SIX SIGMA "EXECUTIVE OVERVIEW"

Kano Customer Need Model

Dimensions of Service Quality

RELIABILITY: consistency, error-free dependability

RESPONSIVENESS: willingness to help the customer

TANGIBLES: environment for the service presented

COMPETENCE: the right skills and knowledge required

COURTESY: supplier's behavior

SECURITY: freedom from danger or risk

ACCESS: ease of making contact

COMMUNICATION: understandable to the customer

EMPATHY: adopting the customer's viewpoint

Why Six Sigma in DL:

A company's **overall strategy** in any project is to:

- Delight the Customer
- Involve the Customer where possible
- Accelerate improvements in all processes, products & services
- Reduce cost of poor quality by eliminating waste and reducing defects and variations
- Celebrate and Promote Achievements

What is Six-Sigma?

- Management mandated and directed improvement program focused on *breakthroughs* in financial performance and customer satisfaction
- Focused on core business and Customer needs
- A systematic method for process and product improvement
- A metric for evaluating performance quality
- A standard of excellence (3.4 defects per million opportunities)

Reduce Process Variation & Defect Rates

	Defects/million	Error-free Rate
 Six Sigma 	3.4	99.9997%
Five Sigma	233	99.977%
 Four Sigma 	6,210	99.4%
Three Sigma	66,810	93%

Why is Six Sigma Important?

Cost of Poorly Performing Processes

σ leve	DPMO CP3
2	308,537 Not Applicable
3	66,807 25%-40% of sales
4	6,210 15%-25% of sales
5	233 5%-15% of sales
6	3.4 < 1% of sales

Use this **method** to solve problems:

- Define problems in processes
- Measure performance
- Analyze causes of problems
- Improve processes -- remove variations and non value-added activities
- Control processes so problems don't recur

DIMAIC Process Improvement Methodology

DIMAIC Process

Establish *Control*s on the critical Xs so the improvements will be maintained

<u>Purpose</u>: Define the project goals and customer (internal and external) deliverables.

Deliverables

Define Customers and requirements (CTQs)

Develop Problem Statement, Goals and

Benefits

Define Resources

Evaluate Key Organizational Support

Develop Project Plan and Milestones

Develop High Level Process Map

Tools Used

Project Charter

Process Flowchart

SIPOC Diagram

Stakeholder Analysis

CTQ Definitions

Voice of the Customer Gathering

<u>Purpose</u>: Measure the process to determine current performance; quantify the problem

Deliverables

Define Defect, Opportunity, Unit and Metrics

Detailed Process Map of Appropriate Areas

Develop Data Collection Plan

Validate the Measurement System

Collect the Data

Begin Developing Y=f(x) Relationship

Determine Process Capability and Sigma Baseline

Tools Used

Process Flowchart

House of Quality (QFD)

Failure Modes and Effects Analysis (FMEA)

Data Collection Plan/Example

Benchmarking

Measurement System Analysis/Gage R&R

Voice of the Customer Gathering

Process Sigma Calculation

Purpose: Analyze and determine the root cause(s) of the defects/variation/waste Y=f(x)

Deliverables

Define Performance Objectives

Identify Value/Non-Value Added Process Steps

Identify Sources of Variation

Determine Root Cause(s)

Determine Vital Few x's, Y=f(x) Relationship

Tools Used

Histogram/Pareto Chart

Time Series/Run Chart

Scatter Plot

Regression Analysis

Cause and Effect/Fishbone Diagram

5 Whys/ Process Map Review and Analysis

Statistical Analysis/ Hypothesis Testing (Continuous

and Discrete)

Non-Normal Data Analysis

<u>Purpose</u>: Improve the process by eliminating defects/variation/waste per project goals

Deliverables

Perform Design of Experiments

Develop Potential Solutions

Define Operating Tolerances of Potential

System

Assess Failure Modes of Potential Solutions

Validate Potential Improvement by Pilot

Studies

Correct/Re-Evaluate Potential Solution

Tools Used

Brainstorming

Mistake Proofing

Design of Experiments

House of Quality (QFD)

