

Design Document

I. Choix de l'architecture

Nous avons choisi l'architecture MVC (Model-View-Controller) pour implémenter l'application AirWatcher.

En effet, l'application propose différentes fonctionnalités qui impliquent différentes manières d'interagir avec les différentes données (notamment dû au fait qu'il y a différents types d'utilisateurs).

Ainsi, notre application sera divisée en 3 composants (ou packages) distincts qui interagissent ensemble : "Controller" "Model" et "View".

- Le composant **Controller** gère les interactions de l'utilisateur (ex. : saisies au clavier) avec notre application et transmet ces interactions aux autres composants.
- Le composant View définit et gère la manière dont les données sont présentées aux utilisateurs.
- Le composant Model contient toute la logique métier de l'application. En effet, ce composant fournit les différents services correspondant aux différentes fonctionnalités de l'application. Ce sont ces services qui gèrent et agissent sur les données.

Cette architecture permet donc de séparer la présentation des données et les interactions avec celles-ci.

II. Diagramme de Classe

III. Diagrammes de séquence

III.1. Scénario 1 : Analyser un capteur

III.2. Scénario 2 : Calculer la moyenne de la qualité de l'air dans une zone géographique donnée et pour une période spécifiée

III.3. Scénario 3 : Analyser l'impact d'un Cleaner

IV. Description et pseudo-code de 3 algorithmes majeurs

IV.1. Algorithme 1 : Analyse des mesures d'un capteur

IV.1.a. Description

Description	Cet algorithme analyse les mesures du capteur, associé à l'id fourni en paramètre, pour déterminer si celui-ci est défaillant ou truqué. Pour ce faire, l'algorithme compare les mesures du capteur avec celles des capteurs qui se trouvent dans un rayon de 'areaRadius' km (paramètre) autour du capteur à analyser. Remarquons qu'il y a différents cas spéciaux. Si notre capteur n'a aucune mesure pour toutes les molécules alors l'application doit spécifier que l'analyse est impossible. Idem s'il n'y a pas de capteurs voisins pour effectuer la comparaison sur au moins une des 4 molécules où le capteur a des mesures. Le diagnostic de l'algorithme est alors renvoyé en sortie, sous la forme d'un
Entrée	booléen : 'true' si le capteur est défaillant (ou truqué) et 'false' sinon. sensorID : Id du capteur à analyser areaRadius : Rayon en kilomètres représentant la distance maximale à laquelle un capteur voisin peut se trouver pour être pris en compte dans l'analyse
Sortie	anomalies : Booléen qui vaut 'true' si le capteur est défaillant/truqué et 'false' sinon

IV.1.b. Pseudo-code

retourner anomalies

```
ComputeSensorAnalysed(sensorID, areaRadius):
   sensor = rechercher SensorParID(sensorID)
   dicoMeanCapteur = {"O3": 0, "NO2": 0, "SO2": 0, "PM10": 0}
   Créer les dictionnaires dicoMeanAll, dicoSumOfSquaresAll, dicoSdAll, dicoNbValuesAll et dicoNbValuesCapteur
  list_molec = ["O3", "NO2", "SO2", "PM10"]
   // Initialiser les dictionnaires
   Pour chaque molecule dans list_molec faire:
       dicoSumOfSquaresAll[molecule] = dicoNbValuesAll[molecule] = dicoNbValuesAll[molecule] = dicoNeanAll[molecule] = 0
   // Calculer les moyennes globales pour chaque molécule
   Pour chaque molecule dans list_molec faire:
       dicoMeanAll[molecule] = ComputeMeanForAnAttribute(sensor.latitude, sensor.longitude, molecule, areaRadius, 0, 0);
   Fin Pour
   // Lire les mesures et calculer les sommes et les carrés
   Pour chaque mesure dans measurements.csv faire:
       molecule = mesure attribute
      Si mesure.sensorID == sensorID alors :
          dicoMeanCapteur[molecule] += mesure.value
          dicoNbValuesCapteur[molecule] += 1
       Fin Si
       dicoSumOfSquaresAll[molecule] += (mesure.value - dicoMeanAll[molecule]) * (mesure.value - dicoMeanAll[molecule])
       dicoNbValueAll[mesure[Attribute]] += 1
   Fin Pour
   Si le capteur n'a pas de mesure pour toutes les molécules alors :
      Exception("Analyse impossible car le capteur n'a aucune mesure")
   Fin Si
   // Calculer les écarts-types et vérifier les anomalies
   Pour chaque molecule dans list_molec faire:
         Si (dicoNbValuesCapteur[molecule] == 0) faire : passer à la molécule suivante
         Fin Si
         Si (dicoNbValueAll[molecule]==dicoNbValuesCapteur[molecule]) faire :
            Exception("Analyse impossible car il n'y a pas de mesure de capteurs voisins pour au moins une molécule ")
        dicoMeanCapteur[molecule] = dicoMeanCapteur[molecule] / dicoNbValuesCapteur[ molecule ]; dicoSdAll[molecule] = sqrt(dicoSumOfSquaresAll[molecule] / dicoNbValueAll[molecule])
        Si ((dicoMeanCapteur[molecule] > dicoMeanAll[molecule] + dicoSdAll[molecule]) ou
            dicoMeanCapteur[molecule] < dicoMeanAll[molecule] - dicoSdAll[molecule])) alors :
            anomalies = True
        Fin Si
   Fin Pour
```

IV.2. Algorithme 2 : Calcul de la moyenne de la qualité de l'air dans une zone géographique donnée et pour une période spécifiée

IV.2.a. Description

Description	Cet algorithme permet de calculer la moyenne de la qualité de l'air (indice ATMO de 2014) dans une zone géographique donnée et pour une période de temps spécifiée. La zone géographique est circulaire et elle est définie par son centre (latitude,longitude) et son rayon (en km). La période de temps est définie par deux TimeStamp : dateDebut et dateFin
Entrée	 latitude : La latitude du centre de la zone géographique longitude : La longitude du centre de la zone géographique radius : Le rayon en kilomètres représentant la distance maximale (à considérer par rapport au centre de la zone) pour inclure les données. startTime : La date de début de la période de temps pour laquelle la moyenne est calculée. endTime : Le date de fin de la période de temps pour laquelle la moyenne est calculée.
Sortie	indiceAtmo: entier correspondant à l'indice Atmo calculé (égal à -1 s'il y a eu une erreur)

