Geometryczna Teoria Grup

Weronika Jakimowicz

Zima 2024/25

Spis treści

1	Informacje wstępne 1							
	02.10.2024	Grafy Cayleya	1					
	1.	Metryka słów	1					
	2.	Graf Cayleya	1					
	3.	Quasi-izometrie	3					
	4.	Przestrzenie geodezyjne	5					
	5.	Lemat Milnora-Švarca						
	6.	Grupy współmierne	7					
	09.10.2024	Lemat Milnora-Švarca	8					
2	Niezmienniki izometrii							
	16.10.2024	Końce (w nieskończoności) grup przestrzeni	13					
	1.	Granica odwrotna	14					
	2.	Przestrzeń końców	16					
	23.10.2024	Przestrzeń końców jest niezmiennikiem q.i	19					
	1.	Alternatywny opis przestrzeni końców (promienie)	19					
	2.	Dowód - końce są niezmiennikiem q.i	20					
	30.10.2024	Końce skończenie generowalnych grup - twierdzenie Freudanthala-						
		Hopfa	23					
	06.11.2024	Grupy o dwóch końcach	26					
	1.	Działanie grupy na przestrzeni końców	26					
	2.	Grupy o 2 końcach zawierają cykliczną podgrupę skończonego indeksu	27					
	13.11.2024	Tempo wzrostu grupy	29					
	1.	Funkcje wzrostu	29					
	2.	Abstrakcyjne funkcje wzrostu	30					
	3.	Tempo wzrostu grupy	30					
	4.	Grupy o wzroście wielomianowym	33					
	20.12.2024	Funkcja wzrostu i metryka Riemanna	35					
	04.12.2024	Wymiar homologiczny, asdim $\mathbb{Z}^n=$ asdim $\mathbb{R}^n=n$	38					
	1.	Wymiar asymptotyczny	38					
	2	Dowód homologiczny	39					

1. Informacje wstępne

02.10.2024 Grafy Cayleya

1. Metryka słów

Definicja 1.1: metryka słów

Niech G będzie grupą, a S dowolnym układem jej generatorów. Wówczas dla dowolnych $g_1, g_2 \in G$ odległość między nimi w metryce słów definiujemy jako

$$ds(g_1, g_2) = min\{n : g_2 = g_1s_1, ..., s_n, s_i \in S \cup S^{-1}\},\$$

gdzie
$$S^{-1} = \{g^{-1} : g \in S\}.$$

Metryka słów jest

- 1. skończona
- 2. symetryczna (z definicji generatorów)
- 3. lewo-niezmiennicza, czyli $(\forall \gamma \in G) ds(\gamma g_1, \gamma g_2) = ds(g_1, g_2)$

Ostatnia własność oznacza, że *G* działa na sobie jako na przestrzeni metrycznej przez izometrie.

Gromov chce patrzeć na dyskretne przestrzenie metryczne, jakimi są grupy z metryką słów, jako na przestrzenie ciągłe (z dużej odległości).

2. Graf Cayleya

Definicja 1.2: graf Cayleya

Niech G będzie grupą, a S zbiorem jej generatorów. C(G,S) to graf Cayleya o wierzchołkach będących elementami G i skierowanych krawędziach etykietowanych generatorami:

$$g \stackrel{s}{\longrightarrow} gs$$

gdzie $g \in G$ i $s \in S$.

Przykłady

1. Dla $G = \mathbb{Z}^2$ oraz $S = \{(1,0), (0,1)\}$ graf Cayleya to nieskończona "kratka"

2. Dla grupy cyklicznej rzędu p z generatorem s graf Cayleya to p-kąt

3. TO DO parkietarz kwadratami

Innym wariantem grafu Cayleya niż zdefiniowany wcześniej jest graf w którym wierzchołki są elementami grupy V=G, ale krawędzie są niezorientowane: $E=\{\{g_1,g_2\}: ds(g_1,g_2)=1\}$. W przykładzie z parkietarzem zamiast podwójnych krawędzi w obie strony będzie on miał pojedyńczą, nieskierowaną krawędź

Każdy graf Cayleya jest **spójny**, bo jego krawędzie to mnożenie przez generatory. Dodatkowo, grupa G działa na nim przez automorfizmy zachowując krawędzie oraz ich etykiety. To znaczy, że krawędż z wierzchołkami

$$g \stackrel{\mathsf{s}}{\longrightarrow} g\mathsf{s}$$

pod działaniem elementu $\gamma \in G$ staje się

$$\gamma g \stackrel{\mathsf{s}}{\longrightarrow} \gamma g \mathsf{s}.$$

Jeśli każdą krawędź w grafie Cayleya potraktujemy jako odcinek długości 1, to możemy na nim zdefiniować metrykę która jako odległość dwóch punktów przyjmuje długość najkrótszej ścieżki między nimi. Ta metryka na wierzchołkach pokrywa się z **metryką słów** na grupie *G* o generatorach *S*, której graf rozpatrujemy. Przy takiej metryce działanie grupy *G* jest więc działaniem nie tylko przez automorfizmy, ale przez izometrie (lewa-niezmienniczość).

Dla surjekcji $\pi: F_S \to G$, gdzie $G = \langle S \mid R \rangle = F_S/N$ możemy mieć dwie tak samo zorientowane strzałki między dwoma wierzchołkami (gdy np. $g_1\pi(s_1) = g_1\pi(s_2) = g_2$

Definicja 1.3: suma drzewiasta

Mając dwie grupy (G_1, S_1) i (G_2, S_2) graf Cayleya ich sumy wolnej, czyli graf $(G_1 \star G_2, S_1 \cup S_2)$ to graf pierwszej grupy, który w każdym wierzchołku ma kopię grafu drugiej grupy, która w każdym wierzchołku ma kopię pierwszej grupy...

3. Quasi-izometrie

Definicja 1.4: quasi-izometria

Dla dwóch przestrzeni metrycznych (X_i, d_i) , i=1,2, mówimy, że przekształcenie $f: X_1 \to X_2$ (niekoniecznie ciągłe) jest **quasi-izometryczne zanurzenie**, gdy istnieje $C \ge 1$ oraz $L \ge 0$ takie, że $\forall x, y \in X_1$ zachodzi

$$\frac{1}{\mathsf{C}} \mathsf{d}_1(\mathsf{x},\mathsf{y}) - \mathsf{L} \leq \mathsf{d}_2(\mathsf{f}(\mathsf{x}),\mathsf{f}(\mathsf{y})) \leq \mathsf{C} \cdot \mathsf{d}_1(\mathsf{x},\mathsf{y}) + \mathsf{L}.$$

Ponadto, jeśli istnieje $D \geq 0$ takie, że $f(X_1)$ jest D-gęsty (D-siecią) w X_2 , tzn.

$$(\forall y \in X_2)(\exists x \in X_1) d_2(y, f(x)) \leq D$$

to wtedy f jest quasi-izometria.

Zwykle przyjmujemy L = D (większe z dwóch) i mówimy o tzw. (C, L)-quasi-izometrii.

Fakt 1.5: własności q.i.

- 1. złożenie q.i. jest q.i
- 2. dla dowolnej q.i. $f: X_1 \to X_2$ istnieje $g: X_2 \to X_1$ takie, że istnieje $D \ge 0$ takie, że

$$(\forall x_2 \in X_2) \ d_2(f \circ g(x_2), x_2) \leq D$$

$$(\forall x_1 \in X_1) d_1(g \circ f(x_1), x_1) \leq D$$

to wówczas g też jest q.i.

Definicja 1.6: quasi-izometryczne rozmaitości

Mówimy, że (X_1, d_1) jest quasi-izometryczna z (X_2, d_2) jeśli istnieje q.i. $f: X_1 \to X_2$. Jest to relacja równoważności.

Przykłady

- 1. (X, d) jest q.i. z punktem \iff X jest ograniczone.
- 2. X jest q.i. z dowolną swoją D-siecią $Y \subseteq X$ przez inkluzję.
- 3. Dla dowolnego B ograniczonego $X \times B \cong X$ są q.i.
- 4. Dowolne dwa drzewa regularne T_k stopnia $k \ge 3$ są ze sobą q.i.
- 5. Graf Farey'a, nieskończony konstruowany jak niżej, z metryką kombinatoryczną (każda krawędź ma długość 1) jest q.i. z drzewem przeliczalnego stopnia $T_{\omega}=T_{\aleph_0}$.

Fakt 1.7

Niech G będzie grupą skończenie generowalną i niech S_1 , S_2 jej skończonymi zbiorami generatorów. Wówczas odwzorowanie tej grupy jako dwóch przestrzeni metrycznych $(G, S_1) \rightarrow (G, S_2)$ gdzie zmieniamy metrykę słów jest q.i.

Dowód

Dokładniej, id_G jest (C, L)-q.i. dla

$$\textit{C} = \max\{\max\{|\textit{s}_1|_{\textit{S}_2} \ : \ \textit{s}_1 \in \textit{S}_1\}, \max\{|\textit{s}_2|_{\textit{S}_1} \ : \ \textit{s}_2 \in \textit{S}_2\}\},$$

$$\mathsf{gdzie}\ |g| = d(1,g) = \mathsf{min}\{n\ :\ g = s_1...s_n,\ s_i \in S \cup S^{-1}\}, \, \mathsf{oraz}\ L = 0.$$

Wniosek 1.8

Skończenie generowana grupa *G* determinuje jednoznacznie klasę quasi-izometrii. Innymi słowy, skończenie generowana grupa jest jednoznacznym obiektem quasi-metrycznym.

4. Przestrzenie geodezyjne

Geodezyjną w przestrzeni metrycznej (X, d) łączącą punkty $a, b \in X$ nazwiemy izometryczne włożenie

$$\gamma:[0,d(a,b)]\to X$$

takie, że
$$\gamma(0) = a i \gamma(d(a, b)) = b$$
.

Definicja 1.9: przestrzeń geodezyjna

Powiemy, że przestrzeń X jest przestrzenią geodezyjną, jeśli dla wszystkich par punktów $a,b\in X$ istnieje geodezyjna pomiędzy nimi (niekoniecznie jedyna).

Definicja 1.10

Przestrzeń X jest **właściwa**, gdy domknięte kule $B_r(x)$ w X są zwarte dla dowolnych $r < \infty$ i $x \in X$.

Każda przestrzeń właściwa jest lokalnie zwarta oraz zupełna, z kolei dla przestrzeni geodezyjnych jeśli przestrzeń jest właściwa, to jest też zwarta i zupełna.

Przykłady

- 1. Spójne i gładkie rozmaitości Riemmanowskie są przestrzeniami metrycznymi z metryką ρ minimalizowania długości krzywych gładkich łączących punkty. Gdy (M, ρ) jest zupełna, to M jest geodezyjna oraz właściwa.
- 2. Graf Cayleya skończenie generowanej grupy G jest przestrzenią geodezyjną właściwą.

