

The General Power Rule for Functions

by Sophia

WHAT'S COVERED

In this lesson, you will expand upon your derivative knowledge even further by examining powers of functions whose derivatives we know. For example, $f(x) = (3x + 1)^5$ and $y = \sin^4 x$. This idea will also help in finding the derivatives of some other commonly used functions. Specifically, this lesson will cover:

- 1. Derivatives of Functions of the Form $y = [f(x)]^n$
- 2. Combining Derivative Rules

1. Derivatives of Functions of the Form $y = [f(x)]^n$

Derivatives of powers of a function have several uses, as we will see once we get to applications of derivatives. To establish a pattern for this type of derivative, we'll consider the functions $y = f^2$, $y = f^3$, and $y = f^4$, where f is being used to represent some function f(x).

First, consider the function $y = f^2 = f \cdot f$.

By the product rule, we have:

$$y' = D[f^{2}] = D[f] \cdot f + f \cdot D[f]$$
$$= f' \cdot f + f \cdot f'$$
$$= 2f \cdot f'$$

Now consider the function $y = f^3 = f^2 \cdot f$.

By the product rule again, we have:

$$y' = D[f^3] = D[f^2] \cdot f + f^2 \cdot D[f]$$
 Apply the product rule.
$$= (2f \cdot f') \cdot f + f^2 \cdot f' \quad \text{Replace } D[f^2] \text{ with } = 2f \cdot f'.$$

$$= 2f^2 \cdot f' + f^2 \cdot f' \quad \text{Combine } f \cdot f = f^2.$$
$$= 3f^2 \cdot f' \quad \text{Combine like terms.}$$

Next, consider $y = f^4 = f^3 \cdot f$.

$$\begin{split} D[f^4] &= D[f^3] \cdot f + f^3 \cdot D[f] \quad \text{Apply the product rule.} \\ &= (3f^2 \cdot f') \cdot f + f^3 \cdot f' \quad \text{Replace } D[f^3]_{\text{ with }} = 3f^2 \cdot f'. \\ &= 3f^3 \cdot f' + f^3 \cdot f' \quad \text{Combine } f^2 \cdot f = f^3. \\ &= 4f^3 \cdot f' \quad \text{Combine like terms.} \end{split}$$

By looking at this pattern, it seems as though the derivative of f^n is $n \cdot f^{n-1}$ (looks like the power rule), but then also multiplied by f'.

FORMULA TO KNOW

General Power Rule for Derivatives of Functions

If
$$f(x)$$
 is some function, then $D[[f(x)]^n] = n \cdot [f(x)]^{n-1} \cdot f'(x)$.

 \rightleftharpoons EXAMPLE Earlier, we found the derivative of $f(x) = \cos^2 x$ by using the product rule. Let's use the power rule and compare.

First, note that this can be written as $f(x) = (\cos x)^2$.

By the power rule, we have the following:

$$f'(x) = 2(\cos x) \cdot D[\cos x]$$
 Apply the power rule.
 $= 2(\cos x)(-\sin x)$ $D[\cos x] = -\sin x$
 $= -2\sin x \cos x$ Combine and eliminate parentheses.

This matches the answer obtained in challenge 3.2.4.

 \Leftrightarrow EXAMPLE Find the derivative of the function $f(x) = (5x + 1)^{10}$.

By the power rule, we have the following:

$$f'(x) = 10(5x + 1)^9 \cdot D[5x + 1]$$
 Apply the power rule.
= $10(5x + 1)^9(5)$ $D[5x + 1] = 5$

$$=50(5x+1)^9$$
 Combine 10.5

A common mistake to make here is to multiply 50(5x+1) to get 250x+50, and subsequently $(250x+50)^9$. This is not correct since the (5x+1) is raised to the 9th power and the 50 is not; therefore, they cannot be combined this way. The final answer is $f'(x) = 50(5x+1)^9$.

Consider the function $y = (x^2 - 9x + 20)^4$.

Find the derivative.

The function is in the form $y = [f(x)]^4$, where $f(x) = x^2 - 9x + 20$.

Then, by the general power rule, the derivative of y is $\frac{dy}{dx} = 4[f(x)]^3 \cdot f'(x)$.

Since
$$f'(x) = 2x - 9$$
, we have $\frac{dy}{dx} = 4(x^2 - 9x + 20)^3(2x - 9)$.

Rearranging factors, this can also be written $\frac{dy}{dx} = 4(2x - 9)(x^2 - 9x + 20)^3$.

Remember the other expressions that can be written as powers of x.

 \Leftrightarrow EXAMPLE Find the derivative of the function $f(x) = \sqrt{3x^2 + 8}$.

