Muawa Real Estate - Price Predictor

```
import pandas as pd
```

▼ Load and Prepare Data

```
housing=pd.read_csv("data.csv")
housing.head()
```

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98
1	0.02731	0.0	7.07	0	0.469	NaN	78.9	4.9671	2	242	17.8	396.90	9.14
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94
4	0.06905	0.0	2.18	0	0.458	NaN	54.2	6.0622	3	222	18.7	396.90	5.33
4	0.06905	0.0	2.18	0	0.458	NaN	54.2	6.0622	3	222	18.7	396.90	5.3

→ Housing Data Summary

```
housing.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505 \,
Data columns (total 14 columns):
# Column Non-Null Count Dtype
 0 CRIM
              506 non-null float64
              506 non-null float64
 1 ZN
 2 INDUS
3 CHAS
             506 non-null float64
506 non-null int64
4 NOX
5 RM
6 AGE
             506 non-null float64
             495 non-null float64
506 non-null float64
 7 DIS
8 RAD
           506 non-null float64
506 non-null int64
 9 TAX
             506 non-null int64
 10 PTRATIO 506 non-null
                              float64
 11 B
              506 non-null
                              float64
 12 LSTAT
              506 non-null
                              float64
                              float64
 13 MEDV
              506 non-null
dtypes: float64(11), int64(3)
memory usage: 55.5 KB
```

```
housing["CHAS"].value_counts()
```

```
0 471
1 35
```

Name: CHAS, dtype: int64

housing.describe()

```
        count
        506.00000
        506.00000
        506.00000
        506.00000
        506.00000
        506.00000
        4

        mean
        3.613524
        11.363636
        11.136779
        0.069170
        0.554695
```

▼ Strategies for Handling Missing Data

There have three Options to handle missing values

- 1: Get rid of the missing data points.
- 2: Get rid of the whole attribute.
- 3: Set the value to some value(0,mean or median)

Option 2 housing.drop("RM",axis=1)

	CRIM	ZN	INDUS	CHAS	NOX	AGE	DIS	RAD	TAX	PTRA
0	0.00632	18.0	2.31	0	0.538	65.2	4.0900	1	296	1
1	0.02731	0.0	7.07	0	0.469	78.9	4.9671	2	242	1
2	0.02729	0.0	7.07	0	0.469	61.1	4.9671	2	242	1
3	0.03237	0.0	2.18	0	0.458	45.8	6.0622	3	222	1
4	0.06905	0.0	2.18	0	0.458	54.2	6.0622	3	222	1
501	0.06263	0.0	11.93	0	0.573	69.1	2.4786	1	273	2
502	0.04527	0.0	11.93	0	0.573	76.7	2.2875	1	273	2
503	0.06076	0.0	11.93	0	0.573	91.0	2.1675	1	273	2
4										-

```
# Option 3
#Changes will not be made to the original housing data until we use inplace=True.
median=housing["RM"].median()
housing["RM"].fillna(median)
```

```
6.575
      6.202
2
      7.185
      6.998
3
4
      6.202
      6.593
501
502
      6.120
503
      6.976
504
      6.794
505
      6.030
Name: RM, Length: 506, dtype: float64
```

→ Fit Imputer to Housing Data

from sklearn.impute import SimpleImputer

imputer=SimpleImputer(strategy="median")

imputer.fit(housing)

```
SimpleImputer
SimpleImputer(strategy='median')
```

```
imputer.statistics_
```

```
array([2.56510e-01, 0.00000e+00, 9.69000e+00, 0.00000e+00, 5.38000e-01, 6.20200e+00, 7.75000e+01, 3.20745e+00, 5.00000e+00, 3.30000e+02, 1.90500e+01, 3.91440e+02, 1.13600e+01, 2.12000e+01])
```

See imputer is work or not
x=imputer.transform(housing)
housing=pd.DataFrame(x,columns=housing.columns)
housing.describe()

