Algorithm Design and Analysis (ECS 122A) Study Guide

Davis Computer Science Club Tutoring Committee

Contents

1	\mathbf{Asy}	mptotic Notation	5	
	1.1	O-Notation (Big O)	6	
		1.1.1 Example	6	
	1.2	o-Notation (Little O)	7	
		1.2.1 Example	7	
		1.2.2 Example		
	1.3		9	
	1.4	ω -Notation (Little Omega)	10	
	1.5	Θ -notation (Big Theta)		
2	Recurrence Relations 13			
	2.1	Recurrence Relations	13	
		2.1.1 Fibonacci		
		2.1.2 Solving Recurrence Relations		
		2.1.3 Substitution Method		
Α	Test	t. 1	5	
		Induction		
	11.1	A.1.1 Steps		

Chapter 1

Asymptotic Notation

1.1 O-Notation (Big O)

Notation

$$f(n) \in O(g(n))$$

Formal Definition

For a given function g(n), O(g(n)) is the set of functions for which there exists positive constants c and n_0 such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

$$O(g(n)) = \{ f(n) : \exists c, n_0 \text{ s.t. } 0 \le f(n) \le c \cdot g(n) \ \forall \ n \ge n_0 \}$$

Informal Definition

The function g(n) is an asymptotic upper bound for the function f(n) if there exists constants c and n_0 such that $0 \le f(n) \le c \cdot g(n)$ for $n \ge n_0$.

Another way to perceive Big O notation is that for $f(n) \in O(g(n))$, the function f's asymptotic¹ growth is no faster than that of function g's.

Limit Definition

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

1.1.1 Example

Prove that asymptotic upper bound of f(n) = 2n + 10 is $g(n) = n^2$.

$$0 \le f(n) \le c \cdot g(n) \text{ for } n \ge n_0$$

$$0 \le 2n + 10 \le c \cdot n^2 \text{ for } n \ge n_0$$

Arbitrarily choose c and n_0 values. Simplest is to turn one of the variables into the value 1 and solve. For this example, we will assign the value 1 to n_0 .

$$0 \le 2n + 10 \le c \cdot n^2 \text{ for } n \ge 1$$

 $2(1) + 10 \le c \cdot (1)^2$
 $12 \le c$

By picking $n_0 = 1$ and c = 12, the inequality of $2n + 10 \le 12n^2$ will hold true for all $n \ge 1$. Since there exists a constant c and n_0 that fulfill this inequality, we have proven that $f(n) = 2n + 10 = O(n^2)$.

¹Asymptotic: As given variable approaches infinity.

1.2 o-Notation (Little O)

Notation

$$f(n) \in o(g(n))$$

Formal Definition

For a given function g(n), o(g(n)) is the set of functions for which every positive constant c > 0, there exists a constant $n_0 > 0$ such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

$$o(g(n)) = \{ f(n) : \exists n_0 \text{ s.t. } 0 \le f(n) \le c \cdot g(n) \ \forall \ n \ge n_0, c \ge 0 \}$$

Informal Definition

The function g(n) is an upper bound that is not asymptotically tight. For all positive constant values of c, there must exists a constant n_0 such that $0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$. The value of n_0 may not depend on n, but may depend on c.

Another way to perceive Little O notation is that for $f(n) \in o(g(n))$, the function f's asymptotic growth is strictly less than that of the function g's. In this sense, Little O can be seen as a "stronger" bound in comparison to Big O. By proving that a function is an element of Little O, it also proves that the function is an element of Big O.

Limit Definition

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

1.2.1 Example

Prove that f(n) = 2n has an upper bound $o(n^2)$.

$$0 \le c \cdot g(n) \le f(n) \text{ for } n \ge n_0$$

$$0 \le c \cdot 2n \le n^2 \text{ for } n \ge n_0$$

$$2c \le n \text{ for } n \ge n_0$$

$$2c \le n_0$$

For Little O to hold true, the inequality needs to hold true for all c > 0 and for all $n > n_0$. From simplifying the inequality, we assert that the inequality will hold true as long as the value of n_0 is twice the value of c. Given that they are both constants, then there exists a constant value of n_0 for all positive constant c that fulfill this inequality.