Remember that $\sqrt{u} = u^{1/2}$. Then the power rule can be used.

$$f(x) = \sqrt{3x^2 + 8} = (3x^2 + 8)^{1/2}$$
 Rewrite the radical using a power.

$$f'(x) = \frac{1}{2}(3x^2+8)^{-1/2} \cdot D[3x^2+8]$$
 Use the power rule for derivatives.

$$f'(x) = \frac{1}{2}(3x^2 + 8)^{-1/2} \cdot 6x$$
 $D[3x^2 + 8] = 6x$

$$f'(x) = 3x(3x^2 + 8)^{-1/2}$$
 $\frac{1}{2} \cdot 6x = 3x$

$$f'(x) = \frac{3x}{(3x^2 + 8)^{1/2}}$$
 Rewrite with nonnegative exponents.

Thus, $f'(x) = \frac{3x}{(3x^2+8)^{1/2}}$, which could also be written $f'(x) = \frac{3x}{\sqrt{3x^2+8}}$ if radical notation is desired.

 \Leftrightarrow EXAMPLE Find the derivative of the function $f(x) = \frac{1}{(5x + \cos x)^3}$.

$$f(x) = \frac{1}{(5x + \cos x)^3} = (5x + \cos x)^{-3}$$
 Rewrite so that the power rule can be used.

$$f'(x) = -3(5x + \cos x)^{-4} \cdot D[5x + \cos x]$$
 Apply the power rule.

$$f'(x) = -3(5x + \cos x)^{-4} \cdot (5 - \sin x)$$
 $D[5x + \cos x] = 5 + (-\sin x) = 5 - \sin x$

$$f'(x) = -3(5 - \sin x)(5x + \cos x)^{-4}$$
 Rearrange the factors.

$$f'(x) = \frac{-3(5 - \sin x)}{(5x + \cos x)^4}$$
 Rewrite with nonnegative exponents.

Thus,
$$f'(x) = \frac{-3(5-\sin x)}{(5x+\cos x)^4}$$
.

四 TRY IT

Consider the function $g(x) = \sqrt[3]{6x^4 + 5}$.

Find the derivative.

First, rewrite as $g(x) = (6x^4 + 5)^{1/3}$.

The function is in the form $y = [f(x)]^{1/3}$, where $f(x) = 6x^4 + 5$.

Then, by the general power rule, $g'(x) = \frac{1}{3} [f(x)]^{-2/3} \cdot f'(x)$.

Since $f'(x) = 24x^3$, we have $g'(x) = \frac{1}{3}(6x^4 + 5)^{-2/3} \cdot 24x^3$.

Rearranging factors, this becomes $g'(x) = \frac{1}{3}(24x^3)(6x^4 + 5)^{-2/3}$, which simplifies to $g'(x) = 8x^3(6x^4 + 5)^{-2/3}$.

Finally, writing in terms of nonnegative exponents: $g'(x) = \frac{8x^3}{(6x^4+5)^{2/3}}$

 \rightleftharpoons EXAMPLE The distance (measured in feet) from a moving camera to an object positioned at the point (1, 4) is given by the function $f(t) = \sqrt{2t^2 - 2t + 1}$, where t is measured in seconds. At what rate is the distance changing after 3 seconds?

Mathematically speaking, we want to compute f'(3).

To find the derivative, we first need to rewrite f(t):

$$f(t) = \sqrt{2t^2 - 2t + 1} = (2t^2 - 2t + 1)^{1/2}$$
 Write the radical as $\frac{1}{2}$ power.

$$f'(t) = \frac{1}{2}(2t^2 - 2t + 1)^{-1/2} \cdot D[2t^2 - 2t + 1]$$
 Apply the power rule.

$$f'(t) = \frac{1}{2}(2t^2 - 2t + 1)^{-1/2} \cdot (4t - 2)$$
 $D[2t^2 - 2t + 1] = 4t - 2$

$$f'(t) = \frac{1}{2}(4t-2)\cdot(2t^2-2t+1)^{-1/2}$$
 Rearrange the terms.

$$f'(t) = (2t-1) \cdot (2t^2 - 2t + 1)^{-1/2}$$
 Distribute $\frac{1}{2}(4t-2) = 2t-1$

$$f'(t) = \frac{2t-1}{(2t^2-2t+1)^{1/2}}$$
 Rewrite with nonnegative exponents.

Now, we desire the rate of change when t = 3, so we substitute 3.

$$f'(3) = \frac{2(3)-1}{(2(3)^2-2(3)+1)^{1/2}} = \frac{5}{(13)^{1/2}} \approx 1.39 \text{ feet per second}$$

2. Combining Derivative Rules

Now that we are building up our derivative rules, we can find derivatives of more complex functions.

 \rightleftharpoons EXAMPLE Find the derivative of the function $f(x) = 4x\sqrt{2x+1}$.

