Kommunikationssysteme WS 23/24

Übungsblatt 4

Maximilian Amthor

Themen

- □ Fragmentierung von Paketen
- □ IP Adressen

Aufgabe 4.1

■ Was ist der Hauptvorteil bei der Verwendung von virtuellen Paketen an Stelle von Frames?

Vorteile virtueller Pakete:

- Pakete dienen dem gleichen Zweck im Internet wie Frames im LAN
- Pakete haben ein uniformes, hardwareunabhängiges Format
- Pakete ermöglichen die kombinierte Sammlung physischer Netzwerke in ein einzelnes virtuelles Netzwerk
- Virtuell (nicht an spezifische Hardware gebunden)
- Universell (jeder Host/Router implementiert Protokolle, die Pakete interpretieren)

Aufgabe 4.2

- a) Warum wird Fragmentierung für das Internet aber nicht für ein typisches WAN benötigt?
- b) Warum werden Fragmente erst beim Empfänger wieder verschmolzen und nicht bereits an einem Router (soweit die MTU dies zulässt)?
- c) Nehmen Sie an, dass ein Datagram N Router passiert. Wie viele Male wird das Datagram eingekapselt?

Aufgabe 4.2 a)

- a) Warum wird Fragmentierung für das Internet aber nicht für ein typisches WAN benötigt?
- Internet ermöglicht Kommunikation zwischen heterogenen Netzwerken (verschiedene Hardware Technologien und dementsprechend unterschiedliche Frame Formate)
- Jedes Frame Format definiert unterschiedliche maximum transmission unit (MTU)
- □ Fragmentierung wird benötigt, um zu große Datagramme entsprechend der MTU aufzuteilen
- Typisches WAN ist ein homogenes Netzwerk (nur eine MTU, keine Fragmentierung notwendig), das viele Sites über große Distanzen verbindet

- b) Warum werden Fragmente erst beim Empfänger wieder verschmolzen und nicht bereits an einem Router (soweit die MTU dies zulässt)?
- Router soll Pakete schnellstmöglich weiterleiten und nicht mit zusätzlichen Aufgaben belastet werden
- Router muss auf diese Weise nicht zwischen kompletten Paketen und Fragmenten unterscheiden
- Einzelne Fragmente können über verschiedene Routen das gemeinsame Ziel erreichen (dynamische Routenanpassung) (Verschmelzung beim Router würde erfordern, dass alle Fragmente die gleiche Route nehmen)

Aufgabe 4.2 c)

- c) Nehmen Sie an, dass ein Datagram N Router passiert. Wie viele Male wird das Datagram eingekapselt?
- Sender kapselt Datagramm in netzwerkspezifisches Paket und überträgt Datagramm zum Next-Hop
- Next-Hop extrahiert Datagramm, verwirft Frame und kapselt Datagramm in neues Paket für die Übertragung zum Next-Hop über ein anderes Netzwerk bis Ziel erreicht ist
- □ Insgesamt bei N Routern: N + 1 Einkapselungen

Aufgabe 4.3

- a) Wie werden im IP Standard die Fehler Duplikate, Verlust und Reihenfolgenvertauschung von Fragmenten erkannt und behoben?
- b) Warum kann der Verlust eines Fragments nicht einfach durch wiederholtes Senden behoben werden?
- c) Was versteht man unter ICMP?

Aufgabe 4.3 a)

- a) Wie werden im IP Standard die Fehler Duplikate, Verlust und Reihenfolgenvertauschung von Fragmenten erkannt und behoben?
- Fragment wird eindeutig anhand IP-Identifikationsnummer, Flag und Fragment Offset identifiziert
 - * Reassembly mit diesen Daten und SourceAddress möglich
 - Duplikate und Reihenfolgenvertauschung deshalb problemlos lösbar

Aufgabe 4.3 a)

a) Wie werden im IP Standard die Fehler Duplikate, Verlust und Reihenfolgenvertauschung von Fragmenten erkannt und behoben?

- □ Timer für ankommende Fragmente
 - Verwerfen eines Frames, falls nicht alle Fragmente innerhalb des Timeouts komplett eingetroffen
 - Verlust eines Fragments wird behandelt wie Verlust des kompletten Datagramms

- b) Warum kann der Verlust eines Fragments nicht einfach durch wiederholtes Senden behoben werden?
- Sender kennt Fragmentierung u.U. nicht
- □ Fragmente können weiter fragmentiert werden
- Fragmente können unterschiedliche Pfade mit unterschiedlichen MTUs nehmen -> könnte bei erneutem Senden unterschiedlich (erneut) fragmentiert werden

Aufgabe 4.3 c)

c) Was versteht man unter ICMP?

- □ In IP integriertes Protokoll zur Übertragung von Fehler- und Informationsnachrichten
- ICMP Nachrichten sind in IP-Payload gekapselt
- □ Beispiele für ICMP Nachrichten:
 - * Ziel unerreichbar
 - Fragmentierung notwendig

Ergänzung

□ Ist die Anzahl der Fragmente eines IP-Pakets unbegrenzt oder begrenzt?

