Control Systems

G V V Sharma*

1

CONTENTS

1 Feedback Circuits

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/codes

Parameter	Value
input resistance	∞
output resistance	0
Input voltage	V_s
Output Voltage	V_o
Feeding resistance	R_1
Feedback resistance	R_2
Open Loop Gain, A	10 ⁴ V/V
Closed Loop Gain, A_f	100 V/V

TABLE 1.1

1 FEEDBACK CIRCUITS

1.1. For the feedback voltage amplifier fig.1.1 and specs in Table 1.1. If $R_1 = 1k\Omega$, find the value of R_2 that results in a closed loop gain of 100 V/V.

Solution: The small signal equivalent fig. 1.1

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Fig. 1.1

$$V_f = \beta V_o \tag{1.1.1}$$

$$=\frac{R_1}{R_1+R_2}.V_o\tag{1.1.2}$$

$$\implies \beta = \frac{R_1 + R_2}{R_1 + R_2} \tag{1.1.3}$$

$$A_f = \frac{A}{1 + \beta A} \tag{1.1.4}$$

$$\implies \beta = \frac{1}{A_f} - \frac{1}{A} \tag{1.1.5}$$

$$=\frac{1}{100} - \frac{1}{10^4} \tag{1.1.6}$$

$$\implies \beta = 0.0099 \tag{1.1.7}$$

Putting β in (1.1.3) gives $\implies R_2 = 100.01 \text{ k}\Omega$ 1.2. What does the gain become if R_1 is removed? **Solution:** β goes to 0. So,

$$A_f = A \tag{1.2.1}$$