Regras de Associação

Stanley Robson de M. Oliveira

Roteiro da Aula

- 🕨 🗖 Motivação e relevância.
- □ Regras de associação:
 - Definição e exemplos;
 - Conceitos básicos.
- □ Geração de regras de associação: Complexidade
- □ Problemas na seleção de regras.
- Medidas de interesse.
- □ Preparação de dados para associação.
- Exemplos de geração de regras no Weka.

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

_

Motivação

- É possível analisar uma sequência de eventos climáticos?
- □ Quais são as **pragas frequentemente encontradas** em uma determinada cultura?
- Onde devem estar localizadas os produtos agropecuários ?
- □ Que fenômenos ocorrem conjuntamente com o *El Niño* ?
- Qual é o percentual de produtores de soja e milho no estado de São Paulo?

Roteiro da Aula

- Motivação e relevância.
- □ Regras de associação:
 - Definição e exemplos;
 - Conceitos básicos.
- □ Geração de regras de associação: Complexidade
- □ Problemas na seleção de regras.
- Medidas de interesse.
- □ Preparação de dados para associação.
- Exemplos de geração de regras no Weka.

Associação: Definição e Exemplos

- Estuda o relacionamento entre itens de dados que ocorrem com uma certa frequência.
- □ É uma tarefa descritiva: identifica padrões em dados históricos.
- **□** Exemplos:
 - Clientes que compram leite e pão também compram manteiga.
 - Em forma de regra seria: {leite, pão} ⇒ {manteiga}

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

5

Associação: Conceitos Básicos

□ Alguns algoritmos para geração de **regras de associação** trabalham com **banco de dados de transações**.

Banco de Dados de Transações

TID	Lista de Itens
T1	Pão, Leite
T2	Pão, Fralda, Cerveja, Ovos
Т3	Leite, Fralda, Cerveja, Coca
T4	Pão, Leite, Fralda, Cerveja
T45	Pão, Leite, Fralda, Coca

□ Cada transação é composta por uma identificação (TID) e uma lista de itens.

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

6

Lista de Itens

T2 Pão, Fralda, Cerveja, Ovos

Leite, Fralda, Cerveja, Coca

Pão, Leite, Fralda, Cerveja Pão, Leite, Fralda, Coca

Pão. Leite

Associação: Conceitos Básicos ...

□ Considere o banco de dados de transações:

TID	Lista de Itens
T1	Pão, Leite
T2	Pão, Fralda, Cerveja, Ovos
Т3	Leite, Fralda, Cerveja, Coca
T4	Pão, Leite, Fralda, Cerveja
T5	Pão, Leite, Fralda, Coca

- □ Itens: I = {Pão, Leite, Fralda, Cerveja, Ovos, Coca}.
- **□ Banco de dados**: *D* = {T1, T2, T3, T4, T5}.
- □ Exemplo de transação:

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

■ T3 = {Leite, Fralda, Cerveja, Coca}.

Conjuntos Frequentes

Conjunto de itens (Itemset):

- Uma coleção de um ou mais itens.
 - Exemplo: {Leite, Pão, Fralda}
- k-itemset
 - · Um conjunto que contém k itens.

Support count (σ)

- Fraguência da ocorrência de um itemset
- **Exemplo:** $\sigma(\{\text{leite, Pão,Fralda}\}) = 2$
- Suporte
 - Fração de transações que contém um itemset
 - Exemplo: s({leite, Pão, Fralda}) = 2/5
- Conjunto Frequente (Frequent Itemset)
 - Um conjunto cujo suporte é maior ou igual a *minsup* threshold.

Associação: Conceitos Básicos ...

□ Considere o banco de dados de transações:

TID	Lista de Itens
T1	Pão, Leite
T2	Pão, Fralda, Cerveja, Ovos
Т3	Leite, Fralda, Cerveja, Coca
T4	Pão, Leite, Fralda, Cerveja
T5	Pão, Leite, Fralda, Coca

- □ Uma **regra de associação** é uma implicação da forma $(X \rightarrow Y)$, onde X e Y são conjunto de itens e $X \cap Y = \emptyset$.
 - □ R1: {Cerveja} → {Fralda}.
 - □ R2: {Cerveja, Pão} → {Leite}.
 - □ R3: {Leite, Pão} → {Fralda,Coca}.

