LAPORAN

RENCANA TUGAS MAHASISWA (RTM) Ke-3 MATA KULIAH ANALISIS DATA EKSPLORATIF "Statistika Deskriptif dan Grouping Dataset"

DISUSUN OLEH:

Muhammad Aryasatya Nugroho (22083010085)

DOSEN PENGAMPU:

Tresna Maulana Fahrudin S.ST., M.T. (NIP. 199305012022031007)

PROGRAM STUDI SAINS DATA FAKULTAS ILMU KOMPUTER UNIVERSITAS PEMBANGUNAN NASIONAL "VETERAN" JAWA TIMUR 2023

Implementasikan teknik-teknik statistika deskriptif dan pivoting tabel untuk menyelesaikan berbagai permasalahan studi kasus pada dataset.

1. Statistika Deskriptif (Distribusi Uniform, Distribusi Normal, Skewness, dan Kurtosis)

- a. Distribusi Uniform
 - Import Library dan Load Dataset

```
import pandas as pd

ph = pd.read_csv("ph.csv", sep=';', decimal=',')
ph.head()
```

Mencari Nilai a dan b

Kode diatas digunakan untuk mencari nilai a dan b dengan mencari nilai mean dan standar deviasi dalam dataset

 Menggunakan persamaan mean dan standar deviasi untuk mendapatkan nilai a dan b sesuai dengan sifat dasar statistika dalam distribusi uniform.

```
1  a_plus_b = 2 * mean
2  print("Nilai a + b Dari ph Dataset :", a_plus_b)
3
4  b_min_a = std_dev * (12 ** 0.5)
5  print("Nilai b - a Dari ph Dataset :", b_min_a)
6
7  a = (a_plus_b - b_min_a) / 2
8  print("Nilai a Dari Distribusi Uniform :", a)
9
10  b = (a_plus_b + b_min_a) / 2
11  print("Nilai b Dari Distribusi Uniform :", b)

Nilai a + b Dari ph Dataset : 12.4299999999998
Nilai b - a Dari ph Dataset : 9.69501418255796
Nilai a Dari Distribusi Uniform : 1.3674929087210188
Nilai b Dari Distribusi Uniform : 11.06250709127898
```

Kode diatas menghitung dua parameter, "a" dan "b," dalam distribusi uniform berdasarkan mean dan standar deviasi dari dataset "ph." Parameter "a" adalah setengah dari selisih antara "a_plus_b" dan "b_min_a," sementara "b" adalah setengah dari jumlah keduanya. Hasilnya adalah dua parameter yang mendefinisikan distribusi uniform dengan rentang yang sesuai

dengan data dalam dataset "ph."

Hitung probabilitas distribusi uniform dengan nilai a dan b

```
v  1 #nilai x1 dan x2
2 x1 = a
3 x2 = 5
4
5 # probabilitas uniform x < 5
6 prob_uni = (1 / (b - a)) * (x2 - a)
7 print("Probabilitas Uniform Dari Ph Dataset Dengan x < 5 Sebesar : ", prob_uni)
8
9 # presentase probablitas uniform x < 5
10 percent_prob = prob_uni * 100
11 print("Presentase Probabilitas Uniform Ph Dataset Dengan x < 5 Sebesar : ", percent_prob, "%")
Probabilitas Uniform Dari Ph Dataset Dengan x < 5 Sebesar : 0.3746778522319366
Presentase Probabilitas Uniform Ph Dataset Dengan x < 5 Sebesar : 37.46778522319366 %</pre>
```

Kode di atas menghitung probabilitas bahwa nilai acak "x" dalam distribusi uniform yang telah dihitung sebelumnya, yaitu antara "a" dan "b," kurang dari 5. Probabilitas ini dihitung dengan rumus probabilitas distribusi uniform, di mana kita menghitung panjang interval antara "a" dan 5, kemudian membaginya dengan panjang total interval antara "a" dan "b." Hasil probabilitas ini kemudian diubah menjadi persentase dengan mengalikannya dengan 100. Dengan demikian, kita mendapatkan probabilitas bahwa "x" kurang dari 5 dalam distribusi uniform dari dataset "ph," yang diungkapkan dalam bentuk persentase.

