Nonlinear Control Theory Lecture 4. Lyapunov Direct Method. I.

Last fine

· Concepts of stability

· Analysis via linearization

· Lyapunov function

Today

· General Lyapunov function method (time-varying systems)

. Stability theorems.

For autonomous systems, $\dot{\chi} = f(x)$, (asymptotic) stability =) uniform (asymptotic) stability

V(x) < 0 => cesymptotic stability

For time-varying systems, more delicate Lyapunov theorems are needed.

Det A function $\phi: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ is of class X if it is continuous, strictly increasing and $\phi(0)=0$ i

it is of class L if it is continuous, strictly decreasing, $\phi(0) < \infty$, and $\lim_{n \to \infty} dx_n = 0$

and $\lim_{r\to\infty} \phi(r) = 0$.

class K

Def (Various function classes) . A continuous function V=RXR -> IR is said to be a locally positive definite function, if: V(t,0) = 0 Ht>0 and there exists a r>0 and $\alpha \in X$ s.t. $\alpha(\|x\|) \in V(t,X)$, $\forall t \ge 0$, $\forall x \in \underline{Br}$.

· Continuous Vis decrescent if there exists a function B of class) K, s.t VIt, X) & B(IIXII), Yt>0, YXEBr

· Continuous Vis positive definite if r= bo

V is radially unbounded if $V(t, X) \ge \varphi(||X||)$, $\lim \varphi(r) = \infty$

Consider a continuous function $W: \mathbb{R}^n \to \mathbb{R}$, and $V(t,X) \supset W(X)$, then VIt, X) is a (locally) positive definite function if W(X) is (locally) positive definite. (Naturally, We assume VH.0)=0) How do re decide lpdf for a time-invariant function? W(0) = 0· w(x) >0 YXEB- (10) (why?) An lpdf W(X) is also decrescent. For pdf, it should also satisfy: · 3 c >0, s.t. inf W(x) >0 Illustrate with 1D examples Locally positive definite.

V(t, |X|)

Locally positive definite.

Decrescent \overline{Ex} 1.) $V(x) = x_1^2 + x_1^2$ is positive definite. in \mathbb{R}^2 2) $V(t,X) = \chi_1^2(H\sin^2 t) + \chi_2^2(H\cos^2 t)$ is positive definite and decrescent. 3) $V(t, x) = (t+1)(x_1^2 + x_2^2)$ is positive definite, but not decrescent-4). V(x) = xi2+ sin xz is lpdf, but not pdf. Consider $\dot{\chi} = f(t, x)$, $\chi \in \mathbb{R}^n$, $f : [0, \infty) \times \mathcal{D} \mapsto \mathbb{R}^n$ is piecewise continuous in t and locally Lipschitt in x on [0,0) XD, D contains X=0. The origin x=0 is an equilibrium at t=0 if f(t,0)=0, $\forall t \ge 0$. Total derivative $\dot{V}(t,x) := \frac{\partial V}{\partial t}(t,x) + \frac{\partial V}{\partial x}f(x,t)$ Thus (Critical stability) (X=0) is uniformly stable if there exists a continuously differentiable (C') decresent lpdf VIt, X) such that V≤0 Yt>0 in a neighbourhood of D.

$$\begin{array}{lll} \overline{Ex} & \dot{\chi_{i}} = a_{i}t) \chi_{i}^{m+1} \\ \dot{\chi_{i}} = -a(t) \chi_{i}^{m+1} \\ \dot{\chi_{i}} = -a(t) \chi_{i}^{m+2} \\ \end{array} \begin{array}{ll} \dot{\chi_{i}} = \lambda_{i}(\chi_{i}^{m+2} + \chi_{i}^{m+2}) & \dot{y}(\chi) = (n+1) \chi_{i}^{m+1} \cdot \chi_{i}^{m+1} + (n+1) \chi_{i}^{m+1} \cdot \chi_{i}^{m+1} \\ & = (n+1) \cdot \chi_{i}^{m+1} \cdot a_{i}t) \chi_{i}^{m+1} \cdot a_{i}t \\ & = 0 \end{array}$$

$$\begin{array}{ll} h_{m} & (\text{Instability}) \\ \chi = 0 \quad \text{is unstable if there exists a } 0, \text{ decrescent function } V(t,\chi) \text{ and } t_{0} > 0, \text{ Such that} \\ 1) \cdot \dot{y} \text{ is alphabeta} \end{array}$$

Thm () nstability)

3) there exists a segmence $\{X_n \neq 0\}$ where $X_n \to 0$ as $n \to \infty$ such that In particular, if $V(t,\chi)$ is lpdf, it automatically satisfies 2) & 3).

-1). $n \in odd$. $V(x) = \frac{1}{2}x^2 \Rightarrow \dot{V}(x) = x^{n+1}$ done, not stable.

