ভেম্বর

ভেক্টরের যোগের এবং স্কেলার গুনিকত গঠনের মৌলিক বিধিসমূহঃ

এখানে \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , যে কোনো ভেক্টর এবং m, n যে কোনো স্কেলার ।

(1).
$$\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$$
 (2). $\overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c}) = (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c}$

- (3). এমন একটি ভেক্টর অর্থাৎ 0 ভেক্টরের অস্তিত্ব আছে যার জন্য $\vec{a}+0=\overrightarrow{a}=0+\overrightarrow{a}$
- (4). প্রতিটি ভেক্টর \overrightarrow{a} এর একটি অনন্য বিপরীত ভেক্টর $-\overrightarrow{a}$ রয়েছে যার জন্য $\overrightarrow{a}+(-\overrightarrow{a})=0$

(5).
$$(m+n)\overrightarrow{a} = m\overrightarrow{a} + n\overrightarrow{a}$$
; (6). $(mn)\overrightarrow{a} = m(n\overrightarrow{a})$; (7) $1(\overrightarrow{a}) = \overrightarrow{a}$

(8).
$$m(\overrightarrow{a} + \overrightarrow{b}) = m\overrightarrow{a} + m\overrightarrow{a}$$

ভেক্টরের যোগাশ্রয়ী সমাবেশ

 \vec{r} ভেক্টরকে \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} ,প্রভৃতি ভেক্টরগুলির যোগাশ্রয়ী সমাবেশ বলে । যদি এরপ কতকগুলি স্কেলার x,y,zপাওয়া যায় যেন, $\vec{r}=x\overrightarrow{a}+y\overrightarrow{b}+z\overrightarrow{c}+\cdots$ হয় ।

উদাহরণ স্বরূপ বলা যায় $2\overrightarrow{a}+\overrightarrow{b}-4\overrightarrow{c}$, $\overrightarrow{a}+2\overrightarrow{b}-3\overrightarrow{c}$ প্রভৃতি ভেক্টরগুলি \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} , ভেক্টরএর যোগাশ্রয়ী সমাবেশ। ভেক্টরের যোগাশ্রয়ী সামাবেশ গঠন ভেক্টরের যোগ বা বিয়োগ এবং ক্ষেলার গুণিকত গঠনের মধ্যে সীমাবদ্ধ থাকে।

সমতলীয় ভেক্টর (সমবিন্দুগামী ভেক্টর ,ঘূর্নয়মান পাখার মত ভেক্টর) ঃ

একগুচ্ছ ভেক্টরকে সমতলীয় বলা হয় যদি তাদের ধারক রেখাগুলি একই সমতলের সমান্তরাল হয়। একতলীয় সমপ্রান্তিক ভেক্টরগুলির ধারকসমূহ একই তলে অবস্থান করে। \overrightarrow{a} . $(\overrightarrow{b} \times \overrightarrow{c}) = \overrightarrow{b}$. $(\overrightarrow{c} \times \overrightarrow{a}) = \overrightarrow{c}$ $(\overrightarrow{a} + \overrightarrow{b}) = 0$

$$\overrightarrow{a}.\left(\overrightarrow{b}\times\overrightarrow{c}\right)=\overrightarrow{b}.\left(\overrightarrow{c}\times\overrightarrow{a}\right)=\overrightarrow{c}\left(\overrightarrow{a}+\overrightarrow{b}\right)=\begin{vmatrix}a_1&a_2&a_3\\b_1&b_2&b_3\\c_1&c_2&c_3\end{vmatrix}=0,$$

PHASE-01:ভেক্টর রাশির ধর্ম সংক্রান্ত সমস্যাবলী

EXAMPLE-01: ABC ত্রিভুজের BC, CA এবং AB বাহুগুলি মধ্যবিন্দু যথাক্রমে D, E, F

 \overrightarrow{BC} , \overrightarrow{AD} , \overrightarrow{BE} এবং \overrightarrow{CF} কে \overrightarrow{AB} এবং \overrightarrow{AC} ভেক্টর দুইটির যোগাশ্রয়ী সমাবেশে প্রকাশ কর।

সমাধান: $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$: $\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$

$$\overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AC}$$
(i); $\overrightarrow{AD} + \overrightarrow{BD} = \overrightarrow{AB}$(ii)

(i)ও (ii) নং যোগ করে ,
$$2\overrightarrow{AD} + \left(\overrightarrow{DC} + \overrightarrow{BD}\right) = \overrightarrow{AC} + \overrightarrow{AB}$$
 বা, $2\overrightarrow{AD} = \overrightarrow{AC} + \overrightarrow{AB}$ $\therefore \overrightarrow{AD} = \frac{1}{2}\left(\overrightarrow{AC} + \overrightarrow{AB}\right)$

$$\overrightarrow{BE} + \overrightarrow{EA} = \overrightarrow{BA} : \overrightarrow{BE} = \overrightarrow{BA} - \overrightarrow{EA} = -\overrightarrow{AB} - \frac{1}{2}\overrightarrow{CA} = \frac{1}{2}\overrightarrow{AC} - \overrightarrow{AB}; \overrightarrow{CF} + \overrightarrow{FA} = \overrightarrow{CA}$$
$$: \overrightarrow{CF} = \overrightarrow{CA} - \overrightarrow{FA} = -\overrightarrow{AC} - \frac{1}{2}\overrightarrow{BA} = \overrightarrow{AB} - \overrightarrow{AC}$$

EXAMPLE-02: ভেক্টর পদ্ধতিতে প্রমাণ করযে, ত্রিভুজের দুইটি বাহুর মধ্যবিন্দুর সংযোজক রেখাংশ তৃতীয় বাহুর সমান্তরাল এবং দৈর্ঘ্য তা অর্ধেক।

সমাধান : $\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}$ (ভেক্টর বিয়োগের ত্রিভুজ বিধি) $= 2\overrightarrow{AE} - 2\overrightarrow{AD} = 2(\overrightarrow{AE} - \overrightarrow{AD}) = 2\overrightarrow{DE}$ এই ভেক্টর সমতার তাৎপর্য দ্বিবিধ । (কেননা $\overrightarrow{AC} = 2\overrightarrow{AE}$ এবং $\overrightarrow{AB} = 2\overrightarrow{AD}$

প্রথমত, \overrightarrow{BC} ও \overrightarrow{AD} ভেক্টরদ্বয়ের ধারক রেখা সমান্তরাল (এক্ষেত্রে তারা অবশ্যই এক রেখা নয়) এবং

$$\left|\overrightarrow{BC}\right| = \left|2\overrightarrow{\mathrm{DE}}\right| = 2\left|\overrightarrow{\mathrm{DE}}\right|$$
 অর্থাৎ BC =2DE বা DE = $\frac{1}{2}BC$ (প্রমাণিত)

দেখাতে হবে AM = MC এবং BM = MD.

ভেক্টর যোগের ত্রিভুজ বিধি অনুযায়ী , $\overrightarrow{AM} + \overrightarrow{MB} = \overrightarrow{AB}$(i)

এবং
$$\overrightarrow{DM} + \overrightarrow{MC} = \overrightarrow{DC}$$
....(ii)

$$\overrightarrow{AB} = \overrightarrow{DC}$$
, সুতরাং $\overrightarrow{AM} + \overrightarrow{MB} = \overrightarrow{DM} + \overrightarrow{MC} \Rightarrow \overrightarrow{AM} - \overrightarrow{MC} = \overrightarrow{DM} - \overrightarrow{MB}$

 $\overrightarrow{DM}, \overrightarrow{MD}$ ভেক্টর দুইটির ধারক রেখা DB; সুতরাং এদর বিয়োগফল ভেক্টরের ধারক রেখাও DB.

