

Schletter, Inc.		15° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-05, Eq. 7-2)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	100 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 15.70 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ _{TOP}	=	1.000 (Prossure)	
Cf+ BOTTOM	=	1.000 1.600 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.300	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.780 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the surface.

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S _s of 1.5
$S_{DS} =$	1.67	$C_{S} = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used
$T_a =$	0.05	$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O (ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0 \text{D} + 1.0 \text{S} \\ 1.0 \text{D} + 1.0 \text{W} \\ 1.0 \text{D} + 0.75 \text{L} + 0.75 \text{W} + 0.75 \text{S} \\ 0.6 \text{D} + 1.0 \text{W} & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) \& (ASCE 7, Section 12.4.3.2)} \\ 1.238 \text{D} + 0.875 \text{E} & \text{0} \\ 1.1785 \text{D} + 0.65625 \text{E} + 0.75 \text{S} & \text{0} \\ 0.362 \text{D} + 0.875 \text{E} & \text{0} \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

Purlins M13 M14 M15 M16	Location Top Mid-Top Mid-Bottom Bottom	Diagonal Struts M3 M7 M11	Location Outer Inner Outer	Front Reactions N7 Outer N15 Inner N23 Outer
Girders M1 M5 M9	<u>Location</u> Outer Inner Outer	Rear Struts M2 M6 M10	Location Outer Inner Outer	Rear Reactions N8 Outer N16 Inner N24 Outer
Front Struts M4 M8 M12	<u>Location</u> Outer Inner Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u> Front</u>	<u>Rear</u>	
<u>1400.73</u>	<u>4840.52</u>	k
<u>4839.37</u>	5020.78	k
<u>307.53</u>	<u>1754.10</u>	k
<u>0.63</u>	0.42	k
	4839.37 307.53	1400.73 4840.52 4839.37 5020.78 307.53 1754.10

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi **Overturning Check** $M_O = 121060.9 \text{ in-lbs}$ Resisting Force Required = 1834.26 lbs A minimum 132in long x 27in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3057.09 lbs to resist overturning. Minimum Width = <u>27 in</u> in Weight Provided = 5383.13 lbs Sliding 421.50 lbs Force = Use a 132in long x 27in wide x 18in tall Friction = 0.4 ballast foundation to resist sliding. Weight Required = 1053.74 lbs Resisting Weight = 5383.13 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 421.50 lbs Cohesion = 130 psf Use a 132in long x 27in wide x 18in tall 24.75 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2691.56 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi $f'_c =$

Bearing Pressure

Length =

8 in

	Ballast Width					
	<u>27 in</u>	<u>28 in</u>	<u>29 in</u>	<u>30 in</u>		
$P_{ftg} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(2.25 \text{ ft}) =$	5383 lbs	5583 lbs	5782 lbs	5981 lbs		

ASD LC		1.0D -	+ 1.0S			1.0D + 1.0W				1.0D + 0.75L + 0.75W + 0.75S				0.6D + 1.0W		
Width	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in	27 in	28 in	29 in	30 in
FA	1724 lbs	1724 lbs	1724 lbs	1724 lbs	1592 lbs	1592 lbs	1592 lbs	1592 lbs	2359 lbs	2359 lbs	2359 lbs	2359 lbs	-667 lbs	-667 lbs	-667 lbs	-667 lbs
F _B	1786 lbs	1786 lbs	1786 lbs	1786 lbs	1651 lbs	1651 lbs	1651 lbs	1651 lbs	2445 lbs	2445 lbs	2445 lbs	2445 lbs	-2321 lbs	-2321 lbs	-2321 lbs	-2321 lbs
F∨	152 lbs	152 lbs	152 lbs	152 lbs	749 lbs	749 lbs	749 lbs	749 lbs	665 lbs	665 lbs	665 lbs	665 lbs	-843 lbs	-843 lbs	-843 lbs	-843 lbs
P _{total}	8893 lbs	9092 lbs	9292 lbs	9491 lbs	8626 lbs	8825 lbs	9025 lbs	9224 lbs	10187 lbs	10386 lbs	10586 lbs	10785 lbs	241 lbs	361 lbs	481 lbs	600 lbs
М	4187 lbs-ft	4187 lbs-ft	4187 lbs-ft	4187 lbs-ft	4774 lbs-ft	4774 lbs-ft	4774 lbs-ft	4774 lbs-ft	6409 lbs-ft	6409 lbs-ft	6409 lbs-ft	6409 lbs-ft	1212 lbs-ft	1212 lbs-ft	1212 lbs-ft	1212 lbs-ft
е	0.47 ft	0.46 ft	0.45 ft	0.44 ft	0.55 ft	0.54 ft	0.53 ft	0.52 ft	0.63 ft	0.62 ft	0.61 ft	0.59 ft	5.02 ft	3.36 ft	2.52 ft	2.02 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	267.0 psf	265.3 psf	263.6 psf	262.1 psf	243.3 psf	242.4 psf	241.5 psf	240.7 psf	270.4 psf	268.5 psf	266.7 psf	265.1 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	451.6 psf	443.2 psf	435.4 psf	428.2 psf	453.7 psf	445.3 psf	437.4 psf	430.1 psf	552.8 psf	540.9 psf	529.7 psf	519.3 psf	148.3 psf	48.1 psf	44.5 psf	46.0 psf

Maximum Bearing Pressure = 553 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 27in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_O = 2576.9 \text{ ft-lbs}$

Resisting Force Required = 2290.59 lbs

S.F. = 1.67

Weight Required = 3817.66 lbs Minimum Width = 27 in in Weight Provided = 5383.13 lbs A minimum 132in long x 27in wide x 18in tall ballast foundation is required to resist

overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785	D+0.65625E	+ 0.75S	0.362D + 0.875E			
Width	27 in				27 in		27 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	252 lbs	645 lbs	223 lbs	949 lbs	2856 lbs	927 lbs	84 lbs	189 lbs	55 lbs	
F _V	212 lbs	208 lbs	213 lbs	158 lbs	152 lbs	165 lbs	212 lbs	209 lbs	212 lbs	
P _{total}	6916 lbs	7310 lbs	6887 lbs	7293 lbs	9200 lbs	7271 lbs	2032 lbs	2137 lbs	2004 lbs	
M	846 lbs-ft	840 lbs-ft	851 lbs-ft	642 lbs-ft	636 lbs-ft	665 lbs-ft	843 lbs-ft	837 lbs-ft	845 lbs-ft	
е	0.12 ft	0.11 ft	0.12 ft	0.09 ft	0.07 ft	0.09 ft	0.42 ft	0.39 ft	0.42 ft	
L/6	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	0.38 ft	
f _{min}	188.2 psf	204.9 psf	186.6 psf	225.5 psf	303.2 psf	222.2 psf	0.0 psf	0.0 psf	0.0 psf	
f _{max}	370.6 psf	385.8 psf	370.0 psf	363.8 psf	440.2 psf	365.4 psf	173.5 psf	176.6 psf	172.7 psf	

Maximum Bearing Pressure = 440 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 27in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 27in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	3.723 k 12.808 k 7.421 k <u>50%</u>	Rear Strut Maximum Axial Load = 3.664 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 49%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	1.275 k 12.808 k 7.421 k <u>17%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

Mean Height, h_{sx} = 36.30 in

Allowable Story Drift for All

Other Structures, Δ = {

0.020 h_{sx} 0.726 in

Max Drift, Δ_{MAX} = 0.452 in

0.452 \leq 0.726, OK.

The racking structure's reaction to seismic loads is shown to the right.
The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 120 \text{ in}$$

$$J = 0.432$$

$$331.976$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= 120 \\ J &= 0.432 \\ &= 211.117 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc^* \sqrt{(LbSc)/(Cb^* \sqrt{(lyJ)/2})}] \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_L = 27.4 \text{ ksi}$

3.4.16

 $\phi F_L =$

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

Not Used

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

41.015 mm

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 23.1 \text{ ksi}$$

Sx =

 $M_{max}St =$

 $\phi F_L St =$

Compression

3.4.9

$$b/t = 32.195$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$
 152.913

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 29.4 \text{ ksi}$

Weak Axis:

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2}))}]$$

$$\varphi F_L = 29.2$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

31.6 ksi

3.4.16

$$b/t = 7.4$$

$$\theta_{y} F_{GW}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 1.6Dp$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

 $\phi F_L =$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{bmatrix} 1.6Dt \\ 1.1 \end{bmatrix}$$

$$S2 = C_t$$

$$S2 = 0t$$

 $S2 = 141.0$

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{Db}$$

$$S2 = \frac{1}{mDbr}$$

$$S2 = 73.8$$

$$\varphi F_L = 1.3 \varphi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.4 \text{ ksi}$$
 $lx = 984962 \text{ mm}^4$

$$2.366 \text{ in}^4$$

v = 43.717 mm

$$y = 43.717 \text{ mm}$$

 $Sx = 1.375 \text{ in}^3$

$$M_{\text{max}}St = 3.363 \text{ k-ft}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

3.904 k-ft

Compression

3.4.9

$$b/t = 16.2$$

S1 =12.21 (See 3.4.16 above for formula)

32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

$$S2 = 32.70$$

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_{L} = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

31.09 ksi

31.09 ksi

$$P_{max} = 58.55 \text{ kips}$$

 $\phi F_L =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \text{ in} \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc} \right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6} \right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b [Bc-1.6Dc^* \sqrt{((LbSc)/(Cb^* \sqrt{(lyJ)/2)})}] \end{split}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L}_{b} &= 24.8 \\ \mathsf{J} &= 0.942 \\ 38.7028 \\ S1 &= \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2} \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_{c}}{1.6}\right)^{2} \\ S2 &= 1701.56 \\ \phi \mathsf{F}_{\mathsf{L}} &= \phi b [\mathsf{Bc-1.6Dc} *\sqrt{((\mathsf{LbSc})/(\mathsf{Cb} *\sqrt{(\mathsf{lyJ})/2}))}] \\ \phi \mathsf{F}_{\mathsf{L}} &= 31.4 \end{split}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

0.672 in⁴

0.621 in³

1.460 k-ft

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.2 \text{ ksi}$$

$$\phi F_L Wk = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max} Wk = 1.460 \text{ k-ft}$$

y =

Sx =

 $M_{max}St =$

Compression

$$\lambda = 0.57371$$
 $r = 0.81 \text{ in}$
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.87952$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_{L} = 28.0279 \text{ ksi}$$

3.4.9

$$b/t = 24.5$$

 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$S2 = 131.3$$

$$\phi F_L {=} \; \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 28.85 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14
$$L_b = 86.60 \text{ in}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.6 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 86.6$$
 $J = 0.942$
 135.148

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 29.6$$

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

lx =	279836 mm ⁴
	0.672 in ⁴
y =	27.5 mm
Sx =	0.621 in ³

 $M_{max}St = 1.460 \text{ k-ft}$

Compression

3.4.7

$$\lambda = 2.00335$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.86047$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.50396 \text{ ksi}$$

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \ ksi \\ ly = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ x = & 27.5 \ mm \\ Sy = & 0.621 \ in^3 \\ M_{max} W k = & 1.460 \ k\text{-ft} \end{array}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 48.30 \text{ in}$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(lyJ)/2))]$$

 $φF_L = 30.6 \text{ ksi}$

$$\phi F_L =$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 48.3$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.6$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

28.2 ksi

 0.672 in^4

0.621 in³

1.460 k-ft

27.5 mm

 $lx = 279836 \text{ mm}^4$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$X = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max} W k = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

 $\phi F_1 St =$

3.4.7 $\lambda = 1.11734$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.76536$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 18.9268$ ksi

