FCC RF Test Report

APPLICANT CT Asia

EQUIPMENT **Smart phone**

BRAND NAME BLU

MODEL NAME LIFE X8

FCC ID YHLBLULIFEX8

STANDARD FCC Part 15 Subpart C §15.247

CLASSIFICATION (DTS) Digital Transmission System

The product was received on Apr. 30, 2015 and testing was completed on May 23, 2015. We, SPORTON INTERNATIONAL (SHENZHEN) INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (SHENZHEN) INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL (SHENZHEN) INC.

1F & 2F, Building A, Morning Business Center, No. 4003 ShiGu Rd., Xili Town, Nanshan District, Shenzhen, Guangdong, P. R. China

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 1 of 42

Testing Laboratory

Report No.: FR543003C

Report Issued Date: May 29, 2015

TABLE OF CONTENTS

RE	VISIO	ON HISTORY	3
SU	MMA	RY OF TEST RESULT	4
1	GEN	IERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification subjective to this standard	6
	1.5	Modification of EUT	6
	1.6	Testing Location	6
	1.7	Applicable Standards	7
2	TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	8
	2.1	Carrier Frequency Channel	8
	2.2	Pre-Scanned RF Power	9
	2.3	Test Mode	10
	2.4	Connection Diagram of Test System	
	2.5	Support Unit used in test configuration and system	
	2.6	EUT Operation Test Setup	
	2.7	Measurement Results Explanation Example	12
3	TES	T RESULT	13
	3.1	6dB and 99% Bandwidth Measurement	
	3.2	Output Power Measurement	15
	3.3	Power Spectral Density Measurement	
	3.4	Conducted Band Edges and Spurious Emission Measurement	19
	3.5	Radiated Band Edges and Spurious Emission Measurement	
	3.6	AC Conducted Emission Measurement	
	3.7	Antenna Requirements	40
4	LIST	OF MEASURING EQUIPMENT	41
5	UNC	ERTAINTY OF EVALUATION	42
ΑP	PEND	DIX A. CONDUCTED TEST RESULTS	
ΑP	PEND	DIX B. RADIATED TEST RESULTS	
ΑP	PEND	DIX C. SETUP PHOTOGRAPHS	

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 2 of 42 Report Issued Date : May 29, 2015

Report No. : FR543003C

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR543003C	Rev. 01	Initial issue of report	May 29, 2015

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 3 of 42
Report Issued Date : May 29, 2015

Report No. : FR543003C

SUMMARY OF TEST RESULT

Report Section	FCC Rule	IC Rule	Description	Limit	Result	Remark	
3.1	15.247(a)(2)	RSS-210 A8.2(a)	6dB Bandwidth	≥ 0.5MHz	Pass	-	
3.1	-	RSS-Gen 6.6	99% Bandwidth	-	Pass	-	
3.2	15.247(b)	RSS-210 A8.4	Power Output Measurement	≤ 30dBm	Pass	-	
3.3	15.247(e)	RSS-210 A8.2(b)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-	
3.4		45.045(1)	RSS-210	Conducted Band Edges	< 20dDa	Pass	-
3.4	15.247(d)	A8.5	Conducted Spurious Emission	- ≤ 20dBc	Pass	-	
3.5	15.247(d)	RSS-210 A8.5	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 8.44 dB at 2484.280 MHz	
3.6	15.207	RSS-Gen 8.8	AC Conducted Emission	15.207(a)	Pass	Under limit 16.38 dB at 0.190 MHz	
3.7	15.203 & 15.247(b)	RSS-210 A8.4	Antenna Requirement	N/A	Pass	-	

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 4 of 42
Report Issued Date : May 29, 2015

Report No. : FR543003C

1 General Description

1.1 Applicant

CT Asia

Unit 01, 15/F, Seaview Centre, 139-141 Hoi bun road, Kwun Tong, Kowloon, Hongkong

1.2 Manufacturer

Longcheer Technology (Shanghai) Co., Ltd.

Building 1, No.401, Caobao Rd., Xuhui District, Shanghai, P.R.China

1.3 Product Feature of Equipment Under Test

	Product Feature
Equipment	Smart phone
Brand Name	BLU
Model Name	LIFE X8
FCC ID	YHLBLULIFEX8
	GSM/GPRS/EGPRS/WCDMA/HSPA/HSPA+(Downlink Only)
EUT supports Radios application	WLAN 2.4GHz 802.11b/g/n HT20/HT40
	Bluetooth v3.0 + EDR/Bluetooth v4.0 LE
	Conducted: 865843021935595/865843021934499
Brand Name Model Name FCC ID EUT supports Radios application IMEI Code HW Version SW Version	Conduction: 865843021934408/865843021935504
	Radiation: 865843021935645/865843021934549
HW Version	LWDM033D2-2
SW Version	LWDYL04.1.0.1
EUT Stage	Identical Prototype

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 5 of 42
Report Issued Date : May 29, 2015

Report No.: FR543003C

1.4 Product Specification subjective to this standard

Product Specifica	tion subjective to this standard
Tx/Rx Channel Frequency Range	802.11b/g/n : 2412 MHz ~ 2462 MHz
	802.11b : 19.31 dBm (0.0853 W)
Maximum (Peak) Output Power to	802.11g : 22.84 dBm (0.1923 W)
Antenna	802.11n HT20 : 21.91 dBm (0.1552 W)
	802.11n HT40 : 21.13 dBm (0.1297 W)
	802.11b : 12.55MHz
90% Occupied Pandwidth	802.11g : 17.50MHz
39% Occupied Bandwidth	802.11n HT20 : 18.50MHz
802.11b : 19.31 dBm (0.0853 W) 802.11g : 22.84 dBm (0.1923 W) 802.11n HT20 : 21.91 dBm (0.155 802.11n HT40 : 21.13 dBm (0.129 802.11b : 12.55MHz 802.11b : 12.55MHz 802.11g : 17.50MHz 802.11g : 17.50MHz 802.11n HT20 : 18.50MHz 802.11n HT40 : 36.70MHz 802.11n HT40 : 36.70MHz 802.11b/g/n : IFA Antenna with ga	802.11n HT40 : 36.70MHz
Antenna Type	802.11b/g/n: IFA Antenna with gain -3.0 dBi
Type of Medulation	802.11b: DSSS (DBPSK / DQPSK / CCK)
Type of Modulation	802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Test Site	SPORTON INTERNATIONAL (SHENZI	HEN) INC.			
	1F & 2F, Building A, Morning Business Center, No. 4003 ShiGu Rd., Xili				
Toot Site Legation	Town, Nanshan District, Shenzhen, Guangdong, P. R. China				
Test Site Location	TEL: +86-755-8637-9589				
	FAX: +86-755-8637-9595				
Toot Site No	Sporton Site No.				
Test Site No.	TH01-SZ	CO01-SZ			

Test Site	SPORTON INTERNATIONAL (SHENZH	HEN) INC.			
	No. 3 Building, the third floor of south, Shahe River west, Fengzeyuan				
Test Site Location	warehouse, Nanshan District, Shenzhen, Guangdong, P. R. China				
	TEL: +86-755- 3320-2398				
Test Site No.	Sporton Site No.	FCC/IC Registration No.			
rest Site No.	03CH01-SZ	831040/4086F			

Note: The test site complies with ANSI C63.4 2009 requirement.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 6 of 42 Report Issued Date : May 29, 2015

Report No.: FR543003C

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02
- ANSI C63.10-2009

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. FCC permits the use of the 1.5 meter table as an alternative in C63.10-2013 through inquiry tracking number 961829.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 7 of 42
Report Issued Date : May 29, 2015

Report No.: FR543003C

2 Test Configuration of Equipment Under Test

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conducted emission (150 kHz to 30 MHz) and radiated emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.

