

(51) Internationale Patentklassifikation ⁷ : H04J 14/02, H04B 10/18		A1	(11) Internationale Veröffentlichungsnummer: WO 00/25465 (43) Internationales Veröffentlichungsdatum: 4. Mai 2000 (04.05.00)
(21) Internationales Aktenzeichen: PCT/DE99/03178 (22) Internationales Anmeldedatum: 1. Oktober 1999 (01.10.99)		(81) Bestimmungsstaaten: CA, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Prioritätsdaten: 198 48 989.7 23. Oktober 1998 (23.10.98) DE		Veröffentlicht <i>Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i>	
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): SIEMENS AKTIENGESELLSCHAFT [DE/DE]; Wittelsbacherplatz 2, D-80333 München (DE). (72) Erfinder; und (75) Erfinder/Anmelder (<i>nur für US</i>): WEISKE, Claus-Jörg [DE/DE]; Veit-Stoss-Str. 2, D-82256 Fürstenfeldbruck (DE). KRUMMRICH, Peter [DE/DE]; Halskestr. 16, D-81379 München (DE). (74) Gemeinsamer Vertreter: SIEMENS AKTIENGESELLSCHAFT; Postfach 22 16 34, D-80506 München (DE).			

(54) Title: METHOD FOR CHANNEL ADJUSTMENT OF TRANSMISSION SIGNAL POWER IN A WAVELENGTH DIVISION MULTIPLEXING TRANSMISSION SYSTEM

(54) Bezeichnung: VERFAHREN ZUR KANALWEISEN EINSTELLUNG VON SENDESIGNALLEISTUNGEN EINES WELLENLÄNGENMULTIPLEX-ÜBERTRAGUNGSSYSTEMS

(57) Abstract

The corresponding transmission signal power levels ($P_{tx(i)}$) are adjusted for exact level balance or signal-to-noise ratio balance of received signals (E_1 to E_n). If the dynamic range is surpassed, individual transmission signal outputs are compressed, wherein the transmission signal summation power is maintained at least at an almost constant level.

(57) Zusammenfassung

Für eine exakte Pegel-Balance oder Signal-Rausch-Verhältnis-Balance von Empfangssignalen (E_1 bis E_n) werden die zugehörigen Sendesignalleistungen ($P_{tx(i)}$) eingestellt. Wird der zulässige Dynamikbereich überschritten, erfolgt eine Kompression der einzelnen Sendesignalleistungen, wobei die Sendesignal-Summenleistung zumindest annähernd konstant gehalten wird.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

Beschreibung

Verfahren zur kanalweisen Einstellung von Sendesignalleistungen eines Wellenlängenmultiplex-Übertragungssystems

5 Optische Wellenlängenmultiplex-Übertragungssysteme weisen aufgrund der Wellenlängenabhängigkeit von optischen Verstärkern, Dämpfungen in den Übertragungsfasern und in passiven optischen Komponenten sowie durch nichtlineare Effekte wie
10 Signalverkopplungen durch stimuliert Ramanstreuung im allgemeinen für die unterschiedlichen Signale bzw. Kanäle unterschiedliche Dämpfungswerte auf. Diese Effekte können sich bei einer optischen Übertragungsstrecke, die aus mehreren Streckenabschnitten mit mehreren Faserverstärkern besteht, addieren.
15 Als Folge hiervon werden auf der Empfangsseite die schwächeren optischen Signale vom optischen Empfänger nicht mehr fehlerfrei detektiert, weil deren Pegel zu klein sind oder weil deren optisches Signal-Rausch-Verhältnis (OSNR - Optical Signal-to-Noise-Ratio) zu klein ist. Andererseits kann
20 bei einem weniger gedämpften Signal der maximal zulässige Eingangspegel des optischen Empfängers überschritten werden.

