Machine Learning

Week 3

Logistic Regression

ECE 22/01/2019

Course overview

- 1. Introduction to Classification
- 2. Linear Regression for Classification?
- 3. Logistic Regression Model (Binary Classification)
 - 1. Logistic Regression Model
 - 2. Logistic Regression Cost function
- 4. Multi-Class Logistic Regression
- 5. Evaluating Classifiers
- 6. Cross Validation

Reminder of Machine Learning Types

Machine learning tasks are typically classified into three broad categories

3.1 Introduction to Classification

Classification

- Goal: Inputs are divided into two or more classes, and the ML algorithm must produce a model that assigns unseen inputs to one or more of these classes
- An algorithm that implements classification is known as a classifier

Two-class(Binary) Classification

Emails type: Output y has 2 categories

Two-class(Binary) Classification

Loan demand: Output y has 2 categories

Input: x

Client's characteristics (age, Revenue, credit, etc..)

Output: y

Loan safety evaluation

Multi-class Classifier

News: Output y has more than 2 categories

Input: x

Webpage: title, keywords, etc..

Output: y

News category

Multi-class Classifier

Weather: Output y has more than 2 categories

Input: x

Altitude, region, date, etc...

Output: y

Weather status

Classification Algorithms

Linear Classifiers

Logistic Regression
Naive Bayes classifier
Linear discriminant

Support vector machines

Decision Trees

Random Forests

Boosting

Quadratic Classifiers

Neural Netwoks

K-nearest neighbor

Classification problem example

Classification problem: Loan demand safety?

Input: x
Client's characteristics
(age, Revenue, charges, etc..)

Output: y
Loan safety evaluation

- The classification problem is just like the regression problem
- Except that the y values to be predicted are discrete values.
 - Example: Loan demand evaluation: Safe or risky?

Age	Revenue	Charges	•••	Loan safety
20	1200	500		0
23	1700	450		0
25	1900	400		0
27	2000	450		0
40	2500	250	•••	1
42	2750	200		1
45	2750	300		1
47	3000	100		1
x_1	x_2	x_3		y

Age	Loan safety
20	0
23	0
25	0
27	0
40	1
42	1
45	1
47	1
\boldsymbol{x}	y

 $y \in \{0, 1\}$ \Rightarrow y = 1: Positive Class Safe \Rightarrow y = 0: Negative Class Risky

3.2 Linear Regression for classification?

One method is to use linear regression

\boldsymbol{x}	y
Age	Loan safety
20	0
23	0
25	0
27	0
40	1
42	1
45	1
47	1

- Map all predictions greater than 0.5 as a 1 and all less than 0.5 as a 0
- Threshold classifier output $h\theta(x)$ at 0.5:
 - if $h\theta(x) \ge 0.5$ \rightarrow predict: y="1"
 - if $h\theta(x) < 0.5$ \rightarrow predict: y="0"

 Linear Regression can sometimes be luckybut it is often not useful for classification problems

 $h\theta(x) = 0.0098x - 0.0192$

- Another problem: is that classification need categorical values:
 - y = 0 or 1
 - But with LR: $h_{\theta}(x)$ can be > 1 or < 0

- How the model behaves with extreme points?
 - Certain predictions
- And with middle points?
 - Not very certain
- We need to know how confident our prediction is

- Need for another Linear Classifier !!
 - \rightarrow Logistic Regression $0 \le h_{\theta}(x) \le 1$

3.3 Logistic Regression

3.3.1 Logistic Regression intuition

Logistic Regression Model

• Change the form for our hypotheses $h_{\theta}(x) = \theta^T x$ to satisfy $0 \le h_{\theta}(x) \le 1$

• Use the Sigmoid / Logistic Function : $g(z) = \frac{1}{1 + e^{-z}}$

•
$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

Interpretation of $h_{\theta}(x) = g(\theta^T x)$

•
$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

- $h_{\theta}(x)$ = **estimated probability that y = 1** given the input x parameterized by θ
 - Example: $h_{\theta}(x) = 0.8$ → The probability that the loan is safe (y=1) is equal to 80%