Visualisasi Dataset

```
import matplotlib.pyplot as plt

#visualisasi histogram dataset ph.csv

data_ph = ph["x"]

plt.figure(figsize = (10, 6))
plt.hist(data_ph, bins = 20, density = True, color = "pink", alpha = 0.6,
plt.title("Histogram Distribusi Dataset Ph", size = 15, color = "black")

plt.xlabel("Nilai Distribusi Data Ph", size = 13, color = "black")

plt.ylabel("Frequency", size = 13, color = "black")

plt.grid(True)

plt.show()
```

Ditampilkan histogram:

Data ph berdistribusi uniform karena histogram berbentuk persegi panjang dengan tinggi yang sama pada setiap kelas.

b. Distribusi Normal

Import Library dan Load Dataset

```
import pandas as pd

normal_data = pd.read_csv("normal_distribution.csv", sep=';', decimal=',')
normal_data
```

Hitung Persamaan f(x) dan Gunakan Persamaan Distribusi Normal

```
# perhitungan f(x) menggunakan x di dataset normal column = normal_data["x"]
 4 # hitung mean
    mean_normal = sum(column) / len(column)
 6 print("Nilai Mean Dari Normal Distribution Dataset: {:.3f}".format(mean_normal))
 8 # hituna standar deviasi
 9 variance_normal = sum((i - mean_normal) ** 2 for i in column) / len(column)
10 std_dev_normal = variance_normal ** 0.5
11 print("Nilai Standar Deviasi Dari Normal Distribution Dataset: {:.3f}".format(std_dev_normal))
13 # hitung f(x)
14 def normal_distribution(x, mean, std_dev):
       eksponen_normal = (-(x - mean) ** 2) / (2 * std_dev ** 2)

persamaan_dist = (1 / (std_dev * ((2 * 3.141) ** 0.5))) * (2.718 ** eksponen_normal)
15
16
         return persamaan dist
18
19 # masuk nilai function
20 nilai_x = [normal_distribution(x, mean_normal, std_dev_normal) for x in column]
21 print("Hasil Persamaan f(x) Dari Nilai x Yang Terdapat Pada Normal Distribution Dataset:")
23 # menampilkan hasil persamaan f(x) dari x yang terdapat di normal distribution dataset
24 for i in range(len(column)):
         x = column[i]
         fx = nilai_x[i]
         print("|Nilai x: {:<6.2f} | Persamaan f(x): {:.5f}|".format(x, fx))</pre>
```

Kode ini digunakan untuk menghitung fungsi distribusi normal (f(x)) berdasarkan nilai x dalam dataset distribusi normal. Pertama, kode menghitung nilai rata-rata (mean) dan standar

deviasi (standard deviation) dari dataset normal. Kemudian, fungsi normal_distribution(x, mean, std_dev) digunakan untuk menghitung f(x) berdasarkan rumus distribusi normal. Hasil f(x) kemudian dihitung untuk setiap nilai x dalam dataset normal. Hasilnya, kode ini menghasilkan f(x) untuk setiap nilai x dalam dataset distribusi normal, dan ini digunakan untuk memahami distribusi data dan nilai fungsinya pada berbagai titik. Output:

```
Nilai Mean Dari Normal Distribution Dataset: 0.079
Nilai Standar Deviasi Dari Normal Distribution Dataset: 2.294
Hasil Persamaan f(x) Dari Nilai x Yang Terdapat Pada Normal Distribution Dataset:
|Nilai x: -5.84 | Persamaan f(x): 0.00624|
|Nilai x: -4.86
                Persamaan f(x): 0.01715
Nilai x: -3.96
                 | Persamaan f(x): 0.03694|
|
|Nilai x: -3.74 | Persamaan f(x): 0.04353
|Nilai x: -2.86 | Persamaan f(x): 0.07657|
Nilai x: -2.35
                | Persamaan f(x): 0.09931
Nilai x: -2.25
                | Persamaan f(x): 0.10390|
|Nilai x: -2.16 | Persamaan f(x): 0.10804|
|Nilai x: -1.80 | Persamaan f(x): 0.12437
|Nilai x: -1.69 | Persamaan f(x): 0.12920
|Nilai x: -1.53 | Persamaan f(x): 0.13601
|Nilai x: -1.52 | Persamaan f(x): 0.13642|
|Nilai x: -1.17 | Persamaan f(x): 0.14997|
|Nilai x: -1.17 | Persamaan f(x): 0.14997|
|Nilai x: -1.12 | Persamaan f(x): 0.15172|
Nilai x: -0.94
                  | Persamaan f(x): 0.15758
```