IV.2.b. Pseudo-code

```
ComputeMeanQuality(latitude, longitude, radius, startTime, endTime):
  list_molec = ["O3", "NO2", "SO2", "PM10"]
  listeMoyennes = []
  indiceATMO = -1
  Pour chaque molecule dans list_molec faire :
    moyenne = ComputeMeanForAnAttribute(latitude, longitude, molecule, radius, startTime, endTime)
    Si (moyenne != 0) alors :
      ajouter(moyenne, listeMoyennes)
      indice = indiceCorrespondingToMean(molecule, moyenne)
      Si (indice > indiceATMO) alors : indiceATMO = indice
    Fin Si
    Sinon
      Traiter Erreur...
      Afficher("Calcul Impossible de l'indiceAtmo")
   Fin Sinon
  Fin Pour
  retourner indiceATMO
```

Fonction ComputeMeanForAnAttribute:

Description	Cette fonction calcule la moyenne des valeurs des mesures pour une molécule donnée (O3, NO2, SO2, PM10), pour une zone géographique donnée et pour une période de temps spécifiée.
Entrée	Idem que ComputeMeanQuality mais avec "molecule" en plus
	molecule: molécule pour laquelle la moyenne va être calculée
Sortie	moyenne : La moyenne des valeurs des mesures de la molécule (-1 s'il y a eu un problème ou une erreur)

<u>Remarque</u> : si en entrée on met startTime = endTime = null alors on spécifie qu'on ne veut pas de contrainte sur la date

```
ComputeMeanForAnAttribute(latitude, longitude, molecule, radius, startTime, endTime):
 moyenne = -1
  somme = 0
 nbValues = 0
 Pour chaque mesure dans measurements.csv faire :
    dateMesure = mesure.date
    sensor = mesure.sensor
    Si (mesure.attribute == molecule) alors
      distance = calculateDistance(latitude, longitude, sensor.latitude, sensor.longitude)
      Si ((startTime < dateMesure et dateMesure < endTime) ou (startTime == null et endTime == null)) et
        (distance <= radius) alors
           somme += mesure.value
           nbValues++
      Fin Si
    Fin Si
 Fin Pour
  moyenne = somme/nbValues
  retourner moyenne
```

Fonction calculateDistance:

Description	Cette fonction utilise la formule de Haversine pour calculer la distance en kilomètres entre deux points géographiques spécifiés par leur latitude et leur longitude.
Entrée	 lat1: La latitude du premier point lon1: La longitude du premier point lat2: La latitude du deuxième point lon2: La longitude du deuxième point
Sortie	distance: La distance en kilomètres entre les deux points

```
calculateDistance(lat1, lon1, lat2, lon2):

R = 6371.0 //Rayon de la Terre en km

lat1 = radians(lat1)
lon1 = radians(lon1)
lat2 = radians(lat2)
lon2 = radians(lon2)

dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2)**2 + cos(lat1) * cos(lat2) * sin(dlon / 2)**2
c = 2 * atan2(sqrt(a),sqrt(1 - a))
distance = R * c

retourner distance
```

IV.3. Algorithme 3 : Calcul de l'impact d'un cleaner dans une zone

Description	Cette fonction calcule l'impact d'un air cleaner dans une zone circulaire donnée (centre = cleaner et radius en paramètre) en calculant la différence entre la qualité de l'air à la date à laquelle a été arrêté le cleaner (ou la date actuelle s'il n'est pas encore arrêté) et la date à laquelle il a été activé.
Entrée	cleanerID : Id du purificateur à analyser
	<i>radius</i> : Rayon en kilomètres représentant la distance maximale à laquelle un capteur peut se trouver pour que ses mesures soient prises en compte dans le calcul de la qualité de l'air
Sortie	Différence entre la qualité de l'air à la date à laquelle a été arrêté le cleaner (ou la date actuelle s'il n'est pas encore arrêté) et la date à laquelle il a été activé

ComputeCleanersImpactLocal(cleanerID, radius): cleaner = rechercherCleanerById(cleanerID) qualityAvantCleaner = ComputeMeanQuality(cleaner.latitude, cleaner.longitude, radius, 01-01-1900, cleaner.startTime) dateCalculApres = La date des dernières mesures effectuées durant la phase où le purificateur a été activé qualityApresCleaner = ComputeMeanQuality(cleaner.latitude, cleaner.longitude, radius, dateCalculApres, dateCalculApres) Si (qualityAvantCleaner == -1 ou qualityApresCleaner == -1) alors: //Traiter les cas d'erreurs Afficher ("Impossible de mesurer l'impact du purificateur !") Fin Si retourner (qualityApresCleaner - qualityAvantCleaner)

V. Tests Unitaires

V.1. Test de ComputeMeanQuality

<u>Cas 1 :</u>

Description Cas	Toutes les données sont prises en compte et il y a 2 données par Attribute (molécule)
Données	Forme = (Sensor,Date,LatCapteur,LongCapteur,Attribute,Unit,Value) 1: (Sensor1,2019/01/01,44,-1,O3,µg/m3,10) 2: (Sensor1,2019/01/02,44,-1,SO2,µg/m3,10) 3: (Sensor1,2019/01/03,44,-1,NO2,µg/m3,10)
	4: (Sensor1,2019/01/04,44,-1,PM10,μg/m3,10) 5: (Sensor2,2019/01/01,44,-1,O3,μg/m3,20) 6: (Sensor2,2019/01/02,44,-1,SO2,μg/m3,30) 7: (Sensor2,2019/01/03,44,-1,NO2,μg/m3,40) 8: (Sensor2,2019/01/04,44,-1,PM10,μg/m3,50)
Entrée	LatitudeCentre = 44 LongitudeCentre = -1 Rayon = 1 DateDebut = 2019/01/01 DateFin= 2019/02/01
Sortie Attendue	O3 -> m = 15 -> i = 1 SO2-> m = 20 -> i = 1 NO2-> m = 25 -> i = 1 PM10-> m = 30 -> i = 5 ATMO = Max(i) = 5

Cas 2 :

Description Cas	Test Filtrage Date : Des données ne sont pas prises en compte à cause de la date et il y a 2 données par Attribute (molécule)
Données	Forme = (Sensor,Date,LatCap,LongCap,Attribute,Unit,Value) 1: (Sensor1,2019/01/01,44,-1,O3,μg/m3,10) 2: (Sensor1,2019/01/02,44,-1,SO2,μg/m3,10) 3: (Sensor1,2019/01/03,44,-1,NO2,μg/m3,10) 4: (Sensor1,2019/01/04,44,-1,PM10,μg/m3,10) 5: (Sensor2,2019/01/01,44,-1,O3,μg/m3,20) 6: (Sensor2,2019/01/02,44,-1,SO2,μg/m3,30) 7: (Sensor2,2019/01/03,44,-1,NO2,μg/m3,40) 8: (Sensor2,2019/01/04,44,-1,PM10,μg/m3,50) 9: (Sensor1,2019/03/03,44,-1,O3,μg/m3,1000) 10: (Sensor1,2019/03/03,44,-1,NO2,μg/m3,1000) 11: (Sensor1,2019/03/03,44,-1,NO2,μg/m3,1000) 12: (Sensor1,2019/03/03,44,-1,PM10,μg/m3,1000)
Entrée	LatitudeCentre = 44 LongitudeCentre = -1 Rayon = 1 DateDebut = 2019/01/01 DateFin = 2019/02/01
Sortie Attendue	O3 -> m = 15 -> i = 1 SO2-> m = 20 -> i = 1 NO2-> m = 25 -> i = 1 PM10-> m = 30 -> i = 5 ATMO = Max(i) = 5

