Review of Linear Algebra

Max Turgeon

STAT 4690-Applied Multivariate Analysis

Basic Matrix operations

Matrix algebra and R

- Matrix operations in R are very fast.
- This includes various class of operations:
 - Matrix addition, scalar multiplication, matrix multiplication, matrix-vector multiplication
 - Standard functions like determinant, rank, condition number, etc.
 - Matrix decompositions, e.g. eigenvalue, singular value, Cholesky, QR, etc.
 - Support for sparse matrices, i.e. matrices where a significant number of entries are exactly zero.

Matrix functions i

```
A \leftarrow matrix(c(1, 2, 3, 4), nrow = 2, ncol = 2)
Α
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
# Determinant
det(A)
## [1] -2
```

Matrix functions ii

[1] 4.440892e-16

```
# Rank
library(Matrix)
rankMatrix(A)
## [1] 2
## attr(,"method")
## [1] "tolNorm2"
## attr(,"useGrad")
## [1] FALSE
## attr(,"tol")
```

Matrix functions iii

```
# Condition number
kappa(A)
## [1] 18.77778
# How to compute the trace?
sum(diag(A))
## [1] 5
```

Matrix functions iv

```
# Transpose
t(A)
      [,1] [,2]
##
## [1,] 1 2
## [2,]
      3 4
# Inverse
solve(A)
```

Matrix functions v

```
## [,1] [,2]
## [1,] -2 1.5
## [2,] 1 -0.5
```

A %*% solve(A) # CHECK

```
## [,1] [,2]
## [1,] 1 0
## [2,] 0 1
```

Matrix operations i

```
A <- matrix(c(1, 2, 3, 4), nrow = 2, ncol = 2)
B <- matrix(c(4, 3, 2, 1), nrow = 2, ncol = 2)

# Addition
A + B
```

Matrix operations ii

```
# Scalar multiplication
3*A
```

```
## [,1] [,2]
## [1,] 3 9
## [2,] 6 12
```

```
# Matrix multiplication
A %*% B
```

Matrix operations iii

```
## [,1] [,2]
## [1,] 13 5
## [2,] 20 8
```

Hadamard product aka entrywise multiplication

```
## [,1] [,2]
## [1,] 4 6
## [2,] 6 4
```

Matrix operations iv

Matrix-vector product

```
vect \langle -c(1, 2) \rangle
A %*% vect
## [,1]
## [1,] 7
## [2,] 10
# BE CAREFUL: R recycles vectors
A * vect
```

Matrix operations v

```
## [,1] [,2]
## [1,] 1 3
## [2,] 4 8
```

Eigenvalues and Eigenvectors

Eigenvalues

- Let A be a square $n \times n$ matrix.
- The equation

$$\det(\mathbf{A} - \lambda I_n) = 0$$

is called the *characteristic equation* of A.

 This is a polynomial equation of degree n, and its roots are called the eigenvalues of A.

Example

Let

$$\mathbf{A} = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}.$$

Then we have

$$\det(\mathbf{A} - \lambda I_2) = (1 - \lambda)^2 - 0.25$$
$$= (\lambda - 1.5)(\lambda - 0.5)$$

Therefore, A has two (real) eigenvalues, namely

$$\lambda_1 = 1.5, \lambda_2 = 0.5.$$

A few properties

Let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A (with multiplicities).

