MC102 - Algoritmos e Programação de Computadores

Lab 09

Data da Primeira Chance: 05 de junho de 2023

Peso: 3

Você é um programador da Smaug, uma empresa de tecnologia revolucionária. Essa semana os engenheiros chegaram no fim do desenvolvimento de um robô aspirador super potente e eles precisam de você, a melhor pessoa programadora do time, para desenvolver a lógica para o robô limpar perfeitamente a casa das pessoas.

Sua tarefa é programar o robô para que ele possa limpar todo o cômodo, representado por uma matriz, sem deixar nenhuma sujeira. Como esse é um robô simples, ele tem visão de apenas uma posição adjacente (para os lados, para cima e para baixo). O robô possui quatro **modos**:

- Escaneamento do ambiente: a partir da posição atual o seu robô deve escanear o ambiente buscando por sujeira seguindo linha por linha. Se estiver numa linha par (0, 2, 4, ...), deve realizar o escaneamento da esquerda para a direita, e se estiver numa linha ímpar (1, 3, 5, ...), deve realizar o escaneamento para da direita para a esquerda. O seu robô deve andar na direção correta até encontrar uma parede, descer para linha de baixo e continuar a busca seguindo na direção oposta. Se durante o processo de escaneamento for encontrado sujeira na adjacência do robô, ele deve então trocar para o modo "limpando".
- <u>Limpando</u>: Nesse modo o robô está na posição (i, j), o que significa que essa posição acabou de ser limpa (independentemente se estava suja ou não). Ele continua a limpeza olhando para as posições a **esquerda**, **cima**, **direita** e **baixo**, nesta ordem. Se alguma delas estiver suja, ele deve ir para a posição onde encontrou a primeira sujeira para limpá-la. Após realizar essa limpeza o robô possui três possíveis ações, dependendo do estado do ambiente:
 - 1) A sujeira que acabou de ser limpa está na posição que seria a próxima posição no escaneamento do ambiente, o robô então deve retornar ao modo "escaneamento do ambiente" e continuar o escaneamento a partir dessa posição.
 - 2) A sujeira que foi limpa não está no caminho de escaneamento do robô e possui mais sujeira nas adjacências (uma posição à esquerda, cima, direita ou baixo) do robô, nesse caso o robô deve continuar no modo "limpando" e proceder como descrito acima.
 - 3) O robô não está na próxima posição do escaneamento e não tem mais nenhuma sujeira nas adjacências dele, nesse caso o robô deve então trocar para o modo "retornar ao escaneamento do ambiente".
- Retornar ao escaneamento do ambiente: para retornar ao modo "escaneamento do ambiente", após finalizar o modo "limpando", seu robô deve seguir na linha até a coluna onde parou a busca e depois seguir na coluna até a posição onde parou o escaneamento, quando chegar na posição onde parou o escaneamento,

deve trocar para o modo "escaneamento do ambiente". **Se durante o retorno encontrar sujeira ao redor** (uma posição à esquerda, cima, direita ou baixo), **então o robô deve trocar para o modo "limpeza".**

Exemplo: sua busca parou na linha 1 e coluna 3, mas seu robô encontrou sujeira e após limpar todo o setor parou na linha 4 e coluna 5. Então você deve primeiramente navegar até a coluna 3 e depois subir até a linha 1.

Finalizar limpeza: o robô deve finalizar a limpeza no canto inferior direito (última linha da última coluna). Caso ao fim do escaneamento o robô já esteja na posição correta, o robô deve então ser desligado. Caso no fim do escaneamento o robô esteja na primeira coluna da última linha, o robô deve navegar para direita em direção à última coluna. Ao chegar na posição correta, deve desligar o robô. Assim que o robô é desligado, a limpeza do ambiente é finalizada.

O robô é iniciado na posição (0,0) no modo "escaneamento do ambiente" e a partir desse ponto deve começar escanear o ambiente em busca por sujeira; sempre que encontrar uma sujeira deve trocar para o modo "limpando" e limpar toda sujeira que encontrar, e seguir as instruções descritas. Quando necessário deve trocar para o modo "retornar ao escaneamento do ambiente" para retornar ao escaneamento do ambiente. Esse processo deve ser realizado até que todo o ambiente seja escaneado e, consequentemente, limpo. Assim o robô deve trocar para o modo "finalizar limpeza" e desligar quando chegar no ponto de finalização.

Exemplo de funcionamento do robô:

O robô inicia na posição (0, 0) no modo "escaneamento do ambiente", então ele segue para direita e encontra uma sujeira na posição (0, 2), o robô então troca para o modo "limpando". Nesse modo, ele verifica que a sujeira que deve ser limpa está na posição (0,2), que seria a próxima posição no caminho do robô. O robô então vai para a posição (0, 2), limpa a sujeira e retorna para o modo "escaneamento do ambiente".

```
r.o|.ro|..r
```

O robô continua então o escaneamento da posição (0, 2), descendo para linha de baixo na posição (1, 2). Nesse momento o robô percebe haver sujeira ao seu redor e troca para o modo "limpando". Nesse modo o robô, checa que a próxima sujeira que deve ser limpa está na posição (2, 2), então ele vai para a posição (2, 2) limpando-a. Como a posição (2, 2) não era a próxima no caminho do escaneamento do robô, ele continua no modo "limpando". Ele checa então que há sujeira na posição (2, 1) e vai até essa posição, limpando-a.

