Doğrusal Cebir ve Kalkülüs hatırlatması VIP

Afshine Amidi ve Shervine Amidi

April 30, 2019

Kadir Tekeli ve Ekrem Çetinkaya tarafından çevrilmiştir

Genel notasyonlar

 \square Vektör – *i*-inci elemanı $x_i \in \mathbb{R}$ olmak üzere n elemanlı bir vektör, $x \in \mathbb{R}^n$:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

 \square Matris – $A_{i,j} \in \mathbb{R}$ i-inci satır ve j-inci sütundaki elemanları olmak üzere m satırlı ve n sütunlu bir matris, $A \in \mathbb{R}^{m \times n}$:

$$A = \begin{pmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{pmatrix} \in \mathbb{R}^{m \times n}$$

Dipnot: Yukarıda tanımlanan x vektörü $n \times 1$ tipinde bir matris olarak ele alınabilir ve genellikle sütun vektörü olarak adlandırılır.

 \square Birim matris – Birim matris, köşegeni birlerden ve diğer tüm elemanları sıfırlardan oluşan karesel matris, $I \in \mathbb{R}^{n \times n}$:

$$I = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

Dipnot: Her $A \in \mathbb{R}^{n \times n}$ matrisi için $A \times I = I \times A = A$ eşitliği sağlanır.

 \square Köşegen matris – Bir köşegen matris, köşegenindeki elemanları sıfırdan farklı diğer tüm elemanları sıfır olan karesel matris, $D\in\mathbb{R}^{n\times n}$:

$$D = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & d_n \end{pmatrix}$$

Dipnot: D matrisi diag $(d_1,...,d_n)$ olarak da gösterilir.

Matris işlemleri

□ Vektör-vektör – İki çeşit vektör-vektör çarpımı vardır.

• iç çarpım: $x,y \in \mathbb{R}^n$ için:

$$x^T y = \sum_{i=1}^n x_i y_i \in \mathbb{R}$$

• dış çarpım: $x \in \mathbb{R}^m, y \in \mathbb{R}^n$ için:

$$xy^T = \begin{pmatrix} x_1y_1 & \cdots & x_1y_n \\ \vdots & & \vdots \\ x_my_1 & \cdots & x_my_n \end{pmatrix} \in \mathbb{R}^{m \times n}$$

 $\hfill\Box$ Matris-vektör $-A\in\mathbb{R}^{m\times n}$ matrisi ve $x\in\mathbb{R}^n$ vektörünün çarpımları \mathbb{R}^m boyutunda bir vektördür:

$$Ax = \begin{pmatrix} a_{r,1}^T x \\ \vdots \\ a_{r,m}^T x \end{pmatrix} = \sum_{i=1}^n a_{c,i} x_i \in \mathbb{R}^m$$

burada $a_{r,i}^T$ A'nın vektör satırları ve $a_{c,j}$ A'nın vektör sütunları ve x_i x vektörünün elemanlarıdır.

 $\hfill\Box$ Matris
-matris $-A\in\mathbb{R}^{m\times n}$ matrisi ve $B\in\mathbb{R}^{n\times p}$ matrisinin çarpımlar
ı $\mathbb{R}^{n\times p}$ boyutunda bir matristir:

$$AB = \begin{pmatrix} a_{r,1}^T b_{c,1} & \cdots & a_{r,1}^T b_{c,p} \\ \vdots & & \vdots \\ a_{r,m}^T b_{c,1} & \cdots & a_{r,m}^T b_{c,p} \end{pmatrix} = \sum_{i=1}^n a_{c,i} b_{r,i}^T \in \mathbb{R}^{n \times p}$$

burada $a_{r,i}^T, b_{r,i}^T$ sırasıyla A ve B'nin vektör satırları ve $a_{c,j}, b_{c,j}$ sırasıyla A ve B'nin vektör sütunlarıdır.

 \square Devrik (Transpoze) – Bir $A\in\mathbb{R}^{m\times n}$ matrisinin devriği, satır ve sütunların yer değiştirmesi ile elde edilir, ve A^T ile gösterilir:

$$\forall i, j, \qquad A_{i,j}^T = A_{j,i}$$

Dipnot: Her A,B icin $(AB)^T = B^T A^T$ vardir.

 \square Ters – Tersinir bir A karesel matrisinin tersi, aşağıdaki koşulu sağlayan matristir, ve A^{-1} ile gösterilir:

$$AA^{-1} = A^{-1}A = I$$

Dipnot: Her karesel matris tersinir değildir. Ayrıca, Her tersinir A,B matrisi için $(AB)^{-1} = B^{-1}A^{-1}$ dir.

 \Box İz – Bir A karesel matrisinin izi, köşegenindeki elemanlarının toplamıdır, ve $\operatorname{tr}(A)$ ile gösterilir:

$$tr(A) = \sum_{i=1}^{n} A_{i,i}$$

Dipnot: A,B matrisleri için $tr(A^T) = tr(A)$ ve tr(AB) = tr(BA) vardır.

 \Box Determinant – $A \in \mathbb{R}^{n \times n}$ matrisinin determinantı, $A_{\backslash i, \backslash j}$ gösterimi i-inci satırsız ve j-inci sütunsuz şekilde A matrisi olmak üzere özyinelemeli olarak aşağıdaki gibi ifade edilir, ve |A| ya da $\det(A)$ ile gösterilir:

$$\det(A) = |A| = \sum_{j=1}^{n} (-1)^{i+j} A_{i,j} |A_{\setminus i,\setminus j}|$$

Dipnot: A tersinirdir ancak ve ancak $|A| \neq 0$. Ayrıca, |AB| = |A||B| ve $|A^T| = |A|$.

