UNIVERSITY OF TWENTE.

BOX-JENKINS APPROACH FOR TIME SERIES ANALYSIS

MARGARITA HUESCA MARTINEZ

Presentation overview

- Learning objectives
- Time series definition & Remote Sensing time series
- Box and Jenkins approach
- Stationary process
- Seasonal time series
- Autoregressive models
- Examples
- Conclusions

Learning objectives

To characterize a time series

To assess the seasonal components of a time series

To define autoregressive models using the & Box and Jenkins

approach

Introduction: Time series

Time series: sequence of observations of a variable in the increasing order

of time

Time series provided reliable and quantitative information about the history of the variable.

Remote sensing time series

- Trends at medium term, and less in the long term.
- **Seasonality**: very frequent in agricultural and environmental related variables. Irregular periodicity inside of a year.
- **Cycles**: uncommon, the dynamics is repeated after several years. Sun related series.
- **Structural changes**: the level and variance of a variable change at some point and can evolve with different patterns.
- Outliers: Influential, extreme or aberrant observations.
- Not available data: due to problems in data acquisition
- Irregular variance: variance that evolves over time.

Remote sensing time series: Trends

Remote sensing time series: Seasonality

Seasonality: periodicity inside a year, frequent in most vegetation variables

Remote sensing: Structural Changes

1			Climate changes	ype of disturbance Human impact
	Fast	Permanent changes	Fires	Land conversion
ral scale	response	Temporary changes	Decrease vegetation growth period	Fires
Tempoi	Long term	Permanent changes	Increase evapotranspiration	Decrease land cover
() ()	response	Temporary changes	Decrease primary productivity	Crop rotations

- •Need for monitoring and early warning systems
- •To provide quantitative and standardizes information for decision maker.
- •TS of ecosystem properties will show altered ecosystems

Remote sensing: Structural Changes

Structural changes: land conversion or fires

Remote sensing: Outliers or not available data

Not available data: common in remote sensing due to external factors such as clouds

Clouds in Cádiz

Remote sensing: Outliers or not available data

Remote sensing: Irregular variance

Irregular variance: Drought in 2005

Time Series Approaches

Process history — Future evolution

To project on the future the knowledge we have of the present and past

(Stochastic process: A set of time-dependent random variables)

Objective: Identify, estimate and forecast the stochastic process. UNIVERSITY OF TWENTE.

Univariate time series models

Linear processes frequently used to represent a variable y_t in time

1.- White noise ε_t

(uncorrelated random variable)

$$y_t = \varepsilon_t$$

where ε_t satisfy: $E\left\{\varepsilon_t\right\} = 0 \quad \forall t$

$$E\left\{\varepsilon_{t}^{2}\right\} = \sigma^{2} \quad \forall t$$

$$E\left\{\varepsilon_{t}\varepsilon_{t'}\right\}=0\quad\forall\,t\neq t'$$

2.- Autoregressive process, AR(p)

(time-dependent variable + white noise)

$$\mathbf{y}_{t} = \phi \mathbf{y}_{t-1} + \phi_{2} \mathbf{y}_{t-2} + \dots + \phi_{n} \mathbf{y}_{t-p} + \varepsilon_{t}$$

Univariate time series models

3.- Moving average, MA(q)

(sum of weighted white noise)

$$\mathbf{y}_{t} = \theta_{1} \mathbf{\varepsilon}_{t-1} + \theta_{2} \mathbf{\varepsilon}_{t-2} + \dots + \theta_{q} \mathbf{\varepsilon}_{t-q} + \mathbf{\varepsilon}_{t}$$

where: $\varepsilon_{t} \sim$ white noise

4.- Autoregressive moving average, ARMA (p, q) (<u>time-dependent</u> variable + white noise)

$$\mathbf{y}_{t} = \phi_{1}\mathbf{y}_{t-1} + \phi_{2}\mathbf{y}_{t-2} + \dots + \phi_{p}\mathbf{y}_{t-p} + \varepsilon_{t} + \theta_{1}\varepsilon_{t-1} + \theta_{2}\varepsilon_{t-2} + \dots + \theta_{q}\varepsilon_{t-q}$$

5.- Random walk

(the first differences of y is white noise)

$$\mathbf{y}_{t} - \mathbf{y}_{t-1} = \nabla \mathbf{y}_{t-1} = \varepsilon_{t}$$

White noise and Random walk

White noise process

Random Walk

$$Y_t = Y_{t-1} + \mathcal{E}_t$$

Stationary process

Stationary process:

- It has a constant mean in the long term
- It has a finite and constant variance over time
- Its autocorrelations (Acf) decreases rapidly with time

Non-stationary process:

- It has not a constant mean in the long term
- Its variance depends on time, growing to infinity
- Its autocorrelations (Acf) do not decay, or they do it slowly