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

Regras de Associação

■ Regra de Associação:

- Uma implicação da forma X → Y, onde X e Y são conjuntos frequentes.
- Exemplo: {Leite, Fralda} → {Cerveja}

■ Métricas para Avaliar as Regras:

- Suporte (s)
 - Fração das transações que contém ambos X e Y.
 - □ Sup(X \rightarrow Y) = P(X \cup Y).

Confianca (c)

- Mede a frequência de itens em Y que aparece nas transações que contêm X.
- □ Conf($X \rightarrow Y$) = P(Y|X).
- □ Conf(X \rightarrow Y) = Sup(X \cup Y) / Sup(X)

TID	Lista de Itens
T1	Pão, Leite
T2	Pão, Fralda, Cerveja, Ovos
Т3	Leite, Fralda, Cerveja, Coca
T4	Pão, Leite, Fralda, Cerveja
T5	Pão, Leite, Fralda, Coca

Exemplo:

{Leite, Fralda} ⇒ {Cerveja}

$$Sup = \frac{\text{Freq (Leite, Fralda, Cerveja)}}{\mid T \mid} = \frac{2}{5}$$

$$Conf = \frac{Freq (Leite, Fralda, Cerveja)}{Freq (Leite, Fralda)} = \frac{2}{3}$$

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

10

Minerando Regras de Associação

- Dado um conjunto de transações T, a tarefa de mineração de regras de associação é encontrar todas as regras que:
 - **suporte** ≥ fator *minsup* estabelecido pelo usuário.
 - **confiança** ≥ fator *minconf* definido pelo usuário.

□ Abordagem da Força Bruta:

- Listar todas as regras possíveis.
- Calcular o suporte e a confiança para cada regra.
- Podar regras que não atendem os fatores minsup e minconf.
- ⇒ Computacionalmente proibitivo!

Regras de Associação ...

TID	Lista de Itens
T1	Pão, Leite
T2	Pão, Fralda, Cerveja, Ovos
Т3	Leite, Fralda, Cerveja, Coca
T4	Pão, Leite, Fralda, Cerveja
T5	Pão, Leite, Fralda, Coca

Exemplos de Regras:

{Leite, Fralda} \rightarrow {Cerveja} (s=0.4, c=0.67) {Leite, Cerveja} \rightarrow {Fralda} (s=0.4, c=1.0) {Fralda, Cerveja} \rightarrow {Leite} (s=0.4, c=0.67) {Cerveja} \rightarrow {Leite, Fralda} (s=0.4, c=0.67) {Fralda} \rightarrow {Leite, Cerveja} (s=0.4, c=0.5)

 $\{\text{Leite}\} \rightarrow \{\text{Fralda, Cerveja}\}\ (s=0.4, c=0.5)$

Observações:

- Todas as regras acima são originadas do mesmo conjunto frequente: {Leite, Fralda, Cerveja}
- Regras originadas do mesmo conjunto frequente têm o mesmo suporte, mas diferentes valores para confiança.

Regras de associação: Aplicações

- Associação de produtos em um processo de compra;
- □ Elaboração de catálogos de produtos;
- Layout de prateleiras (produtos relacionados tendem a ser colocados perto nas prateleiras);
- □ Análise de sequências de DNA;
- □ Análise de Web log (click stream);
- □ Sistemas de **recomendação**, etc.

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

13

Roteiro da Aula

- Motivação e relevância.
- □ Regras de associação:
 - Definição e exemplos;
 - Conceitos básicos.
- □ Geração de regras de associação: Complexidade
- □ Problemas na seleção de regras.
- Medidas de interesse.
- □ Preparação de dados para associação.
- Exemplos de geração de regras no Weka.

