Introduction
Chaîne cinématique
Algorithmes
Planification sous contraintes
Détection de collision

Planification de mouvement

Joseph Mirabel

CNRS-LAAS, Toulouse, France

Planification de mouvement

Introduction

Chaîne cinématique

Algorithmes

Planification sous contraintes

Détection de collision

Context

Industrial robots

aerial robots

autonomous vehicles

Mobile autonomous system

- moving in an environment cluttered with obstacles
- subject to kinematic or dynamic constraints

Motion planning: automatically computing a feasible trajectory between two configurations.

Context

Industrial robots

aerial robots

autonomous vehicles

Mobile autonomous system

- moving in an environment cluttered with obstacles
- subject to kinematic or dynamic constraints

Motion planning: automatically computing a feasible trajectory between two configurations.

Context

Industrial robots

aerial robots

autonomous vehicles

Mobile autonomous system

- moving in an environment cluttered with obstacles
- subject to kinematic or dynamic constraints

Motion planning: automatically computing a feasible trajectory between two configurations.

Planification de mouvement

Introduction

Chaîne cinématique

Algorithmes

Planification sous contraintes

Détection de collision

Articulations

Robot : Ensemble de corps rigides liées les uns aux autres par des *articulations*.

Transformation: une translation \mathbf{t} et une rotation R. L'ensemble des transformations forment l'espace SE(3).

Articulation : transformation $(\mathbf{t}(\mathbf{q}), R(\mathbf{q}))$ entre deux repères paramétrés par une ou plusieurs variables $\mathbf{q} \in \mathbb{R}^n$.

Articulations

Robot : Ensemble de corps rigides liées les uns aux autres par des *articulations*.

Transformation: une translation \mathbf{t} et une rotation R. L'ensemble des transformations forment l'espace SE(3).

Articulation : transformation $(\mathbf{t}(\mathbf{q}), R(\mathbf{q}))$ entre deux repères paramétrés par une ou plusieurs variables $\mathbf{q} \in \mathbb{R}^n$.

Articulations

Robot : Ensemble de corps rigides liées les uns aux autres par des *articulations*.

Transformation: une translation \mathbf{t} et une rotation R. L'ensemble des transformations forment l'espace SE(3).

Articulation : transformation $(\mathbf{t}(\mathbf{q}), R(\mathbf{q}))$ entre deux repères paramétrés par une ou plusieurs variables $\mathbf{q} \in \mathbb{R}^n$.

Articulations: Rotation 1D

Rotation autour de z :

$$\begin{array}{ccc} \mathbb{R} & \to & SE(3) \\ \mathbf{q}_0 & \to & (0_{\mathbb{R}^3}, R) \end{array}$$

$$R = \begin{pmatrix} \cos \mathbf{q}_0 & -\sin \mathbf{q}_0 & 0 \\ \sin \mathbf{q}_0 & \cos \mathbf{q}_0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Articulations: Rotation 1D

Rotation autour de z :

$$\begin{array}{ccc} \mathbb{R} & \to & SE(3) \\ \mathbf{q}_0 & \to & (0_{\mathbb{R}^3}, R) \end{array}$$

$$R = \begin{pmatrix} \cos \mathbf{q}_0 & -\sin \mathbf{q}_0 & 0 \\ \sin \mathbf{q}_0 & \cos \mathbf{q}_0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Articulations: Translation 1D

► Translation selon x :

$$\mathbb{R} \rightarrow SE(3)
\mathbf{q}_0 \rightarrow (\mathbf{t}, I_3)$$

$$\mathbf{t} = \left(egin{array}{c} \mathbf{q}_0 \\ 0 \\ 0 \end{array}
ight)$$
 $J_3 = \left(egin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}
ight)$

Articulations: Translation 1D

► Translation selon x :

$$\mathbb{R} \rightarrow SE(3)
\mathbf{q}_0 \rightarrow (\mathbf{t}, I_3)$$

$$\mathbf{t} = \begin{pmatrix} \mathbf{q}_0 \\ 0 \\ 0 \end{pmatrix}$$

$$l_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Articulations: Translation 3D

► Translation :

$$\begin{array}{ccc} \mathbb{R}^3 & \to & SE(3) \\ (\mathbf{q}_0, \mathbf{q}_1, \mathbf{q}_2) & \to & (\mathbf{t}, I_3) \end{array}$$

$$\mathbf{t} = \begin{pmatrix} \mathbf{q}_0 \\ \mathbf{q}_1 \\ \mathbf{q}_2 \end{pmatrix}$$

$$J_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Articulations: Translation 3D

► Translation :

$$\begin{array}{ccc} \mathbb{R}^3 & \to & SE(3) \\ (\mathbf{q}_0, \mathbf{q}_1, \mathbf{q}_2) & \to & (\mathbf{t}, I_3) \end{array}$$

$$\mathbf{t}=\left(egin{array}{c} \mathbf{q}_0 \ \mathbf{q}_1 \ \mathbf{q}_2 \end{array}
ight)$$
 $I_3=\left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{array}
ight)$

