Оглавление

1	NP задачи			2
	1.1	Экстр	Экстремальные задачи	
		1.1.1	Жадные алгоритмы	2
		1.1.2	Гарантированная оценка точности	2
		1.1.3	Метаэвристики	3

Глава 1

NP задачи

1.1 Экстремальные задачи

Определение 1. NP-полные задачи оптимизации называются NP-трудными

Классификация приближённых алгоритмов.

- 1. Жадные алгоритмы
- 2. Алгоритмы с гарантированной оценкой точности
- 3. Приближённые алгоритмы, которые выдают одно решение
- 4. Метаэвристики:
 - (а) Поиск в локальной окрестности:
 - і. Имитиация отжига
 - (b) Генетические алгоритмы
 - (с) Муравбиный поиск
 - (d) Вероятностные алгоритмы

1.1.1 Жадные алгоритмы

Жадный алгоритм для задачи коммивояжёра – идти в ближайший город

1.1.2 Гарантированная оценка точности

Оценка существует:

$$\exists\, k: orall$$
 решения $A \quad rac{f_A}{f_{\mathrm{out}}} \leq k$

Оценки не существует:

$$\forall k \;\;\exists\;\;$$
 решение $A: \frac{f_A}{f_{\text{опт}}} > k$

Следующий алгоритм работает только на неориентированном графе:

Алгоритм (Эйлера).

- 1. Строим кратчайшее остовное дерево T
- 2. Удваиваем рёбра дерева. Получаем 2T
- 3. Строим эйлеров цикл C
- 4. Из C делаем гамильтонов цикл (маршрут коммивояжёра) L:
 - (а) Вычёркиваем повторы

Теорема 1. Для метрической задачи коммивояжёра, для алгоритма Эйлера верно $\frac{f_A}{f_{out}} \le 2$

Доказательство.

$$|T| = \sum_{u \in T} l\{u\}, \qquad |C| = 2|T|, \qquad f_A = |L| \le 2|T|, \qquad f_{\text{ont}} \ge |T|$$

Алгоритм (Кристофидиса).

- 1. Строим кратчайшее остовное дерево T
- 2. (а) В построенном дереве выделяем вершины нечётной степени. Их чётное число
 - (b) Находим полное паросочетание на этих вершинах с минимальной суммой. Его добавляем к ${\cal T}$

- 3. Строим эйлеров цикл C
- 4. Из C делаем гамильтонов цикл (маршрут коммивояжёра) L:
 - (а) Вычёркиваем повторы

Теорема 2. Алгоритм Кристофидиса на метрической задаче имеет гарантированную оценку $\frac{3}{5}$

1.1.3 Метаэвристики

Поиск в локальной окрестности (LS - Local Search)

X – решение, U(X) – окрестность

Определение 2. Окрестность определяется следующим образом:

Задаётся набор операций над X. U(X) – все решения, которые можно получить из X этими операциями

Остановка:

- По числу итераций
- По времени
- Если целевая функция какое-то колиичество итераций (времени) не уменьшается
- ullet Отклонение f от нижней оценки меньше заданного

Можно время от времени переходить в плохое решение:

Если встретили плохое решение, подбрасываем монетку ($\approx 90\%$ и 10%). Если выпало 10%, переходим в это решение

Генетические алгоритмы

X – особь, у которой есть генотип и фенотип

Фенотип – f(X) – значение целевой функции

Генотип – что-то, например, перестановка

Заранее определяем n – размер популяции

Алгоритм.

- 1. Разделяем популяцию на пары. Получаем n/2 пар
- 2. От каждой пары получаем 2 потомка. Операция кроссинговер (кроссовер):

(а) "Комбинируем" перестановки:

3. Отбор n лучших особей

Возможные улучшения.

- Двухточечный кроссовер
- При отборе оставлять несколько плохих особей
- Более сильная особь оставляет больше потомства:
 - 1. Каждой особи приписыаем коэффициент качества
 - 2. Вместо кроссовера n_2 раз запускаем схему Уолкера и решаем, кто будет размножаться