Results and Evaluation

In this chapter, the results of the registration of the available data using the solution presented in chap: Solution wi The running times presented in table: $running_timeweretakenonanIntelCorei7 - 1065G73.9GHzwith16GBRAM.Table$ These running times are obtained with the assumption that the position of the point cloud is not far away from the

	[width=23.2em]TaskData	CityGML modelPLY model	
[h!]	Projection onto the xy-plane	$0.607 \; { m s}$	$1.33 \; s$
	Detection of line segments	3.198 s	$3.662 \ { m s}$
	Detection of line intersections and their angles	$0.226 \; s$	$0.229 \ s$
	Identification of possible correspondences	$0.005 \ s$	$0.017 \; s$
	Alignment of both projections onto the xy-plane	2.904 s	$14.359 \ s$
	Alignment on the z-axis	$0.421 \; s$	$1.859 \ s$

Running time of the registration.

Registration of a CityGML model with a point cloud The initial pose of the CityGML model and the point cloud of After the registration process, the resulting transformation is

 $T_1 = 0.987 - 0.1970.0 - 4.994$ 0.1970.9870.0 - 2.636

0.00.01.0 - 0.207

0.00.00.01.0

and the results after applying this transformation to the point cloud are shown in fig: $\operatorname{final}_CityGML.Inthetransformation$ [htp] 1 [scale=0.15] images/solution_i $mages/final_f ront.pngFrontview$.

The alignment of the CityGML model with the point cloud can be seen in the fire exercise building (the one in the Registration of a PLY model with a point cloud

The second available data represents a part of the Technical University of Darmstadt. The 3D model is given in ply [htp] 1 [scale=0.15]images/solution_i $mages/initial_ply_a.pngFristview$.

After the registration process, the resulting transformation is

 $\begin{array}{l} T_2 = 0.882 - 0.4550.020.504 \\ 0.4550.8820.0 - 21.645 \\ 0.00.01.0 - 19.254 \end{array}$

0.00.00.01.0

and the results after applying this transformation to the point cloud are shown in fig:final_ply.

In the transformation, one can observe a rotation around the z-axis and a translation across the x-, y-, and z-axis. [htp] 1 [scale=0.15]images/solution_i $mages/final_ply_a.pngFirstview$. Discussion The results presented in the two past sections highly depend on the step described in sub:Detection of li

The different running times presented in table: $running_timecould be due to the size of the point clouds. The point cloud correction of the point clouds of the poin$ Furthermore, the number of intersections detected in the projections onto the xy-plane, both of the models and the