Lista 9 - Produto Vetorial e suas Aplicações

Exercício 1. Calcule o produto vetorial $u \times v$ para:

a)
$$u = (5, 4, 3)$$
 e $v = (1, 0, 1)$;

b)
$$u = (3, 1, 2)$$
 e $v = (-2, 2, 5)$;

c)
$$u = (1, -1, 1)$$
 e $v = (2, -3, 4)$;

d)
$$u = (1, -2, -2)$$
 e $v = (2, 0, -1)$;

e)
$$u = (2, 1, -1)$$
 e $v = (1, -1, 3)$.

Exercício 2. Se u = (3, -1, -2), v = (2, 4, -1) e w = (-1, 0, 1), determine:

a)
$$|u \times v|$$
;

b)
$$(2v) \times (3v)$$
;

c)
$$(u \times w) + (w \times u)$$
;

d)
$$(u \times v) \times (v \times u)$$
;

e)
$$(u-v) \times w$$
;

f)
$$(u \times v) \times w$$
;

g)
$$u \times (v \times w)$$
;

h)
$$u \times (v+w)$$
;

i)
$$u \times v + u \times w$$
;

j)
$$\langle u \times v, v \rangle$$
;

k)
$$\langle u \times v, w \rangle$$
;

1)
$$\langle u, v \times w \rangle$$
.

Exercício 3. Determine o vetor $w \in \mathbb{R}^3$ tal que w seja ortogonal ao eixo y e $u = w \times v$, onde u = (1, 1, -1) e v = (2, -1, 1).

Exercício 4. Determine um vetor que seja ortogonal a ambos u = (1, -1, 4) e v = (3, 2, -2).

Exercício 5. Calcule a área do paralelogramo definido pelos vetores u=(1,-1,1) e v=(2,-3,4). Calcule também a altura relativa a base definida pelo vetor u.

Exercício 6. Determine a distância do ponto P(5,1,2) a reta r que passa pelos pontos A(3,1,3) e B(4,-1,1).

Exercício 7. Determine o valor de a para que a área do paralelogramo determinado por u=(2,1,-1) e v=(1,-1,a) seja $\sqrt{62}$.

Exercício 8. Dados os pontos A(2,1,1), B(3,-1,0) e C(4,2,-2), determine a área do triangulo ABC e a altura relativa ao vértice C.

Exercício 9. Encontre um vetor ortogonal ao plano determinado pelos pontos *P*, *Q* e *R*:

a)
$$P(3,0,0)$$
, $Q(0,3,0)$ e $R(0,0,2)$;

b)
$$P(2,3,0)$$
, $Q(0,2,1)$ e $R(2,0,2)$.

Exercício 10. Determine z sabendo que A(2,0,0), B(0,2,0) e C(0,0,z) são vértices de um triângulo de área 6.

Definição 1. Três vetores u, v e w são co-planares, ou seja, pertencem ao mesmo plano, se, e somente se, vale a equação $\langle u, v \times w \rangle = 0$.

Exercício 11. Verifique que os vetores u = (2, -1, 1), v = (1, 0, -1) e w = (2, -1, 4) são co-planares.

Exercício 12. Qual deve ser o valor de m para que os vetores u=(2,m,0), v=(1,-1,2) e w=(-1,3,-1) sejam co-planares?

Exercício 13. Verifique que os pontos A(1,2,4), B(-1,0,2), C(0,2,2) e D(-2,1,3) estão no mesmo plano.

Exercício 14. Qual o volume do cubo determinado pelos vetores (1,0,0), (0,1,0) e (0,0,1)?

Exercício 15. Determine o volume do paralelepípedo determinado pelos vetores u=(3,-1,4), v=(2,0,1) e w=(-2,1,5).

Exercício 16. Calcule o valor de m para que o volume do paralelepípedo determinado pelos vetores $v_1 = (0, -1, 2)$, $v_2 = (-4, 2, -1)$ e $v_3 = (3, m, -2)$ seja 33.

RESPOSTAS

- Ex. 1: a) (4, -2, -4), b) (1, -19, 8), c) (-1, -2, -1), d) (2, -3, 4), e) (2, -7, -3).
- Ex. 2: a) 0, b) (0,0,0), c) (0,0,0), d) (0,0,0), e) (-5,0,-5), f) (-1,-23,-1), g) (-6, -20, 1), h) (8, -2, 13), i) (8, -2, 13), j) 0, k) 5, l) 5.
- Ex. 3: w = (1, 0, 1).
- Ex. 4: (10, -10, 5) ou qualquer múltiplo desse vetor.
- Ex. 5: $A = \sqrt{6}$ u.a., $h = \sqrt{2}$ u.c.
- Ex. 5: $A = \sqrt{0}$ u.a., $n = \sqrt{29}$ Ex. 6: Distância: $\frac{\sqrt{29}}{3}$ u.c. Ex. 7: a = 3 ou $a = \frac{-17}{5}$.
- Ex. 8: $A = \frac{5}{2}\sqrt{3}$ u.a. e $h = \frac{5}{2}\sqrt{2}$ u.c. Ex. 9: a) (2,2,3), b) (1,4,6).
- Ex. 10: 4 ou -4.
- Ex. 12: m = -10.
- Ex. 14: V = 1.
- Ex. 15: V = 17.
- Ex. 16: m = 4 ou $m = -\frac{17}{4}$.