Lista Zadań 01 – Podstawowe własności Struktur Algebraicznych

Filip Zieliński

14 marca 2025

W zadaniach 1–4 stwierdź, czy podane działanie jest wewnętrzne.

- 1. Rozważmy zbiór $\mathcal{C}(\mathbb{R})$ funkcji ciągłych o dziedzinie i przeciwdziedzinie rzeczywistej. Definiujemy działanie $+: \mathcal{C}(\mathbb{R}) \times \mathcal{C}(\mathbb{R}) \to \mathcal{C}(\mathbb{R})$ jako (f+g)(x)=f(x)+g(x) (sumowanie po wartościach). Czy to działanie jest dobrze zdefiniowane (wewnętrzne)?
- 2. Rozważmy zbiór $LF(V, \mathcal{K})$ odwzorowań liniowych przestrzeni wektorowej V nad ciałem \mathbb{K} w samą siebie. Definiujemy działanie $+: LF(V, \mathbb{K}) \times LF(V, \mathbb{K}) \to LF(V, \mathbb{K})$ jako dodawanie po wartościach. Czy to działanie jest dobrze zdefiniowane (wewnętrzne)?
- 3. Rozważmy zbiór H((G,+)) endomorfizmów grupy G. Definiujemy działanie $+: H((G,+)) \times H((G,+)) \to H((G,+))$ jako dodawanie po wartościach. Czy to działanie jest dobrze zdefiniowane (wewnętrzne)?
- 4. Rozważmy zbiór $F \uparrow (\mathbb{R})$ funkcji rosnących o dziedzinie i przeciwdziedzinie rzeczywsitej. Definujemy działanie $+: F \uparrow (\mathbb{R}) \times F \uparrow (\mathbb{R}) \to F \uparrow (\mathbb{R})$ jako dodawanie po wartościach. Czy takie działanie jest dobrze zdefiniowane (wewnętrzne)?

W zadaniach 5–10 odnosimy się do grupy (G, \cdot) .

- 5. Wykaż, że istnieje dokładnie jeden element neutralny w G.
- 6. Wykaż, że istnieje dokładnie jeden element symetryczny dla każdego elementu w ${\cal G}.$
- 7. Wykaż, że dla każdego $a \in G$ zachodzi $(a^{-1})^{-1} = a$.
- 8. Wykaż, że dla każdego $a, b \in G$ zachodzi $(ab)^{-1} = b^{-1}a^{-1}$.
- 9. Wykaż, że jeżeli dla każdego $a \in G$ zachodzi aa = e to G jest grupą abelową.
- 10. Niech (H, +) będzie grupą oraz $f: G \to H$ będzie homomorfizmem grup. Wykaż, że $ker_f < G$ (jądro jest podgrupą G).

- 11. Podaj przykład struktury z działaniem przemiennym, ale nie łącznym.
 - W zadaniach 12–14 odnosimy się do pierścienia $(R, +, \cdot)$
- 12. Wykaż, że dla każdego $a, b \in R$ zachodzi a(-b) = -(ab) = (-a)b.
- 13. Wykaż, że dla każdego $a,b\in R$ zachodzi (-a)(-b)=ab.
- 14. * Wykaż, że jeżeli Rjest skończonym pierścieniem całkowitym, to jest też ciałem.
- 15. * Wykaż, że jedynym automorfizmem $\mathbb Q$ jako ciała jest identyczność.
 - W zadaniach 16–21 dana jest funkcja $f:X\to Y$ oraz $A,B\subseteq X$ i $C,D\subseteq Y$.
- 16. Wykaż, że $f(A \cup B) = f(A) \cup f(B)$.
- 17. Wykaż, że $f(A \cap B) \subseteq f(A) \cap f(B)$.
- 18. Wykaż, że $f(A \setminus B) \subseteq f(A) \setminus f(B)$.
- 19. Wykaż, że $A \subseteq f^{-1}(f(A))$.
- 20. Wykaż, że $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
- 21. Wykaż, że $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
- 22. Wykaż, że funkcja $f:X\to Y$ jest iniekcją wtedy i tylko wtedy gdy dla dowolnych $A,B\subseteq X$ zachodzi równość $f(A\setminus B)=f(A)\setminus f(B)$.