Management of Asymmetric keys

© André Zúquete, João Paulo Barraca

NFORMATION AND ORGANIZATIONAL SECURIT

Problems to solve

Ensure proper and correct use of asymmetric key pairs

Privacy of private keys

- To ensure authenticity
- To prevent the repudiation of digital signatures

Correct distribution of public keys

- To ensure confidentiality
- To ensure the correct validation of digital signatures

D André Zúquete, João Paulo Barraca

INFORMATION AND ORGANIZATIONAL SECURIT

Problems to solve

Temporal evolution of entity <-> key pair mappings

To tackle catastrophic occurrences

• e.g. loss of private keys

To tackle normal exploitation requirements

• e.g. refresh of key pairs for reducing impersonation risks

© André Zúquete, João Paulo Barraca

NFORMATION AND ORGANIZATIONAL SECURIT

3

Problems to solve

Ensure a proper generation of key pairs

Random generation of secret values

So that they cannot be easily predicted

Increase efficiency without reducing security

- Make security mechanisms more useful
- Increase performance

© André Zúquete, João Paulo Barraca

NFORMATION AND ORGANIZATIONAL SECURIT

Goals

Key pair generation

When and how should they be generated

Handling of private keys

How do I maintain them private

Distribution of public keys

How are they correctly distributed worldwide

Lifetime of key pairs

- When will they expire
- Until when should they be used
- How can I check the obsolesce of a key pair

D André Zúquete, João Paulo Barraca

NFORMATION AND ORGANIZATIONAL SECURIT

Generation of key pairs: Design principles

Good random generators for producing secrets

Result is indistinguishable from noise

- All values have equal probability
- $\,{}^{\circ}\,$ No patterns resulting from the iteration number or previous values

Example: Bernoulli ½ generator

- Memoryless generator
- P(b=1) = P(b=0) = ½
- Coin toss

🕏 André Zúquete, João Paulo Barraca

NFORMATION AND ORGANIZATIONAL SECURIT

Generation of key pairs: Design principles

Facilitate without compromising security

Efficient public keys

- Few 1 bits, typically 2k+1 values (3, 17, 65537)
- Accelerates operations with public keys
- Cost is proportional to the number of 1 bits
- No security issues

© André Zúquete, João Paulo Barraca

NFORMATION AND ORGANIZATIONAL SECURIT

7

Generation of key pairs: Design principles

Self-generation of private keys

Maximizes privacy as no other party will be able to use a given private key

- Only the owner has the key
- Even better: The owner doesn't have the key, but may use the key

Principle can be relaxed when not involving signature generation

• Where there are not issues related with non-repudiation

© André Zúquete, João Paulo Barrac

INFORMATION AND ORGANIZATIONAL SECURIT

Handling of private keys

Correctness

The private key represents a subject

- e.g., a citizen, a service
- Its compromise must be minimized
- Physically secure backup copies can exist in some cases

The access path to the private key must be controlled

- Access protection with password or PIN
- Correctness of applications that use it

© André Zúquete, João Paulo Barraca

NFORMATION AND ORGANIZATIONAL SECURIT

.

Handling of private keys

Confinement

Protection of the private key inside a (reduced) security domain (ex. cryptographic token)

- The token generates key pairs
- The token exports the public key but never the private key
- The token internally encrypts/decrypts with the private key

Example: SmartCards

- $\,{}^{\circ}\,$ We ask the SmartCard to cipher/decipher something
- The private key never leaves the SmartCard

🕏 André Zúquete, João Paulo Barraca

NFORMATION AND ORGANIZATIONAL SECURIT

Distribution of public keys

Distribution to all senders of confidential data

- Manual
- Using a shared secret
- Ad-hoc using digital certificates

Distribution to all receivers of digital signatures

- Manual
- Ad-hoc using digital certificates

André Zúquete, João Paulo Barraca

NFORMATION AND ORGANIZATIONAL SECURIT

11

Distribution of public keys

Problem:

How to ensure the correctness of the public key?

Trustworthy dissemination of public keys

- Trust paths / graphs
- \circ If A trusts K_X^+ , and B trusts A, then B trusts K_X^+
- Certification hierarchies / graphs
 - With the trust relations expressed between entities
 - Certification is unidirectional!

