Cryptography and security

Pierre Colson

\mathbf{C}							
(:	റ	n	t	Ω	n	t	C
\sim	v	11	v	·	11	v	N

G	General																			 		1
Γ	iffie He	lman																		 		1
R	SA																			 		1

Markdown version on github

General

• $b \in \mathbb{Z}_p^*$ has a quare root if and only if $b^{\frac{p-1}{2}} \mod p = 1$

Diffie Helman

- We check that X and Y are in $\langle g \rangle$
- Use a KDF to fix bad distribution of g^{xy}
- We wheck the lower order $X \neq 1, X^2 \neq 1$
- If n = pq then \mathbb{Z}_n ring is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_q$ and \mathbb{Z}_n^* ring is isomorphic to $\mathbb{Z}_p^* \times \mathbb{Z}_q^*$

RSA

- Square and multiply algorothm to compute x^e or x^d
- Primality test: Verify that a number os prime
- To check if a number is coprime is another one use euclid algorithm
- To compute the inverse of an elem use extended euclid algorithm
- $\varphi(p^{\alpha}) = (p-1)p^{\alpha-1}$
- We can compute square root of n in $\mathcal{O}(\log n)^3$