Mathematical Proof

John Shea

February 02, 2019

Assignment #4

Question 1

Theorem 1. If $0 < \frac{1}{a} < \frac{1}{b}$, then b < a.

Proof. Suppose $0 < \frac{1}{a} < \frac{1}{b}$ Because both $\frac{1}{a}$ and $\frac{1}{b}$ are both greater than zero, both a and b must be positive. Therefore, all terms can be multiplied by a and b without needing to change the direction of the inequality. Thus, when all three terms are multiplied by a, the result is $0 < 1 < \frac{a}{b}$. Then when all three terms are multiplied by b, the result is 0 < b < a. Therefore b is less than a.

A more visual depiction:

$$0 < \frac{1}{a} < \frac{1}{b}$$

$$\equiv 0 \cdot a < \frac{1}{a} \cdot a < \frac{1}{b} \cdot a \qquad \text{(multiply all terms by a)}$$

$$\equiv 0 < 1 < \frac{a}{b} \qquad \text{(simplify)}$$

$$\equiv 0 \cdot b < 1 \cdot b < \frac{a}{b} \cdot b \qquad \text{(multiply all terms by b)}$$

$$\equiv 0 < b < a \qquad \text{(simplify)}$$

$$b < a \qquad \text{(conclusion)}$$

Question 2

Theorem 2. Given $A \subseteq B$ and $x \in A$, if $x \notin B \setminus C$ then $x \in C$.

Proof. Suppose $x \notin C$. Then

Question	3
Q GCCCICII	•

Theorem 3. Given $A \setminus B \subseteq C \cap D$ and $x \in A$, if $x \notin C$, then $x \in B$

Proof. Suppose \Box

Question 4

Theorem 4. If x is a negative real number and $x < \frac{1}{x}$, then x < -1.

Proof. Suppose a is the absolute value of x. Then the given statement can be written as $-a < -\frac{1}{a}$. Then multiply both sides by -a and we get $a^2 > 1$. We then take the principle square root of both sides and arrive at a > 1. Then we multiply both sides by -1 and get -a < -1. Finally, we insert x for -a and we get the desired x < -1.

Question 5

Theorem 5. If x is a real number and $x \neq 2$, then there is a real number y such that x = (2y+1)/(y-1).

Proof. Suppose \Box

Question 6

Theorem 6. If F is a non-empty family of sets, B is a set, and $\forall A \in F(A \subseteq B)$. Is $\cup F \subseteq B$? Either provide a proof to show that this is true or provide a counterexample to show that this is false.

Proof. Suppose \Box