Experimental Report

Course name	Digital Image Processing		
Student number	2011561103	Name	MD MUSTAFIZUR RAHMAN
Major	CST	Class	20LC
Experiment Date	22-10-15		
Experimental content	Experiment 2 : Image operation and basic Transformation		

1. Purpose and tasks of the experiment

- Become familiar with and master the usage of MATLAB tools.
- Realizing the image algebra operation and basic image transformation.

2. Experimental steps and results

Describe the basic steps and main codes of the experiment and give the experimental results with pictures.

(Delete the red word when submitting the report)

<u>Step: 1</u>

- 1. Read an RGB image
- 2. Transform it into grayscale image and binary image
- 3. Divide it into three sub-windows in the same window to display RGB image and grayscale image respectively, and note the text title

Code Explanation:

- 1. imread= this line of code is to use to read the file.
- 2. rgb2gray= this line of code is to transform the RGB image to grayscale image.
- 3. im2bw= this line of code is used to transform the image to binary image.
- 4. Subplot= divide the graphics window into multiple rectangular sections, each of which can be used for display separately.
- 5. Imshow= this line of code makes the image appear into the graphics window

```
a=imread('3.jpg')
i = rgb2gray(a)
I = im2bw(a,0.5)
subplot(3,1,1);
imshow(a);
title(' The original image ') subplot(3,1,2);
imshow(i);
title(' Gray image ') subplot(3,1,3);
```

imshow(I);
title('Binary image ')

<u>Step: 2</u>

- 1. Perform addition, subtraction, multiplication and division on two different images.
- 2. Divide them into five sub-windows in the same window to display them respectively, and note the text title.

Code explanation:

- 1. imread= this line of code is to read the file.
- 2. imresize= this line of code is used to resize the image.
- 3. imsubtract(A,B)= this of code is to subtract A from B.
- 4. imadd(A,B)= this line of code is to do addition between A and B.
- 5. immultiply(A,B)= this line of code is to do multiplication between A and B. imdivide(A,B)= this line of code is to do division between A and B.

a=imread('1.jpg')

A=imresize(a,[800 800])

b=imread('2.jpg')

B=imresize(b,[800 800])

Z1=imadd(A,B)

Z2=imsubtract(A,B)

Z3=immultiply(A,B)

```
Z4=imdivide(A,B)
subplot(3,2,1); imshow(A);title(' original image A')
subplot(3,2,2); imshow(B);title(' original image B')
subplot(3,2,3); imshow(Z1);title(' additive image ')
subplot(3,2,4); imshow(Z2);title(' subtraction image ')
subplot(3,2,5); imshow(Z3);title(' multiply image')
subplot(3,2,6); imshow(Z2);title(' division image ')
```


Step:3

- 1. Change the grayscale of an image to achieve image brightening, darkening and negative effects.
- 2. Divide it into four sub-windows in the same window to display them respectively, and annotate the text title.

Code explanation:

- 1. imread= this line of code is to read the file.
- 2. imadjust= this line of code is used to adjust the properties of image. For example change the image's brightness, darkness or edit the effect of the image.

```
a=imread('3.jpg');
m = imadjust(a,[,],[0.5;1]);% image brightens
n = imadjust(a,[,],[0;0.5]);% image darkened
g=255-a;% Negative effect
subplot(2,2,1);
```

```
imshow(a);
title(' original image ');
subplot(2,2,2);
imshow(m);
title(' image brightens ');
subplot(2,2,3);
imshow(n);
title(' image darkened ');
subplot(2,2,4);
imshow(g);
title(' Negative effect ');
```


3. Answer the following question?

Analyze the results of algebraic operations on images, and state the possible application fields of image addition, subtraction, multiplication, and division operations.

Answer: As we can see from part 2 of this experiment that doing algebraic operation on images changes properties between the two images. For example doing subtraction between A and B leads to deletion of parts that are not matching in A and B. Examples of other algebraic operations can be taken from part 2 of this experiment. The possible application fields of image addition, subtraction, multiplication and division operation are below:

Medical filed, Astronomy, Computer generated graphics, etc.

4. Experimental experience

It means your feelings and your harvest

Learning the use of algebraic operation was very entertaining. After a little bit of self-study the code of MATLAB is more understandable to me.Now I can change image brightness darkness. Also learn image convert gray and binary image using code. Easyly we can convert an image using MATLAB