

Metode proračuna pouzdanosti i raspoloživosti

2. međuispit

Bodovi

	1.DZ	1.MI	2.DZ	2.MI	3.DZ	ZI	UI
	5 bod.	15 bod.	5 bod.	20 bod.	5 bod.	30 bod.	10 bod.
Marija Galić	4,5	13,5	3,4	15,6			
Roko Jerčić	3,7	11,1	4,5	17,8			
Goran Jurišić	4,5	13,5	3,6	14,4			
Antonio Obratov	4,0	12,04	3,3	13,3			
Bruno Palikuća	4,0	12,04	3,4	15,6			
Barbara Tolić	4,3	12,81	3,4	15,6			
Nino Vidak	5	15	5	20			
Alan Župan	4,0	12,04	3,3	13,3			
Marko Župan	4,8	14,34	5	20			

Srednje je vrijeme do kvara komponente s konstantnom učestalošću kvara 800 h. Kolika je vjerojatnost da se komponenta ne će pokvariti unutar tog vremena?

Rj.
$$\lambda = \frac{1}{T_0} = \frac{1}{800h} \Longrightarrow$$

$$R(800h) = e^{-\lambda t} = e^{-\frac{t}{T_0}} =$$

$$= e^{-\frac{800}{800}} = \frac{1}{e} = 0,3679$$

Raspolažemo s tri jednake kutije. Prva sadrži 10 komponenata od kojih su 4 pokvarene. Druga 6, 1 je pokvarena, a treća 8, 3 su pokvarene.

Slučajno odabiremo kutiju i zatim komponentu iz kutije.

Kolika je vjerojatnost da smo takvim slučajnim odabirom izvukli pokvarenu komponentu?

$$P(pokarena | komponenta) =$$

$$= \frac{1}{3} \cdot \frac{4}{10} + \frac{1}{3} \cdot \frac{1}{6} + \frac{1}{3} \cdot \frac{3}{8} = \frac{113}{360} = 0,314$$

2009.

Konstantna je učestalost kvara komponente 0,02 h⁻¹.

- 1) Kolika je vjerojatnost kvara komponente u prvih 10 sati rada?
- 2) Ukoliko je komponenta radila ispravno do isteka 100-tog sata, kolika je vjerojatnost da će se pokvariti unutar idućih 10 sati rada?

1)

$$Q(t) = 1 - R(t) = 1 - e^{-\lambda t} = 1 - e^{-0.02 \cdot 10} = 0.181$$

2) ista (λ = konst.)

Model je pouzdanosti sustava predstavljen slikom. Komponente su jednake i neovisne, s konstantnom učestalošću kvara $\lambda_i=2\cdot 10^{-4}~h^{-1}$.

- 1) Kolika je vjerojatnost kvara u godini dana (8760 h) rada sustava?
- 2) Koliko ima skupova s minimalnim brojem komponenata čiji istodobni kvar uzrokuje kvar sustava? Koji su to skupovi?

 $K_4 = \overline{x}_1 \overline{x}_4 \overline{x}_5$

1)

Staze su s najmanjim brojem komponenta

$$S_{1} = x_{1}x_{2}; \quad S_{2} = x_{3}x_{5}; \quad S_{3} = x_{3}x_{4}x_{2} \Rightarrow$$

$$R(t) = P(S_{1} + S_{2} + S_{3}) =$$

$$= P(S_{1}) + P(S_{2}) + P(S_{3}) - P(S_{1}S_{2}) - P(S_{2}S_{3}) + P(S_{1}S_{2}S_{3})$$

$$P(S_{1}) = e^{-\lambda_{1}t} \cdot e^{-\lambda_{2}t} = e^{-(\lambda_{1}t + \lambda_{2}t)} = e^{-2\lambda t} = P(S_{2})$$

$$P(S_{3}) = e^{-3\lambda t} \Rightarrow R(t) = 2e^{-2\lambda t} + e^{-3\lambda t} - 3e^{-4\lambda t} + e^{-5\lambda t}$$

$$\lambda \cdot t = \lambda \cdot 1 \text{ godina} = \lambda \cdot 8760h =$$

$$= 2 \cdot 10^{-4} h^{-1} \cdot 8760h = 1,752$$

$$\Rightarrow R(1 \text{ god.}) = 2e^{-2 \cdot 1,752} + e^{-3 \cdot 1,752} -$$

$$3e^{-4 \cdot 1,752} + e^{-5 \cdot 1,752} = 0,06015 + 0,00522 -$$

$$0,00271 + 0,00016 = 0,0628 \Rightarrow$$

$$Q(1 \text{ god.}) = 0,9372$$

2)

Broj skupova s minimalnim brojem komponenata čiji istodobni kvar uzrokuje kvar sustava jest 4:

$$\overline{K}_1 = \overline{x}_1 \overline{x}_3; \quad \overline{K}_2 = \overline{x}_2 \overline{x}_5;$$

$$\overline{K}_3 = \overline{x}_2 \overline{x}_3; \quad \overline{K}_4 = \overline{x}_1 \overline{x}_4 \overline{x}_5$$