5. Lemat Milnora-Švarca

Lemat 1.11: Milnora-Švarca

Niech X będzie właściwą przestrzenią geodezyjną a Γ grupą działającą na X przez izometrie właściwie i kozwarcie. Wówczas Γ jest skończenie generowalna i quasiizometryczna z X. Dokładniej, $\forall \ x_0 \in X$ odwzorowanie $\Gamma \to X$ określone przez $\gamma \mapsto \gamma \cdot x_0$ jest quasi-izometrią.

Mówimy, że grupa działa

właściwie, gdy dla dowolnego zwartego $K \subseteq X$ zbiór $\{g \in \Gamma : g \cdot K \cap K \neq \emptyset\}$ jest skończony kozwarcie, gdy istnieje zwarty $K \subseteq X$ taki, że rodzina $\{g \cdot K : g \in \Gamma\}$ pokrywa X.

Przykłady

- 1. Działanie grupy $\mathbb{Z}^n C(\mathbb{R}^n, d_{eukl.})$ przez przesunięcia jest izometrią. Czyli $\mathbb{Z}^n \stackrel{q.i.}{\cong} \mathbb{R}^n$.
- 2. Grupa symetrii regularnego (co najmniej dwie symetrie w dwóch różnych kierunkach) parkietażu/wzorca działa na (\mathbb{R}^2, d_{eukl}) geometrycznie.
- 3. Kozwarte, dyskretne podgrupy w grupach Liego *G* działają lewostronnie na *G* w sposób geometryczny.
- 4. $\Pi_1(\mathsf{sk.} \mathsf{kompleks} \mathsf{symplicajlny}) \mathsf{C}\widetilde{K}$

Konsekwencje lematu Milnora-Švarca

- 1. Jeśli $H \leq G$ jest grupą skończonego indeksu w grupie skończenie generowalnej, to $H^{\mathbb{C}}(G,S)$ jest działaniem geometrycznym. Stąd H jest q.i. z G i jest skończenie generowalna.
- 2. Niech ciąg

$$1 \longrightarrow \mathsf{K} \longrightarrow \Gamma \stackrel{\mathsf{q}}{\longrightarrow} \mathsf{G} \longrightarrow 1$$

gdzie q jest odwzorowaniem ilorazowym, będzie ciągiem dokładnym. Załóżmy, że K i $G \cong \Gamma/K$ są skończenie generowalne. Wówczas $\Gamma C(G,S)$ przez $\gamma \cdot g = q(\gamma)g$ jest działaniem geometrycznym. Stąd Γ jest skończenie generowana i $q:\Gamma \to G$ jest q.i..

6. Grupy współmierne

Definicja 1.12

Dwie grupy G_1 , G_2 są **współmierne** (commeasurable), gdy posiadają izomorficzne podgrupy skończonego indeksu.

Wniosek

Grupy współmierne są q.i..

Można więc zadać pytanie, czy q.i. nie sprowadza się do współmierności? Okazuje się, że tak nie jest.

Definicja 1.13

Grupa G jest współmiernościowo sztywna, jeśli każda H q.i. z G jest współmierna z G.

Przykłady

- 1. Wszystkie grupy skończone są współmiernościowo sztywne, bo H jest q.i. ze skończoną grupą $G \iff H$ jest samo skończone.
- 2. Grupy wirtualnie cykliczne grupy zawierające cykliczną podgrupę skończonego indeksu, są współmiernościowo sztywne.
- 3. Grupy wirtualnie \mathbb{Z}^n .
- 4. Grupy wirtualnie wolne, np. $K_1 \# K_2$ dla skończoneych K_1 , K_2 .
- 5. Grupy powierzchni $\pi_1(z_q)$ dla g > 1.

09.10.2024 Lemat Milnora-Švarca

Lemat 1.14: Milnora-Švarca

Niech X będzie właściwą przestrzenią geodezyjną a Γ grupą działającą na X przez izometrie właściwie i kozwarcie. Wówczas Γ jest skończenie generowalna i quasiizometryczna z X. Dokładniej, $\forall \ x_0 \in X$ odwzorowanie $\Gamma \to X$ określone przez $\gamma \mapsto \gamma \cdot x_0$ jest quasi-izometrią.

Mówimy, że grupa działa

właściwie, gdy dla dowolnego zwartego $K\subseteq X$ zbiór $\{g\in \Gamma: g\cdot K\cap K\neq\emptyset\}$ jest skończony kozwarcie, gdy istnieje zwarty $K\subseteq X$ taki, że rodzina $\{g\cdot K: g\in\Gamma\}$ pokrywa X.

Dowód

Wybierzmy $x_0 \in X$. Z kozwartości tego działania, istnieje promień R > 0 taki, że dla kuli $B = B_R(x_0)$ o środku w x_0 taki, że rodzina przesunięć kuli $\{g \cdot B : g \in \Gamma\}$ jest pokryciem X. Rozważmy zbiór $S = \{s \in \Gamma : s \neq 1, s \cdot B \cap B \neq \emptyset\}$ niewielkich przesunięć kuli B. Z właściwości działania oraz z właściwości przestrzeni X, zbiór S jest skończony. Ponadto, zbiór jest ten jest symetryczny $S = S^{-1}$ ($s \in S \implies s^{-1} \in S$), bo jeśli $s \cdot B \cap S \neq \emptyset$ to również $s^{-1} \cdot (s \cdot B \cap B) \neq \emptyset$.

Określamy $v:=\inf\{d(B,g\cdot B):g\in\Gamma-S-\{1\}\}$ czyli najmniejsza odległość kuli od jej rozłącznych z nią przesunięć.

Clam 1: v > 0

Dla każdego $g \in \Gamma - S - \{1\}$ wiemy, że $d(B,g \cdot B) > 0$. Gdyby to infimum v = 0, to mielibyśmy ciąg parami różnych elementów $g_n \in \Gamma$ takich, że $d(B,g_n \cdot B) \searrow 0$ maleją do 0. Stąd mielibyśmy punkty $z_n \in B$ takie, że $d(z_n,g_n \cdot B) \searrow 0$ (jako punkty prawie realizujące odległość między zbiorami). Istnieje podciąg n_k taki, że $z_{n_k} \in z_0 \in B$, a stąd $d(z_0,g_n \cdot B) \searrow 0$. To oznacza, że $B_{2R}(x_0)$ przecina niepusto nieskończenie wiele spośród przesunięc $g_n \cdot B_{2R}(x_0)$, a to jest sprzeczne z właściwością działania.

Clam 2: *S* generuje Γ oraz dla każdego $\gamma \in \Gamma$

$$\frac{1}{\lambda}d_X(x_0,\gamma\cdot x_0)\leq d_S(1,\gamma)\leq \frac{1}{r}d_X(x_0,\gamma\cdot x_0)+1,$$

gdzie $\lambda := \max_{s \in S} d_X(x_0, s \cdot x_0)$.

I scenariusz:

II scenariusz

Niech y_0 będzie punktem na geodezyjnej $[x_0, \gamma \cdot x_0] = \eta$ z kuli B najdalszy od x_0 na tej geodezyjnej. W odległości r od y_0 obierzmy punkt x_1 . Wtedy odcinek $(y_0, x_1) \subseteq \eta \subseteq \bigcup_{s \in S} s \cdot B$, ale to jest zbiór domknięty, z czego wynika, że $x_1 \in \bigcup_{s \in S} s \cdot B$, czyli $x_1 \in s_1 \cdot B$. Iterujemy się tak aż kulą $B_k = s_k s_{k-1} ... s_1 \cdot B$ trafimy w $\gamma \cdot x_0$.

W scenariuszu I mamy $\gamma \cdot B \cap s_k...s_1 \cdot B \neq \emptyset$, bo $\gamma x_0 \in \gamma \cdot B$ oraz $\gamma x_0 \in s_k...s_1 \cdot B$. W takim razie $s_1^{-1}...s_k^{-1} \gamma \cdot B \cap B \neq \emptyset$. Czyli zachodzi jedna z równości

1.
$$s1^{-1}...s_k^{-1}\gamma = 1 \implies \gamma = s_k...s_1$$

2.
$$s_1^{-1}...s_k^{-1} \gamma = s_{k+1} \in S \implies \gamma = s_k...s_1 s_{k+1}$$

W scenariuszu II $d(\gamma x_0, s_k...s_1 \cdot B) < v \implies d(x_0, \gamma^{-1} s_k...s_1 \cdot B) < r \implies d(B, \gamma^{-1} s_k...s_1 \cdot B) < r$. W takim razie znowu zachodzi jedna z równości

1.
$$s1^{-1}...s_k^{-1}\gamma = 1 \implies \gamma = s_k...s_1$$

2.
$$s_1^{-1}...s_k^{-1} \gamma = s_{k+1} \in S \implies \gamma = s_k...s_1s_{k+1}$$

Dla uzyskania prawej nierówności, zauważamy, że w obu scenariuszach $d_S(1,\gamma) \leq k+1 \leq \frac{1}{r} d_X(x_0,\gamma \cdot x_0) + 1$, bo $d(x_0,\gamma \cdot x_0) \geq k \cdot r$ bo tyle razy udało nam się odłożyć r na geodezyjnej.

Jeśli $d_{\mathsf{S}}(1,\gamma)=\mathsf{m}$, a $\gamma=\mathsf{s}_1...\mathsf{s}_{\mathsf{m}}$, to wówczas

$$d_X(s_1,...,s_k \cdot x_0,s_1...s_{k-1} \cdot x_0) = d_X(s_k \cdot x_0,x_0) \le \lambda.$$

Z nierówności trójkąta

$$d(\gamma \cdot \mathbf{x}_0, \mathbf{x}_0) = d(\mathbf{s}_1...\mathbf{s}_k \cdot \mathbf{x}_0, \mathbf{x}_0) \le m \cdot \lambda = d_S(1, \gamma) \cdot \lambda$$

co właściwie kończy dowód Claim 2.

Pozostaje nam udowodnienie quasi-izometryczności $f(\gamma) \to \gamma \cdot x_0$, które staje się **Claim 3**.

Z lewo niezmienniczości metryki słów d_S wiemy, że $d_S(\gamma_1, \gamma_2) = d_S(1, \gamma_1^{-1}\gamma_2)$, czyli wszystkie dystanse wyrażają się jako dystanse od 1. Z kolei z lewo-Γ-niezmienniczości metryki d_X na X mamy

$$d_X(f(\gamma_1), f(\gamma_2)) = d_X(\gamma_1 \cdot x_0, \gamma_2 \cdot x_0) = d_X(x_0, \gamma_1^{-1} \gamma_2 \cdot x_0).$$

Nierówności z Claim 2 otrzymujemy następujący wariant nierówności

$$\frac{1}{\lambda}d_{X}(f(\gamma_{1}),f(\gamma_{2})) \leq d_{S}(\gamma_{1},\gamma_{2}) \leq \frac{1}{r} \cdot d_{X}(f(\gamma_{1}),f(\gamma_{2})) + 1$$

Stąd wynika, że

$$rd_{S}(\gamma_{1}, \gamma_{2}) - r \leq d_{X}(f(\gamma_{1}), g(\gamma_{2}) \leq \lambda d_{S}(\gamma_{1}, \gamma_{2})$$

i fjest quasi-izometrycznym włożeniem dla $C = \max(\lambda, \frac{1}{r})$ i L = r.

Ponadto, obraz $f(\Gamma)$ jest R-gęsty (dla R promienia z początku dowodu) w X, bo dla każdego $x \in X$ istnieje $\gamma \in \Gamma$ takie, że $x \in \gamma \cdot B_R(x_0) = B_R(\gamma \cdot x_0)$. Czyli $d_X(x, \gamma \cdot x_0) \leq R$, ale $\gamma \cdot x = f(x)$. Stąd f jest quasi-izometrią.

Niewszystkie guasi-izometryczne grupy są współmierne.

Przykłady

1. Grupy podstawowe $\pi_1(M_1)$, $\pi_1(M_2)$ zamkniętych 3-wymiarowych rozmaitości hiperbolicznych M_1 , M_2 o niewspółmiernych (jedna nie jest iloczynem drugiej przez liczbę wymierną) objętościach $vol(M_i)$.

Wiadomo, że istnieje wiele klas niewspółmierności wśród objętości takich rozmaitości.

Twierdzenie 1.15: Mostowa o sztywności [1968]

Dwie zamknięte hiperboliczne rozmaitości o izomorficznych grupach podstawowych są izometryczne. W szczególności, mają jednakowe objętości.

Załóżmy nie wprost, że $\pi_1(M_1)$ i $\pi_1(M_2)$ są współmierne, to wówczas mielibyśmy wspólną podgrupę skończonego indeksu $H < \pi_1(M_1)$, $H < \pi_1(M_2)$. Niech \overline{M}_1 i \overline{M}_2 będą nakryciami M_1 , M_2 wyznaczone przez H. Skoro indeks grupy jest skończony, to nakrycia też takie są, a więc \overline{M}_i są zwarte i z podniesionymi metrykami

Riemanna, a więc są w dalszym ciągu hiperboliczne.

Z teorii nakryć wiemy, że $\pi_1(\overline{M}_1)\cong H\cong \pi_1(\overline{M}_2)$. Stąd wynika, że \overline{M}_1 jest izometryczna z \overline{M}_2 , a więc ich objętości są równe sobie. Ale

$$vol(\overline{M}_i) = (\underbrace{\mathsf{krotno\acute{s}\acute{c}}\,\mathsf{nakrycia}}_{=[\pi_1(M_i):H]}) \cdot vol(M_i)$$

stąd

$$\frac{vol(M_1)}{vol(M_2)} = \frac{[\pi_1(M_1) : H]}{[\pi_1(M_2) : H]}$$

daje sprzeczność z niewspółmiernością.

2. Niech G_A będzie produktem półprostym $\mathbb{Z} \ltimes_A \mathbb{Z}^2$, gdzie $A: \mathbb{Z}^2 \to \mathbb{Z}^2$ jest zadane macierzą $A \in Sl_2\mathbb{Z}$. Chcemy, żeby A było macierzą hiperboliczną (tzn. |tr(A)| > 2) posiadającą dwie różne rzeczywiste wartości własne, odwrotne do siebie. Wówczas grupa G_A jest kratą (podgrupą dyskretną i kozwartą) w pewnej grupie Liego $Sol = (\mathbb{R}^3, \cdot)$, gdzie mnożenie jest zadane jako

$$(x, y, z) \cdot (a, b, c) = (e^{z} \cdot a, e^{-z} \cdot b, c + z)$$

2. Niezmienniki izometrii

16.10.2024 Końce (w nieskończoności) grup przestrzeni

Zanim zaczniemy, zróbmy szybką motywację, czyli graf Cayleya grupy $\mathbb Z$ z jednym generatorem (rysunek 2.1)

Rysunek 2.1: Graf Cayleya grupy \mathbb{Z} ma dwa końce.

który ma "dwa końce". Natomiast grupa wolna F_2 o dwóch generatorach ma "nieskończenie wiele końców" (rysunek 2.2).

Rysunek 2.2: Graf Cayleya grupy wolnej F_2 ma nieskończenie wiele końców.

Z drugiej strony, grupa \mathbb{Z}^2 ma jeden koniec: jeśli weźmiemy dwa bardzo odległe od siebie obszary, to one są ze sobą połączone, chociaż jest to połączenie "bardzo odległe" (obrazek 2.3).

Rysunek 2.3: Graf Cayleya grupy \mathbb{Z}^2 ma jeden koniec.

Każda przestrzeń skończona, np. graf Cayleya grupy skończonej, ma 0 końców.

Chcemy z liczby końców przestrzeni (albo przestrzeni końców) uczynić tzw. niezmiennik asymptotyczny, czyli cechę niezmienną na quazi-izometrie właściwych geodezyjnych przestrzeni metrycznych, a co za tym idzie - przestrzeni skończenie generowanych.

1. Granica odwrotna

Definicja 2.1: zbiór skierowany

Zbór z częściowym porządkiem (Λ, \leq) jest **skierowany**, gdy dla dowolnych $\lambda_1, \lambda_2 \in \Lambda$ istnieje $\lambda \in \Lambda$ takie, że $\lambda \geq \lambda_1$ oraz $\lambda \geq \lambda_2$.

Definicja 2.2: system odwrotny

System odwrotny nad zbiorem skierowanym Λ to rodzina zbiorów

$$\mathfrak{X}:=\{X_{\lambda}\ :\ \lambda\in\Lambda\}$$

oraz rodzina odwzorowań

$$\mathcal{F} := \{ f_{\lambda\mu} : X_{\mu} \to X_{\lambda} : \lambda \le \mu \}$$

takich, że

- 1. dla dowolnego λ mamy funkcję identycznościową: $f_{\lambda\lambda}=id_{X_{\lambda}}$
- 2. dla dowolnych $\lambda \leq \mu \leq \nu$ złożenia zachowują się dobrze: $f_{\lambda\nu} = f_{\lambda\mu} \circ f_{\mu\nu}$.

Będziemy oznaczać: $\underline{X} := (\Lambda, \mathfrak{X}, \mathcal{F})$

Definicja 2.3: granica odwrotna

Granicą odwrotną systemu X nazywamy zbiór

$$\varprojlim \underline{X} = \varprojlim (\Lambda, \mathfrak{X}, \mathcal{F}) := \{ \xi \in \prod_{\lambda \in \Lambda} X_{\lambda} : (\forall \lambda' \leq \lambda) \ \xi_{\lambda'} = f_{\lambda'\lambda}(\xi_{\lambda}) \}.$$

Elementy ξ jak wyżej nazywamy niciami (threads) w \underline{X} .

Odwzorowania

$$f_{\lambda}: \varprojlim \underline{X} \to X_{\lambda}$$

takie, że $f_{\lambda}(\xi)=\xi_{\lambda}$ nazywamy **odwzorowaniami granicznymi**. O odwzorowaniach granicznych można myśleć jako o odwzorowaniach, które pytają "kim byłem w czasie λ ".

Dla $\lambda \leq \mu$ diagram

$$X_{\lambda} \xleftarrow{f_{\lambda}} \underbrace{f_{\mu}}_{f_{\lambda\mu}} X_{\mu}$$

zawsze komutuje.

Kiedy zbiory X_{λ} są przestrzeniami topologicznymi, zaś $f_{\lambda\mu}$ są ciągłe, to na granicy odwrotnej $\varprojlim \underline{X}$ rozważamy również topologię graniczną. Jest to topologia dziedziczona z topologii produktowej na $\prod_{\lambda\in\Lambda}X_{\lambda}$.

Bazą tej topologii są zbiory postaci $f_\lambda^{-1}(U)$ dla $\lambda \in \Lambda$ i otwartych $U \subseteq X$.

Fakt 2.4

Granica odwrotna $\lim X$ jest:

- 1. domkniętym podzbiorem $\prod_{\lambda \in \Lambda} X_{\lambda}$, jeśli X_{λ} są Hausdorffa,
- 2. zwarta i metryczna, jeśli X_{λ} takie są (bo wówczas ΠX_{λ} jest zwarta i metryczna),
- 3. zwarta i metryczna, jeśli X_{λ} są skończone (z topologią dyskretną).

W ostatnim przypadku $\varprojlim X$ nie jest przestrzenią dyskretną, pomimo, że wszystkie zbiory po których bierzemy granicę takie były. Rozważmy następujący przykład, w którym $\Lambda=\mathbb{N}$, a wszystkie X_{λ} są skończone dyskretne, natomiast $\varprojlim X$ jest niedyskretne i nieskończone.

Przykład

Niech $\Lambda=(\mathbb{N},\leq)$ i niech X_k będzie zbiorem wszystkich ciągów 0-1 długości k. Dla $k\leq m$ rozważamy

$$f_{km}: X_m \to X_k$$

będące obcięciem ciągu długości m do początkowego ciągu długości k. Dostajemy wówczas system odwrotny $\underline{X}=(\mathbb{N},\{X_k\},\{f_{km}\})$ zbiorów skończonych. Wówczas $\varprojlim \underline{X}$ jest homeomorficzny ze zbiorem Cantora.

2. Przestrzeń końców

Na tym wykładzie będziemy zajmować się X, które są właściwymi geodezyjnymi przestrzeniami metrycznymi. Takimi przestrzeniami są np. grafy Cayleya grup skończenie generowalnych. Przez zbiór \mathcal{K} będziemy rozumieć rodzinę wszystkich zwartych podzbiorów $K\subseteq X$ z porządkiem inkluzji.

Definicja 2.5: podzbiór współkońcowy

Podzbiór $M\subseteq \Lambda$ zbioru skierowanego Λ nazywamy **współkońcowym**, jeśli

$$(\forall \ \lambda \in \Lambda)(\exists \ \mu \in \mathbf{M}) \ \lambda \leq \mu$$
,

wtedy $(\mathit{M}$, $\leq)$ też jest zbiorem skierowanym. Dla $\underline{\mathit{X}} = (\Lambda, \mathfrak{X}, \mathcal{F})$ niech

$$\underline{X}_{|M} = (M, \{X_{\lambda} : \lambda \in M\}, \{f_{\mu\mu'} \in \mathcal{F} : \mu, \mu' \in M\})$$

będzie obcięciem \underline{X} do M. Wtedy $\underline{X}_{|M}$ jest systemem odwrotnym nad M.

Fakt 2.6

$$\varprojlim \underline{X} = \varprojlim \underline{X}_{|M}$$

Przez bijekcję polegającą na obcinaniu nici do *M*. Jest ona jednocześnie homomorfizmem.

