SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Ryals, John Delaney, Terry Friedrich, Leslie Weymann, Kristianna

Lawton, Kay Ellis, Daniel Uknes, Scott Jesse, Taco Vos, Pieter

- (ii) TITLE OF INVENTION: GENE ENCODING A PROTEIN INVOLVED IN THE SIGNAL TRANSDUCTION CASCADE LEADING TO SYSTEMIC ACQUIRED RESISTANCE IN PLANTS
 - (iii) NUMBER OF SEQUENCES: 17
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Novartis Corporation
 - (B) STREET: 520 White Plains Road, P.O. Box 2005
 - (C) CITY: Tarrytown (D) STATE: New York

 - (E) COUNTRY: USA
 - (F) ZIP: 10591
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Meigs, J. Timothy
 - (B) REGISTRATION NUMBER: 38,241
 - (C) REFERENCE/DOCKET NUMBER: CGC 1909
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (919) 541-8587
 - (B) TELEFAX: (919) 541-8689
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 9919 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: TGATCATGAA TTGCGTGTAG GGTTGTGTTT TAAAGATAGG GATGAGCTGA AGAAGGCGGT 60 GGACTGGTGT TCCATTAGAG GGCAGCAAAA GTGTGTAGTA CAAGAGATTG AGAAGGACGA 120 GTATACGTTT AAATGCATCA GATGGAAATG CAATTGGTCG CGTCGGGCAG ATTGAATAGA 180 AGAACATGGA CTTGTTAAGA TAACTAAGTG TAGTTGGTCC ACATACTTGT TGTTCTATTA 240 AGCCGGAAAA CTTCAACTTG TAATTTGCAG CAGAAGAGAT TGAGTGTCTG ATCAGGGTAC 300 AACCCACTCT AACAGCAGAG TTGAAAAGTT TGGTGACATG CTTAAAACTT CAAAGCTGCG 360 GGCAGCAGAA CAGGAAGTAA TCAAAGATCA GAGTTTCAGA GTATTGCCTA AACTAATTGG 420 CTGCATTTCA CTCATCTAAT GGGCTACTTG TGGACTGCAA TATGAGCTTT TCCCTAATCC 480 TGAATTTGCA TCCTTCGGTG GCGCGTTTTG GGCGTTTCCA CAGTCCATTG AAGGGTTTCA 540 ACACTGTAGA CCTCTGATCA TAGTGGATTC AAAAGACTTG AACGGCAAGT ACCCTATGAA 600 ATTGATGATT TCCTCAGGAC TCGACGCTGA TGATTGCTTT TTCCCGCTTG CCTTTCCGCT 660 TACCAAAGAA GTGTCCACTG ATAGTTGGCG TTGGTTTCTC ACTAATATCA GAGAGAAGGT 720 AACACAAAGG AAAGACGTTT GCCTCGTCTC CAGTCCTCAC CCGGACATAG TTGCTGTTAT 780 TAACGAACCC GGATCACTGT GGCAAGAACC TTGGGTCTAT CACAGGTTCT GTCTGGATTG 840 TTTTTGCTTA CAATTCCATG ATATTTTTGG AGACTACAAC CTGGTGAGCC TTGTGAAGCA 900 GGCTGGATCC ACAAGTCAGA AGGAAGAATT TGATTCCTAC ATAAAGGACA TCAAAAAGAA 960 GGACTCAGAA GCTCGGAAAT GGTTAGCCCA ATTCCCTCAA AATCAGTGGG CTCTGGCTCA 1020 TGACCAGTGG TCGGAGATAT GGAGTCATGA CGATAGAAAC AGAAGATTTG AGGGCAATTT 1080 1140 GTGAAAGCTT TCAGTCTCTT GGTCTATCAG TGACAGCGAA CGCACCTGCA CATGTGGGAA GTTTCAATCG AAGAAGTTTC CATGTATGCA CCCAGAAATG GTGCAAAGGA TTGTTAACTT 1200 GTGTCATTCA CAAATGTTGG ATGCAATGGA GCTGACTAGG AGAATGCACC TTACACGCCC 1260 ACTCAGTGTT CTCTTATCTC TAGACCTGAA ACTAACTTGC TGTGTAATTC GAGTTACAAA 1320 AGGTTAAAGG AAGAATTAGG AAGATACATA TAACATGAAT GTTGCCAGAA GTTCAGGGAA 1380 CTTGAATATT CTTTTGGTTC TTGGTGGAAA ATATCCAACA GATGAACAAT TTGACATTAT 1440 TTCACACTTT GATTCTAGCA ACTCTGTAAC ACCATCATGG GTTATTGTTG ATGTACATAA 1500 ATATATATA CAAATCTGTA TACCATTGGT TCAAATTGTT ACAACATTTG TTTGAAGCAC 1560 ACCTGCAGCA ATAATACACA GGATGCAAAA CGAAGAGCGA AACTATATGA CGCCAACGAT 1620 AGACATAAAC AGTTACAGTC ATCATGAAAA CAGAATTATA TGGTACAGCA AAAATTACAC 1680 TAAGAGGCAA GAGTCTCACC GACGACGATG AGAGAGTTTA CGGTTAGACC TCTTTCCACC 1740 GGTTGATTTC GATGTGGAAG AAGTCGAATC TGTCAGGGAC GAATTTCCTA ATTCCAAATT 1800 GTCCTCACTA AAGGCCTTCT TTAGTGTCTC TTGTATTTCC ATGTACCTTT GCTTCTTTTG 1860

