- 1 Circle at most one answer per question. 10 points for each correct answer and -5 points for each incorrect answer (blank answer is 0 points). Don't guess!
- (a) P(n) is a predicate  $(n \in \mathbb{N})$ . P(1), P(2), P(3) are true, and  $P(n) \to P(n+4)$  is true for  $n \ge 1$ . For which n can we be <u>sure</u> P(n) is true?
  - All  $n \ge 1$  except multiples of 2.
  - B All  $n \ge 1$  except multiples of 4.
  - C All  $n \ge 1$
  - D Only n = 1, 2, 3.
- (b) Of the following five sets, list all that are countable ( $\mathcal{A}$  is countable if  $\mathbb{N} \xrightarrow{\sup} \mathcal{A}$ ):
  - (I) Prime numbers; (II) Rational numbers; (III) Integers; (IV) Even numbers; (V) Infinite binary strings.
  - A I and III.
  - B I and II and III and IV.
  - C I and III and V.
  - D II and III and IV.
- (c) A class with 25 students needs to choose a representative committee which is a <u>subset</u> of 5 students. How many different committees can be formed?
  - A 25<sup>5</sup>.
  - $\mathbb{B} \frac{25!}{20! \times 5!}$
  - $C \frac{25!}{5!}$ .
  - $\boxed{D} 25 \times 24 \times 23 \times 22 \times 21 = \frac{25!}{20!}$
- (d) A friendship network has 7 people and each person has at least 1 friend. 6 of the people have exactly two friends. How many friends can the 7th person have? Give all possibilities.
  - A The seventh person could have either 2 or 4 friends.
  - B The seventh person could have either 2 or 4 or 6 friends.
  - C The seventh person could have either 1 or 2 or 3 friends.
  - D The seventh person could have any number of friends that is greater than 1.
- (e) Compute the summation  $(0+1)+(1+2)+(2+4)+(3+8)+\cdots+(10+2^{10})=\sum_{i=0}^{10}(i+2^i)$ 
  - A 2048.
  - B 2102.
  - C 1078.
  - D 2200.

(f) You have a known fact that 0 = 0 and all the standard operations of algebra you learned in high-school math. Which of the following is a valid proof that 7 = 7:

1. 
$$7 \neq 7$$
  
2.  $7 - 7 \neq 7 - 7$   
3.  $0 \neq 0$  !FISHY  
 $7 = 7$ 

- A I & II & III.
- B II & III.
- C I & II
- D I & III.
- (g) Let  $f(n) = \sum_{i=1}^{n} i$  and  $g(n) = 2^{3 \log_2 n}$ . What is the big-Oh relationship between f and g?
  - A f(n) = O(g(n)) and g(n) = O(f(n)).
  - B f(n) = O(g(n)) and  $g(n) \neq O(f(n))$ .
  - C  $f(n) \neq O(g(n))$  and g(n) = O(f(n)).
  - D  $f(n) \neq O(g(n))$  and  $g(n) \neq O(f(n))$ .
- (h) You independently generate the ten bits of a binary sequence  $b_1b_2\cdots b_{10}$  with  $\mathbb{P}[b_i=0]=\frac{1}{2}$ . Compute the probability that the sequence is sorted from low to high. For example 0000111111 is sorted.
  - $A \frac{10}{1024}$
  - $\frac{11}{1024}$
  - $C \frac{20}{1024}$
  - $D \frac{12}{1024}$
- (i)  $x_1, x_2, x_3$  are non-negative integers. Compute the number of different solutions to  $x_1 + x_2 + x_3 = 100$ . (For example two different solutions are 1 + 2 + 97 = 100 and 97 + 1 + 2 = 100.)
- A 10302
- B 5151
- C 4949
- D 5050
- (j) For the automaton on the right, which input string is accepted? (Strings are processed from left to right.)
- A 010101
- B 0101011
- C 01010110
- D 010101100



### 2 Proofs

1. Prove that for all integers  $n \ge 1$ :  $n2^n \le 3^n$ 

2. Prove that every odd natural number is the difference of two square numbers.

### 3 Finite Automaton with a Random Input String

The automaton to the right processes a random binary string  $b_1b_2\dots b_n$  of length n generated as follows: you independently generate each bit  $b_i$  with  $\mathbb{P}[b_i=1]=p$  and  $\mathbb{P}[b_i=0]=1-p$ . Show that the probability that the string is accepted is



 $\mathbb{P}[\text{ random input string is accepted }] = 1 - (1-p)^n - np(1-p)^{n-1}.$ 

 $[\mathit{Hints:}\ (i)\ \mathit{Figure}\ \mathit{out}\ \mathit{a}\ \mathit{simple}\ \mathit{property}\ \mathit{of}\ \mathit{a}\ \mathit{string}\ \mathit{for}\ \mathit{it}\ \mathit{to}\ \mathit{be}\ \mathit{accepted}.\ (ii)\ \mathit{Binomial}\ \mathit{distribution.}]$ 

### 4 Probability and Expectation

(a) You independently roll 3 fair dice  $D_1, D_2, D_3$  and let  $S = D_1 + D_2 + D_3$  be the sum. Compute:

(i)  $\mathbb{P}[S = 8]$ 

 $(ii) \mathbb{P}[S=8 \mid D_1=1]$ 

(iii) Compute the expectation and variance of S.

- (b) You toss a fair coin independently until you get two heads in a row. Let X be the number of tosses. Compute  $\mathbb{E}[X]$  using the law of total expectation:
  - (i) Consider the 3 cases T, HT, HH for how the tosses may start and show that

$$\mathbb{E}[X] = \frac{1}{2}(1 + \mathbb{E}[X]) + \frac{1}{4}(2 + \mathbb{E}[X]) + \frac{1}{2}.$$

(ii) Use (i) to show that  $\mathbb{E}[X] = 6$ .

#### 5 Context Free Grammars

This problem is about the language  $\mathcal L$  generated by the CFG:

 $\begin{array}{ccc} S & \rightarrow & 1T \mid 0T \\ T & \rightarrow & 1T1 \mid 0T0 \mid \epsilon \end{array}$ 

(a) Is the string 1010010 in  $\mathcal{L}$ ? If yes then give a derivation or parse tree; if  $\underline{no}$  then explain why.

(b) Prove that the length of every string in L is odd.

#### 6 Turing Machine

(a) What is the difference between a Turing-recognizable language and a Turing-decidable language?

(b) Consider the arithmetic task of squaring, which corresponds to the language  $\mathcal{L} = \{0^n \# 0^{n^2} | n \ge 1\}$ .

(i) Circle the simplest model of computing that you think solves the problem  $\mathcal{L}$ :

Finite Automaton

Context Free Grammar

Turing Machine

(ii) Give your machine from (i) that solves  $\mathcal{L}$  (for a TM, a high level description will do).

