#### 1 Introduction

#### Artificial Intelligence

- different interpretations
- we do not have a definition of inteligence

# Statistical machine learning

• Algorithms and applications where computer learn from data AGI

- Artificial General Intelligence
- Hypothetical computer program that can perform intellectual tasks as well as, or better than a human.

# Turing Test • Also called imitation game

- Tests of a machine's ability to exhibit intelligent behaviour equivalent to, or indistinguishable from that of a human

  • Has some philosophical problems (Complex problems, humans

# cant solve / AI must learn to lie) Examples of application (today)

- Personalization of news feeds
   Product searching and recommendation s on eCommerce plat-
- Voice-to-text
- Predictive maintenance

#### Rias

- · Results that are systematically prejudiced due to faulty assump-
- The inability for a machine learning method (like linear regression) to capture the true relationship, eg. Straight Line can't be curved like the true relationship
- Difference of fits between data sets
- The difference in fits between training and testing set (different data sets in general)
- Low variance Sum of Squares are very similar for different data-

The ideal ML algorithm has low bias and can accurately model the true relationship and it has low variability by producing consistent predictions across different datasets.

### 1.1 Tasks and Algorithms of Machine Learning



### 1.2 Dialogflow

Intents An intent categorizes an end-user's intention for one con-

- Recognizes the need of a user
- Require training to match to user inputs
- Follow up Intents (on Success) Fallback Intents (on Failure)

Entities Each intent parameter has a type, called the entity type, which dictates exactly how data from an end-user expression is extracted.

- Extract information from user inputs
- Help to identify required intent
  System Entities Date and time / Numbers / Amounts / Units /
- Developer Entities defined by list of words (@pizza-type / @drink / etc.)

  • User Entities transient, temporary Information based on Con-
- versation (@previous-orders)

#### Dialog

Linear Gather a list of information
Non Linear Using Contexts

## Context

Each Intent can have Input & Output Context
 Intents are active based on active Context

- Expire automatically Fulfillment
- Action triggered on fullfilled Intents

#### e g Webbook

Predictive modeling Train model for predictions

Feature Engineering

• The process of identifying useful, additional input from the data

· A typical preprocessing step before the actual learning process Deep neural network ANNs with multiple hidden layers

Feature e.g. Years of working experience, school grades

# 1.3 7 Steps of Machine Learning

- 1. Gathering data Collect quantity/quality data for training/tes-
- 2. Preparing that data Cleanup data (remove duplicates, correct errors, deal with missing values, normalize data, convert data
- types) 3. Choosing a model Select the right algorithm(s)

- 4. Training Train the model, each iteration of process is a training
- 5. Evaluation Use metrics to measure objective performance of the model, test model against previously unseen data, good train/e-val split is 80/29, 70/30
- 6. Hyperparameter tuning Try to improve upon the positive results achieved during the evaluation through gamble with stepNumber of training steps, learning rate, initialization values and distri-
- 7. Prediction Model should be ready for practical applications

### 2 Natural Language Processing (NLP)

- Automated processing of human language (written & spoken)
   Aims to understand and generate human (natural) language
   Understanding spoken text is still difficult
- Understanding written text became BIG business (searchengines)
  • Generating human-like conversations is still very hard

# 2.1 4 Ingredients of Machine Learning

## 1. Data

- Dataset
  Pre-Processing Pipeline including cleansing, feature-engineering, data augmentation etc.

#### 2. Cost-Function (Loss)

- Formal mathematical expression for good / bad Commonly Mean Squared Error (MSE)

### 3. Model

- From linear model:  $\hat{y_i} = ax_i + b$  To complicated million parameter neural networks
- Different tasks require different models (regression / decision

#### 4. Optimization Procedure

- Algorithm that changes the parameters of the model that the
- cost-function is minimized.

   E.g. Stochastic Gradient Descent (SGD), ADAM, RMSProp...

