الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية الديوان الوطني للامتحانات والمسابقات

دورة: 2023

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المدة: 04 سا و 30 د

اختبار في مادة: التكنولوجيا (هندسة الطرائق)

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع على (04) صفحات (من الصفحة 1 من 8 إلى الصفحة 4 من 8)

التمربن الأول: (07 نقاط)

لا - d = 2,414 من الكريون. (A) كثافته البخارية بالنسبة للهواء d = 2,414 يحتوي على d = 35,71% من الكريون.

أ- احسب الكتلة المولية للفحم الهيدروجيني (A).

ب- جد الصيغة المجملة للفحم الهيدروجيني (A).

 $M_{\rm C}$ =12 g.mol⁻¹، $M_{\rm H}$ =1 g.mol⁻¹:یعطی

2) نُجري انطلاقا من الفحم الهيدروجيني (A) سلسلة التفاعلات الآتية:

1) A
$$\frac{\text{KMnO}_4 \text{ conc}}{\text{H}_2\text{SO}_4}$$
 B + C

2) B +
$$H_2 \longrightarrow D$$

3) D
$$\frac{\text{Al}_2\text{O}_3}{350 - 400^{\circ}\text{C}} = \text{E} + \text{H}_2\text{O}$$

5) F + Mg
$$\xrightarrow{R - O - R}$$
 G

6) G + CO₂
$$\xrightarrow{\text{H}_2\text{O}}$$
 H + MgBr(OH)
7) C $\xrightarrow{\text{1) LiAlH}_4}$ I

7) C
$$\xrightarrow{1) \text{LiAlH}_4}$$
 \rightarrow I

8) H + I
$$\xrightarrow{\text{H}_2\text{SO}_4}$$
 H₃C-CH-C-O-CH₂-CH₃ + H₂O

حيث المركب (B) يتفاعل مع DNPH ولا يُرجع محلول فهلنغ.

أ- جد الصيغ نصف المفصلة للمركبات I · H · G · F · E · D · C · B · A.

ب- استنتج مردود التفاعل (8).

II - لديك كحول (J) صيغته نصف المفصلة:

$$\begin{matrix} \text{OH} \\ \text{CH}_3 - \overset{|}{\text{C}} - \text{CH} = \overset{|}{\text{C}} - \text{CH}_3 \\ \overset{|}{\text{CH}}_3 & \overset{|}{\text{CH}}_3 \end{matrix}$$

- 1) الكحول (J) لا تتأكسد وظيفته الكحولية. علّل ذلك.
- 2) معالجة الكحول (K) ب (K) المركزة والساخنة في وسط حمضي تؤدي إلى مركب (K) والمركب (K) السابق. نزع الماء من المركب (K) في وسط حمضي يعطي المركب (K).

يتفاعل المركب (L) مع الميثانول CH_3OH في وسط حمضي فينتج المركب (M).

- جد الصيغ نصف المفصلة للمركبات M ، L ، K
- 3) البلمرة بالضم للمركب (M) تعطي بوليمير (P) الذي يُعرف باسم «Plexiglas».
 - أ- اكتب معادلة تفاعل البلمرة.

ب- مثّل مقطعا من البوليمير (P) يتكون من 4 وحدات بنائية.

التمرين الثاني: (07 نقاط)

المركزة في $I_{i}=334,21$ المركزة في $I_{a}=184,21$ المركزة في $I_{a}=184,21$ المركزة في وسط حمضي تعطي ثلاثة أحماض على الترتيب وفق التفاعل الآتي:

$$A \xrightarrow{\text{KMnO}_4 \text{ conc}} B + 3 C + D$$

- الحمض B أحادي الكربوكسيل كتلته المولية $^{-1}$ B أحادي الكربوكسيل كتلته المولية
 - الحمض C ثنائي الكربوكسيل صيغته:

$${
m HOOC-CH_2-COOH}$$

- الحمض D ثنائي الكربوكسيل نسبة الأكسجين فيه تساوي 48,48% صيغته من الشكل: HOOC— $\left(\mathrm{CH_2}\right)_{\!\! \mathrm{X}}$ COOH

1) أ- احسب الكتلة المولية للحمض الدهني A.

 \mathbf{p} . D و B والصيغة نصف المفصلة لكل من

- ج- اكتب الصيغة نصف المفصلة للحمض الدهني A.
- يدخل في تركيبه $I_i=118,97$ كتلته المولية $M_{TG}=854~g.mol^{-1}$ وله قرينة اليود TG كتلته المولية E يدخل في تركيبه الحمض الدهني E وحمض دهني E رمزه E رمزه E
 - أ- احسب عدد الروابط المضاعفة الموجودة في TG.
 - ب- اكتب الصيغ نصف المفصلة المُمكنة لـ TG.

