

ANÁLISE DO CONSUMO ENERGÉTICO DE REFRIGERADORES

Aluno: Elvis Fernandes

Orientador: Mauro Tavares Peraça, Dr. Eng.

Corientador: Clóvis Antônio Petry, Dr. Eng.

Florianópolis, 2025

SUMÁRIO

- 1) Introdução
- 1.1) Problema de Pesquisa
- 1.2) Justificativa
- 1.3) Objetivos
- 1.3.1) Objetivo Geral
- 1.3.2) Objetivos Específicos
- 2) Desenvolvimento
- 3) Metodologia
- 4) Análise e Discussão dos Resultados
- 5) Conclusão

1.1) Problema de Pesquisa

Evitar o desperdício de energia em refrigeradores e preservar os recursos energéticos.

1.2) Justificativa

Em geral, os refrigeradores não possuem um sistema de monitoramento capaz de medir o consumo de energia, a temperatura, e a abertura de portas e que faça conexão com computador e com *smartphone* para analisar os dados a fim de avaliar o seu desempenho energético.

1.3) Objetivos

1.3.1) Objetivo Geral

O objetivo geral deste projeto é desenvolver um sistema de monitoramento energético para refrigeradores, com capacidade de medição de energia e temperatura.

1.3.2) Objetivos Específicos

- a) medir o consumo energético do refrigerador;
- b) analisar o consumo ao longo do tempo para detectar tendências e padrões, a fim de detectar anomalias ou necessidades de otimização;
- c) medir a temperatura interna do refrigerador e a temperatura ambiente;

1.3.2) Objetivos Específicos

- d) analisar ao longo do tempo se a temperatura do refrigerador está dentro dos parâmetros aceitáveis e se ela influencia no consumo de energia;
- e) enviar os dados do consumo energético e da temperatura para um aplicativo de celular;
- f) desenvolver um *software* que receba os dados de medição, configure parâmetros e faça alertas.

Fatores que podem afetar o desempenho do consumo energético de refrigeradores:

- □ Temperatura(interna e ambiente);
- □Quantidade de abertura de portas;
- □ Estado de conservação.
- A maioria dos refrigeradores não possui um sistema de monitoramento que possibilite acompanhar o consumo energético e isso dificulta a identificação de desperdícios e a implementação de estratégias de economia de energia.

Parâmetros coletados e processados para poder calcular o **consumo energético** e fazer uma **estimativa do custo**:

- Sensor de Energia (Tensão, Corrente, Potência Ativa, Frequência e Fator de Potência);
- Sensores de Temperatura (Interna e Ambiente);
- Sensor de Porta;
- □ Comunicação (Bluetooth e USB);
- Microcontrolador

☐ É levado em consideração durante os testes a precisão e a eficiência do protótipo, visando validar a proposta bem como sugerir melhorias futuras.

□ Este estudo visa evitar o desperdício de energia em refrigeradores e preservar os recursos energéticos, bem como melhorar o gerenciamento de energia e a tomada de decisões sustentáveis.

2) DESENVOLVIMENTO

Revisão bibliográfica

- ☐ corrente elétrica;
- □ corrente alternada (CA);
- ☐ tensão ou diferença de potencial;
- □ potência;
- energia;
- senóide;
- ☐ função periódica;
- defasagem;

2) DESENVOLVIMENTO

Revisão bibliográfica

- fasores
- potência média;
- valor RMS ou eficaz;
- potência aparente;
- ☐ fator de potência;
- potência complexa;
- □ medição de potência;
- o custo do consumo de energia elétrica;
- □ interface SPI.

- Revisão bibliográfica e análise os parâmetros e as diretrizes referentes ao projeto;
- 2) Escolher e montar os componentes;
- 3) Gravar o firmware (arduino UNO);
- 4) Testes unitários (arduino UNO);
- 5) Teste de integração (arduino UNO);
- 6) Validar os objetivos específicos de cada componente(arduino UNO);
- 7) Montagem do *hardware* em uma *PCB* em forma de um protótipo;

- 8) Gravar o firmware (PCB);
- 9) Testes unitários (PCB);
- 10) Teste de integração (PCB);
- 11) Validar os objetivos específicos de cada componente(*PCB*);
- 12) Coletar os dados via smartphone e PC;
- 13) Registrar os dados;
- 14) Calcular a energia consumida e o custo.