# For successful ML, there are many more ingredients ...

- 5. Performance optimization • Building of efficient pipelines
- Folowwing tool specific recommendations
- 6. Visualization and evaluation of the learning Process
- · Learning curves
- Performance measures
- Tensorboard
- 7. Cross-Validation & Regularization
- · Train models that generalize well to unseen data
- Estimate the generalization error

## 2.2 Representation of Words

Vectors can be used to represent words based on their meaning

#### 2.2.1 One-hot representation

- Vector with a single 1-Value
- All other Values are set to 0
- Count the Number of different Words, Define one unique vector per word

### Dini Mom isch fett

| l | 10      | ]    | $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ |       | 0 |       |   |       | 0 |  |
|---|---------|------|----------------------------------------|-------|---|-------|---|-------|---|--|
| l | Dini: 0 | Mom: | 0                                      | isch: |   | fett: | Ŏ | ·. ·: | Õ |  |
| ı | 0       |      | l N                                    |       | 0 |       | 히 |       | 1 |  |

### Disadvantages

- Very high dimensional vector space (1 Dimension / unique Word)
   Sparse Representation: Each vector has a single 1 and N Zeroes. (Memory Inefficient)

  No Generalization: All words are unrelated to each other.
- Does not capture any aspect of the meaning of a word

Make a list of words (optionally alphabetically). Use the index to represent each word

Example: Dini Mom isch fett.

Dini: 0, Mom: 1, isch: 2, fett: 3, '.': 4

- Dense Equivalent of one-hot encoding
   Indexes are not more useful that one-hot vectors
- Often used as preprocessing step
   Indices / One-Hot Vectors are fed into a network which learns more useful representations

# 2.2.3 Distributed Representation

- vectors that capture (at least partially) the semantics of a word
  Words that occur in similar contexts (neighboring words) tend
- to have similar meanings Similar words share similar representations
- Distributed representations can be learned



## Words to Vectors

- Mathematical function maps word to high dimensional Vector
  In neural networks, this function is implemented in the Embedding Laver

# Advantage (of vectors)

- Good embedding maps similar/related words to similar regions of the vector space (nearby words have a semantic similarity)
   Dot-Product (Skalarprodukt) is a measure of similarity
   Possible to add/subtract vectors
- Calculate Similarities between words Dot-Product (Skalarprodukt) of 2 Vectors is • maximal when parallel (0°), both vectors with norm 1 results in
- max value 1
- zero when orthogonal (90°)
  minimal (negative) when opposite directions (180°) both vectors with norm 1 results in max value -1

# Cosine Distance

• Way to calculate how similar two words (vectors) are



 $||A||||B|| = \sqrt{(9+36+4+1)} * \sqrt{(4+49+4+0)} = 53.38539$ 

A\*B/(||A||||B||) = 0.9740high value equals high similarity (to be an animal)

Example

A: (3, 6, 2, 1), B: (2, 7, 2, 0)  $A \cdot B = 6 + 42 + 4 + 0 = 52$ 

# 3.1 Random Variables

- · Values depend on outcomes of a random phenomenon Random variable X is a variable that takes a numerical value x,
- which depends on a random experiment
- Discrete X takes any of a finite set of values 1.5, 2.123, 6.2, 10 Continous X takes any value of an uncountable range e.g. real numbers from an interval

## Best we can know

- All possible values
- Probability of each value

E.g. The discrete random variable X is the number observed when rolling a fair dice. P(X = x) / P(x): 1/6 for each possible value

# Joint Probability

- Joint Properties of two random variables
- Defined by the Joint Probability Mass Function

E.g. Dice1 = 5 AND Dice2 = 4 
$$P_{XY}(5,4) = P_X(5) * P_Y(4) = 1/6 * 1/6 = 1/36$$

X=1 X=2 X=3 X=4 X=5 X=6

Y=1 1/36 1/36 1/36 1/36 1/36 1/36 1/36

|     | X=1  | X=2  | X=3  | X=4  | X=5  | Х=6  |
|-----|------|------|------|------|------|------|
| Y=1 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36 |
| Y=2 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36 |
| Y=3 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36 |
| Y=4 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36 |
| Y=5 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36 |
| Y=6 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36 | 1/36 |

