April 20, 2023

Free Monoids

- \rightarrow Given a set S, the free monoid on S is the set S' of all lists (finite sequences) of elements of S, made into a monoid using concatenation.
- \rightarrow The identity element of the free monoid is the empty string.
- ightarrow In the paper, the symbol 1 denotes empty string (and also the Natural number)

Notation

- \rightarrow Variables : Ω
- \rightarrow Constants : A = $\{a, b, c..\}$
- \rightarrow Word : L \in $(A \cup \Omega)^*$
- \rightarrow Word equation : L = R such that $(L, R) \in (A \cup \Omega)^* \times (A \cup \Omega)^*$
- \rightarrow Length of word equation : $|w| = |w_1| + |w_2|$
- \rightarrow System of word eqns : $\{L_1 = R_1, L_2 = R_2, ..., L_k = R_k\}$
- \rightarrow Solution : $\sigma: (A \cup \Omega)^* \rightarrow A^*$ such that $\sigma(L_i) = \sigma(R_i) \ \forall \ 1 \leq i \leq k$.

The homomorphism leaves the letters of A invariant.

So a solution can also be represented by a mapping $\sigma:\Omega o A^*$

- \rightarrow Solution is non-singular if $\sigma(x) \neq 1 \ \forall \ x \in \Omega$. Otherwise its singular
- \rightarrow A word is *primitive* if it can't be written in form $p=r^{\alpha}$ with $\alpha \neq 1$
- $\rightarrow \log \alpha = \max\{1, \lceil \log_2 \alpha \rceil\}$
- \rightarrow Two words $x, y \in A^*$ are conjugate if x = uv and y = vu for some $u, v \in A^*$. OR we can also say x, y are conguent is $\exists z$ such that xz = zy. Equivalent definitions.

Matiyasevich 1968

- 1. Given : Let $E = \{L_1 = R_1, \dots, L_k = R_k\}$ with each variable ocuring atmost twice.
- 2. $||E|| = \sum_{i=1}^{k} |L_i R_i|$ denotes denotional length of E.
- 3. Inductive proof. Base case :
- 4. The first step is to guess whether is there is a singular solution. i.e. There is a solution $\sigma:\Omega\to A^*$ where $\sigma(x)=1$ for some $x\in\Omega$
 - 4.1 Choose some $x \in \Omega$ and replace all occurrences of x by a empty word
 - 4.2 We obtain a new system of equation E' which we can recursively decide whether has a solution or not.

4 Finding the non singular solutions.

Any equation will always be of form

$$x \cdots = a \cdots$$
 with $x \in \Omega, a \in A$
 $x \cdots = y \cdots$ with $x \in \Omega, y \in \Omega, x \neq y$

We can write x = az or x = yz and replace all occurrences of x with az or yz

After replacing, we can cancel either a or y.

Number of variables are same and $||E'|| \le ||E||$

If E' is solvable, so is E.

5 How does it find the solution and halt?

Proposition 2.1

Let $x, y, z \in A^*$ be words, $y, z \neq 1$. Then the following assertions are equivalent:

- 1. xy = zx,
- 2. $\exists r, s \in A^*, s \neq 1, \alpha \geq 0 : x = (rs)^{\alpha}r, y = sr$, and z = rs.

Proposition 2.2

Let $p \in A^*$ be primitive and $p^2 = xpy$ for some $x, y \in A^*$. Then we have either x = 1 or y = 1 (but not both).

Frame Title

