MAS205 Complex Variables 2005-2006

Exercises 1

Exercise 1: Let $z_1 = \frac{3}{2} - 2i$ and $z_2 = 4 + 3i$. Compute (in standard x + iy form):

$$(a)$$
 z_1z_2

(b)
$$\frac{1}{z_1}$$

$$(c) \quad \frac{z_2}{z_1}$$

(a)
$$z_1 z_2$$
 (b) $\frac{1}{z_1}$ (c) $\frac{z_2}{z_1}$ (d) $\frac{1}{z_1} + \frac{1}{z_2}$

Compute the moduli:

$$(a)$$
 $|z_1|$

$$(b) \quad \left| \frac{z_1}{z_2} \right|$$

(a)
$$|z_1|$$
 (b) $\left|\frac{z_1}{z_2}\right|$ (c) $|z_1z_2|$

Exercise 2: Express the following complex numbers in polar exponential form:

$$(a) - 1$$

$$(b)$$
 $2i$

$$(c)$$
 1+i

(d)
$$1 - \sqrt{3}$$

(a)
$$-1$$
 (b) $2i$ (c) $1+i$ (d) $1-\sqrt{3}i$ (e) $1/(1-i)$

Exercise 3: Solve for the roots of the equation

$$z^3 + 8i = 0$$

Express all the roots in standard and polar form, and draw a diagram showing their location in the complex plane.

Exercise 4: Describe graphically the sets of points in the complex plane defined by the following equations and inequalities:

(a)
$$|z - 2i| < 2$$

(b)
$$\Im(z^2) = 0$$

(c)
$$1 \le \Im(z+1) < 2$$

(d)
$$z^2 = -2$$

Notation: $\Re(z)$ and $\Im(z)$ denote the real and imaginary parts of z, respectively.