# Submodular Maximization Under the Intersection of Matroid and Knapsack Constraints

Yu-Ran Gu, Chao Bian, Chao Qian

LAMDA Group, Nanjing University {guyr,bianc,qianc}@lamda.nju.edu.cn

#### The Problem

- **Submodular Maximization Problem (SMP)**: Given a finite set  $\mathcal{N}$  and a submodular objective function  $f: 2^{\mathcal{N}} \to \mathbb{R}^+$ , to find arg  $\max_{S \subset \mathcal{N}} f(S)$
- **SMP** under Knapsack and Matroid Constraints: Given a finite set  $\mathcal{N}$  and a submodular objective function  $f: 2^{\mathcal{N}} \to \mathbb{R}^+$ , a m-knapsack constraint with cost functions  $c_1, \dots, c_m$ , and a k-matroid  $\mathcal{M}(\mathcal{N}, \cap_{i=1}^k \mathcal{I}_i)$ , to find  $arg\ max_{S\subseteq \mathcal{N}}\ f(S)$  such that  $S\in \cap_{i=1}^k \mathcal{I}_i$  and  $\forall i\in [m], c_i(S)\leq 1$ . Comparison of the state-of-the-art algorithms:

| Algorithm                                      | Approximation                           | Running Time                |
|------------------------------------------------|-----------------------------------------|-----------------------------|
| FANTOM [Mirzasoleiman et al., ICML'16]         | $(1 + \epsilon)(2k + (2 + 2/k)m + 0(1)$ | $\tilde{O}(n^2/\epsilon)$   |
| DENSITYSEARCHSGS<br>[Feldman et al., arXiv'20] | $(1+\epsilon)(k+2m)+O(\sqrt{m})$        | $\widetilde{O}(n/\epsilon)$ |
| SPROUT(This Paper)                             | $(1+\epsilon)(k+m)+O(\sqrt{m})$         | $\tilde{O}(n^2/\epsilon)$   |

**matroid**: (1)  $\emptyset \in \mathcal{I}$ ; (2)  $\forall A \subseteq B \subseteq \mathcal{N}$ , if  $B \in \mathcal{I}$  then  $A \in \mathcal{I}$ ; (3) if  $\forall A, B \in \mathcal{I}$  and |A| < |B|, there is  $e \in B \setminus A$  such that  $A \cup e \in \mathcal{I}$ **knapsack**:  $c(S) \le 1$  given a modular cost function c

#### NP-hard in general!

Submodularity:  $\forall X \subseteq Y, v \notin Y : f(X \cup \{v\}) - f(X) \ge f(Y \cup \{v\}) - f(Y)$ 



**Input:** Objective function  $f: 2^{N} \to \mathbb{R}_{+}, k$  matroids  $\mathcal{M}_i(\mathcal{N}, \mathcal{I}_i)$  and m cost functions  $c_i : \mathcal{N} \to \mathbb{R}_+$ **Parameter:** Error params  $\delta$ ,  $\epsilon$ , correction params  $\beta$ ,  $\gamma$ , enu-

meration param C and number  $\ell$  of solutions Output: A set S s.t.  $S \in \bigcap_{i=1}^k \mathcal{I}_i$  and  $\forall i \in [m], c_i(S) \leq 1$ 1: for each feasible  $\mathcal{A} \subseteq \mathcal{N}$  with C elements do

2:  $z_{\mathcal{A}}(S) \triangleq f(S|\mathcal{A}).$  $\mathcal{N}' \triangleq \{ e \in \mathcal{N} | e \notin \mathcal{A} \land C \cdot z_{\mathcal{A}}(e) \leq f(\mathcal{A}) \}.$  $\mathcal{M}'_i(\mathcal{N}', \mathcal{I}'_i) \triangleq \text{contraction of } \mathcal{M}_i(\mathcal{N}, \mathcal{I}_i) \text{ by } \mathcal{A}.$ 

 $\mathcal{I}' \triangleq \bigcap_{i=1}^k \mathcal{I}'_i$ . Decrease knapsack budgets by  $c_i(A)$  and normalize

each of them to 1. Let  $S_0 = \emptyset$ , and  $\mathcal{V}$  be the maximum  $z_{\mathcal{A}}$  value of

a single feasible element in  $\mathcal{N}'$ . Let  $b_1 = 1$  and  $b_0 = \lceil \log |\mathcal{N}'|/\delta \rceil$ .

while  $|b_1 - b_0| > 1$  do  $\rho = \beta \mathcal{V}(1+\delta)^{\lfloor (b_1+b_0+1)/2 \rfloor} + \gamma f(\mathcal{A})/C.$   $S_K = \text{KNAPSACKSGS}(z_{\mathcal{A}}, \mathcal{N}', \mathcal{I}', \{c_i\}_{i=1}^m, \ell, \rho, \epsilon).$ Add  $S_K$  to  $S_0$ .