### 1 Circle at most one answer per question. 10 points for each correct answer.

- (1) The negation of "All Malik's friends are big and strong" is
  - A None of Malik's friends are big and strong.
  - B Malik has a friend who is either small or weak (or both).
  - C All Malik's friends are small and weak.
  - D All Malik's friends are either small or weak (or both).
  - E Malik has no friends who are small or weak.
- (2) What is the <u>most accurate</u> order relation between  $3^{\log_2 n}$  and  $n^2$ ?

$$A$$
  $3^{\log_2 n} \in o(n^2)$ .

$$B 3^{\log_2 n} \in O(n^2).$$

$$C$$
  $3^{\log_2 n} \in \Theta(n^2)$ .

$$D$$
  $3^{\log_2 n} \in \Omega(n^2)$ .

$$E \mid 3^{\log_2 n} \in \omega(n^2).$$

- (3) Compute the summation  $\sum_{i=1}^{20} (-1)^i i^2$  A 190.

  - B 200.
  - C 210.
  - D 220.
  - E 230.
- (4) Let  $f(n) = \sum_{i=1}^{n} i$  and  $g(n) = 4^{\log_2 n}$ . What is the <u>most accurate</u> order relationship between f and g?  $\boxed{\mathbf{A}} \ f \in o(g)$ .
  - $B \mid f \in O(g).$
  - $C \mid f \in \Theta(g).$
  - $D f \in \Omega(g)$ .
  - $E f \in \omega(g)$ .
- (5) Let f(n) be a function satisfying the recurrence f(0) = 0;  $f(n) = f(n-1) + \sqrt{n}$ . Which order relationship describes f.
  - $A f \in \Theta(n)$ .
  - $B \mid f \in \Theta(n \log n).$
  - $C \mid f \in \Theta(n\sqrt{n}).$
  - $\boxed{\mathbf{D}} f \in \Theta(n^2).$
  - $f \in \Theta(n^3)$ .

| (6) A class with 10 students needs to choose a president, vice-president and secretary (a student <u>cannot</u> fill multiple roles). In how many ways can this be done? A 1000.                                              | (11) You independently generate two random ten bit binary sequences and compute a new sequence using the BITWISE-OR of the two random sequences (treating 0 as false and 1 as TRUE). Let $X$ be the number of 1s in the result. What is $\mathbb{E}[X]$ . (for example, 0001110010 BITWISE-OR 1000111000 = 1001111010.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B 720.                                                                                                                                                                                                                        | A 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| C 120.                                                                                                                                                                                                                        | B 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D 10!                                                                                                                                                                                                                         | C 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                               | D 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\mathbb{E}\binom{10}{3}$ .                                                                                                                                                                                                   | E 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (7) A fraternity orders 5 pizzas (eg. 2 with sausage and 3 with meatballs & onion). There are 5 toppings.<br>A pizza can have 0,1 or 2 toppings. How many ways are there for the fraternity to make its order? A 16. Solution | (12) About 1 in a 1000 people have Coeliac disease. The outcome of a test for Coeliac is random: the test makes a mistake on 1 in 10 people who have it (90% accuracy if you have Coeliac); the test makes a mistake on 1 in 100 people who do not have it (99% accuracy if you do not have Coeliac). You got tested, and the result was positive. Approximately what are the chances that you have Coeliac?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| B 16 <sup>5</sup> .                                                                                                                                                                                                           | lacksquare $A$ $0.1%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\mathbb{C}$ $\binom{16}{5}$ .                                                                                                                                                                                                | B 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\boxed{\mathbb{D}}\binom{20}{15}$ .                                                                                                                                                                                          | C 40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\boxed{\text{E}} \ 16 \times 15 \times 14 \times 13 \times 12.$                                                                                                                                                              | D 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (8) A friendship network has 6 people (A) (B) (C) (D) (E) (F). If you add up the number of friends of each person, you get a total of 26. How many different social network graphs could correspond to this friendship        | E 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| network. (Two graphs are different if they don't have exactly the same edges.)                                                                                                                                                | (13) Which set is <u>not countable</u> ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| lacksquare $lacksquare$ $lacksquare$ $lacksquare$ $lacksquare$ $lacksquare$                                                                                                                                                   | $\boxed{A}$ {1,3,5,7}.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| B 95.                                                                                                                                                                                                                         | $\boxed{\mathrm{B}}$ The prime numbers $\{2,3,5,7,\dots\}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C 105.                                                                                                                                                                                                                        | C All possible angles between 0 and 360.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| D 115.                                                                                                                                                                                                                        | D All even numbers which are not a sum of two primes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| E 125.                                                                                                                                                                                                                        | $[E]$ All possible pairs of integers, $\mathbb{Z}^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (9) You are thinking of a graph with 5 nodes (ABC) (DE). Approximately how many such graphs are there?                                                                                                                        | (14) A random binary string $b_1b_2b_{10}$ of length 10 is the input to the automaton.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A 100.                                                                                                                                                                                                                        | What is the probability that the string is accepted? $ \boxed{A} 0.25 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| B 500.                                                                                                                                                                                                                        | A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A  =  A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C 1000.                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| D 5000.                                                                                                                                                                                                                       | $\boxed{\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0cm}\rule{.5cm}\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\rule{.5cm}\rule{.5cm}\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\rule{.5cm}\rule{.5cm}\hspace{-0.5cm}\boxed{\hspace{-0.5cm}\rule{.5cm}\hspace{-0.5cm}\rule{.5cm}\hspace{-0.5cm}\rule{.5cm}\hspace{-0.5cm}\rule{.5cm}\hspace{-0.5cm}\rule{.5cm}\hspace{-0.5cm}\rule{.5cm}\hspace{-0.5cm}\rule{.5cm}\hspace{-0.5cm}\rule{.5cm}\hspace{-0.5cm}\rule{.5cm}\hspace{-0.5cm}\rule{.5cm}\hspace{-0.5cm}\rule{.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\rule{.5cm}\hspace{-0.5cm}\rule{.5cm}\hspace{-0.5cm}\rule{.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\rule{.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace{-0.5cm}\hspace$ |
| E 10000.                                                                                                                                                                                                                      | E 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10) $X$ and $Y$ are random variables (not necessarily independent). Which of the following is an expression for $Var(X+Y)$ (variance of the sum)?                                                                             | (15) Which string below is <u>not</u> in the language of the CFG: $S \longrightarrow \varepsilon \mid 0S S0 11S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\boxed{\textbf{A}} \ Var(X) + Var(Y).$                                                                                                                                                                                       | $oxed{f A}arepsilon$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\boxed{\mathrm{B}} \ \mathbb{E}[(X+Y)^2].$                                                                                                                                                                                   | B 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\boxed{\mathbb{C}} \ \mathbb{E}[X^2] + \mathbb{E}[Y^2] - \mathbb{E}[X]^2 - \mathbb{E}[Y]^2.$                                                                                                                                 | C 11011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\boxed{\mathbb{D}} \ Var(X) + Var(Y) + 2  \mathbb{E} \left[ XY \right] - 2  \mathbb{E} \left[ X \right] \mathbb{E} \left[ Y \right].$                                                                                        | D 0011000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\boxed{\mathrm{E}} \ Var(X) + Var(Y) - 2Var(XY).$                                                                                                                                                                            | E 001010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

### 2 Positive Integer Partitions

A positive partition of n is a sequence of positive integers that add up to n. For example, (6,4), (4,6) and (2,4,2,2) are different partitions of 10. How many positive partitions of n are there? Prove your answer.

### 3 Proofs

(a) <u>Prove</u> that  $n^2 \leq 3^n$  for integer  $n \geq 0$ .

