Universidad Nacional Autónoma de México Facultad de Ciencias Álgebra Moderna I

Tarea 6

Ángel Iván Gladín García No. cuenta: 313112470 angelgladin@ciencias.unam.mx

3 de Marzo 2019

Ejercicio 1. (40 puntos)

Demuestre que si $\alpha \in S_n$ es un *n*-ciclo, entonces su centralizador es $\langle a \rangle$.

Demostración. Sea $\alpha = (1 \ 2 \dots n)$ una permutación en S_n , entonces hay exactamente (n-1)! permutaciones que son iguales (porque $(1 \ 2 \dots n) = (2 \dots n \ 1) = \dots = (n \ 1 \dots n-1)$) y además como $|S_n| = n!$ entonces $\frac{n!}{n} = (n-1)!$).

Complementando lo anterior, sea $\beta \in S_n$ y α como lo menciona el inciso, se cumple que $\beta \alpha \beta = \alpha$. Como el número de conjugados de α denotado como α^{S_n} es igual a $[S_n : C_{S_n}(\alpha)]$, entonces $|C_{S_n}(\alpha)| = n$. Como $\langle \alpha \rangle \subseteq C_{S_n}(\alpha)$ y $\langle \alpha \rangle = n$, ergo $\langle \alpha \rangle = C_{S_n}(\alpha)$.

Ejercicio 2. (30 puntos)

Demuestre que si G no es abeliano, entonces G/Z(G) no es cíclico.

Demostración. Por contrapositiva, es decir, Si G/Z(G) es cíclico, entonces G es abeliano.

Si G/Z(G) es cíclico con un generador xZ(G) cada elemento en G/Z(G) pueden ser escritos como x^kz para algún $k \in \mathbb{Z}$ y $z \in Z(G)$. Ahora sean $g, h \in G$, entonces $g = x^az$ y $h = x^bw$ para $z, w \in Z(G)$. Teniendo así que $gh = x^azx^bw = x^{a+b}zw = x^{b+a}wz = x^bwx^az = hg$

Ejercicio 3. (30 puntos)

Demuestre que $Z(G_1 \times \cdots \times G_n) = Z(G_1) \times \cdots \times Z(G_n)$.

Demostración. Sean $z, x \in G_1 \times \cdots \times G_n$ donde $z_i, x_i \in G_i$ para $1 \le i \le n$. Se tiene que $Z(G_1 \times \cdots \times G_n) = \{z \in G_i \mid zx = xz \mid \forall x \in G_i\}$. Además $z \in Z(G_i) \iff zx = xz$

$$\iff (z_1, z_2, \dots, z_n)(x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_n)(z_1, z_2, \dots, z_n)$$

$$\iff (z_1x_1, z_2x_2, \dots, z_nx_n) = (x_1z_1, x_2z_2, \dots, x_nz_n)$$

$$\iff z_ix_i = x_iz_i$$

$$\iff z_i \in Z(G_i)$$

$$\iff z \in Z(G_1) \times \dots \times Z(G_n)$$