"Scenario 11 - constant pressure then constant volume (fixed amount of) heat addition"

```
F$ = 'Steam_IAPWS'
                                                         "water"
"Initial state - case A - subcooled liquid"
PA[1] = 101.325[kPa]
                                                         "initial pressure same as external"
                                                         "initial temperature inside and outside"
TA[1] = 25[C]
                                                         "1 liter volume"
vol[1] = 1e-3[m3]
vA[1] = volume(F\$, T=TA[1], P=PA[1])
                                                         "specific volume at state 1"
hA[1] = enthalpy(F\$, T=TA[1], P=PA[1])
                                                         "specific enthalpy at state 1"
                                                         "specific internal energy at state 1"
uA[1] = intenergy(F$, T=TA[1], P=PA[1])
sA[1] = entropy(F\$, T=TA[1], P=PA[1])
                                                         "specific entropy at state 1"
mass_A = vol[1]/vA[1]
                                                         "mass of H2O"
"Add heat - go to state 2A the pressure is constant until vol[2]"
vol[2] = 2e-3[m3]
                                                         "final volume"
Q = 1[kW]
                                                         "rate of adding heat"
"state 2A - end of constant pressure"
PA[2] = PA[1]
                                                         "constant pressure"
vA[2]=vol[2]/mass A
                                                         "specific volume at state 2"
TA[2]=temperature(F$, u=uA[2], P=PA[2])
                                                         "temperature at state 2"
hA[2] = enthalpy(F\$, u=uA[2], P=PA[2])
                                                         "specific enthalpy at state 2"
uA[2] = intenergy(F\$, v=vA[2], P=PA[2])
                                                         "internal energy at state 2"
sA[2] = entropy(F\$, u=uA[2], P=PA[2])
                                                         "specific entropy at state 2"
uA[2] = uA[1]+Q*time12/mass_A-PA[1]*(vA[2]-vA[1])
                                                         "determine internal energy from 1st law"
"state 3A - final state of constant volume, 1000 J heat addition"
time23=1[s]
                                                         "fixed amount of heat addition"
PA[3]=P[3]
                                                         "pressure at state 3"
vA[3]=vA[2]
                                                         "constant volume"
uA[3] = uA[2]+Q*time23/mass_A
                                                         "determine internal energy from 1st law"
uA[3] = intenergy(F\$, v=vA[3], P=PA[3])
                                                         "internal energy at state 3"
hA[3] = enthalpy(F\$, P=PA[3], v=vA[3])
                                                         "specific enthalpy at state 3"
sA[3] = entropy(F\$, P=PA[3], v=vA[3])
                                                         "specific entropy at state 3"
TA[3] = temperature(F\$, P = PA[3], v = vA[3])
                                                         "temperature at state 3"
"initial state - case B - two phase"
PB[1] = 101.325[kPa]
                                                         "pressure at state 1"
xB[1] = 0.1
                                                          "quality at state 1B"
                                                         "temperature at state 1"
TB[1] = temperature(F\$, P=PB[1], x=xB[1])
vB[1] = volume(F\$, T=TB[1], x=xB[1])
                                                         "specific volume at state 1"
hB[1] = enthalpy(F\$, T=TB[1], x=xB[1])
                                                         "specific enthalpy at state 1"
                                                         "specific internal energy at state 1"
uB[1] = intenergy(F\$, T=TB[1], x=xB[1])
sB[1] = entropy(F\$, T=TB[1], x=xB[1])
                                                         "specific entropy at state 1"
mass_B = vol[1]/vB[1]
                                                         "mass of H2O"
"state 2B - end of constant pressure"
PB[2] = PB[1]
                                                         "constant pressure"
vB[2]=vol[2]/mass B
                                                         "specific volume at state 2"
TB[2]=temperature(F\$,u=uB[2], P=PB[2])
                                                          "temperature at state 2"
hB[2] = enthalpy(F\$, u=uB[2], P=PB[2])
                                                         "specific enthalpy at state 2"
uB[2] = intenergy(F\$, v=vB[2], P=PB[2])
                                                         "internal energy at state 2"
sB[2] = entropy(F\$, u=uB[2], P=PB[2])
                                                         "specific entropy at state 2"
uB[2] = uB[1]+Q*time_B12/mass_B-PB[1]*(vB[2]-vB[1]) "determine internal energy from 1st law"
"state 3B - final state of constant volume, 1000 J heat addition"
                                                          "fixed amount of heat addition"
time_B23=1[s]
vB[3]=vB[2]
                                                          "constant volume"
uB[3] = uB[2]+Q*time_B23/mass_B
                                                         "determine internal energy from 1st law"
hB[3] = enthalpy(F\$, P=PB[3], v=vB[3])
                                                         "specific enthalpy at state 3"
sB[3] = entropy(F\$, P=PB[3], v=vB[3])
                                                         "specific entropy at state 3"
PB[3] = pressure(F\$, u=uB[3], v=vB[3])
                                                         "pressure at state 3"
```

```
TB[3] = temperature(F$, P=PB[3], v=vB[3])
                                                        "temperature at state 3"
"initial state - case C - superheated vapor"
PC[1] = 101.325[kPa]
                                                         "pressure at state 1"
TC[1] =130[C]
                                                         "temperture at state 1B"
vC[1] = volume(F$, T=TC[1], P=PC[1])
                                                        "specific volume at state 1"
hC[1] = enthalpy(F\$, T=TC[1], P=PC[1])
                                                        "specific enthalpy at state 1"
                                                        "specific internal energy at state 1"
uC[1] = intenergy(F\$, T=TC[1], P=PC[1])
sC[1] = entropy(F\$, T=TC[1], P=PC[1])
                                                        "specific entropy at state 1"
mass C = vol[1]/vC[1]
                                                        "mass of H2O"
"state 2C - end of constant pressure"
                                                        "constant pressure"
PC[2] = PC[1]
                                                        "specific volume at state 2"
vC[2]=vol[2]/mass C
TC[2]=temperature(F$, u=uC[2], P=PC[2])
                                                        "temperature at state 2"
hC[2] = enthalpy(F\$, u=uC[2], P=PC[2])
                                                        "specific enthalpy at state 2"
uC[2] = intenergy(F\$, v=vC[2], P=PC[2])
                                                        "internal energy at state 2"
sC[2] = entropy(F\$, u=uC[2], P=PC[2])
                                                        "specific entropy at state 2"
uC[2] = uC[1]+Q*time_C12/mass_C-PC[1]*(vC[2]-vC[1])
                                                                                                              "determine
internal energy from 1st law"
"state 3C - final state of constant volume, 1000 J heat addition"
                                                         "fixed amount of heat addition"
time C23=1[s]
vC[3]=vC[2]
                                                        "constant volume"
```

