We claim:

The use of carboxylic acid derivatives of the formula I

Sail =

10

where R is formyl, CO_2H or a radical which can be hydrolyzed to 15 COOH, and the remaining substituents have the following meanings:

- R² is halogen, C_1-C_4 —alkyl, C_1-C_4 —haloalkyl, C_1-C_4 —alkoxy, C_1-C_4 —haloalkoxy or C_1-C_4 —alkylthio;
- is nitrogen or CR14 where R14 is hydrogen or, together with R3, forms a 3- or 4-membered alkylene or alkenylene chain in which, in each case, one methylene group is replaced by oxygen;
- 25 R³ is halogen, C_1 — C_4 —alkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkoxy, C_1 — C_4 —haloalkoxy, C_1 — C_4 —alkylthio or R³ is linked to R¹⁴ as indicated above to form a 5— or 6—membered ring;
- and/or one of the following radicals: C₁-C₄-alkoxy,
 C₁-C₄-alkylthio, cyano, C₁-C₈-alkylcarbonyl, C₁-C₈-alkoxycarbonyl, phenyl, phenoxy or phenylcarbonyl, where the phenyl
 radicals in turn can carry from one to five halogen atoms
 and/or from one to three of the following radicals:
- 35 C_1-C_4 -alkyl C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy, C_1-C_4 -haloalkoxy and/or C_1-C_4 -alkylthio;
- C₁-C₁₀-alkyl which can carry from one to five halogen atoms and carries one of the following radicals: a five-membered heteroaromatic ring which contains from one to three nitrogen atoms and/or one sulfur or oxygen atom and which can carry from one to four halogen atoms and/or one or two of the following radicals: C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio and/or phenyl;

Pol Cont

 C_3-C_{12} —cycloalkyl or C_3-C_{12} —cycloalkenyl, each of which can contain one oxygen or sulfur atom and can carry from one to five halogen atoms and/or one of the following radicals: C_1-C_4 —alkyl, C_1-C_4 —alkoxy, C_1-C_4 —alkylthio, cyano, C_1-C_8 —alkylcarbonyl, C_1-C_8 —alkoxycarbonyl, phenoxy or phenylcarbonyl, where the phenyl radicals in turn can carry from one to five halogen atoms and/or from one to three of the following radicals: C_1-C_4 —alkyl, C_1-C_4 —haloalkoxy and/or C_1-C_4 —alkylthio;

10

15

 C_3 — C_6 —alkenyl or C_3 — C_6 —alkynyl, each of which can carry from one to five halogen atoms and/or one of the following radicals: C_1 — C_4 —alkyl, C_1 — C_4 —alkoxy, C_1 — C_4 —alkylthio, cyano, C_1 — C_8 —alkylcarbonyl, C_1 — C_8 —alkoxycarbonyl, phenyl, phenoxy or phenylcarbonyl, where the phenyl radicals in turn can carry from one to five halogen atoms and/or from one to three of the following radicals: C_1 — C_4 —alkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkoxy, C_1 — C_4 —haloalkoxy and/or C_1 — C_4 —alkylthio;

20

a five— or six—membered heteroaromatic ring which contains from one to three nitrogen atoms and/or one sulfur or oxygen atom and which can carry from one to four halogen atoms and/or one or two of the following radicals: C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkyl-thio, phenyl phenoxy or phenylcarbonyl, where the phenyl radicals in turn can carry from one to five halogen atoms and/or from one to three of the following radicals: C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy and/or C₁-C₄-alkylthio;

30

25

phenyl or naphthyl, each of which can be substituted by one or more of the following radicals: halogen, nitro, cyano, hydroxyl, C_1 — C_4 —alkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkoxy, phenoxy, C_1 — C_4 —alkylamino, amino, C_1 — C_4 —alkylamino or C_1 — C_4 —dialkylamino;

35

R4 and R5 form, together with the adjacent carbon atom, a 3-to 8-membered ring which can contain one oxygen or sulfur atom and can carry from one to three of the following radicals: C_1 - C_4 -alkyl, halogen, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy and/or C_1 - C_4 -akylthio [sic];