 $b_E = \lfloor (b_1 + b_0 + 1)/2 \rfloor$ .

end while  $S_{\mathcal{A}} = \arg \max_{S \in S_0} f(S).$ 

16: **end for** 17:  $\mathcal{A}^* = \arg \max_{\mathcal{A}} f(\mathcal{A} \cup S_{\mathcal{A}})$  over all feasible  $\mathcal{A} \subseteq \mathcal{N}$ 

18: **return**  $\mathcal{A}^* \cup S_{\mathcal{A}^*}$ 

13:

**Partial Enumeration By Reducing Problem Instance:** 

To be more robust in practice and achieve better guarantee

Incorporating a partial enumeration technique [Badanidiyuru et al., NeurIPS'20] into the **simultaneous** greedy framework [Feldman et al., arXiv'20]

➤ Subroutine from [Feldman et al., arXiv'20]

> **Indicator-based Binary** Search:

To find solution with approximately best guarantee

Indicates whether the knapsack constraints are violated in line 6 of KNAPSACKSGS

#### The SPROUT++ Algorithm

**Input:** Objective function  $f: 2^{\mathcal{N}} \to \mathbb{R}_+, k$  matroids  $\mathcal{M}_i(\mathcal{N}, \mathcal{I}_i)$  and m cost functions  $c_i : \mathcal{N} \to \mathbb{R}_+$ **Parameter:** Error params  $\delta$ ,  $\epsilon$ , correction params  $\beta$ ,  $\gamma$ , acceleration param  $\alpha$ , smooth param  $\mu$ , counter  $t_c$  and

number  $\ell$  of solutions **Output:** A set S s.t.  $S \in \bigcap_{i=1}^k \mathcal{I}_i$  and  $\forall i \in [m], c_i(S) \leq 1$ 1: Let  $e^*$  be the feasible element  $e \in \mathcal{N}$  maximizing f(e).

2: while  $t_c > 0$  do Randomly select a feasible single-element set  $\mathcal{A} \subseteq \mathcal{N}$ never being chosen before. if  $f(A) \geq (1-\alpha)f(e^*)$  then

 $z_{\mathcal{A}}(S) \triangleq f(S|\mathcal{A}).$  $\mathcal{N}' \triangleq \{e \in \mathcal{N} | e \notin \mathcal{A}\}.$  $\mathcal{M}'_i(\mathcal{N}', \mathcal{I}'_i) \triangleq \text{contraction of } \mathcal{M}_i(\mathcal{N}, \mathcal{I}_i) \text{ by } \mathcal{A}.$ 

 $\mathcal{I}' \triangleq \bigcap_{i=1}^k \mathcal{I}'_i$ . Decrease knapsack budgets by  $c_i(\mathcal{A})$  and normalize each of them to 1.

Let  $S_0 = \emptyset$ , and  $\mathcal{V}$  be the maximum  $z_{\mathcal{A}}$  value of a single feasible element in  $\mathcal{N}'$ .

Let  $b_1 = 1$  and  $b_0 = \lceil \log |\mathcal{N}'|/\delta \rceil$ . while  $|b_1 - b_0| > 1$  do  $b = \lfloor (b_1 + b_0 + 1)/2 \rfloor$ .

 $\rho = \beta \mathcal{V}(1+\delta)^b + \gamma f(\mathcal{A}).$  $S_K = KNAPSACKSGS(z_A, \mathcal{N}', \mathcal{I}', \{c_i\}_{i=1}^m, \ell, \rho, \epsilon).$ Add  $S_K$  to  $S_0$ .

