

## Introdução à Química-Física

## Aula teórico-prática nº4

Consolidação de conhecimentos das aulas TPs 1 a 3:

## Problemas de termoquímica

**I.** Qual a variação de energia interna,  $\Delta U$ , do sistema quando ocorre a combustão completa de 342,0 g de octano, a 298 K? (Admita que os gases se comportam como gases ideais e que o volume ocupado pelo octano é desprezável comparativamente ao volume do oxigénio )

$$C_8H_{18}$$
 (I) + (25/2)  $O_2(g) \rightarrow 8 CO_2(g) + 9 H_2O(g)$ 

|                                    | $\Delta_{\rm f}{ m H^0}_{298}$ / kJmol <sup>-1</sup> |
|------------------------------------|------------------------------------------------------|
| C <sub>8</sub> H <sub>18</sub> (I) | -249,9                                               |
| CO <sub>2</sub> (g)                | -393,5                                               |
| H <sub>2</sub> O (g)               | -241,8                                               |

- a) -15,26 x 10<sup>3</sup> kJ
- **b**)  $-15,19 \times 10^3 \text{ kJ}$
- c) -15,22 x 10<sup>3</sup> kJ
- **d**)  $-15,18 \times 10^3 \text{ kJ}$
- II. Repita o problema anterior considerando a seguinte reação:  $\Delta_{\text{vap}}H^{\text{o}}$  (H<sub>2</sub>O, 298,15 K) = 44 kJ mol<sup>-1</sup>

$$C_8H_{18}$$
 (I) + (25/2)  $O_2(g) \rightarrow 8 CO_2(g) + 9 H_2O$  (I)

(Resposta: -16,38 x 10<sup>3</sup> kJ)

- III) Identifique a afirmação incorrecta:
  - a) O volume molar gasoso de saturação a 20 °C é dado pela abcissa do ponto C.
  - **b)** O volume molar gasoso de saturação a 31.04 °C é diferente do volume molar líquido de saturação a 31.04 °C.
  - c) A temperatura do ponto crítico é 31.04 °C.
  - d) A região limitada a ponteado é uma região de coexistência de duas fases.





- IV) Considere um sistema fechado em que se dá um processo adiabático, logo não há transferência de energia na forma de calor. Indique quando é que as afirmações seguintes são sempre verdadeiras, sempre falsas ou verdadeiras em certas condições (e especifique as condições):
  - a)  $\Delta U = 0$
  - **b)** q = 0
  - **c)** q < 0
  - **d)**  $\Delta U = q$
  - e)  $\Delta U = W$
- V) Aqueceu-se um gás contido num cilindro com a capacidade de 345 cm³, transferindo-lhe 5500 kJ na forma de calor. O gás expandiu contra a pressão atmosférica constante de 750 Torr. Se o volume final do cilindro for 1846 cm³ calcule a variação de energia interna do gás contido no cilindro. (1 Torr = 133,32 Pa, Resposta: ΔU = 5,50 X 10<sup>6</sup> J))