THREE-DIMENSIONAL STRUCTURE OF COMPLEMENT RECEPTOR TYPE 2 AND USES THEREOF

Government Support

This invention was made in part with government support under Grant No. NIH R0-1 CA53615 awarded by the National Institutes of Health. The government has certain rights to this invention.

Field of the Invention

This invention relates to the crystallization and resolution of the three-dimensional structure of the human complement receptor type 2 (CR2) protein, and to methods of using such structure, particularly for structure-based drug design of regulatory compounds.

Background of the Invention

Complement receptor type 2 (CR2 or CD21) is a key interface between innate and adaptive immunity by serving as the receptor for complement component C3d, as well as for C3 and fragments of C3 that contain the C3d domain or a portion thereof, including but not limited to C3dg, iC3b and C3b (D. T. Fearon and R. H. Carter, *Annu Rev Immunol* 13, 127-49 (1995); D. T. Fearon, *Semin Immunol* 10, 355-61 (1998)). C3d and other CR2-binding C3 fragments that contain C3d or a portion thereof are covalently attached to foreign antigens (such as invading microorganisms) through the action of the classical, alternative or lectin complement pathways (S. K. A. Law and K. B. M. Reid, *Complement*,. D. Male, Ed., In Focus (Oxford, UK:IRL Press., ed. second edition, 1995)). C3d- or other CR2-binding C3 fragment-bound antigens then greatly amplify B cell responses by binding to CR2 through these C3 fragments at the same time as engaging the B cell receptor (BCR) via the bound antigen (R. H. Carter and D. T. Fearon, *Science* 256, 105-7 (1992); J. C. Cambier, *Biochem Soc Trans* 25, 441-5 (1997)). The cross-linking of CR2 to the BCR by C3d, C3. or other CR2-binding fragments of C3 that contain C3d or a portion thereof greatly amplifies a signal transduction cascade through the CR2/CD19/CD81 co-activation complex (D. T. Fearon.

10

5

15

20

25

1995 *ibid.*; D. T. Fearon, 1998, *ibid.*; J. C. Cambier, 1997, *ibid.*; A. K. Matsumoto, et al., *J Exp Med* 173, 55-64 (1991)).

Human CR2 is also the obligate receptor for the Epstein-Barr virus (EBV) through its interactions with the gp350/220 viral membrane protein (J. D. Fingeroth, et al., Proc Natl Acad Sci USA 81, 4510-4 (1984)). EBV causes infectious mononucleosis, and is associated with Burkitt's Lymphoma and several other lymphomas and non-lymphoid tumors (M. Okano, Acta Paediatr 87, 11-8 (1998)). In addition, human CR2 serves as a receptor for CD23 (J. P. Aubry et al., Nature 358, 505-7 (1992)) and is thus a receptor for at least three biologically important ligands. Using genetically manipulated mice and animal models, CR2 has been shown to be essential for the development of normal humoral immunity to Tdependent antigens (T. Hebell et al., Science 254, 102-5 (1991); J. M. Ahearn, et al., Immunity 4, 251-62 (1996); H. Molina, et al., Proc Natl Acad Sci USA 93, 3357-61 (1996)) as well as possibly play an important role in the maintenance of B cell self-tolerance and the development of autoimmunity (A. P. Prodeus, et al., Immunity 9, 721-31 (1998)). CR2 has also been shown to mediate the interaction of C3-bound HIV-1 as an immune complex with B cells in a fashion that promotes transfer of virus and infection of CD4 T cells (S. Moir, et al., J Exp Med 192, 637-46 (2000)). CR2 also mediates direct infection of CR2-expressing T cells or other CR2-expressing cell lineages that are bound by HIV-1 immune complexes containing C3, C3d or other CR2-binding C3 fragments (including, but not limited to, HIV-1 complexed with C3d).

10

15

20

25

Interactions with all three human CR2 ligands require the first two of 15 or 16 short consensus repeat (SCR) domains (C. A. Lowell, et al., *J Exp Med* 170, 1931-46 (1989); J. C. Carel et al., *J Biol Chem* 265, 12293-9 (1990)). SCR domains, like Ig domains, are found in many proteins from both complement and non-complement families, and mediate diverse biological functions (A. P. Wiles, et al., *J Mol Biol* 272, 253–65 (1997)). Several of the SCR proteins also serve as receptors for important human pathogens. For example, in addition to CR2, CD46 is a Measles Virus receptor (R. E. Dorig et al., *Cell* 75, 295-305 (1993)), and

CD55 is an echovirus receptor (T. Ward, et al., EMBO.J.13, 5070-4 (1994); J. M. Bergelson, et al., Proc Natl Acad Sci USA 91, 6245-9 (1994)). Previously determined structures of SCR proteins containing two or four SCR domains have revealed a conserved core structure but variable orientations between domains mediated in part by relatively short 3-8 amino acid inter-SCR linker peptides (A. P. Wiles, et al., 1997, ibid.; P. N. Barlow, et al., J Mol Biol 232, 268-84 (1993); J. M. Casasnovas et al., EMBO J 18, 2911-22 (1999); R. Schwarzenbacher, et al., EMBO J 18, 6228-39 (1999)). As one of the major functions of SCR domains is to mediate protein-protein (such as receptor-ligand) interactions, and at least two SCRs have been found to be required for these interactions, the relative angle and orientation unique to each SCR-containing protein is likely to contribute to both biologic diversity as well as specificity. However, the lack of a high-resolution structure of a receptor-ligand complex in this family has hindered the understanding of the molecular recognition mechanisms of this class of proteins. With regard to the structure of CR2 and the molecular interactions with its ligands, C3d and EBVgp350/220, variable results have been obtained using mutagenesis, monoclonal antibody, and peptide strategies (C. A. Lowell, et al., J Exp Med 170, 1931-46 (1989); D. R. Martin et al., J Exp Med 174, 1299-311 (1991); H. Molina, et al., J Biol Chem 266, 12173-9 (1991); H. Molina et al., J Immunol 153, 789-95 (1994); D. R. Martin et al., J Virol 68, 4716-26 (1994); H. Molina, et al., J Immunol 154, 5426-35 (1995)).

5

10

15

20

25

Therefore, there is a need in the art for a three dimensional structure of CR2 in order to better understand the molecular recognition mechanisms of the protein and to enable the identification and/or design of compounds that mimic, enhance, disrupt or compete with the interactions of CR2 with its ligands.

Summary of the Invention

One embodiment of the present invention relates to a method of structure-based identification of compounds which potentially bind to complement receptor type 2 (CR2)

proteins or to a complex of CR2 and its ligand. This method includes the steps of: (a) providing a three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region; and, (b) identifying a candidate compound for binding to the CR2 SCR 1-2 region by performing structure based drug design with the structure of (a). The three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region is selected from: (i) a structure defined by atomic coordinates of a three dimensional structure of a crystalline CR2 SCR1-2 region in complex with C3d; (ii) a structure defined by atomic coordinates selected from: (1) atomic coordinates represented in a table selected from the group consisting of Table 2 (CR2-C3d) and Table 3 (CR2 only); and, (2) atomic coordinates that define a three dimensional structure, wherein at least 50% of the structure has an average root-mean-square deviation (RMSD) from backbone atoms in secondary structure elements in at least one domain of a three dimensional structure represented by the atomic coordinates of (1) of equal to or less than about 1.0Å; and (ii) a structure defined by atomic coordinates derived from CR2 protein molecules arranged in a crystalline manner in a space group R32 so as to form a unit cell of dimensions a=b=170.5Å, c=173.8 Å.

5

10

15

20

25

In one aspect of this embodiment, the step of identifying comprises selecting candidate compounds that potentially bind to and activate CR2.

In another aspect of this embodiment, the method further includes the step of: (c) selecting candidate compounds of (b) that inhibit the binding of CR2 to its ligand. The step (c) of selecting can include: (i) contacting the candidate compound identified in step (b) with CR2 or a fragment thereof and a CR2 ligand or a fragment thereof under conditions in which a CR2-CR2 ligand complex can form in the absence of the candidate compound: and (ii) measuring the binding affinity of the CR2 or fragment thereof to the CR2 ligand or fragment thereof: wherein a candidate inhibitor compound is selected as a compound that inhibits the binding of CR2 to its ligand when there is a decrease in the binding affinity of the CR2 or fragment thereof for the CR2 ligand or fragment thereof, as compared to in the absence of the candidate inhibitor compound. The CR2 ligand can include, but is not limited to, C3d,

C3, a CR2-binding fragment of C3 containing C3d, CD23, and Epstein Barr Virus (EBV) gp350/220, or CR2-binding fragments of any of the ligands. In one aspect, the CR2 protein or fragment thereof comprises an amino acid sequence selected from the group of SEQ ID NO:4 and SEQ ID NO:6.

5

10

15

20

25

In another aspect of this embodiment, the method further includes the step of: (c) selecting candidate compounds that stabilizes a complex of CR2 with its ligand. Step (c) can include: (i) contacting the candidate compound identified in step (b) with a CR2-CR2 ligand complex, wherein the CR2-CR2 ligand complex comprises CR2 or a fragment thereof and a CR2 ligand, or a fragment thereof; and (ii) measuring the stability of the CR2-CR2 ligand complex of (i), wherein a candidate stabilizer compound is selected as a compound that stabilizes the CR2-CR2 ligand complex when there is an increase in the stability of the complex as compared to in the absence of the candidate stabilizer compound. In this aspect, the ligand is preferably selected from C3d, C3, a CR2-binding fragment of C3 containing C3d, CD23, and CR2-binding fragments of any of the ligands. In this aspect, the CR2 protein or fragment thereof can comprise an amino acid sequence selected from the group of SEQ ID NO:4 and SEQ ID NO:6.

In the method of identifying a compound, the step (a) of identifying can include identifying candidate compounds for binding to the SCR2 domain of the CR2. In one aspect, the step of identifying includes identifying candidate compounds for binding to the interface between the SCR1 and SCR2 domains of CR2. In another aspect, the step of identifying includes identifying candidate compounds for binding to the dimer interface between two CR2 proteins. In yet another aspect, the step of identifying includes identifying candidate compounds for binding to the interface between CR2 and C3d, C3, a CR2-binding fragment of C3 containing C3d, or a fragment thereof. In one aspect, the step of identifying includes identifying candidate compounds for binding to the B strand and the B-C loop of CR2 SCR2 comprising the segment: G79-G80-Y81-K82-I83-R84-G85-S86-T87-P88-Y89. In another aspect, the step of identifying includes identifying candidate compounds for binding to a site

on the B strand of CR2 SCR2 comprising position K100. In another aspect, the step of identifying includes identifying candidate compounds for binding to a segment of CR2 SCR2 comprising V130-F131-P132-L133. In yet another aspect, the step of identifying comprises identifying candidate compounds for binding to a segment of CR2 SCR2 comprising the fragment T101-N102-F103. In one aspect of the method of identifying, the step of identifying includes identifying candidate compounds for binding to amino acid residues at positions 84 and 86 of an amino acid sequence selected from the group consisting of SEQ ID NO:4 and SEQ ID NO:6.

5

10

15

20

25

When the ligand is C3d, C3, or a CR2-binding fragment of C3 containing C3d, the step of identifying can include identifying candidate compounds for binding to the loop between helix 2-3 of C3d comprising the segment Q68-P69-S70-S71. In another aspect, the step of identifying can include identifying candidate compounds for binding to Helix 5 of C3d comprising the segment S104-Q105-V106-L107-C108-G109-A110-V111-K112-W113-L114-I115-L116-E117-K118-Q119-K120-P121-D122. In another aspect, the step of identifying can include identifying candidate compounds for binding to Helix 7of C3d comprising the segment N170-S171-L172-P173-G174-S175-I176-T177-K178-A179-G180-D181-F182-L183-E184-A185.

The step of identifying a compound in the method of the present invention can include any suitable method of drug design, drug screening or identification, including, but not limited to: directed drug design, random drug design, grid-based drug design, and/or computational screening of one or more databases of chemical compounds.

Yet another embodiment of the present invention relates to a method to identify a compound that inhibits the complement receptor type 2 (CR2)-dependent infection of a host cell by Epstein Barr Virus (EBV). This method includes the steps of: (a) providing a three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region as described in detail above; (b) identifying a candidate compound for binding to the CR2 SCR 1-2 region by performing structure based drug design with the structure of (a) to identify a compound

structure that binds to the three dimensional structure of the CR2 SCR 1-2 region; (c) contacting the candidate compound identified in step (b) with a cell that expresses CR2 or a ligand binding fragment thereof and an Epstein Barr Virus (EBV) particle under conditions in which the EBV particle can bind to CR2 and infect the cell in the absence of the candidate compound; and (d) measuring the intracellular EBV titer of the cell; wherein a candidate inhibitor compound is selected as a compound that inhibits the EBV titer in the cell, as compared to in the absence of the candidate inhibitor compound.

Yet another embodiment of the present invention relates to a method to identify a compound that inhibits the binding of CD23 to complement receptor type 2 (CR2). This method includes the steps of: (a) providing a three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region as described in detail above; (b) identifying a candidate compound for binding to the CR2 SCR 1-2 region by performing structure based drug design with the structure of (a) to identify a compound structure that binds to the three dimensional structure of the CR2 SCR 1-2 region; (c) contacting the candidate compound identified in step (b) with a first cell expressing CR2 or a ligand binding fragment thereof and a second cell expressing a CD23 protein or fragment thereof under conditions in which the CD23 protein or fragment thereof and the CR2 or the ligand binding fragment thereof can bind in the absence of the candidate compound; and (d) measuring a biological activity induced by the interaction of CD23 and CR2 in the first or second cell; wherein a candidate inhibitor compound is selected as a compound that inhibits the biological activity as compared to in the absence of the candidate inhibitor compound. In a preferred embodiment, the biological activity is IgE isotype switching in the first cell.

10

15

20

7.5

Yet another embodiment of the present invention relates to a method to identify a compound that inhibits the binding of C3d, C3 or another CR2-binding fragment of C3 containing C3d or a portion thereof, to complement receptor type 2 (CR2). This method includes the steps of: (a) providing a three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region as described in detail above; (b) identifying a candidate compound

for binding to the CR2 SCR 1-2 region by performing structure based drug design with the structure of (a) to identify a compound structure that binds to the three dimensional structure of the CR2 SCR 1-2 region; (c) contacting the candidate compound identified in step (b) with a cell expressing CR2 or a fragment thereof and C3d, C3, a CR2-binding fragment of C3 containing C3d, or a fragment thereof, under conditions in which the C3d, the C3, the CR2binding fragment of C3 containing C3d, or a fragment thereof, can bind to CR2 or the fragment thereof and enhance cell activation in the absence of the candidate compound; and (d) measuring the activation of the cell; wherein a candidate inhibitor compound is selected as a compound that inhibits cell activation, as compared to in the absence of the candidate inhibitor compound. In this embodiment, the cell in (c) can include, but is not limited to: a B cell, a T cell, a thymocyte, an epithelial cell, and a mast cell. Activation can be measured by any suitable method including, but not limited to: measurement of cytokine production by the cell, measurement of calcium mobilization in the cell, measurement of lyn tyrosine kinase activity in the cell, measurement of phosphatidylinositol 3' kinase activity in the cell, measurement of activation of NF-kB, measurement of activation of MAP kinases, measurement of phosphorylation of CD19 in the cell, and measurement of activation of protein kinase C (PKC) in the cell.

5

10

15

20

25

Another embodiment of the present invention relates to a method to inhibit complement receptor type 2 (CR2)-dependent human immunodeficiency virus-1 (HIV-1) infection of cells in a patient. This method includes the steps of administering to a patient infected with HIV-1 an inhibitor compound that inhibits the binding of C3d, C3 or another CR2-binding fragment of C3 containing C3d or a portion thereof, -opsonized HIV-1 to B cells, follicular dendritic cells, T cells or macrophages in the patient. The inhibitor compound is selected by the steps of: (a) providing a three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region as described in detail above; (b) identifying a candidate compound for binding to the CR2 SCR 1-2 region by performing structure based drug design with the structure of (a) to identify a compound structure that binds to the three

dimensional structure of the CR2 SCR 1-2 region; (c) contacting the candidate compound identified in step (b) with a B cell or follicular dendritic cell expressing CR2 or a fragment thereof and C3d, C3, a CR2-binding fragment of C3 containing C3d, or a fragment thereof, under conditions in which the C3d, the C3, the CR2-binding fragment of C3 containing C3d, or the fragment thereof, can bind to CR2 and enhance B cell activation or follicular dendritic cell activation in the absence of the candidate compound; and (d) measuring the activation of the B cell or the follicular dendritic cell, wherein a candidate inhibitor compound is selected as a compound that inhibits B cell activation or follicular dendritic cell activation, as compared to in the absence of the candidate inhibitor compound.

5

10

15

20

25

Yet another embodiment of the present invention relates to a method to prepare a vaccine. This method includes linking a compound that increases B cell activation to an antigen to form the vaccine, wherein the compound is selected by the steps of: (a) providing a three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region as described in detail above: (b) identifying a candidate compound for binding to the CR2 SCR 1-2 region by performing structure based drug design with the structure of (a) to identify a compound structure that binds to the three dimensional structure of the CR2 SCR 1-2 region; (c) contacting the candidate compound identified in step (b) with a B cell expressing CR2 or a fragment thereof and with C3d, C3, a CR2-binding fragment of C3 containing C3d, or a fragment thereof, under conditions in which the C3d, the C3, the CR2-binding fragment of C3 containing C3d, or the fragment thereof, can bind to and activate CR2 in the absence of the candidate compound; and (d) measuring the activation of the B cell; wherein a candidate compound for use in a vaccine is selected as a compound that increases B cell activation, as compared to in the absence of the candidate compound.

Yet another embodiment of the present invention relates to a drug delivery system, which includes: (a) a drug; and, (b) a portion of a CR2 protein selected from the group of: (i) positions on strand B and the B-C loop of SCR2 including: G79-G80-Y81-K82-I83-R84-G85-S86-T87-P88-Y89; (ii) position K100 on the B strand of CR2; and, (iii) positions:

V130-F131-P132-L133; and (iv) combinations of (i)-(iii). The drug is linked to the portion of CR2.

Yet another embodiment of the present invention relates to an antibody that selectively binds to CR2. The antibody binds to a portion of CR2 selected from the group of: (a) the interface between the SCR1 and SCR2 domains of CR2; (b) the dimer interface between two CR2 proteins; and, (c) the interface between CR2 and C3d. Preferably, an antibody that binds to an interface between CR2 and C3d selectively binds to a site selected from: (i) the B strand and the B-C loop of CR2 SCR2 comprising the segment: G79-G80-Y81-K82-I83-R84-G85-S86-T87-P88-Y89; (ii) the B strand of CR2 SCR2 comprising position K100; (iii) a segment of CR2 SCR2 comprising V130-F131-P132-L133; and, (iv) a segment of CR2 SCR2 comprising T101-N102-F103.

5

10

15

20

25

Yet another embodiment of the present invention relates to a crystal comprising complement receptor type 2 (CR2) in complex with C3d. The CR2 consists of SEQ ID NO:4, and the C3d consists of SEQ ID NO:7. The crystal effectively diffracts X-rays for the determination of the atomic coordinates of the CR2 in complex with C3d to a resolution of greater than 2.0 A, and the crystal has a space group R32 so as to form a unit cell of dimensions a=b=170.5Å, c=173.8 Å.

Another embodiment of the present invention is a therapeutic composition that, when administered to an animal, enhances B cell responses in the animal. The therapeutic composition comprises a compound that stimulates the activity of a complement receptor type 2 (CR2). The compound is identified by the method that includes the steps of: (a) providing a three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region as described in detail herein; (b) identifying a candidate compound for binding to the CR2 SCR 1-2 region by performing structure based drug design with the structure of (a) to identify a compound structure that binds to the three dimensional structure of the CR2 SCR 1-2 region; (c) synthesizing the candidate compound; and (d) selecting candidate compounds that bind to and activate CR2.

Yet another embodiment relates to a therapeutic composition that, when administered to an animal, inhibits the biological activity of complement receptor type 2 (CR2) in the animal. The therapeutic composition includes a compound that inhibits the activity of a complement receptor type 2 (CR2). The compound is identified by the method that includes the steps of: (a) providing a three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region as described in detail above; (b) identifying a candidate compound for binding to the CR2 SCR 1-2 region by performing structure based drug design with the structure of (a) to identify a compound structure that binds to the three dimensional structure of the CR2 SCR 1-2 region; (c) synthesizing the candidate compound; and (d) selecting candidate compounds that inhibit the biological activity of CR2. Preferably, the compounds inhibit the formation of a complex between CR2 and a CR2 ligand. The ligand can include. C3d, C3, CR2-binding fragments of C3 containing C3d, CD23 and Epstein Barr Virus (EBV), and CR2-binding fragments any of the ligands. In one aspect, the compound inhibits the activation of CR2.

5

10

15

20

25

Yet another embodiment of the present invention relates to a method of preparing complement receptor type 2 (CR2) proteins having modified biological activity. This method includes the steps of: (a) providing a three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region as described in detail above; (b) analyzing the three dimensional structure to the three-dimensional structure of the CR2 SCR 1-2 region by performing structure based drug design with the structure of (a) to identify at least one site in the structure contributing to the biological activity of CR2; and (c) modifying the at least one site in a CR2 protein to alter the biological activity of the CR2 protein.

Yet another embodiment of the present invention relates to an isolated protein comprising a mutant C3d. The protein comprises an amino acid sequence that differs from SEQ ID NO:7 by an amino acid substitution selected from the group of: a non-asparagine amino acid residue at position 170, a non-isoleucine amino acid residue at position 115, and/or a non-leucine amino acid residue at position 116. The C3d mutant protein has

reduced binding to complement receptor type 2 (CR2), as compared to a wild-type C3d protein. In one aspect, the mutant protein comprises an amino acid sequence selected from the group consisting of SEQ ID NO:8 and SEQ ID NO:9.

Brief Description of the Drawings of the Invention

5

10

15

20

25

- Fig. 1A shows an overall view of the structure of CR2 binding to C3d, showing only SCR2 contacting one portion of the edge of C3d.
- Fig. 1B shows the overall structure showing a second CR2-C3d complex (colored in light blue and grey) that dimerizes with the first one in Fig. 1A.
- Fig. 2A is a ribbon representation of the CR2 SCR1 (in red) and SCR2 (in yellow) structures, showing the SCR fold and the packing of the two domains to form a V shape.
- Fig. 2B is a representation of the structure and packing interaction at the interface of CR2 SCR1 and SCR2 domains.
 - Fig. 2C is a surface representation of the two-domain arrangement of CR2.
- Fig. 2D is a representation of the dimerization of CR2 through interactions between SCR1 of each molecule.
- Fig. 2E is a sequence alignment between human CR2 (hCR2) SCR1-2 domains (SEQ ID NO:4) and mouse CR2 (mCR2) SCR1-2 domains (SEQ ID NO:6).
- Figs. 3A and 3B are representations of the surface features of the interface area on C3d (in cyan) and CR2 molecule (in yellow).
 - Fig. 3C shows the structure of the CR2 SCR2-C3d complex.
- Figs. 3D and 3E show the detailed interactions between CR2 (in yellow) and C3d (in cyan) in two angles.
- Fig. 3F shows the human C3d sequence (SEQ ID NO:7) with secondary structure assigned on top of the corresponding sequences.
- Fig. 4A is a digitized image of a native gel shift assay of the binding between CR2 and C3d wild type (wt) or mutants (mt).

Fig. 4B is a graphical representation showing the intensity changes of the complex bands (measured by densitometry) as CR2 concentration increases from lanes 2 to 4 (wt), or lanes 6 to 8 (mt115), or lanes 10 to 12 (mt170) in Fig. 4A.

Fig. 4C is a graphical representation of a competitive ELISA demonstrating the relative abilities of wild type versus mutant forms of C3d to block CR2-wild type C3d interactions.

5

10

15

20

25

Figs. 5A and 5B are two view with a 180 degree rotation to each other showing the localization of the epitopes of anti-CR2 monoclonal antibodies (mAb) on the CR2 surface.

Fig. 6A is a surface representation of the model containing a dimer of CR2 SCR1 and SCR2 that bind to C3d on each receptor.

Fig. 6B is a diagram of C3d-antigen cross-linking CR2 (as dimers) and BCR on the cell surface.

Detailed Description of the Invention

The present invention relates to the discovery of the three-dimensional structure of complement receptor 2 (CR2/CD21), to crystalline CR2-C3d complexes, to models of such three-dimensional structures, to a method of structure based drug design using such structures, to the compounds identified by such methods and to the use of such compounds in therapeutic compositions and methods. Complement receptor 2 (CR2/CD21) is an important receptor bridging the innate and adaptive immune systems that greatly amplifies B lymphocyte activation. CR2 ligands include complement C3d, C3, a CR-2 binding fragment of C3 that contains C3d or a portion thereof, CD23 and Epstein-Barr virus gp350/220. The structural basis for ligand binding by short consensus repeat (SCR) containing proteins has been unknown, but CR2 interactions require the presence of a two SCR-containing domain. In an effort to understand how CR2 interacts with its cellular ligand C3d in the process of B cell activation, as well as its other natural ligands, the present inventors have determined the 2 Å crystal structure of the CR2 SCR1 and SCR2 domain in

complex with C3d. The present inventors describe herein the x-ray structure of this CR2 domain in complex with C3d, which reveals extensive main chain interactions of C3d with one SCR of CR2 and substantial SCR side-side packing. These results provide the first detailed understanding of receptor-ligand interactions in this protein family and reveal potential target sites for molecular drug design.

5

10

15

20

25

According to the present invention, the complement receptor 2 (CR2/CD21) is a protein that is characterized by the amino acid sequence represented by SEQ ID NO:1. SEQ ID NO:1 represents the full-length human CR2 protein sequence. The two short consensus repeat (SCR) domains of CR2 that are known to be required for CR2-ligand interactions, SCR1 and SCR2, are located, respectively, within the human CR2 amino acid sequence between positions Cys23 and Cys82 (i.e., between the first Cys and the fourth Cys residues) of SEQ ID NO:1 (SCR1, also represented herein by SEQ ID NO:2) and between positions Cys91 and Cys146 (i.e., between the fifth Cys and the eighth Cys residues) of SEQ ID NO:1 (SCR2, also represented herein by SEQ ID NO:3). The segment (fragment) of human CR2 represented in crystal structure herein contains both the SCR1 and the SCR2 domain (positions 20-153 of SEQ ID NO:1), and is represented herein by SEQ ID NO:4. SEQ ID NO:4 includes the 8 residue linker between SCR1 (SEQ ID NO:2) and SCR2 (SEQ ID NO:3). It also contains three residues at the N-terminus of SCR1 that match exactly positions Gly20-Ser22 of SEQ ID NO:1. At the C-terminus of SCR2, SEQ ID NO:4 contains seven residues that match exactly positions Val147-Glu153 of SEQ ID NO:1.

The full-length mouse CR2 protein sequence is represented herein by SEQ ID NO:5. The SCR1 and SCR2 domains of the mouse CR2 protein are located with the mouse CR2 amino sequence at positions 14-73 of SEQ ID NO:5 (SCR1) and positions 82-138 of SEQ ID NO:5 (SCR2). The segment (fragment) of mouse CR2 that contains both the SCR1 and SCR2 domains and the eight residue linker, and which is shown aligned with the human sequence in Fig. 2E, is located at positions 11-145 of SEQ ID NO:5 and is represented herein by SEQ ID NO:6. Human and mouse CR2 are approximately 66% identical over the full

length amino acid sequences represented by SEQ ID NO:1 and SEQ ID NO:5 (using BLAST 2 pairwise alignment), and approximately 61% identical over the SCR1-SCR2 regions of SEQ ID NO:4 and SEQ ID NO:6 (using BLAST 2 pairwise alignment). It is noted that both mouse and human CR2 bind to C3 (in the C3d region).

According to the present invention, general reference to a complement receptor 2

5

10

15

20

25

According to the present invention, general reference to a complement receptor 2 (CR2/CD21) protein is a protein that, at a minimum, contains any portion of the SCR1 and SCR2 domains of a CR2 protein, and includes full-length CR2 proteins, soluble CR2 proteins, other biologically active fragments of CR2 proteins, CR2 proteins comprising SCR1 and SCR2, CR2 fusion proteins, or any homologue of a naturally occurring CR2, as described in detail below. A homologue of a CR2 protein includes proteins which differ from a naturally occurring CR2 in that at least one or a few, but not limited to one or a few, amino acids have been deleted (e.g., a truncated version of the protein, such as a peptide or fragment), inserted, inverted, substituted and/or derivatized (e.g., by glycosylation, phosphorylation, acetylation, myristoylation, prenylation, palmitation, amidation and/or addition of glycosylphosphatidyl inositol). Preferably, a CR2 homologue has an amino acid sequence that is at least about 70% identical to the amino acid sequence of a naturally occurring CR2 (e.g., SEQ ID NO:1, or SEQ ID NO:5), and more preferably, at least about 75%, and more preferably, at least about 80%, and more preferably, at least about 85%, and more preferably, at least about 90%, and more preferably, at least about 95% identical to the amino acid sequence of a naturally occurring CR2. Preferred three-dimensional structural homologues of a CR2 are described in detail below. According to the present invention, a CR2 homologue preferably has, at a minimum, the ability to bind to a naturally occurring ligand of CR2 (e.g., C3d (including any C3 fragments with CR2-binding ability), CD23, EBV). Such homologues include fragments of a full length CR2 (e.g., the SCR2 region or the SCR1-SCR2 region) and can be referred to herein as a CR2 ligand-binding fragment. In one embodiment, a CR2 homologue has the biological activity of a naturally occurring CR2. Reference to a CR2 protein can also generally refer to CR2 in complex with a ligand.

In general, the biological activity or biological action of a protein refers to any function(s) exhibited or performed by the protein that is ascribed to the naturally occurring form of the protein as measured or observed in vivo (i.e., in the natural physiological environment of the protein) or in vitro (i.e., under laboratory conditions). Modifications of a protein, such as in a homologue or mimetic (discussed below), may result in proteins having the same biological activity as the naturally occurring protein, or in proteins having decreased or increased biological activity as compared to the naturally occurring protein. Modifications which result in a decrease in protein expression or a decrease in the activity of the protein, can be referred to as inactivation (complete or partial), down-regulation, or decreased action of a protein. Similarly, modifications which result in an increase in protein expression or an increase in the activity of the protein, can be referred to as amplification. overproduction, activation, enhancement, up-regulation or increased action of a protein. As used herein, a protein that has "CR2 biological activity" or that is referred to as a CR2 refers to a protein that has an activity that can include any one, and preferably more than one, of the following characteristics: (a) binds to a natural ligand of CR2 (e.g., C3d, EBV, CD23, C3 or other CR2-binding C3 fragments); (b) mediates interactions between the natural ligands and other proteins: (c) responds to contact with a natural ligand or other agonist (i.e., stimulation) by activation of the signal transduction cascade through the CR2/CD19/CD81 co-activation complex in a cell expressing such complex (D. T. Fearon, 1995 ibid.; D. T. Fearon, 1998, ibid.; J. C. Cambier, 1997, ibid.; A. K. Matsumoto, et al., J Exp Med 173, 55-64 (1991)), including activation of lyn tyrosine kinase, activations of phosphatidyl inositol 3' kinase, activation of NF-κB, activation of MAP kinases, phosphorylation of CD19. activation of PI3 kinase, and activation of protein kinase C (PKC). Such biological activities of (c) associated with the binding and activation of CR2 can be referred to as downstream biological activities, since they occur downstream of the binding of CR2 by its ligand.

5

10

15

20

25

An isolated protein (e.g., an isolated CR2 protein or an isolated C3d protein, an isolated C3 protein, or other CR2-binding C3 fragment), according to the present invention.

is a protein that has been removed from its natural milieu (i.e., that has been subject to human manipulation) and can include purified proteins, partially purified proteins, recombinantly produced proteins, and synthetically produced proteins, for example. As such, "isolated" does not reflect the extent to which the protein has been purified. Preferably, an isolated protein, and particularly, an isolated CR2 protein and/or an isolated C3d protein or other CR2-binding C3 fragment, is produced recombinantly. According to the present invention, a CR2-binding C3 fragment can include any portion of C3 that contains at least a portion of C3d sufficient to bind to CR2, and can include, but is not limited to, portions of C3 comprising C3dg, iC3b, and/or C3b, an isolated C3d segment or a portion thereof. The terms "fragment", "segment" and "portion" can be used interchangeably herein with regard to referencing a part of a protein.

5

10

15

20

25

Reference to a protein from a specific organism, such as a "human CR2", by way of example, refers to a CR2 (including a homologue of a naturally occurring CR2) from a human or a CR2 protein that has been otherwise produced from the knowledge of the primary structure (e.g., sequence) and/or the tertiary structure of a naturally occurring CR2 protein from a human. In other words, a human CR2 protein includes any CR2 protein that has the structure and function of a naturally occurring CR2 protein from a human or that has a structure and function that is sufficiently similar to a human CR2 protein such that the CR2 protein is a biologically active (i.e., has biological activity) homologue of a naturally occurring CR2 protein from a human. As such, a human CR2 protein can include purified, partially purified, recombinant, mutated/modified and synthetic proteins.

Proteins of the present invention are preferably retrieved, obtained, and/or used in "substantially pure" form. As used herein, "substantially pure" refers to a purity that allows for the effective use of the protein *in vitro*, *ex vivo* or *in vivo* according to the present invention. For a protein to be useful in an *in vitro*, *ex vivo* or *in vivo* method according to the present invention, it is substantially free of contaminants, other proteins and/or chemicals that might interfere or that would interfere with its use in a method disclosed by the present

invention, or that at least would be undesirable for inclusion with the protein when it is used in a method disclosed by the present invention. For example, for a CR2 protein, such methods include crystallization of the protein, use of a portion of the protein as a drug delivery vehicle, antibody production, agonist/antagonist identification assays, and all other methods disclosed herein. Preferably, a "substantially pure" protein, as referenced herein, is a protein that can be produced by any method (i.e., by direct purification from a natural source, recombinantly, or synthetically), and that has been purified from other protein components such that the protein comprises at least about 80% weight/weight of the total protein in a given composition (e.g., the protein is about 80% of the protein in a solution/composition/buffer), and more preferably, at least about 85%, and more preferably at least about 92%, and more preferably at least about 93%, and more preferably at least about 94%, and more preferably at least about 95%, and more preferably at least about 96%, and more preferably at least about 96%, and more preferably at least about 96%, and more preferably at least about 97%, and more preferably at least about 98%, and more preferably at least about 99%, weight/weight of the total protein in a given composition.

5

10

15

20

25

As used herein, a "structure" of a protein refers to the components and the manner of arrangement of the components to constitute the protein. The "three dimensional structure" or "tertiary structure" of the protein refers to the arrangement of the components of the protein in three dimensions. Such term is well known to those of skill in the art. It is also to be noted that the terms "tertiary" and "three dimensional" can be used interchangeably.

The present invention provides the atomic coordinates that define the three dimensional structure of a CR2 protein in complex with a C3d protein. A CR2-ligand complex, such as a CR2-C3d complex, refers to the complex (e.g., interaction, binding), that forms between CR2 and any of its ligands (e.g., C3d) in the absence of a compound that interferes with the interaction between the CR2 and its ligand(s). A complex is naturally formed between at least one full length CR2 and a full length ligand, but according to the

present invention, a CR2-ligand can also include complexes that minimally contain: (1) a CR2 SCR1 and/or CR2 SCR2 domain; and (2) a CR2-contacting portion of a ligand of CR2.

5

10

15

20

25

One embodiment of the present invention includes a CR2 protein in crystalline form. The present invention specifically exemplifies a portion of CR2 comprising the SCR1 and SCR2 domains. As used herein, the terms "crystalline CR2" and "CR2 crystal" both refer to crystallized CR2 protein and are intended to be used interchangeably. Preferably, a crystalline CR2 is produced using the crystal formation method described herein, in particular according to the method disclosed in Example 1. A CR2 crystal of the present invention can comprise any crystal structure and preferably crystallizes as an orthorhombic crystal lattice. A suitable crystalline CR2 of the present invention includes a monomer or a dimer, or a multimer of CR2 protein. One preferred crystalline CR2 comprises between one and five CR2 proteins in an asymmetric unit. A more preferred crystalline CR2 comprises a dimer of CR2 proteins. Preferably, a composition of the present invention includes CR2 protein molecules arranged in a crystalline manner in a space group R3 or R32 so as to form a unit cell of dimensions a=b=170.5Å, c=173.8 Å. A preferred crystal of the present invention provides X-ray diffraction data for determination of atomic coordinates of the CR2 protein to a resolution of about 4.0 Å, and preferably to about 3.0 Å, and more preferably to about 2.0 Å.

One embodiment of the present invention includes a method for producing crystals of CR2, alone or in complex with a CR2 ligand, comprising combining CR2 protein with a mother liquor and inducing crystal formation to produce the CR2 crystals. Although the production of crystals of CR2 in complex with C3d are specifically described herein, it is to be understood that such processes as are described herein can be adapted by those of skill in the art to produce crystals of CR2 in complex with other CR2 ligands, such as Epstein Barr Virus (EBV) or CD23.

By way of example, crystals of CR2 and C3d in complex are formed using a solution containing about 20 mg/ml of CR2-C3d complex in a mother liquor. A suitable mother

liquor of the present invention comprises an acetate buffer or a sulfate buffer. A preferred acetate buffer of the present invention comprises zinc acetate or zinc sulfate. The concentration of ammonium acetate in the buffer prior to crystallization is preferably 0.2M. The pH of the acetate buffer (pH 7.36) is controlled using 0.1 M NaCacodylate. The acetate buffer also contains any polyethylene glycol (PEG), with PEG 2000 at a concentration of about 17% being more preferred. Supersaturated solutions of CR2-C3d complex can be induced to crystallize by several methods including, but not limited to, vapor diffusion, liquid diffusion, batch crystallization, constant temperature and temperature induction or a combination thereof. Preferably, supersaturated solutions of CR2-C3d complex are induced to crystallize by hanging drop vapor diffusion. In a vapor diffusion method, a CR2-C3d complex is combined with a mother liquor of the present invention that will cause the CR2-C3d complex solution to become supersaturated and form CR2-C3d complex crystals at a constant temperature. Vapor diffusion is preferably performed under a controlled temperature and, by way of example, can be performed at 4° C.

5

10

15

20

25

One embodiment of the present invention includes a representation, or model, of the three dimensional structure of a CR2 protein, such as a computer model. A computer model of the present invention can be produced using any suitable software program, including, but not limited to, MOLSCRIPT 2.0 (Avatar Software AB, Heleneborgsgatan 21C, SE-11731 Stockholm, Sweden), the graphical display program O (Jones et. al., *Acta Crystallography*, vol. A47, p. 110, 1991), the graphical display program GRASP, or the graphical display program INSIGHT. Suitable computer hardware useful for producing an image of the present invention are known to those of skill in the art (e.g., a Silicon Graphics Workstation).

A representation, or model, of the three dimensional structure of the CR2-C3d complex structure for which a crystal has been produced can also be determined using techniques which include molecular replacement or SIR/MIR (single/multiple isomorphous replacement). Methods of molecular replacement are generally known by those of skill in the art (generally described in Brunger, *Meth. Enzym.*, vol. 276, pp. 558-580, 1997; Navaza

and Saludjian, Meth. Enzym., vol. 276, pp. 581-594, 1997; Tong and Rossmann, Meth. Enzym., vol. 276, pp. 594-611, 1997; and Bentley, Meth. Enzym., vol. 276, pp. 611-619, 1997, each of which are incorporated by this reference herein in their entirety) and are performed in a software program including, for example, AmoRe (CCP4, Acta Cryst. D50, 760-763 (1994) or XPLOR. Briefly, X-ray diffraction data is collected from the crystal of a crystallized target structure. The X-ray diffraction data is transformed to calculate a Patterson function. The Patterson function of the crystallized target structure is compared with a Patterson function calculated from a known structure (referred to herein as a search structure). The Patterson function of the crystallized target structure is rotated on the search structure Patterson function to determine the correct orientation of the crystallized target structure in the crystal. The translation function is then calculated to determine the location of the target structure with respect to the crystal axes. Once the crystallized target structure has been correctly positioned in the unit cell, initial phases for the experimental data can be calculated. These phases are necessary for calculation of an electron density map from which structural differences can be observed and for refinement of the structure. Preferably, the structural features (e.g., amino acid sequence, conserved di-sulphide bonds, and β-strands or β -sheets) of the search molecule are related to the crystallized target structure.

5

10

15

20

25

As used herein, the term "model" refers to a representation in a tangible medium of the three dimensional structure of a protein, polypeptide or peptide. For example, a model can be a representation of the three dimensional structure in an electronic file, on a computer screen, on a piece of paper (i.e., on a two dimensional medium), and/or as a ball-and-stick figure. Physical three-dimensional models are tangible and include, but are not limited to, stick models and space-filling models. The phrase "imaging the model on a computer screen" refers to the ability to express (or represent) and manipulate the model on a computer screen using appropriate computer hardware and software technology known to those skilled in the art. Such technology is available from a variety of sources including, for example, Evans and Sutherland, Salt Lake City, Utah, and Biosym Technologies, San Diego, CA. The

phrase "providing a picture of the model" refers to the ability to generate a "hard copy" of the model. Hard copies include both motion and still pictures. Computer screen images and pictures of the model can be visualized in a number of formats including space-filling representations, α carbon traces, ribbon diagrams and electron density maps.

5

10

15

20

25

Preferably, a three dimensional structure of a CR2 protein provided by the present invention includes: (a) a structure defined by atomic coordinates of a three dimensional structure of a crystalline CR2 SCR1-2 region in complex with C3d; (b) a structure defined by atomic coordinates selected from the group consisting of: (i) atomic coordinates represented in a table selected from the group consisting of Table 2 (CR2-C3d) and Table 3 (CR2 only); and, (ii) atomic coordinates that define a three dimensional structure, wherein at least 50% of the structure has an average root-mean-square deviation (RMSD) from backbone atoms in secondary structure elements in at least one domain of a three dimensional structure represented by the atomic coordinates of (1) of equal to or less than about 1.0Å; and/or (c) a structure defined by atomic coordinates derived from CR2 protein molecules arranged in a crystalline manner in a space group R3 or R32 so as to form a unit cell of dimensions a=b=170.5A, c-173.8 A.

The present inventors have provided the atomic coordinates that define the three dimensional structure of a crystalline CR2 short consensus repeat (SCR) 1-2 region (CR2 SCR1-2 region) in complex with C3d. Using the guidance provided herein, one of skill in the art will be able to reproduce such a crystalline structure and define atomic coordinates of such a structure. Example 1 demonstrates the production of a CR2-C3d complex (CR2 SCR1-2 region in complex with C3d) arranged in a crystalline manner in a space group R3 or R32 so as to form a unit cell of dimensions a=b=170.5Å, c=173.8 Å. The atomic coordinates determined from this crystal structure are represented in Table 2. Additionally, these atomic coordinates were deposited on January 11, 2001, with the Protein Data Bank (PDB), operated by the Research Collaboratory for Structural Bioinformatics (RCSB) (H.M.Berman, J.Westbrook, Z.Feng, G.Gilliland, T.N.Bhat, H.Weissig, I.N.Shindyalov.

P.E.Bourne, <u>The Protein Data Bank</u>; *Nucleic Acids Research*, 28:235-242 (2000)), under PDB Deposit No. PDB id 1GHQ. The atomic coordinates in Table 3 are the coordinates that define the three dimensional structure of just the CR2 SCR1-SCR2 domains of the CR2-C3d complex (i.e., the coordinates defining the C3d portion have been removed).

5

10

15

20

25

In one embodiment, a three dimensional structure of a CR2 protein provided by the present invention includes a structure represented by atomic coordinates that define a three dimensional structure, wherein at least 50% of the structure has an average root-mean-square deviation (RMSD) from backbone atoms in secondary structure elements in at least one domain of a three dimensional structure represented by the atomic coordinates of Table 2 or Table 3 of equal to or less than about 1.0Å. Such a structure can be referred to as a structural homologue of the CR2 structures defined by Tables 2 and 3. Preferably, at least 50% of the structure has an average root-mean-square deviation (RMSD) from backbone atoms in secondary structure elements in at least one domain of a three dimensional structure represented by the atomic coordinates of Table 2 or Table 3 of equal to or less than about 0.7 Å, equal to or less than about 0.5 Å, and most preferably, equal to or less than about 0.3 Å. In a more preferred embodiment, a three dimensional structure of a CR2 protein provided by the present invention includes a structure defined by atomic coordinates that define a three dimensional structure, wherein at least about 75% of such structure has the recited average root-mean-square deviation (RMSD) value, and more preferably, at least about 90% of such structure has the recited average root-mean-square deviation (RMSD) value, and most preferably, about 100% of such structure has the recited average root-mean-square deviation (RMSD) value.

In one embodiment, RMSD of a structural homologue of CR2 can be extended to include atoms of amino acid side chains. As used herein, the phrase "common amino acid side chains" refers to amino acid side chains that are common to both the structural homologue and to the structure that is actually represented by such atomic coordinates. Preferably, at least 50% of the structure has an average root-mean-square deviation (RMSD)

from common amino acid side chains in at least one domain of a three dimensional structure represented by the atomic coordinates of Table 2 or Table 3 of equal to or less than about 1.0A equal to or less than about 0.7 Å, equal to or less than about 0.5 Å, and most preferably, equal to or less than about 0.3 Å. In a more preferred embodiment, a three dimensional structure of a CR2 protein provided by the present invention includes a structure defined by atomic coordinates that define a three dimensional structure, wherein at least about 75% of such structure has the recited average root-mean-square deviation (RMSD) value, and more preferably, at least about 90% of such structure has the recited average root-mean-square deviation (RMSD) value, and most preferably, about 100% of such structure has the recited average root-mean-square deviation (RMSD) value.

5

10

15

20

25

One embodiment of the present invention relates to a method of structure-based identification of compounds which potentially bind to complement receptor type 2 (CR2) proteins or to a complex of CR2 and its ligand, comprising: (a) providing a three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region; and (b) identifying a candidate compound for binding to the CR2 SCR 1-2 region by performing structure based drug design with the structure of (a) to identify a compound structure that binds to the three dimensional structure of the CR2 SCR 1-2 region. The three dimensional structure of the CR2 SCR 1-2 region is selected from the group of:

- (i) a structure defined by atomic coordinates of a three dimensional structure of a crystalline CR2 SCR1-2 region in complex with C3d:
- (ii) a structure defined by atomic coordinates selected from the group consisting of:
 - (1) atomic coordinates represented in a table selected from the group consisting of Table 2 (CR2-C3d) and Table 3 (CR2 only);
 - (2) atomic coordinates that define a three dimensional structure, wherein at least 50% of the structure has an average root-mean-square deviation (RMSD) from backbone atoms in secondary structure elements in at least one

domain of a three dimensional structure represented by the atomic coordinates of (1) of equal to or less than about 1.0Å; and

(iii) a structure defined by atomic coordinates derived from CR2 protein molecules arranged in a crystalline manner in a space group R3 or R32 so as to form a unit cell of dimensions a=b=170.5Å, c=173.8 Å.

5

10

15

20

25

÷

The structures used to perform the above-described method have been described in detail above and in the Examples section. According to the present invention, the phrase "providing a three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region" is defined as any means of providing, supplying, accessing, displaying, retrieving, or otherwise making available the three dimensional structure of the CR2 short consensus repeat (SCR) 1-2 region described herein. For example, the step of providing can include, but is not limited to, accessing the atomic coordinates for the structure from a database; importing the atomic coordinates for the structure into a computer or other database; displaying the atomic coordinates and/or a model of the structure in any manner, such as on a computer, on paper, etc.; and determining the three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region *de novo* using the guidance provided herein.

The second step of the method of structure based identification of compounds of the present invention includes identifying a candidate compound for binding to the CR2 SCR 1-2 region by performing structure based drug design with the structure of (a) to identify a compound structure that binds to the three dimensional structure of the CR2 SCR 1-2 region. CR2 is a receptor for at least three biologically important ligands, and has been shown to play a role in several aspects of the humoral immune response. EBV infection. and HIV-1 infection. Therefore, identification and/or design of compounds that mimic, enhance, disrupt or compete with the interactions of CR2 with its ligands are highly desirable. Such compounds can be designed using structure based drug design. Until the discovery of the three dimensional structure of the present invention, the only information available for the development of therapeutic compounds based on the CR2 protein was based on the primary

sequence of the CR2 protein. Structure based drug design refers to the prediction of a conformation of a peptide, polypeptide, protein, or conformational interaction between a peptide or polypeptide, and a compound, using the three dimensional structure of the peptide. polypeptide or protein. Typically, structure based drug design is performed with a computer. For example, generally, for a protein to effectively interact with (e.g., bind to) a compound. it is necessary that the three dimensional structure of the compound assume a compatible conformation that allows the compound to bind to the protein in such a manner that a desired result is obtained upon binding. Knowledge of the three dimensional structure of the protein enables a skilled artisan to design a compound having such compatible conformation, or to select such a compound from available libraries of compounds. For example, knowledge of the three dimensional structure of the C3d binding site of CR2 enables one of skill in the art to design a compound that binds to CR2, is stable and results in, for example, inhibition of a biological response such as C3d binding to CR2, or cellular signal transduction through the CR2, upon such binding. In addition, for example, knowledge of the three dimensional structure of the C3d binding site of a CR2 enables a skilled artisan to design a substrate analog of CR2.

5

10

15

20

25

Suitable structures and models useful for structure based drug design are disclosed herein. Preferred target structures to use in a method of structure based drug design include any representations of structures produced by any modeling method disclosed herein, including molecular replacement and fold recognition related methods.

According to the present invention, the step of designing a compound for testing in a method of structure based identification of the present invention can include creating a new chemical compound or searching databases of libraries of known compounds (e.g., a compound listed in a computational screening database containing three dimensional structures of known compounds). Designing can also be performed by simulating chemical compounds having substitute moieties at certain structural features. The step of designing can include selecting a chemical compound based on a known function of the compound.

A preferred step of designing comprises computational screening of one or more databases of compounds in which the three dimensional structure of the compound is known and is interacted (e.g., docked, aligned, matched, interfaced) with the three dimensional structure of a CR2 by computer (e.g. as described by Humblet and Dunbar, *Animal Reports in Medicinal Chemistry*, vol. 28, pp. 275-283, 1993, M Venuti, ed., Academic Press). Methods to synthesize suitable chemical compounds are known to those of skill in the art and depend upon the structure of the chemical being synthesized. Methods to evaluate the bioactivity of the synthesized compound depend upon the bioactivity of the compound (e.g., inhibitory or stimulatory) and are disclosed herein.

5

10

15

20

25

Various other methods of structure-based drug design are disclosed in Maulik et al., 1997, *Molecular Biotechnology: Therapeutic Applications and Strategies*, Wiley-Liss. Inc., which is incorporated herein by reference in its entirety. Maulik et al. disclose, for example, methods of directed design, in which the user directs the process of creating novel molecules from a fragment library of appropriately selected fragments; random design, in which the user uses a genetic or other algorithm to randomly mutate fragments and their combinations while simultaneously applying a selection criterion to evaluate the fitness of candidate ligands; and a grid-based approach in which the user calculates the interaction energy between three dimensional receptor structures and small fragment probes, followed by linking together of favorable probe sites.

In a molecular diversity strategy, large compound libraries are synthesized, for example, from peptides, oligonucleotides, carbohydrates and/or synthetic organic molecules, using biological, enzymatic and/or chemical approaches. The critical parameters in developing a molecular diversity strategy include subunit diversity, molecular size, and library diversity. The general goal of screening such libraries is to utilize sequential application of combinatorial selection to obtain high-affinity ligands for a desired target, and then to optimize the lead molecules by either random or directed design strategies. Methods of molecular diversity are described in detail in Maulik, et al., ibid.

5

10

15

20

25

Maulik et al. also disclose, for example, methods of directed design, in which the user directs the process of creating novel molecules from a fragment library of appropriately selected fragments; random design, in which the user uses a genetic or other algorithm to randomly mutate fragments and their combinations while simultaneously applying a selection criterion to evaluate the fitness of candidate ligands; and a grid-based approach in which the user calculates the interaction energy between three dimensional receptor structures and small fragment probes, followed by linking together of favorable probe sites.

In the present method of structure based drug design, it is not necessary to align a candidate chemical compound (i.e., a chemical compound being analyzed in, for example, a computational screening method of the present invention) to each residue in a target site (target sites will be discussed in detail below). Suitable candidate chemical compounds can align to a subset of residues described for a target site. Preferably, a candidate chemical compound comprises a conformation that promotes the formation of covalent or noncovalent crosslinking between the target site and the candidate chemical compound. Preferably, a candidate chemical compound binds to a surface adjacent to a target site to provide an additional site of interaction in a complex. When designing an antagonist (i.e., a chemical compound that inhibits the binding of a ligand to CR2 by blocking a binding site or interface), for example, the antagonist should bind with sufficient affinity to the binding site or to substantially prohibit a ligand (i.e., a molecule that specifically binds to the target site) from binding to a target area. It will be appreciated by one of skill in the art that it is not necessary that the complementarity between a candidate chemical compound and a target site extend over all residues specified here in order to inhibit or promote binding of a ligand.

In general, the design of a chemical compound possessing stereochemical complementarity can be accomplished by techniques that optimize, chemically or geometrically, the "fit" between a chemical compound and a target site. Such techniques are disclosed by, for example, Sheridan and Venkataraghavan, *Acc. Chem Res.*, vol. 20, p. 322, 1987: Goodford, *J. Med. Chem.*, vol. 27, p. 557, 1984; Beddell, *Chem. Soc. Reviews*, vol.

279, 1985; Hol, *Angew. Chem.*, vol. 25, p. 767, 1986; and Verlinde and Hol, *Structure*, vol. 2, p. 577, 1994, each of which are incorporated by this reference herein in their entirety.

One embodiment of the present invention for structure based drug design comprises identifying a chemical compound that complements the shape of a CR2, including a portion of CR2, such as the SCR1-SCR2 region. Such method is referred to herein as a "geometric approach". In a geometric approach, the number of internal degrees of freedom (and the corresponding local minima in the molecular conformation space) is reduced by considering only the geometric (hard-sphere) interactions of two rigid bodies, where one body (the active site) contains "pockets" or "grooves" that form binding sites for the second body (the complementing molecule, such as a ligand).

5

Ю

15

20

25

The geometric approach is described by Kuntz et al., *J. Mol. Biol.*, vol. 161, p. 269, 1982, which is incorporated by this reference herein in its entirety. The algorithm for chemical compound design can be implemented using the software program DOCK Package, Version 1.0 (available from the Regents of the University of California). Pursuant to the Kuntz algorithm, the shape of the cavity or groove on the surface of a structure (e.g., CR2) at a binding site or interface is defined as a series of overlapping spheres of different radii. One or more extant databases of crystallographic data (e.g., the Cambridge Structural Database System maintained by University Chemical Laboratory, Cambridge University, Lensfield Road, Cambridge CB2 IEW, U.K.) or the Protein Data Bank maintained by Brookhaven National Laboratory, is then searched for chemical compounds that approximate the shape thus defined.

Chemical compounds identified by the geometric approach can be modified to satisfy criteria associated with chemical complementarity, such as hydrogen bonding, ionic interactions or Van der Waals interactions.

Another embodiment of the present invention for structure based identification of compounds comprises determining the interaction of chemical groups ("probes") with an active site at sample positions within and around a binding site or interface, resulting in an

array of energy values from which three dimensional contour surfaces at selected energy levels can be generated. This method is referred to herein as a "chemical-probe approach." The chemical-probe approach to the design of a chemical compound of the present invention is described by, for example, Goodford, *J. Med. Chem.*, vol. 28, p. 849, 1985, which is incorporated by this reference herein in its entirety, and is implemented using an appropriate software package, including for example, GRID (available from Molecular Discovery Ltd., Oxford OX2 9LL, U.K.). The chemical prerequisites for a site-complementing molecule can be identified at the outset, by probing the active site of a CR2, for example, (as represented by the atomic coordinates shown in Table 2 or Table 3) with different chemical probes, e.g., water, a methyl group, an amine nitrogen, a carboxyl oxygen and/or a hydroxyl. Preferred sites for interaction between an active site and a probe are determined. Putative complementary chemical compounds can be generated using the resulting three dimensional pattern of such sites.

5

10

15

20

25

According to the present invention, suitable candidate compounds to test using the method of the present invention include proteins, peptides or other organic molecules, and inorganic molecules. Suitable organic molecules include small organic molecules. Peptides refer to small molecular weight compounds yielding two or more amino acids upon hydrolysis. A polypeptide is comprised of two or more peptides. As used herein, a protein is comprised of one or more polypeptides. Preferred therapeutic compounds to design include peptides composed of "L" and/or "D" amino acids that are configured as normal or retroinverso peptides, peptidomimetic compounds, small organic molecules, or homo- or hetero-polymers thereof, in linear or branched configurations.

Preferably, a compound that is identified by the method of the present invention originates from a compound having chemical and/or stereochemical complementarity with CR2 and/or C3d. Such complementarity is characteristic of a compound that matches the surface of the receptor either in shape or in distribution of chemical groups and binds to CR2 to promote or inhibit CR2 ligand binding, or to induce cellular signal transduction in a cell

expressing CR2 upon the binding of the compound to CR2. More preferably, a compound that binds to a ligand binding site of CR2 associates with an affinity of at least about 10⁻⁶ M, and more preferably with an affinity of at least about 10⁻⁷M, and more preferably with an affinity of at least about 10⁻⁸ M.

5

10

15

20

25

Preferably, three general sites of the CR2 are targets for structure based drug design (i.e., target sites), although other sites may become apparent to those of skill in the art. The three preferred sites include: (1) the interface between CR2 and C3d; (2) the interface between the SCR1 and SCR2 domains of CR2; and (3) the dimerization interface between two CR2 monomers. Combinations of any of these general sites are also suitable target sites. The interface between CR2 and C3d is depicted in Fig. 1A, and Figs. 3A-3E. The interface between the SCR1 and SCR2 domains of CR2 is depicted in Figs. 2A-2C. The dimer interface between CR2 monomeric proteins is depicted in Figs. 1B. 2D and 6A. The following discussion provides specific detail on compound identification (e.g., drug design) using target sites of the CR2 based on its three-dimensional structure in complex with C3d. It is to be understood, however, that one of skill in the art, using the description of the CR2 structure provided herein, will be able to identify compounds that are potential candidates for inhibiting, stimulating or enhancing the interaction of CR2 with its other ligands.

The C3d binding site (i.e., the interface between CR2 and C3d) is targeted to directly affect the binding of CR2 to C3d, other CR2-binding C3 fragments, or another ligand (i.e., inhibition or enhancement). In the CR2-C3d complex, no continuous stretch of residues on C3d participates in the interactions. Rather, residues that are separated in the linear sequence of C3d, but come together on the folded C3d, interact with CR2. Namely, the residues on the H3-H4 loop (the loop between helix 3 and 4), as well as H5, and H7 make contact with CR2 (Fig. 3C). On the CR2 part, however, a linear stretch of residues within SCR2 domain makes the contact with C3d. The B strand and B-C loop of SCR2 constitute the majority of the interactions with C3d. The nature of the contacts involves elegant networks of hydrogen bonds, plus some hydrophobic and van der Waals interactions (Fig. 3D & 3E). The contact

site is discussed in detail in the Examples. Preferred target sites in the C3d binding interface with CR2 include, but are not limited to: (1) a site on the B strand and the B-C loop of CR2 SCR2 comprising the segment: G79-G80-Y81-K82-I83-R84-G85-S86-T87-P88-Y89: (2) a site on the B strand of CR2 SCR2 comprising position K100; (3) a segment of CR2 SCR2 comprising V130-F131-P132-L133; and (4) a segment of CR2 SCR2 comprising the fragment T101-N102-F103. In the T101-N102-F103 site, the N102 residue is glycosylated. The N-acetylglucosamine residue attached to N102 forms a hydrogen bond with C3d. The present inventors have shown that amino acid residues at positions 84 and 86 of SEQ ID NO:4 are particularly important residues in the binding of C3d to CR2 and therefore. segments of CR2 including these residues are particularly desirable target sites. Alternatively, the CR2 contact points on C3d can be targeted for the identification of compounds that specifically modify the interaction between CR2 and C3d (and potentially the interaction of CR2 with its other ligands). Such sites include, but are not limited to: (1) the loop between helix 2-3 of C3d comprising the segment Q68-P69-S70-S71: (2) Helix 5 of C3d comprising the segment S104-Q105-V106-L107-C108-G109-A110-V111-K112-W113-L114-I115-L116-E117-K118-Q119-K120-P121-D122; and (3) Helix 7of C3d comprising the segment N170-S171-L172-P173-G174-S175-I176-T177-K178-A179-G180-D181-F182-L183-E184-A185 (all positions are given with respect to SEQ ID NO:7).

5

10

15

20

25

The interface between the two monomers of CR2 can also be targeted to affect the binding of CR2 to a ligand. Two CR2 molecules dimerize through SCR1-SCR1 contacts in the crystal structure (Fig. 2D). The contact is symmetrical, with the E1 strands from different molecules running anti-parallel to each other. The C-terminus of the E1 strand also contacts the C-terminus of the D2 strand of another molecule. The nature of the interaction is hydrogen bonds. Without being bound by theory, the present inventors believe that a CR2 dimer, in contrast to a monomer, can allow a dramatic increase of cross-linked CR2/CD19/CD81 and B cell receptor molecules through binding to the antigen with two or more C3d attached, which can cause a 10,000-fold enhancement of the humoral immune

response. Therefore, compounds that disrupt the dimer formation are expected to be primarily inhibitory compounds with regard to immune responses. Such compounds may also be beneficial, however, in inhibiting EBV or HIV infection mediated by CR2. Similarly, compounds that enhance or stabilize the dimer formation are expected to stimulate or enhance an immune response.

5

10

15

20

25

The interface between the SCR1 and SCR2 domains of CR2 is also targeted to affect the binding of CR2 to a ligand (i.e., inhibit or enhance). The packing of the two SCR domains in CR2 forms a V shape. Residues important for the tight packing between the two domains at the interface and the linker regions are shown in Fig. 2B. A very unique feature of the two domain CR2 structure is that the 8 amino acid linker makes a dramatic turn to allow the two SCR domains to pack against each other sideways (Figs. 2A, 2B, 2C). Among the protein family containing SCR domains, the linkers connecting SCR domains are normally 3-5 amino acids in length, while an 8 amino acid linker is the longest known so far. The available structures of four SCR proteins containing two or 4 repeats (A. P. Wiles, et al.,(1997), supra; P. N. Barlow, et al., (1993), supra; J. M. Casasnovas, et al.,(1999), supra; R. Schwarzenbacher et al., (1999), supra) all have end-end packing between consecutive SCRs, and CR2 is thus the first to demonstrate extensive side-side packing. In end-end packing, the adjacent domains could, in principle, adopt different rotations and bend angles relative to each other in different environments. Indeed, a commonly held concept is that SCRs are not absolutely fixed relative to each other but rather are allowed some freedom to move about this interface (P. N. Barlow, et al., (1993), ibid.; J. M. Casasnovas, et al., (1999). *ibid.*). However, the side-side packing of the CR2 SCR1 and SCR2 would not give the two domains freedom to adopt different orientations, unless some active process is involved to The interface between the two domains is mainly first separate the two domains. hydrophobic (Fig. 2B). Trp112, which is unique to CR2 SCR2 sequence and located on strand D2, plays a critical role in the packing by interacting with Ile39 and the main-chain from SCR1. Trp112 would be unfavorably exposed to the solvent if the two domains do not pack against each other sideways in this manner. In addition to Trp112, several other residues also play a role in the packing, including Pro121, His91, Leu39, and the carbon side chain of Glu64. The 8 amino acid linker, which contains mainly hydrophobic residues such as Tyr65, Phe66, Tyr69, also participates in the hydrophobic packing outside the two-domain interface, further solidifying the interactions between SCR1 and SCR2 (Fig. 2B). The area of the interface of the two SCRs is very extensive, covering almost half of the length of one SCR domain (Fig. 2C). Since the above-mentioned previous studies of other SCR proteins were performed in the absence of their ligands, it is possible that this interface may change upon binding of CR2 to its ligand. In any event, it is predicted that the binding of a compound to this site will have an effect on the ligand-binding ability of CR2.

10

15

20

A candidate compound for binding to a CR2 protein, including to one of the preferred target sites described above, is identified by one or more of the methods of structure-based identification discussed above. As used herein, a "candidate compound" refers to a compound that is selected by a method of structure-based identification described herein as having a potential for binding to a CR2 protein (or its ligand) on the basis of a predicted conformational interaction between the candidate compound and the target site of the CR2 protein. The ability of the candidate compound to actually bind to a CR2 protein can be determined using techniques known in the art, as discussed in some detail below. A "putative compound" is a compound with an unknown regulatory activity, at least with respect to the ability of such a compound to bind to and/or regulate CR2 as described herein. Therefore, a library of putative compounds can be screened using structure based identification methods as discussed herein, and from the putative compounds, one or more candidate compounds for binding to CR2 can be identified. Alternatively, a candidate compound for binding to CR2 can be designed *de novo* using structure based drug design. also as discussed above. Candidate compounds can be selected based on their predicted ability to inhibit the binding of CR2 to its ligand, to stabilize (e.g., enhance) the binding of CR2 to its ligand, to bind to and activate CR2, to bind to and inhibit the activation of CR2.

to bind to and activate a ligand of CR2, to bind to and inhibit the activation of a ligand of CR2, to disrupt the dimerization of CR2 monomers, or to stabilize the dimerization of CR2 monomers.

5

10

15

20

25

Accordingly, in one aspect of the present invention, the method of structure-based identification of compounds that potentially bind to complement receptor type 2 (CR2) proteins or to a complex of CR2 and its ligand further includes steps which confirm whether or not a candidate compound has the predicted properties with respect to its effect on CR2 (or a ligand of CR2). In one embodiment, the candidate compound is predicted to be an inhibitor of the binding of CR2 to its ligand, and the method further includes: (c) contacting the candidate compound identified in step (b) with CR2 or a fragment thereof and a CR2 ligand or a fragment thereof under conditions in which a CR2-CR2 ligand complex can form in the absence of the candidate compound; and (d) measuring the binding affinity of the CR2 or fragment thereof to the CR2 ligand or fragment thereof. A candidate inhibitor compound is selected as a compound that inhibits the binding of CR2 to its ligand when there is a decrease in the binding affinity of the CR2 or fragment thereof for the CR2 ligand or fragment thereof, as compared to in the absence of the candidate inhibitor compound.

In another embodiment, the candidate compound is predicted to be a stabilizer of the binding of CR2 to its ligand, and the method further comprises: (c) contacting the candidate compound identified in step (b) with a CR2-CR2 ligand complex, wherein the CR2-CR2 ligand complex comprises CR2 or a fragment thereof and a CR2 ligand, or a fragment thereof; (d) measuring the stability of the CR2-CR2 ligand complex of (i). A candidate stabilizer compound is selected as a compound that stabilizes the CR2-CR2 ligand complex when there is an increase in the stability of the complex as compared to in the absence of the candidate stabilizer compound.

In another embodiment, the candidate compound is predicted to bind to and activate CR2 (i.e., an agonist), and the method further comprises: (c) contacting the candidate compound identified in step (b) with CR2 or a ligand-binding fragment thereof, under

conditions wherein in the absence of the compound, CR2 is not activated; and, (d) measuring the ability of the candidate compound to bind to CR2 to activate CR2. A candidate agonist compound is selected as a compound that binds to CR2 and activates CR2 as compared to in the absence of the candidate agonist compound. A similar embodiment includes the identification of candidate compounds that bind to target sites on the CR2 ligand which are now known as a result of the present inventors' work, and the determination of the ability of the candidate compound to bind to and activate the ligand of CR2 (e.g., by mimicking the structure of CR2).

5

10

15

20

25

In another embodiment, the candidate compound is predicted to bind to and inhibit CR2 (i.e., an antagonist), and the method further comprises: (c) contacting the candidate compound identified in step (b) with CR2 or a ligand-binding fragment thereof, wherein in the absence of the compound, CR2 is not activated; and, (d) measuring the ability of the candidate compound to bind to CR2 and activate CR2. A candidate antagonist compound is selected as a compound that binds to CR2 but does not activate and, in some embodiments, inhibits any constitutive activation, of the CR2. A similar embodiment includes the identification of candidate compounds that bind to target sites on the CR2 ligand which are now known as a result of the present inventors' work, and the determination of the ability of the candidate compound to bind to but not activate the ligand of CR2.

In another embodiment, the candidate compound is predicted to bind to CR2 and to disrupt the dimerization of CR2 monomers, and the method further comprises: (c) contacting the candidate compound identified in step (b) with at least two CR2 monomers or ligand-binding fragments thereof, in the presence and in the absence of a CR2 ligand or fragment thereof; and. (d) measuring the ability of the candidate compound to bind to CR2, the ability of the CR2 monomers to dimerize, and/or the ability of the CR2 ligand to activate CR2. A candidate compound for the disruption of CR2 dimerization is selected as a compound that binds to CR2 but inhibits the dimerization of CR2 and in some embodiments, inhibits the activation of CR2 by its ligand. Similarly, a candidate compound for stabilizing the

dimerization of CR2 is a compound that binds to CR2, prolongs the dimerization of CR2 as compared to in the absence of the candidate compound, and in some embodiments, enhances or prolongs the activation of CR2 by its ligand.

5

10

15

20

25

In one embodiment, the conditions under which a CR2 according to the present invention is contacted with a candidate compound, such as by mixing, are conditions in which the receptor is not stimulated (activated) or bound to a natural ligand if essentially no candidate compound is present. For example, such conditions include normal culture conditions in the absence of a stimulatory compound (a stimulatory compound being, e.g., the natural ligand for the receptor (e.g., C3d, CD23, EBV), a stimulatory antibody, or other equivalent stimulus). In this embodiment, the candidate compound is then contacted with the CR2. In this embodiment, the step of detecting is designed to indicate whether the candidate compound binds to CR2, and in some embodiments, whether the candidate compound activates CR2.

In an alternate embodiment, the conditions under which a CR2 according to the present invention is contacted with a candidate compound, such as by mixing, are conditions in which the receptor is normally bound by a ligand or additionally stimulated (activated) if essentially no candidate compound is present. Such conditions can include, for example, contact of CR2 with a stimulator molecule (a stimulatory compound being, e.g., the natural ligand for the receptor, a stimulatory antibody, or other equivalent stimulus) which binds to the receptor and causes the receptor to become activated. In this embodiment, the candidate compound can be contacted with the receptor prior to the contact of the receptor with the stimulatory compound (e.g., to determine whether the candidate compound blocks or otherwise inhibits the binding and/or stimulatory compound (e.g., to determine whether the candidate compound downregulates, or reduces the activation of the receptor).

The present methods involve contacting CR2 with the candidate compound being tested for a sufficient time to allow for binding to, activation or inhibition of the receptor by

the candidate compound. The period of contact with the candidate compound being tested can be varied depending on the result being measured, and can be determined by one of skill in the art. For example, for binding assays, a shorter time of contact with the candidate compound being tested is typically suitable, than when activation is assessed. As used herein, the term "contact period" refers to the time period during which the CR2 molecules are in contact with the compound being tested. The term "incubation period" refers to the entire time during which cells expressing CR2, for example, are allowed to grow prior to evaluation, and can be inclusive of the contact period. Thus, the incubation period includes all of the contact period and may include a further time period during which the compound being tested is not present but during which growth is continuing (in the case of a cell based assay) prior to scoring. The incubation time for growth of cells can vary but is sufficient to allow for the binding of CR2, activation of the receptor or signal transduction pathways associated with the receptor, and/or inhibition of the receptor. It will be recognized that shorter incubation times are preferable because compounds can be more rapidly screened. A preferred incubation time is between about 1 minute to about 48 hours.

In accordance with the present invention, a cell-based assay is conducted under conditions which are effective to screen for candidate compounds useful in the method of the present invention. Effective conditions include, but are not limited to, appropriate media, temperature, pH and oxygen conditions that permit the growth of the cell that expresses the receptor. An appropriate, or effective, medium refers to any medium in which a cell that naturally or recombinantly expresses a CR2, when cultured, is capable of cell growth and expression of CR2. Such a medium is typically a solid or liquid medium comprising growth factors and assimilable carbon, nitrogen and phosphate sources, as well as appropriate salts, minerals, metals and other nutrients, such as vitamins. Culturing is carried out at a temperature, pH and oxygen content appropriate for the cell. Such culturing conditions are within the expertise of one of ordinary skill in the art.

Cells that are useful in the cell-based assays of the present invention include any cell that expresses a CR2 and particularly, other proteins that are associated with CR2 signal transduction cascades (e.g., the CR2 CD19 CD81 co-activation complex (D. T. Fearon, 1995 *ibid.*; D. T. Fearon, 1998, *ibid.*; J. C. Cambier, 1997, *ibid.*; A. K. Matsumoto, et al., *J Exp Med* 173, 55-64 (1991))). Such cells include B lymphocytes, T lymphocytes, follicular dendritic cells, thymocytes, epithelial cells, and mast cells. Additionally, certain cells may be induced to express CR2, for example, some tumor cells. Therefore, cells that express CR2 can include cells that naturally express CR2, recombinantly express CR2, or which can be induced to express CR2. Cells useful in some embodiments can also include cells that express a natural ligand of CR2, such as CD23.

10

15

20

25

The assay of the present invention can also be a non-cell based assay. In this embodiment, the candidate compound can be directly contacted with an isolated CR2, or a receptor component (e.g., an isolated extracellular portion of the receptor, or soluble receptor), and the ability of the candidate compound to bind to the receptor or receptor component can be evaluated, such as by an immunoassay or other binding assay. The assay can, if desired, additionally include the step of further analyzing whether candidate compounds which bind to a portion of the receptor are capable of increasing or decreasing the activity of CR2. Such further steps can be performed by cell-based assay, as described above, or by non-cell-based assay. For example, isolated membranes may be used to identify compounds that interact with CR2. Membranes can be harvested from cells expressing CR2 by standard techniques and used in an *in vitro* binding assay. ¹²⁵I-labeled (other labels can be used also) ligand (e.g., 125 I-labeled C3d) is contacted with the membranes and assayed for specific activity; specific binding is determined by comparison with binding assays performed in the presence of excess unlabeled ligand. Membranes are typically incubated with labeled ligand in the presence or absence of test compound. Compounds that bind to the receptor and compete with labeled ligand for binding to the membranes reduced the signal compared to the vehicle control samples.

Alternatively, soluble CR2 may be recombinantly expressed and utilized in non-cell based assays to identify compounds that bind to CR2. Recombinantly expressed CR2 polypeptides or fusion proteins containing one or more extracellular domains of CR2, and preferably, at least SCR1 and SCR2, can be used in the non-cell based screening assays. Alternatively, peptides corresponding to the extracellular domain of CR2 or fusion proteins containing the extracellular domain of CR2 can be used in non-cell based assay systems to identify compounds that bind to the extracellular portion of CR2. In non-cell based assays the recombinantly expressed CR2 is attached to a solid substrate by means well known to those in the art. For example, CR2 and/or cell lysates containing such receptors can be immobilized on a substrate such as: artificial membranes, organic supports, biopolymer supports and inorganic supports. The protein can be immobilized on the solid support by a variety of methods including adsorption, cross-linking (including covalent bonding), and entrapment. Adsorption can be through van del Waal's forces, hydrogen bonding, ionic bonding, or hydrophobic binding. Exemplary solid supports for adsorption immobilization include polymeric adsorbents and ion-exchange resins. Solid supports can be in any suitable form, including in a bead form, plate form, or well form. The test compounds are then assayed for their ability to bind to CR2.

5

10

15

20

25

In one embodiment, a BIAcore machine can be used to determine the binding constant of a complex between CR2 and a ligand (e.g., C3d) in the presence and absence of the candidate compound. For example, CR2 or a ligand binding fragment thereof can be immobilized on a substrate. A ligand, such as C3d, is contacted with the substrate to form a CR2-C3d complex. The dissociation constant for the complex can be determined by monitoring changes in the refractive index with respect to time as buffer is passed over the chip (O'Shannessy et al. Anal. Biochem. 212:457-468 (1993); Schuster et al., Nature 365:343-347 (1993)). Contacting a candidate compound at various concentrations with the CR2-ligand complex and monitoring the response function (e.g., the change in the refractive index with respect to time) allows the complex dissociation constant to be determined in the

presence of the candidate compound and indicates whether the candidate compound is either an inhibitor or an agonist of the CR2-ligand complex. Alternatively, the candidate compound can be contacted with the immobilized CR2 at the same time as the ligand to see if the candidate compound inhibits or stabilizes the binding of the ligand to CR2.

Other suitable assays for measuring the binding of a candidate compound to a CR2 or CR2 ligand, and or for measuring the ability of such compound to affect the binding of a CR2 to its ligand include, for example, immunoassays such as enzyme linked immunoabsorbent assays (ELISA) and radioimmunoassays (RIA), as well as cell-based assays including, cytokine secretion assays, or intracellular signal transduction assays that determine, for example, protein or lipid phosphorylation, mediator release or intracellular Ca—mobilization upon CR2 binding to a cell signal transduction molecule or coreceptor.

5

10

15

20

25

As used herein, the phrase "agonist" refers to any compound that interacts with a CR2 and elicits an observable response. More particularly, a CR2 agonist can include, but is not limited to, a protein (including an antibody), a peptide, a nucleic acid or any suitable product of drug design (e.g., a mimetic) which is characterized by its ability to agonize (e.g., stimulate, induce, increase, enhance) the biological activity of a naturally occurring CR2 in a manner similar to a natural agonist (e.g., C3d, gp350/220, or CD23) (e.g., by interaction/binding with and/or direct or indirect activation of CR2, including by stabilizing the interaction of CR2 with a natural ligand). An "antagonist" refers to any compound which inhibits the effect of a CR2 agonist, as described above. More particularly, a CR2 antagonist is capable of associating with a CR2 such that the biological activity of the receptor is decreased (e.g., reduced, inhibited, blocked, reversed, altered) in a manner that is antagonistic (e.g., against, a reversal of, contrary to) to the action of a natural agonist on the receptor. It is noted that the three dimensional structures disclosed herein can be used to design or identify candidate compounds that agonize or antagonize the biological activity of the CR2 ligand. For example, a compound that enhances the interaction between CR2 and CD23 can also have a stimulatory effect on a cell that expresses CD23.

Preferred agonists (i.e., stimulatory compounds) to identify using the present method are compounds that exhibit improved binding to CR2 when compared with the ability of a natural CR2 ligand to bind to CR2, and also include compounds that enhance the binding of a natural ligand to CR2 or enhance signal transduction through CR2 coreceptor complexes. Preferred agonists of the present invention are identified by their ability to: (1) bind to, or otherwise interact with, CR2 at a higher level than, for example, a natural CR2 ligand; (2) enhance binding of CR2 to its ligand; (3) enhance dimer formation of CR2 by binding to CR2 or to the combination of CR2 bound to its ligand; and/or (4) enhance signal transduction through CR2. A preferred agonist of the present invention can also include a compound that binds to CR2 or a CR2 ligand, thereby enhancing the binding of CR2 to its ligand or improving cellular signal transduction during or after the binding of CR2 to its ligand, by, for example, modifying other regions of the CR2 by an allosteric interaction that modifies the ligand-binding site of CR2. Another suitable agonist compound of the present invention can include a compound that binds to CR2 in the absence of a natural ligand, in such a manner that CR2-mediated cellular signal transduction is stimulated.

Suitable antagonist (i.e., inhibitory) compounds to identify using the present method are compounds that interact directly with CR2, thereby inhibiting the binding of a natural ligand to CR2. by either blocking the ligand binding site of CR2 (referred to herein as substrate analogs) or by modifying other regions of CR2 (such as in the interface between the monomers of a CR2 dimer, or at the interface between the SCR1 and SCR2 regions of each monomer) such that the natural ligand cannot bind to CR2 (e.g., by allosteric interaction). A CR2 substrate analog refers to a compound that interacts with (e.g., binds to, associates with, modifies) the ligand binding site of a CR2 protein. A CR2 substrate analog can, for example, comprise a chemical compound that mimics the CR2 binding portion of a natural ligand, or that binds specifically to the ligand binding site of CR2 but does not mimic the CR2 binding portion of the natural ligand. An inhibitory compound of the present invention can also include a compound that essentially mimics at least a portion of CR2 that

binds to a natural ligand (referred to herein as a peptidomimetic compound). Other suitable inhibitory compounds of the present invention include compounds that inhibit the binding of CR2 to a cell signal inducing molecule such as CD19.

Various specific embodiments of the present invention are described below. The description of the structure of CR2, and of structure based methods of identifying compounds that regulate CR2 are generally applicable to the methods described below, with particular modifications being noted in the specific description of the methods.

5

10

15

20

25

One embodiment of the present invention relates to a method to identify a compound that inhibits the complement receptor type 2 (CR2)-dependent infection of a host cell by Epstein Barr Virus (EBV). This method includes the steps of: (a) providing a three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region as previously described herein; (b) identifying a candidate compound for binding to the CR2 SCR 1-2 region by performing structure based drug design with the structure of (a) to identify a compound structure that binds to the three dimensional structure of the CR2 SCR 1-2 region; (c) contacting the candidate compound identified in step (b) with a cell that expresses CR2 or a ligand binding fragment thereof and an Epstein Barr Virus (EBV) particle under conditions in which the EBV particle can bind to CR2 and infect the cell in the absence of the candidate inhibitor compound is selected as a compound that inhibits the EBV titer in the cell, as compared to in the absence of the candidate inhibitor compound.

As discussed in the Background section, one of the naturally occurring ligand for human CR2 is Epstein-Barr virus (EBV). EBV interacts with CR2 via the gp350/220 viral membrane protein (J. D. Fingeroth, et al., *Proc Natl Acad Sci U S A* 81, 4510-4 (1984)). EBV causes infectious mononucleosis, and is associated with Burkitt's Lymphoma and several other lymphomas and non-lymphoid tumors (M. Okano, *Acta Paediatr* 87, 11-8 (1998)). Therefore, the identification of compounds that inhibit the interaction between EBV and CR2 are desirable. Previous studies have suggested that two amino acid positions in

CR2 Ser16 and Tyr68 to Tyr, Fig. 2E and green patch in Figs. 5A and 5B) are likely to be involved in gp350/220 binding (D. R. Martin et al., *J Virol* 68, 4716-26 (1994)). Given the three dimensional structure of the CR2 disclosed herein, one of skill in the art can now design or identify compounds that are predicted to bind to three dimensional face of CR2 including these residues.

5

10

15

20

25

In this embodiment, the steps of providing the CR2 structure and identifying a candidate compound are performed as described above generally for any candidate compound. The step of contacting the candidate can be performed under any suitable conditions for contacting a virus, or portion of the virus (e.g., gp350/220) with a receptor. Such a method preferably includes contacting (e.g., by mixing, adding, combining) EBV with a cell that expresses CR2 or a ligand binding fragment thereof (e.g., naturally, recombinantly or by induction) under conditions wherein, in the absence of the candidate compound, the EBV particle can bind to CR2 and infect the cell. The intracellular viral titer is measured in the presence and in the absence of the compound using methods well known to those of skill in the art. An inhibitor compound is selected as a compound that inhibits the EBV titer in the cell, as compared to in the absence of the candidate inhibitor compound.

Another embodiment of the present invention relates to a method to identify a compound that inhibits the binding of CD23 to complement receptor type 2 (CR2). This method includes the steps of: (a) providing a three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region as previously described herein; (b) identifying a candidate compound for binding to the CR2 SCR 1-2 region by performing structure based drug design with the structure of (a) to identify a compound structure that binds to the three dimensional structure of the CR2 SCR 1-2 region; (c) contacting the candidate compound identified in step (b) with a first cell expressing CR2 or a ligand binding fragment thereof and a second cell expressing a CD23 protein or fragment thereof under conditions in which the CD23 protein or fragment thereof and the CR2 or the ligand binding fragment thereof can bind in the absence of the candidate compound; and (d) measuring a biological activity

induced by the interaction of CD23 and CR2 in the first or second cell; wherein a candidate inhibitor compound is selected as a compound that inhibits the biological activity as compared to in the absence of the candidate inhibitor compound.

CD23 is a molecule expressed on the follicular dendritic or other cell lineage surfaces which binds to B cells via CR2 (CR2/CD19/CD81 co-activation complex), thereby greatly potentiating signaling via the B cell antigen receptor. The identification of compounds that enhance the binding of CD23 to CR2 would be desirable under conditions when potentiation of the B cell antigen response is desired. However, CD23 is known to enhance IgE isotype switching in B cells. IgE is the prominent immunoglobulin isotype involved in allergic reactions. Inhibition of IgE production would reduce symptoms of allergic inflammation. Therefore, in one embodiment, it is desirable to inhibit the interaction between CR2 and CD23 to reduce IgE isotype switching in B cells.

5

10

15

20

25

In this embodiment, the step of contacting the candidate compound identified in step (b) with a first cell expressing CR2 or a ligand binding fragment thereof and a second cell expressing a CD23 protein or fragment thereof occurs under conditions in which the CD23 protein or fragment thereof and the CR2 or the ligand binding fragment thereof can bind in the absence of the candidate compound. Such conditions have been described above for cell-based assays. Preferably, the first cell is a B cell, although any CR2-expressing cell as described herein can be used. The CD23-expressing cell can include a follicular dendritic cell and a cell that recombinantly expresses CD23. Step (d) of measuring a biological activity induced by the interaction of CD23 and CR2 in the first or second cell can include the measurement of any suitable biological activity that is indicative of CR2 activation in the first cell and/or CD23 activation in the second cell. For example, biological activities associated with CR2 activation include, activation of lyn tyrosine kinase, activations of phosphatidyl inositol 3' kinase, phosphorylation of CD19, activation of PI3 kinase, and activation of protein kinase C (PKC). If the CR2-expressing cell is a B cell, isotype switching to IgE can be measured, for example, by comparing the amounts of expression of

lgE between cells in the presence and absence of the compound. Biological activities associated with CD23 activation include, but are not limited to, increases in IgG synthesis, phosphatidylinositol hydrolysis, cAMP synthesis, Calcium flux, protein tyrosine kinase activation, increases in IL-6 and TNF-α synthesis, nitric oxide activation, increases in CD40 and HLA Class II expression, and NF-κB activation (J. Gordon, *Immunol. Today* 15, 411-417 (1994); B. Heyman, *Ann. Rev. Immunol.* 18, 709-737 (2000); V. Fremeaux-Bacchi, et al, *Eur. J. Immunol.* 28, 4268-4274 (1998); R. M. Ten, et al, *J. Immunol.* 163, 3851-3857 (1999). Methods of measuring such biological activities of both CR2 and CD23 are known in the art and include immunoassays, kinase assays, flow cytometry, and phosphorylation assays. In this embodiment of the invention, an inhibitor compound is selected as a compound that inhibits the biological activity of CR2 or CD23 as compared to in the absence of the inhibitor compound.

