Algorithms and data structures 3: Naive Matricies, Graphs-1

Boris Kirikov

1.10.2015

Outline

- 1. Defining Matricies and Vectors
- 2. Matrix operations
- 3. Defining graphs
- 4. Representing graphs
- 5. Graph anatomy
- 6. Spanning trees
- 7. Traversing graphs

Defining matricies

Def: Let I, J, X – some sets, $A: I \times J \to X$ is called matrix, $a_{ij} = a(i,j)$ is matrix entry, I and J are index sets.

Def: Let $M(I, J, X) = \{I \times J \rightarrow X\}$ set of all such matricies.

Defining matricies

Def: Let I, J, X – some sets, $A: I \times J \to X$ is called matrix, $a_{ij} = a(i,j)$ is matrix entry, I and J are index sets.

Def: Let $M(I, J, X) = \{I \times J \rightarrow X\}$ set of all such matricies.

Note: often $I = \{1, \dots, m\}$ and $J = \{1, \dots, n\}$.

Note: often matricies are represented as tables:

$$A = \left(\begin{array}{ccc} a_{11} & \dots & a_{1n} \\ & \dots & \\ a_{m1} & \dots & a_{mn} \end{array}\right)$$

Def: M(I, I, X) are called square matricies.

Some common examples

- empty matrix
- ▶ column: |J| = 1 (we'll call this vector)
- row: |I| = 1 (we'll call this covector)
- ▶ submatrix: $I' \subset I$, $J' \subset J$
- ▶ diagonal matrix: $diag(a_1,...,a_n)$
- e = diag(1, ..., 1)
- 0 = diag(0, ..., 0)

(vector and covector are **NOT** defined like this)

1. Sum

Let X be field. (To be precise: R-module over assoc. ring with 1)

Def: $A, B \in M(I, J, X)$

$$A + B = (a)_{ij} + (b)_{ij} = (a + b)_{ij}$$

L: (M(I, J, X), +) is commutative monoid:

- 1. (A + B) + C = A + (B + C)
- 2. $\exists 0: 0 + A = A = A + 0$
- 3. $\forall A \exists (-A): A + (-A) = (-A) + A = 0$
- 4. Commutative: A + B = B + A

2. Multiply by scalar

Def: $A \in M(I, J, X)$, $\lambda \in X$

$$\lambda A = \lambda(a)_{ij} = (\lambda a)_{ij}$$

L: $(M(I, J, X), +, \cdot)$ is left *R*-module:

- 1. $(\lambda \mu)A = \lambda(\mu A)$
- $2. (\lambda + \mu)A = \lambda A + \mu A$
- 3. $\lambda(A+B) = \lambda A + \lambda B$
- 4. $\forall A \quad 1A = A$

3. Matrix multiplication (Kelly)

Def: If $A \in M(I, J, X)$, $B \in M(J, K, X)$, then $AB \in M(I, K, X)$ is defined as follow:

$$(AB)(i,k) = \sum_{j \in J} a_{ij}b_{jk}$$

Th:

- 1. A(BC) = (AB)C
- 2. (A + B)C = AC + BC
- 3. $AB \neq BA$

3. Matrix multiplication (Kelly)

Def: If $A \in M(I, J, X)$, $B \in M(J, K, X)$, then $AB \in M(I, K, X)$ is defined as follow:

$$(AB)(i,k) = \sum_{j \in J} a_{ij}b_{jk}$$

Th:

- 1. A(BC) = (AB)C
- 2. (A + B)C = AC + BC
- 3. $AB \neq BA$
- 4. Matrix multiplication (Adamar)

Def: $A, B \in M(I, J, X)$

Matricies and linear equations

Kelly's definition of multiplication lets us to write system of linear equations in matrix form:

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ + \dots + = \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

$$Ax = b$$

More examples

- shift matrix
- cycle matrix (Coxeter)
- Vandermond
- ▶ Jordan cell
- Calculus: Jacobian, Wronskian, Hessian

Defining graphs

Def: G = (V, E) is graph, iff $E \subset \{\{u, v\} : u, v \in V\}$. V is set of verticies, E is set of edges.

Def: G = (V, E) is directed graph, iff $E \subset \{(u, v) : u, v \in V\}$.

Def: H is subgraph of G, iff $V(H) \subset V(G)$ and $E(H) \subset E(G)$.

Defining graphs

Def: G = (V, E) is graph, iff $E \subset \{\{u, v\} : u, v \in V\}$. V is set of verticies, E is set of edges.

Def: G = (V, E) is directed graph, iff $E \subset \{(u, v) : u, v \in V\}$.

Def: H is subgraph of G, iff $V(H) \subset V(G)$ and $E(H) \subset E(G)$.

Note: There can be other definitions, adding or removing some properties:

- multiple edges
- loops
- weights for edges or verticies
- **.** . . .