$\phi F_L = \phi cc(Bc-Dc^*\lambda)$ $\phi F_{L} = 18.9268 \text{ ksi}$ 3.4.9 b/t =24.5 S1 = 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c [Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi 24.5 b/t =S1 = 12.21 32.70 S2 = $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 18.93 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 19.48 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				4	,	, I
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-61.093	-61.093	0	0
2	M14	Υ	-61.093	-61.093	0	0
3	M15	Υ	-61.093	-61.093	0	0
4	M16	Υ	-61 093	-61 093	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-43.785	-43.785	0	0
2	M14	V	-43.785	-43.785	0	0
3	M15	V	-70.057	-70.057	0	0
4	M16	V	-70.057	-70.057	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	100.707	100.707	0	0
2	M14	V	77.938	77.938	0	0
3	M15	V	43.785	43.785	0	0
4	M16	y	43.785	43.785	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	6.693	6.693	0	0
2	M14	Ζ	6.693	6.693	0	0
3	M15	Ζ	6.693	6.693	0	0
4	M16	Ζ	6.693	6.693	0	0
5	M13	Ζ	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	. Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	315.592	2	1153.738	1	1.058	1	.005	1	0	1	0	1
2		min	-427.491	3	-1134.493	3	-82.799	5	319	4	0	1	0	1
3	N7	max	.034	1	1266.094	1	317	12	0	12	0	1	0	1
4		min	081	2	-313.202	3	-236.565	4	481	4	0	1	0	1
5	N15	max	.023	9	3722.59	1	0	9	0	9	0	1	0	1
6		min	-1.116	2	-1077.485	3	-228.183	5	47	4	0	1	0	1
7	N16	max	1255.822	2	3862.137	1	0	3	0	3	0	1	0	1
8		min	-1349.304	3	-3723.476	3	-82.557	5	322	4	0	1	0	1
9	N23	max	.034	1_	1266.094	1_	7.678	1	.016	1	0	1	0	1
10		min	081	2	-313.202	3	-231.934	4	473	4	0	1	0	1
11	N24	max	315.592	2	1153.738	1	05	12	0	12	0	1	0	1
12		min	-427.491	3	-1134.493	3	-83.268	4	321	4	0	1	0	1
13	Totals:	max	1885.727	2	12424.391	1	0	9						
14		min	-2204.848	3	-7696.351	3	-940.882	5						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	84.121	1	522.513	1	-4.833	12	0	3	.2	1	0	1
2			min	3.517	12	-584.638	3	-136.28	1	014	1	.008	12	0	3
3		2	max	84.121	1	365.971	1	-3.806	12	0	3	.071	4	.553	3
4			min	3.517	12	-411.355	3	-104.764	1	014	1	.004	12	494	1
5		3	max	84.121	1	209.43	1	-2.778	12	0	3	.037	5	.914	3
6			min	3.517	12	-238.071	3	-73.247	1	014	1	033	1	813	1
7		4	max	84.121	1	52.888	1	-1.751	12	0	3	.019	5	1.082	3
8			min	3.517	12	-64.788	3	-41.73	1	014	1	097	1	959	1
9		5	max	84.121	1	108.495	3	673	10	0	3	.003	5	1.058	3
10			min	3.517	12	-103.654	1	-16.001	4	014	1	126	1	931	1
11		6	max	84.121	1	281.779	3	21.303	1	0	3	004	12	.841	3
12			min	3.517	12	-260.195	1	-12.018	5	014	1	119	1	729	1
13		7	max	84.121	1	455.062	3	52.82	1	0	3	003	12	.432	3
14			min	-4.057	5	-416.737	1	-10.429	5	014	1	078	1	353	1
15		8	max	84.121	1	628.346	3	84.336	1	0	3	0	10	.197	1
16			min	-15.463	5	-573.278	1	-8.839	5	014	1	035	4	17	3
17		9	max	84.121	1	801.629	3	115.853	1	0	3	.109	1	.921	1
18			min	-26.869	5	-729.82	1	-7.25	5	014	1	043	5	964	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
19		10	max	84.121	1	886.362	_1_	-4.413	12	.014	1	.255	1	1.819	1
20			min	3.517	12	-974.912	3	-147.369	1	0	3	.006	12	-1.951	3
21		11	max	84.121	1	729.82	1_	-3.386	12	.014	1	.109	1	.921	1
22			min	3.517	12	-801.629	3	-115.853	1	0	3	.002	12	964	3
23		12	max	84.121	1	573.278	1_	-2.358	12	.014	1	.034	4	.197	1
24			min	3.517	12	-628.346	3	-84.336	1	0	3	002	1	17	3
25		13	max	84.121	1	416.737	1	-1.331	12	.014	1	.015	5	.432	3
26			min	3.517	12	-455.062	3	-52.82	1	0	3	078	1	353	1
27		14	max	84.121	1	260.195	1	304	12	.014	1	0	15	.841	3
28			min	.689	15	-281.779	3	-21.303	1	0	3	119	1	729	1
29		15	max	84.121	1	103.654	1	10.214	1	.014	1	004	12	1.058	3
30			min	-10.269	5	-108.495	3	-12.556	5	0	3	126	1	931	1
31		16	max	84.121	1	64.788	3	41.73	1	.014	1	003	12	1.082	3
32			min	-21.675	5	-52.888	1	-10.966	5	0	3	097	1	959	1
33		17	max	84.121	1	238.071	3	73.247	1	.014	1	0	3	.914	3
34			min	-33.08	5	-209.43	1	-9.377	5	0	3	048	4	813	1
35		18	max	84.121	1	411.355	3	104.764	1	.014	1	.066	1	.553	3
36			min	-44.486	5	-365.971	1_	-7.787	5	0	3	05	5	494	1
37		19	max	84.121	1	584.638	3	136.28	1	.014	1	.2	1	0	1
38			min	-55.892	5	-522.513	1	-6.198	5	0	3	058	5	0	3
39	M14	1	max	61.332	4	553.077	1	-4.966	12	.007	3	.228	1	0	1
40			min	1.51	12	-461.42	3	-140.496	1	012	1	.009	12	0	3
41		2	max	49.926	4	396.535	1	-3.939	12	.007	3	.102	4	.439	3
42			min	1.51	12	-328.615	3	-108.98	1	012	1	.004	12	528	1
43		3	max	39.22	1	239.993	1	-2.911	12	.007	3	.055	5	.73	3
44			min	1.51	12	-195.81	3	-77.463	1	012	1	014	1	881	1
45		4	max	39.22	1	83.452	1	-1.884	12	.007	3	.029	5	.874	3
46			min	1.51	12	-63.005	3	-45.947	1	012	1	083	1	-1.061	1
47		5	max	39.22	1	69.8	3	857	12	.007	3	.006	5	.87	3
48			min	1.51	12	-73.09	1	-23.862	4	012	1	116	1	-1.067	1
49		6	max	39.22	1	202.605	3	17.087	1	.007	3	004	12	.719	3
50			min	-3.709	5	-229.631	1	-18.868	5	012	1	115	1	898	1
51		7	max	39.22	1	335.411	3	48.603	1	.007	3	003	12	.42	3
52			min	-15.115	5	-386.173	1	-17.278	5	012	1	078	1	556	1
53		8	max	39.22	1	468.216	3	80.12	1	.007	3	0	10	0	15
54			min	-26.52	5	-542.715	1	-15.689	5	012	1	057	4	047	2
55		9	max	39.22	1	601.021	3	111.637	1	.007	3	.1	1	.65	1
56			min	-37.926	5	-699.256	1	-14.099	5	012	1	071	5	62	3
57		10	max	60.876	4	855.798	1	-4.28	12	.012	1	.241	1	1.514	1
58			min	1.51	12	-733.826	3	-143.153	1	008	11	.006	12	-1.362	3
59		11	max	49.471	4	699.256		-3.253		.012	1	.103	4	.65	1
60			min	1.51	12	-601.021	3	-111.637	1	007	3	.002	12	62	3
61		12		39.22	1	542.715	1	-2.226	12	.012	1	.054	5	0	15
62			min	1.51	12	-468.216	3	-80.12	1	007	3	007	1	047	2
63		13	max	39.22	1	386.173	1	-1.198	12	.012	1	.028	5	.42	3
64			min	1.51	12	-335.411	3	-48.603	1	007	3	078	1	556	1
65		14	max	39.22	1	229.631	1	171	12	.012	1	.004	5	.719	3
66			min	1.51	12	-202.605	3	-24.419	4	007	3	115	1	898	1
67		15	max	39.22	1	73.09	1	14.43	1	.012	1	004	12	.87	3
68		1	min	-3.906	5	-69.8	3	-18.98	5	007	3	116	1	-1.067	1
69		16	max	39.22	1	63.005	3	45.947	1	.012	1	002	12	.874	3
70		10	min	-15.312	5	-83.452	1	-17.391	5	007	3	083	1	-1.061	1
71		17	max	39.22	1	195.81	3	77.463	1	.012	1	0	3	.73	3
72			min	-26.718	5	-239.993	1	-15.801	5	007	3	06	4	881	1
73		18	max	39.22	1	328.615	3	108.98	1	.012	1	.089	1	.439	3
74		10	min	-38.124	5	-396.535	1	-14.212	5	007	3	073	5	528	1
75		10	max	39.22	1	461.42	3	140.496	1	.012	1	.228	1	0	1
IJ		13	παλ	JJ.ZZ		701.42	J	170.430	- 1	.012		.220	1	U	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	
76			min	-49.53	5	-553.077	1	-12.622	5	007	3	088	5	0	3
77	M15	1	max	78.594	5	631.89	1	-4.936	12	.012	1	.228	1	0	2
78			min	-41.16	1	-256.718	3	-140.48	1	006	3	.009	12	0	3
79		2	max	67.188	5	451.995	1	-3.909	12	.012	1	.137	4	.245	3
80			min	-41.16	1	-184.629	3	-108.963	1	006	3	.004	12	602	1
81		3	max	55.782	5	272.101	1	-2.882	12	.012	1	.08	5	.41	3
82			min	-41.16	1	-112.54	3	-77.446	1	006	3	014	1	-1.004	1
83		4	max	44.376	5	92.206	1	-1.854	12	.012	1	.045	5	.495	3
84			min	-41.16	1	-40.451	3	-45.93	1	006	3	083	1	-1.207	1
85		5	max	32.971	5	31.637	3	827	12	.012	1	.011	5	.5	3
86			min	-41.16	1	-87.688	1	-32.786	4	006	3	116	1	-1.209	1
87		6	max	21.565	5	103.726	3	17.103	1	.012	1	004	12	.425	3
88			min	-41.16	1	-267.583	1	-27.789	5	006	3	115	1	-1.012	1
89		7	max	10.159	5	175.815	3	48.62	1	.012	1	003	12	.27	3
90		'	min	-41.16	1	-447.477	1	-26.2	5	006	3	078	1	615	1
91		8	max	797	15	247.904	3	80.137	1	.012	1	0	10	.034	3
92		0	min	-41.16	1	-627.372	1	-24.61	5	006	3	081	4	018	1
93		9		-41.16	12	319.992	3	111.653		.012	1	.1	1	.779	1
94		9	max	-41.16	1	-807.266	1		5		3	105			3
		10	min					-23.021		006			5	281	
95		10	max	-1.765	12	987.161	1	-4.31	12	.006 012	<u>3</u>	.241	1	1.776	3
96		44	min	-41.16	1	-392.081	3	-143.17	1			.006	12	677	$\overline{}$
97		11	max	8.315	5	807.266	1	-3.283	12	.006	3	.137	4	.779	1
98		40	min	-41.16	1	-319.992	3	-111.653	1	012	1	.002	12	281	3
99		12	max	-1.765	12	627.372	1	-2.255	12	.006	3	.078	5	.034	3
100		40	min	<u>-41.16</u>	1	-247.904	3	-80.137	1	012	1	007	1	018	1
101		13	max	-1.765	12	447.477	1	-1.228	12	.006	3	.042	5	.27	3
102		4.4	min	<u>-41.16</u>	1	-175.815	3	-48.62	1	012	1	078	1	615	1
103		14	max	-1.765	12	267.583	1	2	12	.006	3	.009	5	.425	3
104		4.5	min	<u>-41.16</u>	1	-103.726	3	-33.357	4	012	1	115	1	-1.012	1
105		15	max	-1.765	12	87.688	1	14.413	1	.006	3	004	12	.5	3
106		4.0	min	-46.092	4	-31.637	3	-27.903	5	012	1	116	1	-1.209	1
107		16	max	-1.765	12	40.451	3	45.93	1	.006	3	002	12	.495	3
108		47	min	-57.498	4	-92.206	1	-26.314	5	012	1	083	1	-1.207	1
109		17	max	-1.765	12	112.54	3	77.446	1	.006	3	0	3	.41	3
110		40	min	<u>-68.904</u>	4	-272.101	1	-24.724	5	012	1	086	4	-1.004	1
111		18	max	-1.765	12	184.629	3	108.963	1	.006	3	.089	1	.245	3
112		40	min	-80.309	4	-451.995	1	-23.135	5	012	1	108	5	602	1
113		19	max	-1.765	12	256.718	3	140.48	1	.006	3	.228	1	0	2
114	1440	4	min	<u>-91.715</u>	4	-631.89	1	-21.545	5	012	1	133	5	0	5
115	M16	1	max	78.392	5	601.687	1	-4.735	12	.013	1	.201	1	0	1
116			mın		1	-239.59	3	-136.462		009	3	.008	12	0	3
117		2	max		5	421.793	1	-3.707	12	.013	1	.101	4	.226	3
118			min	-88.801	1	-167.501	3	-104.945		009	3	.003	12	569	1
119		3	max	55.58	5	241.898	1	-2.68	12	.013	1	.059	5	.372	3
120		4	min	-88.801	1	-95.412	3	-73.429	1	009	3	032	1	937	1
121		4	max		5	62.004	1	-1.653	12	.013	1	.033	5	.438	3
122		_	min	-88.801	1_	-23.323	3	-41.912	1	009	3	096	1	-1.106	1
123		5	max	32.769	5	48.765	3	625	12	.013	1	.009	5	.424	3
124			min	-88.801	1	-117.891	1	-23.456	4	009	3	125	1	-1.075	1
125		6	max	21.363	5	120.854	3	21.121	1	.013	1	004	12	.33	3
126			min	-88.801	1	-297.785	1	-19.405	5	009	3	119	1	844	1
127		7	max	9.957	5	192.943	3	52.638	1	.013	1	003	12	.155	3
128		_	min	-88.801	1_	-477.68	1	-17.816	5	009	3	078	1	413	1
129		8	max	912	15	265.031	3	84.154	1	.013	1	0	10	.217	1
130		_	min	-88.801	1	-657.574	1	-16.226	5	009	3	055	4	099	3
131		9	max	-3.528	12	337.12	3	115.671	1	.013	1	.109	1	1.048	1
132			min	-88.801	1	-837.469	1	-14.637	5	009	3	071	5	433	3

