Determine the domain of $\vec{F}(t) = \langle \tan(t), 5t, \ln(4-t^2) \rangle$. (Enter your answer using interval notation.)

$$\left(-2,-\frac{\pi}{2}\right)\cup\left(\frac{-\pi}{2},\frac{\pi}{2}\right)\cup\left(\frac{\pi}{2},2\right)$$

Domain of toun(t):
$$U(-\frac{\pi}{2}, -\frac{\pi}{2}) \cup (-\frac{\pi}{2}, \frac{\pi}{2}) \cup (-\frac{\pi}{2}, \frac{\pi}{$$

Determine the domain of $\vec{F}(t) = \langle \cot(t), 5t^2, \sqrt{4-t^2} \rangle$. (Enter your answer using interval notation.)

Determine the domain of $F(t) = (\cot(t), 5t^{-}, \sqrt{t^{-}})$	4 _ £2). (Enter your answer us	ing interval notation.)			
Domain cx	ccs(t):.	u (- IT	,0)060	e, IT) V	. •
Demain ex	st ² :	(-00,00)		
Demain of	14-t2:				
defined	when 4	-t 2 > 0	3		
+ ² <4					
1t1<2					
[-2, 2]					
Demain ex	F(t):[-2,0) u	(c, 2]		

	ermine if the vector-va e limit exists enter the						rmine if tl	he functio	n is conti	nuous at	the specif	ied point.	(Your ins	tructors p	orefer ang	le bracke	t notation	< > for	ve
(a)	$\vec{F}(t) = \left\langle \frac{\cos(t)}{t}, \tan(t) \right\rangle$	t), $2t-2$ at	$t_0 = \pi$																
	$\lim_{t\to \pi} \overrightarrow{F}(t) = $																		
	The function isThe function is		-																
(b)	$\vec{F}(t) = \left\langle \frac{\cos(t)}{t}, \tan(t) \right\rangle$	t), $2t - 2$ at	$t_0 = 0$																
	$\lim_{t\to 0} \overrightarrow{F}(t) = $																		
	The function isThe function is		-																
(c)	$\vec{F}(t) = \left\langle \frac{e^t - 1}{t}, \tan(t) \right\rangle$	$(t), \frac{1}{t+1}$ at	$t_0 = 0$																
	$\lim_{t\to 0} \overrightarrow{F}(t) = $																		
	The function isThe function is		-																
10	L L																		+
10	אין דו																		+
	lim =	/ \ -	Co	sc	T)														+
	1->11 [x[.11)-	• '	π															+
			(
		6	7 1																+
		4																	
	I'M F	-y (T)=	tav	n CTT)													
		′																	
			5	\mathcal{G}															
																			Ī
	lim f) T	.) =	71	2														
		7011	<i></i>	611															
	lim =) =	Z -	1	G	21	T _ 1	\										+
	(→ π	CII		1	TT /	U,	21	1-2	- /										+
					1														+
	Confi	ni ccs	o a	+	t =	T													
Pa	art B																		

I'm
$$\vec{F}_{x}(0) = \frac{cs(0)}{0}$$

= Underived

Not antinias at $t = 0$

Part C

I'm $\vec{F}_{x}(0) = \frac{c^{2}-1}{0}$

= $\frac{c}{0} \rightarrow U_{5}e$ LH

= $\frac{c'}{1}$

Not continues at t=0 herouse Fx(c) = Underined

Determine if the derivative of the vector-valued function exists at the specified point. (Your instructors prefer angle bracket notation < > for vectors. If the derivative exists at the specified point, enter its value. If the derivative does not exist, enter DNE.)

$$\vec{F}(t) = \left\langle \frac{\cos(t)}{t}, \tan(t), 7t - 7 \right\rangle$$
 at $t_0 = \frac{\pi}{2}$

$$\frac{d}{dt} \overrightarrow{F}_{\kappa}(t) = \frac{d}{dt} \left(\cos(t) t^{-1} \right)$$

$$= \left(\cos(t) \left(-t^{-2} \right) + t^{-1} \left(-\sin(t) \right) \right)$$

$$= -\frac{\cos(t)}{t^{2}} - \frac{\sin(t)}{t}$$

$$\frac{d}{dt} \overrightarrow{F}_{\kappa}(\frac{\pi}{2}) = \frac{d}{dt} + \cos(t)$$

$$= \frac{d}{dt} \overrightarrow{F}_{\kappa}(t) = \frac{d}{dt} + \cos(t)$$

$$= \sec^{2}(t)$$

$$\frac{d}{dt} \overrightarrow{F}_{\kappa}(\frac{\pi}{2}) = \frac{1}{(\cos(\frac{\pi}{2})^{2})^{2}}$$

$$= \text{Underined}$$

$$\frac{d}{dt} \overrightarrow{F}_{\kappa}(\frac{\pi}{2}) = D V E$$

Evaluate the definite integral of the vector-valued function on the specified interval. (Your instructors prefer angle bracket notation < > for vectors.)

