Chapter 7. Satellite fixed links (Note: Rain attenuation for any link)

- Absorption and scattering
- Precipitation (rain, snow, sleet)
- Atmospheric gases
- Path attenuation
- Statistical distribution
- Ionosphere electron density
- Faraday rotation
- Scintillation
- Other

UNIK4150/9150

Absorption and scattering

Total loss (in dB) : $L_{total} = L_{absorption} + L_{scattering}$

Exponential attenuation

$$P(x+dx) - P(x) = -\alpha P(x)dx$$

$$dP(x) = P(x+dx) - P(x)$$

$$\frac{dP(x)}{P(x)} = -\alpha dx$$

$$d(\ln P(x)) = -\alpha dx$$

$$\ln P(x) = -\alpha x + const\alpha$$

$$\frac{P_d}{P_0} = e^{-\alpha d}$$

Rain attenuation

Received power P_r after distance r

$$P_r(r) = P_r(0)e^{-\alpha r}$$

where α is an attenuation factor.

Loss *L* in dB (noting $P_t = P_r(0)$)

$$L = 10 \ln \frac{P_t}{P_r} = \alpha r \cdot \log(e) = 4.343 \alpha r$$

Usual to express specific attenuation γ (dB/km) $\gamma = \frac{L}{r} = 4.343\alpha$

where
$$\alpha$$
 is given by $\alpha = \int_{D=0}^{\infty} N(D)C(D)dD$

N is number of rain drops with diameter D and C is the attenuation cross section (dB/m) or extinction coefficient.

UNIK4150/9150

Rain attenuation over a path

Rain attenuation or loss L is found by integrating the specific attenuation over the whole path r_T

$$L = \int_{0}^{r_T} \gamma(r) dr \qquad \gamma = 4.343 \int_{0}^{\infty} N(D)C(D) dD$$

Given a drop size distribution N and attenuation cross section C from theory, L can be calculated.

There are several suggested drop size distributions, but often used the Marshall-Palmer distribution

$$N(D) = N_0 e^{-\frac{D}{D_m}}$$

$$N_0 = 8 \cdot 10^3 m^{-2} mm^{-1}$$

$$D_m = 0.122 R^{0.21}$$

The parameter $D_{\rm m}$ depends on the rainfall rate R in mm/h.

Drop size distribution (DSD)

Usually an exponential form N(D), where $N_0 = N(D) = N_0 e^{-\Lambda D}$ and Λ (=1/ $D_{\rm m}$) are constants or functions.

Early found that // had to be a function of R, rainfall rate

$$\Lambda = 4.1R^{-0.21}$$

Given Λ also N_0 can be determined since the integral of $N(D)D^3V(D)$, where V(D) is the terminal velocity, must equal R.

Typically is N_0 about 8000 med mm⁻¹m⁻³. Actually, with this value the DSD is known as Marshall-Palmer.

The parameter Λ is also related to D_0 , the median, $\Lambda = 3.67/D_0$.

Example gamma drop size distribution (DSD)

Gamma distribution:

$$N(D) = N_0 D^m e^{-(3,67+m)D/D_0}$$

All DSDs shown in the figure result in the same rainfall rate R of 5 mm/h. $D_0 = 1$ mm.

Source: Hall, Barclay, and Hewitt: Propagation of radiowaves

Specific attenuation formula

- In principle the outlined technique can be used for attenuation calculation
- But a simpler method is used in practise because the former require detailed input on the DSD
- The simple method is

$$\gamma = aR^b$$

where *R* is the rainfall rate in mm/h, and *a* and *b* are constants depending on frequency and polarisation

a and b for horizontal and vertical polarisation

f	a Hor	a Ver	b Hor	b Ver
1	0.0000387	0.0000352	0.912	0.880
2	0.000154	0.000138	0.963	0.923
4	0.000650	0.000591	1.121	1.075
6	0.00175	0.00155	1.308	1.265
7	0.00301	0.00265	1.332	1.312
8	0.00454	0.00395	1.327	1.310
10	0.0101	0.00887	1.276	1.264
12	0.0188	0.0168	1.217	1.200
15	0.0367	0.0335	1.154	1.128
20	0.0751	0.0691	1.099	1.065
25	0.124	0.113	1.061	1.030
30	0.187	0.167	1.021	1.000
35	0.263	0.233	0.979	0.963
40	0.350	0.310	0.939	0.929
45	0.442	0.393	0.903	0.897
50	0.536	0.479	0.873	0.868
60	0.707	0.642	0.826	0.824
70	0.851	0.784	0.793	0.793
80	0.975	0.906	0.769	0.769
90	1.06	0.999	0.753	0.754
100	1.12	1.06	0.743	0.744
120	1.18	1.13	0.731	0.732
150	1.31	1.27	0.710	0.711
200	1.45	1.42	0.689	0.690
300	1.36	1.35	0.688	0.689
400	1.32	1.31	0.683	0.684