Cas 3:

Description Cas	Test Filtrage Position : Des données ne sont pas prises en compte à cause de leur position et il y a 2 données par Attribute (molécule)
Données	Forme = (Sensor,Date,LatCap,LongCap,Attribute,Unit,Value)
	1: (Sensor1,2019/01/01,44,-1,O3,μg/m3,10) 2: (Sensor1,2019/01/02,44,-1,SO2,μg/m3,10) 3: (Sensor1,2019/01/03,44,-1,NO2,μg/m3,10) 4: (Sensor1,2019/01/04,44,-1,PM10,μg/m3,10) 5: (Sensor2,2019/01/01,44,-1,O3,μg/m3,20) 6: (Sensor2,2019/01/02,44,-1,SO2,μg/m3,30) 7: (Sensor2,2019/01/03,44,-1,NO2,μg/m3,40) 8: (Sensor2,2019/01/04,44,-1,PM10,μg/m3,50) 9: (Sensor3,2019/01/03,30,-158,O3,μg/m3,1000) 10: (Sensor3,2019/01/03,30,-158,SO2,μg/m3,1000) 11: (Sensor3,2019/01/03,30,-158,NO2,μg/m3,1000) 12: (Sensor3,2019/01/03,30,-158,PM10,μg/m3,1000)
Entrée	LatitudeCentre = 44 LongitudeCentre = -1 Rayon = 1 DateDebut = 2019/01/01 DateFin = 2019/02/01
Sortie Attendue	O3 -> m = 15 -> i = 1 SO2-> m = 20 -> i = 1 NO2-> m = 25 -> i = 1 PM10-> m = 30 -> i = 5
	ATMO = Max(i) = 5

<u>Cas 4 :</u>

Description	Test mesures manquantes :
Cas	Pour au moins une des molécules (PM10) il n'y a pas de mesure donc cas erreur
Données	Forme = (DateMes,LatCap,LongCap,AttributeID,Unit,Value)
	1: (2019/01/01,44,-1,O3,μg/m3,10) 2: (2019/01/02,44,-1,SO2,μg/m3,10) 3: (2019/01/03,44,-1,NO2,μg/m3,10) 4: (2019/01/01,44,-1,O3,μg/m3,20) 5: (2019/01/02,44,-1,SO2,μg/m3,30) 6: (2019/01/03,44,-1,NO2,μg/m3,40)
Entrée	LatitudeCentre = 44 LongitudeCentre = -1 Rayon = 1 DateDebut = 2019/01/01 DateFin = 2019/02/01
Sortie Attendue	Retourne -1 "Il n'y a pas de mesure pour au moins une des molécules donc calcul de ATMO impossible "

Cas 5:

Description Cas	Entrée invalide : Rayon < 0
Données	Peu importe
Entrée	LatitudeCentre = 44 LongitudeCentre = -1 Rayon = - 4 DateDebut = 2019/01/01 DateFin = 2019/02/01
Sortie Attendue	Retourne -1 "Le rayon doit être positif "

<u>Cas 6</u>:

Description Cas	Entrée invalide : Latitude > 90°
Données	Peu importe
Entrée	LatitudeCentre = 91 LongitudeCentre = -1 Rayon = 4 DateDebut = 2019/01/01 DateFin = 2019/02/01
Sortie Attendue	Retourne -1 "La latitude doit être comprise entre -90° et 90°"

<u>Cas 7</u>:

Description Cas	Entrée invalide : Longitude > 180°
Données	Peu importe
Entrée	LatitudeCentre = 79 LongitudeCentre = 181 Rayon = 4 DateDebut = 2019/01/01 DateFin = 2019/02/01
Sortie Attendue	Retourne -1 "La longitude doit être comprise entre -180° et 180°"

<u>Cas 8</u>:

Description Cas	Entrée invalide : DateFin < DateDebut
Données	Peu importe
Entrée	LatitudeCentre = 80 LongitudeCentre = 179 Rayon = 4 DateDebut = 2019/01/01 DateFin = 2018/01/01
Sortie Attendue	Retourne -1 "La date de fin doit être > à la date du début"

<u>Cas 9</u>:

Description Cas	Données invalides : Il y a au moins une valeur de mesure invalide car < 0
Données	Forme = (Sensor, Date, LatCap, LongCap, Attribute, Unit, Value) 1: (Sensor1,2019/01/01,44,-1,O3,μg/m3,-10) 2: (Sensor1,2019/01/02,44,-1,SO2,μg/m3,10) 3: (Sensor1,2019/01/03,44,-1,NO2,μg/m3,10) 4: (Sensor1,2019/01/04,44,-1,PM10,μg/m3,10) 5: (Sensor2,2019/01/01,44,-1,O3,μg/m3,20) 6: (Sensor2,2019/01/02,44,-1,SO2,μg/m3,30)
	7: (Sensor2,2019/01/03,44,-1,NO2,μg/m3,40) 8: (Sensor2,2019/01/04,44,-1,PM10,μg/m3,50)
Entrée	LatitudeCentre = 44 LongitudeCentre = -1 Rayon = 1 DateDebut = 2019/01/01 DateFin = 2019/02/01
Sortie Attendue	Retourne -1 "Il y a des mesures invalides (<0) donc le calcul est impossible"

V.2. Test de ComputeSensorAnalysed

<u>Cas 1 :</u>

Description Cas	Capteur défectueux/truqué : Toutes les données de capteurs sont des données de capteurs voisins et des données sur une seule et même molécule et le capteur est truqué/défectueux
Données	Forme = (Sensor,LatCap,LongCap,Date,Attribute,Unit,Value)
	(Sensor1,44,-1,2019/01/01,O3,μg/m3,10) (Sensor2,44,-1,2019/01/01,O3,μg/m3, 50) (Sensor3,44,-1, 2019/01/01,O3,μg/m3, 50) (Sensor4,44,-1, 2019/01/01,O3,μg/m3, 50)
Entrée	sensorID = "Sensor1" areaRadius = 1
Sortie Attendue	True

