2. Niech B bedzie liczba naturalna wieksza od 1. Wykazac, ze kazda niezerowa liczba rzeczywista x ma jednoznaczne przedstawienie w postaci znormalizowanej $x = smB^{C}$, gdzie s jest znakiem liczby x, c – liczba calkowita (cecha), a m – liczba z przedzialu [1,B), zwana mantysa.

Zalozmy nie wprost, ze istnieje taka liczba $x \in \mathbb{R}$, dla ktorej nie istniaja takie $c \in \mathbb{Z}$ oraz $m \in [1,B)$, ze $x = smB^c$.

Dla ulatwienia dowodu skupimy sie na liczbach x>0 – wowczas s=1, a dla liczbx<0 wystarczy obrocic znaki nierowności oraz przyjac s=-1. Niech c_0 , $c_1\in\mathbb{Z}$ beda takimi liczbami, ze

$$\mathsf{B^{c_0}} < \mathtt{x} < \mathsf{B^{c_1}}$$

oraz $|c_1 - c_0| = 1$. Wowczas liczba

$$y = \frac{x}{B^{C_0}}$$

spelnia y \in [1, B), gdyz x \in [B^{c0}, B^{c0+1}). W takim razie mozemy powiedziec, ze

$$x = y \cdot B^{c_0}$$
.

Ale wtedy x mozna zapisac według zasad opisanych w tresci - sprzecznosc.

0.1 3. Czesc rozw w pliku .jl

```
function frst_exp(x, s, t, r)
      ret = zero(x)
      ret = (x^3) - (s*(x^2)) + t*x - r
      print(""", typeof(x), ""wynik:", ret, "\n")
  end
  function snd_exp(x, s, t, r)
      ret = zero(x)
      ret = ((x - s) * x + t) * x - r
      print("__", typeof(x), "_wynik:_", ret, "\n")
  frst_{exp}(Float16(4.71), Float16(6), Float16(3), Float16(0.149)) # -14.58
  frst_exp(Float32(4.71), Float32(6), Float32(3), Float32(0.149)) # -14.6365
  frst_exp(Float64(4.71), Float64(6), Float64(3), Float64(0.149)) # -14.636489000000006
  print("alternatywne_wyrazenie:\n")
snd_exp(Float16(4.71), Float16(6), Float16(3), Float16(0.149)) # -14.63
  snd_{exp}(Float32(4.71), Float32(6), Float32(3), Float32(0.149)) # -14.63649
  snd_{exp}(Float64(4.71), Float64(6), Float64(3), Float64(0.149)) # -14.636489
```

-14.636489 - wartosc prawidlowa

Float16	$\frac{ -14.636489+14.58 }{14.636489} = \frac{0.056489}{14.636489} = 0.003859463837$	$\frac{ -14.636489+14.63 }{14.636489} = \frac{0.006489}{14.636489} = 4.43344029 \cdot 10^{-4}$
Float32	$\frac{ -14.636489+14.6365 }{14.636489} = \frac{0.000011}{14.636489} = 7.51546358$	$\frac{ -14.636489+14.63649 }{14.636489} = \frac{0.000001}{14.636489}$
Float64	0.00000000000000000000000000000000000	<u> -14.636489+14.636489 </u> 14.636489 = ∅