Deriva genética

Bio 0208 - 2014

Diogo Meyer

Departamento de Genética e Biologia Evolutiva Universidade de São Paulo

Ridley 6.1-6.4

Recapitulando: frequências alélicas, genotípicas e HW

AA Aa aa

p² 2pq q²

p e q são as frequências alélicas

Esperado sob

pressupostos

de HW

HW assume que a população é infinitamente grande

 Quando formulamos o modelo afirmamos que esperamos uma fração p² indivíduos AA

Faz sentido esperar isso?

HW assume que a população é infinitamente grande

 Quando formulamos o modelo afirmamos que esperamos uma fração p² indivíduos AA

Faz sentido esperar isso?

- Equivale a dizer que, ao jogarmos uma moeda (justa) várias vezes, esperamos exatamente 50% de caras e 50% de coras.
- → HW é modelo determinístico

Deriva genética

Suponha uma população:

Aa, Aa N=2 indivíduos (2N=4)

A, A, a, a (p=0,5)

Qual será a frequência alélica na próxima geração?

Deriva genética

População original

2N=4, p=0,5

2 cópia de A

2 cópias de a

Geração seguinte pode ter

0 cópias de A (p=0,00)

1 cópias de A (p=0,25)

2 cópias de A (p=0,50)

3 cópias de A (p=0,75)

4 cópias de A (p=1,00)

Como calcular a probabilidade de cada um desses casos?

O modelo básico de deriva: Wright-Fisher (1930)

Sewall Wright, (1889-1988)

Ronald Aylmer Fisher (1890-1962)

O modelo básico de deriva: Wright-Fisher

- · Uma população de N indivíduos tem 2N alelos
- A próxima geração terá 2N alelos, sorteados ao acaso dentre os milhões de gametas produzidos na geração anterior
- Todos gametas têm chance idêntica de serem sorteados (não há seleção)
- Não há migração ou mutação e cruzamentos se dão ao acaso

O modelo básico de deriva: Wright-Fisher

Probabilidade de sortear i cópias do alelo A segue a binomial

Ao longo do tempo:

- aumenta probabilidade de haver fixação (0 ou 4 cópias de A)

geração 2

- diminui probabilidade de população ser polimórfica
- menor média da taxa de heterozigose (H)

geração 3

- maior dispersão das frequênicas entre as populações

geração 4

11

Deriva genética ao longo de múltiplas gerações

Deriva genética ao longo de múltiplas gerações

Perda de variação por deriva genética

14

Mesmo sem seleção, as populações divergem

Efeitos da deriva considerando um conjunto grande de populações:

- em média, diminui variação (H)
- em média, p permanece igual
- em média, aumenta a variância em p entre populações

O modelo básico de deriva: Wright-Fisher

Parâmetro do modelo evolutivo	Pressuposto
Tamanho da população	Finito
Forma de cruzamento	Aleatório
Sobrevivência dos genótipos	Igual para todos (i.e., sem seleção)
Introdução de novos alelos (mutação e migração)	Não ocorre

Ideias principais da aula

- Conceito: Deriva genética resulta da amostragem de alelos de uma geração para outra
- É possível calcular a probabilidade das novas frequências alélicas usando a binomial
- Para uma população individual, as mudanças entre gerações são aleatórias
- •Deriva:
 - diminui variação na população
 - aumenta a variação entre populações
 - é mais intensa em populações pequenas

7