Jan-Paul Vincent Ramos-Dávila

■ mail@jpramos.me | 🏠 https://jpramos.me | 🖸 jpramos-me

Education

Cornell University Ithaca, NY

B.A. in Computer Science, Conc. in Programming Languages & B.A. in Philosophy, Conc. in Logic

August 2021 - May 2025

Research Experience

Carnegie Mellon University

Pittsburgh, PA

Software Verification REU Participant, Advised by Dr. Jonathan Aldrich & Dr. Joshua Sunshine

May 2022 - Present

- Core contributor on the early development of the Gradual Verification framework.
 - Verification: Implemented a Property Based Testing tool for evaluating soundness of Gradual C_0 and developed formal proofs for establishing semantic correspondence between static and dynamic verification.
 - Performance: Significantly optimized benchmark results by using second-order logic equivalences for runtime assertions.
- Exploring the application of Gradual Verification to smart contracts on the *Algorand* and *Ethereum* blockchain platforms. Developed a prototype for Gradually Verified Teal and Gradually Verified Ethereum.

Cornell University Ithaca, NY

Programming Languages Undergraduate Researcher, Advised by Dr. Adrian Sampson

October 2021 - December 2022

- Implemented *Graphicionado Graph Analytics* algorithm in Calyx as a case study of the language. Found/solved soundness bugs in the front-end in the Computer Architecture & Programming Abstractions group.
- Worked on a symbolic execution tool for verifying parallelism in Calyx.

Publications & Presentations

- [1] DiVincenzo, J., McCormack, I., Gouni, H, Gorenburg, J., Ramos-Dávila, J., Zhang, M., Zimmerman, C., Sunshine, J., Tanter, É., Aldrich, J., *Gradual CO: Symbolic Execution for Gradual Verification*, In ACM Transactions on Programming Languages and Systems (*In Submission*)
- [2] Singh, K., Sun, H., Ramos-Dávila, J., Gradual Verification of Smart Contracts, In 39th ACM/IEEE Symposium on Logic in Computer Science (In Submission)
- [3] Ramos-Dávila, J., Optimization of a Gradual Verifier: Lazy evaluation of Iso-recursive Predicates as Equi-recursive at Runtime, In 51st ACM SIGPLAN Symposium on Principles of Programming Languages Student Research Competition (POPL '24 SRC), Midwest Programming Languages Summit 2023 (MWPLS '23)
- [4] Ramos-Dávila, J., Evaluating Soundness of a Gradual Verifier with Property Based Testing, In 50th ACM SIGPLAN Symposium on Principles of Programming Languages Student Research Competition (POPL '23 SRC), Cornell Undergraduate Research Journal, 2(1), 17–27. https://doi.org/10.37513/curj.v2i1.696 [Pub] [Presentation] [Poster]

Projects

- · Lightweight Verification of Compiler Optimizations (Cornell CS 6120 Advanced Compilers) In Progress.
- Incremental Specification Mining (Cornell CS 6156 Runtime Verification) Instrumentation for Maven-based projects that incrementally mines specifications for runtime verification. Significantly decreases overhead for evolutionary-aware specification miners. Supports integration with Javert and BDDMiner. [Repo]
- EtaC (Cornell CS 4120 Intro to Compilers) Compiler for the Eta programming language in OCaml with \sim 7,200 lines of code. Made use of Jane Street's expect testing suite for \sim 90% code coverage.
- RNAFoldml (Cornell CS 3110 Functional Programming) OCaml package that enables users to input both RNA sequences in FASTA format and a set of constraints to predict RNA secondary structure. [Repo]
- Diffeq-lang (Senior High School ISEF) Domain-specific language for automatically solving and graphing differential equations via a web interface. [Repo] [Website]

Awards and Honors

2023 Fellow: Amazon Summer Undergraduate Research Experience (CMU)

Winner, Third Place: ACM SIGPLAN POPL SRC
 Travel Scholarship: ACM SIGPLAN PLDI

2021 Sponsor Prize: Cornell BRH Hackathon [Course2Career]

2020 & 2021 Finalist, Mathematics: Regeneron International Science and Engineering Fair

Academic Service

Cascais, PT Video Co-Chair: ACM SIGPLAN SPLASH 2023

Seattle, WA Student Volunteer: ACM SIGPLAN ICFP 2023 (Video & Audio Tech)

Skills & Other Experience

Education Advanced Functional Programming Summer School 2023 (Utrecht University)

Languages OCaml, Scala, Python, Haskell, JavaScript, Java, C, Racket, Rust, English, Español, Italiano

Tools

ETEX, Coq IDE, Agda-mode, Unix, Git, Shell, Neovim, Emacs, Docker, Heroku, HTML/CSS, Flask