ROBUST ARTIFICIAL INTELLIGENCE: WHY AND HOW

Tom Dietterich

Distinguished Professor (Emeritus)
Oregon State University

Past-President AAAI

Outline

- The Need for Robust AI
 - High Stakes Applications
 - Need to Act in the face of Unknown Unknowns
- Approaches toward Robust Al
 - Robustness to Known Unknowns
 - Robustness to Unknown Unknowns
- Concluding Remarks

Technical Progress is Encouraging the Development of High-Stakes Applications

Self-Driving Cars

Automated Surgical Assistants

DaVinci

Credit: Wikipedia CC BY-SA 3.0

Al Hedge Funds

CADE METZ BUSINESS 01.25.16 7:00 AM

THE RISE OF THE ARTIFICIALLY INTELLIGENT HEDGE FUND

AI Control of the Power Grid

CONTROLLING THE POWER GRID WITH ARTIFICIAL INTELLIGENCE

02.07.2015

Credit: EBM Netz AG

DARPA Exploring Ways to Protect Nation's Electrical Grid from Cyber Attack

Effort calls for creation of automated systems to restore power within seven days or less after attack

Credit: DARPA

Autonomous Weapons

Northroop Grumman X-47B

Credit: Wikipedia

UK Brimstone Anti-Armor Weapon

Credit: Duch.seb - Own work, CC BY-SA 3.0

Samsung SGR-1

High-Stakes Applications Require Robust AI

- Robustness to
 - Human user error
 - Cyberattack
 - Misspecified goals
 - Incorrect models
 - Unmodeled phenomena

Why Unmodeled Phenoma?

It is impossible to model everything

It is not desirable to model everything

It is impossible to model everything

- Qualification Problem:
 - It is impossible to enumerate all of the preconditions for an action

- Ramification Problem:
 - It is impossible to enumerate all of the implicit consequences of an action

It is important to not model everything

Fundamental theorem of machine learning

error rate
$$\propto \frac{\text{model complexity}}{\text{sample size}}$$

- Corollary:
 - If sample size is small, the model should be simple
 - We must deliberately oversimplify our models!

Conclusion:

An Al system must act without having a complete model of the world

Outline

- The Need for Robust Al
 - High Stakes Applications
 - Need to Act in the face of Unknown Unknowns
- Approaches toward Robust Al
 - Lessons from Biology
 - Robustness to Known Unknowns
 - Robustness to Unknown Unknowns
- Concluding Remarks

Robustness Lessons from Biology

- Evolution is not optimization
 - You can't overfit if you don't optimize
- Competition against adversaries
 - "Survival of the Fittest"
- Populations of diverse individuals
 - A "portfolio" strategy
- Redundancy within individuals
 - diploidy/polyploidy = recessive alleles can be passed to future generations
 - alternative metabolic pathways
- Dispersal
 - Search for healthier environments

Approaches to Robust Al

- Robustness to Model Errors
 - Probabilistic Methods
 - Robust optimization
 - Regularize the model
 - Optimize a risk-sensitive objective
 - Employ robust inference algorithms
- Robustness to Unmodeled Phenomena
 - Detect model weaknesses
 - (including anomaly detection)
 - Use a big model
 - Learn a causal model
 - Employ a portfolio of models

Idea 1: Decision Making under Uncertainty

- Observe Y
- Choose A to maximize E[U|A,Y]
- Uncertainty modeled as P(U|A,Y)
- "Maximize Expected Utility"

Robustness to Downside Risk

- E[U|Y,A] ignores the distribution of P(U|Y,A)
- In this case $E[U|Y,a_1] = E[U|Y,a_2]$
- But action a₂ has larger down-side risk and larger variance
- Risk-sensitive measures will prefer a₁

Idea 2: Robust Optimization

- Many AI reasoning problems can be formulated as optimization problems
- $\bullet \max_{x_1,x_2} J(x_1,x_2)$
- subject to
 - $ax_1 + bx_2 \le r$
 - $cx_1 + dx_2 \le s$

Uncertainty in the constraints

- $\bullet \quad \max_{x_1, x_2} J(x_1, x_2)$
- subject to
 - $ax_1 + bx_2 \le r$
 - $cx_1 + dx_2 \le s$
- Define uncertainty regions
 - $a \in U_a$
 - $b \in U_h$
 - •
 - $s \in U_s$

Minimax against the uncertainty

- $\max_{x_1,x_2} \overline{\min_{a,b,c,d,r,s}} J(x_1,x_2;a,b,c,d,r,s)$
- subject to

```
ax_1 + bx_2 \le r
```

- $cx_1 + dx_2 \leq s$
- $a \in U_a$
- $b \in U_h$
- $s \in U_s$
- Problem: Solutions can be too conservative

Impose a Budget on the Adversary

- $\overline{\max_{x_1,x_2} \min_{\delta_a,...,\delta_s} J(x_1,x_2;\delta_a,...,\delta_s)}$
- subject to

$$(a+\delta_a)x_1 + (b+\delta_b)x_2 \le (r+\delta_r)$$

$$(c + \delta_c)x_1 + (d + \delta_d)x_2 \le (s + \delta_s)$$

- $\delta_a \in U_a$
- $\delta_b \in U_b$
- **-**
- $\delta_s \in U_s$
- $\sum |\delta_i| \leq B$

Bertsimas, et al.

