

Quantitative Characteristic Rules

- Typicality weight (t_weight) of the disjuncts in a rule
- n: number of tuples in the initial generalized relation R
- t_weight: fraction of tuples in R that represent target class
- q_a: generalized tuple describing the target class
- definition $t_weight \ (q_a) = \frac{\text{count } (q_a)}{\sum_{i=1}^{n} \text{count } (q_i)}$ range is [0...1]
- Form of a *Quantitative Characteristic Rule:* (cf. crosstab)

$$\forall X, \text{target_class}(X) \Rightarrow \text{condition}_{1}(X)[t:w_{1}] \lor \dots \lor \text{condition}_{m}(X)[t:w_{m}]$$

- Disjunction represents a necessary condition of the target class
- Not sufficient: a tuple that meets the conditions could belong to another class

WS 2003/04 Data Mining Algorithms 5 – 29

Chapter 5: Concept Description: Characterization and Comparison

- What is concept description?
- Data generalization and summarization-based characterization
- Analytical characterization: Analysis of attribute relevance
- Mining class comparisons: Discriminating between different classes
- Descriptive statistical measures in large databases
- Summary

Characterization vs. OLAP

- Shared concepts:
 - Presentation of data summarization at multiple levels of abstraction.
 - Interactive drilling, pivoting, slicing and dicing.
- Differences:
 - Automated desired level allocation.
 - Dimension relevance analysis and ranking when there are many relevant dimensions.
 - Sophisticated typing on dimensions and measures.
 - Analytical characterization: data dispersion analysis.

WS 2003/04

Data Mining Algorithms

Streuung

5 – 31

Attribute Relevance Analysis

- Why?—Support for specifying generalization parameters
 - Which dimensions should be included?
 - How high level of generalization?
 - Automatic vs. interactive
 - Reduce number of attributes
 - \rightarrow easy to understand patterns / rules
- What?—Purpose of the method
 - statistical method for preprocessing data
 - filter out irrelevant or weakly relevant attributes
 - retain or rank the relevant attributes
 - relevance related to dimensions and levels
 - analytical characterization, analytical comparison

Attribute relevance analysis (cont'd)

- How?—Steps of the algorithm:
 - Data Collection
 - Analytical Generalization
 - Use information gain analysis (e.g., entropy or other measures) to identify highly relevant dimensions and levels.
 - Relevance Analysis
 - Sort and select the most relevant dimensions and levels.
 - Attribute-oriented Induction for class description
 - On selected dimension/level

WS 2003/04 Data Mining Algorithms 5-33

Relevance Measures

- Quantitative relevance measure determines the classifying power of an attribute within a set of data.
- Competing methods
 - information gain (ID3)—discussed here
 - gain ratio (C4.5)
 - gini index (IBM Intelligent Miner)
 - χ^2 contingency table statistics
 - uncertainty coefficient

Information-Theoretic Approach

- Decision tree
 - each internal node tests an attribute
 - each branch corresponds to attribute value
 - each leaf node assigns a classification
- ID3 algorithm
 - build decision tree based on training objects with known class labels to classify testing objects
 - rank attributes with information gain measure
 - minimal height
 - the least number of tests to classify an object

WS 2003/04 Data Mining Algorithms 5-35

Top-Down Induction of Decision Tree

Attributes = {Outlook, Temperature, Humidity, Wind} PlayTennis = {yes, no}

Entropy and Information Gain

- S contains s_i tuples of class C_i for $i = \{1, ..., m\}$
- Information measures info required to classify any arbitrary tuple

 $I(s_1, s_2, ..., s_m) = -\sum_{i=1}^{m} \frac{S_i}{S} \log_2 \frac{S_i}{S}$

• Entropy of attribute A with values $\{a_1, a_2, ..., a_v\}$

$$E(A) = \sum_{j=1}^{\nu} \frac{s_{1j} + ... + s_{mj}}{s} I(s_{1j}, ..., s_{mj})$$

