

Supervised Learning

Rowel Atienza, PhD
University of the Philippines
github.com/roatienza
2023

A computer program is said to learn from **experience E** with respect to some class of **tasks T**, and **performance measure P**, if its performance at tasks in T, as measured by P, improves with experience E. – Tom Mitchell

Supervised Learning

Experience

Task

Performance

Robot Learning

Learn from Experience (E) to perform Task (T) by improving the Performance (P)

https://spectrum.ieee.org/covariant-ai-gigantic-neural-network-to-automate-warehouse-picking

Supervised Learning

Experience: Dataset $\mathcal{D}_{train} = \{x_n, y_n\}$ with N examples: input $x_n \in \mathbb{R}^D$ with corresponding label $y_n \in \mathbb{R}$

Task: Classifier $y = f(x, \theta) : \mathbb{R}^D \to \mathbb{R}$ where θ are parameters

Ground Truth Experience: Dataset $\mathcal{D}_{test} = \{x_m, y_m\}, \hat{y}_m = f(x_m, \theta)$ for $m = 1 \dots M$

Performance: Accuracy on \mathcal{D}_{test}

$$Accuracy = \frac{\#\ Correct\ Prediction}{Size\ of\ Test\ Dataset} = \frac{\sum_{m=1}^{M} (\hat{y}_m\ equals\ y_m)}{M}$$

Machine Learning & Generalization

Initial Test $Accuracy_0$ of $\hat{y}_m = f(\boldsymbol{x}_m, \boldsymbol{\theta}^0)$, $\boldsymbol{\theta}^0$ initial parameters Machine Learning: Finding the optimal parameters $\boldsymbol{\theta}^*$ using $\mathcal{D}_{train} = \{\boldsymbol{x}_n, y_n\}: \boldsymbol{\theta}^0 \to \boldsymbol{\theta}^*$ $f(\boldsymbol{x}_n, \boldsymbol{\theta}^*) \approx y_n \quad n = 1 \dots N$

Final Test $Accuracy_*$ of $\hat{y}_m = f(\boldsymbol{x}_m, \boldsymbol{\theta}^*)$

Machine Learning: $Accuracy_* > Accuracy_0$

Generalization: $Accuracy_{*(train)} - Accuracy_{*(test)} = Gap \rightarrow 0$

Experience

The Datasets

MNIST Dataset

$$\mathcal{D}_{train} = \{x_n, y_n\}, N = 60,000$$

$$\mathcal{D}_{test} = \{x_m, y_m\}, M = 10,000$$

 $x:28\times28$ grayscale images of digits 0 to 9

y: class label

Available:

torchvision.datasets.MNIST()

LJSpeech Dataset

$$\mathcal{D}_{train} = \{x_n, y_n\}, N = 12,228$$

$$\mathcal{D}_{test} = \{x_m, y_m\}, M = 523$$

x: speech

y: text transcript

Available:

torchaudio.datasets.LJSPEECH()

the association was organized under the most promising auspices

Stanford Sentiment Treebank Dataset

$$\mathcal{D}_{train} = \{x_n, y_n\}, N = 67,349$$

$$\mathcal{D}_{dev} = \{x_p, y_p\}, P = 872$$

$$\mathcal{D}_{test} = \{x_m, y_m\}, M = 1.821$$

x : phrases

y : sentiment (+ or 1.0 /- or 0.0)

Available:

torchtext.datasets.SST2()

x: The gorgeously elaborate "The Lord of the Rings" ...

y: 0.833

LAION5B: 5B Image-Text Pairs

 $\mathcal{D}_{train} = \{\boldsymbol{x}_n, \boldsymbol{y}_n\}, N = 5B$

 \boldsymbol{x} : text

y: image

Available:

https://laion.ai/blog/laion-5b/

Clip retrieval works by converting the text query to a

CLIP embedding, then using that embedding to query

a knn index of clip

image embedddings

Display captions

Display similarities

Hide duplicate urls

Display full

captions

Safe mode

Hide (near) duplicate images Search over image 🔽

Search with

multilingual clip

french cat

How to tell if your feline is french. He wears a b...

