PROJECT BASED EXPERIENTIAL LEARNING PROGRAM (NALAIYA THIRAN)

Early Detection of Chronic Kidney

Disease using

Machine Learning

A PROJECT REPORT

Submitted by

G RANJITH	(111719106044)
-----------	----------------

KUMAR

G CHAKRADHAR (111719106038)

REDDY

B PURNA SRINIVAS (111719106023)

G Nandivardhan (111719106039)

TEAM ID: PNT2022TMID15999

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

R.M.K.ENGINEERING COLLEGE

(An Autonomous Institution)
R.S.M. Nagar, Kavaraipettai-601 206

NOVEMBER 2022

LITERATURE SURVEY:

INTRODUCTION:

Many individuals around the world are afflicted by kidney-related illnesses. In terms of the number of persons affected by kidney-related diseases, India comes in front. even while population is important

Add to that the fact that China, which has a population that is higher than ours yet ranks far lower than us in terms of the number of people who suffer from kidney-related diseases. Most kidney illnesses are brought on by the human kidney's aberrant physiological functioning. As a result, the difference between the kidney's normal physiological capabilities and pathological physiological functionalities leads to the development of the typical symptoms. The main causes of differences in kidney function are people's lifestyles and food preferences.

PAPER TITLE 1:

Performance Analysis of Machine

Learning Classifier for Predicting

Chronic Kidney Disease

ALGORITHM OR TECHNIQUE USED:

Logistic Regression and

Classification, Decision

tree classifier, Random

Forest classifier.

DESCRIPTION:

This proposed system

detects chronic kidney

disease using machine

learning; They have

attained an accuracy of

100% in decision tree

classifier, 95.12% in

random forest and 98.82%

in logistic regression.

PAPER TITLE 2:

Statistical and Data Mining Aspects

on Kidney Stones: A Systematic

Review and Meta-analysis.

ALGORITHM OR TECHNIQUE USED:

Random Forest, Support

vector machine, Logistic

and NN.

DESCRIPTION:

They predicted good

accuracy with Classification

tree and Random Forest

(93%) followed by Support

Vector Machines (SVM) (91.98%). Logistic and NN has also shown good accuracy results with zero relative absolute error and 100% correctly classified results. PAPER TITLE 3: **Chronic Kidney Disease Prediction** using Machine Learning. ALGORITHM OR TECHNIQUE USED: Ant Colony Optimization technique and Support Vector Machine (SVM) classifier. **DESCRIPTION:** This study proposes the use of machine learning techniques for CKD such as **Ant Colony Optimization**

(ACO) technique and

Support Vector Machine
(SVM) classifier.
Final output predicts
whether the person is
having CKD or not by using
minimum number of
features.
PAPER TITLE 4:
A Machine Learning Methodology
forDiagnosing Chronic Kidney
Disease.
ALGORITHM USED :
Logistic regression,
Random Forest, Support
vector machine, knearest
neighbour, Naive Bayes
classifier, and Feed
Forward Neural
Network.
DESCRIPTION:
A machine learning
approach for diagnosing

CKD was proposed in this study. An ensemble model that combines logistic regression and random forest with the aid of perceptron was utilized and it was able to attain an average accuracy of 99.83% after ten times of simulation.

IDEATION & PROPOSED SOLUTION:

EMPATHY MAP:

PROBLEM STATEMENT:

PROBLEM: EARLY DETECTION OF CHRONIC KIDNEY DISEASE

 Chronic Kidney Disease prediction is one of the most important issues in healthcare

analytics. The most interesting and challenging tasks in day-to-day life is prediction in

medical field.

• Chronic kidney disease (CKD) means your kidneys are damaged and can't filter blood the

way they should. The main risk factors for developing kidney disease are diabetes, high

blood pressure, heart disease, and a family history of kidney failure.

• 10% of the population worldwide is affected by chronic kidney disease (CKD), and millions

die each year because they do not have access to affordable treatment.

• People are at risk for kidney disease if people have diabetes, high blood pressure, heart

disease, or a family history of kidney failure. If you have risk factors, get tested for kidney

disease and protect your kidneys by making healthy food choices, being more active, aiming

for a healthy weight, and managing health conditions that cause kidney damage.

• Chronic kidney Disease can be cured, if treated in the early stages. The main aim of this

project is to predict whether the patient have chronic kidney disease or not, in more accurate

and faster way based on certain diagnostic measurements like Blood Pressure (Bp),

Albumin(Al).

