No.	Solutions
1	Substitute $z = k + ki$ into the equation
	$3(k+ki)^{2} - (5+i)(k+ki) + \alpha = 0$
	$3k^{2}(1+i)^{2} - k(5+i)(1+i) + \alpha = 0$
	$3k^{2}(1+2i+i^{2})-k(5+5i+5i+i^{2})+\alpha=0$
	$3k^2(2i) - k(4+6i) + \alpha = 0$ (*)
	$(\alpha - 4k) + (6k^2 - 6k)i = 0$
	Comparing real and imaginary parts: $\alpha - 4k = 0$ (1)
	$6k^2 - 6k = 0 (2)$
	6k(k-1) = 0
	k = 1 or $k = 0$ (rejected since k is non-zero)
	Substitute $k = 1$ into (1) $\alpha = 4$
	Let the other root be $w = 3z^2 - (5+i)z + 4 = 3(z-w)(z-1-i)$
	Comparing constants: $4 = 3(-w)(-1-i)$
	$w = \frac{4}{3(1+i)}$
	$=\frac{4(1-i)}{3(1+i)(1-i)}$
	$=\frac{2}{3}-\frac{2}{3}i$
2(i)	$\frac{R}{a}$
	$PQR = \pi - \frac{2\pi}{3} - \left(\frac{\pi}{6} + \theta\right)$
	$=\frac{\pi}{6}-\theta$
	Using Sine Rule,

$$\frac{PQ}{\sin\frac{2\pi}{3}} = \frac{a}{\sin\left(\frac{\pi}{6} - \theta\right)}$$

$$PQ = \frac{a\sin\frac{2\pi}{3}}{\sin\frac{\pi}{6}\cos\theta - \cos\frac{\pi}{6}\sin\theta}$$

$$= \frac{a\left(\frac{\sqrt{3}}{2}\right)}{\frac{1}{2}\cos\theta - \sqrt{3}\sin\theta}$$

$$= \frac{\sqrt{3}a}{\cos\theta - \sqrt{3}\sin\theta}$$

$$2(ii) \qquad PQ = \frac{\sqrt{3}a}{\cos\theta - \sqrt{3}\sin\theta}$$

$$\approx \frac{\sqrt{3}a}{1 - \frac{\theta^2}{2} - \sqrt{3}\theta}$$

$$= \sqrt{3}a\left(1 + (-1)\left(-\sqrt{3}\theta - \frac{\theta^2}{2}\right)^{-1}\right)$$

$$= \sqrt{3}a\left(1 + \left(\sqrt{3}\theta + \frac{\theta^2}{2}\right) + \left(3\theta^2 + \cdots\right) + \cdots\right)$$

$$= \sqrt{3}a\left(1 + \sqrt{3}\theta + \frac{7}{2}\theta^2\right)$$

$$2(iii) \qquad \cot(\theta) = \frac{\sqrt{3}a\left(1 + \sqrt{3}\theta + \frac{7}{2}\theta^2\right) - \frac{\sqrt{3}a}{\cos\theta - \sqrt{3}\sin\theta}}{\frac{\sqrt{3}a}{\cos\theta - \sqrt{3}\sin\theta}}$$

$$= \frac{\left(1 + \sqrt{3}\theta + \frac{7}{2}\theta^2\right) - \frac{1}{\cos\theta - \sqrt{3}\sin\theta}}{\frac{1}{\cos\theta - \sqrt{3}\sin\theta}}$$

