Econ 441 Reading Notes

Franklin She

Spring 2024

1 Introduction & Basic Tools

1.1 Choice under uncertainty, expected utility

1.1.1 Reading: van Zandt Ch. 1 & 2

Overview

- Weak Axiom of Revealed Preference (WARP)
- Independence Axiom
- First Order Stochastic Dominance
- Continuity Axiom
- Expected Utility Maximization
- von Neumann-Morgenstern Theorem

1.1.2 Chapter 1: Introduction to decision theory

Let X be the finite set of all consumption bundles. Let A be a non-empty subset of X of a potential feasible set. Let C(A) be the elements of A that the agent might choose. C(A) may contain more than one item because of indifference.

Definition 1.1. (Preference Maximization): Let \geq be the relation defined for a choice rule $C(\cdot)$.

$$x \in C(A) \iff x \ge y \qquad \forall y \in A$$

Definition 1.2 (Preference Relation is Rational). The preference relation \geq is rational if it satisfies the following two axioms:

- 1. Completeness: $\forall x, y \in X$, either $x \ge y$ or $y \ge x$ or both.
- 2. Transitivity: $\forall x, y, z \in X$, if $x \ge y$ and $y \ge z$, then $x \ge z$.

Proposition 1.3. The choice rule satisfies WARP if and only if satisfies preference maximization and the preference relation is rational.

Definition 1.4. (Weak Axiom of Revealed Preference): Let $x, y \in X$. Let A and B be subsets of X containing both x and y. If $x \in C(A)$ and $y \in C(B)$, then $x \in C(B)$. In other words, if x is revealed weakly preferred to y, then y is not revealed preferred to x.

Proposition 1.5. 2. If the preference relation \geq is rational, then there is a utility function $U: X \to \mathbb{R}$ such that $\forall x, y \in X$,

$$x \ge y \iff U(x) \ge U(y)$$

- Note: the utility representation is not unique. Consider monotonic transformations on U. - Utility functions are useful to present an example of preferences when X is large. (e.g. $U(x) = \log(x_1) + \log(x_2)$)

1.1.3 Chapter 2: Lotteries and objected expected utility

Definition 1.6. (Probability measure): $P: X \to [0,1]$ is a probability measure and P(x) is the probability of outcome x if and only if

1.
$$P(x) \ge 0$$
 for all $x \in X$ 2. $\sum_{x \in X} P(x) = 1$

Consequentialism: The decision maker is indifferent between a compound lottery and its reduced lottery (the lottery of the outcomes of the compound lottery).

Definition 1.7. (Independence Axiom) For all lotteries $P, Q, R \in \mathcal{L}$ and $\alpha \in [0, 1]$

$$P \ge Q \iff \alpha P + (1 - \alpha)R \sim \ge Q + (1 - \alpha)R$$

- We can rewrite simple lotteries as compound lotteries to invoke the independence axiom to find inconsistencies in choices. (Exercise 2.1)

Definition 1.8. First Order Stochastic Dominance Let P and Q be two lotteries with outcomes x_1, \ldots, x_n and y_1, \ldots, y_n , and $P(x_i) = Q(y_i) = \alpha_i$ for all i. We allow that $x_i = x_j$ or $y_i = y_j$ for some $i \neq j$. P weakly first order stochastically dominates Q if and only if

$$x_i \ge y_i \quad \forall i \in \{1, \dots, n\}$$

P (strictly) first order stochastically dominates Q (P f.o.s.d. Q) if and only if

$$x_i > y_i \quad \forall i \in \{1, \dots, n\}$$

Proposition 1.9. 1. Suppose that \geq satisfies the independence axiom. If P weakly (resp. strictly) first order stochastically dominates Q, then $P \geq Q$ (resp. P > Q). - Proof with the independence axiom and the compound lottery representation of simple lotteries. - We can use this proposition to show conclude that lotteries are preferred to others by rewriting the lotteries into simple lotteries with the same probability distribution. (p. 22)

Proposition 1.10. 2. Let $X = \{x_1, ..., x_n\}$ and WLOG assume that $x_1 \ge ... \ge x_n$. P weakly f.o.s.d Q if and only if $\forall k \in \{1, ..., n\}$

$$\sum_{i=1}^{k} P(x_i) \ge \sum_{i=1}^{k} Q(x_i)$$

Because the probabilities sum to 1, this can be rewritten as

$$\sum_{i=k}^{n} P(x_i) \le \sum_{i=k}^{n} Q(x_i)$$

In other words, we can either compare the cumulative probabilities of the worst outcomes or the best outcomes to determine first order stochastic dominance.

Definition 1.11. (Continuity Axiom) If $P, Q \in \mathcal{L}$ and P > Q, then $\forall R \in \mathcal{L}$, there exists $\alpha \in (0,1)$ such that

$$P > (1 - \alpha)Q + \alpha R$$

and there exists $\beta \in (0, 1)$ such that

$$(1 - \beta)P + \beta R > Q$$
.

In words, there is nothing so good (or so bad) that it does not become insignificant if it occurs with small enough probability. This is also called the Archimedean axiom. - Note: this is still unintuitive for me. There is an example on page 25.

Definition 1.12. (Expected utility maximization) Preference \succeq over lotteries \mathcal{L} satisfies expected utility maximization if there is a function $u: Z \to \mathbb{R}$ such that $\forall P, Q \in \mathcal{L}$ and $P \succeq Q$ if and only if

$$\sum_{z \in Z} u(z)P(z) \ge \sum_{z \in Z} u(z)Q(z)$$

- A decision maker is an expected utility maximizer if for some function u, she always prefers the lottery with the highest expected utility.

Theorem 1.13. 1 (von Neumann-Morgenstern) If \geq satisfies the independence axiom and the continuity axiom, then \geq satisfies expected utility maximization. - Because VNM utility functions measure strength of preferences over outcomes, they are sometimes called cardinal utility functions. - Only positive affine transformations preserve the ranking of lotteries. If $u: X \to \mathbb{R}$ is a VNM utility function, then $v: X \to \mathbb{R}$ is a positive affine transformation of u if and only if there exists a > 0 and b such that v(x) = a + bu(x) for all $x \in X$.

1.2 Bayesian inference

1.2.1 Reading: van Zandt Ch. 4

Chapter 4: Choosing when there is new information

Conditional beliefs: - Let $\pi: S \to \mathbb{R}$ (a probability measure) be the prior belief. - Let $\pi(\cdot \mid E): S \to \mathbb{R}$ be the posterior belief after observing E. - The general rule is (to rescale the probabilities of possible states after observing E, some states may be impossible after observing E)

$$\pi(s \mid E) = \begin{cases} \frac{\pi(s)}{\pi(E)} & \text{if } s \in E \\ 0 & \text{if } s \notin E \end{cases}$$

Bayes' Rule

$$\pi(A \mid E) = \frac{\pi(A \cap E)}{\pi(E)}$$