Cas 2:

Description Cas	Capteur pas truqué/défectueux : Toutes les données de capteurs sont des données de capteurs voisins et des données sur la même molécule et le capteur n'est pas truqué/défectueux
Données	Forme = (Sensor,LatCap,LongCap,Date,Attribute,Unit,Value) (Sensor1,44,-1,2019/01/01,O3,μg/m3,10) (Sensor2,44,-1,2019/01/01,O3,μg/m3, 9) (Sensor3,44,-1, 2019/01/01,O3,μg/m3, 10) (Sensor4,44,-1, 2019/01/01,O3,μg/m3, 9)
Entrée	sensorID = "Sensor1" areaRadius = 1
Sortie Attendue	False

<u>Cas 3 :</u>

Description Cas	Test avec des mesures de capteurs voisins sur d'autres molécules : Le capteur n'est pas défectueux (il serait défini défectueux si les données qui ne sont pas sur la même molécule étaient utilisées pour l'analyse) et il y a des données de capteurs qui sont voisins mais ne sont pas sur la même molécule
Données	Forme = (Sensor,LatCap,LongCap,Date,Attribute,Unit,Value)
	(Sensor1,44,-1,2019/01/01,O3,μg/m3,10) (Sensor2,44,-1,2019/01/01,O3,μg/m3, 9) (Sensor3,44,-1, 2019/01/01,O3,μg/m3, 10) (Sensor4,44,-1, 2019/01/01,O3,μg/m3, 9) (Sensor5,44,-1,2019/01/01,NO2,μg/m3,100) (Sensor6,44,-1,2019/01/01,SO2,μg/m3, 150) (Sensor7,44,-1, 2019/01/01,PM10,μg/m3, 118)
Entrée	sensorID = "Sensor1" areaRadius = 1
Sortie Attendue	False

<u>Cas 4:</u>

Description Cas	Même cas que cas 3 mais défectueux (il serait défini non défectueux si les données qui ne sont pas sur la même molécule étaient utilisées pour l'analyse)
Données	Forme = (Sensor,LatCap,LongCap,Date,Attribute,Unit,Value)
	(Sensor1,44,-1,2019/01/01,O3,μg/m3,20) (Sensor2,44,-1,2019/01/01,O3,μg/m3, 12) (Sensor3,44,-1, 2019/01/01,O3,μg/m3, 13) (Sensor4,44,-1, 2019/01/01,NO2,μg/m3, 12) (Sensor5,44,-1,2019/01/01,NO2,μg/m3,20) (Sensor5,44,-1,2019/01/01,NO2,μg/m3,20) (Sensor5,44,-1,2019/01/01,NO2,μg/m3,20) (Sensor6,44,-1,2019/01/01,SO2,μg/m3, 21) (Sensor6,44,-1,2019/01/01,SO2,μg/m3, 21) (Sensor6,44,-1,2019/01/01,SO2,μg/m3, 21) (Sensor7,44,-1, 2019/01/01,PM10,μg/m3, 20) (Sensor7,44,-1, 2019/01/01,PM10,μg/m3, 20) (Sensor7,44,-1, 2019/01/01,PM10,μg/m3, 20)
Entrée	sensorID = "Sensor1" areaRadius = 1
Sortie Attendue	True

<u>Cas 5 :</u>

Description Cas	Test pas défectueux avec des mesures de capteurs pas voisins : Le capteur n'est pas défectueux (il serait défini comme tel si les données qui ne sont pas dans la zone géographique étaient utilisées pour l'analyse) et il y a des capteurs sur la même molécule mais pas voisins
Données	Forme = (Sensor,LatCap,LongCap,Date,Attribute,Unit,Value)
	(Sensor1,44,-1,2019/01/01,O3,μg/m3,10) (Sensor2,44,-1,2019/01/01,O3,μg/m3, 9) (Sensor3,44,-1, 2019/01/01,O3,μg/m3, 10) (Sensor4,44,-1, 2019/01/01,O3,μg/m3, 9) (Sensor5,-80,190,2019/01/01,O3,μg/m3,100) (Sensor6,-80,190,2019/01/01,O3,μg/m3, 100) (Sensor7,-80,190, 2019/01/01,O3,μg/m3, 100) (Sensor8,-80,190, 2019/01/01,O3,μg/m3, 100)
Entrée	sensorID = "Sensor1" areaRadius = 1
Sortie Attendue	False

<u>Cas 6 :</u>

Description Cas	Même cas que cas 5 mais défectueux : (il serait défini comme non défectueux si les données qui ne sont pas sur la même molécule étaient utilisées pour l'analyse)
Données	Forme = (Sensor,LatCap,LongCap,Date,Attribute,Unit,Value)
	(Sensor1,44,-1,2019/01/01,O3,μg/m3,30) (Sensor2,44,-1,2019/01/01,O3,μg/m3, 9) (Sensor3,44,-1, 2019/01/01,O3,μg/m3, 10) (Sensor4,44,-1, 2019/01/01,O3,μg/m3, 9) (Sensor5,-80,190,2019/01/01,O3,μg/m3,30) (Sensor6,-80,190,2019/01/01,O3,μg/m3, 30) (Sensor7,-80,190, 2019/01/01,O3,μg/m3, 30) (Sensor8,-80,190, 2019/01/01,O3,μg/m3, 30) (Sensor9,-80,190, 2019/01/01,O3,μg/m3, 30) (Sensor10,-80,190, 2019/01/01,O3,μg/m3, 30)
Entrée	sensorID = "Sensor1" areaRadius = 1
Sortie Attendue	True

<u>Cas 7 :</u>

Description Cas	Cas erreur : Des capteurs ont des mesures sur la même molécule mais ne sont pas voisins
Données	Forme = (Sensor,LatCap,LongCap,Date,Attribute,Unit,Value)
	(Sensor1,44,-1, 2019/01/01,O3,μg/m3, 20) (Sensor2,-80,190,2019/01/01,O3,μg/m3,30) (Sensor3,-80,190,2019/01/01,O3,μg/m3, 30) (Sensor4,-80,190, 2019/01/01,O3,μg/m3, 30)
Entrée	sensorID = "Sensor1" areaRadius = 1
Sortie Attendue	Exception : "Analyse impossible car il n'y a pas de mesure de capteurs voisins pour au moins une molécule"

