Teoria da Computação

Autômatos de Pilha

Aula 07

Prof. Felipe A. Louza

Roteiro

- 🚺 Autômatos de Pilha
 - Primeiro exemplo $L = \{a^n b^n \mid n > 0\}$
 - Formalização de um AP
 - Descrição Instantânea (DI)
- 2 Modelos de aceitação de um AP
 - Aceitação por estado final e por pilha vazia
 - De pilha vazia para estado final
 - De estado final para pilha vazia
- 3 Referências

Roteiro

- Autômatos de Pilha
 - Primeiro exemplo $L = \{a^n b^n \mid n > 0\}$
 - Formalização de um AP
 - Descrição Instantânea (DI)
- 2 Modelos de aceitação de um AP
 - Aceitação por estado final e por pilha vazia
 - De pilha vazia para estado final
 - De estado final para pilha vazia
- 3 Referências

Vamos introduzir um novo tipo de modelo computacional denominado de **Autômato de Pilha (AP)**:

- Um AP é essencialmente um AFN com uma pilha adicional como memória auxiliar.
- A pilha é independente da cadeia de entrada w, e não possuí limite de tamanho ("infinita").

Vamos introduzir um novo tipo de modelo computacional denominado de Autômato de Pilha (AP):

- Um AP é essencialmente um AFN com uma pilha adicional como memória auxiliar.
- A pilha é independente da cadeia de entrada w, e não possuí limite de tamanho ("infinita").

Vamos introduzir um novo tipo de modelo computacional denominado de **Autômato de Pilha (AP)**:

- Um AP é essencialmente um AFN com uma pilha adicional como memória auxiliar.
- A pilha é independente da cadeia de entrada w, e não possuí limite de tamanho ("infinita").

Pilha: operações push() e pop() somente no topo da pilha:

- Armazenamos "símbolos de pilha" $X_i \in \Gamma$ (outro alfabeto)
- Vamos assumir um valor inicial $Z_0 \in \Gamma$ na pilha (fundo de pilha)
- Vamos representar por $X_1X_2...X_nZ_0$ a pilha com topo X_1 \in fundo Z_0 .

Pilha: operações push() e pop() somente no topo da pilha:

- Armazenamos "símbolos de pilha" $X_i \in \Gamma$ (outro alfabeto)
- Vamos assumir um valor inicial $Z_0 \in \Gamma$ na pilha (fundo de pilha)
- Vamos representar por $X_1X_2...X_nZ_0$ a pilha com topo X_1 \in fundo Z_0 .

Pilha: operações push() e pop() somente no topo da pilha:

- Armazenamos "símbolos de pilha" $X_i \in \Gamma$ (outro alfabeto)
- Vamos assumir um valor inicial $Z_0 \in \Gamma$ na pilha (fundo de pilha)
- Vamos representar por $X_1X_2...X_nZ_0$ a pilha com topo X_1 ϵ fundo Z_0 .

Pilha: operações push() e pop() somente no topo da pilha:

- Armazenamos "símbolos de pilha" $X_i \in \Gamma$ (outro alfabeto)
- Vamos assumir um valor inicial $Z_0 \in \Gamma$ na pilha (fundo de pilha).
- Vamos representar por $X_1X_2...X_nZ_0$ a pilha com topo X_1 ϵ fundo Z_0 .

Pilha: operações push() e pop() somente no topo da pilha:

- Armazenamos "símbolos de pilha" $X_i \in \Gamma$ (outro alfabeto)
- Vamos assumir um valor inicial $Z_0 \in \Gamma$ na pilha (fundo de pilha).
- Vamos representar por $X_1X_2...X_nZ_0$ a pilha com topo X_1 e fundo Z_0 .

A presença da pilha significa que o AP pode "memorizar" uma quantidade infinita de informações:

• Entretanto, essas informações só podem ser acessadas pela pilha, o que limita o poder de reconhecimento desse modelo.

Vamos ver que a classe de linguagens aceitas pelos AP é exatamente a classe das LLCs (**Tipo 2**).

A presença da pilha significa que o AP pode "memorizar" uma quantidade infinita de informações:

 Entretanto, essas informações só podem ser acessadas pela pilha, o que limita o poder de reconhecimento desse modelo.

Vamos ver que a classe de linguagens aceitas pelos AP é exatamente a classe das LLCs (**Tipo 2**).

A presença da pilha significa que o AP pode "memorizar" uma quantidade infinita de informações:

• Entretanto, essas informações só podem ser acessadas pela pilha, o que limita o poder de reconhecimento desse modelo.

Vamos ver que a classe de linguagens aceitas pelos AP é exatamente a classe das LLCs (**Tipo 2**).

O não-determinismo é importante e necessário para isso

A presença da pilha significa que o AP pode "memorizar" uma quantidade infinita de informações:

 Entretanto, essas informações só podem ser acessadas pela pilha, o que limita o poder de reconhecimento desse modelo.

Vamos ver que a classe de linguagens aceitas pelos AP é exatamente a classe das LLCs (**Tipo 2**).

• O não-determinismo é importante e necessário para isso.

Podemos visualizar (informalmente) AP como:

Comportamento:

 A partir do estado corrente q ∈ Q, do símbolo na cadeia de entrada w_i = a ∈ Σ, e do símbolo no topo da pilha X ∈ Γ:

$$\delta(q, a, X) = \{(p, \gamma)\}\$$

- ① O AP assume um novo estado $p \in Q$; e
- ② O topo da pilha é substituído pela cadeia $\gamma \in (\Gamma^* \cup \{\mathcal{E}\})$

Podemos visualizar (informalmente) AP como:

Comportamento:

 A partir do estado corrente q ∈ Q, do símbolo na cadeia de entrada w_i = a ∈ Σ, e do símbolo no topo da pilha X ∈ Γ:

$$\delta(q, a, X) = \{(p, \gamma)\}\$$

- **1** O AP assume um novo estado $p \in Q$; e
- ② O topo da pilha é substituído pela cadeia $\gamma \in (\Gamma^* \cup \{\mathcal{E}\})$.

Vamos representar essa transição

$$\delta(q, \mathbf{a}, \mathbf{X}) = \{(p, \gamma)\}\$$

por:

Figura: Diagrama de estados.

