Subject: Digital Communication

Code : **UEC 639**

Credit: 4

Dr. Amit Mishra

Signal space analysis

- Received signal
 - ■Time domain

$$r(t) = s(t) + n(t)$$

■Vector form

$$\underline{r} = \underline{s} + \underline{n}$$

- How to choose a transmitted signal from an observation of r
- MAP Maximize "a posteriori" probability
 - ML Maximize the Likelihood
- We need to analyze the noise ...

Signal space

$$r(t) = \sum_{j=1}^{\infty} r_j \psi_j(t) \qquad \underline{r} = [r_1 \ r_2 \dots r_n \ r_{n+1} \dots]$$

$$n(t) = \sum_{j=1}^{\infty} n_j \psi_j(t) \qquad \underline{n} = [n_1 \ n_2 \dots n_n \ n_{n+1} \dots]$$

$$s_i(t) = \sum_{i=1}^{\infty} s_{ij} \psi_j(t) \qquad \underline{s}_i = \left[s_{i,1} s_{i,2} \dots s_{i,n} 0 \ 0 \dots \right]$$

$$\Pr(r(t)|s_i(t)) = \Pr(r(t) = s_i(t) + n(t))$$
$$= \Pr(\underline{r} = \underline{s}_i + \underline{n})$$

Vocabulaire/notation

- Echantillons
 - n pour n(T)
 - = : pour :(T)
 - a pour a(T)
- Densité conditionnelle
 - (z) *svoy*) densité de la statistique du test quand la donnée "/" a été envoyée
 - 2 2 (2 |2) 112 (2 |2) par exemple

Noise in signal space

Noise vector

Coefficients of noise vector

$$\underline{n} = [n_1 \ n_2 \dots] \qquad \qquad n_j = \int_0^T n(t) \psi_j(t) dt$$

- Recall n(t) Gaussian process
 - Variance

 - $\square En(t)n(t+\tau) = 0 \quad \tau \neq 0$
- *n*(*t*) Gaussian
 - $\Rightarrow n_i$ Gaussian (integration is a linear operation)

Autocorrelation

$$R_N(\tau) = \frac{N_0}{2} \delta(\tau)$$

Noise analysis

Expected value

$$En_{j} = E \int_{0}^{T} n(t) \psi_{j}(t) dt$$
$$= \int_{0}^{T} E \{n(t)\} \psi_{j}(t) dt$$
$$= \int_{0}^{T} 0 \psi_{j}(t) dt = 0$$

Noise analysis

Variance

$$\operatorname{Var}[X] \stackrel{\mathrm{def}}{=} E[(X - E[X])^2]$$

$$En_j^2 = E \int_0^T n(t) \psi_j(t) dt \cdot \int_0^T n(z) \psi_j(z) dz$$

$$= E \int_0^T \int_0^T n(t) n(z) \psi_j(t) \psi_j(z) dz dt$$

$$= \int_0^T \int_0^T E \left\{ n(t) n(z) \right\} \psi_j(t) \psi_j(z) dz dt$$

$$= \int_0^T \int_0^T \frac{N_0}{2} \delta(t - z) \psi_j(t) \psi_j(z) dz dt$$

$$= \frac{N_0}{2} \int_0^T \psi_j^2(t) dt = \frac{N_0}{2}$$

In statistics, a **variance** is the **spread of a data** set around its mean value, while a **covariance** is the measure of the **directional relationship** between two random variables.

Independence of coefficients

 \triangleright Covariance, *i.e.*, suppose $i \neq j$

$$En_{i}n_{j} = E \int_{0}^{T} \int_{0}^{T} n(t)n(z)\psi_{i}(t)\psi_{j}(z)dtdz$$

$$= \int_{0}^{T} \int_{0}^{T} E\{n(t)n(z)\}\psi_{i}(t)\psi_{j}(z)dtdz$$

$$= \int_{0}^{T} \int_{0}^{T} \frac{N_{0}}{2} \delta(t-z)\psi_{i}(t)\psi_{j}(z)dtdz$$

$$= \frac{N_{0}}{2} \int_{0}^{T} \psi_{i}(t)\psi_{j}(t)dt$$

$$= \frac{N_{0}}{2} \langle \psi_{i}(t)\psi_{j}(t) \rangle = 0$$
The $\delta(t-z)$ only valid at $t=z$

Independence of coefficients

The coefficients are not correlated for white noise in an orthonormal base

$$En_{i}n_{j} = \frac{N_{0}}{2} \langle \psi_{i}(t) \psi_{j}(t) \rangle = 0$$

▶ For Gaussian random variables, uncorrelated ⇒ Independent

Noise Summary

- Gaussian of zero mean
- $n_j \sim N\left(0, \frac{N_0}{2}\right) \qquad \sigma^2 = \frac{N_0}{2}$
- ► Independent $En_i n_i = 0 \text{ for } j \neq i$
- Vector density
 =joint density of coefficients

iid: Independent Identically Distributed.

