PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-008853

(43)Date of publication of application: 11.01.2000

(51)Int.CI.

F01P 7/16

(21)Application number: 10-188104

(71)Applicant: HONDA MOTOR CO LTD

(22)Date of filing:

19.06.1998

(72)Inventor: NIKI MANABU

ISOBE TAKASHI KOIKE YUZURU HASHIMOTO AKIRA

HASHINOTO AKIKA

(54) RADIATOR FAILURE DETECTING DEVICE FOR INTERNAL COMBUSTION ENGINE

(57)Abstract:

PROBLEM TO BE SOLVED: To detect the failure of a radiator with high accuracy and high responsiveness by calculating an estimated water temperature on the basis of the heat load parameter correlated with at least the water temperature in the start of the engine and the rise of the water temperature, and comparing the detected water temperature and the estimated water temperature with the predetermined values to judge the failure of a radiator.

SOLUTION: An engine body 10 is connected to a radiator 60 through an inlet pipe 62, and a thermostat 64 is mounted on the inlet pipe 62. The operating condition of the engine body 10 is detected by various sensors including at least an outside air temperature sensor 30 and a water temperature sensor 32, the estimated water temperature is calculated by ECU 20 on the basis of the heat load parameter correlated with at least the water temperature in the start and the rise of the water temperature, and the detected water temperature and the estimated water temperature are respectively compared with the predetermined failure judgement values. In a case when the detected water temperature does not reach the judgement value when the estimated water temperature reaches the judgement value, the failure of the radiator 60, that is, the thermostat 64 is judged.

LEGAL STATUS

[Date of request for examination]

27.11.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3. In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] While connecting with an internal combustion engine through a free passage way and cooling said internal combustion engine's cooling water In failure detection equipment of a radiator which comes to have a thermostat which opens and closes said free passage way a. Inside of an operational status detection means to detect said internal combustion engine's operational status, and operational status by which the b. aforementioned detection was carried out, A presumed water temperature calculation means to compute presumed water temperature based on a thermal load parameter correlated with water temperature at the time of engine starting, and said water temperature rise at least, And radiator failure detection equipment of an internal combustion engine characterized by having a failure judging means to judge failure of said radiator for presumed water temperature by which the c. aforementioned calculation was carried out, and said detected water temperature based on said comparison result as compared with a predetermined value, respectively.

[Claim 2] Said presumed water temperature calculation means is radiator failure detection equipment of an internal combustion engine given in claim 1 term characterized by computing said thermal load parameter based on an engine load addition value at least.

[Claim 3] Said presumed water temperature calculation means is radiator failure detection equipment of an internal combustion engine given in claim dyadic characterized by computing said engine load addition value based on fuel oil consumption and an engine rotational frequency which are supplied to said internal combustion engine at least, and an engine load.

[Claim 4] Said presumed water temperature calculation means is radiator failure detection equipment of an internal combustion engine given in either claim 1 term further characterized by computing said thermal load parameter based on a cooling-loss addition value by a wind etc. thru/or the 3rd term.

[Claim 5] Said presumed water temperature calculation means is radiator failure detection equipment of an internal combustion engine given in claim 4 term characterized by computing a cooling-loss addition value by said wind etc. based on outside air temperature and the vehicle speed at least.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[The technical field to which invention belongs] And this invention is depended and relates to the failure detection equipment of the thermostat of a radiator in detail. [of an internal combustion engine] [radiator failure detection] [0002]

[Description of the Prior Art] The internal combustion engine for vehicles has the radiator which is connected through a free passage way and cools cooling water, and a thermostat (closing motion bulb) is arranged on a free passage way. When cooling water temperature of a thermostat, such as the time of starting, is low, while closing a free passage way, it will open, if a temperature up is carried out, a free passage way is opened wide, and cooling water is introduced into a radiator and it cools.

[0003] Since this radiator is also one of the loading components of vehicles, it is desirable to detect the failure. For example, in the radiator equipped with the incubation container which stores the cooling water by which warming up was usually carried out at the time of operation, and keeps it warm, the cooling water temperature detected at the time of starting operation has judged JP,6-213117,A to be incubation container failure, when unusually low.

[0004] Moreover, when unusually high, while the cooling water temperature at which this conventional technology was detected at the time of steady operation judges with closing stick failure, with a thermostat closed, when unusually low, it has judged with opening stick failure, with a thermostat opening.

[0005]

[Problem(s) to be Solved by the Invention] However, in the conventional technology, since failure of a thermostat was detected only when the detected cooling water temperature shows an unusual value, it was what it is not necessarily hard to satisfy in detection precision and responsibility.

[0006] Therefore, it is in the purpose of this invention canceling above-mentioned un-arranging, and is in offering a radiator and the radiator failure detection equipment of the internal combustion engine which can detect failure of the thermostat arranged in more detail at a radiator with high degree of accuracy and sufficient responsibility.

[0007]

[Means for Solving the Problem] If it is in claim 1 term in order to solve the above-mentioned purpose While connecting with an internal combustion engine through a free passage way and cooling said internal combustion engine's cooling water In failure detection equipment of a radiator which comes to have a thermostat which opens and closes said free passage way Inside of an operational status detection means to detect said internal combustion engine's operational status, and said detected operational status, A presumed water temperature calculation means to compute presumed water temperature based on a thermal load parameter correlated with water temperature at the time of engine starting, and said water temperature rise at least, And it constituted so that it might have a failure judging means to judge failure of said radiator for said computed presumed water temperature and said detected water temperature based on said comparison result as compared with a predetermined value, respectively.

[0008] Namely, since actual water temperature is detected, both temperature up property is judged by comparing with a predetermined value, respectively and it was made to carry out failure detection while presuming water temperature from a thermal load parameter which approximates water temperature at the time of engine starting, and actuation of a radiator, failure of a radiator and a thermostat arranged in more detail at a radiator is detectable with high degree of accuracy and sufficient responsibility.

[0009] If it was in claim 2 term, said presumed water temperature calculation means was constituted so that said thermal load parameter might be computed based on an engine load addition value at least. By this, failure of a radiator and a thermostat arranged in more detail at a radiator can be detected with high degree of accuracy and much more sufficient

responsibility.

[0010] If it was in claim 3 term, said presumed water temperature calculation means was constituted so that said engine load addition value might be computed based on fuel oil consumption and an engine rotational frequency which are supplied to said internal combustion engine at least, and an engine load. By this, failure of a radiator and a thermostat arranged in more detail at a radiator can be similarly detected with high degree of accuracy and much more sufficient responsibility.

[0011] If it was in claim 4 term, said presumed water temperature calculation means was further constituted so that said thermal load parameter might be computed based on a cooling-loss addition value by a wind etc. By this, failure of a radiator and a thermostat arranged in more detail at a radiator can be similarly detected with high degree of accuracy and much more sufficient responsibility.

[0012] If it was in claim 5 term, said presumed water temperature calculation means was constituted so that a cooling-loss addition value by said wind etc. might be computed based on outside air temperature and the vehicle speed at least. By this, failure of a radiator and a thermostat arranged in more detail at a radiator can be similarly detected with high degree of accuracy and much more sufficient responsibility.

[Embodiment of the Invention] Hereafter, it is based on an accompanying drawing and the gestalt of implementation of this invention is explained.

[0014] <u>Drawing 1</u> is the schematic diagram, showing the radiator failure detection equipment of the internal combustion engine concerning this invention on the whole.

[0015] In drawing, a sign 10 shows the internal combustion engine (henceforth an "engine") of a 4-cylinder four cycle. A throttle valve 14 is arranged in the middle of the inlet pipe 12 connected to main part 10a of an engine 10. The throttle opening sensor 16 is connected with a throttle valve 14, the electrical signal according to opening thetaTH of a throttle valve 14 is outputted, and it sends to an electronic control unit (henceforth "ECU") 20.

