

Claims:

5 1. A compound of formula (I):

or a salt, solvate, or physiologically functional derivative thereof, wherein:

10

R^1 is selected from hydrogen, C_{1-6} alkyl, hydroxy, cyano, nitro, halo, C_{1-6} haloalkyl, XCO_2R^8 , $-XC(O)NR^7R^8$, $-XNR^6C(O)R^7$, $-XNR^6C(O)NR^7R^8$, $-XNR^6C(O)NC(O)NR^7R^8$, $-XNR^6SO_2R^7$, $-XSO_2NR^9R^{10}$, XSR^6 , $XSOR^6$, XSO_2R^8 , $-XNR^7R^8$, $-XNR^6C(O)OR^7$,

15 or R^1 is selected from - X -aryl, - X -hetaryl, or - X -(aryloxy), each optionally substituted by 1 or 2 groups independently selected from hydroxy, C_{1-6} alkoxy, halo, C_{1-6} alkyl, C_{1-6} haloalkyl, $-NR^6C(O)R^7$, SR^6 , SOR^6 , $-SO_2R^6$, $-SO_2NR^9R^{10}$, $-CO_2R^8$, $-NR^7R^8$, or hetaryl optionally substituted by 1 or 2 groups independently selected from hydroxy, C_{1-6} alkoxy, halo, C_{1-6} alkyl, or C_{1-6} haloalkyl;

20

X is $-(CH_2)_q-$ or C_{2-6} alkenylene;

q is an integer from 0 to 6, preferably 0 to 4;

25 R^6 and R^7 are independently selected from hydrogen, C_{1-6} alkyl, C_{3-7} cycloalkyl, aryl, hetaryl, hetaryl(C_{1-6} alkyl)- and aryl(C_{1-6} alkyl)- and R^6 and R^7 are each independently optionally substituted by 1 or 2 groups independently selected from halo, C_{1-6} alkyl, C_{3-7} cycloalkyl, C_{1-6} alkoxy, C_{1-6} haloalkyl, $-NHC(O)(C_{1-6}$ alkyl), $-SO_2(C_{1-6}$ alkyl), $-SO_2$ (aryl), $-CO_2H$, and $-CO_2(C_{1-4}$ alkyl), $-NH_2$, $-NH(C_{1-6}$ alkyl), aryl(C_{1-6} alkyl)-, aryl(C_{2-6} alkenyl)-,

aryl(C₂₋₆alkynyl)-, hetaryl(C₁₋₆alkyl)-, -NHSO₂aryl, -NH(hetarylC₁₋₆alkyl), -NHSO₂hetaryl, -NHSO₂(C₁₋₆alkyl), -NHC(O)aryl, or -NHC(O)hetaryl:

R⁸ is selected from hydrogen, C₁₋₆alkyl and C₃₋₇ cycloalkyl;

5

or R⁷ and R⁸, together with the nitrogen atom to which they are bonded, form a 5-, 6- or 7-membered nitrogen – containing ring;

10 R⁹ and R¹⁰ are independently selected from hydrogen, C₁₋₆alkyl, C₃₋₇cycloalkyl, aryl, hetaryl, hetaryl(C₁₋₆alkyl)- and aryl(C₁₋₆alkyl)-, or R⁹ and R¹⁰, together with the nitrogen to which they are bonded, form a 5-, 6-, or 7- membered nitrogen containing ring; and R⁹ and R¹⁰ are each optionally substituted by one or two groups independently selected from halo, C₁₋₆alkyl, and C₃₋₇cycloalkyl, C₁₋₆haloalkyl;

15 R² is selected from hydrogen, hydroxy, C₁₋₆alkyl, C₁₋₆alkoxy, halo, aryl, aryl(C₁₋₆alkyl)-, C₁₋₆haloalkoxy, and C₁₋₆haloalkyl;

R³ is selected from hydrogen, hydroxy, C₁₋₆alkyl, C₁₋₆alkoxy, halo, aryl, aryl(C₁₋₆alkyl)-, C₁₋₆haloalkoxy, and C₁₋₆haloalkyl; and

20

R⁴ and R⁵ are independently selected from hydrogen and C₁₋₄ alkyl with the proviso that the total number of carbon atoms in R⁴ and R⁵ is not more than 4;