22

Existing AI Algorithms Implicitly Implement Robust Optimization

Given:

- training examples (x_i, y_i) for an unknown function y = f(x)
- a loss function $L(\hat{y}, y)$: how serious it is to output \hat{y} when the right answer is y?

Find:

the model h that minimizes

$$\sum_{i} L(h(x_{i}), y_{i}) + \lambda ||h||$$

$$loss + complexity penalty$$

Regularization can be Equivalent to Robust Optimization

- Xu, Caramanis & Mannor (2009)
 - Suppose an adversary can move each training data point x_i by an amount δ_i
 - Optimizing the linear support vector objective

$$\sum_{i} L(\hat{y}_i, y_i) + \lambda ||w||$$

is equivalent to minimaxing against this adversary who has a total budget

$$\sum_{i} \|\delta_i\| = \lambda$$

Idea 3: Optimize a Risk-Sensitive Objective

Setting: Markov Decision Process

- States: x_t, x_{t+1}, x_{t+2}
- Actions: u_t, u_{t+1}
- Control policy $u_t = \pi(x_t)$
- Rewards: r_t, r_{t+1}
- <u>Total</u> reward $\sum_t r_t$
- Transitions: $P(s_{t+1}|s_t, u_t)$

Optimize Conditional Value at Risk

- For any fixed policy π , the cumulative return $V^{\pi} = \sum_{t=1}^{T} r_t$ will have some distribution $P(V^{\pi})$
- The Conditional Value at Risk at quantile α is the expected return of the bottom α quantile
- By changing π we can change the distribution $P(V^{\pi})$, so we can try to push the probability to the right
- "Minimize downside risks"

Optimize Conditional Value at Risk

- For any fixed policy π , the cumulative return $V^{\pi} = \sum_{t=1}^{T} r_t$ will have some distribution $P(V^{\pi})$
- The Conditional Value at Risk at quantile α is the expected return of the bottom α quantile
- By changing π we can change the distribution $P(V^{\pi})$, so we can try to push the probability to the right
- "Minimize downside risks"

Optimize Conditional Value at Risk

- For any fixed policy π , the cumulative return $V^{\pi} = \sum_{t=1}^{T} r_t$ will have some distribution $P(V^{\pi})$
- The Conditional Value at Risk at quantile α is the expected return of the bottom α quantile
- By changing π we can change the distribution $P(V^{\pi})$, so we can try to push the probability to the right
- "Minimize downside risks"

Optimizing CVaR gives robustness

• Suppose that for each time t, an adversary can choose a vector δ_t and define a new probability distribution

$$P(x_{t+1}|x_t,u_t)\cdot\delta_t(u_t)$$

• Optimizing CVaR at quantile α is equivalent to minimaxing against this adversary with a budget along each trajectory of

$$\prod_{t} \delta_{t} \leq \alpha$$

- Chow, Tamar, Mannor & Pavone (NIPS 2014)
- Conclusion: Acting Conservatively Gives Robustness to Model Errors

Many Other Examples

- Credal Bayesian Networks
 - Convex uncertainty sets over the probability distributions at nodes
 - Upper and lower probability models
 - (Cosman, 2000)
- Robust Classification
 - (Antonucci & Zaffalon, 2007)
- Robust Probabilistic Diagnosis (etc.)
 - (Chen, Choi, Darwiche, 2014, 2015)

Approaches to Robust Al

- Robustness to Model Errors
 - Robust optimization
 - Regularize the model
 - Optimize a risk-sensitive objective
 - Employ robust inference algorithms
- Robustness to Unmodeled Phenomena
 - Detect model weaknesses
 - Repair or expand the model
 - Learn a causal model
 - Employ a portfolio of models

Idea 4: Detect Surprises

- An AI system should monitor itself and its environment to detect surprises that may signal an "unknown unknown"
- When a surprise is detected
 - Ask the user to help
 - Execute a fallback safety policy

Monitor the Distribution of Predicted Classes

- Supervised classification
 - On validation data, measure expected class frequencies
 - Detect departures from these on test data
- Mismatch can indicate a change in the class distribution or a failure in the classifier

Letter frequencies in English

Credit: Nandhp, Wikipedia

Look for Violated Expectations

- In search and reinforcement learning, we expect the estimated value to increase as we near the goal
- When false, this signals potential change in world, new obstacle, etc.

