COPOLYMER, WATER REPELLENT OIL REPELLENT AGENT, AND WATER DISPERSION TYPE WATER REPELLENT OIL REPELLENT AGENT COMPOSITION

Patent number:

JP2001098033

Publication date:

2001-04-10

Inventor:

OHARU KAZUYA; JITSUKATA AKANE; SUGIMOTO

SHUICHIRO; MAEKAWA TAKASHIGE

Applicant:

ASAHI GLASS CO LTD

Classification:

- international:

C08F214/08; C08F220/22; C09D5/00; C09D7/12; C09D127/08;

C09D133/16; D06M15/277; C08F214/00; C08F220/00;

C09D5/00; C09D7/12; C09D127/02; C09D133/14; D06M15/21; (IPC1-7): C08F220/22; C08F214/08; C09D5/00; C09D7/12;

C09D127/08; C09D133/16; D06M15/277

european:

Application number: JP19990279313 19990930 Priority number(s): JP19990279313 19990930

Report a data error here

Abstract of JP2001098033

PROBLEM TO BE SOLVED: To provide water dispersion type water repellent oil repellent agent compositions with excellent practicability which unite excellent water repellent oil repellent performance and high tackiness and maintain stable and high performance even in the presence of impurities such as an acid dye. SOLUTION: Copolymers have, as the essential components, polymerization units of a (meth)acrylate having a polyfluoroalkyl group and polymerization units of a vinylidene halide and, at the same time, a crystal melting point of the polymer, measured by DSC, in the range of 50-150 deg.C.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-98033

(P2001-98033A) (43)公開日 平成13年4月10日(2001.4.10)

					744 1 -74-		
(51) Int.Cl. ⁷	識別記号	FΙ			ī	f-7]-}*(参考)	
C08F 220/22		C08F22	20/22			4 J O 3 8	
214/08		21	14/08			4 J 1 0 0	
C 0 9 D 5/00		C09D	5/00		Z	4 L 0 3 3	
7/12			7/12		Z		
127/08		12	27/08				
	審查請求	未辦求 蘭求平	項の数8	OL	(全 14 頁)	最終頁に続く	
(21)出願番号	特顯平11-279313	(71)出願人	. 0000000)44			
			旭硝子	失式会	社		
(22)出顧日	平成11年9月30日(1999.9.30)	第0) 東京都千代田区有楽町一丁目12番1号				目12番1号	
		(72)発明者 大春		一也			
			神奈川	具横浜	市神奈川区平	羽沢町1150番地	
			旭硝子	失式会	社内		
		(72)発明者	実方	あかね	l		
			神奈川	具横浜	市神奈川区邓	羽沢町1150番地	
		1	旭硝子	株式会	社内		
		(72)発明者	杉本	修一郎	3		
		神奈川県横			医市神奈川区羽沢町1150番地		
			旭硝子	株式会	社内		
						最終頁に続く	

(54) 【発明の名称】 共重合体、撥水撥油剤、および水分散型撥水撥油剤組成物

(57)【要約】

【課題】優れた撥水撥油性能および高い粘着性を両立させ、酸性染料等の夾雑物が存在しても、安定かつ高い性能を維持する実用性に優れた水分散型撥水撥油剤組成物の提供。

【解決手段】ポリフルオロアルキル基を有する(メタ)アクリレートの重合単位およびハロゲン化ビニリデンの重合単位を必須とする共重合体であり、かつ、DSC測定による重合体の結晶融解点を50~150℃の範囲に有する。

【特許請求の範囲】

【請求項1】下記重合単位(b¹)および下記重合単位 (b²)を必須とする共重合体(B)であり、かつ、D SC測定による重合体の結晶融解点を50~150℃の 範囲に有することを特徴とする共重合体。

1

重合単位(b¹):ポリフルオロアルキル基を有する (メタ) アクリレートの重合単位。

重合単位(b²):ハロゲン化ビニリデンの重合単位。 【請求項2】重合単位(b')が、塩化ビニリデンの重 合単位である請求項1に記載の共重合体。

【請求項3】共重合体(B)が、重合単位(b¹)を2 0~80重量%、重合単位(b')を20~80重量% 含む共重合体である請求項1または2に記載の共重合 体。

【請求項4】共重合体(B)が、重合単位(b¹)以外 であり、かつ、重合単位(b²)以外である重合単位 (b³)を含む共重合体であり、重合体(B)中の重合 単位(b³)の割合が、重合単位(b¹)と重合単位(b との合計に対して0.1~20軍量%である請求項 1、2、または3に記載の共重合体。

【請求項5】請求項1~4のいずれかに記載の共重合体 (B) からなる撥水撥油剤。

【請求項6】請求項5に記載の撥水撥油剤、界面活性剤 (D)、および水系媒体(E)を含む水分散型撥水撥油

【請求項7】請求項6に記載の水分散型撥水撥油剤組成 物で処理された処理物。

【請求項8】請求項6に記載の水分散型撥水撥油剤組成 物で表面処理された紙または繊維。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、特定の物性を有す る共重合体、該共重合体の製造方法、および該共重合体 を有効成分とする水分散型撥水撥油剤組成物に関する。 本発明の水分散型撥水撥油剤組成物は、造膜性に優れ、 加工浴の安定性に優れる。また該共重合体を含む組成物 から形成された被膜は、粘着性が高く撥水性撥油性に優 れていることにより、該組成物は紙用または繊維用の撥 水撥油剤組成物として有用である。

[0002]

【従来の技術】従来から、ポリフルオロアルキル基(以 下R'基と記す)を有する重合性単量体の重合単位を有 する重合体を、有機溶媒溶液または水系溶媒分散液とし て繊維製品や紙等に処理し、それらの表面に撥水撥油性 を付与する技術が知られている。

【0003】撥水撥油処理がなされた繊維表面に、裾上 げテープ、ワッペン、ブリント等の粘着剤を付着して表 面を装飾する等の二次加工がさかんに行われている。し かし、従来より提供される撥水撥油剤で処理された表面 の大部分は、粘着性(粘着剤が剥がれにくい性質)に劣 50 【0010】R'基中のフッ素原子の数は、[(R'基中

る問題があった。

【0004】撥水撥油剤組成物に含ませる重合体のうち 造膜性が良好で粘着性がある重合体として、R「基を有 する (メタ) アクリレート (以下、R'(メタ) アクリ レートという。)と塩化ビニリデンとの共重合体が知ら れている。この共重合体を含む撥水撥油剤組成物は、特 に低温でキュアを行う紙用の撥水撥油剤組成物として広 く用いられるほか、繊維用にも使用されている。しか し、該組成物は、安定性が低く、撥水撥油剤加工浴に酸 10 性染料等の夾雑物が入ると、撥水撥油性能が低下する問 題があった。

[0005]

【発明が解決しようとする課題】本発明は、上記の問題 を解決し、造膜性に優れ、粘着剤に優れ、かつ、組成物 の安定性が高い撥水撥油剤組成物の提供を目的とする。 [0006]