40

45

is hydrogen, C_1 — C_4 —alkyl, C_3 — C_6 —alkenyl, C_3 — C_6 —alkynyl, C_3 — C_8 —cycloalkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkoxyalkyl, C_1 — C_4 —alkylthioalkyl, phenyl or R^5 is linked to R^4 as indicated above to form a 3— to 8—membered ring;

45

Sat R6

10

15

is C_1-C_8 -alkyl, C_3-C_6 -alkenyl, C_3-C_6 -alkynyl or C_3-C_8 -cycloalkyl, it being possible for each of these radicals to be substituted one or more times by: halogen, nitro, cyano, C_1-C_4 -alkoxy, C_3-C_6 -alkenyloxy, C_3-C_6 -alkynyloxy, C_1-C_4 -alkylthio, C_1-C_4 -haloalkoxy, C_1-C_4 -alkylcarbonyl, C_1-C_4 -alkylamino, C_1-C_4 -alkylamino, C_1-C_4 -alkylamino, phenyl, phenoxy or phenyl which is substituted one or more times, eg. from one to three times, by halogen, nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy, C_1-C_4 -haloalkoxy or C_1-C_4 -alkylthio;

phenyl or naphthyl, each of which can be substituted by one or more of the following radicals: halogen, nitro, cyano, hydroxyl, amino, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, phenoxy, C₁-C₄-alkylthio, C₁-C₄-alkylamino or C₁-C₄-dialkylamino;

a five— or six-membered heteroaromatic ring which contains from one to three nitrogen atoms and/or one sulfur or oxygen atom and which can carry from one to four halogen atoms and/or one or two of the following radicals: C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkyl-thio, phenyl, phenoxy or phenylcarbonyl, where the phenyl radicals in turn can carry from one to five halogen atoms and/or from one to three of the following radicals: C₁-C₄-alkyl C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy and/or C₁-C₄-alkylthio;

Y is sulfur or oxygen or a single bond;

z is sulfur or oxygen;

for the production of drugs.

35

30

The use of carboxylic acid derivatives as drugs

Abstract

5

The use of carboxylic acid derivatives of the formula I

10

15

where R is formyl, CO_2H or a radical which can be hydrolyzed to COOH, and the remaining substituents have the following meanings:

- R² is halogen, C_1 — C_4 —alkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkoxy, C_1 — C_4 —haloalkoxy or C_1 — C_4 —alkylthio;
- is nitrogen or CR¹⁴ where R¹⁴ is hydrogen or, together with R³, forms a 3— or 4—membered alkylene or alkenylene chain in which, in each case, one methylene group is replaced by oxygen;
 - is halogen, C_1-C_4 —alkyl, C_4-C_4 —haloalkyl, C_1-C_4 —alkoxy, C_1-C_4 —haloalkoxy, C_1-C_4 —alkylthio or R^3 is linked to R^{14} as indicated above to form a R^4 —or 6-membered ring;

- is C₁-C₁₀-alkyl which can carry from one to five halogen atoms and/or one of the following radicals: C₁-C₄-alkoxy, C₁-C₄-alkylthio, cyano, C₁-C₈-alkylcarbonyl, C₁-C₈-alkoxy-carbonyl, phenyl, phenoxy or phenylcarbonyl, where the phenyl radicals in turn can carry from one to five halogen atoms and/or from one to three of the following radicals: C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy and/or C₁-C₄-alkylthio;
- C₁-C₁₀-alkyl which can carry from one to five halogen atoms and carries one of the following radicals: a five-membered heteroaromatic ring which contains from one to three nitrogen atoms and/or one sulfur or oxygen atom and which can carry from one to four halogen atoms and/or one or two of the following radicals: C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio and/or phenyl;

C3-C12-cycldalkyl or C3-C12-cycloalkenyl, each of which can contain one oxygen or sulfur atom and can carry from one to five halogen \atoms and/or one of the following radicals: C_1-C_4 -alkyl, d_1-C_4 -alkoxy, C_1-C_4 -alkylthio, cyano, C_1-C_8 -alkylcarbonyl, c_1-d_8 -alkoxycarbonyl, phenyl, phenoxy or phenylcarbonyl, where the phenyl radicals in turn can carry from one to five hallogen atoms and/or from one to three of the following radicals: C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy, C_1-C_4 -haloalkoxy \and/or C_1-C_4 -alkylthio;