Yet another embodiment of the present invention relates to a method to identify a compound that inhibits the binding of C3d, C3 or other CR2-binding fragments of C3 that contain C3d or a portion thereof, to complement receptor type 2 (CR2). This method includes the steps of: (a) providing a three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region as previously described herein: (b) identifying a candidate compound for binding to the CR2 SCR 1-2 region by performing structure based drug design with the structure of (a) to identify a compound structure that binds to the three dimensional structure of the CR2 SCR 1-2 region; (c) contacting the candidate compound identified in step (b) with a cell expressing CR2 or a fragment thereof and C3d or a fragment thereof, C3 or other CR2-binding fragments of C3 that contain C3d or a portion thereof, under conditions in which the C3d or fragment thereof, C3 or other CR2-binding fragments of C3 that contain C3d or a portion thereof, can bind to CR2 and enhance cell activation in the absence of the candidate compound; and (d) measuring the activation of the cell, wherein a candidate inhibitor compound is selected as a compound that inhibits cell activation, as compared to in the absence of the candidate inhibitor compound.

C3d-bound antigens, or antigens containing CR2-binding C3 fragments that contain C3d or a portion thereof, amplify B cell responses by binding to CR2 through C3d (or other CR2-binding C3 fragments that contain C3d or a portion thereof) at the same time as engaging the B cell antigen receptor (BCR) via the bound antigen (R. H. Carter and D. T. Fearon, *Science* 256, 105-7 (1992); J. C. Cambier, *Biochem Soc Trans* 25, 441-5 (1997)). The cross-linking of CR2 to the BCR by C3d greatly amplifies a signal transduction cascade through the CR2/CD19/CD81 co-activation complex (D. T. Fearon, 1995 *ibid.*; D. T. Fearon, 1998, *ibid.*; J. C. Cambier, 1997, *ibid.*; A. K. Matsumoto, et al., *J Exp Med* 173, 55-64 (1991)). Therefore, compounds that inhibit this interaction are useful for reducing an immune response and specifically, a humoral immune response (although effects on the cellular immune response may also be achieved). Compounds that enhance or mimic the interaction between CR2 and C3d are useful for potentiating such an immune response.

In this embodiment, the step of contacting the candidate compound identified in step (b) with a cell expressing CR2 or a fragment thereof and C3d or a fragment thereof, C3 or other CR2-binding fragments of C3 that contain C3d or a portion thereof, occurs under conditions in which the C3d or fragment thereof, C3 or other CR2-binding fragments of C3 that contain C3d or a portion thereof, can bind to CR2 and enhance cell activation in the absence of the candidate compound. Such cell-based methods of contacting have been described previously herein. Preferably, the cell expressing CR2 is selected from the group of a B cell, a T cell, a thymocyte, an epithelial cell, and a mast cell. The measurement of cell activation in (d) can be accomplished by any suitable method for detecting CR2 biological activity as previously described herein, and includes, but is not limited to: the measurement of: cytokine production by the cell, calcium mobilization in the cell. lyn tyrosine kinase activity in the cell, phosphorylation of CD19 in the cell, and activation of protein kinase C (PKC) in the cell. An inhibitor compound is selected as a compound that inhibits cell activation, as compared to in the absence of the candidate inhibitor compound.

Another embodiment of the present invention relates to a method to inhibit complement receptor type 2 (CR2)-dependent human immunodeficiency virus-1 (HIV-1) infection of cells in a patient. This method includes the steps of administering to a patient infected with HIV-1 an inhibitor compound that inhibits the binding of C3d, C3 or another CR2-binding fragment of C3 containing C3d or a portion thereof, -opsonized HIV-1 to B cells, follicular dendritic cells, T cells or macrophages in the patient. The inhibitor compound is selected by the steps of: (a) providing a three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region as previously described herein: (b) identifying a candidate compound for binding to said CR2 SCR 1-2 region by performing structure based drug design with said structure of (a) to identify a compound structure that binds to said three dimensional structure of said CR2 SCR 1-2 region; (c) contacting said candidate compound identified in step (b) with a B cell, follicular dendritic cell, T cell or macrophage expressing CR2 or a fragment thereof and C3d or a fragment thereof, C3 or other CR2-binding fragments of C3 that contain C3d or a portion thereof, under conditions in which said C3d or fragment thereof, C3 or other CR2-binding fragments of C3 that contain C3d or a portion thereof, can bind to CR2 and enhance activation of the B cell, follicular dendritic cell, T cell or macrophage in the absence of said candidate compound; and (d) measuring the activation of the B cell, follicular dendritic cell, T cell or macrophage, wherein a candidate inhibitor compound is selected as a compound that inhibits activation of the B cell, follicular dendritic cell, T cell or macrophage, as compared to in the absence of said candidate inhibitor compound.

5

10

15

20

25

CR2 has been shown to mediate the interaction of C3d-bound HIV-1, or HIV-1 bound to other CR2-binding C3 fragments that contain C3d or a portion thereof, as an immune complex with B cells in a fashion that promotes transfer of virus and infection of CD4 T cells (S. Moir, et al., *J Exp Med* 192, 637-46 (2000)). Therefore, it would be desirable to design or identify compounds that inhibit the interaction of C3d, C3 or other CR2-binding fragments of C3 that contain C3d or a portion thereof with CR2 on B cells,

follicular dendritic cells. T cells and macrophages to reduce the infection of CD4 T cells by HIV-1. In this embodiment, the step of contacting the candidate compound identified in step (b) with a B cell, follicular dendritic cell, T cell or macrophage, expressing CR2 or a fragment thereof and C3d or a fragment thereof. C3 or other CR2-binding fragments of C3 that contain C3d or a portion thereof, occurs under conditions in which the C3d or fragment thereof, C3 or other CR2-binding fragments of C3 that contain C3d or a portion thereof, can bind to CR2 and enhance activation of the B cell, follicular dendritic cell, T cell or macrophage in the absence of the candidate compound. Such conditions have been described in detail above. In addition, the step of measuring the activation of the B cell, follicular dendritic cell, T cell or macrophage expressing CR2 (i.e., by measuring a biological activity effected by CR2) have been described above.

5

10

15

2û

<u>25</u>

Once a compound has been identified that inhibits the interaction between C3d and CR2 on B cells, follicular dendritic cells. T cells and/or macrophages, the compound is administered to a patient infected with HIV-1. A preferred patient to treat includes a patient with early-onset HIV infection. Such a patient can be defined herein as a patient that meets one or more of the following criteria: (1)the patient has a blood CD4⁺ T cell count of at least about 100 cells/mm³, and preferably, at least about 200 cells/mm³, and more preferably, at least about 400 cells/mm³ as determined within 30 days of the time of employment of the present method; and (2) the patient has an HIV serum load of less than about 400 copies/ml, and preferably, less than about 300 copies/ml, and more preferably, less than about 200 copies/ml, and even more preferably, less than about 100 copies/ml, and most preferably undetectable viral load, as determined by plasma RNA PCT within 30 days of when the method is employed. In one embodiment, the patient is characterized as having a CD4⁺ T cell count of at least about 100 cells/mm² when the method is employed and/or an HIV viral load of less than about 400 copies/ml when the method is employed.

A composition to be administered to a patient, such as in this embodiment, generally includes the compound identified by the structure based identification method and a carrier, and preferably, a pharmaceutically acceptable carrier. According to the present invention, a "pharmaceutically acceptable carrier" includes pharmaceutically acceptable excipients and/or pharmaceutically acceptable delivery vehicles, which are suitable for use in administration of the composition to a suitable *in vitro*, *ex vivo* or *in vivo* site. A suitable *in vitro*, *in vivo* or *ex vivo* site is preferably at or near a cell that expresses a CR2, and most preferably, at or near a site of interest in the patient. Preferred pharmaceutically acceptable carriers are capable of maintaining a compound identified by the present methods in a form that, upon arrival of compound at the cell target in a culture or in patient, the compound is capable of interacting with its target (e.g., a CR2).

10

15

20

Suitable excipients of the present invention include excipients or formularies that transport or help transport, but do not specifically target a composition to a cell (also referred to herein as non-targeting carriers). Examples of pharmaceutically acceptable excipients include, but are not limited to water, phosphate buffered saline, Ringer's solution, dextrose solution, serum-containing solutions, Hank's solution, other aqueous physiologically balanced solutions, oils, esters and glycols. Aqueous carriers can contain suitable auxiliary substances required to approximate the physiological conditions of the recipient, for example, by enhancing chemical stability and isotonicity.

Suitable auxiliary substances include, for example, sodium acetate, sodium chloride, sodium lactate, potassium chloride, calcium chloride, and other substances used to produce phosphate buffer, Tris buffer, and bicarbonate buffer. Auxiliary substances can also include preservatives, such as thimerosal. — or o-cresol, formalin and benzol alcohol. Compositions of the present invention can be sterilized by conventional methods and/or lyophilized.

One type of pharmaceutically acceptable carrier includes a controlled release formulation that is capable of slowly releasing a composition of the present invention into a patient or culture. As used herein, a controlled release formulation comprises a compound

of the present invention (e.g., a protein (including homologues), a drug, an antibody, a nucleic acid molecule, or a mimetic) in a controlled release vehicle. Suitable controlled release vehicles include, but are not limited to, biocompatible polymers, other polymeric matrices, capsules, microcapsules, microparticles, bolus preparations, osmotic pumps, diffusion devices, liposomes, lipospheres, and transdermal delivery systems. Other carriers of the present invention include liquids that, upon administration to a patient, form a solid or a gel in situ. Preferred carriers are also biodegradable (i.e., bioerodible). When the compound is a recombinant nucleic acid molecule, suitable delivery vehicles include, but are not limited to liposomes, viral vectors or other delivery vehicles, including ribozymes. Natural lipid-containing delivery vehicles include cells and cellular membranes. Artificial lipid-containing delivery vehicles include liposomes and micelles. A delivery vehicle of the present invention can be modified to target to a particular site in a patient, thereby targeting and making use of a compound of the present invention at that site. Suitable modifications include manipulating the chemical formula of the lipid portion of the delivery vehicle and/or introducing into the vehicle a targeting agent capable of specifically targeting a delivery vehicle to a preferred site, for example, a preferred cell type. Other suitable delivery vehicles $include\ gold\ particles, poly-L-lysine/DNA-molecular\ conjugates, and\ artificial\ chromosomes.$

10

15

20

45

A pharmaceutically acceptable carrier which is capable of targeting is herein referred to as a "delivery vehicle." Delivery vehicles of the present invention are capable of delivering a composition of the present invention to a target site in a patient. A "target site" refers to a site in a patient to which one desires to deliver a composition. For example, a target site can be any cell which is targeted by direct injection or delivery using liposomes, viral vectors or other delivery vehicles, including ribozymes and antibodies. Examples of delivery vehicles include, but are not limited to, artificial and natural lipid-containing delivery vehicles include cells and cellular membranes. Artificial lipid-containing delivery vehicles include liposomes and micelles. A delivery vehicle of the present invention can be modified to target

to a particular site in a subject, thereby targeting and making use of a compound of the present invention at that site. Suitable modifications include manipulating the chemical formula of the lipid portion of the delivery vehicle and/or introducing into the vehicle a compound capable of specifically targeting a delivery vehicle to a preferred site, for example, a preferred cell type. Specifically, targeting refers to causing a delivery vehicle to bind to a particular cell by the interaction of the compound in the vehicle to a molecule on the surface of the cell. Suitable targeting compounds include ligands capable of selectively (i.e., specifically) binding another molecule at a particular site. Examples of such ligands include antibodies, antigens, receptors and receptor ligands. Manipulating the chemical formula of the lipid portion of the delivery vehicle can modulate the extracellular or intracellular targeting of the delivery vehicle. For example, a chemical can be added to the lipid formula of a liposome that alters the charge of the lipid bilayer of the liposome so that the liposome fuses with particular cells having particular charge characteristics. In one embodiment, a targeting carrier can be a portion of a CR2 protein as described elsewhere herein, which is linked to the compound.

One preferred delivery vehicle of the present invention is a liposome. A liposome is capable of remaining stable in an animal for a sufficient amount of time to deliver a nucleic acid molecule or other compound to a preferred site in the animal. A liposome, according to the present invention, comprises a lipid composition that is capable of delivering a nucleic acid molecule or other compound to a particular, or selected, site in a patient. A liposome according to the present invention comprises a lipid composition that is capable of fusing with the plasma membrane of the targeted cell to deliver a nucleic acid molecule or other compound into a cell. Suitable liposomes for use with the present invention include any liposome. Preferred liposomes of the present invention include those liposomes commonly used in, for example, gene delivery methods known to those of skill in the art. More preferred liposomes comprise liposomes having a polycationic lipid composition and/or liposomes having a cholesterol backbone conjugated to polyethylene

glycol. Complexing a liposome with a nucleic acid molecule or other compound can be achieved using methods standard in the art.

A liposome delivery vehicle is preferably capable of remaining stable in a patient for a sufficient amount of time to deliver a nucleic acid molecule or other compound of the present invention to a preferred site in the patient (i.e., a target cell). A liposome delivery vehicle of the present invention is preferably stable in the patient into which it has been administered for at least about 30 minutes, more preferably for at least about 1 hour and even more preferably for at least about 24 hours. A preferred liposome delivery vehicle of the present invention is from about 0.01 microns to about 1 microns in size.

5

10

15

20

25

Another preferred delivery vehicle comprises a viral vector. A viral vector includes an isolated nucleic acid molecule useful in the present invention, in which the nucleic acid molecules are packaged in a viral coat that allows entrance of DNA into a cell. A number of viral vectors can be used, including, but not limited to, those based on alphaviruses, poxviruses, adenoviruses, herpesviruses, lentiviruses, adeno-associated viruses and retroviruses.

A composition which includes an compound identified according to the present methods can be delivered to a cell culture or patient by any suitable method. Selection of such a method will vary with the type of compound being administered or delivered (i.e., protein, peptide, nucleic acid molecule, mimetic, or other type of compound), the mode of delivery (i.e., *in vitro*, *in vivo*, *ex vivo*) and the goal to be achieved by administration/delivery of the compound or composition. According to the present invention, an effective administration protocol (i.e., administering a composition in an effective manner) comprises suitable dose parameters and modes of administration that result in delivery of a composition to a desired site (i.e., to a desired cell) and/or in the desired regulatory event (e.g., inhibition of the binding of C3d-opsonized HIV-1 to B cells or follicular dendritic cells in the patient).

Administration routes include *in vivo*, *in vitro* and *ex vivo* routes. *In vivo* routes include, but are not limited to, oral, nasal, intratracheal injection, inhaled, transdermal, rectal,

and parenteral routes. Preferred parenteral routes can include, but are not limited to. subcutaneous, intradermal, intravenous, intramuscular and intraperitoneal routes. Intravenous, intraperitoneal, intradermal, subcutaneous and intramuscular administrations can be performed using methods standard in the art. Aerosol (inhalation) delivery can also be performed using methods standard in the art (see, for example, Stribling et al., *Proc. Natl.* Acad. Sci. USA 189:11277-11281, 1992, which is incorporated herein by reference in its entirety). Oral delivery can be performed by complexing a therapeutic composition of the present invention to a carrier capable of withstanding degradation by digestive enzymes in the gut of an animal. Examples of such carriers, include plastic capsules or tablets, such as those known in the art. Direct injection techniques are particularly useful for suppressing graft rejection by, for example, injecting the composition into the transplanted tissue, or for site-specific administration of a compound, such as at the site of a tumor. Ex vivo refers to performing part of the regulatory step outside of the patient, such as by transfecting a population of cells removed from a patient with a recombinant molecule comprising a nucleic acid sequence encoding a protein according to the present invention under conditions such that the recombinant molecule is subsequently expressed by the transfected cell, and returning the transfected cells to the patient. In vitro and ex vivo routes of administration of a composition to a culture of host cells can be accomplished by a method including, but not limited to, transfection, transformation, electroporation, microinjection, lipofection, adsorption, protoplast fusion, use of protein carrying agents, use of ion carrying agents, use of detergents for cell permeabilization, and simply mixing (e.g., combining) a compound in culture with a target cell.

5

10

15

20

25

In this particular embodiment of the invention (i.e., the inhibition of HIV infection), it will be obvious to one of skill in the art that the number of doses administered to an immunodeficiency virus infected patient is dependent upon the extent of the infection and the response of an individual to the treatment. For example, in the case of HIV-infection, a patient having a high titer of HIV may require more doses than a patient having lower titers.

In some cases, however, a patient having a high titer of HIV may require fewer doses than a patient having lower titers, if the patient with the high titer responds more favorably to the therapeutic composition than the patient with the lower titer. Thus, it is within the scope of the present invention that a suitable number of doses, as well as the time periods between administration, includes any number required to cause regression of a disease.

In another embodiment, this method is employed in conjunction with administration to the patient of one or more anti-retroviral therapeutic compounds. Such compounds include, but are not limited to, AZT, ddl, ddC, d4T, 3TC and/or protease inhibitors.

10

15

20

25

Another embodiment of the present invention relates to a method of preparing a vaccine, comprising linking a compound that increases B cell activation to an antigen to form the vaccine. The compound is selected by a method including the steps of: (a) providing a three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region as previously described herein; (b) identifying a candidate compound for binding to the CR2 SCR 1-2 region by performing structure based drug design with the structure of (a) to identify a compound structure that binds to the three dimensional structure of the CR2 SCR 1-2 region: (c) contacting the candidate compound identified in step (b) with a B cell expressing CR2 or a fragment thereof and with C3d or a fragment thereof, C3 or other CR2-binding fragments of C3 that contain C3d or a portion thereof, under conditions in which said C3d or fragment thereof, C3 or other CR2-binding fragments of C3 that contain C3d or a portion thereof, can bind to and activate CR2 in the absence of said candidate compound; and (d) measuring the activation of the B cell. A candidate compound for use in a vaccine is selected as a compound that increases B cell activation as compared to in the absence of the candidate compound.

Because CR2 plays a critical role as a coreceptor for B cells and is expressed on other cells as well, CR2 is a molecular target for adjuvants and can enhance the immune response to vaccines. Therefore, in this method, compounds are identified that bind to CR2 and that enhance B cell activation, either by enhancing the interaction between CR2 and a natural

ligand (e.g., C3d), or by directly interacting with CR2 to enhance downstream biological activities of the receptor, as previously discussed herein. Methods for contacting a cell with the compound and measuring the activation events associated with CR2 activation have been previously described. In addition, to measure B cell activation, one can measure calcium mobilization, immunoglobulin class switching, cytokine production, activation of NF-kB, activation of MAP kinases, protein kinase activity and phosphorylation of proteins associated with B cell activation. In this embodiment, the conditions under which the B cell is contacted typically include the presence of an antigen that binds to the B cell antigen receptor, in addition to the other components. A compound for use in a vaccine, once identified, is typically associated with a protein (antigen or antigen-containing composition) or nucleic acid to be administered to a patient as part of the vaccine. The use of a compound identified by the present method will potentiate the immune response to the antigen.

:

10

15

20

Another embodiment of the present invention relates to a drug delivery system that will preferentially deliver compounds to sites of complement activation containing CR2-binding fragments of C3 (e.g., C3 and portions thereof that contain C3d). Such a drug delivery system includes: (a) a drug; and, (b) a portion of a CR2 protein that includes one or more of: (i) a portion comprising positions on strand B and the B-C loop of SCR2 including: G79-G80-Y81-K82-I83-R84-G85-S86-T87-P88-Y89: (ii) a portion comprising position K100 on the B strand of CR2; and, (iii) a portion comprising positions: V130-F131-P132-L133 (positions given with reference to SEQ ID NO:4). In one embodiment, the portion of the CR2 protein can also contain positions T101-N102-F103 (reference again to SEQ ID NO:4). The drug is linked to the portion of CR2 by any suitable method, covalently or non-covalently, including by recombinant means or by chemical means. In this embodiment, the CR2 is not a full-length protein, or the soluble form of CR2, as it is known in the art (i.e., the natural soluble CR2 or the CR2 with the membrane portion removed), but rather, includes less of the amino acid sequence than the full-length or the soluble CR2, and preferably, just the portions of SCR1 and SCR2 that have been determined herein to be involved in the

contact between CR2 and a natural ligand (e.g., C3d) and that are required to form a CR2 portion with the tertiary structure necessary to bind to C3d (or a fragment thereof). Therefore, the portion of CR2 used in the drug delivery system consists essentially of at least one or more of the above-recited segments of CR2, including a contiguous segment containing all of the segments (i.e., from positions 79-133 of SEQ ID NO:4), and has the three dimensional conformation of CR2 at the CR2-C3d interface, such that the portion will bind to C3d, C3 or other CR2-binding fragments of C3 that contain C3d or a portion thereof. Therefore, the portion of CR2 suitable for use in a drug delivery system includes the portions of CR2 that contact C3d, as well as the portions required to maintain the spatial positions of the contact residues, such that the tertiary structure of the C3d binding portion is conformationally similar to the tertiary structure of the C3d binding portion of the CR2 crystal described herein, using the parameters for structural homologues as described elsewhere herein for the structure of the CR2 complexed with C3d. According to the present invention, a CR2 fragment consisting essentially of the portions of SCR1 and SCR2 that have been determined herein to be involved in the contact between CR2 and C3d can have at least one, and up to about 20 (in whole number increments), additional heterologous amino acids flanking each of the C- and/or N-terminal end of the CR2 portion that contains the above-described segments and the sequence necessary to maintain the appropriate tertiary structure to bind to C3d (or a fragment thereof). According to the present invention, the heterologous amino acids are a sequence of amino acids that are not naturally found (i.e., not found in nature, in vivo) flanking the CR2 sequence that makes up the portion of CR2 or which would not be encoded by the nucleotides that flank the naturally occurring CR2 nucleic acid sequence as it occurs in the gene, if such nucleotides in the naturally occurring sequence were translated using standard codon usage for the organism from which the given CR2 portion is derived. Such heterologous amino acids can include a sequence that is less than about 75% similar to the natural sequence in the same positions. This embodiment also includes methods of identifying such portions of CR2.

5

10

15

20

25

Drugs that are desirable to deliver using the drug delivery system of the present invention include any drug that may have a beneficial effect on a subject when delivered to a site of complement activation wherein C3 and/or CR2-binding portions of C3 are present. The drugs can be protein-based, carbohydrate-based, lipid-based, nucleic acid-based, or any small molecule. Examples of such drugs include, but are not limited to, anti-inflammatory compounds, cytotoxic drugs, complement regulatory proteins, corticosteroids, and any compounds useful in ischemic, inflammatory autoimmune or vascular diseases, all of which have C3 fragments present.

5

10

15

20

25

In this embodiment, drug design strategies as specifically described above with regard to the identification of compounds that bind to CR2 and affect its interaction with various ligands can be similarly applied to the CR2 structure itself. CR2 proteins designed by this method can be used as drug delivery vehicles or to otherwise alter the biological activity of a CR2, such as by competing for a naturally occurring CR2 in vivo. One of ordinary skill in the art, using the art recognized modeling programs and drug design methods, many of which are described herein, to prepare portions of complement receptor type 2 (CR2) proteins that bind to their ligands, including CR2 homologues that retain ligand binding activity. In addition, one of skill in the art can produce CR2 proteins having modified biological activity. For example, such a method can include: (a) providing a three dimensional structure of a CR2 SCR1-2 domain as previously described herein: (b) analyzing the three dimensional structure to the three-dimensional structure of the CR2 SCR 1-2 region by performing structure based drug design with the structure of (a) to the sites in the structure contributing to ability of CR2 to bind to a ligand (e.g., C3d or other CR2-binding fragments of C3); and (c) producing a protein that is a portion of CR2 that includes such sites. In the method to produce a CR2 protein having modified biological activity, one can analyze the three dimensional structure of CR2 provided herein to identify at least one site that contributes to the biological activity of the protein, and then modify at least one such site to alter the biological activity of the CR2 protein. Methods to altered proteins for CR2 biological

activity include testing the altered protein for any of the biological activities of CR2 previously described herein.

5

10

15

20

25

Another embodiment of the present invention relates to an antibody that selectively binds to CR2. The antibody binds to a portion of CR2 selected from the group consisting of:

(a) the interface between the SCR1 and SCR2 domains of CR2: (b) the dimer interface between two CR2 proteins: and. (c) the interface between CR2 and C3d (where the C3d includes any CR2-binding fragments of C3 that contain C3d or a portion thereof). The portion of the CR2-C3d interface bound by the antibody preferably includes at site selected from: (a) the B strand and the B-C loop of CR2 SCR2 comprising the segment: G79-G80-Y81-K82-I83-R84-G85-S86-T87-P88-Y89; (b) the B strand of CR2 SCR2 comprising position K100; and (c) a segment of CR2 SCR2 comprising V130-F131-P132-L133. Prior to the present invention, the three dimensional structure of the CR2 interfaces set forth above were not known and therefore, it was not possible to design or identify an antibody by making use of such structural information. The present inventors have provided suitable target sites, including specific residues within such sites, for the design and identification of antibodies.

According to the present invention, the phrase "selectively binds to" refers to the ability of an antibody, antigen binding fragment or binding partner of the present invention to preferentially bind to specified proteins (e.g., the recited portions of a CR2 of the present invention). More specifically, the phrase "selectively binds" refers to the specific binding of one protein to another (e.g., an antibody, fragment thereof, or binding partner to an antigen), wherein the level of binding, as measured by any standard assay (e.g., an immunoassay), is statistically significantly higher than the background control for the assay. For example, when performing an immunoassay, controls typically include a reaction well/tube that contain antibody or antigen binding fragment alone (i.e., in the absence of antigen), wherein an amount of reactivity (e.g., non-specific binding to the well) by the antibody or antigen binding fragment thereof in the absence of the antigen is considered to

be background. Binding can be measured using a variety of methods standard in the art including enzyme immunoassays (e.g., ELISA), immunoblot assays, etc.

Limited digestion of an immunoglobulin with a protease may produce two fragments. An antigen binding fragment is referred to as an Fab, an Fab', or an $F(ab')_2$ fragment. A fragment lacking the ability to bind to antigen is referred to as an Fc fragment. An Fab fragment comprises one arm of an immunoglobulin molecule containing a L chain ($V_L + C_1$ domains) paired with the V_H region and a portion of the C_H region (CH1 domain). An Fab' fragment corresponds to an Fab fragment with part of the hinge region attached to the CH1 domain. An $F(ab')_2$ fragment corresponds to two Fab' fragments that are normally covalently linked to each other through a di-sulfide bond, typically in the hinge regions.

5

10

15

20

25

Functional aspects of an immunoglobulin molecule include the valency of an immunoglobulin molecule, the affinity of an immunoglobulin molecule, and the avidity of an immunoglobulin molecule. As used herein, affinity refers to the strength with which an immunoglobulin molecule binds to an antigen at a single site on an immunoglobulin molecule (i.e., a monovalent Fab fragment binding to a monovalent antigen). Affinity differs from avidity which refers to the sum total of the strength with which an immunoglobulin binds to an antigen. Immunoglobulin binding affinity can be measured using techniques standard in the art, such as competitive binding techniques, equilibrium dialysis or BIAcore methods. As used herein, valency refers to the number of different antigen binding sites per immunoglobulin molecule (i.e., the number of antigen binding sites per antibody molecule of antigen binding fragment). For example, a monovalent immunoglobulin molecule can only bind to one antigen at one time, whereas a bivalent immunoglobulin molecule can bind to two or more antigens at one time, and so forth. Both monovalent and bivalent antibodies that selectively bind to CR2 of the present invention are encompassed herein.

In one embodiment of the present invention, a monovalent antibody can be used as a regulatory compound. Such an antibody is not capable of aggregating receptors. Divalent antibodies can also be used in the present invention.

In one embodiment, the antibody is a bi- or multi-specific antibody. A bi-specific (or multi-specific) antibody is capable of binding two (or more) antigens, as with a divalent (or multivalent) antibody, but in this case, the antigens are different antigens (i.e., the antibody exhibits dual or greater specificity). A bi-specific antibody suitable for use in the present method includes an antibody having: (a) a first portion (e.g., a first antigen binding portion) which binds to CR2; and (b) a second portion which binds to a cell surface molecule expressed by a cell which expresses CR2. In this embodiment, the second portion can bind to any cell surface molecule. In a preferred embodiment, the second portion is capable of targeting the regulatory antibody to a specific target cell (i.e., the regulatory antibody binds to a target molecule).

5

10

15

20

25

Isolated antibodies of the present invention can include serum containing such antibodies, or antibodies that have been purified to varying degrees. Whole antibodies of the present invention can be polyclonal or monoclonal. Alternatively, functional equivalents of whole antibodies, such as antigen binding fragments in which one or more antibody domains are truncated or absent (e.g., Fv, Fab, Fab', or F(ab)₂ fragments), as well as genetically-engineered antibodies or antigen binding fragments thereof, including single chain antibodies or antibodies that can bind to more than one epitope (e.g., bi-specific antibodies), or antibodies that can bind to one or more different antigens (e.g., bi- or multi-specific antibodies), may also be employed in the invention.

Genetically engineered antibodies of the invention include those produced by standard recombinant DNA techniques involving the manipulation and re-expression of DNA encoding antibody variable and/or constant regions. Particular examples include, chimeric antibodies, where the V_H and/or V_i domains of the antibody come from a different source to the remainder of the antibody, and CDR grafted antibodies (and antigen binding fragments thereof), in which at least one CDR sequence and optionally at least one variable region framework amino acid is (are) derived from one source and the remaining portions of the variable and the constant regions (as appropriate) are derived from a different source.

Construction of chimeric and CDR-grafted antibodies are described, for example, in European Patent Applications: EP-A 0194276, EP-A 0239400, EP-A 0451216 and EP-A 0460617.

Alternative methods, employing, for example, phage display technology (see for example US 5969108, US 5565332, US 5871907, US 5858657) or the selected lymphocyte antibody method of US 5627052 may also be used for the production of antibodies and/or antigen fragments of the invention, as will be readily apparent to the skilled individual.

Generally, in the production of an antibody, a suitable experimental animal, such as, for example, but not limited to, a rabbit, a sheep, a hamster, a guinea pig, a mouse, a rat, or a chicken, is exposed to an antigen against which an antibody is desired. Typically, an animal is immunized with an effective amount of antigen that is injected into the animal. An effective amount of antigen refers to an amount needed to induce antibody production by the animal. The animal's immune system is then allowed to respond over a pre-determined period of time. The immunization process can be repeated until the immune system is found to be producing antibodies to the antigen. In order to obtain polyclonal antibodies specific for the antigen, serum is collected from the animal that contains the desired antibodies (or in the case of a chicken, antibody can be collected from the eggs). Such serum is useful as a reagent. Polyclonal antibodies can be further purified from the serum (or eggs) by, for example, treating the serum with ammonium sulfate.

10

15

20

25

Monoclonal antibodies may be produced according to the methodology of Kohler and Milstein (*Nature* 256:495-497, 1975). For example, B lymphocytes are recovered from the spleen (or any suitable tissue) of an immunized animal and then fused with myeloma cells to obtain a population of hybridoma cells capable of continual growth in suitable culture medium. Hybridomas producing the desired antibody are selected by testing the ability of the antibody produced by the hybridoma to bind to the desired antigen.

Another embodiment of the present invention relates to a therapeutic composition that, when administered to an animal, enhances B cell responses in the animal. The

5

10

15

20

25

therapeutic composition includes a compound that stimulates the activity of a complement receptor type 2 (CR2), which has been identified by a method of structure based identification of compounds of the present invention, as described in detail above. Specifically, this method includes the steps of: (a) providing a three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region as described previously herein; (b) identifying a candidate compound for binding to the CR2 SCR 1-2 region by performing structure based drug design with the structure of (a) to identify a compound structure that binds to the three dimensional structure of the CR2 SCR 1-2 region; (c) synthesizing the candidate compound; and (d) selecting candidate compounds that bind to and activate CR2.

Another embodiment of the present invention relates to a therapeutic composition that, when administered to an animal, inhibits the biological activity of complement receptor type 2 (CR2) in the animal. The therapeutic composition comprises a compound that inhibits the activity of a complement receptor type 2 (CR2), the compound being identified by the method comprising: (a) providing a three dimensional structure of a CR2 short consensus repeat (SCR) 1-2 region as previously described herein: (b) identifying a candidate compound for binding to the CR2 SCR 1-2 region by performing structure based drug design with the structure of (a) to identify a compound structure that binds to the three dimensional structure of the CR2 SCR 1-2 region; (c) synthesizing the candidate compound; and (d) selecting candidate compounds that inhibit the biological activity of CR2. Preferably, the compounds inhibit the formation of a complex between CR2 and a CR2 ligand, such ligand including, but not limited to, C3d, CD23 and Epstein Barr Virus (EBV). In a more preferred embodiment, the compound inhibits the activation of CR2.

Methods of identifying candidate compounds and selecting compounds that bind to and activate or inhibit CR2 have been previously described herein. Candidate compounds can be synthesized using techniques known in the art, and depending on the type of compound. Synthesis techniques for the production of non-protein compounds, including organic and inorganic compounds are well known in the art.

For smaller peptides, chemical synthesis methods are preferred. For example, such methods include well known chemical procedures, such as solution or solid-phase peptide synthesis, or semi-synthesis in solution beginning with protein fragments coupled through conventional solution methods. Such methods are well known in the art and may be found in general texts and articles in the area such as: Merrifield, 1997, *Methods Enzymol*, 289:3-13; Wade et al., 1993, *Australas Biotechnol*, 3(6):332-336; Wong et al., 1991, *Experientia* 47(11-12):1123-1129; Carey et al., 1991, *Ciba Found Symp*, 158:187-203; Plaue et al., 1990, *Biologicals* 18(3):147-157; Bodanszky, 1985, *Int. J. Pept. Protein Res.* 25(5):449-474; or H. Dugas and C. Penney, BIOORGANIC CHEMISTRY, (1981) at pages 54-92, all of which are incorporated herein by reference in their entirety. For example, peptides may be synthesized by solid-phase methodology utilizing a commercially available peptide synthesizer and synthesis cycles supplied by the manufacturer. One skilled in the art recognizes that the solid phase synthesis could also be accomplished using the FMOC strategy and a TFA/scavenger cleavage mixture.

If larger quantities of a protein are desired, or if the protein is a larger polypeptide, the protein can be produced using recombinant DNA technology. A protein can be produced recombinantly by culturing a cell capable of expressing the protein (i.e., by expressing a recombinant nucleic acid molecule encoding the protein) under conditions effective to produce the protein, and recovering the protein. Effective culture conditions include, but are not limited to, effective media, bioreactor, temperature, pH and oxygen conditions that permit protein production. An effective medium refers to any medium in which a cell is cultured to produce the protein. Such medium typically comprises an aqueous medium having assimilable carbon, nitrogen and phosphate sources, and appropriate salts, minerals, metals and other nutrients, such as vitamins. Recombinant cells (i.e., cells expressing a nucleic acid molecule encoding the desired protein) can be cultured in conventional fermentation bioreactors, shake flasks, test tubes, microtiter dishes, and petri plates. Culturing can be carried out at a temperature, pH and oxygen content appropriate for a

5

10

15

20

25

recombinant cell. Such culturing conditions are within the expertise of one of ordinary skill in the art. Such techniques are well known in the art and are described, for example, in Sambrook et al., 1988, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York or Current Protocols in Molecular Biology (1989) and supplements.

As discussed above, a composition, and particularly a therapeutic composition, of the present invention generally includes the therapeutic compound (e.g., the compound identified by the structure based identification method) and a carrier, and preferably, a pharmaceutically acceptable carrier. Pharmaceutically acceptable carriers and preferred methods of administration of therapeutic compositions of the present invention have been described in detail above with regard to the administration of an inhibitor compound to a patient infected with HIV. Such carriers and administration protocols are applicable to this embodiment.

Yet another embodiment of the present invention relates to an isolated C3d mutant protein, C3 or other CR2-binding fragments of C3 that contain a mutant C3d or a portion thereof, comprising an amino acid substitution of an non-asparagine amino acid residue at position 170 wherein said C3d mutant protein, C3 or other CR2-binding fragments of C3 that contain the mutant C3d or a portion thereof, has reduced binding to complement receptor type 2 (CR2), as compared to a wild-type C3d protein (SEQ ID NO:7), or equivalent wild-type CR2-binding fragment of C3 that contain C3d or a portion thereof. Preferably, the mutant protein is at least about 50% identical to SEQ ID NO:7, and more preferably at least about 60% identical, and more preferably at least about 70% identical, and more preferably at least about 90% identical, and more preferably at least about 90% identical, and more preferably at least about 90% identical. And more preferably at least about 90% identical, and more preferably at least about 90% identical. And more preferably at least about 90% identical. And more preferably at least about 90% identical, and more preferably at least about 90% identical. And more preferably at least about 90% identical and more preferably at least about 90% identical. And more preferably at least about 90% identical and more preferably at least about 9

Another embodiment of the present invention relates to a computer for producing a three-dimensional model of a molecule or molecular structure, wherein the molecule or molecular structure defined by atomic coordinates

of a complement receptor type 2 (CR2) protein, according to Table 2 or Table 3, or a three-dimensional model of a homologue of the molecule or molecular structure, wherein the homologue comprises a three dimensional structure that has an average root-mean-square deviation (RMSD) of equal to or less than about 1.0 Å for the backbone atoms in secondary structure elements in the CR2 protein, wherein the computer comprises:

- a. a computer-readable medium encoded with the atomic coordinates of the CR2 protein, according to Table 2 or Table 3, to create an electronic file;
- b. a working memory for storing a graphical display software program for processing the electronic file:
- c. a processor coupled to the working memory and to the computer-readable medium which is capable of representing the electronic file as the three dimensional model: and.
- d. a display coupled to the processor for visualizing the three dimensional model;

wherein the three dimensional structure of the CR2 protein is displayed on the computer.

The following examples are provided for the purpose of illustration and are not intended to limit the scope of the present invention.

EXAMPLES

Example 1

5

10

15

20

25

・ 大きない。・ 大きない。・ 大きない。・ 大きない。・ 大きない。・ 大きない。・ 大きない。・ 大きない。・ 大きない。

The following example describes the crystallization and structure determination of the complex of complement receptor type 2 (CR2) and C3d.

Crystallization and Structure Determination of Structure

The crystals of the complex of CR2-C3d were obtained by co-crystallization of CR2 and C3d, at a protein ratio where no free CR2 or C3d could be detected by native gel

electrophoresis. The protein concentration of 20 mg/ml was used for crystallization by the method of hanging drop vapor diffusion. The crystallization buffer contained 17% PEG 2K. 0.2 M ZnAcetate, and 0.1 M NaCacodylate (pH 7.36). Crystals reached full size after 4-6 weeks at 4°C. Crystal was frozen under liquid nitrogen in the crystallization buffer containing 20% glycerol. Synchrotron data were collected at Brookhaven National Laboratory and was indexed, integrated and reduced using D*trek (licensed through MSC Inc., Table 1). The space group is R32, with unit cell a=b=170.5Å, c=173.8 Å. AmoRe (CCP4, Acta Cryst. D50, 760-763 (1994)) was used to do molecular replacement that was carried out using C3d (Accession No. 1C3D from the Protein Data Bank (PDB)) as a search model. The final correlation function and R factor after rotation and translation search were 50% and 45%. Initial phase improvement was carried out using solvent flattening and two fold averaging by the program DM (CCP4, Acta Cryst. D50, 760-763 (1994)) in CCP4 suit. Stepwise model building and refinement were carried out using program "O" and CNS (P. D. A. A.T.Brunger, G.M.Clore, W.L.Delano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, N. S. P. M.Nilges, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren, Acta Cryst. D54, 905-921 (1998)). The final complete model was refined using simulated annealing. positional refinement, and individual B factor refinement. Water molecules were added last using CNS (Table 1).

5

10

15

Table 1. Structure determ	e
Data collection statistic	D22
Space group Unit cell length (Å) Resolution (Å) Completeness (last bin) Total reflections Unique reflections	a=b=170.5. c 173.8 25.0-2.04 94.1 / 83.6 255801 63919 6.7 / 22.3
Rsym (last bin)% I/δ (last bin)	10.8 / 3.7
Refinement statistics	10
% of reflections for R _{fre}	20.8 / 23.9
R _{work} /R _{free} rmsd from ideality Bond length (Å) Bond angle (°) Dihedral angle (°)	0.006 1.10 16.8
Ramachandran plot (conditional disallowed) Average B factor rmsd of B factor (Ų) Protein atoms in the state of the model	33.98 1.2 model 8878 580 $> [/ \Sigma_{ij} I_{i}(j)], \text{ where } I_{i}(j) \text{ is the i-ection } j \text{ and } < I(j) > j \text{ is the overall}$

The atomic coordinates representing the structure of the complex of CR2 and C3d were deposited on January 11, 2001, with the Protein Data Bank (PDB), operated by the Research Collaboratory for Structural Bioinformatics (RCSB) (H.M.Berman, J.Westbrook, RCSB) (H.M.Berman, J.Wes

Description of the overall structure of the CR2-C3d complex

5

10

15

20

25

Figs. 1A and 1B show the structure of the CR2 -C3d complex. Fig. 1A is an overall view of the structure of CR2 binding to C3d, showing only SCR2 contacting one portion of the edge of C3d. CR2 SCR1 is colored in red and SCR2 in yellow, while C3d is in cyan. The side chain of residue Q20 of C3d that forms an ester-bond with antigen is drawn in pink and labeled. The position of residue D223 of C3d, which is the C3F form (fast migrating variant on agarose gel electrophoresis) that is associated with an increased incidence of certain diseases (M. C. Poznansky et al., *J Immunol* 143, 1254-8 (1989)), is also labeled. The other form of C3d, C3S (slow migration), has an N223 residue. The N and C termini of C3d (N1 and C307, respectively) are positioned next to each other. Fig. 1B shows the overall structure showing a second CR2-C3d complex (colored in light blue and grey) that dimerizes with the first one in Fig. 1A. The dimerization contact in the two-complex structure is through SCR1 of CR2 at the very top. (Prepared with the program MOLSCRIPT).

The complex contains a V-shaped CR2 receptor binding to a globular C3d ligand (Fig. 1A). The CR2 receptor portion contains two domains (SCR1 and SCR2) that pack against each other almost side to side, producing a drastic bend of 53 degrees between the two domains to give a V-shape. A well-structured linker of 8 amino acids (residues 64-71) connects the SCR1 and SCR2 domains. Both SCR1 and SCR2 domains consist of only beta-strands and coils, which is characteristic of the SCR fold that contains a beta-barrel core structure (A. P. Wiles, et al., *J Mol Biol* 272, 253-65 (1997); P. N. Barlow, et al., *J Mol Biol* 232, 268-84 (1993); J. M. Casasnovas, M. Larvie, T. Stehle, *EMBO J* 18, 2911-22 (1999); R. Schwarzenbacher, et al., *EMBO J* 18, 6228-39 (1999)). The V-shaped two-domain CR2 molecule has a span of 42.6 Å at the base of the molecule (from SCR1 to SCR2), and the height of "V" structure (from base to tip) measures 38.5 Å.

The C3d ligand, which has a dome-shaped structure that consists of mostly alpha helices (B. Nagar, R. G. Jones, R. J. Diefenbach, D. E. Isenman, J. M. Rini, *Science* 280, 1277-81 (1998)), interacts with the receptor using one portion of the edge of the dome. The

CR2-contact edge of C3d is located on nearly the opposite side of the amino (N) and carboxyl (C) termini, which are physically proximate to each other (Fig. 1A). Binding to CR2 through this edge leaves the concave and convex surfaces free and the rest of the iC3b molecule (a form of C3 encompassing the C3d domain with which CR2 also interacts) likely oriented away from CR2 (Fig. 1A). The site of the ester-bond linkage to antigens (Q20) sits approximately half way between the receptor contact edge and the N and C termini of C3d (Fig. 1A). The site of mutation (N223 to D223, Fig. 1A) that defines an important disease-related allelic polymorphism. C3F (fast) versus C3S (slow) (M. C. Poznansky, P. M. Clissold, P. J. Lachmann, *J Immunol* 143, 1254-8 (1989)), is located away from the CR2 interaction site; therefore, this disease association is likely not directly related to CR2 binding but rather to other C3 functions.

Unexpectedly, a dimer of CR2 molecules is formed in the crystal through contacts between SCR1 domains (Fig. 1B). This CR2 dimer has a shape of two letter V's coming together head to head, with SCR1 facing SCR1 and SCR2 facing SCR2. No direct contacts occur between SCR2. This second CR2 is essentially a duplicate of the other CR2 molecule of the dimer that binds to C3d (Fig. 1B).

Description of the structure of CR2

5

10

15

20

25

Figs 2A-2E show the structure of CR2. Fig. 2A is a ribbon representation of the CR2 SCR1 (in red) and SCR2 (in yellow) structures, showing the SCR fold and the packing of the two domains to form a V shape. The side chains of Cys residues that form intra-domain disulfide bonds are colored in cyan. Within each domain, the beta-strands B-E are labeled. A sugar residue GlcNAc (N-acetyl-glucosamine) is seen attached to N102 of SCR2. (Prepared using MOLSCRIPT). Fig. 2B shows the structure and packing interaction at the interface of CR2 SCR1 and SCR2 domains. Residues important for the tight packing between the two domains at the interface and the linker regions are shown (Prepared with the program RIBBONS). Fig. 2C is a surface representation of the two-domain arrangement of CR2. (Prepared using GRASP). Fig. 2D shows the dimerization of CR2 through

interactions between SCR1 of each molecule. Strand D2 and E1 of one CR2 molecule (red) packed against strand E1 and D2 of the second CR2 molecule in the dimer (blue). (Prepared using MOLSCRIPT). Fig. 2E shows a sequence alignment between human CR2 (SEQ ID NO:4) and mouse CR2 (mCR2) (SEQ ID NO:6). The first residue of CR2 (Gly) is changed to Ala in the structure due to PCR primer sequence. Secondary structure elements are shown above the corresponding aligned sequences. A black line represents coils and arrows represent beta-strands. The linker sequence between SCR1 and SCR2 is underlined. The residues whose side-chain or main-chain groups are involved in binding to C3d are indicated by *. The symbol • indicates the two residues that, after mutating from mouse to human sequence, allow mCR2 to gain the ability to bind EBV gp350/220.

5

10

15

20

25

The CR2 structure described here contains residues 1-134 (SEQ ID NO:4; Fig. 2E, corresponding to residues 20-153 of the full length human CR2 (SEQ ID NO:1)) that fold into two SCR domains (Fig. 2A). Each domain shows a basic SCR fold: four anti-parallel beta-strands form a barrel-like beta-sheet. Strand D and E are separated into two segments. D1, D2 and E1, E2. In addition to the hydrogen bonds that hold together the antiparallel beta-strands, two intra-domain disulfide bonds cross-link the coiled N-terminus to strand D2, and strand C to strand E2 (Fig. 2A). A well ordered N-linked GlcNAc (N-acetyl-glucosamine) residue is linked to Asn102 that is located at the tip of SCR2. The rest of the sugar residues were digested away by EndoH.

A very unique feature of the two domain CR2 structure is that the 8 amino acid linker makes a dramatic turn to allow the two SCR domains to pack against each other sideways (Figs. 2A, 2B, 2C). Among the protein family containing SCR domains, the linkers connecting SCR domains are normally 3-5 amino acids in length, while an 8 amino acid linker is the longest known so far. The available structures of four SCR proteins containing two or 4 repeats (A. P. Wiles, et al., (1997), *supra*; P. N. Barlow, et al., (1993), *supra*; J. M. Casasnovas, et al., (1999), *supra*; R. Schwarzenbacher et al., (1999), *supra*) all have end-end

packing between consecutive SCRs, and CR2 is thus the first to demonstrate extensive sideside packing.

In end-end packing, the adjacent domains could, in principle, adopt different rotations and bend angles relative to each other in different environments. Indeed, a commonly held concept is that SCRs are not absolutely fixed relative to each other but rather are allowed some freedom to move about this interface (P. N. Barlow, et al., (1993), ibid.; J. M. Casasnovas, et al.,(1999), ibid.). However, the side-side packing of the CR2 SCR1 and SCR2 would not give the two domains freedom to adopt different orientations, unless some active process is involved to first separate the two domains. The interface between the two domains is mainly hydrophobic (Fig. 2B). Trp112, which is unique to CR2 SCR2 sequence and located on strand D2, plays a critical role in the packing by interacting with Ile39 and the main-chain from SCR1. Trp112 would be unfavorably exposed to the solvent if the two domains do not pack against each other sideways in this manner. In addition to Trp112. several other residues also play a role in the packing, including Pro121, His91, Leu39, and the carbon side chain of Glu64. The 8 amino acid linker, which contains mainly hydrophobic residues such as Tyr65, Phe66. Tyr69, also participates in the hydrophobic packing outside the two-domain interface, further solidifying the interactions between SCR1 and SCR2 (Fig. 2B). The area of the interface of the two SCRs is very extensive, covering almost half of the length of one SCR domain (Fig. 2C). Because of the above mentioned observations of other SCR proteins studied in the absence of their ligands, it will be interesting to see if the packing of these two CR2 SCR domains remains the same in the unliganded crystal and solution states.

10

15

20

25

Two CR2 molecules dimerize through SCR1 SCR1 contacts in the crystal structure (Fig. 2D). The contact is symmetrical, with the E1 strands from different molecules running anti-parallel to each other. The C-terminus of the E1 strand also contacts the C-terminus of the D2 strand of another molecule. The nature of the interaction is hydrogen bonds. In solution, however, the present inventors have found that CR2 behaves like a monomer under

physiological buffer condition as assayed by gel filtration chromatography, though this is a technique that can only detect strong protein-protein interaction. It is possible that the dimer interaction only occurs in the crystal packing and is not of relevance. Another possibility, though, is that the interaction plays biological roles under physiologic conditions, but it is too weak to be detected in solution. Considering that CR2 receptors are largely constrained in the cell membrane to only lateral movement, no strong interactions would be necessary to dimerize.

Description of the structure of the CR2-C3d interface

10

15

20

Figs. 3A-3F show the structure at the CR2-C3d interface. Figs. 3A and 3B show the surface features of the interface area on C3d (in cyan) and CR2 molecule (in yellow). The shape of the interface of one molecule complements that of the other. (Prepared using GRASP). Fig. 3C shows the structure of the CR2 SCR2-C3d complex. The strands of CR2 (yellow) and helices of C3d (cyan) near the interface are labeled to provide a sense of orientation. (Prepared using MOLSCRIPT). Figs. 3D and 3E show the detailed interactions between CR2 (in yellow) and C3d (in cyan) in two angles. Dashed lines represent hydrogen bonds between carbonyl oxygen atoms (in red), nitrogen atoms (in blue) of amino acid side chains or main chain, and water molecules (in purple). (Prepared using RIBBONS). Fig. 3F shows the human C3d sequence (SEQ ID NO:7) with secondary structure assigned on top of the corresponding sequences. The residues involved in CR2 binding are indicated by *. The residue D223 in C3F from (vs. N223 in C3S) is in pink. The residue N170 shown to weaken C3d-CR2 interaction after being mutated to Arg (see Fig. 4) is colored in red. N170 is also the only residue among those involved in CR2 binding that has its side chain in close contact with and pointing toward CR2.

One particularly salient feature of the interface is the shape-matching between C3d and CR2 interacting surfaces, as the protrusions on one molecule exactly match the pits and cavities on the other (Figs. 3A & 3B). The total of the buried area in the interface is 1400 A². The contact interfaces between the receptor and C3d are neither hydrophobic nor

particularly charged, but rather the well-fitted surface shapes from the two molecules come together to form the bonding contact in the complex. No major conformational difference is observed between the structures of free C3d and CR2-bound C3d, except for small movements (0.7-1.0 Å) of H3 (helix 3), H5, H7 and a few turns/loops on the surface.

In the CR2-C3d complex, no continuous stretch of residues on C3d participates in the interactions. Rather, residues that are separated in the linear sequence of C3d, but come together on the folded C3d, interact with CR2. Namely, the residues on the H3-H4 loop (the loop between helix 3 and 4), as well as H5, and H7 make contact with CR2 (Fig. 3C). On the CR2 part, however, a linear stretch of residues within SCR2 domain makes the contact with C3d. The B strand and B-C loop of SCR2 constitute the majority of the interactions with C3d. The nature of the contacts involves elegant networks of hydrogen bonds, plus some hydrophobic and van der Waals interactions (Fig. 3D & 3E).

It is particularly intriguing that only SCR2 directly contacts C3d. Previous studies have shown that both SCR1 and SCR2 are required for binding of polymeric forms of C3d to CR2 on cell membranes (C. A. Lowell, et al., *J Exp Med* 170, 1931-46 (1989); J. C. Carel, et al., *J Biol Chem* 265, 12293-9 (1990); K. R. Kalli, et al., *J Immunol* 147, 590-4 (1991)). The requirement for both domains to bind C3d on the cell surface may be due to the necessity of inter-SCR packing for stabilization of the SCR2 site, or alternatively the dimerization of CR2 mediated by SCR1 plays a necessary role on cell membranes, as discussed later.

Specificity of CR2-C3d interaction

5

10

15

20

25

A few features about the CR2-C3d interactions are very striking. The first of such is the extensive use of main-chain carbonyl oxygen and nitrogen atoms in forming hydrogen bonds (H-bonds) between CR2 and C3d. This is particularly true on the C3d side, where the majority of the H-bond contributors on C3d come from main-chain carbonyl groups (Fig. 3D & 3E). No side chains other than Asn170 on the C3d side are involved in the direct interaction with CR2. This observation likely explains the difficulties in previous efforts to

accurately identify the residues that directly interact with CR2 by site-directed mutagenesis of C3d or by using C3d-derived inhibitory peptides. This interaction mode of CR2-C3d is reminiscent of MHC-antigen peptide recognition where MHC interacts with the main-chain atoms of the antigen peptide in order to allow the limited number of MHC to bind the unlimited variations of antigens for antigen presentation to T cells (P. J. Bjorkman, et al., *Nature* 329, 512-8 (1987)). However, in distinct contrast to the MHC-antigen peptide interaction, the binding between CR2 and C3d through main-chain atoms here does not sacrifice the specificity of the CR2 receptor for C3d ligand due to an additional pronounced shape-fitting requirement, as further evident in later discussion.

5

10

15

20

25

Another important feature concerns one of the major sites for binding CR2 on C3d at the C-terminal end of H5. Here four carbonyl groups, one each from Ile115, Leu116. Glu117 and Gln119 of C3d, are positioned in such a way that, collectively, they form an anion hole at the C-terminus of H5 (Fig. 3D). In the complex structure, this anion hole is occupied by the positively charged Arg84 of CR2 that is located on the B-C loop of SCR2 domain. In this case, CR2 Arg84 acts as a capping residue in-trans to seal the alpha-helical dipole moment at the C-terminus of H5 of C3d. This is in contrast to the usual observation in other protein-ligand interactions that involve an alpha-helical dipole moment, in which usually a negatively charged group interacts with the other protein through the positively charged N-terminus of a helix, possibly because of the easily accessible nitrogen atoms on the main-chain (C. Branden, J. Tooze, Introduction to Protein Structure (Garland Publishing, ed. second edition, 1999) pp.16). However, for CR2 to interact with the negatively charged C-terminus of C3d H5 that is shielded by the particular conformation at the end of H5 and its neighboring structure, it requires CR2 to have a well-matched surface around the positively charged capping residue, providing specificity to the interaction. The sequences and conformation of SCR2 around Arg84 of CR2 provides such a surface that is wellmatched with the complimentary part on C3d, and that provides the necessary specificity for the interaction with C3d.

The conformation of the C3d-binding region, the B-C loop of SCR2 domain on CR2, is thus also important for the specific binding of C3d (Figs. 3C, 3D, 3E). As one means to accomplish this conformation, the B-C loop is held and presented on the surface of CR2 by strand B and C of SCR2 in such a way that Arg84 readily fits into the anion hole at the end of the C3d H5. The residue after Arg84 is Gly85, which does not have a side chain that would interfere with the CR2 and C3d interface interaction. The side chain of Ser86 forms an H-bond with a carbonyl oxygen from the H3-H4 loop of C3d through a water molecule (Fig. 3E). Other residues around Arg84 have side chains pointing away from the interface and use either their main-chain carbonyl oxygen or nitrogen atoms to form H-bonds with C3d. This mode of interaction from the CR2 side predicts that the basic capping residue Arg84, as well as Ser86, are likely the most important residues on this interaction surface, as long as they are presented in a correct conformation.

In this regard, of importance also is a sequence comparison between human CR2 and mouse CR2 (mCR2), both of which bind C3d with similar affinity (D. R. Martin et al... *J Exp Med* 174, 1299-311 (1991): J. D. Fingeroth et al... *Proc Natl Acad Sci U S A* 86, 242-6 (1989)). The SCR1-2 region of human CR2 is represented herein as SEQ ID NO:4 and is compared to the corresponding SCR1-2 region of mouse CR2 (SEQ ID NO:6). At the C3d-interacting interface the B-C loop of mCR2 SCR2 has a basic residue Lys in place of Arg84. while Gly85 and Ser86 are conserved (positions given relative to SEQ ID NO:4). Five other amino acids around Arg84 on the B-C loop are not highly conserved (Fig. 3F). The complex structure reveals, however, that the side chains of these five non-conserved residues do not participate in the CR2-C3d interaction. Importantly, Lys84 in mouse (SEQ ID NO:6) could replace Arg84 (SEQ ID NO:4) as the trans-capping residue for H5. Of interest, outside of the 5 amino acids around Lys84 (SEQ ID NO:6), there are stretches of amino acids that are the most highly conserved between human CR2 and mCR2 (Fig. 2E). These highly conserved segments likely play an important role in presenting the B-C loop in a correct conformation for specific C3d binding to mCR2.

Another feature of the complex structure is the participation of several water molecules in the interaction (Figs. 3D & 3E). Well-ordered water molecules participate in the formation of some H-bonds between CR2 and C3d, acting as water "glue" between the two proteins. Extensive participation of water molecules in mediating receptor-ligand binding is also seen in the interaction between CAR receptor (coxsacki-adenovirus receptor) and adenovirus knob protein (M. C. Bewley et al., *Science* 286, 1579-83 (1999)).

A six-coordinated Zn atom is present on the edge of the interface between CR2 and C3d (Fig. 3D). Glu117 of C3d is the only amino acid side chain that participates in the coordination. The other four coordinates are mediated by water molecules, through which H-bond connections are formed with CR2 main-chain. The contribution of the Zn coordination to the CR2-C3d binding is likely to be insignificant, because no obvious change in formation of the CR2-C3d complex can be detected in buffers with/without Zn ion, or when using a C3d mutant containing a Glu117 to Ala mutation (see next section). In addition, the binding of CR2 with C3d does not demonstrate a known cation dependence.

Example 2

5

Ю

15

20

25

The following example describes the construction of C3d mutants that affect CR2 binding.

Based on the complex structure, mutagenesis of C3d around the interface to disrupt CR2 binding was predicted to be difficult. This is because the interaction between CR2 and C3d involves mostly main-chain H-bonding, and the side chain residues play relatively small roles in the binding. However, to confirm the accuracy of the CR2-C3d interaction seen in this co-crystal structure, two informative C3d mutants were constructed. In mutant 170 (mt170; SEQ ID NO:8), residue Asn170 was changed to Arg. Asn170 is located on H7 of C3d and is the only residue on C3d that more or less points directly toward CR2 in the interface (Fig. 3E). Asn170 also packs directly with Tyr81 of CR2 as well as forms an H-bond with CR2 (Lys100) through a water molecule (Fig. 3E). In solution, this mutant protein

behaved very similarly like the wild type C3d and showed the same apparent molecular weight as the wild type in gel-filtration chromatography, suggesting correct folding. In the binding experiment assayed by native gel shift, however, the interaction between mt170 protein and CR2 was clearly less strong comparing with that between wild type C3d and CR2 (Fig. 4A, lanes 1-4 versus 9-12).

Ś

10

15

20

Briefly, Figs 4A and 4B show a native gel shift assay of the binding between CR2 and C3d wild type (wt) or mutants (mt). Fig. 4A shows a 6% native polyacrylamide gel of C3d alone (lanes 1, 5, and 9) or C3d plus increasing amount of CR2 (other lanes). mt170 C3d alone (lane 9) migrated slower than both wt (lane 1) and mt115 due to the introduction of a positively charged Arg residue at N170 (lane 5). CR2 alone does not enter the gel in this system. The C3d band will be shifted to the upper part of the gel when it forms a complex with CR2. The C3d concentration (for both wt and mt) is the same throughout lanes 1-12. The CR2 added to each corresponding lanes for wt and mt C3d was also the same, e.g. same amount of CR2 was added to the C3d samples in lane 2, 6 and 10, or in lanes 4, 8 and 12. In the lanes with the highest CR2 concentration (lanes 4, 8, 12), the bands of C3d wt and mt115 were completely shifted to the complex form (lane 4, 8), while mt170 (migrated slower than the wt or mt115) still contains an obvious C3d band (lane 12). These results indicate that the interaction between mt170 and CR2 is weaker than that between the wt or mt115 with CR2. The same conclusion can be drawn by comparing the intensity of the bands of the complexes containing the wt, mt115 and mt170. Fig. 4B is a graphical representation showing the intensity changes of the complex bands (measured by densitometry) as CR2 concentration increases from lanes 2 to 4 (wt), or lanes 6 to 8 (mt115). or lanes 10 to 12 (mt170). The result clearly shows that mt170 has less apparent affinity for CR2 than wt and mt115.

The result shown in this experiment is consistent with that predicted by the interaction interface seen in the complex structure. In another mutant of C3d (mt115), although three residues: Gln105, Leu116 and Glu117, were mutated to Ala, the mutant

protein has no obvious effect on CR2 binding (Fig. 4A, lanes 1-4 versus 5-8). This is consistent with the complex structure in that all these three residues, even though located within the interface area, have their side chains pointing sideways and are not involved in the direct contact with CR2. The side chain of Glu117, however, participates in the Zn coordination. This mutant showed that Zn coordination by Glu117 does not contribute significantly to CR2-C3d binding. The coordinated Zn in the structure, therefore, could simply come from the crystallization buffer which contained ZnAcetate.

5

10

15

20

د2

Fig. 4C demonstrates the results of a competitive ELISA analysis using informative C3d mutants. In this analysis, C3d mutant Gln105Ala, Leu116Ala, Glu117Ala (designated mt115 in Figs. 4A and 4B and mut1 in Fig. 4C) manifests an equal ability as wild type C3d to block the binding of soluble full length CR2 to plate-bound wild type C3d. Therefore, mutations of these two residues which utilize only the main-chain atoms to interact with CR2 did not have an effect, which is predicted by the X-ray structure. Two other informative mutants, one Asn170Arg (designated mt170 in Figs. 4A and 4B and mut2 in Fig. 4C, also represented herein as SEQ ID NO:8) and the other a new mutant Asn170Ala, Ile115Arg, Leu116Arg (designated mut4 in Fig. 4C, also represented herein as SEQ ID NO:9), are both unable to effectively block soluble CR2 binding to plate-bound wild type C3d. Therefore, we conclude that two mutations of C3d involving Asn170, whose side-chain interacts with CR2 directly, result in substantially decreased binding to CR2.

Of interest, the mode of interaction seen here is very different from that previously predicted by C3d mutants and C3d-derived peptides (J. D. Lambris et al., *Proc Natl Acad Sci U S A* 82, 4235-9 (1985); R. J. Diefenbach et al., *J Immunol* 154, 2303-20 (1995); L. Clemenza et al., *J Immunol* 165, 3839-48 (2000)). Close examination of the complex structure, however, can explain some of the previous mutagenesis results. For example, residues Asp163, Ile164, and Glu166 of C3d, which affect CR2-binding after being mutated to Ala (Clemenza et al., 2000, *ibid.*), are located on H6 that is juxtaposed to H5 where the major CR2-recognizing anion hole is positioned (Fig. 3D). Based on the structure, it is

obvious that mutations of some of the residues on H6 (such as Ile164) of C3d will affect the relative positions of H6 and H5, which may account for the reduced interaction with CR2. The other group of mutations on C3d (Asp36, Glu37, Glu39) reported to weaken CR2 binding (Clemenza et al., 2000, *ibid.*) are located right next to the N and C termini, and the present inventors' findings cannot account for those results. However, it is of note that this particular site would be juxtaposed to additional large peptides derived from iC3b, and these additional peptides in iC3b would present a steric hindrance for the interaction with CR2 if these residues were to be involved in CR2 binding. The present inventors' observation that CR2 contacts C3d on the opposite side from the N and C termini removes that concern and is more consistent with the observed high affinity binding of CR2 to iC3b.

Example 3

5

10

15

20

25

The following example describes the inhibition of CR2-C3d interaction by CR2-derived peptides.

Based on the structure of the CR2-C3d complex, the results from previously reported CR2 peptide inhibition and monoclonal antibody assays can now be explained. In the peptide inhibition tests using short synthetic peptides covering all of CR2 SCR1 and SCR2, peptides from two regions were shown to inhibit CR2-C3 binding (H. Molina, et al., *J Immunol* 154, 5426-35 (1995)). One of them contains sequences that are located right on the interaction interface of CR2 seen in the complex structure, namely the sequences from the B strand and B-C loop of SCR2 (Figs. 3D & 3E). This independent result strongly supports the complex structure described by the present invention. However, the other peptide located on the B strand of SCR1 also showed a similar inhibition effect as the first one. Close examination of this fragment on CR2 structure within the SCR1 domain revealed a very similar 3-dimensional arrangement of these residues as the one on SCR2, but the sequence is in part reversed. Part of the C3d-binding sequences on the SCR2 B-C loop is 83-IRGSTP-88. The peptide from SCR1 that also has inhibitory effects has a sequence of 11-LNGRIS-16

5

10

15

20

25

(H. Molina et al., 1995, *ibid*). Similarities are apparent between these two peptides if one of the sequences is reversed. Specifically, at the 3-dimensional structure level, the conformation of -NGRI- of the SCR1 peptide looks like a reverse duplicate of -IRGS- on SCR2. However, in a folded CR2 molecule, the structure of the neighboring residues around the peptide on SCR1 restricts the accessibility of the sequences within the peptide, especially the Arg residue. Therefore, this part of CR2 should not be able to bind C3d unless some major conformational switch occurred to expose the segment in a fashion similar to it in a short peptide state.

Example 4

The following example describes the inhibition of CR2-C3d binding by anti-CR2 monoclonal antibodies.

The previously mapped epitope positions on CR2 for inhibitory monoclonal antibodies also support the interaction sites seen in the CR2-C3d complex structure. Two inhibitory antibodies. OKB7 (P. E. Rao et al., *Cell Immunol* 93, 549-55 (1985)) and FE8 (W. M. Prodinger, et al., *J Immunol* 161, 4604-10 (1998)), have epitopes positioned right next to the C3d binding region (Figs. 5A & 5B). The present inventors have also created three new monoclonal antibodies, denoted mAb171, mAb1048 and mAb629, that inhibit the specific binding of CR2 to C3d. All three have mapped epitopes on CR2 lying right within the C3d-interacting area (Fig. 5A, blue area).

Figs. 5A and 5B show the localization of the epitopes of anti-CR2 monoclonal antibodies (mAb) on the CR2 surface. These figures are two views with a 180 degree rotation to each other. The C3d binding site is labeled. All of the mAbs inhibit the interactions between CR2 and C3d to some extent. mAb171, together with 1048 and 629 (colored in blue) have epitopes located within the C3d-binding area. OKB7 (Rao et al., 1985, *ibid.*) (colored in red) and FE8 (Prodinger et al., 1998, *ibid.*) (colored in pink) also have epitopes right next to the C3d-binding region. The green spots indicate the locations

where mutations from mCR2 to hCR2 sequence allow mCR2 to gain the ability to bind EBV gp350/220. The surfaces around these two sites are likely located within the interface between CR2 and gp350/220.

Example 5

5

10

15

20

25

The following example describes a potential gp350/220 binding region in CR2.

Previous evidence suggests that CR2 binds to C3d and EBV gp350/220 with overlapping but distinct sites (D. R. Martin et al., *J Exp Med* 174, 1299-311 (1991); H. Molina et al., *J Biol Chem* 266, 12173-9 (1991); D. R. Martin et al., *J Virol* 68, 4716-26 (1994); H. Molina et al., *J Immunol* 154, 5426-35 (1995)). One instrumental result in this regard has been the ability to transform by point mutation mCR2 into a form capable of binding gp350/220. In this regard, mCR2 and CR2 both bind C3d, but mCR2 does not bind EBV or gp350/220. However, changing the sequence of mCR2 at two amino acids (Pro16 to Ser and Thr69 to Tyr, Fig. 2E) allowed mCR2 to gain the ability to bind EBV (D. R. Martin et al., *J Virol* 68, 4716-26 (1994)). Because of this, the locations of the two mutated residues are likely to be involved in gp350/220 binding. Of interest, these locations mapped on the CR2 surface (green patch on Figs. 5A & 5B) are separated from the blue area that interacts with C3d in the complex structure of the present invention.

Example 6

The following example describes a structure model of CR2 in complex with C3d on the cell surface.

Based on the complex structure, the present inventors propose a model of CR2 binding to C3d or iC3b on the cell surface (Fig. 6). Fig. 6A is a surface representation of the model containing a dimer of CR2 SCR1 and SCR2 that bind to C3d on each receptor. The dimer contact is through SCR1 only, as seen in the crystal structure. Fig. 6B is a diagram of C3d-antigen cross-linking CR2 (as dimers) and BCR on the cell surface. The dimer form of

CR2, as opposed to the monomer, in complex with CD19/CD81 permits the cross-linking of multiple CR2 by C3d-antigen to greatly increase the local concentration of CR2/CD19/CD81.

In this model, CR2 in complex with C3d molecules exists as a dimer through SCR1-SCR1 contact (Figs. 6A & 6B). C3d- or iC3b-bound antigen interacts with SCR2 in such a way that the site of ester-linkage with the antigen (residue Q20) is pointing in the lateral direction (Fig. 6A). This orientation allows CR2 maximum capabilities to interact with C3 bound to many shapes and sizes of antigens. In addition, though, there is also the opportunity for the antigen to cross-link a neighboring CR2 dimer with a second C3d/iC3b attached to it. Repeat of this interaction could cross-link many CR2/CD19/CD81and BCR molecules, with the potential of greatly amplifying down-stream signal transduction. Of interest, previous reports of C3d acting as a molecular adjuvant showed that two or three C3d attached to hen egg lysozyme (HEL) enhanced the IgG1 humoral response to HEL by 1,000 to 10,000 times, but one C3d had a suppressive effect (P. W. Dempsey et al., Science 271, 348-50 (1996)). The model in Fig. 6B provides one potential molecular explanation for this observation. Multiple CR2 dimers can be brought together by two (or more) C3d linked to an antigen, but only two (or three) CR2 monomers can be cross-linked together. Thus, the CR2 dimer model, in contrast to a monomer, allows a dramatic increase of cross-linked CR2/CD19/CD81 and BCR molecules through binding to the antigen with two or more C3d attached, which could account for the 10,000-fold enhancement of the observed immune response.

10

15

20

	$M \ominus TA$	1	CB	ALA A	1	113.978	74.531	51.463	1.00 24.47	A
	MITA	2	C	ALA A	1	113.745	72.085	52.035	1.00 26.48	A
5	ATUM	3	0	ALA A	1	112.896	72.106	52.942	1.00 30.12	A
	ATOM	4	N	ALA A	1	115.853	72.894	51.119	1.00 42.70	A
	MUTA	5	CA	ALA A	1	114.718	73.256	51.995	1.00 33.68	A
	ATOM	5	N	LEU A	2	113.868	71.065	51.232	1.00 24.18	A
	ATOM	7	CA	LEU A	2	112.952	69.905	51.320	1.00 27.55	A
10	MITA	8	CB	LEU A	2	112.148	69.728	50.001	1.00 23.79	A
1 (/	ATUM	9	CG	LEU A	2	110.907	58.774	50.002	1.00 25.21	A
	ATOM	10		LEU A	2	109.785	69.337	50.377	1.00 20.38	A
					2	110.365	68.568	48.562	1.00 22.09	A
	ATOM	11		LEU A		113.635	68.549	51.640	1.00 27.27	A
1.5	MCTA	12	C	LEU A	5				1.00 27.27	A
15	ATOM	13	C	LEU A	2	114.746	58.255	51.172		
	MOTA	14	N	ASP A		112.963	67.734	52.455	1.00 23.38	A
	MOTA	15	CA	ASP A	3	113.426	65.393	52.758	1.00 23.91	A
	ATOM	16	CB	ASP A		114.304	55.307	54.028	1.00 20.20	A
	ATEM	17	CG	ASP A	3	113.619	66.805	55.279	1.00 22.03	A
20	MITA	18		ASP A	3	112.357	66.765	55.433	1.00 20.42	A
	MOTA	19		ASP A	3	114.366	67.274	55.160	1.00 28.30	A
	MITA	20	C	ASP A	3	112.201	65.483	52.875	1.00 23.39	A
	MOTA	21	0	ASP A	3	111.047	65.953	52.784	1.00 18.32	A
	MOTA	2.2	N	ALA A	4	112.438	64.194	53.060	1.00 24.33	A
25	MOTA	23	CA	ALA A	4	111.330	53.24£	53.164	1.00 23.20	A
	ATHI	∑-ŧ	CB	ALA A	4	111.854	61.813	53.188	1.00 17.28	A
	$AT \cup M$	25	С	ALA A	4	110.291	63.499	54.261	1.00 19.39	A
	ATOM	26	0	ALA A	4	109.113	63.369	53.∋58	1.00 16.69	A
	ATOM	27	N	GLU A	5	110.691	63.841	55.491	1.00 16.50	A
30	ATOM	2.8	CA	GLU A	5	109.701	64.055	56.548	1.00 22.14	A
	MUTA	29	CB	GLU A	5	110.301	64.25	57.982	1.00 23.56	A
	ATOM	3.0	CG	GLU A	5	110.935	65.596	58.263	1.00 38.23	A
	ATOM	31	CD	GLU A	5	110.138	бб.605	59.095	1.00 31.60	A
	ATOM	32	OE1	GLU A	5	109.004	66.397	59.598	1.00 31.04	A
35	ATIM	3.3		GLU A	5	110.719	67.671	59.253	1.00 44.56	A
	ATOM	34	С	GLU A	5	108.853	65.2%0	55.203	1.00 20.89	A
	AT DM	35	0	GLU A	5	107.637	65.242	56.419	1.00 22.09	A
	ATOM	36	N	ARG A	6	109.470	66.300	55.662	1.00 17.73	A
	ATOM	37	CA	ARG A	6	108.703	67.491	55.302	1.00 23.39	А
40	MOTA	38	CB	ARG A	6	109.618	63.614	54.815	1.00 25.00	А
10	MOTA	39	CG	ARG A	6	110.433	69.134	55.348	1.00 24.66	A
	MOTA	40	CD	ARG A	6	111.430	70.240	55.489	1.00 30.21	A
	ATOM	41	NE	ARG A	6	112.143	70.710	56.662	1.00 31.75	A
	ATOM	40	CZ	ARG A	6	113.044	71.686	56.675	1.00 37.88	A
15	ATOM	43		ARG A	6	113.377	72.333	55.558	1.00 37.00	A
45				ARG A	6	113.608	72.015	57.830	1.00 32.11	A
	ATUM among	44								
	MOTA	45	C	ARG A	6	107.696	67.156	54.219	1.00 25.83	A
	ATOM	46	0	ARG A		106.532	67.558	54.304	1.00 20.78	A
•	ATOM	47	N	LEU A	7	108.122	56.40+	53.205	1.00 19.13	A
50	MUTA	48	CA	LEU A	7	107.179	КК. 163	52.143	1.00 17.13	A
	ATOM	4.9	CB	LEU A	7	107.916	65.488	50.945	1.00 16.82	A
	ATOM	50	CG	LEU A	7	106.984	65.041	49.805	1.00 23.63	A
	$AT \cap M$	51		LEU A	7	106.086	66.207	49.303	1.00 18.87	A
	ATOM	52		LEU A	7	107.870	64.538	43.676	1.00 25.78	А
55	ATOM	53	C	LEU A	7	106.103	55.075	52.615	1.00 19.67	A

	ATOM	5 -1	O	LEU A	7	104.935	65.191	52.246	1.00 20.24	A
	ATOM	55	11	LYS A	8	106.489	64.099	53.427	1.00 21.02	A
	ATOM	5.5	CA	LYS A	8	105.521	63.110	53.928	1.00 24.15	A
	ATOM	Ē,	ďВ	LYS A	8	106.205	62.100	54.859	1.00 26.98	А
5	ATOM	53	CG	LYS A	8	105.339	60.838	55.146	1.00 09.12	A
	ATOM	5.9	CD	LYS A	8	105.997	59.844	56.108	1.00 48.06	A
	ATOM	6j (j)	CE	LYS A	8	107.390	59.397	55.608	1.00 61.21	A
	ATOM	61	NZ	LYS A		108.117		56.469	1.00 69.61	A
					8		58.353			
	ATOM	62	C	LYS A	8	104.281	63.720	54.630	1.00 22.77	A
10	$M \ominus T A$	63	(<u>)</u>	LYS A	8	103.163	63.203	54.493	1.00 16.94	A
	ATOM	64	N	HIS A	9	104.465	64.778	55.412	1.00 17.13	A
	ATOM	55	CA	HIS A	9	103.303	65.454	56.034	1.00 23.94	A
	ATOM	55	СВ	HIS A	9	103.759	66.675	56.838	1.00 15.51	A
	MOTA	ē. "	CG	HIS A	9	104.457	66.331	58.109	1.00 25.05	A
15	MOTA	68	CD2	HIS A	9	105.755	66.445	58.478	1.00 22.49	A
	$AT \mathcal{O} M$	6.9	NDl	HIS A	9	103.792	65.831	59.209	1.00 24.32	A
	MOTA	70	CEL	HIS A	9	104.649	65.654	60.200	1.00 26.37	A
	ATOM	7.1			9	105.851	66.015	59.786	1.00 31.51	A
	ATOM	72	C	HIS A	9	102.268	65.959	55.002	1.00 24.84	A
20	A'POM	7.3	.Ĵ	HIS A	9	101.161	66.278	55.375	1.00 23.11	A
	ATOM	74	V_{-}	LEU A	10	102.634	66.074	53.721	1.00 18.19	А
	ATOM	75	\sim A \sim	LEU A	10	101.670	66.538	52.730	1.00 22.93	A
	MOTA	76	CB	LEU A	10	102.370	67.210	51.534	1.00 24.09	A
	MOTA	77	CG	LEU A	10	103.171	68.492	51.885	1.00 30.55	A
25	ATOM	78		LEU A	10	103.625	69.205	50.648		A
23										
	MOTA	79			10	102.285	69.415	52.701	1.00 39.35	A
	$AT \hat{\cup} M$	80	C	LEU A	10	100.789	65.391	52.237	1.00 30.17	A
	ATOM	3.1	()	LEU A	10	99.875	65.616	51.442	1.00 31.15	A
	ATOM	92	1.7	ILE A	11	101.065	64.159	52.663	1.00 20.98	A
30	ATOM	83	CA	ILE A	11	100.194	63.053	52.229	1.00 22.19	A
.707			CB	ILE A						
	AT⊖M	54			11	101.002	61.747	52.660	1.00 27.01	A
	MOTA	85	CG2		11	100.044	60.547	51.789	1.00 29.34	A
	$AT \odot M$	86	CG1	ILE A	11	101.984	61.940	50.863	1.00 21.97	A
	MOTA	۶: ۳	CD1	ILE A	11	103.039	60.904	50.736	1.00 31.22	A
35	ATOM	22	C	ILE A	11	99.082	62.956	53.269	1.00 27.58	A
	ATOM	89	Ō	ILE A	11	99.300	62.542	54.411	1.00 16.44	A
	ATOM	90	11	VAL A	12	97.890		52.888		A
							63.403			
	ATOM	91	$\mathbb{C} A$	VAL A	12	96.760	63.400	53.803	1.00 22.74	A
	$AT \hat{\cup} M$	92	CB	VAL A	12	96.392	64.814	54.185	1.00 33.31	A
40	ATOM	93	CGI	VAL A	12	97.530	65.452	55.004	1.00 34.31	A
	MOTA	94	CG2	VAL A	12	96.105	65.600	52.928	1.00 24.64	A
	ATOM	95	C	VAL A	12	95.487	62.726	53.265	1.00 28.78	A
	ATOM	96	(_)	VAL A	12	95.316	62.525	52.061	1.00 25.51	A
	ATOM	.1.7	17	THR A	13	94.577	62.396	54.174	1.00 22.73	A
45	MP_{obs}	1.0	CJ	THR A	13	93.348	61.747	50.787	1.00 24.33	А
	$AT \bigcirc M$	99	CB	THR A	主さ	92.824	60.093	54 947	1.00 28.45	A
	$\Lambda T \odot M$	100	031	THR A	13	93.834	59.921	55.298	1.00 37.00	A
	ATOM	101	0G2	THE A	13	91.503	60.186	54.540	1.00 22.36	A
-0	ATOM	102	er.	THR A	13	92.328	62.811	53.445	1.00 19.70	A
50	ATOM	1:03	0	THR A	13	92.043	63.649	54.254	1.00 18.28	A
	ATOM	104	11	PRO A	14	91.760	62.781	52.239	1.00 23.16	A
	$AT \cup M$	105	CD	PRO A	14	92.057	61.899	51.100	1.00 27.40	A
	ATOM	106	CA	PRO A	14	90.765	63.803	51.883	1.00 23.69	A
	ATOM	107	CB	PRO A	14	90.675	63.699	50.355	1.00 20.22	A
22										
55	ATOM	1⊕8	CG	PRO A	14	90.959	62.232	50.106	1.00 26.75	A

	ATOM	109	С	PRO A	14	89.406	63.564	52.509	1.00 22.95	А
	ATOM	110	0	PRO A	14	89.009	62.415	52.725	1.00 20.64	A
	ATOM	111	N	SER A	15	88.719	64.651	52.845	1.00 19.26	A
	ATOM	112	CA	SER A	15	87.348	64.575	53.337	1.00 25.94	A
£			CB	SER A	15	87.295	64.124	54.797	1.00 25.47	A
5	ATOM	113								
	ATOM	114	ĢG ∼	SEP A	15	88.078	64.979	55.578	1.00 28.02	A
	ATOM	115	C	SEP A	15	86.638	65.928	53.187	1.00 26.13	A
	ATOM	116	0	SEF. A	15	87.227	66.923	52.758	1.00 26.66	A
	MOTA	117	N	GLY A	16	85.364	65.948	53.556	1.00 28.55	А
10	MOTA	118	$\mathbb{C}\mathbf{A}$	GLY A	15	84.593	67.167	53.481	1.00 25.28	A
	MOTA	119	C	GLY A	16	83.748	67.259	52.225	1.00 23.22	А
	MOTA	120	O	GLY A	16	83.667	66.314	51.428	1.00 20.49	A
	ATOM	121	11	ALA A	1.7	83.122	68.421	52.072	1.00 21.03	A
	MOTA	122	CA	ALA A	17	82.258	68.742	50.952	1.00 13.04	A
15	ATOM	123	CB	ALA A	17	81.288	69.898	51.356	1.00 17.15	A
	MOTA	124	C	ALA A	17	83.051	69.097	49.692	1.00 19.33	А
	ATOM	125	Ö	ALA A	17	84.271	68.928	49.643	1.00 22.08	А
	ATOM	126	11	GLY A	13	82.356	69.566	48.668	1.00 17.15	A
	ATOM	127	CA	GLY A	18	82.983	69.869	47.376	1.00 17.27	A
20	ATOM	128	0	GLY A	18	84.233	70.743	47.300	1.00 21.54	A
-0	MOTA	129	Ç)	GLY A	18	84.993	70.629	46.350	1.00 21.54	A
	ATOM			GLU A						Ā
		130	N		19	84.419	71.653 72.488	48.248	1.00 18.40	
	ATOM	131	CA	GLU A	19	85.629		48.258	1.00 22.07	A
2.5	ATOM	132	CB	GLU A	19	85.302	73.929	48.683	1.00 14.92	A
25	MOTA	133	CG	GLU A	19	84.450	74.722	47.650	1.00 19.57	A
	MOTA	134	CD	GLU A	19	84.034	76.086	48.184	1.00 21.03	A
	MOTA	135	OE1		19	84.654	76.565	49.162	1.00 20.93	A
	ATOM	136	OE2		19	83.096	76.694	47.639	1.00 19.11	А
	ATOM	137	Ç	GLU A	19	86.679	71.889	49.203	1.00 18.24	А
30	MOTA	138	(_)	GLU A	19	87.865	71.779	48.822	1.00 17.93	А
	MOTA	139	11	GLN A	20	86.235	71.519	50.415	1.00 15.20	A
	ATOM	140	CA	GLN: A	20	87.084	70.923	51.502	1.00 23.25	A
	ATOM	141	CB	GLN A	20	86.217	70.526	52.751	1.00 23.39	A
	MOTA	140	CG	GLN A	20	85.294	71.692	53.342	1.00 43.73	A
35	MOTA	143	CD	GLN A	20	84.079	71.273	54.296	1.00 42.02	A
	ATOM	144	OE1		20	83.301	70.366	53.989	1.00 38.04	А
	ATOM	145	NE2	GLN A	20	83.924	71.988	55.410	1.00 33.63	А
	ATOM	146	C	GLN A	20	87.816	69.660	50.976	1.00 24.37	А
	ATOM	147	Ö	GLN A	20	88.996	69.451	51.237	1.00 17.83	A
40	ATOM	148	11	ASI: A	21	87.100	68.832	50.225	1.00 15.50	A
40	ATOM	149	CA	ASN A	21	87.677	67.616	49.677	1.00 13.10	A
	ATOM			ASN A	21		66.790	48.967	1.00 13.13	Ā
		150	CB			86.601		48.485	1.00 23.23	
	ATOM	151	CG CD	ASN A	21	87.145	65.457			A
	MOTA	152	CD1	ASN A	21	87.490	64.598	49.294	1.00 17.33	A
45	ΛŢΩΝ	153	MD2	A NRA	21	87.251	65.294	47.168	1.00 17.11	A
	MOTA	154	C	ASN A	21	88.047	67.897	48.721	1.00 01.18	A
	ATOM	155	(¯;	ASN A	21	89.789	67.088	48.658	1.00 21.46	À
	ATOM	156	::	MET A	22	88.737	69.004	47.971	1.00 14.29	A
	MOTA	157	СA	MET A	22	89.850	69.360	47.039	1.00 13.52	A
50	MOTA	158	CB	MET A	22	89.330	70.305	45.939	1.00 19.05	A
	MOTA	159	CG	MET A	22	88.285	69.647	45.064	1.00 20.17	A
	ATOM	160	SD	MET A	22	88.876	68.159	44.293	1.00 28.53	А
	MOTA	161	CE	MET A	22	90.211	68.915	43.271	1.00 21.96	А
	ATOM	162	c.	MET A	22	91.028	69.995	47.767	1.00 15.63	А
55	MOTA	163	Ö	MET A	22	92.159	69.896	47.328	1.00 16.97	A
-										