【課題を解決するための手段】本発明は、下記重合単位 (b¹) および下記重合単位(b¹) を必須とする共重合 体(B)であり、かつ、DSC測定による重合体の結晶 融解点を50~150℃の範囲に有することを特徴とす る共重合体、該共重合体からなる撥水撥油剤、および該 撥水撥油剤を含む水分散型撥水撥油剤組成物を提供す

重合単位(b1): R「基を有する(メタ) アクリレート の重合単位。

重合単位(b¹): ハロゲン化ビニリデンの重合単位。 [0007]

【発明の実施の形態】本明細書においては、アクリル酸 とメタクリル酸とを総称して(メタ)アクリル酸と記 30 す。(メタ)アクリレート等についても同様に記す。本 発明における重合単位(b¹)(重合単位とは繰り返し 単位ともいう。)は、R'(メタ)アクリレートの重合 単位である。R'(メタ)アクリレートとは、R'基が (メタ) アクリレートのアルコール残基部分に存在する 化合物をいう。

【0008】R'基は、アルキル基の水素原子の2個以 上がフッ素原子に置換された基をいう。R'基の炭素数 は2~20が好ましく、特に6~16が好ましい。ま た、R'基は、直鎖構造であっても分岐構造であっても よく、直鎖構造が好ましい。分岐構造である場合には、 分岐部分がR「基の末端部分に存在し、かつ、炭素数1 ~4程度の短鎖であるのが好ましい。R'基は、フッ素 原子以外の他のハロゲン原子を含んでいてもよい。他の ハロゲン原子としては、塩素原子が好ましい。

【0009】R「基中の炭素-炭素結合間には、エーテ ル性酸素原子またはチオエーテル性硫黄原子が挿入され ていてもよい。R「基の末端部分の構造としては、-C F_1CF_3 , $-CF(CF_3)_2$, $-CF_2H_1$, $-CF_3H_2$ -CF,C1等が挙げられ、-CF,CF,が好ましい。

tana a **at**au a ara ara na mata a mata a ara a

のフッ素原子数) / (R'基と同一炭素数の対応するア ルキル基中に含まれる水素原子数)]×100(%)で 表現した場合に、60%以上が好ましく、特に80%以 上が好ましい。さらにR'基は、アルキル基の水素原子 の全てがフッ素原子に置換された基(すなわちベルフル オロアルキル基)、またはベルフルオロアルキル基を末 端部分に有する基が好ましい。

【0011】ペルフルオロアルキル基の炭素数は2~2 0が好ましく、特に6~16が好ましい。ペルフルオロ 傾向があり、ペルフルオロアルキル基の炭素数が多い と、共重合体が常温で固体となり、昇華性も大きく、取 扱いが困難になるおそれがある。

【0012】R「基の具体例としては、以下の基が挙げ **られる。なお、以下の例においては同一分子式を有する** 構造のことなる基である「構造異性の基」のいずれであ ってもよい。

 $C_{\bullet}F_{\bullet}-$, [F (CF₁),-, (CF₃),CFCF ,-、(CF,)C-、およびCF,CF,(CF,)CF -等]、C,F₁₁-[F(CF₂),-、(CF₃),CC F,-等]、C,F,,-[F(CF,),-等]、C,F,, - [F (CF₁),-等]、C₂F₁,- [F (CF₁)₄-等]、C,F1,-[F(CF1),-等]、C10F11-[F(CF₁)₁₀-等]、C₁₂F₂₅-[F(CF₂)₁₂-等]、C14F29-[F(CF2)14-等]、C16F33-[F(CF₁)₁₆-等]、C1(CF₁),-(sは2~ 20の整数。)、H(CF₁)。- (tは2~20の整 数。)、(CF,),CF(CF,),-(yは1~17の 整数。)等。

【0013】R'基が、炭素-炭素結合間に、エーテル 性酸素原子が挿入された基である場合の具体例として は、以下の基が挙げられる。

 $F(CF_1),OCF(CF_1)-F(CF(CF_1)C$ $F_{i}O$, $CF_{i}CF_{i}$, $CF_{i}CF_{i}$, F_{i} F_{3}) CF_{2} O], CF_{3} CF, CF_{3}) -, F_{4} CF, CF_{3} CF, CF_{3 $CF_1O]$ CF_1CF_2- , $F(CF_1CF_2CF_3O)$, C F_2CF_2- , $F_1CF_2CF_2O_1$) CF_2CF_2- (r $\mbox{tl}1$ ~5の整数、zは1~6の整数、uは1~6の整数、v は1~6の整数、wは1~8の整数) 等。

【0014】R'(メタ) アクリレートとしては、下式 1で表される化合物が好ましい。ただし、式1において R'はR'基、Qは2価有機基、R'は水素原子またはメ チル基を示す。

R'-Q-OCOCR'=CH,···式1 式1におけるR「基は、エーテル性酸素原子またはチオ エーテル性硫黄原子を含まないR'基が好ましく、特に ペルフルオロアルキル基が好ましく、特に-(CF,)。 CF、(ただし、nは1~19の整数であり、5~15 の整数が好ましい。)で表される基が好ましい。

[0015]式1におけるQとしては、 $-(CH_1)_{p,q}$ 50 OCR'=CH₁、

-, - (CH₂), CONR² (CH₂), -, - (CH₂) $.OCONR^{2}(CH_{1}), -, -(CH_{1}), SO, NR$ '(CH₂) - (CH₂) NR'CONR'(CH₂) 。-、- (CH₂)。CH (OH) (CH₂)。-等が好ま しい。ただし、R'は水素原子またはアルキル基を示 す。また、pおよびqは0以上の整数を示し、p+qは 1~22の整数である。

The Company of the Co

【0016】 これらのうち、Qが-(CH₂),...-、- (CH_1) , $CONH(CH_2)$, -, - (CH_2) , SO_2 アルキル基の炭素数が少ないと撥水撥油性能が低下する 10 NR¹(CH;)。- であり、かつ、 q が2以上の整数、 p+qが2~6であるのが好ましい。Qは特に、p+qが2~6である場合の-(CH,),,,-、すなわち、エ チレン基~ヘキサメチレン基が好ましい。また、Qと結 合するR'の炭素原子には、フッ素原子が結合している

> 【0017】R'(メタ)アクリレートの具体例として は、下記化合物が挙げられる。ただし、R'は水素原子 またはメチル基を示す。

 $F(CF_2)_5CH_2OCOCR^4 = CH_2$ 20 $F(CF_2)_6CH_2CH_2OCOCR^1=CH_2$.

