A. Informacje o zespole realizującym ćwiczenie

Nazwa przedmiotu:	Automatyka pojazdowa
Nazwa ćwiczenia:	Systemy hamulcowe
Data ćwiczenia:	2019-05-08
Czas ćwiczenia:	08:00 - 09:30
Zespół realizujący ćwiczenie:	Katarzyna WątorskaJacek WójtowiczBartłomiej Mróz

B. Sformułowanie problemu

Celem zajęć była budowa modelu systemu ABS i jego symulacja komputerowa. W środowisku MATLAB/Simulink stworzyliśmy model opisujący dynamikę hamującego samochodu. Reprezentują go równania:

$$F_f(t) = F_i(t)$$

$$F_f(t) = \mu(t)m_v g$$

$$F_i(t) = m_v a_v(t) = m_v \frac{dv_v(t)}{dt}$$

$$\frac{dv_v(t)}{dt} = \mu(t)g$$

$$J_w \frac{d\omega_w(t)}{dt} = T_b(t) - F_f(t)r_w = T_b(t) - \mu(t)m_v g r_w$$

$$s(t) = 1 - \frac{\omega_w(t)}{\omega_v(t)}$$

$$\mu(s) = a(b(1 - e^{-cs(t)}) - ds(t))$$

Gdzie:

- o m_v całkowita masa pojazdu
- o g przyspieszenie grawitacyjne
- o $v_v(t)$ prędkość samochodu
- o $a_v(t)$ przyspieszenie samochodu
- $\circ \quad \mu(t)$ współczynnik tarcia między kołem a drogą
- o J_w moment bezwładności koła
- o ω_w prędkość kątowa koła
- o s poślizg pojazdu
- o ω_v prędkość kątowa koła wyliczona w oparciu o prędkość pojazdu:

$$\omega_v(t) = \frac{v_v(t)}{r_w}$$

a, b, c, d - parametry dobrane w sposób
 empiryczny w zależności od rodzaju podłoża

W oparciu o model przeprowadziliśmy następnie symulacje komputerowe, reprezentujące różne scenariusze hamowania. Analizę porównawczą wykonaliśmy w kontekście parametru określającego poślizg koła. W drugiej części ćwiczenia zaprojektowaliśmy prostu regulator, który w momencie wykrycia poślizgu kół zmniejszał na zadany czas siłę hamowania pochodzącą od układu hamulcowego.

C. Sposób rozwiązania problemu

Wykorzystując pakiet SIMULIK zamodelowano układ równań oraz napisano skrypt symulujący różne rodzaje podłoża:

D. Wyniki

W wyniku przeprowadzonej symulacji otrzymaliśmy poniższe wykresy:

E. Wnioski

Do zamodelowania układu hamulcowego ABS wykorzystaliśmy uproszczony modelu samochodu poruszającego się w linii prostej. Przeprowadziliśmy symulacje dla różnych nawierzchni. Zgodnie z oczekiwaniami, prędkość pojazdu/koła malała najszybciej dla największego współczynnika tarcia (dla suchego betonu). Również przebyta droga podczas hamowania była najkrótsza. Dla tej nawierzchni współczynnik poślizgu jest utrzymywany na poziomie 10%-30%, co zapewnia sterowność pojazdu. Na wykresie momentu hamowania widoczne jest, jak system ABS naśladuje hamowanie impulsowe; wartość momentu okresowo się zmienia, aż do chwili zatrzymania pojazdu.