Correspondencias

Cristina Jordán Lluch Instituto de Matemáticas Multidisciplinar Departamento de Matemática Aplicada

Índice

Contenido

- > Introducción
- > Correspondencias
 - Correspondencia inversa
 - Composición de correspondencias
 - > Aplicaciones
 - Aplicaciones inyectivas, sobreyectivas y biyectivas
 - Aplicación de las biyecciones: Cardinales
 - Aplicación inversa
 - Composición de aplicaciones

Introducción

Ejemplo 1

Representa con un gráfico las preferencias del siguiente grupo de amigos a la hora de elegir transporte para sus próximas vacaciones:

- Elsa prefiere barco o avión
- Sonia se decanta por el autobús o barco
- María siempre quiere viajar en avión
- A Sergio le gustaría viajar en tren o en avión
- Álvaro ha decidido que quiere probar el barco

Introducción

Ejemplo 2

Representa con un gráfico las posibilidades de utilizar un determinado transporte para llegar a diferentes ciudades, en concreto:

- A Madrid puedes ir en tren, avión o autobús
- A Cádiz puedes llegar utilizando el autobús, el tren o el barco
- Soria se puede visitar si vas en autobús o tren

Introducción

Ejemplo 3

Correspondencia

 $\begin{array}{ccc} A & \xrightarrow{f} & & B \\ \text{Conjunto inicial} & & \text{Conjunto final} \end{array}$

..... asociado a

Conjuntos de antiimágenes

Conjuntos de imágenes

$$f(1) = \{a, d, c\} \qquad f^{-1}(a) = \{1\}$$

$$f(2) = \{e, c\} \qquad f^{-1}(b) = \{5\}$$

$$f(3) = \emptyset \qquad \qquad f^{-1}(c) = \{1, 2, 7\}$$

$$f(4) = \{e\} \qquad \qquad f^{-1}(d) = \{1\}$$

$$f(5) = \{b\} \qquad \qquad f^{-1}(e) = \{2, 4\}$$

$$f(6) = \emptyset \qquad \qquad f^{-1}(m) = \emptyset$$

$$f(6) = \emptyset$$
 $f^{-1}(m) = \emptyset$
 $f(7) = \{ c \}$
 $f(8) = \emptyset$

Dom(f) =
$$\{1, 2, 4, 5, 7\}$$

Im(f) = $\{a, b, c, d, e\}$

$$f^{-1}(\underline{\mathbf{x}}) = \underline{\mathbf{a}}$$
 se lee $\underline{\mathbf{a}}$ es antiimagen de $\underline{\mathbf{x}}$

M

Correspondencia

Correspondencia

Dados dos conjuntos A y B, se denomina correspondencia entre A y B a una asociación de elementos de A con elementos de B.

Notación $f: A \longrightarrow B$

- > A se llama conjunto inicial y B conjunto final.
- > Si a un elemento $a \in A$ se le asocia otro elemento $b \in B$, se dice que b es una **imagen** de a, o que a es una **antiimagen** de b.
- > f (a) = Conjunto de las imágenes de a.
- \rightarrow f⁻¹(b) = Conjunto de las antiimágenes de b.
- **Dominio** de f = Dom(f) = { a ∈ A / f (a) $\neq \emptyset$ }
- > Rango, o imagen de f = Rang(f) = $= Im(f) = f(A) = \{ b \in B / f^{-1}(b) \neq \emptyset \}$

M

Correspondencia. Ejercicio

En relación a los ejemplos 1 y 2 anteriores, si f es la correspondencia que determina las preferencias de nuestros amigos y g la que determina el medio de transporte que nos puede llevar a a Cádiz, Madrid o Soria:

- 1.- Define por comprensión y por extensión los conjuntos inicial y final de cada una de las dos correspondencias definidas, f y g.
- 2.- ¿Qué nombre recibe en términos de correspondencias los medios de transporte elegidos por Elsa?
- 3.- ¿Qué nombre recibe en términos de correspondencias los medios de transporte elegidos con los que se puede llegar a Soria?
- 4. Determina f(Elsa). En términos de correspondencia, ¿qué nombre recibe? ¿Qué interpretación tiene en el contexto del problema planteado?
- 5.- Determina f⁻¹ (avión). En términos de correspondencia, ¿qué nombre recibe? ¿Qué interpretación tiene en el contexto del problema planteado?
- 6.- Determina g(avión). En términos de correspondencia, ¿qué nombre recibe? ¿Qué interpretación tiene en el contexto del problema planteado?
- 7.- Determina g-1(Cádiz). En términos de correspondencia, ¿qué nombre recibe? ¿Qué interpretación tiene en el contexto del problema planteado?
- 8.- Define por comprensión y por extensión los conjuntos Dom(f), Dom(g), Im(f) e Im(g).

Correspondencia inversa

Correspondencia inversa

Dada una correspondencia $f:A \longrightarrow B$, llamamos correspondencia inversa de f a la correspondencia $f^{-1}:B \longrightarrow A$ tal que

$$\forall b \in B \quad f^{-1}(b) = \{ a \in A / b = f(a) \}$$

Correspondencia inversa

Ejemplo 3

La correspondencia inversa de la correspondencia f del primer ejemplo es

Correspondencia inversa

Ejercicio

En relación a los ejemplos anteriores, si f es la correspondencia que determina las preferencias de nuestros amigos y g la que determina el medio de transporte que nos puede llevar a a Cádiz, Madrid o Soria:

- 1.- Define por comprensión y por extensión los conjuntos inicial y final de f^{-1} y g^{-1} .
- 2.- Define mediante pares las correspondencia f y su inversa f^{-1} . Idem con $g y g^{-1}$.
- 3.- Da una interpretación en el contexto real a las correspondencias inversas f^{-1} y g^{-1} .

Composición de correspondencias

Ejemplo

Teniendo en cuenta los datos anteriores sobre preferencias de medio de transporte y posibles formas de llegar a Soria, Cádiz y Madrid indica que sitios podrían visitar cada uno de nuestros amigos.

Composición de correspondencias

Ejemplo

Composición de correspondencias

Composición

Sean $f: A \longrightarrow B y g: B \longrightarrow C$ dos correspondencias. La **composición de g y f** es la correspondencia $g_o f: A \longrightarrow C$ definida $(g_o f)(a) = g(f(a))$ para todo $a \in A$.

Dicho de otra manera, es aquella correspondencia tal que

$$(g_{o}f)(a) = \{ c \in C / \exists b \in B \text{ de manera que } c = g(b) \text{ y } b = f(a) \}$$

$$\begin{array}{ccc}
A & \xrightarrow{f} & B & \xrightarrow{g} & C \\
a & \longrightarrow & b=f(a) & \longrightarrow & c=g(b) \\
a & \longrightarrow & c
\end{array}$$

Ejercicio

Obtén la composición g_of de las correspondencias definidas en el ejemplo 3

Aplicación

Se dice que una correspondencia $f:A \to B$ es una aplicación si cualquier elemento de A tiene exactamente una imagen.

Ejemplos

h es aplicación

m

h

Aplicación

Se dice que una correspondencia $f: A \longrightarrow B$ es una aplicación si cualquier elemento de A tiene exactamente una imagen.

Aplicación identidad

Dado un conjunto A, se define la aplicación **identidad** en A como aquella aplicación $id_A: A \longrightarrow A$ tal que $id_A(a) = a$ para todo $a \in A$.

Aplicación inyectiva

Una aplicación $f: A \longrightarrow B$ se dice que es **inyectiva** cuando todos los elementos de A tienen imágenes distintas.

> Formulación simbólica

$$f: A \longrightarrow B$$
 es inyectiva si $\forall a_1, a_2 \in A \quad (a_1 \neq a_2 \longrightarrow f(a_1) \neq f(a_2))$

> Nota

Recordad que

$$\forall a_1, a_2 \in A \quad (a_1 \neq a_2 \longrightarrow f(a_1) \neq f(a_2))$$

es equivalente a

$$\forall a_1, a_2 \in A \quad (f(a_1) = f(a_2) \longrightarrow a_1 = a_2)$$

Aplicación inyectiva

Una aplicación $f: A \longrightarrow B$ se dice que es **inyectiva** cuando todos los elementos de A tienen imágenes distintas.

