Lab 3 Solution

1. Suppose we perform a sequence of n operations on a data structure in which the i-th operations cost i if i is an exact power of 2 and 1 otherwise. Use both Aggregate analysys method and Amortized analysis method to determine the amortized cost per operation.

Ans.

(a) Aggregate matheod:

Let $c_i = \cos t$ of *i*th operation.

$$c_i = \begin{cases} i & \text{if } i \text{ is an exact power of 2}, \\ 1 & \text{otherwise}. \end{cases}$$

Operation	Cost
1	1
2	2
2 3	1
4	4
5	1
6	1
6 7	1
8	8
9	1
10	1
:	:

n operations cost

$$\sum_{i=1}^{n} c_i \le n + \sum_{j=0}^{\lg n} 2^j = n + (2n-1) < 3n.$$

(Note: Ignoring floor in upper bound of $\sum 2^{j}$.)

Average cost of operation = $\frac{\text{Total cost}}{\text{\# operations}} < 3$

By aggregate analysis, the amortized cost per operation = O(1).

(b) Accounting Method

Let $c_i = \cos t$ of ith operation.

$$c_i = \begin{cases} i & \text{if } i \text{ is an exact power of } 2, \\ 1 & \text{otherwise}. \end{cases}$$

Charge each operation \$3 (amortized $cost \hat{c_i}$).

- If i is not an exact power of 2, pay \$1, and store \$2 as credit.
- If i is an exact power of 2, pay \$i, using stored credit.

Operation	Cost	Actual cost	Credit remaining
1	3	1	2
2	3	2	3
3	3	1	5
4	3	4	4
5	3	1	6
6	3	1	8
7	3	1	10
8	3	8	5
9	3	1	7
10	3	1	9
:	:	:	:

Since the amortized cost is \$3 per operation, $\sum_{i=1}^{n} \widehat{c}_i = 3n$.

We know from Exercise 17.1-3 that $\sum_{i=1}^{n} c_i < 3n$.

Then we have
$$\sum_{i=1}^{n} \widehat{c_i} \ge \sum_{i=1}^{n} c_i \Rightarrow \text{credit} = \text{amortized cost} - \text{actual cost} \ge 0$$
.

Since the amortized cost of each operation is O(1), and the amount of credit never goes negative, the total cost of n operations is O(n).

Problems #2 to #4

See Java codes.