Overview of Concurrency in L-Store: 2VCC - Two-version Concurrency Control

Mohammad Sadoghi

Exploratory Systems Lab University of California, Davis

ECS165a - Winter 2021

Indirection

1 Data Velocity: Index Maintenance

2 Data Volume: MVCC Concurrency

3 Decentralized & Democratic Data Platform

4 References

Indirection

00000000

Reducing Index maintenance: Velocity Dimension

Observed Trends

In the absence of in-place updates in operational multi-version databases, the cost of index maintenance becomes a major obstacle to cope with data velocity.

Reducing Index maintenance: Velocity Dimension

Observed Trends

In the absence of in-place updates in operational multi-version databases, the cost of index maintenance becomes a major obstacle to cope with data velocity.

Extending storage hierarchy (using fast non-volatile memory) with an extra level of indirection in order to

Reducing Index maintenance: Velocity Dimension

Observed Trends

Indirection

In the absence of in-place updates in operational multi-version databases, the cost of index maintenance becomes a major obstacle to cope with data velocity.

Extending storage hierarchy (using fast non-volatile memory) with an extra level of indirection in order to

Description of Possers of Possers to

Decouple Logical and Physical Locations of Records to Reduce Index Maintenance

Updating random leaf pages

5 / 24

Updating random leaf pages

Updating random leaf pages

Updating random leaf pages

Eliminating random leaf-page updates

Eliminating random leaf-page updates

Eliminating random leaf-page updates

Analytical & Experimental Evaluations

Indirection Time Complexity Analysis

	Legend
K	Number of indexes
LB	LIDBlock size
М	Number of matching records

Method	Туре	Imm. SSD	Def. SSD	Imm. HDD	Def. HDD
Base	Deletion	0	0	2 + K	$\leq 1 + K$
	Single-attr. update	0	0	3 + K	\leq 2 + K
	Insertion	0	0	1 + K	$\leq 1 + K$
	Search Uniq.	0	0	2	0
	Search Mult.	0	0	1 + M	0
Indirection	Deletion	2	0	2	≤ 3
	Single-attr. update	2	0	4	≤ 3
	Insertion	2 + 2K	2K/LB	1	$\leq 1 + 2K/LB$
	Search Uniq.	2	0	2	0
	Search Mult.	1 + M	0	1 + M	0

Indirection 000000000

Experimental Setting

Hardware:

 \blacksquare (2 \times 8-core) Intel(R) Xeon(R) CPU E7-4820 @ 2.00GHz, 32GB, 2 \times HDD, SSD Fusion-io

Software:

- Database: IBM DB2 9 7
- Prototyped in a commercial proprietary database
- Prototyped in Apache Spark by UC Berkeley
- LIBGist v.1.0: Generalized Search Tree C++ Library by UC Berkeley (5K LOC)
 (Predecessor of Generalized Search Tree (GiST) access method for PostgreSQL)
- LIBGist^{mv} Prototype: Multi-version Generalized Search Tree C++ Library over LIBGist supporting Indirection/LIDBlock/DeltaBlock (3K LOC)

Data:

- TPC-H benchmark
- Microsoft Hekaton micro benchmark

Substantially improving the update time ...

Number of Indexes

7 (PKs) 8 9 10 11 12 13 14 15 16 17

... Consequently affording more indexes and significantly reducing the query time

- 1 Data Velocity: Index Maintenance
- 2 Data Volume: MVCC Concurrency

3 Decentralized & Democratic Data Platform

4 References

Introducing Multi-version Concurrency Control

Generalized Concurrency Control: Volume Dimension

Observed Trends

Indirection

In operational multi-version databases, there is a tremendous opportunity to avoid clashes between readers (scanning a large volume of data) and writers (frequent updates).

Generalized Concurrency Control: Volume Dimension

Observed Trends

Indirection

In operational multi-version databases, there is a tremendous opportunity to avoid clashes between readers (scanning a large volume of data) and writers (frequent updates).