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

134	133	Member	Sec 10	max	Axial[lb] -3.528	LC 12	y Shear[lb]	LC 1	z Shear[lb] -4.512	LC 12	Torque[k-ft] .013	LC 1	y-y Mome .255	LC 1	z-z Mome 2.078	LC 1
136																_
136			11							12						
138				min				3	-115.671	1	013	1		12	433	3
139	137		12	max	-3.528	12	657.574	1	-2.457	12	.009	3	.053	4	.217	
1440				min		1		3	-84.154	1	013	1	002	1	099	3
141			13	max		12								_		
142				min				3								
143			14	max		12				12				_		
144				min												-
145			15							_						
146			4.0									_		_		
148			16													
148			4-											_		
149			1/													
150			4.0													-
151			18	_												1
152			10													
153 M2			19					_						<u> </u>		
154		M2	1					_					_			
155		IVIZ													-	
156			2									_		_		
157			_													
158			3							-		_				_
159										_				4		
160			4							1				_		_
161								_			_					
162			5								0			1		15
164						3		15		4	0	4		4	002	
165			6	max	1138.087	1		4	1.197	1	0	3	.001	1	0	15
166	164			min	-1032.414	3	.554	15	-79.697	4	0	4	087	4	003	4
167	165		7			1	2.241	4	1.197	1	0	3	.002	1	0	15
168	166			min	-1032.168	3	.55	15	-79.982	4	0	4	105	4	003	4
169			8							_						15
170																_
171			9								_					
172				1												_
173 11 max 1139.73 1 2.18 4 1.197 1 0 3 .003 1 001 15 174 min -1031.182 3 .536 15 -81.122 4 0 4 177 4 005 4 175 12 max 1140.058 1 2.165 4 1.197 1 0 3 .003 1 001 15 176 min -1030.936 3 .532 15 -81.406 4 0 4 195 4 005 4 177 13 max 1140.387 1 2.149 4 1.197 1 0 3 .003 1 005 4 178 min -1030.69 3 .529 15 -81.691 4 0 4 213 4 006 4 179 14 max 1140.715 <t< td=""><td></td><td></td><td>10</td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td>The state of the s</td><td></td><td></td><td></td><td></td><td></td></t<>			10					•			The state of the s					
174 min -1031.182 3 .536 15 -81.122 4 0 4 177 4 005 4 175 12 max 1140.058 1 2.165 4 1.197 1 0 3 .003 1 001 15 176 min -1030.936 3 .532 15 -81.406 4 0 4 195 4 005 4 177 13 max 1140.387 1 2.149 4 1.197 1 0 3 .003 1 001 15 178 min -1030.69 3 .529 15 -81.691 4 0 4 213 4 006 4 179 14 max 1140.715 1 2.134 4 1.197 1 0 3 .003 1 002 15 180 min -1030.443 3			4.4								_			4		
175 12 max 1140.058 1 2.165 4 1.197 1 0 3 .003 1 001 15 176 min -1030.936 3 .532 15 -81.406 4 0 4 195 4 005 4 177 13 max 1140.387 1 2.149 4 1.197 1 0 3 .003 1 001 15 178 min -1030.69 3 .529 15 -81.691 4 0 4 213 4 006 4 179 14 max 1140.715 1 2.134 4 1.197 1 0 3 .003 1 002 15 180 min -1030.443 3 .525 15 -81.976 4 0 4 231 4 006 4 181 15 max 1141.043			11											1		
176 min -1030.936 3 .532 15 -81.406 4 0 4 195 4 005 4 177 13 max 1140.387 1 2.149 4 1.197 1 0 3 .003 1 001 15 178 min -1030.69 3 .529 15 -81.691 4 0 4 213 4 006 4 179 14 max 1140.715 1 2.134 4 1.197 1 0 3 .003 1 006 4 180 min -1030.443 3 .525 15 -81.976 4 0 4 231 4 002 15 181 15 max 1141.043 1 2.119 4 1.197 1 0 3 .004 1 002 15 182 min -1030.197 3			40									_		_		
177 13 max 1140.387 1 2.149 4 1.197 1 0 3 .003 1 001 15 178 min -1030.69 3 .529 15 -81.691 4 0 4 213 4 006 4 179 14 max 1140.715 1 2.134 4 1.197 1 0 3 .003 1 002 15 180 min -1030.443 3 .525 15 -81.976 4 0 4 231 4 006 4 181 15 max 1141.043 1 2.119 4 1.197 1 0 3 .004 1 002 15 182 min -1030.197 3 .522 15 -82.261 4 0 4 249 4 007 4 183 16 max 1141.372 1 2.104 4 1.197 1 0 3 .004 1 002			12													
178 min -1030.69 3 .529 15 -81.691 4 0 4 213 4 006 4 179 14 max 1140.715 1 2.134 4 1.197 1 0 3 .003 1 002 15 180 min -1030.443 3 .525 15 -81.976 4 0 4 231 4 006 4 181 15 max 1141.043 1 2.119 4 1.197 1 0 3 .004 1 002 15 182 min -1030.197 3 .522 15 -82.261 4 0 4 249 4 007 4 183 16 max 1141.372 1 2.104 4 1.197 1 0 3 .004 1 002 15 184 min -1029.951 3			12													_
179 14 max 1140.715 1 2.134 4 1.197 1 0 3 .003 1002 15 180 min -1030.443 3 .525 15 -81.976 4 0 4231 4006 4 181 15 max 1141.043 1 2.119 4 1.197 1 0 3 .004 1002 15 182 min -1030.197 3 .522 15 -82.261 4 0 4249 4007 4 183 16 max 1141.372 1 2.104 4 1.197 1 0 3 .004 1002 15 184 min -1029.951 3 .518 15 -82.546 4 0 4267 4007 4 185 17 max 1141.7 1 2.088 4 1.197 1 0 3 .004 1002 15 186 min -1029.704 3 .514 15 -82.831 4 0 4286 4008 4 187 18 max 1142.029 1 2.073 4 1.197 1 0 3 .004 1002 15 188 min -1029.458 3 .511 15 -83.115 4 0 4304 4304 4008 4			13													
180 min -1030.443 3 .525 15 -81.976 4 0 4 231 4 006 4 181 15 max 1141.043 1 2.119 4 1.197 1 0 3 .004 1 002 15 182 min -1030.197 3 .522 15 -82.261 4 0 4 249 4 007 4 183 16 max 1141.372 1 2.104 4 1.197 1 0 3 .004 1 002 15 184 min -1029.951 3 .518 15 -82.546 4 0 4 267 4 007 4 185 17 max 1141.7 1 2.088 4 1.197 1 0 3 .004 1 002 15 186 min -1029.704 3			1/									_		_		
181 15 max 1141.043 1 2.119 4 1.197 1 0 3 .004 1 002 15 182 min -1030.197 3 .522 15 -82.261 4 0 4 249 4 007 4 183 16 max 1141.372 1 2.104 4 1.197 1 0 3 .004 1 002 15 184 min -1029.951 3 .518 15 -82.546 4 0 4 267 4 007 4 185 17 max 1141.7 1 2.088 4 1.197 1 0 3 .004 1 002 15 186 min -1029.704 3 .514 15 -82.831 4 0 4 286 4 008 4 187 18 max 1142.029 1 2.073 4 1.197 1 0 3 .004 1 002 15 188 min -1029.458 3 .511 15 -83.115 4 0 4 304 4 </td <td></td> <td></td> <td>14</td> <td></td>			14													
182 min -1030.197 3 .522 15 -82.261 4 0 4 249 4 007 4 183 16 max 1141.372 1 2.104 4 1.197 1 0 3 .004 1 002 15 184 min -1029.951 3 .518 15 -82.546 4 0 4 267 4 007 4 185 17 max 1141.7 1 2.088 4 1.197 1 0 3 .004 1 002 15 186 min -1029.704 3 .514 15 -82.831 4 0 4 286 4 008 4 187 18 max 1142.029 1 2.073 4 1.197 1 0 3 .004 1 002 15 188 min -1029.458 3			15													
183 16 max 1141.372 1 2.104 4 1.197 1 0 3 .004 1 002 15 184 min -1029.951 3 .518 15 -82.546 4 0 4 267 4 007 4 185 17 max 1141.7 1 2.088 4 1.197 1 0 3 .004 1 002 15 186 min -1029.704 3 .514 15 -82.831 4 0 4 286 4 008 4 187 18 max 1142.029 1 2.073 4 1.197 1 0 3 .004 1 002 15 188 min -1029.458 3 .511 15 -83.115 4 0 4 304 4 008 4			13													
184 min -1029.951 3 .518 15 -82.546 4 0 4 267 4 007 4 185 17 max 1141.7 1 2.088 4 1.197 1 0 3 .004 1 002 15 186 min -1029.704 3 .514 15 -82.831 4 0 4 286 4 008 4 187 18 max 1142.029 1 2.073 4 1.197 1 0 3 .004 1 002 15 188 min -1029.458 3 .511 15 -83.115 4 0 4 304 4 008 4			16											_		
185 17 max 1141.7 1 2.088 4 1.197 1 0 3 .004 1 002 15 186 min -1029.704 3 .514 15 -82.831 4 0 4 286 4 008 4 187 18 max 1142.029 1 2.073 4 1.197 1 0 3 .004 1 002 15 188 min -1029.458 3 .511 15 -83.115 4 0 4 304 4 008 4			'											-		
186 min -1029.704 3 .514 15 -82.831 4 0 4 286 4 008 4 187 18 max 1142.029 1 2.073 4 1.197 1 0 3 .004 1 002 15 188 min -1029.458 3 .511 15 -83.115 4 0 4 304 4 008 4			17									_		_		
187														_		
188 min -1029.458 3 .511 15 -83.115 4 0 4304 4008 4			18											1		
						3				4				4		
100 10 110x 1142.557 1 2.050 4 1.187 1 0 5 .005 1 002 15	189		19	max	1142.357	1	2.058	4	1.197	1	0	3	.005	1	002	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
190			min	-1029.212	3	.507	15	-83.4	4	0	4	322	4	009	4
191	M3	1	max	293.075	2	8.105	4	.014	1	0	3	0	1	.009	4
192			min	-405.041	3	1.918	15	-1.199	5	0	4	012	4	.002	15
193		2	max	292.905	2	7.333	4	.014	1	0	3	0	1	.005	4
194			min	-405.169	3	1.736	15	657	5	0	4	012	4	.001	12
195		3	max	292.734	2	6.56	4	.014	1	0	3	0	1	.003	2
196			min	-405.296	3	1.554	15	115	5	0	4	013	4	0	12
197		4	max	292.564	2	5.788	4	.48	4	0	3	0	1	0	2
198			min	-405.424	3	1.373	15	0	12	0	4	013	4	001	3
199		5	max	292.394	2	5.015	4	1.022	4	0	3	0	1	0	15
200			min	-405.552	3	1.191	15	0	12	0	4	012	4	002	3
201		6	max	292.223	2	4.243	4	1.565	4	0	3	0	1	0	15
202			min	-405.68	3	1.01	15	0	12	0	4	012	4	004	6
203		7	max	292.053	2	3.471	4	2.107	4	0	3	0	1	001	15
204			min	-405.807	3	.828	15	0	12	0	4	011	4	006	6
205		8	max	291.883	2	2.698	4	2.649	4	0	3	0	1	002	15
206			min	-405.935	3	.647	15	0	12	0	4	01	4	007	6
207		9	max		2	1.926	4	3.191	4	0	3	0	1	002	15
208				-406.063	3	.465	15	0	12	0	4	009	4	008	6
209		10	max	291.542	2	1.153	4	3.733	4	0	3	0	1	002	15
210		'0		-406.191	3	.283	15	0.700	12	0	4	007	5	009	6
211		11	max		2	.404	2	4.275	4	0	3	0	1	002	15
212			min	-406.318	3	.027	12	0	12	0	4	006	5	009	6
213		12		291.201	2	08	15	4.817	4	0	3	0	1	002	15
214		12	min	-406.446	3	423	3	0	12	0	4	004	5	002	6
215		13	max	291.031	2	261	15	5.359	4	0	3	0	1	003	15
216		13	min	-406.574	3	-1.165	6	0	12	0	4	002	5	002	6
217		14			2	443	15	5.902	4	0	3	0	4	00 <u>9</u> 002	
		14	max	290.861		-1.937		0.902	12			0			15
218		15	min	-406.702	3		6	_		0	4	_	12	008	6
219		15	max	290.69 -406.829	3	624 -2.71	1 <u>5</u>	6.444	4 12	0	3	.004	12	002 007	15
221		16						6.986			3	_			
		16	max	290.52	2	806	15		4	0		.006	4	001	15
222		47	min	-406.957	3	-3.482	6	7.500	12	0	4	0	12	006	6
223		17	max	290.35	2	988	15	7.528	4	0	3	.009	4	0	15
224		40	min	-407.085	3	-4.255	6	0	12	0	4	0	12	004	6
225		18	max	290.179	2	-1.169	15	8.07	4	0	3	.013	4	0	15
226		40	min	-407.213	3	-5.027	6	0	12	0	4	0	12	002	6
227		19	max		2	-1.351	15	8.612	4	0	3	.016	4	0	1
228			min	-407.341	3_	-5.8	6	0	12	0	4	0	12	0	1
229	M4	1	max	1263.028	1_	0	1	315	12	0	1	.009	4	0	1
230				-315.502		0		-235.438		0	1	0	10	0	1
231		2		1263.198	_1_	0	1	315	12	0	1	0	12	0	1
232			_	-315.374	3	0	1	-235.586		0	1	018	4	0	1
233		3		1263.369	_1_	0	1	315	12	0	1	0	12	0	1
234				-315.246	3	0	1	-235.733	4	0	1	046	4	0	1
235		4		1263.539	_1_	0	1	315	12	0	1	0	12	0	1
236				-315.118	3	0	1	-235.881	4	0	1	073	4	0	1
237		5	max	1263.709	_1_	0	1	315	12	0	1	0	12	0	1
238			min	-314.991	3	0	1	-236.029	4	0	1	1	4	0	1
239		6	max	1263.88	1	0	1	315	12	0	1	0	12	0	1
240				-314.863	3	0	1	-236.176	4	0	1	127	4	0	1
241		7	max	1264.05	1	0	1	315	12	0	1	0	12	0	1
242			min	-314.735	3	0	1	-236.324	4	0	1	154	4	0	1
243		8	max	1264.22	1	0	1	315	12	0	1	0	12	0	1
244				-314.607	3	0	1	-236.472	4	0	1	181	4	0	1
245		9		1264.391	1	0	1	315	12	0	1	0	12	0	1
246				-314.48	3	0	1	-236.619	4	0	1	208	4	0	1
				_											

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
247		10	max	1264.561	1	0	1	315	12	0	1	0	12	0	1
248			min	-314.352	3	0	1	-236.767	4	0	1	235	4	0	1
249		11	max	1264.731	1	0	1	315	12	0	1	0	12	0	1
250			min	-314.224	3	0	1	-236.914	4	0	1	263	4	0	1
251		12	max	1264.902	1	0	1	315	12	0	1	0	12	0	1
252			min	-314.096	3	0	1	-237.062	4	0	1	29	4	0	1
253		13	max	1265.072	1	0	1	315	12	0	1	0	12	0	1
254			min		3	0	1	-237.21	4	0	1	317	4	0	1
255		14	max	1265.242	1	0	1	315	12	0	1	0	12	0	1
256			min	-313.841	3	0	1	-237.357	4	0	1	344	4	0	1
257		15	max	1265.413	1	0	1	315	12	0	1	0	12	0	1
258			min	-313.713	3	0	1	-237.505	4	0	1	372	4	0	1
259		16	max	1265.583	1	0	1	315	12	0	1	0	12	0	1
260			min	-313.585	3	0	1	-237.653	4	0	1	399	4	0	1
261		17	max	1265.753	1	0	1	315	12	0	1	0	12	0	1
262			min	-313.457	3	0	1	-237.8	4	0	1	426	4	0	1
263		18	max	1265.924	1	0	1	315	12	0	1	0	12	0	1
264			min	-313.33	3	0	1	-237.948	4	0	1	453	4	0	1
265		19		1266.094	1	0	1	315	12	0	1	0	12	0	1
266			min	-313.202	3	0	1	-238.096	4	0	1	481	4	0	1
267	M6	1		3658.382	1	2.705	2	0	1	0	1	0	4	0	1
268			min	-3387.573	3	.209	12	-78.97	4	0	4	0	1	0	1
269		2		3658.711	1	2.693	2	0	1	0	1	0	1	0	12
270		_	min	-3387.326	3	.203	12	-79.255	4	0	4	018	4	0	2
271		3		3659.039	1	2.681	2	0	1	0	1	0	1	0	12
272			min	-3387.08	3	.197	12	-79.54	4	0	4	035	4	001	2
273		4		3659.367	1	2.669	2	0	1	0	1	0	1	0	12
274		•	min	-3386.834	3	.191	12	-79.825	4	0	4	053	4	002	2
275		5	_	3659.696	1	2.657	2	0	1	0	1	0	1	0	12
276			min	-3386.587	3	.185	12	-80.109	4	0	4	07	4	002	2
277		6		3660.024	1	2.645	2	0	1	0	1	0	1	0	12
278			min	-3386.341	3	.179	12	-80.394	4	0	4	088	4	003	2
279		7		3660.353	1	2.634	2	0	1	0	1	0	1	0	12
280		'	min	-3386.095	3	.173	12	-80.679	4	0	4	106	4	004	2
281		8		3660.681	1	2.622	2	0	1	0	1	0	1	0	12
282			min	-3385.848	3	.167	12	-80.964	4	0	4	124	4	004	2
283		9	max		1	2.61	2	0	1	0	1	0	1	0	12
284			min	-3385.602	3	.161	12	-81.249	4	0	4	142	4	005	2
285		10	max		1	2.598	2	0	1	0	1	0	1	0	12
286		- 10	min	-3385.356	3	.155	12	-81.534	4	0	4	16	4	005	2
287		11		3661.666	1	2.586	2	0	1	0	1	0	1	0	12
288			min		3	.15	12	-81.818	4	0	4	178	4	006	2
289		12		3661.995	1	2.574	2	0	1	0	1	0	1	0	12
290		15	min		3	.144	12	-82.103	4	0	4	196	4	006	2
291		13		3662.323	1	2.562	2	0	1	0	1	0	1	0	12
292		10	min	-3384.617	3	.138	12	-82.388	4	0	4	214	4	007	2
293		14		3662.652	1	2.55	2	0	1	0	1	0	1	0	12
294		T -	min		3	.129	3	-82.673	4	0	4	233	4	008	2
295		15	max		1	2.538	2	0	1	0	1	0	1	0	12
296		13	min	-3384.124	3	.12	3	-82.958	4	0	4	251	4	008	2
297		16		3663.309	1	2.527	2	0	1	0	1	0	1	008 0	12
298		10	min		3	.111	3	-83.243	4	0	4	27	4	009	2
		17		3663.637	1	2.515		_	1	0	1		1	009 0	12
299		17			3		3	-83.527	4	0	4	288	4		2
300		10	min			.102	_		1					009	
301		18		3663.965 -3383.385	3	2.503	3	-83.812		0	<u>1</u> 4	307	1	0	12
302		10	min			.093			4	0			4	01	
303		19	ımax	3664.294	1	2.491	2	0	1	0	_1_	0	1	0	12

