Autorzy: Łukasz Skiba

Prowadzacy: Jan Piotrowicz

Równania funkcyjne

Wstep

Ten typ zadań zazwyczaj wymaga od nas znalezienia wszystkich funkcji spełniających dane równanie. Dla wielu zadań rozwiązania wydają się oczywiste, ale trudniej udowodnić, że są jedyne. Najważniejszą metodą w trakcie rozwiązywania jest podstawianie pod zmienne szczególnych przypadków. To dzięki nim otrzymujemy nowe własności, które prowadzą do rozwiązania.

Standardowymi podstawieniami są oczywiście:

1.
$$x \to 0, x \to 1$$

2.
$$x \to kx, x \to -x, x \to f(x), x \to \frac{1}{x}$$

3.
$$y \to x, y \to -x, y \to f(x)$$

Zadanie W.1

Znajdź wszystkie takie funkcje $f: \mathbb{R} \to \mathbb{R}$, że:

a)
$$f(x + \sqrt{x^2 + 1}) = \frac{x}{x+1}$$

b)
$$f(x)^2 \cdot f\left(\frac{1-x}{1+x}\right) = x$$

c)
$$f(x+y) = f(f(x)) + y$$

d)
$$f(x+y)^2 = f(x)^2 + f(y)^2$$

Jeżeli uda nam się dostać rozwiązanie to się cieszymy. Trzeba pamiętać, aby na końcu **sprawdzić czy dane rozwiązanie działa**. Bez tego to nie jest w pełni skończone zadanie. Jeżeli się nie uda to przechodzimy do trików (c.d.).

Teoria

Bijekcja

Definicja. Funkcja f jest iniekcjq, jeżeli zachodzi implikacja: $f(x) = f(y) \implies x = y$.

Definicja. Funkcja $f: A \to B$ jest suriekcją, jeżeli: $\forall_{y \in B} \quad \exists_{x \in A} \quad f(x) = y$. W szczególności, jeśli f(x) = g(y) i f jest suriekcją to również g jest suriekcją.

Definicja. Funkcja f jest bijekcjq, jeśli jest zarówno iniekcją i suriekcją.

Zadanie B.1

Udowodnij, że funkcja f spełniająca równanie f(f(x)) = x jest bijekcją.

Prowadzacy: Jan Piotrowicz

Autorzy: Łukasz Skiba

Zadanie B.2

Znajdź wszystkie takie funkcje $f: \mathbb{R} \to \mathbb{R}$, że:

a)
$$f(yf(x+y) + f(x)) = 4x + 2yf(x+y)$$

b)
$$f(f(x) + y) = 2x + f(f(y) - x)$$

c)
$$f(xf(x) + f(y)) = y + f(x)^2$$

Triki Chena

 Kiedy mamy do czynienia z dużym syfem, starajmy się wykonać podstawienie, które pozwoli nam zredukować jakieś wyrazy. Przykładowo dla:

$$f\left(\frac{e^{x^2} + x^2 - \cos x}{\sin x^2} + 2y\right) = f\left(2^{-17\lfloor x\rfloor + nwd(4444, \lceil x^2 \rceil)} + y\right) + 1$$

możemy wykonać odpowiednie podstawienie pod y, otrzymując 0=1

- Jeżeli gdzieś w równaniu pojawi nam się wyrażenie ...f(f(x))..., to warto wykonać podstawienie $x \to f(x)$
- Warto poszukiwać pewnego rodzaju symetryczności. Przykładowo gdy mamy f(x) = x + y, to również zamieniając zmienne dostajemy x + y = f(y) więc f musiałaby być stała, co prowadzi do sprzeczności.
- Trzeba zawsze uważać na dziedzinę! Jeżeli mamy funkcję $f: \mathbb{R}_+ \to \mathbb{R}_+$ nie możemy, podstawiając, otrzymać f(0) = c
- Dla funkcji w wartościach całkowitych warto pomyśleć o indukcji.
- Równanie $f(x)^2 = x^2$ wcale nie oznacza, że f(x) = x lub f(x) = -x, tylko dla niektórych argumentów może być taka, a dla drugich taka.

Zadania

1. Wyznaczyć wszystkie funkcje $f: \mathbb{R} \to \mathbb{R}$ spełniające:

$$f(x)f(y) - xy = f(x) + f(y) - 1$$

- 2. (69/II/1) Wyznaczyć wszystkie funkcje f określone na zbiorze liczb rzeczywistych i przyjmujące wartości rzeczywiste, które spełniają oba warunki:
 - $f(x) + f(y) \le xy$ dla wszystkich liczb rzeczywistych x, y, y
 - dla każdej liczby rzeczywistej x istnieje taka liczba rzeczywista y, że f(x) + f(y) = xy.
- 3. (63/II/4) Wyznaczyć wszystkie takie pary funkcji $f, g : \mathbb{R} \to \mathbb{R}$, że g(f(x) y) = f(g(y)) + x
- 4. Wyznaczyć wszystkie funkcje $f: \mathbb{R} \to \mathbb{R}$ spełniające:

$$f(x^2 - y^2) = x f(x) - y f(y)$$

- 5. Wyznaczyć wszystkie takie funkcje $f: \mathbb{Z}_+ \to \mathbb{Z}_+$, że dla dowolnych $a, b \in \mathbb{Z}_+$ liczba $a^2 + f(a)f(b)$ jest podzielna przez liczbę f(a) + b.
- 6. Wyznaczyć wszystkie funkcje $f: \mathbb{R} \to \mathbb{R}$ spełniające:

$$xf(x) + y^{2} + f(xy) = f(x+y)^{2} - f(x)f(y)$$

7. (EGMO 2012/6) Wyznaczyć wszystkie funkcje $f: \mathbb{R} \to \mathbb{R}$ spełniające:

$$f(y^2 + 2xf(y) + f(x)^2) = (y + f(x))(x + f(y))$$

