1. Introduction

1.1 Intelligent Agents

Agents interact with their environment

- Sensors take in percepts
- Actuators perform actions
- Agent function maps percept histories to $actions: f: P^* \to A$

1.2 Rationality

Rational if selected actions are:

- Based on evidence (prior knowledge/percept sequence)
- Maximise performance measure

Performance measure: how to define/measure?

 Task specificity: easier to define 'performance' for a narrower than more general task

Can be rational to explore (perform actions that gather information)

Agent is *autonomous* if behaviour is determined by its own experience

1.3 Task Environment: PEAS

 $\frac{\text{PEAS}}{\text{Actuators}}$. Performance measure, Environment,

E.g. Automated Taxi

- Performance measure: safe, fast, revenue
- Environment: roads, traffic, pedestrians
- Actuators: steering wheel, accelerator, brake
- Sensors: sonar, speedometer, gps, engine sensors

1.4 Properties of Task Environments

- Observability: full or partial?
- Deterministic vs. stochastic: random elements
 - Still deterministic if random elements do not affect the transition function
 - Not deterministic if some elements are unobservable to player
- Episodic vs. sequential
 - Episodic: choice of current action does not depend on actions in past episodes
 - Sequential: need to consider previous actions (e.g. chess); current action affects future ones
- Order is important in sequential, not episodic
- <u>Static vs. dynamic:</u> is environment changing as agent deliberates?
- Discrete vs. continuous: finite/infinite number of distinct states/percepts/actions
- Single vs. multi agent

1.5 Building an Agent

Lookup table agent

- For each possible percept, give optimal action
- Problem: table is huge with too many percepts

• Problem: no autonomy, hard to change on-the-fly if action is wrong. Unmaintainable and rigid

Types of Agents (increasing complexity)

- 1. Simple reflex agent: passive, only acts when it observes a percept
- 2. Model-based reflex agent: passive, has state/internal model of the world
- 3. Goal-based agent: not just passive and based on percept; has goals and acts to achieve them
- 4. <u>Utility-based agent:</u> has utility function, acts to maximise it

State is updated based on percept, current state, most recent action, model of the world

(*) Utility function is *internal*, performance measure is *external* and used to assess agent

<u>Learning agent</u>: has critic + learner, adapts based on performance standard

Explore vs. Exploit: trade-off the agent must make

- Explore: get knowledge to improve future gains
- Exploit: use knowledge to max current gains

2. Uninformed Search

Problem-solving agent: a goal-based agent

Environment: fully observable, deterministic, discrete

<u>Uninformed search:</u> no additional knowledge incorporated

2.1 Search Problem Formulation

- State: including initial state
 - Abstract ONLY relevant information, and nothing else; everything in the state should be a variable that can change, no constants
 - Everything in the state should be a variable that can change, no constants
- Actions: Actions(s) gives set of all valid actions
 that can be executed in state s
 - Define it for every possible state s
- Transition model: Result(s, a) gives new state s' upon doing action a in state s
 - Define it for every possible state s and its valid action a
- Goal test: test if a state s is the goal state
 - E.g. IsCheckmate(s) or IsSolved(s)
- Path cost: path cost is additive sum of step costs
 - Step cost c(s, a, s') e.g. 1 per action taken

2.2 Searching for Solutions

 $\underline{\underline{Solution}}; \ \underline{\underline{sequence}} \ \underline{\underline{of}} \ \underline{actions} \ \underline{\underline{leading}} \ \underline{from} \ \underline{initial} \ \underline{to}$

Example: 8-puzzle

• State: an arrangement of numbers in 3x3 grid,

- represented as matrix/array
- Actions: moving one filled square to a blank adjacent square
- Transition model: [depends on representation] function that takes in state + action => new state
- Goal test: whether each cell matches the goal state, one-for-one
- Cost function: uniform cost of 1 for each action

State vs Node

- State: represents physical configuration
- Node: data structure constituting part of search tree: includes state, parent node, action, path cost g(n)
- Two different nodes can contain same world state

2.3 Search Strategies

Which order should we expand the nodes in? Evaluation criteria

- Completeness: always find a solution if it exists
- Optimality: finds a least-cost solution
- Time complexity: number nodes generated
- ullet Space complexity: max # nodes in memory

Problem parameters

- b: maximum # of successors for each node branching factor
- d: depth of shallowest goal node
- m: maximum depth of search tree

2.4 Breadth-First Search (BFS)

Frontier: Queue

- Complete: yes, as long as b is finite
- <u>Optimal</u>: no, unless uniform step cost, or uniform across each level
- <u>Time</u>: $O(b^d) = O(b) + O(b^2) + ... + O(b^d)$
- Space: $O(b^d)$ (max size of frontier)

