distribution	example	parameters			probability density mass function for x	mean	standard deviation	supported x	generate 10 numbers in R estimate the likelihood of <i>x</i> in R
normal		$\mu = \text{mean} *$			$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{\mathbf{x}-\mu}{\sigma}\right)^2}$	μ	σ	continuum $(-\infty,\infty)$	$rnorm(n=10,mean=\mu,sd=\sigma)$
-5 0 5 10 15	SAT score	$\sigma = SD$							$dnorm(x, mean=\mu, sd=\sigma)$
log-normal		$m = \text{logarithm of median } *$ $= \ln \left(\frac{\mu^2}{\sqrt{\mu^2 + \sigma^2}} \right)$			$\frac{1}{xs\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{\ln(x)-m}{s}\right)^2}$	$e^{\left(m+\frac{S^2}{2}\right)}$		continuum $(0,\infty)$	rlnorm(n=10,meanlog=m,sdlog=s)
-5 0 5 10 15	species area	$s = \text{spread} = \sqrt{\ln\left(1 + \frac{\sigma^2}{\mu^2}\right)}$ $= \left[\ln\left(\frac{e^{2m} + \sqrt{e^{4m} + 4e^{2m}\sigma^2}}{e^{2m}}\right)\right]$					$\sqrt{\left(e^{s^2}-1\right)e^{2m+s^2}}$		dlnorm(x,meanlog=m,sdlog=s)
exponential	timo	$= \sqrt{\ln\left(\frac{2e^{2m}}{}\right)}$							
Схропении	time between	$\lambda = \text{rate}$			$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda}$	continuum $[0,\infty)$	rexp(n=10, rate=λ)
5 0 5 10 15	two earthquakes								$dexp(x, rate=\lambda)$
gamma	time it takes to finish	$\mathbb{E} = \text{shape (h}$	iow n	any events)	$rac{\lambda^{\mathbb{E}}}{\Gamma(\mathbb{E})} x^{\mathbb{E}-1} e^{-\lambda x}$	$\mathbb{E}\frac{1}{\lambda}$	$\sqrt{\mathbb{E}} \frac{1}{\lambda}$	continuum	$rgamma(n=10, shape=E, rate=\lambda)$
5 0 5 10 15	PhD	$\lambda = \text{rate or } \vartheta = \text{scale} = \frac{1}{\lambda}$			$\overline{\Gamma(\mathbb{E})}^{\lambda}$	$^{\text{\tiny IL}}\overline{\lambda}$	$\sqrt{\mathbb{E}} \frac{1}{\lambda}$	[0,∞)	dgamma(x , shape= \mathbb{E} , rate= λ)
beta	proportion of skin covered by clothing	$\mu = \text{mean}$	$\mu = \text{mean}$ or		$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}$	μor	$ \sqrt{\frac{\mu - \mu^2}{\theta + 1}} \text{ or } $ $ \sqrt{\alpha \beta} $ $ (\alpha + \beta) \sqrt{\alpha + \beta + 1} $	continuum	rbeta(n=10, shape1= $\mu * \theta$, shape2=(1- μ)* θ)
-5 0 5 10 15		θ = shape (concentration)	01	$\beta = (1 - \mu)\theta$	$\Gamma(\alpha)\Gamma(\beta)^{\lambda}$	$\frac{\alpha}{\alpha+\beta}$	$\frac{\sqrt{\alpha\beta}}{(\alpha+\beta)\sqrt{\alpha+\beta+1}}$	[0,1]	dbeta(x , shape1= $\mu * \theta$, shape2=(1- μ)* θ)
Poisson	customers per day	$\lambda = \text{rate}$			$\frac{\lambda^{x}e^{-\lambda}}{x!}$	λ	√ā	counts {0,1,}	rpois(n=10, lambda= λ)
-5 0 5 10 15	(same shop)								dpois(x , lambda= λ)
gamma-Poisson	customers per day	$\mu = \text{mean}$ $\theta = \text{shape (concentration)}$			$\frac{\Gamma(\mathbf{x}+\theta)}{\mathbf{x}!\Gamma(\theta)} \left(\frac{\theta}{\theta+\mu}\right)^{\theta} \left(\frac{\mu}{\theta+\mu}\right)^{\mathbf{x}}$	μ	$\sqrt{\mu + \frac{\mu^2}{\theta}}$	counts {0,1,}	rpois(n=10,lambda= rgamma(n=10,shape= θ ,rate= θ/μ))
-5 0 5 10 15	(different shops)								dnbinom(x , size= θ , prob= $\theta/(\mu+\theta)$)
binomial	number of dates out of	p = probability of + 1 $n = total attempts$			$\binom{n}{x}p^x(1-p)^{n-x}$	np	$\sqrt{np-np^2}$	counts $\{0,\ldots,n\}$	rbinom(n=10,size=n,prob=p)
-5 0 5 10 15	n invitations for coffee								dbinom(x, size=n, prob=p)
beta-binomial	number of dates out of	$\frac{\mu}{\theta = \text{mean of beta}} = \frac{\alpha = \mu\theta}{\text{or}}$ $\frac{\theta = \text{shape}}{\text{(concentration)}} = \frac{\alpha = \mu\theta}{\beta = (1 - \mu)\theta}$ The shape of the shape			$\binom{n}{x} \frac{\Gamma(x+\alpha)\Gamma(n-x+\beta)\Gamma(\alpha+\beta)}{\Gamma(n+\alpha+\beta)\Gamma(\alpha)\Gamma(\beta)}$	$n\mu$ or $\frac{n\alpha}{\alpha+\beta}$	$ \sqrt{\frac{n(\theta+n)(\mu-\mu^2)}{\theta+1}} \text{ or } \frac{\sqrt{n\alpha\beta(\alpha+\beta+n)}}{(\alpha+\beta)\sqrt{\alpha+\beta+1}} $ of the gamma function	counts $\{0,\ldots,n\}$	rbinom(n=10, size= n , prob=rbeta(n=10, shape1= $\mu * \theta$, shape2=(1- μ)* θ))
*narameters with actor	n invitations for coffee (different								<pre>dbetabinom<-function(x,mup,shape,size){ a<-mup*shape; b<-(1-mup)*shape choose(size,x)* (gamma(x+a)*gamma(size-x+b)*gamma(a+b))/ (gamma(size+a+b)*gamma(a)*gamma(b))}</pre>
	people)								dbetabinom(x , mup= μ , shape= θ , size= n)

^{*}parameters with asterisk can assume both positive and negative values, other parameters are always positive, for the explanation of the gamma function Γ and intuition about α , β parameters of beta, flip the paper

