第七章 复数 (★☆)

内容提要

复数绝大部分考题难度都不高,主要考查复数的基本概念和四则运算,下面先梳理相关的基础知识.

- 1. 复数的概念: 形如 $a + bi(a, b \in \mathbb{R})$ 的数叫做复数,其中 i 叫做虚数单位, $i^2 = -1$; a 叫做实部,b 叫做虚部(注意,不是 bi 为虚部).
- 2. 对于复数 $z = a + bi(a, b \in \mathbb{R})$, z 为实数 $\Leftrightarrow b = 0$; z 为虚数 $\Leftrightarrow b \neq 0$; z 为纯虚数 $\Leftrightarrow \begin{cases} a = 0 \\ b \neq 0 \end{cases}$.
- 3. 复数相等: 设 $z_1 = a + b\mathbf{i}$, $z_2 = c + d\mathbf{i}$, 其中 $a,b,c,d \in \mathbf{R}$, 则 $z_1 = z_2 \Leftrightarrow a = c \perp b = d$.
- 4. 复数的几何意义: 复数 z=a+bi 与复平面内的点 Z(a,b) 一一对应,与复平面内的向量 \overrightarrow{OZ} 一一对应.
- 5. 复数的模: 设复数 z=a+bi,则我们把 \overrightarrow{OZ} 的模叫做 z 的模,记作 |z|, $|z|=|a+bi|=\sqrt{a^2+b^2}$.
- 6. 共轭复数: 复数 z = a + bi 的共轭复数为 a bi,记作 $\overline{z} = a bi$; $z \cdot \overline{z} = |z|^2$.
- 7. 复数的四则运算:设复数 $z_1 = a + b\mathbf{i}$, $z_2 = c + d\mathbf{i}$, 其中 $a,b,c,d \in \mathbf{R}$,则
- ① $z_1 + z_2 = a + b\mathbf{i} + c + d\mathbf{i} = (a + c) + (b + d)\mathbf{i}$; ② $z_1 z_2 = a + b\mathbf{i} c d\mathbf{i} = (a c) + (b d)\mathbf{i}$;
- ③ $z_1z_2 = (a+bi)(c+di) = ac+adi+bci+bdi^2 = (ac-bd)+(ad+bc)i$;

$$\underbrace{4}_{z_2} \frac{z_1}{c + di} = \frac{(a + bi)(c - di)}{(c + di)(c - di)} = \frac{ac - adi + bci - bdi^2}{c^2 - d^2i^2} = \frac{(ac + bd) + (bc - ad)i}{c^2 + d^2}.$$

8. 小结论: 《一数• 高考数学核心方法》

- ①设 z_1 , z_2 为两个复数,则 $|z_1z_2|=|z_1|\cdot|z_2|$, $\left|\frac{z_1}{z_2}\right|=\frac{|z_1|}{|z_2|}$; (设复数的代数形式,代入此两式即可证明)
- ②设 $k \in \mathbb{N}$, 则 $i^{4k} = 1$, $i^{4k+1} = i$, $i^{4k+2} = -1$, $i^{4k+3} = -i$;
- ③请注意, $|z|^2 \neq z^2$. (设 $z = a + bi(a, b \in \mathbf{R})$,则 $|z|^2 = a^2 + b^2$, $z^2 = a^2 b^2 + 2abi$,显然不等)

典型例题

类型 1:复数的四则运算

【例 1】(2022•天津卷)已知 i 是虚数单位,化简 $\frac{11-3i}{1+2i}$ 的结果为_____.

解析: 计算复数的除法, 可分子分母同乘以分母的共轭复数, 将分母实数化,

$$\frac{11-3i}{1+2i} = \frac{(11-3i)(1-2i)}{(1+2i)(1-2i)} = \frac{11-22i-3i+6i^2}{1-4i^2} = \frac{5-25i}{5} = 1-5i.$$

答案: 1-5i

【变式】设 i 为虚数单位,已知复数 $z=\frac{5}{a+\mathrm{i}}$ 满足 $|z|=\sqrt{5}$,其中 $a\in\mathbf{R}$ 且 a>0,则 $z=\underline{}$.