 $M_{\rm C}$ =12 g.mol $^{-1}$, $M_{\rm H}$ =1 g.mol $^{-1}$, $M_{\rm O}$ =16 g.mol $^{-1}$, $M_{\rm K}$ =39 g.mol $^{-1}$, $M_{\rm I}$ =127 g.mol $^{-1}$

II- الأسبارتام «L'aspartame» مُحلِّي مذاقه مشابه لمذاق السكر، يستعمل كمادة مُضافة إلى مشروبات «Light» صيغته:

$$\begin{array}{c|c} O & O \\ H_2N-CH-C-NH-CH-C-O-CH_3 \\ CH_2 & CH_2 \\ COOH & \\ \end{array}$$

يدخل في تركيبه حمض الأسبارتيك Asp و الفنيل ألانين Phe.

- 1) اكتب الصيغة نصف المفصلة لكل من Asp و Phe.
- 2) هل يعطى الأسبارتام نتيجة إيجابية مع كاشف كزانتو بروتييك؟ علِّل.
 - 3) مثّل بإسقاط فيشر المُماكِبات الضوئية للحمض الأميني Phe.
- 4) تَمّ وضع مزيج من الحمضين الأمينيين Asp و Phe في منتصف شريط الهجرة الكهربائية ثمّ أجريت بعد ذلك عملية الفصل عند pH=5,48 ، فكانت نتائج الهجرة الكهربائية كالآتى:
 - عدم هجرة الحمض الأميني Phe
 - هجرة الحمض الأميني Asp نحو القطب الموجب

يعطى الجدول الآتي:

pH_i	pKa _R	pKa ₂	pKa ₁	الحمض الأميني
?	//	?	1,83	Phe
?	3,66	9,60	1,88	Asp

. Phe للحمض الأميني pH_i

ب- احسب قيمة pKa2 للفنيل ألانين Phe وقيمة pH_i لحمض الأسبارتيك

ج - اكتب الصيغتين الأيونيتين للحمض الأميني Asp عند 0,60 عند pH=9,60.

التمرين الثالث: (06 نقاط)

 $:25^{\circ}$ C عند الآتي عند الكيميائي الآتي

$$HCl_{(g)} + \frac{1}{4} O_{2(g)} \longrightarrow \frac{1}{2} Cl_{2(g)} + \frac{1}{2} H_2O_{(\ell)} \qquad \Delta H_r^{\circ} = -51 \text{ kJ.mol}^{-1}$$

.25°C عند كنا التفاعل عند ΔU عند الطاقة الداخلية (1

 $R = 8,314 \text{ J.mol}^{-1}.K^{-1}$ يعطى:

 $\Delta H_{\mathrm{f}}^{\circ}(\mathrm{HCl}_{\mathrm{(g)}})$ احسب الأنطالبي (2

 $\Delta H_f^{\circ}(H_2O_{(\ell)}) = -286 \text{ kJ.mol}^{-1}$ يعطى:

الرابطة	H - C1	O = O	Cl - Cl	О - Н
E (kJ.mol ⁻¹)	431	498	243	463

أ - أكمل المخطط.

.25°C عند $\Delta H^{\circ}_{\mathrm{Vap}}(\mathrm{H_2O}_{(\ell)})$ عند عند بانطالبي التبخر للماء

 ΔH_{r}° عند ΔH_{r}° عند (4

 $\Delta H^{\circ}_{Vap}(H_2O) = 40,7 \; kJ.mol^{-1} : 100 {^{\circ}C}$ عند عند انطالبي التبخر للماء عند

المركب	HCl _(g)	$O_{2(g)}$	$Cl_{2(g)}$	$H_2O_{(\ell)}$	$H_2O_{(g)}$
Cp (J.mol ⁻¹ .K ⁻¹)	29,12	29,36	33,91	75,29	33,58

الموضوع الثانى

يحتوي الموضوع على (04) صفحات (من الصفحة 5 من 8 إلى الصفحة 8 من 8)

التمرين الأول: (07 نقاط)

. M_2 و M_1 يَنتُج بوليمير M_1 من تفاعل مونوميرين M_1 من تفاعل

0,73g منه يلزم M_1 المونومير M_1 عبارة عن حمض ثنائي الكربوكسيل ذو سلسلة خطية مشبعة ، لتعديل M_1 من محلول NaOH تركيزه NaOH تركيزه (0,5mol.L-1).

