Algeberska topologija Zapiski vaj

2023/24

Povzetek

Dokument vsebuje naloge iz predmeta Algeberska topologija in njihove rešitve. Predmet je bil izveden v okviru študija prvega letnika magistrskega študija matematike na FNM.

Kazalo

1	Uvod - vaje za ponovitev			
	1.1	Ponovitev grup	3	
	1.2	Ponovitev izomorfizmov grup	4	
	1.3	Ponovitev metričnih prostorov	Ę	
	1.4	Ponovitev topoloških prostorov	6	

1 Uvod - vaje za ponovitev

1.1 Ponovitev grup

Definicija 1: Naj boGneprazna množica in $\circ:G\times G\to G$ binarna operacija na G. Pravimo, da je Ggrupa, če velja:

- i) $\forall x, y \in G: x \circ y \in G$
- ii) $(x \circ y) \circ z = x \circ (y \circ z) \ \forall x, y, z \in G$
- iii) $\exists e \in G \ \forall x \in G : x \circ e = e \circ x = x$
- iv) $\forall x \in G \ \exists y \in G : x \circ y = y \circ x = e$

Pravimo, da je G <u>Abelova grupa,</u> če poleg prej navedenih pogojev velja še: $\forall x,y\in G: x\circ y=\overline{y\circ x}.$

Naloga 1. Naj bo $G = (1, \infty)$ in $x \circ y = xy - x - y + 2$. Pokaži, da je G grupa.

 $Re\check{s}itev$: Treba je preveriti ali G zadošča pogojem grupe.

i) Naj bosta $x, y \in G$ poljubna in računamo:

$$x \circ y = xy - x - y + 2 = x(y - 1) - y + 2 = x(y - 1) - (y - 1) + 1$$

= $(x - 1)(y - 1) + 1 > 1$

Sledi torej, da je tudi $x \circ y \in G$.

ii) Naj bodo $x, y, z \in G$ poljubni.

•

$$\begin{array}{l} (x\circ y)\circ z = (xy-x-y+2)\circ z = (xy-x-y+2)z - (xy-x-y+2) - z + 2 \\ = xyz - xz - yz + 2z - xy + x + y - 2 - z + 2 = xyz - xy - yz - xz + x + y + z \end{array}$$

•

$$x \circ (y \circ z) = x(y \circ z) - x - (y \circ z) + 2 = x(yz - y - z + 2) - x - (yz - y - z + 2) + 2$$
$$= xyz - xy - xz + 2x - x - yz + y + z - 2 + 2 = xyz - xy - xz - yz + x + y + z$$

Sledi $(x \circ y) \circ z = x \circ (y \circ z)$

- iii) Naj bo $x\in G$ poljuben. $x\circ e=xe-x-e+2=x$, torej je (x-1)e=2x-2 oz. $e=\frac{2(x-1)}{x-1}=2$. Trdimo torej, da je e=2 iskana enota. Preverimo: $2\circ x=2x-x-2+2=x$. Enota je torej res 2.
- iv) Naj bo $x\in G$ poljuben. Če zanj obstaja inverzy, potem velja $x\circ y=e=2.$

$$xy - x - y + 2 = 2 \iff xy - x - y = 0 \iff x = y(x - 1) \iff y = \frac{x}{x - 1}$$

Sedaj vstavimo ta $y \vee y \circ x$:

$$y \circ x = \frac{x}{x-1} \circ x = \frac{x^2}{x-1} - \frac{x}{x-1} - x + 2 = \frac{x^2 - x - x(x-1) + 2(x-1)}{x-1}$$
$$= \frac{x^2 - x - x^2 + x + 2x - 2}{x-1} = \frac{2(x-1)}{x-1} = 2$$

Očitno velja tudi $x \circ y = y \circ x \ \forall x, y \in G$, torej je G celo Abelova grupa.

Naloga 2. Naj bo (G, \cdot) grupa. $\forall x, y \in G$ dokaži:

a)
$$(x^{-1})^{-1} = x$$

$$b) (x^n)^{-1} = (x^{-1})^n$$

c)
$$(x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$$

Rešitev:

a)
$$(x^{-1})^{-1} = (x^{-1})^{-1} \cdot x^{-1} \cdot x = e \cdot x = x$$

b) Ker je
$$x^{n} \cdot (x^{-1})^{n} = \underbrace{x \cdot \dots \cdot x}_{n} \cdot \underbrace{x^{-1} \cdot \dots \cdot x^{-1}}_{n} = \underbrace{x \cdot \dots \cdot x}_{n-1} \cdot e \cdot \underbrace{x^{-1} \cdot \dots \cdot x^{-1}}_{n-1} = e, \text{ je}$$

$$(x^{n})^{-1} = (x^{n})^{-1} \cdot x^{n} \cdot (x^{-1})^{n} = e \cdot (x^{-1})^{n} = (x^{-1})^{n}$$

c)
$$(x \cdot y)^{-1} = (x \cdot y)^{-1} \cdot (x \cdot y) \cdot (y^{-1} \cdot x^{-1}) = e \cdot (y^{-1} \cdot x^{-1}) = y^{-1} \cdot x^{-1}$$

Definicija 2:

• Red elementa $g \in G$: |g| = red(g) je enak naravnemu številu $n \in \mathbb{N}$, če:

$$-g^n = e$$

$$- \forall m < n : q^m \neq e$$

Če tak $n \in \mathbb{N}$ ne obstaja, pravimo, da je $red(q) = \infty$.

• Pravimo, da je grupa G <u>ciklična</u>, če je generirana z enim samim elementom: $G = \langle g \rangle$, torej $\forall x \in g \ \exists n \in \mathbb{Z} : x = g^n$.

Naloga 3. Dokaži, da je vsaka ciklična grupa Abelova.

 $Re \breve{sitev}:$ Naj bo $G=\langle g\rangle$ ciklična grupa in $x,y\in G$ neka poljubna elementa. Potem $\exists m,n\in\mathbb{Z}:x=g^n,y=g^m.$ Sledi: $xy=g^ng^m=g^{(n+m)}=g^{(m+n)}=g^mg^n=yx$

1.2 Ponovitev izomorfizmov grup

Definicija 3: Naj bosta (G,\cdot) in $(\acute{G},*)$ grupi in $\varphi:G\to \acute{G}$ preslikava med njima. Pravimo, da je φ homomorfizem grup G in \acute{G} , če velja: $\forall x,y\in G: \varphi(x\cdot y)=\varphi(x)*\varphi(y)$. Če je φ poleg tega bijektiven, mu pravimo izomorfizem. Če je φ izomorfizem in $G=\acute{G}$, pravimo, da je φ avtomorfizem.

Naloga 4. Naj bosta (G, \cdot) in $(\acute{G}, *)$ grupi in naj bo $\varphi : G \to \acute{G}$ homomorfizem med njima. Dokaži:

$$a) \ \varphi(e) = \acute{e}$$

b)
$$\forall x in G, \ \forall n \in \mathbb{N} : \varphi(x^n) = (\varphi(x))^n$$

c)
$$\forall x \in G : \varphi(x^{-1}) = (\varphi(x))^{-1}$$

Rešitev:

a)
$$\dot{e} = \varphi(e) * (\varphi(e))^{-1} = \varphi(e \cdot e) * (\varphi(e))^{-1} = \varphi(e) * \varphi(e) * (\varphi(e))^{-1} = \varphi(e)$$

b)
$$\phi(x^n) = \phi(\underbrace{x \cdot x \cdot \dots \cdot x}_n) = \underbrace{\phi(x) \cdot \phi(x) \cdot \dots \cdot \phi(x)}_n = (\phi(x))^n$$

c)
$$(\varphi(x))^{-1} * \acute{e} = (\varphi(x))^{-1} * \varphi(e) = (\varphi(x))^{-1} * \varphi(x \cdot x^{-1}) = (\varphi(x))^{-1} * \varphi(x) * \varphi(x^{-1}) = \acute{e} * \varphi(x^{-1}) = \varphi(x^{-1})$$

Naloga 5. Naj bo G grupa in $\varphi: G \to G$ s predpisom $\varphi(g) = g^{-1}$. Pokaži:

$$G$$
 je Abelova $\iff \varphi$ je izomorfizem

Rešitev:

- ⇒): Denimo, da je G Abelova grupa. Vidimo, da je φ homomorfizem, saj za poljubna $x,y\in G$ velja $\varphi(xy)=(xy)^{-1}=y^{-1}x^{-1}=x^{-1}y^{-1}=\varphi(x)\varphi(y)$. Denimo sedaj, da $\exists x\in Ker(\varphi)$. Potem je $e=\varphi(x)=x^{-1}$, torej je x=e. Posledično je $Ker(\varphi)=\{e\}$, torej je φ injektiven. Ker za $\forall x\in G\ \exists\ y\in G: y=x^{-1}$ in je posledično $\varphi(y)=x$, sledi, da je φ tudi surjektiven. Sledi, da je φ bijektiven, torej je izomorfizem.
- \Leftarrow): Denimo, da je φ izomorfizem. Potem je $\varphi(xy) = (xy)^{-1} = y^{-1}x^{-1} = \varphi(y)\varphi(x) = \varphi(yx).$ Sledi, da je xy = yx $\forall x, y \in G$, torej je G Abelova grupa.

1.3 Ponovitev metričnih prostorov

Definicija 4: Naj bo X množica in $d: X \times X \to \mathbb{R}$. Pravimo, da je d metrika na X, če:

- $\forall x, y \in X : d(x, y) > 0 \land d(x, y) = 0 \iff x = y$
- $\forall x, y \in X : d(x, y) = d(y, x)$
- $\forall x, y, z \in X : d(x, y) \le d(x, z) + d(z, y)$

Označimo: $K_r = \{ y \in X; \ d(x,y) < r \}$

Naloga 6. Naj bo $X = \mathbb{R}^2$ in $d((x_1, y_1), (x_2, y_2)) = |e^{x_1} - e^{x_2}| + |\arctan(y_1) - \arctan(y_2)|$ Preveri, ali je d metrika na X

 $Re \check{s}itev:$

- i) Najprej vidimo, da je očitno $d((x_1, y_1), (x_2, y_2)) \ge 0 \forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$. Dodatno, $d((x_1, y_1), (x_2, y_2)) = 0 \iff |e^{x_1} e^{x_2}| = 0 \land |\arctan(y_1) \arctan(y_2)| = 0 \iff x_1 = x_2 \land y_1 = y_2 \iff (x_1, y_1) = (x_2, y_2)$.
- ii) Ker je $|e^{x_1} e^{x_2}| = |e^{x_2} e^{x_1}| \wedge |\arctan(y_1) \arctan(y_2)| = |\arctan(y_2) \arctan(y_1)|$ za poljubne $x_1, x_2, y_1, y_2 \in \mathbb{R}$, sledi $d((x_1, x_2), (y_1, y_2)) = d((y_1, y_2), (x_1, x_2))$

iii)

$$d((x_1, y_1), (x_2, y_2)) = |e^{x_1} - e^{x_2}| + |\arctan(y_1) - \arctan(y_2)|$$

$$= |e^{x_1} - e^{x_3} + e^{x_3} - e^{x_2}| + |\arctan(y_1) - \arctan(y_3) + \arctan(y_3) - \arctan(y_2)|$$

$$\leq |e^{x_1} - e^{x_3}| + |e^{x_3} - e^{x_2}| + |\arctan(y_1) - \arctan(y_3)| + |\arctan(y_3) - \arctan(y_2)|$$

$$= d((x_1, y_1), (x_3, y_3)) + d((x_3, y_3), (x_2, y_2))$$
Na kratko: $\forall (x_1, y_1), (x_2, y_2), (x_3, y_3) \in \mathbb{R}^2 : d((x_1, y_1), (x_2, y_2)) \leq$

Definicija 5: Naj bosta (X,d) in (Y,d) metrična prostora. Pravimo, da je $f:X\to Y$ zvezna v $a\in X$, če:

 $d((x_1, y_1), (x_3, y_3)) + d((x_3, y_3), (x_2, y_2))$

$$\forall \epsilon > 0 \; \exists \delta > 0; \forall x \in X : d(x, a) < \delta \Rightarrow \acute{d}(f(x), f(a)) < \epsilon$$

Pravimo, da je f zvezna na X, če je zvezna $\forall a \in X$. Pravimo, da je f homeomorfizem, če je zvezna bijekcija z zveznim inverzom.

Naloga 7. Naj bosta
$$X = \{(x,y) \in \mathbb{R}^2; x,y > 0\}$$
 in $Y = K_1$. Ali je $X \approx Y$?

 $Re\check{s}itev$: Denimo, da je $X\approx Y$. Potem lahko sestavimo homeomorfizem $f:X\to Y$. Da to naredimo, bomo sestavili več homeomorfizmov, najprej iz X v nek drugi prostor, Z_1 , nato iz tega prostora v naslednjega, Z_2 , itd., dokler ne pridemo do Y. Vzemimo $Z_1=(0,2)^2$ Potem je $f_1:X\to Z_1$ s predpisom $f_1(x,y)=(\frac{4}{\pi}\arctan(x),\frac{4}{\pi}\arctan(y))$. Ta je očitno zvezna bijekcija in tudi inverz je zvezen. Za Z_2 nato izberemo kar $Z_2=(-1,1)^2$, ki je v resnici samo togi premik Z_1 . Potem je primeren $f_2:Z_1\to Z_2$ s predpisom $f_2(x,y)=(x-1,y-1)$. Tudi ta funkcija je očitno homeomorfizem. Preostane nam samo še preslikava $f_3:Z_2\to Y$. Za to določimo predpis $f_3(x,y)=(x,y\sqrt{1-x^2})$. Ta funkcija je dobro definirana, zvezna bijekcija z zveznim inverzom, torej homeomorfizem. Pišemo $f=f_3\circ f_2\circ f_1$ in ker je kompozitum homeomorfizmov tudi sam homeomorfizem, vemo, da je f homeomorfizem, torej je res $X\approx Y$.

1.4 Ponovitev topoloških prostorov

Definicija 6: Naj bo X neprazna množica in $\mathcal{T} \subseteq \mathcal{P}(X)$. Pravimo, da je \mathcal{T} topologija na X, če velja:

- a) $\emptyset, X \in \mathcal{T}$
- b) $U_{\lambda} \in \mathcal{T} \ \forall \lambda \in \Lambda \Rightarrow \bigcup_{\lambda \in \Lambda} U_{\lambda} \in \mathcal{T}$
- c) $\forall U, V \in \mathcal{T} : U \cap V \in \mathcal{T}$

Naloga 8. Naj bo $X = \mathbb{R}$ in $\mathcal{T} = \{(r, \infty); r \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$. Pokaži, da je \mathcal{T} topologija na X.

Rešitev:

a) Prvi pogoj velja očitno, po definiciji \mathcal{T} .

- b) Preverimo vse možnosti:
 - $\bigcup_{r \in \mathbb{R}} (r, \infty) = \mathbb{R} \in \mathcal{T}$
 - $U_{\lambda} = \emptyset \ \forall \lambda \in \Lambda \Rightarrow \bigcup_{\lambda \in \Lambda} U_{\lambda} = \emptyset \in \mathcal{T}$
 - $\exists \lambda_0 \in \Lambda; U_{\lambda_0} = \mathbb{R} \Rightarrow \bigcup_{\lambda \in \Lambda} U_{\lambda} = \mathbb{R} \in \mathcal{T}$
 - $\bigcup_{\lambda \in \Lambda} (r_{\lambda}, \infty) = \begin{cases} (\inf_{\lambda \in \Lambda} (r_{\lambda}), \infty) & ; \ \exists \inf_{\lambda \in \Lambda} (r_{\lambda}) \\ \mathbb{R} & ; \text{ sicer} \end{cases}$ V obeh primerih je rezultat element iz \mathcal{T} .
- c) $U = \emptyset \lor V = \emptyset \Rightarrow U \cap V = \emptyset \in \mathcal{T}$
 - $U = \mathbb{R} \land V \neq \emptyset \Rightarrow U \cap V = V \in \mathcal{T}$
 - $V = \mathbb{R} \wedge U \neq \emptyset \Rightarrow U \cap V = U \in \mathcal{T}$
 - $U \notin \{\emptyset, \mathbb{R}\} \land V \notin \{\emptyset, \mathbb{R}\} \Rightarrow U \cap V = (r, \infty) \cap (q, \infty) = (\max(r, q), \infty) \in \mathcal{T}$

Torej je \mathcal{T} res topologija na X.

Definicija 7: Pravimo, da je $\mathcal B$ baza za topologijo $\mathcal T$, če velja:

- 1. $\mathcal{B} \subseteq \mathcal{T}$
- 2. $\forall U \in \mathcal{T} \ \exists \mathcal{C} \subseteq \mathcal{B}; U = \bigcup_{C \in \mathcal{C}} C$

Definicija 8: Funkcija $f:(x,\mathcal{T})\to (Y,\acute{\mathcal{T}})$ je zvezna, če $\forall U\in \acute{\mathcal{T}}:f^{-1}(U)\in \mathcal{T}$

Naloga 9. Naj bo $f: (\mathbb{R}, \mathcal{T}_e) \to (\mathbb{R}, \mathcal{T}_e)$ in $g: (\mathbb{R}, \mathcal{T}_L) \to (\mathbb{R}, \mathcal{T}_D)$ s predpisoma f(x) = 2x - 1 in g(x) = x. Pri tem sta $\mathcal{B}_D = \{(a, b]; a, b \in \mathbb{R}, a < b\}$ in $\mathcal{B}_L = \{[a, b); a, b \in \mathbb{R}, a < b\}$. Ali sta f in g zvezni?

 $Re \check{s}itev:$

- f: Najprej poračunamo predpis za f^{-1} . Ta se glasi $f^{-1}(y) = \frac{y+1}{2}$. Naj bo sedaj interval $(a,b) \in \mathcal{B}_e$ poljuben interval iz evklidske baze. tedaj je $f^{-1}((a,b)) = (\frac{a+1}{2}, \frac{b+1}{2}) \in \mathcal{B}_e$, torej je f zvezna.
- g: $g(x) = x = g^{-1}(x)$. Naj bo $(a, b] \in \mathcal{B}_D$. Potem je $g^{-1}((a, b]) = (a, b] \notin \mathcal{B}_L$ Še več, ne obstaja nobena družina množic iz \mathcal{B}_L , katerih unija bi bila (a, b]. Sledi, da g ni zvezna.