Algorithms Circular-Arc Graphs

F. Gavril Syracuse University Syracuse, New York

· Mach

ABSTRACT

Consider a finite family of non-empty sets. The section graph of this family is obtained by representing each set by a vertex, two vertices being connected by an edge if graph of a family of arcs on a circularly ordered set is called of the circular-arc graph. In this paper we give a characterization of the circular-arc graphs and we describe efficient algorithms for finding a maximum independent set, a minimum graph.

1. INTRODUCTION

Networks, 4: 357-369

the set of elements of A which are not in B. Throughout the paper, we will assume that the graph G(V) has n vertices denoted V = $\{v_1, \dots, v_n\}$.

The matrices we deal with in this paper are (0,1)-matrices. For a graph G(V) and a family A_1,\dots,A_k of subsets of V, we will denote by $\mu(A_1,\dots,A_k)$ the k × n matrix whose entry <i,j> is 1 if $v_j \in A_i$, and 0 if $v_j \notin A_i$.

Consider a finite family of non-empty sets. The intersection graph of this family is obtained by representing each set by a vertex, two vertices being connected by an edge if and only if the corresponding sets intersect. The intersection graphs of families of sets with a defined topological pattern have applications in genetics, psychophysics, archeology and ecology. The paper [8] is a survey of problems and applications of the different intersection graphs. For example, the intersection graph of a family of intervals on a linearly ordered set is called an interval graph (see [1]-[3]).

The intersection graph of a family of arcs on a circularly ordered set is called a *circular-arc graph*. For example, the graph of Figure la is a circular-arc graph represented by the family of arcs $F = \{\overline{v}_1, \dots, \overline{v}_8\}$ of Figure lb. The problem of

characterizing the circular-arc graphs first appeared in [7]. Klee discussed in [8] some problems related to this subject. Tucker [9] characterized the circular-arc graphs by means of their adjacency matrices, and asked for a recognition algorithm, yet unknown.

A graph is called a Δ circular-arc graph if it is the intersection graph of a family of arcs on a circle, so that for three arcs, if every pair intersects then the intersection of the three arcs is non-empty. A graph is called a θ circular-arc graph if it is the intersection graph of a family of arcs on a circle so that for every clique, the intersection of the arcs corresponding to the vertices of the clique is non-empty. Clearly, a θ circular-arc graph is also a Δ circular-arc graph. Consider the graph in Figure 1a. The set $\{v_1, v_2, v_3, v_4\}$ is a circuit without diagonals which can be represented only by the arcs $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ as in Figure 1b. For representing the clique $\{v_5, v_6, v_7, v_8\}$ by four arcs with a non-empty intersection, it is necessary that the arc $\bigcap \vec{v}_1$ should intersect one of the arcs $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$. Hence, one of the vertices v_1, v_2, v_3, v_4 must be

connected to all the vertices v_5, v_6, v_7, v_8 . Thus the graph in Figure la is a Δ circular-arc graph which is not a θ circular-arc graph.

The purposes of this paper are to describe efficient algorithms for:

- (i) Recognizing the Δ and θ circular-arc graphs and constructing the corresponding families of arcs.
- (ii) Finding a maximum clique, a maximum independent set and a minimum covering by cliques of a circular-arc graph.

(b)

Fig. 1

Let G(V) be a circular-arc graph and F its family of representing arcs. Two arcs \vec{v}_i, \vec{v}_j ϵ F are called overlapping if they intersect and no one is contained in another. Consider the set S = {s₁,...,s_r} of all the arcs on the circle, such that every s_i , $1 \le i \le r$, satisfies:

- (i) s_i does not contain endpoints of the arcs of F;
- (ii) $s_{\hat{1}}$ is an arc of F or is the intersection of two overlapping arcs of F.

The set S will be called the set of primitive arcs for F. Clearly, every arc of F contains a primitive arc, and every two different primitive arcs have an empty intersection. For every $1 \le i \le r$, denote $V_i = \{v | v \in V, s_i \subseteq \overline{v}\}$.

