王立民老師

王立民老師是我們物理系博士班的大學長,畢業多年後又回到系上任教。王 老師研究興趣十分廣泛,對於超導體、薄膜等技術均有涉獵。若有志投身實驗物理研究的學生是斷 然不能錯過的一篇訪問。

文/沈于晴、何銘峰

訪問 / 沈于晴、楊博亞 2013/3/25

請問老師小時候有什麼有趣的事情?

小時候我住在台南善化鄉下村落 -- 茄拔。爸媽種田,放學要幫忙做家事。寒假、暑假都要到田裡工作——寒假要摘番茄,暑假要種菜,小學大概就這樣過吧! 善化國小是鄉下小學,我的成績隨便都是班上第一名。初中我是念私立鳳和,那時候算是台南縣四大的明星初中。後來我就去念台南一中,高中的時候對物理產生興趣,但還沒有想到以後要以此維生。

大學時,因為家庭經濟因素而念師大物理。民國七十六年去實習,那期間全國都在瘋狂迷股票。瘋股票瘋到什麼程度呢?我實習的那所國中,從早到晚,每人都在講股票。每天我都得聽股票經,開始覺得當老師好像也就僅此而已,所以又回來念師大物理研究所。

民國七十九年,我到台大物理系楊鴻昌老師的 實驗室讀博士班。我在碩班剛好做的領域就是固態 相關的 X- 光結晶學,到了楊鴻昌老師的實驗室,就 是學一些更進階的真空鍍膜、材料分析、電性量測等 物理技巧——你會覺得這些有趣的東西正在吸引你, 而你將會一直走下來。

當時我們在處理超導薄膜,一直無法突破。當年超導薄膜國內做比較好的實驗室大概都差不了多少,而楊老師的實驗室能卻很穩定的生產出釔鋇銅氧薄膜——就是我花了三年把這些參數搞定的成果。

當時用濺鍍方式鍍出來就是 89、將近 90K 的 T_c , 世界水準就在這裡啦! 抓到那個感覺之後, 後面才能進一步說我要研究甚麼。

我的博士論文是拿釔鋇銅氧跟錯鋇銅氧做超 晶格的超導特性的研究,其中有一篇發表在 1997 年 的 PRL(Physics Review Letter)。我以前覺得沒什 麼,後來才知道是台灣本土首篇被 PRL 接受之高溫 超導論文。 這篇文章發表之後,我覺得好像就該做、做、做, 一直做下去。這是一種良性循環:給你一個回饋,你 就會有一點點成就感、會更投入進去,得到更多成就 感。

最苦的時候,是博班第二年、第三年要把條件 搞清楚。那時還在舊館,沒搬到這邊(凝態新物理館)。 夏天那裏很熱,而為了要抓條件、修腔體,半夜那時 也沒什麼其他人,我就打赤膊在那邊做實驗。

老師經歷那麼多的豐功偉業,有什麼重大的挫折嗎?

挫折喔···有什麼挫折···也沒有什麼特別挫折 啦!其他老師都有挫折嗎(笑)。

老師在台大教過電磁學跟基礎物理實驗,對這兩門課有什麼看法?

電磁學有兩個目的:一是訓練你的邏輯、數學, 以及解問題的方法:二是你對電荷與磁,以及對這些 交互作用原理的認識。 為什麼是這兩個?第一個,邏輯思考你在每個 領域都可以使用。電磁學習題裡面,題目會給你條件, 然後你要學會利用已知的數學把它解出來,這就是 在訓練你的邏輯思維。

第二個是了解電跟磁。電與磁是現代日常生活中不可或缺的物理,把力學特別分出一門課特別來講電跟磁的作用,就是要你去了解電磁作用的細節:你會學到 Maxwell's equations,發現那麼漂亮、簡單的式子已經有人幫你整理好,等著你去學。

基礎物理實驗的話,一方面是讓學生學到一些 做實驗的技巧,可以當作是後續再做專題的基礎,有 點像是在邁入各自研究領域之前的先導課程吧!就 是初階班嘛!

有了這些概念,將來四年級做專題時就可以用 這麼一套模式。

請簡單介紹一下老師最近的研究內容

首先,我延續以前做的超導相關研究。為什麼 做超導?大概因為超導除了物理特性之外,還有一些 做元件上的應用潛力吧!做元件指的是「對磁的感測」、當 sensor。

有關磁的研究領域,後來我也開始做巨磁阻 材料。有一些所謂的「穿隧元件」,它們也是對磁的 sensor。

後來也做了光電相關的一些透明導電材料,還 有太陽能電池。這部分也有跟其他老師在合作,例如 師大的老師。這些都是我以前做過的,所以滿容易知 道哪些題目可以再做。我們系上其實有三個所,有應 用物理所嘛!既然有應用物理所,研究當然要跟應用 相關囉!總不能完全都是做個好玩的吧!

