SIGNS WITH SMART CONNECTIVITY FOR BETTER ROAD SAFETY

IBM PROJECT REPORT
SUBMITTED BY,
MUTHUSELVI. M – 812619106008
DHARANISHA. R – 812619106006
RESHMA. G - 812619106010
SRIMATHI. P - 812619106014

TEAM ID: PNT2022TMID45483

IN THE PARTIAL FULFILLMENT FOR THE AWARD THE

DEGREE OF

BACHELOR OF ENGINEERING

IN

ELECTRONICS AND COMMUNICATION

ENGINEERING

M.A.M. COLLEGE OF ENGINEERING SIRUGANUR, TRICHY – 621 105 ANNA UNIVERSITY, CHENNAI – 600 025.

TABLE OF CONTENT

chapte	r chapter name	pg.no
l.	INTRODUCTION	4
	1.1 Project Overview	4
	1.2 Purpose	4
II.	LITERATURE SURVEY	5
	2.1 Existing problem	5
	2.2 References	5
	2.3 Problem Statement Definition	10
III.	IDEATION & PROPOSED SOLUTION	10
	3.1 Empathy Map Canvas	10
	3.2 Ideation & Brainstorming	11
	3.3 Proposed Solution	14
	3.4 Problem Solution fit	17
IV.	REQUIREMENT ANALYSIS	17
	4.1 Functional requirement	17
	4.2 Non-Functional requirements	18
V.	PROJECT DESIGN	19
	5.1 Data Flow Diagrams	19
	5.2 Solution & Technical Architecture	19
	5.3 User Stories	22
VI.	PROJECT PLANNING & SCHEDULING	24

6.1 Sprii	6.1 Sprint Planning & Estimation 2				
6.2 Sprii	nt Delivery Schedule	27			
6.3 Repo	orts from JIRA	27			
VII. CODI	NG & SOLUTIONING (Explain the	features			
added in the	project along with code)	29			
7.1 Featu	ure 1	32			
7.2 Featu	ure 2	34			
7.3 Featu	ure 3	35			
7.4 Featu	ure 4	36			
VIII. ADVA	NTAGES & DISADVANTAGES	37			
IX. CONC	CLUSION	38			
X. FUTU	JRE SCOPE	39			
XI. APPE	NDIX	39			
Source Co	ode	39			
GitHub &	Project Demo Link.				

I. INTRODUCTION

1.1. PROJECT OVERVIEW

Technology has brought fine changes into every portion of our life by making it smart and reliable. Mainly IOT is influencing our lifestyle from the we react to the way we behave and it conceptualizes the idea of remotely connecting and monitoring the real-world objects through the internet. There are many technologies in which technologies can be used to avoid accidents in roads which opens a wide window for the requirement of smart road system. With the dynamic changes in the models of the vehicles the roads need to have same ability to face them. Evolving towards the future, the roads needs to build with advanced sensors and antenna systems to have a peace with the new era. Road accidents now a days has become a national catastrophe for over populated developing countries.

1.2 PURPOSE

One of the main cause of accident in the sensitive public zones like school, colleges, hospitals etc. and the sharp turning points is the over speed of vehicles avoiding the speed limit indicated in the traffic sign board. Drivers endanger the lives of passengers, pedestrians and fellow drivers not limiting their vehicle speed in these sensitive public zones. The main objectives of this project is to operate the vehicles in safe speed at critical zones and bad weathers minimizing the possible risk of unwitting accidents, traffic and casualities. This project paves a system to alert the driver about the speed of the vehicle in sensitive public zones and if need any diversion at that place without any interference of the drivers. The system operates in such way that the accident information is passed to the vehicles entering the same zone to take diversion to avoid traffic congestion. The project is sub-divided into three parts. These are weather monitoring display, warning and services alert display, diversion sign display. The controls are taken automatically by the use of a wireless local area network. Weather conditions can be monitored through open weather map app. With the help of G-map we will indicate the sensitive zone. Let's analyse the diversion area with the help of AI camera.

II. LITERATURE SURVEY

A Literature review is a comprehensive summary of previous researches on the topic. The literature review surveys scholarly articles, books, and other sources relevant to a particular area of research.

2.1. EXISTING PROBLEM

To avoid the accidents on the road sides we are gonna use smart connected sign boards instead of static sign boards to indicate the drivers and passengers about the speed limitations based on weather changes, diversion signs when the traffic and construction works occur and also would have to indicate the warning signs of public services like schools, hospitals, etc.