> Formulación simbólica

$$f: A \longrightarrow B$$
 es inyectiva si $\forall a_1, a_2 \in A \quad (a_1 \neq a_2 \longrightarrow f(a_1) \neq f(a_2))$

Aplicación sobreyectiva

Una aplicación $f: A \longrightarrow B$ se dice que es **sobreyectiva** cuando cada uno de los elementos de B tiene al menos una antiimagen.

- > Formulación simbólica
- $f: A \longrightarrow B$ es sobreyectiva si $\forall b \in B \exists a \in A \text{ tal que } f(a) = b$
- Nota
 Observad que una definición equivalente a la anterior es
 Im(f) = B

Aplicación sobreyectiva

Una aplicación $f: A \longrightarrow B$ se dice que es **sobreyectiva** cuando cada uno de los elementos de B tiene al menos una antiimagen.

> Formulación simbólica

 $f: A \longrightarrow B$ es sobreyectiva si $\forall b \in B \exists a \in A \text{ tal que } f(a) = b$

Aplicación sobreyectiva

Una aplicación $f: A \longrightarrow B$ se dice que es **sobreyectiva** cuando cada uno de los elementos de B tiene al menos una antiimagen.

> Formulación simbólica

 $f: A \longrightarrow B$ es sobreyectiva si $\forall b \in B \exists a \in A \text{ tal que } f(a) = b$

Aplicación biyectiva

Una aplicación $f:A \longrightarrow B$ se dice que es **biyectiva** cuando es inyectiva y sobreyectiva

Ejemplos

f es inyectiva, no sobreyectiva

g es sobreyectiva, no inyectiva

h es biyectiva (inyectiva y sobreyectiva)

Representación cartesiana de aplicaciones

Aplicación de las biyecciones: Cardinales

Ejemplos

¿Cuántos elementos hay en los diferentes conjuntos siguientes?

3.

2.

Una biyección entre un conjunto A y un conjunto {1, 2,, n} permite determinar el número de elementos de A, n. Dicho de otra forma, permite contar el número de elementos de A.

Aplicación de las biyecciones: Cardinales

Ejemplos

Analiza con la misma técnica el conjunto siguiente

En este caso se ha establecido una biyección entre un conjunto A y el conjunto de los naturales.

No existe biyección entre A y un conjunto {1, 2, ..., n}, cualquiera que sea n.

M

Aplicación de las biyecciones: Cardinales

Cardinal

Llamamos cardinal a un símbolo que se asocia a cada conjunto, de manera que dos conjuntos A y B tienen el mismo cardinal si existe una biyección entre ellos.

Notación card(A) o |A|

- Al conjunto {1, 2, 3, ..., n} le asociamos el símbolo n, es decir, card({1, 2, 3, ..., n}) = n
- \triangleright Si A es el vacío decimos que card(A) = 0
- ➢ Si existe un número natural n tal que el conjunto A tiene le mismo cardinal que {1, 2, 3, ..., n }, decimos que A es finito con cardinal n. En vez de usar la expresión card(A)=n utilizamos a menudo "número de elementos de A es n"
- En caso contrario, decimos que A es infinito. Hay diferentes cardinales infinitos. Destacan card(\mathbb{N}) = \aleph_0 y card(\mathbb{R}) = \aleph_1

Aplicación de las biyecciones: Cardinales

Suma de cardinales

Sean a, b dos números cardinales tal que card(A) = a y card(B) = b siendo $A \cap B = \emptyset$ Se define la **suma** de a y b como el cardinal a+b asociado al conjunto $A \cup B$, es decir, $a + b = card(A \cup B)$

Ejemplo

Sean $A = \{a, b, c\}, B = \{d, e\}.$

Son conjuntos disjuntos tales que card(A) = 3, card(B) = 2.

