

Outline

- **Executive Summary**
- Introduction
- Methodology
- Results
- Discussion
- Conclusion

EXECUTIVE SUMMARY

- Summary of methodologies
 - Data collection
 - Data wrangling
 - Features Selection
 - EDA with data visualization
 - EDA with SQL
 - Interactive map with Folium
 - Dashboard with Plotly Dash
 - Predictive analysis (Classification)
- Summary of all results
 - EDA results
 - Interactive analytics
 - Predictive analysis

INTRODUCTION

Project background and context

SpaceX advertises Falcon 9 rocket launches on its website with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage. Therefore if we can determine if the first stage will land, we can determine the cost of a launch.

Problems I want to find answers

The project task is to predict if the stage of the SpaceX Falcon 9 rocket will land successfully

METHODOLOGY

- Data collection methodology:
 - SpaceX Rest API
 - Web Scraping from Wikipedia
- Data wrangling
 - One hot encoding fields for Machine Learning, cleaning data from null values and irrelevant data
- Perform exploratory data analysis using visualizations and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Building machine learning algorithms using classification methods such as:
 - Logistic Regression
 - K- Nearest Neighbours
 - Support Vector Machine
 - **Decision Trees**

Data collection

The SpaceX launches data was collected from SpaceX API and Wikipedia

- SpaceX API was used to get data about launches, including information about the rocket used, payload delivered, launch specifications, landing specifications, and landing outcome.
 - Wikipedia Web Scraping with BeautifulSoup parsing library gave us more information about launch dates, launch outcomes and payload mass and etc.

SpaceX API Data collection

Interface example

Using SpaceX API interface via requests lib as follows:

"response =
requests.get("https://api.spacexdata.com/v4/r
ockets/"+str(x)).json()"

This function gave us accsess to Booster version of the launches

Data attained

Using the API data access method we got the following data, which was placed into a dataframe:

- Booster Version
- •Launchpad longitude and latitude
- Payload Mass (kg)
- Core data, including:
 - Reuse count
 - Serial number
 - Grid Fins and Legs
 - •Flight number
 - •Etc.

Github publicly opened code with comments:

https://github.com/gavriushkinegor/IBM-Capstone/blob/main/1%20SpaceX%20API.ipynb

Wikipedia Data collection with BeautifulSoup library

```
static url = "https://en.wikipedia.org/w/index.php?title=List of Falcon 9 and Falcon Heavy launches&oldid=1027686922"
# use requests.get() method with the provided static url
# assign the response to a object
response = requests.get(static url)
launch dict= dict.fromkeys(column names)
# Remove an irrelvant column
del launch dict['Date and time ( )']
# Let's initial the launch dict with each value to be an empty list
launch dict['Flight No.'] = []
launch dict['Launch site'] = []
launch dict['Payload'] = []
launch dict['Payload mass'] = []
launch dict['Orbit'] = []
launch dict['Customer'] = []
launch dict['Launch outcome'] = []
# Added some new columns
launch dict['Version Booster']=[]
launch dict['Booster landing']=[]
launch dict['Date']=[]
launch dict['Time']=[]
column names = []
first launch table.find all('th')
for name in first launch table.find all('th'):
    if name is not None and len(name) > 0:
        column names.append(extract column from header(name))
extracted row = 0
```

Using requests lib we were able to:

- Fetch data from Wikipedia tables
- Find and process desired tables via BS4 lib using final_all()
- Using python code we managed to fill our dataframe with desired information

Github publicly opened code with comments:

https://github.com/gavriushkinegor/IBM-

Capstone/blob/main/2%20SpaceX%20Data%20Collection.ipynb

Data Wrangling EDA Algorithm

SQL Database Findings & Implications

Short overview of the process

- SQLite used to work in Jupyter NB environment
- 1. Identifying unique launch sites in the space mission:
- 2. Display the total payload mass carried by boosters launched by NASA (CRS)
 - %sql SELECT SUM(PAYLOAD_MASS__KG_) FROM SPACEXTBL WHERE CUSTOMER = 'NASA (CRS)'
- 3. Rank the count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017
- %%sql SELECT "DATE", COUNT("LANDING _OUTCOME") AS Successfull_outcomes_count FROM SPACEXTBL WHERE substr(Date,7,4) || substr(Date,4,2) || substr(Date,1,2) between '20100604' and '20170320'AND "LANDING _OUTCOME" LIKE '%Success%' GROUP BY "DATE"
 ORDER BY COUNT("LANDING OUTCOME") DESC

Github publicly opened code with comments:

https://github.com/gavriushkinegor/IBMCapstone/blob/main/4%20jupyter-labs-eda-sql-coursera_sqllite.ipynb

