What is claimed is:

- 1. A method of forming a damascene structure comprising:
- (a) providing a substrate having a feature defined through a first dielectric layer formed on a barrier layer comprising one of a silicon carbide (SiC) layer and a silicon carbon nitride (SiCN) layer deposited on a metal wiring layer;
- (b) generating a plasma from a gas mixture comprising trifluoromethane (CHF₃); and
- (c) etching the barrier layer using the plasma to transfer the feature therethrough to the metal wiring layer.
- 2. The method of claim 1 wherein the first dielectric layer comprises one of organosilicate (SiOC) and fluorosilicate glass (FSG).
- 3. The method of claim 1 wherein the gas mixture further comprises one or more gases selected from the group consisting of nitrogen (N_2) , oxygen (O_2) and argon (Ar).
- 4. The method of claim 3 wherein the gas mixture comprises trifluoromethane (CHF₃) and nitrogen (N₂) at a CHF₃:N₂ flow ratio of 30:50.
- 5. The method of claim 3 wherein the gas mixture comprises trifluoromethane (CHF₃) and oxygen (O₂) at a CHF₃:O₂ flow ratio of 30:10.
- 6. The method of claim 3 wherein the gas mixture comprises trifluoromethane (CHF₃), oxygen (O₂) and argon (Ar) at a CHF₃:O₂:Ar flow ratio of 30:10:50.
- 7. A method of forming a damascene structure comprising:
- (a) providing a substrate having a feature defined through a first dielectric layer formed on a barrier layer comprising one of a silicon carbide (SiC) layer and a silicon carbon nitride (SiCN) layer deposited on a metal wiring layer;
- (b) generating a plasma from a gas mixture comprising trifluoromethane (CHF_3) one or more gases selected from the group consisting of nitrogen (N_2) , oxygen (O_2) and argon (Ar); and

- (c) etching the barrier layer using the plasma to transfer the feature therethrough to the metal wiring layer.
- 8. The method of claim 7 wherein the first dielectric layer comprises one of organosilicate (SiOC) and fluorosilicate glass (FSG).
- 9. The method of claim 7 wherein the gas mixture comprises trifluoromethane (CHF_3) and nitrogen (N_2) at a $CHF_3:N_2$ flow ratio of 30:50.
- 10. The method of claim 7 wherein the gas mixture comprises trifluoromethane (CHF_3) and oxygen (O_2) at a CHF_3 : O_2 flow ratio of 30:10.
- 11. The method of claim 7 wherein the gas mixture comprises trifluoromethane (CHF_3) , oxygen (O_2) and argon (Ar) at a CHF_3 : O_2 :Ar flow ratio of 30:10:50.
- 12. A computer-readable medium containing software that when executed by a computer causes a semiconductor wafer processing system to form a damascene structure comprising the steps of:
- (a) providing a substrate having a feature defined through a first dielectric layer formed on a barrier layer comprising one of a silicon carbide (SiC) layer and a silicon carbon nitride (SiCN) layer deposited on a metal wiring layer;
- (b) generating a plasma from a gas mixture comprising trifluoromethane (CHF₃); and
- (c) etching the barrier layer using the plasma to transfer the feature therethrough to the metal wiring layer.
- 13. The computer-readable medium of claim 12 wherein the first dielectric layer comprises one of organosilicate (SiOC) and fluorosilicate glass (FSG).
- 14. The computer-readable medium of claim 12 wherein the gas mixture further comprises one or more gases selected from the group consisting of nitrogen (N_2) , oxygen (O_2) and argon (Ar).

- 15. The computer-readable medium of claim 14 wherein the gas mixture comprises trifluoromethane (CHF₃) and nitrogen (N_2) at a CHF₃: N_2 flow ratio of 30:50.
- 16. The computer-readable medium of claim 14 wherein the gas mixture comprises trifluoromethane (CHF₃) and oxygen (O₂) at a CHF₃:O₂ flow ratio of 30:10.
- 17. The computer-readable medium of claim 14 wherein the gas mixture comprises trifluoromethane (CHF₃), oxygen (O₂) and argon (Ar) at a CHF₃:O₂:Ar flow ratio of 30:10:50.