MATH 8510, Abstract Algebra I

Fall 2016

Exercises 10-1

Name: Shuai Wei

Collabrators: Xiaoyuan Liu, Daozhou Zhu

Exercise 1. Let R be a commutative ring with identity, and let $f = \sum_{i=0}^{n} r_i X^i \in$ R[X].

(a) Prove that f is nilpotent in R[X] if and only if all of its coefficients r_0, \ldots, r_n are nilpotent, that is, $f \in N(R[X])$ if and only if $r_0, \ldots, r_n \in N(R)$.

Proof. Since R is CRW1, R[x] is CRW1.

Then by the conclusion from Exercise 10-2#2(a), $N(R[x]) \leq R[x]$.

"\(\)". Assume $r_i \in N(R)$ for $i = 1, 2, \dots, n$.

Since $R \subset R[x]$, we have $N(R) \subset N(R[x])$.

For $i = 1, 2, \dots, n$, since $r_i \in N(R) \subseteq N(R[x])$, and $x^i \in R[x]$,

by the definition of the ideal, we have

$$r_i x^i \in N(R[x]).$$

Since N(R[x]) is closed under addition,

$$\sum_{i=1}^{n} r_i x^i \in N(R[x]).$$

" \Rightarrow ". We will show it by induction.

Let $f = a_R \in R \subset R[x]$.

If $f \in N(R[x])$, it is obvious that the coefficient $a \in N(R)$.

Assume for any $f = \sum_{i=0}^{n} r_i x^i \in N(R[x])$, where $r_i \in R$ and $r_n \neq 0_R$, then $r_i \in N(R)$ for $i = 1, 2, \dots, n$. Let $g = \sum_{i=0}^{n+1} s_i x^i \in N(R[x])$, where $s_i \in R$ and $s_{n+1} \neq 0_R$. Then $\exists m \in \mathbb{N}$ such that $g^m = 0$.

$$0 = g^{m}$$

$$= \left(\sum_{i=0}^{n+1} s_{i} x^{i}\right)^{m}$$

$$= \left(\sum_{i=0}^{n} s_{i} x^{i} + s_{n+1} x^{n+1}\right)^{m}$$

$$= s_{n+1}^{m} x^{mn+m} + \sum_{j=0}^{m} {m \choose j} \left(\sum_{i=0}^{n} s_{i} x^{i}\right)^{j} \left(s_{n+1} x^{n+1}\right)^{m-j}.$$

The degree of $\sum_{j=0}^{m} {m \choose j} \left(\sum_{i=0}^{n} s_i x^i\right)^j \left(s_{n+1} x^{n+1}\right)^{m-j}$ is mn+m-1, which is less than the degree of $s_{n+1}x^{mn+m}$. So

$$s_{n+1}^m = 0.$$

Thus,

$$s_{n+1} \in N(R)$$
.

Then

So

$$0 = g^m = \left(\sum_{i=1}^n s_i x^i\right)^m \in N(R[x]).$$

So by the assumption, we have for $i = 1, 2, \dots, n$,

$$s_i \in N(R)$$
.

Therefore, when $g = \sum_{i=1}^{n+1} s_i x^i \in N(R[x])$, $s_i \in N(R)$ for $i = 1, 2, \dots, n+1$. As a result, our assumption also holds when $g \in R[x]$ and $\deg(g) = n+1$. Thus, for any $f = \sum_{i=1}^{n} r_i x^i \in N(R[x])$, we have $r_i \in N(R)$ for $i = 1, 2, \dots, n$.

(b) Prove that f is a unit in R[X] if and only if r_0 is a unit in R and r_1, \ldots, r_n are nilpotent in R.

Proof. " \Rightarrow ". Assume r_0 is a unit in R and $r_1, \dots, r_n \in N(R)$. Since r_1, \dots, r_n are nilpotent, by the conclusion from Exercise 11-1#1(a),

$$\sum_{i=1}^{n} r_i x^i \in N(R[x]).$$

Since $r_0 \in R^{\times} \subset (R[x])^{\times}$ by what we have shown in class, using the conclusion from Exercise 11-1#1(a), we have

$$r_0 + \sum_{i=1} r_i x^i \in (R[x])^{\times}.$$

Since R is CRW1, there exists multiplicative identity 1_R , then $x^0 = 1_R$ for any $x \in R$.

$$r_0 = r_0 x^0.$$

By the associative law of multiplication of R[x], we have

$$f = \sum_{i=0}^{n} r_i x^i \in (R[x])^{\times}.$$

"\(=\)". Assume $f \in (R[x])^{\times}$.

