```
Aquivalentrelationen & (Halb)ordnungen
 Def: Sei Reine binare Relation, die reflexiv, symmetrisch und
      transitir ist. Dann heißt R Aquivalent relation.
Beispiel:
  Sei A= "Menge aller Waren eines Supermarkts"
         R={(x,y) E A x A | x hat den gleichen Preis wie y}
Beispiel 7:
  Sei B= "Merge aller Menschen"
         S={(x,y) EB2 | x ist Freund vony }
         =) 5 ist eine Aquivalenerelation
Beispiel 3:
  Sei L = { H | H ist aussagenlogische Formel}
         == { (H1, H2) EL] H1 ist (ogisch ögnicalent e4 4)
         => 15t eine Agivalenzrelation
Beispiel 4.
  Sei B= Z x Z \ E 0 } und ~ = { ((a,b), (c,a)) & B? )
    a · d = b · < }, down 15t ~ eine Aquivalenzielation.
    reflexiv: (a,b)~(a,b), da a.b = b.a
   symmetrie: (a,b) ~ (c,d), dann a.d = b.c
                = > ( \cdot b + d \cdot a 
= > ( \cdot c, d ) \sim ( \cdot a, b )
   transitiv: (a,b) ~ (c,d) and (c,d) ~ (e,f), dans
                 a.d = b. s und of - de Also gitt
                 adf = 6 cf und mit einsetzen adf = 6 de
                  gekürzt af=be. Somit (dp) ~ (e,f)
```

```
Sein eine Aquivalenzrelation über A und a E A.
     Dann heißt
              [a] = { b ∈ A1 a ~ b }
     die Aquivaluz Nosso von a (bægl.~).
     Die Elemente in [a], heißen Repräsentanten
      Von La],
    Sei At & eine beliebige Menge. Eine Zerlegung oder
    Partition von A ist eine Familie ZCP(A) wit
      11) \emptyset \in \mathbb{Z}
      111) Fir My, Mz E Z mit My # Mz gill My n Mz = 0
 Sei A # 9. Eine beliebige Aquivalent relation Rüber A
  definiert eine Zerlegung Z von A und umgekehrt legt
  jede Zerlegang z von A wieder eine Aguiraletzre Cation
 R von A fest.
Beneis.
 ., = )" Sei Aa = { b & A | a Rb} und Z sei die Werge aller
       Mengen Aa, wobei a EA,
       Da Rreflexiv ist, learn Ag night Alar sein und
         UA_a = UX = A
\alpha \in A
X \in \mathcal{F}
      Nun ist hoch zu zeigen, dass für Aa und Az mit
      Aa 7 Ab gilt Aan Ab = 8
```

Angenomien es gabe Aa F Ab mit de Aa und AL,
dann gilt a Rd und b Rd. Wegen der Symmetrie aud
d Rb. Mit der Transitivität a Rb. Damit wore Aa=Az!
Dieser Widersprach bedeutet: Aan Ab=9

Sei Zeine Zerlegung und Ax EZ. Weiterhim ist Ax EZ die Klasse von Zrdie das Element x EA enthalt. Es kann passieren, dass eine Klasse evtl, mehrene 11 Namen hat, da ja mehr als ein Element in Ax vorkommen kann.

Sei R= \(\(\alpha \, \beta \) \(\alpha = A \beta \) \\
Klar: R ist reflexiv, da \(A a = A \beta \) d.l. \(\alpha \, a \end{al} \) \(\alpha \, \alpha \alpha \, \alpha \, \alpha \) \(\alpha \, \

Cilt a Rb und b Rc, dann bedeutet dies Aa= Ab und
Ab= Ac, d.h. Aa= Ac und daraas ergibb sich a Rc, d.L.
Rist transitiv.