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

14

Geração de Conjuntos Frequentes

Dados d itens, existem 2^d possíveis itemsets candidatos

Geração de Conjuntos Frequentes

- □ Abordagem da Força Bruta:
 - Cada itemset frequente no reticulado é um candidato.
 - A contagem do suporte de cada candidato é feita "escaneando-se" todo o conjunto de dados (dataset).

- Cada transação pode ser associado com todo candidato.
- Complexidade ~O(NMw) => Caro já que M = 2d !!!

Estratégias para reduzir candidatos

- □ Reduzir o número de candidatos (M)
 - Busca exaustiva: M=2d
 - Usar técnicas para podar e reduzir M.
- □ Reduzir o número de transações (N)
 - Reduzir o tamanho de N sempre que o tamanho dos itemsets crescem.
- □ Reduzir o número de comparações (NM)
 - Usar estruturas de dados eficientes para armazenar os candidatos ou transações.
 - Eliminar a necessidade de cada candidato ser associado com toda transação.

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

17

Reduzindo o Número de Candidatos

□ O princípio do Algoritmo Apriori:

- Se um itemset é frequente, os seus subconjuntos devem ser frequentes.
- **Exemplo:** Se {Leite, Fralda, Cerveja} é frequente, todos os subconjuntos desse itemset com dois itens também o são.
- □ O **princípio do Apriori** assegura a seguinte propriedade para a medida **suporte**:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- O suporte de um conjunto frequente nunca excede o suporte de seus subconjuntos.
- Essa propriedade do suporte é conhecida como anti-monotônica.

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

18

Ilustrando o Princípio do Apriori

Ilustrando o Princípio do Apriori ...

ld	Compras
1	1,3,5
2	1,2,3,5,7
3	1,2,4,9
4	1,2,3,5,9
5	1,3,4,5,6,8
6	2,7,8

$$L1 = \{1\}, \{2\}, \{3\}, \{5\}$$

$$C2 = \{1,2\} \{1,3\} \{1,5\} \{2,3\} \{3,5\} \{2,5\}$$

$$L2 = \{1,2\} \{1,3\} \{1,5\} \{3,5\}$$

$$C3 = \{1,2,3\} \{1,2,5\} \{1,3,5\}$$

$$L3 = \{1,3,5\}$$

Suporte mínimo = 50%

Ilustrando o Princípio do Apriori ...

Itens (1-itemset)

١.	Itemset F	reqüência
	{Pão, Leite}	3
	{Pão, Cerveja}	2
	{Pão, Fralda}	3
	{Leite, Cerveja}	2
	{Leite, Fralda}	3
	{Cerveja, Fralda}	3

Pares (2-itemsets)

(Não há necessidade de gerar candidatos que contém Coca ou Ovos)

Mínimo Suporte = 3

X

Triplas (3-itemsets)

Usando o suporte para podar:

6 + 6 + 1 = 13

Itemset	Frequência
{Pão, Leite, Fralda}	3

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

2

Ilustrando o Princípio do Apriori ...

Cálculo do SUPORTE

No. Registros com X e Y

No. Total de Registros

<u>Nº Transação</u>	Produtos Adquiridos
1	Café, Pão, Manteiga
2	Leite, Cerveja, Pão, Manteiga
3	Café, Pão, Manteiga
4	Leite, Café, Pão, Manteiga
5	Cerveja
6	Manteiga, Arroz
7	Pão
8	Feijão
9	Arroz, Feijão
10	Arroz

1º. Passo: Calcular suporte de conjuntos com 1 item

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

22

Ilustrando o Princípio do Apriori ...

Cálculo do SUPORTE

No. Registros com X e Y

No. Total de Registros

<u>Nº Transação</u>	Produtos Adquiridos
1	Café, Pão, Manteiga
2	Leite, Cerveja, Pão, Manteiga
3	Café, Pão, Manteiga
4	Leite, Café, Pão, Manteiga
5	Cerveja
6	Manteiga, Arroz
7	Pão
8	Feijão
9	Arroz, Feijão
10	Arroz

2º. Passo: Calcular suporte de conjuntos com 2 itens

"Se um item J não é frequente, um conjunto com 2 itens, um dos quais é o item J, não pode ser frequente. Conjuntos contendo item J são ignorados."