(b) <u>Prove</u> that  $n^3 \notin O(n^2)$ . You must <u>prove</u> that there is no <u>constant</u> C for which  $n^3 \leq Cn^2$  for all  $n \geq 1$ .

### 4 Counting Paths on Graphs with Holes

A grid is missing nodes at (2,2), (5,5) and (8,8). A *shortest* path from the bottom left node (0,0) to the top right node (10,10) is shown.

How many <u>different</u> shortest paths go from (0,0) to (10,10)? (Two paths are different if they do not have exactly the same edges).

You may leave your answer in the form of a combination of binomial coefficients – you do not need to compute a numerical answer.



### 5 Turing Machine and Exponentiation

(a) <u>Prove</u>: the problem (language)  $\mathcal{L} = \{0^n \# 1^{2^n} \mid n \geq 1\}$  <u>cannot</u> be solved (accepted) by a finite automaton.

(b) Give a high-level description of a Turing Machine that solves  $\mathcal{L} = \{0^n \# 1^{2^n} \mid n \geq 1\}$ .

6

7

### 1 Circle at most one answer per question. 10 points for each correct answer.

- (1) The **negation** of "Every student is a friend of some other student" is
  - A Some student has a friend who is a student.
  - B Some student is a friend of all students.
  - C Some student is not a friend of some other student.
  - D Some student is not a friend of all other students.
  - E Some student has no friends.
- (2) Estimate  $2^1 \times 2^2 \times 2^3 \times \cdots \times 2^{20} = \prod_{i=1}^{20} 2^i$ .
  - A  $1.65 \times 10^{61}$
  - B  $1.65 \times 10^{63}$
  - $\boxed{\text{C}} \ 1.65 \times 10^{65}$
  - D  $1.65 \times 10^{67}$
  - $\boxed{\text{E}} 1.65 \times 10^{69}$
- (3) What is the <u>most accurate</u> order relation between  $2^n$  and  $e^n$ ?
  - A  $2^n \in o(e^n)$ .
  - $B 2^n \in O(e^n).$
  - C  $2^n \in \Theta(e^n)$ .
  - D  $2^n \in \Omega(e^n)$ .
  - $E 2^n \in \omega(e^n).$
- (4) f(n) satisfies the recurrence f(0) = 1; f(n) = nf(n-1). Which order relationship describes f.
  - $A f \in \Theta(2^n).$
  - $\boxed{\mathbf{B}} f \in O(2^n).$
  - $C \mid f \in o(2^n).$
  - $D \mid f \in \Theta(n^n).$
  - $E \mid f \in o(n^n).$

- (5) What is the greatest common divisor of 756 and 840?
  - A 12.
  - B 28.
  - C 63.
  - D 84.
  - E 189.
- (6) What is the minimum number of colors needed to color the graph on the right?
  - A 2.
  - B 3.
  - C 4.
  - D 5.
  - E 6.



- (7) On the right is the  $4 \times 12$  grid graph. What is the average degree of a node?
  - A 3.
  - $B 3\frac{1}{4}$ .
  - $C 3\frac{1}{3}$ .
  - $D 3\frac{1}{2}$ .
  - $\mathbb{E} \ 3\frac{2}{3}$ .

- (8) Shirts come in 6 colors. 4 students are in a row. You must assign shirts to the students, and two students standing next to each other cannot get the same color shirt. In how many ways can you do this?
  - $A \begin{pmatrix} 9 \\ 3 \end{pmatrix}$ .
  - $\boxed{\text{B}} \ 6 \times 5 \times 4 \times 3.$
  - $\mathbb{C}$   $\binom{6}{4}$ .
  - $\boxed{\mathrm{D}}$   $6 \times 5^3$ .
- $\boxed{\mathrm{E}}$   $6^4$ .

| <ul> <li>(9) Pokemons have 4-digit serial numbers, e.g. 0255. A pokemon is defective if any digit repeats (e.g. 0255, 5250, 5255 are defective). Approximately what fraction of the possible serial numbers are defective?  A 0. B 0.25. C 0.5. D 0.75. E 1.</li> </ul>    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>(10) A senate committee of 10 senators must pick a president. 3 candidates will be proposed from the 10 senators, and everyone votes. In how many ways can the 3 candidates be chosen.</li> <li>A 1000.</li> <li>B 720.</li> <li>C 120.</li> <li>D 10!</li> </ul> |
|                                                                                                                                                                                                                                                                            |
| Three media 3   12   2   2   2   2   2   2   2   2                                                                                                                                                                                                                         |
| <ul> <li>(12) You are thinking of a graph with 4 nodes (A) (B) (C) (D). How many such graphs are there?</li> <li>A) 24.</li> <li>B) 64.</li> <li>C) 81.</li> <li>D) 256.</li> <li>E) 4096.</li> </ul>                                                                      |

| (13) $\mathbf{X}, \mathbf{Y}$ are random variables (not necessarily independent) and $\mathbf{Z} = a\mathbf{X} + b\mathbf{Y}$ . What is $\mathbb{E}[\mathbf{Z}]$ ?                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $oxed{\mathbb{A}} a \ \mathbb{E} \left[ \mathbf{X}  ight] + b \ \mathbb{E} \left[ \mathbf{Y}  ight]$                                                                                                              |
| $oxed{\mathrm{B}} a^2  \mathbb{E} \left[ \mathbf{X} \right] + b^2  \mathbb{E} \left[ \mathbf{Y} \right]$                                                                                                          |
| $\boxed{\mathrm{C}} (a+b)(\mathbb{E}[\mathbf{X}] + \mathbb{E}[\mathbf{Y}])$                                                                                                                                       |
| $\boxed{\mathbf{D}} \ a(\mathbb{E}[\mathbf{X}] + \mathbb{E}[\mathbf{Y}]) + b(\mathbb{E}[\mathbf{X}] + \mathbb{E}[\mathbf{Y}])$                                                                                    |
| E None of the above are true in general.                                                                                                                                                                          |
| (14) This test has 20 multiple choice questions, each with 5 possible choices. If you answer question randomly, what is the expected number of multiple questions you get correct?                                |
| A 3                                                                                                                                                                                                               |
| B 4                                                                                                                                                                                                               |
| C 5                                                                                                                                                                                                               |
| D 6                                                                                                                                                                                                               |
| E 10                                                                                                                                                                                                              |
| (15) About 1 in a 1000 people have Coeliac disease. The test for Coeliac randomly makes a mistake 5% of the time (95% accuracy). You tested positive. <i>Approximately</i> what are the chances you have Coeliac? |
| <u>A</u> ] 0.2%                                                                                                                                                                                                   |
| B 2%                                                                                                                                                                                                              |
| C 20%                                                                                                                                                                                                             |
| D 50%                                                                                                                                                                                                             |
| E 95%                                                                                                                                                                                                             |
|                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                   |

(16) A random binary string  $b_1b_2\dots b_{10}$  of 10 bits is the input to the automaton. What is the probability that the string is accepted?

