Cell Switching (ATM)

- Connection-oriented packet-switched network
- Used in both WAN and LAN settings
- Signaling (connection setup) Protocol: Q.2931
- **■** Specified by ATM forum
- Packets are called *cells*
 - 5-byte header + 48-byte payload
- **■** Commonly transmitted over SONET
 - other physical layers possible

Variable vs Fixed-Length Packets

- Variable length packets can adapt their overhead to the requirements of the applications
 - Small packets (e.g. ACK) can be sent in a min. sized packet
 - Large transfers can be broken into max.s sized packets
- There is no optimal length for packets
 - if small: high header-to-data overhead
 - if large: low utilization for small messages
- Fixed length packets are easier to switch in hardware
 - Simpler hardware
 - Data parallelism can be exploited

The big debate: big vs small packets

■ Small packets improve queue behavior

- finer-grained pre-emption point for scheduling link
 - maximum packet = 4KB
 - link speed = 100Mbps
 - transmission time = 4096 x 8/100 = 327.68us
 - high priority packet may sit in the queue 327.68us
 - in contrast, 53 x 8/100 = 4.24us for ATM
- near cut-through behavior
 - two 4KB packets start to arrive at same time
 - link idle for 327.68us while both arrive into buffers
 - at end of 327.68us, still have 8KB to transmit
 - in contrast, if the packets arrive as an ATM cell train, we can transmit first cell after 4.24us
 - at end of 327.68us, just over 4KB left in queue

Big vs Small packets (cont)

- Small packets improves latency (for voice)
 - voice digitally encoded at 64KBps (8-bit samples at 8KHz)
 - need full cell's worth of samples before sending cell
 - example: 1000-byte cells implies 125ms per cell (too long)
 - smaller latency removes the need for echo cancellors

■ ATM Compromise: 48 bytes = (32+64)/2

Cell Format

■ User-Network Interface (UNI)

4	8	16	3	1	8	384 (48 bytes)
GFC	VPI	VCI	Туре	CLP	HEC (CRC-8)	Payload 7

- host-to-switch format
- GFC: Generic Flow Control (still being defined)
- VCI: Virtual Circuit Identifier
- VPI: Virtual Path Identifier
- Type:
 - MSB set: management,
 - MSB Clear: EFCI, AAL5 last frame marker (later)
- CLPL Cell Loss Priority
- HEC: Header Error Check (CRC-8)
- Network-Network Interface (NNI)
 - switch-to-switch format
 - GFC becomes part of VPI field

Segmentation and Reassembly

■ ATM Adaptation Layer (AAL)

- AAL 1 and 2 were designed for applications that need guaranteed rate (e.g., voice, video)
- AAL 3/4 designed for packet data (conn. Oriented and connectionless)
- AAL 5 is an alternative standard for packet data

Virtual Paths

- Used to multiplex multiple VCI's "heading" the same way into one fat pipe.
- Core ATM switches need to route just by the 8 bit VCI, rather than the entire 24 bit address
 - Reduces cost of maintaining per connection state.

- When introduced it offered bandwidth scalability advantages over LANs
 - ATM is switched vs. shared media Ethernet
- ATM has no length restrictions
- Both these arguments in favor were soon countered by Ethernet switches and gigabit Ethernet respectively
- **■** Problem:
 - ATM is not a shared media LAN. How do you support broadcast and multicast?

■ Soln:

LANE: LAN Emulation mode.

■ The ATM network uses a slew of servers to emulate traditional LANs.

■ Higher layer protocols are shielded from the complexity of modifying code to adapt to ATM.

- Involves 3 servers
 - LAN Emulation configuration server
 - LAN emulation server
 - Broadcast and unknown server
- On boot, LANE clients contact LECS for config info over a well defined VC
- LECS returns LAN info and address of LES
- Client registers itself with LES, LES returns address of BUS
- BUS maintains a point to multipoint VC.
 - All broadcast transfers are sent to BUS

■ Unicast:

- Problem: Source has no VC to destination, it does not even know the ATM address of the destination
- Source sends data to BUS and and ARP like request to the LES
- LES returns ATM address of destination
- Source opens a VC to the destination