=> R ist eine Aquivalenzrelation

sei Reine binare Relation über Andie reflexiv, antisymmetrisch und transitiv ist, dann nennt man R eine Halbordhung Gilt zusätzlich, dass für alle a, b E A aRb oder bRa, dann heißt R Ordnung. State a Rb schreibt man oft a ≤ b, Beispiel: Die übliche 11 Kleiner-gleich" Relation auf den reellen Zahlen ist eine Ordnung. Beispielz: Sei A= {a,b,c}, dann kann man die PLA) graphisch wie folgt darsteller: \$0,6,c3 {a,b} {a,c} {b,c}
{a}
{b}
{c} Dannist die isbliche Teilmengenrelation eine Halbordnung auf P(A), da $ref(exiv: \forall x \in P(A) gilt x \leq x$ antisy muchisch: Y X, y EP(A) mit X = y und y = x gilt x=y transitiv: + X, Y, Z EP(A) mit x = y und Y = Z gill dass X SZ

Funktionen

Defi Sei $f \subseteq A \times B$ und somit eine Relation zwischer A und B. Gibt es für jedes $\alpha \in A$ maximalein be B, sodass (a,b) & f, dann heißt f Abbildung oder Funktion.

Schreibneise: T: A->B

Gilt (a1b) Ef schreibt man auch f(a)=b oder and f: a+>b

Gibt es fir alle a E A genau ein b eB, sodass fra)= b, danheißt f total,

Die Menge Dr = { a E A | es gibt ein b E B mitfonj=b}
heißt Definitionsbereid (Domain) von f aud
Wr = { b E B | es gibt ein a E A mit f (a) = b} wird
Wertebereid (Range) genannt.

Die inverse Relation of Leißt Umkehrfusietion,
wehn sie selbst eine Funktion ist. Dann heißt
finvertierbar,

Die Menge f 1(N)= {a ∈ A| f(a) ∈ N} heißt Urbild von N.

Statt f ({ 563) schreibt man lear of 16).

Bemerhung:

Diese Definition deckt and Mehrstellige Funktionen ab, da A ja das Kaitesische Produkt von Mengen sein krann.

Def: Eine Funktion f: A-> Bheigt
- surjektiv, wenn ihr Werteboreich = B
= injektiv, wenn # a, a E A mit a # a' gilt

f(a) f f(a') - bijektiv, nem f sarjektiv und injektiv ist Die Funktion f: IR-> IR, fax = 2x+3 ist bijebliv: - fist surjektiveda for alle b ERR gilt f(b-3)=1 -fist injektivywenn f (a) =f(a'), dann folgt a = a' (via Kontraposition) Seif(a) = f(a1) => 7a+3= 2a+3 =7 7a = 7a => a = a' =) first lijektiv Beispiel ?. Sei g: IR+->IR+ g (x) = ex-1, donn ist g Lijektiv Bem: Wenn of bijektivist, dann and fin und (fin)=f.

