

TEST REPORT FROM RFI GLOBAL SERVICES LTD

Test of: Softbank 003P

To: OET Bulletin 65 Supplement C: (2001-01)

Test Report Serial No: RFI/SAR/RP81531JD08A V2.0

Version 2.0 supersedes all previous versions

This Test Report Is Issued Under The Authority Of Chris Guy, Head of Global Approvals:	C.Cy
	(APPROVED SIGNATORY)
Checked By: Richelieu Quoi	(APPROVED SIGNATORY)
Issue Date:	05 July 2011
Test Dates:	27 May 2011 to 01 June 2011

This report is issued in portable document format (PDF). It is only a valid copy of the report if it is being viewed in PDF format with the following security options not allowed: Changing the document, Selecting text and graphics, Adding or changing notes and form fields.

This report may not be reproduced other than in full, except with the prior written approval of RFI Global Services Ltd. The results in this report apply only to the sample(s) tested.

Test Report Version 2.0 Serial No: RFI/SAR/RP81531JD08A V2.0

Issue Date: 05 July 2011

This page has been left intentionally blank.

Page: 2 of 160 RFI Global Services Ltd.

Issue Date: 05 July 2011

TABLE OF CONTENTS

1. Customer Information	4
2. Equipment Under Test (EUT)	5
3. Test Specification, Methods and Procedures	9
4. Deviations from the Test Specification	10
5. Operation and Configuration of the EUT during Testing	11
6. Summary of Test Results	13
7. Measurements, Examinations and Derived Results	15
8. Measurement Uncertainty	30
Appendix 1. Test Equipment Used	37
Appendix 2. Measurement Methods	40
Appendix 3. SAR Distribution Scans	42
Appendix 4. Photographs	111
Appendix 5. Validation of System	154
Appendix 6. Simulated Tissues	156
Appendix 7. DASY4 System Details	158

Issue Date: 05 July 2011

1. Customer Information		
Company Name:	Company Name: Panasonic Mobile Comms Dev of Europe Ltd	
Address:	Panasonic House, Willoughby Road Bracknell Berkshire	
	RG12 8FP United Kingdom	

Page: 4 of 160 RFI Global Services Ltd.

Issue Date: 05 July 2011

2. Equipment Under Test (EUT)	
2.1. Identification of Equipment Under	r Test (EUT)
Description:	Mobile Handset
Brand Name:	Softbank
Model Name or Number:	003P
Serial Number:	None Stated (Sample C14)
IMEI Number:	004401221073618
Hardware Version Number:	REV C
Software Version Number:	003PVA00
Hardware Revision of GSM Module:	Not Applicable
Software Revision of GSM Module:	Not Applicable
FCC ID Number:	UCE211041A

2.2. Description of EUT

Country of Manufacture:

Date of Receipt:

The equipment under test was a Dual-mode UMTS/GSM mobile handset operating in the GSM850, PCS1900 and WiFi 2450 bands. The EUT supports GPRS class 12, WiFi802.11b/g and Bluetooth capabilities. Wireless Personal Hotspot Mode is supported.

None Stated

27 May 2011

2.3. Modifications Incorporated in the EUT

There were no modifications incorporated during the course of testing.

Page: 5 of 160 RFI Global Services Ltd.

Issue Date: 05 July 2011

2.4. Accessories

The following accessories were supplied with the EUT during testing:

Description:	Battery
Brand Name:	SoftBank
Model Name or Number:	PMBBD1
Serial Number:	None Stated
Cable Length and Type:	Not Applicable
Country of Manufacture:	None Stated
Connected to Port	3 pin contact

Description:	Personal Hands Free
Brand Name:	SoftBank
Model Name or Number:	PMLBD1
Serial Number:	None Stated
Cable Length and Type:	~1.4m / multi-core
Country of Manufacture:	None Stated
Connected to Port	AV Out Port Unique to Manufacturer

Description:	Memory Card
Brand Name:	Generic
Model Name or Number:	None Stated
Serial Number:	None Stated
Cable Length and Type:	Not Applicable
Country of Manufacture:	None Stated
Connected to Port	Dedicated Micro SD Card Slot

2.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Wireless Communication Test Set
Brand Name:	Agilent
Model Name or Number:	8960 Series 10
Serial Number:	GB46311280
Cable Length and Type:	~4.0m Utiflex Cable
Connected to Port:	RF (Input / Output) Air Link

Page: 6 of 160 RFI Global Services Ltd.

2.6. Additional Information Related to Testing			
Equipment Category	GSM850 / GPRS850 / PCS1900 / GPRS1900 / WiFi802.11b/g / <i>Bluetooth</i>		
Type of Unit	Portable Transceiver		
Intended Operating Environment:	Within GSM, WiFi80	02.11b/g and <i>Blueto</i>	oth Coverage
Transmitter Maximum Output Power Characteristics:	GSM850	Communication Te configured to allow transmit at a maxin 32.1dBm	
	PCS1900	Communication Te configured to allow transmit at a maxin 30.0dBm	
	WiFi802.11b/g	'b' mode: EUT setu allow the EUT to tra maximum power of 'g' mode: EUT setu	ansmit at a f up to 15.0dBm
		allow the EUT to transmit at a maximum power of up to 12.6dBm.	
	Bluetooth	< 2 dBm	
Transmitter Frequency Range:	GSM850	(824 to 849) MHz	
	PCS1900	(1850 to 1910) MHz	
	WiFi802.11b/g	(2412 to 2462) MHz	
Transmitter Frequency Allocation of EUT When Under Test:	Channel Number	Channel Description	Frequency (MHz)
	128	Low	824.2
	189	Middle	836.4
	251	High	848.8
	512	Low	1850.2
	660	Middle	1879.8
	810	High	1909.8
	1	Low	2412.0
	6	Middle	2437.0
	11	High	2462.0

Page: 7 of 160 RFI Global Services Ltd.

Sei	rial No: RFI/SAR/RP81531JD08A V2.0	
	Issue Date: 05 July 2011	

Modulation(s):	GMSK (GSM/ GPRS): 217 Hz DBPSK, CCK (WiFi): 0 Hz
Modulation Scheme (Crest Factor):	GSMK (GSM): 8.3 GMSK (GPRS): 2 DBPSK, CCK (WiFi): 1
Antenna Type:	Internal
Antenna Length:	Unknown
Number of Antenna Positions:	2 fixed (GSM and WiFi/Bluetooth) *WiFi and Bluetooth use the same antenna. With extendable and retractable TV antenna
Power Supply Requirement:	3.7V
Battery Type(s):	Li-ion

Page: 8 of 160 RFI Global Services Ltd.

Issue Date: 05 July 2011

3. Test Specification, Methods and Procedures	
3.1. Test Specifica	ation
Reference:	OET Bulletin 65 Supplement C: (2001-01)
Title:	Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.
Purpose of Test:	To determine whether the equipment met the basic restrictions as defined in OET Bulletin 65 Supplement C: (2001-01) using the SAR averaging method as described in the test specification above.
3.2. Methods and Procedures Reference Documentation	

The methods and procedures used were as detailed in:

Federal Communications Commission, "Evaluating compliance with FCC Guidelines for human exposure to radio frequency electromagnetic fields", OET Bulletin 65 Supplement C, FCC, Washington, D.C, 20554, 2001.