Wniosek

Jeśli X_λ są zwarte i metryczne, zaś Λ posiada przeliczalny podzbiór współkońcowy, to $\varprojlim X$ jest zwarta i metryczna.

Przykład

Rodzina zbiorów zwartych K posiada współkońcowy podciąg $K_i := B_{i \cdot R}(x_0)$ dla R > 0 i pewnego $x_0 \in X$.

Dla dowolnego $K \in \mathcal{K}$ niech Π_K^X będzie zbiorem nieograniczonych komponent spójności w dopełnieniu X-K.

Przestrzeń geodezyjna jest lokalnie drogowo spójna i każda jej otwarta podprzestrzeń również jest lokalnie drogowo spójna. Stąd każde X-K też jest lokalnie drogowo spójna. W lokalnie drogowo spójnych przestrzeniach komponenty spójności to to samo co komponenty drogowej spójności.

Dla $K \subseteq K'$, każda nieograniczona komponenta spójności $C' \subseteq X - K'$ zawiera się w dokładnie jednej nieograniczonej komponencie spójności $C \subseteq X - K$. Dostajemy więc odwzorowanie

$$f_{KK'}:\Pi_{K'}^X\to\Pi_K^X$$

takie, że $f_{KK'}(C') = C$.

Trójka $(\mathcal{K}, \{\Pi_K^X : K \in \mathcal{K}\}, \{f_{KK'} : K' \subseteq K\})$ tworzy system odwrotny nad zbiorem skierowanym \mathcal{K} :

$$\Pi^X_K \xleftarrow[f_{KK'}]{} \Pi^X_{K'} \xleftarrow[f_{K'K''}]{} \Pi^X_{K''}$$

Fakt 2.7

Dla każdego $K \in \mathcal{K}$ zbiór Π_K^X jest skończony.

Dowód

Weźmy dowolny $K \in \mathcal{K}$ i x_0 oraz r takie, że

$$K \subseteq B_r(x_0)$$
.

Niech R > ri rozważmy zwartą kulę $B_R(x_0)$. Każda nieograniczona komponenta C spójności w X - K przecina niepusto sferę $S_R(x_0)$, bo X jest geodezyjna, a więc lokalnie drogowo spójna.

Zatem przekrój $C \cap B_R(x_0)$ jest niepusty. Wtedy rodzina

$$\{C \cap B_R(x_0) : C \text{ dowolna komponenta dopełnienia } X - K\} \cup \{\overline{B_R}(x_0) = B_R(x_0) - S_R(x_0)\}$$

pokrywa $B_R(x_0)$. Dodatkowo, jest to otwarte pokrycie, bo komponenty spójności lokalnie spójnej przestrzeni są otwartymi podzbiorami w tej przestrzeni.

Ze zwartości X to pokrycie posiada skończone podpokrycie, ale z drugiej strony każdy zbiór postaci $C \cap B_R(x_0)$ dla nieograniczonych komponent musi przetrwać w każdym podpokryciu, bo zawiera punkty które należą tylko do niego. Stąd nieograniczonych komponent jest skończenie wiele.

Definicja 2.8: przestrzeń końców

Zbiorem (przestrzenią) końców, Ends(X), właściwej geodezyjnej przestrzeni metrycznej X nazywamy granicę odwrotną

$$\mathsf{Ends}(X) = \varprojlim(\Pi^X) = \varprojlim(\mathcal{X}, \{\Pi_K^X\}, \{f_{KK'}\}),$$

gdzie Π^X_K to nieograniczone komponenty w X-K. Jest to zwarta przestrzeń metryczna.

Przykłady

- 1. $Ends(ograniczone)) = \emptyset$
- 2. $\mathsf{Ends}(\mathbb{Z}^2) = \{\star\}$ to punkt w nieskończoności kraty
- 3. $\operatorname{Ends}(\mathbb{Z}) = \{-\infty, \infty\}$ i jest równoliczny z $\operatorname{Ends}(\mathbb{R})$
- 4. zbiór końców drzewa k-regularnego, dla $k \geq 3$, jest izomorficzny ze zbiorem Cantora
- 5. dla nieskończonych grup skończenie generowanych G_1 , G_2 przestrzeń końców $\operatorname{Ends}(G_1\star G_2)$ jest nieskończonym zbiorem

23.10.2024 Przestrzeń końców jest niezmiennikiem q.i.

Celem dzisiejszego wykładu będzie udowodnienie poniższego twierdzenia.

Twierdzenie 2.9

Przestrzeń końców Ends(X), a w szczególności ich liczba, jest niezmiennikiem quasiizometrii geodezyjnych przestrzeni właściwych (przestrzenie końców są wtedy homeomorficzne).

1. Alternatywny opis przestrzeni końców (promienie)

Przypomnijmy, że jeśli X jest właściwą przestrzenią geodezyjną, to jest również lokalnie drogowo spójna. Czyli otwarte podzbiory $U \subseteq X$ są spójne \iff są drogowo spójne.

Definicja 2.10: promień, współkońcowość promieni

Właściwy promień (eng. proper ray) w X to dowolne ciągłe odwzorowanie $\rho:[0,\infty)\to X$ takie, że

$$\lim_{t\to\infty} d_X(\rho(0), \rho(t)),$$

odległość mierzona od początku ρ ucieka do nieskończoności wraz z oddalaniem się od 0.

Zbiór wszystkich promieni w X oznaczamy ρ^{X} .

Powiemy, że dwa promienie ρ_1 , ρ_2 są współkońcowe ($\rho_1 \overset{\mathsf{E}}{\sim} \rho_2$), jeśli dla dowolnego zwartego $K \subseteq X$ istnieje R > 0 taki, że $\rho_1([R,\infty))$ oraz $\rho_2([R,\infty))$ leżą w tej samej komponencie X - K.

Relacja współkońcowości promieni na zbiorze ρ^X jest relacją równoważności.

Fakt 2.11

Zbiór klas abstrakcji $\rho^X/\stackrel{\mathsf{E}}{\sim}$ w naturalny sposób utożsamia się z Ends(X).

Dowód

Weźmy $\rho \in \rho^X$ takie, że dla każdego $K \subseteq X$ mamy jedyną komponentę $C_K^\rho \in \Pi_K^X$ w dopełnieniu zbioru K w X do której należy $\rho([R,\infty))$ dla dostatecznie dużych R. Wtedy ciąg

$$(C_K^{\rho})_{K \in \mathcal{K}}$$

jest nicią [2.3] w systemie odwrotnym $(\mathcal{K},\Pi_{K'}^{X},f_{KK'})$.

Współkońcowe promienie wyznaczają tę samą nić, więc istnieje dobrze określone odwzorowanie

$$\beta: \rho^X/\overset{\mathsf{E}}{\sim} \to \mathsf{Ends}(X)$$

$$\beta([\rho]_{\mathsf{E}}) = (C_{\mathsf{K}}^{\rho})_{\mathsf{K}\in\mathcal{K}} \in \mathsf{Ends}(X)$$

 β jest różnowartościowe, bo dla niewspółkońcowych ρ_1 , ρ_2 istnieje $K \subseteq X$ takie, że $C_K^{\rho_1} \neq C_K^{\rho_2}$, a wtedy nici $\beta([\rho_1]) \neq \beta([\rho_2])$.

Wystarczy przekonać się, że β jest surjekcją.

Niech $\xi = (\xi_K) \in \operatorname{Ends}(X)$ będzie dowolną nicią. Szukamy promienia który na nie przechodzi. Dla każdego $n \in \mathbb{N}$ wybieramy punkt $y_n \in \xi_{B_n}$, gdzie ξ_{B_n} to nieograniczona komponenta w $X - B_n$ dla $B_n = B_n(x_0)$ przy ustalonym x_0 .

Określmy $\rho=[y_0,y_1]\cup[y_1,y_2]\cup...$ mając na myśli odwzorowanie ρ które odcinek [n,n+1] przeprowadza na geodezyjną od y_n do y_{n+1} . Dla takiego ρ mamy $C_{B_n}^\rho=\xi_{B_n}$. Dla dowolnego innego $K\in\mathcal{K}$ z racji, że istnieje kula taka, że $K\subseteq B_n$ to dla pewnego n zarówno C_K^ρ jak i ξ_K to ta sama komponenta w X_K , zawierająca ξ_{B_n} .

Na $\rho^X/\stackrel{\mathsf{E}}{\sim}$ mamy topologie indukowana przez bijekcję β z topologii Ends(X). Baza tej topologii są zbiory postaci

$$\{U_C^K : K \in \mathcal{K} \mid C \in \Pi_K^X\},$$

 $U_{\mathsf{C}}^{\mathsf{K}} = \{[
ho] \; : \;
ho([\mathsf{R},\infty)) \subset \mathsf{C}\} \; \mathsf{dla} \; \mathsf{pewnego} \; \mathsf{R}.$

2. Dowód - końce są niezmiennikiem q.i.

Wróćmy więc do twierdzenia 2.9.

Dowód

Dowód twierdzenia 2.9.

Niech X, Y będą włąsciwymi przestrzeniami geodezyjnymi oraz $f: X \to Y$ niech będzie (L, C)-quasi-izometrią. Ciągłe drogi $\nu: [a, b] \to X$ lub $\nu: [0, \infty) \to X$ przerabiamy na ciągłe drogi ν_f w Y następująco:

1. niech $a = t_0 < t_1 < ... < t_m = b$ (lub $a = t_0 < t_1 < ...$) będzie takie, że

$$d_X(\nu(\mathbf{t_k}), \nu(\mathbf{t_{k+1}})) \le 1$$

2. wtedy ciąg $f(\nu(t_n))$ jest (L+C)-drogą, czyli

$$d_{\mathbf{Y}}(f(\nu(\mathbf{t}_{k})), f(\nu(\mathbf{t}_{k+1}))) \leq L + C$$

dla każdego k

3. łączymy te punkty kolejno odcinkami geodezyjnymi w Y

W ten sposób dostajemy ciągłą drogę ν_f w Y zawierającą się w (L+C)-otocznieu obrazu $f(\nu[a,b])$ łączącą $f(\nu(a))$ z $f(\nu(b))$. Gdy $\nu:[0,\infty)\to X$ jest ciągłym odwzorowaniem (promieniem w X), to ν_f jest ciągłym odwzorowaniem o obrazie zawierającym się w (L+C)-otoczeniu obrazu $f(\nu[0,\infty))$ i o początku w $f(\nu(0))$ (promieniem w Y).

Lemat 2.12

Niech $f: X \to Y$ będzie (L, C)-quasi-izometrią. Wówczas dla każdego zwartego $K \subseteq Y$ istnieje zwarty $K' \subseteq X$ taki, że dla każdej komponenty $C' \subseteq X - K'$ jej pogrubiony obraz $N_{L+C}[f(C')]$, rozumiany jako $N_R(A) = \{x \in X : d_X(x,A) \le R\}$, zawiera się w pojedynczej komponencie C w dopełnieniu X - K.

