
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2008; month=7; day=14; hr=14; min=44; sec=3; ms=529;]

Validated By CRFValidator v 1.0.3

Application No: 10583202 Version No: 2.0

Input Set:

Output Set:

Started: 2008-07-14 09:32:14.327

Finished: 2008-07-14 09:32:17.196

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 869 ms

Total Warnings: 39

Total Errors: 0

No. of SeqIDs Defined: 39

Actual SeqID Count: 39

Error code		Error Descrip	otion							
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(1)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(2)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(3)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(4)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(5)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(6)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(7)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(8)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(9)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(10)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(11)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(12)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(13)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(14)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(15)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(16)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(17)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(18)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(19)
W	402	Undefined	organism	found	in	<213>	in	SEQ	ID	(20)

Input Set:

Output Set:

Started: 2008-07-14 09:32:14.327 Finished: 2008-07-14 09:32:17.196

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 869 ms

Total Warnings: 39 Total Errors: 0 No. of SeqIDs Defined: 39 Actual SeqID Count: 39

Error code Error Description

	or code	Error Description
		This error has occured more than 20 times, will not be displayed
W	213	Artificial or Unknown found in <213> in SEQ ID (24)
W	213	Artificial or Unknown found in <213> in SEQ ID (26)
W	213	Artificial or Unknown found in <213> in SEQ ID (27)
M	213	Artificial or Unknown found in <213> in SEQ ID (28)
W	213	Artificial or Unknown found in <213> in SEQ ID (29)
W	213	Artificial or Unknown found in <213> in SEQ ID (30)
W	213	Artificial or Unknown found in <213> in SEQ ID (31)
W	213	Artificial or Unknown found in <213> in SEQ ID (32)
W	213	Artificial or Unknown found in <213> in SEQ ID (33)
W	213	Artificial or Unknown found in <213> in SEQ ID (34)
W	213	Artificial or Unknown found in <213> in SEQ ID (35)
W	213	Artificial or Unknown found in <213> in SEQ ID (36)
W	213	Artificial or Unknown found in <213> in SEQ ID (37)
W	213	Artificial or Unknown found in <213> in SEQ ID (38)

SEQUENCE LISTING

<110>	Nova	son, David	Health US,	. Inc.									
<120>	Brachyspira pilosicoli 72 kDa outer membrane protein and diagnostic and therapeutic uses thereof.												
<130>	3414	1A											
<140>	1058	3202											
<141>	2006	-06-16											
		AU2004/0017	783										
<151>	2004	-12-17											
		03907017											
<151>	2003	-12-19											
<160>	39												
<170>	Pate	ntIn versio	on 3.5										
<210>	1												
	1750												
	DNA Brac	hyspira pil	losicoli										
<400> atgagta	1 actt	taataaagaa	aatcgtagct	tatatagctt	taatctcttt	tagttttagc	60						
99						99-							
gtattac	cctg	ctcaaactta	tgatgatgcg	gctagaatta	ctggagaagc	tgagacttta	120						
caaaato	gacg	gagaatacca	aaagtcttat	gataaatctc	aagaggcttc	tgactctata	180						
gataaaa	acta	ctgtatcatt	attttataga	ttaatgaact	taagaatagc	taaagcaaaa	240						
aatgato	gcaa	ataagactat	taatgaaata	gaacaattag	gtgcttctac	tgataatgaa	300						
tttaaaa	acaa	aatatcaaga	agctctaaaa	ttctttgaag	aaggaaataa	tagtattact	360						
aacttac	cctc	cagaaccgca	aactcctcct	acagatgaag	agtttactgc	ttcttcaaac	420						
acattca	acta	cagtatataa	ttctttcaac	aatgctttac	aatctgctaa	cagtgtaaaa	480						
gaaggtt	atc	ttaatagaga	aagagcaata	gcttcaaaat	ccattaatga	tgctagaaac	540						
aaatata	aaag	cagaattagg	caagagtgta	aaagcaggcg	atgctaatga	tagaaatatt	600						
aatggto	gctt	taactagagc	tgatgaagca	cttagcaatg	acaattttgc	aagcgttcag	660						
cagaato	gtat	ctactgcatt	agctggtata	aataaagcta	tagcagatgc	taaggcgaaa	720						

