Ald Vectors and Matrices: Example Sheet 4

Michaelmas 2015

A* denotes a question, or part of a question, that should not be done at the expense of questions later on the sheet. Starred questions are **not** necessarily harder than unstarred questions.

Corrections and suggestions should be emailed to N.Peake@damtp.cam.ac.uk.

1. A matrix A is said to be upper triangular if $A_{ij} = 0$ if i > j, i.e. if

$$A = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ 0 & A_{22} & \ddots & A_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & A_{nn} \end{pmatrix}.$$

Show that the eigenvalues are $\lambda_i = A_{ii}$ (i = 1, ..., n, and obviously no sum).

- 2. Let $\{\mathbf{e}_1, \dots, \mathbf{e}_m\}$ and $\{\mathbf{f}_1, \dots, \mathbf{f}_n\}$ be bases for \mathbb{R}^m and \mathbb{R}^n respectively, and let \mathcal{A} be a linear mapping from \mathbb{R}^m to \mathbb{R}^n . Explain how to represent \mathcal{A} by a matrix relative to the given bases.
 - (a) Taking m=2, n=3 and \mathcal{A} as the linear mapping for which

$$\mathcal{A}\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}2\\1\\5\end{pmatrix}, \quad \mathcal{A}\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}7\\0\\3\end{pmatrix},$$

where components are with respect to the standard bases for \mathbb{R}^2 and \mathbb{R}^3 , find the matrix of \mathcal{A} with respect to the bases

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} -3 \\ 2 \end{pmatrix}; \qquad \mathbf{f}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{f}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{f}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

- (b) The mapping \mathcal{A} of \mathbb{R}^3 to itself is a reflection in the plane $x_1 \sin \theta = x_2 \cos \theta$. Find the matrix A of \mathcal{A} with respect to any basis of your choice, which should be specified.
- 3. The linear map $\mathcal{A}: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} x' \\ y' \end{pmatrix} = \mathsf{A} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -5x + 9y \\ -4x + 7y \end{pmatrix}.$$

Find the matrix B of the map A relative to the basis

$$\left\{ \begin{pmatrix} 3\\2 \end{pmatrix}, \begin{pmatrix} 1\\1 \end{pmatrix} \right\},\,$$

and interpret the map geometrically. Hence show that, for each positive integer n,

$$B^n - I = n(B - I),$$

where $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Hence evaluate A^n . Verify that $\det(A^n) = (\det A)^n$.

- *4. Show that similar matrices have the same rank.
- 5. Show that the matrix

$$A = \begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}$$

has characteristic equation $(t-2)^3 = 0$. Explain (without doing any further calculations) why A is not diagonalisable.

6. (a) Find a, b and c such that the matrix

$$\begin{pmatrix} 1/3 & 0 & a \\ 2/3 & 1/\sqrt{2} & b \\ 2/3 & -1/\sqrt{2} & c \end{pmatrix}$$

is orthogonal. Does this condition determine a, b and c uniquely?

(b) Let

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \text{ and } P = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$

Do you expect PAP^{-1} to be symmetric? Compute PAP^{-1} . Were you right?

- *7. (a) Show that the Cayley-Hamilton theorem is true for all 2×2 matrices.
 - (b) Let

$$A = \begin{pmatrix} 3 & 4 \\ -1 & -1 \end{pmatrix}.$$

Find the characteristic equation for A. Verify that $A^2 = 2A - I$. Is A diagonalisable? Show by induction that A^n lies in the two-dimensional subspace (of the space of 2×2 real matrices) spanned by A and I, i.e. show that there exists real numbers α_n and β_n such that

$$A^n = \alpha_n A + \beta_n I$$
.

Find a recurrence relation (i.e. a difference equation) for α_n and β_n , and hence find an explicit formula for A^n .

8. Determine the eigenvalues and eigenvectors of the symmetric matrix

$$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}.$$

Use an identity of the form $P^{T}AP = D$, where D is a diagonal matrix, to find A^{-1} .

- *9. Show that the eigenvalues of a unitary matrix have unit modulus. Show that if a unitary matrix has distinct eigenvalues then the eigenvectors are orthogonal.
- 10. A skew-Hermitian matrix, W, is one such that $W^{\dagger} = -W$. What can be said about the eigenvalues of a skew-Hermitian matrix? (*Hint: consider* H = iW)?