The final configuration from all the combinations and the worst-case data rates were investigated by measuring the maximum power across all the data rates and modulation modes under section 2.2.

Based on the worst configuration found above, the RF power setting is set individually to meet FCC compliance limit for the final conducted and radiated tests shown in section 2.3.

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
0400 0400 F MU-	3	2422	9	2452
2400-2483.5 MHz	4	2427	10	2457
	5	2432	11	2462
	6	2437	-	-

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 8 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

2.2 Pre-Scanned RF Power

Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test shown in the following tables.

	2.4GHz 802.11b RF Output Power (dBm)									
Po	wer vs. Chan	inel	Power vs. Data Rate							
Channel	Channel Frequency (MHz) Data Rate 1Mbps		Channel 2Mbps		5.5Mbps	11Mbps				
CH 01	2412 MHz	19.20			19.12					
CH 06	2437 MHz	<mark>19.31</mark>	CH 06	19.23		19.17				
CH 11	2462 MHz	18.97								

	2.4GHz 802.11g RF Output Power (dBm)										
Power vs. Channel				Power vs. Data Rate							
Channel	Frequency (MHz)	Data Rate 6Mbps	Channel	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps	
CH 01	2412 MHz	22.69									
CH 06	2437 MHz	<mark>22.84</mark>	CH 06	22.82	22.83	22.81	22.56	22.59	22.83	22.75	
CH 11	2462 MHz	22.76									

	2.4GHz 802.11n HT20 RF Output Power (dBm)										
Power vs. Channel				Power vs. MCS Index							
Channel	Frequency (MHz)	MCS Index MCS0	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
CH 01	2412 MHz	21.72									
CH 06	2437 MHz	21.70	CH 11	21.53	21.64	21.85	21.79	21.89	21.88	21.87	
CH 11	2462 MHz	<mark>21.91</mark>									

	2.4GHz 802.11n HT40 RF Output Power (dBm)										
Power vs. Channel				Power vs. MCS Index							
Channel	Frequency (MHz)	MCS Index MCS0	Channel	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
CH 03	2422 MHz	<mark>21.13</mark>									
CH 06	2437 MHz	21.09	CH 03	20.12	20.18	20.16	20.15	21.05	21.06	21.03	
CH 09	2452 MHz	21.11									

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 9 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

2.3 Test Mode

Final test mode of conducted test items and radiated spurious emissions are considering the modulation and worse data rates from the power table described in section 2.2.

<2.4GHz>

Modulation	Data Rate
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0

Test Cases				
AC Conducted Mode 1 -: CSM850 Idle + Plusteeth Link + WI AN Link + Fernhane + LISP Cable (Charging from Adaptor)				
Mode 1 : GSM850 Idle + Bluetooth Link + WLAN Link + Earphone + USB Cable (Charging from Adapter) Emission				
Remark: For Radiated Test Cases, The tests were performance with Adapter, Earphone and USB Cable.				

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 10 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

2.4 Connection Diagram of Test System

<WLAN Tx Mode>

<AC Conducted Emission Mode>

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 11 of 42 Report Issued Date : May 29, 2015

Report No.: FR543003C

2.5 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	D-Link	DIR-628	KA2DIR628A2	N/A	Unshielded, 1.8 m
	3. Notebook Lenovo E540 FCC Do	phonic Longue	C540	F00 D-0	N/A	AC I/P:
2						Unshielded, 1.2 m
Э.		FCC DOC		DC O/P:		
						Shielded, 1.8 m
4.	Bluetooth	Nokia	BH-108	PYAHS-107W	N/A	N/A
4.	Earphone	INOKIA	БП-100	PTAN5-107W	IN/A	IN/A

Report No.: FR543003C

: 12 of 42

: Rev. 01

Report Issued Date: May 29, 2015

Page Number

Report Version

2.6 EUT Operation Test Setup

For WLAN RF test items, an engineering test program was provided and enabled to make EUT continuously transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.7 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 5 + 10 = 15 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v03r02.
- The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) = 1MHz and set the Video bandwidth (VBW) = 3MHz.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 13 of 42 Report Issued Date : May 29, 2015

Report No.: FR543003C

3.1.5 Test Result of 6dB and 99% Occupied Bandwidth

Please refer to Appendix A of this test report.

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 14 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting Antenna of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the Antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the Antenna exceeds 6dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 15 of 42 Report Issued Date : May 29, 2015

Report No.: FR543003C

3.2.5 Test Result of Peak Output Power

Please refer to Appendix A of this test report.

3.2.6 Test Result of Average output Power (Reporting Only)

Please refer to Appendix A of this test report.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 16 of 42
Report Issued Date : May 29, 2015

Report No.: FR543003C

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 17 of 42
Report Issued Date : May 29, 2015

Report No.: FR543003C

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A of this test report.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 18 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 19 of 42 Report Issued Date : May 29, 2015

Report No.: FR543003C

3.4.5 Test Result of Conducted Band Edges and Spurious Emission

Test Mode :	802.11b	Temperature :	24~26 ℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Tiny You

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 20 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	24~26℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Tiny You

Page Number : 21 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

Test Mode :	802.11b	Temperature :	24~26℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	11	Test Engineer :	Tiny You

Page Number : 22 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~26℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Tiny You

Page Number : 23 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~26℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Tiny You

Page Number : 24 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

Test Mode :	802.11g	Temperature :	24~26℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	11	Test Engineer :	Tiny You

Page Number : 25 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~26℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	01	Test Engineer :	Tiny You

Page Number : 26 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~26℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Tiny You

Page Number : 27 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

Test Mode :	802.11n HT20	Temperature :	24~26℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	11	Test Engineer :	Tiny You

Page Number : 28 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	24~26℃
Test Band :	2.4GHz Low	Relative Humidity :	50~53%
Test Channel :	03	Test Engineer :	Tiny You