gctgaggcag aagctaaagc aaaagctgct gctgaagcta aggcaagagc tgaagcagag 780

gctaaagcga	aagcagaagc	tgctgctaaa	gcaaaagctg	aagcagaggc	taaagcgaaa	840
gcagatgcaa	tagcaaaagc	taaaaaagac	atagaagatg	cacaaaataa	atataataat	900
ttagttaatg	atcaagtaat	agctaaaggt	gatgataatg	ataaaaacgt	atcaaaactt	960
ttaactgatg	ctaataatgc	tttacaaaac	actcctcaaa	ctgcaagcga	taaagcttta	1020
gaagcttcta	aaactatgga	taatatatta	aacactgcta	atcaattgaa	aaaagaagaa	1080
gctgttaaaa	atctagagca	attaaaggca	agaagagaca	gacttataag	cgaaggttat	1140
ttaactaaag	acagcgaaga	agaacaaaag	ttatctcaaa	ctattaaaga	agctgaagat	1200
gctttaaata	acaatgatta	tgttttagct	gaccaaaaaa	tgcaggaagc	taatcttaac	1260
atgaatgcta	tagaagagag	aggacctatt	gacggacaag	ttatacctgg	tgaaatgggc	1320
ggtaacgaaa	ctggtcaaat	aattgatgct	actactggtc	aagaagtaaa	tacagaagga	1380
aaagttactg	tattacctca	atattatgtt	gtagtaagaa	gagtacctct	aactgatgct	1440
ttatggagaa	ttgctggata	cagctacata	tacaacaacc	ctatagaatg	gtacagaata	1500
tatgaagcta	acagaaatgt	acttagagac	cctaataacc	ctgatttaat	acttcctggt	1560
caaagattaa	taatacctag	ccttaatggt	gaagagaa	gcggtgatta	taatcctgat	1620
ttagagtatt	tgacttatga	tgaggttatg	cagttaagac	agcaaaataa	cactactcaa	1680
gcacaacagt	aagaaataaa	cttataaaat	acaaaaggtc	atgcatttaa	tatgtatgac	1740
ctttttttgt						1750