 $H(CF_2)_{s}CH_{2}OCOCR^{1}=CH_{2}$

 $H(CF_1),CH_1OCOCR^1=CH_1$

 $H(CF_1)_{10}CH_1OCOCR^1=CH_1$ $H(CF_1) \cdot CH_1 \cdot CH_2 \cdot OCOCR^1 = CH_1$

 $F(CF_2) \cdot CH_2CH_2CH_2OCOCR^1 = CH_2$

 $F(CF_1),CH_1CH_2OCOCR^1=CH_1$

 $F(CF_1)_{10}CH_1CH_2OCOCR^1=CH_1$

 $F(CF_1)_{11}CH_1CH_2OCOCR^1=CH_1$

 $F(CF_2)_{14}CH_2CH_2OCOCR^1=CH_2$

30 $F(CF_1)_{16}CH_1CH_2OCOCR^1=CH_2$ (CF_1) , CF (CF_2) , $CH_1CH_2OCOCR^1 = C$

 $(CF_1)_1CF_1(CF_1)_2CH_1CH_1OCOCR^1=C$

 $(CF_1)_{CF}(CF_1)_{CH_1}CH_2CCCCR^1=C$

F (CF₂), SO₂N (CH₂CH₂CH₃) CH₂CH₂O $COCR^1 = CH_2$

 $F(CF_2)$, (CH_2) , $OCOCR^1 = CH_2$,

40 F (CF₁), SO₂N (CH₁) CH₁CH₂OCOCR¹ = C H₂,

F (CF,),SO,N (CH,CH,) CH,CH,OCO $CR_1 = CH_2$

F (CF₁), CONHCH₂CH₂OCOCR¹=CH₂, $(CF_1)_1CF_2(CF_1)_2(CH_1)_2OCOCR_1=C$

(CF,), CF (CF,), CH, CH (OCOCH,) O $COR^1 = CH_1$

(CF,), CF (CF,), CH, CH (OH) CH, OC

(CF,),CF (CF,),CH,CH (OH) CH,OC $OCR^1 = CH_2$

 $F(CF_1),CH_1CH_2OCOCR^1=CH_2$

F (CF₁),CONHCH,CH,OCOCR'=CH₁. 【0018】重合単位(b¹)は、1種であっても2種 以上であってもよく、2種以上である場合には、炭素数 の異なるR'(メタ)アクリレートの重合単位からなる のが好ましい。

【0019】本発明における共重合体(B)は重合単位 (b¹) とともに、ハロゲン化ビニリデンの重合単位 (b1)を含む。ハロゲン化ビニリデンとしては、塩化 ビニリデン、フッ化ビニリデンが好ましく、特に塩化ビ ニリデンが好ましい。

【0020】共重合体(B)中の重合単位(b¹)の割 合は20~80重量%が好ましく、特に30~70重量 %が好ましい。共重合体(B)中の重合単位(b1)の 割合は20~80重量%が好ましく、特に30~70重 量%が好ましい。また、本発明の共重合体(B)が撥水 撥油剤として優れた性能を発揮するためには、共重合体 しているのが好ましい。

【0021】さらに本発明における共重合体(B)は、 R'(メタ)アクリレートでもハロゲン化ビニリデンで もない重合性単量体(以下、他の単量体と記す)の重合 単位(以下、重合単位(b')と記す。)を含んでいて もよい。重合単位(b')の割合は、共重合体(B)中 の重合単位(b¹)と重合単位(b¹)との合計に対して 0. 1~20重量%であるのが好ましい。重合単位(b 1)が20重量%超の場合、本発明の目的とする効果が 充分に発揮されないおそれがある。

【0022】他の単量体としては、重合性不飽和基を1 または2個有する重合性単量体が好ましく、特に重合性 不飽和基を1個有する重合性単量体が好ましい。他の単 量体のうち、重合性不飽和基を1個有する重合性単量体 としては、下記重合性単量体が好ましい。

【0023】アルキル(メタ)アクリレート、シクロア ルキル(メタ)アクリレート、モノオレフィン、カルボ ン酸ビニル、スチレン、置換スチレン、(メタ)アクリ ルアミド、N-置換(メタ)アクリルアミド、アルキル ビニルエーテル、(置換アルキル)ビニルエーテル、ビ 40 ニルアルキルケトン、ジエン、グリシジル(メタ)アク リレート、アジリジニル (メタ) アクリレート、ヒドロ キシアルキル (メタ) アクリレート、ポリオキシアルキ レンモノ(メタ)アクリレート、ポリオキシアルキレン モノ (メタ) アクリレートモノアルキルエーテル、ポリ オキシアルキレンジ (メタ) アクリレート、ポリジメチ ルシロキサン基含有(メタ)アクリレート、トリアリル シアヌレート、アリルグリシジルエーテル、カルボン酸 アリル、N-ビニルカルバゾール、N-メチルマレイミ ド、無水マレイン酸、マレイン酸モノアルキルエステ

ル、マレイン酸ジアルキエステル。

【0024】さらに他の単量体としては、炭素数1~2 0のアルキル基を有するアルキル (メタ) アクリレー ト、炭素数5~8のシクロアルキル基を有するシクロア ルキル(メタ)アクリレート、酢酸ビニル、スチレン、 α-メチルスチレン、p-メチルスチレン、グリシジル (メタ) アクリレート、(メタ) アクリルアミド、N. N-ジメチル (メタ) アクリルアミド、ジアセトン (メ タ) アクリルアミド、メチロール化ジアセトン (メタ) 10 アクリルアミド、N-メチロール (メタ) アクリルアミ ド、ビニルアルキルエーテル、ハロゲン化アルキルビニ ルエーテル、ビニルアルキルケトン、アジリジニルエチ ル(メタ)アクリレート、ベンジル(メタ)アクリレー ト、アジリジニル (メタ) アクリレート、2-ヒドロキ シエチル (メタ) アクリレート、ポリオキシアルキレン モノ (メタ) アクリレート、ポリオキシエチレンモノ (メタ) アクリレートモノメチルエーテル、ポリオキシ エチレンモノ(メタ)アクリレートモノ(2-エチルへ キシル) エーテル、ポリオキシエチレンジ (メタ) アク (B)中の重合単位(b¹)はブロック状になって存在 20 リレート、ポリジメチルシロキサン基を有する(メタ) アクリレート、トリアリルシアヌレート、アリルグリシ ジルエーテル、酢酸アリル、2-ヒドロキシ-3-クロ ロプロピル (メタ) アクリレート、N-ビニルカルバゾ ール、マレイミド、N-メチルマレイミド、(2-ジメ チルアミノ) エチル (メタ) アクリレート等が好まし

> 【0025】本発明の共重合体(B)は、DSC(示差 走査熱量計)による重合体の結晶融解点を50~150 ℃の範囲に有する共重合体である。結晶融解点とは、D 30 SC測定における吸熱ビーク温度をいう。一般に結晶融 解点以下の物質は結晶となり、該融点以上の物質は溶融 状態となるが、本発明の共重合体で観測される結晶融解 点は、共重合体自体の結晶融解点ではなく、共重合体中 に部分的に存在する結晶構造の変化に伴う結晶融解点で あると考えられる。すなわち、本発明の共重合体中は、 結晶構造が部分構造として存在する共重合体であると考 えられる。