Dowód

Jeśli $C_1 \neq C_2$ są nieograniczonymi komponentami w Y-K, to ich przekroje z pogrubionym obrazek K

$$C_1 \cap (Y - N_{I+C}(K))$$

$$C_2 \cap (Y - N_{L+C}(K))$$

są (2L + 2C)-oddzielone, tzn. dystans w Y pomiędzy nimi jest $\geq 2L + 2C$.

Można pokazać, że istnieje $K' \subseteq X$ taki, że $f(X - K') \subseteq Y - N_{L+C}(K)$ (co zostaje pozostawione jako ćwiczenie). W takim razie dla komponenty C' w X - K' mamy $f(C') \subseteq Y - N_{L+C}(K)$.

Wiemy, że dowolne dwa punkty z C' można połączyć ciągłą drogą w C', więc ich obrazy są łączone drogą ν_f w $N_{I+C}(f(C'))$, stąd f(C') zawiera się w pojedynczej komponencie Y-K.

Jeśli więc ν , ν' są współkońcowymi promieniami w X, to utworzone przez nie promienie ν_f i ν'_f również są współkońcowe. Chcemy sprawdzić, czy "końcówki" ν_f oraz ν'_f należą do tej samej komponenty X-K.

Z założenia wiemy, że końcówki ν i ν' należą do tej samej komponenty C' w X-K' (dla K' jak w lemacie wyżej). Czyli końcówka ν_f zawiera się w obrazie w N_{L+C} obrazu przez f końcówki ν , która z kolei zawiera się w $N_{L+C}f(C')\subseteq C$. Stąd ν_f jest wpsółkońcowe z ν_f' .

Mamy zatem przyporządkowanie $f_E: \rho^X/\stackrel{\mathsf{E}}{\sim} \to \rho^Y/\stackrel{\mathsf{E}}{\sim} \mathsf{zadane}$ przez

$$f_{\mathsf{E}}([\nu]) = [\nu_{\mathsf{f}}].$$

Mamy też podobne przyporządkowanie g_E idące w odwrotną stronę, gdzie $g:Y\to X$ jest "odwrotną" q.i..

Pozostaje sprawdzić, że odwzorowanie $f_E: \rho^X/\stackrel{\mathsf{E}}{\sim} \to \rho^Y/\stackrel{\mathsf{E}}{\sim}$ jest ciągłe i wtedy f_E jest homeomorfizmem.

Bierzemy bazowy zbiór U_K^C będący otoczeniem $[\nu_f]$, tzn. $K\subseteq Y$ jest zwarty i C jest nieograniczoną komponentą Y-K. Wtedy $\nu_f([R,\infty))\subseteq C$. Niech $K'\subseteq X$ jak w lemacie wyżej i niech C' będzie tą nieograniczoną komponentą w X-K' dla której $\nu([R,\infty))\subseteq C'$. Wówczas C jest dokładnie tą komponentą w Y-K w której zawiera się $N_{L+C}(f(C'))$. Jeśli $[\rho]\in U_{K'}^{C'}$ (czyli $\rho([R,\infty))\subseteq C'$), to $(\rho_{|[R,\infty)})_f$ ma obraz w pojedynczej komponencie Y-K i jest to ta sama komponenta, w której zawiera się $N_{L+C}(f(C'))$, czyli C. Zatem $f_E([\rho])\in U_K^C$ i mamy $f_E(U_{K'}^{C'})\subseteq U_K^C$.

30.10.2024 Końce skończenie generowalnych grup - twierdzenie Freudanthala-Hopfa

Główne twierdzenie na dzisiaj:

Twierdzenie 2.13: Freudanthal-Hopf

Skończenie generowalna grupa G ma 0, 1, 2 lub nieskończenie wiele końców. Gdy $|\operatorname{Ends}(G)| = \infty$, to $|\operatorname{Ends}(G)|$ jest przestrzenią bez punktów izolowanych - w szczególności mamy continuum. W istocie, $\operatorname{Ends}(G)$ jest wtedy zbiorem Cantora.

Zanim przejdziemy dalej, warto wiedzieć kilka rzeczy o zbiorze Cantora, np. jak jest on charakteryzowany w matematyce:

- jest to jedyna z dokładnością do homeomorfizmu przestrzeń metryczna, która jest całkowicie niespójna (0-wymiarowa), to znaczy, że każdy punkt posiada bazę otoczeń otwartodomkniętych
- nie ma on punktów izolowanych.

Niech $X=(\Lambda,\mathcal{X},\mathcal{F})$ będzie systemem odwrotnym zbiorów skończonych. Załóżmy, że wszystkie odwzorowania $f_{\lambda,\mu}\in\mathcal{F}$ są surjekcjami oraz $\forall\;\lambda\in\Lambda\;\forall\;x\in X\;\forall\mu>\lambda$ takie, że $|f_{\lambda\mu}^{-1}(x)|\geq 2$ to wówczas $\varprojlim\underline{X}$ jest homeomorficzny ze zbiorem Cantora. To znaczy, że \underline{X} rozdziela się w każdym kroku na co najmniej dwie części dokładnie tak jak zbiór Cantora.

Dowód

Wiemy, że $|\operatorname{Ends}(G)|=0$, 1, 2 jest możliwe, bo 0 końców mają grupy skończone, 1 ma \mathbb{Z}^2 , a \mathbb{Z} ma końców 2 sztuki.

Załóżmy, że $|\operatorname{Ends}(G)| \geq 3$. Oznacza to, że dla $X = \operatorname{Cay}(G, S)$ istnieje zwarty $K \subseteq X$ taki, że Π_K^X ma co najmniej 3 elementy (tzn. X - K ma co najmniej 3 nieograniczone komponenty spójności).

Naszym celem jest pokazanie, że dla dowolnego $L\subseteq X$ zwartego i dowolnej nieograniczonej komponenty C w X-L istnieje większy zbiór $L\subseteq L'\subseteq X$ oraz nieograniczone komponenty $C'_1\neq C'_2$ w $\Pi^X_{L'}$ takie, że C'_1 , $C'_2\subseteq C$ (czyli $f_{LL'}(C_i)=C$ dla i=1,2). Jako ćwiczenie pozostawione zostanie pokazanie, że wówczas $|\operatorname{Ends}(G)|=\infty$ (to pokazuje, że nici sklejają się).

Ustalmy zwarty $L \subseteq X$ oraz nieograniczoną komponentę $C \le X - L$. Niech $M \subseteq X$ będzie zbiorem z definicji kozwartości działania $G \cap X$, tzn. takim, że

$$\bigcup_{g\in G}gM=X.$$

Bez straty ogólności załóżmy, że $K \subseteq M$, a co za tym idzie $|\Pi_M^X| \ge 3$.

Niech $x_0 \in C$ będzie takim punktem, że

$$d(x_0, L) \ge \text{diam}L + 2\text{diam}M$$
.

Niech teraz $g_0 \in G$ będzie taki, że $x_0 \in g_0 M$. Wtedy ponieważ diam $(g_0 M) = \text{diam}(M)$, mamy

$$d_X(L, g_0M) \ge \text{diam}M$$

ale te $\dot{z} \geq \text{diam} L$. Wiec tym bardziej

$$d_X(L, g_0K) \ge \text{diam}M \ge \text{diam}K$$

ale też \geq diamL.

Twierdzimy, że

- 1. $g_0K \subseteq g_0M \subseteq C$
- 2. L zawiera się w dokładnie jednej spośród komponent C_0 , ..., C_m w $X g_0K$ ($m \ge 0$), BSO w C_0 ,
- 3. pozostałe komponenty C_1 , ..., C_m w $X-g_0K$ zawierają się wtedy w C (przynajmniej 2 spośród nich są nieograniczone).
- **Dowód 1.** Wystarczy, że $g_0M \subseteq C$. Gdyby $x_1 \in g_0M$ leżał w innej $C' \neq C$ komponencie X L, to geodezyjna $[x_0, x_1]$ przechodziłaby przez L (składowe spójności = składowe łukowej spójności), ale $d_X(x_0, x_1) \ge 2 \cdot \operatorname{diam} M$ dawałoby sprzeczność.
- **Dowód 2.** Argument analogiczny do 1., zastosowany symetrycznie.
- **Dowód 3.** Załóżmy, że komponenty C_1 , ..., C_m są rozłączne z L, bo $L \subseteq C_0$. Więc każda z nich zawiera się w pojedynczej komponencie X-L. Każda spośród C_1 ,..., C_m posiada punkty

dowolnie bliskie zbioru g_0K , czyli należące do C. Np. pierwszy punkt na geodezyjnej od dowolnego punktu $a \in C_i$ do dowolnego punktu $b \in g_0K$ nienależący do C_i musi należeć do g_0K .

Skoro C_i zahacza o C_i to musi być zawarte w C_i

Dla ukończenia realizacji CELU (i dowodu twierdzenia) weźmy $L' = L \cup g_0 K$. Wtedy C_1 , ..., C_m są komponentami w X - L', bo są rozłączne zarówno z $g_0 K$ jak i z L. Wszystkie komponenty z X - L' są zawarte w komponentach $X - g_0 K$. Co najmniej 2 z nich są nieograniczone, co daje nam szukane C_1' , C_2' .

Dalsze wyniki:

- \odot Jeśli $|\operatorname{Ends}(G)| = \infty$, to G rozkłada się w sposób nietrywialny i nie 2-końcowy nad skończoną podgrupą H, tzn.

$$G = G_1 \star_H G_2$$

i $[G_i: H] \ge 3$ dla przynajmniej jednego i, lub

$$G = \star_H G_0$$

(HNN-rozszerzenie), $\varphi_i: H \hookrightarrow G_0$, $[G_0: \varphi_i(H)] \geq 2$ dla pewnego *i*.

 \odot Iterowany proces rozkładów nad skończonymi podgrupami kończy się. Końcowe wektory maja ≤ 1 końców i są w pewnym sensie jednoznaczne. Dla kończenie generowalnych grup nie jest to jednak prawdą.

Jeśli więc skończone grupy można uznać za nieciekawe, to najciekawsze są grupy z jednym końcem (1-ended).

06.11.2024 Grupy o dwóch końcach

Z quasi-izometryczności grup współmiernych, jakimi są grupy i ich podgrupy skończonego indeksu, wynika, że jeśli grupa zawiera skończonego indeksu podgrupę \mathbb{Z} , to ma wówczas dwa końce. Celem wykładu będzie udowodnienie implikacji w drugą stronę, czyli opisanie grup o dwóch końcach.

Twierdzenie 2.14

Każda grupa o 2 końcach zawiera skończonego indeksu podgrupę acykliczną (izomorficzną z \mathbb{Z}).

Wynika więc z tego, że każda grupa q.i. z $\mathbb Z$ zawiera $\mathbb Z$ jako podgrupę skończonego indeksu.

