

# РАЗРАБОТКА СИСТЕМЫ МИКШИРОВАНИЯ ВИДЕОПОТОКОВ ДЛЯ РАБОТЫ С ВИДЕО ВЫСОКОГО РАЗРЕШЕНИЯ

Лицей №1533 (информационных технологий) г.Москва

**ИСПОЛНИТЕЛЬ:** Медведев Алексей Вячеславович **НАУЧНЫЙ РУКОВОДИТЕЛЬ:** Завриев Николай Константинович

### ПРЕДМЕТНАЯ ОБЛАСТЬ-904

С развитием ПК обычным людям и небольшим организациям стали доступны новые сферы деятельности, в частности — создание видео. Привычным стал формат видео высокой четкости — HD Video, обеспечивающий большую реалистичность картинки и не вызывающий напряжение зрительной системы человека. Однако проведение видеотрансляций с использованием нескольких камер чаще всего затруднено: для этого требуется дорогостоящее специальное оборудование, а существующие программные пакеты для ПК либо отличаются высокой стоимостью, либо имеют серьезные ограничения. «Узким горлышком», ограничивающим ведение трансляций в HD-видео, остается этап видеорежиссуры, или микширования, т.е. выбора источника видеопотока. В связи с этим возникла необходимость создания применимого на ПК программного комплекса, который бы обеспечивал проведение видеотрансляции и записи ее результатов в актуальных на сегодняшний день форматах: HD и Full HD.

## ПОСТАНОВКА ЗАДАЧИ: -166 + 620 = 790

создать программный комплекс, позволяющий на базе обычного ПК и бытового оборудования реализовать основные функции видеостудии и допускающий работу с видео формата HD

#### ТРЕБОВАНИЯ К ПРОГРАММЕ:

- ► Способность работать с бытовым оборудованием (подключение камер по интерфейсу IEEE 1394, использование Ethernet для передачи DV-видео с камер в реальном времени, коммутация потоков с камер программным микшером, кодирование в форматы, пригодные для передачи на сервер, передача видео на сервер, раздача видео с сервера клиентам);
- ▶ Возможность подключения не менее 4-х источников видео;
- ▶ Возможность работы с потоками видео в формате HDTV;
- Организация обработки и сжатия потоков видео для корректной работы в реальном времени.
- Добавление возможности работы с потоками видео в популярных форматах.

# АКТУАЛЬНОСТЬ: 475

- Комплекс призван заменить используемую в видеостудии Лицея программу DV Switch, не поддерживающую современное оборудование и имеющую ряд функциональных ограничений
- Комплекс позволит перевести видеотрансляции мероприятий на уровень качества HD Video.
- Комплекс может быть полезен широкому кругу пользователей: частных лиц и небольших организаций, желающих проводить онлайн трансляцию через сеть интернет, например, каких-либо праздничных или обучающих мероприятий.

# **ХАРАКТЕРИСТИКИ ПРОГРАММНОГО КОМПЛЕКСА -1176**

В РЕЗУЛЬТАТЕ РАБОТЫ НАД ПРОЕКТОМ БЫЛ СОЗДАН ПРОГРАММНЫЙ ПРОДУКТ – VIDEOSTUDIO 1.0, КОТОРЫЙ ВЫПОЛНЯЕТ ВСЕ ПОСТАВЛЕННЫЕ ЗАДАЧИ, А ИМЕННО ПОЗВОЛЯЕТ:

- захватывать видео с любых устройств, распознаваемых ОС Windows как видеоустройства (встроенные камеры, подключенные по USB, FireWire, к платам видеозахвата, HDMI);
- Использовать в рамках одной трансляции источники видеопотока с различными характеристиками (например, камеры с различным разрешением, битрейтом и т.д.), обеспечивая при этом нормализацию выходного видеопотока по параметрам, указанными пользователем в окне настроек;
- Захватывать изображение с рабочего стола режиссера;
- В процессе трансляции отключать устройства-источники и под-ключать новые без прерывания трансляции;
- Реализовывать эффект «картинка в картинке»;
- Обеспечивать трансляцию видео в сеть интернет по таким протоколам, как http, httpproxy, https, rtp, srtp, tcp, udp,rtmp. Для обеспечения доступа к трансляции большего числа пользователей возможно перенаправление потока на такие распространенные серверы видеовещания как Adobe Flash Media Server, Wowza Mediaserver Pro, Red5 и другие.
- Записывать видео в файл формата Avi.

### СТАНДАРТЫ ВИДЕО - 1116

Цифровое видео — совокупность технологий записи, обработки и передачи изображения.