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
304			min	-3383.139	3	.084	3	-84.097	4	0	4	325	4	01	2
305	M7	1	max	1193.657	2	8.118	6	0	1	0	1	0	1	.01	2
306			min	-1272.729	3	1.905	15	-1.269	5	0	4	012	4	0	12
307		2	max	1193.487	2	7.345	6	0	1	0	1	0	1	.008	2
308			min	-1272.857	3	1.723	15	727	5	0	4	013	4	0	3
309		3	max	1193.317	2	6.573	6	0	1	0	1	0	1	.005	2
310			min	-1272.985	3	1.542	15	185	5	0	4	013	4	002	3
311		4	max	1193.146	2	5.8	6	.402	4	0	1	0	1	.003	2
312			min	-1273.112	3	1.36	15	0	1	0	4	013	4	004	3
313		5	max	1192.976	2	5.028	6	.944	4	0	1	0	1	0	2
314			min	-1273.24	3	1.178	15	0	1	0	4	012	4	005	3
315		6	max	1192.806	2	4.256	6	1.487	4	0	1	0	1	0	2
316			min	-1273.368	3	.997	15	0	1	0	4	012	4	006	3
317		7	max	1192.635	2	3.483	6	2.029	4	0	1	0	1	001	15
318			min	-1273.496	3	.815	15	0	1	0	4	011	4	006	3
319		8	max	1192.465	2	2.711	6	2.571	4	0	1	0	1	002	15
320			min	-1273.623	3	.634	15	0	1	0	4	01	4	007	4
321		9	max	1192.295	2	1.967	2	3.113	4	0	1	0	1	002	15
322			min	-1273.751	3	.383	12	0	1	0	4	009	4	008	4
323		10	max	1192.124	2	1.365	2	3.655	4	0	1	0	1	002	15
324			min	-1273.879	3	.082	12	0	1	0	4	008	4	009	4
325		11	max	1191.954	2	.763	2	4.197	4	0	1	0	1	002	15
326			min	-1274.007	3	365	3	0	1	0	4	006	4	009	4
327		12	max	1191.784	2	.161	2	4.739	4	0	1	0	1	002	15
328			min	-1274.134	3	816	3	0	1	0	4	004	4	009	4
329		13	max	1191.613	2	274	15	5.281	4	0	1	0	1	002	15
330			min	-1274.262	3	-1.268	3	0	1	0	4	002	5	009	4
331		14	max	1191.443	2	456	15	5.824	4	0	1	0	4	002	15
332			min	-1274.39	3	-1.924	4	0	1	0	4	0	1	008	4
333		15	max	1191.273	2	637	15	6.366	4	0	1	.003	4	002	15
334			min	-1274.518	3	-2.696	4	0	1	0	4	0	1	007	4
335		16	max	1191.102	2	819	15	6.908	4	0	1	.006	4	001	15
336			min	-1274.645	3	-3.469	4	0	1	0	4	0	1	006	4
337		17		1190.932	2	-1	15	7.45	4	0	1	.009	4	0	15
338			min	-1274.773	3	-4.241	4	0	1	0	4	0	1	004	4
339		18	max	1190.762	2	-1.182	15	7.992	4	0	1	.012	4	0	15
340			min	-1274.901	3	-5.013	4	0	1	0	4	0	1	002	4
341		19	max	1190.591	2	-1.364	15	8.534	4	0	1	.016	4	0	1
342			min	-1275.029	3	-5.786	4	0	1	0	4	0	1	0	1
343	M8	1	max	3719.524	1	0	1	0	1	0	1	.008	4	0	1
344			min	-1079.785	3	0	1	-230.207	4	0	1	0	1	0	1
345		2	max	3719.694	1	0	1	0	1	0	1	0	1	0	1
346			min		3	0	1	-230.355	4	0	1	018	4	0	1
347		3	max	3719.864	1	0	1	0	1	0	1	0	1	0	1
348			min		3	0	1	-230.502	4	0	1	045	4	0	1
349		4	max	3720.035	1	0	1	0	1	0	1	0	1	0	1
350			min	-1079.401	3	0	1	-230.65	4	0	1	071	4	0	1
351		5	max	3720.205	1	0	1	0	1	0	1	0	1	0	1
352			min		3	0	1	-230.797	4	0	1	098	4	0	1
353		6	max	3720.376	1	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1	-230.945	4	0	1	124	4	0	1
355		7		3720.546	1	0	1	0	1	0	1	0	1	0	1
356				-1079.018	3	0	1	-231.093		0	1	151	4	0	1
357		8		3720.716	1	0	1	0	1	0	1	0	1	0	1
358		Ĭ		-1078.89		0	1	-231.24	4	0	1	177	4	0	1
359		9		3720.887	1	0	1	0	1	0	1	0	1	0	1
360				-1078.762	3	0	1	-231.388	_	0	1	204	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		Axial[lb]						Torque[k-ft]	LC	1 -	LC	_	
361		10		3721.057	1_	0	1	0	1_1	0	1	0	1	0	1
362		4.4	min	-1078.635	3	0	1	-231.536	4_	0	<u>1</u> 1	23	1	0	1
363 364		11		3721.227 -1078.507	<u>1</u> 3	0	1	0 -231.683	4	0	1	257	4	0	1
365		12	_	3721.398	<u>ა</u> 1	0	1	0	1	0	1	0	1	0	1
366		12		-1078.379	3	0	1	-231.831	4	0	1	284	4	0	1
367		13		3721.568	1	0	1	0	1	0	1	0	1	0	1
368		13		-1078.251	3	0	1	-231.979	4	0	1	31	4	0	1
369		14		3721.738	1	0	1	0	1	0	-	0	1	0	1
370			min	-1078.124	3	0	1	-232.126	4	0	1	337	4	0	1
371		15		3721.909	1	0	1	0	1	Ö	1	0	1	0	1
372			min	-1077.996	3	0	1	-232.274	4	0	1	364	4	0	1
373		16		3722.079	1	0	1	0	1	0	1	0	1	0	1
374				-1077.868	3	0	1	-232.421	4	0	1	39	4	0	1
375		17		3722.249	1	0	1	0	1	0	1	0	1	0	1
376				-1077.74	3	0	1	-232.569	4	0	1	417	4	0	1
377		18	max	3722.42	1	0	1	0	1	0	1	0	1	0	1
378			min	-1077.613	3	0	1	-232.717	4	0	1	444	4	0	1
379		19	max	3722.59	1	0	1	0	1	0	1	0	1	0	1
380			min	-1077.485	3	0	1	-232.864	4	0	1	47	4	0	1
381	M10	1	max	1136.445	1	2.229	6	046	12	0	1_	0	1	0	1
382			min	-1033.645	3	.503	15	-78.874	4	0	5	0	3	0	1
383		2		1136.774	_1_	2.214	6	046	12	0	_1_	0	10	0	15
384				-1033.399	3	.499	15	-79.159	4	0	5	017	4	0	6
385		3		1137.102	_1_	2.199	6	046	12	0	_1_	0	12	0	15
386				-1033.153	3	.495	15	-79.444	4	0	5	035	4	0	6
387		4		1137.431	1_	2.184	6	046	12	0	1_	0	12	0	15
388				-1032.906	3_	.492	15	-79.728	4_	0	5	053	4	001	6
389		5		1137.759	1_	2.168	6	046	12	0	1_	0	12	0	15
390				-1032.66	3	.488	15	-80.013	4	0	5	07	4	002	6
391		6		1138.087	1	2.153	6	046	12	0	1	0	12	0	15
392		7	min	-1032.414 1138.416	3	.485	15	-80.298	<u>4</u> 12	0	<u>5</u> 1	088 0	12	002	6
393 394				-1032.168	<u>1</u> 3	2.138 .481	6 15	046 -80.583	4	0	5	106	4	003	15 6
395		8		1138.744	<u>ა</u> 1	2.123	6	046	12	0	<u> </u>	100	12	003	15
396		0		-1031.921	3	.477	15	-80.868	4	0	5	124	4	003	6
397		9		1139.073	<u> </u>	2.107	6	046	12	0	1	0	12	0	15
398		3		-1031.675	3	.474	15	-81.153	4	0	5	142	4	004	6
399		10		1139.401	1	2.092	6	046	12	0	1	0	12	0	15
400		10		-1031.429	3	.47	15	-81.437	4	0	5	16	4	004	6
401		11		1139.73	1	2.077	6	046	12	0	1	0	12	001	15
402			min		3	.467	15	-81.722	4	0	5	178	4	005	6
403		12		1140.058	1	2.062	6	046	12	0	1	0	12	001	15
404				-1030.936	3	.463	15	-82.007	4	0	5	196	4	005	6
405		13		1140.387	1	2.046	6	046	12	0	1	0	12	001	15
406				-1030.69	3	.46	15	-82.292	4	0	5	214	4	006	6
407		14		1140.715	1	2.031	6	046	12	0	1	0	12	001	15
408				-1030.443	3	.456	15	-82.577	4	0	5	232	4	006	6
409		15		1141.043	1	2.016	6	046	12	0	1	0	12	001	15
410				-1030.197	3	.452	15	-82.862	4	0	5	251	4	007	6
411		16	max	1141.372	_1_	2.001	6	046	12	0	1	0	12	002	15
412			min	-1029.951	3	.449	15	-83.146	4	0	5	269	4	007	6
413		17	max		1_	1.985	6	046	12	0	1	0	12	002	15
414				-1029.704	3	.445	15	-83.431	4	0	5	288	4	007	6
415		18		1142.029	1_	1.97	6	046	12	0	1	0	12	002	15
416			_	-1029.458	3	.442	15	-83.716	4	0	5	306	4	008	6
417		19	max	1142.357	_1_	1.955	6	046	12	0	_1_	0	12	002	15

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

440	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]				z-z Mome	LC
418	N444	4	min	-1029.212	3	.438	15	-84.001	4	0	5_	325	4	008	6
419	M11	1	max	293.075	2	8.051	6	0	12	0	1_	0	12	.008	6
420		2	min	-405.041	3	1.881	15	-1.2	5	0	4	012	4	.002	15
421		2	max	292.905	2	7.279	6	0	12	0	1_4	0	12	.005	6
422		2	min	-405.169	3	1.7	15	658	<u>5</u> 12	0	<u>4</u> 1	013	12	.001	15
423		3	max	292.734	2	6.506	6 1E	0		0		0		.003	2
424		4	min	-405.296	3	1.518	15	116	5_4	0	4	013	4	0	12
425		4	max	292.564	2	5.734	6	.474	4	0	1_	0	12	0	2
426		_	min	-405.424	3	1.337	15	014	1_	0	4	013	4	001	3
427		5	max	292.394	2	4.961	6	1.016	4	0	1_4	0	12	0	15
428		_	min	-405.552	3	1.155	15	014	1	0	4	012	4	003	4
429		6	max	292.223	2	4.189	6	1.558	4_	0	1_	0	12	001	15
430		7	min	-405.68	3	.973	15	014	1_	0	4	012	4	005	4
431		7	max	292.053	2	3.416	6	2.1	4	0	1_	0	12	002	15
432		_	min	-405.807	3	.792	15	014	1_	0	4	011	4	006	4
433		8	max	291.883	2	2.644	6	2.642	4_	0	1_	0	12	002	15
434			min	-405.935	3	.61	15	014	1_	0	4	01	4	007	4
435		9	max	291.712	2	1.872	6	3.184	4	0	1	0	12	002	15
436		4.0	min	-406.063	3	.429	15	014	1_	0	4	009	4	008	4
437		10	max	291.542	2	1.099	6	3.727	4_	0	1_	0	12	002	15
438		4.4	min	-406.191	3	.247	15	014	1_	0	4	007	4	009	4
439		11	max	291.372	2	.404	2	4.269	4_	0	1	0	12	002	15
440		4.0	min	-406.318	3	.027	12	014	_1_	0	4_	006	4	009	4
441		12	max	291.201	2	116	15	4.811	4	0	_1_	0	12	002	15
442			min	-406.446	3_	447	4_	014	_1_	0	4_	004	4	009	4
443		13	max	291.031	2	298	15	5.353	_4_	0	_1_	0	12	002	15
444			min	-406.574	3_	-1.219	4	014	<u>1</u>	0	4_	002	4	009	4
445		14	max	290.861	2	479	15	5.895	_4_	0	_1_	0	4	002	15
446			min	-406.702	3	-1.992	4	014	1_	0	4	0	1	008	4
447		15	max	290.69	2	661	15	6.437	_4_	0	_1_	.003	4	002	15
448			min	-406.829	3	-2.764	4	014	1_	0	4	0	1	007	4
449		16	max	290.52	2	842	15	6.979	_4_	0	_1_	.006	4	001	15
450			min	-406.957	3	-3.536	4	014	1_	0	4	0	1	006	4
451		17	max	290.35	2	-1.024	15	7.522	4_	0	_1_	.009	4	001	15
452			min	-407.085	3	-4.309	4	014	1_	0	4	0	1	004	4
453		18	max	290.179	2	-1.205	15	8.064	_4_	0	_1_	.013	4	0	15
454			min	-407.213	3	-5.081	4	014	1_	0	4	0	1	002	4
455		19	max	290.009	2	-1.387	15	8.606	4_	0	_1_	.016	4	0	1
456			min	-407.341	3	-5.854	4	014	1_	0	4	0	1	0	1
457	M12	1		1263.028	_1_	0	1_	7.992	_1_	0	_1_	.009	4	0	1
458				-315.502	3	0	1	-231.413	4	0	1_	0	1	0	1
459		2		1263.198	_1_	0	1	7.992	_1_	0	_1_	0	1	0	1
460				-315.374	3	0	1	-231.561	4	0	1_	018	4	0	1
461		3		1263.369	1_	0	1	7.992	1_	0	1_	.002	1	0	1
462				-315.246	3	0	1	-231.709	4	0	1_	045	4	0	1
463		4		1263.539	_1_	0	1	7.992	_1_	0	_1_	.003	1	0	1
464				-315.118	3	0	1	-231.856	4	0	1_	071	4	0	1
465		5		1263.709	<u>1</u>	0	1_	7.992	_1_	0	_1_	.004	1	0	1
466				-314.991	3	0	1	-232.004	4	0	1_	098	4	0	1
467		6		1263.88	_1_	0	1	7.992	_1_	0	_1_	.004	1	0	1
468				-314.863	3	0	1	-232.152	4	0	1	125	4	0	1
469		7	max	1264.05	1	0	1	7.992	1_	0	1	.005	1	0	1
470			min	-314.735	3	0	1	-232.299	4	0	1	151	4	0	1
471		8	max	1264.22	1	0	1	7.992	1	0	1	.006	1	0	1
472			min	-314.607	3	0	1	-232.447	4	0	1	178	4	0	1
473		9	max	1264.391	1	0	1	7.992	1	0	1	.007	1	0	1
474			min	-314.48	3	0	1	-232.594	4	0	1	205	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

475	Member	Sec		Axial[lb]						Torque[k-ft]			l .	_	1 1
475		10		1264.561	1	0	1	7.992	1	0	<u>1</u> 1	.008	1	0	1
476		11	min	-314.352	<u>3</u> 1	0	1	-232.742	1	0	1	231	1	0	1
477 478				1264.731 -314.224	3	0	1	7.992 -232.89	4	0	1	.009 258	4	0	1
479		12		1264.902	<u>ა</u> 1		1	7.992	1	-	1		1	0	1
480		12		-314.096	3	0	1	-233.037	4	0	1	.01 285	4	0	1
		12								_	_		_	_	1
481		13		1265.072	1	0	1	7.992	4	0	<u>1</u> 1	.011 312	4	0	1
		4.4		-313.968	3_4		1	-233.185		_	1		1		1
483		14		1265.242	1	0		7.992	1_4	0	1	.012	<u> </u>	0	
484		15	min	-313.841	3	0	1	-233.333 7.992	1	0	1	338	1	0	1
485		15		1265.413	1	0			_	0	1	.013	_	0	_
486		4.0	min	-313.713	3_	0	1_	-233.48	4	0		365	4	0	1
487		16		1265.583	1	0	1	7.992	11	0	1	.014	1	0	1
488		47		-313.585	3	0		-233.628	4	0		392	4	0	
489		17		1265.753	1	0	1	7.992	1	0	1_	.015	1	0	1
490		40		-313.457	3	0	1_	-233.776	4	0	1_	419	4	0	1
491		18		1265.924	1_	0	1	7.992	1	0	1	.015	1	0	1
492		40	min	-313.33	3	0	1_	-233.923	4	0	1_	446	4	0	1
493		19		1266.094	1_	0	1_	7.992	1	0	1	.016	1	0	1
494			min	-313.202	3	0	1	-234.071	4	0	1	473	4	0	1
495	<u>M1</u>	1	max	136.283	_1_	584.624	3	55.881	5	0	1	.2	1	0	3
496			min	-6.198	5_	-521.301	1_	-84.042	1_	0	3	058	5	014	1
497		2	max	136.654	_1_	583.586	3	57.122	5	0	1	.156	1	.261	1
498			min	-6.025	5	-522.685	1_	-84.042	1	0	3	028	5	308	3
499		3	max	239.927	3	581.445	_1_	-3.468	12	0	3	.111	1_	.524	1
500			min	-151.327	2	-425.924	3	-83.055	1	0	1	.001	15	603	3
501		4	max		3	580.061	_1_	-3.468	12	0	3	.067	1	.218	1
502				-150.956	2	-426.962	3	-83.055	1	0	1_	008	5	378	3
503		5	max	240.483	3	578.677	1_	-3.468	12	0	3	.024	1	004	15
504			min	-150.585	2	-427.999	3	-83.055	1	0	1	016	5	153	3
505		6	max	240.761	3_	577.294	1_	-3.468	12	0	3	0	12	.074	3
506			min	-150.214	2	-429.037	3	-83.055	1	0	1_	028	4	393	1
507		7	max		3_	575.91	_1_	-3.468	12	0	3	003	12	.3	3
508			min	-149.844	2	-430.075	3	-83.055	1	0	1	064	1	697	1
509		8	max	241.317	3	574.526	1	-3.468	12	0	3	004	12	.527	3
510			min	-149.473	2	-431.113	3	-83.055	1	0	1	108	1	-1.001	1
511		9	max	249.081	3	39.89	2	38.662	5	0	9	.064	1	.616	3
512			min	-95.106	2	.417	15	-122.297	1	0	3	116	5	-1.14	1
513		10	max	249.359	3	38.507	2	39.903	5	0	9	0	10	.6	3
514			min	-94.735	2	0	5	-122.297	1	0	3	096	4	-1.151	1
515		11	max	249.637	3	37.123	2	41.145	5	0	9	003	12	.585	3
516			min	-94.364	2	-1.734	4	-122.297	1	0	3	087	4	-1.162	1
517		12	max	257.355	3	285.494	3	125.203	5	0	1	.107	1	.51	3
518			min	-59.585	10	-616.589	1	-81.171	1	0	3	168	5	-1.026	1
519		13		257.633	3	284.456	3	126.445	5	0	1	.064	1	.359	3
520				-59.276	10	-617.973	1	-81.171	1	0	3	102	5	7	1
521		14		257.911	3	283.419	3	127.686	5	0	1	.021	1	.209	3
522			min		10	-619.356	1	-81.171	1	0	3	034	5	373	1
523		15		258.189	3	282.381	3	128.928	5	0	1	.033	5	.06	3
524			min	-58.658	10	-620.74	1	-81.171	1	0	3	022	1	046	1
525		16	max		3	281.343	3	130.169	5	0	1	.102	5	.282	1
526			min	-58.349	10	-622.123	1	-81.171	1	0	3	065	1	089	3
527		17	max		3	280.305	3	131.411	5	0	1	.171	5	.61	1
528			min	-58.04	10	-623.507	1	-81.171	1	0	3	108	1	237	3
529		18	max	13.402	5	604.21	1	-3.528	12	0	5	.142	5	.306	1
530		10	min	-136.83	1	-238.585	3	-107.263		0	1	154	1	117	3
531		19	max		5	602.827	1	-3.528	12	0	5	.096	5	.009	3
		10	παλ	10.070		302.021		0.020	14						

