8. Januar 2019

Kombinatorik

Motivation

Es sei A eine endliche Menge mit |A| = n. Weiter sei $k \in \mathbb{N}$.

Stichproben

Eine Stichprobe aus A vom Umfang k ist eine Auswahl von k Elementen aus A. Dabei gibt es vier Szenarien:

- ► Elemente paarweise verschieden, Reihenfolge relevant (Ziehen ohne Zurücklegen unter Beachtung der Reihenfolge);
- Elemente paarweise verschieden, Reihenfolge irrelevant (Ziehen ohne Zurücklegen ohne Beachtung der Reihenfolge);
- ► Elemente können mehrfach vorkommen, Reihenfolge relevant (Ziehen mit Zurücklegen unter Beachtung der Reihenfolge);
- ► Elemente können mehrfach vorkommen, Reihenfolge irrelevant (Ziehen mit Zurücklegen ohne Beachtung der Reihenfolge).

Motivation (Forts.)

Beispiele

- Medaillenverteilung nach 100m-Lauf mit 8 Läufern $(A = \{\text{Läufer}\}, n = 8, k = 3);$
- ► Lottozahlen (A = 49, n = 49, k = 6);
- ▶ Dezimalzahlen in \mathbb{N} mit k Ziffern ($A = \{0, 1, ..., 9\}$, n = 10);
- ► Wurf mit 5 Würfeln gleichzeitig $\left(A = \left\{ \boxdot, \boxdot, \circlearrowleft, \boxdot, \boxdot, \rightleftarrows, \rightleftarrows \right\}, n = 6, k = 5 \right).$

Stichproben relevant z.B. in Wahrscheinlichkeitstheorie Gesucht: Anzahl der möglichen Stichproben (bei festem n und k)

k-Permutationen

Es sei A eine endliche Menge mit |A| = n. Weiter sei $k \in \mathbb{N}, k \le n$.

Definition

Eine k-Permutation aus A ist eine geordnete Auswahl von k paarweise verschiedenen Elementen aus A (ein k-Tupel über A mit paarweise verschiedenen Einträgen).

Eine n-Permutation aus A heißt Permutation von <math>A (stimmt mit früherer Definition von Permutation überein).

Bemerkung

k-Permutationen aus A modellieren Stichproben aus A vom Umfang k ohne Zurücklegen, unter Beachtung der Reihenfolge.

k-Permutationen (Forts.)

Beispiele

- ▶ (4,3,2),(4,2,3) und (3,5,1) sind 3-Permutationen aus $\underline{5}$.
- ▶ (1,2,1) ist keine Permutation.
- ► (1,3,5,2,4) und (5,4,3,2,1) sind Permutationen von $\underline{5}$.
- ▶ Die Medaillenverteilung nach einem 100m-Lauf mit 8 Läufern ist eine 3-Permutation aus <u>8</u>.
- ▶ Die aktuelle Bundesligatabelle ist eine Permutation von <u>18</u>.

k-Permutationen (Forts.)

Erinnerung

Für $n \in \mathbb{N}$ ist

$$n! = 1 \cdot 2 \cdot \cdot \cdot n$$

und 0! = 1.

Satz

Es sei A eine Menge mit $|A| = n \in \mathbb{N}$ und $k \in \mathbb{N}$ mit $k \leq n$.

Die Anzahl der k-Permutationen aus A ist

$$\frac{n!}{(n-k)!}.$$

Die Anzahl der Permutationen von A ist n!.

k-Permutationen (Forts.)

Beispiele

- ▶ Die Anzahl der 2-Permutationen aus $\underline{3}$ ist $\frac{3!}{(3-2)!} = 6$.
- ► Es gibt $\frac{8!}{(8-3)!} = 6 \cdot 7 \cdot 8 = 336$ mögliche Medaillenverteilungen (Gold, Silber, Bronze) auf 8 Läufer.
- ► Es gibt $18! = 6.402.373.705.728.000 \approx 6, 4 \cdot 10^{15}$ mögliche Bundesligatabellen aus 18 Mannschaften.

k-Kombinationen

Es sei A eine endliche Menge mit |A| = n. Weiter sei $k \in \mathbb{N}, k \le n$.

Definition

Eine k-Kombination aus A ist eine ungeordnete Auswahl von k paarweise verschiedenen Elementen aus A (eine k-elementige Teilmenge von A).