Lemma 1: Let G(V) be a circular-arc graph and F its representing family of arcs. Then $\mu(V_1,\ldots,V_p)$ has the circular 1's property.

Proof: Without loss of generality we can assume that the primitive arcs s₁,...,s_r appear in a circular consecutive order. Hence, every arc $\vec{v_j}$ contains a circular consecutive sequence of primitive arcs. But $\mathbf{s_i}\subseteq \bar{\mathbf{v}_j}$ if and only if $\mathbf{v_j}\in \mathbf{v_i}$. Thus the 1's in the column j of $\mu(V_1,\dots,V_r)$ appear in a circular consecutive in the column j of $\mu(V_1,\dots,V_r)$ tive order. Therefore, $\mu(\overset{-}{V_1},\dots,\overset{-}{V_r})$ has a circular 1's form.

A family ${}^{A}_{1}, \dots, {}^{A}_{k}$ of completely connected sets of a graph G(V) is called a covering system, if it satisfies: $V = \bigcup_{i=1}^{K} A_i$; if $i \neq j$ then $A_i \not\subseteq A_j$; for every two adjacent vertices u,v there exists a set $A_{\underline{i}}$ containing them.

Theorem 1: A graph G(V) is a circular-are graph if and only if it has a covering system A_1,\ldots,A_k such that $\mu(A_1,\ldots,A_k)$ has

Proof: Assume that G(V) is a circular-arc graph and F is the representing family of arcs. Clearly, the family V_1, \dots, V_k defined as above, is a covering system, and by Lemma 1, $\mu(V_1,...,V_k)$ has the circular I's property.

A graph is called chordal if every simple circuit with more than three vertices has an edge connecting two non-consecutive vertices. Efficient recognition algorithms of these graphs are described in [3] and [5]. The number of cliques of a chordal graph is at most as the number of its vertices (see [3] and [4]). Let us denote an oriented edge from u to v, by $u \rightarrow v$. An orientation of a graph is called an R-orientation if it has no directed circuits and for every three vertices u,v,w, if $u \rightarrow v$ and $w \rightarrow v$, then either $u \rightarrow w$ or $w \rightarrow u$. In [3] and [5] it is proved that a graph is chordal if and only if it is R-orientable. The interval graphs are chordal (see [1] and [2]). We can obtain

an R-orientation of an interval graph, in n^2 steps, as follows. Consider an interval graph G and its representing family of intervals F. Without loss of generality, we can assume that the intervals of F have no common endpoints. Then, for two adjacent vertices u,v of G we orient $u \rightarrow v$ if and only if the left endpoint of u appears on the left of the left endpoint of v. Clearly, this is an R-orientation of G. By the algorithms described in [4], based on the R-orientation, we can find a maximum clique, a maximum independent set, a minimum covering by cliques, and the set of cliques of an interval graph. For an interval graph, the intersection of the intervals corresponding to the vertices of a clique is a non-empty interval (see [1] or

Consider a matrix written on the lateral surface of a cylinder, so that the rows are generating lines. The matrix has a circular 1's form if the 1's in each column appear in a circular consecutive order. A matrix has the circular 1's property if by a permutation of the rows it can be transformed into a matrix with a circular l's form. Tucker [9] described an efficient algorithm for constructing a circular l's form of a matrix, if one exists. His algorithm takes at most $\ensuremath{\text{m}}^3$ steps, where $\ensuremath{\text{m}}$ is

the number of columns in the matrix.

