Centro universitario de Ciencias Exactas e Ingenierías

INRO Robótica Móvil Actividad 5 – Omnidireccional Julio Alexis González Villa 220839961

Objetivo: Implementa una simulación del modelo omnidireccional en sus dos variantes a lazo abierto.

Resultados

3 ruedas

• X_dot, y_dot, θ _dot \leftarrow 0.2,0.0,0.0

• X_dot, y_dot, θ _dot \leftarrow -0.2, -0.2,0.0

 $\bullet \quad X_dot, \, y_dot, \, \theta_dot \leftarrow 0.0, 0.2, 0.0$

 $\bullet \quad X_dot, \, y_dot, \, \theta_dot \leftarrow 0.2, 0.2, 0.8$

4 ruedas

 $\bullet \quad X_dot, \, y_dot, \, \theta_dot \leftarrow 0.2, 0.0, 0.0$

• X_dot, y_dot, θ _dot \leftarrow -0.2, -0.2,0.0

 $\bullet \quad X_dot, \, y_dot, \, \theta_dot \leftarrow 0.0, 0.2, 0.0$

• X_{dot} , y_{dot} , θ_{dot} \leftarrow 0.2,0.2,0.8

Conclusión

Estudiamos el comportamiento de un robot móvil de tipo omnidireccional, gracias a las gráficas de posición y velocidad, obtenidas con ayuda de las ecuaciones del modelo cinemático inverso y también la manera de hacer su simulación usando cinemática directa .