DIGITAL NATURALIST – AI ENABLED TOOLS FOR BIODIVERSITY RESEARCHERS

A PROJECT REPORT

Submitted by

SHAARMILA R (923819104041) MEENAKSHI S (923819104025) SNEHA M (923819104044) SWETHA T R (923819104053)

BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

MANGAYARKARASI COLLEGE OF ENGINEERING, MADURAI 625 402

ANNA UNIVERSITY:: CHENNAI 600 025

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE NO
NO		
1	INTRODUCTION	1
	1.1 Project Overview	
	1.2 Purpose	
2	LITERATURE SURVEY	2
	2.1 Existing System	
	2.2 Reference	
	2.3 Problem Statement Definition	
3	IDEATION & PROPOSED SOLUTION	3
	3.1 Empathy Map Canvas	
	3.2 Ideation & Brainstorming	
	3.3 Proposed Solution	
	3.4 Problem Solution Fit	
4	REQUIREMENT ANALYSIS	7
	4.1 Functional Requirement	
	4.2 Non-Functional Requirement	
5	PROJECT DESIGN	9
	5.1 Data Flow Diagrams	
	5.2 Solution & Technical Architecture	
6	PROJECT PLANNING & SCHEDULING	12
	6.1 Sprint Planning, Schedule Estimation	
	6.2 Sprint Delivery Schedule	
	6.3 Reports From JIRA	
7	CODING & SOLUTIONING	15
	7.1 Feature	
8	TESTING	23
	8.1 Test cases	
	8.2 User Acceptance Testing	

9	RESULTS	25
	9.1 Performance Metrics	
10	ADVANTAGES & DISADVANTAGES	28
	10.1 Advantages	
	10.2 Disadvantages	
11	CONCLUSION	29
12	FUTURE SCOPE	29
13	APPENDIX	30

Introduction

1.1 Project Overview

A naturalist is someone who studies the patterns of nature, identifies a different kind of flora and fauna in nature. Being able to identify the flora and fauna around us often leads to an interest in protecting wild spaces, and collecting and sharing information about the species we see on our travels is very useful for conservation groups like NCC. When venturing into the woods, field naturalists usually rely on common approaches like always carrying a guidebook around everywhere or seeking help from experienced ornithologists. There should be a handy tool for them to capture, identify and share the beauty to the outside world. Field naturalists can only use this web app from anywhere to identify the birds, flowers, mammals and other species they see on their hikes, canoe trips and other excursions. In this project, we are creating a web application which uses a deep learning model, trained on different species of birds, flowers and mammals (2subclasses in each for a quick understanding and get the prediction of the bird when an image is been given. We use artificial neural network to train the image and build a deep learning model. When venturing into the woods, field naturalists usually rely on common approaches like always carrying a guidebook around everywhere or seeking help from experienced ornithologists. There should be a handy tool for them to capture, identify and share the beauty to the outside world.

1.2 Purpose

The project aims to create an application for the hikers to identify rare species of birds, flowers, plants, marine animals, animals by giving a picture taken by them. Field naturalists can only use this web app from anywhere to identify the birds, flowers, plants, marine animals, animals and other species they see on their hikes, can trips and other excursions. We use artificial neural network to train the image and build a deep learning model. In this project, we are creating a web application which uses a deep learning model, trained on different species of birds, flowers, plants, marine animals, animals and get the prediction of the bird when an image is been given.

LITERATURE SURVEY

2.1 Existing problem

The Problem is to classify the type of species. The key relationship in this work is between field biologist and technologists, thus many of our activities will involves hybrid artistic and scientific examinations of the wildness surrounding us. For instance we may develop biological tools for studying nearby creatures, and then adapt these into artistic devices for continued exploration and sharing of this phenomena. There is a subscription plan for accessing that app or website.