| A | $\frac{2}{1024}$  |
|---|-------------------|
| В | $\frac{45}{1024}$ |

$$\frac{45}{1024}$$

$$\begin{array}{c|c} B & \frac{45}{1024} \\ \hline C & \frac{56}{1024} \\ \hline D & \frac{90}{1024} \\ \hline E & \frac{512}{1024} \\ \end{array}$$

$$D \frac{90}{1024}$$

$$\frac{512}{1024}$$



| 17 | ) What is a computing problem?                                                                                                                                                                                                                                                                                                                                                                                        |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | A A Person.                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | B An automaton (machine which transitions between states as it reads the input).                                                                                                                                                                                                                                                                                                                                      |
|    | C An automaton with stack memory.                                                                                                                                                                                                                                                                                                                                                                                     |
|    | D An automaton with random access memory.                                                                                                                                                                                                                                                                                                                                                                             |
|    | <b>E</b> A set containing finite binary strings.                                                                                                                                                                                                                                                                                                                                                                      |
| 18 | ) The computing problem $\mathcal{L} = \{\text{strings with an even number of 1s}\}$ can be solved by:<br>(I) DFA. (II) CFG. (III) Turing Machine.                                                                                                                                                                                                                                                                    |
|    | A I,II,III                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | B I,III                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | C II,III                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | D III only                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | E None of these models of computing                                                                                                                                                                                                                                                                                                                                                                                   |
| 19 | ) The computing problem $\mathcal{L} = \{\text{strings corresponding to programs which Halt}\}$ can be solved by:                                                                                                                                                                                                                                                                                                     |
|    | (I) DFA. (II) CFG. (III) Turing Machine.                                                                                                                                                                                                                                                                                                                                                                              |
|    | A I,II,III                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | B I,III                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | C II,III                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | D III only                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | E None of these models of computing                                                                                                                                                                                                                                                                                                                                                                                   |
| 20 | ) A DFA has $two$ states a start state $q_0$ and a second state $q_1$ . The DFA is described by a list of it accept states and a list of its transition instructions. The order in which you list the accept states an the transition instructions does not matter. We draw a DFA as a graph with nodes $q_0, q_1$ and add directed arrow for each transition instruction (the accepting states have double circles). |
|    | $\underline{\text{How many different DFA's are there with two states?}} \; (\textit{Different DFA's can have the same } \underbrace{\text{\tt VES}}\text{-set})$                                                                                                                                                                                                                                                      |
|    | A 4.                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | B 8.                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | C 16.                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | D 32.                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | E 64.                                                                                                                                                                                                                                                                                                                                                                                                                 |

### 2 Random Walk

A drunk leaves the bar (at position 1), and takes independent steps: left (L) with probability  $\frac{1}{2}$  or right (R) with probability  $\frac{1}{2}$ . The drunk stops when he reaches home (at 0) or the jail (at 3). Compute the expected number of steps the drunk makes.



5

# 3 Induction

(a) G(1)=1; Prove that  $G(n)=\frac{1}{n}$  for integer  $n\geq 1.$   $G(n)=G(n-1)\left(1-\frac{1}{n}\right) \ \text{ for } n>1;$ 

(b) The nth Harmonic number is  $H_n=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ . Prove that  $H_1+H_2+\ldots+H_n=(n+1)H_n-n$ .

### 4 Turing Machine

Give a high-level description of a Turing Machine that solves the problem  $\mathcal{L} = \{0^n \# 1^{n^2} \mid n \geq 0\}$  (squaring). (You may find it useful to illustrate how your TM works on 00#1111.)

| 5 | [Hard] | Unsolvable | Problem |
|---|--------|------------|---------|
|   |        |            |         |

 $\underline{Prove}$  : There is an undecidable computing problem which is a subset of  $\{1\}^*$ .

- 1 Circle at most one answer per question. 10 points for each correct answer.
- (1) Every card has a letter and a number. Rule: If a card has a P on it, then the other side must be a 5.

 $|\mathbf{S}|$ 

5





Which of the above cards *must* be turned over to verify the rule has not been broken.

- A S 5
- B **5 P**
- C S 3
- D P 3
- E None of the above.
- (2) Which set relationship does not hold in general.
  - $\overline{A \cap B} = \overline{A} \cup \overline{B}.$
  - $\overline{\mathbf{B}} \ \overline{A \cup B} = \overline{A} \cap \overline{B}.$
  - $\boxed{\mathbf{C}} \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
  - $\boxed{\mathrm{D}} (A \cup B) \cap \overline{A} = B \cap \overline{A}.$
  - E They all hold in general.
- (3)  $T_0 = 2$  and  $T_n = T_{n-1}^2$  for n > 0. Estimate  $T_{20}$ .
  - A 10<sup>3,156,500</sup>
  - $\boxed{\mathrm{B}} \ 10^{1,156,500}$
  - $C 10^{315,650}$
  - D 10<sup>156,500</sup>
  - $E 10^{31,565}$
- (4)  $T_0=2$  and  $T_n=T_{n-1}^2$  for n>0, as in problem (3). Which order relationship is accurate?
  - A  $T_n \in O(n)$ .
  - $B T_n \in O(2^n)$ .
  - C  $T_n \in O(n!)$ .
  - $D T_n \in O(2^{n!}).$
  - E None of the above.

| (5) What is the last digit of $3^{1000} \times 5^{2000} + 7^{3000} \times 9^{4000}$ ?  A 1. B 2. C 3. D 4. E None of the above.                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>(9) A friendship network has 100 people (vertices) and 2000 edges (friendships). You pick a person at random. What is the expected number of friends this person has?</li> <li>A 10.</li> <li>B 20.</li> <li>C 30.</li> <li>D 40.</li> <li>E None of the above, or not enough information to say for sure.</li> </ul>                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>(6) Let d = gcd(m,n), where m, n &gt; 0. Bezout's identity gives d = mx + ny where x, y ∈ Z. Which of the statements A, B, C or D are false?</li> <li>A It is always possible to choose x &gt; 0.</li> <li>B It is always possible to choose x &lt; 0.</li> <li>C It is possible to find another x, y ∈ Z for which 0 &lt; mx + ny &lt; d.</li> <li>D It is always possible to find a, b ∈ Z for which ax + by = 1.</li> <li>E All the statements A, B, C and D are true.</li> </ul> | <ul> <li>(10) To get into a certain US-college, all students submit at least one of SAT or ACT. 80% of students submit SAT; 40% of students submit ACT. How many students submit both SAT and ACT?  A 10%. B 20%. C 30%. D 40%. E None of the above, or not enough information to say for sure.</li> </ul>                                                                                      |
| (7) The left nodes are tasks and the right nodes are resources. A resource can perform at most one task. What is the maximum number of tasks that can be performed?  A 1. B 2. C 3. D 4. E 5.                                                                                                                                                                                                                                                                                                 | <ul> <li>(11) How many 4 digit strings (digits are 0,1,,9) from 0000 to 9999 have digits which sum to 8. For example 0071, 0233 and 2033 are different digit-strings with digit-sum 8.</li> <li>A (<sup>8</sup><sub>4</sub>) = 70.</li> <li>B (<sup>11</sup><sub>3</sub>) = 165.</li> <li>C 10 × 9 × 8 × 7 = 5040.</li> <li>D 10<sup>4</sup> = 10,000.</li> <li>E None of the above.</li> </ul> |
| <ul> <li>(8) A queen covers a square if that square is on the same row, column or diagonal as the queen. What is the minimum number of queens required to cover all squares on a 5 × 5 chessboard?</li> <li>A 1.</li> <li>B 2.</li> <li>C 3.</li> <li>D 4.</li> <li>E 5.</li> </ul>                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                 |

| (12) How many different friendship networks are possible with the 5 people, (ABO) (Two networks |
|-------------------------------------------------------------------------------------------------|
| are different if they have different edge-sets.)                                                |

- A Approximately 10.
- B Approximately 100.
- C Approximately 1000.
- D Approximately 10,000.
- E Approximately 100,000.