 $\overrightarrow{AM}-\overrightarrow{MC}$ এবং $\overrightarrow{DM}-\overrightarrow{MD}$ এই দুইটির সমান ভেক্টর ধারক ভিন্ন ও পরস্পরছেদী রেখা হওয়ার সিদ্ধান্ত হয় যে ,এরা প্রত্যেকেই শূন্য ভেক্টর। কেননা দুইট অশূন্য সমান ভেক্টরের ধারক রেখা অভিন্ন বা সমান্তরাল রেখা হতে হবে।)

সুতরাং
$$(\overrightarrow{AM} - \overrightarrow{MC}) = 0$$
 এবং $(\overrightarrow{DM} - \overrightarrow{MD}) = 0$, ফলে $\overrightarrow{AM} = \overrightarrow{MC}$ এবং $\overrightarrow{DM} = \overrightarrow{MD}$

অতএব, AM = MC এবং DM = MD, সুতরাং প্রমাণিত হলো যে, M বিন্দু উভয় কর্ণের মধ্যবিন্দু।

EXAMPLE-04: ABC ত্রিভুজের BC বাহুর মধ্যবিন্দু D হলে দেখাও যে, $\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AD}$.

সমাধান : ABC একটি ত্রিভুজ । এর BC বাহুর মধ্যবিন্দু D.

$$\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$$
....(i)

$$\overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}$$
....(ii)

(i) ও (ii) নং যোগ করে পাই,
$$\overrightarrow{AB} + \overrightarrow{BD} + \overrightarrow{AC} + \overrightarrow{CD} = 2\overrightarrow{AD}$$
(iii)

কিন্তু D, BC মধ্যন্দু বলে BD=CD; আবার BD ও CD একই রেখায় এবং \overrightarrow{BD} ও \overrightarrow{CD} পরস্কর বিপরীতমুখী । অতএব, $\overrightarrow{BD}+\overrightarrow{CD}=0$ সুতরাং $\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AD}$ (দেখানো হল

EXAMPLE-05: ABC ত্রিভজের BC বাহুর মধ্যবিন্দু D হলে দেখাও যে, $\overrightarrow{DA}.\overrightarrow{BD}+\overrightarrow{DA}.\overrightarrow{DC}=0$

সমাধান : \overrightarrow{DA} . $\overrightarrow{BD} = |\overrightarrow{DA}| |\overrightarrow{BD}| \cos \theta = DA$. $\overrightarrow{BD} \cos \theta$,

$$\overrightarrow{DA} \cdot \overrightarrow{DC} = |\overrightarrow{DA}| |\overrightarrow{DC}| \cos(180^{\circ} - \theta) = DA \cdot DC \cos \theta$$

$$\therefore \overrightarrow{DA}. \overrightarrow{BD} + \overrightarrow{DA}. \overrightarrow{DC} = DA. BD \cos \theta - DA. DC \cos \theta = DA. BD \cos \theta - DA. BD \cos \theta = 0$$

EXAMPLE-06: দেখাও যে, রম্বসের কর্ণগুলি পরস্পর লম্বভাবে ছেদ করে।

সমাধান :
$$\overrightarrow{AC}$$
. \overrightarrow{BD} = $(\overrightarrow{AB} + \overrightarrow{BC})$. $(\overrightarrow{AD} - \overrightarrow{AB})$ = $(\overrightarrow{AB} + \overrightarrow{AD})$. $(\overrightarrow{AD} - \overrightarrow{AB})$

$$= \left(\overrightarrow{AD}\right)^2 - \left(\overrightarrow{AB}\right)^2 = \left(\overrightarrow{AD}\right)^2 - \left(\overrightarrow{AD}\right)^2 = 0$$

অতএব, AC এবং BD পরস্পর লম। অর্থাৎ, রম্বসের কর্ণগুলি পরস্পর লম। (দেখানো হল)

Try yourself:

(i)ABC একটি ত্রিভুজ ; D বিন্দু BC বাহুর মধ্যবিন্দু । যদি $\overrightarrow{AB} = \overrightarrow{c}$ এবং $\overrightarrow{AC} = \overrightarrow{b}$, হয় তবে দেখাও যে $AD = \frac{1}{2} (\overrightarrow{b} + \overrightarrow{c}).$

(ii) ABC একটি ত্রিভুজ; BC, CA এবং AB বাহুর মধ্য বিন্দুগুলি যথাক্রমে D, E ও F | \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CA} এবং \overrightarrow{AD} ভেক্টরগুলিকে \overrightarrow{BE} এবং \overrightarrow{CF} ভেক্টরের মাধ্যমে প্রকাশ কর ।

উত্তর
$$\overrightarrow{a}$$
 $\overrightarrow{AB} = \frac{4}{3}\overrightarrow{BE} - \frac{2}{3}\overrightarrow{CF}, \ \overrightarrow{BC} = \frac{2}{3}\overrightarrow{BE} - \frac{2}{3}\overrightarrow{CF}, \ \overrightarrow{CA} = \frac{2}{3}\overrightarrow{BE} + \frac{4}{3}\overrightarrow{CF}, \ AD = -\overrightarrow{BE} + \overrightarrow{CF}$

(iii) ABCD একটি সামান্তরিক এবং AC ও BD এর কর্ণ $|\overrightarrow{AC}|$ এবং $|\overrightarrow{BD}|$ কে $|\overrightarrow{AB}|$ এবং $|\overrightarrow{AD}|$ ভেক্টরের মাধ্যমে প্রকাশ কর।

উত্তর ঃ
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$$
, $\overrightarrow{BD} = -\overrightarrow{AB} + \overrightarrow{AD}$

- (iv) দেওয়া আছে যে, $-\vec{l}+2\vec{m}=2\vec{n}$; $5\vec{l}-2\vec{m}=3\vec{k}$; \vec{l} , \vec{m} কে \vec{n} এবং \vec{k} এর যোগাশ্রয়ী সামাবেশে প্রকাশ পায়। উত্তর ৪ $\vec{l}=\frac{2\vec{n}+3\vec{k}}{4}$, $\vec{m}=\frac{10\vec{m}+3\vec{k}}{8}$
- (v) \overrightarrow{OQR} গ্রিভুজে, $\overrightarrow{OP}=\overrightarrow{a}$ এবং $\overrightarrow{OQ}=\overrightarrow{b}$; \overrightarrow{PQ} রেখার উপর R এমন একটি বিন্দু যেন $\overrightarrow{PQ}=\overrightarrow{QR}$ । দেখাও যে, $\overrightarrow{RP}=rac{2}{3}(\overrightarrow{b}-\overrightarrow{a})$
- (vi) $\overrightarrow{OP}=\overrightarrow{a}$ এবং $\overrightarrow{OQ}=\overrightarrow{b}$ এবং $\overrightarrow{OR}=\overrightarrow{a}+\overrightarrow{b}$ OPQR কি প্রকারের চতুর্ভুজ নির্ণয় কর। উত্তর সামান্তরিক
- (vii) OOR ত্রিভুজে QR, RP ও PQ বাহুদ্বয়ের মধ্যবিন্দু যথাক্রমে L, M, ও N হলে প্রমাণ কর যে,

$$\overrightarrow{PL} = \overrightarrow{QM} + \overrightarrow{RN} = 0$$

- (viii) একটি ত্রিভুজের দুইট মাধ্যমার দৈর্ঘ্য সমান হলে দেখাও যে, ত্রিভুজটি সমদ্বিবাহু ত্রিভুজ।
- (ix) দেখাও যে একটি সমকোণী ত্রিভুজের অতিভুজের মধ্যবিন্দু ত্রিভুজটির শীর্ষবিন্দু গুলি হতে সমদূরর্তী।
- (x) দেখাও যে, একটি ট্রাপিজিয়ামের অসমান্রাল বাহু দুইটির মধ্যবিন্দুর সংযোজক রেখা সমান্তরাল বাহু দুইটির সমান্তরাল এবং তাদের যোগফলের অর্ধেক।
- (xi) দেখাও যে, সামান্তরিকের কর্ণ দুইটি পরস্পর কে সমদ্বিখণ্ডিত করে।

