1. Graph Basics

Figure 1: An undirected graph G_1 with 5 vertices and 7 edges

Figure 2: A directed graph G_2 with 5 vertices and 7 edges.

a. Representation: Adjacency List, Adjacency Matrix What is the adjacency list and adjacency matrix of G_1 and G_2 , respectively?

	1	2	3	4	5
1	0	1	0	0	1
2 3	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

Figure 3: Adjacency list and adjacency matrix representation of G_1

How about G_2 ? It's your turn now!

- 1. Adjacency matrix is of size $|V| \times |V|$ while adjacency list needs $\Theta(|V| + |E|)$ space.
- 2. If G is undirected, its adjacency matrix A is symmetric. Namely, $A^T = A$. Further, the main diagonal entries of A are all zeros.
- 3. **Self-loops**—edges from a vertex to itself—are possible in a directed graph, but are forbidden in an undirected graph.

b. Degree

- 1. $\sum_{u \in V} \text{degree}(u) = 2|E|$, where G is an undirected graph.
- 2. $\sum_{u \in V} \text{out-degree}(u) = \sum_{u \in V} \text{in-degree}(u) = |E|$, where G is a directed graph.
- 3. degree(u) = out-degree(u) + in-degree(u), where $u \in V$ and G is a directed graph.
- 4. A vertex whose degree is 0 is **isolated**.

2. BFS

```
BFS(G, s)
 1 // G: input graph (sorted in alphabetical/ascending order);
    # s: source vertex
 3
    for each vertex u \in V - \{s\}
 4
         d[u] = +INFTY
 5
    d[s] = 0
 6
 7
    // create FIFO queue
 8
    Q = \text{EMPTY}
    ENQUEUE(G, s)
 9
10
    while Q not EMPTY
         u = \text{Dequeue}(G)
11
12
         for each v \in Adj[u]
13
              if d[v] = +INFTY
                   d[v] = d[u] + 1
14
15
                   Engueue(G, v)
16
    return d
```

Let's run BFS on graph G_1 !