Information gained by branching on attribute A

Gain(
$$A$$
) = $I(s_1, s_2, ..., s_m) - E(A)$

WS 2003/04 Data Mining Algorithms 5-37

Example: Analytical Characterization

- Task
 - Mine general characteristics describing graduate students using analytical characterization
- Given
 - attributes name, gender, major, birth_place, birth_date, phone#, gpa
 - generalization(a_i) = concept hierarchies on a_i
 - U_i = attribute analytical thresholds for a_i
 - \blacksquare R = attribute relevance threshold
 - T_i = attribute generalization thresholds for a_i

Example: Analytical Characterization (2)

- Step 1: Data collection
 - target class: graduate student
 - contrasting class: undergraduate student
- Step 2: Analytical generalization using thresholds U_i
 - attribute removal
 - remove *name* and *phone#*
 - attribute generalization
 - generalize major, birth_place, birth_date, gpa
 - accumulate counts
 - candidate relation
 - gender, major, birth_country, age_range, gpa

WS 2003/04 Data Mining Algorithms 5-39

Example: Analytical characterization (3)

gender	major	birth_country	age_range	gpa	count
M	Science	Canada	20-25	Very_good	16
F	Science	Foreign	25-30	Excellent	22
M	Engineering	Foreign	25-30	Excellent	18
F	Science	Foreign	25-30	Excellent	25
M	Science	Canada	20-25	Excellent	21
F	Engineering	Canada	20-25	Excellent	18

Candidate relation for Target class: Graduate students (Σ =120)

gender	major	birth_country	age_range	gpa	count
M	Science	Foreign	<20	Very_good	18
F	Business	Canada	<20	Fair	20
M	Business	Canada	<20	Fair	22
F	Science	Canada	20-25	Fair	24
M	Engineering	Foreign	20-25	Very_good	22
F	Engineering	Canada	<20	Excellent	24

- Step 3: Relevance analysis
 - Calculate expected info required to classify an arbitrary tuple

$$I(s_1, s_2) = I(120,130) = -\frac{120}{250} \log_2 \frac{120}{250} - \frac{130}{250} \log_2 \frac{130}{250} = 0.9988$$

Calculate entropy of each attribute: e.g. major

For major="Science":
$$s_{11}=84$$
 $s_{21}=42$ $I(s_{11}, s_{21})=0.9183$ For major="Engineering": $s_{12}=36$ $s_{22}=46$ $I(s_{12}, s_{22})=0.9892$ For major="Business": $s_{13}=0$ $s_{23}=42$ $I(s_{13}, s_{23})=0$

Number of grad Students in "Science" Number of undergrad students in "Science"

5 - 41WS 2003/04 **Data Mining Algorithms**

Example: Analytical Characterization (5)

Calculate expected info required to classify a given sample if S is partitioned according to the attribute

E(major) =
$$\frac{126}{250}I(s_{11}, s_{21}) + \frac{82}{250}I(s_{12}, s_{22}) + \frac{42}{250}I(s_{13}, s_{23}) = 0.7873$$

Calculate information gain for each attribute

Gain(major) =
$$I(s_1, s_2) - E(major) = 0.2115$$

Information gain for all attributes

Gain(gender) = 0.0003 $Gain(birth_country) = 0.0407$ Gain(major) = 0.2115Gain(gpa) = 0.4490 $Gain(age_range) = 0.5971$

Example: Analytical Characterization (6)

- Step 4a: Derive initial working relation W₀
 - Use attribute relevance threshold R, e.g., R = 0.1
 - remove irrelevant/weakly relevant attributes (gain < R) from candidate relation, i.e., drop gender, birth_country
 - remove contrasting class candidate relation

major	age_range	gpa	count	
Science	20-25 Very_good		16	
Science	25-30	Excellent	47	
Science	20-25	Excellent	21	
Engineering	20-25	Excellent	18	
Engineering	25-30	Excellent	18	

Initial target class working relation W₀: Graduate students

Step 4b: Perform attribute-oriented induction using thresholds T_i

WS 2003/04 Data Mining Algorithms 5-43

Chapter 5: Concept Description: Characterization and Comparison

- What is concept description?
- Data generalization and summarization-based characterization
- Analytical characterization: Analysis of attribute relevance
- Mining class comparisons: Discriminating between different classes
- Descriptive statistical measures in large databases
- Summary

