République Algérienne Démocratique & Populaire Ministère de l'Enseignement Supérieur & de la Recherche Scientifique Université Blida1

Cours de Physique1 « Mécanique du point matériel »

MEGUENNI A/Hakim 1^{ère} année ST/SM

Chapitre 1

ANALYSE VECTORIELLE

(Rappel mathématique)

1/INTRODUCTION:

La majorité des phénomènes physiques et en particulier dynamiques, sont représentés par des grandeurs vectorielles (ex : vecteur position \overrightarrow{OM} , vecteur vitesse \overrightarrow{V} , accélération \overrightarrow{a} , force \overrightarrow{F} , quantité de mouvement \overrightarrow{P} etc...)

1.1/ Définition d'un vecteur :

Un vecteur est un segment de droite qui joint deux points donnés, à partir d'un point donné, le vecteur doit être caractérisé par :

- son module مقياس $|\overrightarrow{AB}| = |\overrightarrow{V}| = 5$ unité
- sa direction الحامل
- son sens الاتجاه

a/ Vecteur opposé: شعاع معاكس

Le vecteur opposé au vecteur \overrightarrow{AB} , sera un vecteur de même module que \overrightarrow{AB} mais de sens contraire, noté par : $-\overrightarrow{AB} = \overrightarrow{BA}$

Le module de \overrightarrow{AB} est égale au module de \overrightarrow{BA} : on écrit $|\overrightarrow{AB}| = |\overrightarrow{BA}|$ ou bien AB = BA

شعاع الوحد: b/ vecteur unitaire

Le vecteur unitaire de \overrightarrow{AB} : est un vecteur qui a la même direction et le même sens que \overrightarrow{AB} mais dont le module est égale à 1.

$$\overrightarrow{AB} = |\overrightarrow{AB}| \overrightarrow{\mu}_{AB} \rightarrow \overrightarrow{\mu}_{AB} = \frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$$

Remarque: Chaque vecteur a son propre vecteur unitaire.

Exemple: Déterminer le vecteur unitaire du vecteur $\vec{V} = 4\vec{\iota} + 3\vec{\jmath}$

On sait que :
$$\vec{V} = |\vec{V}| . \vec{\mu} \vec{v} \rightarrow \vec{\mu} \vec{v} = \frac{\vec{V}}{|\vec{V}|}$$

Puisque le module de
$$\vec{V}$$
 est : $|\vec{V}| = \sqrt{V_x^2 + V_y^2} = \sqrt{4^2 + 3^2} = 5$

Donc:
$$\vec{\mu} \vec{v} = \frac{4\vec{i} + 3\vec{j}}{5} = 0.8\vec{i} + 0.6\vec{j}$$

1.2/ L'addition (la somme) de deux vecteurs :

a/ Géométriquement :

Pour faire la somme de deux vecteurs $\overrightarrow{V_1}$ et $\overrightarrow{V_2}$, il faut placer le début du vecteur $\overrightarrow{V_2}$ à la fin du vecteur $\overrightarrow{V_1}$, ainsi le vecteur résultant $\overrightarrow{V} = \overrightarrow{V_1} + \overrightarrow{V_2}$ sera le vecteur dont le point de départ coïncide avec le début de $\overrightarrow{V_1}$ et sa fin coïncide avec la fin de $\overrightarrow{V_2}$ (voir schéma)

b/ Analytiquement:

Pour déterminer le vecteur \vec{V} il faut donner son module, sa direction et son sens :

• Détermination du module de \vec{V} :

Nous remarquons que dans le triangle ADC : $AC^2 = AD^2 + DC^2$ (théorème de Pythagore)

Avec:
$$AC = |\vec{V}| = V$$

 $AD = AB + BD = V_1 + V_2 \cos\theta$
 $DC = V_2 \sin\theta$

En remplaçant dans $AC^2 = AD^2 + DC^2$, on aura :

$$\begin{split} V^2 &= (V_1 + V_2 \cos \theta)^2 + V_2^2 \sin^2 \theta \\ V^2 &= V_1^2 + 2V_1. V_2. \cos \theta + V_2^2 \cos^2 \theta + V_2^2 \sin^2 \theta \\ V^2 &= V_1^2 + 2V_1. V_2. \cos \theta + V_2^2 \end{split}$$

D'où le module de
$$\vec{V}$$
:
$$V = \sqrt{V_1^2 + V_2^2 + 2V_1 \cdot V_2 \cdot \cos\theta}$$

• La direction de \vec{V} :

Pour déterminer la direction du vecteur \vec{V} , il faut seulement donner l'angle α (α : angle entre le vecteur \vec{V} et l'horizontale).

