NPTEL MOOC, JAN-FEB 2015 Week 2, Module 8

DESIGNAND ANALYSIS OF ALGORITHMS

Quicksort: Analysis

MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan

Quicksort

- * Choose a pivot element
 - * Typically the first value in the array
- * Partition A into lower and upper parts with respect to pivot
- * Move pivot between lower and upper partition
- * Recursively sort the two partitions

Analysis of Quicksort

- * Partitioning with respect to pivot takes O(n)
- * If pivot is median
 - * Each partition is of size n/2
 - * $t(n) = 2t(n/2) + n = O(n \log n)$
- * Worst case?

Analysis of Quicksort

Worst case

- * Pivot is maximum or minimum
 - * One partition is empty
 - * Other is size n-1
 - * t(n) = t(n-1) + n = t(n-2) + (n-1) + n= ... = 1 + 2 + ... + n = $O(n^2)$
- * Already sorted array is worst case input!

Analysis of Quicksort

But ...

- * Average case is O(n log n)
 - * Sorting is a rare example where average case can be computed
- * What does average case mean?

Quicksort: Average case

- * Assume input is a permutation of {1,2,...,n}
 - * Actual values not important
 - * Only relative order matters
 - * Each input is equally likely (uniform probability)
- * Calculate running time across all inputs
- * Expected running time can be shown O(n log n)

Quicksort: randomization

- * Worst case arises because of fixed choice of pivot
 - * We chose the first element
 - * For any fixed strategy (last element, midpoint), can work backwards to construct O(n²) worst case
- * Instead, choose pivot randomly
 - * Pick any index in [0..n-1] with uniform probability
- * Expected running time is again O(n log n)

Iterative Quicksort

- * Recursive calls work on disjoint segments of array
 - * No recombination of results required
- * Can use an explicit stack to simulate recursion
 - * Stack only needs to store left and right endpoints of interval to be sorted

Quicksort in practice

- * In practice, Quicksort is very fast
 - * Typically the default algorithm for in-built sort functions
 - * Spreadsheets
 - * Built in sort function in programming languages