MINI-TESTE 2

Universidade Federal de Jataí (UFJ)
Bacharelado em Ciência da Computação
Lógica para Ciência da Computação
Esdras Lins Bispo Jr.

14 de maio de 2019

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro minitestes (MT), uma prova final (PF), exercícios em formato de *Quizzes* (QZ) e questões conceituais (QC) aplicadas em sala de aula pelo método de Instrução pelos Colegas;
- \bullet A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = [(\sum_{i=1}^{4} max(MT_i, SMT_i) + PF].0, 2 + QC + QZ$

em que

- -S é o somatório da pontuação de todas as avaliações, e
- $-SMT_i$ é a substitutiva do mini-teste i.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (2) Relações em Lógica Proposicional.

Nome:		

Segundo Teste

- 1. (5,0 pt) [IpC Q030] Dada uma proposição p qualquer, qual das declarações abaixo é falsa? Justifique a sua resposta!
 - (a) A contrapositiva da contrapositiva de $p \in p$.

Verdadeira - Admita que p seja a condicional $r \to t$. Logo, a contrapositiva de $r \to t$ é

$$\sim t \rightarrow \sim r$$

e a contrapositiva de $\sim t \rightarrow \sim r$ é

$$\sim \sim r \rightarrow \sim \sim t$$

que é equivalente a $r \to t$.

(b) A contrária da contrária de $p \in p$.

Verdadeira - Admita que p seja a condicional $r \to t$. Logo, a contrária de $r \to t$ é

$$\sim r \rightarrow \sim t$$

e a contrária de $\sim r \rightarrow \sim t$ é

$$\sim \sim r \rightarrow \sim \sim t$$

que é equivalente a $r \to t$.

(c) Se V(p) = F, então o valor lógico da recíproca de p é verdadeiro.

Verdadeira - Admita que p seja a condicional $r \to t$. Logo, a recíproca de $r \to t$ é

$$t \to r$$

Assim, se V(p)=F, então temos que V(r)=V e V(t)=F. Desta forma, $V(t\to r)=F\to V=V$.

(d) Se V(p) = F, então o valor lógico da contrapositiva de p é verdadeiro.

Falsa - Admita que p seja a condicional $r \to t$. Logo, a contrapositiva de $r \to t$ é

$$\sim t \rightarrow \sim r$$

Assim, se V(p) = F, então temos que V(r) = V e V(t) = F. Desta forma,

$$V(\sim t \rightarrow \sim r) = \sim F \rightarrow \sim V = V \rightarrow F = F$$

2. (5,0 pt) [Alencar 6.3 (e)] Demonstrar por tabela-verdade que $(p \to q) \wedge (p \to r) \Leftrightarrow p \to q \wedge r$.

p	\rightarrow	q)	\wedge	(<i>p</i>	\rightarrow	r)	\leftrightarrow	p	\rightarrow	q	Λ	r
V	V	V	V	V	V	V	V	V	V	V	V	V
V	V	V	F	V	F	F	V	V	F	V	F	F
V	\mathbf{F}	F	F	V	V	V	V	V	F	F	F	V
V	\mathbf{F}	F	F	V	F	F	V	V	F	F	F	F
F	V	V	V	\mathbf{F}	V	V	V	F	V	V	V	V
F	V	V	V	\mathbf{F}	V	F	V	F	V	V	F	F
F	V	F	V	\mathbf{F}	V	V	V	F	V	F	F	V
F	V	F	V	F	V	F	V	F	V	F	F	F

Tendo em vista que $(p \to q) \land (p \to r) \leftrightarrow p \to q \land r$