

Обучение с подкреплением=учителем

Николай Ильич Базенков, к.т.н.

Институт проблем управления им. В.А. Трапезникова РАН

Обучение

Без учителя (unsupervised)

Выделение признаков Кластеризация

Хеббовское обучение STDP

С учителем (supervised)

Классификация Регрессия С подкреплением (reinforcement learning)

Исследование мира Оптимальное поведение

Обучение с подкреплением (reward-based)

Вознаграждение и модуляция

Не вся активность одинаково полезна

Вознаграждение и модуляция

Выделять успешное поведение помогает нейромодуляция – воздействие нейротрансмиттера (допамина)

Вознаграждение и модуляция

Допаминовый нейрон (PSTH):

- 1. Активируется при получении вознаграждения
- 2. Активируется в ответ на условный стимул (свет, звук)
- 3. Затормаживается, если вознаграждение не поступает

Допамин = награда – ожидаемая награда

Роль допамина в STDP

При заблокированных допаминовых рецепторах нет обучения

Трехфакторное Хеббовское обучение

1. Синапс хранит историю активности (eligibility trace)

$$au_{e}rac{\mathrm{d}}{\mathrm{d}-t}e_{ij}=-e_{ij}+H\left(pre_{j},post_{i}
ight)$$

2. Вес меняется только в присутствии модулятора М

$$rac{\mathrm{d}}{\mathrm{d}} t w_{ij} = M \cdot H\left(pre_j, post_i
ight) e_{ij}$$

3. Модулятор выбрасывается, если награда превышает ожидаемую

$$M\left(t
ight) =R\left(t
ight) -\left\langle R
ight
angle$$

Допамин и STDP

Состояние синапса: сила (\mathbf{s}) и недавняя история (eligibility trace) (\mathbf{c}). STDP применяется к \mathbf{c} , а не к \mathbf{s}

Eugene M. Izhikevich Solving the distal reward problem through linkage of STDP and dopamine signaling. Cerebral cortex 17, no. 10 (2007): 2443-2452.

https://brian2.readthedocs.io/en/stable/examples/frompapers.lzhikevich 2007.html

Допамин и STDP

Синапс усиливается только если получено вознаграждение d_i(t)

Уравнения

Динамика синапса

$$\dot{c} = -c/\tau_c + \text{STDP}(\tau)\delta(t - t_{\text{pre/post}}), \quad \tau = t_{\text{post}} - t_{\text{pre}}$$

$$\dot{s} = cd$$
.

$$\dot{d} = -d/\tau_d + \mathrm{DA}(t)$$

d(t) – количество допамина

STDP – функция усиления/ослабления на рисунке

DA(t) – поступление допамина от системы подкрепления

Сравнение с STDP

Обучение с учителем

- 1. Допамин биологический аналог ошибки/вознаграждения в машинном обучении
- 2. Трехфакторное правило обучения аналог обратного распространения ошибки
- 3. Проблема дифференцируемость выхода нейрона

Обратное распространение ошибки

Обратное распространение ошибки

Выход нейрона

$$o_j = arphi(\mathrm{net}_j) = arphi\left(\sum_{k=1}^n w_{kj}o_k
ight)$$

$$arphi(z) = rac{1}{1 + e^{-z}}$$

$$rac{darphi(z)}{dz}=arphi(z)(1-arphi(z))$$

$$\frac{\partial E}{\partial w_{ij}} = \frac{\partial E}{\partial o_j} \frac{\partial o_j}{\partial w_{ij}} = \frac{\partial E}{\partial o_j} \frac{\partial o_j}{\partial \text{net}_j} \frac{\partial \text{net}_j}{\partial w_{ij}}$$

$$\Delta w_{ij} = -\eta rac{\partial E}{\partial w_{ij}}$$

Спайкующий нейрон

Мембранный потенциал

$$\tau^{\text{mem}} \frac{dU_i}{dt} = (U^{\text{rest}} - U_i) + I_i^{\text{syn}}(t)$$

Синаптический ток

$$\frac{d}{dt}I_i^{\text{syn}}(t) = -\frac{I_i^{\text{syn}}(t)}{\tau^{\text{syn}}} + \sum_{j \in \text{pre}} w_{ij}S_j(t).$$

