GT lecture notes

Graph Theory

These are the notes for graph theory course. The professor says it'll be a simple course, let's see about that. I am using Obsidian and this is an amazing markdown editor! It has a lot of community plugins. Anyways, study now... xD

Here is a somewhat detailed overview.

- 1. GT/Lecture 1: Introduction to the course and grading. Defining graphs
- 2. GT/Lecture 2: Something more here

L(1)

Overview

This was the first lecture of graph theory. The professor is super old and kind lol. Course summary: Proof based and fun questions. Cutoffs are absolute. For A, aim for 80%+ (cutoff at 75%). The remaining grades are out of question anyways. A very interesting thing which came up during the meet is the page rank algorithm.

Defining graphs

- The normal way: A graph G can be defined as a pair (V, E), where V is a set of vertices, and E is a set of edges between the vertices $E \subseteq \{(u,v)|u,v\in V\}$. If the graph is undirected, the adjacency relation defined by the edges is symmetric, or $E\subseteq \{\{u,v\}|u,v\in V\}$ (sets of vertices rather than ordered pairs). If the graph does not allow self-loops, adjacency is irreflexive.
- The formal way: A graph G is a triplet consisting of:
 - A vertex set V(G) (non empty)

- An edge set E(G), disjoint from the vertex set (could be empty)
- A relation between an edge and a pair of vertices General notation: |V(G)|=n, |E(G)|=m. Please adhere to this xD.

A bit of imagery. Note, "we" define graphs such that the vertex set can never be empty. Also, for the scope of the course, our graph shall be finite.

- Loop: An edge whose endpoints are equal
- Multiple edges: Edges having same pair of endpoints
- Simple graph: No loop or multiple edges.

- Finite Graph: a graph whose vertex set and edge set are finite
- Null Graph: a graph whose vertex set and edge set are empty
- Adjacent vertices: v_j and v_k are adjacent if edge e_i is incident upon both v_j and v_i .
- Degree: of a vertex v_k is the number of edges incident upon it. Denoted using $d(v_k)$

Proposition 1:

Let G be a graph. Then, the sum of degrees of the vertices is twice the number of edges, i.e.

$$\sum d(v) = 2|E(G)|, v \in V(G)$$

Proof: Each edge contributes 2 degrees (to the vertices of G). To apply it on any graph, we declare that a loop contributes 2 degrees to the vertex.

Adjacency Matrix

- Let G = (V, E), |V| = n and |E| = m
- The adjacency matrix of G written A(G), is the $n \times n$ in which entry $a_{i,j}$ is the number of edges in G with endpoints $\{v_i, v_j\}$.

G a simple graph then, adjacency matrix A(G) is symmetric (0,1) matrix. An **important result** for real symmetric matrices, they are orthogonally diagonalizable over \mathbb{R} .

Incidence Matrix

Let G = (V, E), |V| = n and |E| = m. The incidence matrix M(G) is $n \times m$ matrix in which entry $m_{i,j}$ is 1 if v_i is an endpoint of e_i and otherwise 0.

L(2)

Complement (Simple Graph)

Complement of G: The complement G' of a simple graph G:

- V(G') = V(G)
- $E(G') = \{uv | uv \notin E(G)\}$: Every edge is determined by it's endpoints (u, v).

Subgraph

- $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$ and,
- The assignment of endpoints to edges in H is the same as in G.
- Induced subgraph: Whenever the vertices of H(G) have all the edges in E(G) corresponding to all vertices H(G).

Clique and Independent Set

- Complete Graph: A simple graph whose vertices are pairwise adjacent.
- We use the notation K_n to denote a complete graph of n vertices.
 - $-\left(\frac{n}{2}\right)$ edges
 - Complement of K_n is trivial (has no edges)
 - Induced subgraph: smaller or equal complete graph
- A Clique in a graph is a set of pairwise adjacent vertices (a complete graph). (more like a complete subgraph)
- An **Independent set** in a graph: a set of pairwise non-adjacent vertices.
- Example:
 - $-\{x,y,u\}$ is a clique in G

- $-\{u,w\},\{v,y\}$ is an independent set.
- Question: The largest possible independent set? [Later]
- Question: The largest clique in a graph? (Not an interesting problem though lol)

Bipartite Graphs

- A graph G is bipartite if V(G) is the union of two disjoint independent sets called partite sets of G.
- Also: The vertices can be partitioned into two sets such that each set is independent
- The Matching Problem
- The Job Assignment Problem
- Complete bipartite graph (biclique) is a simple bipartite graph such that two vertices are adjacent if and only if they are in different partite sets.

A complete bipartite graph with partite sets of size r and s is denoted by $K_{r,s}$.

A graph G is k-partite if V(G) is a union of k independent sets.

Path and Cycle

- Path: A sequence of distinct vertices such that two consecutive vertices are adjacent. E.g. (a,b,c,d,e)
- Cycle: A closed path (Only repeated vertex is the first which is same as last) E.g. (a,d,c,b,e,a)

Walk and Trail

- A walk of length k is sequence of $v_0, e_1, v_1, e_2 \dots, e_k, v_k$ of vertices and edges such that $e_i = v_{i-1}v_i$ for all i.
 - A trail is a walk with NO repeated edge
 - A path is a walk with no repeated vertex
 - A $U,V\mbox{-walk}$ or $U,V\mbox{-trail}$ has first vertex U and last vertex V and these are the endpoints
- A walk is closed if it has length at least one and its endpoints are equal.
 - A cycle is closed trail in which "first=last" is the only repetition
 - A loop is a cycle of length one

Proposition 2

Every u, v-walk contains a u, v-path. Proof by strong induction:

- Use induction on the length of a u, v-walk W.
- Basis step: l = 0
 - Having no edge, W consists of a single vertex (u = v)
 - This vertex is a u, v-path of length 0.
- Induction step : $l \ge 1$
 - Suppose that the claim holds for walks of length less than l
 - If W has no repeated vertex, then its vertices and edges form a u, vpath. Here's an illustration

- If W has a repeated vertex w, then deleting the edges and vertices between appearances of w (leaving one copy of w) yields a shorter u, v-walk W' contained in W.
 - * By the inductive hypothesis, W' contains a u, v-path P, and this path P is contained in W.