10

15

5

 C_3-C_6 -alkenyl or C_3-C_6 -alkynyl, each of which can carry from one to five halogeh atoms and/or one of the following radicals: C_1-C_4 -alkyl, c_1-C_4 -alkoxy, C_1-C_4 -alkylthio, cyano, C_1-C_8 -alkylcarbonyl, C_1-C_8 -alkoxycarbonyl, phenyl, phenoxy or phenylcarbonyl, where the phenyl radicals in turn can carry from one to five halogen atoms and/or from one to three of the following radicald: C1-C4-alkyl, C1-C4-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haldalkoxy and/or C₁-C₄-alkylthio;

a five- or six-membered heteroaromatic ring which contains 20 from one to three nitrogen atoms and/or one sulfur or oxygen atom and which can carry from one to four halogen atoms and/ or one or two of the following radicals: C1-C4-alkyl, $C_1-C_4-haloalkyl$, $C_1-C_4-alkoxy$, $C_1-C_4-haloalkoxy$, $C_1-C_4-alkyl-alkyl$ thio, phenyl, phenoxy or phenylcarbonyl, where the phenyl 25 radicals in turn can carry from one to five halogen atoms and/or from one to three of the following radicals: C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy, C_1-C_4 -haloalkoxy

and/or C₁-C₄-alkylthio;

30

35

40

phenyl or naphthyl, each of which can be substituted by one or more of the following radicals: halogen, nitro, cyano, hydroxyl, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy, C_1-C_4 -haloalkoxy, phenoxy, C_1-C_4 -alkylthio, amino, C₁-C₄-alkylamino or C₁-C₄-dialkylamino;

R4 and R5 form, together with the adjacent carbon atom, a 3to 8-membered ring which can contain one oxygen or sulfur atom and can carry from one to three of the following radicals: C₁-C₄-alkyl, halogen, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C_1-C_4 -haloalkoxy and/or C_1-C_4 -akylthio [sic];

is hydrogen, C_1 - C_4 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl, R⁵ C_3 — C_8 —cycloalkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkoxyalkyl, C₁-C₄-alkylthioalkyl, phenyl or R⁵ is linked to R⁴ as indi-45 cated above to form a 3- to 8-membered ring;

R6 is C₁-C₈-alkyl, C₃-C₆-alkenyl, C₃-C₆-alkynyl or C₃-C₈-cyclo-alkyl, it being possible for each of these radicals to be substituted one or more times by: halogen, nitro, cyano, C₁-C₄-alkoxy, C₃-C₆-alkenyloxy, C₃-C₆-alkynyloxy, C₁-C₄-alkyl-thio, C₁-C₄-haloalkoxy, C₁-C₄-alkylcarbonyl, C₁-C₄-alkoxy-carbonyl, C₁-C₄-alkylamino, di-C₁-C₄-alkylamino, phenyl, phenoxy or phenyl which is substituted one or more times, eg. from one to three times, by halogen, nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy or C₁-C₄-alkylthio;

phenyl or naphthyl, each of which can be substituted by one or more of the following radicals: halogen, nitro, cyano, hydroxyl, amino, C_1 — C_4 —alkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkyl, C_1 — C_4 —alkylamino or C_1 — C_4 —dialkylamino:

a five— or six membered heteroaromatic ring which contains from one to three nitrogen atoms and/or one sulfur or oxygen atom and which can carry from one to four halogen atoms and/or one or two of the following radicals: C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkyl-thio, phenyl, phenoxy or phenylcarbonyl, where the phenyl radicals in turn can carry from one to five halogen atoms and/or from one to three of the following radicals: C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy and/or C₁-C₄-alkylthid;

Y is sulfur or oxygen or a single bond;

z is sulfur or oxygen;

for the production of drugs.

35

15

20

25

30