We will show it by induction.

Let $g = \sum_{j=0}^{p} s_j X^j$ be the non-zero multiplicative inverse for f.

We claim for
$$0 \le q \le p-1$$
, we have $r_n^{q+1} s_{p-q} = 0$.
Since $fg = \left(\sum_{i=0}^n r_i x^i\right) \left(\sum_{j=0}^p s_j x^j\right) = 1$,

$$r_n s_n = 0$$

Then we have shown the basic case for q = 1 holds.

Inductive step: Consider the case $p-1 \ge k \ge 0$ and $k \in \mathbb{N}$.

Assume for $0 \le q \le k$, we have $r_n^{q+1} s_{p-q} = 0$, where $p-2 \ge k \ge 0$ and $k \in \mathbb{N}$.

Since $fg = \left(\sum_{i=0}^{n} r_i x^i\right) \left(\sum_{j=0}^{p} s_j x^j\right) = 1$, the coefficient of x^{n+k-q} satisfies

$$r_{n-q-1}s_{k+1} + r_{n-q}s_k + \dots + r_{n-1}s_{k+1-q} + r_ns_{k-q} = 0.$$

Since R is CRW1, its multiplication is commutative.

Multiply by r_n^{q+1} on both sides of the above equation,

$$r_{n-q-1}r_n^{q+1}s_{k+1} + r_{n-q}r_n^{q+1}s_k + \dots + r_{n-1}r_n^{q+1}s_{k+1-q} + r_n^{q+2}s_{k-q} = 0.$$

Namely.

$$(r_{n-q-1}r_n^q)(r_ns_{k+1}) + (r_{n-q}r_n^{q-1})(r_n^2s_k) + \dots + (r_{n-1}r_n^0)(r_n^{q+1}s_{k+1-q}) + r_n^{q+2}s_{k-q} = 0.$$

By assumption, for $0 \le q \le k-1$, we have $r_n^{q+1} s_{k+1-q} = 0$.

Then

$$(r_{n-q-1}r_n^q) 0 + (r_{n-q}r_n^{q-1}) 0 + \dots + (r_{n-1}r_n^0) 0 + r_n^{q+2}s_{k-q} = 0.$$

So

$$r_n^{q+2}s_{k-q} = 0.$$

Thus, for $0 \le q \le k$, we have $r_n^{q+1} s_{k+1-q} = 0$. Therefore, for $0 \le q \le p-1$, we have $r_n^{q+1} s_{p-q} = 0$.

Assume $r_n^{k} \neq 0$ for $k = 1, 2, \dots, p$, then $s_1, s_2, \dots, s_p = 0$.

$$fg = \left(\sum_{i=0}^{n} r_i x^i\right) s_0 = \sum_{i=0}^{n} s_0 r_i x^i = 1.$$

Since $g = s_0 \neq 0$, we have $r_0 = 0$, which is a contradiction since $r_0 \in R$ is

So $\exists 0 \le q \le p-1$ such that $r_n^{q+1} = 0$.

Thus,

$$r_n \in N(R)$$
.

Then by the conclusion from Exercise 11-1#1(a), $r_n x^n \in N(R[x])$.

N(R[x]) is a subring of R[x], so N(R[x]) is closed under taking inverses.

$$-r_nx^n \in N(R[x]).$$

Since $\sum_{i=0}^{n} r_i x^i \in (R[x])^{\times}$, by the conclusion from Exercise 10-2#2(c),

$$\sum_{i=0}^{n} r_i x^i + (-r_n x^n) = \sum_{i=0}^{n-1} r_i x^i \in (R[x])^{\times}.$$

We will show the $r_i \in N(R)$ by induction for $i = 1, 2 \cdots, n - 1$.

Assume $\sum_{i=0}^{k} r_i x^i \in (R[x])^{\times}$, where $1 \leq k \leq n$.

We have just shown the basic case of $r_n \in N(R)$.

Then when k < n, repeat the totally same process we find $r_k \in N(R)$ and $\sum_{i=0}^{k-1} r_i x^i \in (R[x])^{\times}.$

So our assumption also holds for the k-1 case.

Thus, $r_i \in N(R)$ for $i = 1, 2, \dots, n$.