Satélite en órbita alrededor de la Tierra

José Antonio Sánchez

Rebeca Baños

Stephanie Malvaes

Un satélite orbitando la Tierra, la Tierra está en el origen (inicialmente). El satélite tiene una masa de 20 toneladas y se encuentra a 108 km de altura (eje x). Los vectores tienen los datos [tierra, satélite].

$$y = \begin{bmatrix} r \\ v \end{bmatrix}$$
$$y' = \begin{bmatrix} v \\ a \end{bmatrix}$$
$$\frac{d}{dt}y = f(t, y)$$

Solución para Satélite y Tierra. Tomamos como posición inicial la Tierra y el satélite solo cambia la altura a la que esta del centro de la Tierra.

Explicacion del algoritmo

Utilizamos la función de Ley Gravitacional con los datos reales de la masa de la Tierra, el satelite. El radio de la Tierra, la altura del satelite a la superficie de la Tierra.

Para guardar las posiciones de la Tierra y el satelite, se crea una matriz de 3000×6 . En la cual cada columna se representa un tiempo t. Las filas 1 a 3 corresponden a la posicion de la Tierra en x,y,z. Las filas 4 a 6 corresponden a las posiciones del satelite en x,y,z.

En esta parte se declaran variables globales, estas son:

G: constante gravitatoria

mT: es la masa de la Tierra en kilogramos.

ms: es la masa del satélite en kg.

```
rT = 6371e3;

hs = 35786000;

r0 = [ [0;0;0], [rT+hs;0;0] ];

vs = sqrt(G * m(1)/r0(1,2));

v0 = [ [0;0;0], [0;vs;0] ];

h = 60;

nv = 4;
```

Se definen los valores rT, hs, r0, vs,v0

rT: El radio de la Tierra

hs: la altura del satelite con respecto a I superficie de la Tierra, no de el centro de la Tierra

r0: es un vector 3x2 que contiene las posiciones iniciales de la Tierra en la primera columna y las del satelite en la segunda columna.

vs: Calcula la velocidad inicial del satélite alrededor de la Tierra

v0: Crea el vector de velocidades iniciales

Calcula la frecuencia de la órbita del satélite alrededor de la Tierra

```
ws = vs/(rT+hs);
T = (2*pi)/ws;
Nk = nv*ceil(T/h);
```

Crea el vector con los datos calculados anteriormente

```
pos = zeros(6,Nk+1);
pos(:,1) = [r0(:,1);r0(:,2)];
y = [r0;v0];
```

RK4

```
for t=2:Nk+1
    s1 = f(t,y);
    s2 = f(t+h/2,y+(h/2)*s1);
    s3 = f(t+h/2,y+(h/2)*s2);
    s4 = f(t+h, y+h*s3);
    slope = (s1+2*s2+2*s3+s4)/6;

y = y + slope*h;
```

```
r = y(1:3,:);
pos(:,t) = [r(:,1);r(:,2)];
end
```

Gráfica

```
plot3(pos(1,:),pos(2,:),pos(3,:),'ob');
hold on;
plot3(pos(4,:),pos(5,:),pos(6,:),'r');
grid minor;
title('Satelite estacionario con Tierra')
hold off
```


Tierra y Luna

Solución para la relación Luna y Tierra tomando como referencia el centro de la Tierra.

Se declaran las variables globales G y m, siendo G la constante de gravitación y m las masas de cada cuerpo.

```
global G m;
G = 6.67408E-11;
mT = 5.9736E+24;
```

```
mS = 7.349E+22;
m = [mT, mS];
```

Datos iniciales de los radios y las velocidades de cada cuerpo.

```
rT = 6371e3;
dTs = 384400000;
rS = 1737100;
```

Se crea el vector de posiciones iniciales

```
r0 = [ [0;0;0], [rT+dTs+rS;0;0] ];
vT = sqrt(G * m(1)/r0(1,2));
```

Se crea el vector de velocidades iniciales

```
v0 = [ [0;0;0], [0;vT;0] ];
h = 300;
nv = 4;
```

Se calcula la frecuencia de la orbita de la Luna respecto a la Tierra

```
ws = vT/(rT+dTs);
T = (2*pi)/ws;
Nk = nv*ceil(T/h);
```

Se crean el vector con los datos calculados anteriormente

```
pos = zeros(6,Nk+1);
pos(:,1) = [r0(:,1);r0(:,2)];
y = [r0;v0];
```

RK4

```
for t=2:Nk+1
    s1 = f(t,y);
    s2 = f(t+h/2,y+(h/2)*s1);
    s3 = f(t+h/2,y+(h/2)*s2);
    s4 = f(t+h, y+h*s3);
    slope = (s1+2*s2+2*s3+s4)/6;
    y = y + slope*h;

    r = y(1:3,:);

    pos(:,t) = [r(:,1);r(:,2)];
end
```

Gráfica

```
plot3(pos(1,:),pos(2,:),pos(3,:),'ob');
hold on;
plot3(pos(4,:),pos(5,:),pos(6,:),'k');
title('Tierra Luna')
grid minor;
hold off
```


Solución de un sistema de tres variables

Venus, Tierra y el Sol.

Tomando al sol como la referencia

Se declaran las variables globales G y m.

