Objetivos

Integração dos blocos de uma fonte linear

Introdução

Neste roteiro iremos integrar os circuitos estudados anteriormente, para isso, revise os conceitos

de reguladores LDO.

Parte 01: Entendendo um regulador linear

Conceitos importantes:

• Princípios de regulação de tensão;

Os reguladores de tensão estabilizam a tensão de alimentação de um circuito, ou seja, eles são responsáveis por manter uma alimentação regulada e "limpa" em cargas variáveis.

• Tensão de saída e tensão de ripple;

A tensão de saída depois de retificada deve ser contínua ao longo do tempo. Já a tensão de ripple é a tensão retificada e filtrada por um capacitor.

• Regulação de linha;

É a variação da tensão de saída dividida pela variação da tensão de entrada.

• Regulação de Carga;

Variação da tensão de saída dividida pela variação da corrente.

• Conceito de LDO – Low Dropout Voltage

LDO é a variação mínima que se pode ter entre as tensões de entrada e saída, mantendo o funcionamento da regulação do circuito.

Considerando o circuito da figura 01 que representa uma fonte linear com regulador MOSFET, temos o seguinte problema: Qual relação entre a tensão de alimentação do ampop e a tensão de saída? O que devemos considerar para esse circuito operar como um LDO? Como obter as tensões de alimentação para o AmpOp (VCC e VEE)?

Figura 01- fonte linear com regulador MOSFET.

- ✓ A tensão de saída do ampop será aproximadamente a tensão de alimentação $(V_{\text{CC}}).$
- ✓ O diodo zener conectado à entrada não inversora do amplificador limita o sinal de entrada. Para o sinal de saída, os limites estão sujeitos à própria alimentação do amplificador.
- Este circuito pode ser alimentado com uma tensão maior que a tensão solicitada de saída do regulador somada a queda de tensão de $V_{DS} * V_{CC} = V_{OUT} + V_{DS}$

Utilizando o circuito dobrador de tensão, qual valor de V_{CC} você obtêm para um sinal Vin+ de 12Vrms? Quais problemas apresentam esse circuito? Podemos melhorar?

Figura 02- Circuito dobrador de tensão.

Para o calculo do V_{CC} será considerado a queda da tensão dos dois diodos (D_4 e D_5) 0,7 V. Logo:

$$V_{CC} = 2 * Vin * \sqrt{2} - V_{D4} - V_{D5} = 32,54 V$$

A desvantagem deste circuito é o ripple de saída, já que a forma de onda de entrada é uma senóide. O capacitor C3 teria que ter um valor próximo ou igual ao capacitor usado para a retificação. Como sugestão de melhoria é a adicionar um regulador linear para eliminar possíveis ruídos.

Vamos projetar esse circuito de alimentação do AmpOp?

Considere: AmpOp LM324, MOSFET IRF540, VOUT = 15V, IOUT = 1A, vin+ = 12Vrms, vripple_pós_retificador = 1V, considere as quedas de tensão nos diodos de 0,7V.

Figura 03- Circuito de alimentação do Amp-op.

Pontos Importantes para iniciar o projeto responda justificando as escolhas.

• Qual a Tensão VGS? Descreva como obter o valor.

É possível obter este valor no datasheet do MOSFET.

Analisando o gráfico, a tensão VGS pode ser considerada 4,5V.

• Qual a corrente de alimentação do AmpOp?

De acordo com o datasheet do Amp op $I_{TYP} = 1.5 \text{mA}$ e $I_{max} = 3.0 \text{mA}$.

• Qual a tensão de alimentação do AmpOP?

De acordo com o datasheet do Amp op $V_{max} = 32V$

• Qual fator deve considerar para escolher o transistor Q1?

O valor de beta precisa ser grande.

• Qual valor da tensão do diodo zener D6?

A tensão no diodo Zener precisa ser maior que a tensão de entrada V_{O.} Logo:

$$V_O = V_{OUT} + V_{GS}$$

Sendo:

 $V_{GS} = 4.5 \text{ V}$

 $V_{OUT}=15 V$

Portanto $V_0 = 19,5 \text{ V}$

• Como escolher o diodo zener D6, maximizando a eficiência energética e minimizando os ruídos no circuito?

O Zener escolhido dever ter a menor impedância possível para evitar oscilações na corrente.

• Considere que, por alterações futuras no circuito, o AmpOp poderá ter uma aumento de 10mA na corrente de alimentação, o circuito proposto continuará funcionando?

Visto que a corrente de alimentação é maior que a mínima corrente de alimentação o Amp op então funcionará.