Without loss of generality, we can assume that the families of arcs (on a circle) we deal with are chosen so that the arcs are open, no two arcs have a common endpoint, and none of the arcs covers the whole circle. By an arc a=(e,f), we mean the arc beginning in e and continuing in clockwise direction until f; e will be called the left endpoint of a and f will be called the right endpoint of a. Consider a circular-arc graph G and its representing family of arcs F. We will assume that the union of the arcs of P covers the circle, for otherwise G is an interval graph. Thus we will consider only connected graphs. The corresponding arc in F of a vertex v of G will be denoted

Conversely, let $\lambda_1,\dots,\lambda_k$ be a covering system of G, so that $\mu(\lambda_1,\dots,\lambda_k)$ has the circular 1's property. Without loss of generality we can assume that the matrix has a circular 1's form. Denote k points consecutively in the clockwise direction on a circle, by 1,2,...,k. We construct the family F as follows. Let the 1's in a column i appear in a circular consecutive order in clockwise direction between the rows m and p, inclusively. If m $\ddagger 1$, then $\bar{\mathbf{v}}_1 = (m-1,p)$ ϵ F and if m=1, then $\bar{\mathbf{v}}_1 = (k,p)$ ϵ F. If the column i contains only 1's then $\bar{\mathbf{v}}_1 = (k,k)$ ϵ F. Two vertices $\mathbf{v}_1,\mathbf{v}_j$ ϵ V are adjacent if and only if there exists an 1, $1 \le k \le k$, such that $\mathbf{v}_1,\mathbf{v}_j \in \lambda_k$, hence if and only if $\bar{\mathbf{v}}_i \cap \bar{\mathbf{v}}_i \supseteq (k-1,k)$. Therefore, G is the intersection graph of F.

A covering system of the graph of Figure 1a is: $\begin{array}{ll} {\tt A}_1 = \{ {\tt v}_1, {\tt v}_4, {\tt v}_6, {\tt v}_7 \}; \ {\tt A}_2 = \{ {\tt v}_1, {\tt v}_5, {\tt v}_6, {\tt v}_7 \}; \ {\tt A}_3 = \{ {\tt v}_1, {\tt v}_2, {\tt v}_5, {\tt v}_7 \}; \\ {\tt A}_4 = \{ {\tt v}_2, {\tt v}_5, {\tt v}_7, {\tt v}_8 \}; \ {\tt A}_5 = \{ {\tt v}_2, {\tt v}_3, {\tt v}_5, {\tt v}_8 \}; \ {\tt A}_6 = \{ {\tt v}_3, {\tt v}_5, {\tt v}_6, {\tt v}_8 \}; \\ {\tt A}_7 = \{ {\tt v}_3, {\tt v}_4, {\tt v}_6, {\tt v}_8 \}; \ {\tt A}_8 = \{ {\tt v}_4, {\tt v}_6, {\tt v}_7, {\tt v}_8 \}. \\ \end{array}$

A circular 1's form of $\mu(\lambda_1,\dots,\lambda_8)$ is given in Figure 2a. In Figure 2b we see the representing family of arcs, constructed by the above method.

Fig. 2

3. RECOGNITION ALGORITHMS FOR THE Δ AND θ CIRCULAR-ARC GRAPHS

Consider a graph G(V), $V = \{v_1, \dots, v_n\}$. For every vertex v_i , let G_i denote the subgraph defined by $\Gamma v_i \cup \{v_i\}$. Let $C_1^i, \dots, C_{k_i}^i$ be all the cliques of G_i . We will denote the maximal elements of $\bigcup_{i=1}^n \{C_1^i, \dots, C_{k_i}^i\}$ by D_1, \dots, D_k .

Consider a Δ circular-arc graph G(V) and its representing family of arcs F. For every vertex \mathbf{v}_4 , denote:

$$\mathbf{\bar{r}_i} = \{\tilde{\mathbf{v}_j^i} | \tilde{\mathbf{v}_j^i} = \tilde{\mathbf{v}_i} \cap \tilde{\mathbf{v}_j}, \mathbf{v_j} \in \mathbf{rv_i} \cup \{\mathbf{v_i}\}\}.$$

For two adjacent vertices $\mathbf{v}_j, \mathbf{v}_k \in \Gamma \mathbf{v}_i$, we have $\bar{\mathbf{v}}_i \cap \bar{\mathbf{v}}_j \cap \bar{\mathbf{v}}_k \neq \phi$, by the definition of the Δ circular-arc graphs, thus $\bar{\mathbf{v}}_j^i \cap \bar{\mathbf{v}}_k^i \neq \phi$. Therefore, G_i is the intersection graph of F_i , and F_i is a family of arcs which does not cover the whole circle. Hence, G_i is an interval graph. Thus if G is a Δ circular-arc graph, then every G_i is an interval graph, and hence every G_i is chordal.