 $b_E = b + (1 - 2E)(1 - 1/\mu)|b_E - b|.$  end while  $S_{\mathcal{A}} = \operatorname{arg\,max}_{S \in S_0} f(S).$  $t_c = t_c - 1.$ 

end if 22: end while 23:  $\mathcal{A}^* = \arg \max_{\mathcal{A}} f(\mathcal{A} \cup S_{\mathcal{A}})$  over all feasible  $\mathcal{A} \subseteq \mathcal{N}$ . 24: **return**  $\mathcal{A}^* \cup S_{\mathcal{A}^*}$ 

Random Sampling and Threshold Filtering: To get more valuable elements more efficiently

**Delete No Extra Elements:** To maintain high-quality elements

Aim to BE MORE EFFICIENT!!!

**Smooth Technique:** To avoid search range shrinking so fast that many good solutions may be missed

**Smooth Parameter:** Adjust the step size of binary search

## Theoretical Analysis

SPROUT can achieve the SOTA approximation guarantee BETTER THAN PREVIOUS ALGORITHMS

Theorem 1. SPROUT achieves an approximation ratio of roughly  $\left(\frac{1-\epsilon}{k+m+3+2\sqrt{m+1}} + \frac{(1-\epsilon)\ell}{r}\right)^{-1}$  using  $\tilde{O}(\frac{Pn^{\ell+1}}{\epsilon})$  oracle calls and  $\tilde{O}(\frac{Pmn^{\ell+1}}{\epsilon})$  arithmetic **operations**, where  $P = \{ [\sqrt{1+m}], k \}$  and r is the size of  $S_{OPT}$ .

**Lemma 1.** In SPROUT,  $f(\mathcal{A} \cup S_K) \ge \min\{\rho + \left(1 - \frac{1}{c}\right)f(\mathcal{A}), \frac{(1-\epsilon)}{p+1}\left(\left(1 - \frac{1}{\ell} - \epsilon\right)\mathcal{Z}_{\mathcal{A}}(S'_{OPT}) - \rho m\right) + f(\mathcal{A})\}$  for each generated  $\rho$  in line 10 and corresponding  $S_K$ , where  $S'_{OPT}$  refers to an optimal solution for the reduced instance, and  $p = \max\{\ell - 1, k\}$ . **Best density** 

SPROUT++ can achieve a SIMILAR APPROXIMATION GUARANTEE to SPROUT with a high probability using MUCH LESS TIME under an assumption

To find  $\rho'$  s. t.  $(1-\delta)\rho^* \le \rho' \le \rho^*$ 

**Theorem 2.** Suppose that  $\forall a \in S_{OPT}$ ,  $(1 + \alpha)f(a) \ge f(e^*)$ , where  $e^*$  is a feasible max-value element in  $\mathcal N$  and  $\alpha \le f(e^*)$  $\frac{(1-\epsilon)(p+1-(1-\epsilon)^2)}{\epsilon(p+1)+m(1-\epsilon)}$ . SPROUT++ offers an approximation ratio of  $(1+\epsilon)(k+m+3+2\sqrt{m+1})$  with probability at least  $1-e^{\frac{-rt_c}{n}}$ 

using  $\widetilde{O}(\frac{\log^{-1}\{\frac{2\mu}{2\mu-1}\}t_cPn}{\epsilon})$  oracle calls and  $\widetilde{O}(\frac{\log^{-1}\{\frac{2\mu}{2\mu-1}\}t_cPmn}{\epsilon})$  arithmetic operations.

The objective value of each element in  $S_{OPT}$  is relatively large, which can hold if the

number of movies

marginal gain of adding each element e to  $S_{OPT}$ \e is large enough by the submodularity.

1) In one iteration of search,  $\rho \leq \rho^*$  and E = 0.(red) 2) In one iteration of search,  $\rho \ge \rho^*$  and E = 1.(yellow)3)  $\rho \leq \rho^*$  implies E = 1, then increase  $b_1$  to  $\lfloor \frac{b_1+b_0+1}{2} \rfloor$ ;  $\rho \geq 1$  $\rho^*$  implies E=0, then decrease  $b_0$  to  $\lfloor \frac{b_1+b_0+1}{2} \rfloor$ . (green)















knapsack budget



number of nodes









 $t_c$  and  $\mu$  are useful for SPROUT++ can compete with SPROUT while being much faster! efficiency

### Conclusion

knapsack budget

- Propose SPROUT algorithm with the SOTA approximation ratio for submodular maximization under the intersection of matroid and knapsack constraints and propose SPROUT++ algorithm to improve the efficiency
- Demonstrate the superior performance of SPROUT & SPROUT++ in practice by extensive experiments