2. References

1.Official webpage of iNaturalist : https://www.inaturalist.org/observations

2.Official website: https://nora.nerc.ac.uk/id/eprint/528851/1/N528851JA.pdf

3.Official website: https://news.microsoft.com/features/like-taking-a-whole-scientific-team-with-you-on-

a-walk-inaturalist-helps-spawn-a-generation-of-citizen-scientists/

2.3 Problem Statement Definition

Problem Statement (PS)	l am (Customer)	I'm trying to	But	Because	Which make me feel
PS-1		Scan the species to identify the behaviour	Unable to get the clear image	It contains low pixel value	Upset

PS-2	Student	Explore the	Unable to	It is poisono us Panic
		species	predict	or danger

IDEATION AND PROPOSED SOLUTION

3.1 Empathy Map Canvas

An empathy map is a collaborative tool teams can use to gain a deeper insight into their customers. Much like a user persona, an empathy map can represent a group of users, such as a customer.

3.2 Big Ideas

It consists of all the ideas of instruments and equipments that we are going to implement in this project.

3.3 Idea Prioritization

It deals with the prioritizing of the big ideas in order of highest to lowest likes.

3.4 Problem Solution Fit

3.5 Proposed Solution

S.No	Parameter	Description
1.	Problem Statement (Problem to be solved)	Digital Naturalist -AI Enabled Tools for Biodiversity Researchers
2.	Idea / Solution description	Biodiversity is the life support system. The project aims to create an web application for the hikers to identify rare species of birds, flowers, animals and more. The proposed system in biodiversity research using the computer vision in Artificial Intelligence. This will helps to detect the environment, particular species and locations
3.	Novelty / Uniqueness	Image analysis and flora & fauna detected using "Advanced Artificial intelligence".

4.	Social Impact / Customer Satisfaction	Besides the general plant recognition, many others concentrate especially on identifying flowers, trees, vegetables, weeds, & pond plants, mushrooms, wildflowers, indoor plants, edible and medicinal plants, and more. someone who just loves plants and wants to know more about them, you will encounter many situations when you'll need to find out the name of a specific herb, weed, tree, or flower by using this app through online.			
5.	Business Model (Revenue Model)	 Can make money through the Subscriptionprocess . Partnership with many laboratories and scientists around the world. By giving additional information the users can get more benefits & information about the plan. 			
6.	Scalability of the Solution	Image detection, searching species in advanced Artificial Intelligence. It shows the information about the species at anywhere with the access of internet			

REQUIREMENT ANALYSIS

4.1 Functional Requirements

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User registration	Registration through Form Registration through Gmail
FR-2	User Confirmation	Confirmation viaEmail Confirmation via OTP
FR-4	User Details	Users are required to register their personal details Like name, age, phone no, email, address, and etc
FR-5	User requirements	The user simply inputs of the searching species image. The software will instantly generate accurate image of species to the individuals and also provide the suitable environment. This software is also provide the additional information about the plant.

4.2 Non-Functional Requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Efficient for the frequent users.users can easily understand what the application does and feel satisfied with the system.
NFR-2	Security	 AI powered nutrition analyzer for fitness should contain more security in which our data which entered or maintained should be more security. With the help of the username and password it provides more security in which it can access more securable and the data are private.
NFR-3	Reliability	This application must perform without failure in 95 percent of use cases during a month

NFR-4	Performance	This application supporting 1,000 users per hour must provide 6 seconds or less response time in a desktop browser, including the rendering of text and images, over an LTE connection.			
NFR-5	Availability	The web dashboard must be available to user's 99.9 percent of the time every month during business hours EST. Users can access every time.			
NFR-6	Scalability	The application must be scalable enough to support 10,000 visits at the same time while maintaining optimal performance			

