第4回 計算機構成

前回の内容

- 2進数から8進数・16進数への変換
- 正数と負数の表現
- 負数の表現
 - ▶ 1の補数
 - ▶ 2の補数
- 浮動小数点形式

今回の内容

- ■補数の例題の答合せ
- ■浮動小数点形式
- ▶ 課題1の答合せ
- ■ケチ表示
- ■非正規化数
- IEEE754

前回配布した資料を使います。

第3回までにできてること

- 固定小数点形式について説明できる
- 10進数, 2進数, 8進数, 16進数を相互に変 換できる
 - ▶ 整数,小数
- 負数の表現方法
 - ▶ 符号+絶対値, 1の補数, 2の補数
 - 配布資料「補数の演習」
 - ▶ バイアス表現
- 浮動小数点形式
 - ▶ 配布資料「浮動小数点形式」の課題1

■ 教科書

- ▶ 2.4 符号付き数と符号なし数
- ▶ 例題 2進から10進への変換 (p.75)
- ▶ 例題 正負反転の簡便法 (p.77)
- ▶ 例題 符号拡張の簡便法 (p.77)
- ▶ 自己診断 (p.78)

教科書は繰り返し読むこと

浮動小数点形式 (p.190)

■ 指数部と仮数部のビット分配

 $N=(-1)^S \times M \times 2^E$

S 指数部 E

仮数部 M

- ▶ 指数部 E のビット数を多くすると数値の範囲は広くなる.
- ▶ 仮数部 M のビット数を多くすると有効桁数が大きくなる.
- ▶ IEEE754では、符号 1 ビット、指数部 8 ビット、仮数部 2 3 ビット
- 仮数部の表現方法
 - ▶ 正規化+固定小数点による小数+ケチ表示
- 指数部の表現方法
 - ▶ 整数の表現→バイアス表現(ゲタばき表現) ※補数じゃないよ。

課題1

5ビットの浮動小数点形式について考える

- 符号1ビット, 指数部2ビット, 仮数部2ビット
 - ▶ 指数 exponent 仮数 mantissa
- 指数部はバイアス2のバイアス表現
- N=(-1)^S×M×2 e-2 S 指数部 e 仮数部 M

 e //	00(-2)	01(-1)	10(0)	11(1)
0.0				
0.1				
1.0				
1.1				

5ビットの浮動小数点形式 正規化しない

- 符号1ビット, 指数部2ビット, 仮数部2ビット
- 指数部はバイアス2のバイアス表現
- N=(-1)^S×M×2 e-2 S 指数部 e 仮数部 M

e M	00(-2)	01(-1)	10(0)	11(1)
0.0	0	0 0.5倍	0	0 −2倍
0.1	0.125	0.25	0.5	1
1.0	0.25	0.5	1	2
1.1	0.375	0.75	1.5	3

- \blacksquare (1001)₂
 - ▶ 指数部e 10, 仮数部M 01
 - ▶ 指数部 10 → 20
 - ▶ 仮数部 01 → 0.12 → 0.510
 - $0.5 \times 2^0 = 0.5$

5ビットの浮動小数点形式 正規化しない

- 符号1ビット, 指数部2ビット, 仮数部2ビット
- 指数部はバイアス2のバイアス表現
- N=(-1)^S×M×2 e-2 S 指数部 e 仮数部 M

e M	00(-2)	01(-1)	10(0)	11(1)
0.0	0 0.5倍	0	0 —2倍 —	0
0.1	0.125	0.25	0.5	1
1.0	0.25	0.5	1	2
1.1	0.375	0.75	1.5	3

- \blacksquare (0101)₂
 - ▶ 指数部e 01, 仮数部M 01
 - ▶ 指数部 01 → 2-1
 - ▶ 仮数部 01 → 0.12 → 0.510
 - $0.5 \times 2^{-1} = 0.25$

正規化とは

- 符号1ビット, 指数部2ビット, 仮数部2ビット
- 指数部はバイアス2のバイアス表現
- N=(-1)^S×M×2 e-2 S 指数部 e 仮数部 M

e M	00(-2)	01(-1)	10(0)	11(1)
0.0	0	0	0	0
0.1	0.125	0.25	0.5	1
1.0	0.25	0.5	1	2
1.1	0.375	0.75	1.5	3

- 2つの0.25
 - **▶** $0101 \rightarrow 0.1_2 \times 2^{-1} = 0.25$
 - $0010 \rightarrow 1.0_2 \times 2^{-2} = 0.25$
- ■2つの0.5
- **▶** $1001 \rightarrow 0.12 \times 2^0 = 0.5$
- **▶** $0110 \rightarrow 1.0_2 \times 2^{-1} = 0.5$
- ■正規化とは
 - ▶ 仮数部が 1.xxx となるように指 数を調整する
 - ▶ $0.12 \times 2^{-1} \rightarrow L02 \times 2^{-2}$
 - ▶ $0.12 \times 2^{0} \rightarrow 1.02 \times 2^{-1}$