	MOTA	164	N	ILE A	A 23	90.743	70.644	48.886	1.00 11.88	А
	MOTA	165	CA	ILE A		91.784	71.242	49.714	1.00 19.19	A
		166	СВ	ILE A		91.126	72.029	50.870	1.00 13.50	A
	ATOM									
	MOTA	167		ILE A		92.159	72.357	51.971	1.00 13.80	A
5	MOTA	168	CG1			90.476	73.296	50.297	1.00 16.98	A
	MOTA	169	CD1	ILE A		89.907	74.203	51.351	1.00 17.93	\mathcal{I}_{λ}
	MOTA	170	С	ILE A	A 23	92.597	70.046	50.235	1.00 22.66	A
	MOTA	171	0	ILE A	A 23	93.843	70.053	50.257	1.00 18.47	A
	ATOM	172	N	GLY A		91.892	68.990	50.628	1.00 15.67	A
10	ATOM.	173	CA	GLY A		92.583	67.804	51.110	1.00 17.85	P ₄
• * *	ATOM	174	C	GLY A		93.291	67.056	50.000	1.00 21.53	A
	ATOM	175	0	GLY A		94.439	65.616	50.138	1.00 16.68	Ā
	ATOM	176	N	MET A		92.631	66.918	48.864	1.00 18.50	A
	ATOM	177	CA	MET A		93.234	66.170	47.767	1.00 15.73	A
15	ATOM	178	CB	MET A		92.153	65.985	46.703	1.00 21.35	A
	MOTA	179	CG	MET A		92.469	65.151	45.529	1.00 26.92	A
	MOTA	180	SD	MET A	A 25	90.966	64.905	44.498	1.00 24.37	A
	MOTA	181	CE	MET A	A 25	91.718	63.617	43.360	1.00 17.81	A
	MOTA	182	С	MET A		94.511	66.832	47.185	1.00 23.64	A
20	ATOM	183	0	MET A		95.432	66.146	46.757	1.00 17.81	A
	ATOM	184	N	THP. A		94.577	68.164	47.180	1.00 17.90	A
	ATOM	185	CA	THP. A		95.736	68.856	46.607	1.00 13.87	Ā
	ATOM	186	CB	THR A		95.629	70.395	46.947	1.00 17.83	Į.
	ATOM	187	OG1			94.436	70.869	46.218	1.00 17.83	A
35							71.139	46.262	1.00 17.41	A
25	ATOM	188		THP. A		96.851			1.00 18.73	
	ATOM	189	C	THP. A		97.149	68.423	47.052		A
	ATOM	190	0	THR A		97.990	68.069	46.229	1.00 17.69	A
	ATOM	191	N	PRO A		97.418	68.448	48.353	1.00 13.60	A
	ATOM	192	CD	PRO A		96.664	68.937	49.532	1.00 11.14	A
30	ATOM	193	CA	PRO A		98.788	68.049	48.696	1.00 17.00	I_{λ}
	MOTA	194	CB	PRO A		98.861	68.267	50.218	1.00 12.53	Z,
	MOTA	195	CG	PRO A	A 27	97.406	68.312	50.676	1.00 15.76	A
	ATOM	196	С	PRO A	1 27	99.193	66.662	48.277	1.00 21.64	A
	MOTA	197	0	PRO A	A 27	100.324	66.455	47.840	1.00 19.29	A
35	ATOM	198	N	THE A	A 28	98.273	65.709	48.393	1.00 16.44	A
	ATOM	199	CA	THP. A	A 2.8	98.607	64.333	48.046	1.00 17.14	A
	ATOM	200	CB	THP. A		97.488	63.396	48.522	1.00 13.73	A
	ATOM	201	OG1	THP A		97.290	63.620	49.926	1.00 16.04	A
	ATOM	202		THP A		97.822	61.967	48.263	1.00 20.93	A
40	ATOM	203	C	THP. A		98.827	64.211	46.567	1.00 19.51	A
+0				THP. A			63.572	46.116	1.00 17.31	A
	ATOM	204	0			99.799				
	ATOM	205	N	VAL A		97.957	64.844	45.781	1.00 16.43	A
	ATOM	206	CA	VAL A		98.164	64.762	44.346	1.00 16.98	A
	ATOM	207	CB	VAL A		97.035	65.430	43.524	1.00 21.71	A
45	ATOM	208		VAL A		97.421	65.427	41.999	1.00 14.09	$F_{\mathbf{i}}$
	MOTA	209	CG2	VAL A		95.731	64.619	43.708	1.00 22.05	P_{-}
	MOTA	210	C	VAL A	1 29	99.474	65.393	43.939	1.00 24.43	A
	ATOM	211	0	VAL A	x 29	100.260	64.768	43.179	1.00 19.52	A
	ATOM	213	N	ILE A	4 30	99.767	66.608	44.420	1.00 21.18	A
59	ATOM	213	CA	ILE A		101.022	67.194	43.950	1.00 21.90	A
	ATOM	214	СВ	ILE A		101.165	68.700	44.228	1.00 25.58	А
	ATOM	215		ILE A		100.124	69.422	43.519	1.00 45.44	А
	ATOM	216		ILE A		101.109	68.995	45.713	1.00 20.88	A
	ATOM	217		ILE A		102.385	68.792	46.400	1.00 43.61	A
55	ATOM	218	C	ILE A		102.227	66.495	44.510	1.00 8.84	A
2121	WI OLI	I O	_	ء بنيد ح	, JU	102.22/	00.700	44.010	1.00 0.04	1.7

	ATOM	219	0	ILE A	30	103.227	66.413	43.837	1.00 20.78	A
	ATOM	220	N	ALA A	31	102.137	65.986	45.730	1.00 11.98	A
	ATOM	221	CA	ALA A	31	103.289	65.247	46.282	1.00 16.32	А
	ATOM	222	CB	ALA A	31	102.982	64.774	47.668	1.00 11.90	A
5	ATOM	223	C	ALA A	31	103.613	64.026	45.381	1.00 20.08	А
-	ATOM	224	Ö	ALA A	31	104.779	63.774	45.047	1.00 18.22	A
	ATOM	225	N	VAL A	32	102.594	63.254	45.005	1.00 16.38	A
	ATOM	226	CA	VAL A	32	102.352	62.078	44.161	1.00 18.95	A
	ATOM	227	CB	VAL A	32	101.597	51.176	44.042	1.00 22.56	A
10		228		VAL A			60.122		1.00 22.34	A
10	ATOM			VAL A	32	101.803	60.477	42.937	1.00 13.55	
	ATOM	229			32	101.348		45.364		A
	ATOM	230	C	VAL A	32	103.328	62.569	42.778	1.00 22.75	A
	ATOM	231	0	VAL A	32	104.310	62.061	42.211	1.00 22.15	A
	ATOM	232	N	HIS A	3 3	102.662	63.581	42.234	1.00 17.13	A
15	ATOM	233	CA	HIS A	33	103.113	64.112	40.945	1.00 15.67	A
	ATOM	234	CB	HIS A	33	102.301	65.335	40.554	1.00 19.93	A
	ATOM	235	CG	HIS A	33	102.849	55.078	39.380	1.00 19.22	A
	MOTA	236		HIS A	33	103.579	67.220	39.317	1.00 25.53	A
	MOTA	237		HIS A	3 3	102.541	65.747	38.076	1.00 24.42	A
20	ATOM	238		HIS A	33	103.042	ნნ.ნ61	37.262	1.00 21.19	A
	MOTA	239	NE2	HIS A	33	103.674	67.567	37.992	1.00 27.74	A
	ATOM	240	С	HIS A	33	104.530	64.549	41.036	1.00 15.68	A
	ATOM	241	0	HIS A	33	105.364	64.348	40.108	1.00 20.03	A
	ATOM	242	N	TYR A	34	104.944	65.179	42.144	1.00 16.97	A
25	ATOM	243	CA	TYR A	34	106.217	65.646	42.304	1.00 20.05	A
	ATOM	244	CB	TYR A	34	106.420	66.500	43.571	1.00 19.93	A
	ATOM	245	CG	TYR A	34	107.806	66.882	43.969	1.00 14.48	A
	MOTA	246	CD1	TYR A	34	108.374	63.143	43.629	1.00 19.63	A
	MOTA	247	CE1	TYR A	34	109.672	68.522	44.095	1.00 15.16	A
30	ATOM	248	CD2	TYR A	34	108.597	бб.021	44.746	1.00 21.63	A
	ATOM	249	CE2	TYR A	34	109.889	ь́б.380	45.183	1.00 17.33	A
	ATOM	250	CZ	TYR A	34	110.419	67.633	44.861	1.00 21.32	A
	ATOM	251	OH	TYR A	34	111.495	57.974	45.318	1.00 20.25	A
	ATOM	252	С	TYR A	34	107.326	64.471	42.392	1.00 21.84	A
35	ATOM	253	0	TYR A	34	108.389	54.514	41.770	1.00 20.07	A
	ATOM	254	N	LEU A	35	107.010	63.454	43.197	1.00 19.69	A
	ATOM	255	CA	LEU A	35	107.924	62.333	43.345	1.00 19.40	A
	ATÓM	≟ 56	CB	LEU A	35	107.451	51.435	44.478	1.00 17.56	A
	ATOM	257	CG	LEU A	35	107.527	62.047	45.884	1.00 16.05	А
40	ATOM	258		LEU A	35	106.927	61.165	46.915	1.00 19.26	A
	ATOM	259		LEU A	35	109.123	62.096	46.253	1.00 15.28	A
	ATOM	260	C	LEU A	35	108.066	61.564	42.015	1.00 23.12	А
	ATOM	261	Ō	LEU A	35	109.187	61.215	41.608	1.00 17.85	A
	ATOM	262	N	ASP A	36	106.954	61.305	41.329	1.00 16.70	A
45	ATOM	263	CA	ASP A	36	107.009	50.514	40.024	1.00 21.87	A
1.5	ATOM	264	CB	ASP A	36	105.020	60.458	39.375	1.00 23.42	A
	ATOM	265	CG	ASP A	36	104.122	59.442	40.071	1.00 19.96	A
	ATOM	266		ASP A	36	105.160	58.736	41.003	1.00 23.17	A
	ATOM	267		ASP A	36	103.156	59.366	39.646	1.00 25.39	A
50	ATOM	268	C	ASP A	36	107.830	61.430	39.021	1.00 26.32	A
217	ATOM	269	Ö	ASP A	36	108.750	51.430	38.360	1.00 20.32	A
	ATOM	270	N	GLU A	37	107.505	62.709	38.909	1.00 19.41	A
					37 37	107.595		37.919	1.00 19.41	
	ATOM	271	CA	GLU A GLU A			63.550 64.916			A n
55	ATOM	272	CB		37	107.476 107.620		37.874 36.601	1.00 31.20	A
55	ATOM	273	CG	GLU A	37	107.620	65.640	30.001	1.00 42.72	A

35.676

65.412

1.00 49.79

Α

LYS A

CA

328

ATOM

55

43

	ATOM	329	CB	LYS A	43	115.106	60.173	48.344	1.00 33.24	A
	ATOM	330	CG	LYS A	43	116.398	60.152	47.566	1.00 36.94	А
		331	CD	LYS A	43	117.068	61.498	47.549	1.00 39.52	A
	ATOM									
	ATOM	332	CE	LYS A	43	116.841	62.204	46.242	1.00 39.10	A
5	ATOM	333	NZ	LYS A	43	117.597	63.485	46.197	1.00 37.63	A
	ATOM	33⋅	·C	LYS A	43	113.437	58.885	49.640	1.00 30.60	A
	ATOM	335	(_)	LYS A	43	113.583	59.064	50.854	1.00 28.31	A
	ATOM	335	11	PHE A	44	112.232	58.754	49.089	1.00 23.22	A
	ATOM	3.3 "	$\mathbb{I}A$	PHE A	44	111.061	58.940	49.924	1.00 22.11	A
10	ATOM	338	CB	PHE A	44	109.995	59.654	49.078	1.00 19.24	А
.0	ATOM	339	СЭ	PHE A	44	108.732	59.989	49.809	1.00 21.27	A
	ATOM			PHE A	44	108.627	61.162	50.555	1.00 23.33	A
		340								
	ATOM	341		PHE A	44	107.624	59.154	49.710	1.00 22.69	A
	ATOM	342		PHE A	44	107.424	61.514	51.193	1.00 22.52	A
15	MOTA	343	CE2	PHE A	44	106.405	59.486	50.344	1.00 27.02	A
	ATOM	344	0.3	PHE A	44	106.306	60.674	51.083	1.00 27.40	A
	MOTA	245	0	PHE A	44	110.533	57.628	50.510	1.00 24.45	A
	ATOM	346	ıĵ)	PHE A	44	110.059	57.605	51.647	1.00 18.55	A
	ATOM	347	11	GLY A	45	110.636	56.550	49.730	1.00 20.97	A
20	ATOM	343	$\mathbb{C}A$	GLY A	45	110.142	55.236	50.131	1.00 20.25	A
	ATOM	349	Ĉ	GLY A	45	109.064	54.826	49.136	1.00 23.29	A
	ATOM	350	Õ	GLY A	45	107.871	55.185	49.279	1.00 17.57	A
	ATOM	351	11	LEU A	46	109.465	54.095	48.104	1.00 20.22	A
	ATOM	352	,7,A	LEU A	46	108.525	53.666	47.089	1.00 18.57	A
3.5								45.977	1.00 27.58	A
25	ATOM	353	CB	LEU A	46	109.243	52.881		1.00 27.38	
	ATOM	354	CG	LEU A	46	108.444	52.315	44.770		A
	ATOM	355		LEU A	46	107.661	53.396	44.022	1.00 27.92	A
	MOTA	355		LEU A	46	109.443	51.614	43.809	1.00 32.82	A
	ATOM	357	C	LEU A	46	107.322	52.884	47.611	1.00 23.74	A
30	$AT \cap M$	353	\bigcirc	LEU A	46	106.255	52.927	46.995	1.00 19.46	A
	$AT \bigcirc M$	359	N	GLU A	47	107.450	52.190	48.738	1.00 19.11	A
	ATOM	360	$\mathbb{C}\mathbb{A}$	GLU A	47	106.292	51.453	49.220	1.00 29.84	Α
	ATOM	361	СВ	GLU A	47	106.629	50.448	50.333	1.00 30.68	A
	ATOM	363	CG	GLU A	47	107.600	50.871	51.370	1.00 45.90	A
35	ATOM	363	CD	GLU A	47	107.135	52.019	52.226	1.00 52.96	A
	ATOM	364	OE1	GLU A	4 7	105.927	52.017	52.597	1.00 60.59	A
	ATOM	365	OE2	GLU A	47	107.991	52.901	52.541	1.00 47.47	A
	ATOM	366	Ċ	GLU A	47	105.151	52.350	49.678	1.00 27.56	A
	ATOM	367	Ü	GLU A	47	104.061	51.855	49.854	1.00 24.22	A
40	ATOM	368	11	LYS A	48	105.403	53.655	49.861	1.00 26.01	A
70	ATOM	369	CA	LYS A	48	104.340	54.594	50.262	1.00 20.77	A
			CB	LYS A	48	104.924	55.863	50.888	1.00 20.15	A
	ATOM	370				105.694		52.167	1.00 19.21	A
	MOTA	371	CG	LYS A	48		55.636			
	ATOM	372	CD	LYS A	48	106.344	56.939	52.656	1.00 20.50	A
45	ATOM	3.7.3	CE	LYS A	48	107.190	56.673	53.891	1.00 30.14	A
	$AT \cap M$	3.74	NII	LYS A	48	108.457	55.962	53.556	1.00 03.91	A
	ATOM	375	,,	LYS A	48	103.512	55.013	49.059	1.00 19 66	A
	ATOM	3.76	()	LYS A	48	103 4±5	55.567	49.217	1.00 23.92	A
	ATOM	377	14	AP.G A	49	104.005	54.750	47.850	1.00 17.52	A
50	MOTA	378	CA	ARG A	49	103.257	55.178	46.655	1.00 21.83	А
	ATOM	379	CB	ARG A	49	104.048	54.879	45.360	1.00 16.40	A
	MOTA	380	CG	ARG A	49	103.443	55.612	44.111	1.00 14.73	А
	ATOM	381	CD	ARG A	49	104.410	55.661	42.916	1.00 21.52	А
	ATOM	382	ИE	ARG A	49	103.924	56.478	41.815	1.00 16.66	A
55	ATOM	383	CZ	ARG A	49	103.062	56.056	40.889	1.00 31.21	A
	111 -11	200	Ų <u>2</u>				22.0.0			

	ATOM	384	NHl	ARG A	49	102.592	54.803	40.922	1.00 20.87	А
	ATOM	385	NH2	ARG A	49	102.657	56.894	39.938	1.00 21.02	А
	ATOM	386	C	ARG A	49	101.826	54.612	46.536	1.00 24.68	А
	ATOM	387	0	ARG A	49	100.872	55.334	46.224	1.00 20.52	A
5	ATOM	383	N	GLN A	50	101.681	53.313	46.785	1.00 31.51	A
-'	ATOM	389	CA	GLN A	50	100.398	52.629	46.691	1.00 24.34	A
	ATOM	390	CB	GLN A	50	100.531	51.187	47.168	1.00 33.17	A
				GLN A	50	100.331	50.169	46.142	1.00 46.59	Ā
	ATOM	391	CG							
	ATOM	392	CD	GLN A	50	98.794	50.305	45.608	1.00 42.68	A
10	ATOM	393	0E1	GLN A	50	97.825	50.200	46.346	1.00 40.26	A
	MOTA	394	NE2		50	98.684	50.542	44.308	1.00 47.02	A
	ATOM	395	C	GLN A	50	99.381	53.289	47.577	1.00 27.71	A
	ATOM	396	C	GLN A	50	98.257	53.562	47.157	1.00 18.05	A
	ATOM	397	11	GLY A	51	99.795	53.504	48.822	1.00 19.41	А
15	ATOM	398	CA	GLY A	51	98.944	54.124	49.820	1.00 24.54	A
	ATOM	399	C	GLY A	51	98.517	55.489	49.329	1.00 27.23	A
	ATOM	400	0	GLY A	51	97.347	55.861	49.470	1.00 27.21	A
	ATOM	401	N	ALA A	52	99.444	56.233	48.723	1.00 21.82	A
	ATOM	402	CA	ALA A	52	99.089	57.561	48.220	1.00 21.54	A
20	ATOM	403	CB	ALA A	52	100.343	58.319	47.777	1.00 20.17	A
	ATOM	404	C	ALA A	52	98.117	57.446	47.065	1.00 18.79	A
	ATOM	405	Ō	ALA A	52	97.209	58.265	46.947	1.00 21.57	A
	ATOM	406	11	LEU A	53	98.296	56.436	46.206	1.00 16.94	A
	ATOM	407	CΑ	LEU A	53	97.379	56.279	45.079	1.00 20.49	A
25	ATOM	408	СВ	LEU A	53	97.816	55.148	44.151	1.00 22.88	A
	ATOM	409	CG	LEU A	53	99.197	55.310	43.509	1.00 27.56	A
	ATOM	410		LEU A	53	99.526	54.081	42.643	1.00 28.51	A
				LEU A	53	99.207	56.557	42.665	1.00 19.40	A
	ATOM	411			53	95.207	56.027	45.571		A
3.0	ATOM	412	C	LEU A						
30	ATOM	413	0	LEU A	53	95.014	56.559	44.996	1.00 22.74	A
	ATOM	414	11	GLU A	54	95.838	55.241	46.643	1.00 20.38	A
	ATÓM	415	CA	GLU A	54	94.542	54.937	47.247	1.00 22.21	A
	ATOM	416	СВ	GLU A	54	94.705	53.920	48.404	1.00 12.94	A
	ATOM	41.7	CG	GLU A	54	95.023	52.489	47.951	1.00 41.26	A
35	ATOM	418	CD	GLU A	54	95.587	51.579	49.071	1.00 43.52	A
	ATOM	419	OE1		54	95.476	51.903	50.286	1.00 50.15	A
	MOTA	420	QE2		5 4	96.141	50.514	48.717	1 00 50.86	A
	ATOM	421	C	GLU A	5.1	93.870	56.214	47.801	1 00 24.94	A
	ATOM	422	Ģ	GLU A	54	92.644	56.351	47.710	1.00 21.97	А
40	MOTA	423	1.1	LEU A	55	94.656	57.126	48.392	1.00 18.88	A
	ATOM	424	CA	LEU A	55	94.085	58.351	48.948	1.00 21.65	A
	MOTA	425	CB	LEU A	55	95.099	59.091	49.809	1.00 17.30	A
	ATOM	425	CG	LEU A	55	95.464	58.303	51.072	1.00 26.70	A
	ATOM	427		LEU A	55	96.576	59.072	51.841	1.00 25.33	A
45	ATOM	428		LEU A	55	94.196	58.153	51.981	1.00 20.15	А
	ATOM	429	(<u></u>	LEU A	55	93.646	59.229	47.802	1.00 18.82	А
	ATOM	430	Ö	LEU A	55	92.613	59.897	47.903	1.00 15.55	A
	ATOM	431	11	ILE A	56	94.413	59.218	46.712	1.00 15.81	A
	ATOM	437	ΞĀ	ILE A	56	94.065	60.024	45.513	1.00 16.74	A
50							59.930	44.390	1.00 18.74	A
50	ATOM	433	CB	ILE A	56	95.151 94.710				
	ATOM	434		ILE A	56 56		60.691	43.120	1.00 25.29	A
	ATOM	435		ILE A	56	96.461	60.644	44.806	1.00 20.28	A
	ATOM	436		ILE A	56	96.234	61.948	45.382	1.00 40.37	A
	ATOM	437	C	ILE A	56	92.723	59.508	44.945	1.00 25.52	A
55	MOTA	438	Ċ	ILE A	56	91.816	60.297	44.615	1.00 18.85	A

		_	92 589 58.183 44.822 1.00 20.21	A
	ATOM	439 N LYS A 57	92.389 30.103 - 44.308 1.00 19.21	A
	MOTA	440 CA LYS A 57	21 405 56 088 44 221 1.00 26.24	A
	ATOM	441 CB LYS A 57	31.40	A
	ATOM	442 CG LYS A 57	00.531 53.831 43.577 1.00 39.50	A
5	ATOM	443 CD LYS A 57	23 200 53 088 43 091 1.00 45.08	A
•	MOTA	444 CE LYS A 57	00.516 51 637 42.936 1.00 50.42	A
	MOTA	445 NZ LYS A 57	23 103 57 952 45 242 1.00 23.30	A
	MOTA	446 C LYS A 57	20 202 59 273 44 789 1.00 20.92	A
	MOTA	447 O LYS A 57	20 415 57 902 46.550 1.00 15.98	A
10	MOTA	448 N LYS A 58	20 401 50 260 47 513 1.00 1/.12	A
	MOTA	449 CA LYS A 58	89 971 58.041 48.937 1.00 18.85	A
	MOTA	450 CB LYS A 58	02 073 50 307 50 047 1.00 25.94	A
	MOTA	451 CG DIO	50 401 57 947 51.437 1.00 35.63	A
	MOTA	451 CD B15	88 639 58.677 52.501 1.00 42.54	A A
15	MOTA	455 CH 220	88 738 58.038 53.858 1.00 50.94	A
	MOTA	454 142 220	20 011 50 749 47 300 1.00 25.76	A
	MOTA	433 0 220	87 808 60.095 47.288 1.00 22.01	A
	MOTA	436 0 225	89 999 60.629 47.099 1.00 21.23	Ā
	MOTA	45/ N G22	89.691 62.041 46.894 1.00 23.41	A
20	MOTA	456 CA 021	88 819 62.247 45.664 1.00 23.32	A
	MOTA	459 C 021 -	87.820 62.978 45.683 1.00 21.04	A
	MOTA	460 0 321	89.213 61.576 44.588 1.00 21.05 89.213 61.612 43.312 1.00 23.66	A
	MOTA	401 1 220	88.51/ 91.932	A
	ATOM	462 CA 111 0	89.244 60.776 22 2 0 0 25 98	A
25	MOTA	403 CD 1111 -	88.456 60.499 41.039 1.00 23.56	A
	MOTA	464 CG TYR A 60 465 CD1 TYR A 60	88.276 01.473	А
	MOTA	466 CE1 TYR A 60	87.570 01.230 1 00 27 02	А
	ATOM	467 CD2 TYR A 60	87.893 33.223 610 1 00 23 07	А
	ATOM	468 CE2 TYP A 60	8/.180 38.300 37.86	A
30	MOTA MOTA	469 CZ TIR A 60	87.027 33.332 400 1 00 19 73	A
	ATOM	470 OH TYP A 60	86.347 59.750 3.7 1.00 23.97	A
	ATOM	471 C TYP A 60	87.089 01.134 12.00 15.61	A
	ATOM	472 O TYR A 60	86.129 61.776 41 029 1 00 22.77	A
2.5	ATOM	473 N THR A 61	86.947 33.334 1.105 1.00 22 30	А
35	MOTA	474 CA THR A 61	85.615 33.303 1 00 30 49	Α
	ATOM	475 CB THR A 61	85.739 30.003 1.00 31 94	А
	ATOM	476 OG1 THR A 61	86,446	A
	MOTA	477 CG2 THR A 61	94 371 37.401 15.008 1.00 23.97	A
40	ATOM	478 C THR A 61	84.724 60.216	A
70	ATOM	479 O THR A 61	35.351 60.743 46 108 1.00 20.42	A
	ATOM	480 N GLN A 62	2. 476 61 619 46.958 1.00 23.93	A
	MOTA	481 CA GLN A 62	25 255 61 966 48 242 1.00 24.47	A
	MOTA	482 CB GLN A 62	05.203 60.776 49.207 1.00 26.29	A
45	MOTA	483 CG GLN A 62	36.265 60.940 50.385 1.00 27.78	A
	MOTA	484 CD GLN A 62	26 262 60 126 51.289 1.00 27.57	A
	ATOM	485 OE1 GLN A 62	07 202 61 980 50.362 1.00 22.36	A
	MOTA	486 NE2 GLN A 62	84 037 62.885 46.215 1.00 19.82	A
	MOTA	487 C GLN A 64	82 903 63.334 46.374 1.00 21.86	
50	MOTA	488 O GLN A 62	84 910 63.441 45.382 1.00 20.60	A
•	MOTA	489 N GLN A 63	04 500 64 669 44.667 1.00 23.70	A
	MOTA	490 CA GLN A 63	85 772 65.168 43.862 1.00 17.42	A
	ATOM	491 CB GLN A 63	25 660 66 602 43,360 1.00 15.84	A
	ATOM	492 CG GLN A 63	85.470 67.642 44.449 1.00 18.31	А
55	MOTA	493 CD GLN A 63		

	MOTA	494		GLN A	63	85.851	67.455	45.610	1.00 15.34	A
	ATOM	495		GLN A	63	84.900	68.779	44.052	1.00 17.92	A
	ATOM	496	C	GLN A	63	83.371	64.460	43.721	1.00 27.22	A
	ATOM	497	0	GLN A	63	82.590	65.388	43.471	1.00 16.84	A
5	MOTA	498	N	LEU A	64	83.223	63.249	43.201	1.00 18.15	A
	ATOM	499	CA	LEU A	64	82.113	62.984	42.289	1.00 20.34	A
	ATOM	500	CB	LEU A	64	82.194	61.562	41.738	1.00 20.67	A
	MOTA	501	CG	LEU A	64	83.460	61.266	40.904	1.00 29.97	A
	MOTA	502	CD1	LEU A	64	83.341	59.848	40.328	1.00 28.53	A
10	ATOM	503	CD2	LEU A	64	83.645	62.308	39.769	1.00 25.04	A
	MOTA	504	С	LEU A	64	80.791	63.214	42.971	1.00 20.30	A
	MOTA	505	0	LEU A	64	79.818	63.568	42.314	1.00 23.21	A
	ATOM	506	N	ALA A	65	80.708	63.015	44.288	1.00 15.07	A
	ATOM	507	CA	ALA A	65	79,459	63.267	44.975	1.00 19.06	A
15	ATOM	508	CB	ALA A	65	79.595	62.955	46.447	1.00 19.25	А
	ATOM	509	C	ALA A	65	79.010	64.717	44.790	1.00 19.22	А
	ATOM	510	0	ALA A	65	77.864	65.042	45.087	1.00 24.93	А
	ATOM	511	N	PHE A	66	79.895	65.592	44.314	1.00 22.94	А
	ATOM	512	CA	PHE A	66	79.533	67.015	44.134	1.00 22.02	A
20	ATOM	513	CB	PHE A	66	80.481	67.908	44.943	1.00 21.43	A
	ATOM	514	CG	PHE A	66	80.548	67.511	46.386	1.00 24.76	A
	MOTA	515		PHE A	66	79.542	67.914	47.287	1.00 21.43	A
	ATOM	516	CD2		66	81.573	66.657	46.840	1.00 20.02	Λ
	ATOM	517		PHE A	66	79.555	67.467	48.605	1.00 22.96	A
25	ATOM	518	CE2		66	81.594	66.203	48.162	1.00 18.70	A
2	ATOM	519	CZ	PHE A	66	80.534	66.611	49.049	1.00 21.49	A
	ATOM	520	C	PHE A	66	79.511	67.461	42.693	1.00 17.64	A
	ATOM	521	0	PHE A	66	79.405	68.673	42.389	1.00 18.14	A
	ATOM	522	N	ARG A	67	79.606	66.481	41.796	1.00 21.16	A
30	ATOM	523	CA	ARG A	67	79.541	66.745	40.354	1.00 23.23	A
.,0	ATOM	524	CB	ARG A	67	79.971	65.496	39.598	1.00 23.23	A
	ATOM	525	CG	ARG A	67	79.896	65.665	38.107	1.00 28.17	A
	ATOM	526	CD	ARG A	67	86.315	64.386	37.363	1.00 25.25	A
	ATOM	527	NE	ARG A	67	80.344	64.619	35.923	1.00 25.71	A
35	ATOM	528	CZ	ARG A	67	80.004	63.715	35.012	1.00 26.53	A
3.	ATOM	529		ARG A	67	79.601	62.496	35.388	1.00 23.05	A
	MOTA	530		ARG A	67	80.089	64.028	33.724	1.00 25.05	A
	ATOM	531	C	ARG A	67	78.055	67.034	40.044	1.00 25.46	A
	ATOM	532	0	ARG A	67	77.223	66.244	40.427	1.00 18.92	Ā
40	ATOM	533	N	GLN A	68	77.716	68.150	39.395	1.00 18.32	A
40	ATOM	534	CA	GLN A	68	76.30 5	68.440	39.084	1.00 20.68	A
	MOTA	535	CB	GLN A	68	76.073	69.964	39.186	1.00 23.31	A
				GLN A	68	76.532			1.00 17.98	A
	MOTA	536					70.448			
1.5	MOTA	537	CD	GLN A	68	75.990	71.790		1.00 25.72	A
45	MOTA	538		GLN A	68	75.464	72.528		1.00 23.05	A
	MOTA	539		GLN A	68	76,132	72.140	42.206	1.00 15.43	A
	ATOM	540	C	GIN A	68	75.871	67.887	37.722	1.00 16.68	A
	MOTA	541	0	GLN A	68	76.704	67.367	36.998	1.00 19 76	A
50	MOTA	542	И	PRO A	69	74.563	67.945	37.368	1.00 22.91	A
50	ATOM	543	CD	PRO A	69	73.385	68.286	38.198	1.00 21.74	A
	ATOM	544	CA	PRO A	69	74.144	67.408	36.046	1.00 20.68	A
	MCTA	545	CB	PRO A	69	72.628	67.698	35.995	1.00 17.83	A
	MOTA	546	CG	PRO A	69	72.208	67.532	37.454	1.00 16.18	A
	MOTA	547	C	PRO A	69	74.886	68.078	34.892	1.00 23.73	A
55	ATOM	548	0	PRO A	69	75.152	67.467	33.875	1.00 23.28	A

	ATOM	549	N	SER A	70	75.246	69.340	35.086	1.00 24.11	A
				SER A	70	75.975	70.114	34.092	1.00 23.11	A
	ATUM	550	CA							
	ATOM	551	CB	SER A	70	76.000	71.580	34.528	1.00 20.68	A
	ATOM	552	OG	SER A	70	76.662	71.709	35.7 9 3	1.00 27.57	A
5	ATOM	553	С	SER A	70	77.436	69.654	33.942	1.00 27.84	A
	ATOM	55 4	0	SER A	70	78.127	70.080	33.021	1.00 24.67	A
		555	N		71	77.885	68.805	34.868	1.00 19.80	A
	ATEM			SER A						
	MUTA	556	CA	SER A	71	79.288	68.333	34.971	1.00 20.11	A
	AT I:M	557	CB	SER A	71	79.953	68.052	33.613	1.00 22.15	A
10	ATCM	558	OG	SER A	71	79.498	66.853	33.011	1.00 21.54	A
	ATOM	559	С	SER A	71	80.131	69.401	35.702	1.00 20.52	A
	ATOM	560	0	SER A	71	81.329	69.262	35.782	1.00 19.50	A
	ATOM	561		ALA A	72	79.522	70.477	36.199	1.00 19.13	A
			N							
	ATOM	562	CA	ALA A	72	80.273	71.479	36.973	1.00 21.30	A
15	ATOM	563	CB	ALA A	72	79.665	72.897	36.823	1.00 16.76	A
	$AT \odot M$	564	C	ALA A	72	80.250	71.064	38.447	1.00 24.51	A
	ATOM	565	0	ALA A	72	79.540	70.122	38.840	1.00 20.95	A
	$AT\Theta M$	566	N	PHE A	73	81.026	71.773	39.266	1.00 22.89	A
	ATOM	567	CA	PHE A	73	81.113	71.484	40.695	1.00 19.84	A
20			CB	PHE A	73	82.541	70.953	41.056	1.00 16.24	A
20	ATOM	568								
	MOTA	569	CG	PHE A	73	82.890	69.625	40.409	1.00 17.75	A
	ATOM	570		PHE A	73	83.265	69.554	39.067	1.00 14.21	A
	ATOM	571	CD2	PHE A	73	82.791	68.439	41.140	1.00 21.80	A
	ATOM	572	CE1	PHE A	73	83.527	68.310	38.447	1.00 18.43	A
25	ATOM	573	CE2	PHE A	73	83.048	67.196	40.546	1.00 20.67	A
	ATCM	574	CZ	PHE A	73	83.418	67.115	39.190	1.00 17.64	A
	ATOM	575	C	PHE A	73	80.846	72.708	41.561	1.00 15.55	A
	ATOM	576	0	PHE A	73	81.079	73.846	41.134	1.00 17.42	A
	ATOM	57 7	N	ALA A	74	80.392	72.437	42.787	1.00 18.86	A
30	ATOM	578	CA	ALA A	74	80.196	73.440	43.842	1.00 21.20	A
	ATOM	579	CB	ALA A	74	78.774	74.076	43.782	1.00 14.22	A
	ATOM	580	С	ALA A	74	80.381	72.705	45.171	1.00 19.11	A
	ATOM	581	Ö	ALA A	74	80.364	71.471	45.211	1.00 23.95	A
							73.456		1.00 23.33	A
	ATOM	582	N	ALA A	75	80.579		46.259		
35	ATOM	583	CA	ALA A	75	80.738	72.883	47.584	1.00 21.11	A
	$AT \cup M$	584	CB	ALA A	75	80.813	73.959	48.592	1.00 12.54	A
	$AT \odot M$	585	C	ALA A	75	79.600	71.944	47.961	1.00 19.04	A
	$AT \oplus M$	586	0	ALA A	75	79.821	70.901	48,589	1.00 18.22	A
	MCTA	587	N	PHE A	76	78.386	72.317	47.591	1.00 20.53	A
40	ATOM	588	CA	PHE A	76	77.202	71.519	47.920	1.00 15.82	A
40				PHE A	76	76.420	72.195	49.053	1.00 17.12	A
	MOTA	589	CB							
	ATOM	590	CG	PHE A	76	77.249	72.514	50.258	1.00 26.60	A
	ATOM	591	CD1	PHE A	76	77.723	71.505	51.098	1.00 27.70	A
	ATOM	592	CD2	PHE A	76	77.576	73.824	50.551	1.00 22.87	A
45	ATOM	593	CE1	PHE A	76	78.512	71.807	52.212	1.00 22.16	A
	ATOM	594		PHE A	76	78.367	74.125	51.667	1.00 28.08	A
	ATOM	595	CZ	PHE A	76	78.832	73.124	52.490	1.00 23.72	A
	ATCM	596	C	PHE A	76	76.343	71.444	46.654	1.00 03 48	A
	ATUM	597	0	PHE A	76	76.308	72.404	45.866	1.00 15.81	A
50	ATOM	598	N	VAL A	77	75.639	70.327	46.465	1.00 19.15	A
	ATUM	599	CA	VAL A	77	74.845	70.141	45.255	1.00 23.84	A
	ATOM	600	CB	VAL A	77	74.279	68.688	45.144	1.00 24.38	A
	ATOM	601		VAL A	77	75.456	67.682	44.930	1.00 20.82	A
									1.00 20.02	
	ATOM	602		VAL A	77	73.465	68.349	46.390		A
55	MCTA	603	С	VAL A	77	73.701	71.122	45.082	1.00 20.75	A

	MOTA	504	0	VAL A	77	73.201	71.320	43.973	1.00 24.71	A
							71.723			A
	MOTA	505	N	LYS A	78	73.302		45.184	1.00 15.92	
	$M \cap TA$	506	CA	LYS A	78	72.245	72.712	45.200	1.00 28.31	A
	ATOM	5:)7	CB	LYS A	78	71.642	72.818	47.590	1.00 31.59	A
					78	70.888		47.898	1.00 52.94	A
5	ATCH1	6.18	CG	LYS A			71.559			
	ATCM	509	CD	LYS A	78	69.877	71.71∌	43.992	1.00 60.83	A
	ATOM	510	CE	LYS A	78	68.914	70.543	48.967	1.00 61.05	A
	ATOM	511	NZ	LYS A	78	68.246	70.353	47.672	1.00 30.69	A
	ATOM	612	C	LYS A	78	72.755	74.071	45.823	1.00 26.47	А
10	$AT \odot M$	613	0	LYS A	78	71.956	74.971	45.569	1.00 24.70	A
	ATOM	614	N	ARG A	79	74.080	74.223	45.818	1.00 20.39	A
	ATOM	515	CA	ARG A	79	74.723	75.499	45.514	1.00 21.78	A
	$AT \odot M$	ნ1ნ	CB	ARG A	79	76.013	75.592	46.349	1.00 19.49	A
	$M \odot TA$	617	CG	ARG A	79	76.859	76.847	46.120	1.00 23.95	A
15	$AT \odot M$	518	CD	ARG A	79	78.098	76.897	47.058	1.00 20.40	A
••				ARG A	79	78.758	78.204	47.005	1.00 25.41	A
	AT⊙M	619	NE							
	$AT \odot M$	620	CZ	AP.G A	79	78.559	79.167	47.899	1.00 30.60	А
	ATOM	621	NH1	ARG A	79	77.724	78.956	48.915	1.00 29.61	A
	ATOM	622	ИНЭ	ARG A	79	79.177	80.338	47.780	1.00 23.38	А
3.0										
20	MCTA	623	С	AP.G A	79	75.036	75.716	44.030	1.00 21.79	A
	ATEM	624	0	ARG A	79	75.417	74.764	43.332	1.00 19.63	A
	ATOM	625	N	ALA A	80	74.877	76.967	43.553	1.00 21.57	A
	ATOM	626	CA	ALA A	80	75.180	77.331	42.159	1.00 26.40	A
	ATOM	627	CB	ALA A	80	74.960	78.868	41.923	1.00 22.62	A
25	ATOM	628	С	ALA A	80	76.659	76.953	41.914	1.00 20.22	A
	ATOM	629	0	ALA A	80	77.519	77.179	40.780	1.00 23.83	A
	ATOM	630	N	PRO A	81	76.959	76.365	40.744	1.00 23.02	A
	ATOM	631	CD	PRO A	81	75.984	76.235	39.641	1.00 22.02	A
	$AT \odot M$	632	CA	PRO A	81	78.301	75.909	40.337	1.00 20.18	A
30	ATOM	533	CB	PRO A	81	78.046	75.207	38,995	1.00 23.34	A
	ATIM	634	CG	PRO A	81	76.879	75.999	38.416	1.00 25.62	A
	ATOM	635	С	PRO A	81	79.370	76.990	40.238	1.00 24.53	A
	ATOM	636	0	PRO A	81	79.132	78 .085	39.736	1.00 18.24	A
	ATOM	637	N	SER A	82	80.560	76.677	40.736	1.00 18.76	A
35	ATOM	538	CA	SER A	82	81.648	77.630	40.669	1.00 15.88	A
22										
	MOTA	639	CB	SER A	82	82.494	77.549	41.942	1.00 19.09	A
	$M \cap T A$	640	OG	SER A	82	83.781	78.102	41.725	1.00 15.72	A
	ATIM	541	C	SER A	82	82.529	77.411	39.437	1.00 18.93	A
	ATOM	642	0	SER A	82	82.981	76.286	39.114	1.00 17.23	A
40										
40	$AT \cap M$	643	И	THR A	83	82.762	78.494	38.725	1.00 17.20	A
	$AT \oplus M$	544	CA	THR A	83	83.628	78.442	37.544	1.00 16.78	Α
	ATOM	5 4 5	CB	THR A	83	83.692	79.829	36.868	1.00 19.03	A
	ATOM	546	OG1	THR A	83	82.397	80.168	36, 393	1.00 20.73	А
	AT M	547	CGS	THR A	83	84.666	79.840	35.692	1.00 17.21	A
15	$\Delta T \cap M$	648	C	THR A	83	85.060	78.0€9	38.027	1.00 20.11	A
	ATOM	649	0	THR A	83	85.740	77.114	37.446	1.00 15.09	Λ
	ATOM	650	N	TRP A	84	85.514	78.745	39.084	1.00 16.86	A
	ATIM	551	CA	TRP A	84	86.839	78.483	39.627	1.00 24.71	Λ
	$M \cap TA$	552	CB	TRP A	84	87.171	79.427	40.780	1.00 16.82	A
50	ATOM	653	CG	TRP A	84	88.624	79.255	41.247	1.00 17.86	A
-	ATOM	654	CD2	TRP A	84	89.106	78.315	42.218	1.00 16.17	A
	ATOM	ń 5 5	CE2	TRP A	84	90.510	78.464	42.284	1.00 22.04	A
	ATOM	ნ56	CE3	TRP A	84	88.486	77.366	43.035	1.00 17.61	A
	ATOM	657		TRP A	84	89.727	79.915	40.783	1.00 23.03	А
5.5										A
55	ATOM	658	MET	TRP A	84	90.859	79.447	41.405	1.00 16.07	A

						01 200	77 (06	43.141	1.00 21.59	A
	MOTA	659		TRP A	84	91.308	77.686	43.892	1.00 21.38	А
	MOTA	660		TRP A	84	89.279	76.595	43.832	1.00 17.83	А
	ATOM	651	CH2	TRP A	84	90.670	76.759		1.00 22.89	A
	ATOM	662	С	TRP A	84	87.001	77.049	40.136	1.00 18.84	A
5	ATOM	663	0	TRP A	84	87.973	76.398	39.800	1.00 23.94	A
	ATOM	654	N	LEU A	85	86.065	76.561	40.949		A
	MOTA	655	CA	LEU A	85	86.175	75.193	41.495	1.00 19.54	A
	ATOM	666	СВ	LEU A	85	85.011	74.891	42.475	1.00 14.42	
	ATOM	657	CG	LEU A	85	85.115	73.580	43.258	1.00 19.45	A
10	ATOM	668	CD1	LEU A	85	86.371	73.566	44.197	1.00 11.14	A
10	ATOM	669		LEU A	85	83.825	73.422	44.060	1.00 18.37	A
	ATOM	670	C	LEU A	85	86.175	74.195	40.356	1.00 24.50	A
	ATOM	671	Ō	LEU A	85	86.994	73.257	40.330	1.00 19.38	A
	ATOM	672	N	THR A	86	85.285	74.413	39.383	1.00 15.67	A
, -	ATOM	673	CA	THP. A	86	85.226	73.494	38.279	1.00 18.11	A
15	ATOM	674	CB	THP. A	86	84.068	73.818	37.357	1.00 17.96	A
		675		THE A	86	82.871	73.696	38.127	1.00 12.56	A
	ATOM	675	CG2		86	84.007	72.851	36.202	1.00 14.63	A
	MOTA	677	C	THP. A	86	86.534	73.480	37.569	1.00 18.80	A
	MOTA	678	0	THE A	86	87.057	72.395	37.283	1.00 15.97	A
20	MOTA		N O	ALA A	87	87.111	74.657	37.315	1.00 15.61	А
	MOTA	679	CA	ALA A	87	88.422	74.679	36.645	1.00 21.28	A
	ATOM	680		ALA A	87	88.812	76.132	36.265	1.00 17.13	A
	ATOM	681	CB	ALA A	87	89.532	74.068	37.535	1.00 21.82	A
	ATOM	682	C	ALA A	87	90.531	73.527	37.036	1.00 18.47	A
25	ATOM	683	C)	TYR A	88	89.400	74.203	38.845	1.00 16.96	A
	ATOM	684	11		88	90.439	73.637	39.708	1.00 19.62	A
	ATOM	685	CA	TYR A	88	90.324	74.155	41.140	1.00 17.51	A
	ATOM	686	CB		88	91.533	73.749	41.989	1.00 17.09	A
	ATOM	687	CG	TYP A	88	92.843	73.975	41.528	1.00 17.39	A
30	MOTA	688		TYP. A	88	93.947	73.554	42.259	1.00 18.75	A
	ATOM	689		TYP A		91.366	73.093	43.214	1.00 20.06	A
	MOTA	690	CD2		88	92.475	72.663	43.971	1.00 20.12	A
	MOTA	691	CE2		88	93.746	72.903	43.488	1.00 20.21	A
	MOTA	692	CZ	TTP. A	88	94.817	72.537	44.255	1.00 13.27	А
35	MOTA	693	ОH	TIP. A	88	90.318	72.119	39.706	1.00 21.43	A
	MOTA	694	C	TYR A	88	91.316	71.390	39.776	1.00 16.93	A
	MOTA	695	0	TYR A	88	89.092	71.625	39.636	1.00 19.57	A
	MOTA	596	N	VAL A	89	88.949	70.192	39.599	1.00 19.82	A
	MOTA	697	CA	VAL A	89	87.486	69.796	39.599	1.00 18.50	A
40	ATOM	698	CB	VAL A	89	87.331	68.263	39.251	1.00 15.01	A
	MOTA	699		L VAL A	89		70.101	40.995	1.00 13.83	A
	MOTA	700		2 VAL A	89	86.918	69.678	38.349	1.00 23.95	A
	MOTA	701	C	VAL A		89.659		38.395	1.00 18.30	A
	MOTA	702	\circ	VAL A		90.348	68.656	37.232	1.00 17.40	A
45	MOTA	703	11	VAL A		89.491	70.382	35.990	1.00 18.85	A
	MOTA	704	CA	VAL A		90.160	69.981	34.791	1.00 19.41	A
	MOTA	705		VAL A		89.724	70.929	33.553	1.00 13.53	A
	MOTA	706		ı VAL A		90.600	70.715	34.399	1.00 17.29	A
	MOTA	207	33.	2 Wat. A		88.248	70.648		1.00 19.91	À
50	MOTA	708	C	VAL A	. 90	91.703	70.043	36.175		A
	ATOM	709	Ċ	VAL A	90	92.452		35.696	1.00 20.47 1.00 20.83	A
	ATOM	710	11	LYS A		92.181			1.00 20.63	A
	MOTA	711	CA	LYS A	91	93.614				A
	MOTA	712		LYS A	91	93.861				A
55	ATOM	713		LYS A	91	95.232	73.277	37.527	1.00 24.31	A
7,7,										

	3.000	7.1	an.		6.3	05 603	72 070	20 017	1 00 00 00	75
	ATOM	714	CD	LYS A	91	95.603	73.978	38.817	1.00 28.86	A
	MOTA	715	CE	LYS A	91	96.264	75.359	38.681	1.00 41.38	A
	MOTA	716	NZ	LYS A	91	97.276	75. 4 77	37.603	1.00 23.09	A
	MOTA	717	C	LYS A	91	94.176	70.090	37.904	1.00 22.83	A
5	MOTA	718	0	LYS A	91	95.288	69.615	37.659	1.00 28.75	A
-	ATOM	719	N	VAL A	92	93.422	69.641	38.908	1.00 16.52	A
				VAL A	92	93.938	68.571	39.767	1.00 15.54	A
	ATOM	720	CA							
	MOTA	721	CB	VAL A	92	93.220	68.564	41.134	1.00 14.74	A
	MOTA	722	CG1	VAL A	92	93.669	67.333	41.957	1.00 12.97	A
10	ATOM	723	CG2	VAL A	92	93.531	69.882	41.912	1.00 15.57	A
	MOTA	724	C	VAL A	92	93.780	67.195	39.100	1.00 22.13	A
	MOTA	725	0	VAL A	92	94.735	66.398	39.027	1.00 19.97	A
	ATOM	726	N	PHE A	93	92.575	66.936	38.599	1.00 15.35	A
	ATOM	727	CA	PHE A	93	92.262	65.649	37.986	1.00 21.59	A
, -									1.00 20.43	Ā
15	ATOM	728	CB	PHE A	93	90.780	65.619	37.538		
	MOTA	729	CG	PHE A	93	89.762	65.399	38.658	1.00 21.63	A
	MOTA	730		PHE A	<u>9</u> 3	90.101	65.531	40.003	1.00 22.34	A
	ATOM	731	CD2	PHE A	93	88.435	65.083	38.327	1.00 25.57	A
	MOTA	732	CE1	PHE A	93	89.146	65.347	41.015	1.00 18.59	A
20	MOTA	733	CE2	PHE A	93	87.474	64.900	39.309	1.00 16.00	A
	ATOM	734	CZ	PHE A	93	87.827	65.034	40.660	1.00 18.70	A
	ATOM	735	C	PHE A	93	93.183	65.348	36.778	1.00 20.69	A
						93.572	64.201	36.582	1.00 20.65	A
	MOTA	736	0	PHE A	93					
	MOTA	737	N	SER A	94	93.516	66.364	35.975	1.00 19.95	A
25	MOTA	738	CA	SER A	94	94.382	66.192	34.795	1.00 23.79	А
	MOTA	739	CB	SER A	94	94.563	67.526	34.040	1.00 23.74	A
	ATOM	740	$\circ G$	SER A	94	93.351	67.930	33.393	1.00 23.03	A
	ATOM	741	C	SER A	94	95.759	65.623	35.169	1.00 29.47	A
	ATOM	742	0	SER A	94	96.379	64.867	34.406	1.00 24.55	A
30	ATOM	743	N	LEU A	95	96.230	65.998	36.346	1.00 25.17	Z,
50	ATOM	744	CA	LEU A	95	97.500	65.515	36.858	1.00 29.40	A
					95	97.953	66.430	37.992	1.00 32.98	A
	ATOM	745	CB	LEU A						
	MOTA	746	CG	LEU A	95	99.047	67.438	37.643	1.00 41.49	A
	MOTA	747		LEU A	95	98.732	68.151	36.358	1.00 36.99	A
35	MOTA	748	CD2	LEU A	95	99.244	68.378	38.800	1.00 40.51	A
	MOTA	749	C	LEU A	95	97.413	64.064	37.368	1.00 31.25	A
	MOTA	750	0	LEU A	95	98.433	63.376	37.493	1.00 24.33	A
	MOTA	751	N	ALA A	96	96.203	63.614	37.685	1.00 28.03	A
	ATOM	752	CA	ALA A	96	95.991	62.260	38.208	1.00 27.75	А
40	ATOM	753	CB	ALA A	95	94.901	62.301	39.286	1.00 26.88	A
40							61.204	37.157	1.00 29.48	A
	ATOM	754	С	ALA A	96	95.629				
	MOTA	755	0	ALA A	96	95.529	60.013	37.479	1.00 25.41	A
	MOTA	756	N	VAL A	97	95.447	61.639	35.910	1.00 25.39	А
	MOTA	757	CA	VAL A	97	95.035	60.759	34.802	1.00 29.11	А
45	MOTA	758	CB	VAL A	97	95.034	61.571	33.480	1.00 28.78	A
	ATOM	759	CG1	VAL A	97	95.057	60.663	32.321	1.00 38.20	A
	MOTA	760		VAL A	97	93.748	62.496	33.422	1.00 04.13	A
	ATOM	761	C	VAL A	97	95.813	59.424	34.636	1.00 < 4 92	A
	ATOM	762	0	VAL A	97	95.200	58.381	34.289	1.00 31.47	A
50	ATOM	763	11	ASN A	98	97.124	59.457	34.848	1.00 21.59	A
	MOTA	764	CA	ASN A	98	97.923	58.240	34.770	1.00 36.51	А
	MOTA	765	CB	ASN A	98	99.222	58.471	33.983	1.00 36.15	A
	ATOM	766	CG	ASN A	98	98.971	58.837	32.510	1.00 36.17	А
	ATOM	767		ASII A	98	98.119	58.252	31.844	1.00 38.38	А
55	ATOM	768		ASN A	98	99.730	59.805	32.007	1.00 40.71	A
	111011	, 00	1.02		20	22.730	22.003	52.007		••

	ATOM	769	С	ASN A	98	98.260	57.700	36.178	1.00 37.38	А
	ATOM	770	Ö	ASN A		99.138	56.844	36.316	1.00 31.38	A
	ATOM	771	N	LEU A		97.562	58.205	37.205	1.00 25.80	A
	ATOM	772	CA	LEU A		97.763	57.760	38.592	1.00 34.00	A
5	ATOM	773	CB	LEU A		97.747	58.936	39.580	1.00 23.10	Ā
-,	ATOM	774	CG	LEU A		93.867	59.966	39.407	1.00 25.10	Ā
	ATOM	775		LEU A		98.812	61.017	40.508	1.00 25.56	A
	ATOM	776		LEU A		100.191	59.231	39.390	1.00 29.12	Ā
		777	CDZ	LEU A		96.656	56.804	38.994	1.00 29.12	Ā
10	ATOM								1.00 34.23	A
10	ATOM ATOM	778 779	O N	LEU A		95.911 95.431	55.782 57.169	39.629 38.623	1.00 24.08	A
	ATOM	780	CA	ILE A		94.232	56.407	38.913	1.00 24.08	A
		781	CB	ILE A			57.007	40.119	1.00 26.23	A
	ATOM ATOM	782	CG2			93.446 94.300	56.986	41.388	1.00 28.32	A
15	ATOM	783		ILE A		93.022	58.457	39.786	1.00 21.39	A
15	ATOM	784		ILE F		91.965	59.043	40.791	1.00 22.04	A A
	ATOM	785	CDI	ILE A		93.340	56.511	37.684	1.00 21.31	A
	ATOM	786 786	0	ILE A		93.676	57.218	36.738	1.00 25.36	A
	ATOM	787	N	ALA A		92.195	55.834	37.701	1.00 23.38	A
20				ALA A			55.891	36.563	1.00 21.87	A
20	MOTA MOTA	788 789	CA CB	ALA A		91.278 90.323	54.656	36.557	1.00 29.20	A
	ATOM	790	C	ALA A		90.426	57.148	36.639	1.00 27.34	A
	ATOM	791	0	ALA A		89.546	57.235	37.493	1.00 27.34	A
	ATOM	792	N	ILE A		90.676	58.121	35.774	1.00 27.43	A A
25	ATOM	793	CA	ILE A		89.837	59.308	35.794	1.00 26.53	Ā
23	ATOM	794	CB	ILE A		90.666	60.596	35.788	1.00 20.33	A
	ATOM	795	CG2			89.775	61.805	35.343	1.00 30.43	A
	ATOM	796		ILE A		91.165	60.849	37.221	1.00 23.72	Ā
	ATOM	797		ILE A		92.470	61.458	37.221	1.00 45.56	Ā
30	ATOM	798	C	ILE A		83.919	59.248	34.585	1.00 43.30	Ā
50	ATOM	799	0	ILE A		89.378	59.106	33.461	1.00 26.71	Ā
	ATOM	800	N	ASP A		87.621	59.318	34.836	1.00 26.27	Ā
	ATOM	801	CA	ASP A		85.516	59.227	33.776	1.00 25.84	A.
	ATOM	802	CB	ASP A		85.231	59.056	34.425	1.00 25.81	A
35	ATOM	803	CG	ASP A		84.114	58.863	33.403	1.00 34.26	A
50	ATOM	804		ASP A		84.361	59.023	32.187	1.00 25.53	A
	MOTA	805		ASP A		82.979	58.551	33.828	1.00 39.65	A
	MOTA	806	C	ASP A		86.642	60.484	32.900	1.00 24.26	A
	MOTA	807	Ö	ASP A		86.385	61.577	33.381	1.00 26.29	A
40	ATOM	808	N	SER A		86.972	60.331	31.627	1.00 24.09	A
	ATOM	809	CA	SER A		87.010	61.465	30.700	1.00 30.37	A
	ATOM	810	CB	SER A		87.490	60.999	29.333	1.00 35.62	A
	ATOM	811	OG	SER A		88.890	60.808	29.371	1.00 42.20	A
	MOTA	812	C	SER A		85.689	62.219	30.544	1.00 27.77	A
45	ATOM	813	Ō	SER A		85.679	63.399	30.237	1.00 26.73	A
	MOTA	814	N	GLN A		84.576	61.534	30.741	1.00 26.58	A
	MOTA	815	CA	GLN A		83.264	62.158	30.673	1.00 31.05	Ą
	ATOM	816	€B	GIM A		82.162	61.141	30 991	1.00 33.79	A
	ATOM	817	CG	GLN A		81.964	60.052	29.984	1.00 45.91	A
50	ATOM	818	ĆĎ	GLN A		81.570	60.627	28.655	1.00 53.89	A
• •	ATOM	819		GLN A		82.400	61.212	27.938	1.00 55.25	A
	ATOM	820		GLN A		80.286	60.499	28.320	1.00 55.15	A
	ATOM	821	C	GLN A		83.227	63.209	31.778	1.00 30.55	A
	MOTA	822	0	GLN A		82.602	64.258	31.644	1.00 26.07	A
55	MOTA	823	N	VAL A		83.867	62.889	32.897	1.00 26.33	A
	=					'				

	ATOM	824	CA	VAL A	105	83.883	63.790	34.056	1.00 25.39	А
	MOTA	825	СВ	VAL A		84.395	63.046	35.315	1.00 24.50	A
	ATOM	826		VAL A		84.635	64.032	35.470	1.00 21.15	А
	ATOM	827		VAL A		83.369	51.966	35.738	1.00 18.61	A
5	ATOM	828	C	VAL A		84.829	64.931	33.742	1.00 22.14	A
	MOTA	829	0	VAL A		84.446	66.083	33.719	1.00 25.05	A
	ATOM	830	N	LEU A		85.076	64.589	33.498	1.00 20.26	A
	ATOM	831	CA	LEU A		87.076	65.592	33.495	1.00 20.20	A
	ATOM	832	CB	LEU A		88.416	64.907	32.888	1.00 19.77	A
Lo			CG	LEU A			65.924		1.00 19.77	A
[0	ATOM	833				89.520		32.603		
	MOTA	834		LEU A		89.838	66.617	33.883	1.00 29.44	A
	ATOM	835		LEU A		90.737	65.230	32.030	1.00 37.22	A
	ATOM	836	C	LEU A		86.652	66.472	32.017		A
	ATOM	837	0	LEU A		86.572	67.690	32.153	1.00 24.72	A
15	ATOM	838	N	CYS A		86.334	65.874	30.877	1.00 23.13	A
	ATOM	839	CA	CYS A		85.959	66.654	29.711	1.00 20.45	A
	ATOM	840	C	CYS A		84.576	67.314	29.811	1.00 27.92	A
	MOTA	841	0	CYS A		84.319	68.330	29.156	1.00 25.68	A
20	MOTA	842	CB	CYS A		86.043	55.787	28.446	1.00 27.49	A
20	ATOM	843	SG	CYS A		87.690	65.037	28.227	1.00 28.60	A
	ATOM	844	N	GLY A		83.684	66.748	30.613	1.00 29.41	A
	ATOM	845	CA	GLY A		82.370	67.355	30.765	1.00 21.87	A
	ATOM	846	C	GLY A		82.543	53.531	31.493	1.00 26.48	A
2.5	ATOM	847	0	GLY A		81.879	59.660	31.155	1.00 24.15	A
25	ATOM	848	N	ALA A		83.475	63.737	32.440	1.00 19.49	A
	ATOM	849	CA	ALA A		83.684	69.970	33.184	1.00 17.06	A
	ATOM	850	CB	ALA A		84.578	69.736	34.402	1.00 18.01	A
	MOTA	851	C	ALA A		84.318	70.995	32.258	1.00 18.22	A
241	MOTA	852	0	ALA A		83.970	72.180	32.307	1.00 19.57	A
30	ATOM	853	N	VAL A		85.268	70.552	31.450	1.00 21.00	A
	ATOM	854	CA	VAL A		85.947	71.421	30.492	1.00 19.95	A
	ATOM	855	CB	VALA		87.013	70.609	29.645	1.00 26.47	A
	ATOM	856 857		VAL A		87.331	71.346	28.314	1.00 19.61 1.00 20.68	A
35	MOTA MOTA	858	CG	VAL A		88.307	70.414 72.006	30.463 29.549	1.00 25.73	A A
23	ATOM	859	0	VAL A		84.883 84.835	73.006	29.305	1.00 24.22	A
							73.210	29.303	1.00 24.22	
	ATOM ATOM	860 861	N	LYS A		84.016 82.996	71.589		1.00 24.78	A A
	ATOM	862	CA CB	LYS A		82.152	70.391	28.096 27.599	1.00 29.18	A
40	ATOM	863	CG	LYS A		81.141	70.371	26.507	1.00 25.40	A
40	ATOM	864	CD	LYS A		80.441	69.565	25.878	1.00 35.71	A
	ATOM	865	CE	LYS A		81.420	68.677	25.104	1.00 41.21	A
	ATOM	866	NZ	LYS A		80.780	67.431	24.529	1.00 41.21	A
	ATOM	867	C	LYS A		82.088	72.660	28.688	1.00 24.46	A
45	ATOM	868	0	LYS A		81.776	73.643	28.024	1.00 24.40	A
7.	ATOM	869	Ŋ	TRP A		81.672	72.470	29.939	1.00 23.58	A
	ATOM	870	CA	TRP A		80.8_0	73.415	30.626	1.00 20.72	Ā
	ATOM	8/1	CB	TRP A		80.459	70 878	32.014	1.00 25.99	A
	ATOM	872	CG	TRP A		79.627	73.817	32.856	1.00 22.08	A
50	ATOM	873		TRP A		80.101	74.659	33.909	1.00 24.19	A
-77	ATOM	874		TRP A		78.961	75.282	34.494	1.00 24.19	A
	ATOM	875		TRP A		81.379	74.945	34.426	1.00 19.23	A
	ATOM	876		TRP A		78.251	73.971	32.828	1.00 19.23	A
	MOTA	87 7		TRP A		77.856	74.845	33.820	1.00 19.34	A
55	MOTA	878		TRP A		79.060	76.153	35.557	1.00 20.42	A
****	ויועידה	0 7 0	<u> </u>	INE P	د د د د	, ,	,0,133	/ در . ر ر	1.00 22.43	Α.

	ATOM	879	CZ3	TRP A	113	81.484	75.808	35.491	1.00 26.60	A
	ATEM	880	CH2	TRP A		80.324	76.408	35.056	1.00 30.42	A
	ATUM	881	C	TRP A		81.475	74.775	30.793	1.00 23.72	A
	ATOM	882	0	TRP A		80.848	75.815	30.600	1.00 21.74	A
5	ATIM	883	N	LEU A		82.750	74.756	31.183	1.00 23.73	A
*,	ATEM	884	CA	LEU A		83.508	75.976	31.396	1.00 19.99	A
	ATIM	885	CB	LEU A		84.971	75.624	31.587	1.00 16.92	A
	ATOM	886	CG	LEU A		85.231	75.166	33.138	1.00 10.32	A
	ATOM	887		LEU A		86.520	74.621	33.322	1.00 17.13	A
10				LEU A		85.050	76.365	34.046	1.00 17.43	A
10	ATOM ATOM	888 889	CDZ	LEU A		83.413	76.833	30.143	1.00 17.43	A
	ATUM	890	0	LEU A		83.101	78.042	30.204	1.00 20.50	A
	ATUM	891	N	ILE A		83.676	76.197	29.008	1.00 23.02	A
	ATOM	892	CA	ILE A		83.670	76.848	27.702	1.00 25.02	A
15	ATIM	893	CB	ILE A		84.191	75.920	28.552	1.00 24.85	A
1.0	ATOM	894	CG2			84.215	76.694	25.249	1.00 27.04	A
	ATOM	895		ILE A		85.585	75.368	28.851	1.00 27.04	A
	ATOM	896		ILE A		86.479	76.372	27.492	1.00 52.20	A
	ATOM	897	CDI	ILE A		82.287	77.278	27.240	1.00 32.20	A
20	ATOM	898	0	ILE A		82.087	78.433	26.884	1.00 21.22	Ā
20	ATOM	899	N	LEU A		81.356	76.330	27.222	1.00 15.47	A
	ATIM	900	CA	LEU A		80.009	76.584	26.722	1.00 13.47	A
	ATOM	901	CB	LEU A		79.298	75.260	26.459	1.00 23.69	Ā
	ATOM	902	CG	LEU A		79.986	74.298	25.494	1.00 23.03	Ā
25	ATOM	903		LEU A		78.985	73.211	25.148	1.00 24.68	A
20	ATIM	904		LEU A		80.479	75.022	24.250	1.00 24.00	A
	ATOM	905	CD2	LEU A		79.126	77.454	27.598	1.00 20.74	A
	ATOM	906	0	LEU A		78.214	78.095	1:7.100	1.00 23.54	A
	ATOM	907	И	GLU A		79.386	77.479	28.902	1.00 26.63	A
30	ATOM	908	CA	GLU A		78.567	78.2 2	29.813	1.00 24.27	A
30	ATOM	909	CB	GLU A		78.033	77.443	30.936	1.00 21.24	A
	ATOM	910	CG	GLU A		77.035	76.355	30.526	1.00 27.37	A
	ATOM	911	CD	GLU A		75.767	76.959	29.969	1.00 26.27	A
	ATEM	912		GLU A		75.449	78.124	30.316	1.00 25.92	A
35	ATOM	913		GLU A		75.090	76.250	29.191	1.00 30.37	A
2/2	ATOM	914	C	GLU A		79.257	79.407	30.470	1.00 24.39	A
	ATIM	915	0	GLU A		78.611	80.460	50.753	1.00 25.44	A
	ATOM	916	N	LYS A		80.561	79.3/3	30.706	1.00 18.78	A
	ATOM	917	CA	LYS A		81.189	80.460	31.440	1.00 19.49	A
40	AT DM	918	CB	LYS A		81.782	79.897	32.748	1.00 25.65	A
117	ATOM	919	CG	LYS A		80.761	79.030	33.606	1.00 17.16	A
	ATOM	920	CD	LYS A		79.665	80.070	34.058	1.00 21.32	A
	ATOM	921	CE	LYS A		78.463	79.410	34.663	1.00 23.09	A
	ATOM	922	NZ	LYS A		77.522	80.476	35.101	1.00 23.88	A
45	ATOM	923	C	LYS A		82.213	81.332	30.744	1.00 22.37	Ą
	ATOM	924	Ö	LYS A		82.898	82.112	31.400	1.00 20.49	A
	ATOM	925	N	GLN A		82.360	81.262	29.431	1.00 20.57	À
	ATOM	926	CA	GLN A		83.332	82.060	28.748	1.00 32.06	A
	ATOM	927	CB	GLN A		84.242	81.238	27.801	1.00 20.00	A
50	AT⊙M	928	CG	GLN A		85.382	82.091	27.173	1.00 20.89	A
	ATOM	929	CD	GLN A		86.339	81.257	26.337	1.00 23.85	A
	ATOM	930		GLN A		85.940	80.270	25.734	1.00 18.93	A
	ATOM	931	NE2			87.602	81.661	26.285	1.00 15.38	A
	ATOM	932	C	GLN A		82.543	83.095	27.929	1.00 24.21	A
55	ATOM	933	0	GLN A		81.649	82.725	27.195	1.00 21.97	A
			-							

	ATOM	934	N	LYS A 1	20 82	.880	84.367	28.048	1.00 2	8.47	А
	ATOM	935	ĊΑ	LYS A 1			85.403	27.288	1.00 3		A
	ATOM	936	СВ	LYS A 1			86.774	27.913	1.00 2		A
	ATOM	937	ĊĠ	LYS A 1			86.897	29.337	1.00 3		A
5	ATOM	938	CD	LYS A 1			88.303	29.892	1.00 4		A
.'	ATOM	939	CE	LYS A 1			88.332	31.396	1.00 5		A
		940	NZ	LYS A 1			87.776	31.790	1.00 5		A
	ATOM										
	ATOM	941	C	LYS A 1			85.434	25.813	1.00 3		A
10	ATOM	942	0	LYS A 1			84.864	25.460	1.00 3		A
10	ATOM	943	N	PRO A 1			86.120	24.949	1.00 3		A
	ATOM	944	CD	PRO A 1			86.771	25.165	1.00 4		A
	ATOM	945	CA	PRO A 1			86.197	23.548	1.00 3		A
	ATOM	946	CB	PRO A 1			87.114	22.940	1.00 3		A
	ATOM	947	CG	PRO A 1			86.762	23.756	1.00 4		A
15	ATOM	948	Ċ	PRO A 1			86.780	23.443	1.00 3		A
	ATOM	949	O	PRO A 1			86.388	22.568	1.00 2		A
	ATOM	950	11	ASP A 1			87.693	24.342	1.00 2		A
	ATOM	951	CA 	ASP A 1			88.285	24.268	1.00 2		A
	ATOM	952	CB	ASP A 1			89.636	24.985	1.00 2		A
20	ATOM	953	CG	ASP A 1			89.525	26.494	1.00 3		A
	ATOM	954		ASP A 1			88.438	27.033	1.00 3		A
	MOTA	955		ASP A 1			90.558	27.156	1.00 3		A
	ATOM	956	C	ASP A 1			87.363	24.733	1.00 3		A
	ATOM	957	O	ASP A 1			87.759	24.780	1.00 2		A
25	ATOM	958	И	GLY A 1			86.145	25.214	1.00 3		A
	AT⊖M	959	CA	GLY A 1			85.196	25.678	1.00 3		A
	ATOM	960	C	GLY A 1			85.098	27.183	1.00 3		A
	MOTA	951	0	GLY A 1			84.144	27.654	1.00 2		A
	$AT \cap M$	962	М	VAL A 1			86.077	27.940	1.00 2		A
30	ATOM	963	CA	VAL A 1			86.116	29.403	1.00 2	3.87	A
	$AT \odot M$	454	CB	VAL A 1	.24 86	.546	87.473	39.951	1.00 2		A
	ATOM	965		VAL A 1			87.413	31.459	1.00 2		A
	ATOM	966		VAL A 1			88.581	29.581	1.00 2		А
	ATOM	957	C	VAL A 1			85.041	30.190	1.00 1		A
35	ATOM	968	0	VAL A 1			84.813	29.733	1.00 2	26.81	A
	ATOM	969	N	PHE A 1	25 86	.824	84.383	31,126	1.00 2		A
	$AT \odot M$	970	CA	PHE A 1			83.3∋∔	31.891	1.00 2	5.88	A
	MOTA	971	CB	PHE A 1	.25 86	.893	82.228	30.353	1.00 2		Λ
	$AT \odot M$	972	CG	PHE A 1			81.189	31.31.	1.00 2		A
40	$AT \odot M$	973	CD1	PHE A 1	25 86	.059	80.277	31.059	1.00 2	3.52	A
	ATOM	974	CD2	PHE A 1	.25 88	.224	81.146	30.534	1.00 2	22.60	A
	ATOM	975		PHE A 1		.186	79.345	30.063	1.00 2	3.68	Α
	ATOM	976	CE2	PHE A 1	25 88	.354	80.202	29.517	1.00 1	.6.73	A
	ATOM	977	ÇZ	PHE A 1	25 87	.338	79.306	29.282	1.00 2	0.14	A
45	$AT \odot M$	978	C	PHE A 1	25 85	.479	84.135	33.090	1.00 2	4.56	A
	$\Lambda T \cap M$	979	Ö	PHE A 1	25 86	.175	84.941	33.710	1.00 2	1.73	A
	$AT \odot M$	930	11	GLN A 1.	_in 84	214	83.866	33.414	1.00 2	1.30	A
	$AT\cap M$	981	$\mathbb{C}A$	GLN A 1	26 83	. 558	84.549	34 530	1.00 2	22.03	А
	ATOM	932	CB	GLN A 1			85.333	34.003	1.00 3		\vec{I}_{λ}
50	ATOM	983	CG	GLN A 1			86.233	35.019	1.00 4	6.06	А
	ATOM	984	CD	GLN A 1			87.096	34.409	1.00 5		A
	$AT \oplus M$	935		GLN A 1			86.612	34.131	1.00 5		А
	ATOM	986		GLN A 1			88.383	34.188	1.00 5		А
	ATOM	987	C	GLN A 1			83.607	35.634	1.00 1		A
55	ATOM	988	0	GLN A 1			82.489	35.360	1.00 1		A

	MCTA	989	11	GLU A	127	83.202	84.068	36.871	1.00 19.63	A
	MOTA	990	CA	GLU A		82.770	83.301	38.050	1.00 13.00	А
	ATOM	991	CB	GLU A		83.708	83.576	39.232	1.00 17.4:	А
	ATOM	992	ĊG.	GLU A		83.190	82.969	40.556	1.00 21.51	А
5	ATOM	993	CD	GLU A		83.051	81.442	40.446	1.00 23.16	A
-	ATOM	994		GLU A		82.025	80.930	39.942	1.00 17.83	A
	ATOM	995	0E2	GLU A		84.008	80.754	40.848	1.00 21.73	A
	ATOM	996	C	GLU A		81.374	83.823	38.419	1.00 25.14	A
	ATOM	997	0	GLU A		81.232	85.016	38.663	1.00 21.32	A
1.0	ATOM	998	17	ASP A		80.339	82.981	38.438	1.00 24.74	A
10		999	CA	ASP A		79.015	83.486	38.837	1.00 23.85	A
	ATOM	1000	CB	ASP A		77.909	83.020	37.876	1.00 23.65	A
	ATOM	1000	CG	ASP A		77.970	83.709	36.523	1.00 23.03	A
	ATOM			ASP A		78.166	84.944	36.495	1.00 35.50	A
1.5	MOTA	1002								A
15	ATOM	1003		ASP A		77.807	83.018	35.492 40.253	1.00 29.56 1.00 23.48	A
	ATOM	1004	C	ASP A		78.659	83.006	40.233	1.00 23.11	
	ATOM	1005	Ó	ASP A		77.629	83.368			A
	ATOM	1006	J1	ALA A		79.498	82.172	40.849	1.00 20.40	A A
30	ATOM	1007	CA	ALA A		79.215	81.676	42.210	1.00 25.25	
20	MOTA	1008	CB	ALA A		78.336	80.383	42.153	1.00 24.60	A
	ATOM	1009	Ğ	ALA A		80.531	81.385	42.926	1.00 21.47	A
	MOTA	1010	0	ALA A		81.012	80.267	42.901	1.00 20.12	A
	ATOM	1011	N	PRO A		81.142	82.412	43.535	1.00 22.93	A
	ATOM	1012	CD	PRO A		80.707	83.830	43.484	1.00 18.39	A
25	ATOM	1013	CA CD	PRO A		82.406	82.269	44.248	1.00 20.39	A
	ATOM	1014	CB	PRO A		82.610	83.637	44.868	1.00 24.77	A
	ATOM	1015	CG	PRO A		81.951	84.575	43.823	1.00 29.40	A
	ATOM	1016	Ç	PRO A		82.417	81.168	45.314	1.00 25.72	A
3.0	ATOM	1017	(<u>)</u>	PRO A		81.421	80.932	46.010	1.00 20.76	A
30	ATOM	1018	N N	VAL A		83.557	80.497	45.431	1.00 18.56	A
	ATOM	1019	CA	VAL A		83.709	79.442	46.421	1.00 25.11	A
	MOTA	1020	CB	VAL A		85.057	78.722	46.307	1.00 15.74	A
	ATOM	1021		VAL A		85.116	77.946	44.960	1.00 15.94	A
, -	ATOM	1022		VAL A		86.188	79.725	46.459	1.00 13.54	A
35	ATOM	1023	C	VAL A		83.618	80.030	47.806	1.00 19.19	A
	ATCM	1024	()	VAL A		83.848	81.225	48.014	1.00 21.17	A
	ATOM	1025	N	ILE A		83.251	79.169	48.747	1.00 18.82	A
	ATOM	1026	CA	ILE A		83.149	79.556	50.154	1.00 23.91	A
4.0	ATOM	1027	CD	ILE A		82.332	78.512	50.929 52.417	1.00 24.37	A
40	MOTA	1028	CG2	ILE A		82.271	78.876		1.00 20.00	A
	ATOM	1029	CG1	ILE A		80.941	78.425	50.306	1.00 21.42	A
	ATOM	1030		ILE A		80.142	77.180	50.747	1.00 24.99	A
	ATOM	1031	C	ILE A		84.541	79.688	50.790	1.00 19.79	A
4.7	ATOM	1032	Ö	ILE A		84.781	80.623	51.520	1.00 17.40	A
45	ATOM	1033	N	HIS A		85.467	78.766	50.504	1.00 18.82	A
	ATOM	1034	CA	HIS A		86.827	78.851	51.100	1.00 17.36	A
	ATOM	1035	CB	HIS A		87.434	77.437	51.218	1.00 18.01	A
	ATOM	1036	CG	HIS A		86.691	76.548	52.180	1.00 12 75	A
	ATCM	1037		HIS A		85.617	75.738	51.396	1.00 18.28	A
50	ATCM	1038		III3 A		86.992	76.499	53.531	1.00 25.58	A
	ATOM	1039		HIS A		86.128	75 693	54.137	1.00 21.42	A
	MOTA	1040		HIS A		85.289	75.222	53.231	1.00 27.04	A
	ATOM	1041	C	HIS A		87.711	79.735	50.221	1.00 14.42	A
	ATOM	1042	0	HIS A		88.525	79.250	49.431	1.00 17.65	A
55	ATOM	1043	11	GLN A	134	87.517	81.039	50.373	1.00 11.52	A

	3 m 234		0.1	77.77	00 000	00 015	40 500	1 00 01 65	70
	MOTA	1044	CA	GLN A 134	88.238	82.045	49.508	1.00 21.65	A
	ATOM	1045	CB	GLN A 134	87.689	83.424	50.025	1.00 17.09	A
	ATOM	1046	CG	GLN A 134	86.298	83.729	49.418	1.00 22.43	A
	MOTA	1047	CD	GLN A 134	86.376	84.059	47.908	1.00 21.78	A
5	ATOM	1048	OE1	GLN A 134	87.129	84.944	47.522	1.00 28.45	A
	ATOM	1049	NE2	GLN A 134	85.604	83.340	47.061	1.00 22.37	A
	ATOM	1050	С	GLN A 134	89.759	81.873	49.837	1.00 20.34	A
	ATOM	1051	Ō	GLN A 134	90.565	82.314	49.052	1.00 26.33	A
	ATOM	1052	N	GLU A 135	90.079	81.179	50.928	1.00 19.09	Z ₁
10		1052			91.407	80.777	51.431	1.00 24.48	A
10	ATOM		CA	GLU A 135					
	ATOM	1054	CB	GLU A 135	91.169	79.850	52.767	1.00 24.93	A
	ATOM	1055	CG	GLU A 135	89.522	79.250	53.099	1.00 4.96	A
	MOTA	1056	CD	GLU A 135	89.446	77.808	53.925	1.00 27.66	A
	MOTA	1057	OE1		90.527	77.338	53.831	1.00 37.42	$\mathcal{I}_{\mathbf{i}}$
15	MOTA	1058	OE2	GLU A 135	88.528	77.190	54.620	1.00 1.00	Zs
	ATOM	1059	С	GLU A 135	92.140	79.938	50.318	1.00 20.82	A
	ATOM	1060	0	GLU A 135	93.362	80.014	50.119	1.00 15.84	A
	ATOM	1061	N	MET A 13б	91.377	79.109	49.602	1.00 18.40	A
	MOTA	1062	CA	MET A 136	91.967	78.147	48.626	1.00 17.42	A
20	ATOM	1063	СВ	MET A 136	91.123	76.853	48.571	1.00 15.67	\mathcal{A}
_0	ATOM	1064	CG	MET A 136	89.868	76.961	47.675	1.00 17.99	A
	ATOM	1065	SD	MET A 136	88.703	75.563	47.631	1.00 29.44	A
	ATOM	1066	CE	MET A 135	89.744	74.260	47.009	1.00 11.97	A
		1067	CE	MET A 136	92.269	78.546	47.203	1.00 15.51	A
3.5	ATOM								A
25	ATOM	1068	0	MET A 136	92.791	77.747	46.443	1.00 14.46	
	MOTA	1069	N	ILE A 137	91.988	79.787	46.831	1.00 16.94	A
	MOTA	1070	CA	ILE A 137	92.217	80.213	45.449	1.00 15.24	I_{Λ}
	MOTA	1071	CB	ILE A 137	90.980	80.959	44.955	1.00 20.19	A
	ATOM	1072	CG2		89.724	80.121	45.254	1.00 14.68	A
30	ATOM	1073	CG1	ILE A 137	90.847	82.300	45.723	1.00 11.83	A
	ATOM	1074	CD1		89.473	82.985	45.435	1.00 23.22	Ā
	ATOM	1075	С	ILE A 137	93.446	81.121	45.287	1.00 19.40	$\mathcal{F}_{\mathbf{Y}}$
	MOTA	1076	0	ILE A 137	93.658	81.729	44.228	1.00 18.10	7.
	ATOM	1077	N	GLY A 138	94.222	81.215	46.361	1.00 15.44	A
35	MOTA	1078	CA	GLY A 133	95.438	82.007	46.314	1.00 18.65	$\mathcal{F}_{\mathbf{x}}$
	MOTA	1079	С	GLY A 138	95.197	83.450	45.897	1.00 23.13	A
	ATOM	1080	0	GLY A 133	94.182	84.061	46.313	1.00 15.00	\mathcal{I}_{λ}
	ATOM	1081	N	GLY A 139	96.097	83.962	45.044	1.00 20.15	I_{Λ}
	ATOM	1082	CA	GLY A 139	96.054	85.338	44.585	1.00 17.13	I_{Λ}
40	ATOM	1083	С	GLY A 139	94.767	85.808	43.967	1.00 29.17	Z A
	ATOM	1084	Ō	GLY A 139	94.568	87.013	43.807	1.00 33.25	\mathcal{I}_{λ}
	ATOM	1085	N	LEU A 140	93.875	84.890	43.618	1.00 23.37	A
	ATOM	1086	CA	LEU A 140	92.621	85.317	43.023	1.00 24.08	A
	ATOM	1087	CB	LEU A 140	91.930	84.142	42.322	1.00 22.29	A
15	ATOM	1087	CG	LEU A 140	92.000	84.065	40.800	1.00 36.28	À
45					93.365				7.
	ATOM	1089		LEU A 140		84.425	40.297	1.00 39.55	
	ATOM	1090		LEU A 14J	91.640	82.663	40.376	1.00 31.19	<i>L</i> ,
	MOTA	1091	Ç	LEU A 140	91 68_	85.918	44.065	1.00 30.45	A
	ATOM	1092	0	LEU A 140	90.698	86.572	43.697	1.00 29.82	Ā
50	ATOM	1093	N	ARG A 141	91.977	85.715	45.353	1.00 23.95	\mathcal{F}_{λ}
	ATOM	1094	CA	AF.G A 141	91.105	86.235	46.411	1.00 26.90	A
	ATOM	1095	CB	APG A 141	91.577	85.782	47.790	1.00 23.51	A
	MOTA	1096	CG	ARG A 141	90.622	86.183	48.883	1.00 31.94	A
	ATOM	1097	CD	ARG A 141	91.045	85.655	50.222	1.00 41.48	А
55	ATOM	1098	NE	ARG A 141	90.058	85.983	51.254	1.00 56.61	A