•
$$h_{\theta}(x) = P(y = 1 | x; \theta) = 1 - P(y = 0 | x; \theta)$$

• $P(y = 1 | x; \theta) + P(y = 0 | x; \theta) = 1$

Hypothesis:

Decision Boundary

- Example: Loan demand evaluation model
 - o Predict the loan safety class given the revenue and the charges values
 - o $h_{\theta}(x) = g (\theta_0 + \theta_1 x_1 + \theta_2 x_2) = g (20 + 0.01 \text{ #revenue} 0.1 \text{ #charges})$
- Predict 1: if $g(\theta^T x) \ge 0.5 \implies \theta^T x \ge 0$
 - if $g(20 + 0.01x_1 0.1x_2) \ge 0.5$
 - \Rightarrow 20 + 0,01 x_1 0,1 x_2 \ge 0
- Predict $\mathbf{0}$: if $g(\theta^T x) < 0.5 \rightarrow \theta^T x < 0$
 - if $g(20 + 0.01x_1 0.1x_2) < 0.5$
 - \Rightarrow 20 + 0,01 x_1 0,1 x_2 < 0

• $20 + 0.01x_1 - 0.1x_2 = 0$ is our decision boundary

Decision Boundary

- Example: Loan demand evaluation model
- Predict the loan safety class given the revenue and the charges values

o
$$h_{\theta}(x) = g (\theta_0 + \theta_1 x_1 + \theta_2 x_2) = g (20 + 0.01 \text{ #revenue} - 0.1 \text{ #charges})$$

Charges	Revenue	$\theta^T x$	$g(\theta^T x)$	Safe loan ? (prediction)
500	1300	-17	4,14E-08	0
450	1500	-10	4,54E-05	0
400	1000	-10	4,54E-05	0
450	2000	-5	6,69E-03	0
250	2000	15	1,00E+00	1
200	3000	30	1,00E+00	1
300	3500	25	1,00E+00	1
100	2800	38	1,00E+00	1
450	2700	2	0,880797	1

Non-linear decision boundaries

- Example: $h_{\theta}(x) = g (\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$
 - $\theta = [-1, 0, 0, 1, 1]$
 - o Predict 1 if $-1 + x_1^2 + x_2^2 \ge 0 \Rightarrow x_1^2 + x_2^2 \ge 1$
 - o Predict 0 if $-1 + x_1^2 + x_2^2 < 0 \Rightarrow x_1^2 + x_2^2 < 1$

 As with polynomial regression, we can have more complex decision boundaries by adding higher polynomial terms

$$o \quad h_{\theta}(x) = g \left(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1^3 + \theta_6 x_2^3\right)$$

3.3.2 Cost Function (1)

Cost Fuction 1: Intuition

Quality Metric

Real Data

Charges	Revenue	$\theta^T x$	Safe loan?
100	2800	38	1

Charges Revenue $\theta^T x$ Safe loan? 450 1500 -10 **0**

Predictions?

A good model must predict: 1

A good model must predict: 0

Pick θ to maximize:

Pick
$$\theta$$
 to maximize:
 $P(y = 1 | x; \theta)$

That is
$$P(y = 1 | x1 = 100, x2 = 2800; \theta)$$

$$P(y = 0 | x; \theta)$$
That is
 $P(y = 0 | x1 = 450, x2 = 1500; \theta)$

Cost Fuction 1: Intuition

Cost function for Linear regression

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Charges	Revenue	$\theta^T x$	y =Safe loan (real)	predicion
500	1300	-17	0	0
450	1500	-10	0	0
400	1000	-10	0	0
450	2000	-5	0	1
250	2000	15	1	1
200	3000	30	1	1
300	3500	25	1	0
100	2800	38	1	1

