

Today's Topics

- · Syllabus & Objectives
- Textbook
- Assignments
- · Class Policy
- Reminder from "Logic Design" & "CSL"
- Introduction to Computer Architecture

Sharif University of Technology, Spring 2021

Course Introduction

- · Instructor: Hossein Asadi
- · Classes
 - Sat. & Mon.: 15:00~16:30
 - Attend class on time
 - · Starts at 15:00 and usually ends by 16:10
 - https://vc.sharif.edu/ch/asadi
 - Be prepared to turn on your camera and your microphone

arif University of Technology, Spring 2021

Course Introduction (cont.)

- Office Hours
 - I am usually online and can be reached at
 - Skype account: hossein_asadi • Sat. through Wed.: 8AM ~ 8PM
 - Room # 610
- TA Classes
 - Mondays: 12:15PM ~ 1:15PM

Course Introduction (cont.)

- · Course Webpage on CW
 - Check this webpage on regular basis
 - · At least on Sun, Tue, Thur
 - · Q&A only using CW forums
 - Everything will be posted on CW
 - Announcements, handouts, assignments, grades, quiz and exam notices, simulators, ...
 - Handouts
 - · Will be posted a day before class - Print it & bring it to class
 - · But I may update it a day after class Lecture I Check out submission date of handouts

Copyright Notice

- · Parts (text & figs) of lectures adopted from
 - Computer Organization & Design, The Hardware/Software Interface, 4th Edition, by D. Patterson and J. Hennessey, MK publishing, 2012.
 - "Intro to Computer Architecture" handouts, by Prof. Hoe, CMU, Spring 2009.
 - "Computer Architecture & Engineering" handouts, by Prof. Kubiatowicz, UC Berkeley, Spring 2004.
 - "Intro to Computer Architecture" handouts, by Prof. Hoe, UWisc, Spring 2021.
- "Computer Arch I" handouts, by Prof. Garzarán, UIUC, Spring 2009 Lecture 1 Sharif University of Technology, Spring 2021

1

Teaching Assistants

- · Comments, Suggestions, & Objections
 - Mahdi Moradi (TA Chair)
- · RTL & Performance & Micro-Architecture Design & Quartus
 - Sina Ahmadi (Head TA)
 - Fereshteh Forghani, Elaheh Khodaei, Ahmad Salimi, Soroush Taslimi, Matina Mahdizadeh

Sharif University of Technology, Spring 2021

Teaching Assistants (cont.)

- Cache Memory, SimpleScalar, Arithmetic Floating-Point, IO Handshaking
 - Amirhossein Moradi (Head TA)
 - Elham Adibi, Sajjad Shahabi, Amir Mahdi Namjoo, Seper Pourghannad, Mahsa Amani

Sharif University of Technology, Spring 2021

Few Notes on Assignments

- · Post All your Questions on CW Forums
 - Check forum history before posting any question
- · Be Respectful to your Classmates and
- Harsh Cheating Penalty

Course Introduction (cont.)

- · Course Webpage
 - Sharif CW webpage, http://cw.sharif.edu
 - Make sure to have an account on CW
 - Check this webpage on regular basis
 - · At least on Sun, Tue, Thur
 - Everything will be posted online
 - · Announcements, assignments, and toolsets
 - Handouts (in pdfs)
 - · Print it & bring it to class
 - Check out submission date of handouts e1 Sharif University of Technology, Spring 2021

Course Introduction (cont.)

- Textbook
 - Computer Organization & Design, The Hardware/Software Interface, 4th Edition, by D. Patterson and J. Hennessey, MK publishing, 2012.

Sharif University of Technology, Spring 2021

Syllabus

- Review
 - Combinational & sequential logic design
 - Design abstractions
 - Computer/CPU history
 - Computer organization
 - Addressing modes
 - Instruction Set Architecture (ISA)
- Number Representation
 - Fixed-point
 - IEEE 754 Floating-point standard · Single precision and double precision

Sharif University of Technology, Spring 2021

Syllabus (cont.)

