Grundbegriffe des maschinellen Lernens

Clemens Dautermann

12. Januar 2020

Inhaltsverzeichnis

1	Was	s ist maschinelles Lernen?	3
	1.1	Klassifizierungsprobleme	4
	1.2	Regressionsprobleme	4
	1.3	Gefahren von maschinellem Lernen	4
		1.3.1 Eignung der Datensätze	4
		1.3.2 Overfitting	4
		1.3.3 Unbewusste Manipulation der Daten	4
		1.3.3 Officewassie Manipulation der Daten	4
2		schiedene Techniken maschinellen lernens	4
	2.1	Überwachtes Lernen	4
	2.2	Unüberwachtes Lernen	4
	2.3	Bestärkendes Lernen	4
3	Neu	ronale Netze	4
	3.1	Maschinelles Lernen und menschliches Lernen	4
	3.2	Der Aufbau eines neuronalen Netzes	5
	3.3	Berechnung des Ausgabevektors	6
	3.4	Der Lernprozess	8
	3.5	Fehlerfunktionen	9
	5.5	3.5.1 MSE – Durchschnittlicher quadratischer Fehler	9
		•	9
		3.5.2 MAE – Durchschnitztlicher absoluter Fehler	
		3.5.3 Kreuzentropiefehler	10
	3.6	Gradientenverfahren und Backpropagation	11
		3.6.1 Lernrate	11
	3.7	Verschiedene Layerarten	12
		3.7.1 Convolutional Layers	13
		3.7.2 Pooling Layers	15
4	PyT	orch	15
	4.1	Datenvorbereitung	15
	4.2	Definieren des Netzes	15
	4.3	Trainieren des Netzes	15
5		beispiel I:	
		Klassifizierungsnetzwerk für handgeschriebene Ziffern	15
	5.1	Aufgabe	15
	5.2	Der MNIST Datensatz	15
	5.3	Fragmentbasierte Erkennung	15
	5.4	Ergebnis	15
6	Fall	beispiel II:	
	Eine	e selbsttrainierende KI für Tic-Tac-Toe	15
	6.1	Das Prinzip	15
	6.2	Chance-Tree Optimierung	15
	6.3		15

7	Sch	lusswort		15	
	6.4	Vergleich		15	
	111111	10 VERZEICH VIO	I VII ILI O VERZEIEII		
INHALTSVERZEICHNIS			INHALTSVERZEICHNIS		

1 Was ist maschinelles Lernen?

Die wohl bekannteste und am häufigsten zitierte Definiton des maschinellen Lernens stammt von Arthur Samuel aus dem Jahr 1959. Er war Pionier auf diesem Gebiet und rief den Begriff "machine learning" ins Leben. So sagte er:

[Machine learning is the] field of study that gives computers the ability to learn without being explicitly programmed[1].

-Arthur Samuel, 1959

Beim maschinellen lernen werden Computer also nicht mit einem bestimmten Algorythmus programmiert um eine Aufgabe zu lösen, sondern lernen eigenständig diese Aufgabe zu bewältigen. Dies geschieht zumeist, indem das Programm aus einer großen, bereits "gelabelten", Datenmenge mit Hilfe bestimmter Methoden, die im Folgenden weiter erläutert werden sollen, lernt, gewisse Muster abzuleiten um eine ähnliche Datenmenge selber "labeln" zu können. Als Label bezeichent man in diesem Fall die gewünschte Ausgabe des Programmes. Dies kann beispielsweise eine Klassifikation sein. Soll das Programm etwa handgeschriebene Ziffern erkennen können, so bezeichnet man das (bearbeitete) Bild der Ziffer als "Input Verctor" und die Information welche Ziffer der Copmputer hätte erkennen sollen, als "Label". Soll jedoch maschinell erlernt werden, ein simuliertes Auto zu fahren, so bestünde der Input Vector aus Sensorinformationen und das Label würde aussagen, in welche Richtung das Lenkrad hätte gedreht werden sollen, wie viel Gas das Programm hätte geben sollen oder andere Steuerungsinformationen. Der Input Vector ist also immer die Eingabe, die der Computer erhält um daraus zu lernen und das Label ist die richtige Antwort, die vom Programm erwartet wurde. Für maschinelles Lernen wird also vor allem eins benötigt: Ein enormer Datensatz, der bereits gelabelt wurde, damit das Programm daraus lernen kann.