R^a and R^b each independently represent hydrogen or C₁₋₄alkyl;

25

Ar¹ is a group selected from

(a)

(b)

(c)

and

(d)

wherein R¹¹ represents hydrogen, halogen, -(CH₂)_nOR¹⁵, -NR¹⁵C(O)R¹⁶, -NR¹⁵SO₂R¹⁶, -SO₂NR¹⁵R¹⁶, -NR¹⁵R¹⁶, -OC(O)R¹⁷ or OC(O)NR¹⁵R¹⁶, and R¹² represents hydrogen, halogen or C₁₋₄ alkyl;

5

or R¹¹ represents -NHR¹⁸ and R¹² and -NHR¹⁸ together form a 5- or 6- membered heterocyclic ring;

R¹³ represents hydrogen, halogen, -OR¹⁵ or -NR¹⁵R¹⁶;

10

R¹⁴ represents hydrogen, halogen, haloC₁₋₄ alkyl, -OR¹⁵, -NR¹⁵R¹⁶, -OC(O)R¹⁷ or OC(O)NR¹⁵R¹⁶;

15

R¹⁵ and R¹⁶ each independently represents hydrogen or C₁₋₄ alkyl, or in the groups -NR¹⁵R¹⁶, -SO₂NR¹⁵R¹⁶ and -OC(O)NR¹⁵R¹⁶, R¹⁵ and R¹⁶ independently represent hydrogen or C₁₋₄ alkyl or together with the nitrogen atom to which they are attached form a 5-, 6- or 7- membered nitrogen-containing ring,

R^{17} represents an aryl group which may be unsubstituted or substituted by one or more substituents selected from halogen, C_{1-4} alkyl, hydroxy, C_{1-4} alkoxy or halo C_{1-4} alkyl; and

5 r is zero or an integer from 1 to 4;

Z is O, CH_2^- or a single bond;

n is an integer of from 1 to 4;

10 m is zero or an integer of from 1 to 4;

p is zero or an integer of from 1 to 3;

k is an integer from 1 to 3; and

t is zero or 1.

15

2. A compound of formula (Ia):

or a salt, solvate, or physiologically functional derivative thereof, wherein:

20

k is an integer from 1 to 3;

n is an integer of from 1 to 4;

m is an integer of from 2 to 4;

p is an integer of from 1 to 4;

25 Z is O or CH_2^- ;

R^1 is selected from hydrogen, C_{1-6} alkyl, hydroxy, cyano, nitro, halo, C_{1-6} haloalkyl, XCO_2R^8 , $-XC(O)NR^7R^8$, $-XNR^6C(O)R^7$, $-XNR^6C(O)NR^7R^8$, $-XNR^6C(O)NC(O)NR^7R^8$, $-XNR^6SO_2R^7$, $-XSO_2NR^9R^{10}$, XSR^6 , $XSOR^6$, XSO_2R^6 ,

30 $-XNR^7R^8$, $-XNR^6C(O)OR^7$,

or R¹ is selected from -X-aryl, -X-hetaryl, or -X-(aryloxy), each optionally substituted by 1 or 2 groups independently selected from hydroxy, C₁₋₆alkoxy, halo, C₁₋₆alkyl, C₁₋₆haloalkyl, -NR⁶C(O)R⁷, SR⁶, SOR⁶, -SO₂R⁶, -SO₂NR⁹R¹⁰, -CO₂R⁸, -NR⁷R⁸, or hetaryl optionally substituted by 1 or 2 groups independently selected from hydroxy, C₁₋₆alkoxy, 5 halo, C₁₋₆alkyl, or C₁₋₆haloalkyl;

X is -(CH₂)_q- or C₂₋₆ alkenylene;

q is an integer from 0 to 6;