Noise density

For two or more independent signals / vectors the joint *pdf* is expressed as product of the *pdf* of all the signals / vectors.

By independence

$$P_{\underline{n}}(\underline{n}) = \prod_{j=1}^{\infty} P_{n_j}(n_j) = \prod_{j=1}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-n_j^2/2\sigma^2}$$

$$p(r(t)|s_{i}(t)) = p(r(t) = s_{i}(t) + n(t))$$

$$= p(\underline{r} = \underline{s}_{i} + \underline{n})$$

$$= p(\underline{n} = \underline{r} - \underline{s}_{i})$$

$$= \prod_{j=1}^{\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-(r_{j} - s_{j,i})^{2}/2\sigma^{2}}$$

 $\underline{s}_i = | s_{1,i} \quad s_{2,i} \quad s_{3,i} \quad \cdots$

Detectors

- ML (Likelihood)
 - Maximize the likelihood, i.e. choosing the $s_i(t)$ which maximizes the likelihood of receiving r(t)

$$s_i(t)$$
 such that arg $\max_j P(\underline{r}|\underline{s}_j) = i$

- MAP (a posteriori)
 - Choose transmitted signal to maximize the "a posteriori" probability

$$s_i$$
 such that $\arg \max_j P\left(\underline{r} | \underline{s}_j\right) P\left(\underline{s}_j\right) = i$

a priori probability

$$Arg \max_{j} P(\underline{r}|\underline{s}_{j}) P(\underline{s}_{j}) = Arg \max_{j} P(\underline{r} = \underline{s}_{j} + \underline{n}) P(\underline{s}_{j})$$

$$= Arg \max_{j} P(\underline{n} = \underline{r} - \underline{s}_{j}) P(\underline{s}_{j})$$

$$= Arg \max_{j} \prod_{k=1}^{\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-(r_{k} - s_{j,k})/2\sigma^{2}} P(\underline{s}_{j})$$

We can discard $\sqrt{2\pi\sigma}$, as it is a constant and does not contribute any information

$$= Arg \max_{j} \prod_{k=1}^{\infty} e^{-\left(r_{k} - s_{j,k}\right)^{2} / 2\sigma^{2}} P\left(\underline{s}_{j}\right)$$

In two or more exponential functions power multiplication and the replaced by addition $P(\underline{s}_j)$ and $P(\underline{s}_j)$

$$Arg \max_{j} P\left(\underline{r} \middle| \underline{s}_{j}\right) P\left(\underline{s}_{j}\right) = Arg \max_{j} e^{-\frac{1}{2\sigma^{2}} \sum_{k=1}^{\infty} (r_{k} - s_{j,k})^{2}} P\left(\underline{s}_{j}\right)$$

$$Taking Log = Arg \max_{j} \ln \left[e^{-\frac{1}{2\sigma^{2}} \sum_{k=1}^{\infty} (r_{k} - s_{j,k})^{2}} P\left(\underline{s}_{j}\right) \right]$$

$$= Arg \max_{j} \left[-\frac{1}{2\sigma^{2}} \sum_{k=1}^{\infty} \left(r_{k} - s_{j,k}\right)^{2} + \ln P\left(\underline{s}_{j}\right) \right]$$

We can discard $2\sigma^2$, as it is a constant and does not contribute any information

$$= Arg \max_{j} \left[-\sum_{k=1}^{\infty} \left(r_{k} - s_{j,k} \right)^{2} + 2\sigma^{2} \ln P\left(\underline{s}_{j}\right) \right]$$

Convert function from max to
$$\min_{s} = Arg \min_{s} \left[\sum_{k=1}^{\infty} (r_k - s_{j,k})^2 - 2\sigma^2 \ln P(\underline{s}_j) \right]$$

