Friend or Foe?

Population Protocols can perform Community Detection

L. Becchetti¹, A. Clementi², **Emanuele Natale**⁰, F. Pasquale², P. Raghavendra³ and L. Trevisan³

Population protocols

At each round a random edge is chosen and the two corresponding agents interact.

Regular Stochastic Block Model

A graph $G = (V_1 \bigcup V_2, E)$ s.t. $|V_1| = |V_2|$, $G|_{V_1}, G|_{V_2} \sim \text{random } a\text{-regular graphs},$ $G|_{E(V_1,V_2)}$ ~ random b-regular bipartite graph.

Theorem

 $G = (V_1 \cup V_2, E)$ Regular Stochastic Block Model s.t. $(a+b)\epsilon^4 \gg b \log^2 n$, then w.h.p. CSL(m,T) with $m = \Theta(\epsilon^{-1} \log n)$ and $T = \Theta(\log n)$ labels all nodes but a set U with size $|U| \leq \sqrt{\epsilon n}$, in such a way that

- nodes' labels in the same community agree on at least 5/6 of entries, and
- nodes' labels in different communities differ in more than 1/6 of entries.

Reconstruction problem

Given graph generated by Regular Stochastic Block Model, find original partition.

• At the outset $\mathbf{x}_u^{(0)} \sim \text{Unif}(\{-1,+1\}^m)$.

• In each round, the endpoints of the random edge choose a random index $j \in [m]$ and set $\mathbf{x}_{u}(j) = \mathbf{x}_{v}(j) = \frac{\mathbf{x}_{u}(j) + \mathbf{x}_{v}(j)}{2};$

• At the T-th update of j-th component, $u \operatorname{sets} \mathbf{h}_{u}(j) = \operatorname{\mathbf{sgn}}(\mathbf{x}_{u}(j)).$

A Taste of Spectral Analysis

CSL is a **linear** dynamics

$$\mathbf{x}^{(t)} = W^{(t)} \cdot \mathbf{x}^{(t-1)} = (W^{(t)} \cdots W^{(1)}) \cdot \mathbf{x}^{(0)}$$

$$\mathbf{E}[W] = I(1 - \frac{1}{n}) + \frac{1}{n}P$$

 P matrix of random walk on G

