Работа 1.4.4 Исследование свободных колебаний связанных маятников

Валеев Рауф Раушанович группа 825

21 октября 2018 г.

Цель работы: Изучение колебательной системы с двумя степенями свободы.

В работе используются: установка с двумя одинаковыми математическими маятниками, бифилярно подвешенными на натянутую горизонтально струну, секундомер, измерительная линейка.

Ход работы:

1. Измеряем длину маятников $l=43\pm0,1$ см, расстояние между двумя неподвижными точками (на рис.1 A и B) $b=71\pm0,1$ см и точками подвеса маятников $a=23,7\pm0,1$ см. Масса маятников $m_1=224,2$ г, $m_2=223,3$ г.

2. Измеряем периоды нормальных колебаний (мод). Для этого измеряем T_1 - переод колебаний в синофазе, то есть отклоняем маятники на угол $\approx 30^{\circ}$ в одну сторону и считаем с помощью секундомера период, проводя измерения по 10 периодам. Проводим аналогичные измерения для противофазы, отклоняя маятники в разные стороны, измеряя период T_2 . (табл. 1)

- 3. Измеряем периоды $(T_1^{'}$ и $T_2^{'})$ порциальных колебаний маятников отцепив 1 из них, и измеряя период другого. (табл. 1)
- 4. Проводим измерения раскачивания одного маятника другим, для этого в эксперименте пункта 2 отклоняем лишь 1 маятник и измеряем период биений τ . (табл. 1)
- 5. Записываем все получившиеся данные и соответствующие ошибки в табл. 1.
- 6. Убеждаемся, что равенство (табл. 2)

$$\frac{1}{\tau} = \frac{1}{T_1} - \frac{1}{T_2}$$

- 7. Повторяем пункты 1 6 для других натяжений струны (табл. 1)
- 8. Строим график зависимости периода биения от натяжений.
- 9. Проводим сравнение полученных результатов с теоритическими расчетами по формуле

$$\tau \approx 6\pi \frac{Ml}{ma} \sqrt{\frac{l}{g}}$$

$$\sigma_{\tau} = \tau \sqrt{\frac{3}{2} \left(\frac{\sigma_{l}}{l}\right)^{2} + \left(\frac{\sigma_{a}}{a}\right)^{2}}$$

10. Поскольку приведенная формула сходится в пределах 2 ошибок, то лабораторная работа выполнена весьма точно.

	Значение, с/кг	σ , c/k Γ
$slope_{\tau_{theor}}, c$	27,65	2,11
$slope_{\tau_{pract}}, c$	31,62	0

M, кг	1,78				
	T_1 , c	T_2 , c	T_1' , c	T_2' , c	τ , c
1	1,396	1,356	1,37	1,37	61,5
2	1,386	1,365	1,37	1,37	63,4
3	1,41	1,34	1,36	1,36	58,71
среднее	1,397	1,354	1,37	1,37	61,2
$\sigma = \sqrt{\sigma_{rnd}^2 + \sigma_{stat}^2}, \sigma_{stat} \approx 1c$	0,1	0,1	0,1	0,1	1,49
M, кг	2,29				
	T_1 , c	T_2 , c	T_1' , c	T_2' , c	τ , c
1	1,37	1,35	1,37	1,37	74,8
2	1,373	1,352	1,37	1,37	76,53
3	1,365	1,346	1,36	1,36	73,2
среднее	1,369	1,349	1,37	1,37	74,84
$\sigma = \sqrt{\sigma_{rnd}^2 + \sigma_{stat}^2}, \sigma_{stat} \approx 1c$	0,1	0,1	0,1	0,1	1,27
M, кг	2,79				
	T_1 , c	T_2 , c	T_1' , c	T_2' , c	τ , c
1	1,336	1,339	1,37	1,37	92,21
2	1,34	1,363	1,37	1,37	92,42
3	1,345	1,362	1,36	1,36	91,91
среднее	1,34	1,355	1,37	1,37	92,18
$\sigma = \sqrt{\sigma_{rnd}^2 + \sigma_{stat}^2}, \sigma_{stat} \approx 1c$	0,1	0,1	0,1	0,1	1
M, кг			3,29		
	T_1 , c	T_2 , c	T_1' , c	T_2' , c	τ , c
1	1,378	1,351	1,37	1,37	104,4
2	1,381	1,361	1,37	1,37	102,3
3	1,38	1,345	1,36	1,36	98,24
среднее	1,380	1,352	1,37	1,37	101,65
$\sigma = \sqrt{\sigma_{rnd}^2 + \sigma_{stat}^2}, \sigma_{stat} \approx 1c$	0,1	0,1	0,1	0,1	1,78
M, кг	3,88				
	T_1 , c	T_2 , c	$T_{1}^{'}, c$	T_2' , c	τ , c
1	1,366	1,338	1,37	1,37	120,7
2	1,376	1,339	1,37	1,37	121,81
3	1,368	1,346	1,36	1,36	116,12
среднее	1,37	1,341	1,37	1,37	119,54
$\sigma = \sqrt{\sigma_{rnd}^2 + \sigma_{stat}^2}, \sigma_{stat} \approx 1c$	0,1	0,1	0,1	0,1	1,74

Таблица 1: Значения различных периодов при различной массе

M, кг	$\frac{1}{T_2} - \frac{1}{T_1} \; 1/\mathrm{c}$	$\frac{1}{ au} 1/c$	$\Delta~1/c$	ε
1,79	$0,\!023$	0,017	0,006	35,2
2,29	0,011	0,013	0,002	15,4
2,79	0,008	0,011	0,003	27,3
3,29	0,014	0,010	0,004	40
3,88	0,015	0,009	0,006	66,7

Таблица 2: Проверка зависимости