[0016] The above mentioned inlet pipe 12 forms an intake manifold (not shown) on the lower stream of a river of a throttle-valve arrangement location, and a fuel injection valve (injector) 22 is formed in the upstream of the inlet valve (not shown) of each gas column for every gas column in the intake manifold.

[0017] It connects with ECU20 electrically, and while the valve-opening time amount is controlled and opening, a fuel injection valve 22 injects the fed fuel in a gas column, while it connects with a fuel pump (not shown) mechanically and it receives feeding of a fuel (supply).

[0018] In the inlet pipe 12, the absolute-pressure sensor 26 is attached in the lower stream of a river of a throttle valve 14 through the branch pipe 24, and the electrical signal according to the inlet-pipe internal pressure PBA in an inlet pipe 12 (absolute pressure) is outputted.

[0019] Moreover, while the outside-air-temperature (intake-air temperature) sensor 30 is attached in the lower stream of a river and outputting the electrical signal according to outside air temperature (intake-air temperature) TA, a coolant temperature sensor 32 is arranged and the electrical signal according to engine-cooling-water ** (henceforth "water temperature") TW is outputted near the cooling water path (not shown) of engine 10a.

[0020] Moreover, in an internal combustion engine 10, the gas column distinction sensor 34 is attached near a cam shaft or a crankshaft (not shown [both]), and output sending out of the gas column distinction signal CYL is carried out for every piston location of a predetermined gas column.

[0021] Similarly, while the TDC sensor 36 is attached and outputting a TDC signal pulse to whenever [relevant to the TDC location of a piston (not shown) / crank angle / every] (for example, ten BTDC(s)), the crank angle sensor 38 is attached near a cam shaft or a crankshaft (not shown [both]), and a CRK signal pulse is periodically outputted to it whenever [shorter than period of said TDC signal pulse crank angle] (for example, 30 degrees).

[0022] Moreover, the air-fuel ratio sensor (O2 sensor) 42 is formed in the proper location of the exhaust pipe 40 connected to EKIZOSUTOMANIHORUDO (not shown) in an internal combustion engine's 10 exhaust air system, and it is the oxygen density O2 in exhaust gas. While outputting the embraced signal, a three way component catalyst 44 is formed in the lower stream of a river, and HC in exhaust gas, CO, and an NOx component are purified.

[0023] Moreover, an ignition plug 48 is arranged and it connects with ECU20 electrically through an ignition coil and an ignitor 50 in an internal combustion engine's 10 combustion chamber (not shown).

[0024] Furthermore, a knock sensor 52 is arranged and the signal according to vibration of an engine 10 is outputted to the cylinder head (not shown) of engine 10a. Moreover, the wheel speed sensor 54 is carried near the drive shaft (not shown) of vehicles in which an engine 10 is carried, and a pulse is outputted for every unit rotation of a wheel. [0025] The output of these sensors is also sent to ECU20.

[0026] CPU (arithmetic and program control)20 which performs input circuit 20a which ECU20 consists of a

microcomputer and processes plastic surgery of an input signal wave from the various above-mentioned sensors, conversion of a voltage level, or digital signal-ization of an analog signal value, and logical operation -- it consists of storage means 20c which memorizes various operation programs, the result of an operation, etc. which are performed by b and CPU, 20d of output circuits etc., etc.

[0027] In ECU20, the output of a knock sensor 52 is inputted into a detector (not shown), and is measured with the knock judging level which amplified and obtained the noise level there. It detects whether the knock generated CPU20b in the combustion chamber from the detector output. Moreover, CPU20b counts the output pulse of the wheel speed sensor 54, and detects the vehicle speed VPS while it counts a CRK signal pulse and detects an engine speed NE. [0028] When a knock is detected, it carries out lag amendment of the fundamental-points fire stage, while CPU20b searches the map which is beforehand set up from the detected engine speed NE and the absolute pressure PBA (engine load parameter) in an inlet pipe, and is stored in storage means 20c, computes a fundamental-points fire stage and amends a fundamental-points fire stage from engine-cooling-water ** TW etc.

[0029] Moreover, CPU20b determines fuel oil consumption (valve-opening time amount), and drives a fuel injection valve 22 through 20d of output circuits, and a drive circuit (not shown).

[0030] A radiator 60 is connected to an engine 10.

[0031] <u>Drawing 2</u> is the explanation side cross section showing the radiator 60 in details.

[0032] Like illustration, an engine 10 is connected to a radiator 60 through an inlet pipe (free passage way) 62, and a thermostat 64 is arranged at an inlet pipe 62.

[0033] An inlet pipe 62 is connected to the upper tank 66, and the core 70 of the shape of a nest of a bee is contained by the space from there to lower ROATANKU 68. The cooling water of a cooling water path is fed with Water pump 72, and enters in a tank from an inlet pipe 62, and it circulates through it, contacting a core 70, and it returns from the outlet pipe 74 to the cooling water path in an engine 10.

[0034] As an arrow head shows to <u>drawing 2</u>, a core 70 is compulsorily cooled by the fan 76 who is installed in a back side and drives by engine power while being cooled in response to a wind from a vehicles travelling direction.
[0035] It is the closing motion bulb which consists of bimetal, and a thermostat 64 will be wide opened, if cooling water temperature goes up, it contacts cooling water to a core 70, cools it, and returns it to a cooling water path while it prevents that close an inlet pipe 62 at the time of starting with low cooling water temperature, and cooling water invades.

[0036] In the above-mentioned configuration, ECU20 computes presumed water temperature based on the above mentioned sensor output, and detects failure of a thermostat 64 so that it may mention later.

[0037] The failure detection is explained with reference to the <u>drawing 3</u> flow chart. In addition, the program of illustration is performed every predetermined time, for example, 2sec(s). [0038] If it explains below, it will judge whether an engine 10 is in starting mode by S10. Whether the starter motor (not shown) is operating first judges this, and when denied, it is performed by judging whether the engine speed NE has reached the cranking rotational frequency. When affirmed by either, it is judged that an engine 10 is in starting mode.

[0039] When affirmed by S10, while progressing to S12 and making the value of the water temperature presumption engine load addition value TITTL, the addition cooling-loss value CLTTL, the after [starting] counter ctTRM (for the elapsed time measurement from engine starting), and the vehicle speed addition value VPSTTL into zero, let the value of the presumed water temperature TWINIT be the presumed water temperature CTW at the time of starting (it replaces). These parameters are mentioned later.

[0040] When denied by S10, it progresses to S14, and it judges whether the bit of flag F.MONTRM is set to 1. [0041] That the bit of this flag is set to 1 means that the thermostat failure detection execution condition was satisfied. By another subroutine flow chart, the existence of formation of a failure detection execution condition is judged, and the bit of this flag is set.

[0042] <u>Drawing 4</u> is a flow chart which shows the failure detection execution condition formation decision activity. In addition, the program of illustration is also performed for whenever [predetermined crank angle / every]. [0043] If it explains below, it will be judged by the same technique whether an engine 10 is in starting mode by S100, and that S10 of <u>drawing 3</u> described.

[0044] It judges whether the outside air temperature (intake-air temperature) TA which progressed to S102 when affirmed by S100, and was detected from the outside-air-temperature sensor 30 is under the predetermined value TATHERMH (for example, 50-degreeC) above the predetermined value TATHERML (for example, -7-degreeC), and the water temperature TW detected from the coolant temperature sensor 32 is under the predetermined value TWTHERMH (for example, 50-degreeC) above the predetermined value TWTHERML (for example, -7-degreeC). [0045] If affirmed by S102, the difference of the cooling water temperature TW detected by progressing to S104 and

outside air temperature TA will be searched for, and it will judge whether it is under the predetermined value DTTHERM (for example, 10-degreeC).

[0046] If affirmed by S104, it will progress to S106, and the table showing the property in <u>drawing 5</u> from the detection water temperature TW is searched, and the water temperature correction value KDCTW is computed at the time of water temperature presumption starting (after-mentioned).

