Applied Cryptography Spring Semester 2023 Lectures 27 and 28

Kenny Paterson (@kennyog)

Applied Cryptography Group

https://appliedcrypto.ethz.ch/

Overview

- Introduction to signatures
- Security of signatures: unforgeability and strong unforgeability
- Signatures in the discrete logarithm setting: DSA.
- RSA-based signatures: naïve RSA, full-domain hash RSA, RSA-PKCS and RSA-PSS
- Applications of signatures
- Some signature variants

Introduction

Introduction to signatures

- Assume Alice wants to send a message m to Bob.
- The adversary controls the network, as usual.
- The adversary would like to compromise the **integrity** of message *m*.
 - He wants Bob to receive and accept an alternative message m'.
- Alice and Bob need a cryptographic mechanism that detects modifications.
- Existing solution to this problem?
 - MAC algorithm
- What if Bob and Alice do not share a symmetric key?

Introduction to signatures – signing

- (Digital) signature schemes are a public key analogue of MAC algorithms.
- Alice has a signing key sk and a verification key vk.
- Bob is assumed to have an authentic copy of vk.
- We will discuss methods to distribute and authenticate keys in a later lecture: PKI and digital certificates.
- Alice uses an algorithm Sign to compute signatures on messages m:

$$\sigma = \text{Sign}(sk, m)$$

• Alice sends (m, σ) to Bob in place of m.

Introduction to signatures – verification

- Bob uses an algorithm Vfy along with the verification key vk to verify the signature.
- Vfy algorithm outputs o or 1.
- Bob accepts m as having come from Alice if $Vfy(vk, m, \sigma) = 1$ and rejects m otherwise.
- We need it to be hard for the adversary to find messages m and values σ such that $Vfy(vk, m, \sigma) = 1$.
- That is, it should be hard for the adversary to *forge* signatures that verify using Alice's verification key.
- NB our formulation of signature schemes needs m as an input to the verification algorithm.
 - Some schemes provide *message recovery*: they can recover m (or part of m) from the signature σ during verification.

Formal definition of signature scheme

Definition:

A signature scheme SIG consists of a triple of algorithms (KGen, Sign, Vfy).

<u>KGen</u> is a randomised algorithm that outputs key pairs (sk, vk).

Sign takes as input sk and a message $m \in \{0, 1\}^*$, and outputs a signature σ .

Vfy takes as input a triple (vk, m, σ) and outputs o or 1.

Correctness:

For all key pairs (sk, vk) output by KGen, for all $m \in \{0, 1\}^*$, if $\sigma = \text{Sign}(sk, m)$ then $Vfy(vk, m, \sigma) = 1$.

NB both Sign and Vfy may be randomised algorithms.

Security of signature schemes

Formal definition of security for signature schemes

- Security for a signature scheme SIG = (KGen, Sign, Vfy) is formalised in terms of a security game between a challenger and an adversary.
- Challenger generates a key pair (sk, vk) by running KGen.
- Challenger gives vk to adversary.
- Adversary runs, with access to a signing oracle: adversary sends m and gets back σ = Sign(sk,m).
- (No access to a verification oracle, cf. MAC security.)
- Adversary finally outputs (m^*, σ^*) .
- Winning condition:

Adversary wins if m^* is distinct from all the m queried to the signing oracle AND if $Vfy(vk, m^*, \sigma^*) = 1$.

UF-CMA for a signature scheme

$$Adv_{SIG}^{UF-CMA}(A) := Pr[Vfy(vk, m*, \sigma*) = 1].$$

Formal definition of security for signature schemes

• Winning condition:

Adversary A wins if m^* is distinct from all the m queried to the signing oracle AND if $Vfy(vk, m^*, \sigma^*) = 1$.

• The advantage of A is defined as:

$$Adv_{SIG}^{UF\text{-}CMA}(A) := Pr[Vfy(vk, m*, \sigma*) = 1].$$

- The scheme (KGen, Sign, Vfy) is said to be (q_S, t, ε) -UF-CMA secure if no adversary running in time t and making q_S queries to the signing oracle has advantage greater than ε .
- (E)UF = (existentially) unforgeable.
- CMA = chosen message attacks.