TAGTCGTTTC	TCAGCAGTGT	CGTCTTCTCC	GCAAGCCAGT	TGAGTCAAGT	CCTCACAGTT	1920
CATAATCTGG	TCGAGCACTG	CCGAACAGCG	CGGGAAGAAT	CGTTTCCCGA	GTTCCACTGA	1980
TGATAAAAAA	AACAAGGTCA	GACAGCAAGT	AACAAAACCA	TGTTTAAAGA	TCATTTAGTT	2040
TTGTTTTTG	TGATAAGGAG	TCCGATGAAG	TGGGTGAGAA	TCCATACCGG	TTTTAGAAAG	2100
CGCTTTTAGT	CTACTTTGAT	GCTCTTCTAG	GATTCTGAAA	GGTGCTATCT	TTACACCCGG	2160
TGATGTTCTC	TTCGTACCAG	TGAGACGGTC	AGGCTCGAGG	CTAGTCACTA	TGAACTCACA	2220
TGTTCCCTTC	ATTTCGGCGA	TCTCCATTGC	AGCTTGTGCT	TCCGTTGGAA	AAAGACGTTG	2280
AGCAAGTGCA	ACTAAACAGT	GGACGACACA	AAGAATAGTT	ATCATTAGTT	CACTCAGTTT	2340
CCTAATAGAG	AGGACATAAA	TTTAATTCAA	ACATATAAGA	AATAAGACTT	GATAGATACC	2400
TCTATTTTCA	AGATCGAGCA	GCGTCATCTT	CAATTCATCG	GCCGCCACTG	CAAAAGAGGG	2460
AGGAACATCT	CTAGGAATTT	GTTCTCGTTT	GTCTTCTTGC	TCTAGTATTT	CTACACATAG	2520
TCGGCCTTTG	AGAGAATGCT	TGCATTGCTC	CGGGATATTA	TTACATTCAA	CCGCCATAGT	2580
GGCTTGTTTT	GCGATCATGA	GTGCGGTTCT	ACCTTCCAAA	GTTGCTTCTG	ATGCACTTGC	2640
ACCTTTTTCC	AATAGAGATA	GTATCAATTG	TGGCTCCTTC	CGCATCGCAG	CAACATGAAG	2700
CACCGTATAT	CCCCTCGGAT	TCCTATGGTT	GACATCGGCA	AGATCAAGTT	TTAAAAGATC	2760
TGTTGCGGTC	TTCACATTGC	AATATGCAAC	AGCGAAATGA	AGAGCACACG	CATCATCTAG	2820
ATTGGTGTGA	TCCTCTTTCA	AAAGCAACTT	GACTAACTCA	ATATCATCCG	AGTCAAGTGC	2880
CTTATGTACA	TTCGAGACAT	GTTTCTTTAC	TTTAGGTACC	TCCAAACCAA	GCTCTTTACG	2940
TCTATCAATI	ATCTCTTTAA	CAAGCTCTTC	: CGGCAATGAC	TTTTCAAGAC	TAACCATATC	3000
TACATTAGAC	TTGACAATAA	TCTCTTTACA	TCTATCCAAT	' AGCTTCATAC	: AAGCTTTACC	3060
ACATATATTA	GCAAGCTTGA	GTATAACCAA	TGTGTCCTCT	ATAACAACTI	TGTCTACAAC	3120
GTCCAATAAG	G TGCCTCTGAA	ATACAAATAC	: AAGTACTCAA	GTAAGAACAT	ATTCATGAAT	3180
GTGTAACCAT	AGCTTAATGC	AGATGGTGTT	TTACCTGATA	GAGAGTAAT1	AATTCAGGGA	3240
TCTTGAAGAT	GAAAGCCAAA	TAGAGAACCI	CCAACATGAA	ATCCACCGCC	GGCCGGCAAG	3300
CCACGTGGC	GCAATTCTCC	TCTGCGCAT	CAGAAACTCC	TTTAGGCGG	GGTCTCACTC	3360
TGCTGCTGT	A AACATAAGCO	AAAACAGTC	A CAACCGAATC	GAAACCGAC	TCGTAATCCT	3420
TGGCAATCTC	CTTAAGCTC	AGCTTCACG	G CGGCGGTGT1	GTTGGAGTC	TTCTCCTTCT	3480
TAGCGGCGG	C TAAAGCGCT(TTGAAGAAA(G AGCTTCTCGC	TGACAAAAC	G CACCGGTGGA	3540
AAGAAACTT	CCGGCCGTC	G GAGAGAACA	A GCTTAGCGT	C GCTGTAGAA	A TCATCCGGCG	3600
AGTCAAAGA	C GGATTCGAA	G CTGTTGGAG	A GCAATTGCAG	G AGCAGATAC	A TCAGGTCCGG	3660
TGAGTACTT(G TTCGGCGGC	C AGATAAACA	A TAGAGGAGT	C GGTGTTATC	G GTAGCGACGA	3720
AACTAGTGC'	r gctgatttc	A TAAGAATCG	G CGAATCCAT	C AATGGTGGT	G TCCATCAACA	3780
GGTTCCGAT	G AATTGAAAT	r cacaaatta	A AGAGATCTC	r GCTAATCAA	C GAAGAGACCT	3840

TATCAACTGG	ATTTGGTTAA	AGATCGAAGA	TAACCATTGA	CGAGCAGAGC	CAAGTCAAGT	3900
CAACGAGAGT	GGTGGTGAGA	TATGAAGAAG	CATCCTCGTC	CCACGGTTTA	CATTTCACCA	3960
AAACCGGTAA	ATTTCCAGGA	AAGGAATCTT	TGTCAGAGAT	CTTTTTTAAA	AAGATATAAC	4020
AGGAAGCTAA	ACCGGTTCGG	GTTATAAATG	TTAGTATTTA	TACCGGAGAC	ATTTTGTGTT	4080
GCTAATTTTT	GTATATGAGA	AGTTCAATCC	GGTTCGGTAA	GCCCCTGAAC	CAAACTAGAT	4140
TTGGAGATGA	TATAAATATA	TAAAATTTAT	TTTTCATCCG	GTTCGTTATT	TTCATATAAA	4200
ТАТАТАААТА	TTATTTTTA	AATTTAAGAA	TTAGATTTAC	ATGTGAAAGT	TACATTTCTG	4260
TTTATTTTCT	TTGAAGTAAA	ATGATAAAGG	GAACGTATAT	TAAGTTTCAT	GCTTTATTCA	4320
CATAAGTTTT	GTAATGTATA	TTATATTT	CGTTTATTGA	AAAAGTAATT	TTCAGTGTTC	4380
AGCATGTTTA	CACTATAATT	AAATCAAGTC	GAATATTTCC	TGGAACTATT	CTCCTTGTTC	4440
TATAGCAAAT	GAAAACGCTC	TTCACAACAA	AATCATTATA	GATATAGGAA	TAAATTACAT	4500
TAAAAACATG	AAAGTCATAA	TGAATATATT	TTTTTAATTA	GGATTTGATT	TAAAAACAAT	4560
TATTGTATAC	ATATAAAAGA	CTTCTTTAGT	TATTTGCCTT	CAACTTCTCG	TTCTGAATCA	4620
TGCGATAAAT	CAGCTTTTTC	AATAACTACG	ACGTAAAAGC	AAATTCATAA	CACGTCTAAA	4680
CAAATTTGGC	TCATCCTTCA	CTTGATTGGT	GTTTTCCGGA	CTCGATGTTG	CTGGAAACTG	4740
AGAAGAAGAA	GGAATCTGCA	TAATCACCTC	TTGGTTCCTC	ACCGGTAGAC	TCATTTTGTT	4800
GGATCGAAAA	CGATCGAGAT	CAGAAAATGA	AAAGATAGGT	TAAAGATGCC	TATGAATACA	4860
ACAACGTAAG	ATTATGTTGA	ATAAACAGAG	TACTTTATAT	AGGAGTTATA	ATAAGGTAAA	4920
TAAATTATTG	CTTTCCGCGT	TTTTTACTTT	TGTATTTCTT	AAATGATAAG	TTAAATTAGG	4980
ATAAGATTTG	TATGATTTA	AGTAAATTTA	CAATAACTCT	CTATAACTCA	ATAGCATCAC	5040
TTAATTTAATA	· AATTTTACTA	ATTATCTTTT	GAACAATTTT	ATGAAATAGI	TTTCTTTTAA	5100
TTAATTTTTT	AAAATGATAT	TAAAATTTA	TTAATTGAAT	CAATCTGATA	TAATTTTTTT	5160
ATCTTCTACC	: ATCTATTATA	GTTGATAAAT	' ATTGTGATAA	ACTTTAGATA	AACACCCAAT	5220
TGCCAAATAT	TTAATAAATT	TTGTGTACCA	TGCGTTTTT	TTGGAGAATA	TATATACGTG	5280
GACAGCATAC	CGTACATATA	TTGTATAAAA	GCTTATAAAA	CATAGATACO	GGTTATATTG	5340
GTAAGCTATA	A AATATATGTA	AACAATAGTA	AGATATTACG	G TGTTGTGTC7	AAATATGTGT	5400
TGCTTTAGAT	T ATTATGTATA	TCTAATATA	таааататст	TTTATTAACI	TATTATATAA	5460
TTAAGAGAG	A AAATTGGGAC	ACTATTTC	· ATACAGTAAC	TGTTTTCAAC	TATAAACAGG	5520
AACCCTTGAT	raaataata 1	AACTAGCCA	A AAAATCAGAT	TAAATATTC	TAAAACAATG	5580
TTTGGTATT	A TTACATAAAC	CTAAGAAAC	AAATTCAATA	A TTCCTTTTT	A CCTTATAAAA	5640
AACAATTAA	A CATCACTAGE	A TATATTTATO	CCCCACAAT(G AGCGAGCCA	A TTGAGACTTG	5700
AGACTTGAG	A TCCTTGTCA	A CTACGTTTG	C ATTTGTCGG(C CCATTTTTT	TTTTTTTTT	5760