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
532			min	-136.46	1	-239.623	3	-106.022	4	0	1	201	1	013	1
533	M5	1	max	294.733	1	1949.772	3	85.059	5	0	1	0	1	.028	1
534			min	8.827	12	-1765.607	1	0	1	0	4	129	4	001	3
535		2	max	295.104	1	1948.735	3	86.301	5	0	1	0	1	.96	1
536			min	9.012	12	-1766.99	1	0	1	0	4	084	4	-1.03	3
537		3	max	770.57	3	1775.59	1	13.758	4	0	4	0	1	1.85	1
538			min	-545.106	2	-1365.613	3	0	1	0	1	04	4	-2.018	3
539		4	max	770.848	3	1774.206	1	15	4	0	4	0	1	.914	1
540			min	-544.735	2	-1366.651	3	0	1	0	1	032	4	-1.297	3
541		5	max	771.127	3	1772.823	1	16.241	4	0	4	0	1	.014	9
542			min	-544.364	2	-1367.688	3	0	1	0	1	024	4	576	3
543		6	max	771.405	3	1771.439	1	17.483	4	0	4	0	1	.146	3
544			min	-543.993	2	-1368.726	3	0	1	0	1	015	5	957	1
545		7	max	771.683	3	1770.056	1	18.724	4	0	4	0	1	.869	3
546			min	-543.623	2	-1369.764	3	0	1	0	1	007	5	-1.892	1
547		8	max	771.961	3	1768.672	1	19.966	4	0	4	.005	4	1.592	3
548			min	-543.252	2	-1370.801	3	0	1	0	1	0	1	-2.825	1
549		9	max	785.005	3	132.676	2	123.558	4	0	1	0	1	1.832	3
550			min	-431.443	2	.418	15	0	1	0	1	152	4	-3.196	1
551		10	max	785.283	3	131.293	2	124.8	4	0	1	0	1	1.776	3
552			min	-431.072	2	0	15	0	1	0	1	087	5	-3.233	1
553		11	max	785.561	3	129.909	2	126.041	4	0	1	0	1	1.72	3
554			min	-430.701	2	-1.597	6	0	1	0	1	022	5	-3.269	1
555		12	max	798.7	3	900.704	3	170.372	4	0	1	0	1	1.51	3
556			min	-318.917	2	-1909.161	1	0	1	0	4	233	4	-2.913	1
557		13	max	798.978	3	899.666	3	171.614	4	0	1	0	1	1.035	3
558			min	-318.546	2	-1910.545	1	0	1	0	4	143	4	-1.905	1
559		14	max	799.256	3	898.629	3	172.855	4	0	1	0	1	.56	3
560			min	-318.175	2	-1911.928	1	0	1	0	4	052	4	897	1
561		15	max	799.534	3	897.591	3	174.096	4	0	1	.039	4	.172	2
562			min	-317.804	2	-1913.312	1	0	1	0	4	0	1	004	13
563		16	max	799.812	3	896.553	3	175.338	4	0	1	.132	4	1.122	1
564			min	-317.434	2	-1914.696	1	0	1	0	4	0	1	387	3
565		17	max	800.09	3	895.515	3	176.579	4	0	1	.225	4	2.133	1
566			min	-317.063	2	-1916.079	1	0	1	0	4	0	1	86	3
567		18	max	-9.208	12	2042.708	1	0	1	0	4	.221	4	1.103	1
568			min	-294.75	1	-817.573	3	-40.865	5	0	1	0	1	449	3
569		19	max	-9.023	12	2041.324	1	0	1	0	4	.201	4	.025	1
570			min	-294.38	1	-818.61	3	-39.624	5	0	1	0	1	017	3
571	M9	1	max	136.283	1	584.624	3	84.042	1	0	3	008	12	0	3
572				4.833	12	-521.301		3.517	12		1	2	1	014	1
573		2		136.654	1	583.586	3	84.042	1	0	3	007	12	.261	1
574			min	5.018	12			3.517	12	0	1	156	1	308	3
575		3		239.927	3	581.445	1	83.055	1	0	1	005	12	.524	1
576			min	-151.327	2	-425.924	3	-9.852	5	0	3	111	1	603	3
577		4		240.205	3	580.061	1	83.055	1	0	1	003	12	.218	1
578					2	-426.962	3	-8.611	5	0	3	067	1	378	3
579		5		240.483	3	578.677	1	83.055	1	0	1	001	12	004	15
580				-150.585		-427.999		-7.37	5	0	3	024	4	153	3
581		6		240.761	3	577.294	1	83.055	1	0	1	.02	1	.074	3
582		Ĭ		-150.214	2	-429.037	3	-6.128	5	0	3	022	5	393	1
583		7		241.039	3	575.91	1	83.055	1	0	1	.064	1	.3	3
584				-149.844		-430.075		-4.887	5	0	3	025	5	697	1
585		8		241.317	3	574.526	1	83.055	1	0	1	.108	1	.527	3
586		Ĭ	min	-149.473	2	-431.113	3	-3.645	5	0	3	027	5	-1.001	1
587		9		249.081	3	39.89	2	122.297	1	0	3	003	12	.616	3
588					2	.422	15	4.976	12	0	9	137	4	-1.14	1
000			111111	00.100	_		10	1.070	-12	•		. 107	Т	1117	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	249.359	3	38.507	2	122.297	1	0	3	0	1	.6	3
590			min	-94.735	2	.005	15	4.976	12	0	9	096	4	-1.151	1
591		11	max	249.637	3	37.123	2	122.297	1	0	3	.065	1	.585	3
592			min	-94.364	2	-1.695	6	4.976	12	0	9	068	5	-1.162	1
593		12	max	257.355	3	285.494	3	151.394	4	0	3	004	12	.51	3
594			min	-59.585	10	-616.589	1	3.213	12	0	1	202	4	-1.026	1
595		13	max	257.633	3	284.456	3	152.635	4	0	3	003	12	.359	3
596			min	-59.276	10	-617.973	1	3.213	12	0	1	122	4	7	1
597		14	max	257.911	3	283.419	3	153.877	4	0	3	0	12	.209	3
598			min	-58.967	10	-619.356	1	3.213	12	0	1	041	4	373	1
599		15	max	258.189	3	282.381	3	155.118	4	0	3	.041	4	.06	3
600			min	-58.658	10	-620.74	1	3.213	12	0	1	0	12	046	1
601		16	max	258.467	3	281.343	3	156.36	4	0	3	.123	4	.282	1
602			min	-58.349	10	-622.123	1	3.213	12	0	1	.003	12	089	3
603		17	max	258.745	3	280.305	3	157.601	4	0	3	.206	4	.61	1
604			min	-58.04	10	-623.507	1	3.213	12	0	1	.004	12	237	3
605		18	max	-4.92	12	604.21	1	88.878	1	0	1	.191	4	.306	1
606			min	-136.83	1	-238.585	3	-79.714	5	0	3	.006	12	117	3
607	·	19	max	-4.735	12	602.827	1	88.878	1	0	1	.201	1	.009	3
608			min	-136.46	1	-239.623	3	-78.472	5	0	3	.008	12	013	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.116	1	.004	3 9.229e-3	1	NC	1	NC	1
2			min	47	4	019	3	002	2 -1.452e-3	3	NC	1	NC	1
3		2	max	0	1	.256	3	.032	1 1.06e-2	1	NC	5	NC	2
4			min	47	4	108	1	013	5 -1.515e-3	3	871.953	3	7874.003	1
5		3	max	0	1	.479	3	.076	1 1.198e-2	1	NC	5	NC	3
6			min	47	4	285	1	015	5 -1.578e-3	3	482.071	3	3220.415	1
7		4	max	0	1	.613	3	.114	1 1.335e-2	1	NC	5	NC	3
8			min	47	4	383	1	011	5 -1.641e-3	3	379.46	3	2130.19	1
9		5	max	0	1	.643	3	.134	1 1.473e-2	1	NC	5	NC	3
10			min	47	4	39	1	002	5 -1.704e-3	3	362.189	3	1813.644	1
11		6	max	0	1	.572	3	.129	1 1.611e-2	1	NC	5	NC	3
12			min	47	4	306	1	.005	15 -1.767e-3	3	406.291	3	1877.395	
13		7	max	0	1	.419	3	.102	1 1.748e-2	1	NC	5	NC	3
14			min	47	4	152	1	.005	10 -1.83e-3	3	548.024	3	2390.485	1
15		8	max	0	1	.225	3	.06	1 1.886e-2	1	NC	4	NC	2
16			min	47	4	.001	15	0	10 -1.894e-3	3	981.91	3	4129.358	1
17		9	max	0	1	.2	1	.018	14 2.023e-2	1	NC	4	NC	1
18			min	47	4	.005	15	004	10 -1.957e-3	3	2777.735	2	NC	1
19		10	max	0	1	.275	1	.014	3 2.161e-2	1	NC	3	NC	1
20			min	47	4	029	3	008	2 -2.02e-3	3	1514.523	1	NC	1
21		11	max	0	12	.2	1	.018	1 2.023e-2	1	NC	4	NC	1
22			min	47	4	.005	15	01	5 -1.957e-3	3	2777.735	2	NC	1
23		12	max	0	12	.225	3	.06	1 1.886e-2	1	NC	4	NC	2
24			min	47	4	0	15	01	5 -1.894e-3	3	981.91	3	4129.358	1
25		13	max	0	12	.419	3	.102	1 1.748e-2	1	NC	5	NC	3
26			min	47	4	152	1	004	5 -1.83e-3	3	548.024	3	2390.485	1
27		14	max	0	12	.572	3	.129	1 1.611e-2	1	NC	5	NC	3
28			min	47	4	306	1	.004	15 -1.767e-3	3	406.291	3	1877.395	1
29		15	max	0	12	.643	3	.134	1 1.473e-2	1	NC	5	NC	3
30			min	47	4	39	1	.009	10 -1.704e-3	3	362.189	3	1813.644	1
31		16	max	0	12	.613	3	.114	1 1.335e-2	1	NC	5	NC	3
32			min	47	4	383	1	.008	10 -1.641e-3	3	379.46	3	2130.19	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio			
33		17	max	0	12	<u>.479</u>	3	.076	1	1.198e-2	1	NC NC	_5_	NC	3
34		1.0	min	47	4	<u>285</u>	1	.005	10	-1.578e-3	3	482.071	3_	3220.415	1
35		18	max	0	12	.256	3	.032	1	1.06e-2	_1_	NC	5_	NC	2
36			min	47	4	108	1	.001		-1.515e-3	3	871.953	3	7874.003	1
37		19	max	00	12	.116	1	.004	3	9.229e-3	_1_	NC	_1_	NC	_1_
38			min	47	4	019	3	002	2	-1.452e-3	3	NC	1_	NC	1
39	M14	1	max	0	1	.182	3	.004	3	5.761e-3	_1_	NC	_1_	NC	1_
40			min	376	4	374	1	001	2	-3.284e-3	3	NC	1_	NC	1
41		2	max	0	1	.451	3	.023	1	6.917e-3	_1_	NC	5	NC	1
42			min	376	4	732	1	019	5	-3.998e-3	3	670.107	1_	NC	1
43		3	max	0	1	.679	3	.061	1	8.073e-3	1	NC	15	NC	2
44			min	376	4	-1.04	1	022	5	-4.712e-3	3	360.339	1_	4020.653	1
45		4	max	0	1	.837	3	.098	1	9.228e-3	1	NC	15	NC	3
46			min	376	4	-1.263	1	015	5	-5.426e-3	3	269.961	1	2489.839	1
47		5	max	0	1	.91	3	.119	1	1.038e-2	1	9947.13	15	NC	3
48			min	376	4	-1.383	1	002	5	-6.14e-3	3	237.745	1	2044.845	1
49		6	max	0	1	.899	3	.118	1	1.154e-2	1	9822.69	15	NC	3
50			min	376	4	-1.401	1	.007	10	-6.854e-3	3	233.719	1	2068.637	1
51		7	max	0	1	.818	3	.094	1	1.269e-2	1	NC	15	NC	3
52			min	376	4	-1.331	1	.004	10	-7.568e-3	3	250.61	1	2590.875	1
53		8	max	0	1	.698	3	.056	1	1.385e-2	1	NC	15	NC	2
54		Ť	min	376	4	-1.209	1	0	10	-8.281e-3	3	287.299	1	4412.142	1
55		9	max	0	1	.582	3	.026	4	1.501e-2	1	NC	15	NC	1
56			min	376	4	-1.084	1	003	10	-8.995e-3	3	337.769	1	9349.503	4
57		10	max	0	1	.528	3	.012	3	1.616e-2	1	NC	5	NC	1
58		1.0	min	376	4	-1.024	1	007	2	-9.709e-3	3	368.782	1	NC	1
59		11	max	0	12	.582	3	.017	1	1.501e-2	1	NC	15	NC	1
60			min	376	4	-1.084	1	019	5	-8.995e-3	3	337.769	1	NC	1
61		12	max	0	12	.698	3	.056	1	1.385e-2	1	NC	15	NC	2
62		12	min	376	4	-1.209	1	021	5	-8.281e-3	3	287.299	1	4412.142	1
63		13	max	0	12	.818	3	.094	1	1.269e-2	1	NC	15	NC	3
64		1.0	min	376	4	-1.331	1	013	5	-7.568e-3	3	250.61	1	2590.875	1
65		14	max	0	12	.899	3	.118	1	1.154e-2	1	9822.342	15	NC	3
66		1 1 7	min	376	4	-1.401	1	0	15	-6.854e-3	3	233.719	1	2068.637	1
67		15	max	0	12	.91	3	.119	1	1.038e-2	1	9946.683	15	NC	3
68		10	min	376	4	-1.383	1	.008	10	-6.14e-3	3	237.745	1	2044.845	1
69		16	max	0	12	.837	3	.098	1	9.228e-3	1	NC	15	NC	3
70		1.0	min	376	4	-1.263	1	.006	10	-5.426e-3	3	269.961	1	2489.839	1
71		17	max	0	12	.679	3	.061	1	8.073e-3	1	NC	15	NC	2
72		1 ''	min	376	4	-1.04	1	.004	10	-4.712e-3	3	360.339	1	4020.653	1
73		18	max	0	12	.451	3	.026	4	6.917e-3	1	NC	5	NC	1
74		10	min	376	4	732	1	0	10	-3.998e-3	3	670.107	1	9056.816	4
75		19	max	<u>370</u> 0	12	.182	3	.004	3	5.761e-3	1	NC	1	NC	1
76		13	min	376	4	374	1	001	2	-3.284e-3		NC NC	1	NC	1
77	M15	1	max	370	12	.186	3	.004	3	2.779e-3	3	NC	1	NC	1
78	IVITO		min	318	4	373	1	001	2	-5.864e-3	1	NC	1	NC NC	1
79		2	max	0	12	.36	3	.023	1	3.384e-3	3	NC	5	NC	1
80			min	318	4	769	1	028	5	-7.045e-3	1	607.062	1	8194.004	5
81		3		<u>310</u> 0	12	<u>709</u> .51	3	.062	1	3.99e-3	3	NC	15	NC	2
82		3	max min	318	4	-1.107	1	035	5	-8.226e-3	1	327.273	1	4009.27	1
83		4	max	<u>316</u> 0	12	.621	3	.098	1	4.596e-3	3	NC	15	NC	3
84		4	min	318	4	-1.348	1	025	5	-9.407e-3	1	246.268	1	2484.168	1
85		5		<u>316</u> 0	12	.684	3	.119	1	5.201e-3	3	9956.075	15	NC	3
86		J	max min	318	4	-1.472	1	007		-1.059e-2	<u>3</u>	218.347	1	2040.451	1
87		6	max	<u>316</u> 0	12	.699	3	.118	1	5.807e-3	3	9833.187	15	NC	3
88		U	min	318	4	-1.48	1	.007		-1.177e-2		216.814	15 1	2063.81	1
89		7		<u>316</u> 0	12	.673	3	.007	1	6.413e-3	3	NC	15	NC	3
US			max	U	14	.013	J	.030		0.4136-3	<u> </u>	INC	10	INC	J