	ATOM	1099	CZ	ARG	Α	141	89.989	85.390	52.451	1.00	62.59	A
	MOTA	1100		ARG	Α	141	90.853	84.427	52.773	1.00	61.70	А
	MOTA	1101		ARG			89.055	85.761	53.330		64.29	А
	MCTA	1102	C	ARG			91.103	87.771	45.308		31.97	А
5	MOTA	1103	0	ARG			90.112	83.440	46.571		35.29	A
	ATOM	1104	N	ASN			92.233	83.327	45.932		35.39	A
	ATOM	1104	CA	ASN			92.292	89.759	45.708		47.29	A
				ASN			93.755	90.199	45.708		44.19	Ā
	ATOM	1106	CB					91.572	45.316		50.84	A
1	ATOM AGOM	1107	CG	ASN			93.903				50.20	
10	ATOM	1108		ASN			93.081	92.260	44.606			A
	ATOM	1109		ASN			94.968	92.273	45.829		52.23	A
	MOTA	1110	C	ASN			91.588	89.389	44.342		43.41	A
	ATOM	1111	0	ASN			92.160	89.542	43.302		41.71	A
	MOTA	1112	N	ASN			90.343	90.361	44.363		49.05	A
15	ATÓM	1113	CA	ASN			89.511	90.522	43.151		54.92	A
	ATOM	1114	CB	ASN			88.071	90.941	43.523		58.67	Α
	$AT \bigcirc M$	1115	CG	ASN	Α	143	87.097	89.762	43.556	1.00	67.74	А
	ATOM	1116		ASN			87.173	88.843	42.721		72.16	A
	MOTA	1117	ND2	ASN	Α	143	8ธ์.159	89.795	44.510		73.35	A
20	MOTA	1118	C	ASN	А	143	90.024	91.509	42.102	1.00	51.69	A
	MOTA	1119	0	ASN	Α	143	89.457	91.625	41.012	1.00	52.71	A
	MOTA	1120	N	ASN	Α	144	91.067	92.245	42.432	1.00	47.25	A
	ATOM	1121	CA	ASN	Α	144	91.597	93.191	41.479	1.00	47.83	А
	ATOM	1122	CB	ASN	Α	144	92.706	93.993	42.126	1.00	58.20	A
25	ATOM	1123	CG	ASN	Α	144	92.406	95.451	42.142	1.00	67.49	A
	ATOM	1124	OD1	ASN	Α	144	92.353	96.070	43.210	1.00	75.34	A
	ATOM	1125	ND2	ASN	Α	144	92.194	96.027	40.954	1.00	70.42	A
	ATOM	1126	С	ASN	Α	144	92.157	92.456	40.274	1.00	42.44	A
	ATÓM	1127	0	ASN	Α	144	92.967	91.540	40.432	1.00	43.00	А
30	ATOM	1128	N	GLU			91.740	92.866	39.081	1.00	35.72	А
	ATOM	1129	CA	GLU			92.207	92.277	37.832		30.80	А
	ATOM	1130	CB	GLU			93.751	92.269	37.777		29.82	A
	ATOM	1131	CG	GLU			94.342	93.705	37.873		34.98	А
	MOTA	1132	CD	GLU			95.866	93.839	37.711		33.90	А
35	MOTA	1133		GLU			96.311	94.948	37.366		37.12	A
	MOTA	1134		GLU			96.641	92 890	37.938		36.12	A
	ATOM	1135	C	GLU			91.639	90.883	37.705		32.53	A
	MOTA	1136	0	GLU			92.261	89.979	37.134		29.47	A
	ATOM	1137	N	LYS			90.410	90.715	38.179		33.08	A
4()	ATOM	1138	CA	LYS			89.809	89.386	38.144		34.99	А
40	ATOM	1139	CB	LYS			88.545	89.324	38.969		38.84	A
	ATOM	1140	CG	LYS			87.329	89.843	38.309		46.43	A
	ATOM	1140	CD	LYS			86.173	89.733	39.312		53.97	A
	ATOM	1141	CE	LYS			84.799	89.902	38.655		56.22	A
15			NZ	LYS			84.630	91.185	37.909		58.13	Ā
45	ATOM	1143	C	LYS			89.597	88.782	36.778		29.69	Ā
	ATOM	1144					89 864					
	ATOM	1145	0	LYS				87.593	35.600		22.87	A
	MOTA	1145	N	ASP			89.125	89.558	35.800		26.03	A
	MOTA	1147	CA	ASP			88.883	88.989	34.459		24.17	A
50	ATOM	1148	CB	ASP			88.363	90.051	33.483		26.31	A
	ATOM	1149	CG	ASP			86.884	90.374	33.687		33.37	A
	ATOM	1150		ASP			86.419	91.396	33.148		41.72	A
	ATOM	1151		ASP			86.160	89.619	34.369		28.33	A
	ATOM	1152	C	ASP			90.175	88.402	33.894	1.00		A
55	MOTA	1153	0	ASP	A	147	90.177	87.328	33.291	1.00	30.44	А

	አ ጥ ጊኒላ	1251	NT.	MET		01 277	00 110	24 007	1 00 21 70	7
	MCTA	1154	N	MET A			89.112	34.087	1.00 21.79	A
	MOTA	1155	CA	MET A			88.631	33.567	1.00 27.79	A
	MOTA	1156	CB	MET A			89.77u	33.532	1.00 21.45	A
	$AT \cap M$	1157	CG	MET A	148	93.406	90.794	32.411	1.00 16.88	A
5	ATOM	1158	SD	MET A	148	94.007	90.171	30.836	1.00 26.17	A
	ATOM	1159	CE	MET A	148	95.843	90.114	31.224	1.00 25.36	A
	ATOM	1160	С	MET A	148	93.097	87.465	34.431	1.00 23.06	A
	ATOM	1161	Ō	MET A			86.433	33.902	1.00 26.32	А
	ATOM	1162	N	ALA A			87.630	35.749	1.00 21.95	A
10	ATOM	1163	CA	ALA A			86.584	36.537	1.00 26.30	A
10										
	ATOM	1164	CB	ALA A			87.058	38.093	1.00 17.92	A
	ATOM	1165	C	ALA A			85.290	36.464	1.00 24.09	A
	ATOM	1166	0	ALA A			84.239	35.228	1.00 20.02	A
	ATOM	1167	N	LEU A			85.35?	36.578	1.00 23.60	A
15	ATOM	1168	CA	LEU A	150	90.615	84.15 '	36.396	1.00 21.51	A
	ATOM	1169	CB	LEU A	150	89.141	84.431	36.708	1.00 21.03	A
	ATOM	1170	CG	LEU A	150	88.167	83.21∢	36.546	1.00 31.38	A
	ATOM	1171	CD1	LEU A	150	88.557	82.043	37.474	1.00 23.78	A
	ATOM	1172	CD2	LEU A	150	86.725	83.681	36.903	1.00 28.01	A
20	ATOM	1173	C	LEU A			83.581	34.985	1.00 26.10	A
	ATOM	1174	0	LEU A			82.351	34.794	1.00 23.93	A
	ATOM	1175	N	THR A			84.442	33.978	1.00 21.82	A
	ATOM	1176	CA	THR A			83.927	32.622	1.00 16.71	A
	ATOM	1177	CB	THR A			85.079	31.570	1.00 24.41	A
25	ATOM	1178	OG1				85.58.	31.546	1.00 24.41	A
'							84.529	30.144	1.00 24.70	A
	ATOM	1179	CG2						1.00 22.41	
	ATOM	1180	C	THR A			83.146	32.466		A
	ATOM	1181	0	THR A			82.096	31.853	1.00 22.92	A
	ATOM	1182	N	ALA A			83.633	33.055	1.00 26.27	A
30	ATOM	1183	CA	ALA A			80.924	32.945	1.00 19.92	A
	$\Lambda T CM$	1184	CB	ALA A			83.750	33.543	1.00 15.47	A
	ATOM	1185	С	ALA A			81.573	33.671	1.00 19.39	A
	ATOM	1186	0	ALA A			89.567	33.133	1.00 19.38	A
	ATOM	1187	N	PHE A	1 153	93.884	81.50%	34.877	1.00 17.38	A
3.5	ATOM	1188	CA	PHE A	153	93.713	80.41.	35.703	1.00 14.60	A
	$AT \odot M$	1189	CB	PHE A	153	92.970	80.716	37.004	1.00 17.50	A
	AT OM	1190	CG	PHE A	153	92.773	79.490	37.851	1.00 22.29	A
	ATOM	1191	CD1	PHE A	153	93.813	79.005	38.652	1.00 10.97	A
	ATOM	1192	CD2	PHE A	153	91.551	78.82∃	37.855	1.00 15.16	A
40	ATOM	1193	CE1	PHE A	153	93.623	77.853	39.448	1.00 20.47	A
	ATOM	1194		PHE A			77.689	38.636	1.00 22.68	A
	ATOM	1195	CZ	PHE A			77.205	39.442	1.00 21.15	A
	ATOM	1196	C	PHE A		92.940	79.34	34.977	1.00 19.47	А
	ATOM	1197	0	PHE A		93.360	78 214	34.971	1.00 18.15	A
45	ATOM	1198	Й	VAL			79.63	34.388	1.00 17.18	A
*.	ATOM	1199	CA	VAL A			/8.686	33.662	1.00 14.37	Λ
	ATOM	1200	CB	VAL A			79.241	33.313	1.00 17.63	A
	ATOM	1201		VAL			78.185	32.527 34.588	1.00 14.29	Λ
Ξ.,	ATOM	1202		VAL A			79.585		1.00 17.52	A
50	ATOM	1203	C	VAL A			78.197	32.416	1.00 19.75	A
	ATOM	1204	0	VAL A		91.801	77.003	32.146	1.00 15.15	A
	ATOM	1205	N	LEU A		92.336	79.109	31.652	1.00 20.48	A
	ATOM	1206	CA	LEU A			78.710	30.457	1.00 22.98	A
	AT:0M	1207	CB	LEU A			79.960	29.791	1.00 16.47	A
55	MŪTA	1208	CG	LEU A	155	94.688	79.745	28.623	1.00 19.59	A

	MOTA	1209	-CD1	LEU A 155	94.015	78.920	27.570	1.00 17.74	A
	ATOM	1210	ID2	LEU A 155	95.164	81.108	28.034	1.00 22.48	A
	ATOM	1211	0	LEU A 155		77.680	30.800	1.00 16.38	A
						76.711	30.079	1.00 21.06	A
_	ATOM	1212	Ö	LEU A 155					
5	MOTA	1213	И	ILE A 156		77.903	31.897	1.00 17.56	A
	MOTA	1214	$\mathbb{C} \mathbb{A}$	ILE A 156	96.016	76.992	32.288	1.00 21.21	A
	ATOM	1015	∵B	ILE A 156	96.769	77.543	33.539	1.00 23.70	A
	$AT \bigcirc M$	1216	CG2	ILE A 156	97.704	76.490	34.155	1.00 17.82	А
	ATOM	1217	CG1			78.768	33.108	1.00 20.22	А
10									
10	ATOM	1213	CD1			79.593	34.29/	1.00 15.17	A
	$AT \oplus M$	1219	C	ILE A 156	95.392	75.608	32.555	1.00 21.00	A
	$AT \cap M$	1220	Ü	ILE A 156	95.955	7 4 .595	32.181	1.00 18.43	A
	ATOM	1221	N	SEP. A 157	94.222	75.577	33.197	1.00 14.32	A
	ATOM	1222	CA	SER A 157	93.525	74.316	33.425	1.00 22.61	A
15	ATOM	1223	СВ	SER A 157		74.564	34.218	1.00 23.22	A
1.5		1024	0G	SER A 157		74.830	35.582	1.00 30.07	A
	ATOM								
	MOTA	1225	Ç	SEP. A 157	93.174	73.644	32.105	1.00 19.13	A
	ATOM	1026	O	SEP. A 157	93.405	72.445	31.924	1.00 23.24	A
	ATOM	1027	N	LEU A 158	92.640	74.416	31.163	1.00 23.19	A
20	ATOM	1228	CA	LEU A 158	92.268	73.872	29.859	1.00 26.55	A
	MOTA	1229	CB	LEU A 158	91.607	74.955	28.970	1.00 23.19	A
	ATOM	1230	CG	LEU A 158		75.603	29.537	1.00 28.10	A
	ATOM	1231		LEU A 158	89.618	76.320	38.444	1.00 30.58	A
	ATOM	1232	CD2	LEU A 158	89.378	74.573	30.117	1.00 26.46	A
25	ATCM	1033	C	LEU A 158	93.464	73.293	29.126	1.00 23.77	A
	ATOM	1234	()	LEU A 158	93.342	72.294	28.417	1.00 20.25	A
	ATOM	1235	N	GLN A 159	94.622	73.927	29.269	1.00 20.67	A
	ATOM	1236	CA	GLN A 159		73.433	28.590	1.00 19.57	A
	ATOM	1237	CB	GLN A 159		74.418	28.776	1.00 20.64	A
20								1.00 25.42	
30	ATOM	1238	CG	GLN A 159		75.764	23.113		A
	ATOM	1239	CD	GLN A 159		75.741	26.500	1.00 26.92	A
	ATOM	1040	OE1	GLN A 159	96.865	74.703	25.933	1.00 24.64	A
	ATOM	1041	NE2	GLN A 159	97.341	76.899	26.043	1.00 24.27	A
	ATOM	1042	C	GLN A 159	96.195	72.047	29.136	1.00 25.83	A
35	ATOM	1043	\circ	GLN A 159		71.182	28.390	1.00 22.57	А
	ATOM	1244	N	GLU A 160		71.833	30.433	1.00 18.37	А
		1245		GLU A 160	96.275	70.533	31.019	1.00 28.44	A
	ATOM		CA						
	ATCM	1246	CB	GLU A 160	96.124	70.505	30.507	1.00 18.70	A
	ATIM	1147	CG	GLU A 160	97.204	71.226	33.089	1.00 29.07	A
40	$AT\cup M$	1248	CD	GLU A 160	97.071	71.010	34,790	1.00 37.12	A
	ATOM	1249	OE1	GLU A 160	96.376	70.046	35.219	1.00 29.05	A
	$AT \cap M$	1250		GLU A 160	97.673	71.806	35.539	1.00 41.97	A
	ATOM	1251	C	GLU A 160	95.364	69.454	30.478	1.00 29.40	A
				GLU A 160			30.357	1.00 24.26	
	ATOM	1252	0		95.782	68.316			A
45	$AT \cup M$	1253	11	ALA A 161	94.110	69.796	30.177	1.00 25.80	A
	$AT \cup M$	1254	CA	ALA A 161	93.182	68.775	29.705	1.00 26.76	A
	ATOM	1255	CB	ALA A 161	91.81/	68.987	±0.370	1.00 25.94	А
	$M \cup TA$	12:56	C	ALA A 161	93.010	68.749	28.1105	1.00 29.95	A
	Z TOM	1257	Ĵ	ÀLÀ A 161	92.166	68.029	27.654	1.00 32.80	A
50	ATOM	1258	N	LYS A 162	93.848	69.514	27.192	1.00 30.99	A
2.0									
	ATOM	1259	CA	LYS A 162	93.741	69.628	26.043	1.00 37.27	A
	MOTA	1260	CB	LYS A 162	94.762	70.671	25.553	1.00 38.61	A
	ATOM	1261	CG	LYS A 162	94.792	70.892	24.048	1.00 50.32	A
	$AT\Theta M$	1262	CD	LYS A 162	95.668	72.093	23.628	1.00 56.78	A
55	$AT \bigcirc M$	1263	CE	LYS A 162	97.171	71.809	23.618	1.00 58.73	A
									

	ATOM	1264	NZ	LYS	Α	162	97.593	70.975	22.433	1.00 57.24	Ą
	ATOM	1265	C			162	93.885	68.321	25.254	1.00 37.81	A
	ATOM	1265	(<u>)</u>			162	93.029	67.964	24.455	1.00 33.39	A
_	ATOM	1267	11			163	94.968	67.601	25.475	1.00 41.14	A
5	ATOM	1268	CA			163	95.171	66.387	24.719	1.00 42.49	A
	MOTA	1269	€B	ASP	Α	163	96.576	65.858	24.965	1.00 51.70	A
	MOTA	1270	CG	ASP	Α	163	97.643	66.839	24.512	1.00 57.18	A
	ATOM	1271	DD1	ASP	Α	163	97.366	67.598	23.557	1.00 62.30	A
	ATOM	1272	J212	ASP	Α	163	98.752	66.846	25.094	1.00 64.30	A
10	ATOM	1273	C	ASP			94.127	65.361	25.074	1.00 41.86	А
• •	MOTA	1274	Ö	ASP			93.582	64.687	24.214	1.00 41.54	A
	ATOM	1275	11			164	93.808	65.253	26.344	1.00 37.18	A
	ATOM	1276	CA			164	92.801	64.297	26.721	1.00 37.23	A
	ATOM	1277	CB			154	92.750	64.158	28.236	1.00 43.08	A
15	ATOM	1278	CG2	ILE			91.530	63.365	28.661	1.00 42.32	A
	MOTA	1279	CG1	ILE	Α	164	94.054	63.514	28.705	1.00 48.60	A
	ATOM	1280	CD1	ILE	Α	164	94.078	63.174	30.156	1.00 56.10	A
	MOTA	1281	C	ILE	Α	164	91.404	64.634	26.216	1.00 39.86	A
	ATOM	1282	Ü	ILE	Α	164	90.656	63.748	25.830	1.00 33.04	A
20	ATOM	1283	Ŋ	CYS			91.060	65.914	26.183	1.00 32.76	А
20	ATOM	1284	CA			165	89.715	66.278	25.814	1.00 34.31	A
	ATOM	1285	Ċ	CYS			89.433	66.817	24.422	1.00 37.19	A
	ATOM	1286	0	CYS			88.287	66.818	24.011	1.00 28.15	A
	ATOM	1287	CB.	CY3			89.180	67.278	26.839	1.00 29.46	A
25	MOTA	1289	SG	CYS			89.010	66.566	28.503	1.00 28.08	A
	ATOM	1289	М	GLU			90.459	67.264	23.707	1.00 45.15	A
	ATOM	1290	CA	GLU	Α	166	90.273	67.877	22.395	1.00 51.11	А
	ATOM	1291	CB	GLU	Α	166	91.630	68.143	21.720	1.00 59.07	A
	ATOM	1292	CG	GLU	Α	166	92.542	66.935	21.528	1.00 56.70	A
30	ATOM	1293	CD	GLU	А	166	93.935	67.335	21.000	1.00 71.70	A
	ATOM	1294	∴E1	GLU			94.838	66.457	20.967	1.00 74.38	A
	ATOM	1295	Œ2				94.123	68.526	20.619	1.00 68.32	A
	ATOM	1295	0			166	89.349	67.152	21.449	1.00 50.97	A
	ATOM	1297	·-)	GLU			88.661	67.784	20.646	1.00 50.00	A
2.5											
35	MOTA	1298	11			167	89.314	65.833	21.559	1.00 52.19	A
	MOTA	1299	CA	GLU			88.448	65.027	20.718	1.00 52.32	A
	ATOM	1300	CB	GLU			88.840	63.559	20.838	1.00 50.45	A
	ATOM	1301	СĞ	GLU			89.074	62.885	19.504	1.00 58.41	A
	ATOM	1302	$\mathbb{C}\mathbb{D}$	GLU	Α	167	89.979	63.713	18.605	1.00 74.42	A
40	ATOM	1303	OE1	GLU	Α	167	91.048	64.161	19.082	1.00 77.67	A
	ATOM	1304	OE2	GLU	Α	167	89.621	63.917	17.421	1.00 78.62	A
	ATOM	1305	C	GLU			86.963	65.177	21.059	1.00 54.06	A
	ATOM	1305	(_)	GLU			86.136	65.356	20.163	1.00 52.37	A
	MOTA	1307	N	GLN			86.632	65.103	22.351	1.00 46.71	A
45	ATOM	1307	∵A	GLN			85.247	65.202	22.811	1.00 43.91	A
43											
	ATOM	1309	CP	GLN			85.059	64.480	24.155	1.00 50.94	A
	MOTA	1310	CG	GLN			86.269	64.533	25.087	1.00 56.41	Λ
	MOTA	1311	CD	GLN			87.154	63.284	24.976	1.00 55.96	A
	ATOM	L3LL		المتلق			86.830	62.226	25.526	1.00 49.92	А
50	MOTA	1313	NE2	GLN	А	168	88.268	63.406	24.247	1.00 57.62	A
	ATOM	1314	r *	GLN	А	168	84.752	66.620	22.959	1.00 42.37	A
	ATOM	1315	0	GLN			83.547	66.856	23.073	1.00 41.71	A
	ATOM	1316	N 	VAL			85.673	67.571	22.965	1.00 33.31	A
	ATOM	1317	CA	VAL			85.281	68.962	23.112	1.00 35.06	A
55	MOTA	1317	CB	VAL			85.809	69.506	24.469	1.00 33.00	Ā
22	AIUM	1318	'UD	٧AL	Н	103	03.009	09.300	~4.40J	1.00 27.42	A

	ATOM	1319	CG1	VAL A 169	85.245	70.889	24.754	1.00 25.13	A
	MOTA	1320	CG2	VAL A 169	85.402	68.540	25.573	1.00 24.55	A
	ATOM	1321	C	VAL A 169	85.780	69.792	21.919	1.00 34.13	A
	ATOM	1322	0	VAL A 169	86.865	70.376	21.962	1.00 31.73	A
5	ATOM	1323	N	ASN A 170	84.971	69.841	20.857	1.00 31.12	A
	ATOM	1324	CA	ASN A 170	85.357	70.554	19.646	1.00 31.55	А
	ATOM	1325	CB	ASN A 170	84.377	70.283	18.503	1.00 38.49	A
	ATOM	1326	CG	ASN A 170	84.352	68.798	18.058	1.00 44.51	A
	MOTA	1327	OD1	ASN A 170	83.419	68.063	18.367	1.00 50.11	A
10	ATOM	1328	ND2	ASN A 170	85.374	68.375	17.334	1.00 40.85	A
	MOTA	1329	С	ASN A 170	85.562	72.052	19.838	1.00 33.38	A
	ATOM	1330	0	ASN A 170	86.308	72.682	19.101	1.00 32.60	A
	MOTA	1331	N	SER A 171	84.931	72.641	20.843	1.00 29.65	A
	ATOM	1332	CA	SEP. A 171	85.123	74.080	21.054	1.00 27.07	A
15	ATOM	1333	CB	SEP. A 171	83.937	74.650	21.858	1.00 26.83	A
	ATOM	1334	OG	SER A 171	83.675	73.861	23.020	1.00 22.03	A
	ATOM	1335	С	SEP A 171	86.434	74.410	21.776	1.00 23.40	A
	ATOM	1336	0	SEP A 171	86.829	75.571	21.868	1.00 25.17	A
	ATOM	1337	N	LEU A 172	87.130	73.400	22.274	1.00 20.64	A
20	ATOM	1338	CA	LEU A 172	88.364	73.670	23.024	1.00 18.28	A
	ATOM	1339	CB	LEU A 172	88.976	72.340	23.451	1.00 26.95	A
	ATOM	1340	CG	LEU A 172	89.987	72.262	24.605	1.00 36.59	A
	ATOM	1341		LEU A 171	89.724	73.283	25.714	1.00 28.04	A
	ATOM	1342		LEU A 172	89.912	70.840	25.159	1.00 30.83	A
25	ATOM	1343	C	LEU A 172	89.420	74.540	22.325	1.00 23.79	A
	ATOM	1344	0	LEU A 173	89.867	75.551	22.863	1.00 22.52	A
	ATOM	1345	N	PRO A 173	89.821	74.173	21.095	1.00 28.78	Fs.
	MOTA	1346	CD	PRO A 173		73.036	20.258	1.00 26.81	A
	MOTA	1347	CA	PRO A 173	90.837	74.991	20.419	1.00 28.96	A
30	ATOM	1348	CB	PRO A 173		74.308	19.05 4	1.00 23.65	A
	ATOM	1349	CG	PRO A 173	90.597	72.878	19.321	1.00 33.10	A
	ATOM	1350	С	PRO A 173	90.454	76.475	20.301	1.00 27.14	A
	ATOM	1351	0	PRO A 173		77.366	20.599	1.00 22.88	Fs.
	ATOM	1352	N	GLY A 174		76.730	19.885	1.00 24.04	A
35	ATOM	1353	CA	GLY A 174		78.104	19.731	1.00 24.51	Fs.
	ATOM	1354	C	GLY A 174		78.805	21.071	1.00 23.82	F _s
	ATOM	1355	0	GLY A 174		79.985	21.172	1.00 24.00	A
	ATOM	1356	N	SEP. A 175	88.269	78.083	22.115	1.00 23.65	A
	ATOM	1357	CA	SEP. A 175	88.167	78.706	23.462	1.00 25.41	A
40	ATOM	1358	CB	SEP A 175	87.662	77.665	24.489	1.00 21.04	A
	ATOM	1359	OG	SER A 175	87.648	78.213	25.791	1.00 22.86	A
	ATOM	1360	C	SER A 175	89.534	79.224	23.917	1.00 23.64	A
	ATOM	1361	0	SER A 175	89.691	80.347	24.440	1.00 21.39	A
4 -	ATOM	1362	N	ILE A 176	90.531	78.372	23.741	1.00 24.52	A
15	ATOM	1363	CA	ILF A 176	91.907	78.683	24.127	1.00 20.94	A
	ATOM	1364	CB.	ILE A 176	92.774	77.406	23.873	1.00 19.98	A
	ATOM	1365		ILE A 175	21.244	77.741	23.797	1.00 10.82	A
	MOTA	1366		ILE A 175	92.449	76.370	24.970	1.00 23 34	A
-0	ATOM	1367		ILE A 176	93.191	75.017	24.797	1.00 23.21	A
50	ATOM	1368	C	ILE A 176	92.427	79.921	23.371	1.00 23.29	A
	ATOM	1369	0	ILE A 176	93.011	80.845	23.953	1.00 21.00	A
	ATOM	1370	N	THE A 177	92.180	79.957	22.069	1.00 22.38	A
	ATOM	1371	CA	THE A 177	92.622	81.096	21.280	1.00 26.70	A
	ATOM	1372	CB	THR A 177	92.298	80.826	19.810	1.00 30.44	A
55	ATOM	1373	OGI	THR A 177	93.142	79.754	19.352	1.00 32.66	А

	MOTA	1374	CG2	THR A	177	92.507	82.071	18.959	1.00 25.97	А
	MOTA	1375	С	THR A	177	91.966	82.395	21.793	1.00 28.53	A
	ATOM	1376	Ō	THR A		92.635	83.437	21.992	1.00 25.08	A
	ATOM	1377	N	LYS A		90.665	82.320	22.058	1.00 24.69	A
5	ATOM	1378	CA	LYS A		89.966	83.486	22.556	1.00 22.85	A
ž.	ATOM	1379	CB	LYS A		88.458	83.212	22.647	1.00 33.69	A
				LYS A		87.713	83.233	21.285	1.00 37.81	A
	ATOM	1380	CG						1.00 37.81	Ā
	ATOM	1381	CD	LYS A		86.260	82.880	21.478		A
	ATOM	1382	CE	LYS A		85.530	82.539	20.168	1.00 55.66	
10	ATOM	1383	NΖ	LYS A		84.321	81.738	20.375	1.00 62.92	A
	ATOM	1384	C	LYS A		90.513	83.903	23.908	1.00 27.56	A
	MOTA	1385	0	LYS A		90.764	85.100	24.139	1.00 22.42	A
	ATOM	1386	N	ALA A		90.708	82.945	24.818	1.00 21.82	A
	ATOM	1387	CA	ALA A		91.232	83.327	26.117	1.00 22.17	А
15	ATOM	1388	CB	ALA A	179	91.326	82.107	27.056	1.00 20.58	A
	ATOM	1389	C	ALA A	179	92.507	83.918	25.879	1.00 23.19	A
	ATOM	1390	0	ALA A	179	92.958	84.970	26.424	1.00 21.73	A
	ATOM	1391	N	GLY A	180	93.392	83.244	25.046	1.00 26.28	A
	ATOM	1392	CA	GLY A	180	94.732	83.741	24.790	1.00 25.77	A
20	ATOM	1393	С	GLY A	180	94.723	85.155	24.206	1.00 29.69	A
	ATOM	1394	0	GLY A	180	95.509	86.005	24.628	1.00 26.61	A
	ATOM	1395	N	ASP A		93.869	85.403	23.215	1.00 19.22	A
	ATOM	1396	CA	ASP A		93.776	86.745	22.600	1.00 24.71	А
	ATOM	1397	CB	ASP A		92.670	86.781	21.544	1.00 28.40	A
25	ATOM	1398	CG	ASP A		93.045	86.061	20.266	1.00 24.26	А
	ATOM	1399		ASP A		94.242	85.821	20.035	1.00 26.47	A
	ATOM	1400		ASP A		92.138	85.751	19.475	1.00 31.29	A
	ATOM	1400	C	ASP A		93.465	87.814	23.635	1.00 23.38	A
	ATOM	1401	0	ASP A		94.051	88.897	23.619	1.00 24.92	A
20				PHE A		92.541	87.508	24.548	1.00 23.93	A
30	ATOM	1403	N						1.00 23.33	A
	ATOM	1404	CA	PHE A		92.179	88.481	25.562		
	MOTA	1405	CB	PHE A		90.971	88.008	26.368	1.00 29.71	A
	ATOM	1406	CG	PHE A		90.573	88.970	27.457	1.00 37.61	A
	ATOM	1407		PHE A		89.777	90.074	27.174	1.00 35.83	A
35	MOTA	1408	CD2	PHE A		91.034	88.798	28.751	1.00 37.07	A
	MOTA	1409	CE1	PHE A		89.447	90.989	28.165	1.00 38.94	A
	ATOM	1410	CE2	PHE A		90.706	89.712	29.748	1.00 42.65	A
	MOTA	1411	CZ	PHE A		89.915	90.806	29.456	1.00 41.10	A
	MOTA	1412	С	PHE A		93.343	88.759	26.514	1.00 29.73	А
40	MOTA	1413	0	PHE A	182	93.610	89.911	26.877	1.00 26.64	А
	MOTA	1414	N	LEU A	183	94.041	87.710	26.933	1.00 23.11	А
	MOTA	1415	CA	LEU A	. 183	95.163	87.923	27.847	1.00 23.03	A
	ATOM	1416	CB	LEU A	183	95.794	86.587	28.302	1.00 19.13	A
	ATOM	1417	CG	LEU A	183	94.927	85.684	29.181	1.00 24.04	A
45	ATOM	1418	CD1	LEU A	. 183	95.597	84.363	29.487	1.00 23.39	A
	MOTA	1419		LEU A		94.595	86.398	30.489	1.00 21.06	A
	ATOM	1420	С	LEU A	183	96 . 1337	88.742	27.140	1.00 19.58	A
	MOTA	1121	0	LEU A		96.737	89.668	27.711	1.00 23.31	7
	ATOM	1422	N	GLU A		96.545	88.383	25.904	1.00 19.16	А
50	ATOM	1423	CA	GLU A		97.584	89.114	25.190	1.00 29.47	A
5.71	ATOM	1424	CB	GLU A		97.874	88.459	23.842	1.00 27.07	A
				GLU A		98.874	89.217	23.010	1.00 27.07	Ā
	ATOM	1425	CG			99.360	88.416	21.817	1.00 36.59	A
	ATOM	1426	CD	GLU A					1.00 38.39	A
	ATOM	1427		GLU A		98.869	87.295	21.569	1.00 37.18	
55	MOTA	1428	OEZ	GLU A	184	100.249	88.907	21.120	1.00 40.45	A

	ATOM	1429	С	GLU A	184	97.254	90.578	24.992	1.00 26.03	А
	ATOM	1430	Ö	GLU A		98.004	91.471	25.273	1.00 29.51	А
	ATOM	1431	N	ALA A		95.981	90.835	24.548	1.00 28.37	A
	ATOM	1432	CA	ALA A		95.560	92.236	24.317	1.00 32.04	A
5	ATOM	1433	CB	ALA A		94.166	92.282	23.689	1.00 31.81	A
."	ATOM	1434	C	ALA A		95.567	93.137	25.537	1.00 35.13	A
			0	ALA A		95.706	94.353	25.401	1.00 35.13	A
	ATOM	1435					92.555	26.730	1.00 33.39	A
	ATOM	1436	N	ASN A		95.443				
	ATOM	1437	CA	ASN A		95.352	93.351	27.953	1.00 29.26	A
10	ATOM	1438	CB	ASN A		94.035	93.004	28.640	1.00 27.88	A
	ATOM	1439	CG	ASN A		92.847	93.480	27.836	1.00 33.22	A
	ATOM	1440		ASN A		92.562	94.672	27.813	1.00 34.12	A
	MOTA	1441		ASN A		92.175	92.566	27.143	1.00 25.25	A
	MOTA	1442	С	ASN A		96.476	93.240	28.952	1.00 27.19	A
15	MOTA	1443	0	ASN A	186	96.444	93.890	30.003	1.00 27.97	A
	MOTA	1444	N	TYR A	187	97.472	92.433	28.610	1.00 24.51	A
	ATOM	1445	CA	TYR A	187	98.610	92.176	29.486	1.00 21.48	A
	ATOM	1446	CB	TYR A	187	99.634	91.255	28.785	1.00 23.19	A
	ATOM	1447	CG	TYR A	187	100.651	90.504	29.729	1.00 27.39	A
20	MOTA	1448	CD1	TYR A	187	100.258	99.596	30.637	1.00 24.03	A
	ATOM	1449	CE1	TYR A	187	101.209	88.977	31.508	1.00 28.63	A
	ATOM	1450	CD2	TYR A	187	102.004	90.982	29.712	1.00 25.92	A
	ATOM	1451	CE2	TYR A	187	102.952	90.380	30.570	1.00 28.97	A
	ATOM	1452	CZ	TYR A		102.551	89.379	31.465	1.00 31.32	A
25	ATOM	1453	ОН	TYR A		103.498	88.788	32.293	1.00 25.25	A
	ATOM	1454	C	TYR A		99.360	93.389	29.929	1.00 29.36	А
	ATOM	1455	Ö	TYR A		99.645	93.536	31.122	1.00 26.96	A
	ATOM	1456	N	MET A		99.721	94.240	28.956	1.00 25.41	A
	ATOM	1457	CA	MET A		100.526	95.417	29.260	1.00 31.50	A
30	ATOM	1458	CB	MET A		100.794	96.215	27.981	1.00 24.85	A
.***		1459	CG	MET A		101.690	35.478	27.011	1.00 24.03	A
	ATOM		SD	MET A		103.239	94.935	27.730	1.00 33.34	A
	ATOM	1460				103.235	96.512	28.315	1.00 33.34	A
	ATOM	1461	CE	MET A		99.96			1.00 30.88	A
3.5	MOTA	1462	C	MET A			96.322	30.349		
35	ATOM	1463	0	MET A		100.720	96.982	31.071	1.00 26.43	A
	ATOM	1464	N	ASN A		98.645	96.238	30.495	1.00 25.67	A
	ATOM	1465	CA	ASN A		97.927	97.092	31.482	1.00 40.32	A
	MOTA	1466	CB	ASN A		96.439	97.323	31.000	1.00 46.12	A
	ATOM	1467	CG	ASN A		96.220	98.769	30.729	1.00 58.01	A
40	MOTA	1468		ASN A		95.564	99.113	29.728	1.00 63.96	A
	MOTA	1469		ASN A		96.723	93.643	31.612	1.00 54.68	A
	MOTA	1470	С	ASN A		97.850	95.519	32.897	1.00 40.44	Α
	ATOM	1471	0	ASN A		97.220	97.109	33.770	1.00 40.07	А
	MOTA	1472	N	LEU A		98.469	95.375	33.140	1.00 37.09	A
45	MOTA	1473	CA	LEU A	190	98.391	94.795	34.473	1.00 32.05	А
	ATOM	1474	CB	LEU A	190	98.887	93.358	34.459	1.00 27.91	A
	ATOM	1475	CG	LEU A	190	98.000	92.410	33.659	1.00 25.90	Ą
	ATOM	1476	CD1	LEU A	190	98.707	91.036	33.591	1.00 21.96	A
	MOTA	1477	CD2	LEU A	190	96.519	92.343	34.315	1.00 ±3.68	À
50	ATOM	1478	C	LEU A		99.186	95.549	35.485	1.00 32.08	A
	ATOM	14/9	0	LEU A	190	100.264	95.039	35.189	1.00 34.79	A
	ATOM	1480	N	GLN A		98.653	95.630	36.696	1.00 24.96	А
	ATOM	1481	CA	GLN A		99.359	96.299	37.771	1.00 29.96	A
	ATOM	1482	CB	GLN A		98.443	97.330	38.429	1.00 37.43	A
55	ATOM	1483	CG	GLN A		98.000	98.434	37.486	1.00 50.78	A
-							•			

											_
	ATDM	1484	CD	GLN	Α	191	99.178	99.289	37.034	1.00 58.93	A
	ATOM	1485	OE1	GLN	Α	191	99.756	99.994	37.923	1.00 65.09	A
	ATEM	1486	NFO	GLN	Δ	191	99.566	99.220	35.803	1.00 65.13	A
										1.00 32.15	
	AT DM	1487	C			191	99.873	95.333	38.855		A
5	ATOM	1488	0	GLN	Α	191	100.893	95.610	39.464	1.00 28.48	A
	ATDM	1489	N	ARG	Α	192	99.189	94.219	39.119	1.00 25.14	A
	ATEM	1490	CA	ARG	Α	192	99.657	93.312	40.170	1.00 22.86	A
	ATOM	1491	CB	ARG			98.489	92.473	40.703	1.00 23.64	A
	ATOM	1492	CG	ARG			97.302	93.308	41.257	1.00 31.91	A
10	ATOM	1493	CD	ARG			96.128	92.393	41.622	1.00 35.16	A
	$AT \cap M$	1494	NE	ARG	Α	192	96.514	91.335	42.569	1.00 41.51	A
	ATOM	1495	CZ	ARG	Α	192	95.847	90.184	42.733	1.00 44.28	A
	ATOM	1496		ARG			94.757	89.949	41.997	1.00 39.94	A
	ATOM	1497		ARG			96.255	89.280	43.641	1.00 30.46	A
15	AT IM	1498	C	ARG			100.736	92.356	33.709	1.00 19.29	A
	$AT \cup M$	1499	0	ARG	Α	192	100.658	91.822	38.596	1.00 15.56	A
	ATOM	1500	N	SER	Α	193	101.735	92.114	40.557	1.00 20.51	A
	ATOM	1501	CA	SER	Α	193	102.769	91.138	40.196	1.00 23.99	A
	ATOM	1502	CB	SER			103.853	91.056	41.250	1.00 25.82	А
30											
20	ATOM	1503	OG	SER			104.634	92.236	41.177	1.00 29.45	A
	MOTA	1504	C	SER			102.123	89.754	40.041	1.00 26.36	A
	ATOM	1505	0	SER	Α	193	102.508	88.959	39.164	1.00 26.52	A
	ATOM	1506	N	TYR	Α	194	101.123	89.479	40.877	1.00 27.26	A
	ATOM	1507	CA	TYR			100.429	88.201	40.790	1.00 22.13	A
25		1508	CB	TYR			99.303	88.108	41.823	1.00 23.41	A
23	ATIM										
	ATOM	1509	CG	TYR			98.539	86.783	41.755	1.00 16.74	A
	ATOM	1510	CD1				99.067	85.620	42.340	1.00 19.51	A
	ATOM	1511	CE1	TYR	Α	194	98.401	84.389	42.271	1.00 17.85	A
	ATIM	1512	CD2	TYR	Α	194	97.312	86.692	41.087	1.00 20.75	A
30	ATOM	1513	CE2	TYR			96.621	85.461	41.001	1.00 25.88	A
50		1514	CZ	TYR				84.312	41.603	1.00 20.62	A
	ATOM						97.181				
	ATOM	1515	OH	TYR			96.522	83.107	41.540	1.00 24.87	A
	ATIM	1515	C	TYR	Α	194	99.843	87.953	39.398	1.00 23.17	A
	ATHM	1517	0	TYR	Α	194	100.123	86.938	33.775	1.00 00.83	A
35	ATOM	1518	N	THR	Α	195	99.013	88.878	39.904	1.00 18.74	A
	ATOM	1519	CA	THR			98.391	88.630	37.602	1.00 16.68	А
		1520	CB	THR			97.427	89.817	37.264	1.00 16.43	A
	ATOM										
	$AT \mathbb{O} M$	1521	OG1				96.657	90.139	38.428	1.00 21.65	A
	ATÓM	1522	CG2	THR	Α	195	96.496	89.378	36.151	1.00 22.25	A
40	ATOM	1523	C	THR	Α	195	99. 4 37	88.593	36.498	1.00 21.37	A
	ATOM	1524	0	THR	Α	195	99.315	87.829	35.549	1.00 18.17	A
	ATOM	1525	И	VAL			100.506	89.359	36.647	1.00 23.63	A
	ATOM	1526	CA	VAL			101.531	89.334	35.639	1.00 20.64	A
	AT:0M	1527	CB	VAL			102.620	90.409	35.959	1.00 26.84	A
45	$AT \odot M$	1528	CG1	VAL	Α	196	103.973	90.045	35.324	1.00 25.77	A
	ATOM	1529	CG2	VAL	Α	196	102.154	91.773	35.456	1.00 25.74	A
	ATIM	1530	C	VAL	Δ	196	102.147	87.933	35.583	1.00 20.37	A
	дтом	1531	Ô	VAL			102.451	87.439	34.503	1.00 19.78	A
	ATOM	1532	N	ALA			102.386	87.326	36./39	1.00 21.05	À
50	ATCM	1533	CA	ALA	А	197	103.005	85.984	36.766	1.00 24.45	A
	MITA	1534	CB	ALA	Α	197	103.370	85.583	38.225	1.00 15.17	Ā
	ATOM	1535	С	ALA			102.056	84.951	36.162	1.00 15.00	А
	ATOM	1536	Ö	ALA			102.424	84.229	35.226	1.00 20.20	A
	ATOM	1537	N	ILE			100.809	84.911	36.648	1.00 24.78	A
55	MOTA	1538	CA	ILE	А	198	99.887	83.889	36.144	1.00 20.75	A

	ATOM	1539	CB	ILE	A 1	198	98.569	83.723	37.056	1.00 19	.12	A
	ATOM	1540	CG2	ILE			97.602	84.931	36.915	1.00 20	50	A
	ATOM	1541	-031	ILE			97.855	82.438	36.658	1.00 19		A
_	ATOM	1542	CD1	ILE			96.670	82.071	37.553	1.00.20		A
5	AT:0M	1543	C	ILE			99.545	84.052	34.574	1.00 19		A
	$AT \cup M$	1544	Ċ	ILE	A]	198	99.593	83.057	33.913	1.00 21	. 51	A
	ATOM	1545	И	ALA	A 1	199	99.217	85.274	34.235	1.00 19	. 78	A
	$AT \oplus M$	1546	CA	ALA	A 1	199	98.921	85.448	32.814	1.00 19	.70	A
	$AT \odot M$	1547	СВ	ALA	A 1	199	98.323	86.823	32.537	1.00 18	. 52	A
10	ATOM	1548	ċ	ALA			100.226	85.268	32.049	1.00 11		A
10	ATOM	1549	ç)	ALA			100.228	84.804	30.911	1.00 17		A
		1550					101.345	85.621	32.680	1.00 17		A
	ATOM		N	GLY.								
	MOTA	1551	CA	GLY			102.617	85.447	32.002	1.00 19		A
	ATOM	1552	Ç	GLY			102.800	83.976	31.647	1.00 21		A
15	ATOM	1553	ن	$\operatorname{GL} Y$			103.113	83.615	30.486	1.00 19	.30	A
	ATOM	1554	11	TYP.	A 2	201	102.578	83.097	32.628	1.00 17	.66	A
	ATOM	1555	CA	TYP.	A 2	201	102.742	81.670	32.329	1.00 23	.38	A
	ATOM	1556	CB	TYP	A 2	201	102.550	80.804	33.587	1.00 17	.53	A
	ATOM	1557	CG	TYR			102.641	79.303	33.313	1.00 19	. 35	A
20	ATOM	1558	CD1	TYR			103.714	78.768	32.608	1.00 20		A
_0	ATOM	1559		TYP.			103.815	77.383	32.384	1.00 25		A
									33.783	1.00 25		A
	ATOM	1560	CD2	TYP.			101.663	78.420				
	ATOM	1561	CE2	TYR			101.749	77.037	33.573	1.00 17		A
	ATOM	1552	CZ	TYP.			102.816	76.528	32.883	1.00 25		A
25	MOTA	1563	ΦH	TYP.	A 2	201	102.908	75.171	32.690	1.00 24		A
	ATOM	1554	C	TYR	A 2	201	101.740	81.238	31.242	1.00 23	. 90	A
	ATOM	1565	<u>(_)</u>	TYP.	A 2	201	102.098	80.503	30.312	1.00 18	. 43	A
	ATOM	1566	11	ALA	A 2	202	100.490	81.698	31.349	1.00 19	.10	A
	ATOM	1567	ΩA	ALA			99.484	81.306	30.367	1.00.22	.19	A
30	ATOM	1568	CB	ALA			98.132	81.940	30.715	1.00 19		A
50	ATOM	1569	e e	ALA			99.916	81.720	28.963	1.00 23		A
							99.730	80.969	28.004	1.00 23		A
	ATOM	1570	()	ALA								
	ATOM	1571	71	LEU .			100.487	82.919	28.832	1.00 23		A
	MCTA	1572	ZA	LEU			100.929	83.371	27.510	1.00 23		A
35	ATOM	1573	ŰВ	LEU			101.178	84.894	27.514	1.00 24		A
	ATÓM	1574	CG	LEU			99.907	85.744	27.564	1.00 23		A
	ATOM	1575	CD1	LEU	A 2	203	100.306	87.220	27.773	1.00 27	.91	A
	ATOM	1576	CD2	LEU	A 2	203	98.963	85.548	26.489	1.00 21	.31	A
	ATOM	1577	C	LEU .	A 2	203	102.182	82.611	27.060	1.00 20	.01	A
40	ATOM	1578	Ü	LEU .			102.321	82.260	25.892	1.00 22	.51	A
	ATOM	1579	11	ALA			103.087	82.325	27.985	1.00 20		А
	ATOM	1580	ĊΑ	ALA			104.291	81.583	27.615	1.00 19		A
			CB				105.193	81.391	28.819	1.00 16		A
	ATOM	1581		ALA								
	ATOM	1582	-7.7	ALA .			103.893	80.248	27.035	1.00 02		A
15	MOTA	1583	Ü	ALA .			104.477	79.812	26.060	1.00 23		A
	ATOM	1584	11	GLN .	A 2	205	102.881	79.588	27.607	1.00 21		A
	$\mathtt{AT}@\mathtt{M}$	1505	A	GLN .	A 2	105	102.483	78.289	271.058	1.00 21	. 95	A
	$AT \bigcirc M$	1536	CB	GLN	A 2	205	101.309	77.717	27.840	1.00 18	.19	A
	ATOM	1587	CG	GLN	A 2	205	101.588	77.415	29.314	1.00 25	.79	A
50	ATOM	1588	CD	GLN			100.431	76.681	29.929	1.00 29		А
	ATOM	1589		GLN			99.299	77.200	29.967	1.00 23		A
	ATOM	1590		GLN			100.685	75.451	30.399	1.00 23		A
										1.00 23		
	ATOM	1591	0	GLN .			102.068	78.366	25.586			A
	ATOM	1592	()	GLN .			102.165	77.392	24.847	1.00 24		A
55	ATOM	1593	N	MET	A 2	206	101.575	79.525	25.164	1.00 26	. 44	A

	ATOM	1594	CA	MET A	206	101.117	79.661	23.789	1.00 29.37	A
	ATOM	1595	CB	MET A 3		99.802	80.452	23.771	1.00 25.17	A
	ATOM	1596	CG	MET A 3		98.806	80.012	24.828	1.00 30.40	A
	ATOM	1597	SD	MET A		97.200	80.847	24.718	1.00 23.96	A
5	ATOM	1593	CE	MET A		97.598	82.319	25.513	1.00 41.60	A
•	ATOM	1599	Ĉ	MET A		102.138	80.349	22.889	1.00 29.92	А
	ATOM	1600	Ö	MET A		101.828	80.674	21.749	1.00 26.65	A
	MOTA	1601	Ŋ	GLY A		103.345	80.586	23.394	1.00 29.43	A
	ATOM	1601	CA	GLY A		104.352	81.278	22.593	1.00 26.83	A
10										
10	ATOM	1603	C	GLY A		104.014	82.753	22.378	1.00 34.90	A
	ATOM	1604	0	GLY A		104.534	83.393	21.464	1.00 27.87	A
	ATOM	1605	N	ARG A		103.171	83.313	23.244	1.00 27.86	A
	ATOM	1606	CA	ARG A 1		102.784	84.698	23.107	1,00 34.19	A
	ATOM	1607	СВ	ARG A		101.256	84.788	23.147	1.00 33.23	A
15	MOTA	1608	CG	ARG A 1		100.654	84.008	21.992	1.00 38.52	A
	MOTA	1609	CD	ARG A 3		99.191	83.574	22.162	1.00 40.00	A
	ATOM	1610	ИE	ARG A 1		98.288	84.690	21.974	1.00 49.84	A
	MOTA	1611	CZ	ARG A 3		97.110	84.638	21.362	1.00 42.43	A
	ATOM	1612	NH1	ARG A	208	96.641	83.509	20.856	1.00 38.92	A
20	MOTA	1613	NH2	ARG A	802	96.416	85.753	21.233	1.00 48.94	A
	ATOM	1614	С	ARG A	208	103.430	85.669	24.080	1.00 32.61	А
	MOTA	1615	()	ARG A	208	103.113	86.839	24.056	1.00 31.15	A
	MOTA	1616	N	LEU A 2		104.333	85.197	24.934	1.00 25.57	A
	ATOM	1617	CA	LEU A 1	209	104.990	86.093	25.879	1.00 31.14	A
25	ATOM	1618	СВ	LEU A :		105.271	85.369	27.211	1.00 22.61	A
	ATOM	1619	CG	LEU A 3		105.798	86.228	28.366	1.00 35.65	A
	ATOM	1620		LEU A :		104.766	87.332	28.723	1.00 28.29	A
	ATOM	1621		LEU A		106.083	85.364	29.589	1.00 28.03	А
	MOTA	1622	C	LEU A 3		106.285	86.516	25.178	1.00 32.66	A
30	ATOM	1623	Ō	LEU A 1		107.305	85.851	25.289	1.00 32.23	A
50	ATOM	1524	11	LYS A 1		106.212	87.611	24.426	1.00 32.19	A
	ATOM	1625	CA	LYS A 1		107.337	88.134	23.658	1.00 34.10	A
	ATOM	1626	CB	LYS A		107.118	87.884	22.169	1.00 39.57	A
	ATOM	1627	CG	LYS A 2		106.844	86.472	21.772	1.00 39.07	A
25		1628	CD	LYS A 2		106.174	86.418	20.399	1.00 51.11	A
35	ATOM ATOM	1629	CE	LYS A 2		106.174	85.462	19.474	1.00 58.79	A
		1630	NZ	LYS A 2		106.158	85.113	18.241	1.00 57.30	Ā
	ATOM						89.644	23.793	1.00 35.59	A
	ATOM	1631	C	LYS A 2		107.421			1.00 30.70	
40	ATOM	1632	()	LYS A 2		106.520	90.290	24.326		A
40	ATOM	1633	11	GLY A 2		108.488	90.201	23.230	1.00 37.65	A
	ATOM	1634	CA	GLY A		108.675	91.642	23.212	1.00 34.24	A
	ATOM	1635	Ğ	GLY A		108.350	92.423	24.453	1.00 26.73	A
	ATOM	1636	O.	GLY A 1		108.884	92.158	25.535	1.00 31.87	A
	ATOM	1637	11	PRO A 2		107.471	93.420	24.329	1.00 35.92	A
45	ATOM	1638	CD	PRO A 1		106.750	93.851	23.117	1.13 36.64	A
	ATOM	1639	A	PRO A 1		107.096	94.252	25 480) (m. 4) 77	V
	ATOM	1540	CB	PHO A 1	212	106.113	95.266	24.881	1.00 34.18	A
	MOTA	1541	CG	PRO A 2	212	106.506	95.315	23.424	1.00 36.29	A
	ATOM	1542	17	PRO A 1	212	106.456	93.397	26.585	1.00 29.56	A
50	ATOM	1643	O	PEO A 2	212	106.700	93.630	27.767	1.00 27.62	Α
	ATOM	1644	31	LEU A 2	213	105.644	92.416	26.205	1.00 26.27	A
	ATOM	1645	CA	LEU A 3	213	105.036	91.569	27.232	1.00 30.09	A
	ATOM	1646	CB	LEU A 3		104.048	90.590	26.613	1.00 28.37	А
	ATOM	1647		LEU A 1		102.726	91.280	26.223	1.00 31.49	A
55	ATOM	1648		LEU A		102.970	92.306	25.101	1.00 23.76	А
		-010								

	ATOM	1649	CD3	LEU A 213	101.738	90.239	25.745	1.00 29.45	A
	ATOM	1650	C	LEU A 213	106.112	90.830	28.032	1.00 22.05	A
	MOTA	1651	0	LEU A 213	106.112	90.886	29.250	1.00 25.06	A
		1652	N	LEU A 214	107.023	90.336	27.331	1.00 29.37	Ā
	MOTA MOTA	1653	CA	LEU A 214	108.087	89.455	27.992	1.00 23.37	Ā
5					109.030	88.849	26.952	1.00 31.80	Ā
	MOTA	1654	CB	LEU A 214 LEU A 214				1.00 27.44	A
	MOTA	1655	CG		110.272	88.115	27.476		
	MOTA	1656		LEU A 214	109.889	86.976	28.445	1.00 25.93	A
•	ATOM	1657		LEU A 214	111.030	87.536	26.246	1.00 25.20	A
10	ATOM	1658	C	LEU A 214	108.836	90.401	28.889 30.049	1.00 28.32 1.00 27.69	A
	ATOM	1659	0	LEU A 214	109.110	90.091 91.576		1.00 27.89	A A
	ATOM	1660	N	ASN A 215	109.176		28.365	1.00 33.16	A
	ATOM	1661	CA	ASN A 215 ASN A 215	109.912	92.553 93.829	29.175 28.383	1.00 30.08	A
1.5	ATOM	1662	CB		110.205 110.980	94.815	29.205	1.00 37.18	A
15	ATOM	1663	CG	ASN A 215		94.586	29.516	1.00 39.99	A
	ATOM	1664		ASN A 215	112.161			1.00 38.33	A
	ATOM	1665	C MD7	ASN A 215	110.311 109.189	95.895 92.951	29.629 30.453	1.00 39.72	A
	ATOM	1666		ASN A 215 ASN A 215	109.189	93.055	31.522	1.00 27.99	A
30	ATOM	1667	O N				30.346	1.00 27.33	A
20	ATOM	1668	N	LYS A 316 LYS A 316	107.891	93.204 93.562	31.536	1.00 29.98	A
	ATOM	1669 1670	CA CB	LYS A 216	107.116 105.669	93.842	31.124	1.00 23.38	A
	MOTA MOTA	1671	СБ СG	LYS A 216	103.569	94.180	32.297	1.00 27.44	A
	MOTA	1672	CD	LYS A 216	103.384	94.134	31.799	1.00 29.65	Ā
25	ATOM	1672	CE	LYS A 216	103.384	94.667	32.940	1.00 25.05	Ā
23	ATOM	1674	NZ	LYS A 216	102.739	95.753	33.908	1.00 31.43	Ā
	ATOM	1675	C	LYS A 216	107.177	92.385	32.529	1.00 33.04	A
	ATOM	1676	0	LYS A 216	107.459	92.549	33.758	1.00 23.57	A
	MOTA	1677	N	PHE A 217	106.934	91.182	32.000	1.00 29.01	A
30	MOTA	1678	CA	PHE A 217	106.984	90.002	32.862	1.00 23.20	A
30	ATOM	1679	CB	PHE A 317	106.849	88.715	32.053	1.00 24.49	A
	ATOM	1680	CG	PHE A 317	107.137	87.453	32.855	1.00 30.86	A
	ATOM	1681	CD1		106.184	86.923	33.729	1.00 15.74	A
	ATOM	1682		PHE A 217	108.350	86.762	32.682	1.00 33.51	A
35	ATOM	1683	CE1		106.418	85.718	34.410	1.00 27.69	A
	ATOM	1684	CE2		108.598	85.553	33.359	1.00 30.90	А
	ATOM	1685	CZ	PHE A 217	107.620	85.029	34.228	1.00 26.68	A.
	ATOM	1686	C	PHE A 217	108.277	89.949	33.655	1.00 25.85	A
	ATOM	1687	O	PHE A 217	108.255	89.888	34.892	1.00 26.90	A
40	ATOM	1688	N	LEU A 218	109.417	90.010	32.967	1.00 29.26	A
	ATOM	1689	CA	LEU A 219	110.700	89.915	33.668	1.00 27.29	A
	ATOM	1690	CB	LEU A 218	111.853	89.742	32.671	1.00 29.60	A
	ATOM	1691	CG	LEU A 218	111.709	88.572	31.682	1.00 32.78	A
	MOTA	1692	CD1	LEU A 213	112.729	88.696	30.537	1.00 27.26	A
45	MOTA	1693		LEU A 218	111.905	87.240	32.455	1.00 24.94	A
	ATOM	1694	C	LEU A 218	111.016	91.071	34,609	1.00 30.13	A
	ATOM	1695	0	LEU A 218	111 452	90.857	35.751	1.00 31.21	Α
	A'I'OM	1696	N	THR A 219	110.798	92.295	34.141	1.00 31.78	A
	ATOM	1697	CA	THR A 219	111.097	93.480	34.958	1.00 35.74	А
50	ATOM	1698	CB	THR A 219	111.082	94.772	34.097	1.00 33.10	A
	MOTA	1699		THR A 219	109.778	94.981	33.536	1.00 31.70	А
	ATOM	1700	CG2		112.106	94.645	32.947	1.00 34.85	А
	ATOM	1701	С	THR A 219	110.138	93.626	36.142	1.00 30.35	А
	ATOM	1702	0	THR A 219	110.431	94.334	37.101	1.00 30.89	А
55	ATOM	1703	N	THR A 220	109.007	92.931	36.094	1.00 31.42	А

	ATOM	1759	0	ARG .	A 226	109.330	89.143	42.211	1.00 25.27	A
	ATOM	1760	N	TRP .	A 227	107.867	87.456	42.299	1.00 28.37	A
	MOTA	1761	CA	TRP	A 227	105.761	83.275	41.851	1.00 23.41	A
	ATOM	1762	CB		A 227	105.973	87.535	40.760	1.00 20.74	A
5	ATOM	1763	CG		A 227	106.620	87.650	39.384	1.00 26.80	А
	ATOM	1764	CD2		A 227	107.850	87.041	33.950	1.00 20.68	А
	ATOM	1765	CE2		A 227	108.105	87.500	37.630	1.00 22.35	A
	ATOM	1766	CE3		A 227	108.763	86.157	39.549	1.00 22.82	A
	ATOM	1767	CD1		A 227	105.189	89.430	38.330	1.00 21.29	A
10								37.281	1.00 21.29	
10	ATOM	1768	NE1		A 227	107.079	88.344			A
	ATOM	1769	CZ2		A 227	109.225	87.105	36.897	1.00 24.84	A
	ATOM	1770	CZ3		A 227	109.886	85.757	38.821	1.00 22.71	A
	AT DM	1771	CH2		A 227	110.105	86.232	37.505	1.00 26.46	A
	ATOM	1772	C		A 227	105.918	88.521	43.097	1.00 31.42	A
15	ATOM	1773	0		A 227	105.162	87.558	43.531	1.00 30.37	A
	$AT \cap M$	177 4	N	GLU .	822 A	106.081	89.674	43.723	1.00 30.19	A
	$M \cap T A$	1775	CA	GLU .	A 228	105.273	89.914	44.897	1.00 40.90	A
	ATOM	1776	CB	GLU .	A 228	106.105	89.747	46.169	1.00 43.17	A
	ATOM	1777	CG	GLU .	A 228	107.143	90.767	46.430	1.00 49.83	A
20	ATOM	1778	CD	GLU .	A 228	107.521	90.796	47.904	1.00 51.45	A
	ATOM	1779	OE1	GLU	A 228	107.955	89.753	48.428	1.00 41.85	A
	ATOM	1780		GLU		107.375	91.865	48.534	1.00 56.43	A
	ATOM	1781	C		A 228	104.555	91.243	44.907	1.00 43.90	А
	ATOM	1782	Ö		A 228	105.015	92.225	44.320	1.00 38.10	A
25	ATOM	1783	N		A 229	103.398	91.261	45.559	1.00 45.53	A
	ATOM	1784	CA		A 229	102.606	92.462	45.661	1.00 49.47	A
		1785	CB				92.462		1.00 49.47	A
	ATOM				A 229	101.178		45.244		
	ATOM	1786	CG OD1		A 229	101.057	91.972	43.727	1.00 50.49	A
2.0	ATOM	1787		ASP		101.471	92.917	43.003	1.00 49.52	A
30	ATOM	1788		ASP.		100.573	90.910	43.263	1.00 34.83	A
	$AT \cup M$	1789	C		A 229	102.716	92.944	47.097	1.00 56.94	A
	ATOM	1790	0		A 229	102.511	90.165	48.033	1.00 47.42	A
	ATOM	1791	N		A 230	103.104	94.229	47.290	1.00 64.41	A
	ΜC:TA	1792	CD	PRO .	A 230	103.414	95.217	46.238	1.00 66.97	A
35	$AT \cap M$	1793	CA	PRO .	A 230	103.241	94.830	48.625	1.00 64.83	A
	ATOM	1794	CB	PRO .	A 230	103.783	96.239	48.322	1.00 68.61	A
	$AT \bigcirc M$	1795	CG	PRO .	A 230	103.206	96.530	46.968	1.00 71.34	A
	ATOM	1796	С	PRO 2	A 230	101.958	94.835	49.400	1.00 61.61	A
	ATOM	1797	0	PRO .	A 230	100.886	94.963	48.819	1.00 59.14	A
4()	MOTA	1798	N	GLY 2	A 231	102.066	94.671	50.713	1.00 64.01	Α
	ΑΤΟΜ	1799	CA		A 231	100.834	94.647	51.552	1.00 69.86	A
	ATOM	1800	C		A 231	100.1+7	33.305	51.447	1.00 70.74	A
	ATOM	1801	Ö		A 231		3.085		1.00 71.02	A
	AT.M	1800	N		A 232	100.437	92.408	52.388	1.00 74.07	A
15	ATOM		CA			99.893		52.345	1.00 77.87	
15		1803			A 232 A 232		91.068 91.170			A
	ATOM	1804	CB			98.364			1.00 80.70	A
	ATOM	1805	CG		A 232	97.722	91.539	53.624	1.00 83.42	A
	ATOM	1806	CD		A 232	97.830	90.372	54.609	1.00 85.26	A
_	ATOM	1807	CE		A 232	97.028	90.622	55.884	1.00 85.21	A
50	MOTA	1808	NZ		A 232	97.013	89.416	56.769	1.00 86.74	A
	ATOM	1809	С		A 232	100.443	90.345	51.087	1.00 77.00	A
	MOTA	1810	0	LYS 2	A 232	99.701	89.982	50.156	1.00 76.48	A
	MOTA	1811	N	GLN I	A 233	101.762	90.168	51.071	1.00 70.42	A
	ATOM	1812	CA		A 233	102.447	89.508	49.971	1.00 64.94	A
55	ATOM	1813	CB		A 233	103.895	89.999	49.916	1.00 65.15	А

	MITA	1814	CG	GLN A	A 233	104.650	89.787	51.211	1.00 68.22	A
	ATCM	1815	CD	GLN A	A 233	105.334	91.059	51.716	1.00 73.51	A
	ATCM	1816	OE1			106.256	91.581	51 087	1.00 79.17	A
	ATOM	1817		GLN A		104.869	91.567	52 359	1.00 73.37	A
5	ATEM	1818	C	GLN A	7 233	102.416	88.003	50 192	1.00 62.45	A
	ATOM	1819	0	GLN A	A 233	103.423	87.332	50.007	1.00 59.36	A
	ATIM	1820	N	LEU Z	A 234	101.267	87.473	50.604	1.00 59.16	А
	ATOM	1821	CA	LEU A		101.163	86.040	5) 344	1.00 57.14	A
	ATCH	1822	CB	LEU A		100.011	85.733	51 308	1.00 58.67	A
10	ATIM	1823	CG	LEU A	A 234	98.593	86.146	51 4 06	1.00 59.33	A
	ATEM	1824	CD1	LEU A	A 234	97.566	85.419	52.300	1.00 55.69	A
	ATOM	1825	CD2	LEU A	A 234	98.455	87.680	51.521	1.00 56.83	A
	ATIM	1826	C		A 234	101.004	85.222	49.548	1.00 56.11	A
								49.572	1.00 58.17	
	AT DM	1827	0		A 234	101.067	83.977			A
15	ATOM	1828	N		4 235	100.835	85.906	48.415	1.00 43.77	A
	MCTA	1829	CA	TYR A	A 235	100.694	85.205	47 142	1.00 33.72	A
	ATUM	1830	CB	TYR A	A 235	99.701	85.954	46 262	1.00 29.90	A
	ATOM	1831	CG		1 235	98.416	86.253	46.982	1.00 31.05	A
	ATDM	1832	CD1			97.805	87.505	46.872	1.00 32.37	A
30										
20	ATOH	1833	CE1			96.614	87.785	47.530	1.00 27.48	A
	$AT^{\oplus M}$	1834	CD2	TYR I	A 235	97.799	85.273	47.779	1.00 29.78	A
	$AT\Theta H$	1835	CE2	TYR A	A 235	96.615	85.533	43 437	1.00 27.57	A
	ATOM	1836	CZ	TYR A	A 235	96.026	86.789	43.303	1.00 33.50	A
	AT DM	1837	ОН	TYR A		94.822	87.009	48.889	1.00 30.21	A
25				TYR A		102.015	85.112	46 401	1.00 31.37	A
25	ATOM	1838	C							
	MUTA	1839	0	TYR A		102.027	84.671	49.262	1.00 28.36	A
	AT M	1840	N	ASN A	A 236	103.130	85.519	47.023	1.00 24.27	A
	MUTA	1841	CA	ASN A	1 236	104.399	85.505	46.292	1.00 20.44	A
	ATOM	1842	CB	ASN A	A 236	105.472	86.335	47.017	1.00 25.88	A
30	ATOM	1843	CG	ASN A		105.651	85.944	43.484	1.00 30.25	A
50										
	AT::M	1844		ASN A		104.890	85.143	49.032	1.00 39.82	A
	$AT \in M$	1845	ND2	ASN A		106.644	86.543	49.133	1.00 28.85	A
	ATOM	1846	C	ASN A	A 236	104.955	84.137	45 960	1.00 20.82	A
	ATUM	1847	0	ASN A	A 236	105.599	83.968	44 919	1.00 20.31	A
35	ATGM	1848	N		A 237	104.761	83.155	45.331	1.00 20.09	A
	AT:M	1849	CA	VAL A		105.272	81.827	46.501	1.00 21.36	A
		1850	CB		A 237	105.154	80.861	47.704	1.00 18.71	A
	ATOM									
	ATOM	1851		VAL A		105.601	79.471	47.312	1.00 14.08	A
	ATOM	1852	CG2	VAL		106.052	81.376	43.846	1.00 27.50	A
40	AT DI	1853	C	VAL A	237	104.481	81.299	45 301	1.00 18.56	Α
	ATOM	1854	0	VAL A	A 237	105.063	80.794	44.343	1.00 18.22	A
	ATOM	1855	N	GLU A		103.162	81.479	45.323	1.00 17.79	A
						102.315	80.996	44.239	1.00 16.12	A
	ATOM	1856	CA	GLU A						
	ATOM	1857	CB	GLU A		100.824	81.147	44 501	1.00 17.19	A
45	ATDM	1858	CG	GLU A	238	99.867	80.782	43.468	1.00 14.34	А
	ATOM	1859	CD	GLU A	A 238	98.471	81.420	43.650	1.00 11.06	A
	ATOM	1860	OE1	GLU A		98.241	82.107	44.686	1.00 19.48	A
	MOTA	1861		GLU A		97.621	81.200	43 783	1.00 16.80	A
	ATOM	1862	C	GLU A		102.628	81.744	42.958	1.00 20.05	Λ
50	ΑΤΦΜ	1863	0	GLU A		101.815	81.130	41.33/	1.00 18.11	A
	M:DTA	1864	N	ALA A	239	102.684	83.071	43.036	1.00 18.43	A
	ATGM	1865	CA	ALA A		102.975	83.367	41.335	1.00 17.27	A
	ATOM	1866	СВ	ALA A		102.988	85.340	42.221	1.00 17.99	А
	AT©M	1867	C	ALA A		104.334	83.488	41.251	1.00 16.91	A
55	MOTA	1868	0	ALA A	4 439	104.510	83.248	40.038	1.00 18.31	А

	ATOM	1869	N	THP.	A 2	40	105.312	83.398	42.136	1.00	12.73	A
											16.78	A
	ATOM	1870	CA	THP.			106.678	83.101	41.673			
	$M \cap TA$	1871	CB	THP.	A 2.	1 0	107.675	83.337	42.835	1.00	20.26	A
	MOTA	1872	$\odot G1$	THP	A 2	40	107.499	84.683	43.322	1.00	20.23	A
5	ATOM	1873	CG2	THP.			109.110	83.187	42.382	1.00	15.53	A
-									41.087		23.59	A
	MOTA	1874	C	THP.			106.790	81.686				
	ATOM	1875	(<u>)</u>	THP.	A 2	40	107.639	81.437	40.215	1.00	20.02	Α
	MOTA	1876	N	SEP.	A 2	41	105.941	80.760	41.552	1.00	15.58	А
	MOTA	1877	CA	SEP	A 2	41	105.991	79.381	41.022	1.00	17.43	А
10	ATOM	1878	СВ	SEP.			105.162	78.441	41.905		11.67	A
10												
	MOTA	1879	⊖G	SER			105.715	78.363	43.233		15.93	A
	ATOM	1880	C	SEP.	A 2.	41	105.438	79.442	39.595	1.00	17.10	A
	$AT \odot M$	1881	C;	SEP.	A 2	41	105.980	78.810	38.675	1.00	18.31	A
	ATOM	1882	N	TYR			104.365	80.217	39.383		18.46	A
1.5												
15	ATOM	1883	CA	TYR			103.846	80.367	38.013		18.91	A
	MOTA	1884	CB	TYR	A 2.	42	102.622	81.307	37.940	1.00	15.98	A
	MOTA	1885	CG	TYP	A 2	42	101.263	80.652	38.190	1.00	20.69	A
	ATOM	1886	CD1	TYR	A 2	4.2	100.766	79.658	37.338	1.00	13.29	A
	ATOM	1887	CE1	TYR			99.504	79.043	37.567		18.13	А
20												
20	MOTA	1888	CD2	TYP			100.486	81.030	39,086		16.91	A
	$AT \oplus M$	188∋	CE2	TYP			99.246	80.434	39.537	1.00	11.03	А
	$AT \cap M$	1890	CZ	TYR	A 2	42	98.759	79.444	38.669	1.00	19.17	A
	$AT \cap M$	1891	$\bigcirc H$	TYR	A 2	42	97.505	78.916	38.898	1.00	17.62	A
	ATOM	1892	C	TYP			104.949	81.000	37.157	1.00	23.33	A
25	ATOM	1893	Ö	TYP.			105.190	80.603	35.997		22.29	A
4.5								82.004				
	ATOM	1894	11	ALA			105.613		37.71"		18.34	A
	ATOM	1895	CA	ALA			106.634	82.697	36.929		18.89	A
	ATCM	1896	CB	ALA	A 2	43	107.164	83.901	37.694	1.00	19.57	А
	ATOM	1897	-7	ALA	A 2	43	107.772	81.717	36.608	1.00	21.61	A
30	ATOM	1898	7	ALA	A 2	4.3	108.290	81.731	35.494	1.00	21.45	A
	ATOM	1899	11	LEU			108.145	80.861	37.565		16.89	A
	ATOM	1900		LEU			109.239	79.899	37.309		20.89	A
			CA									
	MOTA	1901	CB	LEU			109.588	79.103	38.587		16.59	A
	$AT \odot M$	1902	CG	LEU	A 2.	44	110.578	77.933	33.371	1.00	21.10	A
35	ATOM	1903	CD1	LEU	A 2	44	111.844	78.449	37.632	1.00	20.05	A
	ATOM	1904	CD2	LEU	A 2	44	110.974	77.326	39.777	1.00	12.73	А
	ATOM	1905	C	LEU			108.813	78.947	36.182		18.67	A
				LEU								
	ATOM	1906	0				109.610	78.556	35.096		19.02	A
	AT@M	1907	11	LEU			107.542	78.574	36.181		17.68	A
40	$AT \cup M$	1908	CA	LEU	A 2.	4 5	107.074	77.709	35.10"	1.00	15.21	A
	ATOM	1909	CB	LEU	A 2	45	105.628	77.214	35.404	1.00	20.70	A
	ATOM	1910	CG	LEU	A 2.	45	105.557	76.123	36.500	1.00	21.76	A
	ATOM	1911	CD:	LEU			104.108	75.956	36 996		26.34	A
									-			
	ДТОМ	1912		LEU			106.100	74.778	35.000		16.28	A
45	MOTA	1913	C	LEU			107.147	/8.449	33. 4		⊥ Э.З∪	A
	AT@M	1914	0	LEU	A 2	45	107.449	77.831	32.717	1.00	20.79	A
	MPTA	1915	11	ALA	A 2-	46	106.874	79.759	3 4 . 7 3 4	1.00	18.12	A
	ATOM	1916	CA	ALA			106.959	80.501	32.461		18.77	A
	ATOM	1917	CB	ALA			106.367	81.944	32.620		16.45	A
50												
50	ATOM	1918	C	ALA			108.431	80.558	32.003		14.13	A
	$AT \cap M$	1919	0	ALA			108.738	80.352	30.823		19.75	A
	ATOM	1920	11	LEU	A 2-	47	109.337	80.835	32.944	1.00	15.08	A
	ATOM	1921	CA	LEU	A 2	47	110.769	80.899	32.620	1.00	18.36	A
	ATOM	1922	СВ	LEU			111.567	81.267	33.866		19.66	A
55	ATC:M	1923	CG	LEU			111.365	82.715	34.363		20.28	A
-141	77 7 7 7 1 1	1,43	C.3	110		• '	111.505	02.710	54.707	1.00	20.20	

	ATOM	1924	CD1	LEU A	247	111.874	82.820	35.813	1.00 17.02	A
	ATOM	1925	CD2	LEU A	247	112.098	83.725	33.441	1.00 21.44	A
	ATOM	1926	C	LEU A	247	111.263	79.557	32.058	1.00 23.09	A
	ATOM	1927	Ō	LEU A	247	112.038	79.526	31.092	1.00 25.65	А
5	MOTA	1928	11	LEU A		110.796	78.447	32.624	1.00 22.19	A
•	ATOM	1929	CA	LEU A		111.239	77.124	32.123	1.00 23.05	А
	ATOM	1930	CB	LEU A		110.815	75.977	33.081	1.00 24.02	A
		1931	CG	LEU A		111.577	75.998	34.437	1.00 25.05	A
	ATOM								1.00 24.06	Ā
	ATOM	1932		LEU A		110.943	75.071	35.436		
10	ATOM	1933		LEU A		113.066	75.617	34.216	1.00 15.01	A
	ATOM	1934	C	LEU A		110.657	76.914	30.745	1.00 23.21	A
	MOTA	1935	Õ	LEU A		111.313	76.391	29.847	1.00 25.42	A
	MOTA	1936	11	GLN A		109.416	77.324	30.572	1.00 22.82	A
	MOTA	1937	CA	GLN A		108.757	77.197	29.281	1.00 22.86	А
15	ATOM	1938	CB	GLN A		107.314	77.694	29.377	1.00 27.53	А
	ATOM	1939	CG	GLN A	249	106.526	77.545	28.085	1.00 34.55	A
	MOTA	1940	CD	GLN A	249	106.170	76.085	27.789	1.00 39.67	A
	ATOM	1941	OE1	GLN A	249	105.459	75.434	28.554	1.00 44.37	A
	ATOM	1942	NE2	GLN A	249	106.672	75.575	26.687	1.00 37.71	A
20	MOTA	1943	С	GLN A	249	109.513	78.042	28.226	1.00 27.62	A
	MOTA	1944	0	GLN A	249	109.623	77.655	27.079	1.00 24.60	A
	ATOM	1945	11	LEU A	250	110.009	79.207	28.618	1.00 32.08	A
	ATOM	1946	CA	LEU A		110.740	80.080	27.700	1.00 30.59	A
	ATOM	1947	CB	LEU A		110.736	81.501	28.247	1.00 28.66	A
25	ATOM	1948	C/G	LEU A		109.401	82.220	28.410	1.00 39.11	А
	ATOM	1949		LEU A		109.530	83.326	29.426	1.00 23.85	А
	ATOM	1950		LEU A		108.960	82.728	27.062	1.00 28.49	A
	ATOM	1951	C	LEU A		112.207	79.647	27.551	1.00 35.31	A
	ATOM	1952	0	LEU A		112.938	80.189	26.708	1.00 31.07	A
30	ATOM	1953	N.	LYS A		112.627	78.682	28.373	1.00 30.98	A
30	MOTA	1954	ca Ca	LYS A		114.016	78.226	28.410	1.00 31.57	A
		1955	CB	LYS A		114.420	77.554	27.098	1.00 32.85	A
	ATOM	1956		LYS A		113.715	76.232	26.890	1.00 42.53	A
	ATOM		CG cm					25.555	1.00 45.71	A
3.5	ATOM	1957	CD	LYS A		114.060	75.631		1.00 45.71	
35	ATOM	1958	CE	LYS A		113.233	74.376	25.314		A
	ATOM	1959	NΞ	LYS A		113.214	73.987	23.864	1.00 58.25	A
	ATOM	1960	Ğ	LYS A		114.943	79.412	28.712	1.00 31.12	A
	ATOM	1961	0	LYS A		116.102	79.442	28.301	1.00 32.37	A
	ATOM	1962	13	ASP A		114.438	80.376	29.470	1.00 29.36	A
40	MOTA	1963	CA	ASP A		115.239	81.521	29.830	1.00 28.62	A
	MOTA	1964	CB	ASP A		114.346	82.738	30.091	1.00 33.61	А
	ATOM	1965	CG	ASP A		115.150	84.017	30.237	1.00 37.36	A
	MOTA	1966		ASP A		116.328	83.990	29.839	1.00 49.12	A
	MOTA	1967	OD2	ASP A	252	114.624	85.048	30.725	1.00 34.58	A
45	MOTA	1968	C	ASP A	252	116.097	81.183	31.046	1.00 31.99	A
	MOTA	1969	0	ASP A	252	115.933	81.742	32.139	1.00 30.76	A
	MOTA	1970	\mathbf{N}	PHE A	253	117.069	80.301	30.819	1.00 31.40	A
	MOTA	1971	CA	PHE A		117.935	79.818	31.873	1.00 27.03	A
	ATOM	1973	CB	PHE A		118,786	78.674	37 338	1.00 33.08	А
50	ATOM	1973	gg.	PHE A		117.995	77.601	30.649	1.00 33.23	A
	MOTA	1974		PHE A		116.815	77.109	31.205	1.00 35.86	A
	ATOM	1975		PHE A		118.460	77.032	29.463	1.00 34.30	A
	ATOM	1976		PHE A		116.115	76.061	30.593	1.00 35.38	A
	ATOM	1977		PHE A		117.762	75.987	28.853	1.00 30.02	A
5.5		1978	CEZ	PHE A		116.593	75.504	29.421	1.00 30.02	A
55	MOTA	13/0	Cu	FILE A	ددي	110.333	,5.504	<u>.</u>	1.00 32.73	A

	ATOM	1979	С	PHE A 2	253	118.823	80.800	32.619	1.00 36.01	А
	ATOM	1980	0	PHE A 2		119.249	80.512	33.746	1.00 32.40	A
	ATOM	1981		ASP A 2		119.124	81.951	32.028	1.00 33.64	A
			N	ASP A 2		119.124	82.905	32.728	1.00 37.81	A
_	ATOM	1982	CA					31.729	1.00 49.35	A
5	ATOM	1983	CB	ASP A 2		120.588	83.884		1.00 49.33	Ā
	ATOM	1984	CG	ASP A		119.539	84.520	30.871		A
	MOTA	1985		ASP A		118.936	83.793	30.046	1.00 75.38	
	MOTA	1986		ASP A		119.293	85.740	31.023	1.00 75.70	A
	MOTA	1987	C	ASP A 2		119.210	83.669	33.802	1.00 31.65	A
10	MOTA	1988	0	ASP A 2		119.791	84.196	34.752	1.00 30.63	A
	MOTA	1989	N	PHE A 2		117.892	83.728	33.652	1.00 28.90	A
	MOTA	1990	CA	PHE A 2		117.058	84.442	34.616	1.00 29.25	A
	MOTA	1991	CB	PHE A 2	255	115.881	85.100	33.892	1.00 28.92	A
	MOTA	1992	CG	PHE A	255	115.234	86.213	34.671	1.00 38.13	A
15	ATOM	1993	CD1	PHE A	255	114.281	85.947	35.643	1.00 31.13	A
	MOTA	1994	CD2	PHE A	255	115.596	87.546	34.432	1.00 39.51	A
	ATOM	1995	CEl	PHE A	555	113.695	86.988	36.366	1.00 38.06	A
	MOTA	1996	CE2	PHE A	255	115.017	88.589	35.150	1.00 35.88	A
	ATOM	1997	CZ	PHE A	:55	114.063	88.313	36.120	1.00 39.10	A
20	ATOM	1998	C	PHE A 3	255	116.523	83.530	35.721	1.00 28.15	A
	ATOM	1999	0	PHE A		116.078	83.996	36.767	1.00 27.42	A
	ATOM	2000	N	VAL A		116.562	82.228	35.482	1.00 24.41	А
	ATOM	2001	CA	VAL A :		116.040	81.257	36.453	1.00 21.90	А
	ATOM	2002	СВ	VAL A		116.017	79.838	35.789	1.00 26.19	A
25	ATOM	2003		VAL A		115.894	78.725	36.829	1.00 17.57	A
2.5	ATOM	2004		VAL A .		114.827	79.770	34.812	1.00 22.75	А
	ATOM	2005	C	VAL A		116.666	81.130	37.848	1.00 22.10	А
	ATOM	2005	0	VAL A		115.946	81.095	38.871	1.00 28.02	А
	ATOM	2007	N	PRO A		118.007	81.124	37.931	1.00 21.20	A
30	ATOM	2008	CD	PRO A		118.995	81.442	36.886	1.00 24.71	A
30	ATOM	2009	CA	PRO A :		118.667	80.963	39.234	1.00 24.35	A
		2010	CB	PRO A		120.169	81.097	38.899	1.00 27.97	A
	ATOM ATOM	2010	СБ	PRO A :		120.133	80.711	37.411	1.00 23.95	A
				PRO A :		118.258	81.802	40.403	1.00 24.79	A
2.5	MOTA	2012	C		557 557	117.988	81.266	41.468	1.00 27.34	A
35	MOTA	2013	O N			118.189	83.134	40.250	1.00 25.57	A
	MOTA	2014	N	PRO A		118.169	84.076	39.165	1.00 26.97	A
	ATOM	2015	CD	PRO A					1.00 25.28	A
	ATOM	2016	CA	PRO A		117.785	83.828	41.487	1.00 29.92	A
	MOTA	2017	CB	PRO A		117.840	85.322	41.103		
40	ATOM	2018	CG	PRO A		118.862	85.363	39.944	1.00 31.32	A
	MOTA	2019	C	PRO A .		116.373	83.414	41.927	1.00 25.27	A
	ATOM	2020	0	PRO A		116.032	83.438	43.117	1.00 21.56	A
	MOTA	2021	N	VAL A		115.552			1.00 21.83	A
	ATOM	2022	CA	VAL A		114.175	82.658	41.291	1.00 22.97	A
45	ATOM	2023	CB	VAL A .		113.339	82.571	39.988	1.00 21.99	A
	MOTA	2024		VAL A .		111.917	82.096	40.294	1.00 17.20	A
	MOTA	2025	CG2	VAL A .		113.271	83.961	39.346	1.00 24.31	А
	MOTA	2026	С	VAL A	359	114.069	81.353	43,085	1.00 19.11	Α
	ATOM	2027	Ō	VAL A	144	113 366	81 256	43.091	1.00 22.76	A
50	ATOM	2028	N	VAL A	260	114.783	80.357	41.620	1.00 26.91	A
	ATOM	2029	CA	VAL A	260	114.760	79.071	42.275	1.00 24.36	A
	MOTA	2030	CB	VAL A .	250	115.564	78.094	41.451	1.00 23.58	A.
	ATOM	2031		VAL A		115.723	76.787	42.189	1.00 24.55	A
	ATOM	2032		VAL A		114.865	77.887	40.155	1.00 21.01	A
55	MOTA	2033	C	VAL A		115.340	79.231	43.657	1.00 24.01	A
			-		-	-				

		11 651 1.00 20.83	A
	NEOM 2034 O VAL A 260	$114.815 ^{18.721} 12.724 1.00 24.50$	A
	ATOM 2001	116.436 79.972 15.002 1.00 19.29	A
	ATOM 2000 - 350 7 251	117.004 001-1 1.00 25.10	A A
	ATOM 2000 - 200 7 261	118.320 021	A
	ATOM 2039 CG ARG A 251	119.210 01.11 45 594 1.00 48.37	A
5	ATOM 2000 CD ARG A 261	120.449	A
	ATOM 2010 NE ARG A 251	121.239 021 106 81 910 43.301 1.00 58.00	A
	ATOM 2011 CZ ARG A 261	121.400 021 83 045 42.877 1.00 55.55	A
	ATOM 2042 NH1 ARG A 261	120.843 330 81 180 42.454 1.00 54.67	A
	ATOM 2013 NH2 ARG A 261	122.120 01 80 883 45.999 1.00 26.53	A
10	ATOM 2011 C APG A 261	47.169 1.00 23.30	A
	ARG A LOL	115 253 81 885 45.556 1.00 21.12	A
	TRP A 161	123 82 526 46.469 1.00 22.	A
	ATOM AND TRP A 161	113 759 83.756 45.804 1.00 26.23	A
	ATOM ON TRP A 262	112 747 84.440 46.710 1.00 23	A
15	2010 CG TRP A 202	111 344 84.176 46.770 1.00 22 85	A
	ATOM 2050 CD2 TRP A 202	110 809 84.949 47.035 1 00 29 17	A
	ATOM 2051 CE2 1RP A 202	110 479 83.359 40.55 1 00 27 15	A
	- AAEA CES IKE & BY	113 008 85.351 47.75 1 00 25 55	A
20	ATOM 2053 CDI 1RP A 202	111.844 85.659 48.377 1.00 22.55	A
20	ATOM 2054 NEI TRP A 262	109.458 84.922 46.17	A
	ATOM - OBS THE MEDIA OBS	109.134 83.332 46.333 1.00 27.32	A
	ATOM 2000 GITO TED A 363	108.536 84.100 17.00 1.00 21.59	A
	ATOM 2007	113.345 81.504 40.077 1.00 21.98	A
25	ATOM 2050 - TRP A 262	113.003 01.	A A
	ATOM 2000 N LEU A 263	112.000 001 46 248 1.00 24.50	A
	ATOM 2000 CA LEU A 263	111.700 73 44 985 1.00 23.13	A
	ATOM 2002 CB LEU A 263	79 804 44.055 1.00 26.60	A
	ATOM 2002 CG LEU A 263	79 064 42.702 1.00 23.50	A
30	ATOM 2004 CD1 LEU A 263	79 890 44.736 1.00 15.46	A
	ATOM SOCE CD2 LEU A 263	112 280 78.754 47.252 1.00 23.54	A
	2006 C LEU A 203	311.589.78.395.40.22	A
	2067 O LEU A 203	78.334 47.052 1.00 2	A
3.5	ASN A -04	314 138 77.339 47.52	A
35	ATOM 2069 CA ASN A 251	115 429 76.833 47.32	A
	ATOM 2070 CB ASN A 254	115.869 75.523 47.300 - 1.00 41.85	A
	ATOM 2012 761	117.047 75.355 48.102 1.00 34.54	A
	AIOM TO ACM A 364	114.936 74.576 10.308 1.00 31.72	A
40	A10M 201 ASN A 264	114.426 //.043 50 186 1.00 29.93	A
	ATOM 2011 A 264	114./34 //** 1 00 23.33	A A
	ATOM 2075 N GLU A 265	114.360 77.55 50 968 1.00 27.89	A
	ATOM 2077 CA GLU A 165	114.583 75.057 50.817 1.00 36.54	A
	ATOM 2079 CB GLU A 265	115.256 81 031 50.220 1.00 45.81	A
45	ATOM 2070 CG GLU A 265	202 82 426 49.890 1.00 52.20	Λ
	ATOM CD GLU A 2h5	117.22 03 784 49.448 1.00 55.22	A
	ATOM 2001 OHI GLU A 205	50.053 1 00 33.11	A
	2002 OE2 GLU A 255	79 794 51.61/ 1.00 32	A
	2003 C GLU A 265	113 210 80 100 52 800 1 00 35 12	А
50	0004 O GLU A 200	112 131 79.578 50.917 1.00 25.11	A
	OOE N GLN A 266	110 823 79.682 51.534 1.00 23.70	A
	ATOM 2086 CA GLN A 266	109 769 80.120 50.492 1.00 22.84	А
	ATOM 2087 CB GDN A 266	- 420 01 (44 42.022	
55	7088 CG GLIN A 201	,	
-'-			

