Домашняя работа 5. Теория графов.

Необходимо наборать 6 баллов.

СОМВ 64. (1 балл) Постройте пример такого графа G, что его графова последовательность равна $(n, n, n-1, n-1, \ldots, 2, 2, 1, 1)$.

COMB 65. (2 балла) Собственным числом графа G называется собственное число матрицы M_a смежности этого графа (λ — это собственное число матрицы M, если существует такой вектор v, что $Mv = \lambda v$).

Доказать, что k-регулярный граф G имеет собственное число $\lambda = k$. [COMB 66.] (1 балл) Доказать, что для произвольного турнира T справедливо равенство $\sum_{v \in V(T)} (\mathrm{indeg}(v))^2 = \sum_{v \in V(T)} (\mathrm{outdeg}(v))^2$.

СОМВ 67. (2 балла) Орграф D называется сбалансированным, если для любой вершины $x \in V(D)$ выполняется неравенство $|\operatorname{outdeg}(x) - \operatorname{indeg}(x)| \leq 1$.

Доказать, что из любого неориентированного графа G можно получить направленный сбалансированный орграф D

COMB 68. (1 балл). Пусть G есть граф, построенный на вершинах 1, ..., 15, в котором вершины i и j смежны тогда и только тогда, когда их наибольший общий делитель больше единицы. Подсчитать количество связных компонент такого графа, а также определить максимальную длину простого пути в графе G.

[COMB 69.] (1 балл). Доказать, что в связном графе два максимальных простых пути имеют общую вершину.