Protocol Π_{AppROT}

Parties: Sender, Receiver.

Parameters:

 κ – length of the OT strings (computational security parameter);

 λ – statistical security parameter;

 N_{bf} is the required Bloom filter size;

 $N_{ot} > N_{bf}$ is the number of random OTs to generate;

 N_{ot}^1 , N_{cc} , $N_{maxones}$ are parameters of cut-and-choose described in Section ??.

Inputs: $b_1, ..., b_{N_{bf}}$ is Bloom filter of Receiver $(b_i \in \{0, 1\}, i = 1, ..., N_{bf});$

Offline phase $\Pi^{Offline}_{AppROT}$:

- 1. Random OT: Sender performs N_{ot} random OTs with Receiver. Receiver chooses requests $c_1, ..., c_{N_{ot}}$ with N_{ot}^1 s ones among them, and $N_{ot} N_{ot}^1$ zeroes (randomly permuted). As a result, in the jth ROT, Sender learns random strings m_{j0} , m_{j1} (length of κ) chosen by the functionality \mathcal{F}_{ROT} . Receiver uses choice bit c_j and learns $m_{j*} = m_{jc_j}$.
- 2. Cut-and-choose challenge: Sender chooses sets $C \subseteq [N_{ot}]$ of size N_{cc} and sends C to Receiver, who aborts if $|C| \neq N_{cc}$.
- 3. Cut-and-choose response: Receiver computes and sends to Sender the set $R = \{j \in C | c_j = 0\}$. To prove that he used choice bit 0 in the OTs indexed by R, it also sends $r^* = \bigoplus_{j \in R} m_{j*}$. Sender aborts if $|C| |R| > N_{maxones}$ or if $r^* \neq \bigoplus_{j \in R} m_{j0}$.

Online phase Π_{AppROT}^{Online} :

4. **Permute unopened OTs:** Receiver chooses random injective function π : $[N_{bf}] \to ([N_{ot}] \setminus C)$ such that $b_j = c_{\pi(j)}$, and sends π to Sender.

Receiver permutes its random values m_{j*} according the π , and Sender permutes all the m_{j0} , m_{j1} according to π .

Outputs: Receiver has output m_{j*} $(j = 1, ..., N_{bf})$ - Garbled Bloom filter that corresponds to Bloom filter of Receiver;

Sender has m_{j0} , m_{j1} , $(j = 1, ..., N_{bf})$ – random strings corresponding to "zeroes" and "ones" respectively in Garbled Bloom filter of Receiver.

Figure 5: protocol Π_{AppROT} .

Two-party Malicious PSI (offline-phase) $\Pi_{2PSI}^{Offline}$

Parameters:

 P_0, P_1 – parties; n – size of input sets; κ - computational security parameter; λ - statistical security parameter.

Offline-phase of the protocol:

- 1. Compute parameters: Parties compute parameters k, N_{bf} , N_{ot} , N_{bf}^1 , N_{cc} , $N_{maxones}$ from n, κ , λ as described in Section ??.
- 2. Hash seeds agreement: Parties agree about hash-functions $h_1, h_2, ..., h_k : \{0, 1\} \rightarrow [N_{bf}].$
- 3. Approximate ROTs with P_0 : P_0 as a Receiver performs $\Pi_{AppROT}^{Offline}$ with P_1 with parameters κ , λ , N_{ot} , N_{bf} , N_{ot}^1 , N_{cc} , $N_{maxones}$.

 As a result P_1 learns random strings m_{j0} , m_{j1} (of length κ). P_0 uses choice bits c_j and learns $m_{j*} = m_{jc_j}$ ($j \in [N_{ot} N_{cc}]$).
- 4. Approximate ROTs for secret-sharing: P_1 as a Receiver performs $\Pi_{AppROT}^{Offline}$ with P_0 with parameters κ , λ , N_{ot} , N_{bf} , N_{ot}^1 , N_{cc} , $N_{maxones}$. As a result, P_0 has set of strings m_{j*}^* , and P_1 have 2 sets m_{j0}^* , m_{j1}^* ($j \in [N_{ot} N_{cc}]$).

Figure 6.1: offline-phase of our malicious-secure two-party protocol Π_{2PSI} .

Two-party Malicious PSI (offline-phase) Π_{2PSI}^{Online}

 P_0, P_1 - parties; P_i holds $X_i = \{x_{i1}, x_{i2}, ..., x_{in}\}$; $h_1, h_2, ..., h_k : \{0, 1\}^* \to [N_{bf}]$ - Bloom filter hash-functions; N_{bf} - size of Bloom filter κ - computational security parameter; λ - statistical security parameter.