Natürlich werden für maschinelles Lernen trotzdem Algorythmen benötigt. Diese Algorythmen sind jedoch keine problemspezifischen Algorythmen, sondern Algorythmen für maschinelles Lernen. Eine der populärsten Methoden des maschinellen Lernens ist das sogenannte "Neuronale Netz".

- 1.1 Klassifizierungsprobleme
- 1.2 Regressionsprobleme
- 1.3 Gefahren von maschinellem Lernen
- 1.3.1 Eignung der Datensätze
- 1.3.2 Overfitting
- 1.3.3 Unbewusste Manipulation der Daten

2 Verschiedene Techniken maschinellen lernens

- 2.1 Überwachtes Lernen
- 2.2 Unüberwachtes Lernen
- 2.3 Bestärkendes Lernen

3 Neuronale Netze

bei Neuronalen Netzen handelt es sich um eine programminterne Struktur, die für das maschinelle Lernen genutzt wird. Wie der Name bereits vermuten lässt, ist diese Methode ein Versuch das menschliche Lernen nachzuahmen.

3.1 Maschinelles Lernen und menschliches Lernen

Das menschliche Gehirn ist aus sogenannten "Neuronen" aufgebaut. Ein Neuron ist eine Nervenzelle, die elektrische oder chemische Impulse annimmt, und gegebenenfalls einen elektrischen oder chemischen Impuls weitergibt. Die Nervenzellen berühren sich nicht direkt sondern sind nur über die sogenannten Synnapsen verbunden, über die diese Signale übertragen werden, sodass sich ein hoch komplexes Netzwerk von milliarden von Neuronen ergibt. Ein neuronales Netz ist ähnlich aufgebaut. Es besteht aus "Neuronen", die eine theoretisch beliebige Anzahl von Eingaben annehmen können und mit einer entsprechenden Ausgabe reagieren, sowie Verbindungen zwischen den Neuronen. Auch das Lernprinzip entspricht dem eines Menschen. Das Netz nimmt immer Zahlen zwischen 0 und 1 als Eingabe an und berechnet eine entsprechende Ausgabe. Es erhält anschließend die Information, wie die richtige Lösung gelautet hätte und lernt dann aus seinen Fehlern, indem es gewisse Werte, die in die Berechnung einfließen, anpasst. Analog lernt ein Mensch, indem er ausprobiert, gegebenenfalls scheitert, anschließend die richtige Antwort durch eine externe Quelle erhält und somit aus seinem Fehler lernt. Im Menschlichen Gehirn verknüpfen sich Dabei oft genutzte neuronale Verbindungen stärker und weniger benutzte Verbindungen bauen sich ab[2]. Die Verstärkung und der Abbau entsprechen dem Ändern

¹Diese Definition ist stark vereinfacht. Sie enthält ausschließlich die wesentlichen Komponenten um das menschliche Gehirn mit einem neuronalen Netz vergleichen zu können.

Abbildung 1: Ein Neuron wie es im Gehirn vorliegt

der Gewichtung einer Verbindung im neuronalen Netz. Die Gewichtung ist eine Eigenschaft der Verbindung, die eine zentrale Rolle in der Berechnung spielt und soll im folgenden weiter erläutert werden. Diese Ähnlichkeiten sind kein Zufall, sondern viel mehr Intention. Ein neuronales Netz ist nämlich der gezielte Versuch das menschliche Lernen nachzuahmen um maschinelles Lernen zu ermöglichen.

