PCT WELTORGANISATION FUR GEISTIGES EIGENTUM
Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C12N 15/52, 15/53, 15/54, 15/55, 15/81, 1/19, C12P 25/00 // (C12N 1/19, C12R 1:865)

(11) Internationale Veröffentlichungsnummer: WO 95/26406

A2

(43) Internationales Veröffentlichungsdatum:

5. Oktober 1995 (05.10.95)

(21) Internationales Aktenzeichen:

PCT/EP95/00958

(22) Internationales Anmeldedatum:

15. März 1995 (15.03.95)

(81) Bestimmungsstaaten: CA, CN, JP, RU, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT,

LU, MC, NL, PT, SE).

(30) Prioritätsdaten:

P 44 10 382.4 P 44 20 785.9

25. März 1994 (25.03.94) 15. Juni 1994 (15.06.94)

DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen

(DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): REVUELTA DOVAL, Jose, Luis [ES/ES]; Pza. La Parra, 4, E-37001 Salamanca (ES). BUITRAGO SERNA, Maria, Jose [ES/ES]; Avenida de los Cedros, 33, E-37004 Salamanca (ES). SANTOS GARCIA, Maria, Angeles [ES/ES]; Versalles, 7, E-37009 Santa Marta

(/4) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).

Veröffentlicht

Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.

(54) Title: RIBOFLAVIN SYNTHESIS IN FUNGI

(54) Bezeichnung: RIBOFLAVIN-BIOSYNTHESE IN PILZEN

(57) Abstract

invention The concerns riboflavin-biosynthesis genes in the fungus Ashbya gossypii as well as a method of producing riboflavin using these genes and gene products.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft die Gene für Riboflavin-Biosynthese in dem Pilz Ashbya gossypii sowie gentechnische Verfahren zur Herstellung von Riboflavin unter Verwendung dieser Gene und Genprodukte.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

ΑT	Österreich	GA	Gabon	MR	Mauretanien
AU	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungarn	NZ	Neuseeland
BJ	Benin	IE	Irland	PL	Polen
BR	Brasilien	IT	Italien	PT	Portugal
BY	Belarus	JР	Japan	RO	Rumānien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali	UZ	Usbekistan
FR	Frankreich	MN	Mongolei	VN	Vietnam

WO 95/26406 PCT/EP95/00958

Riboflavin-Biosynthese in Pilzen

Beschreibung

5

Die vorliegende Erfindung betrifft die Gene für Riboflavin-Biosynthese in Pilzen, die damit codierten Proteine sowie gentechnische Verfahren zur Herstellung von Riboflavin unter Verwendung dieser Gene und Genprodukte.

10

Die Herstellung von Riboflavin durch Fermentation von Pilzen wie Eremothecium ashbyii oder Ashbya gossypii ist bekannt (The Merck Index, Windholz et al., eds. Merck & Co., Seite 1183, 1983).

- 15 In der EP 405370 sind Riboflavin-überproduzierende Bakterienstämme beschrieben, die durch Transformation der Riboflavin-Biosynthese-Gene aus Bacillus subtilis erhalten wurden.
- Da die Genetik der Riboflavin-Biosynthese in Bakterien und 20 Eukaryonten verschieden ist, sind die oben erwähnten Gene aus Bacillus subtilis nicht für ein rekombinantes Herstellverfahren für Riboflavin mit eukaryontischen Produktionsorganismen wie Ashbya gossypii geeignet.
- 25 In einer am 19.11.1992 beim Deutschen Patentamt eingereichten Patentanmeldung wurde die Klonierung der Riboflavin-Biosynthese Gene der Hefe Saccharomyces cerevisiae beschrieben.
- Eine Klonierung der Ashbya gossypii Riboflavin-Biosynthese Gene
 30 unter Verwendung der S. cerevisiae RIB-Gene mit üblichen Hybridisierungsmethoden gelang jedoch nicht; offenbar war die Homologie
 der RIB-Gene aus S. cerevisiae und A. gossypii für eine Hybridisierung nicht groß genug.
- 35 Es bestand daher die Aufgabe, die Riboflavin-Biosynthese Gene aus einem Eukaryonten zu isolieren, um damit ein rekombinantes Herstellverfahren für Riboflavin in einem eukaryontischen Produktionsorganismus bereitzustellen.
- 40 Demgemäß wurden in dem Ascomyceten Ashbya gossypii sechs Gene (rib-Gene), die für Enzyme der Riboflavin-Biosynthese ausgehend von GTP codieren, gefunden und isoliert.

Die Erfindung betrifft die folgenden DNA-Sequenzen:

DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 2 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 2, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 4 dargestellten Aminosäuresequenz codieren oder für ein Analoges

10 oder Derivat des Polypeptids gemäß SEQ ID NO: 4, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

15 DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 6 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 6, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 8 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 8, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 10
30 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 10, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 12 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 12, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Ami40 nosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

Die Gene und ihre Genprodukte (Polypeptide) sind im Sequenzprotokoll mit ihrer Primärstruktur aufgeführt und haben folgende 45 Zuordnung:

SEQ ID NO: 1 : rib 1-Gen

```
SEQ ID NO: 2 : rib 1-Genprodukt (GTP-cyclohydrolase II)
SEQ ID NO: 3 : rib 2-Gen
SEQ ID NO: 4 : rib 2-Genprodukt (DRAP-Deaminase)
SEQ ID NO: 5 : rib 3-Gen
SEQ ID NO: 6 : rib 3-Genprodukt (DBP-Synthase)
SEQ ID NO: 7 : rib 4-Gen
SEQ ID NO: 8 : rib 4-Genprodukt (DMRL-Synthase)
SEQ ID NO: 9 : rib 5-Gen
SEQ ID NO: 10: rib 5-Genprodukt (Riboflavin-Synthase)
SEQ ID NO: 11: rib 7-Gen
SEQ ID NO: 12: rib 7-Genprodukt (HTP-Reductase)
```

Guanosintriphosphat (GTP) wird durch GTP-Cyclohydrolase II (rib 1-Genprodukt) zu 2,5-Diamino-6-ribosylamino-4-(3H)-pyrimidinon-15 5-phosphat umgewandelt. Diese Verbindung wird anschließend durch

- 15 5-phosphat umgewandelt. Diese Verbindung wird anschließend durch rib 7-Genprodukt zu 2,5-Diamino-ribitylamino-2,4 (1H,3H)-pyrimidin-5-phosphat reduziert und dann durch rib 2-Genprodukt zum 5-Amino-6-ribitylamino-2,4 (1H,3H)-pyrimidindion deaminiert. Anschließend wird in einer rib 4-Genprodukt katalysierten Reak-
- 20 tion die C4-Verbindung DBP hinzugefügt und es entsteht 6,7-Dimethyl-8-ribityllumazin (DMRL), aus dem in der rib 5-Genprodukt katalysierten Reaktion Riboflavin entsteht. Die C4-Verbindung DBP (L-3,4-Dihydroxy-2-butanon-4-phosphat) wird aus D-Ribulose-5-phosphat in einer rib 3-Genprodukt katalysierten
- 25 Reaktion gebildet.

Die in SEQ ID NO: 1,3,5,7,9,11 beschriebenen DNA-Sequenzen codieren für die Polypeptide, die in SEQ ID NO: 2,4,6,8,10,12 beschrieben sind.

30

Außer den im Sequenzprotokoll genannten DNA-Sequenzen sind auch solche geeignet, die infolge der Degeneration des genetischen Codes eine andere DNA Sequenz besitzen, jedoch für das gleiche Polypeptid codieren.

35

Weiterhin sind auch solche DNA Sequenzen Gegenstand der Erfindung, die für ein Genprodukt (Polypeptid) mit anderer als der im Sequenzprotokoll aufgeführten Primärstruktur codieren, solange das Genprodukt noch im wesentlichen die gleichen biologischen Ei-

- **40** genschaften wie das im Sequenzprotokoll genannte Genprodukt besitzt. Unter biologischen Eigenschaften sind vor allem die die Biosynthese von Riboflavin bewirkenden enzymatischen Aktivitäten zu verstehen.
- 45 Solche veränderten Genprodukte mit im wesentlichen gleichen biologischen Eigenschaften sind durch Deletion oder Hinzufügen von einer oder mehreren Aminosäuren oder Peptiden oder durch Aus-

71 EU TUU

tausch von Aminosäuren durch andere Aminosäuren erhältlich oder können aus anderen Organismen als Ashbya gossypii isoliert werden.

- 5 Die DNA-Sequenzen, die für die veränderten Genprodukte codieren, sind zu den DNA-Sequenzen gemäß Sequenzprotokoll in der Regel zu 80 oder mehr Prozent homolog. Solche DNA-Sequenzen lassen sich ausgehend von den in SEQ ID NO: 1, 3, 5, 7, 9, 11 beschriebenen DNA-Sequenzen, beispielsweise mit üblichen Hybridisierverfahren
- 10 oder der PCR-Technik aus anderen Eukaryonten als Ashbya gossypii isolieren. Diese DNA-Sequenzen hybridisieren unter Standardbedingungen mit den in SEQ ID NO: 1, 3, 5, 7, 9, 11 beschriebenen DNA-Sequenzen.
- 15 Unter Standardbedingungen sind beispielsweise Temperaturen zwischen 42 und 58°C in einer wäßrigen Pufferlösung mit einer Konzentration zwischen 0,1 und 1 x SSC (1 x SSC: 0,15M NaCl, 15mM Natriumcitrat pH 7,2) zu verstehen. Die experimentellen Bedingungen für DNA-Hybridisierungen sind in Lehrbüchern der Gentechnik,
- 20 beispielsweise in Sambrook et al., "Molecular Cloning", Cold Spring Harbor Laboratory, 1989, beschrieben.

Ein weiterer Gegenstand der Erfindung sind Regulationssequenzen, insbesondere Promotorsequenzen, die in 5'-Richtung vor den für

25 die entsprechenden Polypeptid codierenden DNA-Sequenzen liegen. Die Regulationssequenzen sind im Sequenzprotokoll aufgeführt und im folgenden näher erläutert.

Regulationssequenz für rib 1-Gen:

30 SEQ ID NO: 1 Nukleotid 1-242

Regulationssequenz für rib 2-Gen: SEQ ID NO: 3 Nukleotid 1-450

35 Regulationssequenz für rib 3-Gen: SEQ ID NO: 5 Nukleotid 1-314

Regulationssequenz für rib 4-Gen: SEQ ID NO: 7 Nukleotid 1-270

40

Regulationssequenz für rib 5-Gen: SEQ ID NO: 9 Nukleotid 1-524

Regulationssequenz für rib 7-Gen: 45 SEQ ID NO: 11 Nukleotid 1-352 Die Regulationssequenzen können auch noch in 5'- und/oder 3'-Richtung verkürzt werden, ohne daß ihre Funktion wesentlich nachläßt.

5 Essentiell für die Regulationswirkung sind in der Regel Fragmente von 30 bis 100, bevorzugt 40 bis 70 Nukleotiden aus den oben angegebenen Sequenzbereichen.

Diese Regulationssequenzen können auch durch gerichtete 10 Mutagenese im Vergleich zu den natürlichen Sequenzen in ihrer Funktion optimiert werden.

Die erfindungsgemäßen Regulationssequenzen eignen sich für die Überexpression von Genen in Ashbya, insbesondere von Genen, die 15 für die Riboflavin-Biosynthese verantwortlich sind.

Weiterhin sind Gegenstand der Erfindung Expressionsvektoren, die eine oder mehrere der erfindungsgemäßen DNA-Sequenzen enthalten. Solche Expressionsvektoren erhält man, indem man die erfindungs20 gemäßen DNA-Sequenzen mit geeigneten funktionellen Regulationssignalen versieht. Solche Regulationssignale sind DNA-Sequenzen, die für die Expression verantwortlich sind, beispielsweise Promotoren, Operatoren, Enhancer, ribosomale Bindungsstellen, und die vom Wirtsorganismus erkannt und bedient werden.

25

Gegebenenfalls können noch weitere Regulationssignale, die beispielsweise Replikation oder Rekombination der rekombinanten DNA
im Wirtsorganismus steuern, Bestandteil des Expressionsvektors
sein.

30

Ebenso gehören die mit den erfindungsgemäßen DNA-Sequenzen oder Expressionsvektoren transformierten Wirtsorganismen zum Gegenstand der Erfindung. Bevorzugt werden als Wirtsorganismen eukaryontische Organismen, besonders bevorzugt solche der Gattung Saccharomyces, Candida, Pichia, Eremothecium oder Ashbya verwendet. Besonders bevorzugte Arten sind Saccharomyces cerevisiae, Candida flaveri, Candida famata, Eremothecium ashbyii

- und Ashbya gossypii.
- 40 Weiterhin gehört zur Erfindung ein rekombinantes Herstellverfahren für Riboflavin, in dem die erfindungsgemäßen transformierten Wirtsorganismen in an sich bekannter Weise durch Fermentation gezüchtet werden und das während der Fermentation gebildete Riboflavin aus dem Fermentationsmedium isoliert und
- 45 gegebenenfalls gereinigt wird.

WO 95/26406 PCT/EP95/00958

6

Die rib-Gene und -Genprodukte lassen sich wie im Beispiel und im Sequenzprotokoll beschrieben isolieren und charakterisieren.

Beispiel 1

- 5 Isolierung der Ashbya gossypii Riboflavin Biosynthese Gene (rib-Gene)
 - a. Konstruktion einer Ashbya gossypii cDNA-Bank
- 10 Gesamt RNA wurde aus dem Mycel des Riboflavin überproduzierenden Stammes Ashbya gossypii ATCC 10195 nach Züchtung auf YEPD Medium (Sherman et al., "Methods in yeast genetics", Cold Spring Harbor, New York, 1989) in der späten logarithmischen Wachstumsphase extrahiert.
- 15
 - Poly(A)* RNA wurde durch zweimalige Adsorption und Elution an oligo(dT)-Cellulose gereinigt (Aviv und Leder, Proc. Natl. Acad. Sci. USA 69,1972, 1408-1412). Die cDNA wurde nach der allgemeinen Vorschrift von Gubler und Hoffmann isoliert (Gene 25, 1983, 263)
- 20 und synthetische EcoRI-Adaptoren wurden an die Enden der bluntend cDNA-Moleküle hinzugefügt. Die EcoRI nachgeschnittenen cDNA Fragmente wurden anschließend mittels T4 Polynukleotidkinase phosphoryliert und in den dephosphorylierten EcoRI geschnittenen Vektor pYEura3 kloniert (Fig. 1). pYEura3 (Clonetech
- 25 Laboratories, Inc., Kalifornien) ist ein Hefe-Expressionsvektor, der die Galaktose-induzierbaren GAL1 und GAL10 Promotoren und URA, CEN4 und ARS1 beinhaltet. Diese Hefeelemente erlauben die Transformation und Expression klonierter DNA-Fragmente in Hefezellen.

30

Aliquots der Ligationsreaktion wurden benutzt um hochkompetente (Hanahan, DNA Cloning, ed. D.M. Glover: IRL Press, Oxford 1985, 109) E. coli XL1-Blue (Bullock et al., Biotechniques 5 (1987) 376-378) zu transformieren und Transformanden wurden auf Basis ihrer Ampicillinresistenz selektioniert.

Etwa 3 x 10^5 ampicillinresistente Zellen wurden vereinigt, amplifiziert und daraus Plasmid-DNA isoliert (Birnboim und Doly, Nucleic Acids Res. 7, 1979, 1513).

40

b. Isolierung von Ashbya gossypii cDNA-Klonen, die für riboflavinbildende Enzyme codieren cDNA-Klone von Ashbya gossypii, die für riboflavinbildende Enzyme codieren, wurden durch funktionelle Komplementation von Saccharomyces cerevisiae Mutanten, die in der Riboflavin-Biosynthese betroffen sind, isoliert.