EDA With Data Visualization

<u>Launch outcome class 0 (blue) – Failure</u> <u>Launch outcome class 1 (orange) - Success</u>

EDA With Data Visualization pt.2

Success rate evaluated to years of launches

Build Interactive Map with Folium

Key findings

- 1) Launch sites are quite close to railways (1.3km)
- 2) Launch sites are quite close to highways (0.6km)
- 3) Launch sites are quite close to coastlines (0.86km)
- 4) Launch sites are pretty far from cities (51.4km)

Github publicly opened code with comments:

https://github.com/gavriushkinegor/IBM-

<u>Capstone/blob/main/6%20Interactive%20Visual%20Analytics%20with%</u>

20Folium%20lab%20lab jupyter launch site location.ipynb

Alternative link with NBViewer(many browsers don't work with Folium)

https://nbviewer.org/github/gavriushkinegor/IBM-

Capstone/blob/main/6%20Interactive%20Visual%20Analytics%20with%

20Folium%20lab%20lab jupyter launch site location.ipynb

Map markers added and clustered in order to visualize launch sites, outcome of the launch. Folium map also allowed us to calculate distance between Launch site and vital infrastructure such as highways, railways, cities.

IBM Developer

Build a dashboard with Plotly Dash

Feature Selection and evaluation

As a part of a research, I wanted to evaluate the weight and the importance of the features selected.

I used 3 methods of estimating feature importance. Let me also give you a short summary about each of them.

• Univariate selection - Statistical tests can be used to select those features that have the strongest relationship with the output variable. The scikit-learn library provides the SelectKBest class that can be used with a suite of different statistical tests to select a specific number of features. This method is based on chi2 evaluation for each feature in our dataset towards the independent feature, which is a class (or launch outcome, where class 0 is failure and class 1 is success) in our case.

This method was the method of choice when building our model.

- **Feature Importance** You can get the feature importance of each feature of your dataset by using the feature importance property of the model. Feature importance gives you a score for each feature of your data, the higher the score more important or relevant is the feature towards your output variable.
- Correlation Matrix with Heatmap (more information in discussion section)
 Interesing results were also achieved using Correlation Matrix with Heatmap.
 Let me tell you a bit more about this method.

Github publicly opened code with comments:
https://github.com/gavriushkinegor/IBMCapstone/blob/main/Feature%20Importance%20Evalu
ation.ipynb

- Correlation states how the features are related to each other or the target variable.
- Correlation can be positive (increase in one value of feature increases the value of the target variable) or negative (increase in one value of feature decreases the value of the target variable)
- Heatmap makes it easy to identify which features are most related to the target variable, we will plot heatmap of correlated features using the seaborn library.

Predictive Analysis (Classification)

Builidng a model is crucial and will help us predict if the stage of the SpaceX Falcon 9 rocket will land successfully.

Four classification models were used.

Here is a list of each of them with performance tests.

The metrics chosen for each model are R2 (determination coefficient), Jaccard Score and F1 Score.

Classification model	R2	Jaccard Score	F1 Score
Logistic Regression	0.83	0.8	0.8
SVM	0.84	0.8	0.89
Decision Trees	0.89	0.85	0.91
KNN	0.84	0.8	0.89

Results

- Decision Tree model worked best and outperformed other models, judging by all the metrics used:
 - R2 = 0.89
 - F1 score = 0.91
 - Jaccard score = 0.85
- Low weighted payload launches perform better than heavy weighted payload launches
- The success rate of SpaceX Launches is positively correlated with number of years of which they launch their rockets
- KSC LC39A had the most successful launches comparing to all other sites
- Orbit HEO, LEO, SSO, ES L1 had the highest mission success rate

Insights Drawn

From EDA

Discussion section

Launch Site vs Flight Number

The amount of launches from CCAFS SLC 40 is significantly higher than from other sites

Payload mass vs Launch site

The majority of launches with payload mass from 0 to 7500kg were launched from CCAFS SLC 40 site.

Orbit vs Launch outcome

Launches to orbits
ES-L1, GEO, HEO, SSO
and VLEO are more
likely to have
successful outcomes
than others.

Orbit vs Flight Number

- The amount of launches to VLEO increased over the years and the flight numbers count.
- GTO, PO, ISS AND LEO were the most frequent launches among others

Payload vs Orbit type

- The most popular payload mass for ISS orbit is from 2000kg to 4000kg
- •The most popular payload mass for GTO orbit ranges from 2500kg to 8000kg

Launch success trend over the years

- •After year 2013 the amount of successful launches have grown dramatically
- •From year 2014 to 2015 success rate was stabilized
- Year 2015 and 2016 was very successful in terms of launch outcomes for SpaceX
- •The success rate peaked in year 2019 and is stabilized since then

Unique launch sites in the space mission

```
%sql SELECT DISTINCT LAUNCH SITE FROM SPACEXTBL
```

* sqlite:///my data1.db Done.