Após esse processo, o robô checa não haver mais sujeira ao seu redor e troca para o modo "retornar ao escaneamento do ambiente". O robô então deve voltar para a última posição que esteve no modo "escaneamento do ambiente", nesse caso a posição (1, 2). Para isso o robô caminha para a posição (2, 2) e depois sobe para a posição (1, 2). Chegando na posição desejada, o robô então troca para o modo "escaneamento do ambiente" e continua o escaneamento a partir desse ponto. Após finalizar o escaneamento do ambiente, o robô troca para o modo "finalizar limpeza". Neste modo, o robô checa que já está na posição (2, 2) e desliga, finalizando a limpeza.

Entrada

A primeira linha do seu programa irá receber um inteiro **N** contendo o número de linhas da matriz que representa o cômodo a ser limpo. Em seguida serão dadas as **N** linhas da matriz que representa o cômodo. Nesse cômodo temos três possibilidades de caracteres, a posição do robô que será dada por '**r**' (que sempre começa na posição (0, 0)), as sujeiras que serão dadas por '**o**' e os demais locais serão dados por '.'. Os elementos do mapa estarão separados por um espaço.

Exemplo de entrada:

```
3
r...
ooo
···
```

Saída

Primeiro o seu programa deve imprimir o estado inicial do cômodo. Depois disso, seu programa deve retornar o estado do ambiente após cada ação do robô, ou seja, todo o caminho que o robô está percorrendo. A saída deve ser impressa da mesma forma que a entrada, cada posição do cômodo separado por um espaço. Depois de cada ação do robô, deve-se pular uma linha para impressão da próxima ação, exceto quando o robô realiza sua última ação, nesse caso não deve pular linha.

Exemplos

Exemplo 1:

Entrada

```
3
r . .
. o o
```

Saída

```
Exemplo 2:
Entrada
```

```
. 0 0 . .
```

Saída

r o		
. 0 0		
. r o		
. 0 0		
0		
. r o		
0		
r		
0		
. r		
. r o		
r . o		
~ ~		
r o		
r		
r		
r .		
r		
1		
. r		
r		

1						
1						
1						
1						
1						
1						
1 .						
	•	-	-	-		
1						
1						
1						
1						
r						
	•	•	•	•		
1						
1						
1						
1						
1						
1						
1						
1						
1	•					
	•	•	•	•		
1						
ı	70					
1 .	r					
1 *	_	-	-	-		
1						
ı						
1						
1						
1						
1 .						
	•	•	•	•		
1						
1						
	•					
1						
1						
1		r				
		_	•	•		
1						
1						
1						
1						
1						
1						
	•					
1						
1						
Ι.	•	_	_	_		
	•	•	•	•		
1			~			
1						
1						
1						
ı						
1						
1						
1 .						
	•	•	•	•		
1						
1						
	•					
1 "	•	-	-	-		
1						
1						
				r.		
	•	•	•	r		

Exemplo 3:

Entrada

```
4
r . . o .
. o o . .
. . . o .
```

Saída

0 .	
. r	
0 .	
. r . o .	
0 .	
r o .	
0 .	
r .	
0 .	
r	
0 .	
r	
0 .	
r .	
0 .	
~	
r	
· · · · · ·	
. r	
0 .	
r	
0 .	
r	
0 .	
1	

. r	
0 .	
r	
0 .	
r .	
0 .	
1	
r .	
1	
1	
r .	
r	
70	
r	
1	
1	
~	
r .	
Ī	
1	
r	
1	
1	
1	
1	
. r	
Ī	
Ī	
1	
1	
r	
1	
1	

Regras e Avaliação

Nesse laboratório, você não pode usar bibliotecas (isto é, o comando *import*), exceto pela biblioteca *typing* para melhorar a clareza e escrita do código.

Seu código será avaliado não apenas pelos testes do CodePost, mas também pela qualidade. Dentre os critérios subjetivos de qualidade de código analisaremos nesse laboratório: o uso de matrizes; o uso apropriado de funções, e de documentação; a escolha de bons nomes de funções e variáveis; a ausência de diversos trechos de código repetidos desnecessariamente. Note, porém, que essa não é uma lista exaustiva, pois outros critérios podem ser analisados dependendo do código apresentado visando mostrar ao aluno como o código poderia ser melhor.

Os casos de testes estão disponíveis através do link.

Submissão

Você deverá submeter no CodePost, na tarefa Lab 09, um arquivo com o nome lab09.py. Você pode enviar arquivos adicionais caso deseje para serem incluídos por lab09.py. Após a correção da primeira entrega, será aberta uma tarefa Lab 09 - Segunda Chance, com prazo de entrega apropriado.