1. What is the difference between descriptive statistics and inferential statistics? Explain with examples.

Ans . Descriptive statistics consists of organising and summarising data for the entire population but in inferential statistics we take a sample and generalise for the entire population. Eg: Average weight of the class (descriptive) and average weight of the entire population(inferential).

2. What is sampling in statistics? Explain the differences between random and stratified sampling.

Ans . Sampling means to take a portion of entire population for observation and to generalise that observation for the entire population.

Random sampling means that every member of the population has an equal chance of being a part of the sample. Stratified Sampling involves dividing the population into distinct subgroups based on a shared characteristic (e.g., age, gender, income level), and then performing random sampling within each subgroup.

3. Define mean, median, and mode. Explain why these measures of central tendency are important.

Ans. Mean- average of all the data points

Median - after we arrange the data in ascending order the physical midpoint of the data is the median

Mode- The data that has the maximum frequency

Mean, median, and mode are essential tools in statistics because they summarize large datasets into a single representative value.

4. Explain skewness and kurtosis. What does a positive skew imply about the data? Ans. skew- it represents the asymmetricity of the data .

Kurtosis- it represents the peakness of the data , whether the data has more or less peaked.

Positive skew implies that most of the data in the distribution lies on the right side.

5. Implement a Python program to compute the mean, median, and mode of a given list of numbers.

numbers = [12, 15, 12, 18, 19, 12, 20, 22, 19, 19, 24, 24, 24, 26, 28]

Ans.

6. Compute the covariance and correlation coefficient between the following two datasets provided as lists in Python: list_x = [10, 20, 30, 40, 50] list_y = [15, 25, 35, 45, 60]

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Your data
list_x = [10, 20, 30, 40, 50]
list_y = [15, 25, 35, 45, 60]

# Create DataFrame
df = pd.DataFrame({'X': list_x, 'Y': list_y})

# Compute covariance and correlation
cov_xy = df['X'].cov(df['Y'])  # sample covariance
corr_xy = df['X'].corr(df['Y'])  # Pearson correlation

print(f"Covariance: {cov_xy}")
print(f"Correlation coefficient: {corr_xy:.6f}")
```

Ans.

7. Write a Python script to draw a boxplot for the following numeric list and identify its outliers. Explain the result: data = [12, 14, 14, 15, 18, 19, 19, 21, 22, 22, 23, 23, 24, 26, 29, 35]

```
import numpy as np
import matplotlib.pyplot as plt
data= [12, 14, 14, 15, 18, 19, 19, 21, 22, 22, 23, 23, 24, 26, 29, 35]
data_array=np.array(data)
q1=np.percentile(data,25)
q3=np.percentile(data,75)
iqr=q3-q1
lower_bound=q1-1.5*iqr
upper_bound=q3+1.5*iqr
outliers=[x for x in data if x<lower_bound or x>upper_bound]
print("outliers:",outliers)
plt.boxplot(data, vert=False)
plt.title('Boxplot of Data')
plt.xlabel('Value')
plt.grid(True)
plt.show()
```


8. : You are working as a data analyst in an e-commerce company. The marketing team wants to know if there is a relationship between advertising spend and daily sales. ● Explain how you would use covariance and correlation to explore this relationship. ● Write Python code to compute the correlation between the two lists: advertising_spend = [200, 250, 300, 400, 500] daily_sales = [2200, 2450, 2750, 3200, 4000]

Ans. Positive covariance says that with increase in advertising spend the daily sale has increased. Positive correlation near 1 will indicate that both the lists are highly correlated.

9. Your team has collected customer satisfaction survey data on a scale of 1-10 and wants to understand its distribution before launching a new product. ● Explain which summary statistics and visualizations (e.g. mean, standard deviation, histogram) you'd use. ● Write Python code to create a histogram using Matplotlib for the survey data: survey_scores = [7, 8, 5, 9, 6, 7, 8, 9, 10, 4, 7, 6, 9, 8, 7]

Ans I would use all of them.

```
import matplotlib.pyplot as plt
import numpy as np
import statistics as stats
scores=[7, 8, 5, 9, 6, 7, 8, 9, 10, 4, 7, 6, 9, 8, 7]
mean=stats.mean(scores)
median=stats.median(scores)
mode=stats.mode(scores)
minimum,maximum=np.min(scores),np.max(scores)
print(f"mean: {mean}")
print(f"median: {median}")
print(f"mode: {mode}")
print(f"range: {minimum-maximum}")
plt.hist(scores, bins=range(4, 12), edgecolor='black', align='le
plt.title('Distribution of Customer Satisfaction Scores')
plt.xlabel('Survey Score')
plt.ylabel('Frequency')
```

mean: 7.3333333333333333

median: 7
mode: 7
range: -6

Text(0, 0.5, 'Frequency')