Mining Class Comparisons

- Comparison
 - Comparing two or more classes.
- Relevance Analysis
 - Find attributes (features) which best distinguish different classes.
- Method
 - Partition the set of relevant data into the target class and the contrasting class(es)
 - Analyze the attribute's relevances
 - Generalize both classes to the same high level concepts
 - Compare tuples with the same high level descriptions
 - Present the results and highlight the tuples with strong discriminant features

WS 2003/04 Data Mining Algorithms 5 – 45

Example: Analytical comparison

- Task
 - Compare graduate and undergraduate students using discriminant rule.
 - DMQL-Query

use Big_University_DB
mine comparison as "grad_vs_undergrad_students"
in relevance to name, gender, major, birth_place, birth_date,
 residence, phone#, gpa
for "graduate_students"
where status in "graduate"
versus "undergraduate_students"
where status in "undergraduate"
analyze count%
from student

Example: Analytical comparison (2)

Given

- attributes name, gender, major, birth_place, birth_date, residence, phone#, gpa
- generalization(a_i) = concept hierarchies on attributes a_i
- U_i = attribute analytical thresholds for attributes a_i
- \blacksquare R = attribute relevance threshold
- T_i = attribute generalization thresholds for attributes a_i

WS 2003/04 Data Mining Algorithms 5-47

Example: Analytical comparison (3)

- Step1: Data collection
 - target and contrasting classes
- Step 2: Attribute relevance analysis
 - remove attributes name, gender, major, phone#
- Step 3: Synchronous generalization
 - controlled by user-specified dimension thresholds
 - prime target and contrasting class(es) relations/cuboids

Example: Analytical comparison (4)

birth_country	age_range	Gpa	count%
Canada	20-25	Good	5.53%
Canada	25-30	Good	2.32%
Canada	over_30	Very_good	5.86%
Other	over_30	Excellent	4.68%

Prime generalized relation for the target class: Graduate students

birth_country	age_range	Gpa	count%
Canada	15-20	Fair	5.53%
Canada	15-20	Good	4.53%
Canada	25-30	Good	5.02%
Other	over_30	Excellent	0.68%

Prime generalized relation for the contrasting class: Undergraduate students

WS 2003/04 Data Mining Algorithms 5 – 49

Example: Analytical comparison (5)

- Step 4: Compare tuples; drill down, roll up and other OLAP operations on target and contrasting classes to adjust levels of abstractions of resulting description.
- Step 5: Presentation
 - as generalized relations, crosstabs, bar charts, pie charts, or rules
 - contrasting measures to reflect comparison between target and contrasting classes
 - e.g. count%

- C_i = target class
- q_a = a generalized tuple covers some tuples of class
 - but can also cover some tuples of contrasting class
- Discrimination weight $(q_a \in C_j)$
 - m classes C_i
 - definition:

 $\sum_{i=1}^{m} \operatorname{count} \left(q_a \in C_i \right)$

- range: [0, 1]
- high d_weight: q_a primarily represents a target class

$$\forall X$$
, target_class $(X) \Leftarrow \text{condition}(X)$ $[d:d_weight]$

WS 2003/04 Contrasting classes Data Mining Algorithms

5 – 51

Example: Quantitative Discriminant Rule

Status	Birth_country	Age_range	Gpa	Count
Graduate	Canada	25-30	Good	90
Undergraduate	Canada	25-30	Good	210

Count distribution between graduate and undergraduate students for a generalized tuple

Quantitative discriminant rule

$$\forall X$$
, graduate_student(X) \Leftarrow birth_country(X) = 'Canada' \land age_range(X) = '25-30' \land gpa(X) = 'good' [d : 30%]

- $d_weight = 90/(90+210) = 30\%$
- Rule is sufficient (but not necessary):
 - if X fulfills the condition, the probability that X is a graduate student is 30%, but not vice versa, i.e., there are other grad studs, too.

