Introduction to Statistics - Young Researchers Fellowship Program

Lecture 1 - Introduction to Statistics & Tabular Data Logic

Daniel Sánchez Pazmiño

Laboratorio de Investigación para el Desarrollo del Ecuador

September 2024

What is statistics?

What is statistics?

- A **methodology** for collecting, analyzing, interpreting, and presenting numerical information.
- A statistic is often referred to as a numerical fact or a piece of data which describes a particular characteristic of a group of individuals.
 - In the field of statistics, we typically don't refer to individual data points as statistics.
- In several fields, statistics is used as an aid to decision making under uncertainty.
- In a research context, statistics will be needed to understand phenomena, make predictions, and test hypotheses emerging from theory.
- Statistics is the systematic investigation of the correspondence of theory with the real world

Data in statistics

Data in statistics

- Because statistics is concerned with information, data is often the starting point of any statistical analysis.
- No clear definition of data can possibly satisfy everyone, but we can think of data as a collection of **facts** to be analyzed.
 - Data is **plural** for **datum**.
- A dataset is a collection of data points, which can be organized in a table, often about a specific topic, purpose, experiment, study, or context.

Broad types of data

- Typically, statistics makes a distinction between two broad types of data:
- Quantitative data, which is numerical in nature, meaning it can be measured and expressed in numbers.
 - Discrete data: whole numbers (e.g., number of students in a class).
 - Continuous data: real numbers (e.g., height, weight).
- Categorical or "qualitative" data, which is non-numerical in nature, meaning it cannot be directly measured or expressed in numbers.
 - Nominal data: categories without order (e.g., colors).
 - Ordinal data: categories with order (e.g., levels of satisfaction).

How a dataset might look like

■ What type of data can be identified for each column in the dataset?

the data they contain.

- Datasets can be classified into different types based on the nature of
- **I** Cross-sectional data: data collected at a single point in time.
 - Example: a survey conducted in 2024.
- **2 Time series data**: data collected over time at regular intervals, for a single entity.a
 - Example: monthly sales data from 2020 to 2024.
- **Panel data**: data collected over time for multiple entities.
 - Example: monthly sales data from 2020 to 2024 for multiple companies.
- Often, we also hear about repeated or pooled cross-sectional data, which is a combination of cross-sectional and time series data: we observe multiple cross-sections at different points in time.

Tabular data logic

- A dataset is typically organized in a **table** with rows and columns.
- Datasets often collect characteristics of individuals or entities, which are typically referred to as **elements**.
 - Elements are not necessarily the observations in a dataset, elements are those entities or individuals for which we hold information.
- When data is *tidy*, a table structure typically allows for easy identification of the following elements:
 - We will talk more about **tidy data** concept in the R companion module.
- Variables: columns in the table, which represent a characteristic of an element.
- **Observations**: rows in the table, which represent a collection of variable values for a single element.

- Sometimes, elements in a dataset (for the SUPERCIAS dataset, companies) are not the same as observations.
- We may observe multiple observations for a single element, which is why we need to be clear about the distinction between elements and observations.
- When we observe multiple observations for a single element, we typically refer to this as repeated measures or panel data.
- It is in this context when it comes in handy to difference between long and wide format datasets.

- Long vs. wide format refers to the way data is organized in a table.
- In the long format, each row represents a single observation, and each column represents a variable.
- In the wide format, each row typically represents a single element. Columns may represent variables, but also repeated measures or time points of the same variable.

Example of long vs. wide format - business creation per province

■ Long format: each row represents a single observation (business creation per province per year).

```
supercias <-
    supercias raw %>%
    mutate(creation_date = dmy(fecha_constitucion),
           year_creation = year(creation_date))
# Create a dataset with business creation per province
business_creation <-
  supercias %>%
  mutate(creation_date = dmy(fecha_constitucion),
         year_creation = year(creation_date),
         ) %>%
  count(provincia, year_creation)
```

Example of long vs. wide format - business creation per province

■ Wide format: each row represents a single element (province), and columns represent variables (business creation per year).

```
# Create a dataset with business creation per province

creation_show %>%
  pivot_wider(names_from = Year, values_from = `Number of busine kable()
```

Table 2: Wide format business creation per province (SUPERCIAS)

Province	2013	2023	2012	2024	2010
ORELLANA	82	NA	NA	NA	NA
AZUAY	NA	1267	NA	NA	NA
IMBABURA	NA	NA	97	NA	NA
COTODAYI	NΙΛ	NIA	NΙΛ	174	NIA

Sources of data

- Experimental studies
- Observational studies
- 3 Secondary sources (existing datasets)

Descriptive statistics vs. statistical inference

- **Descriptive statistics** summarize and describe the main features of a dataset.
 - Descriptive statistics are used to describe the data as it is.
 - Examples: mean, median, mode, standard deviation, variance, etc.
 - Tables and visualizations are commonly used as well
- Statistical inference is the process of making predictions or inferences about a population based on a sample.
 - A population is the entire group of individuals or entities we are interested in
 - A sample is a subset of the population.