Visualisasi Antara Nilai x dan f(x)

```
import matplotlib.pyplot as plt

plt.figure(figsize = (9, 5))

plt.plot(column, nilai_x, color = "teal", marker = "o", linestyle = "-")

plt.title("Diagram Garis Hubungan Nilai X Dan F(X)", fontsize = 15)

plt.xlabel("Nilai X", fontsize = 13, color = "black")

plt.ylabel("Nilai F(X)", fontsize = 13, color = "black")

plt.tight_layout()

plt.grid(True)

plt.show()
```


Dari diagram garis tersebut, terlihat bahwa data memiliki distribusi normal, karena kurva memiliki bentuk lonceng

c. Skewness

Import Library dan Load Dataset

```
import pandas as pd

skewness = pd.read_csv("skewness.csv", sep=';', decimal=',')
skewness
```

 Hitung persamaan f(x) dari nilai x berdasarkan distribusi normal dan gunakan persamaan skewness

```
# perhitungan f(x) menggunakan x di dataset normal
   column = skewness["x"]
 4 # hitung mean
 5 mean_normal = sum(column) / len(column)
 6 print("Mean Normal Distribution Dataset: {:.3f}".format(mean normal))
8 # hitung standar deviasi
 9 variance_normal = sum((i - mean_normal) ** 2 for i in column) / len(column)
10 std_dev_normal = variance_normal ** 0.5
11 print("Standar Deviasi Normal Distribution Dataset: {:.3f}".format(std_dev_normal))
13 # hitung f(x)
14 def normal_distribution(x, mean, std_dev):
      eksponen_normal = (-(x - mean) ** 2) / (2 * std_dev ** 2)
persamaan_dist = (1 / (std_dev * ((2 * 3.141) ** 0.5))) * (2.718 ** eksponen_normal)
15
16
17
       return persamaan dist
18
19 # masuk nilai function
20 nilai_x = [normal_distribution(x, mean_normal, std_dev_normal) for x in column]
21 print("Persamaan f(x) Dari Nilai x Pada Normal Distribution Dataset:")
23 # penampilan hasil persamaan f(x) dari x yang terdapat di normal distribution dataset
24 for i in range(len(column)):
      x = column[i]
25
26
       fx = nilai x[i]
       print("|Nilai x: {:<6.2f} | Persamaan f(x): {:.5f}|".format(x, fx))</pre>
27
28
30 median_normal = column.median() # Untuk menghitung skewness, kita gunakan mean
31 skewness = (3 * (mean_normal - median_normal)) / std_dev_normal
32 print("Skewness dari dataset adalah:", skewness)
```