### Independant random Variables

• Joint Probability is the product of the individual probabilities

P(X,Y)=P(X)\*P(Y) (only if independant) P(X,Y,Z)=P(X)\*P(Y)\*P(Z) (only if independant) Correlated random Variables

- · There are events that are not independant
- Such random variables are correlated
  X: observe clouds (0=no, 1=small, 2=big)
- Y: observe rain (0=no, 1=light, 2=moderate, 3=heavy)

### Conditional Probability

- One variable is no longer random
- X is observed, its value is fixed
- Calculate the probabilities of Y given X: P(Y|X)

$$\begin{split} P(X,Y) &= P(X|Y) * P(Y) \\ P(X,Y) &= P(Y|X) * P(X) \\ P(Y|X) &= \frac{P(X,Y)}{P(X)} \end{split}$$
 Bayes Rule

Bayes Rule 
$$P(X|Y) * P(Y) = P(Y|X) * P(X)$$
  
Therefore

$$P(Y|X) = \frac{P(X|Y)*P(Y)}{P(X)}$$

# 3.2 Probability mass function (PMF)

Wahrscheinlichkeitsfunktion, a function f(x) that provides the probability for each value x of a discrete random variable X

#### Graph of a PMF



#### 4 Data Visualization

- See trends, clusters and local patterns in data
- Difficult to see in raw data
- Detect outliers and unusual groups
   Validate Hypothesis/Conjecture/Theory

# Important in a Plot

- X-Axis labels which data is represented and its units
   Y-Axis labels which data is represented and its labels
- Scale linear, logarithmic
- Dimensionality of the data 2D / 3D

Dataframe a two-dimensional labelled data structure with columns

# 4.0.1 Data Analysis Libraries

# NumPv

- Package for scientific computing in Python
  Multidimensional array object
- Routines for fast array operations (sorting, selecting, FFT, line-

# pandas

- Built on top of NumPy
   Routines for accessing tabular data from files (.csv, xls, etc.)
   Supports 2-dimensional data (dataframe and series)
- Dataframes are something like database tables

#### MatPlotLib

Library for visualizing data
Provides bargraphs, histograms, piecharts, scatter plots, lines, boxplots, heatmaps, ...

#### Seaborn

- · Extension of MatPlotLib, NumPy and pandas
- More user friendly
   Plots are aesthetically better

## 4.0.2 Line Plots

• Bivariate, Continuous Recognizes trend (pattern of change) (over time)

## 4.0.3 Bar Chart

- Used for categorical data
  Counting based on each category

### 4.0.4 Histogram

- $\bullet\,$  Represents the empirical distribution of a variable
- Automatically creates bins (interval) along the range of values
  Shows vertical bars to indicate the number of observations per

#### 4.0.5 Descriptive Statisics: Box Plots and Violin Plots



#### 4.0.6 Scatter Plot

Relationship between (two) continuous variables
Helps to get an idea of the degree of correlation between varia-

#### 5 Linear Regression

a simple method to analyse data

- Only consideres a linear relationship between input and output In the simplest case, x and y are scalars and the linear model therefore has only two free parameters The goal is to identify a (slope) and b (intercept) for which the linear model best explains the data

$$\hat{y_i} = ax_i + b$$

# Applications

- Interpretation has some input an effect on the output, eg. Is there a relationship between smoking cigaretts and the risk of lung
- Prediction Given some sensor data like oil pressure, temperature
  ..., eg. a model could predict (and thereby hopefully prevent) an

