

XI

Proba teoretică

BAREM DE CORECTARE ŞI NOTARE

- pentru orice altă cale corectă de rezolvare a unui subiect se construiește un barem echivalent ca punctaj cu cel de mai jos și se acordă, pe baza acestuia, punctajul corespunzător
 - detalierea punctajului prevăzută la rubrica Obs. este valabilă doar pentru rezolvări nefinalizate
 - ♦ la punctajul fiecărei lucrări se adaugă din oficiu 10 puncte
 - nota lucrării se obține împărțind la zece punctajul total

SUBIECTUL I: 30 puncte

OBIECI	OL I.	30 puncte
a)	$\omega = \sqrt{\frac{2(p_1 - p_2)}{\rho(r_1^2 - r_2^2)}}$	10 p
	Obs.: numai pentru	
	$(\Delta P)s = F_{cf} = \rho \Delta X s \omega^2 \left(x + \frac{\Delta X}{2} \right); \Delta X \rightarrow o$ 2p	
	$\Delta P = \rho \Delta X \omega^2 X$;2p	
	$P(x) - P_o = \rho \omega^2 \frac{x^2}{2}$ 2p	
	$P(r) = P_0 + \rho \frac{\omega^2}{2} r \dots 2p$	
	$P_1 - P_2 = \rho \frac{\omega^2}{2} (r_1^2 - r_2^2)$ 2p	
b)	$P(x) = P_0 e^{\frac{\mu \omega^2 x^2}{2RT_0}}$	10 p
	Obs.: numai pentru	
	$\bullet \frac{\Delta p}{p(x)} = \frac{\omega^2 x \mu}{RT} \Delta x \dots 4p$	
	• $\Delta(\ln p) = \frac{\mu \omega^2}{RT} \Delta\left(\frac{x^2}{2} + const\right)$ 2p	
	• $\ln (p) = \frac{\mu \omega^2}{RT} \frac{x^2}{2} + const$	
	• $\ln(P_0) \frac{\mu \omega^2}{RT} (0) + const$	
	$\ln(p) - \ln(p_0) = \frac{\mu \varpi^2}{RT} \frac{X^2}{2} \dots 1p$	

c)	$p = p_0 \left(1 + \frac{(\gamma - 1)\mu\omega^2}{2\gamma RT_0} x^2 \right)^{\frac{\gamma}{\gamma - 1}}$	5 p
	Obs.: numai pentru	
	• proces adiabatic $\frac{p^{\gamma-1}}{T^{\gamma}} = \frac{p_0^{\gamma-1}}{T_0^{\gamma}}$; $T = T_0 \frac{p^{\frac{\gamma-1}{\gamma}}}{p_0^{\frac{\gamma-1}{\gamma}}}$ 1p	
	• $p(x + \Delta x) = Sp(x) + S\Delta x\omega^2 x \frac{p_0^{\gamma-1}}{RT_0} \mu p^{\frac{1}{\gamma}}$ 1p	
	$ \Delta \left(\frac{p^{1-\frac{1}{\gamma}}}{1-\frac{1}{\gamma}} + const \right) = \Delta \left(\frac{\mu \omega^2}{RT_0} \frac{x^2}{2} p_o^{\frac{\gamma-1}{\gamma}} \right) \dots 0,5p $	
	• $p^{\frac{\gamma-1}{\gamma}} = p_0^{\frac{\gamma-1}{\gamma}} \left(1 + \frac{\mu \omega^2}{RT_0} \frac{\gamma - 1}{\gamma} \frac{x^2}{2} \right)$ 0,5p	
۸/	expresia finala0,5p	En
d)	$P_{izoterm} \rangle P_{adiabatic} pentru - oricare - x$	5 p
	$\frac{\Delta T}{T_0} = \frac{\gamma - 1}{\gamma} \frac{\mu \omega^2 l^2}{2RT_0}$	
	· · · · · · · · · · · · · · · · · · ·	
	Obs.: numai pentru $P_{izoterm} \rangle P_{adiabatic} pentru - oricare - x \dots 2p$	
	$\frac{\Delta T}{T_0} = \frac{\gamma - 1}{\gamma} \frac{\mu \omega^2 l^2}{2RT_0} \dots 3p$	
	Total	30 p

SUBIECTUL 2: 30 puncte

a)	$R = \frac{mg}{2\sigma};$	10 p	
	Obs.: numai pentru		Ì
	O porțiune de arc de cerc corespunzătoare unui unghi la centru $\Delta \alpha$, de lungime		l
	$R \Delta \alpha$, supusă acțiunii nei unei forțe radiale $F = KR\Delta \alpha$ proporționale cu		l
	lungimea sa este în echilibru sub acțiunea acestei forțe și a tensiunilor din		l
	capete dacă:		Ì
	$2T\sin\frac{\Delta\alpha}{2} = RK\Delta\alpha; \qquad 3p$		l
	2 - MAZA ,		l

