Cosmology with Astropy

J. Gassert, M. Stenfors

The Expansion of the Universe

- Hubble's law: $v = H_0 D$
- Hubble's constant:

$$H_0 = 100 \times h \text{km/s/Mpc}, h \approx 70 \text{km/s/Mpc}$$

- Scale factor: r(t) = a(t)l
- Hubble parameter:

$$H(t) = \frac{\dot{a}}{a}$$

• Redshift:

$$1 + z = \frac{a_0}{a(t)} = \frac{\lambda_0}{\lambda(t)}$$

Velocity-Distance Relation among Extra-Galactic Nebulae.

LAMBDA - January 2022

The Friedmann Equations

• The Friedmann equation:

$$H^{2}(t) = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G\rho}{3} + \frac{\Lambda c^{2}}{3} - \frac{kc^{2}}{a^{2}}$$

• The Acceleration equation:

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \left(\rho \frac{3p}{c^2} \right) + \frac{\Lambda c^2}{3}$$

• The Fluid equation:

$$\dot{\rho} + 3\frac{\dot{a}}{a}\left(\rho + \frac{p}{c^2}\right) = 0$$

Density Parameters

• Critical density:
$$\rho_c(t) = \frac{3\mathrm{H}^2(t)}{8\pi G} = 1.88 \times 10^{-26} h^2 \mathrm{kg/m}^3$$

• Density parameters:

$$\Omega_X(t) = \frac{\rho_X(t)}{\rho_c(t)}$$

$$\Omega_{M,0} \approx 0.310, \Omega_{\Lambda,0} \approx 0.689, \Omega_{\gamma,0} \approx 5.40 \times 10^{-5}, \Omega_{k,0} \approx 0.0$$

• Reworked Friedmann equation:

$$\Omega_M(z) + \Omega_{\gamma}(z) + \Omega_{\Lambda}(z) + \Omega_k(z) = 1$$

$$H(z) = H_0 \sqrt{\Omega_{M,0}(1+z)^3 + \Omega_{\gamma,0}(1+z)^4 + \Omega_{\Lambda,0} + \Omega_{k,0}(1+z)^2}$$

The Equation of State

- Equation of State: $p = w\rho c^2$
- First linear order expansion:

$$w(a) = w_0 + w_a(1 - a) = w_0 + w_a \frac{z}{1 + z}$$

Value	Energy density scaling	Time scaling	Phenomena described	
w = 1	$\rho \propto a^{-6}$	$a \propto t^{1/3}$	Free scalar field	
w = 1/3	$ ho \propto a^{-4}$	$a \propto t^{1/2}$	Ultra-relativistic particles	
w = 0	$\rho \propto a^{-3}$	$a \propto t^{2/3}$	Non-relativistic particles	
w = -1/3	$ ho \propto a^{-2}$	$a \propto t$	Curvature	
w = -2/3	$\rho \propto a^{-1}$	$a \propto t^2$	_	
w = -1	$ ho \propto a^0$	$a \propto e^{Ht}$	Cosmological constant	
w < -1	-	=	Phantom energy	

Supernovae: standard candles

- End of star's lifetime: "explosion"
- Different types: spectroscopic classification
- SN Ia
 - Binary system: white dwarf + companion
 - WD accretes material until 1.4 solar masses (electron degeneracy pressure insufficient to stabilize WD)
 - Thermonuclear runaway
 - \circ Mass identical = energy release identical (\approx e+44 J) = absolute brightness identical

Distance measures

- Luminosity distance: $d_L = (1+z) d_M\left(z
 ight) = \sqrt{rac{L}{4\pi F}}$
- Comoving distance: $d_C(z) = d_H \int_0^z \frac{dz'}{E(z')}$
- Hubble distance: $d_H = \frac{c}{H_0}$

Distance Modulus & Magnitudes

- Apparent & Absolute Magnitudes: neg. log-scale brightness
- Observed quantity: flux (in a certain wavelength range = band)

$$m_x = -2.5 \log_{10} \left(rac{F_x}{F_{x,0}}
ight) \hspace{0.5cm} \mu = m-M = 5 \mathrm{mag} \, \cdot \, \log_{10} \left(rac{r}{10 \mathrm{pc}}
ight)$$

Star/Object	Apparent Magnitude (<i>m</i>)	Absolute Magnitude (<i>M</i>)	Distance modulus (<i>m</i> – <i>M</i>)	Distance
Sun	-26.832 mag	+4.84 mag	-31.57	1 <u>AE</u>
<u>Sirius</u>	−1.46 mag	+1.43 mag	-2.89	2.64 pc = 8.6 ly
<u>Vega</u>	+0.03 mag	+0.58 mag	-0.55	7.75 pc
SN Ia		-19.3 mag		
Milky Way		-20.8 mag		