D'où la relation connue (d'un triangle quelconque) :

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$$

c/La somme de deux vecteurs en utilisant leurs composantes :

Nous allons déterminer les composantes du vecteur $\overrightarrow{V} = \overrightarrow{V_1} + \overrightarrow{V_2}$ en fonction des composantes de $\overrightarrow{V_1}$ et $\overrightarrow{V_2}$:

$$\vec{V} = V_x \vec{i} + V_y \vec{j} \qquad V_x = ? \text{ et } V_y = ?$$

$$\overrightarrow{V_1} = V_{1x} \overrightarrow{i} + V_{1y} \overrightarrow{j} = V_1 \cos \theta_1 \overrightarrow{i} + V_1 \sin \theta_1 \overrightarrow{j}$$

$$\overrightarrow{V_2} = V_{2x} \vec{i} + V_{2y} \vec{j} = V_2 cos\theta_2 \vec{i} + V_2 sin\theta_2 \vec{j}$$

Comme $\overrightarrow{V}=\overrightarrow{V_1}+\overrightarrow{V_2}$, alors en faisant les projections sur les axes on aura les composantes de \overrightarrow{V} :

$$Proj / \overrightarrow{Ox}$$
: $V_x = V_{1x} + V_{2x} = V_1 \cos\theta_1 + V_2 \cos\theta_2$

$$Proj / \overrightarrow{Oy}$$
: $V_y = V_{1y} + V_{2y} = V_1 \sin\theta_1 + V_2 \sin\theta_2$

Finalement le module de V sera :
$$|\vec{V}| = V = \sqrt{V_x^2 + V_y^2}$$

La direction de \vec{V} est donnée par l'angle α (angle entre le vecteur \vec{V} et l'axe des x) tel que : $tg\alpha = V_y/V_x$

1.3/ Différence (soustraction) de deux vecteurs :

La différence de deux vecteurs $\overrightarrow{V_1}$ - $\overrightarrow{V_2}$, n'est autre que la somme du vecteur $\overrightarrow{V_1}$ plus l'opposé du vecteur $\overrightarrow{V_2}$:

$$\overrightarrow{V_1}$$
 - $\overrightarrow{V_2}$ = $\overrightarrow{V_1}$ + $(-\overrightarrow{V_2})$

1.4/ Projection d'un vecteur :

- La projection d'un vecteur sur un axe (Δ) est égale au module du vecteur multiplié par le cosinus de l'angle entre le vecteur et l'axe. \vec{V}

Proj
$$\vec{V}/_{(\Delta)} = |\vec{V}|.\cos(\vec{V},\vec{u})\vec{u} = |\vec{V}|.\cos\alpha\vec{u}$$

Le module de la projection de \vec{V} sur (Δ) est égale à : $|\vec{V}|$.cos α = V.cos α

- On peut projeter un vecteur sur un autre vecteur.

Par exemple le module de la projection du vecteur \vec{a} sur le vecteur \vec{V} s'écrit :

Proj
$$\vec{a}/\vec{v} = |\vec{a}| = |\vec{a}|.\cos\alpha$$

2/ LE PRODUIT SCALAIRE: (الجداء السلمي)

2.1/ Définition :

Le produit scalaire de deux vecteurs \vec{A} par \vec{B} est défini par la grandeur scalaire obtenue par :

$$\vec{A}.\vec{B} = |\vec{A}|.|\vec{B}|.cos(\vec{A}, \vec{B}) = |\vec{A}|.|\vec{B}|.cos\theta = scalaire$$

avec θ : angle compris entre les vecteurs \vec{A} et \vec{B} .