Page Number : 29 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	24~26℃
Test Band :	2.4GHz Mid	Relative Humidity :	50~53%
Test Channel :	06	Test Engineer :	Tiny You

Page Number : 30 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

Test Mode :	802.11n HT40	Temperature :	24~26℃
Test Band :	2.4GHz High	Relative Humidity :	50~53%
Test Channel :	09	Test Engineer :	Tiny You

Page Number : 31 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 32 of 42
Report Issued Date : May 29, 2015

Report No.: FR543003C

3.5.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
802.11b	98.71	-	-	10Hz
802.11g	89.26	1.40	0.72	1kHz
2.4GHz 802.11n HT20	87.86	1.30	0.77	1kHz
2.4GHz 802.11n HT40	77.47	0.64	1.55	3kHz

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 33 of 42
Report Issued Date : May 29, 2015

Report No.: FR543003C

3.5.4 Test Setup

For radiated emissions below 30MHz

For radiated emissions from 30MHz to 1GHz

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 34 of 42

Report No.: FR543003C

Report Issued Date : May 29, 2015 Report Version : Rev. 01

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B.

3.5.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 35 of 42
Report Issued Date : May 29, 2015

Report No.: FR543003C

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBμV)		
(MHz)	Quasi-Peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF bandwidth = 9kHz) with Maximum Hold Mode.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 36 of 42 Report Issued Date : May 29, 2015

Report No.: FR543003C

3.6.4 Test Setup

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 37 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

3.6.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1	Temperature :	21~22℃
Test Engineer :	Jacky Yang	Relative Humidity :	41~42%
Test Voltage :	120Vac / 60Hz	Phase :	Line
Function Type :	GSM850 Idle + Bluetooth Li	ink + WLAN Link + Ea	rphone + USB Cable (Charging

Site : CO01-SZ

Condition: FCC 15C_QP LISN_L_20140304 LINE

			Over	Limit	Read	TISM	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	MHz	dBu∀	dB	dBu∀	dBuV	dB	dB	
1	0.17	20 15	-22.84	54.99	21.60	0.00	10 22	3
	0.1/	32.15	-22.04	34.99	21.60	0.22	10.33	Average
2	0.17	48.35	-16.64	64.99	37.80	0.22	10.33	QP
3	0.19	32.03	-22.08	54.11	21.50	0.22	10.31	Average
4 *	0.19	47.73	-16.38	64.11	37.20	0.22	10.31	QP
5	0.25	27.28	-24.54	51.82	16.80	0.24	10.24	Average
6	0.25	39.18	-22.64	61.82	28.70	0.24	10.24	QP
7	0.30	27.56	-22.68	50.24	17.10	0.26	10.20	Average
8	0.30	36.96	-23.28	60.24	26.50	0.26	10.20	QP
9	0.39	27.45	-20.67	48.12	17.00	0.28	10.17	Average
10	0.39	36.05	-22.07	58.12	25.60	0.28	10.17	QP
11	1.22	25.01	-20.99	46.00	14.60	0.25	10.16	Average
12	1.22	35.61	-20.39	56.00	25.20	0.25	10.16	QP

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 38 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

Test Mode :	Mode 1	Temperature :	21~22℃				
Test Engineer :	Jacky Yang	Relative Humidity :	41~42%				
Test Voltage :	120Vac / 60Hz	Phase :	Neutral				
Function Type :	GSM850 Idle + Bluetooth Link + WLAN Link + Earphone + USB Cable (Charging						
Function Type :	from Adapter)						

Site : C001-SZ Condition: FCC 15C_QP LISN_N_20140304 NEUTRAL

			Over	Limit	Read	LISN	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
	MHz	dBu∀	dB	dBu∀	dBu∀	dB	dB	
1	0.17	30.35	-24.42	54.77	19.70	0.32	10.33	Average
2 *	0.17	46.05	-18.72	64.77	35.40	0.32	10.33	QP
3	0.38	27.06	-21.33	48.39	16.50	0.38	10.18	Average
4	0.38	37.46	-20.93	58.39	26.90	0.38	10.18	QP
5	0.53	24.43	-21.57	46.00	13.90	0.38	10.15	Average
6	0.53	34.33	-21.67	56.00	23.80	0.38	10.15	QP
7	0.91	24.86	-21.14	46.00	14.40	0.31	10.15	Average
8	0.91	33.96	-22.04	56.00	23.50	0.31	10.15	QP
9	1.24	25.80	-20.20	46.00	15.30	0.34	10.16	Average
10	1.24	34.60	-21.40	56.00	24.10	0.34	10.16	QP
11	1.59	25.03	-20.97	46.00	14.49	0.36	10.18	Average
12	1.59	33.53	-22.47	56.00	22.99	0.36	10.18	QP

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8

: 39 of 42 Page Number Report Issued Date: May 29, 2015 Report Version : Rev. 01

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. For the fixed point-to-point operation, the power shall be reduced by one dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 40 of 42 Report Issued Date : May 29, 2015

Report No.: FR543003C

Report Version : Rev. 01

List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSP30	101400	9kHz~40GHz	Jan. 28, 2015	May 06, 2015	Jan. 27, 2016	Conducted (TH01-SZ)
Pulse Power Senor	Anritsu	MA2411B	1207253	30MHz~40GHz	Jan. 28, 2015	May 06, 2015	Jan. 27, 2016	Conducted (TH01-SZ)
Power Meter	Anritsu	ML2495A	1218010	50MHz Bandwidth	Jan. 28, 2015	May 06, 2015	Jan. 27, 2016	Conducted (TH01-SZ)
EMI Test Receiver&SA	Agilent Technologies	N9038A	MY522601 85	20Hz~26.5GHz	May 26, 2014	May 23, 2015	May 25, 2015	Radiation (03CH01-SZ)
Spectrum Analyzer	R&S	FSV40	101041	10kHz~40GHz; Max 30dBm	Sep. 25, 2014	May 23, 2015	Sep. 24, 2015	Radiation (03CH01-SZ)
Loop Antenna	R&S	HFH2-Z2	100354	9kHz~30MHz	May 06, 2015	May 23, 2015	May 05, 2016	Radiation (03CH01-KS)
Bilog Antenna	TeseQ	CBL6112D	23188	30MHz~2GHz	Nov. 07, 2014	May 23, 2015	Nov. 06, 2015	Radiation (03CH01-SZ)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00119436	1GHz~18GHz	Oct. 15, 2014	May 23, 2015	Oct. 14, 2015	Radiation (03CH01-SZ)
SHF-EHF Horn	com-power	AH-840	101073	18GHz~40GHz	Jun. 09, 2014	May 23, 2015	Jun. 08, 2015	Radiation (03CH01-SZ)
Amplifier	ADVANTEST	BB525C	E9007003	9kHz~3000MHz / 30 dB	Jan. 28, 2015	May 23, 2015	Jan. 27, 2016	Radiation (03CH01-SZ)
Amplifier	Agilent Technologies	83017A	MY395013 02	500MHz~26.5G Hz	Jan. 28, 2015	May 23, 2015	Jan. 27, 2016	Radiation (03CH01-SZ)
AC Power Source	Chroma	61601	616010001 985	N/A	NCR	May 23, 2015	NCR	Radiation (03CH01-SZ)
Turn Table	EM	EM1000	N/A	0~360 degree	NCR	May 23, 2015	NCR	Radiation (03CH01-SZ)
Antenna Mast	EM	EM1000	N/A	1 m~4 m	NCR	May 23, 2015	NCR	Radiation (03CH01-SZ)
EMI Receiver	R&S	ESCI7	100724	9kHz~3GHz	Jan. 28, 2015	May 04, 2015	Jan. 27, 2016	Conduction (CO01-SZ)
AC LISN	EMCO	3816/2SH	103892	9kHz~30MHz	Feb. 02, 2015	May 04, 2015	Feb. 01, 2016	Conduction (CO01-SZ)
AC LISN (for auxiliary equipment)	MessTec	AN3016	16850	9kHz~30MHz	Feb. 02, 2015	May 04, 2015	Feb. 01, 2016	Conduction (CO01-SZ)
AC Power Source	Chroma	61602	616020000 891	100Vac~250Vac	Sep. 29, 2014	May 04, 2015	Sep. 28, 2015	Conduction (CO01-SZ)
Pulse Limiter	COM-POWER	LIT-153 Transient Limiter	53139	150kHz~30MHz	Oct. 24, 2014	May 04, 2015	Oct. 23, 2015	Conduction (CO01-SZ)