"determine internal energy from 1st law"

"specific enthalpy at state 3"

"specific entropy at state 3"

"pressure at state 3"

"temperature at state 3"

Parametric Table: Case C23

 $uC[3] = uC[2]+Q*time_C23/mass_C$

hC[3] = enthalpy(F\$, u=uC[3], v=vC[3])

sC[3] = entropy(F\$, u=uC[3], v=vC[3])

PC[3] = pressure(F\$, u=uC[3], v=vC[3])

TC[3] = temperature(F\$, u=uC[3], v=vC[3])

	time _{C23}	vC ₃	TC ₃	PC ₃
	[s]	[m3/kg]	[C]	[kPa]
Run 1	0	3.634	525.2	101.3
Run 2	0.0101	3.634	<i>5</i> 36	102.7
Run 3	0.0202	3.634	546.8	104.1
Run 4	0.0303	3.634	<i>557.6</i>	105.4
Run 5	0.0404	3.634	568.3	106.8
Run 6	0.05051	3.634	578.9	108.2
Run 7	0.06061	3.634	589.6	109.5
Run 8	0.07071	3.634	600.1	110.9
Run 9	0.08081	3.634	610.7	112.2
Run 10	0.09091	3.634	621.1	113.5
Run 11	0.101	3.634	631.6	114.9
Run 12	0.1111	3.634	642	116.2
Run 13	0.1212	3.634	652.3	117.5
Run 14	0.1313	3.634	662.6	118.8
Run 15	0.1414	3.634	672.9	120.1
Run 16	0.1515	3.634	683.1	121.4
Run 17	0.1616	3.634	693.3	122.7
Run 18	0.1717	3.634	703.4	124
Run 19	0.1818	3.634	713.5	125.3
Run 20	0.1919	3.634	723.6	126.6
Run 21	0.202	3.634	733.6	127.8
Run 22	0.2121	3.634	743.6	129.1
Run 23	0.2222	3.634	753.5	130.4

Parametric Table: Case C23

	time _{C23}	vC ₃	TC ₃	PC ₃
	[s]	[m3/kg]	[C]	[kPa]
Run 24	0.2323	3.634	763.5	131.6
Run 25	0.2424	3.634	773.3	132.9
Run 26	0.2525	3.634	783.2	134.1
Run 27	0.2626	3.634	793	135.4
Run 28	0.2727	3.634	802.7	136.6
Run 29	0.2828	3.634	812.4	137.8
Run 30	0.2929	3.634	822.1	139.1
Run 31	0.303	3.634	831.8	140.3
Run 32	0.3131	3.634	841.4	141.5
Run 33	0.3232	3.634	851	142.7
Run 34	0.3333	3.634	860.6	144
Run 35	0.3434	3.634	870.1	145.2
Run 36	0.3535	3.634	879.6	146.4
Run 37	0.3636	3.634	889.1	147.6
Run 38	0.3737	3.634	898.5	148.8
Run 39	0.3838	3.634	907.9	150
Run 40	0.3939	3.634	917.3	151.2
Run 41	0.404	3.634	926.6	152.4
Run 42	0.4141	3.634	935.9	153.5
Run 43	0.4242	3.634	945.2	154.7
Run 44	0.4343	3.634	954.4	155.9
Run 45	0.4444	3.634	963.7	157.1
Run 46	0.4545	3.634	972.9	158.2
Run 47	0.4646	3.634	982	159.4
Run 48 Run 49	0.4747	3.634	991.2 1000	160.6 161.7
Run 50	0.4848 0.4949	3.634 3.634	1000	161.7
Run 51	0.4949	3.634 3.634	1009	162.9
Run 52	0.5051	3.634	1018	165.2
Run 53	0.5152	3.634	1027	166.3
Run 54	0.5255	3.634	1045	167.5
Run 55	0.5455	3.634	1054	168.6
Run 56	0.5556	3.634	1063	169.7
Run 57	0.5657	3.634	1072	170.9
Run 58	0.5758	3.634	1081	172
Run 59	0.5859	3.634	1090	173.1
Run 60	0.596	3.634	1099	174.2
Run 61	0.6061	3.634	1108	175.4
Run 62	0.6162	3.634	1116	176.5
Run 63	0.6263	3.634	1125	177.6
Run 64	0.6364	3.634	1134	178.7
Run 65	0.6465	3.634	1143	179.8
Run 66	0.6566	3.634	1151	180.9
Run 67	0.6667	3.634	1160	182
Run 68	0.6768	3.634	1169	183.1
Run 69	0.6869	3.634	1177	184.2
Run 70	0.697	3.634	1186	185.3
Run 71	0.7071	3.634	1195	186.4
Run 72	0.7172	3.634	1203	187.5
Run 73	0.7273	3.634	1212	188.6
Run 74	0.7374	3.634	1220	189.7
Run 75	0.7475	3.634	1229	190.8
Run 76	0.7576	3.634	1237	191.9
Run 77	0.7677	3.634	1246	192.9
Run 78	0.7778	3.634	1254	194

Parametric Table: Case C23								
	time _{C23}	vC ₃	TC ₃	PC ₃				
	[s]	[m3/kg]	[C]	[kPa]				
Run 79	0.7879	3.634	1263	195.1				
Run 80	0.798	3.634	1271	196.2				
Run 81	0.8081	3.634	1280	197.2				
Run 82	0.8182	3.634	1288	198.3				
Run 83	0.8283	3.634	1297	199.4				
Run 84	0.8384	3.634	1305	200.4				
Run 85	0.8485	3.634	1313	201.5				
Run 86	0.8586	3.634	1322	202.5				
Run 87	0.8687	3.634	1330	203.6				
Run 88	0.8788	3.634	1338	204.7				
Run 89	0.8889	3.634	1346	205.7				
Run 90	0.899	3.634	1355	206.8				
Run 91	0.9091	3.634	1363	207.8				
Run 92	0.9192	3.634	1371	208.9				
Run 93	0.9293	3.634	1380	209.9				
Run 94	0.9394	3.634	1388	210.9				
Run 95	0.9495	3.634	1396	212				
Run 96	0.9596	3.634	1404	213				
Run 97	0.9697	3.634	1412	214.1				
Run 98	0.9798	3.634	1420	215.1				
Run 99	0.9899	3.634	1429	216.1				

3.634

1437

217.2

Run 100