Another method to solve this problem is to use the limit definition.

$$\lim_{n \to \infty} \frac{2n}{n^2}$$

$$\lim_{n \to \infty} \frac{2}{n} = 0$$

1.2.2 Example

Prove that $f(n) = 2n^2$ does not have the upper bound $o(n^2)$.

$$0 \le c \cdot g(n) \le f(n) \text{ for } n \ge n_0$$

$$0 \le c \cdot 2n^2 \le n^2 \text{ for } n \ge n_0$$

$$2c \le 1 \text{ for } n \ge n_0$$

For a function to have the Little O bound, the inequality must hold true for all positive c. However, simplification of the inequality asserts that the inequality will only hold true for all $c < \frac{1}{2}$. Therefore, $f(n) = 2n^2$ does not have the upper bound $o(n^2)$.

1.3 Ω -Notation (Big Omega)

Notation

$$f(n) \in \Omega(g(n))$$

Formal Definition

For a given function g(n), $\Omega(g(n))$ is the set of functions for which there exists positive constants c and n_0 such that $0 \le c \cdot g(n) \le f(n)$ for all $n \ge n_0$.

$$\Omega(g(n)) = \{ f(n) : \exists c, n_0 \text{ s.t. } 0 \le c \cdot g(n) \le f(n) \ \forall \ n \ge n_0 \}$$

Informal Definition

The function g(n) is an asymptotic lower bound for the function f(n) if there exists constants c and n_0 such that $0 \le c \cdot g(n) \le f(n)$ for $n \ge n_0$.

Limit Definition

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}>0$$

1.4 ω -Notation (Little Omega)

Notation

$$f(n) \in \omega(g(n))$$

Formal Definition

For a given function g(n), $\omega(g(n))$ is the set of functions for which every positive constant c > 0, there exists a constant $n_0 > 0$ such that $0 \le c \cdot g(n) \le f(n)$ for all $n \ge n_0$.

$$\omega(g(n)) = \{ f(n) : \exists n_0 \text{ s.t. } 0 \le c \cdot g(n) \le f(n) \ \forall \ n \ge n_0, c \ge 0 \}$$

Informal Definition

The function g(n) is a lower bound that is not asymptotically tight. For all positive constant values of c, there must exist a constant n_0 such that $0 \le c \cdot g(n) \le f(n)$ for all $n \ge n_0$. The value of n_0 may not depend on n, but may depend on c.

Another way to perceive Little ω notation is that for $f(n) \in \omega(g(n))$, the function f's asymptotic growth is strictly greater than that of the function g's. In this sense, Little ω can be seen as a "stronger" bound in comparison to Big Ω . By proving that a function is an element of Little ω , it also proves that the function is an element of Big Ω .

Limit Definition

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

1.5 Θ-notation (Big Theta)

Notation

$$f(n) \in \Theta(g(n))$$

Formal Definition

For a given function g(n), $\Theta(g(n))$ is the set of functions for which there exists positive constants c_1 , c_2 , and n_0 such that $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all $n \ge n_0$.

$$\Theta(g(n)) = \{ f(n) : \exists c_1, c_2, n_0 \text{ s.t. } 0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \ \forall \ n \ge n_0 \}$$

Informal Definition

The function g(n) is an asymptotic tight bound for the function f(n) if there exists constants c_1, c_2 , and n_0 such that $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for $n \ge n_0$.

Limit Definition

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \in \mathbb{R}_{>0}$$

Chapter 2

Recurrence Relations

2.1 Recurrence Relations

A recurrence relation is an equation that recursively defines a sequence of values. After the initial terms are given, each subsequent term is defined as a function of the previous terms.