Articulations: Rotation 3D

Vecteur de taille 4 unitaire :

$$\mathbb{S}^4 = \left\{ \mathbf{q} | \mathbf{q} \in \mathbb{R}^4, ||\mathbf{q}|| = 1 \right\}$$

► Rotation :

$$\begin{array}{ccc} \mathbb{S}^4 & \to & SE(3) \\ \mathbf{q} & \to & (0_{\mathbb{R}^3}, R(\mathbf{q})) \end{array}$$

$$\begin{array}{c} R(q) = \\ \left(\begin{array}{ccc} 1 - 2(q_2^2 + q_3^2) & 2q_2q_1 - 2q_3q_0 & 2q_3q_1 + 2q_2q_0 \\ 2q_2q_1 + 2q_3q_0 & 1 - 2(q_1^2 + q_3^2) & 2q_3q_2 - 2q_1q_0 \\ 2q_3q_1 - 2q_2q_0 & 2q_3q_2 + 2q_1q_0 & 1 - 2(q_1^2 + q_2^2) \end{array}\right) \end{array}$$

 $\mathbf{q}_0 + \mathbf{q}_1 i + \mathbf{q}_2 j + \mathbf{q}_3 k$ is a quaternion.

Articulations: Rotation 3D

Vecteur de taille 4 unitaire :

$$\mathbb{S}^4 = \left\{ \mathbf{q} | \mathbf{q} \in \mathbb{R}^4, ||\mathbf{q}|| = 1 \right\}$$

Rotation :

$$\begin{array}{ccc} \mathbb{S}^4 & \to & SE(3) \\ \mathbf{q} & \to & (0_{\mathbb{R}^3}, R(\mathbf{q})) \end{array}$$

$$\begin{array}{c} R(q) = \\ \left(\begin{array}{ccc} 1 - 2(q_2^2 + q_3^2) & 2q_2q_1 - 2q_3q_0 & 2q_3q_1 + 2q_2q_0 \\ 2q_2q_1 + 2q_3q_0 & 1 - 2(q_1^2 + q_3^2) & 2q_3q_2 - 2q_1q_0 \\ 2q_3q_1 - 2q_2q_0 & 2q_3q_2 + 2q_1q_0 & 1 - 2(q_1^2 + q_2^2) \end{array} \right) \end{array}$$

Articulations: Rotation 3D

► Vecteur de taille 4 unitaire :

$$\mathbb{S}^4 = \left\{ \mathbf{q} | \mathbf{q} \in \mathbb{R}^4, ||\mathbf{q}|| = 1 \right\}$$

Rotation :

$$\begin{array}{ccc} \mathbb{S}^4 & \to & SE(3) \\ \mathbf{q} & \to & (0_{\mathbb{R}^3}, R(\mathbf{q})) \end{array}$$

$$\begin{array}{c} R(\textbf{q}) = \\ \begin{pmatrix} 1-2(\textbf{q}_2^2+\textbf{q}_3^2) & 2\textbf{q}_2\textbf{q}_1-2\textbf{q}_3\textbf{q}_0 & 2\textbf{q}_3\textbf{q}_1+2\textbf{q}_2\textbf{q}_0 \\ 2\textbf{q}_2\textbf{q}_1+2\textbf{q}_3\textbf{q}_0 & 1-2(\textbf{q}_1^2+\textbf{q}_3^2) & 2\textbf{q}_3\textbf{q}_2-2\textbf{q}_1\textbf{q}_0 \\ 2\textbf{q}_3\textbf{q}_1-2\textbf{q}_2\textbf{q}_0 & 2\textbf{q}_3\textbf{q}_2+2\textbf{q}_1\textbf{q}_0 & 1-2(\textbf{q}_1^2+\textbf{q}_2^2) \end{pmatrix} \end{array}$$

$$\mathbf{q}_0 + \mathbf{q}_1 i + \mathbf{q}_2 j + \mathbf{q}_3 k$$
 is a quaternion.

Digression: Quaternions

- Nombres complexes : $i^2 = -1$
- Quaternion : extension des nombres complexes

$$i^2 = j^2 = k^2 = ijk = -1$$

d'où l'on déduit

$$ij = k$$
, $jk = i$, $ki = j$

- $ightharpoonup \mathbf{q} = \mathbf{q}_3 + \mathbf{q}_0 i + \mathbf{q}_1 j + \mathbf{q}_2 k$, with $\mathbf{q} \in \mathbb{R}^4$.
- Quaternion unitaire : $\mathbf{q}_3^2 + \mathbf{q}_0^2 + \mathbf{q}_1^2 + \mathbf{q}_2^2 = 1$.

Digression: Rotation 3D et quaternion unitaire

- Rotation identité : $\mathbf{q} = (0,0,0,1)$
- ightharpoonup Rotation de heta autour de heta

$$\mathbf{q} = \left(\mathbf{u}_0, \mathbf{u}_1, \mathbf{u}_2, cos(\frac{\theta}{2})\right)$$

avec
$$\mathbf{u} = \sin(\frac{\theta}{2})\mathbf{e}$$
.