<210> 2

<211> 563

<212> PRT

<213> Brachyspira pilosicoli

<400> 2

Met Ser Thr Leu Ile Lys Lys Ile Val Ala Tyr Ile Ala Leu Ile Ser 1 5 10 15

Phe Ser Phe Ser Val Leu Pro Ala Gln Thr Tyr Asp Asp Ala Ala Arg 20 25 30

Ile Thr Gly Glu Ala Glu Thr Leu Gln Asn Asp Gly Glu Tyr Gln Lys 35 40 45

Ser Tyr Asp Lys Ser Gln Glu Ala Ser Asp Ser Ile Asp Lys Thr Thr 50 55 60

Val 65	Ser	Leu	Phe	Tyr	Arg 70	Leu	Met	Asn	Leu	Arg 75	Ile	Ala	Lys	Ala	Lys 80
Asn	Asp	Ala	Asn	Lys 85	Thr	Ile	Asn	Glu	Ile 90	Glu	Gln	Leu	Gly	Ala 95	Ser
Thr	Asp	Asn	Glu 100	Phe	Lys	Thr	Lys	Tyr 105	Gln	Glu	Ala	Leu	Lys 110	Phe	Phe
Glu	Glu	Gly 115	Asn	Asn	Ser	Ile	Thr 120	Asn	Leu	Pro	Pro	Glu 125	Pro	Gln	Thr
Pro	Pro 130	Thr	Asp	Glu	Glu	Phe 135	Thr	Ala	Ser	Ser	Asn 140	Thr	Phe	Thr	Thr
Val 145	Tyr	Asn	Ser	Phe	Asn 150	Asn	Ala	Leu	Gln	Ser 155	Ala	Asn	Ser	Val	Lys 160
Glu	Gly	Tyr	Leu	Asn 165	Arg	Glu	Arg	Ala	Ile 170	Ala	Ser	Lys	Ser	Ile 175	Asn
Asp	Ala	Arg	Asn 180	Lys	Tyr	Lys	Ala	Glu 185	Leu	Gly	Lys	Ser	Val 190	Lys	Ala
Gly	Asp	Ala 195	Asn	Asp	Arg	Asn	Ile 200	Asn	Gly	Ala	Leu	Thr 205	Arg	Ala	Asp
Glu	Ala 210	Leu	Ser	Asn	Asp	Asn 215	Phe	Ala	Ser	Val	Gln 220	Gln	Asn	Val	Ser
Thr 225	Ala	Leu	Ala	Gly	Ile 230	Asn	Lys	Ala	Ile	Ala 235	Asp	Ala	Lys	Ala	Lys 240
Ala	Glu	Ala	Glu	Ala 245	Lys	Ala	Lys	Ala	Ala 250	Ala	Glu	Ala	Lys	Ala 255	Arg
Ala	Glu	Ala	Glu 260	Ala	Lys	Ala	Lys	Ala 265	Glu	Ala	Ala	Ala	Lys 270	Ala	Lys
Ala	Glu	Ala	Glu	Ala	Lys	Ala	Lys	Ala	Asp	Ala	Ile	Ala	Lys	Ala	Lys

Lys	Asp 290	Ile	Glu	Asp	Ala	Gln 295	Asn	Lys	Tyr	Asn	Asn 300	Leu	Val	Asn	Asp
Gln 305	Val	Ile	Ala	Lys	Gly 310	Asp	Asp	Asn	Asp	Lys 315	Asn	Val	Ser	Lys	Leu 320
Leu	Thr	Asp	Ala	Asn 325	Asn	Ala	Leu	Gln	Asn 330	Thr	Pro	Gln	Thr	Ala 335	Ser
Asp	Lys	Ala	Leu 340	Glu	Ala	Ser	Lys	Thr 345	Met	Asp	Asn	Ile	Leu 350	Asn	Thr
Ala	Asn	Gln 355	Leu	Lys	Lys	Glu	Glu 360	Ala	Val	Lys	Asn	Leu 365	Glu	Gln	Leu
Lys	Ala 370	Arg	Arg	Asp	Arg	Leu 375	Ile	Ser	Glu	Gly	Tyr 380	Leu	Thr	Lys	Asp
Ser 385	Glu	Glu	Glu	Gln	Lys 390	Leu	Ser	Gln	Thr	Ile 395	Lys	Glu	Ala	Glu	Asp 400
Ala	Leu	Asn	Asn	Asn 405	Asp	Tyr	Val	Leu	Ala 410	Asp	Gln	Lys	Met	Gln 415	Glu
Ala	Asn	Leu	Asn 420	Met	Asn	Ala	Ile	Glu 425	Glu	Arg	Gly	Pro	Ile 430	Asp	Gly
Gln	Val	Ile 435	Pro	Gly	Glu	Met	Gly 440	Gly	Asn	Glu	Thr	Gly 445	Gln	Ile	Ile
Asp	Ala 450	Thr	Thr	Gly	Gln	Glu 455	Val	Asn	Thr	Glu	Gly 460	Lys	Val	Thr	Val
Leu 465	Pro	Gln	Tyr	Tyr	Val 470	Val	Val	Arg	Arg	Val 475	Pro	Leu	Thr	Asp	Ala 480
Leu	Trp	Arg	Ile	Ala 485	Gly	Tyr	Ser	Tyr	Ile 490	Tyr	Asn	Asn	Pro	Ile 495	Glu
Trp	Tyr	Arg	Ile 500	Tyr	Glu	Ala	Asn	Arg 505	Asn	Val	Leu	Arg	Asp 510	Pro	Asn