【0026】本発明の共重合体(B)は、撥水撥油剤組 成物中の成分として有用であり、この用途において、共 重合体(B)の結晶融解点は50~150℃が好まし く、特に70~120℃が好ましい。また、結晶融解点 の吸熱ピークの大きさは、0.1cal/g以上である のが好ましい。

【0027】本発明の共重合体(B)は、R'(メタ) アクリレートとハロゲン化ビニリデンとを一括で仕込み 重合させる従来の製造方法では、通常製造できない。 R 「(メタ)アクリレートとハロゲン化ビニリデンとを一 括で仕込むと、両者は共重合性が高く、それぞれに由来 する重合単位がランダムかつほぼ均一に並んだ共重合体 50 が得られ、該共重合体においては結晶融解点は観測され ない。すなわち、本発明の共重合体(B)はブロック重 合体であるのが好ましく、特にブロック状になったハロ ゲン化ビニリデンの重合単位を有する共重合体が好まし

【0028】本発明の共重合体(B)を製造するために は、R^f(メタ)アクリレートおよびハロゲン化ビニリ デンの仕込み時期をずらして重合させるのが好ましい。 すなわち、共重合体(B)の製造方法としては、つぎの 方法によるのが好ましい。

【0029】(方法1);R'(メタ)アクリレートを 重合させ、つぎにハロゲン化ビニリデンを添加して重合 させる方法、(方法2);ハロゲン化ビニリデンを重合 させ、つぎにR'(メタ)アクリレートを添加して重合 させる方法、(方法3)ハロゲン化ビニリデンの一部お よびR'(メタ)アクリレートを重合させ、さらにハロ ゲン化ビニリデンまたはR「(メタ) アクリレートを添 加して重合させる方法。他の単量体は、どの時点で添加 してもよい。

【0030】重合反応における重合性単量体は、媒体、 乳化したものを用いてもよい。前乳化を行う場合には、 塩化ビニリデンが存在しない状態で前乳化するのが好ま しい。

【0031】連鎖移動剤としては、下式2で表される化 合物が好ましい。

RSH···式2

ただし、Rは炭素数12~18のアルキル基を示す。式 2で表される化合物の具体例としては t - ドデシルメル カプタン、n-ドデシルメルカプタン、ステアリルメル カプタン等が挙げられる。連鎖移動剤量は、重合体の分 30 子量により適宜変更しうる。また、添加剤としては、p H調整剤等が挙げられる。

【0032】また、方法1または3において、あとから 加えて重合させるハロゲン化ビニリデンは、R'(メ タ) アクリレートを含む他の重合性単量体の重合による 発熱を認めた後で添加するのが好ましく、特にR'(メ タ)アクリレートの反応率が30%以上となった後で添 加するのが好ましい。

【0033】また、加圧下での前乳化を行う場合には、 高圧乳化装置を用いるのが好ましい。高圧乳化装置とし ては、マントンゴーリン、ハイドロシェア、マイクロフ ルイダイザー等が挙げられる。加圧時の圧力としては1 ~50MPa(ゲージ圧)が好ましい。また、加圧操作 時には、温度を40~80℃とするのが好ましい。ま た、加圧下での前乳化時には撹拌を行ってもよい。加圧 下での乳化は、必須工程ではないが、重合反応の反応系 中に有機溶剤が存在する場合には、重合後の安定性を高 める目的で、加圧下での乳化を実施するのが好ましい。 なお、共重合体(B)が、常温でガス状の重合性単量体 の重合単位を含む重合体である場合には、加圧乳化後

に、該重合性単量体を導入するのが好ましい。

【0034】加圧下での前乳化後では、重合性単量体が 小さな粒子となって分散した乳化物が得られる。該乳化 物は、熱力学的に安定であり、重合時に重合性単量体の 大部分が効率的に反応しうる利点がある。加圧乳化後の 乳化物の平均粒子径は0.1~300nmが好ましい。 【0035】本発明の共重合体(B)は撥水撥油剤とし て有用である。該撥水撥油剤から水分散型撥水撥油剤組 成物を製造する場合には、製造時の界面活性剤として後 述する界面活性剤(D)、製造時の水系媒体として後述 する水系媒体(E)を用いて組成物とするのが好まし

【0036】重合反応は、乳化重合法によるのが好まし い。重合方法としては、一般的な乳化重合の方法が採用 でき、加圧乳化後に重合開始剤を加えて重合させる方法 が好ましい。重合開始剤としては特に限定されず、有機 過酸化物、アゾ化合物、過硫酸塩等の通常の重合開始 剤、または 7線等の電離性放射線等が使用できる。重合 反応の反応温度はラジカル開始剤にもよるが通常は30 界面活性剤、連鎖移動剤、添加剤等を加えて、高圧で前 20 ~80℃が好ましい。重合反応時間は4~70時間が好 ましい。

> 【0037】乳化重合法により生成した水分散液は、そ のまま本発明の撥水撥油剤組成物としてもよく、必要に 応じて水系媒体や界面活性剤を加えてもよい。また、組 成物の用途に応じた濃度に希釈してもよい。該方法によ り得られた水分散液は、安定性が顕著に高い利点を有す る。撥水撥油剤組成物中の共重合体(B)は、粒子状で 分散しているのが好ましく、該粒子の平均粒子径は0. 03~0. 25 μm程度が好ましい。また共重合体

(B) の分子量は1千~200万が好ましく、特に1万 ~20万が好ましい。

【0038】本発明の共重合体(B)は水系媒体(E) 中に分散させて水分散型撥水撥油剤組成物とするのが好 ましい。水分散型撥水撥油剤組成物は、さらに、界面活 性剤(D)を含むのが好ましい。

【0039】界面活性剤(D)はノニオン性界面活性剤 を必須とするのが好ましく、ノニオン性界面活性剤を6 0~100重量%含むのが好ましい。界面活性剤(D) としては、ノニオン性界面活性剤のみ、ノニオン性界面 活性剤とカチオン性界面活性剤、アニオン性界面活性剤 または両性界面活性剤からなるのが好ましく、ノニオン 性界面活性剤とカチオン性界面活性剤を併用する場合に は、ノニオン性界面活性剤量が60~99重量%とする のが好ましい。

【0040】ノニオン性界面活性剤としては、公知また は周知のノニオン性界面活性剤が採用できる。ノニオン 性界面活性剤としては、下記界面活性剤(d¹)~

(d°)から選択される1種または2種以上の混合物が 好ましい。

50 界面活性剤(d¹):ポリオキシアルキレンモノアルキ

*ン性界面活性剤。

【0043】界面活性剤(d⁶):ポリエチレングリコ

ール脂肪酸エステルまたは多価アルコール高級アルキル

【0044】界面活性剤(d¹)としては、下式3で表

される化合物からなる界面活性剤が好ましい。ただし、

下式において、R*は炭素数8以上のアルキル基または

アルケニル基を示す。sは5~50の整数であり、5~

30の整数が好ましく、特に10~30の整数が好まし

しい。sが4以下、またはgが21以上となると、水系

媒体に均一に溶解しないおそれがある。また、sが51

以上となると親水性が高くなり撥水性を低下させるおそ

10 い。gは0~20の整数を示し、0~10の整数が好ま

エーテルからなるノニオン性界面活性剤。

ルエーテルまたはポリオキシアルキレンモノアルケニル エーテルからなるノニオン性界面活性剤。

界面活性剤(d¹):分子中に1個以上の三重結合およ び1個以上の水酸基を含む化合物からなるノニオン性界 面活性剤。

界面活性剤(d'):ポリオキシエチレン部分と炭素数 3以上のオキシアルキレンが2個以上連続して連なった 部分とが連結し、かつ、両末端が水酸基である化合物か らなるノニオン性界面活性剤。