Nesse exemplo, ao processar w_i = a, com X no topo da pilha.
 O AP vai de q → p e X é substituído pela cadeia γ.

$$pilha = Y_1 X_1 X_2 \dots X_n Z_0$$

$$pilha = Y_1 Y_2 Y_3 X_1 X_2 \dots X_n Z_0$$

$$\mathsf{pilha} = XX_1X_2\dots X_nZ_0$$

$$pilha = X_1 X_2 \dots X_n Z_0$$

$$pilha = XXX_1X_2...X_nZ_0$$

$$\mathsf{pilha} = \textcolor{red}{Y_1} \textcolor{black}{X_1} \textcolor{black}{X_2} \dots \textcolor{black}{X_n} \textcolor{black}{Z_0}$$

$$pilha = Y_1 Y_2 Y_3 X_1 X_2 \dots X_n Z_0$$

$$pilha = XX_1X_2 \dots X_nZ_0$$

$$pilha = X_1 X_2 \dots X_n Z_0$$

$$pilha = XXX_1X_2 \dots X_nZ_0$$

$$\mathsf{pilha} = \textcolor{red}{Y_1} \textcolor{black}{X_1} \textcolor{black}{X_2} \dots \textcolor{black}{X_n} \textcolor{black}{Z_0}$$

$$pilha = Y_1 Y_2 Y_3 X_1 X_2 \dots X_n Z_0$$

$$pilha = XX_1X_2 \dots X_nZ_0$$

$$pilha = X_1 X_2 \dots X_n Z_0$$

$$pilha = XXX_1X_2 \dots X_nZ_0$$

$$\mathsf{pilha} = \textcolor{red}{Y_1} \textcolor{black}{X_1} \textcolor{black}{X_2} \dots \textcolor{black}{X_n} \textcolor{black}{Z_0}$$

$$pilha = Y_1 Y_2 Y_3 X_1 X_2 \dots X_n Z_0$$

$$\mathsf{pilha} = {\color{red} XX_1X_2\dots X_nZ_0}$$

$$\mathsf{pilha} = X_1 X_2 \dots X_n Z_0$$

$$pilha = XXX_1X_2...X_nZ_0$$

Vamos supor que $w_i = a$ e a pilha $= XX_1X_2...X_nZ_0$

$$\mathsf{pilha} = \textcolor{red}{Y_1} \textcolor{black}{X_1} \textcolor{black}{X_2} \dots \textcolor{black}{X_n} \textcolor{black}{Z_0}$$

$$\mathsf{pilha} = \mathsf{Y}_1 \mathsf{Y}_2 \mathsf{Y}_3 \mathsf{X}_1 \mathsf{X}_2 \dots \mathsf{X}_n \mathsf{Z}_0$$

$$\mathsf{pilha} = {\color{red} X} X_1 X_2 \dots X_n Z_0$$

$$\mathsf{pilha} = X_1 X_2 \dots X_n Z_0$$

 $pilha = XXX_1X_2...X_nZ_0$

$$\mathsf{pilha} = \frac{\mathsf{Y}_1 \mathsf{X}_1 \mathsf{X}_2 \dots \mathsf{X}_n \mathsf{Z}_0}{\mathsf{V}_1 \mathsf{X}_1 \mathsf{X}_2 \dots \mathsf{X}_n \mathsf{Z}_0}$$

$$\mathsf{pilha} = \mathsf{Y}_1 \mathsf{Y}_2 \mathsf{Y}_3 \mathsf{X}_1 \mathsf{X}_2 \dots \mathsf{X}_n \mathsf{Z}_0$$

$$\mathsf{pilha} = {\color{red} X} X_1 X_2 \dots X_n Z_0$$

$$\mathsf{pilha} = X_1 X_2 \dots X_n Z_0$$

$$\mathsf{pilha} = {\color{red} \textbf{\textit{X}} \textbf{\textit{X}} \textbf{\textit{X}}_1 \textbf{\textit{X}}_2 \dots \textbf{\textit{X}}_n \textbf{\textit{Z}}_0}$$

Arcos- \mathcal{E} :

$$\delta(q, \mathcal{E}, X) = \{(p, \gamma)\}\$$

por:

Figura: Diagrama de estados.

- Transições vazias não consomem símbolos da entrada w, assim como nos AFN_Es.
 - Pode-se mudar de estado e/ou alterar o topo da pilha

Arcos- \mathcal{E} :

$$\delta(q, \mathcal{E}, X) = \{(p, \gamma)\}$$

por:

Figura: Diagrama de estados.

- Transições vazias não consomem símbolos da entrada w, assim como nos AFN_Es.
 - Pode-se mudar de estado e/ou alterar o topo da pilha.

- **1** Definimos q_0 como estado inicial.
- Enquanto lemos 'a' em w, vamos empilhar o símbolo de pilha B.
- No momento em que lemos o primeiro 'b' em w, mudamos para c estado q_1 e desempilhamos um B.
- ① A partir de agora, temos que desempilhar (n-1) B's:

- **1** Definimos q_0 como estado inicial.
- Enquanto lemos 'a' em w, vamos empilhar o símbolo de pilha B.
- No momento em que lemos o primeiro 'b' em w, mudamos para c estado q_1 e desempilhamos um B.
- $\, \odot \,$ A partir de agora, temos que desempilhar (n-1) B's:

- **1** Definimos q_0 como estado inicial.
- Enquanto lemos 'a' em w, vamos empilhar o símbolo de pilha B.
- **3** No momento em que lemos o primeiro 'b' em w, mudamos para o estado q_1 e desempilhamos um B.
- \blacksquare A partir de agora, temos que desempilhar (n-1) B's:

Vamos projetar um AP para reconhecer $L_1 = \{a^n b^n \mid n > 0\}$

- **1** Definimos q_0 como estado inicial.
- 2 Enquanto lemos 'a' em w, vamos empilhar o símbolo de pilha B.
- No momento em que lemos o primeiro 'b' em w, mudamos para o estado q_1 e desempilhamos um B.
- **4** A partir de agora, temos que desempilhar (n-1) B's:

– Se no final a pilha estiver vazia (Z_0 no topo), aceitamos $w \checkmark$

- **1** Definimos q_0 como estado inicial.
- 2 Enquanto lemos 'a' em w, vamos empilhar o símbolo de pilha B.
- No momento em que lemos o primeiro 'b' em w, mudamos para o estado q_1 e desempilhamos um B.
- **4** A partir de agora, temos que desempilhar (n-1) B's:
 - Se no final a pilha estiver vazia (Z_0 no topo), aceitamos $w \checkmark$

$$L_1 = \{a^nb^n \mid n > 0\}$$
 e $w = aaabbb$

cadeia	pilha
aaabbb	Z_0
	BZ_0
	BBZ_0
	$BBBZ_0$
	BBZ_0
	BZ_0
	Z_0

$$L_1 = \{a^nb^n \mid n > 0\}$$
 e $w = aaabbb$

cadeia	pilha
aaabbb	Z_0
aabbb	BZ_0
	BBZ_0
	$BBBZ_0$
	BBZ_0
	BZ_0
	Z_0

$$L_1 = \{a^nb^n \mid n > 0\}$$
 e $w = aaabbb$

cadeia	pilha
aaabbb aabbb	Z_0 BZ_0
abbb	BBZ_0
	$BBBZ_0$
	BBZ_0
	BZ_0
	Z_0

$$L_1 = \{a^n b^n \mid n > 0\}$$
 e $w = aaabbb$

cadeia	pilha
aaabbb aabbb abbb bbb	Z ₀ BZ ₀ BBZ ₀ BBBZ ₀ BBBZ ₀
	BZ_0 Z_0

$$L_1 = \{a^n b^n \mid n > 0\}$$
 e $w = aaabbb$

7
Z ₀ BZ ₀ BBZ ₀ BBBZ ₀ BBBZ ₀ BBZ ₀

$$L_1 = \{a^n b^n \mid n > 0\}$$
 e $w = aaabbb$

cadeia	pilha
aaabbb aabbb abbb bbb	Z ₀ BZ ₀ BBZ ₀ BBBZ ₀
bb b	BBZ_0 BZ_0 Z_0

$$L_1 = \{a^n b^n \mid n > 0\}$$
 e $w = aaabbb$

cadeia	pilha
aaabbb aabbb abbb bbb	Z ₀ BZ ₀ BBZ ₀ BBBZ ₀ BBBZ ₀
b	BZ_0

Roteiro

- 🚺 Autômatos de Pilha
 - Primeiro exemplo $L = \{a^n b^n \mid n > 0\}$
 - Formalização de um AP
 - Descrição Instantânea (DI)
- 2 Modelos de aceitação de um AP
 - Aceitação por estado final e por pilha vazia
 - De pilha vazia para estado final
 - De estado final para pilha vazia
- 3 Referências

Formalização de um AP

Definição

Um autômato com pilha é uma 7-tupla $(Q, \Sigma, \Gamma, \delta, q_0, \mathbf{Z_0}, F)$, em que:

- Q é o conjunto finito de estados;
- Γ (gama) é o alfabeto da pilha;
- $\delta: Q \times (\Sigma \cup \{\mathcal{E}\}) \times (\Gamma \cup \{\mathcal{E}\}) \rightarrow 2^{(Q \times \Gamma^*)}$ é a função de transição;

$$\delta(q, a, X) = \{(p_1, \gamma_1), (p_2, \gamma_2), \dots, (p_r, \gamma_r)\}\$$

- $oldsymbol{0} q_0 \in Q$ é o estado inicial; e
- **1** $Z_0 \in \Gamma$ é o símbolo inicial da pilha.
- $m{O}$ $F\subseteq Q$ é o conjunto de estados de aceitação.
 - Note que o <u>estado atual</u>, o <u>símbolo lido</u> e o
 <u>símbolo do topo da pilha</u> <u>determinam</u> as transições, isto é, o <u>novo estado</u> e o topo da pilha.

Considere a linguagem:

$$L_2 = \{ w \mid w \text{ possuí o mesmo número de a's e b's, com } w \in \{a,b\}^* \}$$

$$P_2 = (\{q_0, q_1\}, \{a, b\}, \{Z_0, A, B\}, \delta, q_0, Z_0, \{q_1\})$$

Figura: Tabela de transições

Considere a linguagem:

$$L_2 = \{ w \mid w \text{ possuí o mesmo número de a's e b's, com } w \in \{a,b\}^* \}$$

$$P_2 = (\{q_0, q_1\}, \{a, b\}, \{Z_0, A, B\}, \delta, q_0, Z_0, \{q_1\})$$

entrada		а			Ь		$\mathcal E$	
pilha	Z_0	Α	В	Z_0	Α	В	Z_0	AB
q 0	$\{(q_0,BZ_0)\}$	$\{(q_0,\mathcal{E})\}$	$\{(q_0,BB)\}$	$\{(q_0,AZ_0)\}$	$\{(q_0,AA)\}$	$\{(q_0,\mathcal{E})\}$	$\{(q_1, Z_0)\}$	ØØ
q_1	Ø	Ø	Ø	Ø	Ø	Ø	Ø	ØØ

Figura: Tabela de transições

Considere a linguagem:

 $L_2 = \{ w \mid w \text{ possuí o mesmo número de a's e b's, com } w \in \{a, b\}^* \}$

cadeia	pilha
abbbaa	Z_0
	BZ_0
	Z_0
	AZ_0
	AAZ_0
	AZ_0
	Z_0

Considere a linguagem:

 $L_2 = \{ w \mid w \text{ possuí o mesmo número de a's e b's, com } w \in \{a, b\}^* \}$

cadeia	pilha
abbbaa	Z_0
bbbaa	BZ_0
	Z_0
	AZ_0
	AAZ_0
	AZ_0
	Z_0

Considere a linguagem:

 $L_2 = \{ w \mid w \text{ possuí o mesmo número de a's e b's, com } w \in \{a,b\}^* \}$

cadeia	pilha
abbbaa	Z_0
bbbaa	BZ_0
bbaa	Z_0
	AZ_0
	AAZ_0
	AZ_0
	Z_0

Considere a linguagem:

 $L_2 = \{ w \mid w \text{ possuí o mesmo número de a's e b's, com } w \in \{a, b\}^* \}$

cadeia	pilha
abbbaa	Z_0
bbbaa	BZ_0
bbaa	Z_0
baa	AZ_0
	AAZ_0
	AZ_0
	Z_0

Considere a linguagem:

 $L_2 = \{ w \mid w \text{ possuí o mesmo número de a's e b's, com } w \in \{a, b\}^* \}$

cadeia	pilha
abbbaa	Z_0
bbbaa	BZ_0
bbaa	Z_0
baa	AZ_0
aa	AAZ_0
	AZ_0
	Z_0

Considere a linguagem:

 $L_2 = \{ w \mid w \text{ possuí o mesmo número de a's e b's, com } w \in \{a, b\}^* \}$

cadeia	pilha
abbbaa	Z_0
bbbaa	BZ_0
bbaa	Z_0
baa	AZ_0
aa	AAZ_0
а	AZ_0
	Z_0

Considere a linguagem:

 $L_2 = \{ w \mid w \text{ possuí o mesmo número de a's e b's, com } w \in \{a, b\}^* \}$

cadeia	pilha
abbbaa	Z_0
bbbaa	BZ_0
bbaa	Z_0
baa	AZ_0
aa	AAZ_0
а	AZ_0
	Z_0

Roteiro

- 🚺 Autômatos de Pilha
 - Primeiro exemplo $L = \{a^n b^n \mid n > 0\}$
 - Formalização de um AP
 - Descrição Instantânea (DI)
- 2 Modelos de aceitação de um AP
 - Aceitação por estado final e por pilha vazia
 - De pilha vazia para estado final
 - De estado final para pilha vazia
- Referências

Intuitivamente, um AP vai de configuração em configuração em resposta:

- ① ao que <u>lê da cadeia de entrada</u> (ou, as vezes à \mathcal{E});
- 2 ao estado corrente; e
- ao conteúdo do topo da pilha.

Vamos representar a configuração de um AP com a tripla:

$$(q, w_i w_{i+1} \dots w_n, \gamma)$$

em que:

- q é o estado corrente;
- $w_i w_{i+1} \dots w_n$ é a parte não lida da cadeia de entrada; e

Essa tripla é chamada de Descrição instantânea (DI) de um AP.

Vamos representar a configuração de um AP com a tripla:

$$(q, w_i w_{i+1} \dots w_n, \gamma)$$

em que:

- q é o estado corrente;
- $w_i w_{i+1} \dots w_n$ é a parte não lida da cadeia de entrada; e
- $\gamma = X_1 X_2 \dots X_n Z_0$ é o conteúdo da pilha.

Essa tripla é chamada de Descrição instantânea (DI) de um AP.

$$(q, w_i w_{i+1} \dots w_n, X_{\gamma}) \Rightarrow (p, w_{i+1} \dots w_n, X_i X_j \dots X_k \gamma)$$

- Esse movimento reflete a ideia de que no estado q:
 - ① Ao ler $w_i = a$ (pode ser \mathcal{E});
 - ② Substituímos $X \in \Gamma$ por uma cadeia $X_i X_i \dots X_k \in \Gamma^*$ na pilha; e
 - O AP vai para o estado p

Observe que tanto $w_{i+1} \dots w_n$ quanto γ não são alterados e não influenciam as acões do AP.

$$(q, w_i w_{i+1} \dots w_n, X_{\gamma}) \Rightarrow (p, w_{i+1} \dots w_n, X_i X_j \dots X_k \gamma)$$

- Esse movimento reflete a ideia de que no estado q:
 - **1** Ao ler $w_i = a$ (pode ser \mathcal{E});
 - ② Substituímos $X \in \Gamma$ por uma cadeia $X_i X_i \dots X_k \in \Gamma^*$ na pilha; e
 - O AP vai para o estado p

Observe que tanto $w_{i+1} \dots w_n$ quanto γ não são alterados e não influenciam as acões do AP.

$$(q, w_i w_{i+1} \dots w_n, X_{\gamma}) \Rightarrow (p, w_{i+1} \dots w_n, X_i X_j \dots X_k \gamma)$$

- Esse movimento reflete a ideia de que no estado q:

 - **2** Substituímos $X \in \Gamma$ por uma cadeia $X_i X_j \dots X_k \in \Gamma^*$ na pilha; e
 - O AP vai para o estado p

Observe que tanto $w_{i+1} \dots w_n$ quanto γ não são alterados e não influenciam as acões do AP.

$$(q, w_i w_{i+1} \dots w_n, X_{\gamma}) \Rightarrow (p, w_{i+1} \dots w_n, X_i X_j \dots X_k \gamma)$$

- Esse movimento reflete a ideia de que no estado q:

 - **2** Substituímos $X \in \Gamma$ por uma cadeia $X_i X_i \dots X_k \in \Gamma^*$ na pilha; e
 - O AP vai para o estado p.

Observe que tanto $w_{i+1} \dots w_n$ quanto γ não são alterados e não influenciam as acões do AP.

$$(q, w_i w_{i+1} \dots w_n, X_{\gamma}) \Rightarrow (p, w_{i+1} \dots w_n, X_i X_j \dots X_k \gamma)$$

- Esse movimento reflete a ideia de que no estado q:
 - **1** Ao ler $w_i = a$ (pode ser \mathcal{E});
 - **2** Substituímos $X \in \Gamma$ por uma cadeia $X_i X_i \dots X_k \in \Gamma^*$ na pilha; e
 - O AP vai para o estado p.

Observe que tanto $w_{i+1} \dots w_n$ quanto γ não são alterados e não influenciam as acões do AP.

Utilizaremos ⇒* para representar zero ou mais transições de DIs.

• Então, se

$$I = (q, w_i \dots w_n, \gamma) \Rightarrow^* (p, w_j \dots w_n, \gamma') = J$$
com $1 \le i \le j \le n$.

Então existe uma sequência de DIs conectando / e J, tal que

$$I = K_1 \Rightarrow K_2 \Rightarrow \cdots \Rightarrow K_n = J$$

Utilizaremos ⇒* para representar zero ou mais transições de DIs.

