Question	Scheme	Marks
7(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2mx + \frac{1}{2} \times 64x^{-\frac{1}{2}}$	M1A1
	$dx = 2mx + 2^{4}$	
	$32x^{-\frac{1}{2}} + 2mx = 0 \Rightarrow 32 \times 4^{-\frac{1}{2}} + 2m \times 4 = 0 \Rightarrow 16 + 8m = 0 \Rightarrow m = -2$	dM1A1
	$n = 39 + 64\sqrt{4} - 2 \times 4^2 = 135$	dM1A1
		[6]
(b)	$\frac{d^2 y}{dx^2} = -\frac{1}{2} \times 32x^{-\frac{3}{2}} - 4 = -16x^{-\frac{3}{2}} - 4$	M1
	$\frac{d^2 y}{dx^2} = -6 < 0 \implies \text{maximum}$	A1FT [2]
Total 8 marks		

Part	Mark	Notes
(a)	M1	For an attempt to differentiate the given expression.
		Minimum required is two of:
		• $mx^2 \rightarrow kmx$, $k \neq 0$
		$\bullet 64\sqrt{x} \to nx^{-\frac{1}{2}}, \ n \neq 0$
		• 39 → 0
	A1	For a correct derivative in terms of <i>m</i>
	dM1	For setting their $\frac{dy}{dx} = 0$, substitute $x = 4$ and attempting to solve to
		find the value of <i>m</i>
		Dep on 1st M mark.
	A1	For $m = -2$
	dM1	For using their value of m to find a value for n
		$n = 4^2 \times m + 167$
		Dep on 1 st M mark.
	A1	For the correct value of <i>n</i>
(b)	M1	For finding the second derivative.
		Minimum required is $\frac{d^2y}{dx^2} = km + px^{-\frac{3}{2}}$ with k, p not 0.
		Allow for substituting x values on either side of $x = 4$ into their $\frac{dy}{dx}$
		provided $\frac{dy}{dx} = kmx + nx^{-\frac{1}{2}}$ with k , n not 0 .
	A1FT	For substituting their value of <i>m</i> and forming a correct conclusion.
		Minimum required is substitution of their value of <i>m</i> together with
		x = 4 into their second derivative, evaluation and correct conclusion.
		Allow for evaluating of $\frac{dy}{dx}$ on either side of $x = 4$ and forming a
		correct conclusion.
		$x = 3.9, \frac{dy}{dx} = 0.6038 \dots \qquad x = 4.1, \frac{dy}{dx} = -0.596 \dots$