PHASE-02: ভেক্টর রাশির স্কেলার ও ভেক্টর গুনণ সম্পর্কিক সমস্যাবলী

প্রয়োজনীয় সূত্রসমূহ ঃ ক্ষেলার গুনণ ও এর বিধি ঃ

(i) স্কেলার শুনণ, $ec{a}$. $ec{b}=|ec{a}|$. $|ec{b}|\cos heta$; $0^0\leq heta\leq180^0$ যেখানে heta হলো $ec{a}$ ও $ec{b}$ ্এর অন্তর্ভুক্ত কোণ।

 $= |\vec{a}|.(\vec{a})$ এর উপর \vec{b} এর অভিক্ষেপ) $= |\vec{b}|.(\vec{b})$ এর উপর \vec{a} এর অভিক্ষেপ)

 $ec{a}$ ও $ec{b}$ ্এর অন্তর্ভূক্ত কোণ, $heta=\cos^{-1}rac{ec{a}.ec{b}}{|ec{a}|.|ec{b}|}$

 $ec{a}$ এর দিক বরাবর একক ভেক্টর , $\widehat{a}=rac{ec{a}}{|ec{a}|}$; $ec{a}$ এর সমান্তরালেএকক ভেক্টর , $\widehat{a}=\pmrac{ec{a}}{|ec{a}|}$

উপাংশ ঃ \vec{a} ভেক্টরের দিক বরাবর \vec{b} ভেক্টরের উপাংশ একটি ভেক্টর যার দৈর্ঘ্য হচ্ছে \vec{b} ভেক্টরের অভিক্ষেপ এবং দিক হচ্ছে \vec{a} এর দিক।

 \vec{a} ভেক্টরের দিক বরাবর \vec{B} ভেক্টরের উপাংশের দৈর্ঘ্য = $|\vec{b}|\cos heta$, যেখানে heta হচ্ছে, \vec{a} এবং \vec{b} ভেক্টর দুইটির অন্তর্ভূক্ত কোণ। \vec{a} ভেক্টরের উপার \vec{b} ভেক্টরের উপাংশের দৈর্ঘ্য

$$= |\overrightarrow{b}| \cos \theta, = |\overrightarrow{b}| \frac{\overrightarrow{a}.\overrightarrow{b}}{|\overrightarrow{a}||b|} = \frac{\overrightarrow{a}}{|\overrightarrow{a}|}.\overrightarrow{b} = \hat{a}.\overrightarrow{b}$$

যেখানে \hat{a} , \vec{a} ভেক্টরের দিক বরাবর একটি একক ভেক্টর। সুতরাং \vec{a} ভেক্টরের দিক বরাবর \vec{b} ভেক্টরের উপাংশ $=(\hat{a}.\,\vec{b})\hat{a}$

(ii) ক্ষেলার শুণজের চিহ্ন ঃ heta সূক্ষ্কোণ হলে, $\cos heta > 0$ এবং $\overrightarrow{a} \cdot \overrightarrow{b} > 0$,

heta সমকোণ হলে, $\cos heta = 0$ এবং $\overrightarrow{a}.\overrightarrow{b} = 0$;

 θ স্থুলকোণ হলে, $\cos \theta < 0$ এবং $\overrightarrow{a}.\overrightarrow{b}~<0$

শর্ত ঃ দুইট ভেক্টরের স্কেলার গুণজ 0 হলে, দুইট ভেক্টরের অন্তত একটি শূন্য হবে অথবা ভেক্টর দুইটি পরস্পর লম্ব হবে।

(iii) কেলার গুণজের ধর্ম ঃ

- (a) স্কেলার গুণন বিনিময়যোগ্য অর্থাৎ \overrightarrow{a} . $\overrightarrow{b}=\overrightarrow{b}$. \overrightarrow{a} স্কেলার গুণনের সংজ্ঞা থেকেই এটা অনুধাবনযোগ্য ।
- (b) \overrightarrow{a} . $(-\overrightarrow{b}) = -(\overrightarrow{a}.\overrightarrow{b})$ এবং $(-\overrightarrow{a}).(-\overrightarrow{b}) = \overrightarrow{a}.\overrightarrow{b}$, যে কোনো দুইটি ভেক্টর \overrightarrow{a} এবং \overrightarrow{b} এর জন্য ।
- $(c)\ m,n$ দুইটি ক্ষেলার এবং \overrightarrow{a} ও \overrightarrow{b} দুইটি ভেক্টর হলে, $m\overrightarrow{a}$. $n\overrightarrow{b}$ $=mn(\overrightarrow{a}$. \overrightarrow{b})
- (d) \overrightarrow{a} , \overrightarrow{b} \overrightarrow{c} , যে কোনো তিনটি ভেক্টর- এর জন্য \overrightarrow{a} . $(\overrightarrow{b}+\overrightarrow{c})=\overrightarrow{a}$. $\overrightarrow{b}+\overrightarrow{a}$. \overrightarrow{c} অর্থাৎ, ক্ষেলার গুণন বণ্টন বিধি মেনে চলে।

(iv) উপাংশের মাধ্যমে দুইটি ভেক্টরের ক্ষেলার গুণনঃ

মনে করি,
$$\overrightarrow{a} = a_1 \hat{\imath} + a_2 \hat{\jmath} + a_3 \hat{k}$$
 এবং $\overrightarrow{b} = b_1 \hat{\imath} + b_2 \hat{\jmath} + b_3 \hat{k}$
$$|\overrightarrow{a}|^2 = \overrightarrow{a} \cdot \overrightarrow{a} = \left(a_1 \hat{\imath} + a_2 \hat{\jmath} + a_3 \hat{k}\right) \cdot \left(a_1 \hat{\imath} + a_2 \hat{\jmath} + a_3 \hat{k}\right) = a_1^2 + a_2^2 + a_3^2$$

$$\therefore |\overrightarrow{a}| = a = \sqrt{a_1^2 + a_2^2 + a_3^2} \text{ , } \overrightarrow{a} \text{ এবং } \overrightarrow{b} \text{ ভেক্টর দুইটির অন্তর্গত কোন } \theta \text{ হলে,}$$

$$\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|} = \frac{a_1 b_1 + a_2 b_2 + a_3 b_3}{\sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{b_1^2 + b_2^2 + b_3^2}},$$

ভেক্টর গুনণ ও এর বিধি ঃ

(i) ভেক্টর গুনণ, $\ \overrightarrow{a} imes\overrightarrow{b}=|\overrightarrow{a}|.\left|\overrightarrow{b}\right|\sin\theta.\widehat{\eta}:$ $0^0\leq heta\leq 180^0$

যেখানে heta হলো $ec{a}$ ও $ec{b}$ ্এর অন্তর্ভূক্ত কোণ।যেখানে $\widehat{\eta}$ হলো $ec{a}$ ও $ec{b}$ যে তলে সেই তলের লম বরাবর একক ভেক্টর।

$$\therefore \widehat{m{\eta}} = \pm rac{ec{a} imes ec{b}}{|ec{a}|.|ec{b}|\sin heta} = rac{ec{a} imes ec{b}}{|ec{a} imes ec{b}|}$$
 শৰ্জ: $({m{a}})m{ heta} = 90^o$ হলে, $\widehat{m{\eta}} = \pm rac{ec{a} imes ec{b}}{|ec{a}|.|ec{b}|}\,(m{b})m{ heta} = 0^o$ হলে, $ec{a}$ ও $ec{b}$ ভেক্টর্রঘ্য় সমান্তরাল হয়। অর্থাৎ, $ec{a} imes ec{b} = 0$

- (c) $heta=180^o$ হলে, $ec{a}$ ও $ec{b}$ ভেক্টরদ্বয় সমান্তরাল ও পরস্পর বিপরীত চিহ্নযুক্ত হয়। অর্থাৎ, $ec{b} imesec{a}=0$
- (d) দুইটি অশূন্য ভেক্টর \underline{a} , \underline{b} পরস্পর সমান্তরাল হলে, $\underline{a} \times \underline{b} = 0$. অন্যভাবে , $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3}$