Ein in bestehenden optischen Übertragungssystemen angewendetes Verfahren zum Ausgleichen der unterschiedlichen Pegel-
25 oder OSNR-Werte besteht in einer entsprechenden Vorkompensation auf der Sendeseite, die sog. Preemphase. Hierbei wird die Pegel- oder OSNR-Verteilung der Kanäle/Signale auf der Empfangsseite mit Hilfe eines optischen Sektrumsanalyzers gemessen und durch sendeseitige Anhebung des Pegels der am
30 Empfänger stark gedämpft ankommenden Signale sowie durch entsprechende Absenkung des Pegels der leistungsstärkeren Signale dafür gesorgt, daß alle Empfangssignale auf der Empfangsseite die gleiche Leistung (Pegelbalance) oder das gleiche Signal-Rausch-Verhältnis (ONSР-Balance) haben. Die Anhebung
35 bzw. Absenkung des Sendesignalpegels wird für jeden Kanal bzw. jedes Sendesignal meist so gewählt, daß die Sendesignal-Summenleistung (Summe der Leistungen aller Sendesignale bzw.

des Summensignals) am Anfang der optischen Strecke unverändert bleibt, bzw. einen Maximalwert nicht überschreitet.

5 Geeignete Algorithmen für die Pegel- und OSNR-Balance sind in dem Beitrag Equalisation in Amplified WDM Lightwave Transmission Systems in IEEE Photonics. Technologie Letters, Vol. 4, No. 8, August 1992, Seite 920 bis 922 beschrieben.

10 Bei Anwendung eines exakt durchgeführten Pegel- oder OSNR-Ausgleichs können jedoch folgende Nachteile auftreten: Eine vollständige Pegel-Balance für die Empfangsseite kann wegen der Wellenlängenabhängigkeit der Streckendämpfung auf der Sendeseite eine zu hohe Pegeldynamik, d.h. einen zu großen Quotienten zwischen maximaler und minimaler Kanalleistung, 15 hervorrufen. Dann besteht die Gefahr, daß Signale mit angehobenem Sendepegel durch nichtlineare Effekte der Faser verzerrt werden und/oder Sendesignale mit stark abgesenktem Pegel bereits die minimale Eingangsleistung eines optischen Verstärkers unterschreiten, so daß erhebliche Signalverzerrung durch Rauschen die Folge sind.

20 Auch eine vollständige OSNR-Balance für die Empfangsseite kann auf der Sendeseite eine zu hohe Pegeldynamik bewirken.

25 Zusätzlich besteht die Gefahr, daß der zulässige Eingangspiegelbereich eines oder mehrerer der angeschlossenen optischen Empfänger über- oder unterschritten wird.

30 Aufgabe der Erfindung ist es daher, Verfahren zur kanalweisen Einstellung von Sendesignalleistungen anzugeben, bei denen der sendeseitige Dynamikbereich eingehalten wird. Ein erweitertes Verfahren berücksichtigt auch den empfangsseitigen Dynamikbereich bei einer exakten OSNR-Balance.

35 Die Aufgabe wird durch Verfahren gelöst, die in den unabhängigen Ansprüchen 1 und 3 angegeben sind.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.

Im allgemeinen ist auf der Empfangsseite keine exakte Pegel-Balance erforderlich, da die angeschlossenen optischen Empfänger einen beträchtlichen Pegel-Dynamikbereich aufweisen, in dem sie optimal arbeiten. Ebenso ist keine exakte OSNR-Balance erforderlich, wenn entsprechende Systemreserven vorhanden sind. In diesem Fall ist ein Verfahren optimal, das lediglich den Dynamikbereich der Sendesignale berücksichtigt. Da im allgemeinen die Systeme mit einer optimalen bzw. maximal zulässigen Summenleistung arbeiten, ist es vorteilhaft, wenn diese bei einer etwa erforderlichen Komprimierung der einzelnen Sendesignalleistungen konstant bleibt.

15

Bei einer OSNR-Balance muß jedoch auch empfangsseitig der zulässige Dynamikbereich überprüft werden. Im Bedarfsfall erfolgt eine Anpassung der Empfangssignal-Leistungen durch Kompression. Diese erfolgt wiederum durch Änderung der Leistung der einzelnen Sendesignale. Auch hier muß die Einhaltung des sendeseitigen Dynamikbereichs nochmals überprüft und gegebenenfalls geändert werden.

Die Erfindung wird anhand eines Ausführungsbeispiels näher erläutert.

Es zeigen:

Figur 1 ein Ausführungsbeispiel einer WDM-

30 Übertragungseinrichtung mit Dynamikkompression,
Figur 2 ein Ablaufdiagramm zur sendeseitigen Dynamikkompression und

Figur 3 ein Ablaufdiagramm zur empfangsseitigen Dynamikkompression.

35

Figur 1 zeigt das Prinzipschaltbild einer WDM-Übertragungseinrichtung. In einem Sendeterminal TT sind meh-

rere optische Sender TX₁ bis TX_n zum Übertragen von Daten über unterschiedlichen Wellenlängen zugeordneten Kanälen vorgesehen. Die entsprechenden Sendesignale S₁ bis S_n werden über einstellbare optische Dämpfungsglieder VOA₁ bis VOA_n geführt und von einem Multiplexer M zu einem Wellenlängen-Multiplexsignal WMS zusammengefaßt. Dieses Signal wird in eine optische Faser F eingespeist und über verschiedene Streckenabschnitte SA₁, SA₂ zu einem Empfangsterminal RT übertragen. Um die Dämpfung durch die optische Faser auszugleichen sind verschiedene optische Verstärker V vorgesehen. Im Empfangsterminal RT wird das Wellenlängen-Multiplexsignal in einem Demultiplexer D in einzelne Empfangssignale E₁ bis E_n zerlegt, die jeweils einem optischen Empfänger RX₁ bis RX_n zugeführt werden.

Das Wellenlängenmultiplexsignal wird empfangsseitig durch einen Koppler K, der dem Demultiplexer vorgeschaltet ist, aufgesplittet und einem optischen Spektrumanalysator OSA zugeführt. Die von diesem gemessene Pegel- und OSNR-Werte werden - beispielsweise über einen gesonderten Steuerkanal OSC (Optical Supervisory Channel) - an ein Preemphase-Steuergerät MD im Sendeterminal geführt. Dieses besteht aus einer Recheneinrichtung CU und einer Einstelleinrichtung SD, die die Sendepiegel der einzelnen Sendesignale einstellt, beispielsweise durch Steuerung der Ausgangsleistung der optischen Sender oder hier durch Einstellen der Dämpfungsglieder. Die Recheneinheit kann ebenso auf der Empfangsseite vorgesehen sein.

Zunächst wird der Fall betrachtet, daß nur eine Einstellung des sendeseitigen Dynamikbereichs anhand des Ablaufdiagramms **Figur 2** erfolgt. Die einzelnen Sendeleistungen und Empfangsleistungen bzw. Sendeleistungen und die empfangsseitigen Signal-Rauschen-Abstände, kurz die Dämpfungen der einzelnen Kanäle oder die OSNR-Güte (Rauschabstand/Sendeleistung) müssen in der Regel durch Messungen bekannt sein.

Als erstes erfolgt dann eine Berechnung der sendeseitigen Leistungsverteilung (Pegelverteilung) für eine exakte Pegel- oder OSNR-Balance auf der Empfangsseite, bei der von den vorstehen aufgeführten Übertragungseigenschaften der einzelnen
5 Kanäle ausgegangen wird.

Anschließend kann die Dynamikkompression gestartet werden. In einem ersten Schritt wird ermittelt, wie groß die sendeseitige Pegeldynamik Dtx ist. Diese entspricht den Quotienten aus
10 größtem Pegel Ptx_max und kleinstem Pegel Ptx_min der Sendesignale, wobei unter Pegel hier die Leistung in einem linearen Maßstab verstanden wird, beispielsweise in Milliwatt.