We need a cost function $J(\theta)$ with a convex shape

Cost Fuction 1: Intuition

Cost function for Logistic regression model

Charges	Revenue	$\theta^T x$	y =Safe loan (real)	predicion	Cost (error)		
500	1300	-17	0	0	$Cost(h_{\theta}(x^{(1)}), y^{(1)})$	Cost	= 0
450	1500	-10	0	0	•••	Cost	= 0
400	1000	-10	n	n			
450	2000	-5	0	1			Impose
250	2000	15	1	1	$Cost(h_{\theta}(x^{(i)}), y^{(i)})$		high penalties
200	3000	30	1	1		4	
300	3500	25	1	0			(costs)
100	2800	38	1	1		Cost	= 0

Cost Fuction 1: Intuition (for one data point)

$$Cost(h_{\theta}(x), y) = -(y) * log(h_{\theta}(x)) - (1 - y) * log(1 - h_{\theta}(x))$$

Cost Fuction 1: Intuition (for all data points)

For one data point: $\operatorname{Cost}(h_{\theta}(x), y) = -(y) \operatorname{log}(h_{\theta}(x)) - (1-y) \operatorname{log}(1-h_{\theta}(x))$

For all data points:
$$J(\theta) = \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x), y)$$

= $\frac{1}{m} \sum_{i=1}^{m} (-(y^{(i)}) * \log(h_{\theta}(x^{(i)})) - (1 - y^{(i)}) * \log(1 - h_{\theta}(x^{(i)}))$

- To find the optimal values of θ : $\min_{\theta} J(\theta)$
- Gradien descent:
 - Initiate with a random set of values for θ
 - At each iteration: update the values of θ
 - For each feature x_j , $\theta_j = \theta_j \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) y^{(i)}) \cdot x_j^{(i)}$

3.3.2 Cost Function (2)

Cost Fuction 2: Maximum-Likelihood

Quality Metric

Real Data

Charges	Revenue	$\theta^T x$	Safe loan?
100	2800	38	1

Charges	Revenue	$\theta^T x$	Safe loan ?
450	1500	-10	0

Predictions?

A good model must predict: 1

A good model must predict: 0

Pick
$$\theta$$
 to maximize:
 $P(y = 1 | x; \theta)$

That is
$$P(y = 1 | x1 = 100, x2 = 2800; \theta)$$

Pick
$$\theta$$
 to maximize:
$$P(y = 0 \mid x; \theta)$$
 That is
$$P(y = 0 \mid x1 = 450, x2 = 1500; \theta)$$

Cost Fuction 2: Maximum-Likelihood

Quality Metric: Maximizing likelihood, i.e the probability of good predictions

Charges	Revenue	$\theta^T x$	y =Safe loan	Choose $ heta$ to maximize
500	1300	-17	0	$P(y = 0 x; \theta)$
450	1500	-10	0	$P(y = 0 x; \theta)$
400	1000	-10	0	$P(y = 0 x; \theta)$
450	2000	-5	0	$P(y = 0 x; \theta)$
250	2000	15	1	$P(y = 1 x; \theta)$
200	3000	30	1	$P(y = 1 x; \theta)$
300	3500	25	1	$P(y = 1 x; \theta)$
100	2800	38	1	$P(y = 1 x; \theta)$

• Maximize function over all possible θ_0 , θ_1 , θ_2 :

$$\max_{\theta_0,\theta_1,\theta_2} \prod_{i=0}^{m} P(y_i|x;\theta)$$

3.4 Multiclass classification

Multi-class Classification: Example

Image labelling

Multi-class Classification: Formulation

- C possible classes: y can be 1, 2,..., C
- m data points

Data point	X ₁	x ₂	у
x ⁽¹⁾ , y ⁽¹⁾	1	4	
x ⁽²⁾ , y ⁽²⁾	3	1	•
x ⁽³⁾ , y ⁽³⁾	3	3	
x ⁽⁴⁾ , y ⁽⁴⁾	4	4	

