

Tecnológico de Costa Rica

Programa del curso EL-3213

Circuitos Integrados Lineales

Escuela de Ingeniería Electrónica Carrera/programa: Licenciatura Ingeniería en Electrónica (Plan 808)

I parte: Aspectos relativos al plan de estudios

1 Datos generales

Nombre del curso: Circuitos Integrados Lineales

Código: EL-3213

Tipo de curso: Teórico

Electivo o no:

Nº de créditos: 4

Nº horas de clase por semana: 4

Nº horas extraclase por semana: 12

% de las áreas curriculares:

Ciencias de la Ingeniería (ES): 75%

Diseño Ingeniería (ED): 25%

Ubicación en el plan de VI Semestre

estudios:

Requisitos: EL-3212 Circuitos Discretos,

EL-3205 Laboratorio de Circuitos Discretos.

Correquisitos: Ninguno

El curso es requisito de: EL-4409 Análisis de Sistemas Lineales

EL-4514 Teoría Electromagnética II

Asistencia: Obligatoria

Suficiencia: Si

Posibilidad de reconocimiento:

Vigencia del programa: II Semestre 2022

2 Descripción general

Este curso comprende el estudio de diferentes circuitos integrados lineales, sus características, circuitos de aplicación y su uso en el diseño de soluciones a problemas prácticos.

Entre los circuitos estudiados están los amplificadores operacionales, los amplificadores de instrumentación, filtros activos, comparadores de voltaje, circuitos temporizadores y los circuitos para el tratamiento de señales.

4 Contenidos

- **4.1** Fundamentos de los Amplificadores Operacionales. (4 Semanas)
 - 4.1.1 Introducción a los Amplificadores Operacionales.
 - El amplificador Operacional Ideal.
 - El amplificador Operacional Real.
 - Modos de la señal de entrada: diferencial y común
 - 4.1.2 Parámetros del Amplificador Operacional.
 - Razón de Rechazo de Modo Común (CMRR),
 - Excursión máxima del voltaje de salida,
 - Voltaje de desvío de entrada (V_{offset}),
 - Corrientes de polarización de entrada (Ibias),
 - Corriente de desvío de entrada (I_{offset}),
 - Parámetros de Impedancia de entrada y salida,
 - Rapidez de la variación de voltaje (Slew-Rate)
 - Comparación de los parámetros de diferentes AO.
 - 4.1.3 Amplificadores Operacionales con Realimentación Negativa.
 - Circuito Amplificador No Inversor,
 - Circuito Seguidor de Voltaje,
 - El concepto del "cortocircuito virtual"
 - Circuito Amplificador Inversor.
 - Efectos de la Realimentación negativa en las impedancias del AO.
 - 4.1.4 Limitaciones Estáticas y Dinámicas de los Amplificadores Op.
 - Compensación corriente de polarización de entrada (I_{bias}),
 - Compensación corriente de desvío de entrada (I_{offset}),
 - Compensación Voltaje de desvío de entrada (V_{offset}),
 - Respuesta de Frecuencia en Lazo Abierto,
 - Respuesta de Frecuencia en Lazo Cerrado,
 - Ancho de Banda y Producto de Ganancia Ancho de Banda (GBP).
- **4.2** Circuitos Básico con Amplificadores Operacionales (3 Semanas)
 - 4.2.1 Circuitos Comparadores

- Comparadores de cruce por cero y de nivel sin y con histéresis,
- IC comparadores de precisión,
- Aplicaciones de los comparadores.

4.2.2 Circuitos Amplificadores Sumadores

- Circuito Amplificador Sumador
- Circuito Promediador,
- Circuito Escalador,
- DAC de Red en escalera R/2R

4.2.3 Circuitos Integradores y Diferenciadores

- **4.3** Circuitos de propósito especial con Amplificadores Operacionales (3S)
 - 4.3.1 Amplificadores de Instrumentación.
 - 4.3.2 Amplificadores de Aislamiento
 - 4.3.3 Amplificadores Operacionales de Transconductancia (OTA)
 - 4.3.4 Amplificadores Logarítmicos y Antilogarítmicos.
 - 4.3.5 Convertidores basados en AO.

4.4 Filtros Activos. (3 Semana)

- 4.4.1 Nociones Básicas de Filtros Activos:
 - Tipos de filtros y respuesta de frecuencia,
 - Característica de respuesta de filtros: Butterworth, Chebyshev, Bessel
 - Estructura Sallen-Key y factor de amortiguamiento relativo,
 - Filtros Activos de primer y segundo orden,
- 4.4.2 Diseños de Filtros Activos:
 - Diseño en cascada
 - Diseño Filtros Paso Bajo
 - Diseño Filtros Paso Alto
 - Diseño Filtros Paso Banda
 - Filtros en Variables de Estado
 - Diseño Filtros Supresor de Banda.
- **4.5** Circuitos Osciladores. (3 Semana)
 - 4.5.1 Principios circuitos osciladores.
 - Osciladores Sinusoidales (realimentación positiva)
 - Osciladores de relajación
 - 4.5.2 Osciladores con circuitos de Realimentación RC.
 - Oscilador de puente Wien
 - Oscilador de corrimiento de fase
 - Oscilador en forma de doble T (Twin-T)

- 4.5.3 Osciladores con circuitos de Realimentación LC.
 - Oscilador Colpitts
 - Oscilador Hartley
 - Osciladores controlados por cristal
- 4.5.4 Osciladores de Relajación.
 - Oscilador de onda triangular
 - Oscilador Controlado por Voltaje de diente de sierra (VCO)
 - Oscilador de onda cuadrada
 - El CI temporizador 555 como oscilador
 - Multivibrador Astable
 - Oscilador Controlado por Voltaje (VCO)
 - Multivibrador Monoestable (one shot)

II parte: Aspectos operativos

5 Metodología de enseñanza y aprendizaje

Disertación teórica y análisis de casos prácticos en forma grupal en clase que promueven la reflexión de contenidos y temáticas específicas por parte los estudiantes. Un factor clave para el éxito del estudiante es el estudio y resolución de ejercicios extra clase.

6 Evaluación

TRABAJO INDIVIDUAL	60%	EXAMENES	15	I PARCIAL	2 de Setiembre
			15	II PARCIAL	7 de Octubre
			15	III PARCIAL	9 de Noviembre
		TRABAJO EN CLASE	15		
TRABAJO EN GRUPO	40%	TRABAJO EN CLASE	25		
		TRABAJO EXTRA CLASE	15		

Bibliografía

Floyd Thomas L.: Dispositivos Electrónicos. Octava Edición, Pearson-Pentice Hall, Mexico. 2008.

Bibliografía Complementaria:

- Franco, Sergio.: Diseño con Amplificadores Operacionales y Circuitos Integrados Analógicos. Tercera Edición, McGraw Hill. México, 2005
- Goughlin, Robert F., Driscoll, Frederick F.: Amplificadores Operacionales y Circuitos Integrados Lineales. Quinta Edición, Prentice-Hall. México, 1999.
- Ramón Pallas Areny: Sensores y Acondicionadores de señal. Cuarta Edición, Alfaomega Marcombo, 2007.