2nd FALAN Congress

XII Reunión Anual de la Sociedad Chilena de Neurociencias

XV Jornadas de la Sociedad de Neurociencias del Uruguay

XXXI Congreso Anual de la Sociedad Argentina de Investigación en Neurociencias

XXXIX Reunião Anual da la Sociedade Brasileira de Neurociências e Comportamento

October 17-20, 2016

Buenos Aires

Argentina

Fuente de la muse. Puero Afagero (Arg. Santago Calatrava)

PROGRAM #FALAN2016

#FALAN2016

INDEX

- 7. Welcome to FALAN 2016!
- 8. FALAN Executive Committee
- 8. Scientific Committee / Local Organizing Committee
- 9. Societies
- 11. Sponsors and Exibitors
- 19. Program at a glance
- 25. Satellite Events
- 29. Program in Detail
 - 31. Plenary Lectures
 - 32. Special Lectures
 - 37. Symposia
 - 69. Special Events
 - 75. Posters
 - 77. Poster Session 1
 - 109. Poster Session 2
 - 139. Poster Session 3
- 169. Venue
- 173. Author Index

Welcome to FALAN 2016!

Dear colleagues:

Welcome to the 2nd Congress of the Federation of Latin-American and Caribbean Societies for Neuroscience (FALAN). Welcome to Buenos Aires.

We are very happy to have you at the 2nd FALAN Congress together with hundreds of neuroscientists from Latin America and from all over the world. You are now part of the history of neuroscience development in the region.

The first Latin-American meeting held in Buzios in 2008 was the initial step towards the creation of FALAN. Once established, the first formal FALAN meeting was held in Cancun-México in 2012. Today, under the auspices of FALAN Buenos Aires Meeting several events will be held: the "XXXIX Reunião Anual da la Sociedade Brasileira de Neurociências e Comportamento", the "XII Reunión Anual de la Sociedad Chilena de Neurociencias", the "XV Jornadas de la Sociedad de Neurociencias del Uruguay" and the "XXXI Congreso Anual de la Sociedad Argentina de Investigación en Neurociencias. The rest of FALAN Members Societies are also supporting and promoting this Congress as one of the major activities of year 2016. IBRO and the Latin-American Regional Committee (LARC) are providing strong economic and logistic assistance. We are very grateful for this support.

The 2nd FALAN Congress reflects the vigorous and fast growing pace of neuroscience in the region, and the institutional strengthening of FALAN. Given the scientific and institutional significance of the 2nd FALAN Congress we warmly welcome you.

The aim of the Congress is to promote neuroscience in the region and, at the same time, to provide the Latin-American neuroscience community an environment in which the research and sharing of ideas and techniques will pave the way for a stronger interaction between Latin-American scientists.

The meeting has been organized by FALAN together with the Sociedad Argentina de Investigación en Neurociencias (SAN) and a scientific committee on which most FALAN societies were represented. These international committees have created a high quality program where all the important areas and relevant topics in neuroscience are present. Lectures and symposia of high academic standards on specific subjects were included. Furthermore, as a very important part of the meeting, more than 800 posters will be presented.

We would like to acknowledge the effort of the participants, speakers and members of the different committees for their time and effort and thank them once more for finding their own support for the registration fees and the travel expenses to attend this venue. Welcome all and enjoy the meeting.

Osvaldo D. Uchitel
President of FALAN

Arturo Romano
Chair of the Organizing Committee

FALAN Executive Committee

(January 2016 to January 2018)

Osvaldo D. Uchitel (Argentina) - President
Patricia Cassina (Uruguay) - Vice President
Andrea García (Colombia) - Secretary
Elaine Del Bel Guimaraes (Brasil) - President of FALAN's Scientific Committee
Paola Haeger Soto (Chile) - Treasurer

Scientific Committee

President:

M. Fernanda Ceriani

Brazil

Elaine Del-Bel Aldo Lucion

Chile

Alan Neely,

Costa Rica

Jaime Fornaguera Trías

Uruguay

Ángel Caputi

Colombia

Liliana Francis

Spain

Juan Nacher

Cuba

Pedro Valdés Sosa

Argentina

Gustavo Paratcha Gabriela Paglini Antonia Marin Burgin

M. Fernanda Ceriani (President)

Mexico

Francisco Fernández de Miguel

Local Organizing Committee

Osvaldo Uchitel FALAN President

Arturo Romano **SAN President**

María E. Pedreira Ana Belén Elgoyhen Mario Guido Fernanda Ledda Nicolás Unsain Amaicha Depino Tomás Falzone

Silvina Ceriani

Conference Manager

Daniel Sosa Caba

Institutional Communication

Participating Societies

BRASIL

Sociedade Brasileira de Neurociências e Comportamento XXXIX Reunião Anual da la Sociedade Brasileira de Neurociências e Comportamento

CHILE

Sociedad Chilena de Neurociencia XII Reunión Anual de la Sociedad Chilena de Neurociencias

URUGUAY

Sociedad de Neurociencia del Uruguay XV Jornadas de la Sociedad de Neurociencias del Uruguay

ARGENTINA

Sociedad Argentina de investigación en Neurociencias XXXI Congreso Anual de la Sociedad Argentina de Investigación en Neurociencias

Invited Societies

COLOMBIA

Colegio Colombiano de Neurociencias (COLNE)

CUBA

Sociedad de Neurociencias de Cuba (SONECUB)

MEXICO

Sociedad Mexicana de Ciencias Fisiológicas (SMCF)

MEXICO

Sociedad Mexicana de Neurociencias y Neurobiología

COSTA RICA

Programa de Investigación en Neurociencias de Costa Rica

PERÚ

Academia de Neurociencias del Perú (ANP)

ESPAÑA

Sociedad Española de Neurociencias

#FALAN2016

SORS

SPONSORS AND EXHIBITORS

Sponsors

Brain Support® Corporation

Solutions for Neuroscience researchers

Behavior and Social Neuroscience projects for Latin America research groups.

Social environments with humans and other animal species.

Along with the researcher, we offer solutions adapted to the particularities of each scientific project, offering technological, methodological, operational and analytical possibilities. We represent many company such as: Brainproducts.com, NIRx.net, EasyCap.com, BESA.de, Mangold-international.com, Cedrus.com, Argusscience.com, Mensiatech.com, WRimedical.com, MagandMore.com, Neurostar.de and BlackRockmicro.com.

Blackrock Microsystems supports your neuroscience research project from conceptualization all the way through to data analysis and interpretation.

Primate research has been a Blackrock mainstay since our inception. Our Utah Array was originally optimized for the primate cortex, and many of our devices and technologies were created for testing and use in primate labs prior to transitioning them for human applications. Not surprisingly, primate research has become a Blackrock core competency.

Blackrock has been an innovator in rodent research for many years, so much so that nearly half of our new customers are rodent researchers. This focus has given rise to a number of new technologies and devices designed exclusively for rodent use.

These products are lightweight and maneuverable, essential for rodent research. Our CerePlex™ M and CerePlex™ µ digital headstages and Blackrock commutators facilitate freely moving rodent research.

Many members of our customer support and engineering teams have years of experience in rodent electrophysiology, which has yielded novel product designs that meet the unique needs of rodent researchers.

Brain Products dedicates itself to the research and understanding of the human brain and nervous system. The focus on positively impacting neuroscience made Brain Products the worldwide leading manufacturer of hard and software solutions for neurophysiological research. Our solutions cover the fields of: ERP, BCI, EEG/TMRI, EEG/TMS, as well as sports, sleep, behavioral sciences and similar disciplines. Since for us at Brain Products a solution is only a solution if it covers all the researcher's needs we also provide caps, sensors, easily integrated stimulation software and much more. Swww.brain.products.com

Mangold International is a world leading provider of stationary and portable labs for observational studies. Mangold products allow researchers from various disciplines to quickly perform their studies using live observation, video based analysis, eye tracking, physiological data analysis and more. Mangold Labs integrate the latest hardware and software technologies. We offer synchronized video and sensor data acquisition, integrated analysis, and include all services like planning, on-site installation and long term support. This makes Mangold your one-stop-shop for your research lab with more than 20 years of experience. Discover more at

www.mangold-international.com

We help social science researchers probe and get responses. Perception and Attention, Perceptual Representation, Memory, Representation of Meaning, Reasoning

SuperLab Build Experiments - Real Experiments. Ready - Very simple to use.

A range of classic and demo experiments are available for download. The classic experiments are based on published papers and come with a free, downloadable lab book that describes the experiment, the paper that it's based on, and the results.

StimTracker - Send Event Markers — Easily@Instantly compatible with ERP/EEG devices from ADInstruments, Biopac, BioSemi, Brain Products, NIRx.

Response Pads - Accurate, customizable key tops, with four key layouts to chose from. Works with E-Prime, Presentation, SuperLab, and others. Response Pads for MRI

SV-1 Voice Key - Acquire vocal reaction times with peace of mind

Functional Near-InfraRed Spectroscopy (fNIRS)

NIRX is a world-leader in providing integrated solutions for fNIRS neuro-imaging.

Learning, language acquisition, sensory and motor functions, emotion, social interactions, and the influence of a host of disease processes all can be explored from measures of the fNIRS signal. ENIRX offers some of the highest-density, most versatile lab-based fNIRS system available, with multi-modal compatibility, real-time processing (BCI/Neurofeedback) capabilities, and an easy-to-use software interface.

The NIRSport Mobile is the most Versatille Poertable Functional Near-Infrared Spectroscopy (fNIRS) System available. Data can be measured from anywhere on the head:

Prefrontal Cortex, Motor Cortex, Occipital Cortex, etc...

In contrast to information derived from the fMRI BOLD signal that can identify portions of the hemodynamic response, the fNIRS signal offers added information regarding the coupling between tissue metabolic activity and its blood supply. Supporting direct measures of both oxyand deoxyhemoglobin, with deep tissue penetration, the NIRS signal supports real-time evaluation of related biometrics that are known to influence brain function.

Bio Analítica Argentina S.A., representante oficial de Olympus, es una empresa líder en la distribución, comercialización y servicio técnico de equipos de laboratorio e instrumental médico en todo el territorio de la República Argentina. Desde sus inicios, la empresa dedicó sus mayores esfuerzos a brindar al cliente un servicio integral y un respaldo confiable. En 2006 obtuvo certificación ISO 9001:2000 para sus servicios de Ventas, Atención Post-Venta y Taller de Reparaciones. Los equipos comercializados por Bío Analítica son instalados y puestos a punto por personal altamente capacitado.

Bio-Optic fue fundada a comienzos de 1997 con el objetivo de crear una Companía especializada en el área de la Microscopia, Análisis de Imagen y Criminalistica. Actualmente comercializa productos indispensables para estas áreas, como ser Microscopios Ópticos (Biológicos, Metalográficos, de Polarización, Invertidos), Microscopios Estereoscópicos, Microscopios Confocales, Refractómetros (Manuales, de Mesa, Abbe, Peltier), Sistemas de Microdisección, Ultramicrotomos, Cámaras Digitales y Software para Análisis de Imagen, Comparadores Balísticos y Sistemas de Documentología. Además ofrece asesoramiento, entrenamiento y servicio técnico. Nuestro objetivo princípal es dar soluciones a nuestros clientes brindando calidad, innovación y tecnología de última generación.

TRABAJAMOS JUNTO A PROFESIONALES DE PRIMER NIVEL, IMPULSANDO EL DESARROLLO DE UNIVERSIDADES, INVESTIGADORES CIENTÍFICOS Y LABORATORIOS DE DIVERSAS INDUSTRIAS.

- Tenemos a su disposición Equipos de Microscopia, Sistemas, Software, Câmaras y Accesorios ZEISS. Nos encargamos de su instalación y capacitación de cada uno de nuestros clientes.
- Contamos con una linea completa de equipos THERMO SCIENTIFIC especializada en Anatomia Patológica; con Micrótomos, Crióstatos, Estaciones de Inclusión, sus accesorios e insumos.
- Una gran variedad de Balanzas Analíticas y de Precisión ADAM, para una diversidad de aplicaciones e innovadoras Micropipetas AHN para equipar su Laboratorio.
- Nuestro Servicio Post-Venta, Técnico y de Mantenimiento le brindará soluciones puntuales, asegurando la eficiencia de su equipo y resguardando los resultados de su trabajo.

CUANDO NUESTROS CLIENTES ELIGEN BIOINGENIERIA, SABEN QUE SU INVERSION ES A LARGO PLAZO.

Pioneer in videotracking analysis system, the Company Viewpoint exists since 25 years. All the state of the art in automated behavior analysis Albousands of systems sold all over the world, Continuous development to adapt to customer's requests. Activity Activity Computer assisted measurements. Animal facilities equipment. Our products:

Custom-made for special applications, VIDEOTRACK: rodents behavior in various mazes

GAITLAB automated catwalk analysis, PHENORACK: rodents behavior in home cage VIGIE PRIMATES behavior on primates and dogs MARLAU Cages: standardized enrichment SLEEP DEPRIVATION SYSTEM and Scoring System

ZEBRALAB: behavior analysis for Zebrafish and other fishes Visit our website www.viewpoint.fr

Compumedics Neuroscan - Biolink

Curry Neuroimagen Suite - The last for Epilepsy Evaluation. EEG-Hight Density 64 - 128 - 256 Chs.

Neuroscan Micro.Maglink: for to work Inside fMRI EEG/EP/ERP data recording & Caps.

MEG: Magnetoencephalography: Orion (New)

Biofink: Technology for Support Researchs. In Neurociences, Pain, Blood Pressure (Beat to Beat)

Exclusive Distributor in South America

SR Research, the manufacturer of EyeLink eye trackers, continues to set performance standards on every dimension of eye-tracking.

With the world's best specifications, flexible experiment delivery software, and outstanding support,

SR Research allows eye tracking for all ages and multiple species, and provides solutions that allow use concurrently with MRI/MEG/EEG.

#FALAN2016

PROGRAM AT A GLANCE

Day 1 - October 17, 2016

SCHEDULE	ROOM A	ROOM B	ROOM C		
8:30 - 11:00		REGISTRATION			
11:00 - 13:00	Symposium 1 "Novel insights into hypothalamic mechanisms controlling body homeostasis" - Chair: M. Perello	Symposium 2 "Sleep to remember: sleep, memory and consciousness" Chairs: C. Forcato and F. Beijamini	Symposium 3 "Macromolecular signalling complexes in neurons" Chairs: M. Shapiro and F. Barrantes		
13:00 - 13:30	BREAK				
13:30 - 15:00	Special Event 1 Meet the professor: "Neurosciences at lunch with a good friend: Prof J. Nichols" Chairs: E. Del-Bel and F. De Miguel	FALAN	Special Event 2 "Neuroscience and Education: Primer time to fill the bridge" Chair: M. Sigman		
15:00 - 17:00	Symposium 4 "Professor John G. Nicholls celebration symposium. Function, repair and training of the nervous system" Chairs: E. Del-Bel and F. De Miguel	Symposium 5 "New insights into synaptic plasticity" Chair: A. Rodriguez-Moreno	Symposium 6 "Patient derived induced pluripotent stem like cells as models for neudegenerative diseases" Chair: L.J. Falomir Lockhart		
17:00 - 18:00	OPENING CEREMONY ROOM F				
18:00 - 19:00	PLENARY LECTURE 1: Larry Swanson (USA): "Architecture of the cortical association network supporting voluntary behavior and cognition" ROOM F				

Day 2 - October 18, 2016

	ROOM A	ROOM B	ROOM C	ROOM D	
8:30 - 9:30	Special Lecture 1 Rodrigo Andrade "Using optogenetics to interrogate serotonergic synaptic transmission in the mammalian brain"	Special Lecture 2 Jorge Bergado "Time and timing in neurophysiology. Lessons from synaptic tagging"	Special Lecture 3 Juan Carlos Brenes "Effects of environmental enrichment on brain plasticity, cognition and social communication in rats"	FALAN	
9:30 - 11:00	3	POSTER PRESEN	ITATION1-ROOMF	i V	
11:00 - 13:00	Symposium 7 IBRO Alumni Symposium: "Basic and translation research in neurodegenerative disease: for molecules to animal models" Chair: V. Della Maggiore	Symposium 8 "The consequences of memory retrieval: reconsolidation, extinction or nothing at all" Chair: P. Bekinschtein	Symposium 9 "Regulation and function of gap junctions and hemichannels in the nervous system" Chairs: J.C. Saez - A. Pereda	Symposium 10 "Neuromathematics" Chair: A.C. Roque	
13:00 - 13:30		BRI	EAK		
13:30 - 15:00	Special Event 3 "How can neuroscience research impact the global burden of disease" Chair: P. Valdes-Sosa		Special Event 4 Workshop: "How to get published" Chair: J. Lerma	Leica Microsystems "Avances tecnología confocal y súper resolución"	
15:00 - 17:00	Symposium 11 "Auditory processing from the cochlea to the cortex and back" Chairs: E. Katz and M.E. Gomez Casati	Symposium 12 "New concepts in oligodendrocyte function in neurological diseases" Chairs: B. Fuss and C. Hedin-Pereira	Symposium 13 "ISN Symposium on Neural Control of Appetite - From genes to circuits and behaviour" Chairs: I.E. de Araujo and V.F. Bumaschny	Symposium 14 "Behavioral, neurochemical and molecular approaches to study fear anxiety and posttraumatic stress disorder" Chair: A.M. Gallegos	
1700 - 18:30	POSTER PRESENTATION 1-ROOMF				
18:30 - 19:30	Special Lecture 4: Newton Canteras "The many paths to fear"	Special Lecture 5: Zulma Dueñas Gómez "Exploring neuroendocrine mechanisms of sexual dimorphism in early stress response: a translational approach"	Special Lecture 6: Cecilia Hidalgo "Calcium signaling, cellular oxidative tone and synaptic plasticity"	FALAN	
19:30	SAN Society Meeting	SBNeC Society Meeting	SCN Society Meeting	SNU Society Meeting	

Day 3 - October 19, 2016

SCHEDULE	ROOM A	ROOM B	ROOM C	ROOM D	
8:30 - 9:30	Special Lecture 7 Diogo O. Gomes de Souza "Neuroprotective effect of guanosine in experimental models of brain diseases"	Special Lecture 8 Conference Distintion SCN: Nibaldo Inestrosa "Wnt signaling and Alzheimer's Disease"	FALAN	FALAN	
9:30 - 11:00		POSTER PRESENTA	T10 N2-ROOMF		
11:00 - 13:00	Symposium 15 "Neurophysiology of temporal processing in the brain" Chairs: P. Agostino and H. Merchant	Symposium 16 "Integrative sensory motor function: from motor commands to cognition" Chair: P. Maldonado	Symposium 17 "Cellular and molecular mechanisms of neuronal plasticity" Chairs: F. Rossi - N. Vitureira	FALAN	
13:00 - 14:00	BREAK				
14:00 - 15:00	FENS PLENARY LECTURE 2: Pierre Magistretti: "Neuron- glia metabolic coupling: roles in plasticity and neuroprotection" ROOM A+B+C				
15:00 - 16:30		POSTER PRESENTATION 2-ROOMF			
16:30 - 18:30	Symposium 18 Young Investigators Symposia I Chair: Jaime Fornaguera	Symposium 19 "Neuroimmunoendocrinology of the circadian system" Chair: D. Golombek	Symposium 20 "Bopamine neurons: connectivity, functional connectivity and susceptibility" Chair: J. P. Bolam	Symposium 21 "Neuroesteroids, cardioesteroids and oxidative cell signalling as target in neuroinflammation and possible role in neurodegenerative disease" Chairs: F. Benetti	
18:30 - 19:30	Special Lecture 9 R. Caputto Conference: Jorge Medina "Modulation of the duration of aversive and appetitive memories"	FALAN	Special Lecture 10 Clemente Estable Conference: José Roberto Sotelo "Schwann cell to axon RNA transfer"	FALAN	

Day 4 - October 20, 2016

SCHEDULE	ROOM A	ROOM B	ROOM C		
8:30 - 9:30	Special Lecture 11 E. de Robertis Conference: Alejandro Schinder "Activity and Neurogenesis-mediated Circuit Remodeling in the Hippocampus"	Special Lecture 12 Elio Garcia Austt Conference: Pablo Torterolo "Melanin concentrating hormone in mesopontine raphe nuclei: role in REM sleep and depression"	Special Lecture 13 Mitchell Valdes-Sosa "Neural mechanisms for the configuration of selective attention"		
9:30 - 11:00	PO	STER PRESENTATION 3-RO	OM F		
11:00 - 13:00	Symposium 22 "The interplay of neuronal activity, synaptogenesis and plasticity" Chair: D. Refojo		Symposium 23 "The glial cell-neuron regulatory cross talk" Chair: R. von Bernhardi		
13:00 - 13:30	BREAK				
13:30 - 15:00	Special Event 5 "Latin American Brain Mapping Network" LABMAN - Chair: V. della Maggiore	FALAN Meeting	Special Event 6 Workshop: "Submitting your work to an international journal: the peer review system and what we expect in a good paper" - Chair: P. Bolam		
15:00 - 17:00	Symposium 24 Young Investigators Symposia II Chair: Antonia Marin Burgin	Symposium 25 "Parkinsons disease: from neuronal death to therapeutics" Chairs: J. Ferrario and G. Murer	Symposium 26 "Neuroframes symposium - Freud revisited: computational psychiatry" Chair: J. Sitt		
17:00 - 18:30	POSTER PRESENTATION 3-ROOMF				
18:30 - 19:30	PLENARY LECTURE 3: Carlos Belmonte (Spain): "TRP channels, an early alert system for environmental challenges" ROOM A+B+C				
19:30 >>>	CLOSING CEREMONY - ROOM A+B+C PARTY - ROOM F				

#FALAN2016

SATELLITE EVENTS

OCTOBER 15[™]

MOTORIZED STEREOTAXIC NEUROSURGERY FOR CHRONIC ELECTROPHYSIOLOGICAL RECORDINGS IN RODENTS

Location: La Cascada & Anexo, Fray Justo Santamería de

Oro 2529, Palermo, Buenos Aires

Time: 8:00-13:00

Lecturers:

LILIANA FRANCIS TURNER, PHD, FACULTAD DE CIENCIAS, UNIVERSIDAD DEL TOLIMA. COLOMBIA

EDGARD MORYA, PHD, *EDMOND AND LILY SAFRA INTERNATIONAL NEUROSCIENCE INSTITUTE, SANTOS DUMONT INSTITUTE. BRAZIL*

Motorized stereotaxic neurosurgery and electrophysiological recordings combined with behavior research is fundamental to understand basic mechanisms and develop news approaches in neuroscience and neuroengineering. This workshop will explore those advanced scientific tools mainly for young students interested in how to use in future projects.

We encorauge young students facing dificulties in how to use use such tools to investigate the nervous system electrophysiology to book early, as places are limited due to the hands on. To apply you need a valid Falan Congress registration and the the participants will be selected accordingly with CV and letter of interest.

Realization:

Brain Support Corporation Edmon and Lily Safra-International Institute of Neuroscience Scientific and Technical Support:

NeuroStar

Blackrock Microsystems

SBNEC SATELLITE SYMPOSIUM — BRAIN DISEASES: NEUROENERGETICS AND NEUROPROTECTION

Location: Facultad de Ciencias Exactas y Naturales de la UBA, Ciudad Universitaria, Pabellón 2 (Room 8)

Time: 8:00-13:00

CHAIR: DIOGO ONOFRE GOMES DE SOUZA, UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL, DEPARTMENT: BIOCHEMISTRY, BRAZIL Recent advances in neuroenergetics have highlighted the importance of neuronastrocyte metabolic interactions. Astrocytes contribute to a variety of neuronal functions, including synapse formation and plasticity, energetic support and redox status. Disturbances of these neuronastrocyte interactions are likely to play an important role in brain diseases. This Symposium will discuss a wide range of approaches in this theme.

THE ROLE OF ASTROCYTE ALTERATIONS IN EARLY CHANGES IN THE DYNAMICS OF CULTURED CEREBELLAR NETWORKS

Location: Facultad de Ciencias Exactas y Naturales de la UBA. Ciudad Universitaria. Pabellón 2 (Room 9)

Time: 9:00 12:30

CHAIR: ARI BARZILAI, DEPARTMENT OF NEUROBIOLOGY, GEORGE S. WISE, FACULTY OF LIFE SCIENCES; SAGOL SCHOOL OF NEUROSCIENCE, TELAVIV UNIVERSITY, ISRAEL

An aberrant response to DNA lesions is implicated in many human brain degenerative disorders. Varioustypes of DNA lesions activate a cellular process known as the DNA damage response (DDR). Mutations affecting the proteins involved in the DDR can lead to severe genomic instability syndromes that involve varying degrees of sensitivity to genotoxic stress, and also to tissue degeneration, cancer predisposition, and premature aging. Malfunctioning DDR was found in various brain degenerative disorders such as Alzheimer's, Parkinson's and Huntington. One of the key components of the DDR is the protein ATM, which is inactivated in the genomic instability disorder ataxia-telangiectasia (A-T). In order to study the effect of malfunctioning DDR on neuronal circuits, we used calcium imaging and immunocystochemical staining to compare the morphology and the dynamics of primary cerebellar cultures grown from postnatal Atm-deficient and wild-type (WT) mice. Cerebellar networks exhibited spontaneous network events after two weeks in-vitro. Compared to WT circuits, Atm-deficient circuits displayed a lower number of global synchronizations and a larger number of sparse synchronizations, i.e. synchronous events involving less than a dozen cells. In WT networks we observed significantly high global burst similarity compared to the Atm-/-network. In addition, nodes with a high functional connectivity degree could be observed in the WT

networks but not in the Atm-/- networks. To understand A-T on the cellular level we tested the hypothesis that A-T is at least partially a glial disease. Immunocystochemical staining of astrocytes revealed a significantly less complex cell arborization in Atm-deficient versus WT circuits, as measured by the number of branches originating from cell bodies as well as their length. To further study the interrelations between neurons and astrocytes, we generated chimeric networks in which the neurons and astrocytes were extracted from different animals. We found that functional and viable chimera cultures could be prepared only from P8 cerebellar neurons and astrocytes. Chimera cultures made from combinations of P8 cerebellar neurons and P2 cortical glia or from P8 cerebellar neurons and P2 cerebellar glia did not survive and the neurons died within 3 to 4 days of plating. Our results clearly show that Atm-/- astroglial cell replacement with WT astrocytes fully restores the dynamics of neural networks in chimera neuron-glia networks extracted from Atm-deficient mice. In contrast, Atm-/- astrocytes failed to support the survival and the functionality of the WT neurons. These results support the notion that neuronal network failures in genetic brain degenerative diseases are correlated with impairment of astroglial cell functionality.

OCTOBER 16[™]

CURSO SAN: "THE DOORS OF MEMORY: THE ROLE OF SLEEP ON MEMORY FORMATION AND MODIFICATION"

Location: Facultad de Ciencias Exactas y Naturales de la UBA, Ciudad Universitaria, Pabellón 2, Aula 12.

ORGANIZES: DR. CECILIA FORCATO (ARGENTINA) - DR. FELIPE BEIJAMINI (BRAZIL)

Purpose and nature of the course

This is the first Latin American Meeting of Sleep and Memory dealing with one of the most frontier topics in Neuroscience: the role of sleep in memory formation and modification. It will be held in the National University of Quilmes (UNQ), Buenos Aires on 16th October 2016 as a Satellite Event of the FALAN 2016 (Federation of Latin America and Caribbean Neuroscience, http://falan-ibrolarc.org/drupal/es). It counts with the support of the International Brain Research Organization (IBRO), Brazilian Sleep Society, the Brazilian Society of Neuroscience and Behaviour, the National University of Quilmes (UNQ), and the Argentinian Society of Neuroscience.

WORKSHOP

BCI, MOTOR IMAGERY, GAMES, VIRTUAL REALITY, EYE TRAKING, VIDEOSYNC AND EEG ANALYSIS -BEHAVIOR NEUROSCIENCE-

Location: La Cascada & Anexo, Fray Justo Santamería de Oro 2529. Palermo, Buenos Aires

Time: 8:30 13:00 Lecturers:

DANIEL GOMES DA SILVA MACHADO¹, PAULO RODRIGO BAZÁN¹, MARIA ADELIA ALBANO DE ARATANHA¹

¹BRAIN SUPPORT - BRAZIL

Pascal Mangold from Mangold International - Germany Pierluigi Castellone from Brain Products - Germany

The use of brain-computer interface (BCI) technology has been currently proven to provide new insights in studying important brain processes such as learning, brain plasticity and neurorehabilitation. The association with virtual reality, makes it possible to extrapolate lab environment providing new possibilities for neuroscientific research. This workshop will explore the use of open source softwares to acquire cortical activity with an EEG and use it to control an avatar in a virtual environment through a well known neurophysiological pattern called motor imagery. Furthermore, we will discuss how to merge and interpret data coming from different sources/devices, such as eye tracking, EEG and video cameras. In addition we will bring the state of art software (BrainVision Analyser 2.0) in ERP analysis and will demonstrate how to perform an optimal ERP study.

Realization:

Brain Support Corporation

#FALAN2016

PROGRAM IN DETAIL

PLENARY LECTURES SPECIAL LECTURES

Plenary Lectures

OCTOBER 17[™]

PL1. ARCHITECTURE OF THE CORTICAL ASSOCIATION NETWORK SUPPORTING VOLUNTARY BEHAVIOR AND COGNITION

LARRY SWANSON, UNIVERSITY OF SOUTHERN CALIFORNIA, USA

October 17, ROOM F, 18:00-19:00 Chair: **ALEJANDRO SCHINDER** FUNDACION INSTITUTO LELOIR. ARGENTINA

The nervous system controls and integrates two basic functions: behavioral interactions with the environment and coordination of internal bodily functions. The basic design features of this system—and thus its functional organization--remain unclear, in stark contrast to the other systems forming the animal body (cardiovascular, respiratory, digestive, and so on). Today's lecture will present a strategy for revealing organizing principles of the mammalian nervous system. It is based on systematic, datadriven network analysis tools that have now been applied to the rostral end of the rodent central nervous system, the cerebral hemispheres, which mediate cognition and the voluntary control of behavior. This initial analysis is based on weighted and directed axonal connections between all 73 parts of the cerebral cortex and all 45 parts of the cerebral nuclei (basal ganglia); in other words, it is based on complete cerebral cortical association and cerebral nuclei connectomes. Network analysis reveals that all cortical gray matter regions are arranged in four modules with small world connectivity, whereas in contrast all cerebral nuclei regions are also arranged in four modules, but with little indication of small world organization. The functional implications of these and other results will be discussed along with future research directions progressing down the neuraxis toward the spinal cord and peripheral nervous system.

OCTOBER 19[™]

PL2. NEURON- GLIA METABOLIC COUPLING: ROLES IN PLASTICITY AND NEUROPROTECTION

PIERRE MAGISTRETTI, EPFL, LAUSANNE, SWITZERLAND

October 19, ROOM A+B+C, 14:00-15:00 Chair: **ARTURO ROMANO**

IFIBYNE-CONICET, FCEN, UBA, ARGENTINA

A tight metabolic coupling between astrocytes and neurons is a key feature of brain energy metabolism (Magistretti and Allaman, 2015). Over the years we have described two basic mechanisms of neurometabolic coupling. First the

glycogenolytic effect of VIP - restricted to cortical columns - and of noradrenaline - spanning across functionally distinct cortical areas - indicating a regulation of brain homeostasis by neurotransmitters acting on astrocytes, as glycogen is exclusively localized in these cells. Second, the glutamate-stimulated aerobic glycolysis in astrocytes. This metabolic response is mediated by the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na-K-ATPase. glycogenolysis and aerobic glycolysis result in the release of lactate from astrocytes as an energy substrate for neurons (Magistretti and Allaman, 2015).

We have recently revealed a second function of lactate, as a signaling molecule for plasticity, long-term memory consolidation and for maintenance of LTP in the hippocampus (Suzuki et al, 2011). In the basolateral amygdala as well, lactate is necessary for the formation of an appetitive memory such as conditioned place preference for cocaine (Boury-Jamot etal, 2015).

At the molecular level lactate stimulates the expression of synaptic plasticity-related genes such as Arc, Zif268 and BDNF through a mechanism involving NMDA receptor activity and its downstream signaling cascade Erk1/2 (Yang et al, 2014).

OCTOBER 20TH

PL3. TRP CHANNELS, AN EARLY ALERT SYSTEM FOR ENVIRONMENTAL CHALLENGES

CARLOS BELMONTE, INSTITUTO DE NEUROCIENCIAS, UNIVERSIDAD MIGUEL HERNANDEZ-CSIC, SAN JUAN DE ALICANTE, SPAIN

October 20, Room A+B+C, 18:30-19:30 Chair: **BELÉN ELGOYHEN**, *INGEBI-CONICET*, *ARGENTINA*

The ability to sense potentially dangerous physical and chemical changes of the surrounding environment (temperature, mechanical pressures, low humidity, harmful chemicals) represents a fundamental attribute required by living organism, including humans, to ensure survival. Evolutionary pressures determined the development in animal species of specific sensory systems capable of transducing relevant physical and chemical properties of external stimuli into electrical signals which are processed to ultimately initiate or adjust specific behaviors. Sensory transduction is mediated by transducing proteins expressed by different functional types of sensory receptor cells. TRP channels constitute a large superfamily of cation channel forming proteins with a variety of functional properties and diverse cellular and physiological roles. The first TRP channel discovered in mammalian sensory neurons was Transient Receptor Potential Vanilloid 1 (TRPV1). Flourishing research over the past decades revealed that other members of the TRP ion channel family and in particular TRPM8 and TRPA1 act as detectors for heat, cold and humidity environmental stimuli, mechanical force, chemicals including exogenous plant and environmental compounds, bacterial toxins as well as endogenous inflammatory molecules. Thus, these channels form a multimodal transducer system for early detection of environmental sensory stimuli, which may potentially represent a threat for survival.

Special Lectures

OCTOBER 18TH

SLO1. USING OPTOGENETICS TO INTERROGATE SEROTONERGIC SYNAPTIC TRANSMISSION IN THE MAMMALIAN BRAIN

RODRIGO ANDRADE - WAYNE STATE UNIVERSITY SCHOOL OF MEDICINE, USA
CHAIR: KATIA GYSLING - DEPTO. DEPARTMENT OF CELLULAR AND
MOLECULAR BIOLOGY, PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE
ROOM A - 8:30-9:30

Brain serotonin is synthesized by a few thousand neurons located in the brainstem that in turn innervate the entire neural axis. This highly divergent serotonergic input is thought to regulate neuronal networks and mediate the behavioral effects of serotonin. Until recently efforts to understand serotonergic synaptic transmission have been hampered by limitations in our ability to use electrical stimulation on such a divergent axonal projection. The advent of optogenetics, which affords the ability to selective stimulate genetically defined neuronal populations, offers an avenue to bypass this limitation.

SLO2. TIME AND TIMING IN NEUROPHYSIOLOGY. LESSONS FROM SYNAPTIC TAGGING

JORGE A. BERGADO - CIREN (CENTRO INTERNACIONAL DE RESTAURACIÓN NEUROLÓGICA). LA HABANA. CUBA

CHAIR: GUSTAVO MURER - FAC. DE MEDICINA, UBA, ARGENTINA ROOM A - 8:30-9:30

Time windows are frequent in the neurosciences, and their contribution to allow or prevent experience-dependent plasticity is relevant. Time windows may last a few seconds (like in classical conditioning), hours (memory consolidation), or years (imprinting and other forms of experience expectant plasticity). Synaptic tagging is also an example of the existence of a time window during which a transient modification in synaptic plasticity can be made endurable if a temporally associated event reinforces it. We have recently obtained evidence confirming the relevance of timing for memory (or neural plasticity) improvements. In a first series of experiments we demonstrate that the exploration of a novel environment rescues spatial memory affected by a strong food shock, but only if the exploration is allowed 15 minutes after training, and not five hours later. In the same line, we demonstrate that memory improving effects of erythropoietin on fimbria-fornix lesioned

animals (a lesion that causes a severe and permanent loss of spatial memory) are only expressed when the trophic factor is administered within minutes after the training sessions and not five hours after that or several days before. The importance of a correct temporal organization of interventions may be of a great relevance for developing successful strategies in a wide range of human activity, from the School system to Restorative Neurology.

SLO3. EFFECTS OF ENVIRONMENTAL ENRICHMENT ON BRAIN PLASTICITY, COGNITION, AND SOCIAL COMMUNICATION IN RATS

JUAN CARLOS BRENES - INSTIT. FOR PSYCHOLOGICAL RESEARCH, NEUROSCI. RESEARCH CENTER, UNIVERSITY OF COSTA RICA

CHAIR: JAIME FORNAGUERA - UNIVERSIDAD DE COSTA RICA ROOM C - 8:30-9:30

Environmental enrichment (EE) is one of the most used paradigms to model neurobehavioral consequences of environmental stimulation in rodents. EE exerts beneficial effects on brain plasticity, cognition, and stress-coping responses. EE leads to a brain that can better counteract deficits and insults induced to resemble several neurological and psychiatric disorders. Here, evidence will be presented and discussed about how EE -as a whole or some of its components-, differentially affects non-associative learning (e.g., open-field habituation), spatial, episodic, and working memory, anxiety, social communication (i.e., ultrasonic vocalizations, USV), and amphetamineinduced locomotor activity and appetitive USV in rats. At the neurobiological level, expression of several genes and microRNAs related with neural plasticity on different brain regions will be shown. Discussion will be oriented to the use of preclinical studies including EE as potential treatment in models for neuropsychiatric disorders. Knowing about how animals react to different environmental conditions would contribute to explain why environmental stimulation in humans (rehabilitation and behavioral therapies, exercise, and preventive or palliative treatments) use to benefit some subjects but not others, an important enigma about the complex relationship between experience and neurobehavioral plasticity.

SLO4. THE PERIAQUEDUCTAL GRAY AND PRIMAL EMOTIONAL PROCESSING CRITICAL TO INFLUENCE COMPLEX DEFENSIVE RESPONSES, FEAR LEARNING AND REWARD SEEKING

<u>NEWTON CANTERAS</u>1, SIMONE C. MOTTA1, ANTÔNIO CAROBREZ²

¹DEPARTAMENTO DE ANATOMIA, INSTITUTO DE CIÊNCIAS BIOMÉDICAS, UNIVERSIDADE DE SÃO PAULO, SÃO; ²DEPARTAMENTO DE FARMACOLOGIA, CCB, UNIVERSIDADE FEDERAL DE SANTA CATARINA, FLORIANÓPOLIS, BRASIL

CHAIR: FRANCISCO SILVEIRA GUIMARÃES - MEDICAL SCHOOL OF RIBEIRAO PRETO-USP. BRAZIL

ROOM A - 18:30-19:30

The periaqueductal gray (PAG) has been commonly recognized as a downstream site in neural networks for the expression of a variety of behaviors and thought to provide stereotyped responses. However, a growing body of evidence suggests that the PAG may exert more complex modulation in a number of behavioral responses and work as a unique hub supplying primal emotional tone to influence prosencephalic sites mediating complex aversive and appetitive responses. Of particular relevance, we review how the PAG is involved in influencing feelings of fear and terror in humans and complex forms of defensive responses. such as circa-trike and risk assessment responses in animals. In addition, we discuss putative dorsal PAG ascending paths that are likely to convey information related to threatening events to cortico-hippocampal-amygdalar circuits involved in the processing of fear learning. Finally, we discuss the evidence supporting the role of PAG in reward seeking and note the lateral PAG as part of the circuitry related to goaloriented responses mediating the motivation to hunt and perhaps drug seeking behavior.

SLO5. EXPLORING NEUROENDOCRINE MECHANISMS OF SEXUAL DIMORPHISM IN EARLY STRESS RESPONSE: A TRANSLATIONAL APPROACH

ZULMA DUEÑAS¹, JUAN CARLOS CAICEDO-MERA²

¹ASSOCIATE PROFESSOR; ²UNIVERSIDAD EXTERNADO DE COLOMBIA

CHAIR: ANDREA MILENA GARCÍA - COLOMBIA

ROOM B - 18:30-19:30

Sexual dimorphism in early stress response is a relevant field whose molecular mechanisms remain unclear. Despite several research have demonstrated differential hormonal actions and neurological changes related to gender, there are few studies that explore behavioral and biochemical aspects through integrative approaches. In this study, hormonal interactions of ovaric steroids and glucocorticoids in two neurons lines and behavioral effects of early stress protocol in a rat model were analyzed, in order to explore possible neuroendocrine mechanisms that explain dimorphic expressions of stress response. The CAD and SH-SY5Y neurons cultures treated with different doses of dexamethasone, 17\u03b3-Estradiol and progesterone showed bimodal dose-dependent effects on cell viability, consist on protective effects in low doses range (1 to 100 uM) and proapoptotic effects in high doses ranges (500 to 1000µM) when they were used alone. Some costimulation treatements at high doses(estradiol + dexamethasone and estradiol + progesterone) showed increased damage in CAD cells, while protective effect induced by 50 µM of estradiol were able to antagonize dexamethasone induced damage in SH-SY5Y cells. In rats, that received a maternal separation protocol of three hours in the morning and three hours in the afternoon during lactation period, showed that separate females expressed anxiety and hypoactivity behaviors while separate males group shows the opposite.

SLO6. CALCIUM SIGNALING, CELLULAR OXIDATIVETONE AND SYNAPTIC PLASTICITY

CECILIA HIDALGO - BIOMEDICAL NEUROSCIENCE INSTITUTE, CEMC & ICBM. F. MEDICINE. UNIVERSIDAD DE CHILE

CHAIR: OSVALDO UCHITEL - IFIBYNE-CONICET, FCEN, UBA, ARGENTINA ROOM C - 18:30-19:30

Calcium signals, including signals generated by the highly redox-sensitive ryanodine receptor (RyR) calcium release channels, are essential for hippocampal synaptic plasticity and memory tasks. RyR inhibition - or incubation with the Alzheimer's disease associated amyloid beta oligomers (AbOs) - prevents BDNF-induced dendritic spine remodeling in primary hippocampal neurons and the associated RyR protein increase. Primary hippocampal neurons transfected with RyR2 shRNA display significant inhibition of RyR-mediated calcium release and lack BDNFinduced spine remodeling, which requires reactive oxygen species production. Additionally, LTP induction by TBS and performance of hippocampal-dependent memory tasks upregulate RyR2, while RyR inhibition prevents LTP induction by TBS. Moreover, decreasing RyR2 protein content by injecting rats intra-hippocampus with RyR2 antisense oligonucleotides or with AbOs leads to impaired performance in learning and memory tasks. We suggest that calcium signals generated via calcium release mediated by redox-modified RyR2 channels are essential for synaptic plasticity and hippocampal-dependent spatial memory processes, and that deficient RyR2-mediated calcium signaling contributes to AbOs-induced memory deficits. Supported by BNI-09-015F; FONDECYT 1140545.

OCTOBER 19TH

SLO7. NEUROPROTECTIVE EFFECT OF GUANOSINE IN EXPERIMENTAL MODELS OF BRAIN DISEASES

DIOGO ONOFRE SOUZA - DEPARTAMENTO DE BIOQUÍMICA, ICBS, UFRGS. BRAZIL

CHAIR: JORGE ALBERTO QUILLFELDT - UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL (UFRGS). BRAZIL

ROOM A - 8:30-9:30

Glutamate is the main excitatory neurotransmitter in mammalian CNS. However, the neurotoxicity caused by pathological high levels of extracellular brain glutamate is involved in the pathogenesis of various acute and chronic brain injuries. The maintenance of extracellular glutamate levels below toxic concentrations, thus favoring the physiological glutamatergic tonus, is exerted by glutamate uptake through transporters located mainly in astrocytes cell membranes.

Our group has given strong evidence that the guanine-based purinergic system is effectively neuroprotective against glutamate toxicity, in acute and chronic animal models, both in vitro and in vivo studies. Our results indicate that the neuroprotective guanine-based purine is the nucleoside guanosine (Guo). In vivo studies, Guo (i.c.v., i.p. or orally administered) protect against seizures (induced by QA), brain ischemia and hepatic encephalopathy.

Searching for mechanisms implicated in this neuroprotection, we pointed that Guo stimulates the astrocytic glutamate uptake in astrocyte cultures (from

newborn, adult and old rats). Additionally, in models of brain injury that is accompanied by a decrease in brain glutamate uptake (measured in brain slices), Guo simultaneously exerts neuroprotective effects and avoids the decrease in glutamate uptake.

SLO8. WNT SIGNALING AND ALZHEIMER'S DISEASE

NIBALDO INESTROSA - CENTRO DE ENVEJECIMIENTO Y REGENERACIÓN (CARE UC). CHILE

CHAIR: JOSÉ BACIGALUPO - UNIVERSIDAD DE CHILE, FACULTAD DE CIENCIAS. CHILE

ROOM B - 8:30-9:30

Wnt signaling pathway is implicate in neural development and function, including dendrite morphogenesis, axonal growth and fine-tuning of synapses, defining the synaptic plasticity of neuronal circuits. Activation of Wnt signaling regulates synaptic structure and function in hippocampal excitatory neurons, promoting the PSD-95 clustering, development of dendritic spine morphogenesis as well as the increases in glutamatergic neurotransmission. Early studies indicated that the activation of Wnt signaling prevents the neurotoxicity induced by amyloid- (A) peptide aggregates. Current evidence associates Wnt dysfunction to Alzheimer disease's (AD), namely: β-catenin levels are reduce in AD patients carrying presenilin-1inherited mutations, the secreted Wnt antagonist Dickkopf-1 is elevated in postmortem AD brains, and a variant of the LRP6 is associated with late-onset AD. In this seminar, I will present our recent work on the biology of the Wnt signaling in the nervous system, as well as, in vivo studies on the effect of Wnt signaling in AD animal models, including the double transgenic APPswe/PS-1 mouse, and the Chilean natural model Octodon degus. Results point to a neuroprotective potential of the Wnt cascades as a therapeutic approach to control AD.

SLO9. DURATION MODULATION OF AVERSIVE MEMORIES AND APPETITIVE

JORGE MEDINA - FACULTAD DE MEDICINA, UNIVERSIDAD DE BUENOS AIRES. ARGENTINA

CHAIR: PEDRO BEKINSTEIN - FAC. DE MEDICINA, UBA, ARGENTINA ROOM A - 18:30-19:30

Persistence is the most characteristic attribute of long-term memory (LTM). However, little is known about the mechanisms that make LTMs last longer than others. We found that a novel protein synthesis- and BDNF-dependent late phase in the hippocampus is critical for persistence, but not formation of fear LTM storage. Moreover, increasing BDNF levels in the hippocampus 12 hr after training is sufficient to induce memory persistence, transforming a non-lasting LTM trace into a persistent one. We also found that persistence of LTM depends on the activation of VTA/ hippocampus connections controlling BDNF expression, and is modulated by noradrenergic and serotonergic influences. Persistence of a cocaine-associated memory is regulated in a manner opposite to that observed in fear memories. The role of this late consolidation phase in the

hippocampus on systems consolidation processes will be discussed alongside with other research interests we have in the present days. For instance, which are the strategies to maintain or attenuate memories.

SL10. SCHWANN CELL TO AXON RNA TRANSFER

JOSÉ SOTELO - INSTITUTO DE INVESTIGACIONES BIOLÓGICAS CLEMENTE ESTABLE. MONTEVIDEO. URUGUAY

CHAIR: MARÍA CASTELLÓ - IIBCE, URUGUAY

ROOM C - 18:30-19:30

The existence of RNA in axons now has accumulated abundant experimental evidence. Much of the disputes turned now to the origin of these axonal RNAs. The neuronal soma as the source of most axonal RNAs is indisputable. However, the surrounding glial cells emerged as a supplemental source of axonal RNAs. Here, we focus on addressing the glial origin of axonal RNAs and ribosomes. We describe this process in both invertebrate axons and vertebrate axons. Court et al showed that Schwann cell to axon ribosomes transfer exists. Moreover, we showed Glia to axon RNA transfer in Peripheral axons (2013). Carsten (2013) also showed that Oligodendroglia transfer RNA to central axons. Recently, Ion Torrent massive sequencing of immunoprecipitated (Schwann cell synthesized) Bromouridine-mRNAs yielded hundreds of axonal mRNAs (i.e. neurofilaments, ankirin, actin, etc.). This implies important consequences respect the integration of glial and axonal function. This evolving field will certainly impact in the understanding of the cell biology and physiopathology of the axon. Moreover, if axonal protein synthesis can be controlled by the interacting glia, the possibilities for human clinical interventions in nerve injury and neurodegeneration are greatly increased.

OCTOBER 20TH

SL11. ACTIVITY AND NEUROGENESIS-MEDIATED CIRCUIT REMODELING IN THE HIPPOCAMPUS

ALEJANDRO SCHINDER - INSTITUTO LELOIR, ARGENTINA CHAIR: DANIEL CALVO - INGEBI-CONICET, ARGENTINA ROOM A - 8:30-9:30

The dentate gyrus is the first relay station in information flow from the entorhinal cortex towards the hippocampus, and it plays a crucial role in memory processing. A remarkable feature of the dentate circuitry is the unique degree of plasticity conveyed by its ability to generate and integrate new principal neurons (granule cells, GCs) through life. Adult-born GCs are important for specific forms of memory, such as those that demand fine discrimination of subtle differences, particularly during spatial tasks. My laboratory has focused on understanding the modifications of local dentate networks produced by the incorporation of newly generated GCs, their interaction with the microenvironment (niche), and their functional implications.

Adult-born GCs develop and connect over several weeks before they become mature. Our recent findings reveal that new GCs may play distinct roles in memory encoding as they walk through the road of development. In addition, developing GCs undergo two critical periods of high sensitivity to electrical signals arising from their local microenvironment. At these times, their functional profile becomes tagged by behavior, resulting in long-lasting changes in connectivity and function. In my talk I will discuss recent approaches combining opto- and chemogenetics that we have used to understand the function of developing GCs and the mechanisms that transduce behavioral experiences into changes in the integration and plasticity of new GCs.

SL12.MELANINCONCENTRATINGHORMONE IN MESOPONTINE RAPHE NUCLEI: ROLE IN REM SLEEP AND DEPRESSION

PABLO TORTEROLO - DEPARTMENT OF PHYSIOLOGY, SCHOOL OF MEDICINE, UNIVERSIDAD DE LA REPÚBLICA, URUGUAY

CHAIR: PATRICIA LAGOS - FACULTAD DE MEDICINA, UDELAR, URUGUAY ROOM B - 8:30-9:30

The melanin-concentrating hormone (MCH) is a neuromodulator synthesized by neurons of the postero-lateral hypothalamus. MCHergic neurons project to the serotonergic dorsal (DR) and median (MR) raphe nuclei. These nuclei have a major role both in the control of REM sleep and in the pathophysiology of Major Depression (MD). In this lecture I will summarize and evaluate our experimental data about the functional interactions between the MCHergic systems and the raphe nuclei, in the control of REM sleep and MD.

Our main findings are the following. MCHergic receptors are present in the serotonergic neurons of the DR and MR. Microinjections of MCH into the DR promote REM sleep in the rat, while immunoneutralization of this peptide within the DR, decreases the time spent in this state. Moreover, microinjections of MCH into the DR and MR promote a depressive-like behaviour. This effect is blocked by the intra-DR microinjection of a specific MCH receptor antagonist, and prevented by the systemic administration of antidepressant drugs (either fluoxetine or nortriptyline). Using electrophysiological and microdialysis techniques, we also demonstrated that MCH decreases the activity of serotonergic DR and MR neurons.

In conclusion, there is substantive experimental data suggesting that by modulating the neuronal activity of the DR and MR, the MCHergic system plays a role in the control of REM sleep and in the pathophysiology of MD.

SL13. NEURAL BASIS OF ATTENTION TO MULTI-PART, HIERARCHICALLY ORGANIZED, OBJECTS

MITCHELL VALDÉS-SOSA - CUBAN CENTER FOR NEUROSCIENCE, CUBA CHAIR: MARÍA EUGENIA PEDREIRA - IFIBYNE-CONICET, FCEN, UBA, ARGENTINA

ROOM C - 8:30-9:30

Visual attention can be directed at an object as a whole (the global level) or to its parts (the local level). The cortical

circuitry enabling these attentional configurations is not fully understood. This topic has been studied with hierarchical Navon figures, global letters made out of local letters. Using a novel paradigm we separated the presentation of these two levels in time. We found that seeing a shape at the global or local level momentarily blocks from awareness additional shapes from the other level, an interference not present for shapes from the same level. Using event related potentials we show that this attentional selection modulates early potentials with probable sources in visual extra-striate cortex. Moreover, by examining local activation patterns with functional MRI, we found a divergent specialization for the abstract information provided by the hierarchical figures. Information about shape (invariant to changes in level) was carried preferentially by lateral ventraloccipito-temporal cortex (VOT), overlapping object- and face-selective cortex. Conversely, information about level (invariant to changes in shape) was preferentially carried by medial VOT, and occipital areas partly covering house/ scene-selective cortex This suggests a shared circuitry processing scene-layout and the internal structure of multipart objects, which is exploited by attention to control the access of shapes into awareness.

#FALAN2016

PROGRAM IN DETAIL

SYMPOSIA

Symposia

OCTOBER 17TH SY1. NOVEL INSIGHTS INTO HYPOTHALAMIC MECHANISMS CONTROLLING BODY HOMEOSTASIS

ROOM A - 11:00-13:00

CHAIR: MARIO PERELLO (ARGENTINA)

The hypothalamus is a functionally and structurally complex brain structure that constantly integrates a variety of peripheral signals and generates combined physiological responses essential for the body homeostasis regulation. In this symposium, we will present an update of some novel aspects of these very sophisticated and recently elucidated hypothalamic mechanisms.

SPEAKER: JAVIER STERN, MEDICAL COLLEGE OF GEORGIA, AUGUSTA UNIVERSITY. GEORGIA, USA

NON-CONVENTIONAL MODALITIES OF NEUROTRANSMISSION IN THE HYPOTHALAMUS: WHERE THE TORTOISE AND THE HARE MEET

It is classically considered that the proper functioning of the central nervous system is dependent upon communication between pairs of neurons, which is mediated by chemical neurotransmission at well-defined synaptic structures. However, research in the past decade has gradually expanded the repertoire of cell-cell signaling mechanisms, to include modalities that operate at very different spatio-temporal scales from classical temporally fast and spatially constrained synapses. An emerging model for the study of these distinct forms of neurotransmission is the hypothalamus, a brain region in which communication among functionally distinct neuronal types, ranging from cell-to-cell to interpopulation signaling, is critical for the generation of multimodal homeostatic responses. In my talk I will present recent data from our laboratory regarding how classical and non-conventional neurotransmission modalities work in concert in the regulation of hypothalamic neuronal activity, highlighting the key role that glial cells play in these interactions. I will discuss the functional relevance of these signaling modalities in the context of hypothalamic generation of cardiovascular and energy balance homeostatic responses.

SPEAKER: JOSE DONATO JR. - UNIVERSITY OF SAO PAULO, BRASIL LEPTIN SIGNALING IN METABOLIC ADAPTATIONS OF PREGNANCY

During pregnancy, women normally increase their food intake and body fat mass, and exhibit insulin resistance. However, an increasing number of women are developing metabolic imbalances during pregnancy, including excessive gestational weight gain and gestational diabetes mellitus. Despite the negative health impacts of pregnancy-induced metabolic imbalances, their molecular causes remain unclear. In this talk, I will summarize our recent findings that identified the molecular mechanisms

responsible for orchestrating the metabolic changes observed during pregnancy. In summary, we found that increased hypothalamic expression of SOCS3 is a key mechanism responsible for triggering pregnancy-induced leptin resistance and metabolic adaptations.

SPEAKER: MARIO PERELLO, LABORATORIO DE NEUROFISIOLOGIA, INSTITUTO MULTIDISCIPLINARIO DE BIOLOGIA CELULAR, ARGENTINA

NEURONAL CIRCUITS BY WHICH GHRELIN REGULATES STRESS AND EATING BEHAVIORS

The understanding of the neurobiological bases underlying food intake behaviors is essential to understand the normal physiology and also important for the further development of treatments for people suffering eating disorders. In order to get insights into the complex neural mechanisms regulating food intake, our laboratory has focused on the study of a stomach-derived hormone, named ghrelin, which is recognized as the only known orexigenic circulating peptide as well as a potent stress signal to the brain. Over the last years, our work has helped to define essential roles for ghrelin in mediating reward-based eating as well as in stress-related responses. Our data support the notion that the neuronal targets mediating ghrelin's role as an orexigenic vs. a stress signal are anatomically dissociated. Recently, we have also shown that neuronal targets mediating ghrelin's role on food reward or homeostatic eating are also dissociated. Thus, we propose that ghrelin impacts on first order neuronal targets of specific neuronal circuits that mediate each ghrelin's role, and then these neuronal circuits are integrated in order to display coordinated responses.

SPEAKER: MATTHIAS TSCHÖP, *INST. FOR DIABETES AND OBESITY, BAVARIA. GERMANY*

THE METABOLIC SYNDROME: A BRAIN DISEASE?

All metabolic processes, from single cell substrate oxidation to complex behaviors, are under the control of specific CNS circuits, aiming to maintain homeostasis. Afferent signals include gut hormones, adipokines and nutrient components, while efferent information primarily originates from the hypothalamic nuclei and involves components of the autonomic nervous system as well as the classic endocrine axes. We recently observed that diet-induced metabolic diseases, such as obesity and type 2 diabetes, are associated with (and preceded by) pathological processes in these hypothalamic control centers. Such pathophysiology concerns the hypothalamic cell matrix beyond key neuronal populations and includes astrocytosis, microgliosis, hypervascularisation as well as increased presence of pro-inflammatory cytokines. Specific targeting of such "hypothalamic inflammation" using novel gut-peptide based delivery of glucocorticoids to key metabolic disease regions improved both local pathophysiology and systemic metabolic health. Such a novel unimolecular dual agonism and steroid delivery approach may not only offer superior therapeutic option for at least some patient subpopulations, but also suggests a pathogenetic relevance for this novel hypothalamic syndrome.

SY2. SLEEP, MEMORY AND CONSCIOUSNESS

ROOM B - 11:00-13:00

CHAIRS: CECILIA FORCATO (ARGENTINA) AND FELIPE BEIJAMINI (BRAZIL)

The study of the role of sleep in memory formation, its interaction with stress and the processing of information during sleep is a frontier topic in neuroscience.

In this Symposium we will discuss the active role of sleep in memory consolidation as well as the interaction between sleep and stress and the processing of information in this state of reduced consciousness.

SPEAKER: JESSICA PAYNE, DEPARTMENT OF PSYCHOLOGY, UNIVERSITY OF NOTRE DAME. USA

STRESS, SLEEP, AND MEMORY CONSOLIDATION: INDEPENDENT AND INTERACTIVE EFFECTS

Separate lines of research demonstrate that elevated cortisol can selectively benefit the consolidation of emotional memories, as can the occurrence of sleep soon after learning. The first part of my talk will examine the separate roles that stress and sleep play in the formation of emotional memories. In the second part, I will discuss new evidence, from behavioral, psychophysiological, and neuroimaging studies, suggesting that stress and arousal interact with sleep to benefit memory consolidation, particularly for negative arousing information. I will conclude by presenting a model suggesting that stress hormones may help 'tag' attended information as important to remember at the time of encoding, thus enabling subsequent, sleep-based processes to optimally consolidate information in a selective manner.

SPEAKER: TRISTAN BEKINSCHTEIN, DEPARTMENT OF PSYCHOLOGY, UNIVERSITY OF CAMBRIDGE: UK

FRAGMENTATION AND RESILIENCE OF COGNITIVE PROCESSES AS WE FALL ASLEEP

Little we know about the time when we fall into Morpheus' arms. The transition from wake to sleep is a thoroughly unexplored biological process that in humans is enormously variable and has not been characterized beyond some electrophysiological reports. In this program of research we have decided to build a framework to define the dynamics of the transition when people are falling asleep as they take different types of decisions. How does cognition fragment as we fall asleep? In a first series of experiments the findings show the different styles of transition, and how we stop responding but continue to take decisions, even deep into sleep stage 2. In a second wave of experiments we show how the system adapts to the change of resources when drowsy and shifts the cognitive processes between brain networks and cortical areas. Preliminary findings show that when drowsy we lose attention to the left side of the worlds (attentional hemineglect); we also continue to channel semantic decision to frontoparietal networks when asleep (markers of intention in stage 2); and we keep the threshold of perceptual detection but lose precision and shift the neural markers of that process from perceptual to decision making areas. These findings together represent the first attempt to understand the true plasticity of the brain when we change between fully conscious to less alert states,

a transition that happens several times per day to every person in the world.

SPEAKER: JAN BORN, DEPARTMENT OF MEDICAL PSYCHOLOGY AND BEHAVIORAL NEUROBIOLOGY, UNIVERSITY OF TÜBINGEN, GERMANY

MECHANISMS OF SLEEP-DEPENDENT MEMORY FORMATION – DEVELOPMENTAL ASPECTS

Sleep favors the consolidation of memory. Recent studies have elucidated some of the neurophysiological mechanims underlying this consolidation process during sleep, especially in the hippocampus-dependent declarative memory system. This system is capable of rapidly forming an initial memory representation for an episode upon its one-time occurrence, and is thus at the basis of the formation of any long-term memory. Consolidation of hippocampus-dependent memories represents an active systems consolidation process that takes place mainly during slow wave sleep (SWS) rather than REM sleep. It critically relies on the neural reactivation of newly encoded memory representations which originates from hippocampal circuitry and is thought to promote the gradual redistribution of the representations towards extra-hippocampal, mainly neocortical networks serving as long-term store. This talk will cover developmental aspects of active systems consolidation during sleep. Compared with adults, children display longer and deeper SWS with increased <1 Hz slow oscillatory EEG activity and spindle activity. In parallel, memory consolidation during sleep in the hippocampus-dependent declarative memory system is enhanced in children, which goes along with a stronger transformation of the initial memory representations. In this way, sleep in children appears to particularly support the formation and storage of abstracted schema-like memories.

SPEAKER: SIDARTA RIBEIRO, BRAIN INSTITUTE, BRAZIL

Sleep-dependent plasticity and memory change: Strengthening, forgetting, and restructuring

SY3. MACROMOLECULAR SIGNALING COMPLEXES IN NEURONS

ROOM C - 11:00-13:00

CHAIR: MARK SHAPIRO (USA)

Signaling cascades that regulate neuronal activity use limited number of second messengers, therefore, in order for intracellular signaling to function with high fidelity, a precise spatiotemporal localization of intracellular signals must exist. Leading scientists from three continents will discuss current hot topics and technical advances in the field of neuronal localised intracellular signaling.

SPEAKER: NIKITA GAMPER, FACULTY OF BIOLOGICAL SCIENCES, UNIVERSITY OF LEEDS, LEEDS, UK; DEPARTMENT OF PHARMACOLOGY, HEBEI MEDICAL UNIVERSITY. SHIJIAZHUANG. CHINA

COUPLING OF CALCIUM-ACTIVATED CHLORIDE CHANNEL TMEM16A TO LOCALIZED CALCIUM SIGNALS IN SENSORY NEURONS

Ca2+-activated Cl- channels TMEM16A (ANO1) are expressed in nociceptive ('pain') sensory neurons where these are thought to play an excitatory role. Accordingly,

TMEM16A activation was shown to contribute to inflammatory and thermal pain. Since there are many types of intracellular Ca2+ signals, nociceptors must be able to differentiate between those originating from the tissue-damaging stimuli and 'other' Ca2+ signals. We found that TMEM16A in nociceptive dorsal root ganglion (DRG) neurons couple to two distinct localised Ca2+ sources: i) G protein coupled receptor (GPCR)-mediated release of Ca2+ form the endoplasmic reticulum (ER), and ii) Ca2+ influx via the TRPV1 channels. Intriguingly, Ca2+ influx through the voltage-gated Ca2+ channels was ineffective to activate TMEM16A. Coupling of TMEM16A to the ER Ca2+ release was mediated by signaling complexes assembled at the plasma membrane (PM)-ER junctions. The complex ensures close apposition and physical association of PM's TMEM16A channels and GPCR (i.e. bradykinin B2 and PAR2 receptors) with ER's IP3 receptors, which serve as Ca2+ sources for TMEM16A activation. Disrupting these complexes resulted in 'promiscuous' activation of TMEM16A by global cytosolic Ca2+ signals which, in turn, increased excitability of nociceptors. In sum, we postulate the existence of multiprotein signaling complexes, which bring together TMEM16A with their dedicated Ca2+ sources while protecting the channels form from 'irrelevant' Ca2+ signals.

SPEAKER: FRANCISCO J. BARRANTES

LABORATORY OF MOLECULAR NEUROBIOLOGY, INSTITUTE OF BIOMEDICAL RESEARCH, UCA-CONICET, ARGENTINA

NANOCLUSTER ORGANIZATION AND DYNAMICS OF SYNAPTIC PROTEINS

Synaptic transmission relies on an adequate balance of receptor synthesis, delivery to and removal from the cell membrane and anchorage by scaffolding and cytoskeletal components. In order to understand the interplay between these intervening molecules, it is necessary to define their supramolecular organization, dynamics and trafficking. Here we interrogate neuronal and muscle-type nicotinic acetylcholine receptors (nAChRs) and other synaptic components using a combination of ensemble averaging methods and single-molecule experimental techniques. Two independent superresolution microscopy techniques -STED and STORM/GSDIM- provide snapshot information on the "social" supramolecular organization of receptors in a clonal cell line heterologously expressing muscletype nAChR and in hippocampal neuronal cells. In both cases nanometer-sized aggregates ("nanoclusters") can be imaged with nanometer precision and their density, number of molecules per cluster and other structural parameters defined. Cholesterol levels affect the surface architecture and dynamics of the nAChR nanodomains and individual macromolecules, the mobility of which can be followed in living cells using single-particle tracking techniques. The possible functional implications of these spatio-temporal properties of synaptic macromolecules will be discussed. Supported by grants PICT 2011-0604 and 2015-2654 from Mincyt and PIP 11220150100858 from CONICET.

SPEAKER: MARK S. SHAPIRO¹, CHASE M. CARVER¹, FRANK CHOVEAU¹, JIE ZHANG¹

'UNIVERSITY OF TEXAS HEALTH SCIENCE CENTER AT SAN ANTONIO, SAN ANTONIO, TX USA

CLUSTERING AND FUNCTIONAL COUPLING OF DIVERSE ION CHANNELS AND SIGNALING PROTEINS REVEALED BY SUPER-RESOLUTION STORM MICROSCOPY IN NEURONS

Neuronal ion channels are exquisitely regulated by intracellular signaling molecules which typically use scaffold proteins, such as A-kinase anchoring proteins (AKAPs) to orchestrate protein assemblies for spatiotemporal specificity. "M-type" K+ channels (KCNQ2-5) play key roles in regulating neuronal excitability. "L-type" Cav1 Ca2+ channels are critical for synaptic plasticity and excitation/ transcription coupling. In sensory neurons, TRPV1 cation channels respond to heat, acidity or chemical ligands, initiating nociception. AKAP79/150 recruits PKA, PKC, calcineurin and receptors into signaling complexes centered on these three types of channels. However, optical observation of such individual complexes containing these proteins has not been achieved due to the intrinsic diffraction limit of light (~250 nm). I will show how we have addressed those questions using super-resolution STochastic Optical Reconstruction Microscopy (STORM) and electrophysiology. We also probed if AKAP79/150 directs "super-complexes" involving multiple channels. Indeed, we find AKAP150-mediated super-clusters in sensory neurons, showing AKAP79/150-mediated physical coupling of multiple and distinct ion channels. Moreover, we find functional coupling of these diverse channels, dependent on AKAP79/150. Our findings illustrate the novel role of AKAP79/150 as a coupler of different proteins to convey cross-talk between channel activities in controlling the physiological responses of neurons.

SPEAKER: RAMON LATORRE, CENTRO INTERDISCIPLINARIO DE NEUROCIENCIA DE VALPARAÍSO, UNIVERSIDAD DE VALPARAÍSO, CHILE

ALLOSTERISM AND STRUCTURE IN THERMALLY-ACTIVATED TRANSIENT RECEPTOR POTENTIAL CHANNELS The molecular sensors for temperature changes in living organisms are a large family known as thermosensitive Transient Receptor Potential (TRP) ion channels. These membrane proteins are polymodal receptors in the sense that they can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. We will discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, to then discuss the thermodynamic foundations of thermo-TRP channel activation. A structural overview of the molecular determinants of temperature sensing is provided. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we discuss the effect of several ligands on TRP channels function, and the evidence regarding their mechanisms of action.

SY4. PROFESSOR JOHN G NICHOLLS CELEBRATION SYMPOSIUM: FUNCTION, REPAIR AND TRAINING OF THE NERVOUS SYSTEM

ROOM A - 15:00-17:00

CHAIR: ELAINE DEL-BEL (BRAZIL) AND FRANCISCO DE MIGUEL (MEXICO)

In this symposium, lecturers will talk about their own scientific research, teaching experiences and how it was influenced by working with John Nicholls.

ORGANIZERS:

E. DEL-BEL (USP-RIBEIRAO PRETO, BR), F. F. DE-MIGUEL (UNAM, MEXICO), OSVALDO UCHITEL (FALAN PRESIDENT), PIERRE MAGISTRETTI (IBRO PRESIDENT)

Introduction: FRANCISCO F. DE-MIGUEL

SPEAKER: LIRIA MASUDA-NAKAGAWA, UNIVERSITY OF CAMBRIDGE. DEPT OF GENETICS. UK

FUNCTIONAL CIRCUITRY OF A SENSORY DISCRIMINATION AND LEARNING CENTER IN A SIMPLE BRAIN, LARVAL DROSOPHILA

Discrimination of sensory signals underlies memory formation and retrieval. In insects and mammals, sensory signals are represented in the higher brain, highly selectively. The aim of our work is to understand the circuit mechanisms that regulate selectivity and sparseness of sensory representations.

The mushroom bodies (MBs) of insect brains are higher order brain centers essential for associative olfactory learning. The relatively simple Drosophila larval MB calyx, the sensory input region, is organized in glomeruli, each receiving stereotypic input from a single projection or other input neuron. This allows a sensory map of all olfactory sensory neurons in the calyx. In contrast to stereotypic PN innervation, innervation of calyx glomeruli by MB neurons, Kenyon cells (KC) appears random. This pattern of connectivity is consistent with a model in which KC dendrites process olfactory input by a combinatorial mechanism that can discriminate a large number of odors. However, the activity of the calyx must subject to regulation. We are now addressing how inhibition and other potential modulatory neurons regulate the activity in the calyx. By using the larval brain EM connectome, we are now dissecting the circuits that provide inputs and outputs to the calyx, and testing the roles of novel neurons by functional imaging and behavior. Our data will help reveal the logic of information processing that determines and regulates the selectivity of sensory representation in the MBs.

SPEAKER: JUÁN FERNANDEZ, FACULTAD DE CIENCIAS. UNIVERSIDAD DE CHILE

The early zebrafish embryo as a model for the study of cytoplasmic movements

SPEAKER: ROMMY VON BERNHARDI, NEUROLOGY, SCHOOL OF MEDICINE, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE, SANTIAGO, CHILE MICROGLIAL CELL DYSREGULATION IN BRAIN AGING AND NEURODEGENERATION

Aging is the main risk factor for Alzheimer's disease. We hypothesis have developed the "glia-dysregulation" that proposes that age-related impairment of microglia regulation is involved in AD pathogenesis. We have found that age-related changes on TGF-beta1 results in microglia dysregulation, neuroinflammation and increased neurotoxicity. Astrocytes regulation of microglia cytotoxicity and Aβ removal is mediated by TGF-beta1. However, TGF-beta1/Smad signaling is reduced in adult mice. Reduced activation of TGF-beta1/Smad is associated with changes on the activation of microglia: impaired expression of SR-A, which in turn associated with altered cytokine profiles in plasma and in the hippocampus as mice age. Modulation is at least partially dependent on the activation of TGF-beta1/Smad pathway and is impaired in chronic inflammation. Phagocytosis of AB is induced by inflammation and TTGF-beta1 only in microglia obtained from young mice, and is prevented by Smad inhibition. Our results show that the TGF-beta1/Smad pathway regulates the expression of scavenger receptors and the activation pattern of microglia, which is impaired in aging and chronic inflammatory preconditioning. The impairment reduces protective activation while facilitating microglia-mediated neurodegenerative changes and cognitive impairment. Support: Grant FONDECYT 1131025.

SPEAKER: JAIME EUGENIN, UNIVERSIDAD DE SANTIAGO DE CHILE THE ALTERATION OF NEONATAL RAPHE NEURONS BY DEFINATAL DEFINATAL NEOTINE MEANING, FOR

BY PRENATAL-PERINATAL NICOTINE. MEANING FOR SUDDEN INFANT DEATH SYNDROME

Prenatal nicotine exposure is proposed as a probable link between smoking habit during pregnancy and Sudden Infant Death Syndrome (SIDS) in humans. We demonstrated that nicotine (60 mg Kg-1 day-1) administered subcutaneously with osmotic minipumps in CF1 mice from gestational days 5-7 to early postnatal life leads to blunted ventilatory responses to hypercarbia, and reduced central chemoreception in P0-P5 neonates. Because SIDS infants show several abnormalities in the serotonergic structures in the brainstem, we studied the effects of prenatal-perinatal nicotine on raphe neurons in mice. We found that in nicotine-exposed neonates, caudal raphe neurons are hypoactive and show a reduced innervation of the ventral respiratory column. In addition, the respiratory responses evoked by serotonin agonists and the expression of 5HT1A receptors are altered. Therefore, prenatal nicotine exposure modifies the respiratory rhythm and impairs the central chemoreception during the early postnatal life as a consequence of serotonergic system alteration. These results are relevant to understand possible pathogenic mechanisms of SIDS.

SPEAKER: ELAINE DEL-BEL, USP RIBEIRAO PRETO. BRAZIL

Identification of gene expression during CNS regenerationFrom courses to studying regeneration and later with Walter
Stuhmer

SPEAKER: FRANCISCO F. DE MIGUEL, INSTITUTO DE FISIOLOGÍA CELULAR. UNAM. MEXICO

Release of transmitters from synapses and cell bodies Serotonin release from the neuronal cell body

Concluding remarks **RUBIA WEFFORT / CILENE LINO-DE- OLIVEIRA / ELAINE DEL-BEL**

Experience as students and partners.

SY5. NEW INSIGHTS INTO SYNAPTIC PLASTICITY

ROOM B - 15:00-17:00

CHAIR: ANTONIO RODRIGUEZ-MORENO (SPAIN)

Synaptic plasticity is one of the main properties of the brain. Understanding the mechanisms and functions of plasticity in development, learning and memory, as well as recovery after brain injury is an important topic with wide appeal, and this controversial topic will promote an interesting debate and contribute to clarity in a sometimes confusing field.

SPEAKER: ANTONIO RODRIGUEZ-MORENO, UNIVERSIDAD PABLO DE OLAVIDE. SPAIN

SPIKE TIMING-DEPENDENT PLASTICITY IN THE CORTEX AND THE HIPPOCAMPUS

Spike timing-dependent plasticity (STDP) is a Hebbian learning rule important for synaptic refinement during development and for learning and memory in the adult. We have investigated the requirements for induction of spike timing-dependent long-term potentiation (t-LTP) and spike timing-dependent long-term depression (t-LTD) in the hippocampus and the cortex and the mechanisms of these two forms of plasticity. We found that both t-LTP and t-LTD can be induced at L4-L2/3 cortical synapses as well as at hippocampal CA3-CA1 synapses by pairing presynaptic activity with single postsynaptic action potentials at low stimulation frequency (0.2 Hz). Both t-LTP and t-LTD require NMDA-type glutamate receptors for their induction, but the location and properties of these receptors are different: While t-LTP requires postsynaptic ionotropic NMDA receptor function, t-LTD does not. Both t-LTP and t-LTD require postsynaptic Ca2+ for their induction. Induction of t-LTD also requires metabotropic glutamate receptor activation, phospholipase C activation, postsynaptic IP3 receptor-mediated Ca2+ release from internal stores, postsynaptic endocannabinoid (eCB) synthesis, activation of CB1 receptors and astrocytic signalling, possibly via release of the gliotransmitters glutamate (in the cortex) and D-serine (in the hippocampus). We furthermore found that presynaptic calcineurin is required for t-LTD induction.

SPEAKER: MARCO FUENZALIDA, INSTITUTO DE FISIOLOGÍA, FACULTAD DE CIENCIAS, UNIVERSIDAD DE VALPARAÍSO; CENTRO DE NEUROBIOLOGÍA Y PLASTICIDAD CEREBRAL, UNIVERSIDAD DE VALPARAÍSO, CHILE

ACTIVITY-DEPENDENT SYNAPTIC PLASTICITY OF GABAERGIC SYNAPSES

Long-term changes in synaptic transmission are considered the cellular basis of learning and memory. Over the last decade, many studies have revealed that the precise order and timing between pre- and post-synaptic activity ("spike-timing-dependent plasticity; STDP") is crucial for the sign and magnitude of long-term potentiation (LTP) or long-term depression (LTD) at many synapses. Neuromodulatory systems including the dopaminergic, serotoninergic and

cholinergic system can modulate the strengthening or weakening of synaptic transmission by regulating the magnitude of LTP/LTD. Here, we will summarized and discusses mechanistic aspects of neuromodulation of activity dependent synaptic plasticity in inhibitory synapses, with an emphasis on cholinergic and endocannabinoids system and its role in regulating STDP-iLTD in healthy brain and disease.

SPEAKER: FRANCISCO URBANO, INSTITUTO DE FISIOLOGÍA, BIOLOGÍA MOLECULAR Y NEUROCIENCIAS (IFIBYNE-CONICET-UBA), ARGENTINA

Psychostimulant-induced alterations on thalamic GABAergic plasticity

The effects of cocaine on thalamic GABAergic transmission resemble those described in several psychiatric and neurological pathologies included in the thalamocortical dysrhythmia syndrome, characterized by an anomalous coherence between high and low EEG frequencies. The presence of low frequencies in awake individuals is thought to cause aberrant processing of sensory inputs. Our group has compared cocaine and methylphenidate on synaptic transmission during repetitive stimulation. We found that cocaine administration, either acute or sub-chronic, led to an increase in paired pulse ratio values during electrical stimulation of GABAergic afferent to ventrobasal neurons at either 10 Hz or 40 Hz. Furthermore, only cocaine sub-chronic administration induced changes in 10 Hz/10 pulse trains of stimulation. Comparatively, the effects of methylphenidate are subtle, suggesting the existence of a cocaine-mediated serotonergic modulation of the inhibitory synapse between the thalamic reticular nucleus and the Ventrobasal nucleus.

SY6. PATIENT-DERIVED INDUCED PLURIPOTENT STEM-LIKE CELLS AS MODELS FOR NEURODEGENERATIVE

DISESES

ROOM C - 15:00-17:00

CHAIR: LISANDRO J. FALOMIR LOCKHART (ARGENTINA)

Discovery of cellular induced pluripotency and reprogramming extended the horizons of medicine for the near future. Significant effort has been made to understand and control these processes, and now we can manipulate readily accessible cells from patients to resemble those from inaccessible tissues, such as the brain. Reproducing complex diseases in a dish allow us to study their molecular basis.

SPEAKER: GERSON CHADI

NEUROREGENERATION CENTER. DEPARTMENT OF NEUROLOGY. UNIVERSITY OF SAO PAULO SCHOOL OF MEDICINE. BRAZIL

MOLECULAR MODELING OF HUMAN INDUCED PLURIPOTENT STEM CELL-DERIVED MOTOR NEURONS FROM FIBROBLASTS OF MOTOR NERVES REVEALS PATHOPHYSIOLOGICAL MECHANISMS OF SPORADIC FORM OF AMYOTROPHIC LATERAL SCLEROSIS

The detailed mechanisms related to neurodegeneration in neurodegenerative disorders are still unknown. The methodology to study genetic, molecular and cellular events of human neurological diseases is current under development, increasing the expectation the discovery

of therapeutic targets that allow effective translation of proposed clinical trials. Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that leads to widespread motor neuron death, general palsy and respiratory failure. We have developed the methodology to allow gene expression modeling of sporadic ALS, the most prevalent form of disease, by employing human induced pluripotent stem cells-differentiated motor neurons (generated from fibroblasts of still functional motor nerves) linked to DAVID Functional Annotation Bioinformatics Microarray Analysis using a whole human genome platform. DAVID analyses of differentially expressed genes identified molecular function/biological process-related genes through Gene Ontology terms, summarized by REVIGO, and also genes related to KEGG signaling pathways. Specific software for Protein Interaction Network Analysis showed the degree of interaction of deregulated gene expression. The overall analysis showed a strong association between mitochondrial function and cellular processes possibly related to motor neuron degeneration. Supported by: FAPESP and CNPq, Brazil.

SPEAKER: LISANDRO J. FALOMIR LOCKHART, INIBIOLP (UNLP, CCT-LA PLATA. CONICET). ARGENTIN

METABOLIC AND DIFFERENTIATION IMPAIRMENT IN PARKINSON'S DISEASE PATIENT-DERIVED IPSCS WITH A TRIPLICATION EVENT INCLUDING THE SNCA LOCUS

Parkinson's disease (PD) is the 2nd most common neurodegenerative disorder. Its pathologic hallmark is the functional loss of dopaminergic neurons and the appearance of intracellular amyloid aggregates, constituted mainly by α-Synuclein (aSyn) protein. Although most PD cases are sporadic, mutations are known and usually correlated with early onset. We studied metabolic changes and neuronal differentiation of induced Pluripotent Stem-like cells (iPSCs) that were derived from patients with a triplication of the SNCA gene (SNCAx3) and age-matched healthy controls under normal and environmentally stressed conditions to model in vitro gene-environment interactions which may play a role in the initiation and progression of PD.

The iPSCs lines were initially committed to a neuronal linage, where SNCAx3 cells showed impaired viability, energetic metabolism and stress resistance to starvation and toxicants. A two-steps differentiation protocol was then employed to obtain neurons. SNCAx3 cells exhibited a delayed and decreased capacity to differentiate into neurons. Differentiated SNCAx3 cells showed decreased neurite outgrowth and lower electrophysiological activity. Knockdown by shRNAi against aSyn systematically and significantly ameliorated SNCAx3 defects.

Results suggest a two-fold aSyn overexpression is sufficient to set the stage for decreased developmental fitness, accelerated aging, impaired neuronal differentiation and increased neuronal cell loss.

SPEAKER: <u>Gustavo tiscornia</u>¹⁻², dino matias¹, fabio monteiro¹

¹CENTER FOR BIOMEDICAL RESEARCH/DCBM, U. ALGARVE, PORTUGAL; ²CLÍNICA EUGIN, BARCELONA, SPAIN

EXPLORING NEURONOPATHIC GAUCHER'S DISEASE THROUGH INDUCED PLURIPOTENT STEM CELL MODELING

Gaucher's Disease (GD) is a recessively inherited lysosomal storage disorder caused by mutations in the enzyme acid -glucocerebrosidase (GBA). Mutations cause miss-folding of the enzyme, leading to multiple cellular effects and ultimately decreased GBA activity in lysosomes. Disruption of the glucolipid pathway affected results in accumulation of the GBA substrate (glucocerebroside) in lysosomes, leading to altered lysosomal function and systemic effects, including a particular form of neuronopathic Gaucher Disease which presents an early onset neural degeneration leading to death during early childhood. We have derived and are characterizing induced pluripotent stem cell (iPSc) lines of several genotypes (L444P/G202R, L444P/ L444P, L444P/P415R, G325R/C342G) in order to model of the neuropathic form of Gaucher's Disease. Our Gaucher iPSc are fully pluripotent, differentiate into the three germ layers, form teratomas, have a normal karyotype and show the same mutations and low GBA activity as the original fibroblasts they were derived from. We are using Gaucher iPSc derived neurons to gain insight into the mechanism of the disease, with particular interest in the recently established connection between Gaucher's disease and Parkinson's disease, and as a platform to test chemical compounds capable of increasing GBA activity. Overexpression of wt GBA in GD neurons does not decrease alpha-synuclein, supporting a gain of function mechanism of the GBA mutation.

OCTOBER 18TH

SY7. IBRO ALUMNI SYMPOSIUM: BASIC AND TRANSLATIONAL RESEARCH IN NEURODEGENERATIVE DISEASE: FROM MOLECULES TO ANIMAL MODELS

ROOM A - 11:00-13:00

CHAIR: VALERIA DELLA MAGGIORE (ARGENTINA)

This symposium reunites five speakers that specialize on the pathophysiology of neurodegenerative disorders including Alzheimer's, Parkinson's and Prion diseases. The talks will discuss state-of-the-art work based on structural and molecular biology, neurogenetics, cellular, and transgenic mouse models, aimed at elucidating the etiology of these disorders and devising potential therapeutic strategies.

SPEAKER: LIONEL MULLER IGAZ, IFIBIO HOUSSAY (CONICET), UNIVERSITY OF BUENOS AIRES SCHOOL OF MEDICINE. ARGENTINA

CONDITIONAL MOUSE MODELS OFTDP-43 PROTEINOPATHIES TDP-43 mislocalization and aggregation are hallmark features of amyotrophic lateral sclerosis and frontotemporal dementia (FTD). We have previously shown in mice that inducible overexpression of a cytoplasmically-localized form of TDP-43 (TDP-43-dNLS) in forebrain neurons evokes neuropathological changes that recapitulate several features of TDP-43 proteinopathies. In the present study, we performed a battery of behavioral tests to evaluate motor, cognitive and social phenotypes in this model. We found that transgene (Tg) induction by doxycycline removal at weaning led to motor abnormalities including hyperlocomotion,

increased spasticity and impaired coordination and balance. Cognitive assessment demonstrated impaired recognition and spatial memory. Remarkably, TDP-43-dNLS mice displayed deficits in social behavior, mimicking a key aspect of FTD. In order to analyze if these symptoms were reversible, we suppressed Tq expression for 14 d in young mice, which showed an established behavioral phenotype but modest neurodegeneration, and found that motor and cognitive deficits were ameliorated; however, social performance remained altered. In older mice exhibiting overt neurodegeneration, the motoric phenotypes were not reversible. These results indicate that TDP-43-dNLS mice display several core behavioral features of FTD with motor neuron disease and might serve as a valuable tool to unveil the underlying mechanisms of this and other TDP-43 proteinopathies.

SPEAKER: <u>HELENA CIMAROSTI</u>¹, ANA CRISTINA GUERRA DE SOUZA¹⁻², JEREMY HENLEY²

¹DEPARTMENT OF PHARMACOLOGY, FEDERAL UNIVERSITY OF SANTA CATARINA, BRAZIL; ²SCHOOL OF BIOCHEMISTRY, UNIVERSITY OF BRISTOL, UK PROTEIN SUMOYLATION IN ALZHEIMER'S DISEASE

Alzheimer's disease (AD) is the most common cause of chronic dementia among the elderly, with an estimated ~40 million patients diagnosed worldwide, a number predicted to almost double every 20 years. Therefore, the mechanisms underlying neuronal death in AD are the focus of intense research.

SUMOylation acts as a biochemical switch in many pathways, regulating the function of several proteins, and is thus crucial in all eukaryotic cells. It has emerged recently that SUMOylation is involved in neuronal signalling cascades and is implicated in many neurodegenerative diseases, including AD.

We are currently investigating the effects of manipulating SUMOylation and deSUMOylation pathways in cultured neurons and animal models of AD. In particular, we are focusing on the role of potential SUMO targets relevant to mitochondrial dysfunction and neuronal death, e.g. dynamin-related protein 1 and voltage-gated calcium channels. This work will reveal if SUMOylation represents a potentially tractable target for therapeutic intervention and may also identify novel SUMO substrates for drug development.

Funding: IBRO Return Home, ISN-CAEN Return Home and Newton Advanced Fellowships

SPEAKER: <u>GLAUCIA HAJJ</u>¹, GIOVANNA BRITO¹, FERNANDA LUPINACCI¹, FLAVIO BERALDO², TIAGO SANTOS¹, MARTIN ROFFE¹, VILMA MARTINS¹

¹AC CAMARGO CANCER CENTER; ²ROBARTS RESEARCH CENTER, BRASIL
CELLULAR PRION IS A RESISTANCE FACTOR FOR THE

CELLULAR PRION IS A RESISTANCE FACTOR FOR THE DEVELOPMENT OF TYPE 2 DIABETES

Prion protein (PrPC) was initially described for its involvement in Transmissible Spongiform Enchephalopathies. Later on, PrPC was demonstrated to be a cell surface molecule involved in many physiological processes, such as lipid raft organization and vesicle trafficking. Given this range of effects and its possible proximity of the insulin receptor in lipid rafts, we decided to analyze PrPc influence on insulin response. Herein we describe that PrPC KO animals

present symptoms associated to the development of type 2 diabetes (T2D): hyperglycemia, hyperinsulinemia and obesity; upon a high fat diet. Conversely, animals that overexpress PrPC (TG20) have increased resistance to develop T2D. Primary cultured PrPC KO fibroblasts presented reduced glucose uptake in response to insulin and TG20 fibroblasts an increased glucose uptake. The modulation of glucose uptake is due to a difference in the translocation of the glucose transporter Glut4 to the membrane upon insulin stimulation. PrPc KO cells display reduced Glut4 translocation while TG20 cells presented increased translocation when compared to wild-type cells. Thus, our results indicate that PrPc could be a susceptibility factor for the development of T2D and metabolic syndrome. Strikingly, in cellular models of prion diseases, in which PrPc is converted to its factious form, there is also an impairment of glucose uptake, thus adding new evidence to the possible mechanisms of this disease.

SPEAKER: TOMAS FALZONE, INSTITUTO DE BIOLOGIA CELULAR Y NEUROCIENCIAS (IBCN); INSTITUTO DE BIOLOGIA Y MEDICINA EXPERIMENTAL (IBYME); FACULTAD DE MEDICINA, UNIVERSIDAD DE BUENOS AIRES (UBA), ARGENTINA

ASYNUCLEIN IN THE WAY OF MITOCHONDRIAL TRANSPORT AND MORPHOLOGY: DISRUPTED MITOCHONDRIAL HOMEOSTASIS IN HUMAN-DERIVED NEURONS WITH PARKINSON'S DISEASE MUTATIONS

Parkinson's Disease (PD) is characterized pathologically by a progressive loss of neurons and the accumulation of eosinophilic intracellular inclusions, termed Lewy bodies. asynuclein (aSyn) was the first protein identified with dominant inheritance in familial PD (fPD). Later, many genes contributing to fPD have been identified from which Pink1, Parkin, DJ1 and VPS35 have a direct role in controlling mitochondria, suggesting a mayor role of this pathway in disease. Although genetic mutations account for a small proportion of PD cases; there are pathological, pharmacological and genetic evidence supporting a common sporadic form of disease (sPD) involving defects neuronal mitochondrial homeostasis, although, the mechanism by which aSyn impairs mitochondrial function remains unknown. To test the aSyn role in the mitochondrial associated pathologies we generated human models with αSyn overexpression to study the axonal mitochondrial transport and morphology in human neurons derived from hESC or modified hiPSC. We provide novel evidence of a differential effect of αSyn mutations in a common pathological pathway involving the control of mitochondrial fragmentation in human neurons. Moreover, by genome edition we uncover a new physiological role for αSyn in the neuronal maintenance of mitochondrial size and distribution in axons. This knowledge provides an important contribution to the role that αSyn induce in early neuropathology and highlight a therapeutic strategy for PD.