(ii) ভেক্টর গুণজের ধর্ম ঃ

- (a) $\vec{a} imes \vec{b} = -\vec{b} imes \vec{a}$, বা $a imes b \neq b imes a$ অর্থাৎ, ভেক্টর গুণন বণ্টন বিধি মেনে চলে।
 - (b) m,n দুইটি ক্ষেলার এবং \overrightarrow{a} ও \overrightarrow{b} দুইটি ভেক্টর হলে, $m\overrightarrow{a} \times n\overrightarrow{b} = mn(\overrightarrow{a} \times \overrightarrow{b})$
 - (\mathbf{c}) $\overrightarrow{\mathbf{a}}$, $\overrightarrow{\mathbf{b}}$ $\overrightarrow{\mathbf{c}}$, যে কোনো তিনটি ভেক্টর- এর জন্য $\overrightarrow{\mathbf{a}} \times (\overrightarrow{b} + \overrightarrow{\mathbf{c}}) = \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}$

ত্রিমাত্রিক স্থানাঙ্ক পদ্ধতিঃ

অতএব, $\vec{r}=x\hat{\imath}+y\hat{\jmath}+z\hat{k}$ এখানে \vec{r} ভেক্টরকে তিনটি পরস্পর লম্ব একক ভেক্টরের যোগাশ্রয়ী সমাবেশ হিসেবে প্রকাশ করা হয়েছে যেন, (x,y,z), OX, OY, OZ-অক্ষরেখাগুলির সাপেক্ষে P বিন্দুর আয়তাকার কার্তেসীয় স্থানাঙ্ক।

দুষ্টব্য:
$$\hat{\imath}$$
. $\hat{\imath}=1$, $\hat{\jmath}$. $\hat{\jmath}=1$, \hat{k} . $\hat{k}=1$, $\hat{\imath}$. $\hat{\jmath}=\hat{\jmath}$. $\hat{\imath}=0$, $\hat{\jmath}$. $\hat{k}=\hat{k}$. $\hat{\jmath}=0$ এবং \hat{k} . $\hat{\imath}=\hat{\imath}$. $\hat{k}=0$ $\hat{\imath}\times\hat{\imath}=\hat{\jmath}\times\hat{\jmath}=\hat{k}\times\hat{k}=0$ এবং $\hat{\imath}\times\hat{\jmath}=\hat{\jmath}\times\hat{k}=\hat{k}\times\hat{\imath}$, $\hat{\imath}\times\hat{\jmath}=\hat{k}$, $\hat{\jmath}\times\hat{k}=\hat{\imath}$, $\hat{\imath}\times\hat{k}=-\hat{\jmath}$

বিভক্তিকরণ সূত্রঃ

মনে করি, O মূলবিন্দু এবং \overrightarrow{OA} এবং \overrightarrow{OB} যথাক্রমে A ও B বিন্দুর অবস্থান ভেক্টর সেখানে $\overrightarrow{OA} = \overrightarrow{a}$ এবং $\overrightarrow{OB} = \overrightarrow{b}$

 ${
m P}$ বিন্দু ${
m AB}$ -কে এমন ভাবে অন্তর্বিভক্ত করে যেন, ${
m rac{AP}{BP}}={m\over n}$(i)

$$(i)$$
 হতে পাই , $\mathrm{n.AP} = \mathrm{m.~BP}$ $\therefore \mathrm{n.} \overrightarrow{\mathrm{AP}} = \mathrm{m.} \overrightarrow{\mathrm{PB}}$

$$n(\overrightarrow{OP}-\overrightarrow{OA})=m(\overrightarrow{OB}-\overrightarrow{OP})$$
 অথবা $(m+n)\overrightarrow{OP}=m\overrightarrow{OB}+n\overrightarrow{OA}$

$$\therefore \overrightarrow{OP} = \frac{\overrightarrow{mOB} + n\overrightarrow{OA}}{m+n} = \frac{\overrightarrow{mb} + n\overrightarrow{a}}{m+n}$$
 $ightarrow$ অন্তঃস্থভাবে বিভক্তির ক্ষেত্রে

$$\therefore \overrightarrow{OP} = rac{m\overrightarrow{OB} - n\overrightarrow{OA}}{m-n} = rac{m\overrightarrow{b} - n\overrightarrow{a}}{m-n}$$
 $ightarrow$ বহিস্থঃভাবে বিভক্তির ক্ষেত্রে

দ্রষ্টব্য ঃ ${f A}$ ও ${f B}$ বিন্দুর অবস্থান ভেক্টর যথাক্রমে \overrightarrow{a} ও \overrightarrow{b} হলে ${f AB}$ রেখাংশের মধ্যবিন্দু অবস্থান ভেক্টর $\frac{1}{2}ig(\overrightarrow{a}+\overrightarrow{b}ig)$

সরলরেখার ভেক্টর সমীকরন ঃ

 \underline{a} বিন্দুগামী এবং \underline{b} ভেক্টরের সমান্তরাল সরলরেখার ভেক্টর সমীকরণ $\underline{r}=\underline{a}+\lambda\underline{b}$ যেখানে λ একটি প্যারামিটার।

অনুসিদ্ধান্ত ঃ $\underline{a}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k}, \quad \underline{b}=b_1\hat{i}+b_2\hat{j}+b_3\hat{k},$ ও $\underline{r}=x\hat{i}+y\hat{j}+z\hat{k}$ হলে $\underline{r}=\underline{a}+t\underline{b}$ সমীকরন হতে পাওয়া যায় $x\hat{i}+y\hat{j}+z\hat{k}=a_1\hat{i}+a_2\hat{j}+a_3\hat{k}+t(b_1\hat{i}+b_2\hat{j}+b_3\hat{k})$

$$\Rightarrow (x - a_1)\hat{i} + (y - a_2)\hat{j} + (z - a_3)\hat{k} = t(b_1\hat{i} + b_2\hat{j} + b_3\hat{k}).$$

উভয় পক্ষ হতে \hat{i},\hat{j},\hat{k} এর সহগ সমীকৃত করে পাই, $(x-a_1)=tb_1$, $(y-a_2)=tb_2$, $(z-a_3)=tb_3$

$$\Rightarrow rac{x-a_1}{b_1}=rac{y-a_2}{b_2}=rac{z-a_3}{b_3}=t$$
 অর্থাৎ, সরলরেখার ভেক্টর সমীরকণ $\underline{r}=\underline{a}+t\underline{b}$ এর কার্তেলীয় সমীকরনণ

 $\frac{x-a_1}{b_1}=\frac{y-a_2}{b_2}=\frac{z-a_3}{b_3}(=t)$, অনরূপভাবে, মূলবিন্দুগামী এবং \underline{b} ভেক্টরের সামান্তরাল $\underline{r}=t\underline{b}$ এর কার্তেসীয় সমীকরণ $\frac{x}{b_1}=\frac{y}{b_2}=\frac{z}{b_3}(=t)$

নোট:
$$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+3}{4}$$
 এর ভেক্টর সমীকরন $\underline{r}=\hat{i}+2\hat{j}-3\hat{k}+t(2\hat{i}+3\hat{j}+4\hat{k})$

(ii) $A(\underline{a})$ ও $B(\underline{b})$ বিন্দুগামী সরলরেখার ভেক্টর সমীকরন $\underline{r}=\underline{a}+t\underline{b}$ অর্থাৎ, $\underline{r}=\underline{a}+\left(\underline{b}-\underline{a}\right)+t\underline{b}$

মনে করি, O মূলবিন্দু এবং A, B ও AB এর উপর যেকোনো বিন্দু P এর অবস্থান ভেক্টর যথাক্রমে $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = \underline{b}$ ও $\overrightarrow{OP} = \underline{r}$ ।

