What is claimed is:

1	1.	Α	method	of	fabricating	. а	polysilicon	line.	comprising:
-	.		IIIC CIIC C	~ -		~	DOT ADTITION!		

- 2 forming a patterned hard mask layer over a polysilicon
- 3 layer;
- 4 patterning the polysilicon layer to provide a hard
- 5 mask-capped polysilicon line having a first width; and
- 6 isotropically removing portions of said polysilicon
- 7 line to a second width.
- 1 2. The method of claim 1, wherein said second width is sub-
- 2 minimum groundrule.
- 3. The method of claim 1, further including removing said
- patterned hard mask layer
- 1 4. The method of claim 1, wherein said patterned hard mask
- 2 layer comprises silicon oxide.
- 1 5. The method of claim 1, wherein isotropically removing
- 2 portions of said polysilicon line comprises converting a

- 3 surface layer of said polysilicon line to an oxide layer and
- 4 isotropically etching said oxide layer.
- 1 6. The method of claim 1, wherein the step of removing
- 2 portions of the polysilicon line comprises a treatment in a
- 3 saturated aqueous solution of O_3 followed by etching in a
- 4 solution comprising 1 part 49% HF in 50 to 300 parts of
- 5 water.
- 7. The method of claim 1, wherein the step of removing
- 2 portions of the polysilicon line comprises a treatment in a
- 3 saturated aqueous solution of O_3 followed by etching in an
- 4 HF containing vapor.
- 8. The method of claim 1, wherein the step of removing
- 2 portions of the polysilicon line comprises etching in a
- 3 solution of 1 part 49% HF, 100 to 200 parts 69% $\mathrm{HNO_3}$ and 100
- 4 to 200 parts 85% H₃PO₄.
- 9. The method of claim 1, wherein the step of removing
- 2 portions of the polysilicon line comprises etching in a

- 3 solution of 1.3 parts 30% $\mathrm{NH_4OH},$ 3.1 parts 31% $\mathrm{H_2O_2}$ and 80 to
- 4 100 parts of water.

1	10.	A	method	of	reducing	transistor	gate	dimensions,

- comprising:
- forming a patterned hard mask layer over a polysilicon
- 4 layer, said polysilicon layer formed over a gate dielectric
- 5 layer;
- 6 patterning the polysilicon to provide a hard mask-
- 7 capped polysilicon electrode having a first width; and
- 8 isotropically removing portions of the polysilicon
- 9 electrode to a second width.
- 1 11. The method of claim 10, wherein said second width is
- 2 sub-minimum groundrule.
- 1 12. The method of claim 10, further including removing said
- 2 patterned hard mask layer.
- 1 13. The method of claim 10, wherein said patterned hard mask
- 2 layer comprises silicon oxide.
- 1 14. The method of claim 10, wherein isotropically removing
- 2 portions of said polysilicon electrode comprises converting

- 3 a surface layer of said polysilicon line to an oxide layer
- 4 and isotropically etching said oxide layer.
- 1 15. The method of claim 10, wherein the step of removing
- 2 portions of the polysilicon electrode comprises a treatment
- 3 in a saturated aqueous solution of O_3 followed by etching in
- 4 a solution comprising 1 part 49% HF in 50 to 300 parts of
- 5 water.
- 1 16. The method of claim 10, wherein the step of removing
- 2 portions of the polysilicon electrode comprises a treatment
- 3 in a saturated aqueous solution of O_3 followed by etching in
- 4 an HF containing vapor.
- 1 17. The method of claim 10, wherein the step of removing
- 2 portions of the polysilicon electrode comprises etching in a
- 3 solution of 1 part 49% HF, 100 to 200 parts 69% $\mathrm{HNO_3}$ and 100
- 4 to 200 parts of 85% H_3PO_4 .
- 1 18. The method of claim 10, wherein the step of removing
- 2 portions of the polysilicon electrode comprises etching in a

- solution of 1.3 parts 30% $\mathrm{NH_4OH}$, 3.1 parts 31% $\mathrm{H_2O_2}$ and 80 to
- 4 100 parts of water.

1.		19. A method of forming a transistor gate, comprising:
2 .		forming a dielectric layer on a top surface of a
3		substrate;
4		forming a polysilicon layer on a top surface of said
5	· ·	dielectric layer;
6		forming a patterned hard mask layer on a top surface of
7		said polysilicon layer;
8		patterning the polysilicon to provide a hard mask-
9		capped polysilicon electrode having a first width; and
10		isotropically removing portions of the polysilicon
11		electrode to a second width.
1		20. The method of claim 19, wherein said second width is
2		sub-minimum groundrule.
1		21. The method of claim 19, further including removing said
2		patterned hard mask layer.
1		22. The method of claim 19, further including simultaneously
2		removing portions of said dielectric layer not covered by
3		said polysilicon gate electrode and said patterned hard
4		mask.