Thomas Schmid, Oliver Egger and Neils Kuster, "Automated E-field scanning system for dosimetric assessments", IEEE Transaction on microwave theory and techniques, Vol. 44, pp. 105-113, January 1996.

Neils Kuster, Ralph Kastle and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with know precision", IEICE Transactions of communications, Vol. E80-B, No.5, pp. 645-652, May 1997.

KDB 648474 D01 SAR Handsets Multi Xmiter and Ant v01r05"

KDB 941225 D06 "Hot Spot SAR v01"

KDB 248227 D01 "SAR meas for 802.11a/b/g v01r02",

KDB 447498 D01 "D01 Mobile Portable RF Exposure v04"

The version of DASY system used by RFI for SAR measurements is v4.7.

The SAR probe for the DASY v4.4 and higher has a validity of +/- 100 MHz from the spot frequency at which the system is calibrated.

The SAR probe was calibrated at 750 MHz (covering 650 MHz to 850 MHz) and 900 MHz (covering 800 MHz to 1000 MHz) for the Head tissue with both the 750 MHz and 900 MHz calibration parameters imported on the same data file of the DASY4 system.

For GSM850 (head SAR test) the DASY4 v4.7 system uses the conversion factor for 750 MHz calibration as this covers the frequency range of 650 MHz to 850 MHz. The SAR system uses the 900 MHz conversion factor which is valid from 800 MHz to 1000 MHz for the system validation performed at 900 MHz.

The conversion factors used are dependent on the fluid dielectric and test channel frequency. If the conductivity is > 1.05 the software automatically selects the conversion factor for 900 band which covers +/-100 MHz. If < 1.05 the software selects the 750 MHz conversion factor which cover +/-100 MHz.

The 900 MHz validation is applicable for the 850 band as this is within 50 MHz of the of the centre frequency.

3.3. Definition of Measurement Equipment

The measurement equipment used complied with the requirements of the standards referenced in the methods & procedures section above. Appendix 1 contains a list of the test equipment used.

Page: 9 of 160 RFI Global Services Ltd.

Version 2.0 Issue Date: 05 July 2011

4. Deviations from the Test Specification

Test was performed as per FCC test procedures 1) KDB 648474 D01 SAR Handsets Multi Xmiter and Ant v01r05" and 2) KDB 941225 D06 "Hot Spot SAR v01" 3) KDB 248227 D01 "SAR meas for 802.11a/b/g v01r02", 4) KDB 447498 D01 "D01 Mobile Portable RF Exposure v04". The handset procedure detailed in IEEE Std 1528-2003 and OET Bulletin 65 Supplement C: 2001-01 was also followed.

SAR measurements that were < 0.8 w/kg for GSM/WLAN bands were performed in the middle channel as testing at the low and high channels were optional as stated in KDB 447498 D01.

Simultaneous transmission was not evaluated as the sum of the individual SAR for WWAN and WLAN were < 1.6 W/kg and the antenna-to-antenna distance was greater than 5 cm.

For GPRS class 12, the uplink of 2, 3 and 4 were all evaluated to find the setting that gives the highest power reference measurements. 4-uplink was found to give the highest power reference measurement on the DASY4 system. All settings were performed with the device in a fixed position to ensure there were no positioning errors. The following values were measured relative to the uplink settings:

GPRS Mode	Power (v/m)
2 uplink	6.942
3 uplink	6.934
4 uplink	7.073

Page: 10 of 160 RFI Global Services Ltd.

Issue Date: 05 July 2011

5. Operation and Configuration of the EUT during Testing

5.1. Operating Modes

The EUT was tested in the following operating mode(s) unless otherwise stated:

- GSM850 Call allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power of up to 33 dBm
- GPRS850 Data allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power of up to 33 dBm
- PCS1900 Call allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power of up to 30 dBm
- GPRS1900 Data allocated mode with Communication Test Set configured to allow the EUT to transmit at a maximum power of up to 30 dBm
- GPRS mode was evaluated using 4 uplink time slots as this was found to be the worst case setting as per power measurements and a SAR power reference measurement.
- WiFi802.11 b/g data allocated was tested for b mode at 1Mbps and for g mode at 6 Mbps
- WiFi802.11 b/g Data allocated test mode using manufacturer customised software "FaCTA".
 It was setup in test mode to allow the EUT to transmit at a maximum power of up to 15dBm for 'b' mode and 12.6dBm for 'g' mode.

Page: 11 of 160 RFI Global Services Ltd.

Issue Date: 05 July 2011

5.2. Configuration and Peripherals

The EUT was tested in the following configuration(s) unless otherwise stated:

- For GPRS class 12, the uplink of 2, 3 and 4 were all evaluated to find the setting that gives the highest power reference measurements. 4-uplink was found to give the highest power reference measurement on the DASY4 system.
- Test performed with the EUT in a Standalone Battery Powered configuration.
- The applied configurations for body-worn orientations where the corresponding edge(s) is
 closest to the user with the most conservative exposure condition were all evaluated at 10
 mm from the body as Personal Hotspot mode was supported. Therefore SAR test at 15 mm
 for configuration that overlapped with the Personal hotspot configuration were not evaluated.

Head Configuration

- a) The EUT was placed in a normal operating position with the centre of the ear-piece aligned with the ear canal on the phantom.
- b) With the ear-piece touching the phantom the centre line of the EUT was aligned with an imaginary plane (X and Y axis) consisting of three lines connecting both ears and the mouth.
- c) For the cheek position the EUT was gradually moved towards the cheek until any point of the mouth-piece or keypad touched the cheek.
- d) For the tilted position the EUT was positioned as for the cheek position, and then the horizontal angle was increased by fifteen degrees (the phone keypad was moved away from the cheek by fifteen degrees).
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Body Configuration

- a) The EUT was placed in a normal operating position where the centre of EUT was aligned with the centre reference point on the flat section of the 'SAM' phantom.
- b) With the EUT touching the phantom at an imaginary centre line. The EUT was aligned with a marked plane (X and Y axis) consisting of two lines.
- c) For the touch-safe position the EUT was gradually moved towards the flat section of the 'SAM' phantom until any point of the EUT touched the phantom.
- d) For position(s) greater then 0mm separation the EUT was positioned as per the touch-safe position, and then the vertical height was decreased/adjusted as required.
- e) SAR measurements were evaluated at maximum power and the unit was operated for an appropriate period prior to the evaluation in order to minimise the drift.
- f) The device was keyed to operate continuously in the transmit mode for the duration of the test.
- g) The location of the maximum spatial SAR distribution (hot spot) was determined relative to the EUT and its antenna.
- h) The EUT was transmitting at full power throughout the duration of the test powered by a fully charged battery.

Page: 12 of 160 RFI Global Services Ltd.