3.2 Der Aufbau eines neuronalen Netzes

Ein neuronales Netz besteht aus Neuronen und Verbindungen zwischen diesen. Es gibt einen sogenannten "Input Layer", der die Daten, den sogenannten "Input Vector", annimmt, eine beliebige Anzahl von sogenannten "Hidden Layers", in denen das eigentliche Lernen statt findet, und einen sogenannten "Output Layar", der für die Datenausgabe verantwortlich ist. Die Anzahl der Neuronen ist nach oben nicht begrenzt, wird jedoch zumeist der Aufgabe angepasst. Im Input Layer ist meißt ein Neuron pro Pixel des Eingabebildes vorhanden und im Output Layer ein Neuron pro möglicher Ausgabe. Sollen also 28×28 Pixel große Bilder handgeschriebener Ziffern klassifiziert werden, so gibt es 784 Eingabeneuronen, da jedes Bild 784 Pixel groß ist, und 10 Ausgabeneuronen, da es 10 Ziffern gibt. Jedes Neuron hat außerdem eine sogenannte Aktivierungsfunktion, die sich von Neuron zu Neuron unterscheiden kann, und jede Kante eine asoziierte Gewichtung und einen Bias. Ein neuronales Netz besteht also aus:

- 1. Neuronen mit gegebenenfalls verschiedenen Aktivierungsfunktionen, aufgeteilt in ein Input-, beliebig viele Hidden- und ein Output-Layer.
- 2. Verbindungen zwischen diesen Neuronen, die jeweils einen eigenen Bias und eine Gewichtung besitzen.

Sind alle Neuronen eines Layers jeweils mit allen Neuronen des nächsten Layers verbunden, wird das Layer als "fully connected layer" bezeichnet.

Abbildung 2: Ein einfaches neuronales Netz

3.3 Berechnung des Ausgabevektors

Der Ausgabevektor wird berechnet, indem:

- Alle Ausgaben aus der vorherigen Schicht mit der Gewichtung der korrespondierenden Kante multipliziert werden
- 2. Alle gewichteten Eingabewerte summiert werden
- 3. Der Bias des Neurons hinzuaddiert wird
- 4. Die Aktivierungsfunktion auf diesen Wert angewandt wird

Die Aktivierungsfunktion hat dabei die Rolle die Werte zu normieren. Sie sorgt also dafür, dass alle Werte innerhalb des Netzes im Intervall [0,1] bleiben. Es gibt eine Vielzahl von Aktivierungsfunktionen. Die häufigste ist die sogenannte "Sigmoid" Funktion:

Im Gegensatz dazu haben Gewichtungen typischerweise etwa den doppelten Wert der Eingaben. Alle Were werden jedoch automatisch im Lernprozess angepasst. Der Begriff Eingabe- und Ausgabevektor lassen bereits vermuten, dass es sich bei Neuronalen Netzen um Objekte aus dem Bereich der linearen Algebra handelt. Daher

Abbildung 3: Der Plot der Sigmoid Funktion $\sigma(x) = \frac{e^x}{e^x + 1}$

wird im Folgenden auch die Notationsweise mit Hilfe von linearer Algebra verwendet. Betrachtet man eine Ausgabe eines Neurons wird diese als $a_{neuron}^{(layer)}$ bezeichnet. Den Ausgabevektor des Input Layers würde man also folgendermaßen schreiben:

$$\begin{bmatrix} a_0^0 \\ a_1^0 \\ a_2^0 \\ \vdots \\ a_n^0 \end{bmatrix}$$

Die Gewichtungen w der jeweiligen Kanten werden notiert als $w_{(zu\ Neuron,von\ Neuron)}^{(von\ Layer)}$ "von Layer" bezeichnet dabei das Layer in dem das Neuron liegt, das die Information ausgibt. "zu Neuron" ist der Index des Neurons im nächsten Layer, das die Information annimmt und "von Neuron" der Index des Neurons, das die Information abgibt. Die Gewichtung der Kante, die das zweite Neuron im ersten Layer mit dem dritten Neuron im zweiten Layer verebindet würde also als $w_{3,2}^0$ bezeichnet werden. Dabei wird bei null begonnen zu zählen, sodass das erste Layer und das erste Neuron den Index 0 erhält.