2.2. REFERENCES

NO Image: Control of the control o	
1. A smart • G. Brindha Digital Notice board is used in institution or 1. This meth	
organization or public utility places like College campus, railway stations etc., but Sending and monitoring various notices every day is a heavy process. A separate person is required to take care of these notices. This paper deals with advanced notice board. Our proposed system will enable people to wireless transmit notices on a notice board using GSM with smart Phone and users get auto notification using parse cloud. Its operation is based on microcontroller ATMEGA 328 Programmed in C language. When the user sends notice via registered smart Phone that message will get display on the notice board simultaneously through the parse cloud other users get auto notification on their smart Phone. We can also make the system compatible with more than	ess ation so ilities r some

3.	Digital Notice Board Based on IOT The Role of Blockchain, AI and IoT for Smart Road	 Lurdhumary Abisha. M Asha.T.K3l Francima. C Ashish Sharma Yogesh Awasthi Sunil Kumar 	one wireless technology. The numbers of notice boards are connected in IOT to get the status of the notice boards automatically to the cellular device. This project presents a digital notice board using IoT module. The idea behind this project is to provide its users with a simple, fast and reliable way to put up important notices in an LED where the user can send a message to be displayed in the LED. The message can be sent through an android application designed in this project, through the IoT module. So, notices can be put up in an LED display from any location in the world. It uses a microcontroller for system control, IoT based technology for communication and sends the message through the android application. The project consists of Arduino UNO board, IoT module, an LED, and an android application for user interface with the hardware. This device can be used anywhere irrespective of the place of deployment provided mobile network connectivity is available. Nowadays vehicles are increasing on the road. Due to this, it is a challenge for society to manage traffic jams and road accidents all over the world. Artificial Intelligence (AI) such as	1. Signal Interference the common frequency that a Wi-Fi device operates on is 2.4 GHz, which can be disturbed or hindered due to the presence of other electromagnetic devises or walls between you and the WiFi source. 2. This system Supports only one message at a time. 1. It concludes that the solution is not easily manageable because of its
	and IoT for		manage traffic jams and road accidents all over the world. Artificial Intelligence (AI) such as Machine Learning (ML) algorithms are very helpful to improve the performance of the overall road safety management system. AI is used for many real- world applications to make	easily manageable because of its complexities on various causes. 2. In this paper, it is designed as an
			any system be a smart system. The Smart Road Traffic Management System (SRTMS) easily recognizes the influence occurs for random changes on road safety. The SRTMS detects the unsafe driving patterns as well as convey the information to the respective authorities. The Internet of Things (IoT) is a boon technology to	architecture for the traffic management system by the combination of boon technologies IoT, AI, and BC for realworld problems.

	1			Г
			observe human activities in real-time. IoT	
			devices or nodes are composed of sensors	
			that are commonly utilized to identify and reply	
			to electrical and other signals. Currently,	
			Blockchain (BC) is the most trending	
			technology to automate transactions, which	
			means sharing or exchange of information	
			between the IoT devices or nodes. BC	
			technology facilitates for sharing of information	
			on the network is decentralized, secure,	
			persistent, anonymity, suitability and	
			trustworthy manner. With consensus algorithms	
			and smart contracts, Blockchain holds to	
			manage communication among nodes without	
			the involvement of a third-party or intermediary	
			body. Simultaneously, AI has the ability	
			to offer intelligent and decision-making	
			machines similar to human beings' minds.	
			This paper proposes the SRTMS model for	
			solving the road accident, traffic jam and	
			disseminate the information to all stakeholders.	
			This proposed model is a combination of most	
			trending technologies such as AI, BC, and IoT.	
4.	IOT Based	• Satish D.	This technical paper deals about Development	1.This use advanced
	Electronic	Jadhav	of IoT based electronics notice board using	high technology
	Notice Board	• Yogita	available IP based infrastructure & amp; IoT	notice so cost is
		Mistry	devices. Smart notice board can be developed	high.
		• Student	to make noticing system much simple and	2.Large amount
		PHCET	faster & amp; cost effective with web & amp;	of date to stored not
			SMS interface the system is platform	to be efficient.
		Rasayani	independent which overcomes the	
			disadvantages of existing Noticing system. Web	
			and SMS interface of system gives access to	
			both IP based as well as cellular based network	
			devices to provide input to the system. This	
			prototype developed can be used to eliminate	
			the need of huge bill boards thus it is also a	
			better method of going green Index Terms: IoT;	
			Web; SMS.	