Существуют 2 основные группы форматов видео: SD (Standard Definition – Стандартное разрешение) и HD или HDTV (сокр. от англ. high definition television, телевидение высокой чёткости).

Форматы SD основаны на оцифровке «традиционных»

систем передачи ТВ-сигналов PAL, SECAM и NTSC. В цифровом видео (DV - Digital Video) эти системы представлены с помощью пиксельной решетки. Эти системы ограничены частотой обновления кадров (25 кадров/с (PAL) и 29,97 кадров/с (NTSC)) и количеством строк развертки (625 и 525 соответственно для PAL и NTSC). HDTV - это система телевидения, позволяющая наблюдателю со средней остротой зрения смотреть картинку с расстояния трех высот изображения и не замечать при этом строчную структуру изображения. HDTV обеспечивает разрешение 1280х720 пикселей (HD) и 1920×1080

Соответственно, формат HDTV несет значительно больший объем информации, что предъявляет высокие требования к оборудованию, каналам передачи и памяти.

(Full HD). Частота обновления изображения в HDTV со-

ставляет от 24 до 60 кадров в секунду.

### МЕТОДЫ РЕШЕНИЯ - 1195

Для разработки проекта был использован язык С#, среда Microsoft Visual Studio. Использованы следующие библиотеки и сторонние пакеты:

AForge.Net — обеспечивает захват и декодирование видеопотока, а также запись потока в файл. Библиотека использована для унификации обращений к источникам видео, имеющим различный характер, а также для интерфейса между программой, DirectShow и FFmpeg.

DirectShow — мультимедийный фреймворк и интерфейс программирования приложений (API).

FFmpeg — свободно распространяемый пакет программ для конвертации видео, трансляции в интернет и записи видеопотока в файл. Использование FFmpeg необходимо, чтобы избежать проблемы лицензионного использования форматов Mpeg (большинство библиотек для С# лицензионные), а также расширить функциональность программы.

Для передачи изображения в рамках одного компьютера между программой и FFmpeg был выбран протокол TCP/IP. Для передачи потока по локальной сети используется протокол UDP. Программа позволяет пользователю выбирать широкий спектр протоколов для дальнейшей передачи данных: https, rtp, srtp, tcp, udp, rtmp и другие. Для записи видеопотоков используется кодек MPEG-2 и контейнер .avi.

| Размер кадра<br>(пикселей) | Глубина<br>цвета (бит) | Дискретизация | Кадровая<br>частота (Гц) | Битрейт<br>(Мбит/с) | Требуемая<br>ёмкость (ГиБ/час) | Степень<br>сжатия | Формат / тип<br>компрессии | Скорость потока<br>данных (Мбит/с) |
|----------------------------|------------------------|---------------|--------------------------|---------------------|--------------------------------|-------------------|----------------------------|------------------------------------|
| 720 × 576                  | 10                     | 4:2:2         | 25                       | 207                 | 86.9                           | 10:1              | BETACAM SX/<br>MPEG-2      | 18                                 |
| 720 × 576                  | 8                      | 4:1:1, 4:2:0  | 25                       | 124                 | 52.1                           | 5:1               | DV/ ДКП                    | 25                                 |
| 1280 × 720                 | 8                      | 4:2:2         | 25                       | 369                 | 154.5                          | 18:1              | HDV/ MPEG-2                | 19/25                              |
| 1280 × 720                 | 10                     | 4:2:2         | 50                       | 737                 | 309                            | 15:1              | AVCHD/ MPEG-4,<br>H.264    | 24                                 |
| 1920 × 1080                | 10                     | 4:2:2         | 25                       | 1037                | 434.5                          | 4,2:1 2,7:1       | HDCAM SR/ MPEG-4           | 440 880                            |



### **ЗАКЛЮЧЕНИЕ**

Разработан вещательный сервер, обеспечивающий на базе бытового оборудования проведение видеотрансляций в сети интернет с уровнем качества изображения, соответствующего стандарту HDTV. Сервер обеспечивает работу с широким спектром оборудования и источников видео, выполнен в виде программного продукта, имеющего документацию и установочный пакет.

### ЛИТЕРАТУРА

- 1. Джеффри Рихтер CLR via C#. Программирование на платформе Micro-
- soft .NET Framework 4.5 на языке C#
- Streaming guide (track.FFmpeg.org)
   FFmpeg documentation (FFmpeg.org)
- 4. Aforge documentation (aforgenet.com)5. AForge.Video Namespace (aforgenet.com)
- 6. Интернет трансляции (auditory.ru)
  7. Цифровая видеостудия (auditory.ru)