We want

Arg min
$$\sum_{k=1}^{\infty} (r_k - s_{j,k})^2 - 2\sigma^2 \ln P(\underline{s}_j)$$

- Theorem of irrelevance
 - \square $s_{j,k} = 0 \quad \forall k > N$
 - Elements for k > N in the sum $Arg \min_{j} \left[\sum_{k=1}^{\infty} (r_k s_{j,k})^2 2\sigma^2 \ln P(\underline{s}_j) \right]$ do not change the minimization $= Arg \min_{j} \left[\sum_{k=1}^{N} (r_k s_{j,k})^2 2\sigma^2 \ln P(\underline{s}_j) \right]$

Represent energy

norm in the finite basis of the signal space

$$= Arg \min_{j} \left[\left\| \underline{r} - \underline{s}_{j} \right\|^{2} - 2\sigma^{2} \ln P(\underline{s}_{j}) \right]$$

Choose the signal that is closer to the received signal modulo a weighting for a priori probability

$$Arg \min_{j} \left[\left\| r - \underline{s}_{j} \right\|^{2} - 2\sigma^{2} \ln P(\underline{s}_{j}) \right]$$

Explanation:

Choose the signal that is closer to the received signal modulo a weighting for a priori probability

$$Arg \min_{j} \left[\left\| r - \underline{s}_{j} \right\|^{2} - 2\sigma^{2} \ln P(\underline{s}_{j}) \right]$$

ML choice

Choose the signal closest to the received signal

$$Arg \min_{j} \left[\left\| r - \underline{s}_{j} \right\|^{2} \right]$$

Vector space receiver

- > MAP
 - $||\mathbf{r} \mathbf{s}_i||^2 N_0 \ln P(\mathbf{s}_i)$

- ML
 - $\Box i$ that minimizes $\|\mathbf{r} \mathbf{s}_i\|^2$

```
What is the structure of the test statistics??
```

Vector space receiver

- > MAP
 - \mathbf{l} that minimizes $\|\mathbf{r} \mathbf{s}_i\|^2 N_0 \ln P(\mathbf{s}_i)$

$$\|\mathbf{r}\|^2 - 2\langle \mathbf{r}, \mathbf{s}_i \rangle + \|\mathbf{s}_i\|^2 - N_0 \ln P(\mathbf{s}_i)$$

- > ML
 - \mathbf{l} i that minimizes $\|\mathbf{r} \mathbf{s}_i\|^2$

$$\|\mathbf{r}\|^2 - 2\langle \mathbf{r}, \mathbf{s}_i \rangle + \|\mathbf{s}_i\|^2$$

Vector spac

doesn't change the minimization

identical for all i

- > MAP
 - $\Box i$ that minimizes $\|\mathbf{r} \mathbf{s}_i\|^2 N_0 \ln P(\mathbf{s}_i)$

$$\|\mathbf{r}\|^2 - 2\langle \mathbf{r}, \mathbf{s}_i \rangle + \|\mathbf{s}_i\|^2 - N_0 \ln P(\mathbf{s}_i)$$

- >ML
 - $||\mathbf{r} \mathbf{s}_i||^2$

$$\|\mathbf{r}\|^2 - 2\langle \mathbf{r}, \mathbf{s}_i \rangle + \|\mathbf{s}_i\|^2$$

Vector space re known: calculated in advance

- not at each reception

- **►MAP**
 - \mathbf{l} that minimizes $\|\mathbf{r} \mathbf{s}_i\|^2 N_0 \ln P(\mathbf{s}_i)$

$$\|\mathbf{r}\|^2 - 2\langle \mathbf{r}, \mathbf{s}_i \rangle + \|\mathbf{s}_i\|^2 - N_0 \ln P(\mathbf{s}_i)$$

- \triangleright ML
 - $\Box i$ that minimizes $\|\mathbf{r} - \mathbf{s}_i\|^2$

$$\|\mathbf{r}\|^2 - 2\langle \mathbf{r}, \mathbf{s}_i \rangle + \|\mathbf{s}_i\|^2$$