5.	IOT Road	SOWPARNIKA B	Road accident nowadays has become a national	1.Increased
	Safety		catastrophe for over populated developing	traffic can increase
			countries. One of the main cause of accident in	carbon emissions
			the sensitive public zones like school, college,	and other pollution.
			hospitals etc. and sharp turning points is the	2.Land use for
			over speed of vehicles avoiding the speed limit	roads can damage
			indicated in the traffic sign board. Drivers	built and natural
			endanger the lives of passengers, pedestrians	environment,
			and fellow drivers not limiting their vehicle	impose mortality
			speed in these sensitive public zones. The main	on wildlife if
			objective of the proposed system is to operate	habitats are
			the vehicles in a safe speed at critical zones	severed, and
			minimizing the possible risk of unwitting	construction has
			accidents and casualities. This project paves a	associated
			system to alert the driver about the speed limits	environmental
			in specific areas and reduce the speed of the	costs.
			vehicles in sensitive public zones without any	
			interference of the drivers. The controls are	
			taken automatically by the use of a wireless	
			local area network. The system operates in such	
			way that the accident information is passed to	
			the vehicles entering the same zone to take	
			diversion to avoid traffic congestion.	
6.	Smart roads:	• Andrea	The years we are experiencing are often	1.Smart roads
	A state of the	Pompigna	identified as those of the Age of Smart	combine
	art of	• Raffaele	Technologies. Smart is now a very popular	physical
	Highways	Mauro	term, with the meaning of clever, intelligent,	infrastructures
	innovations in		sharp, quick on the uptake. Its extensive	such as sensors
	the Smart Age		meaning can be grasped if we consider it as an	and solar
			acronym for Self- Monitoring Analysis and	panels with
			Reporting Technology to indicate the essential	software
			features of the innovative technologies that	infrastructure
			characterize today's society in its daily life.	like AI and big
			Thus, the advent of the Smart Age, which is	data.
			therefore the era of smart technologies, has	2.Smart road
			heavily characterized and modified many	technologies
			aspects of today's society compared to the past.	are embedded
			In this panorama, some arising questions regard	in roads and
			transport infrastructure systems and, first of all,	can improve

road transport. This research proposes a focus on one main issue: how roads fit into this smart revolution? Actually, the paper aims to offer an overview of the smart approach in road engineering by proposing a broad discussion about the current state of innovation in the smart roads field, i.e. the roads of the Smart Age. After defining the key functions of a smart road, the paper reviews some innovative technologies that make these items effective. These are studied in depth both with regard to motorway-type infrastructures and urban roads and intersections, with attention to the various technological aspects and to the benefits perceivable by management, users and the community. The paper, therefore, offers a bird's eye view of this extremely dynamic sector with innovative technologies for a new intelligent and connected mobility, and discusses some of their criticalities and strengths allowing for optimization and development of new transport functions and services, improving energy efficiency and promoting social, economic and environmental sustainability.

visibility,
generate
energy,
communicate
with
autonomous
and connected
vehicles,
monitor road
conditions, and
more.

7.	Internet of	• G. Lavanya	Conventional Notice Board employs manual	1.This method
	Things Based	• N. N. Deepika	display and monitoring with papers and ledgers.	using wireless
	Notifications	•	The Target users are unaware of information	communication so
	Using Smart	• T. Sangeetha	displayed on the notice board. The objective of	internet facilities
	Notice Board.	R.Maheshwari	the project is to display the message on the	had poor for some
		• R. Josephine	notice board from anywhere and anytime, that	area.
			even provides broadcast alerts to the target	2.Sometime the user
			users. The system was designed and developed	cannot to seeing
			using the Internet of Things. Arduino board	notifications.
			integrates the display unit, Mobile App and	
			SMS Agent through Internet. The message to	
			be displayed on the notice board is sent	
			through a mobile app to the board with	
			Arduino. As soon as the message is displayed,	
			SMS alert is sent to the target users. A system	
			of efficient Notice Board display controlled	
			through the Internet is accomplished and	
			presented in this paper.	

2.3. PROBLEM STATEMENT DEFINITION

- To replace the static sign boards, smart sign boards are used.
- These smart sign boards get the speed limitations from a web app using weather API and update automatically.
- Based on the weather changes the speed may increase or decrease.
- Based on the traffic and fatal situations the diversion signs are displayed.
- Guide(schools), warning and services(hospitals, restaurant) signs are also displayed accordingly.
- Different modes of operations can be selected with the help of buttons.

