NMF

William Zhang, Eva, Jerry

2024-09-01

```
# load the packages
library(NMF)
library(tidyverse)
library(gridExtra)
library(readxl)
```

Procedure

- 1. Remove hourly observation with missing observation for any chemical
- 2. Remove background noise level using min values (except for chemicals with minimum value < 2*LOD and maximum value > 100*LOD)
- 3. Zero values are converted to a random value between 0 and 0.5*LOD
- 4. Normalize using 0th & 99th quantile
- 5. Compute weight matrix according to Guha's paper, without LOQ

Reading the data

```
# read the radon data
# Old:
# hourly_radon <- readRDS("hourly_radon.rds")</pre>
hourly_data <- readRDS("../DataProcessing/Trailer_hourly_merge_20240905.rds")
# remove NAs
hourly_nona <- hourly_data %>% select(-c(temp_bb,rhi, esf_bb, distToLovi,inv_dist,
                                          distToLovi_wells, monthly_oil, monthly_gas)) %>% na.omit()
# retrieving the vocs, removing everything else except the vocs
hourly_vocs <- hourly_nona %>% select(c("ethane", "ethene", "propane", "propene",
                                         "1_3-butadiene", "i-butane", "n-butane",
                                         "acetylene", "cyclopentane", "i-pentane",
                                         "n-pentane", "n-hexane", "isoprene", "n-heptane",
                                         "benzene", "n-octane", "toluene", "ethyl-benzene",
                                         "m&p-xylene", "o-xylene"))
# retrieving the non-vocs: co2_ppm, nox, ch4, h2s, so2, o3
# double check this
non_vocs <- c('ch4', 'co2_ppm', 'co', 'h2s', 'so2', 'nox', 'o3')
hourly_non_vocs <- hourly_nona %>% select(all_of(non_vocs))
hourly_full_nona <- cbind(hourly_non_vocs, hourly_vocs)</pre>
```

```
# retrive a vector of yearmonth
hourly_dates <- hourly_nona %>%
  mutate(yearmonth = substring(day, 0, 7)) %>%
  pull(yearmonth)
```

Data preprocessing

```
# Define LOD for each chemical
LOD_non_voc \leftarrow c('ch4' = 0.9,
              co2_{ppm'} = 0.0433,
              'co' = 40,
              h2s' = 0.4,
              'so2' = 0.4,
              'nox' = 0.05,
              '03' = 1)
LOD_voc_monthly <- read_csv('../data/LNM_VOC_LOD_Rounded.csv') %>% select(-1)
# extract the yearmonth from date variables
LOD_voc_monthly <- LOD_voc_monthly %>%
  mutate(yearmonth = strftime(as.POSIXct(start_date, format = '\( Y-\)m-\\( d \) \( H:\)M:\\( S' \), tz = 'UTC'), '\( Y-\)m'
LOD_voc_monthly <- LOD_voc_monthly %>%
  select(-c(start_date, end_date)) %>%
  select(!any_of(ends_with('half_ldl')))
colnames(LOD_voc_monthly) <- str_replace_all(names(LOD_voc_monthly), '_ldl', '')</pre>
LOD_voc_avg <- read_xlsx('../data/LNM_VOC_Uncertainties.xlsx', skip = 1)
LOD_voc_avg <- LOD_voc_avg %>%
  select(1, 4) %>%
  rename('LOD' = 2, 'chemical' = 1) %>%
  head(20)
# find the min for background-levels
background_levels <- sapply(hourly_full_nona, min)</pre>
background_levels
##
                                                           h2s
              ch4
                                                                          so2
                         co2_ppm
                                             co
        1928.000
                                                                        0.200
##
                         411.300
                                         61.630
                                                         0.200
##
             nox
                              о3
                                         ethane
                                                        ethene
                                                                     propane
##
           0.025
                           0.500
                                          0.916
                                                         0.011
                                                                        0.224
##
         propene 1_3-butadiene
                                      i-butane
                                                     n-butane
                                                                    acetylene
                                          0.035
                                                         0.090
##
           0.009
                           0.007
                                                                        0.019
##
                                                     n-hexane
    cyclopentane
                      i-pentane
                                     n-pentane
                                                                     isoprene
##
           0.005
                           0.038
                                          0.042
                                                         0.021
                                                                        0.005
##
                        benzene
                                      n-octane
       n-heptane
                                                      toluene ethyl-benzene
##
           0.004
                           0.017
                                          0.004
                                                         0.004
                                                                        0.004
##
      m&p-xylene
                       o-xylene
           0.004
                           0.004
get_info <- function(column) {</pre>
  N <- length(column)</pre>
  background <- quantile(column, 0)</pre>
  quantile1 <- quantile(column, 0.01)</pre>
```

```
quantile99 <- quantile(column, 0.99)
  return(c(N, quantile1, quantile99, background))
}

info_table <- hourly_full_nona %>%
  reframe(across(everything(), ~ get_info(.x)))

info_table <- info_table %>%
  mutate(rownames = c('N', '1st percentile', '99th percentile', 'Background')) %>%
  pivot_longer(-rownames) %>%
  pivot_wider(names_from = rownames, values_from = value)

knitr::kable(info_table)
```

