METODY NUMERYCZNE – LABORATORIUM

Zadanie 1 – Metody rozwiązania równań nieliniowych

Opis rozwiązania

W zadaniu zostały wykorzystane 2 metody, metoda bisekcji oraz reguła falsi. Metoda równego podziału (bisekcji) jak sama nazwa wskazuje dzieli podany przedział na 2 równe połowy i wybiera tą, w której krańce osiągają wartości różnych znaków a uznaje program za zakończony jeżeli osiągnięty przedział jest mniejszy niż przyjęta dokładność epsilon.

Algorytm bisekcji:

- 1. Sprawdzenie, czy pierwiastkiem równania jest punkt $x_1 = \frac{a+b}{2}$, czyli czy $f(x_1) = 0$ Jeżeli tak jest algorytm kończy działanie, a punkt x_1 jest szukanym miejscem zerowym.
- 2. W przeciwnym razie, dopóki nie osiągniemy żądanej dokładności, czyli dopóki $|a-b|>\varepsilon$:
 - 1. Zgodnie ze wzorem z punktu pierwszego ponownie wyznaczane jest x_1 , dzieląc przedział [a,b] na dwa mniejsze przedziały: $[a,x_1]$ i $[x_1,b]$
 - 2. Wybierany jest przedział o znaku przeciwnym niż X_1 i odpowiednio górny albo dolny kraniec przedziału (b albo a) przyjmuje wartość X_1 , tj.
 - 1. Jeżeli $f(x_1)f(a)<0$, to b= x_1
 - 2. Jeżeli $f(x_1)f(b)<0$, to $a=x_1$
- 3. Po osiągnięciu żądanej dokładności algorytm kończy działanie, a szukany pierwiastek równania wynosi $\frac{a+b}{2}$

Reguła falsi również dzieli podany przedział na coraz mniejsze, lecz kolejne ograniczenia przedziałów wyliczane są poprzez wyprowadzanie cięciwy między krańcowymi punktami i również wybiera przedział z krańcami o wartościach z przeciwnymi znakami.

Regula falsi:

- 1. Na początku przez punkty A = (a, f(a)) i B = (b, f(b)) przeprowadzana jest cięciwa.
- 2. Punkt przecięcia X_1 z osią OX jest brany jako pierwsze przybliżenie pierwiastka.
- 3. Jeśli to przybliżenie jest wystarczająco dobre, algorytm kończy się.
- 4. Jeśli nie, to prowadzona jest cięciwa przez punkty $(x_1, f(x_1))$ oraz A lub B wybierany jest ten punkt, którego rzędna ma znak przeciwny do $f(x_1)$ Jednak w praktyce, dzięki ograniczeniu nr 3 już na początku algorytmu wiadomo, który z tych punktów będzie stały, tzn. wybierany za każdym razem.
- 5. Następnie wyznaczane jest przecięcie nowo wyznaczonej cięciwy z osią OX (X_1) i algorytm powtarza się.

WynikiPoniższa tabela przedstawia wyniki badań dla epsilona = 0.00000001, i max 100 iteracji.

Funkcja	Pocza_	Konie_	Wyn_reg_fal	Ite_reg_fal	Wyn_met_bis	Ite_met_bis
	zakresu	zakresu				
x^2-2	0	5	1.41421356	36	1.414213562	29
x^2-2	0	15	1.414213545	100	1.414213562	29
x^2-2	0	2	1.414213561	12	1.414213561	28
$\sin(x) - 2\cos(x)$	0	4	1.107148718	6	1.107148722	28
$\sin(x) - 2\cos(x)$	0	8	7.390334025	6	1.107148722	29
$\sin(x) - 2\cos(x)$	1	2	1.107148718	3	1.107148722	26
$x^3 - 28x^2 + 5x + 12$	0	2	0.7618446454	29	0.7618446457	32
$x^3 - 28x^2 + 5x + 12$	0	5	0.7618446454	68	0.7618446456	33
$x^3 - 28x^2 + 5x + 12$	0.6	1	0.7618446455	11	0.7618446454	28

Poszukiwanie miejsca zerowego za pomoca reguly falsi 1.5 1 0.5 -0.5 -1 -1.5 2 0 0.5 1 1.5 2

Ilustracja 1: x^2-2

Ilustracja 3: $x^3 - 28x^2 + 5x + 12$

Wnioski

- 1. Reguła falsi w ogólnym przypadku jest szybsza od metody bisekcji.
- 2. W przypadku, gdy epsilon jest bardzo mały reguła falsi bywa kłopotliwa (widać to w 2 przypadku, gdzie połączenie dużego zakresu z małym błędem powoduje, iż reguła falsi nie daje wystarczająco dokładnego wyniku nawet przy 100 iteracjach)
- 3. Na liczbę iteracji dla metody bisekcji zakres badania ma mniejszy wpływ niż przy użyciu reguły falsi.