Stationary process

Causes of non-stationarity:

- The series contains a unit root (stochastic trend) ***
- The series contains seasonal, cyclical or periodic variations
- The series contains a break or a structural change

***If in the AR representation of a series the parameter $\phi_i = 1$ the series has a unit root and consequently it is non-stationary

Stationary process

A series that needs to be differenced 'd' times $(y_t - y_{t-d})$ to attain stationarity is said to be Integrated of order d, I (d)

$$y_t - y_{t-d} = \nabla y_t = w_t$$
 now w_t will be non-integrated or I(0)

If a series y_t contains a unit root, it is non-stationary and it needs to be differenced once to attain stationarity $y_t \sim I(1)$: $y_t - y_{t-1}$

Most of the series are integrated of order d = 1 or 2, they are I (1) or I (2)

Identification objective: determine the orders 'p, d, q' of the ARIMA process that suitably and parsimoniously represents the series

UNIVERSITY OF TWENTE.

Unit root tests

A method to determine if a series contains one or more unit roots

The Dickey & Fuller (1979, 1981) unit root test (DF)

AR(1):
$$\mathbf{y}_t = \mu + \rho \mathbf{y}_{t-1} + \varepsilon_t$$

- If: $|\rho| < 1$ If: $|\rho| < 1$ If: $|\rho| > 1$ If: $|\rho| > 1$ y_t is stationary y_t is not stationary y_t is explosive

Seasonal Analysis: Harmonic pattern

Harmonic pattern

From the trigonometric identity: $\alpha sen(\omega t + \delta) = A sen(\omega t) + B cos(\omega t)$

where the amplitude α and the phase δ verify:

$$\alpha^{2} = A^{2} + B^{2}$$
$$\delta = \arctan(-B / A)$$

$$Y_t = \mu + A sen(\omega t) + B cos(\omega t) + e$$

Amplitud

Seasonal Analysis: Autocorrelation Function

Autocovariance function: γ_k

$$\gamma_k = E\{(y_{t+k} - \overline{y})(y_t - \overline{y})\}$$

where \overline{y} is the mean of y

Autocorrelation function (Acf): ρ_k (Stationary process)

$$\rho_{k} = \frac{\gamma_{k}}{\gamma_{0}}$$

$$\widehat{r}_{k} = \frac{\sum_{t=k+1}^{N} (y_{t} - \overline{y})(y_{t-k} - \overline{y})}{\sum_{t=1}^{N} (y_{t} - \overline{y})^{2}}$$

Seasonal Analysis: Partial Autocorrelation Function

Partial autocorrelation function (Pacf): ϕ_k

$$\mathsf{AR}\left(2\right) \qquad \boldsymbol{\mathcal{Y}}_{t} = \phi_{21}\boldsymbol{\mathcal{Y}}_{t-1} + \phi_{22}\boldsymbol{\mathcal{Y}}_{t-2} + \boldsymbol{\varepsilon}_{t} \qquad \quad \phi_{22} \equiv \mathsf{partial} \; \mathsf{autocorrelation}$$

$$\phi_k = r_1$$
 for $k = 1$

$$\phi_{k} = \frac{r_{k} - \sum_{j=1}^{k-1} \phi_{k-1,j} r_{k-j}}{1 - \sum_{j=1}^{k-1} \phi_{k-1,j} r_{j}} \qquad \text{for } k > 1$$

where:
$$\phi_{k,j} = \phi_{k-1,j} - \phi_{kk}\phi_{k-1,k-j}$$
; for $j = 1, 2, ..., k-1$

Box & Jenkins Approach: Identification

ACF and PACF: regular and partial autocorrelation functions

The Acf and Pacf of a stationary process decreases rapidly toward zero as the number of lags increase.

Acf: $k = n^0$ of lags

If $r_1 \neq 0$ process with first-order correlation

If r_k decline geometrically when k increases \longrightarrow Low order AR

If $r_k = 0$ after a low number k of periods \longrightarrow Low order MA (k).

Pacf:

- If $\phi_{kk} = 0$ for a certain k order of $AR \le k$
- The Pacf of a pure AR(p) = 0 for k = p
- The Pacf of a pure MA(q) decreases gradually and asymptotically tending to zero.