Bemerkung

k-Kombinationen aus A modellieren Stichproben aus A vom Umfang k ohne Zurücklegen, ohne Beachtung der Reihenfolge.

k-Kombinationen

Beispiele

- ▶ $\{4,3,2\} = \{4,2,3\}$ und $\{3,5,1\}$ sind 3-Kombinationen aus $\underline{5}$.
- ► Ein ausgefüllter Lottoschein ist eine 6-Kombination aus <u>49</u>.
- ▶ Die Bundesliga-Absteiger bilden einen 3-Kombination aus <u>18</u>.
- ► Eine Skathand ist eine 10-Kombination aus <u>32</u>.

k-Kombinationen (Forts.)

Satz

Es sei A eine Menge mit $|A| = n \in \mathbb{N}$ und $k \in \mathbb{N}$ mit $k \leq n$.

Die Anzahl der k-Kombinationen aus A ist

$$\frac{n!}{k!(n-k)!}.$$

k-Kombinationen (Forts.)

Beispiele

- ▶ Die Anzahl der 2-Kombinationen aus $\underline{4}$ ist $\frac{4!}{2!(4-2)!} = 6$.
- ► Es gibt $\frac{49!}{6!43!} = 13.983.816$ Lottotipps.
- ► Es gibt $\frac{18!}{3!15!} = 816$ Möglichkeiten, drei von 18 Mannschaften absteigen zu lassen.
- ► Es gibt $\frac{32!}{10!22!}$ = 64.512.240 mögliche Skathände.

k-Tupel

Es sei A eine endliche Menge mit |A| = n. Weiter sei $k \in \mathbb{N}$.

Bemerkung

k-Tupel über A modellieren Stichproben aus A vom Umfang k mit Zurücklegen, unter Beachtung der Reihenfolge.

Beispiel

Resultat von Klausur mit k Teilnehmern und 11 möglichen Noten: k-Tupel über $\underline{11}$.

Nummeriere Teilnehmer von 1 bis k; es sei a_i die Note von Teilnehmer i. Resultat: (a_1, \ldots, a_k) .

Satz

Die Anzahl der k-Tupel über A ist n^k .

k-Multimengen

Es sei A eine endliche Menge mit |A| = n. Weiter sei $k \in \mathbb{N}$.

Definition

Eine k-Multimenge über A ist eine ungeordnete Auswahl von k beliebigen (nicht notwendig verschiedenen) Elementen aus A. (Eine Multimenge ist eine Menge mit Wiederholungen.)

Bemerkung

k-Multimengen über A modellieren Stichproben aus A vom Umfang k mit Zurücklegen, ohne Beachtung der Reihenfolge.

Beispiele

- ► Ein Lostopf ist eine Multimenge.
- ▶ Das Resultat eines Wurfs mit 5 Würfeln gleichzeitig ist eine 5-Multimenge über 6.

k-Multimengen (Forts.)

Es sei A eine endliche Menge mit |A|=n. Weiter sei $k\in\mathbb{N}$. Nummeriere A, etwa $A=\{a_1,\ldots,a_n\}$.

Definition

Für eine k-Multimenge \mathcal{X} über A sei $\ell_{\mathcal{X}} := (\ell_1, \dots, \ell_n) \in \mathbb{N}_0^n$ mit $\sum_{i=1}^n \ell_i = k$ definiert durch

$$\ell_i := \text{Vielfachheit von } a_i \text{ in } \mathcal{X}.$$

 $\ell_{\mathcal{X}}$ heißt das *Häufigkeitstupel* der Multimenge \mathcal{X} .

Beispiel

Der Wurf mit 5 Würfeln gleichzeitig habe das Ergebnis

Nummerieren wir die Elemente aus A nach aufsteigender Augenzahl, erhalten wir das Häufigkeitstupel (2, 2, 0, 1, 0, 0).

k-Multimengen (Forts.)

Bemerkung

Die Abbildung

```
\{k	ext{-Multimengen "uber }A\} 
ightarrow \{(\ell_1,\ldots,\ell_n)\in \mathbb{N}_0^n\mid \sum_{i=1}^n\ell_i=k\} \mathcal{X} 
ightarrow \ell_{\mathcal{X}}
```

ist eine Bijektion.

k-Multimengen (Forts.)