▶ q et −q représente la même rotation.

Digression: Rotation 3D et quaternion unitaire

- Rotation identité : $\mathbf{q} = (0, 0, 0, 1)$
- **Process** Rotation de θ autour de **e**

$$\mathbf{q} = \left(\mathbf{u}_0, \mathbf{u}_1, \mathbf{u}_2, cos(\frac{\theta}{2})\right)$$

avec
$$\mathbf{u} = \sin(\frac{\theta}{2})\mathbf{e}$$
.

▶ q et −q représente la même rotation.

Digression: Rotation 3D et quaternion unitaire

- ▶ Rotation identité : $\mathbf{q} = (0, 0, 0, 1)$
- ightharpoonup Rotation de heta autour de $extbf{e}$

$$\mathbf{q} = \left(\mathbf{u}_0, \mathbf{u}_1, \mathbf{u}_2, cos(\frac{\theta}{2})\right)$$

avec
$$\mathbf{u} = \sin(\frac{\theta}{2})\mathbf{e}$$
.

▶ q et −q représente la même rotation.

Chaîne cinématique

- ► Sequence de 3 rotations : ${}^{1}M_{1'}(\mathbf{q}_{1}), {}^{2}M_{2'}(\mathbf{q}_{2})$ et ${}^{3}M_{3'}(\mathbf{q}_{3}).$
- ► Articulation rigidement liée entre elles : ${}^{0}M_{1}$, ${}^{1'}M_{2}$, ${}^{2'}M_{2}$ et ${}^{3'}M_{outil}$.
- Configuration du robot : q = (q₁, q₂, q₃)
- Calcul de la position de l'outil :

$${}^{0}M_{outil} = {}^{0}M_{1}. \, {}^{1}M_{1'}(\mathbf{q}_{1}). \, {}^{1'}M_{2}. \, {}^{2}M_{2'}(\mathbf{q}_{2}). \, {}^{2'}M_{3}. \, {}^{3}M_{3'}(\mathbf{q}_{3}). \, {}^{3'}M_{outil}$$

- Contrôle du robot via les moteurs : q
- On veut contrôler l'organe terminal : ⁰ M_{outil}
- ▶ Relation entre $\dot{\mathbf{q}}$ et $\mathbf{V}_{A \in outil/0}$?
- ▶ Relation entre τ et $\mathbf{F}_{A,outil/0}$?

- Contrôle du robot via les moteurs : q
- On veut contrôler l'organe terminal : ⁰M_{outil}
- ▶ Relation entre $\dot{\mathbf{q}}$ et $\mathbf{V}_{A \in outil/0}$?
- ▶ Relation entre τ et $\mathbf{F}_{A,outil/0}$?

- Contrôle du robot via les moteurs : q
- On veut contrôler l'organe terminal : ⁰M_{outil}
- ▶ Relation entre $\dot{\mathbf{q}}$ et $\mathbf{V}_{A \in outil/0}$?
- ▶ Relation entre τ et $\mathbf{F}_{A,outil/0}$?

- Contrôle du robot via les moteurs : q
- On veut contrôler l'organe terminal : ⁰M_{outil}
- ▶ Relation entre $\dot{\mathbf{q}}$ et $\mathbf{V}_{A \in outil/0}$?
- ▶ Relation entre τ et $\mathbf{F}_{A,outil/0}$?

Un cas plus complexe : robot humanoïde

Chaîne cinématique :

Nécéssité de représenter un corps flottant.

- **E**space de travail dans lequel le robot bouge : $\mathcal{W} = \mathbb{R}^2$ où \mathbb{R}^3
- $lackbox{ }$ Obstacle dans $\mathcal W$: sous-ensemble compact de $\mathcal W$, noté $\mathcal O$.
- **E**space des configurations : C
- ▶ Position en une configuration **q** d'un point $M \in \mathcal{B}_i : \mathbf{x}_i(M, \mathbf{q})$.
- ▶ Obstacle dans l'espaces des configurations :

$$C_{obst} = \{ \mathbf{q} \in C, \exists i \in \{1, \dots, m\}, \exists M \in \mathcal{B}_i, \mathbf{x}_i(M, \mathbf{q}) \in \mathcal{O} \text{ or } \exists i, j \in \{1, \dots, m\}, \exists M_i \in \mathcal{B}_i, \exists M_j \in \mathcal{B}_j, \mathbf{x}_i(M_i, \mathbf{q}) = x_j(M_j, \mathbf{q}) \}$$