Consequences of the definition

UF-CMA security implies:

- It's hard for adversary find sk from vk. Why?
- It's hard for the adversary to create a forgery given just the verification key *vk*. Why?
- It's hard for the adversary to create a forgery when given access to signatures on random messages (that the adversary does not control). Why?
- If vk is properly bound to an identity, then the legitimate owner of the key pair (vk,sk) cannot deny having created a signature σ on a message m. Why?
 - This last property is usually called non-repudiation.
 - Can a MAC offer non-repudiation?

Strong unforgeability

Strong unforgeability (SUF-CMA security):

Adversary wins if (m^*, σ^*) is distinct from all the pairs (m, σ) involved in queries AND if $Vfy(vk, m^*, \sigma^*) = 1$.

- Adversary could now win by producing a *new* signature σ^* on a message m that he previously queried to the signing oracle.
- This would not be a win in the UF-CMA game, but is a win in this game.
- It's now easier for the adversary to win, so the security notion is at least as strong as UF-CMA.
- Notions are equivalent for schemes with unique signatures.

Signatures in the discrete logarithm setting: DSA

Standards for signature schemes

NIST

• DSA, ECDSA, RSA-PSS, PKCS#1 v1.5 with RSA.

NSA Suite B

ECDSA.

NESSIE

ECDSA, RSA-PSS, SFLASH (broken).

CRYPTREC

DSA, ECDSA, RSA-PSS, PKCS#1 v1.5 with RSA.

IEEE P1363

- DSA, ECDSA, PSS w/ RSA or Rabin-Williams, PKCS#1 v1.5 w/ RSA or Rabin-Williams.
- Some signature schemes with message recovery.

Reminder: The Discrete Log setting

- Let p, q be two prime numbers such that q divides p-1, and let g be an integer such that g, g^2 , g^3 ,... g^q are distinct modulo p, and $g^q = 1 \mod p$.
- The set $G_q = \{1, g, g^2, g^3, \dots g^{q-1}\}$ of powers of g mod p is a cyclic group of prime order q with generator g.

The discrete logarithm problem in G_q :

Given p, q, g and an $y = g^x \mod p$ from G_q , for a random value x in $\{0,1,...,q-1\}$: find x.

• Diffie-Hellman key exchange and ElGamal encryption require a group where DLP is hard.

Digital Signature Algorithm (DSA)

- DSA was proposed by NIST in 1991.
- Explicitly required the use of a specific hash function
 - SHA-1.
- FIPS 186-4 updates to newer hash functions and larger key sizes.
- Variation of ElGamal signature scheme.
- Schnorr scheme is easier to prove secure but was patented.
- Very different set of functional capabilities compared to RSA:
 - DSA is a signature algorithm and cannot be easily converted into an encryption scheme.

DSA set up

- System parameters require two primes p and q:
 - e.g. 160-bit prime q, 1024-bit prime p so that $q \mid p-1$.
 - Other pairs of sizes: (224,2048), (256,2048), (256,3072).
 - Find g that generates G_{qr} as previously.

KGen:

- 1. Select random signing key x, $1 \le x \le q$ -1.
- 2. Compute verification key $y = g^x \mod p$.
- 3. Output (<u>s*k=x, vk=y*).</u>
- So the problem of finding signing key from verification key is an instance of the DLP.
- Many users can share the same system parameters (p,q,g).

