Final Assignment

February 6, 2023

Extracting and Visualizing Stock Data

Description

Extracting essential data from a dataset and displaying it is a necessary part of data science; therefore individuals can make correct decisions based on the data. In this assignment, you will extract some stock data, you will then display this data in a graph.

Table of Contents

```
    <!i>>Define a Function that Makes a Graph
    <!i>Question 1: Use yfinance to Extract Stock Data
    <!i>Question 2: Use Webscraping to Extract Tesla Revenue Data
    <!i>Question 3: Use yfinance to Extract Stock Data
    <!i>Question 4: Use Webscraping to Extract GME Revenue Data
    <!i>Question 5: Plot Tesla Stock Graph
    <!i>Question 6: Plot GameStop Stock Graph
```

Estimated Time Needed: 30 min

```
[2]: !pip install yfinance==0.1.67
!mamba install bs4==4.10.0 -y
!pip install nbformat==4.2.0
!pip install html5lib
```

```
Requirement already satisfied: yfinance==0.1.67 in /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (0.1.67) Requirement already satisfied: pandas>=0.24 in /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from yfinance==0.1.67) (1.3.5) Requirement already satisfied: requests>=2.20 in /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from yfinance==0.1.67) (2.28.1) Requirement already satisfied: lxml>=4.5.1 in /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from yfinance==0.1.67) (4.9.1) Requirement already satisfied: multitasking>=0.0.7 in /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from yfinance==0.1.67) (0.0.11)
```

Requirement already satisfied: numpy>=1.15 in

/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from yfinance==0.1.67) (1.21.6)

Requirement already satisfied: python-dateutil>=2.7.3 in

/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from pandas>=0.24->yfinance==0.1.67) (2.8.2)

Requirement already satisfied: pytz>=2017.3 in

/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from pandas>=0.24->yfinance==0.1.67) (2022.6)

Requirement already satisfied: charset-normalizer<3,>=2 in

/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from requests>=2.20->yfinance==0.1.67) (2.1.1)

Requirement already satisfied: certifi>=2017.4.17 in

/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from requests>=2.20->yfinance==0.1.67) (2022.12.7)

Requirement already satisfied: urllib3<1.27,>=1.21.1 in

/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from requests>=2.20->yfinance==0.1.67) (1.26.13)

Requirement already satisfied: idna<4,>=2.5 in

/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from requests>=2.20->yfinance==0.1.67) (3.4)

Requirement already satisfied: six>=1.5 in

/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from python-dateutil>=2.7.3->pandas>=0.24->yfinance==0.1.67) (1.16.0)

mamba (0.15.3) supported by @QuantStack

GitHub: https://github.com/mamba-org/mamba
Twitter: https://twitter.com/QuantStack

```
Looking for: ['bs4==4.10.0']
pkgs/r/linux-64
                        Γ>
                                             ] (--:-) No change
pkgs/r/linux-64
                        [======] (00m:00s) No change
pkgs/r/noarch
                                             ] (--:-) No change
                        [>
pkgs/r/noarch
                              ========] (00m:00s) No change
pkgs/main/linux-64
                                             ] (--:-) No change
pkgs/main/linux-64
                        [======] (00m:00s) No change
pkgs/main/noarch
                                             ] (--:-) No change
                        [>
                        [======] (00m:00s) No change
pkgs/main/noarch
Pinned packages:
  - python 3.7.*
Transaction
 Prefix: /home/jupyterlab/conda/envs/python
 All requested packages already installed
Requirement already satisfied: nbformat==4.2.0 in
/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (4.2.0)
Requirement already satisfied: jupyter-core in
/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
nbformat==4.2.0) (4.12.0)
Requirement already satisfied: traitlets>=4.1 in
/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
nbformat==4.2.0) (5.6.0)
Requirement already satisfied: jsonschema!=2.5.0,>=2.4 in
/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
nbformat==4.2.0) (4.17.3)
Requirement already satisfied: ipython-genutils in
/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
nbformat == 4.2.0) (0.2.0)
Requirement already satisfied: importlib-resources>=1.4.0 in
/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
jsonschema!=2.5.0, >=2.4->nbformat==4.2.0) (5.10.1)
Requirement already satisfied: attrs>=17.4.0 in
/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
jsonschema!=2.5.0,>=2.4->nbformat==4.2.0) (22.1.0)
Requirement already satisfied: typing-extensions in
/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
jsonschema!=2.5.0,>=2.4->nbformat==4.2.0) (4.4.0)
Requirement already satisfied: pkgutil-resolve-name>=1.3.10 in
/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
jsonschema!=2.5.0,>=2.4->nbformat==4.2.0) (1.3.10)
```

