Carrera de Especialización en Inteligencia Artificial - FIUBA

Visión por Computadora 2

Trabajo Integrador: Modelo para la clasificación de residuos para reciclaje basándose en el dataset TrashNet.

Integrantes:

- Juan Ruiz Otondo
- Gonzalo Fernández
- Maria Fabiana Cid

Motivación y descripción del problema

Motivación:

En el contexto de la creciente generación de residuos sólidos, es fundamental implementar soluciones inteligentes que permitan automatizar su clasificación.

Objetivo academico:

Realizar un modelo para la clasificación de residuos para reciclaje basándose en el dataset TrashNet.

Objetivo práctico:

Es contribuir a una gestión sostenible de residuos mediante el uso de tecnologías de visión por computadora e inteligencia artificial.

Descripción del problema

• Conjunto de datos TrashNet

Total number of images: 2527

Uso de Data Augmentation

Aplicación de Data Augmentation

Objetivos:

- 1. Incrementar el tamaño de conjunto de datos
- 2. Evitar el sobreentrenamiento
- 3. Permite balancear las clases del conjunto de datos
- 4. Mejorar las métricas del modelo

El data augmentation se planteará para ser aplicado **online**, es decir, no se generan las nuevas imágenes para guardar como un nuevo dataset.

Original Image

Original Image

Augmented Image

Augmented Image

Análisis de distribución de etiquetas

Análisis de dimensiones de imágenes y relación de aspecto

Todas las imágenes del dataset tienen exactamente el mismo tamaño 512x384. La relación de aspecto será 512/384 = 1.33

Análisis de bounding boxes

Estadísticas de bounding boxes:				
	bb_width	bb_height	bb_area	bb_coverage
count	300.000000	300.00000	300.000000	300.000000
mean	359.446667	294.12000	109577.990000	0.557342
std	111.264879	77.77215	50035.460285	0.254494
min	93.000000	57.00000	10716.000000	0.054504
25%	280.000000	237.75000	70522.000000	0.358693
50%	363.000000	309.00000	106111.500000	0.539711
75%	454.250000	368.25000	151612.750000	0.771142
max	509.00000	381.00000	193929.000000	0.986374

Análisis de distribución de colores

Estadí	sticas de br	illo y contraste:
	brightness	contrast
count	300.000000	300.000000
mean	162.587009	49.641324
std	20.075154	15.377899
min	78.332800	11.504262
25%	152.948933	38.389279
50%	166.634800	49.808609
75%	175.837733	60.884104
max	206.133733	96.718705

Análisis de calidad de imágenes

- Resolución promedio: 512.0 x 384.0 píxeles
- Relación de aspecto promedio: 1.33
- Brillo promedio: 162.59/255
- Contraste promedio: 49.64
- Cobertura de bounding box promedio: 55.7%

- Visualización de imágenes
- Análisis de integridad de imágenes
- Chequeo de imágenes duplicadas
- Análisis de relación de aspecto
- Análisis de brillo y contraste

- →Ninguna imagen corrupta
- →No hay imágenes duplicadas
- →Tamaño 512 x 384
- →No hay diferencias claras

Para el **baseline** del proyecto se seleccionó una **arquitectura ResNet18**. La selección fue motivada por las siguientes características: es ligero, buen rendimiento, disponible en torchvision.models y admite aprendizaje por transferencia.

Definición del modelo baseline.

A continuación se carga el modelo pre-entrenado ResNet18 y se congelan las capas previas:

```
[ ] def create_empty_model(num_classes):
    model = resnet18(weights=ResNet18_Weights.DEFAULT)
    for param in model.parameters():
        param.requires_grad = False

    model.fc = nn.Linear(model.fc.in_features, num_classes)
    return model

model = create_empty_model(num_classes=num_classes)
model.to(device)

criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5)
```

Uso de Transfer Learning: Resnet18

```
model = resnet18(weights=ResNet18_Weights.DEFAULT)
```

ResNet18 con pesos preentrenados en ImageNet. Ahí ocurre el transfer learning, porque estamos reutilizando lo que el modelo aprendió en millones de imágenes.

```
for param in model.parameters():
   param.requires_grad = False
```

Esto **congela todas las capas del modelo**, es decir, **no se actualizan durante el entrenamiento**. Así:aprobamos lo que ya aprendió el modelo y solo aprendés la parte nueva (la última capa).

Esto se llama **feature extraction**: usamos la red como un **extractor de características visuales** y entrenamos una capa nueva para la tarea de clasificación.