6. Summary of Test Results		
Test Name	Specification Reference	Result
Specific Absorption Rate-GSM 850 Head Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-GPRS 850 Head Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-GPRS 850 Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-GSM 850 Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-PCS 1900 Head Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-GPRS 1900 Head Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-GPRS 1900 Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-PCS 1900 Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-Wi-Fi 2450 Head Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied
Specific Absorption Rate-Wi-Fi 2450 Body Configuration 1g	OET Bulletin 65 Supplement C: (2001-01)	Complied

SAR Individual Transmitter Evaluation									
device, mode	Frequency, (MHz)	P _x (mW)	P _{REF} (mW)	single SAR, W/kg	Remarks				
WWAN, GSM	850	1622	60/f	0.598	Routine Evaluation				
WWAN, PCS	1900	1000	60/f	0.553	Routine Evaluation				
WLAN, WiFi802.11b/g	2450	32	12	0.290	Routine Evaluation				
BT, Bluetooth	2400	< 2	12	0*	${P_{BT} \le 2P_{REF}}$ ${d_{WWAN, BT} > 5cm}$				

*Test was not performed because output power or Bluetooth was less than 60/f or 12mW

rest was not pe	rest was not performed because output power or bluetooth was less than oon or 12mily									
SAR Simultaneous Transmitter Evaluation										
(x,y)	D(x,y) cm	L(x,y) cm	SPLSR _{xy}	Sim-Tx SAR	Remarks					
(WWAN _{GSM} , BT)	>5	N/A	N/A	N/A	{no stand-alone SAR for BT}					
(WWAN _{GSM} , Wi-Fi)	>5	N/A	N/A	N/A	$\{D(x,y) > 5 \} \& $ $\{\Sigma_{WWAN, WLAN} < 1.6 \text{ W/kg}\}$					

Page: 13 of 160 RFI Global Services Ltd.

Test Report Serial No: RFI/SAR/RP81531JD08A V2.0
Version 2.0 Issue Date: 05 July 2011

6.1. Location of Tests

All the measurements described in this report were performed at the premises of RFI Global Services Ltd, Pavilion A, Ashwood Park, Ashwood Way, Basingstoke, Hampshire, RG23 8BG United Kingdom

Page: 14 of 160 RFI Global Services Ltd.

rsion 2.0 Issue Date: 05 July 2011

7. Measurements, Examinations and Derived Results

7.1. General Comments

This section contains test results only.

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to section 8 for details of measurement uncertainties.

Page: 15 of 160 RFI Global Services Ltd.

Issue Date: 05 July 2011

7.2. Test Results

7.2.1. Specific Absorption Rate - GSM 850 Head Configuration 1g Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.288

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.8 to 22.8

Results:

Results.									
EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result		
Touch Antenna Retracted	Left	189	0.269	1.600	1.331	1	Complied		
Touch Antenna Extended	Left	189	0.254	1.600	1.346	1	Complied		
Tilt Antenna Retracted	Left	189	0.202	1.600	1.398	1	Complied		
Tilt Antenna Extended	Left	189	0.190	1.600	1.410	1	Complied		
Touch Antenna Retracted	Right	189	0.288	1.600	1.312	1	Complied		
Touch Antenna Extended	Right	189	0.281	1.600	1.319	1	Complied		
Tilt Antenna Retracted	Right	189	0.200	1.600	1.400	1	Complied		
Tilt Antenna Extended	Right	189	0.188	1.600	1.412	1	Complied		
Note(s):									

^{1.} SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

Page: 16 of 160 RFI Global Services Ltd.

ersion 2.0 Issue Date: 05 July 2011

7.2.2. Specific Absorption Rate - GPRS 850 Head Configuration 1g Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.310

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.8 to 22.8

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Touch Antenna Retracted	Right	189	0.310	1.600	1.290	1, 2	Complied

Note(s):

- 1. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.
- 2. Worst case configuration and channel of GSM were applied to GPRS head test.

Page: 17 of 160 RFI Global Services Ltd.

Issue Date: 05 July 2011

7.2.3. Specific Absorption Rate - GPRS 850 Body Configuration 1g Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.598

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.3 to 22.3

Paculte:

Results:									
EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result		
Front of EUT Facing Phantom With Antenna Retracted	Flat (SAM)	189	0.437	1.600	1.163	1, 2, 3	Complied		
Front of EUT Facing Phantom With Antenna Extended	Flat (SAM)	189	0.397	1.600	1.203	1, 2, 3	Complied		
Rear of EUT Facing Phantom With Antenna Retracted	Flat (SAM)	189	0.598	1.600	1.002	1, 2, 3	Complied		
Rear of EUT Facing Phantom With Antenna Extended	Flat (SAM)	189	0.530	1.600	1.070	1, 2, 3	Complied		
Left Hand Side of EUT Facing Phantom With Antenna Retracted	Flat (SAM)	189	0.383	1.600	1.217	1, 2, 3	Complied		
Left Hand Side of EUT Facing Phantom With Antenna Extended	Flat (SAM)	189	0.225	1.600	1.375	1, 2, 3	Complied		
Right Hand Side of EUT Facing Phantom With Antenna Retracted	Flat (SAM)	189	0.352	1.600	1.248	1, 2, 3	Complied		

Page: 18 of 160 RFI Global Services Ltd.

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Right Hand Side of EUT Facing Phantom With Antenna Extended	Flat (SAM)	189	0.287	1.600	1.313	1, 2, 3	Complied
Base of EUT Facing Phantom With Antenna Retracted	Flat (SAM)	189	0.039	1.600	1.561	1, 2, 3	Complied
Rear of EUT Facing Phantom With Antenna Retracted With PHF	Flat (SAM)	189	0.444	1.600	1.156	1, 2, 3	Complied

Note(s):

- 1. SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section as the device supports Personal Wireless Hotspot.
- 2. GPRS mode was evaluated using 4 uplink time slots as this was found to be the worst case setting as per power measurement and SAR power reference measurements.
- 3. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

Page: 19 of 160 RFI Global Services Ltd.

Issue Date: 05 July 2011

7.2.4. Specific Absorption Rate - GSM 850 Body Configuration 1g Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.438

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.3 to 22.3

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Rear of EUT Facing Phantom With Antenna Retracted	Flat (SAM)	189	0.438	1.600	1.162	1, 2, 3	Complied

Note(s):

- 1. SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section as the device supports Personal Wireless Hotspot.
- 2. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.
- 3. Worst case configuration and channel of GPRS were applied to GSM body test.

Page: 20 of 160 RFI Global Services Ltd.

Issue Date: 05 July 2011

7.2.5. Specific Absorption Rate - PCS 1900 Head Configuration 1g **Test Summary:**

Tissue Volume: 1g

Maximum Level (W/kg): 0.553

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0 Temperature Variation in Liquid (°C): 22.2 to 22.2

Results:									
EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result		
Touch Antenna Retracted	Left	660	0.522	1.600	1.078	1	Complied		
Touch Antenna Extended	Left	660	0.553	1.600	1.047	1	Complied		
Tilt Antenna Retracted	Left	660	0.126	1.600	1.474	1	Complied		
Tilt Antenna Extended	Left	660	0.130	1.600	1.470	1	Complied		
Touch Antenna Retracted	Right	660	0.299	1.600	1.301	1	Complied		
Touch Antenna Extended	Right	660	0.302	1.600	1.298	1	Complied		
Tilt Antenna Retracted	Right	660	0.123	1.600	1.477	1	Complied		
Tilt Antenna Extended	Right	660	0.135	1.600	1.465	1	Complied		
Note(s):									

^{1.} SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

Page: 21 of 160 RFI Global Services Ltd.

