

Coloring Abelian Cayley Graphs

Jonathan Cervantes

Dr. Mike Krebs

What is a Cayley graph?

Let G be a group and let $S \subseteq G$. The Cayley graph of G with respect to S, denoted Cay(G, S), is the graph with vertex set G and edge set $\{(g, g+s) : g \in G, s \in S\}$.

We consider Cayley graphs Cay(G, S) where G is abelian and S is a finite symmetric subset of G that generates G.

Proper Coloring. A proper coloring of a graph G is a mapping from the vertex set to a set of "colors" so that adjacent vertices are mapped to different elements of the set.

Setup

Take Cay(G, S) where $S = \{\pm s_1, \pm s_2, \dots, \pm s_n\}$ generates G. Take $\varphi : \mathbb{Z}^n \to G$ given by $e_i \mapsto s_i$ where e_i is the element with 1 in the *i*th coordinate and 0 elsewhere. Let $K = \ker \varphi$. Then φ induces a graph isomorphism between $X = Cay(\mathbb{Z}^n/K, \{K \pm e_1, K \pm e_2, \dots, K \pm e_n\})$ and Cay(G, S).

Theorem

Let $x \in \mathbb{Z}^n \setminus \{\pm e_1, \pm e_2, \dots, \pm e_n\}$ and $K = \langle x \rangle$. Then

$$\chi(X) = \begin{cases} 2 & \text{if } \sum_{i=1}^{n} x_i \text{ is even} \\ 3 & \text{otherwise} \end{cases}$$

If $x \in \{\pm e_1, \pm e_2, \dots, \pm e_n\}$, then X has loops and cannot be properly colored.

Proof

Let $s = \sum_{i=1}^{n} |x_i|$. Take $\psi : \mathbb{Z}^n/K \to \mathbb{Z}/\langle s \rangle$ where $e_i \mapsto -1$ if $x_i < 0$ and $e_i \mapsto 1$ otherwise. This gives a graph homomorphism from X to the s-cycle $\operatorname{Cay}(\mathbb{Z}/\langle s \rangle, \{\pm 1\})$ and thus gives an upper bound for $\chi(X)$. Note that X contains an odd cycle whenever s is odd (trace a cycle from the origin to x).

Matrix Form

We wish to encode X in a matrix when $K = \langle x_1, x_2, \ldots, x_k \rangle$ where $x_1, x_2, \ldots, x_k \in \mathbb{Z}^n$. We obtain an $n \times k$ matrix M_X by letting x_i be the *i*th column. We call M_X an associated matrix of X and refer to a graph X of this form as a standardized abelian Cayley graph, which we abbreviate SACG. We give M_X a superscript SACG to denote that the matrix represents such a graph. We sometimes give the matrix a subscript X to denote the associated graph $(e.g. \begin{pmatrix} 1 & 0 \\ -5 & 15 \end{pmatrix}_X^{SACG})$. Note that M_X is not unique.

Example

The circulant graph $Cay(\mathbb{Z}_{15}, \{\pm 1, \pm 5\})$ is isomorphic to $\left(\frac{1}{5}, \frac{0}{15}\right)^{SACG}$ pictured below (left). Similarly, $\left(\frac{1}{5}, \frac{0}{13}\right)^{SACG}$ is isomorphic to the circulant graph $Cay(\mathbb{Z}_{13}, \{\pm 1, \pm 5\})$ pictured below (right).

Lemma

Let X be a standardized abelian Cayley graph with an associated $m \times n$ matrix M_X .

- We obtain a graph homomorphism by reducing a column by a common factor.
- Let $f: \{1, 2, ..., m\} \to \{1, 2, ..., k\}$ be a surjective function. We obtain a graph homomorphism from the mapping $e_i \mapsto e_{f(i)}$ where $e_i \in \mathbb{Z}^m$ and $e_{f(i)} \in \mathbb{Z}^k$.
- A graph isomorphism is obtained from the map given by $e_j \mapsto -e_j$ and $e_i \mapsto e_i$ for $i \neq j$ where $e_i, e_j \in \mathbb{Z}^m$.