#### 5.1 Model

In ML, we use the term model for any mathematical function that explains the data

$$y_i \approx f(x_i) \\ y_i = f(x_i) + \epsilon_i$$

where  $\epsilon_i$  is unexplained noise. It is often assumed that  $\epsilon_i$  follows a normal distribution. Instead of approximating  $y_i$ , we calculate an estimate  $\hat{y_i}$  (y hat) of the usually unknown  $y_i$ :

$$\hat{y_i} = f(x)$$

# 5.2 Mean Squared Error (MSE)

Loss we want to minimize
Usually divided by 2

$$\begin{split} \hat{y_i} &= ax_i + b \\ e_i &= y_i - \hat{y_i} \\ \text{The difference } e_i, \text{ called residual} \\ E &= \frac{1}{2N} * \sum_{i=1}^N e_i^2 \\ E &= \frac{1}{2N} * \sum_{i=1}^N \left( y_i - (a * x_i + b) \right)^2 \end{split}$$

## 5.3 Correlation and Causality

- · Correlation is not causality
- Correlation refers to the degree to which a pair of variables are • Linear regression is a tool to detect correlations between two or
- more variables

   Correlation can be quantified using the Pearson correlation coefficient

# 6 Optimization

- Training or learning in AI often suggests an algorithm performing some sort of optimization
- It is the problem of finding a set of inputs to an objective function that results in a maximum or minimum function evaluation
- In our examples the objective is to minimize the loss function

#### 6.1 Gradient Descent

At any location [a,b] we look at the error-gradient in the neighbourhood of [a,b] and move a (small) step in the direction where the error shrinks the most. By repeating this procedure, we will eventually arrive at the location where the error is smallest.

- Iterative Method/Procedure
   Each iteration, the model parameters are updated such as that the Loss (MSE) is reduced
- Move along a trajectory which includes fewer points
   At each point of the trajectory we evaluate the gradient of the
- error function • At each iteration, we would have to iterate over all N = 1'000
- points to calculate the gradient of the loss function.

# Calculate Gradient

Gradient of E = 
$$\begin{bmatrix} \frac{\partial E}{\partial a} \\ \frac{\partial E}{\partial b} \end{bmatrix}$$

Calculate these two partial derivatives

$$\frac{\partial E}{\partial a} = \frac{1}{N} \sum_{i=1}^{N} (y_i - (a \cdot x_i + b)) \cdot - x_i$$

$$\frac{\partial E}{\partial b} = \frac{1}{N} \sum_{i=1}^{N} (y_i - (a \cdot x_i + b)) \cdot -1$$

$$\text{Gradient of E} = \begin{bmatrix} \frac{\partial E}{\partial p} \\ \frac{\partial E}{\partial b} \end{bmatrix} = \begin{bmatrix} \frac{1}{N} \sum_{i=1}^{N} (y_i - (a \cdot x_i + b))(-x_i) \\ \frac{1}{N} \sum_{i=1}^{N} (y_i - (a \cdot x_i + b))(-1) \end{bmatrix}$$

### 6.2 Stochastic Gradient Descent (SGD)

we do not need the exact gradient to find a trajectory toward the minimum. Instead, at each iteration we can randomly pick a few datapoints and use them to calculate an approximation of the gradient.

- At each iteration, the gradient is calculated on a (randomly selected) subset of the data
- For a fixed learning rate, SGD does not converge

# Mini-batches

- 1 < n < N• Increasing the batch-size will reduce the variance of the gradient estimation
- batch-size n = 1 yields a very noisy gradient
  batch-size n = N is expensive to calculate
- often mini-batches of size n = 32 or n = 64 are used

## Annealed SGD

- The learning rate alpha is reduced over time
   This is called (simulated) annealing
   There are different options (called schedules) how to reduce alpha over time
  • A fixed learning rate  $\alpha$  does not converge. The algorithm keeps
- fluctuating around the minimum. Annealed SGD solves this appearent contradiction by adapting the learning rate. It starts with a large  $\alpha$  and reduces it over time

#### 6.2.1 General remarks on SGD

- Gradient-based methods only work if we can express a Loss function as a differentiable function
- SGD is dealing with only a single datum at each iteration. This
  is very inefficient and rarely used.
- · Batch- or mini-batch gradient-descent is usually used

#### 7 Generalization and Regularization

- Out-of-sample Error Generalization Error (Test Error) is the MSE of new Data
- A good model has a low Generalization Error