10 R⁶ and R⁷ are independently selected from hydrogen, C₁₋₆alkyl, C₃₋₇cycloalkyl, aryl, hetaryl, hetaryl(C₁₋₆alkyl)- and aryl(C₁₋₆alkyl)- and R⁶ and R⁷ are each independently optionally substituted by 1 or 2 groups independently selected from halo, C₁₋₆alkyl, C₃₋₇ cycloalkyl, C₁₋₆ alkoxy, C₁₋₆haloalkyl, -NHC(O)(C₁₋₆alkyl), -SO₂(C₁₋₆alkyl), -SO₂(aryl), 15 -CO₂H, and -CO₂(C₁₋₄alkyl), -NH₂, -NH(C₁₋₆alkyl), aryl(C₁₋₆alkyl)-, aryl(C₂₋₆alkenyl)-, aryl(C₂₋₆alkynyl)-, hetaryl(C₁₋₆alkyl)-, -NSO₂aryl, -NH(hetaryl(C₁₋₆alkyl)), -NSO₂hetaryl, -NSO₂(C₁₋₆alkyl), -NHC(O)aryl, or -NHC(O)hetaryl:

20 R⁸ is selected from hydrogen, C₁₋₆alkyl and C₃₋₇ cycloalkyl;

20 or R⁷ and R⁸, together with the nitrogen atom to which they are bonded, form a 5-, 6- or 7-membered nitrogen – containing ring;

25 R⁹ and R¹⁰ are independently selected from hydrogen, C₁₋₆alkyl, C₃₋₇cycloalkyl, aryl, hetaryl, hetaryl(C₁₋₆alkyl)- and aryl(C₁₋₆alkyl)-, or R⁹ and R¹⁰, together with the nitrogen to which they are bonded, form a 5-, 6-, or 7- membered nitrogen containing ring; and R⁹ and R¹⁰ are each optionally substituted by one or two groups independently selected from halo, C₁₋₆alkyl, and C₃₋₇cycloalkyl, C₁₋₆haloalkyl;

30 R² is selected from hydrogen, hydroxy, C₁₋₆alkyl, C₁₋₆alkoxy, halo, aryl, aryl(C₁₋₆alkyl)-, C₁₋₆haloalkoxy, and C₁₋₆haloalkyl;

R³ is selected from hydrogen, hydroxy, C₁₋₆alkyl, C₁₋₆alkoxy, halo, aryl, aryl(C₁₋₆alkyl)-, C₁₋₆haloalkoxy, and C₁₋₆haloalkyl; and

R^4 and R^5 are independently selected from hydrogen and C_{1-4} alkyl with the proviso that the total number of carbon atoms in R^4 and R^5 is not more than 4;

Ar^1 is a group selected from

(a)

(b)

(c)

and

(d)

5

wherein R^{11} represents halogen, $-(CH_2)_rOR^{15}$, $-NR^{15}C(O)R^{16}$, $-NR^{15}SO_2R^{18}$, $-SO_2NR^{15}R^{16}$, $-NR^{15}R^{16}$, $-OC(O)R^{17}$ or $OC(O)NR^{15}R^{16}$, and R^{12} represents hydrogen, halogen or C_{1-4} alkyl;

10 or R^{11} represents $-NHR^{18}$ and R^{12} and $-NHR^{18}$ together form a 5- or 6- membered heterocyclic ring;

R^{13} represents hydrogen, halogen, $-OR^{15}$ or $-NR^{15}R^{16}$,

15 R^{14} represents hydrogen, halogen, halo C_{1-4} alkyl, $-OR^{15}$, $-NR^{15}R^{16}$, $-OC(O)R^{17}$ or $OC(O)NR^{15}R^{16}$

R^{15} and R^{16} each independently represents hydrogen or C_{1-4} alkyl, or in the groups

$-NR^{15}R^{16}$, $-SO_2NR^{15}R^{16}$ and $-OC(O)NR^{15}R^{16}$, R^{15} and R^{16} independently represent hydrogen or C_{1-4} alkyl or together with the nitrogen atom to which they are attached form a 5-, 6- or 7- membered nitrogen-containing ring,

5 R^{17} represents an aryl group which may be unsubstituted or substituted by one or more substituents selected from halogen, C_{1-4} alkyl, hydroxy, C_{1-4} alkoxy or halo C_{1-4} alkyl; and

r is zero or an integer from 1 to 4.

10

3. A compound according to claim 1 or claim 2 wherein the group R^1 is selected from hydrogen, C_{1-4} alkyl, hydroxy, halo, $-NR^6C(O)NR^7R^8$, $-NR^6C(O)R^7$, $-SO_2NR^9R^{10}$, $-SOR^6$, $-SO_2R^6$, and $-NR^6SO_2R^7$ wherein R^6 and R^7 are as defined in claim 1 or claim 2.

