Root Law

Claim: $\lim_{x\to a} f(x)^{1/n} = M^{1/n}$

Proof. Provided that $\lim_{x\to c} f(x) = M$, $\lim_{x\to c} g(x) = N$, and $N \neq 0$. Using the ε - δ definition of a limit, we will prove by induction that for all $n \in \mathbb{N}$:

$$\lim_{x \to a} f(x)^1/n = M^1/n$$

The definition tell us, that for every $\varepsilon > 0$, there exists a $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|f(x) - L| < \varepsilon$.

Suppose $0 < |x - a| < \delta$. In a base case of n = 1:

$$|f(x)^{1}/1 - M^{1}/1| = |f(x) - M|$$

Now suppose $|x - a| < \delta$, it follows that:

$$|f(x) - M| < \epsilon$$

Hence, the base case of n = 1 holds.

Assume $\lim_{x\to a} f(x)^{1/n} = M^{1/n}$ holds for all $n \in \mathbb{N}$. Now suppose $|x-a| < \delta$, it follows that:

$$|f(x)^{1/n} - M^{1/n}| < \epsilon$$

Using this assumption, we must show that $\lim_{x\to a} f(x)^{1/n+1} = M^{1/n+1}$ holds as well.

Let us first analyze the distance between the function and its limit point:

$$|f(x)^{1/n+1} - M^{1/n+1}| = |f(x)^{1/1} \cdot f(x)^{1/n} - M^{1/1} \cdot M^{1/n}|$$

$$= |f(x) \cdot f(x)^{1/n} - f(x) \cdot M^{1/n} + f(x) \cdot M^{1/n} - M \cdot M^{1/n}|$$

$$= |f(x)(f(x)^{1/n} - M^{1/n}) + M^{1/n}(f(x) - M)|$$

Now apply the triangle inequality:

$$\leq |f(x)| \cdot |f(x)^{1/n} - M^{1/n}| + |M^{1/n}| \cdot |f(x) - M|$$

Such that:

$$|f(x)| \cdot |f(x)^{1/n} - M^{1/n}| < \frac{\epsilon}{2}$$

 $|M^{1/n}| \cdot |f(x) - M| < \frac{\epsilon}{2}$

Since $|f(x)-M|<\epsilon_1$ whenever $|x-a|<\delta_1$, and $|f(x)^{1/n}-M^{1/n}|<\epsilon_2$ whenever $|x-a|<\delta_2$, choose

$$\delta = \min(\delta_1, \delta_2)$$

Then, for all x such that $0 < |x - a| < \delta$, we have:

$$|f(x)^{1/n+1} - M^{1/n+1}| \leq |f(x)| \cdot |f(x)^{1/n} - M^{1/n}| + |M^{1/n}| \cdot |f(x) - M| < |f(x)| \cdot \epsilon_2 + |M^{1/n}| \cdot \epsilon_1$$

Now choose $\epsilon_1 = \frac{\epsilon}{2|M^{1/n}|}$ and $\epsilon_2 = \frac{\epsilon}{2|f(x)|}$ so the total is less than ϵ . Hence, the formula holds for n+1.