Asn Pro Asp Leu Ile Leu Pro Gly Gln Arg Leu Ile Ile Pro Ser Leu 515 520 525

Asn Gly Glu Glu Arg Ser Gly Asp Tyr Asn Pro Asp Leu Glu Tyr Leu 530 540

Thr Tyr Asp Glu Val Met Gln Leu Arg Gln Gln Asn Asn Thr Thr Gln 545 550 555 555

Ala Gln Gln

<210> 3

<211> 32

<212> PRT

<213> Brachyspira pilosicoli

<220>

<221> misc_feature

<223> mp-72 protein fragment

<400> 3

Lys Val Thr Val Leu Pro Gln Tyr Tyr Val Val Val Arg Arg Val Pro 1 5 10 15

Leu Thr Asp Ala Leu Trp Arg Ile Ala Gly Tyr Ser Tyr Ile Tyr Asn 20 25 30

<210> 4

<211> 22

<212> PRT

<213> Brachyspira pilosicoli

<220>

<221> misc_feature

<223> mp-72 protein fragment

<400> 4

Leu Ile Lys Lys Ile Val Ala Tyr Ile Ala Leu Ile Ser Phe Ser Phe 1 5 10 15

Ser Val Leu Pro Ala Gln

20

```
<211> 13
<212> PRT
<213> Brachyspira pilosicoli
<220>
<221> misc_feature
<223> mp-72 protein fragment
<400> 5
Lys Thr Thr Val Ser Leu Phe Tyr Arg Leu Met Asn Leu
       5
<210> 6
<211> 7
<212> PRT
<213> Brachyspira pilosicoli
<220>
<221> misc_feature
<223> mp-72 protein fragment
<400> 6
Asn Asp Gln Val Ile Ala Lys
<210> 7
<211> 14
<212> PRT
<213> Brachyspira pilosicoli
<220>
<221> misc_feature
<223> mp-72 protein fragment
<400> 7
Asp Leu Ile Leu Pro Gly Gln Arg Leu Ile Ile Pro Ser Leu
                                  10
<210> 8
<211> 8
<212> PRT
<213> Brachyspira pilosicoli
<220>
<221> misc_feature
<223> mp-72 protein fragment
```

```
Asn Asp Tyr Val Ala Leu Asp Gln
<210> 9
<211> 18
<212> PRT
<213> Brachyspira pilosicoli
<220>
<221> misc_feature
<223> mp-72 protein fragment
<400> 9
Phe Ala Ser Val Gln Gln Asn Val Ser Thr Ala Leu Ala Gly Ile Asn
                            10
Lys Ala
<210> 10
<211> 6
<212> PRT
<213> Brachyspira pilosicoli
<220>
<221> misc_feature
<223> mp-72 protein fragment
<400> 10
Val Ser Lys Leu Leu Thr
<210> 11
<211> 13
<212> PRT
<213> Brachyspira pilosicoli
<220>
<221> misc_feature
<223> mp-72 protein fragment
<400> 11
Asp Leu Glu Tyr Leu Thr Tyr Asp Glu Val Met Gln Leu
```

10

5

<400> 8

```
<210> 12
<211> 8
<212> PRT
<213> Brachyspira pilosicoli
<220>
<221> misc_feature
<223> mp-72 protein fragment
<400> 12
Asn Ala Leu Gln Ser Ala Asn Ser
<210> 13
<211> 7
<212> PRT
<213> Brachyspira pilosicoli
<220>
<221> misc_feature
<223> mp-72 protein fragment
<400> 13
Asp Gly Gln Val Ile Pro Gly
              5
<210> 14
<211> 7
<212> PRT
<213> Brachyspira pilosicoli
<220>
<221> misc_feature
<223> mp-72 protein fragment
<400> 14
Val Lys Asn Leu Glu Gln Leu
<210> 15
<211> 7
<212> PRT
<213> Brachyspira pilosicoli
<220>
```