Die Stämme AJ88 (Mata leu2 his3 rib1::URA3 ura3-52), AJ115 (Matalpha leu2 inos1 rib2::URA3 ura3-52), AJ71 (Matalpha leu2 inos1 rib3::URA3 ura3-52), AJ106 (Matalpha leu2 inos1 rib4::URA3 ura3-52), AJ66 (Mata canR inos1 rib5::URA3 ura3-52) und AJ121

- 10 (Matalpha leu2 inos1 rib7::URA3 ura3-52) sind mutierte Stämme, die durch Zerstörung eines der sechs Gene (RIB1 bis RIB5 und RIB7), die in die Riboflavinbiosynthese bei Saccharomyces cerevisiae involviert sind.
- 15 Diese Stämme wurden jeweils mit 25 µg cDNA aus der Ashbya gossypii cDNA-Bank transformiert und auf festem Galaktose-haltigem Medium ohne Riboflavin ausplattiert. Nach ungefähr einer Woche Wachstum wurden Rib+ Transformanden von den Kulturschalen isoliert.
- 20 Jeweils eine Transformande von jeder transformierten Mutante (Rib1+, Rib2+, Rib3+, Rib4+, Rib5+ und Rib7+) wurde analysiert und in allen Fällen wurde gefunden, daß der Rib+ Phänotyp nur in Galaktosemedium, nicht jedoch in Glucosemedium exprimiert war.
- 25 Diese Ergebnisse belegen, daß der Rib+ Phänotyp unter der Kontrolle des plasmidständigen galaktoseinduzierbaren GAL10 Promotors exprimiert wurde.
- Plasmid-DNA wurde aus den Ribl+, Rib2+, Rib3+, Rib4+, Rib5+ und 30 Rib7+ Transformanden durch Transformation von E. coli isoliert und pJR715, pJR669, pJR788, pJR733, pJR681 und pJR827 genannt.

Partialsequenzierung der in diesen Plasmiden enthaltenen cDNA-Insertionen bestätigte, daß sie für Proteine codieren, die analog 35 zu Proteinen der Rib-Genprodukte aus Saccharomyces sind.

- c. Isolierung von Ashbya gossypii genomischen Klonen, die für riboflavinbildende Enzyme codieren
- 40 Um die genomischen Kopien der riboflavinbildenden Gene von Ashbya gossypii zu isolieren wurde eine genomische Bank von Ashbya gossypii ATCC 10195 in dem Cosmid superCosl (Stratagene Cloning Systems, Kalifornien) angelegt und mit ³²P-markierten Proben, die von den cDNA Kopien der RIB1, RIB2, RIB3, RIB4, RIB5 und RIB7
 45 Gene von Ashbya gossypii abgeleitet waren, gescreent.

Cosmid Klone mit RIB1, RIB2, RIB3, RIB4, RIB5 und RIB7 DNA wurden isoliert durch Koloniehybridisierung (Grunstein und Hogness, Proc. Natl. Acad. Sci. USA 72, 1975, 3961-3965). Weitere Southern Analysen von enzymatisch gespaltener Cosmid DNA unter Verwendung der gleichen RIB-spezifischen cDNA Proben erlaubte die Identifizierung definierter Restriktionsfragmente, die die RIB1, RIB2, RIB3, RIB4, RIB5 und RIB7 Gene von Ashbya gossypii enthielten.

Ein 3,1 kb langes BamHI-ClaI DNA Fragment wurde gefunden, das das gesamte RIB1 Gen von Ashbya gossypii, codierend für GTP-Cyclohydrolase II enthielt. Dieses Fragment wurde aus einem Agarose Gelisoliert und in den BamHI und ClaI geschnittenen pBluescript KS (+) phagemid (Stratagene Cloning Systems) kloniert und lieferte so das Plasmid pJR765 (Fig.2).

Eine 1329 bp lange DNA Sequenz wurde erhalten (SEQ ID NO:1), die den RIB1 offenen Leserahmen von 906 bp, 242 bp von der 5'-nicht-kodierenden Region und 181 bp von der 3'-nichtkodierenden Region enthielt.

Das gesamte Ashbya gossypii RIB2 Gen, das für die DRAP-Deaminase codiert, wurde auf einem 3,0 kb langen EcoRI-PstI Fragment gefunden, das kloniert in pBluescript KS (+) das Plasmid PJR758 ergab (Fig.3).

Eine 2627 bp lange Region der EcoRI-PstI-Insertion mit dem offenen Leserahmen von RIB2 von 1830 bp, 450 bp der 5'-untranslatierten Region und 347 bp der 3'-untranslatierten Region wurde sequenziert (SEQ ID NO:3).

Das gesamte Ashbya gossypii RIB3 Gen, das für die DBP-Synthase codiert, wurde auf einem 1,5 kb langen PstI-HindIII Fragment gefunden, das kloniert in pBiuescript KS (+) das Plasmid PJR790 ergab (Fig.4).

Eine 1082 bp lange Region der PstI-HindIII-Insertion mit dem offenen Leserahmen von RIB3 von 639 bp, 314 bp der 5'-untranslatierten Region und 129 bp der 3'-untranslatierten Region wurde sequenziert (SEQ ID NO:5).

Das Ashbya gossypii RIB4 Gen, das für die DMRL-Synthase codiert, wurde auf einem 3,2 kb langen PstI-PstI Fragment gefunden, das kloniert in pBluescript KS (+) das Plasmid PJR762 ergab (Fig.5).

40

Eine 996 bp lange Region der PstI-PstI-Insertion mit dem offenen Leserahmen von RIB4 von 519 bp, 270 bp der 5'-untranslatierten Region und 207 bp der 3'-untranslatierten Region wurde sequenziert (SEQ ID NO:7).

5

Das gesamte Ashbya gossypii RIB5 Gen, das für die Riboflavin-Synthase codiert, wurde auf einem 2,5 kb langen PstI-PstI Fragment gefunden, das kloniert in pBluescript KS (+) das Plasmid PJR739 (Fig.6) ergab.

10

Eine 1511 bp lange Region der PstI-PstI-Insertion mit dem offenen Leserahmen von RIB5 von 708 bp, 524 bp der 5'-untranslatierten Region und 279 bp der 3'-untranslatierten Region wurde sequenziert (SEQ ID NO:9).

15

Schließlich wurde das Ashbya gossypii RIB7 Gen, das für die HTP-Reduktase codiert, auf einem 4,1 kb langen EcoRI-EcoRI-Fragment gefunden, das kloniert in pBluescript KS (+) das Plasmid PJR845 ergab (Fig.7).

20

Eine 1596 bp lange Region der EcoRI-EcoRI-Insertion mit dem offenen Leserahmen von RIB7 von 741 bp, 352 bp der 5'-untranslatierten Region und 503 bp der 3'-untranslatierten Region wurde sequenziert (SEQ ID NO:11).

25

Beispiel 2

mRNA Analyse der Ashbya gossypii RIB-Gene

- 30 Um die RIB spezifischen Transkripte zu identifizieren wurden Northern Analysen durchgeführt. Gesamt RNA wurde aus dem Ashbya gossypii Stamm ATCC 10195 wie in Beispiel 1 beschrieben, isoliert. Die RNA Proben des Stammes (5 µg) wurden elektrophoretisch aufgetrennt auf 0,8% Agarose-Formaldehyd-Gelen zusammen mit RNA-
- 35 Größenmarkern und unter Vakuum auf Nylonmembrane geblottet (Thomas, Proc. Natl. Acad. Sci. USA, 77, 1980, 5201-5205).

Die Nylonmembranen wurden unabhängig voneinander mit ³²P-markierten RIB-spezifischen DNA-Proben bei 42°C in 5xSSC und in Gegenwart

- **40** von 50 % Formamid hybridisiert. Das Ashbya gossypii RIB1 Gen wird als unique Message von etwa 1150 Nukleotiden exprimiert, was in beiden Stämmen durch eine 0,7 kbp lange SmaI-SacI Probe aus dem Plasmid pJR765 (Fig. 8) nachgewiesen wurde.
- 45 Analog wurden unique 1900 Nukleotide lange RIB2-, 900 Nukleotide lange RIB3-, 800 Nukleotide lange RIB4-, 1050 Nukleotide lange RIB5- und 1000 Nukleotide lange RIB7-Transkripte in den Blots mit

Hilfe eines 0,5 kbp langen Smal-Smal-Fragments aus pJR758, eines 0,6 kbp langen HindIII-Kpnl-Fragments aus pJR790, eines 0,5 kbp langen Scal-HindIII Fragments aus pJR739 und eines 0,3 kbp langen Pstl-Pstl-Fragments aus pJR845 als spezifischer Probe nachge
5 wiesen.

Beispiel 3

Expression der Ashbya gossypii RIB-Gene in Saccharomyces

10 cerevisiae

Wie in Beispiel 1 beschrieben, können gut untersuchte Mutanten von Saccharomyces cerevisiae, die in einer Stufe der Riboflavin-biosynthese defekt sind, auf Kulturmedien ohne Riboflavin wach15 sen, wenn sie ein Plasmid tragen, das für die komplementierenden Enzyme von Ashbya codiert. Um die Funktion der Ashbya gossypii RIB Genprodukte zu testen wurden flavinbildende Enzymaktivitäten in zellfreien Extrakten von S. cerevisiae- Mutanten gemessen, die eines der Expressionsplasmide pJR715, pJR669, pJR788, pJR733, pJR681 und pJR827 trugen.

Diese in Beispiel 1 beschriebenen von pYEura3 abgeleiteten Plasmide enthalten Ashbya gossypii RIB-spezifische cDNA-Fragmente unter der Kontrolle des galaktoseinduzierbaren GAL10 Promotors.

- Zellfreie Proteinextrakte von S. cerevisiae wurden aus Kulturen gewonnen, die in Flüssigmedium bis zu einer optischen Dichte von etwa 2 OD gewachsen waren.
- 30 Die Zellen wurden geerntet, mit kaltem 20 mM Tris HCl, pH 7,5 gewaschen und im gleichen Puffer, der mit 1 mM Phenylethylsulfonylfluorid supplementiert war, resuspendiert.
- Zell-Lysate wurden durch Vortexen in Gegenwart von Glaskugeln und 35 Zentrifugation bei 3000 g für 20 min. bei 4°C hergestellt.
 - GTP-Cyclohydrolase II, DRAP-Deaminase, DBP-Synthase, DMRL-Synthase, Riboflavin-Synthase und HTP-Reduktase Enzymaktivitäten wurden bestimmt wie in der Literatur beschrieben (Shavlovsky et
- 40 al, Arch. Microbiol. 124 1980, 255-259; Richter et al., J. Baceriol. 175, 1993, 4045-4051; Klein und Bacher, Z. Naturforsch. 35b, 1980, 482-484; Richter et al. J. Bacteriol. 174, 1992, 4050-4056; Nielsen et al. J. Biol. Chem. 261, 1986, 3661; Plaut und Harvey, Methods Enzymol. 18B, 1971, 515-538; Hollander und
- 45 Brown, Biochem. Biophys. Res. Commun. 89, 1979, 759-763; Shavlov-ski et al., Biochim. Biophys. Acta, 428, 1976, 611-618).

Protein-wurde nach der Methode von Peterson quantifiziert (Anal. Biochem. 83, 1977, 346-356). Wie aus Tab. 1 ersichtlich, bewirkt das Plasmid pJR715 die Expression von GTP-Cyclohydrolase II Aktivität in der S. cerevisiae Mutante AJ88. Weiterhin ist diese 5 Aktivität nur vorhanden in Zellen, die auf Galaktosemedium gewachsen sind, was darauf hinweist, daß die RIB1 cDNA Expression von Ashbya gossypii unter der Kontrolle des galaktoseinduzierbaren GAL10-Promotors erfolgt.

10 Daher belegen diese Ergebnisse, daß RIB1 für die GTP-Cyclohydrolase II in Ashbya gossypii codiert. Auf analoge Art wurde gezeigt daß RIB2 für DRAP-Deaminase, RIB3 für DBP-Synthase, RIB4 für DMRL-Synthase, RIB5 für Riboflavinsynthase und RIB7 für HTP-Reduktase in diesem Pilz codiert.

15

Tab. 1 GTP-Cyclohydrolase II Aktivität der S. cerevisiae RIB1 Mutante AJ88 und ihrer Transformanden.

20 T	Stamm	Plasmid	GTP-Cyclohydrolase II U/mg Protein **)						
			Glucose	Galaktose					
}	X 2180-1A*	-	0,48	0,34					
-	AJ 88	_	n.d.	n.d.					
F		pIR715	n.d.	21,60					
25	AJ 88	PIRTE							

n.d.:not detected

35

30

Wildtyp *)

Einheiten GTP-Cyclohydrolase II Aktivitäten 10 katalysiert die Bildung von 1 nmol HTP pro Stunde

DRAP-Deaminase Aktivität der S. cerevisiae RIB2 Mutante AJ115 und ihrer Transformanden.

Stamm	Plasmid	DRAP-De U/mg Pr	eaminase otein *)
5		Glucose	Galaktose
		0,45	0,38
X 2180-1A		n.d.	n.d.
AJ 115		n.d.	53,22
O AJ 115	pIR669	11.0.	

n.d.:not detected

*) 1U katalysiert die Bildung von 1 nmol ARAP pro Stunde

15 DBP-Synthase Aktivität der S. cerevisiae RIB3 Mutante AJ71 und ihrer Transformanden.

Stamm	Plasmid	DBP-Synthase U/mg Protein *)						
		Glucose	Galaktose					
)	<u> </u>	0,80	0,75					
X 2180-1A		n.d.	n.d.					
AJ 71	-		25,19					
AJ 71	pIR788	n.d.	23,13					

25 n.d.:not detected

*) 1U katalysiert die Bildung von 1 nmol DBP pro Stunde

GTP-Cyclohydrolase II Aktivität der S. cerevisiae RIB4 Mutante 30 AJ106 und ihrer Transformande.

Stamm	Plasmid	DMRL-Synthase U/mg Protein *)					
		Glucose	Galaktose				
		2,04	1,73				
X 2180-1A		n.d.	n.d.				
AJ 106		n.d.	86,54				
AJ 106	pIR733	11.4.					

n.d.:not detected

1U katalysiert die Bildung von 1 nmol DMRL pro Stunde 40

Tab.5 Riboflavin-Synthase Aktivität der S. cerevisiae RIB5 Mutante AJ66 und ihrer Transformande.

5	Stamm	Plasmid		n-Synthase otein *)
İ			Glucose	Galaktose
	X 2180-1A	-	4,41	3,80
	AJ 66	-	n.d.	n.d.
10	AJ 66	pIR681	n.d.	164,20

n.d.:not detected

*) 1U katalysiert die Bildung von 1 nmol Riboflavin pro Stunde

Tab.6
HTP-Reduktase Aktivität der S. cerevisiae RIB7 Mutante AJ121 und ihrer Transformande.