1. Działanie grupy na przestrzeni końców

Skończenie geneorwalna grupa G indukuje w naturalny sposób działanie przez permutacje na zbiorze swoich końców homomorfizm

$$h^{E}: G \rightarrow Sym(Ends(G))$$

zadany na jeden z dwóch sposobów:

1. izometria $\varphi: X \to X$ wyznacza automorfizm

$$\varphi^{\mathcal{K}}: \mathcal{K} \to \mathcal{K}$$

przez

$$\varphi^{\mathcal{K}}(\mathbf{K}) = \varphi(\mathbf{K}),$$

zaś dla każdego $K \in \mathcal{K}$ bijekcję

$$\varphi_K:\Pi_K^X\to\Pi_{\varphi(K)}^X$$

zadaną przez $\varphi_K(C) = \varphi(C)$. To razem daje automorfizm

$$\varphi^X:\Pi^X\to\Pi^X$$
,

który indukuje homeomofrizm granic odwrotnych (w szczególności bijekcję).

2. izometria $\varphi: X \to X$ zadaje

$$h_{\varphi}^{\mathsf{E}}:\mathsf{Ends}(X)\to\mathsf{Ends}(X)$$

przez

$$h_{\varphi}^{\mathsf{E}}([
ho]) = [\varphi \circ \varphi]$$
,

gdzie ρ to promień w X.

Fakt 2.15

Niech grupa $\Gamma^{C}X$ działa właściwie, kozwarcie, gdzie X jest właściwa geodezyjna oraz $H \leq \Gamma$. Wówczas $[\Gamma: H] < \infty \iff H^{C}X$ działa kozwarcie.

Dowód

 $[\Gamma:H]<\infty \implies H^{C}X$ kozwarcie

Niech $\Gamma=hg_1\cup...\cup Hg_m$, gdzie $[\Gamma:H]=m$. Jeśli $\bigcup_{\gamma\in\Gamma}\gamma\cdot K=X$, to

$$\bigcup_{h\in H}h(g_1K\cup...\cup g_mK)=X,$$

stąd kozwartość działania H.

 $[\Gamma: H] < \infty \iff H \mathcal{C} X \text{ kozwarcie}$

Niech $L \subseteq X$ będzie zwartym zbiorem z definicji kozwartości, tzn.

$$\bigcup_{h\in H}h\cdot L=X.$$

Z własności działania grupy Γ wiemy, że

$$|\{\gamma \in \Gamma : \gamma L \cap L \neq \emptyset\}| < \infty$$
,

powiedzmy że jest to zbiór $\{\gamma_1, ..., \gamma_m\}$. Wówczas $H\gamma_1 \cup ... \cup H\gamma_m = \Gamma$, bo dla $\gamma \in \Gamma$ istnieje $h \in H$ takie, że $h \cdot L \cap \gamma \cdot L \neq \emptyset$. Więc $L \cap h^{-1}\gamma L \neq \emptyset$, więc $h^{-1}\gamma = \gamma_i$, czyli $\gamma = h\gamma_i \in H\gamma_i$.

Dla właściwej geodezyjnej przestrzeni X i dla dowolnego zwartego $K \subseteq X$, liczba komponent (ograniczonych i nieograniczonych) w X-K jest skończona i każda z tych komponent jest otwarta w X. Stąd, każdy $K \subseteq X$ możemy uzupełnić o ograniczone komponenty X-K, otrzymując nowy zbiór K_+ taki, że komponenty $X-K_+$ to dokładnie nieograniczone komponenty X-K.

Możemy więc myśleć, że X-K dla zwartych K to zawsze skończona suma nieograniczonych komponent tego dopełnienia (i wszystkie one są otwarte w X).

2. Grupy o 2 końcach zawierają cykliczną podgrupę skończonego indeksu

Wróćmy do dowodu twierdzenia 2.14.

Dowód

Niech Γ będzie dowolną grupą o 2 końcach. Rozważmy homomorfizm $h^{\sharp}:\Gamma\to \mathit{Sym}(\mathsf{Ends}(G))=\mathbb{Z}_2$ i jego jądro $\Gamma_0=\ker(h^{\mathsf{E}})<\Gamma$ – podgrupę indeksu ≤ 2 .

 Γ_0 , jako podgrupa skończonego indeksu, w dalszym ciągu działa kozwarcie na X (fakt 2.15), oraz zachowuje wszystkie końce. Naszym celem będzie znalezienie generatora $g \in \Gamma_0$ dla cyklicznej podgrupy $\langle g \rangle$ skończonego indeksu w Γ_0 .

Niech K będzie takie, że $X - K = E \cup E'$ jest sumą nieograniczonych komponent spójności, oraz $\bigcup_{\gamma \in \Gamma_0} \gamma \cdot K = X$. Ustalmy $z \in E$ taki, że $d_X(z, K) > 2 \cdot \text{diam} K$.

Ponieważ orbity zbioru K przez działanie Γ_0 pokrywają X, to możemy znaleźć $g \in \Gamma_0$ takie, że $z \in g \cdot K$. Wówczas $d_X(K, gK) > \operatorname{diam} K$ (bo $\operatorname{diam}(gK) = \operatorname{diam}(K)$). Stąd $gK \subseteq E$ ($gK \cap E \neq \emptyset$ oraz pokazaliśmy, że między gK oraz K mieści się co najmniej jedna średnica K).

Ponieważ $gK \cap E' = \emptyset$ (bo $E \cap gK \neq \emptyset$ a są to zbiory spójne), to E' zawiera się w dokładnie jednej komponencie X - gK, którymi są gE oraz gE'. Ponieważ $g \in \Gamma_0$ zachowuje końce, to komponentą tą musi być gE', zatem $E' \subseteq gE'$.

TODO: DOKOŃCZYĆ DOWÓD

13.11.2024 Tempo wzrostu grupy

1. Funkcje wzrostu

Definicja 2.16

Niech G będzie grupą, a S jej skończonym układem generatorów. Wówczas funkcję

$$\beta_{G.S}: \mathbb{N} \to \mathbb{N}$$

$$\beta_{G,S}(k) = |B_k^{G,S}(e)| = |\{g \in G : d_S(e,g) \le k\}|$$

opisującą liczność kul o promieniu k i środku w elemencie neutralnym, nazywamy **funkcją wzrostu** grupy G.

Przykłady

1. $G = \mathbb{Z}^n$ o zbiorze generatorów $S = \{\sum \pm \delta_i\}$, czyli skończone sumy parami różnych wersorów o z dowolnymi znakami. Wówczas funkcja wzrostu to

$$\beta_{\mathbb{Z}^n,S}(k) = (2k+1)^n$$

wielomian n-tego stopnia.

2. $G = F_m$ a S_m to standardowy zbiór generatorów grupy wolnej

$$\beta_{\mathsf{Fm},\mathsf{Sm}}(k) = 1 + 2m + 2m(2m - 1) + \dots + 2m(2m - 1)^{k - 1} = \frac{m}{m - 1}(2m - 1)^k - \frac{1}{m - 1}$$

jest funkcją wykładniczą.

Funkcje wzrostu są:

podmultyplikatywne $\beta_{G,S}(k+k') \leq \beta_{G,S}(k)\beta_{G,S}(k')$

ściśle rosnące dla $|G|=\infty$ oraz szacują się od dołu przez funkcję liniową, tzn. $\beta_{G,S}(k)\geq k+1$ szacują się od góry przez funkcje wykładnicze, ponieważ

$$\beta_{\mathsf{G},\mathsf{S}}(k) \leq \beta_{\mathsf{F}_{\mathsf{S}},\mathsf{S}}(k) = \begin{cases} 2|\mathsf{S}| + 1 & |\mathsf{S}| = 1\\ \frac{|\mathsf{S}|}{|\mathsf{S}| - 1} (2|\mathsf{S}| - 1)^k - \frac{1}{|\mathsf{S}| - 1} & |\mathsf{S}| \geq 2 \end{cases}$$

dobrze zdefiniowane dla podgrup, tzn. jeśli G jest generowane przez S, a $H \leq G$ jest generowane przez $T \subseteq S$, to wówczas

$$\beta_{\mathsf{H,T}}(\mathsf{k}) \leq \beta_{\mathsf{G,S}}(\mathsf{k})$$

dla wszystkich $k \in \mathbb{N}$.

2. Abstrakcyjne funkcje wzrostu

Abstrakcyjna funkcja wzrostu f to po prostu niemalejąca funkcja $f:\mathbb{R}_{\geq 0}\to\mathbb{R}_{\geq 0}$. Każda funkcja wzrostu $\beta_{G,S}$ wyznacza abstrakcyjną funkcję wzrostu

$$\widetilde{\beta}_{G,S}(t) := \beta_{G,S}(\lceil t \rceil),$$

która nadal jest multiplikatywna, tzn. $\widetilde{\beta}_{G,S}(t+t') \leq \widetilde{\beta}_{G,S}(t) \cdot \widetilde{\beta}_{G,S}(t')$.

Konkurencyjnie możemy zdefiniować $\widetilde{\widetilde{\beta}}_{G,S}(t) := \beta_{G,S}(\lfloor t \rfloor)$, ale nie zachowujemy wówczas multiplikatywności funkcji.

Definicja 2.17: quasi-dominacja

Mówimy, że funkcja g quasi-dominuje $[g\succ f]$ funkcję f, jeśli istnieje $c\geq 1$ i $b\geq 0$ takie, że

$$(\forall \ t \in \mathbb{R}_{\geq 0}) \ f(t) \leq c \cdot g(ct+b) + b$$

Przykłady

- 1. Dla każdego wielomianu w(t) stopnia n o dodatnich współczynnikach $w(t) \prec t^n$.
- 2. Dla dowolnych a, b > 1 zachodzi

$$a^t \succ b^t$$
,

nawet gdy a > b.

Relacja quasi-dominacji jest relacją przechodnią i zwrotną.

3. Tempo wzrostu grupy

Definicja 2.18: quasi-równoważność

Dwie funkcje f i g są quasi-równoważne $[f \sim g]$, gdy $f \succ g$ i $g \succ f$. Jest to relacja równoważności. Klasy tej relacji nazywamy typami wzrostu [eng. growth rate types].

Przykłady

- 1. Dla $a \ge 0$ funkcje $t \mapsto t^a$ określają parami różne typy wzrostu.
- 2. Dla 0>a>b zachodzi $\mathrm{e}^{ta}\sim\mathrm{e}^{tb}$. Jest to tzw. tym wzrostu eksponencjalnego.