解法 1: 可先计算 z,再求模,由题意, $z = \frac{5}{a+i} = \frac{5(a-i)}{(a+i)(a-i)} = \frac{5a-5i}{a^2-i^2} = \frac{5a-5i}{a^2+1} = \frac{5a}{a^2+1} - \frac{5}{a^2+1}i$ ①,

所以
$$|z| = \sqrt{(\frac{5a}{a^2+1})^2 + (-\frac{5}{a^2+1})^2} = \sqrt{\frac{25a^2+25}{(a^2+1)^2}} = \frac{5}{\sqrt{a^2+1}}$$
,由题意, $|z| = \sqrt{5}$,所以 $\frac{5}{\sqrt{a^2+1}} = \sqrt{5}$,

结合a > 0可得a = 2,代入①得: z = 2 - i.

解法 2: 也可先由模的性质
$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$$
求 $|z|$, $z = \frac{5}{a+i} \Rightarrow |z| = \left|\frac{5}{a+i}\right| = \frac{|5|}{|a+i|} = \frac{5}{\sqrt{a^2+1}}$,

由题意, $|z| = \sqrt{5}$,所以 $\frac{5}{\sqrt{a^2 + 1}} = \sqrt{5}$,结合 a > 0 可得 a = 2,

故
$$z = \frac{5}{a+i} = \frac{5}{2+i} = \frac{5(2-i)}{(2+i)(2-i)} = \frac{5(2-i)}{4-i^2} = \frac{5(2-i)}{5} = 2-i.$$

答案: 2-i

【例 2】(2021•全国甲卷)已知 $(1-i)^2z=3+2i$,则z=(

(A)
$$-1-\frac{3}{2}i$$
 (B) $-1+\frac{3}{2}i$ (C) $-\frac{3}{2}+i$ (D) $-\frac{3}{2}-i$

解析:复数z由方程的形式给出,先由该方程分离出z,再进行计算,

因为
$$(1-i)^2z = 3 + 2i$$
,所以 $z = \frac{3+2i}{(1-i)^2} = \frac{3+2i}{1-2i+i^2} = \frac{3+2i}{-2i} = \frac{(3+2i)2i}{(-2i)\cdot 2i} = \frac{6i+4i^2}{-4i^2} = \frac{6i-4}{4} = -1 + \frac{3}{2}i$.

答案: B

【反思】当复数z以方程的形式给出时,可先分离出z,再对另一侧进行化简.

类型 II: 复数代数形式的运用

【例 3】(2022・全国乙卷)已知z=1-2i,且 $z+a\overline{z}+b=0$,其中a,b为实数,则()

(A)
$$a=1$$
, $b=-2$ (B) $a=-1$, $b=2$ (C) $a=1$, $b=2$ (D) $a=-1$, $b=-2$

(D)
$$a = -1$$
, $b = -2$

解析: $z=1-2i \Rightarrow \overline{z}=1+2i$,代入 $z+a\overline{z}+b=0$ 得: 1-2i+a(1+2i)+b=0,所以1+a+b+(2a-2)i=0,

两个复数相等,则实部和虚部对应相等,右侧的 0 可看成 0+0·i ,故 $\begin{cases} 1+a+b=0 \\ 2a-2=0 \end{cases}$,解得: $\begin{cases} a=1 \\ b=-2 \end{cases}$

答案: A

【变式】已知 i 为虚数单位,复数 z 满足 |z-2i|=|z|,则 z 的虚部为_____.

解析: 所给方程有模,无法分离出 z,故设 z 的代数形式,代入 |z-2i|=|z| 求解,

设 $z = a + bi(a, b \in \mathbb{R})$,则z - 2i = a + (b - 2)i,由题意,|z - 2i| = |z|,

所以 $\sqrt{a^2+(b-2)^2}=\sqrt{a^2+b^2}$,解得: b=1,故复数 z 的虚部为 1.

