MLS	Dataset	PLS(AIC)	PLS(AICc)	PLS(BIC)	PLS(HQIC) F	LS(GMDL)
	abalone	46.79(3)	46.79(3)	46.79(3)	46.79(3)	46.79(3)
	airfoil_self_noise	51.49(2)	51.49(2)	51.49(2)	51.49(2)	61.59(5)
	auto_mpg	19.46(3)	19.46(3)	19.46(3)	19.46(3)	19.46(3)
	automobile	19.20(4)	19.20(4)	18.43(1)	19.20(4)	18.43(1)
	concrete_data	39.08(3)	39.08(3)	39.08(3)	39.08(3)	39.08(3)
	crime	35.64(3)	35.64(3)	35.64(3)	35.64(3)	35.64(3)
	fertility	102.98(3)	102.98(3)	102.98(3)	102.98(3)	102.98(3)
Ridge	flow	65.13(3)	65.13(3)	65.13(3)	65.13(3)	65.13(3)
	forest	100.40(3)	100.40(3)		100.40(3)	100.40(3)
	qsar	43.05(3)	43.05(3)	43.05(3)	43.05(3)	43.05(3)
	servo	60.28(3)	60.28(3)	60.28(3)	60.28(3)	60.28(3)
	slump	85.53(2)	85.53(2)	85.53(2)	85.53(2)	85.94(5)
	traffic	43.80(2)	43.80(2)	43.80(2)	43.80(2)	44.95(5)
	wine_red	65.64(3)	65.64(3)	65.64(3)	65.64(3)	65.64(3)
	wine_white	73.94(3)	73.94(3)	73.94(3)	73.94(3)	73.94(3)
Avg. Ra		(2.97)	(2.97)	(2.80)	(2.97)	(3.30)
	abalone	43.59(2)	43.59(2)	43.59(2)	43.59(2)	53.68(5)
SVR	airfoil_self_noise		90.88(3)	90.88(3)	90.88(3)	90.88(3)
	auto_mpg	99.36(3)	99.36(3)	99.36(3)	99.36(3)	99.36(3)
	automobile	73.87(3)	73.87(3)	73.87(3)	73.87(3)	73.87(3)
	concrete_data	83.37(3)	83.37(3)		83.37(3)	83.37(3)
	crime	54.23(3)	51.79(1)	58.51(4)	52.41(2)	58.51(4)
	fertility	113.93(3)		108.11(1)	113.93(3)	108.11(1)
	flow	88.70(2)	88.70(2)	93.03(4)	88.70(2)	98.99(5)
	forest	100.67(3)	100.67(3)		100.67(3)	100.67(3)
	qsar	38.58(3)	37.45(1)	38.58(3)	38.58(3)	38.58(3)
	servo	27.00(4)	27.00(4)	26.88(2)	27.00(4)	21.37(1)
	slump	92.39(3)	92.39(3)	92.39(3)	92.39(3)	92.39(3)
	traffic	71.17(2)	71.21(4)	71.17(2)	73.76(5)	70.81(1)
	wine_red	75.57(3)	73.40(1)	75.57(3)	75.57(3)	75.57(3)
	wine_white	72.53(3)	72.53(3)	72.53(3)	72.53(3)	72.53(3)
Avg. Ra	nk	(3.03)	(2.77)	(3.00)	(3.13)	(3.07)
	abalone	50.52(2)	50.52(2)	50.52(2)	50.52(2)	53.73(5)
RFR	airfoil_self_noise		30.11(1)	33.18(4)	30.31(2)	48.43(5)
	auto_mpg	14.27(2)	14.27(2)	14.43(4)	14.27(2)	16.61(5)
	automobile	18.02(1)	18.99(4)	18.66(3)	18.99(4)	18.56(2)
	concrete_data	18.99(3)	18.15(2)	18.99(3)	18.09(1)	25.94(5)
	crime	39.72(2)	39.72(2)	40.97(4)	39.72(2)	44.94(5)
	fertility	101.88(4)	98.88(3)	98.06(2)	101.88(4)	93.11(1
	flow	80.35(3)	80.35(3)	80.35(3)	80.35(3)	73.98(1)
	forest	106.27(3)	106.27(3)		106.27(3)	106.27(3)
	qsar	44.60(2)	43.38(1)	47.78(4)	44.60(2)	51.60(5)
	servo	19.81(2)	21.83(5)	19.81(2)	21.12(4)	19.75(1)
	slump	98.40(3)	113.09(5)	93.37(2)	109.98(4)	80.57(1)
	traffic	55.17(4)	55.17(4)		55.17(4)	50.89(1)
	wine_red	64.25(2)	61.61(1)	68.54(4)	64.25(2)	68.54(4)
	wine_white	71.12(3)	67.92(1)	76.03(4)	67.92(1)	76.03(4)
Avg. Ra		(2.80)	(2.73)	(3.23)	(2.93)	(3.30)
Mean Rank		(2.93)	(2.82)	(3.01)	(3.01)	(3.22)
		(=100)	(====)	(0.02)	(0.02)	(0.22)

Table 18: The 3-fold cross validation relative mean squared error and Friedman ranks for all the datasets when PLS, using several stop criteria (AIC, AICc, BIC, HQIC and GMDL), taking into account some baseline systems (Ridge, SVR and RFR) and the PSO sampling strategy.