🕏 André Zúquete, João Paulo Barraca

INFORMATION AND ORGANIZATIONAL SECURITY

Public key (digital) certificates

Digital Document issued by a Certification Authority (CA)

Binds a public key to an entity

Person, server or service

Are public documents

- Do not contain private information, only public one
- Can have additional binding information (URL, Name, email, etc.)

Are cryptographically secure

Digitally signed by the issuer, cannot be changed

André Zúquete, João Paulo Barraca

INFORMATION AND ORGANIZATIONAL SECURIT

1

Public key (digital) certificates

Can be used to distribute public keys in a trustworthy way

A certificate receiver can validate it in many ways

- With the CA's public key
- Can also validate the identification
- Validate the validity
- Validate is the key is being properly used

A certificate receiver trusts the behavior of the CA

- Therefore, will trust the documents they sign
- When a CA associates a certificate to A
 - If the receiver trusts the CA
 - Then it will trust that the association of A is correct

🕏 André Zúquete, João Paulo Barraca

INFORMATION AND ORGANIZATIONAL SECURIT

Public key (digital) certificates

X.509v3 standard

- Mandatory fields
 - Version
 - Subject
 - Public key
 - Dates (issuing, deadline)
 - Issuer
 - Signature
 - etc.
- Extensions
- Critical or non-critical

Binary formats

- ASN.1 (Abstract Syntax Notation)
 - DER, CER, BER, etc.
- PKCS #7
 - Cryptographic Message Syntax Standard
- PKCS #12
 - Personal Information Exchange Syntax Standard

Other formats

- PEM (Privacy Enhanced Mail)
- base64 encoding of X.509

PKCS #6

• Extended-Certificate Syntax Standard

🕽 André Zúquete, João Paulo Barraca

Information and Organizational Securit

1

Key pair usage

The public certificate binds the key pair to a usage profile

• Private keys are seldom multi-purpose

Typical usage profiles

- · Authentication / key distribution
 - Digital signature, Key encipherment, Data encipherment, Key agreement
- Document signing
 - Digital signature, Non-repudiation
- Certificate issuing (exclusively for CAs)
 - Certificate signing, CRL signing
- Timestamping (exclusively for TSAs)

Public key certificates have an extension for this

Key usage (critical)

© André Zúquete, João Paulo Barraca

NFORMATION AND ORGANIZATIONAL SECURIT

Certification Authorities (CA)

Organizations that manage public key certificates

- Companies, not for profit organizations or governmental
- Have the task of validating the relation between key and identity

Define policies and mechanisms for:

- Issuing certificates
- Revoking certificates
- Distributing certificates
- Issuing and distributing the corresponding private keys

Manage certificate revocation lists

- Lists of revoked certificates
- Programmatic interfaces to verify the current state of a certificate

🖺 André Zúquete, João Paulo Barraca

nformation and Organizational Securit

17

Trusted Certification Authorities

Intermediate CAs: CAs certified by other trusted CAs

- Using a certificate
- Enable the creation of certification hierarchies

Trusted anchor (or certification root)

- One that has a trusted public key
- Usually implemented by self-certified certificates
 - Issuer = Subject
- Manual distribution
 - e.g., within browsers code (Firefox, Chrome, etc.), OS, distribution...

intermediate CA

CA2

trust or public key root CA

certification

André Zúquete, João Paulo Barrac

Information and Organizational Securit

		Certificate Viewer: "www.ua.pt"	•	
	General Details			
	This certificate has been	en verified for the following uses:		
	SSL Client Certificate			
	SSL Server Certificate			
	Issued To Common Name (CN)	www.ua.pt	End-entity certificate (host) (certificate issued by a CA)	
	Organization (O) Organizational Unit (OU)	Universidade de Aveiro		
	Serial Number	06:B4:17:0C:D7:EF:AC:9F:A3:79:9A:78:0E:7E:5A:8C		
	Issued By			
	Common Name (CN) Organization (O)	TERENA SSL CA 3 TERENA		
	Organizational Unit (OU)	<not certificate="" of="" part=""></not>		
	Period of Validity			
	Begins On	May 27, 2019		
	Expires On	June 3, 2021		
	Fingerprints			
	SHA-256 Fingerprint	6C:BA:BD:A1:7E:A9:8D:EA:7B:18:22:44:EC:71:D5:41:4D:08:D 4:A6:FC:48:1B:3C:9B:05:EB:DA:69:A6:A5:EE		
	SHA1 Fingerprint	17:79:15:B5:0E:E0:34:51:2D:FA:DE:DF:77:1E:E1:0A:E	33:4B:2F:2B	
© André Zúquete, João Paulo			Close	

