3007 Final Exam Review

William Findlay April 22, 2018

Contents

L	Den	initions
	1.1	Imperative vs Declarative
		1.1.1 Imperative
		1.1.2 Declarative
	1.2	Scope vs Visibility
		1.2.1 Scope
		1.2.2 Visibility
	1.3	Lexical Scope vs Dynamic Scope
		1.3.1 Lexical
		1.3.2 Dynamic
	1.4	Free Variables
	1.5	Applicative Order Evaluation vs Normal Order Evaluation
		1.5.1 Applicative Order Evaluation
		1.5.2 Normal Order Evaluation
	1.6	Special Forms
	1.7	Tail Recursion
	1.8	First Class and Higher Order Procedures
		1.8.1 First Class Procedures
		1.8.2 Higher Order Procedures
	1.9	Closures
	1.10	Abstraction Barriers
		Referential Transparency
		Clause (Prolog)
		Unification
		Resolution

1 Definitions

Define the following terms and provide examples or sample code as appropriate.

1.1 Imperative vs Declarative

1.1.1 Imperative

- Series of instructions
- Iterative functions
- Command driven, statement oriented
- Procedural
 - C
 - Pascal
 - Assembly
- · Object oriented
 - C++
 - Java

1.1.2 Declarative

- No side effects
- Focus on relations
- "What to get" instead of "How to get"
- \bullet Order of statements *shouldn't* matter
- Examples:
 - SQL
 - Prolog
 - Regex

1.2 Scope vs Visibility

1.2.1 Scope

- The set of expressions for which the variable exists
- In lexical scoping
 - variables in the scope we were defined in
 - and local variables
 - who uses this?
 - * C-family languages
 - * Scheme
 - * Algol
- In dynamic scoping
 - variables in the scope we were *called* in
 - and local variables
 - who uses this?
 - * early LISP
 - * APL
 - * BASH

1.2.2 Visibility

- The set of expressions for which the variable can be reached
- If we declare a local variable with the same name as a variable in enclosing scope
 - that enclosing scope variable is now hidden
 - all references to name are to our locally scoped variable instead

1.3 Lexical Scope vs Dynamic Scope

1.3.1 Lexical

- Function scope is enclosed in the scope which defined us
 - if you can't find a binding, recursively search in the function that defined you

1.3.2 Dynamic

- Function scope is enclosed in the scope which called us
 - if you can't find a binding, recursively search in the function that called you

1.4 Free Variables

- Used locally but bound in an enclosing scope
- In the following example:

```
(define (f x y)
  (define z 2)
  (define (g)
     (* x y z)
  )
)
```

- x,y,z are free variables in (g)
- (g) looks them up in its enclosing scope, (f)

1.5 Applicative Order Evaluation vs Normal Order Evaluation

1.5.1 Applicative Order Evaluation

- Strict evaluation
- Evaluate an expression before it is passed in as an argument
 - go as deep as you can until you hit primitives, then evaluate and go back
 - as deep into the nest as possible and work backwards
 - e.g.,

```
(double (* (+ 1 3) 4))
(double (* 4 4))
(double 16)
(* 16 2)
32
```

1.5.2 Normal Order Evaluation

- Lazy evaluation
- Evaluate an expression only when its value is needed
 - first **expand**, then **reduce**
 - e.g.,

 (double (* (+ 1 3) 4))

 (* (* (+ 1 3) 4) 2)

 (* (* 4 4) 2)

 (* 16 2)

 32

1.6 Special Forms

- Exceptions to the usual evaluation order
 - they have their own evaluation rules
 - e.g., take the first argument without evaluating right away, evaluate the second symbol right away
- Use constructs like (delay foo), (force foo) behind the scenes

1.7 Tail Recursion

- Linear iterative processes in Scheme
- No deferred operations
 - recusrive call is the last operation of the procedure
- In Scheme, recursion is tail optimized
 - this means that it will run in constant space
 - number of steps will **grow linearly**, but memory will **remain constant**
- Even though the *program* is still recursive, the *process* is linear iterative because of tail-recursion optimization
- E.g., to compute a factorial using tail recursion, we do the following:

```
(define (factorial x)
  (define (iter prod i)
    (if (> i x)
        prod
        (iter (* i prod) (+ i 1))
    )
    (iter 1 1)
)
```

• To compute a factorial using normal recursion, we would do the following instead:

1.8 First Class and Higher Order Procedures

1.8.1 First Class Procedures

- When procedures (functions) behave like variables
 - procedures can be passed as arguments into other procedures
 - or they can be *returned* from another procedure
- E.g.,

```
(define (f g)
    (g 2)
)
(define (h x)
    (+ x 3)
)
(f h) ; this would yield (+ 2 3), which evaluates to 5
```

- This is how *closures* work
 - more on this in a following subsection

1.8.2 Higher Order Procedures

- A procedure which accepts one or more procedure(s) as argument(s)
- In other words, a procedure which uses the first class procedures property of a language
- $\bullet\,$ In the above code block, (f g) is an example of a higher order procedure

1.9 Closures

- When a nested function is returned by its enclosing scope
- In practice, the returned function is typically a lambda (anonymous procedure)
- E.g.,

```
(define (multBy x)
    (lambda (y)(* x y)) ; lambda captures the free variable x
)

((multBy 12) 3) ; 36

(define (double) (multBy 2))
(define (triple) (multBy 3))

(double 2) ; 4
(triple 2) ; 6
```

1.10 Abstraction Barriers

- Hide implementation within complex procedures
 - user does not need to know how they work
 - they need only be guaranteed that they will work
- Prevents pollution of the global namespace

• Prevents excess free variables

1.11 Referential Transparency

- The idea that references can be substituted for their values without changing result of an expression
- Purely functional languages are referentially transparent
- Imperative languages are by definition **not** referentially transparent

1.12 Clause (Prolog)

- Facts and rules about the domain
- They specify truths and relations between symbols/entries in the domain
 - facts:
 * cold(ottawa).
 * rainy(ottawa).
 rules:
 * icy(X):- cold(X),rainy(X).
- Read from a file or asserted in the REPL with assert()
- Removed with retract()

1.13 Unification

- Prolog attempts to unify variables, atoms, and predicates
 - predicates unify with predicates with the same number of functors and if the functors can be unified
 - variables unify with variables and atoms
 - an atom will always unify with itself
- ullet The query succeeds if all $can\ be\ unified$
 - fails otherwise

1.14 Resolution

- Algorithm to resolve queries
- The algorithm:

```
Resolve:
Input: A query Q and program P
Output: True if Q can be inferred by P, false otherwise

Algorithm:
Start with a goal G, initially set to Q
Attempt to unify the first subgoal G1 from G

If no unification possible, then backtrack
If no backtrack possible, FAIL
Else, extend the goal G to G' with the following:
If unified with a rule, substitute G1 with the body of that rule
If unified with a fact, remove G1 from F

If G' is empty, SUCCESS
Else, Resolve G'
```

- If a clause unifies with a goal, it satisfies the goal
 - a **fact** satisfies the goal immediately
 - a **rule** substitutes subgoals for the original goal
- Backtracking here means the following:
 - attempt another clause to satisfy the subgoal
 - if we are out of clauses to try, undo a previously satisfied subgoal and attempt to satisfy it another way
 - * if we are out of subgoals, we can fail

2 Scheme Comprehension

What is the output of the following expressions/programs?

```
1. (+ (* 3 4)(- 5 2 1)(/ 8 2))
```

- 2. (and (> (+ (* 3 4)(- 5 2 1)(/ 8 2)) 0)(or (= (- 4 5)(+ 3 6 (* 10 -1)))(>= (* (/ 16 4)(+ 1 (* 3 2)(- 31 29)))(+ (* 3 4)(- 5 2 1)(* 8 2)))))
- 3. (let ((1 (+ 2 1))(e (/ 16(* 4 4)))(t (length '(5 7)))) (if (< 1 e) t 0))
- 4. ((lambda (x y) (+ 3 x (* 2 y))) (+ 3 3)(* 2 2))
- 5. (let ((a (lambda (b c)(* b c)))(b 10)(c 5))(+ (a 3 2) b c))
- 6. (define $(x \ y \ z)((lambda \ (y \ z)(-y \ z)) \ z \ y)) \ (x \ 3 \ 5)$
- 7. (define (foo y) ((lambda (x) y) ((lambda (y)(* y y)) y))) (foo 3)
- 8. (((lambda(x)(lambda(y)(+ x y))) 12) ((lambda(z)(* 3 z)) 3))
- 9. ((lambda (a b c)(list '(a b c) (list a b c) a 'b c)) 1 2 3)
- 10. (((lambda (a)(lambda (b) '(lambda (c) '(a b c)))) 1) 2)
- 11. (eval '(let ((a (lambda(x y)(list x y)))(b 2)(c 3))(list (a b 'c) '(a b c)))
 (interaction-environment))