• Então, se

$$I = (q, w_i \dots w_n, \gamma) \Rightarrow^* (p, w_j \dots w_n, \gamma') = J$$

$$com 1 \le i \le j \le n.$$

• Então existe uma sequência de DIs conectando I e J, tal que

$$I = K_1 \Rightarrow K_2 \Rightarrow \cdots \Rightarrow K_n = J$$

$$L_1 = \{a^n b^n \mid n > 0\}$$
 e $w = aaabbb$

$$\begin{array}{cccc} (q_0, aaabbb, Z_0) & \Rightarrow & (q_0, aabbb, BZ_0) & \Rightarrow \\ & (q_0, abbb, BBZ_0) & \Rightarrow \\ & (q_0, bbb, BBBZ_0) & \Rightarrow \\ & (q_1, bb, BBZ_0) & \Rightarrow \\ & (q_1, b, BZ_0) & \Rightarrow \\ & (q_1, \mathcal{E}, \mathcal{E$$

$$L_1 = \{a^n b^n \mid n > 0\}$$
 e $w = aaabbb$

$$\begin{array}{cccc} (q_0, aaabbb, Z_0) & \Rightarrow & (q_0, aabbb, BZ_0) & \Rightarrow \\ & (q_0, abbb, BBZ_0) & \Rightarrow \\ & (q_0, bbb, BBZ_0) & \Rightarrow \\ & (q_1, bb, BBZ_0) & \Rightarrow \\ & (q_1, b, BZ_0) & \Rightarrow \\ & (q_1, b, BZ_0) & \Rightarrow \\ & (q_1, E, Z_0) & \Rightarrow \\ & (q_1, E, Z_$$

$$L_1 = \{a^n b^n \mid n > 0\}$$
 e $w = aaabbb$

$$\begin{array}{cccc} (q_0, aaabbb, Z_0) & \Rightarrow & (q_0, aabbb, BZ_0) & \Rightarrow \\ & (q_0, abbb, BBZ_0) & \Rightarrow \\ & (q_0, bbb, BBBZ_0) & \Rightarrow \\ & (q_1, bb, BBZ_0) & \Rightarrow \\ & (q_1, b, BZ_0) & \Rightarrow$$

$$L_1 = \{a^n b^n \mid n > 0\} \text{ e } w = aaabbb$$

$$\begin{array}{ccccc} (q_0, aaabbb, Z_0) & \Rightarrow & (q_0, aabbb, BZ_0) & \Rightarrow \\ & (q_0, abbb, BBZ_0) & \Rightarrow \\ & (q_0, bbb, BBBZ_0) & \Rightarrow \\ & (q_1, bb, BBZ_0) & \Rightarrow \\ & (q_1, b, BZ_0) &$$

$$L_1 = \{a^n b^n \mid n > 0\}$$
 e $w = aaabbb$

$$L_1 = \{a^n b^n \mid n > 0\}$$
 e $w = aaabbb$

$$\begin{array}{ccccc} (q_0, aaabbb, Z_0) & \Rightarrow & (q_0, aabbb, BZ_0) & \Rightarrow \\ & (q_0, abbb, BBZ_0) & \Rightarrow \\ & (q_0, bbb, BBBZ_0) & \Rightarrow \\ & (q_1, bb, BBZ_0) & \Rightarrow \\ & (q_1, b, BZ_0) & \Rightarrow \\ & (q_1, \mathcal{E}, Z_0) & \Rightarrow \end{array}$$

$$L_1 = \{a^n b^n \mid n > 0\}$$
 e $w = aaabbb$

Considere a linguagem:

$$L_3 = \{wcw^R \mid w \in \{a, b\}^*\}$$

$$P_3 = (\{q_0, q_1, q_2\}, \{a, b, c\}, \{Z_0, A, B\}, \delta, q_0, Z_0, \{q_2\})$$

Considere a linguagem:

$$L_3 = \{wcw^R \mid w \in \{a, b\}^*\}$$

$$P_3 = (\{q_0, q_1, q_2\}, \{a, b, c\}, \{Z_0, A, B\}, \delta, q_0, Z_0, \{q_2\})$$

Considere a linguagem:

$$L_3 = \{wcw^R \mid w \in \{a, b\}^*\}$$

$$P_3 = (\{q_0, q_1, q_2\}, \{a, b, c\}, \{Z_0, A, B\}, \delta, q_0, Z_0, \{q_2\})$$

Considere a linguagem:

$$L_3 = \{wcw^R \mid w \in \{a, b\}^*\}$$

$$P_3 = (\{q_0, q_1, q_2\}, \{a, b, c\}, \{Z_0, A, B\}, \delta, q_0, Z_0, \{q_2\})$$

$$L_3 = \{wcw^R \mid w \in \{a, b\}^*\}$$
 e $w = abbcbba$

$$(q_0, abbcbba, Z_0) \Rightarrow^* (q_2, \mathcal{E}, Z_0) \checkmark$$

Roteiro

- Autômatos de Pilha
 - Primeiro exemplo $L = \{a^n b^n \mid n > 0\}$
 - Formalização de um AP
 - Descrição Instantânea (DI)
- Modelos de aceitação de um AP
 - Aceitação por estado final e por pilha vazia
 - De pilha vazia para estado final
 - De estado final para pilha vazia
- Referências

Roteiro

- Autômatos de Pilha
 - Primeiro exemplo $L = \{a^n b^n \mid n > 0\}$
 - Formalização de um AP
 - Descrição Instantânea (DI)
- Modelos de aceitação de um AP
 - Aceitação por estado final e por pilha vazia
 - De pilha vazia para estado final
 - De estado final para pilha vazia
- Referências

Modelos de aceitação

Existem duas alternativas (equivalentes) para a aceitação de uma palavra por um AP:

- Aceitação por estado final
- 2 Aceitação por pilha vazia

Aceitação pelo estado final

Definição

Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, \mathbf{Z_0}, F)$ um AP.

Então L(P) é a linguagem reconhecida por P pelo estado final, definida por:

$$L(P) = \{ w \mid (q_0, w, Z_0) \Rightarrow^* (q_f, \mathcal{E}, \gamma) \}$$

para algum $q_f \in F$ e qualquer γ na pilha.