- 1. $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$;
- 2. $\det(\mathbf{A}) = \prod_{i=1}^n \lambda_i$;
- 3. The eigenvalues of \mathbf{A}^k are $\lambda_1^k, \dots, \lambda_n^k$, for k a nonnegative integer;
- 4. If ${\bf A}$ is invertible, then the eigenvalues of ${\bf A}^{-1}$ are $\lambda_1^{-1},\dots,\lambda_n^{-1}.$

Eigenvectors

- If λ is an eigenvalues of \mathbf{A} , then (by definition) we have $\det(\mathbf{A} \lambda I_n) = 0$.
- In other words, the following equivalent statements hold:
 - The matrix $\mathbf{A} \lambda I_n$ is singular;
 - The kernel space of $\mathbf{A} \lambda I_n$ is nontrivial (i.e. not equal to the zero vector);
 - The system of equations $(\mathbf{A} \lambda I_n)v = 0$ has a nontrivial solution;
 - \blacksquare There exists a nonzero vector v such that

$$\mathbf{A}v = \lambda v.$$

Such a vector is called an eigenvector of A.

Example (cont'd) i

Recall that we had

$$\mathbf{A} = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix},$$

and we determined that 0.5 was an eigenvalue of ${\bf A}.$

We therefore have

$$\mathbf{A} - 0.5I_2 = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}.$$

Example (cont'd) ii

As we can see, any vector v of the form (x, -x) satisfies

$$(\mathbf{A} - 0.5I_2)v = (0,0).$$

In other words, we not only get a single eigenvector, but a whole subspace of \mathbb{R}^2 . By convention, we usually select as a represensative a vector of norm 1, e.g.

$$v = \left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right).$$

Example (cont'd) iii

Alternatively, instead of finding the eigenvector by inspection, we can use the reduced row-echelon form of ${\bf A}-0.5I_2$, which is given by

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}.$$

Therefore, the solutions to $(\mathbf{A} - 0.5I_2)v$, with v = (x,y) are given by a single equation, namely y + x = 0, or y = -x.

Eigenvalues and eigenvectors in R i

```
A \leftarrow matrix(c(1, 0.5, 0.5, 1), nrow = 2)
result <- eigen(A)
names(result)
## [1] "values" "vectors"
result$values
```

[1] 1.5 0.5

Eigenvalues and eigenvectors in R ii

```
result$vectors
##
             [,1] \qquad [,2]
## [1,] 0.7071068 -0.7071068
## [2,] 0.7071068 0.7071068
1/sqrt(2)
## [1] 0.7071068
```

Symmetric matrices i

- A matrix A is called *symmetric* if $A^T = A$.
- Proposition 1: If A is (real) symmetric, then its eigenvalues are real.

Proof: Let λ be an eigenvalue of $\mathbf A$, and let $v \neq 0$ be an eigenvector corresponding to this eigenvalue. Then we have

Symmetric matrices ii

$$\begin{split} \lambda \bar{v}^T v &= \bar{v}^T (\lambda v) \\ &= \bar{v}^T (\mathbf{A} v) \\ &= (\mathbf{A}^T \bar{v})^T v \\ &= (\mathbf{A} \bar{v})^T v \qquad \quad (\mathbf{A} \text{ is symmetric}) \\ &= (\overline{\mathbf{A}} v)^T v \qquad \quad (\mathbf{A} \text{ is real}) \\ &= \bar{\lambda} \bar{v}^T v. \end{split}$$

Since we have $v \neq 0$, we conclude that $\lambda = \bar{\lambda}$, i.e. λ is real.

Symmetric matrices iii

 Proposition 2: If A is (real) symmetric, then eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof: Let λ_1,λ_2 be distinct eigenvalues, and let $v_1\neq 0,v_2\neq 0$ be corresponding eigenvectors. Then we have

Symmetric matrices iv

$$\begin{split} \lambda_1 v_1^T v_2 &= (\mathbf{A} v_1)^T v_2 \\ &= v_1^T \mathbf{A}^T v_2 \\ &= v_1^T \mathbf{A} v_2 \qquad (\mathbf{A} \text{ is symmetric}) \\ &= v_1^T (\lambda_2 v_2) \\ &= \lambda_2 v_1^T v_2. \end{split}$$

Since $\lambda_1 \neq \lambda_2$, we conclude that $v_1^T v_2 = 0$, i.e. v_1 and v_2 are orthogonal.