- Espace de travail dans lequel le robot bouge : $\mathcal{W}=\mathbb{R}^2$ où \mathbb{R}^3
- lackbox Obstacle dans $\mathcal W$: sous-ensemble compact de $\mathcal W$, noté $\mathcal O$.
- **E**space des configurations : C.
- ▶ Position en une configuration **q** d'un point $M \in \mathcal{B}_i : \mathbf{x}_i(M, \mathbf{q})$.
- ▶ Obstacle dans l'espaces des configurations :

$$C_{obst} = \{ \mathbf{q} \in C, \exists i \in \{1, \dots, m\}, \exists M \in \mathcal{B}_i, \mathbf{x}_i(M, \mathbf{q}) \in \mathcal{O} \text{ or } \exists i, j \in \{1, \dots, m\}, \exists M_i \in \mathcal{B}_i, \exists M_j \in \mathcal{B}_j, \mathbf{x}_i(M_i, \mathbf{q}) = x_j(M_j, \mathbf{q}) \}$$

- **E** Espace de travail dans lequel le robot bouge : $\mathcal{W} = \mathbb{R}^2$ où \mathbb{R}^3
- lackbox Obstacle dans $\mathcal W$: sous-ensemble compact de $\mathcal W$, noté $\mathcal O$.
- **E**space des configurations : C.
- ▶ Position en une configuration **q** d'un point $M \in \mathcal{B}_i : \mathbf{x}_i(M, \mathbf{q})$.
- ▶ Obstacle dans l'espaces des configurations :

$$C_{obst} = \{ \mathbf{q} \in C, \exists i \in \{1, \dots, m\}, \exists M \in \mathcal{B}_i, \mathbf{x}_i(M, \mathbf{q}) \in \mathcal{O} \text{ or } \exists i, j \in \{1, \dots, m\}, \exists M_i \in \mathcal{B}_i, \exists M_j \in \mathcal{B}_j, \mathbf{x}_i(M_i, \mathbf{q}) = x_j(M_j, \mathbf{q}) \}$$

- Espace de travail dans lequel le robot bouge : $\mathcal{W}=\mathbb{R}^2$ où \mathbb{R}^3
- lackbox Obstacle dans $\mathcal W$: sous-ensemble compact de $\mathcal W$, noté $\mathcal O$.
- **E**space des configurations : C.
- ▶ Position en une configuration **q** d'un point $M \in \mathcal{B}_i : \mathbf{x}_i(M, \mathbf{q})$.
- Obstacle dans l'espaces des configurations :

$$C_{obst} = \{ \mathbf{q} \in C, \exists i \in \{1, \dots, m\}, \exists M \in \mathcal{B}_i, \mathbf{x}_i(M, \mathbf{q}) \in \mathcal{O} \text{ or } \exists i, j \in \{1, \dots, m\}, \exists M_i \in \mathcal{B}_i, \exists M_j \in \mathcal{B}_j, \mathbf{x}_i(M_i, \mathbf{q}) = x_j(M_j, \mathbf{q}) \}$$

- **E** Espace de travail dans lequel le robot bouge : $\mathcal{W} = \mathbb{R}^2$ où \mathbb{R}^3
- lacktriangle Obstacle dans ${\mathcal W}$: sous-ensemble compact de ${\mathcal W}$, noté ${\mathcal O}$.
- **E**space des configurations : C.
- ▶ Position en une configuration **q** d'un point $M \in \mathcal{B}_i : \mathbf{x}_i(M, \mathbf{q})$.
- Obstacle dans l'espaces des configurations :

$$\mathcal{C}_{obst} = \{ \mathbf{q} \in \mathcal{C}, \exists i \in \{1, \cdots, m\}, \exists M \in \mathcal{B}_i, \mathbf{x}_i(M, \mathbf{q}) \in \mathcal{O} \text{ or } \\ \exists i, j \in \{1, \cdots, m\}, \exists M_i \in \mathcal{B}_i, \exists M_j \in \mathcal{B}_j, \\ \mathbf{x}_i(M_i, \mathbf{q}) = x_j(M_j, \mathbf{q}) \}$$

- **E**space de travail dans lequel le robot bouge : $\mathcal{W} = \mathbb{R}^2$ où \mathbb{R}^3
- lacktriangle Obstacle dans ${\mathcal W}$: sous-ensemble compact de ${\mathcal W}$, noté ${\mathcal O}$.
- **E**space des configurations : C.
- ▶ Position en une configuration **q** d'un point $M \in \mathcal{B}_i : \mathbf{x}_i(M, \mathbf{q})$.
- Obstacle dans l'espaces des configurations :

$$\mathcal{C}_{obst} = \{ \mathbf{q} \in \mathcal{C}, \exists i \in \{1, \cdots, m\}, \exists M \in \mathcal{B}_i, \mathbf{x}_i(M, \mathbf{q}) \in \mathcal{O} \text{ or } \\ \exists i, j \in \{1, \cdots, m\}, \exists M_i \in \mathcal{B}_i, \exists M_j \in \mathcal{B}_j, \\ \mathbf{x}_i(M_i, \mathbf{q}) = x_i(M_i, \mathbf{q}) \}$$

Chemin

- ► Chemin:
 - fonction continue de [0,1] dans C.
- ► Chemin sans collision :
 - ▶ fonction continue de [0,1] dans C_{free} .