$$\vec{F}(t) = \left\langle \frac{t^3}{5 + t^4}, 2t^2 - 2t + 5, \frac{2}{t} \right\rangle$$
 on the interval $I = [1, 2]$

$$\int_{1}^{2} \vec{F}_{x}(t) = \int_{1}^{2} \frac{t^{3}}{5+t^{4}} dt$$

$$U = 5+t^{4}$$

$$\frac{dv}{dt} = 4t^{3}$$

$$\frac{d}{dt} = 4t^{3}$$

$$\frac{d}{dt} = 4t^{3}$$

$$\frac{d}{dt} = \frac{1}{4} dt$$

$$= \int_{1}^{2} U^{-1} \cdot \frac{1}{4} dv$$

$$= \frac{1}{4} \ln(u) |_{1}^{2}$$

$$= \frac{\ln(5+t^{4})}{4} |_{1}^{2}$$

$$= \frac{1}{4} (\ln(5+2^{4}) - \ln(5+1^{4}))$$

$$= \frac{1}{4} (\ln(21) - \ln(6))$$

$$\int_{1}^{2} \vec{F}_{y}(t) = \int_{1}^{2} 2t^{2} - 2t + 5 dt$$

$$= \frac{2}{3} t^{3} - \frac{2}{2} t^{2} + 5 t |_{1}^{2}$$

$$= \frac{2}{3} t^{3} - t^{2} + 5 t |_{1}^{2}$$

$$= (\frac{2}{3}(2)^{3} - (2)^{2} + |0|) - (\frac{1}{3} - 1 + 5)$$

$$= \frac{16}{3} - 4 \cdot \frac{1}{3} + 5$$

$$= \frac{17}{3} + 1$$

$$\int_{1}^{2} \vec{F}_{2}(t) = \int_{1}^{2} 2t^{-1} dt$$

$$= 2 |n(t)|_{1}^{2}$$

$$= 2(|n(2) - |n(1))$$

$$= 2 |n(2)$$

Use the chain rule for differentiation of vector-valued functions to compute $\frac{d}{dt} \dot{\vec{F}}(g(t))$ for the indicated function. (Your instructors prefer angle bracket notation < > for vectors.)

$$\vec{F}(u) = \left\langle u, \frac{u^2}{2}, \frac{u^3}{3} \right\rangle \text{ and } u = \ln(t^4)$$

$$\frac{d}{dt} \overrightarrow{F}_{x}(t) = \frac{d}{dt} \left(|n(t^{1})| \right)$$

$$= \frac{1}{t^{1}} \cdot 4t^{3}$$

$$= \frac{4t^{3}}{t^{4}}$$

$$= \frac{4}{t}$$

$$\frac{d}{dt} \overrightarrow{F}_{y}(t) = \frac{d}{dv} \left(\frac{1}{2}v^{2} \right)$$

$$= v \cdot \frac{dv}{dt}$$

$$= |n(t^{4})| \frac{4}{t}$$

$$\frac{d}{dt} \vec{F}_{2}(t) = \frac{d}{dv} \left(\frac{1}{3} V^{3} \right)$$

$$= V^{2} \frac{dV}{dt}$$

$$= \ln (t^{+})^{2} \frac{d}{t}$$

Find all antiderivatives of the given vector-valued function. (Your instructors prefer angle bracket notation < > for vectors.)

 $\vec{F}(t) = \langle t \cos(t), \cos(t) \sin(t), 7t \rangle$ and $t \in \mathbb{R}$

$$\int_{-\infty}^{\infty} f(t) dt = \int_{-\infty}^{\infty} f(t) dt$$

$$\frac{dv}{dt} = (cs(t))dt$$

$$= \int v dv$$

$$= \frac{1}{2}v^2 + C_2$$

$$= \frac{1}{2}\sin(t)^2 + C_2$$

$$\int \vec{F}_2(t) dt = \int 7t dt$$

$$= \frac{2}{2}t^2 + C_3$$

Find the antiderivative $\vec{G}(t)$ of $\hat{f}(t) = \left\langle te^{t^2}, \frac{t}{1+t^2}, 2t^2 \right\rangle$ that satisfies $\vec{G}(0) = \langle 1, 2, -4 \rangle$. (Your instructors prefer angle bracket notation < > for vectors.)

$$\int \vec{F}_{x}(f) df = \int f e^{f^{2}} Jf$$

$$U = f^{2}$$

$$\frac{\partial f}{\partial f} = 2f$$

$$\frac{\partial}{\partial f} = 2f$$

$$\frac{\partial$$

$$\begin{aligned}
&= \frac{1}{2}e^{t^{2}} + C_{1} \\
&= \frac{1}{1+4^{2}} dt \\
&= \frac{1}{2}\int U^{-1} dU + C_{2} \\
&= \frac{1}{2}\ln(1+t^{2}) + C_{2} \\
&= \frac{1}{3}t^{3} + C_{3} \\
&= (-1)^{2} + (-1)^$$