- Sometimes we do have the entire population data, but we still use descriptive statistics.
 - E.g. a small population such as this group of students.
- Sometimes gathering data from the entire population is not feasible, so we use a sample to make inferences about the population.
- Descriptive statistics should be first understood well before moving to statistical inference.
 - We later use descriptive statistics to summarize the sample data and make inferences about the population based on the sample statistics
 - We will require an understanding of probability theory to make inferences about the population with the descriptive statistics of the sample.

Notation

- In statistics, we often use the following notation:
 - n: the number of observations in a dataset
 - \blacksquare x_i : the *i*-th observation in a dataset.
- We often want to underscore the difference between a descriptive statistic calculated for a sample or a population.
 - For a sample, we use a lowercase letter to denote the statistic (e.g., \bar{x} for the sample mean). We call this a sample statistic.
 - For a population, we use a Greek letter to denote the statistic (e.g., μ for the population mean). We call this a population parameter.
- In the rest of these slides, I will use the sample notation for simplicity. We will later discuss the difference between sample statistics and population parameters as we move to statistical inference.

Univariate descriptive statistics

Univariate data

- Univariate data refers to data that consists of a single variable or attribute.
- We are interested in summarizing single variables in a dataset.
- We'll later discuss bivariate descriptive statistics, which summarize the relationship between two variables.

Central tendency measures

Measures of central tendency are values that represent the center of a data set.

- Mean: the average of the data
- Median: the value that divides the data into two equal parts
- **Mode**: the value that appears most frequently

The mean $ar{x}$

- The average or, more specifically, the **arithmetic mean** is the sum of all observations divided by the number of observations.
 - There are other types of means, such as the geometric mean, harmonic mean, etc.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n)$$

- The mean is sensitive to outliers, so use with caution.
 - Very large or very small values can make the mean less representative of a typical value in the dataset.

Software implementation for the mean

- Use the base R function mean() to calculate the mean of a variable.
- You may need to use the na.rm = TRUE argument to remove missing values, depending on the dataset.

```
# Calculate the mean of the capital suscrito variable
mean_capital_suscrito <- mean(supercias_raw$capital_suscrito, na</pre>
mean capital suscrito
```

[1] 136384.3

0000000000

Median

- The median is the value that divides the data into two equal parts.
 - If the number of observations is odd, the median is the middle value.
 - If the number of observations is even, the median is the average of the two middle values.
- The median is less sensitive to outliers than the mean.

$$\operatorname{Median} = \begin{cases} x_{(n+1)/2} & \text{if } n \text{ is odd} \\ \frac{1}{2} \left(x_{n/2} + x_{n/2+1} \right) & \text{if } n \text{ is even} \end{cases}$$

Software implementation for the median

- Use the base R function median() to calculate the median of a variable.
- You may need to use the na.rm = TRUE argument to remove missing values, depending on the dataset.

```
# Calculate the median of the capital suscrito variable
median_capital_suscrito <- median(supercias$capital_suscrito,</pre>
                                   na.rm = TRUE)
median_capital_suscrito
```

[1] 800

00000000000

Mode

- The mode is the value that appears most frequently in the dataset.
- A dataset can have multiple modes if multiple values appear with the same frequency.
- The mode is not always defined, and it may not be unique.
- The mode is less commonly used than the mean and median.

Software implementation for the mode

- There is no built-in function in base R to calculate the mode.
- You can look for a function in a package or use the table() function to count the frequency of each value, then find the maximum frequency.
- # Calculate the mode of the capital suscrito variable mode_capital_suscrito <- table(supercias\$capital_suscrito)</pre>

Software implementation for the mode

Freq
2
1
2
4
32
2

0000000000

Stata implementations

- You can get many of these statistics in Stata using the summarize command.
 - summarize will give you the mean, median, and other statistics for all variables in the dataset.
 - You can use the detail option to get more detailed statistics.

summarize capital suscrito, detail

0000000000