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	318	4	-1.39	1	.005	10 -1.295e-2	1_	235.941	1_	2583.085	
91		8	max	0	12	.621	3	.056	1 7.018e-3	3	NC 070.040	<u>15</u>	NC 1000 F04	2
92			min	318	12	<u>-1.242</u> .566	3	.034	10 -1.413e-2	1_	276.219	1_	4389.504	
93		9	max	0 318	4	-1.094	1	003	4 7.624e-3 10 -1.531e-2	<u>3</u>	NC 333.12	<u>15</u> 1	NC 7021.017	4
95		10	max	- <u>316</u> 0	1	.539	3	.011	3 8.23e-3	3	NC	5	NC	1
96		10	min	318	4	-1.023	1	007	2 -1.649e-2	1	369.207	1	NC	1
97		11	max	0	1	.566	3	.017	1 7.624e-3	3	NC	15	NC	1
98			min	318	4	-1.094	1	027	5 -1.531e-2	1	333.12		8824.569	_
99		12	max	0	1	.621	3	.056	1 7.018e-3	3	NC	15	NC	2
100			min	318	4	-1.242	1	032	5 -1.413e-2	1	276.219	1	4389.504	
101		13	max	0	1	.673	3	.095	1 6.413e-3	3	NC	15	NC	3
102			min	318	4	-1.39	1	021	5 -1.295e-2	1	235.941	1	2583.085	1
103		14	max	0	1	.699	3	.118	1 5.807e-3	3	9832.93	15	NC	3
104			min	318	4	-1.48	1	002	5 -1.177e-2	1	216.814	1	2063.81	1
105		15	max	0	1	.684	3	.119	1 5.201e-3	3	9955.746	15	NC	3
106			min	318	4	-1.472	1	.008	10 -1.059e-2	1_	218.347	<u>1</u>	2040.451	1
107		16	max	0	1	.621	3	.098	1 4.596e-3	3	NC	<u>15</u>	NC	3
108			min	318	4	<u>-1.348</u>	1	.007	10 -9.407e-3	1_	246.268	1_	2484.168	
109		17	max	0	1	.51	3	.062	1 3.99e-3	3	NC 007.070	<u>15</u>	NC 4000.07	2
110		40	min	318	4	<u>-1.107</u>	1	.004	10 -8.226e-3	1	327.273	1_	4009.27	1
111		18	max	0	1 4	.36	3	.036	4 3.384e-3	3	NC 607.063	5	NC eco4 046	1
113		19	min	318 0	1	<u>769</u> .186	3	.004	10 -7.045e-3 3 2.779e-3	<u>1</u> 3	607.062 NC	<u>1</u> 1	6624.916 NC	1
114		19	max	318	4	373	1	004 001	2 -5.864e-3	1	NC NC	1	NC NC	1
115	M16	1	max	0	12	.112	1	.003	3 4.85e-3	3	NC	1	NC	1
116	IVITO		min	141	4	062	3	001	2 -8.605e-3	1	NC	1	NC	1
117		2	max	0	12	.037	3	.032	1 5.703e-3	3	NC	5	NC	2
118		Ĺ	min	141	4	159	2	021	5 -9.83e-3	1	913.742	1	7918.009	
119		3	max	0	12	.114	3	.076	1 6.556e-3	3	NC	5	NC	3
120			min	141	4	36	2	027	5 -1.105e-2	1	509.294	1	3227.777	1
121		4	max	0	12	.155	3	.114	1 7.409e-3	3	NC	5	NC	3
122			min	141	4	478	1	02	5 -1.228e-2	1	407.035	1	2130.975	1
123		5	max	0	12	.154	3	.134	1 8.262e-3	3	NC	5	NC	3
124			min	141	4	49	1	007	5 -1.35e-2	1	399.146	1	1811.23	1
125		6	max	0	12	.112	3	.13	1 9.115e-3	3	NC	5	NC	3
126			min	141	4	405	2	.005	15 -1.473e-2	1_	471.288	1_	1870.901	1
127		7	max	0	12	.039	3	.103	1 9.968e-3	3	NC	5	NC	3
128			min	141	4	244	2	.006	10 -1.595e-2	1_	713.714	2	2373.44	1
129		8	max	0	12	.01	9	.061	1 1.082e-2	3	NC 4740.005	3_	NC	2
130			min		4	049	3	.002	10 -1.718e-2					
131		9	max	0	12	.177 127	3	.024 002	4 1.167e-2	3	NC	3	NC	1
132		10	min	<u>141</u>	1	<u>127</u> .261	1	002 .01	10 -1.84e-2 3 1.253e-2	<u>1</u>	3657.991 NC	<u>5</u>	9909.174 NC	1
134		10	max min	0 141	4	162	3	006	2 -1.963e-2	<u>3</u>	1603.848	1	NC NC	1
135		11	max	0	1	.177	1	.019	1 1.167e-2	3	NC	4	NC	1
136			min	141	4	127	3	017	5 -1.84e-2	1	3657.991	3	NC	1
137		12	max	0	1	.01	9	.061	1 1.082e-2	3	NC	3	NC	2
138		12	min	141	4	049	3	018	5 -1.718e-2	1	1743.695	2	4061.682	
139		13	max	0	1	.039	3	.103	1 9.968e-3	3	NC	5	NC	3
140		'	min	141	4	244	2	009	5 -1.595e-2	1	713.714	2	2373.44	1
141		14	max	0	1	.112	3	.13	1 9.115e-3	3	NC NC	5	NC	3
142			min	141	4	405	2	.004	15 -1.473e-2	1	471.288	1	1870.901	1
143		15	max	0	1	.154	3	.134	1 8.262e-3	3	NC	5	NC	3
144			min	141	4	49	1	.008	12 -1.35e-2	1	399.146	1	1811.23	1
145		16	max	0	1	.155	3	.114	1 7.409e-3	3	NC	5	NC	3
146			min	141	4	478	1	.007	12 -1.228e-2	1	407.035	1	2130.975	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
147		17	max	0	1	.114	3	.076	1	6.556e-3	3	NC	_5_	NC	3
148			min	141	4	36	2	.005	12	-1.105e-2	1_	509.294	_1_	3227.777	1
149		18	max	0	1	.037	3	.032	1	5.703e-3	3	NC	5	NC	2
150			min	141	4	159	2	.001	10	-9.83e-3	1_	913.742	1_	7552.195	
151		19	max	0	1	.112	1	.003	3	4.85e-3	3	NC	_1_	NC	1
152			min	141	4	062	3	001	2	-8.605e-3	1_	NC	1_	NC	1
153	<u>M2</u>	1	max	.005	1	.003	2	.006	1	1.198e-3	5	NC	1	NC	2
154			min	005	3	006	3	445	4	-1.656e-4	1_	NC	_1_	107.427	4
155		2	max	.005	1	.002	2	.006	1	1.281e-3	5_	NC	_1_	NC	2
156			min	004	3	005	3	409	4	-1.535e-4	1_	NC	1_	117.054	4
157		3	max	.005	1	.002	2	.005	1	1.364e-3	5_	NC	1	NC	2
158			min	004	3	005	3	372	4	-1.413e-4	<u>1</u>	NC	1_	128.503	4
159		4	max	.004	1	.001	2	.005	1	1.448e-3	_5_	NC	_1_	NC	2
160			min	004	3	005	3	336	4	-1.292e-4	1_	NC	1	142.248	4
161		5	max	.004	1	0	2	.004	1	1.531e-3	5_	NC	_1_	NC	1
162			min	004	3	005	3	301	4	-1.17e-4	1_	NC	1	158.94	4
163		6	max	.004	1	0	2	.004	1	1.615e-3	5	NC	1_	NC	1
164			min	003	3	005	3	267	4	-1.049e-4	1	NC	1	179.478	4
165		7	max	.003	1	0	2	.003	1	1.698e-3	5	NC	1	NC	1
166			min	003	3	004	3	233	4	-9.27e-5	1	NC	1	205.143	4
167		8	max	.003	1	0	2	.003	1	1.782e-3	4	NC	1	NC	1
168			min	003	3	004	3	201	4	-8.054e-5	1	NC	1	237.804	4
169		9	max	.003	1	0	15	.002	1	1.87e-3	4	NC	1	NC	1
170			min	003	3	004	3	171	4	-6.839e-5	1	NC	1	280.284	4
171		10	max	.003	1	0	15	.002	1	1.958e-3	4	NC	1	NC	1
172			min	002	3	004	3	142	4	-5.623e-5	1	NC	1	337	4
173		11	max	.002	1	0	15	.002	1	2.046e-3	4	NC	1	NC	1
174			min	002	3	003	3	115	4	-4.408e-5	1	NC	1	415.207	4
175		12	max	.002	1	0	15	.001	1	2.133e-3	4	NC	1	NC	1
176		1 -	min	002	3	003	3	091	4	-3.192e-5	1	NC	1	527.491	4
177		13	max	.002	1	0	15	0	1	2.221e-3	4	NC	1	NC	1
178		1.0	min	002	3	003	3	069	4	-1.977e-5	1	NC	1	697.326	4
179		14	max	.001	1	0	15	0	1	2.309e-3	4	NC	1	NC	1
180		+ ' -	min	001	3	002	3	049	4	-7.616e-6	1	NC	1	972.741	4
181		15	max	.001	1	0	15	<u>.045</u> 0	1	2.397e-3	4	NC	1	NC	1
182		10	min	001	3	002	3	033	4	-1.107e-7	3	NC	1	1465.342	4
183		16	max	0	1	0	15	0	1	2.485e-3	4	NC	1	NC	1
184		10	min	0	3	002	3	019	4	4.521e-7	12	NC	1	2487.264	
185		17	max	0	1	0	15	0	1	2.573e-3	4	NC	1	NC	1
186		11/	min	0	3	001	3	009	4	9.646e-7	12	NC	1	5217.964	
187		18		0	1	0	15	009	1	2.661e-3	4	NC	1	NC	1
188		10	min	0	3	0	6	003	4	1.477e-6	12	NC	1	NC	1
189		19		0	1	0	1	<u>003</u> 0	1	2.748e-3	4	NC	1	NC	1
190		19	max	0	1	0	1	0	1	1.99e-6	12	NC	1	NC	1
	M3	1			1		1		1	-6.246e-7		NC NC	1		1
191	IVIS		max	0	1	0	1	0			12		1	NC NC	1
192		-	min	0		0		0	1	-6.13e-4	4_	NC NC		NC NC	
193		2	max	0	3	0	15	.013	4	4.116e-6	1_	NC NC	1	NC NC	1
194		_	min	0		001	6	0	12	-2.142e-6	5		•	NC NC	1
195		3	max	0	3	0	15	.026	4	6.131e-4	4	NC NC	1_	NC NC	1
196		4	min	0	2	003	6	0	12	9.619e-7	12	NC NC	1_	NC NC	1
197		4	max	0	3	001	15	.038	4	1.226e-3	4	NC	1	NC NC	1
198		-	min	0	2	005	6	0	12	1.755e-6	12	NC	1_	NC NC	1
199		5	max	0	3	001	15	.05	4	1.839e-3	4_	NC	1_	NC	1
200			min	0	2	007	6	0	12	2.548e-6	12	NC	_1_	9167.559	
201		6	max	0	3	002	15	061	4	2.452e-3	4	NC	1_	NC	1
202			min	0	2	008	6	0	12	3.342e-6	12	NC	_1_	8272.128	
203		7	max	.001	3	002	15	.072	4	3.065e-3	4	NC	_1_	NC	_1_