	pentru $\Delta \alpha$ mic, $T\Delta \alpha = RK\Delta \alpha$ și deci T=RK Pentru acțiunea forțelor de tensiune superficială K=2 σ , iar pentru acțiunea	
	forței eletromagnetice K=BI Pentru situația descrisă ca inițială, oricare dintre cele două fire este în echilibru sub acțiunea unei tensiuni egale cu greutatea masei atârnate și deci $T = 2\sigma R = mg$	
	Prin urmare	
	$R = \frac{mg}{2\sigma} \dots 5p$	
b)	Drepte, verticale . Variația energiei potențiale va fi:	15 p
	$\Delta W_{\text{sup erficial}} = 4\sigma\Sigma = 4\sigma R^2 \arcsin\frac{d}{2R} - \frac{Rd}{2}\sqrt{1 - \frac{d^2}{4R^2}}$	
	Obs.: numai pentru	
	Pe măsura creşterii curentului, apare o forță electromagnetică din ce în ce mai mare care acționează împotriva forței datorate tensiunii superficiale; firul își mărește raza de curbură. Pentru I ₀ asupra unui segment oarecare din fir acționează	
	forța de tensiune superficială și forța electromagnetică. Ele sunt egale în modul și au sensuri opuse(ambele sunt	
	perpendiculare pe fir). Firele sunt drepte, verticale, întrucât sunt tensionate numai de greutăți5p	
	$\operatorname{Cum} R > \frac{mgd}{2mg} = \frac{d}{2}$	
	Firul are forma unui arc de cerc mai mic decât un semicerc.	
	Lungimea arcului de cerc este $L = R\alpha = 2R \arcsin \frac{d}{2R}$	
	iar suprafața lenticulară delimitată de arc și verticala prin capetele sale are aria	
	$\Sigma = R^2 \arcsin \frac{d}{2R} - \frac{Rd}{2} \sqrt{1 - \frac{d^2}{4R^2}}$	
	Ținând cont de expresia ariei suprafeței lenticulare, variația energiei potențiale superficiale va fi	
	$\Delta W_{\sup erficial} = 4\sigma \Sigma$	
c)	exteriorul dreptunghiului ABCD.	5 p
	$\Delta W_{gravitational} = 2 \left(2R \arcsin \frac{d}{2R} - d \right) mg$	
	Obs.: numai pentru Întrucât forța care acționează este gală și de sens opus celei de tensiune superficială, raza de curbură va fi aceeași ca la a) dar curbura va fi opusă	
	Lungimea inițială a firului între barele orizontale era d; după atingerea	

Variația energiei potențiale gravitaționale va fi $\Delta W_{gravitational} = 2\left(2R \arcsin \frac{d}{2R} - d\right) mg \dots 3p$	
Total	20 n

SUBIECTUL 3: 30 puncte

a)	$w = k \frac{p_0 S v M_1}{p_0 V_0}$	15 p
	p_1V_1 Obs.: numai pentru	
	Din ecuația de stare pentru gazul din cilindru $pV = \frac{m}{\mu}RT$ rezultă că pentru o poziție	
	oarecare, x, a proiectilului în cilindru p $S \frac{\Delta x}{\Delta t} + V \frac{\Delta p}{\Delta x} \frac{\Delta x}{\Delta t} = \frac{\Delta m}{\Delta t} \frac{RT_1}{\mu}$; 4p	
	În punctul de maxim al dependenței, prezentat în figură, p=kp ₀ și $\frac{\Delta p}{\Delta x}$ = 0 ;2p	
	şi deci $kp_0S\frac{\Delta x}{\Delta t} = \frac{\Delta m}{\Delta t}\frac{RT_1}{\mu} \text{ sau } kp_0Sv = w\frac{RT_1}{\mu} \text{ ; 2p}$	
	şi deci $w = k \frac{p_0 S v \mu}{RT_1}; 2p$	
	din ecuația din enunț rezultă	
	$p_1 V_1 = \frac{M_1}{\mu} R T_1$; $\mu = \frac{M_1 R T_1}{p_1 V_1}$; 3p	
	Prin urmare $w = k \frac{p_0 S v M_1}{p_1 V_1}; 2p$	
b)	$Q' = Q \frac{Slp_0}{V_1 p_1}$	8 p
	$v_1 p_1$ Obs.: numai pentru	
	În starea finală cantitatea M' de gaz din cilindru este $Slp_0 = \frac{M'}{\mu}RT_1 = \frac{M'}{M_1}p_1V_1;3p$	
	Cantitatea de căldură apărută este: $\frac{Q'}{Q} = \frac{M'}{M_1};3p$	
	şi deci	

	$Q' = Q \frac{Slp_0}{V_1p_1};2p$	
c)	$L = p_0 (k+1) \frac{Sl}{2}$	7 p
	Obs.: numai pentru Lucrul mecanic este aria de sub curba din figură multiplicată cu S. ;2p Ținând cont de condițiile din enunț se poate considera aria ca fiind suma ariilor a două trapeze ; 2p $L = \left[\left(p_0 + k p_0 \right) \frac{l}{2n} + \left(p_0 + k p_0 \right) \left(l - \frac{l}{n} \right) \frac{1}{2} \right] S ; 2p$ $L = p_0 (k+1) \frac{Sl}{2} ; 1p$	
	Total	30 p