

15 a 17 de outubro de 2018 | Organização: Departamento de Sistemas e Computação

IMPLEMENTAÇÃO DE UMA REDE NEURAL PARA RECONHECIMENTO DE DÍGITOS MANUSCRITOS EM IMAGENS

Autores: <u>Alex Seródio Gonçalves</u>; Luciana Pereira de Araújo Kohler. Grande Área: Ciências Exatas e da Terra.

TecEdu – Departamento de Sistemas e Computação – FURB.

Introdução

O aprendizado de máquina é uma área da inteligência artificial que permite ao computador armazenar e reter conhecimento de maneira automática a partir de exemplos, aperfeiçoando o seu desempenho em uma ou mais tarefas.

Um paradigma muito utilizado na área de aprendizado de máquina é o das Redes Neurais Artificiais (RNAs). Tal paradigma baseia-se em modelos matemáticos e busca reproduzir computacionalmente o funcionamento dos neurônios biológicos, podendo ser utilizado no reconhecimento de padrões existentes em imagens.

Objetivo

Implementar uma rede neural artificial capaz de reconhecer dígitos manuscritos em imagens com dimensões de 28x28 pixels, utilizando a linguagem de programação Octave. Essa rede então poderá ser utilizada por uma aplicação web, focada em testar os conhecimentos de operações matemáticas simples de alunos de educação básica.

Arquitetura da Rede

A rede desenvolvida utiliza a arquitetura feedforward e é composta por três camadas, onde cada neurônio utiliza a função sigmoide como função de ativação. A primeira camada recebe os pixels da imagem como entrada e portanto possui 784 neurônios. A segunda camada possui 30 neurônios e a terceira possui 10, um para cada possibilidade de saída.

Figura 1 – arquitetura da rede neural

Treinamento

A rede foi implementada e treinada utilizando a base de dados de imagens MNIST, que contém 70.000 imagens de dígitos manuscritos com dimensões de 28x28 pixels, sendo separadas em um conjunto de 60.000 imagens utilizadas para o treinamento da rede e 10.000 imagens utilizadas para testa-la.

Figura 2 – exemplo de dígitos manuscritos da base de dados MNIST

Fluxo de Execução

Resultados e Conclusões

A rede desenvolvida, ao utilizar as configurações de treino, arquitetura e imagens de treino apresentadas, atingiu uma precisão de, em média, 94%. Portanto é seguro dizer que os objetivos propostos inicialmente foram alcançados e a rede cumpre seu propósito de reconhecer dígitos manuscritos em imagens.

Além disso, também foi possível explorar e desmistificar o paradigma das Redes Neurais Artificiais, compreendendo como essa arquitetura de camadas, neurônios e conexões sinápticas é traduzida para expressões matemáticas e implementada em código através de uma linguagem de programação.