CAUCHY SEQUENCES, DEC 13 Question. (a) Write the definition of Cauchy sequence Couchy Sequence is $\forall \in EQ^{\dagger} \exists m \in N \forall n, n = 1$ $ a_{n_1}-a_{n_2} \in E$
(b) Show that $a_n = \frac{(-1)^n}{n}$ is a Cauchy sequence. $a_{n} = \frac{C-1}{n}$ $a_{n+1} = \frac{C-1}{n+1}$
(c) Show that $a_n = \frac{(-1)^n(n+3)}{n+2}$ is not a Cauchy sequence. $a_{n1} = \frac{(-1)^n(n+3)}{n+2} a_{n2} = \frac{(-1)^{n+1}}{n+2} Cn+3+K$ $ M a_{n1} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n1} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n1} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n1} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n1} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n1} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n1} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n1} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n1} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n1} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n1} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n1} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n1} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n2} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n2} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n2} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n2} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n2} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n2} - a_{n2} = \lim_{n \to \infty} (-1)^n - (-1)^n + K \neq 0 \forall n \neq k $ $ A a_{n2} - a_{n2} = \lim_{n \to \infty} (-1)^n + \lim_{$
(e) Let (a_n) be a Cauchy sequence. Write the condition that $([a_n)] \neq 0$. Your sentence should have a "greater than" sign $(>)$ at the end. If $E \in A \downarrow A \cap A \cap$

or for all $n \ge m$ an < 0.

If $[(a_n)] \ne 0$, then there exists some m such that either for all $n \ge m$ an > 0If $[(a_n)] \ne 0$ then $\exists E E G', \forall m \exists n \ge m$ $|a_n|^7 E_6$ This means that an hastobe

and a selection of the selection of t

(g) How do you reconcile your examples in (b) and (c) with your statement in (f)

No need to reconcile with b) as [(an)]=0

For past c, it violates this poincipal as the limit of the Series is alternating between -2,0, or 2, soit doesn't work, segre mot far alternating between the anco