Kode ini digunakan untuk menghitung dan mengevaluasi fungsi distribusi normal (f(x)) berdasarkan nilai x dalam dataset yang memiliki distribusi skewness. Terlebih dahulu, kode menghitung rata-rata (mean) dan standar deviasi (standard deviation) dari dataset skewness. Kemudian, fungsi normal_distribution(x, mean, std_dev) digunakan untuk menghitung f(x) berdasarkan rumus distribusi normal. Hasil f(x) kemudian dihitung untuk setiap nilai x dalam dataset skewness. Selain itu, kode juga menghitung skewness dari dataset menggunakan rumus skewness yang menggambarkan kemiringan distribusi data. Hasilnya, kode ini menghasilkan f(x) untuk setiap nilai x dalam dataset skewness dan juga mengukur kemiringan distribusi data melalui skewness. Hal ini membantu dalam memahami sejauh mana distribusi data deviasi dari distribusi normal. Output:

```
Mean Normal Distribution Dataset: -0.031
Standar Deviasi Normal Distribution Dataset: 2.708
Persamaan f(x) Dari Nilai x Pada Normal Distribution Dataset:
|Nilai x: -10.00 | Persamaan f(x): 0.00017|
|Nilai x: -3.30 | Persamaan f(x): 0.07110|
|Nilai x: -3.20 | Persamaan f(x): 0.07429|
Nilai x: -3.10 | Persamaan f(x): 0.07752
|Nilai x: -3.00 | Persamaan f(x): 0.08077|
Nilai x: -2.90 | Persamaan f(x): 0.08405
Nilai x: -2.80 | Persamaan f(x): 0.08735
|
|Nilai x: -2.70 | Persamaan f(x): 0.09065
|Nilai x: -2.60 | Persamaan f(x): 0.09394|
|Nilai x: -2.50 | Persamaan f(x): 0.09722
Nilai x: -2.40 | Persamaan f(x): 0.10048
|Nilai x: -2.30 | Persamaan f(x): 0.10371
|Nilai x: -2.20 | Persamaan f(x): 0.10690|
|Nilai x: -2.10 | Persamaan f(x): 0.11003|
Skewness dari dataset adalah: -0.5879543070683356
```

Visualisasi Diagram Garis

```
plt.plot(column, nilai_x, marker='o', linestyle='-')
plt.plot(column, nilai_x)
plt.xlabel("Nilai x")

plt.ylabel("f(x)")
plt.title("Visualisasi Distribusi Normal")
plt.grid(True)
plt.show()
```

Output visualisasi ditampilkan dibawah ini:

Berdasarkan histogram distribusi data ph di atas, dapat disimpulkan bahwa data tersebut

berdistribusi positif skew. Hal ini terlihat dari bentuk histogram yang memanjang ke arah kanan. Artinya, nilai data Ph yang lebih besar dari rata-rata lebih sering muncul daripada nilai data ph yang lebih kecil dari rata-rata.

d. Kurtosis

Import Library dan Load Dataset

```
import pandas as pd

kurtosis = pd.read_csv("kurtosis.csv", sep=';', decimal=',')
kurtosis
```

 Hitung persamaan f(x) dari nilai x berdasarkan distribusi normal dan gunakan persamaan kurtosis

```
import numpy as np
   # perhitungan f(x) menggunakan x di dataset kurtosis
 4 column = kurtosis["x"]
6 # hituna mean
 7 mean_normal = sum(column) / len(column)
8 print("Mean Dataset Kurtosis: {:.3f}".format(mean_normal))
10 # hituna standar deviasi
11 variance_normal = sum((i - mean_normal) ** 2 for i in column) / len(column)
12 std_dev_normal = variance_normal ** 0.5
13 print("Standar Deviasi Dataset Kurtosis: {:.3f}".format(std_dev_normal))
14
15 # hitung f(x)
def normal_distribution(x, mean, std_dev):
       eksponen_normal = (-(x - mean) ** 2) / (2 * std_dev ** 2)
17
       persamaan_dist = (1 / (std_dev * ((2 * np.pi) ** 0.5))) * (np.exp(eksponen_normal))
18
19
       return persamaan dist
20
21 # masukkan nilai ke dalam fungsi
22 nilai_x = [normal_distribution(x, mean_normal, std_dev_normal) for x in column]
23 print("Hasil Persamaan f(x) Dari Nilai x Yang Terdapat Pada Dataset Kurtosis:")
25 # tampilkan hasil persamaan f(x) dari x yang terdapat di dataset kurtosis
26 for i in range(len(column)):
27
       x = column[i]
28
       fx = nilai_x[i]
       print("|Nilai x: {:<6.2f} | Persamaan f(x): {:.5f}|".format(x, fx))
30
31 # Hitung kurtosis
32 kurtosis_value = sum((x - mean_normal) ** 4 for x in column) / (len(column) * (std_dev_normal ** 4))
33 print("Kurtosis dari dataset adalah:", kurtosis_value)
```