【0041】界面活性剤(d¹):分子中にアミンオキ シド部分を有するノニオン性界面活性剤。

【0042】界面活性剤(d'):ポリオキシエチレン モノ (アルキルフェニル) エーテル、ポリオキシエチレ ンモノ(アルケニルフェニル)エーテルからなるノニオ*

 $R^{\bullet}O[CH_{\bullet}CH(CH_{\bullet})O]_{\bullet}(C_{\bullet}H_{\bullet}O)_{\bullet}H \cdot \cdot \cdot \stackrel{\cdot}{\times} 3$

式3で表される化合物からなるノニオン性界面活性剤と しては、以下の例が挙げられる。ただし、下式において sおよびgは、上記と同じ意味を示す。

%[0045] 【化1】

れがある。

 $C_{18}H_{37}O$ [CH₂CH (CH₃) O] (CH₂CH₂O) H

 $C_{18}H_{35}O$ [CH₂CH (CH₃) O] , (CH₂CH₂O) , H,

 $C_{16}H_{33}O$ [CH₂CH (CH₃) O] [(CH,CH₂O) H,

 $C_{12}H_{25}O$ [CH,CH (CH₃) O] (CH,CH,O) H,

 (C_6H_{17}) (C_6H_{13}) $CH-O-[CH_2CH(CH_3)O]_1$

 $-(CH_{\circ}CH_{\circ}O)_{\circ}-H_{\circ}$

 $C_{10}H_{21}O[CH_{2}CH(CH_{3})O]_{2}(CH_{2}CH_{2}O)_{2}H_{0}$

【0046】界面活性剤(d')としては、下式4また 30★ましい。 は下式5で表されるアルコール化合物にアルキレンオキ シドを付加させた構造の化合物からなる界面活性剤が好★

[(£2] $HO-CR^5R^6-C\equiv C-CR^7R^8-OH$ · · · 式4

[0047]

 $HO-CR^9R^{10}-C\equiv C-H$ · · · 式5

[0048] ことで、R'、R'、R'、R'、R'、R'、R'、 はそれぞれ同一であっても異なっていてもよく、水素原 子またはアルキル基を示す。アルキル基は炭素数1~1 2の、直鎖構造または分岐構造のアルキル基が好まし く、たとえば、メチル基、エチル基、プロビル基、ブチ 40 ~10である化合物からなる界面活性剤が好ましい。 ル基、イソブチル基などが挙げられる。

【0049】界面活性剤(d²)としては、該アルコー ル化合物に、エチレンオキシド、プロピレンオキシド等☆ ☆の炭素数1~20のアルキレンオキシドを付加させた機 造の化合物が好ましく、アルキレンオキシドの付加数は 1~50が好ましい。界面活性剤(d')としては、式 6中の(x+y)値、または(x+y)値の平均値が0 [0050]

【化3】

(CH₃), CHCH, CH_3

HO (CH,CH,O) ,C-C≡C-C (OCH,CH,) ,OH···式6 CH_3 CH₂CH (CH₃)

特開2001-98033

CONTRACTOR STATE

【0051】界面活性剤(d³)としては、下式7また *~100、tは2~200の整数を示す。 は下式8で表される化合物からなる界面活性剤が好まし [0052] い。なお下式において、hは2~200の整数、rは3* [164] HO $(CH_2CH_2O)_b - [CH_2CH(CH_3)O]_r -$ - (CH, CH, O), H · · · 式7

HO (CH,CH,O) h^- (CH,CH,CH,CH,O),-

- (CH₂CH₂O),H····式8

【0053】さらに界面活性剤(d¹)としては、下記 10%【0054】 化合物が好ましい。 Ж 【化5】

HO $(CH_2CH_2O)_{15} - [CH_2CH_3CH_3]_{35} -$

- (CH₂CH₂O)₁₅H,

.: . .

HO $(CH_2CH_2O)_8 - [CH_2CH(CH_3)O]_{35} -$

-(CH₂CH₂O)₈H,

HO (CH,CH,O) 45 - [CH,CH (CH, O] 1,-

 $-(CH_2CH_2O)_{45}H$

HO (CH₂CH₂O) $_{34}$ - (CH₂CH₂CH₂CH₂O) $_{28}$ -

 $- (CH_2CH_2O)_{34}H_0$

【0055】界面活性剤(d')としては、下式9で表 される化合物からなる界面活性剤が好ましく、特に下式 10で表される化合物からなる界面活性剤が撥水撥油剤 の分散安定性の点で好ましい。式9における、R¹¹、R 32、R33は、それぞれ、同一であっても異なっていても ド部分(N→O)を有する界面活性剤は、カチオン性界 面活性剤に分類されることもあるが、本発明において は、ノニオン性界面活性剤として扱う。

【0056】また、式10において、R'は、炭素数6 ~22のアルキル基、炭素数6~22のアルケニル基、 アルキル基(炭素数6~22)が結合したフェニル基、 またはアルケニル基(炭素数6~22)が結合したフェ ニル基を示し、炭素数8~22のアルキルまたは炭素数 8~22のアルケニル基が好ましい。

(R'') (R'') (R'') N→O···式9 $R^3 - N(CH_1) \rightarrow O$ ・・・式10 式10で表されるノニオン性界面活性剤としては、以下 の例が挙げられる。

[(R¹⁰)(R¹¹)(R¹¹)(R¹¹)N¹]·[X¹⁰]···式11

ただし、式中の記号は以下の意味を示す。

R¹⁰、R¹¹、R¹¹、R¹¹: それぞれ同一であっても異な っていてもよく、水素原子、炭素数1~22のアルキル 基、アルケニル基、または末端が水酸基であるポリオキ シアルキレン基。ただし、R¹⁰、R¹¹、R¹¹、およびR 1'は同時に水素原子にはならない。

★ [0057] CH, (CH₂)₁₁N (CH₃)₂→0, CH $_{1}$ (CH₂) $_{1}$ N (CH₃) $_{2}$ \rightarrow O, CH₃ (CH₂) $_{1}$ N $(CH_1)_1 \rightarrow O$, CH_1 $(CH_2)_1$, N $(CH_3)_2 \rightarrow O$. 【0058】界面活性剤(d')の具体例としては、ポ リオキシエチレンモノ (ノニルフェニル) エーテル、ポ よく、炭化水素基を示す。なお、分子中にアミンオキシ 30 リオキシエチレンモノ (オクチルフェニル) エーテル、 ポリオキシエチレンモノ (オレイルフェニル) エーテ ル、ポリオキシエチレンモノ (ノニルフェニル) ホルム アルデヒド縮合物等が挙げられる。

【0059】また、界面活性剤(d°)の具体例として は、モノステアリン酸ポリエチレングリコール、テトラ オレイン酸ポリオキシエチレンソルビット、モノステア リン酸ポリオキシエチレンソルビタン、モノオレイン酸 ポリオキシエチレンソルビタン、モノラウリン酸ソルビ タン、デカグリセリンモノオレイルエーテル、グリセリ

40 ンモノオクデシルエーテル等が挙げられる。 【0060】また、カチオン性界面活性剤としては、下 式11で表される化合物からなる界面活性剤が好まし

64.