Model Name

: Schletter, Inc. : HCV

. 1101

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
204			min	0	2	01	6	0	12	4.135e-6		9461.486	6	7881.256	
205		8	max	.001	3	002	15	.082	4	3.678e-3	4	NC	1_	NC	1
206			min	0	2	011	6	0	12	4.928e-6		8421.457	6	7838.739	5
207		9	max	.002	3	003	15	.091	4	4.291e-3	4	NC	1	NC	T
208		10	min	001 .002	3	012 003	15	<u> </u>	12	5.721e-6 4.904e-3	<u>12</u> 4	7798.864 NC	<u>6</u> 2	8105.789 NC	<u>5</u>
210		10	max	001	2	003 012	6	0	12	6.515e-6	12	7482.542	6	8706.735	
211		11	min max	.002	3	012	15	.109	4	5.517e-3	4	NC	2	NC	1
212			min	001	2	003 013	6	0	12	7.308e-6	12	7424.855	6	9733.02	5
213		12	max	.002	3	003	15	.118	4	6.131e-3	4	NC	2	NC	1
214		12	min	002	2	012	6	0	12	8.101e-6	12	7623.242	6	NC	1
215		13	max	.002	3	002	15	.126	4	6.744e-3	4	NC	1	NC	1
216		10	min	002	2	012	6	0	12	8.895e-6		8121.443	6	NC	1
217		14	max	.003	3	002	15	.135	4	7.357e-3	4	NC	1	NC	1
218			min	002	2	01	6	0	12	9.688e-6	12	9032.967	6	NC	1
219		15	max	.003	3	002	15	.143	4	7.97e-3	4	NC	1	NC	1
220			min	002	2	009	1	0	12	1.048e-5	12	NC	1	NC	1
221		16	max	.003	3	001	15	.152	4	8.583e-3	4	NC	1	NC	1
222			min	002	2	008	1	0	12	1.127e-5	12	NC	1	NC	1
223		17	max	.003	3	0	15	.161	4	9.196e-3	4	NC	1	NC	1
224			min	002	2	006	1	0	12	1.207e-5	12	NC	1	NC	1
225		18	max	.003	3	0	15	.17	4	9.809e-3	4	NC	1	NC	1
226			min	002	2	005	1	0	12	1.286e-5	12	NC	1	NC	1
227		19	max	.004	3	0	5	.18	4	1.042e-2	4	NC	1	NC	1
228			min	003	2	003	1	0	12	1.365e-5	12	NC	1	NC	1
229	M4	1_	max	.003	1	.002	2	0	12	-3.305e-7	12	NC	_1_	NC	2
230			min	0	3	003	3	18	4	-8.906e-4	4	NC	1_	137.899	4
231		2	max	.003	1	.002	2	00	12	-3.305e-7	12	NC	_1_	NC	2
232			min	0	3	003	3	165	4	-8.906e-4	4	NC	<u>1</u>	150.136	4
233		3	max	.003	1	.002	2	0	12	-3.305e-7	12	NC	_1_	NC	2
234			min	0	3	003	3	151	4	-8.906e-4	4_	NC	1_	164.689	4
235		4	max	.003	1	.002	2	0	12	-3.305e-7	12	NC	1_	NC	2
236		-	min	0	3	003	3	<u>136</u>	4	-8.906e-4	4_	NC	1_	182.161	4
237		5	max	.002	1	.002	2	0	12	-3.305e-7	12	NC	1_	NC 000.074	2
238			min	0	3	003	3	122	4	-8.906e-4	4_	NC NC	1_	203.371	4
239		6	max	.002	3	.001	2	0	12	-3.305e-7	12	NC NC	1_1	NC 220,450	2
240		7	min	0		003	3	108	4	-8.906e-4	4	NC NC	1	229.458	2
241			max	.002	3	.001	2	0	12	-3.305e-7	12	NC NC	1	NC 262 024	
242 243		8	min	.002	1	002 .001	2	<u>095</u> 0	12	-8.906e-4 -3.305e-7	<u>4</u> 12	NC NC	1	262.034 NC	2
244		0	max min		3	002	3	082		-8.906e-4		NC NC	1	303.454	4
245		9	max	.002	1	.002	2	0 <u>02</u> 0	12	-3.305e-7	12	NC	1	NC	1
246		-	min	0	3	002	3	069	4	-8.906e-4	4	NC	1	357.263	4
247		10	max	.002	1	0	2	003	12	-3.305e-7	12	NC	1	NC	1
248		10	min	0	3	002	3	058	4	-8.906e-4	4	NC	1	429	4
249		11	max	.001	1	0	2	<u>.000</u>	12	-3.305e-7	12	NC	1	NC	1
250			min	0	3	002	3	047	4	-8.906e-4	4	NC	1	527.734	4
251		12	max	.001	1	0	2	0	12	-3.305e-7	12	NC	1	NC	1
252			min	0	3	001	3	037	4	-8.906e-4	4	NC	1	669.148	4
253		13	max	.001	1	0	2	0	12	-3.305e-7	12	NC	1	NC	1
254			min	0	3	001	3	028	4	-8.906e-4	4	NC	1	882.36	4
255		14	max	0	1	0	2	0	12	-3.305e-7	12	NC	1	NC	1
256			min	0	3	0	3	02	4	-8.906e-4	4	NC	1	1226.618	
257		15	max	0	1	0	2	0	12	-3.305e-7	12	NC	1	NC	1
258			min	0	3	0	3	013	4	-8.906e-4	4	NC	1	1838.531	4
259		16	max	0	1	0	2	0	12	-3.305e-7	12	NC	1	NC	1
260			min	0	3	0	3	008	4	-8.906e-4	4	NC	1	3095.838	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
261		17	max	0	1	0	2	0	12	-3.305e-7	12	NC	1	NC	1
262			min	0	3	0	3	004	4	-8.906e-4	4	NC	1	6399.646	4
263		18	max	0	1	0	2	0	12	-3.305e-7	12	NC	1	NC	1
264			min	0	3	0	3	001	4	-8.906e-4	4	NC	1	NC	1
265		19	max	0	1	0	1	0	1	-3.305e-7	12	NC	1	NC	1
266			min	0	1	0	1	0	1	-8.906e-4	4	NC	1	NC	1
267	M6	1	max	.017	1	.012	2	0	1	1.25e-3	4	NC	3	NC	1
268			min	016	3	017	3	449	4	0	1	4047.813	2	106.521	4
269		2	max	.016	1	.011	2	0	1	1.332e-3	4	NC	3	NC	1
270			min	015	3	017	3	412	4	0	1	4443.639	2	116.068	4
271		3	max	.015	1	.01	2	0	1	1.414e-3	4	NC	3	NC	1
272			min	014	3	016	3	376	4	0	1	4921.476	2	127,421	4
273		4	max	.014	1	.009	2	0	1	1.496e-3	4	NC	1	NC	1
274			min	013	3	015	3	339	4	0	1	5504.975	2	141.052	4
275		5	max	.013	1	.008	2	0	1	1.578e-3	4	NC	1	NC	1
276			min	012	3	014	3	304	4	0	1	6227.258	2	157.604	4
277		6	max	.012	1	.007	2	0	1	1.661e-3	4	NC	1	NC	1
278			min	011	3	013	3	269	4	0	1	7135.875	2	177.972	4
279		7	max	.011	1	.006	2	0	1	1.743e-3	4	NC	1	NC	1
280			min	01	3	012	3	235	4	0	1	8301.117	2	203.425	4
281		8	max	.01	1	.005	2	<u>.200 </u>	1	1.825e-3	4	NC	1	NC	1
282			min	01	3	011	3	203	4	0	1	9830.556	2	235.817	4
283		9	max	.009	1	.004	2	0	1	1.907e-3	4	NC	1	NC	1
284			min	009	3	01	3	172	4	0	1	NC	1	277.946	4
285		10	max	.008	1	.003	2	0	1	1.989e-3	4	NC	1	NC	1
286		10	min	008	3	009	3	143	4	0	1	NC	1	334.198	4
287		11	max	.007	1	.003	2	0	1	2.072e-3	4	NC	1	NC	1
288			min	007	3	008	3	116	4	0	1	NC	1	411.765	4
289		12	max	.007	1	.002	2	0	1	2.154e-3	4	NC	1	NC	1
290		12	min	006	3	007	3	091	4	0	1	NC	1	523.138	4
291		13	max	.006	1	.001	2	<u>091</u> 0	1	2.236e-3	4	NC	1	NC	1
292		13	min	005	3	006	3	069	4	0	1	NC	1	691.603	4
293		14	max	.005	1	_ 000 _	2	<u>009</u> 0	1	2.318e-3	4	NC	1	NC	1
294		14	min	005 004	3	005	3	05	4	0	1	NC NC	1	964.818	4
295		15		.004	1	<u>005</u> 0	2	05	1	2.4e-3	4	NC	1	NC	1
296		10	max	003	3	004	3	033	4	0	1	NC NC	1	1453.538	4
297		16		.003	1	004	2	033 0	1	2.483e-3	4	NC	1	NC	1
298		10	max	003	3	003	3	019	4	0	1	NC NC	1	2467.579	
299		17		.002	1	<u>003</u> 0	2	<u>019</u> 0	1		_	NC NC	1	NC	1
300		17	max		3	002	3			2.565e-3	4	NC NC	1		4
		18	min	002		<u>002</u> 0		009	4	0 2 6470 2	_	NC NC	1	5178.011 NC	
301		10	max	0	3		3	0	1	2.647e-3	4		1		1
302		10	min	0	1	001		003	4	2 7200 2	<u>1</u> 4	NC NC	<u>1</u> 1	NC NC	1
303		19	max	<u> </u>	1	<u> </u>	1	0	1	2.729e-3		NC NC	1	NC NC	1
304	N/17	1	min	0	1		1	0	1	0	<u>1</u> 1			NC NC	1
305	<u>M7</u>	1	max		_	0		0				NC NC	1	NC NC	
306		0	min	0	1	0	1	0	1	-6.065e-4	4	NC NC	1	NC NC	1
307		2	max	0	3	0	15	.013	4	0	1	NC NC	1	NC NC	1
308		0	min	0	2	002	3	0	1	-6.727e-6	5_4	NC NC	1_	NC NC	1
309		3	max	.001	3	0	15	.026	4	5.953e-4	4	NC	1	NC NC	1
310		4	min	001	2	004	3	0	1	0	1_	NC NC	1_	NC NC	1
311		4	max	.002	3	001	15	.038	4	1.196e-3	4	NC	1	NC NC	1
312		_	min	002	2	006	3	0	1	0	1_	NC	1_	NC NC	1
313		5_	max	.002	3	002	15	.049	4	1.797e-3	4_	NC	1	NC 0770 470	1
314			min	002	2	007	3	0	1	0	1_	NC	1_	8779.179	
315		6	max	.003	3	002	15	.06	4	2.398e-3	4_	NC	1	NC NC	1
316			min	003	2	009	3	0	1	0	_1_	NC	1_	7894.734	
317		_ 7	max	.004	3	002	15	.071	4	2.999e-3	4	NC	1_	NC	_1_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			
318			min	003	2	01	4	0	1	0	1_	9417.349	3	7491.682	
319		8	max	.004	3	003	15	.081	4	3.6e-3	4	NC	_1_	NC	1_
320			min	004	2	011	4	0	1	0	1_	8497.807	4	7422.843	
321		9	max	.005	3	003	15	.09	4	4.201e-3	4	NC	1_	NC	1
322			min	005	2	012	4	0	1	0	1	7864.505	4	7641.533	4
323		10	max	.006	3	003	15	.099	4	4.802e-3	4	NC	1_	NC	1_
324			min	005	2	013	4	0	1	0	1_	7541.505	4	8162.443	4
325		11	max	.006	3	003	15	.108	4	5.403e-3	4	NC	_1_	NC	1
326			min	006	2	013	4	0	1	0	1	7480.047	4	9059.926	4
327		12	max	.007	3	003	15	.116	4	6.004e-3	4	NC	1_	NC	1_
328			min	006	2	013	4	0	1	0	1	7677.068	4	NC	1
329		13	max	.007	3	003	15	.124	4	6.605e-3	4	NC	<u>1</u>	NC	1_
330			min	007	2	012	4	0	1	0	1_	8176.265	4	NC	1
331		14	max	.008	3	003	15	.133	4	7.205e-3	4	NC	1_	NC	1
332			min	008	2	012	1	0	1	0	1	9091.627	4	NC	1
333		15	max	.009	3	002	15	.141	4	7.806e-3	4	NC	1	NC	1
334			min	008	2	011	1	0	1	0	1	NC	1	NC	1
335		16	max	.009	3	002	15	.149	4	8.407e-3	4	NC	1	NC	1
336			min	009	2	01	1	0	1	0	1	NC	1	NC	1
337		17	max	.01	3	001	15	.158	4	9.008e-3	4	NC	1	NC	1
338			min	009	2	01	1	0	1	0	1	NC	1	NC	1
339		18	max	.011	3	0	15	.166	4	9.609e-3	4	NC	1	NC	1
340			min	01	2	009	1	0	1	0	1	NC	1	NC	1
341		19	max	.011	3	0	15	.176	4	1.021e-2	4	NC	1	NC	1
342			min	01	2	007	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.009	1	.009	2	0	1	0	1	NC	1	NC	1
344			min	003	3	011	3	176	4	-9.127e-4	4	NC	1	140.94	4
345		2	max	.008	1	.008	2	0	1	0	1	NC	1	NC	1
346			min	002	3	01	3	162	4	-9.127e-4	4	NC	1	153.45	4
347		3	max	.008	1	.008	2	0	1	0	1	NC	1	NC	1
348			min	002	3	01	3	147	4	-9.127e-4	4	NC	1	168.326	4
349		4	max	.007	1	.007	2	0	1	0	1	NC	1	NC	1
350			min	002	3	009	3	133	4	-9.127e-4	4	NC	1	186.186	4
351		5	max	.007	1	.007	2	0	1	0	1	NC	1	NC	1
352			min	002	3	008	3	119	4	-9.127e-4	4	NC	1	207.868	4
353		6	max	.006	1	.006	2	0	1	0	1	NC	1	NC	1
354			min	002	3	008	3	106	4	-9.127e-4	4	NC	1	234.534	4
355		7	max	.006	1	.006	2	0	1	0	1	NC	1	NC	1
356			min	002	3	007	3	093	4	-9.127e-4	4	NC	1	267.833	4
357		8	max	.005	1	.005	2	0	1	0	1	NC	1	NC	1
358			min		3	007	3	08	4	-9.127e-4	4	NC	1	310.173	4
359		9	max	.005	1	.005	2	0	1	0	1	NC	1	NC	1
360			min	001	3	006	3	068	4	-9.127e-4	4	NC	1	365.176	4
361		10	max	.004	1	.004	2	<u>.000</u>	1	0	1	NC	1	NC	1
362		10	min	001	3	005	3	057	4	-9.127e-4	4	NC	1	438.507	4
363		11	max	.004	1	.004	2	<u>037</u> 0	1	0	1	NC	1	NC	1
364			min	001	3	005	3	046	4	-9.127e-4	4	NC	1	539.433	4
365		12	max	.003	1	.003	2	040 0	1	0	1	NC	1	NC	1
366		14	min	001	3	004	3	036	4	-9.127e-4	4	NC NC	1	683.987	4
367		13	max	.003	1	.003	2	036 0	1	0	1	NC NC	1	NC	1
368		13	min	0	3	004	3	027	4	-9.127e-4	4	NC NC	1	901.934	4
		11			1		_						-		
369		14	max	.002	3	.002	2	0	1	0 1270 4	1_1	NC NC	1_1	NC	1
370		4.5	min	0		003	3	02	4	-9.127e-4	4		1_1	1253.84	4
371		15	max	.002	1	.002	2	0	1	0 1270 1	1_1	NC NC	1_1	NC	1
372		10	min	0	3	002	3	013	4	-9.127e-4	4	NC NC	1_1	1879.347	4
373		16	max	.001	1	.001	2	0	1	0	1_1	NC	1	NC 2404 F02	1
374			min	0	3	002	3	008	4	-9.127e-4	4	NC	1_	3164.592	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

075	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
375		17	max	0	1	0	2	0	1	0	1_	NC NC	1_	NC OF 44, COF	1
376		40	min	0	3	001	3	004	4	-9.127e-4	4_	NC NC	1_	6541.835	4
377		18	max	0	1	0	2	0	1	0	1	NC NC	1	NC NC	1
378		10	min	0	3	0	3	001	4	-9.127e-4	4	NC	1_	NC	1
379		19	max	0	1	0	1	0	1	0	1_	NC	1_	NC NC	1
380	N440	-	min	0	1	0	1	0	1	-9.127e-4	4	NC NC	1_	NC NC	1
381	M10	1	max	.005	1	.003	2	0	12	1.25e-3	4	NC NC	1	NC 400.054	2
382			min	005	3	006	3	<u>449</u>	4	7.236e-6	12	NC NC	1_	106.651	4
383		2	max	.005	1	.002	2	0	12	1.332e-3	4	NC NC	1_	NC 440.04	2
384			min	004	3	005	3	412	4	6.723e-6	12	NC	1_	116.21	4
385		3	max	.005	1	.002	2	0	12	1.414e-3	4_	NC	1_	NC 107.570	2
386		-	min	004	3	005	3	<u>375</u>	4	6.211e-6	12	NC	1_	127.576	4
387		4	max	.004	1	.001	2	0	12	1.495e-3	4	NC	1_	NC	2
388			min	004	3	005	3	339	4	5.698e-6	12	NC	1_	141.224	4
389		5	max	.004	1	0	2	0	12	1.577e-3	4_	NC	_1_	NC	1
390		_	min	004	3	005	3	303	4	5.186e-6	12	NC	1_	157.797	4
391		6	max	.004	1	0	2	0	12	1.659e-3	4	NC	1_	NC	1
392		_	min	003	3	005	3	269	4	4.673e-6	12	NC	1_	178.19	4
393		7	max	.003	1	0	2	0	12	1.741e-3	4	NC	1_	NC	1
394			min	003	3	004	3	235	4	4.161e-6	12	NC	1_	203.673	4
395		8	max	.003	1	0	2	0	12	1.822e-3	_4_	NC	_1_	NC	1
396			min	003	3	004	3	203	4	3.648e-6	12	NC	<u>1</u>	236.105	4
397		9	max	.003	1	0	2	0	12	1.904e-3	4_	NC	_1_	NC	1_
398			min	003	3	004	3	172	4	3.136e-6	12	NC	1	278.286	4
399		10	max	.003	1	0	10	0	12	1.986e-3	4_	NC	_1_	NC	1_
400			min	002	3	004	3	143	4	2.623e-6	12	NC	1_	334.607	4
401		11	max	.002	1	0	10	0	12	2.068e-3	4	NC	_1_	NC	1
402			min	002	3	003	3	116	4	2.111e-6	12	NC	1	412.27	4
403		12	max	.002	1	0	15	0	12	2.149e-3	4	NC	1	NC	1
404			min	002	3	003	3	091	4	1.598e-6	12	NC	1	523.781	4
405		13	max	.002	1	0	15	0	12	2.231e-3	4	NC	_1_	NC	1
406			min	002	3	003	3	069	4	1.086e-6	12	NC	1	692.455	4
407		14	max	.001	1	0	15	0	12	2.313e-3	4	NC	1_	NC	1
408			min	001	3	002	4	05	4	5.249e-7	10	NC	1	966.011	4
409		15	max	.001	1	0	15	0	12	2.395e-3	4	NC	1	NC	1
410			min	001	3	002	4	033	4	-4.539e-6	1	NC	1	1455.347	4
411		16	max	0	1	0	15	0	12	2.476e-3	4	NC	1	NC	1
412			min	0	3	002	4	019	4	-1.669e-5	1	NC	1	2470.68	4
413		17	max	0	1	0	15	0	12	2.558e-3	4	NC	1	NC	1
414			min	0	3	001	4	009	4	-2.885e-5	1	NC	1	5184.645	4
415		18	max	0	1	0	15	0	12	2.64e-3	4	NC	1_	NC	1
416			min	0	3	0	4	003	4	-4.1e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	0	1	2.722e-3	4	NC	1	NC	1
418			min	0	1	0	1	0	1	-5.316e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	1.649e-5	1	NC	1	NC	1
420			min	0	1	0	1	0	1	-6.047e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.013	4	-1.686e-7	12	NC	1	NC	1
422			min	0	2	002	4	0	1	-4.116e-6	1	NC	1	NC	1
423		3	max	0	3	0	15	.026	4	6.007e-4	4	NC	1	NC	1
424			min	0	2	003	4	0	1	-2.472e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	.038	4	1.203e-3	4	NC	1	NC	1
426			min	0	2	005	4	0	1	-4.533e-5	1	NC	1	NC	1
427		5	max	0	3	002	15	.049	4	1.806e-3	4	NC	1	NC	1
428			min	0	2	007	4	001	1	-6.594e-5	1	NC	1	9040.486	4
429		6	max	0	3	002	15	.06	4	2.409e-3	4	NC	1	NC	1
430			min	0	2	009	4	001	1	-8.654e-5	1	NC	1	8151.138	4
431		7	max	.001	3	003	15	.071	4	3.011e-3	4	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio			
432			min	0	2	01	4	002	1	-1.071e-4	1_	9108.184	4	7758.718	4
433		8	max	.001	3	003	15	.081	4	3.614e-3	4_	NC	_1_	NC	1
434			min	0	2	012	4	002	1	-1.278e-4	1	8131.233	4	7715.273	4
435		9	max	.002	3	003	15	.09	4	4.217e-3	4	NC	1_	NC	1_
436			min	001	2	013	4	002	1	-1.484e-4	1	7548.573	4	7977.151	4
437		10	max	.002	3	003	15	.099	4	4.819e-3	4	NC	2	NC	1
438			min	001	2	013	4	003	1	-1.69e-4	1	7257.136	4	8566.438	4
439		11	max	.002	3	003	15	.108	4	5.422e-3	4	NC	2	NC	1
440			min	001	2	013	4	003	1	-1.896e-4	1	7213.412	4	9572.199	4
441		12	max	.002	3	003	15	.116	4	6.025e-3	4	NC	2	NC	1
442			min	002	2	013	4	003	1	-2.102e-4	1	7416.666	4	NC	1
443		13	max	.002	3	003	15	.124	4	6.627e-3	4	NC	1	NC	1
444			min	002	2	012	4	004	1	-2.308e-4	1	7910.728	4	NC	1
445		14	max	.003	3	003	15	.133	4	7.23e-3	4	NC	1	NC	1
446			min	002	2	011	4	004	1	-2.514e-4	1	8807.225	4	NC	1
447		15	max	.003	3	002	15	.141	4	7.833e-3	4	NC	1	NC	1
448			min	002	2	01	4	004	1	-2.72e-4	1	NC	1	NC	1
449		16	max	.003	3	002	15	.149	4	8.435e-3	4	NC	1	NC	1
450			min	002	2	008	4	005	1	-2.926e-4	1	NC	1	NC	1
451		17	max	.003	3	001	15	.158	4	9.038e-3	4	NC	1	NC	1
452			min	002	2	006	1	005	1	-3.132e-4	1	NC	1	NC	1
453		18	max	.003	3	0	15	.167	4	9.641e-3	4	NC	1	NC	1
454			min	002	2	005	1	006	1	-3.338e-4	1	NC	1	NC	1
455		19	max	.004	3	0	12	.177	4	1.024e-2	4	NC	1	NC	1
456			min	003	2	003	1	006	1	-3.544e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.002	2	.006	1	1.213e-5	1	NC	1	NC	2
458			min	0	3	003	3	177	4	-8.843e-4	4	NC	1	140.321	4
459		2	max	.003	1	.002	2	.006	1	1.213e-5	1	NC	1	NC	2
460			min	0	3	003	3	162	4	-8.843e-4	4	NC	1	152.773	4
461		3	max	.003	1	.002	2	.005	1	1.213e-5	1	NC	1	NC	2
462		1	min	0	3	003	3	148	4	-8.843e-4	4	NC	1	167.58	4
463		4	max	.003	1	.002	2	.005	1	1.213e-5	1	NC	1	NC	2
464			min	0	3	003	3	134	4	-8.843e-4	4	NC	1	185.357	4
465		5	max	.002	1	.002	2	.004	1	1.213e-5	1	NC	1	NC	2
466		T .	min	0	3	003	3	12	4	-8.843e-4	4	NC	1	206.939	4
467		6	max	.002	1	.003	2	.004	1	1.213e-5	1	NC	1	NC	2
468		+	min	0	3	003	3	106	4	-8.843e-4	4	NC	1	233.481	4
469		7	max	.002	1	.003	2	.003	1	1.213e-5	1	NC	1	NC	2
470			min	0	3	002	3	093	4	-8.843e-4	4	NC	1	266.627	4
471		8	max	.002	1	.002	2	.003	1	1.213e-5	1	NC	1	NC	2
472		10	min	0	3	002	3	08	4	-8.843e-4	4	NC	1	308.771	4
473		9	max	.002	1	.002	2	.002	1	1.213e-5	1	NC	1	NC	1
474		1 3	min	0	3	002	3	068	4	-8.843e-4	4	NC	1	363.52	4
475		10	max	.002	1	<u>002</u> 0	2	.002	1	1.213e-5	1	NC	1	NC	1
476		10	min	0	3	002	3	057	4	-8.843e-4	4	NC	1	436.511	4
477		11		.001	1	<u>002</u> 0	2	.002	1	1.213e-5	1	NC NC	1	NC	1
		+ ' '	max		3				-						
478		40	min	0		002	3	<u>046</u>	4	-8.843e-4	4_	NC NC	1_	536.97	4
479		12	max	.001	1	0	2	.001	1	1.213e-5	1	NC NC	1_1	NC COO OF 4	1
480		40	min	0	3	<u>001</u>	3	036	4	-8.843e-4	4	NC NC	1_1	680.854	4
481		13	max	.001	1	0	2	0	1	1.213e-5	1_1	NC NC	1_1	NC	1
482		4.4	min	0	3	001	3	028	4	-8.843e-4	4	NC NC	1_	897.791	4
483		14	max	0	1	0	2	0	1	1.213e-5	1_	NC	1	NC 1010 000	1
484		1 -	min	0	3	0	3	02	4	-8.843e-4	4_	NC NC	1_	1248.063	
485		15	max	0	1	0	2	0	1	1.213e-5	1_	NC		NC 4070 000	1
486		4.0	min	0	3	0	3	013	4	-8.843e-4	4_	NC	1_	1870.663	
487		16	max	0	1	0	2	0	1	1.213e-5	1	NC	1	NC	1
488			min	0	3	0	3	008	4	-8.843e-4	4	NC	<u>1</u>	3149.924	4

