Problems

In each of Problems 1 through 4:

G a. Draw a direction field.

b. Find the general solution of the given system of equations and describe the behavior of the solution as $t \to \infty$.

G c. Plot a few trajectories of the system.

$$\mathbf{1.} \quad \mathbf{x}' = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix} \mathbf{x}$$

$$\mathbf{2.} \quad \mathbf{x}' = \begin{pmatrix} 1 & -2 \\ 3 & -4 \end{pmatrix} \mathbf{x}$$

$$\mathbf{3.} \quad \mathbf{x}' = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \mathbf{x}$$

4.
$$\mathbf{x}' = \begin{pmatrix} \frac{5}{4} & \frac{3}{4} \\ \frac{3}{4} & \frac{5}{4} \end{pmatrix} \mathbf{x}$$

In each of Problems 5 and 6 the coefficient matrix has a zero eigenvalue. As a result, the pattern of trajectories is different from those in the examples in the text. For each system:

G a. Draw a direction field.

b. Find the general solution of the given system of equations.

G c. Draw a few of the trajectories.

$$\mathbf{5.} \quad \mathbf{x}' = \begin{pmatrix} 4 & -3 \\ 8 & -6 \end{pmatrix} \mathbf{x}$$

$$\mathbf{6.} \quad \mathbf{x}' = \begin{pmatrix} 3 & 6 \\ -1 & -2 \end{pmatrix} \mathbf{x}$$

In each of Problems 7 through 9, find the general solution of the given system of equations.

7.
$$\mathbf{x}' = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{pmatrix} \mathbf{x}$$

8.
$$\mathbf{x}' = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix} \mathbf{x}$$

9.
$$\mathbf{x}' = \begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix} \mathbf{x}$$

In each of Problems 10 through 12, solve the given initial value problem. Describe the behavior of the solution as $t \to \infty$.

10.
$$\mathbf{x}' = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix} \mathbf{x}, \ \mathbf{x}(0) = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

11.
$$\mathbf{x}' = \begin{pmatrix} -2 & 1 \\ -5 & 4 \end{pmatrix} \mathbf{x}, \ \mathbf{x}(0) = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

12.
$$\mathbf{x}' = \begin{pmatrix} 0 & 0 & -1 \\ 2 & 0 & 0 \\ -1 & 2 & 4 \end{pmatrix} \mathbf{x}, \ \mathbf{x}(0) = \begin{pmatrix} 7 \\ 5 \\ 5 \end{pmatrix}$$

13. The system $t\mathbf{x}' = \mathbf{A}\mathbf{x}$ is analogous to the second-order Euler equation (Section 5.4). Assuming that $\mathbf{x} = \boldsymbol{\xi}t^r$, where $\boldsymbol{\xi}$ is a constant vector, show that $\boldsymbol{\xi}$ and r must satisfy $(\mathbf{A} - r\mathbf{I})\boldsymbol{\xi} = \mathbf{0}$ in order to obtain nontrivial solutions of the given differential equation.

Referring to Problem 13, solve the given system of equations in each of Problems 14 through 16. Assume that t > 0.

$$14. \quad t\mathbf{x}' = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix} \mathbf{x}$$

$$\mathbf{15.} \quad t\mathbf{x}' = \begin{pmatrix} 5 & -1 \\ 3 & 1 \end{pmatrix} \mathbf{x}$$

$$\mathbf{16.} \quad t\mathbf{x}' = \begin{pmatrix} 4 & -3 \\ 8 & -6 \end{pmatrix} \mathbf{x}$$

In each of Problems 17 through 19, the eigenvalues and eigenvectors of a matrix \mathbf{A} are given. Consider the corresponding system $\mathbf{x}' = \mathbf{A}\mathbf{x}$.

G a. Sketch a phase portrait of the system.

6 b. Sketch the trajectory passing through the initial point (2, 3).

G c. For the trajectory in part b, sketch the graphs of x_1 versus t and of x_2 versus t.

17.
$$r_1 = -1$$
, $\xi^{(1)} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$; $r_2 = -2$, $\xi^{(2)} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

18.
$$r_1 = 1$$
, $\xi^{(1)} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}$; $r_2 = -2$, $\xi^{(2)} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

19.
$$r_1 = 1$$
, $\xi^{(1)} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$; $r_2 = 2$, $\xi^{(2)} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

20. Consider a 2×2 system $\mathbf{x}' = \mathbf{A}\mathbf{x}$. If we assume that $r_1 \neq r_2$, the general solution is $\mathbf{x} = c_1 \boldsymbol{\xi}^{(1)} e^{r_1 t} + c_2 \boldsymbol{\xi}^{(2)} e^{r_2 t}$, provided that $\boldsymbol{\xi}^{(1)}$ and $\boldsymbol{\xi}^{(2)}$ are linearly independent. In this problem we establish the linear independence of $\boldsymbol{\xi}^{(1)}$ and $\boldsymbol{\xi}^{(2)}$ by assuming that they are linearly dependent and then showing that this leads to a contradiction.

a. Explain how we know that $\boldsymbol{\xi}^{(1)}$ satisfies the matrix equation $(\mathbf{A} - r_1 \mathbf{I}) \boldsymbol{\xi}^{(1)} = \mathbf{0}$; similarly, explain why $(\mathbf{A} - r_2 \mathbf{I}) \boldsymbol{\xi}^{(2)} = \mathbf{0}$.

b. Show that $(\mathbf{A} - r_2 \mathbf{I}) \boldsymbol{\xi}^{(1)} = (r_1 - r_2) \boldsymbol{\xi}^{(1)}$.

c. Suppose that $\boldsymbol{\xi}^{(1)}$ and $\boldsymbol{\xi}^{(2)}$ are linearly dependent. Then $c_1\boldsymbol{\xi}^{(1)}+c_2\boldsymbol{\xi}^{(2)}=\boldsymbol{0}$ and at least one of c_1 and c_2 (say, c_1) is not zero. Show that $(\mathbf{A}-r_2\mathbf{I})(c_1\boldsymbol{\xi}^{(1)}+c_2\boldsymbol{\xi}^{(2)})=\boldsymbol{0}$, and also show that $(\mathbf{A}-r_2\mathbf{I})(c_1\boldsymbol{\xi}^{(1)}+c_2\boldsymbol{\xi}^{(2)})=c_1(r_1-r_2)\boldsymbol{\xi}^{(1)}$. Hence $c_1=0$, which is a contradiction. Therefore, $\boldsymbol{\xi}^{(1)}$ and $\boldsymbol{\xi}^{(2)}$ are linearly independent.

d. Modify the argument of part c if we assume that $c_2 \neq 0$.

e. Carry out a similar argument for the case **A** is 3×3 ; note that the procedure can be extended to an arbitrary value of n.

21. Consider the equation

$$ay'' + by' + cy = 0, (35)$$

where a, b, and c are constants with $a \neq 0$. In Chapter 3 it was shown that the general solution depended on the roots of the characteristic equation

$$ar^2 + br + c = 0. (36)$$

a. Transform equation (35) into a system of first-order equations by letting $x_1 = y$, $x_2 = y'$. Find the system of equations $\mathbf{x}' = \mathbf{A}\mathbf{x}$ satisfied by $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

b. Find the equation that determines the eigenvalues of the coefficient matrix **A** in part a. Note that this equation is just the characteristic equation (36) of equation (35).