IP Datagram Header

0	4	8	16	.9 24	30		
VERS	H. LEN	SERVICE TYPE	TOTAL LENGTH				
	IDENTIF	ICATION	FLAGS	FRAGME	NT OFFSET		
TIMET	O LIVE	TYPE	Н	EADER CHE	CKSUM		
		SOURCE IF	ADDRE	ss			
		DESTINATION	IP ADD	RESS			
	IP OPTI	ONS (MAY BE O	MITTED)		PADDING		
		BEGINNIN	G OF DA	TA			
			:				

- VERS: IP-Version (e.g. 4)
- H.LEN: Header Länge (in 32-Bit-Einheiten)
- SERVICE TYPE: Senderwunsch nach geringerer Latenz, hoher Zuverlässigkeit (selten benutzt)
- TOTAL LENGTH: Anzahl der Oktetts im Datagramm
- IDENT (16 Bits), FLAGS (3 Bits), FRAGMENT OFFSET (13 Bits):
- wird benutzt bei Fragmentierung
- TTL: Time to Live wird in jedem Router dekrementiert, Datagramm wird bei TTL=0 verworfen
- TYPE: Protokolltyp des Folgeprotokolls, Z.B. UDP (Wert 17), TCP (Wert 6)
- HEADER CHECKSUM: Einerkomplement der Einerkomplementsumme des Headers
- SOURCE IP ADDRESS, DESTINATION IP ADDRESS: IP_Adresse Sender, Empfänger
- □ IP OPTIONS: Zusatzinformationen (z.B. Time Stamp,...)
- □ PADDING: Auffüllen mit 0 bis zur 32-Bit-Grenze

Ergänzung

- ☐ Ist die Anzahl der Fragmente eines IP-Pakets unbegrenzt oder begrenzt?
- □ IDENTIFICATION: 16-Bit-Zahl
 - Identifiziert IP-Datagramm eindeutig (Fragmente eines Datagramms erhalten dieselbe Identifikationsnummer)
- FLAGS: 3-Bit-Feld

Bit 0	Bit 1	Bit 2		
Reserviert	O Fragmentierung erlaubt	0 letztes Fragment		
	1 Fragmentierung verboten	1 weitere Fragmente		

- □ FRAGMENT OFFSET: 13-Bit-Feld
 - Enthält die Größe des Offsets gemessen in Fragment Blöcken
 Blöcken
 Blöcken

IDENTIFICATION

Ergänzung

□ In wie viele Fragmente kann ein einzelnes IP Paket höchstens unterteilt werden?

- □ FRAGMENT OFFSET: 13-Bit-Feld
 - Größe des Offsets in Fragment-Blöcken
 - Fragment Block ist eine Einheit von 8 Byte (64 Bit)
 - Fragment Offset 13 Bit -> 2¹³ -> 8192 Fragment Blöcke adressierbar
- D.h.: maximale Datagrammlänge von 65535 Bytes kann adressiert werden

Beispiel

□ Fragmentierung eines 4000 Byte Datagrams im Ethernet mit 1500 Byte MTU

Fragment	Payload	ID	Flag	Offset
Original	3980	777	000	0
1. Fragment	1480	777	001	0
2. Fragment	1480	777	001	185
3. Fragment	1020	777	000	370

Ergänzung IPv6

□ Unterschiede zwischen IPv4 und IPv6?

- Overhead doppelt so groß bei IPv6
 - o 40 Byte Header vs. 20 Byte Header
- □ Keine Fragmentierung bei IPv6 (an den Routern)
- □ Keine Prüfsumme bei IPv6

Aufgabe 4.4

- Wenn ein gegebener Router maximal K Netzwerke verbinden kann, wie viele Router R werden dann benötigt, um N Netzwerke zu verbinden? Geben Sie in Tabellenform die Anzahl R an, falls K = 2,3,4,5 und N = 1,2,3,4,5,6,7,8,9,10,11,12 ist.
- b) Leiten Sie eine Formel her, die R für gegebenes K und N berechnet!