Theorem 2: G is a Δ circular-arc graph if and only if $u(D_1, \ldots, D_k)$ has the circular 1's property.

Proof: Let G(V) be a \$\Delta\$ circular-arc graph, and \$F\$ its representing family of arcs. Consider the set of primitive arcs \$S = \{s_1, \ldots, s_r\}\$. For every \$1 \leq j \leq r\$, denote \$V_j = \{v_i v v v, s_j \subseteq \vec{v}\}\$. Clearly, if \$v_i \in V_j\$, then \$V_j\$ is a clique of \$G_i\$. On the other side, \$G_i\$ is an interval graph, and the intersection of the arcs representing the vertices of a clique is non-empty and contains a primitive arc. Therefore, \$V_1, \ldots, V_r\$ are exactly all the maximal elements of \$\begin{pmatrix} 1 \cdot (c_1^i, \ldots, c_k^i \) and by Lemma 1, \$\mu(V_1, \ldots, V_k)\$ has the circular 1's property.

Conversely, consider a graph G such that $\mu(D_1,\ldots,D_k)$ has the circular 1's property. The family D_1,\ldots,D_k is a covering system of G and we can construct to G a family of representing

rcs F as in the proof of Theorem 1. Consider three vertices v_i, v_j, v_k , mutually adjacent. Hence $v_j, v_k \in G_i$ and there exists a clique of $G_{\underline{i}}$ which contains the three vertices. Thus there exist an l, $1 \le l \le k$, such that $v_i, v_j, v_k \in D_l$. Therefore, by the construction of F, $\bar{v}_i \cap \bar{v}_j \cap \bar{v}_k$) (2-1,1) on the circle of F. Thus, G is a Δ circular-arc graph.

By Theorem 2, the algorithm for recognizing whether a given graph G is a A circular-arc graph works as follows:

We check that every $\textbf{G}_{\underline{i}}$, $1 \leq \underline{i} \leq \textbf{n}$, is chordal. For every $1 \leq i \leq n,$ we construct the set $\{C_1^1, \dots, C_{k_i}^1\}$ of the cliques of G_i^{-} . Clearly, $k_i^{-} \leq n$. Let D_1^{-}, \dots, D_k^{-} be the maximal elements of $\bigcup_{i=1}^{n}\{c_{1}^{i},\ldots,c_{k_{i}}^{i}\}$. Then, G is a Λ circular-arc graph if and only if $\mu\left(D_{1},\ldots,D_{k}\right)$ has the circular 1's property. A family F of representing arcs of G can be constructed as in the proof of Theorem 1. Since the number of steps required to test chordality is at most \boldsymbol{n}^4 , the above algorithm takes no more than \boldsymbol{n}^5

Consider a graph G, and let C_1, \dots, C_k be its cliques.

Theorem 3: The graph G is a θ circular-arc graph if and only if $\mu(C_1, \ldots, C_L)$ has the circular 1's property.

Proof: Assume that G is a θ circular-arc graph and F is the family of representing arcs. By the definition, for every clique $C_i, b_i = \bigcap_{v \neq 0} v \neq 0$. It is easy to see that b_1, \dots, b_k is the set

of primitive arcs, and for every $1 \le i \le k$, $C_i = \{v | b_i \subseteq \overline{v}\}$. Thus by Lemma 1, $\mu(\boldsymbol{C}_1,\dots,\boldsymbol{C}_k)$ has the consecutive 1's property.