Chemin

- ► Chemin:
 - fonction continue de [0,1] dans C.
- Chemin sans collision :
 - fonction continue de [0,1] dans $\mathcal{C}_{\text{free}}$.

- ► Étant donné un robot, des obstacles ainsi qu'une configuration initial et finale du robot,
 - trouver un chemin sans collision allant de la configuration initiale à la configuration finale.

- ► Étant donné un robot, des obstacles ainsi qu'une configuration initial et finale du robot,
 - trouver un chemin sans collision allant de la configuration initiale à la configuration finale.

- Étant donné un robot, des obstacles ainsi qu'une configuration initial et finale du robot,
 - trouver un chemin sans collision allant de la configuration initiale à la configuration finale.
- ▶ Étant donné un robot, \mathcal{O} , $(\mathbf{q}_{initiale}, \mathbf{q}_{finale}) \in \mathcal{C}^2$,

- Étant donné un robot, des obstacles ainsi qu'une configuration initial et finale du robot,
 - trouver un chemin sans collision allant de la configuration initiale à la configuration finale.
- ▶ Étant donné un robot, \mathcal{O} , $(\mathbf{q}_{initiale}, \mathbf{q}_{finale}) \in \mathcal{C}^2$,
 - ▶ trouver $f \in C^0([0,1], C_{free})$ telle que $f(0) = \mathbf{q}_{initiale}$ et $f(1) = \mathbf{q}_{finale}$.

Planification de mouvement

Introduction

Chaîne cinématique

Algorithmes

Planification sous contraintes

Détection de collision

- discretisation,
 - dimensionnalité
- ▶ diagrammes de Voronoï
 - dur à généraliser pour plus de 2-3 dimensions
 - dimensionnalité
- décomposition cellulaire
 - dur à généraliser pour plus de 2-3 dimensions
 - dimensionnalité
- champs de potentiel
 - dur à généraliser pour des corps complexes
 - sujet au probème des minimums locaux

- discretisation,
 - dimensionnalité
- ▶ diagrammes de Voronoï
 - dur à généraliser pour plus de 2-3 dimensions
 - dimensionnalité
- décomposition cellulaire
 - dur à généraliser pour plus de 2-3 dimensions
 - dimensionnalité
- champs de potentiel
 - dur à généraliser pour des corps complexes
 - sujet au probème des minimums locaux

- discretisation,
 - dimensionnalité
- ▶ diagrammes de Voronoï
 - ▶ dur à généraliser pour plus de 2-3 dimensions
 - dimensionnalité
- décomposition cellulaire
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalité
- champs de potentiel
 - dur à généraliser pour des corps complexes.
 - sujet au probème des minimums locaux

- discretisation,
 - dimensionnalité
- ▶ diagrammes de Voronoï
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalité
- décomposition cellulaire
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalit
- ► champs de potentiel
 - dur à généraliser pour des corps complexes
 - sujet au probème des minimums locaux

- discretisation,
 - dimensionnalité
- diagrammes de Voronoï
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalité
- décomposition cellulaire
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalité
- ▶ champs de potentiel
 - dur à généraliser pour des corps complexes
 - sujet au probème des minimums locaux

- discretisation,
 - dimensionnalité
- ▶ diagrammes de Voronoï
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalité
- décomposition cellulaire
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalité
- champs de potentiel
 - dur à généraliser pour des corps complexes
 - sujet au probème des minimums locaux

- discretisation,
 - dimensionnalité
- diagrammes de Voronoï
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalité
- décomposition cellulaire
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalité
- champs de potentiel
 - dur à généraliser pour des corps complexes
 - sujet au probème des minimums locaux

- discretisation,
 - dimensionnalité
- diagrammes de Voronoï
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalité
- décomposition cellulaire
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalité
- champs de potentiel
 - dur à généraliser pour des corps complexes
 - sujet au probème des minimums locaux

- discretisation,
 - dimensionnalité
- diagrammes de Voronoï
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalité
- décomposition cellulaire
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalité
- champs de potentiel
 - dur à généraliser pour des corps complexes,
 - sujet au probème des minimums locaux.

- discretisation,
 - dimensionnalité
- diagrammes de Voronoï
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalité
- décomposition cellulaire
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalité
- champs de potentiel
 - dur à généraliser pour des corps complexes,
 - sujet au probème des minimums locaux

- discretisation,
 - dimensionnalité
- diagrammes de Voronoï
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalité
- décomposition cellulaire
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalité
- champs de potentiel
 - dur à généraliser pour des corps complexes,
 - sujet au probème des minimums locaux.

Les premières approches sont déterministes :

- discretisation,
 - dimensionnalité
- diagrammes de Voronoï
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalité
- décomposition cellulaire
 - dur à généraliser pour plus de 2-3 dimensions.
 - dimensionnalité
- champs de potentiel
 - dur à généraliser pour des corps complexes,
 - sujet au probème des minimums locaux.

Émergence de méthodes aléatoires dans les années 1990.

Méthodes aléatoires

Principe:

- tirer une configuration aléatoire,
- construire un graphe (carte) dont les noeuds sont des configurations,
- et dont les arêtes sont des interpolations linéaires sans collision.