أ- احسب الكتلة المولية للمونومير M_1

ب- استنتج صيغته نصف المفصلة.

$${
m M_C=12g.mol^{-1}}$$
 , ${
m M_O=16g.mol^{-1}}$, ${
m M_H=1g.mol^{-1}}$, ${
m M_{Na}=23g.mol^{-1}}$. يعطى: (P) يُحضر البوليمير (P) وفق سلسلة التفاعلات الآتية:

1) A + Mg
$$\xrightarrow{\text{R -O-R}}$$
 B

2) B +
$$CO_2 \xrightarrow{H_2O} C + MgCl(OH)$$

3) C +
$$CH_3$$
-Cl $\xrightarrow{AlCl_3}$ D + HCl

4) D
$$\xrightarrow{\text{KMnO}_4}$$
 E + H₂O

5) E
$$\frac{1) \text{LiAlH}_4}{2) \text{H}_2\text{O}} \rightarrow \text{M}_2$$

6)
$$n M_1 + n M_2 \longrightarrow \begin{bmatrix} O & O & O \\ C & C & C \\ C & (CH_2)_{\overline{4}} & C - O - CH_2 \\ (P) & C & CH_2 - O \end{bmatrix}_n + mH_2O$$

. M_2 أ- استنتج صيغة المونومير

ب- جد الصيغ نصف المفصلة للمركبات E · D · C · B · A

ج- ما نوع البلمرة في التفاعل رقم 6 ؟

 $M_{(P)}=248000~{
m g.mol}^{-1}$ المولية المتوسطة (P) إذا كانت كتلته المولية المتوسطة (P) إذا كانت كتلته المولية المتوسطة

OH مبر تفاعلين.
$$M_1$$
 انطلاقا من حلقي الهكسانول M_2 ، M_2 و M_3 عبر تفاعلين. M_1 عبر تفاعلين الموافقين.

التمرين الثاني: (06 نقاط)

- I- غلیسرید (G) یدخل فی ترکیبه حمض دهنی (A).
- HOOC $\mathrm{(CH_2)}_7$ COOH الحمض الدهني (A) بـ $\mathrm{KMnO_4}$ في وجود $\mathrm{H_2SO_4}$ تعطي الحمض الدهني (B) بالتعديل (B) بالتعديل (B) بالتعديل (B) بالتعديل (B) بالتعديل وحمض أحادي الكربوكسيل (B) بالتعديل (B) بال
 - أ- جد الصيغة نصف المفصلة للحمض (B).
 - ب- استنتج الصيغة نصف المفصلة للحمض الدهني (A).
 - .I₂ من الغليسريد (G) تُثبّت 0,1mol (2
 - أ- جد عدد الروابط المضاعفة الموجودة في الغليسريد (G).
 - ب- أعط الصيغ نصف المفصلة الممكنة للغليسريد (G).
 - ج- احسب قرينة اليود للغليسريد (G).

يعطى:

 $M_C = 12 \text{ g.mol}^{-1}, M_H = 1 \text{ g.mol}^{-1}, M_O = 16 \text{ g.mol}^{-1}, M_K = 39 \text{ g.mol}^{-1}, M_I = 127 \text{ g.mol}^{-1}$

 $\mathrm{H}=1$ كالآتي : $\mathrm{Arg}\operatorname{-Gly}\operatorname{-Glu}$ كالآتي : H= كالآتي

- 1) أعط صيغة ثلاثي الببتيد عند 13 = pH = 13.
- 2) اكتب صيغ الأحماض الأمينية المكونة لثلاثى الببتيد.
 - 3) يتأيّن الحمض الأميني Arg عند تغير الـ pH

أ- اكتب الصيغ الأيونية لـ Arg عند تغير اله pH من 1 إلى13.

ب- احسب قيمة pH_i للحمض الأميني

ج- أعط الصيغة السائدة للحمض الأميني Arg عند PH = 12 عند

يعطى:

$$pKa_1 = 2,17$$
 · $pKa_2 = 9,04$ · $pKa_R = 12,48$

التمرين الثالث: (07 نقاط)

. $T_1=30\,^{\circ}$ C من الماء درجة حرارته $m_1=200~g$ ثم نضيف قطعة جليد كتلتها - $m_1=200~g$ ثم نضيف قطعة جليد كتلتها - $m_2=10g$ و درجة حرارتها $m_2=10g$

مستعينا بالمخطط الآتي :
$$Q_1$$
 Q_2 Q_3 Q_2 Q_3 Q_3 Q_5 Q_5 Q_5 Q_6 Q_6 Q_6 Q_6 Q_6 Q_6 Q_7 Q_8 Q_8 Q_9 Q_9

- 1) احسب Q₁ و Q₁
- 2) جد درجة حرارة التوازن Teq.

يعطى:

: وفق المخطط الآتي : C_3H_7 - $NH_{2(\ell)}$ انطلاقا من عناصره النقية وفق المخطط الآتي :

أ- أكمل المخطط.