(13) A friendship network has 5 people, (a) (a) (a) (b) (c) (b) (c) Each pair of people independently flips a fair coin and forms a friendship-edge if the flip is H. What is the probability that the network has exactly 5 edges?

- A Approximately 1%.
- B Approximately 2%.
- C Approximately 10%.
- D Approximately 25%.
- E Approximately 50%.

(14) A friendship network has 5 people, (a) (a) (b) (c). Each pair of people independently flips a coin and forms a friendship if they get H. What is the expected number of edges in the friendship network?

- A 2.
- В 3.
- C 4.
- D 5.
- E None of the above.

(15) A tennis club has 20 members who are paired up in twos for the first round of a tournament. In the first round, we only care about who plays whom. How many ways are there of forming the first round matches? [Hint: With 4 members, there are 3 ways to form the first round matches.]

- A 20!
- $B \binom{20}{2}^{10}.$

$$\boxed{\mathbb{C}}\begin{pmatrix}20\\2\end{pmatrix}\times\begin{pmatrix}18\\2\end{pmatrix}\times\begin{pmatrix}16\\2\end{pmatrix}\times\begin{pmatrix}14\\2\end{pmatrix}\times\begin{pmatrix}14\\2\end{pmatrix}\times\begin{pmatrix}12\\2\end{pmatrix}\times\begin{pmatrix}10\\2\end{pmatrix}\times\begin{pmatrix}8\\2\end{pmatrix}\times\begin{pmatrix}6\\2\end{pmatrix}\times\begin{pmatrix}6\\2\end{pmatrix}\times\begin{pmatrix}4\\2\end{pmatrix}\times\begin{pmatrix}2\\2\end{pmatrix}$$

- $\boxed{\mathrm{D}} \ 20!/(2^{10} \times 10!)$
- E None of the above.

(16) **X** is a random variable and  $\mathbf{Z} = a\mathbf{X} + b\mathbf{X}^2$ . What is  $\mathbb{E}[\mathbf{Z}]$ ?

$$\boxed{\mathbf{A}} \; \mathbb{E}[\mathbf{Z}] = a \, \mathbb{E} \; [\mathbf{X}] + b \, \mathbb{E} \; [\mathbf{X}]^2$$

$$\boxed{\mathbf{B}} \ \mathbb{E}[\mathbf{Z}] = a \ \mathbb{E} \ [\mathbf{X}] + b^2 \ \mathbb{E} \ [\mathbf{X}]^2$$

$$\boxed{\mathbb{C} \ \mathbb{E}[\mathbf{Z}] = a \, \mathbb{E} \left[ \mathbf{X} \right] + b \, \mathbb{E} \left[ \mathbf{X}^2 \right]}$$

$$\boxed{\mathbf{D}} \; \mathbb{E}[\mathbf{Z}] = a \; \mathbb{E} \; [\mathbf{X}] + b^2 \; \mathbb{E} \; [\mathbf{X}^2]$$

E None of the above are true in general.

(17)  $\mathbf{X}, \mathbf{Y}$  are independent random variables and  $\mathbf{Z} = \mathbf{X}\mathbf{Y}$ . What is  $\sigma^2(\mathbf{Z})$ , the variance of the product? [Hint: Tinker with simple random variables. Make a conclusion and justify it.]

$$A \sigma^2(\mathbf{Z}) = \sigma^2(\mathbf{X})\sigma^2(\mathbf{Y})$$

$$\boxed{\mathbf{B}} \ \sigma^2(\mathbf{Z}) = \sigma^2(\mathbf{X}) \ \mathbb{E} \left[ \mathbf{Y}^2 \right] + \sigma^2(\mathbf{Y}) \ \mathbb{E} \left[ \mathbf{X}^2 \right]$$

$$\boxed{\mathbf{C}} \ \sigma^2(\mathbf{Z}) = \sigma^2(\mathbf{X}) \ \mathbb{E} \ [\mathbf{Y}]^2 + \sigma^2(\mathbf{Y}) \ \mathbb{E} \ [\mathbf{X}]^2$$

$$\boxed{\mathrm{D}} \ \sigma^2(\mathbf{Z}) = \sigma^2(\mathbf{X}) \ \mathbb{E} \ [\mathbf{Y}^2] + \sigma^2(\mathbf{Y}) \ \mathbb{E} \ [\mathbf{X}]^2$$

E None of the above are true in general.

| $\boxed{A}$ 1/100.                                                                                                              |             |
|---------------------------------------------------------------------------------------------------------------------------------|-------------|
| B 1/12                                                                                                                          |             |
| C 1/8                                                                                                                           |             |
|                                                                                                                                 |             |
| D 1/4                                                                                                                           |             |
| E 9/10                                                                                                                          |             |
|                                                                                                                                 |             |
|                                                                                                                                 |             |
|                                                                                                                                 |             |
|                                                                                                                                 |             |
| (19) The computing problem $\mathcal{L} = \{0^{\bullet n} 1^{\bullet (n+m)} 0^{\bullet m} \mid m, n \geq 0\}$ can be solved by: |             |
| (I) DFA. (II) CFG. (III) Turing Machine.                                                                                        |             |
| A I,II,III                                                                                                                      |             |
| B I,III                                                                                                                         |             |
| C II,III                                                                                                                        |             |
| D III only                                                                                                                      |             |
| E None of these models of computing                                                                                             |             |
| <u> </u>                                                                                                                        |             |
|                                                                                                                                 |             |
|                                                                                                                                 |             |
|                                                                                                                                 |             |
|                                                                                                                                 |             |
|                                                                                                                                 |             |
| (20) Which of these problems can be solved by a computer (Turing Machine)?                                                      |             |
| A Determine if some other program halts or loops forever – UltimateDegugger                                                     |             |
| B Determine (YES) or (NO) if some other program says (YES) on its input and halts.                                              |             |
| $\mathbb{C}$ Given $n \in \mathbb{N}$ , compute $f(n)$ , where $f(n) = 1$ if the nth Turing Machine halts and                   | 0 otherwise |
| D Given m-bit and n-bit binary sequences $b_1 \cdots b_m$ and $c_1 \cdots c_n$ with $m < n$ , is it                             |             |
| n-m bits into various positions of the first sequence so that the two sequences $n-m$                                           |             |
| E None of these problems can be solved.                                                                                         |             |
| <del>_</del>                                                                                                                    |             |
|                                                                                                                                 |             |
|                                                                                                                                 |             |

6

(18) About 1 in a 100 people have Coeliac disease. The test for Coeliac has 90% accuracy, randomly making a mistake only 10% of the time. You tested positive. What are the chances you have Coeliac?

