Optimization in Machine Learning

Deep dive Gradient descent and optimality

Learning goals

- Convergence of GD
- Proof strategy and tools
- Descent lemma

SETTING

- GD is **greedy**: **locally optimal** moves in each iteration
- If f is convex, differentiable and has a Lipschitz gradient, GD converges to global minimum for sufficiently small step sizes.

SETTING / 2

Assumptions:

- f convex and differentiable
- Global minimum x* exists
- f has Lipschitz gradient (∇f does not change too fast)

$$\|\nabla f(\mathbf{x}) - \nabla f(\tilde{\mathbf{x}})\| \le L\|\mathbf{x} - \tilde{\mathbf{x}}\|$$
 for all $\mathbf{x}, \tilde{\mathbf{x}}$

$$f(\mathbf{x}^{[k]}) - f(\mathbf{x}^*) \leq \frac{\|\mathbf{x}^{[0]} - \mathbf{x}^*\|^2}{2\alpha k}.$$

In other words: GD converges with rate $\mathcal{O}(1/k)$.

PROOF STRATEGY

• Show that $f(\mathbf{x}^{[t]})$ strictly decreases with each iteration t

Descent lemma:

$$f(\mathbf{x}^{[t+1]}) \leq f(\mathbf{x}^{[t]}) - \frac{\alpha}{2} \|\nabla f(\mathbf{x}^{[t]})\|^2$$

Bound error of one step

$$f(\mathbf{x}^{[t+1]}) - f(\mathbf{x}^*) \le \frac{1}{2\alpha} \left(\|\mathbf{x}^{[t]} - \mathbf{x}^*\|^2 - \|\mathbf{x}^{[t+1]} - \mathbf{x}^*\|^2 \right)$$

3 Finalize by **telescoping** argument

MAIN TOOL

Recall: First order condition of convexity

Every tangent line of f is always below f.

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x})$$

DESCENT LEMMA

Recall: ∇f Lipschitz $\Longrightarrow \nabla^2 f(\mathbf{x}) \preccurlyeq L \cdot \mathbf{I}$ for all \mathbf{x}

This gives convexity of $g(\mathbf{x}) := \frac{L}{2} ||\mathbf{x}||^2 - f(\mathbf{x})$ since

$$\nabla^2 g(\mathbf{x}) = L \cdot I - \nabla^2 f(\mathbf{x}) \geqslant 0.$$

First order condition of convexity of g yields

$$g(\mathbf{x}) \geq g(\mathbf{x}^{[t]}) + \nabla g(\mathbf{x}^{[t]})^{\top} (\mathbf{x} - \mathbf{x}^{[t]})$$

$$\Leftrightarrow \frac{L}{2} ||\mathbf{x}||^{2} - f(\mathbf{x}) \geq \frac{L}{2} ||\mathbf{x}^{[t]}||^{2} - f(\mathbf{x}^{[t]}) + (L\mathbf{x}^{[t]} - \nabla f(\mathbf{x}^{[t]}))^{\top} (\mathbf{x} - \mathbf{x}^{[t]})$$

$$\Leftrightarrow \qquad \vdots$$

$$\Leftrightarrow \qquad f(\mathbf{x}) \leq f(\mathbf{x}^{[t]}) + \nabla f(\mathbf{x}^{[t]})^{\top} (\mathbf{x} - \mathbf{x}^{[t]}) + \frac{L}{2} ||\mathbf{x} - \mathbf{x}^{[t]}||^{2}$$

Now: One GD step with step size $\alpha \leq 1/L$:

$$\mathbf{x} \leftarrow \mathbf{x}^{[t+1]} = \mathbf{x}^{[t]} - \alpha \nabla f \left(\mathbf{x}^{[t]} \right)$$