name	N	1st percentile	99th percentile	Background
ch4	4497	1963.40000	6318.81200	1928.000
$co2$ _ppm	4497	417.09000	457.87120	411.300
CO	4497	84.90720	444.04320	61.630
h2s	4497	0.20000	5.18084	0.200
so2	4497	0.20000	1.83896	0.200
nox	4497	0.22700	92.01080	0.025
o3	4497	0.50000	72.11200	0.500
ethane	4497	1.80852	536.67200	0.916
ethene	4497	0.01100	3.52212	0.011
propane	4497	0.81700	305.54000	0.224
propene	4497	0.00900	0.70228	0.009
1_3-butadiene	4497	0.00700	0.05904	0.007
i-butane	4497	0.14496	63.53760	0.035
n-butane	4497	0.34792	171.37600	0.090
acetylene	4497	0.04900	2.66204	0.019
cyclopentane	4497	0.00500	3.12356	0.005
i-pentane	4497	0.10396	51.02080	0.038
n-pentane	4497	0.10300	58.10280	0.042
n-hexane	4497	0.04196	18.32640	0.021
isoprene	4497	0.00500	0.03204	0.005
n-heptane	4497	0.01500	6.58924	0.004
benzene	4497	0.02700	3.87512	0.017
n-octane	4497	0.00400	2.01452	0.004
toluene	4497	0.01296	3.53640	0.004
ethyl-benzene	4497	0.00400	0.31604	0.004
m&p-xylene	4497	0.00400	1.31824	0.004
o-xylene	4497	0.00400	0.45912	0.004

```
#adjustments that were made according to paper
#William: I'm guessing this refers to Gunnar's paper section 2.2 and Guha 3.3
adjusting_neg_bg_from_lod <- function(chemical, LOD, background, hourly_data){
    # get min and max
    min_value <- min(hourly_data[chemical], na.rm = TRUE)
    max_value <- max(hourly_data[chemical], na.rm = TRUE)
# if min less than double LOD or max > 100 times LOD
# adjust to -100 (for entire column???)
if (min_value < 2 * LOD & max_value > 100 * LOD ){
```

```
return (0)
    }
  return (background)
# Check if background is negligible for non voc
# merge background and LOD
background_lod_non_voc <- tibble(chemical = non_vocs,</pre>
                                  LOD = LOD_non_voc,
                                  background = unname(background_levels[non_vocs]))
adjusted_background_non_voc <- background_lod_non_voc %>%
  rowwise() %>%
  mutate(min = min(hourly data[chemical], na.rm = TRUE),
         LODx2 = 2 * LOD,
         criterion1 = min(hourly data[chemical], na.rm = TRUE) < 2 * LOD,</pre>
         max = max(hourly_data[chemical], na.rm = TRUE),
         LODx100 = 100 * LOD,
         criterion2 = max(hourly_data[chemical], na.rm = TRUE) > 100 * LOD,
         adjusted_background = adjusting_neg_bg_from_lod(chemical, LOD, background, hourly_data))
# Check if background is negligible for voc
# merge background and LOD
background_lod_voc <- LOD_voc_avg %>%
  left join(tibble(chemical = setdiff(names(background levels), non vocs),
                   background = background_levels[setdiff(names(background_levels), non_vocs)]))
## Joining with `by = join_by(chemical)`
adjusted_background_voc <- background_lod_voc %>%
  rowwise() %>%
  mutate(min = min(hourly_data[chemical], na.rm = TRUE),
         LODx2 = 2 * LOD,
         criterion1 = min(hourly_data[chemical], na.rm = TRUE) < 2 * LOD,</pre>
         max = max(hourly_data[chemical], na.rm = TRUE),
         LODx100 = 100 * LOD,
         criterion2 = max(hourly_data[chemical], na.rm = TRUE) > 100 * LOD,
         adjusted_background = adjusting_neg_bg_from_lod(chemical, LOD, background, hourly_data))
# So now we have the adjusted background concentrations
subtract_adj_bg <- function(column, chemical) {</pre>
  print(chemical)
  result <-
  return (result)
hourly_nona_bgrm <- hourly_full_nona %>%
  mutate(across(adjusted_background_non_voc$chemical, ~ .x - adjusted_background_non_voc$adjusted_back
hourly_nona_bgrm <- hourly_nona_bgrm %>%
  mutate(across(adjusted_background_voc$chemical, ~ .x - adjusted_background_voc$adjusted_background[a
# look at zero values
colSums(hourly_nona_bgrm == 0)
##
                                                        h2s
                                                                       so2
             ch4
                       co2_ppm
                                           СО
##
                                                        777
                                                                      3065
               1
                             1
                                            1
##
             nox
                             о3
                                       ethane
                                                     ethene
                                                                   propane
                             0
##
               0
                                                          0
                                            1
                                                                         1
```

```
##
         propene 1_3-butadiene
                                     i-butane
                                                   n-butane
                                                                 acetylene
##
                           3126
               0
                                            1
                                                                         0
                                                           1
##
    cyclopentane
                     i-pentane
                                    n-pentane
                                                   n-hexane
                                                                  isoprene
##
                                                           0
                                                                      2815
                             1
                                            1
##
       n-heptane
                       benzene
                                     n-octane
                                                    toluene ethyl-benzene
##
               0
                             0
                                            0
                                                           0
      m&p-xylene
##
                      o-xylene
##
# replace negative values with random values between 0 and 0.5*LOD
set.seed(123)
replace_zero_with_random <- function(column, name, LOD_df){</pre>
  LOD <- LOD_df$LOD[LOD_df$chemical == name]
  column <- if_else(column == 0, round(runif(length(column), 0, 0.5 * LOD), 3), column)</pre>
  return (column)
}
hourly_nona_bgrm_zerorepl <- hourly_nona_bgrm %>%
  mutate(across(adjusted_background_non_voc$chemical, ~ replace_zero_with_random(.x, cur_column(), adju
hourly_nona_bgrm_zerorepl <- hourly_nona_bgrm_zerorepl %>%
  mutate(across(adjusted_background_voc$chemical, ~ replace_zero_with_random(.x, cur_column(), adjusted
Normalize the non-vocs
#normalizing function
normalize_column <- function(column){</pre>
  background <- quantile(column, 0)</pre>
  max <- quantile(column, 0.99)</pre>
  return ((column - background)/(max - background))
# normalize all
hourly_nona_bgrm_zerorepl_norm <- as_tibble(sapply(as.list(hourly_nona_bgrm_zerorepl), normalize_column
summary(hourly_nona_bgrm_zerorepl_norm)
##
         ch4
                                                               h2s
                         co2_ppm
                                              co
##
           :0.00000
                                               :0.0000
                                                                 :0.00000
    Min.
                      Min.
                             :0.0000
                                        Min.
                                                          Min.
##
   1st Qu.:0.04163
                      1st Qu.:0.2781
                                        1st Qu.:0.1523
                                                          1st Qu.:0.05642
## Median :0.10679
                      Median :0.3635
                                        Median :0.2377
                                                          Median :0.12909
  Mean
           :0.19848
                      Mean
                             :0.3976
                                        Mean
                                               :0.2953
                                                         Mean
                                                                 :0.19418
##
    3rd Qu.:0.27300
                      3rd Qu.:0.4808
                                        3rd Qu.:0.3721
                                                          3rd Qu.:0.25197
                             :1.9903
##
    Max.
           :7.30686
                      Max.
                                        Max.
                                               :6.4901
                                                         Max.
                                                                 :5.52116
##
         so2
                           nox
                                               о3
                                                               ethane
##
   Min.
           :0.00000
                      Min.
                              :0.00000
                                         Min.
                                               :0.0000 Min.
                                                                  :0.0000
##
   1st Qu.:0.04088
                      1st Qu.:0.03208
                                         1st Qu.:0.1355
                                                          1st Qu.:0.0314
## Median :0.08054
                                                          Median :0.1007
                      Median :0.10033
                                         Median :0.3589
          :0.13442
                      Mean :0.18181
                                               :0.3732
                                                          Mean
                                                                  :0.1976
##
    3rd Qu.:0.12081
                      3rd Qu.:0.24866
                                         3rd Qu.:0.5739
                                                           3rd Qu.:0.2917
##
    Max.
          :5.11178
                             :4.92396
                                         Max.
                                                :1.2121
                                                                  :3.8434
                      Max.
                                                           Max.
##
        ethene
                         propane
                                                           1_3-butadiene
                                            propene
```

