# Important opamp configurations



Willy Sansen

KULeuven, ESAT-MICAS Leuven, Belgium

willy.sansen@esat.kuleuven.be



### Table of contents

- Simple CMOS OTA
- CMOS Miller OTA
- Symmetrical CMOS OTA
- Folded cascode OTA
- Other opamps

# **Simple CMOS OTA**



$$C_{n2} = 2C_{GS3} + C_{DB3} + C_{DB1} \approx 4C_{GS3}$$

# Differential pair Current mirror

$$GBW = \frac{g_{m1}}{2\pi C_L}$$

$$f_{nd} = \frac{g_{m3}}{2\pi C_{n2}}$$

$$f_{nd} \approx \frac{f_{T3}}{4}$$

# Simple CMOS OTA: fnd



# **Telescopic CMOS OTA**



## Cascodes increase gain at low frequencies



### Table of contents

- Simple CMOS OTA
- CMOS Miller OTA
- Symmetrical CMOS OTA
- Folded cascode OTA
- Other opamps

### Miller CMOS OTA



### Miller BiCMOS OTA



### Table of contents

- Simple CMOS OTA
- CMOS Miller OTA
- Symmetrical CMOS OTA
- Folded cascode OTA
- Other opamps

# **Symmetrical CMOS OTA**



### **Symmetrical CMOS OTA: GBW**



# Symmetrical CMOS OTA: fnd1,2



# Pole at output of a differential pair



# Symmetrical CMOS OTA: fnd5



# Symmetrical CMOS OTA: Design Example



# **Symmetrical BiCMOS OTA**



### Symmetrical CMOS OTA with cascodes



# **Symmetrical Miller CMOS OTA**



# Bipolar transistor symmetrical amplifier



**CA3080** 

0.12 MHz

**1.2 V**/μs

 $I_3 = 10 \mu A$ 

### Gain enhancement by current starving



$$A = \frac{2}{(1-k)(V_{GS} - V_T)_1 \cdot \lambda_3} = \frac{A_0}{1-k}$$

Yao, ..., JSSC Nov.04, 1809-1818

#### Table of contents

- Simple CMOS OTA
- CMOS Miller OTA
- Symmetrical CMOS OTA
- Folded cascode OTA
- Other opamps

### Folded cascode CMOS OTA



### Folded cascode CMOS OTA: DC



### Folded cascode CMOS OTA:



### Folded cascode CMOS OTA:



### Folded cascode CMOS OTA:



Ref Mallya, JSSC Dec 89, 1737-1740

### Folded cascode BiCMOS OTA



# Folded cascode OTA: input to $V_{ss}$ rail



# Folded cascode OTA with 2nd stage



### Conventional folded cascode OTA



### Alternative folded cascode OTA



# **Comparison amplifiers**

|                                                       | I <sub>TOT</sub>     | dv <sub>in,eq</sub> <sup>2</sup> 8/3 kT df g <sub>m1</sub> | Swing            |
|-------------------------------------------------------|----------------------|------------------------------------------------------------|------------------|
| Volt. OTA (4 Ts)                                      | 0.25                 | 4                                                          | avg.             |
| Symmetrical (B= 3)                                    | 0.33                 | 16                                                         | max.             |
| Telescopic                                            | 0.25                 | 4                                                          | small            |
| Folded casc.                                          | 0.5                  | 4                                                          | avg.             |
| Miller 2-stage (C <sub>L</sub> /C <sub>c</sub> = 2.5) | 1.1                  | 4                                                          | max.             |
| GBW = 100 MHz C <sub>L</sub> = 2 p                    | F V <sub>GS</sub> -V | / <sub>T</sub> = 0.2 V Fu                                  | lly differential |

#### Table of contents

- Simple CMOS OTA
- CMOS Miller OTA
- Symmetrical CMOS OTA
- Folded cascode OTA
- Other opamps

#### **Sub-1 Volt OTA**



1 V 80  $\mu$ W (min: V<sub>T</sub>+2V<sub>DSsat</sub>) Fully differential 75 dB 30 MHz (0.1 pF)

< 100 ns

4 Switches 2n :

Only 2nd stage switched off!

Baschirotto, .. JSSC Dec.97,pp.1979-1986

### LM 4250



# **Increased input transconductance - 1**





$$g_{mR} = \frac{g_m}{1 + g_m R_S}$$

$$g_{mR} = \frac{g_m}{1 - g_m R_S}$$

# **Increased input transconductance - 2**



### **Increased input transconductance - 3**



Ref.: Castello, JSSC June 1990, pp. 669-676 M5,M6 for overdrive!

### Transconductor with $C \square_{DG}$ compen.



Ref.: Wu etal, JSSC Jan.1994, pp.63-66



# **Problem: unequal g**<sub>mtot</sub>



### Wu: input rail-to-rail stage



### Wu: output stage: gain



## Wu: output quiescent current control



$$V_{GS2} + V_{GS4} = V_{GS9} + V_{GS10}$$

$$M_4 = 2 M_{10} & M_9 = M_{10}$$

$$V_{GS2} - V_T = \sqrt{\frac{I_{DS2}}{K'_p W/L_2}}$$

$$\frac{I_{DS2}}{I_{DS9}} = \frac{W/L_2}{W/L_9} (2 - \frac{1}{\sqrt{2}}) \approx 91$$

$$I_{DS2} \approx 364 \,\mu\text{A}$$
 since  $I_{DS9} \approx 4 \,\mu\text{A}$ 

### Enhanced full-differential folded-cascode



# Bipolar opamp LM-124



GBW = 0.5 MHz  $SR = 0.4 \text{ V/}\mu\text{s}$   $I_1 = 3 \text{ }\mu\text{A}$   $I_{TOT} = 650 \text{ }\mu\text{A}$   $68 \text{ nV}_{RMS}/\sqrt{\text{Hz}}$ 

### **BiFET opamp TL-070**



# Bipolar 2-stage opamp 741



# **Two-stage opamp OP-97**



### Bootstrap for high gain A<sub>v2</sub>



$$R_m \rightarrow x \beta_3$$

$$R_{out} \rightarrow x \frac{1}{\beta_3}$$

$$A_{v2} \approx g_{m1} r_{o2} \times \beta_3$$

#### Same GBW!

Ref.De Man JSSC June 77, pp.217-222

#### **Table of contents**

- Simple CMOS OTA
- CMOS Miller OTA
- Symmetrical CMOS OTA
- Folded cascode OTA
- Other opamps