# DDLBench: Towards a Scalable Benchmarking Infrastructure for Distributed Deep Learning

Matthijs Jansen <sup>1, 2</sup> Valeriu Codreanu <sup>1</sup> Ana-Lucia Varbanescu <sup>2</sup>

<sup>1</sup>SURFsara

<sup>2</sup>University of Amsterdam

November 11, 2020

# Model size explosion

Introduction •00



<sup>1</sup>C Rosset. "Turing-nlg: A 17-billion-parameter language model by microsoft". In: Microsoft Blog (2019)

# Distributed deep learning

Introduction 0•0

Benchmark Suite

TABLE I
TRAINING TIME AND TOP-1 VALIDATION ACCURACY WITH RESNET-50 ON IMAGENET

|                   | Batch                      | Processor                 | DL         | Time     | Accuracy |
|-------------------|----------------------------|---------------------------|------------|----------|----------|
|                   | Size                       |                           | Library    |          |          |
| He et al. [1]     | 256                        | Tesla P100 × 8            | Caffe      | 29 hours | 75.3 %   |
| Goyal et al. [2]  | 8,192                      | Tesla P100 × 256          | Caffe2     | 1 hour   | 76.3 %   |
| Smith et al. [3]  | $8,192 \rightarrow 16,384$ | full TPU Pod              | TensorFlow | 30 mins  | 76.1 %   |
| Akiba et al. [4]  | 32,768                     | Tesla P100 $\times$ 1,024 | Chainer    | 15 mins  | 74.9 %   |
| Jia et al. [5]    | 65,536                     | Tesla P40 × 2,048         | TensorFlow | 6.6 mins | 75.8 %   |
| Ying et al. [6]   | 65,536                     | TPU v3 $\times$ 1,024     | TensorFlow | 1.8 mins | 75.2 %   |
| Mikami et al. [7] | 55,296                     | Tesla V100 × 3,456        | NNL        | 2.0 mins | 75.29 %  |
| This work         | 81,920                     | Tesla V100 $\times$ 2,048 | MXNet      | 1.2 mins | 75.08%   |

2

Jansen et al. (UvA, SURFsara)

<sup>&</sup>lt;sup>2</sup>Masafumi Yamazaki et al. "Yet Another Accelerated SGD: ResNet-50 Training on ImageNet in 74.7 seconds". In: *CoRR* abs/1903.12650 (2019). arXiv: 1903.12650. URL: http://arxiv.org/abs/1903.12650

Introduction

- A generalizable, ready-to-use benchmark suite for distributed deep learning
- Accompanied by an analytical framework



Datasets: MNIST, CIFAR-10, ImageNet, Highres

ResNet, VGG, MobileNet v2 Neural networks:

| Name     | #classes | #images | Color profile | Resolution |
|----------|----------|---------|---------------|------------|
| MNIST    | 10       | 70000   | Grayscale     | 28 x 28    |
| CIFAR-10 | 10       | 60000   | RGB           | 32 × 32    |
| ImageNet | 1000     | 1280000 | RGB           | 224 × 224  |
| Highres  | 1000     | 60000   | RGB           | 512 x 512  |



#### Frameworks and distribution models

Table: A comparison of different distribution models for machine learning.

| Model             | TF | PyTorch | CPU | GPU | Data | Model | Pipeline |
|-------------------|----|---------|-----|-----|------|-------|----------|
| tf.distribute     | Χ  |         | X   | Χ   | X    |       |          |
| tf.Mesh           | Х  |         | X   | X   | X    | X     |          |
| PipeDream         |    | Χ       |     | X   |      | X     | X        |
| (torch)GPipe      | Х  | Χ       |     | X   |      | X     | X        |
| Horovod           | Х  | Χ       | X   | X   | X    | X     |          |
| torch.distributed |    | Χ       | X   | X   | X    | X     |          |

- Data parallelism: Horovod
- Model / Pipeline parallelism: TorchGPipe, PipeDream

