1 File Structure

Westersim has one input file, the .inp file. It two output files, .eng (energies) and .cat (linelist).

Westerfit has two input files, the .inp file and the .lne file (linelist). It has one output file, .res (lines, frequencies, omcs, calculated frequencies) and fit information in the terminal (which may sometime get moved to a .fit file).

1.1 .inp

Inp files contain the input values for westersim.

The first line contains a string for the name of the molecule.

There are three sections: Controls, 2ndOrder, and Ops. Controls sets global variables. 2ndOrder sets coefficients for the second order operators and is semicolon-delimited. Ops sets coefficients and terms for user-defined operators and is semicolon-delimited.

1.1.1 Controls

The first section, after the molecule name, is Controls. This section sets global variables for westersim.

		Table 1: Controls
NFOLD	integer	The fold value for the rotor
\mathbf{S}	float	Total spin value
TK	float	Temperature in Kelvin
RUNmode	flag	ESF for running energy, simulation, fit
mcalc	integer	Defines the size of the torsional basis
vtmax	integer	Maximum torsional quantum number in ν notation
Jmax	float	Maximum value of J
vmin	float	Minimum frequency value in GHz
vmax	float	Maximum frequency value in GHz

Note on RUNmode: E means only the energy stages of westersim run, and a .egy file is produced. S means the energy and line simulation stages of westerfit run, and a .cat file is produced. F means westerfit runs, producing a .res file. Multiple stages can be run by putting in multiple letters (e.g., ESF).

1.1.2 2ndOrder

The second section is the values of all the second order coefficients. It's in a pseudo-fixed-width format delimited by semicolons. The first column is the name of the coefficient. The second is its value in MHz (except F, V₃, and ρ , which are in wavenumbers, wavenumbers, and unitless, respectively). The third is a scale factor multiplied by the step size. A scale factor of 0.0 means the value is not floated.

These lines cannot be removed, although they can be set at zero and not floated.

Table 2: Columns in %2ndOrder in .inp

1	2	3
Name	Value (see units)	scale
String	float	float

Table 3: Second Order Coefficients

		<u>Table 3:</u>	Second	Order	Coeffic
A	MHz				
В	MHz				
\mathbf{C}	MHz				
D_{ab}	MHz				
ϵ_{zz}	MHz				
ϵ_{xx}	MHz				
ϵ_{yy}	MHz				
ϵ_{xz}	MHz				
χ_{zz}	MHz				
χ_{xmy}	MHz				
χ_{xz}	MHz				
\mathbf{F}	${ m cm}^{-1}$				
ho	dimensionles	SS			
V_n	${ m cm}^{-1}$				
η	MHz				

Note on χ_{xmy} : This is equal to $\chi_{xx} - \chi_{yy}$.

1.1.3 Ops

The third section is the user-defined operators. They are defined by a coefficient (Val), a scaling factor, values a-h, and stg (stage). They are in a psuedo-fixed width format and semicolon delimited.

All coefficients are in MHz.

A-h are the integers to be substituted into the terms for the operators:

$$N^{\mathbf{a}} + N_z^{\mathbf{b}} + (N_+^{\mathbf{c}} + N_-^{\mathbf{c}}) + (NS)^{\mathbf{d}} + S_z^{\mathbf{e}} + P_a^{\mathbf{f}} + \cos(\mathbf{g} * \alpha) + \sin(\mathbf{h} * \alpha) + N_y^{1 - \delta(0, \mathbf{h})}$$

Table 4: Columns in %Ops in .inp

1	2	3	4	5	6	7	8	9	10	11	12
Name	Value (MHz)	scale	a	b	$^{\mathrm{c}}$	d	e	f	g	h	stg
String	float	float	int	int	int	int	int	int	int	int	int

A stage of -n indicates the parameter value is the product of the parameter value in that line and that n lines above. It uses the stage of the the line n lines above.

Stage is set to 0 for dipole operators and 1 for Hamiltonian operators. Scaling factors are the same as above.

A few common user-defined operators have been provided here for convenience.

