Lecture 7 Further Edge Detection

COMP6223 Computer Vision (MSc)

What better ways are there to detect edges?

Department of Electronics and Computer Science

Content

- 1. How can we improve first-order edge detection?
- 2. How can we detect edges using second order differentiation/ differencing

Applying Sobel operator

Sobel is a good basic operator

Blurred edges

Noisy edges

Canny edge detection operator

Formulated with three main objectives:

- optimal detection with no spurious responses;
- good localisation with minimal distance between detected and true edge position; and
- single response to eliminate multiple responses to a single edge.

Approximation

- 1. use Gaussian smoothing;
- 2. use the Sobel operator; / combine?
- 3. use non-maximum suppression; and
- 4. threshold with hysteresis to connect edge points.

Stages in Canny edge detection operator

Interpolation in Non-maximum Suppression

Need to use points which are not on the image grid

Use linear interpolation

Mark the point $P_{x,y}$ as a maximum if its gradient magnitude is larger than both at M_1 and M_2 ; otherwise set it to 0.

Hysteresis thresholding transfer function

Thresholded data

Action of non-maximum suppression and hysteresis thresholding

Gives thin edges in the right place

Comparing hysteresis thresholding with uniform thresholding

Comparing Canny with Sobel

The lines are thinner here, making Sobel look better!

Comparing Canny with Sobel

The lines are indeed thinner

Comparing Canny with Sobel

The noise is less

First and second order edge detection

Edge detection via the Laplacian operator

0	-1	0
-1	4	-1
0	-1	0

$$f'(x) = (f(x + \Delta x) - f(x)) / \Delta x$$

$$f'(x + \Delta x) = (f(x + 2\Delta x) - f(x + \Delta x)) / \Delta x$$

$$f''(x + \Delta x) = (f'(x + \Delta x) - f'(x)) / \Delta x$$

$$= (f(x + 2\Delta x) - 2f(x + \Delta x) + f(x)) / \Delta x$$

1	2	3	4	1	1	2	1	0	0	0	0	0	0	0	0
2	2	3	0	1	2	2	1	0	1	-31	-47	-36	-32	0	0
3	0	38	39	37	36	3	0	0	-44	70	37	31	60	-28	0
4	1	40	44	41	42	2	1	0	-42	34	12	1	50	-41	0
1	2	43	44	40	39	3	1	0	-37	47	8	-6	31	-32	0
2	0	39	41	42	40	2	0	0	-45	72	37	45	74	-36	0
0	2	0	2	2	3	1	1	0	6	-44	-38	/ -40	-31	-6	0
0	2	1	3	1	0	4	2	0	0	0	0/	0	0	0	0
	(a) image data							e	(b)	result	of the	Lapla	cian op	erator	

Edge detection is about differentiation

Gaussian function has the smoothing effect

Can also add a constant: $\frac{1}{2\pi\sigma^2}$

Take a Gaussian function:

$$g(x,y,\sigma) = e^{\frac{-(x^2+y^2)^2}{2\sigma^2}}$$

Differentiate **once**:

$$\frac{\partial g(x,y,\sigma)}{\partial x} = -\frac{x}{\sigma^2} e^{\frac{-(x^2+y^2)}{2\sigma^2}}$$

And again:
$$\frac{\partial^2 g(x,y,\sigma)}{\partial x^2} = \left(\frac{x^2}{\sigma^2} - 1\right) \frac{e^{\frac{-(x^2 + y^2)}{2\sigma^2}}}{\sigma^2}$$

Mathbelts on...

Second order in x and y is:

$$\nabla^{2} g(x, y, \sigma) = \frac{\partial^{2} g(x, y, \sigma)}{\partial x^{2}} U_{x} + \frac{\partial^{2} g(x, y, \sigma)}{\partial y^{2}} U_{y}$$

$$= \left(\frac{x^{2}}{\sigma^{2}} - 1\right) \frac{e^{\frac{-(x^{2} + y^{2})}{2\sigma^{2}}} + \left(\frac{y^{2}}{\sigma^{2}} - 1\right) \frac{e^{\frac{-(x^{2} + y^{2})}{2\sigma^{2}}}}{\sigma^{2}}$$

$$= \frac{1}{\sigma^{2}} \left(\frac{x^{2} + y^{2}}{\sigma^{2}} - 2\right) e^{\frac{-(x^{2} + y^{2})}{\sigma^{2}}}$$

Google: "Laplacian of Gaussian"

$$LoG \stackrel{\triangle}{=} \triangle G_{\sigma}(x,y) = \frac{\partial^{2}}{\partial x^{2}}G_{\sigma}(x,y) + \frac{\partial^{2}}{\partial y^{2}}G_{\sigma}(x,y) = \frac{x^{2} + y^{2} - 2\sigma^{2}}{\sigma^{4}}e^{-(x^{2} + y^{2})/2\sigma^{2}}$$

LoG(x,y) =
$$-\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm; http://fourier.eng.hmc.edu/e161/lectures/gradient/node8.html; http://academic.mu.edu/phys/matthysd/web226/Lab02.htm Difference comes from the constant: $\frac{1}{2\pi\sigma^2}$ in front of the Gaussian function.

Shape of Laplacian of Gaussian operator

It's called the 'Mexican hat operator'

Zero crossing detection

Need to find zero-crossings in 2D

Using e.g.: straight comparison

Marr-Hildreth edge detection

Small template, small σ for local features

Large template, large σ for global features

Comparison of edge detection operators

Main points so far

- 1 Canny provides thin edges in the right place
- 2 second order (Marr-Hildreth) requires zerocrossing detection
- 3 the results by Marr-Hildreth and Canny are well worth the extra computation

Now we need to collect the edges to find shape. Coming next...

Advanced: Phase Congruency

(a) modified cameraman image

(b) edges by the Canny operator

(c) phase congruency

Figure 4.34 Edge Detection by Canny and by Phase Congruency

Advanced: localised feature extraction

Advanced: localised feature extraction

Others: SURF, FAST, ORB, FREAK, LOCKY, etc.

