# Математические основы компьютерной графики

- (c) Корольков О.Г. <a href="http://vk.com/korolkov\_amm">http://vk.com/korolkov\_amm</a>
- (c) Кафедра вычислительной математики и прикладных информационных технологий Воронежского государственного университета

### Аффинные преобразования на плоскости.

| Наименование<br><b>А</b> П                  | Формула АП в декар-<br>товых координатах                                                 | Матрица АП в одно-<br>родных координатах                                                        |
|---------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Аффинное преобразование общего вида         | $\begin{cases} x' = a_{11}x + a_{12}y + b_1 \\ y' = a_{21}x + a_{22}y + b_2 \end{cases}$ | $A = \begin{pmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ 0 & 0 & 1 \end{pmatrix}$ |
| Тождественное<br>аффинное<br>преобразование | $\begin{cases} x' = x \\ y' = y \end{cases}$                                             | $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$                         |

#### Базовые аффинные преобразования на плоскости.

| Наименование<br>АП                              | Формула АП в декар-<br>товых координатах                                                                 | Матрица АП в одно-<br>родных координатах                                                                                     |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Перенос на вектор $\vec{a}(a_x, a_y)$           | $\begin{cases} x' = x + a_x \\ y' = y + a_y \end{cases}$                                                 | $T_{\vec{a}} = \begin{pmatrix} 1 & 0 & a_x \\ 0 & 1 & a_y \\ 0 & 0 & 1 \end{pmatrix}$                                        |
| Поворот вокруг<br>начала координат<br>на угол ф | $\begin{cases} x' = x \cos \varphi - y \sin \varphi \\ y' = x \sin \varphi + y \cos \varphi \end{cases}$ | $R_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi & 0\\ \sin \varphi & \cos \varphi & 0\\ 0 & 0 & 1 \end{pmatrix}$ |
| Масштабирование вдоль координат-<br>ных осей    | $\begin{cases} x' = k_x \cdot x \\ y' = k_y \cdot y \end{cases}$                                         | $S_{k_x,k_y} = \begin{pmatrix} k_x & 0 & 0 \\ 0 & k_y & 0 \\ 0 & 0 & 1 \end{pmatrix}$                                        |

#### Базовые аффинные преобразования на плоскости.

| Наименование<br>АП                            | Формула АП в декар-<br>товых координатах       | Матрица АП в одно-<br>родных координатах                                     |
|-----------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------|
| Отражение<br>относительно<br>оси абсцисс      | $\begin{cases} x' = x \\ y' = -y \end{cases}$  | $M_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ |
| Отражение<br>относительно<br>оси ординат      | $\begin{cases} x' = -x \\ y' = y \end{cases}$  | $M_{y} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ |
| Отражение<br>относительно<br>начала координат | $\begin{cases} x' = -x \\ y' = -y \end{cases}$ | $M_O = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$  |

| Наимено-<br>вание АП                                  | Формула АП в<br>декартовых координатах                                                                                                                 | Матрица АП в одно-<br>родных координатах                                                                                                                |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Аффинное преобразо-<br>вание общего вида              | $\begin{cases} x' = a_{11}x + a_{12}y + a_{13}z + b_1 \\ y' = a_{21}x + a_{22}y + a_{23}z + b_2 \\ z' = a_{31}x + a_{32}y + a_{33}z + b_3 \end{cases}$ | $A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ |
| Тождест-<br>венное<br>аффинное<br>преобразо-<br>вание | $\begin{cases} x' = x \\ y' = y \\ z' = z \end{cases}$                                                                                                 | $I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$                                                    |

| Наименование<br>АП                         | Формула АП в декар-<br>товых координатах                                                                   | Матрица АП в одно-<br>родных координатах                                                                                                                  |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Перенос на вектор $\vec{a}(a_x, a_y, a_z)$ | $\begin{cases} x' = x + a_x \\ y' = y + a_y \\ z' = z + a_z \end{cases}$                                   | $T_{\vec{a}} = \begin{pmatrix} 1 & 0 & 0 & a_x \\ 0 & 1 & 0 & a_y \\ 0 & 0 & 1 & a_z \\ 0 & 0 & 0 & 1 \end{pmatrix}$                                      |
| Поворот вокруг оси абсцисс на угол ф       | $\begin{cases} x' = x \\ y' = y\cos\varphi - z\sin\varphi \\ z' = y\sin\varphi + z\cos\varphi \end{cases}$ | $R_{x,\varphi} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\varphi & -\sin\varphi & 0 \\ 0 & \sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ |

| Наименование<br><b>А</b> П                 | Формула АП в декар-<br>товых координатах                                                                            | Матрица АП в одно-<br>родных координатах                                                                                                       |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Поворот вокруг<br>оси ординат<br>на угол ф | $\begin{cases} x' = x \cos \varphi + z \sin \varphi \\ y' = y \\ z' = -x \sin \varphi + z \cos \varphi \end{cases}$ | $R_{y,\phi} = \begin{pmatrix} \cos \phi & 0 & \sin \phi & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \phi & 0 & \cos \phi & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ |
| Поворот вокруг оси аппликат на угол ф      | $\begin{cases} x' = x \cos \varphi - y \sin \varphi \\ y' = x \sin \varphi + y \cos \varphi \\ z' = z \end{cases}$  | $R_{z,\phi} = \begin{pmatrix} \cos \phi & -\sin \phi & 0 & 0 \\ \sin \phi & \cos \phi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ |

| Наименование<br>АП                                       | Формула АП в декар-<br>товых координатах                                             | Матрица АП в одно-<br>родных координатах                                                                                 |
|----------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Масштабиро-<br>вание вдоль<br>координатных<br>осей       | $\begin{cases} x' = k_x \cdot x \\ y' = k_y \cdot y \\ z' = k_z \cdot z \end{cases}$ | $S_{k_x,k_y,k_z} = \begin{pmatrix} k_x & 0 & 0 & 0 \\ 0 & k_y & 0 & 0 \\ 0 & 0 & k_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ |
| Отражение относительно координатной плоскости <i>у z</i> | $\begin{cases} x' = -x \\ y' = y \\ z' = z \end{cases}$                              | $M_{yz} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$               |

| Наименование<br>АП                                       | Формула АП в декар-<br>товых координатах                | Матрица АП в одно-<br>родных координатах                                                                   |
|----------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Отражение относительно координатной плоскости <i>z x</i> | $\begin{cases} x' = x \\ y' = -y \\ z' = z \end{cases}$ | $M_{zx} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ |
| Отражение относительно координатной плоскости <i>x y</i> | $\begin{cases} x' = x \\ y' = y \\ z' = -z \end{cases}$ | $M_{xy} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ |

| Наименование<br>АП                       | Формула АП в декар-<br>товых координатах                 | Матрица АП в одно-<br>родных координатах                                                                   |
|------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Отражение относительно оси абсцисс       | $\begin{cases} x' = x \\ y' = -y \\ z' = -z \end{cases}$ | $M_{x} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ |
| Отражение<br>относительно<br>оси ординат | $\begin{cases} x' = -x \\ y' = y \\ z' = -z \end{cases}$ | $M_{y} = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ |

| Наименование<br>АП                      | Формула АП в декар-<br>товых координатах                  | Матрица АП в одно-<br>родных координатах                                                                  |
|-----------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Отражение относительно оси аппликат     | $\begin{cases} x' = -x \\ y' = -y \\ z' = z \end{cases}$  | $M_z = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$  |
| Отражение относительно начала координат | $\begin{cases} x' = -x \\ y' = -y \\ z' = -z \end{cases}$ | $M_O = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ |

# Составное аффинное преобразование, совмещающее произвольный вектор с осью абсцисс.

Пусть задан ненулевой вектор  $\vec{v}(A,B,C)$ .

Пусть 
$$\vec{v}_0 \left( \sqrt{A^2 + B^2 + C^2}, 0, 0 \right)$$
.

Обозначим  $R_{\vec{v}}$  матрицу составного аффинного преобразования, совмещающего вектор  $\vec{v_0}$  с вектором  $\vec{v}$  за конечное число поворотов вокруг координатных осей.

Тогда  $R_{\vec{v}}^{-1}$  — матрица составного аффинного преобразования, совмещающего вектор  $\vec{v}$  с вектором  $\vec{v_0}$  за конечное число поворотов вокруг координатных осей.

#### Составное аффинное преобразование, совмещающее произвольный вектор с осью абсцисс.

#### Первый случай.

$$C=0$$
.

$$R_{\vec{v}}^{-1} = R_{z,-\alpha}$$

$$R_{\vec{v}} = R_{z,\alpha}$$

$$\cos \alpha = \frac{A}{\sqrt{A^2 + B^2}}$$
$$\sin \alpha = \frac{B}{\sqrt{A^2 + B^2}}$$

$$\sin \alpha = \frac{B}{\sqrt{A^2 + B^2}}$$

## Составное аффинное преобразование, совмещающее произвольный вектор с осью абсцисс.

#### Второй случай.

$$C \neq 0$$
.

$$R_{\vec{v}}^{-1} = R_{z,-\alpha} \cdot R_{x,-\beta}$$

$$R_{\vec{v}} = R_{x,\beta} \cdot R_{z,\alpha}$$

$$\cos \alpha = \frac{A}{\sqrt{A^2 + B^2 + C^2}}$$

$$\sin \alpha = \frac{\sqrt{B^2 + C^2}}{\sqrt{A^2 + B^2 + C^2}}$$

$$\sin \beta = \frac{C}{\sqrt{B^2 + C^2}}$$