Méthodes aléatoires

Principe:

- tirer une configuration aléatoire,
- construire un graphe (carte) dont les noeuds sont des configurations,
- et dont les arêtes sont des interpolations linéaires sans collision.

Méthodes aléatoires

Principe:

- tirer une configuration aléatoire,
- construire un graphe (carte) dont les noeuds sont des configurations,
- et dont les arêtes sont des interpolations linéaires sans collision.

Probabilistic roadmap (PRM) 1994

Probabilistic roadmap (PRM) 1994

Probabilistic roadmap (PRM)

- Beaucoup de noeuds inutiles sont créés,
 - cela augmente le coût de connexion de nouveaux noeuds á la carte courrante.
- Amélioration : Visibility-based PRM
 - Seul les noeuds intéressants sont gardés.

Rapidly exploring Random Tree (RRT) 2000

Rapidly exploring Random Tree (RRT) 2000

Méthodes aléatoires

- Avantages :
 - pas de calcul explicites de l'espace des configurations libres,
 - facile á implémenter,
 - robuste.
- ► Inconvénients :
 - pas de complétude, seulement une complétude en probabilité.
 - difficile de trouver un passage étroit.
- Opérations requises :
 - ▶ test de collisions
 - pour des configurations (statique),
 - pour des chemins (dynamique)

Méthodes aléatoires

- Avantages :
 - pas de calcul explicites de l'espace des configurations libres,
 - facile á implémenter,
 - robuste.
- Inconvénients :
 - pas de complétude, seulement une complétude en probabilité.
 - difficile de trouver un passage étroit.
- Opérations requises :
 - test de collisions
 - pour des configurations (statique),
 - pour des chemins (dynamique)

Méthodes aléatoires

- Avantages :
 - pas de calcul explicites de l'espace des configurations libres,
 - facile á implémenter,
 - robuste.
- Inconvénients :
 - pas de complétude, seulement une complétude en probabilité.
 - difficile de trouver un passage étroit.
- Opérations requises :
 - test de collisions
 - pour des configurations (statique),
 - pour des chemins (dynamique)

Planification de mouvement

Introduction

Chaîne cinématique

Algorithmes

Planification sous contraintes

Détection de collision

Motivations

- Comment générer une configuration satisfaisant des critères géométriques?
 - position,
 - orientation,
 - centre de masse,
 - visibilité,
 - **.** . . .
- ▶ Interpolation linéraire dans C:
 - courbe non linéraire dans W

Motivations

- Comment générer une configuration satisfaisant des critères géométriques?
 - position,
 - orientation,
 - centre de masse,
 - visibilité,
- ▶ Interpolation linéraire dans C :
 - ightharpoonup courbe non linéraire dans \mathcal{W}

Motivations

- Comment générer une configuration satisfaisant des critères géométriques?
 - position,
 - orientation,
 - centre de masse,
 - visibilité,
- ▶ Interpolation linéraire dans C :
 - ightharpoonup courbe non linéraire dans \mathcal{W}

Contrainte : une equation de la forme

$$f(q) = 0$$

- $ightharpoonup f \in \mathcal{C}^1(\mathcal{C}, \mathbb{R}^m),$
- ▶ *m* est la dimension de la contrainte.

Contrainte : une equation de la forme

$$f(q) = 0$$

- $ightharpoonup f \in \mathcal{C}^1(\mathcal{C},\mathbb{R}^m)$,
- m est la dimension de la contrainte.

Contrainte : une equation de la forme

$$f(q) = 0$$

- $f \in \mathcal{C}^1(\mathcal{C}, \mathbb{R}^m)$,
- ▶ *m* est la dimension de la contrainte.

Contrainte : une equation de la forme

$$f(q) = 0$$

- $f \in \mathcal{C}^1(\mathcal{C}, \mathbb{R}^m)$,
- ▶ *m* est la dimension de la contrainte.

- position,
- centre de masse,
- orientation.

Contrainte : une equation de la forme

$$f(q) = 0$$

- $f \in \mathcal{C}^1(\mathcal{C}, \mathbb{R}^m)$,
- ▶ *m* est la dimension de la contrainte.

- position,
- centre de masse,
- orientation.

Contrainte : une equation de la forme

$$f(q) = 0$$

- $f \in \mathcal{C}^1(\mathcal{C}, \mathbb{R}^m)$,
- ▶ *m* est la dimension de la contrainte.

- position,
- centre de masse,
- orientation.

Contrainte : une equation de la forme

$$f(q) = 0$$

- $f \in \mathcal{C}^1(\mathcal{C}, \mathbb{R}^m)$,
- ▶ *m* est la dimension de la contrainte.

- position,
- centre de masse,
- orientation.

