

Chapter 02b — Conditional Probabilities

Lecture A2I2

Prof. Dr. Kai Höfig

Prior Probabilities

- A Prior Probability is a probability value that is based on measurements or preexisting knowledge.
 - Example: We measure the velocity of 100 cars and 30% drive too fast. If we now assume that the probability for any single car of driving too fast is 0.3, this is a prior probability.
- A special case of such an assumption is the discrete and equal distribution of probabilities of basic events in a Laplace probability space (indifference principle).
 Such a Laplace-Probability is also an assumption and so a prior probability.
 - Example: The probability of a dice throw (basic event) is 1/6, which is only a assumption. Every dice will
 have its own distribution of values, depending on the physical precision during production.
- If further probabilities are calculated using prior probabilities, the Prior Assumption should hold, for example supported by representative measurements.

Laplace Probabilities

• Let $\Omega = \{\omega_1, \dots, \omega_n\}$ be a discrete final event space with n basic events.

The probability of basic events is equally distributed

$$P(\omega_i) = \frac{1}{|\Omega|}$$

- The probability of an event A is $P(A) = \frac{|A|}{|\Omega|}$
- Example dice

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$P(\omega) = \frac{1}{6}, \forall \omega \in \Omega$$

$$P(gerade\ Zahl) = \frac{|\{2,4,6\}|}{\{|1,2,3,4,5,6|\}} = \frac{1}{2}$$

Basic rules in Laplace event spaces

1.
$$P(\Omega) = 1$$

2.
$$P(\emptyset) = 0$$

3.
$$P(A \vee B) = P(A) + P(B) - P(A \wedge B)$$
 for any basic events

4.
$$P(A \vee B) = P(A) + P(B)$$
 for pairwise incompatible events

5.
$$P(A \wedge B) = P(A) \cdot P(B)$$
 for independent events A and B

6.
$$P(A) + P(\neg A) = 1$$

7. For
$$A \subseteq B$$
 it is $P(A) \leq P(B)$

8. Let
$$\omega_1, \ldots, \omega_n$$
 be the basic events. It is $\sum_{i=1}^n P(\omega_i) = 1$

Conditional Probability

 For two events A and B, the conditional probability P(A|B) for A under the condition B is

$$P(A|B) = \frac{P(A \land B)}{P(B)}$$

For a finite event space, it is

$$P(A|B) = \frac{P(A \land B)}{P(B)} = \frac{\frac{|A \land B|}{|\Omega|}}{\frac{|B|}{|\Omega|}} = \frac{|A \land B|}{|B|}$$

If A is independent from B, it is

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{|A| \cdot |B|}{|B|} = P(A)$$

Chain rule

For any two events A and B it is

$$P(A \wedge B) = P(A|B) \cdot P(B)$$

For more events it is

$$P(A_1 \wedge \dots \wedge A_n) = P(A_1 | A_2 \wedge \dots \wedge A_n) \cdot P(A_2 \wedge \dots \wedge A_n)$$

$$= P(A_1 | A_2 \wedge \dots \wedge A_n) \cdot P(A_2 | A_3 \wedge \dots \wedge A_n) \cdot P(A_3 \wedge \dots \wedge A_n)$$

$$\dots$$

$$= \prod_{k=1}^{n} = P(A_k | \bigwedge_{j=1}^{k-1} A_j)$$

Example for Conditional Probabilities (1)

 During speed monitoring, we measure the following and use the relative occurrences of events as prior probabilities

Event	Absolut occurrence	Relative occurrence
Vehicle measured	100	100%
Driver is student (S)	30	30%
Velocity too high (V)	10	10%
Velocity too high and driver is student (S ∧ V)	5	5%

Do students drive too fast more often than the average driver?

$$P(V|S) = \frac{P(V \land S)}{P(S)} = \frac{5}{30} \approx 0.17 > P(V) = 0.1$$

Yes they do, under the condition that the prior probabilities are representative.

Do we know the distribution of our random variables?

	Student	Not a student	Sum
Velocity too high	0.05	0.05	0.10
Velocity not too high	0.25	0.65	0.9
Sum	0.30	0.7	

Example for Conditional Probabilities (2)

 90% of produced screws are good, 95 of the good screws are sold, 1% of the bad screws are sold by mistake.

$$P(Screw\ Sold) = 0.9 \cdot 0.95 + 0.1 \cdot 0.01 = 0.856$$

$$P(Screw\ sold\ and\ OK) = 0.9 \cdot 0.95 = 0.855$$

$$P(a \ bought \ screw \ is \ OK) = P(OK|Sold) = \frac{P(S \land OK)}{P(S)} = \frac{0.855}{0.856} \approx 0.988$$

Conditional Probability Graphically

90% of produced screws are good, 95 of the good screws are sold, 1% of the bad screws are sold by mistake.

$$P(S) = P(OK) \cdot P(S|OK) + P(\neg OK) \cdot P(S|\neg OK)$$

 $P(OK|S) = \frac{P(OK \land S)}{P(S)} = \frac{P(S|OK) \cdot P(OK)}{P(S)}$

Joint Probability Distribution of the Variables OK and Sold

Marginal Distribution

$A \Leftrightarrow (A \land B) \lor (A \land \neg B)$
$\Rightarrow P(A) = P((A \land B) \lor (A \land \neg B))$
$= P(A \wedge B) + P(A \wedge \neg B)$

	OK	Not OK	Sum
Sold	0.855	0.001	0.856
Not Sold	0.045	0.099	0.144
Sum	0.9	0.1	

- Marginalization is the process of loosing one dimension and loosing one random variable (in this case B). The resulting probabilities are the marginal distributions of the left random variables.
- We can calculate the marginal probability distribution, if we know the joint probability distribution.

$$P(X_1 = x_1, \dots X_{d-1} = x_{d-1} = \sum_{x_d} P(X_1 = x_1, \dots X_{d-1} = x_{d-1}, X_d = x_d))$$

Chain Rule

For more than two dimensions, this calculates to

$$P(X_1 \wedge \cdots \wedge X_n) = \prod_{i=1}^n P(X_i | X_1, \dots, X_{i-1})$$

Bayes' theorem

$$P(OK \wedge S) = P(S \wedge OK)$$

$$\Leftrightarrow P(OK|S) \cdot P(S) = P(OK) \cdot P(S|OK)$$

$$\Leftrightarrow P(OK|S) = \frac{P(OK) \cdot P(S|OK)}{P(S)}$$

$$(3)$$

Appendicitis Example

- The probability of increased white blood cells when a person has appendicitis is P(L|A) = 0.82 (Sensitivity of the test)
- The probability of normal white blood cell concentration if a person has no appendicitis is $P(\bar{L}|\bar{A})=0.57$ (Specificity of the test)

Depending on demographic properties such as the probability for appendicitis and other causes for a high white blood cell concentration

Can be measured during experiments, universal value for the test