<221> misc_feature

<223> mp-72 protein fragment <400> 15 Gly Lys Ser Val Lys Ala Gly <210> 16 <211> 6 <212> PRT <213> Brachyspira pilosicoli <220> <221> misc_feature <223> mp-72 protein fragment <400> 16 Gln Glu Ala Leu Lys Phe <210> 17 <211> 7 <212> PRT <213> Brachyspira pilosicoli <220> <221> misc_feature <223> mp-72 protein fragment <400> 17 Phe Thr Thr Val Tyr Asn Ser 5 <210> 18 <211> 7 <212> PRT <213> Brachyspira pilosicoli <220> <221> misc_feature <223> mp-72 protein fragment <400> 18 Asn Leu Pro Pro Glu Pro Gln 5

```
<211> 7
<212> PRT
<213> Brachyspira pilosicoli
<220>
<221> misc_feature
<223> mp-72 protein fragment
<400> 19
Lys Ala Asp Ala Ile Ala Lys
<210> 20
<211> 9
<212> PRT
<213> Brachyspira pilosicoli
<220>
<221> misc_feature
<223> mp-72 protein fragment
<400> 20
Lys Ala Glu Ala Ala Lys Ala Lys
<210> 21
<211> 7
<212> PRT
<213> Brachyspira pilosicoli
<220>
<221> misc_feature
<223> mp-72 protein fragment
<400> 21
Lys Ala Lys Ala Ala Ala Glu
<210> 22
<211> 6
<212> PRT
<213> Brachyspira pilosicoli
<220>
<221> misc_feature
<223> mp-72 protein fragment
```

<400> 27

Asp Ly	s Ala Leu Glu Ala	
1	5	
<210>	23	
<211>	20	
<212>	DNA	
<213>	T3 phage	
<400>	23	
	tcac taaagggaac	20
<210>	24	
<211>	24	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	AHP-F1 primer	
<400>	24	
	ctat agaagagaga ggac	24
, ,	3 3 3 3 33	
<210>	25	
<211>	22	
<212>	DNA	
<213>	T7 phage	
<400>	25	
gtaata	cgac tcactatagg gc	22
<210>	26	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	pTrcHis-F primer	
<400>	26	
caattt	atca gacaatctgt gtg	23
<210>	27	
<211>	21	
<212>	DNA	
	Artificial Sequence	
	•	
<220>		
<223>	AHP-Rev primer	

<210>	28
<210>	28 21
	DNA
	Artificial Sequence
~~± J/	incilioral bequence
<220>	
	AHP-Rev2 primer
	<u>*</u>
<400>	28
tggatt	ttga agctattgct c
<210>	29
<211>	22
<212>	
<213>	Artificial Sequence
<220>	
<223>	AHP-F4 primer
. 4 0 0	20
<400>	29
caagta	atag ctaaaggtga tg
<210>	30
	22
<211>	
	Artificial Sequence
- 3.	
<220>	
	AHP-R783 primer
<400>	30
ttactg	ttgt gcttgagtag tg
<210>	31
<211>	24
<212>	DNA
<213>	Artificial Sequence
<220>	7 HD 00F
<223>	AHP-98F primer
< 40.00	2.1
<400>	31
cgttta	gctg aacttgaagc tatg
<210>	32
<211>	21
<211>	DNA
<213>	Artificial Sequence

21

tcgcttgcag tttgaggagt g

```
<223> AHP+1890R primer
<400> 32
gtaatgctct gtcttaatca t
                                                                      21
<210> 33
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> AHP+1012R primer
<400> 33
tatcgcttgc agtttgagga g
                                                                      21
<210> 34
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> AHP-F1-Xho1 primer
<400> 34
                                                                      34
agactcgaga gtactttaat aaagaaaatc gtag
<210> 35
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> AHP-R783-EcoR1 primer
<400> 35
                                                                      31
gttgaattct tactgttgtg cttgagtagt g
<210> 36
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> AHP-R223-EcoR1 primer
<400> 36
taagaattcc ttataagtct gtctcttctt g
                                                                      31
<210> 37
<211> 31
```