Remarque:

• Le produit scalaire est commutatif

$$\vec{A}.\vec{B} = \vec{B}.\vec{A}$$

Le produit scalaire d'un vecteur par lui-même est égal au module du vecteur au carré.

$$\vec{A} \cdot \vec{A} = |\vec{A}| \cdot |\vec{A}| \cdot \cos 0 = |\vec{A}| \cdot |\vec{A}| = A^2$$

• Le produit scalaire de deux vecteurs perpendiculaires (orthogonaux) est nul.

Si
$$\vec{A} \perp \vec{B} \rightarrow \vec{A}.\vec{B} = |\vec{A}|.|\vec{B}|.\cos\frac{\pi}{2} = 0$$
 (c'est la condition d'orthogonalité)

• Dans un repère orthonormé (معلم متعامد متجانس), les produits scalaires des vecteurs unitaires ont pour valeurs:

$$\vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1$$
 (produit scalaire d'un vecteur par lui-même)
 $\vec{i} \cdot \vec{j} = \vec{j} \cdot \vec{k} = \vec{k} \cdot \vec{i} = 0$ (produit scalaire de 2 vecteurs perpendiculaires)

2.2/ Expression analytique du produit scalaire:

Le produit scalaire de deux vecteurs \vec{A} par \vec{B} est égal à la somme des produits de leurs composantes :

$$\vec{A} \begin{vmatrix} A_x \\ A_y \\ A_z \end{vmatrix} \text{ et } \vec{B} \begin{vmatrix} B_x \\ B_y \\ B_z \end{vmatrix} \text{ alors } \vec{A}.\vec{B} = (A_x\vec{\imath} + A_y\vec{\jmath} + A_z\vec{k}). (B_x\vec{\imath} + B_y\vec{\jmath} + B_z\vec{k})$$

$$donc \ on \ aura : \vec{A}.\vec{B} = A_x.B_x + A_y.B_y + A_z.B_z$$

Exemple:

$$\vec{A} \begin{vmatrix} 1 \\ 2 \\ 3 \end{vmatrix} = t \quad \vec{B} \begin{vmatrix} -4 \\ 5 \\ 3 \end{vmatrix} \rightarrow \vec{A}.\vec{B} = 1.(-4) + 2.5 + 3.3 = 15$$

Remarque: Détermination d'un angle compris entre deux vecteurs

En connaissant les composantes des vecteurs \vec{A} et \vec{B} , on peut déterminer l'angle θ compris entre ces deux vecteurs en utilisant le produit scalaire :

$$\overrightarrow{A} = A_x \overrightarrow{i} + A_y \overrightarrow{j} + A_z \overrightarrow{k}$$
 et $\overrightarrow{B} = B_x \overrightarrow{i} + B_y \overrightarrow{j} + B_z \overrightarrow{k}$

$$\vec{A}.\vec{B} = |\vec{A}|.|\vec{B}|.\cos\theta$$

$$\vec{A}.\vec{B} = A_x.B_x + A_y.B_y + A_z.B_z$$

$$\rightarrow \cos\theta = \frac{A_x.B_x + A_y.B_y + A_z.B_z}{|\vec{A}|.|\vec{B}|} \rightarrow \theta = ?$$

(الجداء الشعاعي) : 3/ LE PRODUIT VECTORIEL

3.1/ Rappel mathématique: (calcul d'un déterminant)

• Un déterminant du second ordre est un tableau à 4 éléments (2x2) :

$$\begin{vmatrix} 1^{\text{ère}} & \text{ligne} & \longrightarrow & a_1 & a_2 \\ 2^{\text{ème}} & \text{ligne} & \longrightarrow & b_1 & b_2 \end{vmatrix} = a_1 x b_2 - b_1 x a_2$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$

$$1^{\text{ère}} & \text{colonne} \qquad 2^{\text{ème}} & \text{colonne}$$

• Un déterminant du 3^{ème} degré est un tableau à 9 éléments (3x3) :

$$\begin{vmatrix} + & - & + \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \cdot \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \cdot \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \cdot \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$
$$= a_1 \cdot (b_2 \cdot c_3 - c_2 \cdot b_3) - a_2 \cdot (b_1 \cdot c_3 - c_1 \cdot b_3) + a_3 \cdot (b_1 \cdot c_2 - c_1 \cdot b_2)$$