$$\therefore f(\theta) < 0.05$$

(ii)	$\int x^5 \sin x^3 \mathrm{d}x$	$u = x^3$	$v' = x^2 \sin x^3$	
	•			
	$=-\frac{x^3}{3}\cos x^3 + \int x^2 \cos x^3 dx$	$u'=3x^2$	$v = -\frac{1}{3}\cos x^3$	
	$= -\frac{x^3}{3}\cos x^3 + \frac{1}{3}\int 3x^2 \cos x^3 dx$			
	$=-\frac{3}{3}\cos x + \frac{1}{3}\int 3x \cos x dx$			
	$= -\frac{x^3}{3}\cos x^3 + \frac{1}{3}\sin x^3 + C$			
4(i)	(i) $2xy + x - 9y = 0$			
	Differentiate with respect x ,			
	$2x\frac{\mathrm{d}y}{\mathrm{d}x} + 2y + 1 - 9\frac{\mathrm{d}y}{\mathrm{d}x} = 0$			
	$\frac{\mathrm{d}y}{\mathrm{d}x}(2x-9) = -2y-1$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2y+1}{9-2x}$			
(")	dx 9-2x			
(ii)	(ii) Let $G = \frac{\mathrm{d}y}{\mathrm{d}x}$.			
	$\therefore G = \frac{2y+1}{9-2x}$			
	Diff wrt x ,			
	$\frac{1}{4}$ $\frac{dy}{dx}(9-2x)-(2y+1)(-2)$			
	$\frac{dG}{dx} = \frac{2\frac{dy}{dx}(9-2x)-(2y+1)(-2)}{(9-2x)^2}$			
	When $x=3$,			
	2xy + x - 9y = 0			
	$\Rightarrow 6y + 3 - 9y = 0$			
	$\Rightarrow y = 1$			
	$\therefore \frac{dy}{dx} = \frac{2(1)+1}{9-2(3)} = 1$			
	Hence, when $x = 3$			
	$\frac{\mathrm{d}G}{\mathrm{d}x} = \frac{\mathrm{d}G}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}x}$			
	dt dx dt			
	$= \frac{2(1)(9-2(3))-(2(1)+1)(-2)}{(9-2(3))^2} \times 0.0$)2		
	$=\frac{2}{75}$ or 0.0267 (3sf)			
	Therefore, required rate is $\frac{2}{75}$ units/	/s.		

	(or 0.0267 units/s)	
5(i)	L.H.S. = $\frac{1}{r!} - \frac{1}{(r+1)!}$	
	$=\frac{(r+1)-1}{(r+1)!}$	
	$= \frac{r}{(r+1)!} = \text{R.H.S. (Shown)}$	
(ii)	$S_n = \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{n}{(n+1)!}$	
	$= \sum_{r=1}^{n} \frac{r}{(r+1)!} (1)$	
	$= \sum_{r=1}^{n} \left(\frac{1}{r!} - \frac{1}{(r+1)!} \right)(2)$	
	$= \frac{1}{1!} - \frac{1}{2!} + \frac{1}{2!} - \frac{1}{3!}$	
	$+\frac{1}{2!}-\frac{1}{3!}$	
	•	
	$+\frac{1}{(n-1)!}\frac{1}{n!}$	
	$+\frac{1}{(n-1)!} - \frac{1}{n!} + \frac{1}{(n)!} - \frac{1}{(n+1)!}$	
	$=1-\frac{1}{(n+1)!}$	
(iii)	As $n \to \infty$, $\frac{1}{(n+1)!} \to 0$	
	$\therefore S_n \to 1$	
	Since the limit 1 is unique and finite, the series converges. $S_{\infty} = 1$	
	~ o -	