DESCENT LEMMA / 2

$$f(\mathbf{x}^{[t+1]}) \leq f(\mathbf{x}^{[t]}) + \nabla f(\mathbf{x}^{[t]})^{\top} (\mathbf{x}^{[t+1]} - \mathbf{x}^{[t]}) + \frac{L}{2} \|\mathbf{x}^{[t+1]} - \mathbf{x}^{[t]}\|^{2}$$

$$= f(\mathbf{x}^{[t]}) + \nabla f(\mathbf{x}^{[t]})^{\top} (\mathbf{x}^{[t]} - \alpha \nabla f(\mathbf{x}^{[t]}) - \mathbf{x}^{[t]})$$

$$+ \frac{L}{2} \|\mathbf{x}^{[t]} - \alpha \nabla f(\mathbf{x}^{[t]}) - \mathbf{x}^{[t]}\|^{2}$$

$$= f(\mathbf{x}^{[t]}) - \nabla f(\mathbf{x}^{[t]})^{\top} \alpha \nabla f(\mathbf{x}^{[t]}) + \frac{L}{2} \|\alpha \nabla f(\mathbf{x}^{[t]})\|^{2}$$

$$= f(\mathbf{x}^{[t]}) - \alpha \|\nabla f(\mathbf{x}^{[t]})\|^{2} + \frac{L\alpha^{2}}{2} \|\nabla f(\mathbf{x}^{[t]})\|^{2}$$

$$\leq f(\mathbf{x}^{[t]}) - \frac{\alpha}{2} \|\nabla f(\mathbf{x}^{[t]})\|^{2}$$

Note: $\alpha < 1/L$ yields $L\alpha^2 < \alpha$

- $ullet \|
 abla f(\mathbf{x}^{[t]}) \|^2 > 0 \text{ unless }
 abla f(\mathbf{x}) = \mathbf{0}$
- f strictly decreases with each GD iteration until optimum reached
- Descent lemma yields bound on **guaranteed progress** if $\alpha \leq 1/L$ (explains why GD may diverge if step sizes too large)

ONE STEP ERROR BOUND

Again, first order condition of convexity gives

$$f(\mathbf{x}^{[t]}) - f(\mathbf{x}^*) \leq \nabla f(\mathbf{x}^{[t]})^{\top} (\mathbf{x}^{[t]} - \mathbf{x}^*).$$

This and the descent lemma yields

0

$$f(\mathbf{x}^{[t+1]}) - f(\mathbf{x}^*) \le f(\mathbf{x}^{[t]}) - \frac{\alpha}{2} \|\nabla f(\mathbf{x}^{[t]})\|^2 - f(\mathbf{x}^*)$$

$$= f(\mathbf{x}^{[t]}) - f(\mathbf{x}^*) - \frac{\alpha}{2} \|\nabla f(\mathbf{x}^{[t]})\|^2$$

$$\le \nabla f(\mathbf{x}^{[t]})^{\top} (\mathbf{x}^{[t]} - \mathbf{x}^*) - \frac{\alpha}{2} \|\nabla f(\mathbf{x}^{[t]})\|^2$$

$$= \frac{1}{2\alpha} \left(\|\mathbf{x}^{[t]} - \mathbf{x}^*\|^2 - \|\mathbf{x}^{[t]} - \mathbf{x}^* - \alpha \nabla f(\mathbf{x}^{[t]})\|^2 \right)$$

$$= \frac{1}{2\alpha} \left(\|\mathbf{x}^{[t]} - \mathbf{x}^*\|^2 - \|\mathbf{x}^{[t+1]} - \mathbf{x}^*\|^2 \right)$$

Note: Line $3 \rightarrow 4$ is hard to see (just expand line 4).

FINALIZATION

Summing over iterations yields

$$k(f(\mathbf{x}^{[k]}) - f(\mathbf{x}^*)) \leq \sum_{t=1}^{k} [f(\mathbf{x}^{[t]}) - f(\mathbf{x}^*)]$$

$$\leq \sum_{t=1}^{k} \frac{1}{2\alpha} \left[\|\mathbf{x}^{[t-1]} - \mathbf{x}^*\|^2 - \|\mathbf{x}^{[t]} - \mathbf{x}^*\|^2 \right]$$

$$= \frac{1}{2\alpha} \left(\|\mathbf{x}^{[0]} - \mathbf{x}^*\|^2 - \|\mathbf{x}^{[k]} - \mathbf{x}^*\|^2 \right)$$

$$\leq \frac{1}{2\alpha} \left(\|\mathbf{x}^{[0]} - \mathbf{x}^*\|^2 \right).$$

Arguments: Descent lemma (line 1). Telescoping sum (line $2 \rightarrow 3$).

$$f(\mathbf{x}^{[t+1]}) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}^{[0]} - \mathbf{x}^*\|^2}{2\alpha k}$$

