МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 1.3 Эффект Рамзауэра

> Б03-104 Куланов Александр

• **Цель работы:** исследовать энергетическую зависимость вероятности рассеяния электронов атомами ксенона, определить энергии электронов, при которых наблюдается "просветление" ксенона, и оценить размер его внешней электронной оболочки.

1 Теоретические сведения

Эффективное сечение реакции – величина, характеризующая вероятность перехода системы двух сталкивающихся частиц в результате их рассеяния (упругого или неупругого) в определенное конечное состояние. Сечение σ равно отношению числа N таких переходов в единицу времени к плотности потока рассеиваемых частиц nv, падающих на мишень, т. е. к числу частиц, проходящих в единицу времени через единичную площадку, перпендикулярную к их скорости v (n – плотность числа падающих частиц).

$$\sigma = \frac{N}{nv}.\tag{1}$$

Таким образом, сечение имеет размерность площади.

Рис. 1: Схема установки для измерения сечения рассеяния электронов в газах

По мере уменьшения энергии электрона от нескольких десятков электрон-вольт поперечное сечение его упругого рассеяния растет. Однако при энергиях меньше 16 эВ в случае аргона сечение начинает уменьшаться, а при $E\sim 1$ эВ практически равно нулю, т. е. аргон становится прозрачным для электронов. При дальнейшем уменьшении энергии электронов сечение рассеяния опять начинает возрастать. Это поведение поперечного сечения свойственно не только атомам аргона, но и атомам всех инертных газов. Такое поведение электронов нельзя объяснить с позиций классической физики. Объяснение этого эффекта потребовало учета волновой природы электронов. Схема эксперимента Рамзауэра показана, на рис. 1.

С точки зрения квантовой теории, внутри атома потенциальная энергия налетающего электрона U отлична от нуля, скорость электрона изменяется, становясь равной v' в соответствии с законом сохранения энергии

$$E = \frac{mv^2}{2} = \frac{mv'^2}{2} + U,$$

а значит, изменяется и длина его волны де Бройля. Таким образом, по отношению к электронной волне атом ведет себя как преломляющая среда с относительным показателем преломления

$$n = \frac{\lambda}{\lambda'} = \sqrt{1 - \frac{U}{E}}.$$

Коэффициент прохождения электронов максимален при условии

$$\sqrt{\frac{2m(E+U_0)}{\hbar^2}}l = \pi n; \ n \in N, \tag{2}$$

где U_0 – глубина потенциальной ямы.

Это условие легко получить, рассматривая интерференцию электронных волн де Бройля в атоме. Движущемуся электрону соответствует волна де Бройля, длина которой определяется соотношением $\lambda = h/mv$. Если кинетическая энергия электрона невелика, то $E = mv^2/2$ и $\lambda = h/\sqrt{2mE}$. При движении электрона через атом длина волны де Бройля становится меньше и равна $\lambda' = h/\sqrt{2m(E+U_0)}$ где U_0 — глубина атомного потенциала. При этом, волна де Бройля отражается от границ атомного потенциала, т. е. от поверхности атома, и происходит интерференция прошедшей через атом волны 1 и волны 2, отраженной от передней и задней границы атома (эти волны когерентны). Прошедшая волна 1 усилится волной 2, если геометрическая разность хода между ними $\Delta = 2l = \lambda'$, что соответствует условию первого интерференционного максимума, т. е. при условии

$$2l = \frac{h}{\sqrt{2m(E_1 + U_0)}}\tag{3}$$

Прошедшая волна ослабится при условии

$$2l = \frac{3}{2} \frac{h}{\sqrt{2m(E_1 + U_0)}} \tag{4}$$

Из (3) и (4), можно получить

$$l = \frac{h\sqrt{5}}{\sqrt{32m(E_2 - E_1)}}. (5)$$

Оттуда же можно найти эффективную глубину потенциальной ямы атома:

$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1. \tag{6}$$

Уравнение вольт-амперной характеристики тиратрона имеет вид

$$I_a = I_0 \exp(-C\omega(V)); \ C = Ln_a \Delta_a \tag{7}$$

где $I_0=eN_0$ - ток катода, $I_a=eN_a$ ток анода. Отсюда вероятность рассеяния электрона и зависимость энергии:

$$\omega(V) = -\frac{1}{C} \ln \frac{I_a(V)}{I_0} \tag{8}$$

2 Экспериментальная установка

В данной работе для изучения эффекта Рамзауэра используется тиратрон ТГЗ-01/1.3Б, заполненный инертным газом. Электроны, эмитируемые катодом тиратрона, ускоряются напряжением V, приложенным между катодом и ближайшей к нему сеткой. Затем электроны рассеиваются на атомах инертного газа (ксенона). Все сетки соединены между собой и имеют одинаковый потенциал, примерно равный потенциалу анода. Поэтому между первой сеткой и анодом практически нет поля. Рассеянные электроны отклоняются в сторону и уходят на сетку, а оставшаяся часть электронов достигает анода и создаёт анодный ток I_a . Таким образом, поток электронов $N_x(S)$ (т. е. число электронов, проходящих через поперечное сечение лампы в точке x в единицу времени) уменьшается с ростом x от начального значения x у катода (в точке x = 0) до некоторого значения x у анода (в точке x = 1).

Схема установки представлена на рисунке (2)

Рис. 2: Схематическое изображение тиратрона (слева) и его конструкции(справа). 1, 2, 3 - сетки, 4 - внешний цилиндр, 5 - катод, 6 - анод, 7 - спираль

3 Обработка результатов

Динамический метод

В таблице представлены измеренные данные для динамического метода.

$U_{\rm накала}, {\rm B}$	V_{max} , B	V_{min} , B	$V_{\text{пробоя}}$, В
2,927	2,8	6,8	13,0
2,504	2,6	6,6	13,0

Тогда найдём по формуле (6) оценим глубину U_0 , а по формуле (5) оценим l. Занёсем в таблицу.

$U_{\rm накала}, B$	U_0 , eV	l, Ангстр.
2,927	0,4	3,4
2,504	0,6	3,4

Ионизационный потенциал тогда можно оценить как

$$U = U_0 + U_{\text{пробоя}} \approx 13 \text{ B} \tag{9}$$

По этому значению можно подтвердить, что в работе использовался ксенон.

Статический метод

Полученные данные:

$\mathrm{U}=2,\!974~\mathrm{B}$		$\mathrm{U}=2{,}527~\mathrm{B}$	
U, B	I, e5 A	U, B	I, e5 A
0	0,08	0	0,1
0,78	13,28	0,64	0,6
1,42	161,2	1,58	151,1
2,1	171,5	1,83	173,1
2,5	140,4	2,13	155,8
3,2	108,8	3,2	72,8
4,1	91	4,2	43,7
4,7	83,4	5,2	33,8
5,3	80,2	6,1	29,7
5,8	79,6	6,9	28,8
6,7	83,1	7,6	29,3
7,7	93,4	8,6	32,2
8,7	114	9,1	35
9,3	128	9,8	43,1
10,1	167,1	10,5	49,8

Проведя аналогиченые вычисления, приведем данные и графики:

Рис. 3: График ВАХ

$U_{\text{накала}}, B$	U_0 , eV	l, Ангстр.
2,974	$1,3 \pm 0,3$	$3,5 \pm 0,3$
2,527	$2,2 \pm 0,3$	$3,1 \pm 0,4$

Далее по формуле (2) оценим, при каких напряжениях должны появляться максимумы в коэффициенте прохождения электронов:

$$E = \sqrt{\frac{\pi n\hbar}{l}} \frac{1}{2m} - U_0,$$

Отсюда уже при ${\rm n}=2~E>12~{\rm sB},$ что больше потенциала ионизации ксенона. Поэтому мы наблюдаем только один максимум.

4 Выводы

В результате проведения работы был оценен приблизительный радиус атома ксенона, эффективная глубина потенциальной ямы для электрона. Было подтверждено, что в работе действительно использовался ксенон. В целом работа не очень точная, но статический метод точнее. Динамический позволил получить лишь качественные оценки. В общем, в обоих случаях получилось явно наблюдать эффект Рамзауэра.