

Calcolo Numerico

DASHBOARD / I MIEI CORSI / CALCOLO NUMERICO / SEZIONI / ESAME 31 GENNAIO 2022 / OUIZ ESAME - PRIMO TURNO

Iniziato	lunedì, 31 gennaio 2022, 14:31
Stato	Completato
Terminato	lunedì, 31 gennaio 2022, 14:50
Tempo impiegato	19 min. 11 secondi
Valutazione	15,00 su un massimo di 15,00 (100 %)

Domanda **1**

Risposta corretta

Punteggio ottenuto 1,00 su 1.00

Contrassegna domanda

L'errore algoritmico è dovuto:

Scegli un'alternativa:

- a. Alla realizzazione di un procedimento infinito come procedimento finito.
- b. Al propagarsi degli errori di arrotondamento delle singole operazioni.
- o. Nessuna delle precedenti.

La risposta corretta è: Al propagarsi degli errori di arrotondamento delle singole operazioni.

corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda \mathbf{u} in vertors $\mathbf{v} = (\mathbf{1}\mathbf{0}^{-1}, \mathbf{0})^{-1}$ suppressintate and vertors $\mathbf{v} = (\mathbf{0}\mathbf{0}\mathbf{0}\mathbf{0}\mathbf{0}\mathbf{0}, \mathbf{1})^{-1}$, where in

 $||\cdot||_2$ l'errore relativo tra $v \in \tilde{v}$ è:

Scegli un'alternativa:

- \circ a. $4 \cdot 10^{-6}$.
- \bullet b. $\sqrt{17} \cdot 10^{-6}$.
- o. Nessuna delle precedenti.

La risposta corretta è: $\sqrt{17} \cdot 10^{-6}$.

Domanda 3

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

Nel sistema Floating Point $\mathcal{F}(10, 2, -2, 2)$, se $x = \pi$, w = e, e z = fl(x) - fl(w), allora:

Scegli un'alternativa:

$$\circ$$
 a. $fl(z) = 0.44 \times 10^{0}$.

b.
$$fl(z) = 0.40 \times 10^{0}.$$

O.
$$fl(z) = 0.43 \times 10^{0}$$
.

Domanda 4

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

Se A è una matrice $n \times n$ allora:

Scegli un'alternativa:

$$\bigcirc$$
 a. $||A||_2 = \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2}$.

$$\bigcirc$$
 b. $||A||_2 = \rho(A^T A)$.

o c. Nessuna delle precedenti.

La risposta corretta è: Nessuna delle precedenti.

Domanda **5**

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda lf

$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$$

Then:

Scegli un'alternativa:

- \bigcirc a. $x = (1, 1)^T$ è un autovettore di A.
- b. $x = (1, 0)^T$ è un autovettore di A.
- \bigcirc c. $x = (0, 0)^T$ è un autovettore di A.

La risposta corretta è: $x = (1, 0)^T$ è un autovettore di A.

Domanda **6**

Risposta corretta

Punteggio ottenuto 1,00 su 1.00

Contrassegna domanda Se

$$A = \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix}$$

Allora:

Scegli un'alternativa:

- \bigcirc a. *A* è non simmetrica e definita positiva.
- \bigcirc b. *A* è simmetrica e definita positiva.
- \odot c. *A* è simmetrica ma non definita positiva.

La risposta corretta è: A è simmetrica ma non definita positiva.

Domanda **7**

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda Usando la fattorizzazione LR con pivoting (PA = LR) il sistema Ax = b si puo' risolvere risolvendo:

Scegli un'alternativa:

- a. i due sistemi $\begin{cases} Ly = P^{-1}b \\ Rx = y \end{cases}$
- o b. i due sistemi $\begin{cases} Ly = b \\ Rx = y \end{cases}$
- \bigcirc c. il sistema Ax = LRb

La risposta corretta è: i due sistemi $\begin{cases} Ly = P^{-1}b \\ Rx = y \end{cases}$

Domanda 8

Risposta corretta

La fattorizzazione di Gauss A = LR:

Contrassegna domanda

- \bigcirc b. Esiste solo se $A m \times n$ è non singolare
- o. Nessuna delle precedenti.

La risposta corretta è: Puo' non esistere anche se $A m \times n$ non singolare.