5ビットの浮動小数点形式 正規化+けち表示

- 符号1ビット, 指数部2ビット, 仮数部2ビット
- 指数部はバイアス2のバイアス表現
- N=(-1)^S×1.m×2 e-2 S 指数部 e 仮数部 m

e 1.m	00(-2)	01(-1)	10(0)	11(1)
.00	0.25	0.5	1.0	2.0
.01	0.3215	<u>0.625</u>	<u>1.25</u>	<u>2.5</u>
.10	0.375	0.75	1.5	3
.11	0.4375	0.875	1.75	3.5

- 正規化
 - ▶ 仮数部が 1.xxx となるように指 数を調整する
 - \blacktriangleright 0.1₂ × 2⁻¹ → 1.0₂ × 2⁻²
 - ▶ 正規化すると1以上になる
 - **–** 1.00, 1.01, 1.10, 1.11
- けち表示
 - ▶ 1を除いた小数点以下2ビットを メモリに格納する
 - **–** 1.00, 1.01, 1.10, 1.11
 - ▶ 1ビット得する

5ビットの浮動小数点形式 正規化+けち表示

- 符号1ビット, 指数部2ビット, 仮数部2ビット
- 指数部はバイアス2のバイアス表現
- N=(-1)^S×1.m×2 e-2 S 指数部 e 仮数部 m

e 1.m	00(-2)	01(-1)	10(0)	11(1)
.00	0.25	0.5	1.0	2.0
.01	0.3215	<u>0.625</u>	<u>1.25</u>	<u>2.5</u>
.10	0.375	0.75	1.5	3
.11	0.4375	0.875	1.75	3.5

■正規化+けち表示

- **▶** $0101 \rightarrow 1.01 \times 2^{-1} = 0.625$
- \blacktriangleright 0010→ 1.10 × 2-2 = 0.375
- ▶ $1001 \rightarrow 1.01 \times 2^0 = 1.25$
- **▶** $0110 \rightarrow 1.10 \times 2^{-1} = 0.75$

5ビットの浮動小数点形式 正規化+けち表示

11(1)

2.0

2.5

3

3.5

- 符号1ビット、指数部2ビット、仮数部2ビット
- 指数部はバイアス2のバイアス表現

00(-2)

0.25

0.3215

0.375

0.4375

■ N=(-1)^S×1.m×2 e-2 S 指数部 e 仮数部 m

1.m

.00

.01

.10

.11

10(0)

1.0

1.25

1.5

1.75

01(-1)

0.5

0.625

0.75

0.875

- 4ビットで16通りの数値表現
 - ▶ 下線の数値
 - 正規化によって増えた数値
- 問題点
 - ▶ ゼロがない
- ゼロがない原因
 - ▶ ケチ表現→1が省略されている
- ■ゼロの場所
 - ▶ (0000)2をゼロとするのが自然
- ■数直線で考えてみる

ゼロ Zeroをどうするか?

e 1.m	00(2-2)	01(2-1)	10(20)	11(21)
00	0.25	0.5	1	2
01	0.3125	0.625	1.25	2.5
10	0.375	0.75	1.5	3
11	0.4375	0.875	1.75	3.5

e 1.m	00(2-2)	01(2-1)	10(20)	11(2 ¹)
00	Zero	0.5	1	2
01	0.3125	0.625	1.25	2.5
10	0.375	0.75	1.5	3
11	0.4375	0.875	1.75	3.5

5ビットの浮動小数点形式

■ 5ビットの2進浮動小数点形式

 $N = (-1)^s \times 0.m \times 2^{-1}$

S e m

 $N = (-1)^s \times 1.m \times 2^{e-2}$

1.m	00(2 ⁻¹) 0.m	01(2-1)	10(20)	11(2 ¹)
00	Zero	0.5	1	2
01	0.125	0.625	1.25	2.5
10	0.25	0.75	1.5	3
11	0.375	0.875	1.75	3.5

0.25 0.5 1

5ビットの浮動小数点形式(正規化+けち表示、バイアスが2)

■ 最終的な浮動小数点形式

e 1.m	00(2 ⁻¹) 0.m	01 (2-1)	10(20)	11(21)
00	Zero	0.5	1	2
01	0.125	0.625	1.25	2.5
10	0.25	0.75	1.5	3
11	0.375	0.875	1.75	3.5