Applies goal test when pushing to frontier: reduces time and space complexity from $O(b^{d+1})$ to $O(b^d)$

2.5 Uniform-Cost Search (UCS)

Frontier: Priority queue, by least path cost

- Equivalent to BFS if all step costs are equal
- Complete: yes, if all step costs are $\geq \epsilon$
 - If not, ever-decreasing step costs may get you stuck infinitely on a suboptimal path
 - Still yes even if b or d is infinite, or search space is infinite
- Optimal: yes, when it is complete
- $\overline{\underline{\text{Time:}}\ O}(b^{1+\lfloor\frac{C^*}{\epsilon}\rfloor})$ where C^* is the optimal cost
- Space: $O(b^{1+\lfloor \frac{C^*}{\epsilon} \rfloor})$

2.6 Depth-First Search (DFS)

Frontier: Stack

- Complete: yes, as long as depth is finite
- Optimal: no
- $\overline{\text{Time: } O}(b^m)$
- Space: O(bm) (can be O(m) at each level, just keep track of self and parent)

2.7 Depth-Limited Search (DLS)

Idea: run DFS with depth limit ℓ

- Only works if we know the goal is within ℓ steps
- Time: $O(b^{\ell})$
- Space: $O(b\ell)$ (can be $O(\ell)$)

2.8 Iterative Deepening Search (IDS)

Idea: keep performing DLSs with increasing depth limit, until goal node is found

- Good if state space is large, depth of solution unknown
- Can be wasteful with repeated effort, but overhead not that large (e.g. b=10, d=5: 11%)
- Complete: yes, if b is finite
- Optimal: no, unless step cost is uniform
- $\overline{\text{Time: } O(b^d)}$
- Space: O(bd) (can be O(d))

Property	BFS	UCS	DFS	DLS	IDS
Complete	Yes¹	Yes²	No	No	Yes¹
Optimal	No ³	Yes	No	No	No ³
Time	$\mathcal{O}\left(b^d\right)$	$_{\mathcal{O}}\left(_{b}{}^{1+\left \frac{C^{\ast }}{\varepsilon }\right \right) \\$	$\mathcal{O}(b^m)$	$\mathcal{O}ig(b^\ellig)$	$\mathcal{O}\left(b^d\right)$
Space	$\mathcal{O}\!\left(b^d\right)$	$O\left(b^{1+\left\lfloor \frac{C^*}{\varepsilon}\right\rfloor}\right)$	$\mathcal{O}(bm)$	$\mathcal{O}(b\ell)$	O(bd)

- 1. Complete if b is finite
- 2. Complete b is finite and step cost $\geq \epsilon$
- 3. Optimal if step costs are identical

2.9 Choosing a Search Strategy

- Depends on the problem
 Depth: finite/infinite?
- Solution depth: known/unkwown?
- Repeated states
- Step costs: identical/different?
- Completeness and optimality are they needed?
- Resource constraints (time/space)?

2.10 Search Tracing Problems

 $\underline{\text{Tree-Search}}$

Frontier
S(0)
A(1) B(5) C(15)
S(2) B(5) G(11) C(15)

Graph-Search

Frontier	Explored	
S(0)		
A(1) B(5) C(15)	S	
B(5) G(11) C(15)	S, A	
G(10) C(15)	S, A, B	

3. Informed Search

Informed search: exploits problem-specific knowledge, uses heuristics to guide search

3.1 Best-First Search

Idea: use evaluation function f(n) for each node n

- Measures cost estimate
- Expand node with lowest estimated cost first

Implementation: priority queue, ordered by non-decreasing cost f

3.2 Greedy Best-First Search (special case of Best-FS)

Evaluation function: f(n) = h(n)

- Idea: expand the node that appears the closest to goal
- h(n): cost estimate from n to goal (heuristic)
- Complete: yes, if b is finite
- Optimal: no
- Time: $O(b^m)$, but if heuristic is good can reduce complexity substantially
- Space: $O(b^m)$ (max size of frontier)

3.3 A* Search (special case of Best-FS) Evaluation function: f(n) = g(n) + h(n)

• Idea: expand the path that appears the cheapest

- g(n): cost of reaching n from start node, under the current path (not necessarily the smallest among all paths!)
- h(n): cost estimate from n to goal (heuristic)
- f(n): estimated cost of cheapest path through n to goal
- Complete: yes, if there is finite number of nodes and f(n) < f(G)
- Optimal: yes, if you have an admissible/consistent heuristic
- Time: $O(b^{h^*(s_0)-h(s_0)})$ where $h^*(s_0)$ is actual cost from root to goal
- Space: $O(b^m)$ (max size of frontier)