#### 7.1 Overfitting

- A model that perfectly fits the data does not have to be perfect
  In-Sample Error (Training error) was minimized (MSE = 0)
  Overfitting happens if the MSE of Training Error is small thanks to a complex model but the Generalization Error is large (Good with training data, bad with testing data)



#### 7.2 Underfitting

- Using a too simple model
   In-Sample Error is large
- Generalization Error is large



### 7.3 Training-Set, Test-Set, Model Evaluation

- The Generalization Error can't be calculated, but estimated
- Split the data into 2 sets
  Training-Set (80% of data)
  Test-Set (20% of data)

- Training
   Fit the model to the training set
- · This minimizes the in-sample error
- Evaluating
- Using the Test-Set
   Produces the Test-Error
   This is an estimate of the Generalization Error

# 7.4 Bias-Variance Trade-off

# High Bias

- A too simple model for the given data
   Low Variance
   The model is relatively stable
   Very similar model if trained with new data



#### Low Bias

- A more complex model can better explain the data High Variance
- Given a new datapoint, the MSE can be very large
  For a different set with more datapoints, the model may be very different



- Higher bias implies lower variance
   Lower bias implies higher variance
- In practice, all we want is low variance
  The model can only be as complex as the data permits
- You have to find an optimal balance between bias and variance

← Underfitting Overfitting >

model complexity

Training Error

# 7.5 Regularization

Technique to measure the model complexity

Technique to control the model complexity

- Add a penalty term to the Loss (optimization problem)
- More complex models get a higher penalty
   Add a constrain to the optimization process
- ullet Modified optimization error target regularized loss = MSE +  $\lambda$ model-complexity

$$\sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$



### 8 Cross-Validation (CV)

- a technique to compare (and select from) different models (=different parameter values)

  • Use case 1: Obtain a better estimate of the generalization error
- Use case 2: Selection of hyper parameters, split/train pattern of cross validation can be used to find optimal hyper parameters

## Problem with (80/20) Data Separation

- Test Error depends on random set
  For different sets, the test error would be different

without cross-validation



#### 8.1 k-fold Cross-Validation

With k-Fold Cross-Validation

- The data is split once into k folds Repeats the split-train-test procedure k times, using a systematic resampling procedure
- Then train/test is repeated k-times.
  Each fold participates in k-1 training phases and is used once for testing



- Typical Values for k are 5,10 or N
  The data of a fold does not change during procedure
- Do not preprocess the whole dataset
- Apply the preprocessing pipeline (standardization) to each split
   Each split generates a different model
- With regularization, each split may yield a different model and a different optimal  $\lambda$



# 9 Artificial Neural Networks (ANN)

An ANN is a data-structure to define arbitrarily complex mathe-

#### 9.1 Artificial Neurons

- Receives an input vector  $[x_1, x_2, ...]$
- Each neuron has its own input weights  $[w_1, w_2, ...]$  and bias b
- (=intercept)
   Calculates the sum of the weighted input (dot product  $\vec{x} * \vec{w}$ ). adds a bias b, and passes it through a nonlinear activation function



example of a popular non-linear activation

The Rectified Linear Unit (Rel II) cuts-off negative values (y=0). Positive-values are passed through (y=x)

# 9.2 Simple Artificial Neural Network (ANN)



#### 9.3 Training an ANN

#### Supervised learning

- Data with label
- For each input  $\vec{x}$  we are given the output  $\vec{y}$  ANN is initialized with random weights
- An optimizer reduces a cost-function (e.g. MSE)
  At every iteration, and for every single weight w and bias b.
- the partial derivative needs to be calculated. (Backpropagation algorithm)





Classification method

#### 10.1 Binary Classification

- Decision with 2 possible outcomes
   Hail in Lausanne (yes/no)
   Master admission (admission / no admission)
   Based on different data / entity

y=1 implies yes/accepted/admission, y=0 implies no/rejected  $P(y=1,x_1=4.5,x_2=5,x_3=5.5)$ 