SPEAKER: ELENA AVALE, INGEBI-CONICET. BUENOS AIRES, ARGENTINA PHENOTYPICRESCUE IN AMOUSE MODEL OFTAU OPATHY USING TRANS-SPLICING RNA REPROGRAMMING

Tauopathies are neurodegenerative diseases characterized by the presence of neuronal aggregates of the protein tau in insoluble neurofibrillary tangles. Tau is a microtubule-

associated protein, predominant in axons, which participates in microtubule dynamics and transport. Alternative splicing of exon 10 (E10) in the Tau transcript produces protein isoforms with three (3R) or four (4R) microtubule binding repeats, expressed in equal amounts in the normal adult human brain. Several tauopathies are associated with mutations affecting E10 alternative splicing, leading to an imbalance between 3R/4R isoforms concomitant with the neurodegenerative process. We developed an RNA reprogramming strategy to modulate Tau isoforms in vivo and tested it in a mouse model of tauopathy (hTau). Htau mice produce an excess of 3R Tau, displaying insoluble Tau accumulation in cortical areas and cognitive impairment from 9 months old. Tau 3R/4R balance was restored in the prefrontal cortex of adult hTau mice, inducing a transsplicing reaction between the endogenous Tau transcript and exogenous RNA pre-trans-splicing molecule (PTM), locally delivered into the brain by lentiviral vectors. Rescued mice showed a reduction of insoluble Tau in the cortex, with a significant functional recovery, evidenced by biochemical, electrophysiological and behavioural analyses. Our results indicate that restoring Tau isoforms balance prevents tauopathy, rising new perspectives for future therapeutic interventions.

SY8. THE CONSEQUENCES OF MEMORY RETRIEVAL: RECONSOLIDATION, EXTINCTION OR NOTHING AT ALL

ROOM B - 11:00-13:00

CHAIR: PEDRO BEKINSCHTEIN (ARGENTINA)

During the past 15 years, the memory research field has increased interest in examining the consequences of retrieving a memory. The finding that inhibition of protein synthesis after retrieval was able to impair the original memory led to the construction of the destabilizationreconsolidation theory. There is accumulating evidence that, under certain conditions, retrieval can result in memory reconsolidation. However, for an associative memory, retrieval can also engage extinction of the original association. Recently, a handful of studies have started to identify the boundaries between reconsolidation and extinction with guite surprising results. In addition, there is also new evidence that indicates that memory expression might not be a required condition for reconsolidation to occur. In this symposium, we will discuss these subjects with pioneering scientists that have actively tried to identified the system, cellular and molecular establishment of the boundaries between reconsolidation and extinction and the relationship between retrieval, reconsolidation and extinction.

SPEAKER: EMILIANO MERLO, DEPARTMENT OF PSYCHOLOGY, UNIVERSITY OF CAMBRIDGE, AND BCNI. UK

RETRIEVAL-INDUCED PLASTICITY: RECONSOLIDATION, EXTINCTION AND NO MAN'S LAND

Fully consolidated memories can last for up to the entire animal's life, but they are not immutable. Memory persistence is critically influenced by retrieval episodes. In fear conditioned rats, a single presentation of the

conditioned stimulus (CS) induces memory reconsolidation and fear memory persistence, while repeated CS presentations result in loss of fear through extinction. These two opposite behavioural outcomes are operationally linked by the number of cue presentations at memory retrieval, but the behavioural properties and mechanistic determinants of the transition are not known. In this talk I will present behavioural and molecular biological evidence supporting a three phase transition between reconsolidation and extinction critically controlled by the number of CS presentations. Reconsolidation and extinction are mutually exclusive processes, separated by an insensitive or 'limbo' state where neither of them is engaged.

SPEAKER: <u>NOELIA WEISSTAUB</u>¹, FACUNDO MORICI¹, FRANCISCO GALLO¹, MAGDALENA MIRANDA¹, BELEN ZANONI SAAD¹, PEDRO BEKINSCHTEIN¹

¹IFIBIO UBA-CONICET, ARGENTINA

CORTICAL SEROTONIN CONTROLS RETRIEVAL AND RECONSOLIDATION OF RECOGNITION MEMORY

Episodic memories contain information about our personal experiences. But memories would be useless if we could not retrieve them. Memory retrieval requires the correct selection of a particular trace to be expressed. However, many memories share cues, so how does the brain control interference between similar memories during retrieval? A system including the medial Prefrontal Cortex (mPFC) has been proposed to mediate response selection and control interference.

Serotonin is an important modulator of mPFC function, however it is not clear the role that this system in general and the serotonin 2a receptors (5-HT2aR) in particular play in memory interference processes. We employed the objectin-context (OIC) task, a recognition memory paradigm in rats to answer this question. We found that infusion of MDL 11,939, a 5-HT2aR specific antagonist, in the mPFC before retrieval affects its ability to control memory interference during the OIC task. Modulation of mPFC activity by 5-HT2aR also regulates the reconsolidation of the memory traces. Infusion of a protein synthesis inhibitor like emetine in the PRH after the retrieval blocked reconsolidation of only one of the object memories. However, infusion of 5-HT2aR antagonist in mPFC before the retrieval make both memory traces susceptible to emetine. These results suggest that 5-HT2a receptors in mPFC control memory reactivation allowing the expression and reconsolidation of the most relevant memory trace in the PRH.

SPEAKER: VERONICA DE LA FUENTE, DFBMC-FCEN-UBA / IFIBYNE-UBA-CONICET, ARGENTINA

WHAT CAN SMALL-ANIMAL POSITRON EMISSION TOMOGRAPHY TELL US ABOUT MEMORY EXPRESSION, LABILIZATION AND RECONSOLIDATION?

Commontechniques for studying memory have traditionally involved drugs affecting global processes. In the past 15 years, drugs affecting more specific cellular mechanisms have been incorporated. The same rationale applies for brain areas affected by these drugs, while early studies involved systemic administrations, recent ones are directed to target specific areas or cell types. With the advent of imaging techniques that allowed whole brain studies, memory has

started to be considered in a "brain wide" manner, mostly in humans. However, there were no available techniques that allowed the study of whole brain activity in small animals until few years ago. In this talk I will focus on our approach using small-animal Positron Emission Tomography (PET) to study brain areas involved in labilization / reconsolidation of fear memory using a contextual fear conditioning paradigm in mice. We found differences in glucose consumption mainly in zones comprising the ectorhinal cortex, the temporal association cortex, hippocampus and amygdala in animals that labilized / reconsolidated vs animals that only evoked the memory or animals that did not evoked it at all. Our work opens new insights in the study of brain activity dynamics using a novel technique, which in combination with others like immunofluorescence, chemogenetics and electrophysiology will help to unravel the pending question about circuits involved in the processing of information.

SY9. REGULATION AND FUNCTION OF GAP JUNCTIONS AND HEMICHANNELS IN THE NERVOUS SYSTEM

ROOM C - 11:00-13:00

CHAIR: JUAN CARLOS SAEZ (CHILE) AND ALBERTO PEREDA (USA)

Gap junctions are clusters of intercellular channels widely expressed in the nervous system that are formed by the apposition of two hemichannels. Hemichannels can also function independently providing conduits for the release or uptake of molecules. We will discuss recent progress regarding cellular and molecular mechanisms underlying their function under normal and pathological conditions.

SPEAKER: FANNY MOMBOISSE¹⁻², XIMENA BAEZ¹, AGUSTÍN MARTÍNEZ¹, <u>Ana María Cárdenas</u>¹

¹CENTRO INTERDISCIPLINARIO DE NEUROCIENCIAS DE VALPARAÍSO, UNIVERSIDAD DE VALPARAÍSO; ²VIRAL PATHOGENESIS UNIT, DEPARTMENT OF VIROLOGY, INSTITUT PASTEUR, 75015 PARIS, FRANCE

PANNEXIN-1 REGULATES CATECHOLAMINE RELEASE FROM NEUROENDOCRINE CHROMAFFIN CELLS VIA A FUNCTIONAL COUPLING WITH THE ALFA7 NICOTINIC RECEPTOR

Pannexins are glycoproteins that form high conductance channels that amplify ATP release and/or Ca2+ signals. As hormone release from neuroendocrine chromaffin cells is highly regulated by extracellular ATP and intracellular Ca2+, we explored the role of pannexin channels in this process. We found that bovine chromaffin cells express Pannexin-1 (Panx1) at their plasma membrane, and that Panx1 channels participate in the Ca2+ signaling and catecholamine release induced by the activation of nicotinic receptors, but not in those induced by Ca2+ release from intracellular stores or by membrane depolarization with high K+, suggesting a functional coupling between Panx1 channels and nicotinic receptors. In this regard, we observed by dve uptake assay that choline, an agonist of alpha7 nicotinic receptors, promotes the opening of Panx1 channels, whereas alpha7 nicotinic receptor antagonists inhibit Panx1 channel opening. Also, the dye uptake induced by nicotinic agonists depends on the extracellular Ca2+ and is completed abolished by intracellular BAPTA, but not by EGTA. We propose a new partnership involving Panx1 and alpha 7 nicotinic receptors, in which the activation of alfa7 nicotinic receptors leads to Ca2+ microdomains formation that allow Panx1 channel opening and thus contributing to the catecholamine release.

Supported by grants P09-022-F from ICM-ECONOMIA, Chile.

SPEAKER: SEBASTIAN CURTI, FACULTAD DE MEDICINA, UNIVERSIDAD DE LA REPÚBLICA. MONTEVIDEO. URUGUAY

FUNCTIONAL INTERACTION BETWEEN VOLTAGE GATED CHANNELS AND GAP JUNCTIONS IN THE MAMMALIAN BRAIN

Gap junctions mediate electrical transmission between neurons which endows neural networks with a variety of relevant properties. In the mesencephalic trigeminal (MesV) nucleus of the rat we found that the passive properties of these cells in conjunction with the A-type K+ current and the persistent Na+ current support frequency selectivity of transmission instead of the classical lowpass filter properties. By tuning electrical synapses for the transmission of signals like subthreshold oscillations and spikes this property strongly promotes the synchronic activation of pairs of coupled neurons. Moreover, electrical synapses also support coincidence detection, which enables neurons to selectively respond to temporally correlated inputs as opposed to asynchronous depolarizations. Coincidence detection allows neural circuit to better represent temporal information and it also might operate as a noise reduction mechanism. Remarkably, electrophysiological experiments and computer simulations show that modulation of the H-current by cGMP produces an increase in MesV neurons excitability and a dramatic enhancement of coincidence detection. These results reinforces the notion that electrical transmission is strongly shaped by voltage gated conductances and modulation of these conductances might induce significant changes on the efficacy of this modality of synaptic transmission.

SPEAKER: <u>AGUSTIN MARTINEZ</u>¹⁻², ISAAC GARCIA¹, AMAURY PUPO¹, BERNARDO PINTO¹, COSCAR JARA¹, JAIME MARIPILLAN¹, CARLOS GONZALEZ¹

'CENTRO INTERDISCIPLINARIO DE NEUROCIENCIA DE VALPARAÍSO; 'INSTITUTO DE NEUROCIENCIA, FACULTAD DE CIENCIAS, UNIVERSIDAD DE VALPARAÍSO, VALPARAÍSO, CHILE

CONNEXINOPATHIES: A FUNCTIONAL AND STRUCTURAL GLIMPSE

Connexinopathies are genetic diseases caused by mutations in connexin (Cx) genes, like nonsyndromic or syndromic deafness (Cx26, Cx30), Charcot Marie Tooth disease (Cx32), occulodentodigital dysplasia and cardiopathies (Cx43), and cataracts (Cx46, Cx50). Based in functional and structural studies made by us and other groups, we looked for similarities and differences between Cxs regarding the positions of mutations associated to the respective diseases and its functional consequences on gap junction channels (GJCs) and hemichannels (HCs). To know the location of mutations, we produced several molecular models for different Cxs by homology modeling, taking the crystal structure of Cx26 GJC as template. After this analysis we can conclude the following: 1.- Independent of the disease and Cx, all mutations generate partial or total loss of function of the GJCs, with not clear correlation between the severity of disease and the level of GJCs loss of function. 2.- Mutations generating loss of GJCs function have no clear pattern of clustering at any structural domain, suggesting that GJC functionality is very sensitive to minor changes in Cxs protein. 3.- Syndromic deafness mutations of Cx26 produce gain of function HCs. All mutations eliciting gain of HCs function are clustered in the pore-associated domains, which are critical regions for gating and regulation.

Supported by FONDECYT 1130855 (A.D.M) and FONDECYT 3150634 (I.G.), CINV (P09-022-F).

SPEAKER: MARIA GARCIA-ROBLES¹, JUAN ORELLANA², ROBERTO ELIZONDO¹, JUAN CARLOS SAÉZ²

¹UNIVERSITY OF CONCEPCION; ²PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE GLUCOSE INCREASES OPENING OF HEMICHANNELS THROUGH A GLYCOLYTIC-DEPENDENT MECHANISM

Tanycytes are specialized ependymal cells that interact with hypothalamic neurons of the arcuate nucleus; they express alucosensing proteins, including alucose transporter 2, glucokinase (GK) and ATP-sensitive K+ (KATP) channels, indicating their involvement in hypothalamic glucosensing. Additionally, both intracellular GK localization and its activity are modulated by GK regulatory protein in tanycytes (GKRP). Here, we examined whether extracellular glucose modulates the intracellular free Ca2+ concentration (Ca2+ signal) in cultured tanycytes. Fura-2AM time-lapse fluorescence images revealed that glucose increases the intracellular Ca2+ signal in a concentration-dependent manner. Glucose transportation, primarily via glucose transporters, and metabolism via anaerobic glycolysis increased connexin43 (Cx43) hemichannel activity. evaluated by ethidium uptake, through a KATP channeldependent pathway. Glucose metabolism through GK limited this process since the adenovirus-mediated GKRP overexpression decreased hemichannel activity promoted by glucose. Accordingly, ATP export into the extracellular medium increased, resulting in the activation of purinergic P2Y1 receptors followed by inositol triphosphate receptor activation and Ca2+ release from intracellular stores. The present study establishes that in tanycytes Cx43 hemichannels can be rapidly activated under physiological conditions by the sequential activation and redistribution of proteins involving in glucosensing.

SY10. NEUROMATHEMATICS

ROOM D - 11:00-13:00

CHAIR: ANTONIO C. ROQUE (BRAZIL)

Recent advances in the Neurosciences make evident the need for the development of new mathematical objects and theories to accommodate the vast amount of data and build bridges across the different scales, from the cellular to the systems level. This symposium will put together top researchers working on present day frontiers in the interface between mathematics and neuroscience, and will provide an overview on recent developments in the field.

SPEAKER: ARIEL HAIMOVICI¹, MATTEO MARSILI²

¹INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS, TRIESTE, ITALY; ²DTO. DE FÍSICA, FCEYN, UNIVERSIDAD DE BUENOS AIRES, ARGENTINA

OPTIMAL SAMPLING IN COMPLEX SYSTEMS

The study of complex systems, in particular the brain, involves the analysis and modeling of non trivial interactions between many degrees of freedom. Despite the advances in technology providing large data sets, the high dimensionality of the system implies that the phase space of states is usually strongly under sampled. Therefore the need to find reduced representations of the data via methods such as clustering or selection of variables. I will discuss a measure of information content in the data to be used as a guiding principle for dimensionality reduction schemes

SPEAKER: DANIEL FRAIMAN, UNIVERSIDAD DE SAN ANDRÉS; CONICET, ARGENTINA

STATISTICS OF BRAIN NETWORKS

The study of random graphs and networks had an explosive development in the last couple of decades. Meanwhile, techniques for the statistical analysis of these networks were less developed. In this talk we will focus on brain networks and will study some statistical problems in a nonparametric framework.

We will address the following questions: Given one or more samples of brain networks, How to calculate a representative brain network? How to define a notion of variability for networks? How to identify a network outlier? How to test if the groups of networks have the same probability law? How to perform classification?

Answers to these questions provide an important step in the development of potential neuroimaging-based tools for diagnosis.

<u>ANTONIO ROQUE</u>¹, LUDMILA BROCHINI¹, NILTON KAMIJI¹, ARIADNE COSTA², RENAN SHIMOURA¹, VINÍCIUS CORDEIRO¹, MIGUEL ABADI¹, OSAME KINOUCHI¹, JORGE STOLFI²

¹UNIVERSIDADE DE SAO PAULO; ²UNIVERSIDADE ESTADUAL DE CAMPINAS, BRASIL

A STOCHASTIC CORTICAL NEURAL NETWORK MODEL

Experimental evidence suggest that neurons and neural circuits display stochastic variability. Recently, Galves and Löcherbach (1) introduced a leaky stochastic spiking neuron model in which the firing of a neuron is a random event with probability given by a monotonically increasing function of its membrane potential. This talk will present some recent analytical and simulation studies on the behavior of networks of Galves-Löcherbach neurons. Analytical results of a simple mean-field version of the network model show that it displays a variety of stationary regimes with continuous and discontinuous phase transitions depending on parameters of the firing function. Simulations of a layered model of the local cortical network with excitatory and inhibitory versions of the stochastic model display asynchronous and irregular activity with low firing rates comparable to deterministic models and experimental data. These results suggest that the Galves-Löcherbach model can be a useful model for studies of networks of spiking neurons because it enables exact analytical results and simple computer simulations.

(1) Galves, A., Löcherbach, E. (2013). Infinite systems of interacting chains with memory of variable length: a stochastic model for biological neural nets. J. Stat. Phys. 151, 896-921.

Work produced as part of the activities of FAPESP Research, Innovation and Dissemination Center for Neuromathematics (grant #2013/07699-0, S. Paulo Research Foundation).

SPEAKER: ALINE DUARTE¹, RICARDO FRAIMAN², ANTONIO GALVES¹, GUILHERME OST¹, CLAUDIA D. VARGAS³

'INSTITUTO DE MATEMÁTICA E ESTATISTICA DA UNIVERSIDADE DE SÃO PAULO, SAO PAULO, BRAZIL; 'CENTRO DE MATEMATICA DA UNIVERSIDADE DE LA REPÚBICA, MONTEVIDEO, URUGUAY; 'INSTITUTO DE BIOFÍSICA CARLOS CHAGAS FILHO. UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. BRASIL

RETRIEVING CONTEXT TREES FROM EEG DATA

In the current presentation I will outline how we are using optogenetics to address long standing questions concerning the physiology of serotonergic synaptic transmission in the brain. I will present the results of optogenetic experiments that are allowing us to dissect the synaptic basis underlying serotonergic "autoinhibition" in the Dorsal Raphe nucleus, the ability of serotonin neurons to regulate their own excitability through serotonin release. One important reason why we want to study serotonergic synaptic transmission is because many antidepressants are thought to exert their therapeutic effects by regulating the synaptic effects of serotonin. Therefore in the second part of the talk I will then present results of experiments aimed at elucidating how serotonergic synaptic transmission is regulated by chronic administration of fluoxetine and other antidepressants.

SY11. AUDITORY PROCESSING: FROM THE COCHLEA TO THE CORTEX AND BACK

ROOM A - 15:00-17:00

CHAIR: ELEONORA KATZ + MARÍA EUGENIA GOMEZ CASATI (ARGENTINA)

This symposium will provide an updated view of some key points in auditory processing. Namely, sound encoding at the cochlear hair cell-afferent neuron synapse; the synaptic organization of midbrain nuclei where auditory signals are further processed before reaching the cortex and, back to the cochlea with cortico-olivocochlear fibers that modulate the gain of the system by an inhibitory synapse.

SPEAKER: PAUL FUCHS¹, STEPHEN ZACHARY¹

¹JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE, USA

EFFERENT INHIBITION OF THE COCHLEA

The mammalian cochlea is subject to feedback (centrifugal) control by central cholinergic neurons that are driven by sensory input. Smaller, unmyelinated lateral olivocochlear (LOC) axons project from the lateral brainstem olivary complex to form synapses with the peripheral dendrites of type I cochlear afferents beneath inner hair cells. Larger caliber, myelinated (MOC) axons from the medial olivary complex form large contacts on outer hair cells in the mature cochlea. Prior to the onset of hearing (~P12 in rodents), the MOCs make transient connections with inner hair cells.

LOCs onto type I afferent dendrites are predominantly cholinergic, but other neurotransmitters also may participate. Both the transient and mature MOC synapses release ACh that binds to a9/a10-containing receptors on

hair cells. Calcium through the AChR activates calciumdependent (SK) potassium channels. Thus hair cells are inhibited (hyperpolarized and shunted) by MOC activity to suppress transmitter release, and strongly reduce outer hair cell electromotility that supports cochlear amplification.

A near-membrane postsynaptic cistern aligns with efferent contacts on hair cells. This cistern may serve as calcium store, segregating synaptic calcium signals at adjoining efferent and afferent contacts. Synaptic calcium 'crosstalk' remains an issue of ongoing study, presumed to mediate developmental and age-related changes in the efferent and afferent innervation of cochlear hair cells.

SPEAKER: PAUL H. DELANO^{1,2,3}

¹FISIOLOGÍA Y BIOFÍSICA, ICBM, FACULTAD DE MEDICINA, UNIVERSIDAD DE CHILE; ²DEPARTAMENTO DE OTORRINOLARINGOLOGÍA, HOSPITAL CLÍNICO DE LA UNIVERSIDAD DE CHILE; ³AUDITORY AND COGNITION CENTER (AUCO) MODULATION OF COCHLEAR SENSITIVITY DURING SELECTIVE ATTENTION: A POSSIBLE FUNCTION OF CORTICO-OLIVOCOCHLEAR PATHWAYS

The auditory efferent system comprises descending projections from the auditory cortex to the medial geniculate body, inferior colliculus, cochlear nucleus and superior olivary complex that form a neural network with multiple feedback loops. Top-down attentional filtering of peripheral auditory responses by higher structures of the brain has been proposed as one of the functions of the auditory efferent system. In this talk, electrophysiological evidence showing a reduction of cochlear sensitivity during selective visual attention in chinchillas and behavioral evidence of altered attention in alpha-9 nicotinic receptor knock-out (KO) mice will be presented. In addition, the corticofugal effects of auditory-cortex inactivation with lidocaine and cryoloops in animal models and the consequences of auditory-cortex electrical microstimulation on the strength of the olivocochlear reflex will be shown. Data will be framed in a network model including the different neural loops of the auditory efferent system from auditory cortex to the cochlear receptor. Finally, the next steps to unravel the role of the cortico-olivocochlear network in selective attention paradigms, including animal models and human experiments will be discussed.

Funded by CONICYT, PIA, Proyecto Anillo ACT1403, FONDECYT 1161155, REDES 150134, and Fundación Guillermo Puelma.

SPEAKER: JUAN GOUTMAN, INGEBI, ARGENTINA SYNAPTIC MECHANISMS OF SOUND ENCODING IN THE MAMMALIAN INNER EA

Inner hair cell (IHC) are specialized sensory cells responsible for converting sounds into synaptic signals. Auditory nerve neurons receive input form this synapse, representing the output of the cochlea. As in other sensory modalities, persistent acoustic stimuli produce adaptation, observed as a reduction in spike rate at the auditory nerve. This phenomenon would contribute to setting the dynamic range for sensing varying sound intensities. We evaluated the hypothesis that the IHC-auditory nerve neurons synapse was responsible for adaptation, by performing simultaneous recordings from these two cell types.

Upon IHC depolarization, we observed an initial increase,

followed by a fast decay in synaptic responses, closely resembling adaptation in the auditory nerve. Interestingly, this phenomenon was invariant with presynaptic stimulation strength. Also, decay kinetics did not change even though the response amplitude varied ~5-fold. The application of a second depolarizing step shortly after adaptation occurred, showed an additional burst of activity, indicating that vesicles remained. The role of postsynaptic receptors desensitization was evaluated by applying similar protocols in the presence of cyclothiazide (CTZ). In CTZ, adaptation occurred with a ~5-fold slower decay time, but differences emerged when comparing IHC stimulation strengths. Both pre-(vesicle depletion) and post-synaptic (desensitization) mechanisms would contribute to synaptic adaptation at IHC synapses.

SPEAKER: KARL KANDLER, UNIVERSITY OF PITTSBURGH SCHOOL OF MFDICINE USA

REORGANIZATION OF LOCAL SYNAPTIC CONNECTIONS IN THE AUDITORY MIDBRAIN DURING DEVELOPMENT AND DISEASE

The inferior colliculus (IC) in the mammalian midbrain is a major subcortical auditory integration center receiving inputs from almost all auditory nuclei. The IC also contains a dense network of local connections, which are thought to provide gain control and contribute to the selectivity for complex acoustic features. To better understand the development, functional organization, and plasticity of local IC connections we used laser-scanning photostimulation with caged glutamate to characterize the spatial distribution and strength of synaptic excitatory and inhibitory input maps to neurons in the central nucleus of the IC in mice.

We found that intrinsic networks are already present at birth. At this age, excitatory and inhibitory input maps largely overlapped with each other and were aligned along the isofrequency axis of the central nucleus of the IC. During development, the size of input maps increased during the first week that was followed by map shrinkage after hearing, which resulted in a predominance of inhibitory inputs maps. Exposure of 3 week-old mice to loud sound (45 min at 16 KHz, 116 dB) lead to a reorganization of local inputs to both excitatory and inhibitory IC neurons. The type of reorganization correlated with the presence or absence deficits in sound gap detection, which often is considered a behavioral sign of tinnitus. This suggest that reorganization of local excitatory and inhibitory IC connection may contribute to the generation of tinnitus.

SY12. NEW CONCEPTS IN OLIGODENDROCYTE FUNCTION IN NEUROLOGICAL DISEASES

ROOM B - 15:00-17:00 CHAIR: BABETTE FUSS (USA)

This symposium will present novel findings related to the role of oligodendrocytes, the myelinating cells of the CNS, as potential targets for the treatment of a variety of neurological diseases. These include the demyelinating disease Multiple Sclerosis and a number of behavioral and neuropsychiatric disorders more recently recognized to involve oligodendrocyte/myelin dysfunction and/or loss.

SPEAKER: CECILIA HEDIN-PEREIRA, FUNDAÇÃO OSWALDO CRUZ-VPPI R-BRASII

MYELIN AND OLIGODENDROGENESIS IN A MOUSE DEPRESSION MODEL

Major depression is the most common neuropsychiatric disorder, but little is known about its pathophysiology. There are various etiologies that may explain the different causes for depression and the deregulation of the hypothalamic-pituitary-adrenal axis has been described as a major trigger for depression. Psychiatric disorders are also associated with changes in white matter, thus suggesting that the oligodendrocytes participate in aspects of these diseases. After demyelinating lesions, subventricular zone (SVZ) generates new oligodendrocyte progenitors which migrate to the injury site and differentiate into mature oligodendrocytes able to remyelinate. The paradigm of depression I will describe in this talk mimics chronic stress in mice by the administration of exogenous corticosterone associated with chronic social isolation. I will discuss our results showing that this protocol of chronic stress induction promotes behavioral and biochemical changes that characterize this as a model for depression. With regard to cellular and molecular changes we demonstrate in this model a dramatic disruption in corpus callosum myelin besides myelinated axon loss. Further, I will discuss the regenerative process for myelin recovery which is perturbed in this animal model suggesting the development of therapies directed to these fundamental components of neural circuits.

SPEAKER: BABETTE FUSS, VIRGINIA COMMONWEALTH UNIVERSITY, USA THE ATX-LPA AXIS AS A REGULATOR OF CNS MYELINATION AND REMYELINATION

Multiple Sclerosis (MS) is the major human demyelinating disease affecting the central nervous system (CNS) and the most common non-traumatic debilitating neurologic disease in young adults. Current therapies for MS are effective in modifying the disease course and in managing symptoms. However, permanent neurologic disability still occurs, and is thought to be caused primarily by the degeneration of chronically demyelinated and hence more vulnerable axons. Thus, promoting remyelination represents one of the critical therapeutic objectives for restoring neurologic function in MS. A promising approach toward the design of a myelin restoring therapy lies in the characterization of molecular signaling axes that can promote the developmental differentiation of the myelinating cells of the CNS, oligodendrocytes, but are misregulated within the MS CNS. In this regard, our recent studies identified the glycoprotein autotaxin (ATX), also known as ENPP2, PD-Iα/ATX or lysoPLD, as an extracellularly located factor that can stimulate oligodendrocyte differentiation via its enzymatic activity generating the lipid signaling molecule lysophosphatidic acid (LPA). In MS, on the other hand, ATX mRNA and protein levels appear reduced within the CNS parenchyma. The ATX-LPA axis, therefore, represents a promising target for stimulating remyelination under pathological conditions.

SPEAKER: <u>Juana Maria Pasquini</u>¹, Victoria Rosato Siri¹, Brenda Valeiras¹, Analia Reines², David Cotter³

¹DEPARTMENT OF BIOLOGICAL CHEMISTRY AND IQUIFIB, SCHOOL OF PHARMACY AND BIOCHEMISTRY, UNIVERSIDAD OF BUENOS AIRES, ARGENTINA; ²DE ROBERTIS INSTITUTE CONICET BUENOS AIRES, ARGENTINA; ³DEPARTMENT OF PSYCHIATRY, ROYAL COLLEGE OF SURGEONS IN IRELAND, DUBLIN, IRFLAND

MYELIN ALTERATIONS AND BEHAVIORAL DISORDERS

The aim of our studies was to determine whether early myelin alterations can impact adult behavior in rats through demyelination and hypomyelination models. On the one hand, rats of either sex were exposed to cuprizone (CPZ) before weaning or after weaning. After treatment, rats were returned to a normal diet until P90, when behavioral studies were performed. On the other hand, rats of either sex were fed an iron deficiency (ID) diet (4mg Fe/kg) from gestational day 5 and until P21 and then returned to a normal diet until P90.Interestingly, CPZ-AW correlated with significant behavioral and neurochemical changes in a genderdependent manner, altering the number of social activities and the latency to the first social interaction, and highly compromising recognition-related activities in males. These results suggest that the timing of demyelination significantly influences the development of altered behavior, particularly in adult males. Studies on ID rats showed reduced expression of myelin-associated proteins and core metabolic pathways within the frontal cortex. These findings are consistent with changes observed in the schizophrenic brain and provide clues as to how ID may contribute to increased risk of schizophrenia. Behavioral tests were used to explore the relationship between a schizophrenia-like phenotype and the ID model, with results proving social impairment and poor performance during novelty-induced exploration.

SPEAKER: <u>Patrick long</u>1, manabu makinodan2, Xiangying meng3, patrick kanold3, gabriel corfas1

¹KRESGE HEARING RESEARCH INSTITUTE, UNIVERSITY OF MICHIGAN; ²DEPARTMENT OF PSYCHIATRY, NARA MEDICAL UNIVERSITY SCHOOL OF MEDICINE; ³DEPARTMENT OF BIOLOGY, UNIVERSITY OF MARYLAND, USA

THE EFFECTS OF EXPERIENCE ON BRAIN MYELINATION: MECHANISMS AND IMPLICATIONS

Since it's initial discovery in the 1800's until recently, myelin was considered a simple insulator for axons, and its formation was believed to be regulated by predetermined biochemical and cellular processes. Both oligodendrocytes and the myelin they generate were considered to be static components of the nervous system. However, recent studies have revealed that oligodendrocyte development and myelination are highly plastic processes that continue throughout adult life, contributing to experience- and activity-dependent plasticity, learning and memory.

I will present recent advances in the understanding of the mechanisms that regulate oligodendrocyte maturation and CNS myelination, and the impact these processes have on adult brain function. Specifically, we have found that the NRG1-ErbB receptor pathway plays a critical role in CNS myelination, promoting oligodendrocyte maturation and myelination. Loss of oligodendrocyte ErbB receptor function results in CNS hypomyelination, behavioral abnormalities and dysfunction in neurotransmitter systems. Furthermore, we also found that juvenile social isolation leads to defects in prefrontal cortex myelin maturation, that this is due to alterations in NRG1-ErbB signaling, and

that this hypomyelination is responsible, at least in part, for behavioral abnormalities in adulthood. Together, these studies provide insights into the plasticity of myelin and oligodendrocytes and the importance of myelin plasticity on brain function.

SY13. ISN SYMPOSIUM: NEURAL CONTROL OF APPETITE - FROM GENES TO CIRCUITS AND BEHAVIOR

ROOM C - 15:00-17:00

CHAIR: IVAN E. DE ARAUJO (USA) AND VIVIANA F. BUMASCHNY (ARGENTINA)

The inability to maintain a stable body weight in the presence of abundant calories is a hallmark of mammalian species. This symposium will review novel insights into different neural circuits underlying appetite that are influenced by food reward and body energy stores. Emphasis will be placed on how cutting-edge neurobiological tools may assist in understanding the physiopathology of obesity.

SPEAKER: LUIS TELLEZ, YALE UNIVERSITY SCHOOL OF MEDICINE; THE JOHN B. PIERCE LABORATORY. USA

CIRCUIT LOGIC OF FOOD REWARD [SYMPOSIUM: NEURAL CONTROL OF APPETITE - FROM GENES TO CIRCUITS AND BEHAVIOUR]

While we tend to attribute the rewarding effects of sugars to their sweetness, several lines of evidence indicate that these effects actually mainly arise from the energy sugars provide. Unlike artificial sweeteners, sugar exerts its potent reinforcing effects via both gustatory and postingestive pathways. However, the neural mechanisms mediating sugar's dual control over behaviour remain elusive. This talk will review emerging evidence suggesting that separate basal ganglia neuronal streams mediate the hedonic and nutritional actions of sugar. These findings imply that brain cells within the reward circuitry are primarily sensitive to the energy contents of foods, helping to prioritize energy seeking over hedonic value. These findings provide novel insights into the neural mechanisms underlying perseverant sugar consumption despite widespread availability of lowcalorie sweeteners.

SPEAKER: LICIO VELLOSO, UNIVERSITY OF CAMPINAS, BRASIL HYPOTHALAMIC DYSFUNCTION IN OBESITY

Energy homeostasis involves a complex network of hypothalamic and extra hypothalamic neurons that transduce hormonal, nutrient and neuronal signals into responses that ultimately match caloric intake to energy expenditure and thereby promote stability of body fat stores. Growing evidence suggests that rather than reflecting a failure to regulate caloric intake, common forms of obesity involve fundamental changes to this homeostatic system that favor the defense of an elevated level of body adiposity. This talk will review emerging evidence that during high-fat feeding, obesity pathogenesis involves fundamental alteration of hypothalamic systems that regulate food intake and energy expenditure. The changes in hypothalamic systems involve activation of inflammatory signaling, induction of endoplasmic reticulum stress, and

eventually induction of apoptosis of key neurons involved in the control of food intake and energy expenditure.

SPEAKER: DENIS BURDAKOV, THE FRANCIS CRICK INSTITUTE, UK CONTROL OF EATING AND EXPLORATION BY HYPOTHALAMIC CIRCUITS

This lecture will present new data on how molecularly-defined hypothalamic neurons, such as orexin cells, control processes vital for life, such as eating and exploration. In vivo chemogenetic and behavioural evidence will be presented, in conjunction with in vitro optogenetic circuit mapping, to illustrate how wider hypothalamic circuits may coordinate diverse neural signals to ensure effective adaptive behaviour.

SPEAKER: VIVIANA F. BUMASCHNY, INSTITUTO DE FISIOLOGÍA Y BIOFÍSICA BERNARDO HOUSSAY (IFIBIO, UBA-CONICET), ARGENTINA

PROOPIOMELANOCORTIN CONTROL OF FOOD INTAKE The global obesity epidemic has reached over 600 million people. Obesity predisposes to cardiovascular disease and type 2 diabetes mellitus by central and peripheral mechanisms, causing metabolic syndrome, which increases the risk of mortality. Despite great effort is made to develop new therapies, a major difficulty associated to obesity treatments, is that patients initially lose weight but they later experience a rebound. In this talk we will discuss emerging evidence, collected from genetically engineered mice, revealing that the plasticity of energy balance neural circuits is lost in overweighted animals, preventing them to achieve a normal body weight after treatment. We will focus on the subpopulation of hypothalamic GABAergic Proopiomelanocortin (POMC) neurons, which we found that play a critical role in the control of food intake and

SY14. BEHAVIORAL, NEUROCHEMICAL AND MOLECULAR APPROACHES TO STUDY FEAR ANXIETY AND POSTTRAUMATIC STRESS DISORDER

ROOM D - 15:00-17:00

glucose homeostasis.

CHAIR: ANDREA MORA GALLEGOS (PUERTO RICO)

Anxiety, fear and post-traumatic stress are among the major disorders of modern humanity. There are different approaches to assess them.

Behavioral, neurochemical and molecular analysis bring information about the related neuronal mechanisms and the brain areas involved in. This Symposium will address different analysis levels to better under stand the above mentioned disorders and how they could influence processes like learning and behavior.

SPEAKER: <u>JOSE RODRIGUEZ-ROMAGUERA</u>¹, HIROSHI NOMURA¹, J. ELLIOTT ROBINSON¹, RANDALL UNG¹, SHANNA RESENDEZ¹, VIJAY MOHAN K NAMBOODIRI¹, JAMES OTIS¹, OKSANA KOSYK¹, GARRET D STUBER¹

DEPARTMENTS OF PSYCHIATRY, UNIVERSITY OF NORTH CAROLINA, USA ENCODING AND REGULATION OF ANXIETY STATES BY

PNOC EXPRESSING NEURONS WITHIN THE BNST

The choreography of complex emotional states, such as the anxiety of being in and the drive to avoid dangerous contexts, is critical for an organism's survival. Specifically, the bed nucleus of the stria terminalis (BNST) is critical for processing threat-related stimuli. Therefore understanding the precise neural circuits within the BNST that encode and regulate anxiety is crucial. Using a transgenic mouse line that co-expresses Cre in neurons with endogenous Prepronociceptin (PNOC) expression, we are able to target and studythis novel population of BNST neurons. We found this population to be a subset of BNST GABAergic neurons that projects both locally and distally to the medial amyodala and the medial preoptic area. Using in vivo calcium imaging in combination with the genetically-encoded calcium indicator GCaMP6s revealed that these neurons are preferentially activated by distinct anxiogenic stimuli (i.e. TMT exposure and open arm exposure in an elevated plus maze). Further experiments using in vivo optogenetics reinforced this notion, as photoactivation of BNST-PNOC neurons increased anxiety in the elevated plus maze (avoidance of the open arms), whereas photoinhibition decreased anxiety. However, photoactivation of BNST-PNOC neurons outside an anxiogenic context did not induce avoidance behavior, as shown in a real-time preference assay. Together, these experiments highlight the specificity of BNST-PNOC neurons in processing threat-related stimuli.

SPEAKER: <u>JAMES PORTER</u>¹, MARANGELIE CRIADO-MARRERO¹, BETHZALY VELAZQUEZ¹, ROBERTO J. MORALES SILVA², CÉSAR TORRES², RAMÓN MISLA¹, BENJAMÍN LÓPEZ¹

DEPT OF BASIC SCIENCES, PONCE RESEARCH INSTITUTE, PONCE HEALTH SCIENCES UNIVERSITY; DEPT OF BIOLOGY, UNIVERSITY OF PUERTO RICO-PONCE FKBP5 IN THE MEDIAL PREFRONTAL CORTEX MODULATES FEAR CONDITIONING AND EXTINCTION Dysfunction of the hypothalamic-pituitary-adrenal axis

and the ensuing impaired response to stress contributes to numerous mental health disorders including posttraumatic stress disorder (PTSD). The protein FKBP5 regulates the activation of the glucocorticoid receptor by decreasing its affinity for glucocorticoids. In soldiers, low FKBP5 mRNA expression in blood cells is associated with an increased risk of worse PTSD symptoms. Additionally, polymorphisms in the FKBP5 gene are associated with increased risk of developing PTSD in adults who were abused as children suggesting that dysfunctional expression of FKBP5 may contribute to PTSD. Although these data suggest that FKBP5 plays a role in PTSD, altered FKBP5 expression in various brain structures could contribute to PTSD by increasing aversive learning and/or impairing fear extinction. Given the prominent effects of stress on the medial prefrontal cortex (mPFC) and the importance of the mPFC in the modulation of fear, we tested whether signaling via FKBP5 in the mPFC modulates aversive learning. In this presentation, I will discuss our recent data showing that fear conditioning and extinction alter FKBP5 expression in the mPFC and that reducing FKBP5 expression in the mPFC modulates both fear conditioning and extinction. Our findings highlight the importance of FKBP5 expression in the mPFC in aversive learning and memory and suggest that dysfunctional expression of FKBP5 in the mPFC could contribute to PTSD.

SPEAKER: ANDREA MORA-GALLEGOS, NEUROSCIENCE RESEARCH CENTER: UNIVERSITY OF COSTA RICA. COSTA RICA

HOUSING EFFECTS AND THE REVERSION OF THOSE CONDITIONS ON FEAR CONDITIONING AND ANXIETY

Environmental enrichment (EE) and social isolation (SI), have lasting effects on brain and behavioral parameters related to emotional memory. We focused on differences between EE and SI rats and possible effects produced by the reversion of those conditions on fear, anxiety (Open Field Test-OFT and Plus Maze-PM) and dopamine (DA) on prefrontal cortex (PFC), and amygdala (AMY) with HPLC-EC analysis. In experiment 1, anxiety tests were carried out before, during and after two months of housing conditions. At two months FC procedure was conducted and rats were sacrificed for neurochemical analysis. In experiment 2. housing conditions were reverted (EE to SI and SI to EE), and maintained for two months, keeping their respective control groups. Anxiety tests were done as in experiment 1 and fear to the context (FCC) was conducted at the end of housing. In experiment 1 EE rats were less reactive on anxiety tests and FC. Anxiety effects are reflected in OFT locomotion and exploration and also in PM behaviors. In FC EE rats showed higher freezing as an adaptive defensive behavior. EE rats showed higher DA turnover in PFC and in AMY than SI rats. In experiment 2, consistent results with experiment 1 in OFT and PM were found. SI-EE behaviors were more alike to EE and that EE-SI behaviors were more alike to SI. Reverted conditions do not produced differences in FCC or DA. Our results confirm the positive effects of EE at behavioral and neurochemical levels maintained at 4 months of age.

OCTOBER 19TH

SY15. NEUROPHYSIOLOGY OF TEMPORAL PROCESSING IN THE BRAIN

ROOM A - 11:00-13:00

CHAIR: PATRICIA AGOSTINO (ARGENTINA) AND HUGO MERCHANT (MEXICO)

A fundamental component of cognition is the perception of the passage of time. In particular, temporal processing within the 10-2 to 102 seconds is crucial for many complex behaviors, such as speech comprehension, motor control, and decision-making. The goal for this symposium is to present studies of temporal processing in humans and animals using a diversity of experimental and analytical tools.

SPEAKER: <u>HUGO MERCHANT</u>', GERMAN MENDOZA', JUAN CARLOS MENDEZ'

¹INSTITUTO DE NEUROBIOLOGÍA, UNAM CAMPUS JURIQUILLA, MEXICO

NEURAL UNDERPINNINGS OF TIME PERCEPTION IN THE PRIMATE: PREFRONTAL AND PREMOTOR SINGLE UNIT ACTIVITY DURING A CATEGORIZATION TASK OF TEMPORAL MAGNITUDES

Categorization in arguably the most common perceptual act and consists in the differential response to object or events that belong to separate classes. In the present study, we investigated the functional properties of neurons in the primate prefrontal and premotor cortex during the categorization of temporal intervals. The results show that both areas encode all the crucial parameters needed for appropriate categorization; namely, the accumulation of temporal information, the linear tuning to elapsed time, the categorical segregation of intervals, and the evaluation of the categorization outcome as a feedback signal to improve the perceptual performance in the psychometric task. These results suggest that the premotor-prefrontal loop plays a fundamental role, not only in the representation of the passage of time, but also in the assignment of categories based on the current rules of a task. Hence, this circuit has the ability to segregate the one-dimensional feature continuum that defines time, into short and long categories based on arbitrary boundaries or prototypes.

SPEAKER: SOFIA SOARES ¹, BASSAM ATALLAH ¹, THIAGO GOUVEA ¹, TIAGO MONTEIRO ¹, ASMA MOTIWALA ¹, <u>JOSEPH</u> PATON ¹

¹CHAMPALIMAUD RESEARCH . PORTUGAL

BASAL GANGLIA CONTRIBUTIONS TO A TIME-BASED DECISION

We trained rats and mice to judge whether the duration of time intervals were longer or shorter than 1.5 seconds while recording and manipulating activity of neurons the dorsal striatum and dopamine (DA) neurons in the substantia nigra pars reticulata (SNc). I will describe how elapsed time, the critical decision variable in this task, is encoded by population dynamics of striatal neurons. This representation predicts the duration judgements produced by the animal. Strikingly, cooling striatal tissue led to underestimation of interval duration, suggesting that striatal dynamics underlie animals' timing behavior. But which endogenous mechanisms might cause striatal dynamics to fluctuate? DA neurons in the SNc receive input from and project densely to the dorsal striatum and have been implicated in timing. Using fiber photometry, we found that higher/lower dopaminergic activity within a trial predicted under/overestimation of interval duration. These signals were consistent with the predicted impact of variability in timekeeping on reward prediction error coding by DA neurons. Surprisingly, optogenetic activation caused underestimation of interval duration, indicating that midbrain DA neurons not only reflect variability in timing, but exert control over it. These data suggest that reciprocal interactions between dopamine neurons and striatal networks can cause variability in time estimation, with broad implications for reinforcement based decisionmaking.

SPEAKER: VICTOR DE LAFUENTE, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, MÉXICO

TEMPORAL RHYTHM PERCEPTION IN MONKEYS AND HUMANS

Timing is a fundamental variable for behavior. The mechanisms allowing human and non-human primates to synchronize their actions with periodic external events are not yet completely understood. We characterized the ability of rhesus monkeys and humans to perceive and maintain rhythms of different paces in the absence of

sensory cues or motor actions. In our rhythm task subjects had to observe and then internally follow [imagine] a visual stimulus that periodically changed its location along a circular perimeter. Crucially, they had to maintain this visuospatial rhythm in the absence of movements. Our results show that the probability to remain in synchrony with the rhythm decreased and the variability in the timing estimates increased as a function of elapsed time. These trends were well captured by the generalized Weber's law. Additionally, the pattern of errors show that subjects tended to lag behind fast rhythms and to get ahead of slow ones. suggesting that a mean frequency might be incorporated as prior information. Overall, our results demonstrate that rhythm perception and maintenance is a cognitive ability that we share with rhesus monkeys and that this ability does not depend on overt motor commands.

SPEAKER: RODRIGO LAJE, UNIVERSITY OF QUILMES; CONICET; ARGENTINA TEMPORAL PROCESSING IN THE MILLISECONDS AND SECONDS RANGE

The mechanisms underlying time processing in the brain in the hundred milliseconds and few seconds range are still largely unknown, one possible reason being that there might be different overlapping mechanisms playing all at once. I'll show theoretical and experimental data supporting one of such mechanisms—a population clock where time is intrinsically encoded in the nonstationary spatiotemporal dynamics of a neural network. This framework reconciles divergent experimental observations like the apparently noisy spontaneous cortical activity and the robustness of a trained spatiotemporal pattern, both coexisting within the same neural subpopulation.

SY16. INTEGRATIVE SENSORY MOTOR FUNCTION: FROM MOTOR COMMANDS TO COGNITION

ROOM B - 11:00-13:00

CHAIR: PEDRO MALDONADO (CHILE)

Motor and sensory processes of the brain are not functional separated. Sensory processing is required for proper motor function, and motor commands are also an intrinsic component of sensory processes. In this symposium, we discuss several mechanism that shed light on how the motor and sensory systems interact in complex behaviors that range from an escape response to cognitive abilities.

SPEAKER: MICHEL BORDE¹, VIRGINIA COMAS¹

INCREASE IN SENSORY SAMPLING TRIGGERED BY AN IDENTIFIED MOTOR COMMAND IN A LOWER VERTEBRATE Despite recent advances that have elucidated the effects of collateral of motor commands on sensory processing structures, the neural mechanisms underlying the modulation of active sensory systems by internal motor-derived signals remains poorly understood. The modulation of the active electrosensory neural system triggered by a motor command described in Gymnotus omarorum, a pulse type weakly electric fish, emerged as a vertebrate model system to analyze such high-level motor-sensory interactions. In this species, discharge of a single action

potential at Mauthner cells (MC), a pair of reticulospinal command neurons for escape in teleosts, evokes an abrupt and prolonged increase in the rate of the electric organ discharge (EOD), the output signal of the electrogenic component of the active electrosensory system. Temporal correlation of motor and sensory consequences of MC activation suggests that the neural network responsible for sensory modulation must comply with, at least, two functional requirements: short latency and long duration of the sensory modulation.

Neural strategies that may have evolved in this species to meet those functional requirements were investigated in vivo and in vitro using morphological and electrophysiological techniques.

We provide evidence indicating that the adequate timing and duration of the MC-initiated increase in sensory sampling during escape is achieved thanks to a combination of network, cellular and synaptic specific arrangements.

SPEAKER: AGUSTIN IBANEZ, INSTITUTO DE NEUROCIENCIA COGNITIVA Y TRASLACIONAL (INCYT, INECO, FAVALORO, CONICET); CENTER FOR SOCIAL AND COGNITIVE NEUROSCIENCE, SCHOOL OF PSYCHOLOGY, UNIVERSIDAD ADOLFO IBANEZ, CHILE

EARLY DETECTION OF INTENTIONAL HARM IN THE HUMAN AMYGDALA

Adecisive element of moral cognition is the detection of harm and its assessment as intentional or unintentional. Moral evaluation engages brain networks supporting mentalizing, intentionality, empathic concern and evaluation. We will present relevant evidence from our laboratory, including behavioral studies of neurodegenerative conditions and psychiatric disorders, intracranial recordings, lesion studies, high-density electroencephalography, neuroimaging, and functional connectivity. These studies converge in 3 issues: 1) intentional harms are process at very early stages by coticolimbic networks in terms of stimulus salience; 2) intentional harms involucrate more broad and high-level regions; 3) impairments in the detection of intentional harms are partially dependent on a broad fronto-insular-temporal network (FITN) responsible for (a) on-the-fly context-based prediction making, (b) coordination of the internal (bodily) and external (task-related) milieus, and (c) consolidation of associations between context and target stimuli. Results support the 'many roads' view of the amygdala and its frontotemporal connections, highlighting its role in the rapid encoding of intention and salience -critical components of mentalizing and moral evaluation. Finally, we identify new challenges for this synergistic framework in order to be applied in psychiatric and neurological translational science.

SPEAKER: PEDRO MALDONADO, BNI, UNIVERSIDAD DE CHILE, CHILE NEURONAL MECHANISMS OF ACTIVE SENSING IN VISION AND TOUCH

Motor and sensory processes of the brain are not functional separated. Sensory processing is required for proper motor function, and motor commands are also an intrinsic component of sensory processes. In this symposium, we discuss several mechanism that shed light on how the motor and sensory systems interact in complex behaviors that range from an escape response to cognitive abilities, and will discuss how these mechanisms are implemented

through long-range synchronization and use in active sensing.

SPEAKER: KATIA-SIMONE ROCHA¹, LUANA DANTAS¹, RAFAELA FAUSTINO¹, SERGIO NEUENSCHWANDER¹

¹VISLAB, BRAIN INSTITUTE - UFRN, 59056-450 NATAL, BRAZIL

HOW DO GRATING STIMULI BIAS OUR CONCEPTS ON CORTICAL GAMMA SYNCHRONIZATION? A STUDY IN CAPUCHIN MONKEY V1

Gamma have been implicated in perceptual binding and visual attention. So far, most of the evidence has been derived from analysis of responses to moving gratings. However, a key step for understanding whether gamma contributes to visual processing is to obtain data during free viewing of ecologically meaningful scenes. Recent studies using a more naturalistic approach in the visual cortex led to diverging conclusions. In humans, gamma was absent from ECoG responses to natural images and noise. Similarly, analysis of spiking activity in V1 of capuchin monkeys revealed strong beta but no gamma components in responses to pictures. An analysis of ECoG signals in the macaque showed, on the contrary, surprisingly strong gamma responses to static images. Here we record spiking and local field potential signals from V1 of capuchins in response to gratings and natural stimuli during both maintained fixation and free viewing. Our results show that large gratings capable of activating selectively the cortex induce strong and stable gamma oscillations (from 48 to 63 Hz, over 3 monkeys), confirming previous results in the macague and humans. In contrast, gamma is absent from free viewing of natural images and movies presented on a monitor screen. Similar results were obtained with real world scenes, such as viewing of other monkeys, humans or real objects. Overall, our findings weaken the notion that gamma is necessary for visual processing and question its role in attention.

SY17. CELLULAR AND MOLECULAR MECHANISMS OF NEURONAL PLASTICITY

ROOM C - 11:00-13:00

CHAIR: FRANCESCO ROSSI AND NATHALIA VITUREIRA (URUGUAY)

The Symposium will focus on different aspect of neuronal plasticity: from learning and memory to pathology, from neuronal to astrocyte signaling, and from molecular mechanisms to behavior. This symposium brings together Latin-American and international researchers in this field to share their outstanding recent findings with the neuroscience community.

SPEAKER: MAURO COSTA-MATTIOLI, BAYLOR COLLEGE OF MEDICINE. HOUSTON, TEXAS, USA

MECHANISM IN SYNAPTIC PLASTICITY IN HEALTH AND DISEASE

SPEAKER: <u>URSULA WYNEKEN</u>¹, LUARTE ALEJANDRO¹, GOMEZ CRISTOBAL,¹ JUAN PABLO RAMIREZ¹

¹UNIVERSIDAD DE LOS ANDES, CHILE

ASTROCYTE-DERIVED EXOSOMES IN NEURAL PLASTICITY

Small extracellular vesicles (i.e. exosomes) are novel mediators of inter-cellular signaling that influence target cell function by means of their molecular content consisting of proteins, lipids and non-coding RNAs (such as microRNAs (miRNAs)). Their role in communication between cells of the CNS and with the body outside the brain is mostly unexplored. Thus, exosomes from primary astrocyte cultures were isolated by differential centrifugation and characterized by protein markers, size and equilibrium density. These exosomes contained the astrocyte-specific alvcolitic enzyme Aldolase C and astrocytes expressing Aldolase C-GFP induced an increase in the content of miR-26a in them. When exosomes were added to neuronal cultures, they were taken up by hippocampal neurons and decreased dendritic length and complexity in a miR-26a-5p dependet manner. Moreover, miR-26a-5p recapitulated the morphological effect of exosomes and this was prevented by the corresponding antago-MiR. To address whether exosomes were released by astrocytes in vivo, Aldolase C-GFP was transferred to forebrain astrocytes by in utero electroporation. The endogenous and recombinant Aldolase C forms could be detected in exosomes obtained from cerebrospinal fluid and blood plasma. These findings confirm for the first time that a proportion of plasma exosomes originate in astrocytes under physiological conditions and open new avenues for the use of brainderived exosomes as biomarkers in neurological diseases.

SPEAKER: ALVARO ARDILES, CENTRO INTERDISCIPLINARIO DE NEUROCIENCIA DE VALPARAÍSO, UNIVERSIDAD DE VALPARAÍSO, CHILE; ESCUELA DE MEDICINA, FACULTAD DE MEDICINA, UNIVERSIDAD DE VALPARAÍSO. CHILE

PANNEXIN 1, A NEW ACTOR IN SYNAPTIC PHYSIOLOGY

Pannexin 1 (Panx1) is a membrane protein that forms nonselective functional single channels, which are expressed in many areas of the brain, especially in pyramidal cells from hippocampus and cerebral cortex where it exhibits a preferential distribution in postsynaptic membranes accumulating in postsynaptic densities. Research based on their postsynaptic localization indicates that Panx1 channels stabilize synaptic plasticity and is needed for learning. In this regard, the absence of Panx1 modifies the threshold for the induction of excitatory synaptic plasticity, facilitating the induction of NMDAR-dependent long-term potentiation (LTP) and precluding the induction of NMDAR-dependent long-term depression (LTD). Accordingly, the loss of Panx1 leads to impaired object recognition memory and spatial memory reversion, consistent with an altered behavioral flexibility. Furthermore, Panx1 deletion induces changes in synaptic morphology and protein composition. Here we show evidences supporting a critical role of Panx1 channels in synaptic physiology.

SPEAKER: ROBERTO DE PASQUALE, UNIVERSITY OF SÃO PAULO, BRASIL

SYNAPTIC METAPLASTICITY IN THE VISUAL CORTEX: INTERACTION BETWEEN VISUAL EXPERIENCE AND REACTIVE OXYGEN SPECIES

The idea that the synapse's previous history of activity determines its current plasticity has been defined as

metaplasticity. In the visual cortex, sensory experience and reactive oxygen species (ROS) produce metaplastic changes related to the history of synaptic activity. ROS are highly reactive molecules. In neurons, they are produced by cellular metabolism and in part by sustained synaptic activity. ROS are important for intracellular signalling, given that knock out animals for the ROS producer enzyme NOX2 (gp91phox-/-) do not exhibit long-term potentiation (LTP) and long-term depression (LTD). Normally, deprivation of visual experience favors the induction of LTP and reduces the probability of obtaining LTD. However, in gp91phox-/animals, dark rearing promotes LTD as the only possible form of plasticity inducible in these animals. These results suggest that the effects of dark exposure depend on the general levels of metabolic and synaptic activity, as dark rearing allows the occurrance of synaptic depression when such activity is downregulated. Moreover, my findings poited out that ROS and visual experience interact to determine metaplastic changes by altering the functionality of the NMDA receptor.

SY18. YOUNG INVESTIGATOR SYMPOSIA I

ROOM A - 16:30-18:30

CHAIR: JAIME FORNAGUERAS (COSTA RICA)

SPEAKER: MICAELA LÓPEZ-LEÓN¹, MARIA FLORENCIA ZAPPA VILLAR¹, MARIANA G. GARCÍA², GUSTAVO R. MOREL¹, GUILLERMO MAZZOLINI², RODOLFO G. GOYA¹, PAULA C. REGGIANI¹

¹INIBIOLP, SCHOOL OF MEDICINE, HISTOLOGY B, UNLP; ²GENE THERAPY LABORATORY, SCHOOL OF BIOMEDICAL SCIENCES, AUSTRAL UNIVERSITY

RESTORATIVE EFFECTS OF HUMAN MESENCHYMAL STEM CELL THERAPY ON SPATIAL MEMORY IN SENILE RATS

Brain aging is associated with a progressive increase in the incidence of neurodegenerative diseases and deterioration of spatial learning and memory in aging rats and humans. Here, we investigated the therapeutic potential of human adult bone marrow-derived mesenchymal stem cells (BM-MSCs) to treat cognitive impairment in Senile rats (27 months). Female rats were divided into 3 groups (N=8 each): Young-intact (3 months), Senile-Intact and Senile-MSC (intracerebroventricular injected with Dil-labeled human BM-MSCs). Using the Barnes maze we assessed hippocampus-dependent learning and spatial memory before and after cell injection. Additionally, we performed time-course studies for MSCs integration and viability in the brain and assessed a set of hippocampal cell markers.

Human BM-MSC therapy significantly increased goal hole and goal sector exploration activity in senile rats as compared with intact counterparts. Immature neuron number in the hippocampal dentate gyrus (DG) fell sharply in the senile animals as compared with young counterparts and was comparable in the hippocampal DG of both old groups. Time-course studies (24 days) revealed that MSCs integrated into ependymal cell layer and occasionally in the brain parenchyma.

The results suggest that human BM-MSC therapy partially reverses the decline in cognitive performance that occurs in senile rats. We conclude that human BM-MSC are a

promising biological tool for the treatment of age-related spatial memory deficits.

SPEAKER: <u>Jacque Pak Kan IP</u>1, Ikue Nagakura1, Jeremy Petravicz1, erik a.c. wiemer2, mirganka sur1

¹ PICOWER INSTITUTE FOR LEARNING AND MEMORY, MASSACHUSETTS INSTITUTE OF TECHNOLOGY; ² INSTITUTE OF HEMATOLOGY, ERASMUS UNIVERSITY ROTTERDAM

PROBING SYNAPTIC DEFECTS IN 16P11.2 DELETION SYNDROME IN VIVO

Microdeletion of a region in the chromosome 16p11.2 increases susceptibility to autism. One candidate gene in this microdeletion region is the major vault protein (MVP), which has been implicated in the regulation of several cellular processes including transport mechanisms and multidrug resistance. We found that MVP expression levels in MVP+/mice closely phenocopy those of 16p11.2 mice, suggesting MVP+/- mice may serve as a model of MVP function in 16p11.2 microdeletion. However, the function of MVP in the central nervous system, in particular its role in brain function and plasticity, has not been investigated. To determine the role of MVP in experience-dependent synaptic and circuit plasticity, we first measured ocular dominance plasticity (ODP) in primary visual cortex (V1). We found that MVP +/- mice showed impairment in strengthening of open eye responses in V1 after 7 days monocular deprivation (MD), resulting in reduced overall plasticity. Furthermore, electrophysiology experiments suggested a decrease in the number of functional synapses. To further investigate the synaptic defects in MVP+/- mice, we employed timelapse in vivo two-photon microscopy. Collectively, we find a highly specific role for MVP as a critical molecule in the homeostatic component of activity-dependent synaptic plasticity. Thus, this study helps reveal a new mechanism for an autism-related gene in brain function.

SPEAKER: <u>CLAUDIO PEREZ-LEIGHTON</u>^{1,2}, BEATRIZ ALVAREZ¹, GAC LILY¹, HERNANDEZ MARIA PAZ³, MORSELLI EUGENIA³, JENNIFER TESKE ^{2,4,5,6}

¹CIMIS, FACULTAD DE MEDICINA, UNIVERSIDAD ANDRES BELLO, SANTIAGO, CHILE; ²DEPARTMENT OF FOOD SCIENCE AND NUTRITION, UNIVERSITY OF MINNESOTA, MN, USA; ³FACULTAD DE CIENCIAS BIOLÓGICAS, PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE, SANTIAGO, CHILE; ⁴DEPARTMENT OF NUTRITIONAL SCIENCES, UNIVERSITY OF ARIZONA, AZ, USA; ⁵MINNEAPOLIS VA HEALTHCARE SYSTEM, MN, USA; ⁶MINNESOTA OBESITY CENTER, UNIVERSITY OF MINNESOTA, MN, USA

Regulation of physical activity and food choice in the context of obesity: role of orexins and opioid/non-opioid dynophins peptides

The orexin/dynorphin (ox/dyn) neurons release orexin and dynorphin (DYN), neuropeptides that affect food intake and energy expenditure. Most research has focused on the orexin peptides and less is known about the role of DYN peptides released from these neurons. The hypothalamic paraventricular nucleus (PVN) modulates feeding behavior and physical activity, and our recent work has focused in the role of non-opioid peptide DYN-A2-17 in PVN in mice. Our preliminary data shows that injection of DYN-A2-17 in PVN increases physical activity, energy expenditure and wheel-running activity. Next, we tested whether DYN-A2-17

the opioid DYN peptide DYN-A1-13 and orexin-A modulate hedonic food intake. Mice were acclimated to short-term access (2 h) to four snacks of human consumption and standard rodent chow. After establishing baseline preferences for snacks, mice were injected with each peptide at their different concentrations. Data suggest DYN-A1-13 increases intake of both non-preferred and preferred snacks, DYN-A2-17 increases intake of only the preferred snack while orexin-A increases chow intake. Finally, preliminary data shows that DYN-A2-17 increases intracellular calcium in hypothalamic mice cell line, suggesting it is excitatory. Together, these experiments will improve our understanding of the mechanisms by which the orexin/dynorphin neurons control energy balance.

SPEAKER: <u>JULIA CLARKE</u>¹, NATALIA LYRA E SILVA¹, CLAUDIA FIGUEIREDO¹, WILLIAM L. KLEIN², DOUGLAS P. MUNOZ³, LICIO A. VELLOSO⁴, SERGIO T FERREIRA¹, FERNANDA G. DE FFI ICF¹

¹FEDERAL UNIVERSITY OF RIO DE JANEIRO; ²NORTHWESTERN UNIVERSITY; ³QUEENS UNIVERSITY; ⁴STATE UNIVERSITY OF CAMPINAS

ALZHEIMER-ASSOCIATED ABETA OLIGOMERS IMPACT THE CENTRAL NERVOUS SYSTEM TO INDUCE PERIPHERAL METABOLIC DEREGULATION

Alzheimer's disease (AD) is associated with peripheral metabolic disorders. Clinical/epidemiological data indicate increased risk of diabetes in AD patients. Here, we show that intracerebroventricular infusion of AD-associated Abeta oligomers (AbOs) in mice triggered peripheral glucose intolerance, a phenomenon further verified in two transgenic mouse models of AD. Systemically injected AbOs failed to induce glucose intolerance, suggesting AβOs target brain regions involved in peripheral metabolic control. Accordingly, we show that AbOs affected hypothalamic neurons in culture, inducing eukaryotic translation initiation factor 2alpha phosphorylation (eIF2a-P). AbOs further induced eIF2a-P and activated pro-inflammatory IKKb/NFkB signaling in the hypothalamus of mice and macagues. AbOs failed to trigger peripheral glucose intolerance in tumor necrosis factor-TNF-alpha receptor 1 knockout mice. Pharmacological inhibition of brain inflammation and endoplasmic reticulum stress prevented glucose intolerance in mice, indicating that AbOs act via a central route to affect peripheral glucose homeostasis. While the hypothalamus has been largely ignored in the AD field, our findings indicate that AbOs affect this brain region and reveal novel shared molecular mechanisms between hypothalamic dysfunction in metabolic disorders and AD.

SPEAKER: MARTA M. MORAWSKA¹, FABIAN BUECHELE¹, CARLOS G. MOREIRA¹, LUKAS L. IMBACH¹, <u>DANIELA NOAIN</u>¹, CHRISTIAN R. BAUMANN¹

'NEUROLOGY DEPARTMENT, UNIVERSITY HOSPITAL ZURICH, ZURICH, SWITZERLAND

SLEEP MODULATION ALLEVIATES AXONAL DAMAGE AND COGNITIVE DECLINE AFTER RODENT TRAUMATIC BRAIN INJURY

Traumatic brain injury (TBI) is a major cause of death and disability worldwide. It produces diffuse axonal injury (DAI), which contributes to cognitive impairment, but effective

disease-modifying treatment strategies are missing. We have recently developed a rat model of closed skull TBI that reproduces human TBI consequences, including DAI and clinical sequelae such as memory impairment. Here, we investigated whether sleep modulation after trauma has an impact on DAI and memory outcome. We assessed cognition with the novel object recognition test and stained for amyloid precursor protein, a DAI marker. We found that both sleep induction and restriction acutely after TBI enhanced encephalographic slow-wave activity, markedly reduced diffuse axonal damage in the cortex and hippocampus, and improved memory impairment 2 weeks after trauma. These results suggest that enhancing slow-wave sleep acutely after trauma may have a beneficial disease-modifying effect in subjects with acute TBI.

SPEAKER: ANDREA GOLDIN, LABORATORIO DE NEUROCIENCIA, UNIVERSIDAD TORCUATO DI TELLA - CONICET

NEUROSCIENCE FOR (BETTER) EDUCATION

Executive functions (EF) imply processes critical for purposeful, goal-directed behaviour. In children, evidence derived from laboratory measures indicates that training can improve EF. For the first time, we explicitly examined this hypothesis based on real-world measures, especially of educational achievement. We developed a set of computerized brain training games ("Mate Marote") and we investigated whether they might yield transfer on typically developing children in interventions deployed at their own schools.

The games do elicit transfer of some EF, which cascade to real-world measures of school performance. More importantly, an intervention on 6-year-olds equalized academic outcomes across children who regularly attended school and those who did not because of social and familiar circumstances.

SY19. NEUROIMMUNOENDOCRINOLOGY OF THE CIRCADIAN SYSTEM

ROOM B - 16:30-18:30

CHAIR: DIEGO GOLOMBEK (ARGENTINA)

Circadian rhythms in immune, endocrine and metabolic parameters, are controlled by a central suprachiasmatic clock. Desynchronization schedules severely affect humoral and autonomic rhythms, resulting in diverse pathological dysfunctions. Immune and endocrine signals feedback and regulate the clock. This symposium will present neuroimmunoendocrine interactions with the circadian timing system.

SPEAKER: RUUD BUIJS¹, NATALI GUERRERO¹, EVA SOTO¹

¹INSTITUTO INVESTIGACIONES BIOMEDICAS UNAM, MEXICO

INTERACTION BETWEEN THE BRAIN AND THE IMMUNE SYSTEM: THE AUTONOMIC REFLEX

The brain is responsible for maintaining homeostasis of the organism, herein the hypothalamus has a special role in integrating information from body and brain, adjusting its output constantly via hormones and the autonomic nervous system to set optimal every compartment of the body. Also the immune system is under strong control of the

brain. Beyond the conventional systemic responses such as fever, HPA axis activation and sickness behavior evoked by the brain during inflammation, the autonomic nervous system is now recognized to exert powerful effects on the inflammatory response. Which branches of the autonomic nervous system are able to decrease inflammation remains controversial. Whether this anti-inflammatory reflex is parasympathetic or sympathetic, is subject of hot debate. Either way, the existence of a strong autonomic influence on the immune system is now an undeniable fact. Therefore, attention needs to be given to those areas of the brain that can modify the autonomic output to the immune system. Here we will analyze the participating elements whereby special attention is given to the hypothalamus as main structure driving the autonomic output of the brain. We will discuss evidence that our biological clock the suprachiasmatic nucleus has a special role in the setting of this reflex determining the intensity of the autonomic reflex. This influence is of such magnitude that SCN disturbances by shift work conditions result in an increased inflammation

SPEAKER: JUAN JOSÉ CHIESA¹, LEANDRO PABLO CASIRAGHI¹, MALENA LIS MUL FEDELE¹, FERNANDA RUTH ROMÁN¹, ANA ALZAMENDI², ANDRÉS GIOVAMBATTISTA², BELÉN CERLIANI², SILVINA RICHARD², DIEGO ANDRÉS GOLOMBEK¹, NATALIA PALADINO¹

¹DEPARTAMENTO DE CIENCIA Y TECNOLOGÍA, UNIVERSIDAD NACIONAL DE QUILMES; ²INSTITUTO MULTIDISCIPLINARIO DE BIOLOGÍA CELULAR, CENTRO CIENTÍFICO TECNOLÓGICO. CONICET. ARGENTINA

CIRCADIAN DESYNCHRONIZATION IN A MURINE MODEL OF CHRONIC JET-LAG: EFFECTS ON METABOLISM AND IN EXPERIMENTAL TUMORIGENESIS

Circadian misalignment may lead to pathological states when chronically established. We characterized a C57bl/6 mice model of behavioral desynchronization generated by a 6-h advance every 2 days of the light:dark (LD) cycle, a chronic jet-lag protocol (CJL). We found abnormal body weight gain in these animals when compared to those housed under normal LD cycles. This phenotype was not observed when animals had volitional access to running wheel, as well as when they were restricted to feed during darkness. Also we found some alterations in lipid metabolism, such as increased circulating triglycerides and adipocyte size. This loss of circadian homeostasis of energy balance could emerge from desynchronization between behavior, food assimilation, and metabolism.

In addition we studied the effect of CJL in experimental tumorigenesis in C57bl/6 mice, and in its regulation by immune factors. We found enhanced tumor development in mice under CJL, with higher growth rate and lower latency when compared to controls under LD cycles. An LD variation (higher diurnal levels) of pro-inflammatory cytokines Interleukin 1b, 6, and Tumor Necrosis Factor (TNF)-a, was determined in tumor tissue, but not present in animals under CJL. In addition, expression of clock genes in the tumor tissue was altered in this group. Desynchronization of immune variables, as well as peripheral circadian gene deregulation generated by CJL at the tumor environment, may be implicated in enhanced tumor growth.

SPEAKER: <u>HORACIO DE LA IGLESIA</u>¹, ÂNGELA KATSUYAMA¹

¹UNIVERSITY OF WASHINGTON, USA

INTERNAL DESYNCHRONIZATION OF CIRCADIAN RHYTHMS AND THE IMMUNE SYSTEM

Internal desynchronization of circadian rhythms is a common outcome of challenges to the circadian system that are associated with travel though time zones, shifts work, unusual-dark (LD) cycles and other environmental disruptions. Our laboratory has developed an animal model of internal desynchronization in which the internal misalignment of circadian rhythms is induced by exposure of rats to a 22-h LD cycle. This artificially short LD cycle leads to forced desynchrony of internal rhythms in which days in which the rhythms are aligned and misaligned are predictable. Using this animal model we show these animals exhibit disrupted neuroendocrine rhythms, including a dysregulation of the hypothalamo-pituitary-adrenal axis. and an abnormal response to immune challenges. Our findings may shed light into the mechanisms underlying higher disease propensity in humans exposed to circadian challenges.

SPEAKER: REGINAP MARKUS, LABORATORY OF CHRONOPHARMACOLOGY, INSTITUTE BIOSCIENCE. UNIVEERS ITY OF SÃO PAULO. BRAZIL

IMMUNE-PINEAL AXIS - THE ROLE OF MELATONIN SYNTHESIZED BY GLIA CELLS IN RODENT MODELS AND HUMANS

The immune-pineal axis hypothesis proposes that a danger or pathogen associated molecular pattern reduces or even blocks nocturnal pineal melatonin synthesis, and eventually leads to the synthesis of melatonin by monocytes, including macrophages, colostral and glia cells. Recently we showed that local synthesized melatonin impairs neuronal death in rat cerebellum challenged with LPS. In addition, it will be discussed data that show that survival to glliobastomes is significantly related to an index that takes into account the expression of enzymes of the biosynthetic and metabolic pathway of melatonin. In summary, the relevance of chronobiotic and immune-competent sources of melatonin are not independently modulated. Indeed, they are strictly regulated by pathophysiological mechanisms.

SY20. DOPAMINE NEURONS: CONNECTIVITY, FUNCTIONAL CONNECTIVITY AND SUSCEPTIBILITY

ROOM C - 16:30-18:30 **CHAIR: J. PAUL BOLAM (UK)**

We will address new findings about how inputs to dopamine neurons control their firing (Henny), how brainstem cholinergic inputs modulate their responsiveness (Mena-Segovia) and how their output may underlie their susceptibility in PD (Bolam). Finally, we will discuss how the symptoms of PD may not entirely be due to the loss of DA (Schiaveto de Souza).

SPEAKER: J. PAUL BOLAM, MRC UNIT, DEPT PHARMACOLOGY, UNIVERSITY OF OXFORD, UK

DOPAMINE NEURONS, SYNAPSES AND SUSCEPTIBILITY IN PARKINSON'S DISEASE

There are many hypothesised mechanisms to account for the selective vulnerability of dopamine neurons in Parkinson's disease (PD). One factor that may contribute to this is that the axon and synaptic output of SNc dopamine neurons are remarkably different to all other neurons in the brain in that individual dopamine neurons give rise to hundreds of thousands of synapses in the striatum. We propose that this massive axonal arbour will impose a high energetic demand for normal cell biological functions and the generation and propagation of action potentials (AP) and the subsequent recovery of the membrane potential. Any stressor, e.g. oxidative stress, genetic mutations, or mitochondrial poisons, will have a preferential effect on these neurons because they are energetically 'on-theedge' and the perturbations leading to energy demand out-stripping supply and eventual cell death. To test this hypothesis we generated a biology-based computational model of the axons of dopamine neurons and examined the energetic impact imposed by their extensive, unmyelinated axonal arbour. The main finding is that the energy demand associated with AP conduction is related in a supra-linear manner to the axonal size and complexity. Thus those neurons that show a greater vulnerability have a disproportionately greater energy cost for action potential propagation. This higher energy demand, together with unique molecular and functional features, may underlie their selective vulnerability in PD.

SPEAKER: PABLO HENNY, PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE, CHII F

THE HEART OF A DOPAMINERGIC NEURON

The axon initial segment (AIS) is a specialized subcellular region enriched in voltage gated channels and where action potentials initiate. No studies have addressed the structural, molecular or synaptic characteristics of the AIS in dopaminergic neurons (DAN) nor its role in firing. Using various neuroanatomical tools, we identify the neurochemical and structural features of the AIS in mouse substantia nigra compacta (SNc) DANs, along with the expression of voltage gated channels that may endow them with their typical firing. While the AIS of SNc DANs shares various structural characteristics described in other neurons, evidence is shown that DANs AIS can receive direct synaptic innervation, a characteristic only reported in specific populations of cortical neurons. In situ hybridization for voltage gated sodium channels showed that most SNc neurons expressed Nav1.2, a subunit thought to increase threshold for firing. Using in vivo juxtacellular recording, labeling and 3D reconstructions of the somatodendritic and AIS compartments of individual DANs, we show how the size and location of the AIS closely predicts firing frequency. Computational modelling of the firing behavior of DANs show that firing rate arises from the interaction between AIS and somatodendritic compartments and their respective oscillatory and firing properties. The model also shows that size and location respectively contribute to firing frequency and action potential back propagation success.

SPEAKER: JUAN MENA-SEGOVIA, RUTGERS UNIVERSITY, USA CHOLINERGIC SIGNALING IN THE VTA: FUNCTIONAL IMPLICATIONS FOR DOPAMINE SUBCIRCUITS

Dopamine neurons in the ventral tegmental area (VTA) receive cholinergic innervation from brainstem structures associated with either movement or reward. While cholinergic neurons of the pedunculopontine nucleus (PPN) carry an associative/motor signal, those of the laterodorsal tegmental nucleus (LDT) convey limbic information. In this talk I will present our recent results using optogenetic methods combined with in vivo juxtacellular recording/ labeling to dissect the influence of brainstem cholinergic innervation of distinct neuronal subpopulations in the VTA. We found that LDT cholinergic axons selectively enhance the bursting activity of mesolimbic dopamine neurons that are excited by aversive stimulation. In contrast, PPN cholinergic axons activate and change the discharge properties of VTA neurons that are integrated in distinct functional circuits and are inhibited by aversive stimulation. While both structures conveyed a reinforcing signal, they had opposite roles in locomotion. Our results demonstrate that two modes of cholinergic transmission operate in the VTA and segregate neurons involved in different reward circuits.

SPEAKER: ALBERT SCHIAVETO DE SOUZA, FUNDAÇÃO UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL, BRAZIL Influence of non-dopaminergic transmission on symptoms in rodent models of PD

SY21. NEUROESTEROIDS, CARDIOESTEROIDS AND OXIDATIVE CELL SIGNALLING AS TARGET IN NEUROINFLAMMATION AND POSSIBLE ROLE IN NEURODEGENERATIVE DISEASE

ROOM D - 16:30-18:30

CHAIR: FERNANDO BENETTI (BRAZIL)

The increased longevity of the world's population has been accompanied by an exponential growth in the number of people with neurodegenerative diseases. Several studies have shown multiple actions of progesterone, estrogen, neuroactive steroids, cardiosteroids as well cell oxidation, controll signaling pathways involved in neuronal death, thus are potential candidates for prevent these brain disease.

SPEAKER: WEBER DA SILVA, UNIVERSIDADE ESTADUAL DO CENTRO-OESTE, BRAZIL

NEUROINFLAMATION AND MNEMONIC DEFICITS

The increased longevity of the world's population has been accompanied by an exponential growth in the number of people with neurodegenerative diseases. Several studies have shown multiple actions of progesterone, estrogen, neuroactive steroids, cardiosteroids as well cell oxidation, controll signaling pathways involved in neuronal death, thus are potential candidates for prevent these brain disease.

SPEAKER: <u>ALEJANDRO DE NICOLA</u>^{1,2}, LAURA GARAY^{1,2}, MARIA MEYER¹, AGUSTINA LARA¹, GISELLA GARGIULO-MONACHELLI^{1,3}, MARIA CLAUDIA GONZALEZ DESNISELLE^{1,2}

¹INSTITUTO DE BIOLOGIA Y MEDICINA EXPERIMENTAL-CONICET; ²DEPT. DE FISIOLOGIA Y BIOFISICA, FACULTAD DE MEDICINA, UBA; ³HOSPITAL DE

AGUDOS JUAN A. FERNANDEZ, ARGENTINA

PROGESTINS AS ANTI-INFLAMMATORY FACTORS IN NEUROLOGICAL DISORDERS

An increasing number of reports supports that progesterone provides neuroprotection against CNS diseases. In the experimental autoimmune encephalomyelitis (EAE) model $of multiple \, scleros is \, (MS), progester on e\, treatment \, decreased$ cell infiltration, changed microglia phenotype and reduced the proinflammatory mediators TNFalpha, TLR4 and iNOS in the spinal cord. Concomitantly, progesterone increased myelin proteins and oligodendrocyte progenitors. To elucidate possible mediators of these effects, we analyzed the mRNA of neurosteroidogenic enzymes, considering that locally synthesized steroids bring neuroprotection by autocrine/paracrine mechanisms. We found that in EAE mice progesterone treatment restored the mRNA for the steroidogenic acute regulatory protein (Star), voltagedependent anion channel (VDAC), P450scc (cholesterol sidechain cleavage), 5alpha-reductase, 3alpha-hydroxysteroid dehydrogenase and aromatase. We also found that the 18 Kd translocator protein (TSPO), a marker of reactive microgliosis was decreased, consequent with the inhibition of microglia reactivity. EAE mice showed pathological mitochondrial morphology and reduced expression of fission and fusion proteins, parameters restored by progesterone. These data indicate that progesterone neuroprotection include the recovery of neurosteroidodogenesis. In this way, endogenously synthesized neurosteroids may reinforce the anti-inflammatory and promyelinating effects of exogenous progesterone found in MS mice.

SPEAKER: LUIS MIGUEL GARCIA-SEGURA, INSTITUTO CAJAL, CSIC, SPAIN

ROLE OF ESTROGEN RECEPTORS IN THE REGULATION OF NEUROINFLAMMATION

Neuroprotective actions of 17beta-estradiol (estradiol) are in part mediated by direct actions on neurons. Astrocytes and microglia, which play an essential role in the maintenance of the homeostasis of neural tissue, express estrogen receptors and are also involved in the neuroprotective actions of estradiol in the brain. Estradiol controls gliosis and regulates neuroinflammation, edema and glutamate transport acting on astrocytes and microglia. In addition, the hormone regulates the release of neurotrophic factors and other neuroprotective molecules by astrocytes. In addition, reactive astrocytes are a local source of neuroprotective estradiol for the injured brain. Since estradiol therapy is not free from peripheral risks, alternatives for the hormone have been explored. Some selective estrogen receptor modulators (SERMs), which are already in use in clinical practice for the treatment of breast cancer, osteoporosis or menopausal symptoms, exert similar actions to estradiol on astrocytes and microglia. Therefore, SERMs represent therapeutic alternatives to estradiol for the activation of astroglia and microglia-mediated neuroprotective mechanisms.

SPEAKER: CRISTOFORO SCAVONE¹, ELISA M KAWAMOTO¹

¹DEPARTMENT OF PHARMACOLOGY, INSTITUTE OF BIOMEDICAL SCIENCE, UNIVERSITY OF SÃO PAULO, AVEN. BRAZIL

NEUROINFLAMMATION AND BRAIN PLASTICITY

INDUCED BY CARDIOSTEROIDS

Endogenous steroids has been shown to play important roles in the modulation of renal sodium transport, arterial pressure, cell growth, differentiation, apoptosis, and the control of various central nervous functions. Na,K-ATPase (NKA) is constituted of 3 subunits, with each subunit having a number of isoforms that provide functional versatility across different cell types. Cardiotonic steroids (CTS) are specific ligands of the alpha subunit. CTS dosedependently inhibit NKA activity. Recent studies have now shed new light on the function of CTS as hormones. which activate a signaling function of NKA. Quabain (QUA) has been described as a new hormone synthesized in the adrenal cortex and hypothalamus. Several studies identify OUA as a physiological inducer of calcium oscillation and Src-Ras-MAPK pathways, and indicate a novel and important role for the OUA/NAK complex as a regulator of TNF, NFKB activity and BDNF levels. The non-inhibitory concentrations of OUA have been shown to be protective against some types of injury, such as kainic acid and Shiga toxin. OUA has anti-inflammatory and anti-apoptotic effects in the hippocampus challenged with LPS induced inflammation. The ability of OUA to suppress inflammatory process and maintain hippocampal BDNF levels suggests that NKA signaling cascade could be a new strategy for pharmacological interventions aimed at promoting longevity and healthy aging, as well as for the treatment of neurodegenerative disoders. FAPESP & CNPq.

OCTOBER 20TH

SY22. THE INTERPLAY OF NEURONAL ACTIVITY, SYNAPTOGENESIS AND PLASTICITY

ROOM A - 11:00-13:00

CHAIR: DAMIAN REFOJO (ARGENTINA)

Environmental inputs shape the wiring of the brain influencing timing, dynamics and efficiency of the synaptic connectivity. In this context we proposed to deeply but broadly discuss how different aspects of neuronal activity controls synaptogenesis, cell fate, plasticity and intracellular signaling processes and inversely how those processes influence how neurons perceive and process activity.

SPEAKER: LAURA BORODINSKY, DEPARTMENT OF PHYSIOLOGY & MEMBRANE BIOLOGY, UNIVERSITY OF CALIFORNIA DAVIS; SHRINERS HOSPITAL FOR CHILDREN NORTHERN CALIFORNIA; USA

ENVIRONMENTAL REGULATION OF SPINAL CORD DEVELOPMENT

During development, differentiation of neurons is necessary for generating the cell populations that will makeup the mature nervous system. The patterning of the embryonic nervous system is driven by a developmental program. Whether the environment intervenes in this program, resulting in plastic changes in neuronal differentiation, is an understudied aspect of neural development. It is well established that environmental temperature regulates the rate of development in ectotherms, yet the specific

impact temperature has on nervous system development is unknown. Previous studies demonstrated that embryonic Xenopus spinal neurons exhibit calcium spike activity that is important for neurotransmitter specification. We hypothesize that environmental cues modulate embryonic calcium activity in developing neurons thus regulate neuronal differentiation. We find that in the embryonic ventral spinal cord, calcium spike frequency increases 1.5fold in response to acute exposure to cold temperature. This increase is blocked by inhibiting the cold-sensitive transient receptor potential cation channel M8. Data show that the temperature in which embryos are grown regulates the number of motor neurons, correlating with calcium activity-dependent changes in motor neuron specification. This study suggests that the environment participates in neuronal differentiation allowing for the establishment of the best-equipped neuronal circuit.

SPEAKER: <u>JUAN BURRONE</u>¹, WINNIE WEFELMEYER¹, ALEJANDRO PAN VAZQUEZ¹

¹KING'S COLLEGE LONDON, UK

PLASTICITY AND DEVELOPMENT OF THE AXON INITIAL SEGMENT AND ITS SYNAPSES

The axon initial segment (AIS) is a structure at the proximal end of the axon with a high density of sodium channels that defines the site of action potential generation. It is also the target of inhibitory synapses formed by a specific GABAergic interneuron, the Chandelier cell. Here, we describe how activity affects this local microcircuit of axoaxonic synapses onto the AIS and begin to characterise how it forms. We find that the structure of the AIS is plastic and can change its position along the axon in hippocampal CA1 pyramidal neurons, resulting in a modulation of the cell's excitability. Importantly, GABAergic synapses do not translocate with the AIS, resulting in a partial mismatch between axo-axonic synapses and the AIS. We are currently characterising how this intriguing circuit is formed and shaped by neuronal activity, by using a transgenic mouse line that labels chandelier cells in the cortex, together with a live label of postsynaptic GABAergic compartments in pyramidal neurons. We found a critical temporal window of synapse formation at the AIS (P14-P16), which follows the gross morphological maturation of the Chandelier axonal arbour, Surprisingly, innervation of the AIS continued after this early synaptogenesis period, beyond P22. Here, both presynaptic and postsynaptic compartments gradually increased in number along the AIS, up to P40. We are currently performing in vivo imaging to visualise these dynamic processes as they occur in the brain.

SPEAKER: DAMIAN REFOJO, IBIOBA-MAX PLANCK, ARGENTINA NEDDYLATION, A NEW POSTTRANSLATIONAL MODIFICATION IN THE SYNAPSE

Neddylation is an ubiquitylation-like pathway that controls cell cycle and proliferation by covalently conjugating Nedd8 to specific targets. Even though Nedd8 (NEDD8 neural precursor cell expressed, developmentally down-regulated 8) was originally cloned from brain tissue its role in neurons, nonreplicating postmitotic cells, remains almost entirely unexplored.

We recently found that Nedd8 is ubiquitously expressed in

the brain and that neddylation increases along postnatal brain development and with neuronal maturation. Nedd8 conjugation is active in mature synapses, where many proteins are neddylated both at pre- and post-synaptic compartments. Interestingly, Neddylation is essential for normal development of excitatory (but not inhibitory) synapses during neuronal maturation and as well as spine stability in mature neurons.

Using different biochemical tools, we found that neddylated PSD-95 was present in spines and that neddylation on Lys202 of PSD-95 is required for the proactive role of the scaffolding protein in spine maturation and AMPA synaptic transmission. Finally, we developed Nae1CamKIIa-CreERT2 mice, in which neddylation is conditionally ablated in adult excitatory forebrain neurons. These mice showed synaptic loss, impaired neurotransmission and severe cognitive deficits.

Further studies suggesting a substantive role of neddylation on synaptic transmission and plasticity will be discussed.

SPEAKER: GINA TURRIGIANO, BRANDEIS UNVIERSITY, USA DISRUPTED SYNAPTIC SCALING IN RODENT MODELS OF AUTISM-SPECTRUM DISORDERS

Synaptic scaling is a form of homeostatic plasticity that stabilizes neuronal firing rates by globally adjusting excitatory synaptic strengths. We recently showed that synaptic scaling is impaired in a mouse model of Rett syndrome, which shares some features with autism spectrum disorders. To determine whether this defect might generalize to other ASD models we investigated the role of the scaffolding protein Shank3 in synaptic

scaling; human mutations in shank3 are strongly associated with ASDs and other neurological disorders. We find that cell-autonomous knockdown of shank3 to roughly 50% of wildtype levels completely blocks synaptic scaling. This block can be rescued with wildtype shank3, but not by reintroducing shank3 harboring some disease-associated human mutations. Further, we find that synaptic scaling can be pharmacologically rescued in shank3 knockdown neurons. Together our data suggest that loss of homeostatic plasticity may be a common feature of disorders such as ASDs that are characterized by imbalances in excitation and inhibition, and raise the possibility that some defects may be treatable through pharmacological rescue of synaptic scaling.

SY23. THE GLIAL CELL-NEURON REGULATORY CROSSTALK

ROOM C - 11:00-13:00

CHAIR: ROMMY VON BERNHARDI (CHILE)

Glia serve pivotal functions both in the healthy and the diseased CNS. Although their individual properties are known, much less is known about how glia regulate neuronal function. We will address this fundamental problem by discussing in vitro and in vivo evidence on key mechanisms including CNS injury, regulation of synaptic function, and glia-mediated neuro-protection and degeneration.

