Problem Set 3 due October 24

- 1. Time series
- a. Consider the process

$$\begin{aligned} & \boldsymbol{x}_0 = \boldsymbol{0} \\ & \boldsymbol{x}_t = \boldsymbol{x}_{t-1} + \boldsymbol{\varepsilon}_t \ t = 1 \dots \\ & \boldsymbol{\varepsilon}_t \ \text{iid} \ \left(\boldsymbol{0}, \sigma^2 \right) \end{aligned}$$

Is the process stationary? Is the process exchangeable? Suppose you compare x_t and x_{t+1} . How does their behavior compare as $t \to \infty$?

b. Answer the same questions are 1.a, but replace the time series with

$$\begin{aligned} x_0 &= 0 \\ x_t &= .5x_{t-1} + \varepsilon_t \ t = 1... \\ \varepsilon_t \ \text{iid} \ \left(0, \sigma^2\right) \end{aligned}$$

Interpret differences in your answers.

2. Policy choice and evidence uncertainty

Suppose you are asked whether you support a 1% increase in tariffs. You have as statistical evidence two studies. Study 1 concludes the expected effect of an increase in

tariff is that economic growth will increase by .10 with a variance of .03. Study 2 concludes Study 1 concludes the expected effect of an increase in tariff is that economic growth will decrease by .10 with a variance of .03.

Formulate your decision problem and indicate what additional data-based information you would need to come to a conclusion. Assume you know your loss function!

3. Identification and regressor dependence

Suppose that observable variables x_i , y_i and z_i are related by the linear model.

$$y_{i} = \beta_{1} x_{i} + \beta_{2} z_{i} + \varepsilon_{i}$$

$$cov(x, \varepsilon) = cov(y, \varepsilon) = 0$$

$$\varepsilon_{i} \text{ iid } (0, \sigma^{2})$$

- a. Suppose you are told that $x_i = g(z_i)$ and are given the function g(). Are the parameters β_1 and β_2 identified? Explain.
- b. Suppose that $g(\)$ is also unknown. Assume it is invertible.

4. Measurement error

Consider the linear model

$$\mathbf{y}_i = \beta \mathbf{x}_i + \varepsilon_i$$

Suppose y_i is measured with error, i.e.

$$y^* = y + \eta$$

 $cov(x, \eta) = cov(\eta, \varepsilon) = 0$

Determine the relationship between $\, \beta \,$ and the regression coefficient $\, \pi \,$ in

$$\mathbf{y}_{i}^{*} = \pi \mathbf{x}_{i} + \xi_{i}$$

and interpret.