DSA signing

To sign message *m*

- hash message m to get H(m)
- 2. generate random value k, $1 \le k \le q$ -1
- 3. compute $r = (g^k \mod p) \mod q$
- 4. compute $k^{-1} \mod q$
- 5. compute $s = k^{-1}(H(m) + x \cdot r) \mod q$
- 6. output $\sigma = (r,s)$
- Signatures can be represented using 2 x 160 = 320 bits (DSA signatures are much smaller than RSA signatures at same security level).
- Signing requires one exponentiation mod *p* using an exponent *k* of 160 bits (a short exponent)

DSA verification

To verify that $\sigma = (r, s)$ is a signature for message m:

- 1. check that $1 \le r \le q-1$ and $1 \le s \le q-1$
- 2. compute $w = s^{-1} \mod q$
- 3. compute $u_1 = w \cdot H(m) \mod q$ and $u_2 = w \cdot r \mod q$
- 4. accept signature if the following equation holds

$$(g^{\upsilon_1}y^{\upsilon_2} \bmod p) \bmod q = r$$

Correctness: suppose $\sigma = (r, s)$ is a signature for message m. Then:

$$g^{u_1}y^{u_2} = g^{s^{-1}H(m)} \cdot y^{r s^{-1}} = g^{s^{-1}(H(m)+xr)} = g^k \mod p$$

and so

 $(g^{u_1}y^{u_2} \bmod p) \bmod q = (g^k \bmod p) \bmod q = r.$

Security of DSA signature scheme

Informal:

- Attacks extracting the private key:
 - Solving DLP mod p.
 - $O(q^{1/2})$ attacks in the subgroup G_q of order q.
 - Need to choose p and q both large enough to prevent these attacks.
- Hash function collisions: $H(m_1) = H(m_2)$ implies: if $\sigma = (r, s)$ is a valid signature for message m_1 then it is also valid for m_2 .

Formal:

- No clean security proof for DSA is known.
- There are various proofs under different assumptions and heuristics of varying strength; none is really satisfactory.

Security of DSA under randomness failure

- Suppose the same value k is used with a key x to sign two different messages, m_1 and m_2 , giving signatures $\sigma_1 = (r_1, s_1)$ and $\sigma_2 = (r_2, s_2)$.
- Then $r_1 = (g^k \mod p) \mod q = r_2$.
- So the "repeated k'' condition is detectable from signatures alone.
- Moreover:

$$s_1 = k^{-1}(H(m_1) + x \cdot r) \mod q$$
 and $s_2 = k^{-1}(H(m_2) + x \cdot r) \mod q$.

So:

$$s_1 - s_2 = k^{-1}(H(m_1) - H(m_2)) \mod q$$
.

Hence:

$$k = (s_1 - s_2)^{-1} \cdot (H(m_1) - H(m_2)) \mod q.$$

• From k, we can recover x, the **private signing key**, by solving the equation:

$$S_1 = k^{-1}(H(m_1) + x \cdot r) \mod q$$

using the known values s_1 , k, $H(m_1)$, r.

So repeating k values leads to a catastrophic security failure.

Security of DSA under randomness failure

The above key recovery issue in DSA and the related ECDSA scheme has occurred regularly in practice!

OpenSSL bug in Debian (2008):

"It was discovered that the RBG in Debian's openssl package is predictable. [...] It is strongly recommended that all cryptographic key material is recreated from scratch. [...] All DSA keys ever used on affected systems for signing should be considered compromised."

- Hackers recovered Sony's PlayStation 3 signing key (2010).
- Bad random number generator in Android allowed Bitcoins to be stolen (2013).
- The problem occurs naturally in virtualized environments.

Hedging DSA against randomness failures

- Related, but more complicated attacks are possible if only some *bits* of the random values *k* can be predicted.
- This can happen in a timing attack setting, e.g. signing may be faster
 if MSBs of k are zero.
- Similarly, problems if one uses certain weak generators to produce k, or if some relations between the bits of k are known.
- We can hedge against randomness failures by derandomising:
 - Generate k in signing using a pseudo-random function F with a key K:

$$k = F_{\kappa}(vk \parallel m)$$
.

- Ensures different random(-looking) values for different verification keys and messages.
- Need to keep PRF key K as part of signing key.
- See RFC 6979 for related scheme ECDSA; technique applies more generally for randomised signature schemes.