III. IDEATION AND PROPOSED SOLUTION

3.1. EMPATHY MAP CANVAS

An empathy map is a collaborative tool teams can use to gain a deeper insight into their customers. It helps us to understand the customer's pain, gain and difficulties from their point of view. Proposed

solution helped us to analyse and examine our solution more in the grounds of uniqueness, social impact, business model, scalability, etc. EMPATHY MAP

3.2. IDEATION AND BRAINSTORMING

Brainstorming is a group problem-solving method that helped us to gather and organize various ideas and thoughts from team members.

BRAIN STORM

Muthuselvi Dharanisha

Diversions can be accessed by the information source

we analysing the routes by using GPS Analysing the up to date weather conditions We are giving higher priority for public services than private ones

Improves the entire road safety by monitoring the weather

To control the vehicle speed using open weather app by ibm cloud All the operation are handled by IOT domain using the program

Will display 2 information in 1 LCD & another 1 in 1 LCD

Reshma

We can use sensors to detect the weather Advanced road safety techniques based on IOT technologies Srimathi

Should know the public & private services located nearby

Diverting Information should be programmed through the lot

Can use solar panel to change the lithium battery

Here we use two LED's

Can use lithium battery for power supply We using a single wide board which is compatible of 2 LCD's with smart technologies Diversions can be accessed by the information source

We analysing the routes by using GPS Improves the entire road safety by monitoring the weather

We are giving higher priority for public services than private ones

Improves the entire road safety by monitoring the weather

All the operation are handled by IOT domain using the program

We can use sensors to detect the weather Advanced road safety techniques based on IOT technologiesAdvanced road safety techniques based on IOT technologies

Should know the public & private services located nearby Diverting information should be programmed through the iot

Can use solar panel to change the lithium battery We using a single wide board which is compatible of 2 LCD's with smart technologies

PRIORITIES

3.3. PROPOSED SOLUTION

Proposed solution helped us to analyse and examine our solution more in the grounds of uniqueness, social impact, business model, scalability, etc.

SI.	Parameter	Description
NO		
1.	Problem Statement (Problem to	To replace the static signboards, smart connected sign
	be solved)	boards are used. These smart connected sign boards
		get the speed limitations from a web app using weather
		API and update automatically. Based on the weather
		changes the speed may increase or decrease. Based on
		the traffic and fatal situations the diversion signs are
		displayed. Guide(Schools), Warning and

		Service(Hospitals, Restaurant) signs are also
		displayed accordingly. Different modes of operations
		can be selected with the help of buttons.
2.	Idea / Solution description	IOT is influencing our lifestyle from the way we
		react to the way we behave and it conceptualizes the
		idea of remotely connecting and monitoring the real-
		world objects through the internet. Road accident
		nowadays has become a national catastrophe for over
		populated developing countries.one of the main cause
		of accident in the sensitive public zones like school,
		college, hospitals etc. and the sharp turning points is
		the over speed of vehicles avoiding the speed limit
		indicated in the traffic sign board. Drivers endanger
		the lives of passengers, pedestrians and fellow drivers
		not limiting their vehicle speed in these sensitive
		public zones. The main objective of this project is to
		operate the vehicles in s safe speed at critical zones &
		bad weathers minimizing the possible risk of
		unwitting accidents, traffic and casualties. This
		project paves a system to alert the driver about the
		speed of the vehicle in sensitive public zones and if
		need any diversion at that place without any
		interference of the drivers. The system operates in
		such way that the accident information is passed to
		the vehicles entering the same zone to take diversion
		to avoid traffic congestion. This project is sub
		divided into three parts. These are weather
		monitoring display, warning and service alert display,
		diversion sign display. The controls are taken
		automatically by the use of a wireless local area
		network. Weather conditions can be monitored
		through open weather app. With the help of G-map
		we will indicate the sensitive zone. Let's analyze the
		diversion area with the help of AI camera.
	I	1

5.	Business Model (Revenue	The global digital signage market is
	Model)	worth \$16.3 billion in 2021. Accordingly, it has
	,	attracted many players from across the world. The
		guide below will help you identify smart signage
		platforms to broadcast innovative content.

3.4. PROBLEM SOLUTION FIT

IV. REQUIREMENT ANALYSIS

It briefs about functional and non-functional requirements. It involves the various steps in the entire process. It also specifies features usability, security, reliability, performance, availability and scalability.

4.1. FUNCTIONAL REQUIREMENTS

FR	Functional	Sub Requirement (Story / Sub-
No.	Requirement (Epic)	Task)
1.	User Visibility	Sign Boards should be made with LED's which are bright colored and are capable of attracting the drivers attention but it should also not be too distracting or blinding cause it may lead to accidents.

