Stochastic optimization algorithms Lecture 4, 20200908

Evolutionary algorithms: Background and introduction

Today's learning goals

- After this lecture you should be able to
 - Motivate the use of evolutionary algorithms.
 - Describe the central concepts in Darwinian evolution.
 - Describe the structure and functionality of genes (the processes of transcription and translation).
 - Summarize the main aspects of evolution.
 - Describe the basic functionality of evolutionary algorithms.
 - Exemplify some of the simplifications used in evolutionary algorithms (relative to biological evolution).

Why evolutionary algorithms?

- Evolutionary algorithms ...
 - ...do not (usually) get stuck in local optima.
 - ...can find several different and equally viable solutions to a given problem.
 - ... are easily applicable to a wide variety of problems.
 - ... but also require some experience for successful usage.

CHALMERS

Example: Evolution of eyes

Mattias Wahde, PhD, Professor, Chalmers University of Technology e-mail: mattias.wahde@chalmers.se, http://www.me.chalmers.se/~mwahde

CHALMERS

Today's learning goals

- After this lecture you should be able to
 - Motivate the use of evolutionary algorithms.
 - Describe the central concepts in Darwinian evolution.
 - Describe the structure and functionality of genes (the processes of transcription and translation).
 - Summarize the main aspects of evolution.
 - Describe the basic functionality of evolutionary algorithms.
 - Exemplify some of the simplifications used in evolutionary algorithms (relative to biological evolution).

Darwinian evolution

- <u>Central concepts</u>: Populations and individuals.
- A population is a group of individuals of the same species.
- Inidividuals of the same species can have fertile offspring.

Liger = tiger + lion!

Darwinian evolution

- Central concept: Gradual, hereditary change
 - Gradualness: Changes occur over very long times.
 - Heredity: Properties of an individual can be stored so that they can be transmitted to the next generation (reproduction).

Today's learning goals

- After this lecture you should be able to
 - Motivate the use of evolutionary algorithms.
 - Describe the central concepts in Darwinian evolution.
 - Describe the structure and functionality of genes (the processes of transcription and translation).
 - Summarize the main aspects of evolution.
 - Describe the basic functionality of evolutionary algorithms.
 - Exemplify some of the simplifications used in evolutionary algorithms (relative to biological evolution).

Darwinian evolution

- How is the transferable information stored?
 - ...in the genome, which (in humans) consist of 23 pairs of chromosomes.
 - Each chromosome, in turn, contains a large number of genes.

Chromosome numbers

• Fruit fly: 8

• Cat: 38

• Human: 46

• Ape: 48

• Horse: 64

• Dog: 78

• Carp: 104

Number of genes

Approximate number of genes in selected species:

Bacterium: 500 – 6000

- Yeast: 6000

Fruit fly: 13600

– Human: 25000

 However, there are many species (e.g. some fish) with more genes than humans.

Chromosomes

Genes

- Genes consist of sequences of base pairs, i.e. pairs of molecules (whose names are abbreviated A, C, T, G).
- A is always paired with T, and C is always paired with G:

The functionality of genes

 Genes are used for making proteins, through the two steps of transcription and translation:

Transcription

DNA read by RNA polymerase => mRNA

Transcription

U replaces T in mRNA

Translation

 mRNA used as a template to generate chains of amino acids (proteins):

Translation

- How does the system know which amino acid to pick?
 - 3-letter sequences code for an amino acid.
 - There are 20 (standard) amino acids => 3 letters required to encode all in base 4 (A, C, G, U).
 - Example: The sequence CUA codes for Leucine.
 - Some sequences (e.g. AUG) code for start or stop.

CHALMERS

Translation

				S	econd	Position	Arrest -				
		U		C		A		G			
First Position	U	ן טטט	Phe	UCU	Ser	UAU	Tyr	ugu 1	Cys Stop Trp	U	
		UUC]		UCC		UAC J		ngc]		С	
		UUA	Leu	UCA		UAA	Stop	UGA		A	
		UUG		ucg		UAG	Stop	UGG		G	
	С	CUU	Leu	CCU	Pro	CAU	His Gln	CGU7	Arg	U	
		CUC		CCC		CAC		CGC		C	_
		CUA		CCA		CAA		CGA		A	hird
		CUG		CCG-		CAG	Giit	CGG -		G	Third Position
	A	AUU¬		ACU-	Thr	AAU]	Asn	AGU	Ser	U	sition
		AUC	lle	ACC		AAC J		AGC J		C	
		AUA		ACA		AAA	Lys	AGA 7	Arg	A	
		AUG	Met	ACG-		AAG		AGG J		G	
	G	GUU-		GCU-	Ala	GAU	Asp Glu	GGU	Gly	U	
		GUC	Val	GCC		GAC J		GGC		C	
		GUA		GCA		GAA		GGA		A	
		GUG-		GCG-		GAG		GGG-		G	

