

第6章 波形产生和变换

6.2 多谐振荡器

6.3 单稳态触发器和施密特触发器

6.4 单片集成函数信号发生器

6.1 正弦波振荡电路

6.1.1 正弦波振荡电路的基本原理

6.1.2 RC正弦波振荡电路

*6.1.3 LC正弦波振荡电路

提示

・波形产生电路分类

正弦和非正弦(如矩形波、三角波)波形产生电路。

· 波形产生电路的公同特点

自激(不需要任何输入信号);

必须在电路中引入足够强的正反馈。

1. 自激振荡的条件

放大器输入端输入信号 U_{s}

其输出为 \dot{U}_{o}

经反馈网络反馈的电压为 $\dot{U}_{\mathbf{r}}$

由于是正反馈,故有

$$\dot{U}_{\rm i} = \dot{U}_{\rm s} + \dot{U}_{\rm f}$$

$$\dot{U}_{\mathrm{f}}^{\uparrow}$$
, $\dot{U}_{\mathrm{s}}^{\downarrow}$, \rightarrow $\dot{U}_{\mathrm{s}}^{}=0$, $\dot{U}_{\mathrm{f}}^{}=\dot{U}_{\mathrm{i}}^{}$

要维持自激振荡,须 $F\dot{U}_{\rm o}=\dot{U}_{\rm f}=\dot{U}_{\rm i}=rac{U_{
m o}}{A}$

所以维持振荡的平衡条件为 AF = 1

$$A = rac{oldsymbol{U_o}}{\dot{oldsymbol{U_i}}}$$

$$F = \frac{\dot{U}_{\rm f}}{\dot{U}_{\rm o}}$$

可得两个平衡条件:

- 幅度平衡条件 |AF|=1 反馈信号与输入信号的大小相等,并有足够强度。
- 相位平衡条件 $\varphi_A + \varphi_F = 2n\pi(n = 0, 1, 2\cdots)$

反馈信号与输入信号同相,即引入正反馈。

这是必要条件,但不充分

若要使振荡从小到大建立起来还应满足:

起振条件: |AF|>1 相位条件不变

2. 振荡的建立与稳定

接通电源瞬间,由于瞬时的扰动、电路的噪声含有丰富的频谱成分。由选频电路选择某一频率的正弦信号,满足起振条件,此时为增幅振荡。

在增幅振荡过程中,若减小A,当 $|AF| > 1 \rightarrow |AF| = 1$ 时, 电路呈稳定的等幅振荡。

自激振荡的建立过程

通过不断地放大 \rightarrow 正反馈,馈 \rightarrow 再放大 \rightarrow 再反馈,使U。不断增大,一直到达A点时,才稳定下来。

由上述分析可知:

正弦波振荡电路应包含以下四个环节

- 放大
- 反馈
- 选频
- 稳幅

• 电路组成

放大环节: A_0 , R_1 , R_f

构成同相输入比例运算

反馈环节: Z_1 , Z_2

选频且控制正反馈量

6.1.2 RC正弦波振荡电路

RC串并联网络的选频特性

习题2.3.12
$$\frac{\dot{U}_f}{\dot{U}_o} = \frac{Z_2}{Z_1 + Z_2} = \frac{1}{3 + j(\omega RC - \frac{1}{\omega RC})}$$

当信号频率
$$\omega_o = \frac{1}{RC}$$
 即 $f_o = \frac{1}{2\pi RC}$ 时

$$U_f = \frac{1}{3}U_o$$
 U_f 与 U_o 同相 $F = \frac{U_f}{U_o} = \frac{1}{3}$

放大特性
$$A = 1 + \frac{R_f}{R_1}$$

6.1.2 RC正弦波振荡电路

自激振荡条件

- 起振 |AF| > 1 $R_f > 2R_1$
- 平衡 |AF|=1 $R_f=2R_1$
- 稳幅 该电路采用负温度系数热敏电阻

$$U_{O} \uparrow \rightarrow T \uparrow \rightarrow R_{f} \downarrow \rightarrow U_{-} \uparrow \rightarrow |A| \downarrow \rightarrow |AF| = 1$$
 等幅振荡

6.1.2 RC正弦波振荡电路

用二极管稳幅的振荡电路

电容三点式振荡电路 (Colpitts)

(b) 交流通路

电路及工作原理介绍

电感L 和电容 C_1 、 C_2 构成的谐振回路成为放大电路的负载,电容 C_2 两端的电压作为反馈信号,瞬时极性法判断相位平衡条件。谐振时, u_0 与 u_i 反相, u_f 与 u_0 反相, u_1 与 u_2 同相。