Café, Pão Sup = 0,3 Café, Manteiga Sup = 0,3 Manteiga, Pão Sup = 0,4

 $Sup \ge 0.3$

Ilustrando o Princípio do Apriori ...

Cálculo do SUPORTE

No. Registros com X e Y

No. Total de Registros

<u>IN- Halisação</u>	Flodutos Adquillaos
1	Café, Pão, Manteiga
2	Leite, Cerveja, Pão, Manteiga
3	Café, Pão, Manteiga
4	Leite, Café, Pão, Manteiga
5	Cerveja
6	Manteiga, Arroz
7	Pão
8	Feijão
9	Arroz, Feijão
10	Arroz

Nº Transação Produtos Adquiridos

3º. Passo: Calcular suporte de conjuntos com 3 itens

"Se um conjunto de itens (J,K) não é frequente, um conjunto com 3 itens que inclua o conjunto de itens (J,K) não pode ser frequente.
Conjuntos contendo itens (J,K) são ignorados."

Café, Pão, Manteiga

up = 0.3 < ___

 $Sup \ge 0.3$

Ilustrando o Princípio do Apriori ...

Cálculo da CONFIANÇA

No. Registros com X e Y

No. de Registros com X

Confiança mínima de 80%

<u>Nº Transação</u>	Produtos Adquiridos
1	Café, Pão, Manteiga
2	Leite, Cerveja, Pão, Manteiga
3	Café, Pão, Manteiga
4	Leite, Café, Pão, Manteiga
5	Cerveja
6	Manteiga, Arroz
7	Pão
8	Feijão
9	Arroz, Feijão
10	Arroz

• (Café, Pão)	Regra: SE (café) ENTÃO (pão) Regra: SE (pão) ENTÃO (café)	Conf=1,0 Conf=0,6
• (Café, Manteiga)	Regra: SE (café) ENTÃO (manteiga) Regra: SE (manteiga) ENTÃO (café)	Conf=1,0 Conf=0,6
• (Pão, Manteiga)	Regra: SE (pão) ENTÃO (manteiga)	Conf=0,8

Regra: SE (manteiga) ENTÃO (café)

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

2

Conf=0.8

Ilustrando o Princípio do Apriori ...

Cálculo da CONFIANÇA

No. Registros com X e Y

No. de Registros com X

<u>Nº Transação</u>	<u>Produtos Adquiridos</u>
1	Café, Pão, Manteiga
2	Leite, Cerveja, Pão, Manteiga
3	Café, Pão, Manteiga
4	Leite, Café, Pão, Manteiga
5	Cerveja
6	Manteiga, Arroz
7	Pão
8	Feijão
9	Arroz, Feijão
10	Arroz

• (Café, Pão, Manteiga)

Conf = 1,0
Conf = 1,0
Conf = 0,75
Conf = 1,0
Conf = 0,6
Conf = 0,6

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

26

O Algoritmo Apriori

Algoritmo:

- Faça k = 1;
- Gerar os conjuntos frequentes de tamanho 1;
- Repetir até que nenhum conjunto frequente seja identificado:
 - □ Gerar conjuntos frequentes candidatos de tamanho (*k*+1);
 - Podar conjuntos candidatos contendo subconjuntos de tamanho k que são infrequentes;
 - □ Calcular o suporte de cada conjunto candidato no DB;
 - Eliminar candidatos que são infrequentes, preservando somente aqueles que são freqUentes.

Paper Clássico: (Algoritmo Apriori, AGRAWAL et al., 1993)

Exercício

Dado o BD de transações, abaixo, determine os conjuntos frequentes com 1, 2 e 3 itens, considerando um suporte mínimo de 30%:

TID	Lista de Produtos
1	Camisa, Algodão, Calça Jeans, Arroz, Feijão, Fralda
2	Livro, DVD, Calça Jeans, Arroz, Algodão
3	DVD
4	Calça Jeans
5	Feijão, Algodão, Arroz, Camisa
6	Camisa
7	Arroz, Feijão, Algodão
8	Livro, DVD

Fatores que afetam a complexidade

□ Escolha do suporte mínimo:

Suporte baixo resulta em muitos conjuntos frequentes.

