

SEMICONDUCTOR TECHNICAL DATA

COM

KIA431/F/A/AF BIPOLAR LINEAR INTEGRATED CIRCUIT

PROGRAMMABLE PRECISION REFERENCES

The KIA431/F/A/AF integrated circuits are three-terminal programmable shunt regulator diodes. These monolithic IC voltage reference operate as a low temperature coefficient zener which is programmable from $V_{\rm ref}$ to 36 volts with two external resistors. These devices exhibit a wide operating current range of 1.0 to 100mA with a typical dynamic impedance of 0.22 Ω . The characteristics of these references make them excellent replacements for zener diodes in many applications such as digital voltmeters, power supplies, and op amp circuitry.

The 2.5 volt reference makes it convenient to obtain a stable reference from 5.0 volt logic supplies, and since the KIA431/F/A/AF operates as a shunt regulator, it can be used as either a positive or negative voltage reference.

FEATURES

- · Programmable Output Voltage to 36 Volts.
- · Voltage Reference Tolerance: ±1.0%(KIA431A/AF)
- Low Dynamic Output Impedance: 0.22Ω (Typ.).
- · Sink Current Capability of 1.0 to 100mA.
- Equivalent Full-Range Temperature Coefficient of 50ppm/°C (Typ.).
- Temperature Compensated for Operation Over Full Rated Operating Temperature Range.
- · Low Output Noise Voltage.

MARKING

Type No.	Marking			
KIA431F	3A			
KIA431AF	3B			

MAXIMUM RATINGS

(Full operating ambient temperature range applies unless otherwise noted.)

CHARACTERIST	IC	SYMBOL	RATING	UNIT	
Cathode To Anode Voltage		V _{KA}	37	V	
Cathode Current Range, Continuo	us	I_{K}	-100 ~ 150	mA	
Reference Input Current Range, C	Continuos	$ m I_{ref}$	−0.05 ~ 10	mA	
Operating Junction Temperature	AM M. O.	Ti	150	Ç	
Operating Temperature		Topr	-40 ~ 85	Ç	
Storage Temperature		T_{stg}	−65 ~ 150	Ç	
Total Power Dissipation	KIA431/A	P_D	700	mW	
	KIA431F/AF	LD LD	800	TITAA	

BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS (Ta=25°C)

ELECTRICAL CHA		100 (14 2	<u> </u>						
CHARACTERISTICS		SYMBOL	TEST CIRCUIT	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Reference Input Voltage	KIA431/F	77	Figure 1	$V_{KA}=V_{ref}$, $I_{K}=10mA$		2.440	2.495	2.550	V
	KIA431A/AF	V _{ref}				2.470	2.495	2.520	V
-	ference Input Voltage viation Over Temperature		-	7.0	30	mV			
Ratio of Change in Reference Input Voltage to Change in Cathode to Anode Voltage		⊿V _{ref} /	Figure 2	I _K =10mA	$\triangle V_{KA} = 10V \sim V_{ref}$	=	-1.4	-2.7	mV/V
		∠V _{KA}			∠V _{KA} = 36V~10V	-	-1.0	-2.0	
Reference Input	Ta=25℃		TC' 0	I _K =10mA,	R1=10kΩ,	-	1.8	4.0	μ. Δ
Current	l _{ref} Houre /			-	-	6.5	μΑ		
Reference Input Current Deviation Over Temperature Range		$\Delta I_{ m ref}$	Figure 2	I _K =10mA, R1=10kΩ, R2=∞		-	0.8	2.5	μА
Minimum Cathode Current For Regulation		I_{min}	Figure 1	$V_{KA} = V_{ref}$		-	0.5	1.0	mA
Off-State Cathode Current		$I_{ m off}$	Figure 3	V_{KA} =36V, V_{ref} =0V		_	2.6	1000	nA
Dynamic Impedance		Z _{ka}	Figure 1 (Note 2)	$V_{KA}=V_{ref},~I_{K}=1.0 \sim 100 mA, \ f \leq 1.0 kHz$		-	0.22	-	Ω

FIGURE 1-TEST CIRCUIT FOR $v_{KA} = v_{ref}$

FIGURE 2-TEST CIRCUIT FOR $V_{KA} > V_{ref}$

Note 1: The deviation parameter ΔV_{ref} is defined as the differences between the maximum and minimum values obtained over the full operating ambient temperature range that applies.

AMBIENT TEMPERATURE

The average temperature coefficient of the Reference input voltage, αV_{ref} ,is defined as:

$$\alpha V_{\text{ref}} \stackrel{\text{opm}}{\stackrel{\text{opm}}{\text{c}}} = \frac{(\frac{\Delta V_{\text{ref}}}{V_{\text{ref}} \text{ at } 25 \, \text{°C}}) \times 10^6}{\Delta \text{Ta}}$$
$$= \frac{\Delta V_{\text{ref}} \times 10^6}{\Delta \text{Ta}(V_{\text{ref}} \text{ at } 25 \, \text{°C})}$$

 $\alpha\,V_{\text{ref}}$ can be positive or negative depending on whether V_{ref} Min. or V_{ref} Max. occurs at the lower ambient temperature.

FIGURE 3-TEST CIRCUIT FOR I_{off}

Example : ΔV_{ref} = 8.0mV and slope is positive, V_{ref} at 25 °C = 2.495V, ΔTa = 70 °C

$$\alpha \, V_{\text{ref}} = \frac{0.008 \times 10^6}{70 \times (2.495)} = 45.8 \, \text{ppm/}^{\circ}$$

Note 2: The dynamic impedance Z_{ka} is defined as:

$$|Z_{ka}| = \frac{\Delta VKA}{\Delta Ik}$$

When the device is programmed with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is defined as:

$$|Z_{ka'}| = |Z_{ka}| (1 + \frac{R1}{R2})$$

5/6

PRECAUTION FOR USE

SOLDERING

Flat Package (SOT-89 Package)

Elements mounting styles of electronic devices are gaining in further diversification over recent years, and needs for components are all the more expanding in varieties. Especially, surface mounting is steadily penetrating into industrial segments as a world-wide popular technical trend. Although exposure to high temperature is inevitable during soldering we recommend limiting the soldering temperature to low levels as shown in figure for the sake of retaining inherent excellent reliability.

- (a) When employing solder reflow method
 - 1 Atmospheric temperature around resin surfaces must be less than 240°C, not exceeding the time length of 10 sec.
 - 2 Recommend temperature profile
 - 3 Precautions on heating method

When resin in kept exposed to high temperature for a long time, device reliability may be marred. Therefore, it is essential to complete soldering in the shortest time possible to prevent temperature of resin from rising.

(b) When employing halogen lamps or infrared-ray heaters

When halogen lamps or infrared-ray heaters are used, avoid direct irradiation onto resin surfaces; such devices cause extensive localized temperature rise.

* Please keep a reflow solder operating when SOT-89 package's soldering.