<u>Cas 8 :</u>

Description Cas	Cas erreur : Aucun capteur n'a de mesure sur la même molécule
Données	Forme = (Sensor,LatCap,LongCap,Date,Attribute,Unit,Value) (Sensor1,44,-1, 2019/01/01,O3,µg/m3, 20)
	(Sensor2,44,-1,2019/01/01,SO2,μg/m3,30) (Sensor3,44,-1,2019/01/01,NO2,μg/m3, 30) (Sensor4,44,-1,2019/01/01,PM10,μg/m3, 30)
Entrée	sensorID = "Sensor1" areaRadius = 1
Sortie Attendue	Exception : "Analyse impossible car il n'y a pas de mesure de capteurs voisins pour au moins une molécule"

<u>Cas 9 :</u>

Description	Entrée invalide :
Cas	Rayon < 0
Données	Peu importe
Entrée	sensorID = "Sensor1" areaRadius = -1
Sortie	Exception
Attendue	"Rayon invalide"

Cas 10:

Description	Entrée invalide :
Cas	Le capteur n'existe pas
Données	Sensors.csv : (vide)
Entrée	sensorID = "Sensor1" areaRadius = 1
Sortie	Exception
Attendue	"Capteur invalide"

Cas 11:

Description Cas	Non Défectueux - Filtrage des capteurs avec areaRadius limite : Teste si le filtrage selon la zone définie par l'area radius fonctionne bien (capteur non défectueux mais qui serait défini comme défectueux si les données hors de l'area radius étaient prises en compte)
Données	Forme = (Sensor,LatCap,LongCap,Date,Attribute,Unit,Value)
	(Sensor1,44,-1,2019/01/01,O3,μg/m3,10) (Sensor2,44,1.05,2019/01/01,O3,μg/m3, 9) //d <arearadius< th=""></arearadius<>
	(Sensor5,44,1.30,2019/01/01,O3,µg/m3,100) //hors zone (Sensor6,44,1.30,2019/01/01,O3,µg/m3,100) //hors zone (Sensor7,44,1.30,2019/01/01,O3,µg/m3,100) //hors zone (Sensor8,44,1.30,2019/01/01,O3,µg/m3,100) //hors zone
Entrée	sensorID = "Sensor1" areaRadius = 10
Sortie Attendue	False

Cas 12:

Description Cas	Défectueux - Filtrage des capteurs avec areaRadius limite : Teste si le filtrage selon la zone définie par l'area radius fonctionne bien (capteur défectueux mais qui serait défini comme non défectueux si les données hors de l'area radius étaient prises en compte)
Données	Forme = (Sensor,LatCap,LongCap,Date,Attribute,Unit,Value)
	(Sensor1,44,-1,2019/01/01,O3,μg/m3,100) (Sensor2,44,1.05,2019/01/01,O3,μg/m3, 9) //d <arearadius (sensor10,44,1.30,2019="" (sensor3,44,1.08,="" (sensor4,44,1.10,="" (sensor5,44,1.30,2019="" (sensor6,44,1.30,2019="" (sensor7,44,1.30,2019="" (sensor8,44,1.30,2019="" (sensor9,44,1.30,2019="" 01="" 01,o3,μg="" 10)="" 2019="" 9)="" d<arearadius="" hors="" m3,="" m3,100)="" th="" zone="" zone<=""></arearadius>
Entrée	sensorID = "Sensor1" areaRadius = 10
Sortie Attendue	true

<u>Cas 13 :</u>

Description Cas	Cas erreur : Le capteur n'a aucune mesure sur toutes les molécules
Données	Forme = (Sensor,LatCap,LongCap)
	(Sensor1,45,1)
Entrée	sensorID = "Sensor1"
	areaRadius = 10
Sortie Attendue	Null "Analyse impossible car le capteur n'a aucune mesure"

Cas 14:

Description	Test avec mesures du capteur sur plusieurs molécules - Défectueux :
Cas	Le capteur a des mesures pour O3 et NO2 et SO2, pour O3 il est défectueux mais pas pour NO2 et SO, mais il est noté comme défectueux
Données	Forme = (Sensor,LatCap,LongCap,Date,Attribute,Unit,Value)
	(Sensor1,44,-1,2019/01/01,O3,μg/m3,10) (Sensor2,44,-1,2019/01/01,O3,μg/m3, 50) (Sensor3,44,-1, 2019/01/01,O3,μg/m3, 50) (Sensor4,44,-1, 2019/01/01,NO2,μg/m3, 50) (Sensor1,44,-1,2019/01/01,NO2,μg/m3,10) (Sensor2,44,-1,2019/01/01,NO2,μg/m3, 10) (Sensor3,44,-1, 2019/01/01,NO2,μg/m3, 10) (Sensor4,44,-1, 2019/01/01,NO2,μg/m3, 10) (Sensor4,44,-1,2019/01/01,SO2,μg/m3,10) (Sensor3,44,-1,2019/01/01,SO2,μg/m3, 10) (Sensor3,44,-1,2019/01/01,SO2,μg/m3, 10) (Sensor4,44,-1,2019/01/01,SO2,μg/m3, 10)
Entrée	sensorID = "Sensor1" areaRadius = 10
Sortie Attendue	true

Cas 15:

Description Cas	Test avec mesures du capteur sur plusieurs molécules - Non Défectueux :
	Le capteur a des mesures pour toutes les molécules et est non défectueux
Données	Forme = (Sensor,LatCap,LongCap,Date,Attribute,Unit,Value)
	(Sensor1,44,-1,2019/01/01,O3,μg/m3,50) (Sensor2,44,-1,2019/01/01,O3,μg/m3, 50) (Sensor3,44,-1, 2019/01/01,O3,μg/m3, 50) (Sensor4,44,-1, 2019/01/01,O3,μg/m3, 50)
	(Sensor1,44,-1,2019/01/01,NO2,μg/m3,10) (Sensor2,44,-1,2019/01/01,NO2,μg/m3, 10) (Sensor3,44,-1, 2019/01/01,NO2,μg/m3, 10) (Sensor4,44,-1, 2019/01/01,NO2,μg/m3, 10)
	(Sensor1,44,-1,2019/01/01,SO2,μg/m3,30) (Sensor2,44,-1,2019/01/01,SO2,μg/m3, 30) (Sensor3,44,-1, 2019/01/01,SO2,μg/m3, 30) (Sensor4,44,-1, 2019/01/01,SO2,μg/m3, 30)
	(Sensor1,44,-1,2019/01/01,PM10,μg/m3,20) (Sensor2,44,-1,2019/01/01,PM10,μg/m3, 20) (Sensor3,44,-1, 2019/01/01,PM10,μg/m3, 20) (Sensor4,44,-1, 2019/01/01,PM10,μg/m3, 20)
Entrée	sensorID = "Sensor1" areaRadius = 10
Sortie Attendue	false

