Функції Радо

Андрій Фесенко

• Тібор Радо, 1962р.

- Тібор Радо, 1962р.
- Модель машини Тюрінга $(1,\{0,1\},\{1\},0,Q,q_H,q_0,\delta)$, де $\delta:(Q\setminus\{q_H\})\times\{0,1\}\to Q\times\{0,1\}\times\{L,R\}$

- Тібор Радо, 1962р.
- Модель машини Тюрінга $(1,\{0,1\},\{1\},0,Q,q_H,q_0,\delta)$, де $\delta:(Q\setminus\{q_H\})\times\{0,1\}\to Q\times\{0,1\}\times\{L,R\}$
- \mathcal{K}_{BB} всі машини Тюрінга, які зупиняються на порожньому вхідному слові (клас Радо)

- Тібор Радо, 1962р.
- Модель машини Тюрінга $(1,\{0,1\},\{1\},0,Q,q_H,q_0,\delta)$, де $\delta:(Q\setminus\{q_H\}) imes\{0,1\} o Q imes\{0,1\} imes\{L,R\}$
- \mathcal{K}_{BB} всі машини Тюрінга, які зупиняються на порожньому вхідному слові (клас Радо)
- $\mathcal{K}_{BB}(n)$ всі машини Тюрінга, які зупиняються на порожньому вхідному слові і мають n некінцевих станів

- Тібор Радо, 1962р.
- ullet Модель машини Тюрінга $(1,\{0,1\},\{1\},0,Q,q_H,q_0,\delta)$, де $\delta: (Q\setminus \{q_H\}) imes \{0,1\} o Q imes \{0,1\} imes \{L,R\}$
- К_{ВВ} всі машини Тюрінга, які зупиняються на порожньому вхідному слові (клас Радо)
- $\mathcal{K}_{BB}(n)$ всі машини Тюрінга, які зупиняються на порожньому вхідному слові і мають n некінцевих станів
- s(M) кількість тактів, яку зробить машина Тюрінга M з порожнім вхідним словом до своєї зупинки

- Тібор Радо, 1962р.
- Модель машини Тюрінга $(1,\{0,1\},\{1\},0,Q,q_H,q_0,\delta)$, де $\delta:(Q\setminus\{q_H\}) imes\{0,1\} o Q imes\{0,1\} imes\{L,R\}$
- К_{ВВ} всі машини Тюрінга, які зупиняються на порожньому вхідному слові (клас Радо)
- $\mathcal{K}_{BB}(n)$ всі машини Тюрінга, які зупиняються на порожньому вхідному слові і мають n некінцевих станів
- s(M) кількість тактів, яку зробить машина Тюрінга М з порожнім вхідним словом до своєї зупинки
- $\sigma(M)$ кількість непорожніх комірок, які залишаться на стрічці після зупинки машини Тюрінга M з порожнім вхідним словом

Означення

Функціями Радо називають функції $S, \Sigma : \mathbb{N} \to \mathbb{N}$, які для довільного натурального числа $n \in \mathbb{N}$ приймають значення $S(n) = \max_{M \in \mathcal{K}_{BB}(n)} s(M)$ і $\Sigma(n) = \max_{M \in \mathcal{K}_{BB}(n)} \sigma(M)$.

Означення

Функціями Радо називають функції $S, \Sigma : \mathbb{N} \to \mathbb{N}$, які для довільного натурального числа $n \in \mathbb{N}$ приймають значення $S(n) = \max_{M \in \mathcal{K}_{BB}(n)} s(M)$ і $\Sigma(n) = \max_{M \in \mathcal{K}_{BB}(n)} \sigma(M)$.

Наслідок

Для довільного натурального числа $n\in\mathbb{N}$ виконується нерівність $\Sigma(n)\leq S(n).$

Означення

Функціями Радо називають функції $S, \Sigma : \mathbb{N} \to \mathbb{N}$, які для довільного натурального числа $n \in \mathbb{N}$ приймають значення $S(n) = \max_{M \in \mathcal{K}_{BB}(n)} s(M)$ і $\Sigma(n) = \max_{M \in \mathcal{K}_{BB}(n)} \sigma(M)$.

Наслідок

Для довільного натурального числа $n\in\mathbb{N}$ виконується нерівність $\Sigma(n)\leq S(n).$

Твердження

Для довільного натурального числа $n \in \mathbb{N}$ потужність класу Радо $\mathcal{K}_{BB}(n)$ машин Тюрінга обмежена зверху значенням $(4(n+1))^{2n}$.

Теорема

Для довільної обчислювальної функції $f:\mathbb{N}\to\mathbb{N}$ існує таке натуральне число $n_f\in\mathbb{N}$, що $\Sigma(n)>f(n)$ для всіх натуральних чисел $n\in\mathbb{N},\ n>n_f$.

