Maximizing Hellinger Distance after Linear Dimensionality

Reduction

Sihui Wang

Problem:

Suppose $X,Y \in \mathbb{R}^n$, $X \sim \mathcal{N}(0,I_n)$, $Y \sim \mathcal{N}(0,\Sigma)$, $A \in \mathbb{R}^{r \times n}$, then we have $X_A = AX \sim \mathcal{N}(0,AA^T)$ and $Y_A \sim \mathcal{N}(0,A\Sigma A^T)$. Assume $Z = A\Sigma A^T$, $h_{X_A}(x),h_{Y_A}(x)$ are probability density functions of X_A , Y_A , respectively.

Find A to maximize the following:

$$D_{H}(h_{X_{A}}, h_{Y_{A}}) = \frac{1}{\sqrt{2}} \sqrt{\int \left(\sqrt{h_{X_{A}}(x)} - \sqrt{h_{Y_{A}}(x)}\right)^{2} dx}$$

Solution:

1. Hellinger Distance under Gaussian Distribution:

Hellinger distance has closed form for Gaussian Distributions. According to [1], [2], the Hellinger distance between the distribution of $h_{X_A}(x)$ and the distribution of $h_{Y_A}(x)$ is:

$$D_{H}(h_{X_{A}}, h_{Y_{A}}) = \sqrt{1 - \frac{|AA^{T}|^{\frac{1}{4}}|A\Sigma A^{T}|^{\frac{1}{4}}}{\left|\frac{AA^{T} + A\Sigma A^{T}}{2}\right|^{\frac{1}{2}}}}$$

2. Formulation of the Problem:

Our problem is to find $A \in \mathbb{R}^{r \times n}$, so that:

$$D_{H}(h_{X_{A}}, h_{Y_{A}}) = \sqrt{1 - \frac{|AA^{T}|^{\frac{1}{4}}|A\Sigma A^{T}|^{\frac{1}{4}}}{\left|\frac{AA^{T} + A\Sigma A^{T}}{2}\right|^{\frac{1}{2}}}}$$

reaches its maxima.

3.Linear invariant of Hellinger Distance:

We can prove that Hellinger distance $D_H(h_{X_A}, h_{Y_A})$ is invariant under linear transformations on the row vectors of A. To make it brief, we say that $D_H(h_{X_A}, h_{Y_A})$ is linear invariant.

To prove
$$D_H(h_{X_A}, h_{Y_A})$$
 is linear invariant, we can in turn prove $\frac{|AA^T|^{\frac{1}{4}}|A\Sigma A^T|^{\frac{1}{4}}}{\left|\frac{AA^T+A\Sigma A^T}{2}\right|^{\frac{1}{2}}}$ is linear

invariant. To make it simpler, we can prove $d(h_{X_A}, h_{Y_A}) = \frac{|AA^T + A\Sigma A^T|^2}{|AA^T||A\Sigma A^T|}$ is linear invariant.

All linear transformations on the row vectors of A can be decomposed into 3 kinds of elementary components: a) multiplying the i-th row by k times; b) adding the j-th row to the i-th row; c) switching the i-th row and the j-th row. Operation a) can be represented by A's left multiplying $U_k(i) \in \mathbb{R}^{r \times r}$, operation b) can be represented by A's left multiplying $T(i,j) \in \mathbb{R}^{r \times r}$, and operation c) can be represented by A's left multiplying $S(i,j) \in \mathbb{R}^{r \times r}$:

$$U_{k}(i) = \begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & & k & & & \\ & & & 1 & & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix} \leftarrow i - th \ row$$

i-th column

$$T(i,j) = \begin{pmatrix} 1 & & & & & & & \\ & \ddots & & & & & \\ & & 1 & & 1 & & \\ & & & \ddots & & & \\ & & & & 1 & & \\ & & & & \ddots & & \\ & & & & & 1 \end{pmatrix} \leftarrow i - th \ row$$

j-th column

$$S(i,j) = \begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 0 & \cdots & 1 & & \\ & & \vdots & \ddots & \vdots & & \\ & & 1 & \cdots & 0 & & \\ & & & \ddots & & \\ & & & & 1 \end{pmatrix} \leftarrow i-th \ row$$

j – th column

Hence, to prove that $D_H(h_{X_A}, h_{Y_A})$ is linear invariant, we just need to prove $d(h_{X_A}, h_{Y_A}) =$ $d(h_{X_{\tilde{A}}}, h_{Y_{\tilde{A}}})$ under the transformations of $\tilde{A} = U_k(i)A$, $\tilde{A} = T(i, j)A$, and $\tilde{A} = S(i, j)A$.

