Hyperspectral Image Recunstruction from RGB images

Team Members: Shanu Tyagi, Nikhil Gangwar, Param Teraiya, Namrata Shrilekha Guided by: Navya Singh

Abstract

- -> With the development of deep Convolution Neural Networks (CNNs), Hyperspectral recovery from a single RGB image has seen a great improvement.
- -> Our goal is to obtain spectral out of the RGB Images.

Introduction

-> Hyperspectral imaging, like other spectral imaging, collects and processes information from across the electromagnetic spectrum.

-> The goal of hyperspectral imaging is to obtain the spectrum for each pixel in the image of a scene, to find objects, identify materials, or detecting processes.

Proposed Method

-> Model: UCNN - D

Experimental Results and Discussion

- 1. HS-ResidualNet
- 2. Attention HS-ResidualNet
- 3. Advanced CNN-Dense Net Model
- 4. UCNN-D
- 5. DUCNN

Attention Layer

UCNN-D

Conclusions Training loss -v 0.30 — Training loss mean absolute error loss 0.25 mean squared error loss 0.20 neuron 0.15 0.1687 0.0620 0.1117 | 0.1117 | 0.024 0.10 0.05 75 100 125 150 175

References

- -> NTIRE 2018 Challenge on Spectral Recunstruction from RGB Images [Link]
- -> HSCNN+: Advanced CNN-Based Hyperspectral Recovery from RGB Images [Link]