### $2 \quad \text{Independent Sets and Vertex Covers in a Graph. (Tinker, tinker, \ldots)} \\$

A graph G has vertices  $V = \{v_1, \dots, v_n\}$  and edges  $E = \{e_1, \dots, e_m\}$ . Let  $S \subseteq V$  be a subset of the vertices.

- S is a **vertex cover** if every edge in E has at least one endpoint in S.
- S is an **inpdependent set** if no pair of vertices in S is connected by an edge.

<u>Prove:</u> The subset S is a vertex cover if and only if  $\overline{S}$  (the vertices not in S) is an independent set.

# 3 Conditional Probability and Expected Value.

A box has 1 fair coin and 1 two-headed coin. You picked a random coin, flipped it 2 times and both flips were H. You now keep flipping the *same* coin you picked until you flip *two heads in a row*. Let  $\mathbf{X}$  be the number of additional flips you make. Compute  $\mathbb{E}[\mathbf{X}]$ , the expected value of  $\mathbf{X}$ .

### 4 Sums and Induction. (Tinker, tinker,...)

Obtain a formula that does not use a sum for  $S(n) = \sum_{i=1}^{2n} (-1)^i i^2$ . Prove your formula by *induction*.

#### 5 Transducer Turing Machine for Unary to Binary.

Give a high-level description of a transducer Turing Machine to solve unary to binary conversion. The input is  $0^{\bullet n}$  (if not reject). The Turing Machine should halt with the tape showing  $0^{\bullet n} \# w$ , where w is the binary representation of n. (E.g. for input 00000, the the tape should be 00000#101 when the machine halts.)

| 1 | Circle at | most or | ne answer | ner | question. | 10 | noints | for | each | correct | answer |
|---|-----------|---------|-----------|-----|-----------|----|--------|-----|------|---------|--------|
|   |           |         |           |     |           |    |        |     |      |         |        |

- (1) Is this claim true or false.  $\forall n \in \mathbb{Z} : n^2 \geq 0$ .
  - A True.
  - B False.
  - $\overline{\mathbf{C}}$  You can't say because it depends on n.
  - D You can't assign true or false to quantified statements.
  - E It is not a proper statement to which you can assign true or false.
- (2) If it rains on a day, it must rain the next day. Today it did not rain. What can you conclude?
  - A It won't rain tomorrow.
  - B It won't rain on any future day.
  - C It rained yesterday.
  - D It did not rain yesterday but it could have rained on some day prior to yesterday.
  - [E] It did not rain yesterday and it did not rain on any day prior to yesterday.
- (3) To prove P(n) by induction, which is not a valid induction step to prove  $P(n) \to P(n+1)$ .
  - A Assume that P(n) is true and prove that P(n+1) is true.
  - B Assume two things, that P(n) is true and that P(n+1) is false. Now derive a contradiction.
  - C Assume that P(n) is false and prove that P(n+1) is false.
  - D Assume that P(n+1) is false and prove that P(n) is false.
  - E All of the above are valid induction steps.
- (4) What is the approximate value of the sum  $\sum_{i=0}^{20} (2^i + i)(2^i i)$ .
  - A  $1.5 \times 10^{11}$ .
  - $\boxed{\text{B}} 4.0 \times 10^{11}.$
  - C 1.5 × 10<sup>12</sup>.
  - $\boxed{D}$  4.0 × 10<sup>12</sup>.
  - $\boxed{\text{E}} 1.5 \times 10^{13}.$
- (5)  $T_1 = 1$  and  $T_n = T_{n-1} + n^2$  for n > 1. Which order relationship is accurate?
  - A  $T_n \in \Theta(n)$ .
  - $B T_n \in \Theta(n^2).$
  - C  $T_n \in \Theta(n^3)$ .
  - $D T_n \in \Theta(2^n).$
  - E None of the above.

| <ul> <li>(6) What is the remainder when 2<sup>2019</sup> is divided by 5?</li> <li>A 0.</li> <li>B 1.</li> <li>C 2.</li> <li>D 3.</li> <li>E 4.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>(11) Digits are 0,1,, 9. How many of the three digit strings 000 to 999 have a digit-sum 10? (For example, 307 and 811 have digit sum 10, but 846 and 213 do not.)</li> <li>A 60.</li> <li>B 63.</li> <li>C 66.</li> <li>D 69.</li> <li>E None of the above.</li> </ul>                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (7) Define the set $A = \{3x + 7y \mid x \text{ and } y \text{ are in } \mathbb{Z}\}$ . Which numbers are not in A?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                   |
| A -11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (12) A and B are sets. $ A  = 5$ and $ B  = 3$ . How many functions are there from A to B?                                                                                                                                                                                                                                                        |
| B 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A 35.                                                                                                                                                                                                                                                                                                                                             |
| C 37.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $f B$ $5^3$ .                                                                                                                                                                                                                                                                                                                                     |
| D 142.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C 5!.                                                                                                                                                                                                                                                                                                                                             |
| $\blacksquare$ They are all in $A$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\boxed{\mathbb{D}}$ $\binom{5}{3}$ .                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E None of the above.                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>(8) Ayfos is in a social network with 14 others, so 15 people in all with Ayfos. There are 25 friendship links in this network. Everyone but Ayfos has 3 friends. How many friends does Ayfos have?  \[ \begin{align*} </li></ul> | <ul> <li>(13) A and B are sets.  A  = 5 and  B  = 3. How many injections (1-to-1) are there from A to B?</li> <li>A 0.</li> <li>B 100.</li> <li>150.</li> <li>D 200.</li> <li>None of the above.</li> <li>(14) A and B are sets.  A  = 5 and  B  = 3. How many surjections (onto) are there from A to B?</li> <li>A 0.</li> <li>B 100.</li> </ul> |
| $\mathbb{B}$ $3\frac{1}{2}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C 150.                                                                                                                                                                                                                                                                                                                                            |
| $\boxed{\text{C}} \ 3\frac{3}{4}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D 200.                                                                                                                                                                                                                                                                                                                                            |
| D 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E None of the above.                                                                                                                                                                                                                                                                                                                              |
| <b>E</b> None of the above, or not enough information to say for sure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | D Note of the above.                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>(10) From 1000 students, 900 are CS and 200 are MATH. How many are CS-MATH duals?</li> <li>A 50.</li> <li>B 100.</li> <li>C 150.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>(15) You roll a die 4 times. What is the probability to get (exactly) 2 sixes?</li> <li>A 6/6<sup>4</sup>.</li> <li>B 12/6<sup>4</sup>.</li> <li>C 36/6<sup>4</sup>.</li> <li>D 150/6<sup>4</sup>.</li> </ul>                                                                                                                            |
| D 200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E None of the above.                                                                                                                                                                                                                                                                                                                              |
| <b>E</b> None of the above, or not enough information to say for sure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L None of the above.                                                                                                                                                                                                                                                                                                                              |