 $\Delta H_{\rm f}^{\circ}({
m C_{3}H_{7}}-{
m NH}_{2_{(\ell)}})$ البروبيل أمين السائل البروبيل أمين أنطالبي تشكل البروبيل

$$\Delta H_{sub}^{\circ}(C_{(s)}) = 717 \text{kJ.mol}^{-1} \text{ , } \Delta H_{Vap}^{\circ}(C_3 H_7 - N H_{2_{(\ell)}}) = 29,2 \text{ kJ.mol}^{-1} \text{ }$$
يعطى:

الرابطة	Н-Н	С-Н	N = N	C-N	C-C	N-H
E(kJ.mol ⁻¹)	436	413	945	292	348	390

2) يحترق البروبيل أمين السائل عند $^{\circ}$ C وفق التفاعل الآتي:

$$C_{3}H_{7}\text{-}NH_{2(\ell)}+....O_{2(g)} \longrightarrowCO_{2(g)}+....H_{2}O_{(\ell)}+....N_{2(g)}$$

أ- وازن معادلة الاحتراق.

 $\cdot \Delta H_{comb}^{\circ}$ السائل أمين السائل احسب أنطالبي احتراق البروبيل

$$\Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{CO}_{2_{(g)}}\right)$$
= -393 kJ.mol $^{-1}$ ، $\Delta H_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2}\mathrm{O}_{(\ell)}\right)$ = - 286 kJ.mol $^{-1}$ يعطى:

III- يتفكك يود الهيدروجين HI وفق التفاعل الآتى:

$$2HI \longrightarrow H_2 + I_2$$

متابعة تغيّر تركيز اليود الناتج I_2 خلال أزمنة مختلفة، أعطت النتائج المسجلة في الجدول الآتي:

t(s)	0	10	20	40	80	120	160	200
	0	0,015	0,023	0,030	0,034	0,036	0,037	0,0375

ارسم المنحنى $I_2 = f(t)$ باستعمال السلم:

$$1 \text{cm} \longrightarrow 20 \text{s}$$

 $1 \text{cm} \longrightarrow 0.005 \text{ mol.L}^{-1}$

- t_2 =40s و t_1 =20s احسب السرعة المتوسطة V_{moy} التشكل اليود بين الزمنين (2
 - .t=40s السرعة اللحظية V_t لتشكل اليود عند اللحظة الزمنية (3

مة	العلا	
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)
01,50	0,25	التمرين الأول: (07 نقاط) $-I$ - I
	0,25	$\frac{12x}{85,71\%} = \frac{y}{14,29\%} = \frac{M_A}{100\%}$
	2 x0,25	$x = \frac{70 \times 85,71}{12 \times 100} = \boxed{5}$ $y = \frac{70 \times 14,29}{1 \times 100} = \boxed{10}$
	0,25	$C_5H_{10}:A$ الصيغة المجملة لـ
02,50	9 x0,25	(2 : I ، H ، G ، F ، E ، D ، C ، B ، A الصيغ نصف المفصلة للمركبات I ، H ، G ، F ، E ، D ، C ، B ، A الصيغ نصف المفصلة للمركبات CH ₃
	0,25	CH ₃ -CH ₂ -OH (I) (I) ب- مردود التفاعل(8): هو %67

		-II
00,50	0,50	1 المركب (J) لا تتأكسد وظيفته الكحولية لأنه كحول ثالثي (او الكربون الوظيفي لا يحتوي
		هيدروجين) .
		2) الصيغ نصف المفصلة للمركبات M، L ، K: الصيغ نصف المفصلة للمركبات
01,50	3 x0,50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$(K) \qquad \qquad (L) \qquad \qquad (M)$
01,00	0,50	(3) (3) (3) (3) (4) (5) (7)
	0,50	- مقطع من البوليمير (P) يتكون من 4 وحدات بنائية: CH ₃ CH ₃ CH ₃ CH ₃ O O O C=O C=O C=O CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ CH ₃ CH ₃
		التمرين الثاني: (07 نقاط)
02,75	0,25	$ \left.\begin{array}{c} M_{A} \longrightarrow M_{KOH} \times 10^{3} \\ 1 \text{ g} \longrightarrow I_{a} \end{array}\right\} \Rightarrow M_{A} = \frac{1 \times M_{KOH} \times 10^{3}}{I_{a}} $
	0,125	$M_A = \frac{56 \times 10^3 \times 1}{184,21}$ $M_A = 304 \text{ g.mol}^{-1}$
		ب- الصيغة المجملة للحمض الدهني A:
	0,25	$ \left.\begin{array}{c} M_{A} \longrightarrow n M_{I_{2}} \\ 100 \text{ g} \longrightarrow I_{i} \end{array}\right\} \Rightarrow n = \frac{M_{A} \times I_{i}}{M_{I_{2}} \times 100} $
	0,125	$n = \frac{304 \times 334, 21}{254 \times 100} \implies \boxed{n=4}$