Parte 02

Calculando e dimensionando os componentes

 a) Para o primeiro bloco (D1, D2 e C1) considere vin+ = 12Vrms, vripple_pós_retificador = 1V e I_carga = 1,1A. Justifique a escolha dos componentes.

Para dimensionamento dos diodos devem levar em consideração a tensão reversa (V_D) e a corrente media $(i_D \text{ med})$ e a corrente máxima $(i_D \text{ máx})$ que estes diodos irão suportar. A tensão reversa é dada pela formula:

$$V_D = 2 * Vp$$

$$V_D = 2 * Vin * \sqrt{2}$$

Substituindo os valores temos:

$$V_D = 2 * 12 * \sqrt{2} = 33,94 \text{ V}$$

A corrente media é dada pela formula:

$$i_{\text{Dm\'ed}} = I_{\text{L}} * (1 + \pi * \sqrt{\text{Vp/2Vr}})$$

$$i_{\text{Dm\'ed}} = 1.1 * (1 + \pi * \sqrt{\frac{12 * \sqrt{2}}{2 * 1}}) = 11.17 \text{ A}$$

A seguir a formula necessária para calcular a corrente máxima:

$$i_{Dmax} = I_L * (1 + 2\pi * \sqrt{Vp/2Vr})$$

$$i_{Dmax} = 1.1 * (1 + 2 * \pi * \sqrt{\frac{12 * \sqrt{2}}{2 * 1}}) = 21.23 A$$

Também é possível calcular o intervalo de condução dos diodos:

$$\omega \Delta t = \sqrt{\frac{2*Vripple}{Vp}}$$

$$\omega \Delta t = \sqrt{\frac{2*1}{12*\sqrt{2}}} = 0.3433 \text{ rad}$$

Logo, o diodo conduz por $(0.3433/2 \pi)*100 = 5.46 \%$ do ciclo.

Diante disso foi escolhido o diodo 1N4007 que possui como característica tensão de pico inversa de 1000 V e corrente média de 1A. Os diodos que formam a ponte retificadora são feitos de silício, ou seja, cada elemento gera uma queda de aproximadamente 0,7 V, sua tensão de saturação é próxima de 0,2 V e suas perdas térmicas variam entre 25 e 50 °C/W.

A capacitância necessária para este circuito é facilmente calculado pela formula:

$$C = \frac{I_L}{V_{Ripple} * 2 * f}$$

Sendo:

I_L= a corrente da carga

f= frequência da fonte

logo:

$$C = \frac{1.1}{1 * 2 * 60} = 9.16 \text{mF}$$

- b) Circuito referência de tensão zener (R1 e D3):
- Quais fatores devem considerar para escolher o diodo zener para essa aplicação?

A escolha do diodo zener para esta aplicação tem-se uma flexibilidade uma vez que é possível dimensionar R_2 e R_3 no ganho para compensar a tensão de saída. No entanto para esta aplicação deve-se escolher um diodo zener que tenha menos ruído de regulação de linha.

Qual a influência da regulação de linha e da regulação de carga para este circuito?

Para este circuito não tem influencia de regulação de carga porque o diodo zener esta ligada a saída não inversora do amp op e por esta não passa corrente. No entanto este circuito tem influencia de regulação de linha já que a tensão de entrada pode sofrer oscilações, neste caso o diodo zener tende a manter a tensão de saída constante. Sendo assim, aumenta ou diminui a queda de tensão sobre o resistor R₁, o qual tem a função principal de limitar a corrente do zener

• Qual o impacto da regulação linha / carga do circuito com o diodo zener na

tensão de saída do regulador linear?

Tudo que variar no diodo zener será multiplicado pelo ganho e refletirá na saída (Vout).

Dimensionamento:

Dentre dos parâmetros já citado foi escolhido o diodo zener 1N750A. Sabendo o diodo que será usado, foi possível determinar R1, para isso utilizou-se o datasheet do mesmo e viu-se que a tensão é de 4,7 V a corrente de teste (Iz) para que o diodo apresente a tensão nominal foi de 20 mA. Desta forma, analisou-se o circuito e obteve-se a seguinte equação:

$$R1 = \frac{Vi - Vz}{Iz}$$

Onde:

Vi é tensão de entrada do regulador.

Vi é obtido pela seguinte relação:

$$Vi = Vin - 2 * V_D$$

Onde:

 V_D = a queda de tensão nos diodos (1N4007).

