

3. Bayesian Estimation and Linear

<u>Course</u> > <u>Unit 6 Linear Regression</u> > <u>Homework 10 Linear regression</u> > Regression

3. Bayesian Estimation and Linear Regression

We will now explore what linear regression looks like from a particular Bayesian Framework. The answers that you find here may be surprising to you, hopefully in a pleasant way.

Suppose that:

- ullet Y_1,\ldots,Y_n are independent given the pair (eta_0,eta_1)
- $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$, where each ϵ_i are i.i.d. $\mathcal{N}\left(0,1/ au\right)$ (which has variance 1/ au)
- ullet the $X_i\in\mathbb{R}$ are deterministic.

We will think of β_0 , β_1 and τ as being random variables.

Suppose that we place an improper prior on (β_0, β_1, τ) :

$$\pi\left(\beta_0,\beta_1,\tau\right)=1/\tau.$$

Since this expression on the right hand side does not depend on the β 's, we may take the conditional distribution $\pi(\beta_0, \beta_1 | \tau)$ to be the "uniform" improper prior: $\pi(\beta_0, \beta_1 | \tau) = 1$.

Answer the following problems given these assumptions. As a reminder, we let $\mathbb X$ be the design matrix, where the ith row is the row vector

$$(1,X_i)$$
, and let ${f Y}$ be the column vector $egin{pmatrix} Y_1 \ dots \ Y_n \end{pmatrix}$.

(a) The Bayesian setup: The posterior distribution

2/2 points (graded)

Observe that if β_0 , β_1 and au are given, then each Y_i is a gaussian: $Y_i | (\beta_0, \beta_1, au) \sim \mathcal{N}(\beta_0 + \beta_1 X_i, 1/ au)$.

Therefore, the likelihood function of the vector (Y_1, \ldots, Y_n) given (β_0, β_1, τ) is of the form

$$\left(rac{1}{\sqrt{2\pi/ au}}
ight)^n \exp\left(-rac{ au}{2}\sum_{i=1}^n\left(y_i-eta_0-eta_1X_i
ight)^2
ight)$$

It turns out that the distribution of (β_0, β_1) given τ and Y_1, \ldots, Y_n is a 2-dimensional Gaussian. In terms of \mathbb{X} , \mathbf{Y} and τ , what is its mean and covariance matrix?

Hint: look ahead and see what part (b) is asking. What answer do you hope would come out, at least for one of these two things?

(Type **X** for \mathbb{X} , **trans(X)** for the transpose \mathbb{X}^T , and **X^(-1)** for the inverse \mathbb{X}^{-1} of a matrix \mathbb{X} .)

Mean: (trans(X)*X)^(-1)*(trans(X)*Y)
✓

Covariance: (trans(X)*X)^(-1)/tau

STANDARD NOTATION

Submit You have used 1 of 4 attempts

✓ Correct (2/2 points) (b) 1/1 point (graded) What is the Bayes estimator $(\widehat{\beta_0}, \widehat{\beta_1})^{\text{Bayes}}$ for (β_0, β_1) ? Hint: Use your answer from part (a). However, as hinted: the answer here is guessable, even if you didn't solve the previous part. (Answer in terms of \mathbb{X} , \mathbf{Y} and τ .) (Type **X** for \mathbb{X} , **trans(X)** for the transpose \mathbb{X}^T of a matrix \mathbb{X} , and **X^(-1)** for the inverse \mathbb{X}^{-1} of a matrix \mathbb{X} .) $(trans(X)*X)^{(-1)}*(trans(X)*Y)$ ~ STANDARD NOTATION You have used 1 of 3 attempts Submit ✓ Correct (1/1 point) (c) 1/1 point (graded) Given our improper prior, we ought to take the posterior distribution of $\tau|(\beta_0,\beta_1)$ to also be $\pi(\tau|\beta_0,\beta_1)=\frac{1}{\tau}$, for each realization of τ . What type of distribution is the posterior distribution of τ given the **triple** $(\beta_0, \beta_1, \mathbf{Y})$? Gaussian Chi-Squared

© All Rights Reserved