Requirement already satisfied: importlib-metadata in

```
/home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
    jsonschema!=2.5.0,>=2.4->nbformat==4.2.0) (4.11.4)
    Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in
    /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from
    jsonschema!=2.5.0,>=2.4->nbformat==4.2.0) (0.19.2)
    Requirement already satisfied: zipp>=3.1.0 in
    /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from importlib-
    resources>=1.4.0->jsonschema!=2.5.0,>=2.4->nbformat==4.2.0) (3.11.0)
    Requirement already satisfied: html5lib in
    /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (1.1)
    Requirement already satisfied: webencodings in
    /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from html5lib)
    (0.5.1)
    Requirement already satisfied: six>=1.9 in
    /home/jupyterlab/conda/envs/python/lib/python3.7/site-packages (from html5lib)
    (1.16.0)
[1]: print("h")
    h
[3]: import vfinance as vf
     import pandas as pd
     import requests
     from bs4 import BeautifulSoup
     import plotly.graph_objects as go
```

0.1 Define Graphing Function

import html5lib

from plotly.subplots import make_subplots

In this section, we define the function make_graph. You don't have to know how the function works, you should only care about the inputs. It takes a dataframe with stock data (dataframe must contain Date and Close columns), a dataframe with revenue data (dataframe must contain Date and Revenue columns), and the name of the stock.

```
def make_graph(stock_data, revenue_data, stock):
    fig = make_subplots(rows=2, cols=1, shared_xaxes=True,
    subplot_titles=("Historical Share Price", "Historical Revenue"),
    vertical_spacing = .3)
    stock_data_specific = stock_data[stock_data.Date <= '2021--06-14']
    revenue_data_specific = revenue_data[revenue_data.Date <= '2021-04-30']
    fig.add_trace(go.Scatter(x=pd.to_datetime(stock_data_specific.Date,
    infer_datetime_format=True), y=stock_data_specific.Close.astype("float"),
    name="Share Price"), row=1, col=1)
```

0.2 Question 1: Use yfinance to Extract Stock Data

Using the Ticker function enter the ticker symbol of the stock we want to extract data on to create a ticker object. The stock is Tesla and its ticker symbol is TSLA.

```
[4]: tesla = yf.Ticker("TSLA")
```

Using the ticker object and the function history extract stock information and save it in a dataframe named tesla_data. Set the period parameter to max so we get information for the maximum amount of time.

```
[5]: tesla_data = tesla.history(period="max")
```

Reset the index using the reset_index(inplace=True) function on the tesla_data DataFrame and display the first five rows of the tesla_data dataframe using the head function. Take a screenshot of the results and code from the beginning of Question 1 to the results below.

```
[6]: tesla_data.reset_index(inplace=True) tesla_data.head()
```

```
[6]:
            Date
                      Open
                                High
                                           Low
                                                   Close
                                                             Volume
                                                                     Dividends
    0 2010-06-29
                  1.266667
                            1.666667
                                      1.169333
                                                1.592667
                                                          281494500
                                                                             0
    1 2010-06-30
                  1.719333
                            2.028000
                                      1.553333
                                                1.588667
                                                          257806500
                                                                             0
    2 2010-07-01 1.666667
                            1.728000 1.351333
                                                1.464000
                                                          123282000
                                                                             0
    3 2010-07-02 1.533333
                            1.540000
                                      1.247333
                                                1.280000
                                                           77097000
                                                                             0
    4 2010-07-06 1.333333 1.333333 1.055333 1.074000
                                                          103003500
                                                                             0
```

```
Stock Splits
0 0.0
1 0.0
2 0.0
3 0.0
4 0.0
```