2.1.1 Fibonacci

Fibonacci is an example of a recurrence relation.

$$F_n = \begin{cases} F_{n-1} + F_{n-2}, & n \ge 2\\ 1, & n = 1\\ 0, & n = 0 \end{cases}$$

The first two terms are defined while the subsequent terms are a function of the two previous.

2.1.2 Solving Recurrence Relations

- Substitution Method
- Recursion-Tree Method
- Master Method

2.1.3 Substitution Method

- 1. Guess the bounds.
- 2. Apply mathematical induction to prove the bounds.

Example

Find the asymptotic upper bound for the following function:

$$T(n) \begin{cases} 2T(n-1) + 1, & n \ge 1 \\ 1, & n = 0 \end{cases}$$

Guess

$$T(n) \in O(2^n)$$

Inductive Basis

$$T(0) = 2^0$$
$$= 1$$

Inductive Hypothesis

Assume that $T(n) = 2^n$ holds true for all n = k.

Inductive Step

$$T(n) = 2T(n-1) + 1$$
 Base equation
$$= 2T((k+1) - 1) + 1$$
 Substitute n with $k+1$
$$= 2T(k) + 1$$
 Simplify parameters to T(n)
$$= 2(2^k) + 1$$
 Substitute T(n) with inductive hypothesis
$$= 2^{k+1} + 1$$
 Property of exponents Q.E.D

Appendix A

Test

A.1 Induction

A.1.1 Steps

- 1. Basis (Base Case)
- 2. Inductive Hypothesis
- 3. Inductive Step

Example

Prove that the following systems of equations has the solution $T(n) = n \cdot lg(n)$.

$$T(n)$$
 $\begin{cases} 2T(\frac{n}{2}) + n, & n = 2^k \text{ for } k > 1\\ 2, & n = 2 \end{cases}$

Basis

$$T(2) = (2) \cdot lg(2)$$
$$= 2 \cdot 1$$
$$- 2$$

Inductive Hypothesis

Assume that $T(n) = n \cdot lg(n)$ holds true for all $n = 2^k$.

Inductive Step

$$T(n) = 2T(\frac{n}{2}) + n$$
 Base equation
$$= 2T(\frac{2^{k+1}}{2}) + 2^{k+1}$$
 Substitute n with 2^{k+1} Simplify parameters to function $T(...)$
$$= 2(2^k \cdot lg(2^k)) + 2^{k+1}$$
 Inductive hypothesis
$$= 2^{k+1} \left[lg(2^k) + 1 \right]$$
 Distributive property
$$= 2^{k+1} \left[lg(2^k) + lg(2) \right]$$
 Logarithmic identity
$$= 2^{k+1} \cdot lg(2^k \cdot 2)$$
 Logarithmic identity
$$= 2^{k+1} \cdot lg(2^{k+1})$$
 Exponent property Q.E.D

Example

Prove that the following systems of equations has the solution T(n) = 2F(n) - 1 where F(n) = F(n-1) + F(n-2).

$$T(n) \begin{cases} T(n-1) + T(n-2) + 1, & \text{if } n \ge 2\\ 0, & \text{if } n = \{0, 1\} \end{cases}$$

Basis

$$T(0) = 1$$

Inductive Hypothesis

Assume that T(n) = F(n) - 1 is true for all n = k.

Inductive Step

$$T(n) = T(n-1) + T(n-2) + 1$$
 Base equation
$$T(k+1) = T((k+1)-1) + T((k+1)-2) + 1$$
 Substitute n with k+1
$$= T(k) + T(k-1) + 1$$
 Simplify parameters to function $T(...)$
$$= (2F(k)-1) + (2F(k-1)-1) + 1$$
 Inductive hypothesis
$$= 2F(k) + 2F(k-1) - 1$$
 Simplify equation
$$= 2(F(k) + F(k-1)) - 1$$
 Definition of function: $F(k+1) = F(k) + F(k-1)$
$$= 2F(k+1) - 1$$
 Simplify Q.E.D