# 10.2 Predicting Probabilities: Logistic Regression

# Decision using Linear Regression

- Train the model with gradient descent

Models the response (y) and post process the response (e.g. by thresholding) to compute the probability

# The model: sigmoid function

- Values between 0 and 1. y is interpreted as probability
- Function is not parametrized
  Has a single input value

$$sigmoid(y) = \frac{1}{1+e^{-y}}$$

- calculated from the input data
  a linear combination of the input features, with one feature  $ax_i + b$  with D dimensions  $y_i = \sum_{d=0}^{d=D} w_d \cdot x_i^d$



# Probabilities

- We can write the estimated probabilityFor a prediction we can write

$$P(x) = \frac{1}{1 + e^{-(W^T x)}}$$

$$\text{e.g. } Pr(y_i = 1 | x_i; w) = \frac{1}{1 + e^{-\left(w_0 + w_1 \cdot x_{i,1} + w_2 \cdot x_{i,2} + w_3 \cdot x_{i,3}\right)}}$$

#### 10.3 Optimization: Maximum Likelihood Estimation

- Given all the data points (X,Y) we want to maximize the probability that all the predictions are correct.
- For each of the training data, we want to maximize the likelihood
- of correct prediction  $\bullet$  We can use Gradient Descent to find optimal W







### 11 Classifier Evaluation

#### 11.1 Confusion Matrix



#### Source:Wikipedia Mean Accuracy

• How often is the classifier correct? •  $A = (t_p + t_n)/n$ 

#### Mean Error

- How often is the classifier wrong?  $E = (f_p + f_n)/n$

### Precision

#### Sensitivity, Recall, True Positive Rate (TPR)

• How often the prediction is 1 when it's actually 1  $\bullet \ R = t_p/(t_p + \dot{f}_n)$ 

#### Miss Rate, False Negative Rate (FNR)

• MR = 1 - TPR

### 11.2 Why Accuracy is not enough?

- If the prediction is constant the accuracy may still look decent
- E.g. always predict false 90% of the data is false
- Accuracy = 90% (decent)
   Precision = 0
   Recall = 0

### 11.3 Precision vs. Recall

- Increasing precision reduces Recall and vice versa
  Threshold is a business decision (depending on goals)

### 11.4 Receiver Operating Characteristics (ROC)

- Defined by FPR and TPR as x and y axes
  Visualizes tradeoff between TP (benefits) and FP (cost)



#### Area under the curve

- Area under the ROC curve
  Shows how well the TPR and FPR is looking in the aggregate
- The greater the area under the curve, the higher the quality of the model
- The greater the area, the higher the ratio of TP to FP

# 12 K-Nearest Neighbour (KNN)

Classification method

#### 12.1 Linear Separability

#### linearly separable in 2D









- Based on logistic regression model, you can draw a line
  This is the Linear decision boundary
  If a simple line perfectly seperates the classes, then the classes are said to be linear separable

#### 12.2 Non-Linear decision boundary

- When classes are not linearly separableResort to polynomial terms

#### 12.3 k-Neares Neighbors (KNN)

- A datapoint is know by the company it keeps
- Computes k nearest neighbours
- Returns the most frequent class of the k neighbours





Process

- 1. Load the training and test data 2. Choose value of k (number of nearest neighbours to consider for classification)
- 3. For each test data points  $x_{test}$

For all training data  $x_{train}$  calculate  $d(x_{test}, x_{train})$ with distance metric

Sort training data in ascending order of distance Choose first k data points from sorted training data Choose most frequently occurring class from k data points as classification result

#### Distance Metric

- Cosine Distance  $cost\theta = \frac{x_1 \cdot x_2}{||x_1|||||x_2||}$  Manhattan Distance  $d_M = \sum_{i=1}^n |x_{1,n} x_2, n|$
- Euclidean Distance (most used)  $d_E = \sqrt{\sum_{i=1}^n (x_{1,n} x_{2,n})^2}$
- Minkowski Distance