Launch_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

Launch sites begin with the string 'CCA'

```
# %sql select * FROM SPACEXTBL WHERE 'LAUNCH_SITE' LIKE 'CCA%' LIMIT 5
%sql SELECT * FROM SPACEXTBL WHERE LAUNCH_SITE LIKE 'CCA%' LIMIT 5
```

Done.

Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing _Outcome
04-06- 2010	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
08-12- 2010	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
22-05- 2012	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
08-10- 2012	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
01-03- 2013	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

^{*} sqlite:///my_data1.db

Total payload mass carried by boosters launched by NASA (CRS)

```
%sql SELECT SUM(PAYLOAD_MASS__KG_) FROM SPACEXTBL WHERE CUSTOMER = 'NASA (CRS)'
#%sql SELECT SUM(PAYLOAD MASS KG ) FROM SPACEXTBL WHERE CUSTOMER LIKE 'NASA%'
```

```
* sqlite:///my data1.db
Done.
```

```
SUM(PAYLOAD_MASS__KG_)
```

45596

Average payload mass carried by booster version F9

v1.1

```
%sql SELECT AVG(PAYLOAD MASS KG ) FROM SPACEXTBL WHERE BOOSTER VERSION = 'F9 v1.1'
```

* sqlite:///my_data1.db Done.

AVG(PAYLOAD_MASS__KG_)

2928.4

The date when the first successful landing outcome in ground pad was acheived

```
#%sql SELECT MIN(DATE) FROM SPACEXTBL WHERE Landing _Outcome = 'Success (ground pad)'
%sql SELECT min(DATE) FROM SPACEXTBL WHERE "Landing _Outcome" = 'Success (ground pad)'
```

* sqlite:///my_data1.db Done.

01-05-2017

The names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

```
%sql SELECT "Booster_Version" FROM SPACEXTBL WHERE PAYLOAD_MASS__KG_ > '4000' AND PAYLOAD_MASS__KG_ < '6000' AND "LANDING _OUTCO

* sqlite:///my_data1.db
Done.

Booster_Version
    F9 FT B1022
    F9 FT B1021.2
    F9 FT B1031.2</pre>
```

The total number of successful and failure mission outcomes

```
%sql SELECT COUNT(*) FROM SPACEXTBL WHERE Mission_Outcome LIKE '%Success%' OR Mission_Outcome LIKE '%Failure%'
    * sqlite://my_data1.db
Done.
COUNT(*)
    101
```

The names of the booster versions which have carried the maximum payload mass

```
# %sql SELECT "BOOSTER_VERSION" FROM SPACEXTBL WHERE (SELECT MAX(PAYLOAD_MASS__KG_) FROM SPACEXTBL)
%sql SELECT "BOOSTER_VERSION" FROM SPACEXTBL WHERE PAYLOAD_MASS__KG_ = (SELECT MAX(PAYLOAD_MASS__KG_) FROM SPACEXTBL)
```

* sqlite:///my_data1.db Done.

Booster_Version F9 B5 B1048.4 F9 B5 B1049.4 F9 B5 B1051.3 F9 B5 B1056.4 F9 B5 B1048.5 F9 B5 B1051.4 F9 B5 B1049.5 F9 B5 B1060.2 F9 B5 B1058.3 F9 B5 B1051.6 F9 B5 B1060.3 F9 B5 B1049.7

Month names, outcomes in drone ship ,booster versions, launch site for the months in year 2015

```
%%sql SELECT substr(Date, 4, 2) as month, booster version, "Landing Outcome"
from SPACEXTBL where "Landing Outcome"
='Failure (drone ship)' and substr(Date,7,4)='2015'
```

```
* sqlite:///my data1.db
Done.
```

month	Booster_Version	Landing _Outcome
01	F9 v1.1 B1012	Failure (drone ship)
04	F9 v1.1 B1015	Failure (drone ship)

Ranking the count of successful landing outcomes between the date 04-06-2010 and 20-03-2017 in descending order

```
%%sql SELECT "DATE", COUNT("LANDING _OUTCOME") AS Successfull_outcomes_count FROM SPACEXTBL
     WHERE substr(Date,7,4) || substr(Date,4,2) || substr(Date,1,2) between '20100604'
and '20170320'AND "LANDING _OUTCOME" LIKE '%Success%'
     GROUP BY "DATE"
     ORDER BY COUNT("LANDING _OUTCOME") DESC
```

* sqlite:///my_data1.db Done.