Introducing a (latch-free) two-version concurrency control (2VCC) by extending indirection mapping (i.e., central coordination mechanism) and exploiting existing two-phase locking (2PL) in order to

Generalized Concurrency Control: Volume Dimension

Observed Trends

Indirection

In operational multi-version databases, there is a tremendous opportunity to avoid clashes between readers (scanning a large volume of data) and writers (frequent updates).

Introducing a (latch-free) two-version concurrency control (2VCC) by extending indirection mapping (i.e., central coordination mechanism) and exploiting existing two-phase locking (2PL) in order to Decouple Readers/Writers to Reduce Contention (Pessimistic and Optimistic Concurrency Control Coexistence)

Recap: Indirection technique for reducing index maintenance

Extending the indirection to committed/uncommitted records

Indirection

Extending the indirection to committed/uncommitted records

Decoupling readers/writers to eliminate contention

2VCC

Decoupling readers/writers to eliminate contention

Decoupling readers/writers to eliminate contention

Two-phase locking (2PL) consisting of growing and shrinking phases

Two-phase locking (2PL) consisting of growing and shrinking phases

Two-phase locking (2PL) consisting of growing and shrinking phases

Extending 2PL with certify phase

Exclusive locks held for shorter period (inherently optimistic)

Exclusive locks held for shorter period (inherently optimistic)

Relaxed exclusive locks to allow speculative reads (increased optimism)

Trade-offs between blocking (i.e., locks) vs. non-blocking (i.e., read counters)

Experimental Analysis

2VCC: Effect of Parallel Update Transactions

Substantial gain by reducing the read/write contention & using non-blocking operations

2VCC: Effect of Parallel Update Transactions

Substantial gain by reducing the read/write contention & using non-blocking operations

Vision

00000

1 Data Velocity: Index Maintenance

2 Data Volume: MVCC Concurrency

3 Decentralized & Democratic Data Platform

4 References

Recap: Data Management Challenges at Microscale

OLTP and OLAP data are isolated at microscale

Recap: Data Management Challenges at Microscale

First step is to unify OLTP and OLAP

Platform Scaling: Data Partitioning

Moving towards distributed environment

Platform Scaling: Non-blocking Agreement Protocols

Message redundancy vs. latency trade-offs [EasyCommit, EDBT'18]

Central Control: Data Gate Keeper

Conform to trusting the central authority and governance

Decentralized Control: Removing Data Barrier

Seek trust in decentralized and democratic governance [PoE (EDBT'21), RCC (ICDE'21)]

Democratic Control: Removing Trust Barrier

Seek trust in decentralized and democratic governance [PoE (EDBT'21), RCC (ICDE'21)]

Self-managed infrastructure

Indirection

Vision

Cloud-managed infrastructure (trust the provider)

Cloud-managed infrastructure (trust the provider)

Light-weight, fault-tolerant, trusted middleware [Blockplane, (ICDE'18)]

Global Scale fault-tolerant protocols [GeoBFT (VLDB'20), Delayed Replication (ICDT'20)]

Questions? Thank you!

Exploratory Systems Lab (ExpoLab) Website: https://expolab.org/

Indirection

- I. Shibbada, A. Felono, O. Hanamushib, P. Zhang, M. Sadighi.
 Large-trade sinustral and instead similarity-based mining of hossiships graph to predict drug drug interaction.
- D. A. Poloso, G. Hanamarkh, M. Sadarki, and P. Zhana.

Indirection

- A. Polose, M. Sadaghi, O. Hamarouchi, and P. Zhang. 'editing they they intreation through large scale similarly based bits prediction.
- Expel F. Emisseler and M. Sadeghi.
 Assistating database meliticals by software hardware system on design.
- D. A. Chardel, C. Hamamarich, N. Kooden, M. Sadarbil, and C. Schartzon.
- A. Farrado, M. Sadaghi, and H. A. Jamines.
- M. Honousipus, E. Montrachin, M. Educatorgo, and M. Sadaghi, Kanat. A distributed. In money brought stem.
- District of States and A States M. Jingler, M. Bashighi, and H. A. Jaminon.
 DOSONIE A management infrastructure for distributed data sentes usefulnos.
 In Proceedings of the 2021 ACM SIGMAD International Conference on Management.