:0.00000

1st Qu.:0.04616 Median :0.14857

Mean :0.23032

Min.

Min.

:0.00000

1st Qu.:0.03571

Median :0.11131

Mean :0.21527

: 0.00000

1st Qu.: 0.03843

Median: 0.09608

Mean : 0.17294

Min.

1st Qu.:0.06294

Median :0.17459

Mean :0.24709

:0.00000

```
3rd Qu.:0.35373
                     3rd Qu.:0.32152
                                       3rd Qu.:0.34474
                                                         3rd Qu.: 0.17294
##
          :4.83008
   Max.
                     Max. :3.96568
                                       Max.
                                             :7.96071
                                                         Max.
                                                               :23.05918
                                                          cyclopentane
##
      i-butane
                        n-butane
                                         acetylene
                                                                :0.00000
## Min.
          :0.00000
                     Min.
                            :0.00000
                                       Min.
                                             :0.00000
                                                         Min.
##
   1st Qu.:0.02802
                     1st Qu.:0.02682
                                       1st Qu.:0.08853
                                                         1st Qu.:0.03143
## Median :0.08893
                     Median :0.08557
                                       Median :0.16837
                                                         Median: 0.09684
         :0.18128
   Mean
                     Mean :0.17406
                                       Mean :0.24305
                                                         Mean :0.18948
##
   3rd Qu.:0.25229
                     3rd Qu.:0.24489
                                       3rd Qu.:0.33257
                                                         3rd Qu.:0.26903
##
   Max.
          :4.67041
                     Max.
                            :3.13405
                                       Max.
                                              :3.19783
                                                         Max.
                                                                :4.31449
##
     i-pentane
                     n-pentane
                                          n-hexane
                                                            isoprene
## Min.
          :0.00000
                     Min.
                            :0.00000
                                       Min.
                                              :0.00000
                                                         Min.
                                                               : 0.00000
                                       1st Qu.:0.02376
                                                         1st Qu.: 0.03698
##
  1st Qu.:0.02579
                     1st Qu.:0.02494
## Median :0.08349
                     Median :0.08124
                                       Median :0.08052
                                                         Median: 0.07396
## Mean
          :0.17550
                     Mean
                           :0.17463
                                             :0.17907
                                                         Mean
                                                               : 0.13700
   3rd Qu.:0.24496
                     3rd Qu.:0.24418
                                       3rd Qu.:0.25118
                                                         3rd Qu.: 0.14793
##
   Max.
           :4.23427
                     Max.
                           :4.45673
                                              :5.09899
                                                         Max.
                                                                :13.20266
##
     n-heptane
                        benzene
                                                            toluene
                                          n-octane
          :0.00000
                            :0.00000
                                       Min.
                                              :0.00000
                                                                :0.00000
                                                         Min.
                                                         1st Qu.:0.03454
  1st Qu.:0.02460
                     1st Qu.:0.03914
                                       1st Qu.:0.02736
## Median :0.08276
                     Median :0.10186
                                       Median :0.08704
                                                         Median: 0.10588
## Mean
         :0.18168
                     Mean
                           :0.18957
                                       Mean
                                             :0.18465
                                                         Mean
                                                                :0.19932
## 3rd Qu.:0.25481
                     3rd Qu.:0.26619
                                       3rd Qu.:0.26013
                                                         3rd Qu.:0.28677
## Max.
          :4.62641
                     Max.
                           :2.48644
                                       {\tt Max.}
                                             :3.41355
                                                         Max.
                                                                :2.56851
## ethyl-benzene
                     m&p-xylene
                                          o-xylene
## Min.
          :0.00000
                     Min.
                           :0.00000
                                              :0.0000
## 1st Qu.:0.01923
                     1st Qu.:0.01598
                                       1st Qu.:0.0000
## Median :0.09614
                     Median :0.08902
                                       Median :0.0813
## Mean
          :0.18206
                     Mean
                           :0.18234
                                       Mean
                                             :0.1730
   3rd Qu.:0.26279
                     3rd Qu.:0.26860
                                       3rd Qu.:0.2571
## Max.
          :2.97077
                     Max.
                           :2.37323
                                       Max.
                                             :2.0171
```

