Relatório 4 Álgebra Booleana e Circuitos Lógicos – Simplificação e Construção dos circuitos

Portas Lógicas Básicas							
Porta	Símbolo Usual	Tabela Verdade	Função Lógica	Expressão			
NOT (inversora)	AY	Entrada A Saida Y 0 1 1 0	Inverte a entrada	Ā			
AND (E)	A	Entrada A Entrada B Saída Y 0 0 0 0 1 0 1 0 0 1 1 1 1	Assume 1 somente quando todas as entradas forem 1	A. B			
OR (ou)	A	Entrada A Entrada B Saída Y 0 0 0 0 1 1 1 1 1 1	Assume 1 quando uma ou mais entradas forem 1	A + B			
NAND (NOT AND)	AB Y	Entrada A Entrada B Saída Y 0 0 1 0 1 1 1 0 1 1 0 0	Inverso da AND	A.B			
NOR (NOT OR)	A Y	Entrada A Entrada B Saída Y 0 0 1 0 1 0 1 0 0 1 1 0	Inverso da OR	A + B			
XOR (OU exclusivo)	A	Entrada A Entrada B Saída Y 0 0 0 0 1 1 1 0 1 1 0	Assume 1 quando as entradas assumem valores diferentes entre si	$A \oplus B$ S= $\tilde{A}.B+A.\tilde{B}$			
XNOR	A	Entrada A Entrada B Saída Y 0 0 1 0 1 0 1 0 0 1 1 1 1	Inverte a XOR	$A \odot B$ S= $\tilde{\mathbb{A}}.\tilde{\mathbb{B}}+A.\mathbb{B}$			

Nesta aula iremos resolver problemas de contexto real e ver como as simplificações poderão ser realizadas e eventualmente a construção de circuitos com um número menor de portas lógicas. Um número menor de portas permite um circuito mais simples, pode ser mais rápido e consumir menor quantidade de energia.

Veja abaixo as principais propriedades da Álgebra Booleana:

a + 0 = a	a a+0 0	a + 1 = 1	A a+1 0
a + a = a • • • • • • • • • • • • • • • • • • •	a a+a 0	$a + \overline{a} = 1$	a = a+a 0
a . 0 = 0	a a 0 0	a.1 = a	A a.1
a.a=a	a a a 0	a. a = 0	a a. a 0
a + a.b = a	a b a+ab 0 0 0 1 1 0 1 1	a.b + a.b = a	a b ab+ab 0 0 0 1 1 0 1 1

Propriedade	Complemento	Adição	Multiplicação
	Ā = A	A + 0 = A	A . 0 = 0
Identidade		A + 1 = 1	A . 1 = A
		A + A = A	A . A = A
		A + Ā = 1	A . Ā = 0
Comutativa		A + B = B + A	A . B = B . A
Associativa		A+(B+C) = (A+B)+C = A+B+C	A.(B.C) = (A.B).C = A.B.C
Distributiva		A+(B.C) = (A+B) . (A+C)	A.(B+C) = A.B + A.C

- Absorção
 - A + (A.B) = A
 - A . (A+B) = A
- Outras Identidades
 - A + Ā.B = A + B
 - (A+B).(A+C) = A + B.C
- De Morgan
 - (A.B)' = Ā + Ē
 - (A+B)' = Ā . Ē
- De Morgan se estende para n variáveis
 - (A.B. n)' = \bar{A} + \bar{B} + ... + \bar{n}
 - $(A+B+...+n)' = \bar{A} \cdot \bar{B} \cdot ... \cdot \bar{n}$

Exercícios:

- 1) Escreva a tabela verdade e desenhe o circuito para as funções booleanas simples, comprovando as simplificações:
 - a) A+A.B=A
 - b) A.(A+B) = A
- 2) Faça um circuito para a expressão antes da igualdade e outro para após a igualdade e compare as tabelas verdades para comprovar a simplificação do circuito.
 - a) $A + \overline{A}.B = A + B$
 - b) (A+B).(A+C) = A + B.C

Para cada exercício a seguir, você deve apresentar a função desenvolvida, o circuito e a explicação do raciocínio feito.

- 3) Um técnico de laboratório químico possui quatro produtos químicos, A, B, C e D, que devem ser guardados em dois depósitos. Por conveniência, é necessário mover um ou mais produtos de um depósito para o outro periodicamente. A natureza dos produtos é tal que é perigoso guardar B e C juntos, a não ser que A esteja no mesmo depósito. Também é perigoso guardar C e D juntos se A não estiver no depósito. **Escreva uma expressão para uma função Z**, tal que Z = 1 sempre que exista uma combinação perigosa em qualquer dos depósitos. Construa o circuito elétrico correspondente usando portas com duas entradas.
- 4) Um avião a jato emprega um sistema de monitoração dos valores de rpm, pressão e temperatura dos seus motores usando sensores que operam conforme descrito a seguir:

- Saída do sensor de RPM = 0 apenas quando a velocidade for < 4800 rpm;
- Saída do sensor de Pressão = 0 apenas quando a pressão for < 1,33 N/m²;
- Saída do sensor de Temperatura = 0 apenas quando a temperatura for < 93,3 °C.

A figura abaixo mostra o circuito lógico que controla a lâmpada de advertência dentro da cabine para certas combinações da máquina. Admita que um nível alto na saída W ative a luz de advertência.

A luz de advertência deverá ser acionada se a temperatura do motor for igual ou superior a 93,3 °C mas apenas se duas outras condições acontecerem: a pressão for superior ou igual a 1,33 N/m² ou a velocidade for inferior a 4800 rpm.

5) Uma unidade de corte de madeira de uma indústria de móveis utiliza uma bomba de lubrificação, um transportador, uma serra fita e uma serra circular. O controle desses dispositivos é feito através de 4 chaves ON/OFF. Projete um circuito que realize a lógica de controle dessa unidade de corte, a partir das seguintes especificações:

Chave A controla a bomba de lubrificação (L)

Chave **B** controla o transportador (**T**)

Chave C controla a serra fita (F)

Chave D controla a serra circular (R)

Quando o transportador estiver ligado, a bomba de lubrificação deve estar funcionando. Assim, o transportador só pode estar ligado quando as chaves A e B estiverem acionadas.

As serras não requerem lubrificação, mas nunca podem estar ligadas ao mesmo tempo. Assim, se as chaves C e D forem acionadas juntas, o sistema deve ser completamente desligado, incluindo o transportador e a bomba de lubrificação.

Da mesma forma, o transportador e a serra circular não podem estar ligados ao mesmo tempo. Com isso, se as chaves B e D forem acionadas juntas, o sistema deve ser completamente desligado, incluindo a bomba de lubrificação e a serra fita.

6) Projetar um circuito lógico que controle uma porta de elevador em um prédio de três andares. O circuito, conforme ilustra a figura abaixo, deverá ter quatro entradas. M é um sinal lógico que indica quando o elevador está se movendo (M=1) ou parado (M=0). F1, F2 e F3 são os sinais indicadores dos andares que estão normalmente em nível baixo (=0), passando para o nível alto

(=1) apenas quando o elevador estiver posicionado em um determinado andar. Por exemplo, quando o elevador estiver posicionado no segundo andar, F2=1, F1 =0 e F3=0. A saída do circuito é o sinal OPEN (abrir) que normalmente está em nível baixo (0) e deverá ir para o nível alto (1) quando a porta do elevador estiver aberta.