SPEAKER: FRANCISCO GUIMARAES, MEDICAL SCHOOL OF RIBEIRAO PRETO-USP. RIBEIRAO PRETO. SP BRAZIL

MICROGLIA AND THE ANTIPSYCHOTIC EFFECT OF CANNABIDIOL

Cannabidiol (CBD) is a major cannabinoid present in Cannabis sativa that lacks the psychotomimetic effects and abuse potential of the main component of the plant, delta-9-tetrahydrocannabinol (THC), On the contrary, CBD attenuates the psychotomimetic and anxiogenic effects produced by high doses of THC. In the last decade several preclinical and clinical studies have confirmed that CBD has antipsychotic and anxiolytic properties. Using animal models of psychiatry disorders, we showed that its anxiolytic effects depend on different pharmacological mechanisms, which include facilitation of 5HT1Amediated neurotransmission, blockade of anandamide metabolism/uptake, and facilitation of adult hippocampal neurogenesis. The molecular mechanisms associated with CBD antipsychotic effects, however, are still unclear. Chronic treatment with an NMDA non-competitive receptor antagonist (MK801) has been proposed as an animal model of schizophrenia. Using this model in mice, we showed that repeated CBD treatment prevents the behavioural and molecular changes induced by MK801. Moreover, it also prevented microglial activation in medial prefrontal cortex and hippocampus. These effects could depend on CBD activation of PPARs-gamma receptors, since an antagonist of these receptors blocked the LPS-induced activation of microglial cells in vitro. Together, these findings suggest that anti-inflammatory effects of CBD could be responsible for the antipsychotic properties of this drug.

SPEAKER: FRANK KIRCHHOFF, UNIVERSITY OF SAARLAND, HOMBURG, GERMANY

THE DIVERSITY OF GLIAL RESPONSES IN ACUTE CNS INJURIES – LESSONS FROM TRANSGENIC MICE

Acute brain injuries activate signaling cascades essential for scar formation. Here, we report that acute lesions associated with a disruption of the blood-brain barrier (BBB) trigger re-programming of the oligodendrocyte lineage. Differentiated oligodendrocytes and their precursor cells can generate another neuroglial cell type: astrocytes.

By in vivo 2P-LSM analysis we followed oligodendrocytes after injury in PLP-DsRed1/GFAP-EGFP transgenic mice. Adjacent to the lesion site, oligodendrocytes first turned into an intermediate cell stage with astro- and oligodendroglial gene expression properties (AO cells). Subsequently, portions of AO cells differentiated into astrocytes, while others stayed in the oligodendrocyte lineage. In split-Cre mice, AO cells showed a clear glia-restricted differentiation potential that also depended on local cues. At the lesion higher expression levels of glial differentiation factors were detected. And indeed, local injection of IL-6 promoted the formation of AO cells.

In summary, our findings highlight the plastic potential of oligodendrocytes in acute brain trauma.

SPEAKER: ALEXANDRE OLIVEIRA, UNIVERSITY OF CAMPINAS, RRAZII

MESENCHYMAL STEM CELL THERAPY FOLLOWING INTRASPINAL AXOTOMY: EFFECTS ON GLIAL CELLS

AND NEURONAL SURVIVAL

Degeneration of motoneurons may occur after spinal cord trauma in response to direct cell body lesion or proximal axotomy. Of interest, surviving neurons display the ability to regrow their axon, and some of them surpass the glial scar formed at the lesion site. Nevertheless, the exact mechanisms behind survival and regeneration are elusive, but possibly related to the early inflammatory response post trauma. In this scenario, the use of mesenchymal stem cell (MSC) treatment following injury is advantageous since such cells produce a variety of molecules including neurotrophic factors and interleukins. In turn, MSCs theoretically have the ability to drive immune response towards Th2 polarization, giving raise to anti-inflammatory conditions that possibly contribute to neuronal survival and regeneration. Our intent is to show newly obtained data regarding immunomodulatory effects of MSC therapy in response to ventral funiculus penetrating injury. We will address the basis of aphatomy experimental model, regarding motoneuron degeneration and glial scar formation. In addition, the effects of MSC engrafting to the lesion site, combined with the use of fibrin matrix scaffold, will be detailed regarding acute neuroprotection. synaptic circuits preservation and local mRNA levels of VEGF. BDNF, iNOS2, arginase-1, TNF-α, IL-1β, IL-6, IL-10, IL-4, IL-13 and TGF-B. Astroglial and microglial reaction will also be discussed and related to positive effects of cell therapy.

SPEAKER: ROMMY VON BERNHARDI, NEUROLOGY, SCHOOL OF MEDICINE, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE, SANTIAGO, CHILE REGULATION OF MICROGLIA-MEDIATED NEURODEGENERATION

Activation of glia is responsible for the neuroinflammation observed in Alzheimer's disease (AD). We have proposed that AD is caused by impaired activation of glia leading to neurodegeneration. Scavenger Receptor A (SR-A) has an important role in Beta-amyloid (Abeta) uptake, and we propose that they serve a key role in glial activation. We showed age-related changes of SR-A and analyzed SR-A dependent regulation of glial activation in AD using a SR-A-/- mouse model and a triple transgenic mice generated in our lab that accumulates $A\beta$ and is KO for SR-A (APP/ PS1/SR-A-/-). We evaluated the participation of SR-A on microglial activation in response to stimulation with LPS. We observed a modification on the expression pattern of activation markers. In functional terms, APP/PS1/SR-A-/- microglia showed a decreased LPS-induced production of NO, increased secretion of inflammatory cytokines and degreased levels of anti-inflammatory cytokines compared with APP/PS1. Hippocampal IL1beta and TNFalfa were also elevated in adult APP/PS1/SR-A-/- compared with APP/PS1 mice. Abeta phagocytosis was analyzed both in culture and by flow cytometry of freshly obtained cells from adult animals. APP/PS1/SR-A-/- neonatal microglia showed a reduction of AB uptake by neonatal and adult mice. Our results indicate that SR-A has a key role in the pathological neuroinflammatory processes in AD, potentiating microgliamediated neurodegeneration.

Support: Grant FONDECYT 1131025

SY24. YOUNG INVESTIGATOR SYMPOSIA II

ROOM A - 15:00-17:00

CHAIR: ANTONIA MARIN-BURGIN

SPEAKER: THIAGO CUNHA, UNIVERSITY OF SAO PAULO SCHOOL OF MEDICINE OF RIBEIRAO PRETO . BRAZIL

NEURO-IMMUNE-GLIA INTERACTIONS IN THE SENSORY GANGLIA ACCOUNT FOR THE DEVELOPMENT OF ACUTE HERPETIC NEURALGIA

Herpetic neuralgia is the most important symptom of herpes zoster disease, which is caused by Varicella zoster. Nevertheless, the pathophysiological mechanisms involved in herpetic neuralgia are not totally elucidated. Here, we examined the neuro-immune interactions at the sensory ganglia that account for the genesis of herpetic neuralgia by using a murine model of Herpes simplex virus type-1 (HSV-1) infection. The cutaneous HSV-1 infection of mice results in the development of a zosteriform-like skin lesion followed by a time-dependent increase in pain-like responses (mechanical allodynia). Leukocytes, composed mainly of macrophages and neutrophils, infiltrate infected DRGs and account for the development of herpetic neuralgia. Infiltrating leukocytes are responsible for driving the production of TNF, which in turn mediates development of herpetic neuralgia through down-regulation of the inwardly rectifying K+ channel, Kir4.1, in satellite glial cells. These results revealed that neuro-immune interactions at the sensory ganglia play a critical role in the genesis of herpetic neuralgia. In conclusion, the present study elucidates novel mechanisms involved in the genesis of herpetic pain and open new avenues in its control.

SPEAKER: MARÍA FLORENCIA ZAPPA VILLAR¹, GUSTAVO RAMÓN MOREL¹, MARIANA GABRIELA GARCÍA², JOAQUÍN PARDO¹, MICAELA LÓPEZ-LEÓN¹, LUCÍA TRÍPODI¹, GUILLERMO MAZZOLINI², RODOLFO GUSTAVO GOYA¹, PAULA CECILIA REGGIANI¹

¹INIBIOLP-HISTOLOGY B, SCHOOL OF MEDICAL SCIENCES, NATIONAL UNIVERSITY OF LA PLATA; ²GENE THERAPY LAB, SCHOOL OF BIOMEDICAL SCIENCES, AUSTRAL UNIVERSITY, BUENOS AIRES

THERAPEUTIC POTENTIAL OF HUMAN MESENCHYMAL STEM CELLS AND INSULIN-LIKE GROWTH FACTOR-I GENE THERAPY IN ANIMAL MODELS OF NEURODEGENERATION

Our objective is to develop therapeutic strategies for neurodegenerative disorders, as Alzheimer's Disease (AD), and brain aging. Gene therapy combined with the use potent neuroprotective molecules, like Insulin-like growth factor 1 (IGF-1), emerge as promising tool for this purpose. We constructed an adenoviral vector for rat IGF-1 and implemented intracerebroventricular (ICV) IGF-I restorative gene therapy in the brain of aging rats. The treatment improved the spatial memory accuracy and, in the hippocampus, increased the number of immature neurons and modified astrocytes branching and number.

More recently we implemented human mesenchymal stem cell (MSC) therapy in a rat sporadic AD-model (by ICV injection of streptozotocin) as well as in aging rats. First, we explored the therapeutic effect of MSC ICV injection. In our AD rat model, ICV cell therapy improved the rat spatial and

recognition memories performances. Comparable results were observed when we used a similar experimental design in aging rats. Also, in this study we found that cell therapy improves cognitive deficits. Finally, we assessed the effect of repeated intravenous administrations of MSC on cognitive performance in the AD rat model. This treatment improved memory, depression-like and anxiety-like behaviors. In sum, our results are agree with the emerging evidence that supports the use of MSCs for regenerative applications in neurodegenerative disorders and brain aging.

SPEAKER: KARINE MATHILDE CAMPESTRINI DALLAGNOL¹, ALINE PERTILE REMOR¹, RODRIGO AUGUSTO DA SILVA¹, RUI PREDIGER¹, ALEXANDRA LATINI¹, ADERBAL AGUIAR¹

'LABOX, UNIVERSIDADE FEDERAL DE SANTA CATARINA, FLORIANÓPOLIS-SC, BRAZIL RUNNING FOR REST: EXERCISE ATTENUATES IMPAIRED COGNITION, SICKNESS BEHAVIOR AND NEUROINFLAMMATION IN THE HIPPOCAMPUS OF AGED ANIMALS

Exercise improves mental health and synaptic function in the aged brain. However, the molecular mechanisms involved in exercise-induced healthy brain aging are not well understood. Evidence supports the role of neurogenesis and neuroplasticity in exercise-induced neuroplasticity. The RE1-silencing transcription factor (REST) and an anti-inflammatory role of exercise are also candidate mechanisms. We evaluate the effect of 8 weeks of voluntary exercise on running wheels (RW) on sickness behavior, cognition, neurogenesis and hippocampal gene expression of brain-derived neurotrophic factor (BDNF), REST, and interleukins IL-1 beta and IL-10 of adult and aged mice and rats. The aged animals exhibited impaired cognition, depressive-like and sickness behavior: decreased mobility in the RW and open field and severe immobility in the tail suspension test. The gene expression of REST, IL-1 beta, and IL-10 was increased in the hippocampus of aged mice. Exercise was a cognitive enhancer, anxiolytic and antidepressant and improved motor behavior in aged animals. Exercise also boosted neurogenesis, BDNF (and signalling) and REST expression and decreased IL-1 beta and IL-10 expression in the hippocampus of aged animals. These results support the beneficial role of REST in the aged brain, which can be further enhanced by regular exercise.

SPEAKER: <u>LEZIO S. BUENO-JUNIOR</u>¹, RAFAEL N. RUGGIERO¹, JOSE E. PEIXOTO-SANTOS¹, DANILO B. MARQUES¹, MILTON A. V. AVILA¹, CLEITON LOPES-AGUIAR¹, JOAO P. LEITE¹

RIBEIRAO PRETO MEDICAL SCHOOL, UNIVERSITY OF SAO PAULO, BRAZIL
THALAMO-PREFRONTAL RESONANCE OF
HIPPOCAMPAL INPUTS IS PLASTIC AND ATTENUATED
BY THALAMIC SILENCING

The prefrontal cortex (PFC) receives overlapping terminals from CA1/subiculum (CA1/sub) and mediodorsal thalamus (MD). Because the PFC reciprocates its thalamic afferents, CA1/sub inputs could plastically reverberate in the PFC-MD loop, which we examined through unit activity and synaptic plasticity monitoring. Rats were implanted with electrodes in CA1/sub (electrical stimulation), MD and PFC (recording) for a chronic session with paired-pulse stimulation, and high-frequency stimulation (HFS). Both PFC and MD firing responded to CA1/sub pulses with phasic

increases, then a transient decrease (<400 ms). Specifically in the PFC, we observed a delayed-onset increase (400-800 ms) that was potentiated after HFS. CA1/sub pulses elicited distinct field responses in PFC and MD, which underwent long-term potentiation. Those responses were correlated with c-Fos and Zif-268 expression throughout the circuit. We further asked whether MD optogenetic inhibition modulates the CA1/sub-PFC recruitment. A rat expressing green light-driven archaerhodopsins in the MD was implanted as above, except for an optrode into MD. When randomly paired with CA1/sub electrical pulses, MD light pulses attenuated PFC delayed-onset responses. Thus, hippocampal inputs seem to plastically resonate within the thalamo-prefrontal loop. These findings contribute to the systems-level understanding of limbic-prefrontal functions (e.g., working memory), and dysfunctions (e.g., psychoses and seizure amplification).

SPEAKER: CYNTHIA KATCHE¹, JORGE H. MEDINA¹

¹IBCN - UBA - CONICET

REQUIREMENT OF AN EARLY ACTIVATION OF BDNF/C-FOS CASCADE IN THE RETROSPLENIAL CORTEX FOR THE PERSISTENCE OF A LONG-LASTING AVERSIVE MEMORY

During the past few years there has been growing interest in the role of the retrosplenial cortex (RSC) in memory processing. However, little is known about the molecular changes that take place in this brain region during memory formation. In the present work, we studied the early posttraining participation of RSC in the formation of a longlasting memory in rats. We found an increase in c-Fos levels in the anterior part of the RSC (aRSC) after inhibitory avoidance (IA) training. Interestingly, this increase was associated with memory durability, since blocking c-Fos expression using specific antisense-oligonucleotides (ASO) impaired longlasting retention 7 days after training without affecting memory expression 2 days after training. In addition, we showed that BDNF is one of the upstream signals for c-Fos expression required for memory persistence, since blocking BDNF synthesis prevents IA training induced-increase in c-Fos levels in aRSC and affects memory persistence. In addition, we found that injection of BDNF into aRSC around training was sufficient to establish a persistent memory and that this effect was prevented by c-fos ASO infusion into the same structure. These findings reveal an early posttraining involvement of aRSC in the processing of a long-lasting aversive memory.

SPEAKER: EMILIO KROPFF, FUNDACIÓN INSTITUTO LELOIR - IIBBA - CONICET SPEED CELLS AND SPATIAL NAVIGATION IN THE ENTORHINAL CORTEX

Grid cells in the mammalian Entorhinal Cortex provide a metric for space, and it has been proposed that they are at the core of a mechanism for orientation based on self-motion cues. Such a mechanism would also need a robust speed signal. Here we present speed cells, a population of entorhinal neurons dedicated to code for running speed in a linear, context-invariant and prospective way.

SY25. PARKINSON'S DISEASE: FROM NEURONAL DEATH TO THERAPEUTICS

ROOM B - 15:00-17:00

CHAIR: JUAN FERRARIO AND GUSTAVO MURER (ARGENTINA)

The etiology of Parkinson's Disease (PD) is unknown and its treatment is still unresolved due L-DOPA side effects. We cover promising and challenging areas in basic research of PD: neuronal death, immunotherapy, genetic approaches (MV&CH) and pathophysiology of Dyskinesias (RM). Authors are top ranked and produce resonant contributions. We are willing to favor poster discussion and networking.

SPEAKER: CLAUDIO HETZ, BIOMEDICAL NEUROSCIENCE INSTITUTE, FACULTY OF MEDICINE, CHILE; CENTER FOR GEROSCIENCE, BRAIN HEALTH AND METABOLISM, SANTIAGO, CHILE; DEPARTMENT OF IMMUNOLOGY AND INFECTIOUS DISEASES, HARVARD SCHOOL OF PUBLIC HEALTH, USA; THE BUCK INSTITUTE FOR RESEARCH ON AGING. USA

ENDOPLASMIC RETICULUM PROTEOSTASIS ALTERATIONS IN BRAIN DISEASES

Most neurodegenerative diseases share a common neuropathology, primarily featuring the presence of abnormal protein inclusions containing specific misfolded proteins. Recent evidence indicates that alteration in organelle function is a common pathological feature of protein misfolding disorders. The endoplasmic reticulum (ER) is an essential compartment for protein folding, maturation, and secretion. Signs of ER stress have been extensively described in most experimental models of neurological disorders. To cope with ER stress, cells activate an integrated signaling response termed the Unfolded Protein Response (UPR), which aims to reestablish homeostasis through transcriptional upregulation of genes involved in protein folding, quality control and degradation pathways. Here we discuss our efforts to assess the role of the UPR in neurodegenerative diseases including ALS and Parkinson. An emerging concept will be discussed where the impact of the UPR to neurodegeneration depends on the disease context and the specific signaling branch analyzed. Finally, strategies to alleviate ER stress using gene therapy and pharmacological approaches will be discussed.

SPEAKER: LUZ SUAREZ¹, OSCAR SOLIS¹, <u>ROSARIO</u> MORATALLA¹

¹INSTITUTO CAJAL, CSIC, CIBERNED, MADRID, SPAIN

OPPOSITE STRUCTURAL AND SYNAPTIC PLASTICITY IN D1- AND D2-PROJECTION NEURONS IN L-DOPA-INDUCED DYSKINESIAS

The synaptic organization of striatal medium-spiny neurons (MSNs) confers to dopamine a central role modulating glutamatergic-signaling from cortex and thalamus differentially in both output-pathways, striatonigral (D1-MSN) and striatopallidal (D2-MSN). The loss of dopamine fibers in Parkinson's disease as well as chronic L-DOPA that induced dyskinesia produce severe alterations in the functioning of corticostriatal synapses. However, the specific changes in both types of MSNs underlying these alterations is still unclear. Using BAC-transgenic mice to identify striatal projection neurons, we demonstrate that spine-pruning caused by DA-depletion in Parkinson's

disease affects mature spines similarly in D1- and D2-MSNs, enhancing the excitability of both striatal-pathways but reducing synaptic-strength selectively in D2-MSN. L-DOPA treatment restores spine density, synaptic-transmission and excitability to normal values selectively in D2-MSNs. However, chronic L-DOPA-treatment also modifies DR-sensitization, enhancing D1R-signaling but reducing D2R-mediated responses. All these alterations could contribute to the loss of bidirectional synaptic-plasticity observed in dyskinesia.

SPEAKER: MIQUEL VILA, VALL D'HEBRON RESEARCH INSTITUTE (BARCELONA, SPAIN); CATALAN INSTITUTION FOR RESEARCH AND ADVANCED STUDIES (ICREA, BARCELONA, SPAIN); CENTRO DE INVESTIGACIÓN BIOMÉDICA EN RED EN ENFERMEDADES NEURODEGENERATIVAS (CIBERNED); UNIVERSIDAD AUTÓNOMA DE BARCELONA, SPAIN

DOES ALPHA-SYNUCLEIN PATHOLOGY SPREAD IN THE BRAIN?

Formation and accumulation of abnormal protein aggregates are a central hallmark of several neurodegenerative diseases. In Parkinson's disease (PD), the aggregation-prone protein alpha-synuclein accumulates in several areas of the central and peripheral nervous system. Mounting evidence suggests that neuropathological alpha-synuclein lesions in PD may self-propagate and spread progressively between interconnected brain regions by a cell-to-cell transmission mechanism, thereby potentially contributing to the progression and extension of the disease.

SY26. NEUROFRAMES SYMPOSIUM - FREUD REVISITED: COMPUTATIONAL PSYCHIATRY

ROOM C - 15:00-17:00

CHAIR: JACOBO SITT & DAN SHULZ (FRANCE)

Since the onset of Psychiatry, clinical interviews are the base of mental disease diagnosis. Computational Psychiatry aims at objectively quantifying and modeling patient's signs and symptoms.

The ultimate objective of this new discipline is to develop clinical evaluation tools complementary to the expert's opinion. Here, we will present this new discipline and successful implementations.

SPEAKER: SIDARTA RIBEIRO, BRAIN INSTITUTE, FEDERAL UNIVERSITY OF RIO GRANDE DO NORTE. BRAZIL

A QUANTITATIVE REASSESSMENT OF DREAMS AS THE ROYAL ROAD TO THE UNCONSCIOUS

Emil Kraepelin, Eugen Bleuler and Sigmund Freud disagreed on many things, but they agreed that dreaming and psychosis are related, and that dream interpretation is relevant for psychiatric diagnosis. These notions lost traction in the 20th century but underwent a recent revival due to quantitative investigations of the structure of psychotic speech. This presentation will review results showing that the graph-theoretical analysis of dream reports is particularly useful for the differential diagnosis of psychosis. Indeed, dream reports are more informative than reports on several other kinds of long or short-term memories. The presentation will conclude with a discussion of alternative explanations for this fact.

SPEAKER: DIEGO FERNANDEZ SLEZAK, UNIVERSIDAD DE BUENOS AIRES: CONICET. ARGENTINA

AUTOMATED CHARACTERIZATION OF MENTAL STATES: A NATURAL LANGUAGE PROCESSING APPROACH

Nowadays, psychiatric disorders are assessed by qualitative semi-structured interviews and diagnosed without any modern machine-learning computational support. We will show how using semantic and morpho-syntactic features of text produced by patients may capture markers of psychiatric and neurological conditions. These techniques open new challenges in the development of Computational Clinical Decision Support Tools to assist the psychiatric practice, by the integration of automatic text transcription and natural language processing for mental state inference using cloud-based services providing a world-wide scalable support.

SPEAKER: <u>RAPHAEL LE BOUC^{1,2,3}</u>, RIGOUX LIONEL^{1,2}, PESSIGLIONE MATHIAS^{1,2}

¹MOTIVATION, BRAIN AND BEHAVIOR TEAM, INSTITUT DU CERVEAU ET DE LA MOELLE EPINIERE; ²NSERM UMR1127, CNRS UMR 7225, UNIVERSITÉ PIERRE ET MARIE CURIE-PARIS 6; ³URGENCES CEREBRO-VASCULAIRES, HÔPITAL DE LA PITIÉ-SALPÊTRIÈRE, AP-HP. PARIS, FRANCE

COMPUTATIONAL DISSECTION OF DOPAMINE MOTOR AND MOTIVATIONAL FUNCTIONS IN HUMANS

Motor dysfunction (e.g. bradykinesia) and motivational deficit (i.e. apathy) are hallmarks of Parkinson's disease (PD). Yet, it remains unclear whether these symptoms arise from a same dopaminergic dysfunction. Here, we develop a computational model that articulates motor control to economic decision theory, to dissect the motor and motivational functions of dopamine. This model can capture different aspects of the behavior: choice (which action is selected) and vigor (action speed and intensity). It was used to characterize the behavior of 24 PD patients, tested both medicated and unmedicated, in two tasks: an incentive motivation task that involved producing a physical effort, knowing that it would be multiplied by reward level to calculate the payoff, and a choice task that involved choosing between high reward/high effort and low reward/ low effort options. Model-free analyses in both tasks showed the same two effects: dopamine depletion 1) decreased the amount of effort that patients were willing to produce for a given reward and 2) slowed down the production of this effort, regardless of reward level. Our model captured these effects with two independent parameters: reward sensitivity and motor activation rate. These parameters were respectively predictive of medication effects on clinical measures of apathy and motor dysfunction. We suggest that such computational phenotyping might help characterizing deficits and refining treatments in neuropsychiatric disorders.

SPEAKER: JACOBO SITT, INSERM, FRANCE; ICM INSTITUTE, PARIS, FRANCE NEUROFRAMES SYMPOSIUM - FREUD REVISITED: COMPUTATIONAL PSYCHIATRY

Since the onset of Psychiatry, clinical interviews are the base of mental disease diagnosis. Computational Psychiatry aims at objectively quantifying and modeling patient's signs and symptoms.

The ultimate objective of this new discipline is to develop clinical evaluation tools complementary to the expert's opinion. Here, we will present this new discipline and successful implementations.

SPEAKER: FABIEN VINCKIER^{1,2,3}, RAPHAEL GAILLARD^{1,4,5}

'SERVICE DE PSYCHIATRIE, CENTRE HOSPITALIER SAINTE-ANNE, UNIVERSITÉ PARIS DESCARTES; ²MOTIVATION, BRAIN, AND BEHAVIOR LAB, INSTITUT DU CERVEAU ET DE LA MOELLE ÉPINIÈRE; ³INSERM U975, CNRS UMR 7225, UPMC-P6, UMR S 1127, PARIS CEDEX 13, FRANCE; ⁴DEPARTMENT OF PSYCHIATRY AND BEHAVIOURAL AND CLINICAL NEUROSCIENCE INSTITUTE, CAMBRIDGE; ⁵LABORATOIRE DE "PHYSIOPATHOLOGIE DES MALADIES PSYCHIATRIQUES, CPN; FRANCE

CONFIDENCE AND PSYCHOSIS: A NEURO-COMPUTATIONAL ACCOUNT OF CONTINGENCY LEARNING DISRUPTION BY NMDA BLOCKADE

A state of pathological uncertainty about environmental regularities might represent a key step in the pathway to psychotic illness. Early psychosis can be investigated in healthy volunteers under ketamine, an NMDA receptor antagonist. Here, we explored the effects of ketamine on contingency learning using a placebo-controlled, doubleblind, crossover design. During functional magnetic resonance imaging, participants performed an instrumental learning task, in which cue-outcome contingencies were probabilistic and reversed between blocks. Bayesian model comparison indicated that in such an unstable environment, reinforcement learning parameters are downregulated depending on confidence level, an adaptive mechanism that was specifically disrupted by ketamine administration. Drug effects were underpinned by altered neural activity in a fronto-parietal network, which reflected the confidencebased shift to exploitation of learned contingencies. Our findings suggest that an early characteristic of psychosis lies in a persistent doubt that undermines the stabilization of behavioral policy resulting in a failure to exploit regularities in the environment.

#FALAN2016

PROGRAM IN DETAIL

SPECIAL EVENTS

Special Events

OCTOBER 17TH

SE1.MEETTHE PROFESSOR "NEUROSCIENCE AT LUNCH WITH A GOOD FRIEND" PROFESSOR JOHN G. NICHOLLS

ROOM A - 13:30-15:00
CHAIRS:
E. DEL-BEL, FORP-USP-BRAZIL
F.F. DE MIGUEL, UNAM-MEXICO

Professor John Nicholls will give an informal lecture about his views on neurosciences and other issues, followed by an informal discussion. This is one of the activities for which John is most remembered by students everywhere in the world. This event will give an unique opportunity for new and former students to have a view of Neuroscience form one of its pillars.

The lecture will be held during lunch time; simple food and beverages will be available.

SE2. NEUROSCIENCE AND EDUCATION: PRIME TIME TO BUILD THE BRIDGE

ROOM C - 13:30-15:00

CHAIR: MARIANO SIGMAN UNIVERSIDAD DI TELLA. ARGENTINA

As neuroscience gains social traction and entices media attention, the notion that education has much to benefit from brain research becomes increasingly popular. However, it has been argued that the fundamental bridge toward education is cognitive psychology, not neuroscience. In this symposium we will present specific cases in which neuroscience synergizes with other disciplines to serve education, ranging from very general physiological aspects of human learning such as nutrition, exercise and sleep, to brain architectures that shape the way we acquire language and reading, and neuroscience tools that increasingly allow the early detection of cognitive deficits, especially in preverbal infants. Neuroscience methods, tools and theoretical frameworks have broadened our understanding of the mind in a way that is highly relevant to educational practice. Although the bridge's cement is still fresh, we argue why it is prime time to march over it.

- Presentation 1: Physiology in School Learning: Eat, Sleep, Exercise SPEAKER: SIDARTA RIBEIRO (BRAZIL)
- Presentation 2: Mechanisms of sleep-dependent learning SPEAKER: JAN BORN (GERMANY)
- Presentation 3: Time and Numbers: From Lab to School SPEAKER: ALEJANDRO MAICHINE (URUGUAY)
- Presentation 4: The illusion of knowledge SPEAKER: MARIANO SIGMAN (ARGENTINA)

OCTOBER 18[™]

SE3. HOW CAN NEUROSCIENCE RESEARCH IMPACT THE GLOBAL BURDEN OF DISEASE

ROOM A - 13:30-15:00

CHAIR: PEDRO VALDES-SOSA JOINT CHINA-CUBA LABORATORY FOR FRONTIER RESEARCH IN TRANSLATIONAL NEUROTECHNOLOGY. CUBA

ACCELERATING THE IMPACT NEUROSCIENCE RESEARCH ON GLOBAL HEALTH

A frequently voiced opinion is that Neuroscience Research has little direct contact with public health. We also believe that basic research has its own internal logic and that often serendipitous findings have enormous practical implications. However, we cannot ignore that real world problems can drive very fundamental questions and that keeping these in mind can facilitate translational research. The interplay of basic research and population brain health is illustrated by experience of the Cuban Neuorscience Center. These issues are of particular relevance today due to the huge funding dedicated to the great brain projects on a global scale. Awareness of the possibilities will save time—and brains.

- Presentation 1: Learning disabilities in children. State of the art and future challenges - SPEAKER: VIVIAN REIGOSO-CRESPO (CUBA)
- Presentation 2: Population-based neuroimaging and GWAS: OCTAGENE study and clinical implications SPEAKER: EDSON AMARO JR. (BRA7II)
- Presentation 3: A role for the International Brain Research Organization (IBRO) in helping shape global health policy decisions - SPEAKER: LARRY W. SWANSON (IBRO)

SE4. WORKSHOP: HOW TO GET PUBLISHED

ROOM C - 13:30-15:00

CHAIR: JUAN LERMA, INSTITUTO DE NEUROCIENCIAS, ALICANTE, SPAIN

OCTOBER 20TH

SE5. LABMAN: LATIN AMERICAN BRAIN MAPPING NETWORK

ROOM A - 13:30-15:00

CHAIR: VALERIA DELLA MAGGIORE, IFIBIO HOUSAY, DEPARTAMENTO DE FISIOLOGÍA. FACULTAD DE MEDICINA. UBA. ARGENTINA

Neuroscience and neuroimaging research in Latin America is hindered by a lack of critical mass within any single country. LABMAN (www.labman.org) is an initiative intended to formalize disparate collaborative threads into a Latin American network via exchange of software, data, personnel, training and ideas through training and collaboration. This meeting is intended at recruiting more laboratories and members interested in human brain mapping research, discussing current and future collaborative projects in the region and sharing information regarding new developments. Please join us!

SE6. WORKSHOP SUBMITTING YOUR WORK TO AN INTERNATIONAL JOURNAL: THE PEERREVIEW SYSTEM AND WHAT WE EXPECT IN A GOOD PAPER

ROOM C - 13:30-15:00

CHAIR: J. PAUL BOLAM, CO-EDITOR-IN-CHIEF EUROPEAN JOURNAL OF NEUROSCIENCE; MRC BRAIN NETWORK DYNAMICS UNIT; DEPARTMENT OF PHARMACOLOGY, OXFORD, UK

Posters Schedule

SESSION 1

Day 2 - October 18th Posters 1-280

SESSION 2

Day 3 - October 19th Posters 281-554

SESSION 3

Day 4 - October 20th Posters 555-827

PROGRAM IN DETAIL

POSTERS

INDEX AREAS ::: POSTER SESSION 1

Advocacy and Education	77
Behavior, Neuroethology, Memory and Cognition .	77
Chronobiology	85
Development	85
Disorders of the Nervous System	87
Molecular and Cellular Neurobiology	91
Motor Systems	96
Neural Circuit Physiology	96
Neurochemistry and Neuropharmacology	97
Neuroendocrinology and Neuroimmunology	102
Sensory Systems	104
Synaptic Transmission, Excitability and Glia	105
Theoretical and Computational Neuroscience	107

POSTER SESSION 1

October 18, 2016

ADVOCACY AND EDUCATION

S1P1. THE VISUAL BRAIN

MARIA MERCEDES BENEDETTO^{1*}, PAULA VIRGINIA SUBIRADA CALDARONE¹, MARIA CONSTANZA PAZ¹, MARIA LUZ QUINTEROS¹, MAGALI EVELIN RIDANO¹, PABLO FEDERICO BARCELONA¹, MARIA CECILIA SANCHEZ¹

¹ DEPARTAMENTO DE QUIMICA BIOLOGICA-CIQUIBIC (CONICET), FCQ, UNC.

S1P2. WHAT´S IN YOUR HEAD? BRAINS GO TO COLLEGE. 2ND BAW SATELLITE IN THE SOUTH OF THE METROPOLITAN AREA OF BUENOS AIRES CARLOS SEBASTIAN CALDART VALLE¹*, MALENA LIS MUL FEDELE¹, IVANA LEDA BUSSI¹, LEANDRO PABLO CASIRAGHI²¹ LABORATORIO DE CRONOBIOLOGÍA, DEPARTAMENTO DE CIENCIA Y TECNOLOGÍA, UNIVERSIDAD NACIONAL DE QUILMES. BERNAL; ² LABORATORIO DE NEUROCIENCIA, UNIVERSIDAD TORCUATO DI

S1P3. LA PLATA BAW 2016: MY BRAIN CONTROLS ME SANTIAGO CORDISCO GONZALEZ^{1*}

¹ELECTROPHYSIOLOGY LABORATORY, IMBICE

TFII A

\$1P4. CONHECER NEURO: TALKING ABOUT NEURAL DEVELOPMENT TO TEENAGERS

ALAN COSTA^{1*}, PENHA DALTRO-SANTOS¹, MARTA RODRIGUES¹, GUSTAVO TAVEIRA¹, CASSIANA BALDUCI¹, EVERTON COSTA¹, MICHAEL ROCHA¹, LUIZ FELGUEIRAS¹, CAMILA PINTO¹, ANA FERREIRA¹, JAMMILY BIGNON¹, FRANK COSTA¹

¹UERJ.

BEHAVIOR, NEUROETHOLOGY, MEMORY AND COGNITION

\$1P5. ULTRA-PROCESSED FOODS SHOULD NOT BE LABELLED AS HEALTHY: EVIDENCE FROM NUTRITIONAL TRAFFIC LIGHT LABEL

LAURA KRUTMAN¹, FILIPE BRAGA², JÉSSICA R. DE ANDRADE³, RAFAEL DELGADO⁴, FÁBIO DA S. GOMES⁵, MIRTES PEREIRA¹,

LETÍCIA DE OLIVEIRA¹, SONIA RODRÍGUEZ-RUIZ⁴, M CARMEN FERNÁNDEZ-SANTAELLA⁴, ELIANE VOLCHAN², <u>ISABEL A.</u> DAVID.¹*

¹ LABORATÓRIO DE NEUROFISIOLOGIA DO COMPORTAMENTO, CMB, UFF, RJ, BRASIL; ² LABORATÓRIO DE NEUROBIOLOGIA II, IBCCF, UFRJ, RJ, BRASIL; ³ LABORATÓRIO INTEGRADO DE PESQUISA EM ESTRESSE, IPUB, UFRJ, RJ, BRASIL; ⁴LABORATÓRIO DE PSICOFISIOLOGIA HUMANA Y SALUD, CIMCYC, UGR, GRANADA, ESPANHA; ⁵UNIDADE TÉCNICA DE ALIMENTAÇÃO, NUTRIÇÃO E CÂNCER, INCA, RJ, BRASIL. *isabeldavid@id.uff.br

S1P6. ALTERED NEURAL ACTIVITY IN CLINICAL RISK INDIVIDUALS DURING CROSS MODAL TASK <u>BELEN ABURTO</u>^{1*}, ROLANDO CASTILLO¹, ROCÍO MAYOL¹, SEBASTIAN CORRAL¹, ROCÍO LOYOLA¹, ANTÍGONA MARTÍNEZ², JOSÉ CORTÉS-BRIONES³, HERNAN SILVA⁴, PABLO GASPAR⁴.

¹ UNIVERSIDAD DE CHILE; ² COLUMBIA UNIVERSITY; ³YALE UNIVERSITY; ⁴CLÍNICA PSIQUIATRICA DEL HOSPITAL CLÍNICO, UNIVERSIDAD DE CHILE.

\$1P7. DEFICITS IN TEMPORAL PROCESSING IN A MOUSE MODEL OF AUTISM

JULIETA ACOSTA^{1*}, MARCOS CAMPOLONGO², CHRISTIAN HÖCHT3, AMAICHA DEPINO2, DIEGO A. GOLOMBEK1, PATRICIA V. AGOSTINO1,

¹ LABORATORIO DE CRONOBIOLOGÍA, UNIVERSIDAD NACIONAL DE QUILMES/CONICET; ² INSTITUTO DE FISIOLOGÍA, BIOLOGÍA MOLECULAR Y NEUROCIENCIAS, CONICET-UBA; ³CÁTEDRA DE FARMACOLOGÍA, FACULTAD DE FARMACIA Y BIOQUÍMICA, UBA.

*juli.acosta05@gmail.com

S1P8. THE ROLE OF THE VENTRAL ANTEROMEDIAL THALAMIC NUCLEUS IN THE NEURAL CIRCUIT OF FEAR USING AN OLFACTORY AVERSIVE CONDITIONING PARADIGM

LUCÍA RAILY ACUÑA1*, ANTONIO P. CAROBREZ1

¹ DEPARTAMENTO DE FARMACOLOGIA, CCB, UNIVERSIDADE FEDERAL DE SANTA CATARINA. FLORIANÓPOLIS.

S1P9. TEMPORAL PROCESSING AND UHDRS CORRELATION IN HUNTINGTON'S DISEASE **PATRICIA V. AGOSTINO¹², EMILIA M. GATTO², MARTÍN**

<u>PATRICIA V. AGOSTINO¹</u>, EMILIA M. GATTO², MARTIN CESARINI², ANA SANGUINETTI², JOSÉ LUIS ETCHEVERRY², DIEGO A. GOLOMBEK¹,

^{*}csanchez@fcq.unc.edu.ar

^{*}el.caballero.templario@gmail.com

^{*}scaonza0@amail.com

^{*}alanpc7@gmail.com

^{*}maburtoponce@gmail.com

^{*}Iraygen@gmail.com

¹ NATIONAL UNIVERSITY OF QUILMES/CONICET; ²INSTITUTO DE

NEUROCIENCIAS DE BUENOS AIRES (INEBA).

\$1P10. ANALYSIS OF THE YOHIMBINE EFFECTS ON THE EMOTIONAL BEHAVIOR OF MALE RATS IN THE ELEVATED PLUS MAZE

ÁNGELES AGÜERO ZAPATA^{1*}, M. LOURDES DE LA TORRE¹, ROCÍO DONAIRE¹, ESCARABAJAL M.D¹.

¹ DEPARTMENT OF PSYCHOLOGY (PSYCHOBIOLOGY SECTION). UNIVERSITY OF JAEN.

S1P11. MULTIPLES REPRODUCTIVE EXPERIENCES IN RATS PROTECT THE MOTHER AGAINST THE CONSEQUENCES OF DISRUPTING THE NATURAL DAM-PUP INTERACTION

<u>Julieta aguggia</u>!*, marta suárez¹, maría angélica Rivarola²

¹ FACULTAD DE CIENCIAS EXACTAS FÍSICAS Y NATURALES (UNC). DEPARTAMENTO DE FISIOLOGÍA ANIMAL.; ² INICSA (CONICET) FCEFYN (UNC);

S1P12. ELECTROPHYSIOLOGICAL TOOLS FOR THE STUDY OF INTEROCEPTION DURING PROSOCIAL BEHAVIORS

MARCELO AGUILAR-RIVERA!*, TERYN JOHNSON¹, ANNELISE MILLER¹, YUN-SOUNG KIM¹, ERIK GONZALEZ-LEON¹, LUISA SCHUSTER¹, NICOLE BUTLER², JUSTIN TANTIONGLOC¹, TODD COLEMAN¹, LALEH K QUINN², ANDREA A CHIBA²

¹ UC SAN DIEGO BIOENGINEERING; ² UC SAN DIEGO COGNITIVE SCIENCE.

S1P13. EMOTIONAL MODULATION ON THETA AND ALPHA BAND POWER: A TEMPORAL ANALYSIS LAURA AHUMADA^{1*}, JOHN ARAÚJO¹

¹ UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE.

S1P14. IS TIME-COURSE OF ENDOGENOUS COVERT ORIENTING OF ATTENTION EQUIVALENT TO TIME-COURSE OF VOLUNTARY COVERT ORIENTING OF ATTENTION?

ELISA MARI AKAGI JORDÃO1*, GILBERTO FERNANDO XAVIER1

¹ DEPARTMENT OF PHYSIOLOGY, INSTITUTE OF BIOSCIENCES, UNIVERSITY OF SÃO PAULO.

S1P15. ENRICHED ENVIRONMENT REVERTS BEHAVIORAL DEFICITS IN A MOUSE MODEL OF PERINATALK PROTEIN MALNUTRITION

CAROLINA ALBERCA DOTO^{1*}, BRUNO BERARDINO², EDUARDO T. CANEPA², MARIELA CHERTOFF²

¹ LABORATORIO DE NEUROEPIGENÉTICA - DEPARTAMENTO DE QUÍMICA BIOLÓGICA - FCEN-UBA; ² LABORATORIO DE NEUROEPIGENÉTICA - DEPARTAMENTO DE QUÍMICA BIOLÓGICA -FCEN-UBA CONICET.

S1P16. HIPPOCAMPAL NF-KAPPA B ACTIVITY IS REQUIRED FOR NOVEL OBJECT RECOGNITION MEMORY RECONSOLIDATION

LEILA AMENEIRO^{1*}, GISELA ZALCMAN¹, ARTURO ROMANO¹

¹LABORATORIO DE NEUROBIOLOGÍA DE LA MEMORIA, IFIBYNE UBA-CONICET;

S1P17. THE TIME COURSE OF ASSOCIATIVE MEMORY RETRIEVAL DURING A PAIR ASSOCIATION TASK

<u>JORGE MARIO ANDREAU</u>^{123*}, SEBASTIAN ARIEL IDESIS¹²³, SANTIAGO TORRES BATÁN¹³, ALBERTO ANDRÉS IORIO¹

¹ INSTITUTO DE BIOLOGIA Y MEDICINA EXPERIMENTAL (IBYME-CONICET); ²UNIVERSIDAD DEL SALVADOR (USAL); ³CENTRO DE ALTOS ESTUDIOS EN CIENCIAS EXACTAS (CAECE).

S1P18. SPATIAL COGNITION IN HIGH ABILITY CHILDREN: SEARCHING FOR A PHYSIOLOGICAL MARKER USING ELETROENCEFALOGRAPHY RENATA ANOMAL^{1*}, DANIEL BRANDÃO¹, IZABEL HAZIN², ANTÔNIO PEREIRA³

¹ BRAIN INSTITUTE - UFRN; ² DEPARTMENT OF PSYCHOLOGY - UFRN; ³ UFPA.

S1P19. CONTEXT-DEPENDENT **FFFFCTS** 0F RIMONABANT ON ETHANOL-INDUCED CONDITIONED PLACE PREFERENCE IN FEMALE MICE ALINE ARAÚJO FREITAS SILVA1*, ALEXIA DOS ANJOS SANTOS1, CASSIO CONFESSOR DE CARVALHO¹, LYS CARDOSO BARCELOS¹, EVELYN BARBOSA SOUZA¹, RAIANY ROSA RAMOS DA SILVA¹, NATHÁLIA DE AZEVEDO SOUZA¹, ELISANGELA GOUVEIA CATAPRETA¹, LAIS FERNANDA BERRO², ALEXANDRE JUSTO DE OLIVEIRA LIMA¹, EDUARDO ARY VILLELA MARINHO¹ ¹ UNIVERSIDADE ESTADUAL DE SANTA CRUZ, UESC; ²UNIVERSIDADE FEDERAL DE SÃO PAULO, UNIFESP

^{*}pagostino@gmail.com

^{*}aaguero@ujaen.es

^{*}juli aquagia@hotmail.com

^{*}aquilarr_m@hotmail.com

^{*}lauraahdz@gmail.com

^{*}elisajordao@yahoo.com.br

^{*}caro.alberca@amail.com

^{*}leiliaameneiro1991@yahoo.com.ar

^{*}marioandreau@gmail.com

^{*}reanomal@gmail.com

<u>*lineafreitas@gmail.com</u>

TASK PERFORMANCE IN HUMANS: ELECTROPHYSIOLOGICAL CORRELATES OF INTERFERENCES AND COSTS BETWEEN MOTOR AND WORKING MEMORY TASKS

DAVID ARRIAGADA^{123*}, TOMÁS OSSANDON¹⁴

¹ DEPTO. PSIQUIATRIA, FACULTAD DE MEDICINA, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE; ²NEURODYNAMIC OF COGNITION LAB, PUC; ³FACULTAD DE MEDICINA, UNIVERSIDAD MAYOR; ⁴NEURODYNAMIC OF COGNITION LAB, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE.

S1P21. ANXIOGENIC-LIKE BEHAVIOR INDUCED BY ACUTE RESTRAINT STRESS IS ASSOCIATED WITH DECREASE OF GABA LEVELS AND NEURAL ACTIVATION IN ZEBRAFISH BRAIN

NADYME ASSAD¹*, WALDO SILVA¹, TATIANA NASCIMENTO¹, TAYANA CARVALHO², LUANA LEÃO¹, EVANDER BATISTA¹, KAREN OLIVEIRA¹, ANDERSON HERCULANO¹.

¹ UNIVERSIDADE FEDERAL DO PARÁ; ² UNIVERSITÄT DUISBURG-ESSEN.

\$1P22. SEARCHING FOR THE OPTIC FLOW PROCESSING CENTER IN CRABS

<u>YAIR BENJAMÍN BARNATAN</u>¹*, DANIEL TOMSIC¹, JULIETA SZTARKER¹

¹ LAB. NEUROBIOLOGÍA DE LA MEMORIA, DEPTO. FBMC-UNIVERSIDAD DE BUENOS AIRES, IFIBYNE-CONICET.

S1P23. SUCROSE BEVERAGE CONSUMPTION AND ITS REPERCUSSION ON THE INTAKE OF HIGH-CALORIC FOOD AND BODY WEIGHT ELIANA BARRIOS DE TOMASI^{1*}, JORGE JUÁREZ¹

¹INSTITUTO DE NEUROCIENCIAS, UNIVERSIDAD DE GUADALAJARA *elianaba@hotmail.com

\$1P24. VIOLENT VIDEO GAMES INTERFERE IN ADVANTAGEOUS DEFENSIVE BEHAVIOR

MARIA FERNANDA SANTOS¹, <u>ALINE BASTOS¹</u>*, JOSE OLIVEIRA, IVAN FIGUEIRA², FATIMA ERTHAL¹, ELIANE VOLCHAN¹

¹ UNIVERSIDADE FEDERAL DO RIO DE JANEIRO, INSTITUTO DE BIOFÍSICA CARLOS CHAGAS FILHO; ² UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. INSTITUTO DE PSIOUIATRIA.

S1P25. STOP OR MOVE UNDER GUN THREAT:

IMPLICIT DEFENSIVE STRATEGIES IN HUMANS ALINE BASTOS¹*, JOSE OLIVEIRA¹, MARIA FERNANDA SANTOS¹, MIRTES PEREIRA², LETÍCIA OLIVEIRA², IVAN FIGUEIRA³, FATIMA ERTHAL¹, ELIANE VOLCHAN¹

¹ FEDERAL UNIVERSITY OF RIO DE JANEIRO, INSTITUTE OF BIOPHYSICS CARLOS CHAGAS FILHO; ² FEDERAL FLUMINENSE UNIVERSITY, BIOMEDICAL INSTITUTE; ³ FEDERAL UNIVERSITY OF RIO DE JANEIRO, INSTITUTE OF PSYCHIATRY.

\$1P26. LOOKING FOR NEURAL CORRELATES OF A RECONSOLIDATED DECLARATIVE MEMORY. AN FMRI STUDY

<u>LUZ BAVASSI</u>1*, CECILIA FORCATO¹, RODRIGO FERNÁNDEZ¹, GABRIELA DE PINO², M. EUGENIA PEDREIRA¹, MIRTA VILLARREAL²

¹ LABORATORIO DE NEUROBIOLOGÍA DE LA MEMORIA, IFIBYNE -CONICET; ² FUNDACIÓN PARA LA LUCHA CONTRA LAS ENFERMEDADES NEUROLÓGICAS DE LA INFANCIA, CONICET.

S1P27. EFFECTS OF TEMPORARY INACTIVATION OF THE INFRALIMBIC SUBREGION OF THE MEDIAL PREFRONTAL CORTEX ON CONTEXTUAL FEAR MEMORY CONSOLIDATION IN RATS

HUGO BAYER REICHMANN¹*, LEANDRO JOSÉ BERTOGLIO¹

DEPARTMENT OF PHARMACOLOGY, CCB, UFSC, FLORIANÓPOLIS, SC, BRAZIL.

S1P28. INVOLVEMENT OF MEMORY AND INFLAMMATION IN EFFECT OF MELATONIN IN A MODEL OF DEMENTIA ANIMAL INDUCED BY PEPTIDE ASS 1-42

TATIANI BELLETTINI DOS SANTOS^{1*}, LEONARDO SPILLERE¹, FRANCIELLE GONÇALVES MINA¹, MICHELLE LIMA GARCEZ¹, JÚLIA SERAFIN BUDNY¹, RENAN PEREIRA BOLFE¹, MATHEUS SCOPEL ANDRIGHETTI¹, MAYLTON GRÉGORI SCHEID¹, JOÃO OUEVEDO¹², JOSIANE BUDNI¹

¹LABORATORY OF NEUROSCIENCES GRADUATE PROGRAM IN HEALTH SCIENCES, UNESC, BRAZIL; ²UNIVERSITY OF TEXAS HEALTH SCIENCE CENTER AT HOUSTON.

\$1P29. SLEEP ENHANCES CONTEXT DEPENDANT EXTINCTION MEMORY

RODRIGO BELTRAN^{1*}, ENNIO VIVALDI¹, ADRIÁN OCAMPOGARCÉS¹, JAN BORN², MARION INOSTROZA², MARGARITA BÓROUEZ¹

¹UNIVERSIDAD DE CHILE; ²UNIVERSITY OF TÜBINGEN.

^{*}david.arriagada.t@gmail.com

^{*}nadymeassad@amail.com

^{*}ybbarnatan@amail.com

^{*}alinefurtbastos@hotmail.com

^{*}alinefurt.fisio@gmail.com

^{*}luzbavassi@gmail.com

^{*}hbayer.reichmann@gmail.com

^{*}tatianibellettini@hotmail.com

^{*}rodrigo.beltran.rojas@gmail.com

\$1P30. SLOW WAVE SLEEP IN THE POSTPARTUM RAT AND ITS LITTER WEIGHT GAIN ARE PROMOTED AFTER DOPAMINERGIC ANTAGONISTIC TREATMENT LUCIANA BENEDETTO^{1*}, MAYDA RIVAS², JOAQUIN GONZALEZ¹, FLORENCIA PEÑA¹, ANNABEL FERREIRA², PABLO TORTEROLO¹

¹ FACULTAD DE MEDICINA, UDELAR; ² FACULTAD DE CIENCIAS, UDELAR.

S1P31. HISTAMINE IN THE BASOLATERAL AMYGDALA PROMOTES INHIBITORY AVOIDANCE LEARNING INDEPENDENTLY OF HIPPOCAMPUS FERNANDO BENETTI^{13*}, CRISTIANE REGINA GUERINO FURINI², JOCIANE DE CARVALHO MYSKIW², GUSTAVO PROVENSI³, MARIA BEATRICE PASSANI³, ELISABETA BALDI³, CORRADO BUCHERELLI³, LEONARDO MUNARI³, IVAN IZQUIERDO², PATRIZIO BLANDINA³

\$1P32. EFFECTS OF PHARMACOLOGICAL INTERVENTIONS AROUND THE EXPRESSION OF GENERALIZED FEAR ON THE ORIGINAL AVERSIVE MEMORY

<u>LEANDRO J BERTOGLIO</u>1*, FERNANDA N MARIN¹, MARCELO GIACHERO¹, LEANDRO J BERTOGLIO¹

\$1P33. UNDERSTANDING PREDICTABILITY AND PROVERB READING USING LINEAR MIXED MODELS AND TIME-FREQUENCY ANALYSIS

<u>Bruno</u> <u>Bianchi</u>1*, diego e. Shalom², juan e. Kamienkowski

\$1P34. A NEURONAL AMINE-GATED CHLORIDE CHANNEL GOVERNS SATIETY IN C.ELEGANS MARÍA GABRIELA BLANCO^{1*}, TANIA VEUTHEY¹, NICOLÁS AGUIRRE¹, DIEGO RAYES¹, MARÍA JOSÉ DE ROSA¹

S1P35. THE ROLE OF POSITIVITY ON WORKING MEMORY'S LOAD EFFECT

<u>Luiza Bonfim Pacheco</u>1*, Jéssica figueira¹, Isabela Lobo¹, Isabel de Paula Antunes David¹

¹UNIVERSIDADE FEDERAL FLUMINENSE.

S1P36. CAFFEINE PROTECTS AGAINST THE IMPAIRMENT IN AVERSIVE MEMORY ACQUISITION INDUCED BY ACUTE EXPOSURE WITH METHYLMERCURY IN RATS

ALODIA BRASIL^{1*}, RUBENITA MARQUES¹, MARTHA SOUZA², TAYANA CARVALHO³, KAREN OLIVEIRA¹, EVANDER BATISTA¹, AMAURY GOUVEIA JR¹, ANDERSON MANOEL HERCULANO¹.

¹ FEDERAL UNIVERSITY OF PARA, BELEM, BRAZIL;

S1P37. THE INFLUENCE OF KETAMINE ON THE EXPRESSION OF LEARNED FEAR RESPONSES IN FEMALE RATS TESTED IN DIFFERENT HORMONAL PERIODS

<u>LIGIA SANTOS BUENO BRASILINO</u>^{1*}, MANOEL JORGE NOBRE¹

¹ UNIVERSIDADE DE SAO PAULO - RIBEIRAO PRETO.

\$1P38. THE INFLUENCE OF 2APB IN THE SOMATIC AND SENSORIMOTOR DEVELOPMENT OF RATS AFTER NEONATAL ANOXIA

TALITHA BRETHERICK^{1*}, JULIANE IKEBARA¹, BEATRIZ CROSSIOL¹, DÉBORA CARDOSO¹, NATÁLIA MORALLES¹, JULIANA KRAUSE¹, LÍVIA MOTTA-TEIXEIRA², SILVIA TAKADA¹, ALEXANDRE KIHARA¹.

¹ UNIVERSIDADE FEDERAL DO ABC; ² UNIVERSIDADE DE SÃO PAULO.

S1P39. CONFLICT AT RESPONSE LEVEL: HOW THE STROOP AND AFFORDANCE EFFECTS INTERACT? ARIANE CALDAS^{1*}, WALTER MACHADO-PINHEIRO¹, OLGA DANEYKO², LUCIA RIGGIO²

¹ UNIVERSIDADE FEDERAL FLUMINENSE, ² UNIVERSITÀ DEGLI STUDI DI PARMA.

\$1P40. NEURAL SIGNATURES OF MODIFIED DECLARATIVE MEMORIES

AS RESULT OF RECONSOLIDATION PROCESS

GERMÁN CAMPOS-ARTEAGA^{1*}, CLAUDIO ARTIGAS¹, RICARDO

MORALES¹, LUZ BAVASSI², CECILIA FORCATO², MARÍA

^{*}benedettoluciana@gmail.com

¹UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL;

² PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL (PUCRS); ³ UNIVERSITÀ DEGLI STUDI DI FIRENZE, ITALIA;

^{*}fernando.benetti@ufras.br

¹ UNIVERSIDADE FEDERAL DE SANTA CATARINA.

^{*}leandro.bertoglio@ufsc.br

¹ LABORATORIO DE INTELIGENCIA ARTIFICIAL APLICADA, DEPARTAMENTO DE COMPUTACIÓN, FCEN, UBA;

² IFIBA, FCEN, UBA

^{*}brunobian@gmail.com

¹ INSTITUTO DE INVESTIGACIONES BIOQUÍMICAS BAHÍA BLANCA UNS.

^{*}mablanco91@amail.com

^{*}luiza nm@yahoo.com.br

²SOUZA1; ³UNIVERSITÄTSKLINIKUM, ESSEN, GERMANY.

^{*}alodiabrasil@hotmail.com

^{*}ligiabuenopsi@gmail.com

^{*}talitha.bretherick@gmail.com

^{*}caldas.ariane@gmail.com

EUGENIA PEDREIRA², EUGENIO RODRÍGUEZ¹

¹ LABORATORIO DE NEURODINÁMICA BÁSICA Y APLICADA, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE:

⁵LABORATORIO DE NEUROBIOLOGÍA DE LA MEMORIA, IFIBYNE, UBA, CONICET.:

\$1P41. EXPRESSION LEVELS OF 5-HT1A RECEPTORS IN HIPPOCAMPUS AND DORSAL RAPHE NUCLEUS HAVE CORRELATION WITH RESILIENCE TO STRESS ZÁRATE SANTIAGO¹, BRUGES ADRIANA¹, LEÓN LAURA¹², FERNANDO CARDENAS¹°

¹ UNIVERSIDAD DE LOS ANDES; ²UNIVERSIDAD CATÓLICA DE COLOMBIA.

S1P42. ISOFLAVONES IMPROVES THE EPISODIC-LIKE MEMORY IN MIDDLE-AGE FEMALE RATS <u>DANIELE CARDOSO</u>^{1*}, THAÍSA SANDINI², FABIANA SANTOS¹, <u>NATALIA MOREIRA¹, ANA PAULA LIMA¹, HELENICE SPINOSA¹</u>
¹ DEPARTMENT OF CLINICAL AND TOXICOLOGICAL ANALYSES -FACULTY OF PHARMACEUTICAL SCIENCES; ² DEPARTMENT OF PATHOLOGY - SCHOOL OF VETERINARY MEDICINE - UNIVERSITY OF

SÃO PAULO.

S1P43. SUB-ACUTE EXERCISE REDUCES INTRACELLULAR SIGNALING PATHWAYS LINKED TO INFLAMMATION AND CELL DEATH AND IMPROVES LEARNING AND MEMORY IN AGED RATS FABRÍZIO CARDOSO¹*, JÉSSICA HENRIQUE², FERNANDO SERRA¹, ANGÉLICA VICTORINO², ALEXANDRE ALMEIDA², JANSEN FERNANDES², FRANCISCO CABRAL³, RICARDO

ARIDA², SERGIO GOMES DA SILVA^{3,1}¹ UNIVERSIDADE DE MOGI DAS CRUZES; ² UNIVERSIDADE FEDERAL DE SÃO PAULO; ³HOSPITAL ISRAELITA ALBERT EINSTEIN

\$1P44. DIFFERENT TRAINING INTENSITIES DURING CONTEXTUAL FEAR CONDITIONING GUIDING THE RATE OF SYNAPTIC CONSOLIDATION

MIRELLE ARAUJO CASAGRANDE^{1*}, LIZETH KATHERINE PEDRAZA¹, FLÁVIA ZACOUTEGUY BOOS¹, FABIANA SANTANA¹, RODRIGO SIERRA¹, LUCAS DE OLIVEIRA ALVARES¹

S1P45. KNOCKING OUT DOPAMINE D2 RECEPTORS IN THE AMYGDALA IMPAIRS RISK EVALUATION **ERIC CASEY**^{1*}, **ELENA AVALE**¹, **MARCELO RUBINSTEIN**^{1,2}

S1P46. "WHOSE CHAIR IS IT, ANYWAY?" PART II: THE ROLE OF FIRST POSSESSION AND SOCIAL RECOGNITION OF PROPERTY IN THE RESOLUTION OF OWNERSHIP CONFLICTS BY CHILDREN AND ADULTS

<u>LEANDRO CASIRAGHI</u>1*, GUSTAVO FAIGENBAUM², MARIANO SIGMAN¹.

¹ UNIVERSIDAD TORCUATO DI TELLA; ² UNIVERSIDAD AUTÓNOMA DE ENTRE RÍOS.

S1P47. BEHAVIORAL MODULATION IN ZEBRAFISH FEMALES OF DIFFERENT REPRODUCTIVE STATES, THROUGH VISUAL AND CHEMICAL SIGNALS <u>LUCIANO CAVALLINO</u>1*, PAULA VALCHI¹, LEONEL MORANDINI¹², MATIAS PANDOLFI²¹

¹LABORATORIO DE NEUROENDOCRINOLOGÍA Y COMPORTAMIENTO. DBBE.FCEN-UBA.;

\$1P48. CHANGES IN NMDAR SUBUNITS LEVELS AFTER AN OBJECT RECOGNITION TASK

MAGALI CERCATO^{1*}, NATALIA COLLETIS¹, EDGAR KORNISIUK¹, DIANA JERUSALINSKY**¹,², MARÍA VERÓNICA BAEZ**¹,²

¹ INSTITUTO DE BIOLOGÍA CELULAR Y NEUROCIENCIA "PROF. E. DE ROBERTIS"; ² INSTITUTO DE BIOLOGÍA CELULAR Y NEUROCIENCIA "PROF. E. DE ROBERTIS"

\$1P49. EFFECT OF DOPAMINERGIC BLOCKADE IN THALAMIC RETICULAR NUCLEUS ON NON-SPACIAL AND SPACIAL MEMORY IN RAT

<u>ELIEZER CHUC-MEZA</u>1*, GERARDO ÁVILA¹, JESSICA SUÁREZ-ROJAS¹. MARTHA GARCÍA-RAMÍREZ¹

¹ DEPARTAMENTO DE FISIOLOGIA DE LA ESCUELA NACIONAL DE CIENCIAS BIOLOGICAS DEL 1.P.N.

\$1P50. EVALUATION OF PCREB⁄CREB EXPRESSION AND CATECHOLAMINE CONTENT IN HIGH AND LOW CONTEXTUAL FEAR CONDITIONING RATS

<u>FERNANDA COELHO</u>1*, BRUNA LOTUFO², SILVIA MAISONNETTE¹, FLÁVIA ROSSETI¹, JESUS LANDEIRA¹

^{*}gacampoa@uc.cl

^{*}lucarden@uniandes.edu.co

^{*}dany cardoso8@hotmail.com

^{*}fabrizioscardoso@yahoo.com.br

¹ FEDERAL UNIVERSITY OF RIO GRANDE DO SUL

^{*}mizinha casagrande@hotmail.com

¹INGEBI-CONICET: ²DFBMC, FCEYN, UBA

^{*}e.toccalino@gmail.com

^{*}leandrocasiraghi@gmail.com

²IBBEA, CONICET-UBA.DBBE.FCEN-UBA.

^{*}Icavallino@hotmail.com

^{**}EQUAL CONTRIBUTION

^{*}magacercato@yahoo.com.ar

^{*}echucmeza@hotmail.com

¹PUC-RIO; ²UERJ

^{*}fnunescoelho@gmail.com

S1P51. TEMPORAL DYNAMICS OF THE MAGNOCELLULAR ALTERATIONS IN CLINICAL HIGH RISK OF PSYCHOSIS

SEBASTIAN CORRAL^{1*}, BELEN ABURTO², ROLANDO CASTILLO¹, ROCIO MAYO¹L, ROCIO LOYOLA¹, DIEGO GONZALEZ¹, ANTIGONA MARTINEZ² HERNAN SILVA¹, PABLO GASPAR¹

¹ UNIVERSIDAD DE CHILE: ²COLUMBIA UNIVERSITY.

\$1P52. RELATIONSHIP BETWEEN PLASMA CORTICOSTERONE LEVELS AND CONTEXTUAL FEAR MEMORY DISCRIMINATION IN RATS

MOISÉS DOS SANTOS CORRÊA^{1*}, GABRIEL DE LIMA CASTILHO¹, PAULA AYAKO TIBA¹, RAQUEL VECCHIO FORNARI¹

¹ UNIVERSIDADE FEDERAL DO ABC.

\$1P53. EFFECTS OF ENVIRONMENTAL ENRICHMENT ON COGNITIVE AND EMOTIONAL RESPONSES AND HISTOLOGICAL BRAIN CHANGES IN WISTAR RATS SUBMITTED TO MATERNAL SEPARATION

KAREN CORREDOR^{1*}, DANIELA MARIN¹, LILIANA MARQUEZ², MELISSA CÁRDENAS², JUAN P QUINTANILLA¹³, VICTOR HUERTA-BRICENO¹, GLADYS S. MARTINEZ, FERNANDO CARDENAS P¹

¹ UNIVERSIDAD DE LOS ANDES; ² UNIVERSIDAD NACIONAL DE COLOMBIA; ³UNIVERSIDAD CATÓLICA SAN PABLO; ⁴CENTRO DE INVESTIGACIÓN EN BIOMODELOS.

S1P54. HIGH BUTTER AND SUGAR DIET ALTERS RESPONSE TO ETHANOL INDEPENDENT OF OBESITY <u>DIEGO CORREIA</u>^{1*}, ESTEFANI TEIXEIRA², LUANA MARTINS DE CARVALHO², AGATHA SONDERTOFT BRAGA PEDERSEN², ALEKSANDER ROBERTO ZAMPRONIO¹, ANA LUCIA BRUNIALTI GODARD¹

¹ DEPARTMENT OF GENERAL BIOLOGY, FEDERAL UNIVERSITY OF MINAS GERAIS, BRAZIL; ² CENTRO UNIVERSITÁRIO AUTÔNOMO DO BRASIL — UNIBRASIL, BRAZIL.

\$1P55. THE ROLE OF THE HISTAMINE H1 RECEPTOR IN THE HIPPOCAMPAL THETA OSCILLATION DURING SPATIAL NAVIGATION

STEPHANIE CORTEZ1*, JOSE LUIS VALDES1

\$1P56. ANXIOGENIC-LIKE EFFECTS INDUCED BY NITRIC OXIDE WITHIN THE RIGHT MEDIAL PREFRONTAL CORTEX DEPEND ON NMDA (N-METHYL-D-ASPARTATE) RECEPTOR ACTIVATION IN MICE

<u>NATHÁLIA SANTOS COSTA</u>1*, RICARDO LUIZ NUNES-DE-SOUZA¹

¹JOINT GRADUATE PROGRAM IN PHYSIOLOGICAL SCIENCES - PIPGCF UFSCAR/UNESP FACULDADE DE CIÊNCIAS FARMACÊUTICAS DE ARARAOUARA- FCFAR/UNESP.

S1P57. ENVIRONMENTAL ENRICHMENT INCREASES BALB/C NATURAL PREFERENCE BY CLOSED ARMS IN ELEVATED PLUS MAZE

GABRIEL COSTA MATOS^{1,2,7*}, BRUNA MESQUITA BARRETO^{4,7}, CARLOS NEANDRO CORDEIRO LIMA⁵, HANNA GONÇALVES PAMPLONA^{6,8}, NATÁLIA CHAGAS DE SOUZA⁶, SANDRO LUIZ HERDEIRO DA SILVA^{1,2,3}, ISABELLA NOGUEIRA ABREU⁵, ANGELA TUANY RODRIGUES DOS SANTOS⁵, MELIZA DE MENEZES RODRIGUES⁵, DANIEL GUERREIO DINIZ^{1,2,3}, CRISTOVAM WANDERLEY PICANCO DINIZ^{1,2,3}

¹UNIVERSIDADE FEDERAL DO PARÁ; ²HOSPITAL UNIVERSITÁRIO JOÃO DE BARROS BARRETO; ³LABORATÓRIO DE NEURODEGENERAÇÃO E INFECÇÃO; ⁴ UNIVERSIDADE DA AMAZÔNIA; ⁵ESCOLA SUPERIOR DA AMAZÔNIA:

⁶ UNIVERSIDADE DA AMAZÔNIA; ⁷LABORATÓRIO DE NEURODEGENERAÇÃO E INFECÇÃO;⁸FACULDADE DE BIOLOGIA.

S1P58. ENRICHED ENVIRONMENT INFLUENCES ON THE NUMBER OF TELENCEPHALIC CELLS AND ZOOTECHNICAL PERFORMANCE IN ANGELFISH (PTEROPHYLLUM SCALARE)

GABRIEL COSTA MATOS^{1,4,5*}, LUCAS SILVA DE SIQUEIRA^{7,6}, EDIELY PEREIRA HENRIQUE^{7,6}, DANIEL GUERREIRO DINIZ^{1,4,5}, PATRICK CORREA PEREIRA^{7,6}, CRISTOVAM GUERREIRO DINIZ^{7,6}, CINTYA CASTRO DE ABREL^{1,4,5}, NARA GYSELY DE MORAIS MAGALHÃES^{1,5}, THIAGO DAS GRAÇA HOLLATZ³, JULIANA OLIVEIRA MENESES², FERNANDA DOS SANTOS CUNHA², CARINA CAROLINE SILVA FRANÇA³, MARCIA VALÉRIA SILVA DO COUTO¹, NATALINO DA COSTA SOUSA, RODRIGO YUDI FUJIMOTO⁸, CRISTOVAM WANDERLEY PICANCO DINIZ^{1,4,5}

'UNIVERSIDADE FEDERAL DO PARÁ; 'UNIVERSIDADE TIRADENTES;
'UNIVERSIDADE FEDERAL DE SERGIPE; 'HOSPITAL UNIVERSITÁRIO
JOÃO DE BARROS BARRETO; 'LABORATÓRIO DE NEURODEGENERAÇÃO
EINFECÇÃO; 'LABORATÓRIO DE BIOLOGIA MOLECULAR E AMBIENTAL;
'INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA DO
PARÁ; 'EMBRAPA TABULEIROS COSTEIROS.

^{*}ps.scorral@amail.com

^{*}mscorrea.86@gmail.com

^{*}ke.corredor@uniandes.edu.co

^{*}farm.diegocorreia@hotmail.com

¹ PROGRAM OF PHYSIOLOGY AND BIOPHYSICS, INSTITUTE OF BIOMEDICAL SCIENCES, UNIVERSITY OF CHIL.

^{*}sccortez1@gmail.com

^{*}nscosta91@gmail.com

^{*}qabrielc matos@hotmail.com

^{*}gabrielc matos@hotmail.com

S1P59. ANXIETY-LIKE BEHAVIOR AND INCREASED NEURONAL ACTIVITY INDUCED BY CHRONIC STRESS AND MASTICATORY MUSCLE DYSFUNCTION GLAUCE CRIVELARO NASCIMENTO^{1*}, GLAUCE CRIVELARO NASCIMENTO¹, DANIELA IYOMASA¹, GABRIELLI LEAL LUIZ¹, MAMIE IYOMASA, ELAINE DEL BEL¹

¹SCHOOL OF DENTISTRY, UNIVERSITY OF SÃO PAULO.

S1P60. HEDONIC IMPLICATIONS IN NEGATIVE DISCREPANCY BETWEEN EXPECTED AND OBTAINED REWARD: AN ANIMAL MODEL FOR STUDYING FRUSTRATION

<u>LUCAS CUENYA^{12*}, STEFANA BURA³, MATÍAS SERAFINI¹, MATÍAS LÓPEZ RAMÍREZ³</u>

¹ INSTITUTO DE INVESTIGACIONES MÉDICAS, UNIVERSIDAD DE BUENOS AIRES, CONICET; ²CENTRO DE ALTOS ESTUDIOS EN CIENCIAS HUMANAS Y DE LA SALUD, UAI;

S1P61. SELECTIVE ATTENTION AND DISTRACTIBILITY AFTER 12 WEEK OF TREATMENT WITH ALPRAZOLAM IN GENERAL ANXIETY PATIENTS USING THE CONTINUOUS PERFORMANCE TASK

CARLOS SORIA², CAROLINA REMEDI², <u>LUCIANA D' ALESSIO</u>^{1*}, EMILIO ROLDÁN³

¹ UNIVERSIDAD DE BUENOS AIRES, IBCN-CONICET; ²INSTITUTE OF BIOSCIENCES HENRI LABORIT, CÓRDOBA; ³SCIENTIFIC DIRECTION, GADOR SA, BUENOS AIRES, ARGENTINA.

S1P62. OMEGA-3 SUPPLEMENTS ALTERS BIOMARKERS EXPRESSION IN THE AUTISM SPECTRUM DISORDER

NAIANA DA ROSA^{1*}, PATRÍCIA ALVES REIS², ANA OLÍVIA MARTINS LAURENTINO¹, CAMILA MICHALAK¹, LIDIANE PINTO BORGES¹, JUCÉLIA JEREMIAS FORTUNATO¹

¹ UNIVERSIDADE DO SUL DE SANTA CATARINA; ²FUNDAÇÃO OSWALDO CRUZ

S1P63. USE OF STEROIDS AND THEIR EFFECTS ON AGGRESSION AND NEURON BODY CELLS DENSITY BRUNO DAMIÃO¹*, JULIANE DE LIMA PASSOS², ANA LUIZA MAZZOLA CUOGO³, GERALDO JOSÉ MEDEIROS FERNANDES¹, WAGNER COSTA ROSSI JUNIOR¹, MARIA RITA RODRIGUES⁴, ALESSANDRA ESTEVES¹

(UNIFAL-MG) MINAS GERAIS, BRAZIL; ² MASTER IN NEUROSCIENCES AND BEHAVIOR BY THE FEDERAL UNIVERSITY OF ALFENAS (UNIFAL-MG); ³ DENTISTRY STUDENT AT THE FEDERAL UNIVERSITY OF ALFENAS, MINAS GERAIS, BRAZIL; ⁴ DEPARTMENT OF CLINICAL BIOCHEMISTRY, FEDERAL UNIVERSITY OF ALFENAS (UNIFAL-MG).

\$1P64. USE OF STEROIDS AND THEIR EFFECTS ON BEHAVIOR AND NEURONAL QUANTIFICATION OF SWISS MICE

BRUNO DAMIÃO^{1*}, ARIANE FREITAS², ANA LUIZA MAZZOLA CUOGO³, GERALDO JOSÉ MEDEIROS FERNANDES¹, WAGNER COSTA ROSSI JUNIOR¹, MARIA RITA RODRIGUES⁴, ALESSANDRA ESTEVES¹.

FLAVIA DA RÉ GUERRA¹

¹ DEPARTMENT OF ANATOMY, FEDERAL UNIVERSITY OF ALFENAS (UNIFAL-MG); ² MASTER IN NEUROSCIENCES AND BEHAVIOR BY THE FEDERAL UNIVERSITY OF ALFENAS (UNIFAL-MG); ³ DENTISTRY STUDENT AT THE FEDERAL UNIVERSITY OF ALFENAS (UNIFAL-MG); ⁴ DEPARTMENT OF CLINICAL BIOCHEMISTRY, FEDERAL UNIVERSITY OF ALFENAS (UNIFAL-MG).

S1P65. CREATION AND STANDARDIZATION OF A METHOD TO STUDY LEARNED HELPLESSNESS IN FLIES: THE PREFERENCE TEST

KATHLEEN YASMIN DE ALMEIDA^{1*}, FABIOLA BOZ ECKERT¹, DHIOZER VALDATI¹, CILENE LINO DE OLIVEIRA¹, DANIELA CRISTINA DE TONI¹

¹ UNIVERSIDADE FEDERAL DE SANTA CATARINA.

S1P66. VOLUNTARY EXERCISE REDUCES THE NUMBER OF SEIZURES AND ALTERS THE BRAIN-DERIVED NEUROTROPHIC FACTOR (BDNF) AND TYROSINE KINASE B RECEPTOR (TRKB) EXPRESSIONS IN HIPPOCAMPUS OF WISTAR RATS WITH EPILEPSY

<u>ALEXANDRE DE ALMEIDA</u>1*, SÉRGIO GOMES DA SILVA², GLAUBER LOPIM¹, DIEGO CAMPOS¹, EDUARDO SILVA¹, RICARDO ARIDA¹

¹ UNIVERSIDADE FEDERAL DE SÃO PAULO; ² HOSPITAL ISRAELITA ALBERT EINSTEIN.

\$1P67. LET'S TALK ABOUT THE EARTH: CHILDREN LEARN ABOUT CONCEPTUAL EARTH MODELS FROM THEIR PEERS

<u>DIEGO PABLO DE LA HERA</u>^{1,2*}, MARIANO SIGMAN², CECILIA INÉS CALERO^{2,3}

^{*}glau nascimento@yahoo.com.br

³UNIVERSIDAD DE OVIEDO (ESPAÑA);

^{*}lucascuenva@amail.com

^{*}luladalessio@amail.com.ar

^{*}naianarosa@hotmail.com

¹ DEPARTMENT OF ANATOMY, FEDERAL UNIVERSITY OF ALFENAS

^{*}bruno.damiao@unifal-mg.edu.br

^{*}bruno.damiao@unifal-mq.edu.br

^{*}kathleen yasmin@hotmail.com

^{*}aalmeida85@hotmail.com

¹ LABORATORIO DE NEUROCIENCIA INTEGRATIVA, IFIBA-CONICET; ²LABORATORIO DE NEUROCIENCIA, UNIVERSIDAD TORCUATO DI TELLA; ³UNIDAD DE NEUROBIOLOGÍA APLICADA, CEMIC-CONICET.

S1P68. OXIDATIVE STRESS IN LACTATING RATS WITH VARIATIONS IN THE MATERNAL BEHAVIOR ANA CAROLINA DE MOURA^{1*}, VERÔNICA BIDINOTTO BRITO¹, MARILENE PORAWSKI¹, JENIFER SAFFI¹, MÁRCIA GIOVENARDI¹

¹PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE, UFCSPA, PORTO ALEGRE/BRAZIL

S1P69. ERIODICTYOL PROMOTES NEUROPROTECTION ON NEURONAL DAMAGE, MOTOR E MEMORY DEFICITS INDUCED BY PERMANENT FOCAL BRAIN ISCHEMIA IN MICE EMERSON DE OLIVEIRA FERREIRA¹*, MARA YONE SOARES DIAS FERNANDES¹, NEILA MARIA ROCHA DE LIMA¹, KELLY ROSE TAVARES NEVES¹, MARTA REGINA SANTOS DO CARMO¹, FRANCISCO ARNALDO VIANA LIMA¹, JÉSSICA RABELO BEZERRA¹, GEANNE MATOS DE ANDRADE¹

¹ FACULTY OF MEDICINE, FEDERAL UNIVERSITY OF CEARÁ.; ² FACULTY OF MEDICINE, FEDERAL UNIVERSITY OF CEARÁ

\$1P70. THE RELATIONSHIP BETWEEN PERCEPTUAL CLOSURE AND EXECUTIVE FUNCTIONS

FELIPE DE OLIVEIRA MATOS¹*, NARRERY SILVA DOS SANTOS², JOSÉ FIEL³, GABRIELA ARANTES NEUBER³, ANTÔNIO PEREIRA JR.⁴

¹ STATE UNIVERSITY OF MARINGÁ;² STATE UNIVERSITY OF MARINGÁ; ³ FEDERAL UNIVERSITY OF PARÁ; ⁴ BRAIN INSTITUTE

S1P71. HYPERCHOLESTEROLEMIA INDUCES BBB DISRUPTION: A COMPARISON BETWEEN C57BL/6 WILD-TYPE AND LDLR-/- MICE

GABRIELA CRISTINA DE PAULA^{1*}, JADE DE OLIVEIRA¹, DAIANE FÁTIMA ENGEL¹, MARCELO FARINA¹, EDUARDO LUIZ GASNHAR MOREIRA², ANDREZA FABRO DE BEM¹

¹ UNIVERSIDADE FEDERAL DE SANTA CATARINA, DEPARTAMENTO DE BIOOUÍMICA:

² UNIVERSIDADE FEDERAL DE SANTA CATARINA, DEPARTAMENTO DE CIÊNCIAS FISIOLÓGICAS.

S1P72. EARLY LIFE INTERVENTIONS AFFECT MEMORY RECONSOLIDATION IN MALE RATS NATIVIDADE DE SÁ COUTO-PEREIRA^{1*}, CARINE LAMPERT¹,

ALINE DOS SANTOS VIEIRA¹, CAMILLA LAZZARETTI¹, GRASIELLE KINCHESKI¹, JORGE ALBERTO QUILLFELDT¹, VITOR ALEJANDRO MOLINA²·CARLA DALMAZ¹

¹UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL — UFRGS — PORTO ALEGRE/RS — BRAZIL; ²UNIVERSIDAD NACIONAL DE CORDOBA, CORDOBA — ARGENTINA.

S1P73. ANALYZING FUNCTIONAL IMPAIRMENT IN ALZHEIMER DISEASE

CAROLINA DELGADO^{12*}, MELISSA MARTINEZ¹, GADA MUSA³, FERNANDO HENRIOUEZ⁴, ANDREA SLACHEVSKY⁴

¹ HOSPITAL CLINICO UNIVERSIDAD DE CHILE; ²DEPARTAMENTO DE NEUROLOGÍA Y NEUROCIRUGÍA, HOSPITAL CLINICO UNIVERSIDAD DE CHILE; ³ INSTITUTO NACIONAL DE GERIATRÍA; ⁴ DEPARTAMENTO DE NEUROLOGÍA Y NEUROCIRUGÍA HOSPITAL DEL SALVADOR:

S1P74. EFFECTS OF FOLIC ACID SUPPLEMENTATION DURING PREGNANCY IN PUP RATS SUBMITTED OR NOT TO NEONATAL HYPOXIA-ISCHEMIA

BRUNA DENIZ¹*, HELOISA CONFORTIM¹, PATRÍCIA MIGUEL¹, IOHANNA DECKMANN², LENIR PEREIRA¹

¹ PROGRAMA DE PÓS GRADUAÇÃO EM NEUROCIÊNCIAS -UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL; ²PROGRAMA DE PÓS GRADUAÇÃO EM CIÊNCIA BIOLÓGICAS: BIOQUÍMICA -UFRGS; ³ PROGRAMA DE PÓS GRADUAÇÃO EM NEUROCIÊNCIAS -UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL.

\$1P75. CLUSTERING COEFFICIENT PREDICTS MEAN SUBJECTS' REACTION TIME

CHRIST DEVIA^{1*}, PEDRO E. MALDONADO^{2,3}, EUGENIO RODRÍGUE7¹

¹ ESCUELA DE PSICOLOGÍA, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE; ² PROGRAMA DE FISIOLOGÍA Y BIOFÍSICA, FACULTAD DE MEDICINA, UNIVERSIDAD DE CHILE; ³BIOMEDICAL NEUROSCIENCE INSTITUTE, UNIVERSIDAD DE CHILE;

\$1P76. EFFECT OF MUSIC IN ESPACIAL MEMORY IN RODENTS

MARIANA PSYRDELLIS^{1,2,3,4,5}, <u>VERONIKA DIAZ</u> <u>ABRAHAN</u>^{1,2,3,4,5*}, NADIA JUSTEL^{1,2,3,4,5}

¹LABORATORIO DE PSICOLOGÍA EXPERIMENTAL Y APLICADA (PSEA); ²INSTITUTO DE INVESTIGACIONES MÉDICAS (IDIM); ³CONSEJO NACIONAL DE INVESTIGACIONES CIENTÍFICAS Y TÉCNICAS (CONICET); ⁴UNIVERSIDAD NACIONAL DE BUENOS AIRES (UBA); ⁵UNIVERSIDAD NACIONAL DE CÓRDOBA (UNC).

^{*}delahera@gmail.com

^{*}anacarol.demoura@gmail.com

^{*}emersonoliveira.shalom@hotmail.com

^{*}felipeomatos@yahoo.com.br

^{*}depaula.gabrielac@gmail.com

^{*}natividade.pereira@gmail.com

^{*}carodede@gmail.com

^{*}bruninhaferrarv@hotmail.com

^{*}cdevia@gmail.com

^{*}abrahanveronika@gmail.com

\$1P77. EFECT OF MUSICAL IMPROVISATION IN VISUAL EMOTIONAL MEMORY

VERONIKA DIAZ ABRAHAN^{1,2,3,4,5*}, NADIA JUSTEL^{1,2,3,4}

¹LABORATORIO DE PSICOLOGÍA EXPERIMENTAL Y APLICADA (PSEA); ²INSTITUTO DE INVESTIGACIONES MÉDICAS (IDIM); ³CONSEJO NACIONAL DE INVESTIGACIONES CIENTÍFICAS Y TÉCNICAS (CONICET); ⁴UNIVERSIDAD NACIONAL DE BUENOS AIRES (UBA); ⁵UNIVERSIDAD NACIONAL DE CÓRDOBA (UNC).

CHRONOBIOLOGY

S1P78. ROLE OF PHOSPHATASE 2A IN THE PHOTIC SIGNALING PATHWAY OF THE CIRCADIAN CLOCK MARIA SOLEDAD ALESSANDRO^{1*}, SANTIAGO PLANO¹, SHOGO ENDO², DIEGO GOLOMBEK¹, JUAN JOSÉ CHIESA¹

¹UNIVERSIDAD NACIONAL DE QUILMES-BUENOS AIRES, ARGENTINA; ²METROPOLITAN INSTITUTE OF GERONTOLOGY, TOKYO, JAPAN

S1P79. TEMPORAL STUDY OF DNA METHYLTRANSFERASES, BDNF AND TRKB IN HIPPOCAMPUS AND CEREBELLUM DURING AGING FERNANDO GABRIEL ALTAMIRANO AND IVANNA CARLA CASTRO PASCUAL^{1*}, ETHELINA CARGNELUTTI¹, IVANA PONCE¹, MARIANA FERRAMOLA¹, MARIA GABRIELA LACOSTE¹, SILVINA DELGADO¹, ANA CECILIA ANZULOVICH¹ INSTITUTO MULTIDISCIPLINARIO DE INVESTIGACIONES BIOLOGICAS

S1P80. TEMPORAL DISTRIBUTION OF TONIC-CLONIC SEIZURES IN AN ANIMAL MODEL OF TEMPORAL LOBE EPILEPSY AND INTERACTION WITH SI FEP CHRONOBIOLOGY

<u>JUAN AMARO</u>^{1*}, CAROLA MANTELLERO², MARGARITA BÓRQUEZ¹, PATRICIO ROJAS², JAVIER DÍAZ¹, MARION INOSTROZA³, ADRIÁN OCAMPO-GARCÉS¹

¹UNIVERSIDAD DE CHILE;²UNIVERSIDAD DE SANTIAGO;³UNIVERSITY OF TÜBINGEN;

S1P81. NEURONAL REDOX STATE AS A KEY MODULATOR OF THE CIRCADIAN SYNCHRONIZATION: BE CAREFUL WITH THE TIMING OF YOUR RESEARCH

<u>FERNANDO MARTÍN BAIDANOFF</u>^{1*}, SANTIAGO PLANO¹, FABIO DOCTOROVICH², DIEGO ANDRÉS GOLOMBEK¹, JUAN JOSÉ CHIESA¹

QUILMES; 2 INQUIMAE - FCEYN - UBA;

S1P82. PHOTIC AND MAGNETIC ENTRAINMENT OF CIRCADIAN LOCOMOTOR ACTIVITY BEHAVIOR IN CAENORHABDITIS FLEGANS

CARLOS SEBASTIAN CALDART^{1*}, AGUSTIN CARPANETO¹, EUGENIA GOYA¹, DIEGO GOLOMBEK¹

¹LABORATORY OF CHRONOBIOLOGY, DEPARTMENT OF SCIENCE AND TECHNOLOGY, UNIVERSIDAD NACIONAL DE OUILMES.

S1P83. THE TIMEWORLD IN CANCER SURVIVORS. INTERTEXTUAL ANALYSIS OF THEIR EXPERIENCES WITH THE PERCEPTION OF TIME CONTRASTED WITH EXCERPTS FROM THE BOOK "EINSTEIN'S DREAMS"

<u>ANDRÉS CAMARGO-SÁNCHEZ</u>^{12*}, ANDRÉS PARRA-CHICO³, RAFAEL VARGAS⁴

¹ UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES. U.D.C.A; ² PROGRAMA DE ENFERMERÍA, UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES. U.D.C.A; ³ FACULTAD DE MEDICINA, UNIVERSIDAD DE LA SABANA, CHÍA, COLOMBIA; ⁴ INDEPENDIENTE.

S1P84. EFFECT OF FOOD DEPRIVATION PROTOCOL IN SLEEP ARCHITECTURE IN RATS

RODRIGO CAMPOS¹*, ENNIO VIVALDI¹, ADRIAN OCAMPO-GARCÉS¹, JAN BORN², MARION INOSTROZA², MARGARITA BÓROUEZ¹

¹UNIVERSIDAD CHILE; ²UNIVERSITY OF TÜBINGEN.

DEVELOPMENT

S1P85. MUTANT ALPHA-SNAP (M105I) ALTERS SUBCELLULAR DISTRIBUTION OF N-CADHERIN AND PROVOKES DISRUPTION OF EMBRYONIC BRAIN VENTRICULAR ZONE

<u>DIEGO ACUÑA</u>^{1,2*}, GUILLERMO MARQUEZ¹, GABRIELA TORO¹, CAMILO MUÑOZ¹, MARIA PAZ MIRÓ¹², ZAHADY VELASQUEZ¹², LORETO OJEDA¹, VIVIANA CAVIARES³, PATRICIA V. BURGOS³, ROSA IRIS MUÑOZ¹, LUIS FEDERICO BATIZ¹.².4

¹INSTITUTO DE ANATOMIA, HISTOLOGIA Y PATOLOGÍA. UNIVERSIDAD AUSTRAL DE CHILE; ²CENTER FOR INTERDISCIPLINARY STUDIES ON THE NERVOUS SYSTEM (CISNE); ³INSTITUTO DE FISIOLOGÍA. UNIVERSIDAD AUSTRAL DE CHILE; ⁴CENTRO DE INVESTIGACIÓN BIOMÉDICA. UNIVERSIDAD DE LOS ANDES

^{*}abrahanveronika@amail.com

^{*}siore21@yahoo.com.ar

⁽IMIBIO) CONICET — SL. *ferqabalt@gmail.com

^{*}Juan.amaro@uq.uchile.cl

¹LABORATORIO DE CRONOBIOLOGÍA - UNIVERSIDAD NACIONAL DE

^{*}fbaidanoff@gmail.com

^{*}el.caballero.templario@gmail.com

^{*}andcamarao@udca.edu.co

^{*}rodrigo.campos@ug.uchile.cl

^{*}fedebatiz@gmail.com

\$1P86. NEURAL CREST-DERIVED CELLS IN THE LIVER DURING EMBRYONIC DEVELOPMENT AND IN FIBROGENESIS

ROMINA SIERRA¹, ALESSANDRO FURLAN¹, IGOR ADAMEYKO², PATRIK ERNFORS², JORGE B. AQUINO¹*

¹ IIMT CONICET-AUSTRAL, DBRM LAB, SCHOOL OF MEDICINE, AUSTRAL UNIVERSITY, ARGENTINA:

³ DEPARTMENT OF MEDICAL BIOCHEMISTRY AND BIOPHYSICS, KAROLINSKA INSTITUTET, STOCKHOLM, SWEDEN.