- ▶ donne l'ensemble des solutions d'une contrainte : $q \in C$, f(q) = 0,
- possible pour certaines contraintes mais :
 - spécifique à chaque cas,
 - complexes à implémenter
 - difficile, voire impossible à combiner

- ▶ donne l'ensemble des solutions d'une contrainte :
 - $q \in \mathcal{C}, f(q) = 0,$
- possible pour certaines contraintes mais :
 - spécifique à chaque cas,
 - complexes à implémenter,
 - difficile, voire impossible à combiner.

▶ donne l'ensemble des solutions d'une contrainte :

$$q \in \mathcal{C}, f(q) = 0,$$

- possible pour certaines contraintes mais :
 - spécifique à chaque cas,
 - complexes à implémenter,
 - difficile, voire impossible à combiner.

▶ donne l'ensemble des solutions d'une contrainte :

$$q \in \mathcal{C}, f(q) = 0,$$

- possible pour certaines contraintes mais :
 - spécifique à chaque cas,
 - complexes à implémenter,
 - difficile, voire impossible à combiner.

▶ donne l'ensemble des solutions d'une contrainte :

$$q \in \mathcal{C}, f(q) = 0,$$

- possible pour certaines contraintes mais :
 - spécifique à chaque cas,
 - complexes à implémenter,
 - difficile, voire impossible à combiner.

Méthode itérative

- ▶ si $|| f(\mathbf{q}_n)|| < \epsilon$ alors \mathbf{q}_n est une solution,
- ► calcul de la dérivée de f :

$$J = \frac{\partial f}{\partial \mathbf{q}}$$

- \triangleright calcul de \mathbf{q}_{n+1} avec une approximation
 - du 1er ordre

$$\mathbf{q}_{n+1} = \mathbf{q}_n - \alpha \left(\frac{||f(\mathbf{q}_n)||^2}{2||J^T f(\mathbf{q}_n)||^2} \right) J^T f(\mathbf{q}_n), \alpha \in]0, 1]$$

▶ du 2nd ordre : J[†] est la pseudo-inverse de J

$$\mathbf{q}_{n+1} = \mathbf{q}_n - \alpha J^{\dagger} f(\mathbf{q}_n), \alpha \in]0, 1]$$

Méthode itérative

- ▶ si $|| f(\mathbf{q}_n)|| < \epsilon$ alors \mathbf{q}_n est une solution,
- ► calcul de la dérivée de f :

$$J = \frac{\partial f}{\partial \mathbf{q}}$$

▶ calcul de \mathbf{q}_{n+1} avec une approximation

$$\mathbf{q}_{n+1} = \mathbf{q}_n - \alpha \left(\frac{||f(\mathbf{q}_n)||^2}{2||J^T f(\mathbf{q}_n)||^2} \right) J^T f(\mathbf{q}_n), \alpha \in]0, 1]$$

 \blacktriangleright du 2nd ordre : J^{\dagger} est la pseudo-inverse de J

$$\mathbf{q}_{n+1} = \mathbf{q}_n - \alpha J^\dagger f(\mathbf{q}_n), \alpha \in]0,1]$$

Méthode itérative

- ▶ si $|| f(\mathbf{q}_n)|| < \epsilon$ alors \mathbf{q}_n est une solution,
- ► calcul de la dérivée de *f* :

$$J = \frac{\partial f}{\partial \mathbf{q}}$$

- ightharpoonup calcul de \mathbf{q}_{n+1} avec une approximation
 - ▶ du 1er ordre

$$\mathbf{q}_{n+1} = \mathbf{q}_n - \alpha \left(\frac{||f(\mathbf{q}_n)||^2}{2||J^T f(\mathbf{q}_n)||^2} \right) J^T f(\mathbf{q}_n), \alpha \in]0, 1]$$

b du 2nd ordre : J^{\dagger} est la pseudo-inverse de J

$$\mathbf{q}_{n+1} = \mathbf{q}_n - \alpha J^{\dagger} f(\mathbf{q}_n), \alpha \in]0, 1]$$

Méthode itérative

- ▶ si $|| f(\mathbf{q}_n)|| < \epsilon$ alors \mathbf{q}_n est une solution,
- ► calcul de la dérivée de f :

$$J = \frac{\partial f}{\partial \mathbf{q}}$$

- \triangleright calcul de \mathbf{q}_{n+1} avec une approximation
 - du 1er ordre

$$\mathbf{q}_{n+1} = \mathbf{q}_n - \alpha \left(\frac{||f(\mathbf{q}_n)||^2}{2||J^T f(\mathbf{q}_n)||^2} \right) J^T f(\mathbf{q}_n), \alpha \in]0, 1]$$

• du 2nd ordre : J^{\dagger} est la pseudo-inverse de J

$$\mathbf{q}_{n+1} = \mathbf{q}_n - \alpha J^{\dagger} f(\mathbf{q}_n), \alpha \in]0, 1]$$

