Secure Multiparty Computation

2021年5月17日 13

Two Millionaires Problem

Alice:
$$x \mapsto B \circ b$$
: $y \mapsto F \circ \mathcal{H}^m$
as a public function to compute

Wiew (A, B)

Security: if I n.u.p.p.t. Simp Simp s.t. $\forall x, y \in Additional knowledge$ Niew(A,B) $\approx_c Sim_A(x, F(x,y))$ Niew(A,B) $\approx_c Sim_A(x, F(x,y))$

 $V_{\text{iew}}(A,B) = \{x, V_{\text{iew}}(A,B), F(x,y)\}$

Remark: Here A&B are honest by assumption.

$$A \xrightarrow{(x_0, x_1)} B \xrightarrow{b}$$

$$A \xrightarrow{gets} B \xrightarrow{gets}$$

$$F(x_0,x_1,b) = (\perp; \chi_b)$$

A construction from Trapolor OWP.

Alice
$$(x_i, x_i)$$
 $\xrightarrow{f_i}$ $g_i b \in b$.

1. Sample f_i ti $g_i = g_i b \in b$.

2. Sample $g_i \in b$.

Security Analysis

 $P_r(k \leftarrow Gen(i^n), k' \leftarrow Gen(i^n), \forall m \in M$ $Dec_{k'}(Enc_k(m)) = \bot] > 1 - negl(cn)$