If S is real symmetric and T is real skew-symmetric, show that $T \pm iS$ is skew-Hermitian. State a property of the eigenvalues of T + iS and hence, or otherwise, show that

$$\det(\mathsf{T}+i\mathsf{S}-\mathsf{I})\neq 0.$$

Show that the matrix

$$U = (I + T + iS)(I - T - iS)^{-1}$$

is unitary. For

$$\mathsf{S} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \,, \qquad \mathsf{T} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \,,$$

show that the eigenvalues of U are $\pm (1-i)/\sqrt{2}$.

*11. This is a continuation of question 8 on Example Sheet 2.

As in question 8 on Example Sheet 2 consider the linear map $\mathcal{S}: \mathbb{R}^2 \to \mathbb{R}^2$

$$\mathbf{x} \mapsto \mathbf{x}' = \mathbf{x} + \lambda(\mathbf{b} \cdot \mathbf{x}) \mathbf{a} \tag{*}$$

where λ is a real scalar, **a** and **b** are fixed orthogonal unit vectors. Let $S(\lambda, \mathbf{a}, \mathbf{b})$ be the matrix with elements S_{ij} such that $x'_i = S_{ij}x_j$. Give diagrams illustrating the shears

$$S_1 = S(\lambda, \mathbf{i}, \mathbf{j}), \quad S_2 = S(\lambda, \mathbf{j}, -\mathbf{i}).$$

Show that S_1 and S_2 are related by a similarity transformation

$$S_2 = R^{-1}S_1R$$
, $R = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Now let S be the map defined by (*) but from \mathbb{R}^3 to \mathbb{R}^3 , and let i, j, k be unit vectors along the three perpendicular axes. Find the matrix S in each of the cases

(i)
$$\mathbf{a} = \mathbf{i}, \ \mathbf{b} = \mathbf{j},$$
 (ii) $\mathbf{a} = \mathbf{j}, \ \mathbf{b} = \mathbf{k},$ (iii) $\mathbf{a} = \mathbf{k}, \ \mathbf{b} = \mathbf{i},$

and interpret the corresponding simple shears. Show that any matrix of the form

$$\begin{pmatrix} 1 & \lambda & \mu \\ 0 & 1 & \nu \\ 0 & 0 & 1 \end{pmatrix}$$

can be displayed (not necessarily uniquely) as the product of matrices of simple shears.

*12. Diagonalize the quadratic form

$$\mathcal{F} = (a\cos^2\theta + b\sin^2\theta)x^2 + 2(a-b)(\sin\theta\cos\theta)xy + (a\sin^2\theta + b\cos^2\theta)y^2.$$

and identify the principal axes.

13. Find all eigenvalues, and an orthonormal set of eigenvectors, of the matrices

$$A = \begin{pmatrix} 5 & 0 & \sqrt{3} \\ 0 & 3 & 0 \\ \sqrt{3} & 0 & 3 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2. \end{pmatrix}$$

Hence sketch the surfaces

$$5x^2 + 3y^2 + 3z^2 + 2\sqrt{3}xz = 1$$
 and $x^2 + y^2 + z^2 - xy - yz - zx = 1$.

14. Let Σ be the surface in \mathbb{R}^3 given by

$$2x^2 + 2xy + 4yz + z^2 = 1.$$

By writing this equation as

$$\mathbf{x}^{\mathrm{T}} \mathsf{A} \mathbf{x} = 1,$$

with A a real symmetric matrix, show that there is an orthonormal basis such that, if we use coordinates (u, v, w) with respect to this new basis, Σ takes the form

$$\lambda u^2 + \mu v^2 + \nu w^2 = 1.$$

Find λ , μ and ν and hence find the minimum distance between the origin and Σ . Hint: it is **not** necessary to find the basis explicitly.

