Training and Overfitting

MMCi Block 2

Matthew Engelhard

Strategy: determine how small changes in parameters affect the loss

MORTALITY PI	REDICTIO	N WORKSHEE	ΞT										
COVARIATES								оитсом	ES AND PREDICTIONS				
patient	age		age_normalized	female	temp	temp_normalized			predicted_log_odds		prediction	correct?	loss
	0	30.5	-0.5	0	105.0			1	0.00		0	0	0.301
	1	74.0	1.1	1	96.7	-0.8		0	0.00	0.50	0	1	0.301
	2	27.4	-0.6	0	96.1	-1.0		0	0.00	0.50	0	1	0.301
	3	0.1	-1.5	1	98.5	-0.1		0	0.00	0.50	0	1	0.301
	4	0.7	-1.5	1	96.5	-0.9		0	0.00	0.50	0	1	0.301
	5	49.9	0.2	1	97.1	-0.6		0	0.00	0.50	0	1	0.301
	6	72.9	1.0	1	100.1	0.5		1	0.00	0.50	0	0	0.301
	7	29.1	-0.5	1	99.6	0.3		0	0.00	0.50	0	1	0.3010
	8	83.5	1.4	1	100.6	0.7		1	0.00	0.50	0	0	0.301
	9	82.3	1.4	1	95.2	-1.3		1	0.00	0.50	0	0	0.301
	10	23.7	-0.7	0	99.4	0.2		1	0.00	0.50	C	0	0.3010
	11	12.9	-1.1	0	96.6	-0.8		0	0.00	0.50	0	1	0.3010
	12	53.9	0.4	1	100.3	0.6		0	0.00	0.50	0	1	0.3010
	13	18.8	-0.9	0	98.6	0.0		0	0.00	0.50	0	1	0.301
	14	51.8	0.3	0	98.5	-0.1		0	0.00	0.50	0	1	0.301
	15	3.3	-1.4	0	94.6	-1.6		0	0.00	0.50	0	1	0.3010
	16	69.7	0.9	0	99.1	0.1		0	0.00	0.50	0	1	0.301
	17	60.4	0.6	1	104.2	2.1		1	0.00	0.50	0	0	0.301
	18	73.6	1.1	1	99.1	0.1		1	0.00	0.50	0	0	0.301
	19	53.3	0.3	1	99.1	0.1		0	0.00	0.50	0	1	0.301
PARAMETERS			h	b female		h *	bias				PERFORMANCE		oug les
PARAIVIETERS	-		b_age 0.00	0.00		b_temp	0.00				PERFORMANCE	accuracy 0.65	
	gues		0.00	0.00		0.00	0.00					0.65	0.301
	opti	mai											

How does changing a parameter change the loss?

If we change any parameter – let's say b_1 – it will change:

- z_i (for each patient i)
- which in turn affects p_i (for each patient i)
- Which affects the loss

A chain of effects...

We know:

- If we rotate G1 by 1 radian, G2 will rotate by -12/8 radians.
- If G2 rotates by 1 radian, G3 will rotate by -8/6 radians.

How do we determine the effect of G1 on G3?

- Multiply the effects.
- $ightharpoonup \left(-\frac{12}{8}\right) * \left(-\frac{8}{6}\right) = \frac{12}{6} = 2$

A chain of effects...

We know:

- If we increase b_1 by a small amount ε , then z_i will increase by $\varepsilon * x_{i1}$
- If we increase z_i by a small amount ε , then p_i will increase by $\varepsilon*\frac{d\sigma(z_i)}{dz_i}$ (depends on z_i)

How do we determine the effect b_1 on the cross-entropy loss (which depends on p_i)?

Multiply the effects.

Our strategy: use principles of calculus – slope/gradient – to determine how small changes in parameters affect the loss

We use the *chain rule* (calc 101) to account for the chain of effects.

- Could be a very long chain...
- Some parameters have a greater effect than others
- We change all parameters at once, with each change proportional to that parameter's effect on the loss
 - This is *gradient descent*

Our strategy: use principles of calculus – slope/gradient – to determine how small changes in parameters affect the loss

It could be a very long (and complex) chain...

- If we increase x_{i1} by ε , it changes *all* of the η_{ij} ...
- ...each of which changes *all* of the ζ_{ij}
- ...each of which changes p_i
- Machine learning software like
 TensorFlow allows us to keep track, even for very complicated models

For simple models, minimizing the loss is easy.

- 1. There are a limited number of parameters to consider
- Here, the loss is 'bowl-shaped', or convex; we can simply walk downhill from our current position
- 3. For linear regression, we can simply *solve* for the best parameters; but in general this is not true

For complex models, it is much more difficult...

- 1. High-dimensional
- 2. Non-convex

...and we're never sure we've found the best parameters

Learning in Neural Networks

- With deep learning models, we are trying to minimize a function of many variables
- Can't visualize it
- Can't solve for the minimum directly
- So, we follow the slope and hope for the best (i.e. gradient descent)
- May end up in a low point that isn't the lowest, i.e. *local minimum*
- But, if we have lots of data, things usually work out OK

Overfitting

Recall: improving one prediction may worsen another

- Suppose we predict:
 - $p_1 = .8$
 - $p_2 = .3$
 - $p_3 = .1$
- Is this a good model?Why or why not?
- Our parameters affect all the predictions: changing a parameter to decrease
 y₂ may also increase y₃

With a big a enough model, this is no longer true.

• *perfect* predictions?

predict
$$p(y_i) = y_i$$

- when is this possible?
 - logistic regression where $P \gg N$
 - MLP with final hidden layer of size M >> N
 - models with >> N
 parameters

We like flexible, non-linear decision boundaries...

But when we start making our decision boundary arbitrarily complex to 'fit' the training set... this is overfitting

Green boundary:

- Correct predictions for all training data
- Very likely to be overfitting

Black boundary:

- Balance between fit and model complexity
 - -> The black boundary is likely to perform better on new data

Overfitting

"Overfitting" happens when the learned model increases complexity to fit the observed training data *too well* – will not work to predict future data!

What would we want to use to fit these example data points?

With a complex enough model, we can typically predict our training labels perfectly.

To protect against overfitting, see how well the model performs on previously unseen data.

Early Stopping

- During optimization, we can check the validation loss as we go.
- Instead of optimizing to convergence, we can optimize until the *validation* loss stops improving
 - Saves computational cost
 - Performs better on validation (and test) sets
- Widely used technique in the field

Training Loss Keeps Improving

Other Ways to Use the Validation Set

• Choosing between models (e.g. MLP, LR)

• Choosing how strongly to *regularize* the model, i.e. penalize parameters

Choosing network depth, width, etc.

Many other "hyperparameters" we might tune

Conclusions

- Learning consists in setting model parameters to maximize some measure of fit (or equivalently, minimize some loss)
- This sounds easy, but is difficult in practice when working with complex models
- Greater model complexity is often, but not always, advantageous
- Proper model validation is critical to estimate real-world performance and prevent overfitting