2) n is even. V(x) = x. $\Rightarrow V(x) = x^n lpdf$. construct sequence $X_n = \frac{1}{n}$, $V(X_n) = \frac{1}{n} > 0$. not stable.

X=0 is uniformly asymptotically stable if there exists a decrescent Thm (Asymptotic Stability) lpdf V(t,x) s.t -v is lpdf. $\{\alpha(||x||) \leq V(t,x) \leq \beta(||x||)$. $-\dot{V}(t,x) \geqslant \delta(\|x\|).$

Domain of attraction $\mathfrak{D}(0) = \{ \chi_0 \in \mathbb{R}^N ; \ \text{lim} \ \chi(t) \ \chi_0, t_0 = 0 \},$

Fact: the domain of attraction is always an open set. lim x(t; Xo, to) = 0 () Ha>o, IT>o, s.t. x(t; 70, to) () Balo)

=) XIt i Xo, to) is a continuous mapping regarding Xo. The preimage of an open set regarding a continuous nopping is also open,

What happens on the $\partial D(0)$? Only contains trajectories, but does not exclude finite-escape time.

if a trajectory start on $\partial D(0)$, it remains on $\partial D(0)$.

 $Q : Suppose on a domain S, V(X) > 0, V(X) \leq 0, \forall x \neq 0 \text{ in } S.$

Does this imply that $S \subseteq D(0)$ and/or S is invariant?

No! $S: V(x) \leq 0$ $V(x) = C_1$ $V(x) = C_2$ The level set of V(X) is not aligned with S!

Jc,>cz 'Yes' if fx / V(x) ≤ c} is bounded and contained in S.

 $\frac{\overline{t}x}{\hat{\chi}_{1}} = -\chi_{1} - \chi_{2} + \chi_{1}^{3} + \chi_{1}\chi_{2}^{2}$ $\hat{\chi}_{2} = -\chi_{2} + 2\chi_{1} + \chi_{2}^{3} + \chi_{1}^{2}\chi_{2}^{2}$

 $V(X_1,X_2) = \frac{1}{2}(2X_1^2 + X_2^2), \implies \dot{V}(x) = (2X_1^2 + X_2^2)(X_1^2 + X_2^2 - 1) \leq 0 \quad \text{for } ||X|| < 1$ $(\text{Try } X(0) = \begin{bmatrix} 0.7 \\ 0.7 \end{bmatrix})$

Thm (Exponential Stability)

Suppose there exists a lpdf V(t,x) which is bounded by $\alpha ||x||^2 \le V(t,x) \le b ||x||^2$, $\forall t \ge 0$, $\forall x \in Br$.

If $\dot{V}(t,x) \leq -C\|X\|^2$, $\forall t \geq 0$, $\forall x \in B_r$, (a,b,C > 0)then $\chi = 0$ is exponentially stable.

Proof Since $-b||x||^2 \le -V(t,x)$, we have $\dot{V}(t,x) \le -c||x||^2 \le -\frac{c}{b}V(t,x)$

> V(t, X(t)) ≤ V(to, Xo) e- 6(t-to)

Since $\|\mathbf{x}(t)\|^2 \leq \frac{1}{a} V(t, \mathbf{x}) \leq \frac{1}{a} V(t_0, \mathbf{x}_0) e^{-\frac{c}{b}(t-t_0)} \leq \frac{b}{a} \|\mathbf{x}_0\|^2 e^{-\frac{c}{b}(t-t_0)}$

 $\Rightarrow \|X(t)\| \leq \sqrt{\frac{b}{a}} \|X_0\| \cdot e^{-\frac{c}{1b}(t-t_0)}$

For autonomons system $\dot{\chi} = f(x)$, we have further results.

Thm (Lasalle's invariance principle)
absel bounded.

Let sich he a compact set that is positively invariant with respect to (x). Let $V: \mathfrak{D} \mapsto \mathbb{R}$ be C^1 function s.t $V(X) \leq 0$ in Ω , Let E be the set of all pts in Ω where $\dot{V}(X)=0$. Let M be the largest invariant set in E, Then every solution starting in D approaches Mas +> 00.

positively invariant: if a trajectory starts there, it would stay there as time goes.

Ex Consider

where f(v) = 0 and x f(x) > 0 $\forall x \neq 0$.

Let V= \frac{1}{2}(X_1^2 + X_2^2) \frac{radially un bounded.

$$\dot{V}(x) = x_1 \cdot x_2 + x_2 \cdot (-x_1 - f(x_2)) = -x_1 \cdot f(x_2) \leq 0$$

This holds bx

=> The level set {x | V(x) < C} is invariant & C>0

 \Rightarrow converge to the largest invariount set in $\{x \mid x_2 f(x_1) = 0\}$

 $x_1 = 0$ } \Rightarrow The only possible invariant solution is $\{x_1 = 0\}$

 $\Rightarrow x = 0$ is globally asymptotically stable.