

9.2 平面运动的速度分析

1. 基点法

设在平面运动刚体上取点A为基点,已知其速度为 ν_A ,平面图形S也即平面运动刚体的角速度为 ω ,分析图形上任一点B 的速度。

将B点的运动视为复合运动。

动点 - B点。

动系 - 以A点为原点的平移系 Axy。

定系 - 固连于地球。

绝对运动 - 未知。

相对运动 - 绕基点 A的圆周运动。

$$v_{\rm r} = v_{BA} = AB \cdot \omega$$

牵连运动 - 随基点A的平动 , $v_e = v_A$ 。

根据速度合成定理 $\nu_a = \nu_e + \nu_r$ 注意到

$$v_a = v_B$$
, $v_e = v_A$, $v_r = v_{BA}$

则有

$$v_B = v_A + v_{BA}$$

有结论:

平面图形上任意点的速度,等于基点的速度,与这一点对于以基点为原点的平移系的相对速度的矢量和。

2. 速度投影法

应用速度合成定理

$$v_B = v_A + v_{BA}$$

上式等号两侧 分别向AB连线上投影 ρ 因为 ν_{BA} 垂直于AB ,所以 ν_{BA} 在AB上投影等于零。

则有

 $v_A \cos \alpha = v_B \cos \beta$

速度投影定理:平面图形上任意两点的速度在这两点连线上的投影相等。

例题1 已知曲柄滑块机构中,曲柄OA = r,以匀角速度 ω_0 绕O 轴转动,连杆AB = l。在图示情形下连杆与曲柄垂直。求该瞬时(1) 滑块的速度 ν_B ;(2) 连杆AB的角速度 ω_{AB} 。

平面运动的速度分析

解:

基点法

连杆AB作平面运动。A 点速度 ν_A 已知, $\nu_A=r$ ω_0

以A为基点。应用速度合成定理

$$v_B = v_A + v_{BA}$$

画出速度合成矢量图。

(1)求该瞬时滑块的速度 v_B

由速度合成矢量图可得滑块的速度:

$$v_B = \frac{v_A}{\cos \varphi_0} = \frac{r\omega_0}{\cos \varphi_0}$$

方向铅直向上。

平面运动的速度分析

(2) 求该瞬时连杆AB的角速度 ω_{AB}

$$\omega_{AB} = \frac{v_{BA}}{l}$$

$$= \frac{v_A \tan \varphi_0}{l} = \frac{r \omega_0}{l} \tan \varphi_0$$

顺时针转向。

速度投影法

解:应用速度投影定理

$$[v_A]_{AB} = [v_B]_{AB}$$

有
$$v_A \cos \alpha = v_B \cos \beta$$

因为
$$v_A = r \omega_0$$
 , $= 0$, $= \varphi_0$

从而有
$$v_A = v_B \cos \varphi_0$$

$$v_B = \frac{r\omega_0}{\cos\varphi_0}$$

应用速度投影定理无法求得连杆AB的角速度。

例题2 如图所示,半径为R的车轮,沿直线轨道作无滑动的滚动,已知轮心O以匀速 v_o 前进。求轮缘上A,B,C和D各点的速度。

解:车轮作平面运动。用基点法分析求解。

因为轮心O的速度已知,故选O点为基点。

应用速度合成定理,轮缘上C点的速度可表示为

$$\mathbf{v}_C = \mathbf{v}_O + \mathbf{v}_{CO}$$

其中 ν_{CO} 的方向已知,其大小 ν_{CO} = $R \omega$ 。

由于车轮只滚不滑,因此车轮的角速度为 $\omega = \frac{v_o}{R}$ (顺时针),

$$v_{cx} = v_o - v_{co} = v_o - R \omega = v_o - v_o = 0$$

 $v_{cy} = 0, v_c = 0$

车轮的角速度 $\omega = \frac{v_o}{R}$ (顺时针)

应用基点法,各点的速度求得如下:

A :
$$v_A = v_0 + v_{A0}$$

$$v_A = v_0 + v_{A0}, \quad v_{AO} = R \omega = v_0$$

$$v_A = 2 v_0$$

$$B \stackrel{\blacksquare}{=} : \quad v_B = v_O + v_{BO}$$

$$v_{BO} = R \omega = v_O, \quad v_B = \sqrt{2} v_O$$

$$D$$
 : $v_D = v_O + v_{DO}$ $v_{DO} = R \omega = v_O, \quad v_D = \sqrt{2}v_O$

车轮的角速度 $\omega = \frac{v_o}{R}$ (顺时针)

应用基点法,各点的速度求得如下:

$$A \stackrel{\blacksquare}{=} : \quad v_A = v_C + v_{AC}$$

$$v_C = 0, \quad v_A = v_{AC} = 2R \ \omega = 2v_O$$

$$B \stackrel{\blacksquare}{=} : \qquad v_B = v_C + v_{BC}$$

$$v_B = \sqrt{2} R \omega = \sqrt{2} v_O$$

$$D_{\overline{A}}: \quad v_D = v_C + v_{DC}$$

$$v_D = \sqrt{2}R \omega = \sqrt{2}v_O$$

3. 瞬心法

(1) 瞬心的定义 —— 某瞬时平面运动刚体上速度为零的点称为瞬时速度中心,简称为速度瞬心。

(2) 瞬心的存在性 设已知平面图形<math>S上某点A的速度 ν_A ,平面 图形的角速度 ω 。

请思考

速度为零的点可能在哪出现?

答:速度为零的点可能出现在 v_A 的垂直线 AN上。

(2)瞬心的存在 速度为零的点可能出现在 ν_A 的垂直线AN上。

过A点作 ν_A 的垂直线AN, AN上各点的速度由两部分组成:

.跟随基点平移的速度 v_A ——牵连速度,各点相同;

.相对于基点转动的速度 ν_{PA} ——相对速度 ,自A点起线性分布。

因为AN线上各点相对于基点转动的速度与A点的速度方向相反,其大小正比于该点到A点的距离,故必有一点P的速度满足 $\nu_P = \nu_A - \nu_{PA} = \nu_A - PA \cdot \omega = 0$

由此求得 $PA = \frac{v_A}{\omega}$

速度为零的点P即为该瞬时平面图形的速度瞬心。

(2)瞬心的存在

$$PA = \frac{v_A}{\omega}$$

若平面图形的角速度不等于零,则在每一瞬时,该图形上(或其延展部分)总有一速度为零的点,即速度瞬心。

(3)速度瞬心法

若在某瞬时以速度瞬心P为基点,则平面图形上任一点M的速度大小

$$v_M = v_{MP} = MP \cdot \omega$$

其方向 $\perp MP$,指向与 ω 转向一致。

- ① 求出速度瞬心P 的位置和平面图形的角速度 ω ,就可求得平面运动刚体上所有点的速度,这种方法称为速度瞬心法。
- ② 平面图形上各点的速度分布,与图形在该瞬时以角速度 ω 绕速度瞬心P作定轴转动时一样。