0.3 Question 2: Use Webscraping to Extract Tesla Revenue Data

Use the requests library to download the webpage https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-PY0220EN-SkillsNetwork/labs/project/revenue.htm Save the text of the response as a variable named html_data.

```
[7]: url = "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/

SIBMDeveloperSkillsNetwork-PY0220EN-SkillsNetwork/labs/project/revenue.htm"

data = requests.get(url).text
```

Parse the html data using beautiful_soup.

```
[8]: soup = BeautifulSoup(data, 'html5lib')
```

Using BeautifulSoup or the read_html function extract the table with Tesla Quarterly Revenue and store it into a dataframe named tesla_revenue. The dataframe should have columns Date and Revenue.

```
Tesla Quarterly Revenue(Millions of US $).1
0 $21,454
1 $16,934
2 $18,756
3 $17,719
4 $13,757
```

```
[48]: new_cols = ['Date', 'Revenue']
  tesla_revenue.columns = new_cols
  tesla_revenue.head()
```

```
[48]: Date Revenue
0 2022-09-30 21454
1 2022-06-30 16934
2 2022-03-31 18756
3 2021-12-31 17719
4 2021-09-30 13757
```

Click here if you need help locating the table

Below is the code to isolate the table, you will now need to loop through the rows and columns soup.find_all("tbody")[1]

If you want to use the read_html function the table is located at index 1

Execute the following line to remove the comma and dollar sign from the Revenue column.

```
[24]: tesla_revenue["Revenue"] = tesla_revenue['Revenue'].str.replace(',|\$',"")
```

/home/jupyterlab/conda/envs/python/lib/python3.7/sitepackages/ipykernel_launcher.py:1: FutureWarning: The default value of regex will change from True to False in a future version. """Entry point for launching an IPython kernel.

Execute the following lines to remove an null or empty strings in the Revenue column.

```
[25]: tesla_revenue.dropna(inplace=True)
tesla_revenue = tesla_revenue[tesla_revenue['Revenue'] != ""]
```

Display the last 5 row of the tesla_revenue dataframe using the tail function. Take a screenshot of the results.

```
[49]: tesla_revenue.tail()
```

```
[49]:
                 Date Revenue
      48
          2010-09-30
                           31
          2010-06-30
      49
                           28
                           21
      50
          2010-03-31
          2009-09-30
      52
                           46
      53
          2009-06-30
                           27
```

0.4 Question 3: Use yfinance to Extract Stock Data

Using the Ticker function enter the ticker symbol of the stock we want to extract data on to create a ticker object. The stock is GameStop and its ticker symbol is GME.

```
[29]: gme = yf.Ticker("GME")
```

Using the ticker object and the function history extract stock information and save it in a dataframe named gme_data. Set the period parameter to max so we get information for the maximum amount of time.

```
[30]: gme_data = gme.history(period="max")
```

Reset the index using the reset_index(inplace=True) function on the gme_data DataFrame and display the first five rows of the gme_data dataframe using the head function. Take a screenshot of the results and code from the beginning of Question 3 to the results below.

```
[31]: gme_data.reset_index(inplace=True) gme_data.head()
```

Г31]:	Date	Open	High	Low	Close	Volume	Dividends	\
LOIJ.	2400	Spon	6	20	01000	· o i amo	Dividonab	`
	0 2002-02-13	1.620129	1.693350	1.603296	1.691667	76216000	0.0	
	1 2002-02-14	1.712707	1.716074	1.670626	1.683251	11021600	0.0	
	2 2002-02-15	1.683250	1.687458	1.658001	1.674834	8389600	0.0	
	3 2002-02-19	1.666418	1.666418	1.578047	1.607504	7410400	0.0	
	4 2002-02-20	1.615920	1.662210	1.603296	1.662210	6892800	0.0	

