		Note	9
		I	II
Name Vorname	$\begin{vmatrix} 1 \end{vmatrix}$		
	2		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)			
	3		
Unterschrift der Kandidatin/des Kandidaten	4		
	5		
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Fakultät für Mathematik	6		
Klausur			
MA9202 Mathematik für Physiker 2	7		
(Analysis 1)	8		
(Miarysis 1)			
Prof. Dr. M. Keyl	9		
5. April 2016, 8:00 – 9:30 Uhr			
	\sum		
Hörsaal: Reihe: Platz:			
Hinweise:	I		
Überprüfen Sie die Vollständigkeit der Angabe: 9 Aufgaben		Erstkorrek	tur
Bearbeitungszeit: 90 min			
Erlaubte Hilfsmittel: ein selbsterstelltes DIN A4 Blatt		Zweitkorre	 ktur
		2 WOI WINGTE	nour
Nur von der Aufsicht auszufüllen:			
Hörsaal verlassen von bis			
11015dai veriasseii voii Dis			
Vorzeitig abgegeben um			

Besondere Bemerkungen:

1. Vollständige Induktion

[8 Punkte]

Beweisen Sie mittels vollständiger Induktion, dass für alle $n \geq 2$ gilt:

$$\prod_{k=2}^{n} \left(1 - \frac{1}{k}\right) = \frac{1}{n}$$

$$\prod_{k=2}^{n} \left(1 - \frac{k-1}{k}\right) = \frac{1}{n!}$$

$$\prod_{k=2}^{n} \left(1 - \frac{k-1}{k}\right) = \frac{1}{n!}$$

2. Komplexe Zahlen

[8 Punkte]

(a) Bestimmen Sie Real– und Imaginärteil von $x=\bar{z}^2+z^{-2},\,z\in\mathbb{C}\setminus\{0\},\,z=a+ib.$

 $\operatorname{Re}\left(x\right) =$

 $\operatorname{Im}(x) =$

(b) Geben Sie Betrag und Argument von $\left(\frac{1-i}{1+i}\right)$ an.

 $\left| \frac{1-i}{1+i} \right| =$

 $\arg\left(\frac{1-i}{1+i}\right) =$

3. Konvergenz von Folgen und Reihen	[6 Punkte]		
(a) Bestimmen Sie den Grenzwert $\lim_{n\to\infty} \sqrt{3n} - \sqrt{2n}$.			
$\square = -\infty$ $\square = 0$ $\square = 2$ $\square = \frac{1}{2}$ $\square = 1$ $\square = \infty$ \square exist	iert nicht		
(b) Bestimmen Sie den Grenzwert $\lim_{n\to\infty} \sum_{j=1}^n \frac{j}{n^2}$			
$\square \frac{1}{2} \square \ 1 \square \ 3 \square \ 0 \square \ -\frac{1}{2} \square \ \frac{2}{3} \square \ \infty \square \ \text{existiert nicht}$			
(c) Gegen welchen Wert ist die Reihe $\sum_{n=0}^{\infty} \frac{\cos(n\pi)}{3^n}$ eigentlich oder uneigentlich konvergent?			
$\square = -\infty$ $\square = 3$ $\square = \frac{3}{4}$ $\square = \frac{4}{3}$ $\square = 1$ $\square = \infty$ \square keiner der angege	ebenen Werte		

4. Potenzreihe Bestimmen Sie den Konvergenzradius R der Potenzreihe	[8 Punkte]
$\sum_{n=1}^{\infty} \frac{1}{n^2} \left(\sqrt{n^2 + n} - \sqrt{n^2 + 1} \right)^n x^n$	
<i>Hinweis:</i> Benutzen Sie (ohne Beweis), dass $\lim_{n\to\infty} \sqrt[n]{n} = 1$ ist.	

5. Gleichmäßige Stetigkeit Negieren Sie die Aussage: f ist auf dem Intervall $[0,1]$ gleichmäßig stetig. Hinweis: Benutzen Sie die Defintion der gleichmäßigen Stetigkeit mittels Quantoren.	[4 Punkte]
1100000000 Benauben die Bennvion der greiemmanigen etengheit imvoeie Quanteren.	

6. Grenzwerte von Funktionen

[8 Punkte]

Prüfen Sie ob die folgenden Grenzwerte existieren, und berechnen Sie sie gegebenenfalls.

(a)
$$\lim_{x\to 0} \frac{\sqrt{1+\sin(x)}-\cos(x)}{\arcsin(x)}$$

(b)
$$\lim_{x \to 2} \frac{x^2 - 4x + 3}{x^2 - 4}$$

Taylorentwicklung Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}, x \mapsto \exp(-x^2)$.	[6 Punkto
(a) Bestimmen Sie die ersten vier Ableitungen von f .	
(b) Bestimmen Sie das Taylorpolynom 4. Ordnung $T_4f(x,1)$ um de	en Entwicklungspunkt 1.

0	Stamn	a f a 1	-+:	
\sim	SLAMI	111111	(I. I() I	101

[9 Punkte]

Gegeben Sie für die folgenden Funktionen Stammfunktionen an:

$$\int \sqrt{(1+x)^3} dx =$$

$$\int x\sqrt{1+x} dx =$$

$$\int \frac{x^3 dx}{1+x^4} =$$

9. Matrixexponential Berechnen Sie explizit $\exp\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & t & 1 \end{pmatrix}$.	[6 Punkte]