Kode ini digunakan untuk menghitung dan mengevaluasi fungsi distribusi normal (f(x)) berdasarkan nilai x dalam dataset kurtosis. Pertama, rata-rata (mean) dan standar deviasi (standard deviation) dari dataset dihitung. Kemudian, fungsi distribusi normal diterapkan pada setiap nilai dalam dataset untuk menghitung f(x). Selain itu, kode juga menghitung kurtosis dari dataset, yang menggambarkan karakteristik keruncingan atau datar distribusi data. Nilai kurtosis yang lebih besar dari 3 menunjukkan distribusi lebih kerucut (leptokurtik), sementara nilai yang lebih kecil menunjukkan distribusi lebih datar (platykurtik) dibandingkan dengan distribusi normal (kurtosis normal adalah 3). Hal ini membantu dalam memahami karakteristik distribusi data dalam konteks kurtosis. Output:

```
Mean Dataset Kurtosis: 0.760
Standar Deviasi Dataset Kurtosis: 12.329
Hasil Persamaan f(x) Dari Nilai x Yang Terdapat Pada Dataset Kurtosis :
|Nilai x: -29.40 | Persamaan f(x): 0.00162
|Nilai x: -29.30 | Persamaan f(x): 0.00166|
|Nilai x: -29.20 | Persamaan f(x): 0.00169|
|Nilai x: -29.10 | Persamaan f(x): 0.00172|
|Nilai x: -2.50 | Persamaan f(x): 0.03125|
|Nilai x: -2.40 | Persamaan f(x): 0.03131|
|Nilai x: -2.30 | Persamaan f(x): 0.03138
|Nilai x: -2.20 | Persamaan f(x): 0.03144
|Nilai x: -2.10 | Persamaan f(x): 0.03150|
|Nilai x: -2.00 | Persamaan f(x): 0.03156
                | Persamaan f(x): 0.03230|
Nilai x: 0.00
Nilai x: 1.00
                 | Persamaan f(x): 0.03235|
|Nilai x: 1.10
                 | Persamaan f(x): 0.03235
                | Persamaan f(x): 0.03234|
Nilai x: 1.20
                | Persamaan f(x): 0.03233|
Nilai x: 1.30
Kurtosis dari dataset adalah: 5.860396932336173
```

Distribusi data mengarah ke platykurtic, mesokurtic, atau leptokurtic?

```
# Mengambil nilai kurtosis
kurtosis = kurtosis_value

if kurtosis < 3:
decision = "Platykurtic (ekor tipis)"
explanation = "Distribusi data memiliki kurtosis kurang dari 3, yang berarti ekornya sangat tipis dibandingkan dengan
elif kurtosis == 3:
decision = "Mesokurtic"
explanation = "Distribusi data memiliki kurtosis sama dengan 3, yang menunjukkan bahwa distribusi ini mirip dengan di
else:
decision = "Leptokurtic (ekor tebal)"
explanation = "Distribusi data memiliki kurtosis lebih dari 3, yang menunjukkan distribusi ini menghasilkan lebih ban
print("Distribusi data mengarah ke:", decision)
print("Penjelasan:", explanation)

Distribusi data mengarah ke: Leptokurtic (ekor tebal)
Penjelasan: Distribusi data memiliki kurtosis lebih dari 3, yang menunjukkan distribusi ini menghasilkan lebih banyak outlier.
```

Visualisasi Diagram Garis

```
plt.plot(column, nilai_x, marker='o', linestyle='-')
plt.plot(column, nilai_x)
plt.xlabel("Nilai x")

plt.ylabel("f(x)")
plt.title("Visualisasi Kurtosis")

plt.grid(True)
plt.show()
```