[0047] Subsequently, it progresses to S108 and the detection outside air temperature TA and the detection water temperature TW are rewritten with the detection water temperature TWINIT at the time of the detection outside air temperature TAINIT and starting at the time of starting.

[0048] Subsequently, when affirmed, while it progresses to S110 and whether the detection outside air temperature TAINIT is smaller than the detection water temperature TWINIT at the time of starting at the time of starting rewritten now judges, and progressing to S112 and rewriting TAINIT with CTAOS, when denied, it progresses to S114 and TWINIT is rewritten with CTAOS.

[0049] Here, CTAOS means outside air temperature at the time of amendment starting, and an activity here means amending the value of the lower one of the detection outside air temperature TAINIT with detection outside air temperature at the time of starting at the time of the detection water temperature TWINIT and starting at the time of starting.

[0050] Then, it is shown that set to 1 the bit of flag F.MONTRM which progressed to S116 and was described above, and the failure detection execution condition was satisfied.

[0051] On the other hand, when denied by S102 and S104, it progresses to S118, and the bit of flag F.MONTRM is reset to 0, and it is shown that a failure detection execution condition was not satisfied.

[0052] Moreover, if it progresses to S120, the difference of the detection outside-air-temperature value TAINIT is searched for at the time of the detection outside air temperature TA and the above mentioned starting and the difference puts in another way under in the predetermined value DTATHERM when denied by S100, it will judge whether the fall of outside air temperature is large.

[0053] When affirmed by S120, while progressing to S122, resetting the bit of flag F.MONTRM to 0 and showing failure detection execution condition failure, subsequent processings are skipped when denied.

[0054] The failure detection execution condition was in the condition that the engine 10 was cooled to an equivalent for outside air temperature, and when change of outside air temperature was small, it was made to be satisfied in the gestalt of this operation, since presumed water temperature is computed from the detection water temperature at the time of starting while judging thermostat failure detection based on the relation between detection water temperature and presumed water temperature so that it may mention later.

[0055] That is, in predetermined within the limits, from detection water temperature, beyond a predetermined value, (S102) and detection outside air temperature satisfy [water temperature / at the time of engine starting / the detection outside air temperature and detection water temperature] conditions, when not high (S104). Therefore, when the fall of the detection outside air temperature after starting is large (S120), it considers that the fall of outside air temperature is insufficiently [parking duration] large, and conditions are not satisfied.

[0056] here, if the thermostat failure detection technique concerning the gestalt of this operation is outlined, when it asks for the presumed water temperature CTW from the temperature conditions and operational status at the time of engine starting (S32 of <u>drawing 3</u>), the presumed water temperature CTW reaches the failure decision value CTWJUD and the detection water temperature TW has not reached the normal decision value TWJUD, a thermostat 64 judges with failure -- it was made like (from S300 to S308 of <u>drawing 13</u>).

[0057] The presumed water temperature CTW is computed as follows.

the time of presumed water temperature CTW= starting -- detection water temperature -- the time of TWINIT(S108 of drawing 4) + water temperature presumption basic value DDCTW(S30 of drawing 3) x water temperature presumption starting -- the water temperature correction value KDCTW (S106 of drawing 4)

[0058] Above, the water temperature presumption basic value DDCTW is a thermal load parameter (water temperature presumption engine load addition value TITTL.) which contributes to a water temperature rise. It increases in proportion to the increment in S200 to S212 of S28 and <u>drawing 9</u> of <u>drawing 3</u>. Then, artificers calculated the thermal load parameter from the engine load addition value TIMTTL and the addition cooling-loss value CLTTL (cooling-loss value of an indoor heater and a wind), as a result of piling up knowledge (S26 of <u>drawing 3</u>).

[0059] If it returns to explanation of <u>drawing 3</u>, when judged as affirmation, i.e., failure detection execution condition formation, it progresses to S16, judging from the bit of the flag determined by processing of the <u>drawing 4</u> flow chart in S14, and is the last value CTW (k-1) of presumed water temperature. The difference DCTW of outside air temperature CTAOS (value of the lower one of the detection water temperature at the time of starting for which it asked by S110 to

- S114, and the detection outside air temperature) is computed at the time of amendment starting.
- [0060] in addition, this specification and drawing -- k -- the sampling time of a discrete time system -- the starting period of the <u>drawing 3</u> flow chart is shown in more detail (k-1) A value is shown the last starting period, i.e., last time. In addition, it omits giving k to a value this time for simplification.
- [0061] Subsequently, it progresses to S18, the table showing the property in <u>drawing 6</u> from the difference DCTW searched for now is searched, and heater cold disadvantage HTCL is computed. Here, heater **** means loss in case cooling water carries out a temperature up and is used for indoor heating.
- [0062] Heater cold disadvantage HTCL increases in proportion to the increment in the difference DCTW of presumed water temperature and outside air temperature (the lower one of detection water temperature and detection outside air temperature). Heater cold disadvantage HTCL is computed by converting it into the fuel-injection-duration (fuel oil consumption) considerable value for every unit time amount.
- [0063] Subsequently, air-blast-quenching disadvantage WDCL is computed by progressing to S20 and searching the table showing the property in <u>drawing 7</u> from the difference DCTW searched for now similarly.
- [0064] Air-blast-quenching disadvantage WDCL increases in proportion to the increment in Difference DCTW similarly, when it considers as wind-speed regularity. Air-blast-quenching disadvantage WDCL is also computed by converting it into the fuel-injection-duration (fuel oil consumption) considerable value for every unit time amount. [0065] Subsequently, it progresses to S22, the wind speed WDSINIT at the time of a strong wind (fixed value) is added to the vehicle speed VPS detected from the speed sensor 54, and the presumed relative wind speed WDS is computed. [0066] Subsequently, the table showing the property in drawing 8 from the presumed relative wind speed WDS which
- [0067] Subsequently, it progresses to S26 and the addition cooling-loss value CLTTL is computed.

progressed to S24 and was computed is searched, and the wind-speed correction value KVWD is searched.

- [0068] That is, the product which multiplied by the wind-speed correction value KVWD at air-blast-quenching disadvantage WDCL is added to calculated heater cold disadvantage HTCL to write, and it is the last value CLTTL of an addition cooling-loss value (k-1) to it. It adds (updating) and let the sum therefore obtained be this time value CLTTL of an addition cooling-loss value.
- [0069] Subsequently, it progresses to S28 and the water temperature presumption engine load addition value TITTL is computed.
- [0070] Although this is computed from the engine load addition value TIMTTL etc., the engine load addition value TIMTTL is computed according to the flow chart shown in <u>drawing 9</u>. The program of this drawing is performed by whenever [crank angle /, such as TDC,].
- [0071] If it explains below, the bit of failure detection execution condition enactment flag F.MONTRM which judged [whether an engine 10 is in starting mode in S200 and] by the same technique as S10 etc., progressed to S202 when denied, and was described above will judge whether 1, i.e., a failure detection execution condition, is materialized. [0072] The table showing the property in <u>drawing 10</u> from the engine speed NE detected by progressing to S204 when affirmed by S202, and progressing to S206 when the bit of flag F.FC is set to 1, or a fuel cut judges whether it is under [activation] ****** and is denied is searched, and the rotational frequency correction value KNETIM is computed. [0073] Subsequently, the table showing the property in <u>drawing 11</u> from the absolute pressure PBA in an inlet pipe detected by progressing to S208 is searched, the load correction value KPBTIM is computed, it progresses to S210 and the engine load addition value TIMTTL is computed.
- [0074] It is the last value TIMTTL of an engine load addition value (k-1) about the product which multiplied by the rotational frequency correction value KNETIM and the load correction value KPBTIM by which the engine load addition value TIMTTL was specifically computed by the multiplication correction term KPA and the above at the fuel-injection-duration (fuel oil consumption) basic value TIM, and obtained. It computes by adding (updating).
- [0075] In addition, since fuel injection was not made when affirmed by S204 while progressing to S212 and making the engine load addition value into zero, since it was hard to calculate an engine load addition value correctly when denied by S200 or S202, subsequent processings are skipped.
- [0076] If it returns to explanation of the <u>drawing 3</u> flow chart, in S28, the water temperature presumption engine load addition value TITTL will be computed based on the computed engine load addition value to write.
- [0077] Namely, the water temperature presumption engine load addition value TITTL is computed by subtracting the addition cooling-loss value CLTTL described above from the computed engine load addition value TIMTTL.
- [0078] Subsequently, the table showing the property in <u>drawing 12</u> with the water temperature presumption engine load addition value TITTL which progressed to S30 and was computed is searched, the above mentioned water temperature presumption basic value DDCTW is computed, it progresses to S30, and, finally the presumed water temperature CTW is determined.

