

Pure Seasonal Models

Pure Seasonal Models

- Often collect data with a known seasonal component
- Air Passengers (1 cycle every S = 12 months)
- Johnson & Johnson Earnings (1 cycle every S = 4 quarters)

Pure Seasonal Models

• Consider pure seasonal models such as an $SAR(P = 1)_{s=12}$

$$X_t = \Phi X_{t-12} + W_t$$

ACF and PACF of Pure Seasonal Models

	SAR(P) _s	SMA(Q)₅	SARMA(P, Q) _s
ACF*	Tails off	Cuts off lag QS	Tails off
PACF*	Cuts off lag PS	Tails off	Tails off

^{*} The values at the nonseasonal lags are zero

Let's practice!

Mixed Seasonal Models

Mixed Seasonal Model

- Mixed model: SARIMA(p, d, q) x (P, D, Q)₅ model
- Consider a SARIMA(0, 0, 1) $x (1, 0, 0)_{12}$ model

$$X_t = \Phi X_{t-12} + W_t + \theta W_{t-1}$$

- SAR(1): Value this month is related to last year's value X_{t-12}
- MA(1): This month's value related to last month's shock W_{t-1}

ACF and PACF of SARIMA(0,0,1) x (1,0,0) s=12

• The ACF and PACF for this mixed model:

$$X_t = .8X_{t-12} + W_t - .5W_{t-1}$$

Seasonal

Non-seasonal

Seasonal Persistence

Quarterly Occupancy Rate: % rooms filled

Seasonal Component: this year vs. last year Q1 ≈ Q1, Q2 ≈ Q2, Q3 ≈ Q3, Q4 ≈ Q4

Remove seasonal persistence by a seasonal difference: $X_t - X_{t-4}$ or D = 1, S = 4 for quarterly data

Air Passengers

• Monthly totals of international airline passengers, 1949-1960

Air Passengers: ACF and PACF of ddlx

- Seasonal: ACF cutting off at lag 1s (s = 12); PACF tailing off at lags 1s, 2s, 3s...
- Non-Seasonal: ACF and PACF both tailing off

Air Passengers

```
> airpass_fit1 <- sarima(log(AirPassengers), p = 1,</pre>
        d = 1, q = 1, P = 0,
        D = 1, Q = 1, S = 12)
> airpass_fit1$ttable
     Estimate SE t.value p.value
    0.1960 0.2475 0.7921 0.4296
ar1
ma1 -0.5784 0.2132 -2.7127 0.0075
sma1 -0.5643 0.0747 -7.5544 0.0000
> airpass_fit2 <- sarima(log(AirPassengers),</pre>
        0, 1, 1, 0, 1, 1, 12
> airpass_fit2$ttable
     Estimate SE t.value p.value
    -0.4018 \ 0.0896 \ -4.4825
ma1
sma1 -0.5569 0.0731 -7.6190 0
```


Air Passengers

Time

Let's practice!

Forecasting Seasonal ARIMA

Forecasting ARIMA Processes

- Once model is chosen, forecasting is easy because the model describes how the dynamics of the time series behave over time
- Simply continue the model dynamics into the future
- In the astsa package, use sarima.for() for forecasting

Forecasting Air Passengers

• In the previous video, we decided that a $SARIMA(0,1,1)x(0,1,1)_{12}$ model was appropriate

Let's practice!

Congratulations!

What you've learned

- How to identify an ARMA model from data looking at **ACF** and **PACF**
- How to use integrated ARMA (ARIMA) models for nonstationary time series
- How to cope with seasonality

Don't stop here!

- astsa-package
- Other DataCamp courses in Time Series Analysis

Thank you!