| (16) Al and Jo each independently pick 4 restaurants randomly from 10 restaurants $r_1, \ldots, r_{10}$ . They must eat at a restaurant that both picked. Compute the probability they can eat at (exactly) 2 restaurants. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\overline{A}$ 2/7                                                                                                                                                                                                         |
| B 3/7                                                                                                                                                                                                                      |
| C 4/7                                                                                                                                                                                                                      |
| D 5/7                                                                                                                                                                                                                      |
| E None of the above                                                                                                                                                                                                        |
| E None of the above                                                                                                                                                                                                        |
| (17) Compute the expected number of restaurants Al and Jo from the previous problem can eat at.                                                                                                                            |
| A 1.2.                                                                                                                                                                                                                     |
| B 1.4                                                                                                                                                                                                                      |
| C 1.6.                                                                                                                                                                                                                     |
| D 1.8                                                                                                                                                                                                                      |
| E None of the above                                                                                                                                                                                                        |
| D Polic of the above                                                                                                                                                                                                       |
| (18) Which computing problem <i>cannot</i> be solved by a DFA?                                                                                                                                                             |
| A Strings with an even number of 1s.                                                                                                                                                                                       |
| B Strings which have more 1s than 0s.                                                                                                                                                                                      |
|                                                                                                                                                                                                                            |
| C Strings whose number of 1s is a multiple of 3.                                                                                                                                                                           |
| D Strings whose number of 1s is not a multiple of 3.                                                                                                                                                                       |
| E Each problem is solvable using a DFA                                                                                                                                                                                     |
|                                                                                                                                                                                                                            |
| (19) Which string cannot be generated by the CFG $S \to \varepsilon  0S 1S$ ?                                                                                                                                              |
|                                                                                                                                                                                                                            |
| $\boxed{\mathbf{B}} \ 1010101010101010101010 = (10)^{\bullet 10}.$                                                                                                                                                         |
| $\boxed{\mathbf{C}} 00000000000000000000000000000000000$                                                                                                                                                                   |
| $\boxed{D} 00110011001100110011 = (0011)^{\bullet 5}.$                                                                                                                                                                     |
| E They can all be generated.                                                                                                                                                                                               |
|                                                                                                                                                                                                                            |
| (20) Which answer is a valid conclusion about the decidability of the language $\mathcal{L}_B$ ?                                                                                                                           |
| $oxed{A}$ $\mathcal{L}_A$ is decidable. A decider for $\mathcal{L}_B$ can be converted to a decider for $\mathcal{L}_A$ . So, $\mathcal{L}_B$ is decidable.                                                                |
| $\[ \]$ $\mathcal{L}_A$ is decidable. A decider for $\mathcal{L}_A$ can be converted to a decider for $\mathcal{L}_B$ . So, $\mathcal{L}_B$ is decidable.                                                                  |
| $\overline{\mathbb{C}}$ $\mathcal{L}_A$ is undecidable. A decider for $\mathcal{L}_A$ can be converted to a decider for $\mathcal{L}_B$ . So, $\mathcal{L}_B$ is undecidable.                                              |
| $\square$ $\mathcal{L}_A$ is undecidable. A decider for $\mathcal{L}_B$ can be converted to a decider for $\mathcal{L}_A$ . So, $\mathcal{L}_B$ is decidable.                                                              |
| E None of the above is valid.                                                                                                                                                                                              |

# 2 Determine the Type of Proof and Prove

5

<u>Prove</u> that for  $n \in \mathbb{N}$ ,  $\sqrt{n(n+1)} \le n + \frac{1}{2}$ .

# 3 Induction and Sums. Tinker, Tinker, Tinker.

For  $n \in \mathbb{N}$ , obtain a formula for the sum  $S(n) = \sum_{i=1}^{2n} (-1)^i i$  and prove your formula by induction.

6

# 4 Expected Waiting Time to 3 Heads In A Row

You flip a fair coin until you get 3 heads in a row. Compute the expected number of flips you make.

# 5 CFGs and Induction. (Tinker, tinker,...)

For the CFG  $S \rightarrow 0|0S1$ , prove that every string that can be generated has odd length.

8

# 6 Turing Machine for Squaring.

Give a high level pseudo-code description of a Turing Machine that solves the problem  $\mathcal{L} = \{0^{\bullet n}1^{\bullet n \times n}|n \geq 1\}$ . (You do not need to give machine level details but your pseudo-code should demonstrate understanding of how the Turing Machine moves back and forth to solve the problem. Tinker.)

### 1 Circle at most one answer per question. 10 points for each correct answer.

- (1) "For a constant c > 0,  $1 + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} > c\sqrt{n}$ , where n is any natural number." Which claim is this?
  - $\boxed{\mathbf{A}} \exists c > 0 : (\exists n \in \mathbb{N} : 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > c\sqrt{n}).$
  - $\boxed{\mathbf{B}} \exists c > 0 : (\forall n \in \mathbb{N} : 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > c\sqrt{n}).$
  - $\boxed{\mathbf{C}} \exists n \in \mathbb{N} : (\forall c > 0 : 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > c\sqrt{n}).$
  - $\boxed{\mathbf{D}} \ \forall n \in \mathbb{N} : (\exists c > 0 : 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > c\sqrt{n}).$
  - E None of the above.
- (2) You will pick a constant C > 0 such that no matter which  $n \in \mathbb{N}$  I pick,  $\sum_{i=1}^{n} i \leq Cn$ . Which is true?
  - A You can pick a C satisfying  $C \leq 10$ .
  - B You can pick a C satisfying 10 < C < 100.
  - $\boxed{\mathrm{C}}$  You can pick a C satisfying 100 < C < 1000.
  - D You can pick a C satisfying 1000 < C.
  - E There is no constant C > 0 that you can pick.
- (3)  $T_1 = 2$  and  $T_n = T_{n-1} + 2n$  for n > 1. What is  $T_{100}$ ?
  - A 5050.
  - B 10100.
  - C 20200.
  - D 40400.
  - E None of the above.
- (4)  $T_1 = 1$  and  $T_n = n \times T_{n-1}$  for n > 1. Which is true?
  - A  $T(n) \in O(n^2)$ .
  - $B T(n) \in o(2^n).$
  - C  $T(n) \in \Theta(2^n)$ .
  - $D T(n) \in \omega(2^n).$
  - E None of the above.
- (5) You divide 2<sup>2016</sup> candies evenly among 11 kids. How many candies are left over?
  - A 0.
  - В 3.
  - C 6.
  - D 9.
  - E None of the above.

- (6) Estimate the sum  $S = \sum_{i=1}^{\infty} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$ 
  - $| A | 0 < S \le 2.$
  - $\boxed{\text{B}} \ 2 < S \le 2000.$
  - $\boxed{\text{C}} 2000 < S \le 20000.$
  - D  $20000 < S \le 200000$ .
  - E None of the above.
- (7) How many of the numbers 100, 101, 102, ..., 999 do not contain the digit 2?
  - A 100.
  - B 504.
  - C 648.
  - D 729.
  - E None of the above.
- (8) Let S be the sum of the reciprocals of all natural numbers not containing the digit 2. Estimate S.
  - $| A | 0 < S \le 2.$
  - B  $2 < S \le 2000$ .
  - $\boxed{\text{C}} 2000 < S \le 20000.$

$$S = 1 + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \frac{1}{9} + \frac{1}{10} + \frac{1}{11} + \frac{1}{13} + \frac{1}{14} + \frac{1}{15} + \frac{1}{16} + \frac{1}{17} + \frac{1}{18} + \frac{1}{10} + \frac{1}{30} + \frac{1}{31} + \frac{1}{32} + \frac{1}{34} + \frac{1}{35} + \cdots$$

