

Semaine 4 - Relations d'ordre

Informatique fondamentale

présenté par

Revekka Kyriakoglou

le

16 fevrier 2023

Relation binaire

Relation binaire

Soit E un ensemble. Une relation binaire R sur E est un sousensemble de produit $E \times E$.

On note x R y pour signifier que $(x, y) \in R$ et x R y pour signifier que $(x, y) \notin R$.

Relation binaire

Relation binaire

Soit E un ensemble. Une relation binaire R sur E est un sousensemble de produit $E \times E$.

On note x R y pour signifier que $(x, y) \in R$ et $x \not R y$ pour signifier que $(x, y) \notin R$.

On dit que R est:

- **réflexive** quand $\forall x \in E, x R x$,
- irréflexive quand $\forall x \in E, x \not R x$,
- **symétrique** quand $\forall x, y \in E, x R y \Rightarrow y R x$,
- antisymétrique quand $\forall x, y \in E, x R y$ et $y R x \Rightarrow x = y$,
- transitive quand $\forall x, y, z \in E, x R y \text{ et } y R z \Rightarrow x R z$.

Exemple

- \blacksquare Moins que : x < y.
- Amitié : x est un ami de y.
- Goût : x est plus savoureux que y.

Relation d'équivalence

Relation d'équivalence

Une relation binaire est un relation d'équivalence quand elle est :

- réflexive.
- symétrique,
- transitive.

On dit que "a est équivalent à b" quand a R b.

Relation d'équivalence

Relation d'équivalence

Une relation binaire est un relation d'équivalence quand elle est :

- réflexive.
- symétrique,
- transitive.

On dit que "a est équivalent à b" quand a R b.

Puisque R est symetrique :

 $aRb \Leftrightarrow bRa$

et on dit que a et b sont équivalents.

Classe d'équivalence

Classe d'équivalence

Soit R une relation d'équivalence. On peut associer à chaque élément a de A l'ensemble des éléments qui lui sont équivalents. Cette partie de A est appelle la classe d'équivalence de a et on le note cl(a).

Classe d'équivalence

Classe d'équivalence

Soit R une relation d'équivalence. On peut associer à chaque élément a de A l'ensemble des éléments qui lui sont équivalents. Cette partie de A est appelle la classe d'équivalence de a et on le note cl(a).

L'ensemble des classes d'equivalence s'appelle l'ensemble quotient de A par la relation R, et on le note A/R.

Exemple

Sur $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ on définit la relation R en déclarant « x R y quand (x - y) (mod 6) = 0 ».

Question 1 : Dessigner son diagramme cartésien.

Question 2 : Prouver que R est une relation d'équivalence. (réflexive, symétrique, transitive)

Question 3 : Ecrire les éléments de A et leur classe d'équivalence.

Solution:

■ Réflexive

$$x - x = 0$$

symétrique

Si

$$x R y \Rightarrow \exists p \in \mathbb{Z} \text{ tq } x - y = 6 * p \Rightarrow y - x = -(x - y) = 6 * (-p)$$

 $\Rightarrow \exists q \in \mathbb{Z} \text{ tq } y - x = 6 * q.$

transitive

Si
$$x R y$$
 et $y R z \Rightarrow \exists p, q \in \mathbb{Z}$ tq $x - y = 6 * p$ et $y - z = 6 * q$.
Donc, $x - z = x - y + y - z = 6 * p + 6 * q = 6(p + q) = 6 * k$ avec $k \in \mathbb{Z}$.

■ classe d'équivalence

$$cl(0) = \{0,6\}, cl(1) = \{1,7\}, cl(2) = \{2,8\}, \dots$$

Par réflexivité on a que chaque élément est contenu dans sa classe d'équivalence :

$$a \in cl(a)$$

Par réflexivité on a que chaque élément est contenu dans sa classe d'équivalence :

$$a \in cl(a)$$

Deux classes qui ont un élément commun sont égales.

Partition

Rappelle:

On appelle partition d'un ensmble A un ensemble de parties non-vides de A qui posséde deux propriétés :

- 1 tout élément de A appartient à une composante de la partition,
- 2 deux composantes distinctses n'ont pas d'élément en commun.

Partition

Rappelle:

On appelle partition d'un ensmble A un ensemble de parties non-vides de A qui posséde deux propriétés :

- 1 tout élément de A appartient à une composante de la partition,
- 2 deux composantes distinctses n'ont pas d'élément en commun.