∴
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \underline{b} - \underline{a}$$
 ∴ $\overrightarrow{AP} = t\overrightarrow{AB} = t(\underline{b} - \underline{a})$; [P, AB এর উপর অবস্থিত।]

এখন ,
$$\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}$$
 .: $r = a + t(b - a) = (1 - t)a + t$

অনুসিদ্ধান্ত ঃ \underline{a} $(a_1+a_2+a_3)$ ও \underline{b} $(b_1+b_2+b_3)$ বিন্দুগামী সরলরেখার ভেক্টর সমীরকণ $\underline{r}=\underline{a}+t(\,\underline{b}-\underline{a}\,)$

এর কার্তেসীয় সমীরকণ =
$$\frac{x-a_1}{b_1-a_1}= \frac{y-a_2}{b_2-a_2}= \frac{z-a_3}{b_3-a_3}$$

* দুইটি ভেক্টরের গুণন বা ক্রস গুণনঃ \underline{a} ও \underline{b} দুইটির ভেক্টর গুণনকে $\underline{a} \times \underline{b} = |\underline{a}| |\underline{b}| \sin \theta \ \hat{n}$ দ্বারা সংজ্ঞায়িত করা হয় , যেখানে θ হচ্ছে \underline{a} ভেক্টর হতে \underline{b} ভেক্টরের দিকে একটি ডানহাতি ব্রুর ঘূর্ণনে যে ক্ষুদ্রতর কোণ উৎপন্ন হয় তা এবং \hat{n} হচ্ছে একটি একক ভেক্টর যা \underline{a} ও \underline{b} দুইটির ভেক্টর সমতলের উপর লম্ব । \hat{n} এর দিক \underline{a} ভেক্টর হতে \underline{b} ভেক্টরের দিকে ঘূর্ণায়নমান একটি ডানহাতি ব্রুর অগ্রসর হওয়ার দিক । \therefore \hat{n} এর দিক অর্থাৎ $\underline{a} \times \underline{b}$ এর দিক \underline{a} ও \underline{b} ভেক্টর দুইটির সমতলের উপরের দিক যখন একটি ডানহাতি ব্রুর ঘূর্ণন ঘড়ির কাঁটা ঘূর্ণনের বিপরীত দিকে হয় অর্থাৎ θ ধনাত্মক হয়; অথাব নিচের দিকে যখন ডানহাতি ব্রুর ঘূর্ণন ঘড়ির কাঁটা ঘূর্ণনের কিবে হয় অর্থাৎ θ ধনাত্মক হয় ।

মনে করি, OACB সামান্তরিকের $\overrightarrow{OA} = \underline{a}$, $\overrightarrow{OB} = b$ এবং $< AOB = \theta$, B হতে OA এর উপর লম্ব l ।

$$\therefore \underline{a} \times \underline{b} = |\underline{a}| |\underline{b}| \sin \theta \ \hat{n} = a(b \sin \theta) \hat{n} = al \ \hat{n}, [\sin \theta = \frac{1}{OB} \Rightarrow l = OB \sin \theta = b \sin]$$

 $=\underline{a}$ ও \underline{b} ভেক্টরের সমতলের উপরে লম্ব দিকে OACB সামান্তরিকের ক্ষেত্রফল।

$$\therefore$$
 OACB সামান্তরিকের $\overrightarrow{OA} = \underline{a}$ ও $\overrightarrow{OB} = \underline{b}$ হলে তার ক্ষেত্রফল $|\underline{a} \times \underline{b}|$ ।

$$\mathrm{OACB}$$
 সামান্তরিকের দুটি কর্ণ $\overrightarrow{\mathit{OC}} = \underline{a}$ ও $\overrightarrow{\mathit{AB}} = \underline{b}$ হলে তার ক্ষেত্রফল $|\underline{a} \times \underline{b}|$

অতএব, OAB ত্রিভুজের
$$\overrightarrow{OA}=\underline{a}$$
 এবং $\overrightarrow{OB}=\underline{b}$ হলে তার ক্ষেত্রফল ঃ $\frac{1}{2}\left|\underline{a}\right. imes\left.\underline{b}\right|$ ।

দ্ৰষ্টব্য ঃ
$$\hat{i} \times \hat{j} = |\hat{i}| |\hat{j}| \sin 90^{\circ} \hat{n} = \hat{k}; \hat{j} \times \hat{i} = |\hat{j}| |\hat{i}| \sin(-90^{\circ}) \hat{n} = -\hat{k}, \hat{j} \times \hat{k} = \hat{i}, \hat{k} \times \hat{j} = -\hat{i},$$

$$\hat{k} \times \hat{i} = \hat{j}, \ \hat{i} \times \hat{k} = -\hat{j}, \quad \hat{i} \times \hat{i} = |\hat{i}| |\hat{i}| \sin 0^{0} \ \hat{n} = \underline{0}, \ \hat{j} \times \hat{j} = \underline{0}, \ \hat{k} \times \hat{k} = \underline{0}$$

$ext{TYPE-01: } ec{a}. \overrightarrow{b} = |ec{a}|. \left| \overrightarrow{b} \right| \cos heta \; ; \; 0^0 \leq heta \leq 180^0$ সূত্র সম্পর্কেত গাণিতিক সমস্যাবলী

EXAMPLE-01: $\vec{A}=\hat{\imath}-2\hat{\jmath}-2\hat{k}$ এবং $\vec{B}=6\hat{\imath}+3\hat{\jmath}+2\hat{k}$ ভেক্টর দুইটির (i) অন্তর্ভূক্ত কোণের পরিমাণ নির্ণয় কর।

(ii) \overrightarrow{A} ভেক্টরের দিক বরাবর \overrightarrow{B} ভেক্টরের উপাংশ ও অভিক্ষেপ বের কর এবং দেখাও যে এদর সাংখিক মান সমান।

সমাধান ঃ (i)
$$\vec{A} \cdot \vec{B} = (\hat{\imath} - 2\hat{\jmath} - 2\hat{k}) \cdot (6\hat{\imath} + 3\hat{\jmath} + 2\hat{k}) = 6 - 6 - 4 = -4$$

$$|\overrightarrow{A}| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{9} = 3, |\overrightarrow{B}| = \sqrt{6^2 + 3^2 + 2^2} = \sqrt{49} = 7$$

এখন
$$\overrightarrow{A}$$
 . $\overrightarrow{B} = |\overrightarrow{A}| |\overrightarrow{B}| \cos \theta$ বা, $\cos \theta = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{|\overrightarrow{A}| |\overrightarrow{B}|} = \frac{-4}{21}$ বা, $\cos \theta = \frac{-4}{21}$ $\therefore \theta = \cos^{-1}\left(-\frac{4}{21}\right)$ (উত্তর)

(ii)
$$\overrightarrow{A}$$
 ভেক্টরের দিক বরাবর \overrightarrow{B} ভেক্টরের উপাংশ = $(\hat{a}.\overrightarrow{B})\hat{a}=\frac{\overrightarrow{A}.\overrightarrow{B}}{|\overrightarrow{A}|}\times\hat{a}=-\frac{4}{3}\hat{a}$; মান= $-\frac{4}{3}\times 1=-\frac{4}{3}$

 \vec{a} এর উপর \vec{b} এর অভিক্ষেপ $=\hat{a}$. $\vec{\mathrm{B}}=-rac{4}{3}$

EXAMPLE-02: $\vec{A} = \hat{\imath} + 2\hat{\jmath} - 3\hat{k}$ এবং $\vec{B} = 3\hat{\imath} - \hat{\jmath} + 2\hat{k}$ হলে দেখাও যে, $\vec{A} + \vec{B}$ এবং $\vec{A} - \vec{B}$ ভেক্টর দুইটি পরস্পর লম।

সমাধান ঃ
$$\vec{A} + \vec{B} = \hat{\imath} + 2\hat{\jmath} - 3\hat{k} + 3\hat{\imath} - \hat{\jmath} + 2\hat{k} = 4\hat{\imath} + \hat{\jmath} - \hat{k}$$

$$\vec{A} - \vec{B} = (\hat{\imath} + 2\hat{\jmath} - 3\hat{k}) - (3\hat{\imath} - \hat{\jmath} + 2\hat{k}) = -2\hat{\imath} + 3\hat{\jmath} - 5\hat{k}$$

$$(\vec{A} + \vec{B}).(\vec{A} - \vec{B}) = (4\hat{i} + \hat{j} - \hat{k}).(-2\hat{i} + 3\hat{j} - 5\hat{k}) = -8 + 3 + 5 = 0$$

যেহেতু , ভেক্টর দুইটির ডট গুণন শূন্য অতএব তারা পরস্পর লম্ব । (দেখানো হলো)

EXAMPLE-03: ভেক্টর পদ্ধতিতে প্রমাণ কর, যে কোনো ত্রিভুজে $\cos C = rac{a^2 + b^2 - c^2}{2ab}$

ABC ত্রিভুজে BC, CA এবং AB বাহুর দৈর্ঘ্যকে যথাক্রমে a, b, c দ্বারা সূচিত করা হয়।

সমাধান ঃ ধরি,
$$\overrightarrow{a} = \overrightarrow{BC}$$
, $\overrightarrow{b} = \overrightarrow{CA}$, $\overrightarrow{c} = \overrightarrow{AB}$ তাহলে $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = (\overrightarrow{BC} + \overrightarrow{CA}) + \overrightarrow{AB}$

$$=\overrightarrow{BA}+\overrightarrow{AB}=\overrightarrow{AA}=0$$
 সুতরাং $\overrightarrow{a}+\overrightarrow{b}=-\overrightarrow{c}$

ফলে
$$(\overrightarrow{a} + \overrightarrow{b}).(\overrightarrow{a} + \overrightarrow{b}) = (-\overrightarrow{c}).(-\overrightarrow{c})$$
 অথবা $\overrightarrow{a}.\overrightarrow{a} + \overrightarrow{a}.\overrightarrow{b} + \overrightarrow{b}.\overrightarrow{a} + \overrightarrow{b}.\overrightarrow{b} = \overrightarrow{c}.\overrightarrow{c}$

বা,
$$a^2 + 2ab\cos(\pi - C) + b^2 = c^2$$
 কেননা \vec{b} . $\vec{a} = ab\cos(\pi - C)$ যেহেতু \vec{a} ও \vec{b} এর

অন্তভূক্ত কোণ $\pi - C$

 ${f EXAMPLE}$ -04: a এর মান কত হলে $a\hat{\imath}-2\hat{\jmath}+\hat{k}$ এবং $2a\hat{\imath}-a\hat{\jmath}-4\hat{k}$ পরস্পর লম্ব হবে।

সমাধান ঃ দুইটি ভেক্টর পরস্পর লম্ব হলে তাদের ডট গুণন শূন্য হয়।

অতএব,
$$(a\hat{\imath}-2\hat{\jmath}+\hat{k})$$
. $(2a\hat{\imath}-a\hat{\jmath}-4\hat{k})=0$ বা, $2a^2+2a-4=0$

বা,
$$a^2 + a - 2 = 0$$
 বা, $(a + 2)(a - 1) = 0$ $\therefore a = -2,1$ (উত্তর)

 $ext{Example-05: } ec{a} = 2\hat{\imath} - \hat{\jmath} + 2\hat{k}$ ভেক্টরের অক্ষের সাথে যে কোণ গুলি উৎপন্ন করে তা নির্ণয় কর।

সমাধান ঃ $\hat{\imath}.\,ec{a}=1.\,a\cos heta_x$ \therefore $m{ heta}_x=\cos^{-1}rac{2}{3}$, $m{X}$ -অক্ষের সাথে উৎপন্ন কোণ $m{ heta}_{X}$,

$$\hat{j}.\,ec{a}=1.\,a\cos heta_y\,\div\,m{ heta}_y=\cos^{-1}\left(rac{-1}{3}
ight)$$
 , Y-অক্ষের সাথে উৎপন্ন কোণ $m{ heta}_{Y_x}$

$$\hat{k}.~ec{a}=1.~a\cos heta_z~ : ~m{ heta}_z=\cos^{-1}\left(rac{2}{3}
ight)$$
 , ${f Z}$ -অক্ষের সাথে উৎপন্ন কোণ $m{ heta}_{m{Z},}$

EXAMPLE-05: $\underline{a}=3\hat{i}+2\hat{j}-2\hat{k}$ ও $\underline{b}=-\hat{i}+\hat{j}-4\hat{k}$ হলে \underline{a} ও \underline{b} এর লব্ধি ভেক্টরের সমান্তরাল একক ভেক্টর

সামাধান ঃ দেওয়া আছে, $\underline{a}=3\hat{i}+2\hat{j}-2\hat{k}$ এবং $\underline{b}=-\hat{i}+\hat{j}-4\hat{k}$

প্রদত্ত ভেক্টর দুইটির লব্ধি ভেক্টর = $\underline{a}+\underline{b}=(3-1)\hat{i}+(2+1)\hat{j}+(-2-4)\hat{k}=2\hat{i}+3\hat{j}-6\hat{k}$

$$|\underline{a} + \underline{b}| = \sqrt{2^2 + 3^2 + 6^2} = \sqrt{4 + 9 + 36} = \sqrt{49} = 7$$

∴ নির্ণেয় একক ভেক্টর =
$$\frac{a+b}{|a+b|}$$
 = $\pm \frac{2\hat{\imath}+3\hat{\jmath}-6\hat{k}}{7}$ = $\pm \frac{1}{7}(2\hat{\imath}+3\hat{\jmath}-6\hat{k})$ Ans:

EXAMPLE-06: A(3, -1,2), B(1,-1,-3) ও C(4,-3,1) বিন্দু তিনটি শূন্যে অবস্থিত। ABC ত্রিভুজের কোণ তিনটি নির্ণয় কর।

সামাধান ঃ A(3, -1, 2), B(1, -1, -3) ও C(4, -3, 1) বিন্দু তিনটি অবস্থান ভেক্টর যথাক্রমে $3\hat{\imath} - \hat{\jmath} + 2\hat{k}, \hat{\imath} - \hat{\jmath} - 3\hat{k}$, ও $4\hat{\imath} - 3\hat{\jmath} + \hat{k}$ ।

$$\overrightarrow{AB} = (\hat{i} - \hat{j} - 3\hat{k}) - (3\hat{i} - \hat{j} + 2\hat{k}) = -2\hat{i} - 5\hat{k} \qquad \therefore \overrightarrow{BA} = 2\hat{i} + 5\hat{k}$$

$$\overrightarrow{BC} = (4\hat{\imath} - 3\hat{\jmath} + \widehat{k}) - (\hat{\imath} - \hat{\jmath} - 3\widehat{k}) = 3\hat{\imath} - 2\hat{\jmath} + 4\widehat{k}, \quad \therefore \overrightarrow{CB} = -3\hat{\imath} + 2\hat{\jmath} - 4\widehat{k}$$

$$\overrightarrow{CA} = (3\hat{i} - \hat{j} + 2\widehat{k}) - (4\hat{i} - 3\hat{j} + \widehat{k}) = -\hat{i} + 2\hat{j} + \widehat{k} : \overrightarrow{AC} = \hat{i} - 2\hat{j} - \widehat{k}$$

$$\therefore \cos A = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{|\overrightarrow{AB}| |\overrightarrow{AC}|} = \frac{(-2\hat{i} - 5\hat{k}) \cdot (\hat{i} - 2\hat{j} - \hat{k})}{\sqrt{2^2 + 5^2} \sqrt{1^2 + 2^2 + 1^2}} = \frac{-2 + 0 + 5}{\sqrt{29} \sqrt{6}} = \frac{3}{\sqrt{174}} \Rightarrow \angle A = \cos^{-1} \frac{3}{\sqrt{174}}$$