Failure Modes and Effects Analysis (FMEA)

Simulation Software

<u>Purpose</u>: Control future process performance, institutionalize the improvement, and ensure ongoing monitoring

Deliverables

Define and Validate Monitoring and Control System

Develop Standards and Procedures

Implement Statistical Process Control

Determine Process Capability

Develop Transfer Plan, Handoff to Process Owner

Verify Benefits, Cost Savings/Avoidance, Profit Growth

Close Project, Finalize Documentation

Communicate to Business, Celebrate

Tools Used

Process Sigma Calculation

Control Charts (Variable and Attribute)

Cost Savings Calculations

Control Plan

Six Sigma DMAIC Road Map

Define

Identify Project, Champion and Project Owner Determine Customer Requirements and CTQs Define Problem, Objective, Goals and Benefits Define Stakeholder/Resource Analysis Map the Process Develop Project Plan

Measure

Determine Critical Xs and Ys
Determine Operational Definitions
Establish Performance Standards
Develop Data Collection and Sampling Plan
Validate the Measurements
Measurement Systems Analysis
Determine Process Capability and Baseline

Analyze

Benchmark the Process or Product Establish Causal Relationships Using Data Analysis of the Process Map Determine Root Cause(s) Using Data

Improve

Design of Experiments
Develop Solution Alternatives
Assess Risks and Benefits of Solution Alternatives
Validate Solution using a Pilot
Implement Solution
Determine Solution Effectiveness using Data

Control

Statistical Process Control
Determine Needed Controls (measurement, design, etc.)
Implement and Validate Controls
Develop Transfer Plan
Realize Benefits of Implementing Solution
Close Project and Communicate Results

Key Analytical Tools

Process Mapping and Modeling

Measurement Systems Analysis & Process Capability

Statistical Tests, Modeling & Root Cause Analysis

Brainstorming
Design of Experiments,
FMEA, & Validation

Statistical Process Control

Define the problem and customer requirements.

Define Activities

Define Problem, Objective, Goals and Benefits Define Stakeholder/Resource Analysis Map the Process Develop Project Plan

Define Quality Tools

Project Charter and Plan
CTQ tree Diagram, SIPOC Chart
Effort/Impact Analysis
Process Mapping
Dollar Estimate

Steps-DEFINE

- A. Detailed Assessment of Customer Needs and Identify project CTQs: what does the customer think is essential?
- B. Team Charter with the business case for the project.
- C. Define and build a process map that relates measurable internal processes to customer needs.

• Problem & Goal Statements Should be:

 \underline{S} pecific, \underline{M} easurable, \underline{A} ttainable' \underline{R} elevant, \underline{T} ime-Bound

MEASURE

Cause-and-Effect Diagram

Also called a *fishbone* or *Ishikawa* diagram

Pareto Analysis for Process Improvement

• A Useful Team Diagnostic and Improvement Tool **Policy** Toner More **Pages** Other Unclear **Copies** Copied Marks Reasons Than That on Personal Needed Aren't Needed Usage

Cause of Excessive Photocopier Use

Process Flow Diagrams

Process Capability

C. Process variability exceeds specifications

The Statistical Meaning of Six Sigma

Process capability measure

$$C_{p} = \frac{USL - LSL}{6\hat{\sigma}}$$

Χσ	C_p	P{defect}	ppm
1σ	0.33	0.317	317,000
2σ	0.67	0.0455	45,500
3σ	1.00	0.0027	2,700
4σ	1.33	0.0001	63
5σ	1.67	0.0000006	0,6
6σ	2.00	2x10 ⁻⁹	0,00

$$\hat{\sigma} = R/d_2$$

Causal Methods Linear Regression

Month	Sales (000 units)	Advertising (000 \$)
1	264	2.5
2	116	1.3
3	165	1.4
4	101	1.0
5	209	2.0

$$a = \overline{Y} - b\overline{X}$$

$$b = \frac{\sum XY - n\overline{X}\overline{Y}}{\sum X^2 - n\overline{X}^2}$$

Summary Measures

Box-and-Whisker Plot Example

Below is a Box-and-Whisker plot for the following data:

The data are right skewed, as the plot depicts

The Seven New Tools

Affinity Diagrams

Interrelationship Diagrams

Tree Diagrams

Matrix Diagrams

Matrix Data Analysis

Process Decision Program Charts

Arrow Diagrams

The Thinking Hats (Edward Bono's Lateral Thinking)

White Hat (neutral, objectivity)

Hard data. Facts and figures. Questions/suggestions about what data to collect.

Red Hat (emotional, intuitive)

Hunches. Feelings. Soft data.

Black Hat (logical negative)

Caution. Rationale for not doing something, failure predictions, legal limits, etc.

Yellow Hat (logical positive)

Savings. Benefits. Advantages. Usually forward thinking.

Green Hat (creative)

Proposals, suggestions, ideas, alternatives, provocations.

Blue Hat (meta-hat)

Control, organization of the discussion process and use of the other hats.

Benefits

- Puts all participants on same level
- Side steps the ego-reduces conflict
- Edward de Bono created this system to encourage "Lateral Thinking" (creativity)
- Limits black hat discussions
- Structures thinking

Design of Experiments:

Improve the process and remove defect causes.

What Do I need to do to improve my Game?

Improve:

The goal of the **im prove** phase is to test sources of variation to determine which of these actually cause process variation in the customer CTQ.

- A. Screen / Identify Causes of Variation.
- **B.** Discover Variable Relationships.
- C. Estimate Operating Tolerances & Pilot Solutions.

Design of Experiments (DOE)

To estimate the effects of independent Variables on Responses.

Terminology

- > Factor An independent variable
- ➤ Level A value for the factor.
- > Response Outcome

How do we select the correct Control Chart:

Proportion Sample Defect Defective 1 6 .06 2 0 .00 3 4 .04 . . . 20 18 .18 200 1.00

100 data in each sample

$$= \frac{200}{20 (100)} = \frac{0.10}{0.10}$$

UCL =
$$\bar{p}$$
 + $3\sqrt{\bar{p}(1-\bar{p})}/n$
= 0.10 + $3\sqrt{0.10}$ (1-0.10) /100
= 0.190

$$LCL = 0.010$$

PMBOK – Six Sigma

Conceptual Comparison

Project Management

- Large Project Orientation
- Focused on Coordination and Management (in addition to Results)
- Management and Control Methods
- Foundation for Planning, Organizing, Managing, and Controlling Projects

Six Sigma

- Small Project Orientation
- Focused on Results
- Systematic Data-Driven Methods
- Incorporate PM Concepts

Observation: Shades of Difference

PMBOK – Six Sigma

Pragmatic Comparison

- Mutual Leveraging of Concepts and Methodologies
 - -- Six Sigma uses PMBOK Planning,
 Organizing, Managing, and Controlling
 Methodologies
 - -- Project Management applies Six Sigma Data-Driven Techniques
 - o Improved Scope Management
 - o Improved Quality Planning and Control
- Achievement of Common Goals
 - -- Reduce Failures
 - -- Prevent Defects
 - -- Manage Risk
 - -- Control Schedule and Cost
 - -- Meet Scope

QMS – PMO Methodology Interface

Quality / Six Sigma Orientation

Types of Decision Making

<u>Unstructured</u>		<u>Structured</u>
Uncertainty o Unique o Exceptional o Unprogrammed o Hueristics	Risk	—— Certainty o Routine o Repetitive o Programmed o Algorithms
Strategies ———		—— Operations
	Six Sigma Project Management +	
	Capability Maturity Model	

Project Management _____ Project Administration and Leadership and Control

Lessons Learned

Thank You

If you need any clarification, pls let me know.

prasadchakra@yahoo.com

Prasad.chakrabarti@gmail.com

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.