Com isso tem-se um R1= 543,53 Ω

Podemos melhorar esse circuito? Quais problemas podem identificar nesta topologia? Sugestão de melhoria:

Eliminar os fatores que causaria variações das tensões (regulação de linha). Como sugestão de melhoria pode inserir uma fonte de corrente para manter constante a corrente sobre o diodo zener. Se não variar corrente não varia tensão sobre o resistor do zener (R_z), logo a tensão no diodo se manterá mais constante possível.

Figura 01- Fonte linear.

No qual o circuito com R1, R5, Q2 e Q3 é uma fonte de corrente constante para polarizar o diodo zener D3. Vamos projetar?

Figura 02- Fonte de corrente

O transistor Q2 limita a tensão sobre o resistor R1, estes dois definem a corrente de saída da fonte de forma independente a tensão de alimentação. O resistor R5 causa a queda de tensão entre o coletor de Q2 e o terra, enquanto o transistor Q3 mantém o a tensão coletor-emissor de Q2 estável, o que reduz variações secundárias da corrente de saída com a tensão de alimentação. Para esta aplicação foi escolhido o transistor BC557B. O R1 já foi dimensionado anteriormente e o R5 deve obedecer:

R5 < (VIN - 2 * VBE) / (IE / hFE)

No entanto Vin é menor que 2VBE por isso R5 admitiria um valor negativo. Diante disso R5= $20k\Omega$. Foi escolhido este valor para R5 ter uma corrente mínima.

Podemos melhorar ainda? Que tal deixar essa fonte com valor ajustável? Como fazer isso?

Inserindo um potenciômetro com valor elevado entre o Vref e o terra.

c)Escolhendo o transistor M1 e calculando R2 e R3

• Qual a corrente contínua necessária?

A mesma corrente da fonte que no caso é 1 A.

• Quais os limites de tensão para este circuito?

Esta limitada ao valor da Tensão de entrada ou seja próximo aos 15 V.

Ao escolher o transistor obtenha:

Foi escolhido o Mosfet IRF540

Quais o parâmetros L, W, Uo, Cox, VA e Vt?

De acordo com o arquivo Spice:

 $L = 100 \ \mu m$

 $W = 100 \mu m$

 $\mu o = 600 \text{ cm}^2/\text{Vs}$

+Vto = Vt = 3.56362 V

Os parâmetros Cox e V_A devem ser calculados:

$$Cox = \frac{Kp}{\mu o}$$

Sendo:

kp: 25.0081

Substituindo na formula acima tem-se Cox= 41,68017 mF.

$$V_A = \frac{1}{\text{LAMBDA}}$$

Sendo:

LAMBDA = 0.00291031

Substituindo na formula acima tem-se $V_A = 343,60 V^{-1}$

Calcule o valor de R_{DS} para as tensões VGS de 2V, 3V, 4V, 5V e 10V

De acordo com o Sedra o R_{DS} é obtida pela formula:

Para
$$v_{DS} \le 2(v_{GS} - V_i) \iff v_{DS} \le 2v_{OV}$$

$$r_{DS} = \frac{v_{DS}}{i_D} = 1 / \left[\mu_n C_{ns} \frac{W}{L} (v_{GS} - V_i) \right]$$

Com o auxilio Smath Studio obteve-se os valores de R_{DS}.

Quais as tensões máximas de operação deste componente?

VGS = +-20 V

$$VDS = 100 V$$

Obtenha as curvas I_D x V_{DS} para esse componente para as tensões V_{GS} de 2V, 3V, 4V, 5V e 10V e compare os resultados com as curvas presentes no Datasheet.

Utilizando a curva $I_D \ x \ V_{DS}$ obtenha os valores RDS e compare com os valores teóricos.

Qual o valor da capacitância de gate?

De acordo com o datasheet 1700 pF.

Justifique a escolha dos resistores R2 e R3.

R3 deve ser um valor muito grande para que passe o mínimo de corrente possível por isso R3= $20k\Omega$. O valor de R2 é facilmente calculado utilizando a formula do ganho de um circuito não inversor:

$$\frac{Vo}{Vi} = 1 + \frac{R2}{R3}$$

Neste caso o Vi é a queda de tensão no diodo zener (Vz=3,3 V) e Vo foi estipulado pelo projeto, logo R2= $70 \text{ k}\Omega$.

Parte 03

Adicionando um circuito de proteção de sobre corrente ao regulador linear.

Primeiramente reflita e pesquise sobre o que é sobrecorrente? Quais os impactos neste circuito?

Sobrecorrente é circulação de excesso de corrente no circuito, ou seja, a corrente excedeu o valor nominal projetado. Pode causar a queima de componentes do circuito, e um ruim funcionamento.

É importante lembrar que dentro dessa categoria, há dois tipos de sobrecorrentes: o curto-circuito e a sobrecarga. Entenda melhor suas características!

