

- Apache Spark es una entorno de procesamiento distribuido y paralelo que trabaja **en memoria**
- ☐ Permite el análisis de grandes conjuntos de datos
- □ Integra diferentes entornos como Bases de Datos NoSQL, Real Time, machine learning, o análisis de grafos, etc
- ☐ Es mucho más rápido que MapReduce
- ■Compatible con Hadoop

- □ Al contrario que Hadoop Map Reduce que trabaja sobre todo con procesos de tipo Batch, Spark está orientado al trabajo in-memory y el procesamiento en real
- ☐ Mientras MapReduce trabaja secuencialmente, Spark lo hace en paralelo

☐ Compatible con Hadoop ☐ Se puede ejecutar sobre HDFS ☐ MapReduce. Se puede usar en el mismo cluster que MapReduce ☐YARN: una aplicación Spark se puede lanzar sobre YARN ☐ Se pueden mezclar aplicaciones spark y MapReduce para batch y Real Time ■ Soporta múltiples fuentes de datos HIVE JSON ☐ CASSANDRA **CSV** □RDBMS...

- ☐ Está construido en Scala, pero se pueden escribir aplicaciones en Java, Python y R.
- ☐ Dispone de un Shell interactivo
- □ Consiste en un Core y en un conjunto de librerías

- □ Spark Core
 □ El motor base para el procesamiento en escala y distribuido
 □ Aunque está construido en Scala, hay APIs para Python, Java y R.
 □ Se encarga entre otras cosas de:
 - ☐Gestión de la memoria
 - ☐ Recuperación ante fallos
 - Planificación, distribución de trabajas en el cluster
 - ☐ Monitorizar trabajo
 - Accedes a los sistemas de almacenamiento

- ☐ Spark Core. RDD
 - □ Spark Core usa una estructura de datos especial denominada RDD (Resilient Distributed Datasets).
 - □ Resilient Distributed Datasets permite realizar procesos fault tolerant 'in-memory'.
 - Los RDD son colecciones de registros inmutables y particionadas que además pueden ser manejadas en paralelo.
 - □Los RDDs pueden contener cualquier clase de objetos Python, Scala, Java opersonalizados.
 - Los RDD se crean habitualmente transformándolos de otros RDD o cargandos los datos de una Fuente externa, como por ejemplo HDFS o HBase.

- ☐ Spark Streaming
 - ☐ Se usa para procesar fuentes de datos en tiempo real (streaming data)
 - ☐ Permite procesar con una alta tolerancia a fallos y un gran rendimiento las fuentes "vivas" de información que le suministremos
 - □Su unidad fundamental de trabajo es el Dstream (serie de RDDs, que veremos posteriormente)
 - twitter
 - ☐ Datos financieros
 - □ Datos geográficos
 - ☐Etc...

- ☐Spark Sql
 - ☐ Permite integrar comandos y componentes relacionales junto con la programación funcional de Spark
 - □ Podemos usar SQL o Hive Query Language
 - ☐ Permite el acceso a múltiples fuentes de datos
 - ☐ Dispone de 4 librería básicas
 - ☐ Data Source
 - DataFrame
 - ☐ Interpreter and Optimizer
 - ☐Sql Service
 - ☐ Permite el acceso por JDBC o ODBC

JDBC / ODBC

Spark SQL

- ☐ GraphX es el API para procesamientos paralelo en grafos.
 - □ Spark GraphX implementa Resilient Distributed Graph (RDG- una abstración de los RDD's).
 - □RDG's asocia registros con los vertices y bordes de un grafo. Sin embargo, se pueden seguir viendo como colecciones tradicionales de RDD
 - □Se dispone de una gran cantidad de algoritmos preparados, que permiten agilizar el proceso de construcción de aplicaciones y mejora el rendimiento y velocidad

- Mlib se utiliza para machine learning en Spark
 - ☐ Se dispone de una variedad de algoritmos y otros procesos como "data cleaning"
 - ☐ Por ejemplo clasificación, clustering, regression, extracción etc...
 - ☐ Permite su ejecución sobre HDFS, HBAse, etc...

Logistic regression in Hadoop and Spark

- Mlib se utiliza para machine learning en Spark
 - ☐ Se dispone de una variedad de algoritmos y otros procesos como "data cleaning"
 - ☐ Por ejemplo clasificación, clustering, regression, extracción etc...
 - ☐ Permite su ejecución sobre HDFS, HBAse, etc...

Logistic regression in Hadoop and Spark