Spectral Decomposition i

- Putting these two propositions together, we get the Spectral Decomposition for symmetric matrices.
- **Theorem**: Let **A** be an $n \times n$ symmetric matrix, and let $\lambda_1 \geq \cdots \geq \lambda_n$ be its eigenvalues (with multiplicity).
 - Then there exist vectors v_1, \ldots, v_n such that
 - 1. $\mathbf{A}v_i = \lambda_i v_i$, i.e. v_i is an eigenvector, for all i;
 - 2. If $i \neq j$, then $v_i^T v_j = 0$, i.e. they are orthogonal;
 - 3. For all i, we have $v_i^T v_i = 1$, i.e. they have unit norm;
 - 4. We can write $\mathbf{A} = \sum_{i=1}^{n} \lambda_i v_i v_i^T$.

Sketch of a proof:

Spectral Decomposition i

- 1. We are saying that we can find n eigenvectors. This means that if an eigenvalue λ has multiplicity m (as a root of the characteristic polynomial), then the dimension of its eigenspace (i.e. the subspace of vectors satisfying $\mathbf{A}v = \lambda v$) is also equal to m. This is not necessarily the case for a general matrix \mathbf{A} .
- 2. If $\lambda_i \neq \lambda_j$, this is simply a consequence of Proposition 2. Otherwise, find a basis of the eigenspace and turn it into an orthogonal basis using the Gram-Schmidt algorithm.
- 3. This is one is straightforward: we are simply saying that we can choose the vectors so that they have unit norm.

Spectral Decomposition iii

4. First, note that if Λ is a diagonal matrix with $\lambda_1,\ldots,\lambda_n$ on the diagonal, and P is a matrix whose i-th column is v_i , then $\mathbf{A}=\sum_{i=1}^n\lambda_iv_iv_i^T$ is equivalent to

$$\mathbf{A} = P\Lambda P^T.$$

Then 4. is a consequence of the change of basis theorem: if we change the basis from the standard one to $\{v_1,\ldots,v_n\}$, then $\mathbf A$ acts by scalar multiplication in each direction, i.e. it is represented by a diagonal matrix Λ .

Examples i

We looked at

$$\mathbf{A} = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix},$$

and determined that the eigenvalues where 1.5,0.5, with corresponding eigenvectors $\left(1/\sqrt{2},1/\sqrt{2}\right)$ and $\left(1/\sqrt{2},-1/\sqrt{2}\right).$

Examples ii

[1,] 1.0 0.5 ## [2,] 0.5 1.0

```
v1 \leftarrow c(1/sqrt(2), 1/sqrt(2))
v2 \leftarrow c(1/sqrt(2), -1/sqrt(2))
Lambda \leftarrow diag(c(1.5, 0.5))
P \leftarrow cbind(v1, v2)
P %*% Lambda %*% t(P)
## [,1] [,2]
```

Examples iii

```
# Now let's look at a random matrix----
A \leftarrow matrix(rnorm(3 * 3), ncol = 3, nrow = 3)
# Let's make it symmetric
A[lower.tri(A)] <- A[upper.tri(A)]
Α
               [,1]
                           \lceil .2 \rceil \lceil .3 \rceil
##
## [1.] -1.2650612 1.2240818 0.1106827
## [2,] 1.2240818 0.3598138 -0.5558411
```

[3,] 0.1106827 -0.5558411 1.7869131

Examples iv

```
result <- eigen(A, symmetric = TRUE)
Lambda <- diag(result$values)</pre>
P <- result$vectors
P %*% Lambda %*% t(P)
              [,1] [,2] [,3]
##
## [1,] -1.2650612 1.2240818 0.1106827
## [2,] 1.2240818 0.3598138 -0.5558411
## [3,] 0.1106827 -0.5558411 1.7869131
```

Examples v

```
# How to check if they are equal?
all.equal(A, P %*% Lambda %*% t(P))
## [1] TRUE
```

Positive-definite matrices

Let A be a real symmetric matrix, and let $\lambda_1 \ge \cdots \ge \lambda_n$ be its (real) eigenvalues.

