StarAi: Deep Reinforcement Learning

Tabular Q Learning

William Xu

Outline

- Reflect on week 1 & 2
- Defining the problem
- Intuition for Tabular Q
- Simplify the problem and solution, do a walk through
- Exercise
- Dealing with continuous state spaces
- Homework
- Key takeaways and next week

The Reinforcement Learning Problem

Markov Decision Process

Multi Armed Bandit - MDP perspective

Multi Armed Bandit

Poker machine FWT - To the Casino

Paul at the Casino

Tabular Q Learning

- Learning Q(s, a)
- Temporal Difference Learning TD(0)
 - Temporal definition: relating to time

Q Learning

- Learning Q(s, a)
- Temporal Difference Learning TD(0)
 - Temporal definition: relating to time
- Bellman optimality equation for Q_{*}

$$q_*(s, a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = s, A_t = a\right]$$

Tabular Q

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s, a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$ $S \leftarrow S'$ until S is terminal

A Simplified Tabular Q

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

A Simplified Tabular Q

Set alpha = 1
$$Q(S,A) \leftarrow Q(S,A) + A \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]$$

A Simplified walkthrough

$$Q(S, A) \leftarrow R + \gamma \max_{a} Q(S', a)$$

$$Q(S, A) \leftarrow R + \gamma \max_a Q(S', a)$$

State	Left	Right	Up	Down
S0			0	
S1	0			
S4			0	
S7		0		
S8		0		
S9		1		
S10				

$$Q(S, A) \leftarrow R + \gamma \max_a Q(S', a)$$

A Simplified walkthrough - After enough attempts

				State	Left	Right	Up	Down
0.73	0.81	0.90		S0	0.59	0.66	0.66	0.59
0.73 S7 0.81	0.73 S8 0.90	0.81 S9 1.00	S10	S1	0.59	0.73	0.66	0.66
0.66	0.81	0.81	All managements (No.	S2	0.66	0.66	0.81	0.73
0.73		0.90		S3	0.73	0.66	-1	0.66
0.66 S4 0.66		0.81 S5 -1.00	S6	S4	0.66	0.66	0.73	0.59
0.59		0.73		S5	0.81	-1	0.9	0.73
0.66	0.66	0.81	-1.00	S7	0.73	0.81	0.73	0.66
0.59 S0 0.66	0.59 S1 0.73	0.66 S2 0.66	0.73 S3 0.66	S8	0.73	0.9	0.81	0.81
0.59	0.66	0.73	0.66	S9	0.81	1	0.9	0.81

$$Q(S, A) \leftarrow R + \gamma \max_a Q(S', a)$$

The real algorithm for stochastic scenarios

$$Q(S_t, A_t) \leftarrow R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$$

When the left and right doesn't match

$$Error = [R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)] - Q(S_t, A_t)$$

An enhanced learning process

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[Error]$$

The final formula

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t)]$$

Tabular Q

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s, a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$ $S \leftarrow S'$ until S is terminal

Exercise - Frozen Lake

Dealing with continuous state spaces

Dealing with continuous state spaces

Observation

Type: Box(4)

Num	Observation	Min	Max
0	Cart Position	-2.4	2.4
1	Cart Velocity	-Inf	Inf
2	Pole Angle	~ -41.8°	~ 41.8°
3	Pole Velocity At Tip	-Inf	Inf

Cartpole - Continuous value problem

Homework walkthrough

.

Some thoughts and next week

- Q learning
 - Temporal Difference learning
 - Values propagating back from later states
 - Learning based on raw experience
- Challenges
 - State space and sufficient exploration (e.g. images of cartpole as state)
 - No notion of state spaces that are nearby
- Understanding of Q learning is important for next week's DQN

