¡Bienvenidas a Ingenias+!
Data Science

¿Ponemos a grabar el taller?

Módulo I | Clase 1

Introducción a Data Science

¿Nos presentamos?

Docente

Carolina Allasia mini bio

Tutora

Maria Belén Laresca

Mini bio

Cronograma

¿Qué haremos en el curso?

- Vamos a conocer qué hace un Data Scientist y qué habilidades se necesitan para desarrollarse en este campo.
- Vamos a aprender conceptos fundamentales de Python y Machine Learning.

Estructura del curso

Teoría **Práctica Proyecto Final**

¡Speak Up!

Las invitamos a presentarse en el siguiente padlet.

¡También pueden abrir el micrófono y contarnos sobre ustedes!

En esta clase vamos a ver...

- Qué es Data Science.
- Cuales son las habilidades de un Data Scientist.
- Etapas de un proyecto de Data Science.
- Librerías científicas de Python más usadas.
- Jupyter Notebook y Anaconda, que son, como instalarlos y crear un espacio de trabajo.

- PRIMERA PARTE DE INTRODUCCIÓN A PYTHON:
 - ¿Qué es Python?
 - Sintaxis de Python
 - Dato, Variables y Operadores

¿Qué es Data Science?

¿Qué es Data Science?

¿Qué crees que es Data Science?

¿Qué te motiva a estudiar Data Science?

FUNDACIÓN

¿Qué es Data Science?

Data Science es extraer conocimiento útil de nuestros datos.

¿Qué es Data Science?

Habilidades de Programación

Aprendizaje Automático Matemática & **Estadística**

Ciencia de Datos

Desarrollo de Software

Investigación tradicional

Conocimiento del **Dominio**

Sistemas de recomendación

Spotify, Facebook, Netflix, Amazon, Mercado Libre, Google.

Predicción de tiempo de viaje

Google Maps, Waze, Uber, Cabify.

Reconocimiento del habla

Siri, Cortana, Google Now, Amazon Echo, Alexa.

Detección de fraude

PayPal, Mercado Libre, Bancos.

Diálogo y Generación de Texto ChatGTP.

Clasificación de mensajes

Google Maps, Waze, Uber, Cabify.

Chatbots

E-commerce, servicio al cliente, bancos.

¿Qué skills necesita un Data Scientist?

Skills en DS

Conocimientos de programación y base de datos

- Pensamiento computacional
- Python y/o R
- Bases de datos,
 SQL y no-SQL
- Cloud

Matemática y Estadística

- Conceptos de machine learning
- Modelado estadístico
- Diseño de experimentos

- Inferencia Bayesiana
- Aprendizaje supervisado y no supervisado
- Algebra lineal,
 Optimización

Comunicación

- Storytelling: Habilidad de contar historias con datos
- Traducir conceptos complejos según la audiencia

Conocimiento del dominio y habilidades blandas

- Curiosidad
- Trabajo independiente
- Pensamiento analitico
- Resolutivo

Proactivo,
estratégico, creativo
y colaborativo

Etapas de un proyecto de DS

Etapas de un proyecto

- (01) Recolección de datos
- **02** Exploración y procesamiento
- 03 Modelado
- 04 Puesta en producción

1- Recolección de datos

- Obtención de los datos mediante sensores, scrapeo de la web, peticiones a APIs, formularios.
- Creación de base de datos.

2- Exploración y procesamiento

- Exploración de los datos.
- Discreción de variables.
- Normalización.
- Limpieza.
- Visualización previa.

3- Modelado

• Construir y testear modelos para predecir o clasificar información o encontrar patrones en los datos.

4- Puesta en producción

- Predecir nuevos datos.
- Comunicar los resultados.
- Integrar los resultados con aplicación.

Descanso

Nos vemos en 5 minutos

Herramientas Utilizadas

- Lenguaje Interpretado de propósito general.
- Sintaxis de código legible: Fácil aprendizaje/depuración.
- Muchas librerías desarrolladas para la manipulación y visualización de datos, e implementación de algoritmos de ML.

Dataset

 Dataset es el conjunto de datos que se utiliza en el flujo de trabajo de data science.

Herramientas de Python

Numpy

Estructura de datos: Array

Operaciones eficientes sobre los datos: mayor velocidad y menor espacio.

Pandas

Estructura de datos: DataFrame

Permite trabajar con datasets con datos de distintos tipos y realizar operaciones sobre filas y columnas por nombre.

Scikit Learn

Librería que facilita la manipulación, limpieza, preparado de datos para algoritmos de Machine Learning como así también tiene implementaciones de los algoritmos más comunes.

Jupyter Notebook

- Ejecución de código Python/R
- Visualización de resultados
- Ecuaciones (LaTex)
- Compartir resultados
- Markdown

Anaconda

Es un gestor de paquetes y entornos

- Gestor de entornos: Permite compartimentalizar herramientas o bibliotecas para cada proyecto que hagamos
- Gestor de paquetes: Sobre todo en el caso de Windows, nos permite instalar y manejar paquetes y librerías de una manera fácil y efectiva.

Sección práctica

Configurar el entorno de Jupyter Notebook y Python

Anaconda

- 01) Visitamos la página de conda: https://www.anaconda.com/
- (02) Hacemos click en Get Started y luego en Download
- 03 Elegimos qué sistema operativo tenemos
- 04) Bajamos el Graphical Installer de Python 3.8

Anaconda (Si tenemos Windows)

- 05) Cuando termine de bajar. Abrir y correr la instalación.
- Aceptamos todas las licencias. Y destildamos "Add Anaconda to my PATH environment variable".
- 07 Abrimos Anaconda Prompt.
- 08) Se abrirá una terminal.