5	
	U

	Process	Acf	Pacf
	White noise	All the $r_k = 0$	All the $\phi_{kk} = 0$
	AR(1): $a_1 > 0$ [$y_t = a_1 y_{t-1} + \varepsilon_t$]	Direct exponential decrease: $r_k = a_1^k$	$\phi_{11} = r_1$; $\phi_{kk} = 0$, $\forall k \ge 2$
	$AR(1) : a_1 < 0$	Oscillatory decrease: $r_k = a_1^k$	$\phi_{11}= r_1; \phi_{kk}=0, \forall k\geq 2$
	AR(p)	Decrease towards zero. The coefficients can oscillate.	Peaks up to lag p, all the $\phi_{kk} = 0, \forall k \ge p$
	MA(1); β >0 [y _t =ε _t - β ε _{t-1}]	Peak (+) in k = 1, $r_k = 0 \forall k \ge 2$	Oscillatory decrease: ϕ_{11} >0

1	
S. C. S.	U

Process	Acf	Pacf
MA(1); β<0	Peak (-) in $k = 1$, $r_k = 0 \forall k \ge 2$	Decrease: ϕ_{11} <0
ARMA(1,1) A1>0	Exponential decrease from $k = 1$, sign $r_1 = sign(a_1 + \beta)$	Oscillatory decrease from $k = 1$, $\phi_{11} = r_1$
ARMA(1,1) A1<0	Oscillatory decrease from $k = 1$, sign $r_1 = sign(a_1 + \beta)$	Exponential decrease from $k = 1$, $\phi_{11} = r_1$ sign $(\phi_{kk}) = \text{sign}(\phi_{11})$
ARMA(p, q) a1<0	Direct or oscillatory decrease from k=p	Direct or oscillatory decrease from k=p

Identification of the order of integration. Examples

Partial Autocorrelations

Identification of the order of integration. Examples

150

Identification of the order of integration. Examples

• The order of this periodicity is usually induced by the data collection Frequency.

• The Box-Jenkins methodology takes into account the seasonal factor and incorporates it in the development of the models.

The specific aspects are:

1. Identify the stationarity of the seasonal component. If the series is not stationary, take the differences of the seasonal order s:

if s = 4, take the 1st dif. of order 4:

$$\nabla^4 y_t = (1 - B^4) y_t = y_t - y_{t-4}$$

it includes 4 unit roots: ±1, ±i:

$$\nabla^4 = (1-B)(1+B)(1-iB)(1+iB)$$

if s = 12 take first differences of order 12:

$$\nabla^{12} \mathbf{y}_t = (1 - \mathbf{B}^{12}) \mathbf{y}_t = \mathbf{y}_t - \mathbf{y}_{t-12}$$

2.- Specify the seasonal parameters in the model and estimate them by the general estimation methods.

3.- Validate the model using the general methods checking the presence of seasonal autocorrelation in the residuals.

Box & Jenkins Approach: Estimation

$$\mathbf{y}_{t} = \phi \mathbf{y}_{t-1} + \phi_{2} \mathbf{y}_{t-2} + \dots + \phi_{n} \mathbf{y}_{t-p} + \varepsilon_{t}$$

The Student t-statistics = coefficient / standard error

P-value= critical significance level: level of admissibility of H₀

$$\bar{R}^2 = 1 - (1 - R^2) \frac{T - 1}{T - k}$$

$$F = \frac{R^2 / K - 1}{(1 - R^2) / T - K}$$

$$F = \frac{R^2 / k - 1}{(1 - R^2) / T - k} \qquad DW = \sum_{i=2}^{T} (\widehat{\varepsilon}_i - \widehat{\varepsilon}_{i-1})^2 / \sum_{i=1}^{T} \widehat{\varepsilon}_i^2$$

Box & Jenkins Approach: Estimation

$$AIC = \frac{-2\ell}{T + 2kT}$$

$$SC = -2\ell / T + (k \log T) / T$$

where:
$$\ell = -T / 2(1 + \log(2\pi) + \log(\widehat{\varepsilon}'\widehat{\varepsilon} / T)$$

Box & Jenkins Approach: Validation

ARIMA models:

Find a model that represents the dynamics of the studied variable

Validation procedure:

Extract the residual series of the estimated model and examine their dynamics by the analysis of its ACF and PACF.

Box & Jenkins Approach: Validation

Requirements for model adequacy:

- a) The residual must be white noise.
- b) The estimated model must be stationary.
- c) The coefficients must be:
 - Statistically significant.
 - Non or weakly correlated
 - Sufficiently representative of the series.
- d) Select the model with the greatest degree of adjustment.

Example

Modelling and forecasting MODIS-based Fire Potential Index on a pixel basis using time series models. Huesca et al. 2014

UNIVERSITY OF TWENTE.

Conclusions

- Time series are characterized by trends, seasonality, cycles, structural changes and outliers
- Box and Jenkins approach has to be applied to stochastic process.
- Box and Jenkins approach's steps: identification, estimation, validation, forecasting and evaluation
- The autocorrelation and partial autocorrelation function help you to identify periodic components and the orders p and q of the ARMA model
- The series with a marked seasonal component must be differenced

UNIVERSITY OF TWENTE.

THANK YOU!!

MARGARITA HUESCA MARTINEZ

