Лабораторная работа 1.7

Моделирование простых систем реального времени.

Цель работы: Знакомство с приемами моделирования систем реального времени, работа с микроконтроллерами AVR.

Аппаратное и программное обеспечение: PC, OC Linux /Windows.

Задание 1.

https://www.tinkercad.com

Используя симулятор электрических цепей на портале https://www.tinkercad.com, необходимо составить схему системы управления с двумя сервоприводами, двумя потенциометрами, двумя круговыми индикаторами типа NeoPixelRing, приемником инфракрасного (ИК) сигнала и пультом управления (рисунок 1).

Рисунок 1

Задание 2.

Составить программу, которая реализует три режима работы устройства: режим ожидания, режим управления 1, режим управления 2. В режиме ожидания на устройстве

мигает красный светодиод с частотой 1 Гц. В режиме управления 1, который активируется красной кнопкой Power на ИК пульте, вращение сервоприводов контролируется соответствующими потенциометрами (вращаем потенциометр — вращается сервопривод). Круговые светодиодные индикаторы отображают зеленым цветом угол поворота сервопривода.

В режиме управления 2, который активируется кнопкой FUNC на ИК пульте, сервоприводы управляются кнопками пульта управления (для каждого сервопривода выделяется по две кнопки — одна увеличивает угол на 10 градусов, другая уменьшает на 10 градусов угол поворота сервопривода). Круговые светодиодные индикаторы отображают синим цветом угол поворота сервопривода.

Задание 3.

Дополнить программу возможностью управления сервоприводами в режиме 1 с помощью дополнительных датчиков, согласно таблице вариантов.

Таблица вариантов задания

	ца вариантов задания
No	Задание
1	Один сервопривод управляется с помощью потенциометра, другой с помощью фоторезистора.
2	Один сервопривод управляется с помощью потенциометра, другой с помощью фотодиода.
3	Один сервопривод управляется с помощью потенциометра, другой с помощью ультразвукового датчика расстояния.
4	Один сервопривод управляется с помощью потенциометра, другой с помощью датчика наклона.
5	Один сервопривод управляется с помощью потенциометра, другой с помощью датчика температуры.
6	Один сервопривод управляется с помощью датчика температуры, другой с помощью фоторезистора.
7	Один сервопривод управляется с помощью датчика наклона, другой с помощью фотодиода.
8	Один сервопривод управляется с помощью фотодиода, другой с помощью ультразвукового датчика расстояния.
9	Один сервопривод управляется с помощью датчика температуры, другой с помощью датчика наклона.
10	Один сервопривод управляется с помощью фоторезистора, другой с помощью датчика температуры.

Содержание отчета:

Отчет должен содержать титульный лист установленной формы, схему устройства и исходный код прошивки микроконтроллера.

Источники информации:

https://www.tinkercad.com www.google.ru