Representations 0: graphic

Figure 1: Some random graph

Representations 0: graphic

Figure 1: Some random graph

$$V = \{A, B, C, D, E\}$$

$$E = \{\{A, C\}, \{C, D\}, \{A, D\}, \{A, B\}, \{B, D\}, \{D, E\}\}.$$

Representations 1: edge list

```
V = \{0, 1, 2, 3, 4\} E = \{\{0, 2\}, \{2, 3\}, \{0, 3\}, \{0, 1\}, \{1, 3\}, \{3, 4\}\}. struct edge { int from, to } G[N]:
```

Representations 1: edge list

```
V = \{0,1,2,3,4\} E = \{\{0,2\},\{2,3\},\{0,3\},\{0,1\},\{1,3\},\{3,4\}\}. struct edge { int from, to } G[N]; O(2E) \text{ memory}.
```

Representations 2: Incidence matrix

Def: Incidence matrix $Inc(G) \in M(E, V, \{0, 1\})$ of graph G = (V, E) is:

$$Inc(G)(e, v) =$$

$$\begin{cases} 1, & e = (u, w), (u = v \land w = v) \\ 0 & \end{cases}$$

 \mathbf{Q} : How many edges can be in graph with n verticies?

Representations 2: Incidence matrix

Def: Incidence matrix $Inc(G) \in M(E, V, \{0, 1\})$ of graph G = (V, E) is:

$$Inc(G)(e, v) =$$

$$\begin{cases}
1, & e = (u, w), (u = v \land w = v) \\
0
\end{cases}$$

 \mathbf{Q} : How many edges can be in graph with n verticies?

 $O(V \cdot E)$ memory.

Representation 3: Adjacency matrix

Def: Adjacency matrix $Adj(G) \in M(V, V, \{0, 1\})$ of graph G = (V, E) is:

$$Adj(G)(u,v) = \begin{cases} 1, & \exists e \in E \colon e = (u,v) \\ 0 & \end{cases}$$

Note: often *Adj* matrix is defined for weighted graphs and keeps weights of its' edges.

int G[MAX][MAX];

Representation 3: Adjacency matrix

Def: Adjacency matrix $Adj(G) \in M(V, V, \{0, 1\})$ of graph G = (V, E) is:

$$Adj(G)(u,v) = \begin{cases} 1, & \exists e \in E \colon e = (u,v) \\ 0 \end{cases}$$

Note: often *Adj* matrix is defined for weighted graphs and keeps weights of its' edges.

$$O(V^2)$$
 memory.

Representation 4: Adjacency lists

The most compact representation. For each vertex store pointers to all adjanced ones:

```
std::vector<int> G[MAX];
// ... or ...
std::vector<std::vector<int>> G;
```

Representation 4: Adjacency lists

The most compact representation. For each vertex store pointers to all adjanced ones:

```
std::vector<int> G[MAX];
// ... or ...
std::vector<std::vector<int>> G;

O(max(V, E)) memory.
```

Graph anatomy

Def: Subgraph P of graph G is a path, iff it is simple (no loops, no multiple edges) and its verticies can be ordered so that two verticies are adjacent iff they are cosecutive in the ordering.

Def: Subgraph C of graph G is a cycle, iff it can be represented as path P plus edge from the last to the first vertex in ordering.

Def: Graph G is connected, iff for any $u, v \in V(G)$ exists path P(u, v) starting from u and ending in v. Otherwise it is called disconnected.

Def: Maximal connected subgraphs are called (adjacency) components.

Def: A walk is $((v_1, \ldots, v_n), (e_1, \ldots, e_{n-1}))$ such that for $1 \le i \le n$ the $e_i = (v_{i-1}, v_i)$. If $\forall i, j$ is $e_i \ne e_j$ than it is a trail. If also $v_1 = v_n$, it is a circuit.

Examples

Task: Proove that if A = Adj(G), than $(a_{uv})^k$ is number of paths from u to v of length k.

Examples

Task: Proove that if A = Adj(G), than $(a_{uv})^k$ is number of paths from u to v of length k.

Def:
$$G = (V, E)$$
, $deg: V \to \mathbb{N}$, $deg(v) = |\{e \in E: e = (v, u)\}|$.

Task: $G = (V, E), \forall v \in V \quad deg(v) \not/2$. Proove that |V|:2.

Sapnning trees

Def: Graph G is called a tree, iff it is connected and |E| = |V| - 1.

Def: Subgraph $H \leq G$ is called spanning tree, iff it is tree and V(G) = V(G).

Constructing minimal spanning trees: Prim

Algo:

- 1. Let $T = \{v\}$ be spanning tree.
- 2. At every step we take the lighters edge from T to $G \setminus T$.
- 3. When no such edges exist, we are done

Constructing minimal spanning trees: Prim

Algo:

- 1. Let $T = \{v\}$ be spanning tree.
- 2. At every step we take the lighters edge from T to $G \setminus T$.
- 3. When no such edges exist, we are done

Let's do it faster:

- 1. Store for every vertex pointer to lightest edge to T
- 2. Now we select next edge in O(n).
- 3. When the vertex is added, recalculate all adjacent vertexes for O(n).

This gives $O(n^2)$ perforemance.

Constructing minimal spanning trees: Kruskal

Idea: Start from |V| trees. At every step the lightest edge between different trees and add it.

Algo:

- 1. Sort all edges
- 2. Somehow make sets of verticies
- 3. Take the lightest unused edge, merge sets

We'll talk more about this algo and storing sets later.

Traversing graphs

1. DFS

- Stack
- ► Call stack or array

Traversing graphs

1. DFS

- Stack
- Call stack or array

2. BFS

- Queue
- List queue, array queue