Issue Date: 05 July 2011

7.2.6. Specific Absorption Rate - GPRS 1900 Head Configuration 1g Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.468

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.2 to 22.2

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Touch Antenna Extended	Left	660	0.468	1.600	1.132	1, 2	Complied

Note(s):

- 1. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.
- 2. Worst case configuration and channel of GSM were applied to GPRS head test.

Page: 22 of 160 RFI Global Services Ltd.

Issue Date: 05 July 2011

7.2.7. Specific Absorption Rate - GPRS 1900 Body Configuration 1g Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.412

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.1 to 22.1

Raculte.

Results:									
EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result		
Front of EUT Facing Phantom With Antenna Retracted	Flat (SAM)	660	0.412	1.600	1.188	1, 2, 3	Complied		
Front of EUT Facing Phantom With Antenna Extended	Flat (SAM)	660	0.401	1.600	1.199	1, 2, 3	Complied		
Rear of EUT Facing Phantom With Antenna Retracted	Flat (SAM)	660	0.321	1.600	1.279	1, 2, 3	Complied		
Rear of EUT Facing Phantom With Antenna Extended	Flat (SAM)	660	0.323	1.600	1.277	1, 2, 3	Complied		
Left Hand Side of EUT Facing Phantom With Antenna Retracted	Flat (SAM)	660	0.133	1.600	1.467	1, 2, 3	Complied		
Left Hand Side of EUT Facing Phantom With Antenna Extended	Flat (SAM)	660	0.173	1.600	1.427	1, 2, 3	Complied		
Right Hand Side of EUT Facing Phantom With Antenna Retracted	Flat (SAM)	660	0.053	1.600	1.547	1, 2, 3	Complied		

Page: 23 of 160 RFI Global Services Ltd.

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Right Hand Side of EUT Facing Phantom With Antenna Extended	Flat (SAM)	660	0.054	1.600	1.546	1, 2, 3	Complied
Base of EUT Facing Phantom With Antenna Retracted	Flat (SAM)	660	0.367	1.600	1.233	1, 2, 3	Complied
Base of EUT Facing Phantom With Antenna	Flat (SAM)	660	0.401	1.600	1.199	1, 2, 3	Complied

Issue Date: 05 July 2011

Extended Note(s):

- 1. SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section as the device supports Personal Wireless Hotspot.
- 2. GPRS mode was evaluated using 4 uplink time slots as this was found to be the worst case setting as per power measurement and SAR power reference measurements.
- 3. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.

Page: 24 of 160 RFI Global Services Ltd.

Issue Date: 05 July 2011

7.2.8. Specific Absorption Rate - PCS 1900 Body Configuration 1g Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.425

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 22.1 to 22.1

Results:

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Front of EUT Facing Phantom With Antenna Retracted	Flat (SAM)	660	0.425	1.600	1.175	1, 2, 3	Complied
Front of EUT Facing Phantom With Antenna Retracted With PHF	Flat (SAM)	660	0.425	1.600	1.175	1, 2, 3	Complied

Note(s):

- 1. SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section as the device supports Personal Wireless Hotspot.
- 2. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.
- 3. Worst case configuration and channel of GPRS were applied to PCS body test.

Page: 25 of 160 RFI Global Services Ltd.

Issue Date: 05 July 2011

7.2.9. Specific Absorption Rate - Wi-Fi 2450 Head Configuration 1g **Test Summary:**

Tissue Volume: 1g

Maximum Level (W/kg): 0.290

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0 22.1 to 22.1

Temperature Variation in Liquid (°C):

Posults:

Results:							
EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Touch Antenna Retracted	Left	6	0.280	1.600	1.320	1, 2	Complied
Touch Antenna Extended	Left	6	0.268	1.600	1.332	1, 2	Complied
Tilt Antenna Retracted	Left	6	0.290	1.600	1.310	1, 2	Complied
Tilt Antenna Extended	Left	6	0.272	1.600	1.328	1, 2	Complied
Touch Antenna Retracted	Right	6	0.275	1.600	1.325	1, 2	Complied
Touch Antenna Extended	Right	6	0.209	1.600	1.391	1, 2	Complied
Tilt Antenna Retracted	Right	6	0.194	1.600	1.406	1, 2	Complied
Tilt Antenna Extended	Right	6	0.193	1.600	1.407	1, 2	Complied
Tilt Antenna Retracted	Left	6	0.233	1.600	1.367	1, 3, 4	Complied

Note(s):

- 1. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.
- 2. SAR test performed in 802.11b mode at 1Mbps
- 3. SAR test performed in 802.11g mode at 6Mbps
- 4. Worst case configuration and channel of 802.11b was applied to 802.11g.

RFI Global Services Ltd. Page: 26 of 160

Issue Date: 05 July 2011

7.2.10. Specific Absorption Rate - Wi-Fi 2450 Body Configuration 1g Test Summary:

Tissue Volume: 1g

Maximum Level (W/kg): 0.107

Environmental Conditions:

Temperature Variation in Lab (°C): 23.0 to 23.0

Temperature Variation in Liquid (°C): 21.9 to 21.9

Paculte:

Results:							
EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Front of EUT Facing Phantom With Antenna Retracted	Flat (SAM)	6	0.064	1.600	1.536	1, 2, 3	Complied
Front of EUT Facing Phantom With Antenna Extended	Flat (SAM)	6	0.062	1.600	1.538	1, 2, 3	Complied
Rear of EUT Facing Phantom With Antenna Retracted	Flat (SAM)	6	0.062	1.600	1.538	1, 2, 3	Complied
Rear of EUT Facing Phantom With Antenna Extended	Flat (SAM)	6	0.063	1.600	1.537	1, 2, 3	Complied
Left Hand Side of EUT Facing Phantom With Antenna Retracted	Flat (SAM)	6	0.090	1.600	1.510	1, 2, 3	Complied
Left Hand Side of EUT Facing Phantom With Antenna Extended	Flat (SAM)	6	0.093	1.600	1.507	1, 2, 3	Complied
Right Hand Side of EUT Facing Phantom With Antenna Retracted	Flat (SAM)	6	0.013	1.600	1.587	1, 2, 3	Complied

Page: 27 of 160 RFI Global Services Ltd.

EUT Position	Phantom Configuration	Channel Number	Level (W/kg)	Limit (W/kg)	Margin (W/kg)	Note(s)	Result
Right Hand Side of EUT Facing Phantom With Antenna Extended	Flat (SAM)	6	0.016	1.600	1.584	1, 2, 3	Complied
Top of EUT Facing Phantom With Antenna Retracted	Flat (SAM)	6	0.069	1.600	1.531	1, 2, 3	Complied
Left Hand Side of EUT Facing Phantom With Antenna Extended With PHF	Flat (SAM)	6	0.107	1.600	1.493	1, 2, 3	Complied
Left Hand Side of EUT Facing Phantom With Antenna Extended With PHF	Flat (SAM)	6	0.058	1.600	1.542	1, 2, 4, 5	Complied

Note(s):

- 1. SAR measurements were performed with the EUT at a separation distance of 10mm from the 'SAM' phantom flat section as the device supports Personal Wireless Hotspot.
- 2. SAR test was performed in the middle channel only as the measured levels were < 50% of the SAR limit as stated in the FCC Public Notice DA 02-1438 by the SCC-34/SC-2.
- 3. SAR test performed in 802.11b mode at 1Mbps
- 4. SAR test performed in 802.11g mode at 6Mbps
- 5. Worst case configuration and channel of 802.11b was applied to 802.11g.