<i>I</i>	ATOM 2136 U GLY A 272 99.091 71.00 56.568 1.00 23.11	· A A A
50	ATOM 2137 C GLY A 271 100.583 75.740 55.198 1.00 23.80 A 2136 O GLY A 271 99.091 74.158 55.662 1.00 23.80 A 2137 N GLY A 272 98.437 75.085 56.568 1.00 26.88 A 2137 ATOM 2138 CA GLY A 272 97.305 75.856 55.915 1.00 23.11 ATOM 2139 C GLY A 272 97.305 75.787 54.712 1.00 21.50 97.123 75.787 54.712 1.00 17.15 97.123 75.787 76.618 56.710 1.00 17.15	A

	⊼ T'∩M	2144	CG	TYR A 273	93.616	78.988	56.897	1.00 23.29	A
	ATOM			TYR A 273	92.321	78.473	57.084	1.00 20.57	A
	ATOM	2145		TYR A 273	91.184	79.246	55.758	1.00 23.40	A
	ATOM	2146	CD2	TYR A 273	93.759	80.281	55.359	1.00 23.31	А
_	ATOM	2147		TYR A 273	92.646	81.060	56.027	1.00 22.47	А
5	ATOM	2148	CE2		91.371	80.532	56.235	1.00 20.88	А
	MOTA	2149	CZ	TYR A 273 TYR A 273	90.314	81.304	55.896	1.00 20.65	A
	MOTA	2150	OH		95.747	78.224	54.976	1.00 23.07	A
	MOTA	2151	C	TYR A 273	96.764	78.920	54.931	1.00 14.66	A
	META	2152	0	TYR A 273	94.891	78.150	53.966	1.00 23.18	A
10	ATEM	2153	N	GLY A 274	95.092	78.955	52.768	1.00 16.12	A
	ATOM	2154	CA	GLY A 274		78.533	51.891	1.00 25.88	A
	MOTA	2155	C	GLY A 274	96.280	79.431	51.012	1.00 20.78	A
	AT⊙M	2156	0	GLY A 274	96.629	77.458	52.080	1.00 14.86	A
	ATOM	2157	N	SER A 275	96.907	77.438	51.270	1.00 20.55	A
15	ATOM	2158	CA	SER A 275	98.089 99.074	76.297	52.077	1.00 16.52	A
	ATOM	2159	CB	SER A 275		75.061	52.389	1.00 21.60	A
	ATOM	2160	OG	SER A 275	98.428 97.806	76.335	50.005	1.00 20.94	A
	ATOM	2161	C	SER A 275	98.746	75.961	49.318	1.00 17.86	A
	ATOM	2162	0	SER A 275		76.072	49.683	1.00 17.00	A
20	ATOM	2163	N	THR A 276	96.544	75.232	48.516	1.00 19.71	A
	ATOM	2164	CA	THR A 276	96.269	75.059	48.238	1.00 22.45	A
	ATOM	2165	CB	THR A 276	94.730	76.301	47.838	1.00 51.89	A
	ATOM	2166	OG1		94.192 93.993	74.729	49.503	1.00 51.05	A
	ATOM	2167	CG2	THR A 276	96.967	75.607	47.228	1.00 21.51	A
25	ATOM	2168	C	THR A 276	97.666	74.764	46.650	1.00 19.94	A
	MUTA	2169	0	THR A 276	96.823	76.350	46.754	1.00 13.97	A
	ATOM	2170	N	GLN A 277	97.463	77.189	45.485	1.00 15.27	A
	MOTA	2171	CA	GLN A 277	96.942	78.540	44.964	1.00 15.99	A
2.0	MOTA	2172	CB	GLN A 277 GLN A 277	95.421	78.529	44.563	1.00 8.40	A
30	ATOM	2173	CG	GLN A 277	95.100	77.321	43.742	1.00 20.22	A
	ATOM	2174	CD OF1		95.685	77.090	42.673	1.00 16.53	A
	MOTA	2175	OE1 NE2		94.190	76.505	44.253	1.00 18.51	A
	ATOM	2176	C	GLN A 277	99.007	77.220	45.567	1.00 13.58	А
2.5	ATCM	2177 2178	0	GLN A 277	99.689	76.791	44.620	1.00 15.16	А
35	ATOM	2179	N	ALA A 278	99.534	77.754	46.667	1.00 17.70	А
	ATOM	2180	CA	ALA A 278	100.996	77.842	46.833	1.00 17.58	A
	ATOM ATOM	2181	CB	ALA A 278	101.367	78.522	49.200	1.00 12.12	A
	ATOM	2182	C	ALA A 278	101.539	76.426	46.798	1.00 20.92	A
10	ATOM	2183	0	ALA A 278	102.581	76.154	46.176	1.00 19.56	A
40	ATOM	2184	N	THR A 279	100.821	75.524	47.477	1.00 18.75	A
	ATOM ATOM	2185	CA	THR A 279	101.254	74.136	47.553	1.00 15.04	A
	ATOM	2186	CB	THR A 279	100.380	73.3∔1	48.554	1.00 23.60	A
	ATOM	2187		THR A 279	100.574	73.865	49.873	1.00 16.00	A
45	ATOM	2188		THR A 279	100.755	71.832	48.531	1.00 18.05	A
7.	MOTA	2189	C	THR A 279	101.224	73.469	46.195	1.00 20.78	A
	ATOM	2190	0	THR A 279	102.224	72.834	45.758	1.00 14.58	A
	ATHM	2190	N	PHE A 280	100.090	73.544	45.514	1,00 14.85	A
	ΨŢŢŢ	2192	CA	PHE A 280	99.989	72.925	44.212	1.00 15.92	A
50	ATOM	2193	CB	PHE A 280	98.601	73.198	43.604	1.00 15.13	A
20	ATOM	2194	CG	PHE A 280	98.354	72.463	42.313	1.00 19.65	A
	AT DM	2195		PHE A 280	97.543	71.341	42.284	1.00 19.12	A
	ATOM	2196		PHE A 280	98.873	72.932	41.120	1.00 17.17	A
	ATOM	2197		PHE A 280	97.261	70.703	41.074	1.00 21.16	A
55	ATOM	2198		PHE A 280	98.593	72.308	39.910	1.00 22.94	A
2.2	ALON	٥٠٠٠	ندىد	1 1. 200					

	MOTA	2199	CZ	PHE	A :	280		97.784	71.202	39.884	1.00	22.80	А
	ATOM	2200	J.	PHE				01.031	73.493	43.273		22.45	A
									72.768				A
	MOTA	2201	Ú.	PHE				01.706		42.534		17.39	
	MOTA	2202	N	MET				01.157	74.808	43.284		15.49	A
5	MOTA	2203	TA	MET			10	02.061	75.445	42.339		19.30	А
	MOTA	2204	. P	MET	A :	281	1	01.681	76.939	42.169	1.00	16.61	A
	ATOM	2205	: '(:	MET	A 2	281	1	00.322	77.212	41.527	1.00	13.78	A
	ATOM	2206	SE	MET	A :	281	10	00.020	76.356	39.946	1.00	24.71	A
	ATOM	2207	CE	MET	A :	281	10	01.567	76.615	39.056	1.00	22.61	А
10	ATOM	2208	C	MET				03.576	75.321	42.559		12.99	A
	ATOM	2209	j,	MET				04.316	75.044	41.593		20.36	A
			11	VAL				04.036	75.481	43.800		20.60	A
	ATOM	2210											
	MOTA	2211	CA	VAL				05.475	75.395	44.084		17.17	A
	MOTA	2212	CB	VAL				05.795	75.806	45.562		15.00	A
15	ATOM	2213	001	VAL			1 (05.366	74.677	46.522		16.44	A
	ATOM	2214	CG2	VAL	Α.	282	1	07.331	76.108	45.740	1.00	20.08	A
	ATOM	2215	0	VAL	A :	282	10	05.974	73.961	43.790	1.00	15.69	A
	ATOM	2216	्	VAL	A :	282	10	07.058	73.777	43.230	1.00	16.91	A
	ATOM	2217	11	PHE	A :	283	10	05.184	72.943	44.134	1.00	13.38	A
20	ATOM	2218	CA	PHE				05.623	71.562	43.832	1.00	20.74	А
	ATOM	2219	CB	PHE				04.821	70.541	44.584		13.63	А
	MOTA	2220	00	PHE				05.280	70.495	45.117		21.50	A
								04.633	71.260	47.107		18.08	A
	ATOM	2221	CDI										
	ATOM	2222	CD2	PHE				06.402	69.732	46.477		17.18	A
25	ATOM	2223	CEI	PHE				05.100	71.264	48.441		21.58	A
	ATÓM	2224	CE2	PHE				06.873	69.736	47.809		19.10	А
	ATOM	2225	CZ	PHE			10	06.220	70.502	48.790		15.19	A
	MOTA	2226	C	PHE	A :	283	1	05.559	71.274	42.329	1.00	17.88	A
	ATOM	2227	Ü	PHE	A :	283	1	06.418	70.582	41.780	1.00	17.08	A
30	MOTA	2228	11	GLN	A :	284	1	04.572	71.859	41.642	1.00	17.15	A
	ATOM	2229	CA	GLN	A :	284	10	04.505	71.696	40.195	1.00	15.23	A
	ATOM	2230	CB	GLN				03.258	72.375	39.570	1.00	19.08	A
	ATOM	2231	33	GLN				03.135	72.123	38.053		13.51	А
	ATOM	2232	CD	GLN				01.834	72.642	37.446		27.56	A
35	ATOM	2233	OE1	GLN				01.215	73.561	37.957		19.72	A
33													
	ATOM	2234	17F.2	GLN				01.419	72.040	36.358		28.76	A
	MOTA	2235	·	GLN				05.733	72.350	39.583		23.26	A
	ATOM	2236	Ü	GL11				06.403	71.749	38.721		19.33	A
	ATOM	2237	11	ALA				06.032	73.586	40.020		20.27	A
4 0	ATOM	2238	CA	ALA	A :	285	10	07.169	74.314	39.474	1.00	22.72	A
	ATOM	2239	CB	ALA	Α :	285	1	07.131	75.841	39.900	1.00	13.58	A
	MOTA	2240	\mathbb{C}	ALA	Α :	285	1	08.525	73.704	39.796	1.00	19.56	A
	ATOM	2241	Ć.	ALA	A :	285	1	09.342	73.571	38.891	1.00	18.63	A
	ATOM	2242	:1	LEU	A :	286		08.775	73.348	41.060	1.00	17.53	А
45	ATOM	2243	$C\mathbf{A}$	LEU				10.059	72.729	41.425		22.71	А
	ATOM	2244	Œ	LEU				10.238	72.682	42.957		20.14	A
		2245	J.G	LEU				10.337	74.074	4 56 -		26.11 26.33	A
	ATOM												
	ATOM	2246		LEU				10.528	74.003	45.093		20.46	A
• •	ATOM	2247		LEU				11.470	74.793	42.896		21.22	A
50	ATOM	2248	C	LEU				10.181	71.322	40.832		18.99	А
	ATOM	2249	Ö	LEU				11.286	70.866	40.558		23.33	A
	MOTA	2250	11	ALA	A 2	287		09.058	70.631	40.629	1.00	20.11	A
	ATOM	2251	CA	ALA	A 2	287	1	09.135	69.321	39.980	1.00	18.27	A
	ATOM	2252	CB	ALA	A :	287		07.786	68.606	40.005	1.00	16.55	А
55	ATOM	2253	C	ALA				09.519	69.613	38.530		25.56	А
			-		_				· · · · · ·				

	MOTA	2254	C_{i}	ALA A	287	110.381	68.942	37.927	1.00 19.06	A
	MOTA	2255	N	GLN A	288	108.907	70.634	37.935	1.00 13.68	A
		2256		GLN A		109.249	70.877	36.536	1.00 16.52	A
	ATOM		CA							
	ATOM	2257	CB	GLN A	288	108.392	71.977	35.894	1.00 23.21	A
5	MOTA	2253	CG	GLN A	288	108.681	72.106	34.390	1.00 20.99	A
	ATOM	2259	CD	GLN A	288	108.188	70.889	33.579	1.00 29.85	A
	ATOM	2260	OE1	GLN A		108.895	70.370	32.704	1.00 23.90	А
	ATOM	2261	NE2	GLN A		106.972	70.448	33.863	1.00 147	A
	MOTA	2262	C	GLN A	288	110.719	71.258	36.345	1.00 22.79	A
10	ATOM	2263	्	GLN A	288	111.330	70.907	35.335	1.00 16.55	A
	ATOM	2264	N	TYP A		111.262	72.009	37.287	1.00 19.12	A
	ATOM	2265	CA	TYP A		112.654	72.405	37.203	1.00 13.73	А
	ATOM	2266	CB	TYP. A		113.021	73.260	38.403	1.00 18.13	A
	ATOM	2267	СЭ	TYP. A		114.482	73.677	38.476	1.00 26.27	А
15	MOTA	2268	CD1	TYF. A	289	114.898	74.932	38.001	1.00 26.70	А
	ATOM	2269	CE1	TYP. A	289	116.232	75.332	38.072	1.00 25.07	A
	ATOM	2270	CD2			115.447	72.820	39.024	1.00 23.61	А
	MOTA	2271	CE2			116.796	73.199	39.098	1.00 26.68	A
	ATOM	2272	CZ	TYP. A		117.178	74.469	38.615	1.00 31.54	А
20	ATOM	2273	OH	TTP A	289	118.491	74.859	38.678	1.00 22.55	A
	ATOM	2274	\subset	TYP. A	289	113.541	71.142	37.207	1.00 25.66	A
	ATOM	2275	(j)	TYF: A	289	114.502	71.042	36.424	1.00 21.35	A
	ATOM	2276	N	GLIN A		113.224	70.195	38.095	1.00 23.15	А
							68.974	38.200	1.00 25.92	A
	ATOM	2277	CA	GLN A		114.013				
25	ATOM	2278	СВ	GLN A		113.751	68.295	39.535	1.00 16.82	A
	MOTA	2279	CG	GLN A	290	114.234	69.185	40.698	1.00 20.11	A
	MOTA	2280	CD	GLN A	290	113.869	68.620	42.062	1.00 28.81	A
	MOTA	2281	OE1	GLN A	290	114.594	67.805	42.611	1.00 23.19	A
	ATOM	2282	NE2			112.740	69.050	42.603	1.00 19.24	А
30	ATOM	2283	C	GLN: A		113.792	68.037	37.053	1.00 24.56	A
30										
	MOTA	2284	Ć)	GLII A		114.690	67.272	36.654	1.00 099	A
	ATOM	2285	M	LYS A		112.604	68.100	36.485	1.00 18.20	A
	MOTA	2286	CA	LYS A	291	112.340	67.233	35.349	1.00 27.92	A
	ATOM	2287	CB	LYS A	291	110.879	67.253	34.960	1.00 25.58	A
35	ATOM	2288	CG	LYS A		110.640	66.179	33.951	1.00 35.43	A
5.	ATOM	2289	CD	LYS A		109.644	66.601	32.962	1.00 47.83	A
	MOTA	2290	Œ	LYS A		109.438	65.497	31.950	1.00 54.06	A
	MOTA	2291	NZ	LYS A		108.781	64.338	32.602	1.00 54.26	A
	ATOM	2292	C	LYS A	291	113.128	67.716	34.138	1.00 30.13	A
40	ATOM	2293	0	LYS A	291	113.543	66.915	33.313	1.00 24.65	A
	ATOM	2294	1.1	ASP A	292	113.305	69.031	34.028	1.00 21.05	A
	ATOM	2295	CA	ASP A		114.016	69.633	32.891	1.00 25.19	А
		2296		ASP A				32.757	1.00 23.19	
	MOTA		CB			113.610	71.109			A
	MOTA	2297	CG	ASF A		112.222	71.299	32.158	1.00 33.23	А
45	MOTA	2298	CD1	ASP A	292	111.626	70.308	31.703	1.00 27.34	A
	ATOM	2299	OD2	ASP A	292	111.737	72.452	32.131	1.00 07 83	A
	ATOM	2300	C*	ASP A	292	115.556	69.584	33.008	1.00 23.90	A
	ATOM	2301	0	ANT A		116.275	69.573	32.017	1.00 232	Ā
							69.604		1.00 20.48	
• 0	ATOM	2302	N	ALA A		116.034		34.236		A
50	MOTA	2303	CA	ALA A		117.451	69.602	34.558	1.00 08.06	А
	MOTA	2304	CB	ALA A	293	117.602	69.472	36.065	1.00 20.35	A
	ATOM	2305	С	ALA A	293	118.355	68.564	33.838	1.00 29.15	A
	MOTA	2306	0	ALA A	293	119.480	68.885	33.427	1.00 30.95	A
	ATOM	2307	N	PRO A		117.913	67.302	33.732	1.00 29.07	A
55		2308	CD	PRO A		116.811	66.630	34.437	1.00 30.66	A
.''	ATOM	٥٥٠٦	$\subset \mathcal{D}$	FENO A	L) I	110.011	50.050	J4.4J/	2.00 30.00	

	ATOM	2309	CA	PRO A :	20.1	118.777	66.331	33.051	1.00 28.43	А
				PRO A :		113.777	65.019			
	ATOM	2310	CB					33.196	1.00 36.12	A
	MOTA	2311	CG	PRO A 1		117.307	65.185	34.516	1.00 34.80	A
	ATOM	2312	С	PRO A I		119.062	66.686	31.593	1.00 34.03	A
5	MOTA	2313	0	PRO A 1		120.059	66.245	31.042	1.00 37.55	A
	MOTA	2314	N	SER A 1	295	113.206	67.496	30.970	1.00 31.59	A
	ATOM	2315	CA	SER A I	295	113.412	67.895	29.570	1.00 32.05	\mathcal{I}_{λ}
	ATOM	2316	CB	SEP. A 1	195	117.053	68.031	28.827	1.00 37.77	А
	MOTA	2317	OG	SER A 3	295	115.413	66.791	28.542	1.00 38.35	A
10	ATOM	2318	С	SER A		113.141	69.246	29.412	1.00 33.12	A
	ATOM	2319	0	SEP A 3		119.543	69.592	28.310	1.00 27.93	A
	ATOM	2320	N	ASP A		113.310	70.014	30.490	1.00 26.80	A
	ATOM	2321	CA	ASP A		119.913	71.328	30.352	1.00 30.74	A
	ATOM	2322	CB	ASP A		113.782	72.415	30.256	1.00 27.90	A
15	ATOM	2323	CG	ASP A 3		117.839	72.252	28.986	1.00 21.55	A
1.5	ATOM	2324		ASP A :		113.245	72.564	27.834	1.00 38.55	Ā
	ATOM	2325		ASP A		116.655	71.816	29.121	1.00 44.60	A A
	ATOM	2326	C	ASP A		120.862	71.604	31.525	1.00 31.76	
	ATOM	2327	0	ASP A		120.426	71.809	32.661	1.00 31.22	A
20	MOTA	2328	N	HIS A		122.161	71.613	31.240	1.00 27.39	A
	MOTA	2329	CA	HIS A		123.221	71.862	32.231	1.00 31.02	A
	MOTA	2330	CB	HIS A		124.562	72.043	31.514	1.00 39.25	A
	MOTA	2331	CG	HIS A 2		125.466	70.858	31.577	1.00 47.23	A
	MOTA	2332		HIS A		125.818	70.762	31.501	1.00 46.79	A
25	MOTA	2333	ND1	HIS A	297	125.005	69.597	31.863	1.00 48.20	A
	MOTA	2334	CE1	HIS A 3	297	126.036	68.777	31.990	1.00 54.99	A
	ATOM	2335	NEC	HIS A	97	127.146	69.462	31.778	1.00 46.54	A
	MOTA	2336	C	HIS A	297	122.999	73.125	33.043	1.00 27.48	A
	MOTA	2337	0	HIS A 3	297	123.412	73.224	34.203	1.00 28.00	A
30	ATOM	2338	N	GLN A	298	122.396	74.117	32.401	1.00 22.60	A
	ATOM	2339	CA	GLN A		122.174	75.396	33.046	1.00 25.09	A
	ATOM	2340	CB	GLN A		121.569	76.409	32.065	1.00 30.41	A
	ATOM	2341	CG	GLN A		100.330	76.669	30.783	1.00 34.42	Ã
	ATOM	2342	CD	GLN A :		121.872	75.791	29.603	1.00 37.26	A
35	ATOM	2343	OE1	GLN A		101.932	76.217	28.444	1.00 36.98	Ā
2,2,	ATOM	2344	NE2	GLN A		121.429	74.558	29.897	1.00 32.64	A
	ATOM	2345	C	GLN A		121.276	75.302	34.280	1.00 25.28	A.
	ATOM	2346	0	GLN A L		121.270	76.182	35.129	1.00 23.86	Ž.
			N	GLU A 1			74.263	34.374	1.00 23.71	Ā
10	ATOM ATOM	2347		GLU A		120.448			1.00 29.56	A
40		2348	CA			119.556	74.107	35.525		
	ATOM	2349	CB	GLU A		118.247	73.497	35.081	1.00 27.09	A
	ATOM	2350	CG	GLU A		117.445	74.443	34.288	1.00 42.75	A
	ATOM	2351	CD	GLU A		116.372	73.723	33.574	1.00 52.61	A
	ATOM	2352		GLU A		115.342	73.415	34.208	1.00 64.24	A
45	ATOM	2353		GLU A		116.565	73.443	32.377	1.00 59.69	A
	ATOM	2354	С	GLU A 1		120.251	73.185	36.491	1.00 30.34	A
	ATOM	2355	0	GLU A ?) G G	119.841	72.042	36.706	1.00 25.19	A
	MOTA	2356	N	LEU A	300	121.289	73.724	37.099	1.00 26.72	À
	MOTA	2357	CA	LEU A :	∪ ∪ د	111.164	72.960	37.960	1.00 26.16	D_{ϵ}
50	MOTA	2358	CB	LEU A 3	300	123.621	73.384	37.693	1.00 24.26	А
	ATOM	2359	CG	LEU A 3	300	124.040	74.875	37.817	1.00 23.41	A
	ATOM	2360	CD1	LEU A 3		122.894	75.782	38.110	1.00 13.62	А
	ATOM	2361		LEU A 3		125.064	75.023	38.845	1.00 23.86	А
	ATOM	2362	C	LEU A 3		121.930	73.005	39.439	1.00 31.66	А
55	ATOM	2363	Ō	LEU A 3		122.685	72.360	40.165	1.00 24.27	А
			-							• •

	MOTA	2364	N	ASN .	A 301	120.399	73.717	39.895	1.00 20.86	A
	ATOM	2365	CA	ASN	A 301	120.574	73.844	41.335	1.00 27.51	A
	ATOM	2366	CB	ASN	A 301	119.685	74.974	41.629	1.00 27.49	А
	ATOM	2367	CG		A 301	120.338	76.367	41.606	1.00 41.50	А
5	ATOM	2368		ASN		121.514	75.531	41.948	1.00 42.07	A
•'									1.00 40.89	
	ATOM	2369		ASN.		119.546	77.386	41.248		A
	ATOM	2370	С		A 301	120.139	72.561	41.946	1.00 27.36	A
	MOTA	2371	0	ASN .	A 301	119.478	71.775	41.255	1.00 20.70	A
	ATOM	2372	N	LEU .	A 302	120.455	72.338	43.227	1.00 28.60	A
10	ATOM	2373	CA	LEU	A 302	119.962	71.168	43.945	1.00 24.52	A
	ATOM	2374	CB	LEU .	A 302	121.033	70.593	44.894	1.00 29.03	A
	ATOM	2375	CG		A 302	120.446	₅€.605	45.935	1.00 27.91	A
	ATOM	2376		LEU		119.434	53.711	45.254	1.00 18.13	А
	ATOM	2377		LEU .		121.464	68.809	46.627	1.00 28.47	A
1.5					A 302	118.742	71.586	44.767	1.00 21.88	A
15	ATOM	2378	C							
	ATOM	2379	0		A 302	118.893	72.203	45.817	1.00 20.14	A
	ATOM	2380	N		A 303	117.540	71.265	44.306	1.00 18.15	А
	ATOM	2381	CA	ASP.	A 303	116.335	71.611	45.095	1.00 29.52	А
	MOTA	2382	CB	ASP .	A 303	115.472	72.630	44.334	1.00 25.17	A
20	ATOM	2383	CG	ASP .	A 303	115.065	72.121	42.996	1.00 37.89	A
	ATOM	2384	OD1	ASP	A 303	115.523	71.037	42.637	1.00 54.39	A
	MOTA	2385	OD2	ASP.	A 303	114.298	72.780	42.279	1.00 57.27	A
	MOTA	2386	C		A 303	115.580	70.289	45.373	1.00 22.29	A
	ATOM	2387	Ö		A 303	114.347	70.216	45.577	1.00 22.75	A
25		2388			A 304	116.382	69.240	45.425	1.00 21.19	A
25	ATOM		N					45.624		
	MOTA	2389	CA		A 304	115.935	67.870		1.00 25.10	A
	ATOM	2390	CB		A 304	115.935	66.930	44.914	1.00 21.32	A
	ATOM	2391		VAL .		113.001	55.444	45.851	1.00 13.87	A
	MOTA	2392	CG2	VAL .	A 304	116.235	65.842	44.282	1.00 42.05	А
30	MOTA	2393	C	VAL .	A 304	115.070	57.499	47.102	1.00 19.73	A
	MOTA	2394	0	VAL :	A 304	116.213	55.242	47.961	1.00 19.32	A
	ATOM	2395	N	SER	A 305	115.136	ნნ.360	47.402	1.00 21.55	А
	MOTA	2396	CA		A 305	114 969	65.904	48.794	1.00 24.92	А
	ATOM	2397	CB		A 305	114.202	64.572	48.838	1.00 31.82	A
35	ATOM	2398	OG		A 305	112.797	51.716	48.530	1.00 45.40	A
.7.2		2399	C		A 305	116 366	65.696	49.401	1.00 32.11	A
	ATOM									
	ATOM	2400	0		A 305	117 197	64.961	48.836	1.00 19.54	A
	ATOM	2401	N		A 306	116.643	66.330	50.535	1.00 25.35	A
	ATOM	2402	CA		A 306	117.960	66.173	51.161	1.00 30.33	A
40	MOTA	2403	CB	LEU .	A 306	118.422	67.488	51.831	1.00 35.23	A
	ATOM	2404	CG	LEU .	A 306	118.886	63.694	50.987	1.00 33.58	A
	MOTA	2405	CD1	LEU .	A 306	119.870	68.352	49.838	1.00 29.73	A
	ATOM	2406	CD2	LEU .	A 306	117 665	69.257	50.434	1.00 39.98	A
	ATOM	2107	C		A 306	117 943	45.050	52.208	1.00 37.07	A
45	ATOM	2408	0		306	116.871	51.515	52.547	1.00 34.41	ā
•••	ATOM	2409	N		A 307	119.107	64.670	52.722	1.00 37.78	А
	ATOM	2410	CA		A 307	119.102	63.615	53.734	1.00 47.24	Ą
	ATCM	2411	CB		A 307	121 517	53.110	54.035	1.00 52.95	A
	MOTA	2412	CG		A 307	120.931	61.932	53.174	1.00 64.46	A
50	MOTA	2413	CD	GLN	A 307	121.481	52.371	51.846	1.00 70.87	A
	ATOM	2414	OE1	GLN .	A 307	122.341	63.253	51.785	1.00 76.28	A
	ATOM	2415	NEC	GLN .	A 307	121 001	61.755	50.767	1.00 77.08	A
	ATCM	2416	С		A 307	118.482	64.115	55.021	1.00 42.93	A
	ATOM	2417	0		A 307	118.665	65.308	55.340	1.00 42.42	А
55	ATOM	2418		GLN .		117 838	63.294	55.699	1.00 44.41	A
	ATOM	7410	OAI	CTITA 1		11/ 000	03.234	55.055	1.00 11.11	4.1

	ATOM	2419	CB	ALA B	1	64.181	107.655	4.123	1.00 39.20	В
	ATOM	2420	C	ALA B	1		105.815	3.113	1.00 41.03	В
	ATOM	2421	0	ALA B	1		105.713	3.477	1.00 42.08	В
	ATOM	2422	N	ALA B	1		108.231	2.458	1.00 40.18	В
5	ATUM	2423	CA	ALA B	1		107.201	2.861	1.00 43.96	В
	$AT \cup M$	2424	N	ILE B	2	63.636	104.759	2.923	1.00 39.63	В
	ATOM	2425	CA	ILE B	2	63.175	133.383	3.141	1.00 37.01	В
	$AT \odot M$	2426	CB	ILE B	2	64.245	102.349	2.700	1.00 32.57	В
	ATOM	2427	CG2	ILE B	2	63.775	100.936	3.064	1.00 35.80	В
10	ATOM	2428		ILE B	2		102.422	1.178	1.00 34.01	В
•	ATOM	2429		ILE B	2		101.372	0.650	1.00 31.21	В
	ATOM	2430	C	ILE B	2		103.151	4.633	1.00 38.27	В
									1.00 38.27	
	ATOM	2431	0	ILE B	2		103.577	5.528		В
	ATOM	2432	N	SER B	3		102.486	4.897	1.00 30.65	В
15	ATOM	2433	CA	SER B	3		102.226	6.272	1.00 26.19	В
	ATOM	2434	CB	SER B	3		103.235	6.689	1.00 31.79	В
	ATOM	2435	OG	SER B	3	59.060	103.020	5.926	1.00 27.35	В
	ATDM	2436	C	SER B	3	60.744	100.325	6.435	1.00 30.38	В
	ATOM	2437	0	SER B	3	60.495	100.132	5.446	1.00 28.89	В
20	ATOM	2438	N	CYS B	4		100.410	7.690	1.00 27.89	В
20	ATOM	2439	CA	CYS B	4	59.941	99.127	8.003	1.00 27.29	В
	ATOM	2440	C	CYS B	4	58.609	99.528	3.600	1.00 26.13	В
									1.00 20.13	В
	ATOM	2441	0		4		100.666	9.061		
	AT:DM	2442	CB	CYS B	4	60.731	98.328	9.056	1.00 27.46	В
2.5	ATOM	2443	SG	CYS B	4	62.214	97.531	8.369	1.00 27.76	В
	AT DM	2444	N	GLY B	5	57.648	98.EDD	8.561	1.00 22.65	В
	ATOM	2445	CA	GLY B	5	56.366	98.916	9.155	1.00 23.57	В
	ATOM	2446	C	GLY B	5	56.452	98.570	10.543	1.00 24.00	В
	ATOM	2447	0	GLY B	5	57.504	98.199	11.181	1.00 23.18	В
30	ATOM	2448	N	SER B	6	55.322	98.698	11.313	1.00 21.65	В
	AT OM	2449	CA	SER B	6	55.204	98.441	12.733	1.00 22.23	В
	ATOM	2450	CB	SER B	6	53.722	98.511	13.098	1.00 27.49	В
	ATOM	2451	OG	SER B	6	53.543	98.605	14.483	1.00 33.82	В
		2452		SER B	6	55.785	97.063	13.091	1.00 25.45	В
3.5	ATOM		C							
35	ATOM	2453	0	SER B	6	55.489	96.031	12.439	1.00 22.14	В
	ATOM	2454	N	PRO B	7	56.639	96.930	14.122	1.00 26.74	В
	ATOM	2455	CD	PRO B	7	57.230	98.026	14.973	1.00 25.89	В
	AT⊕M	2456	CA	PRO B	7	57.191	35.561	14.468	1.00 25.01	В
	ATUM	2457	CB	PRO B	7	58.175	95.984	15.592	1.00 22.52	В
40	ATOM	2458	CG	PRO B	7	57.589	97.228	16.232	1.00 26.49	В
	ATOM	2459	С	PRO B	7	56.133	94.627	14.894	1.00 27.04	В
	ATOM	2460	0	PRO B	7	55.061	94.961	15.414	1.00 24.19	В
	ATOM	2461	N	PRO B	8	56.439	93.345	14.700	1.00 24.37	В
	ATOM	2462	CD	PRO B	8	57.540	72.754	13.936	1.00 26.75	В
15	ATOM	2463	CA	PRO B	8	55.431	92.366	15.099	1.00 25.28	В
45										
	ATOM	2464	CB	PRO B	8	55.974	91.048	14.538	1.00 31.15	В
	ATOM	2465	CG	PRO B	8	57.401	91.314	14.245	1.00 33.33	В
	ATOM	2466	C	PRO B	8	55.229	92.383	16.613	1.00 30.70	₿
	ATOM	2467	O	PRO B	8	56.130	92.507	17.364	1.00 31.22	В
501	$\Lambda T\cap M$	2169	N	PRO B	9	53.971	72.314	17.074	1.00 30.39	В
	ATOM	2469	CD	PRO B	9	52.724	92.280	16.275	1.00 37.82	В
	ΔTOM	2470	CA	PRO B	9	53.686	92.322	18.518	1.00 32.22	В
	ATOM	2471	CB	PRO B	9	5 2.155	92.415	18.589	1.00 31.66	В
	ATOM	2472	CG	PRO B	9	51.705	91.731	17.265	1.00 31.37	В
55	ATOM	2473	C	PRO B	9	54.190	91.062	19.209	1.00 26.54	В
2727	AION	27/3	C	Z 100 B	,	24.120	. i . 002	17.209	1.00 20.34	ط

	ATUM	2474	0	PRO B	9	54.542	90.072	18.563	1.00 23.13	В
	ATOM	2475		ILE B	10	54.214	91.111	20.526	1.00 25.96	В
			N					21.302	1.00 23.36	В
	ATOM	2476	CA	ILE B	10	54.651	89.969			
	MUTA	2477	CB	ILE B	10	56.150	90.068	21.770	1.00 24.92	В
5	$M \cup TA$	2473	CG2		10	56.398	91.363	22.561	1.00 24.04	В
	AT DM	2479	CG1	ILE B	10	56.491	88.795	22.591	1.00 30.43	В
	ATIM	1430	CD1	ILE B	10	57.991	88.536	22.813	1.00 24.83	В
	MOTA	2431	С	ILE B	10	53.753	89.810	22.511	1.00 33.31	В
	ATIM	1.432	0	ILE B	10	53.743	90.647	23.411	1.00 32.83	В
10	MOTA	1493	N	LEU B	11	52.992	88.724	22.525	1.00 30.71	В
10	MCTA	2484	CA	LEU B	11	52.108	88.483	23.659	1.00 34.63	В
		1485	CB	LEU B	11	51.217	87.277	23.365	1.00 36.50	В
	MOTA									В
	MOTA	2486	CG	LEU B	11	50.279	87.435	22.161	1.00 41.37	
	MOTA	2487		LEU B	11	49.708	86.073	21.769	1.00 42.99	В
15	MOTA	2488		LEU B	11	49.142	88.425	22.495	1.00 39.65	В
	MOTA	2439	С	LEU B	11	52.912	88.247	24.946	1.00 33.29	В
	MCTA	2490	0	LEU B	11	53.905	87.517	24.948	1.00 28.06	В
	$AT \bigcirc M$	2491	N	ASN B	12	52.463	88.872	26.032	1.00 31.32	В
	MOTA	0492	CA	ASN B	12	53.086	88.753	27.328	1.00 30.29	В
20	NOTA	2493	CB	ASN B	12	53.025	87.303	27.802	1.00 32.27	В
	MOTA	2494	CG	ASN B	12	51.612	86.875	28.083	1.00 38.86	В
	MOTA	2495		ASN B	12	50.917	87.526	28.864	1.00 38.55	В
	ATOM	2496			12	51.161	85.805	27.431	1.00 34.66	В
	ATOM	2497	C	ASN B	12	54.510	89.250	27.371	1.00 32.36	В
25	ATOM	1:498	0	ASN B	12	55.277	88.858	28.239	1.00 32.55	В
25						54.849		26.439	1.00 32.33	В
	ATOM	2499	N	GLY B	13	56.187	90.130		1.00 28.40	В
	ATOM	2500	CA	GLY B	13		90.671	26.400		
	MOTA	2501	C	GLY B	13	56.147	92.166	26.169	1.00 29.82	В
	MCTA	2502	0	GLY B	13	55.075	92.780	26.153	1.00 34.03	В
30	MOTA	2503	N	ARG B	14	57.324	92.742	25.983	1.00 28.15	В
	MOTA	2504	CA	ARG B	14	57.486	94.166	05.739	1.00 31.15	В
	$M \subseteq TA$	2595	CB	ARG B	14	58.198	94.882	26.897	1.00 34.62	В
	M $^{-}$ T A	2505	CG	ARG B	14	57.388	95.196	28.116	1.00 41.44	В
	NOTA	2507	CD	ARG B	14	58.240	95.962	29.112	1.00 42.08	В
35	MOTA	2508	NE	ARG B	14	57.526	96.080	30.373	1.00 49.55	В
	ATOM	2509	CZ	ARG B	14	58.023	96.595	31.437	1.00 48.40	В
	ATCM	2510	NH1	ARG B	14	59.261	97.065	31.509	1.00 40.73	В
	ATOM	2511	NHL	ARG B	14	57.276	96.602	32.593	1.00 56.30	в
	ATOM	1512	C	ARG B	14	58.409	94.342	24.55	1.00 23.56	В
40	ATOM	2513	0	ARG B	14	59.232	93.480	24.280	1.00 23.51	В
	ATOM	2514	N	ILE B	15	58.319	95.516	23.955	1.00 27.48	В
	ATOM	2515	CA	ILE B	15	59.171	95.893	22.341	1.00 26.75	В
	ATOM	2516	CB	ILE B	15	58.345	96.176	21.580	1.00 26.32	В
				ILE B				20.497	1.00 29.30	В
4-	ATOM ATOM	2517			15	59.250	96.815		1.00 30.62	В
45	MOTA	2518		ILE B	15	57.656	94.902	21.120		
	MOTA	2519		ILE B	15	56.760	95.100	19.889	1.00 35.23	В
	ATOM	2520	C	ILE B	15	59.767	97.212	23.279	1.00 26.59	B
	ATOM	2521	0	ILE B	15	59.050	98.050	23.818	1.00 30.94	В
	ATOM	1512	N	SER B	16	61.055	97.409	3.036	1.00 23.15	B
50	$M \cap TA$	2523	CA	SER B	16	61.709	98.654	23.393	1.00 32.61	В
	MOTA	2524	CB	SER B	16	63.187	98.567	23.057	1.00 29.32	В
	$AT \cup M$	2525	OG	SER B	16	63.359	98.151	21.717	1.00 35.31	В
	ATOM	2526	С	SER B	16	61.082	99.839	22.639	1.00 41.27	В
	MOTA	2527	0	SER B	16	60.466	99.674	21.576	1.00 36.78	В
55	ATOM	2528	N	TYR B	17		101.035	23.193	1.00 42.89	В

	ATOM	2529	ŒΑ	TYR B	17	60.719 102	.267 22.624	1.00 46.29	В
	ATOM	2530	CB	TYP. B	17	60.932 103			В
				TYR B	17	60.026 103			В
	AT⊙M	2531	CG						
	ATOM	2532	CD1	TYP B	17	60.510 103			В
5	ATOM	2533	CE1	TYP. B	17	59.664 103	.655 27.283	1.00 48.52	В
	ATOM	2534	CD2	TYP B	17	58.686 103	.025 24.748	1.00 51.67	В
	ATOM	2535	CE2	TYP. B	17	57.833 102	.974 25.861	1.00 53 32	В
	ATOM	2536	20	TYP. B	17	58.319 103			В
		2537	ЮH	TYP B	17	57.430 103			В
	ATOM								
10	MOTA	2538	Q.	TYP. B	17	61.397 102			В
	MOTA	2539	(_)	TYP B	17	62.600 102			В
	MOTA	2540	N	TYE B	18	60.623 102	.952 20.281	1.00 46.05	В
	MOTA	2541	CA	TYR B	18	61.204 103	.270 18.975	1.00 44.93	В
	MOTA	2542	CB	TYR B	18	61.076 102	.076 18.010	1.00 37.78	В
15	MOTA	2543	ĆG	TYP. B	18	59.645 101			В
1.5	ATOM	2544	CD1	TYP B	18	58.890 102			В
									В
	ATOM	2545	CEI	TYF: B	18	57.573 101			
	ATOM	2546	CD2	TYF. B	18	59.040 100			В
	ATOM	2547	CE2	TTP. B	18	57.730 100			В
20	ATOM	2548	-02	TYP. B	18	57.000 100	.939 17.218	1.00 35.02	В
	ATOM	2549	$\cap H$	TYP. B	18	55.706 100	.565 16.967	1.00 33.22	В
	ATOM	2550	Ċ	TYR B	18	60.524 104	.514 18.375	1.00 40.62	В
	ATOM	2551	Ö	TYP B	18	59.356 104			В
	ATOM	2552	N	SER B	19	61.280 105			В
25				SER B		60.786 106			В
25	MOTA	2553	+::A		19				
	MOTA	2554	CB	SEP. B	19	61.922 107			В
	MOTA	2555	Ç)G	SEP. B	19	63.070 106			В
	MOTA	2556	C	SEP. B	19	60.213 106	.155 15.540	1.00 51.20	В
	MOTA	2557	:[])	SEP. B	19	60.569 105	.165 14.900	1.00 42.62	В
30	MOTA	2558	11	THP. B	20	59.347 107	.041 15.073	1.00 48.91	В
	ATOM	2559	C.A.	THE B	20	58.706 106	.898 13.783	1.00 49.40	В
	ATOM	2560	CB.	THP B	20	57.166 107			В
		2561		THE B	20	56.483 106			В
	ATOM		031						
	ATOM	255	7712	THP B	20	56.714 108			В
35	MOTA	2563		THE B	20	59.222 108			В
	MOTA	2564	Ú.	THP. B	20	59.460 109	.147 13.280		В
	ATOM	2565	N	PRO B	21	59.427 107	.720 11.551	1.00 16.52	В
	ATOM	2566	(TT)	PRO B	21	59.801 108	.745 10.551	1.00 11.33	В
	ATOM	2567	C_{A}	PRO B	21	59.204 106	.417 10.909	1.00 43.20	В
40	ATOM	2568	ŢΒ	PRO B	21	59.137 106			В
70	ATOM	2569	DG.	PRO B	21	60.103 107			В
									В
	ATOM	2570	Ċ	PRO B	21	60.342 105			
	MOTA	2571	Ō	PRO B	21	61.393 105			В
	MOTA	2572	11	THP B	22	60.123 104			В
45	MOTA	2573	$\mathbb{C}\mathbb{A}$	THE B	22	61.139 103		1.00 37.29	В
	MOTA	2574	∴B	THP B	22	60.521 101	.715 11.578	1.00 33.63	В
	ATOM	2575	GRG1	THR B	22	59 497 101	.719 12.600	1.00 36.55	В
	ATOM	2576	132	THE B	22	61.626 100			B
	ATOM	2577	. •	THF H	22	62.143 103			В
									В
50	ATOM	2578	Ů.	THR B	22	61.851 102			
	ATOM	2579	1:	ALA B	23	63.326 103			В
	ATOM	2580	υA	ALA B	23	64.367 103			В
	ATOM	2581	CB	ALA B	23	65.314 104	.852 9.615	1.00 28.90	В
	ATOM	2582	v*	ALA B	23	65.192 102	.399 9.300	1.00 30.98	В
55	ATOM	2583	Ö	ALA B	23	65.331 101			В
-			-					· ·	

	MOTA	2584	N	VAL B	24	65.736	102.127	8.112	1.00 27.51	В
	MOTA	2585	CA	VAL B	24	66.591	100.982	7.874	1.00 25.92	В
	MOTA	2586	CB	VAL B	24	67.197	101.042	6.460	1.00 29.41	В
	ATOM	2587		VAL B	24		100.043	6.326	1.00 28.58	В
5	MOTA	2588	092		24		100.729	5.430	1.00 26.92	В
-	ATOM	2589	C	VAL B	24		101.091	8.898	1.00 32.79	В
	ATOM	2590	Ö	VAL B	1.4		102.166	9.077	1.00 25.10	В
	ATOM	2591	N	GLY B	25		100.000	9.586	1.00 28.01	В
	ATOM	2592	CA	GLY B	25		100.081	10.596	1.00 31.93	В
10	ATOM	2593	C	GLY B	25		100.210	12.007	1.00 34.29	B
	ATOM	2594	Ö	GLY B	25		100.080	12.966	1.00 28.44	В
	ATOM	2595	N	THR B	26		100.486	12.148	1.00 25.99	В
	MOTA	2596	CA	THR B	26		100.568	13.474	1.00 29.37	В
	MOTA	2597	CB	THR B	26	65.179	100.99 4	13.403	1.00 30.78	B
15	MOTA	2598	OG1	THR B	26	65.111	102.295	12.808	1.00 25.87	В
	MOTA	2599	CG2	THR B	26	64.524	101.000	14.833	1.00 23.56	В
	MOTA	2600	C	THE B	26	66.713	99.183	14.136	1.00 30.07	B
	MOTA	2601	0	THR B	26	66.462	98.171	13.473	1.00 28.44	В
	MOTA	2602	N	VAL B	27	67.056	99.143	15.429	1.00 28.90	В
20	MOTA	2603	CA	VAL B	27	67.124	97.891	16.200	1.00 29.71	В
	MOTA	2604	СВ	VAL B	27	68.507	97.703	16.858	1.00 35.67	В
	ATOM	2605		VAL B	27	68.477	96.507	17.808	1.00 31.87	В
	ATOM	2606		VAL B	27	69.554	97.478	15.793	1.00 32.00	В
	ATOM	2607	C	VAL B	27	66.054	97.946	17.292	1.00 26.09	В
25	ATOM	2608	0	VAL B	27	65.961	98.921	18.029	1.00 28.74	В
	ATOM	2609	N	ILE B	28	65.230	96.913	17.349	1.00 28.74	В
	ATOM	2610	CA	ILE B	28	64.126	96.780	18.294	1.00 34.25	В
	ATOM	2611	CB	ILE B	28	62.802	96.400	17.552	1.00 34.20	В
							95.929	18.516	1.00 38.10	В
30	ATOM	2612	CG2		28	61.752				В
30	ATOM	2613	CG1		28	62.260	97.598	16.808	1.00 46.71	
	ATOM	2614	CD1		28	62.252	98.826	17.612	1.00 40.93	В
	ATOM	2615	C	ILE B	28	64.491	95.619	19.223	1.00 38.36	В
	MOTA	2616	0	IIE B	2.8	65.063	94.626	18.769	1.00 29.90	В
	MOTA	2617	N	ARG B	2.9	64.134	95.724	20.503	1.00 30.42	В
35	MOTA	2618	CA	ARG B	29	64.470	94.673	21.458	1.00 32.43	В
	MOTA	2619	CB	ARG B	29	65.468	95.242	22.461	1.00 38.54	В
	MOTA	2620	CG	ARG B	29	66.234	94.231	23.273	1.00 56.74	В
	ATOM	2621	CD	ARG B	2.9	67.479	94,939	23,821	1.00 69.43	В
	MOTA	2622	NΞ	ARG B	29	68.210	95.573	22.723	1.00 77.31	В
40	ATOM	2623	CZ	ARG B	29	69.134	94.960	21.983	1.00 81.92	В
	ATOM	2624	NH1	ARG B	29	69.454	93.693	22.237	1.00 83.00	В
	ATOM	2625	NH2	ARG B	29	69.723	95.603	20.976	1.00 83.81	В
	ATOM	2626	С	ARG B	29	63.222	94.132	22.168	1.00 26.06	В
	ATOM	2627	0	ARG B	29	62.432	94.884	22.704	1.00 26.11	В
45	ATOM	2628	N	TYP B	30	63.032	92.823	22.133	1.00 22.95	В
	MOTA	2629	CA	TYP. B	30	61.886	92.206	22.787	1.00 31.30	В
	MOTA	2630	CB	TYP. B	30	61.299	91.096	21.905	1.00 23.61	В
	ATOM	2631	 ف)ن	TYE B	30	60.647	91.547	20.605	1.00 19.37	В
	ATOM	2031 2532		TYP B	30	67 389	90.135	19.579	1.00 04.77	В
50	ATOM	2633		TYP B	30	60.781	92.553	18.387	1.00 19.11	В
2.0	ATOM	2634		TYP B	3.0	59,182	91.378	20.403	1.00 19.11	В
	ATOM	2635	CE2		30	58.674	91.785	19.215	1.00 26.35	В
			CZ	TYP. B	30	59.429	92.379		1.00 23.41	В
	ATOM	2636						18.216 17.083		
£ 2	ATOM	2637	ОН	TYR B	30	58.793	92.836		1.00 26.05	В
55	ATOM	2638	С	TYR B	30	62.340	91.579	24.126	1.00 28.93	В

	MOTA	2639	0	TYR B	30	53.497	91.168	24.283	1.00 24.49	В
	ATOM	2640	N	SER B	31	61.418	91.488	25.067	1.00 26.50	В
	MOTA	2641	CA	SER B	31	61.697	90.903	26.369	1.00 24.95	В
	MOTA	2642	CB	SER B	31	52.304	91.946	27.308	1.00 21.32	В
5	ATOM	2643	OG	SER B	31	61.426	93.028	27.483	1.00 26.55	В
	MOTA	2644	С	SER B	31	50.388	90.378	26.954	1.00 29.25	В
	ATOM	2645	0	SER B	31	59.287	90.780	26.529	1.00 22.45	В
	ATOM	2646	N	CYS B	30	60.515	89.484	27.930	1.00 27.99	В
	ATOM	2647	CA	CYS B	32	59.364	88.868	28.606	1.00 32.41	В
10	ATOM	2648	C	CYS B	32	59.371	89.122	30.121	1.00 38.37	В
10	ATOM	2649	0	CYS B	32	60.431	89.311	30.719	1.00 37.82	В
	ATOM	2650	СВ	CYS B	3.3	59.371	87.347	28.400	1.00 30.70	В
	ATOM	2651	SG	CYS B	32	59.450	86.770	26.677	1.00 33.70	В
	ATOM	2652	N	SER B	33	58.178	89.101	30.717	1.00 51.37	В
15	ATOM	2653	CA	SER B	33	57.995	89.265	32.163	1.00 56.15	В
10				SER B					1.00 50.13	В
	ATOM	2654	CB		3.3	56.544	89.013	32.552		В
	ATOM	2655	OG G	SER B	3.3	55.675	89.714	31.672	1.00 66.23	
	ATOM	2656	C	SER B	33	58.859	88.260 87.427	32.894 32.274	1.00 57.27	В
30	ATOM	2657	0	SER B	33	59.535			1.00 60.30	В
20	ATOM	2658	N	GLY B	34	58.305	88.290	34.219	1.00 53.29	В
	ATOM	2659	CA	GLY B	34	59.662	87.391	34.976	1.00 47.70	В
	ATOM	2660	C	GLY B	34	59.278	85.922	34.987	1.00 44.48	В
	ATOM	2661	0	GLY B	34	60.129	85.033	35.135	1.00 38.34	В
	ATOM	2662	N	THR B	35	57.993	85.660	34.818	1.00 40.51	В
25	ATOM	2663	CA	THR B	35	57.524	84.290	34.860	1.00 40.76	B -
	ATOM	2664	CB	THR B	35	56.225	84.239	35.644	1.00 41.73	В
	MOTA	2665	OG1		35	55.258	85.077	35.014	1.00 48.51	В
	MOTA	2666	CG2	THR B	35	56.468	84.761	37.057	1.00 44.89	В
	MOTA	2667	C	THR B	35	57.369	83.691	33.470	1.00 39.51	В
30	MOTA	2668	0	THR B	35	56.786	82.613	33.286	1.00 31.97	В
	ATOM	2669	N	PHE B	36	57.924	84.399	32.491	1.00 35.56	В
	MOTA	2670	CA	PHE B	36	57.873	83.955	31.112	1.00 31.01	В
	MOTA	2671	CB	PHE B	35	57.146	84.967	30.250	1.00 33.05	В
	MOTA	2672	CG	PHE B	36	55.673	84.918	30.396	1.00 35.23	В
35	MOTA	2673		PHE B	36	55.040	85.573	31.444	1.00 35.53	В
	MOTA	2674	CD2		36	54.909	84.204	29.483	1.00 31.53	В
	ATOM	2675	CE1		35	53.663	85.497	31.570	1.00 37.58	В
	MOTA	2676	CE2	PHE B	3 ธ์	53.549	84.126	29.604	1.00 32.60	В
	ATOM	2677	CZ	PHE B	35	52.918	84.769	30.638	1.00 32.38	В
40	MOTA	2678	C	PHE B	35	59.276	83.798	30.577	1.00 32.83	В
	MOTA	2679	0	PHE B	36	50.212	84.347	31.125	1.00 33.40	В
	ATOM	2680	N	ARG B	37	59.427	83.049	29.498	1.00 30.99	В
	$M \cup TA$	2681	ĊА	ARG B	3.7	50.741	82.896	28.916	1.00 20.69	B
	ATOM	2682	CD	ARC B	3.7	51.201	81.458	29.083	1 00 30.62	В
45	ATOM	2683	CG	ARG B	37	61.442	81.072	30.541	1.00 35.61	В
	MOTA	2684	CD	ARG B	37	52.492	81.992	31.177	1.00 39.39	В
	ATOM	2685	NE	ARG B	37	52.303	82.044	32.629	1.00 49.28	В
	ATOM	2686	CZ	ARG B	37	62.847	81.168	33.451	1.00 47.41	В
	ATOM	2687	NHl	ARG B	37	63.614	80.212	32.947	1.00 53.00	В
50	ATOM	2688		ARG B	37	52.602	81.223	34.751	1.00 44.10	В
	ATOM	2689	С	ARG B	37	50.713	83.280	27.439	1.00 32.05	В
	ATOM	2690	Ö	ARG B	37	59.809	82.874	26.700	1.00 25.63	В
	ATOM	2691	N	LEU B	38	61.705	84.050	27.011	1.00 23.96	В
	ATOM	2692	CA	LEU B	38	61.802	84.470	25.621	1.00 30.62	В
55	ATOM	2693	CB	LEU B	38	62.655	85.738	25.508	1.00 23.25	В
* *		2000	22		50	02.055	33.733	23.300	23.23	2

	MOTA	2694	CG	LEU B	38	62.739	86.365	24.105	1.00 28.16	В
	ATOM	2695	CD1	LEU B	38	61.376	86.948	23.659	1.00 20.01	В
	ATOM	2696	CDS	LEU B	38	63.753	87.486	24.132	1.00 32.19	В
	ATOM	2697	C	LEU B	38	62.386	83.361	24.745	1.00 27.63	В
-										
5	MOTA	2698	0	LEU B	38	53.447	82.793	25.036	1.00 27.98	В
	ATOM	2699	N	ILE B	39	61.651	83.017	23.691	1.00 30.18	В
	MC T A	2700	CA	ILE B	39	62.073	81.983	22.743	1.00 27.37	В
	ATOM	2701	CB	ILE B	39	60.940	80.959	22.492	1.00 30.75	В
	ATOM	2702	CG2		39	61.438	79.878	21.538	1.00 29.27	В
10	ATOM	2703	CG1		39	60.455	80.359	23.822	1.00 30.90	В
10										
	ATOM	2704	CD1		39	61.491	79.535	24.559	1.00 26.44	В
	MOTA	2705	С	ILE B	39	62.403	82.668	21.418	1.00 29.53	B
	MOTA	2706	0	ILE B	39	61.510	83.256	20.797	1.00 24.87	В
	MOTA	2707	N	GLY B	40	63.676	82.609	20.998	1.00 21.97	В
15	ATOM	2708	CA	GLY B	40	64.084	83.239	19.751	1.00 23.62	В
	ATOM	2709	C	GLY B	40	64.957	84.450	19.975	1.00 22.85	В
	ATOM	2710	0	GLY B	40	65.065	84.921	21.104	1.00 21.42	В
	ATOM	2711	N	GLU B	41	65.592	84.958	18.925	1.00 27.33	В
	ATOM	2712	CA	GLU B	41	66.472	8ნ.133	19.065	1.00 29.50	В
20	ATOM	2713	CB	GLU B	41	67.138	86.471	17.730	1.00 33.78	В
	MOTA	2714	CG	GLU B	41	58.634	86.193	17.721	1.00 52.17	В
	ATOM	2715	CD	GLU B	41	69.411	87.123	18.648	1.00 57.74	В
	ATOM	2716		GLU B	41	70.414	86.641	19.231	1.00 66.30	В
	MOTA	2717	OE2		41	69.034	88.326	18.791	1.00 53.76	В
25	MOTA	2718	C	GLU B	41	65.667	87.333	19.541	1.00 30.40	В
	ATOM	2719	0	GLU B	41	64.60l	87.619	18.995	1.00 27.22	В
	ATOM	2720	N	LYS B	42	66.197	83.049	20.528	1.00 27.86	В
	ATOM	2721	CA	LYS B	42	65.538	89.215	21.135	1.00 32.03	В
	$AT \cap M$	2722	СВ	LYS B	43	66.171	89.495	22.504	1.00 37.19	В
30	ATOM	2723	CG	LYS B	43	67.610	89.990	22.379	1.00 43.78	B
2117										
	MOTA	2724	CD	LYS B	42	68.196	90.536	23.674	1.00 54.68	В
	MOTA	2725	CE	LYS B	42	68.055	89.538	24.812	1.00 62.51	В
	MOTA	2726	NZ	LYS B	42	68.433	88.139	24.443	1.00 69.20	В
	MOTA	2727	C	LYS B	42	55.586	90.530	20.331	1.00 32.32	В
3.5	MOTA	2728	0	LYS B	42	64.771	91.432	20.555	1.00 27.61	В
	ATOM	2729	N	SER B	43	66.547	90.680	19.422	1.00 28.99	В
	ATOM	2730	CA	SER B	43	55.611	91.946	18.672	1.00 33.61	В
	ATOM	2731	CB	SER B	43	63.012	92.565	18.722	1.00 29.97	В
	MOTA	2732	OG	SER B	43	68.478	92.606	20.047	1.00 47.21	В
40	ATOM	2733	С	SER B	43	56.273	91.770	17.224	1.00 28.57	В
	ATOM	2734	0	SER B	43	66.765	90.841	16.588	1.00 32.11	В
	ATOM	2735	N	LEU B	44	65.443	92.661	16.697	1.00 26.09	В
	ATOM	2736	CA	LEU B	44	55.127	92.607	15.280	1.00 25.34	В
	ATOM	2737	CB	LEU B	44	67.520	92.609	14.987	1.00 21.75	B
1.5										
45	ATOM	2738	CG	TEO R	44	52.008	91.642	15,593	1.00 33.26	B
	ATOM	2739		LEU B	44	51.455	91.487	14.626	1.00 24.66	В
	ATOM	2740	CD2	LEU B	-4.4	53.227	90.293	15.976	1.00 19.72	В
	ATOM	2741	C	LEU B	44	65.738	93.863	14.694	1.00 27.39	В
	ATOM	2742	0	LEU B	44	65.759	94.919	15.334	1.00 29.07	В
50	ATOM	2743	N	LEU B	45	66.201	93.740	13.456	1.00 26.79	B
				LEU B						
	ATOM	2744	CA		45	66.854	94.812	12.727	1.00 26.17	В
	MOTA	2745	CB	LEU B	45	68.202	94.303	12.213	1.00 25.36	В
	ATOM	2746	CG	LEU B	45	69.343	95.281	11.950	1.00 35.90	В
	MOTA	2747	CD1	LEU B	45	70.263	94.668	10.905	1.00 31.78	В
55	MOTA	2748	CD2	LEU B	45	68.853	96.627	11.519	1.00 39.62	В
					-				· · -	

	ATEM	2749	С	LEU B	45	66.016	95.198	11.516	1.00 25.11	В
	ATEM	2750	0	LEU B	45	65.568	94.320	10.761	1.00 20.94	В
	ATOM	2751	N	CYS B	46	65.803	96.487	11.298	1.00 24.85	В
	ATOM	2752	CA	CYS B	46	65.057	95.837	10 097	1.00 22.87	В
5	ATEM	2753	C	CYS B	46	66.106	95.897	8.976	1.00 29.24	В
3		2754		CYS B		67.099	97.601	9.051	1.00 28.50	В
	ATOM		0		46				1.00 26.50	В
	ATIM	2755	CB	CYS B	46	64.446	98.234	10 351		
	MITA	2756	SG	CYS B	46	63.677	98.900	a 705	1.00 27.31	В
	ATIM	2757	N	ILE B	47	65.877	96.106	7.343	1.00 24.65	В
10	MOTA	2758	CA	ILE B	47	66.817	95.991	6.342	1.00 28.64	В
	MUTA	2759	CB	ILE B	47	67.412	94.572	6 371	1.00 30.17	В
	ATOM	2760	CG2	ILE B	47	68.11 4	94.258	5.601	1.00 42.28	В
	ATCM	2761	CG1		47	68.341	94.458	8 070	1.00 40.16	В
	ATOM	2762	CD1	ILE B	47	69.121	93.190	8.107	1.00 53.27	В
15	ATUM	2763	С	ILE B	47	66.098	96.183	5.504	1.00 28.32	В
	ATCM	2764	0	ILE B	47	64.874	96.332	5.466	1.00 24.72	В
	ATIM	2765	N	THR B	48	66.853	96.233	4.413	1.00 24.30	В
	ATUM	2766	CA	THR B	48	66.236	96.267	3.091	1.00 27.24	В
	ATOM	2767	CB	THR B	48	66.215	97.672	0.405	1.00 31.04	В
20	$AT \oplus M$	2768	OG1	THR B	48	65.632	97.534	1.090	1.00 26.58	В
	ATOM	2769	CG2	THR B	48	67.627	98.250	2.271	1.00 23.59	В
	ATUM	2770	C	THR B	48	67.048	95.280	2.254	1.00 26.55	В
	ATOM	2771	Ö	THR B	48	69.276	95.371	1.173	1.00 27.30	В
	ATOM	2772	N	LYS B	49	66.370	94.295	1.688	1.00 24.39	В
25	ATOM	2773	CA	LYS B	49	67.031	93.309	0.837	1.00 25.65	В
- '	ATOM	2774	CB	LYS B	49	66.323	91.943	0.940	1.00 27.44	В
	ATOM	2775	CG	LYS B	49	66.358	91.351	2.368	1.00 36.21	В
	ATOM	2776	CD	LYS B	49	67.171	90.103	2.479	1.00 40.52	В
							90.103	2.025	1.00 40.32	В
30	ATOM	2777	CE	LYS B	49	68.570			1.00 41.03	В
30	ATOM	2778	NZ	LYS B	49	69.314	89.069	2.403		
	ATOM	2779	C	LYS B	49	67.041	93.752	-0.632	1.00 33.01	В
	ATOM	2780	0	LYS B	49	67.987	93.450	-1.353	1.00 28.70	В
	ATCM	2781	N	ASP B	50	65.994	94.451	-1.083	1.00 26.02	В
	ATIM	2782	CA	ASP B	50	65.933	94.859	-2.495	1.00 29.77	В
35	ATUM	2783	CB	ASP B	50	64.575	94.503	-3.108	1.00 28.99	В
	MOTA	2784	CG	ASP B	50	63.439	95.221	-2.440	1.00 26.54	В
	ATUM	2785		ASP B	50	63.739	95.043	-1.562	1.00 25.74	В
	ATOM	2786		ASP B	50	62.262	94.969	-0.779	1.00 32.42	В
	AT:M	2787	С	ASP B	50	66.200	96.327	-2.744	1.00 30.62	В
40	$AT \cap M$	2788	0	ASP B	50	66.037	95.794	-3.958	1.00 24.13	В
	$\operatorname{AT} \odot \operatorname{M}$	2789	N	LYS B	51	66.610	97.050	-1.709	1.00 27.94	В
	ATOM	2790	CA	LYS B	51	66.889	98.473	-1.824	1.00 31.18	В
	ATOM	2791	CB	LYS B	51	68.014	98.742	-2.819	1.00 34.46	В
	ATCM	2792	CG	LYS B	51	69.381	98.355	-2.297	1.00 41.85	В
45	ATOM	2793	CD	LYS B	51	70.447	98.960	-3.175	1.00 49.97	В
	ATOM	2794	CE	LYS B	51	71.826	98.869	-2.564	1.00 59.90	В
	MOTA	2795	NZ	LYS B	51	72.754	99.713	3.366	1.00 67.70	B
	MOTA	2796	С	LYS B	51	65.666	99.365	-2.186	1.00 30.87	В
	ATOM	2797	Ú	LYS B	51		100.430	-2.634	1.00 28.68	В
20	ATOM	2798	N	VAL B	52	64.483	98.743	-1.992	1.00 26.95	В
• •	ATOM	2799	CA	VAL B	52	63.263	99.501	-2.231	1.00 26.37	В
	ATOM	2800	CB	VAL B	52	62.456	98.945	-3.402	1.00 27.69	В
	ATOM	2801		VAL B	52	61.123	99.695	-3.511	1.00 27.00	В
						63.236	99.113	-4.679	1.00 32.70	В
	ATCM	2802		VAL B	52		99.113	-1.000	1.00 32.13	В
55	MOTA	2803	С	VAL B	52	62.375	22.43/	- 1.000	1.00 30.79	٥

	MOTA	2804	\circ	VAL B	52	61.949	100.461	-0.491	1.00 26.76	В
	ATOM	2805	N	ASP B	53	62.102	98.232	-0.512	1.00 26.86	В
	ATOM	2806	$\mathbb{C} \mathbb{A}$	ASP B	53	61.210	98.074	0.642	1.00 26.94	В
	ATOM	2807	ĴΒ	ASP B	53	60.156	96.999	0.318	1.00 42.02	В
5	ATOM	2803	CG	ASP B	53	59.285	97.356	-0.871	1.00 53.53	В
•	ATOM	2809		ASP B	53	58.878	98.540	-0.943	1.00 63.13	В
	ATTM	2810		ASP B	53	58.964	96.476	-1.727	1.00 64.13	В
	ATOM	2811	C	ASP B	53	62.006	97.651	1.388	1.00 25.00	В
	ATUM	2312	0	ASP B	53	63.063	97.038	1.773	1.00 22.23	В
10	ATOM	2813		GLY B	54	61.490	97.959	3.072	1.00 20.64	В
10			N							
	$AT \odot M$	2314	CA	GLY B	54	62.170	97.578	4.293	1.00 24.10	В
	$AT \cap M$	2815	C	GLY B	54	61.441	96.397	4.919	1.00 25.17	В
	ATOM	2816	()	GLY B	54	60.237	96.266	4.728	1.00 25.23	В
	ATOM	2817	N	THR B	55	62.169	95.517	5.605	1.00 23.87	В
15	$AT \cap M$	2818	CA	THR B	55	61.589	94.373	5.318	1.00 20.36	В
	ATOM	2319	CB	THP B	55	61.679	93.051	5.518	1.00 27.74	В
	ATOM	2820	OG1	THR B	55	61.052	92.004	5.257	1.00 24.11	В
	ATOM	1.821	032	THR B	55	63.151	92.669	5.312	1.00 21.92	В
	MOTA	2822	C	THR B	55	62.371	94.156	7.600	1.00 22.54	В
20	$AT \cap M$	2823	0	THR B	55	63.535	94.526	7.675	1.00 24.57	В
	ATOM	2824	N	TRP B	56	61.743	93.589	8.524	1.00 23.11	В
	ATOM	2325	CA	TRP B	56	62.513	93.285	9.327	1.00 25.54	В
	ATOM	2326	СВ	TRP B	56	61.580	92.954	10.988	1.00 23.18	В
	M:DTA	1 3117	C:3	TRP B	56	60.874	94.202	11,480	1.00 19.51	В
25	ATGM	2328	CD2	TRP B	56	61.456	95.282	12.147	1.00 21.91	В
	ATOM	2829	CE2	TRP B	56	60.473	96.302	12.247	1.00 26.89	В
		2830	CE3	TRP B	56	62.722	95.491	12.739	1.00 25.30	В
	ATOM									
	ATOM	2.831	CD1	TRP B	56	59.595	94.578	11.119	1.00 21.93	В
	$AT \cap M$	2332	NEl	TRP B	56	59.343	95.849	11.51"	1.00 21.49	В
30	ATOM	2833	C32	TRP B	56	60.713	97.521	12.895	1.00 26.71	В
20	ATOM	2834	023	TRP B	56	62.963	96.706	13.330	1.00 29.35	В
	ATOM	2335	CH2	TRP B	56	61.957	97.706	13.451	1.00 28.96	В
	$AT \cap M$	1.336	C	TRP B	56	63.335	92.075	9.334	1.00 28.11	В
	AT OM	2837	0	TRP B	56	62.882	91.296	8.535	1.00 23.54	В
35	$AT \mathcal{D} M$	2338	N	ASP B	57	64.535	91.909	9.926	1.00 20.44	В
5.1					57		90.812	9.470	1.00 25.81	В
	ATOM	2339	CA	ASP B		65.401				
	ATOM	2840	CB	ASP B	57	66.885	91.113	9.761	1.00 30.15	В
	ATCM	2941	CG	ASP B	57	67.234	91.045	11.255	1.00 35.84	В
	ATON	2842	0D1	ASP B	57	66.319	91.161	10.100	1.00 23.31	В
40	ATOM	2843		ASP B	57	68.443	90.889	11.531	1.00 41.06	В
40										
	$M \odot TA$	2844	C	ASP B	57	65.058	89.433	9.963	1.00 26.11	В
	ATOM	2345	0	ASP B	57	65.634	88.455	9.486	1.00 28.90	В
	ATOM	2346	N	LYS B	58	64.114	89.336	10.996	1.00 29.91	В
	ATOM	2847	CA	LYS B	58	63.687	88.032		1.00 27.97	В
4.5						64.697		13.443	1.00 30.61	В
45	ATOM	2348	CB	LYS B	58		87.491			
	ATC:M	2349	CG	LYS B	58	64.884	88.378		1.00 38.23	В
	$AT \cap M$	2850	CD	LYS B	58	65.966	87.831	14.518	1.00 41.02	В
	ATOM	2:351	ĊΕ	LYS B	58	67.406	88.063	11.115	1.00 37.73	В
	$\Lambda T \cup M$	2852	ν1	TOYS B	58	67.830	89.511	11.119	1 00 29 19	В
50										
50	MOTA	2853	C	LYS B	58	62.319	88.105	12.045	1.00 22.71	В
	AT:0:M	2354	0	LYS B	58	61.795	89.188	12.311	1.00 26.33	В
	ATOM	2855	N	PRO B	59	61.700	86.947	11.292	1.00 25.99	В
	ATOM	2356	CD	PRO B	59	62.084	85.584	11.885	1.00 24.09	В
									1.00 22.11	
	ATOM	2857	CA	PRO B	59	60.367	86.972	12.919		В
55	MOTA	2858	CB	PRO B	59	59.902	85.515	12.845	1.00 26.86	В

	ATOM	2859	CG	PRO B	59	60.730	84.913	11.746	1.00 29.91	В
	ATOM	2860	С	PRO B	59	60.509	87.419	14.369	1.00 30.21	В
	ATOM	2861	Ö	PRO B	59	61.593	87.307	14.968	1.00 28.15	В
	ATOM	2862	N	ALA B	60	59.433	87.924	14.951	1.00 25.43	В
5	ATOM	2863	CA	ALA B	60	59.516	88.330	16.339	1.00 25.37	В
٠,		2864	CB	ALA B			89.089			В
	ATOM				5:) 0	58.260		16.742	1.00 25.53	
	ATOM	2865	C	ALA B	50	59.644	87.085	17.223	1.00 21.91	В
	ATOM	2866	0	ALA B	60	59.104	86.068	16.914	1.00 22.47	В
	MOTA	2867	N	PRO B	61	60.358	87.173	18.350	1.00 23.37	В
10	ATOM	2868	CD	PRO B	51	61.134	88.320	18.870	1.00 22.24	В
	ATOM	2869	CA	PRO B	51	60.476	86.007	19.227	1.00 19.99	В
	ATOM	2870	CB	PRO B	51	61.650	86.386	20.130	1.00 21.18	В
	MOTA	2871	CG	PRO B	51	61.458	87.876	20.314	1.00 22.73	В
	ATOM	2872	С	PRO B	ъ́1	59.151	85.933	20.024	1.00 27.42	В
15	ATOM	2873	0	PRO B	61	58.314	86.831	19.903	1.00 27.48	В
	ATOM	2874	N	LYS B	62	58.960	84.893	20.834	1.00 21.73	В
	ATOM	2875	CA	LYS B	62	57.737	84.770	21.648	1.00 26.90	В
	ATOM	2876	CB	LYS B	62	56.880	83.576	21.187	1.00 32.90	В
	ATOM	2877	CG	LïS B	62	56.318	83.743	19.779	1.00 39.12	В
20	ATOM	2878	CD	LYS B	62	55.638	82.502	19.258	1.00 48.29	В
20	ATOM	2879	CE	LYS B	b2	55.142	82.741	17.828	1.00 54.55	В
	ATOM	2880	NZ	LYS B	62	54.620	81.478	17.213	1.00 59.87	В
	ATOM	2881	C	LYS B	62	58.050	84.601	23.133	1.00 37.68	В
25	ATOM	2882	0	LYS B	62	59.190	84.287	23.528	1.00 24.62	В
25	ATOM	2883	N	CYS B	63	57.039	84.843	23.958	1.00 25.15	В
	ATOM	2884	CA	CYS B	63	57.171	84.675	25.405	1.00 27.27	В
	ATOM	2885	C	CYS B	63	56.314	83.481	25.792	1.00 30.43	В
	ATOM	2886	0	CYS B	63	55.111	83.454	25.515	1.00 30.82	В
	MOTA	2887	CB	CYS B	53	56.646	85.903	26.149	1.00 25.60	В
30	MOTA	2888	SG	CYS B	63	57.682	87.384	25.922	1.00 31.81	В
	ATOM	2889	N	GLU B	54	56.934	82.486	26.414	1.00 09.14	В
	ATOM	2890	CA	GLU B	64	56.220	81.297	26.871	1.00 07.87	В
	ATOM	2891	CB	GLU B	б4	56.938	80.043	26.393	1.00 23.54	В
	MOTA	2892	CG	CLU B	64	56.839	79.836	24.884	1.00 30.23	В
35	ATOM	2893	CD	GLU B	64	57.354	78.472	24.471	1.00 25.42	В
	MOTA	2894	OE1	GLU B	64	58.146	77.879	25.221	1.00 23.63	В
	MOTA	2895	OE2	GLU B	54	56.993	77.99 4	23.396	1.00 24.45	В
	ATOM	2896	С	GLU B	64	56.172	81.301	28.394	1.00 27.43	В
	ATOM	2897	0	GLU B	64	57.189	81.564	29.036	1.00 28.45	В
40	ATOM	2898	N	TYP B	65	55.003	81.039	28.981	1.00 30.82	В
	ATOM	2899	CA	TYF. B	65	54.898	81.016	30.449	1.00 26.71	В
	ATOM	2900	CB	TYP B	65	53.474	80.638	30.881	1.00 24.67	В
	ATOM	2901	CG	TYF B	65	53.222	80.754	32.382	1.00 30.61	В
	ATOM	2902	CD1	TYE B	65	53.558	81.915	33.078	1.00 3 1.93	В
45	ATOM	2903	CE1		65	53.369	82.013	34.464	1.00 37.10	В
7.	ATOM	2904	CD2		65	52.681	79.689	33.102	1.00 29.91	В
										ส
	ATOM	2905	CE2		65	52.481	79.765	34.477	1.00 32.04	
	ATOM	2906	CZ	TYR B	65	52.829	80.927	35.149	1.00 33.91	В
-0	ATOM	2907	OH	TYR B	65	52.653	81.014	36.510	1.00 40.82	В
50	ATOM	2908	Ç	TYR B	65	55.931	79.969	30.908	1.00 25.37	В
	ATOM	2909	0	TYR B	65	56.022	78.891	30.339	1.00 27.39	В
	ATOM	2910	N	PHE B	66	56.722	80.290	31.924	1.00 30.93	В
	ATOM	2911	CA	PHE B	66	57.770	79.381	32.362	1.00 29.14	В
	MOTA	2912	CB	PHE B	66	58.611	80.060	33.455	1.00 27.56	В
55	ATOM	2913	CG	PHE B	66	59.743	79.210	33.998	1.00 28.67	В

	MOTA	2914	CD1	PHE B	ร์ร์	60.632	78.559	33.139	1.00 33.68	В
	MOTA	2915	CD2	PHE B	ာ်ဂ်	59.907	79.055	35.371	1.00 30.48	В
	MOTA	2916	CEl	PHE B	ร์ธ์	61.669	77.763	33.648	1.00 35.23	В
	MOTA	2917	CE2	PHE B	ร์ ร์	60.931	78.267	35.895	1.00 26.93	В
5	MOTA	2918	CZ	PHE B	55	61.816	77.618	35.041	1.00 31.25	В
	ATOM	2919	С	PHE B	66	57.283	78.013	32.844	1.00 32.09	P
	ATOM	2920	0	PHE B	55	55.382	77.924	33.671	1.00 31.84	E
	MOTA	2921	N	ASN B	51	57.882	76.956	32.312	1.00 28.91	P
	MOTA	2922	CA	ASN B	57	57.553	75.591	32.727	1.00 31.14	P
10	ATOM	2923	СВ	ASN B	57	57.124	74.763	31.524	1.00 32.40	P
	MOTA	2924	CG	ASN B	5.,	56.635	73.368	31.903	1.00 37.56	P.
	ATOM	2925		ASN B	5 T	57.193	72.701	32.784	1.00 33.77	В
	MOTA	2926		ASN B	6.7	55.589	72.914	31.218	1.00 40.31	E
	ATOM	2927	C	ASN B	6.,	58.844	75.009	33.318	1.00 30.31	B
15	ATOM	2928	0	ASN B	67	59.719	74.551	32.577	1.00 26.39	В
	ATOM	2929	N	LYS B	68	58.960	75.038	34.644	1.00 28.27	P
	ATOM	2930	CA	LYS B	58	60.148	74.535	35.329	1.00 29.00	E-
	ATOM	2931	CB	LYS B	68	60.041	74.792	36.843	1.00 35.08	B.
	ATOM	2932	CG	LYS B	68	58.984	73.906	37.518	1.00 41.56	В
20	ATOM	2933	CD	LYS B	ъ́8	59.179	73.778	39.031	1.00 52.33	В
20	ATOM	2934	CE	LYS B	58	58.907	75.077	39.764	1.00 54.82	P.
	ATOM	2935	NZ	LYS B	68	58.896	74.891	41.250	1.00 58.88	P
	ATOM	2936	C	LYS B	63	60.398	73.039	35.087	1.00 32.74	P.
	ATOM	2937	Ö	LYS B	68	61.507	72.556	35.318	1.00 32.92	E
25	ATOM	2938	N	TYR B	5.)	59.389	72.305	34.611	1.00 33.19	E.
	ATOM	2939	CA	TYP. B	69	59.559	70.867	34.354	1.00 25.62	E-
	ATOM	2940	СВ	TYP B	ნ.+	58.259	70.096	34.687	1.00 30.97	E.
	ATOM	2941	CG	TYP. B	6 :	57.801	70.349	36.107	1.00 30.82	B
	MOTA	2942	CD1	TYR B	Б. Э	56.774	71.266	36.378	1.00 28.48	B
30	MOTA	2943	CE1	TYR B	59	56.444	71.623	37.697	1.00 31.73	B.
	MOTA	2944	CD2	TYR B	5 4	58.486	69.776	37.192	1.00 31.54	P.
	MOTA	2945	CE2	TYR B	53	58.174	70.118	38.507	1.00 38.99	P.
	ATOM	2946	CZ	TYR B	5.1	57.153	71.053	38.756	1.00 39.94	E
	ATOM	2947	OH	TYP B	5 🔹	56.901	71.467	40.048	1.00 41.68	В
35	MOTA	2948	С	TYP B	69	60.029	70.516	32.955	1.00 31.61	B
	MOTA	2949	0	TYP B	6 5	6u.5 4 9	69.414	32.722	1.00 31.53	P.
	MOTA	2950	N	SER B	70	59.889	71.447	32.017	1.00 29.13	P.
	MOTA	2951	CA	SER B	7.	60.328	71.162	30.649	1.00 31.79	P
	MOTA	2952	CB	SER B	7.0	59.926	72.310	29.708	1.00 27.84	E
40	ATOM	2953	OG	SER B	7:.	58.524	72.534	29.725	1.00 38.42	E-
	MOTA	2954	C	SEP. B	70	61.849	70.949	30.544	1.00 34.24	P.
	MOTA	2955	0	SER B	7:)	62.624	71.534	31.296	1.00 31.38	P.
	MOTA	2956	N	SEP. B	71	62.261	70.097	29.613	1.00 33.64	P.
	ATOM	2957	CA	SEP. B	7.1.	63.676	69.832	29.351	1.00 36.09	B
45	ATOM	2958	CB	SEP. B	7.1	64.265	68.809	30.324	1.00 39.34	P
	ATOM	2959	OG	SEP. B	71	63.823	67.519	30.007	1.00 41.01	В
	MOTA	2960	C	SEP. B	71	63.790	69.308	27.907	1.00 41.17	В
	MOTA	2961	0	SER B	71	62.959	68.520	27.432	1.00 41.90	В
	MOTA	2962	N	CKS R	72	64.805	69.766	27.195	1.00 32.35	Ħ
50	MOTA	2963	CA	CYS D	70	64.970	69.351	25.816	1.00 36.35	В
	ATOM	2964	C	CYS B	72	66.139	68.393	25.722	1.00 36.24	B
	MOTA	2965	0	CYS B	70	67.089	68.472	26.503	1.00 34.41	В
	ATOM	2966	CB	CYS B	72	65.20 5	70.586	24.920	1.00 26.09	В
	MOTA	2967	SG	CYS B	72	63.836	71.795	24.962	1.00 32.64	В
55	MOTA	2968	N	PP.O B	73	66.069	67.453	24.779	1.00 35.65	В

	ATOM	2969	CD	PRO B	73	64.958	67.148	23.867	1.00 38.10	В
	ATOM	2970	CA	PRO B	73	67.157	66.494	24.617	1.00 35.61	В
	ATOM	2971	СВ	PRO B	73	66.567	65.461	23.661	1.00 35.75	В
	ATOM	2972	CG	PRO B	73	65.662	65.314	22.806	1.00 40.23	В
ż	ATOM	2973	C	PRO B	73	68.355	67.203	24.011	1.00 37.18	В
5	ATOM	2974	0	PRO B	73	68.225	63.277	23.427	1.00 31.86	В
		2975	N	GLU B	74	69.521	66.595	24.151	1.00 30.08	В
	ATOM	2976	CA	GLU B	74	70.726	67.168	23.594	1.00 36.66	В
	MOTA		CB	GLU B	74	71.904	56.221	23.830	1.00 40.69	В
	ATOM	2977		GLU B	74	73.123	65.500	22.972	1.00 55.61	В
10	ATOM	2978	CG	GLU B	74	74.357	65.847	23.791	1.00 65.33	В
	ATOM	2979	CD	GLU B	74	75.476	66.535	23.311	1.00 68.86	В
	ATOM	2980			74	74.214	67.432	24.899	1.00 67.56	В
	MOTA	2981		GLU B	74	70.526	67.411	22.099	1.00 31.83	В
	ATOM	2982	C	GLU B		70.179	65.517	21.347	1.00 34.92	В
15	MOTA	2983	0	GLU B	74	70.743	68.639	21.648	1.00 29.85	В
	MOTA	2984	N	PRO B	75 75	71.019	69.851	22.431	1.00 29.21	В
	MOTA	2985	CD	PRO B	75	70.573	68.944	20.227	1.00 31.16	В
	ATOM	2986	CA	PRO B	75	70.349	70.441	20.235	1.00 30.77	В
	MOTA	2987	CB	PRO B	75		70.872	21.362	1.00 28.27	В
20	MOTA	2988	CG	PRO B	75	71.310	68.552	19.507	1.00 37.41	В
	MOTA	2989	C	PRO B	75	71.855	68.998	19.877	1.00 35.98	В
	MOTA	2990	0	PRO B	75	72.949		18.474	1.00 37.41	В
	MOTA	2991	N	ILE B	76	71.728	67.726	17.757	1.00 41.40	В
	MOTA	2992	CA	ILE B	76	72.904	67.277	17.737	1.00 47.80	В
25	MOTA	2993	CB	ILE B	76	73.069	65.755	17.272	1.00 48.99	В
	MOTA	2994	CG2		76	74.385	65.302	19.404	1.00 48.44	В
	MOTA	2995	CG1		76	73.078	65.396		1.00 55.08	В
	ATOM	2996	CD1		76	72.926	63.918	19.671	1.00 38.62	В
	MOTA	2997	C	ILE B	76	72.874	67.654	16.294	1.00 39.69	В
30	MOTA	2998	0	ILE B	76	71.874	67.480	15.625	1.00 35.89	В
	MOTA	2999	N	VAL B	77	73.984	68.195	15.813	1.00 38.30	В
	ATOM	3000	CA	VAL B	77	74.107	68.610	14.433	1.00 38.30	В
	MOTA	3001	CB	VAL B	77	74.290	70.119	14.331	1.00 39.15	В
	MOTA	3002	CG1	VAL B	77	74.483	70.519	12.871	1.00 40.99	В
35	ATOM	3003	CG2	VAL B	77	73.081	70.826	14.946	1.00 40.35	В
	ATOM	3004	С	VAL B	77	75.307	67.939	13.761		В
	MOTA	3005	0	VAL B	77	76.457	68.351	13.948	1.00 41.17	В
	МОТА	3006	N	PRO B	78	75.057	66.893	12.966	1.00 40.75	Б
	MOTA	3007	CD	PRO B	78	73.785	66.267	12.590	1.00 37.39	В
40	MOTA	3008	CA	PRO B	78	76.183	66.228	12.303	1.00 40.96	
	ATOM	3009	CB	PRO B	78	75.506	65.195	11.412	1.00 41.91	В
	ATOM	3010	CG	PRO B	78	74.119	65.745	11.229	1.00 45.49	В
	ATOM	3011	С	PRO B	78	76.997	67.232	11.525	1.00 37.80	В
	ATOM	3012	0	PRO B	78	75.447	68.140	10.913	1.00 37.38	В
45	ATOM	3013	N	GLY B	79	73.312	67.083	11.590	1.00 32.94	В
	MOTA	3014	CA	GLY B	79	79.186	68.002	10.900	1.00 36.40	В
	MOTA	3015	C	GLY B	79	79.427	69.261	11.712	1.00 34.31	В
	MOTA	3016	Ö	GLY B	79	80.209	70.109	11.304	1.00 42.13	В
	ATOM	3017		GLY B	80	78.760	69.404	12.855	1.00 36.96	В
= 0		3018	CA	GLY B		78.960	70.608	13.664	1.00 39.25	B
50	ATOM			GLY B		79.072	70.348		1.00 35.08	В
	ATOM	3019		GLY B		78.994			1.00 40.28	В
	ATOM	3020	O N	TYR B		79.225			1.00 37.65	В
	ATOM	3021		TYR B		79.345	71.271		1.00 33.04	В
	ATOM	3022				80.800			1.00 29.39	В
55	ATOM	3023	CB	TYR B	0.7	50.000				