Quantitative characteristic rule (necessary)

$$\forall X, target_class(X) \Rightarrow condition_1(X)[t:w_1] \lor ... \lor condition_m(X)[t:w_m]$$

Quantitative discriminant rule (sufficient)

$$\forall X, target_class(X) \Leftarrow condition_1(X)[d:w'_1] \lor ... \lor condition_m(X)[d:w'_m]$$

Quantitative description rule (necessary and sufficient)

$$\forall X, target_class(X) \Rightarrow condition_1(X)[t:w_1, d:w_1'] \lor \dots \lor condition_m(X)[t:w_m, d:w_m']$$

WS 2003/04 Data Mining Algorithms 5-53

Example: Quantitative Description Rule

Location/item		TV			Computer			Both_items	
	Count	t-wt	d-wt	Count	t-wt	d-wt	Count	t-wt	d-wt
Europe	80	25%	40%	240	75%	30%	320	100%	32%
N_Am	120	17.65%	60%	560	82.35%	70%	680	100%	68%
Both_ regions	200	20%	100%	800	80%	100%	1000	100%	100%

Crosstab showing associated t-weight, d-weight values and total number (in thousands) of TVs and computers sold at AllElectronics in 1998

Quantitative description rule for target class Europe

$$\forall$$
 X, Europe(X) \Leftrightarrow (item(X) ="TV") [t : 25%, d : 40%] \vee (item(X) ="computer") [t : 75%, d : 30%]

Chapter 5: Concept Description: Characterization and Comparison

- What is concept description?
- Data generalization and summarization-based characterization
- Analytical characterization: Analysis of attribute relevance
- Mining class comparisons: Discriminating between different classes
- Descriptive statistical measures in large databases
- Summary

WS 2003/04 Data Mining Algorithms 5-55

Mining Data Dispersion Characteristics

- Motivation
 - To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
 - median, max, min, quantiles, outliers, variance, etc.
- Numerical dimensions correspond to sorted intervals
 - Data dispersion: analyzed with multiple granularities of precision
 - Boxplot or quantile analysis on sorted intervals
- Dispersion analysis on computed measures
 - Folding measures into numerical dimensions
 - Boxplot or quantile analysis on the transformed cube

Measuring the Central Tendency (1)

Mean — (weighted) arithmetic mean

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$$

- Median a holistic measure
 - Middle value if odd number of values, or average of the middle two values otherwise
 - Estimate the median for grouped data by interpolation:

$$median \approx L_1 + \left(\frac{n/2 - \left(\sum f\right)_{lower}}{f_{median}}\right) \cdot C$$

$$\begin{array}{c} \text{containing the median} \\ n - \text{ overall number of data values} \\ \left(\sum f\right)_{lower} - \text{ sum of the frequencies of all classes that are lower than the median} \\ \end{array}$$

 L_1 — lowest value of the class containing the median

 $f_{\rm median}$ — frequency of the median class c — size of the median class interval

5 - 57WS 2003/04 **Data Mining Algorithms**

Measuring the Central Tendency (2)

Mode

- Value that occurs most frequently in the data
- Well suited for categorial (i.e., non-numeric) data
- Unimodal, bimodal, trimodal, ...: there are 1, 2, 3, ... modes in the data (multimodal in general)
- There is no mode if each data value occurs only once
- Empirical formula for unimodal frequency curves that are moderately skewed:

$$mean - mode = 3 \cdot (mean - median)$$

- Midrange
 - Average of the largest and the smallest values in a data set:

$$(max - min) / 2$$

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: $IQR = Q_3 Q_1$
 - Five number summary: min, Q₁, M, Q₃, max
 - Boxplot: ends of the box are the quartiles, median is marked, whiskers (Barthaare, Backenbart), and plot outlier individually
 - Outlier: usually, values that are more than 1.5 x IQR below Q₁ or above Q₃
- Variance and standard deviation
 - Variance s^2 : (algebraic, scalable computation) $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \overline{x})^2$
 - Standard deviation s is the square root of variance s²

WS 2003/04 Data Mining Algorithms 5 – 59

Boxplot Analysis

Five-number summary of a distribution:

Minimum, Q1, M, Q3, Maximum

= (0%, 25%, 50%, 75%, 100%-quantiles)

Boxplot

- Data is represented with a box
- The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR
- The median is marked by a line within the box
- Whiskers: two lines outside the box extend to Minimum and Maximum

Boxplot Examples

WS 2003/04 Data Mining Algorithms 5-61

Visualization of Data Dispersion: Boxplot Analysis

Mining Descriptive Statistical Measures in Large Databases

alternatives: $\frac{1}{n-1}$, $\frac{1}{n}$

Variance

$$s^{2} = \left(\frac{1}{n-1}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}\right) =$$

May be computed in a single pass!

$$(x_i - \overline{x})^2$$
 = $\frac{1}{n-1} \left[\sum_i x_i^2 - \frac{1}{n} (\sum_i x_i)^2 \right]$

Requires two passes but is numerically much more stable

- Standard deviation: the square root of the variance
 - Measures the spread around the mean
 - It is zero if and only if all the values are equal
 - Both the deviation and the variance are algebraic

WS 2003/04 Data Mining Algorithms 5-63

Histogram Analysis

- Graph displays of basic statistical class descriptions
 - Frequency histograms
 - A univariate graphical method
 - Consists of a set of rectangles that reflect the counts (frequencies) of the classes present in the given data

Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
 - The q-quantile x_q indicates the value x_q for which the fraction q of all data is less than or equal to x_q (called percentile if q is a percentage); e.g., median = 50%-quantile or 50th percentile.

WS 2003/04 Data Mining Algorithms 5 – 65

Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- Allows the user to view whether there is a shift in going from one distribution to another

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

WS 2003/04 Data Mining Algorithms 5 – 67

Loess Curve (local regression)

- Adds a smooth curve to a scatter plot in order to provide better perception of the pattern of dependence
- Loess curve is fitted by setting two parameters: a smoothing parameter, and the degree of the polynomials that are fitted by the regression

Chapter 5: Concept Description: Characterization and Comparison

- What is concept description?
- Data generalization and summarization-based characterization
- Analytical characterization: Analysis of attribute relevance
- Mining class comparisons: Discriminating between different classes
- Descriptive statistical measures in large databases
- Summary

WS 2003/04 Data Mining Algorithms 5-69

Summary

- Concept description: characterization and discrimination
- OLAP-based vs. attribute-oriented induction (AOI)
- Efficient implementation of AOI
- Analytical characterization and comparison
- Descriptive statistical measures in large databases

References

- Y. Cai, N. Cercone, and J. Han. Attribute-oriented induction in relational databases. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 213-228. AAAI/MIT Press, 1991.
- S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 26:65-74, 1997
- C. Carter and H. Hamilton. Efficient attribute-oriented generalization for knowledge discovery from large databases. IEEE Trans. Knowledge and Data Engineering, 10:193-208, 1998.
- W. Cleveland. Visualizing Data. Hobart Press, Summit NJ, 1993.
- J. L. Devore. Probability and Statistics for Engineering and the Science, 4th ed. Duxbury Press, 1995.
- T. G. Dietterich and R. S. Michalski. A comparative review of selected methods for learning from examples. In Michalski et al., editor, Machine Learning: An Artificial Intelligence Approach, Vol. 1, pages 41-82. Morgan Kaufmann, 1983.
- M. Ester, R. Wittmann. Incremental Generalization for Mining in a Data Warehousing Environment. Proc. Int. Conf. on Extending Database Technology, pp.135-149, 1998.
- J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29-54, 1997.
- J. Han, Y. Cai, and N. Cercone. Data-driven discovery of quantitative rules in relational databases. IEEE Trans. Knowledge and Data Engineering, 5:29-40, 1993.

WS 2003/04 Data Mining Algorithms 5-71

References (cont.)

- J. Han and Y. Fu. Exploration of the power of attribute-oriented induction in data mining. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 399-421. AAAI/MIT Press, 1996.
- R. A. Johnson and D. A. Wichern. Applied Multivariate Statistical Analysis, 3rd ed. Prentice Hall, 1992.
- E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. VLDB'98, New York, NY, Aug. 1998.
- H. Liu and H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998.
- R. S. Michalski. A theory and methodology of inductive learning. In Michalski et al., editor, Machine Learning: An Artificial Intelligence Approach, Vol. 1, Morgan Kaufmann, 1983.
- T. M. Mitchell. Version spaces: A candidate elimination approach to rule learning. IJCAI'97, Cambridge, MA.
- T. M. Mitchell. Generalization as search. Artificial Intelligence, 18:203-226, 1982.
- T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
- J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
- D. Subramanian and J. Feigenbaum. Factorization in experiment generation. AAAI'86, Philadelphia, PA, Aug. 1986.