Instituto Tecnológico de Aeronáutica – ITA Inteligência Artificial para Robótica Móvel – CT-213

Professor: Marcos Ricardo Omena de Albuquerque Maximo

Aluno: Lucas da Silva Jorge

Lecture 9 Lab – Convolutional Neural Networks

Methodology

The Convolutional Neural Network implemented in this activity, Lenet-5, was developed to recognize handwritten and machine printed characters. The adopted version of Lenet-5 is described in the following table:

# Camada	Tipo	Número de Filtros	Tamanho da Saída	Tamanho do Kernel	Stride	Activation Function
Entrada	Imagem	1	32x32	-	-	-
1	Conv2D	6	28x28	5x5	1	tanh
2	AveragePo oling2D	6	14x14	2x2	2	-
3	Conv2D	16	10x10	5x5	1	tanh
4	AveragePo oling2D	16	5x5	2x2	2	-
5	Conv2D	120	1x1	5x5	1	tanh
6	Dense (FC)	-	84	-	-	tanh
7	Dense (FC)	-	10	-	-	softmax

Table 1: architecture of Lenet-5 network.

The input layers has dimensions (32, 32, 1), which stands for 32 bits of width, 32 bits of height and 1 dimension of color, as exemplified in the figure below:

Example: 6313. Expected Label: 4. Predicted Label: 4.

Figure 2: image with dimensions (32, 32, 1)

To train the network, we use a training dataset called MNIST, which contains 60000 training images for handwritten characters, and 10000 test images. Each training sample is a handwritten character and the corresponding accurate expected character.

Results

The evolution of the accuracy and loss in the network along the training process are represented in the figures below:

The accuracy grows and the loss decreases.

The resulting graph is the following:

Main Graph Auxiliary Nodes

Finally, after trained, the CNN was used to evaluate some handwritten characters. Some predicted/expected results are listed below:

Actually, the case presented in which the prediction failed (expected=4, predicted=9) would easily be confused by humans as well.

The final accuracy obtained was 98.89%:

Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	28, 28, 6)	156
average_pooling2d_1 (Average	(None,	14, 14, 6)	0
conv2d_2 (Conv2D)	(None,	10, 10, 16)	2416
average_pooling2d_2 (Average	(None,	5, 5, 16)	0
conv2d_3 (Conv2D)	(None,	1, 1, 120)	48120
flatten_1 (Flatten)	(None,	120)	0
dense_1 (Dense)	(None,	84)	10164
dense_2 (Dense)	(None,	10)	850
======================================	=====		
10000/10000 [=================================	58		