

RAMONaaS Summer School 25 - 27 June 2024 Brest, France

École Mines-Télécom

5G IN 5 MINUTES

Luiz ANET NETO luiz.anetneto@imt-atlantique.fr

MOBILE STACK IN A NUTSHELL

How a Mobile Signal is Created

This class is about optical networking

- Of course, we'll not focus on the mobile procedures here
- But it is crucial that we understand certain aspects of it so that we can measure the impact of mobile traffic over fiber networks
- I hope you'll see why by the end of the class

4G Interfaces and Standard RAN Topology

A Closer Look into the Mobile Stack

Prior to the RAN machine (EPC)

- Packets routing/forwarding inside the mobile network, mobility control (handovers), bridge to exterior networks, etc
- ▶ GTP (General Packet Radio Service Tunnelling Protocol), additional layer to homogenise processing of all types of packets
- Stacking/unstacking layers

LAYER 3

User plane (IP) + control plane packets

LAYER 2

- Packet Data Convergence Protocol (PDCP)
 - Header compression, cyphering, integrity protection (during handovers), etc.
- Radio Link Control (RLC)
 - Logical categorization of U/C planes, sequencing of blocks (HARQ), concatenation and segmentation, repetition
- Medium Access Control (MAC)
 - MUX/DEMUX, prioritization, hybrid automatic repeat request (ARQ + FEC),
 PHY scheduler (resource allocation), etc

A Closer Look into the Mobile Stack

New Paradigms

The wireless revolution

- ▶ From the 1980's, one new generation every ~8-10 years
- ► Generation: worldwide adoption and deployment
- ▶ 1G: Analog communications with bulky and batteryinefficient terminals
- 2G: Digital implementations and short message service (SMS) functionalities
- ▶ 3G: First mobile Internet access
- 4G: Network dominated by data-centric usages in 4G
- 5G: Increased channel capacity & unprecedented usages of the mobile network

Left: M. Cooper Motorola's 1G DynaTAC (1 kg, 3500 USD, ~35 min. tallk time). Right: Motorola's foldable Razr 5G (190 g, 1500 USD, ~8h talk time)

The 5G Triangle

eMBB: enhanced mobile broadband

mMTC: massive machine type communications

URLLC: ultra-reliable low-latency communication

Carte SIM pour M2M et IOT - Things Mobile - couverture mondiale, réseau multi-opérateur GSM/2G/3G/4G LTE, sans coûts fixes, sans échéance avec...

★★★☆ × 14

15,00€

1M/km² 1-10 ms E2E 99,999%

Robotic tele microsurgery performed on a cadaver patient's vocal cords using a 5G network (Annals of Internal Medicine, 06/20)

The 5G Triangle

As always, evolution will take place gradually

- First, increase capacity of conventional broadband (EMBB)
 - Use 4G network but with increased bandwidths of 5G radio (non stand alone 5G NSA)
- Bring fully autonomous 5G and slowly migrate legacy systems
 - 5G core and radio
 - Stand alone (SA) 5G
- Prepare network and deploy new services
 - URLLC, mMTC

As expected, the optical transport networks must be prepared for all those phases

A More Complete View of 5G Needs

Different requirements

- Bandwidth, latency, jitter, availability, reliability, positioning precision, number of devices
- Not mutually excluding
- Colorful palette of services, situations, traffic volumes and end-user devices.

3GPP TS 22.261 3GPP TS 22.104 * NGMN 5G White Paper

Scenario	Experienced bit-rate per user, downlink (uplink)	Area traffic capacity, downlink (uplink)	Overall user density	Active user density
Urban	50 (25) Mbit/s	100 (50) Gbit/s/km ²	10000/km ²	2000/km ²
Rural	50 (25) Mbit/s	1 (0.5) Gbit/s/km ²	100/km ²	20/km ²
Indoor hotspot	1 (0.5) Gbit/s	15 (2) Tbit/s/km ²	250000/km ²	[*]
Crowd broadband	25 (50) Mbit/s	3.75 (7.5) Tbit/s/km ²	500000/km ²	150000/km ²
Dense urban	300 (50) Mbit/s	750 (125) Gbit/s/km ²	25000/km ²	2500/km ²

A More Complete View of 5G Needs

Different requirements

- Bandwidth, latency, jitter, availability, reliability, positioning precision, number of devices
- Not mutually excluding
- Colorful palette of services, situations, traffic volumes and end-user devices.

3GPP TS 22.261 3GPP TS 22.104

Use-case	Target availability (%)	Mean time between failures	End-to-end latency	Experienced bit-rate
Sensors for process and asset monitoring	99.99	≥ 1 week	< 100 ms	≤ 2 Mbit/s
Cooperative carrying of a large piece by robots	99.9999 to 99.999999	10 years	< 2.5 ms	2.5 Mbit/s
Robotic aided surgery with haptic feedback	> 99.999999	> 10 years	< 2 ms	2-16 Mbit/s

Technological Enablers

5G New Radio (NR)

New carriers sub-6GHz and mmW

@700 MHz FDD

@3.6 GHz TDD

@26GHz >2GHz, TDD

∖∖∖∖∖∖∖∖∖∖∖∖∖∖ @>

@>26GHz

+800, 900, 1800, 2100, 2600 GHz

Up to 16 CA and Up to 400 MHz CC

CA: carrier aggregation CC: component carrier

Scalable & multiplexed numerology

mMIMO (beam forming, steering, multiplexing)

mMIMO: massive multiple inputs multiple outputs

5G key-points

New latency and bit-rate constraints

New functional splits

Slicing

Slicing

NFV & SDN

Ethernet Synchronization

everywhere