Die Gewichtungen aller Verbindungen eines Layers zum nächsten können also als folgende Matrix geschrieben werden:

$$\begin{bmatrix} w_{0,0} & w_{0,1} & \cdots & w_{0,n} \\ w_{1,0} & w_{1,1} & \cdots & w_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{k,0} & w_{k,1} & \cdots & w_{k,n} \end{bmatrix}$$

Dabei ist n hier die selbe Zahl wie n im Ausgabevektor, da genau so viele Ausgaben vorhanden sein müssen, wie Neuronen in diesem Layer vorhanden sind, da jedes Neuron einen Wert ausgibt. Der Bias Vektor wird genau so wie der Ausgabevektor

²Es existieren auch Neuronen, die Daten verwerfen. Diese kommen im hier betrachteten Typ von neuronalem Netz allerdings nicht vor und werden daher der Einfachheit halber außenvor gelassen.

bezeichnet.

$$\begin{bmatrix} b_0^0 \\ b_1^0 \\ b_2^0 \\ \vdots \\ b_n^0 \end{bmatrix}$$

Beachtet man jetzt noch, dass bei jedem Neuron die Aktivierungsfunktion angewandt werden muss ergibt sich folgende Gleichung für die Berechnung des Ausgabevektors \vec{o} aus einem Einbagevektor \vec{d} durch eine Schicht von Neuronen:

$$\vec{o} = \sigma \begin{bmatrix} w_{0,0} & w_{0,1} & \cdots & w_{0,n} \\ w_{1,0} & w_{1,1} & \cdots & w_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{k,0} & w_{k,1} & \cdots & w_{k,n} \end{bmatrix} \begin{bmatrix} a_0^0 \\ a_1^0 \\ a_2^0 \\ \vdots \\ a_n^0 \end{bmatrix} + \begin{bmatrix} b_0^0 \\ b_1^0 \\ b_2^0 \\ \vdots \\ b_n^0 \end{bmatrix}$$

Abbildung 4: Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen.

Zur Vereinfachung wurde die Funktion hier auf den gesamten Ausgabevektor angewandt. Dies ist korrekt, sofern alle Neuronen eines Layers die selbe Aktivierungsfunktion aufweisen. Dies muss natürlich nicht immer so sein. Sind die Aktivierungsfunktionen der Neuronen eines Layers verschieden, so wird die Aktivierungsfunktion des jeweiligen Neurones separat auf das korrespondierende Element des Vektors $\vec{W} \cdot \vec{a} + \vec{b}$ angewandt.

3.4 Der Lernprozess

Der Lernprozess gliedert sich in wenige wesentliche Schritte. Zuerst wird unter Verwendung des oben beschriebenen Prozesses aus einem Eingabevektor ein Ausgabevektor berechnet. Diese Berechnung wird im Lernprozess extrem oft durchgeführt, weshalb sich neuronale Netze besonders schnell auf Grafikkarten trainieren lassen. Diese sind für mathematische Operationen im Bereich der linearen Algebra, wie Matritzenmultiplikation oder Addition optimiert und werden daher auch als Vektorprozessoren bezeichnet.

Dieser Ausgabevektor wird nun, mit Hilfe einer Fehlerfunktion, mit dem erwarteten Ausgabevektor verglichen. Je größer dabei die Differenz zwischen erwartetem Ausgabevektor und tatsächlichem Ausgabevektor ist, desto größer ist der Wert der Fehlerfunktion. Der Ausgabewert dieser Fehlerfunktion wird als "Fehler" oder auch als "Kosten" bezeichnet. Wenn also das Minimum dieser Fehlerfunktion bestimmt wird, wird der Fehler minimiert und die tatsächliche Ausgabe des Netzes nähert sich der korrekten Ausgabe immer weiter an.

Eine Methode, die hier erläutert werden soll, dieses Minimum zu finden ist das Gradientenverfahren. Nachdem mit Hilfe dieses Verfahrens der Fehler mimnimiert wurde,

werden die Parameter, also die Gewichtungen und Biases, des neuronalen Netzes entsprechend angepasst. Diesen Prozess der Fehlerminimierung mittels des Gradientenverfahrens und der anschließenden Anpassung der Werte bezeichnet man auch als "Backpropagation". Es existieren auch noch andere Verfahren zur Fehlerminimierung, der Einfachheit halber soll hier aber nur Backpropagation erläutert werden.

3.5 Fehlerfunktionen

Es existiert eine Vielzahl von Fehlerfunktionen, die alle für unterschiedliche Anwendungsgebiete unterschiedlich passend sind. Im Groben lassen sich allerdings Fehlerfunktionen, die für Klassifizierungsprobleme geeignet sind von solchen unterscheiden, die für Regressionsprobleme geeignet sind.