	CRIM	ZN	INDUS	CHAS	NOX	
coun	t 506.000000	506.000000	506.000000	506.000000	506.000000	!
mea	n 3.613524	11.363636	11.136779	0.069170	0.554695	
std	8.601545	23.322453	6.860353	0.253994	0.115878	
min	0.006320	0.000000	0.460000	0.000000	0.385000	
25%	0.082045	0.000000	5.190000	0.000000	0.449000	
50%	0.256510	0.000000	9.690000	0.000000	0.538000	
75%	3.677083	12.500000	18.100000	0.000000	0.624000	
4					+	٠

→ Housing Data Visualization

```
%matplotlib inline
import matplotlib.pyplot as plt
housing.hist(bins=50,figsize=(14,12))
plt.show()
```


▼ Looking for Correlation

```
#MEDV stands for Median Value of Owner-Occupied Homes ....Target Attribute
corr_matrix=housing.corr()
corr_matrix['MEDV'].sort_values(ascending=False)
```

```
MEDV
           1.000000
RM
           0.693280
           0.360445
           0.333461
В
DIS
           0.249929
CHAS
           0.175260
AGE
          -0.376955
RAD
          -0.381626
          -0.388305
CRIM
NOX
          -0.427321
          -0.468536
TAX
INDUS
          -0.483725
PTRATIO
         -0.507787
          -0.737663
LSTAT
Name: MEDV, dtype: float64
```

```
from pandas.plotting import scatter_matrix
attributes=["MEDV","RM","ZN","LSTAT"]
scatter_matrix(housing[attributes],figsize=(14,12))
plt.show()
```


Let's examine the correlation between the variable RM and the target variable MEDV.#
housing.plot(kind="scatter",x="RM",y="MEDV",alpha=0.8)

Trying out Attribute Combinations

Attribute combinations involve creating new features by combining existing ones, enhancing the model's ability to capture complex relationships in the data.

```
housing["TAXRM"]=housing['TAX']/housing['RM']
housing["TAXRM"]
```

0 45.019011

1 39.019671

```
2 33.681280

3 31.723350

4 35.794905

...

501 41.407553

502 44.607843

503 39.134174

504 40.182514

505 45.273632

Name: TAXRM, Length: 506, dtype: float64
```

housing.head()

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTA
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.9
1	0.02731	0.0	7.07	0.0	0.469	6.202	78.9	4.9671	2.0	242.0	17.8	396.90	9.1
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.0
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.9
4	0.06905	0.0	2.18	0.0	0.458	6.202	54.2	6.0622	3.0	222.0	18.7	396.90	5.3
4													•

#"Examine the correlation between the variable TAXRM and the target variable MEDV."
housing.plot(kind="scatter",x="TAXRM",y="MEDV",alpha=0.8)

<Axes: xlabel='TAXRM', ylabel='MEDV'>

▼ Train-Test Splitting (User-defined function)

```
# User defined function
import numpy as np
def split_train_test(data,test_ratio):
    np.random.seed(42)
    shuffled=np.random.permutation(len(data))
    test_set_size=int(len(data)*test_ratio)
    test_indices=shuffled[:test_set_size]
    train_indices=shuffled[test_set_size:]
    return data.iloc[train_indices],data.iloc[test_indices]
```

train_set,test_set=split_train_test(housing,0.2)
print(f"Rows in Train Set: {len(train_set)}\nRows in Test Set: {len(test_set)}\n")

Rows in Train Set: 405 Rows in Test Set: 101

Train-Test Splitting(2nd Method)

```
from pandas.core.common import random_state
from sklearn.model_selection import train_test_split
train_set,test_set=train_test_split(housing,test_size=0.2,random_state=42)
print(f"Rows in Train Set: {len(train_set)}\nRows in Test Set: {len(test_set)}\n")
Rows in Train Set: 404
```

→ StratifiedShuffleSplit

Rows in Test Set: 102

StratifiedShuffleSplit maintains class distribution in train-test splits, crucial for balanced and representative evaluations, especially in imbalanced datasets.

```
from sklearn.model_selection import StratifiedShuffleSplit
split=StratifiedShuffleSplit(n_splits=1,test_size=0.2,random_state=42)
for train_index,test_index in split.split(housing,housing['CHAS']):
    strat_train_set=housing.loc[train_index]
    strat_test_set=housing.loc[test_index]

#Train Data
housing_tr=strat_train_set.copy()
    #Test Data
housing_test=strat_test_set.copy()
```