mma a a GMOMG	aaaaaaammaa	ጠምረጥጥረርረጣጥ	CAGATCAACC	ርጥርጥርርጥ <u>ል</u> ልጥ	CAGAACAAAA	5820
						5880
			CTCTTTTTTT			
			ATCACTACTA			5940
			AATGCTTTTA			6000
CGACTTTTCA	AAACTGCTCT	TTAAAACCCA	TAACTCGTGA	ACATCTTCTT	GATCTTTGTT	6060
TGTCCACTGA	CGAATAGCAC	CTAGCTTCCC	TTCGTATCTG	ACTAATCCTG	AGAAAACATC	6120
AGAGTTCGGA	GTATGGAAGA	AGGACCAAGT	TTCGGTTTTG	AGACAAAACC	GGATCACATT	6180
GTTGTTCCGT	GATATCCAAT	GCAAGAACCC	CGAAACTTGT	ATCGGGTTGG	AATTAAAAAA	6240
TCTGTCTGTT	TTTGGTAGAC	GCAAATTTTC	TAATCTCTTC	CAGGTAAACG	AATCAGAATC	6300
GAAAACTTCG	CACATAAAAG	TTCTGTGATT	CAAATGGTAG	ATACCCCGAG	ACATACACAT	6360
ACGCCGAGAC	TGCGAAAGCC	TTTGTATTTT	ATACCGGAAA	GGGTTCAATC	CGATTACCGC	6420
TAAACCCAAT	GACATATCCC	AACCCTTCAC	TTCTGGCTTT	GGTATGACCT	GATACTGTTT	6480
AGTGGTTGGT	TTGAAGACTA	TGTATCCACG	TGATGGTTTT	GTATACTTAA	CACAAAGCAA	6540
TATCCCATGA	CTTGCATCAC	AAGCTTCGAT	CTTTATCATT	CCGGGTGGCA	GAAAGTCGAT	6600
GGAGACTCCA	TTGTTTTGTA	AATCACTCCT	CTCATGGACA	AAACTGGTTC	GAAGTTCGTG	6660
TCCTTTTACT	ATGTAGTGTT	GTATGAAGTA	TCCCGAAATA	CGATTGGTTC	TAAGGAGATT	6720
AAGATTGACA	AACCATGACT	CGTAGCTTCT	CTTGTTGCAC	TCTTTATTCA	GGAGCCTGAA	6780
TTTTCCGATT	TTTGACGCCG	GAAGATAAGA	AAGAAATTCT	TGGATCATGT	CTTGATTTAT	6840
CACCGGAGAA	CTCATGATCC	TGTCGGGAAT	AAAGAGATGA	GCACGATCAC	TGAATGAGAA	6900
ATGAAAAAAT	CAGGATCGGT	AGAGAACAAC	TTATGATGAA	TAAAGTGTTT	ATATATCCTT	6960
TCTTTGTTTA	AGGAAAGTAT	CAAAATTTGC	CTTTTTCTTC	GCTAGTCCTA	AAACAAACAA	7020
ATTAACCAAA	AGATAAAATC	TTTCATGATT	AATGTTACTT	GTGATACCTT	AAGCCAAAAC	7080
TTTATCTTTA	GACTTTTAAC	CAAATCTACA	GTAATTTAAT	TGCTAGACTT	AGGAAACAAC	7140
TTTTTTTT	ACCCAACAAT	CTTTGGATTT	TAATTGTTT	TTTTTCTACT	AATAGATTAA	7200
CAACTCATTA	TATAATAATG	TTTCTATCAT	AATTGACAAT	TCTTTCTTTT	TAATAAACAT	7260
CCAGCTTGTA	A TAATAATCCA	CAAGTCAATT	TCACCATTT	GGCCAATTTA	TTTTCTTATA	7320
AAAATTAGC <i>I</i>	A CAAAAAAGAT	TATCATTGTT	TAGCAGATTT	AATTTCTAAT	TAACTTACGT	7380
AATTTCCATT	TTCCATAGAT	TTATCTTTCT	TTTTATTTCC	TTAGTTATCI	TAGTACTTTC	7440
TTAGTTTCCT	r tagtaattti	AAATTTTAAC	ATAATATATI	GAAATTAAA	A GAAGAAAAAA	7500
AACTCTAGT	r ATACTTTTGT	TAAATGTTT	ATCACACTAA	CTAATAATT	TTTTTAGTTA	7560
AATTACAAT	A TATAAACAC	r GAAGAAAGTT	TTTGGCCCAC	: ACTTTTTTG(GATCAATTAG	7620
TACTATAGT'	r aggggaagat	r TCTGATTTA	A AGGATACCAA	AAATGACTA	TTAGGACATG	7680
AATGAAAAC'	r TATAATCTC	A ATAACATAC	A TACGTGTTAC	TGAACAATA	TAACATCTTA	7740