Today's learning goals

- After this lecture you should be able to
 - Motivate the use of evolutionary algorithms.
 - Describe the central concepts in Darwinian evolution.
 - Describe the structure and functionality of genes (the processes of transcription and translation).
 - Summarize the main aspects of evolution.
 - Describe the basic functionality of evolutionary algorithms.
 - Exemplify some of the simplifications used in evolutionary algorithms (relative to biological evolution).

Additional concepts

- Alleles: The various settings (variants) of a gene
- Genotype: The genome with all its alleles
- **Phenotype**: The individual with all its traits, resulting from a given genotype.

Fitness, selection, and reproduction

- The most well-adapted individuals (i.e. those with highest fitness) are more likely to have the opportunity (selection) to reproduce (i.e. to spread their genetic material).
- Thus, even though selection is stochastic (i.e. contains a random element) it does not occur with equal probability for individuals – instead it strongly favors fit individuals.

Reproduction

Asexual reproduction (e.g. bacteria):

 Sexual reproduction: Combines the genetic material of two individuals.

Mutations

- Mutations are small, random changes (copying errors)
- Many mutations have no effect at all, others are lethal.
- In general, even though mutations often have negative immediate effects, they give evolution new material to work (or, rather, experiment) with.

Evolution (summary)

- Evolution acts on populations of individuals (of a given species).
- Information is stored in the form of chromosomes, each consisting of many genes.
- Genes store the information needed to generate proteins (by transcription and translation).
- Well-adapted (fit) individuals spread their genetic material through reproduction.
- Mutations provide evolution with new opportunities.

Today's learning goals

- After this lecture you should be able to
 - Motivate the use of evolutionary algorithms.
 - Describe the central concepts in Darwinian evolution.
 - Describe the structure and functionality of genes (the processes of transcription and translation).
 - Summarize the main aspects of evolution.
 - Describe the basic functionality of evolutionary algorithms.
 - Exemplify some of the simplifications used in evolutionary algorithms (relative to biological evolution).

CHALMERS

Evolutionary algorithms

- EA = evolutionary algorithm
- GA = genetic algorithm
- We will begin by describing GAs, which constitute an important special case.
- Algorithm 3.1 in the book.

Encoding

 Encoding: the variables of the problem are encoded in strings of digits known as chromosomes.

- The exact encoding procedure varies from problem to problem. Two examples (among many!):
 - Function optimization: Encode the variables x_1 , x_2 , x_3 etc.
- pp. 40-45 Neural network optimization: Encode the network weights.

Step 1: Initialization

Generate N random chromosomes (first generation):

Step 2: Evaluation

Step 2.1: Decode the chromosomes to obtain the variables.

• See example 3.1 (that illustrates the decoding of one chromosome).

pp. 40-45

Step 2.1: Decoding

- The first 10 bits are used to form the first variable.
- First, a value in the range [0,1[is generated:
- $x_1^{\text{tmp}} = \sum_{j=1}^{10} 2^{-j} g_j$
- This value is then rescaled to the required range, which in this case happened to be [-3,3]:
- $x_1 = -3 + \frac{2 * 3}{1 2^{-10}} x_1^{\text{tmp}}$

Step 2: Decoding

•
$$x_2^{\text{tmp}} = \sum_{j=1}^{10} 2^{-j} g_{j+10}$$

•
$$x_2 = -3 + \frac{2*3}{1-2^{-10}} x_2^{\text{tmp}}$$

• Thus, from the 20-bit chromosome, we have formed two variables, x_1 and x_2 , both in the range [-3,3].

Step 2: Evaluation

- Step 2.2 Evaluate the individual, and assign a fitness score.
- Requirement: Fitness measure. Examples:
 - Function maximization: Use simply f(x).
 - Function minimization: Use (e.g.) 1/f(x).
- See example 3.2.
- Step 2.3: Repeat Steps 2.1 and 2.2 for all individuals =>
 a set of fitness scores is obtained, one for each individual.

- Step 3.1: Select two individuals (one at a time), such that individuals with high fitness have larger probability of selection.
- Various methods exist, e.g. Tournament selection,
 Roulette-wheel selection etc.
- (These methods will be studied in detail in the next lecture!)
- Selection is carried out with replacement, i.e. individuals can be selected more than once.

