Practical-4 Auto Encoder

```python
import pandas as pd
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model\_selection import train\_test\_split

from sklearn.preprocessing import StandardScaler from sklearn.metrics import confusion\_matrix, recall\_score, accuracy\_score, precision\_score

#### ### Explanation:

- We're importing libraries that are essential for our anomaly detection model:
  - \*\*pandas\*\*: Helps with data handling and organization in tables.
  - \*\*numpy\*\*: Supports mathematical operations on arrays.
  - \*\*tensorflow\*\*: Builds and trains neural networks (like our autoencoder).
  - \*\*matplotlib\*\* and \*\*seaborn\*\*: Visualize data with plots and graphs.
- \*\*sklearn.model\_selection\*\*: Splits the dataset into training and testing parts.
- \*\*sklearn.preprocessing\*\*: Scales (normalizes) the dataset for more consistent results.
  - \*\*sklearn.metrics\*\*: Measures the model's performance.

---

```python

RANDOM_SEED = 2021

TEST_PCT = 0.3

LABELS = ["Normal","Fraud"]

Explanation:

- We set up some basic configurations:
- **RANDOM_SEED**: Ensures consistent results each time by controlling the randomness.
- **TEST_PCT**: Tells us what percentage of data will be used for testing (30% here).
 - **LABELS**: Labels the two types of transactions as "Normal" and "Fraud."

```
```python
dataset = pd.read_csv("creditcard.csv")
Explanation:
- This line loads the dataset named **creditcard.csv** into a **pandas
DataFrame** called `dataset`, making it easy to analyze and manipulate.
```python
# Check for any null values
print("Any nulls in the dataset", dataset.isnull().values.any())
print('----')
print("No. of unique labels", len(dataset['Class'].unique()))
print("Label values", dataset.Class.unique())
# 0 is for normal credit card transactions
# 1 is for fraudulent credit card transactions
print('----')
print("Breakdown of Normal and Fraud Transactions")
print(pd.value_counts(dataset['Class'], sort=True))
### Explanation:
1. **Null Check**: Checks if there are any missing values in the dataset. This is
important because missing data could affect model accuracy.
2. **Unique Labels**: Finds and displays unique values in the "Class" column.
Here, 'Class' is the label column, with '0' for normal and '1' for fraud.
3. **Label Breakdown**: Counts how many normal and fraudulent transactions
we have, helping us understand the class distribution.
```python
Visualizing the imbalanced dataset
count_classes = pd.value_counts(dataset['Class'], sort=True)
count_classes.plot(kind='bar', rot=0)
plt.xticks(range(len(dataset['Class'].unique())), dataset.Class.unique())
plt.title("Frequency by observation number")
plt.xlabel("Class")
plt.ylabel("Number of Observations")
```

## ### Explanation:

- This part visualizes how many normal vs. fraud transactions are present in the

dataset using a bar chart.

- \*\*pd.value\_counts()\*\*: Counts each label's occurrences.
- \*\*plt.title()\*\* and other settings: Label the axes and title to make the chart clear.

```
"``python
Save the normal and fraudulent transactions in separate DataFrames
normal_dataset = dataset[dataset.Class == 0]
fraud_dataset = dataset[dataset.Class == 1]

Visualize transaction amounts for normal and fraudulent transactions
bins = np.linspace(200, 2500, 100)
plt.hist(normal_dataset.Amount, bins=bins, alpha=1, density=True,
label='Normal')
plt.hist(fraud_dataset.Amount, bins=bins, alpha=0.5, density=True,
label='Fraud')
plt.legend(loc='upper right')
plt.legend(loc='upper right')
plt.title("Transaction Amount vs Percentage of Transactions")
plt.xlabel("Transaction Amount (USD)")
plt.ylabel("Percentage of Transactions")
plt.show()
"``
```

## ### Explanation:

- This code creates separate datasets for normal and fraud transactions and then plots transaction amounts for each.
- \*\*normal\_dataset\*\* and \*\*fraud\_dataset\*\*: Split `dataset` based on the class (0 for normal, 1 for fraud).
- \*\*plt.hist()\*\*: Plots histograms for transaction amounts to show the difference in value ranges between normal and fraud transactions.

```
```python
sc = StandardScaler()
dataset['Time'] = sc.fit_transform(dataset['Time'].values.reshape(-1, 1))
dataset['Amount'] = sc.fit_transform(dataset['Amount'].values.reshape(-1, 1))
```
```

#### ### Explanation:

- Here, we normalize `Time` and `Amount` columns for better model performance.
- \*\*StandardScaler\*\*: Scales each feature so that it has a mean of 0 and a standard deviation of 1.
  - \*\*fit\_transform()\*\*: Fits the scaler and applies it to `Time` and `Amount` to

standardize their values.

