Université Paris-Sud Faculté des sciences d'Orsay

> Examen du module Phys 102 "Lumière, images et couleurs" Seconde session du 22 juin 2017

Corrigé succinct

Exercice 1: Questions de base!

- 1.1) La lumière se propage sans avoir besoin de support matériel \rightarrow b
- 1.2) Dans les conditions de Gauss, on ne prend en compte que les rayons peu inclinés par rapport à l'axe optique ET les rayons proches de l'axe → c
- 1.3)Pour un système optique utilisé dans les conditions de Gauss, pour construire une image, il suffit de construire deux rayons → b
- 1.4) Dans un système centré, un rayon qui arrive selon l'axe optique d'une lentille n'est pas dévié 👈 b
- 1.5) On appelle i l'angle d'incidence sur un système optique. Dans les conditions de Gauss, on écrit souvent que sin i proche de i → a
- 1.6) Quand vous vous regardez dans un miroir plan, votre image par le miroir est virtuelle \rightarrow b

Exercice 2 : Correction d'un œil hypermétrope

Plan de la rétine

à l'infini

Eil réduit hypermétrope au repos

- 2.2) P', image de P, se forme au foyer de L_1 , c'est-à-dire au-delà de la rétine. L'œil perçoit une image floue.
- 2.3) La vergence de la lentille équivalente est la somme des vergences de lentilles L_1 et L_2 . La lentille équivalente doit être convergente si l'on veut former une image sur la rétine : f' > 0. 2.4) f' = d = 22 mm. On a donc : f'_2 = d x f' / $(f'_1$ -d), soit f'_2 = 183,33 mm > 0. L'ensemble $\{L_1+L_2\}$ est bien une lentille convergente.

Exercice 3 : Témoin de liquide de rinçage d'un lave-vaisselle

- 3.1) On a i = 45°
- 3.2) a- Réservoir plein: on a i_{lim} = arcsin(n₂/n₁) = arcsin(1,3 / 1,5)=60,1°
- 3.2) b- i = 45° < $i_{\rm lim}$: une partie du rayon incident est réfracté dans le liquide d'indice n_2 . Dans ce liquide, le rayon s'écarte de la normale.
- 3.3) a- Réservoir vide : on a cette fois : $i_{\rm lim}$ = arcsin(1/1,5)=41,8°

- 3.3) b- On a i = 45° > i_{lim} : il n'y a pas de rayon réfracté mais réflexion totale.
- 3.4) On place un détecteur de lumière sous le réservoir : si le réservoir est plein, de la lumière parvient au détecteur. Si le réservoir est vide, il n'y a plus de lumière sur le détecteur : il est temps de remplir le réservoir !

Exercice 4: Projecteurs de couleurs

- 4.1) Le filament doit se trouver dans le plan focal objet du condenseur. Schéma.
- 4.2) Les filtres étant primaires, si les trois lampes ont la même intensité, leur synthèse additive doit donner du blanc. Donc 1=rouge, 2=magenta, 3=bleu, 4=cyan, 5=vert, 6=jaune Pas de blanc sur la pyramide.
- 4.3) L'ombre A du faisceau rouge est éclairée par les faisceaux bleu et vert, et est donc de couleur cyan. De même, l'ombre B du faisceau vert est magenta, et l'ombre C du faisceau bleu est jaune.
- 4.4) L'écran jaune absorbe le bleu. Donc l'ombre A du faisceau rouge est verte, l'ombre B du faisceau vert est rouge, et l'ombre C du faisceau bleu est inchangée : jaune.