(iv)	Let $a_r = \frac{(r-1)^2}{(r+2)!}$	
	Let $b_r = \frac{r}{(r+1)!}$	
	$a_r \ge 0$ and $b_r \ge 0$ for all $r \in \mathbb{Z}^+$. (1)	
	$b_r - a_r = \frac{r}{(r+1)!} - \frac{(r-1)^2}{(r+2)!}$	
	$= \frac{r(r+2) - (r-1)^2}{(r+2)!} = \frac{4r-1}{(r+2)!} > 0 \text{ for } r \ge 1$	
	This implies that $b_r - a_r \ge 0$ for all $r \in \mathbb{Z}^+$. (2)	
	Hence by using the comparison test, since $\sum_{r=1}^{\infty} \frac{r}{(r+1)!}$ converges	
	then $\sum_{r=1}^{\infty} \frac{(r-1)^2}{(r+2)!}$ also converges.	
6(i)	The possible values of <i>X</i> are 2, 3, 4 and 5	
	$P(X = 2) = P(RR) = \frac{5}{8} \times \frac{4}{7} = \frac{5}{14}$	
	$P(X = 3) = P(RBR \text{ or } BRR) = \frac{5}{8} \times \frac{3}{7} \times 2! \times \frac{4}{6} = \frac{5}{14}$	
	P(X=4)	
	= $P(RBBR, \text{ the first 3 balls can be in any order but last one must be } R)$	
	$= \frac{5}{8} \times \frac{3}{7} \times \frac{2}{6} \times \frac{3!}{2!} \times \frac{4}{5} = \frac{3}{14}$	
	P(X=5)	
	= $P(RBBBR$, the first 4 balls can be in any order but last one must be R)	
	$=\frac{5}{8}\times\frac{3}{7}\times\frac{2}{6}\times\frac{1}{5}\times\frac{4!}{3!}\times\frac{4}{4}=\frac{1}{14}$	
	0 / 0 J J; T 1T	

6(ii)	$E(X) = \sum_{\text{all } x} x \ P(X = x)$	
	$=2\times\frac{5}{14}+3\times\frac{5}{14}+4\times\frac{3}{14}+5\times\frac{1}{14}$	
	14 14 14 14 14	
	$Var(X) = E(X^2) - \left[E(X)\right]^2$	
	$= 2^{2} \times \frac{5}{14} + 3^{2} \times \frac{5}{14} + 4^{2} \times \frac{3}{14} + 5^{2} \times \frac{1}{14} - [3]^{2}$	
	$=\frac{69}{7}-9=\frac{6}{7}$	
6(iii)	Expected profit = Expected Loss	
	$y = 2 \times P(X = 2) + 3 \times P(X = 3) + 4 \times P(X = 4) + 5 \times P(X = 5)$	
	$y = 2 \times \frac{5}{14} + 3 \times \frac{5}{14} + 4 \times \frac{3}{14} + 5 \times \frac{1}{14}$	
	y=3	
	Or	
	$\$y = \$1 \times \mathrm{E}(X)$	
	y=3	
7(i)	P(toy chosen is either a Triangle or a Star given not Yellow)	
	_ P(Triangle or Star and not Yellow)	
	P(not Yellow)	
	(4+2+3)+(5+3+1)	
	$= \frac{\frac{(4+2+3)+(5+3+1)}{40}}{\frac{40}{(40-1-3-4-2)}} = \frac{18}{30} = \frac{3}{5}$	
	<u>·</u>	
	40	
7(ii)a)	P(both toys chosen are purple and different shapes)	
	= P(Purple Square, Purple Triangle)	
	+ P(Purple Star, Purple Triangle)	
	+P(Purple Square, Purple Star)	
	$=2\times\frac{2}{40}\times\frac{3}{39}+2\times\frac{1}{40}\times\frac{3}{39}+2\times\frac{2}{40}\times\frac{1}{39}$	
	$=\frac{11}{1}$	
	$=\frac{780}{780}$	
7b)	Let A and B be Ben's two favourite combinations.	
	Let $n_A \in \mathbb{Z}^+, 1 \le n_A \le 5$ and $n_B \in \mathbb{Z}^+, 1 \le n_B \le 5$ be the number of A	
	and number of <i>B</i> respectively.	