```
```python
raw data = dataset.values
labels = raw_data[:, -1] # The last element contains if the transaction is normal
(0) or fraud (1)
data = raw_data[:, 0:-1] # Other columns are the main data points
train_data, test_data, train_labels, test_labels = train_test_split(data, labels,
test_size=0.2, random_state=2021)
### Explanation:
- **raw_data**: Converts the dataset into a **NumPy array** for easier
manipulation.
 - **labels**: Takes the last column ('Class') as our target labels (0 or 1).
 - **data**: Takes the other columns as our features.
 - **train_test_split()**: Splits the data into training and test sets, with 80% for
training and 20% for testing.
```python
min_val = tf.reduce_min(train_data)
max_val = tf.reduce_max(train_data)
train_data = (train_data - min_val) / (max_val - min_val)
test_data = (test_data - min_val) / (max_val - min_val)
train_data = tf.cast(train_data, tf.float32)
test_data = tf.cast(test_data, tf.float32)
Explanation:
- **Min-Max Scaling**: This scales our data to fit within a 0-1 range, which
stabilizes training.
 - **tf.reduce_min()** and **tf.reduce_max()**: Find the minimum and
maximum values in the training data.
 - **tf.cast()**: Converts data to **float32** format, which is standard for
TensorFlow.
```python
train_labels = train_labels.astype(bool)
test_labels = test_labels.astype(bool)
```

```
# Creating normal and fraud datasets
normal_train_data = train_data[~train_labels]
normal_test_data = test_data[~test_labels]

fraud_train_data = train_data[train_labels]
fraud_test_data = test_data[test_labels]
print("No. of records in Fraud Train Data =", len(fraud_train_data))
print("No. of records in Normal Train Data =", len(normal_train_data))
print("No. of records in Fraud Test Data =", len(fraud_test_data))
print("No. of records in Normal Test Data =", len(normal_test_data))
...
```

Explanation:

- **Convert Labels to Boolean**: Converts labels to `True` for fraud (1) and `False` for normal (0), which is useful for easy data separation.
- **Separate Data**: Creates `normal_train_data`, `fraud_train_data`, `normal_test_data`, and `fraud_test_data` based on labels. This way, we can focus on training with normal data first, as it is usually the majority class.

Absolutely! Let's continue with the remaining code cells in the same format.

```
```python

nb_epoch = 50

batch_size = 64

input_dim = normal_train_data.shape[1] # Number of features (columns)

encoding_dim = 14

hidden_dim1 = int(encoding_dim / 2)

hidden_dim2 = 4

learning_rate = 1e-7
```

## ### Explanation:

- Here, we define key parameters for our model:
- \*\*nb\_epoch\*\*: Sets the number of training cycles (epochs) to 50, meaning the model will go over the training data 50 times.
- \*\*batch\_size\*\*: Processes the data in batches of 64 samples at a time for faster and more stable training.
- \*\*input\_dim\*\*: Sets the input layer's dimension to match the number of columns (features) in the data.
- \*\*encoding\_dim\*\*: Defines the size of the compressed (latent) representation after the encoder part.
  - \*\*hidden\_dim1\*\* and \*\*hidden\_dim2\*\*: Define the dimensions of hidden

layers in the encoder and decoder. These layers gradually reduce the size of data, making it easier to detect anomalies.

- \*\*learning\_rate\*\*: Controls the step size during optimization to prevent drastic changes in weights during training.

```
```python
# Input layer
input_layer = tf.keras.layers.lnput(shape=(input_dim,))
# Encoder
encoder = tf.keras.layers.Dense(encoding_dim, activation="tanh",
activity_regularizer=tf.keras.regularizers.l2(learning_rate))(input_layer)
encoder = tf.keras.layers.Dropout(0.2)(encoder)
encoder = tf.keras.layers.Dense(hidden_dim1, activation='relu')(encoder)
encoder = tf.keras.layers.Dense(hidden_dim2, activation=tf.nn.leaky_relu)
(encoder)
# Decoder
decoder = tf.keras.layers.Dense(hidden_dim1, activation='relu')(encoder)
decoder = tf.keras.layers.Dropout(0.2)(decoder)
decoder = tf.keras.layers.Dense(encoding_dim, activation='relu')(decoder)
decoder = tf.keras.layers.Dense(input_dim, activation='tanh')(decoder)
# Autoencoder
autoencoder = tf.keras.Model(inputs=input_layer, outputs=decoder)
autoencoder.summary()
```

Explanation:

