CLAIMS

What is claimed is:

1	1.	An apparatus comprising:
2		a) a bulk element having a device surface and a bottom surface, disposed below
3		said device surface;
4		o) a support; and
5		at least one hinge, which is disposed below said bottom surface, and which is
6		coupled to said bulk element and to said support, thereby suspending said bulk
7		element from said support.
1	2.	The apparatus of claim 1 wherein said bulk element comprises single-crystal silicon.
1	3.	The apparatus of claim 1 wherein said device surface is reflective.
1	4.	The apparatus of claim 3 wherein said device surface comprises a reflective layer.
1	5.	The apparatus of claim 4 wherein said reflective layer comprises a material selected
2		from the group consisting of gold, aluminum, silver, and copper.
1	6.	The apparatus of claim 1 wherein said at least one hinge is formed from a material
2		selected from the group consisting of polysilicon, polyoxide, nitride, silicon nitride,
3		silicon dioxide, silicon oxynitride, single-crystal silicon, and metals.
1	7.	The apparatus of claim 1 wherein said support is made of silicon.
1	8.	The apparatus of claim 1 wherein said support includes a cavity, and wherein said at
2		least one hinge is disposed within said cavity.

1	9.	The apparatus of claim 8 wherein said support further comprises at least one electrod
2		disposed in said cavity, for causing said bulk element to be actuated.
1	10.	The apparatus of claim 8 wherein said cavity is formed by a plurality of sidewalls.
1	11.	The apparatus of claim 10 wherein said at least one hinge comprises first and second
2		hinge elements, and wherein each of said hinge elements is coupled to a unique on
3		of said plurality of sidewalls.
1	12.	The apparatus of claim 11 wherein each of said sidewalls includes a ridge portion that
2		is inwardly projecting, and wherein each of said hinge elements is coupled to
3		unique one of said ridge portions.
1	13.	The apparatus of claim 12 wherein each of said hinge elements is further coupled t
2		said bottom surface.
1	14.	The apparatus of claim 11 wherein said bulk element further comprises a base portio
2		which extends downward from said bottom surface, and wherein each of said hing
3		elements is coupled to said base portion.
1	15.	A method of making a MEMS apparatus, comprising:
2		a) providing a device component comprising single-crystal silicon;
3		b) creating at least one hinge in said device component;
4		c) constructing a support component having a cavity;
5		d) bonding said device component to said support component, such that said
6		least one hinge is disposed within said cavity; and
7		e) forming in said device component a bulk element having a device surface an
8		a bottom surface, whereby said at least one hinge is coupled to said but
9		element and is disposed below said bottom surface, thereby suspending said
10	·.	bulk element from said support.

- 1 16. The method of claim 15 wherein said device component comprises an SOI (Silicon-2 On-Insulator) wafer having a single-crystal silicon device layer and a silicon handle 3 wafer sandwiching an insulation layer, said single-crystal silicon layer having a first 4 surface. 1 17. The method of claim 16 wherein said at least one hinge comprises first and second 2 hinge elements, fabricated on said first surface of said single-crystal silicon device 3 layer by a surface micromachining technique. 1 18. The method of claim 16 wherein said at least one hinge is created in said single-2 crystal silicon device layer by a bulk micromachining technique. 19. The method of claim 17 wherein said step d) further includes removing said silicon 1 2 handle wafer along with said insulation layer, thereby revealing a second surface of 3 said single-crystal silicon device layer. 1 20. The method of claim 19 wherein said step e) includes using a bulk micromachining 2 technique to form said bulk element in said single-crystal silicon device layer, 3 whereby said first and second surfaces of said single-crystal silicon device layer 4 constitute said bottom and device surfaces of said bulk element. 1 21. The method of claim 15 further comprising the step of making said device surface 2 optically reflective. 1 22. The method of claim 21 wherein said device surface is made optically reflective by 2 depositing a reflective layer thereon.
- 1 23. The method of claim 15 wherein said device component comprises an epitaxial silicon wafer.

1

1 2 3	24.	The method of claim 15 wherein said support component is fabricated out of an SOI wafer.
1	25.	The method of claim 15 wherein said step c) further includes disposing at least one electrode in said cavity.
1	26.	An optical apparatus comprising:
2		a plurality of MEMS devices configured in an array, wherein each MEMS device
3		includes:
4		a) a bulk element having a device surface and a bottom surface, disposed below
5		said device surface;
6		b) a support; and
7		c) at least one hinge, which is disposed below said bottom surface, and which is
8 9		coupled to said bulk element and to said support, thereby suspending said bulk element from said support.
1	27.	The apparatus of claim 26 wherein said bulk element comprises single-crystal silicon.
1	28.	The apparatus of claim 26 wherein said at least one hinge comprises first and second
2		hinge elements.
1	29.	The apparatus of claim 26 wherein said at least one hinge is formed from a material
2		selected from the group consisting of polysilicon, polyoxide, nitride, silicon nitride,
3		silicon dioxide, silicon oxynitride, single-crystal silicon, and metals.
1	30.	The apparatus of claim 26 wherein said device surface is optically reflective.
1	31.	The apparatus of claim 26 wherein said support contains a cavity, and wherein said at least one hinge is disposed within said cavity.

- 1 32. The apparatus of claim 31 wherein said support further comprises at least one
- 2 electrode disposed in said cavity, for causing said bulk element to be actuated.

1