F1) Dtx = größter Pegel aus Ptx(i)/kleinster Pegel aus Ptx(i)
15 i = 1, 2, ... n - Sendesignal

Anschließend erfolgt die Überprüfung, ob der festgestellte Dynamikbereich Dtx größer als der zulässige Dynamikbereich Dtx_max ist. Ist dies nicht der Fall, erfolgt keine Dynamik-
20 kompression. Wenn dies jedoch der Fall ist, erfolgt in den nächsten Rechenschritt die Berechnung der Abweichung, des Offsets, der einzelnen Signalleistungen vom Mittelwert Ptx_mean, der aus der optimalen oder maximal zulässigen Sendeistung des sendeseitigen Wellenlängen-Multiplexsignal di-
25 vidiert durch die Anzahl der Signale ermittelt wurde.

F2) deltaP_tx(i) := Ptx(i) - Ptx_mean

Im folgenden Rechenschritt wird der absolute maximale und mi-
30 nimale Offset, d.h. der Offset des stärksten und schwächsten Sendesignals ermittelt.

F3) deltaPtx_max := max(deltaPtx(i))
35 deltaPtx_min := min(deltaPtx(i))

Danach erfolgt die Berechnung des Kompressionsfaktors

F4) $\text{compfact_tx} := \text{Ptx_mean} * (\text{Dtx_max} - 1) / (\text{deltaPtx_max} - \text{Dtx_max} * \text{deltaPtx_min})$

5

Dieser wird zur Berechnung der komprimierten Pegel entsprechend

F5) $\text{deltaPtx}(i) := \text{deltaPtx}(i) * \text{compfact_tx}$

10 $\text{Ptx}(i) := \text{Ptx_mean} + \text{deltaP_tx}(i)$

verwendet.

Hiermit ist die Dynamikkompression fertig berechnet und es

15 kann die Einstellung der neu berechneten komprimierten Sende-
pegel $\text{Ptx}(i)$ der Sendesignale S1 bis Sn erfolgen.

Wenn die einzelnen Empfangssignale E1 bis En dasselbe Signal-
Rausch-Verhältnis aufweisen sollen, also von einer OSNR-

20 Balance ausgegangen wird, kann in einem erweiterten Verfahren
nach **Figur3** zusätzlich eine empfangsseitige Dynamikkompression
durchgeführt werden. Voraussetzung für das Kompressions-
verfahren ist wieder, daß die Übertragungseigenschaften für
jeden Kanal bekannt sind.

25 Hierdurch wird die Berechnung der sendeseitigen Pegel für die
einzelnen Sendesignale, die Pegelverteilung, für eine OSNR-
Balance möglich.

Die empfangsseitige Dynamikkompression beginnt mit der Be-

30 stimmung der empfangsseitigen Dynamik Drx.

F7) $\text{Drx} :=$ größter Pegel aus $\text{Prx}(i)$ / kleinster Pegel aus $\text{Prx}(i)$
 $i = 1, 2, \dots, n$ - Empfangssignal

35 Es folgt die Überprüfung, ob die zulässige empfangsseitige
Dynamik Drx überschritten ist. Falls nein, ist eine empfangs-
seitige Dynamikkompression nicht erforderlich und die errech-

neten Signalpegel können sendeseitig eingestellt werden. Im allgemeinen ist noch eine Überprüfung der zulässigen sendeseitigen Dynamik erforderlich.

- 5 Ist dagegen die zulässige empfangsseitige Dynamik Drx überschritten, so werden zunächst die Abweichungen, die Offsets, der empfangsseitigen Kanalleistungen $P_{tx}(i)$ vom Mittelwert P_{tx_mean} bestimmt:

10 F7) $\delta P_{rx}(i) := P_{rx}(i) - P_{rx_mean}$

und die maximalen und minimalen Offsets ermittelt:

F8) $\delta P_{rx_max} := \max(\delta P_{rx}(i))$

15 $\delta P_{rx_min} := \min(\delta P_{rx}(i))$

Anschließend wird empfangsseitiger Kompressionsfaktor berechnet:

20 F9) $\text{compfact}_{rx} := \frac{Prx_mean * (Drx_max - 1)}{(deltaPrx_max - Drx_max * deltaPrx_min)}$

Hieraus erfolgt die Ermittlung der komprimierten Empfangspegel

25

F10) $Prx(i) := Prx_mean * \delta P_{rx}(i) * \text{compfact}_{rx}$

Mit Hilfe der bereits ermittelten kanalindividuellen Strekkendämpfung $Atten(i)$ können aus den komprimierten Empfangspegeln die zugehörigen Sendepiegel ermittelt werden

F11) $P_{tx_neu}(i) = Prx(i) * Atten(i)$

Es kann erforderlich sein, die Sendesignalleistungen zu verringern, falls die zulässige Summenleistung überschritten ist, oder es ist sinnvoll, die Sendesignalleistungen zu erhöhen

hen, um die Übertragungseigenschaften zu verbessern. Beides erfolgt durch eine sendeseitige Pegelanpassung.

Es wird hierzu ein neuer sendeseitiger Mittelwert berechnet werden:

5

F12) $P_{tx_mean_neu} = \text{Summe } (P_{tx_neu}(i)) / \text{Kanalzahl}$

Hieraus wird ein sendeseitiger Korrekturfaktor bestimmt;

10 F13) $\text{corfact_tx} = P_{tx_mean} / P_{tx_mean_neu}$

Es folgt die Berechnung der neuen Sendepegel:

F14) $P_{tx}(i) = P_{tx_neu}(i) * \text{corfact_tx}$

15

Hiermit ist die Dynamikkompression beendet und es erfolgt die Einstellung der neu errechneten Sendepegel.

20 Bei der Dynamikkompression müssen natürlich Signalausfälle berücksichtigt werden. Die Zeitkonstanten des Regelkreises werden an die Erfordernisse angepaßt.

Patentansprüche

- 1.. Verfahren zur kanalindividuellen Einstellung von Sendesignalleistungen eines Wellenlängenmultiplex-
5 Übertragungssystems,
bei dem die Übertragungseigenschaften für jeden Übertragungs-
kanal ermittelt werden und
für gleiche Signalleistungen oder gleiche Signal-Rausch-
Verhältnisse der einzelnen Empfangssignale (E1 bis En) die
10 Signalleistungen der zugehörigen Sendesignale (S1 bis Sn) ka-
nalindividuell ermittelt werden,
dadurch gekennzeichnet,
daß bei Überschreitung des sendeseitig zulässigen Dynamikbe-
reichs (Drx_{max}) die individuellen Leistungsabweichungen
15 ($\delta Ptx(i)$, $i = 1, 2, \dots, n$) der Sendesignale (S1 bis Sn)
von einer mittleren Sendesignalleistung (Ptx_{mean}) ermittelt
werden und derart verringert werden, daß der zulässige Dyna-
mikbereich eingehalten wird, und
daß die neu ermittelten komprimierten Sendesignalleistungen
20 eingestellt werden.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
die individuellen Leistungsabweichungen der Sendesignale (S1
25 bis Sn) mit einem für alle Sendesignale (S1 bis Sn) gleichen
Empfangs-Kompressionsfaktor ($compract_{tx}$) derart verringert
werden, daß der zulässige Dynamikbereich eingehalten wird.
3. Verfahren nach Anspruch 1 oder 2,
30 dadurch gekennzeichnet,
daß die insgesamt zulässige Sendesignal-Summenleistung aller
Sendesignale (S1 bis Sn) zumindest annähernd konstant gehal-
ten wird.

