Name: Jeremy Florence Course: Math 460

Assignment: Weekly #12

Due: 4/24/17

- 12.1 To avoid paying a toll of \$2 on a direct road, Mr. Fred Cheaply first goes west 10 miles, then south 5 miles, then 30 miles west and finally 35 miles north. Freds old Hyundai gets 30 miles to the gallon and he can still buy gas for \$1.659 per gallon.
 - (a) How far out of his way is Fred going to avoid paying the \$2 toll?

Solution: Observe that Fred is travelling north-west. Thus we must calculate the net distance traveled by Fred in the north and west directions:

$$d_{north} = 35 - 5 = 30$$

$$d_{west} = 10 + 30 = 40$$

Now using Pythagorean's Theorem, we can calculate the distance of the direct road:

$$d_{direct} = \sqrt{30^2 + 40^2} = 50$$

Therefore by avoiding the \$2 toll, Fred travels a total distance of 10 + 5 + 30 + 35 = 80 miles. Hence Fred is going 80 - 50 = 30 miles out of his way in order to avoid the \$2 toll.

(b) On the basis of gas mileage his Hyundai gets and what he pays per gallon of gas, is Fred saving any money (and if so how much)?

Solution: If Fred had taken the direct road he would have used 50/30 = 5/3 gallons of gas. Thus the total cost of using the direct road would be:

$$cost_{direct} = (5/3) \cdot \$1.659 + \$2 = \$4.765.$$

Now by not taking the direct road, Fred uses 80/30 = 8/3 gallons of gas. Thus the cost of not taking the direct road is

$$cost_{indirect} = (8/3) \cdot \$1.659 = \$4.424.$$

Therefore Fred saves \$4.765 - \$4.424 = \$0.34 by not taking the direct road.

12.2 Given that a, b and c are odd integers, prove that the equation

$$ax^2 + bx + c = 0$$

cannot have a rational root (i.e. a root of the form $\frac{p}{q}$ where $p \in \mathbb{Z}$ and $q \in \mathbb{N}$.

Hint: Consider $b^2 - 4ac \mod 8$.

Proof: Let a, b, and c be odd integers so that $ax^2 + bx + c = 0$. Recall that a quadratic equation has rational roots if and only if there exists $d \in \mathbb{Z}$ so that $d^2 = b^2 - 4ac$. Now notice that as a, b, and c are odd, b^2 must be odd and 4ac must be even. Hence $b^2 - 4ac$ is odd, so d must also be odd.

Claim: For any odd integer $n, n^2 \equiv 1 \pmod{8}$

Proof of Claim: Let n be an odd integer. We need to show that $8 \mid n^2 - 1$. Since n is odd, there exists $k \in \mathbb{Z}$ so that n = 2k + 1. Thus

$$n^{2} - 1 = (2k + 1)^{2} - 1$$
$$= 4k^{2} + 4k + 1 - 1$$
$$= 4(k^{2} + k).$$

Now notice that regardless of whether k is even or odd, $k^2 + k$ must be even. Hence there exists $j \in \mathbb{Z}$ so that $k^2 + k = 2j$, so

$$n^2 - 1 = 4(k^2 + k) = 4(2i) = 8i$$
.

Therefore we can conclude that $8 \mid n^2 - 1$, so $n^2 \equiv 1 \pmod{8}$.

Now we know that $d^2 \equiv 1 \pmod 8$, and also that $b^2 \equiv 1 \pmod 8$. Next we will show that $-4ac \equiv 4 \pmod 8$. Thus we will show that $8 \mid -4ac - 4$. Notice that ac is odd, so ac + 1 must be even. That is, there exists some $k \in \mathbb{Z}$ so that ac + 1 = 2k. Thus:

$$-4ac - 4 = -4(ac + 1)$$

= $-4(2k)$
= $8 \cdot -k$

so we can conclude that $-4ac \equiv 4 \pmod{8}$. Therefore $b^2 + (-4ac) \equiv 1 + 4 \pmod{8}$, so $b^2 - 4ac \not\equiv 1 \pmod{8}$. Hence $b^2 - 4ac$ is not a square of some integer, so the equation

$$ax^2 + bx + c = 0$$

cannot have a rational root.