- (4)速度瞬心位置的确定
 - 第一种情形

已知某瞬时平面图形上A / B两点的速度方位,则这两点速度的垂

线的交点就是速度瞬心。

● 第二种情形

① 已知平面图形上两点的速度矢量的大小与方向,而且二矢量互相平行、方向相同,但二者都不垂直于两点的连线。则速度瞬心在无穷远处。此时平面运动刚体的角速度

$$\omega = \frac{v_A}{\infty} = 0$$

该瞬时各点速度均平行,且大小相等,其分布与平移时速度一样,这种情形称为瞬时平动。

● 第二种情形

② 已知平面图形上两点的速度矢量的大小与方向,而且二矢量互相平行、方向相同、大小相等,都垂直于两点的连线,则速度瞬心仍在无穷远处。

此时平面运动刚体的角速度

$$\omega = \frac{v_A}{\infty} = 0$$

该瞬时平面运动刚体仍处于瞬时平动状态。

● 第三种情形

已知平面图形上两点的速度矢量的大小与方向,而且二矢量互相平行,并且都垂直于两点的连线。则速度瞬心在两点速度矢端连线与AB延长线的交点处。

● 第四种情形

当平面运动刚体在一固定平面上作纯滚动时,其接触点即为速度瞬心。

(5)速度瞬心的特点

● 瞬时性:不同的瞬时,有不同的速度瞬心;因此瞬心具有加速度。

- 唯一性:某一瞬时只有一个速度瞬心;
- 瞬时转动特性:平面图形在某一瞬时的运动都可以视为绕这一瞬时的速度 瞬心作瞬时转动。
- ▶ 注意瞬时平动与平动的区别:瞬时平动各点的速度相同, 但是加速度不同。

例题1 已知四连杆机构中, $O_1B = l$, $AB = \frac{3}{2}l$, $AD_0 = DB$

OA以角速度 ω_0 绕O轴转动。求(1)B和D点的速度;(2)AB杆的角速度。

解:机构中杆AB作平面运动,杆OA和 O_1B 都作定轴转动。

A , B二点的速度 ν_A 和 ν_B 的方向都可以确定。

作 ν_A 和 ν_B 的垂线,相交于 C_{ν} ,此即杆AB的速度瞬心。

图中的几何关系:

$$OA = \sqrt{2}l$$
, $AB = BP = \frac{3}{2}l$
 $AP = \frac{3\sqrt{2}}{2}l$, $DP = \frac{3\sqrt{5}}{4}l$

平面运动的速度分析

(1)求B和D点的速度。

因为A点的速度 $v_A = OA \cdot \omega_0 = \sqrt{2}l\omega_0$ 所以,连杆AB 的角速度

$$\omega_{AB} = \frac{v_A}{AP} = \frac{\sqrt{2}l\omega_0}{\frac{3\sqrt{2}}{2}l} = \frac{2}{3}\omega_0$$

顺时针转向

B点的速度

$$v_B = BP \cdot \omega_{AB} = \frac{v_A}{AP}$$
$$= \frac{3}{2}l \times \frac{2}{3}\omega_0 = l\omega_0$$

连杆AB 的角速度

$$\omega_{AB} = \frac{v_A}{AP} = \frac{\sqrt{2}l\omega_0}{\frac{3\sqrt{2}}{2}l} = \frac{2}{3}\omega_0$$

D点的速度

$$v_D = DP \cdot \omega_{AB} = \frac{3\sqrt{5}}{2} l \times \frac{2}{3} \omega_0$$
$$= \frac{\sqrt{5}}{2} l \omega_0$$

例4-6 如图所示,节圆半径为r的行星齿轮II由曲柄OA带动在节圆半径为R 的固定齿轮 I 上作无滑动的滚动。已知曲柄OA以匀角速度 ω_O 转动。求在图示位置时,齿轮II节圆上 M_1 , M_2 , M_3 和 M_4 各点的速度。图中线段 M_3M_4 垂直于线段 M_1M_2 。

解: 行星齿轮 II 作平面运动。因为行星轮 II滚而不滑, 所以其速度瞬心在二轮接触点 C处, 利用瞬心法进行求解。为此先求轮 II 的角速度。

因为A点的速度

$$v_A = OA \cdot \omega_O = (R + r) \cdot \omega_O = AC \cdot \omega = r \cdot \omega$$

因此轮 II 的角速度 $\omega = \frac{R+r}{r}\omega_0$ (逆时针)

所以轮 II 上 M_1 , M_2 , M_3 和 M_4 各点的速度分别为:

$$v_1 = v_c = 0 , v_2 = CM_2 \cdot \omega = 2(R + r)\omega_0$$

$$v_3 = v_4 = CM_3 \cdot \omega = \sqrt{2}(R + r)\omega_0 ,$$
 各点的速度方向如图所示。

例4-7 在双滑块摇杆机构中,滑块A和B可沿水平导槽滑动,摇杆OC可绕定轴O转动,连杆CA和CB可在图示平面内运动,且CB=l。当机构处于图所示位置时,已知滑块A的速度 v_A ,试求该瞬时滑块B的速度 v_B 以及连杆CB的角速度 ω_{CB} 。试用速度瞬心法求解。

解: 连杆AC和BC均作平面运动。

对于连杆AC: 其速度瞬心在点A和C速度 ν_A 和 ν_C 垂线的交点 P_1 。

由图可知, $P_1A=P_1C$,所以 $v_C=v_A$

对于连杆BC: 其速度瞬心在点B和C速度 v_B 和 v_C 垂线的交点 P_2 。

因为 $P_2C = CB \cdot \tan 30^\circ = \frac{\sqrt{3}}{3}l$

故得连杆CB角速度

$$\omega_{CB} = \frac{v_C}{P_2C} = \frac{\sqrt{3}}{l}v_A \qquad (逆时针)$$

少 于是滑块B 速度的大小为

$$v_B = P_2 B \cdot \omega_{CB} = \frac{2}{\sqrt{3}} l \times \frac{\sqrt{3}}{l} v_A = 2v_A \quad (水平向右)$$

例4-3 如图平面铰链机构。 已知杆 O_1A 的角速度是 ω_1 ,杆 O_2B 的角速度是 ω_2 ,转向如图, 且在图示瞬时,杆 O_1A 铅直, 杆AC 和 O_2B 水平,而杆BC对 铅直线的偏角 30° ;又 $O_{\gamma}B=b$, $O_1A = \sqrt{3} b$ 。 试求在这瞬时C 点 的速度。

解:连杆AC和BC均作平面运动。

先求出A点和B点的速度。有

$$v_A = \omega_1 O_1 A = \sqrt{3} \omega_1 b$$

$$v_B = \omega_2 O_2 B = \omega_2 b$$

 v_A 和 v_B 的方向如图。

以A点为基点分析C点的速度,有 $\mathbf{v}_C = \mathbf{v}_A + \mathbf{v}_{CA}$ (1) 另外,又以B作为基点分析C点的速度,有

$$\mathbf{v}_{C} = \mathbf{v}_{B} + \mathbf{v}_{CB} \quad (2)$$

$$\mathbf{v}_{A} + \mathbf{v}_{CA} = \mathbf{v}_{B} + \mathbf{v}_{CB}$$

比较以上两式,有

平面运动的速度分析

西北工业大学

$$|\boldsymbol{v}_A + \boldsymbol{v}_{CA}| = |\boldsymbol{v}_B + \boldsymbol{v}_{CB}|$$

沿x 轴投影上式 , 得

$$v_A = v_{CB} \cos 30^\circ$$

由此求得

$$v_{CB} = \frac{v_A}{\cos 30^\circ} = 2\omega_1 b$$

方向如图

把 $v_C = v_B + v_{CB}$ 式分别投影到x, y 轴上, 有

$$v_{Cx} = v_{Bx} + v_{CBx} = 0 + v_{CB} \cos 30^{\circ} = \sqrt{3}\omega_{1}b$$

 $v_{Cy} = v_{By} + v_{CBy} = -v_{B} - v_{CB} \sin 30^{\circ} = -(\omega_{1} + \omega_{2})b$

(也可以向BC投影求 v_{CA_a} 代入 $v_C = v_A + v_{CA}$)

$$v_{Cx} = v_{Bx} + v_{CBx} = 0 + v_{CB} \cos 30^{\circ} = \sqrt{3}\omega_{1}b$$

$$v_{Cy} = v_{By} + v_{CBy} = -v_{B} - v_{CB} \sin 30^{\circ} = -(\omega_{1} + \omega_{2})b$$

于是得

$$v_{C} = \sqrt{v_{Cx}^{2} + v_{Cy}^{2}} = b\sqrt{3\omega_{1}^{2} + (\omega_{1} + \omega_{2})^{2}}$$
$$= b\sqrt{4\omega_{1}^{2} + 2\omega_{1}\omega_{2} + \omega_{2}^{2}}$$

$$\tan(\mathbf{v}_C, \mathbf{x}) = \frac{v_{Cy}}{v_{Cx}} = \frac{-(\omega_1 + \omega_2)}{\sqrt{3}\omega_1}$$

谢谢!