

COMP9336 – Mobile Data Networking Lab 2

T2 2022 Assignment 1

Name: Yuhua Zhao - ZID: z5404443

Task 1 a: Wireshark apply filtering that only display of all beacon frames from SSID=COMP4336 (Include Signal Strength, Noise level and SNR columns)

wlan.ssid=eCMP4336							
. Time	Source	Length Signal strength (dBm)	RSSI Noise level (dBm)	Signal/noise ratio (dB)	SSID		
12 0.064099	46:b3:2c:81:00:f3	244 -26 dBm	-85 dBm	59 dB	COMP4336		
57 1.907470	46:b3:2c:81:00:f3	244 -25 dBm	-86 dBm	61 dB	COMP4336		
65 2.214666	46:b3:2c:81:00:f3	244 -26 dBm	-86 dBm	60 dB	COMP4336		
114 2.521757	46:b3:2c:81:00:f3	244 -29 dBm	-86 dBm	57 dB	COMP4336		
225 4.365076	46:b3:2c:81:00:f3	244 -28 dBm	-87 dBm	59 dB	COMP4336		
228 4.672234	46:b3:2c:81:00:f3	244 -29 dBm	-87 dBm	58 dB	COMP4336		
239 4.979462	46:b3:2c:81:00:f3	244 -26 dBm	-87 dBm	61 dB	COMP4336		
484 5.901089	46:b3:2c:81:00:f3	244 -40 dBm	-87 dBm	47 dB	COMP4336		
516 6.208294	46:b3:2c:81:00:f3	244 -38 dBm	-88 dBm	50 dB	COMP4336		
521 6.515754	46:b3:2c:81:00:f3	244 -45 dBm	-88 dBm	43 dB	COMP4336		
524 6.822690	46:b3:2c:81:00:f3	244 -37 dBm	-88 dBm	51 dB	COMP4336		
557 8.358725	46:b3:2c:81:00:f3	244 -39 dBm	-87 dBm	48 dB	COMP4336		
570 8.665925	46:b3:2c:81:00:f3	244 -41 dBm	-87 dBm	46 dB	COMP4336		
572 8.973108	46:b3:2c:81:00:f3	244 -47 dBm	-87 dBm	40 dB	COMP4336		
595 10.816329	46:b3:2c:81:00:f3	244 -40 dBm	-88 dBm	48 dB	COMP4336		
596 11.123428	46:b3:2c:81:00:f3	244 -44 dBm	-87 dBm	43 dB	COMP4336		
648 11.430711	46:b3:2c:81:00:f3	244 -45 dBm	-87 dBm	42 dB	COMP4336		
655 11.737942	46:b3:2c:81:00:f3	244 -45 dBm	-87 dBm	42 dB	COMP4336		
755 13.273939	46:b3:2c:81:00:f3	244 -48 dBm	-86 dBm	38 dB	COMP4336		
784 13.581052	46:b3:2c:81:00:f3	244 -53 dBm	-86 dBm	33 dB	COMP4336		
792 13.888365	46:b3:2c:81:00:f3	244 -49 dBm	-86 dBm	37 dB	COMP4336		
793 14.195460	46:b3:2c:81:00:f3	244 -49 dBm	-85 dBm	36 dB	COMP4336		
797 15.731475	46:b3:2c:81:00:f3	244 -51 dBm	-85 dBm	34 dB	COMP4336		
825 16.039969	46:b3:2c:81:00:f3	244 -54 dBm	-84 dBm	30 dB	COMP4336		
829 16.345988	46:b3:2c:81:00:f3	244 -61 dBm	-84 dBm	23 dB	COMP4336		
849 16.653088	46:b3:2c:81:00:f3	244 -57 dBm	-84 dBm	27 dB	COMP4336		
896 18.496406	46:b3:2c:81:00:f3	244 -60 dBm	-84 dBm	24 dB	COMP4336		
942 18.803619	46:b3:2c:81:00:f3	244 -63 dBm	-84 dBm	21 dB	COMP4336		
947 19.110696	46:b3:2c:81:00:f3	244 -62 dBm	-85 dBm	23 dB	COMP4336		
980 19.418002	46:b3:2c:81:00:f3	244 -66 dBm	-85 dBm	19 dB	COMP4336		
1108 20.954038	46:b3:2c:81:00:f3	244 -66 dBm	-85 dBm	19 dB	COMP4336		
1115 21.261256	46:b3:2c:81:00:f3	244 -60 dBm	-86 dBm	26 dB	COMP4336		
1136 21.568313	46:b3:2c:81:00:f3	244 -68 dBm	-86 dBm	18 dB	COMP4336		
1139 21.875656	46:b3:2c:81:00:f3	244 -66 dBm	-86 dBm	20 dB	COMP4336		
1151 23.411572	46:b3:2c:81:00:f3	244 -70 dBm	-86 dBm	16 dB	COMP4336		
1189 23.718870	46:b3:2c:81:00:f3	244 -72 dBm	-86 dBm	14 dB	COMP4336		
1192 24.026118	46:b3:2c:81:00:f3	244 -71 dBm	-86 dBm	15 dB	COMP4336		
1219 24.333274	46:b3:2c:81:00:f3	244 -74 dBm	-86 dBm	12 dB	COMP4336		
1554 26.483597	46:b3:2c:81:00:f3	244 -69 dBm	-85 dBm	16 dB	COMP4336		
1565 26 790896	46.43.2c.81.80.f3	2 <u>44</u> -73 dRm	-85 dRm	12 dR	COMP4336		