Conversely, assume that $\mu(c_1,\ldots,c_k)$ has a circular 1's form. The family $\mathbf{C}_{\underline{1}},\dots,\mathbf{C}_{\underline{k}}$ is a covering system of G, and we can construct to ${\tt G}$ a family ${\tt F}$ of representing arcs as in the proof of Theorem 1. By the construction of $\bar{\mathbf{F}}$, for every i, \bigcap \vec{v} = (i-1,i). Therefore G is a θ circular-arc graph. Q.E.D.

Let G be a θ circular-arc graph with n vertices and F_its representing family of arcs. For every clique C of G, $\, \bigcap \, \vec{v}$ is

a primitive arc. The number of primitive arcs is at most n. Thus the number of cliques of a 8 circular-arc graph is at most n. A subgraph of G with k vertices is also a θ circular-arc graph and thus it has at most k cliques.

Let G(V) be a given graph. The algorithm for recognizing if G is a θ circular-arc graph works as follows:

First, we must check that the number of its cliques is at most n. We do this by the algorithm described in [6]. For every $1 \leq i \leq n,$ we construct the set P $_i$ of all the cliques of the subraph G^{i} defined by the vertices v_{1}, \dots, v_{i} . For i = 1, $P_1 = (\{v_1\})$. Assume that P_{i-1} was constructed. Find:

$$P_{i}' = \{\{v_{i}\} \cup (CCPv_{i}) \mid \text{ for every } C \in P_{i-1}\}.$$

Then P is the set of maximal elements of P \cup P i-1. If in any stage i, the number of elements in P $_{\hat{\mathbf{i}}}$ is more than i, then $\textbf{G}^{\hat{\mathbf{i}}}$ is not a $\boldsymbol{\theta}$ circular-arc graph, \boldsymbol{G} cannot be either, and we stop. Assume that the process ends successfully. Then $P_n = \{c_1, \dots, c_k\}$ is the set of cliques of G and $k \, \leq \, n_{\star}$ (This process requires at most n^3 steps.) Therefore, G is a θ circular-arc graph if and only if $\mu(C_1,\dots,C_k)$ has the circular 1's property. This algorithm requires at most n³ steps.

4. ALGORITHMS FOR A MAXIMUM INDEPENDENT SET AND A MINIMUM COVERING BY CLIQUES OF A CIRCULAR-ARC GRAPH

Consider a circular-arc graph G and its representing family of arcs F. Let us denote the endpoints of the representing arcs consecutively in the clockwise direction by $h_1, h_2, \dots, h_{2n-1}, h_{2n}, h_1$ For every 1 \leq 1 \leq 2n, denote a_i = (h_i, h_{i+1}) and a_{2n} = (h_{2n}, h_1) . Also, for every $1 \leq i \leq 2n,$ denote W $_{\underline{i}}$ = {v | veV, a $_{\underline{i}} \subseteq \overline{v}$ } and $U_i = V - W_i$. Let $K_i(U_i)$ be the subgraph of G defined by U_i . The set of arcs corresponding to the vertices of ${\tt U}_{\hat{\tt l}}$ does not cover the circle, since $\mathbf{a}_{\hat{\mathbf{i}}}$ is not covered. Thus every $\mathbf{K}_{\hat{\mathbf{i}}}$ is an interval graph. Let J be a maximum independent set of G. Hence for every two vertices u,v ϵ J, $\vec{u} \cap \vec{v} = \emptyset$. Clearly, J does not

41 1

cover the whole circle, and there exists an a_i which intersects no arcs corresponding to vertices of J. Thus J is a maximum independent set of K_i . Therefore $\alpha(G) = \max_{1 \le i \le 2n} \alpha(K_i)$. For every interval graph K_i we can find a maximum independent set J_i by the algorithm described in [4]. Then, a set with a maximum number of elements among J_1, \ldots, J_{2n} is a maximum independent set of G. This algorithm requires at most n^4 steps.