答案: 1

【总结】当不便于通过简单的变形分离出复数 z 再计算时,可考虑设 z = a + bi ,翻译已知条件,建立方程 组求出 a 和 b.

类型III: 复数的运算性质

【例 4】已知 \overline{z} 是复数 z 的共轭复数,则下列式子中与 $z \cdot \overline{z}$ 不相等的是()

- (A) $|\overline{z}^2|$ (B) $|z|^2$ (C) $|z^2|$ (D) \overline{z}^2

解法 1: 诸多选项涉及复数的模,可用模的运算性质 $|z_1z_2| = |z_1| \cdot |z_2|$ 来快速判断选项,

设 z = a + bi, 则 $\overline{z} = a - bi$, 所以 $|z| = |\overline{z}| = \sqrt{a^2 + b^2}$, 且 $z \cdot \overline{z} = (a + bi)(a - bi) = a^2 - b^2i^2 = a^2 + b^2$ ①,

A 项, $|\overline{z}^2| = |\overline{z} \cdot \overline{z}| = |\overline{z}| \cdot |\overline{z}| = |\overline{z}|^2 = a^2 + b^2 = z \cdot \overline{z};$

B 项, 因为 $|z|^2 = a^2 + b^2$, 结合①知 $z \cdot \overline{z} = |z|^2$;

C 项, $|z^2| = |z \cdot z| = |z| \cdot |z| = |z|^2 = a^2 + b^2$, 结合①知 $|z^2| = z \cdot \overline{z}$;

D 项, $\overline{z}^2 = (a-bi)^2 = a^2 + b^2i^2 - 2abi = a^2 - b^2 - 2abi \neq z \cdot \overline{z}$,故选 D.

解法 2: 若不熟悉模的性质,也可设复数的代数形式,逐个验证选项,

设z=a+bi,则 $\overline{z}=a-bi$,所以 $z\cdot\overline{z}=(a+bi)(a-bi)=a^2-b^2i^2=a^2+b^2$,

A 项, $|\overline{z}^2| = |(a-bi)^2| = |a^2+b^2i^2-2abi| = |a^2-b^2-2abi| = \sqrt{(a^2-b^2)^2+(-2ab)^2}$

 $=\sqrt{a^4+2a^2b^2+b^4}=\sqrt{(a^2+b^2)^2}=a^2+b^2=z\cdot\overline{z};$

B 项, $|z|^2 = (\sqrt{a^2 + b^2})^2 = a^2 + b^2 = z \cdot \overline{z}$;

C 项, $|z^2| = |(a+bi)^2| = |a^2+b^2i^2+2abi| = |a^2-b^2+2abi| = \sqrt{(a^2-b^2)^2+4a^2b^2} = \sqrt{(a^2+b^2)^2} = a^2+b^2=z\cdot\overline{z}$;

D项,判断方法同解法 1.

答案: D

【反思】 $z \cdot \overline{z} = |z|^2 = |\overline{z}|^2$ 是共轭复数的重要性质;若遇到拿不准的性质,可设复数的代数形式来检验.

【变式】(2022・全国甲卷) 若 $z = -1 + \sqrt{3}i$, $\frac{z}{\sqrt{z} - 1} = ($)

- (A) $-1+\sqrt{3}i$ (B) $-1-\sqrt{3}i$ (C) $-\frac{1}{2}+\frac{\sqrt{3}}{2}i$ (D) $-\frac{1}{2}-\frac{\sqrt{3}}{2}i$

解析: $z = -1 + \sqrt{3}i \Rightarrow z\overline{z} = |z|^2 = (\sqrt{(-1)^2 + (\sqrt{3})^2})^2 = 4$,所以 $\frac{z}{z\overline{z} - 1} = \frac{-1 + \sqrt{3}i}{4 - 1} = -\frac{1}{3} + \frac{\sqrt{3}}{3}i$.

