

Índice general

	Index	. 7
1	Introducción	. 7
1.1	Panorama histórico	7
1.2	Sistemas de numeración	7
1.2.1	Ejemplos de conversiones	. 9
1.3	Representación computacional de números reales	11
1.4	Dígitos significativos	11
1.5	Redondeo y truncamiento	11
1.6	Algoritmos para la solución numérica de problemas	11
1.7	Plataformas y paquetes de simulación computacional	11
1.8	Bibliotecas de programas	11
2	Solución de ecuaciones en una variable	13
2.1	Método de bisección	13
2.2	Método del punto fijo	13
2.3	Método de Newton-Raphson	13
2.4	Método de la secante	13
2.5	Métodos para aproximar raíces de polinomios	13
2.5.1	Método de Horner	13

2.6	Método de Müller	13
2.7	Aplicaciones	13
3	Solución numérica de sistemas de ecuaciones simultáneas	15
3.1	Eliminación gaussiana	15
3.2	Factorización LU	15
3.3	Métodos iterativos	15
3.3.1 3.3.2	Método de Jacobi	
3.4	Solución de sistemas no lineales de ecuaciones	15
3.5	Aplicaciones	15
4	Métodos de aproximación e interpolación	17
4.1	Mínimos cuadrados	17
4.2	Polinomio de Lagrange	17
4.3	Diferencias divididas de Newton	17
4.4	Splines cúbicos	17
4.5	Aplicaciones	17
5	Diferenciación e integración numéricas	19
5.1	Fórmulas de integración de Newton-Cotes	19
5.2	Fórmulas de cuadratura gaussiana	19
5.3	Extrapolación de Richardson	19
5.4	Integración de Newton-Cotes	19
5.5	Integración por el método de Romberg	19
5.6	Aplicaciones	19
6	Solución numérica de problemas de valor inicial con ecuaciones d renciales ordinarias	
6.1	Método de Euler	21
6.2	Método de Taylor	21
6.3	Método de Runge-Kutta	21
6.4	Método de Runge-Kutta-Fehlberg	21
6.5	Métodos multipaso	21
6.6	Aplicaciones	21
7	Plataformas para el modelado computacional	23
7.1	Herramientas tradicionales de programación	23
7.1.1 7.1.2	Fortran	

7.1.3	C++	. 23
7.2	Microsoft Excel	23
7.3	Wolfram Mathematica	23
7.4	Matlab	23
7.5	Otras plataformas	23
	Bibliography	. 25
	Articles	25
	Books	25

1. Introducción

1.1 Panorama histórico

1.2 Sistemas de numeración

Numéricamente los errores de redondeo se relacionan de manera directa con la forma en que se guardan los números en la memoria de la computadora. La unidad fundamental mediante la cual se representa la información se llama *término*. Ésta es una entidad que consiste en una cadena de *dígitos binarios* o *bits*. Generalmente, los números son guardados en uno más términos. Para entender cómo se realiza esto, estudiaremos los sistemas numéricos.

"Solo existen 10 tipos de personas, las que entienden el binario y las que no"

Un sistema de numeración es un conjunto de símbolos y reglas que permiten construir todos los números válidos. Los sistemas de numeración más comunes son el decimal (base 10), binario (base 2), octal (base 8) y hexadecimal (base 16).

Un número decimal tal como 7392 representa una cantidad igual a 7 unidades de mil, más 3 centenas, más 9 decenas, más 2 unidades. Las unidades de mil, centenas, etc., son potencias de 10 implícitamente indicadas por la posición de los coeficientes. Esto es:

$$7 \times 10^3 + 3 \times 10^2 + 9 \times 10^1 + 2 \times 10^0 = 7000 + 300 + 90 + 2 = 7392$$

Y para el caso del número no entero 654.32:

$$6 \times 10^2 + 5 \times 10^1 + 4 \times 10^0 + 3 \times 10^{-1} + 2 \times 10^{-2} = 600 + 50 + 4 + 0.3 + 0.02 = 654.32$$