CHAPTER-5 PROJECT DESIGN

5.1 Data Flow Diagram

5.2 Solution & Technical Architecture

5.3 Customer Journey Map

CHAPTER-6 PROJECT PLANNING PHASE

6.1 Sprint Planning, Schedule & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Registration	USN-1	As an biogeography, I can register for the application by entering my email, password, and confirming my password.	2	High	Shaarmila R Meenakshi S Sneha M Swetha T R
Sprint-1	Login	USN-3	As an biogeography, I can log	2		Shaarmila R Meenakshi S Sneha M Swetha T R
			into the application by entering email & password As an biogeography, I can log into the application by entering email & password			
Sprint-2	Data Collection	USN-1	Download the dataset used in Digital Naturalist – AI Enable tools for Biodiversity Researchers	2	High	Shaarmila R Meenakshi S Sneha M Swetha T R
Sprint-2	Image Preprocessing	USN-1	Improving the image data that suppresses unwilling distortions or enhances some image features important for further processing, although performing some geometric transformations of images like rotation, scaling, etc	1	High	Shaarmila R Meenakshi S Sneha M Swetha T R
Sprint-3	Getting started with Convolutional Neural Network	USN-1	Neural network are integral for teaching computers to think and learn by classify information similar to how we as humans learn. With neural networks, software can learn to recognize images, for example. Machines can also make predictions and decisions	2	High	Shaarmila R Meenakshi S Sneha M Swetha T R

			with a high level of accuracy on data inputs			
Sprint-3	Evaluation and model saving	USN-1	well a model behaves after each iteration of optimization. An accuracy metric is used to measure the algorithm's performance in an interpretable way. The accuracy of a model is usually determined after the model parameters and is calculated in the form of a percentage. Saving The Model get_weights , set_weights .	1	Medium	Shaarmila R Meenakshi S Sneha M Swetha T R
Sprint-4	Application Building	USN-2	After the model is built, we will be integrating it to a web application so that normal users can also use it. The users need to give the images of species	1	High	Shaarmila R Meenakshi S Sneha M Swetha T R
Sprint-4	Train the Model on IBM	USN-2	Build Deep learning model and computer vision Using the IBM cloud.	2	High	Shaarmila R Meenakshi S Sneha M Swetha T R

6.2 Sprint Delivery Schedule

Sprint	Total Story	Duratio	Sprint Start	Sprint End Date	Story Points	Sprint Release Date
	Points	n	Date	(Planned)	Completed (as	(Actual)
					on Planned	
					End Date)	
Sprint-1	20	4 Days	24 Oct 2022	27 Oct 2022	20	29 Oct 2022
Sprint-2	20	5 Days	28 Oct 2022	01 Nov 2022	20	04 Nov 2022
Sprint-3	20	8 Days	02 Nov 2022	09 Nov 2022	20	11 Nov 2022
Sprint-4	20	9 Days	10 Nov 2022	18 Nov 2022	20	19 Nov 2022

6.3 Reports From JIRA

CODING AND SOLUTION

7.1 Feature

```
from __future____import division, print_function import os
import numpy as np import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import load_model from flask import Flask, request, render_template
         werkzeug.utils import secure_filename I
mport mysql.connector
global graph
#graph=tf.get_default_graph()
# Define a flask app app = Flask( name )
model = load_model('natur1.h5')
print('Model loaded. Check http://127.0.0.1:5000/')
conn=mysql.connector.connect(host="localhost", user="root", password="",
database="login") cursor=conn.cursor()
@app.route('/') # route to display the home page def home():
return render template('index.html') # rendering the home page
@app.route('/index', methods=['GET','POST']) def index():
# Main page
return render template('digital.html')
@app.route('/login')
```

```
def login(): # put application's code here return render template('login.html')
@app.route('/register')
def register(): # put application's code here return render_template('register.html')
@app.route('/login_validation', methods=['POST']) def login_validation():
email = request.form.get('email') password = request.form.get('password')
cursor.execute("""SELECT * FROM `users` WHERE `email` LIKE'{}' AND `password` LIKE
  '{}'"".format(email, password))
users = cursor.fetchall()
if len(users) > 0:
return render_template('digital.html') else:
return render_template('login.html', prediction_text="1")
@app.route('/add_user', methods=['POST']) def add_user():
name = request.form.get('name') email = request.form.get('email')
password = request.form.get('password')
cursor.execute(
"""INSERT INTO `users`(`id`, `name`, `email`, `password`) VALUES
  (NULL,'{}','{}','{}')""".format(name, email,
                                                                                      password))
conn.commit()
return render_template('login.html', prediction_text="0")
@app.route('/predict', methods=['GET', 'POST']) def upload():
if request.method == 'POST':
# Get the file from post request f = request.files['image']
```

```
# Save the file to ./uploads
basepath = os.path.dirname(__file__) file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file path)
img = image.load img(file path, target size=(64,64))
x = image.img\_to\_array(img) \ x = np.expand\_dims(x, axis=0)
#with graph.as default():
preds = np.argmax(model.predict(x))
found = ["Bird- Antbird - Large passerine bird family, subtropical and tropical Central and South
America, from Mexico to Argentina",
"Bird- Peacock - The blue peacock lives in India and Sri Lanka, ",
"Bird- Wild Turkey - Forest floors, but can also be found in grasslands and swamps ",
"Animal- Gatto - Continental Europe, southwestern Asia, the savannah regions of Africa and as a
pet.",
"Animal- Mucca - India, in east Africa, in northern Europe, and in South America", "Animal- Pecora -
The Arctic circle as far south as Patagonia",
"Flower- Rose - Most species are native to Asia, with smaller numbers native to Europe, North
America, and northwestern Africa",
"Flower- Sunflower - Indo-gangetic plains of Punjab, Haryana and UP in spring and Bihar, Odisha, West
Bengal ",
"Flower- Tulip - Himachal Pradesh and hilly areas of Jammu and Kashmir"]
print(preds)
text = found[preds] return text
if name__ == '__main__': app.run(threaded = False)
```

