Lab 7 (12 Mar 2018)

Problem 1: Implement the greedy algorithm for interval scheduling. Given a list of intervals you need to print a subset of non-overlapping intervals whose size is maximal. You can take the start/finish times of the intervals to be positive integers. A sample i/o is given below:

Input:

Enter the number of intervals: 8

13

28

25

3 7

48

46

6 12

7 10

Output:

[1, 3] [4, 6] [7, 10]

Problem 2: Implement the greedy interval *partitioning* algorithm. Given a list of jobs (intervals) you need to find the minimum number of resources needed to schedule **all** the jobs such that each resource schedules only non-overlapping jobs. (The example/picture below is taken from KT.)

Input: Enter the number of intervals: 10 13 16 13	$\begin{bmatrix} c & & & & & & & & & & & & & & & & & & $	<u>j</u> <u>h</u> <u>i</u>
4 6 4 10	(a)	
8 12 8 12 11 15 13 15 13 15	$\begin{bmatrix} c \\ b \\ a \end{bmatrix} \begin{bmatrix} d \\ g \\ \end{bmatrix}$	
	(b)	

Output:

Minimum number of resources: 3
Resource 1 jobs: [1,3] [4,10] [11,15]
Resource 2 jobs: [1,6] [8,12] [13,15]
Resource 3 jobs: [1,3] [4,6] [8,12] [13,15]