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 41 of 42 Report Issued Date: May 29, 2015

Report No.: FR543003C

Report Version : Rev. 01

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of	2.3dB
Confidence of 95% (U = 2Uc(y))	2.3uB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	3.9dB
Confidence of 95% (U = 2Uc(y))	0.5dD

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : 42 of 42
Report Issued Date : May 29, 2015
Report Version : Rev. 01

Appendix A. Conducted Test Results

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : A1 of A1
Report Issued Date : May 29, 2015

Report No.: FR543003C

Report Version : Rev. 01

Test Engineer:	Tiny You	Temperature:	21~25	°C
Test Date:	2015/5/6	Relative Humidity:	51~54	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

	2.4GHz Band											
Mod.	Data Rate	N TX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail				
11b	1Mbps	1	1	2412	12.45	10.00	0.50	Pass				
11b	1Mbps	1	6	2437	12.55	10.00	0.50	Pass				
11b	1Mbps	1	11	2462	12.50	9.56	0.50	Pass				
11g	6Mbps	1	1	2412	17.40	15.32	0.50	Pass				
11g	6Mbps	1	6	2437	17.40	15.32	0.50	Pass				
11g	6Mbps	1	11	2462	17.50	15.44	0.50	Pass				
HT20	MCS0	1	1	2412	18.45	17.60	0.50	Pass				
HT20	MCS0	1	6	2437	18.50	17.60	0.50	Pass				
HT20	MCS0	1	11	2462	18.45	17.60	0.50	Pass				
HT40	MCS0	1	3	2422	36.50	36.24	0.50	Pass				
HT40	MCS0	1	6	2437	36.70	36.00	0.50	Pass				
HT40	MCS0	1	9	2452	36.50	36.08	0.50	Pass				

TEST RESULTS DATA Peak Power Table

	2.4GHz Band											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail		
11b	1Mbps	1	1	2412	19.20	30.00	-3.00	16.20	36.00	Pass		
11b	1Mbps	1	6	2437	19.31	30.00	-3.00	16.31	36.00	Pass		
11b	1Mbps	1	11	2462	18.97	30.00	-3.00	15.97	36.00	Pass		
11g	6Mbps	1	1	2412	22.69	30.00	-3.00	19.69	36.00	Pass		
11g	6Mbps	1	6	2437	22.84	30.00	-3.00	19.84	36.00	Pass		
11g	6Mbps	1	11	2462	22.76	30.00	-3.00	19.76	36.00	Pass		
HT20	MCS0	1	1	2412	21.72	30.00	-3.00	18.72	36.00	Pass		
HT20	MCS0	1	6	2437	21.70	30.00	-3.00	18.70	36.00	Pass		
HT20	MCS0	1	11	2462	21.91	30.00	-3.00	18.91	36.00	Pass		
HT40	MCS0	1	3	2422	21.13	30.00	-3.00	18.13	36.00	Pass		
HT40	MCS0	1	6	2437	21.09	30.00	-3.00	18.09	36.00	Pass		
HT40	MCS0	1	9	2452	21.11	30.00	-3.00	18.11	36.00	Pass		

TEST RESULTS DATA Average Power Table (Reporting Only)

	2.4GHz Band											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)						
11b	1Mbps	1	1	2412	0.06	16.23						
11b	1Mbps	1	6	2437	0.06	16.37						
11b	1Mbps	1	11	2462	0.06	16.04						
11g	6Mbps	1	1	2412	0.49	14.21						
11g	6Mbps	1	6	2437	0.49	14.34						
11g	6Mbps	1	11	2462	0.49	14.24						
HT20	MCS0	1	1	2412	0.56	12.39						
HT20	MCS0	1	6	2437	0.56	12.36						
HT20	MCS0	1	11	2462	0.56	12.57						
HT40	MCS0	1	3	2422	1.11	10.64						
HT40	MCS0	1	6	2437	1.11	10.56						
HT40	MCS0	1	9	2452	1.11	10.52						

TEST RESULTS DATA Peak Power Density

	2.4GHz Band											
	2. 15.12 Build											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail				
11b	1Mbps	1	1	2412	-7.44	-3.00	8.00	Pass				
11b	1Mbps	1	6	2437	-6.26	-3.00	8.00	Pass				
11b	1Mbps	1	11	2462	-7.14	-3.00	8.00	Pass				
11g	6Mbps	1	1	2412	-10.99	-3.00	8.00	Pass				
11g	6Mbps	1	6	2437	-10.73	-3.00	8.00	Pass				
11g	6Mbps	1	11	2462	-10.78	-3.00	8.00	Pass				
HT20	MCS0	1	1	2412	-13.25	-3.00	8.00	Pass				
HT20	MCS0	1	6	2437	-12.97	-3.00	8.00	Pass				
HT20	MCS0	1	11	2462	-13.93	-3.00	8.00	Pass				
HT40	MCS0	1	3	2422	-18.68	-3.00	8.00	Pass				
HT40	MCS0	1	6	2437	-18.16	-3.00	8.00	Pass				
HT40	MCS0	1	9	2452	-19.10	-3.00	8.00	Pass				

