Topología

- 1) Razónese si las siguientes afirmaciones son verdaderas o falsas (dando una breve prueba o un contraejemplo).
 - a) $Int(A \cup B) = Int(A) \cup Int(B)$.
 - **b)** $\operatorname{Int}(\operatorname{Fr}(A)) = \emptyset$.
- c) La función $f:(X,\mathcal{T}_1) \longrightarrow (X,\mathcal{T}_2)$ dada por f(x)=x es continua si \mathcal{T}_1 es más fina que \mathcal{T}_2 .
- d) Si \mathcal{B} es una base de una topología \mathcal{T} , entonces para cualquier $\mathcal{U} \in \mathcal{T}$, se tiene que $\widetilde{\mathcal{B}} = \mathcal{B} \cup \{\mathcal{U}\}$ genera la misma topología \mathcal{T} .

2)

- a) Dada una función continua $f:(X,\mathcal{T}_1)\longrightarrow (Y,\mathcal{T}_2)$ se llama grafo de f al espacio $\Gamma=\{(x,f(x))\in X\times Y\}$ con la topología inducida por la producto en $X\times Y$. Demuéstrese que X y Γ son homeomorfos.
- b) Pruébese que el conjunto $M = \{(x, y) \in \mathbb{R}^2 : y = x^2\}$ con la topología inducida por la usual de \mathbb{R}^2 , es homeomorfo a \mathbb{R} .
 - c) Dada la función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por

$$f(x) = \begin{cases} 2x & \text{si } x \in (-\infty, 0] \\ 3x & \text{si } x \in [0, \infty) \end{cases}$$

estúdiese si f es continua.

Soluciones

- 1) (Puntuación: 1'25 + 1'25 + 1'25 + 1'25).
- a) Falsa. Contraejemplo: $A=(0,1],\ B=(1,2)$ en $\mathbb R$ con la topología usual.

 $\operatorname{Int}(A) = (0,1); \ 1 \notin \operatorname{Int}(A) \text{ porque } 1 \in (a,b) \implies b > 1 \implies (a,b) \not\subset A.$

Int(B) = B; porque B es abierto.

 $\operatorname{Int}(A \cup B) = A \cup B$; porque $A \cup B$ es abierto.

Así que $1 \in Int(A \cup B)$ pero $1 \notin Int(A) \cup Int(B)$.

- b) Falsa. Contraejemplo: $A = \mathbb{Q}$ en \mathbb{R} con la topología usual.
- $\operatorname{Fr}(A) = \overline{A} \operatorname{Int}(A) = \mathbb{R}$; porque $\overline{A} = \mathbb{R}$, ya que todo entorno contiene puntos racionales, mientras que $\operatorname{Int}(A) = \emptyset$, ya que cualquier entorno tiene puntos irracionales y por tanto no está contenido en A.
- c) Verdadera. Demostración: \mathcal{T}_1 más fina que $\mathcal{T}_2 \Rightarrow \mathcal{T}_1 \supset \mathcal{T}_2$. Bajo esta hipótesis, $\mathcal{U} \in \mathcal{T}_2 \Rightarrow f^{-1}(\mathcal{U}) = \mathcal{U} \in \mathcal{T}_1$, y por tanto f es continua.
- d) Verdadera. Demostración: Sea $\widetilde{\mathcal{T}}$ la topología generada por $\widetilde{\mathcal{B}}$. Hay que probar $\widetilde{\mathcal{T}} = \mathcal{T}$.
- \supset) Esto equivale a demostrar que $\forall B(x) \in \mathcal{B} \ \exists \widetilde{B}(x) \in \widetilde{\mathcal{B}} \ \text{con} \ \widetilde{B}(x) \subset B(x)$. Para ello basta tomar $\widetilde{B}(x) = B(x)$.
- \subset) Esto equivale a demostrar que $\forall \widetilde{B}(x) \in \widetilde{\mathcal{B}} \exists B(x) \in \mathcal{B} \text{ con } B(x) \subset \widetilde{B}(x)$. Para ello, si $\widetilde{B}(x) \neq \mathcal{U}$ se toma $B(x) = \widetilde{B}(x)$, y si $\widetilde{B}(x) = \mathcal{U}$, algún $B(x) \subset \mathcal{U}$, (siempre existe por ser \mathcal{U} abierto en la topología generada por \mathcal{B}).

