Geospatial Modeling Crash Course

A kitchen sink approach

NASA DEVELOP

10 week feasibility studies to help project partners integrate NASA Earth Observations

- Tamarisk in Utah
- Russian Olive in Colorado
- Tree mortality in Intermountain West
- Wild Rice in Minnesota
- Ephemeral Water Sources in Utah
- Cranberries in Wisconsin
- Spruce budworm in Colorado

Goal

Provide a training that exposes individuals to the framework and components of a common geospatial modeling process so they can more quickly engage with the material in their own work.

- Understand potential and follow the process
- Have a resource to look back on

Please Ask Questions

Outline

Part 1: Intro to the Question

Part 2: Sampling Data (GEE)

Part 3: Interoperability (GEE)

Part 4: Modeling (GEE)

Part 5: Variable Selection ('R')

Part 6: Modeling 2 (GEE)

Part Last: Conclusion and extra resources ('R')

How to do this well

- Collaboration
- Reproducibility
- Always learn
- Engaging in peer review process at various levels

Sudden Aspen Decline (SAD)

- Drought Stress
- Grazing
- Minimum Winter Temps
- Most common:
 - Southern Latitudes
 - Southern aspects

Correlated to heat...

 Sudden Aspen Decline flow chart. All photos taken on Sudden Aspen Decline research sites in southwestern Colorado (Sarah Bisbing, 2012).

Worrall et al 2013

- Suzuki et al 1999
 - Aerial photography
- Bretfeld et al 2016
 - Resampling 1970 veg plots
- Sankey 2011
 - Elvaulated Lidar/RS
- Hamilton et al 2009
 - RS detection of Aspen

"Advances in remote sensing technologies can provide cost-effective ways to obtain spatial and quantitative information about aspen to support restoration activities at multiple scales"

Fig. 1. Distribution of aspen's climatic niche in North America as determined through the bioclimate model, based on the reference period 1961–1990. Percent of votes generated by the model, indicating climatic suitability, is shown together with the corresponding probability of presence of aspen (Supplement 1: Fig. 1). Also shown is Little's (1971) range map.

USFS

Aerial DetectionSurvey

Aspen Damage in Colorado from the 2007 Aerial Detection Survey

Due to the nature of aerial surveys, the data on this map will only provide rough estimates of location, intensity and the resulting trend information for agents detectable from the air. Many of the most destructive diseases are not represented on this map because these agents are not detectable from aerial surveys. The data presented on this map should only be used as a partial indicator of insect and disease activity, and should be validated on the ground for actual location and casual agent.

Shaded areas show locations where tree mortality or defoliation were apparent from the air. Intensity of damage is variable and not all trees in shaded areas are dead or defoliated.

Model aspen

- Rely on best <u>practices</u>

Species Distribution Models: Ecological Explanation and Prediction Across Space and Time

Jane Elith1 and John R. Leathwick2

¹School of Botany, The University of Melbourne, Victoria 3010, Australia; email: j.elith@unimelb.edu.au

² National Institute of Water and Atmospheric Research, Hamilton, New Zealand; email: j.leathwick@niwa.co.nz

Interact with GEE Drop Points (Part 2)

Generate potential training data in GEE

- NAIP imagery
- GEE basic functions

Best Practice:

Import features in GEE (Part 3)

Learn how it import existing datasets into GEE

Interoperability

Modeling In GEE (Part 4)

Produce a geospatial model in GEE

- Apply advanced functions
- Generate Indices
- Visualize results

Break

Variable Selection in R (Part 5)

Engage with R packages to inform which predictors are important

- Manipulate dataframes
- Apply algorithms
- View statistical results

Modeling In GEE - 2 (Part 6)

Integrate information from R back into GEE

General Notes on Geospatial Modeling

Modeling is full of assumptions, know them

Understanding what it does poorly is equally as important as what it does well

Ideally your model provides more information then was previously available

Understand where the largest uncertainty is and use that to limit the specificity of your output

https://github.com/fortCollinDev

Click on "modelingShortCourse"

Jupyter notebook

Add link here. (email out before hand)

Follow Along by opening the html file

part1	
part2	
part3	
part4	
part5	
nart6	

drawPolygon	4/9/2018 10:34 AM	PNG File	81 KB
drawPolygon2	4/9/2018 10:35 AM	PNG File	230 KB
geometrylmport	4/9/2018 10:41 AM	PNG File	6 KB
points	4/9/2018 11:25 AM	PNG File	2,322 KB
points1	5/28/2018 4:28 PM	PNG File	774 KB
pointsFalse	5/28/2018 4:35 PM	PNG File	842 KB
presencePoints	4/9/2018 11:15 AM	PNG File	84 KB
samplingInGEE	5/28/2018 4:39 PM	Chrome HTML Do	4,501 KB
samplingInGEE.rmd	5/28/2018 4:39 PM	RMD File	7 KB
sideBySide	4/9/2018 11:10 AM	PNG File	1,634 KB
trueColor	5/28/2018 4:25 PM	PNG File	882 KB

Creating geometries in earth engine is as simple as pressing the geometry button.

Ask questions