15

4. A compound according to any of claims 1 to 3 wherein R^2 and R^3 are independently selected from hydrogen, hydroxyl, halogen, halo C_{1-6} alkyl, C_{1-6} alkyl, C_{1-6} alkoxy and halo C_{1-6} alkoxy.

20

5. A compound according to any of claims 1 to 4 wherein R^4 and R^5 each represent hydrogen.

6. A compound according to any of claims 1 to 5 wherein R^a and R^b each represent hydrogen.

25

7. A compound according to any of claims 1 to 6 wherein the group Ar^1 is selected from groups (a) and (b) as defined in claim 1.

8. A compound according to claim 7 wherein the group (a) is a group of formula (i):

(i)

30

9. A compound according to claim 1 selected from:

35

4-((1*R*)-2-[[2-(3-[(2-(Benzyl)oxy)ethoxy]methyl)phenyl]ethyl]amino)-1-hydroxyethyl)-2-(hydroxymethyl)phenol;

4-((1*R*)-2-[(2-[(Benzyl)oxy]methyl)phenyl]ethyl]amino)-1-hydroxyethyl)-2-(hydroxymethyl)phenol;

5 2-(Hydroxymethyl)-4-((1*R*)-1-hydroxy-2-[(2-{3-[(3-phenyl)propoxy]methyl}phenyl]ethyl]amino)ethyl)phenol;

2-(Hydroxymethyl)-4-((1*R*)-1-hydroxy-2-[(2-{3-[(4-phenyl)butoxy]methyl}phenyl]ethyl)amino]ethyl)phenol;

4-((1*R*)-2-[[2-(3-[(3-(Benzyl)oxy)propoxy]methyl)phenyl]ethyl]amino)-1-hydroxyethyl)-2-(hydroxymethyl)phenol;

10 4-((1*R*)-2-[[2-(4-[(2-(Benzyl)oxy)ethoxy]methyl)phenyl]ethyl]amino)-1-hydroxyethyl)-2-(hydroxymethyl)phenol;

2-(Hydroxymethyl)-4-((1*R*)-1-hydroxy-2-[(2-{3-[(2-phenylethoxy)methyl}phenyl]ethyl)amino]ethyl)phenol;

15 4-((1*R*)-2-[[2-(3-[(2,6-Dichlorobenzyl)oxy]methyl)phenyl]ethyl]amino)-1-hydroxyethyl)-2-(hydroxymethyl)phenol;

4-((1*R*)-1-Hydroxy-2-[[2-(3-[(2-(2-methoxyphenyl)ethoxy]methyl)phenyl]ethyl]amino]ethyl)-2-(hydroxymethyl)phenol;

4-((1*R*)-1-Hydroxy-2-[[2-(3-[(2-(3-methoxyphenyl)ethoxy]methyl)phenyl]ethyl]amino]ethyl)-20 2-(hydroxymethyl)phenol;

4-((1*R*)-1-Hydroxy-2-[[2-(3-[(2-(4-methoxyphenyl)ethoxy]methyl)phenyl]ethyl]amino]ethyl)-2-(hydroxymethyl)phenol;

3-[4-((3-[2-((2*R*)-2-Hydroxy-2-[4-hydroxy-3-(hydroxymethyl)phenyl]ethyl)amino)ethyl]benzyl)oxy]butyl]benzenesulfonamide;

25 3-[[2-((3-[2-((2*R*)-2-hydroxy-2-[4-hydroxy-3-(hydroxymethyl)phenyl]ethyl)amino)ethyl]benzyl)oxy]ethoxy]methyl]benzonitrile;

4-[(1*R*)-2-((2-[3-((2-[2,6-dichlorobenzyl)oxy]ethoxy)methyl)phenyl]ethyl)amino)-1-hydroxyethyl]-2-(hydroxymethyl)phenol;

4-[(1*R*)-2-((2-[3-((2-(3-fluorobenzyl)oxy]ethoxy)methyl)phenyl]ethyl)amino)-1-30 hydroxyethyl]-2-(hydroxymethyl)phenol;