S1P87. 4'-CHLORODIAZEPAM MODULATES THE DEVELOPMENT OF PRIMARY HIPPOCAMPAL NEURONS IN A SEX-DEPENDENT MANNER

BRUNO ARBO^{12*}, CLAUDIA VIEIRA-MARQUES¹², ISABEL RUIZ-PALMERO², ANA ORTIZ-RODRIGUEZ², MARIA ANGELES AREVALO², LUIS MIGUEL GARCIA-SEGURA², MARIA FLAVIA MAROUES RIBEIRO¹

¹ UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL; ² INSTITUTO CAJAL;

\$1P88. PROTEIN DEFICIENCY ALTERS CEREBELLAR MORPHOLOGY, BUT LOW OMEGA 6/OMEGA 3 RATIO PROTECTS AGAINST OXIDATIVE DAMAGE

RICIELLE AUGUSTO^{1*}, ALINNY ISAAC¹, IVANILDO SILVA-JUNIOR¹, DAVID SANTANA², DIORGINIS FERREIRA², CLAUDIA LAGRANHA², CATARINA GONÇALVES-PIMENTEL³, MARCELO RODRIGUES¹.

BELMIRA ANDRADE-DA-COSTA¹

¹ DEPARTAMENTO DE FISIOLOGIA E FARMACOLOGIA, UFPE, PERNAMBUCO, RECIFE, BRAZIL; ² NÚCLEO DE EDUCAÇÃO FÍSICA E CIÊNCIAS DO ESPORTE, UFPE-CAV, VITÓRIA DE SANTO ANTÃO, BRAZIL; ³DEPARTMENT OF BASIC AND CLINICAL NEUROSCIENCE, KING'S COLLEGE LONDON, LONDON, UK.

\$1P89. EFFECT OF GROWTH RESTRICTION ON EARLY BRAIN DEVELOPMENT: A MRI QUANTITATIVE ASSESSMENT

<u>JIMENA BARBEITO ANDRÉS</u>1*, VALERIA BERNAL², PABLO GLEISER³, BENEDIKT HALLGRÍMSSON⁴, PAULA GONZALEZ¹

¹ IGEVET. CONICET-UNLP; ² DIVISIÓN ANTROPOLOGÍA, MUSEO DE LA PLATA. UNLP. CONICET; ³ GRUPO DE FÍSICA ESTADÍSTICA E INTERDISCIPLINARIA (FIESTIN). CENTRO ATÓMICO BARILOCHE; ⁴ DEPARTMENT OF CELL BIOLOGY AND ANATOMY. CUMMING SCHOOL OF MEDICINE.UNIVERSITY OF CALGARY.

\$1P90. TRANSCRIPTION FACTOR INVOLVEMENT WITHIN THE MEDIAL GANGLIONIC EMINENCE IN

INTERNEURON SPECIFICATION

MARIA LUCILA BECHELLI^{1*}, MARÍA EUGENIA TOMASELLA¹, DIEGO MATIAS GELMAN¹

¹INSTITUTO DE BIOLOGÍA Y MEDICINA EXPERIMENTAL.

S1P91. DEVELOPMENTAL ORIGIN OF NON-SEROTONERGIC NEURONS IN THE RAPHE NUCLEI LUCIANO BRUM¹*, LUCIANO BRUM¹, GUILLERMO LANUZA¹¹ FUNDACIÓN INSTITUTO I FLOIR.

S1P92. PERINATAL HYPOXIA AS ANIMAL MODEL OF GENE-ENVIRONMENT INTERACTION IN SCHIZOPHRENIA

MARTÍN BUSTELO1*, C. FABIÁN LOIDL2, MARTIN A. BRUNO1

¹ LABORATORIO DE NEUROCIENCIAS, FAC. DE CIENCIAS MÉDICAS, UCCUYO, SAN JUAN, ARGENTINA;

³ INSTITUTO DE BIOLOGÍA CELULAR Y NEUROCIENCIAS, FAC. DE MEDICINA, UBA, BUENOS AIRES.

S1P93. DOWNREGULATION OF PARVALBUMIN EXPRESSION IN THE PREFRONTAL CORTEX DURING ADOLESCENCE CAUSES ENDURING PREFRONTAL DISINHIBITION IN ADULTHOOD

ADRIANA CABALLERO^{1*}, DANIEL THOMASES¹, KUEI TSENG¹

¹ DEPARTMENT OF CELLULAR AND MOLECULAR PHARMACOLOGY.

CHICAGO MEDICAL SCHOOL AT RFUMS.

\$1P94. THE IMPACT OF OMEGA-3 FATTY ACIDS IN THE DEVELOPMENT OF VISUAL RETINOFUGAL CONNECTIONS

<u>POLIANA CAPUCHO SANDRE</u>1*, PATRICIA COELHO DE VELASCO², LUANA DA SILVA CHAGAS¹, CLAUDIO ALBERTO SERFATY¹

¹ UNIVERSIDADE FEDERAL FLUMINENSE; ² UNIVERSIDADE FEDERAL DO RIO DE JANEIRO.

S1P95. ASCL1 CONTROLS LATE NEURONAL SPECIFICATION OF CENTRAL CANAL NEURONS <u>ABEL CARCAGNO^{1*}</u>, DANIELA DI BELLA¹, GUILLERMO LANUZA¹

^{*}aquinojorgeb@gmail.com

^{*}brunoarbo@gmail.com

^{*}ricielleaugusto@gmail.com

^{*}barbeitoj@gmail.com

^{*}lucila.bechelli@gmail.com

^{*}lbrum@leloir.ora.ar

^{*}mbustelo73@gmail.com

^{*}adriana.caballero@rosalindfranklin.edu

^{*}polianasandre@gmail.com

¹ FUNDACIÓN INSTITUTO LELOIR.

^{*}abel@carcagno.com

DISORDERS OF THE NERVOUS SYSTEM

\$1P96. LEMPEL-ZIV COMPLEXITY AS A PARAMETER TO EVALUATE THE DYNAMICS OF CORTICAL ELECTRICAL ACTIVITY IN RATS EXPOSED TO GAMMA RADIATION

LEANDRO AGUIAR^{1*}, ISVANIA LOPES¹, ROMILDO NOGUEIRA²

¹ UNIVERSIDADE FEDERAL DE PERNAMBUCO; ² UNIVERSIDADE
FEDERAL RURAL DE PERNAMBUCO:

\$1P97. ROLE OF THE PROTEASOME IN THE INDUCTION OF ALZHEIMER'S DISEASE PATHOLOGIES IN A HUMAN CEREBRAL ORGANOID MODEL

MATÍAS ALLOATTI^{1*}, VICTORIO POZO DEVOTO¹, ALAN HALLBERG¹, STEVENS REHEN², TOMÁS FALZONE^{1,3}

¹ INSTITUTO DE BIOLOGÍA CELULAR Y NEUROCIENCIAS (IBCN-CONICET), FMED, UNIVERSIDAD DE BS AS; ² D'OR INSTITUTE FOR RESEARCH AND EDUCATION (IDOR), RIO DE JANEIRO, BRAZIL; ³INSTITUTO DE BIOLOGÍA Y MEDICINA EXPERIMENTAL (IBYME-CONICET), BUENOS AIRES, ARGENTINA.

\$1P98. IDENTIFICATION OF THE BDNF PRODOMAIN (PBDNF) AS A NEW PATHOGENIC LIGAND AFFECTING NEURONAL STRUCTURE AND FUNCTION.

MILENA JANDAR¹, JOANNA GIZA², HENRIETTA BAINS², FRANCIS S LEE², CLAY BRACKEN², BARBARA L HEMPSTEAD², AGUSTIN ANASTASIA^{1*}

¹ INSTITUTO FERREYRA (INIMEC-CONICET-UNIVERSIDAD NACIONAL DE CORDOBA), CORDOBA, ARGENTINA; ²WEILL CORNELL MEDICAL COLLEGE, NEW YORK, USA.

S1P99. LIMBIC NEURONAL DEGENERATION IN AN EXPERIMENTAL MODEL OF TEMPORAL LOBE EPILEPSY INDUCED BY INTRACEREBRAL APPLICATION OF PILOCARPINE

BRUNA FD ANDRADE^{1*}, ORFA Y GALVIS-ALONSO¹, JESSICA MM GARCIA¹², MILENA RICCI¹², ARIANE N QUEIROZ¹³, ANA CC GIRALDI¹, ALEXANDRE D GIMENES⁴¹, JORGE MEJIA⁵, PATRICIA M CURY⁶

¹ FACULDADE DE MEDICINA DE SAO JOSE DO RIO PRETO - FAMERP, BRAZIL; ²CENTRO UNIVERSITÁRIO DE RIO PRETO - UNIRP, BRAZIL; ³UNIVERSIDADE ESTADUAL PAULISTA JÚLIO DE MESQUITA FILHO, IBILCE — UNESP, BRAZIL; ⁴UNIVERSIDADE FEDERAL DE SÃO PAULO — UNIFESP - SÃO PAULO, BRAZIL; ⁵HOSPITAL ISRAELITA ALBERT EINSTEIN — SÃO PAULO, BRAZIL; ⁶FACULDADE FACERES - SÃO JOSÉ DO RIO PRETO, BRAZIL.

S1P100. EVALUATION OF VISUAL ACUITY IN PATIENTS WITH DIABETES MELLITUS TYPE 2 USING MULTIFOCAL VISUAL EVOKED POTENTIAL (MFVEP) MATHEUS ANTONIO ROSA^{1*}, HANNA KATARINE DOS SANTOS FELIPE¹, VERONICA GABRIELA RIBEIRO DA SILVA¹, GIVAGO DA SILVA SOUZA¹², FERNANDO ALLAN DE FARIAS ROCHA¹

¹ INSTITUTO DE CIÊNCIAS BIOLÓGICAS, UNIVERSIDADE FEDERAL DO PARÁ, BELÉM, PARÁ, BRAZIL; ²NÚCLEO DE MEDICINA TROPICAL, UNIVERSIDADE FEDERAL DO PARÁ, BELÉM, PARÁ, BRASIL.

S1P101. THE RETINAL PHYSIOLOGY: A BIOMARKER FOR AGING AND NEURODEGENERATIVES DISEASES. JOAQUIN ARAYA¹*, CRISTOBAL IBACETA¹, JOAQUÍN ARAYA¹, RUBEN HÉRZOG¹, FELIPE OLIVARES¹, CLAUDIO HETZ², CLAUDIA DURAN², ADRIAN G. PALACIOS¹

¹ CENTRO INTERDISCIPLINARIO DE NEUROCIENCIA DE VALPARAISO, U. VALPARAISO, CHILE; ² BIOMEDICAL NEUROSCIENCE INSTITUTE, U. CHILE, SANTIAGO, CHILE.

S1P102. EPIGENETIC CONTROL MEDIATES CORTICAL STIMULATION-INDUCED ANALGESIA IN NEUROPATHIC RATS

<u>DANIELLE ASSIS</u>^{1*}, ANA CAROLINA CAMPOS¹, AMANDA PASCHOA¹, TALITA FARIAS¹, MANOEL TEIXEIRA², ERICH FONOFF², RAPHAEL PARMIGIANI¹, ROSANA PAGANO¹

¹SIRIO-LIBANES RESEARCH AND TEACHING INSTITUTE;

S1P103. MONITORING IN VIVO DOPAMINE RELEASE IN A MOUSE MODEL FOR COGNITIVE AND NEGATIVE SYMPTOMS OF SCHIZOPHRENIA <u>ESTEFANÍA BELLO</u>1*, NURI JEONG², OLIVIA GOLDMAN², ELEANOR SIMPSON^{2,3}

¹COLUMBIA UNIVERSITY, DEPARTMENT OF NEUROSCIENCE;

S1P104. DIMETHYL FUMARATE (DMF) INDUCED SYNAPTIC PRESERVATION AND MICROGLIAL ACTIVATION IN CHRONIC EXERCISED EXPERIMENTAL AUTOIMMUNE ENCEPHALITIS (EAE)-MICE DANIELLE BERNARDES^{1,2*}, PAULA CAMARGO^{2,3}, ALEXANDRE LEITE RODRIGUES DE OLIVEIRA²

^{*}leandroalvaro@hotmail.com

^{*}matialloatti@hotmail.com

<u>*aanastasia@immf.uncor.edu</u>

^{*}bruna.f.d.andrade@gmail.com

^{*}matheusantrosa2@hotmail.com

^{*}joaco.araya@amail.com

⁶SAO PAULO SCHOOL OF MEDICINE;

^{*}dani.varin@gmail.com

²NEW YORK STATE PSYCHIATRIC INSTITUTE; ³COLUMBIA UNIVERSITY, DEPARTMENT OF PSYCHIATRY.

^{*}estefania.bello@gmail.com

¹ DEPARTMENT OF STRUCTURAL AND FUNCTIONAL BIOLOGY, INSTITUTE OF BIOLOGY, UNIVERSITY OF CAMPI; ² DEPARTMENT OF STRUCTURAL AND FUNCTIONAL BIOLOGY, INSTITUTE OF BIOLOGY, UNICAMP, BRAZIL; ³ UNDER GRADUATE IN BIOLOGY, PUCCAMP, CAMPINAS-SP, BRAZIL.

S1P105. YERBA MATE (ILEX PARAGUAIENSIS) FAVOURS DOPAMINERGIC NEURONS SURVIVAL IN CULTURE

<u>ALEJANDRA BERNARDI</u>1*, MARIANA FERRARIO¹, MARCELA SCHENK², SANDRA GUERRERO², JUAN FERRARIO¹

¹ ININFA (CONICET-UBA); ² DEPARTAMENTO DE INDUSTRIAS, FCEN, UBA:

S1P106. EFFECT OF PARADOXICAL SLEEP DEPRIVATION (PSD) ON THE THRESHOLDS OF DEFENSIVE REACTION INDUCED BY ELECTRICAL STIMULATION OF PERIAQUEDUCTAL GRAY MATTER (PAG) AND SUPERIOR COLLICULUS (CS) OF WISTAR RATS

RAFAELLA BARBOSA^{1,2}, THIAGO OUVERNEY^{1,2}, CLAUDIA MULLER^{1,2}, VANESSA HARRES^{1,2}, ANA PAULA BITTENCOURT^{1,2}, ATHELSON BITTENCOURT^{12*}

¹ UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO PROGRAMA DE PÓS-GRADUAÇÃO EM BIOQUÍMICA E FARMACOLOGIA; ² UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO.

S1P107. UNRAVELLING THE MOLECULAR ROLE OF FYN IN LEVODOPA INDUCED DYSKINESIA (LID)

MELINA BORDONE^{1*}, ALEJANDRA BERNARDI¹, ANA DAMIANICH¹², SARA SANZ-BLASCO¹, GIMENA GÓMEZ¹, IRENE TARAVINI², MARÍA ELENA AVALE², OSCAR GERSHANIK¹, JUAN FERRARIO¹

¹ LABORATORIO DE PARKINSON EXPERIMENTAL, ININFA, UBA-CONICET, CABA, ARGENTINA; ²LABORATORIO DE TERAPÉUTICA EXPERIMENTAL EN PROCESOS NEURODEGENERATIVOS, INGEBI, CONICET.

S1P108. EFFECTS OF COMBINED NITRIC OXIDE COMPOUNDS AND AMANTADINE ON L-DOPA-INDUCED DYSKINESIA

MARIZA BORTOLANZA^{1,2*}, KEILA BARIOTTO-DOS-SANTOS^{3,2}, MAURÍCIO DOS-SANTOS-PEREIRA^{3,2}, CELIA DA-SILVA¹, ELAINE DEL-BEL^{1,2,3}

¹ SCHOOL OF ODONTOLOGY, UIVERSITY OF SAO PAULO, RIBEIRAO PRETO; ²CENTER FOR INTERDISCIPLINARY RESEARCH ON APPLIED

NEUROSCIENCES (NAPNA), USP; ³MEDICAL SCHOOL, UNIVERSITY OF SAO PAULO (USP). RIBEIRAO PRETO.

S1P109. PARAWIXIN2, A GABA UPTAKE INHIBITOR ISOLATED FROM PARAWIXIA BISTRIATA SPIDER VENOM IS NEUROPROTECTIVE AGAINST EXPERIMENTAL ISCHEMIC STROKE DAMAGE IN WISTAR RATS

THIAGO BRONHARA^{1,3*}, JOSE LUIZ LIBERATO^{1,3}, MARCUS VINICIUS BATISTA CELANI^{1,3}, LEONARDO GOBBO-NETO², NORBERTO PEPORINE LOPES², WAGNER FERREIRA DOS SANTOS^{1,3}

¹ UNIVERSITY OF SÃO PAULO - FACULTY OF PHILOSOPHY SCIENCE AND LITERATURE OF RIBEIRÃO PRETO; ² UNIVERSITY OF SÃO PAULO - FACULTY OF PHARMACEUTICAL SCIENCE OF RIBEIRÃO PRETO; ³INSTITUTO DE NEUROCIÊNCIAS E COMPORTAMENTO — INEC.

S1P110. ALPHA-SNAP IS INVOLVED IN THE FORMATION/STABILIZATION OF N-CADHERIN-BASED ADHERENS JUNCTIONS AND SURVIVAL OF NEURAL STEM CELLS

ZAHADY VELASQUEZ^{1,2}, MARTIN HELD^{1,2}, MARIA PAZ MIRO^{1,2}, MARIA CLARA JARA¹, <u>FELIPE BUSTAMANTE</u>^{1,2*}, DIEGO ACUÑA^{1,2}, ROSA IRIS MUÑOZ^{1,2}, LUIS FEDERICO BATIZ^{1,2,3}

¹INSTITUTO DE ANATOMIA, HISTOLOGIA Y PATOLOGÍA; UNIVERSIDAD AUSTRAL DE CHILE; ²CENTER FOR INTERDISCIPLINARY STUDIES ON THE NERVOUS SYSTEM:

³CENTRO DE INVESTIGACIÓN BIOMÉDICA. UNIVERSIDAD DE LOS ANDES.

S1P111. ASSOCIATION BETWEEN POLYMORPHISMS OF ALPHA-SYNUCLEIN GENE (SNCA) AND CLINICAL ASPECTS OF PARKINSON'S DISEASE IN A BRAZILIAN SAMPLE

CLARISSA CAMPELO^{1*}, FERNANDA CARVALHO CAGNI¹, DIEGO DE SIQUEIRA FIGUEREDO², LUIZ GONZAGA OLIVEIRA JUNIOR¹, ANTÔNIO BRAZ SILVA NETO¹, PRISCILA MACÊDO TAVARES¹, JOSÉ RONALDO DOS SANTOS⁵, GEISON SOUZA IZÍDIO⁴, ALESSANDRA MUSSI RIBEIRO³, TIAGO GOMES DE ANDRADE², CLÉCIO DE OLIVEIRA GODEIRO JÚNIOR¹, REGINA HELENA DA SILVA³

¹ UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE; ²UNIVERSIDADE FEDERAL DE ALAGOAS; ³UNIVERSIDADE FEDERAL DE SÃO PAULO; ⁴UNIVERSIDADE FEDERAL DE SANTA CATARINA; ⁵UNIVERSIDADE FEDERAL DE SERGIPE.

^{*}daniellebenardes@amail.com

^{*}alejandra bernardi@hotmail.com

^{*}athelson@hotmail.com

^{*}melina_bordone@yahoo.com

^{*}marizabortolanza@usp.br

^{*}thiago.bronhara@gmail.com

^{*}fedebatiz@gmail.com

<u>*clarissalcc@gmail.com</u>

\$1P112. ASSOCIATION BETWEEN POLYMORPHISM OF ALPHA-SYNUCLEIN GENE (SNCA) AND CLINICAL ASPECTS OF PARKINSON´S DISEASE IN A BRAZILIAN SAMPI F

CLARISSA LOUREIRO CHAGAS CAMPÊLO^{1*}, , FERNANDA CARVALHO CAGNI¹, DIEGO DE SIQUEIRA FIGUEREDO², LUIZ GONZAGA OLIVEIRA JÚNIOR¹, ANTÔNIO BRAZ SILVA NETO1, JOSÉ RONALDO SANTOS³, GEISON SOUZA IZÍDIO⁵, ALESSANDRA MUSSI RIBEIRO⁴, TIAGO GOMES DE ANDRADE², CLÉCIO DE OLIVEIRA GODEIRO JÚNIOR¹, REGINA HELENA SILVA⁴

¹UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE; ²UNIVERSIDADE FEDERAL DE ALAGOAS; ³UNIVERSIDADE FEDERAL DE SERGIPE; ⁴UNIVERSIDADE FEDERAL DE SÃO PAULO; ⁵UNIVERSIDADE FEDERAL DE SANTA CATARINA.

S1P113. PEERS CAN RESCUE AUTISM-RELATED BEHAVIORS AND GLUCOSE BRAIN METABOLISM AFTER PRENATAL EXPOSURE TO VALPROIC ACID MARCOS CAMPOLONGO^{1,2*}, MARCOS CAMPOLONGO^{1,2*}, NADIA KAZLAUSKAS^{1,2}, GERMÁN FALASCO³, LEANDRO URRUTIA³, AMAICHA DEPINO^{1,2}

¹ IFIBYNE, UBA-CONICET, BUENOS AIRES, ARGENTINA; ²DEPARTAMENTO FBMC, FCEN, UBA, BUENOS AIRES; ³CENTRO DE IMÁGENES MOLECULARES, FLENI, BUENOS AIRES, ARGENTINA

S1P114. DECREASE IN PHASE LOCKING BETWEEN DELTA AND GAMMA BANDS BEFORE EPILEPTIC SEIZURES

NURIA CAMPORA^{1*}, CAMILO MININNI², SERGIO LEW², SILVIA KOCHEN¹

¹ENYS, CONICET - UNAJ - HOSP EL CRUCE;²INSTITUTO DE INGENIERÍA BIOMÉDICA. FACULTAD DE INGENIERÍA, UBA

S1P115. NEUROINFLAMMATION IN THE DESCENDING ANALGESIC PATHWAY CONTRIBUTES WITH HYPERALGESIA IN PARKINSON'S DISEASE ANA CAROLINA CAMPOS^{1*}, MIRIÃ BERZUINO BENATTI¹, ERICHTALAMONI FONOFF², ROSANA LIMA PAGANO¹

1LABORATORY OF NEUROMODULATION AND EXPERIMENTAL PAIN, HOSPITAL SÍRIO-LIBANÊS; ²UNIVERSITY OF SÃO PAULO MEDICAL SCHOOL.

S1P116. A NOVEL MECHANISM OF ALZHEIMER'S DISEASE NEURODEGENERATION:

BAG2, AB1-42 TOXICITY, AND NF-KB SIGNALING

<u>DANIEL CARRETTIERO</u>1*, FERNANDO SANTIAGO¹, MARIA CAMILA ALMEIDA¹

¹UNIVERSIDADE FEDERAL DO ABC:

S1P117. INFLUENCE OF THE ESTROUS CYCLE IN THE MANIFESTATION OF SCHIZOPHRENIALIKE SYMPTOMS IN MICE SUBMITTED TO THE NEURODEVELOPMENTAL MODEL OF SCHIZOPHRENIA BY TWO-HIT

FRANCISCO ELICLÉCIO RODRIGUES DA SILVA¹, TATIANE DA SILVA ARAUJO¹, CAMILA NAYANE CARVALHO LIMA¹, AYANE EDWIGES MOURA COSTA¹, <u>NATALIA CASTELO BRANCO MATOS</u>^{1*}, PAULO HENRIQUE PESSOA NOBRE¹, DÉBORA LETÍCIA NOGUEIRA DE OLIVEIRA¹, SILVÂNIA VASCONCELOS DANIELLE MACÊDO¹

\$1P118. FRONTAL GAMMA-BAND ABNORMALITIES IN SUBJECTS AT CLINICAL HIGH-RISK OF PSYCHOSIS DURING A WORKING MEMORY LOAD TASK

ROLANDO CASTILLO^{1*}, BELEN ABURTO¹, SEBASTIAN CORRAL¹, ROCIO LOYOLA¹, ROCIO MAYOL¹, DIEGO GONZALEZ¹, ALEJANDRO MATURANA³, MARÍA JOSÉ VILLAR³, HERNÁN SILVA^{2,4}, PABLO GASPAR^{2,1,4,3}

¹LABORATORIO PSIQUIATRÍA TRASLACIONAL, CLINICA PSIQUIÁTRICA UNIVERSIDAD DE CHILE; ²BIOMEDICAL NEUROSCIENCE INSTITUTE; ³CLINICA ALEMANA; ⁴CLINICA PSIQUIÁTRICA UNIVERSIDAD DE CHILE.

S1P119. TEMPOL (4 HIDROXY-TEMPO) TREATMENT REDUCES INFLAMMATION THROUGHOUT AMYOTROPHIC LATERAL SCLEROSIS DEVELOPMENT IN SOD1 G93A MICE

GABRIELA CHIAROTTO^{1*}, ALINE SPEJO¹, ALEXANDRE OLIVEIRA¹

¹UNIVERSITY OF CAMPINAS.

S1P120. ADJUNCTIVE THERAPY WITH VITAMIN B12 IS NEUROPROTECTIVE TO THE HIPPOCAMPUS IN AN INFANT RAT MODEL OF PNEUMOCOCCAL MENINGITIS AND THIS POSITIVE EFFECT MAY INVOLVE EPIGENETIC REGULATION

KARINA DE QUEIROZ¹, VANESSA CAVALCANTE-SILVA², VÂNIA D'ALMEIDA², GIFONE ROCHA³, FLÁVIA LOPES⁴, <u>RONEY</u> COIMBRA¹*

^{*}clarissalcc@gmail.com

^{*}marcos.campolongo@gmail.com

^{*}nuriacampora@yahoo.com.ar

^{*}anacarol.pcampos@gmail.com

^{*}daniel.carrettiero@ufabc.edu.br

¹UNIVERSIDADE FEDERAL DO CEARA;

^{*}nataliacbmatos@gmail.com

^{*}rolacastillo@gmail.com

^{*}gabrielachiarotto@gmail.com

¹ NEUROGENÔMICA, CENTRO DE PESQUISA RENÉ RACHOU (CPQRR), FUNDAÇÃO OSWALDO CRUZ (FIOCRUZ); ²DEPARTAMENTO DE PSICOBIOLOGIA, ESCOLA PAULISTA DE MEDICINA, UNIFESP-EPM; ³ LABORATÓRIO DE PESQUISA EM BACTERIOLOGIA E DEPARTAMENTOS DE PATOLOGIA E MEDICINA, UFMG; ⁴ FACULDADE DE MEDICINA VETERINÁRIA, UNIVERSIDADE ESTADUAL DE SÃO PAULO (UNESP, ARAÇATUBA).

S1P121. SYNTHETIC CHALCONES WITH ACTIVITY FOR CNS TARGETS RELATED TO ANXIETY, DEPRESSION, NEURODEGENERATIVE DISEASES AND PAIN

NATALIA COLETTIS^{1*}, JOSEFINA HIGGS¹, CRISTINA WASOWSKI¹, CAROLINA MARCUCCI¹, DAMIJAN KNEZ², STANISLAV GOBEC², MARIEL MARDE¹

¹ INSTITUTO DE QUÍMICA Y FISICOQUÍMICA BIOLÓGICAS IQUIFIB, FFYB UBA-CONICET, ARGENTINA; ² FACULTY OF PHARMACY, UNIVERSITY OF LJUBLJANA, SLOVENIA.

\$1P122. INFLAMMATORY PROFILE IN HE HIPPOCAMPUS MDX MICE

CLARISSA COMIM¹*, CLARISSA COMIM¹, PRISCILA RIBEIRO¹, LILIAN FAUSTO¹, VIVIANE FREIBERGER¹, LETÍCIA VENTURA¹, SILVIA SIVIERO¹, PATRÍCIA REIS²

¹ UNIVERSITY OF SOUTH SANTA CATARINA; ²FUNDAÇÃO OSWALDO CRUZ

S1P123. DECREASED TBS-DEPENDENT LONG TERM POTENTIATION AND AMPA RECEPTORS PHOSPHORYLATION IN A MURINE MODEL OF ADHD INDUCED BY PRENATAL NICOTINE EXPOSURE

<u>DARWIN CONTRERAS</u>1*, CLAUDIA CARVALLO¹, GONZALO UGARTE¹, RICARDO DELGADO¹, MARC ZEISE², MICHELLE ALBORNOZ¹, JORGE KLAGGES¹, CARLOS ROZAS¹, BERNARDO MORALES¹

¹ LAB. DE NEUROCIENCIA, FACULTAD DE QUÍIMICA Y BIOLOGÍA, UNIVERSIDAD DE SANTIAGO DE CHILE; ⁶ ESCUELA DE PSICOLOGÍA, UNIVERSIDAD DE SANTIAGO DE CHILE

S1P124. MOTOR NEURON LOSS AT THE SPINAL CORD IS ASSOCIATED TO MUSCLE ATROPHY IN BACHD MOUSE MODEL FOR HUNTINGTON'S DISEASE

PRISCILA APARECIDA COSTA VALADÃO^{1*}, BÁRBARA CAMPOS ARAGÃO¹, MATHEUS PROENÇA S. MAGALHÃES GOMES¹, JÉSSICA NEVES ANDRADE¹, GISELE FOUREAUX¹, JULLIANE VASCONCELOS JOVIANO-SANTOS¹, JOSÉ CARLOS NOGUEIRA¹, FABÍOLA MARA RIBEIRO¹, JUAN CARLOS TAPIA², CRISTINA GUATIMOSIM¹

¹ DEPARTAMENTO DE MORFOLOGIA, UNIVERSIDADE FEDERAL DE MINAS GERAIS, BELO HORIZONTE — BRASIL; ²DEPARTMENT OF BIOMEDICAL SCIENCES, UNIVERSITY OF TALCA, TALCA, CHILE.

S1P125. THE MOLECULAR MOTOR KIF5B MEDIATES THE FUNCTION OF DOPAMINE D2 RECEPTORS AND IS NECESSARY FOR THE CROSS TALK BETWEEN DIRECT AND INDIRECT NIGROSTRIATAL PATHWAY IN LOCOMOTION

<u>LUCAS CROMBERG</u>^{1*}, TRINIDAD MM SAEZ^{1,2}, MATÍAS ALLOATTI¹, JUAN FERRARIO³, TOMÁS FALZONE^{1,2}

¹ INSTITUTO DE BIOLOGÍA CELULAR Y NEUROCIENCIAS PROF. E. DE ROBERTIS; ²INSTITUTO DE BIOLOGÍA Y MEDICINA EXPERIMENTAL; ³ INSTITUTO DE INVESTIGACIONES FARMACOLÓGICAS.

S1P126. CANNABINOID SYSTEM IN AN INSULIN RESISTANCE-RELATED NEURODEGENERATION MODEL

<u>FERNANDA CRUNFLI</u>1*, TALITA VRECHI¹, ANDRESSA COSTA¹, ANDRÉA TORRÃO¹

¹ DEPT. PHYSIOLOGY AND BIOPHYSICS, INSTITUTE OF BIOMEDICAL SCIENCES, UNIVERSITY OF SÃO PAULO;

S1P127. INWARDLY RECTIFYING POTASSIUM CHANNELS CONTRIBUTE TO AMYLOID BETA OLIGOMER-RELATE NEUROTOXICITY

JOSÉ-MIGUEL CUAXOSPA-BLANCAS^{1*}, UBALDO GARCÍA^{1,2,3}
¹ SOCIEDAD MEXICANA DE CIENCIAS FISIOLÓGICAS; ²BIOPHYSICAL SOCIETY; ³SOCIETY FOR NEUROSCIENCE.

S1P128. SPONTANEOUSLY HYPERTENSIVE RATS (SHR) ARE MORE RESISTANT THAN WISTAR RATS TO A RESERPINE-INDUCED PROGRESSIVE MODEL OF PARKINSON'S DISEASE

<u>DÉBORA CUNHA</u>^{1*}, ANDERSON LEÃO¹, ALVARO LIMA¹, VINICIUS BIONI¹, MURILO PAIVA-SANTOS¹, LEONARDO LOPES-SILVA¹, MARCELA SANTOS¹, YWLLIANE MEURER², LAURA OLIVATTO¹, IGOR VASCONCELOS¹, REGINA H. SILVA¹

¹ FEDERAL UNIVERSITY OF SÃO PAULO; ² FEDERAL UNIVERSITY OF RIO GRANDE DO NORTE.

^{*}roney.s.coimbra@cpqrr.fiocruz.br

^{*}nataliacolettis@gmail.com

^{*}clarissamc@gmail.com

^{*}darwin.contrerasp@usach.cl

^{*}pricaufmg@yahoo.com.br

^{*}lucascrom@yahoo.com.ar

^{*}fernandacrunfli@gmail.com

^{*}miquelcuaxospa@amail.com

^{*}deboragomesbio@gmail.com

\$1P129. LOOKING FOR A GENETIC MOLECULAR SIGNATURE FOR ALZHEIMER'S DISEASE IN ARGENTINA

MARIA CAROLINA DALMASSO¹*, LAURA ACION², NATIVIDAD OLIVAR³, CAROLINA MUCHNICK⁴, DIANA KELMANSKY², LUIS IGNACIO BRUSCO³, LAURA MORELLI¹

¹ FUNDACION INSTITUTO LELOIR-IIBBA-CONICET; ² INSTITUTO DEL CALCULO-UBA; ³ CENECON-UBA; ⁴ INSTITUTO DE INV. MEDICAS A. LANARI-UBA.

S1P130. TAU DYSFUNCTION IN THE BASAL GANGLIA OF A MOUSE MODEL OF TAUOPATHY RELATED TO PSP

ANA DAMIANICH^{1*}, MANUELA SARTOR², SONIA ESPINDOLA¹, IRENE TARAVINI², OSCAR GERSHANIK³, JUAN FERRARIO³, M. ELENA AVALE¹

¹INGEBI - CONICET; ²UNER - CONICET; ³ININFA — UBA- CONICET. *adamianich@gmail.com

S1P131. MODULATION OF P-ERK AND P-AKT ACTIVITY IN EXPERIMENTAL MODEL OF PARKINSON'S DISEASE INDUCED BY 6-OHDA ANA CAROLINA DE MORAES NEVES FERNANDES^{1*}, CLAUDIO ALBERTO SERFATY¹, PAULA CAMPELLO-COSTA¹, ADRIANA DA

CUNHA FARIA MELIBEU¹¹ PROGRAMA DE PÓS GRADUAÇÃO EM NEUROCIÊNCIAS UFF NITERÓI.

S1P132. BENEFITS OF ENVIRONMENTAL ENRICHMENT ON BLOOD BRAIN BARRIER DISRUPTION INDUCED BY NEONATAL HYPOXIA-ISCHEMIA IN RATS

HELOISA DEOLA CONFORTIM¹*, RAMIRO DIAZ¹, BRUNA FERRARY DENIZ¹, PATRÍCIA MAIDANA MIGUEL¹, MONIQUE CULTURATO PADILHA MENDONÇA², MARIA ALICE DA CRUZ HOFLING², LENIR ORLANDI PEREIRA SILVA¹

¹ UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL; ² UNIVERSIDADE ESTADUAL DE CAMPINAS.

\$1P133. SERUM IGG FROM ALS PATIENTS INDUCED NEURONAL UPTAKE AND MICROGLIA ACTIVATION IN SPINAL CORD CULTURES

GIULIANA C DI MAURO^{1*}, BRUNO DE AMBROSI², OSVALDO D UCHITEL¹, GRACIELA L MAZZONE^{3,1}

¹INSTITUTO DE FISIOLOGÍA, BIOLOGÍA MOLECULAR Y NEUROCIENCIAS (IFIBYNE-UBA-CONICET); ² FUNDACIÓN PARA LA LUCHA CONTRA LAS ENFERMEDADES NEUROLÓGICAS DE LA INFANCIA (FLENI); ³ LABORATORIOS DE INVESTIGACIÓN APLICADA EN NEUROCIENCIAS

(LIAN-FLENI-CONICET)

*giulidimauro@gmail.com

S1P134. INHIBITION OF DOPAMINE UPTAKE AS AN ANIMAL MODEL OF MANIA: BEHAVIOURAL, PHARMACOLOGICAL AND NEUROIMMUNOLOGICAL CHARACTERIZATION

<u>JULIANA DOS REIS BASTOS</u>^{1*}, KATHERINNE MANRIQUE PERICO², ANTÔNIO LÚCIO TEIXEIRA JÚNIOR^{4,5}, FABIANA SIMÃO MACHADO³, ALINE SILVA DE MIRANDA^{6,7}, FABRÍCIO DE ARAÚJO MOREIRA¹

¹ DEPARTMENT OF PHARMACOLOGY, UFMG,² DEPARTMENT OF PHARMACOLOGY, ICB, UFMG; ³ DEPARTMENT OF BIOCHEMISTRY AND IMMUNOLOGY, ICB, UFMG; ⁴INTERDISCIPLINARY LABORATORY OF MEDICAL; INVESTIGATION, SCHOOL OF MEDICINE, UFMG; ⁵DEPARTMENT OF PSYCHIATRY AND BEHAVIORAL SCIENCES, UNIVERSITY OF TEXAS; ⁶ DEPARTMENT OF MORPHOLOGY, ICB, UFMG; ⁷DEPARTMENT OF PSYCHIATRY AND BEHAVIORAL SCIENCES, UNIVERSITY OF TEXAS.

MOLECULAR AND CELLULAR NEUROBIOLOGY

S1P135. PLASTICITY OF NEURON-PERICYTE INTERACTION MEDIATED BY P2X7 RECEPTORS AND PANNEXIN1 CHANNELS

SANDRA MAI¹, JUAN IRIGOYEN¹, EUGENIA ISASI¹.², SILVIA OLIVERA-BRAVO³, <u>VERÓNICA ABUDARA</u>¹*

¹ DPTO FISIOLOGÍA, FACULTAD MEDICINA (UNIVERSIDAD DE LA REPÚBLICA, MVD-URUGUAY); ² DPTO HISTOLOGÍA, FACULTAD MEDICINA (UNIVERSIDAD DE LA REPÚBLICA, MVD-URUGUAY); ³INSTITUTO DE INVESTIGACIONES BIOLÓGICAS CLEMENTE ESTABLE, MVD-URUGUAY:

S1P136. STEREOLOGIC STUDY OF THE TEMPORAL EXPRESSION OF C-FOS IN THE BRAIN OF RATS <u>STEFANI ALVES MAGALHÃES</u>^{1,2*}, VANESSA NOVAES BARROS², LUIZ EUGÊNIO ARAÚJO DE MORAES MELLO^{1,2}

¹ DEPARTMENT OF PSICHOBIOLOGY, UNIVERSIDADE FEDERAL DE SÃO PAULO, SÃO PAULO, SP, BRAZIL; ²DEPARTMENT OF PHYSIOLOGY, UNIVERSIDADE FEDERAL DE SÃO PAULO, SÃO PAULO, SP, BRAZIL.

S1P137. OUABAIN IS A NEUROIMUNOMODULATOR LEANDRO ARAÚJO-MARTINS^{1*}, ELIZABETH GIESTAL-DE-ARAUJO¹

¹ UNIVERSIDADE FEDERAL FLUMINENSE:

^{*}cdalmasso@leloir.org.ar

^{*}anacarolina.mnf@gmail.com

^{*}heloisadconfortim@gmail.com

^{*}julianar.bastos@yahoo.com.br

^{*}vabudara@gmail.com

^{*}stemaga@hotmail.com

^{*}leoaraujo bio@hotmail.com

S1P138. ANGIOTENSIN II AT2 RECEPTOR LOCALIZATION AND MRNAS EXPRESSION IN THE P15 RAT INFERIOR COLLICULUS

MARIA ELENA ARCE^{1,2*}, SUSANA INES SANCHEZ^{1,2}, MARIA MILAGROS CORREA^{1,2}, LUCIA BEATRIZ FUENTES^{1,2}, GLADYS MARIA CIUFFO^{1,2}

¹ UNIVERSIDAD NACIONAL DE SAN LUIS: ² IMIBIO-SL CONICET.

\$1P139. BRAIN METABOLIC AND MORPHOLOGICAL ALTERATIONS IN A RAT MODEL OF HEPATIC ENCEPHALOPATHY INDUCED BY SUBTOTAL HEPATECTOMY

PEDRO AREND GUAZZELLI^{1*}, GIORDANO CITTOLIN SANTOS¹, YASMINE NONOSE¹, MATEUS GRINGS¹, LEO MEIRA MARTINS¹, GABRIEL LAZZAROTTO¹, SEVENTH AUTHOR, DIOGO ONOFRE GOMES DE SOUZA¹, ADRIANO DE ASSIS¹

¹ UFRGS

\$1P140. ROLE OF OXIDATIVE STRESS ON BLOOD BRAIN BARRIER PERMEABILITY

NATHALIE ARNAL¹*, MARLENE ZUBILLAGA¹, EUGENIA FALOMIR L¹

¹ INIBIOLP:

S1P141. PARTIAL RESTITUTION OF THE LIGHT TRANSDUCTION SIGNALING CASCADE IN INSIDE-OUT PATCHES EXCISED FROM THE PHOTOSENSITIVE MEMBRANE OF DROSOPHILA PHOTORECEPTORS RICARDO DELGADO¹, LUCIE BASTIN-HELINE¹, JUAN BACIGALUPO¹*

¹ UNIVERSIDAD DE CHILE,

S1P142. GLUCOSE RELEASED TO THE MUCUS OF THE OLFACTORY EPITHELIUM BY THE SUSTENTACULAR CELLS IS ESSENTIAL TO POWER ODOR TRANSDUCTION IN OLFACTORY CILIA PABLO VILLAR¹², RICARDO DELGADO¹, CECILIA VERGARA¹, JUAN G. REYES², JUAN BACIGALUPO^{1*}

¹ UNIVERSIDAD DE CHILE; ² UNIVERSIDAD CATÓLICA DE VALPARAÍSO. *bacigalu@uchile.cl

S1P143. MESENCHYMAL STEM CELLS CONDITIONED MEDIUM PROTECTS ASTROCYTES FROM SCRATCH ASSAY IN VITRO INJURY ELIANA BAEZ^{1*}, JANNETH GONZALEZ¹, GEORGE BARRETO^{1,2}

\$1P144. SYNAPTIC CHANGES INDUCED BY GLUN2A KNOCKDOWN

CECILIA VAZQUEZ¹, MAGALI CERCATO¹, ALEJANDRA AGUIRRE¹, ANNA SALVETTI², ALBERTO L. EPSTEIN³, DIANA JERUSALINSKY¹, M. VERONICA BAEZ¹*

¹ INSTITUTO DE BIOLOGIA CELULAR Y NEUROCIENCIA (IBCN) CONICET-UBA; ²ENS-CIRI, LYON, FRANCE; ³UVSQ, VERSAILLES, FRANCE.

S1P145. BRAIN CELL COMPOSITION ANALYSIS THROUGH THE ISOTROPIC FRACTIONATOR METHOD IN A MURINE EXPERIMENT OF MATERNAL MALNUTRITION

<u>JIMENA BARBEITO ANDRÉS</u>^{1*}, EMILY CASTRO², VALERIA BERNAL³, BENEDIKT HALLGRÍMSSON⁴, ROBERTO LENT², PAULA GONZALEZ¹

¹ IGEVET. CONICET-UNLP; ²LABORATÓRIO DE NEUROPLASTICIDADE - ICB - UFRJ; ³DIVISIÓN ANTROPOLOGÍA, MUSEO LA PLATA UNLP. CONICET; ⁴DEPARTMENT OF CELL BIOLOGY AND ANATOMY, CUMMING SCHOOL OF MEDICINE. UNIVERSITY OF CALGARY.

\$1P146. EXPRESSION OF VOLTAGE-ACTIVATED POTASSIUM KCNQ CHANNELS IN MOUSE EYE ESTEBAN PABLO BARILA^{1*}, OLGA LORENA GERMAN^{1,2}, CAMILA CARIGNANO¹, GUILLERMO SPITZMAUL^{1,2}

¹ INSTITUTO DE INVESTIGACIONES BIOQUÍMICAS DE BAHÍA BLANCA (INIBIBB); ²UNIVERSIDAD NACIONAL DEL SUR

S1P147. MECHANISTIC BASIS OF THE ROLE OF NEDD8 ON EARLY NEURONAL DEVELOPMENT RAQUEL BECERRA1*, MARTÍN BORDENAVE5, SEBASTIAN GIUSTI¹, ANNETTE VOLG², CLAUDIA VERCELLI³, ALFREDO CÁCERES⁴, FERNANDO STEFANI⁵, DAMIÁN REFOJO¹

¹ INSTITUTO DE INVESTIGACIÓN EN BIOMEDICINA DE BUENOS AIRES-MPSP; ²GENENTECH; ³INSTITUTO DE INVESTIGACIÓN EN BIOMEDICINA DE BUENOS AIRES-MPSP; ⁴INSTITUTO DE INVESTIGACIÓN MÉDICA MERCEDES Y MARTÍN FERREYRA; ⁵CENTRO DE INVESTIGACIONES EN BIONANOCIENCIAS

S1P148. ALTERED GENE EXPRESSION IN FEMALE MICE HIPPOCAMPUS CORRELATES WITH DEPRESSIVE-LIKE BEHAVIOR EVOKED BY EARLY PROTEIN MALNUTRITION

^{*}earce.arce7@gmail.com

^{*}paquazzelli@gmail.com

^{*}tatiarnal@gmail.com

^{*}baciaalu@uchile.cl

¹ PONTIFICIA UNIVERSIDAD JAVERIANA, BOGOTÁ-COLOMBIA; ²UNIVERSIDAD AUTÓNOMA DE CHILE, SANTIAGO, CHILE.

^{*}baezeli@gmail.com

^{*}mveritobaez@gmail.com

^{*}barbeitoj@gmail.com

^{*}ebarila@inibibb-conicet.gob.ar

^{*}raquelmcs88@gmail.com

LAURA M. BELLUSCIO^{12*}, ESTEFANÍA A. FESSER¹, NICOLÁS PREGI¹.², EDUARDO T. CÁNEPA¹.²

¹ LABORATORIO DE NEUROEPIGENÉTICA, DTO DE QUÍMICA BIOLÓGICA, FCEYN, UBA; ²CONSEJO NACIONAL DE INVESTIGACIONES CIENTÍFICAS Y TÉCNICAS, ARGENTINA

S1P149. CONSTANT LOW LED LIGHT EXPOSURE EFFECTS IN RETINAL NEURONS

MARIA MERCEDES BENEDETTO^{1*}, MARIA LUZ QUINTEROS-QUINTANA², ANA DE PAUL³, MARIO EDUARDO GUIDO¹, MARIA ANA CONTIN¹

¹ CIQUIBIC-CONICET, DEPARTAMENTO DE QUÍMICA BIOLÓGICA-FACULTAD DE CIENCIAS QUÍMICAS - UNC; ²FACULTAD DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES - UNC; ³CENTRO DE MICROSCOPÍA ELECTRÓNICA, INICSA-CONICET, FACULTAD DE CIENCIAS MÉDICAS-UNC.

\$1P150. FUNCTIONAL ANALYSIS OF THE HUMAN ACCELERATED ELEMENTS GROUPED IN THE LOCUS OF RBFOX1

LARA BERASAIN1*, LUCÍA F. FRANCHINI1

¹ INSTITUTO DE INGENIERÍA GENÉTICA Y BIOLOGÍA MOLECULAR (INGEBI)

\$1P151. ROLE OF MAP6D1 IN GOLGI APPARATUS ORGANIZATION AND NEURONAL POLARITY

DANIELA SAUCEDO¹, JOSEFINA MARTIN¹, SYLVIE GORY-FAURɲ, GONZALO QUASSOLLO¹, ANNIE ANDRIEUX², MARIANO BISBAL¹*

S1P152. IN VIVO ASSESSMENT OF CHLORIDE LEVELS AND PH IN LAYER 2/3 CORTICAL NEURONS IMPLEMENTING THE GENETICALLY ENCODED RATIOMETRIC INDICATORS SUPERCLOMELEON AND SUPERECLIPTIC PHLUORIN

<u>JUAN CARLOS BOFFI</u>1*, JOHANNES KNABBE¹, MICHAELA KAISER¹, THOMAS KUNER¹

¹ INSTITUTE FOR ANATOMY AND CELL BIOLOGY, HEIDELBERG UNIVERSITY, GERMANY.

S1P153. INFLEXIBLE ETHANOL INTAKE: A PUTATIVE LINK WITH THE LRRK2 PATHWAY

DANIEL ALMEIDA DA SILVA E SILVA¹, ANDREA FROZINO RIBEIRO¹, SAMARA DAMASCENO¹, ROSELI BOERNGEN-

LACERDA², DIEGO CORREIA¹², <u>ANA LÚCIA BRUNIALTI</u> GODARD^{1*}

¹UFMG; ²UFPR.

S1P154. GRANULE CELLS BORN IN MIDDLE-AGED MICE PRESENT HIGH LEVELS OF PLASTICITY

KARINA ANDREA BÜTTNER¹*, JESSICA NATALÍ SULKES-CUEVAS¹, ALEJANDRO FABIAN SCHINDER¹, MARIELA FERNANDA TRINCHERO¹

¹ LABORATORIO DE PLASTICIDAD NEURONAL, INSTITUTO LELOIR (IIBBA — CONICET), BUENOS AIRES.

S1P155. CHOLESTEROL EFFECTS ON MUSCLE-TYPE NICOTINIC ACETYLCHOLINE RECEPTOR DISTRIBUTION AND DYNAMICS STUDIED WITH SINGLE-MOLECULE STORM MICROSCOPY AND BAYESIAN ANALYSIS

PABLO A. CAMINO¹*, ALEJO MOSQUEIRA¹, PABLO A. CAMINO¹, FRANCISCO SÁNCHEZ¹, FRANCISCO J. BARRANTES¹

¹LAB. MOLEC. NEUROBIOLOGY, BIOMED, UCA-CONICET;

S1P156. HUMAN-SPECIFIC EVOLUTION OF THE TRANSCRIPTIONAL REGULATION OF FOXP2

<u>ALFREDO LEANDRO CAPORALE</u>**, LUCÍA FLORENCIA FRANCHINI*

¹INGEBI.

S1P157. PKA-DEPENDENT SODIUM-COUPLED NEUTRAL AMINO ACID TRANSPORTER 2 PHOSPHORYLATION

ADRIÁN CHÁVEZ-CANO^{1*}, EDGAR RODRÍGUEZ-GARCÍA¹, CARLOS HUMBERTO MARTÍNEZ-PANIAGUA², FRANCISCO ZAFRA³, CECILIO GIMÉNEZ³, ARTURO ORTEGA², ANGELINA RODRÍGUEZ¹

¹FACULTAD DE QUÍMICA, UNIVERSIDAD AUTÓNOMA DE QUERÉTARO. MÉXICO; ² DEPARTAMENTO DE TOXICOLOGÍA, CINVESTAV, CIUDAD DE MÉXICO; ³CENTRO DE BIOLOGÍA MOLECULAR, SEVERO OCHOA. MADRID, ESPAÑA.

S1P158. REACTIVE ASTROGLIOSIS PROPAGATION IN A MODEL OF IN VITRO SCRATCH INJURY

<u>BELEN CIERI</u>1*, VERONICA MURTA¹, GERARDO ROSCISZEWSKI¹, VANESA CADENA¹, JERONIMO LUKIN¹, A. JAVIER RAMOS¹, JERONIMO AUZMENDI¹

¹ IBCN UBA-CONICET, FACULTAD DE MEDICINA, UNIVERSIDAD DE BUENOS AIRES.

^{*}lbelluscio@gmail.com

^{*}benedettomm@gmail.com

^{*}laraberas@gmail.com

¹INIMEC-CONICET-UNC; ²INSERM-CEA.

^{*}mbisbal@immf.uncor.edu

^{*}boffi@ana.uni-heidelberg.de

^{*}brunialt@ufmq.br

^{*}karina.buttner@gmail.com

^{*}rtfjb1@qmail.com

^{*}alcaporale89@gmail.com

^{*}ibtedgar rdz@hotmail.com

^{*}cieribelen@gmail.com

S1P159. CANAVALIA BRASILIENSIS (CONBR) LECTIN REDUCES NOCICEPTIVE BEHAVIOR EVOCATED BY GLUTAMATERGIC AGONISTS NMDA AND AMPA AT SPINAL CORD LEVEL

<u>IGOR COELHO</u>^{1,2,3*}, STELLA JUNQUEIRA^{2,5,3}, RÓLI SIMÕES^{10,7,3}, KYRIA NASCIMENTO^{8,1,9}, ANA MARIA ASSREUY^{10,11,9}, BENILDO CAVADA^{9,1,9}, ADAIR ROBERTO SANTOS^{10,7,3}, RODRIGO LEAL^{2,1,3}

¹ DEPARTAMENTO DE BIOQUÍMICA; ²LABORATÓRIO DE NEUROQUÍMICA; ³UNIVERSIDADE FEDERAL DE SANTA CATARINA; ⁴LABORATÓRIO DE INVESTIGAÇÃO NEUROQUÍMICA

SDEPARTAMENTO DE FARMACOLOGIA; 6 LABORATÓRIO DE NEUROBIOLOGIA DA DOR E INFLAMAÇÃO; 7 DEPARTAMENTO DE CIÊNCIAS FISIOLÓGICAS; 8 LABORATÓRIO DE MOLÉCULAS BIOLOGICAMENTE ATIVAS (BIOMOL-LAB); 9 UNIVERSIDADE FEDERAL DO CEARÁ; 10 LABORATÓRIO DE FISIO-FARMACOLOGIA DA INFLAMAÇÃO (LAFFIN); 11 INSTITUTO DE CIÊNCIAS BIOLÓGICAS.

\$1P160. SIGNALLING MECHANISM IN INJURED ASTROCYTES ACTIVATED BY NEUROTROPHINS DANIEL MASCO¹, ANDREA CRAGNOLINI¹*

¹ INSTITUTO DE INVESTIGACIONES BIOLÓGICAS Y TECNOLÓGICAS, CONICET, UNC.

S1P161. NEURAL STEM CELLS DIFFERENTIATION AND OUTGROWTH MEDIATED BY TROPHIC FACTORS ACTION INSIDE A 3D BIOASSAY OF COLLAGEN GEL ANA MARIA CRUZ GAITAN^{1,2*}, JIMENA PIA FERNANDEZ^{1,2}, GONZALO SPELZINI^{3,4}, GABRIEL SCICOLONE^{3,4,2}, NESTOR GABRIEL CARRI^{1,2}

¹ INSTITUTO MULTIDISCIPLINARIO DEL BIOLOGIA CELULAR FACULTAD DE CIENCIAS MEDICAS, UNIVERSIDAD NACIONAL DE LA PLATA; ²CONSEJO NACIONAL DE INVESTIGACIONES CIENTÍFICAS Y TÉCNICAS; ³ INSTITUTO DE BIOLOGIA CELULAR Y NEUROCIENCIA "PROF. DE ROBERTIS"; ⁴FACULTAD DE MEDICINA - UNIVERSIDAD DE BUIFNOS AIRFS.

S1P162. BLOCK OF EXPRESSION OF THE G-PROTEIN GAMMA-5 SUBUNIT SELECTIVELY DISRUPTS DE MUSCARINIC M4-MEDIATED INHIBITION OF THE N-TYPE CALCIUM CURRENT IN RAT SYMPATHETIC NEURONS

<u>HUMBERTO CRUZBLANCA</u>1*, DIANA SALAZAR-ENRÍQUEZ¹, ELENA CASTRO-RODRÍGUEZ¹, DAVID ELIAS-VIÑAS¹ **\$1P163.** EVALUATION OF MITOCHONDRIAL FUNCTION IN STRIATUM AND SUBSTANTIA NIGRA FROM ATRAZINE-TREATED ANIMALS

<u>ANALIA CZERNICZYNIEC</u>1*, ANALIA KARADAYIAN¹, JUANITA BUSTAMANTE², SILVIA LORES-ARNAIZ¹

¹ INSTITUTO DE BIOQUÍMICA Y MEDICINA MOLECULAR (IBIMOL), UBA-CONICET, BS AS, ARGENTINA;²CAECIHS, UAI, BS AS, ARGENTINA. *aczerni@ffvb.uba.ar

S1P164. CALBINDIN IMMUNOREACTIVITY OF GABAERGIC INTERNEURONS LOCALIZED IN TEMPORAL NEOCORTEX OF PATIENTS WITH RESISTANT TEMPORAL LOBE EPILEPSY AND CO-MORBID DEPRESSION

ANDRÉS ACUÑA¹², HECTOR KONOPKA³, ERICA ESCOBAR³, PABLO SEOANE², SILVIA KOCHEN², LUCIANA D'ALESSIO^{21*}

¹ UNIVERSIDAD DE BUENOS AIRES, IBCN-CONICET, BUENOS AIRES, ARGENTINA; ²EPILEPSY CENTER, RAMOS MEJÍA AND EL CRUCE HOSPITAL, ENYS- CONICET, ARGENTINA; ³HOSPITAL MOYANO, NEUROPATHOLOGY DEPARTMENT, BUENOS AIRES, ARGENTINA.

S1P165. COMPARATIVE STUDY OF PERIPHERAL AXONS REGENERATION IN ACUTE PERIODS AFTER CRUSH OR TRANSECTION INJURY.

MARIA CAROLINA BARBOSA DA SILVA^{1*}, RAQUEL MARIA PEREIRA CAMPOS¹, VICTOR TÚLIO RIBEIRO DE RESENDE¹

1 IBCCF-UFFJ.

S1P166. OUABAIN MODULATES IL-6 LEVELS IN MIXED RETINAL CELL CULTURES

MARIANA DE ALMEIDA AZEVEDO^{1*}, ELIZABETH GIESTAL DE ARAUJO¹

¹PROGRAMA DE PÓS-GRADUAÇÃO EM NEUROCIENCIAS, UNIVERSIDADE FEDERAL FLUMINENSE DEPARTAMENTO DE NEUROBIOLOGIA, UFF. NITEROI, RJ, BRASIL;

S1P167. FUNCTIONAL TEST OF PCDHB11, THE MOST HUMAN-SPECIFIC NEURONAL SURFACE PROTEIN

<u>GUILHERME</u> <u>DE FREITAS</u>^{1*}, RAFAELLA GONCALVES¹, MATTHIAS GRALLE¹

¹ FEDERAL UNIVERSITY OF RIO DE JANEIRO INSTITUTE OF MEDICAL BIOCHEMISTRY LEOPOLDO DE MEIS.

^{*}iaorscoelho@amail.com

^{*}acraqnolini1@yahoo.com.ar

^{*}anamaria 0723@hotmail.com

¹ UNIVERSIDAD DE COLIMA, CINVESTAV-IPN

^{*}cruzblan@ucol.mx

^{*}luladalessio@gmail.com

^{*}m.carolinabarbosa@yahoo.com.br

^{*}mari maa@hotmail.com

^{*}gbraga@bioqmed.ufrj.br

S1P168. SUBTYPE 3 METABOTROPIC GLUTAMATE RECEPTOR-INDUCED AMYLOID-BETA CLEARANCE BY GLIAL CELLS

DANIELA DURAND^{1*}, LILA CARNIGLIA¹, DELIA RAMÍREZ¹, JUAN TURATI¹, JULIETA SABA¹, CARLA CARUSO¹, MERCEDES LASAGA¹

¹ INBIOMED- INSTITUTO DE INVESTIGACIONES BIOMÉDICAS UBA-CONICET. FACULTAD DE MEDICINA, UBA.;

\$1P169. FUNCTIONAL RESCUE OF TAUOPATHY PHENOTYPES USING TAU RNA REPROGRAMMING IN VIVO

SONIA ESPINDOLA^{1*}, ANA DAMIANICH¹, MANUELA SARTOR¹, RODRIGO ALVAREZ², JUAN BELFORTE², ELENA AVALE¹

¹ INGEBI-CONICET; ²LABORATORIO DE FISIOLOGÍA DE CIRCUITOS NEURONALES - FACULTAD DE MEDICINA — UBA.

S1P170. EFFECT OF INHIBITING CYTOPLASMATIC HISTONE DEACETILASES (HDACS) ON BEHAVIOUR AND INHIBITORY AVOIDANCE MEMORY CONSOLIDATION, IN MICE

MARIA LAURA ESQUIVEL^{1*}, MARIA JULIA BUSSO¹, ANGELES SALLES¹, MARIANO BOCCIA², RAMIRO FREUDENTHAL¹

¹ LAB. NEUROBIOLOGIA DE LA MEMORIA, IFIBYNE, CONICET- FCEN, UBA. BS. AS., ARGENTINA; ² LABORATORIO DE NEUROFARMACOLOGIA DE PROCESOS DE MEMORIA, FFYB, UBA, BS. AS., ARGENTINA.

\$1P171. HIPPOCAMPAL MICRORNA-MRNA REGULATORY NETWORK IS AFFECTED BY PHYSICAL EXERCISE

<u>JANSEN FERNANDES</u>1*, ANDRE SCHWAMBACH VIEIRA², ISCIA TERESINHA LOPES CENDES², RICARDO MARIO ARIDA¹

¹UNIVERSIDADE FEDERAL DE SÃO PAULO (UNIFESP); ²UNIVERSIDADE ESTADUAL DE CAMPINAS (UNICAMP).

S1P172. NMGP-1, AN ORTHOLOG OF MAMMALIAN GPM6A, MODULATES LIFESPAN AND STRESS RECOVERY IN C. ELEGANS

ELIANA MAILEN FERNANDEZ^{1*}, YAMILA BELEN CUTRARO¹, MELISA CAROLINA MONTELEONE¹, CARLOS ALBERTO FRASH¹, MARCELA ADRIANA BROCCO¹.

¹ INSTITUTO DE INVESTIGACIONES BIOTECNOLÓGICAS "RODOLFO A. UGALDE" **S1P173.** PKC ACTIVATION INCREASES RETINAL GANGLION CELLS SUVIVAL: INVOLVEMENT OF TNF-A AND APOPTOSIS INHIBITION

ÉRICA CAMILA FERREIRA^{12*}, CARLOS GUSTAVO GARCIA¹², MARCELO COSSENZA¹², ELIZABETH GIESTAL-DE-ARAUJO¹², ALINE ARAUJO DOS SANTOS¹²

¹ PROGRAMA DE PÓS GRADUAÇÃO EM NEUROCIÊNCIAS, UNIVERSIDADE FEDERAL FLUMINENSE; ²DEPARTAMENTO DE FISIOLOGIA E FARMACOLOGIA- UFF, NITERÓI- RJ-BRAZIL.

S1P174. MITOCHONDRIAL BRAINSTEM DYSFUNCTION: THE LASTING EFFECTS OF A MATERNAL PROTEIN RESTRICTION IN THE BIOENERGETICS AND OXIDATIVE BALANCE

<u>DIORGINIS FERREIRA</u>^{1,2*}, ANDERSON PEDROZA², GLAUBER BRAZ, MARIANA FERNANDES², CLAUDIA LAGRANHA^{1,2}

¹ NEUROPSYCHIATRY AND BEHAVIOR SCIENCE GRADUATE PROGRAM, FEDERAL UNIVERSITY OF PERNAMBUCO; ²LABORATORY OF BIOCHEMISTRY AND EXERCISE BIOCHEMISTRY;

S1P175. ROLE OF PANNEXIN-1 IN STRUCTURAL PLASTICITY IN MOUSE HIPPOCAMPUS

<u>CAROLINA FLORES</u>1*, AGUSTÍN D. MARTÍNEZ², ALVARO O. ARDILES¹

¹ CENTRO INTERDISCIPLINARIO DE NEUROCIENCIA DE VALPARAÍSO, UNIVERSIDAD DE VALPARAÍSO; ²ESCUELA DE MEDICINA, UNIVERSIDAD DE VALPARAÍSO

S1P176. EXPRESSION OF IL-1B IN AN ANIMAL MODEL OF NEURODEGENERATION INDUCTED BY THE INTRACEREBROVENTRICULAR ADMINISTRATION OF STREPTOZOTOCIN

HENRIQUE G. C. SILVA^{1*}, GIORGEA M. A. SARAGOSSA¹, AMMIR Y. HELOU¹, FRANCYNE MACHADO¹, GABRIELLE PFUTZENREUTER¹, ANGELA Z. D. BIANCA¹, JOANA R. CORBELLINI¹

KENNY NIERADKA¹, ILTON DA SILVA². MÁRCIA R. PINCERATI²¹ SCIENTIFIC INITIATION PROGRAM OF UNIVERSIDADE POSITIVO — CURITIBA — BRASIL; ²BIOTECHNOLOGY MASTER'S PROGRAM AND BIOLOGICAL SCIENCES — UNIVERSIDADE POSITIVO — CURITIBA

S1P177. HIPPOCAMPAL NEURONS TREATED WITH NEUTRALIZING ANTIBODY AGAINST GLYCOPROTEIN M6A IMPAIRS SYNAPTOGENESIS AND SPINOGENESIS

MICAELA DAIANA GARCIA^{1*}, KARINA FORMOSO¹, CARLOS ALBERTO FRASCH¹, CAMILA SCORTICATI¹

^{*}ddurand@fmed.uba.ar

^{*}sonialespindola@gmail.com

^{*}lauesquivel27@hotmail.com

^{*}jansenf18@hotmail.com

^{*}emfernandez@iibintech.com.ar

^{*}ericacamilaferreira@gmail.com

^{*}diorginissoares@hotmail.com

^{*}carolina.flores.munoz@gmail.com

^{*}ikegulin@hotmail.com

¹ INSTITUTO DE INVESTIGACIONES BIOTECNOLÓGICAS (IIB-INTECH). CONICET-UNSAM

S1P178. A LOCAL NETWORK ACTIVATED BY EXPERIENCE ACCELERATES THE INTEGRATION OF NEW DENTATE GRANULE CELLS

<u>DAMIANA</u> P. <u>GIACOMINI</u>1*, DIEGO D. ALVAREZ¹, SUNG M. YANG¹, MARIELA F. TRINCHERO¹, SILVIO TEMPRANA¹, KARINA BÜTTNER¹, ALEJANDRO F. SCHINDER¹

¹ LABORATORIO DE PLASTICIDAD NEURONAL, INSTITUTO LELOIR, BUENOS AIRES, ARGENTINA.

Motor Systems

S1P179. SYNCHRONIZATION BETWEEN MOTOR AND AUDITORY CORTICES WHILE LISTENING TO SYLLABLES

M FLORENCIA ASSANEO1*, DAVID POEPPEL1,2

¹ NEW YORK UNIVERSITY; ²MAX PLANK INSTITUTE.

S1P180. MOTOR ADJUSTMENTS RATE AFTER FOCAL AND UNILATERAL CORTICOSPINAL TRACT LESION

<u>CARLOMAGNO BAHIA</u>1*, WALTHER CARVALHO12, JESSICA TEIXEIRA2, ANTONIO PEREIRA JUNIOR1

¹ LABORATORY OF NEUROPLASTICITY, HUJBB/ICS/FEDERAL UNIVERSITY OF PARA, BELEM, PA, BRAZIL; ² CESUPA, BELÉM, PA, BRAZIL.

\$1P181. CORTICAL ACTIVITY IS SYNCHRONIZED TO VOCAL BEHAVIOR IN CANARIES

SANTIAGO BOARI^{1*}, GABRIEL B. MINDLIN¹, ANA AMADOR¹

¹ PHYSICS DEPARTMENT AND IFIBA, FCEN, UNIVERSIDAD DE BUENOS
AIRES. BUENOS AIRES, ARGENTINA.

S1P182. LEARNING CONFLICTING INFORMATION IN THE MOTOR SYSTEM: FROM ANTEROGRADE INTERFERENCE TO FACILITATION

PEDRO CAFFARO^{1*}, SCOTT ALBERT², FLORENCIA JACOBACCI¹, JORGE VILLALTA¹, REZA SHADMEHR², VALERIA DELLA MAGGIORE¹

¹ IFIBIO, DEPARTMENT OF PHYSIOLOGY AND BIOPHYSICS, SCHOOL OF MEDICINE, UBA, ARGENTINA; DEPARTMENT OF BIOMEDICAL ENGINEERING, JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE, USA.

*pedro.caffaro@hotmail.com

\$1P183. BIOLOGICAL ROLES OF MICROGLIAL CELLS IN SPINAL CORD SYNAPTIC PLASTICITY AFTER PERIPHERAL NERVE INJURY

RAQUEL MARIA CAMPOS^{1*}, MARIA CAROLINA BARBOSA¹, VICTOR TÚLIO RIBEIRO-RESENDE¹

¹LAB. DE NEUROQUÍMICA - IBCCF - UFRJ;

\$1P184. MICROGLIA AND ASTROGLIA: KEY CLUES FOR MOTOR RESTAURATION?

<u>EUGENIA FALOMIR LOCKHART</u> *1,FRANCO JUAN CRUZ DOLCETTI¹, JULIETA MILLÁN¹, CLAUDIA BEATRIZ HEREÑU², MARÍA JOSÉ BELLINI¹

¹ INIBIOLP (UNLP, CCT- LA PLATA, CONICET); ²IFEC (UNC, CCT-CÓRDOBA, CONICET).

S1P185. LEARNING TWO CONSECUTIVE CONFLICTING TASKS INFLUENCES THE ABILITY TO LEARN FROM ERROR

FLORENCIA JACOBACCI^{1*}, PEDRO A. CAFFARO¹, SCOTT T. ALBERT², JORGE I. VILLALTA¹, REZA SHADMEHR², VALERIA DELLA MAGGIORE¹

¹IFIBIO HOUSSAY, DEPT. OF PHYSIOLOGY AND BIOPHYSICS, SCHOOL OF MEDICINE, UBA; ² LAB.FOR COMPUTATIONAL MOTOR CONTROL, DEPT. OF BIOMED. ENG., JOHNS HOPKINS SCHOOL OF MEDICINE.

Neural Circuit Physiology

\$1P186. THE INCERTO-HYPOTHALAMIC AREA PROJECTIONS IN FEMALE MICE

<u>ÉRICA OLMOS BARBEIRO</u>1*, JÉSSICA BETETO SILVA¹, GIOVANNE BARONI DINIZ¹, LUCIANE VALÉRIA SITA¹

¹ LABORATORY OF CHEMICAL NEUROANATOMY, DEPARTMENT OF ANATOMY, INSTITUTE OF BIOMEDICAL SCIENC

S1P187. THETA RHYTHM GENERATION IN LATERAL HABENULA AND ITS RELATION WITH HIPPOCAMPAL THETA

<u>NICOLÁS IVÁN BERTONE</u>^{1,2*}, JOAQUÍN PIRIZ¹², MARIANO BELLUSCIO^{1,2}

¹ UNIVERSIDAD DE BUENOS AIRES, FACULTAD DE MEDICINA, DEPARTAMENTO DE FISIOLOGÍA; ²INSTITUTO DE FISIOLOGÍA Y BIOFÍSICA (IFIBIO) BERNARDO HOUSSAY, (UBA - CONICET)

^{*}mgarcia@iibintech.com.ar

^{*}dqiacomini@leloir.org.ar

^{*}ma185@nyu.edu

^{*}carlomagnobahia@gmail.com

^{*}santiagoboari@gmail.com

^{*}camposrmp@gmail.com

^{*}eugefalomir@gmail.com

^{*}florenciajacobacci@gmail.com

^{*}ericaolmos@gmail.com

^{*}nbertonec@gmail.com

\$1P188. PROPERTIES OF THE CORTICOSTRIATAL LONG TERM DEPRESSION INDUCED BY CORTICAL HIGH FREQUENCY STIMULATION IN VIVO

BARBARA BRAZ^{1*}, GREGORIO GALIÑANES¹, JUAN BELFORTE¹, GUSTAVO MURER¹

GRUPO DE NEUROCIENCIA DE SISTEMAS, IFIBIO "HOUSSAY", CONICET-UBA

S1P189. HIGH FAT INTAKE IN A MOUSE BINGE EATING MODEL MAY INVOLVE CONSTITUTIVE GHRELIN RECEPTOR SIGNALING

MARÍA PAULA CORNEJO^{1*}, SPRING VALDIVIA¹, GUADALUPE GARCÍA ROMERO¹, PABLO NICOLÁS DE FRANCESCO¹, MARÍA FLORENCIA ANDREOLI², GISELA LAZZARINO², MIRTA REYNALDO¹, GUILLERMO RAMOS², MARIO PERELLÓ ¹

¹LABORATORY OF NEUROPHYSIOLOGY, IMBICE (CONICET-CIC-UNLP); ²FAC DE BIOOCA Y CS BIOLÓGICAS. UNL E ISAL (UNL-CONICET)

\$1P190. DISTRIBUTION OF HYPOCRETINERGIC FIBERS IN MONOAMINERGIC NUCLEI OF THE CAT'S MIDBRAIN

ALICIA COSTA1*, PABLO TORTEROLO1

¹LABORATORIO DE NEUROBIOLOGÍA DEL SUEÑO. DEPARTAMENTO DE FISIOLOGÍA. FACULTAD DE MEDICINA

S1P191. NEUROANATOMICAL AND FUNCTIONAL CHARACTERIZATION OF GHRELIN RECEPTOR-EXPRESSING NEURONS OF THE NUCLEUS OF THE SOLITARY TRACT IN A TRANSGENIC MOUSE MODEL PABLO NICOLÁS DE FRANCESCO¹*, PAULA CORNEJO¹, VOLKAN KOǹ, MARÍA EUGENIA PADÍN¹, GUADALUPE GARCÍA ROMERO¹, MIRTA REYNALDO, MARIO PERELLÓ¹

¹ LABORATORY OF NEUROPHYSIOLOGY, (IMBICE) [UNLP, CIC-PBA, CONICET], LA PLATA, ARGENTINA

S1P192. CHANCES IN THE POWER AMPLITUDE CAUSED VISUAL EVOKED POTENCIAL EEG BANDS AFTER ADAPTATION IN LUMINACE FLICKER

TEREZINHA MEDEIROS DE LOUREIRO^{1*}, GIVAGO SOUZA^{1,4}, VERONICA SILVA¹, THIAGO COSTA^{2,3}, DORA VENTURA^{2,3}, LUIZ CARLOS SILVEIRA^{1,4,5}

¹ INSTITUTE OF BIOLOGICAL SCIENCES, FEDERAL UNIVERSITY OF PARÁ, BELÉM, BRAZIL; ²DEPARTMENT OF EXPERIMENTAL PSYCHOLOGY, UNIVERSITY OF SÃO PAULO, SÃO PAULO, BRAZIL; ³COGNITIVE NEUROSCIENCE LABORATORY, MACKENZIE UNIVERSITY, SÃO PAULO, BRAZIL; BELÉM, BRAZIL; ⁴TROPICAL MEDICINE NUCLEUS, FEDERAL UNIVERSITY OF PARÁ, BELÉM, BRAZIL; ^sCEUMA UNIVERSITY, SÃO LUÍS, BRAZIL

\$1P193. INCREASED LITTER SIZE ENHANCES THE NUMBER OF MELANIN-CONCENTRATING HORMONE NEURONS IN THE MEDIAL PREOPTIC AREA OF LACTATING DAMS

<u>JOZELIA FERREIRA</u>1*, JESSICA DUARTE¹, JACKSON RITTENCOURT¹2

¹DEPT. OF ANATOMY, INST. OF BIOMEDICAL SCIENCES III, UNIVERSITY OF SAO PAULO, BRAZIL; ²NEUROSCIENCE AND BEHAVIOR CENTER, INST. OF PSYCHOLOGY, UNIVERSITY OF SAO PAULO, BRAZIL

S1P194. AEROBIC EXERCISE TRAINING IMPROVES CARDIOVASCULAR HEMODYNAMIC PARAMETERS OF HYPERTENSIVE RATS: INVOLVEMENT OF MICROGLIAL CELLS, GABAERGIC AND ENDOCANNABINOID NEUROTRANSMISSIONS NILSON FERREIRA-JUNIOR^{1*}, ADRIANA RUGGERI¹, LISETE

MICHELINI¹¹¹ DEPARTMENT OF PHYSIOLOGY AND BIOPHYSICS, INSTITUTE OF

BIOLOGICAL SCIENCES, USP

S1P195. ABNORMAL EXPRESSION OF NA+/K+ ATPASE A-SUBUNITS IN HIPPOCAMPUS OF PILOCARPINE-TREATED EPIL EPTIC RATS

ALEX GONZALES^{1*}, LUIS PACHECO¹, EMILIO GARRIDO-SANABRIA², VINICIUS FUNCK, R. TREVIÑO², LUIS ANGEL AGUILAR¹, RICHARD CISNEROS¹, CINTHYA MINAYA¹ ,JHONATAN ASTUCURI¹ ,ALEX GONZALES¹ ,ROY ANDRADE¹,OSCAR NUÑEZ¹

¹ SOCIEDAD PARA LA NEUROCIENCIA DEL PERÚ; ² UNIVERSITY OF TEXAS AT RIO GRANDE VALLEY; ³FEDERAL UNIVERSITY OF SANTA MARIA, BRAZIL

Neurochemistry and Neuropharmacology

S1P196. ROLE OF MINERALOCORTICOID RECEPTORS OF MEDIAL PRE FRONTAL CORTEX ON TOLERANCE TO THE EFFECTS OF MIDAZOLAM IN MICE SUBMITTED TO TEST AND RETEST IN THE ELEVATED PLUS-MAZE

KAIRO ALBERNAZ-MARIANO^{1,2*}, RIMENEZ R. SOUZA^{1,4}, AZAIR

^{*}barbybraz@gmail.com

^{*}mpaulacornejo@hotmail.com

^{*}acosta@fmed.edu.uy

^{*}nicolasdefrancesco@gmail.com

^{*}terezinha_mgl@hotmail.com

^{*}io biomed@vahoo.com.br

^{*}ncfi03@yahoo.com.br

^{*}alex.gonzales.a@upch.pe

CANTO-DE-SOUZA^{1,4,2}

¹ DEPT PSYCHOLOGY-PSYCHOBIOLOGY GROUP/UFSCAR; ²JOINT GRADUATE PROGRAM IN PHYSIOLOGICAL SCIENCES UFSCAR/UNESP, BRAZIL; ³ DEPT PSYCHOLOGY-PSYCHOBIOLOGY GROUP/UFSCAR; ⁴GRADUATE PROGRAM IN PSYCHOLOGY/UFSCAR/SÃO CARLOS

*kairoalbernaz@gmail.com

S1P197. BRAIN CATALASE LEVELS IN DEVELOPMENTALLY-LEAD-EXPOSED RATS ADMINISTERED WITH A SHRNA ANTICATALASE LENTIVIRAL VECTOR INTHE VENTRAL TEGMENTAL AREA PAULA A. ALBRECHT^{1,2*}, MARA S. MATTALLONI^{1,2}, CATALINA SALINAS³, MARÍA ELENA QUINTANILLA³, MARIO HERRERA-MARSCHITZ⁴, YEDY ISRAEL⁴, LILIANA M. CANCELA^{1,2}, MARIO RIVERA-MEZA³, MIRIAM B. VIRGOLINI²

¹ IFEC-CONICET; ²DEPTO. DE FARMACOLOGÍA, FACULTAD DE CS QCAS, UNC, ARGENTINA; ³ DEPTO DE QUÍMICA FARMACOLÓGICA Y TOXICOLÓGICA, FACULTAD DE CS QCAS Y FARM. UNIV DE CHILE; ⁴PROGRAMA DE FARMACOLOGÍA MOLECULAR Y CLÍNICA, FACULTAD DE MEDICINA, UNIV DE CHILE

S1P198. CEREBRAL MALARIA INDUCES ELECTROPHYSIOLOGICAL AND NEUROCHEMICAL IMPAIRMENT IN RETINAL TISSUE: POSSIBLE EFFECT ON THE GSH AND GLUTAMATERGIC SYSTEM LARISSA ANJOS^{1*}, LEONIA OLIVEIRA¹, LUANA LEAO¹, ADELAIDE PASSOS¹, ANDERSON HERCULANO¹, JOSE NASCIMENTO¹, KAREN OLIVEIRA¹

¹ UNIVERSIDADE FEDERAL DO PARÁ

S1P199. THE EXPRESSION OF CONTEXTUAL FEAR CONDITIONING INVOLVES ACH RELEASE AND NMDA GLUTAMATERGIC RECEPTORS ACTIVATION IN THE DORSAL HIPPOCAMPUS OF RATS

LEANDRO ANTERO1*, DANIELA ULIANA1, LEONARDO RESSTEL1

¹ DEPARTMENT OF PHARMACOLOGY, SCHOOL OF MEDICINE OF RIBEIRÃO PRETO, UNIVERSITY OF SÃO PAULO

S1P200. NEUROPROTECTIVE EFFECT OF MELATONIN ON A NEUROINFLAMMATION MODEL OF THE VISUAL PATHWAY

MARCOS L. ARANDA^{1*}, MARÍA F. GONZÁLEZ FLEITAS¹, HERNÀN H. DIEGUEZ¹, MARIA I. KELLER SARMIENTO¹, MÓNICA S. CHIANELLI¹, PABLO H. SANDE¹, DAMIÁN DORFMAN¹, RUTH E. ROSENSTEIN¹ **\$1P201.** EFFECTS OF NOCICEPTIN/ORPHANIN FQ RECEPTOR PARTIAL AGONISTS IN MOUSE MODELS OF ANXIETY AND DEPRESSION

LAILA ASTH^{1*}, CHIARA RUZZA², DAVIDE MALFACINI², IRIS UCELLA DE MEDEIROS¹, REMO GUERRINI³, NURULAIN T ZAVERI⁴, ELAINE CRISTINA GAVIOLI¹, GIROLAMO CALO¹

¹ DEPARTMENT OF BIOPHYSICS AND PHARMACOLOGY, FEDERAL UNIVERSITY OF RIO GRANDE DO NORTE

NATAL, RN BRAZIL; ² DEPARTMENT OF MEDICAL SCIENCE, SECTION OF PHARMACOLOGY AND NATIONAL INSTITUTE OF NEUROSCIENCE, UNIVERSITY OF FERRARA, ITALY; ³ DEPARTMENT OF CHEMICAL AND PHARMACEUTICAL, SCIENCES AND LTTA, UNIVERSITY OF FERRARA, ITALY; ⁴ ASTRAEA THERAPEUTICS, LLC., UNITED STATES

S1P202. MINOCYCLINE PREVENTS CROSS-SENSITIZATION BETWEEN STRESS AND COCAINE AND THE INCREASED PRODUCTION OF PROINFLAMMATORY CYTOKINES INDUCED BY CHRONIC RESTRAINT STRESS

MARIA PAULA AVALOS¹*, FLAVIA BOLLATI¹, DAIANA RIGONI¹, ANDREA GUZMAN¹, JAVIER PERALTA-RAMOS¹, PABLO IRIBARREN¹, LILIANA M. CANCELA¹

¹ INSTITUTE OF EXPERIMENTAL PHARMACOLOGY CONICET, SCHOOL OF CHEMICAL SCIENCES, CORDOBA

S1P203. OSMOTIC INDUCTION OF GLUTAMATE/ ASPARTATE TRANSPORTER (GLAST/EAAT1) AND ANGIOGENIC FACTOR EXPRESSION IN RETINAL GLIAL CELLS: DIFFERENTIAL DEPENDENCE ON GROWTH FACTOR AND PURINERGIC RECEPTOR SIGNALING

TARCYANE BARATA GARCIA^{1*}, MARGRIT HOLLBORN¹, PETER WIEDEMANN¹. ANDREAS BRINGMANN¹

¹ DEPARTMENT OF OPHTHALMOLOGY AND EYE HOSPITAL, UNIVERSITY OF LEIPZIG, LEIPZIG, GERMANY

S1P204. POTENTIAL ANTIDEPRESSANT-LIKE EFFECT OF P-COUMARIC ACID AND THE INVOLVEMENT OF MONOAMINERGIC SYSTEM SARA CRISTIANE BARAUNA^{1*}, NATHIELLI NAYARA PAULETI¹, CLÁUDIA ALMEIDA COELHO DE ALBUQUERQUE¹, MICHELE DEBIASI ALBERTON², SARA CRISTIANE BARAUNA¹

¹ DEPARTAMENTO DE CIÊNCIAS NATURAIS, UNIVERSIDADE; ²DEPARTAMENTO DE FARMÁCIA, UNIVERSIDADE REGIONAL DE BLUMENAU

^{*}pau albrecht@hotmail.com

^{*}larissa.medeirosenf@hotmail.com

^{*}anteroleandro@gmail.com

¹ CENTRO DE ESTUDIOS FARMACOLÓGICOS Y BOTÁNICOS, UBA/CONICET

^{*}marcos8877@gmail.com

^{*}lailasth@gmail.com

^{*}mpauli avalos@hotmail.com

^{*}BarataGarcia.Tarcyane@medizin.uni-leipzia.de

^{*}sbarauna@yahoo.com.br

\$1P205. RED PROPOLIS EXTRACT AND SWIMMING EXERCISE ARE NEUROPROTECTIVE AFTER SPINAL CORD INJURY IN RATS

FANILDES SILVA MORAIS¹, <u>REINALDO BELO NETO¹</u>¹, DÉBORA SILVEIRA¹, TÂMARA NUNES¹, DANIEL SANTOS¹, RICARDO ALBUQUERQUE JUNIOR¹.², CAMILA GOMES DANTAS¹, JULIANA CORDEIRO CARDOSO¹.², MARGARETE ZANARDO GOMES¹.²

¹ TIRADENTES UNIVERSITY; ²RESEARCH AND TECHNOLOGY INSTITUTE

\$1P206. MODULATION OF GABAARHO1 RECEPTORS BY HISTAMINE

ANDREA N BELTRÁN GONZÁLEZ^{1*}, ALEJANDRO OLAVIAGA¹, PAULA ZUBIRY¹, DANIEL J CALVO¹.

\$1P207. ROLE OF ORBITOFRONTAL CORTEX IN CONTEXT-INDUCED REINSTATEMENT OF ALCOHOL-SEEKING IN RATS

PAULA BIANCHI^{1*}, PAULO CARNEIRO-DE-OLIVEIRA¹, PAOLA PALOMBO¹, RODRIGO LEÃO², CLEOPATRA PLANETA¹, FABIO CRUZ³

¹ LABORATORY OF PHARMACOLOGY, UNESP - UNIV ESTADUAL PAULISTA, ARARAQUARA, SP - BRAZIL; ² FEDERAL UNIVERSITY OF BAHIA UFBA - SALVADOR, BA - BRAZIL; ³ DEPARTMENT OF PHARMACOLOGY UNIFESP FEDERAL UNIVERSITY OF SAO PAULO, SÃO PAULO, SP - BRAZIL

S1P208. MATERNAL SEPARATION ALTERS IMPULSIVITY, VOLUNTARY ETHANOL DRINKING AND ENDOCANNABINOID AND DOPAMINERGIC EXPRESSION: INFLUENCE OF PREVIOUS ETHANOL BINGE DRINKING

MARTIELO DA MATA^{1,2}, RANDRIELY LIMA^{1,2}, VANESSA TELLES^{1,2}, JOSEFA SANTOS¹, LUDHIELLI OLIVEIRA¹, STEFANO MELO³, EDILAMAR OLIVIERA³, ATHELSON BITTENCOURT¹, VALÉRIO BARAÚNA^{1,4}, ANA PAULA BITTENCOURT^{1,2*}

¹UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO; ²PROGRAMA DE PÓS-GRADUAÇÃO EM BIOQUÍMICA E FARMACOLOGIA; ³UNIVERSIDADE DE SÃO PAULO; 4 PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS FISIOLÓGICAS

\$1P209. SIMVASTATIN NANOCAPSULES PROTECT FROM AGE-INDUCED MEMORY IMPAIRMENT AND ANXIETY IN RATS

<u>CARINA BOECK</u>1*, BRUNA GUERINO¹, CARLA FERREIRA², DIEGO BORIN, KIMBERLLY BIACCHI, MARIANA CARDOS

¹PPG NANOCIÊNCIAS, CENTRO UNIVERSITÁRIO FRANCISCANO *cariboeck@hotmail.com

S1P210. ER STRESS PROMOTION BY BORTEZOMIB TREATMENT IS ASSOCIATED WITH R-CRT PRO-APOPTOTIC ACTION IN HUMAN GLIOMA CELLS LAURA VANESA BONNET^{1*}, ANDREA COMBA¹, VICTOR ENRIQUE GOITEA¹, MAURICIO RAUL GALIANO¹, MARTA ELENA HALLAK¹

¹ CENTRO DE INVESTIGACIONES EN QUÍMICA BIOLÓGICA DE CÓRDOBA (CIQUIBIC)

S1P211.EFFECTS OF THE SYNTHETIC CANNABINOID (WIN 55212-2) AND HEMOPRESSIN ON RODENT CORTICAL CULTURED MIXED NEURON-ASTROCYTE CELLS

ROSA THERESA BORELLI-TÔRRES¹⁺, AGUSTÍN RIQUELME-SANDOVAL², CLARISSA SCHITINE², CECÍLIA HEDIN-PEREIRA³, RICARDO DE MELO REIS ¹

¹ LAB NEUROQUÍMICA, IBCCF, UFRJ; ²LAB NEUROANATOMIA CELULAR, ICB, UFRJ; ³ VPPLR-FIOCRUZ, RIO DE JANEIRO, BRASIL *rborellit@biof.ufrj.br

S1P212. ACUTE AND SUB-CHRONIC VITAMIN D TREATMENT EXERTS ANTIDEPRESSANT-LIKE FFFFCT IN MICE

LUCAS ARNON RIKEL¹, ANDERSON CAMARGO¹, ANA PAULA DALMAGRO¹, ANA LUCIA BERTARELLO ZENI¹, <u>KATHRYN ANA</u> <u>BORTOLINI SIMÃO DA SILVA</u>¹*, EDUARDO SIMÃO DA SILVA¹

S1P213. INVOLVEMENT OF MONOAMINERGIC SYSTEM IN ANTIDEPRESSANT-LIKE ACTIVITY OF LQFM180, A NEW PIPERAZINE DERIVATIVE

<u>ADRIANE BRITO</u>1*, HIASMIN NERI², DAYANE SILVA, DANILLO OLIVEIRA, LORRANE MOREIRA, RICARDO MENEGATTI, ELSON COSTA

¹ LABORATÓRIO DE FARMACOLOGIA DE PRODUTOS NATURAIS E SINTÉTICOS, UFG; /// 3FACER — FACULDADE DE CERES, CERES — GOIÁS; ² ELSON ALVES COSTA1. 1LABORATÓRIO DE FARMACOLOGIA DE PRODUTOS NATURAIS E SINTÉTICOS, UFG

3FACER — FACULDADE DE CERES, CERES — GOIÁS; 34LABORATÓRIO DE FARMACOLOGIA BIOQUÍMICA E MOLECULAR, UFG; 41LABORATÓRIO DE FARMACOLOGIA DE PRODUTOS NATURAIS E SINTÉTICOS, UFG; 51LABORATÓRIO DE FARMACOLOGIA DE PRODUTOS NATURAIS E SINTÉTICOS, UFG; 63FACER — FACULDADE DE CERES, CERES — GOIÁS; 72LABORATÓRIO DE QUÍMICA FARMACÊUTICA MEDICINAL,

^{*}reinaldo beloneto@hotmail.com

¹INGEBI – CONICET

^{*}andreabeltrangonzalez@gmail.com

^{*}paula.cbianchi@gmail.com

^{*}anavasco21@hotmail.com

^{*}lbonnet@fcq.unc.edu.ar

¹UNIVERSIDADE REGIONAL DE BLUMENAU

^{*}kbortolini@hotmail.com

FACULDADE DE FARMÁCIA, UFG; 8
*profadrianebrito@amail.com

S1P214. ANTIDEPRESSANT-LIKE EFFECTS OF NOCICEPTIN/ORPHANIN FQ RECEPTOR ANTAGONISTS IN THE LEARNED HELPLESSNESS MODEL IN MICE

FERNANDA CAGNI^{1*}, VICTOR HOLANDA¹, LAILA ASTH¹, ÍRIS MEDEIROS, REMO GUERRINI², GIROLAMO CALO², ELAINE GAVIOLI¹

¹ FEDERAL UNIVERSITY OF RIO GRANDE DO NORTE; ²UNIVERSITY OF FERRARA

\$1P215. STRATEGIES FOR ALZHEIMER'S DISEASE PREVENTION: PEGYLATED BIODEGRADABLE DEXIBUPROFEN NANOSPHERES ADMINISTRATION TO APPSWE/PS1DE9

ANTONIO CAMINS^{1,2,3,4*}, ELENA SÁNCHEZ-LÓPEZ^{2,5}, MIREN ETCHETTO⁵, JAUME FOLCH^{6,2}, MERCE PALLÀS^{7,2}, MARIA LUISA GARCIA^{5,4}

¹ FACULTAT DE FARMACIA. UNIVERSIDAD DE BARCELONA; ²BIOMEDICAL RESEARCH NETWORKING CENTER IN NEURODEGENERATIVE DISEASES (CIBERNED), MADRID, SP; ³INSTITUTO DE NEUROCIENCIAS, UB; ⁴INSTITUTE OF NANOSCIENCE AND NANOTECHNOLOGY (IN2UB), FACULTY OF PHARMACY, UNIVERSITY OF BA; ⁵ DEPARTMENT OF PHARMACY, PHARMACEUTICAL TECHNOLOGY AND PHYSICAL CHEMISTRY, FACULTY OF PHARM; ⁶ UNITAT DE BIOQUÍMICA, FACULTAT DE MEDICINA I CIÈNCIES DE LA SALUT, UNIVERSITAT ROVIRA I VI; ⁷ DEPARTMENT OF PHARMACOLOGY AND THERAPEUTIC CHEMISTRY, FACULTY OF PHARMACY, UNIVERSITY OF B.

