Теортест-1 (Вариант 9)

Тема – определенный интеграл

Задача 1

Пусть функция u=u(x) – первообразная для функции v=v(x) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. vdt = du;
- 2. udt = dv;
- 3. u = v' + C;
- 4. v = u' + C;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. $\int_a^b f(x)dx = F(b) F(a);$
- 2. F имеет разрывы в точках разрыва функции f;
- 3. F ограничена на [a, b];
- 4. Если $f \ge 0$ на [a, b], то F не убывает на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Пусть $f \in R[a,b], a < b$. Выберите все верные утверждения:

- 1. Если $\int_a^b |f(x)| dx < A$, то $\left| \int_a^b f(x) dx \right| < A$;
- 2. Если $f \ge 0$ на [a, b], то $\int_a^b f(x) dx \ge 0$;
- 3. Если $\left| \int_a^b f(x) dx \right| = 0$, то $f(x) \equiv 0$ на [a,b];
- 4. Если $f \ge 0$ на [a,b] и $\exists c \in [a,b] \colon f(c) > 0$, то $\int_a^b f(x) dx > 0$;

Задача 4

Пусть f интегрируема и $f \geq 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f возрастает (нестрого) на [a, b] и f(b) = 1;
- 2. f((a+b)/2) = 1;
- 3. f(a) > 0, f(b) > 0;
- 4. f непрерывна на [a, b] и f(a + b) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть f(x) – дифференцируемая функция. Выберите все верные утверждения:

- 1. $\int \frac{f'(x)}{x^2} dx = \frac{f(x)}{x^2} + \int \frac{f(x)}{x} dx;$
- 2. $\int f'(x) \sin x dx = \cos x \cdot f(x) \int f(x) \cos x dx$;
- 3. $2 \int x f(x) dx = x^2 f'(x) \int x f'(x) dx$;
- 4. $\int f'(x)e^x dx = e^x f(x) \int f(x)e^x dx;$

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Выберите все верные утверждения:

- 1. первообразная дробно-рациональной функции является дробно-рациональной функцией;
- 2. если первообразная дробно-рациональной функции f(x) является дробнорациональной, то все корни знаменателя f(x) кратные;
- 3. если первообразная дробно-рациональной функции f(x) выражается через логарифм, то знаменатель f(x) имеет только простые вещественные корни;
- 4. если все корни знаменателя дробно-рациональной функции кратные, то ее первообразная является дробно-рациональной функцией;

Задача 7

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^2 x f(x) dx$:

- 1. [0, 10];
- 2. [-2, 20];
- 3. [-1, 10];
- 4. [-2, 10];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Выберите все верные утверждения (множества А и В имеют площадь):

- 1. площадь A всегда положительна;
- 2. площадь графика любой функции равна нулю;
- 3. $S(A) = S(A \cap B) + S(A \setminus B)$;
- 4. при движении площадь не меняется;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Выберите все верные утверждения:

- 1. Длина кривой определяется как супремум длин всевозможных параметризаций кривой;
- 2. Любая кривая имеет неотрицательную длину;
- 3. Любая кривая имеет бесконечно много различных параметризаций;
- 4. Длина любой кривой не меньше длины отрезка, соединяющего ее начало и конец;
- 5. Длина спрямляемой кривой конечна;

Задача 10

Выберите все верные утверждения для данной функции, заданной на отрезке [a,b]:

- 1. Нижняя сумма Дарбу не больше любой интегральной суммы для данного разбиения;
- 2. Нижняя сумма Дарбу является наименьшей из всех интегральных сумм для данного разбиения;
- 3. При измельчении разбиения нижняя сумма Дарбу уменьшается или не изменяется;
- 4. При измельчении разбиения нижняя сумма Дарбу уменьшается;