

DFT and DFPT for 2D systems: 2D cutoff in PW and PH

Quantum ESPRESSO Developer Meeting, Trieste, 11/01/2017

<u>Thibault Sohier</u> (EPFL, THEOS)

Matteo Calandra (IMPMC, UPMC Univ. Paris 06)

Francesco Mauri (ISC-CNR and Dept. of Physics, Sapienza University of Rome)

Objectives

The goal is to implement an easy and correct way to simulate 2D heterostructures:

Currently, QE has difficulties with some key aspects of 2D materials:

- Doping in the field-effect transistor (FET) setup
- Linear response to long wavelength perturbations in a 2D framework
 - > Screening
 - > Phonons
 - Electron-Phonon Coupling (EPC)

Issues with periodic images

FET setup

Linear response...

... in 2D material + periodic images

Periodic images interact at long wavelengths. Particularly relevant for:

- Electronic screening
- Electron-Phonon Coupling
- Polar-optical phonons (LO-TO splitting)

2D Coulomb cutoff

$$V(\mathbf{r}) = e \int \varrho(\mathbf{r}') v_c(|\mathbf{r} - \mathbf{r}'|) d\mathbf{r}'$$

$$v_c(|\mathbf{r}|) = \frac{1}{|\mathbf{r}|} \theta(l_z - |z|)$$

$$l_z \equiv \text{cutoff distance}$$

Isolated slab

> Periodic images are still there, but don't see each other [Rozzi, C. A., et al. PRB, 73, 205119 (2006)]

> 2D cutoff + field-effect setup implemented in QE 5.1 for:

Works with NC, US, PAW pseudopotentials.

Potentials – FET setup

[Gate implementation inspired by Brumme, Calandra, Mauri, PRB 89, 245406 (2014).]

- Potential of each subsystem generated only in a certain slab
- physical region = overlap of the subsystems' slabs

Sohier, T., PhD thesis, UPMC (2015), supervised by Calandra, M., Mauri, F. (link)

Total energy and forces – FET setup

Gate + barrier + doped graphene

- Strong repulsion at small d
- Attraction from gate at large d
- Equilibrium around 6.25 a.u.

Phonons – LO-TO splitting

BN (neutral): 3D vs 2D

1600 LO 3D (bulk BN) LO 2D (monolayer BN) TO 0 0.05 0.1 0.15 0.2

Other polar monolayers

More details on poster at total energy

EPC – Fröhlich interaction

MoS₂ (neutral): 3D vs 2D

Other polar monolayers

$$|g_{\mathrm{Fr}}^{\mathrm{2D}}(\mathbf{q}_p)| = \frac{C_{\mathcal{Z}}}{\epsilon_{\mathrm{ext}} + r_{\mathrm{eff}}|\mathbf{q}_p|}$$

More details on poster at total energy...

Conclusion and perspectives

Done:

- ✓ Total energy, Kohn-Sham states, forces and stresses
- ✓ In-plane structural optimization
- ✓ Phonons: single-q and interpolation
- ✓ Electron-phonon interactions
- ✓ Norm conserving, Ultrasoft and PAW pseudopotentials
- ✓ Spin-orbit coupling, noncollinear magnetism
- ✓ AiiDA compatible (Pizzi et al., Comp. Mat. Sci., 111, 218–230. (2016))
- ✓ High-throughput friendly (see posters by N. Mounet, D. Campi, A. Marrazzo)

<u>Perspectives</u>

Spectroscopy?

Integration in official QE
Compatibility with VdW functionals
New exchange-correlation functionals?
DFT+U?
Molecular Dynamics?
Third-order DFPT?

Thank you for listening!

Supervision:

Matteo Calandra Francesco Mauri

Helpful discussions:

Lorenzo Paulatto Thomas Brumme

And also, concerning more recent fine tuning:

Nicola Marzari Marco Gibertini Nicolas Mounet Davide Campi Antimo Marrazzo

Potentials – neutral system

- Pseudopotentials are not isotropic. Radial Fourier Transform not possible.
- No more "jellium" Different treatment of G=0 divergences.

Potentials – FET setup

Gate doping VS charged plane VS jellium doping

Completely different electrostatic setup

Potentials – FET setup barrier

- Variations of the potential outside of the physical region may cause electron to leak out of the 2D material.
- The barrier prevents electrons from going outside the physical region.
- The barrier can also be simulated by an insulating 2D material, but at larger computational cost.
- The barrier also compensates the attractive force from the gate.

Total Energy – dipolar system

QUANTUMESPRESSO

Graphene with H on top of half the C atoms...

Consistency checks with varying d = distance between periodic images:

- Total energy is independent of d
- 3D code total energy approaches 2D code total energy for infinite d
- Lower limit to d: when unphysical region (bumps) get to close to system