

CORNET TRUSTED-IOT

16 / 11 / 2023

SUMMARY

VUB

Environmental monitoring

Heterogeneous embedded architectures

KULeuven

Drones

Multi-core RISC-V

BTU/Rosto ck

Industry 4.0

Coarse grained reconfigurable architectures (CGRAs)

TUD

Mobile robots

Ultra low-powered (FPGAs)

GFAI

Cooperative robots

Heterogeneous system solutions

VUB SECURE EXECUTION FOR EMBEDDED ENVIRONMENTAL MONITORING APPLICATIONS

Laurent Segers

An Braeken Bruno da Silva Abdellah Touhafi

VUB - ENVIRONMENTAL MONITORING

SECURE LOW-END SENSING

- Limited memory/processing capabilities
- Capable of reading sensors with low update rates (i.e. 1Hz, 10Hz)
- Data integrity & confidentiality of sensorreadouts
- Trusted GPS & RTC

SECURE REMOTE UPDATE

- Lightweight key agreement protocol using PUF
- Secure attestation

LOW-END SENSING

Risks & mitigation

- Moving device to other location
 Location awareness (GPS) can mitigate
 security risks
- Wireless communication → spoofing, jamming, read-out of data, data alteration → Store jammed data locally until successful retransmission → Encryption/integrity protection of transmitted data
- Modifying/Reading of locally stored data Data encryption, data integrity check
- Firmware (mis)configuration
 → integrity test during attestation
- Over the air updates compromised with spoofed firmware/configuration
 → Authentication + encryption of firmware

SECURITY REQUIREMENTS (HARDWARE - SILICON SUPPORTED)

- Minimal Hardware-based code execution isolation if possible

 → TrustZone
- Basic Root-of-Trust (for some applications)
- Secure boot
- Secure bootloaders
- Trusted peripherals (when possible)
- Optimizations for secure storage
- Secure over the air updates

LOW-END DEVICES - TRUSTED EXECUTION ENVIRONMENT

NXP/Freescale	STMicroelectronics	Microchip
LPC5500-series based on the ARM-Cortex-M33 MCUs	STM32 based on ARM- Cortex-M33 (STM32L5 and STM32U5) ultra-low-power MCUs	PIC32CM5164 LS60/LS00 based on ARM-Cortex M23
• TrustZone	TrustZone	TrustZone
Energy efficiency	Ultra low-power	Ultra low-power
• SRAM PUF-based RoT	 Cryptographic modules integrated 	Cryptographic modules integrated
• Encrypted images		Exist in secure and non-secure variants
• ~ 4.5€/pc (1000pc)	• ~7.5€/pc (1000pc)	• ~4€/pc (1000pc)

Custom designed board

MICROCHIP PIC32CM5164 BASED ON ARM23

USB for power over USB + commucation to PC

MICROCHIP PIC32CM5164 ARM23 LOW-END EMBEDDED PLATFORM

Based on ARM23 core platform with 512kB flash, 64kB SRAM, 32kB boot ROM

Offers TrustZone (5 regions in flash, 2 regions in data flash and 2 regions in SRAM)

1 TRNG, AES-256/192/128, multiple SHA methods

Public key validation support, 1 internal sign private key attestation

Secure boot with customizable secure boot public key

Optimized for secure storage + TrustRAM

Up to 8 anti-tamper output IO + secure pin multiplexing to isolate secure communication channels

Unique 128-bit serial number

Separate registers for secure and non-secure application 1

SENSOR MODULE

GPS (L96-M33)

UART to USB communication to PC

SD-card for logging

Grouping sensors in secure/non-secure peripherals

VEML3328 light sensor (RGB+IR)

SHT41 temperature + humidity sensor

ADXL343 3-axis accelerometer

SPU0410LR5H-QB analog microphone + SPI ADC

EMBEDDED FIRMWARE (1): MODULAR APPROACH WITHOUT TRUSTZONE

EMBEDDED FIRMWARE (2): MODULAR APPROACH WITH TRUSTZONE

EMBEDDED FIRMWARE & TRUSTZONE (3): CONSIDERATIONS

- One program flow on regular microcontrollers without TrustZone
- TrustZone involves re-thinking application into secure and non-secure code
 → 2 program flows!
- Special function calls between secure and non-secure code
- Limited number of libraries/peripherals can be in TrustZone
- Hardware peripherals (sensors and communication) bound to secure/nonsecure code → double set of hardware registers

EMBEDDED FIRMWARE (4): CODE-WISE

Communication drivers & serializer derived from OSI model Local server / Cloud apply opposite operations

ADDITIONAL RESOURCE CONSUMPTION

Code execution time / power overhead TrustZone

Between 100's cycles up to 1000's cycles (1-3%)

Program code overhead due to TrustZone

- TrustZone minimum code size: 15kB
- Memory provisioning at Harmony design phase (20% TrustZone)

Secure data transmission

- → Data sent in "plain readable" format: ~34-80 bytes per packet
 - → AES-256 CBC encryption + IV: ~17-32 bytes additional
 - → SHA-256 hashing: 32 additional bytes
- → Total overhead: 49-64 bytes => 100% on average

MICROCHIP EMBEDDED TOOL DEVELOPMENT – USER FRIENDLINESS

Device configuration with MPLab X IDE (6.x) + Harmony

Code generation of drivers and configuration → engineer should focus on applications...

Silent auto-updates

- → project discrepancies
- → compiler flag discrepancies
- → new project then required

Solution/workaround

- → design with harmony/libraries during project creation
- → only update code later on
- → write own drivers on top of CMSIS if possible

SUMMARY & NEXT STEPS

- Microchip ARM23 based platform selected and programmed
- TrustZone and secure remote communication
- Firmware development challenges
- ➡Fine-grained impact analysis of TrustZone and secure communication
- Remote (secure) programming of application
- Lightweight key agreement protocol using PUF
- Limitations of programming tools & resolution

Thank you for your attention

Laurent Segers - laurent.segers@vub.be

An Braeken - an.braeken@vub.be

Bruno da Silva - bruno.da.silva@vub.be

Abdellah Touhafi - abdellah.touhafi@vub.be