		$C_{n}H_{2n-8}O_{2}$:عدد الروابط المضاعفة هو 4 ومنه الصيغة العامة للحمض تكون من الشكل
	0,25	$M_A = 14n - 8 + 32 = 304 \implies n = 20$
	0, 25	$C_{20}H_{32}O_{2}$ الصيغة المجملة للحمض الدهني A هي
	ŕ	- الصيغة نصف المفصلة للحمض B :
		$M_B = M(C_nH_{2n}O_2) = 14n + 32 = 116 \text{ g.mol}^{-1}$
	0, 25	$n = \frac{116 - 32}{14} = 6$
		ومنه الصيغة نصف المفصلة للحمض B:
	0, 25	$CH_{\overline{3}} + CH_{\overline{2}} + COOH$
	0.25	- الصبيغة نصف المفصلة للحمض D:
	0, 25	D: $HOOC - (CH_2)_x COOH$
		$\frac{4 \times 16}{48,48} = \frac{M_{D}}{100} \} \Rightarrow M_{D} = \frac{4 \times 16 \times 100}{48,48} \qquad \boxed{M_{D} = 132 \text{ g.mol}^{-1}}$
	0,25	$132 = 45 + 14x + 45 \implies 14x = 42 \implies \boxed{x=3}$
		$A_{C:20} = B_{C:6} + 3C_{C:3} + D_{C:n}$ ملاحظة: تقبل الإجابة $n=5$ ملاحظة: المفصلة للحمض $n=5$
	0,25	$HOOC - \left(CH_2\right)_3 COOH$
		ج- الصيغة نصف المفصلة للحمض الدهني A:
	0,25	A: $CH_3 \left(CH_2\right)_4 CH = CH - CH_2 - CH_2 - CH - CH_2 $
		$CH_{\frac{1}{3}}\left(CH_{\frac{1}{2}}\right)_{\frac{1}{3}}\left(CH_{\frac{1}{2}}-CH=CH\right)_{\frac{1}{4}}\left(CH_{\frac{1}{2}}\right)_{\frac{1}{3}}COOH$ i
		2) أ- حساب عدد الروابط المضاعفة الموجودة في TG:
01,00	0,25	$M_{TG} \longrightarrow n M_{I_2}$
	,	$100g \longrightarrow I_i$
	0,25	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

-		الإنجابة التمودجية لموضوع المتحان: البكالوريا الحتبار مادة: التكنولوجيا (هندسة الطراق) السعبة: تقيي رياضي
	0,25	:TG الممكنة لـ TG
	0,25	$\begin{array}{c} CH_{2} - O - C - (CH_{2}) - CH_{3} \\ O \\ CH - O - C - (-CH_{2}) - (CH_{2}) - (CH_$
00,50	2 x0,25	Asp و Asp (1) الصيغة نصف المفصلة لكل من Asp Asp Asp Asp Asp Asp Asp Asp Asp
	0.70	الأسرارة المراحة المحادية مع كاشف كنانته بدمة داك لاحتمائه على حمض أمرز
00,50	0,50	2) الأسبارتام يعطي نتيجة إيجابية مع كاشف كزانتو بروتييك لاحتوائه على حمض أميني عطري Phe .
00,50	2 x0,25	(3 تمثيل المماكبات الضوئية للحمض الأميني Phe حسب إسقاط فيشر: (3 COOH COOH (4 Page 1) (4 Page 2) (5 Page 2) (6 Page 2) (7 Page 3) (8 Page 3) (9 Page 3) (1 Page 3) (1 Page 3) (1 Page 3) (2 Page 3) (3 Page 4) (4 Page 3) (5 Page 4) (6 Page 4) (7 Page 4) (8 Page 4) (8 Page 4) (9 Page 4) (9 Page 4) (1 Page 4) (
01,75	0,25	(4) $pH_{i(Phe)}$ أ- استنتاج قيمة $pH_{i(Phe)}=5,48$ كونه أيون متعادل كهربائياً و منه $pH_{i(Phe)}=5,48$ كونه أيون متعادل كهربائياً و منه $pH_{i(Phe)}=5,48$

الإجابة النموذجية لموضوع امتحان: البكالوريا اختبار مادة: التكنولوجيا (هندسة الطرائق) الشعبة: تقني رياضي دورة: 2023

	$\Delta H_{393}^{\circ} = \Delta H_{298}^{\circ} + \int_{298}^{373} \Delta C p_1 dT + \frac{1}{2} \Delta H_{vap}^{\circ} \left(H_2 O_{(\ell)} \right) + \int_{373}^{393} \Delta C p_2 dT$
0,25	$\Delta H_{393}^{\circ} = \Delta H_{298}^{\circ} + \Delta C p_{1} \left(T_{1} - T_{0} \right) + \frac{1}{2} \Delta H_{vap}^{\circ} \left(H_{2} O_{(\ell)} \right) + \Delta C p_{2} \left(T_{2} - T_{1} \right)$
	$\Delta H_{393}^{\circ} = -51000 + 18,14(373 - 298) + \frac{1}{2}(40700) - 2,715(393 - 373)$
	$\Delta H_{393}^{\circ} = -51000 + 1360, 5 + 20350 - 54, 3 = \underline{-29343, 8 \text{ J.mol}^{-1}}$
0,50	$\Delta H_{393}^{\circ} = -29,34 \text{ kJ.mol}^{-1}$

