1} \leq_c \mathbf{n}$, en contra del lema del palomar. Luego A debe ser infinito.
- \Rightarrow) Como A es infinito, entonces $(\mathbf{n} \not\sim_c A) \ \forall n \in \mathbb{N}$. De $(\mathbf{0} \not\sim_c A)$ se deduce $A \neq \phi$, por lo que podemos tomar $a_0 \in A$.
- De $(1 \not\sim_c A)$ se deduce $A \neq \{a_0\}$, luego existe $a_1 \in A \setminus \{a_0\}$.
- De $(2 \not\sim_c A)$ se deduce $A \neq \{a_0, a_1\}$, luego existe $a_2 \in A \setminus \{a_0, a_1\}$. Iterando este proceso definimos una sucesión $a_i \in A \ (i \in \mathbb{N})$, de modo que $a_i \neq a_j$ para $i \neq j$. Con lo que la función $f : \mathbb{N} \longrightarrow A$, definida por $f(i) = a_i$ es inyectiva, y prueba que $\mathbb{N} \leq_c A$.

TEOREMA DE SCHRÖDER Y BERNSTEIN

$$A \leq_c B$$
, $B \leq_c A \Longrightarrow A \sim_c B$

Eis de aplicación:

- 1. $\mathbb{N} \times \mathbb{N} \sim_{\mathsf{C}} \mathbb{N}$
 - **Dem:** $\mathbb{N} \times \mathbb{N} \leq_c \mathbb{N}$ vía la inyección $f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ definida por $f(x, y) = 2^x 3^y$.

 $\mathbb{N} \leq_c \mathbb{N} \times \mathbb{N}$ vía la inyección $g : \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N}$ definida por g(x) = (x, 0).

- **2.** $[0,1] \sim_{c} \mathbb{R}$
 - **Dem:** $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \sim_c \mathbb{R}$, vía la biyección $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \longrightarrow \mathbb{R}$ definida por f(x) = tg(x).
 - $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \sim_c (0, 1)$, vía la biyección $f: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \longrightarrow (0, 1)$ definida por $f(x) = \frac{1}{2} + \frac{x}{2}$.
 - Luego $\mathbb{R} \sim_c (0,1)$.
 - $[0,1] \leq_c \mathbb{R}$, ya que $[0,1] \subseteq \mathbb{R}$
 - $\mathbb{R} \leq_c [0,1], \text{ ya que } \mathbb{R} \sim_c (0,1) \subseteq [0,1]$

Operaciones y comparación de cardinales

OPERACIONES Y COMPARACIÓN DE CARDINALES

Sean A, B, A', B' conjuntos tales que |A| = |A'| y |B| = |B'|. Se tienen:

a)
$$(A \cap B = \emptyset \land A' \cap B' = \emptyset) \longrightarrow |A \cup B| = |A' \cup B'|$$

b)
$$|A \times B| = |A' \times B'|$$

c)
$$|(B \to A)| = |(B' \to A')|$$

CONJUNTOS NUMERABLES

DEF:

Un conjunto es numerable si es finito o equipotente a \mathbb{N} . Un conjunto es infinito numerable cuando es equipotente a \mathbb{N} .

El cardinal de $\mathbb N$ se representa como χ_0 , y escribimos $|\mathbb N|=\chi_0$.

Lema:

- a) Todo conjunto $A \subseteq \mathbb{N}$ es numerable
- **b)** Todo subconjunto de un conjunto numerable es numerable.

Dem de a)

- Si A es finito entonces es numerable por definición.
- A infinito $\Longrightarrow \mathbb{N} \leq_c A$ por el apartado 5 de la Prop.(**) $A \subseteq \mathbb{N} \Longrightarrow A \leq_c \mathbb{N}$ por el apartado 3 de la Prop.(**)

Luego $A \sim_c \mathbb{N}$, aplicando el teorema de Schröder-Berstein .

Teorema(NUM):

- **1.** Un conjunto A es numerable si y sólo si existe una función $f: A \longrightarrow \mathbb{N}$ inyectiva (es decir, $A \leq_c \mathbb{N}$).
- **2.** Un conjunto $A \neq \phi$ es numerable si y sólo si existe una función suprayectiva $g: \mathbb{N} \longrightarrow A$.

