PIV Measurement and CFD Modeling of Flow Field through Pleated Filters

Qingfeng Cao, Seungkoo Kang, and David Y. H. Pui

Particle Technology Laboratory
University of Minnesota

CFR 53rd Review Meeting, Mechanical Engineering
University of Minnesota
April 25th, 2018

Outline

- Introduction
- Objectives
- Experimental methods and numerical model
- Results and discussion

Introduction

- Filters are pleated to have larger surface area in a confined space (capture more particles)
- Airflow passing through plated filters is affected by the pleat geometry (pleat density, pleat shape, and pleat height), filter properties (porosity and fiber size), and face velocity (Chen et al., 1995, Fabbro et al., 2002, Rebai et al., 2010)
- Abovementioned factors are directly connected to the filter performance (Pressure drop and collection efficiency) (Fotovati et al., 2012)

- Most studies have focused on Pressure drop measurement
- Validation method is needed for CFD models

Effect of airflow on filtration efficiency

- Chambers et al. (2001) investigated the upstream velocity distribution of pleated filters
 - Filtration efficiency is affected by nonuniform flow approaching the pleated filter
 - Captured particles can be spatially inhomogeneous

Chambers et al. (2001)

Al-Sarkhi and Chambers (2004)

Validation of CFD models

Many studies model pleated filter with one pleat

► Need a method to measure the airflow patterns of pleated filters representing entire flow domain

Available measurement methods

- Laser Doppler anemometer
 - Single point measurement
 - Non-intrusive
- Hot wire anemometer
 - Single point measurement
 - Intrusive
 - Contamination
- Particle image velocimetry
 - 2D spatial velocity fields (relatively large area of interest)
 - Non-intrusive

Objectives

 To develop a validation method for the computational fluid dynamics (CFD) modeling

 To conduct systematic studies of airflow patterns through pleated filters with different pleat geometries

Previous CFR meeting

PIV experiment

Particle Image Velocimetry (PIV) Laser **Flow** Camera **Particle** displacement an optical imaging technique to measure fluid velocity vectors at many points in a flow field simultaneously

Outline

- Introduction
- Objectives
- Experimental methods and numerical model
- Results and discussion

4" Round Duct **Orifice Plate** Experimental setup 6" Square Duct **Transparent Throttle** Section Valve Centrifugal Fan **Laminar Flow Element** (LFE) **Metal Perforated Plate** 6" Round Duct Measurement : section Laser Laminar flow Iris damper Flow light sheet element straighteners Pleated Air flow filter Centrifugal pump ΔP) Compressed air Atomizer Pleated filter Camera **Rectangular pleated filter** Nd:YAG laser

Filter geometry

Rectangular pleated filter

Examples of pleated filters

CFD simulation

- Fluent version: 16
- Physics model: DES (Detached Eddy Simulation)
- Boundary conditions

Outline

- Introduction
- Objectives
- Experimental methods and numerical model
- Results and discussion

Time-averaged contour plots at the inlet velocity of 0.32 m/s

PIV vs CFD (velocity distribution)

(a) at
$$x = 3$$
 cm

(b) at
$$x = 6.1$$
 cm

Normalized streamwise velocity distribution along the y-axis

Contour plots (Preliminary tests)

Next plan

- Improve the quality of flow profiles
- Measure flow profiles between pleats (upstream & downstream)

Summary and future works

 A test method is developed to study the airflow patterns downstream of pleated filters

 Air flow patterns through pleated filters will be studied with different pleat geometry, filter properties, and flow rates