<212> DNA

```
<213> Artificial Sequence
<220>
<223> AHP-F4-Xho1 primer
<400> 37
                                                                        31
ctactcgagc aagtaatagc taaaggtgat g
<210> 38
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> pTrcHis-R primer
<400> 38
                                                                        23
tgcctggcag ttccctactc tcg
<210> 39
<211> 1850
<212> DNA
<213> Brachyspira pilosicoli
<400> 39
agcgtttagc tgaacttgaa gctatggtaa aagagcttga aactttagag caagagcaac
                                                                        60
aaagctaata ttttaatatt ttaaggagta taaaagaaaa atgagtactt taataaagaa
                                                                       120
aatcgtagct tatatagctt taatctcttt tagttttagc gtattacctg ctcaaactta
                                                                       180
tgatgatgcg gctagaatta ctggagaagc tgagacttta caaaatgacg gagaatacca
                                                                       240
                                                                       300
aaagtettat gataaatete aagaggette tgaetetata gataaaaeta etgtateatt
                                                                       360
attttataga ttaatgaact taagaatagc taaagcaaaa aatgatgcaa ataagactat
taatgaaata gaacaattag gtgcttctac tgataatgaa tttaaaacaa aatatcaaga
                                                                       420
agctctaaaa ttctttgaag aaggaaataa tagtattact aacttacctc cagaaccgca
                                                                       480
aactectect acagatgaag agtttactge ttetteaaac acatteacta cagtatataa
                                                                       540
                                                                       600
ttctttcaac aatgctttac aatctgctaa cagtgtaaaa gaaggttatc ttaatagaga
aagagcaata gcttcaaaat ccattaatga tgctagaaac aaatataaag cagaattagg
                                                                       660
                                                                       720
caagagtgta aaagcaggcg atgctaatga tagaaatatt aatggtgctt taactagagc
                                                                       780
tgatgaagca cttagcaatg acaattttgc aagcgttcag cagaatgtat ctactgcatt
agctggtata aataaagcta tagcagatgc taaggcgaaa gctgaggcag aagctaaagc
                                                                       840
                                                                       900
aaaagctgct gctgaagcta aggcaagagc tgaagcagag gctaaagcga aagcagaagc
```

tgctgctaaa	gcaaaagctg	aagcagaggc	taaagcgaaa	gcagatgcaa	tagcaaaagc	960
taaaaaagac	atagaagatg	cacaaaataa	atataataat	ttagttaatg	atcaagtaat	1020
agctaaaggt	gatgataatg	ataaaaacgt	atcaaaactt	ttaactgatg	ctaataatgc	1080
tttacaaaac	actcctcaaa	ctgcaagcga	taaagcttta	gaagcttcta	aaactatgga	1140
taatatatta	aacactgcta	atcaattgaa	aaaagaagaa	gctgttaaaa	atctagagca	1200
attaaaggca	agaagagaca	gacttataag	cgaaggttat	ttaactaaag	acagcgaaga	1260
agaacaaaag	ttatctcaaa	ctattaaaga	agctgaagat	gctttaaata	acaatgatta	1320
tgttttagct	gaccaaaaaa	tgcaggaagc	taatcttaac	atgaatgcta	tagaagagag	1380
aggacctatt	gacggacaag	ttatacctgg	tgaaatgggc	ggtaacgaaa	ctggtcaaat	1440
aattgatgct	actactggtc	aagaagtaaa	tacagaagga	aaagttactg	tattacctca	1500
atattatgtt	gtagtaagaa	gagtacctct	aactgatgct	ttatggagaa	ttgctggata	1560
cagctacata	tacaacaacc	ctatagaatg	gtacagaata	tatgaagcta	acagaaatgt	1620
acttagagac	cctaataacc	ctgatttaat	acttcctggt	caaagattaa	taatacctag	1680
ccttaatggt	gaagagagaa	gcggtgatta	taatcctgat	ttagagtatt	tgacttatga	1740
tgaggttatg	cagttaagac	agcaaaataa	cactactcaa	gcacaacagt	aagaaataaa	1800
cttataaaat	acaaaaggtc	atgcatttaa	tatgtatgac	ctttttttgt		