[0079] That is, the water temperature estimate CTW is computed by adding the product which multiplied by it and acquired the water temperature correction value KDCTW (it computes by S106 of <u>drawing 4</u>) at the time of water temperature presumption starting to the water temperature presumption basic value DDCTW for which the detection water temperature TWINIT was now asked at the time of starting.

[0080] Subsequently, one value of the counter ctTRM after starting which progressed to S34 and was described above is incremented, it progresses to S36, the vehicle speed VPS detected by the vehicle speed addition value VPSTTL this time is added, and the vehicle speed addition value VPSTTL is updated.

[0081] Subsequently, the average vehicle speed VPSAVE after engine starting is computed by doing the division of the vehicle speed addition value VPSTTL which progressed to S38 and was updated with the counter value ctTRM after starting.

[0082] Subsequently, it progresses to S40 and a thermostat 64 judges in normal or failure.

[0083] <u>Drawing 13</u> is a subroutine flow chart which shows the processing.

[0084] If it explains below, when the water temperature TW detected from the coolant temperature sensor 32 in S300 will judge whether it is below the normal decision value TWJUD (for example, 70-degreeC) and will be affirmed, it progresses to S302, whether the average vehicle speed VPSAVE exceeds a reference value VPSAVTRM (for example, 30 km/h) judges, and when affirmed, it progresses to S304 and judges with a thermostat 64 being normal.

[0085] On the other hand, when denied by \$300, it progresses to \$306, and when the presumed water temperature CTW judges whether it is under the failure decision value CTWJUD (for example, 75-degreeC) and is affirmed, it progresses to \$308 and a thermostat 64 judges with abnormalities, such as failure, i.e., increase of a ullage, a valve-opening temperature fall, and full open failure (opening stick), having arisen.

[0086] Moreover, when denied by S306, it progresses to S310, and when the difference which was able to subtract the detection water temperature TW from the presumed water temperature CTW judges whether it is below the 2nd failure decision value DCTWJUD (for example, 15-degreeC) and is denied, it progresses to S308 and judges with thermostat failure.

[0087] Thus, when presumed water temperature reaches a failure decision value before detection water temperature reached the normal decision value, it judges with thermostat failure. Moreover, when presumed water temperature is very higher than detection water temperature, also before presumed water temperature reaches a predetermined value, it judges with thermostat failure.

[0088] When judged with thermostat normal, it progresses to S312, and the count counter of the completion of diagnostic is incremented, it progresses to S314, and the bit of said flag F.MONTRM is reset to 0.

[0089] Moreover, when it was judged that the vehicle speed (average vehicle speed) is low, and a wind hardly hits a radiator 60 when denied by S302, even if the thermostat 64 actually broke down, the judgment was made to be delayed from the intention which avoids an incorrect judging, since the water temperature rise is early.

[0090] namely, -- in that case -- S316 -- progressing -- another routine without a drawing example -- setting -- a fan 76 predetermined time -- the time of driving compulsorily, cooling a radiator 60 and the detection water temperature TW
being said beyond normal decision value TWJUD about the detection water temperature TW after predetermined time
progress as compared with said normal decision value TWJUD -- a thermostat -- when the detection water temperature
TW was said under normal decision value TWJUD, it was made to judge with thermostat failure, while judging with it
being normal

[0091] like the above, the gestalt of this operation is judged to be thermostat failure, also when presumed water temperature reaches a failure decision value before detection water temperature reached the normal decision value -- it constituted like (or when presumed water temperature is very higher than detection water temperature, also before presumed water temperature reaches a predetermined value, it judges with thermostat failure).

[0092] namely, -- since it constituted so that actual water temperature might be detected, both temperature up property might be judged by comparing with a predetermined value, respectively and failure of a thermostat might be detected while presuming water temperature from the thermal load parameter which approximates the water temperature at the time of engine starting, and actuation of a radiator -- failure of ullage increase of a thermostat, a valve-opening temperature fall, full open failure, etc. -- high degree of accuracy -- and it can be alike and can detect with sufficient responsibility.

[0093] If it is in the gestalt of this operation like the above, while connecting with an internal combustion engine (engine 10) through a free passage way (inlet pipe 62) and cooling said internal combustion engine's cooling water In the failure detection equipment of the radiator 60 which comes to have the thermostat 64 which opens and closes said free passage way Said internal combustion engine's operational status (engine-speed-NE and it absolute-pressure[in an inlet pipe]-PBA(s)) An operational status detection means to detect water temperature TW, outside air temperature (intake-air

temperature) TA, the vehicle speed VPS, etc. (the crank angle sensor 38, the absolute-pressure sensor 26, a coolant temperature sensor 32, the outside-air-temperature (intake-air temperature) sensor 30, the wheel speed sensor 54, ECU20), The inside of said detected operational status, At least The water temperature at the time of engine starting (TW, TWINIT) And a presumed water temperature calculation means to compute the presumed water temperature CTW based on the thermal load parameter (water temperature presumption engine load addition value TITTL) correlated with said water temperature rise (from ECU20, S26, S28, and S200 to S212, S30, S32), And said computed presumed water temperature CTW and said detected water temperature TW are compared with a predetermined value (the failure decision values CTWJUD and DCTJUD, the normal decision value TWJUD), respectively. It constituted so that it might have a failure judging means (from ECU20, S40, and S300 to S308) to judge failure of said radiator based on said comparison result.

[0094] moreover, said presumed water temperature calculation means computes said thermal load parameter (water temperature presumption engine load addition value TITTL) based on an engine load addition value (engine load addition value TIMTTL) at least -- it needs (from ECU20, S26, S28, and S200 to S212) -- it constituted. [0095] moreover, said presumed water temperature calculation means computes said engine load addition value based on the fuel oil consumption (TIMxKPA) and the engine rotational frequency (engine speed NE) which are supplied to said internal combustion engine at least, and an engine load (absolute pressure PBA in an inlet pipe) -- it needs (from ECU20, S26, S28, and S200 to S212) -- it constituted.

[0096] moreover, said presumed water temperature calculation means computes said thermal load parameter further based on the cooling-loss addition value (addition cooling-loss value CLTTL) by a wind etc. -- it needs (from ECU20 and S16 to S26, S28) -- it constituted.

[0097] moreover, said presumed water temperature calculation means computes the cooling-loss addition value (addition cooling-loss value CLTTL) by said wind etc. based on outside air temperature (at the time of amendment starting outside air temperature CTAOS), and the vehicle speed VPS at least -- it needs (from ECU20 and S16 to S26, S28) -- it constituted.

[0098]

[Effect of the Invention] If it is in claim 1 term, failure of a radiator and the thermostat arranged in more detail at a radiator is detectable with high degree of accuracy and sufficient responsibility.

[0099] If it is in claim 2 term, failure of a radiator and the thermostat arranged in more detail at a radiator can be detected with high degree of accuracy and much more sufficient responsibility.

[0100] If it is in claim 3 term, failure of a radiator and the thermostat arranged in more detail at a radiator can be similarly detected with high degree of accuracy and much more sufficient responsibility.

[0101] If it is in claim 4 term, failure of a radiator and the thermostat arranged in more detail at a radiator can be similarly detected with high degree of accuracy and much more sufficient responsibility.