cats! funnycatsgif.com

 $Q \bullet \downarrow$

Hipster cat

french cat

網友挑戰「加幾筆畫 出最創意貓咪圖片」. 笑到岔氣之後我也手

cat in a suit Georgian sells tomatoes

イケメン猫モデル

「トキ・ナンタケッ

ト」がかっこいい -

NAVER まとめ

French Bread Cat Loaf Metal Print

Task

Multi-label Classification (Recognition)

Also known as Multi-class Logistic Regression

$$\begin{cases} y \in \mathbb{R} & y \in \{0,1,2,...9\} \\ y \in \mathbb{R}^{10} & if one - hot \end{cases}$$

One-hot vector

$$\begin{bmatrix} 0 \\ 1 \\ 2 \\ \vdots \\ 9 \end{bmatrix} \rightarrow \begin{bmatrix} 1,0,0,0,0,0,0,0,0,0,0 \\ 0,1,0,0,0,0,0,0,0,0,0 \\ 0,0,1,0,0,0,0,0,0,0,0,0 \\ \vdots \\ 0,0,0,0,0,0,0,0,0,0,0,1 \end{bmatrix}$$

Task: Binary Classification

Task: Sentiment Classification

Assuming embedding size is 512

Also known as Binary Logistic Regression

Task: Sequence to Sequence

TEXT: {the association was organized under the most promising auspices}

PHONEME: {DH IYO AHO S OW2 S IYO EY1 SH AHO N W AHO Z AO1 R G AHO N AY2 Z D AH1 N D ERO DH AHO M OW1 S T P R AA1 M AHO S IHO NG AO1 S P IHO S IHO Z}

Task: Text to Speech or Speech to Text

Task: Curve Fitting

 $\mathcal{D}_{train} = \{x_n, y_n\}$ $\mathcal{D}_{test} = \{x_m, y_m\}$

Given: Data points

Also known as Linear Regression

Task: Image Synthesis

Input: "Anime scene of Rihanna as a space pilot" by @hardmaru

Output

Task: Assistant

Input: Image and user query by LLaVA project

Performance

Accuracy (Classification) ↑

Accuracy: Classification Classification Performance Score on $\mathcal{D}_{test} = \{(x_m, y_m)\}$

$$Accuracy = \frac{\#\ Correct\ Prediction}{Size\ of\ Test\ Dataset} = \frac{\sum_{m=1}^{M} (\hat{y}_m\ equals\ y_m)}{M}$$

Word Error Rate (WER) in ASR

$$WER = \frac{Substitution + Insertion + Deletion}{Number\ of\ Spoken\ Words}$$

Ground Truth: It is the shining armor. Clear as night and day.

Substitution: Replaced word(s) (e.g. night by knight)

Insertion: Added word(s) that is not there (e.g. instead of the shining armor, model transcribed it as the knight and shining armor)

Deletion: Omitted word(s) (e.g. instead of clear as night and day, model transcribed it as clear night and day)

Generative Model (Voice/Video) ↑

Mean Opinion Score (MOS) is a numerical measure of the human-judged overall quality of an event or experience.

- 5 Excellent
- 4 Good
- 3 Fair
- 2 Poor
- 1 Bad

Somewhere around 4.3 - 4.5 is considered an excellent quality target. Video quality becomes unacceptable below a MOS of roughly 3.5.

https://www.twilio.com/

Object Detection ↑

Intersection over Union (IoU)

IoU is also known as *Jaccard index:* $IoU = \frac{A \cap B}{A \cup B}$

Intersection : $A_1 \cap B_0$

Union : $A_1 \cup B_0$

Object Detection & Classification 1

Recall (Good guys in):
$$\uparrow$$

$$recall = \frac{tp}{tp + fn} = \frac{True_Positive}{True_Positive + False_Negative}$$
Good guys out

