```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split as tts
from sklearn.linear_model import LinearRegression as LR
from sklearn.metrics import mean_squared_error
import math
```

```
sal_data = pd.read_csv("/content/Salary_Data - Salary_Data.csv")
sal_data
```

	YearsExperience	Salary
0	1.1	39343
1	1.3	46205
2	1.5	37731
3	2.0	43525
4	2.2	39891
5	2.9	56642
6	3.0	60150
7	3.2	54445

```
x = sal_data.drop('Salary',axis = 1)
y = sal_data.Salary
```

YearsExperience 0 1.1 4 2.2 16 5.1 5 2.9 13 4.1

YearsExperience	
4	2.2
11	4.0
22	7.9
18	5.9
19	6.0
-	

test_x.head()

YearsExperience

		rearSexperience
	15	4.9
	28	10.3
	26	9.5
	10	3.9
	24	8.7
train	n_y.he	ad()
	4 11 22 18 19 Name:	39891 55794 101302 81363 93940 Salary, dtype:
test_	_y.hea	d()
	24	67938 122391 116969 63218 109431 Salary, dtype:
mode:	L = LR	()
mode:	l.fit(train_x,train_y)
	Linea	rRegression()
mode:	l.coef	_
	array	([9846.5759533])
mode:	l.inte	rcept_
	23278	.822101930637
		t = model.predic = model.predict

```
print('Train MSE' , math.sqrt(mean_squared_error(train_y,train_Y_hat)))
print('Test MSE' , math.sqrt(mean_squared_error(test_y,test_Y_hat)))
```

Train MSE 5954.982711949841 Test MSE 5111.153940719106

plt.scatter(test_y,test_Y_hat)

<matplotlib.collections.PathCollection at 0x7f7e3cdbe2d0>

plt.scatter(train_y,train_Y_hat)

<matplotlib.collections.PathCollection at 0x7f7e3c2f6290>

sns.pairplot(sal_data)

<seaborn.axisgrid.PairGrid at 0x7f7e3bc6b7d0>

plt.figure(figsize = (14,10))
sns.heatmap(sal_data.corr(),annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f7e3bc68450>