2.	User Need	The smart sign boards should be placed frequently in places it is needed and less in places where it is not needed much to avoid confusion for the user during travel.
3.	User Understanding	For better understanding of the driver, the signs should be big, clear and legible and it can also include illustrations which will make it easily understandable to the driver.
4.	User Convenience	The display should be big enough that it should even be visible from far distance clearly.

4.2. NON-FUNCTIONAL REQUIREMENTS

FR No.	Non-Functional	Description		
	Requirement			
NFR-1	Usability	It should be able to Upgrade and Update when		
		there is a need for it.		
NFR-2	Security	It should have good security system so that no		
		other person is able to hack and display their own		
		directions.		
NFR-3	Reliability	It should be able to display to information		
		correctly and error-free.		
NFR-4	Performance	It should be able to automatically update itself		
		when certain weather or traffic problem occurs.		
NFR-5	Availability	It should be available 24/7 so that it can be		
		beneficial to the customer i.e the driver.		
NFR-6	Scalability	It should able to easily change and upgrade		
		according to change and need in requirement.		

V. PROJECT DESIGN

5.1. DATA FLOW DIAGRAMS

A data flow diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2. SOLUTION AND TECHNICAL ARCHITECTURE

Solution architecture is a complex process with many subprocesses that bridges the gap between business problems and technology solutions. It helped us understand the features and components used to complete the project.

SOLUTION ARCHITECTURE

TECHNICAL ARCHITECTURE

A tech stack is the combination of technologies a company uses to build and run an application or project. It helps us analyse and understand various technologies that needs to be implemented in the project.

TABLE-1: Components & Technologies:

SI.NO	Component	Description	Technology
1.	User Interface	How user interacts with	HTML, CSS, JavaScript /
		application e.g. Web UI,	Angular Js / React Js
		Mobile App, Chatbot etc.	etc.
2.	Application Logic-2	Logic for a process in the	IBM Watson STT service
		application	
3.	Application Logic-3	Logic for a process in the	IBM Watson Assistant
		application	
4.	Cloud Database	Database Service on Cloud	IBM DB2, IBM Cloudant
			etc.
5.	External API-1	Purpose of External API used	IBM Weather API, etc.
		in the application	

Table-2: Application Characteristics:

SI.NO.	Characteristics	Description	Technology
1.	Security Implementations	Strong security measures	Firewall, Firebase, cyber
		prevent hackers and users	resiliency strategy
		without login credentials	
		from accessing the network.	
2.	Scalable Architecture	By expanding the network's	IoT, internet.
		bandwidth, the operating	
		range can be upgraded.	
3.	Availability	Available at all times and	IBM Cloud
		locations 24/7 so long as	
		the user is logged into the	
		network.	
4.	Performance	Allows a lot of people to use	IBM cloud
		the technology at the same	
		time.	

5.3. USER STORIES

User	Functional	User	User Story	Acceptance	Priority	Release
Type	Requirement	Story	/ Task	criteria		
	(Epic)	Number				
Customer (Mobile user)	Registration	USN-1	I can get my speed limitation using weather application.	I can receive speed limitations	High	Sprint-1
		USN-2	As a user, I can register for the application by entering my email, password, and confirming my/ password.	I can access my account /dashboard.	Medium	Sprint-1

		USN-3	As a user, I can	I can increase or	medium	Sprint-2
			increase or	decrease my		
			decrease	speed		
			my speed			
			according			
			to the weather			
			change			
		USN-4	As a user, I can	I can access my	Medium	Sprint-1
			I get my traffic	traffic status		
			diversion	ahead in my		
			Signs	travel.		
			depending on			
			the traffic and			
			the fatal			
			situations.			
	Login	USN-5	As a user, I can	I can access the	High	Sprint-2
			log into the	application.		
			application			
			by entering			
			email &			
			password			
	Interface	USN-6	As an official	I can access the	High	Sprint-1
			who is in	interface easily.		
			charge for the			
			proper			
			functioning of			
			the sign boards			
			have to			
			maintain it			
			through			
			periodic			
			monitoring.			
Customer	Data	USN-7	The user			
(Web user)	generation		interface must			
			be			
			straightforward			
			and simple to			
			use.			

Administrat	Problem	USN-8	As a user I use	Officials can	Medium	Sprint-2
Or	solving/ Fault		open weather	monitor the sign		
(Officials)	clearance		application	boards for		
			to access the	proper		
			data regarding	functioning.		
			the weather			
			changes.			