Page: 28 of 160 RFI Global Services Ltd.

11

2.462

Serial No: RFI/SAR/RP81531JD08A V2.0

Issue Date: 05 July 2011

cted cted
cted
cted
ot o d
cted
cted
cted
е
cted
te
302.11b ps)
1 = <i>7</i>
302.11b bps)
- [/
302.11g ps)
/
302.11g

Page: 29 of 160 RFI Global Services Ltd.

12.4

Issue Date: 05 July 2011

8. Measurement Uncertainty

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently, the result of a measurement is only an approximation to the value of the measured (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor, such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Test Name	Confidence Level	Calculated Uncertainty
Specific Absorption Rate-GSM / GPRS 850 Head Configuration 1g	95%	19.38
Specific Absorption Rate-GSM / GPRS 850 Body Configuration 1g	95%	19.51
Specific Absorption Rate-PCS / GPRS 1900 Head Configuration 1g	95%	20.18
Specific Absorption Rate-PCS / GPRS 1900 Body Configuration 1g	95%	19.44
Specific Absorption Rate-Wi-Fi 2450 Head Configuration 1g	95%	18.89
Specific Absorption Rate-Wi-Fi 2450 Body Configuration 1g	95%	19.34

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty, the published guidance of the appropriate accreditation body is followed.

Page: 30 of 160 RFI Global Services Ltd.

Туре	Source of uncertainty	+	-	Probability	Divisor	C _{i (10g)}	Stan- Uncer		ບ _i or
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•	Value	Value	Distribution		-1(109)	+ u (%)	- u (%)	veff
В	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	oc.
В	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	oc
В	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	×
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	×
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	×
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	×
В	Readout Electronics	0.320	0.320	normal (k=2)	2.0000	1.0000	0.160	0.160	×
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	×
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	×
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	× ×
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.400	2.400	normal (k=1)	1.0000	1.0000	2.400	2.400	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.920	4.920	normal (k=1)	1.0000	0.6400	3.149	3.149	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.970	4.970	normal (k=1)	1.0000	0.6000	2.982	2.982	5
	Combined standard uncertainty			t-distribution			9.89	9.89	>20
	Expanded uncertainty			k = 1.96			19.38	19.38	>20

Page: 31 of 160 RFI Global Services Ltd.

8.2. 5	Specific Absorption Rate	Uncert	ainty – (GSM / GPRS	850 Body	Config	uration '	lg	
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (10g)}	Stan Uncer	dard tainty	ს _i or
		value	Value	Distribution			+ u (%)	- u (%)	veff
В	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	∞
В	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	œ
В	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	œ
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	œ
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	œ
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	oc
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	oc
В	Readout Electronics	0.320	0.320	normal (k=2)	2.0000	1.0000	0.160	0.160	oc
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	œ
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	oc
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	oc
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	œ
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.900	2.900	normal (k=1)	1.0000	1.0000	2.900	2.900	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	oc
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.690	4.690	normal (k=1)	1.0000	0.6400	3.002	3.002	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.860	4.860	normal (k=1)	1.0000	0.6000	2.916	2.916	5
	Combined standard uncertainty			t-distribution			9.96	9.96	>250
	Expanded uncertainty			k = 1.96			19.51	19.51	>250

Page: 32 of 160 RFI Global Services Ltd.

8.3. 5	Specific Absorption Rate	-PCS / C	SPRS 19	900 Head Cor	nfiguratio	n 1g			
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (10g)}	Stan Uncer		ა _i or
		Value	Value	Distribution			+ u (%)	- u (%)	veff
В	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	∞
В	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	×
В	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	×
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	∞
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	∞
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	×
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	× ×
В	Readout Electronics	0.320	0.320	normal (k=2)	2.0000	1.0000	0.160	0.160	×
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	×
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	×
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	×
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	3.800	3.800	normal (k=1)	1.0000	1.0000	3.800	3.800	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	×
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.900	4.900	normal (k=1)	1.0000	0.6400	3.136	3.136	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.880	4.880	normal (k=1)	1.0000	0.6000	2.928	2.928	5
	Combined standard uncertainty			t-distribution			10.30	10.30	>200
	Expanded uncertainty			k = 1.96			20.18	20.18	>200

Page: 33 of 160 RFI Global Services Ltd.

Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C i (10g)	Stan Uncer		ს _i or
	·	value	value	Distribution			+ u (%)	- u (%)	veff
В	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	∞
В	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	×
В	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	×
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	oc
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	oc
В	Readout Electronics	0.320	0.320	normal (k=2)	2.0000	1.0000	0.160	0.160	œ
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	×
В	Integration Time	1.730	1.730	Rectangular	1.7321	1.0000	0.999	0.999	×
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	×
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.500	2.500	normal (k=1)	1.0000	1.0000	2.500	2.500	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.940	4.940	normal (k=1)	1.0000	0.6400	3.162	3.162	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.980	4.980	normal (k=1)	1.0000	0.6000	2.988	2.988	5
	Combined standard uncertainty			t-distribution			9.92	9.92	>200
	Expanded uncertainty			k = 1.96			19.44	19.44	>200

Page: 34 of 160 RFI Global Services Ltd.

Туре	Source of uncertainty	+	- Value	Probability	Divisor	C _{i (10g)}	Stan Uncer		ს _i or
,,	Í	Value	Value	Distribution		. (g)	+ u (%)	- u (%)	υ _{eff}
В	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	×
В	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	×
В	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	×
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	×
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	×
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	×
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.320	0.320	normal (k=2)	2.0000	1.0000	0.160	0.160	×
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	oc
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	×
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	œ
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.000	2.000	normal (k=1)	1.0000	1.0000	2.000	2.000	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	×
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	×
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	œ
Α	Liquid Conductivity (measured value)	4.410	4.410	normal (k=1)	1.0000	0.6400	2.822	2.822	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.930	4.930	normal (k=1)	1.0000	0.6000	2.958	2.958	5
	Combined standard uncertainty			t-distribution			9.64	9.64	>25
	Expanded uncertainty			k = 1.96			18.89	18.89	>2

Page: 35 of 160 RFI Global Services Ltd.