	ATOM	3024	CG	TYR B	81	81.745	72.112	17.331	1.00 31.26	В
	ATOM	3025	CD1		81	82.169	73.115	13.199	1.00 28.35	В
			CE1		81			17.766	1.00 28.33	В
	ATIM	3026		TYP B		82.992	74.143			
	AT 0M	3027	CD2	TYP B	81	82.181	72.163	1€.004	1.00 28.62	В
5	MOTA	3028	CE2	TYR B	81	83.006	73.183	15.559	1.00 31.47	В
	$M \odot TA$	3029	CZ	TYR B	81	83.401	74.174	15.449	1.00 30.40	В
	MITA	3030	OH	TYR B	81	84.172	75.207	15.012	1.00 32.87	В
	ATOM	3031	C	TYR B	81	78.847	72.536	13.095	1.00 33.96	В
	ATOM	3032	0	TYR B	81	78.696	73.581	17.454	1.00 30.79	В
10	MOTA	3033	N	LYS B	82	78.600	72.431	19.398	1.00 23.56	В
•	ATOM	3034	CA	LYS B	82	78.114	73.557	23.195	1.00 29.94	В
	ATOM	3035	CB	LYS B	82	77.348	73.034	21.428	1.00 25.29	В
	ATOM	3036	CG	LYS B	82	76.140	72.144	21.423	1.00 27.67	В
	ATOM	3037	CD	LYS B	82	75.335	71.652	22.266	1.00 33.47	В
15	MOTA	3038	CE	LYS B	82	76.215	71.041	23.365	1.00 44.83	В
	ATEM	3039	NZ	LYS B	82	77.091	69.944	22.837	1.00 45.24	В
	AT-DM	3040	С	LYS B	82	79.205	74.526	20.629	1.00 29.85	В
	ATCM	3041	0	LYS B	82	80.270	74.110	21.099	1.00 31.44	В
	ATGM	3042	N	ILE B	83	78.980	75.822	20.428	1.00 25.93	В
20	$AT \cap M$	3043	CA	ILE B	83	79.959	76.795	20.887	1.00 21.30	В
	ATOM	3044	CB	ILE B	83	80.449	77.771	19.800	1.00 29.03	В
	ATOM	3045	CG2	ILE B	83	81.296	77.004	13.799	1.00 23.68	В
	ATOM	3046		ILE B	83	79.278	78.514	19.155	1,00 24.89	В
	ATUM	3047	CD1	ILE B	83	79.722	79.571	18.148	1.00 27.44	В
25	ATOM	3048	C	ILE B	83	79.362	77.581	22.027	1.00 26.62	В
-3				ILE B				22.636	1.00 20.02	
	ATOM	3049	0		83	80.038	78.408			В
	ATOM	3050	N	ARG B	84	78.092	77.330	22.324	1.00 24.60	В
	AT DM	3051	CA	ARG B	84	77.471	77.981	23.469	1.00 25.74	В
	ATOM	3052	CB	ARG B	84	77.047	79.396	23.131	1.00 34.80	В
30	ATOM	3053	CG	ARG B	84	76.583	80.160	24.348	1.00 45.89	В
	ATDM	3054	CD	ARG B	84	76.518	81.629	24.027	1.00 56.25	В
	ATOM	3055	NE	ARG B	84	77.801	82.302	24.217	1.00 62.31	В
	$AT\mathrm{IM}$	3056	CZ	ARG B	84	78.276	82.707	25.397	1.00 64.61	В
	MOTA	3057	NH1	ARG B	84	77.581	82.496	26.512	1.00 65.21	В
35	ATOM	3058		ARG B	84	79.421	83.386	25.454	1.00 61.85	В
	ATOM	3059	C	ARG B	84	76.278	77.199	23.984	1.00 27.61	В
	ATOM	3060	0	ARG B	84	75.487	76.687	23.189	1.00 24.27	В
	ATOM		N	GLY B	85	76.166	77.105	25.314	1.00 24.27	В
		3061								
4	ATOM	3062	CA	GLY B	85	75.074	76.374	25.959	1.00 23.64	В
40	MOTA	3063	C	GLY B	85	75.394	74.877	26.115	1.00 32.13	В
	ATOM	3064	0	GLY B	85	75.961	74.257	25.200	1.00 25.66	В
	ATOM	3065	N	SER B	86	75.094	74.293	27.281	1.00 24.97	В
	ATOM	3066	CA	SER B	86	75.347	72.859	27.473	1.00 34.32	В
	ATOM	3067	CB	SER B	86	76.755	72.588	28.034	1.00 31.54	В
45	AT:0M	3068	OG	SER B	86	76.964	73.322	29.223	1.00 42.05	В
	ATIM	3069	С	SER B	86	74.315	72.304	28.415	1.00 27.65	В
	AT 11	3070	0	SER B	86	73.536	73.064	28,979	1.00 24.75	В
	ATHM	3071	Ŋ	THP B	87	74,294	70 982	28.573	1.00 27.03	B
									1.00 29.87	В
£()	ATOM	3072	CA	THR B	87	73.325	70.314	29.454		
50	ATOM	3073	CB	THR B	87	73.532	68.806	29.450	1.00 34.20	В
	ATOM	3074	OG1	THR B	87	73.876	68.395	28.125	1.00 54.47	В
	AT®M	3075	CG2	THR B	87	72.263	68.107	29.856	1.00 36.26	В
	ATCM	3076	С	THR B	87	73.420	70.767	30.903	1.00 30.09	В
	ATOM	3077	0	THR B	87	74.501	71.113	31.381	1.00 30.94	В
55	ATOM	3078	N	PRO B	88	72.293	70.771	31.626	1.00 26.03	В

	ATOM	3079	CD	PRO B	88	72.370	71.088	33.060	1.00 30.64	В
	ATOM	3080	CA	PRO B	88	70.921	70.406	31.240	1.00 33.13	В
	ATOM	3081	CB	PRO B	88	70.225	70.211	32.585	1.00 28.86	В
_	ATOM	3082	CG	PRO B	88	70.903	71.248	33.440	1.00 31.91	В
5	AT DM	3083	C	PRO B	88	70.228	71.482	30.333	1.00 31.83	В
	MOTA	3084	O	PRO B	88	70.495	72.653	30.535	1.00 29.33	В
	MOTA	3085	N	TYR B	89	69.340	71.059	29.503	1.00 27.84	В
	$M \ominus T A$	3085	CA	TYR B	89	68.613	71.990	28.641	1.00 29.55	В
	ATOM	3087	CB	TYR B	89	68.553	71.414	27.239	1.00 27.73	В
10	ATOM	3088	CG	TYR B	89	69.938	71.078	26.722	1.00 29.87	В
• 0	ATOM	3089		TYR B	89	70.326	69.759	26.501	1.00 33.12	В
	ATOM	3090	CE1		89	71.605	69.456	26.036	1.00 26.70	В
	ATOM	3091	CD2	TYR B	89	70.865	72.086	26.467	1.00 32.19	В
	ATOM	3092	CE2	TYR B	89	72.134	71.795	26.007	1.00 28.60	В
15	ATOM	3093	CZ	TYR B	89	72.492	70.482	25.802	1.00 27.81	В
	$AT \hat{\cup} M$	3094	OH	TYR B	89	73.770	70.211	25.415	1.00 32.86	В
	MOTA	3095	C	TYR B	89	67.212	72.242	29.17€	1.00 25.88	В
	ATOM	3096	0	TYR B	89	66.333	71.400	29.025	1.00 25.96	В
	ATOM	3097	N	ARG B	90	67.015	73.405	29.790	1.00 25.05	В
20	ATON	3098	CA	ARG B	90	65.732	73.778	30.386	1.00 21.94	В
	ATOM	3099	CB	ARG B	90	65.950	74.306	31.802	1.00 25.43	В
	ATOM	3100	CG	ARG B	90	66.836	73.368	32.450	1.00 35.30	В
				ARG B		66.308		32.684		В
	ATOM ATOM	3101	CD		90		71.933		1.00 30.92	
	ATOM	3102	NE	ARG B	90	65.162	71.857	33.578	1.00 38.77	В
25	ATOM	3103	CZ	ARG B	90	64.577	70.721	33.950	1.00 43.50	В
	ATOM	3104			90	65.038	69.562	33.500	1.00 42.19	В
	ATON	3105	NH2		90	63.529	70.750	34.771	1.00 39.16	В
	AT	3106	C	ARG B	90	65.001	74.823	29.580	1.00 26.84	В
	AT M	3107	Ó	ARG B	90	65.540	75.372	28.606	1.00 21.63	В
30	ATOM	3108	N	HIS B	91	63.767	75.095	29 599	1.00 24.57	В
	AT/DM	3109	CA	HIS B	91	62.903	76.057	29.318	1.00 28.69	В
	ATOM	3110	CB	HIS B	91	61.570	76.143	30.063	1.00 26.54	В
	ATOH	3111	CG	HIS B	91	60.516	76.909	29.326	1.00 34.66	В
		3112		HIS B	91	59.414	77.563	29.770	1.00 26.97	В
25		3113		HIS B		60.513	77.035		1.00 20.37	В
35	ATUM				91			21.952		
	ATOM	3114		HIS B	91	59.457	77.735	27.582	1.00 27.63	В
	ATOM	3115		HIS B	91	58.775	78.066	23.666	1.00 34.45	В
	ATOM	3116	C	HIS B	91	63.546	77.445	29.177	1.00 30.22	В
	ATOM	3117	0	HIS B	91	63.937	78.069	30.161	1.00 23.98	В
40	AT DO	3118	N	GLY B	92	63.663	77.915	07.941	1.00 26.25	В
	ATOM	3119	CA	GLY B	92	64.260	79.209	27.702	1.00 20.48	В
	AT HI	3120	C	GLY B	92	65.752	79.118	1.7.458	1.00 24.40	В
	ATOM	3121	0	GLY B	92	66.310	80.100	27.00	1.00 24.34	В
	ATBN	3122	N	ASP B	93	66.407	77.974	27.724	1.00 20.35	В
45	ATOH	3123	CA	ASP B	93	67.857	77.834	27.472	1.00 19.73	В
	ATOM	3124	СВ	ASP B	93	68.487	76.575	20.900	1.00 23 67	B
	ATUM	3125	CG	ASP B	93	68.579	76.504	29.504	1.00 20.60	В
	ATOM	3126		ASP B	93	68.336	77.522	30.167	1.00 23.89	В
	ATOM	3127		ASP B	93	68.884	75.401	30.020	1.00 25.06	В
50	ATOM	3128	С	ASP B	93	68.138	77.911	25.981	1.00 25.02	В
	ATIM	3129	0	ASP B	93	67.362	77.415	25.170	1.00 24.06	В
	ATOM	3130	N	SER B	94	69.298	78.422	25.625	1.00 21.77	В
	ATOM	3131	CA	SER B	94	69.641	78.511	24.229	1.00 27.05	В
	ATOM	3132	CB	SER B	94	69.779	79.972	23.834	1.00 28.57	В
55	ATOM	3133	OG	SER B	94	70.417	80.035	22.587	1.00 38.84	В
						 ·				_

	ATOM	3134	C	SER E	3 94	70.935	77.815	23.908	1.00 25.71	В
	ATOM	3135	(j)	SEP. H	3 94	71.833	77.727	24.753	1.00 26.52	В
									1.00 27.36	В
	MOTA	3136	N	VAL I		71.051	77.331	22.678		
	MCTA	3137	CA	VAL	3 95	72.291	76.689	22.245	1.30 26.56	В
5	ATOM	3138	CB	VAL I	3 95	72.096	75.178	22.088	1.00 26.82	В
	ATOM	3139	CG1	VAL I		73.282	74.581	21.344	1.00 34.06	В
	MOTA	3140	CG2	VAL I		71.908	74.549	23.460	1.00 30.69	В
	ATOM	3141	C	VAL I	3 95	72.729	77.273	20.908	1.00 30.07	В
	MOTA	3142	\circ	VAL	3 95	71.903	77.496	20.019	1.00 26.03	В
10	ATOM	3143	1:	THR I		74.026	77.526	20.758	1.00 27.23	В
10										
	ATOM	3144	CA	THR I	3 96	74.540	78.058	19.503	1.00 23.14	В
	MOTA	3145	CB	THP. I	3 96	75.242	79.419	19.687	1.00 32.77	В
	ATOM	3146	091	THR I	3 96	74.292	80.383	20.163	1.00 26.94	В
	ATOM	3147	CG2	THR I		75.845	79.896	18.329	1.00 26.13	В
15	MOTA	3148	Ç	THP. I	3 96	75.550	77.071	18.915	1.00 33.62	В
	ATOM	3149	\circ	THP. I	96	76.445	76.614	19.618	1.00 26.19	В
	MOTA	3150	11	PHE E	3 97	75.381	76.732	17.638	1.00 28.29	В
	ATOM	3151	CA	PHE I		76.249	75.788	16.922	1.00 27.82	В
	ATOM	3152	CB	PHE I		75.409	74.849	16.039	1.00 27.23	В
20	ATOM	3153	CG	PHE I	3 97	74.598	73.858	16.796	1.00 30.99	В
	ATOM	3154	CD1	PHE I	3 97	73.325	74.183	17.257	1.00 28.10	В
	ATOM	3155	CD2	PHE I		75.149	72.633	17.153	1.00 24.15	В
	MOTA	3156		PHE I		72.608	73.310	18.081	1.00 29.54	В
	$\mathbf{A}\mathbf{T}\mathbf{O}\mathbf{M}$	3157	CE2	PHE I	3 97	74.434	71.756	17.975	1.00 36.96	В
25	ATOM	3158	CZ	PHE I	3 97	73.155	72.101	18.444	1.00 28.76	В
	ATOM	3159	C	PHE I	3 97	77.247	76.479	15.980	1.00 33.87	В
	ATOM	3160	Ö	PHE I		77.088	77.663	15.628	1.00 30.90	В
	ATOM	3161	11	ALA 1		78.274	75.725	15.582	1.00 33.98	В
	ATOM	3162	CA	ALA 1	3 98	79.266	76.152	14.574	$1.00 \ 34.14$	В
30	ATOM	3163	CB	ALA 1	3 98	80.551	76.651	15.211	1.00 38.55	В
	ATOM	3164	C	ALA I		79.544	74.880	13.785	1.00 36.15	В
										В
	MOTA	3165	Ç)	ALA F		79.370	73.775	14.312	1.00 35.98	
	ATOM	3166	N	CYS I	3 99	79.953	75.018	12.527	1.00 38.50	В
	ATOM	3167	CA	CYS I	3 99	80.266	73.843	11.711	1.00 39.15	В
35	ATOM	3168	C.	CYS E	3 99	81.747	73.512	11.779	1.00 36.00	B
	ATOM	3169	Ö	CYS E		82.573	74.408	11.865	1.00 32.17	В
	ATOM	3170	CB	CYS I		79.901	74.086	10.251	1.00 42.12	₽
	$M \cap TA$	3171	SC	CYS	3 99	78.108	74.162	9.949	1.00 40.52	В
	ATOM	3172	N	LYS I	3 100	82.089	72.229	11.749	1.00 35.70	В
40	ATOM	3173	CA	LYS E	3 100	83.498	71.842	11.770	1.00 40.35	В
,,,	ATOM	3174	CB	LYS I		83.632	70.319	11.848	1.00 43.13	В
	ATOM	3175	CG	LYS I		83.185	69.707	13.148	1.00 38.59	В
	MOTA	3176	CD	LYS E	3 100	82.771	68.263	12.966	1.00 44.87	В
	ATOM	3177	CE	LYS I	3 100	82.689	67.562	14.314	1.00 48.06	В
45	ATOM	3178	112	LYS E		82.353	66.122	14.196	1.00 53.59	В
40										
	MOTA	3179	C	LYS E		84.190	72.329	10.482	1.00 45.56	В
	ATOM	3180	O	LYS E	3 100	83.532	72.770	9.525	1.00 42.51	В
	ATOM	3181	11	THP E	3 101	85.519	72.239	10.456	1.00 17.30	В
	ATOM	3181		THE E		86.286	/2.651	9.282	1.00 48.55	В
-0			CA							
50	MOTA	3183	CB	THP E		87.794	72.408	9.497	1.00 48.03	В
	ATOM	3184	0G1	THP. I	3 101	88.281	73.285	10.501	1.00 47.14	В
	ATOM	3185	CG2	THP. I	3 101	88.557	72.683	8.212	1.00 51.80	В
	ATOM	3186	C	THP. E		85.816	71.876	8.042	1.00 47.72	В
	ATOM	3187	()	THE I		85.523	70.681	8.127	1.00 43.56	В
55	ATOM	3188	11	ASN I	3 102	85.747	72.555	6.901	1.00 47.11	В

	MOTA	3189	CA	ASN B	102	85.294	71.943	5.647	1.00 48.36	В
	ATOM	3190	СВ	ASN B	102	85.961	70.594	5.375	1.00 53.67	В
	ATOM	3191	CG	ASN B	102	87.461	70.703	5.219	1.00 58.65	В
	ATOM	3192		ASN B		87.980	71.763	4.856	1.00 59.24	В
5	ATOM	3193			102	88.171	69.599	5.484	1.00 61.19	В
· ·	ATOM	3194	C	ASN B		83.797	71.728	5.632	1.00 49.35	P.
	ATOM	3195	0		102	83.284	70.965	4.814	1.00 51.85	Ē
	ATOM	3196	N	PHE B		83.097	72.378	6.555	1.00 48.85	P
	ATOM	3197	CA		103	81.641	72.294	6.617	1.00 44.54	P
10		3198	CB		103	81.179	71.539	7.855	1.00 44.01	B.
10	ATOM				103	81.335	70.067	7.740	1.00 45.42	B
	ATOM	3199	CG	PHE B		82.554	69.461	8.037	1.00 43.42	В
	MOTA	3200				80.270		7.323	1.00 47.36	В
	ATOM	3201			103		69.274			E
	ATOM	3202			103	82.715	68.064	7.921	1.00 44.91	
15	MOTA	3203	CE2		1)3	80.413	67.883	7.202	1.00 46.13	E E
	MOTA	3204	CZ	PHE B		81.638	67.276	7.503	1.00 44.51	E
	MOTA	3205	C	PHE B		81.103	73.700	6.663	1.00 43.79	F
	MOTA	3206	0		103	81.736	74.577	7.239	1.00 41.42	В
	MOTA	3207	N		104	79.939	73.908	6.052	1.00 46.45	P.
20	ATOM	3208	CA		104	79.306	75.216	6.007	1.00 47.47	B.
	ATOM	3209	CB		104	79.176	75.706	4.570	1.00 53.61	P
	ATOM	3210	OG		1/4	77.886	75.379	4.057	1.00 61.85	E.
	ATOM	3211	С	SEP. B	104	77.921	75.051	6.596	1.00 46.27	P
	ATOM	3212	0		104	77.285	74.007	6.425	1.00 45.36	P.
25	ATOM	3213	N	MET B	105	77.435	76.089	7.269	1.00 47.80	P
	ATOM	3214	CA	MET B	105	76.129	75.998	7.913	1.00 50.16	P
	MOTA	3215	CB	MET B	105	76.114	76.848	9.184	1.00 42.24	P.
	ATOM	3216	CG	MET B	1)5	74.783	76.829	9.931	1.00 39.50	В
	ATOM	3217	SD	MET B	105	74.951	77.585	11.559	1.00 31.98	E-
30	ATOM	3218	CE	MET B	105	76.153	76.456	12.300	1.00 32.14	P.
	ATOM	3219	С	MET B	195	74.948	76.398	7.046	1.00 52.75	E.
	ATOM	3220	0	MET B	105	75.066	77.234	6.147	1.00 52.67	E.
	ATOM	3221	N	ASN B	106	73.807	75.787	7.343	1.00 57.15	В
	ATOM	3222	CA	ASN B	105	72.560	76.072	6.664	1.00 56.25	E
35	MOTA	3223	CB	ASN B	105	72.186	74.950	5.722	1.00 63.78	E:
	MOTA	3224	CG	ASN B	105	72.678	75.210	4.332	1.00 72.25	F
	ATOM	3225			106	72.787	76.372	3.916	1.00 78.63	F.
	ATOM	3226	ND2		106	72.995	74.141	3.597	1.00 74.20	E.
	ATOM	3227	C	ASN B		71.504	76.200	7.727	1.00 54.17	B
40	ATOM	3228	ō		106	71.303	75.277	8.508	1.00 56.24	В
, ,	ATOM	3229	N	GLY B		70.833	77.342	7.762	1.00 50.67	В
	ATOM	3230	CA		107	69.805	77.552	8.763	1.00 44.02	В
	ATOM	3231	C	GLY B		70.334	78.414	9.886	1.00 42.66	Б
	ATOM	3232	0	GLY B		71.478	78.864	9.854	1.00 41.68	B
45	ATOM	3233	N	ASN B		69.500	78.646	10.889	1.00 46.24	В
40				ASII B		69.878	79.464	12.032	1.00 47.08	E
	ATOM	3234	CA			68.613	79.910	12.751	1.00 55 45	Б Б
	ATOM	3235	CB	ASN B						
	ATCM	3236	CG	ASN B		67.793	80.851	11.203	1.00 63.30	B B
- //	ATOM	3237		ASN B		68.164	82.013	11.722	1.00 67.44	
20	ATOM	3238		ASN B		66.691	80.352	11.346	1.00 68.11	В
	ATOM	3239	C	ASN B		70.808	78.723	12.981	1.00 39.04	В
	ATOM	3240	0	ASN B		70.560	77.577	13.347	1.00 33.47	В
	MOTA	3241	N	LYS B		71.858	79.406	13.402	1.00 34.53	В
	ATOM	3242	CA	LYS B		72.859	78.806	14.280	1.00 35.55	В
55	ATOM	3243	CB	LYS B	109	74.138	79.632	14.217	1.00 35.53	В

	MOTA	3244	CG	LYS B	109	73.909	81.037	14.698	1.00 37.21	В
	ATOM	3245	CD	LYS B	109	75.176	81.691	15.171	1.00 43.67	В
	ATOM	3246	CE	LYS B	109	74.913	83.141	15.501	1.00 53.84	В
	ATOM	3247	NZ	LYS B		76.079	83.848	16.124	1.00 67.33	В
5	ATOM	3248	C	LYS B		72.456	78.539	15.753	1.00 33.59	В
		3249		LYS B		73.116	77.900	16.490	1.00 32.99	B
	ATOM		0						1.00 32.33	
	ATOM	3250	N	SER B		71.409	79.337	16.198		E E
	MOTA	3251	CA	SER B		70.972	79.239	17.597	1.00 31.62	P
	ATOM	3252	CB		110	71.068	80.588	18.298	1.00 28.39	P
10	MOTA	3253	OG	SEP. B		72.395	81.073	18.276	1.00 35.28	P.
	ATOM	3254	С	SER B	110	69.547	78.730	17.73 4	1.00 33.04	B
	ATOM	3255	0	SER B	110	68.665	79.049	16.935	1.00 28.18	P.
	MOTA	3256	N	VAL B	111	69.336	77.927	18.761	1.00 32.94	В
	MOTA	3257	CA	VAL B	111	68.028	77.360	19.032	1.00 28.12	В
15	ATOM	3258	СВ	VAL B	111	67.998	75.911	18.507	1.00 34.53	B
	ATOM	3259		VAL B		69.117	75.074	19.143	1.00 27.59	B
	ATOM	3260		VAL B		56.634	75.304	18.785	1.00 41.47	E.
	ATOM	3261	C	VAL B		67.729	77.488	20.539	1.00 26.65	B
	ATOM	3262	0	VAL B		68.631	77.621	21.359	1.00 27.71	B
20				TRP B			77.496	20.866	1.00 26.33	B.
20	MOTA	3263	N			66.447		22.205	1.00 20.33	P.
	MOTA	3264	CA		112	65.932	77.654			
	ATOM	3265	CB	TRP B		65.023	78.895	22.287	1.00 27.43	В
	ATOM	3266	CG	TRP B		65.772	80.142	22.392	1.00 28.72	В
	MOTA	3267	CD2		112	66.455	80.818	21.323	1.00 27.13	E-
25	MOTA	3268	CE2			67.130	81.922	21.894	1.00 23.65	B
	MOTA	3269		TRP B		66.560	80.595	19.944	1.00 27.06	E
	MOTA	3270		TRP B		66.053	80.849	23.542	1.00 29.24	В
	MOTA	3271	NE1		112	66.875	81.916	23.242	1.00 22.18	В
	MOTA	3272	CZ2	TRP B	112	67.896	82.804	21.132	1.00 24.55	B
30	ATOM	3273	CZ3	TRP B	112	67.328	81. 4 76	19.179	1.00 32.51	B
	ATOM	3274	CH2	TRP B	112	67.985	82.570	19.782	1.00 28.74	B
	ATOM	3275	С	TRP B	112	55.113	76.462	22.632	1.00 24.09	В
	MOTA	3276	0	TRP B	112	64.348	75.924	21.826	1.00 23.03	E:
	MOTA	3277	N	CYS B	113	65.257	76.065	23.886	1.00 16.00	В
35	ATOM	3278	CA	CYS B	113	64.507	74.942	24.421	1.00 22.66	B
	ATOM	3279	С	CYS B	113	63.030	75.442	24.775	1.00 27.37	В
	MOTA	3280	0	CYS B		62.892	76.248	25.702	1.00 23.71	P.
	ATOM	3281	CB	CYS B		65.030	74.386	25.636	1.00 24.38	Ð
	ATOM	3282	SG	CYS B		64.295	73.084	26.474	1.00 25.70	E.
40	ATOM	3283	N	GLN B		62.105	74.973	24.014	1.00 22.77	Б
	ATOM	3284	CA	GLN B		60.704	75.406	24.190	1.00 27.53	E
	ATOM	3285	CB	GLN B		59.993	75.312	22.852	1.00 23.87	B
				GLN B					1.00 25.80	B.
	ATOM	3286	CG	GLN B		60.669	76.101	20.455	1.00 23.80	E
1.5	ATOM	3287	CD			59.934	75.957			B.
45	ATOM	3288		GLN B		59.540	74.850		1.00 40.82	
	MOTA	3289		GLN B		59.749	77.062	19.744	1.00 28.51	P.
	MOTA	3290	C	GLN B		59.918	74.632	25.242	1.00 24.17	P.
	MOTA	3291	0	GLN B		60.324	73.557	25.638	1.00 24.70	В
	MOTA	3292	N	ALA B		58.806	75.187	25.704	1.00 28.17	<u> </u>
50	MOTA	3293	CA	ALA B		57.284	74.52ú	26.720	1.00 32.79	В
	MOTA	3294	CB	ALA B	115	56.769	75.392	27.068	1.00 30.00	В
	ATOM	3295	C	ALA B	115	57.523	73.107	26.316	1.00 34.03	В
	ATOM	3296	0	ALA B	115	57.338	72.237	27.170	1.00 33.21	В
	ATOM	3297	N	ASN B	116	57.343	72.881	25.020	1.00 36.70	В
55	ATOM	3298	CA	ASN B	116	56.913	71.573	24.526	1.00 38.02	В

	ATOM	3299	CB	ASN B	116	56.230	71.723	23 168	1.00 3	34.90	В
	MC:TA	3300	CG	ASN B		57.198	72.144	22.087	1.00 3		В
	ATOM	3301		ASN B		58.359	72.454	22.364	1.00		В
						56.728	72.167	20.853	1.00		В
_	ATOM	3302	ND2								
5	ATOM	3303	C	ASN B		58.104	70.503	24 392	1.00		В
	AT DM	3304	0	ASN B		58.017	63.511	23 695	1.00		В
	AT DM	3305	N	ASN B	117	59.219	70. 9 30	25 044	1.00	36.92	В
	ATOM	3306	CA	ASN B	117	60.425	70.094	25.072	1.00	31.01	В
	ATOM	3307	CB	ASN B	117	60.095	68.718	25.699	1.00	35.95	В
10	ATOM	3308	CG	ASN B		59.327	68.855	27.022	1.00	11.69	В
• (-	ATOM	3309		ASN B		58.165	63.449	27.116	1.00		В
		3310	ND2			59.966	69.423	28.041	1.00		В
	ATOM										
	ATOM	3311	C	ASN B		61.155	69.913	23.753	1.00		В
	MOTA	3312	0	ASN B		61.989	69.010	23 584	1.00		В
15	ATOM	3313	N	MET B	118	60.877	70.804	22.814	1.00	32.90	В
	ATOM	3314	CA	MET B	118	61.544	70.747	21.539	1.00	30.69	В
	ATOM	3315	CB	MET B	118	60.533	70.486	20.426	1.00 3	39.19	В
	ATOM	3316	CG	MET B	118	60.143	69.004	20.284	1.00	15.35	В
	ATOM	3317	SD	MET B		58.844	68.904	19.065	1.00 6	51.98	В
20	ATOM	3318	CE	MET B		57.379	68.930	20.152	1.00 5		В
	ATOM	3319	C	MET B		62.299	72.033	21.290	1.00 3		В
	ATOM	3320	0	MET B		61.958	73.093	21.820		31.41	В
	MOTA	3321	N	TRP B		63.322	71.913	20.460	1.00 3		В
	ATOM	3322	CA	TRP B		64.197	73.007	20.122	1.00		В
25	ATOM	3323	CB	TRP B	119	65.519	72.477	19.556	1.00 2	29.45	В
	AT:0M	3324	CG	TRP B	119	66.377	71.838	20.618	1.00 3	34.08	В
	ATOM	3325	CD2	TRP B	119	67.091	72.613	21.638	1.00 2	29.55	В
	ATOM	3326	CE2	TRP B	119	67.641	71.653	22.514	1.00 3	32.16	В
	ATOM	3327	CE3	TRP B		67.309	73.974	21.891	1.00		В
30	AT 0M	3328	CD1	TRP B		66.533	70.563	20.907	1.00		В
.***	ATOM	3329	NE1	TRP B		67.287	70.419	22.045	1.00		В
	MCTA	3330	CZ2	TRP B		68.401	70.018	23.634	1.00 3		В
	$M \odot TA$	3331	CZ3	TRP B		68.057	74.353	23.002	1.00 2		В
	AT⊕M	3332	CH2	TRP B		68.603	73.356	23.860	1.00 2		В
35	ATOM	3333	С	TRP B	119	63.672	74.059	19.188	1.00	35.37	В
	$AT \cap M$	3334	0	TRP B	119	62.946	73.750	13.264	1.00	34.01	В
	$AT \odot M$	3335	N	GLY B	120	64.1.19	75.279	19.507	1.00 -	44.82	В
	MOTA	3336	CA	GLY B	120	63.928	76.577	13.868	1.00	10.39	В
	ATOM	3337	C	GLY B	120	62.736	76.818	18.037	1.00	15.27	В
4()	ATOM	3338	0	GLY B		61.922	75.920	17.884	1.00 5		В
	ATOM	3339	N	PRO B		62.570	78.049	17.525	1.00		В
		3340	CD	PRO B		63.331	79.268	17.805	1.00		В
	ATOM										
	ATOM	3341	CA	PRO B		61.411	78.339	16.678	1.00 4		В
	ATOM	3342	CB	PRO B		61.355	79.869	16.674	1.00 3		В
45	ATH M	3343	CG	PRO B		62.781	80.221	16.775	1.00 3	38.11	В
	ΜÜŢŢ	3344	C.	PRO B	121	61.717	77.733	15.294	1.00	38.17	В
	ATOM	3345	0	PRO B	$\perp \bot \perp$	60.8i7	77.305	14.591	1.00 4	10.16	F
	ATOM	3346	N	THR B	122	62.994	77.693	14.930	1.00 3	33.84	В
	ATOM	3347	CA	THR B		63.424	77.113	13.660	1.00 3		В
5()	ATOM	3348	CB	THR B		64.548	77.939	12.988	1.00		В
***		3349				65.803	77.671	13.534	1.00 3		В
	ATOM		OG1								
	ATOM	3350	CG2	THR B		64.259	79.431	13.106	1.00 4		В
	ATOM	3351	C	THR B		63.968	75.708	13.874	1.00 4		В
	ATCM	3352	0	THR B		64.163	75.266	14.999	1.00 4		В
55	ATOM	3353	N	ARG B	123	64.220	75.005	12.784	1.00 4	12.70	В

	ATOM	3354	CA	ARG B	1 7 3	64.762	73.656	12.870	1.00 46.43	В
	ATOM	3355	CB			64.505	72.912	11.549	1.00 48.19	В
	ATOM	3356	CG	ARG B		64.849	71.433	11.500	1.00 63.34	В
				ARG B		64.109	70.638	10.517	1.00 71.72	В
_	ATOM	3357	CD							В
5	ATOM	3358	NE	ARG B		62.664	70.564	10.762	1.00 75.72	
	ATOM	3359	CZ	ARG B		61.734	70.934	9.381	1.00 77.53	В
	ATOM	3360	NHl	ARG B		62.096	71.410	8.690	1.00 78.13	В
	AT DM	3361	NH2	ARG B	123	60.444	70.820	10.184	1.00 75.29	В
	MCTA	3362	C	ARG B	123	66.270	73.774	13.141	1.00 36.14	В
10	ATEM	3363	0	AP.G B	123	66.861	74.816	11.380	1.00 34.06	В
	ATEM	3364	N	LEU B	124	66.888	72.714	13.659	1.00 36.62	В
	ATOM	3365	CA	LEU B	124	68.326	72.743	13.939	1.00 35.68	В
	ATOM	3366	CB	LEU B	124	68.818	71.410	14.509	1.00 37.22	В
	MOTA	3367	CG	LEU B		68.399	71.013	15.933	1.00 38.68	В
15	ATOM	3368				69.008	69.670	16.342	1.00 37.12	В
••	ATOM	3369		LEU B		68.860	72.097	16.874	1.00 34.15	В
	ATOM	3370	C	LEU B		69.081	73.029	12.656	1.00 37.07	В
	ATOM	3371	0	LEU B		68.701	72.584	11.583	1.00 35.87	В
	ATOM	3372	N	PRO B		70.168	73.787	12.750	1.00 40.36	В
20	ATOM	3372	CD			70.832	74.306	13.962	1.00 38.05	В
20	ATOM	3374	CA	PRO B		70.933	74.035	11.538	1.00 35.47	В
		3375		PRO B		71.993	75.069	12.009	1.00 35.51	В
	ATOM		CB			72.224	74.641		1.00 35.51	В
	ATOM	3376	CG	PRO B				13.460 11.002		В
	ATOM	3377	C	PRO B		71.535	72.794		1.00 40.45	
25	ATOM	3378	0	PRO B		71.432	71.739	11.640	1.00 33.92	В
	AT IM	3379	N	THR B		72.131	72.857	9.314	1.00 41.58	В
	AT DM	3330	CA	THR B		72.765	71.704	9.217	1.00 41.03	В
	ATOM	3381	CB	THR B		71.929	71.137	8.006	1.00 42.99	В
	ATOM	3382	OG1	THR B		71.625	72.182	7.075	1.00 45.10	В
30	ATOM	3383	CG2	THR B		70.628	70.529	8.503	1.00 40.83	В
	HOTA	3384	С	THR B		74.157	72,116	8.777	1.00 41.16	В
	MOTA	3385	0	THR B		74.415	73.299	8.544	1.00 40.35	В
	ATOM	3386	N	CYS B	127	75.074	71.158	8.716	1.00 42.86	В
	ATOM	3337	CA	CYS B	127	76.433	71.468	8.279	1.00 48.44	В
35	AT DH	3388	C	CYS B	127	76.774	70.561	7.098	1.00 53.76	В
	ATEM	3389	0	CYS B	127	76.711	69.336	7.219	1.00 55.59	В
	ATON	3390	CB	CYS B	127	77.440	71.249	9.422	1.00 49.29	В
	ATOM	3391	SG	CYS B	127	77.365	72.471	10.223	1.00 41.21	В
	ATOM	3390	И	VAL B	128	77.117	71.159	5.950	1.00 52.99	В
40	ATOM	3393	CA	VAL B	128	77.466	70.396	4.764	1.00 58.11	В
	ATOM	3394	CB	VAL B	128	76.479	70.674	3.612	1.00 60.17	В
	ATOH	3395	CG1	VAL B	128	76.356	72.179	3.395	1.00 59.61	В
	AT:01:1	3396	CG2	VAL B		76.974	70.005	2.322	1.00 62.78	В
	ATOM	3397	C	VAL B		78.881	70.738	4.290	1.00 55.96	В
45	AT DH	3398	Ō	VAL B		79.307	71.875	4.427	1.00 56.76	В
	ATOM	3399	N	SER B		79.604	69.763	3.747	1.00 58.88	В
	ATOM	3400	CA	SER B		80.976	69.974	3.241	1.00 63.04	B
	ATOM	3401	CB	SER B		81.489	68.685	2.616	1.00 64.42	Ŗ
			OG	SER B		80.566	68.249	1 633	1.00 74.77	В
50	ATAM ATAM	3402	,~	SER B		81.061	71.092	2.194	1.00 60.01	В
50	ATCM ATCM	3403				82.054			1.00 59.63	В
	ATOM	3404	0	SER B			71.856	2.166		
	ATOM	3405	OXT	SER B	129	80.121	71.165	1.381	1.00 61.43	В
	END									

: -	
:	
-	
:	
-	
3	
•	
-	
•	
:	
÷	٠.
-	:
٠	

	ATOM	2419	CB	ALA B	1	64.181	107.666	4.123	1.00 39.20	В
	MOTA	2420	C	ALA B	1	62.836	105.816	3.113	1.00 41.03	В
5	MCTA	2421	:)	ALA B	1		105.713	3.477	1.00 42.08	В
	MOTA	2433	11	ALA B	1	62.413	108.231	2.458	1.00 40.18	В
	AT⊕M	2423	$\mathbb{C}\mathbb{A}$	ALA B	1		107.201	2.861	1.00 43.96	В
	ATOM	2424	11	ILE B	2		104.759	2.923	1.00 39.63	В
	ATOM	2425	CA	ILE B	2		103.383	3.141	1.00 37.01	В
10	ATOM	2426	СВ	ILE B	2		102.349	2.700	1.00 32.57	В
• "	ATOM	2427	CG2	ILE B	2		100.936	3.064	1.00 35.80	В
	ATOM	2428	CG1		2		102.422	1.178	1.00 34.01	В
	ATOM	2429	CD1		2		101.372	0.650	1.00 31.21	В
	ATOM	2430	Ċ	ILE B	2		103.151	4.633	1.00 38.27	В
15	ATOM	2431	Ç.	ILE B	2		103.577	5.528	1.00 32.71	В
• •	ATOM	2432	11	SER B	3		102.486	4.897	1.00 30.65	В
	ATÓM	2433	CA	SER B	3		102.226	6.272	1.00 26.19	В
	ATOM	2434	CB	SER B	3		103.236	6.689	1.00 31.79	В
	ATOM	2435	og.	SEF. B	3		103.020	5.926	1.00 27.35	В
20	ATOM	2436	ć	SER B	3		100.826	6.435	1.00 30.38	В
	ATOM	2437	0	SEP. B	3		100.132	5.445	1.00 28.89	В
	ATOM	2438	1:	CY3 B	4		100.410	7.690	1.00 27.89	В
	MCTA	2439	CA	CYS B	4	59.941	99.127	8.003	1.00 27.29	B
	ATOM	2440	C	CYS B	4	58.609	99.528	8.600	1.00 26.13	В
25	ATOM	2441	Ö	CYS B	4		100.666	9.061	1.00 29.64	В
2.	MOTA	2442	СВ	CYS B	4	60.731	98.328	9.056	1.00 27.46	В
	ATOM	2443	SG	CYS B	4	62.214	97.531	8.369	1.00 27.76	В
	ATOM	2444	11	GLY B	5	57.648	98.622	8.551	1.00 22.65	B
	ATOM	2445	CA	GLY B	5	56.366	98.916	9.155	1.00 23.57	В
30	ATOM	2446	Ĉ.	GLY B	5	56.452	98.570	10.543	1.00 24.00	B
50	ATOM	2447	-5)	GLY B	5	57.504	98.199	11.181	1.00 23.18	В
	ATOM	2448	N	SEP B	6	55.322	98.698	11.313	1.00 21.65	В
	ATOM	2449	ĊA	SEP B	6	55.204	98.441	12.733	1.00 22.23	В
	ATOM	2450	CB	SEP B	6	53.722	98.511	13.098	1.00 27.49	В
35	ATOM	2451	ÇG	SER B	6	53.543	98.605	14.483	1.00 33.82	В
	ATOM	2452	c	SER B	6	55.785	97.062	13.091	1.00 26.45	В
	ATOM	2453	:^)	SER B	6	55.489	96.081	12.439	1.00 22.14	В
	ATOM	2454	N	PRO B	7	56.639	96.980	14.122	1.00 26.74	В
	ATOM	2455	CD	PRO B	7	57.230	98.026	14.973	1.00 25.89	В
40	ATOM	2456	CA	PP.O B	7	57.191	95.661	14.468	1.00 25.01	В
	ATOM	2457	CB	PRO B	7	58.175	95.984	15.592	1.00 22.52	В
	ATOM	2458	CG	PRO B	7	57.589	97.228	16.232	1.00 25.43	В
	ATOM	2459	C	PRO B	7	56.133	94.627	14.894	1.00 27.04	В
	ATOM	2460	ō	PRO B	7	55.061	94.961	15.414	1.00 24.19	В
45	ATOM	2461	N	PRO B	8	56.439	93.345	14.700	1.00 04.37	В
	$\Lambda T \cap M$	1462	JD)	PRO B	8	57.540	90 754	13.536	1,00 20.75	R
	ATOM	2453	·~д	PRO H	9	55.431	92.366	15.099	1.00 25.28	B
	ATÓM	2464	CB	PRO B	8	55.974	91.048	14.538	1.00 31.15	В
	ATOM	2465	ĈĠ	PRO B	8	57.401	91.314	14.245	1.00 33.33	В
50	ATOM	2466	C	PRO B	8	55.228	92.382	16.613	1.00 30.70	B
	ATOM	2467	Ç	PRO B	8	56.180	92.527	17.364	1.00 31.22	В
	ATOM	2468	11	PEO B	9	53.971	92.314	17.074	1.00 30.39	В
	ATOM	2469	CD	PRO B	9	52.724	92.280	16.275	1.00 37.82	В
	ATOM	2470	CA	PRO B	9	53.686	92.322	18.518	1.00 32.22	В
55	ATOM	2471	CB	PRO B	9	52.155	92.415	18.583	1.00 31.66	В
		/ _			_	22.133			52.50	_

	ATOM	2472	CG	PRO B	9	51.705	91.731	17.265	1.00 31.37	В
	MCTA	2473	Ç	PRO B	9	54.190	91.062	19.209	1.00 26.54	В
	ATOM	2474	Ö	PRO B	9	54.542	90.072	18.563	1.00 23.13	В
	ATOM	2475	N	ILE B	10	54.214	91.111	20.526	1.00 25.96	В
5	ATOM	2476	CA	ILE B	10	54.651	89.969	21.302	1.00 34.36	В
<u>-</u>	MOTA	2477	CB	ILE B	10	56.150	90.068	21.770	1.00 24.92	В
	ATOM	2478	CG2	ILE B	10	56.398	91.363	22.562	1.00 24.04	В
	ATOM	2479	CG1		10	56.491	88.795	22.581	1.00 30.43	В
	MOTA	2480	CD1	ILE B	10	57.991	88.536	22.813	1.00 24.83	В
10	ATOM	2481	C	ILE B	10	53.753	89.810	22.511	1.00 33.31	В
10		2482	0	ILE B	10	53.743	90.647	23.412	1.00 33.31	В
	ATOM			LEU B	11	52.992	88.724	22.525	1.00 32.83	В
	ATOM	2483	N	LEU B					1.00 30.71	В
	ATOM	2484	CA		11	52.108	88.483	23.659		
	ATOM	2485	CB	LEU B	11	51.217	87.277	23.365	1.00 36.50	В
15	ATOM	2486	CG	LEU B	11	50.279	87.435	22.161	1.00 41.37	В
	ATOM	2487		LEU B	11	49.708	86.073	21.769	1.00 42.93	В
	ATOM	2488		LEU B	11	49.142	88.425	22.495	1.00 39.65	В
	ATOM	2489	С	LEU B	11	52.912	88.247	24.946	1.00 33.29	В
	MOTA	2490	O	LEU B	11	53.905	87.517	24.948	1.00 28.06	В
20	ATOM	2491	N	ASN B	12	52.463	88.872	26.032	1.00 31.32	В
	ATOM	2492	CA	ASN B	12	53.086	88.753	27.328	1.00 30.29	В
	ATOM	2493	CB	ASN B	12	53.025	87.303	27.802	1.00 32.27	В
	MOTA	2494	CG	ASN B	12	51.612	86.875	28.083	1.00 38.86	В
	ATOM	2495		ASN B	12	50.917	87.526	28.864	1.00 33.55	В
25	ATOM	2496	ND2	ASN B	12	51.161	85.805	27.431	1.00 34.66	В
	MOTA	2497	C	ASN B	12	54.510	89.250	27.371	1.00 32.36	В
	MOTA	2498	0	ASN B	12	55.277	88.858	28.239	1.00 32.55	В
	MOTA	2499	N	GLY B	13	54.849	90.130	26.439	1.00 28.46	В
	MOTA	2500	CA	GLY B	13	56.187	90.671	26.400	1.00 28.72	В
30	MOTA	2501	C	GLY B	13	56.147	92.166	26.169	1.00 29.82	В
	MOTA	2502	0	GLY B	13	55.075	92.780	26.153	1.00 34.03	В
	MOTA	2503	N	ARG B	14	57.324	92.742	25.983	1.00 28.15	В
	ATOM	2504	CA	AR3 B	14	57.486	94.166	25.739	1.00 31.15	В
	MOTA	2505	CB	ARG B	14	58.198	94.882	26.897	1.00 34.62	В
35	MOTA	2506	CG	ARC B	14	57.388	95.196	28.116	1.00 41.11	В
	MOTA	2507	CD	ARG B	14	58.240	95.962	29.112	1.00 42.03	В
	ATOM	2508	NΕ	ARG B	14	57.526	96.080	30.373	1.00 49.55	В
	MOTA	2509	CZ	ARG B	14	58.023	96.595	31.487	1.00 48.40	В
	MOTA	2510	NH1	ARG B	14	59.261	97.065	31.509	1.00 40.73	В
40	MOTA	2511	NH2	AFG B	14	57.276	96.602	32.593	1.00 56.30	В
	MOTA	2512	C	ARG B	14	58.409	94.342	24.567	1.00 23.56	В
	ATOM	2513	0	ARG B	14	59.232	93.480	24.280	1.00 23.51	В
	ATOM	2514	N	ILE B	15	58.319	95.516	23.955	1.00 27.48	В
	ATOM	2515	CA	ILE B	15	59.171	95.893	22.841	1.00 26.75	В
45	MOTA	2516	CB	ILE B	15	58.345	96.176	21.580	1.00 26.32	В
	ATOM	2517		ILE B	15	59.250	96.815	20.497	1.00 29.30	В
	ATOM	2518		ILE B	15	57.656	94.902	21.122	1.00 30.62	В
	ATOM	2519	CD1	The B	15	56.760	95.100	19.889	1.00 35.21	В
	ATOM	2520	C.	TLE B	15	59.767	97.212	23.279	1.00 26.59	D D
50	ATOM	2521		ILE B	15	59.050	98.050	23.818	1.00 30.94	В
20	ATOM		O M		16	61.055	97.409		1.00 30.94	В
		2522	N	SER B				23.036	1.00 23.15	В
	ATOM	2523	CA	SER B	16	61.709	98.654	23.393		
	ATOM	2524	CB	SER B	16	63.187	98.567	23.057	1.00 29.32	В
	ATOM	2525	OG	SEP B	16	63.359	98.151	21.717	1.00 35.31	В
55	ATOM	2526	C	SER B	16	61.082	99.839	22.639	1.00 41.27	В

ATOM											
ATOM		ATOM	2527	0	SER B	16	60.466	99.674	21.576	1.00 36.78	В
ATOM		MOTA	2528	N	TYR B	17	51.260	101.035	23.193	1.00 42.89	В
S		MOTA	2529	CA	TYP. B	17	60.719	102.267		1.00 45.29	В
S											В
ATOM	5										P.
ATOM	•										B
ATOM											E.
NATION 2535 CE TYP B 17 57,833 102.974 25.861 1.00 56.82 27.122 1.00 56.82 27.122 1.00 56.82 27.122 1.00 56.82 27.122 1.00 56.82 27.122 1.00 56.82 27.122 1.00 55.53 27.022 27.122 1.00 55.53 27.025 27.126 1.00 55.53 27.025 27.126 1.00 55.53 27.025 27.126 1.00 55.53 27.025 27.126 1.00 55.53 27.025 27.126 1.00 55.53 27.025 27.126 1.00 55.53 27.025											
10											В
ATOM											В
ATOM	10										P.
ATCM 2539 O											Р
ATOM		MOTA		С	TYP B	17			21.285	1.00 46.15	B
15		MOTA	2539	0		17	62.500	102.375		1.00 50.00	E
ATOM		MOTA	2540	N	TYP B	18	60.623	102.952	20.281	1.00 46.05	P.
ATOM	15	MOTA	2541	CA	TYP. B	18	51.204	103.270	18.975	1.00 44.93	P.
ATOM		MOTA	2542	CB	TYP B	18	51.076	102.076	18.010	1.00 37.78	В
ATOM		MOTA	2543	CG	TYP. B	18	59.645	101.669	17.711	1.00 37.10	B
ATOM		ATOM	2544	CD1	TYP. B	18	58.890	102.343	16.750	1.00 31.24	В
20											В
ATOM	20										B
ATOM 2548 CZ TYR B 18 57.000 100.939 17.218 1.00 35.02 ATOM 2549 OH TYR B 18 55.706 100.565 16.967 1.00 33.22 ATOM 2550 C TYP B 18 60.524 104.514 18.375 1.00 40.62 25 ATOM 2551 O TYR B 18 59.356 104.784 18.632 1.00 40.57 ATOM 2552 N SEF B 19 61.280 105.260 17.586 1.00 42.39 ATOM 2553 CA SER B 19 61.280 105.260 17.586 1.00 42.39 ATOM 2555 CG SER B 19 61.922 107.472 16.789 1.00 49.59 ATOM 2555 CG SER B 19 61.922 107.472 16.789 1.00 54.17 ATOM 2555 CG SER B 19 60.213 106.155 15.540 1.00 54.17 ATOM 2556 C SER B 19 60.213 106.155 15.540 1.00 54.17 ATOM 2557 O SER B 19 60.213 106.155 15.540 1.00 54.17 ATOM 2558 N THE B 20 59.347 107.041 15.073 1.00 48.91 ATOM 2550 CB THE B 20 59.347 107.041 15.073 1.00 48.91 ATOM 2550 CB THE B 20 59.347 107.041 15.073 1.00 49.59 ATOM 2550 CB THE B 20 59.347 107.041 15.073 1.00 49.40 ATOM 2550 CB THE B 20 59.347 107.041 15.073 1.00 52.73 ATOM 2560 CB THE B 20 59.460 109.147 13.280 1.00 52.73 ATOM 2560 CB THE B 20 59.460 109.147 13.280 1.00 52.73 ATOM 2560 CB THE B 20 59.460 109.147 13.280 1.00 52.73 ATOM 2560 CB THE B 20 59.460 109.147 13.280 1.00 50.56 ATOM 2560 CD PRO B 21 59.407 107.720 11.551 1.00 44.32 ATOM 2560 CD PRO B 21 59.407 107.720 11.551 1.00 43.49 ATOM 2560 CD PRO B 21 59.407 107.720 11.551 1.00 44.33 ATOM 2560 CD PRO B 21 59.801 108.745 10.551 1.00 44.33 ATOM 2560 CD PRO B 21 59.801 108.745 10.551 1.00 44.33 ATOM 2560 CD PRO B 21 59.347 107.720 11.551 1.00 44.32 ATOM 2560 CD PRO B 21 59.347 105.456 11.248 1.00 37.71 45 ATOM 2570 C PRO B 21 59.347 105.456 11.248 1.00 37.71 45 ATOM 2570 C PRO B 21 59.347 105.456 11.248 1.00 37.71 45 ATOM 2570 C PRO B 21 59.347 105.456 11.248 1.00 37.71 45 ATOM 2570 C PRO B 21 59.347 105.456 11.248 1.00 37.71 45 ATOM 2570 C PRO B 21 59.347 105.456 11.248 1.00 37.71 45 ATOM 2570 C PRO B 21 59.347 105.456 11.248 1.00 37.71 45 ATOM 2573 CA THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2573 CA THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2573 CA THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2578 CA THE B 22 60.521 101.715 11.578 1.00 33.63											B
ATOM											В
ATOM											B
ATOM											B
ATOM 2552 N SEP B 19 61.280 105.260 17.586 1.00 42.39 ATOM 2553 CA SEP B 19 60.786 106.464 16.931 1.00 49.17 ATOM 2555 CG SEP B 19 61.922 107.472 16.789 1.00 49.59 ATOM 2555 CG SEP B 19 61.922 107.472 16.789 1.00 49.59 ATOM 2555 CG SEP B 19 63.070 106.843 16.237 1.00 54.17 ATOM 2557 C SEP B 19 60.213 106.155 15.540 1.00 51.20 ATOM 2557 C SEP B 19 60.213 106.155 15.540 1.00 51.20 ATOM 2558 N THE B 20 59.347 107.041 15.073 1.00 48.91 ATOM 2558 CB THE B 20 58.706 106.898 13.783 1.00 49.40 ATOM 2550 CB THE B 20 56.483 106.279 12.968 1.00 60.25 ATOM 2561 CG THE B 20 56.483 106.279 12.968 1.00 60.25 ATOM 2563 C THE B 20 56.483 106.279 12.968 1.00 60.25 ATOM 2563 C THE B 20 59.202 108.022 12.844 1.00 51.71 ATOM 2563 C THE B 20 59.202 108.022 12.844 1.00 47.48 ATOM 2565 N PRO B 21 59.407 107.702 11.551 1.00 46.52 ATOM 2565 N PRO B 21 59.407 107.702 11.551 1.00 44.33 ATOM 2566 CD PRO B 21 59.201 108.745 10.551 1.00 44.33 ATOM 2566 CB PRO B 21 59.204 106.417 10.909 1.00 43.49 ATOM 2568 CB PRO B 21 59.204 106.417 10.909 1.00 43.49 ATOM 2566 CB PRO B 21 59.204 106.417 10.909 1.00 43.49 ATOM 2567 CA PRO B 21 59.204 106.417 10.909 1.00 43.49 ATOM 2567 CA PRO B 21 59.204 106.417 10.909 1.00 43.49 ATOM 2567 CA PRO B 21 59.204 106.769 9.422 1.00 43.49 ATOM 2570 C PRO B 21 59.204 106.769 9.422 1.00 43.49 ATOM 2570 C PRO B 21 59.204 106.769 9.422 1.00 43.49 ATOM 2570 C PRO B 21 59.204 106.769 9.422 1.00 43.49 ATOM 2570 C PRO B 21 59.204 106.769 1.1248 1.00 37.71 ATOM 2570 C PRO B 21 59.204 106.769 1.1248 1.00 37.71 ATOM 2570 C PRO B 21 59.204 106.769 1.1248 1.00 37.71 ATOM 2570 C PRO B 21 59.497 107.715 11.578 1.00 44.19 ATOM 2577 C PRO B 21 60.123 104.155 11.007 1.00 43.69 ATOM 2577 C THE B 22 60.123 104.155 11.007 1.00 33.63 ATOM 2577 C THE B 22 60.123 104.155 11.007 1.00 33.63 ATOM 2577 C THE B 22 60.123 104.155 11.007 1.00 33.63 ATOM 2577 C THE B 22 60.123 104.356 1.00.734 11.963 1.00 35.94 ATOM 2577 C THE B 22 60.123 104.367 100.367 100.363 1.00 33.29 AT	3.5										
ATOM 2553 CA SER B 19 60.786 106.464 16.931 1.00 49.17 ATOM 2554 CB SER B 19 61.922 107.472 16.789 1.00 49.59 61.00 ATOM 2555 CG SER B 19 63.070 106.843 16.237 1.00 54.17 ATOM 2556 C SER B 19 60.213 106.155 15.540 1.00 51.20 ATOM 2558 N THR B 20 59.347 107.041 15.073 1.00 48.91 ATOM 2558 N THR B 20 59.347 107.041 15.073 1.00 48.91 ATOM 2550 CB THR B 20 59.347 107.041 15.073 1.00 49.40 ATOM 2550 CB THR B 20 57.166 107.002 13.991 1.00 52.73 ATOM 2550 CG THR B 20 56.483 106.279 12.968 1.00 60.25 ATOM 2560 CG THR B 20 56.483 106.279 12.968 1.00 60.25 ATOM 2560 CG THR B 20 56.483 106.279 12.968 1.00 60.25 ATOM 2560 CG THR B 20 56.483 106.279 12.968 1.00 60.25 ATOM 2560 CG THR B 20 56.483 106.279 12.968 1.00 60.25 ATOM 2560 CG THR B 20 59.460 109.147 13.280 1.00 51.71 ATOM 2563 C THR B 20 59.460 109.147 13.280 1.00 51.71 ATOM 2565 N PRO B 21 59.407 107.720 11.551 1.00 46.52 ATOM 2566 CD PRO B 21 59.407 107.720 11.551 1.00 46.52 ATOM 2566 CD PRO B 21 59.407 107.720 11.551 1.00 44.33 ATOM 2568 CB PRO B 21 59.407 107.720 11.551 1.00 44.33 ATOM 2568 CB PRO B 21 59.407 106.769 9.422 1.00 43.49 ATOM 2568 CB PRO B 21 59.137 106.769 9.422 1.00 43.20 ATOM 2567 CA PRO B 21 59.137 106.769 9.422 1.00 43.49 ATOM 2568 CB PRO B 21 59.342 105.456 11.248 1.00 37.71 ATOM 2573 CA THR B 22 60.123 104.155 11.007 1.00 44.19 ATOM 2573 CA THR B 22 60.123 104.155 11.007 1.00 40.00 41.99 ATOM 2577 C PRO B 21 60.123 104.155 11.007 1.00 40.00 ATOM 2577 CB THR B 22 60.123 104.155 11.007 1.00 40.00 ATOM 2577 CB THR B 22 60.123 104.155 11.007 1.00 33.63 ATOM 2577 C THR B 22 60.123 104.155 11.007 1.00 33.63 ATOM 2577 C THR B 22 60.123 104.155 11.007 1.00 33.63 ATOM 2577 C THR B 22 60.123 104.155 11.007 1.00 33.63 ATOM 2577 C THR B 22 60.123 104.155 11.007 1.00 33.63 ATOM 2577 C THR B 22 60.123 104.155 11.007 1.00 33.63 ATOM 2577 C THR B 22 60.123 104.155 11.007 1.00 33.63 ATOM 2577 C THR B 22 60.123 104.00 30.663 10.040 10.00 35.94 ATOM 2577 C THR B 22 60.123 104.00 30.663 10.040 10.00 35.94 ATOM 2579 N ALA B 23 63.636 100.734 11.963 1.00 30.19	20										В
ATOM 2554 CB SER B 19 61.922 107.472 16.789 1.00 49.59 ATOM 2555 OG SER B 19 63.070 106.843 16.237 1.00 54.17 30 ATOM 2556 C SER B 19 60.213 106.155 15.540 1.00 51.20 ATOM 2557 O SER B 19 60.213 106.155 15.540 1.00 51.20 ATOM 2557 O SER B 19 60.560 105.165 14.900 1.00 42.62 ATOM 2558 N THE B 20 59.347 107.041 15.073 1.00 48.91 ATOM 2559 CA THE B 20 59.347 107.041 15.073 1.00 48.91 ATOM 2560 CB THE B 20 55.166 106.898 13.783 1.00 49.40 ATOM 2560 CG THE B 20 56.483 106.279 12.968 1.00 60.25 ATOM 2562 CG2 THE B 20 56.483 106.279 12.968 1.00 60.25 ATOM 2563 C THE B 20 56.714 108.456 13.943 1.00 51.71 ATOM 2564 O THE B 20 59.467 107.702 11.551 1.00 47.48 ATOM 2566 CD PRO B 21 59.467 107.702 11.551 1.00 46.52 ATOM 2566 CD PRO B 21 59.467 107.702 11.551 1.00 44.33 ATOM 2568 CB PRO B 21 59.407 107.702 11.551 1.00 44.33 ATOM 2568 CB PRO B 21 59.204 106.417 10.909 1.00 43.49 ATOM 2568 CB PRO B 21 59.204 106.417 10.909 1.00 43.49 ATOM 2568 CB PRO B 21 59.204 106.417 10.909 1.00 43.49 ATOM 2567 CA PRO B 21 59.204 106.417 10.909 1.00 43.49 ATOM 2567 CA PRO B 21 59.301 106.769 9.422 1.00 43.49 ATOM 2575 C PRO B 21 59.301 105.456 11.248 1.00 37.71 47.45 ATOM 2575 C PRO B 21 59.301 105.456 11.248 1.00 37.71 47.45 ATOM 2575 C PRO B 21 50.342 105.456 11.248 1.00 37.71 47.45 ATOM 2575 C PRO B 21 50.342 105.456 11.248 1.00 37.71 47.45 ATOM 2575 C PRO B 21 50.451 105.456 11.248 1.00 37.79 ATOM 2575 C THE B 22 60.521 101.715 11.578 1.00 33.42 47.45 ATOM 2575 C THE B 22 60.521 101.715 11.578 1.00 33.43 47.45 ATOM 2575 C THE B 22 60.521 101.715 11.578 1.00 33.65 ATOM 2577 C THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2577 C THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2577 C THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2577 C THE B 22 62.143 103.079 10.221 1.00 33.77 ATOM 2577 C THE B 22 62.143 103.079 10.221 1.00 33.77 ATOM 2578 C THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2577 C THE B 22 62.143 103.079 10.221 1.00 33.77 ATOM 2578 C THE B 22 62.143 103.679 10.221 1.00 33.77 ATOM 2578 C THE B 22 62.143 103.679 10.221 1.00 3											В
ATOM 2555 OG SER B 19 63.070 106.843 16.237 1.00 54.17 ATOM 2556 C SER B 19 60.213 106.155 15.540 1.00 51.20 ATOM 2557 O SER B 19 60.560 105.165 14.900 1.00 42.62 ATOM 2558 N THR B 20 59.347 107.041 15.073 1.00 48.91 ATOM 2559 CA THR B 20 59.347 107.041 15.073 1.00 49.40 ATOM 2550 CB THR B 20 59.766 106.898 13.783 1.00 49.40 ATOM 2560 CB THR B 20 56.483 106.279 12.968 1.00 60.25 ATOM 2561 OGI THR B 20 56.483 106.279 12.968 1.00 60.25 ATOM 2562 CG2 THR B 20 56.714 108.456 13.943 1.00 51.71 ATOM 2563 C THR B 20 59.222 108.022 12.844 1.00 47.48 ATOM 2563 C THR B 20 59.222 108.022 12.844 1.00 47.48 ATOM 2566 CD PRO B 21 59.427 107.720 11.551 1.00 46.52 ATOM 2566 CD PRO B 21 59.427 107.720 11.551 1.00 46.52 ATOM 2566 CD PRO B 21 59.801 108.745 10.551 1.00 44.33 ATOM 2567 CA PRO B 21 59.204 106.417 10.909 1.00 43.20 ATOM 2569 CG PRO B 21 59.137 106.769 9.422 1.00 43.49 ATOM 2560 CB PRO B 21 59.137 106.769 9.422 1.00 43.49 ATOM 2560 CB PRO B 21 59.342 105.456 11.248 1.00 37.71 45 ATOM 2570 C PRO B 21 59.342 105.456 11.248 1.00 37.71 45 ATOM 2572 N THR B 22 60.123 104.155 11.00 40.00 37.71 45 ATOM 2572 N THR B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2572 N THR B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2575 OGI THR B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2575 OGI THR B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2576 CG2 THR B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2577 C THR B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2577 C THR B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2577 C THR B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2577 C THR B 22 61.626 100.734 11.963 1.00 26.59 ATOM 2577 C THR B 22 61.626 100.734 11.963 1.00 35.99 ATOM 2578 O THR B 22 61.851 102.484 9.183 1.00 35.99 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2579 N ALA B 23 64.367 103.667 9.380 1.00 30.19											В
ATOM											P
ATOM 2557 O SER B 19 60.560 105.165 14.900 1.00 42.62 ATOM 2558 N THE B 20 59.347 107.041 15.073 1.00 48.91 ATOM 2559 CA THE B 20 58.706 106.898 13.783 1.00 49.40 ATOM 2560 CB THE B 20 57.166 107.002 13.991 1.00 52.73 ATOM 2561 OGI THE B 20 56.483 106.279 12.968 1.00 60.25 ATOM 2562 CG2 THE B 20 56.744 108.456 13.943 1.00 51.71 ATOM 2563 C THE B 20 59.222 108.022 12.844 1.00 47.48 ATOM 2565 N PRO B 21 59.460 109.147 13.280 1.00 50.56 ATOM 2565 N PRO B 21 59.467 107.720 11.551 1.00 46.52 ATOM 2566 CD PRO B 21 59.427 107.720 11.551 1.00 46.52 ATOM 2566 CD PRO B 21 59.801 108.745 10.551 1.00 44.33 ATOM 2567 CA PRO B 21 59.801 108.745 10.551 1.00 44.33 ATOM 2568 CB PRO B 21 59.801 106.417 10.909 1.00 43.49 ATOM 2568 CB PRO B 21 59.137 106.769 9.422 1.00 43.49 ATOM 2569 CG PRO B 21 59.137 106.769 9.422 1.00 43.49 ATOM 2570 C PRO B 21 59.342 105.456 11.248 1.00 37.71 48 ATOM 2570 C PRO B 21 50.342 105.456 11.248 1.00 37.71 47 ATOM 2573 CA THE B 22 60.123 104.155 11.6674 1.00 38.42 ATOM 2572 N THE B 22 60.123 104.155 11.6674 1.00 38.42 ATOM 2573 CA THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2575 CG THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2576 CG2 THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2576 CG2 THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2577 C THE B 22 61.626 100.734 11.963 1.00 36.55 ATOM 2577 C THE B 22 62.143 103.079 10.221 1.00 33.63 ATOM 2578 O THE B 22 62.143 103.079 10.221 1.00 33.77 ATOM 2579 N ALA B 23 63.326 103.667 10.410 1.00 33.77 ATOM 2579 N ALA B 23 63.326 103.667 10.410 1.00 33.77 ATOM 2579 N ALA B 23 63.326 103.667 10.410 1.00 33.77 ATOM 2579 N ALA B 23 63.326 103.667 10.410 1.00 33.77 ATOM 2579 N ALA B 23 63.326 103.667 10.410 1.00 33.77 ATOM 2579 N ALA B 23 63.326 103.667 10.410 1.00 33.77 ATOM 2580 CA ALA B 23 63.326 103.667 10.410 1.00 33.77											P
ATOM 2558 N THE B 20 59.347 107.041 15.073 1.00 48.91 ATOM 2559 CA THE B 20 58.706 106.898 13.783 1.00 49.40 ATOM 2560 CB THE B 20 57.166 107.002 13.991 1.00 52.73 ATOM 2561 OGI THE B 20 56.483 106.279 12.968 1.00 60.25 ATOM 2562 CG2 THE B 20 56.483 106.279 12.968 1.00 50.75 ATOM 2563 C THE B 20 59.222 108.022 12.844 1.00 47.48 ATOM 2563 C THE B 20 59.222 108.022 12.844 1.00 47.48 ATOM 2565 N PRO B 21 59.460 109.147 13.280 1.00 50.56 ATOM 2565 CD PRO B 21 59.427 107.720 11.551 1.00 46.52 ATOM 2566 CD PRO B 21 59.801 108.745 10.551 1.00 44.32 ATOM 2566 CD PRO B 21 59.204 106.417 10.909 1.00 43.20 ATOM 2568 CB PRO B 21 59.204 106.417 10.909 1.00 43.49 ATOM 2568 CB PRO B 21 59.137 106.769 9.422 1.00 43.49 ATOM 2560 CO PRO B 21 59.37 106.769 9.422 1.00 43.49 ATOM 2570 C PRO B 21 59.37 105.769 9.422 1.00 43.49 ATOM 2570 C PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 60.103 107.918 11.674 1.00 38.42 ATOM 2570 C PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 60.103 107.918 9.305 1.00 37.71 41.00 33.43 41.00 37.72 41.00 45.72 41	30	ATOM		С		19	60.213	106.155			E
ATOM 2559 CA THE B 20 58.706 106.898 13.783 1.00 49.40 ATOM 2560 CB THE B 20 57.166 107.002 13.991 1.00 52.73 ATOM 2561 0G1 THE B 20 56.483 106.279 12.968 1.00 60.25 ATOM 2562 CG2 THE B 20 56.714 108.456 13.943 1.00 51.71 ATOM 2563 C THE B 20 59.222 108.022 12.844 1.00 47.48 ATOM 2564 O THE B 20 59.222 108.022 12.844 1.00 47.48 ATOM 2565 N PRO B 21 59.427 107.720 11.551 1.00 46.52 ATOM 2565 N PRO B 21 59.801 108.745 10.551 1.00 44.33 ATOM 2566 CD PRO B 21 59.801 108.745 10.551 1.00 44.33 ATOM 2568 CB PRO B 21 59.204 106.417 10.909 1.00 43.20 ATOM 2568 CB PRO B 21 59.137 106.769 9.422 1.00 43.49 ATOM 2569 CG PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 60.123 104.155 11.674 1.00 38.42 ATOM 2573 CA THE B 22 60.123 104.155 11.674 1.00 38.42 ATOM 2573 CA THE B 22 60.123 104.155 11.067 1 00 40.00 ATOM 2574 CB THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2575 OG1 THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2578 CG THE B 22 62.143 100.734 11.963 1.00 26.59 ATOM 2578 O THE B 22 62.143 100.734 11.963 1.00 26.59 ATOM 2578 O THE B 22 62.143 100.734 11.963 1.00 26.59 ATOM 2578 O THE B 22 62.143 100.767 9.380 1.00 35.77 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77		ATOM	2557	0	SEP. B	19	60.563	105.165	14.900	1.00 42.62	E-
ATOM 2560 CB THE B 20 57.166 107.002 13.991 1.00 52.73 ATOM 2561 OG1 THE B 20 56.483 106.279 12.968 1.00 60.25 ATOM 2562 CG2 THR B 20 56.714 108.456 13.943 1.00 51.71 ATOM 2563 C THE B 20 59.222 108.022 12.844 1.00 47.48 ATOM 2564 O THE B 20 59.460 109.147 13.280 1.00 50.56 ATOM 2565 N PRO B 21 59.427 107.720 11.551 1.00 46.52 ATOM 2566 CD PRO B 21 59.801 108.745 10.551 1.00 44.33 ATOM 2567 CA PRO B 21 59.801 108.745 10.551 1.00 44.33 ATOM 2568 CB PRO B 21 59.137 106.417 10.909 1.00 43.20 ATOM 2568 CB PRO B 21 59.137 106.769 9.422 1.00 43.49 ATOM 2570 C PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2571 O PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2572 N THE B 22 60.123 104.156 11.248 1.00 37.71 ATOM 2573 CA THE B 22 60.123 104.156 11.067 1.00 30.37.29 ATOM 2574 CB THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2575 CG THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2577 C THE B 22 61.626 100.734 11.963 1.00 26.59 ATOM 2577 C THE B 22 62.43 103.079 10.221 1.00 35.94 ATOM 2578 O THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77		ATOM	2558	N		20	59.347	107.041	15.073	1.00 48.91	Đ
ATOM		ATOM	2559	CA	THP B	20	58.70ธ	106.898	13.783	1.00 49.40	E-
ATOM 2562 CG2 THR B 20 566.714 108.456 13.943 1.00 51.71 ATOM 2563 C THR B 20 59.222 108.022 12.844 1.00 47.48 ATOM 2564 O THR B 20 59.460 109.147 13.280 1.00 50.56 ATOM 2565 N PRO B 21 59.427 107.720 11.551 1.00 46.52 ATOM 2566 CD PRO B 21 59.801 108.745 10.551 1.00 44.33 ATOM 2567 CA PRO B 21 59.204 106.417 10.909 1.00 43.20 ATOM 2568 CB PRO B 21 59.137 106.769 9.422 1.00 43.49 ATOM 2569 CG PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2571 O PRO B 21 60.342 105.456 11.248 1.00 37.71 45 ATOM 2572 N THR B 22 60.123 104.155 11.0674 1.00 38.42 ATOM 2573 CA THR B 22 60.521 101.715 11.578 1.00 37.29 ATOM 2574 CB THR B 22 60.521 101.715 11.578 1.00 37.29 ATOM 2575 CG2 THR B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2575 CG2 THR B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2577 C THR B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THR B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THR B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THR B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2580 CA ALA B 23 64.367 103.677 9.380 1.00 30.19		ATOM	2560	CB	THE B	20	57.166	107.002	13.991	1.00 52.73	P
ATOM 2563 C THE B 20 59.222 108.022 12.844 1.00 47.48 ATOM 2565 N PRO B 21 59.460 109.147 13.280 1.00 50.56 ATOM 2566 CD PRO B 21 59.427 107.720 11.551 1.00 46.52 ATOM 2566 CD PRO B 21 59.801 108.745 10.551 1.00 44.33 ATOM 2567 CA PRO B 21 59.204 106.417 10.909 1.00 43.20 ATOM 2568 CB PRO B 21 59.137 106.769 9.422 1.00 43.49 ATOM 2569 CG PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 60.342 105.456 11.248 1.00 37.71 45 ATOM 2572 N THE B 22 60.123 104.156 11.674 1.00 38.42 ATOM 2573 CA THE B 22 60.123 104.156 11.067 100 40.00 ATOM 2574 CB THE B 22 60.521 101.715 11.578 1.00 37.29 ATOM 2575 CG2 THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2576 CG2 THE B 22 61.626 100.734 11.963 1.00 26.59 ATOM 2577 C THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77	35	ATOM	2561	OGI	THE B	20	56.483	106.279	12.968	1.00 60.25	P
ATOM 2564 O THE B 20 59.460 109.147 13.280 1.00 50.56 ATOM 2565 N PRO B 21 59.427 107.720 11.551 1.00 46.52 ATOM 2566 CD PRO B 21 59.801 108.745 10.551 1.00 44.33 ATOM 2567 CA PRO B 21 59.204 106.417 10.909 1.00 43.20 ATOM 2568 CB PRO B 21 59.137 106.769 9.422 1.00 43.49 ATOM 2569 CG PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2571 C PRO B 21 60.342 105.456 11.248 1.00 37.71 ATOM 2573 CA THE B 22 60.123 104.155 11.067 1 00 40.00 ATOM 2573 CA THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2575 OG1 THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2577 C THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2579 N ALA B 23 64.367 103.677 9.380 1.00 30.19		ATOM	2562	CG2	THP. B	20	56.714	108.456	13.943	1.00 51.71	В
ATOM 2564 O THE B 20 59.460 109.147 13.280 1.00 50.56 ATOM 2565 N PRO B 21 59.427 107.720 11.551 1.00 46.52 ATOM 2566 CD PRO B 21 59.801 108.745 10.551 1.00 44.33 ATOM 2567 CA PRO B 21 59.204 106.417 10.909 1.00 43.20 ATOM 2568 CB PRO B 21 59.137 106.769 9.422 1.00 43.49 ATOM 2569 CG PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2571 C PRO B 21 60.342 105.456 11.248 1.00 37.71 ATOM 2573 CA THE B 22 60.123 104.155 11.067 1 00 40.00 ATOM 2573 CA THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2575 OG1 THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2577 C THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2579 N ALA B 23 64.367 103.677 9.380 1.00 30.19		ATOM	2563	С	THP B	20	59.222	108.022	12.844	1.00 47.48	E.
ATOM 2565 N PRO B 21 59.427 107.720 11.551 1.00 46.52 ATOM 2566 CD PRO B 21 59.801 108.745 10.551 1.00 44.33 ATOM 2567 CA PRO B 21 59.204 106.417 10.909 1.00 43.20 ATOM 2568 CB PRO B 21 59.137 106.769 9.422 1.00 43.49 ATOM 2569 CG PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 60.342 105.456 11.248 1.00 37.71 45 ATOM 2571 O PRO E 31 61.393 105.891 11.674 1.00 38.42 ATOM 2572 N THE B 22 60.123 104.155 11.067 1.00 40.00 ATOM 2573 CA THE B 22 60.521 101.715 11.578 1.00 37.29 ATOM 2574 CB THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2575 OG1 THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2576 CG2 THE B 22 60.521 101.715 11.578 1.00 33.65 50 ATOM 2577 C THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2580 CA ALA B 23 64.367 103.677 9.380 1.00 30.19		ATOM		0		20					B
ATOM 2566 CD PRO B 21 59.801 108.745 10.551 1.00 44.33 ATOM 2567 CA PRO B 21 59.204 106.417 10.909 1.00 43.20 ATOM 2568 CB PRO B 21 59.137 106.769 9.422 1.00 43.49 ATOM 2569 CG PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 60.342 105.456 11.248 1.00 37.71 61.393 105.891 11.674 1.00 38.42 ATOM 2572 N THR B 22 60.123 104.155 11.067 1 60 40.00 ATOM 2573 CA THR B 22 60.123 104.155 11.067 1 60 40.00 ATOM 2574 CB THR B 22 60.521 101.715 11.578 1.00 37.29 ATOM 2575 OG1 THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2576 CG2 THR B 22 61.626 100.734 11.963 1.00 26.59 ATOM 2577 C THR B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THR B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2580 CA ALA B 23 64.367 103.677 9.380 1.00 30.19							59.427	107.720			D.
ATOM 2567 CA PRO B 21 59.204 106.417 10.909 1.00 43.20 ATOM 2568 CB PRO B 21 59.137 106.769 9.422 1.00 43.49 ATOM 2569 CG PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 60.342 105.456 11.248 1.00 37.71 ATOM 2571 O PRO B 21 61.393 105.891 11.674 1.00 38.42 ATOM 2572 N THR B 22 60.123 104.155 11.067 1 60 40.00 ATOM 2573 CA THR B 22 60.521 101.715 11.578 1.00 37.29 ATOM 2574 CB THR B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2575 OG1 THE B 22 59.497 101.719 12.600 1.00 36.55 ATOM 2576 CG2 THR B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THR B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THR B 22 61.851 102.484 9.183 1.00 33.29 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2580 CA ALA B 23 64.367 103.677 9.380 1.00 30.19	40										P.
ATOM 2568 CB PRO B 21 59.137 106.769 9.422 1.00 43.49 ATOM 2569 CG PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 60.342 105.456 11.248 1.00 37.71 45 ATOM 2571 O PRO B 21 61.393 105.891 11.674 1.00 38.42 ATOM 2572 N THR B 22 60.123 104.155 11.067 1 00 40.00 ATOM 2573 CA THR B 22 60.521 101.715 11.578 1.00 37.29 ATOM 2574 CB THR B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2575 OG1 THE B 22 59.497 101.719 12.600 1.00 36.55 ATOM 2576 CG2 THR B 22 61.626 100.734 11.963 1.00 26.59 ATOM 2577 C THR B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THR B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2580 CA ALA B 23 64.367 103.677 9.380 1.00 30.19											B
ATOM 2569 CG PRO B 21 60.103 107.918 9.305 1.00 44.19 ATOM 2570 C PRO B 21 50.342 105.456 11.248 1.00 37.71 45 ATOM 2571 O PRO B 21 61.393 105.891 11.674 1.00 38.42 ATOM 2572 N THE B 22 60.123 104.155 11.067 1 00 40.00 ATOM 2573 CA THE B 22 61.139 103.150 11.382 1.00 37.29 ATOM 2574 CB THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2575 OG1 THE B 22 59.497 101.719 12.600 1.00 36.55 50 ATOM 2576 CG2 THE B 22 61.626 100.734 11.963 1.00 26.59 ATOM 2577 C THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THE B 22 61.851 102.484 9.183 1.00 33.29 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2580 CA ALA B 23 64.367 103.677 9.380 1.00 30.19											P
ATOM 2570 C PRO B 21 60.342 105.456 11.248 1.00 37.71 45 ATOM 2571 O PRO B 21 61.393 105.891 11.674 1.00 38.42 ATOM 2572 N THE B 22 60.123 104.155 11.067 1 00 40.00 ATOM 2573 CA THE B 22 61.139 103.150 11.382 1.00 37.29 ATOM 2574 CB THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2575 OG1 THE B 22 59.497 101.719 12.600 1.00 36.55 50 ATOM 2576 CG2 THE B 22 61.626 100.734 11.963 1.00 26.59 ATOM 2577 C THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THE B 22 61.851 102.484 9.183 1.00 33.29 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2580 CA ALA B 23 64.367 103.677 9.380 1.00 30.19											В
45 ATOM 2571 O PRO E CT 61.393 105.891 11.674 1.00 38.42 ATOM 2572 N THE B 22 60.123 104.155 11.067 1 00 40.00 ATOM 2573 CA THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2574 CB THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2575 OG1 THE B 22 59.497 101.719 12.600 1.00 36.55 ATOM 2576 CG2 THE B 22 61.626 100.734 11.963 1.00 26.59 ATOM 2577 C THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THE B 22 61.851 102.484 9.183 1.00 33.29 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2580 CA ALA B 23 64.367 103.677 9.380 1.00 30.19											
ATOM 2572 N THE B 22 60.123 104.155 11.067 1 00 40.00 ATOM 2573 CA THE B 22 60.521 101.715 11.382 1.00 37.29 ATOM 2574 CB THE B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2576 CG2 THE B 22 61.626 100.734 11.963 1.00 26.59 ATOM 2577 C THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THE B 22 61.851 102.484 9.183 1.00 33.29 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2580 CA ALA B 23 64.367 103.677 9.380 1.00 30.19	15										В
ATOM 2573 CA THP B 22 61.139 103.150 11.382 1.00 37.29 ATOM 2574 CB THP B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2575 OG1 THP B 22 59.497 101.719 12.600 1.00 36.55 50 ATOM 2576 CG2 THP B 22 61.626 100.734 11.963 1.00 26.59 ATOM 2577 C THP B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THP B 22 61.851 102.484 9.183 1.00 33.29 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2580 CA ALA B 23 64.367 103.677 9.380 1.00 30.19	45										P.
ATOM 2574 CB THR B 22 60.521 101.715 11.578 1.00 33.63 ATOM 2575 OG1 THR B 22 59.497 101.719 12.600 1.00 36.55 50 ATOM 2576 CG2 THR B 22 61.626 100.734 11.963 1.00 26.59 ATOM 2577 C THR B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THR B 22 61.851 102.484 9.183 1.00 33.29 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2580 CA ALA B 23 64.367 103.677 9.380 1.00 30.19											F.
ATOM 2575 OG1 THE B 22 59.497 101.719 12.600 1.00 36.55 ATOM 2576 CG2 THE B 22 61.626 100.734 11.963 1.00 26.59 ATOM 2577 C THE B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THE B 22 61.851 102.484 9.183 1.00 33.29 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2580 CA ALA B 23 64.367 103.677 9.380 1.00 30.19											В
50 ATOM 2576 CG2 THP B 22 61.626 100.734 11.963 1.00 26.59 ATOM 2577 C THP B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THP B 22 61.851 102.484 9.183 1.00 33.29 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2580 CA ALA B 23 64.367 103.677 9.380 1.00 30.19											В
ATOM 2577 C THR B 22 62.143 103.079 10.221 1.00 35.94 ATOM 2578 O THR B 22 61.851 102.484 9.183 1.00 33.29 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2580 CA ALA B 23 64.367 103.677 9.380 1.00 30.19											₽
ATOM 2578 O THR B 22 61.851 102.484 9.183 1.00 33.29 ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2580 CA ALA B 23 64.367 103.677 9.380 1.00 30.19	50										В
ATOM 2579 N ALA B 23 63.326 103.663 10.410 1.00 33.77 ATOM 2580 CA ALA B 23 64.367 103.677 9.380 1.00 30.19		ATOM		С							В
ATOM 2580 CA ALA B 23 64.367 103.677 9.380 1.00 30.19		ATOM	2578	0	THR B	22	61.851	102.484		1.00 33.29	P
ATOM 2580 CA ALA B 23 64.367 103.677 9.380 1.00 30.19		ATOM	2579	N	ALA B	23	63.326	103.663	10.410	1.00 33.77	В
		ATOM		CA	ALA B		64.367	103.677		1.00 30.19	В
	55	ATOM	2581	CB	ALA B	23	65.314	104.852	9.615	1.00 28.90	В

