Professor: Fred Khoury

- 1. Find the volume of the solid obtained by rotating the region bounded by $y = x^3$, y = 8, and x = 0 about the y axis.
- **2.** Find the volume of the solid obtained by rotating the region bounded by $y = x^2$, y = x about the x axis.
- 3. Find the volume of the solid obtained by rotating the region bounded by $y = x^2$, y = x about the line y = 2.
- **4.** Use Shell-method to find the volume of the solid obtained by rotating about the x-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.
- **5.** Find the volume of the solid obtained by rotating the region bounded by $y = x x^2$ and y = 0 about the line x = 2.
- **6.** Find the volume of the resulting solid by *any method* for the region bounded by $y = -x^2 + 6x 8$, y = 0, and rotate about the y axis.
- 7. Find the volume of the resulting solid by *any method* for the region bounded by $y = -x^2 + 6x 8$, y = 0, and rotate about the x axis.
- 8. Find the volume of the resulting solid by *any method* for the region bounded by $x = (y-3)^2$, x = 4, and rotate about y = 1.

1. $\frac{96}{5}\pi$	3. $\frac{8\pi}{15}$	$5. \frac{\pi}{2}$	7. $\frac{16}{15}\pi$
		6 0-	100

2.
$$\frac{2\pi}{15}$$
 4. $\frac{\pi}{2}$ 6. 8π 8. $\frac{128}{3}\pi$