Domanda 9

Risposta corretta

Punteggio ottenuto 1,00 su 1.00

Contrassegna domanda La fattorizzazione di Gauss con pivoting (PA = LR) esiste:

Scegli un'alternativa:

- \bigcirc a. Per ogni matrice $A n \times n$.
- b. Nessuna delle precedenti.
- \odot c. Per ogni matrice $A n \times n$ non singolare.

La risposta corretta è: Per ogni matrice $A n \times n$ non singolare.

Domanda 10

Risposta corretta

Se $A = U\Sigma V^T$ è la decomposizione SVD di una matrice $A m \times n$, allora:

Contrassegna domanda

- \cup a. Gii elementi della matrice diagonale Σ sono i valori singolari di A, in ordine crescente.
- \odot b. Gli elementi della matrice diagonale Σ sono i valori singolari di A, in ordine decrescente.
- o. Nessuna delle precedenti.

La risposta corretta è: Gli elementi della matrice diagonale Σ sono i valori singolari di A, in ordine decrescente.

Domanda **11**

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

Sia $A \in \mathbb{R}^{m \times n}$, m > n, con r = rg(A), allora:

Scegli un'alternativa:

- a. è sempre possibile scrivere A come $U\Sigma V^T$, dove $\Sigma \in \mathbb{R}^{m \times n}$ è diagonale, $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ sono ortogonali.
- b. è sempre possibile scrivere A come $UΣV^T$, dove $Σ ∈ R^{m × n}$ è diagonale, $U ∈ R^{m × m}$, $V ∈ R^{n × n}$ sono ortogonali se e solo se rg(A) = n.
- o. Nessuna delle precedenti.

La risposta corretta è: è sempre possibile scrivere A come $U\Sigma V^T$, dove $\Sigma\in\mathbb{R}^{m\times n}$ è diagonale, $U\in\mathbb{R}^{m\times m}$, $V\in\mathbb{R}^{n\times n}$ sono ortogonali.

corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda $O(\alpha T) \subseteq I$, III = III, OO(1) = Ig(T), anota.

Scegli un'alternativa:

- \odot a. è sempre possibile scrivere A come $U\Sigma V^T$, dove $\Sigma \in \mathbb{R}^{m \times n}$ è diagonale, $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ sono ortogonali.
- b. Nessuna delle precedenti.
- © c. è sempre possibile scrivere A come $U\Sigma V^T$, dove $\Sigma\in\mathbb{R}^{m\times n}$ è ortogonale, $U\in\mathbb{R}^{m\times m}$, $V\in\mathbb{R}^{n\times n}$ sono ortogonali se e solo se rg(A)=n.

La risposta corretta è: è sempre possibile scrivere A come $U\Sigma V^T$, dove $\Sigma\in\mathbb{R}^{m\times n}$ è diagonale, $U\in\mathbb{R}^{m\times m}$, $V\in\mathbb{R}^{n\times n}$ sono ortogonali.

Domanda 13

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

Sia $f: \mathbb{R}^n \to \mathbb{R}$ derivabile, se $\nabla f(x^*) = 0$ allora x^* :

Scegli un'alternativa:

- a. è un punto di minimo locale.
- b. è un punto di minimo globale.
- o c. è un punto stazionario.

La risposta corretta è: è un punto stazionario.

Domanda 14

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Contrassegna domanda

Un metodo di discesa convergente:

Scegli un'alternativa:

- a. Converge al massimo globle.
- b. Converge al minimo locale.
- oc. Converge al minimo globale.

La risposta corretta è: Converge al minimo locale.

Domanda 15

Risposta corretta

Punteggio ottenuto 1.00 su 1.00

Contrassegna domanda

Sia $f: \mathbb{R}^2 \to \mathbb{R}$ definita come $f(x_1, x_2) = x_1 e^{x_2}$, scelta come iterata iniziale del metodo del gradiente $x^{(0)} = (0, 0)^T$ e $\alpha = 1$, allora:

Scegli un'alternativa:

$$\bigcirc$$
 a. $x^{(1)} = (-1,0)^T$.

$$\bigcirc$$
 b. $x^{(1)} = (0,0)^T$.

$$\bigcirc$$
 c. $x^{(1)} = (1,0)^T$.

Fine revisione

■ lab 5 files

Vai a...

Quiz Esame - primo turno (bis) ▶

©Copyright 2021 - ALMA MATER STUDIORUM - Università di Bologna - Via Zamboni, 33 - 40126 Bologna - Partita IVA: 01131710376

<u>Informativa sulla Privacy</u> - <u>Informativa per l'uso dei cookie</u>

25810-320581/2021