V.3. Test de ComputeCleanersImpactLocal

<u>Cas 1 :</u>

Description Cas	Amélioration qualité : Cas où le cleaner a amélioré la qualité de l'air, toutes les mesures proviennent de capteurs dans la zone
Données	Measurements.csv :
	// Avant (2024-05-01 01:00:00, 45, 1, O3, μg/m3, 100, sensorID = Sensor1) (2024-05-01 01:00:00, 45, 1, SO2, μg/m3, 100, sensorID = Sensor1) (2024-05-01 01:00:00, 45, 1, NO2, μg/m3, 100, sensorID = Sensor1) (2024-05-01 01:00:00, 45, 1, PM10, μg/m3, 100, sensorID = Sensor1) (2024-05-01 01:00:00, 45, 1, PM10, μg/m3, 100, sensorID = Sensor1) //Les dernières données durant la phase de marche du cleaner (2024-05-03 01:00:00, 45, 1, O3, μg/m3, 10, sensorID = Sensor1) (2024-05-03 01:00:00, 45, 1, SO2, μg/m3, 10, sensorID = Sensor1) (2024-05-03 01:00:00, 45, 1, NO2, μg/m3, 10, sensorID = Sensor1) (2024-05-03 01:00:00, 45, 1, PM10, μg/m3, 10, sensorID = Sensor1) Cleaners.csv : (Cleaner0,45,1,2024-05-02 00:00:00, 2024-05-03 23:59:59) Sensors.csv :
	(Sensor1,45,1)
Entrée	(Cleaner = Cleaner0, radius = 1)
Sortie Attendue	-8 Car AtmoAvant(O3) = 4 AtmoAprès(O3) = 1 AtmoAvant(SO2) = 3 AtmoAprès(SO2) = 1 AtmoAvant(NO2) = 4 AtmoAprès(NO2) = 1 AtmoAvant(PM10) = 10 AtmoAprès(PM10) = 2 AtmoAvant = 10 AtmoAprès = 2

<u>Cas 2 :</u>

Description Cas	Baisse qualité : Cas où le cleaner n'a pas eu d'effet et la qualité de l'air a empiré, toutes les mesures proviennent de capteurs dans la zone
Données	Measurements.csv :
	// Avant (2024-05-01 01:00:00, 45, 1, O3, μ g/m3, 10, sensorID = Sensor1) (2024-05-01 01:00:00, 45, 1, SO2, μ g/m3, 10, sensorID = Sensor1) (2024-05-01 01:00:00, 45, 1, NO2, μ g/m3, 10, sensorID = Sensor1) (2024-05-01 01:00:00, 45, 1, PM10, μ g/m3, 10, sensorID = Sensor1)
	//Les dernières données durant la phase de marche du cleaner ($2024-05-03$ $01:00:00$, 45 , 1, $O3$, $\mu g/m3$, 100 , sensorID = Sensor1) ($2024-05-03$ $01:00:00$, 45 , 1, $SO2$, $\mu g/m3$, 100 , sensorID = Sensor1) ($2024-05-03$ $01:00:00$, 45 , 1, $SO2$, $SO2$, $SO2$, $SO2$, $SO3$ $SO3$ 00:00:00, $SO3$ 00:00, $SO3$ 00:00:00, $SO3$ 00:00:00:00, $SO3$ 00:00:00:00, $SO3$ 00:00:00:00, $SO3$ 00:00:00:00:00:00:00:00:00:00:00:00:00:
	Cleaners.csv:
	(Cleaner0,45,1,2024-05-02 00:00:00, 2024-05-03 23:59:59)
	Sensors.csv:
	(Sensor1,45,1)
Entrée	(Cleaner0, 1)
Sortie Attendue	8

Cas 3:

Description Cas	Filtrage selon le rayon : Cas où le cleaner a amélioré la qualité de l'air, toutes les mesures ne proviennent pas de capteurs dans la zone (si les mesures des capteurs pas dans la zone avaient été prises en compte alors resultat différent)
Données	Measurements.csv:
	// Avant (2024-05-01 01:00:00, 45, 1, O3, μg/m3, 100, sensorID = Sensor1) (2024-05-01 01:00:00, 45, 1, SO2, μg/m3, 100, sensorID = Sensor1) (2024-05-01 01:00:00, 45, 1, NO2, μg/m3, 100, sensorID = Sensor1) (2024-05-01 01:00:00, 45, 1, PM10, μg/m3, 100, sensorID = Sensor1) //Les dernières données durant la phase de marche du cleaner (2024-05-03 01:00:00, 45, 1, O3, μg/m3, 10, sensorID = Sensor1)
	(2024-05-03 01:00:00, 45, 1, SO2, μ g/m3, 10, sensorID = Sensor1) (2024-05-03 01:00:00, 45, 1, NO2, μ g/m3, 10, sensorID = Sensor1) (2024-05-03 01:00:00, 45, 1, PM10, μ g/m3, 10, sensorID = Sensor1)
	//Mesures (dernières données durant phase marche cleaner) d'un capteur pas dans la zone ($2024-05-03$ $23:00:00$, -90 , 150 , $O3$, $\mu g/m3$, 200 , sensorID = Sensor2) ($2024-05-03$ $23:00:00$, -90 , 150 , SO2, $\mu g/m3$, 200 , sensorID = Sensor2) ($2024-05-03$ $23:00:00$, -90 , 150 ,NO2, $\mu g/m3$, 200 , sensorID = Sensor2) ($2024-05-03$ $23:00:00$, -90 , 150 ,PM10, $\mu g/m3$, 200 , sensorID = Sensor2)
	Cleaners.csv:
	(Cleaner0,45,1,2024-05-02 00:00:00, 2024-05-03 23:59:59)
	Sensors.csv:
	(Sensor1, 45, 1) (Sensor2, -90, 150,)
Entrée	(Cleaner = Cleaner0, radius = 1)
Sortie Attendue	-8 Car AtmoAvant(O3) = 4 AtmoAprès(O3) = 1 AtmoAvant(SO2) = 3 AtmoAprès(SO2) = 1 AtmoAvant(NO2) = 4 AtmoAprès(NO2) = 1 AtmoAvant(PM10) = 10 AtmoAprès(PM10) = 2 AtmoAvant = 10 AtmoAprès = 2