3.4 Heuristic Design

Admissibility

- h(n) is admissible if it never overestimates the cost to reach goal
- Definition: $\forall n, h(n) < h^*(n)$, where $h^*(n)$ is the true cost from n to goal state

Theorem: if h(n) is admissible, then A^* using Tree-Search is optimal

• (Proof: see lecture 3 slide 22)

Consistency

- h(n) is consistent if it satisfies triangle inequality
- Definition: $h(n) \leq d(n, n') + h(n')$, where n' is a

- successor of n
- Lemma: f(n) is non-decreasing along any path. i.e. if h is consistent, then $f(n') \geq f(n)$

Theorem: if h(n) is consistent, then A* using GRAPH-SEARCH is optimal

- Claim: when A^* selects a node n for expansion, the shortest path to n has been found
- (Proof: see lecture 3 slide 26)

Admissibility & Consistency

All consistent heuristics are admissible, but not the other way round.

Example: 8-puzzle

- Heuristic 1: number of misplaced tiles
- Heuristic 2: total Manhattan distance

Dominance

 h_2 dominates h_1 if $h_2(n) \geq h_1(n)$ for all n, where both heuristics are admissible

• Dominating heuristics are better: incur lower search costs under A*

3.5 Local Search

Path to the goal is irrelevant; we only want to reach the goal state

Local search algorithms: maintain single "current best" state, and try to improve it

Advantages

- Very little/constant memory
- Find reasonable solutions in large state space

Hill-Climbing Algorithm

- current ← initial state
- while True:
 - neighbour ← best successor of current
 - if neighbour's value < current's value: return current
 - current ← neighbour

Problem: depending on initial state, can get stuck in local maxima (or minima)

Solution: try random restarts or sideway moves

4. Adversarial Search

4.1 Adversarial Search Problems

Game: agent vs. agent(s)

- There are other utility-maximising agents
- Solution: a strategy that specifies a move for every possible opponent response

Zero-sum game: agent utilities sum to zero: completely adversarial

Two-player zero-sum game

- MAX player: wants to maximise value
- MIN player: wants to minimise value

Problem Formulation

- States s, initial state s_0
- Player Player(s): defines which player has the

move in state s

- Actions Actions(s): returns set of legal moves in state s
- Transition model Result(s, a): returns state that results from move a in state s
- has ended
- Utility function Utility(s, p): final numeric value for game with terminal state s for player p

Assume 2-player, deterministic, turn-taking

4.2 Strategies

Strategy s for player i: for every node of the tree that the player can possibly make a move in. specify what player will do

- Winning: s_1^* for player 1 is winning if for any strategy s₂ by player 2, game ends with player 1 as the winner
- Non-losing: t_1^* for player 1 is non-losing if for any strategy s_2 by player 2, game ends with EITHER player 1 as the winner or tie

4.3 Optimal Decisions (Minimax)

MINIMAX(s)

- UTILITY(s) if TERMINALTEST(s)
- $\max_{a \in A_{CTIONS}(s)} MINIMAX(RESULT(s, a))$ if PLAYER(s) = MAX
- $\min_{a \in A_{CTIONS(S)}} Minimax(Result(s, a))$ if PLAYER(s) = MIN

Properties

- Complete: yes, if game tree is finite
- Optimal: yes
- Time: $O(b^m)$ (similar to DFS)
- $\overline{\text{Space}}$: O(bm) (similar to DFS)

4.4 α - β Pruning

- α : largest value so far for MAX
- β: smallest value so far for MIN

MAX MIN

Example above: in the bottom branch, β =-7, but $\alpha=-2>\beta$. So no need to explore the remaining α - β pruning

• MAX node n: $\alpha(n)$ = highest observed value found on path from n. Initially $\alpha(n) = -\infty$

- MIN node n: $\beta(n)$ = lowest observed value found on path from n. Initially $\alpha(n) = -\infty$
- (\star) Given MIN node n, stop searching below n if there is some MAX ancestor i of n with $\alpha(i) > \beta(n)$
- Terminal test Terminal(s): check whether game (\star) Given MAX node n, stop searching below n if there is some MIN ancestor i of n with $\beta(i) < \alpha(n)$

Analysis of α - β pruning

- "Perfect" ordering: time complexity = $O(b^{\frac{m}{2}})$ can search twice as deep!
- Random ordering: time complexity = $O(b^{\frac{3}{4}m})$ for b < 1000