Stamm	Plasmid	HTP-Reductase U/mg Protein *)						
		Glucose `	Galaktose					
X 2180-1A	-	1,86	2,54					
AJ 121	-	n.d.	n.d.					
AJ 121	pIR827	n.d.	46,21					

25 n.d.:not detected

*) 1U katalysiert die Bildung von 1 nmol DRAP pro Stunde

30

35

WO 95/26406 PCT/EP95/00958

14

SEQUENZPROTOKOLL

- (1) ALGEMEINE INFORMATION:
 - (i) ANMELDER:
 - (A) NAME: BASF Aktiengesellschaft
 - (B) STRASSE: Carl-Bosch-Strasse 38
 - (C) ORT: Ludwigshafen
 - (E) LAND: Bundesrepublik Deutschland
 - (F) POSTLEITZAHL: D-67056
 - (G) TELEPHON: 0621/6048526
 - (H) TELEFAX: 0621/6043123
 - (I) TELEX: 1762175170
 - (ii) ANMELDETITEL: Riboflavin-Biosynthese in Pilzen
 - (iii) ANZAHL DER SEQUENZEN: 12
 - (iv) COMPUTER-LESBARE FORM:
 - (A) DATENTRÄGER: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPA)
- (2) INFORMATION ZU SEQ ID NO: 1:
 - (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 1329 Basenpaare
 - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Doppel
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: cDNS zu mRNS
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTISENSE: NEIN
 - (vi) URSPRÜNLICHE HERKUNFT:
 - (A) ORGANISMUS: Ashbya gossypii
 - (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: 5'UTR
 - (B) LAGE: 1..242
 - (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 243..1148
 - (ix) MERKMALE:

1

- (A) NAME/SCHLÜSSEL: 3'UTR
- (B) LAGE: 1149..1329
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

5

TTTCTGTCCG CATACTTCAT ATGCTCATCG CACATTGATA ATGTACATTC GAAAAATTTC 60
AAGATTAGCC TCCGTGAACA GCGATTTACC TTAGGCAAAA GTAACAAAAG GCTTTTCCGT 120
AGGTGCTTTG TCATTCAACA ATCCACGTCG GAATTGGCGA CTATATAGTG TAGGGCCCAT 180
AAAGCAGTAG TCGGTGTTGA TAGCTGTGTC AGACCAACTC TTTGTTAATT ACTGAAGCTG 240

10

287

15

AT ATG ACT GAA TAC ACA GTG CCA GAA GTG AGG TGT GTC GCA CGC GCG

Met Thr Glu Tyr Thr Val Pro Glu Val Arg Cys Val Ala Arg Ala

WO 95/26406 15

							15										
CGC	ATA	CCG	ACG	GTA	CAG	GGC	ACC	GAT	GTC	TTC	CTC	CAT	CTA	TAC	CAC		335
Arg	Ile	Pro	Thr	Val	Gln	Gly	Thr	Asp	Val	Phe	Leu	His	Leu	Tyr	His		
		•		20					25					30			
AAC	TCG	ATC	GAC	AGC	AAG	GAA	CAC	CTA	GCG	ATT	GTC	TTC	GĢC	GAG	AAC	 	883
Asn	Ser	Ile	Asp	Ser	Lys	${\tt Glu}$	His	Leu	Ala	Ile	Val	Phe	Gly	Glu	Asn		
			35					40					45				
ATA	CGC	TCG	CGG	AGT	CTG	TTC	CGG	TAC	CGG	AAA	GAC	GAC	ACG	CAG	CAG	4	131
Ile	Arg	Ser	Arg	Ser	Leu	Phe	Arg	Tyr	Arg	Lys	Asp	Asp	Thr	Gln	Gln		
		50					55					60					
GCG	CGG	ATG	GTG	CGG	GGC	GCC	TAC	GTG	GGC	CAG	CTG	TAC	CCC	GGG	CGG	4	479
Ala	Arg	Met	Val	Arg	Gly	Ala	Tyr	Val	Gly	Gln	Leu	Tyr	Pro	Gly	Arg		
	65					70					75						
	GAG															;	527
Thr	Glu	Ala	Asp	Ala	Asp	Arg	Arg	Gln	Gly	Leu	Glu	Leu	Arg	Phe	Asp		
80					85		٧.			90					95		
GAG	ACA	GGG	CAG	CTG	GTG	GTG	GAG	CGG	GCG	ACG	ACG	TGG	ACC	AGG	GAG	ţ	575
Glu	Thr	Gly	Gln	Leu	Val	Val	Glu	Arg	Ala	Thr	Thr	Trp	Thr	Arg	Glu		
				100					105					110			
CCG	ACA	CTG	GTG	CGG	CTG	CAC	TCG	GAG	TGT	TAC	ACG	GGÇ	GAG	ACG	GCG	(623
Pro	Thr	Leu		Arg	Leu	His	Ser	Glu	Cys	Tyr	Thr	Gly	Glu	Thr	Ala		
			115					120					125				
	AGC															(671
Trp	Ser		Arg	Cys	Asp	Cys	_	Glu	Gln	Phe	Asp		Ala	Gly	Lys		
		130					135					140					
	ATG															•	719
Leu	Met	Ala	Ala	Ala	Thr		Gly	GLu	Val	Val		Gly	Ala	Gly	His		
	145					150					155						
	GTG																767
_	Val	тте	vaı	Tyr		Arg	GIN	GIU	GIA		стХ	TTE	GIĀ	Leu			
1.60	AAG	CTIC	***	ccc	165	220	CTC.	CAC	CAC	170	ccc	ccc	CAC	300	175		015
	Lys															•	815
GIU	пуз	пеп	пуз	180	TAT	ASII	Deu	GIII	185	neu	GTĀ	uta	rsp	190	vai	•	
CAG	GCG	AAC	GAG		CTC	AAC	CAC	ССТ		CAC	GCG	cec	GAC		TCG		863
	Ala															,	000
GIII	NTG.	nsn	195	Dea	nea	non	1113	200	nra	nsp	niu	my	205	2 110	261		
ттс	GGG	CGC		ATC	СТА	CTG	GAC		GGT	ATC	GAG	GAC		CGG	ттс		911
	Gly																
200		210					215		- -1			220			204		
СТС	ACG		AAC	CCC	GAC	AAG		CAG	CAG	GTG	CAC		CCG	CCG	GCG	,	959
	Thr																
	225				F	230		•			235		_ ~				
CTA	CGC	TGC	ATC	GAG	CGG		ccc	ATG	GTG	CCG		TCA	TGG	ACT	CAG	1	007
	Arg																
240	-	-			245					250			_		255		

WO 95/26406

						•	16										
ccc	ACA	CAG	GGC	GTG	CGC	TCG	CGC	GAG	CTG	GAC	GGC	TAC	CTG	CGC	GCC		1055
Pro	Thr	Gln	Gly	Val	Arg	Ser	Arg	Glu	Leu	Asp	Gly	Tyr	Leu	Arg	Ala		
				260					265					270			
														CTĢ			1103
Lys	Val	Glu	Arg	Met	Gly	His	Met		Gln	Arg	Pro	Leu		Leu	His		
			275					280					285				
														TAAT	CTTTGC		1155
Thr	Ser		Ala	Ala	Glu	Leu		Arg	Ala	Asn	Thr		Ile				
		290				יא שרכר	295		cicco		cccr	300	יארי ז	N C C C I	IGCTCA		1215
															GAGCAC	•	1275
			TCAT														1329
			ION						.010								
(2)			EQUE														
	,		LÄ						ı								
•		•) AP														
) TO														
	(ii)	ART	DES	MOI	EKÜI	S: F	Prote	ein									
	(xi)	SEC	UEN2	BESC	HRE	BUNG	G: SE	Q II	NO:	2:							
Met	Thr	Glu	Tyr	Thr	Val	Pro	Glu	Val	Arg	Cys	Val	Ala	Arg	Ala	Arg		
1				5					10					15			
Ile	Pro	Thr	Val	Gln	Gly	Thr	Asp		Phe	Leu	His	Leu		His	Asn		
			20				_	25					30				
Ser	Ile	_	Ser	Lys	Glu	His		Ala	Ile	Val	Phe		GLu	Asn	IIe		
•	C	35	C	T	Dho	7 ~~	40	7	T	7.55	3.55	45	Gla	Gln	λ1 =		
Arg	50	Arg	Ser	Leu	Pne	55	TAT	ALG	цуз	rsb	60	1111	GIII	GIII	ura		
Ara		17a]	Δτα	ഭിഗ	Ala		Val	Glv	Gln	Leu		Pro	Glv	Arg	Thr		
65	1100	144	9	0_1	70	-1-		1	U	75	-1-		1	9	80		
	Ala	Asp	Ala	Asp	Arg	Arg	Gln	Gly	Leu	Glu	Leu	Arg	Phe	Asp	Glu		
	•	•		85	-	•		_	90			_		95			
Thr	Gly	Gln	Leu	Val	Val	Glu	Arg	Ala	Thr	Thr	Trp	Thr	Arg	Glu	Pro		
			100					105					110				
Thr	Leu	Val	Arg	Leu	His	Ser		Cys	Tyr	Thr	Gly	Glu	Thr	Ala	Trp		
		115					120					125					
Ser		Arg	Cys	Asp	Cys		Glu	Gln	Phe	Asp		Ala	Gly	Lys	Leu		
	130					135					140			1			
	Ala	Ala	Ala	Thr		Gly	GLu	Val	Val		GTĀ	ATA	GIĀ	His			
145			_	_	150	6 1	01	61	•	155	7 1.	61	.	61	160		
Val	Ile	Val	Tyr		Arg	GIN	GIU	GTÅ		GTĀ	тте	стλ	ren	Gly			
•	• .	7	31-	165	N	T 0	C1-	7	170	C1	71 ~	7.0-	mb	175			
гàг	ьeu	глг		TAL	ASN	ren	GIN	185	теп	стА	WIG	Asp	190	Val	GIII		
N 1 -	3	C1	180	T 033	A	uic	D~~		Ac ~	Δ 1 =	Δ ~ ~	Aen		Ser	T.e.u		
WIG	MSII	195	TEU	₽₽U	N311	1113	200	ura	vah	LT G	9	205	- 116	061	200		
Glv	Ara		Ile	Len	Leu	Asp		Glv	Tle	Glu	Asp		Ara	Leu	Leu		

210

215

		PCT/EP95/00958
TTIO OF 19 C 40 C		Pt. 1/EF73/0073

wo e	5/2640	16											PC	T/EP9	5/00958	
		,					17									
Th r	Asn	Asrī	Pro	Asp	Lvs	Val	Gln	Gln	Val	His	Cvs	Pro	Pro	Ala	Len	
225					230					235	0,0				240	
	Cuc	Tla	Glu	Δνα		Pro	Met	Val	Pro		Sar	Tro	Thr	Gla	**	
ALG	Cys.	116	Giu	_	497		1100	V 41	250	Deu		_				.•
m b	C1-	C1			c ~ ~	7 -~	C111	T 011		C1	Т					
TUT	GIII	GIA	Val- 260	Arg	SET	Arg	GIU	265	vaħ	GIA	T A T	neu	270	VTG	пуз	
1	G1	3		C1	114.0	Mat	T		3	D	T	17- 1		71 d =	m>	
vaı	GIU	-	Met	GIA	птэ	met	280	GIII	ALG	PLO	rea	285	ьеи	пто	Ing	
C	31.	275	7 l -	C3	T 011	D=0		. 21 -	300	Th -	u i a					
Ser	290	ALA	Ala	GIU	ьец	295	nry	n_a	N211	1111	300	116				
(2)		ימאמי	TION	711 (SEO .		. ·				300					
(2)			QUEN2													
	(1)	_	A) LÄ						^							
			3) AI				_	Jaar	=							
		•						,								
			C) S7					T								
		•) T(
			r DES				CDNS	zur	nRNS							
	•		POTH													
			rise									٠.				
	(Vi)		SPRÜI													
			A) OI		ISMU	5: A	syans	a go:	ssyp:	11						
	(1x)		RKMA			***		/ *****								
			A) N				և: 5	OTR								
		•	B) L		1	450										
	(ix)		RKMA:													
			A) N					DS								
			B) L		451	22	80									
	(ix)		RKMA:				_									
			A) N					'UTR				•				
		-	B) L							_						
			QUEN													60
															ATTTTG	60
															CGTTCC	120
															CATACA	180
															TATGTG	240
															ACCATA	300
	_														CGTTTG	360
															ATCCTT	420
TAT	AAAC'	TGC	TACT	TAAC	GT T	CGTA	ACAC								C CTT	474
								Me	t Le	u Ly	s Gl	_		o Gl	y Leu	
									1				5			. —
															ATT	522
Leu	Phe	Lys	Glu	Thr	Gln	Arg	His	Leu	Lys	Pro			Val	Arg	Ile	
	10					15					20					
															TCG	570
Mot	C1.,	2	Th-	C ~ ~		A cm	(C) 11	507	· Ara	Title	Ara	Gla	Val	Δ 1 a	Sar	

WO 95/26406 AAC TTG AGC AGC GAT GCC GAT GAG GGC TCG CCG GCA GTT ACG AGG CCG Asn Leu Ser Ser Asp Ala Asp Glu Gly Ser Pro Ala Val Thr Arg Pro GTT AAA ATC ACC AAA CGC CTC AGG AAG AAG AAC CTC GGG ACA GGC GAG 666 Val Lys Ile Thr Lys Arg Leu Arg Lys Lys Asn Leu Gly Thr Gly Glu CTA CGG GAC AAA GCA GGA TTC AAG TTG AAG GTG CAA GAC GTG AGC AAA Leu Arg Asp Lys Ala Gly Phe Lys Leu Lys Val Gln Asp Val Ser Lys AAC CGT CAC AGA CAG GTC GAT CCG GAA TAC GAA GTC GTG GTA GAT GGC Asn Arg His Arg Gln Val Asp Pro Glu Tyr Glu Val Val Asp Gly CCG ATG CGC AAG ATC AAA CCG TAT TTC TTC ACA TAC AAG ACT TTC TGC Pro Met Arg Lys Ile Lys Pro Tyr Phe Phe Thr Tyr Lys Thr Phe Cys AAG GAG CGC TGG AGA GAT CGG AAG TTG CTT GAT GTG TTT GTG GAT GAA Lys Glu Arg Trp Arg Asp Arg Lys Leu Leu Asp Val Phe Val Asp Glu TTT CGG GAC CGC GAT AGG CCT TAC TAC GAG AAA GTC ATC GGT TCG GGT Phe Arg Asp Arg Asp Pro Tyr Tyr Glu Lys Val Ile Gly Ser Gly GGT GTG CTC CTG AAC GGT AAG TCA TCG ACG TTA GAT AGC GTA TTG CGT Gly Val Leu Leu Asn Gly Lys Ser Ser Thr Leu Asp Ser Val Leu Arg AAT GGA GAC CTC ATT TCG CAC GAG CTG CAC CGT CAT GAG CCA CCG GTC Asn Gly Asp Leu Ile Ser His Glu Leu His Arg His Glu Pro Pro Val TCC TCT AGG CCG ATT AGG ACG GTG TAC GAA GAT GAT GAC ATC CTG GTG Ser Ser Arg Pro Ile Arg Thr Val Tyr Glu Asp Asp Asp Ile Leu Val ATT GAC AAG CCC AGC GGG ATT CCA GCC CAT CCC ACC GGG CGT TAC CGC Ile Asp Lys Pro Ser Gly Ile Pro Ala His Pro Thr Gly Arg Tyr Arg TTC AAC TCC ATT ACG AAA ATA CTT GAA AAA CAG CTT GGA TAC ACT GTT Phe Asn Ser Ile Thr Lys Ile Leu Glu Lys Gln Leu Gly Tyr Thr Val CAT CCA TGT AAC CGA CTG GAC CGC CTA ACC AGT GGC CTA ATG TTC TTG His Pro Cys Asn Arg Leu Asp Arg Leu Thr Ser Gly Leu Met Phe Leu GCA AAA ACT CCA AAG GGA GCC GAT GAG ATG GGT GAT CAG ATG AAG GCG Ala Lys Thr Pro Lys Gly Ala Asp Glu Met Gly Asp Gln Met Lys Ala CGC GAA GTG AAG AAA GAA TAT GTT GCC CGG GTT GTT GGG GAA TTT CCT Arg Glu Val Lys Lys Glu Tyr Val Ala Arg Val Val Gly Glu Phe Pro