								Ŀ] <u>b</u> =	₹ 0	i L	(<u>k</u>	a	r 18		h	4 <i>0</i>	ľ	 (b	110	ab:	7 <u>à</u>	hl	La	i <i>p</i>		U e	49	ር	_						
		D	٥ (4.			ul .	0.4	4 1			Δ	10		./	R		L ,	/) .			a 1	,	•	/ 		d	<u>4</u>	· Æ						~ !
			ļ	زن	٤	. , k4		er.	7	- - u	L	(Ł	i o	h	\ 	ν Υ:	1	1 e	^ /. ->	R		و ع	y xi	<u>ح</u>	ie	rt.			<u>, , , , , , , , , , , , , , , , , , , </u>			h	-	_		~ {
															<u> </u>																					
	<u>[</u>) e -	/- :	٤ i	Ļ	e	J	U.	و د	g	e	·	A	•	۲.	ci	ß٦	4	а	۽ را	EÀ	4	(6	a	<u>_</u> /	L	~!	41	•		4	Q	40	d L	, ;	4
				is	÷	,	0 0	de	N		بر	7	1	le	ic	۷.	n	à·c	4 t	j	g) N	1													
Be	_ *	'				. ,																														
	- J																									1		<u> </u>		3		y		5		
	-	#_	()	t +	(,	ط: (.	**	7 5	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	00 جر	r H	a ((5	r L	3	g r	a d	T 7	· >	, v	~/	«		₩ 0		1		レ -1		3 レマ		4 しつ	•	7		
		-						<u>_</u>		Z	1	,	V	<i>ه</i>				J																		
_	C)	(rt									u																							
						1	1		1/10		3	1	4	í																						
						2	7		112		/	123/	,	2 4,																						
) u		5 1 /	1	3	3	3	1	4/2	,																					
							-																													
	De	:		Se	<u>.</u>	e . '		N	1 6	1 h	d	/	b	, e (4	e b	ig	e	1	Le	4	1e	n	4	10	J	21	 -	‡	D	2	ء ز	e			
				h				_											15	d	e X	11	u	n 4	(t)	<i>0</i> 4		. L	0	. /	h	6.	_	Sh)	<u>'</u> u	.Ld(
				i e		_							ļ ·	•					o f	4		h	i (٤ د	~ ,·		} _4	? 7	٠ د	: c (44	e+	. 4	. 4 0	1	
			(։	٠	~	/)	Ł		5	d e	r		V	0 h		~	. 6																		
			0	ft		h	o E	∵ e	r-	ť	h	. "	h		ا 'د	. <u>e</u>		40	le	y {	- Lui	la	f i e	6	L	. <i>i</i>	£	1	h- j) _i	€/	,	7 a	le r		
			(L	n i),																															
																																			4	

Grundlagen der Graphentheorie

Def:
Ein gerichteter Graph G=(V,E) ist ein Paar, das aus
einer Menge Von Knoten V und einer Menge E = VxV von
Kanten besteht.

Eine Konte k = (u,v) E E konn als Verbindung zwischen den Knoten u,v E V aufgefasst werder. Der Knoten n ist der Startknoten, v der Endknoten.

Knoten, die darch eine Kante verbunden sind heißen "behachbart" oder, adjaszent".
Ein Graph (V, E) heißtendlich genanden, wenn die Menge der Knoten Vendlich ist.

Be is piel:

Nikolausgraph:

$$G_{N} = (V_{N}, E_{N}), V_{N} = \{1, 7, 3, 4, 5\} \text{ und}$$

 $E_{N} = \{(1, 2), (7, 4), (4, 3), (3, 5), (5, 4), (4, 1), (1, 3), (3, 2)\}$

Def:
Se: G= (V,E) ein gerichteter Grapt.

1st die Kantenrelation E symmetrisch, dann
ist G ein ungerichteter Grapt.

Notation:

Euler Pfad:

Jede Kante darf nur
einmal denutzt werd, Kante Statt (a,b) and mit Za,b} bezeidnet werd.

- Muss an geradem

Pankt starten.