3.2/ Définition du produit vectoriel :

Le produit vectoriel de deux vecteurs \vec{A} et \vec{B} est un vecteur (noté $\vec{C} = \vec{A} \times \vec{B} = \vec{A} \wedge \vec{B}$) qui a les caractéristiques suivantes :

- La direction de \vec{C} : $\vec{C} \perp \vec{A}$ et $\vec{C} \perp \vec{B}$
- Le sens de \vec{C} : il est déterminé par la méthode de la main droite.

- Le module de \vec{C} : $|\vec{C}| = |\vec{A} \wedge \vec{B}| = |\vec{A}| \cdot |\vec{B}| \cdot \sin\theta$

Remarques:

• Si
$$\vec{A} \land \vec{B} = \vec{0} \Rightarrow \begin{cases} |\vec{A}| = |\vec{B}| = 0 \\ \vec{A} \text{ et } \vec{B} \text{ sont parallèles } (\theta = 0 \text{ ou } \pi) \end{cases}$$

- Le produit vectoriel est anti-commutatif : $\vec{A} \wedge \vec{B} = -\vec{B} \wedge \vec{A}$
- Le produit vectoriel est distributif : $\vec{E} \wedge (\vec{A} + \vec{B}) = \vec{E} \wedge \vec{A} + \vec{E} \wedge \vec{B}$
- Le produit vectoriel des vecteurs unitaires :

$$\vec{l} \wedge \vec{j} = \vec{k}$$
 mais $\vec{l} \wedge \vec{j} = -\vec{k}$
 $\vec{j} \wedge \vec{k} = \vec{l}$ mais $\vec{j} \wedge \vec{k} = -\vec{l}$
 $\vec{k} \wedge \vec{l} = \vec{j}$ mais $\vec{k} \wedge \vec{l} = -\vec{j}$

Sans oublier que: $\vec{l} \wedge \vec{l} = \vec{j} \wedge \vec{j} = \vec{k} \wedge \vec{k} = \vec{0}$

3.3/ Expression analytique:

 $\vec{C} = \vec{A} \wedge \vec{B}$, déterminer les composantes du vecteur \vec{C} en fonction des composantes des vecteurs \vec{A} et \vec{B} :

$$\vec{C} = \vec{A} \wedge \vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} = \vec{i} \cdot \begin{vmatrix} A_y & A_z \\ B_y & B_z \end{vmatrix} - \vec{j} \cdot \begin{vmatrix} A_x & A_z \\ B_x & B_z \end{vmatrix} + \vec{k} \cdot \begin{vmatrix} A_x & A_y \\ B_x & B_y \end{vmatrix}$$

$$= (A_y \cdot B_z - B_y \cdot A_z) \vec{i} - (A_x \cdot B_z - B_x \cdot A_z) \vec{j} + (A_x \cdot B_y - B_x \cdot A_y) \vec{k}$$

$$= C_x \vec{i} + C_y \vec{j} + C_z \vec{k}$$

Finalement les composantes de \vec{C} sont :

$$\vec{C} \begin{vmatrix} C_x = (A_y . B_z - B_y . A_z) \\ C_y = -(A_x . B_z - B_x . A_z) \\ C_z = (A_x . B_y - B_x . A_y) \end{vmatrix}$$

Exemple:

Déterminer les composantes du vecteur \vec{C} tel que $\vec{C} = \vec{A} \wedge \vec{B}$: on donne

$$\vec{A} \begin{vmatrix} 2 \\ 3 \\ 1 \end{vmatrix} = t \qquad \vec{B} \begin{vmatrix} 1 \\ -2 \\ 3 \end{vmatrix}$$

$$\vec{C} = \vec{A} \land \vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 3 & 1 \\ 1 & -2 & 3 \end{vmatrix} = [9 - (-2)]\vec{i} - [6 - 1)]\vec{j} + [2.(-2) - 3]\vec{k}$$

$$= 11\vec{i} - 5\vec{j} - 7\vec{k}$$

Remarque:

Le module du produit vectoriel \vec{A} Λ \vec{B} représente l'aire (surface) du parallélogramme formé par \vec{A} et \vec{B} :

$$\left| \vec{A} \wedge \vec{B} \right| = S = \left| \vec{A} \right| . h = A.h$$

4/ LE PRODUIT MIXTE:

On appelle produit mixte des vecteurs \overrightarrow{A} , \overrightarrow{B} et \overrightarrow{C} pris dans cet ordre, le produit scalaire du premier par le produit vectoriel des deux autres, c'est donc un scalaire : \overrightarrow{A} . $(\overrightarrow{B} \land \overrightarrow{C})$ On peut aisément démontrer que :

$$\overrightarrow{A}. (\overrightarrow{B} \wedge \overrightarrow{C}) = A_x (B_y C_z - B_z C_y) - A_y (B_x C_z - C_x B_z) + A_z (B_x C_y - C_x B_y)$$

C'est à dire :
$$\overrightarrow{A}. \overrightarrow{(B)} \wedge \overrightarrow{C}) = \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$$

• Attention:
$$\overrightarrow{A} \wedge \overrightarrow{B} \wedge \overrightarrow{C} \neq \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$$

5/ DERIVÉE D'UN VECTEUR:

La dérivée d'un vecteur : c'est la dérivée de ses composantes :

$$\overrightarrow{A} = A_x \overrightarrow{i} + A_y \overrightarrow{j} + A_z \overrightarrow{k}$$
 alors $\frac{d\overrightarrow{A}}{dt} = \frac{dA_x}{dt} \overrightarrow{i} + \frac{dA_y}{dt} \overrightarrow{j} + \frac{dA_z}{dt} \overrightarrow{k}$

•
$$\frac{d}{dt} \lambda \vec{A} = \lambda \frac{d}{dt} \vec{A}$$
 avec: $\lambda = constante$

•
$$\frac{d}{dt}(\vec{A} + \vec{B}) = \frac{d\vec{A}}{dt} + \frac{d\vec{B}}{dt}$$

•
$$\frac{d}{dt}(\vec{A} \cdot \vec{B}) = \frac{d\vec{A}}{dt}\vec{B} + \vec{A}\frac{d\vec{B}}{dt}$$

•
$$\frac{d}{dt} (\vec{A} \wedge \vec{B}) = \frac{d\vec{A}}{dt} \wedge \vec{B} + \vec{A} \wedge \frac{d\vec{B}}{dt}$$

6/ NOTION DE DERIVÉE :

6.1/ Définition de la dérivée d'une fonction :

Soit une fonction y = f(x), le taux d'accroissement cette fonction en un point d'abscisse x est donné par : $y = f(x) \land$

$$\frac{\Delta f}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

si on pose:
$$x_1 = x$$

et $x_2 = x + \Delta x$ alors: $f(x_1) = f(x)$
 $f(x_2) = f(x + \Delta x)$

$$et x_2 - x_1 = \Delta x$$

La dérivée de la fonction f(x) est tout simplement la limite de l'accroissement $\frac{\Delta f}{\Delta x}$ lorsque Δx tend vers zéro :

$$f'(x) = \frac{df}{dx} = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

6.2/ La différentielle d'une fonction :

Soit une fonction donnée qui peut dépendre de trois variables x, y, et z : f(x,y,z), La différentielle de la fonction f s'écrit :

$$df = \left(\frac{\partial f}{\partial x}\right) dx + \left(\frac{\partial f}{\partial y}\right) dy + \left(\frac{\partial f}{\partial z}\right) dz$$

avec : $\frac{\partial f}{\partial x}$: c'est la dérivée partielle de la fonction f par rapport à x;

 $\frac{\partial f}{\partial y}$: c'est la dérivée partielle de la fonction f par rapport à y;

et $\frac{\partial f}{\partial z}$: c'est la dérivée partielle de la fonction f par rapport à z.