G: es la constante gravitatoria

```
global G m;
G = 6.67408E-11;
mT = 5.9736E+24;
mV= 4.867E+24;
mS = 1.989E+30;
m = [mS, mT, mV];
```

Parámetros de distancias y radios iniciales.

```
rT = 6371e3;

rL = 6051800;

rS = 695510000;

dTS = 1496000000000;

dSV = 1082000000000;
```

Se declara el vector de posiciones inciales

```
r0 = [[0;0;0], [dTS;0;0],[dSV;0;0]];

vT = sqrt(G * m(1)/r0(1,2));

vV = sqrt(G * m(1)/r0(1,3));
```

Se declara el vector de velocidades iniciales

```
v0 = [ [0;0;0], [0;vT;0] , [0;vV;0]];
h = 3600;
nv = 4;
```

Se calcula las frecuencias de la órbita de la Tierra y de Venus

```
wsT = vT/(rS+dTS);
T = (2*pi)/wsT;
NktT = nv*ceil(T/h);

wsV = vV/(rS+dSV);
Tl = (2*pi)/wsV;
NktV = nv*ceil(Tl/h);
```

Se crean los vectores con los datos calculados anteriormente

```
pos = zeros(9,NktT+1);
pos(:,1) = [r0(:,1);r0(:,2);r0(:,3)];

y = [r0(:,1), r0(:,2), r0(:,3); v0(:,1),v0(:,2),v0(:,3)];
```

RK4

```
for t=2:NktT+1
    s1 = f2(t,y);
    s2 = f2(t+h/2,y+(h/2)*s1);
    s3 = f2(t+h/2,y+(h/2)*s2);
    s4 = f2(t+h, y+h*s3);
    slope = (s1+2*s2+2*s3+s4)/6;
    y = y + slope*h;
    r = y(1:3,:);
```

```
pos(:,t) = [r(:,1);r(:,2);r(:,3)];
end
```

Gráfica

```
plot3(pos(1,:),pos(2,:),pos(3,:),'ok');
hold on;
plot3(pos(4,:),pos(5,:),pos(6,:),'.g');
plot3(pos(7,:),pos(8,:),pos(9,:),'.r');
grid minor;
title('Sol, Tierra, Venus')
hold off;
```


Sol, Tierra y Luna

Se declaran las variables globales G y m.

G: es la constante gravitatoria

```
global G m;
G = 6.67408E-11;
mT = 5.9736E+24;
mL = 7.349E+22;
mS = 1.989E+30;
m = [mS, mT, mL];
```

```
% rT = 6371e3;
% rL = 1737100;
% rS = 695510000;
```

Distancias con respecto al Sol

```
dTS = 149600000000;
dTL = 3.832557907001450e+08;
```

Vector de posiciones inciales

```
r0 = [[0;0;0], [dTS;0;0],[dTS+dTL;0;0]];
vT = sqrt(G * m(1)/r0(1,2));
vL = vT+1.0019927755507821e+03;
```

Vector de velocidades iniciales

```
v0 = [ [0;0;0], [0;vT;0] , [0;vL;0]];
h = 60;
nv = 1;
```

Calculo de frecuencia de la órbita de la Tierra y la Luna

```
wsT = vT/(dTS);
T = (2*pi)/wsT;
NktT = nv*ceil(T/h);

wsL = vL/(dTL+dTS);
T = (2*pi)/wsL;
NktL = nv*ceil(T/h);
```

Se crea el vector con los datos calculados anteriormente.

```
pos = zeros(9,NktL+1);
pos(:,1) = [r0(:,1);r0(:,2);r0(:,3)];

y = [r0(:,1), r0(:,2),r0(:,3); v0(:,1),v0(:,2),v0(:,3)];
```

RK4

```
for t=2:NktT+1
    s1 = f2(t,y);
    s2 = f2(t+h/2,y+(h/2)*s1);
    s3 = f2(t+h/2,y+(h/2)*s2);
    s4 = f2(t+h, y+h*s3);
    slope = (s1+2*s2+2*s3+s4)/6;
    y = y + slope*h;
    r = [y(1:3,:)];
```

```
pos(:,t) = [r(:,1);r(:,2);r(:,3)];
end
```

Gráfica

```
plot3(pos(1,:),pos(2,:),pos(3,:),'ok');
hold on;
plot3(pos(4,:),pos(5,:),pos(6,:),'.b');
plot3(pos(7,:),pos(8,:),pos(9,:),'.r');
grid minor;
title('Sol, Tierra, Luna')
hold off;
```


Función de calculo de velocidad y aceleración para dos cuerpos

```
function ydot = f(~,y)
global G m;
r = y(1:3,:);
v = y(4:6,:);
dr = r(:,2) - r(:,1);
u = dr / norm(dr);
dr2 = norm(dr)^2;
F = (G*m(1)*m(2)/dr2) * u;
a = [F/m(1), - F/m(2)];
```

```
ydot = [v;a];
end
```

Función de cálculo de velocidad y aceleración para tres cuerpos

```
function ydot = f2(\sim,y)
global G m;
r = y(1:3,:);
v = y(4:6,:);
dr1 = r(:,2) - r(:,1);
dr3 = r(:,3) - r(:,1);
dr2 = r(:,3) - r(:,2);
u1 = dr1 / norm(dr1);
u3 = dr3 / norm(dr3);
u2 = dr2 / norm(dr2);
dr12 = norm(dr1)^2;
dr32 = norm(dr3)^2;
dr22 = norm(dr2)^2;
FsT= (G*m(1)*m(2)/dr12) * u1;
FsV= (G*m(1)*m(3)/dr32) * u3;
FtV= (G*m(2)*m(3)/dr22) * u2;
Fs = FsT + FsV;
Ft = -FsT + FtV;
Fv = -FsV - FtV;
a = [Fs/m(1), Ft/m(2), Fv/m(3)];
ydot = [v;a];
end
```