Buffers: The solutions which maintain constant p^H value on addition of acid or base.

- Resisting change in p^H value on adding acid or base to a buffer is called Buffer action.
- Buffers posses reserve acidity and reserve alkality. Reserve acidity will nullify the effect of added base and reserve basicity will nullify the effect of added acid.
- Blood buffer is H₂CO₃ + NaHCO₃.

Types of buffers:

1) Acid buffers: It is the mixture of weak acid and it's salt of strong base.

CH₃COOH + CH₃COONa

 $H_2CO_3 + NaHCO_3$

Tetra boric acid + Borax \rightarrow [p^H > 7]

 $H_3PO_4 + NaH_2PO_4$

The p^H of acid buffers is usually less than 7 but not always.

2) Basic buffers: It is mixture of weak base and its salt of strong acid.

NH4 OH + NH4Cl

Glycine + Glycine hydro chloride

3) Normal salt of weak acid and its acidic salt

Na₂CO₃ + NaH CO₃

Na₃PO₄ + Na₂HPO₄

4) Salt of weak acid and weak base

Eg: CH₃COONH₄; HCOONH₄

5) Ampholytes Amino acids proteins:

Which of the following can act as buffer

Action of Acid buffers:

Eg: CH₃COOH + CH₃COONa

Acetic acid mostly remains as unionised and sodium acetate is almost completely ionised. Therefore the components present in the above buffer are

(CH₃COOH+CH₃COO⁻+ Na⁺)

If little strong acid (H⁺) is added to the above buffer, the added strong acid will convert into weak acid. Thus the effect is nullified.

 $CH_3COO^- + H^+ \rightarrow CH_3COOH$

If little strong base (OH⁻) is added to buffer, the added strong base is converted into water (H₂O). Thus the effect of added base is nullified.

 $CH_3COOH + H^- \rightarrow CH_3COO^- + H_2O$

Thus acid buffer can resist change in p^H on addition of little amount of acid or little amount of base. In the above buffer the reserve acidity is due to CH_3COOH and reserve basisity is due to CH_3COO^- .

Action of Basic buffer:

Eg: NH₄OH + NH₄Cl

NH₄OH ionizes to very small extent and NH₄Cl being a salt ionizes completely. Therefore the components present in the above buffer are $[NH_4OH + NH_4^+ + Cl^-]$

The reserve acidity of the above buffer is due to NH_4^+ and reserve bascity is due to NH_4OH .

• If strong acid [H⁺] is added to buffer, it is converted into H₂O

$$H^+ + NH_4OH \rightarrow NH_4^+ + H_2O$$

• If strong base [OH⁻] is added to buffer, it will convert into weak base

$$NH_4^+ + OH^- \rightarrow NH_4OH$$

Thus an acid buffer or a basic buffer can maintain constant p^H value by adding acid as well as base.

• P^H of Buffers : [Henderson's equation]

Deriving p^H expression for Acid buffer:

(weak acid)

$$K_a = \frac{[H^+][A^-]}{[HA]}$$
 $[H^+] = \frac{K_a[HA]}{[A^-]}$

$$[A^{-}] = K_a \left[\frac{Acid}{Salt} \right]$$

[:most of the A-concentration comes from salt]

By applying – log on both sides.

$$-\log[H^{+}] = -\log K_{a} - \log \left[\frac{Acid}{salt}\right]$$
$$p^{H} = p^{K_{a}} - \log \left[\frac{Acid}{salt}\right]$$

$$p^H = p^{K_a} + log\left[\frac{salt}{acid}\right]$$

• Deriving p^H expression for basic buffer:

(weak base)

$$K_b = \frac{[B^+][OH^-]}{[BOH]}$$

$$[OH^-] = K_b \frac{[BOH]}{[B^+]}$$

$$[OH^{-}] = K_b \left[\frac{base}{salt} \right]$$

[:most of the B+ concentration come from salt]

