Example 6

(1984 China Middle School Math Contest) As shown in the figure, $AB = BC = CA = AD.AH \perp CD$ at $H, CP \perp BC$ at C and meets AH at P. Prove that $S = \frac{\sqrt{3}}{4}AP \times BD$, where S is the area of $\triangle ABC$.

Solution: Method 1: Draw $AE \perp BC$ at E. E is the midpoint of BC. H is the midpoint of DC. Connect EH. EH//BD. Then $\angle HEC = \angle DBC$.

Since $AH \perp CD, AE \perp BC$, points A, H, C, and E are concyclic. Therefore,

$$\angle HAC = \angle HEC = \angle DBC.$$
 We know that $\angle EAC = \angle EHC = \angle BDC = 30^{\circ}.$
$$\angle PCA = 90^{\circ} - 60^{\circ} = 30^{\circ}.$$
 So $\angle PCA = \angle BDC.$ Thus $\triangle ACP \sim \triangle BDC.$ So $\frac{AP}{BC} = \frac{AC}{BD} \Rightarrow AP \times BD = BC \times AC \Rightarrow$
$$S_{ABC} = \frac{\sqrt{3}}{4}AC^2 = \frac{\sqrt{3}}{4}BC \times AC = \frac{\sqrt{3}}{4}AP \times BD.$$
 Method 2:

Let the point of intersection of BD and AH be Q. Since $AH \perp CD$, AC = AD, $\angle ACQ = \angle ADQ$. Since AB = AD, $\angle ADQ = \angle ABQ$. $\angle ABQ = \angle ACQ$. Points A, B, C, and Q are concyclic.

Therefore,
$$\angle AQB = \angle ACB = 60^\circ$$
. $\angle DQ = 60^\circ$. Since $\angle QHD = 90^\circ$, $\angle BDC = 90^\circ - 60^\circ = 30^\circ$. Since $\angle ACP = 90^\circ - 60^\circ = 30^\circ$, $\angle ACP = \angle BDC$ Since $\angle APC = 90^\circ + \angle PCH$, $\angle BCD = 90^\circ + \angle PCH$, $\angle APC = \angle BCD$ From (1) and (2): $\triangle APC \sim \triangle BCD$. So $\frac{AC}{BD} = \frac{AP}{BC} \Rightarrow AP \times BD = BC \times AC \Rightarrow$ $S_{ABC} = \frac{\sqrt{3}}{4}AC^2 = \frac{\sqrt{3}}{4}BC \times AC = \frac{\sqrt{3}}{4}AP \times BD$. Method 3: We want to get: $S = \frac{\sqrt{3}}{4}AP \times BD$. We know that the area of any equilateral triangle with side length of S is: $S = \frac{\sqrt{3}}{4}S^2$, in our case, $S = \frac{\sqrt{3}}{4}S^2$. We must have S in our case, $S = \frac{\sqrt{3}}{4}S^2$. This is the ratio of two sides of two similar triangles $\triangle APC$ and $\triangle BCD$ as shown. So we only need to prove that $APC \approx APC$ and ACD

shown. So we only need to prove that $\triangle APC \sim \triangle BCD$.

We label each angle as shown below. We name the point of intersection of AC and BD be N.

From triangle BAD, We have $60^{\circ} + \alpha + \alpha + \gamma + \gamma = 180^{\circ}$ From triangles BNC, AND, We have $60^{\circ} + \theta = 2\alpha + \gamma$

(1) can be written as $\alpha + \gamma = 60^{\circ}$

From (2) and (3): $\theta = \alpha$

So we get $\angle CAP = \angle CBD$. We need one more pair of congruent angles.

In right triangle $AHD, \alpha + \gamma + \angle BDC = 90^{\circ}(5)$

Substituting (3) into (5): $\angle BDC = 30^{\circ}$.

Since $CP \perp BC$ at C and $\angle ACB = 60^{\circ}. \angle APC = 30^{\circ}.$

Thus $\triangle APC \sim \triangle BCD$ and we are done.

Note: the first two solutions are official solution and the third one is our

solution.

We know that
$$\angle EAC = \angle EHC = \angle BDC = 30^{\circ}$$
. $\angle PCA = 90^{\circ} - 60^{\circ} = 30^{\circ}$. So $\angle PCA = \angle BDC$. Thus $\triangle ACP \sim \triangle BDC$. So $\frac{AP}{BC} = \frac{AC}{BD} \Rightarrow AP \times BD = BC \times AC \Rightarrow$ $S_{ABC} = \frac{\sqrt{3}}{4}AC^2 = \frac{\sqrt{3}}{4}BC \times AC = \frac{\sqrt{3}}{4}AP \times BD$. Method 2:

Let the point of intersection of BD and AH be Q. Since $AH \perp CD$, AC = AD, $\angle ACQ = \angle ADQ$. Since $AB = AD, \angle ADQ = \angle ABQ$. $\angle ABQ = \angle ACQ$.

Points A, B, C, and Q are concyclic. Therefore, $\angle AQB = \angle ACB = 60^{\circ}$.

$$\angle DQ = 60^{\circ}.$$
 Since $\angle QHD = 90^{\circ}, \angle BDC = 90^{\circ} - 60^{\circ} = 30^{\circ}.$ Since $\angle ACP = 90^{\circ} - 60^{\circ} = 30^{\circ}, \angle ACP = \angle BDC$ Since $\angle APC = 90^{\circ} + \angle PCH, \angle BCD = 90^{\circ} + \angle PCH, \angle APC = \angle BCD$ From (1) and (2): $\triangle APC \sim \triangle BCD.$ So $\frac{AC}{BD} = \frac{AP}{BC} \Rightarrow AP \times BD = BC \times AC \Rightarrow$
$$S_{ABC} = \frac{\sqrt{3}}{4}AC^2 = \frac{\sqrt{3}}{4}BC \times AC = \frac{\sqrt{3}}{4}AP \times BD.$$
 Method 3:

We want to get: $S = \frac{\sqrt{3}}{4}AP \times BD$. We know that the area of any equilateral triangle with side length of a is:

 $S = \frac{\sqrt{3}}{4}a^2, \text{ in our case, } S = \frac{\sqrt{3}}{4}AB^2.$ We must have $AB^2 = AP \times BD \quad \Rightarrow \quad \frac{AB}{BD} = \frac{AP}{AB} \text{ or } \frac{AC}{AP} = \frac{BD}{BC}.$ This is the ratio of two sides of two similar triangles $\triangle APC$ and $\triangle BCD$ as shown. So we only need to prove that $\triangle APC \sim \triangle BCD$.

We label each angle as shown below. We name the point of intersection of AC and BD be N.

From triangle BAD, We have $60^{\circ} + \alpha + \alpha + \gamma + \gamma = 180^{\circ}$ From triangles BNC, AND, We have $60^{\circ} + \theta = 2\alpha + \gamma$ (1) can be written as

 $\alpha+\gamma=60^{\circ}$ From (2) and (3): $\theta=\alpha$ So we get $\angle CAP=\angle CBD$. We need one more pair of congruent angles. In right triangle AHD, $\alpha+\gamma+\angle BDC=90^{\circ}(5)$

Substituting (3) into (5): $\angle BDC = 30^{\circ}$. Since $CP \perp BC$ at C and $\angle ACB = 60^{\circ}$. $\angle APC = 30^{\circ}$. Thus $\triangle APC \sim \triangle BCD$ and we are done.

Note: the first two solutions are official solution and the third one is our solution.