

Figure 1. Benthic δ^{18} O plotted with CO₂ values over the last 900 kyr. Benthic δ^{18} O values were taken from a stack from a composite by Lisiecki and Raymo (2005). Palaeo CO₂ values were taken recent compilation of Antarctica ice cores for the interval 0-800 kyr (Beireter et al., 2015). Benthic δ^{18} O and CO₂ values are inversely related (note reversed axis for δ^{18} O values) and have a good fit. As CO₂ values increase quickly, δ^{18} O values can be seen decreasing quickly as land ice melts and light oxygen isotopes escape the ice and are deposited in the ocean corresponding with rapid warming. Subsequently, CO₂ values can be observed gradually decreasing as δ^{18} O values gradually increase, signifying a cooling period. This rapid warming gradual cooling scheme creates a saw tooth pattern in the data.