Dashboard Page:

Login Page:

Predict Page:

TESTING

8.1 Test cases

Test case ID	Feature Type	Component	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Status	Commnets	TC for Automation(Y/N)	BUG ID	Executed By
HomePage_TC_OO1	Punctional	Home Page	Verify user is able to see the home page or not.		Enter URL and click go verify whether the user is able to see the home page.	Enter URL and click go	User able to see the home page	Working as expected	Pass	Nil	N	-	Shaarmila R
HomePage_TC_OO2	uı	Home Page	Verify the UI elements in Home Page		Einter URL and click go Verify the UI elements in Home Page.	Enter URL and click go	Application should show below UI elements:	Working as expected	pass	Nil	N	-	Swetha T R
RegisterPage_IC_O O3	Punctional	RegisterPage	Input the user data.		Einter URL andelick go Nerify the UI elements in Home Page 3.Click the Register button	Click in register page	Application should show 'Incorrect email or password' validation message.	Working as expected	pass	Nil	N		Sneha M
Loginpage IC_OO4	Functional	login page	Verify user is able to redirect to predictpage or not.		Finer URL and click g Verify the UII destination is flower. Page Click the Login Allick on Predict button t. Verify whether the user to redirection predict page or not.	Click in login home page	Application should show 'Incorrect email or password' 'talidation message.	Working as expected	pass	Nil	N	-	Meenakshi S
PredictPage_TC_OO	uı	Predict page	Verify the UI elements in Predict Page		Enter URL and click go Verify the UI elements in Predict Page.	Click the predict button and redirect to predict page	Application should show below UI elements: Upload file Button, Predict button.	Working as expected	pass	Nil	N	- 1	Shaarmila R, Swetha T R
PredictPage_TC_OO 6	Punctional	Predict page	Verify user is able to select the predict		1.Enter URL and click go 2.Cick on Predict button s. Verify whether the user to redirect to predict page or not.	spices images	Application-should shows user to choose predict option	Working as expected	pass	Nil	N	-	Shaarmila R, Sneha M
PredictPage_TC_OO	Punctional	Predict page	Verify user is able to upload the image or not.		1. Finter URL and click go 2. Click on Predict button 3. Verify whether the users redirect to predict page or not. 4. Verify user is able to select the dispdown value or not. 5. Verify user is able to upload the images or not	Images to be Uploaded	Application should shows the uploaded image.	Working as expected	pass	Nil	N	-	Shaarmila R,Meenakshi S
PredictPage_TC_OO 8	Functional	Predict page	Verify whether the image is predicted correctly or not		Linter URL and click go 2.Click on Predict batton 3.Verify whether the user to redirect to predict page or out. 4.Verify user is able to select the dappdown value or out. 5.Verify user is able to upload the imageor met 6. Verify users able to upload the imageor met 6. Verify whether the images is predictual coveredly or not	Click the PredictButton	Application shows the predicted output	Working as expected	pass	Nil	N	-	Meenakshi S

8.2 User Acceptance Testing

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved.