Let the number of cliques in a minimum covering by cliques of a graph H be denoted by $\xi(H)$. Every K_1 , $1 \le i \le 2n$, is an interval graph, and thus (see [4]) $\alpha(K_1) = \xi(K_1)$. W_1 is a completely connected set and if we add it to a minimum covering by cliques of K_1 we obtain a covering by completely connected sets of G. Hence

 $\xi(G) \leq \min_{\substack{1 \leq i \leq 2n}} \xi(K_{\underline{i}}) + 1 = \min_{\substack{1 \leq i \leq 2n}} \alpha(K_{\underline{i}}) + 1 \leq \alpha(G) + 1.$

But $\alpha(G) \leq \xi(G)$. Thus in a circular-arc graph G, $\alpha(G) < \xi(G) < \alpha(G) + 1$.

Consider a circular-arc graph G for which $\alpha(G) = \xi(G)$. There exists an $r, 1 \le r \le 2n$, such that $\alpha(K_r) = \alpha(G)$. Clearly, if $v \in U_r$, then $\overline{v} \cap a_r = \phi$ $(a_r = (h_r, h_{r+1}))$. Consider a minimum covering by cliques $C_1, \ldots, C_{\xi(G)}$ of G, and denote $C_1^! = C_1 - W_r$, for every $1 \le i \le \xi(G)$. Clearly $C_1^!, \ldots, C_{\xi(G)}^!$ is a covering by completely connected sets of K_r and $\xi(G) = \alpha(G) = \alpha(K_r) = \xi(K_r)$. Therefore, every $C_1^!, 1 \le i \le \xi(G)$, is non-empty and $C_1^!, \ldots, C_{\xi(G)}^!$ form a minimum covering by completely connected sets of K_r . For every $1 \le i \le \xi(G)$, denote $t_1 = \bigcap_{i \in G} \overline{v}$. Clearly, $i \nmid j$ implies $v \in C_1^!$

 $\mathbf{t_i} \cap \mathbf{t_j} = \emptyset$. Assume that $\mathbf{t_1}, \dots, \mathbf{t_{\xi(G)}}$ appear in a circular consecutive order and $\mathbf{t_1}, \mathbf{t_{\xi(G)}}$ are the neighbors of $\mathbf{a_r}$: $\mathbf{t_1}$ is the neighbor of $\mathbf{h_r}$ and $\mathbf{t_{\xi(G)}}$ is the neighbor of $\mathbf{h_{r+1}}$. Let $\mathbf{u_1} = (\mathbf{x_1}, \mathbf{y_1}), \ \mathbf{u_2} = (\mathbf{x_2}, \mathbf{y_2})$ be the arcs corresponding to the vertices of $\mathbf{u_r}$ such that $(\mathbf{x_1}, \mathbf{h_r})$ contains no left endpoints of arcs \mathbf{v} , $\mathbf{v} \in \mathbf{u_r}$, and $(\mathbf{h_{r+1}}, \mathbf{y_2})$ contains no right endpoints of arcs \mathbf{v} , $\mathbf{v} \in \mathbf{u_r}$. Then, $\mathbf{x_1}$ is the left endpoint of $\mathbf{t_1}$ and $\mathbf{y_2}$ is

