Dozent: PD Dr. Daniel Sebastiani

Ausgabe: Montag, 14.12.2009 **Abgabe:** Sonntag, 10.01.2010

8.1 Verteilungstransformation

(aufgabe8_1abce.pdf, aufgabe8_1c.c, aufgabe8_1d.c, aufgabe8_1e.c, 12 Punkte)

Die Verteilungdichte $g(x) \ge 0$ einer Menge von Zufallszahlen $\{x_i\}$ läßt sich implizit definieren über die Integration einer beliebigen stetigen Funktion f(x):

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} f(x_i) = \int_{-\infty}^{\infty} dx \, g(x) f(x)$$
$$\int_{-\infty}^{\infty} dx \, g(x) = 1 \quad \text{(Normalisierung)}$$

Zufallszahlen heissen gleichverteilt im Intervall [a,b], wenn $g(a \le x \le b) = 1/(b-a)$ und g(x) = 0 für $x \notin [a,b]$.

(a) Sei eine solche im Intervall [a, b] gleichverteilte Menge an Zufallszahlen $\{x_i\}$ gegeben. Zeigen Sie, dass die Zufallszahlen $\{y_i : y_i = \Gamma^{-1}(x_i)\}$ mit $\Gamma^{-1}(x)$ definiert als Inverse der Funktion

$$\Gamma(y) := \int_{-\infty}^{y} dt \, \gamma(t)$$

gemäß der Dichte $\gamma(t)$ im Intervall $\left[\Gamma^{-1}(a), \Gamma^{-1}(b)\right]$ verteilt sind.

[2P]

(b) Es seien nun eine Menge Zufallszahlen $\{x_i\}$ gegeben, die im Intervall]0,1] gleichverteilt sei. Geben Sie an, wie eine neue Zufallszahlenmenge $\{y_i\}$ konstruiert werden muss, die im Intervall $[0,\infty[$ exponentiell verteilt sein soll, d.h. die die Verteilungdichte $\gamma(t)=\alpha e^{-\alpha t}$ besitzen soll $(\alpha>0,t\geq0)$.

[2P]

(c) Betrachten Sie ein im Ursprung zentriertes 1s-Wasserstoff-Orbital, also

$$\varphi_{1s}(\mathbf{r}) = A e^{-|\mathbf{r}|/a_0}$$

mit dem Bohr-Radius $a0 = 4\pi\varepsilon_0\hbar^2/m_ee^2 \approx 0.529177$ Å. Nehmen Sie der Einfachheit halber 1Å als dimensionslose Zahl an. Berechnen Sie die Normierungskonstante A über die Bedingung

$$\langle \varphi_{1s} | \varphi_{1s} \rangle = \int d^3r |\varphi_{1s}(\mathbf{r})|^2 \stackrel{!}{=} 1,$$

indem Sie das Integral in Kugelkoordinaten transformieren, die Integration über die Raumwinkel analytisch ausführen, und das verbleibende Radialintegral berechnen über

• analytische Integration.

- eine direkte Monte-Carlo-Integration mit Hilfe einer im Intervall $[0, 5a_0]$ gleichverteilten Zufallsvariablen (über die mit $5a_0$ skalierte Funktion ran(), die Sie auf der Homepage finden). Dabei kann angenommen werden, dass $\varphi_{1s}(r \geq 5a_0) = 0$.
- eine Monte-Carlo-Integration mit geeignetem Importance-Sampling. Hierzu soll die gegebene (in [0,1] gleichverteilte) Zufallsvariable in eine neue Zufallsvariable mit exponentieller Verteilung ($\gamma(t)=a_0^{-1}\,\mathrm{e}^{-t/a_0}$) transformiert werden. Vergleichen Sie mit $\gamma(t)=2a_0^{-1}\,\mathrm{e}^{-2t/a_0}$. Warum ergibt der erste Ausdruck eine bessere Varianz?

