EXERCICE 29 p 73 (niveau 1-2)

- 1. Il faut rompre 4 liaisons C-H pour casser la molécule.
- 2. Cette molécule est plus stable que les atomes pris séparément.

3.

EXERCICE 37 p 76 (niveau 2-3)

1.2.

Symbole de l'atome	Н	С	0	Z
Structure électronique	1s ¹	1s ² 2s ² 2p ²	1s ² 2s ² 2p ⁴	1s ² 2s ² 2p ³
Structure électronique qu'il obtient en se stabilisant	1s ²	1s ² 2s ² 2p ⁶	1s ² 2s ² 2p ⁶	1s ² 2s ² 2p ⁶
Electrons de valence	1	4	6	5
Nombre de doublets non-liants	0	0	2	1
Valence (nombre d'électrons célibataire ou de doublets liants)	1	4	2	3

3. Calcul de la masse m de la molécule

$$\begin{array}{l} m \; = \; 4 \times m_H \; + \; 2 \times m_N \; + \; m_C \; + \; m_O \\ m \; = \; 4 \times 1,66 \times 10^{-24} \; + \; 2 \times 2,32 \times 10^{-23} \; + \; 1,99 \times 10^{-23} + 2,66 \times 10^{-23} \\ m \; = \; 6,64 \times 10^{-24} \; + \; 4,64 \times 10^{-23} \; + \; 1,99 \times 10^{-23} + 2,66 \times 10^{-23} \\ m \; = \; 9,95 \times 10^{-23} \; g \\ \end{array}$$

4. Calcul de la masse d'azote m' dans cette molécule

$$m' = 2 \times m_N$$

 $m' = 2 \times 2,32 \times 10^{-23}$
 $m' = 4,64 \times 10^{-23}$ q

Calcul du pourcentage en masse d'azote dans cette molécule

Masse (g)	9,95 ×10 ⁻²³	4,64 × 10 ⁻²³
pourcentage	100 %	$\frac{4,64 \times 10^{-23}}{9,95 \times 10^{-23}} \times 100 = 46,6 \%$