最优化小论文

22120307 陈景龙 北京交通大学

日期: 2023年1月15日

摘 要

寻求 NP-Hard 问题的较优算法是一重要内容,其中,与独立集相关的问题较为常见。本文将从独立集的性质入手,介绍基于多种思想的几类独立集算法。对于一般图,本文在搜索算法的基础上,提出了动态规划的优化算法,同时分析并测试了几种算法在随机数据下的运行效率;对于特殊图,本文介绍了两种针对特殊图的算法思想,提出了求解"k-仙人图"的独立集问题的算法思想及其扩展应用。

关键词: 优化问题,独立集算法, NP-Hard

目录

1	前言			3
2	定义	及约定		3
3	一般	图的独	立集问题	3
	3.1	基于极	大独立集搜索的独立集算法	4
		3.1.1	朴素的搜索算法	4
		3.1.2	极大独立集与 Bron-Kerbosch 算法	4
		3.1.3	极大独立集的个数	5
		3.1.4	应用	7
	3.2	基于动		8
		3.2.1	算法	8
		3.2.2	效率优化	
		3.2.3	与搜索算法的联系	
		3.2.4	测试与对比	
4	特殊	图的独*	立集问题	12
-	4.1		<u> </u>	
		4.1.1	二分图的最大独立集	
		4.1.2	无爪图的最大独立集	
	4.2		上阶段划分思想的最大独立集算法	
	4.2	至 J 图 4.2.1	分层图上的动态规划	
		4.2.2	"k-仙人图"上的动态规划	13
5	总结			16

1 前言

不少与独立集有关的问题(最大独立集、最大带权独立集、独立集计数等问题)都是图论中经典的 NP-Hard 问题,在信息学竞赛中广泛出现,然而解决独立集问题的算法效率通常不高。由此,本人对此类问题进行了更深入的研究,希望能用更加高效的方法解决此类问题。

本文的研究分为两部分,第一部分介绍了两种求解一般图的独立集问题的算法:基于极大独立集搜索的独立集算法和基于动态规划的独立集算法,第二部分介绍了两类特殊图的独立集算法,分别基于图匹配思想和图上的阶段划分思想。

2 定义及约定

独立集问题有多种形式。为了方便描述,以下给出一些定义。

定义 2.1. 对于无向图 G = (V, E) 和点 $u, v \in V$,若 $(u, v) \in E$,则称 u, v 相邻 (adjacent);定义 点 $v \in V$ 的领域 (neighborhood) 为 V 中与 v 相邻的结点集合,记为 N(v);另外, $N_G(v)$ 表示 v 在图 G 中的领域。

定义 2.2. 点 v 的度 (degree) $\deg(v)$ 定义为 N(v) 的大小,即 $\deg(v) = |N(v)|$;另外, $\deg_G(v)$ 表示 v 在图 G 中的度。

定义 2.3. 无向图 G = (V, E) 的一个独立集 (independent set) 定义为 V 的一个子集,满足子集中的结点两两不相邻。形式化地, $I \not\in G$ 的一个独立集,当且仅当 $I \subseteq V$ 且 $\forall u, v \in I$, $(u, v) \not\in E$ 。

定义 **2.4.** 无向图 G = (V, E) 的一个最大独立集 (maximum independent set) 是指 G 中所含结点数 |I| 最多的独立集 I。

定义 2.5. 无向图 G = (V, E) 的独立数 (independence number) 1 定义为 G 的最大独立集 I 所含的结点数 |I|,记为 $\alpha(G)$ 。

定义 2.6. 无向图 G = (V, E) 在 $S \subseteq V$ 上的导出子图 (induced subgraph) 定义为以 S 为点集,两端点都在 S 内的边为边集构成的图,记为 G[S]。

本文中的所有问题均以最大独立集问题为例,即对于给定的无向图 G=(V,E),找出 G 的一个最大独立集 I。

为了方便起见,约定 n 为图 G 的阶数 (即顶点数), m 为图 G 的边数,即 n = |V|, m = |E|。

3 一般图的独立集问题

目前,解决一般图的大多数独立集相关的问题都不存在多项式时间的算法,只能用复杂度较优的指数级算法。

¹导出子图有点导出子图和边导出子图两种,本文中均指前者。

事实上,已有不少理论复杂度十分优秀的求图的最大独立集的算法,能够快速计算出上百阶的无向图的最大独立集²,但这些算法实现往往过于复杂,难以应用。笔者选择了一些相对高效又较易于实现的算法进行了研究。

3.1 基于极大独立集搜索的独立集算法

3.1.1 朴素的搜索算法

最朴素的搜索算法非常简单: 用深度优先搜素枚举 V 的子集 $I \subseteq V$,即按一定顺序枚举每个点以 $v \in V$ 是否属于 I,一旦存在 $(u,v) \in E$ 使得 $u,v \in I$,就回溯。输出枚举的所有独立集 I 中,|I| 最大的一个。该算法的复杂度为 $O(2^n m)$,效率太低。

针对最大独立集这一问题,可以进行一些剪枝。例如:

- 1. 若 deg(v) = 0,则不存在与 v 关联的边,故总可以令 $v \in I$ 。
- 2. 若 $\deg(v) = 1$,考虑唯一的与 v 关联的结点 u,若 $u \notin I$,则总可以令 $v \in I$;否则,从 I 中删去 u 并加入 v,I 的大小不变。因此总可以令 $v \in I$ 。
- 3. 搜索时记录当前搜到的独立集的大小的最大值 a,记 P 为 V-I 中不与 I 中结点相邻的点集,当 $|I|+|P| \le a$ 时可进行最优性剪枝。

然而加入这些剪枝之后,复杂度仍然很高,难以接受。

3.1.2 极大独立集与 Bron-Kerbosch 算法

朴素的搜索算法效率太低,有没什么好的方法米优化呢?我们提出极大独立集的概念:

定义 3.1. 无向图 G = (V, E) 的一个极大独立集 (maximal independent set) 是指 G 的一个独立集 I,满足对于任意的结点 $v \in V - I$,点集 $I + \{v\}$ 不是独立集。

通常情况下,一个图的极大独立集个数比独立集个数少得多。例如 50 个结点构成的链有 32,951,280,099 个独立集,却只有 1,221,537 个极大独立集。另外,不少有关独立集的组合优化问题都可以只考虑极大独立集,最大独立集问题就是这样一个例子:

定理 3.1. 每个最大独立集都是极大独立集。

证明. 设 I 是一个最大独立集。对于任意的 $v \in V - I$,假如 $I + \{v\}$ 是独立集,因为 $|I + \{v\}| = |I| + 1 > |I|$,所以 $I + \{v\}$ 是一个比 I 更大的独立集,也就是说,I 不是最大独立集,与假设矛盾。所以 I 一定是一个极大独立集。

因此,如果能找出G的所有极大独立集,就能找出G的最大独立集。

求极大独立集的算法有很多,其中 Bron-Kerbosch 算法是实现较为简洁的一种。下面介绍求极大独立集的 Bron-Kerbosch 算法。

Bron-Kerbosch 算法可以对任意的无向图 G 求出其所有的极大独立集,其基本思想仍然是搜索优化。伪代码如下 3 :

 $^{^{2}}$ Robson 提出了一种复杂度约 $O(1.1888^{n})$ 的最大独立集算法

³Bron-Kerbosch 算法有多种实现方式,本文介绍其中的一种。

Algorithm 1 BronKerbosch(R, P, X)

- 1: if $P = X = \emptyset$ then
- 2: **print** R
- 3: **end if**
- 4: 选择结点 $u \in P \cup X$,使得 $|P \cap (\{u\} \cup N(u))|$ 最小
- 5: for $\forall v \in P \cap (\{u\} \cup N(u))$ do
- 6: BronKerbosch $(P \cup \{v\}, P (\{v\} \cup N(v)), X (\{v\} \cup N(v)))$
- 7: $P \leftarrow P \{v\}$
- 8: $X \leftarrow X \cup \{v\}$
- 9: end for

调用 $\operatorname{BronKerbosch}(R,P,X)$ 函数,将输出 G 的所有包含 R 中的所有结点、P 中的任意多个结点且不包含 X 中的结点的所有极大独立集。调用 $\operatorname{BronKerbosch}(\varnothing,V,\varnothing)$ 即可得到 G 的所有极大独立集。

实现时,集合可以用压位的方法存储,即用一个大小为 $\left\lceil \frac{n}{64} \right\rceil$ 的 64 位整数数组 A 存一个大小为 n 的集合 A', $x \in A'$ 当且仅当 $A[\left\lceil \frac{x}{64} \right\rceil]$ AND $2^x \mod 6^4 > 0$ (A 数组下标从 0 开始)。因为独立集问题中,图的阶数 n 不会很大,所以压位的数组大小可以近似认为是一个常数。

上述算法的最关键之处在于 Pivoting。算法过程中,有一步是选择结点 $u \in P \cup X$,使得 $|P \cap (\{u\} \cup N(u))|$ 最小,u 称为 Pivot 结点。之后枚举 $\{u\} \cup N(u)$ 中,属于独立集 R 的第一个结点 v。这就是 Pivoting 的过程。

如果直按搜索极大独立集的话,效率是很低的,因为会搜到很多不是极大的独立集。例如 当 G 为 n 阶零图⁴时,显然 V 是 G 的唯一的极大独立集,然而朴素的搜索枚举了某个结点不属于极大独立集时,尽管不可能搜出极大独立集,但算法还会继续搜索下去,浪费了大量时间。 Pivoting 的正确性基于以下定理:

定理 3.2. 对于无向图 G = (V, E) 和 $v \in V$, G 的任意极大独立集 I 满足 $I \cap (\{v\} \cup N(v)) \neq \emptyset$ 。

证明. 证明假设存在极大独立集 I,满足 $I \cap (\{v\} \cup N(v)) = \emptyset$,则对于任意 $u \in I$, $u \notin \{v\} \cup N(v)$, 即 $u \neq v$ 且 $(u, v) \neq E$ 。

因此 $I \cup \{v\}$ 也是一个独立集,且 $I \subseteq I \cup \{v\}$,这说明 I 不是极大独立集,矛盾。

这样,我们就证明了该定理的正确性。尽管这样仍然会搜到一些不是极大的独立集,但这样的集合显然少了很多。

3.1.3 极大独立集的个数

之前我们只是感性地认识了极大独立集比较少,这里将给出 Bron-Kerbosch 算法的递归次数上界:

定理 3.3. Bron-Kerbosch 算法的递归调用次数为 $O(3^{\frac{n}{3}})$ 。

 $^{^{4}}$ 零图定义为没有边的图,即 G = (V, E) 为零图当且仅当 $E = \emptyset$ 。

由此可以得到推论:

定理 3.4. n 阶无向图的极大独立集个数为 $O(3^{\frac{n}{3}})$ 。

这个上界是很容易达到的,构造 $\left\lfloor \frac{n}{3} \right\rfloor$ 个相互独立的三元环即可。但在图随机生成的情况下,这个上界是很不满的。为了说明这一点,笔者对随机图的极大独立集个数进行了研究。

从边数为 m 的 n 阶简单无向图中随机生成一个图 G=(V,E),记 G 的极大独立集个数 x,即

$$x = \sum_{S \subseteq V} \mathbb{I}(S \text{ is a maximal independent set })$$

其中 I(·) 是示性函数。

考虑计算 x 的期望值 $\mathbb{E}(x)$ 。 $S \in G$ 的极大独立集的条件为:

- S 是独立集,即对于任意的 $u,v \in S$, $(u,v) \notin E$;
- 对于任意的 $v \in V S$, $V + \{v\}$ 不是独立集,即 V S 中的每个点至少与 S 中的一个点相邻。

用容斥原理,枚举 $k \wedge V - S$ 中的点不与 S 中的点相邻。记 i = |S|,则剩下 $n - i - k \wedge L$ 点可以和 S 中的点连边,以及 V - S 中任意两点(一共 $\frac{1}{2}(n-i)(n-i-1)$ 对点)可以连边。则满足 S 是极大独立集的图 G 个数为

$$\sum_{k=0}^{n-i} (-1)^k \binom{n-i}{k} \binom{(n-i-k)i + \frac{(n-i)(n-i-1)}{2}}{m}.$$

由于边数为m的n阶简单图共有 $\left(\frac{n(n-1)}{2}\right)$ 个,故有

$$\begin{split} E(x) &= \sum_{S \subseteq V} P\big(\mathbb{I}(S \text{ is a maximal independent set })\big) \\ &= \sum_{i=0}^n \sum_{S \subseteq V, |S|=i} \binom{\frac{n(n-1)}{2}}{m}^{-1} \sum_{k=0}^{n-i} (-1)^k \binom{n-i}{k} \binom{(n-i-k)i + \frac{(n-i)(n-i-1)}{2}}{m} \\ &= \binom{\frac{n(n-1)}{2}}{m}^{-1} \sum_{i=0}^n \binom{n}{i} \sum_{k=0}^{n-i} (-1)^k \binom{n-i}{k} \binom{(n-i-k)i + \frac{(n-i)(n-i-1)}{2}}{m} \end{split}$$

下面给出了一些计算结果(四舍五入):

E(x)	m = n	$m = \lfloor \sqrt{3}n \rfloor$	m=2n	m = 3n	$m = \frac{n^2}{4}$
n = 20	84	101	99	81	49
n = 30	706	933	909	691	157
n = 40	5.95×10^3	8.67×10^{3}	8.40×10^{3}	5.88×10^3	403
n = 50	5.02×10^{4}	8.07×10^{4}	7.76×10^4	5.01×10^4	891
n = 60	4.23×10^{5}	7.51×10^{5}	7.18×10^{5}	4.27×10^{5}	1779
n = 70	3.57×10^{6}	6.99×10^{6}	6.64×10^{6}	3.63×10^{6}	3291
n = 80	3.01×10^{7}	6.51×10^{7}	6.14×10^{7}	3.10×10^{7}	5730
n = 90	2.54×10^{8}	6.06×10^{8}	5.68×10^{8}	2.64×10^{8}	9506
n = 100	2.15×10^9	5.64×10^{9}	5.25×10^9	2.25×10^9	15154
n = 100	2.15×10^9	5.64×10^9	5.25×10^9	2.25×10^9	15154

可见随机情况下,极大独立集的个数远少于 $3^{\frac{n}{3}}$ 。另外,当 m 接近 $\sqrt{3}n$ 时,独立集个数 x 的期望值 $\mathbb{E}(x)$ 最大,而过于稠密的图,独立集个数相当少。

根据该结论,还可以进一步得出, $x \ge k \cdot \mathbb{E}(x)$ 的概率不超过 $\frac{1}{k}$,所以在大多数情况下随机图的极大独立集个数不会比期望值大太多。

值得注意的是,Bron-Kerbosch 算法复杂度不和极大独立集个数直接相关,所以用极大独立 集个数的期望值分析 Bron-Kerbosch 算法的期望运行时间并不准确;事实上,存在复杂度和极大 独立集个数直按相关的极大独立集搜索算法。

3.1.4 应用

介绍了极大独立集的性质及算法之后, 我们来看看它有哪些应用。

例 3.1 (图的 3-染色问题). 给定 n 阶简单无向图 G = (V, E),用三种颜色对 V 中的结点进行染色,使得每条边 $(u, v) \in E$ 的两端点 u, v 颜色不同。满足 $n \le 40$ 。

图的 3-染色问题也是著名的 NP-Hard 问题。朴素的算法是每次枚举一个与已确定颜色的结点相邻的结点颜色,需要枚举 $O(2^n)$ 中情况,无法通过 n=40 的数据。如何才能更加高效地求解?

先给出一个定理:

定理 3.5. 无向图 G = (V, E) 能够 3-染色的充要条件是 G 存在一个极大独立集 I,使得图 G - I 是二分图 5 。

证明. (充分性) 设 I 为 G 的一个极大独立集,且 G - I 为二分图,根据二分图的性质,存在点集 $X \subseteq V - I$,记 Y = V - I - X,使得对任意 $u, v \in X$ 或 $u, v \in Y$,有 $(u, v) \notin E$ 。

因为 $I \in G$ 的独立集, 所以 $\forall u, v \in I$, 有 $(u, v) \notin E$ 。

因此将 I 中的点染色为 1, X 中的点染色为 2, Y 中的点染色为 3 是一种合法方案。

(必要性) 设 G = (V, E) 能够 3-染色,记 X, Y, Z 分别为染颜色 1, 2, 3 的点集。

由定义,对任意 $(u,v)\in E$,结点 u,v 不属于这三个集合中的同一个集合,因此 X,Y,Z 都是独立集。

如果 X 不是极大独立集,则存在以 $v \in V - X$,使 $X + \{v\}$ 是独立集。将 v 加入点集 X,同时,若 $v \in Y$,则将 v 从 Y 中删去;否则 $v \in Z$,将 v 从 Z 中删去。重复此过程直至 X 是极大独立集为止。

显然此时 Y,Z 仍然是 G 的独立集,即对于 $u,v\in Y$ 或 $u,v\in Z$,有 $(u,v)\notin E$,故 $G[Y\cup Z]$ 是二分图。问题得证。

判断图是否为二分图以及将其进行染色可以在 O(m) 的时间内解决。因此只需用枚举图 G 的所有极大独立集 I,然后判断图 G-I 是否为二分图:

1. 若对所有的极大独立集 I, 图 G - I 都不是二分图,则图 G 不能 3-染色。

 $^{^5}$ 无向图 G=(V,E) 是二分图 (bipartite graph) 定义为可以将 V 划分为两个集合 S 和 V-S,使得每条边的两个端点不在同一个集合内,即 $\forall (u,v) \in E,\ u \in S, v \in V-S$ 或 $u \in V-S, v \in S$ 。

2. 若存在一个极大独立集 I,使得图 G - I 是二分图,则图 G 能 3-染色:将 I 中的结点用颜色 I 染色,G - I 用颜色 2 和 3 进行二分图染色即可。

本题中,由于 G 是简单图, $m = O(n^2)$,所以该算法时间复杂度为 $O(3^{\frac{n}{3}n^2})$ 。

例 3.2 (小 Q 运动季测试点 10). 给定一个 n 元一次同余方程组

$$\begin{cases} a_{0,0}x_0 + a_{0,1}x_1 + \dots + a_{0,n-1}x_{n-1} \equiv c_0 \pmod{b_0} \\ a_{1,0}x_0 + a_{1,1}x_1 + \dots + a_{1,n-1}x_{n-1} \equiv c_1 \pmod{b_1} \\ \dots \\ a_{m-1,0}x_0 + a_{m-1,1}x_1 + \dots + a_{m-1,n-1}x_{n-1} \equiv c_{m-1} \pmod{b_{m-1}} \end{cases}$$

求一组解 (x_1, x_2, \ldots, x_n) 满足尽量多的方程。

本例中仅讨论测试点 10。该测试点中,通过建立图论模型,将每个方程看成一个点,相互冲突的方程间连一条边,可以转化为点数 n=90,边数 m=223 的无向图的最大独立集问题。由于具体转化过程超出了本文的范围,故略去。

用 Bron-Kerbosch 算法搜出所有极大独立集,输出其中最大的一个即可。这样做的效率如何呢?

笔者将朴素搜索算法 Simple-Search 和基于极大独立集的搜索算法 Maximal-Search 进行比较,两个算法仅使用了最基本的剪枝:将剩余的点全部加入 I 都不大于当前搜到的点集,得到的点集大小都不超过当前搜到的最大的独立集,则剪枝。由于仅仅测试的是 Maximal- Search 是否有比 Simple-Search 更优的运行效率,这里并没有加入更多依赖问题性质的剪枝。

对于 Simple-Search, 笔者的程序经过运行若干小时,仍然只能得到大小为了 33 的独立集,并且程序未能结束。然而对于 Maximal-Search,笔者的程序仅用不到 1min 就得到了一组大小为 34 的独立集,仅用 3min 就证明,图的独立数确实为 34。可见用极大独立集进行搜索确实能大幅提高运行效率。

通过加入更多的剪枝优化,可以进一步缩短算法运行时间。

3.2 基于动态规划的独立集算法

动态规划是一种高效、灵活的处理问题的方法。在独立集问题中,动态规划不仅能求解最优化类问题(如最大独立集、最大权独立集),还能求解计数类问题(如独立集计数)。下面仍以最大独立集问题为例,但为了体现动态规划的通用性,接下来的讨论将不加入最优性剪枝等仅针对最优化问题的剪枝。

3.2.1 算法

如果要使用动态规划求解独立集问题,就需要将问题化为规模更小的子问题。对于独立集, 我们有以下两个定理:

定理 3.6. 对于无向图 G=(V,E) 和 $V^{'}\subseteq V$,则对于任意 $I\subseteq V^{'}$,I 是 G 的独立集当且仅当 I 是 $G[V^{'}]$ 的独立集。

证明. (充分性) 当 $I \neq G[V']$ 的独立集时,对于任意 $(u,v) \in E$,若 $u,v \in V'$,显然 u,v 不同时属于 I; 若 u,v 有一个不属于 V',不妨设 $u \notin V'$,那么 $u \notin I$ 。因此 $I \neq G$ 的独立集。

(必要性) 当 I 是 G 的独立集时,由于 G[V'] 的每条边都属于 G,故 G[V'] 的每条边至少有一个端点不属于 I。因此 I 是 G[V'] 的独立集。

定理 3.7. 对于无向图 G=(V,E) 和 $v\in V$,若 $I\subseteq V$ 且 $v\in I$,则 I 是 G 的独立集当且仅当 $I-\{v\}$ 是 $G[V-\{v\}-N(v)]$ 的独立集。

(充分性) 当 I 是 G 的独立集时, $N(v) \cap I = \emptyset$,所以 $I - \{v\} \subseteq T$,因为 I 在 G 中任意两点不相邻,且 $I - \{v\} \subseteq I$, $G[T] \subseteq G$,所以 $I - \{v\}$ 是 G[T] 的独立集;

(必要性) 当 $I - \{v\}$ 是 G[T] 的独立集时,因为 $I - \{v\} \subseteq V - \{v\} - N(v)$,所以 $N(v) \cap I = \emptyset$,又因为 G 比 G[T] 多的边均与 v 或 N(v) 中的结点相邻,所以 I 是 G 的独立集。

根据以上两个定理,我们可以用状态压缩的动态规划 (DP) 对于任意的无向图 G=(V,E) 求 出 G 的独立数 $\alpha(G)$ 。

对点集 $S\subseteq V$,定义 f(S) 为 S 在 G 上的导出子图的独立数,即 $f(S)=\alpha(G[S])$,显然 $f(\varnothing)=0$ 。

考虑 $S \neq \emptyset$ 的情況。任取以 $v \in S$,考虑一个点集 $I \subseteq S$ 。若 $v \notin I$,则 $I \neq G[S]$ 的独立集当且仅当 $I \neq G[S-\{v\}]$ 的独立集:若 $v \in I$,则 $I \neq G[S]$ 的独立集当且仅当 $I-\{v\} \neq G[S-\{v\}-N(v)]$ 的独立集。由此可得:

实现时,将图中结点编号为 $0,1,\ldots,n-1$,结点v可以选取S中编号最大的点。同样可以使用压位技巧来存集合S。另外,计算f可以使用记忆化搜索,状态可以用 Hash Table 来存储。

该算法不仅能求出独立数,还能求出一个最大独立集,见以下伪代码(f 函数为依照 (1) 式 定义的记忆化搜索函数):

如果直接实现,复杂度为 $O(2^{\frac{n}{2}})$ (设 Hash Table 的的单次操作时间为 O(1),因为在前 $\frac{n}{2}$ 层 递归中,每层递归最多 2 个分支,而递归超过 $\frac{n}{2}$ 层之后,S 中只包含编号前 $\frac{n}{2}$ 的结点,从而总 复杂度为 $O(2^{\frac{n}{2}})$ 。

对于任意的 n,都能构造出使得该算法复杂度为 $\Theta(2^{\frac{n}{2}})$ 的图 G,方法是: 将结点 0 和 $\lfloor \frac{n}{2} \rfloor$ 连边,结点 1 和 $\lfloor \frac{n}{2} \rfloor + 1$ 连边,·····,结点 $\lfloor \frac{n}{2} \rfloor - 1$ 和 $2 \lfloor \frac{n}{2} \rfloor - 1$ 连边。这样递归的前 $\lfloor \frac{n}{2} \rfloor$ 层每层都有 2 个分支,且所有的分支都不同。

例 3.3 (团的计数). 给定无向简单图 G=(V,E),求 G 有多少个团。一个团定义为一个点集 $S\subseteq V$,满足 S 中任意两点都有边相连。 $n\leq 50$ 。

记 \bar{G} 为G的补图,不难发现,S是G的团当且仅当S是 \bar{G} 的独立集。

这是因为,如果 S 是 G 的团,那么 S 中的点在 G 中两两相邻,故在 \bar{G} 中两两不相邻,即 S 是 \bar{G} 的独立集。反之,如果 S 不是 G 的团,即存在两点 u,v 在 G 中不相邻,则 u,v 在 \bar{G} 中相邻,也就是说,S 不是 \bar{G} 的独立集。

Algorithm 2 Subset-Dynamic-Programming

- 1: S = V
- 2: $I = \emptyset$
- 3: while $S \neq \emptyset$ do
- 5: **if** $f(S \{v\}) > f(S \{v\} N(v)) + 1$ **then**
- 6: $S \leftarrow S \{v\}$
- 7: else
- 8: $S \leftarrow S \{v\} N(v)$
- 9: $I \leftarrow I + \{v\}$
- 10: **end if**
- 11: end while
- 12: return I=0

因此,问题转化为独立集计数问题——求 G 的独立集个数。显然这类计数问题无法用搜索优化的策略,不过,使用上述的 Subset-Dynamic- Programming 算法即可在 $O(2^{\frac{n}{2}})$ 时间内解决问题。

3.2.2 效率优化

经过实际测试,Subset-Dynamic-Programming 算法运行效率不如优化的搜索算法。为什么?考虑最大独立集问题,该算法的最坏复杂度为 $O(2^{\frac{n}{2}})$,但搜索剪枝时可以直接处理度为 1 的结点,从而只需要 O(n) 的时间。是否可以类比优化搜索算法,用一些"剪枝"来优化上述 DP 呢?

答案是肯定的。不过笔者并不打算重复之前的优化——既然用了基于 **DP** 的算法,就应当研究更加通用的优化。例如在求最大权独立集时,直接处理度为 1 的结点是错误的。经过笔者研究,以下优化可以大大提高 **DP** 的效率:

- 1. 在状态转移方程中,结点v不取S中编号最大的点,而取G[S](注意是导出子图,而不是原图)中度数最大的点;
- 2. 当图 G[S] 不连通时,记每个连通块的点集分别为 $S_1, S_2, ..., S_k$,由于每个连通块是独立的,可以转化为规模更小的子问题解决:

$$f(S) = \sum_{i=1}^{k} f(S_i)$$

3. 当图 G[S] 不含环时,可以改用树形 DP 求解。

优化后的 DP 算法记作 Optimized-Subset-Dynamic-Programming。笔者无法分析该算法在最坏情况下的复杂度是多少,但通过对随机图的测试,Optimized-Subset-Dynamic-Programming 比之前的 Subset-Dynamic-Programming 快得多,其中优化 1、2 效果明显,尤其对于较稀疏的图。这是因为较稀疏的图在不断删去度数大的点时,导出子图 G[S] 很容易不连通。

例 3.4 (小 Q 运动季测试点 10). 题意见例题3.2

上文已经提到了用 Maximal-Search 求得该问题的最优解所需的时间。现在我们尝试使用基

于动态规划的独立集算法 Subset-Dynamic-Programming,遗憾的是,测试表明,这个算法运行效率并不高,并且由于状态数过多,空问消耗都无法接受。

我们再试一试 Optimized-Subset-Dynamic-Programming。令人惊讶的是,这个算法的运行效率非常高——经过笔者测试,该算法只用了 1s 就得到了最优解 (大小为 34 的独立集)! 并且这个算法运行过程中没有使用依赖任何问题的特殊性的优化(如最优性剪枝)。可见在稀疏图上,Optimized-Subset-Dynamic-Programming 的确是一个优秀的算法。

3.2.3 与搜索算法的联系

事实上,如果把这个算法的记忆化去掉(即不用 Hash Table 存储 f 值),就是一个带优化的搜索算法。这样的搜索算法(记为 Optimized-Search)仍然比朴素的搜索算法 Simple- Search 快,但慢于 Optimized-Subset-Dynamic-Programming。

Optimized-Subset-Dynamic-Programming 结合了搜素和动态规划的优化思想,不仅有比较强的通用性,实现难度也很小。

然而 Optimized-Subset-Dynamic-Programming 有一定的缺陷:空间复杂度比较大。而搜索算法 Optimized-Search 的空间是多项式级别的,支持运行较长时间。因此可以只记忆化较小的 S 的 f(S) 值,剩余部分采用搜索的方法,这样就能在较低的空间需求下解决问题了。

3.2.4 测试与对比

笔者在研究出上述动态规划算法及优化之后,将该算法(及优化后的算法)和之前的基于搜索的算法进行了实现,并且用随机图测试了这些算法的期望运行效率。下表的第一行中,n,m代表 n 阶 m 边随机图,最后一列 90,223 代表 WC2013 《小 Q 运动季》的测试点 10 对应的图。表格内的时间代表算法在对应的图上的期望运行时间估计值,"-"表示运行时间过长,未测出。

	40,60	50,85	60, 120	90, 223
Simple-Search	2s	-	-	-
Maximal-Search	< 0.01s	< 0.1s	1s	-
Subset-Dynamic-Programming	< 0.01s	< 0.1s	1s	-
Optimized-Subset-Dynamic-Programming-1	< 0.01s	< 0.01s	< 0.01s	1s
Optimized-Subset-Dynamic-Programming-2	< 0.01s	< 0.01s	< 0.01s	1s

Maximal-Search 和 Subset-Dynamic-Programming 分别采用了"搜索剪枝"和"记忆化"的优化,其效果比较接近, Optimized-Subset-Dynamic-Programming则结合了两者的优势,效率严格高于这两个算法。值得一提的是, Optimized-Subset-Dynaric-Programming-1 和 Optimized-Subset-Dynamic-Programming-2 的区别在于后者加入了优化 3(转为树形 DP),尽管优化 3 看起来很高效——把指数级的问题用线性时间解决,但经过测试,两者运行效率几乎无差别。

4 特殊图的独立集问题

上文介绍了解决一般图的独立集的基本思想(搜索优化以及动态规划),这些方法复杂度均为指数级。本节中,我们将进一步探讨特殊图的独立集问题——当图本身具有一定特殊性质时,能否用多项式复杂度解决同样的问题?

4.1 基于图匹配思想的最大独立集算法

4.1.1 二分图的最大独立集

二分图的最大独立集是一个经典问题。我们有以下定理:

定理 **4.1.** 对于 n 阶二分图 G, $\alpha(G) = n - v(G)$, 其中 $\alpha(G)$, v(G) 分别为图 G 的独立数和匹配数。

该定理的证明可以在很多材料中找到, 故证明略。

用匈牙利算法或网络流求出二分图 G=(X,Y,E) 的一个匹配数以 v(G),即可得到 G 的独立数 $\alpha(G)$ 。另外,用网络流建图后求最小割可以得到一个最大独立集 I。

这个算法只能解決最优化类的独立集问题,不能解决更加复杂的问题(妇计数或带有其它限制等)。

4.1.2 无爪图的最大独立集

二分图的最大独立集给了我们一个思路求图的最大匹配时,可以通过找增广路不断增加匹配大小,那么求其它图的最大独立集能否也采用增广的方式?遗憾的是,在任意图上,两个独立集的对称差⁶的导出子图不一定是若干条路径或环,所以并不能用找增广路的方法求最大独立集。

不过,在一种特殊的图上,这种算法是可行的。

定义 4.1. 无爪图 (claw-fiee sraph) 定义为所有导出子图都不是 $K_{1,3}$ 的无向图。其中 $K_{1,3}$ 称为爪 (claw),即两部分别含有 1 个点和 3 个点的完全二分图。

无爪图的最大独立集可以用类似一般图匹配的算法来求解。该算法依赖于以下定理:

定理 **4.2.** 设 I_1, I_2 为无爪图 G 的两个独立集,则 $G[I_1 \Delta I_2]$ 的每一个连通块都是一条简单路径或简单环。

证明. 设 $v \in I_1$,则 $N(v) \cap I_1 = \emptyset$,在 $G[I_1 \Delta I_2]$ 中,v 的度数为 $|N(v) \cap I_2|$ 。

假设存在三个不同的点 $v_1, v_2, v_3 \in N(v) \cap I_2$,因为 I_2 是独立集,所以 v_1, v_2, v_3 两两不相邻,因此 $G[\{v, v_1, v_2, v_3\}]$ 是一个爪,矛盾。

因此 $|N(v) \cap I_2| \leq 2$,即 $G[I_1 \Delta I_2]$ 的所有点度数均不超过 2,定理得证。

⁶集合 A, B 的对称差 $A\Delta B = \{x \mid \mathbb{I}(x \in A) \neq \mathbb{I}(x \in B)\}$

注意到如果 $|I_1| < |I_2|$,那么 $G[I_1\Delta I_2]$ 必然存在一个连通块 C,满足连通块中属于 I_2 的结点比属于 I_1 的结点多。由于 C 中属于 I_1 , I_2 的结点交替出现,当 C 为简单环时,C 中属于 I_1 , I_2 的结点一样多,而当 C 为简单路径时,C 中属于 I_1 , I_2 的结点个数相差 1,故必然存在一条路径满足属于 I_2 的点数比属于 I_1 的点数多 1。我们把 C 称为 I_1 的增广路 (augment path)。

这样,就可以类比一般图最大匹配的算法,用增广路算法求无爪图 G=(V,E) 的最大独立集:初始时令 $I=\varnothing$,每次从一个点出发找一条增广路,然后将增广路上的点状态取反,即:原来不属于独立集的点加入独立集,原来属于独立集的点从独立集中删去。该算法的实现类似 Edmonds 的带花树算法。

4.2 基于图上阶段划分思想的最大独立集算法

4.2.1 分层图上的动态规划

对于图 G=(V,E),将点集 V 划分为 k 个不相交的集合 V_1,V_2,\cdots,V_k ,使得对任意 $u\in V_i,v\in V_j$,若 |i-j|>1,则 $(u,v)\notin E$,则称集合序列 $< V_1,V_2,\cdots,V_l>$ 是 G 的一个分层。如果每个 V_i 中的结点都不多,那么可以按 V_1,V_2,\cdots,V_k 顺序进行决策,在每个阶段只需状压一个层的选取情况即可,效率远高于一般图中的对整个图状压 \mathbf{DP} 。

记 f(i,S) 为图 $G[V_1 \cup V_2 \cup \cdots \cup V_i]$ 中包含 S 为子集的最大的独立集,状态转移方程如下:

$$f(i,S) = \begin{cases} -\infty, & S \text{ is not independent,} \\ 0, & i = 0, \\ \max\{f(i-1,S') \mid S' \subseteq V_{i-1}, S \cup S' \text{ is independent}\} + |S'|, & \text{otherwise} \end{cases}$$

G 的独立数为所有 $G[V_k]$ 的独立集 I + f(k, I) 的最大值。该过程同样能求出一个 G 的最大独立集,方法和之前类似,这里不再赘述。

这个算法的时间复杂度为 $O(\sum_{i=1}^{k-1} 2^{|V_i|+|V_{i+1}|})$,不过在大多数情况下,每个 V_i 内的独立集个数并不多,实际的时间效率远高于理论上界。

4.2.2 "k-仙人图"上的动态规划

例 4.1. 给定简单无向图 G=(V,E),保证每条边属于且仅属于一个简单环,求 G 的独立数。 $|V|<50,000, |E|\leq 60,000$ 。

如果G不连通,那么求出G的每个连通块的独立数并求和即可。下文假设G是连通图。每条边最多属于一个简单环的简单连通图称为"仙人掌",它有什么特殊的性质呢?

我们不妨大胆尝试一下——任选一个 $r \in V$,以 r 为根对图 G 进行深度优先搜索 (depth-frst search,DFS),得到一个深度优先搜素树(DFS 树) $T = (V, E_T)$ 。显然 $T \in G$ 的一个生成树。定义树边为属于 E_T 的边,非树边为不属于 E_T 的边(即属于 $E - E_T$ 的边)。

DFS 树有一个很重要的性质:

定理 4.3. 对任意非树边 e = (u, v), 在 T 中或者 u 是 v 的祖先, 或者 v 是 u 的祖先。

证明. 设 e = (u, v) 为非树边,且 u 比 v 先访问到,则访问到 u 时,假如 v 不在以 u 为根的子树内,那么枚举到 u 的出边 e 时,v 未被访问,因此下一步将沿着边 e 访问到 v,从而 $e \in E_T$,与

假设矛盾,从而u是v的祖先。同理,若v比u先访问到,则v是u的祖先。

对于非树边 e = (u, v),若树边 e' 在树 T 中从 u 到 v 的简单路径上,则称树边 e' 被非树边 e 覆盖 (cover)。对于仙人掌,我们有:

定理 4.4. 每条树边最多被一条非树边覆盖。

证明. 假设一条树边 e 被两条非树边 (u_1, v_1) , (u_2, v_2) 覆盖,则 (u_1, v_1) 和 T 中 v_1 到 u_1 的简单路径构成一个简单环 C_1 , (u_2, v_2) 和 T 中 v_2 到 u_2 的简单路径构成一个简单环 C_2 ,而 e 同时属于 C_1 和 C_2 ,与仙人掌的定义矛盾。因此 e 最多被一条非树边覆盖。

这个性质使得我们可以对树 T 进行树形动态规划。初步的想法是:记 f(i,0) 为 T 中以结点 $i \in V$ 为根的子树内最大的独立集大小,f(i,1) 为 i 的父结点属于独立集的情况下,i 子树内最大的独立集大小,然而这样不能保证非树边的两端点不同时属于独立集。

考虑添加一维状态,记 f(i,j,k) 为 i 的父结点属于 (j=1) 或不属于 (j=0) 独立集,覆盖 i 与其父结点 e_i 连边的非树边 $e'=(u_i,v_i)$ 顶端结点 i_i 属于 (j=1) 或不属于 (j=0) 独立集的情况下,i 子树内最大的独立集大小。当 e_i 不属于环时,k=0。转移时枚举 i 是否属于独立集即可,注意当 i 是 e'_i 的底端结点 v_i 且 k=1 时,不能选 i。状态转移方程如下(Ch_i ,表示 i 的子结点集合):

$$f(i, j, k) = \sum_{c \in \mathsf{Ch}_i} f\left(c, 0, \mathbb{I}(e'_c = e'_i) \cdot k\right)$$

• 否则

$$f(i,j,k) = \max \left\{ \sum_{c \in \operatorname{Ch}_i} f\left(c,0,\mathbb{I}\left(e_c' = e_i'\right) \cdot k\right), 1 + \sum_{c \in \operatorname{Ch}_i} f\left(c,1,\mathbb{I}(e_c' = e_i') \cdot k + \mathbb{I}\left(u_c = i\right)\right) \right\}$$

用 O(m) 时间预处理所有 u_i, v_i 之后就可以用上述 O(n) 的动态规划求出最大独立集了,时间复杂度 O(n+m)。

笔者在研究上述算法之后,思考这种算法能否进行扩展。经过分析,笔者发现,将该算法做一些简单的修改之后,不仅能处理仙人掌,还能处理每条边所属的简单环个数不多的图。

我们把这样的图称为"k-仙人图",即每条边最多属于 k 个简单环的图,其中 k 的值比较小。 求解 k-仙人图 G = (V, E) 的独立集问题时,同样先取一个点为根对图进行 DFS,得到 DFS 树 T。接下来对每个点 i,记 C_i 为覆盖 i 与其父结点的连边 e_i 的非树边集合,则有一个性质:

定理 4.5. 在 k-仙人图中, 对于任意的 $i \in V$, $|C_i| \le k$ 。

证明. 对于每个 $(u,v) \in C_i$, (u,v) 和 T 中从 u 到 v 的路径都对应了一个包含 e_i 的简单环,因此必然存在 $|C_i|$ 个包含 e_i 的简单环。

由于包含 e_i 的简单环个数不超过 k,故 $|C_i| \leq k$ 。

接下来,我们利用这个性质设计动态规划。在状态中,需要记录 C_i 中所有边的顶端是否属于独立集,转移方式类似。具体地,记 f(i,j,S) 为 i 的父结点属于 (j=1) 或不属于 (j=0) 独立集,且 C_i 内的边的顶端结点构成的集合 U_i 中属于独立集的结点集合为 S 的情况下,T 中以i 为根的子树内最大的独立集大小,则状态转移方程如下:

• 当 j = 1 或 $S \cup \{i\}$ 不是独立集时:

$$f(i,j,S) = \sum_{c \in \mathsf{Ch}_i} f\left(c,0,S \cap U_i\right)$$

• 否则:

$$f(i, j, S) = \max \left\{ \sum_{c \in \operatorname{Ch}_i} f\left(c, 0, S \cap U_i\right), 1 + \sum_{c \in \operatorname{Ch}_i} f\left(c, 1, (S \cup \{i\}) \cap U_i\right) \right\}$$

和之前的算法类似, 当 k 视为常数时, 该算法的复杂度为 O(n)。

事实上,"k-仙人图"这个条件过于宽松,只要满足覆盖每条树边的非树边数目均不超过 k (甚至只要 $\sum_{v \in V} 2^{|C_v|}$ 不大),这个算法的效率都是很高的。

该算法可以拓展到更复杂的问题,如独立集计数。

例 4.2 (子集计数问题测试点 7,8). 给定无向图 G = (V, E),|V| = n,|E| = m。求有多少个子集 $V' \subseteq V$ 满足 |V'| = k 且 $\forall (u, v) \in E$, $u \notin V' \lor v \notin V'$ 。由于答案可能很大,只需输出答案对 p 取模的结果。提交答案题。

本例中仅讨论测试点 7.8。这两个测试点满足 G 是连通图数据规模如下表:

测试点编号	n =	m =	k =	p =
7	4998	5022	666	1000000009
8	11986	12011	1098	1000000007

问题求的是 G 中大小为 k 的独立集个数。由于 G 是连通图,且 m-n 很小,可以发现 G 可以通过往一个树中加入 m-n+1 条边得到。

如果构出 G 的 DFS 树之后,暴力枚举每条非树边的一端点是否选取,然后用树形动态规划统计独立集个数,可以较快通过测试点 7,但测试点 8 需要运行的时间太长,需要优化。根据本节中提到的思想,每条边所属的简单环的个数不多,因此可以采用上述算法解决。

记

- C_i 为满足 $e \in E'$, u_e 为 i 的祖先(不含 i, v_e 在以 i 为根的子树内的 u_e 集合
- f(i,j,S,s) 为满足 C_i 中属于独立集的结点集合为 S 的前提下,i 的前 j 个子树中,大小为 s 的独立集个数
- g(i,j,S,s) 为满足 C_i 中属于独立集的结点集合为 S 的前提下, i 以及 i 的前 j 个子树中, 大小为 s 的独立集个数
- $F(i,S,s)=f(i,t_i,S,s)$, $G(i,S,s)=g(i,t_i,S,s)$, 这里 t_i 为 i 的子节点数

对于 f(i,j,S,s),设 i 和 i 的前 j-1 个子树内共有 s_1 个点,第 j 个子树内有 s_2 个点,第 j 个子节点为 c_j ,则

$$f(i,j,S,s) = \sum_{x=\max\{s-s_1,0\}}^{\min\{s,s_2\}} f(i,j-1,S,s-x) \cdot G(c_j,S \cap C_{c_j},x), \quad 0 \le s \le s_1 + s_2$$

对于 g(i, j, S, s), 如果存在边 $e \in E'$ 使得 $u_e \in S$ 且 $v_e = i$, 那么 i 不能属于独立集, 有

$$g(i, j, S, s) = f(i, j, S, s)$$

否则,存在包含 i 的独立集,这样的独立集个数记为 g'(i,j,S,s),则

$$g'(i,j,S,s) = \sum_{x=\max\{s-s_1,0\}}^{\min\{s-1,s_2\}} g'(i,j-1,S,s-x) \cdot F\left(c_j,(S \cup \{i\}) \cap C_{c_j},x\right), \quad 0 \le s \le s_1 + s_2$$

所以

$$g(i, j, S, s) = g'(i, j, S, s) + f(i, j, S, s), \quad 0 \le s \le s_1 + s_2$$

边界为 f(i,0,S,0) = g'(i,0,S,1) = 1,未定义的状态值均为 0。答案就是 $G(r,\emptyset,k)$ 。

可以只计算满足 $s \le k$ 的状态,复杂度 $O(k \sum_{v \in V} 2^{|C_v|})$,其中 $|C_v|$ 通常在 12 以内。整个计算都在模 p 意义下进行即可,内存可以动态分配。

值得注意的是,选取不同的点 $r \in V$ 当根,以及用不同的顺序进行 DFS,运行效率是不同的。可以选择一个根 r 进行 DFS,使得

$$\sum_{v \in V} 2^{|C_v|}$$

最小,然后再执行上述算法,以降低时间复杂度。经过实测,测试点 7 的状态数约为 5×10^5 ,可以在 1s 内通过该测试点;测试点 8 的状态数约为 10^8 ,可以在 $2 \min$ 内通过该测试点。

5 总结

NP-Hard 问题的算法优化方法数不胜数,本文仅仅提到了若干种独立集问题的优化算法,这些方法解决的问题相类似,但思想各有区别——针对普通的最优化问题(如最大独立集),可以用带最优性剪枝的搜素算法减少枚举量;针对计数或有额外约束的问题(如独立集计数),可以用状态压缩动态规划,通过优化状态数来提高运行效率;针对可"增广"的图以及具有明显阶段性的图,又可以用多项式复杂度的算法来高效完成。

同时,本文对几种算法在随机情况下的运行时间进行了分析和比较,让大家对独立集问题 求解的效率有更进一步的认识。