[X¹°] : 1 価アニオン。

【0061】式11で表されるカチオン性界面活性剤と しては、ステアリルトリメチルアンモニウムクロリド、 ステアリルジメチルエチルアンモニウムエチル硫酸塩、 (長鎖アルキル) メチルジ (ポリエチレングリコール) 50 アンモニウムクロリド、ジ(牛脂アルキル)ジメチルア ンモニウムクロリド、ジメチルココナッツアミン酢酸塩 等が挙げられる。

【0062】アニオン性界面活性剤を用いる場合には、 脂肪酸塩、 α -オレフィンスルホン酸塩、アルキルベン ゼンスルホン酸およびその塩、アルキル硫酸エステル 塩、アルキルエーテル硫酸エステル塩、アルキルフェニ ルエーテル硫酸エステル塩、N-アシルメチルタウリン 塩、アルキルスルホコハク酸塩等が好ましい。

【0063】両性界面活性剤を用いる場合には、ラウリ メチルヒドロキシエチルイミダゾリニウムベタイン、ラ ウリルジメチルアミノ酢酸ベタイン、脂肪酸アミドプロ ビルジメチルアミノ酢酸ベタイン等が挙げられる。

【0064】界面活性剤(D)量は、共重合体(B)に 対して、3~10重量%が好ましい。界面活性剤(D) 量が3重量%未満の場合には、エマルションの安定性が 低下するおそれがあり、10重量%超の場合には、撥水 撥油性能の湿摩擦耐久性の低下するおそれがある。

【0065】水系媒体(E)は、水、または、水溶性有 機溶媒と水の混合物である。水溶性有機溶媒としては、 飽和多価アルコール、飽和多価アルコールのアルキルエ ーテル、または、飽和多価アルコールのアルキレンオキ シド付加物から選ばれる1種以上が好ましい。該水溶性 有機溶媒は、界面活性剤(D)と相互に作用することに より、加圧下での乳化時に、乳化物の安定性および均質 性を長時間にわたり保持しうる利点がある。

【0066】水溶性有機溶媒としては、エチレングリコ ール、プロピレングリコール、ジエチレングリコール、 トリエチレングリコール、テトラエチレングリコール、 ングリコールモノメチルエーテル、トリプロピレングリ コールモノメチルエーテル、グリセリン、ジプロピレン グリコール、トリプロピレングリコール、テトラプロピ レングリコール、およびポリプロピレングリコールから 選ばれる1種以上が好ましい。

【0067】水系媒体(E)中の水溶性有機溶媒量は、 共重合体(B)に対し2~50重量%が好ましく、特に 10~40重量%が好ましい。水溶性有機溶媒量が2重 量%未満の場合には、エマルションの安定性の効果が認 められないおそれがあり、50重量%超の場合には、性 40 リド、 能が低下するおそれがある。また、水系媒体(E)量は 共重合体(B)に対して100~500重量%が好まし

【0068】本発明の共重合体を含む撥水撥油剤組成物 は、撥水撥油性に優れ、また、該組成物から形成された 被膜は粘着性が高い利点を有する。組成物の処理方法 は、被処理物の種類や組成物の調製形態等に応じて、任 意の方法が採用されうる。たとえば、浸漬塗布等の被覆 加工方法により被処理物の表面に付着させ乾燥する方法 が採用される。また、必要ならば適当な架橋剤とともに 50 GC:ガスクロマトグラフィ。

適用し、キュアリングを行ってもよい。

【0069】本発明の撥水撥油剤組成物は、他の化合物 を併用した場合においても、優れた安定性および撥水撥 油性能の耐久性を発揮するため、必要に応じて、他の重 合体、他の撥水剤、撥油剤、浸透剤、消泡剤、防菌剤、 防虫剤、難燃剤、帯電防止剤、染料安定剤、防シワ剤等 の添加剤を併用できる。本発明の撥水撥油剤組成物で処 理される被処理物としては、特に限定されず、繊維織 物、紙、ガラス、木、皮革、毛皮、石綿、レンガ、セメ ルベタイン、ステアリルベタイン、ラウリルカルボキシ 10 ント、金属およびその酸化物、窯業製品、プラスチック ス等が挙げられ、繊維織物と紙が好ましい。

> 【0070】繊維織物としては、綿、麻、羊毛、絹等の 動植物性天然繊維、ポリアミド、ポリエステル、ポリビ ニルアルコール、ポリアクリロニトリル、ポリ塩化ビニ ル、ポリプロピレン等の合成繊維、レーヨン、アセテー ト等の半合成繊維、またはこれらの混合繊維の織物が挙 げられる。

[0071]

【作用】本発明の撥水撥油剤組成物が優れた安定性を示 20 し、かつ処理した布帛に対し高い撥水性と高い粘着性を 両立する機構は必ずしも明確ではないが、ハロゲン化ビ ニリデンの重合単位に由来する高い粘着性が発揮され、 かつ、共重合体中に部分的に存在する結晶構造が組成物 の安定性向上に寄与したものと考えれられる。

[0072]

【実施例】例1~4は本発明の実施例、例5~6は本発 明の比較例を示す。なお、各例において用いた略号は、 以下の意味を示す。

FA: CF, (CF,) CH, CH, OCOCH = CH, T ジエチレングリコールモノメチルエーテル、ジプロピレ 30 あり、nが5~15の混合物でnの平均値が8である化 合物。

