

Genetic parameters of disease in growing pigs under a polymicrobial natural disease challenge

Usamah Kabuye^{1,2}, John C. S. Harding³, Michael K. Dyck⁴, Frederic Fortin⁵, Graham S. Plastow⁴, PigGen Canada⁶ and Jack C. M. Dekkers²

¹Interdepartmental Genetics and Genomics, Iowa State University, ²Department of Animal Science, Iowa State University, ³Department of Large Animal Clinical Science, University of Saskatchewan, ⁴Department of Agricultural, Food and Nutritional Science, University of Alberta, ⁵Centre de développement du porc du Québec, ⁶PigGen Canada Industry Consortium

Introduction

 Selection in most pig breeding programs is conducted in high-health nucleus herds, but pigs typically encounter multiple pathogens in commercial herds

- Knowledge gap of genetic parameters of disease related traits under a polymicrobial disease challenge still exists
- Genetic parameters e.g., heritability, genetic correlation between traits are key to strategic animal breeding

Objective

• Estimate genetic parameters for treatment and mortality associated with specific diseases of growing pigs under a severe natural polymicrobial disease challenge

Genetic parameters of disease in growing pigs under a polymicrobial natural disease challenge

Usamah Kabuye^{1,2}, John C. S. Harding³, Michael K. Dyck⁴, Frederic Fortin⁵, Graham S. Plastow⁴, PigGen Canada⁶ and Jack C. M. Dekkers² ¹Interdepartmental Genetics and Genomics, Iowa State University, ²Department of Animal Science, Iowa State University, ³Department of Large Animal Clinical Science, University of Saskatchewan, ⁴Department of Agricultural, Food and Nutritional Science, University of Alberta, ⁵Centre de développement du porc du Québec, ⁶PigGen Canada Industry Consortium

Materials and methods A three-phase natural polymicrobial disease challenge (Putz et al., 2019, Frontiers in Genetics)

PigGen Canada

Multiplier herds

Farrowing – weaning (21-day old barrows)

Biosecure

Natural challenge	wean-to-finish proto	col at CDPQ, Québe	c, Canada

~21days old ~40 days old ~180 days old ~70 days old

qNursery (~19 days)

Biosecure

1 km north

cNursery (~27 days)

(~100 days)

Finisher

Natural polymicrobial disease challenge through continuous flow (Common pathogens in commercial pig farms)

Birth

Weaning

•4,095 Y × LR barrows

Animals and genotyping

•66 batches (each ~60 -75 pigs)

Disease resilience data collection

Phenotypic data - Individual health treatments and mortality records categorized as:

- 1.Meningitis
- 2. Respiratory distress
- 3.Scours
- 4. Unthriftiness
- 5.Other viral and/or bacterial infections

Variance Component Estimation

Single trait and bivariate analyses using generalized and linear mixed models with genomic relationships using ASReml (4.2)

Model: y_{iiklm} = Batch_i + EntryAge_{iiklm} + Pen_k + Sow_{iikl} + Pig(grm)_{iiklm} + e_{iiklm}

Market

Genetic parameters of disease in growing pigs under a polymicrobial natural disease challenge

Usamah Kabuye^{1,2}, John C. S. Harding³, Michael K. Dyck⁴, Frederic Fortin⁵, Graham S. Plastow⁴, PigGen Canada⁶ and Jack C. M. Dekkers²

¹Interdepartmental Genetics and Genomics, Iowa State University, ²Department of Animal Science, Iowa State University, ³Department of Large Animal Clinical Science, University of Saskatchewan, ⁴Department of Agricultural, Food and Nutritional Science, University of Alberta, ⁵Centre de développement du porc du Québec, ⁶PigGen Canada Industry Consortium

Genetic parameters of disease in growing pigs under a polymicrobial natural disease challenge

TAP HERE TO RETURN TO KIOSK MENU

Usamah Kabuye^{1,2}, John C. S. Harding³, Michael K. Dyck⁴, Frederic Fortin⁵, Graham S. Plastow⁴, PigGen Canada⁶ and Jack C. M. Dekkers²

¹Interdepartmental Genetics and Genomics, Iowa State University, ²Department of Animal Science, Iowa State University, ³Department of Large Animal Clinical Science, University of Saskatchewan, ⁴Department of Agricultural, Food and Nutritional Science, University of Alberta, ⁵Centre de développement du porc du Québec, ⁶PigGen Canada Industry Consortium

Discussion

- Heritability estimates for treatment rate and mortality were generally higher in the challenge nursery than in the finisher.
- Compared to other diseases, respiratory distress treatment rate and mortality tended to have higher heritability estimates both in the nursery and finisher.
- Litter effects were generally low in both in the nursery and finisher but stronger in the nursery.
- Genetic correlation estimates for respiratory distress among treatment rate and mortality in the nursery and finisher were generally positive.
- Corresponding genetic correlation estimates for other disease categories were either moderately negative, not positive definite, or the model did not converge.

Conclusions

- Respiratory distress treatment rate and mortality are substantially influenced by genetics, making it a key target for genetic selection.
- Litter effects are critical in early life stages but diminish as the pigs mature.
- Selection strategies to improve health treatment and mortality traits should be balanced to avoid unintended consequences.
- Genetic parameters provide the roadmap for breeding programs, and this study provides valuable information to breed for disease resilience.