the right endpoint of $\mathbf{t}_{\xi\left(G\right)}$, since otherwise \mathbf{u}_{1} or \mathbf{u}_{2} is not covered by $C_1',\dots,C_{\xi(G)}'$. Let us assume that there exists a vertex v ϵ W (a $_{r}$ (a $_{r}$ (\ddot{v}) such that \ddot{v} does not intersect all the arcs corresponding to the vertices of c_1^{\prime} and also it does not intersect all the arcs corresponding to the vertices of $C_{\xi}^{\prime}(g)$ Therefore, $v \not\in C_1$ and $v \not\in C_{\xi(G)}$. Clearly $\vec{v} \subset (x_1, y_2)$. For some j, 1 < j < ξ (G), C contains v and thus v intersects every arc \bar{u} , $u \in C_1^1$. Therefore, every arc \bar{u} , $u \in C_1^1$, contains x_1 or \mathbf{y}_2 and hence $\mathbf{c}_j' \subseteq \mathbf{c}_1' \cup \mathbf{c}_{\xi(G)}'$, contradicting the fact that $C_1', \dots, C_{\xi(G)}'$ form a minimum covering by completely connected sets of K . Therefore, for every v ϵ W $_{\mathbf{r}},$ \vec{v} intersects all the arcs \vec{u} , $\vec{u} \in C_1'$, or \vec{v} intersects all the arcs \vec{w} , $\vec{w} \in C_{\xi}'(G)$. For an arc a, denote $V_a = \{v | v \in U_r, a \subseteq \overline{v}\}$. For two arcs a,b, let K(a,b) be the subgraph of K defined by U - (V U). Thus if $\alpha(G) = \xi(G)$, then there exist two arcs $t_1 = (x_1, t^1)$; $t_2 = (t^2, y_2)$, $t^1 \epsilon (x_1, h_r)$, $t^2 \epsilon (h_{r+1}, y_2)$, such that $\mathbb{E}(\mathbb{X}(t_1,t_2)) \leq \mathbb{E}(\mathbb{X}_p)-2$, and for every $v \in \mathbb{W}_p$, \tilde{v} intersects all the arcs \bar{u} , $u \in V_{t_1}$, or \bar{v} intersects all the arcs, \bar{v} , $w \in V_{t_2}$.

The algorithm for finding a minimum covering by cliques of a circular-arc graph G works as follows.

Find a K_r such that $\xi(K_r) = \alpha(K_r) = \alpha(G)$. Let $\tilde{u}_1 = (x_1, y_1)$, $\tilde{u}_2 = (x_2, y_2)$ be the arcs corresponding to vertices of u_r such that (x_1, h_r) contains no left endpoints of arcs \bar{v} , $v \in U_r$, and (h_{r+1}, y_2) contains no right endpoints of arcs \bar{v} , $v \in U_r$. Let A be the set of all the arcs a, $a = (x_1, y)$, such that y is a right endpoint of an arc of F and $y \in (x_1, h_r)$. Similarly, let B be the set of arcs b, $b = (x, y_2)$, such that x is the left endpoint of an arc of F and $x \in (h_{r+1}, y_2)$. Clearly $|A|, |B| \leq n$. For every arc $a \in A \cup B$, let

 $W_r^a = \{v | v \in W_r, \vec{v} \text{ intersects every } \vec{u}, u \in V_a\}.$ Let $X = \{\langle a, b \rangle | a \in A, b \in B, W_a^a \cup W_a^b = W_a\}.$

clearly $|X| \le n^2$. If $X = \phi$, then by the previous remark $\xi(G) = \alpha(G) + 1$. Let us assume that $X \neq \emptyset$. For every $\langle a,b \rangle \in X$, find a minimum covering by cliques of K(a,b). If for some $\langle a,b \rangle \in X$, $\xi(K(a,b)) \leq \xi(K_r)-2$, then the minimum covering by cliques of K(a,b) together with V $_a \cup \, \, \mathbb{W}_r^a$ and V $_b \cup \, \mathbb{W}_r^b$ form a minimum covering, with $\xi(K_r) = \alpha(G)$ completely connected sets of G and $\xi(G) = \alpha(G)$. If, for every $\langle a,b \rangle \in X$, $\xi(K(a,b)) > \xi(K_r)-2$, then, by the previous remark, $\xi(G) = \alpha(G)+1$. If $\xi(G) = \alpha(G)+1$, then a minimum covering by completely connected sets of G can be obtained by adding W to a minimum covering by

The above algorithm requires at most n^5 steps.

