Teoría de las comunicaciones

Práctica 2: Protocolos punto a punto

Temas

Framing, Rendimiento de un Frame, Control de Errores, Stop and Wait, Sliding Window, Eficiencia de un Protocolo.

Definiciones

Rendimiento de un frame:

$$\eta_{frame} = \frac{largo\ de\ los\ datos}{largo\ total\ del\ frame}$$

Eficiencia de un protocolo punto a punto confiable y sin errores de transmisión:

 $\eta_{proto} = \frac{T_{tx}}{RTT}$ Con T_{tx} el tiempo de transmisión de una ventana y RTT el tiempo de ida y vuelta.

Tamaño de una ventana de emisión óptima:

$$SWS = V_{tx} * RTT/|Frame|$$

Tamaño de la ventana de recepción:

$$RWS = \begin{cases} SWS & \text{Si hay SACK} \\ 1 & \text{Si no} \end{cases}$$

Cantidad frames para secuenciar:

$$\#frames \ge SWS + RWS$$

Ejercicio 1

Dado un enlace punto a punto a la luna de 1Mbps con una latencia de 1.25 segundos

- a. ¿Cuántos bits entran en el canal?
- b. Asumiendo que se separan los bits en frames de largo fijo de 1Kb de datos ¿Cuantos Frames entran en el cable? ¿Y si usara frames de 2Kb?

Ejercicio 2

Calcule el rendimiento del frame para las siguientes técnicas de framing

- a. Largo fijo
- b. Campo de 16 bits en el encabezado indicando el largo del frame
- c. Delimitadores de 8 bits usando bit stuffing

Ejercicio 3

Para los siguientes casos indique si implementaría un protocolo con control de errores, en caso de implementar aclare la estrategia para reponerse del error.

- a. Transmisión de comandos a un robot en Marte
- b. Streaming de video de la camara del robot en Marte
- c. Descarga de un log de errores desde el file system del robot en Marte

Ejercicio 4

Diseñe posibles conjuntos de frames para los siguientes tipos de protocolos, asumiendo que se detectan errores usando un CRC. (No hace falta aclarar el largo de los campos)

- a. Stop & Wait
- b. Sliding Window con GoBackN usando Piggybacking
- c. Sliding Window con ACK Selectivo

Ejercicio 5

Un protocolo sobre un enlace punto a punto de 1Mbps y 0.25 segundos de latencia, trabaja con Stop & Wait usando frames de largo fijo 2Kb y un CRC de 16bits para detectar errores.

- a. Calcule cuánto tiempo es necesario para transmitir 20Mb de datos asumiendo que no hay errores.
- b. Idem para un enlace con el mismo delay y 1 Gbps
- c. Idem para un enlace con la misma velocidad de transmisión y 0.1 segundos de latencia

Ejercicio 6

Un protocolo sobre un enlace punto a punto de 1Mbps y 0.25 segundos de latencia, trabaja con ventana deslizante con GoBackN usando frames de largo fijo 2Kb y un CRC de 16bits para detectar errores.

- a. Calcule cuáles son los tamaños de ventana de emisión y recepción óptimos.
- b. ¿Cuantos bits hacen falta para secuenciar los frames?
- c. Calcule cuánto tiempo es necesario para transmitir 20Mb de datos asumiendo que no hay errores.

Ejercicio 7

Dado un protocolo que usa ventana deslizante con ACK Selectivo, no usa piggybacking y asumiendo la velocidad de transmisión y la latencia como constantes:

- a. Derive una fórmula para expresar el rendimiento de un frame en función del tamaño del frame.
- b. Grafique el rendimiento del frame en función del tamaño del frame.

Ejercicio 8

Un canal tiene una velocidad de transmisión de 4Kbps y un delay de 20ms. Usando un protocolo Stop & Wait, ¿Qué rango de tamaños de frame presenta una eficiencia de por lo menos 50%?

Ejercicio 9

Un protocolo usa frames de largo fijo de 1Kb sobre un enlace satelital con una velocidad de transmisión de 1Mbps y una latencia de 270ms. Calcule la eficiencia del protocolo si se usara ventana deslizante con ACK Selectivo, con lo siguientes tamaños de ventana:

- a. SWS = 7
- b. SWS = 127
- c. SWS = 255

Ejercicios de Parcial

Ejercicio 10

Un grupo de meteorólogos persigue tornados en una camioneta. La camioneta tiene una antena para transmisión inhalámbrica con la cuál comunicarse con una estación central lejana y transmite datos de variables climáticas a lo largo del tiempo que necesitan confiabilidad. El enlace físico se diseñó con una velocidad de transmisión de 100Mbps y a lo sumo 500ms de latencia.

- a. Diseñe un set de frames que usen ventana deslizante para enviar los datos, aclarando la técnica de framing y el esquema de reconocimiento.
- b. ¿Cuántos bits son necesarios para secuenciar los frames?
- c. Calcule el rendimiento del frame si la detección de errores se implementara con un agregado de 16bits.

Ejercicio 11

Un protocolo confiable punto a punto que usa sliding window, opera sobre un canal de $10~\mathrm{Mbps}$, usa SACK y un frame emisor de $5\mathrm{Kb}$ como el siguiente:

- a. Proponga un frame para el receptor.
- b. ¿Cuál es el valor de latencia para el cual el protocolo presenta un 100% de eficiencia?
- c. Si la latencia fuera de 1 seg ¿Cuántos bits deberían ocupar los números de secuencia de manera de maximizar la eficiencia?

Ejercicio 12

Un protocolo para un enlace pto-pto de $100~\mathrm{Mbps}$ y $2~\mathrm{segundos}$ de latencia trabaja con ventana deslizante, sin ACK Selectivo y opera con un frame de largo fijo de $800~\mathrm{bits}$ que está compuesto por los siguientes campos (Asumir CRC de $16\mathrm{bits}$):

- a. ¿Cuántos bits deberían usarse para los campos de #SEQ y #ACK de manera de aprovechar lo mejor posible el canal?
- b. Calcule el rendimiento del frame de datos.

Ejercicio 13

Un protocolo punto a punto confiable y full-duplex usa sliding window, con un esquema de reconocimiento selectivo, hace piggybacking y ambos extremos de la conexión transmiten usando frames con un largo fijo de 2Kb como el siguiente:

```
\#SEQ\ (16bits); \#ACK; \#SACK; Datos; Checksum (16 bits)
```

- a. Calcule el rendimiento del frame, asignando el tamaño que ocuparían los campos de ACK y SACK.
- b. ¿Cuál sería la máxima eficiencia alcanzable si se usara sobre un enlace de 100Mbps y 1seg de latencia?

Bibliografía

Computer Networks: A systems approach. 3ra Edición. Peterson & Davie. Capítulo 2: Direct Link Networks (secciones 2.1 a 2.5).

Data and Computer comunications. 5ta Edición. William Stallings. Capítulo 6: Data Link Control.