								19									
	ATA	GGT	GAG	ATA	GTT	GTG	GAT	ATG	CCA	CTG	AAG	ACT	ATA	GAG	CCG	AAG	1338
•	Ile	Gly	Glu	Ile	Val	Val	Asp	Met	Pro	Leu	Lys	Thr	Ile	Glu	Pro	Lys	
	. •				285					290					295		
	CTT	GCC	CTA	AAC	ATG	GTT	TGC	GAC	CCG	GAA	GAC	GAA	GCG	ĢGC	AAG	GGC	1386.
	Leu	Ala	Leu	Asn	Met	Val	Cys	Asp	Pro	Glu	Asp	Glu	Ala	Gly	Lys	Gly	•
				300					305					310	_	-	
	GCT	AAG	ACG	CAG	TTC	AAA	AGA	ATC	AGC	TAC	GAT	GGA	CAA	ACG	AGC	ATA	1434
	Ala	Lys	Thr	Gln	Phe	Lys	Arg	Ile	Ser	Tyr	Asp	Gly	Gln	Thr	Ser	Ile	
		-	315		•	-	-	320		_	_	_	325				
	GTC	AAG	TGC	CAA	CCG	TAC	ACG	GGC	CGG	ACG	CAT	CAG	ATC	CGT	GTT	CAC	1482
				Gln						•							
		330				-	335	_	_			340					
	TTG		TAC	CTG	GGC	TTC	CCA	ATT	GCC	AAC	GAT	CCG	ATT	TAT	TCC	AAT	1530
				Leu													
	345		- 4 -			350					355			4		360	
		CAC	АТА	TGG	GGC		AGT	CTG	GGC	AAG		TGC	AAA	GCA	GAC		1578
				Trp													
	110	1123	116	111	365	110	DCL	200	CTY	370	014	Cys	пåз	nra	375	-7-	
	AAG	GAG	GTC.	ATC		444	СТА	220	CAA		CCT	AAG	аст	מממ		ccc ·	1626
				Ile													1020
	Ly 3	014	141	380	J	- y - y	200	••••	385		O-1	Dy 3		390	Jer	nia.	
	GAA	AGT	TGG	TAC	CAT	тст	GAT	TCC		GGT	GAA	СТТ	ייייכי		GGG	GAA	1674
				Tyr													
			395	- 3				400		1			405	-, -,			
	CAA	TGC		GAA	TGT	GGC	ACC		CTG	TAC	ACT	GAC		GGC	CCG	AAT	1722
				Glu													
		410					415					420		1			
	GAT		GAC	TTA	TGG	TTG		GCA	TAT	CGG	TAT		TCC	ACT	GAA	CTG	1770
				Leu													
	425					430			4		435					440	
		GAG	AAC	GGT	GCT	AAA	AAG	CGG	AGT	TAC	TCT	ACT	GCG	TTT	CCT		1818
	Asp	Glu	Asn	Gly	Ala	Lys	Lys	Arg	Ser	Tyr	Ser	Thr	Ala	Phe	Pro	Glu	
	-			_	445	-	-			450					455		
	TGG	GCT	CTT	GAG	CAG	CAC	GGC	GAC	TTC	ATG	CGG	CTT	GCC	ATC	GAA	CAG	1866
	Trp	Ala	Leu	Glu	Gln	His	Gly	Asp	Phe	Met	Arg	Leu	Ala	Ile	Glu	Gln	
	-			460			_	_	465		_			470			
	GCT	AAG	AAA	TGC	CCA	CCC	GCG	AAG	ACA	TCA	TTT	AGC	GTT	GGT	GCC	GTG	1914
	Ala	Lys	Lys	Cys	Pro	Pro	Ala	Lys	Thr	Ser	Phe	Ser	Val	Gly	Ala	Val	
		-	475	_		•		480					485	-			
	TTA	GTT	AAT	GGG	ACC	GAG	ATT	TTG	GCC	ACT	GGT	TAC	TCA	CGG	GAG	CTG	1962
				Gly													
		490					495				4	500		- 3			
	GAA		AAC	ACG	CAC	GCT		CAA	TGT	GCA	CTT		AAA	TAT	TTT	GAA	2010
				Thr													-
	505	1				510			-1-3		515		-10	- , -		520	

