Segundo Relatório de Medidas Eletromagnéticas

Gabriel Soares Henrique da Silva

21 de fevereiro de 2023

Sumário

T	Introdução
2	Análise preliminar
3	Resultados esperados
	3.1 Resistor
4	Medições no laboratório
	4.1 Tabelas de medições
	4.1.1 Resistores
	4.1.2 Capacitores
5	Conclusões

1 Introdução

Neste relatório, vamos medir os valores de resistência Ω e capacitância F de resistores e capacitores, a fim de compararmos com os valores verdadeiros convencionais, e calcularemos alguns de seus parâmetros estatísticos.

Todos arquivos utilizados para criar este relatorio, e o relatorio em si estão em: https://github.com/ Shapis/ufpe_ee/tree/main/5thsemester/ ElectromagneticMeasurements/Relatorios

2 Análise preliminar

Utilizaremos um multímetro para medir as capacitâncias e resistências de alguns componentes.

Faremos 20 medições em cada componente, e calcularemos a média, desvio padrão, tendência e correção de cada um deles.

Após isso discutiremos os nossos resultados.

3 Resultados esperados

3.1 Resistor

Esperamos resultados consistentes entre as medidas, porém também esperamos que a resistência seja diferente da resistência de fábrica. Isso ocorreu por desgaste dos componentes devido a seu uso de laboratório, e também pela qualidade dos componentes.

Muito provavelmente estamos fora dos padrões de confiabilidades de fábrica. Mas precisaríamos ver o *datasheet* dos resistores em específico para confirmar isso.

3.2 Capacitor

Tudo o que falamos acima se aplica aos capacitores, mas com dois diferenciais.

O primeiro é que estes sao mais sensíveis ao uso, logo esperaremos discrepâncias maiores entre os valores de fábrica e os de fato.

E também que, durante as medidas, os carregaremos e descarregaremos, o que implica também em um erro sistemático adicional.

4 Medições no laboratório

Para reduzir erros, encaixaremos todos componentes em um *protoboard*.

Antes de fazer as medidas dos capacitores, vamos criar um circuito com um capacitor e um resistor em série para descarregá-los. Apos alguns segundos com esse circuito formado, o desconectaremos e faremos a medição da capacitância.

4.1 Tabelas de medições

4.1.1 Resistores

Mediremos três resistores com valores de fabrica respectivamente de: $R_1 = 10k\Omega$, $R_2 = 22k\Omega$, $R_3 = 15k\Omega$.

$R_1 \ 10k\Omega$	$R_2 \ 22k\Omega$	$R_3 15k\Omega$
$10,370~\mathrm{k}\Omega$	$21,932~\mathrm{k}\Omega$	$14,848~\mathrm{k}\Omega$
$10,370~\mathrm{k}\Omega$	$21,932~\mathrm{k}\Omega$	$14,849~\mathrm{k}\Omega$
$10,380~\mathrm{k}\Omega$	$21,932~\mathrm{k}\Omega$	$14,850~\mathrm{k}\Omega$
$10,380~\mathrm{k}\Omega$	$21,932~\mathrm{k}\Omega$	$14,849~\mathrm{k}\Omega$
$10,380 \text{ k}\Omega$	$21,932~\mathrm{k}\Omega$	$14,850~\mathrm{k}\Omega$
$10,370~\mathrm{k}\Omega$	$21,933~\mathrm{k}\Omega$	$14,849~\mathrm{k}\Omega$
$10,370~\mathrm{k}\Omega$	$21,933~\mathrm{k}\Omega$	$14,849~\mathrm{k}\Omega$
$10,370~\mathrm{k}\Omega$	$21,931~\mathrm{k}\Omega$	$14,850~\mathrm{k}\Omega$
$10,370~\mathrm{k}\Omega$	$21,931~\mathrm{k}\Omega$	$14,850~\mathrm{k}\Omega$
$10,370~\mathrm{k}\Omega$	$21,930~\mathrm{k}\Omega$	$14,848~\mathrm{k}\Omega$
$10,360~\mathrm{k}\Omega$	$21,932~\mathrm{k}\Omega$	$14,849~\mathrm{k}\Omega$
$10,370~\mathrm{k}\Omega$	$21,932~\mathrm{k}\Omega$	$14,849~\mathrm{k}\Omega$
$10,370~\mathrm{k}\Omega$	$21,932~\mathrm{k}\Omega$	$14,849~\mathrm{k}\Omega$
$10,370~\mathrm{k}\Omega$	$21,932~\mathrm{k}\Omega$	$14,849~\mathrm{k}\Omega$
$10,380~\mathrm{k}\Omega$	$21,934~\mathrm{k}\Omega$	$14,849~\mathrm{k}\Omega$
$10,360 \text{ k}\Omega$	$21,934~\mathrm{k}\Omega$	$14,850~\mathrm{k}\Omega$
10,360 kΩ	$21,934~\mathrm{k}\Omega$	$14,849~\mathrm{k}\Omega$
$10,370~\mathrm{k}\Omega$	$21,933~\mathrm{k}\Omega$	$14,849~\mathrm{k}\Omega$
10,360 kΩ	$21,934~\mathrm{k}\Omega$	$14,849~\mathrm{k}\Omega$
10,360 kΩ	$21,932~\mathrm{k}\Omega$	14,848 kΩ