Vector space receiver

- > MAP
 - $\Box i$ that minimizes $\|\mathbf{r} \mathbf{s}_i\|^2 N_0 \ln P(\mathbf{s}_i)$

$$\|\mathbf{r}\|^2 - 2\langle \mathbf{r}, \mathbf{s}_i \rangle + \|\mathbf{s}_i\|^2 - N_0 \ln P(\mathbf{s}_i)$$

only calculated at

e receiver

- > ML
 - $\Box i$ that minimizes $\|\mathbf{r} \mathbf{s}_i\|$

$$\|\mathbf{r}\|^2 - 2\langle \mathbf{r}, \mathbf{s}_i \rangle + \|\mathbf{s}_i\|^2$$

Vector space receiver

correlator

- > MAP
 - $\Box i$ that minimizes $\|\mathbf{r} \mathbf{s}_i\|^2 N_0 \ln P(\mathbf{s}_i)$

$$\|\mathbf{r}\|^2 - 2\langle \mathbf{r}, \mathbf{s}_i \rangle + \|\mathbf{s}_i\|^2 - N_0 \ln P(\mathbf{s}_i)$$

- > ML
 - \mathbf{l} that minimizes $\|\mathbf{r} \mathbf{s}_i\|^2$

$$\|\mathbf{r}\|^2 - 2\langle \mathbf{r}, \mathbf{s}_i \rangle + \|\mathbf{s}_i\|^2$$

Two approaches

- Linear sampling receiver
 - fix the type of receiver
 - probability theory for decision rule
 - maximize the SNR with a matched filter
- Signal space analysis
 - representation in a vector space
 - probability theory for decision rule
 - structure is a correlator

Sampling receiver

Sampling receiver

Correlator

$$r_{i1} = \int_{-\infty}^{\infty} r_i(t) \phi_1(t) dt$$

Matched Filter

$$r_{i1} = y(T) = \int_{-\infty}^{\infty} r_i(\tau) \phi_1(\tau) d\tau$$

Correlator vs. Matched Filter

$$r_{i1} = \int\limits_{-\infty}^{\infty} r_i(t) \varphi_1(t) dt$$

$$r_{i1} = y(T) = \int_{-\infty}^{\infty} r_i(\tau) \phi_1(\tau) d\tau$$

Correlator vs. Matched filter

How?

Matched filter

$$y(t) = \int_{-\infty}^{\infty} r_i(\tau)h(t-\tau)d\tau$$

From the convolution formula

$$= \int_{-\infty}^{\infty} r_i(\tau) \, \phi_1 \, (T - (t - \tau)) d \, \tau$$

$$= \int_{-\infty}^{\infty} r_i(\tau) \, \phi_1 \, (T - t + \tau) d \, \tau$$

At t=T,

$$r_{i1} = y(T) = \int_{-\infty}^{\infty} r_i(\tau) \phi_1(\tau) d\tau$$

The result is same as Correlator filter

nication UEC639

Transmitter Design (Sequence to waveforms)

Sequence of symbols: Real numbers or **Quantized real** numbers

Transmitter

$$S_{i}(t) = \begin{bmatrix} S_{11} & S_{12} & S_{13} & \cdots & S_{1N} \\ S_{21} & S_{22} & S_{23} & \cdots & S_{2N} \\ S_{31} & S_{32} & S_{33} & \cdots & S_{3N} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ S_{M1} & S_{M2} & S_{M3} & \cdots & S_{MN} \end{bmatrix} \begin{bmatrix} \emptyset_{1} \\ \emptyset_{2} \\ \emptyset_{2} \\ \vdots \\ \emptyset_{N} \end{bmatrix}$$

$$s_{1}(t) = s_{11}\phi_{1}(t) + s_{12}\phi_{2}(t) + s_{12}\phi_{2$$

$$s_1(t) = s_{11}\phi_1(t) + s_{12}\phi_2(t) + \dots + s_{1N}\phi_N(t)$$

$$s_2(t) = s_{21}\phi_1(t) + s_{22}\phi_2(t) + s_{2N}\phi_N(t)$$

$$s_M(t) = s_{M1}\phi_1(t) + s_{M2}\phi_2(t) + s_{MN}\phi_N(t)$$

Receiver Design (Waveform to sequences)

 Correlation receiver contains two parts:

Detector Vector Receiver

 Detector converts signal x(t) to observation vector x as per the equation

$$X_j = \int_0^T X(t)\phi_j(t)dt$$

Vector receiver converts x to estimate m

Signal Constellation

A signal constellation is the physical diagram used to describe all the possible symbols used by a signaling system to transmit data and is an aid to designing better communications systems.

QAM doesn't have to be a square

FSK - orthogonal signals

Thanks !