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	7	7	9	6	29
Duplicate	5	0	2	0	7
External	11	2	a	3	- 6
Fixed	14	1	6	8	29
Not Reproduced	0	0	1	0	1
Skipped	0	0	1	1	2
Won't For:	0	- 5	- 1	0	6
Totals	27	15	20	18	80

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	7	0	0	7
Client Application	29	0	0	29
Security	3	0	0	3
Outsource Shipping	3	0	0	3
Exception Reporting	9	0	0	9
Final Report Output	7	0	0	7
Version Control	2	0	0	2

CHAPTER-9 RESULTS 9.1 Performance Metrics

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

	Values	Screenshot
Model Summary	Total pareme: 14,940,133 Trainable parame: 123,445 Son-trainable parame: 14,714,688	The second plane of the second
Accuracy	Training Accuracy -88.72 Validation Accuracy - 90.37	**************************************
		Total parama: 14,840,133 Trainable parama: 135,445 Non-trainable parama: 14,714,688 Accuracy Training Accuracy -88.72


```
+ Code + Text
                                                                                                                                                                                                          ✓ MAM Tolsk Tolsk
3 X
                                                                                                                                                                                                               ↑ ↓ ⊖ 目 ‡ ॄ Î î : Ĭ
                 [ ] model.compile(
                             loss='categorical crossentropy',
                             optimizer='adam'
                             metrics=['accuracy']
                  r = model.fit(xtrain,steps_per_epoch =762 ,epochs = 25, validation_data = xtest,validation_steps =762)
                   Epoch 1/25
                                                          762/762 [===
                          Fnoch 2/25
                          762/762 [==:
                                                               Epoch 3/25
                          762/762 [==
                                                          :==========] - 148s 194ms/step - loss: 0.7529 - accuracy: 0.8118 - val_loss: 0.5721 - val_accuracy: 0.8503
                          Epoch 4/25
                          762/762 [==
                                                                 :========] - 145s 191ms/step - loss: 0.7151 - accuracy: 0.8199 - val_loss: 0.6260 - val_accuracy: 0.8404
                          Epoch 5/25
                          762/762 [==
                                                                   =========] - 146s 191ms/step - loss: 0.7190 - accuracy: 0.8310 - val loss: 0.5615 - val accuracy: 0.8543
                          Epoch 6/25
                          762/762 [==
                                                                  ========] - 145s 191ms/step - loss: 0.7020 - accuracy: 0.8381 - val_loss: 0.4990 - val_accuracy: 0.8727
                          Fnoch 7/25
                          Epoch 8/25
                          762/762 [=====
                                                              ========= ] - 145s 191ms/step - loss: 0.6901 - accuracy: 0.8406 - val loss: 0.5268 - val accuracy: 0.8768
                          Epoch 9/25
                          762/762 [===
                                                         =============== ] - 145s 190ms/step - loss: 0.6654 - accuracy: 0.8481 - val_loss: 0.6018 - val_accuracy: 0.8732
                          Epoch 10/25
                          762/762 [===
                                                                 ========] - 145s 190ms/step - loss: 0.6317 - accuracy: 0.8545 - val loss: 0.4323 - val accuracy: 0.8997
                          Epoch 11/25
                          762/762 [===
                                                               Epoch 12/25
vailable
                          762/762 [====
```

```
RAM Ⅲ
+ Code + Text
                                                                                    ** 🌣
                                                                         Disk I
    Epoch 10/25
[ ]
                 762/762 [=====
    Epoch 11/25
    762/762 [=====
                Enoch 12/25
    762/762 [===
                    ==========] - 147s 193ms/step - loss: 0.6093 - accuracy: 0.8592 - val_loss: 0.6664 - val_accuracy: 0.8392
    Epoch 13/25
    762/762 [===:
                 Epoch 14/25
    762/762 [===
                  :==========] - 145s 190ms/step - loss: 0.5879 - accuracy: 0.8681 - val_loss: 0.6153 - val_accuracy: 0.8711
    Epoch 15/25
    762/762 [====
                 :=========] - 145s 190ms/step - loss: 0.5819 - accuracy: 0.8656 - val_loss: 1.0866 - val_accuracy: 0.8108
    Epoch 16/25
    762/762 [=====
                ==========] - 146s 192ms/step - loss: 0.6475 - accuracy: 0.8621 - val_loss: 0.5023 - val_accuracy: 0.8954
    Epoch 17/25
    762/762 [==:
                   :=========] - 146s 191ms/step - loss: 0.6563 - accuracy: 0.8617 - val_loss: 0.3770 - val_accuracy: 0.9087
    Epoch 18/25
    762/762 [===:
                ==========] - 147s 192ms/step - loss: 0.5287 - accuracy: 0.8819 - val_loss: 0.6177 - val_accuracy: 0.8594
    Epoch 19/25
    762/762 [===
                  ==========] - 146s 192ms/step - loss: 0.5810 - accuracy: 0.8762 - val_loss: 0.6126 - val_accuracy: 0.8625
    Epoch 20/25
    762/762 [===
                     ========] - 146s 191ms/step - loss: 0.5758 - accuracy: 0.8759 - val_loss: 0.5706 - val_accuracy: 0.8583
    Epoch 21/25
    Epoch 22/25
    762/762 [===
                     :=======] - 147s 193ms/step - loss: 0.5590 - accuracy: 0.8769 - val loss: 0.4310 - val accuracy: 0.8966
    Epoch 23/25
    762/762 [===
                   ========== ] - 145s 190ms/step - loss: 0.5648 - accuracy: 0.8806 - val loss: 0.4981 - val accuracy: 0.9000
    Epoch 24/25
    762/762 [=====
               Epoch 25/25
                762/762 [======
```