Errores comunes:

General: Los espacios topológicos no son en general métricos, por lo que argumentos del tipo "consideramos una bola de radio ϵ en un espacio topológico" no son genéricos.

- <u>a)</u> $\mathcal{U} \subset A \cup B \not\Rightarrow \mathcal{U} \subset A$ ó $\mathcal{U} \subset B$. Por ejemplo, tómese $\mathcal{U} = (0,3)$, $A = (-\infty, 2)$ y $B = (1, \infty)$.
- b) La propiedad $\operatorname{Int}(\overline{A}) = \operatorname{Int}(A)$ no es cierta. Por ejemplo, con la usual en $\overline{\mathbb{R}}$ y $A = \mathbb{Q}$, el primer conjunto es el total y el segundo el vacío.
- d) Muchos confunden \mathcal{B} con \mathcal{T} y con sus elementos. Una base de una topología está típicamente formada por sólo algunos abiertos (elementos) de \mathcal{T} , y \mathcal{B} no tiene por qué satisfacer las propiedades de topología.

- **2)** (Puntuación: 2 + 2 + 1).
- a) Sea $h: \Gamma \longrightarrow X$ dada por h(x, f(x)) = x. Esta función es continua, lo cual se puede probar por ejemplo:

<u>Directamente</u>: $\mathcal{U} \in \mathcal{T}_1 \Rightarrow h^{-1}(\mathcal{U}) = (\mathcal{U} \times Y) \cap \Gamma$, que es abierto en la inducida (un producto de dos abiertos intersecado con el subespacio).

<u>Usando resultados conocidos</u>: $h = \pi_1 \circ j$ donde $j : \Gamma \longrightarrow \mathbb{R}^2$ es la inclusión y π_1 la proyección sobre la primera coordenada. Se sabe que ambas son continuas.

Sea $g: X \longrightarrow \Gamma$ dada por g(x) = (x, f(x)), se cumple $g \circ h = \mathrm{Id}_{\Gamma}$ y $h \circ g = \mathrm{Id}_{X}$, esto es, g es la inversa de h (en particular h es biyectiva por tener inversa). Como antes se puede probar la continuidad de g directamente o apelando a resultados conocidos. Para lo primero basta usar que si $\mathcal{U} \in \mathcal{T}_1$, $\mathcal{V} \in \mathcal{T}_2$, se cumple $g^{-1}((\mathcal{U} \times \mathcal{V}) \cap \Gamma) = \mathcal{U} \in \mathcal{T}_1$.

b) Aplíquese el apartado anterior con $X = \mathbb{R}$, $Y = \mathbb{R}$, $f(x) = x^2$ y las topologías usuales.

Sin usar dicho apartado, se puede definir directamente el homeomorfismo $h: \mathbb{R} \longrightarrow M$ dado por $h(x) = (x, x^2)$ y probar que lo es.

c) Como $(-\infty, 0]$ y $[0, \infty)$ son cerrados, se puede aplicar el Pasting Lemma y basta probar que las restricciones $f|_{(-\infty,0]}(x) = 2x$ y $f|_{[0,\infty)}(x) = 3x$ son continuas, lo cual se puede deducir de resultados conocidos de Cálculo I o de la definición topológica de continuidad y sus propiedades. Por ejemplo, $f_1 = f|_{(-\infty,0]} : (-\infty,0] \longrightarrow \mathbb{R}$ es continua porque $f_1^{-1}((a,b)) = (a/2,b/2), (a/2,0], \emptyset$ dependiendo de si $a < b \le 0$, a < 0 < b ó $0 \le a < b$; y los tres son conjuntos abiertos en $(-\infty,0]$.

También era posible demostrar la continuidad de f directamente (sin el Pasting Lemma) probando que \mathcal{U} abierto $\Rightarrow f^{-1}(\mathcal{U})$.

Errores comunes:

- a) No tiene sentido afirmar que f es el homeomorfismo entre X y Γ porque f es una función que va de X a Y. Tampoco tiene sentido establecer el homeomorfismo entre espacios generales $X \times Y$ y X. Recuérdese que una función continua puede no aplicar abiertos en abiertos, dicho de otra forma, no tiene por qué ser una aplicación abierta.
- <u>b)</u> La función $f(x) = x^2$ no puede establecer un homeomorfismo M y \mathbb{R} porque es una función de \mathbb{R} en \mathbb{R} . En el enunciado no se pedía hallar un homeomorfismo de \mathbb{R}^2 a \mathbb{R} , que por otra parte no existe.