Data Segmentation: Housing Features and Labels

```
Housing_Features=housing_tr.drop("MEDV",axis=1)
Housing_Label=housing_tr["MEDV"].copy()
```

Scikit-Learn Design

Primally, Three types of objects

- 1: Estimators- It estimates some parameters based on dataset e.g imputer and it has a fit method Fit the datasets and calculates parameters.
- 2: Transformers Transform method takes input and return output based on learning from fit(). It also has a convenience function called fit_transform() which fits and then transforms.
- 3: Predictores LinearRegression model is an example of predictor. fit() and predict() are two common functions. It also gives score() function which will evaluate the predictions.

Feature Scaling

Primarily, Two types of feature scaling methods

1: Min-Max Scaling (Normalization)

(value-min)/(max-min)

Sklearn providees a class called MinMaxScaler for this

2: Standardization

(value-mean)/std

sklearn provides a class called Standard Scaler for this

Creating a Pipeline

We use a pipeline in machine learning to streamline and automate the process of data preprocessing and model training. A pipeline allows you to sequence multiple data processing steps and model training into a single entity, which offers several benefits.

When we want to automate this process, we use a pipeline.

```
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler
# add as many as you want in your pipeline
my pipeline = Pipeline([
     ('imputer', SimpleImputer(strategy="median")),
    ('std_scaler', StandardScaler()),
1)
housing_features=my_pipeline.fit_transform(Housing_Features)
housing features
    array([[-0.43942006, 3.12628155, -1.12165014, ..., 0.41164221,
            -0.86091034, -0.50684753],
           [-0.44352175, 3.12628155, -1.35893781, ..., 0.39131918,
            -0.94116739, -0.80471992],
           [ 0.15682292, -0.4898311 , 0.98336806, ..., 0.44624347,
            0.81480158, 1.11876022],
           [-0.43525657, -0.4898311 \ , -1.23083158, \ \ldots, \ 0.41831233,
            -1.27603303, -1.02424292],
           [0.14210728, -0.4898311, 0.98336806, ..., -3.15239177,
           0.73869575, 1.09824544],
[-0.43974024, -0.4898311 , 0.37049623, ..., 0.41070422,
             0.09940681, -0.65613593]])
```

Selecting a desired model for Muawa Real Estate

Linear Regression Model

Name: MEDV, dtype: float64

```
from sklearn.linear_model import LinearRegression
model=LinearRegression()
model.fit(housing_features,Housing_Label)
     ▼ LinearRegression
    LinearRegression()
some_data=Housing_Features.iloc[:5]
some_labels=Housing_Label.iloc[:5]
prepared_data=my_pipeline.transform(some_data)
model.predict(prepared_data)
    array([22.63627048, 26.916074 , 18.87924022, 25.0429817 , 24.1781656 ])
# Results that are most similar indicate good predictions.
some labels
    254
          21.9
    348
          24.5
    476
          16.7
    326
          23.0
```

Evaluating the Model

```
from sklearn.metrics import mean_squared_error
housing_predictions=model.predict(housing_features)
lin_mse=mean_squared_error(Housing_Label,housing_predictions)
lin_rmse=np.sqrt(lin_mse)

print("Root mean Square Error:",lin_rmse)
Root mean Square Error: 4.246884319353141
```

Decision Tree Regressor Model

```
from sklearn.tree import DecisionTreeRegressor
model1=DecisionTreeRegressor()
model1.fit(housing_features, Housing_Label)
```

```
▼ DecisionTreeRegressor
DecisionTreeRegressor()
```

A root mean square error of 0.0 may indicate overfitting of the data.

```
housing_prediction=model1.predict(housing_features)
mse=mean_squared_error(Housing_Label,housing_prediction)
rmse=np.sqrt(mse)
print("Root mean Square Error:",rmse)
```

