Universitatea Babeş-Bolyai Facultatea de Matematică și Informatică

Exam on Dynamical Systems. June 12, 2012

- 1. Find the general solution of the following equations.
- a) $x' 3t^2x = t^3$; b) $x' 3t^2x = f(t)$ where $f \in C(\mathbb{R})$;
- b) $x_{k+1} + 3x_k = 0$; c) $x_{k+1} + 3x_k = b$ where $b \in \mathbb{R}$.
- 2. a) Study the stability of the equilibria of the differential equation $\dot{x} = \frac{1}{2}(x^2 a)$ where a > 0. Represent the phase portrait.
- b) Study the stability of the fixed points of the difference equation $x_{k+1} = \frac{1}{2}(x_k + \frac{a}{x_k})$ where a > 0. Represent the stair-step diagram.
 - 3. We consider the IVP $y' = 2xy^2 + x^3, x \in [0, 1], y(0) = 0.$
 - a) Describe the corresponding Euler's numerical algorithm.
- b) Write the recurrence formula for the Picard sequence of successive approximations $(\varphi_n)_{n\geq 0}$. Starting with $\varphi_0(x)\equiv 0$ calculate $\varphi_1(x)$.