Se dice que el sistema de números decimales tiene base 10 debido a que usan diez dígitos, los números del 0 al 9, y que los coeficientes son multiplicados por potencias de 10. Por otro lado, el sistema de numeración binario sólo tiene dos elementos: 0 y 1. Por ejemplo, el equivalente decimal del número

binario 11010.11 es 26.75 como se demuestra en la multiplicación de los coeficientes por potencias de 2:

$$1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} = 26.75$$

Para distinguir los números con bases diferentes, se encierran los coeficientes entre paréntesis y se escribe un suscrito igual a la base usada. Un ejemplo de una base 5 sería:

$$(4021.2)_5 = 4 \times 5^3 + 0 \times 5^2 + 2 \times 5^1 + 1 \times 5^0 + 2 \times 5^{-1} = (511.4)_{10}$$

Nótese que los únicos valores posibles para los coeficientes de base 5 pueden ser 0, 1, 2, 3 y 4. En el sistema de numeración hexadecimal (base 16) se presentan los primeros diez dígitos del sistema decimal y las letras A, B, C, D, E y F para representar los números 10, 11, 12, 13, 14 y 15. Por ejemplo, dado el número hexadecimal se obtiene su equivalente en decimal:

$$(B65F)_{16} = 11 \times 16^3 + 6 \times 16^2 + 5 \times 16^1 + 15 \times 16^0 = (46687)_{10}$$

En la Tabla 1.1 se muestran los primeros 16 números en los sistemas decimal, binario, octal y hexadecimal.

Decimal (Base 10)	Binario (Base 2)	Octal (Base 8)	Hexadecimal (Base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Tabla 1.1: Equivalencias de los sistemas de numeración

Conversión entre números de base diferente

Un número binario puede ser convertido a decimal formando la suma de potencias de base 2, por ejemplo:

$$(1010.011)_2 = 2^3 + 2^1 + 2^{-2} + 2^{-3} = (10375)_{10}$$

Mediante este método puede convertirse un número de cualquier base a decimal, pero no viceversa.

1.2.1 Ejemplos de conversiones

■ **Ejemplo 1.1** Convertir $(41)_{10}$ a binario.

La tabla 1.2 muestra el desarrollo de la conversión.

Entero	Residuo
41	
41/2 = 20	1
20/2 = 10	0
10/2 = 5	0
5/2 = 2	1
2/2 = 1	0
1/2 = 0	1

Tabla 1.2: Conversión del Ejemplo 1.1

Resultado: (101001)₂

■ Ejemplo 1.2 Convertir $(153)_{10}$ a octal.

La tabla 1.3 muestra el desarrollo de la conversión.

Entero	Residuo
153	
153/8 = 19	1
19/8 = 2	3
2/8 = 0	2

Tabla 1.3: Conversión del Ejemplo 1.2

Resultado: (231)₈

Ejemplo 1.3 Convertir $(0.6875)_{10}$ a binario. Resultado: $(0.1011)_2$

	Entero	Residuo
0.6875 * 2 = 1.375	1	0.375
0.375 * 2 = 0.75	0	0.75
0.75 * 2 = 1.5	1	0.5
0.5 * 2 = 1.0	1	0

Tabla 1.4: Conversión del Ejemplo 1.3

■ Ejemplo 1.4 Convertir $(0.513)_{10}$ a octal.

Conversión entre números de base diferente y no enteros

La conversión de números decimales con parte fraccionaria y entera se hace convirtiendo la parte fraccionaria y la entera por separado y posteriormente se combinan los dos resultados. Para la

	Entero	Residuo
0.513 * 8 = 4.104	4	0.104
0.104 * 8 = 0.832	0	0.832
0.832 * 8 = 6.656	6	0.656
0.656 * 8 = 5.248	5	0.248
0.248 * 8 = 1.984	1	0.984
0.984 * 8 = 7.872	7	0.872

Tabla 1.5: Conversión del Ejemplo 1.4

conversión de binario a octal y hexadecimal y viceversa, se considera que $2^3 = 8$ y $2^4 = 16$, por lo que cada dígito octal corresponde a tres dígitos binarios y cada dígito hexadecimal corresponde a cuatro dígitos binarios.