Monitor Auxiliary Regularities

- Hermansky (2013): Each phoneme has characteristic inter-arrival time
- Monitor the inter-arrival times of recognized phonemes
- Apply to detect and suppress noisy frequency bands

Monitor Auxiliary Tasks

- ALVINN auto-steer system
- Main task: Determine steering command
- Auxiliary task: Predict input image
- Perform both tasks with the same hidden layer information

Pomerleau, NIPS 1992

Watch for Anomalies

- Machine Learning
 - Training examples drawn from $P_{train}(x)$
 - Classifier y = f(x) is learned
 - Test examples from $P_{test}(x)$
 - If $P_{test} = P_{train}$ then with high probability f(x) will be correct for test queries

• What if $P_{test} \neq P_{train}$?

Automated Counting of Freshwater Macroinvertebrates

- Goal: Assess the health of freshwater streams
- Method:
 - Collect specimens via kicknet
 - Photograph in the lab
 - Classify to genus and species

Open Category Object Recognition

- Train on 29 classes of insects
- Test set may contain additional species

Prediction with Anomaly Detection

Novel Class Detection via Anomaly

Detection

- Train a classifier on data from 2 classes
- Test on data from 26 classes
- Black dot: Best previous method

Related Efforts

- Open Category Classification
 - (Salakhutdinov, Tenenbaum, & Torralba, 2012)
 - (Da, Yu & Zhou, AAAI 2014)
 - (Bendale & Boult, CVPR 2015)
- Change-Point Detection
 - (Page, 1955)
 - (Barry & Hartigan, 1993)
 - (Adams & MacKay, 2007)
- Covariate Shift Correction
 - (Sugiyama, Krauledat & Müller, 2007)
 - (Quinonero-Candela, Sugiyama, Schwaighofer & Lawrence, 2009)
- Domain Adaptation
 - (Blitzer, Dredze, Pereira, 2007)
 - (Daume & Marcu, 2006)

Idea 5: Use a Bigger Model

The risk of Unknown Unknowns may be reduced if we model more aspects of the world

- Knowledge Base Construction
 - Cyc (Lenat & Guha, 1990)
- Information Extraction & Knowledge Base Population
 - Dankel (1980)
 - NELL (Mitchell, et al., AAAI 2015)
 - TAC-KBP (NIST)
 - Robust Logic (Valiant; AIJ 2001)
- Risk: Every new component added to a model may introduce an error

Idea 6: Use Causal Models

Causal relations are more likely to be robust

- Require less data to learn
 - (Heckerman & Breese, IEEE SMC 1997)
- Can be transported to novel situations
 - (Pearl & Bareinboim, AAAI 2011)
 - (Schoelkopf, et al., ICML 2012)
 - (Lee & Honavar, AAAI 2013)

CCAI-2017 4:

Idea 7: Employ a Portfolio of Models

- Ensemble machine learning methods regularly win Kaggle competitions
- Portfolios for SAT solving
- Portfolios for Question Answering and Search

Portfolio Methods in SAT & CSP

SATzilla:

Xu, Hoos, Hutter, Leyton-Brown (JAIR 2008)

SATzilla Results

- HANDMADE problem set
- Presolvers:
 - March_d104 (5 seconds)
 - SAPS (2 seconds)

Cumulative Distribution

Xu, Hutter, Hoos, Leyton-Brown (JAI R2008)

IBM Watson / DeepQA

- Combines > 100 different techniques for
 - analyzing natural language
 - identifying sources
 - finding and generating hypotheses
 - finding and scoring evidence
 - merging and ranking hypotheses

Ferrucci, IBM JRD 2012

Summary

- Robustness to Model Errors
 - Probability models with risk-sensitive objectives
 - Optimize against an adversary
 - Regularize the model
 - Optimize a risk-sensitive objective
 - Employ robust inference algorithms
- Robustness to Unmodeled Phenomena
 - Detect model weaknesses
 - Use a big model
 - Learn a causal model
 - Employ a portfolio of models

Outline

- The Need for Robust Al
 - High Stakes Applications
 - Need to Act in the face of Unknown Unknowns
- Approaches toward Robust Al
 - Lessons from Biology
 - Robustness to Known Unknowns
 - Robustness to Unknown Unknowns
- Concluding Remarks

Concluding Remarks

High Risk Emerging AI applications ... Require Robust AI Systems

Al systems can't model everything
... Al needs to be robust to
"unknown unknowns"

We have many good ideas

We need many more!

Acknowledgments

- Juan Augusto
- Randall Davis
- Trevor Darrell
- Pedro Domingos
- Alan Fern
- Boi Faltings
- Stephanie Forrest
- Helen Gigley
- Barbara Grosz
- Vasant Honavar
- Holgar Hoos
- Eric Horvitz
- Michael Huhns
- Rebecca Hutchinson

- Pat Langley
- Sridhar Mahadevan
- Shie Mannor
- Melanie Mitchell
- Dana Nau
- Jeff Rosenschein
- Dan Roth
- Stuart Russell
- Tuomas Sandholm
- Rob Schapire
- Scott Sanner
- Prasad Tadepalli
- Milind Tambe
- Zhi-hua Zhou

Questions?