Date	Successfull	outcomes	count

27-05-2016	1
22-12-2015	1
19-02-2017	1
18-07-2016	1
14-08-2016	1
14-01-2017	1
08-04-2016	1
06-05-2016	1

All launches sites marked on a map

Marking the success/failed launches for each site on the map

Distances between a launch site to the coast

Sega? Not really.
Interactive plots with Plotly Dash

Total Success by all launches

Success rate by site

Success rate based on payload mass

Payload range (Kg):

Low weighted payload 0 – 4000kg

Payload range (Kg):

Success count on Payload mass for all sites

Heavy weighted payload 4000-10000kg

We can observe that low weighted payload lunches have a higher success rate

Feature Selection and evaluation

As a part of a research, I wanted to evaluate the weight and the importance of the features selected.

I used 3 methods of estimating feature importance. Let me also give you a short summary about each of them.

• **Univariate selection** - Statistical tests can be used to select those features that have the strongest relationship with the output variable. The scikit-learn library provides the SelectKBest class that can be used with a suite of different statistical tests to select a specific number of features. This method is based on chi2 evaluation for each feature in our dataset towards the independent feature, which is a class (or launch outcome, where class 0 is failure and class 1 is success) in our case.

This method was the method of choice when building our model.

- **Feature Importance-** You can get the feature importance of each feature of your dataset by using the feature importance property of the model. Feature importance gives you a score for each feature of your data, the higher the score more important or relevant is the feature towards your output variable.
- Correlation Matrix with Heatmap (more information below)

Interesing results were also achieved using Correlation Matrix with Heatmap.

Let me tell you a bit more about this method.

- Correlation states how the features are related to each other or the target variable.
- Correlation can be positive (increase in one value of feature increases the value of the target variable) or negative (increase in one value of feature decreases the value of the target variable)
- Heatmap makes it easy to identify which features are most related to the target variable, we will plot heatmap of correlated features using the seaborn library.

Univariative selection

Finally, let's take a look of a top 10 most important feature scores

```
print(featurescores.nlargest(10, 'Score'))
                                Feature
                                                Score
                            PayloadMass 12851.122424
                           FlightNumber
                                           215.658242
                            ReusedCount
                                            34.231544
                             Legs False
81
                                           32.236842
                         GridFins False
77
                                            28.900000
                                  Block
                                            11.200000
82
                              Legs True
                                             8.626761
78
                          GridFins True
                                             8.257143
    LandingPad 5e9e3032383ecb6bb234e7ca
                                             5.714286
    LandingPad 5e9e3032383ecb761634e7cb
                                             4.000000
```

This are the features that will help us develop the most optimal model

Correlation Matrix with Heatmap

1.00

0.75

0.50

0.25

- 0.00

- -0.25

-0.50

-0.75

- •Using Heatmap correlation matrix we can observe features that have a correlation with class feature.
- •Class is a feature that predicts if the outcome will be successful or not.
- •Every Feature that has an index higher that 0.2 is considered to have string correlation with launch outcome.
- •This analysis was done in order to optimize our future classification models, which will give us a prediction, whether a launch outcome of SpaceX rocket will be successful

Predictive Analysis (Classification)

Four classification models were used.

Here is a list of each of them with performance tests.

The metrics chosen for each model are R2 (determination coefficient), Jaccard Score and F1 Score.

Classificatio n model	R2	Jaccard Score	F1 Score
Logistic Regression	0.83	0.8	0.8
SVM	0.84	0.8	0.89
Decision Trees	0.89	0.85	0.91
KNN	0.84	0.8	0.89

Let's take a closer look
with matplotlib
visualizations on each
metric of each model
compared to others
(see next slides)

R2 score Evaluation of the model

R2 Score for Decision trees beats all other models using this metric

Jaccard index Evaluation of the model

Jaccard Index for
Decision tree beats all
other models using this
metric as well

F1 score Evaluation of the model

Conclusion

- Decision Tree model worked best and outperformed other models, judging by all the metrics used:
 - R2 = 0.89
 - F1 score = 0.91
 - Jaccard score = 0.85
- Low weighted payload launches perform better than heavy weighted payload launches
- The success rate of SpaceX Launches is positively correlated with number of years of which they launch their rockets
- KSC LC39A had the most successful launches comparing to all other sites
- Orbit HEO, LEO, SSO, ES L1 had the highest mission success rate