VI. PROJECT PLANNING AND SCHEDULING

6.1. SPIRINT PLANNING AND ESTIMATION

Sprint	Functional	User	User	Story		Team
	Requirement	Story	Story /	Points	Priority	Members
	(Epic)	Number	Task			
Sprint-1	Login	USN-1	As a weather	3	High	PRASAD.M
			data			
			controller, I			
			log into my			
			profile and			
			start			
			monitoring			
			the weather			
			updates			
Sprint-1	dashboard	USN-2	I receive all	2	High	RANTON.R
			the			
			information			
			about weather			
			at a particular			
			city from web			
			from weather			
			API.			
			Whenever			
			there is			
			change in			
			weather,			
			corresponding			

			updates about			
			speed limits			
			are made on			
			sign boards.			
Sprint-2	Login	USN-1	As a image	3	High	NAVEEN.A
Sprint 2	Login	OBIVI	controller, I		Ingn	TVI V EEI VII
			keep note of			
			all the images			
			received from			
			various areas			
			and detect			
			traffic in that			
			particular			
			area.			
Sprint-2	Dashboard	USN-2	With traffic,	2	Medium	NANDHA
Spriiit-2	Dashooald	0511-2	distance	2	Wicdium	KISHORE.G
			between the			KISHOKE.G
			vehicles is			
			detected by			
			ultrasonic			
			sensor and the			
			vehicle will			
			be			
			automatically			
			stopped if the			
			distance is			
			below the			
			limit.			
Sprint-3	Login	USN-1	As a traffic	2	High	PRASAD.M
Sprint-3	Login	0511-1	controller, I	2	Trigit	TICISHE.W
			keep note of			
			all the			
			vehicle's			
			speed			
			received			
			from various			
			areas using			
			location			
			sensor.			
			SCHSUI.			

Sprint-3	Dashboard	USN-2	I ensure that the boards display "slow down" if high speed is detected.	2	Medium	RANTON.R
Sprint-3	Login	USN-3	As a user, I move the marker to my current location and the destination location.	1	Medium	NAVEEN.A
Sprint-3	Dashboard	USN-4	I receive the fastest route to the destination and navigation instructions like "Turn left", "Turn right" will be displayed.	1	Medium	NANDHA KISHORE.G
Sprint-4	Login	USN-1	As a zonal officer, I ensure that boards near school display "slow down" and near hospitals display "no horn".	3	High	PRASAD.M

6.2. SPRINT DELIVERY SCHEDULE

Sprint planning is an event scrum that defines what can be delivered in the upcoming sprint and how that work will be achieved. It helps us to organise and complete the work effectively and efficiently.

Sprint	Total	Duration	Sprint	Sprint	Story	Sprint
	Story		Start	End Date	Points	Release
	Points		Date	(Planned)	Completed	Date
					(as on	(Actual)
					Planned	
					End Date)	
Sprint-1	20	6 Days	24 Oct	29 Oct 2022	20	29 Oct 2022
			2022			
Sprint-2	20	6 Days	31 Oct	05 Nov2022	20	31 Oct 2022
			2022			
Sprint-3	20	6 Days	07	12 Nov2022	20	07 Nov2022
			Nov2022			
Sprint-4	20	6 Days	14	19 Nov2022	20	14 Nov
			Nov2022			2022

6.3. REPORTS FROM JIRA ROAD MAP:

ISSUES:

BURNDOWN CHAT:

BACKLOG:

VII. CODING AND SOLUTIONING:

CODE EXPLANATION:

LIBRARIES:

Including all libraries like ison, random, time, sys, ibmiotf etc.

```
PROJECTFINALDND.py - D:/libm/PROJECTFINALDND.py (3.7.0)

File Edit Format Run Options Window Help

import requests #importing a library
import json
import ibmiotf.application
import ibmiotf.device
import time
import random
import sys
```

CRDENTIALS:

Entering all the credentials corresponding to IoT watson device in order to publish data to it.

```
# watson device details

organization = "2s7yy7"
devicType = "project"
deviceId = "projectid"
authMethod= "token"
authToken= "projecttoken"
```

MIT INVENTOR INTERRUPTION:

Receiving commands as inputs when buttons are pressed in MIT inventor in order to perform separate functions.

