Carbon dioxide transport

INTENDED LEARNING OBJECTIVES (ILOs)

By the end of this lecture the student will be able to:

- 1. List forms in which carbon dioxide is transported in the blood.
- 2. Illustrate the carbon dioxide dissociation curve: shape and shifts
- 3. List the typical values of carbon dioxide content and partial pressures in blood
- 4. Describe Gas movement in pulmonary and systemic capillaries; chloride shift
- 5. Compare Bohar and Haldane effects

CARBON DIOXIDE (CO₂) TRANSPORT

- Arterial blood contain 48 ml CO_2 / 100 ml blood at a tension of 40 mmHg
- Venous blood contain 52 ml CO₂ / 100 ml blood at a tension of 45 mmHg.

So every 100 ml blood carries 4 ml from tissues which known as $tidal CO_2$

Tidal CO₂

It is the amount of CO_2 added by the tissues to every 100 cc of arterial blood to be changed into Venus blood (4 ml of CO_2)

This tidal CO₂ is transported as:

Physical 7% dissolved in plasma

Figure 41-13. Transport of carbon dioxide in the blood.

2) Chemical 93%:

- a) Carbamino compounds 23%: CO₂ combined with Hb and plasma proteins
- b) HCO_{3}^{-} 70%: CO_{2} in the blood reacts with water to form carbonic acid.

Carbonic anhvdrase enzyme which is found in many cells including RBCs, accelerates the reaction:

$$CO_2 + H_2O \qquad H_2CO_3$$

CHLORIDE SHIFT

Movement of Cl⁻ ions into or out of RBCs, to compensate for the movement of HCO₃⁻ ions and to maintain electrical neutrality.

Effect of chloride shift

CO₂ entering the blood is converted to HCO₃⁻ in RBCs by carbonic anhydrase enzyme, most of this HCO₃⁻ moves out of RBC into plasma in exchange for Cl⁻ to maintain electrical neutrality.

So net result of Cl⁻ shift:

3 substances, which increase in both RBCs and plasma:

1-CO₂ 2- Carbamino compounds 3-HCO₃-.

2 substances that increase in RBCs and decrease in plasma:

1-C1⁻ 2-H₂O.

So *hematocrit value* is more in *venus blood* due to increase size of RBCs.

PHYSIOLOGICAL CO₂ DISSOCIATION CURVE

It represent the relationship between total CO₂ content and PCO₂

It is the line which connects between:

Point A (Venous blood):

 $PCO_2 = 45 \text{ mmHg}$

 CO_2 content = 52cc

Point B (arterial blood):

 $PCO_2 = 40 \text{ mmHg}.$

 CO_2 content = 48 cc

Cordissociation Curve Ordissociation Curve Poz or Pcoz

Comparison between O₂ and CO₂ curves:

- CO₂ content curve is linear.
- The CO₂ content of blood is **more than twice** the O₂ content of the blood because of greater solubility in blood.
- CO₂ curve is much **steeper** i.e. much larger changes occur for the same changes in partial pressure.
- Over-ventilation of parts of lung can remove CO₂ to compensate for the under-ventilation of other parts of lungs (such compensation can not occur for O₂).

O₂, CO₂ and H⁺ interaction

Bohr effect:

It is the effect of CO₂ and H⁺ on Hb binding with O₂

Binding of CO_2 and H^+ with Hb will decrease Hb affinity to O_2 , Shiftting of oxyhaemoglobin curve to the right

Haldane effect:

It is the effect of O₂ on Hb binding with CO₂ and H⁺

Increasing Hb oxygen (HbO₂) saturation decreases blood CO₂ binding capacity

SUGGESTED TEXTBOOKS

- 1. Guyton and Hall textbook of medical physiology, thirteenth edition 2016, Elsevier, chapter 41, from page 534 to 536
- 2. Ganong's Review of Medical Physiology, twenty-fifth edition 2016, McGraw-Hill Education, chapter 35, from page 643 to 641
- 3. Lauralee Sherwood Human Physiology: From Cells to Systems, Ninth edition 2016. CENGAGE, chapter 13, from page 476 to 477