8.6. Specific Absorption Rate-Wi-Fi 2450 Body Configuration 1g									
Туре	Source of uncertainty	+ Value	- Value	Probability Distribution	Divisor	C _{i (10g)}	Standard Uncertainty		ს _i or
		Value	Value	Distribution			+ u (%)	- u (%)	veff
В	Probe calibration	11.000	11.000	normal (k=2)	2.0000	1.0000	5.500	5.500	×
В	Axial Isotropy	0.500	0.500	normal (k=2)	2.0000	1.0000	0.250	0.250	×
В	Hemispherical Isotropy	2.600	2.600	normal (k=2)	2.0000	1.0000	1.300	1.300	∞
В	Spatial Resolution	0.500	0.500	Rectangular	1.7321	1.0000	0.289	0.289	×
В	Boundary Effect	0.769	0.769	Rectangular	1.7321	1.0000	0.444	0.444	×
В	Linearity	0.600	0.600	Rectangular	1.7321	1.0000	0.346	0.346	∞
В	Detection Limits	0.200	0.200	Rectangular	1.7321	1.0000	0.115	0.115	∞
В	Readout Electronics	0.320	0.320	normal (k=2)	2.0000	1.0000	0.160	0.160	× ×
В	Response Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	∞
В	Integration Time	0.000	0.000	Rectangular	1.7321	1.0000	0.000	0.000	× ×
В	RF Ambient conditions	3.000	3.000	Rectangular	1.7321	1.0000	1.732	1.732	× ×
В	Probe Positioner Mechanical Restrictions	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Probe Positioning with regard to Phantom Shell	2.850	2.850	Rectangular	1.7321	1.0000	1.645	1.645	∞
В	Extrapolation and integration/ Maximum SAR evaluation	5.080	5.080	Rectangular	1.7321	1.0000	2.933	2.933	∞
Α	Test Sample Positioning	2.570	2.570	normal (k=1)	1.0000	1.0000	2.570	2.570	10
Α	Device Holder uncertainty	0.154	0.154	normal (k=1)	1.0000	1.0000	0.154	0.154	10
В	Phantom Uncertainty	4.000	4.000	Rectangular	1.7321	1.0000	2.309	2.309	∞
В	Drift of output power	5.000	5.000	Rectangular	1.7321	1.0000	2.887	2.887	∞
В	Liquid Conductivity (target value)	5.000	5.000	Rectangular	1.7321	0.6400	1.848	1.848	∞
Α	Liquid Conductivity (measured value)	4.900	4.900	normal (k=1)	1.0000	0.6400	3.136	3.136	5
В	Liquid Permittivity (target value)	5.000	5.000	Rectangular	1.7321	0.6000	1.732	1.732	∞
Α	Liquid Permittivity (measured value)	4.920	4.920	normal (k=1)	1.0000	0.6000	2.952	2.952	5
	Combined standard uncertainty			t-distribution			9.87	9.87	>200
	Expanded uncertainty			k = 1.96			19.34	19.34	>200

Page: 36 of 160 RFI Global Services Ltd.

Serial No: RFI/SAR/RP81531JD08A V2.0 Issue Date: 05 July 2011

Appendix 1. Test Equipment Used						
RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Interval (Months)
A034	Narda 20W Termination	Narda	374BNM	8706	Calibrated as part of system	-
A1097	SMA Directional Coupler	MiDISCO	MDC6223- 30	None	Calibrated as part of system	-
A1137	3dB Attenuator	Narda	779	04690	Calibrated as part of system	-
A1174	Dielectric Probe Kit	Agilent Technologies	85070C	Us99360072	Calibrated before use	-
A1328	Handset Positioner	Schmid & Partner Engineering AG	Modification	SD 000 H01 DA	-	-
A1182	Handset Positioner	Schmid & Partner Engineering AG	V3.0	None	-	-
A1234	Data Acquisition Electronics	Schmid & Partner Engineering AG	DAE3	450	09 Feb 2011	12
A1329	900 MHz Dipole Kit	Schmid & Partner Engineering AG	D900V2	185	18 Aug 2009	24
A1237	1900 MHz Dipole Kit	Schmid & Partner Engineering AG	D1900V2	540	08 Feb 2011	24
A1238	SAM Phantom	Schmid & Partner Engineering AG	SAM b	001	Calibrated before use	-
A1322	2450 MHz Dipole Kit	Schmid & Partner Engineering AG	D2450V2	725	08 Feb 2011	24
A1378	Probe	Schmid & Partner Engineering AG	EX3 DV3	3508	15 Feb 2011	12
A1497	Amplifier	Mini-Circuits	Zhl-42w (sma)	e020105	Calibrated as part of system	-
A1566	SAM Phantom	Schmid & Partner Engineering AG	SAM a	002	Calibrated before use	-
A1990	Digital Camera	Samsung	E515	A23WC90 8A05431K	-	-
A215	20 dB Attenuator	Narda	766-20	9402	Calibrated as part of system	-
A1531	Antenna	AARONIA AG	7025	02458	-	-
C1042	Network Analyzer Cable	Agilent	8120-4779	349	-	-
C1145	Cable	Rosenberger MICRO- COAX	FA147A F003003030	41843-1	Calibrated as part of system	-

Page: 37 of 160 RFI Global Services Ltd.

Serial No: RFI/SAR/RP81531JD08A V2.0 Issue Date: 05 July 2011

RFI No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
C1146	Cable	Rosenberger MICRO-COAX	FA147A F030003030	41752-1	Calibrated as part of system	-
G0528	Robot Power Supply	Schmid & Partner Engineering AG	DASY4	None	Calibrated before use	-
G087	PSU	Thurlby Thandar	CPX200	100701	Calibrated before use	-
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	27 Sept 2010	12
M1047	Robot Arm	Staubli	RX908 L	F00/SD8 9A1/A/01	Calibrated before use	-
M1159	Signal Generator	Agilent Technologies	E8241A	US42110332	Internal Checked 14 April 2011	4
M1071	Spectrum Analyzer	Agilent	HP8590E	3647U00514	(Monitoring use only)	-
M1044	Diode Power Sensor	Rohde & Schwarz	NRV-Z1	893350/019	26 May 2011	12
M265	Diode Power Sensor	Rohde & Schwarz	NRV-Z1	893350/017	26 May 2011	12
M263	Dual Channel Power Meter	Rohde & Schwarz	NRVD	826558/004	25 May 2011	12
M509	Digital Thermometer and Probe	Testo	110	40378800433	25 May 2011	12
M1270	Digital Thermometer	RS	N/A	N/A	Internal Checked 13 May 2011	12
S256	SAR Lab	RFI	Site 56	N/A	Calibrated before use	-

Page: 38 of 160 RFI Global Services Ltd.

Test Report Version 2.0 Serial No: RFI/SAR/RP81531JD08A V2.0

Issue Date: 05 July 2011

A.1.1. Calibration Certificates

This section contains the calibration certificates and data for the Probe(s) and Dipole(s) used, which are not included in the total number of pages for this report.

