PROJECT-1 (*ECD-416*)

COVID 19 Detection from radiograph using Computer Vision Deep Learning

Submitted By-

Sunil Kumar 17mi438
Divyanshu Bhaik 17mi446
Prayas Thakur 17mi437
Rahul Sharma 17mi426
ECE Dual Degree (BTech & MTech)

Under the Guidance of

Dr. Abhijit Bhattacharyya, Assistant Professor,

Department of Electronics and Communication Engineering
National Institute of Technology Hamirpur, 177005 Himachal Pradesh

Data Set

Image Pre-processing Dataset

Classification Dataset

We have used four dataset for this research from given sources

https://arxiv.org/abs/2003.11597

https://github.com/ieee8023/covid-chestxray-dataset

https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

we further created folders of data set to attain higher accuracy.

Dataset 1`

Dataset_1 is taken from Cohen. Which contains 1347 images.

Dataset refined

Dataset_refined is the subset of Dataset_1 which contains 1000 best images from previous dataset.

New_Dataset_2_all

This dataset contains data from all above given sources.

And as per categories it contains COVID-19 – 722 images

Pneumonia – 1500 images

Normal – 1500 images

Dataset_2

This dataset contains best images from above all datasets.

Final Pipeline of Operation-

Pipeline of processing-

Generation of masked images

Predicted NAND/OR Xray Masked Image

Classification

We have proposed a particular pipeline for classification of Xray Images of a patient into three types. Namely COVID-19, Pneumonia, Normal. For this particular pipeline we have tested best performing pretrained classification models from ImageNet available in Keras Library. Also we have tested a self-defined Simple Convolution Network for the same purpose.

Name of the training model used

- Simple Convolution Network (self-defined)
- VGG-16
- VGG-19
- Xception
- DenseNet169
- DenseNet201
- InceptionResNetV2
- NASANetLarge

Some Predefined Variables

We have taken some fixed value of variables for training purpose

DATA type of trained images

- Maximum number of images for particular class for training is 700 due to RAM restriction.
- Test Size for validation data is **0.1%** of total data.
- For transfer learning models we have used include top = true and weights are downloaded from ImageNet.
- Fully connected dense layer used after flatten layer are FC1, FC2, FC3 and Output.
 Number of Perceptron 4096 1024 256 3
 Activation Function relu relu relu SoftMax
- Optimizer Adam Optimizer Learning rate=0.001

- Loss Function Categorical Cross Entropy
- Matrix of evolution during training is accuracy.
- We have used pre-processed input functions related to every transfer learning model used ion this research.
- Call Back used

Model Check Point

ReduceLROnPlateau

- Epoch range (100-300)
- Feature Extraction using Computer Vision Libraries

Feature extraction algorithm used SIFT, BRISK

Threshold value = 50

Clustering using K-means.

Value of k = 128

• Combining all Processes

Combining the outputs from K-means clustering and FC3 layer of trained models earlier .

Total feature = 384

Maximum input data for training = 2100

Containing maximum of 700 training data per class.

Total size = 0.1% of total data.

DL model contain total no. of 7 layers

Namely layer	Output Shape	Activation Function			
Dense_1	1024	Relu			
Dense_2	800	Relu			
Dense_3	512	Relu			
Dense_4	300	Relu			
Dense_5	256	Relu			
Dense_6	128	Relu			
Output_layer	3	SoftMax			

• Optimizer- Adam optimizer

Learning rate- 0.001

Loss function – Categorical cross entropy

Matrix of evolution- accuracy

- Call-backs
 Model check point
 ReduceLROnPlateau
- Epoch range (100-300)
- ML method use

Output from Dense_6 layer = 128 are used as the input for the machine learning algorithms namely-

- 1. SVM- Max_iter = 5000
- 2. XGboost- Max_iter = 5000
- 3. Random Forest- $n_{estimators} = 1000$

Observations- Observed accuracy percentage for different models is as given below:

 		Dataset_refined		Dataset_1		Dataset_2		New_dataset_2_all	
S.No.	Models	BRISK	SIFT	BRISK	SIFT	BRISK	SIFT	BRISK	SIFT
1	DenseNet169	68%	73%	70%	67%	81%	85%	77%	75%
2	DenseNet201	71%	74%	75%	72%	77%	84%	73%	77%
3	InceptionResnetV2	79%	77%	70%	67%	78%	85%	73%	84%
4	NASANetLarge	75%	67%	69%	65%	66%	81%	66%	79%
<mark>5</mark>	Simple_Conv_Network	<mark>77%</mark>	<mark>80%</mark>	<mark>75%</mark>	<mark>72%</mark>	<mark>92%</mark>	<mark>90%</mark>	<mark>95%</mark>	<mark>95%</mark>
<mark>6</mark>	VGG16	<mark>90%</mark>	88%	72%	72%	<mark>96%</mark>	94%	<mark>89%</mark>	<mark>92%</mark>
7	VGG19	85%	86%	80%	78%	<mark>96%</mark>	<mark>96%</mark>	93%	94%
8	Xception	74%	73%	71%	72%	70%	81%	71%	81%

Fig.- Accuracy percentage for different models