答案: C

【例 5】(多选)设 z_1 , z_2 , z_3 为复数, $z_1 \neq 0$, 下列命题中正确的是()

- (A) 若 $|z_2| = |z_3|$, 则 $z_2 = \pm z_3$
- (B) 若 $z_1z_2 = z_1z_3$, 则 $z_2 = z_3$
- (C) 若 $\overline{z}_2 = z_3$,则 $|z_1 z_2| = |z_1 z_3|$
- (D) 若 $z_1 z_2 = |z_1|^2$,则 $z_1 = z_2$

解法 1: A 项, $|z_2|=|z_3|$ 可看成复平面内 $|\overline{OZ_2}|=|\overline{OZ_3}|$,但方向未定,故 $z_2=\pm z_3$ 不一定成立,举个反例,

取 $z_2 = \sqrt{3} + i$, $z_3 = 1 + \sqrt{3}i$, 则 $|z_2| = |z_3| = 2$, 但 $z_2 \neq \pm z_3$, 故 A 项错误;

B 项,由 $z_1z_2 = z_1z_3$ 两端同除以非零复数 z_1 可得 $z_2 = z_3$,故 **B** 项正确;

C 项,看到 $|z_1z_2|$,想到模的性质 $|z_1z_2| = |z_1| \cdot |z_2|$,因为 $\overline{z}_2 = z_3$,所以 $|\overline{z}_2| = |z_3|$,

又 $|\bar{z}_2| = |z_2|$,所以 $|z_2| = |z_3|$,故 $|z_1z_2| - |z_1z_3| = |z_1| \cdot |z_2| - |z_1| \cdot |z_3| = |z_1| (|z_2| - |z_3|) = 0$,

所以 $|z_1z_2| = |z_1z_3|$,故C项正确;

D 项,我们知道, $z_1 \cdot \overline{z_1} = |z_1|^2$,故要使 $z_1 z_2 = |z_1|^2$,只需 $\overline{z_1} = z_2$ 即可,而不是 $z_1 = z_2$,下面举个反例,

取 $z_1 = 1 + i$, $z_2 = 1 - i$, 满足 $z_1 z_2 = (1 + i)(1 - i) = 1 - i^2 = 2 = |z_1|^2$, 但 $z_1 \neq z_2$, 故 D 项错误.

解法 2: A、B、D 三项的判断方法同解法 1,对于 C 项,也可设复数的代数形式来验证,

设 $z_1 = a + bi$, $z_2 = c + di$, 其中 $a,b,c,d \in \mathbb{R}$, 因为 $\overline{z}_2 = z_3$, 所以 $z_3 = c - di$,

 $|to z_1 z_2| = |(a+bi)(c+di)| = |ac+adi+bci+bdi^2| = |(ac-bd)+(ad+bc)i| = \sqrt{(ac-bd)^2+(ad+bc)^2}$

$$= \sqrt{a^2c^2 + b^2d^2 - 2acbd + a^2d^2 + b^2c^2 + 2adbc} = \sqrt{a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2},$$

 $|z_1z_3| = |(a+bi)(c-di)| = |ac-adi+bci-bdi^2| = |(ac+bd)+(bc-ad)i| = \sqrt{(ac+bd)^2+(bc-ad)^2}$

 $= \sqrt{a^2c^2 + b^2d^2 + 2acbd + b^2c^2 + a^2d^2 - 2bcad} = \sqrt{a^2c^2 + b^2d^2 + b^2c^2 + a^2d^2},$

所以 $|z_1z_2| = |z_1z_3|$,故 C 项正确.

答案: BC

【反思】实数方程的一些变形方法也适用于复数方程,例如在复数方程两端加上或减去相同的复数,方程 依然成立; 在复数方程两端同时乘以相同的复数, 或同时除以相同的非零复数, 方程也依然成立.

类型Ⅳ:复数的几何意义

【例 6】在复平面内,复数 $\frac{a+2i}{i}$ $(a \in \mathbf{R})$ 对应的点在第四象限,则实数 a 的取值范围是()

- (A) $(0,+\infty)$ (B) $(-\infty,0)$ (C) $(2,+\infty)$ (D) $(-\infty,2)$

解析: 先把所给复数化为代数形式, $\frac{a+2i}{i} = \frac{(a+2i)(-i)}{i(-i)} = \frac{-ai-2i^2}{-i^2} = 2-ai$,

所以复数 $\frac{a+2i}{i}$ 在复平面内对应的点是 (2,-a),由题意,该点在第四象限,故 -a<0,解得: a>0.