Combine and Transpose

```
normalized_matrix <- as.matrix(hourly_nona_bgrm_zerorepl_norm) #important: using the normalized VOCs fo

# Transpose <- cbind(Normalized_Data, Merged_VOCs)

# rownames(Transpose) <- as.character(Transpose[,1]) # I'm not able to run this line, but it shouldn't

# transpose_normalized_matrix <- t(as.matrix(normalized_matrix))

number_row<- dim(normalized_matrix)[1] #store number of rows (used for checking)

number_column<- dim(normalized_matrix)[2] #store number of columns
```

NMF section

```
## Joining with `by = join_by(chemical)`
# creating uncertainty Matrix
for (i in 1:number row) {
 for (j in 1:number_column) {
    xij <- normalized_matrix[i, j]</pre>
    LOD <- LOD_merged$LOD[[j]]</pre>
    # Get LOD value for this row
    if (j == 1) {
      # based on equation 6, we sqrt ch4 (at column = 1) and times by 1
      weight_matrix[i, j] <- sqrt(xij)</pre>
    } else if (j == 2) {
      # 0.25 for co2
      weight_matrix[i, j] <- 0.25 * sqrt(xij)</pre>
    } else if (j == 3) {
      # 0.5 for CO
     weight_matrix[i, j] <- 0.5 * sqrt(xij)</pre>
    } else if (xij <= LOD) {</pre>
      weight_matrix[i, j] <- 2 * LOD # equation 5a) in reference paper</pre>
    } else {
      weight_matrix[i, j] <- sqrt(((0.1 * xij)**2 + LOD**2)) #equation 5c) in reference paper</pre>
    }
  }
}
# set a seed for nmf
# set.seed(123)
# #function below used to estimate the optimal rank and will be used in the nmf() function.
# # takes around 20-30 mins to run
# estimate_rank <- nmfEstimateRank(normalized_matrix, 4:10, method = "ls-nmf", weight = weight_matrix,
# # changing the range of rank to 2:20 from 4:20
# saveRDS(estimate_rank, 'estimate_rank.rds')
estimate_rank <- readRDS('estimate_rank.rds')</pre>
measures <- estimate_rank$measures</pre>
fit <- estimate_rank$fit</pre>
consensus <- estimate_rank$consensus</pre>
# plots the NMF rank survey
plot(estimate_rank)
```

NMF rank survey

Factorization rank

```
# fitting the optimal rank based on the above plots
# the choice of the optimal rank needs to be discussed
output <- nmf(normalized_matrix, rank = 4, weight = weight_matrix, method = "ls-nmf")
W <- basis(output)
H <- coef(output)</pre>
```

Source contributions

```
# Convert H to a data frame for qqplot
H_df <- as.data.frame(H)</pre>
# Add a column for component
H_df$Component <- names(as.data.frame(W))</pre>
# Reshape data to long format
H_long <- pivot_longer(H_df, cols = -Component, names_to = "Chemical", values_to = "Contribution")</pre>
NFM1 <- subset(H_long, Component == 'V1')</pre>
# Plot
nmfplt_1_ls <- ggplot(NFM1, aes(x = Chemical, y = Contribution)) +</pre>
  geom_bar(stat = "identity", position = "dodge", fill = "orange") +
  theme(axis.text.x = element text(angle = 45, hjust = 1)) +
  geom_text(aes(label = sprintf("%.3f", Contribution)), color = "blue", size = 3, nudge_y = 0.001) +
  labs(x = "Chemical", y = "Contribution", title = "Component 1 ls-nmf")+
  theme(
  text = element_text(size = 14), # Base text size for all text elements
  axis.title = element_text(size = 16), # Size of axis titles
```

```
axis.text = element_text(size = 12), # Size of axis text (tick labels)
plot.title = element_text(size = 18) # Size of the plot title
)
nmfplt_1_ls
```