<u>Cas 4 :</u>

Description Cas	Filtrage date : Cas où le cleaner a amélioré la qualité de l'air, toutes les mesures dans measurements.csv n'ont pas été faites entre le début activation cleaner et désactivation cleaners (si ces mesures avaient été prises en compte alors résultat aurait été différent)
Données	Measurements.csv : // Avant (2024-05-01 01:00:00;Sensor1;O3;100;)
	(2024-05-01 01:00:00;Sensor1;SO2;100;) (2024-05-01 01:00:00;Sensor1;NO2;100;) (2024-05-01 01:00:00;Sensor1;PM10;100;)
	//Les dernières données durant la phase de marche du cleaner (2024-05-03 01:00:00;Sensor1;O3;10;) (2024-05-03 01:00:00;Sensor1;SO2;10;) (2024-05-03 01:00:00;Sensor1;NO2;10;) (2024-05-03 01:00:00;Sensor1;PM10;10;)
	// Mesures pas faites durant phase marche du cleaner (2024-11-03 01:00:00;Sensor1;O3;200;) (2024-11-03 01:00:00;Sensor1;SO2;200;) (2024-11-03 01:00:00;Sensor1;NO2;200;) (2024-11-03 01:00:00;Sensor1;PM10;200;)
	Cleaners.csv: (Cleaner0,45,1,2024-05-02 00:00:00, 2024-05-03 23:59:59)
	Sensors.csv : (Sensor1, 45, 1)
Entrée	(Cleaner = Cleaner0, radius = 1)
Sortie Attendue	-8 Car AtmoAvant(O3) = 4 AtmoAprès(O3) = 1 AtmoAvant(SO2) = 3 AtmoAprès(SO2) = 1 AtmoAvant(NO2) = 4 AtmoAprès(NO2) = 1 AtmoAvant(PM10) = 10 AtmoAprès(PM10) = 2 AtmoAvant = 10 AtmoAprès = 2

<u>Cas 5 :</u>

Description Cas	Cas où le rayon donné en paramètre n'est pas strictement positif
Données	Cleaners.csv:
	(Cleaner0,45,1,2024-05-02 00:00:00, 2024-05-03 23:59:59)
Entrée	(Cleaner = Cleaner0, radius = -2)
Sortie Attendue	"Le rayon doit être strictement positif"

<u>Cas 6 :</u>

Description Cas	Cas où le cleaner donné en paramètre n'existe pas
Données	Cleaners.csv:
	(Cleaner0,45,1,2024-05-02 00:00:00, 2024-05-03 23:59:59)
Entrée	(Cleaner = Cleaner2, radius = 1)
Sortie Attendue	"Le Cleaner que vous avez demandé n'existe pas"

<u>Cas 7 :</u>

Description Cas	Cas où il y a des mesures avant la position du cleaner dans la zone mais pas après
Données	Measurements.csv:
	// Avant (2024-05-01 01:00:00;Sensor1;O3;100;) (2024-05-01 01:00:00;Sensor1;SO2;100;) (2024-05-01 01:00:00;Sensor1;NO2;100;) (2024-05-01 01:00:00;Sensor1;PM10;100;) Cleaners.csv: (Cleaner0,45,1,2024-05-02 00:00:00, 2024-05-03 23:59:59) Sensors.csv: (Sensor1, 45, 1)
Entrée	(Cleaner = Cleaner0, radius = 1)
	(2.232. 2.232.2, 1442.2)
Sortie Attendue	"Analyse du cleaner impossible : Aucune mesure dans la zone spécifiée après l'activation du cleaner"

Cas 8:

Description Cas	Cas où il y a des mesures après l'activation du cleaner mais pas avant activation
Données	Measurements.csv: // Après activation cleaner (2024-05-03 01:00:00;Sensor1;O3;10;) (2024-05-03 01:00:00;Sensor1;SO2;10;) (2024-05-03 01:00:00;Sensor1;NO2;10;) (2024-05-03 01:00:00;Sensor1;PM10;10;) Cleaners.csv: (Cleaner0,45,1,2024-05-02 00:00:00, 2024-05-03 23:59:59) Sensors.csv:

	(Sensor1, 45, 1)
Entrée	(Cleaner = Cleaner0, radius = 1)
Sortie Attendue	"Analyse du cleaner impossible : Aucune mesure dans la zone spécifiée avant activation du cleaner"

V.4. Test de indiceCorrespondingToMean

<u>Cas 1 :</u>

Description Cas	Test pour O3
Entrée	Molecule = "O3" Moyenne = 240.0
Sortie Attendue	10

<u>Cas 2 :</u>

Description Cas	Test pour SO2
Entrée	Molecule = "SO2" Moyenne = 240.0
Sortie Attendue	6

<u>Cas 3 :</u>

Description Cas	Test pour NO2	
Entrée	Molecule = "NO2" Moyenne = 240.0	
Sortie Attendue	8	

Cas 4:

Description Cas	Test pour PM10
Entrée	Molecule = "PM10" Moyenne = 240.0
Sortie Attendue	10

<u>Cas 5 :</u>

Description Cas	Molécule inconnue
Entrée	Molecule = "TropDeTests" Moyenne = 240.0
Sortie Attendue	"La molécule spécifiée n'existe pas"

<u>Cas 6 :</u>

Description Cas	Moyenne < 0
Entrée	Molecule = "O3" Moyenne = -240.0
Sortie Attendue	"La moyenne des valeurs des mesures doit être >=0"

V.5. Test de ComputeMeanForAnAttribute

<u>Cas 1 :</u>

Description Cas	Moyenne pour O3 : toutes les données sont prises en compte
Données	Measurements.csv:
	(Sensor1, 45, 1)
Entrée	Molecule = "O3" LatitudeCentre = 45 LongitudeCentre = 1 Rayon = 1 DateDebut = 2019/01/01 DateFin = 2019/02/01
Sortie Attendue	30.0

<u>Cas 2 :</u>

Description Cas	Filtrage Date : Des données ne sont pas prises en compte à cause de la date
Données	Measurements.csv:
Entrée	Molecule = "O3" LatitudeCentre = 45 LongitudeCentre = 1 Rayon = 1 DateDebut = 2019/01/01 DateFin = 2019/02/01
Sortie Attendue	30.0

Cas 3:

Description Cas	Filtrage selon position : Des données ne sont pas prises en compte à cause de leur position
Données	Measurements.csv:
Entrée	Molecule = "O3" LatitudeCentre = 45 LongitudeCentre = 1 Rayon = 1 DateDebut = 2019/01/01 DateFin = 2019/02/01
Sortie Attendue	30.0

Cas 4:

Description Cas	Filtrage selon molécule : Des données ne sont pas prises en compte car elles ne sont pas sur la bonne molécule et il n'y a pas de mesure pour la molécule en question
Données	//Pas prises en compte (2019/01/03 01:00:00,Sensor1,SO2,μg/m3,200) (2019/01/03 01:00:00,Sensor1,NO2,μg/m3,350) (2019/01/03 01:00:00,Sensor1,NO2,μg/m3,200) (2019/01/03 01:00:00,Sensor1,PM10,μg/m3,10) Sensors.csv: (Sensor1, 45, 1)
Entrée	Molecule = "O3" LatitudeCentre = 45 LongitudeCentre = 1 Rayon = 1 DateDebut = 2019/01/01 DateFin = 2019/02/01
Sortie Attendue	-1 "Il n'y a pas de mesure pour la molécule et les contraintes spécifiées"

<u>Cas 5 :</u>

Description Cas	Entrée invalide : Rayon < 0
Données	Peu importe
Entrée	Molecule = "O3" LatitudeCentre = 44 LongitudeCentre = -1 Rayon = -4 DateDebut = 2019/01/01 DateFin = 2019/02/01
Sortie Attendue	-1 " Le rayon doit être positif "

<u>Cas 6 :</u>

Description Cas	Entrée invalide : Latitude > 90°
Données	Peu importe
Entrée	Molecule = "O3" LatitudeCentre = 91 LongitudeCentre = -1 Rayon = 4 DateDebut = 2019/01/01 DateFin = 2019/02/01
Sortie Attendue	-1 "La latitude doit être comprise entre -90° et 90°"

<u>Cas 7 :</u>

Description Cas	Entrée invalide : Longitude > 180°
Données	Peu importe
Entrée	Molecule = "O3" LatitudeCentre = 79 LongitudeCentre = 181 Rayon = 4 DateDebut = 2019/01/01 DateFin = 2019/02/01
Sortie Attendue	-1 "La longitude doit être comprise entre -180° et 180°

<u>Cas 8 :</u>

Description Cas	Entrée invalide : DateFin < DateDebut
Données	Peu importe
Entrée	Molecule = "O3" LatitudeCentre = 80 LongitudeCentre = 179 Rayon = 4 DateDebut = 2019/01/01 DateFin = 2018/01/01
Sortie Attendue	-1 " La date de fin doit être > à la date du début"

<u>Cas 9 :</u>

Description Cas	Il y a au moins une valeur de mesure invalide car < 0 pour la molécule spécifiée
Données	Measurements.csv:
	(Sensor1, 45, 1)
Entrée	Molecule = "O3" LatitudeCentre = 45 LongitudeCentre = 1 Rayon = 1 DateDebut = 2019/01/01 DateFin = 2019/02/01
Sortie Attendue	-1 "Il y a des mesures invalides (<0) donc le calcul est impossible"

<u>Cas 10 :</u>

Description Cas	Entrée invalide : La molécule spécifiée n'existe pas
Données	Peu importe
Entrée	Molecule = "TropDeTests" LatitudeCentre = 80 LongitudeCentre = 179 Rayon = 4 DateDebut = 2019/01/01 DateFin = 2018/01/01
Sortie Attendue	-1 "La molécule spécifiée n'existe pas"

V.6. Test de CalculateDistance

<u>Cas 1 :</u>

Description Cas	Entrées valides
Entrée	(lat1, long1) = (1,1) (lat2, long2) = (2,2)
Sortie Attendue	157.5

<u>Cas 2 :</u>

Description Cas	Entrées valides
Entrée	(lat1, long1) = (67,174) (lat2, long2) = (26,32)
Sortie Attendue	9198.0

<u>Cas 3 :</u>

Description Cas	Entrées valides : 2 points égaux
Entrée	(lat1, long1) = (1,1) (lat2, long2) = (1,1)
Sortie Attendue	0.0

Cas 4:

Description Cas	Au moins un des 4 paramètres est invalide (ici lat1 > 90)
Entrée	(lat1, long1) = (91,1) (lat2, long2) = (1,1)
Sortie Attendue	Erreur : "La latitude doit être comprise entre -90° et 90°"

<u>Cas 5 :</u>

Description Cas	Au moins un des 4 paramètres est invalide (ici long2 > 180)
Entrée	(lat1, long1) = (1,1) (lat2, long2) = (1,181)
Sortie Attendue	Erreur : " La longitude doit être comprise entre -180° et 180°"

V.7. Test de LoadData

<u>Cas 1 :</u>

Description Cas	Cas de base
Données	Sensors.csv:
	(Sensor0, 44, -1) (Sensor1, 44, -0.3)
	Providers.csv :
	(Provider0,Cleaner0) (Provider1,Cleaner1)
	Cleaners.csv:
	(Cleaner0, 45.333333, 1.333333, 2019-02-01 12:00:00, 2019-03-01 00:00:00) (Cleaner1, 46.666667, 3.666667, 2019-02-01 12:00:00, 2019-03-01 00:00:00)
	Measurements.csv :
	(2011-01-01 12:00:00, Sensor0, O3, 50.25) (2012-01-01 12:00:00, Sensor0, O3, 53.5) (2013-01-01 12:00:00, Sensor0, NO2, 74.5) (2014-01-01 12:00:00, Sensor0, NO2, 76.5) (2015-01-01 12:00:00, Sensor0, SO2, 41.5) (2013-01-01 12:00:00, Sensor0, SO2, 43.5) (2017-01-01 12:00:00, Sensor0, PM10, 44.75) (2018-01-01 12:00:00, Sensor0, PM10, 45.75)
	(2011-01-01 12:00:00, Sensor1, O3, 60.25) (2012-01-01 12:00:00, Sensor1, O3, 63.5) (2013-01-01 12:00:00, Sensor1, NO2, 84.5) (2014-01-01 12:00:00, Sensor1, NO2, 86.5) (2015-01-01 12:00:00, Sensor1, SO2, 51.5) (2013-01-01 12:00:00, Sensor1, SO2, 53.5) (2017-01-01 12:00:00, Sensor1, PM10, 54.75) (2018-01-01 12:00:00, Sensor1, PM10, 55.75)
	Attributes.csv
	(O3,μg/m3,concentration d'ozone) (SO2,μg/m3,concentration de dioxyde de soufre) (NO2,μg/m3,concentration de dioxyde d'azote) (PM10,μg/m3,concentration de particules fines)
	Users.csv
	(User0,Sensor70) (User1,Sensor36)

Entrée	/
Sortie Attendue	Pas de sortie mais on doit avoir ces structures de bien remplies : hmapIdSensor hmapIdPrivateIndividual hmapAttributes vecteurMeasurements hmapIdCleaner hmapIdProvider mapCoordSensor; hmapIdSensorPrivateIndividual; hmapDescriptionAttributes;