ADA

Algoritmos voraces (Greedy)

Analisis y Diseño de Algoritmos

Juan Gutiérrez

June 2, 2022

ADA

Algoritmos voraces (Greedy)

Problema Max-Intervalos-Disjuntos. Dada una secuencia de intervalos cerrados en la recta, encontrar un subconjunto de intervalos compatibles dos a dos de tamaño máximo.

ADA

Figure 1: Tomada del libro Kleinberg, Algorithm Design

ADA

Figure 2: Tomada del libro Kleinberg, Algorithm Design

ADA

Figure 3: Tomada del libro Kleinberg, Algorithm Design

ADA

Algoritmos voraces (Greedy)

Recibe: un conjunto $\mathcal{I} = \{[s_1, f_1], [s_2, f_2], \dots, [s_n, f_n]\}$ de intervalos Devuelve: un subconjunto de intervalos compatibles dos a dos Max-Intervalos-Disj (\mathcal{I})

- 1: $A = \emptyset$
- 2: while $\mathcal{I} \neq \emptyset$
- 3: Sea $[s_i, f_i] \in \mathcal{I}$ tal que f_i es mínimo
- 4: $A = A \cup \{[s_i, f_i]\}$
- 5: $\mathcal{I} = \mathcal{I} \setminus \{[s_k, f_k] : [s_k, f_k] \cap [s_i, f_i] \neq \emptyset\}$
- 6: return A

ADA

Figure 4: Tomada del libro Kleinberg, Algorithm Design

ADA

- 1. $Elección\ voraz$: debemos demostrar que siempre existe una solución óptima que contiene a la elección voraz
- Subestructura óptima: debemos demostrar que la subsolución dejada es óptima para el subproblema dejado por la elección voraz

ADA

Algoritmos voraces (Greedy)

 ${\bf Problema~Max-Intervalos-Disjuntos.}~{\bf Dada~una~secuencia~de~intervalos~cerrados~en~la~recta,~encontrar~un~subconjunto~de~intervalos~compatibles~dos~a~dos.$

ADA

Algoritmos voraces (Greedy)

```
Recibe: un conjunto \mathcal{I}=\{[s_1,f_1],[s_2,f_2],\ldots,[s_n,f_n]\} de intervalos, ordenados de manera creciente por punta final
```

Devuelve: un subconjunto de intervalos compatibles dos a dos

Max-Intervalos-Disj-Rec(\mathcal{I})

- if *I* = ∅
- 2: return Ø
- 3: $\mathcal{I}' = \mathcal{I} \setminus \{[s_i, f_i] : s_i \leq f_1\}$
- 4: **return** $\{[s_1, f_1]\} \cup MAX$ -INTERVALOS-DISJ-REC (\mathcal{I}')

ADA

Algoritmos voraces (Greedy)

Lema 3.1 (Elección voraz). Existe una solución óptima para el problema que contiene el intervalo $[s_1, f_1]$.

ADA

Algoritmos voraces (Greedy)

Lema 3.2 (Subestructura óptima). Si X es una solución óptima al problema que contiene a $[s_1, f_1]$ entonces $X \setminus \{[s_1, f_1]\}$ es una solución óptima al subproblema dejado por la elección voraz.

ADA

Algoritmos voraces (Greedy)

Problema Mochila-entera. Dado un conjunto $\{1,2,\ldots,n\}$ de items cada uno con un peso natural w_i , un valor natural v_i y un número natural W, encontrar un subconjunto de items cuya suma de valores es la mayor posible, pero menor o igual a W.

ADA

Algoritmos voraces (Greedy)

Problema Mochila-fraccionaria. Dado un conjunto $\{1,2,\ldots,n\}$ de items cada uno con un peso natural w_i , un valor natural v_i y un número natural W, encontrar un vector de racionales entre 0 y 1 (x_1,x_2,\ldots,x_n) que maximize $\sum_{i=1}^n x_i v_i$ sobre la restricción $\sum_{i=1}^n x_i w_i \leq W$

ADA

Algoritmos voraces (Greedy)

Recibe: Una instancia v, w, W del problema Mochila-Fraccionaria Devuelve: Una solución óptima para dicha instancia Mochila-Fraccionaria-Greedy(v, w, W)