[0102] If it is in claim 5 term, failure of a radiator and the thermostat arranged in more detail at a radiator can be similarly detected with high degree of accuracy and much more sufficient responsibility.

[Translation done.]

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 1]

[Drawing 3]

[Drawing 11]

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-8853

(P2000-8853A)

(43)公開日 平成12年1月11日(2000.1.11)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

F01P 7/16

502

F01P 7/16

502Z

審査請求 未請求 請求項の数5 FD (全 9 頁)

(21)出願番号

特願平10-188104

(22)出願日

平成10年6月19日(1998.6.19)

(71)出願人 000005326

本田技研工業株式会社

東京都港区南青山二丁目1番1号

(72)発明者 仁木 学

埼玉県和光市中央1丁目4番1号 株式会

社本田技術研究所内

(72)発明者 磯部 高志

埼玉県和光市中央1丁目4番1号 株式会

社本田技術研究所内

(74)代理人 100081972

弁理士 吉田 豊

最終頁に続く

(54)【発明の名称】 内燃機関のラジエータ故障検知装置

(57)【要約】

【課題】 内燃機関に接続されて冷却水を冷却するラジ エータのサーモスタットの故障を高精度かつ応答性良く 検知する。

【解決手段】 機関始動時の温度条件および運転状態により推定水温CTWを算出し、その推定水温CTWが故障判定値CTWJUDに達したとき(S306)、検出水温TWが正常判定値TWJUDに達していない場合(S300)、サーモスタット故障と判定する(S308)。

×

【特許請求の範囲】

【請求項1】 内燃機関に連通路を介して接続され、前記内燃機関の冷却水を冷却すると共に、前記連通路を開閉するサーモスタットを備えてなるラジエータの故障検知装置において、

- a. 前記内燃機関の運転状態を検出する運転状態検出手段、
- b. 前記検出された運転状態のうち、少なくとも機関始動時の水温および前記水温上昇に相関する熱負荷パラメータに基づいて推定水温を算出する推定水温算出手段、および
- c. 前記算出された推定水温と前記検出された水温とを それぞれ所定値と比較し、前記比較結果に基づいて前記 ラジエータの故障を判定する故障判定手段、を備えたこ とを特徴とする内燃機関のラジエータ故障検知装置。

【請求項2】 前記推定水温算出手段は、少なくとも機関負荷積算値に基づいて前記熱負荷パラメータを算出することを特徴とする請求項1項記載の内燃機関のラジエータ故障検知装置。

【請求項3】 前記推定水温算出手段は、少なくとも前記内燃機関に供給される燃料噴射量と機関回転数と機関 負荷に基づいて前記機関負荷積算値を算出することを特徴とする請求項2項記載の内燃機関のラジエータ故障検知装置。

【請求項4】 前記推定水温算出手段は、さらに、風などによる冷却損失積算値に基づいて前記熱負荷パラメータを算出することを特徴とする請求項1項ないし3項のいずれかに記載の内燃機関のラジエータ故障検知装置。

【請求項5】 前記推定水温算出手段は、少なくとも外 気温と車速に基づいて前記風などによる冷却損失積算値 を算出することを特徴とする請求項4項記載の内燃機関 のラジエータ故障検知装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は内燃機関のラジエータ故障検知装置、より詳しくはラジエータのサーモスタットの故障検知装置に関する。

[0002]

【従来の技術】車両用の内燃機関は連通路を介して接続されて冷却水を冷却するラジエータを備え、連通路にはサーモスタット(開閉バルブ)が配置される。サーモスタットは、始動時など冷却水温が低いときは連通路を閉じると共に、昇温すると開弁して連通路を開放し、冷却水をラジエータに導入して冷却する。

【0003】かかるラジエータも車両の搭載部品の1つであることから、その故障を検知するのが望ましい。例えば、特開平6-213117号公報は、通常運転時に暖機された冷却水を貯留して保温する保温容器を備えたラジエータにおいて、始動運転時に検出された冷却水温が異常に低いとき、保温容器故障と判定している。

【0004】また、この従来技術は、定常運転時に検出された冷却水温が異常に高いときはサーモスタットが閉じたまま、即ち、クローズスティック故障と判定すると共に、異常に低いときはサーモスタットが開いたまま、即ち、オープンスティック故障と判定している。

[0005]

【発明が解決しようとする課題】しかしながら、従来技術においては、検出された冷却水温が異常な値を示すときのみサーモスタットの故障を検知できるため、検知精度および応答性において必ずしも満足し難いものであった。

【0006】従って、この発明の目的は上記した不都合を解消することにあり、ラジエータ、より詳しくはラジエータに配置されるサーモスタットの故障を高精度かつ 応答性良く検知することができる内燃機関のラジエータ 故障検知装置を提供することにある。

[0007]

【課題を解決するための手段】上記した目的を解決するために請求項1項にあっては、内燃機関に連通路を介して接続され、前記内燃機関の冷却水を冷却すると共に、前記連通路を開閉するサーモスタットを備えてなるラジエータの故障検知装置において、前記内燃機関の運転状態を検出する運転状態検出手段、前記検出された運転状態のうち、少なくとも機関始動時の水温および前記水温上昇に相関する熱負荷パラメータに基づいて推定水温を算出する推定水温算出手段、および前記算出された推定水温と前記検出された水温とをそれぞれ所定値と比較し、前記比較結果に基づいて前記ラジエータの故障を判定する故障判定手段を備える如く構成した。

【0008】即ち、機関始動時の水温およびラジエータの動作を近似する熱負荷パラメータから水温を推定すると共に、実際の水温を検出し、それぞれ所定値と比較することで両者の昇温特性を判断して故障検知するようにしたので、ラジエータ、より詳しくはラジエータに配置されるサーモスタットの故障を高精度かつ応答性良く検知することができる。

【0009】請求項2項にあっては、前記推定水温算出手段は、少なくとも機関負荷積算値に基づいて前記熱負荷パラメータを算出する如く構成した。これによって、ラジエータ、より詳しくはラジエータに配置されるサーモスタットの故障を一層高精度かつ応答性良く検知することができる。

【0010】請求項3項にあっては、前記推定水温算出手段は、少なくとも前記内燃機関に供給される燃料噴射量と機関回転数と機関負荷に基づいて前記機関負荷積算値を算出する如く構成した。これによって、同様に、ラジエータ、より詳しくはラジエータに配置されるサーモスタットの故障を一層高精度かつ応答性良く検知することができる。

【0011】請求項4項にあっては、前記推定水温算出

手段は、さらに、風などによる冷却損失積算値に基づいて前記熱負荷パラメータを算出する如く構成した。これによって、同様に、ラジエータ、より詳しくはラジエータに配置されるサーモスタットの故障を一層高精度かつ 応答性良く検知することができる。

【0012】請求項5項にあっては、前記推定水温算出 手段は、少なくとも外気温と車速に基づいて前記風など による冷却損失積算値を算出する如く構成した。これに よって、同様に、ラジエータ、より詳しくはラジエータ に配置されるサーモスタットの故障を一層高精度かつ応 答性良く検知することができる。

[0013]

【発明の実施の形態】以下、添付図面に即してこの発明 の実施の形態を説明する。

【0014】図1はこの発明に係る内燃機関のラジエー タ故障検知装置を全体的に示す概略図である。

【0015】図において、符号10は4気筒4サイクルの内燃機関(以下「エンジン」という)を示す。エンジン10の本体10aに接続される吸気管12の途中にはスロットルバルブ14が配置される。スロットルバルブ14にはスロットル開度センサ16が連結され、スロットルバルブ14の開度のTHに応じた電気信号を出力し、電子制御ユニット(以下「ECU」という)20に送る。

【0016】前記した吸気管12はスロットルバルブ配置位置の下流でインテークマニホルド(図示せず)を形成し、そのインテークマニホルドにおいて各気筒の吸気弁(図示せず)の上流側には燃料噴射弁(インジェクタ)22が気筒ごとに設けられる。

