Análise amortizada

CLRS 17

Análise amortizada

Serve para analisar uma sequência de operações ou iterações onde o pior caso individual não reflete o pior caso da sequência.

Em outras palavras, serve para melhorar análises de pior caso que baseiem-se diretamente no pior caso de uma operação/iteração e que deem uma delimitação frouxa para o tempo de pior caso da sequência.

Métodos:

- agregado
- por créditos
- potencial

Considere um contador binário, inicialmente zerado, representado em um vetor A[0...n-1], onde cada A[i] vale 0 ou 1.

Operação: incrementa.

```
INCREMENTA (A, n)

1 i \leftarrow 0

2 enquanto i < n e A[i] = 1 faça

3 A[i] \leftarrow 0

4 i \leftarrow i + 1

5 se i < n

6 então A[i] \leftarrow 1
```

Consumo de tempo no pior caso: $\Theta(n)$

Considere um contador binário, inicialmente zerado, representado em um vetor A[0...n-1], onde cada A[i] vale 0 ou 1.

Operação: Incrementa.

Consumo de tempo no pior caso: $\Theta(n)$.

O odômetro dá uma volta completa a cada 2^n execuções do Incrementa.

Quanto tempo leva para o odômetro dar uma volta completa?

Leva $O(n2^n)$.

Será que é $\Theta(n2^n)$?

i	3	2	1	0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
16	0	0	0	0

i	3	2	1	0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1
16	0	0	0	0

Método agregado

Custo da volta completa é proporcional ao número de vezes que os bits são alterados.

```
bit 0 muda 2^n vezes
bit 1 muda 2^{n-1} vezes
bit 2 muda 2^{n-2} vezes
\cdots
bit n-2 muda 4 vezes
bit n-1 muda 2 vezes
```

Total de alterações de bits: $\sum_{i=1}^{n} 2^{i} < 2 \cdot 2^{n}$.

Custo da volta completa: $\Theta(2^n)$.

Custo amortizado por Incrementa: $\Theta(1)$.

Atribuímos um número fixo de créditos por operação INCREMENTA de modo a pagar por toda alteração de bit.

Objetivo: atribuir o menor número possível de créditos que seja ainda suficiente para pagar por todas as alterações.

Relembre...

```
INCREMENTA (A, n)

1 i \leftarrow 0

2 enquanto i < n e A[i] = 1 faça

3 A[i] \leftarrow 0

5 i \leftarrow i + 1

6 se i < n

7 então A[i] \leftarrow 1
```

Atribuímos 2 créditos por Incrementa.

```
INCREMENTA (A, n)

1 i \leftarrow 0

2 enquanto i < n e A[i] = 1 faça

3 A[i] \leftarrow 0

4 i \leftarrow i + 1

5 se i < n

6 então A[i] \leftarrow 1
```

Um é usado para pagar pela alteração da linha 6.

O outro fica armazenado sobre o bit alterado na linha 6.

Há um crédito armazenado sobre cada bit que vale 1.

Alterações da linha 3 são pagas por créditos armazenados por chamadas anteriores do Incrementa.

Atribuímos 2 créditos por Incrementa.

```
INCREMENTA (A, n)

1 i \leftarrow 0

2 enquanto i < n e A[i] = 1 faça

3 A[i] \leftarrow 0

4 i \leftarrow i + 1

5 se i < n

6 então A[i] \leftarrow 1
```

Um é usado para pagar pela alteração da linha 6.

O outro fica armazenado sobre o bit alterado na linha 6.

O número de créditos armazenados em cada instante é o número de bits que valem 1, logo é sempre não negativo.

Custo amortizado por Incrementa: 2

Método do potencial

Seja $\phi(A)$ o número de bits que valem 1 em A[0..n-1].

Seja A_i o estado do contador A após o i-ésimo Incrementa.

Note que $\phi(A_0) = 0$ e $\phi(A_i) \ge 0$.

Seja c_i o número de bits alterados no i-ésimo Incrementa.

Note que $c_i \leq 1 + t_i$ onde t_i é o número de bits 1 consecutivos no final do contador A.

Note que $\phi(A_i) - \phi(A_{i-1}) \leq 1 - t_i$.

Seja
$$\hat{c}_i = c_i + \phi(A_i) - \phi(A_{i-1}) \le (1 + t_i) + (1 - t_i) = 2$$
.

Método do potencial

Seja $\phi(A)$ o número de bits que valem 1 em A[0...n-1].

Seja A_i o estado do contador A após o i-ésimo Incrementa. Temos que $\phi(A_0)=0$ e $\phi(A_i)\geq 0$.

Seja c_i o número de bits alterados no i-ésimo Incrementa e t_i é o número de bits 1 consecutivos no final do contador A. Temos que $c_i \leq 1 + t_i$.

Seja
$$\hat{c}_i = c_i + \phi(A_i) - \phi(A_{i-1}) \le (1 + t_i) + (1 - t_i) = 2$$
.

Então o custo da volta completa é

$$c = \sum_{i=1}^{2^n} c_i = \sum_{i=1}^{2^n} \hat{c}_i + \phi(A_0) - \phi(A_{2^n}) \le \sum_{i=1}^{2^n} \hat{c}_i \le 2 \cdot 2^n.$$

Custo amortizado por Incrementa: 2

 \triangleright (valor do \hat{c}_i)

Tabelas dinâmicas

Vetor que sofre inserções. Cada inserção custa 1.

Inicialmente o vetor tem 0 posições.

Na primeira inserção, um vetor com uma posição é alocado, e o item em questão é inserido.

A cada inserção em que o vetor está cheio, antes da inserção propriamente dita, um vetor do dobro do tamanho é alocado, o vetor anterior é copiado para o novo vetor e depois é desalocado.

O custo no pior caso de uma inserção é alto, pois pode haver uma realocação.

Tabelas dinâmicas

Para
$$i = 0, 1, 2, \dots, n - 1$$
,

$$c_i = \left\{ egin{array}{ll} 1 & ext{se } i ext{ não \'e potência de 2} \\ i+1 & ext{se } i ext{ \'e potência de 2} \end{array}
ight.$$

Método agregado:

$$\sum_{i=0}^{n-1} c_i = n + (1 + 2 + 2^2 + \dots + 2^k)$$

onde $k = \lfloor \lg n \rfloor$.

Logo
$$\sum_{i=0}^{n-1} c_i = n + 2^{k+1} - 1 \le n + 2n - 1 < 3n$$
.

Custo amortizado por inserção: 3

Chame de velho um item que já estava no vetor no momento da última realocação do vetor, e de novos os itens inseridos após a última realocação.

Atribuímos 3 créditos por inserção: um é usado para pagar pela inserção do item,

os outros dois são armazenados sobre o item.

Ao ocorrer uma realocação, há 2 créditos sobre cada item novo no vetor, e isso é suficiente para pagar pela cópia de todos os itens do vetor para o novo vetor pois, quando o vetor está cheio, há um item novo para cada item velho.

Em outras palavras, o segundo crédito paga a cópia do item na primeira realocação que acontecer após a sua inserção, e o terceiro crédito paga a cópia de um item velho nesta mesma realocação.