The Language of Technical Computing by MATLAB

Class 2: Vector and matrix calculation

Outline

- Vector
- Array
- Index
- Multidimension array
- 習題

- - ▶ 用空格或逗點來分隔元素 ▶ 用分號來分隔元素

- 列向量(Row Vector) · 行向量(Column Vector)

```
Command Window
   \Rightarrow a=[1;2;3;4;5;6;7;8;9]
```

指令	說明
a:b	建立一個從a到b間距為1的列向量
a:step:b	建立一個從a到b間距為step的列向量
linspace(a,b,n)	建立一個從a到b具有n個元素的列向量 (linear spaced vector)
linspace(a,b)	建立一個從a到b具有100個元素的列向量

```
Command Window
  >> a=1:10
  a =
     1 2 3 4 5 6 7 8 9 10
  >> a=1:3:9
  a =
       4 7
  >> linspace(1,10,3)
  ans =
     1.0000
            5.5000
                 10.0000
```

mmand Win >> linsp		,100)																		
ans =																				
Columr	ıs 1 tl	hrough	21																	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Columr	ເຮ 22 [.]	througl	ı 42																	
22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
Columr	ເຮ 43 [.]	througl	ı 63																	
43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
Column	ເຮ 64 [.]	througl	n 84																	
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84
Colum	ເສ 85 -	througl	n 100																	
85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100					

函數	說明			
length(v)	查詢v向量的元素個數			
v'	v向量轉置,列向量→行向量、行向量→列向量 (複數時會取共軛)			
sum(v)	計算向量v的總合			
prod(v)	計算向量v的乘積			
max(v)	取出向量v的最大值			
min(v)	取出向量v的最小值			
sort(v)	將向量v裡的元素由小排到大			
sort(v, 'descend')	將向量v裡的元素由大排到小 (Matlab中用單引號表示字元或字串)			
cumsum(v)	計算向量v的累加(cumulative sum)			
cumprod(v)	計算向量v的累乘(cumulative product)			

```
Command Window
  \Rightarrow a=[6 2+5i 3 6+4i 4];
                         Transpose the vector a
  >> a'
   ans =
     6.0000 + 0.0000i
     2.0000 - 5.0000i
                         conjugate
     3.0000 + 0.0000i
     6.0000 - 4.0000i
     4.0000 + 0.0000i
  >> sort(a)
   ans =
      3.0000 + 0.0000i   4.0000 + 0.0000i   2.0000 + 5.0000i   6.0000 + 0.0000i   6.0000 + 4.0000i
  >> sort(a, 'descend')
   ans =
                                          2.0000 + 5.0000i 4.0000 + 0.0000i 3.0000 + 0.0000i
                       6.0000 + 0.0000i
      6.0000 + 4.0000i
```

函數	說明			
size(m)	查詢 <mark>陣列</mark> m的大小			
length(m)	查詢 <mark>陣列</mark> m的行數			
ndims(m)	查詢 <mark>陣列</mark> m的維數			
numel(m)	查詢 <mark>陣列</mark> m元素的總數			

函數	說明			
zeros(n)	建立一個n×n的全0矩陣			
zeros(m,n,p)	建立一個m×n×p的全0多維陣列			
ones(n)	建立一個nxn的全1矩陣			
ones(m,n,p)	建立一個m×n×p的全1多維陣列			
eye(n)	建立一個n×n的單位矩陣			
eye(m,n)	建立一個m×n的對角線為1的矩陣			
diag(v)	建立一個以向量V為對角元素的矩陣			
magic(n)	建立一個nxn的魔術矩陣			

```
Command Window
  >> eye(3,4)
  ans =
  >> diag([1 2 5 4 3])
  ans =
  >> magic(3)
  ans =
```

函數	說明		
A+B	矩陣A加矩陣B		
A-B	矩陣A減矩陣B		
A*B	矩陣A乘矩陣B(順序有差)		
A/B A\B	AB^{-1} $A^{-1}B$		
A^n	矩陣A的n次方(矩陣A必須為方陣)		
A'	矩陣A的共軛轉置		
inv(A)	矩陣A的反矩陣		
det(A)	矩陣A的行列式		
expm(A)	矩陣A的指數		
logm(A)	矩陣A的對數		
sqrtm(A)	矩陣A的開平方根		
sum(A)	矩陣A的所有行的總合		

函數	說明				
diag(A)	取出 <mark>矩陣</mark> A的主對角線元素				
diag(A,k)	取出矩陣A的第k個對角線元素				
triu(A)	取出矩陣A的對角線上的元素,其它為O(上三角矩陣)				
triu(A,k)	取出矩陣A之第k個對角線以上元素,其它為0				
tril(A)	取出矩陣A的對角線下的元素,其它為O(下三角矩陣)				
tril(A,k)	取出矩陣A之第k個對角線以下元素,其它為0				

函數	說明			
rand	建立一個0~1的亂數			
rand(n)	建立一個0~1維度為nxn的亂數矩陣			
rand(m,n,,p)	建立一個0~1維度為mxnxxp的亂數矩陣			
randn 建立一個亂數				
randn(n)	建立一個平均值為0標準差為1的nxn的亂數矩陣			
randn(m,n,,p)	建立一個平均值為0標準差為1的mxnxxp的亂數矩陣			

函數	說明
A.*B	矩陣A的元素乘上矩陣B的相同位子元素(向量相同)
A.^n	矩陣A元素的n次方(向量相同)
A.'	矩陣A的轉置(不共軛)
A./B	矩陣A的元素除上矩陣B的相同位子元素(向量相同)
A.\B	矩陣B的元素除上矩陣A的相同位子元素(向量相同)

Difference between A*A and A.*A

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$A * A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} * \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 30 & 36 & 42 \\ 66 & 81 & 96 \\ 102 & 126 & 150 \end{bmatrix}$$

$$A.*A = \begin{bmatrix} 1 & 4 & 9 \\ 16 & 25 & 36 \\ 49 & 64 & 81 \end{bmatrix}$$

函數	說明
eig(A)	矩陣A的特徵值(eigenvalue)
[v,m]=eig(A)	將矩陣A的特徵值(eigenvalue)存到m裡, 特徵向量(eigenvector)存到v裡

A =		
1	2	3
4	5	6
7	8	9

Index

Index of an array starts from 1
 (0 for C and python).

A(1)	A(4)	A(7)
A(2)	A(5) A(2,2)	A(8)
A(3)	A(6)	A(9)

```
Command Window
  >> a=[1 4 9 16 25 36];
  >> a(4)
  ans =
      16
  >> b=a([3:5])
  b =
       9 16
                  25
  >> c=a([3:end])
  c =
       9 16
                  25
                        36
  >> c=a([1:2:6])
  c =
                  25
```

Index

· Matlab的矩陣是「以行為主」的結構來儲 存,每個陣列都可以看成由數個行向量所 組成的。

$$M(i,j) = M(i + (j-1) \times m) = m(k)$$

Multidimension Array

梯形積分

習題

- 1. (1)請將上次作業題目 file *dx 利用梯形積分重新計算一次,並且計算誤差和執行時間。
 - (2)請利用矩陣方法(不用迴圈)來計算∫₀ e^xdx, 並且計算誤差和執行時間(tic toc)。