答案: A

【变式】在复平面内,O 为坐标原点,复数 $z_1 = i(-4+3i)$, $z_2 = 7+i$ 对应的点分别为 Z_1 , Z_2 ,则 $\angle Z_1OZ_2$ 的 大小为()

- (A) $\frac{\pi}{3}$ (B) $\frac{2\pi}{3}$ (C) $\frac{3\pi}{4}$ (D) $\frac{5\pi}{6}$

解析: $\angle Z_1OZ_2$,可看成 $\overline{OZ_1}$ 和 $\overline{OZ_2}$ 的夹角,用夹角余弦公式计算,

由题意, $z_1 = i(-4+3i) = -4i+3i^2 = -3-4i$,所以 $\overrightarrow{OZ_1} = (-3,-4)$,又 $z_2 = 7+i$,所以 $\overrightarrow{OZ_2} = (7,1)$,

从而
$$\cos \angle Z_1 O Z_2 = \frac{\overrightarrow{OZ_1} \cdot \overrightarrow{OZ_2}}{\left|\overrightarrow{OZ_1}\right| \cdot \left|\overrightarrow{OZ_2}\right|} = \frac{-3 \times 7 + (-4) \times 1}{\sqrt{(-3)^2 + (-4)^2} \times \sqrt{7^2 + 1^2}} = -\frac{\sqrt{2}}{2}$$
, 故 $\angle Z_1 O Z_2 = \frac{3\pi}{4}$.

答案: C

【例 7】已知 i 是虚数单位,复数 z 满足 |z|=1,则 |z+1+i| 的最小值为()

(A)
$$\sqrt{2}-1$$

(B)
$$\sqrt{2}$$

(A)
$$\sqrt{2}-1$$
 (B) $\sqrt{2}$ (C) $2\sqrt{2}-2$ (D) 1

解析: 先设 z 的代数形式,将|z|=1翻译出来,设 z=x+yi,则|z|= $\sqrt{x^2+y^2}=1$,所以 $x^2+y^2=1$ ①,

且 $|z+1+i| = |x+1+(y+1)i| = \sqrt{(x+1)^2 + (y+1)^2}$ ②,由方程①可知复数 z 在复平面上对应的点 Z(x,y) 在单 位圆上运动,式②可看成点Z与定点P(-1,-1)的距离,故画图来看,

如图,因为 $|OP| = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$,所以 $|PZ|_{min} = \sqrt{2} - 1$,故|z+1+i|的最小值为 $\sqrt{2} - 1$.

答案: A

【反思】遇到模的最值问题,可考虑数形结合来分析.

【变式】(2020 • 新课标 II 卷)设复数 z_1 , z_2 满足 $|z_1| = |z_2| = 2$, $z_1 + z_2 = \sqrt{3} + i$,则 $|z_1 - z_2| =$ _____.

解法 1: 可设 z_1 的代数形式, z_2 就不用设了,由 $z_1+z_2=\sqrt{3}+i$ 求出 z_2 即可,这样变量的个数少一些,

设
$$z_1 = x + yi(x, y \in \mathbf{R})$$
,则由 $z_1 + z_2 = \sqrt{3} + i$ 可得 $z_2 = \sqrt{3} - x + (1 - y)i$,

所以 $z_1 - z_2 = 2x - \sqrt{3} + (2y - 1)i$,故 $|z_1 - z_2| = \sqrt{(2x - \sqrt{3})^2 + (2y - 1)^2} = \sqrt{4(x^2 + y^2) - 4(\sqrt{3}x + y) + 4}$ ①,