By applying – log on both sides

$$-\log[OH]^{-} = -\log K_b - \log\left[\frac{base}{salt}\right]$$

$$p^{OH} = p^{K_b} - log \left[\frac{base}{salt} \right]$$

$$p^{OH} = p^{K_b} + log \left[\frac{salt}{base} \right]$$
$$p^H = 14 - p^{OH}$$

$$p^{H} = p^{K_{\omega}} - p^{K_{b}} - \log\left[\frac{salt}{base}\right]$$

$$p^{H} = p^{K_{a}} + log \left[\frac{salt}{acid} \right]$$

$$p^{OH} = p^{K_{b}} + log \left[\frac{salt}{base} \right]$$
[Henderson's equation]

Buffer capacity:

It is the capacity of a buffer to resist change in p^H by adding acid or base.

- A good buffer shows only a slight change in p^H on addition of acid or base.
- Buffer capacity is defined as the number of moles of acid or base added per litre of buffer to cause the change in its p^H by one unit

Buffer capacity is the ratio of number of moles of acid or base added per litre of buffer to the change in p^{H}

Buffer capacity =

$$\frac{\textit{no.ofmoleofacidorbaseaddedperlitreofbuffer}}{\textit{changeinp}^{H}}$$

p^H range of buffer :

It is the range of p^H values where a buffer can effectively resist the change in p^H on adding acid or base.

For an acid buffer the p^H range.

$$p^H = p^{K_a} \pm 1$$

For example P^{K_a} of CH₃COOH + CH₃COONa buffer is 4.5. Therefore it functions effectively between p^H values 3.5 and 5.5.

The p^H range of basic buffer.

$$p^{OH} = p^{K_b} \pm 1$$

Buffer capacity will maximum if p^H=p^{Ka}:[salt] =[acid]

Buffer capacity will be more if the components are taken in higher concentrations.

- Any buffer has a definite p^H values. The p^H of buffer does not change on long standing.
- The p^H of buffer does not change on dilution.

Applications of buffers:

- 1) Buffers are used in various chemical industries
- 2) Buffers are used in various enzyme catalyses reaction.
- 3) used in softening of hard water.
- 4) used in various research programmes.
- 5) used in chemical analysis. [precipitation of radicals]

Salt of Hydrolysis:

Acid + base
$$\implies$$
 salt + H₂O

Salt hydrolysis is endothermic because t is reverse of neutralisation.

- The reaction of the salt with water to produce acid or base or both is called salt hydrolysis.
- Salt hydrolysis is of three types.
 - 1) Cationic hydrolysis: Cation of the salt reacts with water to produce H⁺ ions.

Eg: NH₄Cl, NH₄NO₃, [NH₄]₂SO₄, AlCl₃ etc.

In these salts cation is stronger because it is the conjugate of weak base therefore they undergo cationic hydrolysis.

Eg:
$$NH_4^+Cl^-: NH_4^+ + H_{\bullet}$$
 NH₄OH + H⁺

2) Anionic Hydrolysis: Anion of the salt reacts with water to produce OH-.

Eg: CH₃COONa, HCOOK, Na₂CO₃, etc.

In these salts anion is stronger as it is the conjugate of weak acid.

Eg: CH₃COONa⁺:

$$CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$$

3) Cationic and Anionic hydrolysis: Both cation and anion of the salt react with water to produce H⁺ and OH⁻ ions. Therefore the solution is neutral.

Eg: CH₃COONH₄, HCOONH₄, Al(CH₃COO)₃

In these salts both cation and anion are stronger because they are the conjugates of weak base and weak acid respectively.

Eg: $CH_3COONH_4^+$:

$$CH_3OO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$$

$$NH_4^+ + H_2O \Longrightarrow NH_4OH + H^+$$

there are four types of salts depending on the nature of acid and base involved in the titrations.

• Salt of strong acid and weak base :

Eg: NH₄Cl, NH₄NO₃, (NH₄)₂SO₄, AlCl₃, MgCl₂, Al₂(SO₄)₃ etc,...

- These salts undergo cationic hydrolysis to produce H⁺ ions.
- Their aqueous solution is acidic and p^H is less than 7.
- Their aqueous solution will turn blue litmus to red and they can be used for titrating against bases.

