本节内容

图的存储

邻接表法

知识总览 数组实现的顺序存储, 空间复杂度高,不适合 邻接矩阵 存储稀疏图 邻接表 顺序+链式存储 图的存储 0 十字链表 邻接多重表

邻接表法(顺序+链式存储)


```
//"顶点"

typedef struct VNode{
    VertexType data; //顶点信息
    ArcNode *first; //第一条边/弧
}VNode,AdjList[MaxVertexNum];
```

对比: 树的孩子表示法

孩子表示法:顺序存储各个节点,每个结点中保存孩子链表头指针

邻接表法

点相连的边/弧?

边结点的数量是|E|, 整体空间复杂度为 O(|V|+|E|)

邻接表法

只要确定了顶 点编号,图的 邻接矩阵表示 方式唯一

	Α	В	С	D	Ε	F
Α	0	1	1	1	0	0
В	1	0	0	0	1	1
С	1	0	0	0	1	0
D	1	0	0	0	0	1
Ε	0	1	1	0	0	0
F	0	1	0	1	0	0

知识回顾与重要考点

邻接矩阵

	Α	В	С	D	Ε	F
Α	0	1	1	1	0	0
В	1	0	0	0	1	1
С	1	0	0	0	1	0
D	1	0	0	0	0	1
Ε	0	1	1	0	0	0
F	0	1	0	1	0	0

	邻接表	邻接矩阵
空间复杂度	无向图 O(V + 2 E);有向图O(V + E)	O(V ²)
适合用于	存储稀疏图	存储稠密图
表示方式	不唯一	唯一
计算度/出度/入度	计算有向图的度、入度不方便, 其余很方便	必须遍历对应行或列
找相邻的边	找有向图的入边不方便,其余很方便	必须遍历对应行或列

欢迎大家对本节视频进行评价~

学员评分: 6.2.2 邻接表法

扫一扫二维码打开或分享给好友

- 腾讯文档 -可多人实时在线编辑, 权限安全可控

△ 公众号:王道在线

ご b站: 王道计算机教育

♂ 抖音:王道计算机考研