Definition: Datalog Programm

Ein Datalog-Programm P (ohne IBen(Integritätsbedingungen)) ist eine endliche Menge von Horn-Klauseln mit Jedes $d \in P$ ist entweder

- ein Fakt q(...). ohne Variable
- eine sichere Regel $q(...): -p_1(...), ..., p_n(...)$. mit $q \in iPraedikat$

Eine Regel heißt sicher, wenn alle in ihr vorkommenden Variablen beschränkt sind.

Definition: Bedeutung eines Datalog Programms

Menge der Grundatome, die logisch aus P gefolgert werden können.

Satz von Gödel / Skolem

Eine Klauselmenge P hat ein Modell genau dann wenn P hat ein Herbrand-Modell. Daraus folgt, dass ein Verfahren analog zu Wahrheitstabellen in der Aussagenlogik möglich ist.

Skolemisierung

Jeder Formel der PL1 Logik, kann in eine erfüllbarkeitsäquivalte Formel in Skolem-Form gebracht werden. Dies bedeutet Pränexnormalform und alle Existenzquantoren durch Funktionen ersetzen.

Definition: Herbrand-Interpretation

Eine Teilmenge der Herbrand- Basis

Grundatom

Ein Grundatom f ist eine logische Folgerung einer Menge D von Datalog Klauseln (z.B. $D \models f$) \diamondsuit_{Def} . Jedes Herbrand Modell von D ist auch ein Modell von f.

Da f ein Grundatom ist gilt $D \models f \Longrightarrow f$ ist in jedem Herbrand-Modell von D enthalten. Das heißt $f \in \bigcap \{I | IHerbrand - Modell von D\}$.

Sei $f \in \bigcap \{I | IHerbrand - ModellvonD\}$, dann ist f ein Grundatom und jedes Modell von D auch in Modell von f.

Definition: Mege aller Konsequenzen

$$cons(D) =_{def} \{ f \in HB_D | D \models f \}$$

Definition: Substitution

Eine Substitution ist eine endliche Menge der Form

$$\{X_1/t_1, \dots, X_n/t_n\}, X_1, \dots, X_n$$
 unterschiedliche Variablen, $t_1, \dots, t_n Terme, X_i \neq t_i$
(1)

Sei θ eine Substitution, t ein Term (Variable oder Konstante), so gilt

$$t\theta =_{def} \begin{cases} t_i, & \text{falls } t/t_i \in \theta \\ t, & \text{sonst} \end{cases}$$
 (2)

Definition: Grundsubstitution

Substitution bei der alle t_i Konstanten sind.

Definition: Unifizierbar

Seien L_1 und L_2 heißen **unifizierbar**, wenn $(\exists \text{ Substitution }\Theta)(L_1\Theta=L_2\Theta)$. Θ heißt dann **Unifikator**.

Definition: Komposition

Sei $\Theta = \{X_1/t_1, \cdots, X_n/t_n\}, \sigma = \{Y_1/n_1, \cdots, Y_m/t_m\}$ Substitutionen. Die Komposition $\Theta \sigma$ von Θ und σ erhält man aus

$$X_1/t_1\sigma, \cdots, X_m/t_m\sigma, Y_1/n_q, \cdots, Y_m/n_m$$
 (3)

Durch Streichen von Elementen der Form Z/Z sowie Y_i/n_i mit $Y_i = X_j$ für ein $jj \in \{1, ..., n\}$

Definition: allgemeinere Substitution

Sei $\Theta = \{X_1/t_1, \dots, X_n/t_n\}, \sigma = \{Y_1/n_1, \dots, Y_m/t_m\}$ Substitutionen.

Die Komposition $\Theta\sigma$ von Θ und σ erhält man aus $X_1/t_1\sigma,\cdots,X_m/t_m\sigma,Y_1/n_q,\cdots,Y_m/n_m$

Definition: Beweisbaum

B entsteht aus S durch Anwendung von Θ auf alle Benennungen von Zielknoten. B repräsentiert einen Beweis für $g\Theta$, g benennung der Wurzel von S.

Definition: Tiefe eines Baums

maximale Anzahl von Zielknoten auf einem Pfad von einem Blattknoten zur Wurzel. Entsprechend Knoten der Tiefe i, Ebene i eines Baumes. Zusätzlich: Spezielle Suchbäume (Tiefe 0) für Fakten aus P.

Suchbaum zu cons

Sei P ein Datalog-Programm. Die Suchbaum / Beweisbaum Methode, angewand auf alle Ziele $q(X_1, \dots, X_{Stelligkeit(q)})$, q intentionales Prädikatesymbol von P, liefert cons(P) als Ergebnis

Suchbaum, Vollständigkeit

Die Suchbaum / Beweisbaum Methode bleibt vollständig für ein Programm P, wenn nur Bäume mit max. Tiefe $\max_{}$ fakt(P) betrachtet werden.

Resolutionsmethode

Für allgemeine Klauselformen entwickelte Methode zum automatischen Beweisen.