Теорема

Для довільної обчислювальної функції $f: \mathbb{N} \to \mathbb{N}$ існує таке натуральне число $n_f \in \mathbb{N}$, що $\Sigma(n) > f(n)$ для всіх натуральних чисел $n \in \mathbb{N}$, $n > n_f$.

Наслідок

Σ функція Радо є необчислювальною.

S функція Радо є необчислювальною.

Наявні результати

			Values of S(n, m)			
m n	2-state	3-state	4-state	5-state	6-state	7-state
2-symbol	6	21	107	47 176 870 ?	> 7.4 × 10 ³⁶ 5 ³⁴	> 1010101010101010
3-symbol	38	≥ 119 112 334 170 342 540	> 1.0 × 10 ¹⁴ 0 ⁷²	?	?	?
4-symbol	≥ 3 932 964	> 5.2 × 10 ^{13 038}	?	?	?	?
5-symbol	> 1.9 × 10 ⁷⁰⁴	?	?	?	?	?
6-symbol	> 2.4 × 10 ⁹⁸⁶⁶	?	?	?	?	?
			Values of Σ(n, m)			
m n	2-state	3-state	4-state	5-state	6-state	7-state
2-symbol	4	6	13	4098 ?	> 3.5 × 10 ^{18 267}	> 10101010101010101
3-symbol	9	≥ 374 676 383	> 1.3 × 10 ⁷⁰³⁶	?	?	?
4-symbol	≥ 2050	> 3.7 × 10 ⁶⁵¹⁸	?	?	?	?
5-symbol	> 1.7 × 10 ³⁵²	?	?	?	?	?
6-symbol	> 1.9 × 10 ⁴⁹³³	?	?	?	?	?

• для довільної обчислювальної та арифметично коректної теорії існує таке натуральне число $k \in \mathbb{N}$, що для довільного числа $n \in \mathbb{N}$, $n \geq k$, жодне твердження виду S(n) = m, де $m \in \mathbb{N}$, не може бути доведено в межах цієї теорії

- для довільної обчислювальної та арифметично коректної теорії існує таке натуральне число $k \in \mathbb{N}$, що для довільного числа $n \in \mathbb{N}$, $n \geq k$, жодне твердження виду S(n) = m, де $m \in \mathbb{N}$, не може бути доведено в межах цієї теорії
- ullet в межах теорії множин Цермело-Френкеля не можна обчислити значення S(748)

- для довільної обчислювальної та арифметично коректної теорії існує таке натуральне число $k \in \mathbb{N}$, що для довільного числа $n \in \mathbb{N}$, $n \geq k$, жодне твердження виду S(n) = m, де $m \in \mathbb{N}$, не може бути доведено в межах цієї теорії
- в межах теорії множин Цермело-Френкеля не можна обчислити значення S(748)
- ullet побудована машина Тюрінга з класу Радо $\mathcal{K}_{BB}(1919)$, яка зупиняється, коли теорія множин Цермело-Френкеля з аксіомою вибору є суперечною

- для довільної обчислювальної та арифметично коректної теорії існує таке натуральне число $k \in \mathbb{N}$, що для довільного числа $n \in \mathbb{N}$, $n \geq k$, жодне твердження виду S(n) = m, де $m \in \mathbb{N}$, не може бути доведено в межах цієї теорії
- в межах теорії множин Цермело-Френкеля не можна обчислити значення S(748)
- побудована машина Тюрінга з класу Радо $\mathcal{K}_{BB}(1919)$, яка зупиняється, коли теорія множин Цермело-Френкеля з аксіомою вибору є суперечною
- побудована машина Тюрінга з класу Радо $\mathcal{K}_{BB}(744)$, яка зупиняється, якщо гіпотеза Рімана є хибною

Висновки

• невеликі за побудовою машини Тюрінга можуть породжувати значні обчислення

Висновки

- невеликі за побудовою машини Тюрінга можуть породжувати значні обчислення
- існує певна межа обчислювальних функцій, і досить стрімкі за зростанням функції є необчислювальними

Корисні посилання

- Поточні рекорди та історія машин Тюрінга класу Радо https://webusers.imj-prg.fr/~pascal.michel/ http://turbotm.de/~heiner/BB/
- Computerphile "Busy Beaver" відео (англ. мова), prof. Brailsford https://www.youtube.com/watch?v=CE8UhcyJS0I
- Фізична реалізація (3,2) Busy Beaver https://www.youtube.com/watch?v=28pnk2JIBSE
- Фізична реалізація (4,2) Busy Beaver https://www.youtube.com/watch?v=2PjU6DJyBpw
- Реалізація (4,2) Busy Beaver в Minecraft https://www.youtube.com/watch?v=IefoYnf6xKI