En este caso se dice que g enumera a A, pues los elementos de Ason los de la lista $g(0), g(1), \cdots$ aunque posiblemente con repeticiones, pues no se exige que g sea inyectiva.

Dem de 1.

- ⇒) Si A es finito, existe $n \in \mathbb{N}$ tal que $A \sim_c \mathbf{n}$ y como $\mathbf{n} \subseteq \mathbb{N}$, tenemos $A \leq_c \mathbb{N}$. Si A es infinito, entonces $A \sim_c \mathbb{N}$, lo que implica $A \leq_c \mathbb{N}$.
- ←) Si A finito entonces es numerable. Si A es infinito, entonces $\mathbb{N} \leq_c A$, y como $A \leq_c \mathbb{N}$, aplicando el teorema de Schröder-Berstein se concluye $A \sim_c \mathbb{N}$.

Prop.:

- 1. La unión de una familia numerable de conjuntos numerables es numerable
- **2.** El producto cartesiano de una familia finita de conjuntos numerables es numerable.

(4))

Ejs.

- **1.** \mathbb{N}^+ ($\mathbb{N}^+ \sim_c \mathbb{N}$, vía la biyección *pred* : $\mathbb{N}^+ \longrightarrow \mathbb{N}$ definida por pred(n) = n 1.)
- **2.** \mathbb{Z} $(\mathbb{Z} \sim_c \mathbb{N}, \text{ vía la biyección } f : \mathbb{Z} \longrightarrow \mathbb{N} \text{ definida por }$

$$f(x) = \begin{cases} 2x & \text{si} \quad x \ge 0 \\ 2 \mid x \mid -1 & \text{si} \quad x < 0 \end{cases}$$

- 3. $\mathbb{Z}^- = \{ n \in \mathbb{Z}/n < 0 \}$ $(\mathbb{Z}^- \subseteq \mathbb{Z} \text{ y } \mathbb{Z} \text{ es numerable })$
- **4.** $\mathbb{Q}^+ = \{n \in \mathbb{Q}/n > 0\}$ $(\mathbb{Q}^+ \sim_c \mathbb{N}, \text{ por el Teorema(NUM), vía la inyección } f : \mathbb{Q}^+ \longrightarrow \mathbb{N} \text{ definida por } f(x) = 2^m 3^n \text{ con } \frac{m}{n} \text{ fracción irreducible de } x.)$
- **5.** $\mathbb{Q}^- = \{ n \in \mathbb{Q}/n < 0 \}$ ($\mathbb{Q}^- \sim_c \mathbb{N}$, pues $\mathbb{Q}^- \sim_c \mathbb{Q}^+$, vía la biyección $f : \mathbb{Q}^- \longrightarrow \mathbb{Q}^+$, definida por f(x) = -x)
- **6.** $\mathbb{Q}=\mathbb{Q}^+\cup\{0\}\cup\mathbb{Q}^-$ es numerable por ser unión finita de numerables.
- 7. $\mathbb{N} \times \mathbb{N}$ es numerable por ser producto de dos conjuntos numerables.

CONJUNTOS NO NUMERABLES

CONJUNTOS NO NUMERABLES

- Los conjuntos no numerables son aquellos que no son finitos ni equipotentes a N.
- Tanto $\wp(\mathbb{N})$ como \mathbb{R} son conjuntos no numerables.
- El cardinal de \mathbb{R} , $|\mathbb{R}|$, se representa como χ_1 o bien por 2^{χ_0} .
- Los conjuntos equipotentes a ℝ se dice que tienen la potencia del continuo.
- $\wp(\mathbb{N})$ tiene la potencia del continuo, al igual que todo intervalo no degenerado (que incluya más de un punto) de \mathbb{R}

Teorema: $\wp(\mathbb{N})$ es infinito, no numerable y tiene la potencia del continuo.

Ejs.: $\wp(\mathbb{N}), \mathbb{R}, \mathbb{R}^+, \mathbb{R}^n, (-\frac{\pi}{2}, \frac{\pi}{2}), I = \{x \in \mathbb{R}/x \text{ es irracional }\}$, cualquier intervalo no degenerado con más de un punto de $\mathbb{R}, \mathbb{C} \dots$