- · Performance Evaluation
 - Performance
 - Important factors in performance
 - Benchmarks
- · Data-Path and Control-Path Design
 - Register Transfer Logic (RTL)
 - Data-path components
 - Control unit design and hardwired controller
 - MIPS data-path
 - Interrupt and I/O polling

Lecture 1

Sharif University of Technology, Spring 2021

Syllabus (cont.)

- Micro-Programmed Controller
 - Pros & cons compared to hardwired
- · Multi-Cycle Architecture
- Introduction to Pipeline Architecture
- I/O Approaches
 - I/O handshaking
- Introduction to Multi-Core Systems
- Introduction to Parallel Computing

Lecture 1

Sharif University of Technology, Spring 2021

Syllabus (cont.)

- · Memory System
 - Types of memory
 - Memory hierarchy
 - Cache memory and cache configurations
- Arithmetic Algorithms
 - Addition, subtraction, multiplication, division
 - Arithmetic architectures
- ROC

Booth and array multiplication

Lecture 1

Sharif University of Technology, Spring 2021

Objective

- · Understand Basic Architecture of CPUs
- Be Able to Evaluate and Analyze Performance of Different Processors
 - Using simulation tools
- Understand Arithmetic Algorithms
- Understand Memory Hierarchy
 - And its impact on overall performance
- Understand Basics of Pipelining and Multi-Cores Systems

Lecture 1

Sharif University of Technology, Spring 2021

Objective (cont.)

- By the end of semester, you should be able to answer these questions:
 - What is functionality of main components of a processor?
 - Why standard benchmarks used for performance evaluation?
 - What are pros and cons of single-cycle, multi-cycle, and pipelined data-paths?
 - Difference between micro-programmed controller and hardwired controller?

Sharif University of Technology, Spring 2021

•

Objective (cont.)

- By the end of semester, you should be able to answer these questions:
 - Tradeoffs of small vs. large L1 caches?
 - How many levels in a cache hierarchy?
 - What are pros and cons of directmapped, set-associative, and fullyassociative cache configurations?
 - What are pros and cons of different adder implementations (RC, CSA, CLA)?
 - Ripple-carry, carry-select, carry look-ahead adder

Lecture 1

Sharif University of Technology, Spring 2021

18

Grading

- · Midterm Exam: 25%
 - Farvardin 30th
- Final Exam: 30% (date posted in EDU)
- · Quiz (1&2): 15%
 - First quiz: Esfand 25th
 - Second quiz: Ordibehesht 27th
 - Up to three additional unscheduled quizzes
- · Assignments & Project: 30%
 - Bonus points for outstanding projects

Exams: Topics of this Class and TA Classes Sharif University of Technology, Spring 2021

Class Policy

- · Ask Questions Anytime
 - Don't hesitate to ask even stupid questions!!!
- · Cell Phones Off or on Silent
- Absence
 - Only three sessions allowed
- Food No. Drink yes!
- Feel Free to Pass Me Your Feedbacks
 - Anything related to this course

Sharif University of Technology, Spring 2021

Assignments

- 10~12 Assignments
 - 5~6 analytical assignments
 - 5~6 design & simulation assignments
 - · Altera (Intel) Quartus toolset @
 - SimpleScalar toolset ©
 - Spend enough time on assignments as they will be covered in midterm and final exams

arif University of Technology, Spring 2021

Assignments (cont.)

- Assignment Policy
 - Two late assignments will be accepted!
 - · Only two days late!
 - Third late assignment (two-day late)
 - HW will be graded out of 50%
 - · Forth and next late assignments will not be accepted!
 - Discussions encouraged!
 - But do your own handwriting!
 - Zero score for copied assignments!

Sharif University of Technology, Spring 2021

· Second time zero score for 30% share!

What You Learned So Far

- · Logic Design
 - Simple logical & arithmetic logic design
 - Addition and subtraction units
 - · Multiplexer and tri-state buffer
 - · Latch and flip-flop
 - · Sequential logic, registers, shifters, counters
- · Computer Structure & Language
 - Computer organization
 - Instruction Set Architecture (ISA)
 - Assembly programming
- Now "Computer Architecture"
- What is "Computer Architecture"?

