CQF January 2009 Module 2.3

Live Class: February 11 Lecturer: Andy Duncan

Value at Risk and Volatility

In this lecture:

- The meaning of Value at Risk (VaR)
- How VaR is calculated in practice
- Simulations and bootstrapping
- Simple volatility estimates
- The exponentially weighted moving average

By the end of this lecture, you will be able to:

- Calculate the risk in a portfolio of assets
- Use simulation methods for calculating VaR
- Estimate volatility in two different ways

Risk Measurement - VaR	4
Key Points	8
Some Mathematics for a Simple Equity	12
Table of Factors - Confidence Level and Standard Deviation	16
Longer Time Horizons and Drift	24
VaR for a Portfolio of Equities	25
VaR for Derivatives	
The Delta Approximation	
The Role of Curvature – Gamma	29
Simulations	
Monte Carlo	33
Bootstrapping	34
A Problem with Classic VaR	
Four Features of a Coherent Risk Measure	39
Expected Shortfall	43
Estimating Sigma	44
Simplest Volatility Estimate: Constant Vol/Moving Window	45
Exponentially Weighted Moving Average	48

Summary:

- It is common practice for banks and hedge funds to estimate how much money they could lose, this is called Value at Risk (VaR).
- VaR is quoted over a given time horizon and with a specified degree of confidence.
- Volatility is probably not constant and there fore we may want to use more advanced methods for its estimation than a simple standard deviation.