20 CAA CAT AAA ACC GAC AAG GTT CCT ATT GGT ACA GTA ATA TAC ACG ACT CAT HAS Lys Thr Asp Lys Val Pro Ile Gly Thr Val 11e Tyr Thr Thr 525 ATG GAG CCT TGT TCT CTC CGT CTC AGT GGT AAT AAA CCG TGT GTT GAG Met Glu Pro Cys Ser Leu Arg Leu Ser Gly Asn Lys Pro Cys Val Glu 540 545 550 CGT ATA ATC TGC CAG CAG GGT AAT ATA CTC GCT GTT GTT GAG Met Glu Pro Cys Ser Leu Arg Leu Ser Gly Asn Lys Pro Cys Val Glu 540 545 550 CGT ATA ATC TGC CAG CAG GGT AAT ATT ACT GCT GTT TTT GTT GGC GTA ATG ILE ILE Cys Gln Gln Gly Asn Ile Thr Ala Val Phe Val Gly Val 555 560 560 565 CTT GAG CCA GAC AAC TTC GTG AAG AAC AAT ACA AGT CGT GGC CTA TTG Leu Glu Pro Asp Asn Phe Val Lys Asn Asn Thr Ser Arg Ala Leu Leu 570 570 575 580 GAA CAA CAT GGT ATA GAC TAT ATT CTT GTC CT GGG GTT CAA GAA GAA CAT GGT ATA GAC TAT ATT CTT GTC CT GGG TTT CAA GAA GAA CAT GGT ATA GAC TAT ATT CTT GTC CT GGG TTT CAA GAA GAA CAT GGA AGC GCA TTG AAG GGT CAT TGATTTGCT GCGAATTGTA 2297 Cys Thr Glu Ala Ala Leu Lys Gly His 605 610 GATGACTTAA AATATCGAGG CGTATAATTC GTCGCATTT ATATAGTTAT CTATGTTTAC ATAAATTAAT GAGGGAGTTT TATAATTCTC AACCTAATTT CAACATTGAT TATATTTTTAACATTAT CAAGTTTAAT CAACATTAATT CAAGTTTAAT CAAGTTAATTAACATTAT TATATATATAATTAATTAATAATTAAT	WO 95/26406 PCT/EP95/00958																
Gln His Lys Thr Asp Lys Val Pro Ile Gly Thr Val Ile Tyr Thr Thr 525 535 535 ATG GAG CCT TGT TCT CTC CGT CTC AGT GGT AAT AAA CCG TGT GTT GAG 2106 Met Glu Pro Cys Ser Leu Arg Leu Ser Gly Asn Lys Pro Cys Val Glu 540 540 556 550 2106 Met Glu Pro Cys Gln Gln Gly Asn Ile Thr Ala Val Phe Val Gly Val 555 550 560 555 560 565 565 560 565 565	WU	731204	00					20									
S25	CAA	CAT	AAA	ACC	GAC	AAG	GTT	CCT	ATT	GGT	ACA	GTA	ATA	TAC	ACG	ACT	2058
ATG GAG CCT TGT TCT CCT CGT CTC AGT GGT AAT AAA CCG TGT GTG GAG Met Glu Pro Cys Ser Leu Arg Leu Ser Gly Asn Lys Pro Cys Val Glu 540 540 545 550 560 CGT ATA ATC TGC CAG CAG GGT AAT ATT ACT GGT GTT TTT GGT GGC GTA Arg Ile Ile Cys Gln Gln Gly Asn Ile Thr Ala Val Phe Val Gly Val 555 560 565 CTT GAG CCA GAC AAC TTC GTG AAG AAC AAT ACA AGT CGT GGC GTA TTG Leu Glu Pro Asp Asn Phe Val Lys Asn Asn Thr Ser Arg Ala Leu Leu 570 575 580 GAA CAA CAT GGT ATA GAC TAT ATT CTT GTC CCT GGG TTT CAA GAA GAA CAC GAT GGT ATA AGC TAT ATT CTT GTC CCT GGG TTT CAA GAA GAA CAC GAT GGT ATA GAC TAT ATT CTT GTC CCT GGG TTT CAA GAA GAA CLu Glu His Gly Ile Asp Tyr Ile Leu Val Pro Gly Phe Gln Glu Glu 585 590 595 600 TGT ACT GAA GCC GCA TTG AAG GGT CAT TGATTTTGCT GCGAATTGTA CYs Thr Glu Ala Ala Leu Lys Gly His 605 610 GATGACTTAA AATATCGAGG CGTATAATTC GTCGCATTTT ATATAGTTAT CTATGTTTAC ATGACTGATA AAATATCGAGG CGTATAATTC GTCGCATTTT ATATAGTTAT CTATGTTTAC ATGACTGTTT AAGCTTGATC TATATTTCTC AAGTGAATTG CCACATATGT TGGTACGGTA ATAAAATTAAT GAGGAGGTTT TGAAATTCG CAACCAATCTT ATATACGTTT GATGATATAA ACGGATTGAG ATTCCATGATT TGTATTTGT CCCCAGTCGG CCAATTGTT TGGTACGGTA ACTTATATACCA TTAGTGGTGT TAGTAGTATT (2) INFORMATION ZU SEQ ID NO: 4: (1) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 609 Aminosäuren (B) ART: Aminosäure (D) TOFOLOGIE: linear (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZESCHREIBUNG: SEQ ID NO: 4: Met Leu Lys Gly Val Pro Gly Leu Leu Phe Lys Glu Thr Gln Arg His 1 5 1 0 25 Ser Arg Lys Arg Gln Val Ala Ser Asn Leu Ser Ser Asp Ala Asp Glu 35 Gly Ser Pro Alg Val Thr Arg Pro Val Lys Ile Thr Lys Arg Leu Arg 50 55 66 Lys Lys Asn Leu Gly Thr Gly Glu Leu Arg Asp Lys Ala Gly Phe Lys 65 70 75 80 Leu Lys Val Gln Asp Val Ser Lys Asn Arg His Arg Gln Val Asp Pro 85 90 95 Glu Tyr Glu Val Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105 110	Gln	His	Lys	Thr	Asp	Lys	Val	Pro	Ile	Gly	Thr	Val	Ile	Tyr	Thr	Thr	
Met Glu Pro Cys Ser Leu Arg Leu Ser Gly Asn Lys Pro Cys Val Glu 540 540 545 550 550 550 550 550 550 2154 550 22154 Arg IIe Ile Cys Gln Gln Gln Gly Asn IIe Thr Ala Val Phe Val Gly Val 555 560 565 565 2202																	
S40 S45 S50 S50																	2106
CGT ATA ATC TGC CAG CAG GGT AAT ATT ACT GCT GTT TTT GTT GGC GTA Arg Ile Ile Cys Gln Gln Gly Asn Ile Thr Ala Val Phe Val Gly Val 555 560 565 567 568 568 567 569 565 567 568 567 568 568 567 568 567 568 677 678 678 678 678 678 678 678 678 6	Met	Glu	Pro	Cys	Ser	Leu	Arg	Leu	Ser	Gly	Asn	Ĺys	Pro	Cys	Val	Glu	
Arg Ile Ile Cys Gln Gln Gly Asn Ile Thr Ala Val Phe Val Gly Val 555 560 565 565 565 565 565 565 565 565																	
S55																	2154
CTT GAG CCA GAC AAC TTC GTG AAG AAC AAT ACA AGT CGT GCG CTA TTG Leu Glu Pro Asp Asn Phe Val Lys Asn Asn Thr Ser Arg Ala Leu Leu 570 575 580 GAA CAA CAT GGT ATA GAC TAT ATT CTT GTC CCT GGG TTT CAA GAA GAA QAT GAG GAA GAA CAT GAT ATT CTT GTC CCT GGG TTT CAA GAA GAA QAT CAT GAT ATT ATT CTT GTC CCT GGG TTT CAA GAA GAA QAT CAT CAA GAC CAC TTG AAG GGT CAT TGATTTGCT GCGAATTGTA 2297 Cys Thr Glu Ala Ala Leu Lys Gly His 605 610 GATGACTATA AATATCGAGG CGTATAATTC GTCGCATTTT ATTATAGTTAT CTATGTTTAC ATGACTGTAT AAGCTTGATC TATATTTCTC AAGTGAATTG CCACATATGT TGATGATGAATAAAATTAAATT	Arg	Ile	Ile	Cys	Gln	Gln	Gly	Asn	Ile	Thr	Ala	Val		Val	Gly	Val	
Leu Glu Pro Asp Asn Phe Val Lys Asn Asn Thr Ser Arg Ala Leu Leu 570 575 580 580 580 575 580 580 575 580 580 575 580 580 575 580 580 575 580 580 575 580 580 575 580 580 580 580 580 580 580 580 580 58										٠					_		
570 GAA CAA CAT GGT ATA GAC TAT ATT CTT GTC CCT GGG TTT CAA GAA GAA 2250 Glu Gln His Gly Ile Asp Tyr Ile Leu Val Pro Gly Phe Gln Glu Glu 585 590 595 600 TGT ACT GAA GCC GCA TTG AAG GGT CAT TGATTTGCT GCGAATTGTA 2297 Cys Thr Glu Ala Ala Leu Lys Gly His 605 610 GATGACTTAA AATATCGAGG CGTATAATTC GTCGCATTT ATATAGTTAT CTATGTTTAC ATATAACTTAT GAGGGGGTTT TGAAATTCCT AAGTCAATTG CACACATATGT TGGTAGGGTA ATATAATTAAT GAGGGGAGTTT TGAAATTCGC AACCAATCTT ATATACGTTT GATGATATAA ACGGATTGAG ATTCATTAAG CTACCTGATT TTCGCTGAAC TGTTTGTAT AGGTTATTAC ACGGATTGAG ATTCATTAAG CTACCTGATT TTCGCTGAAC TGTTTGTTAT AGGTTATTAC ACGGATTGAG ATTCATTAAGT CTACCTGATT TCCCCAGTCGG CCAATTGTT CGGACTTATT ACGGATTGAC ATTAGTGGTGT TAGTAGTATT (2) INFORMATION ZU SEQ ID NO: 4: (i) SEQUENZ CHARAKTERISTIKA: (i) ALÂNGE: 609 Aminosäuren (B) ART: Aminosäuren (B) ART: Aminosäuren (C) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: Met Leu Lys Gly Val Pro Gly Leu Leu Phe Lys Glu Thr Gln Arg His 1 5 10 15 Leu Lys Pro Arg Leu Val Arg Ile Met Glu Asn Thr Ser Gln Asp Glu 20 25 30 Ser Arg Lys Arg Gln Val Ala Ser Asn Leu Ser Ser Asp Ala Asp Glu 35 40 45 Gly Ser Pro Ala Val Thr Arg Pro Val Lys Ile Thr Lys Arg Leu Arg 50 55 60 Lys Lys Asn Leu Gly Thr Gly Glu Leu Arg Asp Lys Ala Gly Phe Lys 65 70 75 80 Leu Lys Val Gln Asp Val Ser Lys Asn Arg His Arg Gln Val Asp Pro 85 90 95 Glu Tyr Glu Val Val Val Sap Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105																	2202
GAA CAA CAT GGT ATA GAC TAT ATT CTT GTC CCT GGG TTT CAA GAA GAA 2250 Glu Gln His Gly Ile Asp Tyr Ile Leu Val Pro Gly Phe Gln Glu Glu 585 590 595 600 TGT ACT GAA GCC GCA TTG AAG GGT CAT TGATTTTGCT GCGAATTGTA 2297 Cys Thr Glu Ala Ala Leu Lys Gly His 605 610 GATGACTATA AATATCGAGG CGTATAATTC GTCGCATTT ATATAGTTAT CTATGTTTAC 2357 ATGACTGTTT AAGCTTCATC TATATTTCTC AAGTGAATTG CCACATATGT TGGTACGGTA ATAAAATTAAT GAGGGATTT TGAAATTCC AACCAATCTT ATATACGTTT GTGTACGGTA ATAAAATTAAT GAGGGATTT TGAAATTCCC AACCAATCTT ATATACGTTT GAGGATATAA 2417 ACGGATTGAA ATTCATTAAG CTACCTGATT TTCGCTGAAC TGTTTGTTAT AGGTTTTTAC 2537 AGTAAGATAG TTCCTAAGTT TGTTTATTGT CCCCAGTCGG CCAATTGTTC CGGACTTATT 2597 ATTATTACCA TTAGTGGTGT TAGTACTATT (2) INFORMATION ZU SEQ ID NO: 4: (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 609 Aminosäuren (B) ART: Aminosäure (C) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZESCHHEIBUNG: SEQ ID NO: 4: Met Leu Lys Gly Val Pro Gly Leu Leu Phe Lys Glu Thr Gln Arg His 1 5 10 15 Leu Lys Pro Arg Leu Val Arg Ile Met Glu Asn Thr Ser Gln Asp Glu 20 25 30 Ser Arg Lys Arg Gln Val Ala Ser Asn Leu Ser Ser Asp Ala Asp Glu 35 40 45 Gly Ser Pro Ala Val Thr Arg Pro Val Lys Ile Thr Lys Arg Leu Arg 50 55 60 Lys Lys Asn Leu Gly Thr Gly Glu Leu Arg Asp Lys Ala Gly Phe Lys 65 70 75 80 Leu Lys Val Gln Asp Val Ser Lys Asn Arg His Arg Gln Val Asp Pro 61 105 90 95 Glu Tyr Glu Val Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105	Leu		Pro	Asp	Asn	Phe		Lys	Asn	Asn	Thr		Arg	Ala	Leu	Leu	
Glu Gln His Gly Ile Asp Tyr Ile Leu Val Pro Gly Phe Gln Glu Glu 585 590 595 600															<i>a</i>	63.3	2250
Second																	2250
TOT ACT GAA GCC GCA TTG AAG GGT CAT TGATTTTGCT GCGAATTGTA 2297 Cys Thr Glu Ala Ala Leu Lys Gly His 605 610 GATGACTTAA AATATCGAGG CGTATAATTC GTCGCATTTT ATATAGTTAT CTATGTTTAC 2357 ATGACTGTTT AAGCTTGATC TATATTTCTC AAGTGAATTG CCACATATGT TGGTACGGTA 2417 ATGACTGTTT AAGCTTGATC TATATTTCTC AAGTGAATTG CCACATATGT TGGTACGGTA 2417 ACGGATTGAG ATTCATTAAG CTACCTGATT TTCGCTGAAC TGTTTGTTAT AGGTTTTAC 2537 AGTAAGATAG TTCCTAAGTT TGTTTATTGT CCCCAGTCGG CCAATTGTT CGGACTTATT 2597 ATTATTACCA TTAGTGGTGT TAGTAGTATT (1) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 609 Aminosäure (B) ART: Aminosäure (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: Met Leu Lys Gly Val Pro Gly Leu Leu Phe Lys Glu Thr Gln Arg His 1 5 10 15 Leu Lys Pro Arg Leu Val Arg Ile Met Glu Asn Thr Ser Gln Asp Glu 20 25 30 Ser Arg Lys Arg Gln Val Ala Ser Asn Leu Ser Ser Asp Ala Asp Glu 35 40 45 Gly Ser Pro Ala Val Thr Arg Pro Val Lys Ile Thr Lys Arg Leu Arg 50 55 60 Lys Lys Asn Leu Gly Thr Gly Glu Leu Arg Asp Lys Ala Gly Phe Lys 65 70 75 80 Leu Lys Val Gln Asp Val Ser Lys Asn Arg His Arg Gln Val Asp Pro 85 90 95 Glu Tyr Glu Val Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105 110	Glu	Gln	His	Gly	Ile		Tyr	Ile	Leu	Val		GTA	Phe	Gin	GIU		
Cys Thr Glu Ala Ala Leu Lys Gly His 605 610 GATGACTTAA AATATCGAGG CGTATAATTC GTCGCATTTT ATATAGTTAT CTATGTTTAC 2357 ATGACTGTTT AAGCTTGATC TATATTTCTC AAGTGAATTG CCACATAGT TGGTACGGTA 2417 ATAAAATTAAT GAGGGAGTTT TGAAATTCGC AACCAATCTT ATATACGTTT GATGATATAA 2477 ACGGATTGAG ATTCATTAAG CTACCTGATT TTCGCTGAAC TGTTTGTTAT AGGTTTTTAC 2537 AGTAAGATAG TTCCTAAGTT TGTTTATTGT CCCCAGTCGG CCAATTGTTC CGGACTTATT 2537 ATTATTACCA TTAGTGGTGT TAGTAGTATT 2627 (2) INFORMATION ZU SEQ ID NO: 4: (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 609 Aminosäuren (B) ART: Aminosäuren (D) TOPOLOGIE: linear (ii) ART DES MOLERÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: Met Leu Lys Gly Val Pro Gly Leu Leu Phe Lys Glu Thr Gln Arg His 1 5 10 15 Leu Lys Pro Arg Leu Val Arg Ile Met Glu Asn Thr Ser Gln Asp Glu 20 25 30 Ser Arg Lys Arg Gln Val Ala Ser Asn Leu Ser Ser Asp Ala Asp Glu 35 40 45 Gly Ser Pro Ala Val Thr Arg Pro Val Lys Ile Thr Lys Arg Leu Arg 50 55 60 Lys Lys Asn Leu Gly Thr Gly Glu Leu Arg Asp Lys Ala Gly Phe Lys 65 70 75 80 Leu Lys Val Gln Asp Val Ser Lys Asn Arg His Arg Gln Val Asp Pro 85 90 95 Glu Tyr Glu Val Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105 110																600	2207
GATGACTTAA AATATCGAGG CGTATAATTC GTCGCATTTT ATATAGTTAT CTATGTTAC 2357 ATGACTGTTA AAGCTTGATC TATAATTCTC AAGTGAATTG CCACATATGT TGGTACGGTA 2417 ATAAATTAAT GAGGGAGTT TGAAATTCGC AACCAATCTT ATATACGTTT GATAGTATA 2477 ACGGATTGAG ATTCATTAAG CTACCTGATT TTCGCTGAAC TGTTTGTTA AGGTTATTAC 2537 AGTAACATAG TTCCTAAGTT TGTTTATTGT CCCCAGTCGG CCAATTGTT CGGACTTATT 2597 ATTATTACCA TTAGTGGTGT TAGTAGTATT (CCCAGTCGG CCAATTGTC CGGACTTATT 2627) (1) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 609 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: Met Leu Lys Gly Val Pro Gly Leu Leu Phe Lys Glu Thr Gln Arg His 1 5 10 15 Leu Lys Pro Arg Leu Val Arg Ile Met Glu Asn Thr Ser Gln Asp Glu 20 25 30 Ser Arg Lys Arg Gln Val Ala Ser Asn Leu Ser Ser Asp Ala Asp Glu 35 40 45 Gly Ser Pro Ala Val Thr Arg Pro Val Lys Ile Thr Lys Arg Leu Arg 50 55 60 Lys Lys Asn Leu Gly Thr Gly Glu Leu Arg Asp Lys Ala Gly Phe Lys 65 70 75 80 Leu Lys Val Gln Asp Val Ser Lys Asn Arg His Arg Gln Val Asp Pro 85 90 95 Glu Tyr Glu Val Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105 110										TGA:	rttte	SCT (3CGA	ATTG	ľA		2297
GATGACTTAA AATATCGAGG CGTATAATTC GTCGCATTTT ATATAGTTAT CTATGTTTAC 2357 ATGACTGTTT AAGCTTGATC TATATTTCTC AAGTGAATTG CCACATATGT TGGTACGGTA 2417 ATAAATTAAT GAGGGAGTTT TGAAATTCGC AACCAATCTT ATATACGTTT GATGATATAA 2477 ACGGATTGAG ATTCATTAAG CTACCTGATT TTCGCTGAAC TGTTTGTTAT AGGTTTTAC 2537 AGTAAGATAG TTCCTAAGGTT TGTTTATTGT CCCCAGTCGG CCAATTGTTC CGGACTTATT 2597 ATTATTACCA TTAGTGGTGT TAGTAGTATT 2627 (2) INFORMATION ZU SEQ ID NO: 4: (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 609 Aminosäure (B) ART: Aminosäure (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: Met Leu Lys Gly Val Pro Gly Leu Leu Phe Lys Glu Thr Gln Arg His 1	Cys	Thr	Glu	Ala		Leu	Lys	GLy	His	610							
ATGACTGTTT AAGCTTGATC TATATTTCTC AAGTGAATTG CCACATATGT TGGTACGGTA ATAAATTAAT GAGGGAGTTT TGAAATTCGC AACCAATCTT ATATACGTTT GATGATATAA ACGGATTGAG ATTCATTAAG CTACCTGATT TTCGCTGAAC TGTTTGTTAT AGGTTTTAC AGGTAGATAG TTCCTAAGTT TGTTTATTGT CCCCAGTCGG CCAATTGTTC CGGACTTATT ATTATTACCA TTAGTGGTGT TAGTAGTATT (2) INFORMATION ZU SEQ ID NO: 4: (i) SEQUENZ CHARAKTERISTIKA: (a) LÄNGE: 609 Aminosäure (b) ART: Aminosäure (c) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: Met Leu Lys Gly Val Pro Gly Leu Leu Phe Lys Glu Thr Gln Arg His 1								3 mm/	- cm/		7000C	አጥአባ	ը አ <i>ር</i> ማ፣	ተአጥ /	<u>ጉጥ አ ጥ</u>	בתייים כי	2357
ATAAATTAAT GAGGGAGTTT TGAAATTCGC AACCAATCTT ATATACGTTT GATGATATAA ACGGATTGAG ATTCATTAAG CTACCTGATT TTCGCTGAAC TGTTTGTTAT AGGTTTTTAC 2537 AGTAAGATAG TTCCTAAGTT TGTTTATTGT CCCCAGTCGG CCAATTGTTC CGGACTTATT 2597 ATTATTACCA TTAGTGGTGT TAGTAGTATT (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 609 Aminosäuren (B) ART: Aminosäuren (B) ART: Aminosäuren (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: Met Leu Lys Gly Val Pro Gly Leu Leu Phe Lys Glu Thr Gln Arg His 1 5 10 15 Leu Lys Pro Arg Leu Val Arg Ile Met Glu Asn Thr Ser Gln Asp Glu 20 25 30 Ser Arg Lys Arg Gln Val Ala Ser Asn Leu Ser Ser Asp Ala Asp Glu 35 40 45 Gly Ser Pro Ala Val Thr Arg Pro Val Lys Ile Thr Lys Arg Leu Arg 50 55 60 Lys Lys Asn Leu Gly Thr Gly Glu Leu Arg Asp Lys Ala Gly Phe Lys 65 70 75 80 Leu Lys Val Gln Asp Val Ser Lys Asn Arg His Arg Gln Val Asp Pro 85 90 95 Glu Tyr Glu Val Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105 110																	•
ACGGATTGAG ATTCATTAAG CTACCTGATT TTCGCTGAAC TGTTTGTTAT AGGTTTTTAC AGTAAGATAG TTCCTAAGTT TGTTTATTGT CCCCAGTCGG CCAATTGTTC CGGACTTATT 2597 ATTATTACCA TTAGTGGTGT TAGTAGTATT (2) INFORMATION ZU SEQ ID NO: 4: (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 609 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: Met Leu Lys Gly Val Pro Gly Leu Leu Phe Lys Glu Thr Gln Arg His 1																	
AGTRAGATAG TTCCTAAGTT TGTTTATTGT CCCCAGTCGG CCAATTGTTC CGGACTTATT ATTATTACCA TTAGTGGTGT TAGTAGTATT (2) INFORMATION ZU SEQ ID NO: 4: (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 609 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: Met Leu Lys Gly Val Pro Gly Leu Leu Phe Lys Glu Thr Gln Arg His 1 5 10 15 Leu Lys Pro Arg Leu Val Arg Ile Met Glu Asn Thr Ser Gln Asp Glu 20 25 30 Ser Arg Lys Arg Gln Val Ala Ser Asn Leu Ser Ser Asp Ala Asp Glu 35 40 45 Gly Ser Pro Ala Val Thr Arg Pro Val Lys Ile Thr Lys Arg Leu Arg 50 55 60 Lys Lys Asn Leu Gly Thr Gly Glu Leu Arg Asp Lys Ala Gly Phe Lys 65 70 75 80 Leu Lys Val Gln Asp Val Ser Lys Asn Arg His Arg Gln Val Asp Pro 85 90 95 Glu Tyr Glu Val Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105 110																	
ATTATTACCA TTAGTGGTGT TAGTAGTAGTATT (2) INFORMATION ZU SEQ ID NO: 4: (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 609 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: Met Leu Lys Gly Val Pro Gly Leu Leu Phe Lys Glu Thr Gln Arg His 1 5 10 15 Leu Lys Pro Arg Leu Val Arg Ile Met Glu Asn Thr Ser Gln Asp Glu 20 25 30 Ser Arg Lys Arg Gln Val Ala Ser Asn Leu Ser Ser Asp Ala Asp Glu 35 40 45 Gly Ser Pro Ala Val Thr Arg Pro Val Lys Ile Thr Lys Arg Leu Arg 50 55 60 Lys Lys Asn Leu Gly Thr Gly Glu Leu Arg Asp Lys Ala Gly Phe Lys 65 70 75 80 Leu Lys Val Gln Asp Val Ser Lys Asn Arg His Arg Gln Val Asp Pro 85 90 95 Glu Tyr Glu Val Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105 110																	
(2) INFORMATION ZU SEQ ID NO: 4: (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 609 Aminosäuren (B) ART: Aminosäure (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: Met Leu Lys Gly Val Pro Gly Leu Leu Phe Lys Glu Thr Gln Arg His 1 5 10 15 Leu Lys Pro Arg Leu Val Arg Ile Met Glu Asn Thr Ser Gln Asp Glu 20 25 30 Ser Arg Lys Arg Gln Val Ala Ser Asn Leu Ser Ser Asp Ala Asp Glu 35 40 45 Gly Ser Pro Ala Val Thr Arg Pro Val Lys Ile Thr Lys Arg Leu Arg 50 55 60 Lys Lys Asn Leu Gly Thr Gly Glu Leu Arg Asp Lys Ala Gly Phe Lys 65 70 75 80 Leu Lys Val Gln Asp Val Ser Lys Asn Arg His Arg Gln Val Asp Pro 85 90 95 Glu Tyr Glu Val Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105 110										CCAG	ıcuu	CCA	7110	110	COGII	0147111	
(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 609 Aminosäure (B) ART: Aminosäure (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: Met Leu Lys Gly Val Pro Gly Leu Leu Phe Lys Glu Thr Gln Arg His 1 5 10 15 Leu Lys Pro Arg Leu Val Arg Ile Met Glu Asn Thr Ser Gln Asp Glu 20 25 30 Ser Arg Lys Arg Gln Val Ala Ser Asn Leu Ser Ser Asp Ala Asp Glu 35 40 45 Gly Ser Pro Ala Val Thr Arg Pro Val Lys Ile Thr Lys Arg Leu Arg 50 55 60 Lys Lys Asn Leu Gly Thr Gly Glu Leu Arg Asp Lys Ala Gly Phe Lys 65 70 75 80 Leu Lys Val Gln Asp Val Ser Lys Asn Arg His Arg Gln Val Asp Pro 85 90 95 Glu Tyr Glu Val Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105 110																	
(A) LÄNGE: 609 Aminosäure (B) ART: Aminosäure (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: Met Leu Lys Gly Val Pro Gly Leu Leu Phe Lys Glu Thr Gln Arg His 1 5 10 15 Leu Lys Pro Arg Leu Val Arg Ile Met Glu Asn Thr Ser Gln Asp Glu 20 25 30 Ser Arg Lys Arg Gln Val Ala Ser Asn Leu Ser Ser Asp Ala Asp Glu 35 40 45 Gly Ser Pro Ala Val Thr Arg Pro Val Lys Ile Thr Lys Arg Leu Arg 50 55 60 Lys Lys Asn Leu Gly Thr Gly Glu Leu Arg Asp Lys Ala Gly Phe Lys 65 70 75 80 Leu Lys Val Gln Asp Val Ser Lys Asn Arg His Arg Gln Val Asp Pro 85 90 95 Glu Tyr Glu Val Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105 110	(2)																
(B) ART: Aminosäure (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: Met Leu Lys Gly Val Pro Gly Leu Leu Phe Lys Glu Thr Gln Arg His 1 5 10 15 Leu Lys Pro Arg Leu Val Arg Ile Met Glu Asn Thr Ser Gln Asp Glu 20 25 30 Ser Arg Lys Arg Gln Val Ala Ser Asn Leu Ser Ser Asp Ala Asp Glu 35 40 45 Gly Ser Pro Ala Val Thr Arg Pro Val Lys Ile Thr Lys Arg Leu Arg 50 55 60 Lys Lys Asn Leu Gly Thr Gly Glu Leu Arg Asp Lys Ala Gly Phe Lys 65 70 75 80 Leu Lys Val Gln Asp Val Ser Lys Asn Arg His Arg Gln Val Asp Pro 85 90 95 Glu Tyr Glu Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105 110			•							n							
(ii) ART DES MOLEKÜLS: Protein (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: Met Leu Lys Gly Val Pro Gly Leu Leu Phe Lys Glu Thr Gln Arg His 1 5 10 15 Leu Lys Pro Arg Leu Val Arg Ile Met Glu Asn Thr Ser Gln Asp Glu 20 25 30 Ser Arg Lys Arg Gln Val Ala Ser Asn Leu Ser Ser Asp Ala Asp Glu 35 40 45 Gly Ser Pro Ala Val Thr Arg Pro Val Lys Ile Thr Lys Arg Leu Arg 50 55 60 Lys Lys Asn Leu Gly Thr Gly Glu Leu Arg Asp Lys Ala Gly Phe Lys 65 70 75 80 Leu Lys Val Gln Asp Val Ser Lys Asn Arg His Arg Gln Val Asp Pro 85 90 95 Glu Tyr Glu Val Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105 110				•													
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4: Met Leu Lys Glu Thr Gln Arg His 1 5 10 15 Leu Lys Pro Arg Leu Val Arg Ile Met Glu Asn Thr Ser Gln Asp Glu Ser Arg Lys Arg Glu Val Ala Ser Asn Leu Ser Asp Ala Asp Glu Gly Ser Pro Ala Val Thr Arg Pro Val Lys Ile Thr Lys Arg Leu Arg Lys Lys Asn Leu Arg Asp Pro Pro Asp Pro Pr			•														
Met Leu Lys Glu Leu Lys Glu Thr Gln Arg His 1 5 10 10 15 15 Leu Lys Pro Arg Leu Val Arg Ile Met Glu Asn Thr Ser Glu Asn Thr Ser Glu Asn Leu Ser Ser Asn Leu Ser Ser Asn Leu Ser Ser Asn Leu Ser Asn Ala Asp Glu Arg Asn Arg Leu Arg Asn Leu Arg Asn Leu Arg Asn Leu Arg Arg Ile		(ii	AR'	T DE	s MO	LEKÜ:	LS:	Prot	ein								
1		(xi) SE	QUEN	ZBES	CHRE	IBUN	G: S	EQ I	D NO	: 4:						
Leu Lys Pro Arg Leu Val Arg Ile Met Glu Asn Thr Ser Gln Asp Glu 20	Met	Leu	Lys	Gly	Val	Pro	Gly	Leu	Leu	Phe	Lys	Glu	Thr	Gln	Arg	His	
Ser Arg Lys Arg Gln Val Ala Ser Asn Leu Ser Ser Asp Ala Asp Glu 35	1				5					10					15		
Ser Arg Lys Arg Gln Val Ala Ser Asn Leu Ser Ser Asp Ala Asp Glu 35 40 45 Gly Ser Pro Ala Val Thr Arg Pro Val Lys Ile Thr Lys Arg Leu Arg 50 55 60 Lys Lys Asn Leu Gly Thr Gly Glu Leu Arg Asp Lys Ala Gly Phe Lys 65 70 75 80 Leu Lys Val Gln Asp Val Ser Lys Asn Arg His Arg Gln Val Asp Pro 85 90 95 Glu Tyr Glu Val Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105 110	Leu	Lys	Pro	Arg	Leu	Val	Arg	Ile	Met	Glu	Asn	Thr	Ser	Gln	Asp	Glu	
Gly Ser Pro Ala Val Thr Arg Pro Val Lys Ile Thr Lys Arg Leu Arg 50				20					25					30			
Gly Ser Pro Ala Val Thr Arg Pro Val Lys Ile Thr Lys Arg Leu Arg 50	Ser	Arg	Lys	Arg	Gln	Val	Ala	Ser	Asn	Leu	Ser	Ser	Asp	Ala	Asp	Glu	
50																	
Lys Lys Asn Leu Gly Thr Gly Glu Leu Arg Asp Lys Ala Gly Phe Lys 65 70 75 80 Leu Lys Val Gln Asp Val Ser Lys Asn Arg His Arg Gln Val Asp Pro 85 90 95 Glu Tyr Glu Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105 110	Gly	Ser	Pro	Ala	Val	Thr	Arg	Pro	Val	Lys	Ile		Lys	Arg	Leu	Arg	
Leu Lys Val Gln Asp Val Ser Lys Asn Arg His Arg Gln Val Asp Pro 85 Glu Tyr Glu Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105 110																	
Leu Lys Val Gln Asp Val Ser Lys Asn Arg His Arg Gln Val Asp Pro 85 90 95 Glu Tyr Glu Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105 110	Lys	Lys	Asn	Leu	Gly	Thr	Gly	Glu	Leu	Arg		Lys	Ala	Gly	Phe		
85 90 95 Glu Tyr Glu Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105 110																	
Glu Tyr Glu Val Val Val Asp Gly Pro Met Arg Lys Ile Lys Pro Tyr 100 105 110	Leu	Lys	Val	Gln	Asp	Val	Ser	Lys	Asn	Arg	His	Arg	Gln	Val			
100 105 110																	
•••	Glu	Tyr	Glu			Val	Asp	Gly			Arg	Lys	Ile			Tyr	
Dho Dho Thr Tur Luc Thr Phe Cus Lus Glu Ard Tro Ard Aso Ard Lus																	
116 120 120 125	Phe	Phe		_	Lys	Thr	Phe			Glu	Arg	Trp			Arg	Lys	