S1P216. SHORT-TERM TREATMENT WITH CANNABINOIDS, BUT NOT IMIPRAMINE, PREVENTS STRESS-INDUCED BEHAVIORAL CHANGES IN MICE EDUARDO FUSSE¹, FLÁVIA TURCATO¹, MARIANA MARRUBIA¹, MARCELA VIEIRA¹, FRANCISCO GUIMARÃES¹, ALLINE CAMPOS¹*

S1P217. NA,K-ATPASE FUNCTION AND NOSCOMP SIGNALING IN KLOTHO MUTANT MICE: DIFFERENTIAL ALTERATIONS IN HIPPOCAMPUS AND CEREBELLUM

MARINA CARARO¹*, CAIO HENRIQUE MAZUCANTI¹, THAIS SALA¹, DIANA ANDREOTTI¹, LARISSA DE SÁ LIMA¹, BEATRIZ

SAKASHITA¹, CRISTOFORO SCAVONE¹, ELISA MITIKO KAWAMOTO¹

¹ INSTITUTE OF BIOMEDICAL SCIENCES - UNIVERSITY OF SÃO PAULO *marina.cararo@amail.com

\$1P218. RECRUITMENT OF NONVISUAL ARRESTINS TO THE ACTIVATED M2 MUSCARINIC ACETYLCHOLINE RECEPTOR. FACILITATION OF RECEPTOR/ARRESTIN INTERACTION BY GRK2

<u>LAURA CARRERA PÁEZ^{1,2*}, SABRINA BELTRAME¹, CLAUDIA WALDNER¹, JUAN CARLOS GOIN^{1,2}</u>

¹ CENTRO DE ESTUDIOS FARMACOLÓGICOS Y BOTÁNICOS (CEFYBO-CONICET-UBA); ² II CÁTEDRA DE FARMACOLOGÍA

S1P219. EFFECTS OF MONOCROTALINE, ISOLATED FROM CROTALARIA RETUSA, ON AMINO ACID CONCENTRATIONS IN THE BRAIN OF MICE

NATALIA CASTELO BRANCO MATOS^{1*}, DARA DA SILVA MESQUITA², MERCIA MARQUES JUCA³, JOSE EDUARDO RIBEIRO HONORIO JUNIOR², CAREN NADIA SOARES DE SOUSA¹, MANUEL ALVES DOS SANTOS JUNIOR¹, REGILANE CORDEIRO DOS SANTOS¹, GERMANA SILVA VASCONCELOS¹, SILVANIA MARIA MENDES VASCONCELOS¹

¹ UNIVERSIDADE FEDERAL DO CEARA; ² UNICHRISTUS; ³ RENORBIO - UNIVERSIDADE FEDERAL DO CEARA.

S1P220. CHRONIC EXPOSURE TO FLUOXETINE DURING PRE-PUBERTY IMPAIRS RAT SOCIAL INTERACTION

MARTIN CODAGNONE^{1,2*}, MARIANELA TRAETTA^{1,2}, NONTHUÉ UCCELLI^{1,2}, ANALÍA REINÉS^{1,2}

¹ INSTITUTO DE BIOLOGÍA CELULAR Y NEUROCIENCIAS "PROF. DE ROBERTIS" (IBCN); ²CÁTEDRA DE FARMACOLOGÍA, FACULTAD DE FARMACIA Y BIOQUÍMICA, UNIVERSIDAD DE BUENOS AIRES

\$1P221. INVOLVEMENT OF N-METHYL-D-ASPARTATE RECEPTORS (NMDAR) SUBUNITS IN THE NEUROPROTECTIVE EFFECT OF ATORVASTATIN AGAINST GLUTAMATE-INDUCED TOXICITY

<u>LEANDRA</u> C. CONSTANTINO^{1*}, LUISA B. BINDER², NAIANI F. MARQUES², CARLA I. TASCA²

¹ DEPARTMENT OF MEDICAL SCIENCES, FEDERAL UNIVERSITY OF SANTA CATARINA, BRAZIL; ² DEPARTMENT OF BIOCHEMISTRY, FEDERAL UNIVERSITY OF SANTA CATARINA, BRAZIL

^{*}nandacagni@hotmail.com

^{*}camins@ub.edu

¹ DEPARTMENT OF PHARMACOLOGY- SCHOOL OF MEDICINE OF RIBEIRAO PRETO-USP

^{*}allinecampos@usp.br

^{*}laurapaez 21315@hotmail.com

^{*}nataliacbmatos@gmail.com

^{*}martincodagnone@gmail.com

^{*}constantinolc@gmail.com

S1P222. EFFECT OF LITHIUM IN A MANIA MODEL INDUCED BY PARADOXICAL SLEEP DEPRIVATION COMBINED WITH UNPREDICTABLE STRESS IN RATS REGILANE CORDEIRO DOS SANTOS¹*, CAMILA NAYANE DE CARVALHO LIMA¹, FRANCISCO ELICLÉCIO RODRIGUES DA SILVA¹, ANA ISABELLE DE GOIS QUEIROZ¹, ADRIANA MARY NUNES COSTA OKAMURA¹, MICHELE ALBUQUERQUE JALES DE CARVALHO¹, FRANCISCA TACIANA SOUSA RODRIGUES MAIA¹, ADRIANO JOSÉ MAIA CHAVES FILHO¹, PAULO HENRIQUE PESSOA NOBRE¹, ÍTALO ROSAL LUSTOSA¹, DANIELLE MACÊDO GASPAR¹

¹ DEPARTMENT OF PHYSIOLOGY AND PHARMACOLOGY - FEDERAL UNIVERSITY OF CEARÁ, CEARÁ, BRAZIL

S1P223. EVALUATION OF ANTICONVULSANT EFFECTS OF IVABRADINE IN PENTYLENETETRAZOLE-INDUCED CONVULSIONS IN MICE

REGILANE CORDEIRO DOS SANTOS^{1*}, TALITA MATIAS BARBOSA¹, ÍTALO ROSAL LUSTOSA¹, TATIANA DE QUEIROZ OLIVEIRA¹, LUCAS TEIXEIRA NUNES BORGES¹, CHARLIENE FREIRE XAVIER VIEIRA¹, JOSÉ DE MARIA ALBUQUERQUE DE MELO JÚNIOR², ADRIANA ROLIM CAMPOS², CARLOS CLAYTON TORRES AGUIAR², SILVÂNIA MARIA MENDES DE VASCONCELOS¹

¹ DEPARTMENT OF PHYSIOLOGY AND PHARMACOLOGY - FEDERAL UNIVERSITY OF CEARÁ, CEARÁ, BRAZIL; ²EXPERIMENTAL BIOLOGY CENTRE (NUBEX) - UNIVERSITY OF FORTALEZA, CEARÁ, BRAZIL

S1P224. SIMVASTATIN NANOCAPSULES AMELIORATES MEMORY IMPAIRMENT IN YOUNGADULT RATS

BRUNA COSTABEBER GUERINO^{1*}, DIEGO BECKER BORIN¹, CARLA FERREIRA², MARIANA MACHADO CARDOSO, KIMBERLLY BIACHI, CARINA RODRIGUES BOECK.

(NO HAY DATOS)

S1P225. CONTROL OF CARDIOVASCULAR RESPONSES TO ACUTE RESTRAINT STRESS BY CRF IN THE BED NUCLEUS OF THE STRIA TERMINALIS IS MEDIATED BY ACTIVATION OF LOCAL NNOS ENZYME CARLOS CRESTANI^{1*}, LEANDRO OLIVEIRA¹, LUCAS GOMESDE-SOUZA¹, RICARDO BENINI¹ SCHOOL OF PHARMACEUTICAL SCIENCES, UNESP — UNIV ESTADUAL PAULISTA

\$1P226. CORRELATION OF SPASTICITY WITH FUNCTIONALITY OF ESPÁSTICOS INDIVIDUALS AFTER PHYSIOTHERAPY TREATMENT ASSOCIATED WITH THE MEDICINE ZICLAGUE®

TÁSSIA OLIVEIRA^{1,2}, DRIELLY MENESES^{1,2}, ÍRIS SANTANA^{1,2}, MARIA FERREIRA^{1,2}, RADFAN LEITE^{1,2}, BEATRIZ PEREYRA^{1,2}, JANAÍNA CÂNDIDO^{1,2}, FANILDES MORAES^{1,2}, <u>CAMILA</u> <u>DANTAS</u>^{1,2*}, MARGARETE GOMES^{1,2}, EDNA CÂNDIDO^{1,2}

¹TIRADENTES UNIVERSITY; ²RESEARCH AND TECHNOLOGY INSTITUTE *ftacamila@qmail.com

S1P227. NEUROPROTECTIVE EFFECT OF AFRICANIZED BEE (APIS MELLIFERA) VENOM ON THE NEURONAL DEATH INDUCED BY 6-HYDROXYDOPAMINE

CAMILA DANTAS^{1,2*}, REINALDO NETO^{1,2}, SHEILLA BARROSO^{1,2}, DARA DE OLIVEIRA^{1,2} FRANCINE PADILHA^{1,2}, KÁTIA GRAMACHO², LUIZ DA COSTA^{1,2,3}, MARGARETE GOMES^{1,2}

¹ TIRADENTES UNIVERSITY (UNIT); ²RESEARCH AND TECHNOLOGY INSTITUTE (ITP); ³TECHNOLOGICAL INSTITUTE AND SERGIPE STATE SEARCH

S1P228. ANGIOTENSIN II TYPE 1 (AT1) RECEPTOR BLOCKER DISPLAY AN IMPORTANT ROLE IN BEHAVIORAL ALTERATIONS OBSERVED IN A MICE MODEL OF AGING AND PARKINSON'S DISEASE PAULO DE OLIVEIRA¹*, FILIPE CARVALHO MATHEUS², ANA CRISTINA GUERRA DE SOUZA, JOSIEL MILENO MACK, SAMANTHA LOPES, MARISSA SCHAMNE, REINALDO NAOTO

TAKAHASHI, RUI DANIEL S. PREDIGER

1 UNIVERSIDADE FEDERAL DE SANTA CATARINA

S1P229. INTERACTIONS BETWEEN CRF AND NMDA GLUTAMATE RECEPTORS IN THE BED NUCLEUS OF STRIA TERMINALIS (BNST) ON MODULATION OF CARDIOVASCULAR RESPONSES TO ACUTE RESTRAINT STRESS IN RATS

<u>LEANDRO AUGUSTO DE OLIVEIRA</u>^{1*}, LUCAS GOMES DE SOUZA², RICARDO BENINI², CARLOS CESAR CRESTANI²

¹LABORATORY OF PHARMACOLOGY, SCHOOL OF PHARMACEUTICAL SCIENCES, UNESP; ²LABORATORY OF PHARMACOLOGY, SCHOOL OF PHARMACEUTICAL SCIENCES, UNESP — UNIV ESTADUAL PAULI;

S1P230. ENDOVANILLOID SYSTEM AND TRPV1 CHANNEL IN THE PRELIMBIC CORTEX PLAYS ROLE IN THE MAINTENANCE OF NEUROPATHIC PAIN

^{*}regilane8888@hotmail.com

^{*}reailane8888@hotmail.com

^{*}brunaquerino@hotmail.com

^{*}cccrestani@yahoo.com.br

^{*}ftacamila@amail.com

^{*}paulofarm@gmail.com

^{*}czleandro@hotmail.com

MARIANA DE OLIVEIRA SILVA^{1,2*}, PRISCILA MEDEIROS³, SÉRGIO HENRIQUE FERREIRA³, SABATINO MAIONE⁴, NORBERTO CYSNE COIMBRA³, RENATO LEONARDO DE FREITAS^{1,5}

¹ MULTIUSER CENTER OF NEUROELECTROPHYSIOLOGY AND LABORATORY OF PAIN AND EMOTIONS; ²DEP. OF SURGERY AND ANATOMY, RIBEIRÃO PRETO MEDICAL SCHOOL OF THE UNIVERSITY OF SÃO PAULO; ³ DEPARTMENT OF PHARMACOLOGY, (FMRP-USP), RIBEIRÃO PRETO, SÃO PAULO, BRAZIL; ⁴DEP. EXPERIMENTAL MEDICINE, PHARMACOLOGY DIVISION, THE SECOND UNIVERSITY OF NAPLES. ITALY:

⁵DEP. OF SURGERY AND ANATOMY, RIBEIRÃO PRETO MEDICAL SCHOOL OF THE UNIVERSITY OF SÃO PAULO

S1P231. PROTECTIVE EFFECT OF EUGENIA INVOLUCRATA ON THE EFFECTS CAUSED BY ALLOXAN-INDUCED DIABETES ON OXIDATIVE STRESS PARAMETERS IN THE CEREBRAL CORTEX OF RATS

<u>DÉBORA DELWING-DAL MAGRO</u>^{1*}, DANIELA DELWING-DE LIMA², SARA C BARAUNA¹, POLLYANNA TOLDO¹, HENRIQUE L P BONDE¹, NAISA C ROSA¹, GUILHERME M RODRIGUES¹, HARRISON P CORRÊA¹, CAMILA R BATISTA¹, MICHELE D ALBERTON¹, ANDREZA CIPRIANI¹

S1P232. IN VITRO ALTERATION OF ENERGY METABOLISM BY CLASSICAL GALACTOSEMIA IN CEREBRUM OF RATS

<u>DANIELA DELWING-DE LIMA</u>1*, DÉBORA DELWING-DAL MAGRO², SIMONE SASSO¹, LETICIA DALMEDICO¹, NARIANA REGINA PEREIRA¹

S1P233. BDNF ISOFORMS: A ROUND-TRIP TICKET BETWEEN NEUROGENESIS AND SEROTONIN? **LORENA CECILIA LÓPEZ STEINMETZ¹, ROCÍO FOLTRAN¹, FRANCISCO HITA¹, LUC MAROTEAUX², SILVINA LAURA DIAZ¹*** ¹ INSTITUTO DE BIOLOGÍA CELULAR Y NEUROCIENCIAS PROF. E. DE ROBERTIS; ² INSTITUT DU FER A MOULIN

\$1P234. ROFLUMILAST, A PHOPHODIESTERASE-4 INHIBITOR, ATTENUATES MEMORY IMPAIRMENTS IN AGED RATS WITH CHRONIC CEREBRAL

HYPOPERFUSION

RUBIA MARIA OLIVEIRA!*, AMANDA SANTIAGO¹, LÍGIA SOARES¹, JOS PRICKAERTS², HUMBERTO MILANI¹

¹ UNIVERSIDADE ESTADUAL DE MARINGÁ, MARINGÁ, BRAZIL;

Neuroendocrinology and Neuroimmunology

S1P235. THE EFFECT OF PHARMACOLOGICAL REDUCTION OF PROLACTININTHE RESPONSIVENESS PARENTAL OF MALE MARMOSETS

MARICELE BARBOSA^{1*}, MARIA TERESA MOTA¹

¹ UNIVERSITY FEDERAL OF RIO GRANDE DO NORTE, NATAL, BRAZIL.

S1P236. THE INFLUENCE OF ENVIRONMENTAL STRESS IN THE HYPOTHALAMIC-PITUITARY-ADRENAL AXIS ACTIVITY IN BREEDING PAIRS OF MARMOSETS

MARICELE BARBOSA1*, MARIA TERESA MOTA2

¹ UNIVERSITY FEDERAL OF RIO GRANDE DO NORTE, NATAL, BRAZIL *maricelebarbosa@yahoo.com.br

S1P237. MINERALOCORTICOID RECEPTOR (MR) AND NEUROINFLAMMATION IN THE HIPPOCAMPUS OF SPONTANEOUSLY HYPERTENSIVE RATS (SHR) MARIA ELVIRA BROCCA^{1*}, LUCIANA PIETRANERA^{1,2}, ANALÍA LIMA¹, PAULINA ROIG¹, ALEJANDRO FEDERICO DE NICOLA^{1,2} ¹ INSTITUTO DE BIOLOGÍA Y MEDICINA EXPERIMENTAL (IBYME-CONICET), BUENOS AIRES, ARGENTINA; ²DEPT. OF HUMAN BIOCHEMISTRY, SCHOOL OF MEDICINE, UNIVERSITY OF BUENOS AIRES *mebrocca@qmail.com

S1P238. IMPACT OF THE GHRELIN SIGNALING IN THE RESPONSE OF THE HYPOTHALAMIC—PITUITARY—ADRENAL AXIS TO FASTING

AGUSTINA CABRAL^{1*}, GIMENA FERNANDEZ¹, GUILLERMINA ZUBIRIA¹, MIRTA REYNALDO¹, ANDRÉS GIOVAMBATTISTA¹, MARIO PERELLÓ¹

¹LABORATORY OF NEUROPHYSIOLOGY OF THE MULTIDISCIPLINARY, INSTITUTE OF CELL BIOLOGY

\$1P239. ACTIVATION OF ERK1/2 AND AXOGENESIS INDUCED BY ESTRADIOL DEPEND ON DIFFERENT CALCIUM POOLS IN MALE RAT HYPOTHALAMIC

^{*}maryoliveira@outlook.com

¹ UNIVERSIDADE REGIONAL DE BLUMENAU; ² UNIVERSIDADE DA REGIÃO DE JOINVILLE

^{*}deboradelwing@furb.br

¹ UNIVERSIDADE DA REGIÃO DE JOINVILLE; ² UNIVERSIDADE REGIONAL DE BLUMENAU

^{*}danidelwing@hotmail.com

^{*}silvinalauradiaz@yahoo.com.ar

² THE UNIVERVERSITY OF MAASTRICHT, MAASTRICHT, THE NETHERLANDS

^{*}rubiaweffort@gmail.com

^{*}maricelebarbosa@yahoo.com.br

NEURONS IN VITRO

<u>LUCAS EZEQUIEL CABRERA ZAPATA</u>1*, MARIANA BOLLO¹, MARÍA JULIA CAMBIASSO¹,2

¹ INSTITUTO DE INVESTIGACIÓN MÉDICA MERCEDES Y MARTÍN FERREYRA, INIMEC-CONICET, UNC; ²CÁTEDRA DE BIOLOGÍA CELULAR, FACULTAD DE ODONTOLOGÍA, UNC*lcabrerazapata@immf.uncor.edu

\$1P240. HYPERCALORIC DIETS DURING PREGNANCY AND LACTATION MODULATE DEPRESSION-LIKE BEHAVIOR IN FEMALE OFFSPRING OF RATS

ALBERTO CAMACHO^{1*}, ROGER MALDONADO-RUIZ¹, ROBBI CARDENAS-PEREZ^{1,2}, ANA LAURA DE LA GARZA³, IVAN SILVA-HERNANDEZ^{1,4}, MIGUEL GARZA-CUELLAR^{1,4}, LIZETH FUENTES-MERA^{5,6}, CRISTINA RODRIGUEZ-PADILLA⁷, BRENDA HERNANDEZ-GONZALEZ⁴

¹ NEUROSCIENCE UNIT, CENTER FOR RESEARCH AND DEVELOPMENT IN HEALTH SCIENCES, AUTONOMOUS UNIV; ²BIOCHEMISTRY DEPARTMENT, FACULTY OF MEDICINE.AUTONOMOUS UNIVERSITY OF NUEVO LEON.

³ PUBLIC HEALTH FACULTY AND NUTRITION, AUTONOMOUS UNIVERSITY OF NUEVO LEON; ⁴GENOMIC SCIENCES DEPARTMENT. FACULTY OF BIOLOGY. AUTONOMOUS UNIV; ⁵GENE THERAPY UNIT, CENTER FOR RESEARCH AND DEVELOPMENT IN HEALTH SCIENCES. ⁶BIOCHEMISTRY DEPARTMENT. FACULTY OF MEDICINE. AUTONOMOUS UNIVERSITY OF NUEVO LEON;

⁷INMMUNOLOGY DEPARTMENT. FACULTY OF BIOLOGY. AUTONOMOUS UNIVERSITY OF NUEVO LEON.

S1P241. ROLE OF TNF-ALPHA IN MICROGLIA-DEPENDENT PLASTICITY INDUCED BY MONOCULAR ENUCLEATION

LUANA CHAGAS1*, PABLO TRINDADE3, CLAUDIO SERFATY2

¹ UNIVERSIDADE FEDERAL FLUMINENSE; ² INSTITUTO DE BIOLOGIA, UNIVERSIDADE FEDERAL FLUMINENSE; ³ D'OR INSTITUTE FOR RESEARCH AND EDUCATION, BRASIL;

S1P242. ROLE OF X-LINKED GENES ON SEX DIFFERENCES IN NEUROGENIN 3 EXPRESSION IN DEVELOPING HYPOTHALAMIC NEURONS CARLA D CISTERNAS 1.2*, MARÍA A AREVALO⁵, LUIS M GARCIA-

CARLA D CISTERNAS^{1,2*}, MARIA A AREVALO⁵, LUIS M GARCIA-SEGURA⁵, MARÍA J CAMBIASSO^{1,2}

⁷ INSTITUTO DE INVESTIGACIÓN MÉDICA MERCEDES Y MARTÍN

FERREYRA INIMEC-CONICET-UNC; ²DEPARTAMENTO DE BIOLOGÍA BUCAL, ³FACULTAD DE ODONTOLOGÍA, ⁴UNIVERSIDAD NACIONAL DE CÓRDOBA; ⁵INSTITUTO CAJAL, CSIC. MADRID, ESPAÑA **S1P243.** IS THE DA1 RECEPTOR OF THE PREOPTIC AREA NEURONS INVOLVED ON THE REGULATION OF OVULATION?

GEORGINA DANIELA CORTÉS RUIZ^{1*}, CINTIA YOLANDA JAVIER DURÓN¹, CARLOS CAMILO SILVA MÉNDEZ¹, ANGÉLICA FLORES RAMÍREZ¹, ROBERTO DOMÍNGUEZ CASALÁ¹

¹ FES ZARAGOZA, UNAM

S1P244. NEURAL MODULATION OF STRESS RESPONSE IN C. ELEGANS

MARÍA JOSÉ DE ROSA¹*, TANIA VEUTHEY¹, MARÍA GABRIELA BLANCO¹, MARK ALKEMA², DIEGO RAYES¹

¹ INSTITUTO DE INVESTIGACIONES BIOQUÍMICAS DE BAHÍA BLANCA, UNS; ²NEUROBIOLOGY DEPARTMENT, UNIVERSITY OF MASSACHUSETTS MEDICAL SCHOOL

S1P245. IMPACT OF THE GHRELIN SIGNALING ON FOOD INTAKE AFTER A FASTING EVENT

GIMENA FERNANDEZ^{1*}, AGUSTINA CABRAL¹, ALEXANDRA LABARTHE², GUADALUPE GARCIA ROMERO¹, MARIA FLORENCIA ANDREOLI³, FLORENCIA ACUTAIN³, MIRTA REYNALDO¹, GUILLERMO RAMOS³, VIRGINIE TOLLE², JACQUES EPELBAUM², MARIO PERELLO¹

¹ LABORATORIO DE NEUROFISIOLOGIA DEL INSTITUTO MULTIDISCIPLINARIO DE BIOLOGÍA CELULAR; ² CENTER FOR PSYCHIATRY & NEUROSCIENCE, UMR_S894 INSERM; ³FACULTAD DE BIOOUÍMICA Y CIENCIAS BIOLÓGICAS. UNL-ISAL

\$1P246. THE ROLE OF MINOCYCLINE IN COGNITIVE IMPAIRMENT AND DYSFUNCTION OF THE BLOOD BRAIN BARRIER IN EXPERIMENTAL PNEUMOCOCCAL MENINGITIS

JAQUELINEGENEROSO^{1*}, LUTIANA SIMÕES¹, PAULO EDUARDO AVELINE¹, GUSTAVO SANGIOGO¹, JHONATA MUNIZ¹, BRUNO ZABOT¹, ANA PAULA MOREIRA¹, SAMIRA VALVASSORI², JOÃO QUEVEDO^{2,4}, TATIANA BARICHELLO^{2,4}

¹LABORATÓRIO DE MICROBIOLOGIA EXPERIMENTAL, UNIVERSIDADE DO EXTREMO SUL CATARINENSE; ²LABORATÓRIO DE NEUROCIÊNCIAS, ³UNIVERSIDADE DO EXTREMO SUL CATARINENSE; ⁴DEPARTMENT OF PSYCHIATRY AND BEHAVIORAL SCIENCES, UTHEALTH, HOUSTON

^{*}acm590@hotmail.com

^{*}luu.chaqas@yahoo.com.br

^{*}cdcisternas@immf.uncor.edu

^{*}ainadcr@amail.com

^{*}miderosa@criba.edu.ar

^{*}gimenafernandez14@gmail.com

^{*}jsg@unesc.net

Sensory Systems

S1P247. POLARIZATION VISION IN GOLDFISH: BEHAVIORAL RESPONSE DEPENDENCE WITH STIMULUS POSITION

<u>CRISTIAN AGUIRRE</u>1*, MARTÍN BERÓN DE ASTRADA¹, VIOLETA MEDAN¹

¹ IFIBYNE-CONICET AND FCEN-UBA

*dan10 16@hotmail.com

\$1P248. CAROTID NERVE SINUS AND IDENTIFIED PETROSAL CHEMOSENSORY NEURONS RESPONSES ARE MODIFIED BY CHRONIC PHENYTOIN TREATMENT IN THE RAT

IGNACIO ORTIZ¹, MARIA PAZ OYARCE¹, JORGE VERA¹, RODRIGO DEL RIO², <u>JULIO ALCAYAGA^{1*}</u>

¹LAB. FISIOLOGÍA CELULAR, DEPTO. BIOLOGÍA, FAC. CIENCIAS, UNIV. DE CHILE; ⁵ UNIDAD DE CONTROL CARDIORRESPIRATORIO, CENTRO INVEST. BIOMÉDICA, UNIV. AUTÓNOMA DE CHILE

\$1P249. CHROMATIC AND ACHROMATIC MECHANISMS ON MULTIFOCAL VISUAL EVOKED POTENTIAL (MFVEP)

CAROLINA DOS SANTOS ARAUJO^{1*}, CAROLINE GAKII KILEMI², MONIQUE ASHLEE SMYTH³, STEPHANIE LYNN JOHNSON⁴, MELLINA MONTEIRO JACOB⁵, ELIZA MARIA DA COSTA BRITO LACERDA^{6,7}, LUIZ CARLOS DE LIMA SILVEIRA^{1,6,7}, BRUNO DUARTE GOMES¹, GIVAGO DA SILVA SOUZA^{1,6}

¹ INSTITUTO DE CIENCIAS BIOLOGICAS, UNIVERSIDADE FEDERAL DO PARA, BELEM, PA, BRAZIL; ² COPPIN STATE UNIVERSITY, BALTIMORE, MD, USA; ³ RHODES COLLEGE, MEMPHIS, TN, USA; ⁴ CHRISTIAN BROTHERS UNIVERSITY, MEMPHIS, TN, USA; ⁵ INSTITUTO DE CIENCIAS DA SAUDE, UNIVERSIDADE FEDERAL DO PARA, BELEM, PA, BRAZIL;

⁶ NUCLEO DE MEDICINA TROPICAL, UNIVERSIDADE FEDERAL DO PARA, BELEM, PA, BRAZIL; ⁷UNIVERSIDADE CEUMA, SAO LUIS, MA, BRAZIL

\$1P250. STEM/PROGENITOR CELL THERAPY DECREASES GLIAL REACTIVITY IN LIGHT INDUCED RETINAL DEGENERATION

MARIANA BAREIRO^{1*}, MANUEL SOLIÑO¹, ESTER MARÍA LÓPEZ¹, DANIELA CONTARTESE¹, MANUEL REY FUNES¹, CÉSAR F. LOIDL¹, JUAN JOSÉ LÓPEZ COSTA¹

¹ INSTITUTO DE BIOLOGÍA CELULAY Y NEUROCIENCIA "PROF. E DE ROBERTIS", F.MED. UBA-CONICET. **S1P251.** FACE PERCEPTION: TOP DOWN VS. BOTTOM UP. COMPARED FACE ATTENTIONAL CAPTURE BETWEEN FACES AND WHOLE HUMAN BODIES BY OCULAR MOVEMENT REGISTRATION DURING NATURALISTIC SCENES EXPLORATION DIEGO BECERRA^{1,2*}, MARGARITA BORQUEZ³, JOSÉ EGAÑA², PEDRO MALDONADO²

¹ DEPARTAMENTO DE PSICOLOGÍA. UNIVERSIDAD DE CHILE; ²LABORATORIO DE NEUROSISTEMAS, PROGRAMA DE FISIOLOGÍA Y BIOFÍSICA, UNIVERSIDAD DE CHILE; ²LABORATORIO SUEÑO Y CRONOBIOLOGÍA. INSTITUTO DE CIENCIAS BIOMÉDICAS. UNIVERSIDAD DE CHILE

S1P252. THE MAGNITUDE OF ACOUSTIC INJURY TO THE INNER EAR IS INVERSELY CORRELATED WITH ALPHA9ALPHA10 NACHR ACTIVITY

<u>LUIS EZEQUIEL BOERO</u>^{1,2*}, VALERIA CASTAGNA¹, JUAN GOUTMAN², ANA BELÉN ELGOYHEN¹², MARÍA EUGENIA GÓMEZ-CASATI^{1,2}

¹ INSTITUTO DE FARMACOLOGÍA. FACULTAD DE MEDICINA, UBA; ² INGEBI-CONICET

S1P253. HIDDEN HEARING LOSS.: ON THE WAY TO RELATE OBJECTIVE MEASURES AND AUDITORY DEFICITS

MACARENA BOWEN^{1,2*}, JAIME UNDURRAGA¹, DAVID MCALPINE¹

¹ DEPARTMENT OF LINGUISTICS, MACQUARIE UNIVERSITY; ² DEPARTAMENTO DE FONOAUDIOLOGIA, UNIVERSIDAD DE CHILE *macabowen@amail.com

S1P254. NEW TARGETS FOR STUDY THE REGENERATIVE POTENTIAL OF SUPPORTING CELLS IN NEONATAL MOUSE COCHLEA

SILVIA CANTELLANO^{1,2,3,4*}, YING-WOOI WAN⁵, TIANTIAN CAI⁶, RENDE GU⁶, JOANNA S.T. ASPRER⁶, ANDREW K GROVES^{7,8,9,10} JUAN C MAASS^{1,2,11},

¹ AUCO (AUDITORY AND COGNITION CENTER), DEPARTMENT OF OTOLARYNGOLOGY; ²HOSPITAL CLÍNICO UNIVERSIDAD DE CHILE: ³INTERDISCIPLINARY PROGRAM OF PHYSIOLOGY AND BIOPHYSICS ICBM; ⁴UNIVERSIDAD DE CHILE, SANTIAGO; ⁵ 2THE JAN AND DAN DUNCAN NEUROLOGICAL RESEARCH INSTITUTE, TEXAS CHILDREN'S HOSPITAL; ⁶ DEPARTMENT OF NEUROSCIENCE, BAYLOR COLLEGE OF MEDICINE, 1 BAYLOR PLAZA, HOUSTON, TX; ⁷ DEPARTMENT OF NEUROSCIENCE; ⁸PROGRAM IN DEVELOPMENTAL BIOLOGY; ⁹DEPARTMENT OF MOLECULAR AND HUMAN GENETICS; ¹⁰ BAYLOR COLLEGE OF MEDICINE, 1 BAYLOR PLAZA, HOUSTON, TX.; ¹¹ DEPARTMENT OF OTOLARYNGOLOGY, CLÍNICA ALEMANA DE SANTIAGO, FACULTAD DE MEDICINA; CLÍNICA ALEMANA

^{*}jalcayag@uchile.cl

^{*}carolinacdsa@gmail.com

^{*}maia_bareiro@hotmail.com

^{*}becerra.q.diego@gmail.com

^{*}le.boero@gmail.com

UNIVERSIDAD DEL DESARROLLO, SANTIAGO, CHILE *silvicantellano@gmail.com

S1P255. VISUOMOTOR BEHAVIORS AND EXTRACELLULAR RECORDINGS AT THE LEVEL OF THE OPTIC NERVE IN THE CRAB NEOHELICE GRANULATA JULIA CARBONE^{1*}, DAMIAN OLIVA¹

¹UNIVERSIDAD NACIONAL DE QUILMES.

S1P256. MOLECULAR AND FUNCTIONAL CHARACTERIZATION OF THE NICOTINIC CHOLINERGIC RECEPTOR AT THE EFFERENT SYNAPSE OF THE ZEBRAFISH LATERAL LINE AGUSTIN EDUARDO CARPANETO FREIXAS¹*, CAROLINA WEDEMEYER¹, PAOLA PLAZAS¹², ANA BELÉN ELGOYHEN¹²²

¹ INSTITUTO DE INVESTIGACIONES EN INGENIERÍA GENÉTICA Y BIOLOGÍA MOLECULAR (INGEBI-CONICET); ²INSTITUTO DE FARMACOLOGÍA, FACULTAD DE MEDICINA, UBA

S1P257 SPATIOTEMPORAL EXPRESSION OF ZEBRAFISH NICOTINIC ACETYLCHOLINE RECEPTOR AT THE EFFERENT LATERAL LINE SYNAPSE

TAIS CASTAGNOLA^{1,2*}, SABINA DOMENE³, AGUSTIN CARPANETO¹, LUCIA SALATINO^{1,2}, ANA BELEN ELGOYHEN^{1,2}, PAOLA PLAZAS^{1,2}

¹ INSTITUTO DE INVESTIGACIONES EN INGENIERÍA GENÉTICA Y BIOLOGÍA MOLECULAR (INGEBI), CONICET; ²INSTITUTO DE FARMACOLOGÍA, FACULTAD DE MEDICINA, UBA; ³ CENTRO DE INVESTIGACIONES ENDOCRINOLÓGICAS "DR. CÉSAR BERGADÁ" (CEDIE) CONICET – FEI – DIV

S1P258. VISUAL ACUITY AND COLOR VISION EVALUATION OF CHILDREN EXPOSED TO METHYLMERCURY IN A COASTAL REGION BRAZILIAN AMAZON

ELIZA MARIA COSTA BRITO LACERDA*1,2, JOYCE SANTOS FREITAS1, DARIO RODRIGUES JUNIOR1, DANIELA MARIA OLIVEIRA BONCI3, MARIA IZABEL TENTES CORTES4, TEREZA CRISTINA OLIVEIRA CORVELO1, DORA FIX VENTURA3, LUIZ CARLOS DE LIMA SILVEIRA1, MARIA DA CONCEIÇÃO DO NASCIMENTO PINHEIRO1, GIVAGO DA SILVA SOUZA1

S1P259. CORTICAL AND AUDITORY EFFERENT DYNAMICS DURING SELECTIVE ATTENTION TO

VISUAL STIMULI USING DPOAES AS AUDITORY DISTRACTORS IN HUMANS

CONSTANTINO DRAGICEVIC^{1*}, MARCELA NAVARRETE^{1,2}, BRUNO MARCENARO³, PAUL H DELANO¹⁴

¹ PROGRAMA DE FISIOLOGÍA Y BIOFÍSICA, INSTITUTO DE CIENCIAS BIOMÉDICAS, FACULTAD DE MEDICINA; ²FACULTAD DE CIENCIAS, UNIVERSIDAD DE VALPARAÍSO, VALPARAÍSO, CHILE; ³ CENTRO INTERDISCIPLINARIO DE NEUROCIENCIAS, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE:

⁴DEPARTAMENTO DE OTORRINOLARINGOLOGÍA, HOSPITAL CLÍNICO DE LA UNIVERSIDAD DE CHILE

S1P260. COLOR VISION EVALUATION OF RIVERINE CHILDREN FROM DIFFERENT RIVER BASINS IN THE BRAZILIAN AMAZON: THE INFLUENCE OF MERCURY FXPOSURE

<u>JOYCE FREITAS</u>^{1*}, ELIZA MARIA LACERDA¹, ISABELLE CHRISTINE MARTINS¹, DARIO RODRIGUES¹, DANIELA BONCI², MARIA IZABEL CORTES³, TEREZA CORVEDO^{1,5}, DORA VENTURA², LUIZ CARLOS SILVEIRA^{2,5}, MARIA DA CONCEIÇÃO¹, GIVAGO SOUZA^{1,5}

¹ NÚCLEO DE MEDICINA TROPICAL, UNIVERSIDADE FEDERAL DO PARÁ, BELÉM, PARÁ, BRASIL; ² INSTITUTO DE PSICOLOGIA, UNIVERSIDADE DE SÃO PAULO, SÃO PAULO, BRAZIL; ³ PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE, MACAPÁ, AMAPÁ, BRAZIL; INSTITUTO DE CIÊNCIAS BIOLÓGICAS; ⁴UNIVERSIDADE FEDERAL DO PARÁ, BELÉM, PARÁ, BRAZIL; ⁵INSTITUTO DE CIÊNCIAS BIOLÓGICAS, UNIVERSIDADE FEDERAL DO PARÁ, BELÉM, PARÁ, BRAZIL

Synaptic Transmission, Excitability and Glia

S1P261. NEONATAL TREATMENT WITH OVARIAN HORMONES MODULATES CORTICAL SPREADING DEPRESSION IN ADULT FEMALE RATS PREVIOUSLY SUCKLED IN NORMAL SIZE- AND LARGE SIZE LITTERS

NORA NEGE ACCIOLY1*, RUBEM GUEDES1

¹UNIVERSIDADE FEDERAL DE PERNAMBUCO

S1P262. CHARACTERIZATION OF LAYER II RESONANT AND NON-RESONANT NEURONS FROM THE ANTERIOR CORTICAL NUCLEUS OF THE AMYGDALA

^{*}juliacarbone4@gmail.com

^{*}agustincarpaneto@gmail.com

^{*}pvplazas@gmail.com

^{*}eliza lacerda@yahoo.com.br

^{*}cdragicevic@gmail.com

^{*}joycecp freitas@hotmail.com

^{*}noranege@hotmail.com

<u>DANIELA ASTUDILLO</u>^{1*}, JORGE VERA¹, DANIELA ASTUDILLO¹, ALFONSO DRECHLER¹, JORGE MPODOZIS¹, MAGDALENA SANHUEZA¹

¹ DEPARTAMENTO DE BIOLOGÍA, FACULTAD DE CIENCIAS, UNIVERSIDAD DE CHILE

\$1P263. BIPHASIC BEHAVIOR OF FAST ENDOCYTOSIS KINETICS IN MICE CHROMAFFIN CELLS

<u>LUCAS BAYONÉS</u>1*, JOSÉ A. MOYA-DÍAZ¹, FERNANDO D. MARENGO¹

¹ IFIBYNE (CONICET). DEPARTAMENTO FBMC. FAC. CS. EXACTAS Y NAT. UNIV. BUENOS AIRES:

S1P264.MODULATIONOFCB1ANDCB2CANNABINOID RECEPTORS INFLUENCES GAIT RECOVERY AFTER SCIATIC NERVE CRUSH IN ADULT MICE

NICOLI BENITEZ CADIOLLI^{1*}, ELISA ANTUNES RIBEIRO¹, MATHEUS PEREZ¹, FRANCISCO SILVEIRA GUIMARÃES², ALEXANDRE LEITE RODRIGUES OLIVEIRA¹

¹UNIVERSITY OF CAMPINAS; ²UNIVERSITY OF SÃO PAULO

S1P265. MOTOR AND SENSORY RECOVERY FOLLOWING COMMERCIAL AND HETEROLOGOUS FIBRIN SEALANT NEONATAL SCIATIC NERVE REPAIR NATALIA BISCOLA^{1,2,3*}, LUCIANA CARTAROZZI^{4,3}, RUI FERREIRA JUNIOR^{1,2}, BENEDITO BARRAVIERA^{1,2}, ALEXANDRE OLIVEIRA^{4,3}

¹ DEPART OF TROPICAL DISEASES, BOTUCATU MEDICAL SCHOOL, SÃO PAULO STATE UNIVERSITY (UNESP);

²CENTER FOR THE STUDY OF VENOMS AND VENOMOUS ANIMALS (CEVAP), SÃO PAULO STATE UNIVERSITY;

³LABORATORY OF NERVE REGENERATION, UNIVERSITY OF CAMPINAS, UNICAMP;

⁴ DEPART OF STRUCTURAL AND FUNCTIONAL BIOLOGY, UNIVERSITY OF CAMPINAS, UNICAMP

\$1P266. PARTICIPATION OF GLIAL CONNEXINS AND BDNF IN THE POSTNATAL DEVELOPMENT OF OLFACTORY CIRCUITS

LUCILA BROCARDO^{1*}, LORENA RELA

^{*}lucilabrocardo@gmail.com

S1P267. CANNABINOID RECEPTOR ACTIVATION INCREASES THE GAIN AND MODULATES THE

TEMPORAL PROPERTIES OF SCOTOPIC VISUAL SIGNAL IN RAT RETINA

CAMILA QUIROZ¹, ALEX H VIELMA¹, ADRIÁN G PALACIOS¹, ANDRES E CHAVEZ¹*

¹ CENTRO INTERDISCIPLINARIO DE NEUROCIENCIA DE VALPARAÍSO, UNIVERSIDAD DE VALPARAISO, CHILE

\$1P268. GABAERGIC SYNAPTIC TRANSMISSION IN POSTERODORSAL MEDIAL AMYGDALA

FRANCINE DALPIAN^{1*}, ALBERTO RASIA-FILHO², MARIA ELISA CALCAGNOTTO¹

¹ FEDERAL UNIVERSITY OF RIO GRANDE DO SUL; ² FEDERAL UNIVERSITY OF HEALTH SCIENCES OF PORTO ALEGRE

\$1P269. CHOLINERGICS AND ITS INDEPENDENT ACTIONS OF NICOTINIC OR MUSCARINIC RECEPTORS. INTERACTION OF D-TUBOCURARINE AND NMDA RECEPTORS IN NEOSTRIATAL NEURONS ALDO LUNA LEAL¹, LORENA ARROYO-RÍOS², JOSÉ GUSTAVO LÓPEZ-LÓPEZ², JORGE FLORES-HERNANDEZ¹

¹INSTITUTO DE FISIOLOGÍA, BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA; ²FACULTAD DE CIENCIAS QUÍMICAS, BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA

S1P270. ROLE OF CHLORIDE CO-TRANSPORTERS IN HIPPOCAMPUS IN TWO ANIMAL MODELS OF SCHIZOPHRENIA

<u>PAULINA HARDY</u>1*, ENRIQUE LORCA¹, MARCELO LARA¹, CLAUDIA CARVALLO¹, PATRICIO ROJAS¹

¹ UNIVERSIDAD DE SANTIAGO DE CHILE

\$1P271. EFFECT OF IGF-I GENE THERAPY IN THE INFLAMMATORY RESPONSE OF MICROGLIA IN A TRAUMATIC BRAIN INJURY MODEL

MACARENA LORENA HERRERA¹*, EUGENIA FALOMIR LOCKHART², NATALIA MARCHESE¹, FRANCO DOLCETTI², LUIS MIGUEL GARCÍA SEGURA³, CLAUDIA HEREÑÚ¹, MARÍA JOSÉ BELLINI²

¹ IFEC-DEPTO FARMACOLOGÍA-FCQ-UNIVERSIDAD NACIONAL DE CÓRDOBA, ARGENTINA; ² INIBIOLP-FCM-UNIVERSIDAD NACIONAL DE LA PLATA, ARGENTINA; ³INSTITUTO CAJAL CSIC, MADRID, SPAIN *macarenalherrera@hotmail.com

S1P272. MODULATION OF VOLTAGE-GATED SODIUM AND POTASSIUM CURRENTS BY L-LACTATE IN CA1 PYRAMIDAL CELLS

^{*}daniela.astudillo@uq.uchile.cl

^{*}lucasbayones@gmail.com

^{*}nicoli cadioli@hotmail.com

^{*}nabiscola@gmail.com

^{*}andres.chavez@uv.cl

^{*}francinedalpian@gmail.com

^{*}jorge.flores@correo.buap.mx

^{*}p.hardy.t@gmail.com

GABRIEL HERRERA-LÓPEZ1*, EMILIO J. GALVÁN1

¹ DEPARTAMENTO DE FARMACOBIOLOGÍA CINVESTAV-IPN, MÉXICO CITY *gabrish36@hotmail.com

Theoretical and Computational Neuroscience

S1P273. NONLINEAR DYNAMIC ANALYSIS OF AFFERENT DISCHARGES FROM VIBRISSAL NERVE BASED ON NOISE-ASSISTED MULTIVARIATE EMPIRICAL MODE DECOMPOSITION

ANA ALBARRACÍN¹*, ALVARO G. PIZÁ¹, JORGE H. SOLETTA¹, FACUNDO A. LUCIANNA¹, JUAN C. SORIA¹, FERNANDO D. FARFÁN¹, CARMELO J. FELICE¹

¹LABORATORIO DE MEDIOS E INTERFASES, UNIVERSIDAD NACIONAL DE TUCUMÁN (INSIBIO-CONICET)

S1P274. AN INTEGRATED MODEL FOR MOTOR CONTROL OF SONG IN SERINUS CANARIA R. G. ALONSO^{1*}, A. AMADOR¹, G.B. MINDLIN¹

¹ PHYSICS DEPARTMENT AND IFIBA, FCEN, UNIVERSITY OF BUENOS AIRES, BUENOS AIRES, ARGENTINA

\$1P275. MODELING DYNAMICS OF INTERACTION BETWEEN EXCITATION AND INHIBITION IN ADULT-BORN AND MATURE HIPPOCAMPAL GRANULE CELLS

<u>DIEGO ARRIBAS</u>1*, MA. BELÉN PARDI¹, MORA OGANDO¹, ANTONIA MARIN-BURGIN¹, LUIS MORELLI¹

¹ BIOMEDICINE RESEARCH INSTITUTE OF BUENOS AIRES

\$1P276. BAYESIAN COMPUTATIONAL MODELING: A NEW TOOL FOR UNDERSTANDING THE REACTIVE GLIÓSIS PROPAGATION

<u>JERÓNIMO AUZMENDI</u>1*, LUCIANO MOFFATT², ALBERTO JAVIER RAMOS¹

¹IBCN-UBA-CONICET; ²INQUIMAE-UBA-CONICET

S1P277. DYNAMICS OF BRAIN NETWORKS: THE CONNECTIVITY MODULATED BY EXTERNAL MOTORS STIMULI HERNAN BOCACCIO^{1,2*}, MIRTA VILLARREAL^{1,2}

¹CONICET-FLENI; ²DF-FCEN-UBA

S1P278. EFFECTS OF THE STRUCTURAL CONNECTIVITY ON THE CRITICAL TRANSITIONS OF BRAIN FUNCTIONAL DYNAMICS

<u>SAMY CASTRO</u>^{1*}, MARIANO FERNANDEZ², DEMIAN BATTAGLIA³, WAEL EL-DEREDY^{4,5}, PATRICIO ORIO¹

¹CENTRO INTERDISCIPLINARIO DE NEUROCIENCIAS DE VALPARAISO, UNIVERSIDAD DE VALPARAISO; ² NATIONAL UNIVERSITY OF LA PLATA, LA PLATA, ARGENTINA; ³ INSTITUT DE NEUROSCIENCES DES SYSTEMES, MARSEILLE, FRANCE;

⁴ SCHOOL OF BIOMEDICAL ENGINEERING, UNIVERSITY OF VALPARAISO; ⁵UNIVERSITY OF MANCHESTER, UK

\$1P279. REDISCOVERING THE COLOR MATCHING FUNCTIONS

MARÍA DA FONSECA1*, INÉS SAMENGO1

¹ FÍSICA ESTADÍSTICA E INTESDISCIPLINARIA - CENTRO ATÓMICO BARILOCHE

S1P280. NOVEL PERCEPTUALLY UNIFORM CHROMATIC SPACE

MARÍA DA FONSECA1*, INÉS SAMENGO1

¹ FÍSICA ESTADÍSTICA E INTERDISCIPLINARIA

^{*}anaalbarracin@gmail.com

^{*}ralonso@df.uba.ar

^{*}diegoarri91@gmail.com

^{*}jeronimo.auzmendi@qmail.com

^{*}mirtafv@gmail.com

^{*}samv.castro@cinv.cl

^{*}mariadafon@amail.com

^{*}mariadafon@amail.com

INDEX AREAS ::: POSTER SESSION 2

Advocacy and Education	109
Behavior, Neuroethology, Memory and Cognition	109
Chronobiology	116
Development	117
Disorders of the Nervous System	118
Molecular and Cellular Neurobiology	122
Motor Systems	127
Neural Circuit Physiology	127
Neurochemistry and Neuropharmacology	128
Neuroendocrinology and Neuroimmunology	132
Sensory Systems	134
Synaptic Transmission, Excitability and Glia	135
Theoretical and Computational Neuroscience	136

POSTER SESSION 2

October 19, 2016

ADVOCACY AND EDUCATION

S2P281. QUALITY OF SLEEP IN STUDENTS OF MEDICAL SCIENCES UNIVERSITY OF HAVANA ALEXIS ALEJANDRO GARCIA-RIVERO^{1*}, JAVIER GONZALEZ-ARGOTE², NIBALDO HERNANDEZ-MESA¹

¹ NEUROPHYSIOLOGY DEPARTMENT, VICTORIA DE GIRÓN BASIC AND PRECLINICAL SCIENCE INSTITUTE

HAVANA MEDICAL SCIENCES UNIVERSITY; ²CENTRAL LABORATORY OF CEREBROSPINAL FLUID ANALYSIS (LABCEL)

FACULTY OF MEDICAL SCIENCES "MIGUEL ENRÍQUEZ", HAVANA MEDICAL SCIENCES LINIVERSITY

*alexneuro94@gmail.com

S2P282. DIGITAL LIBRARY "HEINRICH QUINCKE" JAVIER GONZALEZ-ARGOTE 1,2*, ALEXIS ALEJANDRO GARCIARIVERO 3, ALBERTO JUAN DORTA-CONTRERAS 1, JOSE PEDRO MARTINEZ-LARRARTE 1

¹ CENTRAL LABORATORY OF CEREBROSPINAL FLUID ANALYSIS (LABCEL); ² FACULTY OF MEDICAL SCIENCES "MIGUEL ENRÍQUEZ", HAVANA MEDICAL SCIENCES UNIVERSITY; ³ NEUROPHYSIOLOGY DEPARTMENT, VICTORIA DE GIRÓN BASIC AND PRECLINICAL SCIENCE INSTITUTE, HAVANA MEDICAL SCIENCES UNIVERSITY

*jargote@infomed.sld.cu

S2P283. SMARTPHONES AND LEARNING BRENDA E RYAN¹, DUARTE CRISTINA¹, RODRIGUEZ KARINA V¹, SAPOGNIKOFF MARCELO², FREIDIN ESTEBAN³, <u>ADRIÁN A JIMÉNEZ G¹*</u>, GASANEO, GUSTAVO¹

¹DEPARTAMENTO DE FÍSICA, UNIVERSIDAD NACIONAL DEL SUR, IFISUR-CONICET; ²CLÍNICA PRIVADA BAHIENSE; ³INSTITUTO DE INVESTIGACIONES ECONÓMICAS Y SOCIALES DEL SUR (IIESS), CONICET BAHÍA BLANCA *akidnaq@gmail.com

BEHAVIOR, NEUROETHOLOGY, MEMORY AND COGNITION

S2P284. SEXUAL DIMORPHISMINTHE BEHAVIORAL RESPONSE TO THE REPEATED FORCED SWIM TEST AFTER FLUOXETINE TREATMENT IN ADULT RATS KAROLINA DOMINGUES^{1*}, FERNANDO FALKENBURGER MELLEU¹, LAIS CRISTINA THEINDL¹, INAÊ DE AZEVEDO SPEZIA¹, FERNANDA LIMA CHRISTIAN¹, CILENE LINO DE OLIVEIRA¹

¹UNIVERSIDADE FEDERAL DE SANTA CATARINA, CENTRO DE CIÊNCIAS FISIOLÓGICAS; PROGRAMA DE PÓS-GRADUAÇÃO EM FARMACOLOGIA *dominguesk.karolina@gmail.com **S2P285.** BRAIN LATERALIZATION OF LANGUAGE TO THE LEFT IS INVERSELY RELATED TO LATERALIZED MOTOR HABILITY BOTH IN SELF DEFINED RIGHT AND LEFT HANDED INDIVIDUALS

LUCAS DRUCAROFF^{1,2,3*}, MIRTA VILLARREAL^{1,2,3}, MARIANA NAIR CASTRO^{1,3}, MARÍA CRISTINA MAGISTRELLI^{2,3}, ELSA COSTANZO^{2,3}, SALVADOR GUINJOAN^{1,2,3}

¹CONICET, ²FLENI, ³UBA *lucasdrucaroff@gmail.com

S2P286. WORKING MEMORY TRAINING IMPROVES READING SKILLS IN CHILDREN FROM ELEMENTARY SCHOOL IN BRAZIL.

LIDIOMAR JOSÉ MASCARELLO¹, <u>DOUGLAS SENNA ENGELKE¹*,</u> MAILCE BORGES MOTA¹

¹ UFSC

*douglas.engelke@gmail.com

S2P287. SOCIAL INTERACTION DURING DRUG EFFECT INDUCES CONTEXTUAL SECOND ORDER CONDITIONING IN AMPHETAMINE-INDUCED LOCOMOTOR SENSITIZATION

<u>DOUGLAS ENGELKE</u>1*, LUIZ EUGENIO MELLO1, JAIR GUILHERME DOS SANTOS JUNIOR²

¹UNIFESP; ¹FCMSCSP

*douglas.engelke@gmail.com

S2P288. THE RIGHT DORSOLATERAL PREFRONTAL CORTEX AS A NEW VARIABLE IN ECONOMIC DECISION-MAKING MODELS

MARIA ALEJANDRA ERAZO^{1*}, FERNANDO CARDENAS², JUAN CAMILO CARDENAS¹

¹ FACULTAD DE ECONOMÍA, UNIVERSIDAD DE LOS ANDES. BOGOTÁ, COLOMBIA; ² LABORATORIO DE NEUROCIENCIA Y COMPORTAMIENTO, PSICOLOGÍA, UNIVERSIDAD DE LOS ANDES

*ma.erazo1325@uniandes.edu.co

\$2P289. AM404 INHIBITS RECONSOLIDATION AND UPDATE OF MORPHINE-ASSOCIATED

CONTEXTUAL MEMORY IN MICE

<u>JOAO CARLOS ESCOSTEGUY-NETO</u>^{1*}, EMMANUEL S. ONAIVI¹, NELSON FRANCISCO CORREA-NETO², JAIR GUILHERME SANTOS-JUNIOR²

¹ WILLIAM PATERSON UNIVERSITY, WAYNE, NJ, U.S.A.; ²FACULTY OF MEDICAL SCIENCE SANTA CASA OF SAO PAULO, SAO PAULO, SP, BRAZIL ^{*}jcen1978@gmail.com

S2P290. POTENTIATION OF THE GABAERGIC ACTIVITY WITHIN THE BASOLATERAL AMYGDALA PREVENTS THE STRESS-INDUCED RESISTANCE TO THE ENGAGEMENT OF LABILIZATION/RECONSOLIDATION PROCESS

PABLO JAVIER ESPEJO1*, VICTOR ALEJANDRO MOLINA1

¹ DEPARTAMENTO DE FARMACOLOGÍA, FCQ, UNC. IFEC-CONICET; *pjespejo@hotmail.com

S2P291. EFFECT OF EMOTIONAL VALENCE AND AROUSAL ON EPISODIC MEMORY COMPONENTES OF RECOLLECTION AND FAMILIARITY CLEANTO ROGÉRIO REGO FERNANDES^{1*}, JOHN FONTENELE ARAUJO

¹ FEDERAL UNIVERSITY OF RIO GRANDE DO NORTE

S2P292. (—)-A-BISABOLOL PROTECTS MICE FROM MEMORY DEFICITS INDUCED BY FOCAL CEREBRAL ISCHEMIA

MARA YONE FERNANDES¹⁺, EMERSON FERREIRA¹, ANA THAIS SILVA¹, ANA PAULA MENDONÇA¹, JULIANA PEREIRA¹, ANALU FONTELES¹, GEANNE MATOS DE ANDRADE¹

¹ FEDERAL UNIVERSITY OF CEARA

S2P293. INTERFERENCE CONDITIONS OF THE RECONSOLIDATION PROCESS IN HUMANS: INTERACTION BETWEEN MEMORY SYSTEMS AND VALANCE

<u>RODRIGO S FERNÁNDEZ</u>^{1*}, BAVASSI LUZ¹, KACZER LAURA¹, FORCATO CECILIA¹, MARIA E PEDREIRA¹

¹ LABORATORIO DE NEUROBIOLOGÍA DE LA MEMORIA DEPARTAMENTO DE FISIOLOGÍA Y BIOLOGÍA MOLECULAR

S2P294. RECONSOLIDATION MIGHT MEDIATE MUTUAL UPDATING BETWEEN TWO DIFFERENT MEMORIES. EVIDENCE FROM HUMAN EPISODIC MEMORY.

ROQUE IGNACIO FERRER MONTI^{1*}, MARCELO PIÑEYRO¹, ANA PAULA ROCCO¹, MATIAS ALFONSO¹, MARIA EMILIA RAMÉ¹, ADRIÁN MARCELO BUENO¹

¹LABORATORIO DE PSICOLOGÍA EXPERIMENTAL, FACULTAD DE PSICOLOGÍA, UNC. *r.ferrermonti@gmail.com

S2P295. THE IMPACT OF EMOTIONAL STATES UPON COGNITION: NEGATIVE CONTEXT CAN MODULATE THE WORKING MEMORY CAPACITY JESSICA FIGUEIRA¹⁺, ISABELA LOBO¹, LUIZA PACHECO¹,

MIRTES PEREIRA¹, LETICIA OLIVEIRA¹, ISABEL DAVID¹

¹ UNIVERSIDADE FEDERAL FLUMINENSE

*jessicasanchesbf@gmail.com

S2P296. GENDER EFFECT OF HUMOR ON DECISION-MAKING: A BEHAVIORAL AND ELECTROPHYSIOLOGICAL REPORT

<u>JORGE FLORES</u>1*, IVAN RUBIO¹, GERMAN CAMPOS¹, EUGENIO RODRIGUEZ¹

¹ PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE †florese@uc.cl

S2P297. KINETICS OF ENVIRONMENTAL ENRICHMENT — CHARACTERIZING THE INTRINSIC DYNAMICS OF ONE OF THE MOST USED EARLY STIMULATION MODEL IN RODENTS

MIJAIL ROJAS¹, FERNANDA CALDERÓN¹, MÓNICA SÁNCHEZ¹, JAIME FORNAGUERA¹.²*, JUAN CARLOS BRENES².³

¹ CENTRO DE INVESTIGACIÓN EN NEUROCIENCIAS, UNIVERSIDAD DE COSTA RICA; ² DEPTO DE BIOQUÍMICA, ESCUELA DE MEDICINA, UNIVERSIDAD DE COSTA RICA; ³ INSTITUTO DE INVESTIGACIONES PSICOLÓGICAS, UNIVERSIDAD DE COSTA RICA

*jfornagu@gmail.com

S2P298. INFLUENCE OF THE CIRCADIAN CLOCK IN OVIPOSITION AND PLACE PREFERENCES OF THE FRUIT FLY DROSOPHILA MELANOGASTER

PAULA DRAUSAL¹, GUADALUPE CASCALLARES², SEBASTIAN RISAU GUSMAN², PABLO GLEISER², FERNANDA CERIANI³, LORENA FRANCO¹

¹ INSTITUTO DE INVESTIGACIÓN EN BIODIVERSIDAD Y MEDIO AMBIENTE, CONICET-UNCO, ARGENTINA.; ²GRUPO DE FÍSICA ESTADÍSTICA E INTERDISCIPLINARIA, CENTRO ATÓMICO BARILOCHE, ARGENTINA; ³FUNDACIÓN INSTITUTO LELOIR, IIBA, CONICET. BUENOS AIRES, ARGENTINA *lorefranco@gmail.com

S2P299. EXPERIMENTAL CHILDHOOD CEREBRAL MALARIA CAUSES COGNITIVE IMPAIRMENT IN ADULTHOOD

<u>VIVIANE FREIBERGER</u>^{1*}, LETÍCIA VENTURA¹, REGINA BUSSMANN¹, PATRÍCIA REIS², HUGO FARIA-NETO², CLARISSA COMIM¹

¹ UNIVERSIDADE DO SUL DE SANTA CATARINA; ² FUNDAÇÃO OSWALDO CRUZ *viviane.freiberger@gmail.com

S2P300. ROLE OF HIPPOCAMPUS DURING OBSERVATIONAL LEARNING OF SPATIAL NAVIGATION TASKS

YERKO FUENTEALBA1*, JOSE LUIS VALDÉS1

¹ PROGRAM OF PHYSIOLOGY AND BIOPHYSICS, INSTITUTE OF BIOMEDICAL SCIENCES, UNIVERSITY OF CHILE

BIOMEDICAL NEUROSCIENCE INSTITUTE

*yafuentealba@ug.uchile.cl

^{*}cleantobio@gmail.com

^{*}maraiony@hotmail.com

^{*}rodrigosfernandez@hotmail.com

S2P301. LACK OF PANNEXIN 1 ALTERS LONG-TERM DEPRESSION AND SPATIAL MEMORY FLEXIBILITY IVANA GAJARDO^{1*}, CLAUDIA SALAZAR¹, CAROLINA FLORES-MUÑOZ¹. AGUSTIN MARTINEZ¹. ALVARO ARDILES^{1,2}

¹ CENTRO INTERDISCIPLINARIO DE NEUROCIENCIA DE VALPARAÍSO, UNIVERSIDAD DE VALPARAISO, CHILE

S2P302. UNDERSTANDING MEMORY LOSS: DEVELOPMENT OF A RETRIEVAL-INDUCED FORGETTING PARADIGM IN RODENTS TO MODEL ADAPTIVE FORGETTING IN THE MAMMALIAN BRAIN

<u>FRANCISCO GALLO</u>^{1*}, FACUNDO MORICI¹, MAGDALENA MIRANDA¹, MICHAEL ANDERSON², BEKINSCHTEIN PEDRO¹, NOELIA WEISSTAUB¹

¹ LABORATORY OF EXPERIMENTAL COGNITION AND BEHAVIOR, IFIBIO, CONICET-UBA; ²MRC COGNITION AND BRAIN SCIENCE UNIT. CAMBRIDGE. UNITED KINGDOM

S2P303. MINOCYCLINE IMPROVES THE MEMORY AND REDUCES THE NEUROINFLAMMATION OF MICE SUBJECT TO AMYLOID B (1-42) PEPTIDE ADMINISTRATION

MICHELLE GARCEZ^{1*}, FRANCIELLE MINA¹, TATIANI BELLETTINI-SANTOS¹, ALINE LUZ¹, GUSTAVO SCHIAVO¹, HEMILY BATISTA-SILVA¹, MATHEUS ANDRIGHETTI¹, RENAN BOLFE¹, MAYLTON SCHEID¹, JOSIANE BUDNI¹

S2P304. LOCAL ADMINISTRATION OF HALOPERIDOL INTO GLOBUS PALLIDUS INDUCES ANXIETY IN RAT

MARTHA GARCÍA-RAMIREZI*, GERARDO AVILA¹, PAMELA SANCHEZ¹, ELIEZER CHUC-MEZA¹

S2P305. MULTIGENERATIONAL EFFECTS OF PROTEIN MALNUTRITION: MATERNAL CARE AND OFFSPRING DEVELOPMENT

<u>OCTAVIO GIANATIEMPO</u>^{1,2*}, SILVINA SONZOGNI^{1,2}, NADINA FERRONI^{1,2}, EDUARDO CÁNEPA^{1,2}

¹ LABORATORIO DE NEUROEPIGENÉTICA, DEPARTAMENTO DE QUÍMICA BIOLÓGICA, FCEYN, UBA; ² CONICET **S2P306.** REST INCREASE HELPS TO MAINTAIN COGNITIVE FUNCTION IN A MILD COGNITIVE IMPAIRMENT OF ALZHEIMER'S DISEASE MODEL MARTIN S. GODOY^{1,2*}, BEATRIZ BISTUÉ^{1,2}, M. EUGENIA NAVAS^{1,2}, MARTÍN A. BRUNO^{1,2,3}

- ¹ DEPARTAMENTO DE NEUROCIENCIAS, FACULTAD DE CIENCIAS MÉDICAS, UCCUYO
- ² CONSEJO NACIONAL DE INVESTIGACIONES CIENTÍFICAS Y TÉCNICAS (CONICET)
- ³ DEPARTMENT OF PHARMACOLOGY AND THERAPEUTICS, MCGILL UNIVERSITY, MONTREAL, QC, CANADA

S2P307. THE USE OF COGNITIVE REHABILITATION FOR OCCUPATIONAL THERAPY (OT) IN PARKINSON'S DISEASE (PD) IN A DOMICILIARY PATIENT LUANA APARECIDA SILVA GOMES^{1*}

¹ UNIVERSIDADE DO ESTADO DO PARÁ *gomesluanaas@gmail.com

S2P308. EFFECTS OF COCAINE PYROLISIS PRODUCT, ANHYDROECGONINE METHYL ESTER (AEME) ON SPATIAL WORKING MEMORY OF RATS <u>ELISA GOMES</u>^{1*}, ANDREZZA ARAÚJO¹, CLECIANE MARTINS¹, INGRYD LIPAUS¹, JOSIDÉIA MENDONÇA², FABRÍCIO PELIÇÃO², EVANDRO LEBARCH², LÍVIA RODRIGUES¹, ESTER NAKAMURA-PALACIOS¹

¹ FEDERAL UNIVERSITY OF ESPÍRITO SANTO; ² ESPÍRITO SANTO POLICE DEPARTMENT

S2P309. EFFECT OF STRESS INDUCED BY IMMOBILIZATION ON THE SLEEP ARCHITECTURE OF WISTAR RATS

ANGELA GOMEZ^{1*}, ALEJANDRO OSORIO-FORERO¹, KAREN CORREDOR¹, LAURA ANDREA LEÓN^{1,2}, MARIO VALDERRAMA¹, FERNANDO CÁRDENAS¹

¹ UNIVERSIDAD DE LOS ANDES. PSYCHOLOGY DEPARTMENT; ² UNIVERSIDAD CATÓLICA, BOGOTA. LABORATORY OF BEHAVIORAL EXPERIMENTAL ANALYSIS *am.gomez17@uniandes.edu.co

S2P310. EVALUATION OF LITHIUM AND MEMANTINE EFFECT ON MEMORY AND SPATIAL NEUROINFLAMMATION IN A MODEL OF DEMENTIA ANIMAL INDUCED BY PEPTIDE B-AMYLOID1-42 FRANCIELLE GONÇALVES MINA^{1*}, HEMILY BATISTA DA SILVA¹, MICHELLE LIMA GARCEZ¹, TATIANI BELLETTINI DOS SANTOS¹, LUCAS RIBEIRO KRASILCHIK¹, JOSIANE BUDNI¹

¹ LABORATORY OF NEUROSCIENCES, GRADUATE PROGRAM IN HEALTH SCIENCES, UNESC, BRAZIL

² ESCUELA DE MEDICINA, UNIVERSIDAD DE VALPARAISO, VALPARAISO, CHILE "ivana.gajardo@cinv.d

^{*}fgallo11@gmail.com

¹ UNIVERSIDADE DO EXTREMO SUL CATARINENSE

^{*}mi.lima.garcez@hotmail.com

[†] ESCUELA NACIONAL DE CIENCIAS BIOLOGICAS IPN *martha_garcia_2005@yahoo.com.mx

^{*}ogianatiempo@gmail.com

^{*}godoymartin@gmail.com

 $^{{\}it `elisa fragagomes@gmail.com}\\$

^{*}franciellemina@yahoo.com.br

S2P311. THE APPARENT RESISTANT MEMORIES IN THE CRAB NEOHELICE DEPEND ON THE REMINDER CONDITIONS TO ENTER THE LABILIZATION/RECONSOLIDATION PROCESS

<u>HEIDI GONZALEZ</u>^{1*}, LEONARDO BLOISSE¹, FRANCISCO MAZA¹, VICTOR MOLINA¹, ALEJANDRO DELORENZI¹

¹LABORATORIO DE NEUROBIOLOGÍA DE LA MEMORIA, FCEN, UBA *GONZALEZHEIDI88@GMAIL.COM

S2P312. ACUTE STRESS IN NEOHELICE GRANULATA IMPAIRS MEMORY

RETRIEVAL

HEIDI GONZALEZ^{1*}, FRANCISCO MAZA¹, ALEJANDRO DELORENZI¹

¹LABORATORIO DE NEUROBIOLOGÍA DE LA MEMORIA, FCEN, UBA *gonzalezheidi88@gmail.com

S2P313. METHAMPHETAMINE AND MODAFINIL EFFECTS ON EPIGENETIC AND FUNCTIONAL MARKERS IN THE MOUSE PREFRONTAL CORTEX BETINA GONZALEZ^{1*}, SUBRAMANIAM JAYANTHI², JEAN LUD CADET², EDGAR GARCIA-RILL³, FRANCISCO J. URBANO⁴, VERONICA BISAGNO¹

¹ ININFA, NATIONAL RESEARCH COUNCIL, BUENOS AIRES, ARGENTINA; ² NIDA INTRAMURAL PROGRAM, MOLECULAR NEUROPSYCHIATRY RESEARCH BRANCH, BALTIMORE, USA; ³ UAMS CENTER FOR TRANSLATIONAL NEUROSCIENCE, NEUROBIOLOGY AND DEVELOPMENTAL SCIENCES, LITTL; ⁴ IFIBYNE, NATIONAL RESEARCH COUNCIL, BUENOS AIRES, ARGENTINA "betina.gonz@gmail.com

S2P314. REPRESENTATION OF THE STATE OF MOTION IN THE LOCAL FIELD POTENTIAL OF HIPPOCAMPUS AND ENTORHINAL CORTEX SOLEDAD GONZALO COGNO^{1*}, EMILIO KROPFF², INÉS SAMENGO¹

¹ INSTITUTO BALSEIRO, CENTRO ATÓMICO BARILOCHE, CONICET; ² INSTITUTO LELOIR, IIBBA, CONICET

*s.gonzalocogno@gmail.com

S2P315. EFFECT OF A HIGH FAT DIET AND OMEGA-3 SUPPLEMENTATION ON THE OBJECT RECOGNITION TASK

ALINE DE ANDRADE¹, ROBERTA ORIQUES BECKER¹, MARILENE PORAWSKI GARRIDO¹, MÁRCIA GIOVENARDI¹, RENATA PADILHA GUEDES¹*

[†] FEDERAL UNIVERSITY OF HEALTH SCIENCES OF PORTO ALEGRE, BRAZIL. *giovenardi.marcia@gmail.com

S2P316. CANNABIDIOL ATTENUATES SOCIAL ISOLATION-INDUCED AGRESSION IN MICE VIA 5-HT1A AND CB1 RECEPTORS

<u>ALICE HARTMANN¹*,</u> FELIPE GOMES², FRANCISCO GUIMARÃES¹. SABRINA LISBOA¹

DEPARTMENT OF PHARMACOLOGY, MEDICAL SCHOOL OF RIBEIRÃO PRETO, UNIVERSITY OF SÃO PAULO, BR;

² DEPARTMENT OF NEUROSCIENCE, UNIVERSITY OF PITTSBURGH, USA *alicehartmanndossantos@hotmail.com

S2P317. STEREOLOGICAL ESTIMATE OF NEUROGENESIS RATES IN THE HIPPOCAMPAL FORMATION OF THE SPOTTED SANDPIPER (ACTITIS MACULARIA)

EDIELY HENRIQUE^{1*}, CRISTOVAM DINIZ¹, PATRICK PEREIRA¹, LUCAS SIQUEIRA¹, NARA MAGALHÃES¹, MAURO MELO¹, DAVID SHERRY², CRISTOVAM DINIZ³

¹LABORATÓRIO DE BIOLOGIA MOLECULAR E AMBIENTAL, BRAGANÇA, PARÁ, BRASIL.; ²DEPARTMENT OF PSYCHOLOGY ADVANCED FACILITY FOR AVIAN RESEARCH, LONDON, ONTARIO, CANADA; ³LABORATÓRIO DE INVESTIGAÇÕES EM NEURODEGENERAÇÃO E INFECÇÃO, BELÉM, PARÁ, BRASIL

*edielymed@gmail.com

S2P318. PERCEPTUAL FADING OF SYNTHESIZED NATURALISTIC VISUAL TEXTURES: A PARAMETRIC STUDY

DANIEL HERRERA^{1*}, LEONEL GÓMEZ-SENA¹

¹LABORATORIO DE NEUROCIENCIAS, FACULTAD DE CIENCIAS, UNIVERSIDAD DE LA REPÚBLICA

*dherrera1911@gmail.com

S2P319. HABENULAR ELECTRICAL STIMULATION EFFECTS ON THE MODULATION OF EMOTIONAL RESPONSES ON WISTAR RATS

MARIA LAURA HERRERA CHAUSTRE^{1*}, NATALIA RUBIO¹, JUAN PABLO QUINTANILLA², VICTOR HUERTA², MARIO VALDERRAMA¹, FERNANDO CARDENAS²

¹ DEPARTAMENTO DE CIENCIAS BIOLÓGICAS, UNIVERSIDAD DE LOS ANDES, COLOMBIA; ² LABORATORIO DE NEUROCIENCIAS Y COMPORTAMIENTO, UNIVERSIDAD DE LOS ANDES, COLOMBIA

*ml.herrera741@uniandes.edu.co

S2P320. DIFFERENT TYPES OF INHIBITORY CONTROL IN PATIENTS WITH PSYCHOSTIMULANT DEPENDENCE

<u>OLGA INOZEMTSEVA</u>**, SUSANA MORALES¹, HUGO SALAZAR¹, JORGE JUÁREZ¹. ESMERALDA MATUTE¹

¹ INSTITUTO DE NEUROCIENCIAS, UNIVERSIDAD DE GUADALAJARA, DEPARTAMENTO DE EDUCACIÓN, UNIVERSIDAD DE GUADALAJARA; *oinozem@yahoo.com

S2P321. MEMORY DEFICITS IN 13 MONTH OLD WILD TYPE AND TRANSGENIC MCGILL-R-THY1-APP RATS WITH BRAIN AMYLOIDOSIS

FEDERICO FILIPPÍN¹, MARÍA VERÓNICA BAEZ¹, MAGALÍ

CERCATO¹, ALEJANDRA AGUIRRRE¹, ALEJANDRO JOSIOWICZ¹, TOMAS GONZALEZ GARELLO¹, NICOLAS LAVAISE¹, CLAUDIO CUELLO², DIANA JERUSALINSKY*^{1**}, EDGAR KORNISIUK*^{1**}

¹INSTITUTO DE BIOLOGÍA CELULAR Y NEUROCIENCIA "PROF. E. DE ROBERTIS"; 2DEPARTMENT OF PHARMACOLOGY & THERAPEUTICS MCGILL UNIVERSITY, MONTREAL. CANADA

*djerusal@gmail.com - **Equal contribution

S2P322. 'CONSOLIDATION EXPRESS': ACCELERATED DYNAMICS OF MEMORY CONSOLIDATION FOR NOVEL WORDS AND MEANINGS REVEALED BY AN FRP STUDY

LUZ BAVASSI¹, SOFIA DEGIORGI¹, MARIA EUGENIA PEDREIRA¹, LAURA KACZER¹*

¹ LABORATORIO DE NEUROBIOLOGIA DE LA MEMORIA, IFIBYNE, UBA, CONICET

*laurakaczer@gmail.com

S2P323. SELECTIVE AND DIVIDED ATTENTION FOR BIMODAL STIMULI IN CHILDREN WITH MUSICAL TRAINING, WORK IN PROGRESS

<u>LEONIE KAUSEL</u>^{1,2*}, FRANCISCO ZAMORANO, MARY ELIZABETH SUTHERLAND², PABLO BILLEKE³, FRANCISCO ABOITIZ^{1,2}

¹ CENTRO INTERDISCIPLINARIO DE NEUROCIENCIAS, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE; ² DEPARTAMENTO DE PSIQUIATRÍA, ESCUELA DE MEDICINA, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE; ³ FACULTAD DE GOBIERNO, UNIVERSIDAD DEL DESARROLLO, SANTIAGO, CHILE "leoniekausel@gmail.com

S2P324. PRENATAL ZINC TREATMENT PREVENTS AUTISTIC-LIKE BEHAVIORS IN A RAT MODEL OF AUTISM INDUCED BY PRENATAL LIPOPOLYSACCHARIDE

<u>THIAGO B. KIRSTEN</u>^{1,2*}, MARIA M. BERNARDI², LUCIANO F. FELÍCIO¹

¹ DEPARTMENT OF PATHOLOGY, SCHOOL OF VETERINARY MEDICINE, UNIVERSITY OF SAO PAULO; ² ENVIRONMENTAL AND EXPERIMENTAL PATHOLOGY, PAULISTA UNIVERSITY

*thik@outlook.com

S2P325. INTRAHIPPOCAMPAL ADMINISTRATION OF AN ANTIBODY AGAINST GLYCOPROTEIN M6A IMPAIRS MEMORY CONSOLIDATION IN AN INHIBITORY AVOIDANCE TASK IN MICE

MARÍA DEL CARMEN KRAWCZYKI*, MICAELA D. GARCÍA², JULIETA MILLÁN¹, ALBERTO C FRASCH², MARIANO BOCCIA¹, CAMILA SCORTICATI²

¹LABORATORIO DE NEUROFARMACOLOGÍA DE PROCESOS DE MEMORIA, CÁT, FARMACOLOGÍA, FFYB, UBA; ²IIB—INTEC, UNSAM, CONICET

*marboccia@gmail.com

S2P326. RECONSOLIDATION-INDUCED MEMORY PERSISTENCE: PARTICIPATION OF LATE PHASE HIPPOCAMPAL ERK ACTIVATION

MARÍA DEL CARMEN KRAWCZYK¹*, NICOLÁS NAVARRO¹, MARIANO BLAKE¹, ARTURO ROMANO¹, MARIANA FELD¹, MARIANO BOCCIA¹

¹ LAB. DE NEUROFARMACOLOGÍA DE LOS PROCESOS DE MEMORIA - FARMACOLOGÍA - FFYB - UBA

 * mc.krawczyk1985@gmail.com

S2P327. IMPAIRMENT OF SPATIAL WORKING MEMORY AND BIOCHEMICAL CHANGES INDUCED BY DIRECT CRACK INHALATION IN RATS

INGRYD LIPAUS^{1*}, ELISA GOMES¹, CLECIANE MARTINS¹, ANDREZZA ARAÚJO¹, EVANDRO LEBARCH², JOSIDÉIA MENDONÇA²,FABRICIO PELIÇÃO², CRISTINA SILVA¹, RITA PIRES¹, PATRICIA SCHUCK³, FERNANDA MALGARIN³, ESTER NAKAMURA-PALACIOS¹. LÍVIA RODRIGUES¹

¹ UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO; ² POLÍCIA CIVIL DO ESTADO DO ESPÍRITO SANTO; ³ UNIVERSIDADE DO EXTREMO SUL CATARINENSE *fortes in@hotmail.com

S2P328. PROMOTION OR IMPAIRMENT OF LONG TERM MEMORY MEDIATED BY STRESS

<u>PAMELA LOPES DA CUNHA</u>^{1*}, MARIA EUGENIA VILLAR¹, FABRICIO BALLARINI¹, LUCIA CHISARI¹, HAYDEE VIOLA^{1,2}

¹ INSTITUTO DE BIOLOGÍA CELULAR Y NEUROCIENCIAS, FACULTAD DE MEDICINA, UBA- ARGENTINA; ² DEPARTAMENTO DE FISIOLOGÍA Y BIOLOGÍA MOLECULAR Y NEUROCIENCIAS, FCEN. ARGENTINA *pamelopes@gmail.com

S2P329. COMPARATIVE ANALYSIS OF THE EFFECTS NICOTINE EXPOSURE AND WITHDRAWAL IN ADOLESCENCE OR ADULTHOOD ON THE BEHAVIORS ASSOCIATED WITH ANXIETY AND LOCOMOTOR ACTIVITY IN MICE

BRUNA LOTUFO^{1*}, JEMIMA ISNARDO-FERNANDES¹, SYLVIO CLAUDIO-NETO¹, NATALIE GARRÃO¹, GABRIEL OLIVEIRA¹, VITOR DUARTE PINHEIRO¹, CLAUDIO FILGUEIRAS¹, YAEL ABREU-VILLAÇA¹, ALEX MANHÃES¹

¹UERJ

*bmlotufo@gmail.com

S2P330. THE ROLE OF LIM KINASE ACTIVITY IN THE HIPPOCAMPUS DURING MEMORY FORMATION AND RECONSOLIDATION: A MATTER OF ACTIN CYTOSKELETON REORGANIZATION

<u>PAULA LUNARDI</u>^{1*}, RICARDO SACHSER¹, RODRIGO SIERRA ORDOÑEZ¹, LIZETH PEDRAZZA¹, JORGE QUILLFEDT¹, LUCAS DE OLIVEIRA ALVARES¹

¹ GRADUATE NEUROSCIENCE PROGRAM , NEUROBIOLOGY OF MEMORY AND

PSYCHOBIOLOGY AND NEUROCOMPUTATION LABORATORIES, FEDERAL UNIVERSITY OF RIO GRANDE DO SUL

*plunardi11@gmail.com

S2P331. EMOTIONAL UPREGULATION TO UNCONDITIONED, BUT NOT CONDITIONED, FEAR STIMULI DURING THE LATE DIESTROUS PHASE OF THE ESTROUS CYCLE IN RATS

<u>REBECA MACHADO</u>^{1,2*}, MILENE CRISTINA CARVALHO^{1,2}, THELMA LOVICK^{1,2}, MARCUS LIRA BRANDÃO^{1,2}

- ¹LABORATÓRIO DE NEUROPSICOFARMACOLOGIA, FFCLRP, UNIVERSIDADE DE SÃO PAULO. RIBEIRÃO PRETO:
- ² INSTITUTO DE NEUROCIÊNCIAS E COMPORTAMENTO, AVENIDA DO CAFÉ, 2450, RIBEIRÃO PRETO, SP.
- *rebecamfigueiredo@gmail.com

S2P332. EVALUATION OF THE POSSIBLE TRANSGENERATIONAL CHANGES OF MATERNAL SEPARATION ON MATERNAL BEHAVIOR.

<u>LILIANA MÁRQUEZ</u>1*, LAURA LEÓN², FERNANDO CÁRDENAS², ZULMA DUEÑAS¹

¹ UNIVERSIDAD NACIONAL DE COLOMBIA. FACULTAD DE MEDICINA; ² LABORATORIO DE NEUROCIENCIA Y COMPORTAMIENTO, UNIVERSIDAD DE LOS ANDES

*liliana.marquez.c77@gmail.com

S2P333. IRE1/XBP1 PATHWAY: DIFFERENTIAL ROLE IN LEARNING AND MEMORY PROCESSES.

GABRIELA MARTINEZI*, RENE L VIDAL¹,2,3,6, PABLO MARDONES¹,2,3, JUAN PABLO VIVAR¹,2,3, CAROLINA JEREZ¹,2,3, VALENTINE LE GALL¹,2,3, CLAUDIO HETZ¹,2,3,4,5

¹ BIOMEDICAL NEUROSCIENCE INSTITUTE, FACULTY OF MEDICINE, UNIVERSITY OF CHILE, SANTIAGO, CHILE; ² CENTER FOR GEROSCIENCE, BRAIN HEALTH AND METABOLISM, SANTIAGO, CHILE; ³ PROGRAM OF CELLULAR AND MOLECULAR BIOLOGY, CENTER FOR MOLECULAR STUDIES OF THE CELL INSTI; ⁴ BUCK INSTITUTE FOR RESEARCH ON AGING, NOVATO, CA, 94945, USA; ⁵ DEPARTMENT OF IMMUNOLOGY AND INFECTIOUS DISEASES, HARVARD SCHOOL OF PUBLIC HEALTH, 02115; ⁶ NEUROUNION BIOMEDICAL FOUNDATION, SANTIAGO, CHILE

*gabriela.martinezbravo@gmail.com

S2P334. DIFFERENTIAL BRAIN EXPRESSION OF CATALASE IN DEVELOPMENTALLY-PB-EXPOSED RATS THAT HAVE VOLUNTARILY CONSUMED ETHANOL

MARA SOLEDAD MATTALLONII*,LILIANA CANCELA¹, MIRIAM VIRGOLINI¹

¹ IFEC-CONICET. DEPTO. DE FARMACOLOGÍA. FACULTAD DE CIENCIAS QUÍMICAS. UNIVERSIDAD NACIONAL

*marsol214@hotmail.com

S2P335. MEMORY-RELATED NEURAL PLASTICITY IN THE HEMIELLIPSOID BODIES,

THE CRAB'S "MUSHROOM BODIES"

<u>FRANCISCO JAVIER MAZA</u>1*, FERNANDO LOCATELLI¹, AVISHAG SHKEDY¹, JULIETA SZTARKER¹, ALEJANDRO DELORENZI¹

¹LABORATORIO DE NEUROBIOLOGÍA DE LA MEMORIA, DFBMC, FCEN, UBA, IFIBYNE-CONICET

*fimaza@hotmail.com

S2P336. ROLE OF ADF/COFILIN AS A KEY REGULATOR OF ACTIN CYTOSKELETON DYNAMICS IN DIFFERENT PHASES OF FEAR MEMORY IN MICE CANDELA MEDINA^{1*}, VERÓNICA DE LA FUENTE¹, ARTURO ROMANO¹

¹DFBMC-FCEYN-UBA / IFIBYNE-UBA-CONICET

*candela.eme@gmail.com

S2P337. EFFECTS OF DIFFERENT NICOTINE ADMINISTRATION PROTOCOLS ON MOTOR AND COGNITIVE RESPONSES IN PARKINSONIAN RATS MARTHA LILIANA MEDINA SOLANO^{1,2*}, ANGELA MARIA RODRIGUEZ MUÑOZ³, FABIO HURTADO⁴, JUAN PABLO QUINTANILLA⁵, VICTOR MANUEL HUERTA⁵, FERNANDO CARDENAS⁶.

¹ UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA. FACULTY OF BIOLOGY; ² UNIVERSIDAD DE LOS ANDES, PSYCHOLOGY DEPARTMENT; ³ UNIVERSIDAD NACIONAL DE COLOMBIA; ⁴ UNIVERSIDAD EL BOSQUE; ⁵ UNIVERSIDAD CATÓLICA SAN PABLO (PERÚ); ⁶ UNIVERSIDAD DE LOS ANDES (COLOMBIA). PSYCHOLOGY DEPARTMENT

 * marthmedinas@gmail.com

S2P338. ROLE OF GLUCAGON-LIKE PEPTIDE 1 (GLP1) IN HEDONIC FOOD INTAKE IS MODULATED BY INDIVIDUAL PREFERENCE.