- 3. $(\forall a \ge 0)$ $t^a \prec e^t$ oraz $t^a \not\prec e^t$, czyli wzrost eksponencjalny nigdy nie jest równy wzrostowi t^a .
- 4. Wszystkie funkcje wzrostu grup $\beta_{G,S}$ są quasi-zdominowane przez e^t , $\beta_{G,S} \prec e^t$. Aby pokazać, że grupa (G,S) ma typ wzrostu eksponencjalnego wystarczy pokazać, że $\beta_{G,S} \succ e^t$, co jest równoważne nierówności $\beta_{G,S} \geq ca^t b$ dla a > 1, $b \geq 0$ i c > 0.
- 5. $\widetilde{\beta}_{G,S} \sim \widetilde{\beta}_{G,S}$

Fakt 2.19

Niech (G, S) i (H, T) będą grupami ze skończonym układem generatorów. Jeśli istnieje quasi-izometryczne zanurzenie

$$f: (G, d_S) \rightarrow (H, d_T),$$

to wówczas funkcja wzrostu w G jest zdominowana przez funkcję wzrostu w H: $\beta_{G,S} \prec \beta_{H,T}$.

Zanim przejdziemy do dowodu faktu 2.19, wymieńmy kilka ważnych wniosków z niego wynikających.

Wniosek

- 1. Jeśli grupy (G, d_S) i (H, d_T) są quasi-izometryczne, to wówczas mają ten sam typ wzrostu: $\beta_{G,S} \sim \beta_{H,T}$.
- 2. Dla różnych skończonych układów generatorów S_1 , S_2 grupy G zachodzi $\beta_{G,S_1}\sim\beta_{G,S_2}$, czyli grupa jednoznacznie determinuje swój typ wzrostu.

Wyróżniamy grupy o wzroście

- wielomianowym, czyli taki dla których funkcja wzrostu jest zdominowana przez t^a dla pewnego a $[\beta_{G,S} \prec t^a]$,
- eksponencjalnym,
- pośrednim [eng. intermediate growth], czyli ani wielomianowym ani eksponencjalnym (dominuje ściśle nad wielomianowym, ale jest zdominowany ściśle nad eksponencjalnym).

Okazuje się, że w przypadku wzrostu nieprzekraczającego wielomianowego, wzrost musi być typu $\beta_{G,S} \sim t^m$ dla pewnego $m \in \mathbb{N}$. Tzn. nie ma grup o typie wzrostu "ułamkowo-

potęgowego" ani $t \cdot \log t$ etc.

Istnieją grupy o wzroście pośrednim, np. tak zwana grupa Grigorchuka (automorfizmów pewnego drzewa). Wiadomo dla niej, że

$$e^{t^{\alpha}} \prec \beta_G \prec e^{t^{\beta}}$$

dla pewnych $0<\alpha<\beta<1$, ale nie mamy wyznaczonej konkretnej funkcji. Grupa ta jest skończenie generowalna, ale nieskończenie prezentowalna.

Istnieje otwarta hipoteza, że jeśli G ma wzrost pośredni, to $\beta_G \succ e^{t^{\alpha}}$ dla pewnego $0 < \alpha < 1$. Nie wiemy też, czy istnieje grupa skończenie prezentowalna, która dopuszcza pośredniego wzrostu (otwarte jest pytanie o dowód, że nie może tak być).

Żadna grupa o wzroście pośrednim nie ma wyznaczonego dokładnego typu wzrostu.

Wracamy do 2.19.

Dowód

Niech $f:(G,d_S)\to (H,d_T)$ będzie q.i. zanurzenie i niech $C\geq 1$ będzie takie, że

$$(\forall \ g,g' \in G) \ \frac{1}{C} d_S(g,g') - C \leq d_T(f(g),f(g')) \leq C d_S(g,g') + C.$$

Niech e' = f(e) i niech $r \in \mathbb{N}$. Wtedy jeśli $g \in B_r^{G,S}(e)$, to wówczas

$$d_T(f(g), e') \le C \cdot d_S(g, e) + C \le C \cdot r + C.$$

W takim razie

$$f(B_r^{G,S}(e)) \subseteq B_{Cr+C}^{H,T}(e').$$

Niestety, q.i. może sklejać elementy i niekoniecznie jest różnowartościowa. Musimy więc znaleźć oszacowanie na moc przeciwobrazów $f^{-1}(h)$.

Jeśli f(g) = f(g'), to wówczas z faktu, że f jest q.i. mamy

$$d_S(g,g') \leq C \cdot [d_T(f(g),f(g')) + C] = C^2.$$

Stąd $f^{-1}(h)$ zawiera się w kuli o promieniu C^2 wokół dowolnego punktu z $f^{-1}(h)$. Ponieważ kule względem metryki słów o ustalonym promieniu i zmiennym środku są równoliczne, więc mamy oszacowanie

$$|f'(h)| \leq \left|B_{C^2}^{\mathsf{G,S}}(e)\right|.$$

Stad dostajemy

$$\left|B_{r}^{G,S}(e)\right| \leq \left|B_{C^{2}}^{G,S}(e)\right| \cdot \left|B_{Cr+C}^{H,T}(e')\right|,$$

czyli

$$\beta_{G,S}(r) \le \left| B_{C^2}^{G,S}(e) \right| \cdot \beta_{H,T}(Cr+C),$$

czyli $\beta_{G.S} \prec \beta_{H.T}$.

Przykłady

- 1. $\mathbb{Z}^n \approx \mathbb{Z}^m$ są q.i. $\iff n = m$, bo $\beta_{\mathbb{Z}^n} \sim t^n \not\sim t^m \sim \beta_{\mathbb{Z}^m}$.
- 2. Grupa wolna F nie jest q.i. z \mathbb{Z}^m , bo $\beta_F \sim e^t$, a $\beta_{\mathbb{Z}^m} \sim t^m$ i $e^t \not\sim t^m$.
- 3. Dla skończenie generowalnej podgrupy $H \leq G$ zachodzi $\beta_H \prec \beta_G$.

Wniosek

Każda grupa zawierająca podgrupę wolną (nieabelową) ma wzrost eksponencjalny.

4. Grupa Heisenberga

$$H = \mathbb{Z} \ltimes_{A} \mathbb{Z}^{2}$$
,
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

ma $\beta_H \sim t^4$. Stąd można wywnioskować, że $H \not\approx \mathbb{Z}^3$ nie jest q.i.. Jako ciekawostka można nadmienić, że wymiar asymptotyczny grupy H wynosi 3, a grupy \mathbb{Z}^4 wynosi 4, co mówi, że $H \not\approx \mathbb{Z}^4$ nie są q.i..

4. Grupy o wzroście wielomianowym

Dla przypomnienia, patrzymy teraz na grupy $\beta_{\sf G} \prec t^a$ dla pewnego a>0. Zacznijmy od kilku przykładów.

Dla grupy G określamy $C_n(G)$ indukcyjnie przez $C_0(G) := G$, $C_{n+1}(G) = [G, C_n(G)]$. Taki ciąg nazywamy **dolnym ciągiem centralnym grupy**. Zachodzi $C_{j+1}(G) \triangleleft C_j(G)$ oraz $C_j(G)/C_{j+1}(G)$ jest abelowa. Gdy G jest skończenie generowalna, to wszystkie $C_j(G)$ i ilorazy $C_j(G)/C_{j+1}(G)$ też takie są.

Grupa G jest nilpotentna, gdy $C_n(G)$ jest trywialne dla pewnego n.

Definicja 2.20: wymiar jednorodny grupy nilpotentnej

Skończenie generowalna grupa abelowa A ma jednoznaczny rozkład $A \sim \mathbb{Z}^m \oplus B$, gdzie B jest grupą skończoną. Definiujemy wówczas $\operatorname{rank}(A) = m$.

Wymiar jednorodny grupy nilpotentnej to skończona suma (bo od pewnego momentu

$$\mathit{C_j(G)}=0$$
)
$$\mathit{d(G)}:=\sum_{j=0}^{\infty}(j+1)\operatorname{rank}(\mathit{C_j(G)}/\mathit{C_{j+1}(G)}).$$

Fakt 2.21

Dla dowolnej skończenie generowalnej grupy nilpotentnej G zachodzi

$$\beta_G \sim t^{d(G)}$$

Przykład

Dla grupy Heisenberga $H = \mathbb{Z} \ltimes_{A} \mathbb{Z}^{2}$, która jest nilpotentna, mamy

$$\begin{aligned} & \textit{C}_1(\textit{H}) \cong \mathbb{Z} \quad \textit{C}_0(\textit{H}) / \textit{C}_1(\textit{H}) = \textit{H} / \textit{C}_1(\textit{H}) \cong \mathbb{Z}^2 \\ & \textit{C}_2(\textit{H}) = 0 \qquad \textit{C}_1(\textit{H}) / \textit{C}_2(\textit{H}) \cong \textit{C}_1(\textit{H}) \cong \mathbb{Z} \end{aligned}$$

$$\mathsf{więc}\; \mathit{d}(\mathit{H}) = \mathsf{rank}(\mathbb{Z}^2) + 2 \cdot \mathsf{rank}(\mathbb{Z}) = 2 + 2 = 4.$$

Definicja 2.22: wirtualna nilpotentność

Skończenie generowana grupa G jest wirtualnie nilpotentna, jeśli zawiera skończonego indeksu podgrupę nilpotentną.

Twierdzenie 2.23: [Gromova]

Skończenie generowalna grupa G ma wzrost wielomianowy $\beta_G \prec t^a \iff G$ jest wirtualnie nilpotentna.

Wniosek

- 1. Wśród grup o wzroście wielomianowym nie ma innych typów wzrostu niż \mathbf{t}^m dla $m \geq 1$
- 2. Grupa q.i. z \mathbb{Z} jest wirtualnie \mathbb{Z} , bo ma wzrost taki sam jak \mathbb{Z} (wielomianowy). W takim razie jest wirtualnie nilpotentna i możemy wybrać $G_0 \leq G$ nilpotentną podgrupę skończonego indeksu. Ponieważ $\beta_{G_0} \sim t^1$, to $d(G_0) = 1$ i wystarczy wywnioskować, że G_0 jest wirtualnie \mathbb{Z} .
- 3. Podobnie można uzasadnić, ze jeśli G jest q.i. z \mathbb{Z}^m , to jest wirtualnie \mathbb{Z}^m .

20.12.2024 Funkcja wzrostu i metryka Riemanna

Definicja 2.24

Niech M będzie zupełną rozmaitościa z metryką Riemanna g, która indukuje metrykę d_q i miarę objętości Vol_q .

Funkcja wzrostu objętości (volume growth) na rozmaitości M względem punktu bazowego $p \in M$ to funkcja $\beta_q^{M,p}: \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ zadana przez

$$\beta_q^{M,p}(r) = Vol_g(B_r(p))$$

gdzie $B_r(p)$ to kula względem metryki d_q .

Lemat 2.25: Milnor-Švarc

Niech M będzie zamkniętą, spójną rozmaitością Riemannowską i niech \widetilde{M} będzie jej nakryciem uniwersalnym z indukowaną metryką \widetilde{g} . Wówczas dowolna funkcja wzrostu objętości $\beta_{\widetilde{g}}^{\widetilde{M},p}$ na \widetilde{M} jest quasi-równoważna z funkcją wzrostu $\beta_{\pi_1 M}$ grupy podstawowej $\pi_1 M$.