$$\gamma = aR^b$$

$$a = [a_H + a_V + (a_H - a_V)\cos^2\theta\cos 2\tau]/2$$

$$b = [a_H b_H + a_V b_V + (a_H b_H - a_V b_V) \cos^2 \theta \cos 2\tau]/2a$$

where θ is the path elevation angle and τ the polarisation tilt angle relative to horizontal. Use τ = 45° for circular polarisation.

UNIK4150/9150

Specific rain attenuation

Cross polar difference in specific rain attenuation

Prediction Steps 1 and 2

1: Rainfall rates not exceeded (mm/h) at 0.01% of a year

2: Find *a* and *b* for the frequency and polarisation in question

Prediction Step 3

3: Horizontal path reduction factor (non-uniform rain) $d_{eff} = rd$, where $r = 1/(1+d/d_0)$ and $d_0 = 35e^{-0.015R(0.01\%)}$

Prediction Step 4

4: Attenuation For 0.01% of an average year $A_{0.01} = \gamma d_{\text{eff}}$ and for p % $A_{p} = A_{0.01} 0.12 p^{-(0.546+0.043 \log p)}$ where 0.001% $\leq p \leq 1$ %

Satellite link

Almost as for a terrestrial path but have to take the elevation angle into account.

Prediction Step 1

1: Effective rain height

$$h_R = \begin{cases} 3.0 + 0.028\phi & 0 \le \phi < 36^o \\ 4.0 - 0.075(\phi - 36) & \phi \ge 36^o \end{cases}$$

UNIK4150/9150

16

Predictions Steps 2 and 3

2: Length through rain

$$L_{S} = \begin{cases} \frac{(h_{R} - h_{S})}{\sin \theta} & \theta \ge 5^{o} \\ \frac{2(h_{R} - h_{S})}{\left(\sin^{2} \theta + \frac{2(h_{R} - h_{S})}{R_{e}}\right)^{0.5}} & \theta < 5^{o} \end{cases}$$

3: Horizontal length

$$L_G = L_S \cos \theta$$

is used as the effective path length.

The rest is now as for terrestrial path where L_G is used in place of d.

Now also a vertical correction (ITU-R P.618).

Slant path approximation

Median zero-degree height

Combined rain sleet example

18 GHz, 15.6 km, vertical polarisation

Fog and clouds

Non-precipitating clouds contain water as well. Below 100 GHz little influence. Too little water for absorption and too small particles for scattering.

	Small clouds	Large clouds
g/m ³	0.5	2
D μm	3-30	10-15

Attenuation due to clouds and fog

Gaseous absorption

Oxygen has permanent magnetic dipole moment caused by electron spin (electrons in pairs).
 A change of the electron spin orientation related to rotational angle moment give a number of absorption lines near
 60 GHz and a single line at 119 GHz

Water vapour
 The water vapour molecule has a permanent electric dipole moment and a rotation of the molecule under the exposure of an electric field give absorption lines at 22, 183 and 325 GHz.

Specific gaseous absorption, 0-300 GHz

Specific gaseous attenuation at 83.5 GHz

Gaseous absorption for varying atmosphere

Gaseous and fog/cloud attenuation: two cases for the same air pressure and humidity

Refraction and absorption

Unified view using complex refractive index:

$$n(\mathbf{r}) = \operatorname{Re}(n(\mathbf{r})) + j \operatorname{Im}(n(\mathbf{r}))$$

$$\mathbf{E}(\mathbf{r}, t) = E_0 e^{j[\operatorname{Re}(n(\mathbf{r}))\mathbf{k}_0 \cdot \mathbf{r} - \omega t]} e^{-\operatorname{Im}(n(\mathbf{r}))\mathbf{k}_0 \cdot \mathbf{r}}$$

