Ústav fyziky a technologií plazmatu Přírodovědecké fakulty Masarykovy univerzity

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 3

Zpracoval: Lukáš Lejdar **Naměřeno:** 22. dubna 2025

Obor: F **Skupina:** Út 14:00 **Testováno:**

Úloha č. 2: Určení měrného náboje elektronu

1. Úvod

Cílem praktika je zjistit měřený náboj elektronu e/m, tedy poměr mezi jeho nábojem a hmotností. Historicky byla tato veličina poprvé změřená Jhonem Thompsonem, který k tomu použil vychylování elektronového svazku pomocí elektromagnetického pole. Toto měření bude založené na podobném principu, konkrétně na pohybu elektronů v homogenním magnetickém poli.

2. Teorie

Měrný náboj budeme měřit na elektronech vyletujících z rozžhavené katody do prostoru elektronky. Jejich počáteční energie je relativně malá, takže celková kinetická energie každého elektronu bude odpovídat urychlujícímu napětí U podle vztahu

$$eU = \frac{1}{2}mv^2,\tag{1}$$

kde e je náboj elektronů, m jejich hmotnost a v výstupní rychlost. Skleněná elektronka je naplněná vodíkem o tlaku P=1 Pa, takže při pokojové teplotě T mají elektrony mnohem delší střední volnou dráhu, kterou můžeme přibližně spočítat podle

$$\lambda = \frac{1}{n\sigma} = \frac{1}{\sqrt{2\pi}d^2} \frac{k_b T}{P} \approx 1 \text{ cm}$$
 (2)

kde odhad efektivního poloměru molekul vodíku je $d \approx 0.3$ nm a k_b je Boltzmanova konstanta. Po srážce s elektronem se vodíkové atomy excitují a při následné deexcitaci emitují viditelné záření, takže za sebou svazek elektronů nechá světelnou stopu. Celá elektronka se taky nachází uvnitř dvou Hemholtzových cívek, které v ní indukují příčné magnetické pole o indukci \vec{B} . Síla \vec{F} působící na elektrony je podle Lorentzova vztahu vždy kolmá na rychlost elektronů

$$\vec{F} = -e(\vec{v} \times \vec{B}) \tag{3}$$

a elektrony by se tak měli pohybovat po kružnici o poloměru R. Z velikosti dostředivého zrychlení dostáváme vztah

$$\frac{mv^2}{R} = evB \tag{4}$$

odkud už jde spočítat měrný náboj e/m, pokud změříme indukci B, výstupní rychlost v a poloměr R. Vyjádřením ze vztahů (1) a (4) dostáváme

$$\frac{e}{m} = \frac{2U}{R^2 B^2} \tag{5}$$

3. Výsledky měření

Celá soustava se skládá z jedné katody uvnitř elektronky na které můžu regulovat napětí U a dvou cívek do kterých teče proud I. Před měřením je potřeba zjistit jaká magnetická indukce B(I) je indukovaná v místech elektronky v závislost na proudu tekoucích cívkami. Tyto hodnoty jsem už dostal a uvedl je v tabulce 1.

I(A)								
B (mT)	0.36	0.52	0.68	0.74	0.90	1.06	1.20	1.36

Tabulka 1: Závislost magnetické indukce na proudu tekoucím cívkami.

Při samotném měření jsem krokově měnil proud a vždy doladil napětí tak, aby vzniklá kružnice byla co největší a odečtení jejího průměru D co nejpřesnější. K měření průměru sloužilo připevněné pravítko se dvěma jezdci, které byly nejdřív každý zvlášť posunutý do místa kde byly v zákrytu s kruhem elektronů a výsledný průměr se odečetl jako vzdálenost mezi nimi. Tímto způsobem naměřená data jsou uvedená v tabulce 2. Z nich je vykreslený graf závislosti $2U = f(\frac{D^2}{4}B^2)$ odkud podle vztahu (5) dostávám lineární regresí měrný náboj elektronu

$$\frac{e}{m} = -(1.65 \pm 0.03) \cdot 10^{11} \frac{C}{kg}$$
 (6)

I(A)	U(V)	D (cm)	B (mT)
0.74	-92.0	11.0	0.552
0.78	-115.4	11.7	0.584
0.84	-98.2	11.5	0.632
0.94	-129.5	10.5	0.704
1.06	-144.0	10.4	0.788
1.18	-158.7	10.1	0.884
1.18	-178.4	11.3	0.884
1.32	-185.9	09.6	0.996
1.32	-216	10.1	0.996
1.42	-250	10.1	1.074
1.48	-277	10.3	1.116
1.63	-303	10.0	1.224
1.76	-303	08.9	1.328
2.01	-303	08.1	1.528

Tabulka 2: Změřené poloměry kruhu elektronů při proudu cívkami a proudu a napětí na katodě.

Graf 1: Závislost napětí 2U na druhé mocnině součinu poloměru kružnice s indukcí magnetického pole podle vztahu (5)

4. Závěr

Z měření průměru kružnice opisované elektrony při známé rychlosti uvnitř homogenního magnetického pole jsem určil měrný náboj elektronu na $e/m = -(1.65 \pm 0.03) \cdot 10^{11} \, \frac{\rm C}{\rm kg}$. Tabulková hodnota je $e/m = -(1.7588) \cdot 10^{11} \, \frac{\rm C}{\rm kg}$, takže měření přibližně vyšlo správně. Největší chybu do měření nejspíš zanáší měření poloměru kružnice, kterou nebylo jednoduché změřit přesně skrz elektronku.

Reference

 $[1] \ \ N\'{a}vod \ k \ \'{u}loze \ \ https://is.muni.cz/auth/el/sci/jaro2025/F4210/um/fp3-2_merny_naboj. pdf.$