

Fixed Income

1. On January 1st of the year, an investor purchases \$100,000 in par value of a new Treasury Inflation Protection Security (TIPS) issue that has a 2.5% coupon rate. The annual rate of inflation over the first six months of the year is 4.0% and the annual rate of inflation for the second six months of the year is 3.0%. The amount of coupon interest paid to the investor after the second six months of the year is closest to:

A. \$1,275.

B. \$1,294.

C. \$1,339.

Answer: B

B is correct because the inflation-adjusted principal after the second six month period is \$100,000 \times (1.01) = \$103,530 and \$103,530 \times (2.5%/2) = \$1,294.

- 2. When interest rates fall, the price of a callable bond will:
- A. fall less than an option-free bond.
- B. rise less than an option-free bond.
- C. rise more than an option-free bond.

Answer: B

B is correct because when interest rates fall, the price of the embedded call option increases. Since, price of a callable bond = price of option-free bond – price of embedded call option, the price of the callable bond will not increase as much as an option-free bond since the price of the call option is increasing. As interest rates fall, the bond is more likely to be called, limiting the upside price increase potential.

- 3. Compared to a term repurchase agreement, an overnight repurchase agreement is *most likely* to have a:
- A. lower repo rate and higher repo margin.
- B. higher repo rate and repo margin
- C. lower repo rate and repo margin.

Answer = C

Both the repo rate and the repo margin tend to be higher for longer repo terms. Therefore an overnight repo should have a lower repo rate and a lower repo margin than a term (i.e., longer than overnight) repo.

4. An analyst has gathered the following information provided in the table below:

Periods	Years	U.S. Treasury	Spot Rate (%)	Credit Spread (%)	1
				•	

_			
1	1	3.00	0.20
2	2	3.50	0.30
3	3	4.00	0.40
4	4	4.50	0.50
5	5	5.00	0.60

Based on the information provided in the table, the current market price of a \$1,000 par value, option-free, 0 percent coupon corporate bond maturing in 5 years is closest to:

A. \$758.70.

B. \$781.20.

C. \$804.44.

The appropriate discount rate is 5.6% = 5% + 0.6%. The semiannual discount rate is 2.8%. The price of

the bond using semiannual discounting is:

5. The bond-equivalent yield (BEY) spot rates for U.S. Treasury yields are provided below.

	<u> </u>	
Period	Years	Spot Rate
1	0.5	1.20%
2	1.0	2.10%
3	1.5	2.80%
4	2.0	3.30%

On a BEY basis, the 6-month forward rate one year from now is *closest* to:

A. 2.10%.

B. 3.64%.

C. 4.21%.

Answer: C

C is correct because, the x-year forward rate y-years from now.

All spot rates are given on a BEY basis and must be divided by 2 in this calculation, or

On a BEY basis, the forward rate is 0.021036×2=4.21%

- 6. The option adjusted spread (OAS) is best described as the:
- A. Z-spread minus the option cost.
- B. Z-spread plus the cost of the option.
- C. value of the security's embedded option.

Answer: A

The Z-spread is the sum of the OAS and the option cost.

- 7. An 8 percent coupon bond with a par value of \$100 matures in 2 years and is selling at \$98.24 to yield 9 percent. Exactly one year ago this bond sold at a price of \$95.03 to yield 10 percent. The bond pays annual interest. The change in price attributable to the change in maturity is *closest* to:
- A. \$1.50.
- B. \$3.21.
- C. \$4.97.

Answer = A

The price of the bond one year ago was \$95.03 to yield 10%.

If the yield stays at 10%, the price of the bond today is:

The change in price attributable to moving to maturity = \$96.53 - \$95.03 = \$1.50.

- 8. The duration of a fixed-income portfolio is *best* interpreted as the:
- A. first derivative of the price function for the bonds in the portfolio.
- B. percentage change in the portfolio's value if interest rates change by 100 basis points.
- C. weighted average number of years to receive the present value of the portfolio's cash flows.

Answer = B

Users of this interest rate risk measure are interested in what it tells them about the price sensitivity of a bond or a portfolio to change in interest rates, therefore B is correct.

9. An analyst gathered the following information about a portfolio comprised of three bonds:

Bond	Price (\$)	Par Amount Owned	Duration
Α	102.000	\$7 million	1.89
В	94.356	\$5 million	7.70

http://finance.gaodun.cn

C	88.688	\$3 million	11.55	
C	00.000	75 1111111011	11.55	

Assuming there is no accrued interest, then the portfolio duration is *closest* to:

A. 5.55 years.

B. 5.76 years.

C. 6.82 years.

Portfolio value = $(1.02 \times 7 \text{ mil}) + (0.94356 \times 5 \text{ mil}) + (0.88688 \times 3 \text{ mil}) = 14,518,440$

Weight, Bond A = 7,140,000 / 14,518,440 = 0.492

Weight, Bond B = 4,717,800 / 14,518,440 = 0.325

Weight, Bond C = 2,660,640 / 14,518,440 = 0.183

Portfolio duration = $(0.492 \times 1.89) + (0.325 \times 7.70) + (0.183 \times 11.55) = 5.55$

10. A bond has a modified duration of 6.5 and convexity of -42.4. If interest rates decrease by 1.0 percent, the percentage change in the value of the bond will be *closest* to:

A. -6.92%.

B. +2.76%.

C. +6.08%.

Answer = C

The percentage change in the bond's value is equal to:

(-Duration $\times \Delta y^* \times 100\%$) + (C $\times (\Delta y^*)^2 \times 100\%$) = (-6.5 \times -0.01 \times 100%) + (-42.4 \times (-0.01)² \times 100%) = +6.5% - 0.424% = +6.08.

