

Challenges and Advances in Constructing of Corpora
And
Linguistic Tools for the Moroccan Dialect

Nadia khlif Azzedine Mazroui Ouafae Nahli nadia.khlif@ilc.cnr.it azze.Mazroui@gmail.com ouafae.nahli@ilc.cnr.it

Introduction

Arabic language & Darija Dialect

Linguistic features

Darija's Challenge

DiMorph

Results & discussion

Conclusions & Perspectives

Introduction

Data Collection

Step1:

Collection of a Representative Corpus: establish a genuinely representative corpus of Colloquial Arabic Varieties.

Tools: DiMorph

Step2:

Tools Adaptation:
enhance linguistic
annotations within
our corpora through
the adaptation of the
morphological
Analyzer Aramorph
for processing written
dialectal words.

Manual disambiguation of a Subcorpus

Step3:

Corpus Annotation: manual disambiguation of a subcorpus collected and analyzed to adapt methodologies in deep learning for the Automatic Annotation of the Entire corpus.

Lexical Model

Step4:

Developing a Lexical Model: Bridging Corpus Data and Existing Lexical Sources.

Arabic Language & Darija dialect

Classical Arabic

- The Language of the Quran.
- Adherence to Strict Grammatical Rules.
- Religious Significance and Unique Dictionary.

Modern Standard Arabic (MSA)

- Foundation in Classical Arabic.
- Linguistic Authorities and Standardization.
- Uniformity in Written Communication.

Arabic Dialects

- Localization and Informality.
- Organic Evolution within Communities.
- Lacks of the formal recognition and standardized grammar rules.

Arabic Language & Darija dialect

Arabic Classic

MSA

Darija

Lexical borrowing

Arabic Language & Darija dialect

Article de reference:

Tachicart, Ridouane, Karim Bouzoubaa, and Hamid Jaafar. 2016. "Lexical differences and similarities between moroccan dialect and Arabic".

Linguistic features

Surface realisation

- The morpho-syntactic layer combines the inflected form with clitics (prepositions, conjunctions, definite articles, etc.) to shape a rich and complex surface form.
- The inflectional layer is the one where the lemma combines with inflectional affixes to give inflectional forms.

• The derivation layer is the deepest one. At this level, the root combines with the vowels, according to determined patterns, to produce a verbal or a nominal lemma.

Linguistic features

Example of Grammatical Aspects

Linguistic features

In the two examples, the inflected form is surrounded by clitics and the morphological structure is:

Enclitics

By removing clitics, the remaining word form is a minimally autonomous inflected form whose structure consists of:

Darija's Challenge

Challenges

Darija's Challenge

Issues of Texts retrieved from social platforms

• مبروووك /mabru:u:u:k/ 'congratulation'

Darija's Challenge

- Lack of Orthographic and Grammatical Rules: Due to the absence of established orthographic and grammatical rules, words are often written as pronounced, leading to variations.
 - راس instead of the standardized :رءس

- Early Technology Limitations: The lack of Arabic keyboards led users to adopt the Latin alphabet with numbers (Arabizi) to represent unique Arabic sounds, such as:
 - ・ > 3.
 - *->* 7.
- O **Use of Arabic Script with Limitations**: With Arabic keyboards now available, people primarily use Arabic script. However, some sounds in Darija, like /g/ in 'واطن "cake" (a borrowed word from French "gateau"), aren't represented in standard Arabic script, leading to script mixing.

Script mixing normalization

Processing of numeral characters:

When each number can be directly replaced by an Arabic letter, we apply automated substitution.

For example:

Processing of literal characters:

In case where the Latin letter "g" represents the phoneme /g/, which does not exist in standard Arabic script, we apply automated substitution.

For example:

Processing elongation

Elongated word	Normalized word	ord English translation	
مبرووووك mabru:u:u:k	مبروك mabru:k	`congratulation'	
بزااف bazza:a:f	بزاف bazza:f	`much'	

Automatic tagging

Implementation of an automatic tagging system to identify:

- Punctuation/ number.
- Emoticons.
- Interjections.
- Word Foreign.

Where the foreign number or word is preceded by a dialectal prefix (e.g., ب/b/ - ف/f/ - و/w/Al/).

For example:

- JPaola /I=Paola/: J/PREP+WORD_FOREIGN `for Paola'.
- ب5000 /b=5000/ : بPREP+NUMBER `with 5000'.

Detection Multi Words

DiMorph **Processing**

Linguistic Resources & Processing

DictStem	NOUNS	VERBS	ADJECTIFS	ADVERBS	PRONOMS	FUNCTION WORDS
Darija	5169	3132	1128	146	28	156
Foreign	295	28	16	6	-	4

DictPrefix	DictSuffix	Compatibility Tables		
proclitics + prefixes	suffixes + enclitics	Prefix=Stem	Stem=Suffix	Prefix=Suffix
297	570	770	780	1067

Postprocessing

MSA-Darija Identification: Detecting **Code-Mixing** Tokens in DiMorph through Analysis of Clitics in Darija and Stem in MSA.

For example:

• غنستوردو /ˈka=nstawrd-uː/ "We will import".

Postprocessing

Orthographic Variation

• Standardize written forms according to orthographic rules, ensuring that spelling variations are unified into a single, consistent form.

Results & discussion

Evaluation

- INV Rate (In-Vocabulary Rate): Measures the percentage of tokens successfully analyzed by the system.
- OOV Rate (Out-of-Vocabulary Rate): Measures the percentage of tokens the system could not analyze.

DiMorph using	Total Tokens	INV rate	OOV rate
With Preprocessing and Postprocessing	105 064	96%	3,95%

Results & discussion

Evaluation

Conclusion

DiMorph's Analysis Capacity

Average Analyses per Token:

- DiMorph provides, on average, 2.45 possible analyses for each token.
- This metric highlights the system's current capability to generate multiple solutions per token, indicating flexibility in interpretation.

Challenges:

 Out-of-Context Issue: While DiMorph generates multiple analyses, it often lacks the ability to determine the correct analysis in context, leading to potential ambiguity.

Perspectives

Enrich the Moroccan DiMorph linguistic resources.

Apply deep learning models to provide context-aware solutions and accurately annotate the Moroccan corpus.

Thank you for your attention

Nadia khlif Azzedine Mazroui Ouafae Nahli nadia.khlif@ilc.cnr.it azze.Mazroui@gmail.com ouafae.nahli@ilc.cnr.it