CGTGTTTTGT CCATATATTT	GTTGCTTATA	AATATATTCA	TATAACAATG	TTTGCATTAA	7800
GCTTTTAAGA AGCACAAAAC	САТАТААСАА	AATTAAATAT	TCCTATCCCT	ACCAAAAAAA	7860
AAAATTAAAT ATTCCTACAG	CCTTGTTGAT	TATTTTATGC	CCTACGTTGA	GCCTTGTTGA	7920
CTAGTTTGCA TTTGTCGGTC	CATTTCTTCT	TCCGTCCAGA	TCAACCCTCT	CGTAATCAGA	7980
ACAAAAGGGG AAACAAACGT	AAGAGGCAAA	ATCCTTGTTT	GTATGAACTA	AGTTTAACTT	8040
CTCTGTGTTT AAGTTGTAGA	GGCAAACATG	ATCCCAACTA	GAAAGCATTA	CGACGTCGTT	8100
GCTTGGTATC CACGTAATAT	GCTCTACTCC	AATGCTTTCA	ATATCTTTCA	CTTTTTCCCA	8160
CGACTTTTCA AAACTGCTCT	TTAAAACCCA	TAATCTGTGA	ACATCTTCTT	GATTGTTGTT	8220
TATCCAGTGA CGAATAACAC	CTAGCTTCCC	TTCGTAGCTG	ACTAACTCTG	GGAATAAACC	8280
AACGTTTGGA GTATGTAAGA	AAGACCAAGT	TTCGGTTTTG	GGACATAACC	GGATCACATT	8340
GTGGTTCCAT GATCTCCAAT	GCAAGAACCC	TGAAGCTTGT	ACCGGGTTTG	AAAGAATTAG	8400
ACCGTCTGTT CTCGGTAGAC	GCAAATTTTT	TAATCTCTTC	CACATAAACG	AATCGGAATC	8460
AAAAACTTCG CACGCAAAAG	TTCTGAGATT	CCGAGTCATA	CCAGGCGATT	TCGAAAGCCT	8520
AAATATTTTA TACCGGAAAG	GCTGCAATCC	GGTTACCGTT	AGACCTAATG	ACTTATCACA	8580
ACTCCTCACT TTTGGGTTTG	GTATGATCTG	ATACTGTTTT	GTTGTTGGTT	TGCAGACTAT	8640
GTATTCCGGT ATTGGTCTTG	TATCATTATA	ACAAAGCAAT	ATCCCATGAC	GTGCATCACA	8700
AGCTTTGATC TTTACCTCTC	CTTGTGGCAG	AAAATCGATG	GAGACTCCTT	TGTTATCCAA	8760
ATCTCTCCTC TCATGGAAAA	AACTGGTATC	AAGTTTGTAT	CCTCTTTCGT	AGCGTTCTAG	8820
GAAGTATCCA GAGATATTGT	TGGTTCGATG	GAGATTTAGG	TTGACAAACC	AAGACTCGTA	8880
GCTTCTCTTG TTGCACTCTT	TATTGATGAG	CCTCAATTTT	CCGATTTCGG	ACCCCCGAAG	8940
ATAAGAAAGA ACCTCTTGGA	TCGTGTCCTG	ATTTATCACC	GGAGAACTCA	TGATCTTATT	9000
GGAAAAAAGA AAGAAAGAGA	TGAGCACGAT	CAGTGAATGA	GATATATAGA	AATCAGGATT	9060
GGTAGAGAAC CGACGATGAT	' GAATATACAA	. GTGTTTATAA	GTATCACAAA	TTGCCTTTTT	9120
CTTCGCTAGT CCCAAAACAA	GCAAATTAAC	CAAAGATAAA	ATCTTCATTA	ATGTTTTCCT	9180
TTTTCTTCGC CAGTCCCAGA	ATAAAAATAT	TATAAAATAT	TTCATTAGGT	TACTTGTAGT	9240
ACCTTGAGCC CAAAGTTTCT	CTTTTGACTT	TTAACCAAAT	TAACAGTAAT	TTAATAGCTA	9300
GACTTAGAAA ACAACATTTT	GTATATATAT	TCTTTGACAT	CAAAATTCAA	A CAATCTTTGG	9360
GTTTCTATAG TGTTTTTTT	CTTATTCTAA	TAGATTACCA	CTCATTATA	CATATACAAA	9420
GTGTTTCCTT TTCAATCAAC	: ATCCATTTTC	TTTAAAAATT	AGCAAGTTT(TTCTTATATC	9480
ATCATTCAGC AGATTTCTTA	A ATTAAACTTA	GTGATTTCC#	A TTTTGCACC	r ATATGTTTCT	9540
CTTTCTTAGT TTAGTACTT	r aaattttcat	TAATATATA	TATTAAAAT	r aaaagtaaaa	9600
ACTCCAGTTT AACTTATGT	C AAATGTTTC	TCACACTAA	A AGAGCATTA	A GTAATAAATA	9660

${\tt TTTTAGCTTT}$	ATGAAAAAAA	ATATCAAATC	ACTGAAGACA	TTTGTTGGCC	TATACTCTAT	9720
TTTTTATTTG	GCCAATTAGT	AATAGACTAA	TAGTAACTCA	TATGATATCT	CTCTAATTCT	9780
GGCGAAACGA	ATATTCTGAT	TCTAAAGATA	GTAAAAATGA	ATTTTGATGA	AGGGAATACT	9840
ATTTCACACA	CCTAGAAAGA	GTAAGGTAGA	AACCTTTTTT	TTTTTGGTCA	GATTCTTGTA	9900
TCAAGAAGTT	CTCATCGAT					9919

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5655 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 2787..3347
 - (D) OTHER INFORMATION: /product= "1st exon of NIM1"
 - (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 3427..4162
 - (D) OTHER INFORMATION: /product= "2nd exon of NIM1"
 - (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 4271..4474
 - (D) OTHER INFORMATION: /product= "3rd exon of NIM1"
 - (ix) FEATURE:
 - (A) NAME/KEY: exon
 - (B) LOCATION: 4586..4866
 - (D) OTHER INFORMATION: /product= "4th exon of NIM1"
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: join(2787..3347, 3427..4162, 4271..4474, 4586..4866)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