Appendix B. Radiated Spurious Emission

15C 2.4GHz 2400~2483.5MHz

WIFI 802.11b (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2363.19	44.26	-29.74	74	47.44	27.13	4.74	35.05	150	30	Р	Н
		2389.83	29.92	-24.08	54	32.88	27.25	4.79	35	150	30	Α	Н
000 446	*	2412	97.75	-	-	100.62	27.31	4.82	35	150	30	Р	Н
802.11b CH 01	*	2412	93.82	-	-	96.69	27.31	4.82	35	150	30	Α	Н
2412MHz		2385.69	46.45	-27.55	74	49.43	27.25	4.79	35.02	150	167	Р	V
2412101112		2389.83	31.27	-22.73	54	34.23	27.25	4.79	35	150	167	Α	V
	*	2412	100.46	-	-	103.33	27.31	4.82	35	150	167	Р	V
	*	2412	96.58	-	-	99.45	27.31	4.82	35	150	167	Α	V
		2383.53	44.25	-29.75	74	47.29	27.19	4.79	35.02	150	28	Р	Н
		2383.08	28.38	-25.62	54	31.42	27.19	4.79	35.02	150	28	Α	Н
	*	2437	98.14	-	1	100.87	27.42	4.82	34.97	150	28	Р	Н
	*	2437	94.28	ı	1	97.01	27.42	4.82	34.97	150	28	Α	Н
		2484.32	48.09	-25.91	74	50.62	27.54	4.85	34.92	150	28	Р	Н
802.11b CH 06		2491.08	29.97	-24.03	54	32.4	27.6	4.89	34.92	150	28	Α	Н
2437MHz		2386.23	48.01	-25.99	74	50.99	27.25	4.79	35.02	150	56	Р	٧
2707 1911 12		2382.81	29.68	-24.32	54	32.72	27.19	4.79	35.02	150	56	Α	V
	*	2437	101.8	-	-	104.53	27.42	4.82	34.97	150	56	Р	V
	*	2437	97.91	-	1	100.64	27.42	4.82	34.97	150	56	Α	٧
		2487.12	53.3	-20.7	74	55.83	27.54	4.85	34.92	150	56	Р	V
		2491.32	34.12	-19.88	54	36.55	27.6	4.89	34.92	150	56	Α	V

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : B1 of B15
Report Issued Date : May 29, 2015
Report Version : Rev. 01

	*	2462	98.88	-	-	101.5	27.48	4.85	34.95	166	30	Р	Н
	*	2462	95.02	-	-	97.64	27.48	4.85	34.95	166	30	Α	Н
		2490.76	49.46	-24.54	74	51.89	27.6	4.89	34.92	166	30	Р	Н
802.11b		2490.04	32.29	-21.71	54	34.72	27.6	4.89	34.92	166	30	Α	Н
CH 11 2462MHz	*	2462	103	-	-	105.62	27.48	4.85	34.95	150	295	Р	٧
2402WITIZ	*	2462	99.14	-	-	101.76	27.48	4.85	34.95	150	295	Α	٧
		2498.12	52.21	-21.79	74	54.62	27.6	4.89	34.9	150	295	Р	٧
		2489.84	34.96	-19.04	54	37.39	27.6	4.89	34.92	150	295	Α	٧
Remark		o other spurio		at Da ali	A	un linnik lin							

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : B2 of B15
Report Issued Date : May 29, 2015
Report Version : Rev. 01

^{2.} All results are PASS against Peak and Average limit line.

15C 2.4GHz 2400~2483.5MHz

WIFI 802.11b (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		4824	40.88	-33.12	74	61.25	31.05	6.97	58.39	110	360	Р	Н
CH 01 2412MHz		4824	41.44	-32.56	74	61.81	31.05	6.97	58.39	110	360	Р	V
		4874	41.16	-32.84	74	61.71	31.12	6.99	58.66	100	360	Р	Н
802.11b		7311	44.55	-29.45	74	58.99	35.96	8.22	58.62	174	100	Р	Н
2437MHz		4874	41.96	-32.04	74	62.51	31.12	6.99	58.66	100	360	Р	V
2437101112		7311	44.24	-29.76	74	58.68	35.96	8.22	58.62	174	100	Р	V
000 441-		4924	40.94	-33.06	74	61.27	31.19	7	58.52	146	347	Р	Н
802.11b CH 11		7386	44.32	-29.68	74	58.51	36.08	8.27	58.54	145	274	Р	Н
2462MHz		4924	41.43	-32.57	74	61.76	31.19	7	58.52	146	347	Р	V
2402141112		7386	44.57	-29.43	74	58.76	36.08	8.27	58.54	145	274	Р	V

Remark

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : B3 of B15
Report Issued Date : May 29, 2015
Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

15C 2.4GHz 2400~2483.5MHz WIFI 802.11g (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2389.92	56.43	-17.57	74	59.39	27.25	4.79	35	171	126	Р	Н
		2389.74	37.34	-16.66	54	40.32	27.25	4.79	35.02	171	126	Α	Н
000 44 =	*	2412	101.02	-	-	103.89	27.31	4.82	35	171	126	Р	Н
802.11g CH 01	*	2412	90.61	-	-	93.48	27.31	4.82	35	171	126	Α	Н
2412MHz		2389.83	56.03	-17.97	74	58.99	27.25	4.79	35	167	279	Р	V
2412111112		2389.83	38.06	-15.94	54	41.02	27.25	4.79	35	167	279	Α	V
	*	2412	101.91	-	-	104.78	27.31	4.82	35	167	279	Р	V
	*	2412	91.93	-	-	94.8	27.31	4.82	35	167	279	Α	V
		2387.67	43.61	-30.39	74	46.59	27.25	4.79	35.02	170	65	Р	Н
		2388.12	30.83	-23.17	54	33.81	27.25	4.79	35.02	170	65	Α	Н
	*	2437	100.66	-	1	103.39	27.42	4.82	34.97	170	65	Р	Н
	*	2437	90.19	-	1	92.92	27.42	4.82	34.97	170	65	Α	Н
		2489.68	49.78	-24.22	74	52.21	27.6	4.89	34.92	170	65	Р	Н
802.11g		2488	34.46	-19.54	54	36.93	27.6	4.85	34.92	170	65	Α	Н
CH 06 2437MHz		2386.86	45.23	-28.77	74	48.21	27.25	4.79	35.02	153	38	Р	V
2457 WITH		2389.92	32.23	-21.77	54	35.19	27.25	4.79	35	153	38	Α	V
	*	2437	104.42	-	-	107.15	27.42	4.82	34.97	153	38	Р	V
	*	2437	94.03	-	-	96.76	27.42	4.82	34.97	153	38	Α	V
		2492.4	51.55	-22.45	74	53.96	27.6	4.89	34.9	153	38	Р	V
		2484	36.94	-17.06	54	39.47	27.54	4.85	34.92	153	38	Α	V