Table 5: Common User-defined Operators (no value or scale)

Name	a	b	\mathbf{c}	d	e	f	g	h	stg
Dipole Moment									
μ_a	0	1	0	0	0	0	0	0	0
$\mu_a(3)$	0	1	0	0	0	0	3	0	0
μ_b	0	0	1	0	0	0	0	0	0
$\mu_b(3)$	0	0	1	0	0	0	3	0	0
$\mu_c(3)$	0	0	0	0	0	0	3	3	0
Watson's A-reduction, Fourth Order									
Δ_N	4	0	0	0	0	0	0	0	1
Δ_{NK}	2	2	0	0	0	0	0	0	1
Δ_K	0	4	0	0	0	0	0	0	1
δ_N	2	0	2	0	0	0	0	0	1
δ_K	0	2	2	0	0	0	0	0	1
Watson's S-reduction, Fourth Order									
D_N	4	0	0	0	0	0	0	0	1
D_{NK}	2	2	0	0	0	0	0	0	1
D_K	0	4	0	0	0	0	0	0	1
d_1	2	0	2	0	0	0	0	0	1
d_2	0	0	4	0	0	0	0	0	1
V_n (two lines required)									
V_n	0	0	0	0	0	0	0	0	1
V_n	0	0	0	0	0	0	n	0	-1
Torsion-Rotation Operators, Fourth Order	0	4	0	0	0	4		0	4
$ ho_3$	0	1	0	0	0	1	3	0	1
F_N	2	0	0	0	0	2	0	0	1
F_K	0	2	0	0	0	2	0	0	1
F_{bc}	0	0	2	0	0	2	0	0	1
F_{ab}	$0 \\ 2$	1 1	1	0	0	2	0	0	1
$ ho_N$			0	0	0	1	0	0	1
$ ho_K$	0	3	0	0	0	1	0	0	1
$ ho_{bc}$	0	1	2	0	0	1	0	0	1
$ ho_{ab}$	0	2	1	0	0	1	0	0	1
$ ho_{xN}$	2	0	1	0	0	1	0	0	1
V_{3N}	2	0	0	0	0	0	3	0	1
V_{3K}	0	2	0	0	0	0	3	0	1
V_{3bc}	$0 \\ 0$	0 1	2 1	0	0	0	3	0	1
V_{3ab}	U	1	1	0	0	0	3	0	1
Spin-Rotation Operators, Fourth Order Δs	9	0	0	1	0	0	0	0	1
Δ_N^s	2	0	0	1	0	0	0	0	1

Δ^s_{NK}	2	1	0	0	1	0	0	0	1
Δ_{KN}^{s}	0	2	0	1	0	0	0	0	1
Δ_K^{n}	0	3	0	0	1	0	0	0	1
δ_N^s	0	0	2	1	0	0	0	0	1
δ_K^s	0	1	2	0	1	0	0	0	1
Watson's A-reduction, Sixth Order									
Φ_N	6	0	0	0	0	0	0	0	1
Φ_{NK}	4	2	0	0	0	0	0	0	1
Φ_{KN}	0	2	4	0	0	0	0	0	1
Φ_K	0	6	0	0	0	0	0	0	1
ϕ_N	4	0	2	0	0	0	0	0	1
ϕ_{NK}	2	2	2	0	0	0	0	0	1
ϕ_K	0	4	2	0	0	0	0	0	1
Watson's S-reduction, Sixth Order									
H_N	6	0	0	0	0	0	0	0	1
H_{NK}	4	2	0	0	0	0	0	0	1
H_{KN}	2	4	0	0	0	0	0	0	1
H_K	0	6	0	0	0	0	0	0	1
h_1	4	0	2	0	0	0	0	0	1
h_2	2	0	4	0	0	0	0	0	1
h_3	0	0	6	0	0	0	0	0	1

1.2 .eng

Eng files contain the energy listings produced by westersim.

1.3 .lne and .cat

Lne files contain the line lists used by westerfit. They are comma-delimited.

				Ta	ble 7	: Col	umns	in .lne	:		
1	2	3	4	5	6	7	8	9	10	11	12
J_u	N_u	K_{au}	K_{cu}	\mathbf{m}_u	J_l	N_l	K_{al}	K_{cl}	m_l	freq	unc

Cat files contain the line lists produced by westersim.

Table 8: Columns in .cat												
1	2	3	4	5	6	7	8	9	10	11	12	13
J_u	N_u	K_{au}	K_{cu}	\mathbf{m}_u	J_l	N_l	K_{al}	K_{cl}	m_l	freq	omc	intensity