- **Input Layer**: Defines the input size using `input_dim`, which matches the number of features in our dataset.
- **Encoder**: Compresses data into a smaller "latent representation."
- **Dense layer with tanh**: Reduces data size, with tanh activation to handle both positive and negative values.
 - **Dropout**: Randomly ignores some neurons to prevent overfitting.
- **Relu and Leaky Relu**: Further compress data. Leaky relu avoids inactive neurons by allowing small positive gradients when inputs are negative.
- **Decoder**: Reconstructs data from latent representation to original size.
 - **ReLU** layers gradually increase the data size.
- **Final Dense layer with tanh**: Matches input size to get the output back to the original feature space.
- **Autoencoder Model**: Combines input, encoder, and decoder into a single model and prints the summary.

```
```python
cp = tf.keras.callbacks.ModelCheckpoint(filepath="autoencoder_fraud.keras",
mode='min', monitor='val_loss', verbose=2, save_best_only=True)
early_stop = tf.keras.callbacks.EarlyStopping(
 monitor='val_loss',
 min_delta=0.0001,
 patience=10,
 verbose=11,
 mode='min',
 restore_best_weights=True
Explanation:
- **Checkpoint (cp) **: Saves the model with the lowest validation loss during
training to "autoencoder_fraud.keras." This way, if training stops or ends, we
still have the best version saved.
- **Early Stopping**: Stops training if there's no improvement in validation loss
for 10 consecutive epochs. This avoids overfitting and reduces training time.
```python
autoencoder.compile(metrics=['accuracy'], loss='mean_squared_error',
optimizer='adam')
### Explanation:
- **Compile**: Prepares the autoencoder for training by defining:
 - **Metrics**: Here, accuracy will track how well the model performs.
 - **Loss**: Mean squared error compares the input data with the
reconstructed output, measuring the "reconstruction error."
 - **Optimizer**: Adam optimizer adjusts model weights to minimize loss in
each training step.
___
```python
history = autoencoder.fit(normal_train_data, normal_train_data,
epochs=nb_epoch,
 batch_size=batch_size, shuffle=True,
 validation_data=(test_data, test_data),
 verbose=1.
 callbacks=[cp, early_stop]).history
. . .
```

## ### Explanation:

- \*\*Training (fit)\*\*: Trains the autoencoder model on the normal (non-fraud) data, aiming to learn how normal transactions should look.
- \*\*normal\_train\_data\*\*: We train only on normal data to recognize anomalies later.
- \*\*epochs, batch\_size\*\*: Defined earlier, control training cycles and batch size.
- \*\*validation\_data\*\*: Checks performance on test data.
- \*\*callbacks\*\*: Saves best model and applies early stopping if needed.
- \*\*history\*\*: Stores training history for plotting later.

```
```python
plt.plot(history['loss'], linewidth=2, label='Train')
plt.plot(history['val_loss'], linewidth=2, label='Test')
plt.legend(loc='upper right')
plt.title('Model Loss')
plt.ylabel('Loss')
plt.xlabel('Epoch')
plt.show()
```
```

#### ### Explanation:

- \*\*Plot Loss\*\*: Shows the model's training and validation loss over epochs, letting us check if the model is learning.
  - \*\*history['loss']\*\*: Training loss per epoch.
  - \*\*history['val\_loss']\*\*: Validation loss per epoch.
  - \*\*Labels and Title\*\*: Labels the plot to make it easier to read.

```
```python
test_x_predictions = autoencoder.predict(test_data)
mse = np.mean(np.power(test_data - test_x_predictions, 2), axis=1)
error_df = pd.DataFrame({'Reconstruction_error': mse, 'True_class':
test_labels})
```

Explanation:

- **test_x_predictions**: Generates the model's predictions for the test set.
- **Mean Squared Error (mse)**: Calculates the reconstruction error for each test data point, showing how closely the reconstructed output matches the input.
- **error_df**: Creates a DataFrame that holds each test point's reconstruction error and true label (0 or 1).

```
```python
threshold_fixed = 50
groups = error_df.groupby('True_class')
fig, ax = plt.subplots()
for name, group in groups:
 ax.plot(group.index, group.Reconstruction_error, marker='o', ms=3.5,
linestyle=",
 label="Fraud" if name == 1 else "Normal")
ax.hlines(threshold_fixed, ax.get_xlim()[0], ax.get_xlim()[1], colors="r",
zorder=100, label="Threshold")
ax.legend()
plt.title("Reconstruction error for normal and fraud data")
plt.ylabel("Reconstruction error")
plt.xlabel("Data point index")
plt.show()
Explanation:
- **threshold_fixed**: Sets a cutoff for reconstruction error; points above it are
flagged as possible frauds.
- **Plot Reconstruction Error**:
 - Groups data by `True_class` (0 for normal, 1 for fraud).
 - Plots each point's reconstruction error. Fraud cases are expected to have
higher errors.
 - **ax.hlines()**: Adds a red line at the threshold value, distinguishing normal
and fraud data.
```python
threshold_fixed = 52
pred_y = [1 if e > threshold_fixed else 0 for e in
error_df.Reconstruction_error.values]
error_df['pred'] = pred_y
conf_matrix = confusion_matrix(error_df.True_class, pred_y)
plt.figure(figsize=(4, 4))
sns.heatmap(conf_matrix, xticklabels=LABELS, yticklabels=LABELS,
annot=True, fmt="d")
plt.title("Confusion matrix")
plt.ylabel("True class")
plt.xlabel("Predicted class")
plt.show()
```

. . .