Online Certificate Status Protocol

HTTP-based protocol to assert certificate status

- Request includes the certificate serial number
- Response states if the certificate is revoked
- Response is signed by the CA and has a validity
- · One check per certificate

Requires lower bandwidth to clients

One check per certificate instead of a bulk download of the CRL

Involves higher bandwidth to CAs

- One check per certificate
- Privacy issues as the CA will know that a certificate is being used

OCSP stapling

- Including a recently signed timestamp in the server response to assert validity
- Reduces verification delay and load on CA
- Avoids privacy issues

© André Zúquete, João Paulo Barrac

Information and Organizational Securi

2

Distribution of public key certificates

Transparent (integrated with systems or applications)

- Directory systems
 - Large scale (ex. X.500 through LDAP)
 - o Organizational (ex. Windows 2000 Active Directory (AD), Manually (UA IDP))
- · On-line: within protocols using certificates for peer authentication
 - eg. secure communication protocols (TLS, IPSec, etc.)
 - eg. digital signatures within MIME mail messages or within documents

Explicit (voluntarily triggered by users)

- User request to a service for getting a required certificate
 - eg. request sent by e-mail
 - eg. access to a personal HTTP page

🕏 André Zúquete, João Paulo Barraca

INFORMATION AND ORGANIZATIONAL SECURIT

PKI (Public Key Infrastructure) (1/2)

Infrastructure for enabling a proper use of asymmetric keys and public key certificates

Creation of asymmetric key pairs for each enrolled entity

- Enrolment policies
- Key pair generation policies

Creation and distribution of public key certificates

- Enrolment policies
- Definition of certificate attributes

André Zúquete, João Paulo Barraca

nformation and Organizational Securit

2

PKI (Public Key Infrastructure) (2/2)

Definition and use of certification chains (or paths)

- Insertion in a certification hierarchy
- Certification of other CAs

Update, publication and consultation of CRLs

- Policies for revoking certificates
- CRL distribution services
- OCSP services

Use of data structures and protocols enabling inter-operation among components / services / people

© André Zúquete, João Paulo Barraca

INFORMATION AND ORGANIZATIONAL SECURITY

PKI Example: Citizen Card

Enrollment

In loco, personal enrolment

Multiple key pairs per person

- One for authentication
- One for signing data
- Both generated inside smartcard, not exportable
- Both require a PIN to be used in each operation

Certificate usage (authorized)

- Authentication
- SSL Client Certificate, Email (Netscape cert. type)
- Signing, Key Agreement (key usage)
- Signature
- Email (Netscape cert. type)
- Non-repudiation (key usage)

Certification path

- Uses a well-known, widely distributed root certificate
- GTE Cyber Trust Global Root
- PT root CA below GTE
- CC root CA below PT root CA
- CC Authentication CA and CC signature CA below CC root CA

CRLs

- Signature certificate revoked by default
- Revocation is removed if the CC owner explicitly requires the usage of CC digital signatures
- All certificates are revoked upon a owner request
- Requires a revocation PIN
- CRL distribution points explicitly mentioned in each certificate

© André Zúquete, João Paulo Barraca

NFORMATION AND ORGANIZATIONAL SECURIT

3

Certificate Pinning

If attacker has access to trusted Root, it can impersonate every entity

- Manipulate a trusted CA into issuing certificate (unlikely)
- Inject custom CA certificates in the victim's database (likely)

Certificate Pinning: add the fingerprint of the PubK to the source code

• Fingerprint is a hash (e.g. SHA256)

Validation process:

- Certificate must be valid according to local rules
- Certificate must have a public they with the given fingerprint

© André Zúquete, João Paulo Barraca

Information and Organizational Securit

Certification Transparency (RFC 6962)

Problems

- CAs can be compromised (e.g., DigiNotar)
 - By attackers
 - By governments, etc.
- Compromise is difficult to detect
 - Result in the change of assumptions associated to the behavior of the CA
 - Owner will selfdom know

Definition: a global system records all public certificates created

- Ensure that only a single certificate has the correct roots
- Stores the entire certification chain of each certificate
- Presents this information for auditing
 - Organizations or ad-hoc by the end users

André Zúquete, João Paulo Barraca

Information and Organizational Security