【0017】燃料噴射弁22は燃料ボンプ(図示せず) に機械的に接続されて燃料の圧送を受けると共に、EC U20に電気的に接続されてその開弁時間を制御され、 開弁される間、圧送された燃料を気筒に噴射(供給)す る。

【0018】吸気管12においてスロットルバルブ14の下流には分岐管24を介して絶対圧センサ26が取付けられており、吸気管12内の吸気管内圧力(絶対圧)PBAに応じた電気信号を出力する。

【0019】また、その下流には外気温(吸気温)センサ30が取り付けられ、外気温(吸気温)TAに応じた電気信号を出力すると共に、エンジン本体10aの冷却水通路(図示せず)の付近には水温センサ32が配置され、エンジン冷却水温(以下「水温」という)TWに応じた電気信号を出力する。

【0020】また、内燃機関10においてカム軸あるいはクランク軸(共に図示せず)の付近には、気筒判別センサ34が取り付けられ、所定気筒のピストン位置ごとに気筒判別信号CYLを出力送出する。

【0021】同様に、カム軸あるいはクランク軸 (共に 図示せず) の付近には、TDCセンサ36が取付けら

れ、ピストン(図示せず)のTDC位置に関連したクランク角度(例えばBTDC10度)ごとにTDC信号パルスを出力すると共に、クランク角センサ38が取り付けられ、前記TDC信号パルスの周期より短いクランク角度(例えば30度)周期でCRK信号パルスを出力する

【0022】また、内燃機関10の排気系においてはエキゾストマニホルド(図示せず)に接続される排気管40の適宜位置には空燃比センサ(O_2 センサ)42が設けられ、排気ガス中の酸素濃度 O_2 に応じた信号を出力すると共に、その下流には三元触媒44が設けられ、排気ガス中のHC、CO、NOx成分を浄化する。

【0023】また、内燃機関10の燃焼室(図示せず) には点火プラグ48が配置され、点火コイル、イグナイ タ50を介してECU20に電気的に接続される。

【0024】さらに、エンジン本体10aのシリンダへッド(図示せず)にはノックセンサ52が配置され、エンジン10の振動に応じた信号を出力する。また、エンジン10が搭載される車両のドライブシャフト(図示せず)の付近には車輪速センサ54が搭載され、車輪の単位回転ごとにパルスを出力する。

【0025】これらセンサの出力もECU20に送られる。

【0026】ECU20はマイクロコンピュータからなり、上記した各種センサからの入力信号波形の整形、電圧レベルの変換、あるいはアナログ信号値のデジタル信号化などの処理を行う入力回路20a、論理演算を行うCPU(中央演算処理装置)20b、CPUで実行される各種演算プログラムおよび演算結果などを記憶する記憶手段20c、および出力回路20dなどから構成される

【0027】ECU20において、ノックセンサ52の出力は検出回路(図示せず)に入力され、そこでノイズレベルを増幅して得たノック判定レベルと比較される。CPU20bは検出回路出力から燃焼室内にノックが発生したか否か検出する。またCPU20bは、CRK信号パルスをカウントしてエンジン回転数NEを検出すると共に、車輪速センサ54の出力パルスをカウントして車速VPSを検出する。

【0028】CPU20bは、検出したエンジン回転数 NEと吸気管内絶対圧PBA(エンジン負荷パラメータ)とから予め設定されて記憶手段20c内に格納されているマップを検索し、基本点火時期を算出し、エンジン冷却水温TWなどから基本点火時期を補正すると共に、ノックが検出されたときは基本点火時期を遅角補正

【0029】また、CPU20bは燃料噴射量(開弁時間)を決定し、出力回路20dおよび駆動回路(図示せず)を介して燃料噴射弁22を駆動する。

【0030】エンジン10には、ラジエータ60が接続

される。

【0031】図2はそのラジエータ60を詳細に示す説明側面断面図である。

【0032】図示の如く、エンジン本体10はラジエータ60にインレットパイプ(連通路)62を介して接続され、インレットパイプ62にはサーモスタット64が配置される。

【0033】インレットパイプ62はアッパタンク66に接続され、そこから下部のロアタンク68に至る空間には蜂の巣状のコア70が収納される。冷却水通路の冷却水はウォータポンプ72で圧送されてインレットパイプ62からタンク内に入り、コア70に接触しつつ循環し、アウトレットパイプ74からエンジン本体10内の冷却水通路に戻る。

【0034】図2に矢印で示す如く、コア70は車両進行方向から風を受けて冷却されると共に、背面側に設置されエンジン出力で駆動されるファン76で強制的に冷却される。

【0035】サーモスタット64はバイメタルからなる 開閉バルブであり、冷却水温が低い始動時にはインレットパイプ62を閉じて冷却水の侵入するのを防止すると 共に、冷却水温が上がると開放し、冷却水をコア70に 接触させて冷却して冷却水通路に戻す。

【0036】上記した構成において、ECU20は後述する如く、前記したセンサ出力に基づいて推定水温を算出し、サーモスタット64の故障を検知する。

【0037】図3フロー・チャートを参照し、その故障 検知を説明する。尚、図示のプログラムは、所定時間、 例えば2secごとに実行される。

【0038】以下説明すると、S10でエンジン10が始動モードにあるか否か判断する。これは、先ずスタータモータ(図示せず)が動作しているか否か判定し、否定されるときはエンジン回転数NEがクランキング回転数に達しているか否か判定することで行う。いずれかで肯定されるとき、エンジン10が始動モードにあると判断する。

【0039】S10で肯定されるときはS12に進み、水温推定エンジン負荷積算値TITTL、積算冷却損失値CLTTL、始動後カウンタctTRM(エンジン始動からの経過時間計測用)および車速積算値VPSTTLの値を零にすると共に、始動時推定水温TWINITの値を推定水温CTWとする(置き換える)。これらのパラメータは後述する。

【0040】S10で否定されるときはS14に進み、 フラグF.MONTRMのビットが1にセットされてい るか否か判断する。

【0041】このフラグのビットが1にセットされることは、サーモスタット故障検知実行条件が成立したことを意味する。このフラグのビットは、別のサブルーチン・フロー・チャートで故障検知実行条件の成立の有無が

判断されてセットされる。

【0042】図4は、その故障検知実行条件成立判断作業を示すフロー・チャートである。尚、図示のプログラムも所定クランク角度ごとに実行される。

【0043】以下説明すると、S100でエンジン10が始動モードにあるか否か、図3のS10で述べたと同様の手法で判断する。

【0044】S100で肯定されるとS102に進み、外気温センサ30から検出された外気温(吸気温)TAが所定値TATHERML(例えば-7°C)以上で、所定値TATHERMH(例えば50°C)未満であり、かつ水温センサ32から検出された水温TWが所定値TWTHERML(例えば-7°C)以上で、所定値TWTHERMH(例えば50°C)未満であるか否か判断する。

【0045】S102で肯定されるとS104に進み、 検出された冷却水温TWと外気温TAの差を求め、それ が所定値DTTHERM (例えば10°C) 未満か否か 判断する。

【0046】S104で肯定されるとS106に進み、 検出水温TWから図5にその特性を示すテーブルを検索 し、水温推定始動時水温補正値KDCTWを算出する (後述)。

【0047】次いでS108に進み、検出外気温TAと 検出水温TWを、始動時検出外気温TAINIT、始動 時検出水温TWINITと書き換える。

【0048】次いでS110に進み、いま書き換えた始動時検出外気温TAINITが始動時検出水温TWINITより小さいか否か判断し、肯定されるときはS112に進んでTAINITをCTAOSと書き換えると共に、否定されるときはS114に進んでTWINITをCTAOSと書き換える。

【0049】ここで、CTAOSは補正始動時外気温を 意味し、ここでの作業は、始動時検出水温TWINIT と始動時検出外気温TAINITのうちの低い方の値を 始動時検出外気温と補正することを意味する。