Uso de Transfer Learning: Resnet18

```
model.fc = nn.Linear(model.fc.in_features, num_classes)
```

Esto **reemplaza la última capa (fc)** de ResNet18 con una nueva que tiene num_classes salidas, en este caso los 6 tipos de residuos para poder clasificarlos.

```
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-3)
```

Aunque model.parameters() incluye todas las capas, solo se entrenará la capa final, porque las otras están congeladas (requires_grad=False).

Arquitectura ResNet18. Resultados Sin Data Augmentation

Arquitectura ResNet18. Resultados Sin Data Augmentation

} *	Classificatio	n report:			
_		precision	recall	f1-score	support
	0	0.94	0.84	0.89	80
	1	0.78	0.67	0.72	104
	2	0.63	0.89	0.74	75
	3	0.88	0.80	0.84	119
	4	0.71	0.76	0.73	95
	5	0.56	0.47	0.51	32
	accuracy			0.76	505
	macro avg	0.75	0.74	0.74	505
	weighted avg	0.78	0.76	0.77	505

Arquitectura ResNet18. Con Data Augmentation

Definición de diferentes transformaciones y ejecución del entrenamiento y validación:

```
train transform0 = transforms.Compose(
        transforms.RandomRotation(25),
       transforms.ToTensor(),
       transforms.Normalize([0.5] * 3, [0.5] * 3),
train transform1 = transforms.Compose(
        transforms.RandomRotation(25),
        transforms.ToTensor(),
        transforms.Normalize([0.5] * 3, [0.5] * 3),
train transform2 = transforms.Compose(
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
       transforms.Normalize([0.5] * 3, [0.5] * 3),
```

```
train transform3 = transforms.Compose(
       transforms.RandomVerticalFlip(),
       transforms.ToTensor(),
       transforms.Normalize([0.5] * 3, [0.5] * 3),
train transform4 = transforms.Compose(
       transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
       transforms. ToTensor().
       transforms.Normalize([0.5] * 3, [0.5] * 3),
train transform5 = transforms.Compose(
       transforms.RandomRotation(25).
       transforms.RandomHorizontalFlip(),
       transforms.RandomVerticalFlip(),
       transforms.ToTensor(),
       transforms.Normalize([0.5] * 3, [0.5] * 3),
test transform = transforms.Compose(
    [transforms.ToTensor(), transforms.Normalize([0.5] * 3, [0.5] * 3)]
```

Arquitectura ResNet18. Resultados Con Data Augmentation

Arquitectura ResNet18. Resultados Con Data Augmentation

Comparando las diferentes matrices de confusión se justifica el uso de las siguientes transformaciones para el Data Augmentation:

- Espejado random horizontal
- Espejado random vertical
- Rotación random

Arquitectura ResNet18. Búsqueda de Hiperparametros con Optuna

Ejecución de la búsqueda.

[] study = optuna.create_study(direction="maximize")
 study.optimize(objective, n_trials=20)

→ Best trial:

F1 score: 0.8134532928419761

Params:

lr: 0.004367922954598241

weight_decay: 8.843939602412726e-06

batch_size: 32
step size: 3

gamma: 0.13565654529804916

Modelo Elegido: EfficientNet-B0 (https://arxiv.org/abs/1905.11946)

EfficientNet-B0 es una arquitectura de red neuronal convolucional (CNN) diseñada para lograr alta precisión usando menos parámetros y menos cómputo que otras redes tradicionales.

- Muy eficiente: ideal para dispositivos móviles o proyectos con pocos recursos
- Usa Batch Normalization, Swish activations y depthwise separable convolutions
- Escalable a modelos más grandes (B1, B2, ..., B7)

Razones por las que se seleccionó EfficientNet-B0

- TrashNet es un dataset relativamente pequeño:2527 imágenes
- EfficientNet-B0 tiene pocos parámetros, lo que ayuda a reducir el riesgo de overfitting
- Ofrece alta precisión con bajo costo computacional

Característica	ResNet18	EfficientNet-B0
Año de publicación	2015	2019
Diseñadores	Microsoft Research	Google Brain
Tipo de arquitectura	Red residual (ResNet)	Arquitectura escalada compuesta (depth, width, resolution)
Bloques básicos	Bloques residuales simples (BasicBlock)	MBConv (Mobile Inverted Bottleneck Convolution) con squeeze-and- excitation (SE)
Parámetros aprox.	~11.7 millones	~5.3 millones
Profundidad	18 capas (conexiones residuales simples)	Arquitectura más profunda y compleja, pero compacta gracias al escalamiento compuesto
Tamaño de entrada	224x224	224x224 (pero escalable)

