Edge Computing

Lecture 07: Hardware and Accelerators

Recap

World of ML

- Neural network: terminology
- Common building block: layer
- Convolution neural network
- Pruning
- Quantization

Agenda

ML on hardware

- CPU
- Memory
- Cache
- RISC vs CISC
- Special accelerators
- Sensors

Edge Device Hardware Architecture

Edge Device Hardware Architecture

CPUs

- Clockspeed
- Cores
- Threads
- Memory speed
- Cache size

Example: Intel® Core™ i9 processor 14900K

Edge Device Hardware Architecture

Computer Memory Hierarchy

Cache

- L1 Cache is the fastest
- L1 & L2, bigger impact
- Cache level is limited
- Cache hit vs miss

Heat

- Intel i7:
 - Operates at 165-195 W
 - Produces 45 W of heat
- ARM
 - Operates at 4-5 W
 - Produces 3W of heat

RISC vs CISC: Example

Reduced Instruction Set Computer (RISC)

LOAD A, 2:3 LOAD B, 5:2 PROD A, B STORE 2:3, A

Complex Instruction Set Computer (CISC)

MULT 2:3, 5:2

RISC vs CISC

Reduced Instruction Set Computer (RISC)

- Emphasis on software
- Single-clock, reduced instruction only
- Register to register:
 - "LOAD" and "STORE" are independent instructions
- Low cycles per second, large code sizes
- Spends more transistors on memory registers

Complex Instruction Set Computer (CISC)

- Emphasis on hardware
- Includes multi-clock complex instructions
- Memory-to-memory:
 - "LOAD" and "STORE" incorporated in instructions
- Small code sizes, high cycles per second
- Transistors used for storing complex instructions

Why RISC?

- Fixed one-clock-cycle instruction -> structured for pipelining
- Less transistors storing only small set of simple instruction
- Lazy erasing of instruction from registers

ARM vs Intel

- Intel processors are performance oriented. They use dynamic size instructions and are about the state of the art for general purpose computing (along with AMD)
- ARM (Advanced RISC machine) are meant to be energy and space efficient.
- Intel is CISC (not really but it's complicated) and ARM is RISC

Edge Device Hardware Architecture

GPU

- Graphical processing unit
- Designed for display and rendering
- Highly parallel computation
 - suitable for *general purpose* computation that is parallelizable (GP-GPU)
 - E.g. matrix multiplication

$$y_i = \sum_j w_{ij} x_j + b_i$$

GPU vs CPU

(Hundreds of cores) CPU (Multiple cores) Core 1 Core 2 Core 3 Core 4

GPU

https://www.researchgate.net/figure/CPU-vs-GPU-architecture-each-blue-square-represents-one-core_fig1_323281068

GPU vs CPU: Memory architecture

https://nielshagoort.com/2019/03/12/exploring-the-gpu-architecture/

Systolic Array

- Static circuit
- Bake a DNN into silicon

Max set Stable change time T=0.3 nS T=2 nS T=0

Systolic Array

Data flow in waves (heart pumps blood)

Systolic Array

Data flow in waves (heart pumps blood)

Why Systolic Array?

Why Systolic Array?

- Fixed add/mul cells
- High throughput
- Power efficient

FPGA vs ASIC

Field Programmable Gate Arrays (FPGAs)

- Programmable hardware fabric
- Flexible for different functions

Application-specific integrated circuits (ASICs)

- Static IC for specific applications
- Power efficient, mass produced

TPU

- Tensor processing unit
 - An in-depth look at Google's first Tensor Processing Unit (TPU)
- Specifically designed
 - Structured ASIC
 - Systolic arrays for DNN

An in-depth look at Google's first Tensor Processing Unit (TPU)

TPU Performance

Coral Edge TPU

- Products | Coral
- Smaller Matrix Multiplier Unit (MXUs)

	+ USB Accelerator (USB 3.0) with Edge TPU		with Edge TPU
53	2.4	164	2.4
51	2.6	122	2.6
867	296	4595	343
	51	53 2.4 51 2.6	53 2.4 164 51 2.6 122

Edge Device Hardware Architecture

Sensors

- Acoustic and vibration
- Visual and scene
- Motion and position
- Force and tactile
- Optical, electromagnetic, and radiation
- Environmental, biological, and chemical

Sensors on Self-driving Cars

LiDAR

- Light Detection and Ranging
 - Range
 - Vertical resolution (beams)
 - Horizontal resolution
 - Range resolution
 - Angular accuracy
 - o FPS
 - Field of View (FOV)
 - Vertical
 - Horizontal
- Example
 - Ouster OS1 Mid-Range Lidar
 - Ouster OS2 Long-Range Lidar

Stereo Camera

- Intrinsics
 - Aperture
 - Focal length
 - FOV
- Sensor size
- Shutter (rolling, global)
- FPS
- Resolution
- Baseline (Stereo)

Example

- ZED 2 Al Stereo Camera
- Intel® RealSense™ Depth and Tracking Cameras

Summary

- CPU
 - Clock speed, memory speed, cores, threads, cache size
- Memory
- Cache
 - o L1, L2, L3, cache hit & miss
- RISC vs CISC
- Special accelerators
 - o GPU, TPU, systolic array, FPGA, ASIC
- Sensors
 - LiDAR, Stereo Camera

Next Lecture

- Middleware
- Lab 4: Networking with Cloud

