	PAGE: /
	Module 2
01	to material learning algorithm, what is the
4.10-	In a perception learning algorithm, what is the initial value of the weights before the algorithm starts learning?
	Jeanning?
	all the weather are assigned mandom values before The
	All the weights are assigned mandom values before the algorithm Starts learning.
	aysaitm state leading
Q-11.	what is the condition for convergence of a perception
	what is the condition for convergence of a perceptoren learning algerithm?
	The data should be linearly seperable for convergence of a perception learning algorithm
9.12.	Consider you are given a Boolean function with 5 inputs. It is represented by a network of perceptanous containing
	one hidden layer and one output layer with one
	perceptoron. How many perceptorons are there in the
	hidden layer?
	Number of input (n) = 5
	No. of geneeptones in hidden layer = 2" = 25 = 25.

0.19	Comment on the update formula at the ; th update in the Momentum-Bosed Gradient Descent.
	Momentum-based Gradient desant, where 'w' and 'b' are updated not just based on the current updates (derivative)
	but also the past updates (derivatives)
	$V_{dW} = BV_{dW} + (1-B)dW$ where V_{dW} is momentum $V_{db} = BV_{db} + (1-B)db$
0 01	$W = W - \alpha V_{dW}$; $b = b - \alpha V_{db}$
0, 21.	Assume you have 1,50,000 data points mini-batch size being 25000 one epoch implies one pass over the data and one step means one appoints of the
	parameters. What is the number of steps in one epoch for mini-batch gradient descent.
	Mini-batch Size (k) = 25000 No. of data points (n) = 150000
	: No. of mini-batch = 150000 = 6
	: No d steps in one epoch = 6
	How do you reduce the oscillations and improve the stochastic estimates of the gradient that is estimated from one data point at a time?
	By using mini-batch gradient desent, it helps ned

80bi	Purpose of data augmentation
	More data = Better learning D Works well for image recognition lobject necognition taks
	BIt also works well for speech
129.	Valid ensomble method?
	Ensemble methods combine the output of different models to reduce generalization error. Bagging and boosting are valid forms of ensemble methods
Q.42.	Which one of the following happens when learning nate is too large for back-propagation?
	A large value of learning nate may speed up the convergence but might result in overshooting a and overstep the optimal value. It leads to napid learning but there is oscillation of weights.
9 43	What happens to the gradient when the skepness of error surface increases?
	When the curve is steep, the gradient becomes large

Q-37. Significance of inclusion of learning parameter (n)
during gradient descent based parameter update.
The learning rate (n) is used to control the amount
of weight adjustment at each step of training. The
learning rate ranging from 0 to 1 determines the rate of learning at each time step.
This parameter determines how jast ar slow we will move
I bowards the optimal weights.
II the learning grate is very large use will skip the optimal
solution. If it is too small, we will need too many iteration
to converge to the best values. So using a good learning
grate is crucial.

Q.44.	Very small distance between the contours sliced at &
	two different vertical positions on the arror surface (RMSE) indicates which of the following:
	A very small distance between the contours sticed
	at two different vertical position indicates a steep sloope along that direction
9.45	10 overcome the slow convergence of gradient desent, momentum based gradient descent uses which factor?
	In momentum based gradient descent, 'w' and 'b' are not updated based on the current updates (derivative) but also the post updates (derivative).
	$V_{aW} = \beta V_{aW} + (1-\beta)aW$ $V_{ab} = \beta V_{ab} + (1-\beta)ab$
1	$W = W - \alpha V_{dw}$; $b = b - \alpha V_{db}$
	Graphical &
	Momenhum

Je Nesterou Accelerated Gradient descent the oscillations are always less as compared to momentum based gradient descent?

It moves the history component first, then calculates the derivative and updates later.

Iceking ahead helps NAG in correcting its course quicker than momentum based gradient descent.

Hence, the oscillations are smaller and chances of escaping the minima valley also smaller.

9.53.	Iteration	w	- VDE	
2	0	1	1.0	
	1	2	0.5	
	2	2	0.25	
	$\beta=0$, $V_{dw_0}=0.6$			
	Vaw, = Bus	+ (1-	B) dW,	
	•			
	to Here, 1-B	= 1		
	· Vio = BV		dW	
	w = w - ∨	W		
	Theration (:- $\beta = 0.5$, $n = 1$, $V_{\omega} = 0$, $- = -dW = 1$ $\omega = 1$ $V_{\omega} = (0.5 \times 0) + 1.(-1)$ $V_{\omega} = -1$ $\omega = \omega - V_{\omega} = 1 - (-1) = 2$			
	$\omega = 2$	- 1 - (-1		1
	ω -2			1
	Tio II a 0			1
	Iteration 2:	1 V.	=-1 - dW = 0.5 W = 2	1
	$\beta = 0.5, \ \eta = 1, \ V_{\omega} = -1, \ -dW = 0.5, \ \omega = 2$ $V_{\omega} = (0.5 \times -1) + (1 \times -0.5)$			
	$V_{\omega} = \frac{(0.5 \times -1) + (1 \times -0.5)}{\sqrt{\omega}}$			
	In a way Viv	= 2 -	-(-1) = 3	
	$w = w = V_w = 2 - (-1) = 3$			
	$\omega = 3$			
				4/2

Comment on the following:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Commula las a perceptoron Communication of the state of t
reduces to Dw #= ± 2ex
Topologo For a binary bipolar neuron,
$y \hat{y} (y-\hat{y})$
-1 -2
-1 -1 0
1 -1 @2
For correct prediction, (y - y) = 0
When $y = -1$, $\hat{y} = 1$
change in weight in Adaline will be,
$\Delta \omega = c. (g - g) \approx$
= ((-2) =
= -20%
()hom
When $y = 1$, $\hat{y} = -1$, change in weight will be
$B\omega = C.Cg - g).2$
= c.(2) n
= 20%
Weight apdation formula reduces to
$\Delta \omega = \pm 2cx$

			DATE: 11			
10.	Suppose there are 20 rodes in a Deep Neural Netwoork					
J.	and we impleme	ent Dropout 6.	gremoving few nodes to			
	obtains a thinne	ed network. Who	at is total number of such			
	thinned network	es that can be	lound?			
/	thinned networks that can be found?					
-	Total number of thinned networks = 2 ⁿ Here, n = 20 - 32 ²⁰					
_	Hore n = 20	-9 2 ²⁰				
_						
0/1	You me training	A newal out	noop madel line Fagle			
<u> 8.61</u>	You are training a neural network model using Early					
_	Stopping Technique - Given that the patience garemeter is 2.					
	when will you s	stop training.				
	Epochs	Toraining Loss	Validation Loss			
	1	3.4	2.0			
	2	2.0	1.9			
	3	1.9	(-8			
	4	1.8	1.8			
		1.7	1.9			
	6 1.6 2.1					
	We'll stop after epoch 4 since there is no updation					
	in previous the validation loss in the perpoenious 2 steps					
	in gravious the validation					
		An Walanay				
1						