TGTGATGCAA	GTCATGGGAT	ATTGCTTTGT	GTTAAGTATA	CAAAACCATC	ACGTGGATAC	60
ATAGTCTTCA	AACCAACCAC	TAAACAGTAT	CAGGTCATAC	CAAAGCCAGA	AGTGAAGGGT	120
TGGGATATGT	CATTGGGTTT	AGCGGTAATC	GGATTGAACC	CTTTCCGGTA	ТААААТАСАА	180
AGGCTTTCGC	AGTCTCGGCG	TATGTGTATG	TCTCGGGGTA	TCTACCATTT	GAATCACAGA	240
ACTTTTATGT	GCGAAGTTTT	CGATTCTGAT	TCGTTTACCT	GGAAGAGATT	AGAAAATTTG	300
CGTCTACCAA	AAACAGACAG	ATTAATTTT	TCCAACCCGA	TACAAGTTTC	GGGGTTCTTG	360
CATTGGATAT	CACGGAACAA	CAATGTGATC	CGGTTTTGTC	TCAAAACCGA	AACTTGGTCC	420

TTCTTCCATA	CTCCGAACTC	TGATGTTTTC	TCAGGATTAG	TCAGATACGA	AGGGAAGCTA	480
GGTGCTATTC	GTCAGTGGAC	AAACAAAGAT	CAAGAAGATG	TTCACGAGTT	ATGGGTTTTA	540
AAGAGCAGTT	TTGAAAAGTC	GTGGGTTAAA	GTGAAAGATA	TTAAAAGCAT	TGGAGTAGAT	600
TTGATTACGT	GGACTCCAAG	CAACGACGTT	GTATTGTTTC	GTAGTAGTGA	TCGTGGTTGC	660
CTCTACAACA	TAAACGCAGA	GAAGTTGAAT	TTAGTTTATG	CAAAAAAAGA	GGGATCTGAT	720
TGTTCTTTCG	TTTGTTTTCC	GTTTTGTTCT	GATTACGAGA	GGGTTGATCT	GAACGGAAGA	780
AGCAACGGGC	CGACACTTTA	AAAAAAAAT	AAAAAAAATG	GGCCGACAAA	TGCAAACGTA	840
GTTGACAAGG	ATCTCAAGTC	TCAAGTCTCA	ATTGGCTCGC	TCATTGTGGG	GCATAAATAT	900
ATCTAGTGAT	GTTTAATTGT	TTTTTATAAG	GTAAAAAGGA	ATATTGAATT	TTGTTTCTTA	960
GGTTTATGTA	АТААТАССАА	ACATTGTTTT	ATGAATATTT	AATCTGATTT	TTTGGCTAGT	1020
TATTTTATTA	TATCAAGGGT	TCCTGTTTAT	AGTTGAAAAC	AGTTACTGTA	TAGAAAATAG	1080
TGTCCCAATT	TTCTCTCTTA	AATAATATAT	TAGTTAATAA	AAGATATTTT	AATATATTAG	1140
АТАТАСАТАА	TATCTAAAGC	AACACATATT	TAGACACAAC	ACGTAATATC	TTACTATTGT	1200
TTACATATAT	TTATAGCTTA	CCAATATAAC	CCGTATCTAT	GTTTTATAAG	CTTTTATACA	1260
ATATATGTAC	GGTATGCTGT	CCACGTATAT	ATATTCTCCA	AAAAAAACGC	ATGGTACACA	1320
AAATTTATTA	AATATTTGGC	AATTGGGTGT	TTATCTAAAG	TTTATCACAA	TATTTATCAA	1380
CTATAATAGA	TGGTAGAAGA	TAAAAAAATT	ATATCAGATT	GATTCAATTA	AATTTTATAA	1440
TATATCATTT	ТАААААТТА	ATTAAAAGAA	AACTATTTCA	TAAAATTGTT	CAAAAGATAA	1500
TTAGTAAAAT	TAATTAAATA	TGTGATGCTA	TTGAGTTATA	GAGAGTTATT	GTAAATTTAC	1560
TTAAAATCAT	ACAAATCTTA	тсстаатта	ACTTATCATT	TAAGAAATAC	AAAAGTAAAA	1620
AACGCGGAAA	GCAATAATTT	ATTTACCTTA	TTATAACTCC	TATATAAAGT	ACTCTGTTTA	1680
TTCAACATAA	TCTTACGTTG	TTGTATTCAT	AGGCATCTTT	AACCTATCTI	TTCATTTTCT	1740
GATCTCGATC	GTTTTCGATC	CAACAAAATG	G AGTCTACCGG	TGAGGAACCA	AGAGGTGATT	1800
ATGCAGATTC	: CTTCTTCTTC	: TCAGTTTCCA	GCAACATCGA	GTCCGGAAAA	CACCAATCAA	1860
GTGAAGGATG	G AGCCAAATTT	GTTTAGACGI	GTTATGAATT	TGCTTTTACG	TCGTAGTTAT	1920
TGAAAAAGCT	GATTTATCGC	: ATGATTCAGA	A ACGAGAAGTT	GAAGGCAAAT	AACTAAAGAA	1980
GTCTTTTATA	TGTATACAAT	· AATTGTTTT	· AAATCAAATC	CTAATTAAAA	AAATATATTC	2040
ATTATGACTI	TCATGTTTT	AATGTAATTI	T ATTCCTATAT	CTATAATGAT	TTTGTTGTGA	2100
AGAGCGTTTT	CATTTGCTAT	r agaacaagga	A GAATAGTTCC	AGGAAATAT1	CGACTTGATT	2160
TAATTATAG	GTAAACATGO	TGAACACTGA	AAATTACTTI	TTCAATAAA	GAAAAATATA	2220
ATATACATTA	A CAAAACTTAT	r GTGAATAAAC	G CATGAAACTI	· AATATACGT	CCCTTTATCA	2280
TTTTACTTC	A AAGAAAATA	A ACAGAAATG	r aactttcaca	TGTAAATCT	A ATTCTTAAAT	2340

