Blue Carbon and Additionality

International Blue Carbon Working Group

January 11, 2012 Brussels

Steve Emmett-Mattox, Restore America's Estuaries

Restore America's Estuaries

Since 1995, protecting and restoring the lands and waters essential to the richness and diversity of coastal life.

www.estuaries.org

RESTORE AMERICA'S ESTUARIES

Additionality Working Group

- Need identified by Blue Ribbon Panel
- Funded by NOAA's Office of Habitat Conservation
- Goal: additionality decision-framework for coastal managers
- Members:
 - Steve Crooks, ESA PWA
 - Igino Emmer, Silvestrum
 - Steve Emmett-Mattox, RAE
 - Tim Dillingham, American Littoral Society
 - Doug Myers, People for Puget Sound
 - Doug Huxley, CH2M Hill

Additionality Basics

- GHG reductions must be additional to any that would have occurred in the absence of offsets
- Project method
- Standardized methods
 - Performance method
 - Activity method

Project Method

- 1. Identify alternative land use scenarios, select baseline
- 2. Investment analysis
 - a. Project w/o C finance is not most\$ attractive
 - b. If no \$ benefits other than C finance, skip to Step 4

Project Method (cont.)

3. Barriers analysis

E.g. similar activities have only been implemented with grants or other non-commercial financial terms

4. Common practice test

- a. Credibility check to demonstrate additionality, complements investment and barrier analyses
- b. Determine if similar activities have been implemented (scale, environment, region)
- Assess essential distinctions between them, e.g. existence of barriers

Draft Wetland Activities

- Restoration or creation of tidal wetland by removing barriers or adding/removing fill and planting native plants
- Subsidence reversal by gradually raising water levels and building soil surfaces to intertidal elevation
- Filling of ditches and canals
- Restoration of sea grass meadows through improved water quality
- Restoration or creation of sea grass meadows by planting seeds or shoots
- Avoided conversion to alternative use by acquisition and prevention of disturbances
- Protecting shoreline tidal wetlands by constructing barrier islands or other measures such as wave breaks

Key Considerations for Matrix

- Types of activities
- Common alternative land uses
- Legal/institutional setting (in the U.S.)
- Grouping of activities
- Revenue generation
- Sources of funding
- Barriers to implementation

Standardized Methods

- Performance Method
 Use reliable proxies to determine
 project performance
- Activity Method
 Step 1 Regulatory surplus
 Step 2 Positive list
 Demonstrate that the class of project activities:
 - has achieved a low level (<5%) of penetration relative to its maximum adoption potential, or
 - b. is less financially or economically attractive than the alternatives, or
 - c. does not have any significant sources of revenue other than C finance

Next Steps

- Draft decision framework for project method and representative wetland activities
- Determine approach to inclusion on positive list