□ Dimensionalidade (número de itens) do dataset:

- Mais espaço será preciso para armazenar o suporte de cada item;
- Se o número de itens frequentes aumenta, o custo computacional e o custo com I/O também aumenta.

□ Tamanho do banco de dados:

 Como o Apriori efetua múltiplos passos, o tempo de execução do algoritmo pode aumentar com o número de transações.

□ Número médio de itens por transação:

O tamanho (# itens) da transação aumenta para datasets densos.

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

20

Roteiro da Aula

- Motivação e relevância.
- □ Regras de associação:
 - Definição e exemplos;
 - Conceitos básicos.
- □ Geração de regras de associação: Complexidade
- 🕨 🗖 Problemas na seleção de regras.
- Medidas de interesse.
- □ Preparação de dados para associação.
- Exemplos de geração de regras no Weka.

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

30

Problemas na Geração de Regras

- Como gerar regras eficientes a partir de conjuntos frequentes?
 - Em geral, confiança não tem a propriedade anti-monotônica. $c(ABC \rightarrow D)$ pode ter confiança maior ou menor que $c(AB \rightarrow D)$
 - Mas a confiança de regras geradas do mesmo itemset tem a propriedade anti-monotônica.
 - **Exemplo**: L = {A,B,C,D}:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

Confiança é anti-monotônica com relação ao número de itens na parte consequente da regra.

Reticulado para Geração de Regras

Apriori: Geração de Regras

- □ Uma regra candidata é gerada pelo merge de duas regras que compartilham o mesmo prefixo no consequente da regra.
- Junção (CD=>AB, BD=>AC) produziria a regra candidata D => ABC
- □ Podar a regra D=>ABC se o seu subconjunto AD=>BC não tem confiança alta.

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

3

Efeito da Distribuição do Suporte

Muitos datasets com dados reais têm distribuição do suporte distorcida (skewed).

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

34

Roteiro da Aula

- Motivação e relevância.
- □ Regras de associação:
 - Definição e exemplos;
 - Conceitos básicos.
- □ Geração de regras de associação: Complexidade
- □ Problemas na seleção de regras.
- Medidas de interesse.
- □ Preparação de dados para associação.
- Exemplos de geração de regras no Weka.

Como Selecionar Regras Relevantes

Suporte mínimo não atendido

Problema de geração de

I – co deper

II – co deper

III – co deper

III – co indep

IV – co indep

Limite do teste do Qui-Quadrado reticulado I imite de itens frequentes

Problema devido a possibilidade de geração de muitas regras

- I conjunto de itens infrequentes e dependentes
- **II** conjunto de itens frequentes e dependentes
- **III** conjuntos de itens frequentes e independentes
- IV conjunto de itens infrequentes e independentes

Reticulado de todos os conjuntos de itens

Por quê Medidas de Interesse?

- □ Em geral, os algoritmos para regras de associação produzem muitas regras:
 - Muitas regras são redundantes ou sem utilidade
 - Redundante se {A,B,C} → {D} e {A,B} → {D} têm o mesmo suporte e confiança.
- No arcabouço original de regras de associação, suporte e confiança são as únicas medidas.
- □ Outras **medidas de interesse** podem ser usadas:

P. Tan, V. Kumar, and J. Srivastava. **Selecting the right interestingness measure for association patterns**. In Proceedings of the 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Edmonton, AB, Canada, 2002. pages 32-41.

