Indicator variables: the problem of joint lives. Let X_i be the random variable taking the value 1 or 0 depending on whether the first partner of the *i*th couple has survived or not. Let Y_i be the corresponding random variable for the second partner of the *i*th couple. Then, we have $S = \sum_{i=1}^{m} X_i Y_i$, and by using linearity of expectations and the total expectation theorem,

$$\mathbf{E}[S \mid A = a] = \sum_{i=1}^{m} \mathbf{E}[X_i Y_i \mid A = a]$$

$$= m \mathbf{E}[X_1 Y_1 \mid A = a]$$

$$= m \mathbf{E}[Y_1 = 1 \mid X_1 = 1, A = a] \mathbf{P}(X_1 = 1 \mid A = a)$$

$$= m \mathbf{P}(Y_1 = 1 \mid X_1 = 1, A = a) \mathbf{P}(X_1 = 1 \mid A = a).$$

We have

$$\mathbf{P}(Y_1 = 1 \mid X_1 = 1, A = a) = \frac{a-1}{2m-1}, \quad \mathbf{P}(X_1 = 1 \mid A = a) = \frac{a}{2m}.$$

Thus

$$\mathbf{E}[S \mid A = a] = m \, \frac{a-1}{2m-1} \cdot \frac{a}{2m} = \frac{a(a-1)}{2(2m-1)}.$$

Note that $\mathbf{E}[S \mid A = a]$ does not depend on p.