6 Labwork (VSB and SSB Modulation)

6.1 SSB and VSB Modulation

- (a) Obtain a time vector whose duration is d = 0.04 seconds and sampling frequency is $F_s = 19kHZ$.
- (b) Obtain a message signal $m(t) = 5\cos(2\pi f_m t)$ with $f_m = 300$ HZ.
- (c) Obtain also a carrier signal $c(t) = cos(2\pi f_c t)$ with $f_c = 6000$ HZ.
- (d) Obtain double side band suppress carrier (DSB-SC) signal s(t) by applying necessary operation.
- (e) Design two Butterworth filters. First one has the order of $n_1 = 4$. Second one has the order of $n_2 = 23$. Make a decision on the filter types (LPF or HPF) and the cutoff frequencies so as to get lower side band (LSB) signals.
- (f) Plot the filter responses that you obtained above on the same Figure by using hold on command. Hint: Use butter(), freqz() and abs() functions.
- (g) Get the LSB signals $s_{LSB,1}(t)$ and $s_{LSB,2}(t)$ by using the designed filters in (e).
- (h) Plot the magnitudes of the frequency responses for s(t), $s_{LSB,1}(t)$ and $s_{LSB,2}(t)$ using 3×1 subplot. (Hint: Choose a suitable fit length as the length of the signal)

6.2 SSB Demodulation

- (a) Decide which one $(s_{LSB,1}(t) \text{ and } s_{LSB,2}(t))$ is single side band (SSB) modulated signal (the other one is the vestigial side band (VSB) modulated signal).
- (b) Apply on the chosen signal the demodulation operation with multiplication and filtering operations.
- (c) Plot the magnitudes of the frequency responses for m(t) and $m_d(t)$ which are the message signal and the demodulated signal respectively using 2×1 subplot.
- (d) Obtain the demodulated signal $m_d(t)$ in the time domain. Plot m(t) and $m_d(t)$ in the time domain in the same Figure by using hold on.