210061X

UNIVERSITY OF MORATUWA

FACULTY OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

BSc Engineering Honours Degree Semester 4 Examination (2021 Intake)

CS 3063 THEORY OF COMPUTING

Time allowed: 2 Hours

July 2024

ADDITIONAL MATERIAL: None

INSTRUCTIONS TO CANDIDATES:

- 1. This paper consists of 5 questions in 4 pages, including this page.
- 2. Answer ALL questions.
- 3. The maximum attainable mark for each question/part is given in brackets.
- 4. This examination accounts for 70% of the module assessment.
- 5. This is a closed book examination.

NB: It is an offence to be in possession of unauthorized material during the examination.

- 6. Only calculators approved and labeled by the Faculty of Engineering are permitted.
- 7. Assume reasonable values for any data not given in or with the examination paper. Clearly state such assumptions made on the script.
- 8. In case of any doubt as to the interpretation of the wording of a question, make suitable assumptions and clearly state them on the script.
- 9. This paper should be answered only in English.
- 10. Abbreviations and Notations
 - DFA Deterministic Finite Automaton
 - NFA Non-deterministic Finite Automaton
 - NFA-A Non-deterministic Finite Automaton with A-transitions
 - CFG Context-free Grammar
 - CFL Context-free Language
 - PDA Push-Down Automaton
 - TM Turing Machine
 - In a CFG, non-terminals are denoted by upper-case letters and terminals are denoted by lower-case letters and/or digits; non-terminal S is usually the start symbol and A represents the null string letters and/or digits; non-terminal S is usually the staft symbol and $I \in \mathcal{F}$. Letters and/or digits; non-terminal S is usually the staft symbol and $I \in \mathcal{F}$. A DFA or NFA is defined as a 5-tuple $(Q, \Sigma, q_0, A, \delta)$, where each component has the usual meaning.

 - A DFA or NFA is defined as a 5-tuple $(Q, \Sigma, q_0, A, 0)$, where each component has the usual meaning A PDA is expressed as a 7-tuple $(Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ where each component has the usual meaning.

Question 1 [20 marks]

In this question, there are 10 statements, (a) – (j); for each, you have to state whether it is either True or False. A correct choice will result in 2 marks and an incorrect choice will have a penalty of -1 mark. If not answered, it will result in 0 marks (no penalty). The minimum total marks possible for Q1 is 0.

- (a) A string w is not accepted by an NFA if every path corresponding to w ends up at a non-accepting state.
- (b) A finite automaton can accept the null string Λ only if it is an NFA- Λ .
- (c) If M is a DFA that accepts a language L, then there is a DFA accepting L with more states than M.
- (d) The regular expressions (aa*bb*)* and $\Lambda \mid a(a|b)*b$ are not equivalent.
- (e) A Mealy machine can have fewer states than a Moore machine for the same input-output behavior.
- (f) The pumping lemma can be used to prove that a language is context-free.
- (g) If a CFG is ambiguous, then we can make it unambiguous by eliminating unit productions from it.
- (h) We can construct a PDA to accept the language $\{ a^i b^i c^i | i \ge 1 \}$.
- (i) If we can construct a Turing machine T to compute the characteristic function of a language L, then T will halt for a string not in L.
- (j) There exist computational problems that a Universal Turing machine cannot solve.

Question 2 [20 marks]

(a) Construct a Mealy machine whose input alphabet is $\{a, b\}$ and which outputs 1 when it detects the substring abba in input and outputs 0 otherwise.

[6 marks]

(b) (i) State the pumping lemma for regular languages.

[2 marks]

(ii) Use the pumping lemma to show that $L = \{ww \mid w \in \{0,1\}^*\}$ is not regular.

[6 marks]

- (c) Consider the language of all strings that do not end with 01, where the alphabet is {0,1}
 - (i) Find a regular expression corresponding to the language above. [2 marks]
 - (ii) Show the transition diagram of a DFA that recognizes the language. [4 marks]

Question 3 [20 marks]

(a) Consider the DFA, $M_1 = (\{0,1,2,3,4,5,6,7\}, \{a,b\}, 0, \{2\}, \delta)$, whose δ is specified below.

Current State	Next State		Current	Next State	
	Input a	Input b	State	Input a	Input &
0	1	5	4	7	5
1	6	2	5	2	6
2	0	2	6	6	4
3	2	6	7	6	2

Identify the equivalence classes of the given set of states. Show your work.

[7 marks]

(ii) Show the transition diagram of the equivalent minimum-state DFA.

[3 marks]

(b) Suppose the NFA- Λ , $M_2 = (\{A,B,C,D,E\}, \{0, 1\}, A, \{E\}, \delta)$ is given, where the transitions are specified as follows.

Current State	Next State(s)				
Current State	Input 0	Input 1	Input A		
A	A		B, D		
В	C	Е	S Transmitted		
C		В			
D	Е	D			
E					

(i) Find Λ(A).

[2 marks]

- (ii) Construct an equivalent NFA and show its transition diagram. Show your work.

 [3 marks]
- (iii) Construct an equivalent DFA and show its transition diagram. Show your work.

 [5 marks]

Question 4 [20 marks]

(a) Construct a CFG that generates the language of odd-length strings in {a, b}* with middle symbol a.

[4 marks]

- (b) Describe what language is generated by each of the CFGs indicated by the following productions:
 - (i). $S \rightarrow aSa \mid bSb \mid \Lambda$ (ii). $S \rightarrow aSb \mid bSa \mid \Lambda$

[2×2=4 marks]

(c) Describe what is meant by the *dangling else ambiguity* in programming languages, using a suitable example.

[5 marks]

(d) Suppose M₁ and M₂ are PDAs accepting languages L₁ and L₂, respectively.

Describe how to construct a PDA accepting the language L₁L₂. Note that nondeterminism would be necessary and that the stack alphabets of M₁ and M₂ are independent. State clearly how the new machine works.

[7 marks]

Question 5 [20 marks]

(a) Construct a Turing machine (TM) to accept the language of balanced strings of parentheses. For example, "(()(())())" is balanced and ")(()(())" is not balanced.

[10 marks]

(b) Describe the terms "Turing complete" and "Turing equivalent".

[5 marks]

- (c) State whether each statement below is True or False. (TM = Turing Machine).
 - (i) A linear bounded automaton is a non-deterministic TM with limited abilities.
 - (ii) If L is a recursive language, then there is a TM which will halt even when a string not in L is input.
 - (iii) The set of real numbers is countable because it can be put into one-to-one correspondence with the natural numbers.
 - (iv) There are languages that cannot be accepted by any Turing Machine.
 - (v) PCP was initially thought to be unsolvable but later proved to be intractable.

[5 marks]

---- End of Paper -----