Different Electrical Units:

Unit Name	Unit Symbol	Quantity
Ampere (amp)	A	Electric current (I)
Volt	V	$\frac{\text{Voltage}}{\text{Electromotive force (E)}}$ $\text{Potential difference } (\Delta \phi)$
<u>Ohm</u>	Ω	Resistance (R)
Watt	W	Electric power (P)
<u>Farad</u>	F	<u>Capacitance</u> (C)
<u>Henry</u>	Н	Inductance (L)
siemens / mho	S	Conductance (G) Admittance (Y)
Coulomb	С	Electric charge (Q)
<u>Joule</u>	J	Energy (E)
Kilowatt-hour	kWh	Energy (E)
Electron-volt	eV	Energy (E)
Ohm-meter	Ω·m	Resistivity (ρ)
siemens per meter	S/m	Conductivity (σ)
Volts per meter	V/m	Electric field (E)
Newtons per coulomb	N/C	Electric field (E)
Volt-meter	V⋅m	Electric flux (Φ _e)
<u>Tesla</u>	T	Magnetic field (B)
Gauss	G	Magnetic field (B)
Weber	Wb	Magnetic flux (Φ _m)
<u>Hertz</u>	Hz	Frequency (f)
Seconds	S	Time (t)
Meter / metre	m	Length (1)
Square-meter	m ²	Area (A)

Units prefix table

Prefix	Prefix Symbol	Prefix factor	Example
pico	p	10-12	$1pF = 10^{-12}F$
nano	n	10-9	$1nF = 10^{-9}F$
micro	μ	10-6	$1\mu A = 10^{-6} A$
milli	m	10 ⁻³	$1 \text{mA} = 10^{-3} \text{A}$
kilo	k	10 ³	$1k\Omega = 1000\Omega$
mega	M	10 ⁶	$1 \text{MHz} = 10^6 \text{Hz}$
giga	G	10 ⁹	$1GHz = 10^9Hz$

Electrical units definitions

Volt (V)

<u>Volt</u> is the electrical unit of <u>voltage</u>.

One volt is the energy of 1 joule that is consumed when electric charge of 1 coulomb flows in the circuit.

1V = 1J / 1C

Ampere (A)

<u>Ampere</u> is the electrical unit of <u>electrical current</u>. It measures the amount of electrical charge that flows in an electrical circuit per 1 second.

1A = 1C / 1s

Ohm (Ω)

Ohm is the electrical unit of resistance.

 $1\Omega = 1V / 1A$

Watt (W)

Watt is the electrical unit of electric power. It measures the rate of consumed energy.

1W = 1J / 1s

 $1W = 1V \cdot 1A$

Farad (F)

<u>Farad</u> is the unit of capacitance. It represents the amount of <u>electric charge</u> in coulombs that is stored per 1 volt.

1F = 1C / 1V

Henry (H)

Henry is the unit of inductance.

1H = 1Wb / 1A

siemens (S)

siemens is the unit of conductance, which is the opposite of resistance.

 $1S = 1 / 1\Omega$

Coulomb (C)

Coulomb is the unit of electric charge.

 $1C = 6.238792 \times 10^{18}$ electron charges

Ampere-hour (Ah)

Ampere-hour is a unit of electric charge.

One ampere-hour is the electric charge that flow in electrical circuit, when a current of 1 ampere is applied for 1 hour.

 $1Ah = 1A \cdot 1hour$

One ampere-hour is equal to 3600 coulombs.

1Ah = 3600C

Tesla (T)

Tesla is the unit of magnetic field.

 $1T = 1Wb / 1m^2$

Weber (Wb)

Weber is the unit of magnetic flux.

 $1Wb = 1V \cdot 1s$

Joule (J)

Joule is the unit of energy.

 $1J = 1 \text{ kg} \cdot \text{m}^2 / \text{s}^2$

Kilowatt-hour (kWh)

Kilowatt-hour is a unit of energy.

 $1kWh = 1kW \cdot 1h = 1000W \cdot 1h$

Kilovolt-amps (kVA)

Kilovolt-amps is a unit of power.

 $1kVA = 1kV \cdot 1A = 1000 \cdot 1V \cdot 1A$

Hertz (Hz)

Hertz is the unit of frequency. It measures the number of cycles per second.

1 Hz = 1 cycles / s