Example: Tournament selection

- Procedure for selection of <u>one</u> individual:
 - Pick two individuals randomly from the population (equal probability for all individuals in the population)
 - 2. With probability p_{tour} (usually around 0.7-0.8) pick the better of the two individuals (higher fitness). Otherwise, pick the worse of the two.

 Step 3.2: Generate two new chromosomes by crossing the chromosomes of the two selected individuals:

pp. 40-45

Step 3.3: Mutate the two new chromosomes:

pp. 40-45

- Step 3.4: Repeat the entire procedure (Steps 3.1 3.3) N/2 times, to generate N new individuals. That is, do N/2 repetitions of...
 - ...selection of two individuals (for example by doing tournament selection twice),
 - ...crossover, and
 - ...mutation of the resulting pair of chromosomes
- Then replace the old set of chromosomes by the new ones.

CHALMERS

Step 4: Repeat!

 The process is repeated (from Step 2) until a satisfactory solution has been found.

pp. 40-45

Example (Fig. 3.7)

right panels show the population after two and 25 generations, respectively.

Today's learning goals

- After this lecture you should be able to
 - Motivate the use of evolutionary algorithms.
 - Describe the central concepts in Darwinian evolution.
 - Describe the structure and functionality of genes (the processes of transcription and translation).
 - Summarize the main aspects of evolution.
 - Describe the basic functionality of evolutionary algorithms.
 - Exemplify some of the simplifications used in evolutionary algorithms (relative to biological evolution).

Evolution vs. evolutionary algorithms

- Evolutionary algorithms (EAs) are strongly simplified compared to biological evolution!
 - In EAs, chromosomes are used as lookup tables, i.e. there are no gene interactions etc.
 - In EAs, multicellularity (difference between cells etc.) is rarely considered. In biological systems, cell share the same genetic material, but develop differently (skin, bone, muscle etc.)
 - In EAs, there is no gene regulation. In biological systems, (many) genes are active, to varying degrees, during the life time of the individual.

Gene regulation

 Regulatory genes: (transcription factors) genes that regulate the expression of other genes. Example:

Today's learning goals

- After this lecture you should be able to
 - Motivate the use of evolutionary algorithms.
 - Describe the central concepts in Darwinian evolution.
 - Describe the structure and functionality of genes (the processes of transcription and translation).
 - Summarize the main aspects of evolution.
 - Describe the basic functionality of evolutionary algorithms.
 - Exemplify some of the simplifications used in evolutionary algorithms (relative to biological evolution).

Home problem 1

- Consists of three parts.
 - Problems 1.1 and 1.3 are mandatory,
 - Problem 1.2 is voluntary (but needed for higher grades).
- Use Matlab when solving the home problems.
- Maximum total score: 10p.
- Should be solved (and handed in) independently by each student.
- Strict deadline: 20200922, 23.59.59.

Home problem 1

- Note: Read the instructions carefully (regarding the report, coding standard etc.)
- Before submitting:
 - What, <u>exactly</u>, is being asked in the problem(s)? Have you <u>answered</u> those questions?
 - Have you written and included a report in the required format?
 - Have you combined your programs and your report into ONE compressed file, in an allowed format (.zip or .7z)?
- Read the checklist (available on the web page, under the module called Miscellaneous).

Problem 1.1

The penalty method:

In this problem, we shall use the penalty method (see pp. 30-33 in the course book) to find the minimum of the function

$$f(x_1, x_2) = (x_1 - 1)^2 + 2(x_2 - 2)^2,$$
(1)

subject to the constraint

$$g(x_1, x_2) = x_1^2 + x_2^2 - 1 \le 0. (2)$$

Problem 1.2

(Classical) optimization under constraints

Problem 1.3

- Function optimization using genetic algorithms.
- Write a (well-structured) program for finding the minimum of the function:

$$g(x_1, x_2) = \left(1 + (x_1 + x_2 + 1)^2 (19 - 14x_1 + 3x_1^2 - 14x_2 + 6x_1x_2 + 3x_2^2)\right) \times \left(30 + (2x_1 - 3x_2)^2 (18 - 32x_1 + 12x_1^2 + 48x_2 - 36x_1x_2 + 27x_2^2)\right)$$

Matlab introduction for SOAs

- This afternoon and evening. The document will be posted at 13.00, I will be online (Zoom) between 18.00 and 20.00.
- Important to attend this session!
- You will get a document with Matlab code describing the implementation of a genetic algorithm (GA).
- The GA will be applied in a function optimization task.

