BME354L (Palmeri) Spring 2013

Exam #1

Instructions:

- Write your name at the top of each page.
- Show all work (this is critical for partial credit!).
- Remember to include units with all answers and label all plot axes.
- Clearly box all answers.
- Assume that all components are ideal unless otherwise stated.
- Please keep your answers brief for questions where I ask 'why?'.

In keeping with the Duke Community Standard, I have neither given nor received aid in completion of this examination.

Signature:

Problem #1 [50 points]

You build the generalized circuit above in lab, and you measure the following V_{out} signals for the specified V_{in} signals (all measurements have $\pm 10\%$ tolerance on them):

$V_{\text{in}}(V)$	$V_{\text{out}}(V)$
$15\sin(2000t)$	$1.5\sin(2000t + \frac{\pi}{2})$
$10\sin(20000t + \frac{\pi}{2})$	$\frac{10\sqrt{2}}{2}\sin(20000t + \frac{3\pi}{4})$
$2.5\cos(300000t)$	$2.5\cos(300000t)$
$1.2\sin(4500000t)$	$\frac{1.2\sqrt{2}}{2}\sin(4500000t-\frac{\pi}{4})$
$0.5\sin(45000000t + \frac{\pi}{2})$	$0.05 \sin(45000000t)$

- (a) Sketch Bode plots for the <u>amplitude and phase</u> transfer functions for your filter. Label everything important, including cut-off / resonance frequencies, if applicable.² [15 points]
- (b) You need to design a [low-pass/high-pass/bandpass/bandstop] filter for these $V_{\rm in}$: $V_{\rm out}$ relationships? Why? [5 points, choose one answer]
- (c) Does your filter need to be active, or could you design a passive filter to achieve this V_{in} : V_{out} behavior? Why? [5 points]
- (d) Draw the circuit diagram for your filter with all key components labeled with specified values. If you are using op amps, then please specify their rail voltages. [10 points]
- (e) What is the input impedance of your filter? [5 points]
- (f) Design an amplifier for your filter output that can generate a maximum output voltage of \pm 12 V and does not saturate ("rail") for filter output voltages ($V_{\rm out}$) as large as \pm 2.5 V. Make sure that your amplifier does not corrupt the phase of the filter output ($V_{\rm out}$). Remember to consider the impedance relationship between your filter and your amplifier. [10 points]

¹It may help to think of these V_{in} : V_{out} pairs in terms of phasors.

²I have only given you 5 discrete data points for your filter, but you can assume that all circuit behavior between these points is smooth and monotonic.

Problem #2 [50 points]

All of the components in the circuit above should be considered ideal and have the following values:

- Component Values: $R_1=R_2=R_3=R_4=10~{\rm k}\Omega$; V_2 = -1 V
- Rail voltages for op amp A: \pm 2 V
- $\bullet~$ Rail voltages for op amp B: $\pm~12~V$
- (a) What is the input impedance (Z_{in}) , as indicated on the circuit diagram (as "seen" by V_1). [5 points]
- (b) Op amp A is configured with [no / negative / positive] feedback. Why? [5 points, choose one answer]
- (c) Op amp B is configured with [no / negative / positive] feedback. Why? [5 points, choose one answer]
- (d) Write an expression for I_a , as indicated on the circuit diagram. [5 points]
- (e) What is the purpose of V_2 in this circuit? [5 points]
- (f) Sketch V_{out} for V_1 = -12:12 V. Please be sure to indicate the overall function of this circuit and show your steps in solving for V_{out} to maximize partial credit!! [15 points]
- (g) Sketch V_{out} for 2 cycles of $V_1 = 12 \cos(100t)$ V, starting at t = 0. [5 points]
- (h) What is the output impedance, Z_{out} , as indicated on the circuit diagram? [5 points]

BME354L - Spring 2013 - Exam #1	Name: