Machine Learning - Assignment 3

Sudip Sinha

May 4, 2014

Exercise 2

Given

- $\bullet \ VV^T = V^TV = I$
- \bullet D is an invertible diagonal matrix

Proof

Let $B = VD^{-1}V^T$

- $AB = VDV^TVD^{-1}V^T = VD(V^TV)D^{-1}V^T = VDID^{-1}V^T = V(DD^{-1})V^T = VIV^T = I$
- $BA = VD^{-1}V^TVDV^T = VD^{-1}(V^TV)DV^T = VD^{-1}IDV^T = V(D^{-1}D)V^T = VIV^T = I$ Thus, $A^{-1} = B = VD^{-1}V^T$.

Exercise 3

We just have to show that the square of the norm is a convex function. By the definition of norm,

$$||tx + (1-t)y|| \le ||tx|| + ||(1-t)y|| = t ||x|| + (1-t)||y||$$

$$\implies ||tx + (1-t)y||^2 \le (t ||x|| + (1-t)||y||)^2 \le t^2 ||x||^2 + (1-t)^2 ||y||^2$$

Thus, the least squares loss function $||y - Xw||^2$ is a convex function of w.

Exercise 4

Let $W = \operatorname{diag}(r_i)$. Therefore, $W^T = W$

Thus, the problem can be reformulated as

$$w = \arg\min_{w} (e)$$
, where $e = (y - Xw)^{T} W (y - Xw)$

Using the rules of Matrix Calculus given here:

$$\frac{\partial e}{\partial w} = (y - Xw)^T W \frac{\partial}{\partial w} (y - Xw) + (y - Xw)^T W^T \frac{\partial}{\partial w} (y - Xw)$$

$$= 2 (y - Xw)^T W^T (-X) \qquad (Since W^T = W)$$

$$= 2 (X^T W (Xw - y))^T$$

For minimum error:

$$\frac{\partial e}{\partial w} = 0^{T}$$

$$\implies 2 (X^{T}W(Xw - y))^{T} = 0^{T}$$

$$\implies X^{T}W(Xw - y) = 0$$

$$\implies X^{T}WXw = X^{T}y$$

$$\implies w = (X^{T}WX)^{-1}X^{T}y$$

Exercise 6

Notations

Symbol	Dimension	Description
X	$m \times n$	The design matrix
y	$m \times 1$	The actual values of the predicted variable
$O\left(\cdot\right)$	-	The Big O notation

Computational Complexity¹

LLS

Output	Complexity	Operation	
X^TX	$O\left(mn^2\right)$	Matrix multiplication	
X^Ty	O(mn)	Matrix multiplication	
$X^T X w = X^T y$	$O(n^3)$	Solving linear system of equations	

Now, we shall assume that $n \ll m$. In this case, $O(mn^2)$ dominates over $O(n^3)$. Thus the computational complexity of LLS is $O(mn^2)$.

kNN

Output	Complexity	Operation
$D_i = \Sigma_i \left(X_{test} - X_{train,i} \right)^2$	$O\left(mn\right)$	Subtraction, squaring and summing (each $O(n)$) / row of train
Sorted index vector δ	$O(m \ln m)$	Sorting
Predicted class	O(k)	Mode

Now, we shall assume that $k \ll m$ and $\ln m \ll n$. In this case, O(mn) dominates over the other complexities.

Space Complexity

LLS

Object	Space
X	mn
y	m
X^T	mn
X^TX	n^2
X^Ty	n
w	n

Thus the space complexity of LLS is O(mn).

kNN

Object	Space
X	mn
y	m
X^Ty	n
δ	n

Thus the space complexity of LLS is O(mn).

Final results

	Computation	Time
LLS	$O\left(mn^2\right)$	$O\left(mn\right)$
kNN	O(mn)	$O\left(mn\right)$

 $^{^1}$ Taken from Computational complexity of mathematical operations in Wikipedia