#### Advantages

- Easy and simple ML model
  Few hyperparameters to tune

#### Disadvantages

- k should be wisely selected
  Large computation cost during runtime if sample size is large
- Not efficient for high dimensional datasets
  Proper scaling should be provided for fair treatment among fea-

- K Value how many neighbours to participate in the KNN algo-
  - Distance Function Euclidean distance is most used

#### 13 Clustering

# 13.1 Unsupervised Learning

- We are given Data (features, x) without labels (y)
   It learns something through the structure of the data
   The goal of unsupervised learning is to self-discover patterns from the data

# Clusters

- Data points which have shared properties
   Fall into one cluster or one alike group
   Similar Data Points are close together
- Group n data points into  $k_c$  number of clusters

# Applications

- Social Network Analysis
   Astronomical Data
- Marked segmentation
   Recommendation systems

#### 13.2 Naive K-means

- Let us assume we know the number of clusters k.
- 2. Initialize the value of k cluster centres (aka, means, centroids)  $(C_1, C_2, \dots, C_{k_c})$

- 1. Find the squared Euclidean distance between the centres and all the data points.
- 2. Assign each data point to the cluster of the nearest centre
- 4. Update: Each cluster now potentially has a new centre (mean). Update the centre for each
- 1. New Centres  $((C'_1, C'_2, \dots, C'_{k_c}))$  = Average of all the data points in the cluster  $(1, 2, \dots, k_c)$
- 5. If some stopping criterion met, Done

## 6. Else, go to Assignment step 3

- Initialization: choose  $(C_1,C_2,\ldots,C_{k_c})$ .  $(C_1\ldots$  are vectors in the same space as the features. They can be randomly initialized)
- · Assignment Step:

$$\forall_{k=1}^{k_{c}} \ \forall_{l=1}^{N} \ \mathrm{d}_{i,k} = (x_{l} - C_{k})^{2}$$
 (squared euclidean distance)

$$\begin{array}{ll} d_{i,k}^{min} = \ \textit{Minimum} \big( \mathbf{d_{i,1}}, \mathbf{d_{i,2}}, \ldots, \mathbf{d_{i,k_c}} \big) \\ x_i \in \textit{Cluster } k \end{array}$$

Update Step: (centre<sub>k</sub> = mean of all data in cluster<sub>k</sub>)

$$\forall_{k=1}^{k_c} C_k = \frac{1}{size(C_k)} \sum_{\mathbf{x}_i \in state(\mathbf{x}_i)} \mathbf{x}_i$$

- Stopping Criterion
   When centres don't change (time consuming)
- The datapoints assigned to specific cluster remains the same (takes too much time)
- The distance of datapoints from their centres >= treshold we have set
- Fixed number of iterations have reached (choose wisely)

#### Initialization

- Performance depends on the random initialization
- Some seeds can result in a poor convergence rate
  Some seeds can converge to suboptimal clustering
  If centres are very close, it takes a lot of iterations to converge
  Initialize randomly, run multiple times
  Standardization of data
- Features with large values may dominate the distance value
   Features over small values will have no impact
- Normalize values! 13.3 Sklean k-means

# Initialization

- Init = K-means++
- Only initialization of the centroids will change
- Chosen centroids should be far from each other
- max iter
- Number of iterations before stopping
- n init
- Number of time the k-means algorithm will be run with different centroid seeds

# 13.4 Evaluate Cluster Quality

• Make clusters so that for each cluster the distance of each cluster member from its center is minimizes