3.5.1 MSE – Durchschnittlicher quadratischer Fehler

Der sogenannte durchschnittliche quadratische Fehler ist eine häufig genutzte Fehlerfunktion für Regressionsprobleme. Die englische Bezeichnung lautet "Mean squared error", woraus sich auch die Abkürzung "MSE loss" ergibt. Sie ist wie in Abbildung 5 dargestellt, definiert.

$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}$$

Abbildung 5: Die Gleichung für den durchschnittlichen quadratischen Fehler

Wie der Name vermuten lässt, gibt diese Fehlerfunktion den Durchschnitt der quadrierten Differenzen zwischen dem vorausgesagten und dem tatsächlichen Ergebnis an. Aufgrund der Quadrierung des Fehlers, werden durch diese Funktion stark abweichende Werte wesentlich stärker gewichtet, als weniger stark abweichende Werte. Ihr Gradient ist außerdem einfach berechenbar, was für das Gradientenverfahren später relevant ist.[3]

3.5.2 MAE – Durchschnitztlicher absoluter Fehler

Bei dem durchschnittlichen absoluten Fehler handelt es sich ebenfalls um eine Fehlerfunktion, die für Regressionsprobleme eingesetzt wird. Die englische Bezeichnung lautet "Mean absolute error". Sie ist ähnlich wie der durchschnittliche quadratische Fehler definiert.

$$MAE = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{n}$$

Abbildung 6: Die Gleichung für den durchschnittlichen absoluten Fehler

Auch hier wird die "Richtung" des Fehlers, in diesem Fall durch die Normierung, verworfen. Außerdem ist diese Fehlerfunktion nicht so anfällig gegenüber Ausreißern in den Daten, da dieser Fehler nicht quadriert wird. Ein Nachteil des durchschnittlichen absoluten Fehlers ist allerdings die höhere Komplexität zur Berechnung des Gradienten.[3]

3.5.3 Kreuzentropiefehler

Der Kreuzentropiefehler ist die am häufigsten verwendete Fehlerfunktion für Klassifizierungsprobleme. Sie gibt den Fehler für eine Klassifizierung an, die den gegebenen Klassen Wahrscheinlichkeiten im Intervall I=[0;1] zuordnet. Dabei steigt der Fehler stärker, je weiter sich die Vorhersage vom tatsächlichen Wert entfernt. Wie aus Abbildung 7 hervorgeht, wird also sicheren, aber falschen Vorhersagen der höhste Fehlerwert zugeordnet.

Abbildung 7: Der Graph der Kreuzentropie Fehlerfunktion wenn das tatsächliche Label 1 ist

Der Fehler steigt also mit zunehmender Abweichung der Vorhersage zum tatsächlichen Label rapide an.

Mathematisch ist der Kreuzentropiefehler nach der Funktion in Abbildung 8 definiert, wobei y einen Binärindikator darstellt, der angibt ob das zu klassifizierende Objekt tatsächlich zur Klasse gehört (dann ist er 1) und p die vorausgesagte Wahrscheinlichkeit ob das Objekt zur Klasse gehört, beschreibt.

Hier fällt auf, dass, falls das Label 0 ist, der linke Teil der Gleichung weg fällt und falls es 1 ist, der Rechte. Wenn berechnetes und tatsächliches Label identisch sind, ist der Fehler stets 0.

$$CrossEntropyLoss = -(yln(p) + (1 - y)ln(1 - p))$$

Abbildung 8: Die Gleichung für den Kreuzentropiefehler

Existieren mehr als 2 Klassen, handelt es sich also nicht mehr um eine Binärklassifizierung, müssen die Fehler nach der Gleichung in Abbildung 9 summiert werden.

$$CrossEntropyLoss(M) = -\sum_{c=1}^{M} y_{o,c}ln(p_{o,c})$$

Abbildung 9: Die Gleichung für den durchschnittlichen absoluten Fehler

Dabei gibt M die Anzahl der Klassen an, c das Label für die Klasse und o die berechnete Klassifizierung für diese Klasse.