	ATOM	2582	С	ALA B	23	65.192	102.399	9.300	1.00 30.98	В
	ATOM	2583	0	ALA B	23	1د 65.3	101.693	10.284	1.00 23.97	В
	MOTA	2584	N	VAL B	24	65.736	102.127	8.112	1.00 27.61	В
	ATOM	2585	CA	VAL B	24		100.932	7.874	1.00 26.92	В
5	MOTA	2586	СВ	VAL B	24	57.1 +7	101.042	6.460	1.00 29.41	В
	ATOM	2587		VAL B	24	63.357	100.043	6.326	1.00 28.58	В
	MOTA	2588		VAL B	24	66.107	100.729	5.430	1.00 26.92	В
	ATOM	2589	C	VAL B	24		101.091	8.898	1.00 32.79	В
	ATOM	2590	0	VAL B	24		102.166	9.077	1.00 26.10	В
Įu	ATOM	2591	N	GLY B	25		100.000	9.586	1.00 28.01	В
	ATOM	2592	CA	GLY B	25		100.081	10.596	1.00 31.93	В
	ATOM	2593	C	GLY B	25		100.210	12.007	1.00 34.29	В
	ATOM	2594	0	GLY B	25		100.080	12.966	1.00 28.44	В
	ATOM	2595	N	THR B	26		100.486	12.148	1.00 26.99	В
15	ATOM	2596	CA	THR B	26		100.568	13.474	1.00 29.37	В
• •	ATOM	2597	CB	THR B	26		100.994	13.403	1.00 30.78	В
	ATOM	2598		THR B	26		103.295	12.808	1.00 26.87	В
	ATOM	2599	CG2	THR B	26		101.000	14.833	1.00 23.56	В
	ATOM	2600	C	THR B	26	56.713	99.183	14.136	1.00 23.33	В
20	ATOM	2601	0	THR B	26	66.462	98.171	13.473	1.00 28.44	В
-11	ATOM	2602	N	VAL B	27	67.056	99.143	15.429	1.00 28.90	В
	ATOM	2603	CA	VAL B	27	67.124	97.891	16.200	1.00 28.70	В
	ATOM	2604	CB	VAL B	27	68.507	97.703	16.858	1.00 25.71	В
	ATOM			VAL B	27	68.477	96.507	17.808	1.00 33.87	В
25	ATOM	2605 2606		VAL B	27	59.4	97.478	15.793	1.00 32.00	В
		2607	CGT	VAL B	27	65.054	97.946	17.292	1.00 32.00	В
	MOTA						98.921		1.00 28.09	В
	MOTA	2608	0	VAL B	27	65.961 65.230		18.029	1.00 28.74	В
	MOTA	2609	N	ILE B	28		96.913	17.349	1.00 28.74	В
20	ATOM	2610	CA	ILE B	28	64.126	96.780	18.294		В
30	ATOM	2611	CB	ILE B	28	62.903	96.400	17.552	1.00 38.10 1.00 49.78	В
	ATOM	2612	CG2	ILE B	28	61.751	95.929	18.516		В
	ATOM	2613		ILE B	28	61.160 30.000	97.598	16.808	1.00 46.71	
	ATOM	2614		ILE B	28	62.253	98.826	17.612	1.00 40.93	B B
	ATOM	2615	C	ILE B	28	54,491 56,600	95.619	19.223	1.00 38.36	
35	ATOM	2616	0	ILE B	28	65.063	94.626	18.769	1.00 29.90	B B
	ATOM	2617	N	ARG B	29	54.134	95.724	20.503	1.00 30.42	
	ATOM	2618	CA	ARG B	29	64.470	34.673	21.458	1.00 32.43	В
	ATOM	2619	CB	ARG B	29	65.463	95.242	22.461	1.00 38.54	В
•	ATOM	2620	CG	ARG B	29	55.23 1	94.231	23.273	1.00 56.74	В
40	MOTA	2621	CD	ARG B	29	67.479	94.939	23.821	1.00 68.43	В
	MOTA	2622	NE	ARG B	29	68.210	95.573	22.722	1.00 77.31	В
	MOTA	2623	CZ	ARG B	29	69.134	94.960	21.983	1.00 81.82	В
	MOTA	2624		ARG B	29	69.454	93.693	22.237	1.00 82.00	В
	ATOM	2625		ARG B	29	59.723	95.603	20.976	1.00 82.81	В
45	ATOM	2626	С	ARG B	29	63.222	94.132	22.168	1.00 26.06	В
	MOTA	2627	0	ARG B	29	62.432	94.884	22.704	1.00 20.11	В
	MOTA	2628	N	TYR B	30	63.032	92.823	22.133	1.00 22.95	В
	MOTA	2629	CA	TYR B	30	61.886	92.206	22.787	1.00 31.30	В
	MOTA	2630	CB	TYP B	30	61.299	91.096	21.905	1.00 28.61	В
50	ATOM	2631	CG	TYR B	30	δυ.64/	91.547	20.605	1.00 29.37	В
	MOTA	2632		TYR B	30	61.339	92.135	19.579	1.00 24.77	В
	MOTA	2633		TYP B	30	60.781	92.553	18.387	1.00 19.11	В
	MOTA	2634		TYR B	30	59.282	91.378	20.403	1.00 29.03	В
	MOTA	2635		TYR B	30	58.674	91.785	19.215	1.00 26.35	В
55	ATOM	2636	CZ	TYP. B	30	59.429	92.379	18.216	1.00 23.41	В

	MOTA	2637	ОН	TYR B	30	58.793	92.836	17.083	1.00 26.05	В
	MOTA	2638	С	TYR B	30	62.340	91.579	24.126	1.00 28.93	В
	ATOM	2639	0	TYR B	30	63.497	91.168	24.283	1.00 24.49	В
	ATCM	2540	N	SER B	31	61.418	91.488	25.067	1.00 26.50	В
5	ATOM	2641	CA	SER B	31	61.697	90.903	26.369	1.00 24.95	В
	ATOM	2642	CB	SER B	31	62.304	91.945	27.308	1.00 21.32	В
	ATOM	2643	OG	SER B	31	61.426	93.028	27.483	1.00 26.55	В
	ATOM	2644	C	SER B	31	60.388	90.373	26.954	1.00 29.25	В
	MOTA	2645	0	SER B	31	59.287	90.780	26.529	1.00 22.45	В
10	ATOM	2646	N	CYS B	32	60.515	89.434	27.930	1.00 27.99	В
	$AT \oplus M$	2647	CA	CYS B	32	59.364	88.868	28.506	1.00 32.41	В
	ATOM	2648	С	CYS B	32	59.371	89.102	30.121	1.00 38.37	В
	AT GM	2649	0	CYS B	32	60.431	89.311	30.719	1.00 37.82	В
	ATOM	2650	CB	CYS B	32	59.371	87.347	28.400	1.00 30.70	В
15	ATOM	2651	SG	CYS B	32	59.450	86.77)	26.677	1.00 32.11	В
	ATOM	2652	N	SER B	33	58.178	89.101	30.717	1.00 51.37	В
	ATOM	2653	CA	SER B	33	5 7.995	89.265	32.163	1.00 56.15	В
	ATOM	2654	СВ	SER B	33	56.544	89.013	32.552	1.00 60.18	В
	ATOM	2655	OG	SER B	33	55.675	89.714	31.672	1.00 66.23	В
20	AT DM	2656	C	SER B	33	58.859	88.260	32.894	1.00 57.27	В
	ATOM	2657	0	SER B	33	59.535	87.427	32.274	1.00 60.30	В
	ATOM	2658	N	GLY B	34	58.805	88.290	34.219	1.00 53.29	В
	ATOM	2659	CA	GLY B	34	59.662	87.391	34.976	1.00 47.70	В
	ATOM	2660	С	GLY B	34	59.278	85.922	34.987	1.00 44.48	B
25	ATOM	2661	0	GLY B	34	60.129	85.033	35.135	1.00 38.34	В
	ATOM	2662	N	THR B	35	57.993	85.660	34.818	1.00 40.51	В
	ATOM	2663	CA	THR B	35	57.524	84.290	34.860	1.00 40.76	В
	ATCM	2664	CB	THR B	35	56.225	84.233	35.644	1.00 41.73	В
	ATOM	2665	OG1		35	55.258	85.077	35.014	1.00 48.51	В
30	ATOM	2666	CG2	THR B	35	56.468	84.761	37.057	1.00 44.89	В
	ATOM	2667	C	THR B	35	57.369	83.634	33.470	1.00 39.51	В
	ATOM	2668	0	THR B	35	56.786	82.613	33.086	1.00 31.97	В
	ATOM	2669	N	PHE B	36	57.924	84.399	32.491	1.00 35.56	В
	ATOM	2670	CN	PHE B	36	57.873	83.955	31.112	1.00 31.01	В
35	ATOM	2671	CB	PHE B	36	57.116	84.967	30.250	1.00 33.05	В
	ATOM	2672	CG	PHE B	36	55.673	84.318	30.396	1.00 35.23	В
	ATOM	2673		PHE B	36	55.040	85.573	31.444	1.00 35.53	В
	ATOM	2674		PHE B	36	54.909	84.204	29.483	1.00 31.53	В
	ATOM	2675		PHE B	36	53.663	85.447	31.570	1.00 37.58	В
4()	ATOM	2676		PHE B	36	53.549	84.126	29.604	1.00 32.60	В
	ATOM	2677	CZ	PHE B	36	52.918	84.763	30.638	1.00 32.38	В
	ATCM	2678	C	PHE B	36	59.276	83.798	30.577	1.00 32.83	В
	ATOM	2679	0	PHE B	36	60.212	84.347	31.125	1.00 33.40	В
	ATOM	2680	N	ARG B	37	59.427	83.043	29.498	1.00 30.99	В
45	ATOM	2681	ÇA	ARG B	37	60.741	82.59	28 916	1.00 29.69	В
	ATOM	2682	CB	ARG B	37	61.207	81.45x	29.083	1.00 30.62	В
	ATOM	2683	CG	APG B	37	61.442	81.072	30.541	1.00 75.61	В
	ATOM	2684	CD	ARG B	37	62.490	81.992	31.177	1.00 39.39	B
E 13	ATOM	2685	NE	ARG B	37	62.303	82.044	32.629	1.00 49.28	В
50	ATOM	2686	CZ	AP.G B	37	62.847	81.168	33.451	1.00 47.41	В
	ATOM	2687		ARG B	37	63.614	80.213	32.947	1.00 53.00	В
	ATOM	2688		ARG B	37	62.602	81.223	34.751	1.00 44.10	В
	ATOM	2689	C	ARG B	37	60.713	83.230	27.439	1.00 32.05	В
2.5	ATOM	2690	O	ARG B	37	59.803	82.874	26.700	1.00 25.63	В
55	ATOM	2691	N	LEU B	38	61.706	84.050	27.011	1.00 23.96	В

	MOTA	2692	CA	LEU B	38	61.802	84.470	25.621	1.00 30.62	В
	ATOM	26 ±3	CB	LEU B	38	62.655	85.738	25.508	1.00 23.25	В
	MOTA	2694	CG	LEU B	38	62.739	86.365	24.105	1.00 28.16	В
	ATOM	2695	CD1	LEU B	38	61.376	86.948	23.659	1.00 20.01	В
5	ATOM	2636	CD2	LEU B	38	63.753	87.436	24.132	1.00 32.19	В
	MOTA	2647	Ĉ	LEU B	38	62.386	83.361	24.745	1.00 27.63	В
	ATOM	2693	ō	LEU B	38	63.447	82.793	25.036	1.00 27.98	В
	ATOM	26 - 9	N	ILE B	39	61.651	83.017	23.691	1.00 30.18	В
	ATOM	2700	CA	ILE B	39	62.073	81.983	22.743	1.00 27.37	В
10	ATOM	2701	СВ	ILE B	39	60.940	80.959	22.492	1.00 30.75	В
10	ATOM	2702	CG2		39	61.438	79.878	21.538	1.00 29.27	В
	ATOM	2703	CG1		39	60.455	80.359	23.822	1.00 30.90	В
	ATOM	2704	CDI		39	61.491	79.535	24.559	1.00 26.44	В
	ATOM	2705	C	ILE B	39	62.403	82.668	21.418	1.00 29.53	В
15	ATOM	2706	O.	ILE B	39	61.510	83.256	20.797	1.00 24.87	В
1"	ATOM	2707	N	GLY B	40	63.676	82.609	20.998	1.00 21.97	В
	ATOM	2703	JA.	GLY B	40	64.084	83.239	19.751	1.00 23.62	В
	ATOM	2703	CA	GLY B	40	64.957	84.450	19.975	1.00 22.85	В
		2710	Ç	GLY B	40	65.065	84.921	21.104	1.00 21.42	В
30	MOTA MOTA			GLU B		65.592	84.958	18.925	1.00 27.33	В
20		2711	N		41			19.065	1.00 27.33	В
	ATOM	2712	CA	GLU B	41	66.472	86.133			В
	ATOM	2713	CB	GLU B	41	67.138	86.471	17.730	1.00 33.78 1.00 52.17	В
	ATOM	2714	00 00		41	68.634	86.193	17.721 18.648		
2.5	MOTA	2715	€D ≎¤a	GLU B	41	69.411	87.123		1.00 57.74	В
25	MOTA	2715		GLU B	41	70.414	86.641	19.031	1.00 66.30	В
	ATOM	2717	OE2	GLU B	41	69.034	88.326	18.791	1.00 53.76	В
	ATOM	2718	C	GLU B	41	65.667	87.333	19.541	1.00 30.40	В
	ATOM	2719	0	GLU B	41	64.601	87.619	18.995	1.00 27.22	В
20	ATOM	2720	N	LYS B	42	66.197	88.049	20.528	1.00 27.86	В
30	ATOM	2721	CA	LYS B	42	65.538	89.215	21.135	1.00 32.03	В
	MOTA	2722	CB	LYS B	42	66.171	89.495	22.504	1.00 37.19	В
	ATOM	27113	CG	LYS B	42	67.610	89.990	22.379	1.00 43.78	В
	ATOM	2724	CD	LYS B	42	68.196	90.536	23.674	1.00 54.68	В
2.7	ATOM	2725	CE	LYS B	42	68.055	89.538	24.812	1.00 62.51	В
35	ATOM	2726	NΖ	LYS B	42	68.438	88.139	24.443	1.00 69.20	В
	ATOM	2727	C	LYS B	42	65.586	90.530	20.331	1.00 32.32	В
	ATOM	2729	(i)	LYS B	42	64.771	91.432	20.555	1.00 27.61	В
	ATOM	2729	N	SER B	43	66.547	90.580	19.423	1.00 28.99	В
4.0	ATOM	2730	CA	SER B	43	66.611	91.946	18.672	1.00 33.61	В
40	ATOM	2731	CB	SER B	43	68.012	92.565	18.722	1.00 29.97	В
	ATOM	2732	0G	SER B	43	68.478	92.606	20.047	1.00 47.21	В
	AT⊕M	2733	C	SER B	43	66.273	91.770	17.224	1.00 28.57	В
	ATOM	2734	0	SER B	43	66.765	90.841	16.588	1.00 32.11	В
	ATOM	2735	11	LEU B	44	65.443	92.661	16.697	1.00 26.09	В
45	$AT \odot M$	2736	CA	LEU B	44	65.127	92.607	15.280	1.00 25.34	В
	ATOM	2737	CB	LEU B	44	63.620	92.609	14.987	1.00 21.75	В
	ATOM	2738	СG	LEU B	44	62.608	91.642	15.593	1.00 33.26	В
	$\Delta T \odot M$	2700		LEU B	44	51.455	91.187	14.026	1.00 24.66	Ŗ
	ATOM	2740	CD2	LEU B	44	63.227	90.293	15.976	1.00 19.72	В
50	$AT\odot M$	2741	C	LEU B	44	65.738	93.863	14.694	1.00 27.39	В
	ATOM	2/42	O	LEU B	44	65.759	94.919	15.334	1.00 29.07	В
	$AT \odot M$	2743	11	LEU B	45	66.201	93.740	13.456	1.00 26.79	В
	ATOM	2744	CA	LEU B	45	66.854	94.812	12.727	1.00 26.17	В
	ATOM	2745	CB	LEU B	45	68.202	94.303	12.213	1.00 25.36	В
55	ATOM	2746	CG	LEU B	45	69.343	95.281	11.950	1.00 35.90	В

	ATOM	2747	CD1	LEU B	45	70.263	94.668	10.905	1.00 31.78	В
	ATOM	2748	CD2	LEU B	45	68.853	96.627	11.519	1.00 39.62	В
	ATOM	2749	C	LEU B	45	66.016	95.198	11.516	1.00 25.11	В
	MOTA	2750	O	LEU B	45	65.568	94.320	10.761	1.00 20.94	В
5	ATOM	2751	N	CYS B	46	65.803	96.487	11.298	1.00 24.35	В
	MOTA	2752	CA	CYS B	45	65.057	96.887	10.097	1.00 22.87	В
	ATOM	2753	C	CYS B	46	66.106	96.897	8.976	1.00 23.24	В
	ATOM	2754	0	CYS B	46	67.099	97.601	9.051	1.00 28 50	В
	MOTA	2755	CB	CYS B	46	64.446	98.284	10.251	1.00 25.50	В
10	ATOM	2755	SG	CVS B	45	63.677	98.900	8.705	1.00 27.31	В
	ATOM	2757	11	ILE B	47	65.877	96.106	7.943	1.00 24.65	В
	ATOM	2759	CA	ILE B	47	66.817	95.991	6.842	1.00 28.54	В
	ATOM	2759	CB	ILE B	47	67.412	94.572	6.871	1.00 30.17	В
	ATOM	2760	CG2	ILE B	47	68.114	94.258	5.601	1.00 42.28	В
15	MOTA	2761	CG1	ILE B	47	68.341	94.458	8.070	1.00 40.16	В
	MOTA	2762	CD1	ILE B	47	69.121	93.190	8.107	1.00 53.27	В
	ATOM	2763	C	ILE B	47	66.098	96.188	5.504	1.00 28.32	В
	MOTA	2764	O	ILE B	47	64.874	96.332	5. 4 66	1.00 24.71	В
	MOTA	2765	11	THR B	48	66.853	96.238	4.413	1.00 24.30	В
20	MOTA	2766	CA	THR B	48	66.236	96.267	3.091	1.00 27.24	В
	ATOM	2767	CB	THR B	48	66.215	97.672	2.405	1.00 31.04	В
	ATOM	2768	OG1		48	65.632	97.534	1.090	1.00 26.58	В
	ATOM	2769	CG2		48	67.627	98.250	2.271	1.00 13.57	В
	ATOM	2770	C	THR B	49	67.048	95.280	2.254	1.00 26.55	В
25	ATOM	2771	()	THR B	4.8	68.276	95.371	2.173	1.00 27.30	В
	ATOM	2772	N	LYS B	49	66.370	94.295	1.688	1.00 24.39	В
	ATOM	2773	CA	LYS B	49	67.031	93.309	0.837	1.00 25.65	В
	MOTA	2774	CB	LYS B	49	66.323	91.943	0.940	1.00 27.44	В
	MOTA	2775	CG 	LYS B	49	66.358	91.351	2.368	1.00 36.21	В
30	MOTA	2776	CD	LYS B	49	67.171	90.103	2.479	1.00 4 3 52	В
	ATOM	2777	CE	LYS B	49	68.570	90.294	2.025	1.00 41 63	B B
	ATOM	2778	NZ	LYS B	49	69.314	89.069	2.403	1.00 46.47 1.00 33.01	B
	ATOM	2779	<u>-</u>	LYS B	49	67.041	93.752	-0.632	1.00 33.02	В
25	ATOM	2780	No	LYS B	49 50	67.987	93.450 94.451	-1.353 -1.083	1.00 25.00	В
35	ATOM	2781 2782	N	ASP B ASP B	50 50	65.994 65.933	94.451	-2.495	1.00 29.77	В
	ATOM ATOM	2783	CA CB	ASP B	50	64.575	94.503	-3.108	1 00 28.00	В
	ATOM	2784	CG	ASP B	50	63.439	95.221	-2.440	1.00 20.54	В
	ATOM	2785		ASP B	50	63.720	96.043	-1.562	1.00 25.74	В
40	ATOM	2786		ASP B	50	62.262	94.969	-2.779	1.00 32 42	В
70	ATOM	2787	C	ASP B	50	66.200	96.327	-2.744	1.00 30.62	В
	ATOM	2788	Ö	ASP B	50	66.037	96.794	-3.858	1.00 04.13	В
	ATOM	2789	11	LYS B	51	66.610	97.050	-1.709	1.00 27.34	В
	ATOM	2790	CA	LYS B	51	66.889	98.473	-1.824	1.00 31.13	В
45	ATOM	2791	CB	LYS B	51	68.014	98.742	-2.819	1.00 34.46	В
	MOTA	2792	СG	LYS B	5.1	69.381	98.355	-2.297	1.00 41.85	В
	MOTA	2793	CD	LYS B	51	70.447	98.960	- 3.175	1.00 49.97	В
	ATOM	2794	CE	LYS B	51	71.826	98.869	-2 564	1.00 59.30	Ŗ
	ATOM	2795	NΞ	LYS B	51	75.754	99.7⊥3	-3.366	1.00 67.70	В
50	ATOM	2795		LiS B	51	65.666	99.305	-2.186	1.00 30.87	В
	ATOM	2797	0	LYS B	51	65.786	100.430	-2.634	1.00 28 68	В
	ATOM	2798	11	VAL B	52	64.483	98.748	-1.992	1.00 26.95	В
	ATOM	2799	CA	VAL B	52	63.263	99.501	-2.231	1.00 26.37	В
	ATOM	2800	CB	VAL B	52	62.456	98.945	-3.402	1.00 27.69	В
55	ATOM	2801	C:G1	VAL B	52	61.123	99.695	-3.511	1.00 32.70	В

	ATOM	2802	CG2	VAL B	52	63.236	99.113	-4.679	1.00 32.13	В
	ATOM	2803	С	VAL B	52	62.375	99.437	-1.000	1.00 30.79	В
	ATOM	2804	0	VAL B	52			-0.491	1.00 26.76	В
					53	62.102	98.232	-0.512	1.00 25.76	В
_	ATOM	2805	N							
5	MOTA	2806	CA	ASP B	53	61.210	98.074	0.642	1.00 25.94	В
	MOTA	2807	CB	ASP B	53	60.156	96.999	0.318	1.00 42.02	В
	MOTA	2808	CG	ASP B	53	59.285	97.356	-0.871	1.00 53.53	В
	ATOM	2809	OD1	ASP B	53	59.878	98.540	-0.943	1.00 63.13	В
	ATOM	2810	OD2	ASP B	53	58.964	96.476	-1.727	1.00 64.13	В
10	ATOM	2811	C	ASP B	53	62.006	97.651	1.888	1.00 25.00	В
	ATOM	2812	0	ASP B	53	63.063	97.038	1.773	1.00 22.23	В
	ATOM	2813	N	GLY B	54	61.490	97.959	3.072	1.00 20.64	В
	ATOM	2814	CA	GLY B	54	62.170	97.578	4.293	1.00 24.10	В
										В
	MOTA	2815	C	GLY B	54	61.441	96.397	4.919	1.00 25.17	
15	MOTA	2816	0	GLY B	54	60.237	96.266	4.728	1.00 25.23	В
	MOTA	2817	N	THP B	55	62.169	95.517	5.605	1.00 23.87	В
	MOTA	2818	CA	THP. B	55	61.589	94.373	6.318	1.00 20.36	В
	MOTA	2819	CB	THR B	55	61.679	93.051	5.518	1.00 27.74	В
	ATOM	2820	OG1	THR B	55	61.052	92.004	6.267	1.00 24.11	В
20	ATOM	2821	CG2	THP. B	55	63.151	92.669	5.212	1.00 21.92	В
	ATOM	2822	C	THP. B	55	62.371	94.156	7.600	1.00 22.54	В
	ATOM	2823	0	THP. B	55	63.535	94.526	7.675	1.00 24.57	В
	ATOM	2824	И	TRP B	55	61.743	93.589	8.624	1.00 23.11	В
									1.00 25.54	B
3.5	ATOM	2825	CA	TPP B	55	62.513	93.285	9.827		
25	MOTA	2826	CB	TRP B	56	61.580	92.954	10.988	1.00 23.18	B
	MOTA	2827	CG	TRP B	56	60.874	94.202	11.420	1.00 19.51	В
	MOTA	2828	CD2		56	61.456	95.282	12.147	1.00 21.91	P.
	MOTA	2829	CE2		56	60.473	96.302	12.247	1.00 26.89	F.
	ATOM	2830	CE3	TRP B	55	62.722	95.491	12.729	1.00 25.30	В
30	MOTA	2831	CD1	TRP B	56	59.595	94.578	11.119	1.00 21.93	P.
	ATOM	2832	NE1	TRP B	56	59.343	95.849	11.617	1.00 21.49	P
	MOTA	2833	CZ2		56	60.713	97.521	12.895	1.00 26.71	E.
	ATOM	2834	CZ3		56	62.963	96.706	13.380	1.00 29.35	E
	ATOM	2835	CH2		55	61.957	97.706	13.451	1.00 28.96	P.
35	ATOM	2836	C	TRP B	56	63.335	92.075	9.384	1.00 28.11	P.
33	ATOM	2837	0	TRP B	56	62.882	91.296	8.535	1.00 23.54	E
									1.00 20.44	B
	ATOM	2838	N	ASP B	57	64.535	91.909	9.926		
	MOTA	2839	CA	ASP B	57	65.401	90.812	9.470	1.00 25.81	P.
	ATOM	2840	CB	ASP B	57	66.885	91.113	9.761	1.00 30.15	P.
40	ATOM	2841	CG	ASP B	57	67.234	91.045	11.255	1.00 35.84	В
	MOTA	2842		ASP B	57	66.319	91.161	12.102	1.00 23.31	B
	ATOM	2843	OD2	ASP B	57	68.443	90.889	11.581	1.00 41.06	P.
	MOTA	2844	С	ASP B	57	65.058	89.433	9.963	1.00 26.11	В
	MOTA	2845	0	ASP B	57	65.634	88.455	9.486	1.00 28.90	В
45	ATOM	2846	N	LYS B	58	64.114	89.336	10.896	1.00 29.91	В
, .	ATOM	2847	CA	LYS B	58	63.687	88.032	11.411	1.00 27.97	E
	ATOM	2848	CB	LYS B	58	64.697	87.491	12.443	1.00 30.61	E
									1.00 39.24	B
	ATOM	2849	CG	LYS B	58	64.884	88.378	13.650		
	ATOM	2850	CD	LYS B	58	65.966	87.831	14.618	1.00 41.02	В
50	MOTA	2851	CE	LYS B	58	67.406	88.063	14.115	1.00 37.73	В
	MOTA	2852	NΞ	LY3 B	58	67.830	89.511	14.119	1.00 29.13	В
	MOTA	2853	C	LYS B	58	62.319	88.105	12.045	1.00 22.71	В
	ATOM	2854	0	LYS B	58	61.795	89.188	12.311	1.00 26.33	В
	ATOM	2855	N	PRO B	59	61.700	86.947	12.292	1.00 25.99	В
55	ATOM	2856	CD	PRO B	59	62.084	85.584	11.885	1.00 24.09	В
• •						32.031				

										_
	ATOM	2857	CA	PRO B	59	60.367	86.972	12.919	1.00 22.11	В
	MCTA	2858	CB	PRO B	59	59.902	85.515	12.845	1.00 26.86	В
	ATOM	2859	CG	PRO B	59	50.730	84.913	11.746	1.00 29.91	В
	MOTA	2860	C	PRO B	59	60.509	87.419	14.369	1.00 30.21	В
5	ATOM	2861	0	PRO B	59	61.595	87.307	14.968	1.00 28.15	В
	ATOM	2862	N	ALA B	60	59.433	87.924	14.951	1.00 25.43	В
	ATOM	2863	CA	ALA B	60	59.516	88.330	16.339	1.00 26.37	В
	ATOM	2864	CB	ALA B	60	58.260	89.089	16.742	1.00 26.63	В
	ATOM	2865	C	ALA B	60	59.644	87.085	17.223	1.00 21.91	В
10	MOTA	2866	0	ALA B	60	59.104	86.068	16.914	1.00 22.47	В
	MOTA	2867	N	PRO B	61	60.353	87.173	18.350	1.00 23.37	В
	ATOM	2868	CD	PRO B	61	61.134	83.320	18.870	1.00 22.24	В
	ATOM	2869	CA	PRO B	61	60.476	86.007	19.227	1.00 19.99	В
	ATOM	2870	CB	PRO B	61	61.650	85.386	20.130	1.00 21.18	В
, -										В
15	MOTA	2871	CG	PRO B	61	61.458	87.876	20.314	1.00 22.73	
	ATOM	2872	C	PRO B	61	59.151	85.933	20.024	1.00 27.42	В
	MOTA	2873	0	PRO B	61	58.314	86.831	19.903	1.00 27.48	В
	ATOM	2874	N	LYS B	62	58.960	84.893	20.834	1.00 21.73	В
	MOTA	2875	CA	LYS B	62	57.737	84.770	21.648	1.00 26.90	В
20	ATOM	2876	CB	LYS B	62	56.880	83.576	21.187	1.00 32.90	В
_11										
	MOTA	2877	CG	LYS B	62	56.318	83.743	19.779	1.00 39.12	В
	MOTA	2878	CD	LYS B	62	55.638	82.502	19.258	1.00 48.29	В
	MOTA	2879	CE	LYS B	62	55.142	82.741	17.828	1.00 54.55	В
	ATOM	2880	NZ	LYS B	62	54.620	81.478	17.213	1.00 59.87	В
25	ATOM	2881	С	LYS B	62	58.050	84.601	23.133	1.00 30.68	В
	ATOM	2882	0	LYS B	62	59.190	84.287	23.528	1.00 24.62	В
	ATOM	2883	N	CYS B	63	57.03#	84.843	23.958	1.00 25.15	В
	ATOM	2884	CA	CYS B	63	57 171	84.675	25.405	1.00 27.27	В
	ATOM	2885	C	CYS B	63	트로 : 314	83.481	25.792	$1.00\ 30.43$	В
30	ATOM	2886	0	CYS B	63	55 111	83.454	25,515	1.00 30.82	В
	ATOM	2887	CB	CYS B	63	56.646	85.903	26.149	1.00 25.60	В
	ATOM	2888	SG	CYS B	63	57.680	87.384	25.922	1.00 31.81	В
	MOTA	2889	N	GLU B	64	56.334	82.486	26.414	1.00 29.14	В
	MOTA	2890	CA	GLU B	64	56.220	81.297	26.871	1.00 27.87	В
35	ATOM	2891	CB	GLU B	64	56.933	80.043	26.393	1.00 22.54	В
	ATOM	2892	CG	GLU B	64	56.939	79.836	24.884	1.00 30.23	В
	MOTA	2893	CD	GLU B	64	57.354	78.472	24.471	1.00 25.42	В
	ATOM	2894		GLU B	64	5- 146	77.879	25.221	1.00 28.63	B
	ATOM	2895	OE2		64	56 393	77.994	23.396	1.00 24.45	В
40	ATOM	2896	C	GLU B	64	56.172	81.301	28.394	1.00 27.43	В
	ATOM	2897	0	GLU B	64	57.134	81.564	29.036	1.00 28.45	В
	ATOM	2898	N	TYR B	65	5,5 (0.0)	81.039	28.981	1.00 30.82	В
	ATOM	2899	CA	TYR B	65	54,298	81.016	30.449	1.00 26.71	В
				TYR B	65	53 474	80.638	30 881	1.00 24.67	D
	AT'OM	2900	CB							
15	MOTA	2001	CG	TYF. B	65	53.22.	89.754	32.382	1.00 30.61	В
	MOTA	2902	CD1	TYP B	65	53.958	81.915	33.078	1.00 37.93	В
	MOTA	2903	CE1	TYR B	65	5 - 15 -	82.013	34.464	1.00 37.10	В
	ATOM	2904	CD2	TYR B	65	52.631	79.689	33.102	1.00 29.91	В
	ATOM	2905		TYR B	65	52.431	79.765	34.477	1.00 32.04	В
50	MOTA	2906	CZ	TYR B	65	52.829	80.927	35.149	1.00 38.91	В
	ATOM	2907	OH	TYP. B	65	50.053	81.014	36.510	1.00 40.82	В
	MOTA	2908	C	TYR B	65	55.931	79.369	30.908	1.00 26.37	В
	ATOM	2909	0	TYR B	65	56.022	73.891	30.339	1.00 27.39	В
	ATOM	2910	N	PHE B	66	56.722	80.290	31.924	1.00 30.93	В
55			CA	PHE B	66	57.770	79.381	32.362	1.00 29.14	В
,1,1	ATOM	2911	CA	rne b	50	37.770	/./.JOI	٠٠.٥٥٠	1.00 27.14	D

	ATOM	2912	CB	PHE B	66	58.611	80.050	33.455	1.00 27.56	В
	ATOM	2913	CG	PHE B	66	59.743	79.210	33.998	1.00 28.67	В
	ATOM	2914		PHE B	66	60.632	78.559	33.139	1.00 33.68	В
	ATOM	2915			66	59.307	79.055	35.371	1.00 30.48	В
5	ATEM	2916	CEl	PHE B	66	ნl.ნნ9	77.763	33.648	1.00 35.23	В
	ATOM	2917	CE2	PHE B	66	60.931	73.257	35.895	1.00 26.93	В
	ATOM	2918	CZ	PHE B	66	61.816	77.613	35.041	1.00 31.25	В
	ATOM	2919	С	PHE B	66	57.283	78.013	32.844	1.00 32.09	В
	ATOM	2920	Ō	PHE B	66	56.382	77.924	33.671	1.00 31.84	В
1.0				ASN B						В
10	ATOM	2921	N		67 	57.882	76.956	32.312	1.00 28.91	
	M:0TA	2922	CA	ASN B	67	57.553	75.591	32.727	1.00 31.14	В
	ATOM	2923	CB	ASN B	67	57.124	74.763	31.524	1.00 32.40	В
	$AT \odot M$	2924	CG	ASN B	67	56.635	73.363	31.903	1.00 37.56	В
	$AT \cap M$	2925	OD1	ASN B	67	57.193	72.701	32.784	1.00 33.77	В
15	$AT \bigcirc M$	2926	ND2	ASN B	67	55.589	72.914	31.218	1.00 40.31	В
	ATOM	2927	C	ASN B	67	58.844	75.009	33.318	1.00 30.31	В
	ATOM	2928	0	ASN B	67	59.719	74.551	32.577	1.00 26.39	В
	ATOM	2929	N	LYS B	68	58.960	75.038	34.644	1.00 28.27	В
	ATOM	2930	CA	LYS B	68	60.148	74.535	35.329	1.00 29.00	В
20	ATOM	2931	CB	LYS B	68	60.041	74.792	36.843	1.00 35.08	В
	ATOM	2932	CG	LYS B	68	58.984	73.906	37.518	1.00 41.56	В
	ATOM	2933	CD	LYS B	68	59.179	73.778	39.031	1.00 52.33	В
	ATOM	2934	CE	LYS B	68	58.907	75.C77	39.764	1.00 54.82	В
	ATOM	2935	NZ	LYS B	68	58.896	74.891	41.250	1.00 58.88	В
25	ATOM	2936	C	LYS B	68	60.399	73.039	35.087	1.00 32.74	В
- .'				LYS B			72.556	35.318	1.00 32.74	В
	ATOM	2937	0		68	61.507				
	ATOM	2938	N	TYR B	69	59.389	72.305	34.611	1.00 33.19	В
	MOTA	2939	CA	TYR B	69	59.559	70.867	34.354	1.00 25.62	В
	AT:0M	2940	CB	TYR B	69	58.259	70.096	34.687	1.00 30.97	В
30	ATOM	2941	CG	TYR B	69	57.301	70.349	36.107	1.00 30.82	В
	ATOM	2942	CD1	TYR B	69	56.774	71.265	36.379	1.00 28.48	В
	$AT \cap M$	2943	CE1	TYR B	69	56.444	71.623	37.697	1.00 31.73	В
	ATOM	2944	CD2	TYR B	69	58.486	69.776	37.192	1.00 31.64	В
	ATCM	3945	CE2	TYR B	69	53.174	70.118	38.507	1.00 38.99	В
25						57.153	71.053	38.756		В
35	ATOM	2946	CZ	TYR B	69				1.00 39.94	
	ATOM	2947	OH	TYR B	69	56.901	71.467	40.043	1.00 41.68	В
	ATOM	2948	С	TYR B	69	60.029	70.516	32.955	1.00 31.61	В
	ATOM	2949	0	TYR B	69	60.543	69.414	32.722	1.00 31.53	В
	ATOM	2950	N	SER B	70	59.389	71.447	32.017	1.00 29.13	В
40	ATOM	2951	CA	SER B	70	60.328	71.162	30.649	1.00 31.79	В
	ATOM	2952	CB	SER B	70	59.926	72.310	29.708	1.00 27.84	В
	ATOM	2953	OG	SER B	70	58.524	72.534	29.725	1.00 38.42	В
	ATOM	2954	C	SER B	70	61.849	70.949	30.544	1.00 34.24	В
	ATOM	2955	0	SER B	70	62.624	71.534	31.296	1.00 31.38	В
_										
45	ATCINI	2056	N	SER B	71	62.261	70.097	29.613	1.00 33.64	В
	ATOM	2957	CA	SER B	71	63.674	69.832	29.351	1.00 36.09	В
	ATOM	2958	CB	SER B	71	64.265	68.8UY	30.324	1.00 39.34	В
	ATOM	2959	OG	SER B	71	63.823	67.519	30.007	1.00 41.01	Б
	MOTA	2960	C	SER B	71	63.790	69.308	27.907	1.00 41.17	В
50	ATOM	2961	0	SER B	71	62.959	68.520	27.432	1.00 41.90	В
	ATOM	2962	N	CYS B	72	64.805	69.766	27.195	1.00 32.35	В
	ATOM	2963	CA	CYS B	72	64.970	69.351	25.816	1.00 35.35	В
								25.722		
	ATOM	2964	C	CYS B	72 72	66.139	68.393		1.00 36.24	В
	MOTA	2965	0	CYS B	72	67.039	68.472	26.503	1.00 34.41	В
55	MOTA	2966	CB	CYS B	72	65.205	70.586	24.920	1.00 26.09	В

	ATOM	2967	SG	CYS B	72	63.835	71.795	24.952	1.00 32.64	В
	ATOM	2968	N	PRO B	73	66.069	67.453	24.779	1.00 35.65	В
	ATOM	2969	CD	PRO B	73	64.958	67.148	23.367	1.00 38.10	В
	ATOM	2970	CA	PRO B	73	67.157	66.494	24.517	1.00 35.61	В
5	ATOM	2971	CB	PRO B	73	65.557	65.461	23.661	1.00 35.75	В
2								22.806		В
	ATOM	2972	CG	PRO B	73	65.662	66.314		1.00 40.23	
	ATIM	2973	C	PRO B	73	68.355	67.203	24.011	1.00 37.18	В
	ATOM	0974	0	PRO B	73	68.225	68.277	23.427	1.00 31.86	В
	ATIM	2975	N	GLU B	7 4	69.521	66.595	24.151	1.00 30.08	В
10	MOTA	2976	CA	GLU B	7 4	70.726	67.168	23.594	1.00 35.66	В
	ATOM	2977	CB	GLU B	74	71.904	66.221	23.830	1.00 40.69	В
	MOM	2978	CG	GLU B	74	73.123	66.500	22.972	1.00 55.61	В
	ATOM	2979	CD	GLU B	74	74.357	66.847	23.791	1.00 65.33	В
	ATOM	2980	OE1		74	75.476	66.535	23.311	1.00 68.86	В
15	ATOM	2981	OE2	GLU B	74	74.214	67.432	24.899	1.00 67.56	В
	ATEM	2982	C	GLU B	74	70.526	67.411	22.099	1.00 31.83	В
	ATOM	2983	O	GLU B	74	70.179	66.517	21.347	1.00 34.92	В
	$M \odot TA$	2984	N	PRO B	75	70.743	68.639	21.648	1.00 29.85	В
	$AT \cap M$	2985	CD	PRO B	75	71.019	69.851	22.431	1.00 29.21	В
20	ATOM	2986	CA	PRO B	75	70.573	68.944	20.227	1.00 31.16	В
	ATOM	2987	CB	PRO B	75	70.349	70.441	20.235	1.00 30.77	В
	ATCM	2988	CG	PRO B	75	71.310	70.872	21.362	1.00 28.27	В
	MUTA	2989	C	PRO B	75	71.855	68.552	19.507	1.00 37.41	В
	ATOM	2990	C.	PRO B	75	72.949	68.998	19.877	1.00 35.98	В
25	ATOM	2991	N	ILE B	76	71.728	67.726	18.474	1.00 37.41	В
	ATOM	2992	CA	ILE B	76	72.904	67.277	17.757	1.00 41.40	В
	MOTA	2993	CB	ILE B	76	73.069	65.755	17.912	1.00 47.80	В
	ATOM	2994	CG2	ILE B	76	74.385	65.302	17.272	1.00 48.99	В
	ATOM	2995	CG1	ILE B	76	73.078	65.396	19.404	1.00 48.44	В
30	ATOM	2996	CD1	ILE B	76	72.926	63.913	19.571	1.00 55.08	В
	ATUM	2997	C	ILE B	76	72.874	67.654	16.294	1.00 38.62	В
	ATOM	2998	0	ILE B	76	71.874	67.480	15.525	1.00 39.69	В
	ATOM	2999	N	VAL B	77	73.984	68.195	15.813	1.00 36.89	В
	$AT \cap M$	3000	CA	VAL B	77	74.107	68.610	14.433	1.00 38.30	В
35	ATOM	3001	CB	VAL B	77	74.290	70.119	14.331	1.00 39.19	В
	ATOM	3002	CG1	VAL B	77	74.483	70.519	12.871	1.00 39.16	В
	ATOM	3003	CG2	VAL B	77	73.081	70.826	14.946	1.00 40.99	В
	ATUM	3004	C	VAL B	77	75.307	67.939	13.761	1.00 40.36	В
	ATOM	3005	0	VAL B	77	76.457	68.351	13.948	1.00 41.17	В
40	ATOM	3006	N	PRO B	78	75.057	66.893	12.966	1.00 40.75	В
	ATOM	3007	CD	PRO B	78	73.785	66.267	12.590	1.00 37.39	В
	ATOM	3008	CA	PRO B	78	76.183	66.228	12.303	1.00 40.96	В
	ATOM	3009	CB	PRO B	78	75.506	65.195	11.412	1.00 41.91	В
	ATOM	3010	CG	PPO B	78	74.119	65.745	11.229	1.00 45.49	В
45	MCTA	3011	C	PRO B	78	76.997	67.232	11.525	1.00 37.80	В
	$\Delta T \odot M$	3010	0	PRO B	78	76.447	68.140	16 913	1.00 37.38	В
	ATOM	3013	И	GLY B	79	78.312	67.083	11 540	1 00 32 94	В
	ATOM	3014	CA	GLY B	79	79.186	68.002	10.900	1.00 36.40	В
	AT⊕M	3015	C	GLY B	79	79.427	69.261	11.712	1.00 34.31	В
50	ATOM	3016	0	GLY B	79	80.209	70.109	11.314	1.00 42.13	В
•	ATOM	3017	Ň	GLY B	80	78.760	69.404	12.855	1.00 36.96	В
	ATOM	3018	CA	GLY B	80	78.960	70.608	13.664	1.00 39.25	В
	ATOM	3019	C	GLY B	80	79.072	70.348	15.164	1.00 35.08	В
	ATOM	3020	Ö	GLY B	80	78.994	69.202	15.609	1.00 40.28	В
55	ATOM	3021	N	TYR B	81	79.225	71.410	15.953	1.00 37.65	В
***	111 (11	J (L 1		111(1)	O I	, ,	, 1 . 110	12.723	1.00 37.03	ב

	ATOM ATOM	3022	CA	TYR B	81	79.345	71.271 71.019	17.408 17.799	1.00 33.04 1.00 29.39	В В
	ATOM	3023	CB	TYR B	81	80.800		17.733	1.00 29.39	В
	ATOM	3024	€G 253	TYR B	81	81.745	72.112			В
_	ATOM	3025	CD1		81	82.169	73.116	18.199		
5	ATOM	3026	CE1	TYF. B	81	82.992	74.143	17.766	1.00 28.17	В
	ATOM	3027	CD2		81	82.181	72.163	16.004	1.00 28.62	В
	ATOM	3028	CE2	TYR B	81	83.006	73.188	15.559	1.00 31.47	В
	MOTA	3029	CI	TYP B	81	83.401	74.174	16.449	1.00 30.40	В
	$AT \oplus M$	3 0 3 0	ÐН	TYP B	81	84.172	75.207	16.012	1.00 32.87	В
10	$AT \odot M$	3031	47	TYP B	81	78.847	72.536	18.095	1.00 33.96	В
	AT⊙M	3 5 3 2	:_)	TYR B	81	78.696	73.581	17.454	1.00 30.79	В
	$AT \bigcirc M$	3 0 3 3	N	LYS B	82	78.600	72.431	19.398	1.00 23.56	В
	MOTA	3034	CA	LYS B	82	78.114	73.557	20.195	1.00 23.94	В
	ATOM	3035	CB	LYS B	82	77.348	73.034	21.428	1.00 25.29	В
15	ATOM	3036	CG	LYS B	82	76.140	72.144	21.057	1.00 27.67	В
	ATOM	3037	CD	LYS B	82	75.335	71.652	22.266	1.00 33.47	В
	ATOM	3038	ΞE	LYS B	82	76.215	71.041	23.365	1.00 44.83	В
	ATOM	3039	NO	LYS B	82	77.091	69.944	22.837	1.00 45.24	В
	ATOM	3040	C	LYS B	82	79.205	74.526	20.629	1.00 29.85	В
20	ATOM	3041	Ó	LYS B	82	80.270	74.110	21.099	1.00 31.44	В
20	ATOM	3042	N	ILE B	83	78.980	75.822	20.428	1.00 25.93	В
	ATOM	3043	CA	ILE B	83	79.959	76.795	20.887	1.00 21.30	В
	ATOM	3044	CB	ILE B	83	80.449	77.771	19.800	1.00 29.03	В
	ATOM	3045	CG2	ILE B	83	81.296	77.004	18.799	1.00 23.68	В
25	ATOM	3045 3046	-0.32	ILE B	83	79.278	78.514	19.155	1.00 24.89	В
20	ATOM	3047	CD1		83	79.722	79.571	18.148	1.00 27.44	В
	ATOM	3048	2	ILE B	83	79.362	77.581	22.027	1.00 06.62	В
		3049		ILE B	83	80.038	78.408	22.636	1.00 30.35	В
	ATOM		Ü		84		77.330	22.324	1.00 24.60	В
3.0	ATOM	3050	11	APG B		78.092	77.330	23.469	1.00 24.80	В
30	ATOM	3051	CA	APG B	84	77.471				В
	MOTA	3052	CB OB	ARG B	84	77.047	79.396	23.131	1.00 34.80	В
	MOTA	3053	୍ଦ୍ର	ARG B	84	76.583	80.160	24.348	1.00 45.89	
	ATOM	3054	CD	ARG B	84	76.518	81.629	24.027	1.00 56.25	В
	ATOM	3055	NE	AFG B	84	77.801	82.302	24.217	1.00 53.31	В
35	ATOM	3056	C.3	ARG B	84	78.276	82.707	25.397	1.00 64.61	В
	ATOM	3057	MHI	ARG B	84	77.581	82.496	26.512	1.00 65.21	В
	ATOM	3053	NH2		84	79.421	83.386	25.454	1.00 61.85	В
	ATOM	305 →	C.	ARG B	84	76.278	77.199	23.384	1.00 27.61	В
	MOTA	3060	Ö	ARG B	84	75.487	76.687	23.189	1.00 24.27	В
40	$AT \cup M$	3061	F.	GLY B	85	76.166	77.105	25.314	1.00 25.11	В
	MOTA	3061	ÇĄ	GLY B	85	75.074	76.374	25.959	1.00 23.64	В
	MOTA	3063	C	GLY B	85	75.394	74.877	26.115	1.00 32.13	В
	ATOM	3064	(j)	GLY B	85	75.961	74.257	25.200	1.00 25.66	В
	MOTA	3065	11	SER B	86	75.094	74.293	27.281	1.00 24.97	В
45	MOTA	3066	CA	SER B	86	75.347	72.859	27.473	1.00 34.32	В
	MOTA	3067	CB	SER B	86	76.755	72.588	28.034	1.00 51.54	В
	ATOM	3063	ાઉ	SER B	86	76.964	73.322	29.223	1 00 40.95	В
	$M \cap TA$	3063	<u>'_`</u>	SER B	86	74.315	72.304	28.415	1.00 17 65	B
	$M \cap TA$	3070	, , ,	SER B	86	73.536	73.064	28.979	1.00 24.75	В
50	$M \cap TA$	3071	N	THF H	87	74.294	70.982	28.573	1.00 27.03	B
	AT∪M	3072	CA	THP. B	87	73.325	70.314	29.454	1.0) 25.87	В
	MOTA	3073	CB	THP. B	87	73.532	68.806	29.450	1.00 34.20	В
	ATOM	3074	CGI	THP. B	87	73.876	68.395	28.125	1.00 54.47	В
	ATOM	3075		THP. B	87	72.263	68.107	29.856	1.00 36.26	В
55	ATOM	3076	C	THP. B	87	73.420	70.767	30.903	1.00 30.09	В
			-			- · •				

	ATOM	3077	0	THP. B	87	74.501	71.113	31.381	1.00 30.94	В
	ATOM	3078	N	PRO B	88	72.293	70.771	31.626	1.00 26.03	В
	AT⊕M	3079	CD	PRO B	88	72.370	71.088	33.060	1.00 30.54	В
	ATOM	3080	CA	PRO B	88	70.921	70.406	31.240	1.00 33.13	В
5	ATOM	3081	CB	PRO B	88	70.225	70.211	32.585	1.00 23.85	В
*	ATOM	3082	CG	PRO B	88	70.903	71.248	33.440	1.00 31.91	В
	ATOM	3083	C	PRO B	88	70.228	71.482	30.388	1.00 31.83	В
	ATOM	3084	0	PRO B	88	70.495	72.668	30.535	1.00 29.33	В
	ATOM	3085	N	TYP. B	8.9	59.340	71.059	29.503	1.00 27.84	В
10	ATOM	3086	CA	TYR B	89	68.613	71.990	28.641	1.00 27.54	В
10	ATOM	3087	CB	TYR B	89	58.553	71.414	27.239	1.00 27.73	В
	ATOM	3088	CG	TYP B	89	69.938	71.414	26.722	1.00 27.73	В
	ATOM	3089	CD1		89	70.326	69.759	26.501	1.00 23.37	В
	ATOM	3090	CE1		89	70.326	69.456	26.036	1.00 33.12	B
1.5		3090	CD2		8.9	70.865	72.086	26.467	1.00 23.73	В
15	ATOM		CE2							B
	ATOM	3092			89	72.134	71.795	26.007	1.00 28.60	B B
	ATOM	3093	CZ	TYP B	89	72.492	70.482	25.802	1.00 27.81 1.00 32.86	B B
	ATOM	3094	OH	TYP B	89	73.770	70.211	25.415		
30	ATOM	3095	C		89	67.212	72.242	29.176	1.00 25.88	В
20	ATOM	3096	0	TYP B	8.9	66.333	71.400	29.025	1.00 25.96	В
	ATOM	3097	N	ARG B	90	57.015	73.405	29.790	1.00 25.05	В
	ATOM	3098	CA	ARG B	90	65.732	73.778	30.386	1.00 21.94	P.
	ATOM	3099	CB	ARG B	90	65.950	74.306	31.802	1.00 25.43	В
	ATOM	3100	CG	AP.G B	90	66.836	73.368	32.650	1.00 35.30	В
25	MOTA	3101	CD	ARG B	90	66.308	71.933	32.684	1.00 30.92	В
	ATOM	3102	NE	ARG B	90	65.162	71.857	33.578	1.00 38.77	В
	ATOM	3103	CZ	ARG B	90	64.577	70.721	33.950	1.00 43.50	В
	MOTA	3104		ARG B	90	65.038	69.562	33.500	1.00 42.19	В
	ATOM	3105		ARG B	90	63.529	70.750	34.771	1.00 39.16	В
30	ATOM	3106	C	ARG B	90	55.001	74.823	29.580	1.00 06.84	В
	MOTA	3107	0	ARG B	90	65.540	75.372	28.606	1.00 21.63	P
	ATOM	3108	N	HIS B	91	63.767	75.095	29.999	1.00 24.57	P.
	MOTA	3109	CA	HIS B	91	62.903	76.057	29.318	1.00 23.69	В
	MOTA	3110	CB	HIS B	91	61.570	76.143	30.062	1.00 26.54	P.
35	ATOM	3111	CG	HIS B	91	60.516	76.909	29.326	1.00 34.55	В
	MOTA	3112		HIS B	91	59.414	77.563	29.770	1.00 25.97	В
	MOTA	3113		HIS B	91	60.513	77.035	27.952	1.00 29.34	В
	ATOM	3114		HI3 B	91	59.457	77.735	27.582	1.00 27.53	В
	MOTA	3115		HIS B	91	58.775	78.066	28.666	1.00 34.45	В
40	ATOM	3116	C	HIS B	91	63.546	77.445	29.177	1.00 30.22	В
	ATOM	3117	0	HIS B	91	63.937	78.069	30.161	1.00 23.98	В
	ATOM	3118	Ν	GLT B	92	63.663	77.915	27.941	1.00 25.25	В
	ATOM	3119	CA	GLY B	92	54.260	79.209	27.702	1.00 20.43	В
	ATOM	3120	C	GLY B	8.5	65.752	79.118	27.458	1.00 24.40	В
15	ATOM	3121	C	GLY B	92	66.310	80.102	27.019	1.00 04.34	B
	ATOM	3122	N	ASP B	43	56.407	77.974	27.724	1.00 20 35	B
	ATOM	3123	CA	ASP B	93	67.857	77.884	27.472	1.00 19.73	ь
	ATOM	3124	CB	ASP B	<u>43</u>	58.487	76.575	27.992	1.00 23.61	В
	ATOM	3125	CG	ASP B	93	68.579	76.504	29.504	1.00 20.50	B
50	ATOM	3126	OD1	ASP B	93	68.336	77.522	30.167	1.00 23.89	В
	ATOM	3127	OD2	ASP B	93	58.884	75.401	30.020	1.00 25.06	В
	ATOM	3128	C	ASP B	93	68.138	77.911	25.981	1.00 25.02	В
	ATOM	3129	0	ASP B	93	67.362	77.415	25.170	1.00 24.06	В
	ATOM	3130	N	SER B	94	69.298	78.422	25.625	1.00 21.77	В
55	MOTA	3131	CA	SER B	94	69.641	78.511	24.229	1.00 27.05	В

	2001	2.2.2.2	an.	ann n	0.4		70 070	00.004	1 00 00 57	Б
	ATOM	3132	СВ	SER B		59.779	79.972	23.834	1.00 28.57	В
	MOTA	3133	OG	SER B		70.417	80.035	22.587	1.00 38.84	В
	MOTA	3134	C	SER B		70.935	77.815	23.908	1.00 25.71	В
	ATOM	3135	0	SER B	94	71.833	77.727	24.753	1.00 26.52	В
5	ATOM	3136	N	VAL B	95	71.051	77.331	22.678	1.00 27.36	В
	MOTA	3137	CA	VAL B	95	72.291	76.689	22.245	1.00 26.56	В
	ATOM	3138	CB	VAL B		72.096	75.178	22.088	1.00 26.82	В
	ATOM	3139		VAL B		73.282	74.581	21.344	1.00 34.06	В
	ATOM	3140		VAL B		71.908	74.549	23.460	1.00 30.69	В
1/1				VAL B						В
1()	ATOM	3141	C			72.729	77.273	20.908	1.00 30.07	
	ATOM	3142	0	VAL B		71.303	77.496	20.019	1.00 26.03	В
	ATOM	3143	N	THR B		74.026	77.526	20.758	1.00 27.23	В
	MOTA	3144	CA	THP. B		74.540	78.058	19.503	1.00 23.14	В
	MOTA	3145	CB	THR B	96	75.242	79.419	19.687	1.00 32.77	В
15	ATOM	3146	OG1	THR B	96	74.292	80.383	20.163	1.00 26.94	В
	ATOM	3147	CG2	THR B	96	75.945	79.896	18.329	1.00 26.13	В
	ATOM	3148	C	THR B	96	75.550	77.071	18.915	1.00 33.62	В
	ATOM	3149	0	THR B		76.445	76.614	19.618	1.00 26.19	В
	ATOM	3150	N	PHE B		75.381	76.732	17.638	1.00 28.29	В
20	ATOM	3151	CA	PHE B		76.249	75.788	16.922	1.00 27.82	В
20									1.00 27.32	В
	ATOM	3152	CB	PHE B		75.409	74.849	16.039		
	ATOM	3153	CG	PHE B		74.598	73.858	16.796	1.00 30.99	В
	MOTA	3154		PHE B		73.325	74.183	17.257	1.00 28.10	В
	ATOM	3155		PHE B		75.149	72.633	17.153	1.00 24.15	В
25	MOTA	3156	CE1	PHE B	97	72.608	73.310	18.081	1.00 29.54	В
	MOTA	3157	CE2	PHE B	97	74.434	71.756	17.975	1.00 26.96	В
	MOTA	3158	CZ	PHE B	97	73.155	72.101	18.444	1.00 28.76	В
	MOTA	3159	С	PHE B	97	77.247	76.479	15.980	1.00 33.87	В
	ATOM	3160	0	PHE B	97	77.088	77.663	15.628	1.00 30.90	В
30	ATOM	3161	N	ALA B		73.274	75.725	15.582	1.00 33.98	В
2	ATOM	3162	CA	ALA B		79 366	76.152	14.574	1.00 34.14	В
	ATOM	3163	CB	ALA B		80.551	76.651	15.211	1.00 38.55	В
	ATOM	3164	C	ALA B		79.544	74.880	13.785	1.00 36.15	В
			0	ALA B						В
3.5	ATOM	3165				79.370	73.775	14.312	1.00 35.98	
35	ATOM	3166	N	CYS B		79.953	75.018	12.527	1.00 38.50	В
	ATOM	3167	CA	CYS B		80.166	73.843	11.711	1.00 39.15	В
	MOTA	3168	С	CYS B		81,747	73.512	11.779	1.00 36.00	В
	ATOM	3169	0	CYS B		32.573	74.408	11.865	1.00 32.17	В
	MOTA	3170	CB	CYS B	99	79.±01	74.086	10.251	1.00 42.12	В
40	MOTA	3171	SG	CYS B	99	78.108	74.162	9.949	1.00 40.52	В
	ATOM	3172	N	LYS B	100	82.089	72.229	11.749	1.00 35.70	В
	ATOM	3173	CA	LYS B	100	83.498	71.842	11.770	1.00 40.35	В
	ATOM	3174	СВ	LYS B	100	33.432	70.319	11.848	1.00 43.13	B
	MULTA	3175	CG	LYS B	100	01.195	69.707	13.148	1 00 38.59	В
45	ATOM	3176	CD	LYS B		82.771	68.263	12.966	1.00 44.87	В
7.	ATOM	3177	CE	LYS B		82.689	67.562	14.314	1.00 48.06	В
			NZ				66.122	14.196	1.00 53.59	В
	ATOM	3178		LYS B		82.353				
	ATOM	3179	C	LYS B		84.190	72.329	10.482	1.00 45.56	В
	ATOM	3180	0	LYS B		83.532	72.770	9.525	1.00 42.57	В
50	ATOM	3181	N	THR B		85.519	72.239	10.456	1.00 47.39	В
	ATOM	3182	CA	THR B		86.286	72.651	9.282	1.00 48.55	В
	MOTA	3183	CB	THP. B	101	87.794	72.408	9.497	1.00 48.03	B
	ATOM	3184	OG1	THR B	101	88.281	73.285	10.521	1.00 47.14	В
	ATOM	3185	CG2	THR B	101	88.557	72.683	8.212	1.00 51.80	В
55	ATOM	3186	C	THR B		85.816	71.876	8.042	1.00 47.72	В
			-					· -	_	

	7) CD ".1) f	2107	_	מ מזזיי	101	05 500	70 (01	0 127	1.00 43.56	æ
	ATOM	3187	0	THR B		85.523	70.681	8.127		В
	MOTA	3188	N	ASN B		85.747	72.555	6.901	1.00 47.11	В
	$M \odot TA$	3189	CA	ASN B		85.294	71.943	5.647	1.00 48.36	В
	ATOM	3190	CB	ASN B		85.961	70.594	5.375	1.00 53.67	В
5	MCTA	3191	CG	ASN B		87.451	70.703	5.219	1.00 58.65	В
	ATOM	3192	OD1	ASN B	102	87.980	71.753	4.856	1.00 59.24	В
	$AT \oplus M$	3193	ND2	ASN B	102	88.171	69.599	5.484	1.00 61.19	В
	AT1M	3194	С	ASN B	102	83.797	71.728	5.632	1.00 49.36	В
	ATOM	3195	0	ASN B	102	83.284	70.965	4.814	1.00 51.85	В
10	AT:3:M	3196	N	PHE B		83.097	72.378	6.555	1.00 48.85	В
•	ATOM	3197	CA	PHE B		81.641	72.394	5.617	1.00 44.54	B
	ATOM	3198	CB	PHE B		81.179	71.539	7.855	1.00 44.01	В
	ATOM	3199	CG	PHE B		81.335	70.067	7.740	1.00 45.42	В
		3200	CD1				69.461	8.037	1.00 47.36	В
1.2	ATOM ATOM					82.554		7.323		В
15	ATOM	3201	CD2			80.270	69.274		1.00 44.68	
	ATOM	3202	CE1			82.715	63.054	7.921	1.00 44.91	В
	ATOM	3203	CE2			80.413	67.833	7.202	1.00 46.13	В
	ATOM	3204	CZ	PHE B		81.638	67.276	7.503	1.00 44.51	В
	ATOM	3205	C	PHE B		81.103	73.700	6.663	1.00 43.79	В
20	AT≎M	3206	0	PHE B		81.736	74.577	7.239	1.00 41.42	В
	AT∷M	3207	N	SER B		79.939	73.908	6.052	1.00 46.45	В
	AT⊕M	3208	CA	SER B	104	79.306	75.216	6.007	1.00 47.47	В
	M:0TA	3209	CB	SER B	104	79.176	75.70€	4.570	1.00 53.61	В
	ATGM	3210	OG	SER B	104	77.836	75.379	4.057	1.00 61.85	В
25	ATOM	3211	C	SER B	104	77.921	75.051	6.596	1.00 46.27	В
	$AT \odot M$	3212	0	SER B	104	77.235	74.007	6.425	1.00 46.36	В
	ATOM	3213	N	MET B	105	77.435	76.089	7.269	1.00 47.80	В
	ATOM	3214	CA	MET B	105	76.129	75.398	7.913	1.00 50.16	В
	ATOM	3215	CB	MET B		75.114	76.848	9.184	1.00 42.24	В
30	ATOM	3216	CG	MET B		74.783	76.829	9.931	1.00 39.50	В
	ATOM	3217	SD	MET B		74.951	77.535	11.559	1.00 31.98	В
	MOTA	3218	CE	MET B		76.153	76.456	12.300	1.00 32.14	В
	ATOM	3219	C	MET B		74.948	76.398	7.046	1.00 52.75	В
	ATOM	3220	0	MET B		75.066	77.234	6.147	1.00 52.67	В
35	ATOM	3221	N	ASN B		73.807	75.787	7.343	1.00 57.15	В
-7"	ATOM	3222	CA	ASN B		72.560	76.072	6.664	1.00 56.25	В
		3223			106	72.136	74.950	5.722	1.00 53.25	В
	ATOM		CB							
	ATOM	3224	CG	ASN B		72.678	75.210	4.332	1.00 72.25	В
• ()	MOTA	3225		ASN B		72.787	76.372	3.916	1.00 78.63	В
40	ATOM	3226		ASN B		72.995	74.141	3.597	1.00 74.20	В
	ATOM	3227	C	ASN B		71.504	76.200	7.727	1.00 54.17	В
	$AT \oplus M$	3228	0	ASN B		71.303	75.277	8.508	1.00 56.24	В
	ATDM	3229	N	GLY B		70.833	77.342	7.762	1.00 50.67	В
	ATOM	3230	CA	GLY B		69.805	77.552	8.763	1.00 44.02	В
45	ATCM	3231	C	GLY B		70.334	73.414	9.886	1.00 42.66	В
	$\Lambda T \cap M$	3230	0	GLY B	107	71.478	78.864	9.854	1.00 41.68	В
	ATOM	3233	N	ASN B	108	69.500	73.646	10.889	1.00 45.24	B
	ATOM	3.134	CA	ASN B		69.378	79.464	12.032	1.00 47.08	В
	ATOM	3235	CB	ASN B	108	68.613	79.910	12.751	1.00 55.35	В
50	ATCM	3236	CG	ASN B	108	67.793	80.851	11.903	1.00 63.30	В
	ATOM	3237	OD1	ASN B	108	68.164	82.013	11.722	1.00 67.44	В
	ATOM	3238		ASN B		66.691	80.352	11.346	1.00 68.11	В
	ATOM	3239	C	ASN B		70.808	78.723	12.981	1.00 39.04	В
	AT⊖M	3240	Ō	ASN B		70.560	77.577	13.347	1.00 33.47	В
55	AT⊕M	3241	N	LYS B		71.858	79.406	13.402	1.00 34.53	В
						2.000				_

	MOTA	3242	CA	LYS B 1	09	72.859	78.806	14.280	1.00	35.55	В
	ATOM	3243	CB	LYS B 1	09	74.138	79.632	14.217	1.00	35.53	В
	ATOM	3244	CG	LYS B 1	09	73.909	81.037	14.678	1.00	37.21	В
	MOTA	3245	CD	LYS B 1	09	75.176	81.691	15.171	1.00	43.67	В
5	ATOM	3246	CE	LYS B 1	09	74.913	83.141	15.501	1.00	53.84	В
	MOTA	3247	NΖ	LYS B 1	09	76.079	83.848	16.134	1.00	67.33	В
	MOTA	3243	C	LYS B 1	09	72.456	78.639	15.753	1.00	33.59	В
	ATOM	3249	0	LYS B 1	09	73.116	77.900	16.490	1.00	32.99	В
	ATON	3250	N	SER B 1	10	71.409	79.337	16.198	1.00	29.02	В
10	ATOM	3251	CA	SER B 1	10	70.972	79.239	17.597	1.00	31.62	В
	ATOM	3252	CB	SER B 1		71.068	80.588	18.298	1.00	28.39	В
	ATEM	3253	OG	SER B 1	10	72.395	81.073	18.276	1.00	35.28	В
	ATIH	3254	С	SER B 1	10	69.547	78.730	17.734	1.00	33.04	В
	ATOM	3255	0	SER B 1	10	68.665	79.049	15.935	1.00	28.18	В
15	$AT \cap M$	3256	N	VAL B 1	11	69.336	77.927	13.751	1.00	32.94	В
	MOTA	3257	CA	VAL B 1	11	68.028	77.360	19.032	1.00	28.12	В
	AT:01:1	3258	CB	VAL B 1	11	67.998	75.911	18.507	1.00	34.53	В
	ATOM	3259	CG1	VAL B 1	11	69.117	75.074	19.143	1.00	27.59	В
	ATON	3260	CG2	VAL B 1	11	66.694	75.304	18.785	1.00	41.47	В
20	MOTA	3251	С	VAL B 1	11	67.729	77.488	20.539	1.00	26.65	В
	ATUM	3262	Ö	VAL B 1	11	68.631	77.621	21.359	1.00	27.71	В
	AT:0M	3263	N	TRP B 1	12	66.447	77.496	20.866	1.00	26.33	В
	ATON	3254	CA	TRP B 1	12	65.932	77.654	22.205	1.00	21.46	В
	ATOM	3265	CB	TRP B 1	12	65.023	78.895	22.287	1.00	27.43	В
- 25	ATOM	3266	CG	TRP B 1	12	65.772	80.142	22.392	1.00	28.72	В
	ATOM	3267	CD2	TRP B 1	12	66.455	80.818	21.323	1.00	27.13	В
	HITA	3268	CE2	TRP B 1	12	67.130	81.922	21.894	1.00	23.65	В
	AT DI-I	3269	CE3	TRP B 1	12	66.560	80.595	19.944	1.00	27.06	В
	MOTA	3370	CD1	TRP B 1	12	66.053	80.949	23.543	1.00	29.24	В
30	ATOM	3071	NEl	TRP B 1	12	66.875	81.915	23.242	1.00	23.18	В
	AT:01:1	3272	CZ2		12	67.896	82.304	31.133	1.00	24.55	В
	ATOM	3273	CZ3	TRP B 1	12	67.328	81.476	19.179	1.00	32.51	В
	$M \cup T A$	3274	CH2	TRP B 1	12	67.985	82.570	19.792	1.00	28.74	В
	$AT \odot M$	32/5	C	TRP B 1		65.113	76.462	22.622	1.00	24.09	В
35	$AT \odot M$	3276	Õ	TRP B 1		64.348	75.924	21.826	1.00	23.03	В
	ATOH	3077	N	CYS B 1		65.257	76.065	23.886	1.00		В
	II: TA	31.78	CA	CYS B 1		64.507	74.942	24.421	1.00		В
	ATOM	3279	С	CYS B 1		63.090	75.442	24.775	1.00		В
	$M \oplus T A$	3280	0	CYS B 1		62.892	76.248	25.702	1.00		В
40	ATUH	3281	CB	CYS B 1		65.230	74.386	25.636	1.00		В
	ATCH	3282	SG	CYS B 1		64.295	73.084	26.474	1.00		В
	HITA	3083	N	GLN B 1		62.105	74.973	24.014	1.00		В
	ATOM	3284	CA	GLN B 1		60.704	75.406	24.190	1.00		В
	ATOM	3285	CB	GLN B 1		59.993	75.312	00.852	1.00		В
45	$AT \cup M$	34.00	CG	GLN B 1		60.669	76.101	21.776	1.00		В
	ATIM	3087	CD	GLN B 1		59.934	75.957	20.455	1.00		8
	AT:0:14	3088		GLN B 1		59.540	74.850	20.084	1.00		В
	$M \cup TA$	3289		GLN B 1		59.749	77.062	19.744	1.00		В
	MOTA	3290	C	GLN B 1		59.918	74.632	25.242	1.00		В
50	ATOM	3291	0	GLN B 1		60.324	73.557	25.638	1.00		В
	MOTA	3292	N	ALA B 1		58.806	75.187	25.704	1.00		В
	MUTA	3293	CA	ALA B 1		57.984	74.520	26.720	1.00		В
	MOTA	3294	CB	ALA B 1		56.769	75.392	27.068	1.00		В
	MOTA	3295	C	ALA B 1		57.523	73.107	26.316	1.00		В
55	MOTA	3296	0	ALA B 1	15	57.338	72.237	27.170	1.00	33.21	В

	ATOM	3297	11	ASN B	115	57.343	72.881	25.020	1.00 36.70	В
	ATOM	3298	CA.	ASN B		56.913	71.573	24.526	1.00 33.02	В
				ASN B		56.230	71.728	23.168	1.00 34.90	В
	ATOM	3299	GB GB						1.00 33.42	В
_	ATOM	3300	CG	ASN B		57.198	72.144	22.087		
5	ATOM	3301		ASN B		58.359	72.454	22.364	1.00 28.93	В
	ATOM	3302		ASN B		56.728	72.167	20.853	1.00 30.38	В
	ATOM	3303	C.	ASN B		58.104	70.608	24.392	1.00 34.77	В
	ATOM	3304	(])	ASN B		58.017	69.612	23.695	1.00 37.53	В
	AT⊕M	3305	11	ASN B		59.219	70.937	25.044	1.00 35.32	В
10	$AT \bigcirc M$	3306	CA	ASN B		60.425	70.094	25.072	1.00 31.01	В
	$AT \bigcirc M$	3307	€B	ASN B		60.095	68.728	25.699	1.00 35.35	В
	$AT \cap M$	3308	CG.	ASN B	117	59.327	68.855	27.022	1.00 41.69	В
	ATQM	3309	OD1	ASN B	117	58.165	68.448	27.116	1.00 48.82	В
	ATOM	3310	ND2	ASN B	117	59.966	69.428	28.041	1.00 38.48	В
15	MOTA	3311	C	ASN B	117	61.155	69.913	23.753	1.00 35.04	В
	ATOM	3312	0	ASN B	117	61.989	69.010	23.584	1.00 30.97	В
	ATOM	3313	N	MET B	118	60.877	70.804	22.814	1.00 32.90	В
	ATOM	3314	CA	MET B		61.544	70.747	21.539	1.00 30.69	В
	ATOM	3315	CB		118	60.533	70.486	20.426	1.00 39.19	В
20	ATOM	3316	СG	MET B		60.143	69.004	20.284	1.00 45.35	В
-0	ATOM	3317	SD	MET B		58.844	68.904	19.065	1.00 61.98	В
	ATOM	3318	CE	MET B		57.379	68.930	20.152	1.00 59.12	В
	ATOM	3319	C	MET B		62.299	72.033	21.290	1.00 32.74	B
	ATOM	3320	Ö	MET B		61.958	73.093	21.820	1.30 31.41	В
25	ATOM	3321	N	TEP B		63.322	71.913	20.460	1.00 30.27	В
23			CA	TEP B		64.197	73.007	20.122	1.00 32.04	В
	ATOM	3322					72.477	19.556	1.00 02.04	В
	ATOM	3323	CB aa	TEP B		65.519			1.00 34.09	В
	ATOM	3324	CG CG			66.377	71.888	20.618		В
3.0	ATOM	3325	CD2			67.091	72.613	21.638	1.00.29.55	В
30	ATOM	3316	CE2	TPP B		67.641	71.653	22.514	1.00 32.16	В
	ATOM	3327	CE3	TRP B		67.309	73.974	21.891	1.00 27.61	
	ATOM	3328	CD1			66.533	70.563	20.907	1.00 27.66	В
	ATOM	3329	NE1	TEP B		67.287	70.419	22.045	1.00.09.97	В
	ATOM	3330	172			68.401	72.018	23.634	1.00 33.69	В
35	MOTA	3331	CZ3	TRP B		68.067	74.333	23.002	1.00 23.67	В
	ATOM	3332	CHO	TEP B		68.603	73.356	23.860	1.00 29.17	В
	ATOM	3333	C	TEP B		63.672	74.059	19.188	1.00 35.37	В
	ATOM	3334	ı(j)	TPP B		62.946	73.750	18 264	1.00 34.01	В
	ATOM	3335	11	GLY B		64.129	75.279	19.507	1.00 44.82	В
40	ATOM	3336	CA	GLY B		63.928	76.577	18.868	1.00 40.39	В
	MOTA	3337	.J	GLY B		62.736	76.818	18.037	1.00 45.27	В
	MOTA	3338	(j)	GLY B	120	61.922	75.920	17.884	1.00 - 54.52	В
	ATOM	3339	11	PRO B	121	62.570	78.049	17.525	1.00 39.72	В
	ATOM	3340	CD	PRO B	121	63.331	79.268	17.805	1.00 34.64	В
45	ATOM	3341	CA	PRO B	121	61.411	78.339	16.678	1.00 40.69	В
	ATOM	3342	CB	PRO B	121	61.355	79.869	16.674	1.00 33.54	В
	MOTA	3343	CG.	PRO B	121	62.781	80.221	16.775	1.00 38.11	В
	ATOM	3344	1	PRO B	121	61.717	77.733	15.294	1.90 33.17	В
	ATOM	3345	,-,·	PRO B		60.817	77.305	14.591	1.11 40.16	В
50	ATOM	3346	11	THP B		62.994	77.693	14.930	1.00 33.84	В
	ATOM	3:4/	CA	THR B		63.424	77.113	13.660	1.00 38.91	В
	ATOM	3348	CB	THP. B		64.548	77.939	12.988	1.00 42.26	В
	ATOM	3349		THE B		65.803	77.671	13.634	1.00 39.47	В
	ATOM	3350	CG2			64.259	79.431	13.106	1.00 40.58	В
55	ATOM	3351	2	THR B		63.968	75.708	13.874	1.00 40.61	В
22	AIUM	222T	_	I IIK B	1	03.300	/3./08	17.0/4	1.03 40.01	7

	ATOM	3352	0	THR B 122	64.163	75.266	14.999	1.00 43.52	В
	ATOM	3353	11	ARG B 123	64.220	75.005	12.784	1.00 42.70	В
	ATOM	3354	CA	AR3 B 123	64.762	73.656	12.870	1.00 45.43	В
	ATOM	3355	CB	ARG B 123	64.505	72.912	11.549	1.00 48.19	В
5	ATOM	3356	CG	ARG B 123	64.849	71.433	11.600	1.00 63.34	В
	ATOM	3357	CD	ARG B 123	64.109	70.638	10.517	1.00 71.72	В
	ATOM	3358	NE	ARG B 123	62.664	70.564	10.762	1.00 75.72	В
									В
	MOTA	3359	CZ	ARG B 1.3	61.734	70.934	9.881	1.00 77.53	
	MOTA	3360		ARG B 123	62.096	71.410	8.690	1.00 79.13	В
10	ATOM	3361		ARG B 123	60.444	70.820	10.184	1.00 75.29	В
	ATOM	3362	C	ARG B 123	66.270	73.774	13.141	1.00 35.14	В
	ATOM	3363	Û	APG B 103	66.861	74.816	12.880	1.00 34.06	В
	ATOM	3364	11	LEU B 124	66.888	72.714	13.659	1.00 36.62	В
	ATOM	3365	CA	LEU B 124	68.326	72.743	13.939	1.00 35.58	В
15	ATOM	3366	CB	LEU B 124	68.818	71.410	14.509	1.00 37.22	В
	MOTA	3367	CG	LEU B 124	68.399	71.019	15.933	1.00 33.58	В
	MOTA	3368		LEU B 134	69.008	69.670	16.342	1.00 37.12	В
	ATOM	3369		LEU B 124	68.860	72.097	16.874	1.00 34.15	В
	ATOM	3370	C	LEU B 124	69.081	73.029	12.656	1.00 37.07	В
20					68.701			1.00 37.07	В
20	ATOM	3371	0	LEU B 124		72.584	11.583		
	MOTA	3372	N	PRO B 125	70.168	73.787	12.750	1.00 40.36	В
	ATOM	3373	CD	PEO B 125	70.832	74.306	13.962	1.00 38.05	В
	MOTA	3374	CA	PRO B 125	70.933	74.085	11.538	1.00 35.47	В
	ATOM	3375	CB	PRO B 125	71.993	75.069	12.029	1.00 35.51	В
25	MOTA	3376	CG	PRO B 105	72.224	74.641	13.460	1.00 35.57	В
	MOTA	3377	C	PEG B 105	71.535	72.794	11.002	1.00 40.45	В
	ATOM	3378	0	PEO B 115	71.432	71.739	11.640	1.00 33.92	В
	ATOM	3379	11	THE B 136	72.131	72.867	9.814	1.00 41.58	В
	MOTA	3380	CA	THR B 126	72.765	71.704	9.217	1.00 41.03	В
30	ATOM	3381	CB	THR B 126	71.929	71.137	8.006	1.00 42.99	В
	ATOM	3382	OG1	THR B 126	71.625	72.182	7.075	1.00 45.10	В
	ATOM	3383	CG2	THP B 126	70.628	70.529	8.503	1.00 40.83	В
	ATOM	3384	C	THR B 126	74.157	72.116	8.777	1.00 41.16	В
	ATOM	3385	(<u>)</u>	THE B 126	74.415	73.299	8.544	1.00 40.35	В
35	MOTA	3386	11	CY3 B 117	75.074	71.158	8.716	1.00 42.86	В
	ATOM	3387	CA	CYS B 127	76.433	71.468	8.279	1.00 43.44	В
	ATOM	3388	C	CYS B 127	76.774	70.561	7.098	1.00 53.76	В
	MOTA	3389	0	CYS B 127	76.711	69.336	7.219	1.00 55.59	В
	ATOM	3390	CB	CYS B 127	77.440	71.249	9.422	1.00 49.23	B
40	ATOM	3391	SG	CYS B 127	77.365	72.471	10.779	1.00 41.21	В
70	ATOM MOT'A	3392	11	VAL B 128	77.117	71.159	5.960	1.00 53.99	В
		3393	CA.	VAL B 128	77.117	70.386	4.764	1.00 58.11	В
	MOTA						3.612	1.00 50.17	В
	ATOM	3394	CB	VAL B 128	76.479	70.674			_
	MOTA	3395		VAL B 128	76.356	72.179	3.395	1.00 59.61	В
45	MOTA	3396		VAL B 128	76.974	70.005	2.322	1.00 62.78	В
	MOTA	3397	C	VAL B 128	78.881	70.738	4.290	1.00 55.96	В
	ATOM	3398	O	VAL B 108	79.307	71.875	4.427	1.00 56.76	В
	$AT \cap M$	3399	1,1	SEF B 179	79.604	69.763	3.747	1.00 58.88	B
	ATOM	3400	CA	SER B 139	80.976	69.974	3.241	1.00 63 04	ā
50	MOTA	3401	CB	SEP B 129	81.480	68.685	2.616	1.00 64.42	В
	ATOM	3402	OG	SEM B 119	80.566	68.249	1.633	1.00 74.77	В
	$AT \cup M$	3403	C	SER B 129	81.061	71.092	2.194	1.00 60.01	В
	ATOM	3404	0	SER B 129	82.054	71.856	2.166	1.00 59.63	В
	ATOM	3405	OXT	SER B 129	80.121	71.165	1.381	1.00 61.43	В
55	ATOM	3406	СВ	ALA C 1	51.630	81.929	2.879	1.00 35.79	С
		2 - 2 - 3			32.030			· _	

	T TOM	3407	С	ALA C	1	50.853	84.288	2.366	1.00 35.46	ů,
	ATOM						85.212	2.282	1.00 40.99	Č
	MCTA	3408	0	ALA C	1	50.053				.7
	MOTA	3409	N	ALA C	1	49.558	82.473	1.552	1.00 39.80	S
	MOTA	3410	CA	ALA C	1	50.332	82.883	2.708	1.00 38.04	C
5	MOTA	3411	N	ILE C	2	52.138	84.436	2.113	1.00 25.56	·C
	ATOM	3412	CA	ILE C	2	52.684	85.736	1.810	1.00 32.00	:7
	ATOM	3413	CB	ILE C	2	53.982	85.933	2.591	1.00 24.33	Ç
	MOTA	3414	CG2	ILE C	2	54.794	87.063	1.974	1.00 24.84	C
	ATOM	3415	CG1		2	53.547	86.140	4.085	1.00 31.72	C
10	MOTA	3416	CD1		2	54.375	86.286	5.004	1.00 28.23	Ċ
10	ATOM	3417	C	ILE C	2	52.955	85.930	0.331	1.00 29.98	Č
								-0.364	1.00 24.28	Ç
	ATOM	3418	0	ILE C	2	53.280	84.966			
	ATOM	3419	N	SER C	3	52.816	87.164	-0.156	1.00 25.13	C
	ATOM	3420	CA	SER C	3	53.130	87.453	-1.564	1.00 24.56	C
15	MOTA	3421	CB	SER C	3	51.348	87.773	-2.360	1.00 23.32	C
	MOTA	3422	OG	SER C	3	51.206	88.949	-1.866	1.00 28.18	C
	ATOM	3423	С	SER C	3	54.111	88.630	-1.651	1.00 28.79	C
	MOTA	3424	0	SER C	3	54.240	89.413	-0.703	1.00 25.00	C
	ATOM	3425	N	CYS C	-1	54.834	88.720	-2.766	1.00 24.82	C
20	ATOM	3426	CA	CYS C	4	55.760	89.824	-3.003	1.00 23.87	C
	MOTA	3427	C	CYS C	4	55.114	90.751	-4.020	1.00 26.63	C
	ATOM	3428	0	CYS C	-1	54.488	90.277	-4.974	1.00 24.86	Ċ
	ATOM	3429	CB	CYS C	-1	57.075	89.341	-3.595	1.00 26.41	3
						53.182	88.516	-2.412	1.00 26.19	ć
3.	ATOM	3430	SG	CYS C	4		92.056	-3.843	1.00 25.01	C
25	ATOM	3431	N	GLY C	5	55.270				C
	ATOM	3432	CA	GLY C	5	54.697	93.002	-4.800	1.00 23.78	
	ATOM	3433	C	GLY C	5	55.467	93.100	-6.115	1.00 33.19	C
	ATOM	3434	0	GLY C	5	56.444	92.346	-6.350	1.00 24.73	C
	MOTA	3435	N	SER C	6	55.020	94.068	-6.975	1.00 24.24	Ç
30	MOTA	3436	CA	SER C	ń	55.654	94.257	-8.285	1.00 31.29	C
	ATOM	3437	CB	SER C	6	54.994	95.528	-8.834	1.00 28.12	C
	MOTA	3438	OG	SER C	6	53.739	95.485	-9.097	1.00 30.57	77
	ATOM	3439	С	SER C	6	57.187	94.422	-8.106	1.00 28.51	C
	MOTA	3440	0	SER C	6	57.691	95.162	-7.262	1.00 27.78	J
35	ATOM	3441	N	PRO C	'?	57.931	93.562	-8.849	1.00 24.89	C
	ATOM	3442	CD	PRO C	7	57.432	92.669	-9.919	1.00 29.34	С
	ATOM	3443	CA	PRO C	• • •	59.391	93.554	-8.765	1.00 29.21	C
	ATOM	3444	CB	PRO C	7	59.778	92.308	-9.570	1.00 30.50	₹
	ATOM	3445	CG	PRO C	7	58.721		-10.660	1.00 34.19	Ċ
40	ATOM	3446	C	PRO C	7	60.066	94.829	-9.286	1.00 25.82	Č
40				PRO C	7			-10.054	1.00 20.82	Ĉ
	ATOM	3447	0			59.490				C
	ATOM	3448	N	PRO C	8	61.312	95.071	-8.879	1.00 25.55	
	MOTA	3449	CD	PRO C	8	62.239	94.221	-8.107	1.00 22.99	C
	MOTA	3450	CA	PRO C	8	61.972	96.293	-9.360	1.00 27.11	C
45	MOTA	3451	CB	PRO C	8	63.315	96.292	-8.613	1.00 23.33	C
	ATOM	3452	CG	PRO C	8	53.116	95.255	-7.464	1.00 30.29	C
	MOTA	3453	С	PRO C	8	62.162	96.260	-10.877	1.00 27.57	:
	ATOM	3454	0	PRO C	8	62.478		-11.457	1.00 27.35	C
	MOTA	3455	N	PRO C	9	61.945	97.401	-11.550	1.00 18.13	C
50	$AT \cap M$	3456	CD	PRO C	54	51.527	98.718	-11.049	1.00 30.53	C
	ATOM	3457	CA	PRO C	ϵ_i	52.116	97.415	-13.009	1.00 29.41	C
	ATOM	3458	CB	PRO C	9	51.430	98.714	-13.417	1.00 30.12	C
	ATOM	3459	CG	PRO C	9	61.742		-12.272	1.00 31.67	Ç
	ATOM	3460	C	PRO C	9	63.607		-13.404	1.00 37.14	C
55	ATOM	3461	0	PRO C	9	64.487		-12.572	1.00 30.31	Ċ
'	WI. C.I.I	3 1 0 1	_	1100	,	01.40/	J , . UUI			Č

