Re: Deep G-Buffers for Stable Global Illumination Approximation

Ferit Tohidi Far

December 19, 2018

Abstract

G-Buffers can be used to efficiently render images with a large amount of light sources compared to other local illumination methods. This is possible thanks to a process called "deferred rendering". By using Deep G-Buffers we can even approximate global illumination more efficiently than traditional methods like pathtracing.

 ${\bf Keywords}\ \textit{g-buffer, deep g-buffer, pathtracing, global illumination, shading}$

Contents

1	Global Illumination	2
	1.1 Pathtracing	2
2	Deferred Rendering	2
	2.1 How deffered rendering handles lighting more efficiently	2
3	G-Buffer	2
	3.1 Frame-Buffer	2
	3.2 Z-Buffer	2
	3.3 Position-Buffer	2
	3.4 Normal-Buffer	2
	3.5 Diffuse-buffer	2
	3.6 Computing local illumination using G-Buffers	2
	3.7 Computing global illumination using G-Buffers	
4	Deep G-Buffer	2
	4.1 Concept	2
	4.2 How Deep G-Buffers improve performance	
5	Performance and Output Comparison	2
	5.1 G-Buffers vs Deep G-Buffers vs Pathtracing	2

1 Global Illumination

Global Illumination is achieved by taking into account direct lighting as well as indirect lighting, which essentially means that we compute reflections to a certain degree. The most popular method to do this in 3D animated movies is pathtracing (source pixar paper).

- 1.1 Pathtracing
- 2 Deferred Rendering
- 2.1 How deffered rendering handles lighting more efficiently
- 3 G-Buffer
- 3.1 Frame-Buffer
- 3.2 Z-Buffer
- 3.3 Position-Buffer
- 3.4 Normal-Buffer
- 3.5 Diffuse-buffer
- 3.6 Computing local illumination using G-Buffers
- 3.7 Computing global illumination using G-Buffers
- 4 Deep G-Buffer
- 4.1 Concept
- 4.2 How Deep G-Buffers improve performance
- 5 Performance and Output Comparison
- 5.1 G-Buffers vs Deep G-Buffers vs Pathtracing