Eg: $NH_4^+Cl^-$

Hydrolysis:
$$NH_4^+$$
+H₂O \rightleftharpoons NH₄OH + H⁺

$$K = \frac{[NH_4OH][H^+]}{[NH_4^+][H_2O]}$$

$$K.[H_2O] = \frac{[NH_4OH][H^+]}{[NH_4^+]}$$

$$K_h = \frac{[NH_4OH][H^+]}{[NH_4^+]}$$

Ionisation of

 $NH_4OH : NH_4OH \longrightarrow NH_4^+ + OH^-$

$$K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{4}OH]}$$

Ion product of water = $k_{\mathbb{P}} = [H^+][OH^-]$

$$\frac{K_w}{K_b} = \frac{[H^+][OH^-][NH_4OH]}{[NH_4^+][OH^-]}$$

$$K_h = \frac{K_w}{K_h}$$

The degree of hydrolysis of the salt is inversely proportional to the square root of its molar concentration.

$$\alpha = \sqrt{\frac{K_b}{C}} \Rightarrow \sqrt{\frac{K_w}{K_b.C}}$$

$$[H^+] = C\alpha$$

$$[H^+] = C\alpha$$

$$[\mathsf{H}^+] = \mathsf{C} \sqrt{\frac{K_W}{K_b.C}}$$

$$[\mathsf{H}^+] = \sqrt{\frac{K_w.C}{K_b}}$$

Appling - log on both sides

$$-\log[H^{+}] = -\frac{1}{2}\log K_{w} - \frac{1}{2}\log C + \frac{1}{2}\log K_{b}$$

$$p^{H} = \frac{1}{2}p^{Kw} - \frac{1}{2}p^{K_{b}} - \frac{1}{2}\log C$$

Salt of weak acid and strong base:

Eg: CH₃COONa, HCOOK, Na₂CO₃, NaHCO₃, Na₃PO₄, Na₂HPO₄, KCN etc.

Anionic hydrolysis: CH₃COONa

 $CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$

$$K = \frac{[CH_3COOH][OH^-]}{[CH_3OO^-][H_2O]}$$

$$\begin{split} K[H_2O] &= \frac{[CH_3COOH][OH^-]}{[CH_3COO^-]} \\ K_h &= \frac{[CH_3COOH][OH^-]}{[CH_3COO^-]} \end{split}$$

Ionisation of CH₃COOH:

CH₃COOH ⇌ CH₃COO⁻+ H⁺

$$K_a = \frac{[cH_3coo^-][H^+]}{[cH_3cooH]}$$

ionic product of water : $K_w = [H^+][OH^-]$

$$\frac{K_w}{K_a} = \frac{[H^+][OH^-][CH_3COOH]}{[CH_3COO^-][H^+]} \\ K_h = \frac{K_w}{K_a}$$

The degree of hydrolysis of these salts is also inversely proportional to the square root of its concentration.

$$\alpha = \sqrt{\frac{k_h}{C}} \Rightarrow \sqrt{\frac{k_w}{k_a.C}}$$

$$[OH^-] = C\sqrt{\frac{K_w}{K_a.C}} \Rightarrow \sqrt{\frac{K_w.C}{K_a}}$$

applying - log on both sides

$$-\log[OH^{-}] = -\frac{1}{2}\log K_{w} + \frac{1}{2}\log K_{a} - \frac{1}{2}\log C$$

$$p^{OH} = \frac{1}{2}p^{K_{w}} - \frac{1}{2}p^{K_{a}} - \frac{1}{2}\log C$$

• aqueous solution of these salts are basic they undergo anionic hydrolysis because the anion of the salt is stronger as it is the conjugate of weak acid.

[OH⁻] is produced and solution is basic.

Salt of weak acid and weak base :

Eg: CH₃COONH₄, HCOONH₄, NH₄CN, Al(CH₃COO)₃ etc...