- D  $20000 < S \le 200000$ .
- E None of the above.
- (9) Shirts come in 3 colors R, G or B. In how many ways can you distribute shirts to 7 students?
  - $A \begin{pmatrix} 7 \\ 3 \end{pmatrix}$ .
  - $B 7^3$ .
  - C 37.
  - D 7!/3!.
  - E None of the above.
- (10) Repeat problem 9 if at least two shirts of each color are distributed to students (7 shirts in total).
  - A 570
  - B 600.
  - C 630.
  - D 660.
  - E None of the above.

| <ul> <li>(11) Every vertex in a graph G has degree 1. Which is true?</li> <li>A The graph G must be disconnected.</li> </ul>                                                                                    | (16) On BlueToe, your first child is equally likely to be a boy or girl. From then on, the sex of a child is the same as the previous child with probability 2/3 and different with probability 1/3. What is the expected |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Box$ B The graph $G$ could have 5 vertices.                                                                                                                                                                   | number of kids to get a girl? $\boxed{\mathbf{A}}$ 1.5.                                                                                                                                                                   |
| $\overline{\mathbb{C}}$ The graph $G$ must have a cycle.                                                                                                                                                        | B 2.                                                                                                                                                                                                                      |
| $\overline{\mathbb{D}}$ The graph $G$ is not possible.                                                                                                                                                          | C 2.5.                                                                                                                                                                                                                    |
| E None of the above                                                                                                                                                                                             | D 3.                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                 | E None of the above.                                                                                                                                                                                                      |
| (12) You rolled a pair of dice. What are the chances you rolled exactly one 5?                                                                                                                                  | II Trote of the above.                                                                                                                                                                                                    |
| A 9/36.                                                                                                                                                                                                         | (17) On BlueToe, as in problem 16, what is the expected number of kids to two girls?                                                                                                                                      |
| B 10/36.                                                                                                                                                                                                        | A 3.25.                                                                                                                                                                                                                   |
| <u>C</u> 11/36.                                                                                                                                                                                                 | B 4.                                                                                                                                                                                                                      |
| D 12/36.                                                                                                                                                                                                        | C 4.5.                                                                                                                                                                                                                    |
| E None of the above.                                                                                                                                                                                            | D 5.25.                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                 | E None of the above.                                                                                                                                                                                                      |
| (13) You rolled a pair of dice. What are the chances you rolled exactly one 5 if the sum is even?                                                                                                               | [2] 1 date of the debter                                                                                                                                                                                                  |
| $\boxed{A} \ 4/10.$                                                                                                                                                                                             | (18) Estimate the number of DFA you can draw with 4 states, $q_0, q_1, q_2, q_3$ . Tinker!                                                                                                                                |
| B 5/10.                                                                                                                                                                                                         | A About a hundred.                                                                                                                                                                                                        |
| C 4/11.                                                                                                                                                                                                         | B About a thousand.                                                                                                                                                                                                       |
| D 5/11.                                                                                                                                                                                                         | C About a million.                                                                                                                                                                                                        |
| E None of the above.                                                                                                                                                                                            | D About a billion.                                                                                                                                                                                                        |
|                                                                                                                                                                                                                 | E About a trillion.                                                                                                                                                                                                       |
| (14) Which of the following random variables ${\bf X}$ is not a binomial random variable.                                                                                                                       |                                                                                                                                                                                                                           |
| $oxed{A}$ Randomly throw 100 darts at a dart board. $oxed{X}$ is the number of darts hitting the bulls-eye.                                                                                                     | (19) Which string can be generated by the CFG $S \to 0 1 SSS$ ?                                                                                                                                                           |
| $\fbox{B}$ Randomly answer 100 5-choice multiple choice questions. $\mathbf X$ is the number of questions correct.                                                                                              | [A] 1111.                                                                                                                                                                                                                 |
| $\fbox{C}$ Randomly answer 100 5-choice multiple choice questions. ${f X}$ is the number of questions wrong.                                                                                                    | B 0000.                                                                                                                                                                                                                   |
| $\boxed{\mathrm{D}}$ 1000 students randomly line up, 500 are boys. $\mathbf X$ is the number of boys in the first 100 students.                                                                                 | C 000111.                                                                                                                                                                                                                 |
| E They are all binomial random variables.                                                                                                                                                                       | D 111000.                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                 | E None of the above.                                                                                                                                                                                                      |
| (15) A social network (graph) is a <i>tree</i> with 20 people. The edges are friendships. Each person randomly picks red or blue. Friends compare to see if they match. What is the expected number of matches. |                                                                                                                                                                                                                           |
| A 4.75.                                                                                                                                                                                                         | (20) If $\mathcal{L}_A$ is decidable, then $\mathcal{L}_B$ is decidable. We know that $\mathcal{L}_B$ is undecidable. Therefore:                                                                                          |
| B 5.                                                                                                                                                                                                            | $oxed{A} \mathcal{L}_A$ must be finite.                                                                                                                                                                                   |
| C 9.5                                                                                                                                                                                                           | $\Box$ $\mathcal{L}_A$ must be infinite.                                                                                                                                                                                  |
| D 10.                                                                                                                                                                                                           | $oxed{\mathbb{C}}  \mathcal{L}_A  >  \mathcal{L}_B $ .                                                                                                                                                                    |
| E None of the above or not enough information.                                                                                                                                                                  | $\boxed{\mathbb{D}}  \mathcal{L}_B  <  \mathcal{L}_A $ .                                                                                                                                                                  |
|                                                                                                                                                                                                                 | E None of the above.                                                                                                                                                                                                      |

# 2 Determine the Type of Proof and Prove

 $\underline{Prove}$  that there is a constant c>0 for which, no matter which  $n\in N$  you pick,

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > c\sqrt{n}.$$

5

# 3 Product of 5 Consecutive Numbers.

Prove that the product of any 5 consecutive natural numbers is divisible by 5! (e.g.  $5!|3 \times 4 \times 5 \times 6 \times 7$ ).

6

# 4 Expected Waiting Time to All Colors of Starbust.

Starburst is sold in 2-packs, and there are 3 colors of starbust. What is the expected number of 2-packs you will buy if your goal is to get all colors?

7

### 5 DFA or no DFA

Give a DFA for  $\mathcal{L} = \{0^{\bullet n^2} | n \ge 1\} = \{0,0000,000000000,\ldots\}$ , or prove that  $\mathcal{L}$  can't be solved with DFA.

# 6 Transducer Turing Machine for Reversal.

Give a high level pseudo-code description of a transducer Turing Machine for reversal. The input on the tape is any binary string w. When the Turing Machine halts, the reversal of w should have replaced w. E.g.

| Start |   |   |   |   |   |   |   |   | End |   |   |   |   |   |   |   |   |
|-------|---|---|---|---|---|---|---|---|-----|---|---|---|---|---|---|---|---|
| *     | 1 | 0 | 1 | 0 | 0 | 1 | 1 | J | *   | 1 | 1 | 0 | 0 | 1 | 0 | 1 | J |

(Don't give machine level details, but you should make it clear how the Turing Machine moves back and forth. Tinker.)