The lab2.pcapng is downloaded from the following link:

- https://cloudstor.aarnet.edu.au/plus/s/wVjxpWUJaEsgUgj

Opened the pcapng file by using Wireshark and applied a filter to only display the SSID = COMP4336 beacon frames. The above screenshot only shows part of the SSID beacon frames as there is a total of 177 which is not feasible to put all within this report.

Task 1 b & c: Provide Signal Strength Graph, Noise level graph and SNR Graph and provide commentary to the graphs.

From the Signal Strength Diagram shown above, the Receiver's to the beacon AP distance increase and after package 101 then the receiver is getting closer to the AP. Basically, we can use the Signal Strength to detect or guess the distance between receiver and the AP distance. But the signal strength could be affected by obstacle and the obstacle's material such as Wall, glass and doors and so on. (To Generate the Diagram, we will need to convert the value from string to integers)

The Noise level is affected by the environment. There could be some other 2.4 GHz and 5GHz Signals that depends on the which frequency of the WIFI in use and etc. But we can see that the average Noise level is relatively low that won't affect the WIFI too much. (To Generate the Diagram, we will need to convert the value from string to integers)

The SNR is calculated based on the Signal Strength and the Noise level. Due to the Noise level being relatively stable, we will not see too much difference between the SNR diagram to the Signal Strength diagram. But they do have some minor differences. (To Generate the Diagram, we will need to convert the value from string to integers)

Task 2 a: Provide the Screenshot of the Wireshark to show the filtering expression