Component 1 Is-nmf

Chemical

```
NFM2 <- subset(H_long, Component == 'V2')
# Plot
nmfplt_2_ls <- ggplot(NFM2, aes(x = Chemical, y = Contribution)) +
    geom_bar(stat = "identity", position = "dodge", fill = "orange") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
    geom_text(aes(label = sprintf("%.3f", Contribution)), color = "blue", size = 3, nudge_y = 0.001) +
    labs(x = "Chemical", y = "Contribution", title = "Component 2 ls-nmf")+
    theme(
    text = element_text(size = 14), # Base text size for all text elements
    axis.title = element_text(size = 16), # Size of axis titles
    axis.text = element_text(size = 12), # Size of axis text (tick labels)
    plot.title = element_text(size = 18) # Size of the plot title
)
nmfplt_2_ls</pre>
```

Component 2 Is-nmf

Chemical

```
NFM3 <- subset(H_long, Component == 'V3')
# Plot
nmfplt_3_ls <- ggplot(NFM3, aes(x = Chemical, y = Contribution)) +
    geom_bar(stat = "identity", position = "dodge", fill = "orange") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
    geom_text(aes(label = sprintf("%.3f", Contribution)), color = "blue", size = 3, nudge_y = 0.001) +
    labs(x = "Chemical", y = "Contribution", title = "Component 3 ls-nmf")+
    theme(
    text = element_text(size = 14), # Base text size for all text elements
    axis.title = element_text(size = 16), # Size of axis titles
    axis.text = element_text(size = 12), # Size of axis text (tick labels)
    plot.title = element_text(size = 18) # Size of the plot title
)
nmfplt_3_ls</pre>
```

Component 3 Is-nmf

Chemical

```
NFM4 <- subset(H_long, Component == 'V4')
# Plot
nmfplt_4_ls <- ggplot(NFM4, aes(x = Chemical, y = Contribution)) +
    geom_bar(stat = "identity", position = "dodge", fill = "orange") +
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
    geom_text(aes(label = sprintf("%.3f", Contribution)), color = "blue", size = 3, nudge_y = 0.001) +
    labs(x = "Chemical", y = "Contribution", title = "Component 4 ls-nmf")+
    theme(
    text = element_text(size = 14), # Base text size for all text elements
    axis.title = element_text(size = 16), # Size of axis titles
    axis.text = element_text(size = 12), # Size of axis text (tick labels)
    plot.title = element_text(size = 18) # Size of the plot title
)
nmfplt_4_ls</pre>
```

Component 4 Is-nmf

NMF - Eva

```
# Try Eva's approach
components <- 4:10
errors <- numeric(length(components) - 4)</pre>
# Loop over the number of components
# for (n in components) {
    nmf\_result \leftarrow nmf(normalized\_matrix, rank = n, method = "KL", seed='nndsvd')
    reconstruction <- basis(nmf_result) %*% coef(nmf_result)</pre>
#
   error <- norm(normalized_matrix - reconstruction, type = "F")</pre>
#
    errors[n-3] <- error</pre>
#
    print(pasteO('Completed', n - 3, 'out of 7'))
# }
# saveRDS(errors, 'errors_norm.rds')
errors <- readRDS('errors_norm.rds')</pre>
```

NMF Reconstruction Error vs. Number of Components

[1] 43.69019

- ## Warning in sqrt(S[i] * termn) * uun: Recycling array of length 1 in array-vector arithmetic is depre ## Use c() or as.vector() instead.
- ## Warning in sqrt(S[i] * termn) * vvn: Recycling array of length 1 in array-vector arithmetic is depre
 ## Use c() or as.vector() instead.
- ## Warning in sqrt(S[i] * termp) * uup: Recycling array of length 1 in array-vector arithmetic is depre ## Use c() or as.vector() instead.
- ## Warning in sqrt(S[i] * termp) * vvp: Recycling array of length 1 in array-vector arithmetic is depre
 ## Use c() or as.vector() instead.
- ## Warning in sqrt(S[i] * termn) * uun: Recycling array of length 1 in array-vector arithmetic is depre ## Use c() or as.vector() instead.
- ## Warning in sqrt(S[i] * termn) * vvn: Recycling array of length 1 in array-vector arithmetic is depre ## Use c() or as.vector() instead.

Basis Matrix (W)

Coefficient Matrix (H)

Method comparisons

grid.arrange(nmfplt_1_ls, nmfplt_3_svd, ncol = 2)

grid.arrange(nmfplt_2_ls, nmfplt_2_svd, ncol = 2)

grid.arrange(nmfplt_3_ls, nmfplt_1_svd, ncol = 2)

grid.arrange(nmfplt_4_ls, nmfplt_4_svd, ncol = 2)

