微分積分学 IV·演習第 11 回

2021年12月7日

問 11-1

積分を用いて級数の収束・発散を判定する方法を積分判定法と呼ぶ.

(1) 関数 h(x) を

$$h(x) = \frac{1}{n}$$
 $(n \le x < n+1$ のとき)

で定めるとき, $1 \leq x \leq 4$ について y = h(x) のグラフを書け. また, $y = \frac{1}{x}$ のグラフと比較せよ.

(2) 自然数 $n \ge 1$ について

$$\int_{n}^{n+1} \frac{dx}{x} \le \frac{1}{n}$$

を示せ.

(3) (1), (2) の結果を用いて $\sum_{n=1}^{\infty} \frac{1}{n}$ が発散することを示せ.

問 11-2

この問題ではダランベールの判定法を証明する.正項級数 $\sum_{n=1}^{\infty} a_n$ について,

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=r<1$$

であったとする.

(1) ある N が存在して $n \ge N$ のとき

$$\frac{a_{n+1}}{a_n} < \frac{1+r}{2} < 1$$

であることを示せ. $(ヒント:\frac{1-r}{2}>0$. また収束性より $\left|\frac{a_{n+1}}{a_n}-r\right|$ はいくらでも 0 に近づけられる.)

(2) (1) の N について, $n \ge N$ のとき

$$a_n \le \left(\frac{1+r}{2}\right)^{n-N} a_N$$

であることを示せ.

(3) (2) の結果を用いて $\sum_{n=1}^{\infty} a_n$ が収束することを証明せよ.

問 11-3

次の級数の収束・発散を判定し、その証明を行え.

- $1. \sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2}$

- $\sum_{n=1}^{\infty} \frac{n^2}{n^{1.207}}$ 2. $\sum_{n=1}^{\infty} \frac{1}{n^{1.207}}$ 3. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n \log n}$ 4. $\sum_{n=1}^{\infty} \frac{1}{n^n}$ (ヒント:ダランベールの判定法.)
- $5. \sum_{n=1}^{\infty} \frac{n!}{n^n}$

確認問題 11-a

 $\alpha > 0$ に対し、

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$

の収束・発散を判定せよ. (問 11-1 によれば $\alpha=1$ のときは発散である. それ以外の場合はど うか?)

確認問題 11-b

(1) 任意の実数 x に対し、級数

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

は収束することを示せ.

(2) 級数

$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$

はどのようなxについて収束するか?