2. Grouping Dataset: Pivoting Table

Lakukanlah pivoting tabel menggunakan kode *script* pemrograman Python pembelian bahan pokok makanan yang dikirimkan oleh supplier pada kuartal tertentu menjadi tabel seperti berikut:

a. Pivoting Tabel Berdasarkan Jumlah Pembelian Bahan Pokok (kg) per Kuartal

Row Labels	2015	2016	2017	Grand
				Total
Bawang Merah	1450	1278	1574	4302
Kuartal 1	406	296	408	1110
Kuartal 2	277	248	427	952
Kuartal 3	431	403	430	1264
Kuartal 4	336	331	309	976
Bawang Putih	1419	1659	1601	4679
Kuartal 1	313	534	355	1202
Kuartal 2	407	447	443	1297
Kuartal 3	361	332	506	1199
Kuartal 4	338	346	297	981
Cabai	1543	1568	1612	4723
Kuartal 1	309	272	221	802
Kuartal 2	364	473	431	1268
Kuartal 3	519	366	453	1338
Kuartal 4	351	457	507	1315

Import Library dan Load Dataset

1 2 3 4		oandas as pd .read_csv('da	ata_bahan	ı_pokok.cs	sv', sep	p=';')			
	TANGGAL	BARANG	SUPLIER	BULAN	TAHUN	KUARTAL	JUMLAH	HARGA	TOTA
0	01/01/15	Cabai	Bejo	January	2015	Kuartal 1	55	IDR30.550	IDR1.680.25
1	06/01/15	Kunyit	Bejo	January	2015	Kuartal 1	72	IDR12.964	IDR933.40
2	11/01/15	Bawang Merah	Painah	January	2015	Kuartal 1	81	IDR28.875	IDR2.338.87
3	18/01/15	Bawang Putih	Tarno	January	2015	Kuartal 1	146	IDR20.812	IDR3.038.55
4	22/01/15	Kencur	Bejo	January	2015	Kuartal 1	159	IDR9.785	IDR1.555.81
211	07/12/17	Kunyit	Bejo	December	2017	Kuartal 4	77	IDR13.604	IDR1.047.50
212	12/12/17	Bawang Merah	Painah	December	2017	Kuartal 4	104	IDR24.709	IDR2.569.73
213	18/12/17	Bawang Putih	Tarno	December	2017	Kuartal 4	124	IDR22.074	IDR2.737.17
214	22/12/17	Kencur	Bejo	December	2017	Kuartal 4	128	IDR8.965	IDR1.147.52
215	26/12/17	Jahe	Painah	December	2017	Kuartal 4	191	IDR22.493	IDR4.296.16

Pivoting Tabel

Kode diatas digunakan untuk menghasilkan tabel pivot dari dataset bahan pokok menggunakan python dan library pandas. Tujuannya untuk merangkum dan mengorganisisr data pembelian bahan pokok berdasarkan jenis barang, kuartal, dan tahun. Kode tersebut membantu dalam mengorganisir data pembelian bahan pokok dengan melakukan pengelompokan, menghitung total pembelian, dan menyesuaikan label. Ini bertujuan untuk menyajikan data pembelian bahan pokok dengan tampilan yang lebih terstruktur dan mudah dipahami.

Hasil Pivoting

Row Labels	2015	2016	2017	Grand Total					
KUARTAL									
Bawang Merah	1450	1278	1574	4302	Jahe	1317	1677	1659	4653
Kuartal 1	406	296	408	1110	Kuartal 1	276	515	435	1226
Kuartal 2	277	248	427	952	Kuartal 2	251	262	387	900
Kuartal 3	431	403	430	1264	Kuartal 3	363	488	426	1277
Kuartal 4	336	331	309	976	Kuartal 4	427	412	411	1250
Bawang Putih	1419	1659	1601	4679	Kencur	1607	1489	1376	4472
Kuartal 1	313	534	355	1202	Kuartal 1	527	376	340	1243
Kuartal 2	407	447	443	1297	Kuartal 2	345	328	420	1093
Kuartal 3	361	332	506	1199	Kuartal 3	370	470	269	1109
Kuartal 4	338	346	297	981	Kuartal 4	365	315	347	1027
Cabai	1543	1568	1612	4723	Kunyit	1640	1446	1419	4505
Kuartal 1	309	272	221	802	Kuartal 1	374	284	398	1056
Kuartal 2	364	473	431	1268	Kuartal 2	439	345	255	1039
Kuartal 3	519	366	453	1338	Kuartal 3	355	368	350	1073
Kuartal 4	351	457	507	1315	Kuartal 4	472	449	416	1337