Es sei A eine endliche Menge mit |A| = n. Weiter sei $k \in \mathbb{N}$.

Satz

Die Anzahl der k-Multimengen über A ist

$$\frac{(n+k-1)!}{k!(n-1)!}$$

.

Binomial koef fizienten

Es seien $n, k \in \mathbb{N}_0$.

Definition

Für k < n heißt

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

der Binomialkoeffizient n über k.

Beispiel

$$\binom{5}{3} =$$

Binomialkoeffizienten (Forts.)

Es seien $n, k \in \mathbb{N}_0$ mit $k \le n$.

Bemerkung

$$\binom{n}{k} = \binom{n}{n-k}.$$

$$\binom{n}{k} \in \mathbb{N}$$
.

▶ Ist
$$1 \le k \le n-1$$
, dann gilt

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}.$$

Binomialkoeffizienten (Forts.)

Pascal'sches Dreieck

n = 0:							1						
n = 1:						1		1					
n = 2:					1		2		1				
n = 3:				1		3		3		1			
n = 4:			1		4		6		4		1		
<i>n</i> = 5:		1		5		10		10		5		1	
n — 6·	1		6		15		20		15		6		

Der binomische Lehrsatz

Es sei R ein kommutativer Ring.

Schreibweise

Für $a \in R$ und $z \in \mathbb{Z}$ schreiben wir

$$z.a := \left\{ egin{array}{ll} rac{1+1+\cdots+1}{z \ {\sf Summanden}}, & {\sf falls} \ z \in \mathbb{N} \ \\ 0, & {\sf falls} \ z = 0 \ \\ -(-z.a), & {\sf falls} \ z < 0 \end{array}
ight.$$

Meist lassen wir den Punkt weg, d.h. wir schreiben za statt z.a.

Bemerkung

Ist z = xy für $x, y \in \mathbb{Z}$, dann gilt z.a = x.(y.a) für alle $a \in R$.

Der binomische Lehrsatz (Forts.)

Binomischer Lehrsatz

Es sei R ein kommutativer Ring, $a, b \in R$ und $n \in \mathbb{N}$. Dann gilt

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

Korollar

Für $n \in \mathbb{N}$ gilt

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

Der binomische Lehrsatz (Forts.)

Schülers Traum

Es sei R ein Ring und p eine Primzahl mit p.a=0 für alle $a\in R$ (z.B. $R=\mathbb{F}_p$ der Körper mit p Elementen). Dann ist

$$(a+b)^p = a^p + b^p$$

für alle $a, b \in R$.

Beweis

Für 0 < k < p ist

$$\binom{p}{k} = \frac{p \cdot (p-1) \cdots (p-k+1)}{k!}$$

von der Form xp für ein $x \in \mathbb{N}$, also $\binom{p}{k}.a^kb^{p-k} = 0$.

Kombinatorische Beweisprinzipien

Summenregel

Es sei $r \in \mathbb{N}$ und A_1, \ldots, A_r paarweise disjunkte endliche Mengen. Dann ist

$$|\bigcup_{i=1}^{r} A_i| = \sum_{i=1}^{r} |A_i|.$$

Kombinatorische Beweisprinzipien (Forts.)

Differenzregel

Es sei M endliche Menge, $A \subseteq M$. Dann ist

$$|M\setminus A|=|M|-|A|.$$

Beispiel

```
|\{n \in \underline{10} \mid n \notin \mathbb{P}\}| =
```

Kombinatorische Beweisprinzipien (Forts.)

Produktregel

Es sei $r \in \mathbb{N}$ und A_1, \ldots, A_r endliche Mengen. Dann ist

$$| \underset{i=1}{\overset{r}{\times}} A_i | = \prod_{i=1}^r |A_i|.$$

Kombinatorische Beweisprinzipien (Forts.)

Satz

 \mathcal{A} eine Multimenge mit r verschiedenen Elementen a_1, \ldots, a_r .

Es sei $\ell_{\mathcal{A}} = (k_1, \dots, k_r)$ und $k = k_1 + \dots + k_r$.

Die Anzahl der Anordnungen von ${\cal A}$ ist

$$\frac{k!}{k_1!\cdots k_r!}.$$

Beispiel

Wieviele verschiedene Wörter kann man durch Anordnung der Buchstaben P,I,Z,Z,A gewinnen?