Algorithm HW#0.5

B02901178 江誠敏

March 2, 2017

Collaborators: B02901027 茅耀文

1 Problem 1.

We claim that the approximation ratio R = 3. Let $S = \sum g_i$, We prove this by examine two cases:

Case 1: $g_i \leq S/2, \forall g_i$.

Let Δ_i be the difference of the sum of the values between child A and child B after the *i*-th gift is assigned. We claim that $|\Delta_i| \leq S/2$, $\forall i$. Let k be the one which let $|\Delta_k|$ obtain the maximum. Then after the k-th gift is assigned, the one who receive the gift, say child A, has the greater total value (or else $|\Delta_{k-1}|$ is bigger). And right before the gift is assigned, child A has less total value (so he received the gift). So Δ_k, Δ_{k-1} have different sign (or possibly 0), hence $|\Delta_k| = g_k - |\Delta_{k-1}| \leq g_k$. Thus $|\Delta_k| \leq S/2$.

2 Problem 2.

 $n^n>n!>2^{3n}>2^n>(\log_2(n))!>3n^3+1>\sqrt{n}+3=2^{\log_4(n)}>n^{0.01}>\log_2n=\ln n$ Here f(n)>g(n) means that $g(n)\in o(f(n))$ and f(n)=g(n) means that $f(n)=\Theta(g(n))$. Notice that in both case $f(n)=\Omega(g(n))$.

3 Problem 3.

1. We shall assume that $\inf_{1 \le n \le 3} T(n) > 0$, or else there exists a function T(n) such that $T(n) \notin \Theta(f(n)), \forall f$.

We shall prove that $T(n) \in \Theta\left(n(\log n)^2\right)$ by induction.

$$c_1 = \min\left(\frac{1}{9(\log 9)^2} \inf_{3 \le n \le 9} T(n), \, \frac{1}{2\log 3}\right), \quad c_2 = \max\left(\frac{1}{3(\log 3)^2} \sup_{3 \le n \le 9} T(n), \, \frac{1}{\log 3}\right).$$

Then $c_1>0$, since $T(n)=3T(n/3)+n\log n>T(n/3)$, so $\inf_{3\leq n\leq 9}T(n)>\inf_{1\leq n\leq 3}T(n)>0. \text{ Now for } 3\leq n\leq 9$

$$\begin{split} T(n) &\geq \frac{n(\log n)^2}{9(\log 9)^2} T(n) \geq n(\log n)^2 \frac{1}{9(\log 9)^2} \inf_{3 \leq n \leq 9} T(n) \geq c_1 n(\log n)^2 \\ T(n) &\leq \frac{n(\log n)^2}{3(\log 3)^2} T(n) \leq n(\log n)^2 \left(\frac{1}{3(\log 3)^2} \sup_{3 \leq x \leq 9} T(n)\right) \leq c_2 n(\log n)^2 \end{split}$$

So $c_1 n (\log n)^2 \le T(n) \le c_2 n (\log n)^2$ for $3 \le n \le 9$.

Assume now n > 9 and for all $3 \le k < n$, $T(k) \le ck$. Then since $n/3 \ge 3$, we have

$$\begin{split} T(n) &= 3T(n/3) + n\log n \geq c_1 n (\log n/3)^2 + n\log n \\ &= c_1 n (\log n - \log 3)^2 + n\log n \\ &= c_1 n (\log n)^2 + \left(c_1 n (\log 3)^2 + n\log n - 2c_1 n (\log n) (\log 3)\right) \\ &\geq c_1 n (\log n)^2 + \left(n\log n - 2c_1 n (\log n) (\log 3)\right) \\ &\geq c_1 n (\log n)^2 + \left(n\log n - \frac{2\log 3}{2\log 3} n (\log n)\right) \\ &= c_1 n (\log n)^2 \end{split}$$

and

$$\begin{split} T(n) &= 3T(n/3) + n\log n \leq c_2 n (\log n/3)^2 + n\log n \\ &= c_2 n (\log n - \log 3)^2 + n\log n \\ &= c_2 n (\log n)^2 - (2c_2 n (\log n) (\log 3) - c_2 n (\log 3)^2 - n\log n) \\ &= c_2 n (\log n)^2 - \left(c_2 n (\log n) (\log 3) - c_2 n (\log 3)^2\right) - (c_2 (\log 3) n (\log n) - n\log n) \\ &\leq c_2 n (\log n)^2 \end{split}$$

because $\log n \ge \log 3$ and $c_2 \ge 1/\log 3 \implies c_2 \log 3 \ge 1$.

So $c_1 n(\log n)^2 \le T(n) \le c_2 n(\log n)^2$. Hence by induction, we prove that $T(n) \in \Theta(n(\log n)^2)$.

2. We shall prove that $T(n) \in \Theta(n^3)$ by induction.

Assume for all $1 \le k < n$, $T(k) \le ck^3$. Then

$$T(n) = 4T(n/2) + n^{3}$$

$$\leq 4c(n/2)^{3} + n^{3}$$

$$= cn^{3}/2 + n^{3}$$

$$= n^{3} + n^{3}$$

$$= 2n^{3} = cn^{3}$$

Hence by induction, we prove that $T(n) \in O(n^3)$.