Verwenden Sie für die Monte-Carlo-Integrationen $N=10^n$ Zufallszahlen aus der Funktion ran(), $n=1,\ldots,6$ und plotten Sie das Konvergenzverhalten der beiden Varianten mit n. [2P]

(d) Berechnen Sie die Coulomb-Energie dieses Orbitals im Potential einer Punktladung am Ort $\mathbf{R} = (0, 0, R)^T$ für den Ort $R = 2a_0$, also den Wert des Integrals

$$E_C = \left\langle \varphi_{1s} \left| \frac{1}{|\hat{\mathbf{r}} - \mathbf{R}|} \right| \varphi_{1s} \right\rangle$$
$$= \int d^3r \, \varphi_{1s}^2(\mathbf{r}) \, \frac{1}{|\mathbf{r} - \mathbf{R}|}$$

Transformieren Sie das Integral wieder in Kugelkoordinaten, integrieren Sie über ϕ analytisch, und berechnen Sie das verbleibende Doppelintegral über $d\cos\theta\ dr\ r^2$ mit Hilfe

- zweier gekoppelter Gauss-Hermite-Integrationen mit n=10 Punkten (und $\omega(x)=1$). Nähern Sie hierzu das Radial-Integral $\int_0^\infty dr$ durch $2\int_{-5a_0}^{5a_0} dr$ (Vorsicht: Vorzeichenwechsel von r kompensieren!), und berechnen Sie für jeden Stützpunkt für r das Winkelintegral $\int_{\cos\theta=-1}^{\cos\theta=+1} d\cos\theta$ ebenfalls mit dem Gauss-Hermite-Verfahren (mit n=10 Stützpunkten).
- einer zweidimensionalen Monte-Carlo-Integration. Nehmen Sie hierzu die auf [-1,1] gleichverteilte Zufallsvariable 2ran()-1 für die Winkelintegration $\int_{\cos\theta=-1}^{\cos\theta=1} d\cos\theta$. Verwenden Sie für die radiale Integration das Importance-Sampling, indem Sie eine exponentiell verteilten Zufallsvariable (hier mit $\gamma(t) = 2/a_0 e^{-2t/a_0}$) erzeugen. Verwenden Sie hierzu wieder $N = 10^n$ Zufallszahlen mit $n = 1, \ldots, 6$.

Hinweis: Vergessen Sie nicht, dass im Fall des Importance-Sampling die Orbitale im Integranden durch die Verteilungsdichte der Zufallszahlen ersetzt werden.

[4P]

(e) Als weiteres Beispiel soll der sog. Box-Muller-Algorithmus implementiert werden:

$$y^{(1)} = \mu + \sigma \sqrt{-2 \ln x^{(1)}} \cos \left(2\pi x^{(2)}\right)$$
$$y^{(2)} = \mu + \sigma \sqrt{-2 \ln x^{(1)}} \sin \left(2\pi x^{(2)}\right),$$

ausgehend von zwei gegebenen Zufallsvariablensätzen $\{x_i^{(1)}\}$ und $\{x_i^{(2)}\}$, die in]0,1] gleichverteilt seien. Erzeugen Sie jeweils 10^6 solche gleichverteilten Zufallszahlen und transformieren Sie diese gemäß der Box-Muller-Vorschrift für die vier verschiedenen Paare ($\mu=0,10,$ $\sigma=0.1,1$). Berechnen Sie jeweils Mittelwert und Varianz der erhaltenen Zufallszahlen $\{y_i^{(1)}\}$ und $\{y_i^{(2)}\}$ und vergleichen Sie diese mit μ und σ . Plotten Sie die erhaltenen Verteilungsdichten (d.h. die Histogramme der $\{y_i^{(1)}\}$, $\{y_i^{(2)}\}$) in den Intervallen $[\mu-5\sigma,\mu+5\sigma]$. Welche Form haben diese offensichtlich?

[2P]