TTAAAAAATA ATATTTATAT ATTTATATGA AAATAACGAA CCGGATGAAA AATAAATTTT	2400
ATATATTTAT ATCATCTCCA AATCTAGTTT GGTTCAGGGG CTTACCGAAC CGGATTGAAC	2460
TTCTCATATA CAAAAATTAG CAACACAAAA TGTCTCCGGT ATAAATACTA ACATTTATAA	2520
CCCGAACCGG TTTAGCTTCC TGTTATATCT TTTTAAAAAA GATCTCTGAC AAAGATTCCT	2580
TTCCTGGAAA TTTACCGGTT TTGGTGAAAT GTAAACCGTG GGACGAGGAT GCTTCTTCAT	2640
ATCTCACCAC CACTCTCGTT GACTTGACTT GGCTCTGCTC GTCAATGGTT ATCTTCGATC	2700
TTTAACCAAA TCCAGTTGAT AAGGTCTCTT CGTTGATTAG CAGAGATCTC TTTAATTTGT	2760
GAATTTCAAT TCATCGGAAC CTGTTG ATG GAC ACC ACC ATT GAT GGA TTC GCC Met Asp Thr Thr Ile Asp Gly Phe Ala 1 5	2813
GAT TCT TAT GAA ATC AGC AGC ACT AGT TTC GTC GCT ACC GAT AAC ACC Asp Ser Tyr Glu Ile Ser Ser Thr Ser Phe Val Ala Thr Asp Asn Thr 10 20 25	2861
GAC TCC TCT ATT GTT TAT CTG GCC GCC GAA CAA GTA CTC ACC GGA CCT Asp Ser Ser Ile Val Tyr Leu Ala Ala Glu Gln Val Leu Thr Gly Pro 30 35 40	2909
GAT GTA TCT GCT CTG CAA TTG CTC TCC AAC AGC TTC GAA TCC GTC TTT Asp Val Ser Ala Leu Gln Leu Leu Ser Asn Ser Phe Glu Ser Val Phe 45 50 55	2957
GAC TCG CCG GAT GAT TTC TAC AGC GAC GCT AAG CTT GTT CTC TCC GAC Asp Ser Pro Asp Asp Phe Tyr Ser Asp Ala Lys Leu Val Leu Ser Asp 60 65 70	3005
GGC CGG GAA GTT TCT TTC CAC CGG TGC GTT TTG TCA GCG AGA AGC TCT Gly Arg Glu Val Ser Phe His Arg Cys Val Leu Ser Ala Arg Ser Ser 75 80 85	3053
TTC TTC AAG AGC GCT TTA GCC GCC GCT AAG AAG GAG AAA GAC TCC AAC Phe Phe Lys Ser Ala Leu Ala Ala Ala Lys Lys Glu Lys Asp Ser Asn 90 95 100 105	3101
AAC ACC GCC GCC GTG AAG CTC GAG CTT AAG GAG ATT GCC AAG GAT TAC Asn Thr Ala Ala Val Lys Leu Glu Leu Lys Glu Ile Ala Lys Asp Tyr 110 115	3149
GAA GTC GGT TTC GAT TCG GTT GTG ACT GTT TTG GCT TAT GTT TAC AGC Glu Val Gly Phe Asp Ser Val Val Thr Val Leu Ala Tyr Val Tyr Ser 125	3197
AGC AGA GTG AGA CCG CCG CCT AAA GGA GTT TCT GAA TGC GCA GAC GAG Ser Arg Val Arg Pro Pro Pro Lys Gly Val Ser Glu Cys Ala Asp Glu 140 145 150	3245
AAT TGC TGC CAC GTG GCT TGC CGG CCG GCG GTG GAT TTC ATG TTG GAG Asn Cys Cys His Val Ala Cys Arg Pro Ala Val Asp Phe Met Leu Glu 155 160 165	3293
GTT CTC TAT TTG GCT TTC ATC TTC AAG ATC CCT GAA TTA ATT ACT CTC Val Leu Tyr Leu Ala Phe Ile Phe Lys Ile Pro Glu Leu Ile Thr Leu 170 175 180 185	3341
TAT CAG GTAAAACACC ATCTGCATTA AGCTATGGTT ACACATTCAT GAATATGTTC Tyr Gln	3397

TTACTTGAGT ACTTGT	PATTT GTATTTCAG	AGG CAC TTA Arg His Leu 190	TTG GAC GTT GTA Leu Asp Val Val	GAC 3450 Asp 195
AAA GTT GTT ATA G Lys Val Val Ile G	SAG GAC ACA TTG Glu Asp Thr Leu 200	GTT ATA CTC Val Ile Leu 205	AAG CTT GCT AAT Lys Leu Ala Ass 210	. IIe
TGT GGT AAA GCT T Cys Gly Lys Ala C 215	TGT ATG AAG CTA Cys Met Lys Leu	TTG GAT AGA Leu Asp Arg 220	TGT AAA GAG ATT Cys Lys Glu Ile 225	ATT 3546 Ile
GTC AAG TCT AAT C Val Lys Ser Asn V 230	GTA GAT ATG GTT Val Asp Met Val 235	Ser Leu Glu	AAG TCA TTG CCG Lys Ser Leu Pro 240	GAA 3594 Glu
GAG CTT GTT AAA C Glu Leu Val Lys C 245	GAG ATA ATT GAT Glu Ile Ile Asp 250	AGA CGT AAA Arg Arg Lys	GAG CTT GGT TTC Glu Leu Gly Leu 255	G GAG 3642 1 Glu
GTA CCT AAA GTA A Val Pro Lys Val I 260	AAG AAA CAT GTC Lys Lys His Val 265	TCG AAT GTA Ser Asn Val 270	CAT AAG GCA CT His Lys Ala Lev	GAC 3690 Asp 275
TCG GAT GAT ATT (Ser Asp Asp Ile (GAG TTA GTC AAG Glu Leu Val Lys 280	TTG CTT TTG Leu Leu Leu 285	AAA GAG GAT CAG Lys Glu Asp His 290	'I'nr
AAT CTA GAT GAT C Asn Leu Asp Asp 2	GCG TGT GCT CTT Ala Cys Ala Leu	CAT TTC GCT His Phe Ala 300	GTT GCA TAT TGG Val Ala Tyr Cys 305	C AAT 3786 s Asn
GTG AAG ACC GCA 2 Val Lys Thr Ala 3 310	ACA GAT CTT TTA Thr Asp Leu Leu 315	. Lys Leu Asp	CTT GCC GAT GT Leu Ala Asp Va 320	C AAC 3834 l Asn
CAT AGG AAT CCG His Arg Asn Pro 325	AGG GGA TAT ACG Arg Gly Tyr Thr 330	GTG CTT CAT Val Leu His	GTT GCT GCG AT Val Ala Ala Me 335	G CGG 3882 t Arg
AAG GAG CCA CAA Lys Glu Pro Gln 340	TTG ATA CTA TCT Leu Ile Leu Ser 345	CTA TTG GAA Leu Leu Glu 350	Lys Gly Ala Se	T GCA 3930 r Ala 355
TCA GAA GCA ACT Ser Glu Ala Thr	TTG GAA GGT AGA Leu Glu Gly Arg 360	A ACC GCA CTC g Thr Ala Leu 365	ATG ATC GCA AA Met Ile Ala Ly 37	s Gin
GCC ACT ATG GCG Ala Thr Met Ala 375	GTT GAA TGT AAT Val Glu Cys Asr	r AAT ATC CCG n Asn Ile Pro 380	G GAG CAA TGC AA O Glu Gln Cys Ly 385	G CAT 4026 s His
TCT CTC AAA GGC Ser Leu Lys Gly 390	CGA CTA TGT GTA Arg Leu Cys Val 395	l Glu Ile Lev	A GAG CAA GAA GA A Glu Gln Glu As 400	C AAA 4074 p Lys
CGA GAA CAA ATT Arg Glu Gln Ile 405	CCT AGA GAT GTT Pro Arg Asp Val 410	r CCT CCC TC1 l Pro Pro Ser	TTTT GCA GTG GC Phe Ala Val Al 415	G GCC 4122 a Ala
GAT GAA TTG AAG Asp Glu Leu Lys 420	ATG ACG CTG CTC Met Thr Leu Leu 425	C GAT CTT GAA 1 Asp Leu Glu 430	ı Asn Arg	4162