Explanation:

- **Threshold Adjustment**: Sets a slightly higher threshold of 52 to classify points as fraud (1) or normal (0).
- **Prediction Array**: `pred_y` contains predictions based on reconstruction error.
- **Confusion Matrix**: Compares true labels to predictions, counting correct and incorrect classifications.
- **sns.heatmap()**: Visualizes the confusion matrix, showing counts of normal/fraud predictions versus actual classes.

```
```python
```

```
Print Accuracy, Precision, and Recall print("Accuracy:", accuracy_score(error_df['True_class'], error_df['pred'])) print("Recall:", recall_score(error_df['True_class'], error_df['pred'])) print("Precision:", precision_score(error_df['True_class'], error_df['pred']))
```

## ### Explanation:

- \*\*Model Performance\*\*:
  - \*\*Accuracy\*\*: Percentage of correct predictions overall.
  - \*\*Recall\*\*: Percentage of actual frauds correctly identified.
  - \*\*Precision\*\*: Percentage of predicted frauds that were actually frauds.
- These metrics give a full view of how well the model handles fraud detection.

\_\_\_\_

Here are important questions for Assignment 4, which is about ECG anomaly

### Important Questions and Answers

1. \*\*What is Anomaly Detection?\*\*

detection using Autoencoders:

- Anomaly detection identifies unusual patterns or outliers in data that do not conform to expected behavior.
- 2. \*\*What are Autoencoders in Deep Learning?\*\*
- Autoencoders are neural networks designed to learn efficient data representations by encoding input into a latent space and reconstructing it back to the original form.
- 3. \*\*List some applications of Autoencoders in deep learning.\*\*
  - Image denoising, anomaly detection, and dimensionality reduction.

- 4. \*\*Explain the difference between Anomaly Detection and Novelty Detection.\*\*
- Anomaly detection identifies deviations in known data distributions, while novelty detection recognizes patterns that are entirely new or different from training data.
- 5. \*\*Describe the architecture of an Autoencoder.\*\*
- An autoencoder has an encoder that compresses input data into a latent representation, and a decoder that reconstructs the original data from this representation.
- 6. \*\*What is reconstruction error in Autoencoders?\*\*
- It is the difference between the original input and the reconstructed output, used to detect anomalies based on high reconstruction errors.
- 7. \*\*What is MinMaxScaler from sklearn, and why is it used?\*\*
- MinMaxScaler scales data to a fixed range, typically [0,1], which normalizes input for better model training performance.
- 8. \*\*What is the purpose of the `train\_test\_split` function in sklearn?\*\*
- This function splits data into training and testing sets, ensuring that the model can be evaluated on unseen data.
- 9. \*\*What is an anomaly score?\*\*
- Anomaly score quantifies how unusual a data point is, based on metrics like reconstruction error in an autoencoder.
- 10. \*\*Describe the ECG dataset used in this practical.\*\*
- The ECG dataset contains electrocardiogram readings, often with labeled anomalies, to help train models to detect abnormal heart patterns.
- 11. \*\*What are some optimizers used in Keras, and what is their role?\*\*
- Common optimizers include Adam, SGD, and RMSprop, which adjust model weights to minimize the loss function during training.
- 12. \*\*Explain Dense and Dropout layers in Keras.\*\*
- \*\*Dense Layer\*\*: A fully connected layer that contributes to learning complex patterns.
- \*\*Dropout Layer\*\*: Randomly drops a fraction of neurons during training to prevent overfitting.
- 13. \*\*What is the Mean Squared Logarithmic Error (MSLE) in Keras losses?\*\*
- MSLE is a loss function that calculates the logarithmic difference between true and predicted values, often used for regression tasks with data on different scales.

- 14. \*\*What is the purpose of the ReLU activation function?\*\*
- ReLU (Rectified Linear Unit) introduces non-linearity by setting negative values to zero, which helps the model learn complex patterns efficiently.
- 15. \*\*How is thresholding used to detect anomalies in Autoencoders?\*\*
- Thresholding involves setting a cut-off value for reconstruction error; data points exceeding this threshold are labeled as anomalies.

Would you like additional questions or further details on any of these topics?