专业: 电气工程及其自动化

姓名: ____严旭铧__

学号: 3220101731

日期: 2024年3月14日

地点: 东 三 206 教 室

浙江大学实验报告

实验 2 功率测量和功率因数提高

实验任务

- 1. 保持日光灯两端电压不变, 测 $I\sim C$ 、 $P\sim C$;
- 2. 作出 I^2 、 P、 $\cos \varphi$ 与补偿电容 C 的关系曲线;
- 3. 求 P-C 曲线的有理经验公式;
- 4. 用 P-C 曲线求单位电容的等效电导 g;
- 5. 推算电网电压三次谐波分量的大小;
- 6. 测量灯管、镇流器以及总负载的等效参数;

任务一: 日光灯电路功率的测量与功率因数提高

1. 实验方案

- 1) 检查日光灯灯丝是否正常。
- 2) 按如图连接电路,电容档位先置零。
- 3) 检查无误后,慢慢加电压,直到电压表显示示数约为220V。此时日光灯应该在闪烁后稳定亮。
- 4) 读出三表的各个示数并记录。
- 5) 从 0uF 开始,每次增加 1uF,读数并记录。在功率因数达到最高点前后适当增加采样点(利用 0.1uF 的旋钮实现)。
- 6) 处理实验数据,用 Origin 软件拟合 I²-C, P-C, cosφ-C 的图线,并手工拟合 I²-C 的曲线,用有理经验公式的计算。
- 7) 推算电网电压三次谐波分量。

2. 实验数据

● 保持日光灯两端电压基本不变,测得数据如下

表 1 三表法示数

	瓦特表								电流表
C/uF	V	mA	W	Var	VA	PF/功率因数	ф	V	mA
0	219.2	294	26.1	58.7	64.2	0.409	65.8	219.2	294
1	219.4	233	26.4	43.6	50.9	0.52	58.6	219.4	233
2	219.4	179	26.5	28.2	38.9	0.68	47.1	219.4	180
3	219.4	139	26.6	13.4	30.5	0.87	29.3	219.4	140
3.1	219.7	138	26.6	11.7	30.1	0.883	27.8	219.8	138
3.2	219.3	135	26.6	10.1	29.5	0.901	25.5	219.5	135.2
3.3	219.4	133	26.6	8.5	29	0.914	23.8	219.8	133.5
3.4	219.5	131	26.6	6.9	28.7	0.928	21.7	219.6	131.8
3.5	219.5	130	26.7	5.3	28.5	0.936	20.8	219.5	130.9
3.6	219.6	129	26.6	3.7	28.2	0.941	19.1	219.5	130
3.7	219.5	129	26.6	2.1	28.1	0.945	18.8	219.7	129.4
3.8	219.6	129	26.7	1.1	28.2	0.947	18.7	219.6	129.2
3.9	219.4	129	26.6	0.4	28.3	0.944	340.6	219.6	129.8
4	219.7	133	26.6	6.4	29.2	0.903	334.6	219.9	134.1
5	219.7	166	26.7	21.4	36.4	0.735	317.3	219.8	166.2
6	219.8	218	26.7	36.7	47.7	0.56	304	219.9	218
7	219.6	277	26.7	51.7	60.4	0.442	296.2	219.5	277
8	220	338	26.8	66.3	74.1	0.362	291.2	219.6	338

● 作出 I2、 P、 cos Φ 与补偿电容 C 的关系曲线

利用 Origin 绘制了 I^2 , P, $\cos\varphi$ -C 的图线, 对 P-C 曲线进行了线性拟合, 对 I^2 -C 曲线进行了二次曲线拟合。其中,P-C 曲线的线性拟合结果为

$$y = 0.0665 + 26.34505x$$

I2-C 的计算机拟合结果为

$$y = 5195.39076x^2 - 37932.64834x + 86574.92285(mA^2)$$

在我测量的数据点中,当 C = 3.8uF 时,有最大的功率因数 cosφ = 0.947。 由拟合图线和方程,最佳补偿电容 C_0 应该在 3.65uF 左右取得。

$$C_0 = \frac{37932}{2 * 5195} = 3.65 uF$$

单位电容等效电导 g:

$$\begin{cases} P = gCU^2 + gU^2 \\ gU^2 = b * 10^6 \\ \overline{U} = 219.5V \end{cases}$$