مة	العلا	7 15 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
		التمرين الأول: (07 نقاط)
		M_1 أ- حساب الكتلة المولية للمونومير: M_1
	0.25	$HOOC-(CH_2)_n$ - $COOH+2NaOH \longrightarrow NaOOC-(CH_2)_n$ - $COONa+2H_2O$
01,75	0,50	$ \begin{array}{cccc} 1 \text{mol}(M_1) & \longrightarrow 2 \text{mol}(\text{NaOH}) \\ M(M_1) & \longrightarrow 2 \times M(\text{NaOH}) \\ 0,73 \text{g} & \longrightarrow 0,5 \times 20 \times 10^{-3} \times 40 \end{array} \Rightarrow M(M_1) = \frac{0,73 \text{g} \times 2 \times M(\text{NaOH})}{0,5 \times 20 \times 10^{-3} \times 40} $
	0,25	$M(M_1) = 146g \text{.mol}^{-1}$
		طريقة أخرى:
		$n(\text{NaOH}) = 2n(M_1) \Rightarrow n(M_1) = \frac{n(\text{NaOH})}{2} = \frac{C \times V}{2} = \frac{0.5 \times 20 \times 10^{-3}}{2} = 5 \times 10^{-3} \text{mol}$
		$M(M_1) = \frac{m}{n(M_1)} = \frac{0.73}{5 \times 10^{-3}} = 146 \text{g.mol}^{-1}$
		\mathbf{w} استنتاج الصيغة نصف المفصلة للمونومير \mathbf{M}_1 :
		لدينا:
	0,25	HOOC-(CH ₂) _n -COOH
	0,50	$M(M_1)=14n+90=146 \Rightarrow n=\frac{146-90}{14}=4$, HOOC-(CH ₂) ₄ -COOH
		\mathbf{M}_2 اً أ- استنتاج صيغة المونومير ز \mathbf{M}_2 :
4,25	0,50	HO-CH ₂ CH ₂ -OH
		ب – إيجاد الصيغ نصف المفصلة للمركبات: MgCl COOH
		A: B: C:
	5x0,50	
		H ₃ C COOH HOOC COOH
	0,50	ج- نوع البلمرة في التفاعل رقم 6: بلمرة بالتكاثف

	, , , , , , , , , , , , , , , , , , , 	الإ بادية الشود بية عوص الشادي: البحادوري الأخبار المادة: المحادور بي (لمندسة الطراق) المسبة. فلي ري
	0.25	د - حساب درجة البلمرة :
	0,25	$M_{\text{motif}} = 14 \times 12 + 16 + 4 \times 16 = 248 \text{g.mol}^{-1}$
	0,50	$n = \frac{M_p}{M_{\text{motif}}} = \frac{248000}{248} = 1000$
		M_{motif} 248
		3) كتابة معادلتي التفاعلين:
	0,50	$-OH \xrightarrow{H_2SO_4} + H_2O$
	·	Δ
		$\frac{\text{KMnO}_4}{\text{H}_2\text{SO}_4} + \text{HOOC-(CH}_2)_4 - \text{COOH}$
01,00	0,50	H_2SO_4
		ملاحظة: تقبل الإجابة التالية
		OH KMnO ₄
		H_2SO_4
		$\begin{array}{c c} & & \text{KMnO}_4 \\ \hline & & \text{HOOC-(CH}_2)_4\text{-COOH} \end{array}$
		H_2SO_4
		التمرين الثاني: (06 نقاط)
		-I
		1) أ- إيجاد الصيغة نصف المفصلة للحمض (B):
		1mol B——→1mol KOH
01,25	0,25	$ M_{\rm B}(g \mid mol) \longrightarrow 56 (g \mid mol) \Rightarrow M_{\rm B} = \frac{2.6 \times 56}{1.12} = 130 \text{g.mol}^{-1} $
		$2,6 \text{ g} \longrightarrow 1,12\text{g}$
	0.25	$CH_3 - (CH_2)_n - COOH$
	0,25	
	0,25	$15 + 14n + 45 = 130 \Rightarrow n = \frac{130 - 60}{14} = 5$
	0,25	$B: CH_3 - (CH_2)_5 - COOH$
		ب - استنتاج الصيغة نصف المفصلة للحمض الدهني (A):
	0,25	$A: CH_3 - (CH_2)_5 - CH = CH - (CH_2)_7 - COOH$
		اً أو إيجاد عدد الروابط المضاعفة الموجودة في الغليسريد (G): (2)
		$1 \operatorname{mol} G \longrightarrow x \operatorname{mol} I_2$
01,75	0,50	$0.1 \text{ mol} \longrightarrow \frac{25.4}{254} \text{ mol} \Longrightarrow x=1$
		توجد رابطة مزدوجة واحدة في الغليسريد (G).