4-[(1*R*)-2-((2-[3-((2-[3,5-dimethylbenzyl)oxy]ethoxy)methyl)phenyl]ethyl)amino)-1-hydroxyethyl]-2-(hydroxymethyl)phenol;

4-[(1*R*)-1-hydroxy-2-((2-[3-((2-[3-methoxybenzyl)oxy]ethoxy)methyl)phenyl]ethyl)amino]ethyl]-2-(hydroxymethyl)phenol;

35 2-(hydroxymethyl)-4-((1*R*)-1-hydroxy-2-[(2-{3-[(2-[3-(trifluoromethoxy)benzyl)oxy]ethoxy)methyl}phenyl]ethyl)amino]ethyl)phenol;

4-((1*R*)-1-hydroxy-2-[[2-(3-[[4-(3-hydroxyphenyl)butoxy]methyl]phenyl)ethyl]amino]ethyl)-2-(hydroxymethyl)phenol;

4-[3-[2-((2*R*)-2-hydroxy-2-[4-hydroxy-3-(hydroxymethyl)phenyl]ethyl]amino]ethyl]benzyl]oxy)propyl]benzonitrile;

5 4-[4-((3-[2-((2*R*)-2-hydroxy-2-[4-hydroxy-3-(hydroxymethyl)phenyl]ethyl]amino)ethyl]benzyl]oxy)butyl]benzonitrile;

3-[3-[2-((2*R*)-2-hydroxy-2-[4-hydroxy-3-(hydroxymethyl)phenyl]ethyl]amino)ethyl]benzyl]oxy)propyl]benzonitrile;

2-(hydroxymethyl)-4-[(1*R*)-1-hydroxy-2-{{2-[3-({4-(methylsulfonyl)phenyl}propoxy)methyl]phenyl}ethyl}amino]ethyl]phenol;

10 2-(hydroxymethyl)-4-[(1*R*)-1-hydroxy-2-{{2-[3-({4-(methylsulfonyl)benzyl}oxy)methyl]phenyl}ethyl}amino]ethyl]phenol;

4-((1*R*)-1-hydroxy-2-[[2-(3-[[2-(2-hydroxyphenyl)ethoxy]methyl]phenyl)ethyl]amino]ethyl)-2-(hydroxymethyl)phenol;

15 4-((1*R*)-1-hydroxy-2-{{2-[3-[(4-hydroxybenzyl)oxy]methyl]phenyl}ethyl}amino]ethyl)-2-(hydroxymethyl)phenol;

4-((1*R*)-1-hydroxy-2-{{2-[(3-[(3-(hydroxyphenyl)propoxy)methyl]phenyl)ethyl]amino}ethyl}-2-(hydroxymethyl)phenol;

4-[(1*R*)-2-{{2-[3-({4-(cyclopentylsulfonyl)phenyl}butoxy)methyl]phenyl}ethyl}amino]-1-

20 hydroxyethyl]-2-(hydroxymethyl)phenol;

4-[(1*R*)-2-{{2-[3-({3-[4-(cyclopentylsulfonyl)phenyl}propoxy)methyl]phenyl}ethyl}amino]-1-hydroxyethyl]-2-(hydroxymethyl)phenol;

4-[(1*R*)-2-{{2-[3-({3-[3-(cyclopentylsulfonyl)phenyl}propoxy)methyl]phenyl}ethyl}amino]-1-hydroxyethyl]-2-(hydroxymethyl)phenol;

25 4-[(1*R*)-1-hydroxy-2-{{2-[3-({2-[(3-hydroxybenzyl)oxy]ethoxy}methyl)phenyl}ethyl}amino}ethyl]-2-(hydroxymethyl)phenol;

4-{{(1*R*)-2-[(2-{3-[(2-{(3-(cyclopentylsulfonyl)benzyl}oxy)ethoxy}methyl]phenyl}ethyl)amino]-1-hydroxyethyl}-2-(hydroxymethyl)phenol;

4-{{(1*R*)-2-[(2-{3-[(2-{[3-(cyclopentylsulfinyl)benzyl}oxy)ethoxy}methyl]phenyl}ethyl)amino]-1-

30 1-hydroxyethyl}-2-(hydroxymethyl)phenol;