At this point, we are conditioned to write radicals as fractional powers (to use the power rule).

$$f(x) = 4x\sqrt{2x+1} = 4x(2x+1)^{1/2}$$
 Rewrite the square root as $\frac{1}{2}$ power.

 $f'(x) = D[4x] \cdot (2x+1)^{1/2} + 4x \cdot D[(2x+1)^{1/2}]$ Apply the product rule.

$$f'(x) = 4 \cdot (2x+1)^{1/2} + 4x \cdot \frac{1}{2}(2x+1)^{-1/2}(2) \qquad D[4x] = 4, \ D[(2x+1)^{1/2}] = \frac{1}{2}(2x+1)^{-1/2}(2)$$

$$f'(x) = 4(2x+1)^{1/2} + 4x(2x+1)^{-1/2}$$
 $\frac{1}{2} \cdot 2 = 1$; remove excess symbols.

$$f'(x) = 4(2x+1)^{1/2} + \frac{4x}{(2x+1)^{1/2}}$$
 Rewrite with positive exponents.

At this point, f'(x) is reasonably simplified. Thus, $f'(x) = 4(2x+1)^{1/2} + \frac{4x}{(2x+1)^{1/2}}$.

It is possible to go further by forming a common denominator and combining the fractions. Let's see how this plays out:

$$f'(x) = \frac{4(2x+1)^{1/2}}{1} \cdot \frac{(2x+1)^{1/2}}{(2x+1)^{1/2}} + \frac{4x}{(2x+1)^{1/2}}$$
 The common denominator is $(2x+1)^{1/2}$.

Write $4(2x + 1)^{1/2}$ over 1 so it "looks" like a fraction.

$$f'(x) = \frac{4(2x+1)}{(2x+1)^{1/2}} + \frac{4x}{(2x+1)^{1/2}}$$
 Perform multiplication.
$$(2x+1)^{1/2} \cdot (2x+1)^{1/2} = (2x+1)^1 = 2x+1$$

$$f'(x) = \frac{8x+4}{(2x+1)^{1/2}} + \frac{4x}{(2x+1)^{1/2}}$$
 Distribute $4(2x+1) = 8x+4$.

$$f'(x) = \frac{12x + 4}{(2x + 1)^{1/2}}$$
 Combine the numerators.

As you can see, the expression simplified nicely to one single fraction. That said, writing $f'(x) = 4(2x+1)^{1/2} + \frac{4x}{(2x+1)^{1/2}}$ is equally acceptable.

WATCH

Sometimes factoring is very useful in obtaining a nicer form of the derivative. In the following video, we'll take the derivative of $f(x) = (4x - 1)^3 (2x + 5)^4$ and write it in factored form.

C TRY IT

Consider the function $f(x) = (x + 1)^4 (2x + 1)^3$.

Find the derivative and write your final answer in factored form.

Note that f(x) is a product of two functions: $(x + 1)^4$ and $(2x + 1)^3$.

Then:

$$f'(x) = (2x+1)^3 \cdot D[(x+1)^4] + (x+1)^4 \cdot D[(2x+1)^3]$$

= $(2x+1)^3 \cdot 4(x+1)^3(1) + (x+1)^4 \cdot 3(2x+1)^2(2)$
= $4(2x+1)^3(x+1)^3 + 6(x+1)^4(2x+1)^2$

Now, look at the two large "terms" $4(2x+1)^3(x+1)^3$ and $6(x+1)^4(2x+1)^2$. The terms have a common factor of $2(x+1)^3(2x+1)^2$, so we factor this out:

$$f'(x) = 2(x + 1)^3(2x + 1)^2[2(2x + 1) + 3(x + 1)]$$

The quantity inside the brackets simplifies as follows:

$$2(2x + 1) + 3(x + 1)$$

= 4x + 2 + 3x + 3
= 7x + 5

Thus, the final factored form is $f'(x) = 2(x + 1)^3(2x + 1)^2(7x + 5)$.

SUMMARY

In this lesson, you learned how to apply the general power rule for derivatives of functions, such as the form $y = [f(x)]^n$. As you develop your repertoire of derivative formulas, you are able to combine derivative rules to find derivatives of more complex functions, such as the ones explored in this unit.

Source: THIS TUTORIAL HAS BEEN ADAPTED FROM CHAPTER 2 OF "CONTEMPORARY CALCULUS" BY DALE HOFFMAN. ACCESS FOR FREE AT WWW.CONTEMPORARYCALCULUS.COM. LICENSE: CREATIVE COMMONS ATTRIBUTION 3.0 UNITED STATES.

FORMULAS TO KNOW

General Power Rule for Derivatives of Functions

If
$$f(x)$$
 is some function, then $D[[f(x)]^n] = n \cdot [f(x)]^{n-1} \cdot f'(x)$.