选取适当的静态值和元件参数,使得谐振回路谐振时, $|AF| \ge 1$ 。电路自激振荡 |AF| = 1 时,振荡稳定。振荡频率近似等于LC谐振回路的振荡频率:

$$f_0 = \frac{1}{2\pi\sqrt{L\frac{C_1C_2}{C_1 + C_2}}}$$

1. 改进型电容三点式振荡电路(Clapp)

共基接法, 频率远高于共射

在电感支路中串联一个电容 C_3 ,且取 C_3 远小于 C_1 和 C_2 。故谐振回路的振荡频率主要由 L和 C_3 来决定:

$$f_0 \approx \frac{1}{2\pi\sqrt{LC_3}}$$

改变 C_3 ,即可改变 f_0

2. 电感三点式振荡电路

(b) 交流通路

电感 L_1 、 L_2 和电容 C 构成了谐振回路, $+U_{CC}$ 通过 L_1 到集电极形成集电极电流的直流通路,故可省略 R_C 。电感 L_2 两端的电压作为反馈信号,在放大器的输入端引入了正反馈。

若 L_1 、 L_2 线圈之间的互感为 M , 则线圈的总电感为: $L = L_1 + L_2 + 2M$ 。 电路的振荡频率近似等于 LC 谐振回路的振荡频率:

$$f_0 = \frac{1}{2\pi\sqrt{(L_1 + L_2 + 2M)C}}$$

三点式LC正弦波振荡电路的振荡条件

- (1) 幅值条件:通过提供合适的直流通路和选取恰当的电抗参数而得到。
- (2) 相位条件: 电路构成必须遵守以下原则,
- 发射极两侧支路的电抗应为同一性质(同为容抗或感抗)。
- 基极与集电极支路的电抗应与发射极两侧支路的电抗异性。

6.2 多谐振荡器

6.2.1 用集成运放构成的多谐振荡器

6.2.2 用石英晶体构成的多谐振荡器

6.2.3 用555集成定时器构成的多谐振荡器

6.2.1 用集成运放构成的多谐振荡器

多谐振荡器也称矩形波(含方波)发生器。

1. 电路的组成

RC 引入了具有延迟特性的负反馈电路。 U_+ 为 U_0 经 R_1 和 R_2 ,在 R_1 上的分压,并作为比较器的参考电压, U_- 即 U_C 作为比较器的输入电压。

6.2.1 用集成运放构成的多谐振荡器

$$u_{+H} = \frac{R_1}{R_1 + R_2} U_Z$$

$$u_{+L} = -\frac{R_1}{R_1 + R_2} U_Z$$

2. 电路的工作过程

• $t_0 \le t \le t_1$ 日寸:

$$u_C = U_Z - (\frac{R_1}{R_1 + R_2} U_Z + U_Z) e^{-\frac{t - t_0}{RC}}$$

•
$$t = t_1$$
 By: $u_C = u_{+H} = \frac{R_1}{R_1 + R_2} U_Z$

该电路是方波发生电路

$$T = T_2 + T_1 = 2RC \ln(1 + \frac{2R_1}{R_2})$$
$$f = 1/T$$

6.2.1 用集成运放构成的多谐振荡器

3.占空比可调的多谐振荡器

调节 R_P ,使电容充电和放电的时间常数不相等

$$T_1 = R_P' C \ln(1 + \frac{2R_1}{R_2})$$

$$T_2 = R_P''C \ln(1 + \frac{2R_1}{R_2})$$

$$T = R_P C \ln(1 + \frac{2R_1}{R_2})$$

即输出矩形波占空比可调,而周期不变。

1. 石英晶体

(a) 符号

(b) 等效电路

石英晶体具有压电效应、 压电谐振特点,并呈现固有谐 振频率。

谐振频率有两个,LCR支路的串联谐振频率 f_s 和 LCR 支路与电容 C_0 的并联谐振频率 f_P , $f_P > f_s$,且很接近。

石英晶体的电抗频率特性曲线

• $f = f_s$ 时: (X = 0)

石英晶体呈近阻性

• $f < f_s$ 或 $f > f_p$ 时:

石英晶体呈容性

• $f_s < f < f_p$ 时:

石英晶体呈感性

电抗频率特性曲线

2. 串联型石英晶体多谐振荡器

3. 并联型多谐振荡器

 $R_{\rm F}$, G_1 构成反相放大器

JT 等效为电感,与 C_1 , C_2 , 反相放大器构成电容三点式振荡电路。

G。起缓冲、隔离、整形作用。

1、555集成定时器

555集成定时器是一种模拟电路和数字电路结合的中规模集成电路。

常用的555定时器有:

双极型定时器——5G1555

CMOS定时器——CB7555

CB7555集成定时器的电路结构图

CB7555定时器功能表

输入			输出	
$\overline{R_D}$	TH	TR	OUT	T_N
低电平	X	X	低电平	导通
高电平	$> \frac{2}{3}U_{DD}$	$> \frac{1}{3}U_{DD}$	低电平	导通
高电平	$<\frac{2}{3}U_{DD}$	$> \frac{1}{3}U_{DD}$	原状态	原状态
高电平	$<\frac{2}{3}U_{DD}$	$<\frac{1}{3}U_{DD}$	高电平	截止

若CO端外加电压 U_{CO} , U_{TH} 与 U_{CO} 比较, \overline{U}_{TR} 与 $1/2U_{CO}$ 比较

2、用555定时器构成的多谐振荡器

$$T_2 = R_2 C \ln 2 \approx 0.693 R_2 C$$

$$T = T_1 + T_2 \approx 0.693(R_1 + 2R_2)C$$

$$f_0 = \frac{1}{T} \approx \frac{1.44}{(R_1 + 2R_2)C}$$

3、555定时器应用举例

[例题6.2.1] 如图为一模拟公安警车音响的电路,试说明其工作原理

3、555定时器应用举例

[例6.2.2] 如图为一防盗报警电路,试说明其工作原理。

- ① 由555构成何种电路?
- ② 铜丝不断时,输出为何种状态?
- ③ 铜丝被碰断后,输出为何种波形?

[例6.2.3] 如图为一门铃电路, 试说明其工作原理。

6.3 单稳态触发器和施密特触发器

6.3.1 用555集成定时器构成的单稳态触发器

6.3.2 用555集成定时器构成的施密特触发器

6.3.1 用555集成定时器构成的单稳态触发器

- 多谐振荡器没有稳定状态,属无稳触发器
- 双稳态触发器,有两个稳定状态,从一个稳态翻转为另一个稳态必须靠脉冲信号触发,脉冲消失后,稳态一直保持。
- 单稳态触发器在脉冲信号未加之前,处于稳定状态,经信号触发后,触发器翻转到新的状态,经过一定延时后触发器又自动翻转到原来的稳定状态。所以只有一种稳定状态。

6.3.1 用555集成定时器构成的单稳态触发器

[例6.3.1] 下图是一个定时加热器控制电路, 试说明工作原理。

[例6.3.2] 下图是一个时间可加长调整的定时加热器控制电路,试说明工作原理。

[例6.3.3]如图为一简单的具有自动关断功能的照明灯电路,试说明其工作原理。

計算は ZHEJIANG UNIVERSITY

施密特触发器有两个稳定状态,是一种双稳态触发器,但它与第4章介绍的触发器不同。有如下特点:

- (1) 不具有记忆保持功能,其稳定状态依赖输入信号来维持;
- (2) 它属于电平触发,而不是脉冲触发;
- (3) 两种状态翻转时的输入电压(称阈值电压)不同。

施密特触发器图形符号和电压传输特性曲线

回差电压
$$\Delta U_T = U_{T+} - U_{T-}$$

用555集成定时器构成的施密特触发器电路

[例6.3.4]如图为一个根据环境亮度变化能自动开启、关断功能的照明灯控制电路,试说明其工作原理。

6.4 单片集成函数信号发生器

单片集成函数信号发生器是一种集波形产生与变换 于一体的集成芯片。在外接少量元件的情况下,可实现 矩形波、正弦波、三角波和锯齿波输出。

芯片种类: ICL8038、MAX038、XR-2206等。

6.4 单片集成函数信号发生器

ICL8038集成函数信号发生器

6.4 单片集成函数信号发生器

波形发生器基本原理电路

 R_A R_B R_P : 恒流源调节,改变占空比和频率

 R_3 R_5 :调节正弦波失真度

8脚:调频电压输入 7脚:内部频率调节偏置电压

7脚8脚相连:输出频率仅由 R_A , R_B , R_P 及 C决定

[例6.4.1]如图是一个扫频信号发生器,试说明其工作原理。

本章结束 返回目录

第6章 波形产生和变换

