Cálculo I (Segundo Semestre) — Ano lectivo 06/07

Resolução do Trabalho Teórico-Prático 2

1. Considere a função f definida por

$$f(x) = x^2 + \arctan(x^2)$$

para todo o $x \in D_f$.

(a) Determine o domínio de f, D_f .

Indicações para a resolução: $D_f = \mathbb{R}$.

(b) Determine o contradomínio de f, CD_f .

Indicações para a resolução: Uma vez que para, todo o $x \in \mathbb{R}$, $x^2 \ge 0$, tem-se que $\arctan(x^2) \in [0, \frac{\pi}{2}]$ e, portanto, $CD_f = \mathbb{R}_{\circ}^+$.

(c) Justifique que o gráfico da função f não tem assimptotas.

Indicações para a resolução: O gráfico de f não tem assimptotas verticais porque f é contínua em \mathbb{R} . Uma vez que

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(x + \frac{1}{x} \arctan(x^2) \right) = +\infty$$

e

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \left(x + \frac{1}{x} \arctan(x^2) \right) = -\infty$$

(note que $\lim_{x \to +\infty} \frac{1}{x} \arctan(x^2) = 0 \cdot \frac{\pi}{2} = 0$ e $\lim_{x \to -\infty} \frac{1}{x} \arctan(x^2) = 0 \times \frac{\pi}{2} = 0$)

podemos concluir que o gráfico de f não tem assimptotas não verticais.

(d) Estude a função f quanto à monotonia.

Indicações para a resolução: Uma vez que, para todo o $x \in \mathbb{R}$,

$$f'(x) = 2x + \frac{2x}{1+x^4} = \frac{2x(2+x^4)}{1+x^4},$$

podemos concluir que o sinal de f' é o sinal de x (porque $2+x^4>0$ e $1+x^4>0$, para todo o $x \in \mathbb{R}$). Logo f é estritamente decrescente em \mathbb{R}^- e estritamente crescente em \mathbb{R}^+ .

(e) Determine, se existirem, os extremos locais de f.

Indicações para a resolução: O único candidato a extremante local é o ponto crítico de f, x = 0. Como f é contínua em \mathbb{R} , estritamente decrescente em \mathbb{R}^- e estritamente crescente em \mathbb{R}^+ , x = 0 é minimizante local de f. Logo, f(0) = 0 é mínimo local de f.

Cálculo I (Segundo Semestre) — Ano lectivo 06/07

2. Considere a função $g: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definida por

$$g(x) = xe^{-\frac{1}{x}}.$$

Mostre que para todo o $x \in]1,3[,g(x)]$ pode ser aproximado por

$$p(x) = 2e^{-\frac{1}{2}} + \frac{3}{2}e^{-\frac{1}{2}}(x-2)$$

com um erro inferior a $\frac{1}{2\sqrt[3]{e}}$.

Indicações para a resolução: O polinómio de Taylor de ordem 1 da função g no ponto 2, p_1 , é dado por

$$p_1(x) = g(2) + g'(2)(x-2).$$

Uma vez que, para todo o $x \neq 0$,

$$g'(x) = e^{-\frac{1}{x}} + \frac{1}{x}e^{-\frac{1}{x}}$$

temos que

$$p_1(x) = 2e^{-\frac{1}{2}} + \frac{3}{2}e^{-\frac{1}{2}}(x-2).$$

Logo, podemos afirmar que g(x), para todo o $x \in]1,3[$, pode ser aproximado por $2e^{-\frac{1}{2}} + \frac{3}{2}e^{-\frac{1}{2}}(x-2)$. O erro cometido nessa aproximação é dado por

$$|R_1(x)| = \left| \frac{g''(\xi)(x-2)^2}{2!} \right|$$

para algum ξ entre x e 2.

Uma vez que

$$g''(x) = \frac{1}{x^3}e^{-\frac{1}{x}}$$

tem-se que

$$|R_1(x)| = \frac{1}{2}e^{-\frac{1}{\xi}} \cdot |\frac{1}{\xi^3}| \cdot |x-2|^2.$$

Para todo o $x \in]1,3[,-1 < x-2 < 1, \log 0, |x-2| < 1 e, portanto, |x-2|^2 < 1.$ Logo, para todo o $x \in]1,3[,$

$$|R_1(x)| < \frac{1}{2}e^{-\frac{1}{\xi}} \cdot \left|\frac{1}{\xi^3}\right|.$$

Como ξ está entre x e 2 e 1 < x < 3, tem-se que $1 < \xi < 3$, donde $\frac{1}{3} < \frac{1}{\xi} < 1$.

Logo,

$$|R_1(x)| < \frac{1}{2}e^{-\frac{1}{\xi}}.$$

Por outro lado, como $-1 < -\frac{1}{\xi} < -\frac{1}{3}$ e a função exponencial é estritamente crescente, podemos concluir que $e^{-\frac{1}{\xi}} < e^{-\frac{1}{3}}$ e, consequentemente,

$$|R_1(x)| < \frac{1}{2}e^{-\frac{1}{3}} = \frac{1}{2\sqrt[3]{e}}$$

como queríamos demonstrar.