Online-phase Π_{2PSI}^{Online} :

- 5. Compute Bloom filters: P_i $(i \in \{0,1\})$ computes sets of indexes $h_*(x_{ij}) = \{h_s(x_{ij}) : s \in [k]\}$ $(j \in [n])$ using Algorithm 3.2, and Bloom filter $b^i = (b_1^i, b_2^i, ..., b_{N_{bf}}^i)$ of items from X_i .
- 6. Compute Garbled Bloom filter: Using b^0 as an input, P_0 performs Π_{AppROT}^{Online} with P_1 to finish Π_{AppROT} started on Step 3. As a result, it receives GBF^0 .
- 7. Compute garbled share for P_0 : Using b^1 as an input, P_1 performs Π_{AppROT}^{Online} with P_0 to finish Π_{AppROT} started on Step 4. P_0 computes the garbled Bloom filter of his input set $GBF_0^{1*} = (m_{2b_2^0}^*, ..., m_{N_{bf}b_{N_{bf}}}^*)$, P_1 receives share $(m_{1*}^*, m_{2*}^*, ..., m_{N_{bf}*}^*)$.
- 8. Compute codewords: P_0 computes codewords $y_{0j} = \bigoplus_{s \in h_*(x_{0j})} GBF^0[s]$. P_1 computes $y_{1j} = \bigoplus_{s \in h_*(x_{1j})} m_{s1}$
- 9. **Re-randomize GBF:** P_1 computes GBF^{1*} , performing Algorithm B.1 with items x_{1j} and codewords y_{1j} $(j \in [N_{bf}])$.
- 10. Compute garbled share for P_1 : P_1 computes garbled share $GBF_1^{1*} = GBF^{1*} \oplus (m_{1*}^*, m_{2*}^*, ..., m_{N_{hf}*}^*)$ and sends it to P_0 .
- 11. **Output:** P_0 computes $GBF^* = GBF_0^{1*} \oplus GBF_1^{1*}$ and outputs x_{0j} as a member of the intersection, if

$$y_{0j} = \bigoplus_{s \in h_*(x_{0j})} GBF^*[s], j \in [n].$$

Figure 6.2: online-phase of our malicious-secure two-party protocol Π_{2PSI} .

B.1. Algorithm of re-randomization of Garbled Bloom filter

```
Algorithm BuildGBF (X, Y, H^*, n, N_{bf}, \kappa)
    Input:
    The set of items X = (x_1, ..., x_n);
    the set of codewords Y = (y_1, ..., y_n): |y_i| = \kappa, (i \in [n]);
    family of hash-indexes H^* = (h_*(x_1), ..., h_*(x_k)): h_*(x_i) = \{s | h_i(x_i) = s, j \in [k]\}, (i \in \{s\}, j \in [k]\}
[n]).
    Algorithm:
    1: GBF = empty N_{bf}-size array of \kappa-long strings
    2: for i=1 to n do
    3:
            finalInd=-1
    4:
            finalShare=y_i
    5:
            for each j \in h_*(x_i) do
                 if GBF[j] is empty then
    6:
                       if \text{ finalInd} == -1 then
    7:
                            finalInd = j
    8:
    9:
                       else
                             GBF[j] \stackrel{R}{\leftarrow} \{0,1\}^{\kappa}
    10:
                             finalShare=finalShare\oplus GBF[j]
    11:
    12:
                   else
    13:
                        finalShare=finalShare\oplus GBF[j]
             GBF[\text{finalInd}] = \text{finalShare}^{1}
    14:
   15: for i = 0 to N_{bf} - 1 do
             if GBF[i] is empty then
    16:
                  GBF[i] \stackrel{R}{\leftarrow} \{0,1\}^{\kappa}
    17:
    18: return GBF
    Output: GBF – garbled Bloom filter of set X with codewords from Y with hash-
functions h_1, ..., h_k.
   B.2. Algorithm for computation of hash-indexes set h_*(x)
    Algorithm HashIndexesGBF(x, H, N_{bf})
    Input:
```

Item x;

 N_{bf} – length of GBF;

family of hash-functions $H = (h_1, ..., h_k): h_i : \{0, 1\}^* \to \{0, 1\}^{N_{bf}}, (i \in [k]).$

Algorithm:

- 1: $h_*(x) = empty \ 0$ -size array 2: $for \ i=1 \ to \ k \ do$
- 3: **if** $h_i(x) \notin h_*(x)$ **then**
- 4: $add h_i(x) to h_*(x)$

¹Note, that the probability of fail in this algorithm, that can appear in case finalInd==-1, is the probability of false- positive for one of n items. According (??), $p_{False} \leq 2^{-\kappa}$, so the union bound over all $x \in X$ is $n2^{-\kappa}$ is negligible in κ .

Output: $h_*(x)$ – set of indexes of item x from the family of hash-functions $H = \{h_1, ..., h_k\}$.

B.3. Algorithm for computation of codeword from Garbled Bloom filter

```
Input: x – item; GBF – random garbled Bloom filter; N_{bf} – length of GBF; \kappa – bitlength of string in GBF; h_*(x) – set of hash-indexes of x; \forall i \in h_*(x), i \in [N_{bf}].
```

Algorithm CodewordGBF($GBF, x, h_*(x), N_{bf}, \kappa$)

Algorithm:

1: y=0

2: for each $i \in h_*(x)$ do

3: $y=y \oplus GBF[i]$

Output: y – codeword for x in garbled Bloom filter GBF indexed by $h_*(x)$.