Discrete Optimization

Mixed Integer Programming: Part I

Goals of the Lecture

- Mixed Integer Linear Programming (MIP)
 - introduction
 - -branch and bound

```
min c_1x_1 + \ldots + c_nx_n subject to a_{11}x_1 + \ldots + a_{1n}x_n \leq b_1 \ldots a_{m1}x_1 + \ldots + a_{mn}x_n \leq b_m x_i \geq 0 x_i \text{ integer}
```

```
min c_1x_1 + \ldots + c_nx_n subject to a_{11}x_1 + \ldots + a_{1n}x_n \leq b_1 \ldots a_{m1}x_1 + \ldots + a_{mn}x_n \leq b_m x_i \geq 0 x_i \text{ integer}
```

n variables, m constraints

```
min c_1x_1 + \ldots + c_nx_n subject to a_{11}x_1 + \ldots + a_{1n}x_n \leq b_1 \ldots a_{m1}x_1 + \ldots + a_{mn}x_n \leq b_m x_i \geq 0 x_i \text{ integer}
```

- n variables, m constraints
- variables are nonnegative and integral

```
min c_1x_1 + \ldots + c_nx_n subject to a_{11}x_1 + \ldots + a_{1n}x_n \leq b_1 \ldots a_{m1}x_1 + \ldots + a_{mn}x_n \leq b_m x_i \geq 0 x_i \text{ integer}
```

- n variables, m constraints
- variables are nonnegative and integral
- inequality constraints

What is a Mixed Integer Program?

```
min c_1x_1 + \ldots + c_nx_n subject to a_{11}x_1 + \ldots + a_{1n}x_n \leq b_1\ldotsa_{m1}x_1 + \ldots + a_{mn}x_n \leq b_mx_i \geq 0x_i \text{ integer } (i \in I)
```

- n variables, m constraints
- variables are nonnegative and possibly integral
- inequality constraints

Mixed Integer Versus Linear Programs?

Mixed Integer Versus Linear Programs?

- Integrality constraints
 - -the gap between P and NP

The Knapsack Problem

maximize
$$\sum_{i \in I} v_i x_i$$

subject to

$$\sum_{i \in I} w_i x_i \le K$$

$$x_i \in \{0, 1\} \quad (i \in I)$$

7

- ► Can we find a MIP model?
 - what are the decision variables?
 - what are the constraints?
 - what is the objective function?

- Can we find a MIP model?
 - what are the decision variables?
 - what are the constraints?
 - what is the objective function?
- Decision variables

- ► Can we find a MIP model?
 - what are the decision variables?
 - what are the constraints?
 - what is the objective function?
- Decision variables
 - for each warehouse, decide whether to open it
 - • $x_w = 1$ if warehouse w is open

- Can we find a MIP model?
 - what are the decision variables?
 - what are the constraints?
 - what is the objective function?
- Decision variables
 - -for each warehouse, decide whether to open it
 - $\bullet x_w = 1$ if warehouse w is open
 - -decide whether a warehouse serves a customer
 - $y_{wc} = 1$ if warehouse w serves customer c

Decision variables

- -for each warehouse, decide whether to open it
 - $\bullet x_w = 1$ if warehouse w is open
- -decide whether a warehouse serves a customer
 - $y_{wc} = 1$ if warehouse w serves customer c

- Decision variables
 - -for each warehouse, decide whether to open it
 - $\bullet x_w = 1$ if warehouse w is open
 - -decide whether a warehouse serves a customer
 - $y_{wc} = 1$ if warehouse w serves customer c
- What are the constraints?

- Decision variables
 - -for each warehouse, decide whether to open it
 - $\bullet x_w = 1$ if warehouse w is open
 - -decide whether a warehouse serves a customer
 - $y_{wc} = 1$ if warehouse w serves customer c
- What are the constraints?
 - a warehouse can serve a customer only if it is open

Decision variables

- -for each warehouse, decide whether to open it
 - $\bullet x_w = 1$ if warehouse w is open
- -decide whether a warehouse serves a customer
 - $y_{wc} = 1$ if warehouse w serves customer c
- What are the constraints?
 - a warehouse can serve a customer only if it is open
 - a customer must be served by exactly one warehouse

- Decision variables
 - -for each warehouse, decide whether to open it
 - $\bullet x_w = 1$ if warehouse w is open
 - -decide whether a warehouse serves a customer
 - $y_{wc} = 1$ if warehouse w serves customer c
- What are the constraints?
 - a warehouse can serve a customer only if it is open

$$y_{w,c} \le x_w$$

- a customer must be served by exactly one warehouse

$$\sum_{w \in W} y_{w,c} = 1$$

- Decision variables
 - -for each warehouse, decide whether to open it
 - $\bullet x_w = 1$ if warehouse w is open
 - -decide whether a warehouse serves a customer
 - $y_{wc} = 1$ if warehouse w serves customer c
- What is the objective function?

- Decision variables
 - -for each warehouse, decide whether to open it
 - $\bullet x_w = 1$ if warehouse w is open
 - -decide whether a warehouse serves a customer
 - $y_{wc} = 1$ if warehouse w serves customer c
- What is the objective function?

$$\sum_{w \in W} c_w x_w + \sum_{w \in W, c \in C} t_{w,c} y_{w,c}$$

- Decision variables
 - -for each warehouse, decide whether to open it
 - $\bullet x_w = 1$ if warehouse w is open
 - -decide whether a warehouse serves a customer
 - $y_{wc} = 1$ if warehouse w serves customer c
- What is the objective function?