Przykład

Niech $M=\mathbb{T}^2=S^1 imes S^1$ ze standardową metryką produktową. Wówczas $(\widetilde{M},\widetilde{g})=\mathbb{R}^2$ oraz $\pi_1M=\mathbb{Z}^2$. Obie funkcje wzrostu są tutaj kwadratowe.

Dowód

Zacznijmy od kilku stwierdzeń

- grupa podstawowa zamkniętej rozmaitości jest skończenie generowalna
- oraz działa na nakryciu uniwersalnym (przez deck-transformacje) $\pi_1 MC\widetilde{M}$.

Niech teraz $S = \{s_1, ..., s_n\}$ będzie skończonym układem generatorów $\pi_1 M$ i $p \in \widetilde{M}$ będzie dowolnym punktem. **Promień injektywności** M definiujemy jako

$$\mathsf{injrad}(\mathit{M}, \mathit{g}) := \frac{1}{2} \mathsf{inf}\{|\gamma|_{\mathit{g}} \ : \ \gamma \ - \ \mathsf{gladka}, \ \mathsf{homotopijnie} \ \mathsf{nietrywialna} \ \mathsf{pętla} \ \mathsf{w} \ \mathit{M}\}.$$

Dla rozmaitości zamkniętych jest to zawsze liczba dodatnia.

W takim razie dla $0 < \varepsilon < \mathsf{injrad}(M, g)$ mamy rozłączne kule w \widetilde{M}

$$B_{\varepsilon}(p) \cap B_{\varepsilon}(\gamma \cdot p) = \emptyset$$

dla dowolnego $\gamma \in \pi_1(M) - \{1\}$. W nakryciu jeśli mamy krzywą c łączącą p z $\gamma \cdot p$ to długość odpowiadającej jej pętli w M $\pi(c) \geq \text{injrad}(M, g)$. Czyli długość samego c też jest większa niż injrad(M, g) a więc kule o mniejszym promieniu są rozłączne.

Niech teraz $D:=\max\{d_{\widetilde{g}}(p,s\cdot p)\ :\ s\in S\}<\infty$. Można pokazać, że dla każdego $\gamma\in\pi_1M$ zachodzi

$$d_{\widetilde{g}}(p, \gamma \cdot p) \leq D|g|_{S}.$$

To oznacza, że dla dowolnego $m \geq 0$ kula $B_{Dm}(p)$ zawiera wszystkie punkty $\gamma \cdot p$ takie, że $|\gamma|_S \leq m$. Czyli jeśli dodamy do promienia $\varepsilon > 0$, to kula $B_{Dm+\varepsilon}(p)$ zawiera te punkty $\gamma \cdot p$ jak i ich małe otoczenia $B_{\varepsilon}(\gamma \cdot p) = \gamma \cdot B_{\varepsilon}(p)$.

Zatem

$$\operatorname{Vol}_{\widetilde{g}}(B_{Dm+\varepsilon}(p)) \geq \beta_{\pi_1 M, S}(m) \cdot \operatorname{Vol}_g(B_{\varepsilon}(p))$$

$$\beta_{\pi_1 \mathsf{M},\mathsf{S}}(\mathsf{m}) \leq \frac{1}{\mathsf{Vol}_{\mathsf{G}}(\mathsf{B}_{\varepsilon}(\mathsf{p}))} \cdot \mathsf{Vol}_{\widetilde{\mathsf{g}}}(\mathsf{B}_{\mathsf{Dm}+\varepsilon}(\mathsf{p}))$$

Co oznacza, że funkcja objętości $Vol_{\widetilde{q}}$ quasi-dominuje funkcję wzrostu $\beta_{\pi_1 M, S}$.

Dowód odwrotnej quasi-dominacji zaczynamy od przypomnienia, że działanie $\pi_1 MC\widetilde{M}$ jest kozwarte. Niech D>0 będzie takie, że

$$\bigcup_{\gamma \in \pi_1 M} \gamma \cdot B_D(p) = \widetilde{M} \quad \left[= \bigcup_{\gamma \in \pi_1 M} B_D(\gamma \cdot p) \right]$$

Dla dowolnego r > 0 kula $B_r(p)$ zawiera się w sumie kul $B_D(\gamma \cdot p)$ dla których $d(p, \gamma \cdot p) \le r + D$:

$$B_r(p) \subseteq \bigcup \{B_D(\gamma \cdot p) : d(p, \gamma \cdot p) \le r + D\}$$

Lemat Milnora-Švarca 1.14 mówi, że odwzorowanie

$$\pi_1 M \ni \gamma \longmapsto \gamma \cdot \mathbf{p} \in (\widetilde{M}, d_{\widetilde{g}})$$

jest quasi-izometrią. Niech (L, C) będą stałymi z definicji q.i., czyli

$$d(p, \gamma \cdot p) \geq \frac{1}{C}|g|_{S} - L.$$

Wtedy zbiór

$$\{\gamma \in \pi_1 M : d(p, \gamma \cdot p) \le r + D\}$$

zawiera się w zbiorze

$$\{\gamma \in \pi_1 M : |g|_S \le C(r+D+L)\}.$$

W takim razie

$$Vol_{g}(B_{r}(p)) \leq \beta_{\pi_{1}M,S}(C \cdot r + C(D+L)) \cdot Vol_{g}(B_{D}(p)),$$

a więc funkcja wzrostu objętości jest quasi-zdominowana przez funkcję wzrostu $\beta_{\pi_1 M,S}$ grupy $\pi_1 M$.

Funkcje wzrostu objętości w rozmaitościach \widetilde{M} o ujemnej krzywiźnie są wykładnicze, zaś w rozmaitościach o nieujemnej są quasi-zdominowane przez wielomiany stopnia $\dim(M)$. Wynik Milnora kładł nacisk na własności wzrostu grup podstawowych $\pi_1 M$ - traktowany jako analog wcześniej znanego faktu, że grupy podstawowe rozmaitości o dodatniej krzywiźnie są skończone.

04.12.2024 Wymiar homologiczny, asdim $\mathbb{Z}^n = \operatorname{asdim} \mathbb{R}^n = n$

Niech X będzie zwartą przestrzenią metryczną. Definiujemy wówczas **wymiar** dim X jako najmniejsze n takie, że dla każdego $\varepsilon>0$ istnieje skończone pokrycie U_{ε} przestrzeni X otwartymi zbiorami o średnicy $<\varepsilon$ takie, że każdy $x\in X$ należy do $\le (n+1)$ zbiorów z U_{ε} .

Przykład

 $\dim([0,1]\times[0,1])\leq 2 \text{ Kwadrat możemy rozbić na dowolnie małe cegiełki średnicy}<\varepsilon$

i jako pokrycie wybrać malutkie otoczenia tych cegiełek. Wtedy każdy punkt jest w co najwyżej dwóch zbiorach.

1. Wymiar asymptotyczny

Definicja 2.26

Wymiar asymptotyczny asdim X to najmniejsze n takie, że $(\forall R>0)$ istnieje (na ogół nieskończone) pokrycie U_R przestrzeni X zbiorami jednostajnie ograniczonymi (niekoniecznie otwartymi) takimi, że $(\forall x\in X)$ kula $B_R(x)$ należy do co najwyżej (n+1) zbiorów z tego pokrycia.

- 1. asdim X jest niezmiennikiem q.i.
- 2. $\operatorname{asdim}(\{n^3 : n \in \mathbb{Z}\}) = 0$
- 3. dla X asymptotycznie spójnej, asdim X = 0 wtedy i tylko wtedy X jest ograniczona
- 4. $\operatorname{asdim}(\mathbb{Z}^n) \leq n$ (patrz: cegłówki wyżej)
- 5. $\operatorname{asdim}(X \times Y) \leq \operatorname{asdim}(X) + \operatorname{asdim}(Y)$, ale latwiej jest pokazać $\operatorname{asdim}(X \times Y) \leq \operatorname{asdim}(X + Y)$
- 6. jeśli Y \subseteq X z obciętą metryką, to asdim Y \le asdim X

Yu [1998] pokazał, że jeśli asdim $G < \infty$, to G spełnia hipotezę Novikova, a w 2003 Roe udowodnił, że asdim $G < \infty \implies G$ zgrubnie zanurza się w przestrzeni Hilberta.

Pytanie na dziś: jak pokazać, że asdim $\mathbb{Z}^n = \operatorname{asdim} \mathbb{R}^n \geq n$?

2. Dowód homologiczny

Metoda homologiczna będzie polegała na:

- 1. zdefiniowaniu asdim_h (asymptotyczny wymiar homologiczny)
- 2. pokazaniu, że asdim $_h \mathbb{Z}^n \geq n$
- 3. na koniec wystarczy pokazać, że zwykły wymiar asymptotyczny jest nie mniejszy asdim \geq asdim_b.

Definicja 2.27

Dla $\varepsilon > 0$ q-wymiarowy ε -sympleks w przestrzeni metrycznej X to układ $(x_0, x_1, ..., x_q)$ punktów z X (niekoniecznie różnych) takich, że $d_X(x_i, x_j) \le \varepsilon$ dla $0 \le i \ne j \le q$.

Określamy w oczywisty sposób q-wymiarowe ε -łańcuchy, brzegowanie oraz ε -homologie $H_q^\varepsilon(X)$ [teoria homologii Alexandrowa].

Dla ε -łańcucha U w X definiujemy nośnik supp(U) jako zbiór wszystkich wierzchołków we wszystkich ε -sympleksach z U (mających niezerowy współczynnik).

Dla ε -cyklu z, jego ε -wypełnieniem nazywamy dowolny ε -łańcuch w taki, że $\partial w = z$.

•	•	•	•	•	•	•	•
•							•
•							•
•							•
•							•

•

Definicja 2.28

asdim $_h(X) \leq p$ gdy dla każdego $\nu > 0$ istnieje $\alpha > 0$ (zależna tylko od X i ν) taka, że dla $q \geq p$ dowolny q-wymiarowy ν -cykl φ , ν -homologicznie trywialny w X, jest także α -homologicznie trywialny w swoim nośniku $supp(\varphi)$.

asdim $_h(X) \ge n$ gdy istnieje ν takie, że dla każdego α istnieje (n-1)-wymiarowy ν -cykl ν -homologii φ trywialny w X oraz α -homologicznie nietrywialny w swoim nośniku.

$$\mathsf{asdim}_h(X) = \min\{p \ : \ \mathsf{asdim}_h(X) \leq p\}$$

Można pokazać, że asdim $_h$ jest niezmiennikiem q.i..

Twierdzenie 2.29 -

$$\mathsf{asdim}_h(\mathbb{Z}^n) = \mathsf{asdim}_h(\mathbb{R}^n) \geq n$$

TUTAJ ZDJECIA JAKIES CZY COS

Twierdzenie 2.30

$$\operatorname{asdim}(X) \geq \operatorname{asdim}_h(X)$$