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : B4 of B15
Report Issued Date : May 29, 2015
Report Version : Rev. 01

FCC RF Test Report

	*	2462	100.9	-	-	103.52	27.48	4.85	34.95	250	140	Р	Н
	*	2462	90.74	-	-	93.36	27.48	4.85	34.95	250	140	Α	Н
		2483.96	61.27	-12.73	74	63.8	27.54	4.85	34.92	250	140	Р	Н
802.11g		2483.6	40.39	-13.61	54	42.92	27.54	4.85	34.92	250	140	Α	Η
CH 11 2462MHz	*	2462	103.81	-	-	106.43	27.48	4.85	34.95	150	269	Р	٧
2402WITIZ	*	2462	93.77	-	-	96.39	27.48	4.85	34.95	150	269	Α	٧
		2483.56	65.15	-8.85	74	67.68	27.54	4.85	34.92	150	269	Р	٧
		2483.52	41.87	-12.13	54	44.4	27.54	4.85	34.92	150	269	Α	V
	4 N	o other equrie	a faad										

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8

: B5 of B15 Page Number Report Issued Date: May 29, 2015 Report Version : Rev. 01

Remark

1. No other spurious round.
2. All results are PASS against Peak and Average limit line.

15C 2.4GHz 2400~2483.5MHz

WIFI 802.11g (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11g		4824	41.56	-32.44	74	61.93	31.05	6.97	58.39	110	360	Р	Н
CH 01													
2412MHz		4824	41.15	-32.85	74	61.4	31.05	6.97	58.39	110	360	Р	V
		4874	41.68	-32.32	74	62.23	31.12	6.99	58.66	100	360	Р	Н
802.11g CH 06		7311	44	-30	74	58.44	35.96	8.22	58.62	174	100	Р	Н
2437MHz		4874	41.29	-32.71	74	61.84	31.12	6.99	58.66	100	360	Р	V
2457191112		7311	44.61	-29.39	74	59.05	35.96	8.22	58.62	174	100	Р	٧
222.44		4924	42.78	-31.22	74	63.11	31.19	7	58.52	146	347	Р	Н
802.11g		7386	44.57	-29.43	74	58.76	36.08	8.27	58.54	145	274	Р	Н
CH 11 2462MHz		4924	41.7	-32.3	74	62.03	31.19	7	58.52	146	347	Р	٧
2702191112		7386	44.5	-29.5	74	58.69	36.08	8.27	58.54	145	274	Р	V

Remark

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : B6 of B15
Report Issued Date : May 29, 2015
Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

15C 2.4GHz 2400~2483.5MHz WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2388.39	54.32	-19.68	74	57.3	27.25	4.79	35.02	226	140	Р	Н
		2389.74	35.76	-18.24	54	38.74	27.25	4.79	35.02	226	140	Α	Н
802.11n	*	2412	97.4	-	-	100.27	27.31	4.82	35	226	140	Р	Н
HT20	*	2412	86.8	-	-	89.67	27.31	4.82	35	226	140	Α	Τ
CH 01		2389.65	57.88	-16.12	74	60.86	27.25	4.79	35.02	151	292	Р	٧
2412MHz		2389.92	38.19	-15.81	54	41.15	27.25	4.79	35	151	292	Α	٧
	*	2412	100.65	-	-	103.52	27.31	4.82	35	151	292	Р	٧
	*	2412	88.53	-	-	91.4	27.31	4.82	35	151	292	Α	٧
		2384.34	42.26	-31.74	74	45.3	27.19	4.79	35.02	250	124	Р	Н
		2389.83	28.84	-25.16	54	31.8	27.25	4.79	35	250	124	Α	Н
	*	2437	97.61	-	-	100.34	27.42	4.82	34.97	250	124	Р	Н
	*	2437	87.27	-	-	90	27.42	4.82	34.97	250	124	Α	Н
802.11n		2486.36	47.1	-26.9	74	49.63	27.54	4.85	34.92	250	124	Р	Н
HT20		2484.08	32.42	-21.58	54	34.95	27.54	4.85	34.92	250	124	Α	Н
CH 06		2389.83	44.2	-29.8	74	47.16	27.25	4.79	35	150	65	Р	٧
2437MHz		2388.93	31.14	-22.86	54	34.12	27.25	4.79	35.02	150	65	Α	٧
	*	2437	101.38	-	-	104.11	27.42	4.82	34.97	150	65	Р	V
	*	2437	90.11	-	-	92.84	27.42	4.82	34.97	150	65	Α	V
		2497.64	51.33	-22.67	74	53.74	27.6	4.89	34.9	150	65	Р	V
		2483.56	36.53	-17.47	54	39.06	27.54	4.85	34.92	150	65	Α	٧

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : B7 of B15
Report Issued Date : May 29, 2015
Report Version : Rev. 01

FCC RF Test Report Report No.: FR543003C

	*	2462	99.06	-	-	101.68	27.48	4.85	34.95	168	39	Р	Н
	*	2462	88.4	-	-	91.02	27.48	4.85	34.95	168	39	Α	Н
802.11n		2483.64	63.13	-10.87	74	65.66	27.54	4.85	34.92	168	39	Р	Н
HT20		2483.56	39.69	-14.31	54	42.22	27.54	4.85	34.92	168	39	Α	Н
CH 11	*	2462	102.83	-	-	105.45	27.48	4.85	34.95	160	291	Р	٧
2462MHz	*	2462	91.57	-	-	94.19	27.48	4.85	34.95	160	291	Α	٧
		2484.28	65.56	-8.44	74	68.09	27.54	4.85	34.92	160	291	Р	٧
		2483.6	42.25	-11.75	54	44.78	27.54	4.85	34.92	160	291	Α	٧
		·-			•	•							

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8

: B8 of B15 Page Number Report Issued Date: May 29, 2015 Report Version : Rev. 01

No other spurious found.

Remark 2. All results are PASS against Peak and Average limit line.