Théorème

Les classes d'équivalence d'une relation d'équivalence sur A sont les composantes d'une partition de A.

Partition

Rappelle:

On appelle partition d'un ensmble A un ensemble de parties non-vides de A qui posséde deux propriétés :

- 1 tout élément de A appartient à une composante de la partition,
- deux composantes distinctses n'ont pas d'élément en commun.

Théorème

Les classes d'équivalence d'une relation d'équivalence sur A sont les composantes d'une partition de A.

Théorème

On peut associer à toute partition d'un ensemble une relation d'équivalence dont les classes sont les composantes de la partition.

Relation d'ordre

Relation d'ordre

Une relation binaire est un relation d'ordre quand elle est :

- réflexive,
- antisymétrique,
- transitive.

Relation d'ordre

Une relation binaire est un relation d'ordre quand elle est :

- réflexive,
- antisymétrique,
- transitive.

Soit E un ensemble et \leq une relation d'ordre sur E. On dit que (E, \leq) est un ensemble ordonné.

Pour reconnaître qu'une relation est antisymétrique il suffit de vérifier sur son diagramme sagital qu'à chaque fois qu'une fléche va de *a* à *b* il n'y a pas, en retour, de flèche allant de *b* à *a* (à part les boucles bien sûr).

Une relation binaire est antisymetrique quand son diagramme cartésien ne contient pas deux cases noir situées hors de la diagonale, symétriques par rapport à la diagonale.

Exemple

- Les relations \leq et \geq sont des relations d'ordre sur \mathbb{N} .
- Les relations > et < ne sont pas relations d'ordre, car elles ne sont pas réflexives.

Minorant/Majorant

Soit E un ensemble ordonné par la relation \leq . Quand x et y sont deux éléments de E tels que $x \leq y$, on dit que x est un minorant de y, ou x est minore y. On dit aussi que y est un majorant de x, ou encore que y majore x.

Minorant/Majorant

Soit E un ensemble ordonné par la relation \leq . Quand x et y sont deux éléments de E tels que $x \leq y$, on dit que x est un minorant de y, ou x est minore y. On dit aussi que y est un majorant de x, ou encore que y majore x.

Sur la diagramme sagittal on regarde que le minorant est au départ de la flèche et que le majorant est à l'arrivée.

Exemple

Soit (\mathbb{N}, \leq) l'ensemble ordonné. L'element 22 est nimore 24 et 24 est majore 22.

Relation d'ordre strict

Ordre strict

Une relation binaire est un relation d'ordre strict quand elle est :

- irréflexive,
- transitive.

Relation d'ordre strict

Ordre strict

Une relation binaire est un relation d'ordre strict quand elle est :

- irréflexive,
- transitive.

Soit E un ensemble et < une relation d'ordre strict sur E. On dit que (E,<) est un ensemble strictement ordonné.

Question

L'ensemble des nombres réels $\mathbb R$ où < est l'ordre strict usuel est un ensemble ordonné ou strictement ordonné ?

Question

L'ensemble des nombres réels $\mathbb R$ où < est l'ordre strict usuel est un ensemble ordonné ou strictement ordonné ?

C'est un ensemble strictement ordonné.

Ordre total

Ordre total

Un ordre \leq sur E est dit total si deux éléments sont toujours comparables :

$$\forall x, y \in E, x \leq y \text{ ou } y \leq x.$$

Un ordre qui n'est pas total est dit partiel.

Ordre total

Ordre total

Un ordre \leq sur E est dit total si deux éléments sont toujours comparables :

$$\forall x, y \in E, x \leq y \text{ ou } y \leq x.$$

Un ordre qui n'est pas total est dit partiel.

Exemple

- L'ensemble des nombres réels ℝ ordonné par les relations habituelles "inférieur ou égal à" (≤) ou "supérieur ou égal à" (≥) est totalement ordonné.
- Chaînes de caractères classées par ordre alphabétique...

Ordre strict total

Un ordre strict < sur E est dit strict total si deux éléments différents sont toujours comparables :

$$\forall x, y \in E, x \neq y \Rightarrow x < y \text{ ou } y < x.$$

Il est possible que les deux soient vrais.

Ordre strict total

Un ordre strict < sur E est dit strict total si deux éléments différents sont toujours comparables :

$$\forall x, y \in E, x \neq y \Rightarrow x < y \text{ ou } y < x.$$

Il est possible que les deux soient vrais.

Exemple

- < est strict.</p>
- ≤ est non-strict.
- c est strict,
- ⊂ est non-strict.