Homework 7 Written

July 8th, 2020 at 11:59pm

1 Bayes' Net: Representation

1.			_			. ,	can be represented by Bayes' net $\mathbf{B_1}$. be able to represent d_1 .
	G_1		$\mathbf{G_2}$	G_3	$\mathbf{G_4}$		G_{5}
	${ m G}_6$		G_7	G_8	G_9		G_{10}
	None of	the	above.				
2.			_			. ,	can be represented by Bayes' net $\mathbf{B_2}$. be able to represent d_2 .
	G_1		$\mathbf{G_2}$	G_3	G_4		G_5
	G_6		G_7	G_8	G_9		G_{10}
	None of	the	above.				
3.			_			. ,	can be represented by Bayes' net $\mathbf{B_3}$. be able to represent d_3 .
	G_1		G_2	G_3	G_4		G_5
	G_6		G_7	G_8	G_9		G_{10}
	None of	the	above.				
4.			_			. ,	can be represented by Bayes' net $\mathbf{B_1}\mathbf{B_2}$ canteed to be able to represent d_4 .
	G_1		$\mathbf{G_2}$	G_3	G_4		G_5
	G_6		G_7	G_8	G_9		G_{10}
	None of	the	above.				

2 Variable Elimination

After inserting evidence, we have the following factors to start out with:

Solution:

$$P(A), P(B \mid A), P(+c), P(D \mid A, B, +c), P(E \mid D), P(F \mid D), P(G \mid +c, F)$$

When eliminating B we generate a new factor f_1 as follows:

Solution:

$$f_1(A, +c, D) = \sum_b P(b \mid A)P(D \mid A, b, +c)$$

This leaves us with the factors:

Solution:

$$P(A), P(+c), P(E \mid D), P(F \mid D), P(G \mid +c, F), f_1(A, +c, D)$$

When eliminating D we generate a new factor f_2 as follows:

Solution:

$$f_2(A, +c, E, F) = \sum_d P(E \mid d) P(F \mid d) f_1(A, +c, d)$$

VE 492: Written #7 (Due July 8th, 2020 at 11:59pm)

This leaves us with the factors:

Solution:

$$P(A), P(+c), P(G \mid +c, F), f_2(A, +c, E, F)$$

When eliminating G we generate a new factor f_3 as follows:

Solution:

$$f_3(+c, F) = \sum_{g} P(g \mid +c, F)$$

This leaves us with the factors:

Solution:

$$P(A), P(+c), f_2(A, +c, E, F), f_3(+c, F)$$

When eliminating F we generate a new factor f_4 as follows:

Solution:

$$f_4(A, +c, E) = \sum_f f_2(A, +c, E, f) f_3(+c, f)$$

This leaves us with the factors:

Solution:

$$P(A), P(+c), f_4(A, +c, E)$$

(b) Write a formula to compute P(A, E| + c) from the remaining factors.

Solution:

$$P(A, E|+c) = \frac{P(A)P(+c)f_4(A, +c, E)}{\sum_{a,e} P(a)P(+c)f_4(a, +c, e)}$$

(c) Among f_1, f_2, f_3, f_4 , which is the largest factor generated, and how large is it? Assume all variables have binary domains and measure the size of each factor by the number of rows in the table that would represent the factor.

VE 492 : Written #7 (Due July 8th, 2020 at 11:59pm)

Solution: $f_2(A, +c, E, F)$ is the largest factor generated and it has 8 rows.

(d) Find a variable elimination ordering for the same query, i.e., for P(A, E|+c), for which the maximum size factor generated along the way is smallest. Hint: the maximum size factor generated in your solution should have only 2 variables, for a size of $2^2 = 4$ table. Fill in the variable elimination ordering and the factors generated into the table below.

Variable Eliminated	Factor Generated
В	$f_1(A,+c,D)$
G	$f_2(+c,F)$
F	$f_3(+c,D)$
D	$f_4(A,+c,E)$

For example, in the naive ordering we used earlier, the first row in this table would have had the following two entries: B, $f_1(A, +c, D)$.