# Inertia or within-cluster sum-of-squares (WCSS)

- Sum of squared distances of samples (each point) to their closest
- As small as possible

| Y-Values |         |  |  |  |  |  |  |  |  |
|----------|---------|--|--|--|--|--|--|--|--|
| 3.5      |         |  |  |  |  |  |  |  |  |
| 2.5      |         |  |  |  |  |  |  |  |  |
| 2        | • • • ) |  |  |  |  |  |  |  |  |
| 1.5      |         |  |  |  |  |  |  |  |  |
| 1        |         |  |  |  |  |  |  |  |  |
| 0.5      |         |  |  |  |  |  |  |  |  |

|      | Squared<br>Euclidean<br>distance from red<br>centre | Squared<br>Euclidean distance<br>from red centre |  |  |  |
|------|-----------------------------------------------------|--------------------------------------------------|--|--|--|
|      | 1.25,2                                              | 2.5, 1                                           |  |  |  |
| 1,3  | $(1.25 - 1)^2 + (3 - 2)^2 = 1.0625$                 | -                                                |  |  |  |
| 1,2  | 0.0625                                              | -                                                |  |  |  |
| 1,1  | 1.0625                                              | -                                                |  |  |  |
| 2,1  | -                                                   | 0.25                                             |  |  |  |
| 2,2  | 0.5625                                              | -                                                |  |  |  |
| 3,1  | -                                                   | 0.25                                             |  |  |  |
| wcss | 2.75                                                | 0.5                                              |  |  |  |

# Silhouette Score

- How far the datapoints in one cluster are from the datapoints in another cluster
- Silhouette Score of a point:  $\frac{b-a}{max(a,b)}$
- a: average intra-cluster distance (distance between each point

• b: average inter-cluster distance (distance between a cluster and

# Silhouette Score

- Silhouette(1,3) =  $\frac{(3.65 1.47)}{3.65}$  = 1  $\frac{1.47}{3.65}$  = 0.59
- Silhouette(2,2) =  $\frac{(1.2-1.27)}{1.27}$  =  $\frac{1.2}{1.27}$  1 = -0.05
- · The range of silhouette score is from -1 to 1
- · Score should be closer to 1 than -1

|     | Distance from points in the<br>GREEN cluster |      |      |      |   | Distance from other points in the cluster |     |     |                   | П   |
|-----|----------------------------------------------|------|------|------|---|-------------------------------------------|-----|-----|-------------------|-----|
|     |                                              |      |      |      |   | 1,3                                       | 1,2 | 1,1 | 2,2               | a   |
|     | 2,1                                          | 3,1  | b    | 1.   | - | _                                         | 4   | 2   | $\sqrt{2} = 1.41$ | 1.4 |
| 1,3 | √5                                           | √8   | 3.65 | 1 25 |   |                                           | '   | 2   | V2 = 1.41         | 1.7 |
| 1.2 | √2                                           | √5   | 1.8  | 1,   | 2 | 1                                         | -   | 1   | 1                 | 1   |
|     | V2                                           | - 43 | _    | 1,   | 1 | 2                                         | 1   | -   | √2                | 1.4 |
| 1,1 | 1                                            | 2    | 1.5  | l 📙  |   |                                           |     |     |                   | 1   |
| 2,2 | 1                                            | √2   | 1.2  | 2,   | 2 | $\sqrt{2}$                                | 1   | √2  |                   | 1.2 |

### 14 Ensemble Methods

- Suppose we have many different weak models (better than ran-
- Get prediction from all of them and take a vote
- Class with most votes is the predicted class
  Commonly used towards the end of a project
  Requirement enough models / diverse models
  Wisdom of Crowd
- Suppose you have a difficult question
- Ask many people and aggregate the answer
   This might work very well instead of finding the best suited per-

- Wisdom of Crowd can be applied to ML
  Instead of finding the best model, aggregate the results of weak models
- Aggregate predictions of regressors or classifiers
  Might get better accuracy than the best predictor
  Ensemble: group of predictors

- Aggregate predictions

   Hard voting Predict class with most votes • Soft voting Predict class with the highest class probability

# 14.1 Bagging and Pasting

# Bagging (Bootstrap Aggregating)

- Sampling with replacement
  Allows data points to be used several times



Pasting • Sampling without replacement

# 14.2 No free lunch theorem

No single machine learning algorithm is universally the best-performing algorithm for all problems

### 14.2.1 Out of Bag (oob) Evaluation

- Using Bagging
- Some Data Points may not be used at all
   Use them for evaluation