【0050】続いてS116に進み、前記したフラグ F. MONTRMのビットを1にセットして故障検知実 行条件が成立したことを示す。

【0051】他方、S102, S104で否定されるときはS118に進み、フラグF. MONTRMのビットを0にリセットし、故障検知実行条件が成立しなかったことを示す。

【0052】また、S100で否定されるときはS120に進み、検出外気温TAと前記した始動時検出外気温値TAINITの差を求め、その差が所定値DTATHERM未満か、換言すれば外気温の低下が大きいか否か判断する。

【0053】S120で肯定されるときはS122に進んでフラグF. MONTRMのビットを0にリセットし

て故障検知実行条件不成立を示すと共に、否定されるときは以降の処理をスキップする。

【0054】この実施の形態において、後述する如く、 検出水温と推定水温との関係に基づいてサーモスタット 故障検知を判定すると共に、始動時の検出水温から推定 水温を算出することから、故障検知実行条件は、エンジ ン10が外気温相当まで冷却された状態で、かつ外気温 の変化が小さいときに成立するようにした。

【0055】即ち、エンジン始動時の検出外気温および検出水温が所定範囲内で(S102)、検出外気温が検出水温より所定値以上高くないとき(S104)、条件を成立させる。従って、始動した後の検出外気温の低下が大きいとき(S120)は、駐車時間不十分あるいは外気温の低下が大きいとみなし、条件を成立させない。【0056】ここで、この実施の形態に係るサーモスタット故障検知手法を概説すると、エンジン始動時の温度条件および運転状態から推定水温CTWを求め(図3のS32)、推定水温CTWが故障判定値CTWJUDに達したときに検出水温TWが正常判定値TWJUDに達していない場合、サーモスタット64が故障と判定する

【0057】推定水温CTWは、以下のように算出する。

(図13のS300からS308)ようにした。

推定水温CTW=始動時検出水温TWINIT (図4の S108)+水温推定基本値DDCTW (図3のS3 0)×水温推定始動時水温補正値KDCTW (図4のS 106)

【0058】上記で、水温推定基本値DDCTWは、水温上昇に寄与する熱負荷パラメータ(水温推定エンジン負荷積算値TITTL。図3のS28および図9のS200からS212)の増加に比例して増大する。そこで、発明者達は知見を重ねた結果、熱負荷パラメータを、エンジン負荷積算値TIMTTLと、積算冷却損失値CLTTL(室内ヒータ・風の冷却損失値)から求めるようにした(図3のS26)。

【0059】図3の説明に戻ると、S14では図4フロー・チャートの処理で決定されるフラグのビットから判断し、肯定、即ち、故障検知実行条件成立と判断されるときはS16に進み、推定水温の前回値CTW(k-1)と、補正始動時外気温CTAOS(S110からS114で求めた始動時の検出水温と検出外気温のうちの低い方の値)の差DCTWを算出する。

【0060】尚、この明細書および図面で、kは離散系のサンプリング時刻、より詳しくは図3フロー・チャートの起動周期を示し、(k-1) は前回の起動周期、即ち、前回値を示す。尚、簡略化のため、今回値にkを付すのを省略する。

【0061】次いでS18に進み、いま求めた差DCT Wから図6にその特性を示すテーブルを検索し、ヒータ 冷損HTCLを算出する。ここで、ヒータ冷損は、冷却 水が昇温して室内暖房用に使用されるときの損失を意味する。

【0062】ヒータ冷損HTCLは、推定水温と外気温 (検出水温と検出外気温の低い方)の差DCTWの増加 に比例して増加する。ヒータ冷損HTCLは、単位時間 ごとの燃料噴射時間(燃料噴射量)相当値に換算して算 出する。

【0063】次いでS20に進み、同様にいま求めた差 DCTWから図7にその特性を示すテーブルを検索して 風冷損WDCLを算出する。

【0064】風冷損WDCLも、風速一定とした場合、同様に差DCTWの増加に比例して増加する。風冷損WDCLも、単位時間ごとの燃料噴射時間(燃料噴射量)相当値に換算して算出する。

【0065】次いでS22に進み、車速センサ54から 検出された車速VPSに強風時の風速WDSINIT (固定値)を加算し、推定相対風速WDSを算出する。 【0066】次いでS24に進み、算出した推定相対風 速WDSから図8にその特性を示すテーブルを検索し、 風速補正値KVWDを検索する。

【0067】次いでS26に進み、積算冷却損失値CL TTLを算出する。

【0068】即ち、かく求めたヒータ冷損HTCLに、 風冷損WDCLに風速補正値KVWDを乗じた積を加算 し、それに積算冷却損失値の前回値CLTTL(k-1)を 加算(更新)し、よって得た和を積算冷却損失値の今回 値CLTTLとする。

【0069】次いでS28に進み、水温推定エンジン負荷積算値TITTLを算出する。

【0070】これはエンジン負荷積算値TIMTTLなどから算出するが、そのエンジン負荷積算値TIMTT Lは、図9に示すフロー・チャートに従って算出される。同図のプログラムは、TDCなどのクランク角度で実行される。

【0071】以下説明すると、S200においてエンジン10が始動モードにあるか否かS10などと同様の手法で判断し、否定されるときはS202に進み、前記した故障検知実行条件成立フラグF. MONTRMのビットが1、即ち、故障検知実行条件が成立しているか否か判断する。

【0072】S202で肯定されるときはS204に進み、フラグF.FCのビットが1にセットされているか、即ち、フューエルカットが実行中か否か判断し、否定されるときはS206に進み、検出されたエンジン回転数NEから図10にその特性を示すテーブルを検索し、回転数補正値KNETIMを算出する。

【0073】次いでS208に進み、検出された吸気管内絶対圧PBAから図11にその特性を示すテーブルを検索し、負荷補正値KPBTIMを算出し、S210に進み、エンジン負荷積算値TIMTTLを算出する。

【0074】具体的には、エンジン負荷積算値TIMTTLは、燃料噴射時間(燃料噴射量)基本値TIMに、乗算補正項KPAと、上記で算出された回転数補正値KNETIMと負荷補正値KPBTIMとを乗じて得た積を、エンジン負荷積算値の前回値TIMTTL(k-1)に加算(更新)することで算出する。

<u>ئ</u>

【0075】尚、S200あるいはS202で否定されるときはエンジン負荷積算値を正確に求め難いことからS212に進んでエンジン負荷積算値を零とすると共に、S204で肯定されるときは、燃料噴射がなされなかったため、以降の処理をスキップする。

【0076】図3フロー・チャートの説明に戻ると、S28においては、かく算出されたエンジン負荷積算値に基づいて水温推定エンジン負荷積算値TITTLを算出する。

【0077】即ち、算出されたエンジン負荷積算値TI MTTLから前記した積算冷却損失値CLTTLを減算 して水温推定エンジン負荷積算値TITTLを算出す る。

【0078】次いでS30に進み、算出した水温推定エンジン負荷積算値TITTLで図12にその特性を示すテーブルを検索し、前記した水温推定基本値DDCTWを算出し、S30に進んで推定水温CTWを最終的に決定する。

【0079】即ち、水温推定値CTWは、始動時検出水 温TWINITに、いま求めた水温推定基本値DDCT Wに水温推定始動時水温補正値KDCTW(図4のS1 06で算出)を乗じて得た積を加算することで算出す る。

【0080】次いでS34に進んで前記した始動後カウンタctTRMの値を1つインクリメントし、S36に進み、車速積算値VPSTTLに今回検出された車速VPSを加算して車速積算値VPSTTLを更新する。

【0081】次いでS38に進み、更新した車速積算値 VPSTTLを始動後カウンタ値ctTRMで除算して エンジン始動後の平均車速VPSAVEを算出する。

【0082】次いでS40に進み、サーモスタット64 が正常か故障か判定する。

【0083】図13はその処理を示すサブルーチン・フロー・チャートである。

【0084】以下説明すると、S300において水温センサ32から検出された水温TWが正常判定値TWJUD(例えば70°C)以下か否か判断し、肯定されるときはS302に進み、平均車速VPSAVEが基準値VPSAVTRM(例えば30km/h)を超えるか否か判断し、肯定されるときはS304に進んでサーモスタット64が正常と判定する。