Reminder: Computer Systems

- · A computer system consists of hardware and software that are combined to provide a tool to solve problems (with best performance)
 - Hardware may include:
 - · CPU, memory, disks, printers, screen, keyboard, mouse, .
 - Software may include:
 - System software
 - A general environment to create specific applications
 - Application software

- A tool to solve a specific problem
Lecture 1 Sharif University of Technology, Spring 2021

Reminder: Computer Organization

- · Computer Components
 - Input, output, memory, control unit, & datapath

Reminder: ISA

- Instruction Set Architecture (ISA)
 - A set of instructions used by a machine to run programs
 - Interface between hardware & software
 - Provides an abstraction of hardware implementation
 - · Hardware implementation decides what and how instructions are implemented
 - ISA specifies
 - · Instructions, Registers, Memory access, Input/output

Sharif University of Technology, Spring 2021

Reminder: ISA (cont.)

- Key ISA Decisions
 - Instruction length?
 - How many registers?
 - Where operands reside?
 - · Which instructions can access memory?
 - Instruction format?
 - Operand format?
 - · How many? How big?

Sharif University of Technology, Spring 2021

Reminder: ISA (cont.)

· ISA Classes

Code sequence for C = A + B

<u>Stack</u> Accumulator Register-Memory Push A Load A Load R1,A Add C, A, B Push B Add Load R2,B R3,R1,F Add Store C Pop Store C,R3 Sharif University of Technology, Spring 2021

- Addressing Modes
 - Immediate addressing
 - Register addressing
 - Base or displacement addressing
 - PC-relative addressing
 - Pseudo-direct addressing
 - Register indirect
 - Direct
 - Memory indirect
 - Scaled
 - Auto-increment / Auto-decrement
 - Indexed

Sharif University of Technology, Spring 2021

Computer Systems **Abstractions**

Sharif University of Technology, Spring 2021

- Definition from Wiki
 - A way a given ISA is implemented on a processor
- · ISA
 - Can be implemented with different uArch
 - Why different implementation?
 - Different goals (performance, power, cost, ...)
- Computer Architecture?
 - ISA + uArch

Sharif University of Technology, Spring 2021

Computer Organization

- · Computer Components
 - Input, output, memory, control unit, & datapath

Computer Organization · Computer Components

- · Data Transfer Instructions
 - CPU ⇔ Memory
 - CPU ⇔ I/O
- · Arithmetic & Logical Instructions
- · Control Instruction
 - Conditional branch
 - Unconditional branch

Sharif University of Technology, Spring 2021

Reminder: Von-Neumann Model

- Stored Program
 - Instructions stored in a linear memory array
- Sequential Instruction Processing
 - 1. Program counter identifies current instruction
 - 2. Instructions fetched one by one from memory
 - 3. Once fetched, instruction is executed
 - 4. Results stored in memory
 - 5. Program counter incremented
 - 6. Return to step 1

Sharif University of Technology, Spring 2021

Micro-Architecture

- · BIG Picture
 - Basic blocks
 - Components need to execute Von-Neumann algorithm

acture 1

Sharif University of Technology, Spring 2021

echnology Spring 20

Micro-Architecture

- · Basic Blocks of a Micro-Architecture
 - A high-speed unit to keep code & data
 - · CPU runs very fast but memory is slow
 - · Cache memory (instruction & data cache)
 - A unit to fetch instructions from cache
 - Instruction fetch unit (IFU)
 - · Instructions transferred from I-cache to IFU
 - A unit to decode instructions after fetch process
 - · Instruction decoder unit

Lecture 1

Sharif University of Technology, Spring 2021

Micro-Architecture (cont.)

- · Basic Blocks of a Micro-Architecture
 - A unit to execute instructions
 - · Execution unit
 - A unit to do arithmetic/logical operations
 - · ALU
 - A unit to execute branch instruction
 - · Branch unit
 - A unit to execute load/store instructions
 - · Load/store unit
 - · LSU ⇔ D-cache

Lecture 1

Sharif University of Technology, Spring 2021

40

Micro-Architecture (cont.)

- · Basic Blocks of a Micro-Architecture
 - A unit to save temporary results within processor
 - · Register file
 - A unit to locate next instruction
 - · Program counter
 - A unit to schedule all data movements
 - · Control unit

Lecture 1

Sharif University of Technology, Spring 2021

41

7