- Decision variables
 - -for each warehouse, decide whether to open it
 - $\bullet x_w = 1$ if warehouse w is open
 - -decide whether a warehouse serves a customer
 - $y_{wc} = 1$ if warehouse w serves customer c
- What is the objective function?

min $\sum_{w \in W} c_w \ x_w + \sum_{w \in W, c \in C} t_{w,c} \ y_{w,c}$ subject to $y_{w,c} \le x_w \qquad (w \in W, c \in C)$ $\sum_{w \in W} y_{w,c} = 1 \quad (c \in C)$ $x_w \in \{0,1\} \qquad (w \in W)$ $y_{w,c} \in \{0,1\} \qquad (w \in W, c \in C)$

Decision variables

- -for each warehouse, decide whether to open it
 - $\bullet x_w = 1$ if warehouse w is open
- -decide whether a warehouse serves a customer
 - $y_{wc} = 1$ if warehouse w serves customer c

Why not use

- y_c denotes the warehouse serving customer c?

The Role of 0/1 Variables

- ► MIP models love 0/1 variables
 - integer variables are typically 0/1 variables

The Role of 0/1 Variables

- ► MIP models love 0/1 variables
 - integer variables are typically 0/1 variables
- Linear constraints are easy to state
 - -when using 0/1 variables

The Role of 0/1 Variables

- ► MIP models love 0/1 variables
 - integer variables are typically 0/1 variables
- Linear constraints are easy to state
 - -when using 0/1 variables
- Still many possible models to consider
 - decision variables
 - -constraints
 - objectives

Branch and Bound

- ► How to solve MIP models?
 - -active research area for many many decades

Branch and Bound

- How to solve MIP models?
 - active research area for many many decades
- Branch and bound
 - Bounding: finding an optimistic relaxation
 - Branching: splitting the problem in subproblems

Branch and Bound

- How to solve MIP models?
 - active research area for many many decades
- Branch and bound
 - Bounding: finding an optimistic relaxation
 - Branching: splitting the problem in subproblems
- MIP models have a natural relaxation
 - the linear relaxation
 - remove the integrality constraint on variables

Branch and Bound for MIP Models

Solve the linear relaxation

- Solve the linear relaxation
 - If the linear relaxation is worse than the best solution found so far, prune this node
 - the associated problem is suboptimal

- Solve the linear relaxation
 - If the linear relaxation is worse than the best solution found so far, prune this node
 - the associated problem is suboptimal
 - If the linear relaxation is integral, we have found a feasible solution
 - update the best feasible solution if appropriate

- Solve the linear relaxation
 - If the linear relaxation is worse than the best solution found so far, prune this node
 - the associated problem is suboptimal
 - If the linear relaxation is integral, we have found a feasible solution
 - update the best feasible solution if appropriate
 - Otherwise, find an integer variable x that has a fractional value f in the linear relaxation
 - ullet create two subproblems $\mathbf{x} \leq \lfloor f \rfloor$ and $\mathbf{x} \geq \lceil f \rceil$
 - repeat the algorithm on the subproblems

- Focus on the objective
 - the relaxation gives an optimistic bound

- Focus on the objective
 - the relaxation gives an optimistic bound
- Pruning based on sub-optimality
 - prune provably suboptimal nodes

- Focus on the objective
 - the relaxation gives an optimistic bound
- Pruning based on sub-optimality
 - prune provably suboptimal nodes
- Relax feasibility
 - -relax the integrality constraints

- Focus on the objective
 - the relaxation gives an optimistic bound
- Pruning based on sub-optimality
 - prune provably suboptimal nodes
- Relax feasibility
 - relax the integrality constraints
- Global view of the relaxation
 - -consider all problem constraints

The Knapsack Problem

subject to

$$\sum_{i \in I} w_i x_i \le K$$

$$x_i \in \{0, 1\} \quad (i \in I)$$

The Knapsack Problem: Linear Relaxation

subject to

$$\sum_{i \in I} w_i x_i \le K$$

$$0 \le x_i \le 1 \quad (i \in I)$$

- Linear relaxation
 - -same as the greedy relaxation we used

- Linear relaxation
 - -same as the greedy relaxation we used
- ► How do we branch?
 - -variable with a fractional value
 - i.e., most valuable item that cannot be fit entirely

- Linear relaxation
 - -same as the greedy relaxation we used
- ► How do we branch?
 - -variable with a fractional value
 - i.e., most valuable item that cannot be fit entirely
- What do the subproblems mean?
 - -do not take that item
 - what is the linear relaxation going to do?
 - -take this item
 - what is the linear relaxation going to do?

- Linear relaxation
 - -same as the greedy relaxation we used
- ► How do we branch?
 - -variable with a fractional value
 - i.e., most valuable item that cannot be fit entirely
- What do the subproblems mean?
 - -do not take that item
 - which item is now fractional?
 - -take this item
 - which item is now fractional?

	Vi	Wi
1	45	5
2	48	8
3	35	3

K = 10

	Vi	Wi	
1	45	5	
2	48	8	
3	35	3	
K = 10			

	Vi	Wi
	45	5
2	48	8
3	35	3
K = 10		

- When is Branch and Bound effective?
 - necessary condition: the linear relaxation is strong
 - is it sufficient?

- When is Branch and Bound effective?
 - necessary condition: the linear relaxation is strong
 - is it sufficient?
- What is a good MIP model?
 - one with a good linear relaxation

- When is Branch and Bound effective?
 - -necessary condition: the linear relaxation is strong
 - is it sufficient?
- ► What is a good MIP model?
 - one with a good linear relaxation
- Which variable should one branch on?
 - -most fractional value
 - why? exaggerate ...

Until Next Time