3D Classification of Crossroads from Aerial Images using Conditional Random Fields

Sergey Kosov, Franz Rottensteiner and Christian Heipke

11.11.2012 Tsukuba Science City, Japan

Overview

- 1. Conditional Random Fields
- 2. Input Data and Features
- 3. Association and Interaction Potential Functions
- 4. Experimental Results

Graphical Model

- Graphical Model
 - Nodes are image pixels, sites, segments.
 - Edges are structure relations

Conditional Random Fields

 Conditional random field is a statistical modeling method based on discriminative undirected probabilistic graphical model.

$$p(\mathbf{x}|\mathbf{y}) = \frac{1}{Z} \cdot exp \left[\sum_{c} \phi_{c}(x_{c}, y_{c}) \right]$$

- x_c label; y_c data
- ϕ_c potential function
- Z partition function

x x_1 x_2 x_3 x_4

y y_1 y_2 y_3 y_4 y_4

Conditional Random Fields

 Association potential function is a function of all data, not only of the features of the site

$$p(\mathbf{x}|\mathbf{y}) = \frac{1}{Z} \cdot exp \left[\sum_{i} \varphi_{i}(x_{i}, \mathbf{y}) \right]$$

- x_i label; y data
- φ_i association potential
- *i* data site index

Conditional Random Fields

 Interaction potential function is not only a function of labels but also of features.

$$p(\mathbf{x}|\mathbf{y}) = \frac{1}{Z} \cdot exp \left[\sum_{i} \varphi_{i}(x_{i}, \mathbf{y}) + \sum_{i} \sum_{j \in \aleph_{i}} \psi_{ij}(x_{i}, x_{j}, \mathbf{y}) \right]$$

- x_i label; y data
- ψ_i interaction potential
- N_i neighborhood of i

Data Pipeline

- Input data for one cross-road:
 - At least 4 airborne images with infra-red channel
 - Image overlapping at least 60%
 - Ground sampling distance: ~15 cm
- Derived data for one cross-road:
 - Digital Surface / Terrain Model (DSM / DTM)
 - Orthophoto

Data Features

Original image

NDVI

Inverse of hue

Magnitude of gradient

DSM - DTM

Orientation of gradient

Association Potential

- How likely is a node x_i has label c ignoring the other nodes: $\varphi(x_i, \mathbf{y}) = \log p(x_i = c \mid \mathbf{f}_i(\mathbf{y}))$
- A Bayesian classifier: $p(x_i = c \mid \mathbf{f}_i(\mathbf{y})) \propto p(\mathbf{f}_i(\mathbf{y}) \mid x_i = c)$
- Generate 1D histograms for each class and each feature: $p(f_{ij} | x_i = c) \equiv p_c(f_{ij} | x_i)$

$$\varphi(x_i = c, \mathbf{y}) = \sum_{j=1}^N \log[p_c(f_{ij} \mid x_i)]$$

Interaction Potential

- Measure for the influence of neighbouring sites
- Generate a 2D histogram of the coocurances of labels at neighbouring image sites: $h(x_i, x_j)$
- Calculate an Euclidian Distance between features from neighbouring image sites: $d_{ij} = ||\mathbf{f}_i(\mathbf{y}), \mathbf{f}_j(\mathbf{y})||$

$$\psi_{ij}(x_i, x_j, \mathbf{y}) = \begin{cases} \log \left[\frac{2\lambda}{\sqrt{\lambda^2 + d^2}} \cdot h(x_i, x_j) \right] & \text{if } (x_i == x_j) \\ \log [h(x_i, x_j)] & \text{otherwise} \end{cases}$$

Experiments

- Cross validation on 81 colour infrared images
- Ground sampling distance ~8cm
- 6 classes (asphalt, building, tree, grass agriculture, car)

	NoEdge		MRF		CRF	
	Cm.	Cr.	Cm.	Cr.	Cm.	Cr.
asp.	70.2	84.8	72.5	86.1	81.3	84.2
bld.	72.0	84.9	76.7	87.1	81.1	82.6
tr.	74.8	62.2	81.7	64.3	80.5	61.2
gr.	51.5	70.7	53.4	77.5	59.6	67.8
agr.	65.3	51.4	71.7	59.0	49.3	69.0
car	73.7	7.8	83.0	9.5	54.6	19.2
OA	66.3		70.2		72.0	
$t_{oldsymbol{t}}$	5.7 sec		5.7 sec		9.0 sec	
t_c	0.3 sec		13.7 sec		13.8 sec	

Completeness (Cm.), Correctness (Cr.) and overall accuracy (OA) [%] of the results and time required for training (tt) and classification (tc).

Results

The end

Thank you for your attention

Ready to answer your questions ©