Learn:

$$P(y = | x; \theta)$$

$$P(y = | x; \theta)$$

$$P(y = | x; \theta)$$

Multi-class Classification: One-vs-all (one-vs-rest)

Transform the original classification model to C 2-class models

On a new input, to make a prediction, pick the class that maximizes: $max_i \; h_{ heta}{}^i(x)$

3.5 Evaluating classifiers

Evaluating classifiers: Accuracy

• Accuracy =
$$\frac{number\ of\ data\ points\ classified\ correctly}{all\ data\ points}$$

- is 99% accuracy good?
 - Can be excellent, good, mediocre, poor, terrible
 - It depends on the proportion of the classes in your dataset.

Accuracy is not ideal for skewed (imbalanced) classes !!

- In many cases in real life problems, you care more about well predicting one class than the others:
 - Cancer detection: care more about cancer gets detected. You can tolerate occasionally false detections but not overlooking real cancers.

Y = 0 (no cancer)	You can tolerate having errors when predicting this class: predict patient has cancer when it's not the case
Y = 1 (cancer)	You can not tolerate having errors when predicting this class: predict patient has no cancer when it's the case

 There is a need for a performance metric that can favor one type of an error than an other.

We have two classes:

Match each data point to the appropriate cell

Fill the cells with the corresponding numbers

 \circ : positive class (y = 1)

> **\leftharpoonup**: Negative class (y=0)

			Predicted class				
		Negative		Positive		ve	
Actual class	Negative		?			?	
	Positive		?			?	

Sklearn: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html

Evaluating classifiers: Precision - Recall

		Predicted class		
		Negative	Positive	
Actual class	Negative	True Negative	False Positive	
	Positive	False Negative	True Positive	

- Precision for the positive class answers the following question:
- Out of all the examples the classifier labeled as positive, what fraction were correct?

■ Precision =
$$\frac{True\ positive}{True\ positive + False\ positive} = \frac{9}{9+1} = 90\%$$

Evaluating classifiers: Precision - Recall

		Predicted class		
		Negative	Positive	
Actual class	Negative	True Negative	False Positive	
	Positive	False Negative	True Positive	

- Recall for the positive class answers the following question :
- Out of all the positive examples there were, what fraction did the classifier pick up?

■ Recall =
$$\frac{True\ positive}{True\ positive + False\ negative} = \frac{9}{9+3} = 75\%$$

Evaluating classifiers: F1 score

- Given the nature of the problem, you can optimize the model to get a better precision or a better recall.
- It is possible to optimize both by combining precision and recall into a single value, called F1 score.

•
$$F1\ score = 2 * \frac{precsion * recall}{precision + recall} = 81.81\%$$

Best value at 1, worse at 0.

3.6 K-fold cross-validation

Cross-Validation: Why?

Data = Training set + Testing setOne-round Cross Validation

- Each data point is used only once for training or for testing
- Variability may arise !!
- Moreover: Sometimes we do not have enough data available to make reliable partitions

Cross Validation example: K-fold

Partition the dataset into K folds (bins) of equal size.

• for each k = 1, 2, ... K, fit the model to the other K - 1 parts and compute its error in predicting the k^{th} part.

49

Cross Validation example: K-fold

- Run K separate learning experiments.
 - Pick testing set
 - o Train
 - Test on testing test and compute performance
 - o Example: Linear Regression : R², Logistic Regression: Accuracy
- Average the performance from those K experiments
- Typically, K=5 or 10
- K-Fold is more robust for parameter tuning (choose the regularization parameter, the learning rate, ..)

More about Cross-Validation

- Multiple rounds of cross-validation are performed using different partitions, and the validation results are averaged over the rounds
- Common Types of Cross-Validation:
 - Non-exhaustive cross-validation
 - k-fold cross-validation
 - 2-fold cross-validation
 - Exhaustive cross-validation
 - Leave-p-out cross-validation
 - Leave-one-out cross-validation

Thank you for your attention