PCT/EP95/00958 WO 95/26406 21 Leu Leu Asp Val Phe Val Asp Glu Phe Arg Asp Arg Asp Arg Pro Tyr

135 130 Tyr Glu Lys Val Ile Gly Ser Gly Gly Val Leu Leu Asn Gly Lys Ser 150 . 155 Ser Thr Leu Asp Ser Val Leu Arg Asn Gly Asp Leu Ile Ser His Glu 170 165 Leu His Arg His Glu Pro Pro Val Ser Ser Arg Pro Ile Arg Thr Val 185 180 Tyr Glu Asp Asp Asp Ile Leu Val Ile Asp Lys Pro Ser Gly Ile Pro 200 Ala His Pro Thr Gly Arg Tyr Arg Phe Asn Ser Ile Thr Lys Ile Leu 215 Glu Lys Gln Leu Gly Tyr Thr Val His Pro Cys Asn Arg Leu Asp Arg 230 Leu Thr Ser Gly Leu Met Phe Leu Ala Lys Thr Pro Lys Gly Ala Asp 245 Glu Met Gly Asp Gln Met Lys Ala Arg Glu Val Lys Lys Glu Tyr Val 265 260 Ala Arg Val Val Gly Glu Phe Pro Ile Gly Glu Ile Val Val Asp Met 280 Pro Leu Lys Thr Ile Glu Pro Lys Leu Ala Leu Asn Met Val Cys Asp 295 Pro Glu Asp Glu Ala Gly Lys Gly Ala Lys Thr Gln Phe Lys Arg Ile 315 310 Ser Tyr Asp Gly Gln Thr Ser Ile Val Lys Cys Gln Pro Tyr Thr Gly 330 Arg Thr His Gln Ile Arg Val His Leu Gln Tyr Leu Gly Phe Pro Ile 345 340 Ala Asn Asp Pro Ile Tyr Ser Asn Pro His Ile Trp Gly Pro Ser Leu Gly Lys Glu Cys Lys Ala Asp Tyr Lys Glu Val Ile Gln Lys Leu Asn 380 375 Glu Ile Gly Lys Thr Lys Ser Ala Glu Ser Trp Tyr His Ser Asp Ser 390 395 Gin Gly Glu Val Phe Lys Gly Glu Gln Cys Asp Glu Cys Gly Thr Glu 410 Leu Tyr Thr Asp Pro Gly Pro Asn Asp Leu Asp Leu Trp Leu His Ala 425 Tyr Arg Tyr Glu Ser Thr Glu Leu Asp Glu Asn Gly Ala Lys Lys Arg 440 Ser Tyr Ser Thr Ala Phe Pro Glu Trp Ala Leu Glu Gln His Gly Asp 455 Phe Met Arg Leu Ala Ile Glu Gln Ala Lys Lys Cys Pro Pro Ala Lys

470

485

Thr Ser Phe Ser Val Gly Ala Val Leu Val Asn Gly Thr Glu Ile Leu

475

490

wo 9	5/264	06											PC	T/EP9	5/00958			
							22											
Ala	Thr	Gly	Tyr 500	Ser	Arg	Glu	Leu	Glu 505	Gly	Asn	Thr	His	Ala 510	Glu	Gln			
Cys	Ala	Leu 515	Gln	Lys	Tyr	Phe	Glu 520	Gln	His	Lys	Thr	Asp 525	Lys	Val	Pro		. •••	
Ile	Gly 530		Val	Ile	Tyr	Thr 535	Thr	Met	Glu	Pro	Cys 540	Ser	Leu	Arg	Leu			
Ser 545	Gly	Asn	Lys	Pro	Cys 550	Val	Glu	Arg	Ile	Ile 555	Cys	Gln	Gln	Gly	Asn 560			
			Val	565					570					575				
			Ser 580					585					590					
Leu	Val	Pro 595	Gly	Phe	Gln	Glu	Glu 600	Cys	Thr	Glu	Ala	Ala 605	Leu	Lys	Gly			
His																		
	(ii) (iii (iii (vi (ix	SE() (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	TION QUENT A) LI B) AI C) ST D) TO T DET POTHITISET SPRUT RKMA A) NL RKMA A) NL RKMA A) NL	Z CHI ANGE RT: I TRANG OPOLO S MO: ETISG NSE: NLIC: RGANG LE: AME/ AGE: AME/ AGE:	ARAK' : 10: Nukle GFORI OGIE LEKÜ: CH: NEI HE H: ISMU: SCHL 315	TERIS 82 Ba einsa M: Da : lin LS: a NEIN N ERKU SS: A ÜSSE 314	STIKE asengure opperations of the constant of	A: paard zu 1 a go 'UTR	mRNS ssyp	ii								
		•	A) N. B) L					OIR										
	(xi	,	QUEN					EQ I	D NO	: 5:								
ccc	•		_								GAA	CAAT	GAG	TAAG	TCCTC	A	60	
															GTTAG		120	
CAA	GTGA	AAC	ATAT	CACA	TC G	CCAG	CAGG	T TG	GGCT	ACCA	AGG	ATAG	TTG	ATGA	CTTCC	A	180	•
-															CAAGA		240	
ATA	CGTA	CAA	AAAT	TTCA	AC G	TTTT	ACAA	G TT	CCCA	AGCT	TAG	TCAA	CTC	ATCA	CCAAC	G	300	

ACAAACCAAG CAAC ATG ACA AGC CCA TGC ACT GAT ATC GGT ACC GCT ATA

Met Thr Ser Pro Cys Thr Asp Ile Gly Thr Ala Ile

PCT/EP95/00958 WO 95/26406 23 GAG CAG TTC AAG CAA AAT AAG ATG ATC ATC GTC ATG GAC CAC ATC TCG Glu Gln Phe Lys Gln Asn Lys Met Ile Ile Val Met Asp His Ile Ser 15 20 AGA GAA AAC GAG GCC GAT CTA ATA TGT GCA GCA GCG CAC ATG ACT GCC ...446 Arg Glu Asn Glu Ala Asp Leu Île Cys Ala Ala Ala His Met Thr Ala 35 GAG CAA ATG GCA TTT ATG ATT CGG TAT TCC TCG GGC TAC GTT TGC GCT 494 Glu Gln Met Ala Phe Met Ile Arg Tyr Ser Ser Gly Tyr Val Cys Ala 55 50 45 CCA ATG ACC AAT GCG ATT GCC GAT AAG CTA GAC CTA CCG CTC ATG AAC 542 Pro Met Thr Asn Ala Ile Ala Asp Lys Leu Asp Leu Pro Leu Met Asn 70 75 65 ACA TTG AAA TGC AAG GCT TTC TCC GAT GAC AGA CAC AGC ACT GCG TAT 590 Thr Leu Lys Cys Lys Ala Phe Ser Asp Asp Arg His Ser Thr Ala Tyr 85 80 ACA ATC ACC TGT GAC TAT GCG CAC GGG ACG ACG ACA GGT ATC TCC GCA 638 Thr Ile Thr Cys Asp Tyr Ala His Gly Thr Thr Thr Gly Ile Ser Ala 105 100 95 CGT GAC CGG GCG TTG ACC GTG AAT CAG TTG GCG AAC CCG GAG TCC AAG 686 Arg Asp Arg Ala Leu Thr Val Asn Gln Leu Ala Asn Pro Glu Ser Lys 110 115 734 GCT ACC GAC TTC ACG AAG CCA GGC CAC ATT GTG CCA TTG CGT GCC CGT Ala Thr Asp Phe Thr Lys Pro Gly His Ile Val Pro Leu Arg Ala Arg 125 130 135 140 782 GAC GGC GGC GTG CTC GAG CGT GAC GGG CAC ACC GAA GCG GCG CTC GAC Asp Gly Gly Val Leu Glu Arg Asp Gly His Thr Glu Ala Ala Leu Asp 145 150 TTG TGC AGA CTA GCG GGT GTG CCA GAG GTC GCT GCT ATT TGT GAA TTA 830 Leu Cys Arg Leu Ala Gly Val Pro Glu Val Ala Ala Ile Cys Glu Leu 160 165 170 GTA AGC GAA AGG GAC GTC GGG CTG ATG ATG ACT TTG GAT GAG TGT ATA 878 Val Ser Glu Arg Asp Val Gly Leu Met Met Thr Leu Asp Glu Cys Ile 180 185 175 GAA TTC AGC AAG AAG CAC GGT CTT GCC CTC ATC ACC GTG CAT GAC CTG 926 Glu Phe Ser Lys Lys His Gly Leu Ala Leu Ile Thr Val His Asp Leu 200 190 195 AAG GCT GCA GTT GCC GCC AAG CAG TAGACGGCAA CGAGTTCTTT AAGTCGGTGT 980 Lys Ala Ala Val Ala Ala Lys Gln 210 205 TCATTTATGT AATATACCAT TTCATCGAAA AAGTCAAATG GTATGAACTA GATTTATCAA 1040 TAGTATCTAA GAGTTATGGT ATTCGCAAAA GCTTATCGAT AC 1082 (2) INFORMATION ZU SEQ ID NO: 6: (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 212 Aminosäuren

(B) ART: Aminosäure(D) TOPOLOGIE: linear(ii) ART DES MOLEKÜLS: Protein

WO 95/26406 24

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6: Met Thr Ser Pro Cys Thr Asp Ile Gly Thr Ala Ile Glu Gln Phe Lys . 10 5 Gln Asn Lys Met Ile Ile Val Met Asp His Ile Ser Arg Glu Asn Glu 20 25 Ala Asp Leu Ile Cys Ala Ala Ala His Met Thr Ala Glu Gln Met Ala 40 35 Phe Met Ile Arg Tyr Ser Ser Gly Tyr Val Cys Ala Pro Met Thr Asn Ala Ile Ala Asp Lys Leu Asp Leu Pro Leu Met Asn Thr Leu Lys Cys 75 70 Lys Ala Phe Ser Asp Asp Arg His Ser Thr Ala Tyr Thr Ile Thr Cys 90 Asp Tyr Ala His Gly Thr Thr Thr Gly Ile Ser Ala Arg Asp Arg Ala 105 100 Leu Thr Val Asn Gln Leu Ala Asn Pro Glu Ser Lys Ala Thr Asp Phe 120 Thr Lys Pro Gly His Ile Val Pro Leu Arg Ala Arg Asp Gly Gly Val 135 Leu Glu Arg Asp Gly His Thr Glu Ala Ala Leu Asp Leu Cys Arg Leu 155 145 Ala Gly Val Pro Glu Val Ala Ala Ile Cys Glu Leu Val Ser Glu Arg 170 165 Asp Val Gly Leu Met Met Thr Leu Asp Glu Cys Ile Glu Phe Ser Lys 185 180 Lys His Gly Leu Ala Leu Ile Thr Val His Asp Leu Lys Ala Ala Val 205 200 195 Ala Ala Lys Gln 210