15. (i) Explain what is meant by saying that a 2×2 real matrix,

$$\mathsf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

preserves the scalar product on \mathbb{R}^2 with respect to

(a) the Euclidean metric,
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, or (b) the Minkowski metric, $J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

- (ii) Using a single real parameter together with a choice of sign (± 1) , give and justify a description of all matrices, A, that preserve the scalar product with respect to the Euclidean metric. Show that these matrices form a group.
- (iii) Using a single real parameter together with a choice of sign (± 1) , give and justify a description of all matrices, A with a > 0, that preserve the scalar product with respect to the Minkowski metric. Show that these matrices form a group.
- (iv) What is the intersection of the above two groups?

Revision Questions

16. Show that a rotation about the z axis through an angle θ corresponds to the matrix

$$\mathsf{R} = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Write down a real eigenvector of R and give the corresponding eigenvalue. In the case of a matrix corresponding to a general rotation, how can one find the axis of rotation?

A rotation through 45° about the x-axis is followed by a similar one about the z-axis. Show that the rotation corresponding to their combined effect has its axis inclined at equal angles

$$\cos^{-1}\frac{1}{\sqrt{(5-2\sqrt{2})}}$$

to the x and z axes.

17. Show that the eigenvalues of a real orthogonal matrix have unit modulus and that if λ is an eigenvalue so is λ^* . Hence argue that the eigenvalues of a 3×3 real orthogonal matrix Q must be a selection from

$$+1$$
, -1 and $e^{i\alpha} \& e^{-i\alpha}$.

Verify that $\det Q = \pm 1$. What is the effect of Q on vectors orthogonal to an eigenvector with eigenvalue ± 1 ?

*18. This is another way of proving $\det AB = \det A \det B$. You may wish to stick to the case n = 3.

If $1 \le r, s \le n$, $r \ne s$ and λ is real, let $E(\lambda, r, s)$ be an $n \times n$ matrix with (i, j) entry $\delta_{ij} + \lambda \delta_{ir} \delta_{js}$. If $1 \le r \le n$ and μ is real, let $F(\mu, r)$ be an $n \times n$ matrix with (i, j) entry $\delta_{ij} + (\mu - 1)\delta_{ir}\delta_{jr}$.

- (i) Give a simple geometric interpretation of the linear maps from \mathbb{R}^n to \mathbb{R}^n associated with $\mathsf{E}(\lambda,r,s)$ and $\mathsf{F}(\mu,r)$.
- (ii) Give a simple account of the effect of pre-multiplying an $n \times m$ matrix by $\mathsf{E}(\lambda, r, s)$ and by $\mathsf{F}(\mu, r)$. What is the effect of post-multiplying an $m \times n$ matrix?
- (iii) If A is an $n \times n$ matrix, find $\det(\mathsf{E}(\lambda, r, s)\mathsf{A})$ and $\det(\mathsf{F}(\mu, r)\mathsf{A})$ in terms of $\det \mathsf{A}$.
- (iv) Show that every $n \times n$ matrix is the product of matrices of the form $\mathsf{E}(\lambda, r, s)$ and $\mathsf{F}(\mu, r)$ and a diagonal matrix with entries 0 or 1.
- (v) Use (iii) and (iv) to show that, if A and B are $n \times n$ matrices, then det A det B = det AB.
- *19. The object of this exercise is to show why finding eigenvalues of a large matrix is not just a matter of finding a large fast computer.

Consider the $n \times n$ complex matrix $A = \{A_{ij}\}$ given by

$$A_{j\,j+1} = 1$$
 for $1 \leqslant j \leqslant n-1$
 $A_{n1} = \kappa^n$
 $A_{ij} = 0$ otherwise,

where $\kappa \in \mathbb{C}$ is non-zero. Thus, when n=2 and n=3, we get the matrices

$$\begin{pmatrix} 0 & 1 \\ \kappa^2 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \kappa^3 & 0 & 0 \end{pmatrix}.$$

- (i) Find the eigenvalues and associated eigenvectors of A for n=2 and n=3.
- (ii) By guessing and then verifying your answers, or otherwise, find the eigenvalues and associated eigenvectors of A for for all $n \ge 2$.
- (iii) Suppose that your computer works to 15 decimal places and that n=100. You decide to find the eigenvalues of A in the cases $\kappa=2^{-1}$ and $\kappa=3^{-1}$. Explain why at least one (and more probably) both attempts will deliver answers which bear no relation to the true answers.