所以我的研究大概就是超導·磁性物理與元件, 另外是一些跟電材料的薄膜相關的應用。

最近有什麼有趣的成果嗎?

這一兩年的,大概就是鐵基超導傳輸特性的研究,還有巨磁阻材料的電性分析吧!

我去年有一篇在 APL (applied physics letters 應用物理通訊)。如果去看那篇文章的內容,你會發現實驗上要量我的數據,不用花大錢,只需要花很簡易的設備就能搞定。重要的是,你怎麼去看待這簡單的數據,裡面主要是巨磁阻材料電阻與溫度的係數,那我是經由幾個簡單的量測數據,推導出的一個簡單公式。

其實這電阻溫度係數是跟應用相關的。例如可以做紅外線感測器,紅外線感測器就是要對溫度很敏感——溫度一點點變化,如果阻值變化就很大的話,這個就有應用潛力。這個數值會跟巨磁阻材料本身的某些傳輸機制有關,我們的目標是把相關的公式推導出來。不過那是去年的事了啦!

最近我在整理的都是鐵基超導,比較新穎的超 導材料研究。

之前老師在課堂中提過,想要請問老師 實驗室與業界有過什麼合作?

基本上有執行一些能源局業界相關配合的計 畫。之前是熱電能,要我們做一個簡單的熱電元件給 他。

還有與台中的秉華科技。我們不是有一個簡單的太陽能教學模組嗎?現在是要我開發一個熱電模組的教學平台,那是很簡單的裝置,就好像是一個手提箱而已。他現在就是推廣要到高中或是高職,一套大概七、八萬塊,一個學校買個十套就七八十萬塊,二十套就一百多萬。

應用物理學家跟工程師的差距大概有多遠?

工程師就是可以不用去管一些太學理的東西。 一個公式代一些值進去、得到一些值出來,那就是比 較工程的。

應用物理會偏重學理的推導,工程是能拿來用就夠了。比如說我上一次小考,那題目很簡單,一個線圈,那磁鐵通過會感應電流。我們學物理,磁通量變化的值大概都要算出來。我這次小考,要大家估ε是多少,這時候就不是考你學理了,這一段是屬於工程的。

公式怎麼來的?這是屬於物理要去解決的:告 訴人家這個 m 是多少,這個值算出來是怎樣,估算結 果如何,那就是屬於工程的。

工程是只要想怎麼去應用。應用物理是你得學會怎麼從一堆東西裡面推導出來結果。工程的話有的 甚至會讓你不知道原理是怎麼弄來的

請問老師平常工作之外的休閒或興趣?

休閒就運動呀,打羽毛球啊!

以前還有一個嗜好是釣魚。釣魚是早期的事了, 現在沒合適的地方可釣了——都封溪了,對不對?不 然釣魚也不錯啊。

那我六日大部分的時間除了打球運動之外,要 嘛都是在處理 data、要嘛就是有時候會來這裡(實 驗室),大概是這樣啦。嘿呀,真是可憐!

這表示說,我好像放假也是在工作、好像很可 因緣際會,就在一起了。 憐都沒有休息,是嗎?錯了!我們工作沒有人在逼我 們,我喜歡這種不用別人強逼的工作,這就是幸福啊! 當你以後工作不需要老闆逼你,這就是你的幸福的 所在。

請問老師對物理系的學生有什麼期許?

好好讀書、好好玩,如此而已。

很多你要去經歷一下。我也是大學時候騎摩托 車到處去玩,騎摩托車環島啊、騎去阿里山啊,該玩 的地方就去玩一玩啊。

現在要我重新作這些事情也是說不可以,可是就是沒有那個熱情與衝勁。該玩還是要玩啦!很多東西留下來跟你以後日常有關,我當時大學時代的球友,現在還是在一起在打。大學時代,很多會變成你人生上很重要的人力資源。

那以前有一陣子瘋古典吉他,我那陣子都在彈 古典吉他。有時候一天彈起來彈下來好幾個小時,現 在根本不會了。大學時我也去跳舞,跳一個整個晚上、 到隔天早上五六點——因為半夜回不了宿舍,早上 凌晨宿舍開門,你才能搭計程車回去。去跳舞,覺得 跳舞全身都流汗,就像是一種運動,很不錯——雖 然都沒認識女孩子。

我太太是我參加社團的時候認識的。在師大那 時候我參加美術社,我中小學的時候就很喜歡畫畫。 高中以前,常常我畫完之後我作品就是貼到後面去給 大家看。不然就是美術老師要講解時就拿我的作品 上去講解介紹。不過我後來沒走這條路,走這條路大 概是也很累。在美術社時還當過社長,那時候我沒跟 我太太交往——她太小了,我大四她才大一。畢業後 因緣際會,就在一起了。