解得

$$g = 1.38 \, SF^{-1}$$

$$\begin{cases} a = (g^2 + L^2 w^2) U_1^2 + (g^2 + 3w^2) U_3^2 \\ b = 2(gU_1 I_{R_1} - wU_1 I_1) + 2(gU_3 I_{R_3} - 3wU_3 I_{L_3}) \\ u = U_1^2 + U_3^2 \end{cases}$$

● **手工计算 I²-C 有理经验公式** 设曲线:

$$I^2 = aC^2 + bC + I_0^2$$

C = 0 时,有 $I_0^2 = 294^2 = 86436 (mA^2)$ 取极值点两侧各一组数据

(2,180) (5,166.2)

带入曲线方程:

$$\begin{cases} 32400 = a \times 2^2 + b \times 2 + 86436 \\ 27622.44 = a \times 5^2 + b \times 5 + 86436 \end{cases}$$

$$\text{##}: \begin{cases} a = 5325.096 \\ b = -38668.192 \end{cases}$$

故最佳电容值 $C_0' = -\frac{b}{2a} = 3.63uF$

$$I^2 = 5325.096C^2 - 38668.192C + 84636(mA^2)$$

● 推算电网电压三次谐波分量

由 PPT 所给公式,对

$$I^2 = aC^2 + bC + I_0^2$$

$$\begin{cases} a = (g^2 + L^2 w^2) U_1^2 + (g^2 + 3w^2) U_3^2 \\ b = 2(gU_1 I_{R_1} - wU_1 I_1) + 2(gU_3 I_{R_3} - 3wU_3 I_{L_3}) \\ u = U_1^2 + U_3^2 \end{cases}$$

可以解出:

$$U_3^2 = \frac{a - (g^2 + \omega^2)U^2}{8\omega^2}$$

代入数据:

$$\begin{cases} a = 5195.39076 * 10^6 \ mA^2/uF \\ U = 219.5V \\ \omega = 100\pi \\ g = 1.38SF^{-1} \end{cases}$$

解得:

$$U_3 = 23.609 V$$

本实验中,f=50Hz,g 很小, U_3 占比约为 $\eta=\frac{23.609}{219.5}*100\%=10.76%$ 很大。对三次谐波来说, $f_3=150$ Hz,由表达式

$$\begin{cases} a = (g^2 + L^2 w^2) U_1^2 + (g^2 + 3w^2) U_3^2 \\ b = 2(g U_1 I_{R_1} - w U_1 I_1) + 2(g U_3 I_{R_3} - 3w U_3 I_{L_3}) \end{cases}$$

a 的三次谐波分量,U3 的系数前主要是ω²起作用,而 b 的三次谐波分量系数主要是ω起作用,虽然 a 和 |b|都增大,但是显然 a 增大更快,故 $C_0 = -\frac{b}{2a}$ 变小,最佳补偿电容值偏小。

测量日光灯总体电路、灯管以及镇流器的等效参数

改接线,测仅镇流器两端和仅日光灯两端的参数,串联参数用表1中C=0的数据。

表 2 日光灯和镇流器两端参数测量

	V	A	W	var	VA	功率因	ф	电压表	电流表
						数 cosφ		/V	/ A
镇流器	197.7	0.297	11.1	56.5	58	0.192	78.9	196.8	0.295
日光灯	57.5	0.296	13.9	2.9	17.1	0.817	34.7	60.5	0.294
串联	219.2	0.294	26.1	58.7	64.2	0.409	65.8	219.2	0.294

镇流器:

$$\dot{I}_1 = 0.297 \angle 0^{\circ}$$
 $\phi_1 = 78.9^{\circ}$ $\dot{U}_1 = 197.7 \angle 78.9^{\circ}$ $\dot{Z}_1 = \frac{\dot{U}_1}{\dot{I}_1} = 665.7 \angle 78.9^{\circ} = 128.2 + j653.2$

日光灯:

$$\dot{I}_2 = 0.296 \angle 0^{\circ}$$
 $\phi_2 = 34.7^{\circ}$ $\dot{U}_2 = 60.5 \angle 34.7^{\circ}$ $\dot{Z}_2 = \frac{\dot{U}_2}{\dot{I}_2} = 204.4 \angle 34.7^{\circ} = 168.0 + j116.4$

串联总电路:

$$\dot{I}_3 = 0.294 \angle 0^\circ \qquad \phi_3 = 65.8^\circ \qquad \dot{U}_2 = 219.2 \angle 65.8^\circ$$

$$\dot{Z}_3 = \frac{\dot{U}_3}{\dot{I}_3} = 756.6 \angle 65.8^\circ = 305.6 + j680.1$$