Universidade Federal de Pelotas Bacharelado em Ciência da Computação Disciplina de Arquitetura e Organização de Computadores I Professor Luciano Volcan Agostini

Nome:	Data: 12/03/2013
TOTAL CONTROL	20001 12/00/2010

2ª AVALIAÇÃO

Questão 1: Considere o trecho de programa para o MIPS apresentado abaixo e que o ciclo de relógio seja **8ns** para o MIPS monociclo e **2ns** para o MIPS multiciclo e pipeline. Considere que as instruções **addi** e **ori** tem o mesmo custo que **add**. Na versão pipeline considere que as instruções de desvio NÃO executam automaticamente a próxima instrução e que TODOS os conflitos de dados foram resolvidos por adiantamento.

lw \$4, 0xA (\$15)
addi \$5, \$0, 3
ori \$6, \$0, 2
inicio: beq \$5, \$0, fim
addi \$5, \$5, -1
beq \$5, \$6, inicio
sub \$7, \$5, \$6
add \$8, \$6, \$7
j inicio
fim: sub \$6, \$6, \$7
sub \$8, \$7, \$6

sw \$8, 0xA (\$15)

- (a) Qual é o CPI deste programa para as **três** implementações do MIPS (monociclo, multiciclo e pipeline)? Mostre os cálculos. **(1,0 ponto)**
- (b) Quanto tempo o trecho de programa demora para ser executado em cada uma das três versões de MIPS? (1,0 ponto)
- (c) Qual é o valor dos registradores **\$8**, **\$9** e **\$10** após a execução do programa ao lado? (**1,0 ponto**)

Questão 2: Considere que os tempos de operação para os componentes usados nos projetos do MIPS monociclo, multiciclo e pipeline são os apresentados na tabela abaixo, determine o período do relógio para as três versões do MIPS. (**1,0 ponto**)

Operação/Componente	Atraso
Acesso à memória (escrita ou leitura)	5 ns
Operação na ULA	2 ns
Acesso ao Banco de Registradores (escrita ou leitura)	2 ns
Outros elementos combinacionais e controle da ULA	0 ns

Questão 3: Um programa roda em 5s na máquina A, que tem clock de 100 MHz. Queremos rodá-lo em 2s numa máquina B com nova tecnologia. A máquina B pode ter um aumento substancial de frequência de clock, no entanto, máquina B exigirá 1,4 vezes mais ciclos de clock para executar instruções do que a máquina A. Qual é a frequência de clock necessária para a máquina B? Apresente os cálculos. **(0,5 ponto)**

Questão 4: Explique porque as métricas de avaliação de desempenho MIPS e MFLOPS não são adequadas para comparar o desempenho de diferentes computadores. (0,5 ponto)

Questão 5: Um projetista de compilador deseja decidir entre duas possíveis sequências de código para a resolução de um problema dados os tipos de instruções e o número de ciclos por instrução de cada tipo, qual sequência é mais rápida? Apresente os cálculos. (1,0 ponto)

Tipo de Instrução	СРІ
A	6
В	3
С	2

Cádica	Número de Instruções		
Código	Tipo A	Tipo B	Tipo C
1	1	5	6
2	3	4	3

Questão 6: Considerando a representação gráfica do pipeline do MIPS que está apresentada abaixo, faça as conexões corretas para utilizar a técnica de adiantamento e resolver os conflitos de dados (1,0 ponto).

Questão 7: Considerando que o código abaixo será executado no MIPS pipeline sem adiantamento.

- 84 add \$8, \$5, \$3 88 sw \$8, 0x4(\$8)
- 92 lw \$9, 0x8(\$8)
- 96 and \$10, \$8, \$9
- 100 lw \$11, 0x8(\$9)
- 104 add \$12, \$10, \$11
- 108 or \$13, \$12, \$11
- a) Indique quais são os conflitos de dados presentes neste código (indique as linhas onde estão as instruções, o registrador envolvido e o tipo de conflito). (1,0 ponto)
- b) Indique quais conflitos na questão acima NÃO podem ser resolvidos por adiantamento (apenas cite os números dos conflitos). (0,5 ponto)

Questão 8: Considere o bloco operativo do MIPS pipeline apresentado a seguir. Deseja-se acrescentar a este processador a instrução **movi**, cujo formato é descrito abaixo. Esta instrução realiza a transferência de um valor imediato (representado em complemento de dois) presente na instrução para o registrador Rd.

opcode (6 bits)	Rd (5 bits)	não usado (5 bits)	operando imediato (16 bits)

Adicione, na figura, todas as modificações necessárias no bloco operativo do MIPS pipeline para contemplar a instrução **movi**. (1,5 ponto)

Questão 9: Considere o diagrama do MIPS pipeline apresentado acima.

- a) Explique porque o mux controlado pelo sinal "RegDst" está alocado no estágio "EX" do pipeline. Ele poderia ser deslocado para o estágio "DI"? E para o estágio "MEM"? Explique. (0,5 ponto)
- **b**) Explique porque existem três registradores "ER" e apenas um registrador "EX" no MIPS pipeline. (0,5 ponto)