4. Verfahren zur kanalindividuellen Einstellung von Sendesignalleistungen eines Wellenlängenmultiplex-Übertragungssystems,
bei dem die Übertragungseigenschaften für jeden Übertragungs-
kanal ermittelt werden und
für gleiche Signal-Rausch-Verhältnisse der einzelnen Empfangssignale (E_1 bis E_n) die Leistungen ($P_{tx}(i)$) der zugehörigen Sendesignale (S_1 bis S_n) kanalindividuell ermittelt werden,
- 10 dadurch gekennzeichnet,
daß bei einer Überschreitung des empfangsseitig zulässigen Dynamikbereichs (D_{rx_max}) die individuellen Leistungsabweichungen ($\delta_{Prx}(i)$, $i = 1, 2, \dots, n$) der Empfangssignale (E_1 bis E_n) von einer mittleren Empfangsleistung (P_{tx_mean}) er-
15 mittelt werden und derart verringert werden, daß der empfangsseitig zulässige Dynamikbereich eingehalten wird,
daß die erforderlichen Sendesignalleistungen ($P_{tx_neu}(i)$) neu berechnet werden,
daß gegebenenfalls mit Hilfe eines zu berechnenden Sende-
20 Korrekturfaktors ($corfact_{tx}$) eine sendeseitige Leistungskorrektur durchgeführt wird.
und daß die neu ermittelten komprimierten Sendesignalleistungen eingestellt werden.
- 25 5. Verfahren nach Anspruch 4,
dadurch gekennzeichnet,
daß die individuellen Leistungsabweichungen der Empfangssignale (E_1 bis E_n) mit einem für alle Empfangssignale (E_1 bis E_n) gleichen Kompressionsfaktor ($compfact_{rx}$) derart ver-
30 ringert werden, daß der empfangsseitig zulässige Dynamikbereich eingehalten wird.

6. Verfahren nach Anspruch 5,
dadurch gekennzeichnet,
daß die Empfangssignal-Summenleistung aller Empfangssignale
5 (E1 bis En) und/oder die Sendesignal-Summenleistung aller
Sendesignale (S1 bis Sn) zumindest annähernd konstant gehal-
ten wird.

7. Verfahren nach Anspruch 6,
10 dadurch gekennzeichnet,
ein neuer sendeseitiger Pegelmittelwert ($P_{tx_mean_neu}$) ermit-
telt wird, daß aus dem Verhältnis von altem Pegelmittelwert
(P_{tx_mean}) zu neuen Pegelmittelwert ($P_{tx_mean_neu}$) ein Kor-
rekturfaktor ($corfact_tx$) ermittelt wird und daß die indivi-
15 duellen Signalleistungen ($P_{tx}(i)$) der Sendesignale (S1 bis
Sn) mit diesem für alle Sendesignale (S1 bis Sn) gleichen
Korrekturfaktor ($corfact_tx$) derart geändert werden, daß die
insgesamt zulässige Sendesignal-Summenleistung aller Sendesi-
gnale (S1 bis Sn) zumindest annähernd konstant gehalten wird.

1/5

FIG 2A

FIG 2B

FIG 3A

4/5

FIG 3B

INTERNATIONAL SEARCH REPORT

International Application No

PCT/DE 99/03178

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 H04J14/02 H04B10/18

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 H04J H04B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5 815 299 A (BAYART DOMINIQUE ET AL) 29 September 1998 (1998-09-29) column 1, line 19 - line 31 column 6, line 3 -column 7, line 67; figure 2 ---	1-5
Y	CHRAPLYVY A R ET AL: "EQUALIZATION IN AMPLIFIED WDM LIGHTWAVE TRANSMISSION SYSTEMS" IEEE PHOTONICS TECHNOLOGY LETTERS, US, IEEE INC. NEW YORK, vol. 4, no. 8, 1 August 1992 (1992-08-01), pages 920-922, XP000293636 ISSN: 1041-1135 cited in the application the whole document ---	1-5 ---

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the International filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the International filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the International search

Date of mailing of the International search report

31 March 2000

10/04/2000

Name and mailing address of the ISA
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 851 epo nl,
 Fax: (+31-70) 340-3018

Authorized officer

Burghardt, G

INTERNATIONAL SEARCH REPORT

Intern. Appl. No.