Anaconda (Si tenemos Mac)

- 05) Abrimos el archivo .pkg
- O6 Seguimos las instrucciones que nos indica la ventana.
- Una vez finalizada la instalación, abrimos una terminal. (Desde las aplicaciones buscar Terminal)

Requerimientos

01

Python
Se instala al instalar conda

03

Matplotlib y Seaborn conda install matplotlib conda install seaborn

02

Pandas y Numpy conda install pandas conda install numpy

04

Scikit-learn conda install sklearn

Como abrir Jupyter Notebook

- **01** Abrimos Anaconda Navigator.
- (02) Se abrirá una ventana. Elegimos Jupyter Notebook.
- Se abrirá una pestaña en el navegador. Luego clickear en Nuevo y seleccionar Python3.
- 04) Se abrirá un nuevo notebook.

Actividad práctica

Configuración del entorno.

Trabajamos en clase

Configuración del entorno

Siguiendo los pasos anteriores, cada alumna comenzará a configurar su entorno.

20 minutos de actividad.

Desafío 1

Para la siguiente clase de les pediremos que:

Tengan instalado en su computadora anaconda
y configurado el entorno.

Proyecto Final

FUNDACIÓN Y PF

Proyecto Final

- (01) Conformar grupos de trabajo.
- 02) Elección del tema.
- 03 Investigar y Seleccionar datasets apropiados para el tema elegido.
- O4) Creación del repositorio y configuración del ambiente de trabajo.

FUNDACIÓN Y PF

Proyecto Final

- (05) Análisis Exploratorio de Datos.
- **06** Feature Engineering.
- **07** Creación y Entrenamiento de Modelo(s).
- 08) Presentación de resultados (Storytelling).

Proyecto Final

Donde obtener Datasets

... Y en otros bancos de datos abiertos.

¿Cómo se verá el proyecto final?

¿Alguna consulta?

Descanso

Nos vemos en 10 minutos

FUNDACIÓN PF

Módulo II | Clase 1

Python para Data Science. Introducción a Python

¿Qué es Python?

PYTHON es un lenguaje de programación de **propósito general**, creado en 1991 por Guido Van Rossum.

Actualmente es **ampliamente** utilizado en Data Science y Machine Learning debido a sus caracteristicas:

- Lenguaje de alto nivel, interpretado o de script
- De tipado dinàmico
- Fuertemente tipado
- Multiparadigma y Multiplataforma
- De código abierto

Sintaxis de Python

La clave de la sintaxis de Python es la INDENTACIÓN.

La indentación es la sangría inicial de un bloque de código, compuesta por 4 espacios o un tab.

```
def hello_world(word):
   if word == 'Hello':
        print(f"{word} World!")
   else:
        print(f"Goodbye")
```


Sintaxis de Python

Los comentarios permiten documentar y explicar el código.

En Python hay 3 tipos: de una línea, de media línea o de múltiples líneas.


```
def comentarios(word):
    assert isinstance(word, str)
    '''
    Eso es un comentario
    de
    multiples lineas
    '''
    if word == 'Hello': # esto es de media linea
        print('Hola')
    else:
        # Esto es un comentario de linea
        print('Chau')
```


Sintaxis de Python

Si un comentario está justo al comienzo de la definición de una función, clase o bucle, y detalla lo que se ejecutará en ese bloque de código, se lo denomina **docstring**.


```
def comentarios(word):

"""

Esto es un docstring

y sirve para documentar

que hace la funcion, clase, etc

:param word: esto es el input
```


Variables y Operadores

FUNDACIÓN Y PF

Expresión general que describe las características de una entidad sobre la que se opera. Es la **mínima** parte de la **información**.

Tipos de Datos en Python

Primitivos

- INT
- FLOAT
- COMPLEX
- STR
- BOOL

Colecciones

- LIST
- TUPLE
- DICT
- SET

Primitivos en Python

INT

Son números enteros. No poseen parte flotante luego de la coma.

FLOAT

Son números con parte entera y parte flotante.

→ 38.78

COMPLEX

Son números con parte real y parte imaginaria.

STR

Es una cadena de caracteres, que pueden contener números, letras y/o símbolos.

"Esto es 1 string"

BOOL

Son valores booleanos que representan un valor de verdad.

True **False**

FUNDACIÓN PF

Colecciones en Python

LIST

Es un conjunto **ordenado y mutable** de elementos (números, strings, etc), a los que se accede por un índice.

TUPLE

Es un conjunto **ordenado e inmutable** de elementos, a los que se accede por un índice.

DICT

Es un conjunto no ordenado (Desde Python 3.7+ los elementos son insertados en orden) y mutable de asociaciones clave-valor.

SET

Es un conjunto no ordenado de elementos únicos

Variable

Espacio de **memoria** que ocupa un dato al **almacenarse**.

identificador = valor

Debe ser corto y representativo.
Puede estar compuesto por letras,
números y underscores pero no puede
empezar con un número. Se deben
evitar las palabras reservadas.

Es cualquier tipo de dato admisible en Python con su sintaxis correcta.

identificador = valor

esto_es_un_identificador = [1, 2, "Hola", True]

Operador

Símbolo que se **aplica** a uno o varios **datos** o variables en una **expresión** con el fin de obtener cierto **resultado**.

FUNDACIÓN **YPF**

Operadores

Aritméticos

De asignación

- //=
- %=

FUNDACIÓN **YPF**

Operadores

Relacionales

Lógicos

- and
- or
- not

Operadores

```
numero_1 = 304
numero_2 = 989
sumatoria = numero_1 + numero_2
check = numero_1 != numero_2
otro_check = (numero_1 + 2 != numero_2) and (numero_1 * 2 == numero_1 ** 2)
```


¿Alguna consulta?

FUNDACIÓN Y PF

¡Muchas gracias!