GTATCTATCA AGTCTTATTT CTTATATGTT TGAATTAAAT TTATGTCCTC TCTATTAGGA	4222
AACTGAGTGA ACTAATGATA ACTATTCTTT GTGTCGTCCA CTGTTTAG TT GCA CTT Val Ala Leu 435	4278
GCT CAA CGT CTT TTT CCA ACG GAA GCA CAA GCT GCA ATG GAG ATC GCC Ala Gln Arg Leu Phe Pro Thr Glu Ala Gln Ala Ala Met Glu Ile Ala 440 445 450	4326
GAA ATG AAG GGA ACA TGT GAG TTC ATA GTG ACT AGC CTC GAG CCT GAC Glu Met Lys Gly Thr Cys Glu Phe Ile Val Thr Ser Leu Glu Pro Asp 455	4374
CGT CTC ACT GGT ACG AAG AGA ACA TCA CCG GGT GTA AAG ATA GCA CCT Arg Leu Thr Gly Thr Lys Arg Thr Ser Pro Gly Val Lys Ile Ala Pro 470 475 480	4422
TTC AGA ATC CTA GAA GAG CAT CAA AGT AGA CTA AAA GCG CTT TCT AAA Phe Arg Ile Leu Glu Glu His Gln Ser Arg Leu Lys Ala Leu Ser Lys 485 490 495	4470
ACC G GTATGGATTC TCACCCACTT CATCGGACTC CTTATCACAA AAAACAAAAC	4524
TAAATGATCT TTAAACATGG TTTTGTTACT TGCTGTCTGA CCTTGTTTTT TTTATCATCA	4584
G TG GAA CTC GGG AAA CGA TTC TTC CCG CGC TGT TCG GCA GTG CTC Val Glu Leu Gly Lys Arg Phe Phe Pro Arg Cys Ser Ala Val Leu 505	4629
GAC CAG ATT ATG AAC TGT GAG GAC TTG ACT CAA CTG GCT TGC GGA GAA Asp Gln Ile Met Asn Cys Glu Asp Leu Thr Gln Leu Ala Cys Gly Glu 520 530	4677
GAC GAC ACT GCT GAG AAA CGA CTA CAA AAG AAG CAA AGG TAC ATG GAA Asp Asp Thr Ala Glu Lys Arg Leu Gln Lys Lys Gln Arg Tyr Met Glu 535	4725
ATA CAA GAG ACA CTA AAG AAG GCC TTT AGT GAG GAC AAT TTG GAA TTA Ile Glu Thr Leu Lys Lys Ala Phe Ser Glu Asp Asn Leu Glu Leu 550	4773
GGA AAT TCG TCC CTG ACA GAT TCG ACT TCT TCC ACA TCG AAA TCA ACC Gly Asn Ser Ser Leu Thr Asp Ser Thr Ser Ser Thr Ser Lys Ser Thr 565	4821
GGT GGA AAG AGG TCT AAC CGT AAA CTC TCT CAT CGT CGT CGG TGA Gly Gly Lys Arg Ser Asn Arg Lys Leu Ser His Arg Arg Arg * 580 585	4866
GACTCTTGCC TCTTAGTGTA ATTTTTGCTG TACCATATAA TTCTGTTTTC ATGATGACTG	4926
TAACTGTTTA TGTCTATCGT TGGCGTCATA TAGTTTCGCT CTTCGTTTTG CATCCTGTGT	4986
ATTATTGCTG CAGGTGTGCT TCAAACAAAT GTTGTAACAA TTTGAACCAA TGGTATACAG	5046
ATTTGTAATA TATATTTATG TACATCAACA ATAACCCATG ATGGTGTTAC AGAGTTGCTA	5106
GAATCAAAGT GTGAAATAAT GTCAAATTGT TCATCTGTTG GATATTTTCC ACCAAGAACC	5166
AAAAGAATAT TCAAGTTCCC TGAACTTCTG GCAACATTCA TGTTATATGT ATCTTCCTAA	5226
TTCTTCCTTT AACCTTTCT AACTCGAATT ACACAGCAAG TTAGTTTCAG GTCTAGAGAT	5286

AAGAGAACAC	${\tt TGAGTGGGCG}$	TGTAAGGTGC	ATTCTCCTAG	TCAGCTCCAT	TGCATCCAAC	5346
ATTTGTGAAT	GACACAAGTT	AACAATCCTT	TGCACCATTT	CTGGGTGCAT	ACATGGAAAC	5406
TTCTTCGATT	GAAACTTCCC	ACATGTGCAG	GTGCGTTCGC	TGTCACTGAT	AGACCAAGAG	5466
ACTGAAAGCT	TTCACAAATT	GCCCTCAAAT	CTTCTGTTTC	TATCGTCATG	ACTCCATATC	5526
TCCGACCACT	GGTCATGAGC	CAGAGCCCAC	TGATTTTGAG	GGAATTGGGC	TAACCATTTC	5586
CGAGCTTCTG	AGTCCTTCTT	TTTGATGTCC	TTTATGTAGG	AATCAAATTC	TTCCTTCTGA	5646
CTTGTGGAT						5655

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 594 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
- Met Asp Thr Thr Ile Asp Gly Phe Ala Asp Ser Tyr Glu Ile Ser Ser
- Thr Ser Phe Val Ala Thr Asp Asn Thr Asp Ser Ser Ile Val Tyr Leu 20 25 30
- Ala Ala Glu Gln Val Leu Thr Gly Pro Asp Val Ser Ala Leu Gln Leu 35 40 45
- Leu Ser Asn Ser Phe Glu Ser Val Phe Asp Ser Pro Asp Asp Phe Tyr 50 55 60
- Ser Asp Ala Lys Leu Val Leu Ser Asp Gly Arg Glu Val Ser Phe His 65 70 75 80
- Arg Cys Val Leu Ser Ala Arg Ser Ser Phe Phe Lys Ser Ala Leu Ala 85 90 95
- Ala Ala Lys Lys Glu Lys Asp Ser Asn Asn Thr Ala Ala Val Lys Leu 100 105 110
- Glu Leu Lys Glu Ile Ala Lys Asp Tyr Glu Val Gly Phe Asp Ser Val 115 120 125
- Val Thr Val Leu Ala Tyr Val Tyr Ser Ser Arg Val Arg Pro Pro Pro 130 135 140
- Lys Gly Val Ser Glu Cys Ala Asp Glu Asn Cys Cys His Val Ala Cys 145 150 155
- Arg Pro Ala Val Asp Phe Met Leu Glu Val Leu Tyr Leu Ala Phe Ile 165 170 175
- Phe Lys Ile Pro Glu Leu Ile Thr Leu Tyr Gln Arg His Leu Leu Asp 180 185 190
- Val Val Asp Lys Val Val Ile Glu Asp Thr Leu Val Ile Leu Lys Leu 195 200 205