Psychic Signatures

- During verification, it is essential to check that $1 \le r \le q-1$ and $1 \le s \le q-1$
- Failure to do so can allow trivial forgery attacks on DSA and ECDSA.
- It was recently discovered that Java versions 15-18 failed to do these checks for ECDSA.
- Earlier versions of Java were not vulnerable.
- So what happened?
- https://neilmadden.blog/2022/04/19/psychic-signatures-injava/
- https://www.oracle.com/security-alerts/cpuapr2022.html

RSA-based signatures

RSA-based signatures

<u>First attempt: naïve RSA-based signatures:</u>

KGen: as in RSA encryption, we set vk = (N,e) and sk = d, where N = pq is a

row ct c we arge p are and -1 are row

Sign: /e se the 'privale' \ s/ = d to gn:

 $\sigma = m^{\alpha} \mod N$

Vfy: given (m,σ) , we check whether $\sigma^e = m \mod N$.

Security?

Given signatures σ_1 and σ_2 on messages m_1 and m_2 , simple algebra shows that $\sigma_1\sigma_2$ mod N is a valid signature on m_1m_2 .

This makes creation of forgeries trivial.

Exercise: formulate the attack in the context of the UF-CMA security game.

RSA Full Domain Hash (FDH) signatures

Second attempt: full-domain hash RSA signatures:

KGen: as in RSA encryption, we set vk = (N,e) and sk = d, where N = pq is a product of two large primes and $ed = 1 \mod (p-1)(q-1)$.

Sign: we use the "private key" sk = d to sign:

$$\sigma = H(m)^{d} \mod N$$
,

where H is a hash function from $\{0,1\}$ * into $\{0,...,N-1\}$ ("full domain").

Vfy: given (m,σ) , we check whether $\sigma^e = H(m) \mod N$.

Security?

Use of a hash function destroys the multiplicative structure that enabled the previous attack.

Also allows signing of long messages.

Needs a collision-resistant hash function.

RSA FDH signatures

Theorem

RSA-FDH is UF-CMA secure under the assumption that RSA inversion is hard and H is a random oracle.

More precisely, for any adversary A against UF-CMA security of RSA-FDH, there exists an adversary B against RSA inversion such that:

$$Adv_{RSA-FDH}^{UF-CMA}(A) \leq (q_s+q_h) \cdot Adv_{RSA-INV}(B) - 1/N.$$

where q_s is the number of signing queries and q_h is the number of hash queries made by A. Moreover, B runs in (roughly) the same time as A.

NB A tighter result can be proved, with q_s+q_h replaced by q_s , see Coron (CRYPTO 2000).

Hash-based RSA signatures with padding

Third attempt: RSA signatures with padding:

Sign: we use the "private key" sk = d to sign:

$$\sigma = \operatorname{pad}(H(m))^{d} \operatorname{mod} N$$
,

where *H* is a collision-resistant hash function with short output (e.g. SHA256) and pad(.) is some deterministic padding scheme.

Vfy: given (m,σ) , we check whether $\sigma^e = pad(H(m)) \mod N$.

This approach is widely standardised and still in common use, e.g. PKCS#1 v.1.5 standard, ANSI X9.31, IEEE P1363a, SSL/TLS, IPsec, EMV.

PKCS#1 v.1.5 padding: oo o1 FF... FF oo \parallel c \parallel H(m), with constant c.

Hash-based RSA signatures with padding

Security?

- No security proof for the scheme with PKCS#1 v.1.5 padding is known.
- Signatures can be forged if the constant part of the padding is too short.
- Padding check/removal often wrongly implemented, see e.g. Bleichenbacher attack described in Boneh-Shoup, Section 13.6.1.
- A proof for a closely related, but distinct, scheme was given in:

Tibor Jager, Saqib A. Kakvi, Alexander May: On the Security of the PKCS#1 v1.5 Signature Scheme. ACM CCS 2018: 1195-1208.

RSA-PSS

Fourth attempt: RSA Probabilistic Signature Scheme (RSA-PSS):

KGen: as in RSA encryption, we set vk = (N,e) and sk = d, where N = pq is a product of two large primes and $ed = 1 \mod (p-1)(q-1)$.