						1) i (2 .	01	d	pl	. :	<u>ار ک</u>	′~ه		Do	44	5-{	eU	14	~ g															
) i c			V	<u>/ </u>	h		<u> </u>	ra	ρl	۲ ـ ۲	24																		
Be	· 5P	ie	(4	2:																																ļ
													_/	_ \	\													1	ار							
ger hi	. (4)	١,											I							_							(ر ک							1
ger	icl	. E a	4	1	,(-	ro	2 p 1	4			F	2	χh	a	t e	r	дe	ri	ch	£e	Łe	r		ع	ch	ge		-67	(é	(a)	r b	م : ر		X:1	'er	_
hi	it_	5	Kı	0	te	h						6	r	a p	h	m	it	5	K	n 6	4	r				_	Ç	7 1	a	6 4		_	_	_	_	1
														_			CA)										_			$\neq i$	$) \perp$				-
		$\mathcal{L}_{\mathbf{x}}$)												_	7	U	\frown									(\triangleleft				_	_	_	ļ
<u> </u>		<u>/\</u>	$\overline{\lambda}$		ST	رد ا						(3)							>	Y (2	2)						\setminus			≯હૃ)	_	_	+	+
Ø₹	\mathcal{A}		\vdash		سر	<i>'</i>							7								-1						0	+	4	_	\	\vdash	_	_	_	Ŧ
	1	\times		\setminus										\setminus							+						െ				> @	_	_	-	+	+
(5	54			K	ລ									_/						(3	\checkmark									Ź	美	$\dot{\mathcal{P}}$	_	_	+	ł
9				G	5)										11)<				[3	3)						U	_			\mathscr{J}	$^{\prime\prime}$	-	+	+	ł
E5 1			ļ <u>.</u>		7			\dashv		1		A		7.	<u>ح</u>	1				1		- 1			1		~/	+	//		6	<u>ソ</u>	_		-	t
(>)	\ a	44	h	18	hi	~	re	-/	g	Ve	10	'h L	رد	2	gru	•/	g	ro	T P	4	150	Ch	K		ν	۸ (۶۲	. 6	u	44	9	بمو	-		+	t
lihe	<u> </u>	1		- n	14	P 1.	<u> </u>		ام		2 B																								-	t
Uhe	.)		r	7 P		· N	•	g	e .	-	4	•																+					-		+	t
70	4																																_	+	+	t
De		c;			<u>a</u>	L	2 0	1		6		1	0	Λ	4		_/		h	0 1	-,					و	_		1	, ,		Ü.	40	-	+	t
			<u> </u>		9	"	r	<i>-</i>		_		n	U	P			7		-1	- 1	1	w	•	70	•			U	~	46			94	-		t
		1 c	re	4 7	2 U	h	a	\	, h l		ŀ	7	71 L	4.	2 h		a	17	e i	d	4	<u>.</u> 4	1	(2	do	,	/								t
							7				i				-		7		,		,			~				7								t
	W	. (1	5	a.	:	5.	5	1	0	4		(A (•	0	1.	P		"	se	4	Se.	r e	(a)	ZU	L	æ s	- 4		21	0					Ť
					7				7												•						1	-(Ť
		Do	er'	56	e	(L)	ba	1	10	e	; {																									Ť
																																				Ī
																																				I
																																				_
																																_	_	_	4	ļ
																												_							_	ļ
																																_	_	_	+	+
																																-	_	_	+	ł
									+																	-		+				\dashv	_	-	+	+
																												+				\dashv	+	+	+	ł
																																	_		-	ł
									+	-																							+	+	+	+
																												+					+		+	t
																																				t
																																				t
																																			+	t
																																	_			Ť
																																				Ť
																																				Ť
																																				T
																																				Ī
																																				1
																																_				1
									_																							_				1

```
Teil Graphe.
Def. (Teilgraph) (Va, Ea) und H= (VH, E.) Graphen. Gilt Vu S
     Vg und EH & EG, donn heißt H. Teilgraph, Untergraph
      oder Subraph (von G).
Def: (Induzierter Teilgraph)
Seien G= (V,E) und (V'EV) eine Teilmerge von Knoden.
       Dann heißt Gr = (V', E') mit
                 E'=\{(u,v)\in V'\times V'\mid (u,v)\in E\}
       der von V'induzierte Teilgraph.
                       Boolsche Operationen
                         auf Graphen
     Def: Seien G=(V, E) und G=(V', E') Graphen, dann heiße
          -> GUG'= (VUV', EUE') "Vereinigungsgraph"
          -> G NG=(VNV', E NE') "Schnittgraph"
          >>G = (V1(VxV) \ E) , Komplement graph"
Beispiel:
 # = GUG
               H = G \cap
                                  #=76
```

```
Der Grad eines Knotens
    Def: (Grad)
Sei G=(V, E) ein Graph. Die Anzall von Kanten,
           Wobei 'V' Startknoten ist, heigt "Ausgrad on ".
           Notation: Outdeag (v)
           Die Anzahl von Kanten, wobei 'v' Endknoten ist, heißt
           "Eingrad von 'v".
           Notation: indegg(V)
           Da sich der Ein- und Ausgrad in ungerickteten Graphen
           nicht unterscheidet, spricht man hier kurz von Grad:
           Notation dega (v)
An merkung:
             Ein Knoten 'v' mit indegg ('v') = outdegg ('v') = o heist
             isoliert.
  Def: (regula,)
Ein ungorichteter Graph G=(V,E) heißt k-regulör, Lean
           alle Knoten 'v' EV den Grad & haben.
```