This is true, since for any invertible matrix $M \in \mathbb{R}^{r \times r}$, $\tilde{A} = MA$, we have:

This is true, since for any invertible matrix
$$M \in \mathbb{R}^{T \times T}$$
, $A = MA$, we have:
$$d(h_{X_{\widetilde{A}}}, h_{Y_{\widetilde{A}}}) = \frac{|MAA^T M^T + MA\Sigma A^T M^T|^2}{|MAA^T M^T||MA\Sigma A^T M^T|} = \frac{|M|^2 |AA^T + A\Sigma A^T|^2 |M^T|^2}{|M||AA^T||M^T||M||A\Sigma A^T||M^T|} = \frac{|AA^T + A\Sigma A^T|^2}{|AA^T||A\Sigma A^T|}$$

$$= d(h_{X_A}, h_{Y_A})$$

Obviously, $U_k(i) \in \mathbb{R}^{r \times r}$, $T(i,j) \in \mathbb{R}^{r \times r}$, and $S(i,j) \in \mathbb{R}^{r \times r}$ are invertible matrices, so $d(h_{X_{\overline{A}}}, h_{Y_{\overline{A}}})$ is invariant under all linear transformations on the row vectors of A, which in turn proves that Hellinger distance is invariant under all linear transformations on the row vectors of A.

The implications of Hellinger distance's linear invariant.

As long as Hellinger distance is linear invariant, we can always obtain a matrix A whose row vectors are orthonormal vectors. That is to say, without any change to the maxima of Hellinger distance, we can always obtain a semi-orthogonal matrix, $A \in \mathbb{R}^{r \times n}$, satisfying $AA^T = I_r$.

4.Problem Reduction:

First, we can simplify our objective function.

To maximize
$$D_H(h_{X_A}, h_{Y_A}) = \sqrt{1 - \frac{|AA^T|^{\frac{1}{4}}|A\Sigma A^T|^{\frac{1}{4}}}{\left|\frac{|AA^T|^{\frac{1}{4}}|A\Sigma A^T|^{\frac{1}{4}}}{2}\right|^{\frac{1}{2}}}}$$
 is to maximize $D_H^2(h_{X_A}, h_{Y_A}) = 1 - \frac{1}{2}$

$$\frac{\left|AA^T\right|^{\frac{1}{4}}\left|A\Sigma A^T\right|^{\frac{1}{4}}}{\left|\frac{AA^T+A\Sigma A^T}{2}\right|^{\frac{1}{2}}}, \text{ which is to minimize } 1-D_H^2\left(h_{X_A},h_{Y_A}\right)=\frac{\left|AA^T\right|^{\frac{1}{4}}\left|A\Sigma A^T\right|^{\frac{1}{4}}}{\left|\frac{AA^T+A\Sigma A^T}{2}\right|^{\frac{1}{2}}}. \text{ This problem can in turn be}$$

converted to the problem of maximizing $\frac{1}{1-D_H^2(h_{X_A},h_{Y_A})} = \frac{\left|\frac{|AA^T+A\Sigma A^T|^{\frac{1}{2}}}{2}\right|^{\frac{1}{2}}}{|AA^T|^{\frac{1}{4}}|A\Sigma A^T|^{\frac{1}{4}}}$, which is equivalent to the

problem of maximizing $\frac{\left|AA^T + A\Sigma A^T\right|^2}{\left|AA^T\right|\left|A\Sigma A^T\right|}$

Second, we consider the constraint. In section 3 we have proved that we can always assume that $AA^T = I_r$, so the objective function can be further simplified as $\frac{|I_r + A\Sigma A^T|^2}{|A\Sigma A^T|}$.

Hence, we can formulate the simplified optimization problem:

$$\max \frac{\left|I_r + A \Sigma A^T\right|^2}{\left|A \Sigma A^T\right|}$$
s.t. $AA^T = I_r$

5. Eigenvalue decomposition:

We know that the determinant of A is the product of all the eigenvalues of A. Hence, to maximize $\frac{|I_r + A\Sigma A^T|^2}{|A\Sigma A^T|}$, we got to analyze all the eigenvalues of $I_r + A\Sigma A^T$ and $Z = A\Sigma A^T$.

