

TERRA ADAPTER 2 OUTPUT DROPLET-BASED SYSTEMS

Table of Contents

Table of Contents	
Overview	2
Chip Design	3
Milling Instructions	4
Testing Protocol	5
Flow Layer Set Up	5
Control Layer Set Up	6
Testing the Chip	7
Cleaning the Chip	7

Overview

The TERRA Adapter is a scalable, predesigned chip that is capable of selectively dispensing the output of the microfluidic chip running the experiment into the intended lab vessel. The TERRA Adapter serves to increase the number of and types of microfluidic chips that are compatible with our system. This makes the system more user-friendly, as the user doesn't have to design a chip that both completes a biological experiment and is capable of selecting the proper output to be dispensed.

This chip is the TERRA Adapter for two output, droplet-based experiments. The outputs of your experimental microfluidic chip are the inputs of the TERRA Adapter. This chip controls when the desired output is dispensed into the wells of the plate, and when it is directed to waste. This gives direct control over when droplets are being dispensed so as to not continually drip the output and thus contaminate the samples. This design contains pressure regulators so that the constant actuation of the valves does not effect the generation of droplets in the experimental chip.

Chip Design

Flow Layer

Control Layer

Milling Instructions

This chip has not been milled or tested

Notes:

- This chip should be milled on thick polycarbonate (5.00mm < Z Polycarbonate)
- This chip should be used with thin PDMS (0.24mm < Z_{PDMS} < 0.26mm)

All the required SVGs for milling this chip are provided in the ZIP file. The layer, depth, and tool required for each SVG are listed in the file name. Below is the key describing how to read an SVG file name.

Mill the layers in the order they are listed with the correct depths and using the correct tool

Flow Layer		
Order	Layer Name	
1	F_1000_32	
2	F_1000_64	
3	F_100_100	
4	F_THRU_8	
5	Border	

Control Layer		
Order	Layer Name	
1	C_100_32	
2	C_400_32	
3	C_THRU_8	
4	Border	

Testing Protocol

Flow Layer Set Up

Inputs	
Name	Liquid
Α	Experimental Output 1
В	Experimental Output 2

Outputs		
Name	Liquid	Location
1	Experiment Output 1 or Experimental Output 2	TERRA Nozzle
2	Experiment Output 1	Waste
3	Experiment Output 2	Waste

Control Layer Set Up

Testing the Chip: Set Up and Protocol

- 1. Prepare your experimental microfluidic chip and run until stabilized
- 2. After setting all control syringe pumps to origin state, attach syringes following the above diagram
- 3. Open syringes 1 and 3 and close syringes 0 and 2
- 4. Attach the output of the experimental chip to the input of the TERRA Adapter
- 5. Let flush for 5-10 minutes
- 6. Hit "Start Run" button on the UI

Cleaning the Chip

- 1. Carefully disconnect tubing and dispose of all liquid waste
- 2. Disconnect all syringes
- 3. Clean the chip following the MARS protocols
- 4. Store the chip following the MARS protocols