Задача 11-2. Аквариум

Имеется тонкостенный прозрачный сосуд шарообразной формы радиусом R, заполненный прозрачной жидкостью, показатель преломления которой n. В сосуде равномерно опускается сверху вниз маленький шарик со скоростью \vec{v} относительно сосуда. В следствие преломления света, кажущаяся глубина шарика h (положение его изображения) будет отличаться от его истинной глубины H.

Часть 1. Вид сверху.

За движением шарика наблюдают сверху из точки расположенной на большом расстоянии от сосуда.

- **1.1** При каком положении шарика его кажущаяся глубина h будет совпадать с истинной глубиной H, не зависимо от показателя преломления жидкости. Ответ обоснуйте.
- **1.2** Найдите зависимость кажущейся глубины h шарика от его действительной глубины H при H < R;
- **1.3** Найдите зависимость кажущейся глубины h шарика от его действительной глубины H при $H \ge R$;
- **1.4.** Постройте график зависисимости, кажущейся глубины щарика h от его истинной глубины H . Данный график постройте в относительных координатах $y=\frac{h}{R}$ от $x=\frac{H}{R}$, при двух значениях $n_1=1.5$ и $n_2=2.5$
- **1.5.** Найдите зависимость кажущейся скорости движения шарика от $\$ его действительной глубины $\$ $\$
- **1.6**. Постройте графики полученных в п.1.5 зависимостей при двух значениях $n_1 = 1,5$ и $n_2 = 2,5$ в безразмерных координатах $\chi = \frac{u}{v}$ от $x = \frac{H}{R}$;

Часть 2. Вид сбоку.

Глаз наблюдателя находится сбоку на прямой, проходящей через центр шара и направленной под углом 45° к вертикали. Показатель преломления жидкости равен $n_1 = 1,5$

2.1 Постройте вектор видимой скорости движения шарика \vec{u} при наблюдении сбоку, в момент времени, когда шарик проходит центр шара. Найдите координаты этого вектора в системе отсчета, показанной на рисунке.