	$R_1 \ 10k\Omega$	$R_2 \ 22k\Omega$	$R_3 \ 15k\Omega$
Média	$10,\!37~\mathrm{k}\Omega$	$21,932~\mathrm{k}\Omega$	$14,849~\mathrm{k}\Omega$
Desvio padrão	$0,00069~\mathrm{k}\Omega$	$0,0011~\mathrm{k}\Omega$	$0,00064~\mathrm{k}\Omega$
Tendência	$0.37~\mathrm{k}\Omega$	$-0,068 \; \mathrm{k}\Omega$	$-0.151 \; \mathrm{k}\Omega$
Correção	-0,37 k Ω	$0,068~\mathrm{k}\Omega$	$0.151~\mathrm{k}\Omega$

4.1.2 Capacitores

Mediremos três capacitores com valores de fábrica respectivamente de: $C_1 = 100nF$, $C_2 = 47nF$, $R_3 = 10nF$.

1,701 , 103 10701 .				
$C_1 = 100nF$	$C_2 = 47nF$	$R_3 = 10nF$		
$46,31 \ nF$	55,92~nF	12,74~nF		
$46,45 \ nF$	55,70 nF	12,72~nF		
$46,34 \ nF$	55,66~nF	$12,77 \ nF$		
$46,34 \ nF$	55,87 nF	$12,76 \ nF$		
$46,25 \ nF$	$56,09 \ nF$	$12,78 \ nF$		
$46,36 \ nF$	55,85 nF	$12,77 \ nF$		
$46,21 \ nF$	$55,90 \ nF$	12,74~nF		
$46,32 \ nF$	55,76~nF	$12,\!80 \; nF$		
$46,30 \ nF$	55,94 nF	$12,\!83 \; nF$		
$46,54 \ nF$	55,72~nF	$12,\!84\ nF$		
$46,54 \ nF$	$55,69 \ nF$	$12,79 \ nF$		
$47,01 \ nF$	55,78~nF	$12,\!81~nF$		
$46,70 \ nF$	55,75 nF	$12,78 \ nF$		
$46,82 \ nF$	55,85 nF	$12,\!80 \; nF$		
$46,75 \ nF$	55,82~nF	$12,\!81 \; nF$		
$46,64 \ nF$	55,43 nF	$12,79 \ nF$		
$46,71 \ nF$	55,40~nF	$12,76 \ nF$		
$46,76 \ nF$	55,39 nF	12,73 nF		
$46,85 \ nF$	$55,\!64~nF$	$12,\!69 \; nF$		
$46,81 \ nF$	55,68~nF	$12,\!68 \; nF$		

	$C_1 100 nF$	C_247nF	$C_3 10 nF$
Média	46,55 nF	55,74~nF	12,77 nF
Desvio padrão	0,2401~nF	$0.1819 \ nF$	$0,0430 \ nF$
Tendência	$-53,45 \ nF$	8,742~nF	$2,770 \ nF$
Correção	$53,\!45~nF$	$-8,742 \ nF$	$-2,770 \ nF$

5 Conclusões

Obtivemos desvios padrões baixos para nossos componentes. Porém, especificamente no caso dos capacitores, as tendências foram bastante elevadas, o que indica que uma calibração é necessária.

A realização de sucessivas medições e obtenção de parâmetros como média e desvio padrão é de grande interesse para maximização da confiança na obtenção de grandezas. Com os valores verdadeiros convencionais delas, é possível obter também tendência e correção.