15C 2.4GHz 2400~2483.5MHz

WIFI 802.11n HT20 (Harmonic @ 3m)

lote	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	4824	41.11	-32.89	74	61.48	31.05	6.97	58.39	110	360	Р	Н
	-											
	4824	41 74	-32 26	74	62 11	31 05	6 97	58 39	110	360	Р	V
	.02 .		02:20		02	01100	0.01	00.00				J
	4874	40.4	-33.6	74	60.95	31.12	6.99	58.66	100	360	Р	Н
	7311	43.68	-30.32	74	58.12	35.96	8.22	58.62	174	100	Р	Н
	4874	41.14	-32.86	74	61.69	31.12	6.99	58.66	100	360	Р	V
	7311	44.43	-29.57	74	58.87	35.96	8.22	58.62	174	100	Р	V
	4924	39.68	-34.32	74	60.01	31.19	7	58.52	146	347	Р	Н
	7386	43.84	-30.16	74	58.03	36.08	8.27	58.54	145	274	Р	Н
	4924	40.18	-33.82	74	60.51	31.19	7	58.52	146	347	Р	V
	7386	43.57	-30.43	74	57.76	36.08	8.27	58.54	145	274	Р	٧
		4824 4824 4874 7311 4874 7311 4924 7386 4924	4824 41.11 4824 41.74 4874 40.4 7311 43.68 4874 41.14 7311 44.43 4924 39.68 7386 43.84 4924 40.18	(MHz) (dBμV/m) (dB) 4824 41.11 -32.89 4824 41.74 -32.26 4874 40.4 -33.6 7311 43.68 -30.32 4874 41.14 -32.86 7311 44.43 -29.57 4924 39.68 -34.32 7386 43.84 -30.16 4924 40.18 -33.82	(MHz) (dBμV/m) (dB) (dBμV/m) 4824 41.11 -32.89 74 4824 41.74 -32.26 74 4874 40.4 -33.6 74 7311 43.68 -30.32 74 4874 41.14 -32.86 74 7311 44.43 -29.57 74 4924 39.68 -34.32 74 7386 43.84 -30.16 74 4924 40.18 -33.82 74	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 4824 41.11 -32.89 74 61.48 4824 41.74 -32.26 74 62.11 4874 40.4 -33.6 74 60.95 7311 43.68 -30.32 74 58.12 4874 41.14 -32.86 74 61.69 7311 44.43 -29.57 74 58.87 4924 39.68 -34.32 74 60.01 7386 43.84 -30.16 74 58.03 4924 40.18 -33.82 74 60.51	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV) (dBμV) 4824 41.11 -32.89 74 61.48 31.05 4824 41.74 -32.26 74 62.11 31.05 4874 40.4 -33.6 74 60.95 31.12 7311 43.68 -30.32 74 58.12 35.96 4874 41.14 -32.86 74 61.69 31.12 7311 44.43 -29.57 74 58.87 35.96 4924 39.68 -34.32 74 60.01 31.19 7386 43.84 -30.16 74 58.03 36.08 4924 40.18 -33.82 74 60.51 31.19	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) (dB) 4824 41.11 -32.89 74 61.48 31.05 6.97 4824 41.74 -32.26 74 62.11 31.05 6.97 4874 40.4 -33.6 74 60.95 31.12 6.99 7311 43.68 -30.32 74 58.12 35.96 8.22 4874 41.14 -32.86 74 61.69 31.12 6.99 7311 44.43 -29.57 74 58.87 35.96 8.22 4924 39.68 -34.32 74 60.01 31.19 7 7386 43.84 -30.16 74 58.03 36.08 8.27 4924 40.18 -33.82 74 60.51 31.19 7	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) (dB) (dB) 4824 41.11 -32.89 74 61.48 31.05 6.97 58.39 4824 41.74 -32.26 74 62.11 31.05 6.97 58.39 4874 40.4 -33.6 74 60.95 31.12 6.99 58.66 7311 43.68 -30.32 74 58.12 35.96 8.22 58.62 4874 41.14 -32.86 74 61.69 31.12 6.99 58.66 7311 44.43 -29.57 74 58.87 35.96 8.22 58.62 4924 39.68 -34.32 74 60.01 31.19 7 58.52 7386 43.84 -30.16 74 58.03 36.08 8.27 58.54 4924 40.18 -33.82 74 60.51 31.19 7 58.52	(MHz) (dBμV/m) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (cm) 4824 41.11 -32.89 74 61.48 31.05 6.97 58.39 110 4824 41.74 -32.26 74 62.11 31.05 6.97 58.39 110 4874 40.4 -33.6 74 60.95 31.12 6.99 58.66 100 7311 43.68 -30.32 74 58.12 35.96 8.22 58.62 174 4874 41.14 -32.86 74 61.69 31.12 6.99 58.66 100 7311 44.43 -29.57 74 58.87 35.96 8.22 58.62 174 4924 39.68 -34.32 74 60.01 31.19 7 58.52 146 7386 43.84 -30.16 74 58.03 36.08 8.27 58.54 145 4924 40.18 -33.82	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (cm) (deg) 4824 41.11 -32.89 74 61.48 31.05 6.97 58.39 110 360 4824 41.74 -32.26 74 62.11 31.05 6.97 58.39 110 360 4874 40.4 -33.6 74 60.95 31.12 6.99 58.66 100 360 7311 43.68 -30.32 74 58.12 35.96 8.22 58.62 174 100 4874 41.14 -32.86 74 61.69 31.12 6.99 58.66 100 360 7311 44.43 -29.57 74 58.87 35.96 8.22 58.62 174 100 4924 39.68 -34.32 74 60.01 31.19 7 58.52 146 347 7386 43.84 -30.16	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (cm) (deg) (P/A) 4824 41.11 -32.89 74 61.48 31.05 6.97 58.39 110 360 P 4824 41.74 -32.26 74 62.11 31.05 6.97 58.39 110 360 P 4874 40.4 -33.6 74 60.95 31.12 6.99 58.66 100 360 P 7311 43.68 -30.32 74 58.12 35.96 8.22 58.62 174 100 P 4874 41.14 -32.86 74 61.69 31.12 6.99 58.66 100 360 P 7311 44.43 -29.57 74 58.87 35.96 8.22 58.62 174 100 P 4924 39.68 -34.32 74 60.01 31.19 7 58.52

Remark

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : B9 of B15
Report Issued Date : May 29, 2015