条件中还有 $|z_1|=|z_2|=2$ 没用到,把它翻译出来,

因为
$$|z_1| = |z_2| = 2$$
,所以 $|z_1|^2 = |z_2|^2 = 4$,故 $\begin{cases} x^2 + y^2 = 4 & 2 \\ (\sqrt{3} - x)^2 + (1 - y)^2 = 4 & 3 \end{cases}$,

由②③可以解出x和y,再来算 $|z_1-z_2|$,但计算量较大,故尝试把式③化简,看能否整体计算式①,

由③得: $3-2\sqrt{3}x+x^2+1-2y+y^2=4$,结合式②整理得: $\sqrt{3}x+y=2$ ④,

此时我们发现把②④整体代入①恰好可求得 $|z_1-z_2|$,

所以
$$|z_1-z_2| = \sqrt{4(x^2+y^2)-4(\sqrt{3}x+y)+4} = \sqrt{4\times4-4\times2+4} = 2\sqrt{3}$$
.

解法 2: 求模也可借助图形来分析,先把复数 z_1 , z_2 在复平面内对应的点设出来,

设复数 z_1 , z_2 ,在复平面对应的点为 Z_1 , Z_2 ,

从条件来看, $\overrightarrow{OZ_1}$ 和 $\overrightarrow{OZ_2}$ 的模是已知的,但夹角不知道,夹角由条件 $z_1+z_2=\sqrt{3}+i$ 决定,

因为 $z_1 + z_2 = \sqrt{3} + i$,所以 $\overrightarrow{OZ_1} + \overrightarrow{OZ_2} = (\sqrt{3}, 1)$,故 $|\overrightarrow{OZ_1} + \overrightarrow{OZ_2}| = 2$,

于是问题变成了在 $\left|\overrightarrow{OZ_1}\right| = \left|\overrightarrow{OZ_2}\right| = \left|\overrightarrow{OZ_1} + \overrightarrow{OZ_2}\right| = 2$ 的条件下,求 $\left|\overrightarrow{OZ_1} - \overrightarrow{OZ_2}\right|$,这样图形就能画出来了,

如图, ΔOZZ_1 和 ΔOZZ_2 都是边长为 2 的正三角形,所以 $|z_1-z_2|=|\overrightarrow{OZ_1}-\overrightarrow{OZ_2}|=|\overrightarrow{Z_2Z_1}|=2\sqrt{3}$.

答案: 2√3

【反思】对于模的处理,有代数和几何两种思路.本题是填空题倒数第二题,画图分析显然更优于代数计 算,在分析模的时候,可把复数的加减法和向量的加减法对应起来,即 $|z_1 \pm z_2| = |\overrightarrow{OZ_1} \pm \overrightarrow{OZ_2}|$.

类型 V: 复数的高次方运算

【例 8】(2023•全国乙卷)设
$$z = \frac{2+i}{1+i^2+i^5}$$
,则 $\overline{z} = ($

(A) 1-2i (B) 1+2i (C) 2-i (D) 2+i

解析: 由题意, $z = \frac{2+i}{1+i^2+i^5} = \frac{2+i}{1-1+(i^2)^2i} = \frac{2+i}{i} = \frac{(2+i)i}{i^2} = -i^2 - 2i = 1-2i$,所以 $\overline{z} = 1+2i$.

答案:B

【变式】已知复数z满足 $z \cdot \overline{z} = 4$,且 $z + \overline{z} + |z| = 0$,则 $z^{2022} = ($

- (A) 1 (B) 2^{2022} (C) -1 (D) -2^{2022}

解析:复数z无法直接求出,故可先设复数z的代数形式,由已知条件建立方程求出z,

设
$$z = a + bi(a, b \in \mathbb{R})$$
,则 $\overline{z} = a - bi$,由题意, $z \cdot \overline{z} = (a + bi)(a - bi) = a^2 - b^2i^2 = a^2 + b^2 = 4$ ①,

又
$$z+\overline{z}+|z|=0$$
,所以 $a+b\mathrm{i}+a-b\mathrm{i}+\sqrt{a^2+b^2}=0$,所以 $2a+\sqrt{a^2+b^2}=0$ ②,

