

Semester 5th | Practical Assignment | Computer Networks (2301CS501)

Date: 16/09/2024

Lab Practical #09:

Study of IP Addressing and sub-netting.

Practical Assignment #09:

- 1. Find default subnet marks, network bits, host bits, hosts per subnet, no of subnets, subnet number, 1st valid IP address, last valid IP address, and broadcast address.
 - i. 8.1.4.5/16
 - ii. 130.4.102.1/24
 - iii. 199.1.1.1/24
 - iv. 130.4.102.1/22
 - v. 199.1.1.100/27

Answers:

i. 8.1.4.5/16

- Default Subnet Mask 255.255.0.0
- Network bits 16
- Host bits 32 16=16
- Hosts per Subnet -2^{16} 2 = 65,534
- No of subnets 256
- Subnet number 8.1.4.0
- 1st valid IP address 8.1.4.1
- Last valid IP address 8.1.4.254
- Broadcast address 8.1.4.255

ii. 130.4.102.1/24

- **Default Subnet Mask –** 255.255.255.0
- Network bits 24
- Host bits -32 24 = 8
- Hosts per Subnet 2⁸ 2 = 254
- No of subnets 256
- Subnet number 130.4.102.0
- 1st valid IP address 130.4.102.1
- Last valid IP address 130.4.102.254
- Broadcast address 130.4.102.255

™

DARSHAN INSTITUTE OF ENGINEERING & TECHNOLOGY

Semester 5th | Practical Assignment | Computer Networks (2301CS501)

Date: 16/09/2024

iii. 199.1.1.1/24

- Default Subnet Mask 255.255.255.0
- Network bits 24
- Host bits 32 24=8
- Hosts per Subnet 2⁸ 2 = 254
- No of subnets 1
- Subnet number 199.1.1.0
- 1st valid IP address 199.1.1.1
- Last valid IP address 199.1.1.254
- Broadcast address 199.1.1.255

iv. 130.4.102.1/22

- Default Subnet Mask 255.255.252.0
- Network bits 22
- Host bits 32 22 = 10
- Hosts per Subnet 2¹⁰ 2 = 1,022
- No of subnets 64

Here CIDR notation is /22 by default CIDR notation of class-B is /16 so borrowed bits are 22 - 16 = 6

No of subnets = 2^6 = 64

- Subnet number 130.4.100.0
- 1st valid IP address 130.4.100.1
- Last valid IP address 130.4.103.254
- Broadcast address 130.4.103.255

v. <u>199.1.1.100/27</u>

- Default Subnet Mask 255.255.224.0
- Network bits 27
- **Host bits** 32 27 = 5
- Hosts per Subnet 2^5 2 = 30
- No of subnets 8

Here CIDR notation is /27 by default CIDR notation of class-C is /24 so borrowed bits are 27 - 24 = 3

No of subnets = $2^3 = 8$

- **Subnet number –** 199.1.1.96
- 1st valid IP address 199.1.1.97
- Last valid IP address 199.1.1.126
- Broadcast address 199.1.1.127

Semester 5th | Practical Assignment | Computer Networks (2301CS501)

Date: 16/09/2024

How to calculate Network Address(Subnet Number)

For ex- 199.1.1.100/27 IP address – 199.1.1.100 Subnet Mask – 255.255.254

first convert IP address and Subnet mask into binary like this

199.1.1.100 = 11000111.0000001.0000001.01100100

Now perform AND operation between them

11000111.0000001.0000001.01100100

Now covert answer to Decimal

11000111.000001.0000001.01100100 = 199.1.1.96

So Network Address(Subnet Number) = 199.1.1.96

By using this method we can calculate Network Address(Subnet Number) of any given IP Address

Semester 5th | Practical Assignment | Computer Networks (2301CS501)

Date: 16/09/2024

- 2. A host in a class C network has been assigned an IP address 192.168.17.9. Find the number of addresses in the block, the first address, and the last address.
 - Given IP is of Class-C so CIDR is /24
 - So Host bits = 32-24=8
 - Number of addresses in block 2^(host bits) = 2⁸-2=254
 - First IP Address 192.168.17.1
 - Last IP Address 192.168.17.254
- 3. An address in a block is given as 185.28.17.9. Find the number of addresses in the block, the first address, and the last address.
 - Given IP is of Class-B so CIDR is /16
 - So Host bits = 32-16=16
 - Number of addresses in block 2^(host bits)=2¹⁶-2=65,534
 - First IP Address 185.28.17.1
 - Last IP Address 185.28.17.254
- 4. A block of addresses is granted to a small organization. We know that one of the addresses is 205.16.37.39/28. What is the first address, last address, number of addresses in a block.
 - Given IP is of Class-C but CIDR is /28
 - So Host bits = 32-28=4
 - Number of addresses in block 2^(host bits)=2⁴-2=14
 - First IP Address 205.16.37.32
 - Last IP Address 205.16.37.47
- 5. Subnet the IP address 216.21.5.0 into 30 hosts in each subnet. Find Class, Default Mask, Bit Borrowed, New subnet mask, No. of Hosts & Subnet, Network Ranges (Subnets).
 - o Class C
 - Default Mask 255.255.255.0
 - o Calculate the no of usable host by using below formula
 - 2^{host} 2 >= No of we need in per subnet
 - o We need 30 Hosts each Subnet
 - We can use above formula to calculate the Required Host bits
 - $^{\bullet}$ 2^{host} >= 30
 - $2^5 >= 30 \rightarrow 32 >= 30$
 - o So, Required Host Bits is 5

Semester 5th | Practical Assignment | Computer Networks (2301CS501)

Date: 16/09/2024

- \circ Bit Borrowed 3 (for host we required 5 bits so 8 5 = 3)
- New Subnet Mask -255.255.255.224
- No of Hosts $-2^5 = 32$
- O No of Subnet $2^{\text{(bit borrowed)}} = 2^3 = 8$
- Network Ranges
 - Subnet 1: 216.21.5.0 216.21.5.31
 - Subnet 2: 216.21.5.32 216.21.5.63
 - Subnet 3: 216.21.5.64 216.21.5.95
 - Subnet 4: 216.21.5.96 216.21.5.127
 - Subnet 5: 216.21.5.128 216.21.5.159
 - Subnet 6: 216.21.5.160 216.21.5.191
 - Subnet 7: 216.21.5.192 216.21.5.223
 - Subnet 8: 216.21.5.224 216.21.5.255
- 6. Subnet the IP address 192.10.20.0 into 52 hosts in each subnet. Find Class, Default Mask, Bit Borrowed, New subnet mask, No. of Hosts & Subnet, Network Ranges (Subnets).
 - o Class C
 - o Default Mask 255.255.255.0
 - o Calculate the no of usable host by using below formula
 - 2^{host} >= No of we need in per subnet
 - We need 30 Hosts each Subnet
 - We can use above formula to calculate the Required Host bits

 - $2^6 >= 52 \rightarrow 64 >= 52$
 - So, Required Host Bits is 6
 - \circ Bit Borrowed 2 (for host we required 6 bits so 8 6 = 2)
 - New Subnet Mask -255.255.255.192
 - \circ No of Hosts $-2^5 = 64$
 - O No of Subnet $-2^{\text{(bit borrowed)}} = 2^2 = 4$
 - Network Ranges
 - Subnet 1: 192.10.20.0 192.10.20.63
 - Subnet 2: 192.10.20.64 192.10.20.127
 - Subnet 3: 192.10.20.128 192.10.20.191
 - Subnet 4: 192.10.20.192 192.10.20.255