Reading Data to R

- data.frame()
- Scan()
- readline()
- read.table()
- read.csv()
- data() :-to see a list of built-in datasets
 - Command library loads the package MASS (Modern Applied Statistics with S)
 - Library("MASS")
 - Command data() will list all the datasets in loaded packages.

- uci machine learning repository
- kaggle

Importing Data from Files

- If you are using R, you will likely need to read in data at some point.
- While R can read excel .xls and .xlsx files these file types often cause problems.
- Comma separated files (.csv) are much easier to work with. It's best to save these files as csv before reading them into R.
- If you need to read in a csv with R the best way to do it is with the command read.csv.
- Here is an example of how to read CSV in R:

- read.csv("filename.csv",header=TRUE, sep=",")
- read.csv("filename.csv")
- Then use the functions
 - dim():- find the dimension as nxp (number of rows x number of attributes)
 - head():- display first 6 rows
 - tail():- display last 6 rows
- After this exploring the structure of each attribute using the function str().

- The attributes or coloumns are numeric (noninteger type), integer type, character type etc.
- The integer type attributes may be qualitative one (categorical) or discrete-quantitative.
- The numeric type data are continuous or discrete quantitative.

Sample code- read-txt-example.r

Sample code- read-txt-example2.r

• In a data set the attributes are

- The summary() function displays several common summary statistics
- Measuring the mean and median of our data provides one way to quickly summarize the values.
- But these measures of center tell us little about whether or not there is diversity in the measurements.

- The five-number summary is a set of five statistics that roughly depict the spread of a dataset.
- All five of the statistics are included in the output of the summary() function.
- Written in order, they are:
 - 1. Minimum (Min.)
 - 2. First quartile, or Q1 (1st Qu.)
 - 3. Median, or Q2 (Median)
 - 4. Third quartile, or Q3 (3rd Qu.)
 - 5. Maximum (Max.)

- The minimum and maximum are the most extreme values found in the dataset, indicating the smallest and largest values respectively.
- The first and third quartiles, Q1 and Q3, refer to the value below or above which one quarter of the values are found.
- Along with the median (Q2), the quartiles divide a dataset into four portions, each with the same number of values.

 The difference between Q1 and Q3 is known as the interquartile range (IQR)

Impact of outliers in the data sets?

- Outliers can drastically change the results of the data analysis and statistical modelling
- Very common in data science / big data
- Unfavourable impacts of outliers in the data set:
 - It increases the error variance
 - Reduces the power of statistical tests
 - Biased estimates
 - Impact the basic linear assumptions (Linear regression, ANOVA, t-test and other statistical model assumptions)

Box plot

- The first quartile (Q₁) is defined as the middle number between the smallest number and the median of the data set
- The second quartile (Q₂) is the median of the data
- The third quartile (Q₃) is the middle value between the median and the highest value of the data set

- The horizontal lines forming the box in the middle of each figure represent Q1, Q2 (the median), and Q3 when reading the plot from bottom-to-top.
- The median is denoted by the dark line,

Visualizing numeric variables – boxplots

- Visualizing numeric variables can be helpful for diagnosing many problems with data.
- A common visualization of the five-number summary is a boxplot.
- The boxplot displays the center and spread of a numeric variable in a format that allows you to quickly obtain a sense of the range and skew of a variable, or compare it to other variables.
- boxplot(attributename, main="name")

Visualizing numeric variables – histograms

- A **histogram** is another way to graphically depict the spread of a numeric variable.
- hist(attribute-name, main="")
- The histogram is composed of a series of bars with heights indicating the count, or frequency

- A histogram is symmetric in shape if the right and left sides have essentially the same shape.
- When the right side of the histogram, containing the larger half of the observations in the data, extends a greater distance than the left side, the histogram is referred to as **skewed to the right**.
- The histogram is skewed to the left when its left side extends a much larger distance than the right side.

- The measures of central tendency related for a given set of measurements depends on the **skewness** of the data.
- If the distribution is mound-shaped and symmetrical about a single peak, the mode (Mo), median (Md), mean (m), and Trimmed mean(TM) will all be the same.
- This is shown using a smooth curve and population quantities.
- If the distribution is skewed, having a long tail in one direction and a single peak, the mean is pulled in the direction of the tail; the median falls between the mode and the mean; and depending on the degree of trimming,
- The trimmed mean usually falls between the median and the mean.
- The following figures illustrate this for distributions skewed to the left and to the right.
- If mean value is greater than median this implies that the distribution of the attribute is right skewed.

- Another method is the uses of apply()
 - apply(X, MARGIN, FUN)

the apply() function result.

Example:-Return the sum of each of the columns of the matrix m apply(m,2,sum)

We can compare the mean and median of each attribute from