ADVANTAGES & DISADVANTAGES

10.1 ADVANTAGE:

- ✓ We detect the Species by using the image.
- ✓ Most Accurate
- ✓ No subscription plan
- ✓ It does not require any special hardware because it can be implemented with low-cost devices such as cameras

10.2 DISADVANTAGE:

- ✓ Internet with a good connection.
- ✓ Our model is that the accuracy rate is low when the input image is not clear.
- ✓ Consumes time to and the system may not be able to recognize some numbers, such as possible.

CONCLUSION

Field naturalists can only use this web application from anywhere to identify the birds, flowers, animals, marine animals and plants and other species they see on their hikes, canoe trips and other excursions. In this project, we are creating a web application which uses a deep learning model, trained on different species of birds, flowers, animals, marine animals and plants. There is great diversity among naturalists, but some common ground too. All naturalism begin with an admiring attitude towards science and its achievements. In many cases this admiring attitude is combined with a contempt or distrust for the way that philosophy has been or is conducted. This combination of views has a long history. Many of the advocates of first philosophy, Descartes, kant and Carnap, shared the same admiration of science or nascent science and distrust of philosophy. Descartes, for example, uses scepticism as a device to sweep away the old Aristotelian foundations of knowledge, so that he can build an entirely new philisophy that makes room for the new mathematical science.

CHAPTER-12

FUTURE SCOPE

In this project, we proposed a method for efficient Digital naturalist for biodiversity researchers. With the application of AI the data can be stored and retrieved from anywhere. In this proposed work, the image detection is for the specified species, hence in future it can be automated for detection the species and provide the more details about the scientific name, location characteristic. AI can alsbe used to extract information from big data in order to address various challenges faced by society. Using computer vision, natural language processing, and robotic automation, manufacturers are producing vehicles that are safer and more comfortable.

APPENDIX

Github: http://bitly.ws/x23f

Demo Link: http://bitly.ws/x239