3.6 Gradientenverfahren und Backpropagation

Das Gradientenverfahren ist ein Verfahren um das Minimum einer Funktion zu finden. Die Funktion, deren Minimum gefunden werden soll ist in diesem Fall die Fehlerfunktion. Diese ist von allen Gewichtungen und Biases des Netzwerkes abhängig, da sie direkt vom Ausgabevektor des Netzes abhängig ist. Der Gradient dieser Funktion ist in Abbildung 10 dargestellt.

$$\nabla C(w_1, b_1, \dots, w_n, b_n) = \begin{bmatrix} \frac{\partial C}{\partial w_1} \\ \frac{\partial C}{\partial b_1} \\ \vdots \\ \frac{\partial C}{\partial w_n} \\ \frac{\partial C}{\partial b_n} \end{bmatrix}$$

Abbildung 10: Die Gleichung für den Gradienten der Fehlerfunktion

Um also das Ergebnis "richtiger" zu machen, müssen alle Gewichtungen und Biases negativ zu diesem Gradienten angepasst werden, da der Gradient ja den Hochpunkt angibt. Diese Anpassung erfolgt, indem das Netz vom Ausgabelayer an, deshalb heißt das Verfahren Backpropagation, durchgegangen wird, und die Gewichtungen und Biases angepasst werden.

Oft wird zur Verbildlichung des Gradientenverfahrens die Analogie eines Balles verwendet, der einen Hügel hinunter rollt. Er findet den Tiefpunkt indem er hinab rollt und dabei immer automatisch eine Kraft nach unten wirkt.

3.6.1 Lernrate

Eine wichtige Rolle dabei spielt die sogenannte "Lernrate" η , mit der die Änderung nach der Formel in Abbildung 11 berechnet wird.

$$w_{neu}^n = w_{alt}^n - \eta \times \frac{\partial C}{\partial w^n}$$

Abbildung 11: Die Gleichung für die Anpassung eines einzelnen Parameters

Diese Lernrate ist notwendig um nicht über das Minimum "hinweg zu springen". Sollte sie zu groß sein, passiert genau dies, da die Anpassungen der Parameter in zu großen Schritten erfolgt. Sollte sie hingegen zu klein sein, lernt das Netz sehr langsam. Typische Werte sind abhängig von der zu erlernenden Aufgabe, liegen jedoch in der Regel bei etwa 0.01 bis 0.0001 ³.

Abbildung 12: η ist hier zu groß gewählt

Abbildung 12 stellt dar, wieso das Minimum nicht erreicht werden kann, falls die Lernrate zu groß gewählt wurde. Es ist zu sehen, dass der Parameter immer gleich viel geändert wird und dabei das Minimum übersprungen wird, da die Lernrate konstant zu groß ist. Dieses Problem kann behoben werden indem eine adaptive Lernrate verwendet wird. Dabei verringert sich die Lernrate im Laufe des Lernprozesses, sodass zu Beginn die Vorzüge des schnellen Lernens genutzt werden können und am Ende trotzdem ein hoher Grad an Präzision erreicht werden kann.

3.7 Verschiedene Layerarten

Mit Hilfe von maschinellem Lernen lassen sich eine Vielzahl von Aufgaben bewältigen. Entsprechend komplex müssen Neuronale Netze aber auch sein. Demzufolge ist es notwendig, Neuronen zu entwickeln, die andere Fähigkeiten aufweisenl, als das

³Dies ist ein bloßer Erfahrungswert. Maschinelles Lernen erfordert oft sehr viele Versuche, weshalb nicht genau festgelegt werden kann, wann welche Lernrate optimal ist.

einfache oben im sogenannten "Linear Layer" verwendete Neuron. Da man in der Regel nur eine Art von Neuron in einem Layer verwendet, wird das gesamte Layer nach der verwendeten Neuronenart benannt. Die unten beschriebenen Layerarten werden vor allem in einer Klasse von neuronalen Netzen verwendet, die als "Convolutional neural networks" bezeichnet werden. Sie werden meißt im Bereich der komplexen fragmentbasierten Bilderkennung eingesetzt, da sie besonders gut geeignet sind um Kanten oder gewisse Teile eines Bildes, wie zum Beispiel Merkmale eines Gesichtes, zu erkennen.