	$\frac{n_A}{40} \times \frac{n_B}{39} \times 2 = \frac{1}{39}$	
	$n_A n_B = 20$	
	∴ the possible cases given that $1 \le n_A$, $n_B \le 5$ are:	
	$n_A = 5, n_B = 4$	
	$n_A = 4, n_B = 5$	
	Thus, possible A and B are:	
	Yellow Triangle, Green Star Yellow Triangle, Red Square	
	Green Triangle, Red Square	
	Green Triangle, Green Star	
8(i)	Let X be the random variable denoting the Calculus score of a randomly selected student and μ_1 be the population mean.	
	Test $H_0: \mu_1 = 52$ against $H_1: \mu_1 \neq 52$ at 5% level of significance	
	Unbiased estimate of the population variance s^2	
	$= \frac{n}{n-1} \times \text{sample variance}$	
	$=\frac{30}{29}\times15^2$	
	$=\frac{6750}{29}$	
	29	
	Under H_0 , since $n = 30$ is large, by Central Limit Theorem,	
	$\overline{X} \sim N\left(52, \frac{6750}{(29)(30)}\right)$ approximately.	
	$\overline{X} \sim N\left(52, \frac{6750}{(29)(30)}\right)$ approximately. Test statistic $Z = \frac{\overline{X} - 52}{\sqrt{\frac{6750}{870}}} \sim N(0,1)$ approximately.	
	Using a 2-tailed z-test, reject H_0 if p-value ≤ 0.05	
	Using GC, the test statistic value $\bar{x} = 46$ and $z_{\text{calc}} = -2.1541$ gives	
	p-value = 0.0312 < 0.05 We reject H_0 and conclude that there is sufficient evidence at the	
	5% level of significance that Professor's claim about the mean	
	score is not valid.	

8(ii) Let Y be the random variable denoting the Statistics score by a randomly selected student and μ be the population mean.

Test $H_0: \mu = 48$ against $H_1: \mu > 48$ at 5% level of significance

Under H_0 , since n is large, by Central Limit Theorem,

$$\overline{Y} \sim N\left(48, \frac{13^2}{30}\right)$$
 approximately.

Test statistic $Z = \frac{\overline{Y} - 48}{\sqrt{\frac{13^2}{30}}} \sim N(0,1)$ approximately.

Carry out 1-tailed z-test at the 5% level of significance.

Since Professor B has understated the score, we will reject H_0 .

For H₀ to be rejected,

$$z_{calc} \ge 1.6449$$

$$\frac{k-48}{\sqrt{\frac{13^2}{20}}} \ge 1.6449$$

 $k - 48 \le 3.9041$

 $k \ge 51.904$

 $\Rightarrow k \ge 52.0$ (Round in) [Accept $k \ge 51.9$]

8(iii) Yes. Since it is not known whether the Calculus score and Statistics

score by a randomly selected student is normally distributed, it is

important that the sample size is at least 30 in order to use Central

Limit Theorem so that the mean Calculus score and the mean

Statstics score by students are approximately normal.

9(i)	The probability that a patient has diabetes mellitus is a constant at	
	$\frac{1}{15}$ for each patient.	
	A patient having diabetes mellitus is independent of any other	
	patient having diabetes mellitus.	
(ii)	Let <i>Y</i> be the random variable "number of patients having diabetes mellitus out of 49.	
	$Y \sim \mathbf{B}\left(49, \frac{1}{15}\right)$	
	Required Probability	
	= $P(Y = 3)P(\text{the 50th patient is the fourth patient who has diabetes})$	
	$= 0.2284556 \times \frac{1}{15} = 0.0152$	
	$\frac{-0.2264336}{15} \times \frac{-0.0132}{15}$	
(iii)	Fasting blood glucose Non-fasting blood	
	level glucose level	
	less than 100 mg/dL	
	84/100	
	10/100	
	100 – 125 mg/dL	
	p/100	
	6/100 200 mg/dL	
	126 mg/dL and above and above	
	a = 1 $b = 1$ $b = 1$ $b = 1$ $b = 1$	
	Required Probability = $\frac{6}{100} + \frac{10}{100} \times \frac{p}{100}$	
	=0.06+0.001p	
(iv)	P(100 – 125 mg/dL not diagnosed with diabetes mellitus)	
	$= \frac{P(100 - 125 \text{ mg/dL} \cap \text{not diagnosed with diabetes mellitus})}{P(100 - 125 \text{ mg/dL} \cap \text{not diagnosed with diabetes mellitus})}$	
	P(not diagnosed with diabetes mellitus)	
	$-\frac{10}{100} \times \left(1 - \frac{p}{100}\right)$	
	$=\frac{100}{1-(0.06+0.001p)}$	
	$=\frac{0.1-0.001p}{0.94-0.001p} = \frac{100-p}{940-p}$	
(v)	Let W be the random variable "number of patients having diabetes	
	mellitus out of n .	
	When $p = 20$, $0.06 + 0.001p = 0.08$	
	$W \sim \mathrm{B}(n, 0.08)$	