	Stock	Splits
0		0.0
1		0.0
2		0.0
3		0.0
4		0.0

0.5 Question 4: Use Webscraping to Extract GME Revenue Data

Use the requests library to download the webpage https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBMDeveloperSkillsNetwork-PY0220EN-SkillsNetwork/labs/project/stock.html. Save the text of the response as a variable named html_data.

```
[33]: url2 = "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/

□IBMDeveloperSkillsNetwork-PY0220EN-SkillsNetwork/labs/project/stock.html"

html_data = requests.get(url2).text
```

Parse the html data using beautiful_soup.

```
[35]: soup2 = BeautifulSoup(html_data, 'html5lib')
```

Using BeautifulSoup or the read_html function extract the table with GameStop Quarterly Revenue and store it into a dataframe named gme_revenue. The dataframe should have columns Date and Revenue. Make sure the comma and dollar sign is removed from the Revenue column using a method similar to what you did in Question 2.

Click here if you need help locating the table

Below is the code to isolate the table, you will now need to loop through the rows and columns soup.find_all("tbody")[1]

If you want to use the read_html function the table is located at index 1

```
[41]: gme_list = pd.read_html(url2, match = "GameStop Quarterly Revenue", flavor = ___
      gme_revenue = pd.DataFrame(gme_list[0])
     new_cols2 = ['Date', 'Revenue']
     gme_revenue.columns = new_cols2
     gme_revenue.head()
[41]:
              Date Revenue
     0 2020-04-30 $1,021
     1 2020-01-31 $2,194
     2 2019-10-31 $1,439
     3 2019-07-31 $1,286
     4 2019-04-30 $1,548
[42]: | gme_revenue["Revenue"] = gme_revenue['Revenue'].str.replace(',|\$',"")
     gme_revenue.dropna(inplace=True)
     gme_revenue = gme_revenue[gme_revenue['Revenue'] != ""]
```

/home/jupyterlab/conda/envs/python/lib/python3.7/sitepackages/ipykernel_launcher.py:1: FutureWarning: The default value of regex will change from True to False in a future version. """Entry point for launching an IPython kernel.

Display the last five rows of the gme_revenue dataframe using the tail function. Take a screenshot of the results.

```
[43]: gme_revenue.tail()
```

```
[43]:
                Date Revenue
      57
          2006-01-31
                         1667
      58
          2005-10-31
                          534
      59
          2005-07-31
                          416
      60
          2005-04-30
                          475
          2005-01-31
                          709
```

0.6 Question 5: Plot Tesla Stock Graph

Use the make_graph function to graph the Tesla Stock Data, also provide a title for the graph. The structure to call the make_graph function is make_graph(tesla_data, tesla_revenue, 'Tesla'). Note the graph will only show data upto June 2021.

```
[50]: make_graph(tesla_data, tesla_revenue, 'Tesla')
```


0.7 Question 6: Plot GameStop Stock Graph

Use the make_graph function to graph the GameStop Stock Data, also provide a title for the graph. The structure to call the make_graph function is make_graph(gme_data, gme_revenue, 'GameStop'). Note the graph will only show data upto June 2021.

About the Authors:

Joseph Santarcangelo has a PhD in Electrical Engineering, his research focused on using machine learning, signal processing, and computer vision to determine how videos impact human cognition. Joseph has been working for IBM since he completed his PhD.

Azim Hirjani

0.8 Change Log

Date (YYYY-MM-DD)	Version	Changed By	Change Description
2022-02-28	1.2	Lakshmi Holla	Changed the URL of GameStop
2020-11-10	1.1	Malika Singla	Deleted the Optional part
2020-08-27	1.0	Malika Singla	Added lab to GitLab

##

© IBM Corporation 2020. All rights reserved.