b. Pivoting Tabel Berdasarkan Total Pembelian Bahan Pokok (Rupiah) per Kuartal

Row Labels	2015	2016	2017	Grand Total
Bawang Merah	37823531	31731767	40941357	110496655
Kuartal 1	11037115	6820091	10456137	28313343
Kuartal 2	7596610	6251504	11075213	24923327
Kuartal 3	10800386	10587768	11697016	33085170
Kuartal 4	8389420	8072404	7712991	24174815
Bawang Putih	31078455	37670606	35263522	104012583
Kuartal 1	6812135	12662576	7962251	27436962
Kuartal 2	8932531	10457967	9784401	29174899
Kuartal 3	8082531	7110937	10945924	26139392
Kuartal 4	7251258	7439126	6570946	21261330
Cabai	45057879	44441269	46168221	135667369
Kuartal 1	9219854	7652138	5787840	22659832
Kuartal 2	10617522	13099592	12230465	35947579
Kuartal 3	15774604	9718410	14312881	39805895
Kuartal 4	9445899	13971129	13837035	37254063

Pivoting Tabel

Penjelasann Kode ini digunakan untuk membuat pivot table yang merangkum data penjualan item-item tertentu dari suatu dataset. Prosesnya dimulai dengan mengonversi kolom "TOTAL" ke dalam format yang sesuai dan menghapus simbol mata uang IDR serta tanda titik. Kemudian, data yang sudah difilter berdasarkan nama item yang disediakan, diproses untuk menciptakan pivot table dengan total penjualan per kuartal dan total tahun. Pivot table ini kemudian difilter kembali untuk hanya menampilkan kuartal dan total tahun tertentu, serta disusun sesuai urutan. Hasil akhirnya adalah pivot table yang menyajikan total penjualan item-item yang berbeda per kuartal dan tahun, disertai dengan grand total, dengan nama item yang diurutkan secara alfabetis.

Hasil Pivoting

Row Labels	2015	2016	2017	Grand Total					
KUARTAL									
Bawang Merah	37823531	31731767	40941357	110496655	Jahe	29984636	36550966	38324202	104859804
Kuartal 1	11037115	6820091	10456137	28313343	Kuartal 1	6204072	11010367	10148692	27363131
Kuartal 2	7596610	6251504	11075213	24923327	Kuartal 2	5775616	5880108	8595257	20250981
Kuartal 3	10800386	10587768	11697016	33085170	Kuartal 3	7806801	10696194	10448307	28951302
Kuartal 4	8389420	8072404	7712991	24174815	Kuartal 4	10198147	8964297	9131946	28294390
Bawang Putih	31078455	37670606	35263522	104012583	Kencur	15030665	13539469	12267295	40837429
Kuartal 1	6812135	12662576	7962251	27436962	Kuartal 1	4981422	3332834	2922221	11236477
Kuartal 2	8932531	10457967	9784401	29174899	Kuartal 2	3362034	3039520	3769896	10171450
Kuartal 3	8082531	7110937	10945924	26139392	Kuartal 3	3173993	4161334	2297363	9632690
Kuartal 4	7251258	7439126	6570946	21261330	Kuartal 4	3513216	3005781	3277815	9796812
Cabai	45057879	44441269	46168221	135667369	Kunyit	19931524	18179929	18339347	56450800
Kuartal 1	9219854	7652138	5787840	22659832	Kuartal 1	4048734	3119536	4489786	11658056
Kuartal 2	10617522	13099592	12230465	35947579	Kuartal 2	5524089	4272801	3401235	13198125
Kuartal 3	15774604	9718410	14312881	39805895	Kuartal 3	4177633	5073847	4809108	14060588
Kuartal 4	9445899	13971129	13837035	37254063	Kuartal 4	6181068	5713745	5639218	17534031