	$P(W \ge 6) > 0.3$	
	$1 - P(W \le 5) > 0.3$	
	$P(W \le 5) < 0.7$	
	From GC,	
	D/W (5)	
	56 0.7102 > 0.7	
	57 0.696 < 0.7 58 0.6816 < 0.7	
	58 0.6816 < 0.7	
	Least value of $n = 57$	
10(i)	44	
a) & b		
	3 -0.02 (11,7.94)	
	(6,2.96).06 (16,2.85)	
	0.08	
	2.8	
	2.0 3.07 (21,2.71)	
	0.0}	
	2.6	
	- · · · · · · · · · · · · · · · · · · ·	
	(26,2.52)	
	2.4	
	2.2 10 20 30 40	
(c)	Sum of squares of residuals	
	$= (-0.02)^{2} + 0.06^{2} + 0.07^{2} + 0.03^{2} + (-0.06)^{2} = 0.0134$	
(1)	Deside a la marcha de la constitue de la const	
(d)	Residuals may be positive or negative. If we find the sum of	
	residuals, it may not indicate how close the data lies to the line of	
	best fit. Squaring the residuals prevent this occurrence by ensuring all values are positive, and the closer to 0 the sum of squares is, the	
	closer the data lies to the line of best fit.	
(ii)	Product moment correlation coefficient = -0.958 (3s.f.)	
(11)	1100000 Monion confidence confidence (0.750 (55.1.)	

(iii)	By GC, $y = -0.0222x + 3.1512 \approx -0.0222x + 3.15$	
	2.48 = -0.0222x + 3.1512	
	x = 30.2 (3s.f)	
	Estimated tempertature is 30.2 degree Celsius	
	The value may not be reliable due to extrapolation as $x = 30$ is not within the range of data given.	
(iv)	Changes in scale or units of measurement will not affect the value of the product moment correlation coefficient.	
11(i)	Let <i>M</i> be the random variable denoting the height of a man. $M \sim N(173,10^2)$ P(173-4 < M < 173+4) = P(169 < M < 177) $= 0.31084 \approx 0.311$ (to 3 s.f.)	
(ii)	Let W be the random variable denoting the height of a woman. $W \sim N(165, \sigma^2)$ $P(W < 165) \times P(W > 160) \times 2! = 0.7(*)$ Since $P(W < 165) = 0.5$, P(W > 160) = 0.7 $P\left(Z > \frac{160 - 165}{\sigma}\right) = 0.7$ where $Z \sim N(0,1)$ $\frac{-5}{\sigma} = -0.5244005$ $\sigma = 9.5346 \approx 9.53$ (to 3 s.f.)	
(iii)	$P(W > M) = P(W - M > 0)$ $E(W - M) = E(W) - E(M) = 165 - 173 = -8$ $Var(W - M) = Var(W) + Var(M)$ $= 9^{2} + 10^{2} = 181$ $\therefore W - M \sim N(-8,181)$ Hence $P(W - M > 0) = 0.27604 \approx 0.276$ (to 3 s.f.)	
(iv)	No, people do not choose their spouses at random. The heights of a husband and wife may not be independent	

(v)
$$P(0 < W_1 + W_2 + W_3 - 2M \le 100) ------(\#)$$
Let $A = W_1 + W_2 + W_3 - 2M$

$$E(A) = 3E(W) - 2E(M) = 3(165) - 2(173) = 149$$

$$Var(A) = 3Var(W) + 2^2Var(M)$$

$$= 3(9^2) + 4(10^2) = 643$$

$$\therefore A \sim N(149, 643)$$

$$P(0 < W_1 + W_2 + W_3 - 2M \le 100) = 0.026657 \approx 0.0267 (3 s.f)$$