Спайки
$$S_j(t) = \sum_k \delta(t - t_j^k)$$

Выход нейрона и ошибка

Ошибка между реальной серией спайков $S_i(t) = \sum_k \delta(t-t_i^k)$ и желаемой серией \hat{S}_i

$$L = \frac{1}{2} \int_{-\infty}^{t} ds \left[\left(\alpha * \hat{S}_{i} - \alpha * S_{i} \right) (s) \right]^{2}$$

lpha - оконная функция (экспонента, как в STDP)

Градиент ошибки

$$\frac{\partial L}{\partial w_{ij}} = -\int_{-\infty}^{t} ds \left[\left(\alpha * \hat{S}_{i} - \alpha * S_{i} \right) (s) \right] \left(\alpha * \frac{\partial S_{i}}{\partial w_{ij}} \right) (s)$$

Как найти градиент?

Будем считать выходом нейрона не серию спайков, а мембранный потенциал U_i

Но он тоже имеет разрывы!

Как найти градиент?

Тогда будем использовать вместо спайков вспомогательную гладкую

функцию активации

$$\frac{\partial S_i}{\partial w_{ij}} \rightarrow \sigma'(U_i) \frac{\partial U_i}{\partial w_{ij}}$$

Как найти градиент?

Как теперь найти $\partial U_i/\partial w_{ij}$?

При условии, что спайки происходят достаточно редко, выполняется:

$$\frac{\partial U_i}{\partial w_{ij}} \approx (\epsilon * S_j(t))$$

€ - функция реакции мембраны (PSP), интегрирующая пресинаптические спайки и убывающая со временем

Пластичность

Super Spike learning rule:

$$\frac{\partial w_{ij}}{\partial t} = r \int_{-\infty}^{t} ds \quad \underbrace{e_i(s)}_{\text{Error signal}} \alpha * \underbrace{\left(\underbrace{\sigma'(U_i(s))}_{\text{Post}} \underbrace{\left(\epsilon * S_j\right)(s)}_{\text{Pre}}\right)}_{\text{Error}}$$

Ошибка
$$e_i(s) \equiv \alpha * (\hat{S}_i - S_i)$$

 λ_{ij} - eligibility trace

€ - реакция мембраны (PSP) на серию спайков S_i

r — скорость обучения

 α — оконная функция

Свойства Super Spike правила

- 1. Пре- и пост-синаптическая активность умножается по Хеббу
- 2. Использует мембранный потенциал
- 3. Нелинейно из-за $\,\sigma'(U_i)_{}^{}$
- 4. Сохраняет eligibility trace для того, чтобы учесть отсроченное вознаграждение
- 5. Трехфакторное правило, где третий фактор (ошибка) специфичен для постсинаптического нейрона

Обучение

Цель – обучить нейрон выдавать серию спайков

Обучение сети

Обучение сети

Классификация

Цель – классифицировать два паттерна

Классификация

Цель — воспроизвести сложный пространственно-временной паттерн спайков

Сложная активность

Обучение с разными обратными связями

Обучение с разными обратными связями

Приложения – нейроморфные чипы

Stewart, K., Orchard, G., Shrestha, S. B., & Neftci, E. (2020, August). On-chip few-shot learning with surrogate gradient descent on a neuromorphic processor. In 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS) (pp. 223-227). IEEE.

Приложения – нейроморфные чипы

11-WAY FEW-SHOT CLASSIFICATION ON THE DVSGESTURE DATASET

Dataset	Learning Method	Shots	Train	Test
DVSGesture	Loihi Plasticity Rule	1	100%	52.2%
		5	86.6%	56.8%
		14	72.2%	64.7%
	SLAYER+Spiking	1	9.1%	20.1%
		5	40%	50.1%
		14	56.5%	61.8%
	SLAYER+Linear	1	<1%	41.8%
		5	38.2%	42.7%
		14	53.9%	51.8%

Stewart, K., Orchard, G., Shrestha, S. B., & Neftci, E. (2020, August). On-chip few-shot learning with surrogate gradient descent on a neuromorphic processor. In 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS) (pp. 223-227). IEEE.

Заключение

- 1. Трехфакторное правило обучения использует кроме совместной активности еще и наличие модулятора
- 2. Подкрепление допамином обеспечивает закрепление выигрышного поведения
- 3. Для спайковых нейронных сетей тоже существуют методы обратного распространения ошибки
- 4. Область приложений нейроморфные чипы