Ala Asn Ile Cys Gly Lys Ala Cys Met Lys Leu Leu Asp Arg Cys Lys Glu Ile Ile Val Lys Ser Asn Val Asp Met Val Ser Leu Glu Lys Ser 235 Leu Pro Glu Glu Leu Val Lys Glu Ile Ile Asp Arg Arg Lys Glu Leu Gly Leu Glu Val Pro Lys Val Lys Lys His Val Ser Asn Val His Lys 265 Ala Leu Asp Ser Asp Asp Ile Glu Leu Val Lys Leu Leu Lys Glu Asp His Thr Asn Leu Asp Asp Ala Cys Ala Leu His Phe Ala Val Ala Tyr Cys Asn Val Lys Thr Ala Thr Asp Leu Leu Lys Leu Asp Leu Ala 315 Asp Val Asn His Arg Asn Pro Arg Gly Tyr Thr Val Leu His Val Ala 330 Ala Met Arg Lys Glu Pro Gln Leu Ile Leu Ser Leu Leu Glu Lys Gly Ala Ser Ala Ser Glu Ala Thr Leu Glu Gly Arg Thr Ala Leu Met Ile Ala Lys Gln Ala Thr Met Ala Val Glu Cys Asn Asn Ile Pro Glu Gln Cys Lys His Ser Leu Lys Gly Arg Leu Cys Val Glu Ile Leu Glu Gln Glu Asp Lys Arg Glu Gln Ile Pro Arg Asp Val Pro Pro Ser Phe Ala Val Ala Ala Asp Glu Leu Lys Met Thr Leu Leu Asp Leu Glu Asn Arg 425 Val Ala Leu Ala Gln Arg Leu Phe Pro Thr Glu Ala Gln Ala Ala Met Glu Ile Ala Glu Met Lys Gly Thr Cys Glu Phe Ile Val Thr Ser Leu Glu Pro Asp Arg Leu Thr Gly Thr Lys Arg Thr Ser Pro Gly Val Lys 470 Ile Ala Pro Phe Arg Ile Leu Glu Glu His Gln Ser Arg Leu Lys Ala 490 Leu Ser Lys Thr Val Glu Leu Gly Lys Arg Phe Phe Pro Arg Cys Ser 505 Ala Val Leu Asp Gln Ile Met Asn Cys Glu Asp Leu Thr Gln Leu Ala Cys Gly Glu Asp Asp Thr Ala Glu Lys Arg Leu Gln Lys Lys Gln Arg 535

Tyr Met Glu Ile Gln Glu Thr Leu Lys Lys Ala Phe Ser Glu Asp Asn

Leu Glu Leu Gly Asn Ser Ser Leu Thr Asp Ser Thr Ser Ser Thr Ser 565 570 575

Lys Ser Thr Gly Gly Lys Arg Ser Asn Arg Lys Leu Ser His Arg Arg 580 585

Arg 3

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:

550

- (A) LENGTH: 41 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: not relevant
- (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Ile Arg Arg Met Arg Arg Ala Leu Asp Ala Ala Asp Ile Glu Leu Val 1 5 10 15

Lys Leu Met Val Met Gly Glu Gly Leu Asp Leu Asp Asp Ala Leu Ala 20 25 30

Val His Tyr Ala Val Gln His Cys Asn 35

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 38 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Pro Thr Gly Lys Thr Ala Leu His Leu Ala Ala Glu Met Val Ser Pro 1 5 10 15

Asp Met Val Ser Val Leu Leu Asp His His Ala Asp Xaa Asn Phe Arg

Thr Xaa Asp Gly Val Thr 35

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant

(D) TOPOLOGY: not relevant

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Ile Arg Arg Met Arg Arg Ala Leu Asp Ala Ala Asp Ile Glu Leu Val 1 5 10 15

Lys Leu Met Val Met Gly Glu Gly Leu Asp Leu Asp Asp Ala Leu Ala 20 25 30

Val His Tyr Ala Val Gln His Cys Asn 35 40

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Arg Arg Pro Asp Ser Lys Thr Ala Leu His Leu Ala Ala Glu Met Val

Ser Pro Asp Met Val Ser Val Leu Leu Asp Gln 20 25

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Ile Arg Arg Met Arg Arg Ala Leu Asp Ala Ala Asp Ile Glu Leu Val 1 5 10 15

Lys Leu Met Val Met Gly Glu Gly Leu Asp Leu Asp Asp Ala Leu Ala 20 25 30

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids

 - (B) TYPE: amino acid(C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Arg Arg Pro Asp Ser Lys Thr Ala Leu His Leu Ala Ala Glu Met Val

Ser Pro Asp Met Val Ser Val Leu Leu Asp Gln

- (2) INFORMATION FOR SEQ ID NO:10:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Ile Arg Arg Met Arg Arg Ala Leu Asp Ala Ala Asp Ile Glu Leu Val

Lys Leu Met Val Met Gly Glu Gly Leu Asp Leu Asp Asp Ala Leu Ala 25

Val His Tyr Ala Val Gln His Cys Asn 35 40

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 amino acids

 - (B) TYPE: amino acid
 (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant
 - (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Pro Thr Gly Lys Thr Ala Leu His Leu Ala Ala Glu Met Val Ser Pro

Asp Met Val

(2) INFORMATION FOR SEQ ID NO:12:

	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:12:	•
LTAA	CTAAA	G CATGCCGATC GG	22
(2)	INFOR	MATION FOR SEQ ID NO:13:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"	
		SEQUENCE DESCRIPTION: SEQ ID NO:13:	21
		TC GGCATGCTTT A	41
(2)	INFO	RMATION FOR SEQ ID NO:14:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:14:	
AAT	TCTAA	AC CATGGCGATC GG	22
(2)	INFO	RMATION FOR SEQ ID NO:15:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:415:	
AATTCCGATC GCCATGGTTT A	21
(2) INFORMATION FOR SEQ ID NO:16:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
CCAGCTGGAA TTCCG	15
(2) INFORMATION FOR SEQ ID NO:17:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
CGGAATTCCA GCTGGCATG	19