One page summary about the current status

IS2023 Debojit talk

1. Check if the N_{ch} dependence is related to the stronger subnucleon fluctuation.

Done. A change in Nch trend is found!

3. Check the decorrelation factor varying with multiplicity and relation to ampt initial conditions.

Calculation partly done. η distribution is strange, only done for one high Multibin. Not done for N_{ch} dependence yet.

arXiv:2308.16590

2. Check the longitudinal decorrelation in eta distribution with sub-nucleon effect.

Calculation done. η decorrelation partly found, but strange non-flow subtraction behavior.

1) Can you use exactly the same coverage/cuts as the IS2023 talk to calculate V2Delta for comparisons?

2) top 2 models give too big V2Delta, se sigma_p should be decreased for them. $|\triangle \eta| > 6$

pp 13 TeV
ampt 1.5mb (public ampt)
ampt 3q 1.5mb (3-quark ampt)
ampt point 1.5mb (point ini geo by hand)

py8ampt (PYTHIA8 initial condition, 3quark)

ART on for all cases

$$N_{ch}$$
 (p_T>0.2, $|\eta|$ <0.8)

Reference/POI particle:

$$0.3 < p_T < 3$$
, $|\eta| < 6$, $|\Delta \eta| > 6$

Template fit method to subtract non-flow:

$$\frac{1}{N_{\rm trig}}\frac{dN}{d\Delta\phi} = G \cdot \left[1 + 2\sum_{n=2}^{4} V_{n\Delta}\cos(n\Delta\phi)\right] + F \cdot f_{\rm background}^{\rm 3)} \begin{array}{l} {\rm With\ very\ small\ sigma_p\ ,\ hadron\ cascade(\textbf{p}_{\rm T}>0.2,\ |\eta|<0.8)} \\ {\rm will\ start\ too\ early\ and\ may\ give\ sizable\ contribution\ .\ So\ it's\ best\ if\ you\ also\ have\ the\ initial\ hadron\ data\ (before\ ART)\ .} \end{array}$$

 $f_{background}$ using template correlation function from $N_{ch} < 10$ to represent the non-flow effect

4) Any p-Pb results?

 N_{ch} (p_T>0.2, | η |<0.8)>40 Reference/POI particle: 0.3<p_T<3, | η |<6, | $\Delta\eta$ |>6

- 5) Maybe fbackgd(Delta phi) depends on eta_1 in a strange way in the top 2 models? You can plot fbackgd(Delta phi) to check this.
- 6) This is ~v2^2, not the decorrelation of v2, right? ampt 1.5mb

Template fit (non-flow subtracted):

$$\frac{1}{N_{\text{trig}}} \frac{dN}{d\Delta \phi} = G \cdot \left[1 + 2 \sum_{n=2}^{4} V_{n\Delta} \cos(n\Delta \phi) \right] + F \cdot f_{\text{background}}(\Delta \phi)$$

Direct Fourier fit (non-flow unsubtracted/no-sub):

$$\frac{dN}{d\Delta\phi} \propto 1 + 2\sum_{n=1}^{4} V_{n\Delta} \cos(n\Delta\phi)$$

- Different rapidity decorrelation level comparing 3q and normal ampt
- Strange non-flow subtraction effect (subtracted>no-sub) for normal and 3quark ampt 1.5mb case
- Py8ampt weak rapidity dependence, seemingly correct non-flow subtraction ordering

ampt 3q 1.5mb

 N_{ch} using $p_T > 0.4$, $|\eta| < 2.5$

Reference particle:

Low Mult: 10<N_{ch}<30

High Mult: N_{ch}>60

Raw Fourier $Y(\Delta \phi, \eta_a) = G\{1 + 2\sum_{n=1}^4 a_n(\eta^a)\cos(n\Delta\phi)\}\$

Template fit $Y^{HM}(\Delta\phi, \eta_a) = F(\eta_a)Y^{LM}(\Delta\phi, \eta_a) + G(\eta^a)\{1 + 2\sum_{n=2}^4 c_n(\eta^a)\cos(n\Delta\phi)\}$

Rapidity decorrelation fit $c_n(\eta_a)$ or $a_n(\eta_a) = A(1 + F_n \cdot \eta^a + S_n \cdot (\eta^a)^2)$

Top 2 models a2<c2, but data a2>c2. Could this be because Y^LM has a negative a2? You can check this.

2nd model (ampt3g) has no problem in extracting the slopes; ampt 30 1.5mb $0.5 < p_T < 5$, $4 < \eta^{ref} < 4.9$, $-2.5 < \eta^a < 2.5$ so it's worth to decrease sigma_p and then plot slopes vs ATLAS.

- Similar non-flow subtraction behavior compared to the last page result
- Non-symmetric η^a distribution in ampt 3q case after non-flow subtraction
- Possibly zero c₃

