Math 320 Homework 11

Xander Naumenko

26/11/23

Question 1. Let (x_n) be a Cauchy sequence in Y. For each n, if $x_n \in S$ then define $y_n = x_n$. Otherwise, let $z \in S$ with $d(z,x_n) < \frac{1}{n}$ and let $y_n = z$, this is guaranteed to be possible since S is dense in Y. Let $\epsilon > 0$, and since (x_n) is Cauchy choose N_1 with $n, m > N_1 \implies d(x_n, x_m) < \frac{\epsilon}{2}$. By Archimedes choose N_2 s.t. $\frac{1}{N_2} < \frac{\epsilon}{4}$. Then we have that for $n > \max(N_1, N_2)$,

$$d(y_n, y_m) \le d(y_n, x_n) + d(x_n, x_m) + d(x_m, y_m) < \frac{\epsilon}{4} + \frac{\epsilon}{2} + \frac{\epsilon}{4} = \epsilon.$$

Thus y_n is a Cauchy sequence with values in S, so it converges to some $L \in Y$. I claim $x_n \to L$ also. Let $\epsilon > 0$, since $y_n \to L$ there is some M_1 s.t. $n > M_1 \implies d(x_n, L) < \frac{\epsilon}{2}$. Also by Archimedes choose M_2 s.t. $\frac{1}{M_2} < \frac{\epsilon}{2}$. Then we have

$$d(x_n, L) \le d(x_n, y_n) + d(y_n, L) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Question 2a. Proof by contradiction, suppose that there exists some (X, d), K and p with $d_K(p) \neq d_{\overline{K}}(p)$, since $K \subseteq \overline{K}$ we then have $d_K(p) > d_{\overline{K}}(p)$. For this to be true there must exist $k' \in \overline{K}$ with $d_K(p) < d(k', p) \le d_{\overline{K}}(p)$. Since k' can't be in K it must be in K', so there exists some $k \in K$ with $d(k, k') < d_K(p) - d(k', p)$. But then we have

$$d(k,p) \le d(k,k') + d(k',p) < d_K(p) - d(k',p) + d(k',p) = d_K(p).$$

This is impossible though because $k \in K$ and $d_K(p)$ was chosen to be the minimum possible using the infimium, so in fact $d_K(p) = d_{\overline{K}}(p)$ for all $p \in X$.

Question 2b. Without loss of generality assumethat $d_K(p) > d_K(q)$. Let $\epsilon > 0$, by the construction of $d_K(q)$ there exists $k \in K$ with $d(k,q) < d_K(q) + \epsilon$. Also by the minimality of $d_K(p)$, we get

$$|d_K(p) - d_K(q)| = d_K(p) - d_K(q) \le |d(p,k) - d(k,q)| + 2\epsilon \le d(p,q) + 2\epsilon.$$

Since ϵ is arbitrarily small, sending it to 0 gives the desired result.

Question 2c. Let F_n be the set of all $k \in K$ with $d(p,k) < d_K(p) + \frac{1}{n}$. By the definition of $d_K(p)$ each of these sets is nonempty, and clearly $F_1 \supseteq F_2 \supseteq \ldots$. Thus they have the finite intersection property, and since K is compact $\bigcap_{n=1}^{\infty} F_n \neq \emptyset$, let \hat{x} be an element of this infinite intersection. Then since $\hat{x} \in F_n \forall n$, we have $d(\hat{x}, p) < d_K(p) + \frac{1}{n} \forall n \implies d(\hat{x}, p) = d_K(p)$.

Question 2d. Consider $K^* = K \cap \mathbb{B}[p; d_K(p) + 1)$. K^* is closed (since K is closed) and bounded (since $K^* \in \mathbb{B}[p, d_K(p) + 1)$), so by the Heine-Borel theorem it is compact. Applying part c gives that there exists $\hat{x} \in K^*$ with $d_K(p) = d(p, \hat{x})$. Since $K^* \subseteq K$ also $\hat{x} \in K$, so we're done.

Question 3a. Both directions:

- (\Longrightarrow) Assume $\overline{A} = \mathbb{R}$, therefore we have $(a,b) = \overline{A} \cap (a,b) = \overline{A \cap (a,b)}$. Clearly $\overline{\emptyset} \neq (a,b)$, so $A \cap (a,b) \neq \emptyset$.
- (\Leftarrow) Assume that for all nonempty $(a,b) \subseteq \mathbb{R}, A \cap (a,b) \neq \emptyset$. Let $x \in \mathbb{R}$ and choose $\epsilon > 0$. Then $\mathbb{B}[x,\epsilon) \cap A = (x-\epsilon,x+\epsilon) \cap A \neq \emptyset \implies x \in A'$. Therefore $\overline{A} = A \cup A' \subseteq A' = \mathbb{R} \implies \overline{A} = \mathbb{R}$.

Question 3b. Let $(a,b) \subseteq \mathbb{R}$ be nonempty. Since G_1 is dense and open, $F_1 = G_1 \cap (a,b)$ is open and nonempty. Recursively define $F_n = G_n \cap F_{n-1}$, since G_n is dense and open each F_n is a nonempty open set. Clearly $F_1 \supseteq F_2 \supseteq \ldots$, and by Cantor's Intersection theorem therefore there exists a unique point $x \in \bigcap_{n=1}^{\infty} F_n \subseteq S$, and by construction $x \in (a,b)$. Thus by every interval (a,b) contains an element of S, so by the result of part a, S is dense.