RICARDO MELLA^{1*}

¹ CENTER FOR INTEGRATIVE AND INNOVATIVE SCIENCES *ri.mella.m@gmail.com

S2P339. BEHAVIORAL EVALUATION OF ACUPUNCTURE IN AN ANIMAL MODEL OF ADHD PAULA CHAVES MENDONÇA^{1,2*}, ARNALDO DE SÁ GERALDO^{1,2}, ALEX PORTES, PABLO PANDOLFO^{1,2}

- ¹ LABORATÓRIO DE NEUROBIOLOGIA DO COMPORTAMENTO ANIMAL. DEPARTAMENTO DE NEUROBIOLOGIA.
- ² INSTITUTO DE BIOLOGIA. UNIVERSIDADE FEDERAL FLUMINENSE. NITERÓI RI

*paulamendonca@id.uff.br

S2P340. DIFFERENT NEONATAL STRESS PROTOCOLS CAUSE DIFFERENT ANXIETY BEHAVIORS

RANDRIELY MERSCHER SOBREIRA DE LIMA^{1*}, MARTIELO JANUÁRIO DA MATA, LUDHIELLE DA COSTA OLIVEIRA, JOSEFA CRISTINA PEREIRA DOS SANTOS, ATHELSON STEFANON BITTENCOURT, ANA PAULA SANTANA DE VASCONCELLOS BITTENCOURT

¹ UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO *randriely@gmail.com

S2P341. HIPPOCAMPAL-RELATED BEHAVIORAL ALTERATIONS FOUND IN NOISE-EXPOSED ADOLESCENT RATS. EFFECTS OF A SUBSEQUENT ALCOHOL INTAKE

MARÍA MICELI*, GABRIELA BEATRIZ ACOSTA¹, SONIA JAZMÍN MOLINA¹, LAURA RUTH GUELMAN¹

¹UNIVERSIDAD DE BUENOS AIRES. CONSEJO NACIONAL DE INVESTIGACIONES CIENTÍFICAS Y TÉCNICAS. C

*maria_miceli@hotmail.com

S2P342. PREFRONTAL CORTEX DYSFUNCTION IN HYPOXIC-ISCHEMIC **ENCEPHALOPATHY** CONTRIBUTES TO **FXFCUTIVE FUNCTION IMPAIRMENTS** IN RATS POTENTIAL CONTRIBUTION FO_R ATTENTION-DEFICIT/ HYPERACTIVITY DISORDER

<u>PATRÍCIA MIGUEL</u>^{1*}, BRUNA DENIZ¹, IOHANNA DECKMANN¹, HELOISA CONFORTIM¹, RAMIRO DIAZ¹, DANIELA LAUREANO¹, PATRÍCIA PELUFO SILVEIRA¹, LENIR ORLANDI PEREIRA²

¹ UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL; ² MCGILL UNIVERSITY *patymiquel@msn.com

S2P343. ACTIVITY REGULATED CYTOSKELETON-ASSOCIATED PROTEIN ISREQUIRED FOR CONSOLIDATION OF OVERLAPPING OBJECT, BUT NOT SPATIAL MEMORIES IN THE PERIRHINAL CORTEX

MAGDALENA MIRANDA^{1*}, FACUNDO MORICI¹, FRANCISCO GALLO¹, BELÉN ZANONI¹, NOELIA WEISSTAUB¹, PEDRO BEKINSCHTEIN¹

¹ INSTITUTO DE BIOLOGÍA CELULAR Y NEUROCIENCIAS, FACULTAD DE MEDICINA. UBA

*magui.miranda@hotmail.com

S2P344. N-METHYL-D-ASPARTATE INJECTED INTO THE DORSAL PERIAQUEDUCTAL GRAY INDUCES EMOTIONAL SENSITIZATION AND FACILITATES THE ACQUISITION OF CONTEXTUAL FEAR MEMORY: OLFACTORY MODULATION

<u>CRISTIANE MOCHNY</u>^{1*}, MARCELO GIACHERO¹, VICTOR MOLINA², ANTONIO DE PADUA CAROBREZ¹

¹ DEPARTAMENTO DE FARMACOLOGÍA, CCB, UNIVERSIDADE FEDERAL DE SANTA CATARINA, FLORIANÓPOLIS; ² DEPART. DE FARMACOLOGÍA, FCQ, UNIVERSIDAD NACIONAL DE CÓRDOBA. ARGENTINA

*cmochny@gmail.com

S2P345. FIRST EVIDENCE OF BEHAVIORAL TAGGING ACTING IN MEMORY RECONSOLIDATION IVÁN RABINOVICH ORLANDI¹, FABRICIO BALLARINI¹, DIEGO MONCADA¹*

¹ INSTITUTO DE BIOLOGÍA CELULAR Y NEUROCIENCIAS *dmoncada@gmail.com

S2P346. VIRTUAL REALITY-BASED PHYSICAL EXERCISE WITH EXERGAMES (PHYSEX) IMPROVES MENTAL HEALTH AND PHYSICAL PERFORMANCE OF INSTITUTIONALIZED OLDER ADULTS: A SINGLE-BLINDED, RANDOMIZED AND CONTROLLED STUDY RENATO SOBRAL MONTEIRO-JUNIOR^{1,2,3*}, VINÍCIUS DIAS RODRIGUES^{1,5}, JERSON LAKS^{5,6}, KNUT ENGEDAL⁷, OSVALDO JOSÉ NASCIMENTO⁵, ANDREA CAMAZ DESLANDES3^{3,6,8}

¹ STATE UNIVERSITY OF MONTES CLAROS, MONTES CLAROS, MG, BRAZIL; ² DOCTORAL PROGRAM OF MEDICINE (NEUROSCIENCE), FEDERAL FLUMINENSE UNIVERSITY, RJ, BRAZIL; ³ NEUROSCIENCE LABORATORY OF EXERCISE UERJ (LANEX); ⁴ GROUP OF STUDIES AND RESEARCH ON NEUROSCIENCE, EXERCISE, HEALTH AND SPORTS (GENESES); ⁵ POSTGRADUATION PROGRAM OF HEALTH SCIENCES, UNIMONTES, MONTES CLAROS, MG, BRAZIL; ⁶ INSTITUTE OF PSYCHIATRY, FEDERAL UNIVERSITY OF RIO DE JANEIRO, RIO DE JANEIRO, RJ, BRAZIL; ⁷ NORWEGIAN CENTRE FOR AGING AND HEALTH, VESTFOLD HEALTH TRUST, 3130 TØNSBERG, NORWAY; ⁸ INSTITUTE OF PHYSICAL EDUCATION AND SPORT, STATE UNIVERSITY OF RIO DE JANEIRO, RJ, BRAZIL

*monteirojuniorms@gmail.com

S2P347. AGONISTIC BEHAVIOR CHANGES IN A CICHLID FISH FED WITH AN L-TRYPTOPHAN SUPPLEMENTED-DIET

<u>LEONEL MORANDINI</u>1*,MARTÍN ROBERTO RAMALLO¹, RENATO MASSAAKI HONJI², RENATA GUIMARÃES MOREIRA², GUSTAVO MANUEL SOMOZA³. MATÍAS PANDOLFI³

¹ DBBE, IBBEA-CONICET, FACULTAD DE CIENCIAS EXACTAS Y NATURALES, UBA:

² DEPARTAMENTO DE FISIOLOGIA, INSTITUTO DE BIOCIÊNCIAS-USP, SÃO PAULO. SP. BRAZIL

³LABORATORIO DE ICTIOFISIOLOGÍA Y ACUICULTURA, IIB-INTECH, CONICET-UNSAM, CHASCOMÚS, ARGENTINA

*leonel.morandini@hotmail.com

\$2P348. MODAFINIL DOES NOT PREVENT DEFICITS ON MULTIPLE TRIAL INHIBITORY AVOIDANCE TASK ACQUISITION IN SPONTANEOUSLY HYPERTENSIVE RATS (SHRS)

KARIN MOREIRA¹*, MAYRA SUIAMA¹, RAÍ EUFRÁSIO¹, VANESSA ABILIO¹,2

¹ UNIVERSIDADE FEDERAL DE SAO PAULO - DEPARTAMENTO DE FARMACOLOGIA; ² UNIVERSIDADE FEDERAL DE SAO PAULO - DEPARTAMENTO DE PSIQUIATRIA

*kmoreira@gmail.com

S2P349. THE INTERPLAY BETWEEN MEDIAL PREFRONTAL CORTEX AND HIPPOCAMPUS IS REQUIRED FOR THE CONTROL OF MEMORY TRACES REACTIVATION IN THE PERIRHINAL CORTEX

<u>JUAN FACUNDO MORICI</u>1*, MAGDALENA MIRANDA², FRANCISCO GALLO¹, BELEN ZANONI¹, PEDRO BEKINSCHTEIN², NOELIA WEISSTAUB¹

¹ LABORATORY OF EXPERIMENTAL COGNITION AND BEHAVIOR, IFIBIO, CONICET-UBA.; ² LABORATORY OF MEMORY RESEARCH AND MOLECULAR COGNITION, IBCN, CONICET-UBA.

S2P350. OVER TIME ZEBRAFISH BEHAVIOUR FOLLOWING AYAHUASCA ADMINISTRATION CLARISSA MOURA¹⁷, ROBSON SAVOLDI¹, DANIEL POLARI¹, BRUNO LOBÃO¹, PRISCILA FERNANDES¹, ANA CAROLINA LUCHIARI¹

¹ UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

S2P351. EFFECTS OF ACUTE AYAHUASCA AND FLUOXETINE IN ALCOHOL WITHDRAWAL CLARISSA MOURA^{1*}, VANESSA SILVEIRA¹, ANA CAROLINA LUCHIARI¹

¹ UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE *clari_almeida@hotmail.com

S2P352. CONTEXTUAL FEAR MEMORY AND INCENTIVE LEARNING INTERACTIONS: BIDIRECTIONAL FREEZING MODULATION MATIAS MUGNAINI^{1*}, ADRIAN MARCELO BUENO¹, ROQUE IGNACIO FERRER MONTI¹

LABORATORIO DE PSICOLOGÍA EXPERIMENTAL, FACULTAD DE PSICOLOGÍA, UNC. *matiasmuqnaini@qmail.com

S2P353. NEURAL CORRELATES OF SPATIAL NAVIGATION IN THE MEDIAL-PREFRONTAL CORTEX OF MICE DURING ACQUISITION OF THE REFERENCE MEMORY

IGNACIO NEGRÓN-OYARZO¹*, NELSON ESPINOSA¹, FRANCISCO ABOITIZ¹, PABLO FUENTEALBA¹

¹ DEPARTAMENTO DE PSIQUIATRÍA, FACULTAD DE MEDICINA, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE; ² INSTITUTO DE FISIOLOGÍA, FACULTAD DE CIENCIAS, UNIVERSIDAD DE VALPARAÍSO; ³ CENTRO DE NEUROBIOLOGÍA Y PLASTICIDAD CEREBRAL, UNIVERSIDAD DE VALPARAÍSO

S2P354. IMPOVERISHED ENVIRONMENT IMPAIRS BALB/C MICE EPISODIC-LIKE MEMORY LEONARDO PAIVA OHASHI^{1,2,3*}, CLAÚDIO RENAN PEREIRA⁴, THAÍS PANTOJA TRINDADE^{1,2,3}, GABRIEL COSTA MATOS^{1,2,3}, DANIELA BARBOSA GUERREIRO^{1,2,3}, IGOR CEREJO ALMEIDA⁵, SÉRGIO AUGUSTO ANTUNES RAMOS⁴, RAFAEL DOS SANTOS

BARROS⁶, DANIEL GUERREIO DINIZ ^{1,3}, CRISTOVAM WANDERLEY PICANCO DINIZ^{1,3}

¹ UNIVERSIDADE FEDERAL DO PARÁ, BELÉM, PARÁ, BRASIL; ² HOSPITAL UNIVERSITÁRIO JOÃO DE BARROS BARRETO, BELÉM, PARÁ, BRASIL; ³ LABORATÓRIO DE NEURODEGENERAÇÃO E INFECÇÃO, BELÉM, PARÁ, BRASIL; ⁴ UNIVERSIDADE DA AMAZÔNIA, FACULDADE DE BIOLOGIA, BELÉM, PARÁ, BRASIL; ⁵ UNIVERSIDADE DO ESTADO DO PARÁ, CENTRO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE, BELÉM, BRASIL; ⁵ UNIVERSIDADE DO ESTADO DO PARÁ, CENTRO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE, BELÉM, BRASIL. °ohashileo@qmail.com

S2P355. CHARACTERIZATION OF TWO TRIAL LONG TERM MEMORY IN THE CRAB NEOHELICE GRANULATA

SANTIAGO OJEA RAMOS1*, MARIANA FELD1

¹ LABORATORIO DE NEUROBIOLOGÍA DE LA MEMORIA, DFBMC-FCEN-UBA, IFIBYNE-CONICET

S2P356. DO PICTORIAL HEALTH WARNINGS CURB THE DRIVE TOWARDS CIGARETTE PACKS? A BEHAVIORAL ASSESSMENT

JOSE OLIVEIRA^{1*}, GISELLA TAVARES², ISABEL DAVID², SONIA GLEISER¹, MIRTES PEREIRA², LETICIA OLIVEIRA², ANDRE SZKLO³, BRAZILIAN NATIONAL CANCER INSTITUTE, ELIANE VOLCHAN³

¹ UNIVERSIDADE FEDERAL DO RIO DE JANEIRO; ² UNIVERSIDADE FEDERAL FLUMINENSE; ³ BRAZILIAN NATIONAL CANCER INSTITUTE

Chronobiology

S2P357. EFFECT OF AN I.C.V INJECTION OF AGGREGATED BETA-AMYLOID (1-42) ON DAILY RHYTHMS OF OXIDATIVE STRESS PARAMETERS IN THE HIPPOCAMPUS, PREFRONTAL AND TEMPORAL CORTEX

CINTHIA DAIANA CORIA LUCERO^{*1**}, CARINA LETICIA LEDEZMA^{***}, ANDREA GRISEL CASTRO¹, REBECA GOLINI¹, CECILIA DELLA VEDOVA², DARÍO RAMIREZ², MARCELA DELGADO¹, ANA CECILIA ANZULOVICH¹, LORENA NAVIGATORE FONZO¹

¹ LABORATORIO DE CRONOBIOLOGÍA, IMIBIO-SL, CONICET-UNSL, FQBYF, SAN LUIS; ² LABORATORIO DE MEDICINA EXPERIMENTAL Y TERAPÉUTICAS, IMIBIO-SL, CONICET, FQBYF, SAN LUIS

S2P358. ASSESSING FUNCTIONAL AND STRUCTURAL WIRING WITHIN THE CLOCK: CONTRIBUTION OF DORSAL LATERAL NEURONS TO THE CIRCADIAN PACEMAKER OF DROSOPHILA

^{*}fag.morici@gmail.com

^{*}clari_almeida@hotmail.com

^{*}snegrono@uc.cl

^{*}ojea.santiago@gmail.com

^{*}josemagalhaesdeoliveira@gmail.com

^{**}Equal contribution - *coria.cinthia07@gmail.com

<u>JOSE M. DUHART</u>1*, GABRIEL DE LA CRUZ, M. FERNANDA CERIANI

¹ FUNDACIÓN INSTITUTO LELOIR - IIBBA CONICET †jduhart@leloir.org.ar

S2P359. REM SLEEP BEHAVIOR DISORDER: PHASIC AND TONIC MUSCULAR EVENTS ANALYSIS AND DESCRIPTION BY COEFFICIENT OF VARIATION OF THE ENVELOPE OF SIGNAL

DANAY ESPINOZA^{1*}, JAVIER DÍAZ¹, ADRIÁN OCAMPO-GARCÉS¹

¹UNIVERSIDAD DE CHILE

*danayespinozacastro@gmail.com

S2P360. SYNAPTIC PLASTICITY FOLLOWING SLEEP DEPRIVATION IN THE FRUIT FLY DROSOPHILA MELANOGASTER

FLORENCIA FERNÁNDEZ1*, NARA I. MURARO1

¹ BIOMEDICINE RESEARCH INSTITUTE OF BUENOS AIRES *florenciafch@gmail.com

S2P361. GLYCINERGIC TRANSMISSION IN THE CIRCADIAN NETWORK: A TIME-OF-DAY DEPENDENT SWITCH

<u>LIA FRENKEL</u>1", NARA I MURARO¹, ANDREA N BELTRÁN GONZÁLEZ². DANIEL J. CALVO². M. FERNANDA CERIANI¹

¹ LAB. DE GENÉTICA DEL COMPORTAMIENTO- FUNDACIÓN INSTITUTO LELOIR- IIBBA- CONICET, ARGENTINA; ² LAB. DE NEUROBIOLOGÍA CELULAR Y MOLECULAR INGEBI CONICET- U. DE BUENOS AIRES, ARGENTINA "Ifrenkel@leloir.org.ar

S2P362. ZZ, A SMARTPHONE APP TO MONITOR LEG MOVEMENT DURING SLEEP

JAVIER PORTILLO², BRUNO KAUFMAN², <u>PABLO MARTÍN</u> GIFISER^{1*}

¹ GRUPO DE FÍSICA ESTADÍSTICA E INTERDISCIPLINARIA, CENTRO ATÓMICO BARILOCHE; ² INSTITUTO BALSEIRO, UNIVERSIDAD NACIONAL DE CUYO *gleiser@cab.cnea.gov.ar

S2P363. PIGMENT DISPERSING FACTOR (PDF) PLAYS A FUNDAMENTAL ROLE IN THE STRUCTURAL PLASTICITY OF CLOCK NEURONS IN DROSOPHILA MELANOGASTER

ANASTASIA HERRERO1*, MARÍA FERNANDA CERIANI1

¹ LABORATORIO DE GENÉTICA DEL COMPORTAMIENTO. INSTITUTO LELOIR. IIB-BA CONICET. BUENOS AIRES

*aherrero@leloir.org.ar

Development

S2P364. BRAIN MORPHOGENESIS AND POSTNATAL CELL PROLIFERATION IN THE BASAL TELEOST MORMYRUS RUME PROBOCIROSTRIS

MARÍA E. CASTELLÓ^{1*}, LETICIA IRIBARNE², ISABEL BARREIRO², RODRIGO IVAGNES², MURIEL IBARRA², ROMINA HERRERA², MILKA RADMILOVICH³, FRANK KIRSCHBAUM⁴, KIRSTY GRANT³, MARÍA E. CASTELLÓ²

¹INSTITUTO DE INVESTIGACIONES BIOLÓGICAS CLEMENTE ESTABLE, UNIDAD ASOCIADA F. DE MEDICINA IIBCE; ²LAB. DESARROLLO Y EVOLUCIÓN NEURAL, DEPTO. NEUROC. INTEGRATIVAS Y COMPUTACIONALES, IIBCE; ³ DEPTO. HISTOLOGÍA Y EMBRIOLOGÍA, F. DE MEDICINA, UDELAR

UNIDAD ASOCIADA F. DE MEDICINA-IIBCE; ⁴ BIOLOGY AND ECOLOGY OF FISHES, FACULTY OF LIFE SCIENCES, HUMBOLDT UNIVERSITY OF BERLIN; ⁵ UNIT OF NEUROSCIENCE INFORMATION AND COMPLEXITY, CNRS FRE - 3693, GIF-SUR-YVETTE, FRANCE

*maritacastello@gmail.com

S2P365. NPAS3 TRANSCRIPTION FACTOR IS ESSENTIAL FOR NERVOUS SYSTEM AND CRANIOFACIAL DEVELOPMENT

<u>ALEJANDRO R. CINALLI</u>1*, LAURA E. GONZÁLEZ¹, GRETEL B. KAMM¹, MARCELO RUBINSTEIN¹², LUCÍA F. FRANCHINI¹

¹ INGEBI-CONICET, BUENOS AIRES, ARGENTINA; FCEYN, ² UNIVERSIDAD DE BUENOS AIRES, ARGENTINA

*acinalli@dna.uba.ar

S2P366. SEXUAL DIMORPHISM IN RENAL ANGIOTENSIN RECEPTORS GENE EXPRESSION: SEX CHROMOSOME COMPLEMENT INVOLVEMENT FLORENCIA DADAM¹*, M. JULIA CAMBIASSO¹¹², CINTIA PORCAR¹¹, ANDREA GODINO¹, LAURA VIVAS¹, XIMENA E.

¹ INSTITUTO DE INVESTIGACIÓN MÉDICA M. Y M.FERREYRA, INIMEC-CONICET-UNC. CÓRDOBA, ARGENTINA.; ² DEPARTAMENTO DE BIOLOGÍA BUCAL, FACULTAD DE ODONTOLOGÍA, UNIVERSIDAD NACIONAL DE CÓRDOBA *mariafdadam@qmail.com

S2P367. TRANSCRIPTION REGULATION OF THE DIFFERENTIATION OF CSF-CONTACTING NEURONS IN THE SPINAL CORD

<u>DANIELA DI BELLA</u>^{1*}, ABEL CARCAGNO¹, GUILLERMO LANUZA¹
¹ FUNDACIÓN INSTITUTO LELOIR</sup>

*danielajdibella@gmail.com

S2P368. HIDE AND SEEK IN DROSOPHILA LARVAE: CHARACTERIZING A NUCLEAR PROTEIN WITH MITOCHONDRIAL FUNCTION

MAGDALENA FERNANDEZ ACOSTA^{1*}, GUILLERMO BERNABO¹, MARÍA FERNANDA CERIANI¹

¹ LABORATORIO DE GENÉTICA DEL COMPORTAMIENTO, FUNDACIÓN

INSTITUTO LELOIR, IIB-BA-CONICET, BU *macosta@leloir.org.ar

S2P369. ROLE OF ALPHA-SNAP IN THE DEVELOPMENT OF THE CEREBELLUM

MARTIN HELD^{1,2*}, CAMILA SANTIAGOS^{1,3}, GABRIEL ALBORNOZ⁴, CONSTANZA LEMA⁴, MICHELLE RIADI⁴, JOSE ROJAS⁴, FLORENCIA SALGADO⁴, FELIPE ROJAS⁴, IGNACIO FORTTES⁴, DIEGO ACUÑA^{1,2}, ROSA IRIS MUÑOZ^{1,2}, LUIS FEDERICO BATIZ^{1,2}

¹ INSTITUTO DE ANATOMIA, HISTOLOGIA Y PATOLOGÍA. UNIVERSIDAD AUSTRAL DE CHILE; ² CENTER FOR INTERDISCIPLINARY STUDIES ON THE NERVOUS SYSTEM; ³ PROGRAMA DE HONOR EN INVESTIGACIÓN FACULTAD DE MEDICINA (PHIM); ⁴ ESCUELA DE MEDICINA. UNIVERSIDAD AUSTRAL DE CHILE

*fedebatiz@gmail.com

S2P370. ANALYSIS OF DENDRITIC MORPHOLOGY
OF THE CA3 PYRAMIDAL-NEURONS OF THE
HIPPOCAMPUS IN ADULT CYCLICAL RATS IN
PHASES OF ESTROUS AND DIESTROUS 1

<u>FABIOLA HERNÁNDEZ</u>1*, GONZALO FLORES¹, DOLORES LÓPEZ¹, SALVADOR GALICIA¹, UBALDO QUIROZ¹

¹LAB. DE HISTOFISIOLOGÍA, ESCUELA DE BIOLOGÍA.BUAP, PUEBLA, MÉXICO. *fabi.1603hv@gmail.com

S2P371. OLFACTORY LEARNING IN THE RAT AND ITS EFFECT ON CONSUMATORY RESPONSES IN EARLY STAGES OF ONTOGENY

CELESTE IFRAN¹*, ANDREA BEATRIZ SUÁREZ¹

¹ INSTITUTO DE INVESTIGACIONES MÉDICAS A LANARI (IDIM-CONICET-UBA); ² CENTRO DE ALTOS ESTUDIOS EN CIENCIAS HUMANAS Y DE LA SALUD (CAECIHS-UAI)

*celeste.ifran@gmail.com

S2P372. BRAIN CONNECTIVITY PREDICTS PERFORMANCE IN DIFFERENT DOMAINS OF COGNITIVE FUNCTION IN PRESCHOOLERS

<u>JUAN E KAMIENKOWSKI</u>^{1,2,3*}, LUCÍA PRATS ⁴, MARCOS L PIETTO ^{4,5}, DANIEL FRAIMAN ⁶, CAROLINA S FRACCHIA ⁴, MARIANO SIGMAN⁷, SEBASTIAN LIPINA⁴

¹ LABORATORIO DE INTELIGENCIA ARTIFICIAL APLICADA, DEPTO. DE COMPUTACIÓN, FCEYN, UBA, ARG; ² DEPTO. DE FÍSICA, FCEYN, UBA, ARG; ³ CONICET, ARGENTINA.; ⁴ UNIDAD DE NEUROBIOLOGÍA APLICADA, CEMICCONICET, ARGENTINA; ⁵ LABORATORIO DE INTELIGENCIA ARTIFICIAL APLICADA, DEPTO. DE COMPUTACIÓN, FCEYN, UBA, ARG; ⁶ DEPARTAMENTO DE MATEMÁTICA Y CIENCIAS, UNIVERSIDAD DE SAN ANDRÉS, ARGENTINA; ⁷ UNIVERSIDAD TORCUATO DI TELLA, ARGENTINA

*juank@dc.uba.ar

S2P373. CHRONICHIGH-FAT DIET AND MOTIVATION TO EAT DIFFERENT PALATABLE FOODS: NO EFFECT ON LIKING BUT REDUCED WANTING

DANUSA MAR ARCEGO^{1*}, RACHEL KROLOW¹, CARINE LAMPERT¹, ANA PAULA TONIAZZO¹, CAROLINE BERLITZ¹, EMILY DOS SANTOS GARCIA¹, ALINE DOS SANTOS VIEIRA¹, CARLA DALMAZ¹

¹ UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL/UFRGS, DEPTO DE BIOQUÍMICA

*danusa.arcego@gmail.com

S2P374. EFFECT OF INTRAVITREAL TREATMENT WITH IL-4 OR IL-6 ON GLUTAMATERGIC NMDA RECEPTOR IN THE VISUAL SYSTEM

GRASIELLE MENEZES^{1*}, CLÁUDIO SERFATY¹, PAULA CAMPELLO-COSTA¹

¹NEUROSCIENCE PROGRAM - FLUMINENSE FEDERAL UNIVERSITY, NITERÓI ågrasi dm@hotmail.com

Disorders of the Nervous System

S2P375. NEUROPROTECTIVEEFFECT OF PARAWIXIN 10 (PWX10) IN WISTAR RATS SUBMITTED TO EXPERIMENTAL GLAUCOMA

MARCUS VINICIUS AGUIAR¹, MARCUS VINICIUS CELANI¹, EDUARDO PRIMINI¹, JOSÉ LUIZ LIBERATO¹, <u>WAGNER DOS</u> SANTOS^{1*},

¹UNIVERSITY OF SÃO PAULO, BRAZIL;INSTITUTO DE NEUROCIÊNCIAS E COMPORTAMENTO — RP, BRAZIL

*wagnerf@usp.br

S2P376. INFLAMMATION ASSOCIATED WITH DEMYELINATION ALTERS SUBCORTICAL VISUAL CIRCUITS SHEILA ESPÍRITO SANTO ARAÚJO^{1,2,3*}, HENRIQUE ROCHA MENDONÇA ^{1,3}, NATALIE ALLEN WHEELER ¹, KIMBERLE JACOBS ¹, FLÁVIA CARVALHO ALCANTARA GOMES ², PAULA CAMPELLO-COSTA LOPES ³, BABETTE FUSS ¹

¹ DEPARTMENT OF ANATOMY AND NEUROBIOLOGY, VIRGINIA COMMOWEALTH UNIVERSITY; ² INSTITUTO DE CIÊNCIAS BIOMÉDICAS, UNIVERSIDADE FEDERAL DO RIO DE JANEIRO, BRAZIL; ³ INSTITUTO DE BIOLOGIA, PROGRAMA DE NEUROCIÊNCIAS, UNIVERSIDADE FEDERAL FLUMINENSE, BRAZIL

*espiritosanto.sheila@gmail.com

S2P377. BRAINSTEM CIRCUITS FOR MOTOR CONTROL IN HEALTH AND DISEASE

MARIA SOLEDAD ESPOSITO1*, PAOLO CAPELLI, MANUEL J. FERREIRA PINTO, CHIARA PIVETTA, SILVIA ARBER

¹ FRIEDRICH MIESCHER INSTITUTE FOR BIOMEDICAL RESEARCH, 4058 BASEL, BIOZENTRUM, UNIVERSITY OF BASEL, 4056 BASEL, SWITZERLAND *soledad.esposito@fmi.ch

S2P378. EXPERIMENTAL HYPERTENSION INCREASES SPONTANEOUS INTRACEREBRAL HEMORRHAGES IN A MOUSE MODEL OF CEREBRAL AMYLOIDOSIS

GISELLE FAZZIONI PASSOS^{1,2*}, KELLEY KILDAY², DANIEL GILLEN², VITALY VASILEVKO², DAVID CRIBBS²

¹UNIVERSIDADE FEDERAL DO RIO DE JANEIRO;²UNIVERSITY OF CALIFORNIA, IRVINE

*gfazzioni@yahoo.com.br

S2P379. BRAIN INFLAMMATION AND DEFECTIVE INSULIN SIGNALING ARE ASSOCIATED WITH TRANSIENT COGNITIVE IMPAIRMENT IN POST-SEPTIC MICE

CLAUDIA FIGUEIREDO^{1*}, FERNANDA NEVES¹, FERNANDA BARROS-ARAGÃO¹, ALINE VENANCIO¹, SERGIO FERREIRA¹, FERNANDA DE FELICE¹, JULIA CLARKE¹

¹ FEDERAL UNIVERSITY OF RIO DE JANEIRO

S2P380. P2X7 ANTAGONIST, BBG, PROTECTS HEMIPARKINSONIAN RATS FROM L-DOPA-INDUCED DYSKINESIA

ANALU FONTELES1*, JULLIANA CATHARINA NEVES¹, JULIANA PEREIRA¹, ANA THAIS SILVA¹, JESSICA RABELO¹, ANA PAULA MENEZES¹, MARTA REGINA CARMO¹, PATRICIA RODRIGUES¹, GEANNE MATOS¹

¹ FEDERAL UNIVERSITY OF CEARA

S2P381. SOCIAL ISOLATION DURING ADOLESCENCE INDUCED LONG TERM EFFECTS ON COCAINE-INDUCED SENSITIZATION: ROLE OF WNT/B-CATENIN PATHWAY

<u>ALEJANDRINA FUNES</u>*1,2**, SANTIAGO CUESTA^{1,2**}, SILVANA B. ROSSO^{1,2}, ALEJANDRA M. PACCHIONI^{1,2}

¹ FACULTAD DE CIENCIAS BIOQUÍMICAS Y FARMACEÚTICAS. UNR; ² CONSEJO NACIONAL DE INVESTIGACIONES CIENTÍFICAS Y TÉCNICAS (CONICET)

S2P382. CAFFEIC ACID EFFECTS ON U87MG GLIOMA CELLS'VIABILITY AND OXIDATIVE STRESS CARLOS GUSTAVO GARCIA^{1*}, MARCOS JOSÉ FERREIRA¹, ANNIBAL DUARTE¹, MARCELO COSSENZA¹

¹ PROGRAM OF NEUROSCIENCES, INSTITUTE OF BIOLOGY, FEDERAL FLUMINENSE UNIVERSITY

S2P383. THE EFFECT MOTOR OF EXERCISE IN 6-OHDA MODEL OF PARKINSON DISEASE

LUANA GOMES^{1*}, LEONAM OLIVEIRA¹, PEDRO SILVA¹, RAPHAELY PROGÊNIO¹, RENATA SILVA¹, VICTOR DOUGLAS OLIVEIRA¹, RENATO RODRIGUES FILHO¹, ROBSON JOSÉ DE SOUZA DOMINGUES², JOFRE JACOB DA SILVA FREITAS², KATIA SIMONE KIETZER²

¹UNIVERSIDADE FEDERAL DO PARÁ; ²PROFESSOR OF STATE UNIVERSITY OF

PARÁ, MORPHOPHYSIOLOGY LABORATORY APPLIED TO HEALTH, BELÉ *gomesluanaas@gmail.com

S2P384. CHARACTERIZATION OF STRIATAL TYROSINE HYDROXYLASE-IMMUNOREACTIVE (TH-IR) CELLS IN CHRONIC AND ACUTE L-DOPA TREATMENT IN A MICE MODEL OF PARKINSON'S DISEASE

GIMENA GOMEZ^{1*}, MELINA BORDONE¹, ALEJANDRA BERNARDI¹, SARA SANZ-BLASCO¹, JUAN FERRARIO¹, IRENE TARAVINI¹, GUSTAVO MURER², OSCAR GERSHANIK¹

¹ LABORATORIO DE PARKINSON EXPERIMENTAL, ININFA, UBA-CONICET. BUENOS AIRES; ² DEPARTAMENTO DE FISIOLOGÍA Y BIOFÍSICA, FACULTAD DE MEDICINA, UBA

*gimenagomez@gmail.com

S2P385. INSTRASTRIATAL CHROMOSPHERE GRAFTS REDUCES MECHANICAL ALLODYNIA IN A RAT MODEL OF PARKINSON'S DISEASE

<u>ALEJANDRA L. GÓMEZ-PAZ</u>1*, MÓNICA AMBRIZ-TUTUT1², MARCELA PALOMERO-RIVERO¹, DIANA MILLÁN-ALDACO¹, RENÉ DRUCKER-COLÍN¹

ACKNOWLEDGEMENTS: PAPIIT IN204715 AND PAPIIT IN207116
¹INSTITUTO DE FISIOLOGÍA CELULAR, UNAM; ²HOSPITAL GENERAL AJUSCO
MEDIO "DRA. OBDULIA RODRÍGUEZ RODRÍGUEZ"

S2P386. BUMETANIDE ENHANCES THE ANTIEPILEPTIC EFFECT OF CONVENTIONAL DRUGS IN ANIMAL MODEL OF EPILEPSY

<u>PATRICIA GONZÁLEZ</u>1*, ENRIQUE LORCA¹, PATRICIO ROJAS¹, MARCELO LARA¹

¹ UNIVERSIDAD DE SANTIAGO DE CHILE, DEPARTAMENTO DE BIOLOGÍA, FACULTAD DE QUÍMICA Y BIOLOGÍA

S2P387. HIPPOCAMPAL SYNAPTIC IMPAIRMENTS IN HETEROZYGOUS MICE BEARING A CENTRONUCLEAR MYOPATHY-CAUSING DYNAMIN-2 MUTATION

ARLEK GONZALEZ-JAMETT^{1,2*}, IVANA GAJARDO¹, MARC BITOUN³, ANA MARÍA CARDENAS-DÍAZ¹, ALVARO O. ARDILES¹¹CINV, FACULTAD DE CIENCIAS, UNIVERSIDAD DE VALPARAÍSO, VALPARAISO, CHILE;²ICBM, FACULTAD DE MEDICINA, UNIVERSIDAD DE CHILE, SANTIAGO, CHILE;³RESEARCH CENTER FOR MYOLOGY, UPMC UNIV PARIS 06 AND INSTITUTE OF MYOLOGY, PARIS, FRANCE

*arlek.gonzjam@gmail.com

S2P388. REPURPOSING TETRACYCLINES FOR TREATMENT OF SYNUCLEINOPATHIES

FLORENCIA GONZÁLEZ-LIZARRAGA^{1,2*}, SERGIO B. SOCÍAS ¹, CÉSAR L. AVILA ¹, CLARISA M. TORRES-BUGEAU ¹, LEANDRO R. S. BARBOSA ³, ANDRES BINOLFI ⁴, CLAUDIO O. FERNANDEZ

^{*}claufig@gmail.com

^{*}analufonteless@gmail.com

^{**} Equal contribution - *alejandrina.funesp@gmail.com

^{*}cg_garcia@id.uff.br

^{*}agomez@email.ifc.unam.mx

 $^{^*}$ marceloandres.lara@gmail.com

⁴, DULCE PAPY-GARCIA ⁵ JULIA E. SEPÚLVEDA DÍAZ ², ROSANGELA ITRI ³, RITA RAISMAN-VOZARI ², ROSANA N. CHEHÍN ¹

¹ INSTITUTO SUPERIOR DE INVESTIGACIONES BIOLÓGICAS (INSIBIO - UNT), TUCUMÁN; ² INSTITUT DU CERVEAU ET DE LA MOELLE EPINIÈRE, PARIS; ³ INSTITUTO DE FÍSICA DA UNIVERSIDADE DE SÃO PAULO — IFUSP; ⁴ MAX PLANCK LABORATORY FOR STRUCTURAL BIOLOGY, CHEMISTRY AND MOLECULAR BIOPHYSICS, ROSARIO; ⁵ LABORATOIRE CROISSANCE, RÉPARATION ET RÉGÉNÉRATION TISSULAIRES (CRRET), PARIS *mflorenciagl@hotmail.com.ar

S2P389. EXPRESSION PATTERN OF SEMA 3D AND ITS RECEPTORS IN THE NORMAL AND

REGENERATING OPTIC NERVE OF ADULT MICE

<u>CAMILA GOULART</u>^{1*}, HENRIQUE MENDONÇA^{2,3}, SILMARA DE
LIMA⁴, LARRY BENOWITZ⁴, ANA MARTINEZ¹

¹ LABORATORY OF NEURODEGENERATION AND REPAIR, MEDICAL COLLEGE, HUCFF, UFRJ, RIO DE JANEIRO; ² PÓLO UNIVERSITÁRIO MACAÉ, UFRJ, RIO DE JANEIRO, BRAZIL; ³ LABORATORY OF NEURODEGENERATION AND REPAIR, MEDICAL COLLEGE, HUCFF, UFRJ, RIO DE JANEIRO; ⁴LAB FOR NEUROSCIENCE RESEARCH, DEPARTMENT OF SURGERY, CHILDREN'S HOSPITAL, BOSTON; ^{*}camilaogoulart@gmail.com

S2P390. INVOLVEMENT OF A1 AND A2A ADENOSINE RECEPTORS IN THE RAT LINE SELECTED FOR HIGH AND LOW ANXIETY-LIKE RESPONSE <u>VANESSA GOULART</u>^{1*}, SILVIA MAISONNETTE², FLÁVIA ROSSETI², PABLO PANDOLFO¹, JESUS LANDEIRAFERNANDEZ². PAULA CAMPELLO-COSTA¹

¹ POSTGRADUATE IN NEUROSCIENCE PROGRAM, INSTITUTE OF BIOLOGY, UFF-NITERÓI; ² DEPARTMENT OF PSYCHOLOGY, PUC-RJ

*vanessagama27@hotmail.com

S2P391. EFFECTS OF ROYAL JELLY ON NEUROPROTECTION, OXIDATIVE STRESS AND COGNITION IN A RAT MODEL OF SPORADIC ALZEIMER'S DISEASE

TIAGO GUARDIA DE SOUZA E SILVA^{1*}, LUIZ ROBERTO G. BRITTO², GILBERTO F. XAVIER², MARIA REGINA L. SANDOVAL¹ BUTANTAN INSTITUTE - FARMACOLOGY LABORATORY; ² UNIVERSITY OF SÃO PAULO - DEPARTAMENT OF FISIOLOGY, BIOMEDICAL SCIENCE INSTITUTE *tgssilva@usp.br

S2P392. INFLUENCE AND EFFECTIVITY OF MOBILE DEVICES IN PATIENTS WITH AUTISM SPECTRUM DISORDERS: AN EXPERIENCE OF THERAPEUTICAL DEVELOPMENT

<u>GUIDO GUZMAN</u>1*, NICOLÁS QUIROZ¹, SILVIA BAETTI², CAROLINA ROUTUROU², VALERIA BURGOS¹. ROBERTO PALLIA¹

¹ LABORATORY FOR BIOLOGICAL AND ARTIFICIAL LEARNING, DIB, ICBME, IU-HIBA; ² SERVICIO DE SALUD MENTAL PEDIÁTRICA, HOSPITAL ITALIANO DE BUENOS AIRES

*guido.guzman@hospitalitaliano.org.ar

S2P393. NEUROPROTECTIVE ROLE OF PALMITOYLETHANOLAMIDE IN A RAT MODEL OF PERINATAL HYPOXIA-ISCHEMIA

MARÍA INÉS HERRERA^{1,2*}, CECILIA QUARRACINO², RODOLFO KOLLIKER-FRERS², FERNANDO RODRÍGUEZ DE FONSECA³, EDUARDO BLANCO CALVO⁴, FRANCISCO CAPANI^{2,5,6,7}

¹ A.CENTRO DE INVESTIGACIONES EN PSICOLOGÍA Y PSICOPEDAGOGÍA, UNIVERSIDAD CATÓLICA ARGENTINA; ² B.INSTITUTO DE INVESTIGACIONES CARDIOLÓGICAS "PROF. DR. ALBERTO C. TAQUINI" (ININCA)-UBA-; ³ C.LABORATORIO DE MEDICINA REGENERATIVA, IBIMA-HOSPITAL CARLOS HAYA, PABELLÓN DE GOBIERNO; ⁴ D.DEPARTAMENT DE PEDAGOGIA I PSICOLOGÍA, FACULTATD EDUCACIÓ, PSICOLOGÍA I TREBALL SOCIAL; ⁵ E.FACULTAD DE PSICOLOGÍA, UNIVERSIDAD CATÓLICA ARGENTINA; ⁶ F.DEPARTAMENTO DE BIOLOGÍA, UNIVERSIDAD ARGENTINA JOHN F. KENNEDY; ⁷ G.INSTITUTO DE CIENCIAS BIOMÉDICAS, FACULTAD DE CIENCIAS DE LA SALUD, UNIVERSIDAD AUTÓNOM

*ineherrera@hotmail.com

S2P394. THE HYH (M105I) MUTATION OF ALPHA-SNAP ALTERS ITS PROTEIN- AND LIPID-BINDING PROPERTIES IN THE DEVELOPING CENTRAL NERVOUS SYSTEM

BRYAN HINRICHSEN^{1,2*}, CRISTIAN PARGA¹, ROSA IRIS MUÑOZ^{1,2}, JONATHAN CANAN³, DIEGO ACUÑA^{1,2}, LORETO OJEDA¹, GONZALO MARDONES^{2,4}, WENDY GONZALEZ³, THILO KÄHNE⁵, LUIS FEDERICO BATIZ^{1,2}

¹ INSTITUTO DE ANATOMIA, HISTOLOGIA Y PATOLOGÍA. UNIVERSIDAD AUSTRAL DE CHILE

² CENTER FOR INTERDISCIPLINARY STUDIES ON THE NEVOUS SYSTEM (CISNE);

³ CENTER FOR BIOINFORMATICS AND MOLECULAR SIMULATIONS (CBSM). UNIVERSIDAD DE TALCA

⁴INSTITUTO DE FISIOLOGIA. UNIVERSIDAD AUSTRAL

⁵OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG

*fedebatiz@gmail.com

S2P395. NEONATAL ANOXIA: VALIDATION OF AN ANIMAL MODEL TO STUDY THE METABOLIC PARAMETERS AFFECTED BY THIS STIMULUS IN LEPRBEGFP MICE

<u>LUANA ANGÉLICA JANOTA DE CARVALHO</u>1*, SILVIA TAKADA², JOSE DONATO JR.¹, MARIA INES NOGUEIRA¹

¹UNIVERSIDADE DE SÃO PAULO; ²UNIVERSIDADE FEDERAL DO ABC *luana_angelica@usp.br

S2P396. HIPPOCAMPAL CHRONIC CHANGES AFTER SPINAL CORD INJURY: GLIAL REACTIVITY AND NEUROGENESIS REDUCTION

<u>IGNACIO JURE</u>^{1*}, LUCIANA PIETRANERA¹, ALEJANDRO DE NICOLA¹, FLORENCIA LABOMBARDA¹

¹LAB DE BIOQUÍMICA NEUROENDÓCRINA, IBYME *ignaciojure@gmail.com **S2P397.** NEONATAL ANOXIA IN MALE AND FEMALE RATS: EVALUATION OF SOMATIC AND SENSORY-MOTOR DEVELOPMENT AND SPATIAL MEMORY IN ADOLFSCENCE

AMRITA JHA KUMAR¹⁺, MARIA INES NOGUEIRA², SILVIA HONDA TAKADA³, KELLY BORGES¹, ALINE VILAR NEILS⁴, PROF XAVIER GILBERTO⁴

¹ LABAROTORY OF NEUROSCIENCE, USP, SAO PAULO; ² DEPARTMENT OF ANANTOMY, ICB3,USP,SP; ³ LAB OF NEUROCOGNITIVE,UFABC; ⁴ LABOF BIOSCIENCE, USP, SP

S2P398. THE DENTATE GYRUS GRANULE CELLS (DGGC) IN THE HIPPOCAMPUS HAVE ALTERED EXCITABILITY IN A MODEL OF AUTISM INDUCED BY VALPROIC ACID (VPA)

MARCELO LARA1*, ENRIQUE LORCA1, PATRICIO ROJAS1

¹ UNIVERSIDAD DE SANTIAGO DE CHILE, DEPARTAMENTO DE BIOLOGÍA, FACULTAD DE QUÍMICA Y BIOLOGÍA

S2P399. PARAWIXIN10 IS NEUROPROTECTIVE AGAINST ISCHEMIC BRAIN DAMAGE IN CONSCIOUS RATS SUBMITTED TO EXPERIMENTAL STROKE JOSE LUIZ LIBERATO 12*, THIAGO BRONHARA¹, TAMIRIS PRIZON¹, NORBERTO PEPORINE LOPES¹, WAGNER FERREIRA SANTOS¹

¹ UNIVERSITY OF SÃO PAULO - FACULTY OF PHILOSOPHY SCIENCE AND LITERATURE OF RIBEIRÃO PRETO; ² INSTITUTO DE NEUROCIÊNCIAS E COMPORTAMENTO — INEC

S2P400. TRANSCRANIAL DIRECT-CURRENT STIMULATION (TDCS) AS AN ALTERNATIVE FOR THE TREATMENT OF NEUROPATHIC PAIN

GABRIEL LIMA^{1*}, WILLIAN MALEZAN¹, AMANDA PASCHOA¹, TALITA FARIAS¹, DANIELLE VARIN¹, ANA CAMPOS¹, ROSANA PAGANO¹, ANDRÉ BRUNONI²

¹ SIRIO-LIBANES RESEARCH AND TEACHING INSTITUTE; ¹ DEPARTMENT AND INSTITUTE OF PSYCHIATRY, FACULTY OF MEDICINE, UNIVERSITY OF SÃO PAULO

S2P401. INFLUENCE OF DIFFERENT TYPES OF EXERCISE ON FEMALE RATS SUBMITTED THE PILOCARPINE EPILESY MODEL

GLAUBER LOPIM^{1*}, DIEGO CAMPOS¹, ALEXANDRE ALMEIDA, EDUARDO DA SILVA¹. RICARDO ARIDA¹

S2P402. LOW DOSE OF AMYLOID PEPTIDES CAUSES DEFICIT ON SPATIAL MEMORY BUT NOT ON EMOTIONAL MEMORY IN AGED WISTAR RATS: AN APPROACH TO MODEL INITIAL ALZHEIMER?

PRISCILA MACÊDO^{1,2,3*}, ANTÔNIO C.Q. DE AQUINO¹, YWLLIANE S. MEURER¹, MATEUS O. SILVA¹, LUIZ EDUARDO M. BRANDÃO¹, MARÍLIA F. CRUZ¹, SARAH S.G. LINHARES¹, CLARISSA L.C. CAMPÊLO¹, RAMON H. LIMA¹, MARCOS R. COSTA², REGINA H. SILVA³

¹ UFRN; ² ICE - INSTITUTO DO CÉREBRO; ³ UNIFESP *pristmacedo@yahoo.com.br

S2P403. SPINAL GLIAL MODULATION OF NEUROPATHIC PAIN IN RATS BY MANUAL ACUPUNCTURE

<u>WILLIAM MALEZAN</u>1*, GABRIEL LIMA¹, ANA CAMPOS¹, TALITA FARIAS¹, DANIELLE ASSIS¹, FABIANA STRAMBIO¹, ROSANA PAGANO¹

¹ HOSPITAL SÍRIO-LIBANÊS *dr.rafaelmalezan@hotmail.com

S2P404. BUMETANIDE ENHANCES THE PHARMACOLOGICAL EFFECT OF PHENOBARBITAL, IN AN ANIMAL MODEL OF TEMPORAL LOBE EPILEPSY

CAROLA MANTELLERO^{1*}, CAROLINA SALAZAR¹, JUAN AMARO¹, MARGARITA BORQUEZ¹, ADRIÁN OCAMPOGARCÉS¹, JOSE LUIS¹, PATRICIO ROJAS¹

DEPARTAMENTO DE BIOLOGÍA, UNIVERSIDAD DE SANTIAGO DE CHILE carolamantellero@hotmail.com

S2P405. ENERGY-DENSE DIET WORSENS EARLY COGNITIVE IMPAIRMENT THROUGH DYSREGULATION OF NEUROPROTECTIVE PATHWAYS AND PYROGLUTAMATE-AMYLOID BETA GENERATION: EVIDENCE FROM A TRANSGENIC ALZHEIMER RAT MODEL

PAMELA MARTINO ADAMI^{1*}, PABLO GALEANO^{1,2}, MARINA WALLINGER³, ALEJANDRO RABOSSI¹, CARLOS REYES TOSO³, DANIEL CARDINALI³, RAFAEL RADI⁴, GOAR GEVORKIAN⁵, EDUARDO CASTAÑO¹, A. CLAUDIO CUELLO⁶, LAURA MORELLI¹ FUNDACIÓN INSTITUTO LELOIR - IIBBA CONICET; ² ININCA-UBA-CONICET, CACULTA O DE MEDICINA INDUEDE PARA CONICET, ³ DE MARTINA DE MEDICINA INDUEDE PARA CONICET.

FACULTAD DE MEDICINA, UNIVERSIDAD DE BUENOS AIRES; 3 DEPARTAMENTO DE CIENCIAS FISIOLÓGICAS, FACULTAD DE MEDICINA, UNIVERSIDAD DE BUENOS AIRES; 4 DEPARTMENT OF BIOCHEMISTRY AND CENTER FOR FREE RADICAL AND BIOMEDICAL RESEARCH, UDELAR; 5 INSTITUTO DE INVESTIGACIONES BIOMÉDICAS, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO; 6 DEPARTMENT OF PHARMACOLOGY AND THERAPEUTICS, MCGILL UNIVERSITY

*pmadami@leloir.org.ar

^{*}amritajha@yahoo.co.uk

^{*}marceloandres.lara@gmail.com

^{*}jll@usp.br

^{*}gabriel.quiropraxia@gmail.com

¹ UNIVERSIDADE FEDERAL DE SÃO PAU

^{*}glauber.lopim@hotmail.com

S2P406. SELECTIVE ABLATION OF CHOLINERGIC INTERNEURONS IN THE STRIATUM RESULTS IN REPETITIVE RITUALISTIC-LIKE BEHAVIORS

<u>YANINA MARTOS</u>1*, BÁRBARA BRAZ¹, JUAN PABLO BECCARIA¹, M. GUSTAVO MURER¹, JUAN E BELFORTE¹

¹ IFIBIO HOUSSAY SCHOOL OF MEDICINE UBA-CONICET *yaninamartos@gmail.com

S2P407. VISUAL SALIENCY AND FREE EXPLORATION IN PEOPLE AFFECTED WITH SCHIZOPHRENIA ROCÍO MAYOL-TRONCOSO^{1,2*}, PABLO A GASPAR^{1,2,3}, PEDRO E MALDONADO^{2,3}

¹ UNIVERSIDAD DE CHILE, CLÍNICA PSIQUIÁTRICA UNIVERSITARIA; ² BIOMEDICAL NEUROSCIENCE INSTITUTE (BNI); ³ ICBM PROGRAMA DE FISIOLOGÍA Y BIOFÍSICA, FACULTAD DE MEDICINA UNIVERSIDAD DE CHILE SUPPORTED BY INICIATIVA CIENTÍFICA MILENIO ICM P10-001-F, P09-015-F AND FUNDACIÓN GUILLERM

*rociomayolt@gmail.com

S2P408. ROLE OF ASICS CHANNELS AFTER EXCITOTOXIC DAMAGE IN A MODEL OF SPINAL CORD INJURY

GRACIELA L MAZZONE^{1,2*}, PRIYADHARISHINI VEERARAGHAVAN ³, CARLOTA GONZALEZ-INCHAUSPE ², ANDREA NISTRI^{3,4}, OSVALDO D UCHITEL²

- ¹ LABORATORIOS DE INVESTIGACIÓN APLICADA EN NEUROCIENCIAS (LIAN-FLENI-CONICET), ARGENTINA
- ² INSTITUTO DE FISIOLOGÍA, BIOLOGÍA MOLECULAR Y NEUROCIENCIAS (IFIBYNE-UBA-CONICET);
- ³ INTERNATIONAL SCHOOL FOR ADVANCED STUDIES (SISSA), TRIESTE, ITALY ⁴ SPINAL PERSON INJURY NEUROREHABILITATION APPLIED LABORATORY (SPINAL), UDINE, ITALY

S2P409. SEX AND HORMONAL INFLUENCE IN EMOTIONAL MEMORY AND SOCIAL BEHAVIOR IN A RAT MODEL OF ALZHEIMER´S DISEASE

ANDRÉ MEDEIROS^{1*}, YWLLIANE MEURER², ANDERSON LEÃO¹, MURILO PAIVA-SANTOS¹, DEBORAH SUCHECKI³, REGINA SILVA¹

¹ BEHAVIORAL NEUROSCIENCE LABORATORY, PHARMACOLOGY DEPARTMENT, FEDERAL UNIVERSITY OF SÃO PAULO; ² MEMORY STUDIES LABORATORY, PHYSIOLOGY DEPARTMENT, FEDERAL UNIVERSITY OF RIO GRANDE DO NORTE; ³ DEPARTMENT OF PSYCHOBIOLOGY, FEDERAL UNIVERSITY OF SÃO PAULO

*andredemacedomedeiros@gmail.com

S2P410. INVOLVEMENT OF NOCICEPTIN/ORPHANIN FQ RECEPTOR SIGNALING ON MODULATION OF LIPOPOLYSACCHARIDE-INDUCED DEPRESSIVE-LIKE BEHAVIOR IN MICE

<u>IRIS MEDEIROS</u>^{1,2*}, PEDRO ROMÃO³, CHIARA RUZZA², GIROLAMO CALO², ELAINE GAVIOLI¹

¹ DEPT. OF BIOPHYSICS AND PHARMACOLOGY, FEDERAL UNIVERSITY OF RIO GRANDE DO NORTE, NATAL, R

- ² DEPT. OF MEDICAL SCIENCE, SECTION OF PHARMACOLOGY AND NATIONAL INSTITUTE OF NEUROSCIENCE,;
- ³ LABORATORY OF CELLULAR AND MOLECULAR IMMUNOLOGY, HEALTH SCIENCES FEDERAL UNIVERSITY OF POR.

*irisucella@gmail.com

S2P411. CURCUMIN INFLUENCES FUNCTIONAL RECOVERY OF RATS SUBMITTED TO ACUTE SPINAL CORD HEMI-SECTION

VALÉRIA MENDES DA ROCHA^{1*}, MICHELE SCHULTZ¹

¹SCHOOL OF ARTS, SCIENCES AND HUMANITIES

*rocha valeria@yahoo.com.br

S2P412. ION CONDUCTANCE MANIPULATION OF THALAMOCORTICAL NEURONS WITH DYNAMIC CLAMP INDUCES OSCILLATORY ACTIVITY RELATED TO DEEP SLEEP AND EPILEPTIC SEIZURES

- ¹ COMISIÓN NACIONAL DE ENERGÍA ATÓMICA (CNEA), BUENOS AIRES, ARGENTINA:
- ²INSTITUTO BALSEIRO, SAN CARLOS DE BARILOCHE, RIO NEGRO, ARGENTINA; ³ LABORATORY OF EXPERIMENTAL PSYCHOLOGY AND NEUROSCIENCE (LPEN), INECO, ARGENTINA;
- ⁴ CONICET, FÍSICA ESTADÍSTICA E INTERDISCIPLINARIA, CENTRO ATÓMICO BARILOCHE, ARGENTINA

S2P413. MEMORY ALTERATIONS IN A MOUSE MODEL OF AUTISM

<u>LAUTARO WALTER MONTECINO</u>^{1*}, MARCOS CAMPOLONGO¹, AMAICHA DEPINO¹, VERÓNICA DE LA FUENTE¹

¹IFIBYNE-UBA-CONICET / DFBMC-FCEN-UBA

Molecular and Cellular Neurobiology

S2P414. STUDY OF SELECTIVE TYROSINE OXIDATION AND NITRATION DEPENDENCE ON ALPHA-SYNUCLEIN CONFORMATIONAL CHANGES EZEQUIEL GIMÉNEZ^{1*}, ANDRÉS MARTÍN TOSCANI¹, MARÍA ALEJANDRA CARRERO RIVEROS¹, GIAN FRANCO CAVAZZUTTI¹, BETINA CÓRSICO¹, LISANDRO J. FALOMIR LOCKHART¹

¹ INIBIOLP (UNLP, CCT- LA PLATA, CONICET)

*eze.gmz4@gmail.com

S2P415. CLASSICAL AND NOVEL PKC ISOFORMS DIFFERENTIALLY MODULATES M1 AND M3 RECEPTOR LEVELS IN RAT RETINAL CELLS CULTURES LUIS EDUARDO GOMES BRAGA^{1*}, MARCELO GOMES GRANJA¹,

^{*}graciela.mazzone@gmail.com

^{*}sebagam@gmail.com

 $^{{\}it ``lautaro.montecino@gmail.com'}$

ELISABETH GIESTAL-DE-ARAUJO¹, ALINE ARAUJO DOS SANTOS1

¹ PROGRAMA DE PÓS GRADUAÇÃO EM NUEROCIENCIAS - UFF *luiseduardo braga@hotmail.com

S2P416. AFROBIC EXERCISE IN ADOLESCENCE RESULTS IN MORE NEURONAL AND NON-NEURONAL CELLS AND MTOR OVEREXPRESSION IN THE CEREBRAL CORTEX OF RATS

SERGIO GOMES DA SILVA1*, ANGELICA VICTORINO2, FERNANDO SERRA³, PÂMELLA PIÑERO³, ALEXANDRE ALMEIDA², GLAUBER LOPIM², IVAIR MATIAS JUNIOR⁴, HELIO RUBENS MACHADO⁴, FERNANDO GOMEZ-PINILLA⁵, RICARDO MARIO ARIDA², FRANCISCO ROMERO CABRAL¹

¹ HOSPITAL ISRAELITA ALBERT EINSTEIN; ² UNIVERSIDADE FEDERAL DE SÃO PAULO: 3 UNIVERSIDADE DE MOGI DAS CRUZES: 4 FACULDADE DE MEDICINA DE RIBEIRÃO PRETO DA USP; 5 UNIVERSITY OF CALIFORNIA LOS ANGELES (UCLA) *sgomesilva@hotmail.com

S2P417. A PHOTOTRANSDUCTION COMPLEX IN THE RETINA OF SOUID: GENERALITY OF THE TRANSDUCISOME FOR LIGHT SIGNALING JUAN DIEGO PRIETO^{1,3}, MATEO LOPEZ^{1,3}, ENRICO NASI^{1,3,4*}, MARIA DEL PILAR GOMEZ^{1,2,3*}

¹ UNIVERSIDAD NACIONAL DE COLOMBIA: ² FUNEBIC: ³ CENTRO INTERNACIONAL DE FISICA; 4 MARINE BIOLOGICAL LABORATORY, WOODS HOLE, USA

*enasil@unal.edu.co

S2P418. TGF-BETA AND NOTCH PATHWAY PARTICIPATION IN OLIGODENDROGLIAL DIFFERENTIATION OF ADULT NEURAL STEM CELLS FROM THE SUBVENTRICULAR ZONE

LAURA IVONNE GÓMEZ PINTO1*, DEBORA VANESA RODRÍGUEZ¹, ANA MARIA ADAMO¹, PATRICIA MATHIEU¹

¹ DEPARTAMENTO DE QUÍMICA BIOLÓGICA, IQUIFIB (UBA-CONICET), FFYB *ivonnegomezpinto@gmail.com

S2P419. PRESYNAPTIC RELEASED PROTONS ACT AS NEUROTRANSMITTERS ACTIVATING ACID SENSING ION CHANNELS 1A (ASIC-1A) WHICH MODULATE SYNAPTIC TRANSMISSION AND PLASTICITY AT THE MOUSE CALYX OF HELD

CARLOTA GONZÁLEZ INCHAUSPE1*, FRANCISCO J URBANO1, MARIANO N DI GUILMI¹, OSVALDO D. UCHITEL¹

¹ IFIBYNE-CONICET *carlota@fbmc.fcen.uba.ar

S2P420. PRENATAL AND EARLY ADOLESCENT EXPOSURE TO CANNABINOID RECEPTOR AGONIST WIN55212,2 DIFFERENTIALLY AFFECTS ETHANOL

PREFERENCE AT ADOLESCENCE IN CD1 MICE VICTORIA GONZALEZ PINI1*, JIMENA FRONTERA, FERNANDO **MESSORE. ALICIA BRUSCO**

¹ UBA-CONICET INSTITUTO DE BIOLOGÍA CELULAR Y NEUROCIENCIA IBCN. FACULTAD DE MEDICINA

*victoriagpini@hotmail.com

S2P421. M FICOLIN: POLIMERIZATION AND AGGREGATION FROM BLOOD TO CEREBROSPINAL **FLUID**

WILLIAM JAVIER GONZALEZ-ARGOTE1*. CASTILLO-GONZALEZ^{2,3}. ALEXIS ALEJANDRO GARCIA-RIVERO^{1,4}. ALBERTO JUAN DORTA-CONTRERAS^{2,3}, JOSE PEDRO MARTINEZ-LARRARTE^{2,3}

1 HAVANA MEDICAL SCIENCE UNIVERSITY: 2 CENTRAL LABORATORY OF CEREBROSPINAL FLUID ANALYSIS (LABCEL); 3 FACULTY OF MEDICAL SCIENCES "MIGUEL ENRÍQUEZ". HAVANA MEDICAL SCIENCES UNIVERSITY: ⁴ NEUROPHYSIOLOGY DEPARTMENT, VICTORIA DE GIRÓN BASIC AND PRECLINICAL SCIENCE INSTITUTE

*jargote@infomed.sld.cu

S2P422. IL-4 **INDUCES** CHOLINERGIC DIFFERENTIATION OF RETINAL CELLS IN VITRO MARCELO GRANJA^{1,2*}, LUIS EDUARDO BRAGA^{1,2}, RAUL CARPI-SANTOS^{1,2}, LEANDRO DE ARAUJO-MARTINS², NILSON NUNES-TAVARES3, KARIN CALAZA1,2, ALINE ARAÚJO DOS SANTOS1,4, **ELIZABETH GIESTAL-DE-ARAUJO^{1,2}**

¹ PROGRAMA DE PÓS-GRADUAÇÃO EM NEUROCIÊNCIAS, UNIVERSIDADE FEDERAL FLUMINENSE - UFF; ² DEPARTAMENTO DE NEUROBIOLOGIA - UFF. NITERÓI - RIO DE JANEIRO, BRAZIL; 3 LABORATÓRIO DE NEUROQUÍMICA, IBCCF - UFRJ. RIO DE JANEIRO, BRAZIL; ⁴ DEPARTAMENTO DE FISIOLOGIA E FARMACOLOGIA - UFF. NITERÓI - RIO DE JANEIRO, BRAZIL

*marcelo.granja@hotmail.com

S2P423. THE INVOLVEMENT OF IGE-1 ON THE M1 AND M3 MUSCARINIC RECEPTORS LEVELS MODULATIONS MEDIATED BY IL-4: THE EFFECT ON RETINAL GANGLION CELLS SURVIVAL

MARCELO GRANJA^{1,2*}, LUIS EDUARDO BRAGA^{1,2}, ALINE DOS SANTOS^{1,2}, ELIZABETH GIESTAL-DE-ARAUJO^{1,2}

¹ PROGRAMA DE PÓS-GRADUAÇÃO EM NEUROCIÊNCIAS DA UNIVERSIDADE FEDERAL FLUMINENSE; ² DEPARTAMENTO DE NEUROBIOLOGIA, UFF, NITERÓI, RIO DE JANEIRO. BRAZIL.

*marcelo.granja@hotmail.com

S2P424. THE BETA2A-SUBUNIT OF THE VOLTAGE ACTIVATED CALCIUM CHANNELS CONTROLS CHANNEL ENDOCYTOSIS

MARÍA JOSÉ GUERRA1*, ARLEK GONZÁLEZ-JAMETT¹, PATRICIA HIDALGO², ALAN NEELY¹, ANA MARÍA CÁRDENAS¹

¹ CENTRO INTERDISCIPLINARIO DE NEUROCIENCIA DE VALPARAÍSO. UNIVERSIDAD DE VALPARAÍSO; ² FORSCHUNGSZENTRUM JUELICH JUELICH, **GERMANY**

*mjguerraf@gmail.com

\$2P425. ASSOCIATION BETWEEN POLYMORPHISMS IN GABA(A) RECEPTORS SUBUNITS AND AN AUTISM SPECTRUM DISORDER POPULATION AND THEIR FAMILIES

CARLA SESARINI¹, <u>GUIDO GUZMÁN</u>^{1*}, NICOLÁS QUIROZ¹, LUCAS COSTA¹, VALERIA BURGOS¹, NORA GRAÑANA², SILVIA KOCHEN³

¹LABORATORY FOR BIOLOGICAL AND ARTIFICIAL LEARNING, DIB, ICBME, IU-HIBA; ² SERVICIO DE NEUROLOGÍA INFANTIL, HOSPITAL DURAND; ³ UNIDAD EJECUTORA ENYS, CONICET - UNAJ - HOSP EL CRUCE, FLORENCIO VARELA *quido.quzman@hospitalitaliano.org.ar

S2P426. PRENATAL ETHANOL EXPOSURE MODIFIES IRON HOMEOSTASIS IN BRAIN REGIONS INVOLVED IN DRUG ADDICTIVE BEHAVIOR

DANIELA JARA¹, ERWIN DE LA FUENTE¹, SOFIA VARGAS-ROBERTS¹, PAOLA HAEGER¹*

¹ FACULTY OF MEDICINE, UNIVERSIDAD CATÓLICA DEL NORTE, COQUIMBO, CHILE

*phaeger@ucn.cl

S2P427. THE P75 NEUROTROPHIC RECEPTOR IS REQUIRED TO MAINTAIN THE MATURE NEUROMUSCULAR JUNCTION

VIVIANA PÉREZ¹, FRANCISCA BRONFMAN^{2,3}, MARGARITA CALVO ^{2,3}, FELIPE COURT ^{2,3}, CLAUDIO CABELLO-VERRUGIO ⁴, MARCO FUENZALIDA ⁵, JUAN PABLO HENRIOUEZ^{1,2*}

¹ UNIVERSIDAD DE CONCEPCION, CONCEPCION, CHILE; ² MILLENIUM NUCLEUS IN REGENERATIVE BIOLOGY; ³ UNIVERSIDAD CATÓLICA DE CHILE, SANTIAGO, CHILE; ⁴ UNIVERSIDAD ANDRÉS BELLO, SANTIAGO, CHILE; ⁵ UNIVERSIDAD DE VALPARAISO, VALPARAISO, CHILE ^{*}jphh1970@qmail.com

S2P428. THE WNT RECEPTOR FRIZZLED-9 IS EXPRESSED IN SKELETAL MUSCLES AND REGULATES THE MORPHOLOGY AND ACTIVITY OF THE NEUROMUSCULAR JUNCTION

JORGE OJEDA¹, FRANCISCA BERMEDO-GARCÍA¹, ROCÍO TEJERO², MARIO LÓPEZ², LUCÍA TABARES², <u>JUAN PABLO</u> HENRÍQUEZ^{1*}

¹ UNIVERSIDAD DE CONCEPCIÓN, CONCEPCIÓN, CHILE; ² UNIVERSIDAD DE SEVILLA, SEVILLA, SPAIN ^{*}jphh1970@gmail.com

S2P429. COMPARISON OF PRE- AND POST-TREATMENT NO AND ADMA LEVELS IN MAJOR DEPRESSION PATIENTS WITH CONTROL GROUP ARZU HISARVANT KALELI¹*, AHMET ATAOĞLU¹, ADNAN ÖZÇETİN¹, OSMAN KILIǹ

¹ PSYCHIATRIC ASSOCIATION OF TURKEY *outgoing@b2btravel.com.tr **S2P430.** ROLE OF INTRACELLULAR CALCIUM RECEPTOR INOSITOL 1,4,5-TRIPHOSPHATE TYPE 1 (IP3R1) IN RAT HIPPOCAMPUS AFTER NEONATAL ANOXIA

JULIANE MIDORI IKEBARA¹*, DÉBORA STERZECK CARDOSO¹, TALITHA AMANDA SANCHES BRETHERICK¹, BEATRIZ CROSSIOL VICENTE DE CAMPOS¹, NATÁLIA MYUKI MORALLES DIAS¹, GUILHERME SHIGUETO VILAR HIGA¹, SILVIA HONDA TAKADA¹, ALEXANDRE HIROAKI KIHARA¹

¹ UNIVERSIDADE FEDERAL DO ABC *juliane.ikebara@gmail.com

S2P431. DIFFERENT CAMP SOURCES ARE CRITICALLY INVOLVED IN G PROTEIN—COUPLED RECEPTOR CRHR1 SIGNALING IN NEURONAL HIPPOCAMPAL CELLS

CAROLINA INDA¹*, PAULA A. DOS SANTOS CLARO, NATALIA G. ARMANDO, SERGIO A. SENIN, JUAN JOSÉ BONFIGLIO, SUSANA SILBERSTEIN

¹ INSTITUTO DE INVESTIGACIÓN EN BIOMEDICINA DE BUENOS AIRES -CONICET- MPSP, DFBMC, FACULTAD DE CIENCIAS EXACTAS Y NATURALES, UNIVERSIDAD DE BUENOS AIRES

*cinda@ibioba-mpsp-conicet.gov.ar

S2P432. EVIDENCES FOR A PERICYTE-ASTROCYTE COMMUNICATION: POSSIBLE IMPLICATIONS FOR GA-I PATHOGENESIS

EUGENIA ISASI^{1,2*}, VERÓNICA ABUDARA³, SILVIA OLIVERA-BRAVO¹

¹ NEUROBIOLOGÍA CELULAR Y MOLECULAR, INSTITUTO CLEMENTE ESTABLE; ² DEPARTAMENTO DE HISTOLOGÍA Y EMBRIOLOGÍA, FACULTAD DE MEDICINA; ³ DEPARTAMENTO DE FISIOLOGÍA, FACULTAD DE MEDICINA

*eugeei@gmail.com

S2P433. THE PARKINSONIAN NEUROTOXIN MPP+ REDUCES PROTEIN SUMOYLATION IN PRIMARY NEURONAL CULTURES

STELLA JUNQUEIRA^{1*}, ANA CRISTINA SOUZA^{1,2}, KEVIN WILKINSON², JEREMY HENLEY², HELENA CIMAROSTI¹

¹ DEPARTMENT OF PHARMACOLOGY, FEDERAL UNIVERSITY OF SANTA CATARINA, BRAZIL; ² SCHOOL OF BIOCHEMISTRY, UNIVERSITY OF BRISTOL, UK *stellacjunqueira@gmail.com

S2P434. ROLE OF CONNEXIN 36 IN HIPPOCAMPAL CELL DEATH AFTER NEONATAL ANOXIA IN RATS JULIANA KRAUSE^{1*}, NATÁLIA MYUKI MORALLES DIAS, DÉBORA STERZECK CARDOSO, JULIANE IKEBARA, BEATRIZ CROSSIOL VICENTE DE CAMPOS, TALITHA SANCHES BRETHERICK, SILVIA HONDA TAKADA, ALEXANDRE HIROAKI

¹UNIVERSIDADE FEDERAL DO ABC

*juu_krause@hotmail.com

KIHARA

S2P435. LXR INCREASE GNRH AND AMSH EXPRESSION IN THE RAT HYPOTHALAMUS IN VIVO MARIA SOL KRUSE^{1*}, LUCAS SUAREZ¹, PABLO BRUMOVSKY², HÉCTOR COIRINI¹

¹ IBYME-CONICET; ² CIENCIAS BIOMÉDICAS DEPT, AUSTRAL UNIVERSITY *kruse.sol@gmail.com

S2P436. HYPERALGESIA BEHAVIOR AND SPINAL CORD GLIAL REACTIVITY ARE REDUCED BY PHARMACOLOGICAL METABOLIC MODULATION OF MITOCHONDRIA IN CHRONIC PAIN MODELS

<u>VALENTINA LAGOS-RODRIGUEZ</u>*1**, LAURA MARTÍNEZ-PALMA 1**, ADRIANA CASSINA ², NATALIA LAGO ³, PATRICIA CASSINA ¹

¹ DEPTO. DE HISTOLOGÍA Y EMBRIOLOGÍA, FACULTAD DE MEDICINA. UNIVERSIDAD DE LA REPÚBLICA; ² DEPTO. DE BIOQUIMICA, FACULTAD DE MEDICINA. UNIVERSIDAD DE LA REPÚBLICA; ³ NEUROINFLAMMATION AND GENE THERAPY LABORATORY, INSTITUT PASTEUR MONTEVIDEO, URUGUAY **Equal contribution - *valenlagos@gmail.com

S2P437. DIFFERENCESINOXYTOCIN, VASOPRESSIN, DOPAMINE AND ESTROGEN RECEPTOR EXPRESSION IN FEMALE AND MALE OXYTOCIN KNOCKOUT MICE <u>VIRGÍNIA LAZZARI</u>^{1*}, JOSI ZIMMERMANN-PERUZATTO², ROBERTA BECKER¹, SILVANA ALMEIDA¹, MARCIA GIOVENARDI¹

¹ UFCSPA; ² UFRGS *vivilazzari@hotmail.com

S2P438. CONSTRUCTION OF A NON-INTEGRATIVE PLURIPOTENCY GENE VECTOR FOR THE INDUCTION OF NEURAL PROGENITORS

MARIANNE LEHMANN¹*, MICAELA LOPEZ LEON¹, SANTIAGO HAASE², MELISA FRAGOMENO¹, VICTOR ROMANOWSKI², RODOLFO GOYA¹

¹ INIBIOLP-HISTOLOGY B -PATHOLOGY B, SCHOOL OF MEDICINE, NATIONAL UNIVERSITY OF LA PLATA; ² INSTITUTE FOR BIOTECHNOLOGY AND MOLECULAR BIOLOGY, (IBBM), UNLP

*marianne.lehmann@gmail.com

S2P439. WNT SIGNALING INHIBITION CORRELATES WITH AN INCREASE IN ALZHEIMER'S NEUROPATHOLOGY IN A NATURAL MODEL (OCTODON DEGUS)

<u>CAROLINA LINDSAY</u>1*, DANIELA RIVERA^{1,2}, FRANCISCO BOZINOVIC². NIBALDO INESTROSA¹

¹ CENTER OF AGING AND REGENERATION (CARE UC); ² CENTER OF APPLIED ECOLOGY AND SUSTAINABILITY (CAPES)

*fondapni@bio.puc.cl

S2P440. DENDRITE DEVELOPMENT IS MODULATED BY WNT7B-FZ7 THROUGH ACTIVATION OF NON

CANONICAL WNT PATHWAYS

<u>SEBASTIAN LUNA</u>1*, MARIA FERRARI¹, INELIA CASADEI¹, SILVANA ROSSO¹

¹ LABORATORIO DE TOXICOLOGÍA EXPERIMENTAL, CONICET, FBIOYF, UNR, ARGENTINA

*seba_14_8@hotmail.com

S2P441. CELL THERAPY AND EXERCISE AMELIORATE THE PERIPHERAL

NERVE REGENERATION

DOMETHILA MARIANO DE SOUZA AGUIAR DOS SANTOS^{1*}, MARTHA DE NOVAES OKUYAMA¹, FERNANDA MARTINS DE ALMEIDA¹, ANA MARIA BLANCO MARTINEZ¹, PAULO CEZAR CARDOSO FILHO¹, SUELEN ADRIANI MARQUES¹, JANINE DOS ANJOS DE SÁ¹

1 IIFF

*domethila@gmail.com

S2P442. GROWTH HORMONE SECRETAGOGUE RECEPTOR TYPE 1A (GHSR1A) CONSTITUTIVE ACTIVITY IMPAIRS VOLTAGE-GATED CALCIUM CHANNELS (CAV)- DEPENDENT INHIBITORY NEUROTRANSMISSION IN HIPPOCAMPAL NEURONS VALENTINA MARTINEZ DAMONTE^{1*}, SILVIA S. RODRÍGUEZ¹, JESICA RAINGO¹

¹LAB DE ELECTROFISIOLOGIA - IMBICE *valen.m91@gmail.com

S2P443. MICRORNA PROFILE IN EXOSOMES DERIVED FROM SOD1G93A ASTROCYTES. A ROLE IN ASTROCYTE MEDIATED MOTOR NEURON TOXICITY? **SOLEDAD MARTON**¹⁷, **ERNESTO MIQUEL**¹, **PATRICIA CASSINA**¹

¹ FACULTAD DE MEDICINA, HISTOLOGÍA

*soledadmarton@gmail.com

S2P444. REELIN REGULATES SCHWANN CELL MIGRATION: PARTICIPATION OF SMALL GTPASE ARF6

MARIA PAZ MARZOLO^{1*}, DANIELA FIGUEROA¹, IGNACIO JAUSORO¹

¹ FAC. CIENCIAS BIOLOGICAS, PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ^{*}mmarzolo@bio.puc.cl

\$2P445. BDNF/TRKB SIGNALING IS REQUIRED FOR AMPHETAMINE-INDUCED SPINOGENESIS

VICTOR DANELON¹, SOLEDAD FERRERAS¹, GUILLERMO FERNANDEZ¹, PABLO HELGUERA¹, GABRIELA PAGLINI¹, DANIEL MASCÓ¹*

¹ IIBYT-CONICET-FCEFYN-UNC *dmasco@fcq.unc.edu.ar

S2P446. A NOVEL RAT XENOGRAFT MODEL OF BRAIN TUMORIGENESIS

IGNACIO MASTANDREA¹*, GABRIEL OTERO¹, MAURICIO CABRERA², PABLO DÍAZ-AMARILLA¹, SILVIA OLIVERA-BRAVO¹

¹ NEUROBIOLOGÍA CELULAR Y MOLECULAR, IIBCE; ² I+D DE MOLÉCULAS BIOACTIVAS, CENTRO UNIVERSITARIO REGIONAL NOROESTE, UDELAR *ignacio.mastandrea@qmail.com

S2P447. MYELIN-ASSOCIATED GLYCOPROTEIN (MAG) MODULATES POSTNATAL CEREBELLAR DEVELOPMENT

ANABELA PALANDRI¹, <u>MARA S MATTALLONI</u>¹*, ANA VIVINETTO¹, CRISTIAN BACAGLIO¹, PABLO H. H. LOPEZ¹

¹ IMINEC-CONICET-UNC

S2P448. THE RELEASE OF TNF ALPHA FOLLOWING OUABAIN TREATMENT OF RETINAL CELL CULTURES THALITA MÁZALA-DE-OLIVEIRA", AMANDA CR OLIVEIRA', CASSIANO F GONÇALVES-DE-ALBUQUERQUE', HUGO C CASTRO-FARIA-NETO', ELIZABETH GIESTAL-DE-ARAUJO'

¹ DEPARTAMENTO DE NEUROBIOLOGIA - PROGRAMA DE NEUROCIÊNCIAS -UNIVERSIDADE FEDERAL FLUMINENSE

S2P449. ORGANOTYPIC CULTURES OF ADULT HUMAN BRAIN: A NOVEL MODEL TO STUDY AGE-ASSOCIATED NEURODEGENERATIVE DISEASES NIELE D. MENDES^{1,2*}, ARTUR FERNANDES^{2,3,4}, GLAUCIA M. ALMEIDA¹, LUIS E. SANTOS⁵, NATALIA M. L. SILVA⁵, PAULO R. LOUZADA⁵, SEVENTH AUTHOR: JOAO A. ASSIRATI JR⁶, SÉRGIO T. FERREIRA⁵, NORBERTO GARCIA-CAIRASCO³, LUCIANO NEDER², ADRIANO SEBOLLELA¹

¹ DEPARTMENT OF BIOCHEMISTRY AND IMMUNOLOGY, RIBEIRÃO PRETO MEDICAL SCHOOL, FMRP-USP; ² DEPARTMENT OF PATHOLOGY AND FORENSIC MEDICINE, RIBEIRÃO PRETO MEDICAL SCHOOL, FMRP-USP; ³ DEPARTMENT OF PHISIOLOGY, RIBEIRÃO PRETO MEDICAL SCHOOL, FMRP-USP; ⁴ DEPARTMENT OF GENETICS, RIBEIRÃO PRETO MEDICAL SCHOOL, FMRP-USP; ⁵ FEDERAL UNIVERSITY OF RIO DE JANEIRO; ⁶ HOSPITAL DAS CLÍNICAS DA FMRP, RIBEIRÃO PRETO

S2P450. THE PRO/ANTI-INFLAMMATORY PRECONDITIONING EFFECT OF MESENCHYMAL STROMAL CELLS ON MICE PERIPHERAL DORSAL ROOT GANGLIA NEURONS

<u>FABIANA MENDONCA</u>^{1*}, RAPHAEL SIQUEIRA¹, PEDRO MORENO¹, VICTOR RESENDE²

¹LABORATORY OF NEUROCHEMISTRY - INSTITUTE OF BIOPHYSICS CARLOS CHAGAS FILHO / UFFJ; ² MULTIDISCIPLINARY CENTER FOR BIOLOGICAL RESEARCH OF XERÉM POLE (NUMPEX-BIO)

S2P451. THE NICOTINIC A7 RECEPTOR ACTIVATION MODULATES RETINAL GANGLION CELL SURVIVAL AND CYTOKINES LEVELS

 $\underline{\textbf{RENAN MIRANDA}^{1*}}, \underline{\textbf{ELIZABETH DE ARAUJO}^{1}}, \underline{\textbf{ALINE SANTOS}^{1}}$

[†] PROGRAMA DE PÓS-GRADUAÇÃO EM NEUROCIÊNCIAS.- UNIVERSIDADE FEDERAL FLUMINENSE (UFF); DEPARTAMENTO DE FISIOLOGIA E FARMACOLOGIA - UFF

*renan.miranda@hotmail.com

S2P452. AGO2, AN ESSENTIAL ENZYME INVOLVED IN MIRNA PROCESSING, IS HIGHLY EXPRESSED DURING RETINAL DEVELOPMENT

MARÍLIA MÓVIO¹*, CRISTINA FURTADO¹, LARYSSA NISHIO¹, LAÍS WALTER¹. ALEXANDRE KIHARA¹

¹LABORATÓRIO DE NEUROGENÉTICA, UNIVERSIDADE FEDERAL DO ABC *mariliamovio95@gmail.com

S2P453. ASSESSING ALTERNATIVE SPLICING OF TDP-43 TARGET GENES IN THE BRAIN OF CONDITIONAL MOUSE MODELS OF FTD/ALS ANA FISZBEIN², LUCIANA GIONO², LUCIANA LUCHELLI¹,

ANA FISZBEIN², LUCIANA GIONO², LUCIANA LUCHELLI¹, ALBERTO KORNBLIHTT², <u>LIONEL MULLER IGAZ</u>^{1*}

¹ IFIBIO HOUSSAY (CONICET), UNIVERSITY OF BUENOS AIRES SCHOOL OF MEDICINE, ARGENTINA; ² IFIBYNE-UBA-CONICET AND FCEN, UNIVERSIDAD DE BUENOS AIRES, ARGENTINA

S2P454. A THIRD LINEAGE OF PHOTOTRANSDUCTION: A NOVEL OPSIN COUPLED TO A GO

TOMAS OSORNO¹, OSCAR ARENAS¹, MARIA DEL PILAR GOMEZ¹,³, <u>ENRICO NASI</u>¹,²*

¹ UNIVERSIDAD NACIONAL DE COLOMBIA; ² CENTRO INTERNACIONAL DE FISICA (CIF) BOGOTA; ³ FUNDACION NEUROBIOLOGIA Y BIOFISICA CELULAR (FUNEBIC) BOGOTA

S2P455. HIGH FAT DIET IN EARLY LIFE ALTERS NEUROTROPHICS FACTORS IN THE HIPPOCAMPUS OF ADULT RATS?

<u>WELLINGTON OLIVEIRA</u>1*, JULIANA RIBEIRO², TERCYA SILVA³, TAÍS RODRIGUES², ODAIR LIMA⁴, RHOWENA MATOS^{3,4}

¹ DEPARTMENT OF BIOLOGICAL SCIENCES; ² DEPARTMENT OF NUTRITION; ³ POSTGRADUATE PROGRAM IN NEUROPSYCHIATRY; ⁴ DEPARTMENTOF PHYSICAL EDUCATION ANDSPORT SCIENCES

*wellington.braz96@gmail.com

S2P456. THE EFFECT OF OUABAIN ON RETINAL GANGLION CELL SURVIVAL DEPENDS ON CASPASE-1 ACTIVATION AND IL-1BETA RELEASE

AMANDA OLIVEIRA^{1*}, JULIANA VON-HELD-VENTURA¹, CASSIANO GONÇALVES-DE-ALBUQUERQUE², HUGO CASTRO-

^{*}marsol214@hotmail.com

^{*}tha.mazala@hotmail.com

^{*}nieledm@gmail.com

^{*}ffevaristo@gmail.com

^{*}lmuller@fmed.uba.ar

^{*}mpgomezco@unal.edu.co

FARIA-NETO², ELIZABETH GIESTAL-DE-ARAUJO¹

¹ INSTITUTO DE BIOLOGIA DA UNIVERSIDADE FEDERAL FLUMINENSE, DEPARTAMENTO DE NEUROBIOLOGIA; ² FUNDAÇÃO OSWALDO CRUZ, DEPARTAMENTO DE FISIOLOGIA E FARMACODINÂMICA

*amanda.oliveira2909@gmail.com

Motor Systems

S2P457. ROLE OF NITRIC OXIDE ON BOTH RAT GAIT AND GLIAL/NEURONAL MARKER EXPRESSION AFTER ACHILLES TENDON RUPTURE

ANALÚ MACIEL¹*, MARTHA SOUZA¹, KAREN OLIVEIRA¹, EVANDER BATISTA¹, ANDERSON HERCULANO¹, SUELLEN MORAES¹

¹ FEDERAL UNIVERSITY OF PARÁ

S2P458. CEREBELLAR TRANSCRANIAL ALTERNATING CURRENT STIMULATION (TACS) MODULATES VISUOMOTOR COORDINATION DURING A KINEMATIC ADAPTATION TASK

<u>JUAN JOSÉ MARIMAN</u>^{1,2*}, DANIEL ROJAS^{1,3}, PEDRO MALDONADO¹

¹ LABORATORIO DE NEUROSISTEMAS, BNI, FACULTAD DE MEDICINA; ² DEPARTAMENTO DE KINESIOLOGÍA, UNIVERSIDAD METROPOLITANA DE CIENCIAS DE LA EDUCACIÓN; ³ FACULTAD DE EDUCACIÓN, UNIVERSIDAD ALBERTO HURTADO

*jjmariman@gmail.com

S2P459. EXPERIMENTAL MODEL OF HEMISPHEROTOMY IN RATS

<u>IVAIR MATIAS JUNIOR</u>1*, HELIO RUBENS MACHADO¹, SÉRGIO GOMES DA SILVA², DAOUD ELIAS FILHO¹, NORBERTO COIMBRA¹, LUIZA LOPES¹

¹ RIBEIRÃO PRETO MEDICAL SCHOOL OF THE UNIVERSITY OF SÃO PAULO; ² HOSPITAL ISRAELITA ALBERT EINSTEIN

*ivairmatias@gmail.com

S2P460. NEUROPROTECTION AND FUNCTIONAL RECOVERY AFTER SPINAL CORD INJURY FOLLOWED BY MESENCHYMAL STEM CELL AND FIBRIN SEALANT TREATMENT

ALINE SPEJO¹, GABRIELA CHIAROTTO¹, RUI FERREIRA JR.², BENEDITO BARRAVIERA², ALEXANDRE OLIVEIRA¹*

¹UNIVERSITY OF CAMPINAS (UNICAMP), CAMPINAS, BRAZIL; ¹CENTER FOR THE STUDY OF VENOMS AND VENOMOUS ANIMALS (CEVAP), SÃO PAULO STATE UNIVERSITY

*alroliv@unicamp.br

S2P461. FINGER TAPPING KINEMATICS IN ISOCHRONOUS SYNCHRONIZATION: FAST AND

SLOW PHASES AND ERROR CORRECTION PABLO E. RIERA^{1,2*}, IGNACIO SPIOUSAS, VALERIA DELLA MAGGIORE^{3,4,2}, RODRIGO LAJE^{1,2}

¹ SENSORIMOTOR DYNAMICS LAB, DEPARTMENT OF SCIENCE AND TECHNOLOGY, UNIVERSITY OF QUILMES, AR; ² CONICET; ³ IFIBIO HOUSSAY; ⁴ PHYSIOLOGY OF ACTION LAB, DEPARTMENT OF PHYSIOLOGY AND BIOPHYSICS, SCHOOL OF MEDICINE, UBA *pablo.riera@qmail.com

S2P462. CONTROL OF RHYTHMIC MOTOR BEHAVIORS BY CHOLINERGIC INPUTS **EZEQUIEL RIOS**^{1,2*}, **LIDIA SZCZUPAK**^{1,2}

¹ IFIBYNE UBA-CONICET; ² FBMC FCEN-UBA *ezeguiel.m.r1@gmail.com

Neural Circuit Physiology

S2P463. STUDY OF MEDIAL AMYGDALA NUCLEUS OUTPUTS TO THE VENTROMEDIAL HYPOTHALAMIC NUCLEUS IN OVARIECTOMIZED RATS AT EARLY PUBERTY

DENISE RIBEIRO GOBBO^{1*}, LAIS DA SILVA PEREIRA¹, SANDRA REGINA MOTA-ORTIZ², JOZELIA GOMES PACHECO FERREIRA¹, JACKSON CIONI BITTENCOURT^{1,3}

¹ DEPARTMENT OF ANATOMY, INSTITUTE OF BIOMEDICAL SCIENCES - ICB-III, UNIVERSITY OF SAO PAULO; ² RESEARCH IN NEUROSCIENCE CENTER, UNIVERSITY CITY OF SAO PAULO, BRAZIL; ³ NEUROSCIENCE AND BEHAVIOR CENTER, INSTITUTE OF PSYCHOLOGY, UNIVERSITY OF SAO PAULO, BRAZIL *denisergobbo@gmail.com

S2P464. INTEGRATION OF ADULT-BORN GRANULE CELLS IN LOCAL INHIBITORY NETWORKS

AYELEN I. GROISMAN¹*, SUNG-MIN YANG¹, SILVIO G. TEMPRANA¹, MARIELA TRINCHERO¹, ALEJANDRO F. SCHINDER¹

¹LABORATORIO DE PLASTICIDAD NEURONAL, FUNDACIÓN INSTITUTO LELOIR (IIBBA-CONICET)

*ayelen.groisman@gmail.com

S2P465. COLLICULAR ELECTROPHYSIOLOGICAL CHANGES INDUCED BY INTERRUPTION OF CHRONIC ADMINISTRATION OF KETAMINE

ROBERTA MONTEIRO INCROCCI^{1*}, MANOEL JORGE NOBRE

¹UNIVERSIDADE DE SAO PAULO - FFCLRP

*roberta_mont@hotmail.com

S2P466. THETRPM2 CHANNEL IS A HYPOTHALAMIC HEAT SENSOR THAT LIMITS FEVER AND CAN DRIVE HYPOTHERMIA

KUN SONG¹, HONG WANG¹, <u>GRETEL B. KAMM</u>^{1*}, JÖRG POHLE¹, FERNANDA DE CASTRO REIS², PAUL HEPPENSTALL^{2,3}, HAGEN WENDE¹, JAN SIEMENS¹

^{*}analumaciel4@gmail.com

¹ DEPARTMENT OF PHARMACOLOGY, UNIVERSITY OF HEIDELBERG, HEIDELBERG, GERMANY; ² EUROPEAN MOLECULAR BIOLOGY LABORATORY (EMBL), MONTEROTOND, ITALY; ³ MOLECULAR MEDICINE PARTNERSHIP UNIT (MMPU), EMBL, HEIDELBERG, GERMANY

*gretel.kamm@pharma.uni-heidelberg.de

S2P467. PATHWAY-SPECIFIC MEDIUM SPINY NEURON RESPONSE TO CHRONIC L-DOPA TREATMENT IN A MOUSE MODEL OF PARKINSON'S DISEASE

ETTEL KEIFMAN^{1*}, MARIELA V. ESCANDE¹, JUAN E. BELFORTE¹, M. GUSTAVO MURER¹

¹ IFIBIO HOUSSAY, CONICET, UNIVERSITY OF BUENOS AIRES *ettel@keifman.com.ar

S2P468. NEURONAL DYNAMICS OF MAGNOCELULAR DYSFUNCTION AT HIGH RISK MENTAL STATE POPULATION

ROCIO LOYOLA^{1,2*}, BELÉN ABURTO^{1,2}, ROLANDO CASTILLO^{1,2}, SEBASTIÁN CORRAL^{1,2}, ROCIO MAYOL^{1,2}, DIEGO GONZÁLEZ^{1,2}, ALEJANDRO MATURANA¹, HERNÁN SILVA¹, ANTÍGONA MARTÍNEZ³, PABLO GASPAR^{1,2}

¹ PSYCHIATRIC UNIVERSITY CLINIC, FACULTY OF MEDICINE, UNIVERSITY OF CHILE; ² BIOMEDICAL NEUROSCIENCE INSTITUTE (BNI). FACULTAD DE MEDICINA UNIVERSIDAD DE CHILE; ³ UNIVERSITY OF CALIFORNIA, SAN DIEGO, NEUROSCIENCES DEPARTMENT, NATHAN KLINE INSTITUTE FOR PSYCHIATRIC RESEARCH. NEW YORK

*l.rocio@gmail.com

S2P469. CHOLINERGIC MODULATION IN THE PROCESSING OF AFFERENT INPUTS IN THE DENTATE GYRUS OF THE HIPPOCAMPUS

MORA OGANDO¹⁺, DIEGO ARRIBAS¹, LUIS MORELLI¹, ANTONIA MARÍN BURGIN¹

¹ IBIOBA-MPSP-CONICET *moraogando@gmail.com

S2P470. MECHANISMS OF STRIATAL CHOLINERGIC INTERNEURON HYPEREXCITABILITY IN ANIMAL MODELS OF PARKINSON'S DISEASE AND L-DOPAINDUCED DYSKINESIA

RODRIGO MANUEL PAZ¹*, CECILIA TUBERT¹, MARIO GUSTAVO MURER¹, LORENA RELA¹

¹ SYSTEMS NEUROSCIENCE GROUP, IFIBIO "BERNARDO HOUSSAY", UBA-CONICET

*rodrigomanuelpaz@gmail.com

S2P471. STUDY OF THE MEDIAL PREOPTIC NUCLEUS OUTPUTS TO THE VENTROMEDIAL HYPOTHALAMIC NUCLEUS IN OVARIECTOMIZED ANIMALS

LAÍS DA SILVA PEREIRA1*, DENISE RIBERO GOBBO1, JOZÉLIA

GOMES PACHECO FERREIRA¹, SANDRA REGINA MOTA-ORTIZ², JACKSON CIONI BITTENCOURT¹,³

¹ DEPARTMENT OF ANATOMY, INSTITUTE OF BIOMEDICAL SCIENCES, UNIVERSITY OF SAO PAULO, BRAZIL; ² RESEARCH IN NEUROSCIENCE CENTER, UNIVERSITY CITY OF SAO PAULO, BRAZIL; ³ NEUROSCIENCE AND BEHAVIOR CENTER, INSTITUTE OF PSYCHOLOGY, UNIVERSITY OF SAO PAULO, BRAZIL *lahh moura@hotmail.com

S2P472. THE ONSET OF SODIUM APPETITE: INTERACTION BETWEEN ANGIOTENSINERGIC AND SEROTONERGIC SYSTEMS AND THE OSMORECEPTIVE CELLS INVOLVEMENT

CINTIA PORCARI^{1*}, FLORENCIA DADAM¹, XIMENA E. CAEIRO¹, ANDRES MECAWI², JOSE ANTUNES-RODRIGUES², LAURA VIVAS¹, ANDREA GODINO^{1,3}

¹ INSTITUTO DE INVESTIGACIÓN MÉDICA M. Y M.FERREYRA, INIMEC-CONICET-UNC. CÓRDOBA, ARGENTINA.; ² FAC. MED. RIBEIRAO PRETO, USP, BRASIL; ³ FACULTAD DE PSICOLOGÍA, UNIVERSIDAD NACIONAL DE CÓRDOBA *cinporcari@amail.com

Neurochemistry and Neuropharmacology

S2P473. NEURONAL PROTECTION BY NATURAL FLAVONES AGAINST OXIDATIVE STRESS AND ITS RELATIONSHIP WITH THE MOLECULAR STRUCTURE <u>CAROLINA ECHEVERRY</u>^{1*}, FLORENCIA ARREDONDO¹, MARCELA MARTINEZ¹, JUAN ANDRES ABÍN CARRIQUIRY¹, JACOB MIDIWO², FEDERICO DAJAS¹, GISELLE PRUNELL¹

¹ DEPARTAMENTO NEUROQUÍMICA, IIBCE; ² DEPARTMENT OF CHEMISTRY, UNIVERSITY OF NAIROBI

*caroliecheverry@gmail.com

S2P474. AGMATINE, BY IMPROVING NEUROPLASTICITY MARKERS AND INDUCING NRF2, PREVENTS CORTICOSTERONE-INDUCED DEPRESSIVE-LIKE BEHAVIOR IN MICE

ANDIARA ESPÍNDOLA DE FREITAS^{1,2}", JAVIER EGEA², IZASKUN BUENDIA², VANESSA GÓMEZ-RANGEL², ESTHER PARADA², ELISA NAVARRO², ANA ISABEL CASAS², ANETA WOJNICZ³, JOSÉ AVENDAÑO ORTIZ³, ANTONIO CUADRADO², ANA RUIZNUÑO³, ANA LÚCIA S. RODRIGUES¹, MANUELA G. LOPEZ²

¹ UNIVERSIDADE FEDERAL DE SANTA CATARINA (UFSC); ² UNIVERSIDAD AUTÓNOMA DE MADRID (UAM); ³ HOSPITAL UNIVERSITARIO DE LA PRINCESA *andiaraef@gmail.com

S2P475. SETTING UP THE EXPERIMENTAL CONDITIONS TO UNCOVER A POWERFUL TRIUMVIRATE: NEUROGENESIS, SEROTONIN AND BDNF

ROCÍO B FOLTRAN^{1*}, LORENA C LÓPEZ STEINMETZ¹,

CHRISTIAN HÖCHT², IRENE RE TARAVINI³, SILVINA L DIAZ¹

¹ INST. DE BIOLOGÍA CELULAR Y NEUROCIENCIAS PROF. E. DE ROBERTIS. CONICET-UBA.; ² CÁTEDRA DE FARMACOLOGÍA, FAC. DE FARMACIA Y BIOQUÍMICA, UBA; ³ LABORATORIO DE NEUROBIOLOGÍA EXPERIMENTAL. FBRO-UNER.