Matris özellikleri

 \square Simetrik ayrışım – Verilen bir A matrisi simetrik ve ters simetrik parçalarının cinsinden aşağıdaki gibi ifade edilebilir:

$$A = \underbrace{\frac{A + A^T}{2}}_{\text{Simetrik}} + \underbrace{\frac{A - A^T}{2}}_{\text{Ters simetrik}}$$

 $\hfill\Box$ Norm – Vvektör uzayı ve her $x,y\in V$ için aşağıdaki özellikleri sağlayan $N:V\longrightarrow [0,+\infty$ fonksiyonu bir normdur:

- $N(x+y) \leqslant N(x) + N(y)$
- Bir a sabiti için N(ax) = |a|N(x)
- N(x) = 0 ise x = 0

 $x \in V$ için en yaygın şekilde kullanılan normlar aşağıdaki tabloda verilmektedir.

Norm	Notation	Definition	Use case
Manhattan, L^1	$ x _{1}$	$\sum_{i=1}^{n} x_i $	LASSO regularization
Euclidean, L^2	$ x _2$	$\sqrt{\sum_{i=1}^n x_i^2}$	Ridge regularization
p -norm, L^p	$ x _p$	$\left(\sum_{i=1}^{n} x_i^p\right)^{\frac{1}{p}}$	Hölder inequality
Infinity, L^{∞}	$ x _{\infty}$	$\max_{i} x_i $	Uniform convergence

□ Doğrusal bağımlılık – Bir vektör kümesinden bir vektör diğer vektörlerin doğrusal birleşimi (kombinasyonu) cinsinden yazılabiliyorsa bu vektör kümesine doğrusal bağımlı denir.

Dipnot: Eğer bu şekilde yazılabilen herhangi bir vektör yoksa bu vektörlere doğrusal bağımsız denir.

 \square Matris rankı – Verilen bir A matrisinin rankı, rank(A), bu matrisinin sütunları tarafından üretilen vektör uzayının boyutudur. Bu ifade A matrisinin doğrusal bağımsız sütunlarının maksimum sayısına denktir.

 $\hfill \hfill \hfill$ Pozitif yarı-tanımlı matris — Aşağıdaki koşulu sağlayan bir $A \in \mathbb{R}^{n \times n}$ matrisi pozitif yarı-tanımlıdır ve $A \succeq 0$ ile gösterilir:

$$A = A^T$$
 and $\forall x \in \mathbb{R}^n, \quad x^T A x \geqslant 0$

Dipnot: Benzer olarak, pozitif yarı-tanımlı bir A matrisi sıfırdan farklı her x vektörü için $x^T Ax > 0$ kosulunu sağlıyorsa A matrisine pozitif tanımlı denir ve $A \succ 0$ ile gösterilir.

 \square Özdeğer, özvektör – Verilen bir $A \in \mathbb{R}^{n \times n}$ için aşağıdaki gibi bir $z \in \mathbb{R}^n \setminus \{0\}$ vektörü var ise buna özvektör, λ sayısına da A matrisinin öz değeri denir.

$$Az = \lambda z$$

□ Spektral teorem – $A \in \mathbb{R}^{n \times n}$ olsun. Eğer A simetrik ise, A matrisi gerçel ortogonal $U \in \mathbb{R}^{n \times n}$ matrisi ile köşegenleştirilebilir. $\Lambda = \text{diag}(\lambda_1,...,\lambda_n)$ olmak üzere:

$$\exists \Lambda$$
 köşegen, $A = U\Lambda U^T$

 \square Tekil-değer ayrışımı – $m\times n$ tipinde
ki bir A matrisi için tekil-değer ayrışımı;
 $m\times m$ tipinde bir üniter $U,\ m\times n$ tipinde bir köşegen
 Σ ve $n\times n$ tipinde bir üniter V
matrislerinin varlığını garanti eden bir parçalama tekniğidir.

$$A = U \Sigma V^T$$

Matris kalkülüsü

□ Gradyan $-f: \mathbb{R}^{m \times n} \to \mathbb{R}$ bir fonksiyon ve $A \in \mathbb{R}^{m \times n}$ bir matris olsun. f nin A ya göre gradyan $m \times n$ tipinde bir matristir, ve $\nabla_A f(A)$ ile gösterilir:

$$\left(\nabla_A f(A)\right)_{i,j} = \frac{\partial f(A)}{\partial A_{i,j}}$$

Dipnot: f fonksiyonunun gradyanı yalnızca f skaler döndüren bir fonksiyon ise tanımlıdır.

□ Hessian – $f: \mathbb{R}^n \to \mathbb{R}$ bir fonksiyon ve $x \in \mathbb{R}^n$ bir vektör olsun. f fonksiyonun x vektörüne göre Hessian'ı $n \times n$ tipinde bir simetrik matristir, ve $\nabla_x^2 f(x)$ ile gösterilir:

$$\left(\nabla_x^2 f(x)\right)_{i,j} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

Dipnot: f fonksiyonunun Hessian'ı yalnızca f skaler döndüren bir fonksiyon ise tanımlıdır.

 \square Gradyan işlemleri – A,B,C matrisleri için aşağıdaki işlemlerin akılda bulunmasında fayda vardır:

$$\boxed{\nabla_A \operatorname{tr}(AB) = B^T} \qquad \boxed{\nabla_{A^T} f(A) = (\nabla_A f(A))^T}$$

$$\boxed{\nabla_A \operatorname{tr}(ABA^T C) = CAB + C^T AB^T} \qquad \boxed{\nabla_A |A| = |A|(A^{-1})^T}$$