Topology

Alessio Esposito

April 5, 2023

Definition 1. let X be a not empty set and \mathcal{T} a collection of its subsets. \mathcal{T} is said topology on X if it has the following propeties:

- $\varnothing, X \in \mathcal{T}$
- the union of a whatever family of elements of \mathcal{T} is in \mathcal{T} . In simbols: $\forall \{A_i\}_{i\in I}, A_i \in \mathcal{T}, \bigcup_{i\in I} A_i \in \mathcal{T}$
- the interection of elements of \mathcal{T} is in \mathcal{T} : $\forall A_1, A_2 \in \mathcal{T}$, $A_1 \cap A_2 \in \mathcal{T}$

Then (X, \mathcal{T}) its said to be topological space and X is called support.

Example 1. Let $X = \mathbb{R}^2$ with the euclidean distance and $\forall c \in \mathbb{R}^2$ and $\forall r > 0$ the set $B_r(c) = \{x \in \mathbb{R}^2 : d(x,c) < r\}$ its said open spherical neighbourhood of center c and radius r. Let \mathcal{T} be the totality of all the possible unions of open spherical neighbourhoods. \mathcal{T} is a topology.

Definition 2. (X_1, \mathcal{T}_1) , (X_2, \mathcal{T}_2) topological spaces with $X_1 \cap X_2 = \emptyset$. let $X = X_1 \cup X_2$, $\mathcal{T} = \{A_1 \cup A_2 \mid A_i \in \mathcal{T}_i\}$.

Lemma 1. (X, \mathcal{T}) is a topological space.

Proof. Lets verify the axioms.

1.
$$\emptyset \in \mathcal{T}_1, \ \emptyset \in \mathcal{T}_2 \Rightarrow \emptyset = \emptyset \cup \emptyset$$

 $X_i \in \mathcal{T}_i \Rightarrow X = X_1 \cup X_2 \in \mathcal{T}$

2.
$$\{A\}_{i \in I} \in \mathcal{T} \Rightarrow A_i = A_{1,i} \cup A_{2,i}$$

 $\bigcup_{i \in I} A_i = \bigcup_{i \in I} (A_{1,i} \cup A_{2,i}) = \bigcup_{i \in I} (A_{1,i}) \cup \bigcup_{i \in I} (A_{2,i}) \in \mathcal{T}_1 \cup \mathcal{T}_2$

3.
$$A, A' \in \mathcal{T} \Rightarrow A = A_1 \cup A_2, A' = A'_1 \cup A'_2$$

 $A \cap A' = (A_1 \cup A_2) \cap (A'_1 \cup A'_2) = (A_1 \cap A'_1) \cup (A_2 \cap A'_2) \in \mathcal{T}$

Definition 3. \mathcal{T} is defined as a sum of Topologies \mathcal{T}_1 and \mathcal{T}_2 . We notice that $\forall A_i \in \mathcal{T}_i$, $A_i \cup \emptyset \in \mathcal{T}$ so \mathcal{T} contains \mathcal{T}_1 and \mathcal{T}_2 .

Definition 4. (X, \mathcal{T}) topological space $Y \subseteq X$, $Y \neq \emptyset$ $\mathcal{T}_{/Y} = \{A \cap Y \mid A \in \mathcal{T}\}$ prove that $\mathcal{T}_{/Y}$ is a topology defined as Inducted topology on Y

Definition 5. (X, T) topological space, X verifies the second axiom of numerability if posseses a finite base or numerable, in that case (X, T) is said \mathcal{N}_2

Proposition 1. Let \mathbb{R} be gifted by the topology with a base of the following type:

Then $(\mathbb{R}, \mathcal{T})$ is not \mathcal{N}_2

Proof. Let \mathcal{B} a base for \mathcal{T} . Let $a > 0 \in \mathbb{R}$ then $\forall x \in \mathbb{R}$, there exists $B_x \in \mathcal{B}$ with $x \in B_x \subseteq [x, x+a]$. If $y \in \mathbb{R}$ with y > x then $x \notin [y, y+a]$ so $x \notin B_y$. The application $x \in \mathbb{R} \longmapsto B_x \in \mathcal{B}$ is injective so \mathcal{B} has the continuum order.

Continous functions and homeomorphisms

Definition 6. Let (X, \mathcal{T}_x) , (Y, \mathcal{T}_y) be topological spaces, $\Omega : X \to Y$ is continous in $a \in X$ if $\forall I$ neighbourhood of $\Omega(a)$, $\exists K$ neighbourhood of a s.t. $\Omega(K) \subseteq I$.

We'll say that a function is continous if it is continous in every point.

Proposition 2. Let $\Omega: (X, \mathcal{T}_x) \to (Y, \mathcal{T}_y)$ so then the following affirmations are equivalent:

- i. Ω is continous.
- ii. $\forall A \in \mathcal{T}_u, \ \Omega^{-1}(A) \in \mathcal{T}_x$.
- iii. $\forall c \in \mathcal{C}(Y), \ \Omega^{-1}(c) \in \mathcal{C}(X).$
- iv. The counterimages of opens under a selected base of Y are opens of X.
- v. $\forall b = \Omega(a) \in Im\Omega = \Omega(X)$ the counterimage of every neighbourhood K' of b is a neighbourhood of a

Proof. $i. \Rightarrow ii.$ Let $A \in \mathcal{T}_y$ we have to prove that $\forall a \in \Omega^{-1}(A)$ exists a neighbourhood of a contained in $\Omega^{-1}(A)$. For $a \in \Omega^{-1}(A)$ one has $\Omega(a) \in \Omega(\Omega^{-1}(A)) = A$. A is open and is a neighbourhood of $\Omega(a)$ so if Ω is continous there exists a neighbourhood K of a s.t. $\Omega(K) \subseteq A$ hence $K \subseteq \Omega^{-1}(A)$ and $a \in K$

 $ii. \Rightarrow i$. Let $a \in X$, I neighbourhood of $\Omega(a)$ let $A \in \mathcal{T}_y$ s.t. $\Omega(a) \in A \subseteq K$ for the ii. $\Omega^{-1}(A)$ is open and is a neighbourhood of a s.t. its image contains $\Omega(a)$ and A is contained in I.