

Conectando R con MS SQL Server

Nombre Speaker: Daniel Fischer

Email: dfischer@ug.uchile.cl

Blog: http://geekosas.com/

Twitter: @Geekosas_com (Artículos Blog)

GIT: https://github.com/danielfm123/sqlsaturday2018

Gold **Sponsors** Microsoft

Silver Sponsors NewsReport

Conectando R con MS SQL Server

R y MS SQL son el complemento perfecto.

- data.frame ~ table.
 - Tipos de datos equivalentes
 - Estructura columnar
 - Existen interfaces

- RAM y Disco Duro.
 - SQL permite preprocesar datasets grandes.
 - SQL permite almacenar información persistente.
 - R permite realizar transformaciones complejas.
 - R permite realizar modelos y reportes.
 - R permite controlar el flujo.

Formas de Conectarse

- $R \rightarrow SQL Server$
 - Distintas Librerias.
 - Como extraer datos de SQL Server.
 - Como guardar datos en SQL Server.

• SQL Server \rightarrow R

- Ejecutar R desde SQL Server (Cualquier Versión).
- Usar R desde SQL Server 2017.

$R \rightarrow SQL Server$

Package	RSQLServer	RJDBC	RODBC	odbc
Descripción	Package con driver de JDBC.	Genérico para drivers JDBC	Usa framework ODBC	wrpapper ODBC a DBI
Framework R	DBI	DBI	RODBC	DBI
Tipo Driver	JDBC	JDBC	ODBC	ODBC
tidyverse	X	X		X
escalable			X	X
requiere driver		X	X	X
transacciones	X	X		X
linux setup			X	X
windows setup				

SQL Server 2017 → R (Machine Learning Services)

Caso VaR

Series de Retornos → Matriz Varianza Covarianza = MVC Pesos Portafolio = W

var = W^t * MVC * W VaR = 1.96*var

VaR en SQL vs R

SQL Server

```
select fecha,
       country,
       log(value) log_value into #log_country
    order by country, fecha
    select actual.fecha,
       actual.country,
       actual.log_value log_actual_value,
       prev.log_value log_prev_value,
       actual.log_value - prev.log_value log_proffit into #log_proffit
    from #log_country actual
    left join (select dateadd(MM,1,fecha) fecha, country, log_value from #log_country) as prev
    on prev.fecha = actual.fecha and prev.country = actual.country
    where prev.log_value is not null
    select country, avg(log_proffit) mean_log_profit into #mean_log_proffit
   from #log_proffit group by country
    select country_a.country country_a,
       country_b.country country_b,
       sum((country_a.log_proffit - mean_log_proffit_a.mean_log_profit) * (country_b.log_proffit - mean_log_proffit_b.mean_log_profit))/(count(*)-1) cov into #cov
    from #log_proffit country_a left join #log_proffit country_b
       on country_a.fecha = country_b.fecha
    left join #mean_log_proffit as mean_log_proffit_a
     on mean_log_proffit_a.country = country_a.country
31 left join #mean_log_proffit as mean_log_proffit_b
    on mean_log_proffit_b.country = country_b.country
33 group by country_a.country, country_b.country
    select sum( portafilo_b.peso*portafilo_a.peso*cov.cov) varianza
   from #cov cov left join portafolio portafilo_a
   on cov.country_a = portafilo_a.country
    left join portafolio portafilo_b
41 on cov.country_b = portafilo_b.country
```

• R

```
library(tidyverse)
con = dbConnect(odbc(),.connection_string = "DRIVER=SQL Server;SERVER=192.168.56.101;PORT=1433;DATABASE=sqlsat;UID=dfischer;PWD=daniel;TDS_Version=8.0;")
paises = dbGetQuery(con, "select * from country")
mvc = paises %>%
 spread(country,value) %>%
 select(-fecha) %>%
  mutate_all(function(x) c(NA,diff(log(x)))) %>%
 var(na.rm = T, use = "pairwise.complete.obs")
portafolio = dbGetQuery(con, "select * from portafolio order by country")
portafolio$peso %*% mvc %*% portafolio$peso
```


Calculos de VaR, formas de conectar R a SQL.

- VaR en SQL puro.
- VaR en R.
- VaR en R y guardado en SQL.
- VaR usando integración de R con SQL Server 2017 (sp_execute_external_script).
- VaR usando R desde SQL Server (xp_cmdshell).
- VaR modo batch desde linux.

Buenas Practicas.

- Usar un wrapper para las Querys.
- Integrar un log en el sql_wrapper.R e integrar ese log a errores.
- Limitar el uso de memoria RAM en SQL Server.
- Homologar nombres de columnas en query.
- Acelerar escritura usando paralelización en R.
- Manipulación de datos compleja en R.
- Si tabla es muy grande, usar data.table.

Próximas Presentaciones

01:00 PM - 02:00 PM	Almuerzo			
02:00 PM - 02:50 PM	Power BI in the New Age! Cristobal Ibarra Level: Intermediate	La evolución de SQL Server - Azure SQL Database Managed Instance Javier Villegas Level: Intermediate	From Zero to Cosmos Patricio Cofre, Nestor Campos Level: Beginner	
03:10 PM - 04:10 PM	Midiendo el exito en una implementacion Corporate de Power BI Gaston Cruz Level: Beginner	SQL Server Query Tuning and Optimization Kamal Valero Level: Beginner	SQL Server in Docker a new defaince Linux Carlos Aravena Level: Beginner	
04:20 PM - 05:20 PM	AzureML Services, Workbench and Model Management Service. Adrian Fernandez Level: Intermediate	SQL Server 2017 Automatic Tuning Alejandro Cordero Level: Beginner	Encontrando el origen del problema PABLO JAVIER FERNANDEZ Level: Intermediate	
05:20 PM - 06:00 PM	Rifa y Cierre			