Notice also that $T(n) = 4T(n/2) + n^3 \ge n^3$, so $T(n) \in \Omega(n^3)$, hence $T(n) \in \Theta(n^3)$.

4 Problem 4

- 1. True. For all c, let $c' = \frac{1}{2c}$. Since $f(n) \in o(n^2)$, exists N such that $n > N \implies f(n) \le c'n^2$. Then $n^2 cf(n) \ge n^2 n^2/2 = n^2/2$. So for $c_0 = 1/2$ and $N_0 = N$, $n \ge N_0 \implies c_0 n^2 \le n^2 cf(n)$, hence $n^2 cf(n) \in o(n^2)$.
- 2. False. Let $f(n) = n^2/2$ and c = 2, then
 - $2^{f(n)} \in o(2^{n^2})$, since for any c' > 0, if $c' \ge 1$ then $2^{f(n)} \le 2^{n^2}$ for all $n \ge 0$, so assume that 0 < c' < 1, then choose $N = \sqrt{2\log_2(1/c)}$, for $n \ge N$,

$$2^{n^2/2} \ge 2^{\log_2(1/c)} \ge \frac{1}{c} \implies 2^{f(n)} = 2^{n^2/2} \le c2^{n^2}$$

hence $2^{f(n)} \in o(2^{n^2})$.

• If c=2, then $n^2-cf(n)=n^2-2n^2/2=0$, and obviously $0\notin\Omega(n^2)$.

Hence we disprove the statement by giving a counter example.

5 Problem 5

1. Let $f(n) = n^{2n}$, Then

$$T(n) = 2^n n^n T(n/2) \implies T(n) = \frac{n^{2n}}{(n/2)^n} T(n/2) \implies \frac{T(n)}{f(n)} = \frac{T(n/2)}{f(n/2)} = c$$

where c is a constant. Let c' be such constant that $c'=c\frac{T(1)}{f(1)}$, so $T(n)=c\frac{T(1)}{f(1)}f(n)=c'f(n)$, hence $T(n)\in\Theta(f(n))=\Theta(n^{2n})$.

2. The original recursive formula is equivalent to

$$T(n) = \frac{n^2}{(n/2)^2} T(n/2) + \frac{n^2}{2\log_2 n} \implies \frac{T(n)}{n^2} = \frac{T(n/2)}{(n/2)^2} + \frac{1}{2\log_2 n}$$

Let $k = \log_2 n$, so

$$\frac{T(2^k)}{4^k} = \frac{T(2^{k-1})}{4^{k-1}} + \frac{1}{2k}$$

If we let $f(k)=T(2^k)/4^k$, then f(k)=f(k-1)+1/2k, with initial condition f(0)=T(1)=1. (or $C_1\leq f(k)\leq C_2$ if $1\leq k<2$.) Hence

$$f(k) = C\sum_{m=1}^{k} \frac{1}{2m} = 2C\sum_{m=1}^{k} \frac{1}{m}$$

and notice that since 1/x monotonic decrease.

$$\log(k+1) - \log 2 \leq \int_2^{k+1} \frac{1}{x} \, \mathrm{d}x \leq \sum_{m=2}^k \frac{1}{m} \leq \int_1^k \frac{1}{x} \, \mathrm{d}x = \log(k)$$

and by the fact that $\log(k+1) \leq \log(2k) = \log(k) + \log 2$, so $\sum_{m=1}^{k} 1/m \in \Theta(\log m)$.

Hence $f(k) \in \Theta(\log k)$ and $T(2^k) = 4^k f(k) \in \Theta(4^k \log k)$. Thus

$$T(n) = 4^{\log_2 n} \log(\log_2 n) = n^2 \log\log_2 n \in \Theta(n^2 \log\log n).$$

6 Problem 5

1. True, $T(n) = \Theta(f(n)) \iff T(n) = \Theta(n^2)$ since $f(n) = \Theta(n^2)$.

Again since $f(n) = \Theta(n^2)$, then exists $N_1, c_1, N_2, c_2, n \ge N_1 \implies f(n) \ge c_1 n^2$ and $n \ge N_2 \implies f(n) \le c_2 n^2$, let $N = \max(N_1, N_2)$, and let

$$d_1 = \min\left(\frac{1}{(2N)^2} \inf_{N \leq n < 2N} f(n), \ 2c_1\right), \quad d_2 = \max\left(\frac{1}{N^2} \sup_{N \leq n < 2N} f(n), \ 2c_2\right)$$

Then for $N \le n < 2N, d_1 n^2 \le f(n) \le d_2 n^2$.

Now we shall prove that the inequality also holds for any $n \ge 2N$. If for k = n/2, $d_1k^2 \le f(k) \le d_2k^2$ holds. Then

$$f(n) \ge 2d_1k^2 + c_1n^2 \ge \frac{1}{2}d_1n^2 + \frac{1}{2}d_1n^2 = d_1n^2$$

and

$$f(n) \leq 2d_2k^2 + c_2n^2 \geq \frac{1}{2}d_2n^2 + \frac{1}{2}d_2n^2 = d_2n^2$$

So $d_1n^2 \leq f(n) \leq d_2n^2$. Hence by induction, $f(n) \in \Theta(n^2)$ and the proof is complete.