NMAA: N-メチロールアクリルアミド、

VCL:塩化ビニル、

VDCL:塩化ビニリデン

PEOOE: ポリオキシエチレンモノオレイルエーテ

PEOLE:ポリオキシエチレンー(1-メチルウンデ シル) エーテル、

StTMAC: トリメチルステアリルアンモニウムクロ

界面活性剤D¹:xとyの合計が30である式6で表さ れる化合物、

PEOPPO: hおよびtが15、rが35である式7 で表される化合物、

StSH:ステアリルメルカプタン、

DPG:ジプロピレングリコール、

TPG:トリプロピレングリコール、

VA-044: アゾビス (ジメチレンイソブチラミジ ン)塩酸塩、

16

(7. 7g), StSH (0, 77g), PEOOE

(10.3g)、界面活性剤D¹(2.6g)、PEO

PPO(2.6g)、DPG(77g)、イオン交換水

(398g)を、50℃で30分間撹拌した。つぎに、

40~50℃に保ちながら高圧乳化機を用いて300k

g/cm,で乳化した。つぎに、これを1リットルのガ

g)を加えた後、オートクレーブを窒素置換し、撹拌し

ラス製オートクレーブに移し、VA-044(0.5

【0073】各例において用いた高圧乳化機は、マントンゴーリン社製のものである。平均分子量はゲルバーミエーションクロマトグラフィにより測定した。結晶融解点の測定に用いた重合体は、つぎの方法で得られた重合体である。すなわち、例1~6で得たエマルションに9倍重量の2−ブタノールを加えて重合体を凝集させ、つぎに違心分離を行い、さらに沈降した重合体を2−ブタノールで洗浄した。さらに重合体を40℃で減圧下に乾燥させて、重合体を得た。また、重合体の結晶融解点は、示差走査熱量計(DSC、マックサイエンス社製商10品名:DSC3100−S)を用いて、昇温速度および降温速度とも10℃/minとして測定した。

【0074】[例1] FA (159g)、PEOOE (15. 4g), StTMAC (5. 1g), DPG (77g)、およびイオン交換水 (398g)を、50 ℃で30分間撹拌した。つぎに、40~50℃に保ちな がら、高圧乳化機を用いて200kg/cm,で乳化し た。つぎに、これを1リットルのガラス製オートクレー ブに移し、VA-044(0.5g)を加えた後、オー トクレーブを窒素置換し、撹拌しながら60℃に昇温し 20 た。FAの重合による発熱がピークを迎えたころで、V DCL (97.5g) を仕込んだ。なお、このときのF Aの反応率は55%であることをGCで確認した。その 後6時間重合を行った。重合後のFAの反応率は99% 以上であり、固形分濃度が36.6重量%、重合体の平 均粒子径が 0. 11 μmである乳白色エマルションを得 た。得られた重合体についてDSCで測定を行った結果 を図1に示す。88.2℃をピークとする2.42ca 1/(重合体g)の結晶融解点を検出した。また、重合 体の平均分子量は15万であった。

[0075] [例2] FA (159g)、NMAA (7. 7g), StSH (0. 77g), PEOOE (10.3g)、界面活性剤D¹(2.6g)、PEO PPO(2.6g)、DPG(77g)、イオン交換水 (398g)を、50℃で30分間撹拌した。つぎに、 40~50 Cに保ちながら、高圧乳化機を用いて300 kg/cm,で乳化した。つぎに、これを1リットルの ガラス製オートクレーブに移し、VA-044(0.5 g)を加えた後、オートクレーブを窒素置換し、撹拌し ながら60℃に昇温した。FAの重合による発熱がピー 40 クを迎えた3分後に、VDCL(90g)を仕込んだ。 なお、このときのFAの反応率は70%であることをG Cで確認した。その後6時間重合を行った。重合後のF Aの反応率は99%以上であり、固形分濃度が35.1 重量%、重合体の平均粒子径が0.13 μmである乳白 色エマルションを得た。得られた重合体についてDSC で測定を行った結果、88.7℃をピークとする2.2 2 c a 1 / (重合体 g) の結晶融解点を検出した。ま た、重合体の平均分子量は8万2千であった。

【0076】[例3] FA(159g)、NMAA

ながら60℃に昇温した。FAの重合による発熱が観測 された直後に、VDCL(90g)を仕込んだ。なお、 このときのFAの反応率は30%であることをGCで確 認した。その後6時間重合を行った。重合後のF Aの反 応率は99%以上であり、固形分濃度が35.1重量 %、重合体の平均粒子径が0. 13 μmである乳白色エ マルションを得た。得られた重合体についてDSCで測 定を行った結果、73.8℃をピークとする0.31c a 1/(重合体g)の結晶融解点を検出した。また、重 合体の平均分子量は9万7千であった。 【0077】[例4] FA (159g)、StSH (0.77g)、PEOOE(10.3g)、界面活性 剤D¹(2.6g)、PEOPPO(2.6g)、DP G(77g)、イオン交換水(398g)を、50℃で 30分間撹拌した。つぎに、40~50℃に保ちながら 高圧乳化機を用いて300kg/cm,で乳化した。つ ぎに、これを1リットルのガラス製オートクレーブに移 U, VA-044 (0.5g), VDCL (17.5 g)を加えた後、オートクレーブを窒素置換し、撹拌し ながら60℃に昇温した。反応器内温が60℃となった ときから1時間にわたってVDCL(80g)を仕込み 30 続けた。その後6時間重合を行った。重合後のFAの反 応率は99%以上であり、固形分濃度が36.1重量 %、重合体の平均粒子径0.13μmである乳白色エマ ルションを得た。得られた重合体についてDSCで測定 を行った結果、78.1℃をピークとする1.59ca 1/(重合体g)の結晶融解点を検出した。また、重合 体の平均分子量は100,000であった。

【0078】[例5 (比較例)]FA (159g)、P

EOOE (15. 4g), StTMAC (5. 1g),

DPG (77g)、イオン交換水 (398g)を、50

℃で30分間撹拌した。つぎに、40~50℃に保ちな

た。つぎに、これを1リットルのガラス製オートクレー

プに移し、VDCL (97.5g) およびVA-044

(0.5g)を加えた後、オートクレーブを窒素置換し

た。撹拌しながら60℃に昇温した。その後6時間重合

を行った。重合後のFAの反応率は99%以上であり、

固形分濃度が36.6重量%、重合体の平均粒子径が

0. 11 μmである乳白色エマルションを得た。得られ

た重合体についてDSCで測定を行った結果を図2に示

50 す。結晶融解ピークは検出されなかった。また、重合体

がら高圧乳化機を用いて200kg/cm,で乳化し

(10)

10

の平均分子量は102,000であった。

[0079] [例6(比較例)] FA(167g)、S tSH(46.2g), NMAA(5.1g), StS H(0.77g)、PEOOE(10.3g)、界面活 性剤D¹(5. lg)、PEOLE(5. lg)、TP G(90g)、およびイオン交換水(320g)を、5 0℃で30分間撹拌した。つぎに、40~50℃に保ち ながら、高圧乳化機を用いて300kg/cm,で乳化 した。乳化後のエマルションの平均粒子径は0. 17μ 血であった。

【0080】つぎに、これを1リットルのガラス製オー トクレーブに移し、VA-044(0,5g)を加えた 後、オートクレーブを窒素置換した。その後、VCL (38.5g)を加えて、撹拌しながら60°Cに昇温し て15時間重合を行った。固形分濃度が38.1重量 %、重合体の平均粒子径が0.07μmである乳白色エ マルションを得た。得られた重合体についてDSCで測 定を行った結果、86.0℃をピークとする2.19c al/(重合体g)の結晶融解点を検出した。また、重 合体の平均分子量は80,000であった。

【0081】[評価例]