Page: 39 of 160 RFI Global Services Ltd.

rechecked by TED

A1329

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

RFI

Certificate No: D900V2-185 Aug09

CALIBRATION CERTIFICATE

Object

D900V2 - SN: 185

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

August 18, 2009

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date (Certificate No.)	Scheduled Calibration
GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
US37292783	08-Oct-08 (No. 217-00898)	Oct-09
SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
SN: 3205	26-Jun-09 (No. ES3-3205_Jun09)	Jun-10
SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
ID#	Check Date (in house)	Scheduled Check
MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
Name	Function	Signature
Jeton Kastrati	Laboratory Technician	T-UL
Katja Poković	Technical Manager	100 m
	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Jeton Kastrati	GB37480704 08-Oct-08 (No. 217-00898) US37292783 08-Oct-08 (No. 217-00898) SN: 5086 (20g) 31-Mar-09 (No. 217-01025) SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) SN: 3205 26-Jun-09 (No. ES3-3205_Jun09) SN: 601 07-Mar-09 (No. DAE4-601_Mar09) ID # Check Date (in house) MY41092317 18-Oct-02 (in house check Oct-07) 100005 4-Aug-99 (in house check Oct-07) US37390585 S4206 18-Oct-01 (in house check Oct-08) Name Function Jeton Kastrati

Issued: August 18, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D900V2-185 Aug09

Page 1 of 9

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D900V2-185 Aug09

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.97 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	0.96 mho/m ± 6 %
Head TSL temperature during test	(22.4 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.75 mW / g
SAR normalized	normalized to 1W	11.0 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	11.0 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.76 mW / g
SAR normalized	normalized to 1W	7.04 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	7.06 mW /g ± 16.5 % (k=2)

Certificate No: D900V2-185_Aug09

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.0	1.05 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.7 ± 6 %	1.06 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.80 mW / g
SAR normalized	normalized to 1W	11.2 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	11.0 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.81 mW / g
SAR normalized	normalized to 1W	7.24 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	7.16 mW / g ± 16.5 % (k=2)

Certificate No: D900V2-185_Aug09

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.5 Ω - 10.3 jΩ
Return Loss	- 19.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.5 Ω - 11.2 jΩ	
Return Loss	- 18.0 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.403 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 27, 2003

Certificate No: D900V2-185_Aug09

DASY5 Validation Report for Head TSL

Date/Time: 18.08.2009 08:57:04

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:185

Communication System: CW-900; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

Medium parameters used: f = 900 MHz; $\sigma = 0.96$ mho/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.88, 5.88, 5.88); Calibrated: 26.06.2009

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 59.7 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 4.17 W/kg

SAR(1 g) = 2.75 mW/g; SAR(10 g) = 1.76 mW/g

Maximum value of SAR (measured) = 3.23 mW/g

0 dB = 3.23 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 17.08.2009 11:23:13

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:185

Communication System: CW-900; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 900 MHz; $\sigma = 1.06 \text{ mho/m}$; $\varepsilon_r = 52.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.81, 5.81, 5.81); Calibrated: 26.06.2009

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.2 V/m; Power Drift = 0.00569 dB

Peak SAR (extrapolated) = 4.19 W/kg

SAR(1 g) = 2.8 mW/g; SAR(10 g) = 1.81 mW/g

Maximum value of SAR (measured) = 3.24 mW/g

0 dB = 3.24 mW/g

Impedance Measurement Plot for Body TSL

ASSET: A/237 - Checked by #

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RF

Accreditation No.: SCS 108

Certificate No: D1900V2-540 Feb11

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 540

Calibration procedure(s)

QA CAL-05.v8

Calibration procedure for dipole validation kits

Calibration date:

February 08, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	1) Xiw
Approved by:	Katja Pokovic	Technical Manager	

Issued: February 8, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-540 Feb11

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.41 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.25 mW / g
SAR normalized	normalized to 1W	21.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW /g ± 16.5 % (k=2)

Certificate No: D1900V2-540_Feb11

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.8 ± 6 %	1.55 mho/m ± 6 %
Body TSL temperature during test	(21.2 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.3 mW / g
SAR normalized	normalized to 1W	41.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.43 mW / g
SAR normalized	normalized to 1W	21.7 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.6 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-540_Feb11

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$50.5 \Omega + 4.2 j\Omega$
Return Loss	- 27.6 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.6 Ω + 5.0 jΩ
Return Loss	- 23.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.195 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 26, 2001

Certificate No: D1900V2-540_Feb11

DASY5 Validation Report for Head TSL

Date/Time: 07.02.2011 15:18:47

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.41 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

• Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY52, V52.6.1 Build (408)

Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.936 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 18.544 W/kg

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.25 mW/g

Maximum value of SAR (measured) = 12.384 mW/g

0 dB = 12.380 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 08.02.2011 12:04:35

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:540

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.55 \text{ mho/m}$; $\varepsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

• Measurement SW: DASY52, V52.6.1 Build (408)

• Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.899 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 17.597 W/kg

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.43 mW/g

Maximum value of SAR (measured) = 13.038 mW/g

0 dB = 13.040 mW/g

Impedance Measurement Plot for Body TSL

ASSET! A1322 - Checked by A

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Accreditation No.: SCS 108

C

Certificate No: D2450V2-725 Feb11

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 725

Calibration procedure(s)

QA CAL-05.v8
Calibration procedure for dipole validation kits

Calibration date:

February 08, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

i			
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Dimce Iliev	Laboratory Technician	D. Kiev
Approved by:	Katja Pokovic	Technical Manager	

Issued: February 8, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-725_Feb11

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossarv:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-725 Feb11

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

<u> </u>	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.73 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.9 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.13 mW / g
SAR normalized	normalized to 1W	24.5 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.7 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	1.94 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.9 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.04 mW / g
SAR normalized	normalized to 1W	24.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.1 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-725_Feb11

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	45.6 Ω + 7.9 jΩ
Return Loss	- 20.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.5 Ω + 9.7 jΩ
Return Loss	- 20.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.152 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 16, 2002

Certificate No: D2450V2-725_Feb11

DASY5 Validation Report for Head TSL

Date/Time: 07.02.2011 14:34:55

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:725

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.74 \text{ mho/m}$; $\varepsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

• Measurement SW: DASY52, V52.6.1 Build (408)

• Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.3 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 26.701 W/kg

SAR(1 g) = 13 mW/g; SAR(10 g) = 6.13 mW/g

Maximum value of SAR (measured) = 16.608 mW/g

0 dB = 16.610 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 08.02.2011 12:48:13

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:725

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.95 \text{ mho/m}$; $\varepsilon_r = 52.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

• Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY52, V52.6.1 Build (408)

• Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement

grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.406 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 27.401 W/kg

SAR(1 g) = 13 mW/g; SAR(10 g) = 6.04 mW/g

Maximum value of SAR (measured) = 17.121 mW/g

0 dB = 17.120 mW/g

Impedance Measurement Plot for Body TSL

ASSET: - A1378 Checked by # 21/02/2011.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

RFI

Certificate No: EX-3508 Feb11

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

EX3DV3 - SN:3508

Calibration procedure(s)

QA CAL-01.v7, QA CAL-12.v6, QA CAL-14.v3, QA CAL-23.v4,

QA CAL-25.v3

Calibration procedure for dosimetric E-field probes

Calibration date:

February 15, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter E4419B	GB41293874	01-Apr-10 (No. 217-01136)	Apr-11	
Power sensor E4412A	MY41495277	01-Apr-10 (No. 217-01136)	Apr-11	
Power sensor E4412A	MY41498087	01-Apr-10 (No. 217-01136)	Apr-11	
Reference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11	
Reference 20 dB Attenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11	
Reference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160)	Mar-11	
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11	
DAE4	SN: 654	23-Apr-10 (No. DAE4-654_Apr10)	Apr-11	
Secondary Standards	ID	Check Date (in house)	Scheduled Check	
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11	
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10) In house check: Oct-11		