$$\cos B = \frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{|\overrightarrow{BA}| |\overrightarrow{BC}|} = \frac{(2\hat{i} + 5\hat{k}) \cdot (3\hat{i} - 2\hat{j} + 4\hat{k})}{\sqrt{2^2 + 5^2} \sqrt{3^2 + 2^2 + 4^2}} = \frac{6 + 0 + 20}{\sqrt{29} \sqrt{29}} = \frac{26}{29} \Rightarrow \angle B = \cos^{-1} \frac{26}{29}$$

$$\cos C = \frac{\overrightarrow{CA} \cdot \overrightarrow{CB}}{|\overrightarrow{CA}| |\overrightarrow{CB}|} = \frac{(-\hat{i} + 2\hat{j} + \hat{k}) \cdot (-3\hat{i} + 2\hat{j} - 4\hat{k})}{\sqrt{1^2 + 2^2 + 1^2} \sqrt{3^2 + 2^2 + 4^2}} = \frac{3 + 4 - 4}{\sqrt{6} \sqrt{29}} = \frac{3}{\sqrt{7}} \Rightarrow \angle C = \cos^{-1} \frac{3}{\sqrt{174}}$$

Try yourself : (i) তিনটি বিন্দুর অবস্থান ভেক্টর যথাক্রমে $\hat{\imath}+2\hat{\jmath}+3\hat{k}$, $-\hat{\imath}-\hat{\jmath}+8\hat{k}$ এবং $-4\hat{\imath}+4\hat{\jmath}+6\hat{k}$, দেখাও যে বিন্দু তিনটি একটি সমবাহু ত্রিভুজ গঠন করে।

- (ii) $\vec{A}=3\hat{\imath}+2\hat{\jmath}-2\hat{k}$ এবং $\vec{B}=-\hat{\imath}+\hat{\jmath}-4\hat{k}$ হলে \vec{A} ও \vec{B} এর লব্ধি ভেক্টরের সমান্তরাল একক ভেক্টর নির্ণয় কর। Hints : লব্ধি ভেক্টর , $\vec{C}=\vec{A}+\vec{B}$, $\hat{c}=\frac{\vec{c}}{c}$
 - (iii) দেখাও যে, ভেক্টর $\vec{n}=a\hat{\imath}+b\hat{\jmath}$, XY- সমতলে ax+by=c রেখার উপর লম্ব।
 - (iv) প্রমাণ কর যে, কোনো ত্রিভুজ ABC- তে
 - (a) $\cos C = \frac{a^2 + b^2 c^2}{2ab}$ (b) $c = a \cos B + b \cos A$

$ext{TYPE-02: } ec{a} imesec{b}=|ec{a}|.\left|ec{b}\right|\sin heta.\widehat{\eta}; 0^0\leq heta\leq180^0$ সূত্র সম্পর্কেত গাণিতিক সমস্যাবলী

EXAMPLE-01: এমন একটি একক ভেক্টর নির্ণয় কর, যা $\hat{\imath}-\hat{\jmath}+2\hat{k}$ এবং $\hat{\imath}+2\hat{\jmath}-\hat{k}$ ভেক্টর দুইটির উপর লম্ব ।

সমাধান ঃ
$$(\hat{\imath} - \hat{\jmath} + 2\hat{k}) \times (\hat{\imath} + 2\hat{\jmath} - \hat{k}) = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ 1 & -1 & 2 \\ 1 & 2 & -1 \end{vmatrix} = (1-4)\hat{\imath} - (-1-2)\hat{\jmath} - (2+1)\hat{k}$$

$$= -3\hat{i} + 3\hat{j} - 3\hat{k} = \vec{a} \times \vec{b} , \ \hat{\eta} = \pm \frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|} = \pm \frac{-3\hat{i} + 3\hat{j} - 3\hat{k}}{3\sqrt{3}} = \pm \frac{-\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}}$$

EXAMPLE-02: m এর মান কত হলে $\vec{a}=2\hat{\imath}+m\hat{\jmath}-2\hat{k}$ এবং $\vec{b}=6\hat{\imath}+6\hat{\jmath}-3\hat{k}$ ভেক্টরদ্বয় পরস্পর সমান্তরাল হবে।

সমাধান ঃ
$$\frac{2}{3} = \frac{m}{6}$$
 : $m = 4$

Try yourself : (i) দুইটি ভেক্টর $\overrightarrow{A}=2\hat{\imath}-6\hat{\jmath}-3\hat{k}$ এবং $\overrightarrow{B}=4\hat{\imath}+3\hat{\jmath}-\hat{k}$ দ্বারা গঠিত সমতলের উপর একটি একক লম্ব ভেক্টর নির্ণিয় । উত্তর ঃ $\pm\frac{1}{7}\big(3\hat{\imath}-2\hat{\jmath}+6\hat{k}\big)$

$$({f ii})$$
 প্রমাণ কর যে, কোনো ত্রিভুজ ${
m ABC}$ - তে ${a\over {sin} A}={b\over {sin} B}={c\over {sin} C}$

$ext{TYPE-03: } ec{c} = rac{m ec{b} - n ec{a}}{m-n} ext{; সূত্র সম্পর্কিত গাণিতিক সমস্যাবলী}$

EXAMPLE-01: $\overrightarrow{a} = \hat{\imath} + \hat{\jmath} - \hat{k}$, $\overrightarrow{b} = \hat{\imath} - \hat{\jmath} + \hat{k}$ হলে, এমন একটি একক ভেক্টর \overrightarrow{c} নির্ণয় কর যা \overrightarrow{a} এবং \overrightarrow{b} ভেক্টরের সাথে একই তলে অবস্থান করে এবং \overrightarrow{a} ভেক্টরের লম।

সমাধান ঃ একই তলে অবস্থান করে বলে,
$$\ \vec{c}=rac{m \vec{b}-n \vec{a}}{m-n}=rac{(m-n)\hat{\imath}+(m+n)\hat{\jmath}-(m+n)\hat{k}}{m-n}$$

 \overrightarrow{a} ভেক্টরের লম্ব বলে , \overrightarrow{c} . \overrightarrow{a} =0 \Rightarrow (m-n) + (m+n) + (m+n) = 0 \Rightarrow n=-3m

$$\vec{c} = \frac{4\hat{i} - 2\hat{j} + 2\hat{k}}{4} = \frac{1}{\sqrt{16}} (2\hat{i} - \hat{j} + \hat{k}),$$

Try yourself: $\overrightarrow{a} = \hat{\imath} + \hat{\jmath} + \hat{k}$ এবং $\overrightarrow{b} = \hat{\imath} + \sqrt{2}\hat{\jmath} - \sqrt{6}\hat{k}$, হলে এমন একটি একক ভেক্টর \overrightarrow{c} নির্ণয় কর , যা \overrightarrow{a} এবং \overrightarrow{b} এর সাথে সমতলীয় হবে এবং \overrightarrow{a} এর লম্ব হবে । \overrightarrow{a} এমন একটি একক ভেক্টর নির্ণয় কর যা \overrightarrow{a} এবং \overrightarrow{c} দুইটি ভেক্টরের লম্ব হবে ।

উত্তরঃ
$$\overrightarrow{c} = l(\hat{\imath} + \hat{\jmath} + \hat{k}) + m(\hat{\imath} + \sqrt{2}\hat{\jmath} - \sqrt{6}\hat{k})$$
, যেখানে, $3l = (\sqrt{6} - \sqrt{2} - 1)m$ এবং $9m^2 - 3l^2 = 1$; $\overrightarrow{a} = \frac{1}{\lambda}[(-\sqrt{6} - \sqrt{2})\hat{\imath} + (\mp\sqrt{6})\hat{\jmath} + (\sqrt{2} - 2)\hat{k}]$, যেখানে, $\lambda^2 = 18 + 2(\sqrt{12} + \sqrt{6} - \sqrt{2})$.