Sign (simplified):

- 1. Generate a random value r (with 256 bits, say).
- 2. Compute s = H(m||r), $t = G_1(s) \oplus r$, $u = G_2(s)$ where G_1 , G_2 and H are suitable hash functions (the sum of their output lengths should be λ -1, where λ is bit-length of N).
- 3. Output:

$$\sigma = (o || s || t || u)^d \mod N$$

RSA-PSS (simplified) encoding

RSA-PSS verification

<u>Vfy (simplified)</u>: given (m, σ) :

- 1. Compute σ^e mod N and parse the result as $b \parallel s \parallel t \parallel u$ where b is a bit and s, t, u have the correct lengths (determined by output lengths of H, G_1 , G_2).
- 2. Output "o" if b = 1.
- Compute r' by inverting the equations for s, t:
 - Compute $r' = G_1(s) \oplus t$
- 4. Re-encode r' and m and check correctness:
 - compute s' = H(m||r'), $t' = G_1(s') \oplus r'$, $u' = G_2(s')$.
 - check $(s'=s) \land (u'=u)$; output "o" if this fails; otherwise output "1".

RSA-PSS

Security of RSA-PSS:

Assuming G_1 , G_2 and H behave like random functions, the UF-CMA security of RSA-PSS can be **tightly** related to the hardness of the RSA inversion problem.

- Proof in a paper by Bellare-Rogaway (CRYPTO 1996).
- RSA-PSS can be instantiated with "ordinary" collision-resistant hash functions, e.g. SHA-256 (no hashing onto full domain is needed).
- RSA-PSS is standardised in PKCS#1 v2.1, IEEE P1363a-2004, IETF RFC 3447,...
- If you have to use RSA signatures, then RSA-PSS is the right choice of scheme.

Summary of RSA-based signatures

Naïve RSA: DO NOT USE UNDER ANY CIRCUMSTANCES.

Hash-then-sign: no known attack, but also no proof.

This includes basic hash-then-sign, and PKCS#1 v.1.5 padding.

The latter was standardized early and still in widespread use.

Full-Domain Hash: provably secure, with weak proof.

RSA-PSS: provably secure, with tight proof. Please use!

Applications of signatures

Applications of signatures

- Public verification of message authenticity/integrity.
- Code-signing.
- Proof of ownership/transfer of cryptocurrency.
- Entity authentication and identification.
 - Sign challenge messages to prove possession of a signing key matching a verification key.
 - Used as a building block in more complex protocols such as SSL/TLS.
- Certification systems, public key infrastructures (PKI).
 - Use signatures to authenticate other signing keys and public encryption keys.
 - See Boneh-Shoup Chapter 13.8 for a good discussion.

Practical challenges

- It is often thought that cryptographic signatures can replace handwritten signatures.
 - The required legal frameworks in place worldwide, e.g., European directive 1999/93/EC.
 - But typically high demands on physical security (key storage, signature generation), requirements for tamperproof hardware (e.g. smartcards) and special terminals to interact with it.
 - Deployments as part of electronic identity cards in some countries, e.g. Belgium, Estonia.
- Human understanding and usability of software are major barriers to wide adoption.
- Management of keys via suitable infrastructure.
- Making robust implementations that avoid security pitfalls, e.g. bad randomness.

Some signature variants

Some signature variants

- Blind signatures: an interactive protocol in which A sends B a blinded message to sign, B learns nothing about the message, and A obtains a regular signature – used in anonymous credential systems.
- **Group signatures**: anyone from a group of users can sign; no-one can tell who signed, except possibly a "group manager" who can reveal the signer used in TCG TPMs.
- **Threshold signatures**: any *k* out of *n* parties can sign a message that verifies under some key *vk*, but *k-1* or fewer cannot used in cryptocurrency custody solutions.
- **Proxy signatures**: limited signing authority can be delegated to another party (a proxy).
- Also: ring signatures, multi-signatures, aggregate signatures,....

Homework

- Read Chapter 13 of Boneh-Shoup for many more details, constructions and proofs.
- Chapter 14 of Boneh-Shoup treats hash-based signatures in detail.
- Start next exercise sheet.
- Prepare for this week's lab.