Name Function Signature

Calibrated by: Katja Pokovic Technical Manager

Approved by: Niels Kuster Quality Manager

Issued: February 15, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx.v.z

DCP

diode compression point

CF

crest factor (1/duty_cycle) of the RF signal

A, B, C

modulation dependent linearization parameters

Polarization o

o rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- *NORMx,y,z:* Assessed for E-field polarization $\vartheta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax, y, z; Bx, y, z; Cx, y, z are numerical linearization parameters in dB assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media.
- VR: VR is the validity range of the calibration related to the average diode voltage or DAE voltage in mV.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX-3508 Feb11

Probe EX3DV3

SN:3508

Manufactured: December 19, 2003 Calibrated: February 15, 2011

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV3 - SN:3508

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.74	0.66	0.65	± 10.1 %
DCP (mV) ^B	101.8	102.3	101.3	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR m/V	Unc ^E (k=2)
10000	CW	0.00	Х	0.00	0.00	1.00	146.8	±2.2 %
			Υ	0.00	0.00	1.00	139.4	
			Z	0.00	0.00	1.00	124.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV3 - SN:3508

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	11.15	11.15	11.15	0.11	1.00	± 13.4 %
750	41.9	0.89	10.73	10.73	10.73	0.36	0.82	± 12.0 %
900	41.5	0.97	10.23	10.23	10.23	0.38	0.81	± 12.0 %
1750	40.1	1.37	9.15	9.15	9.15	0.66	0.56	± 12.0 %
1900	40.0	1.40	8.83	8.83	8.83	0.53	0.65	± 12.0 %
2450	39.2	1.80	7.88	7.88	7.88	0.29	0.91	± 12.0 %

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: EX3DV3-SN:3508

Calibration Parameter Determined in Body Tissue Simulating Media

	Relative	Conductivity					Depth	Unct.
f (MHz) ^C	Permittivity ^F	(S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	(mm)	(k=2)
							, ,	
450	56.7	0.94	11.80	11.80	11.80	0.02	1.00	± 13.4 %
750	55.5	0.96	10.54	10.54	10.54	0.37	0.86	± 12.0 %
900	55.0	1.05	10.27	10.27	10.27	0.30	0.95	± 12.0 %
1750	53.4	1.49	9.08	9.08	9.08	0.40	0.87	± 12.0 %
1900	53.3	1.52	8.56	8.56	8.56	0.35	0.78	± 12.0 %
2150	53.1	1.66	8.51	8.51	8.51	0.18	1.30	± 12.0 %
2450	52.7	1.95	7.97	7.97	7.97	0.39	0.72	± 12.0 %
2600	52.5	2.16	7.62	7.62	7.62	0.33	0.75	± 12.0 %
3700	51.0	3.55	6.84	6.84	6.84	0.25	1.70	± 13.1 %
5200	49.0	5.30	4.19	4.19	4.19	0.50	1.95	± 13.1 %
5500	48.6	5.65	3.72	3.72	3.72	0.58	1.95	± 13.1 %
5800	48.2	6.00	3.71	3.71	3.71	0.65	1.95	± 13.1 %

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

f=600 MHz,TEM

f=1800 MHz,R22

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Air Error (φ, θ), f = 900 MHz

DASY/EASY - Parameters of Probe: EX3DV3 - SN:3508

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Serial No: RFI/SAR/RP81531JD08A V2.0

Issue Date: 05 July 2011

Appendix 2. Measurement Methods

A.2.1. Evaluation Procedure

The Specific Absorption Rate (SAR) evaluation was performed in the following manner:

- a) (i) The evaluation was performed in an applicable area of the phantom depending on the type of device being tested. For devices worn about the ear during normal operation, both the left and right ear positions were evaluated at the centre frequency of the band at maximum power. The side, which produced the greatest SAR, determined which side of the phantom would be used for the entire evaluation. The positioning of the head worn device relative to the phantom was dictated by the test specification identified in section 3.1 of this report.
 - (ii) For body worn devices or devices which can be operated within 20 cm of the body, the flat section of the SAM phantom was used were the size of the device(s) is normal. for bigger devices and base station the 2mm Oval phantom is used for evaluation. The type of device being evaluated dictated the distance of the EUT to the outer surface of the phantom flat section.
- b) The SAR was determined by a pre-defined procedure within the DASY4 software. The exposed region of the phantom was scanned near the inner surface with a grid spacing of 20mm x 20mm or appropriate resolution.
- c) A 5x5x7 matrix was performed around the greatest spatial SAR distribution found during the area scan of the applicable exposed region. SAR values were then calculated using a 3-D spline interpolation algorithm and averaged over spatial volumes of 1 and 10 grams.
- d) If the EUT had any appreciable drift over the course of the evaluation, then the EUT was reevaluated. Any unusual anomalies over the course of the test also warranted a re-evaluation.

Page: 40 of 160 RFI Global Services Ltd.

Serial No: RFI/SAR/RP81531JD08A V2.0

rsion 2.0 Issue Date: 05 July 2011

A.2.2. Specific Absorption Rate (SAR) Measurements to OET Bulletin 65 Supplement C: (2001-01)

Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields

SAR measurements were performed in accordance with Appendix D of the standard FCC OET Bulletin 65 Supplement C: 2001, IEEE 1528 and FCC KDB procedures, against appropriate limits for each measurement position in accordance with the standard. In some cases the FCC was contacted using a PBA or KDB process to ensure test is performed correctly.

The test was performed in a shielded enclosure with the temperature controlled to remain between +18.0°C and +25.0°C. The tissue equivalent material fluid temperature was controlled to give a maximum variation of ± 2.0°C

Prior to any SAR measurements on the EUT, system validation and material dielectric property measurements were conducted. In the absence of a detailed procedure within the specification, system validation and material dielectric property measurements were performed in accordance with Appendix C and Appendix D of FCC OET Bulletin 65 Supplement C: 2001 and FCC KDB publication 450824.

Following the successful system validation and material dielectric property measurements, a SAR versus time sweep shall be performed within 10 mm of the phantom inner surface. If the EUT power output is stable after three minutes then the measurement probe will perform a coarse surface level scan at each test position in order to ascertain the location of the maximum local SAR level. Once this area had been established, a 5x5x7 cube of 175 points (5 mm spacing in each axis $\approx 27g$) will be centred at the area of concern. Extrapolation and interpolation will then be carried out on the 27g of tissue and the highest averaged SAR over a 10g cube determined.

Once the maximum interpolated SAR measurement is complete; the coarse scan is visually assessed to check for secondary peaks within 50% of the maximum SAR level. If there are any further SAR measurements required, extra 5x5x7 cubes shall be centred on each of these extra local SAR maxima.

At the end of each position test case a second time sweep shall be performed to check whether the EUT has remained stable throughout the test.

Page: 41 of 160 RFI Global Services Ltd.