*rociobfoltran@gmail.com

S2P476. M AND H-FICOLIN: DYNAMIC AND AGGREGATION FROM BLOOD TO CEREBROSPINAL FLUID

ALEXIS ALEJANDRO GARCIA-RIVERO^{1*}, JAVIER GONZALEZ-ARGOTE^{2,3}, WILLIAM CASTILLO-GONZALEZ^{2,3}, ALBERTO JUAN DORTA-CONTRERAS^{2,3}, JOSE PEDRO MARTINEZ-LARRARTE^{2,3}

¹ NEUROPHYSIOLOGY DEPARTMENT, VICTORIA DE GIRÓN BASIC AND PRECLINICAL SCIENCE INSTITUTE, HAVANA MEDICAL SCIENCE UNIVERSITY; ² CENTRAL LABORATORY OF CEREBROSPINAL FLUID ANALYSIS (LABCEL); ³ FACULTY OF MEDICAL SCIENCES "MIGUEL ENRÍQUEZ", HAVANA MEDICAL SCIENCES UNIVERSITY

*alexneuro94@gmail.com

\$2P477. TREATMENT WITH AN ETHYL-ACETATE FRACTION (EAF) OF TRICHILIA CATIGUA (CATUABA) ALLEVIATES THE MEMORY IMPAIRMENT CAUSED BY GLOBAL CEREBRAL ISCHEMIA IN RATS

JACQUELINE GODINHO^{1*}, CRISTIANO CORREIA BACARIN², CLAUDIA HUZITA¹, JOÃO CARLOS PALAZZO DE MELLO¹, RÚBIA MARIA MONTEIRO WEFFORT DE OLIVEIRA¹, HUMBERTO MILANI¹

¹ DEPARTMENT OF PHARMACOLOGY AND THERAPEUTIC, STATE UNIVERSITY OF MARINGÁ.; ² DEPARTMENT OF HISTOLOGY, STATE UNIVERSITY OF LONDRINA;

*jacque.godinho@hotmail.com

S2P478. MINOCYCLINE PREVENTS EARLY AXOGLIAL ALTERATIONS OF THE OPTIC NERVE INDUCED BY EXPERIMENTAL GLAUCOMA

MARÍA FLORENCIA GONZÁLEZ FLEITAS^{1,2,3,4*}, MELINA PAULA BORDONE^{4,5,6,7},

LAURA A. PASQUINI ^{4,8,9}, ALEJANDRA BOSCO ¹⁰, PABLO SANDE^{1,2,3,4}, DAMIÁN DORFMAN^{1,2,3,4}, RUTH E. ROSENSTEIN^{1,2,3,4}

¹ LABORATORY OF RETINAL NEUROCHEMISTRY AND EXPERIMENTAL OPHTHALMOLOGY; ² DEPARTMENT OF HUMAN BIOCHEMISTRY; ³ SCHOOL OF MEDICINE/CEFYBO; ⁴ UNIVERSITY OF BUENOS AIRES/CONICET; ⁵ LABORATORY OF EXPERIMENTAL PARKINSON; ⁶ ININFA; ⁷ FFYB; ⁸ DEPARTMENT OF BIOLOGICAL CHEMISTRY AND INSTITUTE OF CHEMISTRY AND BIOLOGICAL PHYSICOCHEMISTRY, IQUIFIB; ⁹ SCHOOL OF PHARMACY AND BIOCHEMISTRY; ¹⁰ DEPARTMENT OF NEUROBIOLOGY AND ANATOMY, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH, USA

*florgf88@gmail.com

S2P479. USE-DEPENDENT REGULATION OF GABA-A RECEPTORS IN RAT CEREBRAL CORTEX CAMILA PARRA¹, MARÍA GRAVIELLE¹*

¹ INSTITUTO DE INVESTIGACIONES FARMACOLÓGICAS, UBA-CONICET, FACULTAD DE FARMACIA Y BIOQUÍMICA, BUENOS AIRES, ARGENTINA *mgravielle@yahoo.com

S2P480. INFLUENCE OF SILDENAFIL ON PILOCARPINE- AND PICROTOXIN-INDUCED SEIZURES

FRANCISCO THIAGO GUEDES HOLANDA^{1*}, MICHELE ALBUQUERQUE JALES DE CARVALHO¹, CAMILA NAYANE DE CARVALHO LIMA¹, JOÃO VICTOR SOUZA OLIVEIRA¹, DENIA ALVES ALBUQUERQUE DE SOUZA¹, REGILANE CORDEIRO DOS SANTOS¹, TALITA MATIAS BARBOSA¹, ÍTALO ROSAL LUSTOSA¹, DANIEL MOREIRA ALVES DA SILVA¹, MARTA MARIA DE FRANCA FONTELES¹

¹ PHYSIOLOGY AND PHARMACOLOGY DEPARTMENT, FEDERAL UNIVERSITY OF CEARÁ

*guedesholanda@gmail.com

S2P481. ANTIEPILEPTIC EFFECT OF SIDEROXYLON OBTUSIFOLIUM METHANOLIC EXTRACT ON TWO MODELS OF ACUTE SEIZURES IN VIVO — A PILOT STUDY

FRANCISCO THIAGO GUEDES HOLANDA^{1*}, PEDRO EVERSON ALEXANDRE DE AQUINO¹, ÍTALO ROSAL LUSTOSA¹, NAYARA CORIOLANO DE AQUINO², REGILANE CORDEIRO DOS SANTOS¹, SABRINA MATIAS DOS SANTOS², EDILBERTO ROCHA SILVEIRA², GLAUCE SOCORRO DE BARROS VIANA^{1,3}

¹ NEUROPHARMACOLOGY LAB, PHYSIOLOGY AND PHARMACOLOGY DEPARTMENT, FEDERAL UNIVERSITY OF CEARÁ; ² CHEMISTRY DEPARTMENT, FEDERAL UNIVERSITY OF CEARÁ; ³ MORPHOFUNCTIONAL SCIENCE DEPARTMENT, FEDERAL UNIVERSITY OF CEARÁ

 * guedesholanda@gmail.com

S2P482. HIGH FAT DIET-INDUCED OBESITY IN MICE INHIBITS ENERGETIC METABOLISM IN BRAIN STRUCTURE

GABRIELA GUZATTI^{1,2*}, MORGANA PRÁ^{1,2}, ALINE HAAS DE MELLO^{1,2}, MARCELA FORNARI UBERTI^{1,2}, JOÃO LUIZ TAVARES MENDES^{1,2}, MELISSA BENEDET^{1,2}, JÉSSICA BENEDET FOGAÇA^{1,2}, JÉSSICA DELLA GIUSTINA ENGEL^{1,2}, ISABELA CASAGRANDE JEREMIAS^{1,2}, GISLAINE TEZZA REZIN^{1,2}

¹ LABORATÓRIO DE NEUROBIOLOGIA DE PROCESSOS INFLAMATÓRIOS E METABÓLICOS;

² PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE, UNISUL, TUBARÃO, SANTA CATARINA, BRAZIL

 * gabrielaguzatti@hotmail.com

S2P483. EFFECTS OF ACUTE AND LONG-TERM ADMINISTRATION OF GOLD NANOPARTICLES ON OXIDATIVE STRESS PARAMETERS IN RAT BRAIN GABRIELA GUZATTI^{1,2*}, MARCOS M. DA SILVA PAULA^{1,2}, ERIA CARDOSO³, GABRIELA KOZUCHOVSKI FERREIRA^{1,2}, FABRÍCIA PETRONILHO^{1,2}, GISLAINE TEZZA REZIN^{1,2}

¹ LABORATÓRIO DE NEUROBIOLOGIA DE PROCESSOS INFLAMATÓRIOS E METABÓLICOS;

² PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE, UNISUL, TUBARÃO, SANTA CATARINA, BRAZIL.; ³ INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA CATARINENSE, SOMBRIO, SC, BRAZIL

*gabrielaguzatti@hotmail.com

S2P484. THE COCAINE AND AMPHETAMINE REGULATED TRANSCRIPT (CART) AS REGULATOR OF THE CELL PROLIFERATION IN THE ADULT VENTRICULAR-SUBVENTRICULAR ZONE: MORPHOFUNCTIONAL AND NEUROCHEMICAL ASPECTS

CARLOS HAEMMERLE^{1,2*}, MARIA INES NOGUEIRA¹, ARTURO ALVAREZ-BUYLLA³, II SEI WATANABE¹

¹ DEPARTMENT OF ANATOMY, INSTITUTE OF BIOMEDICAL SCIENCES OF UNIVERSITY OF SAO PAULO, BRAZIL; ² INTEGRATED FACULTIES OF VALE DO RIBEIRA; ³ DEPARTMENT OF NEUROLOGICAL SURGERY AND THE ELI AND EDYTHE BROAD CENTER OF REGENERATION MED

*carlos.haemmerle@usp.br

S2P485. C. ELEGANS MUSCLE CYS-LOOP RECEPTORS AS NOVEL TARGETS OF TERPENOIDS GUILLERMINA HERNANDO^{1*}, ORNELLA TURANI¹, CECILIA BOUZAT¹

¹ INIBIBB

*hernando@criba.edu.ar

S2P486. ENERGY DRINKS ACUTE TOXICITY EVALUATION

<u>LUCAS IZOLAN</u>1*, MARINA VALLE¹, MARCELO ARBO², ELIANE DALLEGRAVE³, MIRNA LEAL¹

¹ LABORATÓRIO DE FARMACOLOGIA E TOXICOLOGIA DE PRODUTOS NATURAIS, PPG-CIÊNCIAS BIOLÓGICAS- N; ² LABORATÓRIO DE ANÁLISES TOXICOLÓGICAS, PPG-CIÊNCIAS FARMACÊUTICAS, UFRGS; ³ DEPARTAMENTO DE FARMACOCIÊNCIAS, UFCSPA, PORTO ALEGRE, RS

*lucas.izolan1@outlook.com

S2P487. THE BLOCKADE OF LOW AFFINITY NEUROTENSIN (NTS2) RECEPTOR

IMPAIRS BRAIN NITRIC OXIDE PRODUCTION AND MITOCHONDRIAL BIOENERGETICS

<u>ANALÍA G. KARADAYIAN</u>1*, ALICIA GUTNISKY², SILVIA LORES ARNAIZ¹, GEORGINA RODRÍGUEZ DE LORES ARNAIZ²

¹ INSTITUTO DE BIOQUÍMICA Y MEDICINA MOLECULAR, IBIMOL (UBA-CONICET), FAC FARN Y BIOQ, UBA; ² INST DE BIOLOGÍA CELULAR Y NEUROCIENCIAS "PROF. E DE ROBERTIS", CONICET-UBA, FAC. MED., UBA *slarnaiz@ffyb.uba.ar

S2P488. OXIDATIVE STRESS INDUCED BY ACUTE ALCOHOL EXPOSURE IN MOUSE BRAIN CORTEX NON-SYNAPTIC MITOCHONDRIA AND SYNAPTOSOMES

ANALIA KARADAYIAN^{1*}, ANALIA CZERNICZYNIEC¹, GABRIELA MALANGA¹, PAULINA LOMBARDI¹, JUANITA BUSTAMANTE², SILVIA LORES ARNAIZ¹

¹ INSTITUTO DE BIOQUÍMICA Y MEDICINA MOLECULAR (UBA-CONICET); ² CENTRO DE ALTOS ESTUDIOS EN CIENCIAS HUMANAS Y DE LA SALUD (CAECIHS - UAI)

*analiakaradayian@conicet.gov.ar

S2P489. A NOVEL IN VIVO APPROACHTO STUDYTHE INTERNALIZATION OF MELANIN-CONCENTRATING HORMONE IN THE CNS OF THE RAT

VICENTE RUIZ-VIROGA¹, JESSIKA URBANAVICIUS¹, PABLO TORTEROLO¹, PATRICIA LAGOS¹*

¹ DEPARTMENT OF PHYSIOLOGY, UNIVERSIDAD DE LA REPÚBLICA, MONTEVIDEO, URUGUAY

*plagos@fmed.edu.uy

S2P490. EARLY LIFE SOCIAL ISOLATION CHANGES LOCOMOTOR ACTIVITY, OXIDATIVE STRESS PARAMETERS AND DOPAMINE TRANSPORTER AFTER AN AMPHETAMINE CHALLENGE IN ADULT RATS

CARINE LAMPERT^{1*}, DANUSA MAR ARCEGO¹, NATIVIDADE DE SÁ COUTO PEREIRA¹, ALINE DOS SANTOS VIEIRA¹, ANA PAULA TONIAZZO¹, RACHEL KROLOW¹, DEUSA APARECIDA VENDITE¹, MARIA ELISA CALCAGNOTTO¹, CARLA DALMAZ¹

¹UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

*caren17@gmail.com

S2P491.EFFECTS OF VITAMIND SUPPLEMENTATION ON DOPAMINE AND DOPAC CONCENTRATION AND OXIDATIVE STRESS IN RODENT MODEL OF PARKINSON'S DISEASE

<u>LUDMILA LIMA</u>^{1*}, IANA CALOU², JANICE LOPES³, ANA SOUSA², GLAUCE VIANA^{1,3}

¹ UNIVERSIDADE FEDERAL DO CEARÁ; ² UNIVERSIDADE FEDERAL DO PIAUÍ; ³ FACULDADE DE MEDICINA DO JUAZEIRO

*ludy_araujo_@hotmail.com

S2P492. AGE-RELATED CHANGES IN MITOCHONDRIAL ACTIVE OXYGEN SPECIES PRODUCTION AND OXIDATIVE DAMAGE IN BRAIN CORTEX SYNAPTOSOMES

<u>PAULINA LOMBARDI</u>^{1*}, ANALÍA KARADAYIAN¹, FEDERICO ORGAMBIDE¹, JUANITA BUSTAMANTE², SILVIA LORES ARNAIZ¹

¹ INSTITUTO DE BIOQUÍMICA Y MEDICINA MOLECULAR (IBIMOL, UBA-CONICET); ² CENTRO DE ALTOS ESTUDIOS EN CIENCIAS HUMANAS Y DE LA SALUD (CAECIHS), UAI

*paulina.lombardi@gmail.com

\$2P493. EGF RECEPTOR ACTIVATION IS REQUIRED FOR ADP-INDUCED PROLIFERATION OF RETINAL GLIAL PROGENITORS IN CULTURE

<u>CAROLINA LOPES</u>1*, FLAVIA JACQUES¹, ISIS ORNELAS¹, ANA VENTURA¹

S2P494. UNRAVELING THE EVOLUTIONARY HISTORY OF NICOTINIC CHOLINERGIC RECEPTORS SUBUNITS

IRINA MARCOVICH^{1*}, MARCELA LIPOVSEK², ANABELLA TRIGILA¹, LUCÍA FRANCHINI¹, PAOLA PLAZAS¹, ANA BELÉN FIGOYHFN^{1,3}

¹ INGEBI-CONICET, BUENOS AIRES, ARGENTINA; ² MRC CENTRE FOR DEVELOPMENTAL NEUROBIOLOGY, KING S COLLEGE, LONDON, UK; ³ UBA, FACULTAD DE MEDICINA. INSTITUTO DE FARMACOLOGÍA. BUENOS AIRES, ARGENTINA

S2P495. PROTECTIVE EFFECTS OF GUANOSINE AGAINST 6-OHDA-INDUCED TOXICITY IN VITRO NAIANI MARQUES^{1*}, CAIO MASSARI¹, CARLA INÊS TASCA¹

¹ DEPARTAMENT OF BIOCHEMISTRY- FEDERAL UNIVERSITY OF SANTA CATARINA

S2P496. CHEMICAL CHARACTERIZATION AND PHARMACOKINETIC STUDIES OF THE MAIN COMPONENTS FOUND IN COCA PASTE SEIZED SAMPLES IN URUGUAY

MARCELA MARTÍNEZ-BUSI^{1,2*}, MARTÍN GALVALISI ⁴, JOSÉ PEDRO PRIETO ⁴, MANUEL MINTEGUIAGA ³, CECILIA SCORZA ⁴, JUAN ANDRÉS ABIN-CARRIOUIRY ^{1,2}

¹ NEUROCHEMISTRY DEPARTMENT, IIBCE; ² ANALYTICAL CHEMISTRY PLATFORM, IIBCE; ³ GC-MS PLATFORM, IIBCE; ⁴ EXPERIMENTAL NEUROPHARMACOLOGY DEPARTMENT, IIBCE

S2P497. THE HYPERALGESIC EFFECT PROVOKED BY TRPV1 BLOCKADE IN THE MOUSE DORSAL PERIAQUEDUCTAL GRAY DOES NOT DEPEND ON CB1 RECEPTOR

DIEGO MASCARENHAS^{1,2*}, KARINA GOMES¹, RICARDO LUIZ NUNES-DE-SOUZA^{1,2}

¹ SCHOOL OF PHARMACEUTICAL SCIENCES, UNIV. ESTADUAL PAULISTA – UNESP; ² JOINT GRADUATE PROGRAM IN PHYSIOLOGICAL SCIENCES, UFSCAR/UNESP.

S2P498. ANTIDYSKINETIC EFFECT OF ACUTE GUANOSINE ADMINISTRATION IN RESERPINIZED

MICE

CAIO MARCOS MASSARI^{1*}, DÉBORA LANZNASTER¹, CARLA INÊS TASCA¹

¹ UNIVERSIDADE FEDERAL DE SANTA CATARINA *caio.massari@gmail.com

S2P499. BIOPHYSICAL CHARACTERIZATION OF TAU AMYLOID AGGREGATION AND A POSSIBLE NEUROPROTECTIVE MECHANISM OF DOXYCYCLINE IN TAUOPATHIES

LUCIANA MEDINA^{1*}, SABRINA SEQUEIRA¹, CECILIA VERA¹, FLORENCIA GONZALEZ LIZARRAGA¹, LEANDRO RAMOS SOUZA BARBOSA¹, BENJAMIN SOCIAS¹, RITA RAISMAN-VOZARI². ROSANA CHEHIN¹

¹ INSTITUTO SUPERIOR DE INVESTIGACIONES BIOLÓGICAS — CONICET-UNT.; ² L'INSTITUT DU CERVEAU ET DE LA MOELLE ÉPINIÈRE-ICM - UNIVERSITÉ PIERRE ET MARIE

S2P500. ANTIDEPRESSANT POTENTIAL OF RIPARIN IV: BEHAVIORAL ANALYSIS OF MICE EXPOSED TO MODEL OF CHRONIC DEPRESSION BY CORTICOSTERONE ADMINISTRATION

LUCAS NASCIMENTO MENESES^{1*}, RAQUEL DE CASTRO CHAVES¹, DANIEL MOREIRA ALVES DA SILVA¹, JOSÉ TIAGO VALENTIM¹, AURIANA SERRA VASCONCELOS¹, NATÁLIA FERREIRA DE OLIVEIRA¹, IARDJA STEFANE LOPES¹, VICTOR CELSO CAVALCANTI CAPIBARIBE¹, REGILANE CORDEIRO DOS SANTOS¹, FRANCISCA CLÉA FLORENCO DE SOUSA¹

S2P501. VITAMIN D INDUCES ANTIDEPRESSANT-LIKE EFFECT IN MICE

MORGANA MORETTI", VIVIAN NEIS1, PRISCILA ROSA1, ANA LÚCIA RODRIGUES1

¹ UNIVERSIDADE FEDERAL DE SANTA CATARINA

S2P502. EFFECTS OF CANNABIDIOL ON HIPPOCAMPAL NEURODEGENERATION AND WHITE MATTER INJURY INDUCED BY BILATERAL COMMON CAROTID ARTERY OCCLUSION IN MICE

MARCO AURÉLIO MORI^{1*}, ERICA MEYER¹, LIGIA MENDES SOARES¹, FRANCISCO GUIMARÃES², HUMBERTO MILANI¹, RÚBIA WEFFORT DE OLIVEIRA¹

¹DEPARTMENT OF PHARMACOLOGY AND THERAPEUTIC, STATE UNIVERSITY OF MARINGÁ; ² DEPARTMENT OF PHARMACOLOGY, FACULTY OF MEDICINE, UNIVERSITY OF SÃO PAULO

¹ FLUMINENSE FEDERAL UNIVERSITY

^{*}carolinagl@id.uff.br

^{*}irinamarcovich@gmail.com

^{*}n.fmarques@yahoo.com.br

^{*}marce.mb84@gmail.com

^{*}mascarenhasdc@gmail.com

^{*}lumedina000@gmail.com

¹UNIVERSIDADE FEDERAL DO CEARÁ

^{*}lucasmeneses07@gmail.com

 $^{{}^*}morganamoretti@hotmail.com\\$

^{*}marcoaureliomori@gmail.com

S2P503. NEUROGENESIS AND GLIOGÉNESIS: ROLE OF CICLIN-DEPENDENT-KINASE-5 IN CEREBRAL ISCHEMIA. A NEUROLOGICAL AND HISTOLOGICAL ANALYSIS BY GENE THERAPY

<u>JUAN IGNACIO MUÑOZ-MANCO</u>1*, JOHANNA ANDREA GUTIERREZ-VARGAS¹, GLORIA PATRICIA CARDONA-GÓMF7¹**

¹ GRUPO DE NEUROCIENCIAS DE ANTIOQUIA AREA DE NEUROBIOLOGÍA CELULAR Y MOLECULAR; ² FACULTAD DE MEDICINA, UNIVERSIDAD DE ANTIOQUIA, MEDELLÍN, COLOMBIA; ³ INSTITUTO DE BIOLOGÍA, UNIVERSIDAD DE ANTIOQUIA, MEDELLÍN, COLOMBIA

S2P504. BLOCKADE OF ADENOSINE A2A RECEPTORS AND NLRP3 INFLAMMASOME IN CORTICOSTERONE- INDUCED MODEL OF STRESS IN A HIPPOCAMPAL NEURONAL CELL LINE

FERNANDA NEUTZLING KAUFMANN^{1*}, NICOLLE PLATT¹, ANA BELEN R. HRYB¹, MAURICIO P. CUNHA¹, GABRIELE GHISLENI¹, ANA LÚCIA S. RODRIGUES¹, ANA PAULA COSTA¹, MANUELLA PINTO KASTER¹

¹ DEPARTMENT OF BIOCHEMISTRY, FEDERAL UNIVERSITY OF SANTA CATARINA

S2P505. EXPLORING THE FUNCTIONAL PROPERTIES OF HETEROMERIC ALPHA7BETA2 NICOTINIC ACETYLCHOLINE RECEPTORS AT THE SINGLE-CHANNEL LEVEL

BEATRIZ NIELSEN^{1*}, ISABEL BERMUDEZ², CECILIA BOUZAT¹

¹ INSTITUTO DE INVESTIGACIONES BIOQUÍMICAS DE BAHÍA BLANCA (INIBIBB) - CONICET-UNS; ² SCHOOL OF LIFE SCIENCES, OXFORD BROOKES UNIVERSITY, OXFORD, UK

S2P506. GLIAL METABOLISM IS MODULATED IN BOTH HEMISPHERES AFTER FOCAL CEREBRAL ISCHEMIA

YASMINE NONOSE^{1*}, PEDRO GEWEHR¹, ROBERTO ALMEIDA¹, JUSSEMARA DA SILVA¹, BRUNA BELLAVER¹, LEO MARTINS¹, EDUARDO ZIMMER^{1,2}, SAMUEL GREGGIO ², GIANINA VENTURIN ², JADERSON DA COSTA ², ANDRÉ QUINCOZESSANTOS ^{1,3}, LUC PELLERIN ⁴, DIOGO SOUZA ^{1,3}, ADRIANO DE ASSIS¹

¹PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS - BIOQUÍMICA UFRGS; ² INSTITUTO DO CÉREBRO DO RIO GRANDE DO SUL PUCRS; ³ DEPARTAMENTO DE BIOQUÍMICA UFRGS; ⁴ DEPARTMENT OF PHYSIOLOGY, UNIVERSITY OF LAUSANNE (UNIL)

*yasminenonose@gmail.com

S2P507. EVALUATION OF NEUROPROTECTIVE EFFECT OF RT10, A COMPOUND ISOLATED FROM

THE PARAWIXIA BISTRIATA SPIDER VENOM EDUARDO OCTAVIANO PRIMINI^{1*}, JOSÉ LUIZ LIBERATO^{1,2}, WAGNER FERREIRA DOS SANTOS^{1,2}

¹ UNIVERSITY OF SÃO PAULO; ² INSTITUTO DE NEUROCIÊNCIAS E COMPORTAMENTO — INEC

*eduardoprimini@usp.br

S2P508. ATORVASTATIN AND TEMOZOLOMIDE REDUCE HUMAN GLIOMA CELLS MIGRATION AND SURVIVAL VIA GLUTAMATE RECEPTORS MODULATION

KAREN ANDRINÉIA OLIVEIRA!*, FABIANA KALYNE LUDKA^{1,2}, THARINE APARECIDA DAL-CIM¹, FLÁVIA GARCIA LOPES¹, CLÁUDIA BEATRIZ NEDEL¹. CARLA INÊS TASCA¹

¹ PROGRAMA DE PÓS GRADUAÇÃO EM BIOQUÍMICA, UNIVERSIDADE FEDERAL DE SANTA CATARINA; ² UNIVERSIDADE DO CONTESTATO *kandrioliveira@qmail.com

S2P509. ROLE OF PRELIMBIC CORTEX MEDIATES CONTEXT-INDUCED THE REINSTATEMENT OF ALCOHOL-SEEKING

PAOLA PALOMBO^{1*}, PAULA BIANCHI¹, RODRIGO LEÃO², PAULO EDUARDO DE OLIVEIRA³, CLEOPATRA PLANETA¹, FABIO CRUZ³

¹ SCHOOL OF PHARMACEUTICAL SCIENCES, UNESP ARARAQUARA, LABORATORY OF PHARMACOLOGY; ² UNIVERSIDADE FEDERAL DA BAHIA; ¹ PHARMACOLOGY DEPARTMENT, SÃO PAULO FEDERAL UNIVERSITY, BRAZIL *pa_palombo@hotmail.com

Neuroendocrinology and Neuroimmunology

S2P510. CASTRATION ALTERS THE DENSITY AND SHAPE OF DENDRITIC SPINES IN THE MALE POSTERODORSAL MEDIAL AMYGDALA

LUCILA LUDMILA PAULA GUTIERREZ^{1*}, MARIANA ZANCAN¹, DALL'OGLIO ALINE¹, QUAGLIOTTO EDSON¹, ALBERTO RASIA-FILHO^{1,2}

¹ FEDERAL UNIVERSITY OF HEALTH SCIENCES, DEPARTMENT OF BASIC SCIENCES/PHYSIOLOGY, LABORATORY; ² FEDERAL UNIVERSITY OF RIO GRANDE DO SUL, GRADUATION PROGRAM IN NEUROSCIENCE, PORTO ALEGRE

*lucilagutierrez@yahoo.com.br

S2P511. THE MEMORY CONSOLIDATION IMPAIRMENT INDUCED BY INTERLEUKIN-1B COULD BE ASSOCIATED TO CHANGES IN HIPPOCAMPAL STRUCTURAL PLASTICITY

LUCIA GUADALUPE XIMENA HERRERA^{1*}, GASTON CALFA¹, IVANA MACHADO¹, MERCEDES LASAGA¹, TERESA NIEVES SCIMONELLI¹

^{**}Corresponding autor - *juanignacio.m001@gmail.com

^{*}nandafnk@gmail.com

^{*}benielsen@inibibb-conicet.gov.ar

¹ IFEC-CONICET. DEPTO. FARMACOLOGÍA. FACULTAD DE CIENCIAS QUÍMICAS. UNC. †guadaluci.herrera@gmail.com

S2P512. EFFECTS OF UNILATERAL ORCHIDECTOMY TO IMMATURE RATS ON DENDRITIC ARBORIZATION OF THE CA1 PYRAMIDAL-NEURONS OF THE HIPPOCAMPUS

NANCY BELEM SANTOS¹, GERMÁN LEÓN, <u>CÉSAR DAVID</u> <u>HIDALGO-GUDIÑO¹*</u>, NÓVAYA PRÁVDA CORDERO¹, FRANCISCA MARIANA GONZÁLEZ¹, GONZALO FLORES¹, ROSALINA REYES LUNA¹, SALVADOR GALICIA-ISASMENDI¹, UBALDO QUIRÓZ LÓPEZ¹

¹LAB. DE HISTOFISIOLOGÍA, ESCUELA DE BIOLOGÍA, BUAP *uguiroz@vahoo.com.mx

S2P513. EFFECTS OF BLOCKING SUPRACHIASMATIC NUCLEUS M1 RECEPTORS ON THE OVULATION OF THE FEMALE RAT

CINTIA YOLANDA JAVIER DURÓN^{1*}, GEORGINA DANIELA CORTÉS RUÍZ¹, CARLOS CAMILO SILVA MÉNDEZ¹, ANGÉLICA FLORES RAMÍREZ¹, ROBERTO DOMÍNGUEZ CASALÁ¹

¹FES ZARAGOZA, UNAM *cintia89duron@gmail.com

S2P514. MILD UNPREDICTABLE STRESS IN ADOLESCENCE MICE: LONG-TERM EFFECTS ON IMMUNITY

ANA PAULA LIMA^{1*}, DANIEL SG DA CRUZ¹, CRISTINA O. MASSOCO¹

¹ DEPARTMENT OF PATHOLOGY- SCHOOL OF VETERINARY MEDICINE, UNIVERSITY OF SAO PAULO, SAO PAULO

*paulanlima@gmail.com

S2P515. GLYCINE RECEPTOR BETA SUBUNIT: A CRITICAL TARGET FOR PAIN SENSITIZATION TRINIDAD MARIQUEO^{1*}, NICOLE CESPEDES¹, PABLO GALAZ², HECTOR FIGUEROA³

¹ DEPARTMENT OF PHARMACOLOGY, SCHOOL OF MEDICINE, UNIVERSITY OF TALCA; ² DEPARTMENT OF BIOCHEMISTRY AND MOLECULAR BIOLOGY, UNIVERSITY OF CHILE, SANTIAGO; ³ FACULTY OF HEALTH SCIENCES, UNIVERSITY OF TALCA. CHILE

*tmarigueo@utalca.cl

S2P516. A SYSTEMATIC REVIEW OF PSYCHONEUROIMMUNOLOGY-BASED INTERVENTIONS

CLAUDIA MARMORA^{1*}, MARCIA MIRANDA¹, LILIANY LOURES¹, LUCAM MORAES¹, ALESSANDRA MAINIERI¹

¹ STUDIES AND RESEARCH GROUP IN NEUROSCIENCE, SCHOOL OF PHYSICAL THERAPY, FEDERAL UNIVERSITY OF JUIZ DE FORA, JUIZ DE FORA - MG *claudia.marmora@uff.edu.br

S2P517. THE EXPRESSION OF DA1 RECEPTOR ON THE ANTERIOR HYPOTHALAMIC AREA VARIES THROUGHOUT THE RAT ESTROUS CYCLE

<u>JULIO CÉSAR MUÑOZ CANALES</u>1*, GEORGINA DANIELA CORTÉS RUIZ¹, CINTIA YOLANDA JAVIER DURÓN¹, CARLOS CAMILO SILVA MÉNDEZ¹, BENÍTEZ JIMÉNEZ DIANA PAMELA¹, FLORES RAMÍREZ ANGÉLICA¹. DOMÍNGUEZ CASALÁ ROBERTO¹

¹ FES ZARAGOZA UNAM

*luiioserac@hotmail.com

S2P518. ROLE OF CD300F IN MICROGLIAL PHENOTYPE AND NEUROINFLAMMATION

MARÍA LUCIANA NEGRO DEMONTEL^{1,2*}, NATALIA LAGO¹, DANIELA ALI², RUBÉN LOPEZ-VALES³, JUAN SAHUQUILLO⁴, JOAN SAYÓS⁴. HUGO PELUFFO¹.²

¹ INSTITUT PATEUR DE MONTEVIDEO; ² FACULTAD DE MEDICINA, UDELAR; ³ UNIVERSIDAD AUTÓNOMA DE BARCELONA; ⁴HOSPITAL VALL D´HEBRÓN, UAB ^{*}lnegro@pasteur.edu.uy

S2P519. EXPOSURE TO EXPERIENCE-DEPENDENT PLASTICITY DURING PREGNANCY AND LACTATION MODULATES OFFSPRING FOOD INTAKE AND GLUCOSE RESPONSE

<u>PATRICIA OJEDA</u>^{1,2*}, <u>SERGIO HERNÁNDEZ¹</u>, <u>BREDFORD KERR¹</u>
¹ CENTRO DE ESTUDIOS CIENTÍFICOS, CECS. VALDIVIA, CHILE; ² UNIVERSIDAD AUSTRAL DE CHILE

*patricia.oieda.prov@gmail.com

S2P520. MODULATION OF PITUITARY CELL RENEWAL BY L-3,4-DIHYDROXYPHENYLALANINE (L-DOPA): ROLE OF ITS CONVERSION TO DOPAMINE (DA)

SANTIAGO ORRILLO^{1*}, NATALY DE DIOS¹, MARIELA MORENO AYALA¹, SANDRA ZÁRATE¹, FLORENCIA GOTTARDO¹, JIMENA FERRARIS¹, DANIEL PISERA¹

¹INBIOMED -INSTITUTO DE INVESTIGACIONES BIOMÉDICAS, UBA, CONICET, FACULTAD DE MEDICINA, UBA

*dpisera@fmed.uba.ar

S2P521. IMMOBILIZED NICOTINIC ACETYLCHOLINE RECEPTOR AS A TOOL FOR THE DETECTION OF AUTOANTIBODIES IN THE DEVELOPMENT OF A NEW IMMUNOANALYTICAL FLUORESCENCE-BASED TECHNOLOGY

MARIELA L PAZ^{1*}, PAULA N MANUELLI¹, FLORENCIA AGUIRRE², DANIEL H GONZALES MAGLIO¹, ANDRÉS VILLA², JULIANA LEONI¹, FRANCISCO J BARRANTES³

¹ IMMUNOLOGY DEPARTMENT, PHARMACY AND BIOCHEMISTRY SCHOOL, IDEHU-CONICET, UNIVERSIDAD BSAS; ² NEUROIMMUNOLOGY DIVISION, MYASTHENIA GRAVIS SECTION, HOSPITAL RAMOS MEJÍA, BSAS; ³ LABORATORY OF MOLECULAR NEUROBIOLOGY, INSTITUTE OF BIOMEDICAL RESEARCH, UCA-CONICET, BSAS

*marielaurapaz@gmail.com

SENSORY SYSTEMS

S2P522. NEURAL BASIS OF AVERSIVE TASTE IN A BLOOD-SUCKING INSECT

MARÍA LAURA GUTIÉRREZ^{1*}, MARTIN BERON DE ASTRADA¹, ROMINA B BARROZO¹

¹NEUROETOLOGÍA DE INSECTOS VECTORES - IBBEA - UBA - CONICET ^{*}laurabiologa@gmail.com

S2P523. MODULATION OF EEG SIGNALS ASSOCIATED WITH EYE MOVEMENT DURING A VISUOMOTOR ADAPTATION TASK

JOAQUÍN HERRERO SILVA^{1,2*}, PABLO BURGOS³, RODRIGO VERGARA^{1,2}, PEDRO MALDONADO^{1,2}

¹ LABORATORIO DE NEUROSISTEMAS, PROGRAMA DE FISIOLOGÍA Y BIOFÍSICA, FACULTAD DE MEDICINA, UCHIL; ² BIOMEDICAL NEUROSCIENCE INSTITUTE. FACULTY OF MEDICINE, UNIVERSIDAD DE CHILE, SANTIAGO, CH; ³ DEPARTAMENTO DE KINESIOLOGÍA, FACULTAD DE MEDICINA, UNIVERSIDAD DE CHILE, SANTIAGO, CHILE

*jherrerosilva@gmail.com

S2P524. OLIVOCOCHLEAR REFLEX STRENGTH AND BEHAVIORAL PERFORMANCE DURING SELECTIVE VISUAL ATTENTION TASK WITH NOISE AND VOCALIZATIONS AS AUDITORY DISTRACTORS MACARENA IPINZA^{1*}, MACARENA BOWEN^{1,2}, GONZALO TERREROS¹, FELIPE MORENO-GÓMEZ¹, LUIS ROBLES¹, PAUL DÉLANO^{1,2}

¹ PROGRAMA DE FISIOLOGÍA Y BIOFÍSICA, INSTITUTO DE CIENCIAS BIOMÉDICAS, FACULTAD DE MEDICINA; ² DEPARTAMENTO DE FONOAUDIOLOGÍA, FACULTAD DE MEDICINA, UNIVERSIDAD DE CHILE *maca.ipinza@gmail.com

S2P525. CERVICAL VESTIBULAR EVOKED MYOGENIC POTENTIALS ARE ALTERED IN CHILDREN WITH ATTENTION DEFICIT AND HYPERACTIVITY DISORDER

M. VALERIA ISAAC¹,²*, DIEGO OLMEDO¹, FRANCISCO ABOITIZ³, PAUL H. DÉLANO¹.⁴

¹ 1.0TOLARYNGOLOGY DEPARTMENT, CLINICAL HOSPITAL OF THE UNIVERSITY OF CHILE; ² PEDIATRIC DIAGNOSTIC AND THERAPY CENTER CERIL, CHILE; ³ NEUROSCIENCE DEPARTMENT, PONTIFIC CATHOLIC UNIVERSITY, CHILE; ⁴ PHYSIOLOGY AND BIOPHYSICS, ICBM, FACULTY OF MEDICINE, UNIVERSITY OF CHILE

*mvisaac@ug.uchile.cl

S2P526. SUSTAINED ATTENTION TO VISUAL STIMULI WITH AUDITORY DISTRACTORS AND LOCOMOTOR ACTIVITY IN ALPHA-9 NICOTINIC RECEPTORS KNOCK-OUT MICE

PASCAL JORRATT1*, PAUL DELANO1,2, ALEXIES DAGNINO3,

CAROLINA DELGADO³, GONZALO TERREROS¹

¹ PROGRAMA DE FISIOLOGÍA Y BIOFÍSICA, ICBM, FACULTAD DE MEDICINA, UNIVERSIDAD DE CHILE; ² DEPARTAMENTO DE OTORRINOLARINGOLOGÍA, HOSPITAL CLÍNICO DE LA UNIVERSIDAD DE CHILE; ³ LABORATORIO DE NEUROBIOLOGÍA Y CONDUCTA, FACULTAD DE CIENCIAS, UNIVERSIDAD DE VALPARAÍSO

*jorratt@ug.uchile.cl

S2P527. DOPAMINE MODULATES ODOR INDUCED NEURAL ACTIVITY IN THE HONEY BEE ANTENNAL LOBES

MARTÍN KLAPPENBACH^{1,2*}, EMILIANO MARACHLIAN^{2,3}, FERANANDO LOCATELLI^{2,3}

¹DEPARTAMENTO DE FISIOLOGÍA, BIOLOGÍA MOLECULAR Y CELULAR, FCEYN, UBA; ²IFIBYNE-CONICET; ³DEPARTAMENTO DE FÍSICA, FCEYN, UBA *martinklappenbach@hotmail.com

S2P528. IMT504, AN IMMUNOMODULATORY OLIGODEOXINUCLEOTIDE, REDUCES ALLODYNIA IN AN EXPERIMENTAL MODEL OF INFLAMMATORY PAIN

CANDELARIA LEIGUARDA^{1*}, MARIA FLORENCIA CORONEL², MARIANA MALET¹, ALEJANDRO DANIEL MONTANER³, MARCELO JOSE VILLAR¹. PABLO RODOLFO BRUMOVSKY¹

¹ INSTITUTO DE INVESTIGACIONES EN MEDICINA TRASLACIONAL (IIMT), AUSTRAL — CONICET; ² INSTITUTO DE BIOLOGÍA Y MEDICINA EXPERIMENTAL (IBYME) — CONICET; ³ CENTRO DE CIENCIA Y TECNOLOGÍA DR. CESAR MILSTEIN — CONICET

*candelarialeiguarda@gmail.com

S2P529. THERAPEUTIC USE OF ISOLATED P27KIP1 KNOCKDOWN FOR SUPPORTING CELLS PROLIFERATION IN RAT PUPS

<u>JUAN C MAASS</u>^{1,2,3,4*}, SEBASTIAN SILVA^{1,2}, ANTONIA ARRATE², JAIME FUENTES², ADRIANA GALLEGOS², BASTIAN HENRÍQUEZ², MACARENA YÉVENES²

¹AUDITION AND COGNITION CENTER (AUCO) AND PROGRAM OF PHYSIOLOGY AND BIOPHYSICS, ICBM; ² FACULTY OF MEDICINE, UNIVERSIDAD DE CHILE; ³ DEPARTMENT OF OTOLARYNGOLOGY, HOSPITAL CÍNICO UNIVERSIDAD DE CHILE; ⁴ DEPARTAMENT OF OTOLARYNGOLOGY, CLÍNICA ALEMANA DE SANTIAGO-UNIVERSIDAD DEL DESARROLLO

 * maasslab@outlook.com

S2P530. ROLE OF TRPM8 CHANNELS IN THE ALTERED SENSITIVITY OF CORNEAL PRIMARY SENSORY NEURONS IN RESPONSE TO AXONAL DAMAGE

RICARDO PIÑA¹, MATÍAS CAMPOS¹, GONZALO UGARTE¹, JUAN BACIGALUPO¹, RODOLFO MADRID¹*

¹ DEPARTAMENTO DE BIOLOGÍA, FACULTAD DE QUÍMICA Y BIOLOGÍA, UNIVERSIDAD DE SANTIAGO DE CHILE

*rodolfo.madrid@usach.cl

S2P531. THE ROLE OF SYNAPTIC INPUTS ON STIMULUS-SPECIFIC ADAPTATION (SSA) IN THE AUDITORY MIDBRAIN

YANERI A. AYALA^{1,2}, MANUEL MALMIERCA^{1*}

¹ AUDITORY NEUROSCIENCE. INSTITUTE OF NEUROSCIENCE OF CASTILLA Y LEÓN. SALAMANCA; ² INSTITUTE OF NEUROBIOLOGY, UNAM. MÉXICO *msm@usal.es

S2P532. EFFECTS OF WHOLE BODY VIBRATION ON MECHANHICAL SENSIBILITY OF HINDPAW AFTER SCIATIC NERVE CRUSH IN ANIMAL MODEL

<u>CHARLANNE MARQUES</u>1*, IZABELA ESPINDULA¹, LEANDRO BONETTI¹, ANELISE SONZA¹, WANIA PARTATA¹, TAÍS MALYSZ¹, MARIA CRISTINA HEUSER¹,2

¹ UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL; ² INSTITUTO DE CIÊNCIAS BÁSICAS DE SAÚDE - UFRGS

*charlanneoliveira@hotmail.com

S2P533. SIMULTANEOUS VISUAL AND VESTIBULAR STIMULUS MODULATION OF CORTICOCORTICAL INTERACTIONS IN HUMAN

HELLEN MATHEI DELLA-JUSTINA^{1*}, ANDERSON M. WINKLER², HUMBERTO R. GAMBA¹. EDSON AMARO JR.³

¹ UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ; ² UNIVERSITY OF OXFORD: ³ UNIVERSIDADE DE SÃO PAULO

*hellenjustina@gmail.com

S2P534. EVALUATION OF MYGALIN ANTI-NOCICEPTIVE ACTIVITY, ANALOGUE SYNTHESIZED FROM NATURAL ACYLPOLYAMINE OF THE A. GOMMESIANA (ARANEAE, THERAPHOSIDAE) HEMOLYMPH, IN A MODEL OF HYPERALGESIA IN WISTAR RATS

ANA CAROLINA MEDEIROS^{1*}, JOSÉ LUIZ LIBERATO^{1,2}, MARCUS VINICIUS CELANI¹, PEDRO ISMAEL DA SILVA JÚNIOR³, WAGNER FERREIRA DOS SANTOS^{1,2}

¹ UNIVERSITY OF SÃO PAULO - FACULTY OF SCIENCE PHILOSOPHY AND LETTERS OF RIBEIRÃO PRETO; ² INSTITUTO DE NEUROCIÊNCIAS E COMPORTAMENTO - INEC; ³ INSTITUTE BUTANTAN

 ${}^*medeiros 96. carol@gmail.com\\$

S2P535. APPLICATION OF WEIGHTING INDEXES TO THE ISHIHARA TEST EVALUATION

LETICIA MIQUILINI^{1*}, MAURO AUGUSTO RATIS¹, ELIZA MARIA LACERDA^{1,2}, MARIA IZABEL CORTES³, ANDERSON RODRIGUES⁴, LUIZ CARLOS SILVEIRA^{1,2,4}, GIVAGO SOUZA^{1,4}

¹ INSTITUTO DE CIENCIAS BIOLOGICAS, UNIVERSIDADE FEDERAL DO PARA, BELEM, PARA, BRAZIL; ² UNIVERSIDADE DO CEUMA, SAO LUIS, MARANHAO, BRAZIL; ³ FACULDADE DE ENFERMAGEM, UNIVERSIDADE FEDERAL DO AMAPA, MACAPA, AMAPA, BRAZIL; ⁴ NUCLEO DE MEDICINA TROPICAL, UNIVERSIDADE FEDERAL DO PARA, BELEM, PARA, BRAZIL

 * leticia.miquilini@gmail.com

Synaptic Transmission, Excitability and Glia

S2P536. POSSIBLE MECHANISM OF ADAPTATION OF CA1 PYRAMIDAL NEURON EXCITABILITY TO CHRONIC INACTIVITY

<u>DANIEL KARMELIC</u>1*, GABRIELA PINO¹, VERÓNICA PALMA¹, MAGDALENA SANHUEZA¹

¹ FACULTAD DE CIENCIAS, UNIVERSIDAD DE CHILE *dkarmelic@ug.uchile.cl

S2P537. SYNAPTIC STRENGTH AND PLASTICITY AT THE MEDIAL OLIVOCOCHLEAR-INNER HAIR CELL SYNAPSE IS NOT ALTERED IN MICE LACKING FUNCTIONAL BK CHANNELS

<u>GRACIELA KEARNEY</u>1*, LUCAS VATTINO¹, CAROLINA WEDEMEYER¹, ANDREA MEREDITH², SONJA PYOTT³, PAUL A. FUCHS^{4,5}, ANA BELÉN ELGOYHEN^{1,6}, ELEONORA KATZ^{1,7}

¹ INSTITUTO DE INVESTIGACIONES EN INGENIERÍA GENÉTICA Y BIOLOGÍA MOLECULAR (INGEBI-CONICET); ² UNIVERSITY OF MARYLAND SCHOOL OF MEDICINE; ³ DEPT. OTORHINOLARYNGOLOGY/HEAD AND NECK SURGERY, UNIV. MED. CTR. GRONINGEN,THE NETHERLANDS; ⁴ DEPARTMENT OF OTOLARYNGOLOGY, HEAD AND NECK SURGERY, JOHNS HOPKINS SCHOOL OF MEDICINE; ⁵ DEPARTMENT OF NEUROSCIENCE, JOHNS HOPKINS SCHOOL OF MEDICINE; ⁶ UNIVERSIDAD DE BUENOS AIRES, FACULTAD DE MEDICINA, TERCERA CÁTEDRA DE FARMACOLOGÍA; ⁷ UNIVERSIDAD DE BUENOS AIRES, FCEN. FBMC

*graciela.kearney@gmail.com

S2P538. P2Y1 ANTAGONIST PREVENTS THE DEVELOPMENT OF EPILEPTOGENESIS IN KINDLED RATS

ELENA MATTUS-ARAYA^{1,2*}, MARIO WELLMANN¹, CHRISTIAN BONANSCO¹

¹ CNPC, INSTITUTO DE FISIOLOGÍA, FACULTAD DE CIENCIAS, UNIVERSIDAD DE VALPARAÍSO; ² BIOQUÍMICA, INSTITUTO DE QUÍMICA, PONTIFICIA UNIVERSIDAD CATÓLICA DE VALPARAÍSO

*elena.mattus@gmail.com

S2P539. SEGREGATION OF OPPOSING CA2+ SIGNALS IN COCHLEAR HAIR CELLS DURING DEVELOPMENT

MARCELO J. MOGLIE^{1*}, PAUL A. FUCHS^{2,3}, A. BELÉN ELGOYHEN¹, JUAN D. GOUTMAN¹

¹ INSTITUTO DE INVESTIGACIONES EN INGENIERÍA GENÉTICA Y BIOLOGÍA MOLECULAR - INGEBI; ² DEPT. OF NEUROSCIENCE, DEPT. OF OTOLARYNGOLOGY, CHB AND CSB; ³ JOHNS HOPKINS SCHOOL OF MEDICINE *mjmoglie@qmail.com

S2P540. RAPID VESICLE REPLENISHMENT IS COUPLED TO A FAST ENDOCYTOTIC PROCESS, AND REGULATED BY CYTOSOLIC CALCIUM AND F-ACTIN POLIMERIZATION

MAURICIO N. MONTENEGRO^{1*}, CECILIA BORASSI², FERNANDO D. MARENGO¹

¹IFIBYNE (CONICET). DEPARTAMENTO FBMC. FAC. CS. EXACTAS Y NATURALES. UNIV. DE BUENOS AIRES; ²FUNDACIÓN INSTITUTO LELOIR-IIBBA (CONICET) *mauriciomontenegro06@yahoo.com.ar

S2P541. SAHP-DEPENDENT REGULATION OF SYNAPTIC PLASTICITY DIRECTION IN AREA CA1 OF THE HIPPOCAMPUS OF ADULT RATS JUAN MORALES^{1*}. CHRISTIAN BONANSCO¹

¹CNPC, INSTITUTO DE FISIOLOGÍA, FACULTAD DE CIENCIAS, UNIVERSIDAD DE VALPARAÍSO

*wimoral@gmail.com

S2P542. DIFFERENTIAL EXPRESSION OF GLIAL FIBRILLARY ACIDIC PROTEIN (GFAP) AND ADAPTER MOLECULE-1 IONIZED CALCIUM BINDING (IBA1) IN THE MOUSE SPINAL CORD DORSAL HORN UNDER PATHOLOGICAL PAIN STATES

CLARISSA MOTA^{1*}, FLÁVIA TURCATO¹, CAYO ALMEIDA², SÔNIA ZANON¹. GUILHERME LUCAS¹

¹ UNIVERSITY OF SÃO PAULO, RIBEIRÃO PRETO SCHOOL OF MEDICINE, DEPARTMENT OF PHYSIOLOGY; ² UNIVERSITY OF SÃO PAULO, DEPARTMENT OF PHARMACOLOGY

*clarissadm@gmail.com

S2P543. EFFECTS OF CHRONIC OPTOGENETIC STIMULATION ON HEBBIAN PLASTICITY IN THE MOUSE HIPPOCAMPUS

THIAGO MOULIN^{1*}, OLAVO AMARAL¹, RICHARDSON LEÃO²

¹ INSTITUTE OF MEDICAL BIOCHEMISTRY LEOPOLDO DE MEIS, FEDERAL UNIVERSITY OF RIO DE JANEIRO; ² BRAIN INSTITUTE, FEDERAL UNIVERSITY OF RIO GRANDE DO NORTE

*thimoulin@gmail.com

S2P544. COMBINATION OF FIBRIN SEALANT AND BIOENGINEERED HUMAN STEM CELLS TO IMPROVE REGENERATION FOLLOWING SCIATIC NERVE INJURY AND REPAIR WITH END-TO-END NEURORRHAPHY ROGHAYEH MOZAFARI¹*, SERGIY KYRYLENKO¹, RUI SEABRA FERREIRA JR², BENEDITO BARRAVIERA², ALEXANDRE OLIVEIRA¹

¹ UNIVERSITY OF CAMPINAS, CIDADE UNIVERSITÁRIA, CAMPINAS - SP, BRAZIL; ² CENTER FOR THE STUDY OF VENOMS AND VENOMOUS ANIMALS (CEVAP),BOTUCATU, BRAZIL

*roghaye.mozafari@yahoo.com

S2P545. SECONDHAND SMOKE EXPOSURE WITH DIFFERENT CONCENTRATIONS OF NICOTINE AT THE BEGINNING OF POST-NATAL MICE CAUSE CHANGES SYNAPTIC ACTIVITY

STEPHANIE OLIVEIRA DURO^{1*}, ANDREZA IZIDORO¹, NATALIA TRIGO¹, LARISSA HELENA LOBO TORRES², TANIA MARCOURAKIS¹

¹ UNIVERSITY OF SÃO PAULO; ² UNIVERSITY OF ALFENAS *stephanieoliveira@usp.br

S2P546. ENDOCANNABINOID SYSTEM MODULATION BY CANNABIDIOL LEADS TO NEUROPROTECTION OF SPINAL MOTONEURONS AFTER NEONATAL PERIPHERAL NERVE AXOTOMY MATHEUS PEREZ^{1*}, NICOLI BENITEZ CADIOLLI¹, LUCIANA POLITTI CARTAROZZI¹, FRANCISCO SILVEIRA GUIMARÃES², ALEXANDRE LEITE RODRIGUES OLIVEIRA¹

¹ UNIVERSITY OF CAMPINAS; ² UNIVERSITY OF SÃO PAULO *matheusperezanatomia@gmail.com

S2P547. LEPTIN ALTERS SOMATOSENSORY THALAMIC INHIBITORY SYNAPTIC TRANSMISSION PAULA PERISSINOTTI^{1*}, EDGAR GARCIA-RILL², VERONICA BISAGNO³, FRANCISCO URBANO³

¹ IFIBYNE-CONICET-UBA, CABA, ARGENTINA.; ² CENTER FOR TRANSLATIONAL NEUROSCIENCE, UAMS, ARKANSAS, U.S.A *peripali@gmail.com

S2P548. SYNCHRONIZATION OF COMPLEX NETWORKS IN THE VISUAL CORTEX WITH DISTANCE DEPENDENT INTERACTIONS

<u>YUDY CAROLINA DAZA C.</u>1.2*, PABLO MARTIN GLEISER ¹, FRANCISCO ANTONIO TAMARIT ³

¹ GRUPO DE FÍSICA ESTADÍSTICA E INTERDISCIPLINARIA, CENTRO ATÓMICO BARILOCHE; ² CONICET-UNC; ³ FACULTAD DE FÍSICA, ASTRONOMIA Y MATEMÁTICAS. UNC.

 $^*ycdazac@famaf.unc.edu.ar\\$

Theoretical and Computational Neuroscience

S2P549. FUNCTIONAL NETWORKS FOR THE PROCESSING OF COMPLEX IMAGES: TEMPORAL DYNAMICS OF EMOTIONS

FACUNDO A. LUCIANNA^{1,2*}, MARIA D. GRIMA MURCIA^{3,4}, ALVARO G. PIZA^{1,2}, JORGE H. SOLETTA^{1,2}, JUAN C. SORIA¹, ANA L. ALBARRACÍN^{1,2}, FERNANDO D. FARFÁN^{1,2}, CARMELO J. FELICE^{1,2}, EDUARDO FERNÁNDEZ JOVER^{3,4}

¹ LABORATORIO DE MEDIOS E INTERFASES (LAMEIN), UNIVERSIDAD NACIONAL DE TUCUMÁN, ARGENTINA; ² INSTITUTO SUPERIOR DE INVESTIGACIONES BIOLÓGICAS (INSIBIO), CONICET, ARGENTINA; 3 INSTITUTE OF BIOENGINEERING, UNIVERSITY MIGUEL HERNÁNDEZ, SPAIN; 4 BIOMEDICAL RESEARCH NETWORKING CENTER IN BIOENGINEERING, BIOMATERIALS AND NANOMEDICINE, SP

*facundolucianna@gmail.com

S2P550. CIRCUMVENTING MAJOR PITFALLS IN INTRACRANIAL CHRONIC ROUTE: FOCUS ON THE INTRACEREBROVENTRICULAR STEREOTAXIC CANNULATION

ITALO ROSAL LUSTOSA^{1*}, TALITA MATIAS BARBOSA¹, LUCAS TEIXEIRA NUNES BORGES¹, FRANCISCO THIAGO GUEDES HOLANDA¹, REGILANE CORDEIRO DOS SANTOS¹, KÁTIA CILENE FERREIRA DIAS¹, PEDRO EVERSON ALEXANDRE DE AQUINO¹, GREICY COELHO DE SOUZA¹, KAROLINE LIMA VIEIRA¹, FRANCISCO MAURÍCIO SALES CYSNE FILHO², JAMILY CUNHA DE ALMEIDA², JUCIÊ RONIERY COSTA VASCONCELOS SILVA³. DAVID FREITAS DE LUCENA¹

¹ FEDERAL UNIVERSITY OF CEARÁ, PHYSIOLOGY AND PHARMACOLOGY DEPARTMENT; ² UNIVERSITY OF FORTALEZA; ³ STATE UNIVERSITY OF PIAUÍ *italo.rosal@qmail.com

S2P551. CODING MECHANISM IN BRAIN AREAS RELATED TO SPATIAL NAVIGATION MELISA MAIDANA CAPITAN^{1*}, EMILIO KROPFF¹, INÉS SAMENGO¹

¹BALSEIRO INSTITUTE

*melisa.mc89@gmail.com

S2P552. BRAIN FUNCTIONAL CONNECTIVITY USING INDEPENDENT COMPONENT ANALYSIS (ICA) ON FMRI DATA

SEBASTIAN MOGUILNER1*

¹ COMISIÓN NACIONAL DE ENERGÍA ATÓMICA (CNEA), BUENOS AIRES, ARGENTINA

*sebagam@gmail.com

S2P553. INFORMATION CODING IN NEURAL SYNCHRONIZATION

LISANDRO MONTANGIE1*, FERNANDO MONTANI1

¹ IFLYSIB (CONICET - UNLP)

*lisandromontangie@gmail.com

S2P554. THE OPERANT/RESPONDENT DISTINCTION: AN ANALYSIS IN ARTIFICIAL PIRIFORM CORTEX

ENVER ORURO^{1,2,3*}, GRACE PARDO^{1,2,3}, MARIA ELISA CALCAGNOTTO^{2,3}, MARCO IDIART^{3,4}

¹ PROGRAMA DE PÓS-GRADUAÇÃO EM NEUROCIÊNCIAS; ² INSTITUTO DE CIÊNCIAS BÁSICA E SAÚDE; ³ UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL; ⁴ INSTITUTO DE FÍSICA

*envermiguel@gmail.com

INDEX AREAS ::: POSTER SESSION 3

Advocacy and Education	139
Behavior, Neuroethology, Memory and Cognition	139
Chronobiology	146
Development	147
Disorders of the Nervous System	148
Molecular and Cellular Neurobiology	152
Motor Systems	156
Neural Circuit Physiology	157
Neurochemistry and Neuropharmacology	157
Neuroendocrinology and Neuroimmunology	161
Sensory Systems	163
Synaptic Transmission, Excitability and Glia	164
Theoretical and Computational Neuroscience	165

POSTER SESSION 3

October 20, 2016

ADVOCACY AND EDUCATION

S3P555. WITHDRAW

S3P556. ELECTROPHYSIOLOGICAL APPROACHES IN THE STUDY OF COGNITIVE DEVELOPMENT OUTSIDE THE LAB

MARCOS LUIS PIETTO^{1,2*}, JUAN ESTEBAN KAMIENKOWSKI^{2,3}, MATHIAS GATTI², SEBASTIÁN JAVIER LIPINA¹

¹ UNIDAD DE NEUROBIOLOGÍA APLICADA (UNA, CEMIC-CONICET); ² LABORATORIO DE INTELIGENCIA ARTIFICIAL APLICADA (DEPARTAMENTO DE COMPUTACIÓN, FCEYN-UBA, C; ³ DEPARTAMENTO DE FÍSICA (FCEYN-UBA, CONICET)

*marcos.pietto@gmail.com

S3P557. THE TEACHING OF NEUROSCIENCES IN THE PSYCHOLOGY WITH THE USE OF BIOLOGICAL SIGNAL PROCESSORS OF LOW COST

FLAVIO THEODORO SILVA1*, DANIELA BONCI2

¹FMU - FACULDADES METROPOLITANAS UNIDAS;² INSTITUTO DE PSICOLOGIA DA UNIVERSIDADE DE SÃO PAULO

*flavio.theodoro.silva@gmail.com

BEHAVIOR, NEUROETHOLOGY, MEMORY AND COGNITION

S3P558. EFFECTS OF THE ASSOCIATION BETWEEN ETHANOL AND ZOLPIDEM ON THE BEHAVIORAL SENSITIZATION MODEL

NINA ROSA NUNES BRANDÃO¹, THAYNARA SILVA OLIVEIRA¹, ALEXANDRE PEREIRA OLIVEIRA¹, MATHEUS LIBARINO SANTOS¹, VANESSA FERREIRA DE LEMOS¹, KIANNA MATOS MODESTO BRITO¹, ÁUREA LORENA N BORGES¹, ANA CAROLINA LIMA DE BRITO¹, LAÍS FERNANDA BERRO², EDUARDO ARY VILLELA MARINHO¹, ALEXANDRE JUSTO DE OLIVIERA LIMA¹*

¹ UNIVERSIDADE ESTADUAL DE SANTA CRUZ; ² UNIVERSIDADE FEDERAL DE SÃO PAULO

*alelimabiologo@hotmail.com

S3P559. ANXIETY-LIKE BEHAVIOR INDUCED BY FEAR MEMORY RECALL IS DEPENDENT ON THE LABILIZATION PROCESS: INFLUENCE OF ETHANOL DEPENDENCE

VANESA ORTIZ^{1*}, VICTOR MOLINA, IRENE MARTIJENA

¹ IFEC-CONICET/DPTO DE FARMACOLOGÍA, FAC DE CS QCAS, UNC *vaneortiz16@hotmail.com

S3P560. PERINATAL ADMINISTRATION STUDY OF AN AROMATASE INHIBITOR ON THE MATERNAL BEHAVIOR IN WISTAR RATS

ALISSON OSHIRO^{1*}, ELIZABETH TEODOROV¹, CLÁUDIA MADALENA CABRERA MORI², LUCIANO FREITAS FELICIO², MARIA MARTHA BERNARDI^{1,3}

¹UNIVERSIDADE FEDERAL DO ABC - CENTRO DE MATEMÁTICA, COMPUTAÇÃO E COGNIÇÃO; ² UNIVERSIDADE DE SÃO PAULO - DEPARTAMENTO DE PATOLOGIA - FMVZ; ³ UNIVERSIDADE PAULISTA - INSTITUTO DE CIÊNCIAS DA SAÚDE

*alisson.oshiro@ufabc.edu.br

S3P561. WORKING MEMORY IMPAIRMENT IN PRESCHOOL CHILDREN WITH ADHD SYMPTOMS

FELIPE OYARZÚN^{1,2*}, CRISTIAN ROJAS-BARAHONA³.FRANCISCO ABOITIZ^{1,2}

¹DPTO. DE PSIQUIATRÍA, FACULTAD DE MEDICINA, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE; ² CENTRO INTERDISCIPLINARIO DE NEUROCIENCIA, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE; ³ FACULTAD DE EDUCACIÓN, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

*faoyarzun@uc.cl

S3P562. EFFECTS OF CHRONIC SOCIAL ISOLATION ON THE CONSUMPTION OF SUCROSE SOLUTION OF CASTRATED YOUNG RATS

HECTOR PAEZ1,2*, SILVIA BOTELHO1,2

TUNIVERSIDAD PONTIFICIA BOLIVARIANA; ² UNIVERSIDADE FEDERAL DO PARÁ

*hpaez71@gmail.com

S3P563. PRION DISEASE AND ALTERATION OF THE MASTICATORY ACTIVITY ALTER THE EXPLORATION IN THE ELEVATED PLUS MAZE

<u>LUISA PAIXÃO</u>^{1*}, MURILO ROSA¹, AMANDA LUCENA², THAISSA BORRALHO¹, FABIOLA SIQUEIRA MENDES^{1,2}, CRISTOVAM DINIZ¹, MARCIA SOSTHENES¹

¹ UNIVERSIDADE FEDERAL DO PARÁ; ² CENTRO UNIVERSITÁRIO DO ESTADO DO PARÁ

*luisatpaixao@yahoo.com.br

S3P564. PRENATAL STRESS AFFECTS OFFSPRING BEHAVIOUR THROUGH LONG-TERM EPIGENETIC MODIFICATIONS

MARÍA EUGENIA PALLARÉS'1'**, MELISA CAROLINA MONTELEONE^{2**}, VERÓNICA PASTOR¹, MARCELA ADRIANA BROCCO², MARTA CRISTINA ANTONELLI¹ ¹ INSTITUTO DE BIOLOGÍA CELULAR Y NEUROCIENCIAS, PROFESOR E. DE ROBERTIS-IBCN, UBA;² INSTITUTO DE INVESTIGACIONES BIOTECNOLÓGICAS-IIB, UNSAM

** EQUAL CONTRIBUTION *pallamaria@gmail.com

S3P565. SLEEP AFTER SHAPING AN OPERANT BEHAVIOR IN SATED RATS

RICARDO PALMA^{1*}, ADRIÁN OCAMPO-GARCÉS¹, ENNIO VIVALDI¹, JAN BORN², MARION INOSTROZA², MARGARITA BÓROUEZ¹

¹UNIVERSIDAD DE CHILE; ²UNIVERSITY OF TÜBINGEN *rlmpf8@gmail.com

S3P566. PREFERENCIAL AGONISM OF POSTSYNAPTIC 5-HT1A HETERORECEPTOR IMPROVES PERFORMANCE OF AGED RATS IN THE SPATIAL OBJECT PATTERN SEPARATION TASK <u>RAFAEL PAZINATTO AGUIAR</u>^{1*}, LIGIA MENDES SOARES¹, NICK VAN GOETHEM², BRITT VAN HAGEN², JOS PRICKAERTS², RÚBIA WEFFORT DE OLIVEIRA¹

¹DEPARTMENT OF PHARMACOLOGY AND THERAPEUTIC, STATE UNIVERSITY OF MARINGÁ. MARINGÁ, BRAZIL.; ² UNIVERSITY OF MAASTRICHT, DEPARTMENT OF PSYCHIATRY AND NEUROPSYCHOLOGY, MAASTRICHT/ NETHERLANDS

*aguiar.teofilos@gmail.com

S3P567. ACQUISITION AND TRANSFER OF A GEOMETRY LEARNING TASK IN HUMANS OLIVIA PEDRONCINI*, MARI SIGMAN*, ANDREA P. G¹

¹LABORATORIO DE NEUROCIENCIA, UNIVERSIDAD TORCUATO DI TELLA *olipedroncini@gmail.com

S3P568. EFFECTS OF CAFFEINE IN THE CONTENT OF AMYLOID PRECURSOR PROTEIN ON HIPPOCAMPUS AND IN ANIMAL BEHAVIOR: POSSIBLE ROLES IN THE SYNAPTIC STABILIZATION

MARIA CAROLINA PEIXOTO-RODRIGUES^{1*}, PAULA CAMPELLO-COSTA¹

¹UNIVERSIDADE FEDERAL FLUMINENSE

*maria.carolina.pr93@gmail.com

S3P569. VULNERABILITY AND RESISTANCE IN MICE EXPOSED TO A FAMILIAR OR AN AGGRESSIVE CONSPECIFIC

MARION PENAGOS^{1,2,3*}, MARION PENAGOS-GIL^{1,2,3}, ANDERSON CASTAÑEDA³, JAVIER L RICO³, RICARDO LUIZ NUNES-DE-SOUZA^{1,2}

¹ FACULDADE DE CIÊNCIAS FARMACÊUTICAS - UNESP; ² PROGRAMA INTERINSTITUCIONAL DE PÓS-GRADUAÇÃO EM CIÊNCIAS FISIOLÓGICAS -UFSCAR - UNESP; ³ FUNDACIÓN UNIVERSITARIA KONRAD LORENZ

*maryjeyp_04@hotmail.com

S3P570. NEUROECOLOGY OF NOCTILIONIDAE (MAMMALIA, CHIROPTERA): COMPARATIVE STEREOLOGICAL STUDIES OF DENTATE NUCLEUS LUCAS SIQUEIRA¹, PATRICK PEREIRA^{1*}, EDIELY HENRIQUE¹, CRISTOVAM GUERREIRO DINIZ¹, ANDERSON GOMES¹, MAURO MELO¹, CRISTOVAM WANDERLEY PICANÇO DINIZ¹

¹ INSTITUTO FEDERAL DO PARÁ, CAMPUS BRAGANÇA, LABORATÓRIO DE BIOLOGIA MOLECULAR E AMBIENTAL

*patrick@ufpa.br

S3P571. A COMPARATIVE STUDY OF AREA AND VOLUME OF NEURONAL SOMA AND THE HIPPOCAMPAL FORMATION VOLUME BETWEEN TWO SPECIES OF MIGRATORY (CHARADRIUS SEMIPALMATUS) AND NON-MIGRATORY (CHARADRIUS COLLARIS) PLOVERS

<u>PATRICK PEREIRA</u>^{1*}, EDIELY HENRIQUE¹, CRISTOVAM GUERREIRO DINIZ¹, LUCAS SIQUEIRA¹, NARA MAGALHÄES¹, LUCIANO COSTA¹, MAURO MELO¹, CRISTOVAM WANDERLEY PICANÇO DINIZ¹

[†] INSTITUTO FEDERAL DO PARÁ, CAMPUS BRAGANÇA, LABORATÓRIO DE BIOLOGIA MOLECULAR E AMBIENTAL

*patrick@ufpa.br

S3P572. EFFECT OF LESIONS OF THE BASOLATERAL AMYGDALA IN THE PERFORMANCE OF RATS TREATED WITH FLUOXETINE IN AN OPERATIONAL CONDITIONING LEARNING TASK

ARMANDO EZEQUIEL PEREYRA1*, B. SILVANO ZANUTTO1,2

¹ INSTITUTO DE BIOLOGÍA Y MEDICINA EXPERIMENTAL (IBYME-CONICET), VUELTA DE OBLIGADO 2490. CI; ² FACULTAD DE INGENIERÍA. UNIVERSIDAD DE BUENOS AIRES AV. PASEO COLÓN 850. CABA. ARGENTINA *ezeperey@gmail.com

S3P573.WHATCARDIACFREQUENCYTELLSUS ABOUT LIGHT POLARIZATION SENSITIVITY IN NEOHELICE GRANULATA <u>VERONICA PEREZ SCHUSTER</u>^{1*}, MELANIE BASNAK^{1,2}, FEDERICO SEVLEVER³, JULIANA REVES SZEMERE³, GABRIELA HERMITTE^{1,2}, MARTIN BERÓN DE ASTRADA^{1,2}

¹ DEPARTAMENTO FISIOLOGÍA, BIOLOGÍA MOLECULAR Y CELULAR, FCEYN, UBA; ² IFIBYNE-CONICET; ³ DEPARTAMENTO DE FÍSICA, FCEYN, UBA AND IFIBA-CONICET

*verops@gmail.com

S3P574. JAMMING AVOIDANCE RESPONSE DURING AGONISTIC BEHAVIOR IN TWO SPECIES OF WEAKLY ELECTRIC FISH

ROSSANA PERRONE^{1*}, FEDERICO PEDRAJA²

INSTITUTO DE INVESTIGACIONES BIOLÓGICAS CLEMENTE ESTABLE, MONTEVIDEO, URUGUAY; ² BIELEFELD UNIVERSITY, FACULTY OF BIOLOGY & CITEC, AG ACTIVE SENSING, BIELEFELD, GERMANY

*rossanaperrone@gmail.com

S3P575. ANXIETY AND RISK ASSESSMENT RESPONSES IN THE STREPTOZOTOCIN-INDUCED NEURODEGENERATION RAT MODEL

GABRIELLE PFUTZENREUTER^{1*}, CYRO ABALEM², AMMIR YACOUB², FRANCYNE MACHADO², GIORGEA ALMEIDA², HENRIQUE GULIN², JÉSSICA CAVALLIM², HINGRID UTIDA², JEFFERSON AUGUSTINHO², RODRIGO NITSCH², JOANA CORBELLINI², JAQUELINE PIANARO², ANGELA ZANIN², KENNY NIERADKA¹, MÁRCIA R. PINCERATI¹, ILTON S. DA SILVA¹

¹ PROGRAMA DE MESTRADO EM BIOTECNOLOGIA INDUSTRIAL -UNIVERSIDADE POSITIVO, BRASIL; ² PROGRAMA DE INICIAÇÃO CIENTÍFICA - UNIVERSIDADE POSITIVO, BRASIL

S3P576. THE CONTRIBUTION OF NEUROGENESIS TO HIPPOCAMPAL NETWORK COMPUTATIONS AND DENTATE DEPENDENT BEHAVIOR

<u>VERÓNICA PIATTI</u>^{1*}, LAURA EWELL¹, ANNA LENA SCHLENNER¹, YU LING AN¹, HEATHER CAMERON³, STEFAN LEUTGEB^{1,4}, JILL LEUTGEB¹

¹ NEUROBIOLOGY SECTION AND CENTER FOR NEURAL CIRCUITS AND BEHAVIOR, U.C.S.D., U.S.A.; ² LELOIR INSTITUTE FOUNDATION, IIBBA - CONICET, BUENOS AIRES, ARGENTINA.; ³ SECTION ON NEUROPLASTICITY, NATIONAL INSTITUTE OF MENTAL HEALTH, BETHESDA, M.D., U.S.A.; ⁴ KAVLI INSTITUTE FOR BRAIN AND MIND, U.C.S.D., U.S.A.

S3P577. FEAR CONDITIONING AND ANXIETY IN HUMANS: HOW COULD THE COGNITIVE-BEHAVIORAL SYSTEMS BE AFFECTED

<u>Soledad Picco</u>1*, rodrigo s fernández, maria e Pedreira

S3P578. PARTICIPATION OF BEHAVIORS OTHER THAN LOCOMOTION IN THE DEVELOPMENT AND EXPRESSION OF BEHAVIORAL SENSITIZATION EVOKED BY TWO SUBANESTHETIC DOSES OF KETAMINE

<u>JEFFERSON PIRES GALVANHO</u>1*, ANA CRISTINA CHAGAS CARVALHO-SILVA¹, JOYCE MELO-SILVA¹, CLAUDIO CARNEIRO FILGUEIRAS¹, ALEX CHRISTIAN MANHÃES¹, YAEL ABREU-VILLACA¹

¹ UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO, IBRAG, D. DE CIÊNCIAS FISIOLÓGICAS, RJ, BRASIL

S3P579. MICROSACCADES GROUPING REVEALS OBJECT SEGMENTATION DURING FREE VIEWING OF NATURAL SCENES

IVAN PLAZA^{1,2*}, SAMUEL MADARIAGA¹, PEDRO MALDONADO¹

[†] PROGRAMA DE FISIOLOGÍA Y BIOFÍSICA (ICBM), Y BIOMEDICAL NEUROSCIENCE INSTITUTE. FACULTAD D; [‡] DEPARTAMENTO DE TECNOLOGÍA MÉDICA, FACULTAD DE MEDICINA, UNIVERSIDAD DE CHILE SANTIAGO, CH ^{*}ivanplazar@gmail.com

S3P580. THE DYNAMIC NATURE OF SYSTEMS CONSOLIDATION: STRESS DURING LEARNING AS A SWITCH GUIDING THE RATE OF THE HIPPOCAMPAL DEPENDENCY AND MEMORY QUALITY BRUNO POPIK', LIZETH PEDRAZA', RODRIGO SIERRA', FLÁVIA BOOS', JORGE QUILLFELDT', LUCAS DE OLIVEIRA ALVARES'

S3P581. BEHAVIORAL ALTERATIONS IN LEISHMANIA AMAZONENSIS-INFECTED MICE ALEX PORTES^{1*}, PABLO PANDOLFO^{1,4}, ARNALDO DE SÁ GERALDO^{1,4}, ELIZABETH GIESTAL ARAUJO^{1,5}, MARIE LUCE FLORES LIRA^{1,2}, VERONICA AMARAL^{1,2}, JUSSARA LAGROTACANDIDO^{1,2}

¹ UFF- FLUMINENSE FEDERAL UNIVERSITY, RIO DE JANEIRO, BRAZIL; ² LABORATORY OF IMMUNOPATHOLOGY AND IMMUNOPARASITOLOGY, DEPARTMENT OF IMMUNOBIOLOGY; ³ GRADUATE PROGRAM IN NEUROLOGY AND NEUROSCIENCES; ⁴ NEUROBIOLOGY LABORATORY OF ANIMAL BEHAVIOR, DEPARTMENT OF NEUROBIOLOGY; ⁵ TISSUE CULTURE LABORATORY HERTHA MEYER, DEPARTMENT OF NEUROBIOLOGY *MDVPORTES@GMAIL.COM

S3P582. STROOP AND STOP SIGNAL INTERFERENCES — ELABORATION OF A PROTOCOL TO EVALUATE EXECUTIVE FUNCTIONS

ANNA CAROLINA PORTUGAL^{1*}, ARMANDO AFFONSO¹, WAYSON MATURANA¹, JULIANE SCHUENCK¹, ARIANE CALDAS¹. WALTER MACHADO-PINHEIRO¹

¹ UNIVERSIDADE FEDERAL FLUMINENSE *anninha.uff@gmail.com

S3P583. EFFECTS OF SCOPOLAMINE AND PROPRANOLOL ON A TREATMENT THAT FACILITATES RECOVERY FROM FRUSTRATION

MARIANA PSYRDELLIS^{1*}, RICARDO PAUTASSI², NADIA JUSTEL¹

¹ LABORATORIO DE PSICOLOGÍA EXPERIMENTAL Y APLICADA (PSEA)
INSTITUTO DE INVESTIGACIONES MÉDI; ² INSTITUTO DE INVESTIGACIÓN
MÉDICA M. Y M. FERREYRA (INIMEC) CONICET-UNC, CÓRDOBA, ARGENTIN
*marianapsyrdellis@hotmail.com

S3P584. CONTEXTUAL CONDITIONED TOLERANCE TO THE SEDATIVE EFFECTS OF KETAMINE IN RATS GLEICE KELLI RIBEIRO DA SILVA CARDOSO^{1,2,3*}, MANOEL JORGE NOBRE^{1,3,4}

¹ FFCLRP - USP, RIBEIRÃO PRETO, BRASIL; ² SBNEC, BRASIL; ³ INEC, RIBEIRÃO PRETO, BRASIL; ⁴ UNI - FACEF, FRANCA, BRASIL

^{*}gabrielleoy@gmail.com

^{*}vpiatti@leloir.org.ar

¹LABORATORIO DE NEUROBIOLOGÍA DE LA MEMORIA, IFIBYNE-CONICET UBA *solepicco@hotmail.com

^{*}jfgalvanho@yahoo.com.br

¹ FEDERAL UNIVERSITY OF RIO GRANDE DO SUL *popik8@hotmail.com

^{*}cardoso.gkrs@usp.br

S3P585. ANDROGRAPHOLIDE RECOVERS COGNITIVE IMPAIRMENT IN A NATURAL MODEL OF ALZHEIMER'S DISEASE (OCTODON DEGUS)

<u>DANIELA RIVERA</u>^{1,2*}, CAROLINA LINDSAY², FRANCISCO BOZINOVIC¹, NIBALDO INESTROSA²

¹ DEPARTAMENTO DE ECOLOGÍA AND CENTER OF APPLIED ECOLOGY AND SUSTAINABILITY (CAPES); ² CENTRO DE ENVEJECIMIENTO Y REGENERACIÓN (CARE LIC)

*fondapni@bio.puc.cl

S3P586. SEX DIFFERENCES IN HUMAN EPISODIC MEMORY RECONSOLIDATION: EVIDENCE FROM A RANDOMIZED TEST CONTEXT

ANA PAULA ROCCO^{1*}, MARCELO PIÑEYRO, MATIAS ALFONSO, MARIA EMILIA RAMÉ, ADRIAN MARCELO BUENO, ROQUE IGNACIO FERRER MONTI

¹ LABORATORIO DE PSICOLOGÍA EXPERIMENTAL, FACULTAD DE PSICOLOGÍA, UNC

*r.ferrermonti@gmail.com

S3P587. REDUCED BRAIN VOLUME ASSOCIATED TO PERITRAUMATIC TONIC IMMOBILITY IN VICTIMS OF URBAN VIOLENCE WITH POSTTRAUMATIC STRESS DISORDER

<u>VANESSA ROCHA-REGO</u>^{1,2*}, CAMILA FRANKLIN¹, ADRIANA HERZ¹, IVAN FIGUEIRA¹, ELIANE VOLCHAN¹

¹ FEDERAL UNIVERSITY OF RIO DE JANEIRO; ² UNIVERSIDADE VEIGA DE ALMEIDA

*rochavr@biof.ufri.br

S3P588. REDUCED GRAY MATTER VOLUME IS ASSOCIATED TO PERITRAUMATIC TONIC IMMOBILITY IN VICTIMS OF URBAN VIOLENCE WITH POSTTRAUMATIC STRESS DISORDER

<u>VANESSA ROCHA-REGO</u>1*, CAMILA FRANKLIN¹, ADRIANA HERZ¹, IVAN FIGUEIRA¹, ELAINE VOLCHAN¹

[†] FEDERAL UNIVERSITY OF RIO DE JANEIRO *rochavr@biof.ufrj.br

S3P589. ENHANCING SOCIABILITY AND REDUCING ISOLATION: THE EFFECTS OF TEXT AND PICTURE BONDING PRIMES

PAULA O. RODRIGUES^{1*}, GABRIELA G.L. SOUZA¹, AMAZILES GONÇALVES¹, CÁSSIA R.V. ARAUJO¹, RAFAELA F. MENDES¹, IZABELA MOCAIBER², RAFAELA RAMOS CAMPAGNOLI³, VANESSA ROCHA REGO³, ELIANE VOLCHAN³

¹ DEPARTMENT OF BIOLOGICAL SCIENCES, FEDERAL UNIVERSITY OF OURO PRETO, OURO PRETO, MG, BRAZI; ² DEPARTMENT OF NATURAL SCIENCES, FEDERAL FLUMINENSE UNIVERSITY, RJ, BRAZIL; ³ INSTITUTE OF BIOPHYSICS CARLOS CHAGAS FILHO, FEDERAL UNIVERSITY OF RIO DE JANEIRO, BRAZIL ^{*}paulaohanarodrigues@yahoo.com.br

S3P590. NICOTINE CHRONIC TREATMENT EFFECTS ON MOTOR PERFORMANCE AND SHORT TERM MEMORY INTHE MURINE MODEL OF PARKINSONISM INDUCED BY 6-OHDA

ANGELA RODRIGUEZ MUÑOZ^{1*}, MARTHA LILIANA MEDINA SOLANO^{2,3}, FABIO HURTADO ⁴, JUAN PABLO QUINTANILLA ⁵, VICTOR HUERTA ⁵, FERNANDO CARDENAS³

¹ UNIVERSIDAD NACIONAL DE COLOMBIA; ² UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA; ³ UNIVERSIDAD DE LOS ANDES COLOMBIA; ⁴ UNIVERSIDAD EL BOSQUE; ⁵ UNIVERSIDAD CATÓLICA SAN PABLO

*anmrodriguezmu@unal.edu.co

S3P591. INTRACEREBROVENTRICULAR OUABAIN MODEL OF STATUS EPILEPTICUS: MIMICKING COMPONENTS OF DYSMETABOLIC SYMPTOMATIC SEIZURES

ITALO ROSAL LUSTOSA1*, LUCAS TEIXEIRA NUNES BORGES, TALITA MATIAS BARBOSA, FRANCISCO THIAGO GUEDES HOLANDA, REGILANE CORDEIRO DOS SANTOS, MANUEL ALVES DOS SANTOS JÚNIOR, GERMANA SILVA VASCONCELOS¹, CAMILA NAYANE DE CARVALHO LIMA¹, NAIARA COELHO XIEMENES¹, INGRIDY DA SILVA MEDEIROS¹, MÉRCIA MARQUES JUCÁ¹

¹ FEDERAL UNIVERSITY OF CEARÁ, PHYSIOLOGY AND PHARMACOLOGY DEPARTMENT

*italo.rosal@gmail.com

S3P592. IN SEARCH FOR THE BEST PARAMETERS FOR OPTIMAL PAIN CONTROL BY DBS OF THE LATERAL HABENULA IN RATS

NATALIA GUISSELL RUBIO^{1*}, MARIA LAURA HERRERA¹, JUAN PABLO QUINTANILLA², VICTOR HUERTA², FERNANDO CARDENAS². MARIO VALDERRAMA¹

¹DEPARTAMENTO DE INGENIERÍA BIOMÉDICA, UNIVERSIDAD DE LOS ANDES, COLOMBIA; ² LABORATORIO DE NEUROCIENCIAS Y COMPORTAMIENTO, UNIVERSIDAD DE LOS ANDES, COLOMBIA

*ng.rubio746@uniandes.edu.co

S3P593. NEURONAL CIRCUITS RESPONSIBLE OF TEMPORAL MAINTENANCE OF AVERSIVE MEMORIES

TOMÁS SACHELLA1*, JOAQUÍN PÍRIZ1

¹ IFIBIO HOUSSAY, DEPTO. DE FISIOLOGÍA, FACULTAD DE MEDICINA (UBA-CONICET). ARGENTINA

*te.sachella@outlook.com

S3P594. AGING RELATED MEMORY, ANXIETY AND NEUROTRANSMITTERS DEFICITS IN RATS

THAÍSA SANDINI^{1*}, THIAGO MARINHO REIS SILVA², NATALIA MOREIRA³, ADRIANO BRITTO CHAVES-FILHO⁴, SAYURI MIYAMOTO⁴, JORGE CAMILO FLORIO^{3,4}, IVO LEBRUN⁴, HELENICE SPINOSA DE SOUZA³

¹ DEPARTMENT OF CLINICAL AND TOXICOLOGICAL ANALYSES - FACULTY OF PHARMACEUTICAL SCIENCES; 2 DEPARTMENT OF NEUROSCIENCE, INSTITUTE OF PSHYCOLOGY, UNIVERSITY OF SÃO PAULO: 3 DEPARTMENT OF PATHOLOGY - SCHOOL OF VETERINARY MEDICINE - UNIVERSITY OF SÃO PAULO: 4 DEPARTMENT OF BIOCHEMISTRY - INSTITUTE OF CHEMISTRY -UNIVERSITY OF SÃO PAULO

*thaisasandini@gmail.com

S3P595. BEING A WINNER DOESN'T ALWAYS PAY: MEMORY IMPAIRMENT AFTER WINNING A FIGHT IN THE CRAB NEOHELICE GRANULATA

MARÍA JIMENA SANTOS1*, LAURA KACZER1, MARÍA EUGENIA PEDREIRA1

1 LABORATORIO DE NEUROBIOLOGÍA DE LA MEMORIA-IFIBYNE-UBA-CONICET

*jimenasantos23@gmail.com

TORTEROLO¹

S3P596. ACUTE EFFECT OF COCA-PASTE ON SLEEP AND FFG ACTIVITY: ROLF OF CAFFFINE NATALIA SCHWARZKOPF1*, MATIAS CAVELLI1, PATRICIA LAGOS¹, ATILIO FALCONI, 1 CECILIA SCORZA², PABLO

¹ FACULTAD DE MEDICINA; ² INSTITUTO CLEMENTE ESTABLE *prettyplundy@hotmail.com

S3P597. HIPPOCAMPAL **ENDOCANNABINOID** SYSTEM: EFFECTS OF AM404 UPON CONSOLIDATION AND RETRIEVAL OF AVERSIVE MEMORIES AND ON LTP INDUCTION

KRISLEI SCIENZA MARTIN^{1,2*}, KRISLEI SCIENZA MARTIN, QUERUSCHE ZANONA^{1,2}, FABIANA SANTANA^{1,2}, FERNANDA ALVES², ANA PAULA CRESTANI^{1,2}, FLÁVIA BOOS^{1,2}, RODRIGO SIERRA^{1,2}, JOSUÉ HAUBRICH^{1,2}, MARIA ELISA CALCAGNOTTO¹, JORGE OUILLFELDT^{1,2}

¹ PROGRAMA DE PÓS-GRADUAÇÃO EM NEUROCIÊNCIAS - UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL; ² LABORATÓRIO DE PSICOBIOLOGIA E **NEUROCOMPUTAÇÃO**

*krisleiscienza@hotmail.com

S3P598. ANTAGONISM OF DORSAL HIPPOCAMPUS CANNABINOID TYPE-2 RECEPTORS IMPAIR THE CONSOLIDATION OF A CONTEXTUAL FEAR MEMORY

RAFAEL SCOZ SILVA1*, LEANDRO J. BERTOGLIO1

¹ FEDERAL UNIVERSITY OF SANTA CATARINA

*rafascoz@gmail.com

S3P599. THE EFFECTS OF THE ATYPICAL ANTIPYSYCHOTIC CLOZAPINE ON THE ATTENTIONAL DEFICITS INDUCED BY THE DISSOCIATIVE ANESTHETIC KETAMINE IN FEMALE RATS RENATA FERREIRA SGOBBI^{1*}, MANOEL JORGE NOBRE¹

¹UNIVERSIDADE DE SAO PAULO - RIBEIRÃO PRETO *renata.ferr@yahoo.com.br

S3P600. MEDIAN RAPHE NUCLEUS INJECTION OF PRAZOSIN INCREASES FOOD INTAKE AND FOS EXPRESSION IN OREXIN NEURONS

EDUARDO SILVA1*, RAFAEL FLORES2, ANDERSON RIBAS2, ANA TASCHETTO², LEANDRO LIMA³, MARTIN METZGER³, JOSÉ DONATO JR3, MARTA PASCHOALINI2

¹ UNIVERSIDADE REGIONAL DE BLUMENAU: ² UNIVERSIDADE FEDERAL DE SANTA CATARINA: 3 UNIVERSIDADE DE SÃO PAULO

*edu simao@yahoo.com.br

S3P601. BONDING PICTURES: AFFECTIVE RATINGS ASSOCIATED TO EMPATHY AND LONELINESS

HERALDO DIONES SILVA1*, GABRIELA GUERRA LEAL SOUZA1, BRUNA EUGÊNIA FERREIRA MOTA¹. RAFAELA RAMOS CAMPAGNOLI², CÁSSIA REGINA VIEIRA ARAÚJO¹, IZABELA MOCAIBER3, VANESSA ROCHA REGO2, ELIANE VOLCHAN2

¹ DEPARTMENT OF BIOLOGICAL SCIENCES, FEDERAL UNIVERSITY OF OURO PRETO, MG, BR:2 INSTITUTE OF BIOPHYSICS CARLOS CHAGAS FILHO, FEDERAL UNIVERSITY OF RIO DE JANEIRO, RJ - BR; 3 INSTITUTE OF HUMANITIES AND HEALTH, FEDERAL FLUMINENSE UNIVERSITY, RIO DAS OSTRAS, RJ, BR *heraldo.diones@hotmail.com

S3P602. PHARMACOLOGICAL VALIDATION OF THE PLUS-MAZE WITH RAMP FOR ZEBRAFISH (DANIO RERIO) - PRELIMINARY RESULTS

ANA CLÁUDIA COSTA DE CARVALHO¹, YARA SILVA¹*, ÉRICA SANCHES¹, RODRIGO PESSOA¹, AMAURI GOUVEIA JR¹, ANDRÉ WALSH-MONTEIRO1

¹INSTITUTO FEDERAL DO PARÁ, CAMPUS TUCURUÍ, PARÁ, BRAZIL *cris176.silva@gmail.com

S3P603. FISETIN PROTECTED NEURONAL DEMAGE AND IMPROVE MEMORY IN MICE'S STROKE ANA THAIS SILVA1*, KELLY NEVES1, JULIANA FERNANDES1, ANALU FONTELES¹, ANA PAULA MENDONÇA¹, GEANNE MATOS1

¹ FEDERAL UNIVERSITY OF CEARÁ *tais20005@gmail.com

S3P604. ROLE OF ECLOSION HORMONE IN D. **MELANOGASTER ECDYSIS**

VALERIA SILVA MOELLER1*, JAVIER ALVAREZ1, RUBEN HERZOG¹, JOHN EWER¹

¹ CENTRO INTERDISCIPLINARIO DE NEUROCIENCIA, UNIVERSIDAD DE VALPARAISO, VALPARAISO CHILE

*valesilvamo@gmail.com

S3P605. VALPROIC ACID DECREASES PLACE CONTIDIONED PREFERENCE INDUCED BY ETHANOL IN MICE: IS IT RELATED WITH BDNF LEVELS IN VENTRAL STRIATUM?