(1)ポリエステル試験布の初期撥水撥油性能 例1~6で得たエマルションに、それぞれ、イオン交換 水を加えて、固形分濃度が20重量%である原液を得 た。さらに、原液濃度が0.5重量%となるようにイオ ン交換水を加えたものを処理液とした。処理液に、それ ぞれ、ポリエステルトロピカル布を浸漬し、2本のゴム ローラーの間で布を絞ってウェットピックアップを60 重量%とした。ついで110℃で90秒間乾燥し、さら に170℃で60秒間熱処理して、ポリエステルトロピ 30 カル試験布を得た。該試験布について撥油性および撥水 性を評価した結果を、表3に示す。

【0082】(2)酸性染料処理後のポリエステル試験 布の撥水撥油性能

(1)で得た原液に、イオン交換水および酸性染料(住 友化学工業社製商品名:スミカロンレッド)を加えて、 原液濃度が0.5重量%、酸性染料濃度が0.03重量 %である処理液を得た。(1)と同様の方法で、該処理 液にポリエステルトロピカル布をそれぞれ浸漬し、ポリ エステルトロピカル試験布を得た。該試験布について撥 40 油性および撥水性を評価した結果を、表3に示す。な お、例1~4および例6で得た処理液は、浸漬後に変化 が認められなかったが、例5で得た処理液においては浸 潰後に沈殿物が認められた。

【0083】(3)ナイロンタフタ試験布の初期撥水撥

例1~6で得たエマルションに、イオン交換水、メラミ ン樹脂(住友化学工業社製商品名:スミテックスレジン M3)、触媒(住友化学工業社製商品名:スミテックス アクセラレーターACX)を加えて、固形分濃度が5重 50 【表1】

量%、メラミン樹脂濃度が0.3重量%、触媒濃度が 0. 3重量%である処理液を得た。該処理液にナイロン タフタ布を浸漬し、2本のゴムローラーの間で布を絞っ てウェットピックアップを25重量%とした。ついで1 10℃で90秒間乾燥し、さらに170℃で60秒間熱 処理し、試験布とした。ナイロンタフタ試験布につい て、撥水性を評価(初期撥水性)した結果を表3に示

18

【0084】(4)洗濯後の撥水性能

(3)で得たナイロンタフタ試験布を以下の方法により 洗濯した後の撥水性能を評価(洗濯後撥水性)した結果 を表3に示す。自動反転渦巻き式電気洗濯機(東芝社 製;VH-1150と同性能) に、45×45cmの試 験布(加工上り織物)800gと40±2℃の0.2重 **量%弱アルカリ性合成洗剤(JIS K−3371弱ア** ルカリ性・第1種) 液25リットルとを入れ、強条件で 25分間洗濯した。次いで遠心脱水機で約30秒間脱水 後、常温水をオーバーフローさせながら10分間すすぎ を行った。その後、再度約30秒間脱水し、同条件で1 20 0分間すすいだ。前記の方法を4回繰り返し、20回洗 濯後の織物とした。

【0085】(5)接着剥離強度の評価

(3)で得たナイロンタフタ試験布に、170℃、15 0 kg/cm²の条件でカレンダー加工を行った。ウレ タン樹脂であるレザミンME3412LP(大日精化社 製) 100部、メチルエチルケトン25部、およびジメ チルホルムアミド25部からなる樹脂加工液を、ドクタ ーナイフを用いてカレンダー加工面に対してコーティン グした。風乾した後、150°Cで2分間キュアした。つ ぎにコーティング面にホットメルトテープ(サン化成社 製:MELCOテープ)をハリロントランスファーHT -130型ホットプレス機にて180g/cm²、15 0℃、30秒間の条件で接着した。接着後、72時間室 温でエージングした。コーティング後のナイロンタフタ 試験布表面の剥離強度をつぎの方法で測定した。結果を 表3に示す。

【0086】(6)接着剥離強度の測定方法

接着剥離強度は、つかみ間隔を2.5cm、剥離距離を 5cm、剥離速度を10m/minとして、引張試験機 (Autograph)を用いて測定した。測定は3回 行い、測定値の平均値についてJISL-10895. 10による計算を行い、剥離強度(単位:gf/2.5 cm)として求めた。該数字が大であるほど粘着性に優 れることを示す。

【0087】(7) 撥油性の評価基準

AATCC-TM118-1966により行い、表1に 示す撥油性等級で表した。撥油性等級が大きいほど撥油 性に優れることを示す。

[0088]

19

撥油性等級	試験溶液	表面張力
8	nーヘブタン	20.0
7	nーオクタン	21.8
6	n ーデカン	23.5
5	nードデカン	25.0
4	n - テトラデカン	26.7
3	n ーヘキサデカン	27.3
2	メジョール 65部	29.6
····	/n-ヘキサデカン35部	
1	ヌジョール	31.2
0	1におよばないもの	_

*示す撥水性等級で表した。ただし、撥水性等級に+を記 したものは、その性質がわずかに良いことを示す。 [0090]

20

【表2】

极水性等級	状 篩
	
100	表面に付着風間がない
9 0	表面にわずかに付着整理を示す
8.0	表面に部分的に湿潤を示す
7.0	表面に温潤を示す
5 0	表面全体に湿潤を示す
0	表裏両面が完全に湿潤を示す

【0089】(8) 撥水性の評価基準

JIS-L1092のスプレー試験により行い、表2に*

[0091]

【表3】

例	ポリエステルトロピカル布			ナイロンタフタ布			
	初期		酸性染料処理後		初期	洗濯後	剥離強度
	撥油性	撥水性	极油性	酸水性	撥水性	极水性	
1	6	100	6	100	100	70	2562
2	6	100	6	100	100	70+	2721
3	6	100	6	100	100	70+	2708
4	6	100	6	100	100	70	2639
5	6	100	0	80	100	50	2640
6	6	100	6	100	100	80	1031

10

[0092]

【発明の効果】本発明の撥水撥油剤組成物は、初期の撥 水接油性能を低下させることなく、優れた耐洗濯性を発 揮する。また、本発明の撥水撥油剤組成物からなる加工 浴中に夾雑物が入っても安定であり、かつ、性能が低下 30 温度(単位:℃))。 しない利点がある。また、本発明の組成物は造膜性にも 優れ、粘着性が低下しない利点がある。したがって、本 発明の組成物で得られた処理物においては、優れた撥水 撥油性能が発揮され、かつ、表面の二次加工が可能であ

る。

【図面の簡単な説明】

【図1】例1 (実施例1)で得た重合体のDSCスペク トル (縦軸は発熱量 (単位:ミリcal/秒)、横軸は

【図2】例5(比較例)で得た重合体のDSCスペクト ル(縦軸は発熱量(単位:ミリcal/秒)、横軸は温 度(単位:℃))。

[図2]

フロントページの続き

(51) Int.Cl.'

識別記号

FΙ

テーマコード(参考)

C 0 9 D 133/16 D 0 6 M 15/277

C 0 9 D 133/16 D 0 6 M 15/277 (72)発明者 前川 隆茂 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内