EXCEPTION HANDLING:

To handle exception if occurs while connecting with IBM IOT WATSON device.

```
try:
     deviceOptions={"org": organization, "type": devicType, "id": deviceId, "auth-method":authMethod, "auth-token":authToken}
     deviceCli = ibmiotf.device.Client(deviceOptions)
except Exception as e:
     print("caught exception connecting device %s" %str(e))
     sys.exit()
```

MAIN BODY:

- Connecting to IBM IoT device.
- Getting temperature and humidity values in json format from openweathermap as inputs.
 - Accessing the values using their corresponding keys.
- Generating random values for distance since hardware sensors are not implemented.
- Passing a warning "stating please slow down" when humidity is less than
 100 in order to

promote safe driving experience.

 Passing instruction when distance is less than 20 in order to avoid accidents and clashes.

```
*PROJECTFINALDND.py - D:/1ibm/PROJECTFINALDND.py (3.7.0)*
File Edit Format Run Options Window Help
#connect and send a datapoint "temp" with value integer value into the cloud as a type of event for every 10 seconds
deviceCli.connect()
while True:
#get sensor data from DHT11
    a = "https://api.openweathermap.org/data/2.5/weather?q=Chennai,%20IN&appid=e2bea247ed9ad643a04d9a8e55499d5f"
    r=requests.get(url=a)
    data=r.json()
    Temp= data['main']['temp']
    Humd= data['main']['humidity']
    data= {'temp':Temp,'humid':Humd}
    dist=random.randint(0,50)
    dis={'dista':dist}
    if (Humd<100):
        warn={'alert':'PLEASE SLOW DOWN!!!!!!'}
    if(dist<20):
        insta=['inst':'stop']
```

PUBLISH DATA TO IOT WATSON PLATFORM:

Passing all the data(temperature, humidity, warning, instruction) to ibm iotwatson. Disconnecting the connection established with IoT Watson device.

7.1. FEATURE 1:

WEATHER UPDATE AND CORRESPONDING COMMAND:

Getting temperature and humidity from OpenWeatherMap for a particular city and displaying warning regarding the speed when humidity is below 100.

PROJECTFINALDND.py - D:/1ibm/PROJECTFINALDND.py (3.7.0)
File Edit Format Run Options Window Help

warn={'alert':'PLEASE SLOW DOWN!!!!!!'}

if (Humd<100):

#connect and send a datapoint "temp" with value integer value into the cloud as a type of event for every 10 seconds
deviceCli.connect()

while True:

#get sensor data from DHT11

a = "https://api.openweathermap.org/data/2.5/weather?q=Chennai, %20IN&appid=e2bea247ed9ad643a04d9a8e55499d5f"
 r=requests.get(url=a)
 data=r.json()

Temp= data['main']['temp']
 Humd= data['main']['humidity']
 data= {'temp':Temp, 'humid':Humd}
 dist=random.randint(0,50)
 dis={'dista':dist}

7.2. FEATURE 2:

SPEED DETECTION:

- By implementing a location sensor in MIT APP INVENTOR, with changes in the location with respect to time, speed can easily be detected and
- displayed in the app to the user.
- This requires location settings from user's phone to be active.
- An image of normal speed limit is also displayed which means that, travelling within that range would be safe.

7.3. FEATURE 3:

MAP AND NAVIGATION:

- By implementing same location sensor, current location can be detected. This also requires location settings in user's phone to be active.
- By dragging the green marker to start location and red marker to the destination location to be reached and clicking on the navigate button, displays the street path that connects the start and end point specified.
- In addition to this, it also displays the directions to be followed to reach the destination.
- This helps the user by providing necessary details like current location and the best route to reach the destination.

7.4. FEATURE 4:

ZONAL CLASSIFICATION:

- Here, displays few sign boards indicating different zones like school zone, hospital zone, railway track etc. By clicking on the button below the sign displays the meaning and instruction to be followed in the particular region.
- This provides the user with better understanding about the sign boards and to act accordingly.

7.5. FEATURE 5:

DETERMINING TRAFFIC:

- Since hardware sensors are not implemented, we have used random function to generate values for the distance between the user and the vehicle ahead.
- If the distance is below 20, it instructs the driver or the user to stop immediately and try moving forward with different direction or to take diversion.
- This helps in avoiding accidents and c lashes while driving.


```
dist=random.randint(0,50)
dis={'dista':dist}

if(dist<20):
    insta={'inst':'stop'}</pre>
```

VIII. ADVANTAGES:

• Signs with smart connectivity are an inexpensive and flexible medium that can help transmit information according to particular situation and entertain passengers.