Exemple:

Déterminer la différentielle de la fonction $f: f(x, y, z) = 2xy^2 - xz^3$

On a:
$$\frac{\partial f}{\partial x} = 2y^2 - z^3$$

$$\frac{\partial f}{\partial y} = 4xy$$

$$\frac{\partial f}{\partial z} = -3xz^2$$

alors:
$$df = (2y^2 - z^3) dx + 4xy dy - 3xz^2 dz$$

7/ GRADIENT - DIVERGENCE - ROTATIONNEL:

Soit l'opérateur 'nabla'
$$\overrightarrow{\nabla}$$
 défini par : $\overrightarrow{\nabla} = \frac{\partial}{\partial x} \vec{i} + \frac{\partial}{\partial y} \vec{j} + \frac{\partial}{\partial z} \vec{k}$

Cet opérateur nous permet de déterminer (et d'apprendre) d'une manière simple les notions mathématiques (gradient, divergence et rotationnel).

7.1/ Gradient d'une fonction:

Le gradient d'une fonction f(x, y, z) est un vecteur noté par : $\overrightarrow{grad}f = \overrightarrow{\nabla}f$ dont les composantes sont les dérivées partielles par rapport à x, par rapport à y et par rapport à z.

$$\overrightarrow{grad} f = \overrightarrow{\nabla} f = \frac{\partial f}{\partial x} \overrightarrow{i} + \frac{\partial f}{\partial y} \overrightarrow{j} + \frac{\partial f}{\partial z} \overrightarrow{k} \qquad \Rightarrow \qquad \overrightarrow{grad} \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix}$$

7.2/ Divergence d'un vecteur:

La divergence d'un vecteur \vec{V} représente le produit scalaire de $\vec{\nabla}$ par ce vecteur :

$$\vec{\nabla} egin{pmatrix} \partial/\partial x \ \partial/\partial y \ \partial/\partial z \end{pmatrix} \qquad et \qquad \vec{V} \ egin{pmatrix} V_x \ V_y \ V_z \end{pmatrix}$$

$$\operatorname{div} \overrightarrow{V} = \overrightarrow{\nabla} \cdot \overrightarrow{V} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$$

7.3/ Rotationnel d'un vecteur:

Le rotationnel d'un vecteur \vec{V} est un vecteur représenter par le produit vectoriel de $\vec{\nabla}$ par ce vecteur:

$$\overrightarrow{Rot} \overrightarrow{V} = \overrightarrow{\nabla} \wedge \overrightarrow{V} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{J} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ V_x & V_y & V_z \end{vmatrix} = \left(\frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial z} \right) \overrightarrow{i} - \left(\frac{\partial V_z}{\partial x} - \frac{\partial V_x}{\partial z} \right) \overrightarrow{J} + \left(\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y} \right) \overrightarrow{k}$$

donc les composantes de \overrightarrow{rot} de \overrightarrow{V} s'écrivent :

$$\overrightarrow{Rot} \, \overrightarrow{V} = \overrightarrow{\nabla} \wedge \overrightarrow{V} = \begin{pmatrix} \frac{\partial V_z}{\partial y} - \frac{\partial V_y}{\partial z} \\ \frac{\partial V_z}{\partial x} - \frac{\partial V_x}{\partial z} \\ \frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y} \end{pmatrix}$$

• Le vecteur peut être une force $\vec{F} = F_x \vec{\iota} + F_y \vec{j} + F_z \vec{k}$ ainsi le rotationnel de la force \vec{F} sera :

$$\overrightarrow{Rot} \ \overrightarrow{F} = \overrightarrow{\nabla} \wedge \overrightarrow{F} = \begin{pmatrix} \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \\ \frac{\partial F_z}{\partial x} - \frac{\partial F_x}{\partial z} \\ \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \end{pmatrix}$$

Remarque:

Soit une fonction f(x,y,z) donnée: on a toujours $\overrightarrow{rot} \ \overrightarrow{grad} \ f = \overrightarrow{0}$

$$\overrightarrow{rot} \ \overrightarrow{grad} \ f = \overrightarrow{0}$$

Soit un vecteur $\vec{F}(x,y,z)$ donné: on a toujours div $\overrightarrow{rot} \ \vec{F} = 0$

$$\overrightarrow{rot} \overrightarrow{F} = 0$$