Aufgabe 4.4 a)

- \square Bis zu K = 2 Netzwerke am Router
- \square N = 2 Netzwerke

 \square R = 1 Router notwendig

Geht mehr? (also N > 2)

- Nein
 - Jeder weitere Router "kostet" 2 Anschlüsse, fügt aber auch nur 2 hinzu

Aufgabe 4.4 a)

□ Tabellen für $K \ge 3$

K	N	R
	≤ 3	1
	4	2
	5	3
	6	4
,	7	5
3	8	6
	9	7
	10	8
	11	9
	12	10

К	N	R	
	≤ 4	1	
	5		
	6	2	
	7	9	
4	8	3	
	9	4	
	10	4	
	11	5	
	12	3	

K	N	R
	≤ 5	1
	6	
	7	2
E	8	
5	9	
	10	3
	11	
	12	4

Aufgabe 4.4 a)

- \square Bis zu K = 3 Netzwerke am Router
- \square N = 3, 4, 5, 6, ... Netzwerke

- Zusammenfassung
- Angenommen jeder Router kann K Netzwerke verbinden
- Für die ersten K Netzwerke wird ein Router benötigt
- Jeder weitere Router kann K 2 Netzwerke einbinden
 - Es sind je 2 Anschlüsse zum Verbinden der Router erforderlich
- Die 2 Enden der "Router-Kette" sind frei
 - Stehen für Netzwerke zur Verfügung

□ Als Formel:

Für $N \le K$ und K > 2:

$$R = 1$$

Für N > K und K > 2:

$$R = \left[\frac{N-2}{K-2} \right]$$

ceiling-Operator: kleinste Ganzzahl, größer oder gleich dem übergebenen numerischen Ausdruck

Ergänzung

Angenommen, ein TCP/IP Internet besteht aus zwei durch einen Router verbundenen Netzwerken. An jedes Netzwerk sei ein Computer angeschlossen. Geben Sie an, welchen Protokollstapel die Computer und der Router jeweils verwenden!

Protokollstapel							
Netzwerk 1 Computer 1	Router	Netzwerk 2 Computer 2					

<u>Ergänzung</u>

Angenommen, ein TCP/IP Internet besteht aus zwei durch einen Router verbundenen Netzwerken. An jedes Netzwerk sei ein Computer angeschlossen. Geben Sie an, welchen Protokollstapel die Computer und der Router jeweils verwenden!

Protokollstapel							
Netzwerk 1 Computer 1	Router	Netzwerk 2 Computer 2					
5		5					
4		4					
3	3	3					
2	2	2					
1	1	1					

Aufgabe 4.5

- a) Sie bekommen einen /28 IPv4 Adressblock von ihrem ISP zugeteilt. Wie vielen Computern können Sie aus diesem Block Adressen zuweisen? Wie würde ein gleichgroßer Adressblock für IPv6 bezeichnet werden?
- b) Ein ISP besitzt einen /22 IPv4 Adressblock. Ist es möglich 6 Kunden mit jeweiligen Anforderungen von 9, 15, 20, 41, 128 und 260 Computern einen entsprechenden Adressraum zur Verfügung zu stellen? Erklären Sie ihre Antwort.

□ Was bedeutet "/28"?

- /28 bedeutet: Die ersten 28 Bits der Adresse sind der Netzanteil
- Subnetzmaske: 255.255.255.240

11111111.11111111.1111111.11110000 $2^4 = 16$

□ Wie vielen Computern können Sie aus diesem Block Adressen zuweisen?

- \square 4 Bit, also $2^4 = 16$ Maschinen
- Davon abzuziehen:
 - Network (alle Hostanteil-Bits auf "O")
 - Broadcast (alle Hostanteil-Bits auf "1")
- Es verbleiben 14 Computer

□ Wie würde ein gleichgroßer Adressblock für IPv6 bezeichnet werden?

- □ IPv6-Adresse besteht aus 128 Bits
- □ 4 Bits sollen wieder für Subnetz reserviert werden (128 4 = 124)
- /124

□ /22-Block; 6 Kunden mit je 9, 15, 20, 41, 128, 260 möglich?

- /22 bedeutet Subnetzmaske 255.255.252.0
 - ♦ Es bleiben 10 Bit → 1024 Maschinen
- $9+15+20+41+128+260=473 \le 1024$
 - Sollte problemlos passen

Ja/Nein und warum?

□ /22-Block; 6 Kunden mit je 9, 15, 20, 41, 128, 260 - tatsächliche Aufteilung

□ Also:

- ◆ 9 → 16
- 4 15 \rightarrow 32 (warum nicht 16?)
- \star 41 \rightarrow 64
- ❖ 128 → 256 (warum nicht 128?)
- ❖ 260 → 512

□ /22-Block; 6 Kunden mit je 9, 15, 20, 41, 128, 260 - tatsächliche Aufteilung

□ Also:

- ◆ 9 → 16
- \star 15 \rightarrow 32 (warum nicht 16?)
- $41 \rightarrow 64$
- ❖ 128 → 256 (warum nicht 128?)
- ❖ 260 → 512

$$312 + 256 + 64 + 32 + 32 + 16 = 912 \le 1024$$

□ /22-Block: 6 Kunden mit je 9, 15, 20, 41, 128, 260 - mögliche Aufteilung

Rest der IP	1	0	7	6	5	4	3	2	1	0	Anzahl PCs
?	0	0	0	0	0						15
?	0	0	0	0	1			-	•		20
?	0	0	0	1							41
?	0	0	1	0	0	0					9
?	0	1									128
?	1						-				260