TYPE-04:
$$\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) = \overrightarrow{b} \cdot (\overrightarrow{c} \times \overrightarrow{a}) = \overrightarrow{c} \cdot (\overrightarrow{a} + \overrightarrow{b}) = 0$$

সূত্র সম্পর্কিত গাণিতিক সমস্যাবলী

EXAMPLE-01: ধ্রুবক a- এর মান নির্ণয় কর যেন $2\hat{\imath}+\hat{\jmath}-\hat{k},\ 3\hat{\imath}-2\hat{\jmath}+4\hat{k}$ এবং $\hat{\imath}-3\hat{\jmath}+a\hat{k}$ এই তিনটি ভেক্টর একইসমতলে থাকে।

সমাধান ঃ
$$egin{array}{c|ccc} 2 & 1 & -1 \ 3 & -2 & 4 \ 1 & -3 & a \ \end{array} = 2(-2a+12)-1(3a-4)-1(-9+2) = -7a+26$$

শর্তানুযায়ী , $-7a+35=0\Rightarrow a=5$

EXAMPLE-02: ভেক্টরের সাহায্যে দেখাও যে, A(1, -1, -1), B(3, 3, 1) এবং C(-1, 4, 4) বিন্দু তিনটি একটি গোলকের উপর অবস্থিত যার কেন্দ্র P(0, 1, 2)।

সমাধান ঃ
$$\overrightarrow{AB} = 2\hat{\imath} + 4\hat{\jmath} + 2\hat{k}$$
 , $\overrightarrow{BC} = -4\hat{\imath} + \hat{\jmath} + 3\hat{k}$, $\overrightarrow{CA} = 2\hat{\imath} - 5\hat{\jmath} - 5\hat{k}$

$$\begin{vmatrix} 2 & 4 & 2 \\ -4 & 1 & 3 \\ 2 & -5 & -5 \end{vmatrix} = 2(-5+15) - 4(20-6) + 2(20-2) = 20 - 56 + 36 = 0,$$

 \therefore A , B , C বিন্দু তিনটি একটি গোলকের উপর অবস্থিত । P(~0,~1,2) বিন্দুর অবস্থান ভেক্টর , $\overrightarrow{m{OP}}=\hat{\jmath}+2\hat{k}$

$$\overrightarrow{PA} = \hat{\imath} - 2\hat{\jmath} - 3\hat{k}, |\overrightarrow{PA}| = \sqrt{1+4+9} = \sqrt{14}$$
,

$$\overrightarrow{PB} = 3\hat{\imath} + 2\hat{\jmath} - \hat{k}, |\overrightarrow{PB}| = \sqrt{9 + 4 + 1} = \sqrt{14}$$

$$\overrightarrow{PC}=\hat{\imath}+3\hat{\jmath}+2\hat{k},\, |\overrightarrow{PC}|=\sqrt{1+9+4}=\sqrt{14}$$
 , \therefore গোলকটির কেন্দ্র $\mathrm{P}(~0,~1,2)~|$

$ext{TYPE-05: } ec{r} = ec{a} + \lambda ec{b}$ সূত্র সম্পর্কিত গাণিতিক সমস্যাবলী

EXAMPLE-01: $\vec{a}=3\hat{\imath}+5\hat{\jmath}$ বিন্দুগামী এবং $\vec{b}=2\hat{\imath}+4\hat{\jmath}$ ভেক্টরের সমান্তরাল রেখার সমীকরণ নির্ণয় কর যা \vec{a} ভেক্টরের উপর লম্ব ।

সমাধান ঃ শর্তানুযায়ী রেখার সমীকরণ , $ec{r}=ec{a}+\lambdaec{b}$ = $(3+2\lambda)\hat{\iota}+(5+4\lambda)\hat{\jmath}$

$$\vec{r} \cdot \vec{a} = 0 \Rightarrow 3 \times (3 + 2\lambda) + 5 \times (5 + 4\lambda) = 0 \Rightarrow \lambda = \frac{34}{26} = \frac{17}{13}$$

$$\vec{r} = \left(3 + 2 \times \frac{17}{13}\right)\hat{i} + \left(5 + 4 \times \frac{17}{13}\right)\hat{j} = \frac{1}{13}(73\hat{i} + 133\hat{j})$$

EXAMPLE-02: যদি \underline{a} ও \underline{b} অশূন্য অসমান্তরাল ভেক্টর হয় এবং $(x-2)\underline{a}+(y+5)\underline{b}=0$

$$x - 2 = 0, y + 5 = 0 \Rightarrow x = 2, y = -5$$

 $extbf{EXAMPLE-03}$: ভেক্টর পদ্ধতির সাহায্যে দেখাও যে, $(x_1^{}$, $x_2^{})$ ও $(y_1^{}$, $y_2^{})$ বিন্দুগামী সরলরেখার ভেক্টর সমীকরন

 $\underline{r}=\underline{a}+t(\underline{b}-\underline{a})$; যেখানে t একটি প্যারামিটার।

$$\Rightarrow x\hat{i} + y\hat{j} = x_1\hat{i} + y_1\hat{j} + t(x_1\hat{i} + y_1\hat{j} - x_1\hat{i} - y_1\hat{j})$$

$$\Rightarrow (x - x_1)\hat{i} + (y - y_1)\hat{j} = t(x - x_1)\hat{i} + t(y - y_1)\hat{j}$$

উভয় পক্ষ হতে \hat{i} ও \hat{j} এর সহগ সমীকৃত করে পাই, $(x-x_1)=\ t(x-x_1)$, $(y-y_1)=\ t(y-y_1)$

$$\Rightarrow \frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}(t)$$

- **EXAMPLE-04:** (1,2,-6) বিন্দুগামী এবং (2,-3,0) ও (4, -4,1) বিন্দুদ্বয়ের সংযোগ সরলরেখার সমান্তরাল সরলরেখার ভেক্টর সমীরকণ নির্ণয় কর।
- সমাধান ঃ মনে করি, (1,2,-6) বিন্দুর অবস্থান ভেক্টর $\underline{a}=\hat{i}+2\hat{j}-6\hat{k}$ এবং A(2,-3,0) ও B(4,-4,1) বিন্দুদ্বয়ের অবস্থান ভেক্টর যথাক্রমে $2\hat{i}-3\hat{j}+0\hat{k}$ ও $4\hat{i}-4\hat{j}+\hat{k}$ ।
- $\overrightarrow{AB}=\left(4\hat{i}-4\hat{j}+\widehat{k}\right)-\left(2\hat{i}-3\hat{j}+0\widehat{k}\right)=2\hat{i}-\hat{j}+\widehat{k}=\underline{b}$ (ধরি)। তাহলে, \underline{a} বিন্দুগামী এবং \underline{b} ভেক্টরের সমান্তরাল সমীকরণের ভেক্টর সমীকরণ $\underline{r}=\underline{a}+t\underline{b}$; যেখানে t একটি প্যারামিটার।

$$\Rightarrow \underline{r} = \hat{\imath} + 2\hat{\jmath} - 6\hat{k} + t(2\hat{\imath} - \hat{\jmath} + \hat{k})$$
 (Ans:)

 ${f Try\ yourself:}\ \vec{a}=2\hat{\imath}-4\hat{\jmath}+3\hat{k}$ বিন্দুগামী এবং $\vec{b}=3\hat{\imath}+\hat{\jmath}-5\hat{k}$ ভেক্টরের সমান্তরাল রেখার সমীকরণ নির্ণয় কর যা \vec{a} ভেক্টরের উপর লম্ব । ${
m Ans:}rac{1}{13}ig(113\hat{\imath}-23\hat{\jmath}-106\hat{k}ig)$