Summary

explore further

- Initially, $\alpha(n) = -\infty$, $\beta(n) = +\infty$
- $\alpha(n)$ is MAX along search path containing n
- $\beta(n)$ is MIN along search path containing n
- If a MIN node has value $v < \alpha(n)$, no need to
- If a MAX node has value $v > \beta(n)$, no need to explore further

4.5 Imperfect, Real-Time Solutions Time limit

- How to deal with super large search trees? ⇒ Limit maximum depth of tree
- Evaluation function: estimated expected utility of state (similar to heuristic)
- Cutoff test: e.g. depth limit

Cutting-Off Search: similar to Depth-Limited Search (DLS)

- Previously: MINIMAX(s) = UTILITY(s) if Terminal-Test(s)
- Now: H-Minimax(s) = Eval(s) if Cutoff-Test(s)
- i.e. run minimax until depth d, then use evaluation function to choose nodes
- Can also consider iterative deepening approach Stochastic Games
- How to deal with games with randomisation?
- Game tree now has added chance layers even more complex
- Calculating the expected value of a state much harder than deterministic games

5. CSPs

5.1 CSP Formulation

- Variables $\vec{X} = X_1, \dots, X_n$, each with its own domain D_i
- Constraints \vec{C} written in some formal constraint language (logic/algebra)

Objective: find a legal assignment (y_1, \ldots, y_n) for all $y_i \in D_i$

- Complete: all variables assigned values
- Consistent: all constraints satisfied

Constraint graph: nodes are variables X, edges are constraints

- Unary constraint: draw a self-edge, if not don't need to
- Binary constraint: draw an edge between 2 nodes
- Global constraints: draw a new square, draw edge between square and all nodes

5.2 CSP Search Formulation

- State: intially the empty assignment [
- Transition function: assign a valid value to an unassigned variable, fail if no valid assignments
- Goal test: all variables assigned
- Every solution appears at exactly depth n, search path is irrelevant
- Search tree: has maximum size $n! \times d^n$ (why?)

5.3 Backtracking Search Algorithm

Backtrack (assignment, csp) returns a solution, or failure

- if assignment is complete, return it
- var \leftarrow Select-Unassigned-Variable(csp)
- for each value in

Order-Domain-Values (var, assignment, csp):

- if value is consistent with assignment:
 - * add $\{var = value\}$ to assignment
 - * inferences \leftarrow Inference(csp, var, value)
 - * if inferences == failure: continue
 - * add inferences to assignment
 - * result \leftarrow Backtrack(assignment, csp)
 - * if result ≠ failure: return result
- remove $\{var = value\}$ and inferences from assignment
- return failure

5.4 Backtracking Heuristics Variable-Order Heuristics: SELECT-UNASSIGNED-VARIABLE

1. Most constraining variable a.k.a. degree heuristic: choose variable that imposes the most constraints on the remaining unassigned variables

- This is best: it reduces the branching factor => likely get to terminal state faster
- 2. Most constrained variable a.k.a.

Minimum-Remaining-Values (MRV): choose variable with the fewest remaining legal values. Good as tiebreaker

Value-Order Heuristic: ORDER-DOMAIN-VALUES

- 1. Least constraining value: choose the value that rules out the fewest values for the neighbouring unassigned variables
 - Because we're "actually trying to solve the problem" in this stage, unlike the variable stage

5.5 Inference

Forward Checking

Terminate search when any variable has no legal values left

AC-3

Arc consistency: X is arc-consistent wrt X_j i.e. arc $\overline{(X_i,X_j)}$ is consistent, iff for every $x\in D_i$ there exists some $y\in D_j$ that satisfies binary constraint on arc (X_i,X_j)

- (*) Arcs are directed
- To maintain AC: remove a value if it makes a constraint impossible to satisfy

AC-3 Algorithm

- $queue \leftarrow all the arcs in csp$
- while queue:
 - $(X_i, X_j) \leftarrow \text{Remove-First}(queue)$
 - if Revise(csp, X_i, X_i):
 - * if size of $D_i = 0$ then return false
 - * for each X_k in Neighbours $(X_i) \{X_j\}$:
 - add (X_k, X_i) to queue

REVISE (csp, X_i, X_j) deletes values in D_i that cannot satisfy arc (X_i, X_j)

Time complexity: $O(n^2d^3)$

- CSP has at most n^2 directed arcs
- Each arc (X_i, X_j) can be inserted at most d times into the queue, since X_i has at most d values
- Revise: checking consistency of arc takes $O(d^2)$ time
- AC-3: $O(n^2 \times d \times d^2) = O(n^2 d^3)$

When to use AC-3?

