6.867 Recommender Systems

Fall 2016

The Fall of Search

[the "burden of choice" and "don't know what you don't know"]

You don't find the content...

...the content finds you!

The long-tail effect

NETFLIX

\$1 million prize

Oct 2006 → Jun 2009

Aim: Predict ratings for movies using training data of (user, movie) pairs of ratings (1-5 stars); improve in-house system by $\geq 10\%$!

Training data: 100,480,507 ratings that 480,189 users gave to 17,770 movies

https://en.wikipedia.org/wiki/Netflix_Prize

HOME

RECSYS 2017

PAST CONFERENCES

HONORS

WIKI

CONTACT

search...

10th ACM Conference on Recommender Systems

RECSYS 2016 (BOSTON)

Two views on recommendations

Content based

"If you liked this item, you might also like"

Collaborative filtering

```
"people who liked this item also liked..."
```

Several other views exist

Learning to rank, choice models, ...

"ranked list of preferences (like ml better than xyz)..."

[&]quot;people similar to you also liked"

Content based

Training data: (Movies, ratings) for a single user

Predict: User's ratings (or like/not-like) for all movies!

More common for text-based products; user models and personalization

Collaborative filtering

Movies represented by how others have rated them: no features!

> Various ways of now "filling in the matrix"

Image credit: [X. Amatriain, MLSS' 14]

Similarity - sample correlation

$$\sin(a,b) = \frac{\sum_{j \in M(a,b)} (Y_{aj} - \bar{Y}_a)(Y_{bj} - \bar{Y}_b)}{\sqrt{\sum_{j \in M(a,b)} (Y_{aj} - \bar{Y}_a)^2} \sqrt{\sum_{j \in M(a,b)} (Y_{bj} - \bar{Y}_b)^2}}$$
$$\bar{Y}_a = \frac{1}{|M(a,b)|} \sum_{j \in M(a,b)} Y_{aj}$$

$$sim(a,b) = \frac{\langle \hat{Y}_a, \hat{Y}_b \rangle}{\|\hat{Y}_a\| \cdot \|\hat{Y}_a\|}$$
$$\hat{Y}_a = [Y_{aj} - \bar{Y}_a]_{j \in M(a,b)}$$

Collaborative filtering via KNN

$$sim(a,b) = 1$$

Image credit: [X. Amatriain, MLSS' I 4]

Collaborative filtering via KNN

Strengths

- Conceptually simple
- Easy to implement
- Typically few parameters (just K)
- Many improvements possible, eg by designing notion of similarity
- Works well for "stereotypical" users

Weaknesses

- Not good for users with mixed tastes

 (e.g., when user tastes are similar across subsets but diverge / vary for certain other movies)
- Not so good for "diversity"
- Cold-start problem
- Sparsity difficulties
- Scalability of NN

Collaborative filtering: Matrix Factorization

A bad idea: trivial regression

2	MALINAAIN	2	4	5	NA JAMANA
5		4			1
		5		2	
	1		5		4
		4			2
4	5		1		

$$\frac{1}{2} \sum_{(a,i)\in M} (Y_{ai} - X_{ai})^2 + \frac{\lambda}{2} \sum_{(a,i)\in M} X_{ai}^2$$

 \overline{Y}

$$\hat{X}_{ai} = \begin{cases} \frac{1}{1+\lambda} Y_{ai}, & (a,i) \in M \\ 0 & \text{otherwise} \end{cases}$$

Too many parameters!

Low-rank matrix factorization

$$\min \sum_{(a,i)\in M} (Y_{ai} - X_{ai})^2$$
s.t.
$$\operatorname{rank}(X) \le k.$$

rank constraint leads to NP-Hard problem famous "convex relaxation"

$$\operatorname{rank}(X) \le k \mapsto (\|X\|_* := \sum_{j=1}^m \sigma_j(X)) \le k$$

How to solve this problem?

Low-rank MF: AltMin

$$\min_{U,V} F(U,V) := \|P_M(Y) - P_M(UV^T)\|_F^2,
[P_M(X)]_{ai} = \begin{cases} X_{ai} & (a,i) \in M \\ 0 & \text{otherwise} \end{cases}$$

Observation: Convex in U if V is fixed and vice-versa

Theorem: Under some (academic) assumptions, AltMin initialized with SVD converges to global optimum of this nonconvex problem

Exercise: Compare with an SGD based algorithm!

Other topics, perspectives

Personalization for Google Now (user models)

People Recommendation

Group Recommender Systems

Recommendations within a Social Network

Tensor Factorization

Evaluation of Recommender Systems

Real-time Recommendation of Streamed Data

Interactive Recommender Systems

Links / References

General

http://www.recsyswiki.com/

MLSS 2014: Recommender Systems

see also the "recommended" links on that page ;-)

http://www.recommenderbook.net/

high level overview (a bit dated)

Software

https://github.com/geffy/tffm

factorization machines in TensorFlow

http://www.librec.net

Java library with several algorithms