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

37

	#	Measure	Formula
Existem várias	1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
medidas de	2	Goodman-Kruskal's (λ)	$\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{k} P(B_{k})}}{2-\max_{k} P(A_{j}) - \max_{k} P(B_{k})}$
interesse na	3	Odds ratio (a)	$P(A,B)P(\overline{A},\overline{B})$
literatura.	4	Yule's Q	$\frac{P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(AB)-P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha-1}{\alpha+1}$ $P(A,B)P(\overline{AB})+P(A,\overline{B})P(\overline{A},B) = \frac{\alpha-1}{\alpha+1}$
interatura.	5	Yule's Y	$P(A,B)P(\overline{AB})+P(A,B)P(\overline{A},B) = \alpha+1$ $\sqrt{P(A,B)P(\overline{AB})}-\sqrt{P(A,\overline{B})P(\overline{A},B)} = \sqrt{\alpha}-1$
			$\frac{\sqrt{P(A,B)P(AB)} - \sqrt{P(A,B)P(A,B)}}{\sqrt{P(A,B)P(AB)} + \sqrt{P(A,B)P(A,B)}} = \frac{\sqrt{a} - 1}{\sqrt{a} + 1}$
Algumas medidas	6	Карра (к)	$\frac{\dot{P}(A,B) + P(\overline{A},\overline{B}) - \dot{P}(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}$ $\sum P(A,B,b) \log \frac{P(A_{1},B_{2})}{P(A_{2},B_{2})}$
são boas para	7	Mutual Information (M)	$\frac{\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{i})P(B_{j})}}{\min(-\sum_{i}P(A_{i})\log\frac{P(A_{i})}{P(B_{i})}P(B_{j})\log\frac{P(B_{j})}{P(B_{j})}\log\frac{P(B_{j})}{P(B_{j})}$
certas aplicações,	8	J-Measure (J)	$\max\left(\frac{P(A,B)\log(\frac{P(B A)}{P(B)}) + P(A\overline{B})\log(\frac{P(B A)}{P(B)})}{P(B)}\right),$
mas não para	-		$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(A)})$
outras.	9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right)$
out. doi	"	GIII IIIdex (G)	$-P(B)^{3}-P(\overline{B})^{3},$
			$P(B)[P(A B)^{3} + P(\overline{A} B)^{3}] + P(\overline{B})[P(A \overline{B})^{3} + P(\overline{A} \overline{B})^{3}]$
Que critérios			$-P(A)^{2}-P(\overline{A})^{2}$
deveríamos usar	10	Support (s)	P(A,B)
para determinar se	11	Confidence (c)	$\max(P(B A), P(A B))$
uma medida é boa	12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
ou ruim?	13	Conviction (V)	$\max\left(\frac{P(A)P(\overline{B})}{P(A\overline{B})}, \frac{P(B)P(\overline{A})}{P(B\overline{A})}\right)$
	14	Interest (I)	P(A,B)
	15	cosine (IS)	$\frac{P(A)P(B)}{P(A,B)}$
Note que a maioria	16	Piatetsky-Shapiro's (PS)	$ \frac{\sqrt{P(A)P(B)}}{P(A,B) - P(A)P(B)} $
das medidas	17	Certainty factor (F)	$\max\left(\frac{P(B A)-P(B)}{1-P(B)}, \frac{P(A B)-P(A)}{1-P(A)}\right)$
dependem do fator	18	Added Value (AV)	$\max_{A}(P(B A) - P(B), P(A B) - P(A))$
suporte.	19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
·	20	Jaccard (ζ)	P(A)P(B)+P(A)P(B)
	21	Klosgen (K)	$\sqrt{P(A,B)} \max(P(B A) - P(B), P(A B) - P(A))$