Méthode itérative

- ▶ si $|| f(\mathbf{q}_n)|| < \epsilon$ alors \mathbf{q}_n est une solution,
- ► calcul de la dérivée de f :

$$J = \frac{\partial f}{\partial \mathbf{q}}$$

- ightharpoonup calcul de \mathbf{q}_{n+1} avec une approximation
 - du 1er ordre

$$\mathbf{q}_{n+1} = \mathbf{q}_n - \alpha \left(\frac{||f(\mathbf{q}_n)||^2}{2||J^T f(\mathbf{q}_n)||^2} \right) J^T f(\mathbf{q}_n), \alpha \in]0, 1]$$

• du 2nd ordre : J^{\dagger} est la pseudo-inverse de J

$$\mathbf{q}_{n+1} = \mathbf{q}_n - \alpha J^{\dagger} f(\mathbf{q}_n), \alpha \in]0,1]$$

Digression: pseudo-inverse

Soit $J \in \mathcal{M}_{m,n}(\mathbb{R})$, $n \geq m$ et soit le problème Jx = b.

- $x^* = J^{\dagger}b$ est la solution de norme minimale.
- ▶ la matrice $I_n J^{\dagger}J$ est un projecteur sur le noyau de J.
- ▶ l'ensemble des solutions est $\{x^* + (I_n J^{\dagger}J)u, u \in \mathbb{R}^n\}$.

Digression: pseudo-inverse

Soit $J \in \mathcal{M}_{m,n}(\mathbb{R})$, $n \geq m$ et soit le problème Jx = b.

- $x^* = J^{\dagger}b$ est la solution de norme minimale.
- ▶ la matrice $I_n J^{\dagger}J$ est un projecteur sur le noyau de J.
- ▶ l'ensemble des solutions est $\{x^* + (I_n J^{\dagger}J)u, u \in \mathbb{R}^n\}$.

Digression: pseudo-inverse

Soit $J \in \mathcal{M}_{m,n}(\mathbb{R})$, $n \geq m$ et soit le problème Jx = b.

- $x^* = J^{\dagger}b$ est la solution de norme minimale.
- ▶ la matrice $I_n J^{\dagger}J$ est un projecteur sur le noyau de J.
- ▶ l'ensemble des solutions est $\{x^* + (I_n J^{\dagger}J)u, u \in \mathbb{R}^n\}$.

Planification de mouvement

Introduction

Chaîne cinématique

Algorithmes

Planification sous contraintes

Détection de collision

Test de collision

- Problème : étant donné
 - deux ensembles rigides de triangles,
 - ▶ la position relative d'un ensemble par rapport á l'autre,

déterminer si l'intersection entre les ensembles est vide.

- ► Arbre binaire de volumes englobants tel que :
 - chaque noeud a deux enfants,
 - les feuilles sont les triangles.

- Arbre binaire de volumes englobants tel que :
 - chaque noeud a deux enfants,
 - les feuilles sont les triangles.

- ► Arbre binaire de volumes englobants tel que :
 - chaque noeud a deux enfants,
 - les feuilles sont les triangles.

- Arbre binaire de volumes englobants tel que :
 - chaque noeud a deux enfants,
 - les feuilles sont les triangles.

- Arbre binaire de volumes englobants tel que :
 - chaque noeud a deux enfants,
 - les feuilles sont les triangles.

- Arbre binaire de volumes englobants tel que :
 - chaque noeud a deux enfants,
 - les feuilles sont les triangles.

- Arbre binaire de volumes englobants tel que :
 - chaque noeud a deux enfants,
 - les feuilles sont les triangles.

- Arbre binaire de volumes englobants tel que :
 - chaque noeud a deux enfants,
 - les feuilles sont les triangles.

- Arbre binaire de volumes englobants tel que :
 - chaque noeud a deux enfants,
 - les feuilles sont les triangles.

Test de collision pour des configurations

- Algorithme
 - si les éléments de la paire sont des feuilles, tester les triangles
 - si la paire de volume englobant (VE) courante, arrêter l'exploration du sous-arbre
 - ▶ déterminer le VE á casser en deux.
 - tester récursivement le VE non cassé avec les deux fils de l'autre.

Test de collision pour des configurations

- Algorithme
 - ▶ si les éléments de la paire sont des feuilles, tester les triangles
 - si la paire de volume englobant (VE) courante, arrêter l'exploration du sous-arbre
 - ▶ déterminer le VE á *casser* en deux.
 - tester récursivement le VE non cassé avec les deux fils de l'autre.

Test de collision pour des configurations

- Algorithme
 - ▶ si les éléments de la paire sont des feuilles, tester les triangles
 - si la paire de volume englobant (VE) courante, arrêter l'exploration du sous-arbre
 - ▶ déterminer le VE á casser en deux.
 - tester récursivement le VE non cassé avec les deux fils de l'autre.

- Test de collision entre deux ensembles convexes.
- Point support :

- ▶ Test de collision entre deux ensembles *convexes*.
- Point support :

Supporting Point

copyright haroldserrano.com

► Somme de Minkowski :

Minkowski Sum

copyright haroldserrano.com

▶ Différence de Minkowski :

- ► Somme de Minkowski :
- Différence de Minkowski :

Minkowski Difference

copyright haroldserrano.com

GJK Algorithm