5. AN ALGORITHM FOR A MAXIMUM CLIQUE OF A CIRCULAR-ARC GRAPH

Consider a circular-arc graph G(V) and its representing family of arcs F. Every vertex $\mathbf{v}_{\underline{i}}$ is represented by an arc $\vec{v}_i = (e_i, f_i)$. Let

$$X_{i} = \{v | v \in V \text{ and } e_{i} \in \overline{v}\} \cup \{v_{i}\}$$

 $Y_{i} = \{v | v \in V - X_{i} \text{ and } f_{i} \in \overline{v}\}.$

Consider the subgraph $\mathbf{M_i}$ defined by $\mathbf{X_i} \cup \mathbf{Y_i}, \quad \mathbf{X_i}$ and $\mathbf{Y_i}$ are completely connected sets. Thus the complement $\mathbf{M}_{\mathbf{i}}^{t}$ of $\mathbf{M}_{\mathbf{i}}^{t}$ is a bipartite graph. Therefore, we can obtain a maximum clique of $\mathbf{M}_{\underline{i}}$ by applying to $\mathbf{M}_{\underline{i}}^{i}$ the algorithm for finding a maximum independent set, described in [10].

Let C be a clique of G. There exists a vertex \mathbf{v}_i ϵ C such that for any other vertex v of C, $\bar{v} \not\subseteq \bar{v}_{\underline{i}}$. Hence, for every $v \in C$ such that $v \neq v_{\underline{i}}$, there exists $e_{\underline{i}} \in \vec{v}$ or $f_{\underline{i}} \in \vec{v}$. Therefore, C is a clique of $\ensuremath{\text{M}}_{\ensuremath{\underline{\text{I}}}}$. Thus a maximum clique of the circular-arc graph G can be obtained as follows:

for every $\mathbf{v}_{\underline{i}}$, 1 \leq i \leq n, construct the subgraph $\mathbf{M}_{\underline{i}}$; for every $1 \le i \le n$, find a maximum clique C_i of M_i ;

a clique with a maximum number of vertices among $\mathbf{C}_1,\dots,\mathbf{C}_n$ is a

This algorithm required at most n³ steps.

REFERENCES

- 1. Gilmore, P. C. and A. J. Hoffman, "A Characterization of Comparability Graphs and of Interval Graphs," Canad. J. Math., 16, 1964, pp. 539-548.
- 2. Lekkerkerker, C. G. and J. Ch. Boland, "Representation of a Finite Graph by a Set of Intervals on the Real Line," Fund. Math. Polska Akad. Nauk, 51, 1962, pp. 45-64.
- 3. Fulkerson, D. R. and O. A. Gross, "Incidence Matrices and Interval Graphs, " Pacific J. Math., 15, 1965, pp. 835-855.
- 4. Gavril, F., "Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques and Maximum Independent Set of a Chordal Graph," SIAM J. Comput., 1, 1972, pp. 180-
- 5. Rose, D. J., "Triangulated Graphs and the Elimination Process," J. Math. Anal. Appl., 32, 1970, pp. 597-609.
- 6. Paull, M. C. and S. H. Unger, "Minimizing the Number of States in Incompletely Specified Sequential Functions," IRE Trans. on Electronic Computers, EC-8, 1959, pp. 356-
- 7. Hadwiger, H., H. Debrunner and V. Klee, Combinatorial Geometry in the Plane, Holt Rinehardt and Winston, New

- Klee, V., "What are the Intersection Graphs of Arcs in a Circle?, " Amer. Math. Monthly, 76, 1969, pp. 810-813.
- Tucker, A., "Matrix Characterizations of Circular-Arc Graphs," Pacific J. Math., 38, 1971, pp. 535-545.
- 10. Desler, J. F. and S. L. Hakimi, "On Finding a Maximum Independent Stable Set of a Graph," Proc. of Fourth Annual Princeton Conference on Information Sciences and Systems, Princeton, New Jersey, 1970.

Supported by the Rome Air Development Center under Contract

Paper received January 28, 1974.