- (2) INFORMATION ZU SEQ ID NO: 7:
 - (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 996 Basenpaare
 - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Doppel
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: cDNS zu mRNS
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTISENSE: NEIN
 - (vi) URSPRÜNLICHE HERKUNFT:
 - (A) ORGANISMUS: Ashbya gossypii
 - (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: 5'UTR
 - (B) LAGE: 1..270
 - (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 271..789

WO 95/26406 PCT/EP95/00958 25

(ix) MERKMALE:

(A) NAME/SCHLÜSSEL: 3'UTR (B) LAGE: 790..996

· (B) LAGE: 790)996									
	UENZBESCHRE					•					
TGGTATAATG A							60				
CGCATCAATG A							120				
TATGGTATCC T							180				
CGGATAAAGT T							240				
ACACAGACTA A	GTTCAAGTT 1	GCAGTGACA	ATG AT	r aag gg.	A TTA GG	C GAA GTT	294				
			Met Ile	Lys Gl	y Leu Gl	y Glu Val					
G17 G11 1GG			1		5						
GAT CAA ACC							342				
Asp Gln Thr	Tyr Asp Ala	Ser Ser	Val Glu	Val Gly 20	Ile Val	His Ala					
AGA TGG AAC	AAG ACT GTO	ATT GAC	GCT CTC	GAC CAA	GGT GCA	ATT GAG	390				
Arg Trp Asn 1	Lys Thr Val	Ile Asp	Ala Leu	Asp Gln	Gly Ala	Ile Glu					
25	30			35		40					
AAA CTG CTT (438				
Lys Leu Leu i	Ala Met Gly	Val Lys	Glu Lys	Asn Ile	Thr Val	Ser Thr					
	45		50			55					
GTT CCA GGT							486				
Val Pro Gly A		Leu Pro		Thr Gln	Arg Phe	Ala Glu					
CMC 100 110	60		65	•	70		•				
CTG ACC AAG							534				
Leu Thr Lys ?	Ala Ser Gly		Leu Asp	Val Val		Ile Gly					
75	NNN CCC CNC	80	03.0 mmm	~··	85						
GTC CTG ATC A							582				
Val Leu Ile I 90	rys Gry Asp	95	nis Pne	100	Tie Ser	Asp Ser					
GTG ACT CAT	GCC TTA ATG		CAC AAC		CCT CTT	CCT CTC	620				
Val Thr His A							630				
105	110		, o	115	ing bea	120					
ATT TTT GGT		TGT CTA	ACA GAG	-	GCG TTG		678				
Ile Phe Gly I							0.0				
	125	_	130			135					
GCA GGC CTC (GGT GAA TCT	GAA GGC	AAG CAC	AAC CAC	GGT GAA	GAC TGG	726				
Ala Gly Leu G	Gly Glu Ser	Glu Gly	Lys His	Asn His	Gly Glu	Asp Trp					
_	L40		145		150	•					
GGT GCT GCT							774				
Gly Ala Ala A	Ala Val Glu	Met Ala	Val Lys	Phe Gly	Pro Arg	Ala Glu					
155		160			165	*					
CAA ATG AAG A		TAA AAAAT	CACTA CT	TAAAATTA	ACGTTTT	TAT	826				
Gln Met Lys I	Lys										
170											
TATGTCTATA TCAAATTCTT ACGTGATAAC TTTTGATTTC GCTTCCTGGA TTGGCGCAAG 886											
GCCTCCCTGT GTCGCAGTTT TTGTTCACGG GTCCACACAG CTCTGTTTTC CCAGAACATA 946											
TCCTCCCAGC CG	GCGAACCG G	TAGACGCT	TCTGCTG	GCG TTCI	TTTTTATT		996				

WO 95/26406 26

(2) INFORMATION ZU SEQ ID NO: 8:

- (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 172 Aminosäuren
 - (B) ART: Aminosäure
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Protein
- (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:

Met Ile Lys Gly Leu Gly Glu Val Asp Gln Thr Tyr Asp Ala Ser Ser 1 5 10 15

Val Glu Val Gly Ile Val His Ala Arg Trp Asn Lys Thr Val Ile Asp 20 25 30

Ala Leu Asp Gln Gly Ala Ile Glu Lys Leu Leu Ala Met Gly Val Lys
35 40 45

Glu Lys Asn Ile Thr Val Ser Thr Val Pro Gly Ala Phe Glu Leu Pro 50 55 60

Phe Gly Thr Gln Arg Phe Ala Glu Leu Thr Lys Ala Ser Gly Lys His 65 7.0 75 80

Leu Asp Val Val Ile Pro Ile Gly Val Leu Ile Lys Gly Asp Ser Met
85 90 95

His Phe Glu Tyr Ile Ser Asp Ser Val Thr His Ala Leu Met Asn Leu 100 105 110

Gln Lys Lys Ile Arg Leu Pro Val Ile Phe Gly Leu Leu Thr Cys Leu 115 120 125

Thr Glu Glu Gln Ala Leu Thr Arg Ala Gly Leu Gly Glu Ser Glu Gly 130 135 140

Lys His Asn His Gly Glu Asp Trp Gly Ala Ala Ala Val Glu Met Ala 145 150 155 160

Val Lys Phe Gly Pro Arg Ala Glu Gln Met Lys Lys 165 170

- (2) INFORMATION ZU SEQ ID NO: 9:
 - (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 1511 Basenpaare
 - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Doppel
 - (D) TOPOLOGIE: linear
 - (ii) ART DES MOLEKÜLS: cDNS zu mRNS
 - (iii) HYPOTHETISCH: NEIN
 - (iii) ANTISENSE: NEIN
 - (vi) URSPRÜNLICHE HERKUNFT:
 - (A) ORGANISMUS: Ashbya gossypii
 - (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: 5'UTR
 - (B) LAGE: 1..524
 - (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: CDS
 - (B) LAGE: 525..1232

(ix) MERKMALE:

(A) NAME/SCHLÜSSEL: 3'UTR

(B) LAGE: 1233..1511

. '	B) LAGE: 1233				٠
	•	IBUNG: SEQ ID	•		
				ATACCAA CCCACAGGAG	
				GAGACAG CGGGCCAGCA	
AGGCATGTGA	AGTCAAAAGG C	SCCAGCTCC TTA	TCCGCTC CCG	CACAAGC AGGACCGGC	180
TATCCCGATG	AGCGCGCCAG C	ACCCAGACG CTA	CACCACC ATT	CGAAGTA GACTTTAAA	240
GAGCGCTTTC	CAGCTTCTCA GO	SCAGTTAGC TCT.	ACGACAA AGG	AACCAAG TGATTTTCCC	300
•				GGAGAGA TAGTCCTAA	
				SCTACAT GGCGAACCG	
CATTTCCTTA '	IGCATGTCTT AC	CGAGTTTAA AAA	GCTCGCG GTA	GCAGAAA AGAAGATGC	480
TAGATGGCAT	ACCGAAGCCT AT	PATCGCCCA TAG	AAGTTGA TAG	G ATG TTT ACC GGT	536
				Met Phe Thr Gly	
				1	
ATA GTG GAA	CAC ATT GGC	ACT GTT GCT	GAG TAC TTG	GAG AAC GAT GCC	584
Ile Val Glu	His Ile Gly	Thr Val Ala	Glu Tyr Leu	Glu Asn Asp Ala	
5	10		15	20	
AGC GAG GCA	GGC GGC AAC	GGT GTG TCA	GTC CTT ATC	AAG GAT GCG GCT	. 632
Ser Glu Ala	Gly Gly Asn	Gly Val Ser	Val Leu Ile	Lys Asp Ala Ala	
	25		30	35	
CCG ATA CTG	GCG GAT TGC	CAC ATC GGT	GAC TCG ATT	GCA TGC AAT GGT	680
Pro Ile Leu	Ala Asp Cys	His Ile Gly	Asp Ser Ile	Ala Cys Asn Gly	
	40	45		50	
ATC TGC CTG	ACG GTG ACG	GAG TTC ACG	GCC GAT AGC	TTC AAG GTC GGG	728
Ile Cys Leu	Thr Val Thr	Glu Phe Thr	Ala Asp Ser	Phe Lys Val Gly	
55		60		65	
ATC GCA CCA	GAA ACA GTT	TAT CGG ACG	GAA GTC AGC	AGC TGG AAA GCT	776
Ile Ala Pro	Glu Thr Val	Tyr Arg Thr	Glu Val Ser	Ser Trp Lys Ala	
70		75	80		
				GAC AGG CGC TAC	824
	· ·	Glu Arg Ala	_	Asp Arg Arg Tyr	
85	90		95	100	
				GCC TCT ATT GTA	872
Gly Gly His	-	-	-	Ala Ser Ile Val	
	105		110	115	
				TTT AAA CTG CGC	920
Ser Arg Glu			Asn Phe Lys	Phe Lys Leu Arg	
	120	125		130	
				TTT GTG GCG ATC	968
-	Tyr Glu Lys	_	Glu Lys Gly	Phe Val Ala Ile	
135		140		145	
				GAT GGC TGT TTC	1016
	Ser Leu Thr	-	-	Asp Gly Cys Phe	
150		155	160		

													PCI	/EP95	/00958	
WO 95	/26406						28									
TAC	ATC	TCG	ATG	ATT	GCA	CAC	ACG	CAG	ACC	GCT	GTA	GCC.	CTT	CCA	CTG	1064
Tyr	Ile	Ser	Met	Ile	Ala	His	Thr	Gln	Thr	Ala	Val	Ala	Leu	Pro	Leu	
165					170					175					180	
AAG	CCG	GAC.	GGT	GCC	CTC	GTG	AAC	ATA	GAA	ACG	GAT	GTT	AAC	GGC	AAG	1112
Lys	Pro	Asp	Gly	Ala	Leu	Val	Asn	Ile	${\tt Glu}$	Thr	Asp	Val	Asn	Gly	Lys	
				185					190					195		
										AAT						1160
Leu	Val	Glu	Lys	Gln	Val	Ala	Gln		Leu	Asn	Ala	Gln		Glu	Gly	
			200					205					210			
										AGG						1208
Glu	Ser		Pro	Leu	Gln	Arg		Leu	Glu	Arg	тте		Glu	Ser	гλг	
		215		mC3	3 3 (11)	3 3 C	220	לית איתה אינות איתה	יייי י	አጥርጥባ	פרכיי	225	י בייים	ת אינו <i>י</i> יים	п	1259
							IGAT	LIMIP	111 /	ATCTI	. 555	iG C.	IGIM.	IAIC		1255
Leu		Ser	Ile	Ser	ASII	235										
m a mc	230	ישר י	1 TO N C C	ነ አ <i>ር</i> ግጥ (יידי בי		CACO	e GG1	יככר	ልርርጥ	CCA	CACO	TAG (CACI	ACACCT	1319
															ACACCC	1379
															AGACCT	1439
															AGCTTC	1499
	CCGF											•				1511
			NOI	zu s	SEQ I	D NO	: 10):								
	(i) S	EQUE	NZ C	HARA	AKTE	RIST	IKA:							•	
		(P	()	NGE:	235	imA i	nosä	iurer	1							
		(E	3) AF	RT: I	Amino	säur	:e									
		•)) TC													
			DES													
		-	-							: 10:			~ 3		•	
	Phe	Thr	Gly		Val	GIU	HIS	TTE		Thr	vai	AIA	GIU		Leu	
1	•	•	.1.	5	C1	21-	C1	C1	10	C1	17-1	°	17-1	15	Tlo	
GIU	Asn	Asp	A1a 20	ser	GIU.	Ala	GIA	25	ASII	Gly	Val	261	30	пеп	TTE	
T 0	7 00	חות		Pro	Tla	T.A11	Ala		Cvs	His	Tle	Glv		Ser	Tle	
пÃг	vsħ	35	VTG	110	110		40		0,0	0		45		002		
Δla	Cvs		Glv	Ile	Cvs	Leu		Val	Thr	Glu	Phe		Ala	Asp	Ser	
ALG	50	71.511	0-7		0,0	55	• • • • • • • • • • • • • • • • • • • •				60					
Phe		Val	Glv	Ile	Ala		Glu	Thr	Val	Tyr		Thr	Glu	Val	Ser	
65					70					75					80	
	Trp	Lys	Ala	Gly	Ser	Lys	Ile	Asn	Leu	Glu	Arg	Ala	Ile	Ser	Asp	
	•	-		85					90					95		
Asp	Arg	Arg	Tyr	Gly	Gly	His	Tyr	Val	Gln	Gly	His	Val	Asp	Ser	Val	
_	_		100					105					110			
Ala	Ser	Ile	Val	Ser	Arg	Glu	His	Asp	Gly	Asn	Ser	Ile	Asn	Phe	Lys	
		115					120					125				
Phe	Lys	Leu	Arg	Asp	Gln	Glu	Tyr	Glu	Lys	Tyr	Val	Val	Glu	Lys	Gly	
	130					135					140					
Phe	Val	Ala	Ile	Asp	Gly	Val	Ser	Leu	Thr	Val	Ser	Lys	Met	Asp	Pro	

WO 95/26406	PCT/EP95/00958
YY C	101.21 / 0.00 / 00

Asp Gly Cys Phe Tyr Ile Ser Met Ile Ala His Thr Gln Thr Ala Val 165 170 175	
Ala Leu Pro Leu Lys Pro Asp Gly Ala Leu Val Asn Ile Glu Thr Asp	
180 185 190	
Val Asn Gly Lys Leu Val Glu Lys Gln Val Ala Gln Tyr Leu Asn Ala 195 200 205	
Gln Leu Glu Gly Glu Ser Ser Pro Leu Gln Arg Val Leu Glu Arg Ile 210 215 220	
Ile Glu Ser Lys Leu Ala Ser Ile Ser Asn Lys 225 230 . 235	
(2) INFORMATION ZU SEQ ID NO: 11:	
(i) SEQUENZ CHARAKTERISTIKA:	
(A) LÄNGE: 1596 Basenpaare	
(B) ART: Nukleinsäure	
(C) STRANGFORM: Doppel	
(D) TOPOLOGIE: linear	
(ii) ART DES MOLEKÜLS: cDNS zu mRNS	
(iii) HYPOTHETISCH: NEIN	
(iii) ANTISENSE: NEIN	
(vi) URSPRÜNLICHE HERKUNFT:	
(A) ORGANISMUS: Ashbya gossypii	
(ix) MERKMALE:	
(A) NAME/SCHLÜSSEL: 5'UTR	
(B) LAGE: 1352	
(ix) MERKMALE:	
(A) NAME/SCHLÜSSEL: CDS	
(B) LAGE: 3531093	
(ix) MERKMALE:	
(A) NAME/SCHLÜSSEL: 3'UTR	
(B) LAGE: 10941596	
(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:	
AGAAGAAGCG CAGGCGCCAG TCCGAGCTGG AGGAGAACGA GGCGGCGCGG TTGACGAACA	60
GCGCGCTGCC CATGGACGAT GCGGGTATAC AGACGGCGGG TATACAGACG GCGGGTGGTG	60 120
CCGAGAGAGG CACCAGGCCG GCTTCCTCCA GCGATGCAAG GAAGAGAAGG GGACCAGAGG	180
CGAAGTTCAA GCCATCTAAG GTACAGAAGC CCCAATTGAA GCGAACTGCA TCGTCCCGGG	240
CGGATGAGAA CGAGTTCTCG ATATTATAGA GGCCCCCGTT TCGAGTGATT GGCGTCAAAA	300
ACGGCTATCT GCCTTCGTCC GCCCCACCA CCCTCGGGAA CACTGGCAAA CC ATG	355
Met	333
net 1	
GCG CTA ATA CCA CTT TCT CAA GAT CTG GCT GAT ATA CTA GCA CCG TAC	403
Ala Leu Ile Pro Leu Ser Gln Asp Leu Ala Asp Ile Leu Ala Pro Tyr	403
5 10 15	
TTA CCG ACA CCA CCG GAC TCA TCC GCA CGC CTG CCG TTT GTC ACG CTG	, , = 1
Leu Pro Thr Pro Pro Asp Ser Ser Ala Arg Leu Pro Phe Val Thr Leu	451
20 25 30	
= - JU	

