Part IA - Dynamics and Relativity Theorems

Lectured by G. I. Ogilvie

Lent 2015

Basic concepts

Space and time, frames of reference, Galilean transformations. Newton's laws. Dimensional analysis. Examples of forces, including gravity, friction and Lorentz. [4]

Newtonian dynamics of a single particle

Equation of motion in Cartesian and plane polar coordinates. Work, conservative forces and potential energy, motion and the shape of the potential energy function; stable equilibria and small oscillations; effect of damping.

Angular velocity, angular momentum, torque.

Orbits: the $u(\theta)$ equation; escape velocity; Kepler's laws; stability of orbits; motion in a repulsive potential (Rutherford scattering). Rotating frames: centrifugal and coriolis forces. *Brief discussion of Foucault pendulum.*

Newtonian dynamics of systems of particles

Momentum, angular momentum, energy. Motion relative to the centre of mass; the two body problem. Variable mass problems; the rocket equation. [2]

Rigid bodies

Moments of inertia, angular momentum and energy of a rigid body. Parallel axes theorem. Simple examples of motion involving both rotation and translation (e.g. rolling).

Special relativity

The principle of relativity. Relativity and simultaneity. The invariant interval. Lorentz transformations in (1+1)-dimensional spacetime. Time dilation and length contraction. The Minkowski metric for (1+1)-dimensional spacetime. Lorentz transformations in (3+1) dimensions. 4-vectors and Lorentz invariants. Proper time. 4-velocity and 4-momentum. Conservation of 4-momentum in particle decay. Collisions. The Newtonian limit.

Contents

1	Newtonian dynamics of particles			
	1.1	Newton's laws of motion	,	
	1.2	Galilean transformations	,	
	1.3	Newton's Second Law	;	
2 D	Din	Dimensional Analysis		
	2.1	Units		
	2.2	Scaling	4	
3	Forces			
	3.1	Force and potential energy in one dimension		
	3.2	Motion in a potential	ļ	

1 Newtonian dynamics of particles

1.1 Newton's laws of motion

Law (Newton's First Law of Motion). A body remains at rest, or moves uniformly in a straight line, unless acted on by a force. (This is in fact Galileo's Law of Inertia)

Law (Newton's Second Law of Motion). The rate of change of momentum of a body is equal to the force acting on it (in both magnitude and direction).

Law (Newton's Third Law of Motion). To every action there is an equal and opposite reaction: the forces of two bodies on each other are equal and in opposite directions.

1.2 Galilean transformations

Law (Galilean relativity). The *principle of relativity* asserts that the laws of physics are the same in inertial frames.

1.3 Newton's Second Law

Law. The equation of motion for a particle subject to a force F is

$$\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \mathbf{F},$$

where $\mathbf{p} = m\mathbf{v} = m\ddot{\mathbf{r}}$ is the (linear) momentum of the particle. We say m is the (inertial) mass of the particle, which is a measure of its reluctance to accelerate.

- 2 Dimensional Analysis
- 2.1 Units
- 2.2 Scaling

3 Forces

3.1 Force and potential energy in one dimension

Proposition. Suppose the equation of a particle satisfies

$$m\ddot{x} = -\frac{\mathrm{d}V}{\mathrm{d}x}.\tag{*}$$

Then the total energy

$$E = T + V = \frac{1}{2}m\dot{x}^2 + V(x)$$

is conserved, i.e. $\dot{E} = 0$.

3.2 Motion in a potential