Algoritmos para Grafos Projeto 1 - Valor 25 pontos Professor: Tadeu Zubaran

.

1 Definição

Este trabalho consiste em projetar e implementar uma solução para minimização do makespan (tempo de término) do problema de agendamento $Job\ Shop.$ O trabalho deve ser feito ou em C++(recomendado) ou em C.

Para isso você deve modelar o problema como uma dígrafo com pesos nos vértices, e implementar uma caminhada topológica para calcular um caminho de comprimento máximo. Seu algoritmo deve mostrar a ordem que os vértices são percorridos, o comprimento do caminho máximo, e qual é o caminho máximo.

2 Testes

Você fará dois testes.

2.1 Grafo Fixo

Faça um teste de sua caminhada topológica no seguinte grafo.

2.2 Instância do Job Shop

Encontre uma solução viável, modelada como um dígrafo com pêso nas arestas para cada uma das 10 instâncias do Job Shop com 15 máquinas e 15 jobs na página

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html

3 Avaliação

Não copie o código. Faça seu próprio código! Plágio receberá nota 0. Critérios de avaliação:

- Clareza e corretude da explicação do código.
- Clareza e corretude do código.
- Explicação das decisões de projeto.
- Código implementado com boas práticas de programação.
- Explicações sobre modelagem do problema.
- Domínio da conexão da implementação com a teoria.

4 Entrega

A entrega consiste de 3 coisas. Uma apresentação para os colegas em aula, código gerado durante o projeto, e tabela dos valores encontrados em cada instância e tempo de execução do código.

O código e a tabela deve ser colocadas no class. Para o código faça o upload apenas do seu *.cpp (ou *.c) e de seus *.h (ou *.hpp). Caso você faça seu próprio makefile faça o upload dele também. Não compacte, você pode fazer upload de mais de um arquivo em cada tarefa. Faça upload de sua tabela em pdf.

A presentação deve durar de 10 a 20 minutos. Ela deve incluir a execução de seu código, ou feita na hora ou em vídeo, para pelo menos uma instância (que será sorteada no momento da apresentação). Sua apresentação deve explicar de forma clara e concisa como você decidiu resolver o problema. Por último sua apresentação deve mostraros voleres encontrados para todas as instâncias.