将①代入②可求得: a = -1,代回①可求得 $b = \pm \sqrt{3}$,所以 $z = -1 \pm \sqrt{3}$ i,

接下来讨论两种情况,分别计算 z2022,可先从低次方开始算,

当
$$z = -1 + \sqrt{3}i$$
时, $z^2 = (-1 + \sqrt{3}i)^2 = 1 + 3i^2 - 2\sqrt{3}i = -2 - 2\sqrt{3}i$,

所以
$$z^3 = z \cdot z^2 = (-1 + \sqrt{3}i)(-2 - 2\sqrt{3}i) = 2 + 2\sqrt{3}i - 2\sqrt{3}i - 6i^2 = 8$$
,故 $z^{2022} = (z^3)^{674} = 8^{674} = (2^3)^{674} = 2^{2022}$;

当
$$z = -1 - \sqrt{3}i$$
 时, $z^2 = (-1 - \sqrt{3}i)^2 = 1 + 3i^2 + 2\sqrt{3}i = -2 + 2\sqrt{3}i$,

所以 $z^3 = z \cdot z^2 = (-1 - \sqrt{3}i)(-2 + 2\sqrt{3}i) = 2 - 2\sqrt{3}i + 2\sqrt{3}i - 6i^2 = 8$,故 $z^{2022} = (z^3)^{674} = 8^{674} = (2^3)^{674} = 2^{2022}$; 综上所述, $z^{2022} = 2^{2022}$.

答案: B

【反思】涉及复数的高次方计算,往往先计算低次方,寻找规律.

强化训练

- 1. (2023・新高考 I 卷・★) 已知 $z = \frac{1-i}{2+2i}$,则 $z \overline{z} = ($)
 - $(A) -i \qquad (B) i \qquad (C) 0 \qquad (D) 1$
- 2. (2022 · 新高考 I 卷 · ★) 若 i(1-z)=1,则 z+z=()
- $(A) -2 \qquad (B) -1 \qquad (C) 1 \qquad (D) 2$
- 3. (★) 若复数 $z = \frac{(3i-1)(1-i)}{i^{2023}}$,则 z 的虚部为_____.

- 4. (★★) 已知复数z满足z-i∈ \mathbf{R} ,且 $\frac{2-z}{z}$ 是纯虚数,则z=()

 - (A) -1-i (B) -1+i (C) 1-i (D) 1+i

- 5. (★) 已知 $z = \frac{2i}{1-i} 1 + 2i$,则 z 在复平面内对应的点位于()

- (A) 第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限
- 6. (2022・乳山月考・★★)已知复数z满足|z-1|=|z-i|,则在复平面内z对应的点Z的轨迹为()

- (A) 直线 (B) 线段 (C) 圆 (D) 等腰三角形
- 7. (2022 肥东期末 ★★) 设 \overline{z} 是复数 z 的共轭复数,若 $\overline{z} \cdot z + 10i = 5z$,则 $\frac{z}{2+i} = ($)
- (A) 2 (B) $\frac{3}{5} + \frac{4}{5}i$ (C) $2 \vec{ي} + \frac{3}{5}i$ (D) $2 \vec{i} + \frac{3}{5}i$
- 8. $(2022 \cdot 辽宁月考 \cdot ★★★)(多选) 若 z₁, z₂是复数,则下列命题正确的是()$
- (A) 若 $z_1 z_2 > 0$,则 $z_1 > z_2$
- $(\mathbf{B}) \quad |z_1 \cdot \overline{z}_2| = |z_1| \cdot |z_2|$
- (C) 若 $z_1 z_2 \neq 0$,则 $z_1 \neq 0$ 且 $z_2 \neq 0$
- (D) 若 $z_1^2 \ge 0$,则 z_1 是实数

《一数•高考数学核心方法》

- 9. (2022 福州模拟 ★★★)设 i 为虚数单位, $z \in \mathbb{C}$,且 $(z-i)(\overline{z}+i)=1$,则|z-3-5i|的最大值是()
- (A) 5 (B) 6 (C) 7 (D) 8