Result in reduction of E exponentially with distance r

Tropospheric refraction

Turbulence

- Small scale non-regular air areas.
- Such areas start with forces between to different moving air layers of about 100 m in size. These produce smaller and smaller areas down to mm size.
- Influence radio waves:
 - Scintillation, rapid signal variations
 - Scattering such that part of the signal is spread to all directions (Creates the possibility of communication far beyond the horizon)

Propagation through turbulence

Small scale variability of refractive index in the air

Scintillation, measured data

Scintillation, high pass filter

Power spectral density, example at 20 GHz

Depolarisation under rainfall

Raindrops become flat with size.

Drop diameter mm	small/large axis
2	0.92
4	0.82
6	0.65

Depolarisation mechanism

Rain drops attenuate the wave differently:

Cross polar discrimination (XPD) and cross polar isolation (XPI)

$XPD = 20 \log \frac{E_{ac}}{E_{ax}}$ $XPI = 20 \log \frac{E_{ac}}{E_{ac}}$

UNIK4150/9150 37

Co-polar

Cross-polar

Cross polar discrimination model

The loss is L (dB), then $XPD = a - b \log L$ dB

a=35.8 *b*=13.4 NASA ref. for 10 GHz

Extraterrestrial noise sources

Combining noise sources

© Dennis C. Anderson

Ionosphere

Characteristic of the ionosphere characteristic

- The ionosphere is a medium where the electrons and ions are free,
 - i.e., a plasma
- Production of free electrons due to
 - UV and x-ray
 - Particles from the sun
 - Meteors
- Electrons interact with radiowaves
- Ionosphere named in layers: D, E, F (F1 og F2)
 First talked about a electron layer an E-layer, but then obtained more information. However, it is more continuous and not separated layers.

D: 55-95 km, only at day-time 10⁹ electron/m³

E: 95-150 km, ~10¹¹ electron/m³ (day), ~3,5·10¹⁰ electron/m³ (night)

F: > 150 km, 10^{12} electron/m3 (day), $\sim 5.10^{10}$ electron/m³ (night)

Typical electron density as a function of height

Source: Hall, Barclay, and Hewitt: Propagation of radiowaves

Transmission through the ionosphere, Faraday rotation

Faraday rotation is the rotation of a linear polarised wave. Perhaps helpful: Different propagation time for decomposed circular orthogonal polarisations give change of polarisation plan or angle for a linear polarised signal. For frequencies above 10 GHz the angle is small.

$$\phi = \frac{2.36 \cdot 10^{20}}{f^2} B_{av} N_T$$

$$N_T = \int_0^{r_T} N(r) dr$$
 electrons/m²

 $B_{\rm av} = \mu H_{\rm av}$, is the average magnetic field of the Earth in Weber per m⁻², typical 7·10⁻²¹ Wbm⁻², f the frequency in Hz

 $N_{\rm T}$ is total electron content (TEC) per m² (total number of electrons in a vertical column with 1m² cross section), varies from 10¹⁶ to 10¹⁹ electrons/m².

Reason for circular polarisation often used.

Transmission through the ionosphere, group delay

Propagation time (e.g., extra propagation length Δr) where f is in Hz and N_T is the total electron content. The integral is called total electron content (TEC), about 30-10¹⁸ electrons. Bandwidth is reduced for small f. Delay t in s.

$$\Delta r = \frac{40.3}{f^2} N_T$$

$$t = \frac{40.3}{cf^2} N_T$$

Variation in apparent path length has an impact on accuracy of satellite positioning systems. Can be compensated measuring it at several frequencies.

Transmission through the ionosphere, dispersion

The group delay is frequency dependent, dispersive.

$$\frac{dt}{df} = -\frac{80.6}{cf^3} N_T$$

$$\Delta t = -\frac{80.6}{cf^2} \Delta f N_T$$

Ionospheric scintillation

Usually small, but can become large in particular at geomagnetic equator and polar areas (northern light). The cause is the varying number of electrons along the path.

Conclusions tropospheric and ionospheric effects

Troposphere

- Precipitation attenuation (water, sleet, snow)
- Scattering, depolarisation, refraction
- Gaseous absorption
- Scintillation

Ionosphere

- Total electronic content
- Faraday rotation
- Scintillation
- Refraction