Aplicando la definición anterior

$$2+3 = card(A \cup B) = card({a, b, c, d, e})$$

Como según dijimos el cardinal de un conjunto finito coincide con su número de elementos, y AU B tiene 5 elementos, card(A U B)=5

Por tanto, tenemos que el cardinal 2+3 coincide con el 5

En consecuencia la definición dada de la suma de cardinales coincide, en el caso de conjuntos finitos, con la suma de números naturales

Cardinales

Suma de cardinales

Ejemplo

¿Cuál será el cardinal de la unión de los conjuntos $A = \{a,b,c\}$ y $B = \{c,d\}$? Sabemos que card(A) = 3 = a, card(B) = 2= b, pero A y B no son disjuntos, Por tanto, la definición anterior no se puede aplicar, es decir, No podemos afirmar que card(A U B) coincida con a+b

Teorema Inclusión-Exclusión

Sea E el conjunto universal.

- a) Si A, B \subset E entonces card(A U B) = card(A) + card(B) card(A \cap B).
- b) Si A,B, $C \subset E$ entonces $card(A \cup B \cup C) = card(A) + card(B) + card(C) card(A \cap B) card(A \cap C) card(B \cap C) + card(A \cap B \cap C).$

Aplicación inversa

Aplicación inversa

Sea $f : A \longrightarrow B$ una aplicación.

Si su correspondencia inversa f^{-1} : $B \longrightarrow A$ es aplicación, la llamaremos **aplicaciór** inversa de f .

Aplicación inversa

Ejemplos

1.

f es una aplicación

2.

g es una aplicación

f ⁻¹ es correspondencia inversa f ⁻¹ no es una aplicación

 g^{-1} es correspondencia inversa g^{-1} no es una aplicación (su dominio no coincide con el conjunto inicial)

Aplicación inversa

Ejemplos

3.

h es una aplicación

 h^{-1} es correspondencia inversa h^{-1} es una aplicación

¿Qué verifica la aplicación h que no verifican las f y g anteriores?

M

Aplicación inversa

Aplicación inversa

Sea $f : A \longrightarrow B$ una aplicación.

Si su correspondencia inversa f^{-1} : $B \longrightarrow A$ es aplicación, la llamaremos **aplicaciór** inversa de f.

Propiedad

Sea $f : A \longrightarrow B$ una aplicación.

f es biyectiva si y sólo tiene aplicación inversa

Ejemplo

La correspondencia $f: \mathbb{Z} \to \mathbb{Z}$ definida por $f(x) = x^2$ es una aplicación. ¿Es $f^{-1}: \mathbb{Z} \to \mathbb{Z}$ una aplicación?

No, porque f no es biyectiva. Existen elementos en $\mathbb Z$ (de hecho todos menos el cero) que tienen más de una antiimagen.

Por ejemplo, f(2) = f(-2) = 4.

Composición de aplicaciones

Composición de aplicaciones

Si $f : A \longrightarrow B y g : B \longrightarrow C$ son dos aplicaciones, entonces la composición $g_o f : A \longrightarrow C$ es también una aplicación.

Recordemos

 $\forall a \in A \ (g_o f)(a) = \{ c \in C / \exists b \in B \text{ de manera que } c=g(b) \text{ y b=} f(a) \}$

Ejemplo

Composición de aplicaciones

Ejemplos

Composición de aplicaciones

Ejemplos

$$g_{\circ}f(x)=g[f(x)]=g(2x)=3(2x)+1=6x+1$$

M

Composición de aplicaciones

Composición de aplicaciones

Si $f: A \longrightarrow B \ y \ g: B \longrightarrow C$ son dos aplicaciones, entonces la composición $g_o \ f: A \longrightarrow C$ es también una aplicación.

Propiedades

Sean $f : A \longrightarrow B y g : B \longrightarrow C$ son dos aplicaciones.

- 1. Si f y g son inyectivas entonces g_o f también lo es.
- 2. Si f y g son sobreyectivas entonces g_o f también lo es.
- **3**. Si f y g son biyectivas entonces g_o f también lo es.
- 4. f es biyectiva si y sólo si existe otra aplicación $h: B \longrightarrow A$ tal que h_o f = idA y f_o h = idB. Además, en este caso h = f^{-1} .