Suppose $\operatorname{eig}(Z) = \gamma_1, \dots, \gamma_r$, then by eigenvalue decomposition we have an orthonormal basis in \mathbb{R}^n , v_1, \dots, v_r , satisfying $Z = \sum_{i=1}^r \gamma_i v_i v_i^T$. Since $I_r = \sum_{i=1}^r v_i v_i^T$, we have $I_r + A \Sigma A^T = \sum_{i=1}^r (\gamma_i + 1) v_i v_i^T$ which means that the eigenvalues of $I_r + A \Sigma A^T$ are $\gamma_1 + 1, \dots, \gamma_r + 1$.

Hence, we have:

$$\frac{|I_r + A\Sigma A^T|^2}{|A\Sigma A^T|} = \prod_{i=1}^r \frac{(\gamma_i + 1)^2}{\gamma_i}$$

So, to maximize the objective function $\frac{|I_r + A\Sigma A^T|^2}{|A\Sigma A^T|}$, we just need to individually maximize each factor, $\frac{(\gamma_i + 1)^2}{\gamma_i}$.

6. Cauchy Interlacing Theorem:

Another crucial step is to establish the connection between the eigenvalues of Σ and the eigenvalues of $A\Sigma A^T$. This is done by applying Cauchy's interlacing theorem [3][4][5].

Suppose $\operatorname{eig}(Z) = \gamma_1, \dots, \gamma_r, \gamma_1 \ge \dots \ge \gamma_r$ and $\operatorname{eig}(\Sigma) = \lambda_1, \dots, \lambda_n, \lambda_1 \ge \dots \ge \lambda_n$, then according to Cauchy's interlacing theorem, we have:

$$\lambda_{n-r+i} \le \gamma_i \le \lambda_i \ (1 \le i \le r)$$

By Cauchy's interlacing theorem we established the lower bound and upper bound of $\gamma_i (1 \le i \le r)$. Next, we can use these results to find the maxima of $\frac{(\gamma_i + 1)^2}{\gamma_i}$ and $\frac{|l_r + A\Sigma A^T|^2}{|A\Sigma A^T|} = \prod_{i=1}^r \frac{(\gamma_i + 1)^2}{\gamma_i}$.

7. Results:

First, we make some observations.

a) Our aim is to maximize $\frac{\left|I_r + A\Sigma A^T\right|^2}{\left|A\Sigma A^T\right|}$, which is equivalent to maximize each of $\frac{(\gamma_i + 1)^2}{\gamma_i}$. The latter is equivalent to maximize each of $\gamma_i + \frac{1}{\gamma_i}$.

b) $\gamma_i + \frac{1}{\gamma_i}$ is monotonously decreasing in the interval of (0,1] and monotonously increasing in the interval of $[1,\infty)$. Besides, $\gamma_i + \frac{1}{\gamma_i}$ is convex when $\gamma_i > 0$. Either by its monotonicity or by its convexity we can prove that $\gamma_i + \frac{1}{\gamma_i}$ yields it maximum either at the upper bound of γ_i , λ_i , or at the lower bound of γ_i , λ_{n-r+i} .

c) As long as we construct the matrix A by the corresponding eigenvectors, for each $1 \le i \le r$ we can obtain $\gamma_i = \lambda_{n-r+i}$ or $\gamma_i = \lambda_i$. This observation means that each γ_i can achieve its theoretical upper bound and lower bound in reality.

Based on the above observations, to maximize $\frac{|I_r + A\Sigma A^T|^2}{|A\Sigma A^T|}$, we need to let each $\gamma_i = \lambda_i$ or $\gamma_i = \lambda_{n-r+i}$. That is to say, in order to maximize Hellinger distance, we need to choose r elements from $\lambda_i (1 \le i \le n)$ and assign them to $\gamma_i (1 \le i \le r)$.

So, in order to maximize Hellinger distance, we need to select the r elements from λ_i ($1 \le i \le n$) who have the largest value of $\lambda_i + \frac{1}{\lambda_i}$. This is the short version of the results.

The long version of the results are as follows:

Case 1: Suppose $\lambda_1 \ge \cdots \ge \lambda_n \ge 1$, then $D_H(h_{X_A}, h_{Y_A})$ yields its maximum by taking $\gamma_1 = \lambda_1, \ \gamma_2 = \lambda_2, \dots, \gamma_r = \lambda_r$.