2. False, Let f(n) be the function such that $f(2^t) = 4^{k^2}$ if $(k-1)^2 < t \le k^2$ for all $k \in \mathbb{N}$. Then $f(n) \in \Omega(n^2)$, since $f(2^t) = 4^{k^2} > 4^t > (2^t)^2$ and hence $f(n) > n^2$. Then for any $k \in \mathbb{N}$, we have

$$\begin{split} T\left(2^{k^2}\right) &= 2T\left(2^{k^2}/2\right) + f\left(2^{k^2}\right) = 2T\left(2^{k^2-1}\right) + f\left(2^{k^2}\right) \\ &= 4T\left(2^{k^2-2}\right) + 2f\left(2^{k^2-1}\right) + f\left(2^{k^2}\right) \\ &\vdots \\ k \end{split}$$

$$= 2^{k}T\left(2^{k^{2}-k}\right) + \sum_{t=0}^{k} 2^{t}f\left(2^{k^{2}-t}\right)$$

Notice that $(k-1)^2 \le (k-1)k = k^2 - k \le k^2$ so $f\left(2^{k^2-t}\right) = 4^{k^2}$ when t = k. Thus

$$T(2^{k^2}) = 2^k T(2^{k^2-k}) + \sum_{t=0}^k 2^t f(2^{k^2-t}) \ge 2^k 4^{k^2}$$

So $T(n) = 2^{\sqrt{\log n}} n^2$ for all $n = 2^{k^2}$. Obviously $2^{\sqrt{\log n}} n^2 \notin O(n^2)$ since $2^{\sqrt{\log n}} \to \infty$ as $n \to \infty$. Hence $T(n) \notin O(n^2)$, and we disprove the statement by giving a counter example.

7 Problem 7

1. We shall proof that $T(n) \in \Theta(n \log n)$ by induction. Choose c_1', c_2' so that $c_1' n \log n \le T(n) \le c_2' n \log n$ for $n \le 4$, and let

$$c_1 = \min\left(c_1', \frac{2}{\log 4}\right), \quad c_2 = \max\left(c_2', \frac{2}{\log 4/3}\right)$$

So $c_1 n \log n \le T(n) \le c_2 n \log n$ for all $n \le 4$.

Now if n > 4, Assume that for k = n/2, $c_1 k \log k \le T(k) \le c_2 k \log k$. Then

$$T(n) = T(a) + T(b) + 2n$$

$$\geq c_1 a \log a + c_1 b \log b + 2n = c_1 a \log a + c_1 b \log b + 2(a+b)$$

$$= c_1 a \left(\log(a/n) + \log n + \frac{2}{c_1} \right) + c_1 b \left(\log(b/n) + \log n + \frac{2}{c_2} \right)$$

$$= c_1 (a+b) \log n + \left(\frac{2}{c_1} - \log(n/a) \right) + \left(\frac{2}{c_1} - \log(n/b) \right)$$

$$\geq c_1 n \log n$$

since $\log(n/a)$, $\log(n/b) \le \log 4 \le 2/c_2$.

Similarly,

$$\begin{split} T(n) &= T(a) + T(b) + 2n \\ &\leq c_2 a \log a + c_2 b \log b + 2n \\ &= c_2 (a+b) \log n - \left(\log(n/a) - \frac{2}{c_2}\right) - \left(\log(n/b) - \frac{2}{c_2}\right) \\ &\leq c_2 n \log n \end{split}$$

since $\log(n/a), \log(n/b) \leq \log(4/3) \leq 2/c_2$. Hence by induction, $c_1 n \log n \leq T(n) \leq c_2 n \log n$ and thus $T(n) \in \Theta(n \log n)$.

2. We shall proof that $T(n) \in \Theta(n^2)$.

First we show that $a^2 + b^2 \le 8n^2/9$. WLOG, assume $a \ge b$. If $a \le 2n/3$, then $a^2 + b^2 \le 2a^2 \le 8n^2/9$. If a > 2n/3, then b < n/3, hence $a^2 + b^2 \le (3n/4)^2 + (1/3)^2 = 97n/144 \le 8n^2/9$.

Now Choose c' so that $T(n) \le c' n^2$ for $n \le 4$, and let $c = \max(c', 9)$

If n > 4, Assume that for k = n/2, $T(k) \le ck^2$. Then

$$T(n) = T(a) + T(b) + n^{2}$$

$$\leq ca^{2} + cb^{2} + n^{2} = c(a^{2} + b^{2}) + n^{2}$$

$$\leq c (8n^{2}/9) + n^{2}$$

$$= cn^{2} \left(\frac{8 + 9/c}{9}\right)$$

$$\leq cn^{2}$$

since $c \geq 9$, so $T(n) \in O(n^2)$. Notice that $T(n) = T(a) + T(b) + n^2 \geq n^2$, so $T(n) \in \Omega(n^2)$ hence $T(n) \in \Theta(n^2)$.