Característica	ResNet18	EfficientNet-B0
BatchNorm	Después de cada conv	También usa BatchNorm + Swish
Función de activación	ReLU	Swish (más suave, no linealidad adaptativa)
Conexiones residuales	Sí	Sí, dentro de los MBConv
Regularización interna	No	Sí (DropConnect)
Estrategia de escalamiento	No aplica	Sí: escala ancho, profundidad y resolución de forma conjunta (modelo compuesto)
Velocidad de inferencia	Más rápida en CPU	Más eficiente en GPU (mejor para producción móvil o edge)
Precisión top-1 (ImageNet)	~69.8%	~77.1% (mejor rendimiento con menos parámetros)

Definición del modelo EfficientNet-B0

```
[ ] def create empty model(num classes):
        model = timm.create model("efficientnet b0", pretrained=True)
        for param in model.parameters():
            param.requires grad = False
        model.classifier = nn.Linear(model.classifier.in features, num classes)
        return model
    model = create empty model(num classes=num classes)
    model.to(device)
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    scheduler = optim.lr scheduler.StepLR(optimizer, step size=5, gamma=0.5)
```

*timm: Pytorch Image Models

Uso de Transfer Learning: EfficientNet-B0

```
model = timm.create_model("efficientnet_b0", pretrained=True)
```

Esto crea un modelo **EfficientNet-B0 con pesos preentrenados**. Es decir, la red ya fue entrenada para reconocer 1.000 clases de ImageNet.

```
for param in model.parameters():
    param.requires_grad = False
```

Las capas preentrenadas **no se entrenan de nuevo (feature extraction)**. Solo usamos la red como un "detector de patrones visuales" ya entrenado.

Uso de Transfer Learning: EfficientNet-B0

```
model.classifier = nn.Linear(model.classifier.in_features, num_classes)
```

Esto **reemplaza la última capa (fc)** de EfficientNet-B0 con una nueva que tiene num_classes salidas, en este caso los 6 tipos de residuos para poder clasificarlos.

```
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-3)
```

Aunque model.parameters() incluye todo el modelo, solo los parámetros de la capa final tienen requires_grad=True, así que solo se actualiza esa capa

Resultados Sin Data Augmentation

Resultados Sin Data Augmentation

Resultados Con Data Augmentation

Resultados Con Data Augmentation

A partir de las matrices de confusión se puede observar cómo con data augmentation se mejora considerablemente el desempeño del modelo al clasificar "trash", la clase desbalanceada.

Además, se observa que la transformación 2 es con la que se obtiene mejores resultados. Por lo que solo se utilizará el espejado horizontal como técnica de augmentation.

Búsqueda de Hiperparametros con Optuna

```
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=20)
```

Best trial:

F1 score: 0.8762210943161396

Params:

lr: 0.009550666304303759

weight_decay: 0.0007685471197628106

batch_size: 32
step size: 7

gamma: 0.6275531729477372

Métricas de evaluación (indicadores del rendimiento del modelo):

• El **F1 score** combina *precisión* y *recall*, ideal para clases desbalanceadas.

Cuanto más alto (cerca de 1), mejor.

 Accuracy (Train y Validation): Train Acc: Eficiencia del modelo sobre datos de entrenamiento y Val Acc: Precisión sobre datos nunca vistos.

Loss (Train y Validation): Cuantifica el error de predicción del modelo.

Hiperparámetros optimizados

Hiperparámetros evaluados (optimizados con *Optuna*):

- Ir: Tasa de aprendizaje.
- weight_decay: Regularización para evitar overfitting.
- batch_size: Tamaño del lote de entrenamiento.
- **step_size** y **gamma**: Parámetros del scheduler para ajustar el *learning rate* dinámicamente.

Resultados para Modelo Resnet (Modelo Baseline)

Best trial:

F1 score: **0.8134532928419761** Params: lr: 0.004367922954598241 weight_decay:

8.843939602412726e-06 batch_size: 32 step_size: 3 gamma: 0.13565654529804916

Resultados para EfficientNet-B0

Best trial: F1 score: **0.8762210943161396** Params: lr: 0.009550666304303759 weight_decay:

0.0007685471197628106 batch_size: 32 step_size: 7 gamma: 0.6275531729477372

Resultado final EfficientNet-B0: Epoch 15/15 | Train Loss: 0.0034, Train Acc: 0.9738 |

Val Loss: 0.3059, Val Acc: 0.8950

- EfficientNet-B0 supera a ResNet en F1 score y en precisión de validación, lo que indica que aprendió mejor a clasificar.
- El F1 score final de 0.876 es muy bueno, especialmente si las clases estaban desbalanceadas.

- Train Acc: EfficientNet-B0: 0.9738 → Aprendió bien.
- Val Acc: EfficientNet-B0: 0.8950 → Generaliza bastante bien.
- Loss (Train y Validation): Train Loss bajo: el modelo aprendió. Val Loss algo más alto: indica cierto overfitting, pero no crítico.