Related Performance Measures: Average Precision, F1 Score

Frechet Inception Distance - d

$$d^{2} = \left\| \boldsymbol{\mu}_{r} - \boldsymbol{\mu}_{g} \right\|_{2}^{2} + Tr \left(\boldsymbol{C}_{r} + \boldsymbol{C}_{r} - 2 \sqrt{\boldsymbol{C}_{r} \boldsymbol{C}_{g}} \right)$$

Feature vectors Gaussian mean and covariance of real and generated images: (μ_r, C_r) , (μ_g, C_g)

Pre-trained InceptionV3 Model

a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, NIPS 2017

Evaluating Assistants

- Multimodal QA: GPT4 evaluates the helpfulness, relevance, accuracy, and level of details of the responses from the assistants, and give an overall score on a scale of 1 to 10
- ScienceQA: Accuracy

Learning

Learning by Minimizing a Loss Function

Ground truth: y_n

Prediction: \hat{y}_n

Loss Function: $\mathcal{L} = l(y_n, \hat{y}_n)$

Machine Learning: Use dataset, $\mathcal{D}_{train} = \{(x_n, y_n)\}, \quad n = 1 \dots N$ to estimate the parameters $\boldsymbol{\theta}$ by minimizing $L = l(y_n, \hat{y}_n)$ using an optimizer

Assumption: $(x_1, y_1) \dots (x_n, y_n)$ are IID

IID: Independent and identically distributed

Empirical Risk Minimization (ERM)

$$R_{emp}(f, \boldsymbol{X}, \boldsymbol{y}) = \frac{1}{N} \sum_{i=1}^{n} l(y_n, \hat{y}_n)$$

Where
$$\mathbf{X} := [x_1, ..., x_n]^T \in \mathbb{R}^{N \times D}$$
 and $\mathbf{y} := [y_1, ..., y_n]^T \in \mathbb{R}^N$

Least Squares Loss

$$\mathcal{L} = l(y_n, \hat{y}_n) = (y_n - \hat{y}_n)^2$$

$$R_{emp}(f, \mathbf{X}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{n} (y_n - \hat{y}_n)^2 = \frac{1}{N} \sum_{i=1}^{n} (y_n - f(\mathbf{x}_n, \boldsymbol{\theta}))^2$$

Loss Functions

Loss Function	Equation
Mean Squared Error (MSE)	$\sum_{i=1}^{categories} (y_i^{label} - y_i^{prediction})^2$
Mean Absolute Error (MAE)	$\sum_{i=1}^{categories} y_i^{label} - y_i^{prediction} $
Categorical Cross Entropy (CE)	$-\sum_{i=1}^{categories} y_i^{label} \log y_i^{prediction}$
Binary Cross Entropy (BCE)	$-y_1^{label} \log y_1^{prediction} - (1 - y_1^{label}) \log(1 - y_1^{prediction})$

Categorical Cross-Entropy (CE)

For discrete distribution, Categorical Cross-Entropy is:

$$CE = H(P,Q) = -\sum_{i} P(x_i) \log Q(x_i)$$

Predicted **Empirical** Label Label

What is CE?

$$CE = -\left(1\log\frac{3}{4} + 0\log\frac{1}{4}\right) = 0.29$$

Minimizing H(P,Q) minimizes the distance of prediction model Q from the empirical model P

Latent Diffusion Model (LDM) Loss

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), y, \epsilon \sim \mathcal{N}(0, 1), t} \left[\|\epsilon - \epsilon_{\theta}(z_t, t, \tau_{\theta}(y))\|_2^2 \right]$$

GPT CE Loss

Generating Autoregressive Output

GPT2: Radford, Alec, et al. "Language models are unsupervised multitask learners." *OpenAl blog* 1.8 (2019): 9.

GPT3: Brown, Tom, et al. "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-

Machine Learning Pipeline

End