

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Topología I Examen XII

Los Del DGIIM, losdeldgiim.github.io José Juan Urrutia Milán

Granada, 2024-2025

Asignatura Topología I.

Curso Académico 2024-25.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Antonio Alarcón López¹.

Descripción Convocatoria Ordinaria.

Fecha 22 de enero de 2025.

Duración 3 horas.

¹El examen es común a todo el departamento

Ejercicio 1. En \mathbb{R} se considera la única topología \mathcal{T} tal que \mathcal{B}_x es base de entornos de \mathcal{T} en $x, \forall x \in \mathbb{R}$, donde:

$$\mathcal{B}_{x} = \{ |x - \varepsilon, x + \varepsilon[\mid \varepsilon > 0 \}, \text{ si } x \neq 0, x \neq 1$$

$$\mathcal{B}_{0} = \{ |-\varepsilon, 0| \cup |1 - \varepsilon, 1[\mid \varepsilon > 0 \}$$

$$\mathcal{B}_{1} = \{ |0, \varepsilon[\cup [1, 1 + \varepsilon[\mid \varepsilon > 0 \}$$

- (a) (1.5 puntos) Sea $A = \left] -\frac{1}{2}, \frac{1}{2} \right[\subseteq \mathbb{R}$. Calcula el interior y la clausura de A. ¿Es A conexo?
- (b) (2 puntos) ¿Verifica $(\mathbb{R}, \mathcal{T})$ el segundo axioma de numerabilidad? ¿Es $(\mathbb{R}, \mathcal{T})$ un espacio Hausdorff? ¿Es $(\mathbb{R}, \mathcal{T})$ compacto?
- (c) (1.5 puntos) Consideremos en \mathbb{R} la relación de equivalencia

$$xRx'$$
 si y solo si $x = x'$ o $x, x' \in]-\infty, 0]$ o $x, x' \in [1, +\infty[$

Demuestra que $(\mathbb{R}/\mathcal{R}, \mathcal{T}/\mathcal{R})$ es homeomorfo a $([0,1], (\mathcal{T}_u)_{|[0,1]})$.

Ejercicio 2 (2 puntos). Sean (X, \mathcal{T}) , (Y, \mathcal{T}') y (Z, \mathcal{T}'') espacios topológicos y denotemos $\pi_X : X \times Y \to X$ y $\pi_Y : X \times Y \to Y$ las proyecciones. Prueba que $f : (Z, \mathcal{T}'') \to (X \times Y, \mathcal{T} \times \mathcal{T}')$ es continua si y solo si las aplicaciones $f_X = \pi_X \circ f : (Z, \mathcal{T}'') \to (X, \mathcal{T})$ y $f_Y = \pi_Y \circ f : (Z, \mathcal{T}'') \to (Y, \mathcal{T}')$ son continuas.

Ejercicio 3. Dados (X, \mathcal{T}) e (Y, \mathcal{T}') espacios topológicos, se dice que una aplicación $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es localmente constante si $\forall x\in X,\ \exists V$ entorno de x tal que $f_{|V}$ es constante.

- (a) (1 punto) Demuestra que si $f:(X,\mathcal{T})\to (Y,\mathcal{T}')$ es localmente constante entonces $f^{-1}(A)\in\mathcal{T}$ para todo $A\subset Y$.
- (b) (2 puntos) Demuestra que (X, \mathcal{T}) es conexo si y solo si para todo espacio topológico (Y, \mathcal{T}') y toda aplicación localmente constante $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ se tiene que f es constante.