# CS 577- Intro to Algorithms

Reductions

Dieter van Melkebeek

November 10, 2020

## Paradigm

Solve a computational problem A using a blackbox for another computational problem B.

## Paradigm

Solve a computational problem A using a blackbox for another computational problem B.

### Motivation

## Paradigm

Solve a computational problem A using a blackbox for another computational problem B.

#### Motivation

► Modular design

## Paradigm

Solve a computational problem A using a blackbox for another computational problem B.

#### Motivation

- ► Modular design
- ► NP-completeness

## **Paradigm**

Solve a computational problem A using a blackbox for another computational problem B.

#### Motivation

- Modular design
- ► NP-completeness

## **Paradigm**

Solve a computational problem A using a blackbox for another computational problem B.

#### Motivation

- Modular design
- ► NP-completeness

# Today

Notion

## Paradigm

Solve a computational problem A using a blackbox for another computational problem B.

#### Motivation

- Modular design
- ► NP-completeness

- Notion
- Example where A and B have efficient algorithms

## Paradigm

Solve a computational problem A using a blackbox for another computational problem B.

### Motivation

- Modular design
- ► NP-completeness

- Notion
- Example where A and B have efficient algorithms
- Examples where A and B have no (known) efficient algorithms

## Paradigm

Solve a computational problem A using a blackbox for another computational problem B.

#### Motivation

- Modular design
- ► NP-completeness

- Notion
- Example where A and B have efficient algorithms
- ► Examples where A and B have no (known) efficient algorithms: optimization vs search vs decision

Let A and B be two computational problems.

Let A and B be two computational problems.

#### Definition

A reduction from A to B is an algorithm for A that can make use of a blackbox for B.

Let A and B be two computational problems.

#### Definition

A reduction from A to B is an algorithm for A that can make use of a blackbox for B.

## Queries

On a given input x of problem A, reduction can make multiple queries x' to the blackbox for B.

Let A and B be two computational problems.

#### Definition

A reduction from A to B is an algorithm for A that can make use of a blackbox for B.

### Queries

- On a given input x of problem A, reduction can make multiple queries x' to the blackbox for B.
- For a valid query x' of problem B, the blackbox returns a valid output y' for problem B on input x'.

Let A and B be two computational problems.

#### Definition

A reduction from A to B is an algorithm for A that can make use of a blackbox for B.

### Queries

- On a given input x of problem A, reduction can make multiple queries x' to the blackbox for B.
- For a valid query x' of problem B, the blackbox returns a valid output y' for problem B on input x'.
- Often times one query suffices.

A: Bipartite Matching

## A: Bipartite Matching

```
Input: bipartite graph G = (V, E) where V = L \sqcup R and E \subseteq L \times R
```

## A: Bipartite Matching

Input: bipartite graph G = (V, E)

where  $V = L \sqcup R$  and  $E \subseteq L \times R$ 

Output: matching M such that |M| is maximized

## A: Bipartite Matching

Input: bipartite graph G = (V, E)

where  $V = L \sqcup R$  and  $E \subseteq L \times R$ 

Output: matching M such that |M| is maximized

B: Integral Max Flow

## A: Bipartite Matching

Input: bipartite graph G = (V, E)

where  $V = L \sqcup R$  and  $E \subseteq L \times R$ 

Output: matching M such that |M| is maximized

## B : Integral Max Flow

Input: network N = (V', E', c, s, t)

## A: Bipartite Matching

Input: bipartite graph G = (V, E)

where  $V = L \sqcup R$  and  $E \subseteq L \times R$ 

Output: matching M such that |M| is maximized

## B: Integral Max Flow

Input: network N = (V', E', c, s, t)

Output: integral flow f such that  $\nu(f) \doteq f_{\text{out}}(s)$  is maximized

# Reduction from Bipartite Matching to Integral Max Flow

# Reduction from Bipartite Matching to Integral Max Flow



Definition

On every valid input x of A:

#### Definition

On every valid input x of A:

ightharpoonup Each query x' to the blackbox is valid input of B.

#### Definition

On every valid input x of A:

- **Each** query x' to the blackbox is valid input of B.
- Assuming all queries to the blackbox are answered correctly, the reduction produces a correct output y for A on input x.

#### Definition

On every valid input x of A:

- **Each** query x' to the blackbox is valid input of B.
- Assuming all queries to the blackbox are answered correctly, the reduction produces a correct output y for A on input x.

## Corollary

Replacing the blackbox for B by a correct algorithm for B yields a correct algorithm for A.