		ا ۾ بعبہ السود بيد موضوع المدون البعث موريا المعبد المدون المدائد المدون المستبد العبي ريا
		 ب- بما أن الغليسريد يحتوي على رابطة مزدوجة واحدة فإنه أحادي الغليسريد والصيغ نصف المفصلة الممكنة له هي:
	0,25	СН ₂ —ОН СН—О—С СН—О—С СН ₂ —ОН СН ₂ —ОН
	0,25	CH_{2} —O— C'_{1} $(CH_{2})_{7}$ —CH= CH — $(CH_{2})_{5}$ — CH_{3} CH —OH CH_{2} —OH
		ج− حساب قرينة اليود للغليسريد (G):
	0,25	$M_{G} = 19 \times 12 + 36 + 4 \times 16 = 328 \text{g.mol}^{-1}$
	0,50	$ \left.\begin{array}{l} M_G \longrightarrow 254 \\ 328 \longrightarrow 254 \\ 100 \text{ g} \longrightarrow I_i \end{array}\right\} \Rightarrow I_i = \frac{254 \times 100}{328} = 77,44 $
		ملاحظة: طريقة أخرى لحساب $ m M_G$: $ m M_G+M_{ m H_2O}=M_{ m glyc\acute{e}rol}+M_A$
		$M_G = 92 + 254 - 18 = 328 \text{ g.mol}^{-1}$
		-II
		pH = 13 صيغة ثلاثي البيبتيد عند $pH = 13$:
00,50	0,50	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

		2) كتابة صيغ الأحماض الأمينية المكونة للبيبتيد:
	3x0,25	H ₂ N-CH-COOH , H ₂ N-CH ₂ -COOH , H ₂ N-CH-COOH
00,75		Glu $(CH2)2$ Gly $(CH2)3$
		СООН
		HN=C Arg
		NH ₂
01,75		3) أ- كتابة الصيغ الأيونية لـ Arg عند تغير قيمة الـ pH من 1 إلى 13:
01,70		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	4 0 25	H_3N^+ CH—COOH \Rightarrow H_3N^+ CH—COO \Rightarrow H_2N —CH—COO \Rightarrow H_2N —COO \Rightarrow H_2N —COO \Rightarrow H_2N —COO
	4x0,25	NH NH NH NH
		$(CH_{2})_{3} \qquad (CH_{2})_{3} \qquad (CH_{2})_{4} \qquad (CH_$
		ب - حساب قيمة pH _i ـ
	2x0,25	$pH_i(Arg) = \frac{pKa_2 + pKa_R}{2} = \frac{9,04 + 12,48}{2} = 10,76$
	240,23	2 2 جـ - الصيغة السائدة لـ Arg عند 12 pH=12 هي:
		H_2N — CH — COO^-
	0,25	$(\overset{1}{\operatorname{CH}}_{2})_{3}$
	3,25	NH
		$H_2N^{+}=\dot{C}$
		$\mathrm{NH_2}$

		/A
		التمرين الثالث: (07 نقاط)
		$\mathrm{Q}_{\mathrm{fus}}$ و Q $\mathrm{Q}_{\mathrm{fus}}$ حساب كمية الحرارة Q I و
01,00	0,50	$Q_1 = m_2 c_g \Delta T = m_2 c_g (273 - T_2) = 10X2,03(273 - 271) = 40,6 J$
	0,25	$Q_{fus} = m_2 L_{f(glace)}$
	0,25	$Q_{fus} = 10 \times 334, 45 = 3344, 5 J$
		\mathbf{T}_{eq} حساب درجة حرارة التوازن \mathbf{T}_{eq} :
01,00	0,25	$Q_2 = m_2 c_e (T_{eq} - 273) = 10 \times 4,185 T_{eq} - 10 \times 4,185 \times 273 = 41,85 T_{eq} - 11425,05$
	0,25	$Q_3 = (C_{cal} + m_1 c_e)(T_{eq} - T_1) = (200 + 200 \times 4, 185)T_{eq} - (200 + 200 \times 4, 185)T_1$
	, , , , ,	$=1037 \mathrm{T_{eq}} - 1037 \times 303 = 1037 \mathrm{T_{eq}} - 314211$
		$\sum Q = 0$
	0,25	$Q_1 + Q_{\text{fus}} + Q_2 + Q_3 = 0$
		$40,6+3344,5+41,85 \text{ T}_{eq} -11425,05+1037 \text{ T}_{eq} -314211=0$
	0,25	$1078.85 \text{ T}_{eq} - 322250,95 = 0 \Rightarrow \text{ T}_{eq} = \frac{322250,95}{1078,85} = 298,7 \text{K} = 25,7 ^{\circ}\text{C}$
		-II
		1) أ- إكمال المخطط:
		,
		$3C_{(s)} + \frac{9}{2}H_{2(g)} + \frac{1}{2}N_{2(g)} \xrightarrow{\Delta H_{f}^{\circ} \left(C_{3}H_{7} - NH_{2(\ell)}\right)} C_{3}H_{7} - NH_{2(\ell)}$
	1,00	$3\Delta H_{\text{sub}}^{\circ}\left(C_{(s)}\right) \begin{vmatrix} \frac{9}{2}E_{(H-H)} \end{vmatrix} = \frac{1}{2}E_{(N=N)}$ $-2E_{(N=N)}^{\circ} -2E_{(N=N)}^{\circ} -7E_{(N=N)}^{\circ}$
01,75		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\Delta ext{H}_{ ext{f}}^0 \left(ext{C}_3 ext{H}_7 ext{-} ext{NH}_{2(\ell)} ight)$ بروبیل أمین السائل
	0,50	$\Delta H_{f}^{\circ} \left(C_{3} H_{7} - N H_{2(\ell)} \right) = 3 \Delta H_{sub(C)}^{0} + \frac{9}{2} E_{(H-H)} + \frac{1}{2} E_{(N=N)} - 2 E_{(C-C)} - E_{(C-N)}$
		$-2E_{(N-H)}$ $-7E_{(C-H)}$ $-\Delta H^{0}_{vap(C_3H_7-NH_2)}$
		$\Delta H_f^0 \left(C_3 H_7 - N H_{2(\ell)} \right) = 3(717) + \frac{9}{2}(436) + \frac{1}{2}(945) - 2(348) - 292 - 2(390) - 7(413) - 29,2$
	0.25	$\Delta H_f^0(C_3H_7-NH_{2(\ell)}) = -102,7 \text{ kJ.mol}^{-1}$
	0,25	1 (3 / 2(ℓ))