Root mean Square Error: 0.0

If overfitting occurs, we can use cross-validation

→ Using Better Evaluation Technique - Cross Validation

Create a function to observe the scores of each model.

```
def print_scores(scores):
    print("Scores: ",scores)
    print("Mean: ",scores.mean())
    print("Standard Deviation: ",scores.std())
```

Linear Regression

```
print("Linear Regression")
print_scores(lin_rmse)
```

Linear Regression Scores: 4.246884319353141 Mean: 4.246884319353141 Standard Deviation: 0.0

Decision Tree

```
print("Decision Tree ")
print_scores(rmse_score)

Decision Tree
Scores: [4.16483537 5.52219469 4.87534864 4.55944477 3.27913861 4.40624557
6.42288876 3.72578851 3.86710486 3.82482026]
Mean: 4.464781002229873
Standard Deviation: 0.8911708479163778

from joblib import dump,load
dump(model1, 'RealEstate.joblib')
['RealEstate.joblib']
```

Model Testing

```
Housing_F = housing_test.drop("MEDV", axis=1)
Housing_L = housing_test["MEDV"].copy()

housing_fe = my_pipeline.fit_transform(Housing_F)
# Make predictions using the model
final_predictions = model1.predict(housing_fe)
# Calculate the final mean squared error and root mean squared error
final_mse = mean_squared_error(Housing_L, final_predictions)
final_rmse = np.sqrt(final_mse)

print(f"Final RMSE: {final_rmse:.2f}")
```

Final RMSE: 4.49

Application Phase

```
CRIM = input("\nPlease enter CRIM: ").strip()
ZN = input("\nPlease enter ZN: ").strip()
INDUS = input("\nPlease enter INDUS: ").strip()
CHAS = input("\nPlease enter CHAS: ").strip()
NOX = input("\nPlease enter NOX: ").strip()
RM = input("\nPlease enter RM : ").strip()
AGE = input("\nPlease enter RM: ").strip()
DIS = input("\nPlease enter AGE: ").strip()
RAD = input("\nPlease enter RAD: ").strip()
TAX = input("\nPlease enter TAX: ").strip()
PTRATID = input("\nPlease enter PTRATID: ").strip()
B = input("\nPlease enter B: ").strip()
LSTAT = input("\nPlease enter LSTAT: ").strip()
TAXRM = input("\nPlease enter LSTAT: ").strip()
```

```
Please enter INDUS: 2.18
    Please enter CHAS: 0
    Please enter NOX: 0.458
    Please enter RM : 6.998
    Please enter AGE: 54.2
    Please enter DIS: 6.0622
    Please enter RAD: 3
    Please enter TAX: 222
    Please enter PTRATID: 18.7
    Please enter B: 96.90
    Please enter LSTAT: 5.33
    Please enter TAXRM: 35.79
# Create a DataFrame from user input
user_input = pd.DataFrame({
    'CRIM': [CRIM],
    'ZN': [ZN],
    'INDUS': [INDUS],
    'CHAS': [CHAS],
    'NOX': [NOX],
    'RM': [RM],
    'AGE': [AGE],
    'DIS': [DIS],
    'RAD': [RAD],
    'TAX': [TAX],
    'PTRATID': [PTRATID],
    'B': [RAD],
    'LSTAT': [LSTAT],
    'TAXRM': [TAXRM]
})
print("\n\nUser Input Feature Vector:")
print("=======\n")
print(user_input)
    User Input Feature Vector:
    _____
    CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATID B \, 0 0.06905 0.0 2.18 0 0.458 6.998 54.2 6.0622 3 222 18.7 3
     LSTAT TAXRM
    0 5.33 35.79
user = my_pipeline.transform(user_input)
# Make predictions using the model
value = model1.predict(user)
from prettytable import PrettyTable
```

Please enter CRIM: 0.06905

Please enter ZN: 0.0

Thank you for reviewing this document.

✓ 0s completed at 12:04 AM

• ×