Universidad Tecnológica Nacional
Facultad Regional Córdoba
Cátedra de Ingeniería y Calidad de Software
Docentes: Judith Meles & Laura Covaro

TESTING DE SOFTWARE

Colaboración de: Consuelo López

¿Qué es el testing?

¿Cuánto testing es suficiente?

Sistema con 20 pantallas

Numero de dos dígitos, 101 valores posibles

Total de testing exhaustivo:

 $20 \times 3 \times 4 \times 10 \times 100 = 240.000$

Suponiendo 1 seg por prueba: 4000 minutos -> 67 horas -> 8,5 días

10 seg -> 17 semanas 1 min -> 1,4 años 10 min -> 13,7 años

Conceptos: Error vs Defecto

Proceso del Testing

Niveles de Testing

Niveles de Testing: Testing Unitario

Niveles de Testing: Testing de Integración

PAN INTEGRAL

Porque las ciencias se preocupan por tu regularidad

Niveles de Testing: Testing de Sistema

Niveles de Testing: Testing de Aceptación

Estrategias

Métodos: Quick Quiz

• Unir todos los puntos usando solamente 4 trazos

Think out of the box!!

Métodos

- Para qué usarlos? El tiempo y el presupuesto es limitado
- Hay que pasar por la mayor cantidad de funcionalidades con la menor cantidad de pruebas

Caja Negra

- Basado en especificaciones
 - Partición de Equivalencias
 - Análisis de valores límites
 - Etc.
- Basados en la experiencia
 - Adivinanza de Defectos
 - Testing Exploratorio

Dos Pasos

- 1. Identificar las clases de equivalencia (Válidas y no Válidas)
 - Rango de valores continuos
 - Valores Discretos
 - Selección simple
 - Selección múltiple

Rojo Amarillo Verde Violeta Azul Amarillo Rojo

Verde Marrón Violeta Naranja

2. Identificar los casos de prueba

- 1. Un empleado puede percibir hasta \$4000 sin pagar impuestos
- 2. Para los siguientes \$1500, el impuesto es del 10% del total.
- 3. Para los próximos \$2000, el impuesto aplicado es del 22%
- Cualquier monto superior percibirá un 40% de deducciones sobre el total.

1. Solución!!!

Caja Negra: Análisis de Valores límites

• Es una variante de la partición de equivalencias, en vez de seleccionar cualquier elemento como representativo de una clase de equivalencia, se seleccionan los bordes de una clase.

Caja Negra: Análisis de Valores límites

 Plantear los Casos de Prueba anteriormente descriptos para el método de Análisis de Valores Límites.

Caja Negra: Análisis de Valores límites

• Solución!

Caja Negra: Basados en la experiencia

Adivinanza de Defectos

- Se basan en el análisis de la estructura interna del software o un componente del software.
- Se puede garantizar el testing coverage

- Cobertura de enunciados o caminos básicos
- Cobertura de sentencias
- Cobertura de decisión
- Cobertura de condición
- Cobertura de decisión/condición
- Cobertura múltiple
- Etc

Cobertura de enunciados o caminos básicos

- Propuesto por McCabe
- Permite obtener una medida de la complejidad de un diseño procedimental, y utilizar esta medida como guía para la definición de una serie de caminos básicos de ejecución

Para la prueba del camino básico:

- Se requiere poder representar la ejecución mediante grafos de flujo
- Se calcula la complejidad ciclomática
- Dado un grafo de flujo se pueden generar casos de prueba

Cobertura de enunciados o caminos básicos

Grafo de flujos de Estructuras básicas

Secuencia

Cobertura de enunciados o caminos básicos

Complejidad Ciclomática

M = Complejidad ciclomática.
 E = Número de aristas del grafo
 N = Número de nodos del grafo
 P = Número de componentes conexos, nodos de salida

$$M = E - N + 2*P$$

- Es una métrica de software que provee una medición cuantitativa de la complejidad lógica de un programa
- Usada en el contexto de testing, define el número de caminos independientes en el conjunto básico y entrega un limite inferior para el número de casos necesarios para ejecutar todas las instrucciones al menos una vez

M = Número de regiones + 1

Cobertura de enunciados o caminos básicos

Ejemplo

Cobertura de enunciados o caminos básicos

$$M = E - N + 2*P$$

$$M = 12 - 10 + 2*1$$

$$M = 4$$

M = Número de regiones + 1

$$M = 3 + 1$$

$$M = 4$$

Cobertura de enunciados o caminos básicos

TC 1	TC 2	TC 3	TC 4
N1 = 8	N1 = 8	N1 = 4	N1 = 4
N2 = 4	N2 = 4	N2 = 8	N2 = 8
N3 = 4	N3 = 8	N3 = 4	N3 = 8

Cobertura de enunciados o caminos básicos

Complejidad Ciclomática	Evaluación del Riesgo	
1-10	Programa Simple, sin mucho riesgo	
11-20	Más complejo, riesgo moderado	
21-50	Complejo, Programa de alto riesgo	
50	Programa no testeable, Muy alto riesgo	

Cobertura de enunciados o caminos básicos

Pasos del diseño de pruebas mediante el camino básico

- Obtener el grafo de flujo
- Obtener la complejidad ciclomática del grafo de flujo
- Definir el conjunto básico de caminos independientes
- Determinar los casos de prueba que permitan la ejecución de cada uno de los caminos anteriores
- Ejecutar cada caso de prueba y comprobar que los resultados son los esperado

Cobertura de sentencias

IF (A>0 && C==1)

$$X = X + 1$$

IF (B==3 || D<0)
 $Y=0$
END

TC1

A=5

C=1

B=3

D=-3

Cobertura de decisión

IF (A>0 && C==1)

$$X = X + 1$$

IF (B==3 || D<0)
 $Y=0$
END

TC1	TC2
A=5	A=5
C=1	C=5
B=3	B=5
D=-3	D=5

Cobertura de condición

TC1	TC2
A=0	A=5
C=1	C=5
B=3	B=5
D=-3	D=5

Cobertura de decisión/condición

IF (A>0 && C==1)

$$X = X + 1$$

IF (B==3 || D<0)
 $Y=0$
END

TC1	TC2
A=5	A=0
C=1	C=5
B=3	B=5
D=-3	D=5

Cobertura de múltiple

IF (A>0 && C==1)

$$X = X + 1$$

IF (B==3 || D<0)
 $Y=0$
END

TC1	TC2	TC3	TC4
A=5	A=0	A=5	A=0
C=1	C=1	C=8	C=8
B=3	B=3	B=7	B=7
D=-3	D=5	D-3	D=5

Elegir un método

- Cada uno tiene fortalezas y debilidades particulares: un método puede ser bueno para algunas cosas, y no para otras cosas
- El mejor método es no usar un único método. Usar una variedad de técnicas ayudará a un testing efectivo.