- The aqueous solution of these salts is all most neutral and p^H is all most equal to 7.
- The nature of the salt solution actually depends on Ka and Kb values of acid and base.
 - i) If $K_a = K_b$, solution is exactly neutral.

Eg: CH₃COONH₄

ii) If $K_a > K_b$, solution is acidic

Eg: HCOONH4

iii) If K_a < K_b, solution is basic

Eg: Mg(CN)₂

$$K_b$$
 of $Mg(CN)_2 > K_a$ of HCN

• These salts will undergo both cationic and anionic hydrolysis to produce both H⁺ and OH⁻ ions.

Eg:
$$CH_3COONH_4$$

 $CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$
 $NH_4^+ + H_2O \rightleftharpoons NH_4 OH + H^+$

$$K = \frac{[CH_{3}COOH][NH_{4}OH][H^{+}][OH^{-}]}{[CH_{3}COO^{-}][NH_{4}^{+}][H_{2}O]^{2}}$$

$$K[H_{2}O]^{2} = \frac{[CH_{3}COOH][NH_{4}OH][H^{+}][OH^{-}]}{[CH_{3}COO^{-}][NH_{4}^{+}]}$$

$$K_{h} = \frac{[CH_{3}COOH][NH_{4}OH][H^{+}][OH^{-}]}{[CH_{3}COO^{-}][NH_{4}^{+}]}$$

The $[H^+]$ = $[OH^-]$ they get cancelled mutually

$$K_h = \frac{[CH_3COOH][NH_4OH]}{[CH_3COO^-][NH_4^+]}$$

ionic product of water $K_w = [H^+][OH^-]$

$$K_a = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]}$$

$$K_b = \frac{[NH_4^+][OH^-]}{[NH_4OH]}$$

$$\begin{split} \frac{K_w}{K_a.\,k_b} &= \frac{[H^+][OH^-][CH_3COOH][NH_4OH]}{[CH_3COO^-][H^+][NH_4^+][OH^-]} \\ &\frac{K\omega}{K_a.\,k_b} = \frac{[CH_3COOH][NH_4OH]}{[CH_3COO^-][NH_4^+]} \\ &K_b = \frac{K_w}{K_a.\,K_b} \end{split}$$

• The degree of hydrolysis $[\alpha]$ is independent of concentration of the salt because both cation and anion of the salt are stronger as they are conjugate of weak base and weak acid respectively.

$$\begin{split} \text{A} &= \sqrt{K_h} \Rightarrow \sqrt{\frac{\kappa_w}{\kappa_a.\kappa_b}} \\ [H^+] &= K_a. \, \alpha \Rightarrow K_a \sqrt{\frac{\kappa_w}{\kappa_a.\kappa_b}} \Rightarrow \sqrt{\frac{\kappa_w.\kappa_a}{\kappa_b}} \\ \text{apply - log on both sides} \\ &- log[H^+] = -\frac{1}{2} log \, K_a - \frac{1}{2} log \, K_a + \frac{1}{2} log \, K_b \\ p^H &= \frac{1}{2} p^{K_w} + \frac{1}{2} p^{K_a} - \frac{1}{2} p^{K_b} \\ [OH^-] &= K_b \cdot \\ &= K_b \sqrt{\frac{k_w}{k_a.k_b}} = \sqrt{\frac{k_w \times k_b}{k_a}} \\ \text{apply - log on both sides} \\ &- \log[\text{OH}^-] = -\frac{1}{2} log \, k_w - \frac{1}{2} log \, k_b + \frac{1}{2} log \, k_a \, p^{OH} = \frac{1}{2} p^{kw} + \frac{1}{2} p^{k_b} - \frac{1}{2} p^{k_a} \end{split}$$

• Salt of strong acid and strong base :

Eg: NaCl, KNO₃, Na₂SO₄, BaCl₂, NaClO₄, Ba(NO₃)₂, Sr.(NO₃)₂ etc.

- These salts do not undergo hydrolysis because both anion and cation are weak as they are conjugates of strong acid and strong base respectively.
- Therefore their aqueous solutions are exactly neutral and p^H is exactly.