Case 2: Suppose $1 \ge \lambda_1 \ge \cdots \ge \lambda_n$, then $D_H(h_{X_A}, h_{Y_A})$ yields its maximum by taking $\gamma_1 = \lambda_{n-r+1}$, $\gamma_2 = \lambda_{n-r+2}, \dots, \gamma_r = \lambda_n$.

Case 3: Suppose that there are both eigenvalues that are greater than 1 and eigenvalues that are less than 1. From the above discussions we have learned that $\gamma_i + \frac{1}{\gamma_i}$ yields its maximum either at the upper bound of γ_i , λ_i , or at the lower bound of γ_i , λ_{n-r+i} . So we can decide each γ_i 's value by comparison of $\lambda_i + \frac{1}{\lambda_i}$ and $\lambda_{n-r+i} + \frac{1}{\lambda_{n-r+i}}$. If $\lambda_i + \frac{1}{\lambda_i} > \lambda_{n-r+i} + \frac{1}{\lambda_{n-r+i}}$, then we let $\gamma_i = \lambda_i$, otherwise we let $\gamma_i = \lambda_{n-r+i}$. This will suffice to obtain the maxima of Hellinger distance. In practice, we usually don't need to make all the r comparisons. For example, if $\lambda_1\lambda_{n-r+1} < 1$ (which means that $\lambda_1 + \frac{1}{\lambda_1} < \lambda_{n-r+1} + \frac{1}{\lambda_{n-r+1}}$), then we let $\gamma_1 = \lambda_{n-r+1}, \gamma_2 = \lambda_{n-r+2}, \dots, \gamma_r = \lambda_n$. We obtain the result by making only one comparison. In general, if $\lambda_i\lambda_{n-r+i} > 1$ and $\lambda_{i+1}\lambda_{n-r+i+1} < 1$, then we let $\gamma_1 = \lambda_1, \dots, \gamma_i = \lambda_i$ and $\gamma_{i+1} = \lambda_{n-r+i+1}, \dots, \gamma_r = \lambda_n$. Hence, we obtain the maxima of Hellinger distance by making i+1 comparisons. This method will equivalently get r eigenvalues of Σ with largest values of $\lambda_i + \frac{1}{\lambda_i} (1 \le i \le n)$, so the two versions of the results are basically the same.

8. Construction of A:

From the discussions in section 7 we have learned that we can construct A by the corresponding eigenvectors.

Specifically, in Case 1, we construct
$$A$$
 by $A = \begin{pmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_r^T \end{pmatrix}$, in Case 2, we construct A by $A = \begin{pmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_r^T \end{pmatrix}$

$$\begin{pmatrix} v_{n-r+1}^T \\ v_{n-r+2}^T \\ \vdots \\ v_n^T \end{pmatrix}, \text{ in Case 3, if we choose } \gamma_1 = \lambda_1, \dots, \gamma_i = \lambda_i \text{ and } \gamma_{i+1} = \lambda_{n-r+i+1}, \dots, \gamma_r = \lambda_n, \text{ then } \lambda_i = \lambda_i + \lambda_$$

we construct
$$A$$
 by $A = \begin{pmatrix} v_1^T \\ \vdots \\ v_i^T \\ v_{n-r+i+1}^T \\ \vdots \\ v_n^T \end{pmatrix}$. This will suffice to obtain the maxima of Hellinger distance.

9. Matrix A in general forms:

In section 3 we have learned that if Hellinger distance reaches its maxima by taking $A = A_0$, then Hellinger distance will reach the maxima by taking $A = MA_0$ provided $M \in \mathbb{R}^{r \times r}$ is any invertible matrix. From this we conclude that Hellinger distance will reach the maxima as long as A's row vectors span the same linear space as the one spanned by v_1, \ldots, v_r which correspond to the r-largest items in $\lambda_1 + \frac{1}{\lambda_1}, \lambda_2 + \frac{1}{\lambda_2}, \ldots, \lambda_n + \frac{1}{\lambda_n}$.

Reference:

- [1] L. Pardo, Statistical Inference Based on Divergence Measures, pp.45
- [2] L. Devrove, A. Mehrabian, T. Reddad, The total variation distance between high-dimensional Gaussians.
- [3] https://en.wikipedia.org/wiki/Poincar%C3%A9 separation theorem
- [4] https://en.wikipedia.org/wiki/Min-max theorem#Cauchy interlacing theorem
- [5] R. Bhatia, Matrix Analysis, pp. 59, Corollary III.1.5