- 1: for j = n to 1
- 2: **if** $w[j] \leq W$
- 3: $x_i = 1$
 - $: \quad \dot{W} = W w[j]$
- 5: else
- 6: $x_j = W/w[j]$

ADA

Figure 8: Tomada del libro Cormen, Introduction to Algorithms

ADA

Algoritmos voraces (Greedy)

Lema 4.1 (Elección voraz). Existe una solución óptima $(x_1, x_2, ..., x_n)$ al problema tal que $x_n = \min\{1, W/w_n\}$

ADA

Algoritmos voraces (Greedy)

Lema 4.2 (Subestructura óptima). Si (x_1, x_2, \ldots, x_n) es una solución óptima al problema con $x_n = \min\{1, W/w_i\}$, entonces $(x_1, x_2, \ldots, x_{n-1})$ es una solución óptima al subproblema dejado con $W = W - x_n w_n$.

ADA

Figure 9: Tomada del libro Cormen, Introduction to Algorithms

ADA

Algoritmo: voraces (Greedy)

Problema 5.1. (Problema de compresión) Dado un archivo de caracteres, encontrar una tabla de códigos libre de prefijos que produzca un archivo codificado de tamaño mínimo.

ADA

Algoritmo: voraces (Greedy)

Sea $S=\{1,2,\ldots,n\}$. Un árbol de Huffman respecto a S es cualquier colección Π de subconjuntos de S que cumple las siguientes propiedades.

- 1. para cada X y cada Y en Π , se tiene que $X \cap Y = \emptyset$, o $X \subseteq Y$ o $Y \subseteq X$,
- $2. \ S \in \Pi,$
- 3. $\{\} \notin \Pi$,
- todo elemento no minimal en Π, es la unión de otros dos elementos en Π.

ADA

$$p(\Pi) = \sum_{X \in \Pi - \{S\}} p(X).$$

ADA

```
Recibe: Un conjunto S, una ponderación p de S y una partición \Gamma de S
Devuelve: Un árbol de Huffman óptimo (con peso mínimo) que tiene a \Gamma como
    conjunto de hojas
HUFFMAN(S, p, \Gamma)

 if |Γ| = 1

      return [
 3: Sea X un elemento en \Gamma con ponderación mínima
4: \Gamma = \Gamma - X
5: Sea Y un elemento en \Gamma con ponderación mínima
6: \Gamma = \Gamma - Y
7: \Gamma = \Gamma \cup \{X \cup Y\}
8: return \{X,Y\} \cup \text{HUFFMAN}(S,p,\Gamma)
   Ejemplo: sea S = \{1, 2, ..., 6\}, p(1) = 45, p(2) = 13, p(3) = 12, p(4) =
16, p(5) = 9, p(6) = 5 \text{ y } \Gamma = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}\}\}.
   El algoritmo produce el árbol \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{6, 5\}, \{6, 5, 4\}, \{2, 3\}, \{2, 3, 4, 5, 6\},
{1, 2, 3, 4, 5, 6}}. Su peso es 224.
```

ADA

Algoritmo: voraces (Greedy)

Lema 5.1. (Elección voraz) Sean X e Y dos hojas con ponderación mínima. Existe un árbol de Huffman óptimo Π que tiene a X e Y como hojas hermanas de profundidad máxima.

ADA

```
Recibe: Un conjunto S, una ponderación p de S
Devuelve: Un árbol de Huffman óptimo (con peso mínimo) que tiene a los ele-
   mentos de S como conjunto de hojas
Huffman-FilaPrioridades(S, p)
 1: n = |S|
 2: Q = Iniciar-FP()
 3: for i = 1 to n
 4: z.peso = p(i)
 5: z.left = NIL
 6: z.rigth = NIL
   Insert-FP(Q, z)
 8: for i = 1 to n - 1
     x = \text{ExtraerMin-FP}(Q)
     y = \text{ExtraerMin-FP}(Q)
10:
   z.left = x
11:
12:
     z.rigth = y
13: z.peso = x.peso + y.peso
     Insert-FP(Q, z)
14:
15: return ExtraerMin-FP(Q)
```

ADA

voraces (Greedy)

Gracias