【0085】他方、S300で否定されるときはS306に進み、推定水温CTWが故障判定値CTWJUD(例えば75°C)未満か否か判断し、肯定されるとき

はS308に進んでサーモスタット64が故障、即ち、 漏れ量の増大、開弁温度低下、全開故障 (オープンスティック) などの異常が生じたと判定する。

【0086】また、S306で否定されるときはS310に進み、推定水温CTWから検出水温TWを減算した得た差が第2の故障判定値DCTWJUD(例えば15°C)以下か否か判断し、否定されるときはS308に進んでサーモスタット故障と判定する。

【0087】このように、検出水温が正常判定値に達する前に、推定水温が故障判定値に達したとき、サーモスタット故障と判定する。また、推定水温が検出水温より非常に高いときは、推定水温が所定値に達する前でもサーモスタット故障と判定する。

【0088】サーモスタット正常と判定されるときはS312に進んで診断完了回数カウンタをインクリメントし、S314に進んで前記フラグF. MONTRMのビットを0にリセットする。

【0089】また、S302で否定されるときは、車速 (平均車速)が低くてラジエータ60に風がほとんど当 たらないと判断されるとき、実際にサーモスタット64 が故障したとしても、水温上昇が早いため、誤判定を避ける意図から、判定を遅延するようにした。

【0090】即ち、その場合はS316に進み、図示しない別ルーチンにおいてファン76を所定時間強制的に駆動してラジエータ60を冷却し、所定時間経過後に検出水温TWを前記正常判定値TWJUDと比較し、検出水温TWが前記正常判定値TWJUD以上のときはサーモスタット正常と判定すると共に、検出水温TWが前記正常判定値TWJUD未満のときはサーモスタット故障と判定するようにした。

【0091】この実施の形態は上記の如く、検出水温が正常判定値に達する前に推定水温が故障判定値に達したときもサーモスタット故障と判定する(あるいは推定水温が検出水温より非常に高いときは推定水温が所定値に達する前でもサーモスタット故障と判定する)ように構成した。

【0092】即ち、機関始動時の水温とラジエータの動作を近似する熱負荷パラメータから水温を推定すると共に、実際の水温を検出し、それぞれ所定値と比較することで両者の昇温特性を判断してサーモスタットの故障を検知するように構成したので、サーモスタットの漏れ量増大、開弁温度低下、全開故障などの故障を高精度かつに応答性良く検知することができる。

【0093】上記の如く、この実施の形態にあっては、 内燃機関(エンジン10)に連通路(インレットパイプ 62)を介して接続され、前記内燃機関の冷却水を冷却 すると共に、前記連通路を開閉するサーモスタット64 を備えてなるラジエータ60の故障検知装置において、 前記内燃機関の運転状態(エンジン回転数NE、吸気管 内絶対圧PBA、水温TW、外気温(吸気温)TA、車 速VPSなど)を検出する運転状態検出手段(クランク角センサ38、絶対圧センサ26、水温センサ32、外気温(吸気温)センサ30、車輪速センサ54、ECU20)、前記検出された運転状態のうち、少なくとも機関始動時の水温(TW, TWINIT)および前記水温上昇に相関する熱負荷パラメータ(水温推定エンジン負荷積算値TITTL)に基づいて推定水温CTWを算出する推定水温算出手段(ECU20, S26, S28, S200からS212, S30, S32)、および前記算出された推定水温CTWと前記検出された水温TWとをそれぞれ所定値(故障判定値CTWJUD, DCTJUD, 正常判定値TWJUD)と比較し、前記比較結果に基づいて前記ラジエータの故障を判定する故障判定手段(ECU20, S40, S300からS308)を備える如く構成した。

も機関負荷積算値(エンジン負荷積算値TIMTTL)に基づいて前記熱負荷パラメータ(水温推定エンジン負荷積算値TITTL)を算出する(ECU20、S26、S28、S200からS212)如く構成した。【0095】また、前記推定水温算出手段は、少なくとも前記内燃機関に供給される燃料噴射量(TIM×KPA)と機関回転数(エンジン回転数NE)と機関負荷(吸気管内絶対圧PBA)に基づいて前記機関負荷積算値を算出する(ECU20、S26、S28、S200からS212)如く構成した。

【0094】また、前記推定水温算出手段は、少なくと

【0096】また、前記推定水温算出手段は、さらに、 風などによる冷却損失積算値(積算冷却損失値CLTT L)に基づいて前記熱負荷パラメータを算出する(EC U20, S16からS26, S28)如く構成した。

【0097】また、前記推定水温算出手段は、少なくとも外気温(補正始動時外気温CTAOS)と車速VPSに基づいて前記風などによる冷却損失積算値(積算冷却損失値CLTTL)を算出する(ECU20, S16からS26, S28)如く構成した。

[0098]

【発明の効果】請求項1項にあっては、ラジエータ、より詳しくはラジエータに配置されるサーモスタットの故障を高精度かつ応答性良く検知することができる。

【0099】請求項2項にあっては、ラジエータ、より 詳しくはラジエータに配置されるサーモスタットの故障 を一層高精度かつ応答性良く検知することができる。

【0100】請求項3項にあっては、同様に、ラジエータ、より詳しくはラジエータに配置されるサーモスタットの故障を一層高精度かつ応答性良く検知することができる

【0101】請求項4項にあっては、同様に、ラジエータ、より詳しくはラジエータに配置されるサーモスタットの故障を一層高精度かつ応答性良く検知することができる。

【0102】請求項5項にあっては、同様に、ラジエータ、より詳しくはラジエータに配置されるサーモスタットの故障を一層高精度かつ応答性良く検知することができる。

【図面の簡単な説明】

【図1】この発明に係る内燃機関のラジエータ故障検知 装置を全体的に示す概略図である。

【図2】図1装置の中のラジエータの詳細を示す説明側面断面図である。

【図3】図1装置の動作を示すメイン・フロー・チャートである。

【図4】図3フロー・チャートの中のフラグF. MON TRMのビット決定作業、より詳しくは故障検知実行条 件成立判断作業を示すフロー・チャートである。

【図5】図4フロー・チャートで使用する水温推定始動 時水温補正値KDCTWのテーブル特性を示す説明グラ フである。

【図6】図3フロー・チャートで使用するヒータ冷損H TCLのテーブル特性を示す説明グラフである。

【図7】図4フロー・チャートで使用する風冷損WDC Lのテーブル特性を示す説明グラフである。

【図8】図4フロー・チャートで使用する風速補正値K VWDのテーブル特性を示す説明グラフである。

【図9】図3フロー・チャートの中の水温推定エンジン 負荷積算値TITTLの算出の基礎となるエンジン負荷 積算値TIMTTLの算出作業を示すフロー・チャート である。

【図10】図9フロー・チャートで使用する回転数補正値KNETIMのテーブル特性を示す説明グラフである

【図11】図9フロー・チャートで使用する負荷補正値 KPBTIMのテーブル特性を示す説明グラフである。

【図12】図3フロー・チャートで使用する水温推定基本値DCTWのテーブル特性を示す説明グラフである。

【図13】図3フロー・チャートの中のサーモスタット 故障・正常判定作業を示すサブルーチン・フロー・チャートである。

【符号の説明】

- 10 内燃機関 (エンジン)
- **ECU (電子制御ユニット)**
- 20b CPU
- 22 燃料噴射弁(インジェクタ)
- 26 絶対圧センサ
- 30 外気温(吸気温)センサ
- 32 水温センサ
- 38 クランク角センサ
- 54 車輪速センサ
- 60 ラジエータ
- 62 インレットパイプ(連通路)
- 64 サーモスタット

3

フロントページの続き

(72)発明者 小池 譲 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内

(72) 発明者 橋本 朗 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内