Report No.: FR543003C

Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

15C 2.4GHz 2400~2483.5MHz WIFI 802.11n HT40 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2389.11	57.06	-16.94	74	60.04	27.25	4.79	35.02	205	49	Р	Н
		2389.92	36.08	-17.92	54	39.04	27.25	4.79	35	205	49	Α	Н
	*	2422	92.8	-	-	95.58	27.37	4.82	34.97	205	49	Р	Н
	*	2422	82.43	-	-	85.21	27.37	4.82	34.97	205	49	Α	Н
802.11n		2497.16	47.99	-26.01	74	50.4	27.6	4.89	34.9	205	49	Р	Н
HT40		2484.92	32.71	-21.29	54	35.24	27.54	4.85	34.92	205	49	Α	Н
CH 03		2388.57	58.45	-15.55	74	61.43	27.25	4.79	35.02	155	63	Р	٧
2422MHz		2389.92	37.64	-16.36	54	40.6	27.25	4.79	35	155	63	Α	٧
	*	2422	95.76	-	-	98.54	27.37	4.82	34.97	155	63	Р	٧
	*	2422	85.8	-	-	88.58	27.37	4.82	34.97	155	63	Α	٧
		2484.2	51.43	-22.57	74	53.96	27.54	4.85	34.92	155	63	Р	٧
		2484.48	35.48	-18.52	54	38.01	27.54	4.85	34.92	155	63	Α	٧
		2381.19	43.96	-30.04	74	47	27.19	4.79	35.02	195	53	Р	Н
		2389.38	30.05	-23.95	54	33.03	27.25	4.79	35.02	195	53	Α	Н
	*	2437	93.93	-	-	96.66	27.42	4.82	34.97	195	53	Р	Н
	*	2437	83.45	-	-	86.18	27.42	4.82	34.97	195	53	Α	Н
802.11n		2486.72	48.65	-25.35	74	51.18	27.54	4.85	34.92	195	53	Р	Н
HT40		2484.16	33.68	-20.32	54	36.21	27.54	4.85	34.92	195	53	Α	Н
CH 06		2381.55	44.06	-29.94	74	47.1	27.19	4.79	35.02	159	293	Р	٧
2437MHz		2389.83	31.36	-22.64	54	34.32	27.25	4.79	35	159	293	Α	٧
	*	2437	96.17	-	-	98.9	27.42	4.82	34.97	159	293	Р	٧
	*	2437	85.88	-	-	88.61	27.42	4.82	34.97	159	293	Α	٧
		2484.48	52.15	-21.85	74	54.68	27.54	4.85	34.92	159	293	Р	٧
		2484.16	35.44	-18.56	54	37.97	27.54	4.85	34.92	159	293	Α	٧

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : B10 of B15
Report Issued Date : May 29, 2015
Report Version : Rev. 01

		2485.12	63.1	-10.9	74	65.63	27.54	4.85	34.92	157	297	Р	V
	*	2452	86.19	_	_	88.87	27.42	4.85	34.95	157	297	Α	V
	*	2452	96.46	-	-	99.14	27.42	4.85	34.95	157	297	Р	V
2452MHz		2384.7	30.1	-23.9	54	33.14	27.19	4.79	35.02	157	297	Α	V
CH 09		2383.44	43.94	-30.06	74	46.98	27.19	4.79	35.02	157	297	Р	٧
HT40		2483.96	37.4	-16.6	54	39.93	27.54	4.85	34.92	167	9	Α	Н
802.11n		2483.6	60.61	-13.39	74	63.14	27.54	4.85	34.92	167	9	Р	Н
	*	2452	83.96	-	-	86.64	27.42	4.85	34.95	167	9	Α	Н
	*	2452	94.02	-	-	96.7	27.42	4.85	34.95	167	9	Р	Н
		2388.57	28.95	-25.05	54	31.93	27.25	4.79	35.02	167	9	Α	Н
		2387.22	40.88	-33.12	74	43.86	27.25	4.79	35.02	167	9	Р	Н

Remark

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : B11 of B15
Report Issued Date : May 29, 2015
Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

15C 2.4GHz 2400~2483.5MHz WIFI 802.11n HT40 (Harmonic @ 3m)

						•		-					
WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		4844	42.14	-31.86	74	62.58	31.07	6.97	58.48	100	360	Р	Н
HT40		7266	44.78	-29.22	74	59.21	35.91	8.19	58.53	200	360	Р	Н
CH 03		4844	41.7	-32.3	74	62.14	31.07	6.97	58.48	100	360	Р	٧
2422MHz		7266	44.22	-29.78	74	58.65	35.91	8.19	58.53	200	360	Р	٧
802.11n		4874	40.42	-33.58	74	60.97	31.12	6.99	58.66	100	163	Р	Н
HT40		7311	43.59	-30.41	74	58.03	35.96	8.22	58.62	120	360	Р	Н
CH 06		4874	40.6	-33.4	74	61.15	31.12	6.99	58.66	100	163	Р	٧
2437MHz		7311	43.91	-30.09	74	58.35	35.96	8.22	58.62	120	360	Р	٧
802.11n		4904	40.6	-33.4	74	61.07	31.17	7	58.64	129	360	Р	Н
HT40		7356	44.02	-29.98	74	58.31	36.03	8.25	58.57	121	320	Р	Н
CH 09		4904	40.78	-33.22	74	61.25	31.17	7	58.64	129	360	Р	٧
2452MHz		7356	44.39	-29.61	74	58.68	36.03	8.25	58.57	121	320	Р	٧

Remark

No other spurious found.
 All results are PASS against Peak and Average limit line.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : B12 of B15
Report Issued Date : May 29, 2015

Report No.: FR543003C

Report Version : Rev. 01

15C Emission below 1GHz

2.4GHz WIFI 802.11n HT20 (LF)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		115.36	26.33	-17.17	43.5	36.47	13.91	1.65	25.7	-	-	Р	Н
		230.79	24.63	-21.37	46	35.35	12.09	2.37	25.18	ı	ı	Р	Н
		344.28	21.86	-24.14	46	29.62	14.68	2.94	25.38	ı	-	Р	Н
		565.44	30.37	-15.63	46	33.33	19.6	3.85	26.41	1	ı	Р	Н
2.4GHz		771.08	32.39	-13.61	46	32.24	21.86	4.52	26.23	ı	ı	Р	Н
802.11n		879.72	33.97	-12.03	46	33.25	21.78	4.87	25.93	1	ı	Р	Н
HT20		43.58	28.03	-11.97	40	40.18	12.83	1.01	25.99	-	1	Р	٧
LF		191.02	23.6	-19.9	43.5	35.18	11.56	2.16	25.3	-	-	Р	٧
		353.01	26.17	-19.83	46	33.85	14.79	2.98	25.45	-	-	Р	٧
		612.97	33.59	-12.41	46	36.2	19.78	4.04	26.43	-	-	Р	٧
		777.87	35.58	-10.42	46	35.26	22.01	4.52	26.21	-	-	Р	٧
		949.56	34.35	-11.65	46	33.43	21.4	5.01	25.49	-	-	Р	٧

Remark

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : B13 of B15 Report Issued Date : May 29, 2015

Report No.: FR543003C

Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against limit line.

Note symbol

	Fundamental Frequency which can be ignored. However, the level of any							
*	unwanted emissions shall not exceed the level of the fundamental frequency per							
	15.209(c).							
!	Test result is over limit line.							
P/A	Peak or Average							
H/V	Horizontal or Vertical							

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8 Page Number : B14 of B15
Report Issued Date : May 29, 2015
Report Version : Rev. 01

A calculation example for radiated spurious emission is shown as below:

Report No.: FR543003C

: B15 of B15

: Rev. 01

Report Issued Date: May 29, 2015

Page Number

Report Version

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBμV/m) Limit Line(dBμV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dB μ V) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

SPORTON INTERNATIONAL (SHENZHEN) INC.

TEL: 86-755-8637-9589 FAX: 86-755-8637-9595 FCC ID: YHLBLULIFEX8