KEY POINTS

- .Pas one just like queue ADT but some elements have greater priority, which are removed firs.
- . The clements must be comparable so that data can be ordered.
- · We use a key value pair to help order things.
- . We recome kups by using a total order relation in order to allow two difficult enhies to have the same ky

Entry ADT

A KVP with memods for getkey() and getvalue().

Comparator ADT

- · Typically kept seperate from
- · used to compare two obj. from a total order.

compare (a,6)

NAME/DATE/SUBJECT

Priority Queue

NOTES

ADT Functions:

inser (K, v)

remove Min ()

we return null of

we run into an

exception.

min () => live peck ()

lear - highert: The smaller numbers will have greater priority so will be removed first.

You are not guaranteed an ordered list! The PQ will simply return the rest object with wither priority.

Total Order Relation: <

- · Either x (y or y = x (comparability)
- . $x \le y$ and $y \le x \Rightarrow x = y$ (antisymmetry) . $x \le y$ and $y \le z \Rightarrow x \le z$ (transitive)
- · (x_{nin} ≤ y) is a representation of the reflexive relation.

SUMMARY

KEY POINTS	NAME/DATE/SUBJECT
	Sequence based priority queue.
	NOTES
	Unsorted List Sovred List
	3 4 2 1
	Insert O(1)
	remove Min Min remove Min O(n) min
	O(1) operations can either insert or remove from the front. O(n) operations must traverse each element in me lit.
	Selection sort - O(n2)
	· Relies on an unsorted queue
	· You can insert elements with o(n) hime.
	· Removing objects has running time
	$O(n) + O(n-1) + O(1) = O(n^2)$
	Insertion soft - O(n2)
	· letter on a sovied queue.

SUMMARY