3.7.1 Convolutional Layers

Convolutional Layers weisen eine fundamental andere Funktionsweise als lineare Layers auf. Sie nehmen zwar ebenfalls rationale Zahlen an und geben rationale Zahlen aus 4 , berechnen die Ausgabe jedoch nicht nur mit Hilfe einer Aktivierungsfunktion sondern unter der Verwendung sogenannter "Filter". Diese Filter sind eine $m \times n$ große Matrix, die auch als "Kernel" bezeichnet wird. Der Kernel wird dabei über die Eingabematrix bewegt (daher der Zusatz convolution) und erzeugt eine Ausgabematrix. Dafür wird der betrachtete Abschnitt der Eingabematrix A und des Kernels B skalar multipliziert wobei das Skalarprodukt als Frobenius-Skalarprodukt also als

$$\langle A, B \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ij}$$

definiert ist. Die Matritzen werden also Komponentenweise multipliziert und diese Produkte dann summiert.

Dies ist in Abbildung 13 verbildlicht.

Abbildung 13: Eine Verbildlichung einer Convolution

Ein Filter kann ganz verschiedene Werte aufweisen. So können Filter der Form

⁴Im Folgenden werden 2 Dimensionale convolutional Layers betrachtet, da diese einfacher vorstellbar sind. Sie nehmen dann eine Matrix rationaler Zahlen an und geben auch eine Matrix rationaler Zahlen aus. Dies korrespondiert mit dem Anwendungsbereich der Erkennung von schwarz weiß Bildern.

beispielsweise zur einfachen Kantenerkennung genutzt werden. Das ist definitiv mehr text als auf die Seite passt lalalalalalala

3.7.2 Pooling Layers

- 4 PyTorch
- 4.1 Datenvorbereitung
- 4.2 Definieren des Netzes
- 4.3 Trainieren des Netzes
- 5 Fallbeispiel I: Ein Klassifizierungsnetzwerk für handgeschriebene Ziffern
- 5.1 Aufgabe
- 5.2 Der MNIST Datensatz
- 5.3 Fragmentbasierte Erkennung
- 5.4 Ergebnis
- 6 Fallbeispiel II: Eine selbsttrainierende KI für Tic-Tac-Toe
- 6.1 Das Prinzip
- 6.2 Chance-Tree Optimierung
- 6.3 Lösung mittels eines neuronalen Netzes
- 6.4 Vergleich
- 7 Schlusswort

Literatur

[1]	Hands-On Machine Learning with Scikit-Learn and TensorFlow
	von Aurélien Géron
	Veröffentlicht: March 2017 O'Reilly Media, Inc
	ISBN: 9781491962282

- [2] Die Logistik des Lernens eine Studie der LMU München Quelle: www.uni-muenchen.de/forschung/news/2013/ f-71-13_kiebler_nervenzellen.html -abgerufen am 16.11.2019
- [3] Common Loss functions in machine learning Von Ravindra Parmar Veröffentlicht am 02.09.2018, abgerufen am 07.01.2020 Quelle: https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23

Abbildungsverzeichnis

ı	Neuron	
	Quelle: simple.wikipedia.org/wiki/File:Neuron.svg	
	Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,	
	bearbeitet	5
2	Ein einfaches neuronales Netz	6
3	Der Plot der Sigmoid Funktion $\sigma(x) = \frac{e^x}{e^x + 1}$	7
4	Formel zur Berechnung eines Ausgabevektors aus einem Eingabevek-	
	tor durch ein Layer Neuronen	8
5	Die Gleichung für den durchschnittlichen quadratischen Fehler	9
6	Die Gleichung für den durchschnittlichen absoluten Fehler	9
7	Der Graph der Kreuzentropie Fehlerfunktion wenn das tatsächliche	
	Label 1 ist	10
8	Die Gleichung für den Kreuzentropiefehler	11
9	Die Gleichung für den durchschnittlichen absoluten Fehler	11
10	Die Gleichung für den Gradienten der Fehlerfunktion	11
11	Die Gleichung für die Anpassung eines einzelnen Parameters	12
12	η ist hier zu groß gewählt	12
13	Eine Verbildlichung einer Convolution	
	Aus einer Animation von	
	https://deeplizard.com/learn/video/YRhxdVk_sls	13
14	Erkennt obere horizontale Kanten	14
15	Erkennt linke vertikale Kanten	14
16	Erkennt untere horizontale Kanten	14
17	Erkennt rechte vertikale Kanten	14