BRAIN STROM:

PROPOSED SOLUTION:

Project Design Phase-I Proposed Solution Template

Team ID	PNT2022TMID15999
Project Name	Early Detection of Chronic Kidney Disease using Machine Learning
Maximum Marks	2 Marks

Proposed Solution:

S.No	Parameter	Description	
1.	Problem Statement (Problem to be solved)	Patients who suffer from chronic kidney diseases need a way to control its progression to an advanced state with early detection and appropriate treatment. Machine learning has advanced to the point that it is now possible to look through patient medical information and identify chronic kidney disease in its early stages.	
2.	Idea / Solution description	Since certain data are missing, the initial step is to perform preprocessing by cleaning the dataset, along with scaling and normalisation of values. The next step is to use dimensionality reduction to identify the key features in the dataset and to remove any irrelevant ones. To accomplish early detection of chronic kidney disease utilising the indicated key traits, a decision tree model must be fitted.	
3.	Novelty / Uniqueness	 An indicator of how well the kidneys is working is the amount of a waste product called creatinine in the blood. By examining this data, early kidney disease can be identified by detecting deviations from the norm. In the case of healthcare 	

יים ייבקטטיי	ייבקטיין אונייטויטויאן אוניקטטיי ביי ביי ביי ביי ביי ביי ביי ביי ביי		
		management products, it is especially important to have a UI that is very user-friendly and open to everyone.	
4.	Social Impact / Customer Satisfaction	The primary goal of this application is early prediction, and appropriate treatments may be able to prevent or delay the disease's progression to an advanced state.	
5.	Business Model (Revenue Model)	The suggested strategy has the potential to generate income from	

6	Scalability of the Solution	direct patients as payment for the development of immediate outcomes. It can also collaborate with the healthcare sector to generate revenue from patients who come in for kidney disease diagnosis. The dimensionality reduction
		process can be adjusted to produce precise predictions with an increase in the features taken into account. The accuracy of many models can be compared in order to determine which is best. It can be used for a variety of illnesses in addition to chronic disorders.

Project Design Phase-I - Solution Fit Template

PROJECT DESIGN:

CUSTOMER JOURNEY

Data Flow Diagram:

TECHNOLOGY ARCHITECTURE:

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	An Interface for the user to interact with the prediction model.	HTML, CSS, JavaScript
2.	User Registration	User can register in the web application	HTML forms
3.	Disease Prediction	The user enters the data which is given as input to model to predict the disease.	Machine Learning with Python.
4.	Update Prediction result	The result of disease prediction is updated in the Web UI for the user to know the output.	Python.
5.	Database	Relational database structure to store the user data	MYSQL.
6.	Cloud Database	Database services on IBM cloud.	IBM Cloudant.
7.	Machine Learning Model	To predict he chronic kidney disease (CKD) with various input parameters.	Random Forest, KNN, Decision tree, Logistic Registration.
8.	Infrastructure (Server / Cloud)	Application Deployment on Cloud	IBM Cloud.

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	The python open-source frameworks are used to build the web application as well as to build Machine Learning model.	Python Flask, Numpy, Scikit-Learn etc.
2.	Scalable Architecture	The 3-tier architecture used with a separate user interface, application tier and data tier make it easily scalable.	IBM Watson Studio.
3.	Availability	The web application is highly available as it is deployed in cloud.	IBM Cloud.
4.	Performance	The performance of the website is improved with caching and security.	IBM Cloud Internet Services.

PROJECT PLANNING PHASE MILESTONE STRUCTURE:

TITLE	DESCRIPTION	DATE
Literature Survey & Information Gathering	Literature survey on the selected project & gathering information by referring the technical papers, research publications, journals etc.	29 SEPTEMBER 2022
Prepare Empathy Map	Prepare Empathy Map Canvas to capture the user Pains & Gains, Prepare list of problem Statements that are to be solved by this project.	29 SEPTEMBER 2022
Ideation	List the ideas by organizing a brainstorming session and prioritize the top 3 ideas based on the feasibility & importance.	03 OCTOBER 2022
Proposed Solution	Prepare the proposed solution document, which includes novelty, feasibility of idea, revenue model, social impact, scalability of solution, etc.	06 OCTOBER 2022
Problem Solution Fit	Prepare problem - solution fit document.	12OCTOBER 2022
Solution Architecture	Prepare solution architecture document.	14 OCTOBER 2022
Customer Journey	Prepare the customer journey maps to understand the user interactions & experiences with the application (entry to exit).	19 October 2022
Functional Requirement	Prepare the functional requirement document.	20 OCTOBER 2022

ADVANTAGES:

Data Flow Diagrams	Draw the data flow diagrams and submit for review.	25 OCTOBER 2022
Technology Architecture	Prepare the technology architecture diagram.	29 OCTOBER 2022
Prepare Milestone & Activity List	Prepare the milestones & activity list of the project.	03 NOVEMBER 2022
Project Development - Delivery of Sprint-1, 2, 3 & 4	Develop & submit the developed code by testing it.	IN PROGRESS

Easy to identify the disease.

Simple process

Cost effective

DISADVANTAGES:

Must study the values correctly

Make sure that values enter are accurate otherwise won't able to get results

Hazards sometimes.

CONCLUSION:

This article objects to predict Chronic Kidney Disease based

On full features and important features of CKD dataset.