PCT/DE 99/03178

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 865 173 A (FUJITSU LTD) 16 September 1998 (1998-09-16) column 9, line 52 -column 12, line 25; figures 9,12 -----	1,4
A	US 5 790 289 A (TAGA HIDENORI ET AL) 4 August 1998 (1998-08-04) abstract column 3, line 67 -column 6, line 3; figures 1,3 -----	1,4
A	EP 0 734 129 A (FUJITSU LTD) 25 September 1996 (1996-09-25) column 9, line 23 -column 10, line 49; figures 1,3 -----	1,4

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/DE 99/03178

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 5815299 A	29-09-1998	FR	2738698 A	14-03-1997
		CA	2185038 A	09-03-1997
		EP	0762691 A	12-03-1997
EP 0865173 A	16-09-1998	JP	10257028 A	25-09-1998
		CN	1193752 A	23-09-1998
		US	5903385 A	11-05-1999
US 5790289 A	04-08-1998	JP	8321824 A	03-12-1996
EP 0734129 A	25-09-1996	JP	8264871 A	11-10-1996
		US	5870217 A	09-02-1999

INTERNATIONALER RECHERCHENBERICHT

Intern. Patentzeichen

PCT/DE 99/03178

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 H04J14/02 H04B10/18

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationsymbole)

IPK 7 H04J H04B

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
Y	US 5 815 299 A (BAYART DOMINIQUE ET AL) 29. September 1998 (1998-09-29) Spalte 1, Zeile 19 – Zeile 31 Spalte 6, Zeile 3 - Spalte 7, Zeile 67; Abbildung 2 ---	1-5
Y	CHRAPLYVY A R ET AL: "EQUALIZATION IN AMPLIFIED WDM LIGHTWAVE TRANSMISSION SYSTEMS" IEEE PHOTONICS TECHNOLOGY LETTERS, US, IEEE INC. NEW YORK, Bd. 4, Nr. 8, 1. August 1992 (1992-08-01), Seiten 920-922, XP000293636 ISSN: 1041-1135 in der Anmeldung erwähnt das ganze Dokument ---	1-5 -/-

<input checked="" type="checkbox"/> Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	<input checked="" type="checkbox"/> Siehe Anhang Patentfamilie
* Besondere Kategorien von angegebenen Veröffentlichungen :	"T" Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist	"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
"E" älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist	"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)	"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist
"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht	
"P" Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist	

Datum des Abschlusses der Internationalen Recherche	Abeendedatum des Internationalen Recherchenberichts
31. März 2000	10/04/2000
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patendaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 851 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Burghardt, G

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/DE 99/03178

C.(Fortsetzung) ALB WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	EP 0 865 173 A (FUJITSU LTD) 16. September 1998 (1998-09-16) Spalte 9, Zeile 52 -Spalte 12, Zeile 25; Abbildungen 9,12 —	1,4
A	US 5 790 289 A (TAGA HIDENORI ET AL) 4. August 1998 (1998-08-04) Zusammenfassung Spalte 3, Zeile 67 -Spalte 6, Zeile 3; Abbildungen 1,3 —	1,4
A	EP 0 734 129 A (FUJITSU LTD) 25. September 1996 (1996-09-25) Spalte 9, Zeile 23 -Spalte 10, Zeile 49; Abbildungen 1,3 —	1,4

INTERNATIONALE RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Intern. Aktenzeichen

PCT/DE 99/03178

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
US 5815299 A	29-09-1998	FR	2738698 A	14-03-1997
		CA	2185038 A	09-03-1997
		EP	0762691 A	12-03-1997
EP 0865173 A	16-09-1998	JP	10257028 A	25-09-1998
		CN	1193752 A	23-09-1998
		US	5903385 A	11-05-1999
US 5790289 A	04-08-1998	JP	8321824 A	03-12-1996
EP 0734129 A	25-09-1996	JP	8264871 A	11-10-1996
		US	5870217 A	09-02-1999