4-[(1*R*)-2-{{2-[3-({3-(cyclopentylsulfonyl)benzyl}oxy)methyl]phenyl}ethyl}amino]-1-hydroxyethyl]-2-(hydroxymethyl)phenol;

4-[(1*R*)-2-{{2-[3-({4-[3-(cyclopentylsulfinyl)phenyl]butoxy}methyl)phenyl}ethyl}amino]-1-hydroxyethyl]-2-(hydroxymethyl)phenol;

35 3-[4-((3-[2-((2*R*)-2-hydroxy-2-[4-hydroxy-3-(hydroxymethyl)phenyl]ethyl]amino)ethyl]benzyl]oxy)butyl]benzonitrile;

2-(hydroxymethyl)-4-((1R)-1-hydroxy-2-[(2-{(2-
phenoxyethoxy)methyl}phenyl)ethyl]amino]ethyl)phenol;
 4-((1R)-2-[[2-(3-{[2-(3-fluorophenyl)ethoxy]methyl}phenyl)ethyl]amino]-1-hydroxyethyl)-2-
 (hydroxymethyl)phenol;

5 4-((1R)-2-[[2-(3-{[2-(4-fluorophenyl)ethoxy]methyl}phenyl)ethyl]amino}-1-hydroxyethyl)-2-
 (hydroxymethyl)phenol;
 4-((1R)-2-[[2-(3-{[2-(2-fluorophenyl)ethoxy]methyl}phenyl)ethyl]amino}-1-hydroxyethyl)-2-
 (hydroxymethyl)phenol;

10 3-[({3-[2-((2R)-2-hydroxy-2-[4-hydroxy-3-
 (hydroxymethyl)phenyl]ethyl)amino]ethyl]benzyl}oxy)methyl]benzonitrile;
 4-[[{3-[2-((2R)-2-hydroxy-2-[4-hydroxy-3-
 (hydroxymethyl)phenyl]ethyl)amino]ethyl]benzyl}oxy)methyl]benzonitrile;

15 2-(hydroxymethyl)-4-((1R)-1-hydroxy-2-({2-[3-((1R)-1-
 phenylethyl)oxy}methyl)phenyl)ethyl)amino)ethyl)phenol;
 2-(hydroxymethyl)-4-[(1R)-1-hydroxy-2-({2-[3-((1S)-1-
 phenylethyl)oxy}methyl)phenyl)ethyl]amino)ethyl)phenol;

20 4-((1R)-2-[[2-(3-{[(3,5-dimethylbenzyl)oxy]methyl}phenyl)ethyl]amino}-1-hydroxyethyl)-2-
 (hydroxymethyl)phenol;
 4-((1R)-2-[[2-(3-{[(2,6-dichlorobenzyl)oxy]methyl}phenyl)ethyl]amino}-1-hydroxyethyl)-2-
 (hydroxymethyl)phenol;

25 4-((1R)-2-[[2-(3-{[(2-fluorobenzyl)oxy]methyl}phenyl)ethyl]amino}-1-hydroxyethyl)-2-
 (hydroxymethyl)phenol;
 3-[4-({3-[2-((2R)-2-Hydroxy-2-[4-hydroxy-3-
 (hydroxymethyl)phenyl]ethyl)amino]ethyl]benzyl}oxy)butyl]benzamide;

30 3-{{2-({3-[2-((2R)-2-hydroxy-2-[4-hydroxy-3-
 (hydroxymethyl)phenyl]ethyl)amino]ethyl]benzyl}oxy)ethoxy}methyl]benzamide;

35 4-[(3-[2-((2R)-2-hydroxy-2-[4-hydroxy-3-
 (hydroxymethyl)phenyl]ethyl)amino]ethyl]benzyl}oxy)methyl]benzamide;
 3-[2-({3-[2-((2R)-2-hydroxy-2-[4-hydroxy-3-
 (hydroxymethyl)phenyl]ethyl)amino]ethyl]benzyl}oxy)ethyl]benzenesulfonamide;

3-[3-{3-[2-((2R)-2-hydroxy-2-[4-hydroxy-3-(hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy]propyl]benzenesulfonamide; 4-((1R)-2-[[2-(3-[4-(2,6-dichlorophenyl)butoxy)methyl]phenyl)ethyl]amino}-1-hydroxyethyl)-2-(hydroxymethyl)phenol;