PCB - DIAGRAMA DE BLOCOS

PCB - ESQUEMÁTICO

PCB - Placa de Circuito Impresso

Integração dos componentes na PCB

4.1 Teste de Comunicação entre PCB e Software

4.2 Teste de Cadastro de Refrigerador

Cadastro de Refrigeradores		_	0	×
	Cadastrar Refrigerado	4		
			Tì	
niciar Teste	Iniciar Teste Personalizado			

Cadastrar Refrigerado	or .	-		×
Nome:				
Modelo:				
Capacidade (L):				
Salvar	Cance	lar		
Editar Refrigerador	Excluir Refr	igerado	r	

Cadastrar Refrigerador		100			×
Nome:	Nome: Continental-Electrolux		ç		
Modelo:	TC44	TC44			
Capacidade (L):	394			Ŧ	
Salvar		Cancelar			
Editar Refrigerador	Exclu	iir Refrige	rador		

4.2 Teste de Cadastro de Refrigerador

4.3 Teste de Refrigerador Cadastrado

4.3 Teste de Refrigerador Cadastrado

4.3 Teste de Refrigerador Cadastrado

4.3 Teste de Comunicação de Dados com o smartphone

4.3 Teste de Comunicação de Dados com o smartphone

4.3 Teste de Comunicação de Dados com o smartphone

4.3 Teste de Comunicação de Dados com o Smartphone

Setup de testes

4.4 Testes de *Software* - Por uma hora não abrir a porta

4.4 Testes de *Software* - Por uma hora não abrir a porta

4.4 Testes de *Software* - Por uma hora, abrir a porta 3 vezes por 1 minuto

4.4 Testes de *Software* - Por uma hora, abrir a porta 3 vezes por 1 minuto

4.4 Testes de *Software* - Por uma hora, abrir a porta a cada 10 minutos por 10 segundos

4.4 Testes de *Software* - Por uma hora não abrir a porta

Considerações sobre os testes:

A corrente elétrica, a potência ativa e o fator de potência são diretamente proporcionais porque tiveram oscilações sincronizadas ao longo do tempo e nos mesmos instantes de tempo. O gráfico da temperatura interna do refrigerador mostrou que o seu valor decresceu após o acionamento do compressor e cresceu após o processo de degelo a fim de manter a temperatura dentro de uma faixa desejada.

Para os testes com abertura e fechamento de porta a temperatura interna cresceu gradativamente enquanto a porta estava aberta e decresceu gradativamente enquanto estava fechada. Portanto foi possível constatar que a temperatura interna do refrigerador é diretamente proporcional à corrente elétrica, à potência ativa e ao fator de potência.

Considerações sobre os testes:

Com relação ao consumo energético, a frequência de abertura de porta fez aumentar o consumo energético. Com o compressor ligado a potência ativa variou de 125 W até 155 W, e em processo de degelo a potência ativa ficou próximo dos 200 W. O refrigerador tem uma potência nominal de 242 W e em degelo de 218 W.

A tensão elétrica, a frequência e a temperatura ambiente tiveram poucas variações e não influenciaram significativamente nos testes.

5) CONCLUSÃO

O relatório gerado no fim dos testes indica que o consumo energético pode variar de acordo com a temperatura interna do refrigerador, com o período de funcionamento do compressor, com o período de processo de degelo e com a frequência da abertura da porta do refrigerador. O software desenvolvido em Python permitiu a conexão com o *hardware* bem como coletar, processar, armazenar, analisar os dados, exibir as informações necessárias e emitir alertas de transições de estados que podem indicar anomalias.

5) CONCLUSÃO

O sensor de energia AC PZEM-004T-100A-V3.0 permitiu a medição de potência ativa e dois sensores de temperatura DS18B20 permitiram as medições da temperatura interna do refrigerador e da temperatura ambiente, além do sensor de porta que permitiu a verificação de abertura e fechamento da porta do refrigerador. A comunicação de dados com o computador foi feita via USB por um cabo USB-TTL enquanto que a comunicação de dados com o *smartphone* foi feita utilizando o módulo *bluetooth* HC-05.

5) CONCLUSÃO

O protótipo pode ser melhorado, e projetado para ter memória interna para poder armazenar os dados em um SD Card, um relógio em tempo real (real-time-clock), um módulo ethernet para que seja possível enviar os dados para uma interface de programação de aplicação (API) via *internet*, um *display* para poder visualizar os dados e adicionar uma bateria ao sistema.

ANÁLISE DO CONSUMO ENERGÉTICO DE REFRIGERADORES

Aluno: Elvis Fernandes

Orientador: Mauro Tavares Peraça, Dr. Eng.

Corientador: Clóvis Antônio Petry, Dr. Eng.

Florianópolis, 2025