- D. C. Charles, T. Robert M. Randwick, and M. Combran.
- Distriction of the street and the factors

- D M. Nach M. Sabahi and H. Jackson.
- M. Nigali, M. Sadaghi, and H. Janstone. The FOP vision: Fleebile some annualize on a recombinately computing falcin.
- T. Rati, M. Salaghi, S. Giren-Wilson, V. Monte-Malon, H. A. Jandson, and S. Markovick.
- T. Raid, K. Zhang, M. Badaghi, N. K. Pandry, A. Ngam, C. Wang, and H. A. Janobson.

- M. Sadaghi, I. Bonne, and H.-A. Jacobson. GPX-Mainler: a generic Biologo predicate based 374th expression mainlers.

- on Cale Engineering, Chinago, ACM 2014, IL, 155A, March 20 April 6, 2014, marris 360-179, 2014
- M. Sminghi and H. A. Jambon. Educates matters. Capitalising on Int. (top & matching in publish/salmorder).

- M. Sadaghi, K. Javel, N. Tarakke, H. Singh, N. Paketappan, and H.-A. Javelson.
- M. Sadaghi, M. Jergier, H.-A. Janston, R. Holl, and R. Varule. M. Endelghi, M. Jorgies, H.-A. Linckson, R. Holl, and R. Vanolin.
 San Special and parallel remailine of data sentiate unrifition over the publish/subsanite abstraction.
 IEEE Trans. on Knowl. and Data Eros. 1923, 2023.
- M. Sanlaghi, M. Jergim, H. A. Jamison, R. Hall, and R. Vannin.
 Sale distribution and parallel remains of data service worldows over the publicly industries abstraction.
- M. Satispie, K. A. Rose, M. Carrin, and E. Ehattacharjon.
- M. Sadighi, S. Ehstachrijer, E. Shattacharjer, and M. Canin. Lillians A register OCSF and OLAF system.
- M. Sadaghi, H. Singh, and H.-A. Janobum.
 Towards highly smoothly recent processing blessack reconfigurable handsom.
- Equilib An Exploratory Data Science Plathers.
- D M. Sadachi, K. Srinica, O. Hassanocki, Y.C. Chara, M. Carle, A. Februs, and Y.A. Pebrus.
- T. Nguyen, M. Robbigues Mars, O. Hamanashin, A. Massimilano Glosco, M. Badaghi. Joint Lourine of Louis and Global Poplares for Bellin Libbins via Nascal Networks.
- D. V. Trees, M. Santania V. Matternation and M. A. Santania

- Blab Riddhamid, Medala Carim, Mohammad Sadighi, Bohasanjer Bhatiacharjm, Ysan Chi Chang, and Panns Kalnis.
- Generals I. Dian, Arbitle Februar, and Mohammad Sarlogbi

- D. Mohamed S. Hassan, Tationa Kosmitonia, Houn Chal Josep, Walld G. And, and Mohammad Sadochi.
- Michaned S. Kesser, Tationa Knownburse, Hyun Chai Jimng, Walid G. Arel, and Michammad Sadeghi.
 Delation: Graphs as first slags officers in main researcy relational database systems.
- Mishammelman Najali, Mahammad Sadaghi, and Hans Anna Jandano.
 A wadabin ninodar pipeline design for multi-may ninnam joins in handsoon.
- Mohammad Sashight, Smooth Ethaltanberjon, Elebourumjon Ethaltanbarjon, and Modala Canton
- N Committee Managed Statute Countries and Managed States Inching
- - ◆ロト ◆問 ▶ ◆ き ▶ ◆ き り ぬ ○