Конспекти лекцій з математичного аналізу Анікушина А.В. Модуль 3.

Автор текста @bezkorstanislav Если есть ошибки, пишите ему в телеграм Афтар выражает благодарность @vic778 за многочисленные поправки

October 2019

Диференціальне числення функції однієї змінної

Означення похідної. Основні правила диференційонування

Нехай $f: \mathbb{R} \to \mathbb{R}$ — деяка функція однієї змінної, $x_0 \in D_f$, $x_0 \in (D_f)'$

Означення. Якщо $\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$, то функція f називається диференційованою в точці x_0 , а сама границя називається похідною в точці x_0 . І позначається f'(x) або $\frac{df(x)}{dx}$.

Зауваження 1. Для функції однієї змінної ми ототожнили диференційованість та існування похідної.

Зауваження 2.

$$x - x_0 = \Delta x$$

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

$$f(x_0 + \Delta x) - f(x_0) = \Delta f(x)$$

Отже, похідна дорівнює відношенню зміни приросту функції до приросту аргументу, що породжує цей приріст.

Зауваження 3.

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \iff \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) + o(1)$$
$$f(x) - f(x_0) = f'(x_0)(x - x_0) + o(x - x_0)$$

Отже, якщо має місце рівність:

$$f(x) - f(x_0) = A(x - x_0) + o(x - x_0) \Longrightarrow \exists f'(x_0) = A$$

Теорема. (**Необхідна умова диференційованості**). Функція $f \in$ диференційованою в x_0 тільки тоді, коли f — неперервна в точці x_0 .

Доведення. Щоб існувала похідна треба, щоб

$$f(x) - f(x_0) \to 0, \to x \to x_0$$

. З цього випливає, що f неперервна в точці x_0 .

Теорема. (Диференційованість композиції функцій). Нехай дано функції f і g. точка $x_0 \in D_{f \circ g}, \ x_0 \in (D_{f \circ g})'$.

Якщо g диференційована в точці x_0 , а f диференційована в точці $y_0 = g(x_0)$, то $f \circ g$ диференційована в точці x_0 і має місце рівність:

$$(f \circ g)'(x_0) = f'(g(y_0))g'(x_0)$$

Доведення.

$$(f \circ g)(x) - (f \circ g)(x_0) = f(g(x)) - f(g(x_0)) = f(y) - f(y_0) =$$

$$= f'(y_0)(y - y_0) + o(y - y_0) = f'(y_0)(g(x) - g(x_0)) + o(y - y_0) =$$

$$= f'(y_0)(g'(x_0)(x - x_0) + o(x - x_0)) + o(y - y_0) =$$

$$= f'(y_0)(g'(x_0)(x - x_0)(1 + o(1))) + o(g(x) - g(x_0)) =$$

$$= f'(y_0)(g'(x_0)(x - x_0)(1 + o(1))) + o(g(x_0)(x - x_0) + o(x - x_0))$$

Отже,

$$\lim_{x \to x_0} \frac{(f \circ g)(x) - (f \circ g)(x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} \frac{f'(y_0)(g'(x_0)(x - x_0)(1 + o(1))) + o(g(x_0)(x - x_0) + o(x - x_0))}{x - x_0} =$$

$$= \lim_{x \to x_0} f'(y_0)(g'(x_0)(1 + o(1))) + o(g(x_0) + o(1)) =$$

$$= \lim_{x \to x_0} f'(y_0)g'(x_0)(1 + o(1)) + o(1) = f'(y_0)g'(x_0)$$

Теорема. (Лінійність похідної). Нехай f і g — диференційовані в точці $x_0, \alpha, \beta \in \mathbb{R}$, то:

$$(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0)$$

Доведення.

$$\lim_{x \to x_0} \frac{(\alpha f + \beta g)(x) - (\alpha f + \beta g)(x_0)}{x - x_0} =$$

$$\lim_{x \to x_0} \frac{\alpha f(x) - \alpha f(x_0)}{x - x_0} + \frac{\beta g(x) - \beta g(x_0)}{x - x_0} =$$

$$\lim_{x \to x_0} \alpha \frac{f(x) - f(x_0)}{x - x_0} + \lim_{x \to x_0} \beta \frac{g(x) - g(x_0)}{x - x_0} = \alpha f'(x_0) + \beta g'(x_0)$$