BUR920010039US1

- 1 23. The method of claim 19, wherein said hard mask layer and
- 2 said dielectric layer comprise silicon oxide.
- 1 24. The method of claim 19, wherein said substrate is
- 2 selected from the group consisting of silicon, silicon on
- 3 insulator, gallium arsenide and sapphire.
- 1 25. The method of claim 19, wherein the step of removing
- 2 portions of the polysilicon electrode comprises a treatment
- 3 in a saturated aqueous solution of O_3 followed by etching in
- a solution comprising 1 part 49% HF in 50 to 300 parts of
- 5 water.
- 1 26. The method of claim 19, wherein the step of removing
- 2 portions of the polysilicon electrode comprises a treatment
- 3 in a saturated aqueous solution of O_3 followed by etching in
- 4 an HF containing vapor.
- 1 27. The method of claim 19, wherein the step of removing
- 2 portions of the polysilicon electrode comprises etching in a
- 3 solution of 1 part 49% HF, 100 to 200 part 69% $\mathrm{HNO_3}$ and 100
- 4 to 200 parts of H_3PO_4 .

BUR920010039US1

28. The method of claim 19, wherein the step of removing portions of the polysilicon electrode comprises etching in a solution of 1.3 parts 30% NH_4OH , 3.1 parts 31% H_2O_2 and 80 to 100 parts of water.

2

1	29. A method of forming a transistor gate, comprising:
2	forming a dielectric layer on a top surface of a
3	substrate;
4	forming a polysilicon layer on a top surface of said
5	dielectric layer;
, , 6	forming a patterned hard mask layer on a top surface of
7	said polysilicon layer;
8	patterning the polysilicon to provide a hard mask-
9	capped polysilicon electrode having a first width;
10	measuring said first width;
11	comparing said first width to a target width and
12	determining a delta;
13	calculating an etch time or a number of polysilicon
14	oxidation/isotropic polysilicon etch cycles based on said
15	delta; and
16	performing an isotropic polysilicon etch for the
17	calculated time or performing the calculated number of
18	polysilicon oxidation/isotropic polysilicon etch cycles.
1	30. The method of claim 29, wherein said target width is

sub-minimum groundrule.

- 1 31. The method of claim 29, further including removing said
- patterned hard mask layer.
- 1 32. The method of claim 29, further including simultaneously
- 2 removing portions of said dielectric layer not covered by
- 3 said polysilicon gate electrode and said patterned hard
- 4 mask.
- 33. The method of claim 29, wherein said hard mask layer and
- 2 said dielectric layer comprise silicon oxide.
- 1 34. The method of claim 29, wherein said substrate is
- 2 selected from the group consisting of silicon, silicon on
- 3 insulator, gallium arsenide and sapphire.

Τ	33. A polysilicon line labricated by the process comprising:
2	forming a patterned hard mask layer over a polysilicon
3	layer;
4	patterning the polysilicon to provide a hard mask-
5	capped polysilicon line having a first width; and
6	isotropically removing portions of said polysilicon
7	line to a second width.

- 36. The polysilicon line of claim 35, wherein said second width is sub-minimum groundrule.
- 37. The polysilicon line of claim 35, wherein said substrate is selected from the group consisting of silicon, silicon on insulator, gallium arsenide and sapphire.

- 1	38. A polysilicon transistor gate fabricated by the process
2	comprising:
3	forming a patterned hard mask layer over a polysilicon
4	layer, said polysilicon layer formed over a gate dielectric
5	layer;
6	patterning the polysilicon to provide a hard mask-
7	capped polysilicon electrode having a first width;
8	isotropically removing portions of said polysilicon
9	electrode to a second width; and
10	removing said patterned hard mask layer.
1	39. The polysilicon transistor gate of claim 38, wherein
2	said second width is sub-minimum groundrule.
1	40. The polysilicon transistor gate of claim 39, wherein
2	said substrate is selected from the group consisting of
3	silicon, silicon on insulator, gallium arsenide and
4	sapphire.

1		41. A polysilicon transistor gate fabricated by the process
2,		comprising:
3		forming a dielectric layer on a top surface of a
4		substrate;
5		forming a polysilicon layer on a top surface of said
6	× .	dielectric layer;
7		forming a patterned hard mask layer on a top surface of
8		said polysilicon layer;
9		patterning the polysilicon to provide a hard mask-
.0		capped polysilicon electrode having a first width;
1		isotropically removing portions of said polysilicon
2		electrode to a second width; and
3		removing said patterned hard mask layer.

- 42. The polysilicon transistor gate of claim 41, wherein said second width is sub-minimum groundrule.
- 43. The polysilicon transistor gate of claim 41, wherein said substrate is selected from the group consisting of silicon, silicon on insulator, gallium arsenide and sapphire.