Workshop Al Full Stack Machine Learning

Made Satria Wibawa, M.Eng. 2020

Pengenalan

Machine Learning

Traditional modeling:

Machine Learning:

Machine learning (ML) is the study of computer algorithms that improve automatically through experience It is seen as a subset of artificial intelligence.

Jenis Machine Learning

Problem

Iris setosa

Iris virginica

Iris versicolor

berdasarkan ukuran panjang dan lebar sepal serta panjang dan lebar petal, kita ingin memprediksikan spesies dari suatu tanaman dengan genus Iris (anggrek)

Made Satria Wibawa stikom-bali.ac.id Always The First

Data

Data

- Kumpulan dari data objek dan atributnya
- Atribut adalah karakteristik/sifat/property dari sebuah objek
 - Contoh: warna mata, suhu, dll
 - Atribut juga disebut dengan variable, field Object atau fitur
- Kumpulan dari atribut membentuk sebuah objek
 - Objek juga dapat disebut record, point, case, sample, point, case, entity atau instance

Attributes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Atribut Diskrit dan Kontinyu

Atribut Diskrit

- Memiliki nilai terbatas (finite)
- Contohnya kode pos, jumlah
- Seringkali direpresentasikan dalam tipe integer
- Atribut biner adalah atribut diskrit yang hanya memiliki dua nilai

Atribut Kontinyu

- Memiliki nilai real
- Contohnya suhu, bobot, panjang
- Seringkali direpresentasikan dalam tipe float

Tipe Atribut

Tipe Atribut	Deskripsi	Contoh	Operasi Matematika
Nominal	Nilai pada atribut nominal hanya nama yang berbeda. Atribut nominal memiliki informasi yang dapat digunakan hanya untuk membedakan satu objek dengan lainnya. (=, \neq)	kode pos, ID karyawan, warna mata, sex: {male, female}	mode, entropy, contingency correlation
Ordinal	Nilai dalam atribut ordinal memberikan informasi untuk mengurutkan (order) objek. (<, >)	tingkat kekerasan mineral, {good, better, best}, grades, nomor rumah	median, percentiles, rank correlation, run tests, sign tests
Interval	Nilai selisih pada atribut interval memiliki makna, ada unit pengukuran yang digunakan. (+, -)	tanggal, suhu dalam Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, t and F tests
Ratio	Nilai selisih dan rasio dalam atribut ratio memiliki makna, nilai nol bersifat absolut. (*,/)	suhu dalam Kelvin, nilai mata uang, jumlah, umur, bobot, panjang, arus listrik	geometric mean, harmonic mean, percent variation

Neural Network

Core Foundation Review

The Perceptron

- Structural building blocks
- Nonlinear activation functions

Neural Networks

- Stacking Perceptrons to form neural networks
- Optimization through backpropagation

Training in Practice

- Adaptive learning
- Batching
- Regularization

The Perceptron: Forward Propagation

Common Activation Functions

Sigmoid Function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

Hyperbolic Tangent

$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)

$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

NOTE: All activation functions are non-linear

Importance of Activation Functions

The purpose of activation functions is to introduce non-linearities into the network

What if we wanted to build a neural network to distinguish green vs red points?

Importance of Activation Functions

The purpose of activation functions is to **introduce non-linearities** into the network

Linear activation functions produce linear decisions no matter the network size

Non-linearities allow us to approximate arbitrarily complex functions

The Perceptron: Simplified

$$\hat{y} = g(w_0 + X^T W)$$

Inputs Weights Sum Non-Linearity Output

The Perceptron: Simplified

$$z = w_0 + \sum_{j=1}^m x_j w_j$$

Multi Output Perceptron

Because all inputs are densely connected to all outputs, these layers are called **Dense** layers

Single Layer Neural Network

Multi Output Perceptron

Deep Neural Network

import tensorflow as tf

model = tf.keras.Sequential([
 tf.keras.layers.Dense(n1),
 tf.keras.layers.Dense(n2),

tf.keras.layers.Dense(2)
])

Inputs

Hidden

Output

$$z_{k,i} = w_{0,i}^{(k)} + \sum_{j=1}^{n_{k-1}} g(z_{k-1,j}) w_{j,i}^{(k)}$$

Example Problem

Will I pass this class?

Let's start with a simple two feature model

 x_1 = Number of lectures you attend

 x_2 = Hours spent on the final project

Example Problem: Will I pass this class?

Example Problem: Will I pass this class?

Example Problem: Will I pass this class?

Quantifying Loss

The **loss** of our network measures the cost incurred from incorrect predictions

$$\mathcal{L}\left(f\left(x^{(i)}; W\right), y^{(i)}\right)$$
Predicted Actual

Binary Cross Entropy Loss

Cross entropy loss can be used with models that output a probability between 0 and 1

$$\mathbf{X} = \begin{bmatrix} 4, & 5 \\ 2, & 1 \\ 5, & 8 \\ \vdots & \vdots \end{bmatrix} \qquad \begin{array}{c} \mathbf{x_1} \\ \mathbf{x_2} \\ \mathbf{x_3} \end{array} \qquad \begin{array}{c} f(\mathbf{x}) \\ \mathbf{y} \\ 0.1 \\ 0.8 \\ 0.6 \\ \vdots \end{array} \qquad \begin{array}{c} \mathbf{y} \\ \mathbf{x} \\ 0 \\ 0.6 \\ \vdots \end{bmatrix}$$

$$J(\mathbf{W}) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)} \log \left(f(x^{(i)}; \mathbf{W}) \right) + (1 - y^{(i)}) \log \left(1 - f(x^{(i)}; \mathbf{W}) \right)$$
Actual Predicted Actual Predicted

Mean Squared Error Loss

Mean squared error loss can be used with regression models that output continuous real numbers

Gradient Descent Algorithms

Algorithm

- SGD
- Adam
- Adadelta
- Adagrad
- RMSProp

TF Implementation

Reference

Kiefer & Wolfowitz, "Stochastic Estimation of the Maximum of a Regression Function." 1952.

Kingma et al. "Adam: A Method for Stochastic Optimization." 2014.

Zeiler et al. "ADADELTA: An Adaptive Learning Rate Method." 2012.

Duchi et al. "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization." 2011.

Additional details: http://ruder.io/optimizing-gradient-descent/

Tools

Software Requirement

Data Processing

Web Framework

Microsoft Azure (7) GitHub

Code Editor

Deployment