BAC S2 2000 1er groupe

EXERCICE 1

On considère les points A1, A2, A3 d'affixes respectives :

$$Z_1 = 1$$
; $Z_2 = 1 + \sqrt{2} + i\sqrt{2}$; $Z_3 = \frac{5 + i\sqrt{3}}{4}$

- **1°) a)** Donner une écriture trigonométrique des nombres complexes $Z_2 Z_1\,$ et $Z_3 Z_1\,$
- b) Donner une écriture algébrique et une écriture trigonométrique de En déduire les valeurs exactes de $cos \frac{\pi}{12}$ et $sin \frac{\pi}{12}$
- **2°)** Soit S la similitude plane directe transformant A_2 en A_3 et A_1 en A_1 .
- a) Préciser les éléments caractéristiques de S.
- **b)** On désigne d'affixe Z ' , l' image par S du point M d ' affixe Z. Exprimer Z ' en fonction de Z ; en déduire l' image , par S du point B d'affixe $1-4\sqrt{2}e^{-i\frac{\pi}{4}}$

EXERCICE 2

Une urne contient 6 jetons numérotés de 1 à 6. Lorsqu'on tire au hasard un jeton de l'urne , on note pi $i \in \{1, 2, 3, 4, 5, 6\}$ la probabilité de tirer le jeton numéroté i. On suppose que les nombres p1 , p2, p3 , p4 , p5 , p6 , sont dans cet ordre en progression arithmétique de raison 1 30 .

- 1°) a) Montrer que p1 = 1 12.
- **b)** En déduire p2, p3, p4, p5, p6.
- 2°) On tire trois fois de suite et avec remise un jeton de cette urne, on désigne par X la variable aléatoire égale au nombre de jetons portant un numéro pair.
- a) Déterminer la loi de la probabilité de X.
- b) Déterminer l'espérance mathématique de X puis son écart-type.
- **3°)** Un joueur tire simultanément 2 jetons et note S la valeur absolue de la différence des numéros que portent les 2 jetons tirés.

- a) Déterminer la loi de probabilité de S.
- **b)** On gagne à ce jeu lorsque $S \ge 4$. Déterminer la probabilité de gagner. 41

PROBLEME

Soit la fonction de R dans R définie par :

$$\begin{cases} f(x) = xe^{\frac{1}{X}} si \ x < 0 \\ f(x) = x ln (1 + x) si \ x \ge 0 \end{cases}$$

Le plan est muni d'un repère orthonormé $(0, \vec{l}, \vec{j})$ (unité graphique 2 cm)

On désigne par (C) la courbe représentative de f et (Δ) la droite d'équation y = x.

Partie A

- 1°) a) Montrer que f est continue en $x_0 = 0$
- b) Etudier la dérivabilité de f en 0.
- **2°) a)** Montrer que pour x < 0, f'(x) > 0.
- **b)** Etudier les variations de f ' sur $[0; +\infty[$.

En déduire que pour x > 0, f'(x) > 0.

- c) Donner le tableau de variation de f.
- **3°) a)** Déterminer $\lim_{x\to -\infty} x(e^{\frac{1}{x}}-1)$ (on pourra poser $u=\frac{1}{x}$).
- **b)** Montrer que (D) : y = x + 1 est asymptote à (C) au voisinage de $-\infty$. On admettra que (C) est en dessous de (D).
- **4°) a)** Construire (C), on précisera les coordonnées de I, point d'intersection de (C) et (Δ) pour x >0
- **b)** Déterminer la nature de la branche infinie de la courbe (C) en $+ \infty$.

Partie B

1°) Déterminer les réels a, b et c tels que pour tout x de R + : $\frac{x^2}{x+1} = ax + ax$

$$b + \frac{c}{x+1}$$

2°) En déduire au moyen d'une intégration par partie que la fonction F telle que :

 $F(x) = (x^2 - 1) \ln (1 + x)^2 - 14 (x^2 - 2x)$ est une primitive de f sur R +

3°) Calculer l'aire A en cm² de la partie du plan limitée par (Δ), (C) et les droites d'équations x = 0 et x = e - 1.

Partie C

- 1°) a) Montrer que f admet une bijection réciproque notée f^{-1} .
- **b)** f-1 est-elle dérivable en 0 ? Préciser la nature de la tangente en 0 à la courbe représentative de f^{-1} .
- **2°)** Construire (C ') courbe représentative de f^{-1} dans le repère ($0,\vec{\imath},\vec{\jmath}$)
- 3°) Déduire du B.3) l'aire du domaine (D) ensemble des points

$$M\binom{x}{y}$$
 tels que :
$$\begin{cases} 0 \le x \le e-1 \\ f(x) \le y \le f^{-1}(x) \end{cases}$$