Observe que o conteúdo final na pilha é irrelevante.

Aceitação pelo estado final

Definição

Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, \mathbf{Z_0}, F)$ um AP.

Então L(P) é a linguagem reconhecida por P pelo estado final, definida por:

$$L(P) = \{ w \mid (q_0, w, Z_0) \Rightarrow^* (q_f, \mathcal{E}, \gamma) \}$$

para algum $q_f \in F$ e qualquer γ na pilha.

Observe que o conteúdo final na pilha é irrelevante.

Aceitação por pilha vazia

Definição

Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, \mathbf{Z_0})$ um AP.

Então N(P) é a linguagem reconhecida por P por pilha vazia, definida por:

$$N(P) = \{ w \mid (q_0, w, Z_0) \Rightarrow^* (q, \mathcal{E}, \mathcal{E}) \}$$

para qualquer $q \in Q$.

Na definição de P podemos omitir o conjunto de estados F

Aceitação por pilha vazia

Definição

Seja $P = (Q, \Sigma, \Gamma, \delta, q_0, \mathbf{Z_0})$ um AP.

Então N(P) é a linguagem reconhecida por P por pilha vazia, definida por:

$$N(P) = \{w \mid (q_0, w, Z_0) \Rightarrow^* (q, \mathcal{E}, \mathcal{E})\}\$$

para qualquer $q \in Q$.

• Na definição de *P* podemos omitir o conjunto de estados *F*.

O AP visto para reconhecer $L_1 = \{a^n b^n \mid n > 0\}$ reconhece L_1 pelo estado final.

- Nesse caso, P nunca esvazia a pilha.
- ullet Então a linguagem reconhecida por pilha vazia é N(P)=arnothing

O AP visto para reconhecer $L_1 = \{a^n b^n \mid n > 0\}$ reconhece L_1 pelo estado final.

- Nesse caso, P nunca esvazia a pilha.
- Então a linguagem reconhecida por pilha vazia é $N(P) = \emptyset$

Porém, com uma simples modificação podemos alterar P para reconhecer $L_1 = \{a^n b^n \mid n > 0\}$ por pilha vazia:

Agora P' reconhece por pilha vazia

Vamos ver que esses dois formalismos são equivalentes.

 q_2 não é mais estado de aceitação.

Porém, com uma simples modificação podemos alterar P para reconhecer $L_1 = \{a^n b^n \mid n > 0\}$ por pilha vazia:

Agora P' reconhece por pilha vazia.

Vamos ver que esses dois formalismos são equivalentes.

 q_2 não é mais estado de aceitação.

Porém, com uma simples modificação podemos alterar P para reconhecer $L_1 = \{a^n b^n \mid n > 0\}$ por pilha vazia:

• Agora P' reconhece por pilha vazia.

Vamos ver que esses dois formalismos são equivalentes.

 q_2 não é mais estado de aceitação.

Roteiro

- Autômatos de Pilha
 - Primeiro exemplo $L = \{a^n b^n \mid n > 0\}$
 - Formalização de um AP
 - Descrição Instantânea (DI)
- Modelos de aceitação de um AP
 - Aceitação por estado final e por pilha vazia
 - De pilha vazia para estado final
 - De estado final para pilha vazia
- 3 Referências

Teorema

Seja $L = N(P_N)$ para algum AP $P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0)$. Então existe um outro AP equivalente P_F tal que:

$$N(P_N) = L(P_F)$$

Em outras palavras, a linguagem reconhecida por pilha vazia por P_N é igual à linguagem reconhecida por estado final por P_F

Procedimento 1:

- Vamos definir $P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$
 - \bigcirc p_0 é o novo estado inicial;
 - p_f é o estado de aceitação;

Procedimento 1:

- Vamos definir $P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$
 - $\mathbf{0}$ p_0 é o novo estado inicial;
 - p_f é o estado de aceitação;
 - \bigcirc X_0 é o símbolo de fundo de pilha.

Procedimento 1:

- Vamos definir $P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$
 - $\mathbf{0}$ p_0 é o novo estado inicial;
 - p_f é o estado de aceitação; e

Procedimento 1:

- Vamos definir $P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$

 - p_f é o estado de aceitação; e
 - δX_0 é o símbolo de fundo de pilha.

Procedimento 1:

- Vamos definir $P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$
 - $\mathbf{0}$ p_0 é o novo estado inicial;
 - p_f é o estado de aceitação; e
 - \bullet X_0 é o símbolo de fundo de pilha.

Procedimento 1:

- Isto é, definimos $\delta_{\mathbf{F}}$: por:
 - $\bullet \delta_F(p_0, \mathcal{E}, X_0) = \{(q_0, Z_0 X_0)\}$
 - ② $\delta_F(q, a, X) = \delta_N(q, a, X)$, para todo $q \in Q$, $a \in (\Sigma \cup \{\mathcal{E}\})$ e $X \in \Gamma$
 - \emptyset $\delta_F(q,\mathcal{E},X_0)=\{(q_f,X_0)\}, \text{ para todo } q\in Q$

Item 2: simula P_N em P_F

Procedimento 1:

- Isto é, definimos $\delta_{\mathbf{F}}$: por:
 - $\bullet_{F}(p_0, \mathcal{E}, X_0) = \{(q_0, Z_0 X_0)\};$
 - $\delta_F(q, a, X) = \delta_N(q, a, X)$, para todo $q \in Q$, $a \in (\Sigma \cup \{\mathcal{E}\})$ e $X \in \Gamma$
 - $\delta_F(q,\mathcal{E},X_0)=\{(q_f,X_0)\}, \text{ para todo } q\in Q$

Item 2: simula P_N em P_F

Procedimento 1:

- Isto é, definimos $\delta_{\mathbf{F}}$: por:
 - $\bullet_{F}(p_0, \mathcal{E}, X_0) = \{(q_0, Z_0 X_0)\};$
 - $\delta_F(q, a, X) = \delta_N(q, a, X)$, para todo $q \in Q$, $a \in (\Sigma \cup \{\mathcal{E}\})$ e $X \in \Gamma$;

 $\emptyset \mid \delta_F(q, \mathcal{E}, X_0) = \{(q_f, X_0)\}, \text{ para todo } q \in \mathcal{Q}$

Item 2: simula P_N em P_F

Procedimento 1:

- Isto é, definimos $\delta_{\mathbf{F}}$: por:
 - $\bullet_{F}(p_0, \mathcal{E}, X_0) = \{(q_0, Z_0 X_0)\};$
 - $\delta_F(q, a, X) = \delta_N(q, a, X)$, para todo $q \in Q$, $a \in (\Sigma \cup \{\mathcal{E}\})$ e $X \in \Gamma$;

Item 2: simula P_N em P_F

A prova de corretude deste procedimento é simples e será omitida.