	33	الإيانية الملوط بينا موطوع المعامل البحاط وريام حبار المعاد المعطوط بينا (مساسة الطراط) المسلبة. علي وياطي
		2 أ- موازنة معادلة الاحتراق:
01.25	0,50	$C_3H_7-NH_{2(\ell)} + \frac{21}{4}O_{2(g)} \longrightarrow 3CO_{2(g)} + \frac{9}{2}H_2O_{(\ell)} + \frac{1}{2}N_{2(g)}$
01,25		$\Delta H^0_{ m f} \left({ m C_3H_7-NH}_{2(\ell)} ight)$ ب $-$ حساب انطالبي احتراق بروبيل أمين السائل
		$\Delta \text{H}_{\text{comb}}^{\circ} \left(\text{C}_{3} \text{H}_{7} \text{-NH}_{2(\ell)} \right) = \sum \Delta \text{H}_{\text{f}}^{\circ} \left(\text{produits} \right) - \sum \Delta \text{H}_{\text{f}}^{\circ} \left(\text{reactifs} \right)$
	0,50	$\Delta H_{\text{comb}}^{\circ} \left(C_{3} H_{7} - N H_{2(\ell)} \right) = 3 \Delta H_{\text{f}}^{\circ} \left(C O_{2(g)} \right) + \frac{9}{2} \Delta H_{\text{f}}^{\circ} \left(H_{2} O_{(\ell)} \right) - \Delta H_{\text{f}}^{\circ} \left(C_{3} H_{7} - N H_{2(\ell)} \right)$
		$-\frac{21}{4}\Delta \mathrm{H}_{\mathrm{f}}^{\circ} \Big(\mathrm{O}_{2(\mathrm{g})} \Big)$
		$= 3(-393) + \frac{9}{2}(-286) - (-102,7) - \frac{21}{4}(0)$
	0,25	$\Delta H_{\text{comb}}^{\circ} (C_3 H_7 - NH_2)_{(\ell)} = -2363,3 \text{ kJ/mol}$
		(I - III] رسم المنحنى (I ₂]=f(t):
		$ \qquad \qquad$
		0,04
		0,035
		0,03
01,00	01,00	0,025- y
01,00	01,00	0,005 (mol.L ⁻¹)
		0,02- X 20s
		0,015+
		0,01+
		0,005
		0 20 40 60 80 100 120 140 160 180 200 t(s)
		$V_{ m moy}$ حساب السرعة المتوسطة: $V_{ m moy}$
00,50	2x0,25	
	ZAU,23	$V_{\text{moy}} = \frac{\Delta [I_2]}{\Delta t} = \frac{[I_2]_2 - [I_2]_1}{t_2 - t_1} = \frac{0,030 - 0,023}{40 - 20} = 3,5.10^{-4} \text{mol.L}^{-1}.\text{s}^{-1}$
00.50		: $t=40s$ عند V_t عند السرعة السرعة اللحظية V_t عند
00,50	0,25	$tg\alpha = \frac{y \times 0.005}{x \times 20} = \frac{1.6 \times 0.005}{2 \times 20}$
	0,25	$V_t = 2.10^{-4} \text{mol.L}^{-1}.\text{s}^{-1}$