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC		LC
489		17	max	0	1	0	2	0	1	1.213e-5	1	NC	1_	NC	1
490			min	0	3	0	3	004	4	-8.843e-4	4	NC	1_	6511.405	4
491		18	max	0	1	0	2	0	1	1.213e-5	1	NC	1	NC	1
492			min	0	3	0	3	001	4	-8.843e-4	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	1.213e-5	1	NC	1	NC	1
494			min	0	1	0	1	0	1	-8.843e-4	4	NC	1	NC	1
495	M1	1	max	.004	3	.116	1	.47	4	1.749e-2	1	NC	1	NC	1
496			min	002	2	019	3	0	12	-2.142e-2	3	NC	1	NC	1
497		2	max	.004	3	.057	1	.458	4	8.564e-3	4	NC	5	NC	1
498			min	002	2	009	3	005	1	-1.059e-2	3	1948.385	1	NC	1
499		3	max	.004	3	.006	3	.445	4	1.365e-2	4	NC	5	NC	1
500			min	002	2	007	1	006	1	-1.161e-4	1	932.371	1	8837.157	5
501		4	max	.004	3	.033	3	.433	4	1.207e-2	4	NC	5	NC	1
502			min	002	2	08	1	006	1	-3.942e-3	3	582.714	1	5994.783	5
503		5	max	.004	3	.068	3	.421	4	1.048e-2	4	NC	15	NC	1
504		 	min	002	2	158	1	004	1	-7.782e-3	3	417.034	1	4565.496	_
505		6	max	.004	3	.106	3	.409	4	1.528e-2	1	NC	15	NC	1
506		—	min	002	2	234	1	002	1	-1.162e-2	3	326.342	1	3728.587	5
507		7	max	.002	3	.142	3	.396	4	2.041e-2	1	9699.005	15	NC	1
508			min	001	2	303	1	0	12		3	273.09	1	3191.558	
509		8	max	.004	3	.172	3	.382	4	2.555e-2	1	8617.861	15	NC	1
510			min	001	2	357	1	0	12	-1.93e-2	3	241.712	1	2831.423	
511		9	max	.004	3	.192	3	.367	4	2.814e-2	1	8054.174	15	NC	1
512		-	min	001	2	391	1	0	1	-1.943e-2	3	225.422	1	2629.165	4
513		10	max	.004	3	.199	3	.35	4	2.904e-2	1	7882.513	15	NC	1
514		10	min	001	2	403	1	0	12	-1.71e-2	3	220.547	1	2574.747	4
515		11	max	.004	3	.194	3	.33	4	2.994e-2	<u> </u>	8054.014	15	NC	1
516		+ ' '	min	001	2	391	1	0	12	-1.477e-2	3	225.71	1	2643.449	4
517		12		.004	3	.178	3	.309	4	2.827e-2	<u> </u>	8617.493	15	NC	1
518		12	max	001	2	356	1	0	1	-1.239e-2	3	242.604	1	2852.969	
519		13	min max	.004	3	<u>356</u> .151	3	.284	4	2.271e-2	<u> </u>	9698.299	15	NC	1
520		13	min	001	2	301	1	0	1	-9.919e-3	3	275.288	1	3365.743	
		14		.003	3	301 .117	3	.258				NC	15	NC	4
521 522		14	max		2	231	1	.236	12	1.715e-2 -7.448e-3	1	331.067	1	4402.362	1
		15	min	001				•			3	NC	15	NC	1
523		15	max	.003	3	.079	3	.231	12	1.159e-2 -4.977e-3	<u>1</u> 3	426.79	15 1	6601.331	4
524		16	min	001		1 <u>54</u>	3	0							_
525		16	max	.003	3	.04		.205	4	9.064e-3	4	NC 602.242	5	NC NC	1
526		47	min	001	2	077	1	0	12	-2.507e-3	3	603.313	<u>1</u>	NC NC	1
527		17	max	.003	3	.002	3	.18	4	9.968e-3	4	NC 070,070	5_	NC NC	1
528		4.0	min	001	2	004	1	0	12	-3.582e-5	<u>3</u>	979.079	1_	NC NC	1
529		18	max	.003	3	.057		.159	4	1.031e-2		NC 2007 200	5	NC NC	
530		10	min	001	2	031	3	0	12			2067.206	1	NC NC	1
531		19	max	.003	3	.112	1	.141	4	2.05e-2	1	NC NC	1_	NC	1
532	NAC	1	min	001	2	062	3	0	1	-7.711e-3	3	NC NC	1_	NC NC	1
533	<u>M5</u>	1	max	.014	3	.275	1	.47	4	0	1_1	NC NC	1	NC NC	1
534			min	008	2	029	3	0	1	-2.235e-6	4	NC NC	1_	NC NC	1
535		2	max	.014	3	.136	1	.46	4	6.989e-3	4	NC 000 FFF	5_	NC NC	1
536			min	008	2	<u>015</u>	3	0	1	0	1_	826.555	1_	NC NC	1
537		3	max	.014	3	.02	3	.449	4	1.376e-2	4	NC 200 204	<u>15</u>	NC 7200 CO	1
538			min	008	2	022	1	0	1	0	1_1	386.294	1_	7398.69	4
539		4	max	.013	3	.093	3	.437	4	1.121e-2	4	9361.541	<u>15</u>	NC FOE 4 O 4 O	1
540		-	min	008	2	214	1	0	1	0 004= 0	1_1	234.328	1_	5354.249	4
541		5	max	.013	3	.192	3	.423	4	8.664e-3	4	6551.261	<u>15</u>	NC 4004.00	1
542			min	008	2	424	1	0	1	0	1_	163.757	1_	4304.02	4
543		6	max	.013	3	.302	3	.41	4	6.114e-3	4	5043.914	<u>15</u>	NC OCEZ 447	1
544		-	min	008	2	634	1	0	1	0	1_	125.916	1_	3657.117	4
545		7	max	.012	3	.41	3	.396	4	3.565e-3	4	4173.402	<u> 15</u>	NC	_1_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio I	LC	(n) L/z Ratio	LC
546			min	008	2	825	1	0	1	0	1		1	3207.853	
547		8	max	.012	3	.5	3	.382	4	1.016e-3	4		15	NC	1
548			min	008	2	978	1	0	1	0	1	91.365	1	2865.099	4
549		9	max	.012	3	.558	3	.367	4	0	1	3407.654	15	NC	1
550			min	007	2	-1.074	1	0	1	-1.283e-6	5	84.856	1	2629.653	4
551		10	max	.012	3	.579	3	.35	4	0	1	3329.438	15	NC	1
552			min	007	2	-1.107	1	0	1	-1.214e-6	5	82.919	1	2593.273	4
553		11	max	.011	3	.564	3	.33	4	0	1	3407.712	15	NC	1
554			min	007	2	-1.074	1	0	1	-1.145e-6	5	84.971	1	2669.594	4
555		12	max	.011	3	.515	3	.31	4	7.178e-4	4		15	NC	1
556			min	007	2	976	1	0	1	0	1	91.746	1	2815.106	4
557		13	max	.011	3	.436	3	.285	4	2.519e-3	4		<u> 15</u>	NC	1
558			min	007	2	819	1	0	1	0	1		1_	3314.318	4
559		14	max	.011	3	.336	3	.258	4	4.32e-3	4		15	NC	1
560			min	007	2	624	1	0	1	0	1	120111	1	4518.845	4
561		15	max	.01	3	.225	3	.229	4	6.121e-3	4_		<u> 15</u>	NC	1
562			min	007	2	412	1	0	1	0	1_	168.588	1	7622.971	5
563		16	max	.01	3	.113	3	.201	4	7.922e-3	4_		15	NC	1
564			min	007	2	201	1	0	1	0	1_		1	NC	1
565		17	max	.01	3	.008	3	.177	4	9.723e-3	4		15	NC	1
566			min	006	2	013	1	0	1	0	1_		1	NC	1
567		18	max	.01	3	.135	1	.156	4	4.938e-3	4_		5	NC	1
568			min	006	2	082	3	0	1	0	1_	897.021	1_	NC	1
569		19	max	.01	3	.261	1	.141	4	0	_1_	NC	1_	NC	1
570			min	006	2	162	3	0	1	-9.198e-7	4	110	1	NC	1
571	<u>M9</u>	1	max	.004	3	.116	1	.47	4	2.142e-2	3		1_	NC	1
572			min	002	2	019	3	0	1	-1.749e-2	<u>1</u>	NC	1	NC	1
573		2	max	.004	3	.057	1	.46	4	1.059e-2	3_		5	NC	1
574			min	002	2	009	3	0	12	-8.525e-3	1_	10 10.000	1	NC	1
575		3	max	.004	3	.006	3	.448	4	1.372e-2	4_		5_	NC	1
576			min	002	2	007	1	0	12	-2.665e-5	<u>10</u>	00=.0.	1_	7535.365	4
577		4	max	.004	3	.033	3	.436	4	1.077e-2	5		5	NC	1
578			min	002	2	08	1	0	12	-5.016e-3	_1_	00=	1_	5403.604	
579		5	max	.004	3	.068	3	.423	4	8.088e-3	5		15	NC .	1
580			min	002	2	<u>158</u>	1	0	12	-1.015e-2	1_	1111001	1_	4309.8	4
581		6	max	.004	3	.106	3	.41	4	1.162e-2	3_		<u>15</u>	NC	1
582		-	min	002	2	234	1	0	12	-1.528e-2	1_		1_	3642.25	4
583		7	max	.004	3	.142	3	.396	4	1.546e-2	3		<u>15</u>	NC	1
584			min	001	2	303	1	0	1	-2.041e-2	1_	273.09	1_	3187.779	4
585		8	max	.004	3	.172	3	.382	4	1.93e-2	3		<u>15</u>	NC	1
586		0	min	001	2	357	1	0	1 1	-2.555e-2	1			2849.515	
587		9	max	.004	3	.192	3	.367	4	1.943e-2	3_1		<u>15</u>	NC	1
588 589		10	min	001 .004	3	<u>391</u> .199	3	<u> </u>	1 <u>2</u>	-2.814e-2	<u>1</u> 3		<u>1</u> 15	2623.328	
		10	max	001	2		1	<u>.35</u>	1	1.71e-2 -2.904e-2	<u> </u>		10 1	NC 2575.593	1
590 591		11	min	.004	3	<u>403</u> .194	3	.33	4	1.477e-2	3		<u>1</u> 15	NC	1
592			max	001	2		1	<u>.ss</u>	1	-2.994e-2	1		1	2650.697	
		12	min	.004	3	<u>391</u> .178	3	.309		1.239e-2			<u> </u> 15	NC	1
593 594		12	max min	001	2	356	1	<u>.309</u>	12	-2.827e-2	<u>3</u> 1		10 1	2834.915	
595		13	max	.004	3	<u>356</u> .151	3	.284	4	9.919e-3	3		1 <u> </u>	NC	1
596		13	min	001	2	301	1	<u>.264</u> 0	12	-2.271e-2	<u> </u>		1 <u>0</u>	3366.145	
597		14	max	.003	3	301 .117	3	.257	4	7.448e-3	3		<u>ı</u> 15	NC	1
598		14	min	001	2	231	1	002	1	-1.715e-2	1		1 1	4502.467	_
599		15		.003	3	<u>231</u> .079	3	002 .229	4	5.714e-3	<u> </u>		<u>. </u>	NC	1
600		10	max min	001	2	154	1	004	1	-1.159e-2	<u> </u>		10 1	7113.28	5
601		16	max	.003	3	154 .04	3	004 .202	4	7.698e-3	5		5	NC	1
602		10	min	001	2	0 77	1	006	1	-6.035e-3	1	603.313	1	NC	1
002			1111111	001		077		000		-0.0336-3		003.313		INC	

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	o LC
603		17	max	.003	3	.002	3	.177	4	9.75e-3	4	NC	5	NC	1
604			min	001	2	004	1	006	1	-4.761e-4	1	979.079	1	NC	1
605		18	max	.003	3	.057	1	.157	4	4.589e-3	5	NC	5	NC	1
606			min	001	2	031	3	004	1	-1.031e-2	1	2067.206	1	NC	1
607		19	max	.003	3	.112	1	.141	4	7.711e-3	3	NC	1	NC	1
608			min	001	2	062	3	0	12	-2.05e-2	1	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	$_{I,N}\varPsi_{c,N}\varPsi_{cp,N}N_{b}$ (3	Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.