L'horloge du système est fixée à 100 MHz, la période est 10 ns. Il faut 2s/10 ns=2.10⁸ période d'horloger pour atteindre 2 s.

 $Log_2(2.10^8)=27.5$ donc on a besoin 28 bits pour créer le compteur.

Architecture du Counter_unit

Le compteur compte Cte = 2.108 cycles d'horloge, à chaque front montant d'horloge, la valeur du compteur augmente jusqu'à la valeur Cte-1 (compteur partant de 0). Lorsque il atteint Cte-1 le signal end_counter =1 et le compteur revient à zéro à l'aide d'un multiplexeur.

Liste de signaux

Entrée: clk, resetn

Sortie: end_counter

Interne: Q, end_counter_int

Chronogramme de simulation pour compter 20 cycle d'horloge

Le compteur remis à 0 lorsque il atteint la value maximale.

Le signal end_counter passe à 1 si le compteur atteint la value maximale, sinon il vaut 0.

La Led est allumée pendant seulement un coup d'horloge si elle est connectée directement sur le signal end_counter.

Pour que la LED clignote telle que: allumée 2 s, éteinte 2 s, il faut ajuster un multiplexeur

La Led clignote : allumée pendant une période de end_conteur et éteinte pendant la période suivante.

Résultats de synthèse

Report Cell Usage:									
; 	Cell								
 	-+ BUFG	·++ 1							
12	CARRY4	71							
13	LUT3 LUT4	1 281							
15	LUT6] 3]							
; 6 : 17	FDCE FDRE	28							
18	IBUF	3							
¦ 19 ¦ +	OBUF -+	1							

Nombre de registre: 28 registres pour le compteur 28 bits

3 IBUF (input buffer : reset, restart, clk)

1 OBUF (output buffer : led0_b)

Rapport du timming

WNS (ns)	TNS (ns)	TNS Failing Endpoints	TNS Total Endpoints	WHS (ns)	THS (ns)	THS Failing Endpoints	THS Total Endpoints	WPWS (ns)	TPWS (ns)	TPWS Failing Endpoints	TPWS Total Endpoints
5.916	0.000	0	29	0.263	0.000	0	29	4.500	0.000	0	30

Le nombre de total négative slack (TNS) est 0, le nombre de total hold slack est 0, donc il n'y a pas problème de timming

Point départ du chemin critique : Q_reg (25)

```
Slack (MET) :
                        5.916ns (required time - arrival time)
 Source:
                        Q reg[25]/C
                          (rising edge-triggered cell FDCE clocked by sys clk pin {rise@0.000ns fall@5.000ns period=10.000ns})
                        Q reg[11]/D
 Destination:
                          (rising edge-triggered cell FDCE clocked by sys_clk_pin {rise@0.000ns fall@5.000ns period=10.000ns})
 Path Group:
                        sys clk pin
                        Setup (Max at Slow Process Corner)
 Path Type:
                        10.000ns (sys clk pin rise@10.000ns - sys clk pin rise@0.000ns)
 Requirement:
Data Path Delay:
                        4.053ns (logic 0.966ns (23.833%) route 3.087ns (76.167%))
Logic Levels:
                                                                                                              Point d'arrivée du
                        3 (LUT3=1 LUT6=2)
                        -0.024ns (DCD - SCD + CPR)
 Clock Path Skew:
                                                                                                              chemin critique:
   Destination Clock Delay (DCD):
                                    4.92 \ln s = (14.921 - 10.000)
   Source Clock Delay
                           (SCD):
                                    5.373ns
                                                                                                              Q_reg (11) du module
   Clock Pessimism Removal (CPR):
                                    0.429ns
Clock Uncertainty:
                        0.035ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
                                                                                                              counter unit
  Total System Jitter
                           (TSJ):
                                    0.071ns
```

Total Input Jitter

Discrete Jitter

Phase Error

(TIJ):

(DJ):

(PE):

0.000ns

0.000ns

0.000ns

Résultats de mesure ILA

Le compteur est remis à zéro lorsqu'il atteint la value maximale et la led change l'état