- 1. If $\lambda_i > 0$ for all i, we say **A** is *positive definite*.
- 2. If the inequality is not strict, if $\lambda_i \geq 0$, we say **A** is *positive semidefinite*.
- 3. Similary, if $\lambda_i < 0$ for all i, we say ${\bf A}$ is negative definite.
- 4. If the inequality is not strict, if $\lambda_i \leq 0$, we say A is negative semidefinite.

Note: If A is *positive-definite*, then it is invertible!

Matrix Square Root i

- Let A be a positive semidefinite symmetric matrix.
- By the Spectral Decomposition, we can write

$$\mathbf{A} = P\Lambda P^T.$$

- Since A is positive-definite, we know that the elements on the diagonal of Λ are positive.
- Let $\Lambda^{1/2}$ be the diagonal matrix whose entries are the square root of the entries on the diagonal of Λ .
- For example:

$$\Lambda = \begin{pmatrix} 1.5 & 0 \\ 0 & 0.5 \end{pmatrix} \Rightarrow \Lambda^{1/2} = \begin{pmatrix} 1.2247 & 0 \\ 0 & 0.7071 \end{pmatrix}.$$

Matrix Square Root ii

• We define the square root $A^{1/2}$ of A as follows:

$$\mathbf{A}^{1/2} := P\Lambda^{1/2}P^T.$$

Check:

$$\begin{split} \mathbf{A}^{1/2}\mathbf{A}^{1/2} &= (P\Lambda^{1/2}P^T)(P\Lambda^{1/2}P^T) \\ &= P\Lambda^{1/2}(P^TP)\Lambda^{1/2}P^T \\ &= P\Lambda^{1/2}\Lambda^{1/2}P^T \qquad (P \text{ is orthogonal}) \\ &= P\Lambda P^T \\ &= \mathbf{A}. \end{split}$$

Matrix Square Root iii

- Be careful: your intuition about square roots of positive real numbers doesn't translate to matrices.
 - In particular, matrix square roots are not unique (unless you impose further restrictions).

Cholesky Decomposition

- The most common way to obtain a square root matrix for a positive definite matrix A is via the Cholesky decomposition.
- There exists a unique matrix L such that:
 - L is lower triangular (i.e. all entries above the diagonal are zero);
 - The entries on the diagonal are positive;
 - $\bullet \quad \mathbf{A} = LL^T.$
- For matrix square roots, the Cholesky decomposition should be preferred to the eigenvalue decomposition because:
 - It is computationally more efficient;
 - It is numerically more stable.

Example i

```
A \leftarrow matrix(c(1, 0.5, 0.5, 1), nrow = 2)
# Eigenvalue method
result <- eigen(A)
Lambda <- diag(result$values)</pre>
P <- result$vectors
A sqrt <- P %*% Lambda^0.5 %*% t(P)
all.equal(A, A sqrt %*% A sqrt) # CHECK
```

[1] TRUE

Example ii

```
# Cholesky method
# It's upper triangular!
(L \leftarrow chol(A))
## [,1] [,2]
## [1,] 1 0.5000000
## [2,] 0 0.8660254
all.equal(A, t(L) ** L) # CHECK
## [1] TRUE
```

Power method

Introduction to numerical algebra

- As presented in these notes, we can find the eigenvalue decomposition by
 - 1. Finding the roots of a degree n polynomial.
 - 2. For each root, find the solutions to a system of linear equations.
- Problem: no exact formula for roots of a generic polynomial when n>4.
 - So we need to find approximate solutions
- Other problem: approximation errors for eigenvalues propagate to eigenvectors
- Need more stable algorithms
- This is what numerical algebra is about. For a good reference, I recommend *Matrix Computations* by Golub and Van Loan.