- The digital signboards helps in reducing the air pollution due the emission of vehicles in heavy traffic area.
- The drivers can able to know about the weather condition and accordingly follow the speed limit displayed on the sign boards.
- The increased flexibility of these digital sign boards makes it easy for any private or government department to change the message as per the need of the hour.
- The driver can easily find the route and navigation instructions to reach the destination.
- The speed of the vehicle can be identified using location sensor.
- The digitals sign boards and the app are user-friendly.

DISADVANTAGES:

- The digital signboards involves high Installation Costs.
- Getting digital signboards up and running is a far more involved process than print media.
- If the people managing the screens are not graphic designers, it can be difficult to update the content regularly on the screen.
- The digital signboards are still new and developing technology in the road safety sector,
- While digital sign boards require power and therefore can't claim to be green, there is high energy use in the printing, erecting and replacement of traditional print media.

IX. CONCLUSION:

Digital road signs are an important part of modern infrastructure and are becoming increasingly common. Digital road signs are becoming more common as technology improves and more states adopt them. The use of digital road signs is expected to continue to grow in the future as it would be observed user-friendly, economic, environment friendly, profitable promoting road safety. Digital road signs are designed to improve road safety and efficiency by providing real-time information to drivers. These signs can display a variety of information, including speed limits, traffic conditions, and weather warnings. Digital road signs can help drivers by providing information that is not always available from traditional signs.

X. FUTURE SCOPE:

One of the benefits of digital road signs is that they can be updated in real-time, which means that they can be used to provide motorists with upto-the-minute information about conditions on the road ahead. This can be particularly useful in the case of accidents or other incidents that might cause delays. In the future, digital road signs could also be used to provide information about alternative routes that might be available in the event of a problem on the road. This could be particularly useful in the case of major incidents, such as road closures due to bad weather. Finally, digital road signs could be used to provide motorists with information about the best times to travel in order to avoid traffic congestion. This could be particularly useful in areas where there is a lot of traffic.

XI. APPENDIX:

Source Code:

import requests #importing a library import json import ibmiotf.application import ibmiotf.device import time import random import sys

watson device details

```
organization = "2s7yy7"
devicType = "project"
deviceId = "projectid"
authMethod= "token"
authToken= "projecttoken"
```

#generate random values for randomo variables (temperature&humidity) def myCommandCallback(cmd):

global a
#print("command recieved:%s" %cmd.data['command'])
#status=cmd.data['command']
print("command recieved:%s" %cmd.data['command'])
control=cmd.data['command'] print(control)

```
try:
deviceOptions={"org": organization, "type": devicType,"id":
deviceId,"authmethod":authMethod,"auth-token":authToken}
deviceCli = ibmiotf.device.Client(deviceOptions)
except Exception as e:
print("caught exception connecting device %s" %str(e))
sys.exit()
#connect and send a datapoint "temp" with value integer value into the
cloud as a type of
event for every 10 seconds deviceCli.connect()
while True:
#get sensor data from DHT11
a =
"https://api.openweathermap.org/data/2.5/weather?q=Chennai,%20IN&a
ppid=e2bea247e
d9ad643a04d9a8e55499d5f"
r=requests.get(url=a)
data=r.json()
Temp= data['main']['temp']
Humd= data['main']['humidity']
data= {'temp':Temp,'humid':Humd}
dist=random.randint(0,20)
dis={'dista':dist}
if(Humd<100):
warn={'alert':'PLEASE SLOW DOWN!!!!!!'}
if(dist<20):
insta={'inst':'stop'}
def myOnPublishCallback():
print("published Temperature = %s c" %Temp,"humidity:%s %%"
%Humd) print(warn) print(dis) print(insta)
```

success=deviceCli.publishEvent
("IoTSensor","json",insta,qos=0,on_publish=
myOnPublishCallback)
success=deviceCli.publishEvent ("IoTSensor","json",data,qos=0,on_publish=
myOnPublishCallback)
success=deviceCli.publishEvent
("IoTSensor","json",warn,qos=0,on_publish=
myOnPublishCallback)
success=deviceCli.publishEvent ("IoTSensor","json",dis,qos=0,on_publish=
myOnPublishCallback)

if not success: print("not
connected to ibmiot")
time.sleep(5)

deviceCli.commandCallback=myCommandCallback
#disconnect the device deviceCli.disconnect()

GITHUB AND PROJRCT DEMO LINK:

GITHUB LINK:

https://github.com/IBM-EPBL/IBM-Project-28065-1660106377

PROJECT DEMO LINK:

https://drive.google.com/file/d/1d070SWTe7JiGDwXrmuRUO2TnkLYc6_Jb/view?usp=drivesdk