Line Assignment

Name: A. Gowri Priya Email: gowripriyaappayyagari@gmail.com

1 Problem

In Δ ABC and Δ DEF, AB = DE, AB \parallel DE, BC = EF and BC \parallel EF. Vertices A, B and C are joined to vertices D, E and F respectively (see Figure).

Show that

- (i) quadrilateral ABED is a parallelogram
- (ii) quadrilateral BEFC is a parallelogram
- (iii) $AD \parallel CF$ and AD = CF
- (iv) quadrilateral ACFD is a parallelogram
- (v) AC = DF
- (vi) $\Delta ABC \cong \Delta$ DEF.

Figure 1: Given Figure

2 Solution

The input parameters for this construction are

Symbol	Value
r1	2
r2	3
θ	$\frac{\pi}{2.5}$

$$A = egin{pmatrix} r1\cos heta \ r2\sin heta \end{pmatrix}$$

$$B = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$D = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

$$C = B + D/2$$

$$E = B + D - A$$

$$F = E + C - B$$

Direction vectors

The Direction vectors are

$$m_1 = A - B$$

$$m_2 = B - C$$

$$m_3 = A - C$$

$$m_4 = D - E$$

$$m_5 = E - F$$

$$m_6 = D - F$$

$$m_7 = A - D$$

$$m_8 = C - F$$

To proove

i.Quadrilateral ABED is a parallelogram

Given that AB = DE and $AB \parallel DE$

Directional vectors $m_1 = m_4$

i.e
$$A - B = D - E$$

.: Quadrilateral ABED is a parallelogram.

ii.Quadrilateral BEFC is a parallelogram

Given that BC=EF and BC || EF

Directional vectors $m_2 = m_5$

i.e
$$B - C = E - F$$

.: Quadrilateral BEFC is a parallelogram.

iii.AD||CF and AD=CF

Directional vectors $m_7 = m_8$

i.e
$$A - D = C - F$$

Since the directional vectors AD and CF are same, AD is parallel to CF.

∴ AD||CF and AD=CF

iv.Quadrilateral ACFD is a parallelogram

Directional vectors $m_3 = m_6$

i.e
$$A - C = D - F$$

$$\therefore$$
 AC||DF and AC=DF

:.ACFD is a parallelogram.

v.AC=DF

Directional vectors $m_3 = m_6$

i.e
$$A - C = D - F$$

 \therefore AC=DF

 $\mathbf{vi.}\Delta\mathbf{ABC}\cong\Delta\ \mathbf{DEF}$

$$\|A-B\|=\|D-E\|$$
 and $\|B-C\|=\|E-F\|$ and $\|A-C\|=\|D-F\|$

... By SSS Rule $\triangle ABC \cong \triangle DEF$

3 Execution

*Verify the above proofs in the following code.

https://github.com/gowripriya-2002/FWC/blob/main/Matrix/line_assignment/code/line.py