Medidas têm diferentes propriedades

Symbol	Measure	Range	P1	P2	P3	01	02	03	03'	04
Φ	Correlation	-1 0 1	Yes	Yes	Yes	Yes	No	Yes	Yes	No
λ	Lambda	0 1	Yes	No	No	Yes	No	No*	Yes	No
α	Odds ratio	0 1 ∞	Yes*	Yes	Yes	Yes	Yes	Yes*	Yes	No
Q	Yule's Q	-1 0 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Υ	Yule's Y	-1 0 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
κ	Cohen's	-1 0 1	Yes	Yes	Yes	Yes	No	No	Yes	No
M	Mutual Information	0 1	Yes	Yes	Yes	Yes	No	No*	Yes	No
J	J-Measure	0 1	Yes	No	No	No	No	No	No	No
G	Gini Index	0 1	Yes	No	No	No	No	No*	Yes	No
S	Support	0 1	No	Yes	No	Yes	No	No	No	No
С	Confidence	0 1	No	Yes	No	Yes	No	No	No	Yes
L	Laplace	0 1	No	Yes	No	Yes	No	No	No	No
V	Conviction	0.5 1 ∞	No	Yes	No	Yes**	No	No	Yes	No
I	Interest	0 1 ∞	Yes*	Yes	Yes	Yes	No	No	No	No
IS	IS (cosine)	0 1	No	Yes	Yes	Yes	No	No	No	Yes
PS	Piatetsky-Shapiro's	-0.25 0 0.25	Yes	Yes	Yes	Yes	No	Yes	Yes	No
F	Certainty factor	-1 0 1	Yes	Yes	Yes	No	No	No	Yes	No
AV	Added value	0.5 1 1	Yes	Yes	Yes	No	No	No	No	No
S	Collective strength	0 1 ∞	No	Yes	Yes	Yes	No	Yes*	Yes	No
ζ	Jaccard	0 1	No	Yes	Yes	Yes	No	No	No	Yes
K	Klosgen's	$\left(\sqrt{\frac{2}{\sqrt{3}}-1}\right)\left(2-\sqrt{3}-\frac{1}{\sqrt{3}}\right)0\frac{2}{3\sqrt{3}}$	Yes	Yes	Yes	No	No	No	No	No

OBS: Detalhes sobre essa Tabela podem ser encontrados em (TAN et al., 2002).

Medidas de Interesse

■ Medida objetiva:

- Ranquear os padrões com base nas estatísticas computadas nos dados em análise.
- Existem mais de 20 medidas de interesse na literatura.
- Suporte e confiança são as medidas de interesse tradicionais.
- Outras medidas podem ser usadas para ajudar a selecionar padrões relevantes.
- Ex. (em inglês): Lift, Leverage, Conviction, Laplace, Gini, mutual information, Jaccard, etc.

Medidas de Interesse ...

■ Medida subjetiva:

- Ranquear os padrões de acordo com a interpretação do analista.
- Um padrão é subjetivamente interessante se ele contradiz a expectativa do analista.
- Um padrão é subjetivamente interessante se ele gera informação nova (mesmo com baixo suporte).

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

4

Medidas de Interesse ...

□ É necessário compreender as expectativas dos analistas (conhecimento do domínio).

- + Padrões esperados como frequentes
- Padrões esperados como infrequentes
- Padrões encontrados como frequentes
- Padrões encontrados como infrequentes
- Padrões esperados
- Padrões não-esperados
- □ É necessário combinar as **expectativas** dos analistas com as **evidências** encontradas nos dados (**padrões descobertos**).

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

42

Roteiro da Aula

- Motivação e relevância.
- □ Regras de associação:
 - Definição e exemplos;
 - Conceitos básicos.
- □ Geração de regras de associação: Complexidade
- □ Problemas na seleção de regras.
- Medidas de interesse.
- □ Preparação de dados para associação.
- Exemplos de geração de regras no Weka.

Matriz de dados x Matriz de Transações

Cliente	Produto	Qtde
C1	Pão	5
C1	Leite	1
C2	Pão	3
C2	Café	1
C2	Manteiga	2
C2	Ovos	12
C3	Leite	2
C3	Fralda	2
C3	Cerveja	6
C3	Coca	3
C4	Açúcar	1
C4	Leite	3
C4	Café	1

TID	Lista de Itens
T1	Pão, Leite
T2	Pão, Café, Manteiga, Ovos
Т3	Leite, Fralda, Cerveja, Coca
T4	Açúcar, Leite, Café
T5	Pão, Leite, Fralda, Coca

Matriz de Transações

Matriz de Dados

Associação com valores somente de um atributo.