### Data parallelism



3

<sup>&</sup>lt;sup>3</sup>Alexander Sergeev and Mike Del Balso. "Horovod: fast and easy distributed deep learning in TensorFlow". In: arXiv preprint arXiv:1802.05799 (2018)

#### Performance model

$$T_{horovod} = \frac{T_{seq}}{W} + 2(W - 1) \cdot \max_{i=1}^{W} (L_{i,i+1} + \frac{\min(G, th)}{W \cdot BW_{i,i+1}}) \tag{1}$$

| Symbol                | Description                                         |
|-----------------------|-----------------------------------------------------|
| T                     | Training time                                       |
| $\overline{W}$        | #workers                                            |
| $L_{i,j}$             | ig  Latency worker $i$ to $j$                       |
| G                     | Total gradient size                                 |
| th                    | Tensor fusion threshold                             |
| $\overline{BW_{i,j}}$ | $oxedsymbol{Bandwidth}$ Bandwidth worker $i$ to $j$ |



# Model parallelism





Figure: Execution pipeline of model parallelism.

# TorchGPipe



Figure: Execution pipeline of GPipe with 3 micro-batches per batch.

#### Performance model



### **PipeDream**





pipelining, model- and data-parallel training.

Figure 6: Pipeline Parallel training in PipeDream combines Figure 7: PipeDream's automated mechanism to partition DNN layers into stages. PipeDream first profiles the input DNN, to get estimates for each layer's compute time and output size. Using these estimates, PipeDream's optimizer partitions layers across available machines.

<sup>&</sup>lt;sup>4</sup>Aaron Harlap et al. "Pipedream: Fast and efficient pipeline parallel dnn training". In: arXiv preprint arXiv:1806.03377 (2018)

| Worker<br>4 |         |         | F<br>b1 | B<br>b1 | F<br>b2 | B<br>b2 | F<br>b3 | B<br>b3 | F<br>b4           | B<br>b4 | F<br>b5           | B<br>b5 | F<br>b6 | B<br>b6 | F<br>b7           |
|-------------|---------|---------|---------|---------|---------|---------|---------|---------|-------------------|---------|-------------------|---------|---------|---------|-------------------|
| Worker<br>3 |         | F<br>b1 | F<br>b2 |         | B<br>b1 | F<br>b3 | B<br>b2 | F<br>b4 | B<br>b3           | F<br>b5 | B<br>b4           | F<br>b6 | B<br>b5 | F<br>b7 | B<br>b6           |
| Worker<br>2 | F<br>b2 | l<br>b  | 4       |         |         |         |         |         | 3<br>2            | f<br>b  | <del>-</del><br>6 | E<br>b  | _       | F<br>b  | <del>-</del><br>8 |
| Worker<br>1 | F<br>b1 | l<br>b  | =<br>3  |         |         | E<br>b  |         |         | <del>-</del><br>5 | E<br>b  |                   | F<br>b  | 7       | E<br>b  | 3<br>5            |

Figure: Execution pipeline of PipeDream with 3 model partitions in a 2-1-1 configuration.

$$T_{pipedream} = \frac{T_{seq}}{W}$$

# Batch size configuration

| Dataset       | PyTorch | Horovod | GPipe (#mb) | PipeDream |
|---------------|---------|---------|-------------|-----------|
| MNIST         | 128     | 128     | 3072 (24)   | 128       |
| CIFAR-10      | 64      | 64      | 2048 (32)   | 64        |
| ImageNet-1000 | 32      | 32      | 384 (12)    | 32        |
| Highres       | 32      | 32      | 48 (12)     | 32        |

### Single-node benchmarks





#### (a) Horovod



(c) PipeDream

# Performance scaling



(a) Data, Model and Pipeline parallelism

(b) Titan RTX vs 1080 Ti

#### Conclusion

- v0.1: 4 datasets, 6 neural networks, 3 distribution models
- DDLBench can capture the complex and dynamic behaviour of DDL applications
- Designed with diversity and extensibility in mind

# Extending DDLBench



# Integration



### Thank you for your attention

https://github.com/sara-nI/DDLBench