Considere:

 $N(P_N) = \{ w \mid w \text{ possui o mesmo número de a's e b's, com } w \in \{a, b\}^* \}$

Considere:

 $N(P_N) = \{ w \mid w \text{ possui o mesmo número de a's e b's, com } w \in \{a, b\}^* \}$

Considere:

 $N(P_N) = \{ w \mid w \text{ possui o mesmo número de a's e b's, com } w \in \{a, b\}^* \}$

Considere:

 $N(P_N) = \{ w \mid w \text{ possui o mesmo número de a's e b's, com } w \in \{a, b\}^* \}$

Considere:

 $N(P_N) = \{ w \mid w \text{ possui o mesmo número de a's e b's, com } w \in \{a, b\}^* \}$

Considere:

 $N(P_N) = \{ w \mid w \text{ possui o mesmo número de a's e b's, com } w \in \{a, b\}^* \}$

Roteiro

- Autômatos de Pilha
 - Primeiro exemplo $L = \{a^n b^n \mid n > 0\}$
 - Formalização de um AP
 - Descrição Instantânea (DI)
- Modelos de aceitação de um AP
 - Aceitação por estado final e por pilha vazia
 - De pilha vazia para estado final
 - De estado final para pilha vazia
- Referências

Teorema

Seja $L = L(P_F)$ para algum AP $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$. Então existe um outro AP equivalente P_N tal que:

$$L(P_F) = N(P_N)$$

Procedimento 2:

- Vamos definir $P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$
 - p_0 é o novo estado inicial;
 - p é o um novo estado (para "esvaziar" a pilha); e
 - \bigcirc X_0 é o símbolo de fundo de pilha

• A ideia é sempre que P_N esta em um estado final de P_F e a w foi consumida, a pilha deve ser esvaziada em p_f .

[🦺] é igual à qualquer símbolo da pilha.

Procedimento 2:

- Vamos definir $P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$
 - $\mathbf{0}$ p_0 é o novo estado inicial;
 - p é o um novo estado (para "esvaziar" a pilha); e
 - \bigcirc X_0 é o símbolo de fundo de pilha

 A ideia é sempre que P_N esta em um estado final de P_F e a w foi consumida, a pilha deve ser esvaziada em p_f.

뤎 é igual à qualquer símbolo da pilha.

Procedimento 2:

- Vamos definir $P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$
 - $\mathbf{0}$ p_0 é o novo estado inicial;
 - p é o um novo estado (para "esvaziar" a pilha); e

• A ideia é sempre que P_N esta em um estado final de P_F e a w foi consumida, a pilha deve ser esvaziada em p_f .

A é igual à qualquer símbolo da pilha.

Procedimento 2:

- Vamos definir $P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$
 - \bigcirc p_0 é o novo estado inicial;
 - p é o um novo estado (para "esvaziar" a pilha); e

• A ideia é sempre que P_N esta em um estado final de P_F e a w foi consumida, a pilha deve ser esvaziada em p_f .

[♣] é igual à qualquer símbolo da pilha.

Procedimento 2:

- Vamos definir $P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$
 - \bigcirc p_0 é o novo estado inicial;
 - p é o um novo estado (para "esvaziar" a pilha); e
 - \bullet X_0 é o símbolo de fundo de pilha.

• A ideia é sempre que P_N esta em um estado final de P_F e a w foi consumida, a pilha deve ser esvaziada em p_f .

A é igual à qualquer símbolo da pilha.

Procedimento 2:

• Observe que X_0 evita que a pilha seja esvaziada acidentalmente (sem consumir w ou $q \notin F$).

Procedimento 2:

- Isto é, definimos δ_{N} : por:

 - $O(Q) = \delta_N(q,a,X) = \delta_F(q,a,X)$, para todo $q \in Q$, $a \in (\Sigma \cup \{\mathcal{E}\})$ e $X \in \Gamma$;
 - Para todo $q \in F$ e qualquer $X \in (\Gamma \cup \{X_0\})$, temos:

$$\delta_N(q,\mathcal{E},X)\subseteq\{(p,X_0)\}$$

 \bullet $\delta_N(p, \mathcal{E}, X) = \{(p, \mathcal{E})\}, \text{ para todo } X \in \Gamma \cup \{X_0\}$

Item 2: simula P_F em P_N

Procedimento 2:

- Isto é, definimos δ_{N} : por:
 - $\bullet_{N}(p_{0},\mathcal{E},X_{0})=\{(q_{0},Z_{0}X_{0})\};$
 - ② $\delta_N(q,a,X) = \delta_F(q,a,X)$, para todo $q \in Q$, $a \in (\Sigma \cup \{\mathcal{E}\})$ e $X \in \Gamma$
 - ⓐ Para todo $q \in F$ e qualquer $X \in (\Gamma \cup \{X_0\})$, temos:

$$\delta_N(q,\mathcal{E},X)\subseteq\{(p,X_0)\}$$

 \bullet $\delta_N(p, \mathcal{E}, X) = \{(p, \mathcal{E})\}, \text{ para todo } X \in \Gamma \cup \{X_0\}$

Item 2: simula P_F em P_N

Procedimento 2:

- Isto é, definimos δ_{N} : por:

 - ② $\delta_N(q, a, X) = \delta_F(q, a, X)$, para todo $q \in Q$, $a \in (\Sigma \cup \{\mathcal{E}\})$ e $X \in \Gamma$;
 - 3 Para todo $q \in F$ e qualquer $X \in (\mathbb{I} \cup \{X_0\})$, temos:

$$\delta_N(q,\mathcal{E},X)\subseteq\{(p,X_0)\}$$

Procedimento 2:

- Isto é, definimos δ_{N} : por:
 - $\bullet_{N}(p_{0},\mathcal{E},X_{0})=\{(q_{0},Z_{0}X_{0})\};$
 - $\delta_N(q, a, X) = \delta_F(q, a, X)$, para todo $q \in Q$, $a \in (\Sigma \cup \{\mathcal{E}\})$ e $X \in \Gamma$;
 - **3** Para todo $q \in F$ e qualquer $X \in (\Gamma \cup \{X_0\})$, temos:

$$\delta_N(q,\mathcal{E},X)\subseteq\{(p,X_0)\}$$

 $\delta_N(p,\mathcal{E},X) = \{(p,\mathcal{E})\}, \text{ para todo } X \in \Gamma \cup \{X_0\}$

Procedimento 2:

- Isto é, definimos δ_{N} : por:
 - $\bullet_{N}(p_{0}, \mathcal{E}, X_{0}) = \{(q_{0}, Z_{0}X_{0})\};$
 - $\delta_N(q, a, X) = \delta_F(q, a, X)$, para todo $q \in Q$, $a \in (\Sigma \cup \{\mathcal{E}\})$ e $X \in \Gamma$;
 - **3** Para todo $q \in F$ e qualquer $X \in (\Gamma \cup \{X_0\})$, temos:

$$\delta_N(q,\mathcal{E},X)\subseteq\{(p,X_0)\}$$

A prova de corretude deste procedimento também será omitida.

Considere:

$$L(P_F) = \{wcw^R \mid w \in \{a, b\}^*\}$$

Considere:

$$L(P_F) = \{wcw^R \mid w \in \{a, b\}^*\}$$

Considere:

$$L(P_F) = \{wcw^R \mid w \in \{a, b\}^*\}$$

Considere:

$$L(P_F) = \{wcw^R \mid w \in \{a, b\}^*\}$$

Considere:

$$L(P_F) = \{wcw^R \mid w \in \{a, b\}^*\}$$

Considere:

$$L(P_F) = \{wcw^R \mid w \in \{a, b\}^*\}$$

Modelos de aceitação

Acabamos de ver que os dois formalismos para a aceitação por um AP são equivalentes:

- Aceitação por estado final
- Aceitação por pilha vazia

Vamos considerar por padrão a primeira

Modelos de aceitação

Acabamos de ver que os dois formalismos para a aceitação por um AP são equivalentes:

- Aceitação por estado final
- Aceitação por pilha vazia

Vamos considerar por padrão a primeira.

Loop infinito

É possível que um AP nunca pare.

- Um exemplo simples:
 - Um AP que empilha e desempilha sem ler w_i

 Nesse caso, o AP fica processando indefinidamente w (ciclo ou loop infinito)

Loop infinito

É possível que um AP nunca pare.

- Um exemplo simples:
 - Um AP que empilha e desempilha sem ler w_i

 Nesse caso, o AP fica processando indefinidamente w (ciclo ou loop infinito)

Loop infinito

É possível que um AP nunca pare.

- Um exemplo simples:
 - Um AP que empilha e desempilha sem ler w_i

$$\begin{array}{c}
\mathcal{E}, A/AA \\
\mathcal{E}, Z_0/AZ_0
\end{array}$$

$$\longrightarrow q_0$$

 Nesse caso, o AP fica processando indefinidamente w (ciclo ou loop infinito)

Parada de um AP

- Aceita: pelo menos um dos caminhos alternativos partindo de (q_0, w, Z_0) atinge um estado final ao processar $w_1 w_2 \dots w_n$;
- Rejeita: todos os caminhos rejeitam a entrada; e
- ① Loop: pelo menos um caminho partindo de (q_0, w, Z_0) está em loop e os demais rejeitam (ou estão em loop).

Parada de um AP

- Aceita: pelo menos um dos caminhos alternativos partindo de (q_0, w, Z_0) atinge um estado final ao processar $w_1 w_2 \dots w_n$;
- Rejeita: todos os caminhos rejeitam a entrada; e
- Loop: pelo menos um caminho partindo de (q₀, w, Z₀) está em loop e os demais rejeitam (ou estão em loop).

Parada de um AP

- Aceita: pelo menos um dos caminhos alternativos partindo de (q_0, w, Z_0) atinge um estado final ao processar $w_1 w_2 \dots w_n$;
- Rejeita: todos os caminhos rejeitam a entrada; e
- **Solution** Loop: pelo menos um caminho partindo de (q_0, w, Z_0) está em loop e os demais rejeitam (ou estão em loop).

Poder computacional dos APs

Embora o poder computacional dos AP seja muito superior ao dos AFs, ele ainda é restrito, não sendo possível reconhecer linguagens simples como:

$$L_4 = \{ww \mid w \in \{a, b\}^*\}$$

$$L_5 = \{a^n b^n c^n \mid n \ge 0\}$$

Vamos ver que a classe das linguagens reconhecidas pelos APs é a classe das LLCs.

Vamos ver os limites dos APs na próxima aula.

Poder computacional dos APs

Embora o poder computacional dos AP seja muito superior ao dos AFs, ele ainda é restrito, não sendo possível reconhecer linguagens simples como:

$$L_5 = \{ww \mid w \in \{a, b\}^*\}$$

$$L_6 = \{a^n b^n c^n \mid n \ge 0\}$$

Vamos ver que a classe das linguagens reconhecidas pelos APs é a classe das LLCs.

4

Vamos ver os limites dos APs na próxima aula.

Fim

Dúvidas?

Roteiro

- Autômatos de Pilha
 - Primeiro exemplo $L = \{a^n b^n \mid n > 0\}$
 - Formalização de um AP
 - Descrição Instantânea (DI)
- 2 Modelos de aceitação de um AP
 - Aceitação por estado final e por pilha vazia
 - De pilha vazia para estado final
 - De estado final para pilha vazia
- Referências

Referências

Referências:

- 1 "Introdução à Teoria da Computação" de M. Sipser, 2007.
- ² "Linguagens formais e autômatos" de Paulo F. B. Menezes, 2002.
- Materiais adaptados dos slides do Prof. Evandro E. S. Ruiz, da USP.