

Дискретная математика

Системы счисления. Сложение и вычитание

Цель урока:

Научиться складывать и вычитать в различных СС

Рубрика: Эксперименты

Что это?

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11...

Числа в десятичной СС

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11...

Числа в десятичной СС легко сложить

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11...

$$6 + 7 = 13$$

А как выглядят числа в троичной СС?

Вспомним алфавит троичной СС

Вспомним алфавит троичной СС:

0, 1, 2

А теперь запишем числа в троичной СС по порядку

А теперь запишем числа в троичной СС по порядку

0, 1, 2,

А теперь запишем числа в троичной СС по порядку

0, 1, 2, 10, 11, 12, 20, 21, 22, 100...

Сколько будет, если сложить 2 и 11 в 3СС?

Сколько будет, если сложить 2 и 11 в 3СС?

13

100

20

нет такого числа

Сколько будет, если сложить 2 и 11 в 3СС?

13

100

20

нет такого числа

Почему так?

Вспомним 10СС

$$4 + 2 = ?$$

Вспомним 10СС

$$4 + 2 = ?$$

Вспомним 10СС

$$4 + 2 = ?$$

20 ====

Вспомним 10СС

$$4 + 2 = 6$$

21 ====

Тогда в 3СС 2 + 11 = ?

0, 1, 2, 10, 11, 12, 20, 21, 22...

22

Тогда в 3СС 2 + 11 = ?

0, 1, 2, 10, 11, 12, 20, 21, 22...

23 -----

0, 1, 2, 10, 11, 12, 20, 21, 22...

Метод кокосов

Метод кокосов на примере 4CC

Запомним

=

Метод кокосов на примере 4CC

$$3 + 2 = 5$$
 кокосов

это много! поэтому 4 кокоса в коробку, а 1 остается

Метод кокосов на примере 4CC

Метод кокосов на примере 4CC

это много! поэтому 4 коробки в газельку, а 1 остается

Метод кокосов на примере 4CC

Метод кокосов на примере 4СС

это нормально! поэтому камаз не вызываем!

Пример 1:

126₈ 9=1.8+1 123₈ 251₈

Пример 1:

126₈ 9=1.8+1 123₈ 251₈

Пример 1:

$$+ \begin{array}{c} 1 \\ A & B \\ \hline 1 & 7 \\ \hline 0 \\ 16 \end{array}$$

Пример 1:

Пример 1:

Пример 1:

Пример 1:

Пример 1:

$$-A \frac{1}{4} \frac{4}{16}$$

$$-B \frac{7}{16}$$

$$-B \frac{16}{7} \frac{16}{16}$$

Пример 1:

Пример 2:

Единица в старшем разряде = количество единиц, равное основанию СС


```
1111<sub>2</sub>
X 1111<sub>2</sub>
+ 1111
+ 1111
```



```
+ 1111
```


Умножение в 2-ичной СС = сложение числа со сдвигом

Практика в EduApp

$$p_{10}^{k} = 10...0_{p}$$
 (k нулей)

Примеры:

$$8^{2}_{10} = ?_{8}$$

Примеры:

$$8^{2}_{10} = 64_{10} = 100_{8}$$

Примеры:
$$\frac{2}{10} = 64_{10} = \frac{100}{8}$$

Примеры:
$$\frac{2}{10} = 64_{10} = \frac{100}{8}$$

Примеры:
$$\frac{2}{10} = 64_{10} = \frac{100}{8}$$

$$5^{4}_{10} = 625_{10} = 10000_{5}$$

Примеры:
$$_{10}^{2} = 64_{10} = 100_{8}$$
 $_{10}^{4} = 625_{10} = 10000_{5}$

$$p_{10}^{k} = 10...0_{p}$$
 (k нулей)
 \downarrow^{k}
 $2_{10}^{k} = 10...0_{2}$ (k нулей)

$$2^{k}_{10} = 10...0_{2}$$
 (k нулей)

Примеры:

$$2^{k}_{10} = 10...0_{2}$$
 (k нулей)

Примеры:

$$2^{2}_{10} = 4_{10} = 100_{2}$$

$$2^{k}_{10} = 10...0_{2}$$
 (k нулей)

Примеры:
$$\frac{2}{10} = 4_{10} = \frac{100}{2}$$

$$2^{k}_{10} = 10...0_{2}$$
 (k нулей)

Примеры:
$$\frac{2}{10} = 4_{10} = \frac{100}{2}$$

$$2^{k}_{10} = 10...0_{2}$$
 (k нулей)

Примеры:
$$_{10}^{2} = 4_{10} = 100_{2}^{2}$$

$$2^{7}_{10} = 128_{10} = 10000000_{2}$$

$$2^{k}_{10} = 10...0_{2}$$
 (k нулей)

Примеры:
$$_{2 \text{ нуля}}$$
 $2^{2}_{10} = 4_{10} = 100_{2}$
 $_{10}^{7} = 128_{10} = 10000000_{2}$

$$2_{10}^{k} = 10...0_{2}$$
 (k нулей)
 \downarrow
 $2_{10}^{k} - 1 = 11...1_{2}$ (k единиц)

$$2_{10}^{k} = 10...0_{2}$$
 (k нулей)

$$2^{k}_{10}$$
 - 1 = 11...1₂ (k единиц)

Примеры:

$$2^{k}_{10}$$
 - 1 = 11...1₂ (k единиц)

Примеры:

$$2^{2}_{10} - 1 = 3_{10} = 11_{2}$$

$$2^{k}_{10}$$
 - 1 = 11...1₂ (k единиц)

Примеры: 2 единицы
$$2^2_{10} - 1 = 3_{10} = 11_2$$

$$2^{k}_{10}$$
 - 1 = 11...1₂ (k единиц)

Примеры: 2 единицы
$$2^2_{10} - 1 = 3_{10} = 11_2$$

$$2^{k}_{10}$$
 - 1 = 11...1₂ (k единиц)

Примеры: 2 единицы
$$2^2_{10} - 1 = 3_{10} = 11_2$$

$$2^{k}_{10}$$
 - 1 = 11...1₂ (k единиц)

Примеры: 2 единицы
$$2^2_{10} - 1 = 3_{10} = 11_2$$
 7 единиц $2^7_{10} - 1 = 127_{10} = 1111111_2$

А сейчас будет что-то...

Интересное...

Захватывающее...

Игра: Великий МагМат

Великий МатМат расскажет тебе:

- Кем ты был из великих математиков в прошлом?
- Кто ты сейчас в настоящем?
- Что тебя ждёт в будущем?

Правила игры

Чтобы задать **один** вопрос Великому МагМату:

• реши **3** любых задачи (без повторений)

Ho! МагМат не предскажет твоё будущее, пока ты не узнаешь себя прошлом и настоящем...

Поехали!

Д3 в EduApp!

До встречи!