- Preprocessing: do it as first step only
- Backtracking: perform it if domain of X' is updated: check each arc (X_i, X')

6. Logical Agents

Logical agent: Inference Engine + Knowledge Base

6.1 Logic

Logic: formal language of syntax + semantics

• Syntax: defines valid sentences in a language

• <u>Semantics</u>: defines the truth of each sentence, wrt to some possible world of value assignments

 $\underline{\text{Modelling}}\text{: }m\text{ models sentence }\alpha\text{ if }\alpha\text{ is true under }\overline{m}$

- Model represents a "possible world", i.e. assigns truth value to all variables
- $M(\alpha)$ is the set of all models satisfying α Entailment: $\alpha \Vdash \beta$ means one sentence follows logically from the other
- $\alpha \vDash \beta$ is equivalent to $M(\alpha) \subseteq M(\beta)$
- To infer α from KB, show that $M(KB) \subseteq M(\alpha)$ Validity and satisfiability
- Valid: α is valid if it is true in all models
- Satisfiable: α is satisfiable if it is true in some model
- Unsatisfiable: α is unsatisfiable if it is true in no models
- $KB \Vdash \alpha$ iff $(KB \land \neg \alpha)$ is unsatisfiable

6.2 Inference

- Sound: A is sound if KB ⊢_A α implies KB ⊩ α,
 i.e. whatever is derived is correctly entailed
- Complete: A is complete if $KB \Vdash \alpha$ implies $\overline{KB \vdash_A \alpha}$, i.e. whatever is entailed is derived

Objective of inference: Given KB and α , we want to know if $KB \Vdash \alpha$

Truth Table Enumeration

- 1. Build truth table of all possible values
- 2. Evaluate all the models where KB is true
- 3. $KB \Vdash \alpha$ if all the rows satisfying KB are true for α

Properties

- Sound: directly implements entailment, and calculates all possible inferences from KB by brute force
- Complete: only finitely many combinations of truth assignments, and goes through all
- Time: $O(2^n)$
- Space: O(n) as enumeration is depth-first

Resolution Algorithm

- 1. Add $\neg \alpha$ into KB
- 2. Convert KB to CNF, i.e. 'and's of 'or's, e.g. $(x_1 \lor \neg x_2) \land (x_2 \lor x_3 \lor \neg x_4)$
- 3. Pick 2 rules and reduce: repeat
- 4. If eventual KB is \emptyset i.e. contradiction, then $KB \Vdash \alpha$

Properties: sound and complete (why?)

Forward Chaining

Horn clauses: form $B_1 \wedge B_2 \wedge \ldots \wedge B_k \Rightarrow A$

• Clause with at most 1 positive literal, $\neg B_1 \lor \neg B_2 \lor \ldots \lor \neg B_k \lor A$

Algorithm: take the AND-OR graph, and keep popping literals from *agenda* with in-degree 0; these will be true

Properties: sound and complete

• Complete: because FC derives every atomic literal entailed by horn KB

Backward Chaining

Algorithm: work backwards from query Q

- If Q is not known already, then prove by BC the premise of some rule concluding in Q
- Avoid loops: check if the new subgoal is already on the goal stack
- Backtracking DFS

Properties: sound and complete

7. Bayesian Networks

Bayesian network: represents joint distributions via a graph

- Nodes: random variables
- Edges: direction of influence i.e. conditionality
- Joint distribution:
- $P(X_1,...,X_n) = \prod_{i=1}^n P(X_i|Parents(X_i))$
- Conplexity: if each variable has ≤ k parents, then network representation requires O(n2^k) values, compared to O(2ⁿ) for full joint distribution

Types of triples

- Common effect: A and B separately \rightarrow C - $P(A, B, C) = P(C|A, B) \cdot P(A) \cdot P(B)$
- Common cause: $A \rightarrow B$ and C separately

 $P(A, B, C) = P(C|A) \cdot P(B|A) \cdot P(A)$
- Causal chain: $A \rightarrow B \rightarrow C$
 - $-P(A,B,C) = P(C|B) \cdot P(B|A) \cdot P(A)$

Markov blanket: a node is conditionally independent of all else, given the values of its parents, children, and children's parents

7.1 Bayesian Network Inference

Bayesian network lets you find the full joint distribution. Infer any query by summing over all cases of the other variables.

7.2 d-Separation

Are X and Y independent given known variables $\epsilon = \{E_1, \dots, E_k\}$?

- Active path: path is active ↔ every triple on the path is active
- Active triple: see the chart