■ **Ejemplo 1.5** Convertir (10110001101011.111100000110)₂ a octal.

$$10110001101011.111100000110)_2 = (26153.7406)_8$$

■ **Ejemplo 1.6** Convertir (10110001101011.111100000110)₂ a hexadecimal.

$$(10110001101011.11111000001110)_2 = (2C6B.F06)_{16}$$

La conversión de octal o hexadecimal a binario se hace por un proceso inverso al anterior. Cada dígito octal se convierte a un equivalente binario de tres dígitos, así como cada dígito hexadecimal se convierte en un equivalente binario de cuatro dígitos.

■ Ejemplo 1.7 Convertir $(673.124)_8$ a binario

$$(673.124)_8 = (1101111011.001010100)_2$$

Ejemplo 1.8 Convertir $(306.D)_{16}$ a binario

$$(306.D)_{16} = (001100000110.1101)_2$$

Ejercicios

- 1. Convierta el número decimal 250.5 a base 3, 4, 7, 8 y 16 respectivamente
- 2. Convierta los siguientes números decimales a binarios: 12.0625, 10⁴, 673.23 y 1.998
- 3. Convierta los siguientes números en base a las bases que se indican:
 - a) El decimal 225.225 a binario, octal y hexadecimal.
 - b) El binario 11010111.110 a decimal, octal y hexadecimal.
 - c) El octal 623.77 a decimal, binario y hexadecimal.
 - d) El hexadecimal 2AC5.D a decimal, octal y binario.
- 4. Convierta los siguientes números a decimal:
 - a) (1001001.011)₂

- *b*) (12121)₃
- c) (1032.2)₄
- d) (4310)₅
- $e) (0.342)_6$
- $f) (50)_7$
- $g) (8.3)_9$
- $h) (198)_{12}$
- 1.3 Representación computacional de números reales
- 1.4 Dígitos significativos
- 1.5 Redondeo y truncamiento
- 1.6 Algoritmos para la solución numérica de problemas
- 1.7 Plataformas y paquetes de simulación computacional
- 1.8 Bibliotecas de programas

2. Solución de ecuaciones en una variable

- 2.1 Método de bisección
- 2.2 Método del punto fijo
- 2.3 Método de Newton-Raphson
- 2.4 Método de la secante
- 2.5 Métodos para aproximar raíces de polinomios
- 2.5.1 Método de Horner
 - 2.6 Método de Müller
- 2.7 Aplicaciones

3. Solución numérica de sistemas de ecuaciones sir

- 3.1 Eliminación gaussiana
- 3.2 Factorización LU
- 3.3 Métodos iterativos
- 3.3.1 Método de Jacobi
- 3.3.2 Método de Gauss-Seidel
 - 3.4 Solución de sistemas no lineales de ecuaciones
- 3.5 Aplicaciones

4. Métodos de aproximación e interpolación

- 4.1 Mínimos cuadrados
- 4.2 Polinomio de Lagrange
- 4.3 Diferencias divididas de Newton
- 4.4 Splines cúbicos
- 4.5 Aplicaciones

5. Diferenciación e integración numéricas

- 5.1 Fórmulas de integración de Newton-Cotes
- 5.2 Fórmulas de cuadratura gaussiana
- 5.3 Extrapolación de Richardson
- 5.4 Integración de Newton-Cotes
- 5.5 Integración por el método de Romberg
- 5.6 Aplicaciones

6. Solución numérica de P.V.I. ordinarios

- 6.1 Método de Euler
- 6.2 Método de Taylor
- 6.3 Método de Runge-Kutta
- 6.4 Método de Runge-Kutta-Fehlberg
- 6.5 Métodos multipaso
- 6.6 Aplicaciones

7. Plataformas para el modelado computacional

- 7.1 Herramientas tradicionales de programación
- 7.1.1 Fortran
- 7.1.2 C
- 7.1.3 C++
- 7.2 Microsoft Excel
- 7.3 Wolfram Mathematica
- 7.4 Matlab
- 7.5 Otras plataformas

Bibliography

Articles Books