### Definition

 $A \leq B$  if there exists a reduction from A to B.

Definition

 $A \leq B$  if there exists a reduction from A to B.

**Properties** 

#### Definition

 $A \leq B$  if there exists a reduction from A to B.

## **Properties**

▶ Reflexive:  $A \le A$ 

#### Definition

 $A \leq B$  if there exists a reduction from A to B.

## **Properties**

- ► Reflexive: *A* < *A*
- Not symmetric: Bipartite Matching ≤ Halting Problem, but not the other way.

## Reduciblity

### Definition

 $A \leq B$  if there exists a reduction from A to B.

## **Properties**

► Reflexive: *A* < *A* 

Not symmetric: Bipartite Matching ≤ Halting Problem, but not the other way.

▶ Transitive:  $A \le B$  and  $B \le C$  implies  $A \le C$ .

## Reduciblity

#### Definition

 $A \leq B$  if there exists a reduction from A to B.

## **Properties**

- ► Reflexive: *A* < *A*
- Not symmetric: Bipartite Matching ≤ Halting Problem, but not the other way.
- ▶ Transitive:  $A \le B$  and  $B \le C$  implies  $A \le C$ .
- ▶ If  $A \le B$  and B can be solved algorithmically, then A can be solved algorithmically.

### Definition

Time to run the reduction assuming blackbox queries are answered instantaneously.

### Definition

Time to run the reduction assuming blackbox queries are answered instantaneously.

Case of one query:

#### Definition

Time to run the reduction assuming blackbox queries are answered instantaneously.

## Case of one query:

Running time of reduction consists of:

#### Definition

Time to run the reduction assuming blackbox queries are answered instantaneously.

### Case of one query:

Running time of reduction consists of:

ightharpoonup Time to construct out of the input x to A the query x' to B.

### Definition

Time to run the reduction assuming blackbox queries are answered instantaneously.

## Case of one query:

Running time of reduction consists of:

- ightharpoonup Time to construct out of the input x to A the query x' to B .
- ▶ Time to construct out of the answer y' of B to query x', the answer y for A on input x.

### Definition

Time to run the reduction assuming blackbox queries are answered instantaneously.

## Case of one query:

Running time of reduction consists of:

- ightharpoonup Time to construct out of the input x to A the query x' to B .
- ▶ Time to construct out of the answer y' of B to query x', the answer y for A on input x.
- Not time to compute y' out of x'.

#### Definition

Time to run the reduction assuming blackbox queries are answered instantaneously.

## Case of one query:

Running time of reduction consists of:

- ightharpoonup Time to construct out of the input x to A the query x' to B .
- ▶ Time to construct out of the answer y' of B to query x', the answer y for A on input x.
- Not time to compute y' out of x'.

## Corollary

Suppose reduction from A to B runs in time t. Replacing the blackbox for B by an algorithm for B that runs in time  $t_B(n)$  yields an algorithm for A that runs in time  $t + t \cdot t_B(t)$ .

## Bit-length

## Bit-length

The bit-length of an input x is the number of bits needed to represent x.

binary strings: length

### Bit-length

- binary strings: length
- numbers: length of the binary representation (finite precision)

### Bit-length

- binary strings: length
- numbers: length of the binary representation (finite precision)
- ▶ graphs:  $O(n^2)$  for adjacency matrix,  $O(n + m \log n)$  for adjacency list

### Bit-length

- binary strings: length
- numbers: length of the binary representation (finite precision)
- ▶ graphs:  $O(n^2)$  for adjacency matrix,  $O(n + m \log n)$  for adjacency list
- **.**..

### Bit-length

The bit-length of an input x is the number of bits needed to represent x.

- binary strings: length
- numbers: length of the binary representation (finite precision)
- ▶ graphs:  $O(n^2)$  for adjacency matrix,  $O(n + m \log n)$  for adjacency list
- **>** . . .

### Definition

An algorithm/reduction runs in polynomial time if its running time is  $O(n^c)$  for some constant c, where  $n \doteq \text{bit-length}$  of the input.

### Bit-length

The bit-length of an input x is the number of bits needed to represent x.

- binary strings: length
- numbers: length of the binary representation (finite precision)
- ▶ graphs:  $O(n^2)$  for adjacency matrix,  $O(n + m \log n)$  for adjacency list
- **.**..

### Definition

An algorithm/reduction runs in polynomial time if its running time is  $O(n^c)$  for some constant c, where  $n \doteq \text{bit-length}$  of the input.