EfficientNet-B0 <u>supera</u> a ResNet18 (Baseline) tanto en precisión (F1) como en eficiencia, a pesar de tener menos parámetros entrenables.

EfficientNet fue diseñada explícitamente para ser eficiente y precisa con menor complejidad computacional.

Ambos modelos estamos usando **feature extraction (congelando parámetros) Transfer Learning**. Esto es útil si el dataset no es muy grande, pero si hay suficientes datos, se podrian descongelar parcialmente capas intermedias (fine-tuning profundo) para sacar aún más provecho de **EfficientNet**.

El mejor desempeño **EfficientNet-B0** se debe a **la arquitectura**, no a los hiperparámetros en este caso.

El modelo **EfficientNet-B0** <u>es superior en términos de F1-score (+7% mejor), lo que indica que generaliza mejor en el conjunto de validación.</u>

- EfficientNet-B0 es superior en tareas reales de clasificación, especialmente si buscás mayor precisión con menos recursos computacionales.
- ResNet18 sigue siendo una excelente opción cuando querés algo simple, rápido de entrenar y fácil de modificar, ideal para prototipos o cuando la interpretabilidad importa más que la precisión.

Carga del modelo EfficientNet B0

```
[ ] model = create_empty_model(num_classes=6)
    model.load_state_dict(torch.load("output/trashnet_efficientnet_b0.pth", map_location=device))
    model.to(device)
    model.eval()
```

```
(conv_stem): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNormAct2d(
  32, eps=1e-05, momentum=0.1, affine=True, track running stats=True
  (drop): Identity()
  (act): SiLU(inplace=True)
(blocks): Sequential(
  (0): Sequential(
   (0): DepthwiseSeparableConv(
      (conv dw): Conv2d(32, 32, kernel size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)
      (bn1): BatchNormAct2d(
       32, eps=1e-05, momentum=0.1, affine=True, track_running stats=True
        (drop): Identity()
        (act): SiLU(inplace=True)
      (aa): Identity()
      (se): SqueezeExcite(
        (conv_reduce): Conv2d(32, 8, kernel size=(1, 1), stride=(1, 1))
        (act1): SiLU(inplace=True)
        (conv_expand): Conv2d(8, 32, kernel_size=(1, 1), stride=(1, 1))
        (gate): Sigmoid()
      (conv_pw): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn2): BatchNormAct2d(
       16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        (drop): Identity()
        (act): Identity()
      (drop_path): Identity()
```

```
(1): Sequential(
  (0): InvertedResidual(
    (conv pw): Conv2d(16, 96, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn1): BatchNormAct2d(
     96, eps=1e-05, momentum=0.1, affine=True, track running stats=True
      (drop): Identity()
      (act): SiLU(inplace=True)
    (conv dw): Conv2d(96, 96, kernel size=(3, 3), stride=(2, 2), padding=(1, 1), groups=96, bias=False)
     96, eps=1e-05, momentum=0.1, affine=True, track running stats=True
      (drop): Identity()
      (act): SiLU(inplace=True)
    (aa): Identity()
    (se): SqueezeExcite(
      (conv reduce): Conv2d(96, 4, kernel size=(1, 1), stride=(1, 1))
      (act1): SiLU(inplace=True)
     (conv expand): Conv2d(4, 96, kernel size=(1, 1), stride=(1, 1))
      (gate): Sigmoid()
    (conv pwl): Conv2d(96, 24, kernel size=(1, 1), stride=(1, 1), bias=False)
    (bn3): BatchNormAct2d(
     24, eps=1e-05, momentum=0.1, affine=True, track running stats=True
      (drop): Identity()
      (act): Identity()
```

Pruebas de Predicción con imágenes distintas

al dataset

Residuo4.jpg

Residuo5.jpg

Residuo6.jpg

Se aplica una transformación del input equivalente a la utilizada en entrenamiento.

Predicción

```
def predict image(image path):
        image = Image.open(image path).convert("RGB")
        input tensor = transform(image).unsqueeze(0).to(device) # agrega batch dimension y lleva a device
        with torch.no grad():
            output = model(input tensor)
            probs = F.softmax(output, dim=1)
            confidence, pred class = torch.max(probs, dim=1)
        return class names[pred class.item()], confidence.item()
[ ] plt.figure(figsize=(12, 8))
    for i, image name in enumerate(image paths):
        image path = os.path.join(INPUT PATH, image name)
        pred class, confidence = predict image(image path)
        image = Image.open(image path).convert("RGB")
        plt.subplot(2, 3, i + 1)
        plt.imshow(image)
        plt.title(f"{pred class} ({confidence*100:.1f}%)")
        plt.axis("off")
    plt.tight_layout()
    plt.show()
```


Muchas Gracias!