O curto-circuito pode ser direcionado à classe de "Falta", isto é, uma condição não programada e indesejada que ocorre em circuitos elétricos em razão da ocorrência de defeitos, falhas ou erros. Em geral, tal situação conduz para a parada instantânea do equipamento, visto que todos os elementos interligados ao sistema sofrem com uma súbita elevação da tensão ou da corrente.

Sendo assim, o curto-circuito pode ser percebido quando a resistência elétrica no circuito diminui drasticamente — a ponto de a corrente elétrica que o atravessa chegar a uma grande intensidade — e a tensão na rede cai e se aproxima de zero.

Já a sobrecarga é um problema também comum e se revela quando a carga que passa por uma rede elétrica é superior àquela para qual ela foi projetada inicialmente. Essa situação sobrecarrega o sistema e causa quedas de tensão intermitentes pela entrada das proteções.

Enquanto no curto-circuito é preciso um aumento repentino e de grande intensidade, na sobrecarga o problema pode se configurar até mesmo com um leve aumento, desde que não suportado pelo sistema.

Fonte: https://eletrorede.eng.br/blog/2019/09/06/protecao-contra-sobrecorrente/

O que deve fazer um circuito de proteção de sobrecorrente?

Proteger os equipamentos do circuito, quando ocorrer a sobrecorrente.

O que é a proteção foldback?

O circuito com proteção de foldback em caso de sobrecorrente diminui a tensão e a corrente dos componentes a fim de diminui a potencia dissipada e evitar danos ao circuito.

Pesquise as topologias disponíveis, caso deseja-se fazer um circuito LDO, o o que devemos levar em consideração para o regulador?

Circuitos LDO sofrem com correntes elevadas, podendo causar danos aos componentes do circuito, e aumento no consumo de energia. Como proteção para este problema utilizam-se circuitos de proteção de sobrecorrente como o foldback e a proteção brickwall.

Exemplo de circuito: (Vide roteiro 01)

Figura 01- Fonte linear.

Dimensionando o circuito de proteção de sobre corrente ao regulador linear

Figura 02- Circuito de sobrecorrente.

Dimensionando o R6:

Idealmente a saída do Amp Op deve ser próximo ao valor do V_{CC} , no entanto existe uma queda de tensão dentro do Amp Op que diminui o seu valor. Na simulação obtemos V_{CC} =23.627058V e considerando queda de tensão dentro do Amp Op de 1,5 V temos que:

$$V_{R6} = V_{cc} - 1.5 = 22.127058 V$$

Sabe-se que a corrente na saída do Amp Op deve ser baixa supondo uma corrente entre 1m a 10 m é possível obter o valor de R6 uma vez que a tensão é conhecida.

$$R6 = \frac{V_{R6}}{5m}$$

Obtém-se um valor de R6= $4425,41 \Omega$.

Dimensionando NMOS M2:

O Transistor escolhido deve ser um que suporte pequenas correntes por isso foi escolhido o 2N7002. Como o drene e está como chave a tensão varia entre 0 e a tensão máxima q chega nele neste caso V_G . Para o transistor conduzir $V_{GS} > V_T$, para valor de V_T pode ser considerado o V_{gS} (th) q é achado no datasheet é 2.1 V. Como V_S está no gnd o precisa ser maior VT pra acionar a chave. Então como tensão na saída e para cálculos futuros adotaremos 3V.

Dimensionando R₁₁ e R₁₂

Adotaremos $R_{11} = R_{12} = 20k\Omega$

Dimensionando R shunt

O valor do resistor shunt deve ser pequeno para que a queda de tensão seja mínima logo adotaremos R_shunt= $100 \text{m}\Omega$

Dimensionando o circuito Subtrator

Figura 03- Circuito subtrator.

A queda de tensão (V2-V1) é a tensão sobre o resistor shunt. Vamos projetar um circuito que suporte 5 A de corrente logo esta queda de tensão é :

$$V2 - V1 = 5 * 100m = 0.5V$$

A tensão na saída é o divisor de tensão do R11 e R12, logo Vo=6V. Considerando R7=R9= $10k\Omega$ e como ganho é 12, logo R8=R10= $120k\Omega$

Projeto final

ARIENE MACIEL

Circuito de Alimentação

Right-Click to manually enter Left Vertical Axis Limits [V]

Simulação D1, D2 e C1

Tempo de condução dos diodos

Simulação da fonte de corrente

Simulação do circuito sem proteção de sobrecorrente

Corrente sobre a carga R6

Simulação do circuito com proteção de sobrecorrente

Corrente na carga