■無限大∞の追加。IEEE754。

e 1.m	00(2 ⁻¹)	01(2-1)	10(20)	11(21)
00	Zero	0.5	1	∞
01	0.125	0.625	1.25	NaN
10	0.25	0.75	1.5	NaN
11	0.375	0.875	1.75	NaN

浮動小数点形式 (p.190)

■ 指数部と仮数部のビット分配

- ▶ 指数部 E のビット数を多くすると数値の範囲は広くなる.
- ▶ 仮数部 M のビット数を多くすると有効桁数が大きくなる.
- ▶ IEEE754では、符号 1 ビット、指数部 8 ビット、仮数部 2 3 ビット
- 仮数部の表現方法
 - ▶ 正規化+固定小数点による小数+ケチ表示
- 指数部の表現方法
 - ▶ 整数の表現→バイアス表現(ゲタばき表現) ※補数じゃないよ。

5ビットの浮動小数点形式 正規化+けち表示

- 符号1ビット, 指数部2ビット, 仮数部2ビット
- 指数部はバイアス2のバイアス表現
- N=(-1)^S×1.m×2 e-2 S 指数部 e 仮数部 m

指数部が0のとき N=(-1)^S×0.m×2-1

1.m	00(-1)	01(-1)	10(0)	11(1)
.00	0	0.5	1.0	2.0
.01	0.125	0.625	<u>1.25</u>	<u>2.5</u>
.10	0.25	0.75	1.5	3
.11	0.375	0.875	1.75	3.5

- 指数部が00の場合は正規化しない
 - $N=(-1)^{S}\times 0.m\times 2^{-1}$
- ■非正規化数
 - ▶ 指数部00の数値
- 浮動小数点に関するキーワード
- ▶ ゲタばき表現(バイアス表現)
- ▶ 正規化
- ▶ けち表現
- ▶ 非正規化数
- ▶ 無限大

5ビットの浮動小数点形式 正規化+けち表示

- 符号1ビット,指数部2ビット,仮数部2ビット
- 指数部はバイアス2のバイアス表現
- N=(-1)^S×1.m×2 e-2 S 指数部 E 仮数部 M 指数部が0のとき N=(-1)^S×0.m×2 -1

1.m	00(-1)	01(-1)	10(0)	11(1)
.00	0	0.5	1.0	8
.01	0.125	0.625	<u>1.25</u>	NaN
.10	0.25	0.75	1.5	Nan
.11	0.375	0.875	1.75	Nan

- 指数部がすべて 0
 - ▶ 非正規化数 N=(-1)^S×0.m×2 e-1
- 指数部がすべて]
 - ▶ 無限大, NaN : Not a Number
- ■浮動小数点に関するキーワード
 - ▶ ゲタばき表現(バイアス表現)
 - ▶ 正規化
 - ▶ けち表現
 - ▶ 非正規仮数

浮動小数点形式の表現について

- 符号ビット、指数部、仮数部の並びになっている理由
- 符号ビットを最上位ビットにする.

S	指数部 E	仮数部 M
---	-------	-------

- ▶ 正負の判定が速い。
- ▶ 整数型と同じように正負の判定ができる.
- ゲタばき表現の指数部が仮数部より上位にある
 - ▶ 整数比較命令を使って整列ができる.

	1		
2進数	符号なし	符号つき	
乙匹奴	(正数)	バイアス3	
000	0	-3	
001	1	-3 -2	
010	2 3	-1	
011	3	0	
100	4	1	
101	5	2	
110	6	3	
111	7₩	4 ↓	

IEEE標準形式 IEEE754

■ 単精度(32ビット)

S	e(8)	M(23)

- ▶ e=255&M≠0; Not A Number
- ▶ e=255&M=0; (-1)sx∞
- \bullet 0<e<255 ; (-1)sx2e-127x(1.m)
- \bullet e=0&M≠0 ; (-1)s×2⁻¹²⁶×(0.m)
- ▶ e=0&M=0 ; 0

e 1.m	000	001	101	111
000	0			∞
001				NaN
				NaN
101				NaN
111				NaN

 $(-1)^{s} \times 2^{e-126} \times (0.m)$ $(-1)^{s} \times 2^{e-127} \times (1.m)$

次回

- 教科書 2 命令: コンピュータの言葉
 - ▶ 2.1 はじめに
 - ▶ 2.2 コンピュータ・ハードウェアの演算
 - ▶ 2.3 コンピュータ・ハードウェアのオペランド
 - ▶ 2.4 符号付き数と符号なし数
 - ▶ 2.5 コンピュータ内での命令の表現
 - ▶ 2.6 論理演算
 - ▶ 2.7 条件判定用の命令
 - if, else, while, do-while, switch-case

Cの演算子
<<
>>
&
1
~
& &
11
!