Time	Source	Destination	Length Cinnal atree -th (-19)	DCCI Noise level (40)	Cional/poles ratio (dP)
3 0.000000000	149.137.49.149	172.20.10.10	Length Signal strength (dBm) 106 48 dBm	RSSI Noise level (dBm) 48	Signal/noise ratio (dB)
4 0.074134000	149.137.49.149	172.20.10.10	182 48 dBm	48	
			182 43 dBm	43	
11 0.167123000	149.137.49.149	172.20.10.10			
14 0.242621200	149.137.49.149	172.20.10.10	158 47 dBm	47	
16 0.270576500	149.137.49.149	172.20.10.10	182 48 dBm	48	
43 0.370938500	149.137.49.149	172.20.10.10	182 43 dBm	43	
47 0.471965800	149.137.49.149	172.20.10.10	182 42 dBm	42	
51 0.563917300	149.137.49.149	172.20.10.10	182 45 dBm	45	
52 0.674820100	149.137.49.149	172.20.10.10	182 44 dBm	44	
54 0.694175600	10.4.79.210	172.20.10.10	162 44 dBm	44	
55 0.767534700	149.137.49.149	172.20.10.10	182 42 dBm	42	
57 0.810209500	1.1.1.1	172.20.10.10	126 41 dBm	41	
58 0.868914900	149.137.49.149	172.20.10.10	182 43 dBm	43	
60 0.975036900	149.137.49.149	172.20.10.10	182 44 dBm	44	
61 1.079390400	149.137.49.149	172.20.10.10	182 44 dBm	44	
63 1.175034100	149.137.49.149	172.20.10.10	182 44 dBm	44	
65 1.177212900	149.137.49.149	172.20.10.10	106 45 dBm	45	
66 1.182897200	149.137.49.149	172.20.10.10	156 45 dBm	45	
68 1.213598700	10.4.79.210	172.20.10.10	162 45 dBm	45	
70 1.261672700	149.137.49.149	172.20.10.10	158 46 dBm	46	
71 1.272608400	149.137.49.149	172.20.10.10	182 45 dBm	45	
72 1.365981700	149.137.49.149	172.20.10.10	182 46 dBm	46	
74 1.470199500	149.137.49.149	172.20.10.10	175 43 dBm	43	
75 1.470199500	149.137.49.149	172.20.10.10	182 43 dBm	43	
77 1.486195000	149.137.49.149	172.20.10.10	175 42 dBm	42	
78 1.578555700	149.137.49.149	172.20.10.10	182 46 dBm	46	
80 1.679615800	149.137.49.149	172.20.10.10	182 45 dBm	45	
82 1.729074300	149.137.49.149	172.20.10.10	175 45 dBm	45	
83 1.731685600	149.137.49.149	172.20.10.10	175 44 dBm	44	
85 1.775020200	149.137.49.149	172.20.10.10	182 42 dBm	42	
87 1.819765600	1.1.1.1	172.20.10.10	126 44 dBm	44	
90 1.853619400	149.137.49.149	172.20.10.10	175 49 dBm	49	
92 1.862541700	149.137.49.149	172.20.10.10	175 49 dBm	49	
93 1.863500700	149.137.49.149	172.20.10.10	182 49 dBm	49	
94 1.972649900	149.137.49.149	172.20.10.10	182 44 dBm	44	
96 2.069355200	149.137.49.149	172.20.10.10	182 45 dBm	45	
99 2.149602700	149.137.49.149	172.20.10.10	151 45 dBm	45	
101 2.159416100	149.137.49.149	172.20.10.10	151 45 dBm	45	
102 2.169810100	149.137.49.149	172.20.10.10	182 43 dBm	43	
104 2.209378400	149.137.49.149	172.20.10.10	106 37 dBm	37	

```
      Wireless LAN adapter WiFi:

      Connection-specific DNS Suffix :

      IPv6 Address . . . . . . . . : 2001:8004:44f0:87f2:4172:750e:68b5:ecd8

      Temporary IPv6 Address . . . . : 2001:8004:44f0:87f2:bdf6:824b:96dd:e77c

      Link-local IPv6 Address . . . . : fe80::4172:750e:68b5:ecd8%9

      IPv4 Address . . . . . : 172.20.10.10

      Subnet Mask . . . . . . : 255.255.255.240

      Default Gateway . . . . : fe80::fcaa:81ff:fe4b:fb64%9

      172.20.10.1
```

As discussed, the Microsoft Network Monitor cannot read the SSID of my phone's hotspot, so I use the filtering to display the end device that connect to my phone's hotspot.

The default gateway: 172.20.10.1 is my phone

The IPv4 address: 172.20.10.10 is the end device (My PC).

Task 2 b: Provide Signal Strength Graph, Noise level graph and SNR Graph and provide commentary to the graphs.

Due to the limitation of my WIFI receiver, the signal Strength that is read by using **Microsoft Network Monitor** is a positive value. But we can still see that as I move further from the end Device (Holding my Phone), the signal strength drops, and the time I walk closer than the signal strength increases.

You may see that the signal is not constantly increasing or decreasing due to obstacles existing that block the signal, signal reflection, Diffraction, and Scattering involved, you may not see the result as very obvious. But overall, the signal strength Decreases and then increases as I walk further and back

Due to the limitation of the WIFI receiver (Technical Issue), the Noise level, and SNR cannot be obtained by the Software. But we can assume that the result would be similar to Task 1. But I can imagine that the Noise level will be higher than the provided packet capture due to there are numbers of WIFI SSID around my area that will affect the SNR result, but the overall pattern is the same.