WO 95/26406

							30)									
ACG	TAT	GCG	CAG	TCC	CTA	GAT	GCT	ÇGT	ATC	GCG	AAG	CAA	AAG	GGT	GAA	•	499
Thr	Tyr	Ala	Gln	Ser	Leu	Asp	Ala	Arg	Ile	Ala	Lys	Gln	Lys	Gly	Glu		
	35					40					45			_			
AGG	·ACG	GTT.	ATT	TCG	CAT	GAG	GAG	ACC	AAG	ACA	ATG	ACG	CAT	TAT	CTA		547
Arg	Thr	Val	Ile	Ser	His	Glu	Glu	Thr	Lys	Thr	Met	Thr	His	Tyr	Leu		
50					55					60				_	65		
CGC	TAC	CAT	CAT	AGC	GGC	ATC	CTG	ATT	GGC	TCG	GGC	ACA	GCC	CTT	GCG		595
Arg	Tyr	His	His	Ser	Gly	Ile	Leu	Ile	Gly	Ser	Gly	Thr	Ala	Leu	Ala		
				70					75					80			
						TGC											643
Asp	Asp	Pro	Asp	Leu	Asn	Cys	Arg	Trp	Thr	Pro	Ala	Ala	Asp	Gly	Ala		
			85					90					95				
						TCA											691
Asp	Cys	Thr	Glu	Gln	Ser	Ser	Pro	Arg	Pro	Ile	Ile	Leu	Asp	Val	Arg		
		100					105					110					
						GGG											739
Gly		Trp	Arg	Tyr	Arg	Gly	Ser	Lys	Ile	Glu	Tyr	Leu	His	Asn	Leu		
	115					120					125						
						ATA											787
	Lys	Gly	Lys	Ala		Ile	Val	Val	Thr	Gly	Gly	Glu	Pro	Glu	Val		
130					135					140					145		
						TAC											835
Arg	GIU	ьеи	GIY		Ser	Tyr	Leu	Gln		Gly	Val	Asp	Glu	_	Gly		
ccc		2 2 m	TICC.	150	C1 C	mmc			155					160			
						TTG											883
ALG	neu	ASII	165	GIY	Gru	Leu	Pne	170	Arg	ren	Tyr	Ser		His	His		
ርሞር	CAA	ΔCT		ልጥር	CTC	GAA	GCC	-	ccc	CAC	CMC	cm c	175	~~~			
						Glu											931
		180	, 44		•	G1u	185	GLY	vra	GIU	Val		ASN	GIN	Leu		
CTG	CTG		CCA	САТ	דידב	GTG		AGT	CTG	CTC	አጥር	190	אחוא	CCA	mcc		070
						Val											979
	195	9		р		200	nsp	Jer	пеп	val	205	1111	TTG	стА	ser		
AAG		CTG	GGC	TCA	СТА	GGT	GTT	GCG	GTC	ጥሮል		CCT	CAC	CAC	CTTC		027
						Gly										_	027
210			1		215	1			, ,	220		nia	GLU		225		
AAC	CTA	GAG	CAT	GTG		TGG	TGG	CAC	GGA		AGT	GAC	ACT			1	075
						Trp										*	0 / 3
				230		•	•		235					240	Deu		
TGC	GGC	CGG	CTC	GCA	TAGO	GGTT	AT G	ACTG	GTCI	A CT	AGTT	AAAA	CTA		СТС	1	130
·Cys																•	-50
			245														
CTAT	ACAT	АТ Т	GCGT	CACA	T AG	CGTT	TATC	ccc	CTCG	CCA	ACCG	CCTC	GT G	CCGT	TGGAA	. 1	190
															AGATI		250
															CACCI		310
															TGAGA		370
															ATATO		130
					•				~				J J		*****	, τ	400

TTT	rggcz	ACA 1	AGCT	CATG	GT G	CGTG	TAT	TA	CCAC	CAAA	GCT	GTTT	CGT	TGAA	AGTCTC	1490
AAT:	ŗGTA(GCA (GGAG	CGAC	GG A	GGA	AGCA	G TT	CAA	CGCG	CTG	GGCG'	ΓTA	TGCC	STTCTG	1550
ATA	ratga	AAA A	ATAC	CCGT	CT G	GAAG'	TTCT:	r cr	CGCC	AATG	TGG	ATC				1596 ·
(2)	INF	RMA:	rion	ZU S	SEQ I	D NO): 12	2:							· · · :	
•		(i) S	SEQUE	enz (HARA	KTE	RIST	KA:								
		(2	A) LÀ	NGE:	246	Am.i	inosä	iure	ז							
		(E	3) AI	RT: A	Amino	säui	ce									
		([) TO	POLO	GIE:	lir	near									
	(ii)	ART	C DES	MOI	LEKÜI	S: I	rote	ein								
	(xi)	SEÇ	QUENZ	ZBESC	CHRE	BUNG	G: SE	EQ II	ON C	12:	:					
Met	Ala	Leu	Ile	Pro	Leu	Ser	Gln	Asp	Leu	Ala	Asp	Ile	Leu	Ala	Pro	
1				5					10					15		
Tyr	Leu	Pro		Pro	Pro	Asp	Ser		Ala	Arg	Leu	Pro	Phe	Val	Thr	
			20					25					30			
Leu	Thr	Tyr	Ala	Gln	Ser	Leu	Asp	Ala	Arg	Ile	Ala	Lys	Gln	Lys	Gly	
		35					40					45				
Glu	Arg	Thr	Val	Ile	Ser	His	Glu	Glu	Thr	Lys	Thr	Met	Thr	His	Tyr	
	50					55					60					
Leu	Arg	Tyr	His	His	Ser	Gly	Ile	Leu	Ile	Gly	Ser	Gly	Thr	Ala	Leu	
65					70					75					80	
Ala	Asp	Asp	Pro		Leu	Asn	Суз	Arg		Thr	Pro	Ala	Ala	Asp	Gly	
		_		85			_	_	90	_			_	95	_	
Ala	Asp	Cys		Glu	Gln	Ser	Ser		Arg	Pro	Ile	Ile		Asp	Val	
			100	_	_	_		105	_			_	110			
Arg	Gly	-	Trp	Arg	Tyr	Arg		Ser	Lys	Ile	GLu	_	Leu	His	Asn	
_		115		_		_	120	•••	••- •			125	_,	_		
Leu	_	Lys	GLY	Lys	Ala		Ile	Val	Val	Thr	_	GLY	Glu	Pro	Glu	_
••. •	130	61	•	G1	77- 1	135	m	T	C1 -	*	140	17- 3	•	~ 1	63	•
	Arg	GIU	ren	GLY	150	Ser	TYT	Leu	Gin		GIĀ	var	Asp	Glu	-	
145	N	T 0.11	3.00	T-2		Glu	Len	Dho	C1 11	155	Lan	m	80=	Glu	160	
GTÀ	Arg	Tea	ASII	165	GIŞ	Giu	пец	FIIE	170	ALG	пеп	TÄT	Ser	175	пто	
uic	T ou	C1	807		Mat	Va l	Glu	Glu		λla	Glu	Val	Tan	Asn	Cln	
urs	Leu	GIU	180	Vai	Met	Val	GIU	185	GTÅ	nia	GIU	vaı	190	ASII	GIII	
T 0.1	T 0	T 0.11		D=0	λαπ	Tla	175.1		Sar	T 011	17-1	T10		Ile	C1	
Ten	neu	195	ALG	PIO	изр	116	200	rsp	261	пеп	A 4 7 1	205	1111	116	GIÀ	
Sa=	T 1/0		Tan	Glu	SAT	T.eu		Va 1	Δla	17a 1	Sar		λla	Glu	Gl ::	
Set	210	FIIE	neu	GIY	Ser	215	Gry	497	n10	491	220	110	·	GIU	GIU	
Val		T.e.11	G111	Hie	Va1		Tro	Tro	Hiq	Glv		Ser	Asn	Ser	Va l	
225	non	DÇ U	J14	1123	230				<i>ت</i> شده	235		051	.	CEL	240	
	Cvs	Glv	Arg	Len						233					240	
au u	~ J 3	- 1	9	245												
				_ 10												

Patentansprüche

- DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 2
 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 2, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.
- DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 4 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 4, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.
- 20 3. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 6 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 6, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.
- 4. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 8 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 8, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

35

5. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 10 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 10, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.

- 6. DNA-Sequenzen, die für ein Polypeptid mit der in SEQ ID NO: 12 dargestellten Aminosäuresequenz codieren oder für ein Analoges oder Derivat des Polypeptids gemäß SEQ ID NO: 12, worin eine oder mehrere Aminosäuren deletiert, hinzugefügt oder durch andere Aminosäuren substituiert worden sind, ohne die enzymatische Wirkung des Polypeptids wesentlich zu reduzieren.
- 7. Expressionsvektor, enthaltend eine oder mehrere DNA-Sequenzen gemäß Anspruch 1 bis 6.
 - 8. Wirtsorganismus der mit einem Expressionssystem gemäß Anspruch 7 transformiert worden ist.
- 15 9. Rekombinantes Herstellverfahren für Riboflavin, dadurch gekennzeichnet, daß ein Wirtsorganismus gemäß Anspruch 8 verwendet wird.

25

30

35

1/7

Fig. 1

Fig. 2

3/7

Fig. 3

4/7

Fig. 4

Fig. 5

Fig. 6

Fig. 7

INTERNATIONAL SEARCH REPORT

Internation: plication No PCT/EP 95/00958

PCT/EP 95/00958 A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/52 C12N15/53 C12N15/81 C12N15/54 C12N15/55 //(C12N1/19,C12R1:865) C12P25/00 C12N1/19 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C12P Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category * 1.6-9 X YEAST. vol. 9, no. 10, October 1993 JOHN WILEY & SONS LTD., CHICHESTER, UK, pages 1099-1102, M.-J. BUITRAGO ET AL. 'Mapping of the RIB1 and RIB7 genes involved in the biosynthesis of riboflavin in Saccharomyces cerevisiae' see the whole document 5,7-9 YEAST (1993), 9(2), 189-99 CODEN: YESTE3;ISSN: 0749-503X, X 1993 DOIGNON, FRANCOIS ET AL 'The complete sequence of a 19,482 bp segment located on the right arm of chromosome II from Saccharomyces cerevisiae' see the whole document -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art. document published prior to the international filing date but later than the priority date claimed '&' document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search

,3

29 June 1995

Fax: (+31-70) 340-3016

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,

Name and mailing address of the ISA

29.08.95

Authorized officer

Hillenbrand, G

INTERNATIONAL SEARCH REPORT

Internation. plication No
PCT/EP 95/00958

C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT Category Claston of document, with indication, where appropriate, of the relevant passages X	00336	PCT/EP 95/00			
EP,A,O 405 370 (F. HOFFMANN-LA ROCHE AG) 2 January 1991 cited in the application see the whole document EP,A,O 569 806 (BASF) 18 November 1993 see the whole document P,X WO,A,94 11515 (BASF) 26 May 1994 see the whole document					
January 1991 cited in the application see the whole document EP,A,0 569 806 (BASF) 18 November 1993 see the whole document WO,A,94 11515 (BASF) 26 May 1994 see the whole document	elevant to claim No.	Rele	itation of document, with indication, where appropriate, of the relevant passages	ategory *	
WO,A,94 11515 (BASF) 26 May 1994 see the whole document	1-9		January 1991 cited in the application		
	5,7-9	· 	EP,A,O 569 806 (BASF) 18 November 1993 see the whole document	x	
	1-9		WO,A,94 11515 (BASF) 26 May 1994 see the whole document	P, X	
·					

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internation pplication No PCT/EP 95/00958

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0405370	02-01-91	CN-A- JP-A-	1049185 3117489	13-02-91 20-05-91
EP-A-0569806	18-11-93	. JP-A-	6022765	01-02-94
WO-A-9411515	26-05-94	DE-A-	4238904	26-05-94

INTERNATIONALER RECHERCHENBERICHT

Internation: \ktenzeichen
PCT/EP 95/00958

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 C12N15/52 C12N15/53 C12 C12N15/54 C12N15/55 C12N15/81 C12P25/00 //(C12N1/19,C12R1:865) C12N1/19 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK **B. RECHERCHIERTE GEBIETE** Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) C12N C12P IPK 6 Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Kategorie* 1,6-9 X Bd. 9, Nr. 10, Oktober 1993 JOHN WILEY & SONS LTD., CHICHESTER, UK, Seiten 1099-1102 M.-J. BUITRAGO ET AL. 'Mapping of the RIB1 and RIB7 genes involved in the biosynthesis of riboflavin in Saccharomyces cerevisiae' insgesamt 5.7-9 YEAST (1993), 9(2), 189-99 CODEN: X YESTE3; ISSN: 0749-503X, 1993 DOIGNON, FRANCOIS ET AL 'The complete sequence of a 19,482 bp segment located on the right arm of chromosome II from Saccharomyces cerevisiae' insgesamt -/--Siehe Anhang Patentfamilie Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu lx l Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prionitätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Besondere Kategorien von angegebenen Veröffentlichungen "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedamm veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindt kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffichtlichungen dieser Kategorie in Verbindung getracht wird und diese Verbindung für einen Fachmann naheliegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie pusgeführt) *O' Veröffentlichung, die sich auf eine mündliche Offenbarung,
eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
*P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach
dem beanspruchten Prioritätsdatum veröffentlicht worden ist

werden, wenn die veröffentlichung mit einer oder mehrer
veröffentlichung, die veröffentlichung mit einer oder mehrer
veröffentlichung mit einer oder mehrer
veröffentlichung mit einer oder mehrer
veröffentlichung mit einer oder mehrer
veröffentlichung mit einer oder mehrer
veröffentlichung mit einer oder mehrer
veröffent Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der internationalen Recherche 2 9. 08. 95 29.Juni 1995 Bevollmächtigter Bediensteter Name und Postanschrift der Internationale Recherchenbehörde Europäisches Patentarnt, P.B. 5818 Patentlaan 2 NL - 2280 HV Ripwijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016 Hillenbrand, G

3

INTERNATIONALER RECHERCHENBERICHT

Internation: \ktenzeichen
PCT/EP 95/00958

			95/00958	
C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN				
Categorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komme	nden Teile	Betr. Anspruch Nr.	
X	EP,A,O 405 370 (F. HOFFMANN-LA ROCHE AG) 2.Januar 1991 in der Anmeldung erwähnt insgesamt	<u> </u>	1-9	
(EP,A,O 569 806 (BASF) 18.November 1993 insgesamt	•	5,7-9	
, X	WO,A,94 11515 (BASF) 26.Mai 1994 insgesamt		1-9	
		•		

3

Formbiatt PCT/ISA/210 (Fortsetzung von Blatt 2) (Juli 1992)

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internation Aktenzeichen
PCT/EP 95/00958

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP-A-0405370	02-01-91	CN-A- JP-A-	1049185 3117489	13-02-91 20-05-91
EP-A-0569806	18-11-93	JP-A-	6022765	01-02-94
WO-A-9411515	26-05-94	DE-A-	4238904	26-05-94