Question 3c. By contradiction assume that it was possible, i.e. $\mathbb{Q} = \bigcap_{n \in \mathbb{N}} A_n$ for open sets A_n . Since \mathbb{Q} is dense and $A_n \supset \mathbb{Q}$, each of the A_n are also dense. Next, note that the irrationals also admit a representation as the intersection of countably many open, dense subsets: $\mathbb{R} \setminus \mathbb{Q} = \bigcap_{q \in \mathbb{Q}} \mathbb{R} \setminus \{q\}$. But then $\mathbb{Q} \cap (\mathbb{R} \setminus \mathbb{Q}) = \emptyset$ is the intersection of countably many open, dense sets and so by the result of part b, it is also dense. \emptyset obviously can't be dense though so the assumption that \mathbb{Q} admitted such a representation must be incorrect.

Question 4. As the hint suggests I will prove the contrapositive, i.e. $E \cap E' = \emptyset \implies E$ is countable. Assume $E \cap E' = \emptyset$, and consider $I = E \cap [0,1)$. If I is countable then by symmetry every other interval of the form [a, a+1) is also countable, so E is the union of countably many countable sets so would also be countable. Thus it suffices to show that I is countable.

For each $x \in I$, define $B(x) = \bigcap_{y \in I} \mathbb{B}[x, \frac{|y-x|}{2}]$, and since $I \cap I' = \emptyset$ each B(x) is nonempty. Also let $r(x) = \inf\{\frac{|y-x|}{2} : y \in I\}$, i.e. the radius of the smallest ball to fit in B(x). By construction each of the B(x) are disjoint, so for any finite subset $X \subseteq I$, we have $\sum_{x \in X} r(x) \le 1$. Let $A_n = \{x \in I : r(x) > \frac{1}{n}\}$. Each A_n is finite and has less than n elements, since if it wasn't then $\sum_{i=1}^n r(a_n) > \frac{1}{n}n = 1$ for $a_1, \ldots, a_n \in A_n$ which we said was impossible. Also since $r(x) > 0 \forall x$ since $I \cap I' = \emptyset$, every $x \in X$ is in A_n for some n. Then I is the union of countably many finite sets, so it is countable. Since this applies to every interval of length 1, by extension E is countable as well.

Question 5. Let $k_2 \in K_2$. For each $k_1 \in K_1$, use the Hausdorff property of (X, \mathcal{T}) to find $U_1^{k_1}, U_2^{k_1}$ with $k_1 \in U_1^{k_1}, k_2 \in U_2^{k_1}$ and $U_1^{k_1} \cap U_2^{k_1} = \emptyset$. These $U_1^{k_1}$ cover K_1 , so since K_1 is compact there are $k_{1,1}, \ldots, k_{1,n} \in K_1$ such that $K_1 \subseteq \bigcup_{i=1}^n U_1^{k_{1,i}}$, call this union $V_1^{k_2}$. Since n is finite, $V_2^{k_2} = \bigcap_{i=1}^n U_2^{k_{1,i}}$ is an open set containing k_2 , and by its construction it both contains k_2 and has null intersection with the union of $U_1^{k_2}$. Thus so far we can distinguish between a point and a compact set using the topology.

To extend this to distinguish between compact sets, now let k_2 vary. Since $K_2 \in \bigcup_{k_2 \in K_2} V_2^{k_2}$, there are finitely many $k_{2,1}, \ldots, k_{2,m} \in K_2$ such that $K_2 \subseteq \bigcup_{i=1}^m V_2^{k_{2,i}}$, call this union U_2 . Similar to before, since m is finite, $U_1 = \bigcap_{i=1}^m U_1^{k_{2,m}}$ is open, contains K_1 and doesn't intersect with U_2 . Thus we've constructed U_1, U_2 such that $K_1 \subseteq U_1, K_2 \subseteq U_2$ and $U_1 \cap U_2 = \emptyset$ as desired.

Question 6. Clearly f is increasing, since increasing x only increases the number of terms being summed. Thus it is sufficient to show that for any $p, x \in \mathbb{R}$ with f(x) > p, there exists $y \in \mathbb{R}$ with a < x such that f(a) > p. Let p, x be such that f(x) > p, and let K be such that $\sum_{i=K}^{\infty} \frac{1}{2^i} = 2^{1-K} < f(x) - p$. Let a < x such that $(a, x) \cap \{q_1, q_2, \dots, q_{K-1}\} = \emptyset$, since there are only finitely many elements in the set on the right this is always possible. Then by our construction of a, we have

$$f(a) = \sum \left\{ \frac{1}{2^k} : q_k < x \right\} \ge f(x) - \sum_{i=K}^{\infty} \frac{1}{2^i} > f(x) - (f(x) - p) = p.$$

Thus a < x with f(a) > p, so since f is increasing this implies that $((x - (x - a), x + (x - a)) \in f^{-1}((p, +\infty))$ for every x, so it is open. Since this is true for all $p \in \mathbb{R}$, f is lower semicontinuous.