5 N-{3-[4-((3-[2-((2R)-2-hydroxy-2-[4-hydroxy-3-(hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy)butyl]phenyl]urea; 2-(hydroxymethyl)-4-((1R)-1-hydroxy-2-[[2-(3-[2-(1-phenylethoxy)ethoxy)methyl]phenyl)ethyl]amino)ethyl)phenol; 4-[(1R)-2-({2-[3-({2-[3-

10 (cyclopentylsulfonyl)phenyl]ethoxy)methyl]phenyl}ethyl)amino)-1-hydroxyethyl]-2-(hydroxymethyl)phenol; 4-[(1R)-2-({2-[3-({4-[3-(cyclopentylsulfonyl)phenyl]butoxy)methyl]phenyl}ethyl)amino)-1-hydroxyethyl]-2-(hydroxymethyl)phenol; 2-(hydroxymethyl)-4-[(1R)-1-hydroxy-2-({2-[3-({4-[3-

15 (methylsulfonyl)phenyl]butoxy)methyl]phenyl}ethyl)amino)ethyl]phenol; 4-((1R)-2-[[2-(3-[3-(2,6-dichlorophenyl)prooxy)methyl]phenyl)ethyl]amino)-1-hydroxyethyl)-2-(hydroxymethyl)phenol; 3-[{3-[2-((2R)-2-Hydroxy-2-[4-hydroxy-3-(hydroxymethyl)phenyl]ethyl}amino)ethyl]benzyl}oxy)methyl]benzenesulfonamide.

20 or a salt, solvate or physiologically functional derivative thereof.

10. A method for the prophylaxis or treatment of a clinical condition in a mammal, such
25 as a human, for which a selective β_2 -adrenoreceptor agonist is indicated, which comprises administration of a therapeutically effective amount of a compound of formula (I) according to any of claims 1 to 9, or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof.

30 11. A compound of formula (I), according to any of claims 1 to 9, or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof for use in medical therapy.

35 12. A compound of formula (I), according to any of claims 1 to 9, or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof for use in the

prophylaxis or treatment of a clinical condition for which a selective β_2 -adrenoreceptor agonist is indicated.

13.. A pharmaceutical formulation comprising a compound of formula (I), according to

5 any of claims 1 to 9, or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof, and a pharmaceutically acceptable carrier or excipient, and optionally one or more other therapeutic ingredients.

14. The use of a compound of formula (I), according to any of claims 1 to 9, or a

10 pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof in the manufacture of a medicament for the prophylaxis or treatment of a clinical condition for which a selective β_2 -adrenoreceptor agonist is indicated.

15. A process for the preparation of a compound of formula (I), according to any of

15 claims 1 to 9, or a salt, solvate, or physiologically functional derivative thereof, which comprises:

(a) deprotection of a protected intermediate, for example of formula (II):

or a salt or solvate thereof, wherein R^1 , R^2 , R^3 , R^4 , R^5 , Z , k , m , n and p are as defined for the compound of formula (I), Ar^{1a} is Ar^1 or a protected form thereof and P^1 and P^2 each independently represents hydrogen or a protecting group provided that the compound of formula (II) contains at least one protecting group; or

(b) alkylation of an amine of formula (X)

10

wherein Ar^{1a} is as hereinbefore defined P^2 and P^1 are each independently either hydrogen or a protecting group,

with a compound of formula (XI):

15

wherein R^1 , R^2 , R^3 , R^4 , R^5 , Z , k , m , n and p are as defined for the compound of formula (I) and L^1 is a leaving group;

(c) reacting a compound of formula (XII):

wherein Ar^1 and P^1 are as hereinbefore defined and L^1 is a leaving group, with an amine of formula (XIII):

5

or

d) reacting a compound of formula (X):

10

as hereinbefore defined,

with a compound of formula (XIV):

15 under conditions suitable to effect reductive amination;

followed by the following steps in any order:

(i) optional removal of any protecting groups;

(ii) optional separation of an enantiomer from a mixture of enantiomers;

(iii) optional conversion of the product to a corresponding salt, solvate,

20 or physiologically functional derivative thereof.