

truments

Prepared For:

First Term - Project1

Presented By \
 Mahmoud Karem Zamel
Supervisor \
 Eng.Keroles Shenoda

CONTENT

1-Case Study	P.3
2-Method	P.4
3-Requirement Diagram	P.5
4-Space Exploration/Partitioning	P.6
5-System Analysis	P.6
1-Use Case Diagram	
2-Activity Diagram	
 3-Sequence Diagram	
6-System Design	P.8
1-Block Diagrams	
2-Flow Charts	
SOFTWARE & TESTING	P.12
Simulation	P 15

1-Case Study

A pressure controller informs the crew of a cabin with an alarm when the pressure exceeds 20 bars in the cabin. The alarm duration equals 60 seconds.

Assumptions:

- The system setup and shutdown procedures are not modeled.
- The system maintenance is not modeled.
- The pressure sensor never fails.
- The alarm never fails.
- The system never faces power cut.
- -Store in Flash is not modeled in any diagram.

2-Method

V-Model

Where this system has many modules that is very difficult in the Integration so that a test for every module was worked as a whole and collected them Finally.

Verification stages on one side of the Validation stages on the opposite side. The confirmation and Validation process is joined by coding gradually works in V-shape.

3-Requirement Diagram

Hint:

Store data in flash is optional...may be implemented in future versions.

4-Space Exploration/Partitioning

Hardware will be STM32F103C6 MCU Based on ARM Cortex-M3 processor.

5-System Analysis

1)Use Case Diagram

2)Activity Diagram

3)Sequence Diagram

6-System Design

1)System Block Diagram

2)System Flow Charts

1-Main Algorithm Flow Chart

2-Pressure Sensor Flow Chart

3-Alarm Actuator Flow Chart

#Check Syntax & Logic Errors

No Errors

7-SOFTWARE & TESTING

Project Files

Name	Date modified	Туре	Size
Simulation	8/25/2022 4:26 PM	File folder	
Alarm_Actuator.c	8/25/2022 2:39 PM	C File	2 KB
☑ Alarm_Actuator.h	8/25/2022 3:57 PM	H File	1 KB
BIT_MATH.h	8/25/2022 2:39 PM	H File	1 KB
☑ GPIO.c	8/25/2022 2:40 PM	C File	1 KB
☑ GPIO.h	8/25/2022 2:40 PM	H File	2 KB
Iinker_script.ld	7/24/2022 12:36 AM	LD File	1 KB
	8/25/2022 1:58 PM	C File	1 KB
Main_ALgorithm.c	8/25/2022 3:53 PM	C File	2 KB
Main_ALgorithm.h	8/25/2022 1:44 PM	H File	1 KB
Makefile	8/25/2022 3:51 PM	File	2 KB
Platform_Types.h	8/25/2022 1:44 PM	H File	2 KB
Pressure_Sensor.c	8/25/2022 2:43 PM	C File	2 KB
Pressure_Sensor.h	8/25/2022 1:44 PM	H File	1 KB
🕍 startup.c	7/24/2022 12:28 AM	C File	3 KB
🕍 state.h	8/25/2022 1:47 PM	H File	1 KB

Makefile

Testing the Project

```
- - -
 i main.c ⋈ i Main_Algorithm.c i Alarm_Actuator.c ii Alarm_Actuator.h
        Proj1_test/main.c main.c
                                                                           * Author : Mahmoud Karem Zamel
   4
   5
   6
   9 #include "Platform_Types.h"
  10
  #include "Pressure_Sensor.h"
#include "Alarm_Actuator.h"
  13 #include "Main_ALgorithm.h"
  14
  16⊖ void setup ()
  17 {
           //init all the drivers ...
  18
          //init IRQ ...
//init HAL
  19
  20
         //GPIO_Init();
//init Block
  21
  22
          PS Init();
  23
         Alarm_Actuator_Init();
//Set states pointers for each block (init States for each one)
pMA_state = STATE(MA_Waiting);
  24
  25
  26
          pPS_state = STATE(PS_busy);
  27
          pAlarm_Actuator_state = STATE(Alarm_Actuator_idle);
  28
  29
  30 }
  31
  32⊖int main ()
  33 {
           volatile int Delay ;
  34
  35
 🖺 Problems 🔊 Tasks 📮 Console 🗯 🗀 Properties 🔑 😘 🔛 🔡 🍱 🔉 🖺 🔛 🗎 🛣 🗀 😭 🛣 🗂 🕶 🖫 Build Analyzer 🖾 🚊 Static Stack Analyzer
 CDT Build Console [Proj1_test]
                                                                                              Memory Regions Memory Details
 19:43:34 Build Finished. 0 errors, 0 warnings. (took 355ms)
                                                                                         Region Start address End address Size
Interface - Proj1_test/main.c - STM32CubeIDE
File Edit Source Refactor Navigate Search Project Run Window Help
Quick Access
                □ □ SE Outline 🖾 📵 Build Targets
                                                                                                                              ⊟ 1½ % √ • ₩ ▽
∨ 🥝 Proj1_test
                                                                                                                   ■ Platform_Types.h
 > 🔊 Includes
                                                                                                                   ■ Pressure_Sensor.h
  Debug

Alarm_Actuator.c

Alarm_Actuator.h

BIT_MATH.h

Main_Algorithm.c
                                   #include "Pressure_Sensor.h"
#include "Alarm_Actuator.h"
#include "Main_Algorithm.h"
                                                                                                                   Alarm_Actuator.h
Main_Algorithm.h
  Platform_Types.h
                                        //init Block
PS_init();
Alam_Actuator_Init();
//set states pointers for each block (init States for each one)
                                        //Set states pointers for each block (init States for
pMA_state = STATE(MA_Waiting);
pPS_state = STATE(PS_busy);
pAlarm_Actuator_state = STATE(Alarm_Actuator_idle);
                                  ■ X 🍇 🖟 🖟 🖟 😅 🐸 🗗 💆 🕶 🐨 🕶 🗆 🛗 Build Analyzer 🗵 🚊 Static Stack Ana... 😬 🗆
                                  Memory Regions Memory Details
```

Explain Testing

I made a function to generate random values to act as a pressure sensor ... So there are many test cases in this range [15:25], threshold = 20 bar.

1st Case:

```
Problems ☑ Tasks ☑ Console ☒ ☐ Properties

<terminated > (exit value: -1) Proj1_test.exe [C/C++ Application] D:\Learn_In_Depth\Materials\Unit5\Proj1_Pressure_Detection\Pressure_Detection_Final_Project
PS ------> Pressure=15 -----> MA
MA_Waiting state : Pressure=15
MA ------ State=0 -----> Alarm_Actuator
Alarm_Actuator_busy state : State=0
```

In this case the pressure =15 (Less than threshold) ... The pressure sensor sent this value to main algorithm and because it is less than 20 bar the main algorithm sent to alarm actuator to stop.

2nd Case:

```
PS_busy state : Pressure=21
PS -----> Pressure=21 -----> MA
MA_Waiting state : Pressure=21
MA -----> State=1 -----> Alarm_Actuator
Alarm_Actuator_busy state : State=1
```

In this case the pressure =21 (Bigger than threshold) ... The pressure sensor sent this value to main algorithm and because it is bigger than 20 bar the main algorithm sent to alarm actuator to Start .

8-Simulation