Lemma

Let X and X' be standardized abelian Cayley graphs with associated matrices M_X and $M_{X'}$, respectively.

- If $M_{X'}$ is obtained by permuting the columns of M_X , then X = X'.
- If $M_{X'}$ is obtained by multiplying a column of M_X by -1, then X = X'.
- Suppose x_j and x_i are the jth and ith columns of M_X , respectively, with $j \neq i$. If $M_{X'}$ is obtained by replacing the jth column of M_X with $x_j + ax_i$ for some integer a, then X = X'.
- If $M_{X'}$ is obtained by deleting any column from M_X which is in the \mathbb{Z} -span of the other columns, then X = X'.
- If $M_{X'}$ is obtained by permuting the rows of M_X , then X is isomorphic to X'.
- If $M_{X'}$ is obtained by multiplying a row of M_X by -1, then X is isomorphic to X'.

Let A be a matrix. By performing row and column operations as above, one can show that A^{SACG} has a lower triangular associated matrix.

Theorem

Let X be a standardized abelian Cayley graph with an associated matrix $\begin{pmatrix} a & 0 \\ b & c \end{pmatrix}$ where $a \ge 0$ and $c \ge 0$. Let $d = \gcd(a, b)$ and $e = \gcd(a, b, c)$. Then:

- If either (i) c = 1 or (ii) a = 1 and $c \mid b$ or (iii) a = 0 and gcd(b, c) = 1, then X has loops and is not properly colorable.
- ② If both a+b and c are even, then $\chi(X)=2$.
- If (i) neither of the conditions in the previous statements hold, and (ii) a = 0 or e > 1 or $c \mid b$, then $\chi(X) = 3$.
- If none of the conditions of the previous statements hold, let q be the product of all primes p such that $p \mid a$ but $p \nmid d$. (If there are no such primes, q = 1.) Then

$$\chi(X) = \chi(\operatorname{Cay}(\mathbb{Z}_{ac}), \{\pm a, \pm (b + qc)\}).$$

Results

Let A be a 2×2 matrix. Suppose A^{SACG} does not contain loops. If $3 \mid \det A$, then $\chi(A^{\text{SACG}}) \leq 3$.

Let A be an $m \times n$ matrix and let a_{ij} denote its entry in the ith row and jth column. Then $\chi(A^{\text{SACG}}) = 2$ if and only if $\sum_{i=1}^{n} a_{ij}$ is even for each j.

We suspect that the following unproven claims will summarize our results.

Claim. Let A be a 3×2 matrix. Suppose that A contains no zero rows and that A^{SACG} does not contain loops. Then A^{SACG} is 3-colorable unless it has one of the following as an associated matrix:

$$\begin{pmatrix} 1 & 0 \\ -1 & a \\ -1 & a + 3(k-1) \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 3k & 1 + 3k \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 3\ell & 2 \end{pmatrix}$$

where $a \in \mathbb{Z}$ with $3 \nmid a, k \in \mathbb{Z}^+$, and $\ell \in \mathbb{Z}$.

Diamond Lanyard. An unclasped diamond lanyard of length 1 is a diamond. The endpoints of an unclasped diamond lanyard are its two degree 2 vertices. Recursively, we define an unclasped diamond lanyard U of length $\ell+1$ to be the union of an unclasped diamond lanyard Y of length ℓ and a diamond D, such that the intersection of Y and D is a common endpoint of Y and D. A (clasped) diamond lanyard of length ℓ is obtained by adding to an unclasped diamond lanyard U of length ℓ an edge between the endpoints of U. A diamond lanyard of length 2 is pictured below.

Claim. Let A be a matrix with at most 3 rows and at most 2 columns. Let $X = A^{SACG}$ and suppose X has no loops. Then $\chi(X) \leq 4$ if and only if X does not contain a 5-clique and $\chi(X) \leq 3$ if and only if X does not contain a 5-clique nor a diamond lanyard nor a $C_{13}(1,5)$.