Wege und Kreise

Sei G = ({v₁,..., v_n}, {e₁...e_m}) ein ungerichteter Graph, dann heißt eine Folge ein, e_{in},..., eiz E {en,..., e_n} heißt Pfad / Weg (der Länge k) von u nad v, wenn für ake ei; = (Uij, vij) gict:

- 1) ein = (u, viz) und eix = (uix, v)
- 2) für 1 = j < k ist Vij = ui;+1

Ein Graph G heißt zusammenhängend, wenn für dle knoten u und v von G ein Pfad von u nach veristiert.

Ein Pfad von a nach v heißt geschlossenzt gklas oder Kreis, wenn u = v gilt.

Kreisfreie Graphen

Ein Graph heißt kreisfrei/zyklenfrei, nenn er keinen Zyklus der Länge = 1 hat. Ist ein kreisfreier Graph gerichtet, so heißter DAG.

Einzyklenfreier Graph heißt Wald. Ein Wald heißt Bann, Wenn er zusammenhängend ist.

Theorem:

1st Gein zusammenhängender Grapt mit n Knoten und n-1 Kauten, dann ist Gein Baum.

Beneis:

Ein Graph muss, un einer Zyklus zuhaben, mindestens so viele Kanten wie Knoten haben. Da G weniger Kanten als Knoten hat, kann G Keinen Zyklus haben und ist deshalb ein Baum.

```
Datenstrukturen für Graphen
Def:
Sei G=({v1,..., vn}, E) ein gerichteter Graph und Ag eine
                                                                           n \times n Matrix A_G = (a_{i,j}) \le i,j \le n mit a_{i,j} = \{a_{i,j}\} \le i,j \le n mit a_{i,j} = \{a_{i,j
```

Grundlagen der Algebra Grappenbegriff Def: Ein Paar (G, 0) heißt Gruppe, wenn 1) 10 ist eine Fulktion der 70, m 0: GxG->G (Abgeschlossenheit 11) Habic EG gilt a o (b o c) = (a o b) o c "Assoriationtat" III) Es gibt ein Elemente EG, so dass Va EG gill a o e = a = e o a (Existent des neutralen Elements 1V) Va E G Ja' E G, so dass a o a'= e = a'o a (Existent des inversen Elements) V) Gilt zusätzlich Valb EG auch a · b = b · a, dann heißt (G, o) kommutative oder abelsche Gruppe. Beispiel: (|V, +)1) +: IN x IN -> IN Abgeschlossenheit 11) IN,+(1N2+ IN) = (1N1+ IN2) + IN3 Associativitat III) IN + 0 = IN = 0 + IN Neutrales Element existient IV) 5 + a'= 0 /-5 Es existient kein Inverses Element V) a + b = b + a ist quicking Das Paar ist kommutativ Die natsirlicen Zahlen IN mit '+' sind keine Grappe. Verknipfangstafel Für eine GinppeG(Ed, B, 8, 8}, 0) existiert eine Gruppentafel: OdBYS - 15t diese Achsensymmetrisch, 13 ist G kommutatio/ Abelsek S - Verändert sich ein wert einer Spalte/Zeile nicht, ist dieses Element

das neutrale Element