Power Method i

- We'll discuss one approach to finding the leading eigenvector, i.e. the eigenvector corresponding to the largest eigenvalue (in absolute value).
- Note: We have to assume that the largest eigenvalue (in absolute value) is unique.
- *Algorithm*:
 - 1. Let v_0 be an initial vector with unit norm.
 - 2. At step k, define

$$v_{k+1} = \frac{\mathbf{A}v_k}{\|\mathbf{A}v_k\|},$$

where ||v|| is the norm of the vector v.

Power Method ii

- 3. Then the sequence v_k converges to the desired eigenvector.
- 4. The corresponding eigenvalue is defined by

$$\lambda = \lim_{k \to \infty} \frac{v_k^T \mathbf{A} v_k}{v_k^T v_k}.$$

- Comment: unless v_0 is orthogonal to the eigenvector we are looking for, we have theoretical guarantees of convergence.
 - In practice, we can pick v_0 randomly, since the probability a random vector is orthogonal to the eigenvector is zero.

Example i

```
set.seed(123)
A <- matrix(rnorm(3*3), ncol = 3)
# Make A symmetric
A[lower.tri(A)] <- A[upper.tri(A)]
# Set initial value
v current <- rnorm(3)</pre>
v current <- v current/norm(v current, type = "2")</pre>
```

Example ii

```
# We'll perform 100 iterations
for (i in seq_len(100)) {
  # Save result from previous iteration
  v previous <- v current
  # Compute matrix product
  numerator <- A %*% v current
  # Normalize
  v current <- numerator/norm(numerator, type = "2")
v current
```

Example iii

```
## [,1]
## [1,] -0.3318109
## [2,] 0.5345952
## [3,] 0.7772448
```

```
# Corresponding eigenvalue
num <- t(v_current) %*% A %*% v_current
denom <- t(v_current) %*% v_current
num/denom</pre>
```

```
## [,1]
## [1,] -1.75374
```

Example iv

```
# CHECK results
result <- eigen(A, symmetric = TRUE)
result$values[which.max(abs(result$values))]
## [1] -1.75374
result$vectors[,which.max(abs(result$values))]
## [1] 0.3318109 -0.5345952 -0.7772448
```

 Note that we did not get the same eigenvector: they differ by -1.

Visualization

Blue is the objective; the sequence goes from green to red.

Singular Value Decomposition

Singular Value Decomposition i

- We saw earlier that real symmetric matrices are diagonalizable, i.e. they admit a decomposition of the form $P\Lambda P^T$ where
 - Λ is diagonal;
 - P is orthogonal, i.e. $PP^T = P^TP = I$.
- For a general $n \times p$ matrix A, we have the Singular Value Decomposition (SVD).
- We can write $\mathbf{A} = UDV^T$, where
 - U is an $n \times n$ orthonal matrix;
 - lacksquare V is a $p \times p$ orthogonal matrix;
 - D is an $n \times p$ diagonal matrix.

Singular Value Decomposition ii

- We say that:
 - the columns of U are the *left-singular vectors* of A;
 - the columns of V are the right-singular vectors of A;
 - the nonzero entries of D are the *singular values* of A.

Existence proof

- First, note that both A^TA and AA^T are symmetric.
- Therefore, we can write:
 - $\bullet \quad \mathbf{A}^T \mathbf{A} = P_1 \Lambda_1 P_1^T;$
 - $\bullet \quad \mathbf{A}\mathbf{A}^T = P_2\Lambda_2 P_2^T.$
- Moreover, note that A^TA and AA^T have the same eigenvalues.
- Therefore, if we choose Λ_1 and Λ_2 so that the elements on the diagonal are in descending order, we can choose
 - $\bullet \quad U=P_2;$
 - $V = P_1$;
 - The main diagonal of D contains the nonzero eigenvalues of A^TA in descending order.