### Robustness

Notion turns out to be the same for most (but perhaps not all) reasonable input representations and models of computation.



#### Definition

 $A \leq^p B$  if there exists a polynomial-time reduction from A to B.

Definition

 $A \leq^p B$  if there exists a polynomial-time reduction from A to B.

**Properties** 

### Definition

 $A \leq^p B$  if there exists a polynomial-time reduction from A to B.

## **Properties**

▶ Reflexive:  $A \leq^p A$ 

#### Definition

 $A \leq^p B$  if there exists a polynomial-time reduction from A to B.

### **Properties**

- ▶ Reflexive:  $A \leq^p A$
- ► Not symmetric

#### Definition

 $A \leq^p B$  if there exists a polynomial-time reduction from A to B.

## **Properties**

► Reflexive: *A* <*<sup>p</sup> A* 

Not symmetric

▶ Transitive:  $A \leq^p B$  and  $B \leq^p C$  implies  $A \leq^p C$ .

#### Definition

 $A \leq^p B$  if there exists a polynomial-time reduction from A to B.

## **Properties**

- ► Reflexive: *A* <*<sup>p</sup> A*
- Not symmetric
- ▶ Transitive:  $A \leq^p B$  and  $B \leq^p C$  implies  $A \leq^p C$ .
- ▶ If A 
  leq P B and B can be solved in polynomial time, then A can be solved in polynomial time.

#### Definition

An independent set in a graph G = (V, E) is a subset  $S \subseteq V$  such that  $E \cap S \times S = \emptyset$ .

### Definition

An independent set in a graph G = (V, E) is a subset  $S \subseteq V$  such that  $E \cap S \times S = \emptyset$ .

## Optimization problem

Input: graph G

Output: independent set S of G such that |S| is maximized

### Definition

An independent set in a graph G = (V, E) is a subset  $S \subseteq V$  such that  $E \cap S \times S = \emptyset$ .

## Optimization problem

Input: graph G

Output: independent set S of G such that |S| is maximized

## Search problem

Input: graph G,  $k \in \mathbb{N}$ 

Output: independent set S of G such that  $|S| \ge k$ , or report

that no such set exists

### Definition

An independent set in a graph G = (V, E) is a subset  $S \subseteq V$  such that  $E \cap S \times S = \emptyset$ .

## Optimization problem

Input: graph G

Output: independent set S of G such that |S| is maximized

### Search problem

Input: graph G,  $k \in \mathbb{N}$ 

Output: independent set S of G such that  $|S| \ge k$ , or report

that no such set exists

### Decision problem

Input: graph G,  $k \in \mathbb{N}$ 

Output: whether independent set S with  $|S| \ge k$  exists in G

▶ Decision  $\leq^p$  Search

▶ Decision ≤<sup>p</sup> Search

```
1: if Search(G, k) = "no solution" then
```

- 2: **return** "no"
- 3: **else**
- 4: **return** "yes"

▶ Decision  $\leq^p$  Search

```
1: if Search(G, k) = "no solution" then
```

2: **return** "no"

3: **else** 

4: **return** "yes"

► Search  $\leq^p$  Optimization

▶ Decision ≤<sup>p</sup> Search

```
    if Search(G, k) = "no solution" then
    return "no"
    else
    return "yes"
```

► Search ≤<sup>p</sup> Optimization

```
1: I \leftarrow \text{Optimization}(G)
2: if |I| \ge k then
3: return I
4: else
5: return "no solution"
```

▶ Optimization  $\leq^p$  Search

▶ Optimization  $\leq^p$  Search

```
1: k \leftarrow 0
```

2: while Search $(G, k) \neq$  "no solution" do

3:  $k \leftarrow k + 1$ 

4: **return** Search(G, k)

▶ Optimization  $\leq^p$  Search

```
1: k \leftarrow 0
```

2: while Search $(G, k) \neq$  "no solution" do

$$k \leftarrow k + 1$$

4: **return** Search(G, k)

Number of queries can be reduced from O(|V|) to  $O(\log |V|)$  using binary search.

▶ Optimization  $\leq^p$  Search

```
1: k \leftarrow 0
```

2: while Search $(G, k) \neq$  "no solution" do

3: 
$$k \leftarrow k + 1$$

4: **return** Search(G, k)

Number of queries can be reduced from O(|V|) to  $O(\log |V|)$  using binary search.

► Search <<sup>p</sup> Decision: next lecture