	ATOM	3462	N	ILE C	10	63.883	97.070	-14.669	1.00 30.28	C
	ATOM	3463	CA	ILE C	10	65.252	97.015	-15.166	1.00 29.72	C
	ATOM	3464	СВ	ILE C	10	65.704		-15.351	1.00 30.40	C
	ATOM	3465	CG2		10	54.708		-16.273	1.00 30.23	C
5	ATOM	3466		ILE C	10	67.121		-15.931	1.00 28.32	C
•	ATOM	3467	CD1		10	67.729		-15.907	1.00 27.53	C
	MCTA	3468	C	ILE C	10	65.380		-16.488	1.00 36.89	Ĉ
	ATOM	3469	0	ILE C	10	64.732		-17.491	1.00 34.25	Ĉ
	ATOM	3470	N	LEU C	11	66.219		-16.483	1.00 38.68	Ĉ
Lo	ATOM	3470	CA	LEU C	11	66.436		-17.678	1.00 36.69	Č
10	ATOM ATOM	3471	CB	LEU C	11		100.846		1.00 40.95	C
	ATOM ATOM	3472	CG	LEU C	11		100.189		1.00 45.07	C
	MOTA	3474		LEU C	11		102.575		1.00 43.54	Ĉ
	ATOM	3474		LEU C	11		103.215		1.00 43.98	Ĉ
1 5		3475		LEU C	11	67.176		-18.758	1.00 43.30	C
15	MCTA	3476	C	LEU C	11	57.1 5 68.1±3		-18.475	1.00 37.78	Ċ
	ATOM		N O	ASN C	12	56.630		-19.988	1.00 37.75	C
	ATOM	3478		ASN C	12	67.284		-21.121	1.00 30.23	C
	ATOM	3479	CA	ASN C	12	57.264 68.705		-21.351	1.00 28.03	C
2//	ATOM	3480	CB	ASN C	12		100.231		1.00 38.34	Ċ
20	ATOM	3481	CG	ASN C	12		101.036		1.00 42.08	Ċ
	ATOM	3482		ASN C	12		100.596		1.00 47.13	C
	ATOM	3483			10	67.294		-20.910	1.00 44.31	C
	ATOM BEOM	3484	C	ASN C	12	58.253		-21.417	1.00 38.50	Ċ
3.5	ATOM	3485	O N	GLY C	13	66.330		-20.179	1.00 37.43	č
25	ATOM	3486	N		13	66.219		-19.993	1.00 37.43	C
	ATOM	3487	CA C	GLY C	13	64.776		-19.800	1.00 37.37	C
	ATOM	3488	0	GLY C	13	63.859		-19.928	1.00 37.34	C
	MOTA	3489		ARG C	14	64.557		-19.493	1.00 37.34	C
241	ATOM ATOM	3490 3491	N	ARG C	14	53.201		-19.493	1.00 35.35	C
30	ATOM ATOM	3491	CA CB	ARG C	14	62.562		-20.558	1.00 35.64	C
		3492	CG	ARG C	14	63.338		-21.221	1.00 41.02	Ċ
	ATOM ATOM	3493	CD	ARG C	14	63.739		-22.634	1.00 51.45	c
				ARG C	14	64.692		-02.649	1.00 03.10	đ
35	ATOM ATOM	3495 3496	NE CZ	ARG C	14	64.669		-23.528	1.00 76.84	Č
.5.5	MOTA MOTA	3496		ARG C	14	63.736		-24.477	1.00 76.76	C
	ATOM	3497	NH2		14	65.576		-23.457	1.00 76.70	C
	ATOM	3498	C	ARG C	14	63.179		-18.224	1.00 76.89	C
	ATOM	3500	0	ARG C	14	54.211		-17.875	1.00 34.30	C
40	MOTA	3500	N	ILE C	15	61.985		-17.725	1.00 30.74	C
+0	ATOM	3501	CA	ILE C	15	61.809		-16.740	1.00 32.32	Ç
	ATOM	3502	CB	ILE C	15	61.043		-15.525	1.00 31.54	Ĉ
		3504	CG2		15	60.749		-14.553	1.00 31.34	C
	MOTA	3504		ILE C		61.862		-14.893	1.00 23.41	C
1.5	MOTA			ILE C	15 15	61.096		-13.959	1.00 30.46	c
45	ATOM ATOM	3506 3507	CDI	ILE C	15	61.013		-17.357	1.00 20.40	C
	ATOM				15	50.014		-18.022	1.00 39.51	Ç
	ATOM ATOM	3508	O N	ILE C SER C				-17.136	1 00 39 22	رن ب.
	ATOM	3509	N		16 16	51,469 60,762		-17.623	1.00 50.26	Ċ
50	ATOM	3510	CA	SER C				-17.623	1.00 50.26	C
50	ATOM NO M	3511	CB	SER C	16	61.410			1.00 53.90	2
	ATOM	3512	OG G	SER C	16	61.213		-15.655	1.00 59.12	Č
	ATOM	3513	C	SER C	16	59.326		-17.091		<u></u>
	ATOM	3514	0	SER C	16	59.097		-15.911	1.00 46.35	C
	ATOM	3515	N	TYR C	17	58.377		-17.961	1.00 54.91	C
55	MOTA	3516	CA	TYR C	17	56.951	85.453	-17.629	1.00 50.96	С

	MC TA	3517	CB	TYR C	17	56.154	85 806	-18.765	1.00 56.78	C
	AT DM	3518	CG	TYR C	17	54.665		-18.578	1.00 58.05	C
	ATOM	3519	CD1		17	54.109		-19.309	1.00 59.99	C
_	ATEM	3520	CE1		17	52.751		-19.071	1.00 61.22	C
5	ATIM	3521	CD2		17	53.822		-18.004	1.00 55.94	Ç
	ATIM	3522	CE2		17	52.457		-17.354	1.00 58.29	C
	AT DI	3523	CZ	TYP. C	17	51.926	86.620	-18.395	1.00 61.48	C
	$AT \cup M$	3524	OH	TYR C	17	50.577	85.917	-18.272	1.00 63.66	C
	AT:DM	3525	C	TYR C	17	56.708	85.652	-15.350	1.00 49.21	C
10	ATOM	3526	0	TYR C	17	57.228	84.555	-16.189	1.00 51.47	C
	ATOM	3527	N	TYR C	18	55.921	86.212	-15.459	1.00 49.68	C
	ATOM	3528	CA	TYP. C	18	55.600	85.528	-14.218	1.00 46.63	C
	АТЭИ	3529	CB	TYR C	18	56.361		-13.033	1.00 42.78	C
	ATOM	3530	CG	TYR C	18	56.242		-12.969	1.00 35.46	Ċ
15	ATOM	3531		TYR C	18	57.129		-13.678	1.00 36.33	Ċ
• •	AT DM	3532	CE1		18	56.996		-13.663	1.00 33.08	č
	ATUM	3533	CD2		18	55.220		-12.243	1.00 33.00	C
	ATIM	3534	CE2	TYR C	18	55.083		-12.218	1.00 29.35	C
			CZ	TYR C				-12.931	1.00 27.89	C
20	ATEM	3535			18	55.968				
20	META	3536	ОН	TYP C	18	55.863		-12.860	1.00 32.49	C
	ATIM	3537	C	TYR C	18	54.100		-14.022	1.00 43.03	C
	ATDM	3538	0	TYR C	18	53.496		-14.513	1.00 41.84	C
	ATOM	3539	N	SER C	19	53.496		-13.314	1.00 44.03	C
	ATOM	3540	CA	SER C	19	52.067		-13.068	1.00 49.05	C
25	ATOM	3541	CB	SER C	19	51.430		-13.036	1.00 48.59	C
	ATIM	3542	OG	SER C	19	52.115		-12.147	1.00 50.14	C
	ATIM	3543	C	SER C	19	51.823	85.584	-11.749	1.00 50.35	С
	AT H	3544	0	SER C	19	52.661	85.567	-10.839	1.00 46.39	C
	ATUM	3545	N	THR C	20	50.607	86.109	-11.537	1.00 52.04	C
30	ATMI	3546	CA	THR C	20	50.099	85.37%	-10.438	1.00 53.58	С
	AT 1 M	3547	CB	THR C	20	49.571	88.093	-11.054	1.00 55.84	С
	ATOM	3548	OG1	THR C	20	48.476	88.030	-11.940	1.00 60.69	С
	$\Lambda T \oplus H$	3549	CG2		20	50.671	89.029	-11.802	1.00 52.60	C
	ATIM	3550	С	THR C	20	49 003	86.277	-9.703	1.00 56.21	C
35	ATIM	3551	0	THR C	20	48.037		-10.339	1.00 59.04	C
	ATOM	3552	N	PRO C	21	49.034	86.244	-3.386	1.00 47.82	C
	ATOH	3553	CD	PRO C	21	48.004	85.901	-7.326	1.00 47.40	Č
	ATOM	3554	CA	PRO C	21	50.027	86.916	-7.519	1.00 42.99	Č
	ATOM	3555	CB	PRO C	21	49.335	86.932	-6.151	1.00 43.36	Č
40	ATIM	3556	CG	PRO C	21	48.022	86.266	-6.380	1.00 47.21	C
40	ATOM	3557		PRO C	21	51.356	86.153		1.00 47.21	C
			C	PRO C				-7.464		C
	ATOM	3558	0		21	51.481	85.058	-3.071	1.00 37.13	
	ATOM	3559	N	ILE C	22	52.324	86.813	-6.805	1.00 33.73	C
	ATOM	3560	CA	ILE C	22	53.546	85.016	-ห์.ห์76	1.00 31.36	C
45	ATCM	3561	CB	TTE C	22	54.706	87 316	-ნ.∄35	1.00 33.33	C
	<u>A</u> Tri-[1]	3562		ILE C	22	56.125	86.572	-6.755	1.00 33.08	C
	${ m AT}{ m OM}$	3563		ILE C	22	54.541	87.724	-8.423	1.00 24.06	C
	ATOM	356 4		ILE C	22	55.565	83.376	-8.747	1.00 24.35	C
	ATOM	3565	С	ILE C	22	53.824	85.628	-5.269	1.00 34.54	C
50	ATOM	3566	0	ILE C	22	53.977	86.348	-4.285	1.00 28.13	C
	ATOM	3567	N	ALA C	23	53.864	84.299	-5.155	1.00 28.78	C
	MOTA	3568	CA	ALA C	23	54.048	83.695	-3.836	1.00 30.59	C
	MOTA	3569	CB	ALA C	23	53.437	82.316	-3.834	1.00 31.70	С
	MUTA	3570	С	ALA C	23	55.517	83.599	-3.412	1.00 30.12	С
55	ATOM	3571	Ō	ALA C	23	56.399	83.517	-4.266	1.00 25.80	C
			-							-

	ATOM	3572	11	VAL C	24	55.784	83.613	-2.102	1.00 32.21	С
	ATOM	3573	CA	VAL C	24	57.165	83.456	-1.625	1.00 30.00	Č
	ATOM	3574	CB	VAL C	24	57.272	83.290	-0.087	1.00 35.52	C
	ATOM	3575		VAL C	24	56.808	84.563	0.597	1.00 35.78	C
5	AT I-M	3576		VAL C	24	56.459	82.108	0.378	1.00 33.11	C
	ATOM	3577	C	VAL C	24	57.673	82.175	-2.253	1.00 31.34	C
	ATOM	3578	0	VAL C	24	56.918	81.231	-2.413	1.00 28.53	C
	ATOM	3579	N	GLY C	25	58.947	82.123	-2.603	1.00 30.39	C
	ATOM	3580	CA.	GLY C	25	59.456	80.935	-3.243	1.00 32.92	Č
10	ATOM	3581	C	GLY C	25	59.526	81.119	-4.764	1.00 34.28	Ċ
10	ATOM	3582	Ö	GLY C	25	60.245	80.399	-5.443	1.00 37.66	Č
		3583	N	THR C	26	58.785	82.085	-5.296	1.00 25.38	C
	ATOM ATOM	3584		THR C	26	58.791	82.337	-6.735	1.00 33.97	C
			CA	THR C	26	57.652	83.304	-7.169	1.00 33.37	C
1.5	ATOM	3585	CB		26	56.390	82.761	-6.784	1.00 27.23	C
15	ATOM	3586	OG1						1.00 33.09	C
	ATOM	3587	CG2	THR C	26	57.650	83.514	-8.595 7.100	1.00 35.06	C
	ATOM	3588	C	THR C	26	60.113	82.985	-7.132	1.00 33.06	C
	ATOM	3589	0	THR C	26	60.614	83.888	-6.441	1.00 32.34	C
20	ATOM	3590	N	VAL C	27	60.662	82.523	-8.246		
20	ATOM	3591	CA	VAL C	27	61.914	83.046	-8.795	1.00 30.48	C
	ATOM	3590	CB	VAL C	27	62.901	81.912	-9.116	1.00 35.60	C
	ATOM	3593		VAL C	27	64.064	82.451	-9.936	1.00 34.59	C
	ATOM	3594			27	63.398	81.269	-7.830	1.00 34.12	C
	ATOM	3595	C	VAL C	27	61.632		-10.114	1.00 32.83	C
25	ATIM	3596	0	VAL C	27	60.908		-10.953	1.00 31.75	C
	ATOM	3597	N	ILE C	28	62.168		-10.310	1.00 31.95	C
	ATOM	3598	CA	ILE C	28	61.967		-11.600	1.00 25.76	C
	ATOM	3599	СВ	ILE C	28	61.234		-11.482	1.00 25.19	C
	ATOM	3600	CG2		28	59.782		-11.057	1.00 27.07	C
30	ATOM	3601	CG1		28	61.981		-10.530	1.00 20.91	C
	ATÛM	3602	CD1		28	61.363		-10.512	1.00 24.89	C
	ATOM	3603	C	ILE C	28	63.341		-12.187	1.00 29.97	C
	ATOM	3604	0	ILE C	28	64.341		-11.450	1.00 24.78	C
	ATOM	3605	N	ARG C	29	63.394		-17.505	1.00 31.68	C
35	ATOM	3606	CA	ARG C	29	64.673		-14.185	1.00 33.25	C
	ATOM	3607	CB	ARG C	29	64.962		-15.093	1.00 43.21	C
	ATOM	3608	CG	ARG C	29	65.539		-14.335	1.00 55.79	C
	ATOM	3509	CD	ARG C	29	64.795		-14.794	1.00 63.30	C
	ATOM	3510	NE	ARG C	29	63.873		-13.T45	1.00 66.73	C
40	ATIM	3611	CZ	ARG C	29	62.570		-13.917	1.00 68.37	C
	ATCM	3612	NH1		29	62.003		-15.119	1.00 66.91	C
	ATOM	3613		ARG C	29	61.831		-12.983	1.00 61.65	C
	ATOM	3614	C	ARG C	29	64.794		-15.020	1.00 30.28	C
	ATOM	3615	0	ARG C	29	63.956		-15.872	1.00 29.65	C
45	ATOM	3616	N	TYR C	30	65.867		-14.778	1.00 32.96	C
	$AT \odot M$	3617	CA	TYR C	30	66.159		-15.527	1.00 31.51	C
	AT:0:M	3618	CB	TYP. C	30	66.759		-14.590	1.00 27.74	C
	ATOM	3619	CG	TYP C	3.0	65.773		-13.617	1.00 23.76	С
	ATOM	36.10	CD1		30	65.257		-17 5/4	1.00 28.24	C
50	ATION	3601		TYR C	30	64.350		-11.631	1.00 28.16	С
	ATOM	3622		TYP. C	30	65.360		-13,718	1.00 27.82	C
	Απ _С і м	3623		TYR C	30	64.456		-12.793	1.00 28.53	C
	MOTA	3624	CZ	TYR C	30	63.971		-11.758	1.00 22.02	C
	ATCM	3625	OH	TYR C	30	63.160		-10.848	1.00 24.79	С
55	ATOM	3626	С	TYR C	30	67.161	89.133	-16.641	1.00 25.91	С

	MOTA	3627		TYR C	30	68.007	88.254 -16.520	1.00 25.19	С
	ATOM	3628	O N	SER C	31	67.065	89.883 -17.731	1.00 23.15	C
					31		89.740 -18.811	1.00 28 93	Ċ
	ATOM	3629	CA	SER C		68.027			Ċ
_	ATOM	3630	CB	SER C	31	67.611	88.643 -19.795	1.00 25.70	
5	ATOM	3631	∴iG ~	SEP C	31	66.381	88.981 -20.380	1.00 32.21	Ç
	ATOM	3632	C	SER C	31	68.124	91.082 -19.518	1.00 30 27	Ç
	ATOM	3633	()	SER C	31	67.213	91.910 -19.437	1.00 31.07	C
	ATOM	3634	11	CYS C	32	69.238	91.304 -20.192	1.00 27.74	C
	ATOM	3635	CA	CYS C	32	69.457	92.558 -20.890	1.00 32.43	C
10	MOTA	3636	C	CYS C	32	69.378	92.286 -22.369	1.00 36.47	C
	MOTA	3637	Ç)	CY3 C	32	69.611	91.146 -22.819	1.00 33.53	C
	ATOM	3638	€B	$\mathbb{C}YS$ \mathbb{C}	32	70.840	93.110 -20.530	1.00 30.11	C
	MOTA	363∋	SG	CYS C	3.2	70.999	93.505 -18.757	1.00 30.29	C
	ATOM	3640	11	SER C	33	68.922	93.383 -23.026	1.00 41.81	C
15	ATOM	3641	CA	SEP C	33	69.024	93.272 -24.485	1.00 43.45	С
	ATOM	3642	CB	SEP. C	33	68.136	94.544 -24.975	1.00 51.34	С
	ATOM	3643	O-3	SER C	33	68.752	95.734 -24.524	1.00 57.23	C
	MŌTA	3644	C	SER C	33	70.449	92.848 -24.842	1.00 54.01	C
	ATOM	3645	()	SEP. C	33	71.347	92.852 -23.989	1.00 61.22	С
20	ATOM	3646	11	GLY C	34	70.633	92.487 -26.096	1.00 55.17	С
_	MOTA	3647	CA	GLY C	34	71.928	91.989 -26.558	1.00 49.56	C
	MOTA	3648	C	GLY C	34	73.161	92.877 -26.748	1.00 47.38	Ğ
	ATOM	3649	Ç	GLY C	34	74.279	92.377 -26.942	1.00 45.07	Č
	ATOM	3650	N	THP C	35	72.832	94.184 -26.690	1.00 41.74	Č
25	ATOM	3651	CA	THR C	35	73.932	95.134 -26.777	1.00 46.36	Č
2	ATOM	3652	CB	THE C	35	73.603	96.329 -27.720	1.00 51.23	č
	ATOM	3653	0G1	THP C	35	72.301	96.848 -27.419	1.00 57.47	d
	ATOM	3654	0G2	THE C	35	73.641	95.881 -29.190	1.00 54.03	Ċ
	ATOM	3655	3	THE C	35	74.305	95.658 -25.383	1.00 43.55	Ċ
30	ATOM	3656	Ö	THE C	35	75.001	96.655 -25.258	1.00 40.41	C
30	ATOM	3657	N	PHE C	36	73.840	94.969 -24.342	1.00 34 64	Ċ.
	ATOM	3658	CA	PHE C	36	74.133	95.342 -22.965	1.00 31.17	Ċ
	ATOM	3659	CB	PHE C	36	72.888	95.857 -22.253	1.00 30.28	C
	ATOM		.ca .ca	PHE C	36		97.176 -22.750	1.00 30.28	C
35	ATOM	3660 366±	CD1		36	72.414	97.266 -23.944	1.00 35.40	C
30	ATOM	3662	CD2		36	71.692 72.729	98.343 -22.054		C
								1.00 33.13	
	ATOM	3663 3661	CE1		36	71.301	98.500 -24.427	1.00 37.59	C
	ATOM	3664	CE2	PHE C	36	72.345	99.588 -22.528	1.00 32.44	C
10	ATOM	3665	CZ ~	PHE C	36	71.629	99.673 -23.718	1.00 38.52	C
40	ATOM	3666	Ĉ	PHE C	36	74.612	94.107 -22.239	1.00 34.05	C
	ATOM	3667	()	PHE C	36	74.432	93.001 -22.727	1.00 31.93	C
	ATOM	3668	N	ARG C	37	75.236	94.292 -21.079	1.00 23.78	C
	ATOM	3669	$\mathbb{C}A$	ARG C	37	75.703	93.167 -20.295	1.00 27.36	Ç
	MOTA	3670	CB	AFG C	37	77,033	93.140 -20.235	1.00 27 49	C
45	MOTA	3671	23	SEG C	3.7	77.871	92.816 -21.587	1.00 21.08	С
	MOTA	3672	CD	ARG C	37	77.403	91.440 -22.049	1.00 27.97	C
	ATOM	3673	NE	APG C	37	78.050	91.042 -23.301	1.00 35.17	-~
	ATOM	3674	CZ	ARG C	37	77.641	91.427 -24.503	1.00 36.96	С
	MOTA	3675		ARG C	37	76.572	92.213 -24.620	1.00 32 52	Ç
50	MOTA	3676	NH2	APG C	37	78.308	91.039 -25.581	1.00 37.15	С
	ATOM	3677	\subset	ARG C	37	75.091	93.309 -18.913	1.00 29.60	C
	ATOM	3678	Ō	ARG C	37	75.060	94.400 -18.336	1.00 25.97	С
	ATOM	3679	N	LEU C	38	74.614	92.193 -18.383	1.00 25.39	C
	ATOM	3680	CA	LEU C	38	73.952	92.202 -17.083	1.00 27.27	C
55	ATOM	3681	CB	LEU C	38	73.038	90.984 -16.980	1.00 27.65	С

										-
	MOTA	3682	CG	LEU C	38	72.221	90.971	-15.692	1.00 35.23	C
	MOTA	3683	CD1	LEU 3	38	70.799	91.354	-16.019	1.00 33.06	C
	ATOM	3684	CD2	LEU C	38	72.278	89.589	-15.051	1.00 40.53	€
	ATOM	3685	C	LEU C	38	74.951		-15.926	1.00 24.03	,~
_										~
5	ATOM	3686	0	LEU C	38	75.851		-15.892	1.00 27.79	·_
	MOTA	3687	N	ILE C	3 🥱	74.794	93.145	-15.001	1.00 25.30	7
	MOTA	3688	CA	ILE C	3.3	75.654	93.264	-13.819	1.00 26.06	7
	ATOM	3689	CB	ILE C	3.9	76.255	94.707	-13.686	1.00 31.13	-
	ATOM	3690	CG2	ILE C	3.5	77.130		-12.455	1.00 28.23	~
										-
10	ATOM	3691	CG1	ILE C	3 +	77.057		-14.955	1.00 37.49	·J
	MOTA	3692	CD1	ILE C	3.9	78.059	94.022	-15.415	1.00 46.78	0000000000000
	ATOM	3693	C	ILE C	39	74.787	92.979	-12.590	1.00 27.54	C
	ATOM	3694	Q	ILE C	3 4	73.807		-12.327	1.00 21.11	C
	MOTA	3695	Ň	GLY C	40	75.140		-11.829	1.00 28.46	Ċ
15	ATOM	3696	CA	GLY C	40	74.351		-10.654	1.00 28.45	C
	ATOM	3697	C	GLY C	40	73.691	90.275	-10.901	1.00 31.11	C
	MOTA	3698	(_)	GLY C	40	73.762	89.752	-12.008	1.00 27.47	·C
	ATOM	3699	N	GLU 0	41	73.057	89.713	-9.876	1.00 32.89	C
	ATOM	3700	CA	GLU C	41	72.395	88.411	-9.994	1.00 37.70	C
20									1.00 35.85	ć
20	ATOM	3701	CB	GLU C	41	72.006	87.900	-8.597		
	ATOM	3702	CG	GLU C	41	71.217	86.601	-8.624	1.00 47.53	C
	MOTA	3703	CD	GLU C	41	71.983	85.447	-9.235	1.00 48.84	C
	MOTA	3704	OE1	GLU C	41	71.419	84.733	-10.088	1.00 44.21	C
	ATOM	3705	OE2	GLU C	41	73.153	85.252	-8.842	1.00 56.76	·C
25	ATOM	3706	ς .ς	GLU C	41	71.161	88.510		1.00 32.10	ā
±.'										Ö
	MOTA	3707	0	GLU U	41	70.336	89.404		1.00 31.37	\ <u>.</u>
	ATOM	3708	N	$LYS = \mathbb{C}$	42	71.033		-11.857	1.00 33.31	C
	ATOM	3709	CA	LYS = C	42	69.879	87.647	-12.760	1.00 33.67	C
	MOTA	3710	CB	LYS C	40	70.207	86.955	-14.069	1.00 33.01	C
30	ATOM	3711	CG	LYS C	42:	70.550		-13.891	1.00 39.88	<u></u>
30	ATOM	3712	CD	LYS C	42:	70.862		-15.238	1.00 43.23	000
	MOTA	3713	CE	LYS C	42	71.922	83.820		1.00 48.14	·_
	MOTA	3714	NΖ	$LYS = \mathbb{C}$	42	71.648	82.872	-13.965	1.00 52.44	
	ATOM	3715	C	LYS C	4.2	68.591	87.038	-12.185	1.00 34.36	C
35	ATOM	3716	0	LYS C	40	67.509	87.306	-12.687	1.00 37.69	0.0
* -	ATOM	3717	N	SER C	43	68.685		-11.117	1.00 25.52	.7
									1.00 31.57	Ĉ
	ATOM	3718	CA	SER C	43	67.472		-10.565		
	ATOM	3719	CB	SER C	43	67.668		-10.331	1.00 28.31	C
	ATOM	3720	OG	SER C	43	67.869	83.464	-11.537	1.00 39.30	C
40	ATOM	3721	C	SER C	43	67.099	86.274	-9.233	1.00 29.32	C
	ATOM	3722	O	SER C	43	67.945	86.318	-8.342	1.00 31.30	C
	ATOM	3723	N	LEU C	44	65.853	86.735	-9.087	1.00 27.40	Ċ
								-7.808	1.00 28.37	đ
	ATOM	3724	CA	LEU C	44	65.393	87.267			
	ATOM	3725	CB	LEU C	44	64.744	88.638	-7.931	1.00 27.50	C
45	ATOM	3726	CG	LEU C	44	65.498	89.876	-8.393	1.00 38.75	C
	MOTA	3727	CD1	LEU C	44	64.700	91.149	-7.896	1.00 26.06	C
	ATOM	3728		LEU]	44	66.913	89.846	-7.907	1.00 39.16	7
							86.315			
	ATOM	3729	Ċ	LEU :	44	64.352		-7.218	1.00 29.43	Ċ
	MOTA	3730	O	LEU (44	63.469	85.796	7.014	1.00 35.15	C
50	MOTA	373⊥	N	LEU C	45	64.434	86.137	-5.919	1.00 25.55	C
	ATOM	3732	CA	LEU C	45	63.560	85.222	5.230	1.00 28.43	C
	ATOM	3733	ĊВ	LEU 3	45	64.412	84.210	-4.469	1.00 28.67	C
			CG	LEU C	45	63.709	83.269	-3.493	1.00 30.62	Č
	ATOM	3734								
	ATOM	3735		LEU C	45	62.896	82.195	-4.244	1.00 32.56	C
55	MOTA	3736	CD2	LEU C	45	64.798	82.623	-2.649	1.00 31.55	С

	3.00.034	2 7 2 7	-			co cc.	05 061	1 262	1 00 00 71	0
	MOTA	3737	C	LEU C	4 5	62.664	85.961	-4.263	1.00 28.71	C
	ATOM	3738	0	LEU C	45	63.094	86.894	-3.558	1.00 21.68	С
	MOTA	3739	N	CYS C	46	61.410	85.547	-4.238	1.00 25.91	C
	MOTA	3740	CA	CYS C	46	60.455	86.152	-3.343	1.00 26.90	-C
5	MOTA	3741	С	CYS C	46	6C.510	85.392	-2.032	1.00 30.25	.7
	ATOM	3742	Ō	CYS C	46	50.448	84.173	-1.980	1.00 28.51	Ç
	ATOM	3743	СВ	CYS C	46	59.021	85.026	-3.908	1.00 28.02	ć
	ATOM	3744	SG	CYS C	46	57.741	86.546	-2.696	1.00 28.63	C C
	MOTA	3745	N	ILE C	47	60.925	86.115	-0.971	1.00 21.11	U
10	ATOM	3746	CA	ILE C	47	61.120	85.484	0.314	1.00 24.65	C
	ATOM	3747	CB	ILE C	47	62.619	85.501	0.722	1.00 32.62	C
	ATOM	3748	CG2	ILE C	47	63.505	84.878	-0.358	1.00 27.06	C
	ATOM	3749	CG1	ILE C	47	53.050	86.958	0.959	1.00 25.64	C
	ATOM	3750	CD1		47	64.439	87.119	1.592	1.00 32.03	C
15	ATOM	3751	C	ILE C	47	60.431	86.274	1.421	1.00 31.05	Ċ
1	ATOM	3752	0	ILE C	1 7	59.931	87.399	1.226	1.00 22.58	Ċ
										·=
	MOTA	3753	N	THR C	43	60.421	85.669	2.596	1.00 27.58	Ĵ
	MOTA	3754	CA	THR C	43	59.964	86.388	3.764	1.00 27.51	С
	MOTA	3755	CB	THR C	48	58.584	85.987	4.273	1.00 28.85	0.0
20	ATOM	3756	OG1	THR C	48	58.303	86.778	5.426	1.00 25.48	.7
	ATOM	3757	CG2	THR C	43	58.490	84.526	4.619	1.00 26.50	C
	ATOM	3758	С	THR C	49	61.001	86.164	4.839	1.00 29.22	C
	ATOM	3759	Ō	THR C	48	61.455	85.049	5.060	1.00 29.40	(~
	ATOM	3760	N	LYS C	49	51.445	87.243	5.463	1.00 27.29	C C
3.5									1.00 27.23	Č
25	ATOM	3761	CA	LYS C	49	62.425	87.112	6.522		'U
	ATOM	3762	СВ	LYS C	49	63.478	88.220	6.427	1.00 26.53	0
	MOTA	3763	CG	LYS C	4 9	64.229	88.239	5.134	1.00 35.41	
	MOTA	3764	CD	LYS C	49	65.703	88.351	5.346	1.00 40.12	C
	ATOM	3765	CE	LYS C	4.9	66.262	87.134	6.055	1.00 42.32	0000
30	MOTA	3766	NZ	LYS C	49	67.729	87.262	6.166	1.00 46.64	C
	ATOM	3767	C	LYS C	4 9	51.745	87.219	7.877	1.00 33.53	.0
	ATOM	3768	0	LYS C	49	62.249	86.692	8.856	1.00 30.36	C
	ATOM	3769	N	ASP C	50	60.596	87.896	7.952	1.00 25.34	Ċ
	ATOM	3770	CA	ASP C	50	59.978	88.083	9.253	1.00 26.98	.5
2.5								9.597		0000000
35	MOTA	3771	CB	ASP C	50	59.961	89.579		1.00 25.16	~
	MOTA	3772	CG	ASP C	50	59.154	90.397	8.607	1.00 27.41	_
	MOTA	3773		ASP C	50	58.459	89.768	7.749	1.00 22.49	U
	ATOM	3774	OD2	ASP C	50	59.207	91.664	8.693	1.00 26.37	- 0
	ATOM	3775	C	ASP C	50	58.598	87.492	9.365	1.00 25.28	0
40	MOTA	3776	0	ASP C	5 Ü	57.883	87.770	10.321	1.00 24.69	0
	MOTA	3777	N	LYS C	51	58.247	86.664	8.386	1.00 26.19	7
	MOTA	3778	CA	LYS C	51	56.948	86.006	8.319	1.00 23.97	i i
	ATOM	3779	СВ	LYS C	51	55.717	85.091	9.526	1.00 31.09	.~
					51	57.749	84.001	9.749	1.00 32.84	7
4 -	MOTA	3780	CG	LYS C						
45	MOTA	3781	CD	LYS C	51	57.61.5	82.919	8.769	1.00 44.47	- 12
	$\Delta T \cup M$	3782	CE	LYS C	21	58.505	81.752	9.179	1.00 52.55	U
	MOTA	3783	NZ	LYS C	51	58.266	81.397	10.605	1.00 51.40	-3
	MOTA	3784	C	LYS C	51	55.791	86.996	8.241	1.00 25.78	ត្ត សូមសុ
	MOTA	3785	0	LYS C	51	54.660	86.628	8.510	1.00 25.03	C
50	ATOM	3786	N	VAL C	52	56.048	88.252	7.896	1.00 25.78	Ć.
	ATOM	3787	CA	VAL C	52	54.937	89.195	7.758	1.00 23.31	Ü
	ATOM	3788	CB	VAL C	52	54.976	90.286	8.894	1.00 23.31	2.7
										5
	MOTA	3789		VAL C	52	53.786	91.197	8.802	1.00 27.39	<u> </u>
	MOTA	3790		VAL C	52	54.946	89.611	10.264	1.00 33.79	i j
55	ATOM	3791	C	VAL C	52	55.085	89.832	6.376	1.00 29.16	C

	ATOM	3792	0	VAL C	52	54.193	89.764	5.537	1.00 25.28	С
	ATOM	3793	N	ASP C	53	56.248	91,433	6.146	1.00 31.64	С
	ATOM	3794	CA	ASP C	5 3	56.575	91.099	4.892	1.00 27.94	С
	ATOM	3795	СВ	ASP C	53	57.647	92.167	5.150	1.00 28.37	C
5	ATOM	3796	CG	ASP C	53	57.139	93.235	6.132	1.00 30.66	C
	ATOM	3797		ASP C	53	56.323	94.069	5.744	1.00 20.78	Ĉ
	ATOM	3798		ASP C	53	57.700	93.245	7.287	1.00 27.56	Ĉ
	ATOM	3799	C	ASP C	53	57.112	90.126	3.837	1.00 27.36	Ĉ
					53	57.862			1.00 24.61	Ĉ
T. C.	ATOM Amom	3800	0	ASP C			89.212	4.164		C
[0	ATOM	3801	N	GLY C	54	56.735	90.327	2.573	1.00 26.63	
	ATOM	3802	CA	GLY C	54	57.253	89.439	1.476	1.00 20.87	C
	ATOM	3803	C	GLY C	54	58.190	90.420	0.730	1.00 25.47	C
	MOTA	3804	0	GLY C	54	57.814	91.563	0.435	1.00 19.97	C
	ATOM	3805	N	THR C	55	59.422	89.999	0.459	1.00 22.42	C
15	MOTA	3806	CA	THR C	55	60.345	90.907	-0.247	1.00 21.92	Ĉ
	MOTA	3807	CB	THR C	55	61.326	91.591	0.760	1.00 24.17	C
	MOTA	3808	OG1	THR C	55	61.999	911.663	0.106	1.00 24.68	C
	MOTA	3809	CG2	THR C	55	52.401	90.597	1.251	1.00 24.06	С
	MOTA	3810	С	THR C	55	61.184	90.153	-1.284	1.00 22.33	C
20	MOTA	3811	0	THR C	55	61.298	88.929	-1.209	1.00 24.76	C
	MOTA	3812	N	TRP C	56	61.767	90.882	-2.230	1.00 22.04	C
	MOTA	3813	CA	TRP C	56	62.637	90.281	-3.226	1.00 21.23	C
	MOTA	3814	CB	TRP C	56	62.689	91.142	-4.506	1.00 28.51	C
	ATOM	3815	CG	TRP C	56	61.377	91.081	-5.223	1.00 25.63	C
25	ATOM	3816	CD2	TRP C	56	60.853	89.962	-5.970	1.00 26.11	C
	ATOM	3817	CE2	TRP C	56	59.512	90.266	-6.287	1.00 23.40	C
	ATOM	3818	CE3	TRP C	56	61.334	83.723	-6.383	1.00 25.94	С
	ATOM	3819		TRP C	56	60.374	91.988	-5.141	1.00 23.59	C
	ATOM	3820	NE1	TRP C	56	59.249	91.513	-5.771	1.00 25.69	Ċ
30)	ATOM	3821	CZ2	TRP C	56	58.679	87.384	-7.003	1.00 24.25	Ċ
	ATOM	3822	CZ3	TRP C	56	60.555	87.832	-7.095	1.00 26.08	Ĉ
	ATOM	3823	CH2	TRP C	56	59.209	88.177	-7.398	1.00 29.68	Ĉ
	ATOM	3824	C	TRP C	56	63.994	90.185	-2.504	1.00 22.58	Ĉ
	ATOM	3825	0	TRP C	56	64.379	91.110	-1.805	1.00 23.17	Ĉ
35	ATOM	3826	N	ASP C	57	64.698	89.054	-3.660	1.00 24.44	C
., ,	ATOM	3827	CA	ASP C	5 <i>7</i>	65.949	88.838	-1.931	1.00 24.44	C
	ATOM	3828	CB	ASP C	57	65.293	87.334	-1.894	1.00 26.43	C
					57	65.733	86.762	-3.256	1.00 20.00	~
	MOTA	3829	CG	ASP C					1.00 31.79	כיי
• .	MOTA	3830		ASP C	57	67.168	85.599	-3.268		C
∔ i≀	ATOM	3831		ASP C	57	66.613	87.435	-4.298	1.00 30.66	
	ATOM	3832	C	ASP C	57	67.173	89.647	-2.317	1.00 29.20	C
	ATOM	3833	0	ASP C	57	68.161	89.651	-1.589	1.00 32.18	C
	ATOM	3834	N	LYS C	58	67.094	90.363	-3.428	1.00 31.78	C
	ATOM	3835	CA	LYS C	58	68.190	91.180	-3.928	1.00 31.51	C
45	ATOM	3836	CB	LYS C	58	69.081	90.365	-4.866	1.00 37.98	C
	ATOM	3837	CG	LYS C	58	70.061	89.452	-4.166	1.00 49.29	C
	MOTA	3838	CD	LYS C	58	69.648	87.987	-4.237	1.00 58.25	C
	MOTA	3839	CE	LYS C	58	69.569	<u>87.484</u>	-5.686	1.00 55.39	C
	ATOM	3840	NZ	LYS C	58	68.893	86.136	-5.803	1.00 46 73	C
50	ATOM	3841	C	LYS C	58	67.614	92.311	-4.741	1.00 29.28	C
	ATOM	3842	0	LYS C	58	66.442	92.301	-5.106	1.00 29.16	C
	ATOM	3843	N	PRO C	59	68.423	93.340	-4.958	1.00 32.29	C
	ATOM	3844	CD	PRO C	59	69.835	93.582	-4.659	1.00 26.68	C
	MOTA	3845	CA	PRO C	59	67.912	94.387	-5.841	1.00 24.28	C
5.5	MOTA	3846	CB	PRO C	59	68.919	95.530	-5.673	1.00 28.93	C

	ATOM	3847	CG	PRO C	59	70.198	94.855	-5.368	1.00 30.90	С
	ATOM	3848	С	PRO C	59	67.949	93.982	-7.321	1.00 29.24	С
	ATOM	3349	0	PRO C	59	68.694	93.012	-7.627	1.00 23.42	С
	ATOM	3350	N	ALA C	60	67.208	94.594	-3.172	1.00 28.57	С
5	ATUM	3351	CA	ALA C	60	67.247		- 9.570	1.00 31.26	С
	ATOM	3852	СВ	ALA C	60	66.284		-10.363	1.00 24.31	C
	ATOM	3953	C	ALA C	60	68.674		-1).125	1.00 32.02	Ċ
	ATEM	385 4	0	ALA C	60	69.403		- 3.700	1.00 29.35	Ċ
		3355	N	PRO C	61	69.101		-11.046	1.00 29.11	C
10	ATOM									C
10	MOTA	3356	CD	PRO C	61	68.453		-11.455	1.00 26.65	
	ATIM	3357	CA	PRO C	61	70.449		-11.625	1.00 26.17	C
	ATOM	3858	CB	PRO C	61	70.690		-12.307	1.00 28.95	C
	ATOM	3859	CG	PRO C	61	69.280		-12.576	1.00 27.22	C
	ATOM	3860	С	PRO C	61	70.327		-12.632	1.00 26.90	C
15	ATOM	3861	0	PRO C	61	69.221		-12.359	1.00 22.51	C
	ATOM	3862	N	LYS C	62	71.430		-13.208	1.00 21.80	С
	ATOM	3863	CA	LYS C	62	71.379		-14.158	1.00 24.26	C
	$AT \odot M$	3364	CB	LYS C	62	72.173		-13.537	1.00 26.24	С
	ATOM	3865	CG	LYS C	62	71.776	98.107	-10.246	1.00 39.00	С
20	ATOM	3866	CD	LYS C	62	71.465	99.585	-12.222	1.00 41.85	C
	ATOM	3867	CE	LYS C	62	71.357	100.094	-10.800	1.00 46.78	C
	ATOM	3868	NZ	LYS C	62	72.692	100.117	-10.118	1.00 55.22	С
	ATOM	3869	C	LYS C	62	71.955	96.043	-15.507	1.00 21.61	C
	ATOM	3870	0	LYS C	62	72.735	95.09	-15.607	1.00 25.68	C
25	ATOM	3871	N	CYS C	63	71.585	96.730	-16.549	1.00 27.02	С
	ATEM	3872	CA	CYS C	63	72.113		-17.903	1.00 27.02	С
	ATOM	3873	C	CYS C	63	73.118		-18.302	1.00 30.37	C
	AT::M	3874	0	CYS C	63	72.751		-18.416	1.00 32.00	C
	AT:0M	3875	СВ	CYS C	63	70.989		-18.932	1.00 28.91	C
30	ATOM	3876	SG	CYS C	63	69.851		-13.602	1.00 29.20	C
517	ATOM	3877	И	GLU C	64	74.376		-13.514	1.00 23.24	C
	ATOM	3878	CA	GLU C	64	75.417		-18.890	1.00 30.86	C
		3879	CB	GLU C	64	76.707		18.098	1.00 30.30	C
	ATOM			GLU C	64	77.231		-17.008	1.00 31.31	C
3.7	ATCM	3880	CG			78.383				C
35	ATOM	3981	CD	GLU C	64			-15.287	1.00 40.40	C
	ATOM	3882		GLU C	64	79.134		-16.620	1.00 26.79	Ċ
	ATOM	3883	OE2		64	78.543		-15.208	1.00 48.25	
	ATOM	3884	C	GLU C	64	75.703		-20.380	1.00 25.87	C
	AT:0M	3885	0	GLU C	64	75.849		-20.882	1.00 19.45	C
40	ATIM	3886	N	TYR C	65	75.782		-21.093	1.00 25.32	C
	AT DM	3887	CA	TYR C	65	76.106		-22.530	1.00 31.90	C
	ATOM	3888	CB	TYR C	65		100.536		1.00 36.00	C
	ATOM	3889	CG	TYR C	65				1.00 42.53	С
	$AT \odot M$	3890	CD1	TYR C	65	75.041	100.470	-25.238	1.00 42.78	C
45	ATOM	3891	CEl	TYR C	65	74.951	100.568	-26.521	1.00 40.68	С
	ATOM	3892	CD2	TYR C	65	77.396	100.937	-255.331	1.00 48.40	C
	ATOM	3893	CE2	TYR C	65	77.321	101.040	-26.729	1.00 48.66	С
	ATOM	3894	CZ	TYR C	65	76.086	100.343	-27.366	1 00 48.38	С
	ATOM	3895	ОН	TYR C	65		100.547		1.00 49.96	C
50	$AT \cup M$	3896	C	TYR C	65	77.407		-22.704	1.00 26.60	С
	ATEM	3897	Ó	TYR C	65	78.410		22.101	1.00 27.68	C
	ATOM	3898	N	PHE C	66	77.404		-23.541	1.00 24.63	C
	ATOM	3899	CA	PHE C	66	78.583		-23.736	1.00 25.64	C
	ATOM	3900	CB	PHE C	66	78.250		-24.776	1.00 30.86	C
55	ATOM	3901	CG	PHE C	66	79.408		-24.770	1.00 30.33	C
21.1	WT. GUA	3901	CG	FIIE C	00	10.400	24.46/	20.130	1.00 30.23	C

	ATOM	3902	CD1	PHE C	66	80.137	93.775 -24.143	1.00 25.24	С
	MOTA	3903	(T)2	PHE C	66	79.753	94.208 -26.481	1.00 33.99	С
				PHE C					C
	MCTA	3904			66	81.206			
	MOTA	3905	CE2	PHE C	66	80.822	93.329 -26.938	1.00 29.10	C
5	ATOM	3906	2::	PHE C	66	81.550	92.672 -25.826	1.00 27.94	C
-	ATOM	3907	3	PHE C	66	79.896		1.00 32.19	C
									Č
	$M \ominus T A$	3908	0	PHE C	66	79.931			
	MĈTA	3909	23	ASN C	67	80.977	96.766 -23.440	1.00 25.19	C
	ATOM	3910	-A	ASN C	67	82.297	97.296 -23.754	1.00 27.44	C
10	ATOM	3911	СВ	ASN C	67	82.845	98.203 -22.639		С
10									
	$M \odot TA$	3912	CG	ASN C	67	84.126	98.921 -23.066	1.00 33.33	С
	ATOM	3913	-0D1	ASN C	67	84.904	98.390 -23.870	1.00 27.62	C
	MOTA	3914	MD2	ASN C	67	84.356	100.126 -22.528	1.00 28.36	C
	ATOM	3915	C	ASN C	67	83.245			С
15	ATOM	3916	Ć,	ASN C	67	83.706			С
	$AT \cap M$	3917	11	LYS C	68	83.565	95.816 -25.199	1.00 24.67	С
	ATOM	3913	CA	LYS C	68	84.428	94.686 -25.511	1.00 29.80	С
	ATOM	3919	CB	LYS C	68	84.491	94.441 -27.024	1.00 29.48	C
	ATOM	3920	C-3	LYS C	68	85.095	95.574 -27.875	1.00 39.59	C
20	MOTA	3921	CD	LYS C	68	85.233	95.076 -29.326	1.00 45.75	C
	MOTA	3922	CE	LYS C	68	85.993	96.016 -30.254	1.00 52.45	С
	ATOM	3923	NII	LYS C	68	85.111			C
								1.00 32.29	Č
	MCTA	3924	C	LYS C	68	85.821	94.831 -24.995		
	$M \ominus T A$	3925	Ö	LYS C	68	86.541	93.833 -24.921	1.00 27.75	C
25	ATÔM	3926	11	TYP C	69	86.237	96.059 -24.663	1.00 25.84	C
	ATOM	3927	$\mathbb{C} A$	TYP. C	69	87.599	96.229 -24.153	1.00 24.63	С
		3928	ŒВ	TYP. C	69	88.147			C
	ATOM								
	MOTA	3929	CG	TYP. C	69	88.161	97.948 -25.876		C
	ATOM	3930	CD1	TYP. C	69	87.105	98.635 -26.441	1.00 25.30	С
30	ATOM	3931	CE1	TYP C	69	87.067	98.885 -27.791	1.00 33.19	C
	ATOM	3932	CD2		69	89.213			C
									Č
	MOTA	3933	CE2	TYP C	69	89.186	97.749 -28.079		
	ATOM	3934	CZ	TYP. C	69	88.095	98.453 -28.614	1.00 34.98	C
	ATOM	3935	$\odot H$	TYR C	69	88.031	98.764 -29.952	1.00 32.72	C
35	MOTA	3936	C	TYR C	69	87.687	95.997 -22.673	1.00 30.29	C
50				TYR C	69	88.777			Ĉ
	MOTA	3937	<u>()</u>						
	$AT \cap M$	3930	11	SER C	70	86.565			C
	ATOM	395)	·~A	SEP. C	70	86.597	95.868 -20.505	1.00 23.26	C
	MOTA	3940	CB	SEP. C	70	85.204	96.061 -19.871	1.00 25.19	С
40	ATOM	3941	ÇĞ	SER C	70	84.518	97.144 -20.277	1.00 30.67	C
40									Č
	ATOM	3940	C	SEP. C	70	87.175			
	MC T A	3943	Ç)	SER C	70	86.714		1.00 33.25	C
	ATOM	3944	1:1	SEP. C	71	88.113	94.596 -19.092	1.00 34.01	C
	ATOM	3945	ÇΑ	SEP. C	71	88.825			C
									C
45	MOTA	394F	÷В	SER C	71	90.139			CC
	MOTA	3947	ĈС	SER C	71	90.774			3
	ATOM	3948	C	SER C	71	89.145	93.621 -17.099	1.00 31.37	C
	ATCM	2949	Ç.	SER C	71	89.965	94.464 -16.748		C
									Č
	ATÔM	3950	И	CYS C	72	88.518	92.836 -16.230		
50	MOTA	3951	$\mathbb{C}\mathbb{A}$	C.S.C	72	88.760	92.984 -14.803	1.00 31.24	C
	ATOM	3952	C	CYS C	72	89.899	92.131 -14.294	1.00 32.97	С
	ATOM	3953	Õ	CYS C	72	90.062	90.989 -14.695	1.00 37.51	С
	MOTA	3954	CB	CYS C	72	87.479	92.670 -14.032	1.00 31.14	C
	MOTA	3955	SG	CYS C	72	86.104	93.792 -14.488	1.00 35.33	C
55	ATOM	3956	N	PRO C	73	90.723	92.681 -13.401	1.00 31.28	C
			_		-				

2 -

MOTA

4011

CB

81

1.00 44.92

	ATOM	4012	CG	TYR C	81	88.934	79.522	-1.020	1.00 46.54	C
	ATOM	4013	CD1	TYP C	81	88.405	78.463	-1.754	1.00 48.03	3
	ATOM	4014	CE1	TTR C	81	87.438	77.618	-1.221	1.00 48.43	·C
	ATOM	4015	CD2	TYR C	81	88.478	79.709	0.281	1.00 47.96	3
5	MOTA	4016	CE2		81	87.503	78.871	0.826	1.00 50.43	3
	MOTA	4017	CZ	TYR C	81	86.380	77.827	0.062	1.00 51.08	00000000
	ATOM	4018	OH	TYR C	81	85.948	77.038	0.550	1.00 54.25	7
	MOTA	4019	C	TYP. C	81	83.233	81.854	-3.028	1.00 50.13	-
	MOTA	4020	0	TYP. C	81	87.039	81.840	-2.711	1.00 46.05	C
10	MOTA	4021	И	LYS C	82	89.543	81.853	-4.289	1.00 50.32	C -C
	MOTA	4022	CA	LYS C	82	87.697	81.828	-5.380	1.00 53.74	J
	MOTA	4023	CB	LYS C	82	88.393	82.238	-6.681	1.00 53.51	13
	ATOM	4024	CG	LYS C	82	87.466	82.280	-7.884	1.00 54.66	0000
	ATOM	4025	CD	LYS C	82	88.182	82.779	-9.126	1.00 52.50	C
15	MOTA	4026	CE	LYS C	82	89.254	81.803	-9.563	1.00 53.91	Ç
	ATOM	4027	NZ	LYS C	82	90.030	82.321	-10.718	1.00 52.48	-2
	ATOM	4028	C	LYS C	82	87.089	80.447	-5.528	1.00 54.39	C
	ATOM	4029	0	LYS C	82	87.782	79.435	-5.429	1.00 54.15	C
	ATOM	4030	N	ILE C	83	85.783	80.412	-5.740	1.00 53.36	0
20	ATOM	4031	CA	ILE C	83	85.083	79.157	-5.935	1.00 56.28	Ç
	ATOM	4032	CB	ILE C	83	83.815	79.085	-5.070	1.00 57.52	G
	MOTA	4033		ILE C	83	82.803	78.186	-5.698	1.00 58.38	2
	ATOM	4034	CG1		8.3	84.162	78.510	-3.702	1.00 59.41	g g n g g
	ATOM	4035		ILE C	83	85.312	79.203	-3.034	1.00 64.54	
25	ATOM	4036	C	ILE C	83	84.698	79.018	-7.408	1.00 60.57	0 0
	ATOM	4037	0	ILE C	83	84.790	77.926	-7.969	1.00 61.13	2
	ATOM	4038	N	APG C	84	84.274	80.125	-8.025	1.00 58.19	U .a
	ATOM	4039	CA	AP.G C	84	83.859	80.134	-9.432	1.00 55.53	
3.0	MOTA	4040	CB	ARG C	84	82.340	80.259	-9.557	1.00 59.40	00000000
30	ATOM	4041	CG	ARG C	84	81.555	79.123	-8.937	1.00 66.78	i.,
	ATOM	4042	CD	ARG C	84 84	80.080 79.338	79.471 78.353	-8.783 -8.204	1.00 70.71 1.00 78.80	15
	MOTA MOTA	4043	NE CZ	ARG C ARG C	84	78.041	78.384	-7.902	1.00 /5.8	~
	ATOM	4044 4045		ARG C	84	77.331	79.487	-8.124	1.00 82.33	.~
35	ATOM	4045		ARG C	84	77.454	77.308	-7.378	1.00 84.17	C
3.7	ATOM	1047	C	ARG C	84	84.475		-10.156	1.00 54.35	~
	ATOM	4048	Ŏ.	ARG C	84	84.812	82.313	-9.543	1.00 52.79	<u>3</u>
	ATOM	4049	N	GLY C	85	84.612		-11.468	1.00 51.51	Ğ
	ATOM	4050	CA	GLY C	85	85.166		-12.265	1.00 52.64	ت
40	ATOM	4051	C	GLY C	85	86.542		-12.801	1.00 52.39	© ©
	ATOM	4052	Ö	GLY C	85	87.400		-12.093	1.00 53.26	Č
	ATOM	4053	N	SER C	86	86.768		-14.063	1.00 56.65	Ĉ
	ATOM	4054	CA	SEP C	86	88.074		-14.636	1.00 60.26	·Ē
	ATOM	4055	CB	SEP. C	86	88.078		-15.393	1.00 63.40	.5
45	ATOM	4056	OG	SEP C	86	89.410		-15.570	1.00 73.60	Ş
	MOTA	4057	C	SER C	86	88.182		-15.567	1.00 56.75	C
	MOTA	4058	\circ	SER C	86	87.650		-16.257	1.00 55.15	
	ATOM	4059	N	THR C	87	89.775		-15.565	1.00 58 49	:
	ATOM	4060	CA	THR C	87	90.343		-16.417	1.00 57.84	÷,
50	ATOM	4061	СВ	THR C	87	91.816		-16.006	1.00 62.33	C
	ATOM	4062		THP. C	87	91.873		-15.197	1.00 69.91	C
	ATOM	4063	CG2		87	92.724		-17.215	1.00 64.96	:7
	MOTA	4064	С	THR C	87	90.257		-17.886	1.00 55.75	0.00
	MOTA	4065	0	THR C	87	90.241	82.842	-18.198	1.00 56.65	2
55	MOTA	4066	N	PRO C	88	90.134		-18.805	1.00 52.96	C

	N COUNTY	1122	C	SER C	0.4	82.287	0 6 0 0 5	-11.997	1.00 38.51	С
	ATOM	4122	C		94				1.00 36.31	
	ATOM	4123	0	SER C	94	82.713		-12.655		C
	ATOM	4124	N	VAL C	95	82.550		-10.706	1.00 38.03	C
	ATOM	4125	CA	VAL C	95	83.373	85.221	-9.943	1.00 42.81	С
5	ATOM	4126	CB	VAL C	95	84.925	85.728	-9.743	1.00 41.37	С
	ATOM	4127	CG1	VAL C	95	85.454	85.095	-11.073	1.00 46.63	С
	ATOM	4128	CG2	VAL C	95	84.840	86.930	-3.916	1.00 36.92	С
	ATOM	4129	C	VAL C	95	82.724	85.111	-3.587	1.00 43.66	С
	ATOM	4130	0	VAL C	95	82.023	86.004	-3.155	1.00 43.47	C
t is	ATOM ATOM	4131		THR C	96	82.939	83.988	-7.918	1.00 45.64	C
10			N							C
	ATOM	4132	CA	THR C	96	82.356	83.806	-6.599	1.00 46.87	
	ATOM	4133	CB	THR C	96	81.258	82.735	-6.600	1.00 46.87	C
	MC:TA	4134		THR C	96	80.233	83.101	-7.531	1.00 40.12	С
	ATOM	4135	CG2	THR C	96	80.635	82.635	-5.208	1.00 50.66	С
15	ATOM	4136	С	THR C	96	83.432	83.403	-5.612	1.00 43.20	С
	ATOM	4137	0	THR C	96	84.363	82.686	-5.962	1.00 41.73	С
	ATOM	4138	N	PHE C	97	83.302	83.886	-4.387	1.00 39.07	C
	ATOM	4139	CA	PHE C	97	84.267	83.578	-3.349	1.00 43.95	C
	ATOM	4140	CB	PHE C	97	84.898	84.854	-2.810	1.00 45.41	C
30					97	85.850	85.519	-3.750	1.00 46.14	C
20	ATOM	4141	CG	PHE C						
	ATOM	4142		PHE C	97	85.422	86.543	-4.594	1.00 42.85	C
	ATOM	4143	CD2	PHE C	97	87.195	85.162	-3.749	1.00 45.67	C
	MOTA	4144	CE1		97	86.320	87.194	-5.406	1.00 39.79	С
	ATOM	4145	CE2	PHE C	97	88.101	85.812	-4.562	1.00 42.72	С
25	ATOM	4146	CZ	PHE C	97	87.663	86.823	-5.390	1.00 41.65	С
	ATOM	4147	С	PHE C	97	83.546	82.859	-2.158	1.00 46.38	С
	ATOM	4148	0	PHE C	97	82.421	82.804	-1.988	1.00 39.27	С
	$AT \ominus M$	4149	N	ALA C	98	84.530	82.332	-1.318	1.00 48.32	С
	ATOM	4150	CA	ALA C	98	84.155	81.664	-0.076	1.00 46.94	С
30	ATOM	4151	CB	ALA C	98	84.112	80.153	-0.277	1.00 46.22	C
.10	ATOM	4152	C	ALA C	98	85.254	82.038	0.929	1.00 46.65	C
						86.394	82.293	0.536	1.00 44.10	C
	ATOM	4153	0	ALA C	98					C
	ATOM	4154	N	CYS C	99	84.914	82.103	0.212	1.00 46.08	
	ATOM	4155	CA	CYS C	99	85.917	82.403	3.209	1.00 47.08	C
35	MOTA	4156	С	CYS C	99	85.590	81.150	3.711	1.00 46.05	С
	$AT \odot M$	4157	0	CYS C	99	85.963	80.036	3.760	1.00 43.34	С
	ATOM	4158	CB	CYS C	99	85.289	83.169	4.375	1.00 44.52	С
	$AT \cap M$	4159	SG	CYS C	99	84.777	9∔.30∪	3.844	1.00 44.83	C
	$AT \cap M$	4160	N	I.YS C	100	87.874	31.273	4.056	1.00 47.36	C
40	ATOM	4161	CA	LYS C	100	88.545	80.147	4.574	1.00 48.81	С
	ATOM	4162	CB	LYS C	100	90.135	80.489	4.594	1.00 49.39	C
	MOTA	4163	CG	LYS C		90.750	80.659	3.219	1.00 54.21	С
	ATOM	4164	CD	LYS C		92.190	81.114	3.317	1.00 54.87	С
				LYS C		92.805	81.267	1.942	1.00 57.13	Ċ
1.5	ATOM	4165	CE	LYS C		94.197	81.768	2.053	1.00 57.13	C
45	MOTA	4166	NZ							
	ATOM	4167	C	LYS C		88.165	79.861	5.997	1.00 49.95	Ċ
	ATOM	4168	0	LYS C		87.495	80.705	6.619	1.00 48.69	C
	ATOM	4169	N	THR C		88.786	78.765	6 373	1 00 51.22	C
	ATOM	4170	CA	THR C	101	88.580	78.22 <i>9</i>	7.709	1.00 55.29	С
50	ATOM	4171	CB	THP C	101	89.528	77.069	8.012	1.00 57.10	С
	ATOM	4172	OG1	THR C		89.306	76.003	7.077	1.00 64.35	C
	ATOM	4173		THR C		89.308	76.559	9.429	1.00 57.34	С
	ATOM	4174	C	THR C		88.780	79.304	8.764	1.00 49.93	C
	ATOM	4175	0	THR C		89.894	79.947	8.793	1.00 47.27	C
55			N	ASN C		88.004	79.652	9.763	1.00 46.86	C
55	ATOM	4176	TA	MON C	102	30.004	12.002	2.103	1.00 40.00	C

	ATOM	4177	CA	ASN C 1	0.2	88.149	80.670	10.780	1.00 48.18	C
			CB	ASN C 1		89.557	80.629	11.363	1.00 46.95	
	ATOM	4178								
	ATOM	4179	CG	ASN C 1		89.845	79.289	12.014	1.00 48.40	
	ATOM	4180		ASN C 1		88.985	78.720	12.593	1.00 41.35	
5	AT:0M	4131	ND2	ASN C 1	-02	91.051	78.775	11.810	1.00 49.40	
	ATOM	4182	\mathbb{C}	ASN C 1	L02	87.761	82.030	10.236	1.00 49.20	
	ATOM	4133	r[])	ASN C 1	L02	88.252	83.052	10.922	1.00 46.49	C
	MOTA	4134	11	PHE C 1	.03	87.220	82.295	9.176	1.00 48.20	C
	ATOM	4135	CA	PHE C 1	L O 3	86.584	83.570	8.755	1.00 49.30	
10	MOTA	4136	CB	PHE C 1		87.390	84.074	7.554	1.00 46.94	
• 55	ATOM	4187	CG	PHE C 1		88.859	84.187	7.814	1.00 45.01	
	ATOM	4133		PHE C 1		89.671	83.059	7.792	1.00 48.38	
	ATOM	4139	CD2			89.437	85.421	8.092	1.00 48.98	
	ATOM	4190	CE1			91.045	83.157	8.034	1.00 48.94	
15	ATOM	4191	CE2			90.810	85.533	8.323	1.00 48.39	
	ATOM	4192	CZ	PHE C 1		91.616	84.400	8.302	1.00 46.82	
	$AT \cup M$	4193	C	PHE C 1		85.097	83.521	8.378	1.00 50.21	
	ATOM	4194	O	PHE C 1		84.570	82.478	7.968	1.00 49.82	
	$AT \bigcirc M$	4195	N	SER C 1	.04	84.414	84.647	8.555	1.00 48.66	C
20	ATOM	4196	CA	SER C 1	04	83.012	84.745	8.214	1.00 45.33	С
	ATOM	4137	CB	SER C 1	.04	82.165	85.191	9.417	1.00 46.37	С
	ATOM	41.38	ОĞ	SER C 1	04	82.048	86.605	9.502	1.00 57.43	C
	$AT \odot M$	4199	C	SER C 1		82.984	85.792	7.108	1.00 41.51	
	ATOM	4200	O	SER C 1		83.757	86.736	7.130	1.0ŭ 38.53	
25	MOTA	4201	N	MET C 1		82.114	85.616	6.129	1.00 41.72	
	ATOM	4202	CA	MET C 1		82.036	86.573	5.038	1.00 43.60	
	ATOM	4203	CB	MET C 1		81.601	85.872	3.748	1.00 44.67	
	ATOM	4204	CG	MET C 1		81.330	86.830	2.579	1.00 40.80	
	ATOM	4205	SD	MET C 1		80.914	85.922	1.118	1.00 45.07	
30	ATOM	4206	CE	MET C 1		82.489	85.136	0.675	1.00 39.55	
30										
	ATOM	4207	C	MET C 1		81.077	87.722	5.308	1.00 46.26	
	ATOM	4208	Ö	MET C 1		79.972	87.519	5.816	1.00 44.17	
	ATOM	4209	11	ASN C 1		81.518	88.927	4.963	1.00 47.38	
	ATOM	4210	CA	ASN C 1		80.707	90.137	5.078	1.00 49.51	
35	ATOM	4011	CB	ASN C 1		81.391	91.160	5.984	1.00 56.07	
	ATOM	4212	CG	ASN C 1		80.769	92.539	5.879	1.00 63.53	
	ATOM	4213	CD1	ASN C 1	.06	80.925	93.233	4.857	1.00 56.72	
	ATOM	4214	11D2	ASN C 1	.06	80.048	92.943	6.921	1.00 68.89	
	ATOM	4215	C	ASN C 1	.06	80.572	90.688	3.645	1.00 49.28	
40	$AT \cap M$	4216	Ō.	ASN C 1	.06	81.566	91.073	3.015	1.00 46.49	C
	ATOM	4217	N	GLY C 1	L07	79.344	90.700	3.130	1.00 50.96	C
	ATOM	4218	$\Box A$	GLY C 1	.07	79.102	91.178	1.776	1.00 47.29	C
	ATOM	4219	C	GLY C 1		78.620	90.074	0.846	1.00 46.96	С
	ATOM	4220	\circ	GLY C 1	07	78.421	88.940	1.275	1.00 48.97	C
45	ATOM	4221	N	ASN C 1		78.439	90.398	-0.434	1.00 50.83	
	ATOM	42.22	ĊA	ASN C 1		77.974	89.429	1.426	1.00 49.00	
	ATUM	41113	1, 5	ASN C 1		77.392	20.149	2.635	1.00 56.26	
				ASN C 1				-2.247	1.00 61.63	
	ATOM ATOM	4224 4225	CG OD1	ASN C 1		76.392 76.703	91.180 ·92.371	-2.247	1.00 67.56	
50	ATOM	4226		ASN C 1		75.176	90.735	-1.917	1.00 62.48	
	ATOM	4227	C	ASN C 1		79.125	88.561	-1.887	1.00 46.12	
	ATOM	4228	Õ	ASN C 1		80.217	89.064	-2.155	1.00 42.01	C
	ATOM	4229	N	LYS C 1		78.858	87.266	2.016	1.00 38.69	
	MOTA	4230	CA	LYS C 1		79.874	86.310	-2.407	1.00 41.12	
55	MOTA	4231	CB	LYS C 1	.09	79.444	84.897	-2.023	1.00 44.04	C

	ATOM	4232	CG	LYS C 10	78.255	84.360 -2.	804 1.0	0 45.47	С
	MOTA	4233	CD	LYS C 10			019 1.0	0 51.74	С
	ATOM	4234	CE	LYS C 10			865 1.0	0 59.53	С
	ATOM	4235	NI	LYS C 10				0 64.13	С
5	MOTA	4236	C	LYS C 10				3 40.75	C
	ATOM	4237	Ö	LYS C 10				3 41.19	C
	ATOM	4238	N	SER C 1				0.38.36	C
									C
	ATOM	4039	CA	SER C 11				0 36 23	
	ATOM	4240	CB	SER C 11			834 1.0		C
10	MOTA	4241	ŪG -	SER C 11			579 1.0		c
	ATOM	4040	C	SER C 11				0.29.42	С
	MOTA	4243	Ü,	SER C 11	LO 78.876			0.28.55	С
	ATOM	4244	11	VAL C 11				0.30.69	C
	MOTA	4245	CA	VAL C 13			105 1.0	0.29.50	C
15	MOTA	4246	СВ	VAL C 13	11 81.934	90.782 -7.	652 1.0	0 33.90	C
	ATOM	4247	CG1	VAL C 13	11 81.666	91.463 -6.	325 1.0	0 32.11	C
	MOTA	4248	CG2	VAL C 13	11 83.135	89.825 -7.	579 1.0	0-26-33	C
	ATOM	4249	C	VAL C 11	80.718	89.916 -9.	632 1.0	0 29 99	C
	ATOM	4250	Ç)	VAL C 11	L1 80.996	88.853 -10.	194 1.0	0 27.74	C
20	ATOM	4251	Ν	TRP C 11	12 80.448	91.034 -10.	299 1.0	0.25.72	С
	ATOM	4252	CA	TRP C 11				0 25.20	C
	ATOM	4253	СВ	TRP C 1				0.26.69	С
	ATOM	4254	ĈĠ	TRP C 11				0 33 34	Ĉ
	ATOM	4255	CD2	TP.P C 11					Č
25	ATOM	4256	CE2	TRP C 11				0 33.04	č
2.5	ATOM	4257	CE3					0 31.04	Ĉ
	ATOM	4258	CD1	TRP C 11					č
	ATOM	4259	NEI						Ċ
									C
20	ATOM	4260	CS2	TRP C 11				0.07.67	
30	ATOM	4261		TRP C 11				0.30.43	C
	ATOM	4262	CH2					0 06 73	C
	ATOM	4263	<u>:</u>	TEP C 11				0 27.61	C
	ATOM	4254	Ü	TRP C 11				0 22.47	C
	ATOM	4265	11	CYS C 11				0 26 10	C
35	ATOM	4266	CA	CYS C 11				0.25.33	C
	ATOM	4267	C	CYS C 11				0 30.04	C
	ATOM	4268	O	CYS C 11	13 81.611			0 28.98	C
	ATOM	4269	СВ	CYS C 11				U Ib 94	C
	MOTA	4270	SG	CYS C 11		92.793 -15.	958 1.0	0 29 59	C
40	MOTA	4271	11	GLN C 11	L4 82.478	94.951 -14.	336 1.0	0 22.99	С
	MOTA	4272	CA	GLN C 11	L4 81.842	96.127 -14.	927 1.0	0 25.16	С
	MOTA	4273	CB	GLN C 11	L4 81.597	97.177 -13.	835 1.0	0.28.73	C
	MOTA	4274	CG	GLN C 11	L4 80.857	96.602 -12.	630 1.0	0 36.89	С
	ATOM	4275	(T)	GLN C 11	L4 80.727	97.569 -11.	457 1.0	0 42.08	C
45	MOTA	4276	CE1	GLN C 11		98.365 -11.	382 1.0	0 49.79	C
	ATOM	4277	1152	GLN C 11	L4 81.665	97.493 -10.	539 1 0	0 49 11	\mathbf{C}
	MOTA	4278	4.7	GLN C 11				0 31.28	C
	ATOM	4279	0	GLN C 11				0 4/.34	Ĉ
	ATOM	4280	N	ALA C 11				0 25.85	Ċ
50	ATOM	4280	ĊΑ	ALA C 11				0 18.40	č
2.0	ATOM	4282	CB	ALA C 11				0 20.65	Ċ
									C
	ATOM	4283	0	ALA C 11				0 28.38	
	ATOM	4284	0	ALA C 11				0 23.27	C
	ATOM	4285	N	ASN C 11				0 23.81	C
55	ATOM	4286	CA	ASN C 11	16 85.060	100.327 -16.	002 1.0	0 28.02	C

									_
	MOTA	4287	CB	ASN C 11		101.425		1.00 28.32	C
	MOTA	4288	CG	ASN C 11	6 83.983	100.858	-13.746	1.00 27.71	C
	ATOM	4289	OD1	ASN C 11	6 84.129	99.674	-13.436	1.00 24.66	Ç
	ATOM	4290	ND2	ASN C 11	6 83.247	101.707	-13.020	1.00 23.76	C
5	ATOM	4291	С	ASN C 11			-15.378	1.00 27.65	C
•	ATOM	4292	0	ASN C 11			-14.695	1.00 31.13	Ç
	ATOM	4293	N	ASN C 11			-15.593	1.00 27.61	Ĉ
							-15.048	1.00 29.18	Č
	ATOM	4294	CA	ASN C 11					Ċ
	MOTA	4295	CB	ASN C 11			-15.449	1.00 2".03	<u>_</u>
10	ATOM	4296	CG	ASN C 11			-16.951	1.00 30.01	C
	ATOM	4297		ASN C 11			-17.638	1.00 27.30	C
	MOTA	4298	ND2	ASN C 11			-17.455	1.00 29.00	Ç
	ATOM	4299	С	ASN C 11	7 86.958	96.986	-13.543	1.00 31.56	C
	MOTA	4300	0	ASN C 11	7 87.748	96.230	-12.994	1.00 31.15	C
15	ATOM	4301	N	MET C 11	86.035	97.652	-12.860	1.00 33.87	C
	ATOM	4302	CA	MET C 11		97.430	-11.421	1.00 38.31	C
	ATOM	4303	СВ	MET C 11			-10.723	1.00 43.16	C
	ATOM	4304	CG	MET C 11			-10.744	1.00 53.52	C
	ATOM	4305	SD	MET C 11		101.385		1.00 58.36	Ċ
20	ATOM	4306	CE	MET C 11		101.027	-8.271	1.00 63.17	Ç
20							-11.182	1.00 41.22	
	MOTA	4307	C	MET C 11					© ©
	ATOM	4308	0	MET C 11			-12.001	1.00 39.33	`~ .~
	ATOM	4309	N	TRP C 11			-10.058	1.00 39.36	0
	ATOM	4310	CA	TRP C 11			-9.706	1.00 34.52	
25	MOTA	4311	СВ	TRP C 11			-8.830	1.00 37.83	C
	MOTA	4312	CG	TRP C 11			-9.625	1.00 34.11	Ç
	MOTA	4313	CD2				-10.449	1.00 33.34	000000
	ATOM	4314	CE2				-11.053	1.00 32.21	C
	ATOM	4315	CE3				-10.741	1.00 29.94	C
30	ATOM	4316	CD1	TRP C 11	9 87.264	92.691	-9.755	1.00 31.13	C
	ATOM	4317	NE1	TRP C 11	9 87.721	91.715	-10.608	1.00 36.30	:2
	ATOM	4318	CZ2	TRP C 11	9 86.610	89.897	-11.919	1.00 29.11	7) C
	MOTA	4319	CZ3	TRP C 11	9 84.206	89.869	-11.594	1.00 31.88	C
	MOTA	4320	CH2	TRP C 11	9 85.384	89.352	-12.181	1.00 32.92	C
35	ATOM	4321	С	TRP C 11	€ 82.930	94.725	-9.066	1.00 45.62	C
	MOTA	4322	0	TRP C 11	9 82.742	95.703	-8.345	1.00 44.53	C
	ATOM	4323	N	GLY C 12	0 82.022			1.00 50.00	C
	ATOM	4324	CA	GLY C 12			-8.986	1.00 49.40	C
	ATOM	4325	С	GLY C 12			-8.669	1.00 50.22	C
40	ATOM	4326	Ō	GLY C 12				1.00 53.01	Ç
10	ATOM	4327	N	PRO C 12			-8.388	1.00 42.23	ć
	ATOM	4328	CD	PRO C 12			-8.569	1.00 46.84	Č
	ATOM	4329	CA	PRO C 12			-8.042	1.00 46.15	Ċ
				PRO C 10				1.00 40.15	
• -	ATOM	4330	CB				-8.040 -8.846		1 (1
45	ATOM	4331	∵CG -≃	PRO C 10				1.00 45.38	0.0
	ATOM	4332	C	PRO C 10			-6.637	1.00 48.37	
	ATOM	4333	0	PRO C 11			-6.340	1.00 49.57	C
	ATOM	4334	N	THR C 12			-5.766	1.00 45.65	Ç
	ATOM	4335	CA	THE C 13			-4.388	1.00 48.81	C
50	ATOM	4336	CB	THP C 12			-3.397	1.00 52.33	© ©
	MOTA	4337		THR C 12			-3.488	1.00 54.63	C
	ATOM	4338	CG2	THR C 12			-1.953	1.00 54.73	C
	ATOM	4339	C	THP C 12			-4.287	1.00 51.31	C
	ATOM	4340	()	THR C 10	80.964	95.769	-5.277	1.00 49.95	C
55	ATOM	4341	N	ARG C 12	3 80.792	96.106	-3.094	1.00 56.40	C

									_
	MOTA	4342	CA	ARG C 123	82.233	96.099	-2.936	1.00 54.17	С
	MOTA	4343	CB	ARG C 123	82.628	96.777	-1.621	1.00 62.98	C
	MOTA	4344	CG	ARG C 123	82.158	98.275	-1.561	1.00 73.33	C
					82.868	98.987	-0.336	1.00 77.96	Ĉ
	MOTA	4345	CD	ARG C 123					
5	MOTA	4346	NE	ARG C 123		100.279	-0.674	1.00 80.89	C
	MOTA	4347	CZ	ARG C 123	84.553	100.439	-1.458	1.00 80.79	C
	ATOM	4348	NH1	ARG C 123	85.165	99.392	-2.007	1.00 79.18	C
	ATOM	4349	NH2			101.656	-1.696	1.00 81.16	C
									Ĉ
	MOTA	4350	C	ARG C 123	81.566	94.608	-2.890	1.00 52.07	
10	MC'TA	4351	0	ARG C 123	81.687	93.780	-2.609	1.00 51.24	C
	MOTA	4352	N	LEU C 124	83.201	94.245	-3.210	1.00 46.24	C
	MOTA	4353	CA	LEU C 124	84.175	92.836	-3.137	1.00 43.03	C
	MOTA	4354	СВ	LEU C 124	85.692	92.655	-3.342	1.00 38.28	C
						92.386			Ç
	MOTA	4355	CG	LEU C 124	86.181		-4.766	1.00 39.78	
15	MOTA	4356	CD1	LEU C 124	87.714	92.314	-4.721	1.00 41.84	С
	ATOM	4357	CD2	LEU C 124	85.591	91.090	-5.304	0.00 41.07	C
	ATOM	4358	С	LEU C 124	83.795	92.371	-1.738	1.00 35.52	С
	ATOM	4359	0	LEU C 124	83.740	93.175	-0.807	1.00 32.32	C
								1.00 31.53	Ċ
	MOTA	4360	N	PRO C 125	83.473	91.080	-1.574		
20	MOTA	4361	CD	PRO C 125	83.663	89.969	-2.523	1.00 35.48	C
	MOTA	4362	CA	PRO C 125	83.093	90.568	-0.255	1.00 36.74	C
	MOTA	4363	CB	PRO C 125	82.663	89.127	-0.554	1.00 32.42	C
	MOTA	4364	CG	PRO C 125	83.629	88.741	-1.610	1.00 33.06	C
	MOTA	4365	C	PRO C 125	84.329	90.593	0.623	1.00 36.97	C
25	MOTA	4366	0	PRO C 125	85.438	90.594	0.117	1.00 34.38	C
	MO1'A	4367	N	THP C 126	84.130	90.571	1.930	1.00 41.39	C
	ATOM	4368	CA	THR C 126	85.139	90.584	2.857	1.00 44.67	C
	MOTA	4369	CB	THR C 126	85.171	91.881	3.691	1.00 49.35	C
	ATOM	4370	OG1		86.470	92.211	4.174	1.00 58.86	C
20					84.227	91.731	4.855	1.00 45.39	Ĉ
30	MOTA	4371	CG2						
	MOTA	4372	С	THR C 126	85.179	89.343	3.765	1.00 43.43	C
	MOTA	4373	0	THR C 126	84.101	88.820	4.068	1.00 41.61	C
	ATOM	4374	N	CYS C 127	86.333	88.832	4.164	1.00 46.42	C
	ATOM	4375	CA	CYS C 127	86.348	87.679	5.068	1.00 46.58	C
35	ATOM	1376	C	CYS C 127	86.937	88.162	6.361	1.00 47.12	C
• • • •				CYS C 127			6.384	1.00 44.98	č
	MOTA	4377	0		88.183	88.490			
	MOTA	4378	CB	CYS C 127	87.153	86.515	4.485	1.00 41 09	C
	ATOM	4379	SG	CYS C 127	86.397	85.611	3.072	1.00 36.94	ご
	ATOM	4380	N	VAL C 128	86.202	88.224	7.422	1.00 47.64	С
40	ATOM	4381	CA	VAL C 128	86.671	88.675	8.725	1.00 50.09	C
	ATOM	4382	CB	VAL C 128	85.674	89.670	9.349	1.00 53.76	C
	ATOM	4383		VAL C 128	84.322	88.993	9.553	1.00 56.55	C
	ATOM	4384	CG2	VAL C 128	86.211	90.180	10.678	1.00 55.81	С
	ATOM	4385	C	VAL C 128	86.860	87.494	9.696	1.00 50.97	C
45	ATOM	4386	0	VAL C 128	86.117	86.494	9.653	1.00 47.21	C
	ATOM	4387	N	SER C 129	87.860	87.611	10.563	1.00 44.79	C
								1.00 41.23	Č
	MOTA	4388	CA	SER C 129	88.146	86.561	11.534		<u>'</u>
	MOTA	4389	CB	SER C 129	89 373	85.901	12.370	1.00 36.76	C
	ATOM	4390	OG	SER C 19	89 493	85.955	33.4 ئ	1.00 38.45	C
50	MOTA	4391	C	SER C 120	87.020	86.289	12.506	1.00 42.12	C
- "	ATOM	4392	Õ	SER C 129	86.396	87.214	13.030	1.00 38.42	Ċ
									C
	MOTA	4393	N	VAL C 130	86.733	85.004	12.747	1.00 42.88	
	MOTA	4394	CA	VAL C 130	85.786	84.566	13.712	1.00 48.17	С
	ATOM	4395	CB	VAL C 130	85.679	83.028	13.724	1.00 49.37	С
55	ATOM	4396	CG1	VAL C 130	85.006	82.570	15.003	1.00 55.87	С
•						· -	-		

	ATOM	4397	CGC	VAL C	130	84.879	82.558	12.510	1.00 47.26	С
	ATOM	4398	C	VAL C		85.191	85.042	15.124	1.00 47.25	C
	ATOM	4399	0	VAL C		85.334	85.271	15.976	1.00 49.24	C
	ATOM	4400	N	PHE C		87.495	85.202	15.360	1.00 42.64	C
5	ATOM	4401	CA	PHE C		87.979	85.639	15.665	1.00 43.25	C
.,	ATOM	4401	CB	PHE C		89.429	85.174	15.873	1.00 43.23	C
			CG					16.666	1.00 37.87	C
	ATOM	4403		PHE C		89.608	83.591 83.218	15.589	1.00 30.50	C
	ATOM	4404				90.324				C
10	ATOM	4405		PHE C		88.927 90.357	82.770	17.461	1.00 32.59	C
10	ATOM	4406		PHE C			81.848	15.278	1.00 32.11	
	ATOM	4407	CE2	PHE C		88.955	81.399	17.157	1.00 37.78 1.00 33.91	C C
	ATOM	4408	CZ			89.674	80.938	16.055	1.00 33.91	C
	ATOM	4409	C	PHE C		87.849 88.533	87.146	16.797		C
, -	ATOM	4410	0	PHE C			87.896	16.104	1.00 43.08	
15	ATOM	4411	N	PRO C		86.980	87.606	17.719	1.00 49.31	C
	ATOM	4412	CD	PRO C		86.384	86.810	18.806	1.00 48.64	C
	ATOM	4413	CA	PRO C		86.730	89.029	17.954	1.00 51.76	C
	ATOM	4414	CB	PRO C		85.882	89.026	19.227	1.00 51.00	C
20	ATOM	4415	CG	PRO C		86.345	87.802	19.927	1.00 49.99	C
20	ATOM	4416	C	PRO C		87.948	89.921	18.054	1.00 54.56	C
	MOTA	4417	0	PRO C		88.018	99.941	17.371	1.00 59.16	C
	MOTA	4418	N	LEU C		88.913	89.558	18.887	1.00 53.87	C
	MOTA	4419	CA	LEU C		90.089	90.396	18.991	1.00 56.98	C
3.5	MOTA	4420	CB	LEU C		90.854	90.093	20.274	1.00 53.54	C
25	ATOM	4421	CG	LEU C		89.997	90.162	21.538	1.00 52.81	C
	ATOM	4422		LEU C		90.901	90.183	22.748	1.00 53.95	C
	ATOM	4423		LEU C		89.142	91.398	21.540	1.00 53.34	C C
	ATOM	4424	C	LEU C		90.958	90.156	17.772 17.726	1.00 58.59	C
20	ATOM Amom	4425	O N			92.106	90.579		1.00 54.07	
30	ATOM	4426	N	GLU C		91.054	89.741	16.857	1.00 60.78	C
	ATOM ATOM	4427 4428	CA CB	GLU C		91.010	89.158 90.±84	15.522	1.00 70.26 1.00 72.39	C
	ATOM	4429	CG	GLU C		91.448 90.575	91.428	14.475 14.421	1.00 75.60	C
	ATOM	4429	CD	GLU C		89.133	91.113	14.421	1.00 78.38	C
35	ATOM	4430		GLU C		88.813	80.903	13.866	1.00 78.38	C
.*.'	ATOM	4431		GLU C		88.317	92.057	14.018	1.00 80.20	C
	ATOM	4432	C	GLU C		91.879	87.908	15.438	1.00 30.22	C
	ATOM	4434	0	GLU C		92.143	87.521	16.835	1.00 71.80	C
	ATOM	4435		GLU C		92.658	87.662	14.702	1.00 75.34	C
40	ATOM	4436	C1	NAG D	1	91.022	77.190	13.373	1.00 79.03	D
4	ATOM	4437	01	NAG D	1	90.217	75.061	13.510	1.00 53.32	D
	ATOM	4438	C2	NAG D	1	92.379	75.764	12.861	1.00 36.79	D
	ATOM	1439	N2	NAG D	1	92.264	76.234	11.516	1.00 30.73	D
	ATOM	4440	C7	NAG D	ì	92 851	76.904	10.527	1.00 40.49	D
45	ATOM	4447	07	NAG D	1	93.458	71.963	10.726	1.00 46.19	D
7.	ATOM	4442	C8	NAG D	î	92.771	7:1300	9.115	1.00 36.88	ם D
	ATOM	4443	C3	NAG D	1	92.972	75.726	13.816	1.00 35.88	D
	ATOM	4444	03	NAG D	1	94.293	75.726	13.394	1.00 40.30	D
	ATOM	4445	C4	NAG D	1	92.986	76.292	15.264	1.00 40.30	D
50	ATOM	4446	04	NAG D	1	93.308	75.255	15.169	1.00 36.52	D
.'\'	ATOM	4447	C5	NAG D	1	91.610	76.877	15.659	1.00 38.38	D
	ATOM	4448	05	NAG D	1	91.167	77.818	14.663	1.00 38.38	D
	ATOM	4449	C6	NAG D	1	91.599	77.518	16.994	1.00 34.64	D
	ATOM	4445	06	NAG D	1	92.510	78.695	16.994	1.00 35.80	D
55	ATOM	4450	C1	NAG E	1	90.580	70.350	4.612	1.00 80.29	E
	AICHI	4431	CI	AMO E	1	20.505	,0.330	4.015	1.00 00.23	Ŀ

	MCTA MGTA MGTA MGTA	4452 4453 4454 4455	01 C2 N2 C7	NAG E NAG E NAG E NAG E	1 1 1	90.608 91.606 91.383 90.709	71.734 69.705 70.221 69.507	4.755 5.560 6.901 7.799	1.00 82.28 1.00 79.89 1.00 79.48 1.00 79.52	E E E
5	ATDM	4456	07	NAG E	1	89.865	68.652	7.495	1.00 78.01	E
	$AT \odot M$	4457	C8	NAG E	1	91.027	69.791	9.263	1.00 77.64	Ε
	$M \odot TA$	4458	C3	NAG E	1	93.061	70.018	5.141	1.00 79.82	E
	$AT \odot M$	4459	О3	NAG E	1	93.945	69.116	5.805	1.00 80.58	E
	ATOM	4460	C4	NAG E	1	93.291	69.924	3.618	1.00 80.30	E
10	$AT \odot M$	4461	04	NAG E	1	94.526	70.547	3.285	1.00 80.30	E
	$AT \odot M$	4462	C5	NAG E	1	92.148	70.607	2.853	1.00 80.10	E
	ATOM	4463	05	NAG E	1	90.884	70.035	3.252	1.00 79.60	E
	ATOM	4464	C6	NAG E	1	92.253	70.476	1.341	1.00 80.36	E
	ATOM	4465	06	NAG E	1	91.044	70.874	0.705	1.00 78.94	Ε
15	END									

While various embodiments of the present invention have been described in detail, it is apparent that modifications and adaptations of those embodiments will occur to those skilled in the art. It is to be expressly understood, however, that such modifications and adaptations are within the scope of the present invention, as set forth in the following claims.

5