

Campus Estado de México

M1 Actividad

Materia:

Modelación de sistemas multiagentes con gráficas computacionales (Gpo 301)

Alumnos:

Jóse Antonio Moreno Tahuilan - A01747922 Ángel Armando Márquez Curiel - A01754739

Profesores:

Sergio Ruiz Loza

Jorge Adolfo Ramírez Uresti

• GitHub: https://github.com/pepe44cem/Sistema mulitagentes.git

Se recopiló la siguiente información durante la ejecución:

 Tiempo necesario hasta que todas las celdas estén limpias (o se haya llegado al tiempo máximo).

• Porcentaje de celdas limpias después del término de la simulación.

• Número de movimientos totales realizados por todos los agentes.

Pruebas y análisis de datos

Ejemplo de prueba con un umbral de 80, una matriz 10x10 y 26 agentes

Los siguientes datos se probaron teniendo en cuenta que hay 80% de celdas "sucias" en una matriz de 10x10 (grid_M = 10, grid_N = 10)

Comparación de aumento de agentes			
No. Agentes	Tiempo	No. Movimientos (Total)	No. Movimientos (Por agente)
1	Time exceeded	48	48
2	Time exceeded	308	154
5	19.7s	607	121.4
10	17.5s	440	44
15	11.7s	670	43.5
20	8.2s	500	24.5
25	11.98s	610	23.5
30	7.7s	600	20.5

Nota tiempo máximo 25 seg Nota porcentaje de celdas sucias 80%

Gráfica 1. Tiempo Vs No. de Agentes

Gráfica 2: No. de movimientos totales vs No. de Agentes

Gráfica 3: No. de Agentes vs No. de movimientos individuales por agente.

Como pudimos observar se puede ver que mientras más agentes haya más rápido se llega a la solución. Esto claramente ya qué hay más agentes ayudando a la meta está de alcanzar más rápido. Sin embargo, hay casos en los que a pesar de contar con más

agentes puede tomar más tiempo debido a que no tiene memoria y depende mucho del factor aleatorio. Esto nos puede indicar que si agregamos más celdas y hacemos un grid más grande, por ejemplo de 100x100, la reducción del tiempo mientras más agentes haya puede no ser tan efectiva en todos los casos debido a este mismo factor aleatorio.

En contraste con la cantidad de movimientos de todos los agentes estos se mantiene relativamente constante debido a que a pesar de que se llega más rápido a la meta la cantidad de movimientos aumenta considerablemente. Pero si vemos la cantidad de movimientos individuales por agente podemos darnos cuenta que cada agente hace menos movimientos mientras más agentes hay.