Extra slides

RSA FDH signatures: Interpreting the security bound

The security bound is of the form:

$$Adv_{RSA-FDH}^{UF-CMA}(A) \le (q_s + q_h) \cdot Adv_{RSA-INV}(B) - 1/N.$$

Let's ignore the 1/N term (it's usually very small).

Suppose we choose RSA parameters such that the following is plausible:

$$Adv_{RSA-INV}(B) = 2^{-128}$$

for any adversary B running in a reasonable amount of time (e.g. 3072-bit N).

Suppose $q_s+q_h=2^{80}$, thinking of an adversary that can perform many hash computations (but can perhaps make far fewer signing queries).

Then the bound says:

$$Adv_{RSA-FDH}^{UF-CMA}(A) \le 2^{80} \cdot Adv_{RSA-INV}(B) \le 2^{-48}$$
.

Hence the factor (q_s+q_h) becomes significant in assessing what security guarantees we actually get for the scheme, and how we should choose our scheme parameters in practice.

This is why **tight** security reductions are preferred if we can obtain them.

RSA FDH signatures: Interpreting the security bound

In Coron's improved analysis, the security bound is of the form:

$$Adv_{RSA-FDH}^{UF-CMA}(A) \leq q_s \cdot Adv_{RSA-INV}(B)$$

Now suppose $q_s \le 2^{3^2}$, thinking of an adversary that can only make a limited number of signing queries (since these are typically made online, require interaction, and can be rate-limited).

Assuming again that $Adv_{RSA-INV}(B) = 2^{-128}$, now the bound says:

$$Adv_{RSA-FDH}^{UF-CMA}(A) \le 2^{3^2} \cdot Adv_{RSA-INV}(B) \le 2^{-96}$$
.

Clearly this is much better from a security perspective, though we still don't get the full 128-bit security despite using a 3072-bit modulus *N*.

NB A full analysis would also take into account running times in a more detailed way.

RSA FDH signatures: Security proof

Recall: RSA inversion problem: given (N,e,x) where x is uniformly random modulo N, compute $x^d \mod N$ (where $de = 1 \mod (p-1)(q-1)$).

Sketch proof:

- B receives as input (N,e,x). B gives (N,e) to A as the public key.
- A makes two kinds of query: signing queries and hash queries.
- For every signing query made by A, adversary B will also make a hash query.
- So let the hash queries be on inputs m_i , $1 \le i \le q_s + q_h$.

RSA FDH signatures: Security proof

Sketch proof (ctd):

- B picks a random i^* in $\{1,..., q_s + q_h\}$ at the start of the game and sets $H(m_{i^*}) = x$ when query i^* is made.
- For all other i, B sets $H(m_i) = y_i^e \mod N$ where $y_i \leftarrow_s \{0,...,N-1\}$.
- Note that y_i is then a valid signature on m_i for all $i \neq i^*$:

$$y_i = y_i^{ed} = H(m_i)^d \mod N.$$

• Moreover, if A outputs a valid forgery (m_{i*}, σ^*) , then:

$$(\sigma^*)^e = H(m_{i^*}) = x \mod N$$

so that:

$$\sigma^* = (\sigma^*)^{ed} = H(m_{i^*})^d = x^d \mod N$$

and hence σ^* is a solution to the RSA inversion problem for input (N,e,x).

RSA FDH signatures: Security proof

Sketch proof (concluded):

- B also needs to handle A's signing queries.
- This is now straightforward: if A makes a signing query on some input m_i , then B makes a hash query on m_i for itself to get y_i^e , and can now produce forgery y_i .
- Tricky case: if A makes a signing query on m_{i*} : then B simply aborts.
- B wins if A wins on output (m_{i*}, σ^*) , i.e. if A forges on the i^* -th query to H; this event happens with probability $1/(q_s + q_h)$.
- Missing part of analysis: we need to show that to be successful at all,
 A must make a query to H on its chosen message m* (but not make a signing query on this message).
- This follows from the fact that, unless A makes this query, H is still uniformly random on m*, so then A would be successful with probability only 1/N.