Associação: nova abordagem

□ Considere o seguinte dataset sobre qualidade de frutas:

Casca Nominal	Cor Nominal	Tamanho Nominal	Polpa Nominal	Risco Nominal
aspera	marrom	grande	dura	baixo
aspera	verde	grande	dura	baixo
lisa	vermelho	grande	macia	alto
aspera	verde	grande	macia	baixo
aspera	vermelho	pequena	dura	baixo
lisa	vermelho	pequena	dura	baixo
lisa	marrom	pequena	dura	baixo
aspera	verde	pequena	macia	alto
lisa	verde	pequena	dura	alto
aspera	vermelho	grande	dura	baixo
lisa	marrom	grande	macia	baixo
lisa	verde	pequena	macia	alto
aspera	vermelho	pequena	macia	baixo
lisa	vermelho	grande	dura	alto
lisa	vermelho	pequena	dura	baixo
aspera	verde	pequena	dura	alto

Associação com vários atributos.

Associação: nova abordagem ...

- □ Exemplos de regras geradas [sup. 5% e conf. 90%]
- 1. Casca=aspera Tamanho=grande 4 ==> Risco=baixo 4 conf:(1)
- 2. Tamanho=pequena Risco=alto 4 ==> Cor=verde 4 conf:(1)
- 3. Cor=verde Risco=alto 4 ==> Tamanho=pequena 4 conf:(1)
- 4. Cor=verde Tamanho=pequena 4 ==> Risco=alto 4 conf:(1)
- 5. Cor=vermelho Tamanho=pequena 4 ==> Risco=baixo 4 conf:(1)
- 6. Cor=marrom 3 ==> Risco=baixo 3 conf:(1)
- 7. Casca=aspera Cor=vermelho 3 ==> Risco=baixo 3 conf:(1)
- Tamanho=grande Polpa=dura Risco=baixo 3 ==> Casca=aspera 3 conf:(1)
- Casca=aspera Tamanho=grande Polpa=dura 3 ==> Risco=baixo 3 conf:(1)

•••

AP532 - Preparação de Dados para Mineração de Dados - Aula 3

16

Roteiro da Aula

- Motivação e relevância.
- Regras de associação:
 - Definição e exemplos;
 - Conceitos básicos.
- □ Geração de regras de associação: Complexidade
- □ Problemas na seleção de regras.
- Medidas de interesse.
- □ Preparação de dados para associação.
- Exemplos de geração de regras no Weka.

Tipos de dados usados em Associação

- □ Somente inteiro ou nominal.
- □ Se o atributo for **numérico** (**valores reais**), ele precisa ser **discretizado**.
- Exemplo: Discretização dos atributos temperatura máxima (tempMax) e NDVI para cana-de-açúcar no estado de São Paulo (Romani et al., 2008):
- Jaboticabal Jaú:
 - REGRA: tempMax[29-30]) ⇒ NDVI[0.56-0.63].
- □ Araraquara Luis Antônio:
 - REGRA: tempMax[24-25]) ⇒ NDVI[0.56-0.66].

Exemplos no Weka

- Exemplo para associação com atributos numéricos (valores reais):
- 1. Selecionar o dataset IRIS:
- Rodar o Apriori sem transformação de dados.
- 3. Qual foi o resultado encontrado?
- 4. Fazer a discretização de atributos e rodar o algoritmo **Apriori** novamente.
- 5. Verifique os resultados após a discretização?

Exemplos no Weka ...

- Exemplo para associação com atributos nominais:
- Selecionar o dataset WEATHER.NOMINAL:
- 2. Rodar o Apriori sem transformação de dados.
- 3. Quais foram os resultados encontrados?
- Altere o parâmetro car (class association rules para TRUE). Agora você pode escolher o consequente das regras geradas (classIndex). Depois rode o algoritmo Apriori novamente.
- 5. Verifique a diferença dos resultados gerados com relação aos valores default para car e classindex.