GERMANA SILVA VASCONCELOS^{1*}, MANUEL ALVES DOS SANTOS JÚNIOR¹, NATÁLIA CASTELO BRANCO MATOS¹, CAREN NÁDIA SOARES SOUSA¹, INGRID SILVA MEDEIROS¹, JOSÉ EDUARDO RIBEIRO HONÓRIO JR¹, ITALO ROSAL LUSTOSA¹, DANIELLE MACÊDO GASPAR¹, SILVÂNIA MARIA MENDES VASCONCELOS¹

[†] FEDERAL UNIVERSITY OF CEARA *germana_vasconcelos@yahoo.com.br

S3P606. EVALUATION OF ANTIPSYCHOTIC EFFECT OF ERYTHRINA VELUTINA ETHANOL EXTRACT IN A MODEL OF SCHIZOPHRENIA INDUCED BY KETAMINE IN MICE

GERMANA SILVA VASCONCELOS¹*, NAIARA COELHO XIEMENES¹, MANUEL ALVES DOS SANTOS JÚNIOR¹, NATÁLIA CASTELO BRANCO MATOS¹, PEDRO LUCAS DE SOUZA BARROSO¹, KATIA CILENE FERREIRA MATOS¹, TATIANA DE QUEIROZ OLIVEIRA¹, CHARLIENE FREIRE XAVIER VIEIRA¹, SILVÂNIA MARIA MENDES VASCONCELOS¹

¹ FEDERAL UNIVERSITY OF CEARA *germana_vasconcelos@yahoo.com.br

S3P607. ENVIRONMENTAL IMPOVERISHMENT EARLY IN LIFE IS ASSOCIATED WITH ABNORMAL COGNITIVE DEVELOPMENT IN ALBINO SWISS MICE FABIOLA SIQUEIRA MENDES^{1,2*}, MURILO ROSA¹, LUISA PAIXAO¹, MARCOS PAULO SOUSA¹, EMANUELLE PANTOJA¹, AMANDA LUCENA¹, CRISTOVAM DINIZ¹, MARCIA SOSTHENES¹ UNIVERSIDADE FEDERAL DO PARÁ; ² CENTRO UNIVERSITÁRIO DO ESTADO DO PARÁ

*faesdam@yahoo.com.br

S3P608. ANXIOLYTIC-LIKE EFFECT FROM QUERCETINE IN EXPERIMENTAL MICE MODELS CAREN NÁDIA SOARES DE SOUSA^{1*}, DARA DA SILVA MESQUITA², JESSICA RODRIGUES DE MORAES BARRIGA², MÉRCIA MARQUES JUCÁ¹, KATIA CILENE FERREIRA DIAS¹, JOSÉ EDUARDO RIBEIRO HONÓRIO JÚNIOR¹, SILVANIA MARIA MENDES VASCONCELOS¹

¹ NEUROPSYCHOPHARMACOLOGY LABORATORY, FEDERAL UNIVERSITY OF CEARÁ; ² UNIVERSITY CENTER CHRISTUS UNICHRISTUS, FORTALEZA, CEARÁ, BRAZIL

*carensoarez@yahoo.com.br

S3P609. CHEMICAL INACTIVATION OF THE AMYGDALA ATTENUATES DEFENSIVE BEHAVIORS IN MICE EXPOSED TO AN OPEN ELEVATED PLUSMAZE

TATIANI SORREGOTTI^{1*}, ANA CLÁUDIA CIPRIANO¹, RICARDO LUIZ NUNES-DE-SOUZA¹

¹JOINT GRADUATE PROGRAM IN PHYSIOLOGICAL SCIENCES UFSCAR/UNESP; ² LAB. PHARMACOLOGY, SCHOOL OF PHARMACEUTICAL SCIENCES, UNIV. ESTADUAL PAULISTA, UNESP

*tatisorregotti@gmail.com

S3P610. DURATION OF MASTICATORY DEPRIVATION INFLUENCES SPATIAL MEMORY IMPAIRMENT AND MASTICATORY REHABILITATION SEEMS TO RECOVER

MARCIA SOSTHENES^{1*}, MURILO ROSA¹, AMANDA LUCENA^{1,2}, ANNA CEZNE^{1,2}, LUISA PAIXÃO¹, THAÍSSA BORRALHO¹, FABÍOLA SIQUEIRA MENDES^{1,2}, CRISTOVAM DINIZ¹

¹ LABORATÓRIO DE INVESTIGAÇÃO EM NEURODEGENERAÇÃO E INFECÇÃO, ICB-HUJBB/UNIVERSIDADE FEDERAL DO PARÁ, BELÉM, PARÁ/BRASIL; ² CURSO DE MEDICINA, CENTRO UNIVERSITÁRIO DO ESTADO DO PARÁ, BELÉM, PARÁ/BRASIL

*makronka@gmail.com

S3P611. THE EFFECT OF CANNABIDIOL IN FEAR MEMORY CONSOLIDATION AND GENERALIZATION CRISTINA STERN^{1*}, THIAGO DA SILVA¹, CAMILA PASQUINI¹, LUIZA KATO¹, LEANDRO BERTOGLIO², ROBERTO ANDREATINI¹, REINALDO TAKAHASHI²

DEPARTMENT OF PHARMACOLOGY, FEDERAL UNIVERSITY OF PARANÁ;
DEPARTMENT OF PHARMACOLOGY, FEDERAL UNIVERSITY OF SANTA
CATARINA*crisstern@yahoo.com.br

S3P612. TRAINING INTENSITY DURING SEQUENTIAL CONTEXTUAL FEAR CONDITIONING MODIFY THE RATE OF SYSTEMS CONSOLIDATION AND MEMORY QUALITY: IMPLICATIONS FOR CONSOLIDATION OF MULTIPLE MEMORY TRACES KAMILLA TORQUATO'', LIZETH PEDRAZA', RODRIGO SIERRA', ANA CRESTANI', JORGE QUILLFELDT', LUCAS DE OLIVEIRA ALVARES'

¹ FEDERAL UNIVERSITY OF RIO GRANDE DO SUL *kitpsico@gmail.com

S3P613. MATERNAL SWIMMING IN ADHD MODEL RATS AS AN ALTERNATIVE OF OFFSPRINGS NEUROPROTECTION

<u>ANDRÉA TOSTA</u>^{1*}, EDUARDO SANCHES^{2,3}, CAREN BERNARDI⁴, CARLOS ALBERTO GONCALVES²

¹ UNIVERSIDADE FEDERAL DE MINAS GERAIS;² UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL; ³ UNIVERSITÉ DE GENÈVE; ⁴ UNIVERSIDADE FEDERAL DE CIÊNCIAS DA SAÚDE DE PORTO ALEGRE

*tosta.andrea@gmail.com

S3P614. ENVIRONMENTAL ENRICHMENT INCREASES HAMSTER (MESOCRICETUS AURATUS)

NATURAL PREFERENCE BY ENCLOSED SPACES

THAIS PANTOJA TRINDADE^{1,2,3*}, MARCO AURÉLIO SALES DA VEIGA¹, TAIANY NOGUEIRA FERNANDES⁴, TAYANE PRISCILA DA LUZ TAVARES⁴, CARLOS NEANDRO CORDEIRO LIMA⁴, ISABELLA NOGUEIRA ABREU⁵, PAULO FAGNER MELO SILVA¹, DANIEL GUERREIRO DINIZ^{1,3}, CRISTOVAM WANDERLEY PICANCO DINIZ^{1,3}

¹ UNIVERSIDADE FEDERAL DO PARÁ, BELÉM, PARÁ, BRASIL; ² HOSPITAL UNIVERSITÁRIO JOÃO DE BARROS BARRETO, BELÉM, PARÁ, BRASIL; ³ LABORATÓRIO DE NEURODEGENERAÇÃO E INFECÇÃO, BELÉM, PARÁ, BRASIL; ⁴ UNIVERSIDADE DA AMAZÔNIA, FACULDADE DE BIOLOGIA; ⁵ ESCOLA SUPERIOR DA AMAZÔNIA, FACULDADE DE BIOMEDICINA

*thais.pantoja@hotmail.com

S3P615. ENRICHED ENVIRONMENT ENHANCES RECOGNITION OF OBJECT PLACEMENT AND IDENTITY IN THE SYRIAN GOLDEN HAMSTER (MESOCRICETUS AURATUS)

THAIS PANTOJA TRINDADE^{1*}, DANILO MARINHO PEREIRA¹, HELENA PEREIRA ALMEIDA¹, SÉRGIO AUGUSTO ANTUNES RAMOS², WAINNA RENATA BARROSO MENDES¹, ALLAN KAIO ANDRADE HAGE², JARDEL FÁBIO LOPES FERREIRA⁴, DANIEL GUERREIRO DINIZ^{1,3}, CRISTOVAM WANDERLEY PICANÇO DINIZ^{1,3}

¹ UNIVERSIDADE FEDERAL DO PARÁ, BELÉM, PARÁ, BRASIL; ² UNIVERSIDADE DA AMAZÔNIA, FACULDADE DE BIOLOGIA; ³ LABORATÓRIO DE NEURODEGENERAÇÃO E INFECÇÃO, BELÉM, PARÁ, BRASIL; ⁴ ESCOLA SUPERIOR DA AMAZÔNIA, FACULDADE DE BIOMEDICINA

*thais.pantoja@hotmail.com

S3P616. THALAMIC NUCLEUS REUNIENS PARTICIPATES IN FEAR MEMORY CONSOLIDATION REGULATING ITS SPECIFICITY AND PERSISTENCE **FERNANDA TROYNER**^{1*}, **LEANDRO BERTOGLIO**¹

¹ FEDERAL UNIVERSITY OF SANTA CATARINA *ftroyner@gmail.com

S3P617. FEMALES' SEXUAL STATUS MODULATION OF MALE BEHAVIOR UNDER VISUAL OR CHEMICAL STIMULI IN DANIO RERIO (ZEBRAFISH)

<u>PAULA VALCHI</u>1*, LUCIANO CAVALLINO¹, LEONEL MORANDINI¹2, MATIAS PANDOLFI¹2

¹ LABORATORIO DE NEUROENDOCRINOLOGÍA Y COMPORTAMIENTO, DBBE, FCEYN, UBA; ² IBBEA-CONICET, FCEYN, UBA *pauvalchi@qmail.com

S3P618. PREDICTING UPCOMING EVENTS OCCURRING IN THE SPACE SURROUNDING THE HAND

CLAUDIA D. VARGAS^{1,2*}, MARIA LUIZA SALES RANGEL^{1,2}, LIDIANE SOUZA^{1,2}, JOSE MAGALHAES DE OLIVEIRA¹, ERIKA C. RODRIGUES³

¹ LABORATÓRIO DE NEUROBIOLOGIA II, INSTITUTO BIOFÍSICA CARLOS

CHAGAS FILHO, UFRJ:

² NÚCLEO DE PESQUISA EM NEUROCIÊNCIAS E REABILITAÇÃO, INSTITUTO DE NEUROLOGIA DEOLINDO COUTO; ³ PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA REABILITAÇÃO, CENTRO UNIVERSITÁRIO AUGUSTO MOTTA *Claudiadvargas@qmail.com

S3P619. AGE-ASSOCIATED MEMORY DEFICIT AND ALZHEIMER-LIKE PATHOLOGY IN A GENETIC RAT MODEL OF EPILEPSY

ISRAEL VASCONCELOS¹²*, MARILIA PEREIRA², JOSE ANTONIO OLIVEIRA², VICTOR SANTOS², RODRIGO MAZZEI³, RENATA PINI³, MILENA BARCELOS⁴, PAULO LOUZADA⁴, SEBASTIÃO ALMEIDA³, ARTUR FERNANDES², ADRIANO SEBOLLELA¹, NORBERTO GARCIA-CAIRASCO²

¹ DEPT. BIOCHEMISTRY AND IMMUNOLOGY, RIBEIRÃO PRETO MEDICAL SCHOOL, UNIVERSITY OF SÃO PAULO; ² DEPT. PHYSIOLOGY, RIBEIRÃO PRETO MEDICAL SCHOOL, UNIVERSITY OF SÃO PAULO; ³ FACULTY OF PHILOSOPHY, SCIENCES AND LETTERS OF RIBEIRÃO PRETO, UNIVERSITY OF SÃO PAULO; ⁴ FEDERAL UNIVERSITY OF RIO DE JANEIRO

*israelvasconcelosc@hotmail.com

S3P620. HYPOTHERMIA AS A NEUROPROTECTIVE AGENTTO MITIGATE SPATIAL MEMORY IMPAIRMENT CAUSED BY NEONATAL ANOXIA

<u>VICTOR DANIEL VASQUEZ MATSUDA</u>1*, ALINE VILAR MACHADO-NILS¹, GILBERTO XAVIER²

¹ BIOSCIENCE INSTITUTE, UNIVERSITY OF SAO PAULO; ² UNIVERSITY OF SAO PAULO

*victorgb2009@gmail.com

S3P621. BEHAVIORAL EFFECTS OF HIGH FREQUENCY AUDITORY STIMULATION IN WISTAR RATS ARE SHAPED BY STRESS HISTORY MARÍA MARCELA VELÁSQUEZ TOLEDO^{1,2*}, KAREN CORREDOR¹.

MARÍA MARCELA VELÁSQUEZ TOLEDO^{1,2*}, KAREN CORREDOR¹ MARÍA CLAUDIA LATTIG², FERNANDO CÁRDENAS¹

¹ LABORATORIO DE NEUROCIENCIA Y COMPORTAMIENTO; ² CENTRO DE INVESTIGACIONES GENÉTICAS EN ENFERMEDADES HUMANAS

*mm.velasguez@uniandes.edu.co

S3P622. EXPERIMENTAL NEONATAL SEPSIS INCREASES THE RISK OF SCHIZOPHRENIA-LIKE BEHAVIOUR IN ADULTHOOD

<u>LETÍCIA VENTURA</u>1*, VIVIANE FREIBERGER¹, LILIAN L. FAUSTO¹, JOÃO QUEVEDO², SUDHAKAR SELVARAJ³, FELIPE DAL-PIZZOL², TATIANA BARICHELLO², CLARISSA M. COMIM¹

¹UNIVERSIDADE DO SUL DE SANTA CATARINA; ²UNIVERSIDADE DO EXTREMO SUL CATARINENSE

*leeticia.ventura@gmail.com

S3P623. TIME, AGEING PROCESS AND DEAD RAMIRO VERGARA^{1*}

¹ FUNDACION CIENCIA Y TECNOLOGIA, DIRECTOR CIENTIFICO *ramiro.m.vergara@gmail.com **S3P624.** TO BE PROPERLY LOCATED ONE RESPECT TO EACH OTHER: MOMENTOUS PROPERTY OF NEURAL CELLS

RAMIRO VERGARA1*,

¹ FUNDACION CIENCIA Y TECNOLOGIA, DIRECTOR CIENTIFICO *ramiro.m.vergara@gmail.com

S3P625. REPEATED ADMINISTRATION OF CANNABIDIOL IN TRAUMA-EXPOSED RATS PREVENTS SUBSEQUENT SENSITIZATION AND IMPAIRED EXTINCTION OF CONDITIONED FEAR CARLA VILA-VERDE^{1*}, SABRINA FRANCESCA LISBOA¹, DANIELA LESCANO ULIANA¹, LEONARDO BARBOSA MORAES RESSTEL¹, FRANCISCO SILVEIRA GUIMARÃES¹

¹ DEPARTMENT OF PHARMACOLOGY, MEDICINE SCHOOL OF RIBEIRÃO PRETO, UNIVERSITY OF SÃO PAULO

S3P626. MATE MAROTE: COGNITIVE TRAINING TO ANSWER OPEN OUESTIONS

MELINA VLADISAUSKAS¹*, LAOUEN BELLIOLI², MARTIN A. MIGUEL², DIEGO FERNÁNDEZ SLEZAK², MARIANO SIGMAN¹, ANDREA P. GOLDIN¹

¹ LABORATORIO DE NEUROCIENCIA, UNIVERSIDAD TORCUATO DI TELLA -CONICET, ² LABORATORIO DE INTELIGENCIA ARTIFICIAL APLICADA, DEPTO DE COMPUTACION, FCEYN, UBA -CONICET

S3P627. DISRUPTION OF REWARDING EFFECT OF MORPHINE BY MEMORY RECONSOLIDATION: POST-RETRIEVAL CYCLOHEXIMIDE BLOCKS BOTH CPP AND LOCOMOTOR SENSITIZATION

FLÁVIA ZACOUTEGUY BOOS^{1*}, RODRIGO ORDOÑEZ SIERRA¹, ANA PAULA CRESTANI¹, ROSSANA ROSA PORTO¹, LIZETH PEDRAZA CORREA¹, FERNANDA NOGUEIRA LOTZ ALVES¹, KRISLEI MARTIN SCIENZA¹, LUCAS DE OLIVEIRA ALVARES¹, JORGE ALBERTO QUILLFELDT¹

¹ PSYCHOBIOLOGY AND NEUROCOMPUTATION LAB FEDERAL UNIVERSITY OF RIO GRANDE DO SUL *fzboos@hotmail.com

S3P628. EXPLORING THE FUNCTION OF THE SEROTONERGIC SYSTEM IN THE RECONSOLIDATION OF AVERSIVE MEMORIES

MARÍA BELÉN ZANONI SAAD^{1*}, JUAN FACUNDO MORICI¹, FRANCISCO GALLO¹, MAGDALENA MIRANDA², PEDRO BEKINSCHTEIN², NOELIA WEISSTAUB¹

¹ LABORATORIO DE COMPORTAMIENTO Y COGNICIÓN EXPERIMENTAL - IFIBIO CONICET; ² INSTITUTO DE BIOLOGÍA CELULAR Y NEUROCIENCIAS, FACULTAD DE MEDICINA. UBA-CONICET

S3P629. HUMAN MESENCHYMAL STEM CELLS THERAPY IMPROVES COGNITIVE FUNCTION IN A SPORADIC ALZHEIMER RAT MODEL

MARIA FLORENCIA ZAPPA VILLAR^{1*}, MARIANA GABRIELA GARCÍA¹, GUSTAVO RAMÓN MOREL¹, LUCIA SOLEDAD TRÍPODI¹, ROSANA CRESPO¹, PAULA CECILIA REGGIANI¹

¹ INIBIOLP — SCHOOL OF MEDICAL SCIENCES, NATIONAL UNIVERSITY OF LA PI ATA. ARGENTINA

Chronobiology

S3P630. TIMED FOOD RESTRICTION PREVENTS DEPRESSIVE-LIKE BEHAVIOR INDUCED BY CONSTANT LIGHT IN RODENTS

BRUNO JACSON MARTYNHAK^{1*}, DIEGO CORREIA¹, CRISTINA JARK STERN¹, THIAGO RODRIGUES DA SILVA¹, ROBERTO ANDREATINI¹

¹ DEPARTAMENTO DE FISIOLOGIA. UNIVERSIDADE FEDERAL DO PARANÁ *brunomartynhak@gmail.com

S3P631. CHOLINERGIC TRANSMISSION IN THE CIRCADIAN PACEMAKER OF DROSOPHILA <u>SEBASTIÁN MILDINER</u>^{1*}, M. FERNANDA CERIANI¹, LIA FRENKEL¹

¹ LABORATORIO DE GENÉTICA DEL COMPORTAMIENTO- FUNDACIÓN INSTITUTO LELOIR-IIBBA-CONICET;

S3P632. TNF-ALPHA AND CCL2 MEDIATE THE IMMUNE-CIRCADIAN INTERACTION IN THE CENTRAL NERVOUS SYSTEM

MALENA L MUL FEDELE^{1*}, FERNANDA R ROMÁN¹, JOSÉ M DUHART¹, IGNACIO AIELLO, BELÉN CERLIANI¹, SILVINA RICHARD¹, JUAN JOSÉ CHIESA¹, DIEGO ANDRES GOLOMBEK¹, NATALIA PALADINO¹

¹ LABORATORIO DE CRONNOIOBLOGÍA, UNIVERSIDAD NACIONAL DE OUILMES. ARGENTINA

*paula.paso@gmail.com

S3P633. MODELLING TRANSLATIONAL REGULATION OF PER AND ITS EFFECTS OVER THE CIRCADIAN MOLECULAR CLOCK PAULA NIETO^{1*}, CARLOS CONDAT¹

¹INSTITUTO DE FÍSICA ENRIQUE GAVIOLA (IFEG-CONICET), FAMAF, UNC

S3P634. THE ROLE OF THE BMP PATHWAY IN THE OPERATION OF THE ADULT CIRCADIAN NETWORK IN DROSOPHILA

^{*}carla.vverde@gmail.com

^{*}m.vladisauskas@hotmail.com

^{*}mbzanoni@gmail.com

^{*}florz87@hotmail.com

^{*}smildiner@gmail.com

 $^{^*}$ malenamulfedele@gmail.com

SOFÍA POLCOWÑUK1*, MARÍA FERNANDA CERIANI1

¹ LAB.GENÉTICA DEL COMPORTAMIENTO-FUNDACIÓN INSTITUTO LELOIR-IBBA-CONICET-ARGENTINA

*sophiepol8@gmail.com

S3P635. THE HIGH LIGHT EXPOSURE OF THE ANTARCTIC SUMMER INDUCED A DELAY OF THE SLEEP ONSET TIME IN A POPULATION OF UNIVERSITY STUDENTS FROM URUGUAY

ANA SILVA^{1,2*}, DIEGO SIMÓN¹, BETTINA TASSINO³

¹LABORATORIO DE NEUROCIENCIAS, FACULTAD DE CIENCIAS, UNIVERSIDAD DE LA REPÚBLICA, URUGUAY; ²UNIDAD BASES NEURALES DE LA CONDUCTA, INSTITUTO CLEMENTE ESTABLE; ³ SECCIÓN ETOLOGÍA, FACULTAD DE CIENCIAS, UNIVERSIDAD DE LA REPÚBLICA, URUGUAY

*anasilvabarbato@gmail.com

Development

S3P636. BEHAVIORAL AND MOLECULAR CHANGES INDUCED BY EARLY NOISE EXPOSURE USING DIFFERENT EXPOSURE SCHEDULES. PARTIAL REVERSAL AFTER REARING IN AN ENRICHED ENVIRONMENT SONIA MOLINA^{1,2*}, MARÍA MICELI^{1,2}, FRANCISCO CAPANI^{1,2},

¹UNIVERSIDAD DE BUENOS AIRES. CONSEJO NACIONAL DE INVESTIGACIONES CIENTÍFICAS Y TÉCNICAS; ² CENTRO DE ESTUDIOS FARMACOLÓGICOS Y BOTÁNICOS (CEFYBO-UBA-CONICET). FACULTAD DE MEDICINA. 1ª CÁTEDRA DE FARMACOLOGÍA

*sonia.molina@live.com.ar

LAURA GUELMAN^{1,2}

S3P637. EFFECT OF CANNABINOID HEMOGLOBIN-DERIVED PEPTIDES (RVD-HEMOPRESSIN AND VD-HEMOPRESSIN) IN THE POSTNATAL MICE SUBVENTRICULAR ZONE NEUROGENESIS AND OLIGODENDROGENESIS

<u>AGUSTÍN RIQUELME SANDOVAL</u>1*, CLARISSA SCHITINE¹, RICARDO DE MELO REIS², HEDIN-PEREIRA CECÍLIA³

¹ LABORATÓRIO DE NEUROANATOMIA CELULAR, INSTITUTO DE BIOFÍSICA CARLOS CHAGA FILHO/UFRJ; ² LAB. NEUROQUÍMICA, INSTITUTO DE BIOFÍSICA CARLOS CHAGAS FILHO, UFRJ; ³ FIOCRUZ, RIO DE JANEIRO *viajanteriquelme@hotmail.com

S3P638. VISUAL ACUITY AND COGNITIVE DEVELOPMENT IN CHILDREN AFTER BILATERAL CONGENITAL CATARACTS SURGERY

VALTENICE DE CÁSSIA RODRIGUES DE MATOS FRANÇA^{1*}, RUSSELL DAVID HAMER, DORA FIX VENTURA, MAURO WAISWOL, ANA PAULA SILVERIO RODRIGUES, MARCELO FERNANDES DA COSTA

¹ DEPARTAMENTO DE PSICOLOGIA EXPERIMENTAL, UNIVERSIDADE DE SÃO PAULO, BRAZIL

*valtenice@yahoo.com.br

S3P639.KINESIN1ISREQUIREDFORAXONAL PATHFINDING AND CANNABINOIDINDUCED AXONAL DEVELOPMENT BY MEDIATING THE AXONAL TRANSPORT OF CB1 RECEPTOR TRINIDAD MM SAEZ^{1,2*}, GABRIELA OTERO¹, LUCAS E CROMBERG¹, MATÍAS ALLOATTI¹, DIEGO M GELMAN², TOMÁS L FALZONE¹,

¹ INSTITUTO DE BIOLOGÍA CELULAR Y NEUROCIENCIA (UBA-CONICET), CABA, ARGENTINA; ² INSTITUTO DE BIOLOGÍA Y MEDICINA EXPERIMENTAL (CONICET), CABA, ARGENTINA

*trinidad.mm.saez@gmail.com

S3P640. EFFECTS OF PARENTAL EXERCISE ON PHYSICAL AND SENSORYMOTOR DEVELOPMENT, VOLUNTARY PHYSICAL ACTIVITY, PHYSICAL PERFORMANCE AND SPATIAL MEMORY OF MALE RATS WISTAR OFFSPRING CHRISTIANO SPINDLER^{1,2}, <u>ETHIANE SEGABINAZI</u>^{1,2*}, ANDRÉ LUÍS FERREIRA DE MEIRELES^{1,2}, FILIPE MEGA^{1,2}, GABRIELA DOS SANTOS SALAVAGGIO^{1,2,3}, MATILDE ACHAVAL^{1,2}, SIMONE MARCUZZO^{1,2}

¹ PROGRAMA DE PÓS-GRADUACÃO EM NEUROCIÊNCIAS, UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL; ² LABORATÓRIO DE HISTOFISIOLOGIA COMPARADA, INSTITUTO DE CIÊNCIAS BÁSICAS DA SAÚDE; ³ ESCOLA DE ENFERMAGEM, UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

*ethianesega@gmail.com

S3P641. NUTRITIONAL RESTRICTION OF OMEGA-3 FATTY ACIDS INDUCES PHENOTYPIC PLASTICITY IN THE MICROGLIA OF RAT SUBSTANTIA NIGRA <u>EMERSON SILVA</u>^{1*}, RICIELLE AUGUSTO¹, ALINNY ISAAC², CATARINA PIMENTEL³, GISELLE MORENO¹, ERALDO JUNIOR¹, MARIA SEABRA¹, RENATA SANTOS¹, MARCELO RODRIGUES¹, BELMIRA COSTA¹

¹ DEPARTMENT OF PHYSIOLOGY AND PHARMACOLOGY; ² INSTITUTO DE BIOFÍSICA CARLOS CHAGAS FILHO - UFRJ; ³ DEPARTMENT OF BASIC AND CLINICAL NEUROSCIENCE, KING'S COLLEGE LONDON

*messo.biologo@gmail.com

S3P642. ELIMINATION OF EARLY BORN NEURONS IN THE CEREBRAL CORTEX

BRUNA SOARES LANDEIRA1*, MARCOS COSTA1

¹ INSTITUTO DO CÉREBRO *brunalandeira@gmail.com

S3P643. A NERVOUS SYSTEM ENHANCER UNDERWENT ACCELERATED EVOLUTION IN PRIMATES AND SHOWS HETEROCHRONY DURING BRAIN DEVELOPMENT IN TRANSGENIC MICE JUAN MATIAS STOPIELLO^{1*}, RODRIGO LÓPEZ-LEAL², MARCELO RUBINSTEIN^{1,3}, LUCIA FLORENCIA FRANCHINI¹

¹ INGEBI-CONICET; ² CEC- VALDIVIA, CHILE; ³ FCEYN- UNIVERSIDAD DE BUENOS AIRES

*matias.stopiello@gmail.com

S3P644. EUPHORIC RESPONSES TOWARD THE DECREASE OF AN AVERSIVE REWARD

ANDREA BEATRIZ SUÁREZ^{1,2*}

¹ INSTITUTO DE INVESTIGACIONES MÉDICAS LANARI (IDIM-CONICET-UBA); ² CENTRO DE ALTOS ESTUDIOS EN CIENCIAS HUMANAS Y DE LA SALUD (CAECIHS-UAI)

*andreabsuarez2@gmail.com

S3P645. HIGH FAT DIET INDUCES SEX-SPECIFIC CHANGES IN ANTIOXIDANT DEFENSES IN RAT HYPOTHALAMUS

ANA PAULA TONIAZZO^{1*}, DANUSA MAR ARCEGO¹, ALINE VIEIRA¹, RACHEL KROLOW², CARLA DALMAZ¹

¹UFRGS: ²UCPEL

*aninha.toniazzo84@gmail.com

S3P646. EFFECTS OF THE GESTATIONAL DIABETES MELLITUS ON THE DEVELOPMENT AND NEUROIMMUNOMODULATION IN NEWBORN AND ADOLESCENCE RATS

FRANCELE VALENTE PIAZZA^{1,2,3*}, ETHIANE SEGABINAZI^{1,2,3}, ANDRÉ LUÍS FERREIRA DE MEIRELES^{1,2,3}, FILIPE MEGA DOS SANTOS^{1,2,3}, CHRISTIANO DE FIGUEIREDO SPINDLER^{1,2,3}, OTÁVIO AMÉRICO AUGUSTIN^{2,3}, GABRIELA DOS SANTOS SALVALAGGIO^{2,3}, MATILDE ACHAVAL^{1,2}, SIMONE MARCUZZO^{1,2,3}

¹PROGRAMA DE PÓS-GRADUAÇÃO EM NEUROCIÊNCIAS, UFRGS, RS, BRAZIL; ² LABORATÓRIO DE HISTOFISIOLOGIA COMPARADA, DEPARTAMENTO DE CIÊNCIAS MORFOLÓGICAS /ICBS; ³ GRUPO DE PESQUISA EM PLASTICIDADE DO NEURODESENVOLVIMENTO, UFRGS, RS/BRAZIL

Disorders of the Nervous System

S3P647. ROLE OF CAV1.2 CALCIUM CHANNEL IN HIPPOCAMPAL NEURONS OF ANIMAL WITH DEPRESSIVE-LIKE BEHAVIORS

<u>CRISTIAN MORENO</u>^{1,2*}, PAULINA HARDY¹, DIEGO PINO¹, MAYRA BASCUÑAN¹, TAMARA HERMOSILLA², DIEGO VARELA², PATRICIO ROJAS¹

¹ UNIVERSIDAD DE SANTIAGO DE CHILE; ² UNIVERSIDAD DE CHILE *huaitil@gmail.com

S3P648. HIPPOCAMPAL NEURONAL FATE REPROGRAMMING BY INTRAHIPPOCAMPAL ADMINISTRATION OF KAINIC ACID IN MICE **DANIELA MOURA**1*, **CLAUDIO QUEIROZ¹**, **MARCOS COSTA¹**

S3P649. INTRANASAL ROUTE IN A TRANSGENIC MODEL OF ALZHEIMER: NANOMEDICINE DRUG THERAPY

MARIA EUGENIA NAVAS GUIMARAES^{1,2*}, MARIA BEATRIZ BISTUÉ MILLÓN^{1,2}, EDUARDO FERNÁNDEZ-MEGÍA³, MIKE WEMPE⁴, CLAUDIO CUELLO⁵, MARTIN ALEJANDRO BRUNO^{1,2,5}

¹ LABORATORIO DE NEUROCIENCIAS, FACULTAD DE CIENCIAS MÉDICAS, UNIVERSIDAD CATÓLICA DE CUYO; ² CONICET; ³ DEPARTAMENTO DE QUÍMICA ORGÁNICA (CIQUS), UNIVERSIDAD DE SANTIAGO DE COMPOSTELA, ESPAÑA; ⁴ DEPARTMENT OF PHARMACEUTICAL SCIENCES, UNIVERSITY OF COLORADO, DENVER, CO, USA; ⁴ PHARMACOLOGY AND THERAPEUTICS, MCGILL UNIVERSITY, MONTREAL, CANADÁ

*mariaeugenianavas@gmail.com

S3P650. NEUROPROTECTIVE EFFECT OF A NOVEL MULTIFUNCTIONAL IRON/COPPER CHELATOR IN CELL AND ANIMAL MODELS OF PARKINSON'S DISEASE

PABLA AGUIRRE¹, OLIMPO GARCIA-BELTRAN², VICTORIA TAPIA¹. YORKA MUÑOZ¹. MARCO T. NUÑEZ¹*

¹ FACULTAD DE CIENCIAS, UNIVERSIDAD DE CHILE; ² FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS, UNIVERSIDAD DE IBAGUÉ

*mnunez@uchile.cl

S3P651. PERINEURONAL NETS OF STRIATE CORTEX ARE REDUCED IN ADULT CATS SUBIMITED TO MONOCULAR ATROPINIZATION DURING CRITICAL PERIOD

SANAIRA SUYAN LIMA SOARES^{1,2,3}, TÁSSIA FARIAS DA SILVA MAIA^{1,2,3}, <u>LEONARDO PAIVA OHASHI</u>^{1,2,3*}, AMANDA SILVA DA SILVA^{1,2,3}, MATHEUS ROCHA MAIA^{1,2,3}, FABÍOLA DE CARVALHO MENDES^{1,2,3}, LUCIANA NEGRÃO FROTA DE ALMEIDA^{1,2,3}, CRISTOVAM WANDERLEY PICANÇO DINIZ^{1,2,3}

¹ UNIVERSIDADE FEDERAL DO PARÁ, BĒLÉM, PARÁ, BRASIL; ² HOSPITAL UNIVERSITÁRIO JOÃO DE BARROS BARRETO, BELÉM, PARÁ, BRASIL; ³ LABORATÓRIO DE NEURODEGENERAÇÃO E INFECÇÃO, BELÉM, PARÁ, BRASIL. *ohashileo@gmail.com

S3P652. VEGF AND G-CSF GENES AND HUMAN ADIPOSE-DERIVED MESENCHYMAL STEM CELLS IN THE MOUSE SCIATIC NERVE TRANSECTION AND TUBULIZATION MODEL

<u>JÚLIA OLIVEIRA</u>^{1*}, TALITA ROCHA¹, DANIELA VON ZUBEN¹, BIANCA ZANETTI², PRISCILA MATSUMOTO², SANG HAN², ANA MARIA MARTINEZ¹

¹ UFRJ; ² UNIFESP *juliatoliveira@gmail.com

S3P653. EFFECT OF STRESS INDUCED BY IMMOBILIZATION IN THE MICHROARCHITECTURE OF SLEEP SPINDLES IN RATS

ALEJANDRO OSORIO-FORERO1*, ANGELA GÓMEZ¹, KAREN

^{*}francele valente@hotmail.com

¹ BRAIN INSTITUTE, UFRN, BRAZIL

^{*}danimoura@gmail.com

CORREDOR¹, LAURA LEON¹, MARIO VALDERRAMA¹, FERNANDO CARDENAS¹

¹ UNIVERSIDAD DE LOS ANDES

S3P654. REFRACTORINESS TO CORTICAL STIMULATION-INDUCED ANALGESIA: A POSSIBLE RELATION WITH THE LACK OF SYNAPTIC REMODELING IN THE RAPHE AND DECREASE OF SPINAL SEROTONIN

AMANDA PASCHOA1*, TALITA FARIAS¹, DANIELLE VARIN¹, ANA CAROLINA CAMPOS¹, MANOEL TEIXEIRA², ERICH FONOFF², ROSANA PAGANO¹

¹ LABORATORY OF NEUROMODULATION AND EXPERIMENTAL PAIN, HOSPITAL SÍRIO-LIBANÊS, SÃO PAULO, SP; ² DIVISION OF FUNCTIONAL NEUROSURGERY, DEPARTMENT OF NEUROLOGY, UNIVERSITY OF SÃO PAULO *amanda.paschoa@gmail.com

\$3P655. ALTERED REGIONAL CEREBRAL BLOOD FLOW AND COGNITIVE PERFORMANCE IN PATIENTS WITH CONGESTIVE HEART FAILURE

CLAUDIA PASCOVICH^{1*}, RONALD GARCÍA¹, MARÍA LANGHAIN¹, ALICIA SILVEIRA², EMPERATRIZ ANGARITA³, RODOLFO FFRRANDO¹

¹CENTRO DE MEDICINA NUCLEAR E IMAGENOLOGÍA MOLECULAR. HOSPITAL DE CLÍNICAS, UDELAR.; ² INSTITUTO DE NEUROLOGÍA. HOSPITAL DE CLÍNICAS, UNIVERSIDAD DE LA REPÚBLICA; ³FUNDACIÓN CARDIOVASCULAR DE COLOMBIA. BUCARAMANGA, COLOMBIA

S3P656. FUNCTIONAL INTERACTIONS BETWEEN MCHERGIC AND SEROTONERGIC NEURONS. AN IN VIVO ELECTROPHYSIOLOGICAL STUDY

CLAUDIA PASCOVICH^{1*}, ANDREA DEVERA¹, PATRICIA LAGOS¹, MAYDA RIVAS¹, ATILIO FALCONI¹, JESSIKA URBANAVICIUS², CECILIA SCORZA¹, PABLO TORTEROLO¹

¹ DEPARTMENT OF PHYSIOLOGY, SCHOOL OF MEDICINE, UNIVERSIDAD DE LA REPÚBLICA.; ² DEPARTMENT OF EXPERIMENTAL NEUROPHARMACOLOGY, IIBCE.

S3P657. ENDOTHELIAL AND ASTROGLIAL ALTERATIONS IN IN VITRO AND IN VIVO MODELS OF ALZHEIMER'S DISEASE. EVIDENCE OF CELL ACTIVATION AND AUTOPHAGIC INDUCTION

CARLOS JAVIER POMILIO^{1,2*}, ROXANA GOROJOD², MARÍA FLORENCIA TODERO^{1,2}, ÁNGELES VINUESA^{1,2}, AGUSTINA ALAIMO², MÓNICA KOTLER², JUAN BEAUQUIS^{1,2}, FLAVIA SARAVIA^{1,2}

S3P658. ABNORMAL STRUCTURAL CONNECTIVITY IN PATIENTS WITH EPILEPSY AND FOCAL CORTICAL DYSPLASIA (FCD)

<u>JUAN PABLO PRINCICH</u>1*, SANTIAGO COLLAVINI¹, MARIANO FERNANDEZ². SILVIA KOCHEN¹

¹ ENYS (UNIDAD EJECUTORA DE ESTUDIOS EN NEUROCIENCIAS Y SISTEMAS COMPLEJOS) HTL EL CRUCE; ² UNLP

S3P659. STUDY OF TDP-43 GENETIC AND PROTEIN-BASED INTERACTIONS: FOCUS ON ALZHEIMER AND PARKINSON'S DISEASES GENE PRODUCTS

NATALIA CECILIA PRYMACZOK^{1*}, LIONEL MULLER IGAZ², JUAN GEREZ¹

¹ SWISS FEDERAL INSTITUTE OF TECHNOLOGY IN ZURICH (ETHZ), ZURICH, SWITZERLAND; ² IFIBIO HOUSSAY (CONICET), UNIVERSITY OF BUENOS AIRES SCHOOL OF MEDICINE. ARGENTINA

S3P660. EFFECT OF EXTREMELY LOW FRECUENCY MAGNETIC FIELDS EXPOSITION IN L-DOPA-INDUCED-DYSKINESIAS AND TRANSCRIPTIONS FACTORS IN A RAT MODEL OF PARKINSON'S DISEASE FERNANDA RAMÍREZ-LÓPEZ^{1*}, DIANA MILLÁN-ALDACO¹, MARCELA PALOMERO-RIVERO¹, MAGDALENA GUERRA-CRESPO¹, RENÉ DRUCKER-COLÍN¹

¹INSTITUTO DE FISIOLOGIA CELULAR; MEXICO CITY, MEXICO ACKNOWLEDGEMENTS: UNAM-PAPIIT IN207116 AND IN204715 *framirez@email.ifc.unam.mx

S3P661. NEUROPROTECTIVE DRUGS TO TREAT THE NEUROLOGICAL ALTERATIONS CAUSED BY ZIKA VIRUS INFECTION

<u>FABIOLA M RIBEIRO</u>^{1*}, VIVIAN C. VASCONCELOS¹, JULIANA G. DORIA¹, FLAVIA R. SILVA¹, JULIANA DEL SARTO¹, ANA L.C.V. REAL¹, MAURO M. TEIXEIRA¹

¹ UNIVERSIDADE FEDERAL DE MINAS GERAIS *fmribeiro2013@gmail.com

S3P662. MYELINATION OF THE REGENERATING OPTIC NERVE OF MICE

<u>HENRIQUE ROCHA MENDONÇA</u>^{1,2,3*}, CAMILA DE OLIVEIRA GOULART^{2,3}, SILMARA VELINE DE LIMA⁴, LARRY BENOWITZ⁴, ANA MARIA BLANCO MARTINEZ^{2,3}

¹PÓLO UNIVERSITÁRIO MACAÉ, UFRJ, RIO DE JANEIRO, BRAZIL; ²PROGRAMA DE PÓS GRADUAÇÃO EM ANATOMIA PATOLÓGICA, UFRJ, BRAZIL; ³ LABORATÓRIO DE NEURODEGENERAÇÃO E REPARO, HUCFF, UFRJ,RIO DE JANEIRO, BRAZIL; ⁴ LABORATORY FOR NEUROSCIENCE RESEARCH IN NEUROSURGERY, DEPARTMENT OF SURGERY, CHILDREN'S HO

^{*}a.osorio-forero10@uniandes.edu.co

^{*}cpascovich@gmail.com

^{*}cpascovich@gmail.com

¹ INSTITUTO DE BIOLOGÍA Y MEDICINA EXPERIMENTAL, CONICET; ² DEPARTAMENTO DE QUÍMICA BIOLÓGICA, FCEYN, UBA

^{*}carlosjpomilio@gmail.com

^{*}ayahuasc@hotmail.com

^{*}lmuller@fmed.uba.ar

^{*}henrique.rocha.mendonca@gmail.com

S3P663. EFFECTS OF L-DOPA ADMINISTRATION NOCICEPTIVE RESPONSES ON **FOLLOWING** INTRANASAL MPTP ADMINISTRATION IN RATS, AN ANIMAL MODEL OF PARKINSON'S DISEASE KATIANE ROVERSI1*, SÉRGIO JOSÉ MACEDO-JÚNIOR¹. RAQUEL TONELLO², JOSIEL M. MACK¹, JULIANO FERREIRA¹, RUI D. PRFDIGER1

¹ PROGRAMA DE PÓS-GRADUAÇÃO EM FARMACOLOGIA. UNIVERSIDADE FEDERAL DE SANTA CATARINA, BRAZIL: ² DEPARTMENT OF ANESTHESIOLOY. UNIVERSITY OF CINCINNATI, UNITED STATES OF AMERICA

S3P664. SOCIAL AVOIDANCE BUT NOT ANHEDONIA PERSISTS IN ADULT MALE MICE AFTER CHRONIC SOCIAL DEFEAT STRESS DURING ADOLESCENCE JOSÉ FERNANDO SALVADOR CARRILLO1*, PEDRO EDUARDO NASCIMENTO SILVA VASCONCELOS¹, MELISSA RIBEIRO DE ARAÚJO¹, LETICIA DE SOUZA RESENDE¹, SILVANA CHIAVEGATTO1

¹ DEPARTMENT OF PHARMACOLOGY, BIOMEDICAL SCIENCES INSTITUTE, UNIVERSITY OF SAO PAULO;

S3P665. COGNITIVE **DEFICITS** AND **DEPRESSIVE-LIKE BFHAVIOR FOLLOWING** 6-HYDROXYDOPAMINE-INDUCED DEGENERATION OF LOCUS COERULEUSIN RATS

TUANE SAMPAIO1*, BRUNA SOUZA1, REINALDO TAKAHASHI1, RUI DANIEL PREDIGER¹

S3P666. **EFFECT** 0F TW0 CONSECUTIVE **GENERATION** IN MITOCHONDRIAL ROS AND OXIDATIVE STATUS PRODUCTION IN BRAINSTEM FEMALES JUVENILE SUBMITTED IN THE PROTEIN RESTRICTION DURING DEVELOPMENT DAVID SANTANA1*, DIOGINIS FERREIRA1, MAÍSA RODRIGUES1, ANDRADE DA COSTA BELMIRA²

¹ LABORATORY OF BIOCHEMISTRY, MOLECULAR BIOLOGY AND EXERCISE BIOCHEMISTRY - UFPE.; 2 DEPARTMENT OF PHYSIOLOGY AND PHARMACOLOGY - HEALTH SCIENCES CENTER - UFPE - RECIFE - PE.

S3P667. THE ROLE OF NEUROTROPHINS ON GENDER BIASED EFFECTS OF INTRANASAL MPTP ADMINISTRATION ON ANHEDONIC AND DEPRESSIVE-LIKE BEHAVIORS IN MICE MARISSA SCHAMNE^{1,2*}, MORGANA MORETTI², RUI DANIEL PRFDIGFR^{1,2}

DEPARTAMENTO DE FARMACOLOGIA, UNIVERSIDADE FEDERAL DE SANTA CATARINA

*maschamne@gmail.com

S3P668. PRENATAL VPA EXPOSURE ALTERS POSTNATAL HISTONE 3 ACETYLATION LEVELS ARACELI SEIFFE^{1,2*}, NADIA KAZLAUSKAS^{1,2}, AMAICHA MARA DEPINO1,2

¹INSTITUTE FOR PHYSIOLOGY, MOLECULAR BIOLOGY AND NEUROSCIENCES. CONICET-UBA; ² DEPARTMENT OF PHYSILOGY, MOLECULAR AND CELLULAR BIOLOGY, FCEYN, UNIVERSITY OF BUENOS AIRES *aseiffe@gmail.com

S3P669. DIAGNOSTIC AND PROGNOSTIC SERUM **BIOMARKERS IN ASTROCYTOMA**

TAYDE GABRIELA SERRANO-CANO1*, PAULINA MALAGÓN-BAUTISTA¹, GUSTAVO AGUADO², BEATRIZ YADIRA SALAZAR-VÁZQUEZ³, ANGELINA RODRÍGUEZ-TORRES¹

¹ FACULTAD DE OUÍMICA, UNIVERSIDAD AUTÓNOMA DE OUERÉTARO. MÉXICO: 2 HOSPITAL GENERAL DE MÉXICO "DR. EDUARDO LICEAGA": 3 FACULTAD DE MEDICINA Y NUTRICIÓN. UNIVERSIDAD JUÁREZ DEL ESTADO DE DURANGO. MÉXICO

AND S3P670. GAIT **ANALYSIS** CORTICAL RECORDINGS IN A PARKINSON'S DISEASE ANIMAL MODEL

JUAN C SORIA^{1,2*}, JAIME R MORALES¹, PABLO Y TERUYA¹, ÁLVARO G PIZÁ¹, FERNANDO D FARFÁN¹, GABRIEL RUIZ¹, ANA L. ALBARRACÍN^{1,2},

CARMELO J. FELICE¹

¹ LABORATORIO DE MEDIOS E INTERFASES (LAMEIN), UNT AND INSIBIO-CONICET, TUCUMÁN, ARGENTINA; ² FACULTAD DE MEDICINA, UNIVERSIDAD NACIONAL DE TUCUMÁN, TUCUMÁN, ARGENTINA*juanka.soria@gmail.com

TRANSCRANIAL DIRECT CURRENT S3P671. STIMULATION IMPROVES LONG-TERM MEMORY IN AN ANIMAL MODEL OF ATTENTION-DEFICIT/ HYPERACTIVITY DISORDER AND MODULATES INFLAMMATORY AND OXIDATIVE PARAMETERS IN CONTROL RATS

DOUGLAS TEIXEIRA LEFFA1*, BRUNA BELLAVER2, ARTUR ALBAN SALVI¹, ISABEL DE MACEDO¹, ANDRÉ QUINCOZES-SANTOS², LUIS AUGUSTO ROHDE³, IRACI L.S. TORRES¹

¹LABORATORY OF PAIN PHARMACOLOGY AND NEUROMODULATION, UFRGS. BRAZIL; ² BIOCHEMISTRY DEPARTMENT, INSTITUTE OF BASIC HEALTH SCIENCES, UFRGS, BRAZIL; 3 ADHD PROGRAM, PSYCHIATRY DEPARTMENT, UFRGS, BRAZIL

*douglasleffa@hotmail.com

S3P672. MODULATION OF GLIAL RESPONSE BY DIETARY RESTRICTION IN AN ANIMAL MODEL OF ALZHEIMER'S DISEASE

^{*}katianeroversi@gmail.com

^{*}ifsalvador.neuro@gmail.com

¹UNIVERSIDADE FEDERAL DE SANTA CATARINA *tuanebs@gmail.com

^{*}david-lipe@hotmail.com

¹ LABORATÓRIO EXPERIMENTAL DE DOENÇAS NEURODEGENERATIVAS; ²

^{*}tgserranoc@gmail.com

FLORENCIA TODERO^{1,2*}, CARLOS POMILIO^{1,2}, ANGELES VINUESA^{1,2}, ROXANA GOROJOD¹, AGUSTINA ALAIMO¹, SOLEDAD PORTE ALCÓN¹, MÓNICA KOTLER¹, FLAVIA SARAVIA^{1,2}, JUAN BEAUQUIS^{1,2}

¹ DPTO QUÍMICA BIOLÓGICA, FCEYN, UBA; ² IBYME-CONICET *mariaflorenciatodero@qmail.com

S3P673. SELECTIVE DELETION OF DOPAMINE D2 RECEPTOR IN FAST SPIKING INTERNEURONS: IMPLICATION IN PSYCHIATRIC DISORDERS

MARIA EUGENIA TOMASELLA^{1*}, MARIA LUCILA BECHELLI¹, CAMILO MININI, MORA OGANDO¹, MARIANO DI GUILMI¹, BELEN ELGOYHEN¹, SILVANO ZANUTTO¹, ANTONIA MARINBURGIN¹. DIEGO MATIAS GELMAN¹

¹ INSTITUTO DE BIOLOGÍA Y MEDICINA EXPERIMENTAL *eugeniatomasella@gmail.com

S3P674. THE THERAPEUTIC POTENTIAL OF CANNABINOID SYSTEM IN AN IN VITRO MODEL OF NEURONAL DEATH

<u>ANDRÉA TORRÃO</u>1*, FERNANDA CRUNFLI¹, ANDRESSA COSTA¹, TALITA VRECHI¹

¹DEPT. PHYSIOLOGY AND BIOPHYSICS, INSTITUTE OF BIOMEDICAL SCIENCES, UNIVERSITY OF SÃO PAULO

*andrea@icb.usp.br

S3P675. ALTERED SECRETION OF EXTRACELLULAR VESICLES IN AN ASTROCYTE MODEL OF TRINUCLEOTIDE REPEAT DISORDER

<u>LEANDRO TORRES-DÌAZ^{1,2*}, ISIDORA VICENCIO^{1,2}, MARA E. DA SILVA-JANUÁRIO², LUIS L. P. DASILVA², MAITE A CASTRO¹</u>

¹ INSTITUTO DE BIOQUÍMICA Y MICROBIOLOGÍA, UNIVERSIDAD AUSTRAL DE CHILE; ² CENTER FOR INTERDISCIPLINARY STUDIES ON THE NERVOUS SYSTEM (CISNE), U. AUSTRAL DE CHILE; ³ DEP. OF CELL AND MOLECULAR BIOLOGY, RIBEIRAO PRETO MEDICAL SCHOOL, UNIVERSITY OF SAO PAULO "leandro.dzs@gmail.com

S3P676. POST-PARALYSIS TYROSINE KINASE INHIBITION WITH MASITINIB ABROGATES NEUROINFLAMMATION AND SLOWS DISEASE PROGRESSION IN INHERITED AMYOTROPHIC LATERAL SCLEROSIS

EMILIANO TRIAS¹*, SOFIA IBARBURU¹, ROMINA BARRETO-NÚÑEZ¹, JOËL BABDOR².3,4, THIAGO T. MACIEL².3,4,5,6,7, MATTHIAS GUILLO².3,4,5, LAURENT GROS³, PATRICE DUBREUIL³.9,10, COLIN MANSFIELD³, ALAIN MOUSSY³, PABLO DÍAZ-AMARILLA¹¹, PATRICIA CASSINA¹², LAURA MARTÍNEZ-PALMA¹², IVAN CRUZ MOURA².3,4,5,6,7, JOSEPH S. BECKMAN¹³, OLIVIER HERMINE².3,4,5,6,7,8,14,15, LUIS BARBEITO¹

¹ INSTITUT PASTEUR DE MONTEVIDEO, MONTEVIDEO, URUGUAY; ² IMAGINE INSTITUTE, HÔPITAL NECKER, PARIS, FRANCE; ³ INSERM UMR 1163, LABORATORY OF CELLULAR AND MOLECULAR MECHANISMS OF HEMATOLOGICAL DISORDER; ⁴ PARIS DESCARTES—SORBONNE PARIS CITÉ

UNIVERSITY, IMAGINE INSTITUTE, PARIS, FRANCE; ⁵ CNRS ERL 8254, PARIS, FRANCE; ⁶ LABORATORY OF EXCELLENCE GR-EX, PARIS, FRANCE; ⁷ EQUIPE LABÉLISÉE PAR LA LIGUE NATIONALE CONTRE LE CANCER; ⁸ AB SCIENCE; ⁹ EQUIPE LABÉLISÉE PAR LA LIGUE NATIONALE CONTRE LE CANCER; ¹⁰ CRCM, [SIGNALING, HEMATOPOIESIS AND MECHANISM OF ONCOGENESIS], INSERM,U1068; ¹¹ INSTITUTO DE INVESTIGACIONES BIOLÓGICAS CLEMENTE ESTABLE, MONTEVIDEO, URUGUAY; ¹² DEPARTAMENTO DE HISTOLOGÍA Y EMBRIOLOGÍA, FACULTAD DE MEDICINA, UNIVERSIDAD DE LA REPÚBLICA; ¹³ LINUS PAULING INSTITUTE, DEPARTMENT OF BIOCHEMISTRY AND BIOPHYSICS, ENVIRONMENTAL HEALTH; ¹⁴ DEPARTMENT OF HEMATOLOGY, NECKER HOSPITAL, PARIS, FRANCE; ¹⁵ CENTRE NATIONAL DE RÉFÉRENCE DES MASTOCYTOSES (CEREMAST), PARIS, FRANCE

*etrias@pasteur.edu.uv

S3P677. CORPUS CALLOSUM CONNECTIVITY ALTERATIONS IN THE VALPROIC ACID EXPERIMENTAL MODEL OF AUTISM

NONTHUÉ UCCELLI^{1*}, MARTÍN CODAGNONE^{1,2}, VICTORIA ROSATO SIRI³, MARIANELA TRAETTA^{1,2}, JUANA PASQUINI³, ANALÍA REINÉS^{1,2}

¹ INSTITUTO DE BIOLOGÍA CELULAR Y NEUROCIENCIA "PROF. DR. DE ROBERTIS" (IBCN), UBA-CONICET; CÁTEDRA DE FARMACOLOGÍA, FFYB-UBA; INSTITUTO DE QUÍMICA Y FISICOQUÍMICA BIOLÓGICAS (IQUIFIB), UBA-CONICET

*nonthue.u@gmail.com

S3P678. PRE-CLINICAL INVESTIGATION OF THE EFFECTS OF SODIUM BUTYRATE TREATMENT ON BEHAVIOR AND NEUROTROPHINS LEVELS IN RATS SUBMITTED TO ANIMAL MODEL OF MANIA OR DEPRESSION

ROGER VARELA^{1*}, WILSON RESENDE¹, GUSTAVO DAL-PONT¹, GISLAINE RÉUS¹, SAMIRA VALVASSORI¹, JOÃO QUEVEDO^{1,2}

¹ UNIVERSIDADE DO EXTREMO SUL CATARINENSE; ² THE UNIVERSITY OS TEXAS HEALTH SCIENCE CENTER OF HOUSTON

*roger.varela@hotmail.com

S3P679. DEEP HYPOTHERMIC SHOCK REVERSES THE LOSS OF CALBINDIN-POSITIVE NEURONS CAUSED BY PERINATAL ASPHYXIA IN THE RAT. <u>PABLO VÁZQUEZ</u>1*, ELENA PEÑA¹, YANINA ROJO¹, FABIÁN LOIDL¹

¹ IBCN

*pevazquez@gmail.com

S3P680. SPIRULINA (SP) NEUROPROTECTION IN THE 6-OHDA MODEL OF PARKINSON'S DISEASE IS POSSIBLY RELATED TO ITS ANTI-INFLAMMATORY AND ANTIOXIDANT PROPERTIES

FRANCISCO ARNALDO VIANA LIMA^{1*}, EMERSON FERREIRA DE OLIVEIRA¹, JULIANA FERNANDES PEREIRA¹, ANA PAULA FONTENELE MENEZES MENDONÇA¹, KELLY ROSE TAVARES NEVES¹, GEANNE MATOS DE ANDRADE¹, GLAUCE SOCORRO DE

BARROS VIANA^{1,2}

¹ FEDERAL UNIVERSITY OF CEARÁ; ² FACULTY OF MEDICINE ESTÁCIO OF JUAZEIRO DO NORTE

*arnviana@hotmail.com

S3P681. XBP1S/ATF6F HETERODIMER PARTICIPATES IN THE PROTEOSTASIS MODULATION ON NEURODEGENERATIVE DISEASE MODELS RENE VIDAL 1,2,3*, CAROLINA JEREZ 1,2,3, PAULA GARCIA-HUERTA 1,2,3, PAULINA TRONCOSO 1,2,3, CLAUDIA RIVERA 1,2,3, CLAUDIO HETZ 1,2,3

¹ FUNDACIÓN BIOMÉDICA NEUROUNION; ² INSTITUTO DE NEUROCIENCIAS BIOMÉDICAS; ³ CENTER FOR GEROSCIENCE, BRAIN HEALTH AND METABOLISM *rene.vidal@neurounion.com

S3P682. POSSIBLE ROLE FOR NMDA RECEPTORS IN THE MAINTENANCE OF RETINOFUGAL PATHWAYS IN MICE WITH RETINAL DEGENERATION FERNANDA VIEIRA¹⁺, GRASIELLE MENEZES, HILDA PETRS, CLAUDIO SERFATY, PAULA CAMPELLO-COSTA

¹ UNIVERSIDADE FEDERAL FLUMINENSE *nanda83v@yahoo.com.br

S3P683. A 6-MONTH RETROSPECTIVE OBSERVATIONAL STUDY WITH SCHIZOPHRENIA PATIENTS USING PALIPERIDONE EXTENDED-RELEASE TABLETS

BERKANT YELKEN¹*

¹TURKISH PSYCHIATRY ASSOCIATION

*berkantyelken@hotmail.com

S3P684. ASSESSMENT OF THE TRANSGENERATIONAL EFFECT OF VALPROIC ACID IN MICE

CECILIA ZAPPALA^{1,2*}, MARCOS CAMPOLONGO^{1,2}, NADIA KAZLAUSKAS^{1,2}, ARACELI SEIFFE^{1,2}, AMAICHA DEPINO^{1,2}

¹INSTITUTE FOR PHYSIOLOGY, MOLECULAR BIOLOGY AND NEUROSCIENCES, CONICET-UBA; ²DEPARTMENT OF PHYSIOLOGY, MOLECULAR AND CELLULAR BIOLOGY, FCEYN, UNIVERSITY OF BUENOS AIRES

*cecilia.zappala@gmail.com

Molecular and Cellular Neurobiology

S3P685. CYCLIN-DEPENDENT KINASE 5 ACTIVITY MODULATES CONSTITUTIVE AND SUBSTRATE DOPAMINE TRANSPORTER CELL SURFACE EXPRESSION: IMPLICATIONS IN ATTENTION-DEFICIT HYPERACTIVITY DISORDER—ADHD-

GUILLERMO FERNÁNDEZ¹, GONZALO QUASOLLO¹, <u>Gabriela</u> Paglini¹*

¹ INSTITUTO DE INVESTIGACIÓN MÉDICA MERCEDES Y MARTÍN FERREYRA, INIMEC-CONICET-UNC

*gpaglini@immf.uncor.edu

S3P686. ANALYSIS OF THE VESICULAR TRANSPORTER VGLUT-1/VGAT RATIO AS POSSIBLE MARKER OF CORTICAL PLASTICITY LEVELS.

BRUNO PANNUNZIO1*, FRANCESCO M. ROSSI1

¹ LABORATORIO DE NEUROCIENCIAS, FACULTAD DE CIENCIAS, UDELAR, MONTEVIDEO, URUGUAY

*brunopannunzio@gmail.com

S3P687, WITHDRAWN

S3P688. PANNEXIN 1 MODULATES THE FUNCTION OF THE SUPPORTING CELLS OF THE ORGAN OF CORTI PAVEL PRADO^{1,2*}, OSCAR JARA¹, CAROLINA FLORES¹, JAIME MARIPILLÁN¹, AGUSTÍN MARTÍNEZ¹

¹ UNIVERSIDAD DE VALPARAÍSO; ² UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA

*pavel.prado@gmail.com

S3P689. M4 AND M5 ACETYLCHOLINE RECEPTOR LEVELS IN RAT RETINAL CELLS AND ITS MODULATION BY PROTEIN KINASE C ACTIVATION LUÍS EDUARDO GOMES BRAGA¹, THAYLINI QUERINO DOS SANTOS CONCEIÇÃO¹*, ELIZABETH GIESTAL-DE-ARAUJO¹, ALINE ARAUJO DOS SANTOS¹

¹ PROGRAMA DE PÓS GRADUAÇÃO EM NEUROCIÊNCIAS, UNIVERSIDADE FEDERAL FLUMINENSE

 * thayliniquerino@hotmail.com

S3P690. DROSOPHILA DLRRK (RNAI) FLY RESISTS PARAQUAT-INDUCED OXIDATIVE STRESS: A THERAPEUTIC STRATEGY IN PARKINSON DISEASE DIANA ALEJANDRA QUINTERO ESPINOSA^{1*}, MARLENE JIMENEZ DEL RIO¹, CARLOS ALBERTO VÉLEZ PARDO¹

¹ NEUROSCIENCE RESEARCH GROUP, MEDICAL RESEARCH INSTITUTE, UNIVERSITY OF ANTIOQUIA

*dalejandra.quintero@udea.edu.co

S3P691. PROTECTIVE EFFECT OF AN ALPHA-MELANOCYTE STIMULATING HORMONE ANALOGUE AGAINST PALMITIC ACID TOXICITY

<u>DELIA RAMÍREZ</u>^{1*}, JULIETA SABA¹, JUAN TURATI¹, LILA CARNIGLIA¹, DANIELA DURAND¹, CARLA CARUSO¹, MERCEDES LASAGA¹

¹ INBIOMED- INSTITUTO DE INVESTIGACIONES BIOMÉDICAS UBA-CONICET. FACULTAD DE MEDICINA, UBA.

*dramirez@fmed.uba.ar

S3P692. DOPAMINERGIC DIFFERENCIATION OF MÜLLER CELLS DERIVED FROM EYE PROGENITORS <u>BÁRBARA RANGEL</u>*, LUÍS SANTOS¹, VICTOR RIBEIRO-RESENDE¹, FERNANDO MELLO¹

¹ INSTITUTE OF BIOPHYSICS CARLOS CHAGAS FILHO *barbararangel@biof.ufrj.br

S3P693. THE GLUCOSE SENSITIVITY OF MESENCEPHALIC DOPAMINERGIC CELLS: EFFECT ON TYROSINE HYDROXYLASE REGULATION

ANNA CAROLINA REGO!* YOLANDA COLL!' DANIELLE

ANNA CAROLINA REGO¹*, YOLANDA COLLI¹, DANIELLE BECKMAN², FERNANDO DE MELLO, IVAN DE ARAUJO³, RICARDO REIS¹

¹ BIOPHYSICS INSTITUTE OF CARLOS CHAGAS FILHO, UFRJ; ² MEDICAL BIOCHEMISTRY INSTITUTE, UFRJ; ³ THE JOHN B PIERCE LABORATORY, DEPARTMENT OF PSYCHIATRY, YALE UNIVERSITY SCHOOL OF MEDICINE *annacrc@biof.ufri.br

S3P694. NEGATIVE MODULATION OF TRPM8 FUNCTION BY PROTEIN KINASE C

<u>Bastián rivera</u>1*, Boris Lavanderos¹, Rodolfo Madrid¹, María Pertusa¹

¹ DEPARTAMENTO DE BIOLOGÍA, FACULTAD DE QUÍMICA Y BIOLOGÍA, UNIVERSIDAD DE SANTIAGO DE CHILE

*bastian.rivera@usach.cl

S3P695. MEMORY AND INFLAMATION: LONG LASTING CONSEQUENCES IN HIPPOCAMPUS FROM AN EARLY HIPER CALORIC DIET

TAÍS HELENA RODRIGUES^{1*}, WELLINGTON OLIVEIRA², TERCYA SILVA, JULIANA RIBEIRO¹, ODAIR LIMA⁴, RHOWENA MATOS^{1,3,4}

¹ DEPARTMENT OF NUTRITION; ² DEPARTMENT OF BIOLOGICAL SCIENCES; ³ POSTGRADUATE PROGRAM IN NEUROPSYCHIATRY; ⁴ DEPARTMENT OF PHYSICAL EDUCATION AND SPORT SCIENCES

*taishgr@yahoo.com.br

S3P696. OUABAIN MODULATES THE LEVELS OF MUSCARINIC M3 RECEPTOR IN RETINAL CELL CULTURES

MICHELLE RODRIGUES DE OLIVEIRA1*, AMANDA CANDIDA DA ROCHA OLIVEIRA1, ELIZABETH GIESTAL-DE-ARAÚJO1

¹ PÓS GRADUAÇÃO EM NEUROCIÊNCIAS, UNIVERSIDADE FEDERAL FLUMINENSE

*myshelle63@gmail.com

S3P697. NOTCH ACTIVATION DURING CNS DEMYELINATION-REMYELINATION: TIME- AND CELL TYPE-DEPENDENT LIGAND EXPRESSION DÉBORA RODRIGUEZ^{1*}, LAURA GÓMEZ PINTO¹, DANA ESQUENAZ¹¹, PATRICIA MATHIEU¹, ANA M. ADAMO¹

¹ DEPARTAMENTO DE QUÍMICA BIOLÓGICA, IQUIFIB (UBA-CONICET), FFYB

*rodriguez-debora@hotmail.com

S3P698. MITOCHONDRIAL DYSFUNCTION IS SUFFICIENT TO INDUCE ASTROCYTE-MEDIATED NEUROTOXICITY. STUDY OF THE MECHANISMS INVOLVED

<u>SEBASTIAN RODRIGUEZ-BOTTERO</u>1*, ERNESTO MIQUEL¹, LAURA MARTÍNEZ-PALMA¹, PATRICIA CASSINA¹

¹ DEPARTAMENTO DE HISTOLOGÍA Y EMBRIOLOGÍA, FACULTAD DE MEDICINA, IIDEI AR

*sebafallen@gmail.com

S3P699. MUTATIONAL ANALYSIS IDENTIFIES FUNCTIONALLY CRITICAL AMINO ACID RESIDUES WITHIN THE GPM6A CYTOPLASMIC TAILS

ANABEL ALVAREZ JULIÁ¹, <u>NICOLAS ROSAS</u>¹*, ALBERTO CARLOS FRASCH¹. BEATA FUCHSOVA¹

¹ INSTITUTO DE INVESTIGACIONES BIOTECNOLÓGICAS (IIB-INTECH, UNSAM, CONICET)

*beata@iibintech.com.ar

S3P700. LOW OMEGA-6 / OMEGA-3 RATIO IN HYPOPROTEIC MATERNAL DIET FAVORS EPIGENETIC CHANGES IN THE PROGENY'S NEURAL CELLS THAT PROMOTE GENE TRANSCRIPTION

ALINNY ROSENDO ISAAC^{1*}, INGRID PRATA MENDONÇA², EMERSON ALEXANDRE NEVES DA SILVA², RICIELLE LOPES AUGUSTO², GISELLE MACHADO MAGALHÃES MORENO², PAULO EUZÉBIO CABRAL-FILHO², CLAUDIO GABRIEL RODRIGUES², CATARINA GONÇALVES PIMENTEL³, MARCELO CAIRRÃO ARAÚJO RODRIGUES², BELMIRA LARA DA SILVEIRA ANDRADE DA COSTA²

¹ UNIVERSIDADE FEDERAL DO RIO DE JANEIRO; ² UNIVERSIDADE FEDERAL DE PERNAMBUCO; ³ KING'S COLLEGE LONDON

*isaacalinny@gmail.com

S3P701. BRAIN-DERIVED NEUROTROPHIC FACTOR EXERTS ANTIOXIDANT AND PROTECTIVE EFFECTS ON ASTROCYTES AND NEURONS TREATED WITH 3-NITROPROPIONIC ACID

<u>JULIETA SABA</u>1*, DELIA RAMIREZ¹, JUAN TURATI¹, LILA CARNIGLIA¹, DANIELA DURAND¹, MERCEDES LASAGA¹, CARLA CARUSO¹

¹INBIOMED (UBA-CONICET), FACULTAD DE MEDICINA, UBA *ccaruso@fmed.uba.ar

S3P702. AEROBIC EXERCISE IN AGED RATS INCREASES CORTICAL EXPRESSION OF INTRACELLULAR SIGNALING PROTEINS LINKED TO GROWTH, PROLIFERATION AND DEATH

JESSICA SALLES HENRIQUE1*, FABRIZIO DOS SANTOS

CARDOSO², ERIVELTON FERNANDES FRANÇA², FERNANDO TADEU SERRA², ANGÉLICA BEGATTI VICTORINO¹, ALEXANDRE APARECIDO DE ALMEIDA¹, ANDREA DOMINGUEZ CARVALHO¹, FRANCISCO ROMERO CABRAL³, RICARDO MARIO ARIDA¹, SÉRGIO GOMES DA SILVA^{2,3}

¹ FEDERAL UNIVERSITY OF SAO PAULO; ² UNIVERSIDADE DE MOGI DAS CRUZES; ³ HOSPITAL ISRAELITA ALBERT EINSTEIN

*je.salles@yahoo.com

S3P703. REGULATION OF TRPV4 BY NCS-1 AND THE EFFECTS OF PACLITAXEL AND LITHIUM ON THIS INTERACTION IN NEURONS

JULIO SÁNCHEZ1*, BARBARA EHRLICH2

¹ FACULTY OF HEALTH SCIENCES, UNIVERSIDAD TECNOLÓGICA DE PEREIRA, PEREIRA, COLOMBIA; ² DEPARTMENT OF PHARMACOLOGY, YALE UNIVERSITY, NEW HAVEN. U. S. A.

*jcsanchez@utp.edu.co

S3P704. LAMININ-COATED MICROSTRUCTURED POLYCAPROLACTONE (PCL) FILAMENTS AS TREATMENT FOR SCIATIC NERVE TRANSECTION RAPHAEL SANTOS^{1*}, VICTOR RESENDE¹, TATIANA SAMPAIO¹

¹ INSTITUTE OF BIOPHYSICS CARLOS CHAGAS FILHO (IBCCF)-FEDERAL IINIVERSITY OF RIO DE IANEIRO

S3P705. OUABAIN PERFORMING AN AUTOPHAGIC TANGO

GUSTAVO CORRÊA¹, <u>Mayra Santos da Silva</u>¹*, elizabeth De araujo¹

¹ DEPARTAMENTO DE BIOLOGIA, UNIVERSIDADE FEDERAL FLUMINENSE *mayrasasi@gmail.com

S3P706. AUTOPHAGY AND RETINAL GANGLION CELLS SURVIVAL: THE ROLE OF A1 ADENOSINE RECEPTOR

MAYRA SANTOS DA SILVA^{1*}, GUSTAVO CORREA, ELIZABETH DE ARAUJO

DEPARTAMENTO DE BIOLOGIA, UNIVERSIDADE FEDERAL FLUMINENSE mayrasasi@gmail.com

S3P707. REGENERATION OF CHICKEN EMBRYO RETINA THROUGHOUT ACTIVATION OF SHH PATHWAY IN ENDOGEN STEM CELLS

JENNIFER DI NAPOLI¹, CINDY OLMOS CARREÑO¹, LUCIANO FIORE¹, DENIS ALEJANDRO NIETO¹, LUISA RENÉE TERUEL¹, VIVIANA SANCHEZ¹, KATIA DEL RIO-TSONIS ², <u>GABRIEL</u> SCICOLONE¹*

¹ INST DE BIOL CELULAR Y NEUROCIENCIAS "PROF E DE ROBERTIS" (UBA-CONICET), FAC MEDICINA, UBA; ² DEPT. OF BIOL. , MIAMI UNIVERSITY, OXFORD; OH, USA **S3P708.** EVIDENCE FOR THE ROLE OF THE GLYCOPROTEIN M6A IN DENDRITIC SPINE FORMATION AND SYNAPTOGENESIS

KARINA FORMOSO¹, MICAELA GARCÍA¹, GABRIELA APARICIO¹, ALBERTO FRASCH¹, CAMILA SCORTICATI¹*

¹ INSTITUTO DE INVESTIGACIONES BIOTECNOLÓGICAS (IIB-INTECH). CONICET-UNSAM

*cscorticati@iibintech.com.ar

S3P709. EARLY PHYSICAL EXERCISE MAINTAINS HIGH NUMBER OF CORTICAL AND HIPPOCAMPAL CELLS THROUGHOUT THE SEDENTARY LIFE OF RATS FERNANDO TADEU SERRA^{1*}, ANGÉLICA BEGATTI VICTORINO², PÂMELLA PIMENTEL PIÑERO¹, BRUNO HENRIQUE SILVA ARAÚJO TORRES², LAILA BRITO TORRES², FRANCISCO ROMERO CABRAL³, RICARDO MARIO ARIDA⁴, SÉRGIO GOMES DA SILVA^{1,3}

¹ NÚCLEO DE PESQUISAS TECNOLÓGICAS. UNIVERSIDADE DE MOGI DAS CRUZE S; ² UNIVERSIDADE FEDERAL DE SÃO PAULO; ³ HOSPITAL ISRAELITA ALBERT EINSTEIN (HIAE); ⁴ DEPARTAMENTO DE FISIOLOGIA. UNIVERSIDADE FEDERAL DE SÃO PAULO (UNIFESP)

*serra.pesquisador@gmail.com

S3P710.NEUROPROTECTIVEEFFECTSOFLIDOCAINE IN A RAT SPINAL CORD NEURODEGENERATIVE MODEL INDUCED BY KAINIC ACID

MARÍA SUSANA SISTI^{1,2*}, FABIÁN NISHIDA¹, CAROLINA NATALIA ZANUZZI^{1,3,4}, ENRIQUE LEO PORTIANSKY⁴

¹ LABORATORIO DE ANÁLISIS DE IMÁGENES, FACULTAD DE CIENCIAS VETERINARIAS, UNIVERSIDAD NACION; ² BECA DE INVESTIGACIÓN DE LA AGENCIA NACIONAL DE PROMOCIÓN CIENTÍFICA Y TECNOLÓGICA, ARGENT; ³ CÁTEDRA DE HISTOLOGÍA Y EMBRIOLOGÍA, FACULTAD DE CIENCIAS VETERINARIAS, UNIVERSIDAD NACION; ⁴ CONSEJO NACIONAL DE INVESTIGACIONES CIENTÍFICAS Y TÉCNICAS (CONICET), ARGENTINA

*msusanasisti@gmail.com

S3P711. CB1R DEFICIENCY ALTERS NEURONAL MORPHOLOGY AND SYNAPTIC PLASTICITY IN THE ADULT MOUSE HIPPOCAMPUS

<u>DELIA SORIANO</u>1*, FLORENCIA CONDE¹, ALICIA BRUSCO¹, LAURA CALTANA¹

¹ UBA-CONICET INSTITUTO DE BIOLOGÍA CELULAR Y NEUROCIENCIA IBCN. FACULTAD DE MEDICINA

*delia-r.w@hotmail.com

S3P712. TWO REVERSIBLE MODELS OF PERIPHERAL NERVE DEGENERATION AND A POSSIBLE TOOL TO IMPROVE NERVE CONDUCTION PAULA SOTO", VANINA USACH', GONZALO PIÑERO', PATRICIA SETTON-AVRUJ'

¹ CÁTEDRA DE QUÍMICA BIOLÓGICA PATOLÓGICA. FACULTAD DE FARMACIA Y BIOQUÍMICA UNIVERSIDAD DE BUENOS AIRES

*paula.asoto02@gmail.com

^{*}raphaelbmec@biof.ufrj.br

 $^{^*}$ gscicolo@retina.ar

S3P713. IN VITRO DIFFERENTIATION OF RETINAL GANGLION CELLS FROM STEM CELLS OBTAINED THROUGHOUT DIFFERENT STAGES OF DEVELOPMENT

CINDY OLMOS CARREÑO¹, GONZALO SPELZINI¹*, MARA MEDORI¹, JENNIFER DI NAPOLI¹, JUAN GUILLERMO MAHECHA CASTAÑEDA¹, LUANA SADER¹, NESTOR CARRI², VIVIANA SANCHEZ¹, GABRIEL SCICOLONE¹

¹ INST DE BIOL CELULAR Y NEUROCIENCIAS "PROF E DE ROBERTIS" (UBA-CONICET), FAC MEDICINA, UBA; ² INSTITUTO MULTIDISCIPLINARIO DE BIOLOGÍA CELULAR. LA PLATA. ARGENTINA

*gscicolo@retina.ar

S3P714. ANALYSES OF VDAC1 DISTRIBUTION IN HIPPOCAMPUS OF RATS AND EFFECTS OF INTRAHIPPOCAMPAL INJECTION OF DIDS 24 HOURS AFTER NEONATAL ANOXIA

<u>DÉBORA STERZECK CARDOSO</u>1*, JULIANE MIDORI IKEBARA¹, BEATRIZ CROSSIOL VICENTE DE CAMPOS¹, TALITHA AMANDA SANCHES BRETHERICK¹, ÉRICA SOUZA¹, SILVIA HONDA TAKADA¹, ALEXANDRE HIROAKI KIHARA¹

¹UNIVERSIDADE FEDERAL DO ABC

S3P715. EFFECTS OF PROGESTERONE IN NEONATAL RATS SUBMITTED TO UNILATERAL CEREBRAL HYPOXIA-ISCHEMIA

RAFAEL BANDEIRA FABRES, LUCIANA ABREU DA ROSA, ROBERTA MENEZES SCHULTE FERREIRA, VERÔNICA ANGÉLICA ALVES, AMANDA STAPENHORST AZAMBUJA, ANA LÚCIA CECCONELLO, EDUARDO FARIA SANCHES, MARIA FLAVIA MARQUES RIBEIRO, <u>LUCIANO STÜRMER DE FRAGA</u>1*

¹ FEDERAL UNIVERSITY OF RIO GRANDE DO SUL (UFRGS) *lucianof@ufras.br

\$3P716. ATORVASTATIN PREVENTS FROM AB1-40—INDUCED CELL DAMAGE AND DEPRESSIVE-LIKE BEHAVIOR VIA BDNF CLEAVAGE

CARLA I. TASCA^{1*}, FABIANA K. LUDKA¹, MAURÍCIO P. CUNHA¹, THARINE DA-CIM, LUISA B. BINDER¹, LEANDRA C. CONSTATINO¹, CAIO MASSSARI¹, WAGNER C. MARTINS¹, ANA LÚCIA S. RODRIGUES¹

¹DEPTO DE BIOQUÍMICA, CCB, UNIVERSIDADE FEDERAL DE SANTA CATARINA, FLORIANÓPOLIS. SC-BRASIL

*carla.tasca@ufsc.br

S3P717. INTERLEUKIN-13 MODULATES BDNF EXPRESSION: POSSIBLE INVOLVEMENT OF CREB PROTEIN EDUARDO PINHO BRAGA¹, THAYANA TEIXEIRA¹*, LUIS EDUARDO GOMES BRAGA¹, ELISABETH GIESTAL DE ARAUJO¹

¹ NEUROSCIENCE PROGRAM, UNIVERSIDADE FEDERAL FLUMINENSE

S3P718. IL-13 MODULATES EGF PROLIFERATIVE EFFECTS IN RATS RETINAL CELL: A POSSIBLE INVOLVIMENT OF P38 AND BDNF

THAYANA TEIXEIRA", LUIS EDUARDO GOMES BRAGA, ELISABETH GIESTAL DE ARAUJO

¹ NEUROSCIENCE PROGRAM, UNIVERSIDADE FEDERAL FLUMINENSE *thayanaduarte.biomed@yahoo.com.br

S3P719. ROLE OF GABAERGIC-PROOPIOMELANOCORTIN NEURONS IN THE REGULATION OF FOOD INTAKE AND GLYCEMIA MILAGROS TROTTA!*, RAMIRO ALSINA¹, VIVIANA FLORENCIA BUMASCHNY¹,²

¹INSTITUTE OF PHYSIOLOGY AND BIOPHYSICS BERNARDO HOUSSAY (IFIBIO, UBA-CONICET); ² DEPARTMENT OF PHYSIOLOGICAL SCIENCES, SCHOOL OF MEDICINE. UBA

*mili.trotta@gmail.com

S3P720. COCAINE AND AEME PROMOTE APOPTOSIS EXTRINSIC PATHWAY ACTIVATION IN RAT'S HIPPOCAMPUS NEURONS IN VITRO

MARIANA UDO1*, MARIANA DA SILVA¹, LEANDRO DAL′JOVEM², RAPHAEL GARCIA³, SILVYA MARIA-ENGLER¹, TANIA MARCOURAKIS¹

¹ DEPARTAMENTE OF CLINICAL AND TOXICOLOGICAL ANALYSIS, SCHOOL OF PHARMACEUTICAL SCIENCES/USP;

² UNDERGRADUATION PROGRAM, SCHOOL OF PHARMACEUTICAL SCIENCE/ COLLEGE OF OSWALDO CRUZ

³ INSTITUTE OF ENVIRONMENTAL, CHEMICAL AND PHARMACEUTICAL SCIENCES, UNIFESP

*sayuri.udo@usp.br

S3P721. MECP2 REGULATES THE EXPRESSION PATTERN OF LEPTIN RECEPTOR ISOFORMS AND LEPTIN SENSITIVITY

<u>SHARIN VALDIVIA</u>^{1,2*}, SERGIO HERNÁNDEZ¹, LUIS GUZMÁN¹, PATRICIA OJEDA^{1,2}, BREDFORD KERR¹

¹ CENTRO DE ESTUDIOS CIENTÍFICOS-CECS; ² UNIVERSIDAD AUSTRAL DE CHILE

*valdivia.sharin@gmail.com

S3P722. TRANSCRIPTOMICS OF TURTLE'S SPINAL CORD INJURY: CLUES TO UNDERSTAND FUNCTIONAL RECOVERY

<u>ADRIÁN VALENTÍN</u>1*, CARLOS ROBELLO², RAÚL RUSSO¹, FERNANDO ÁLVAREZ³

¹ DEPARTAMENTO DE NEUROFISIOLOGÍA CELULAR Y MOLECULAR, IIBCE, MONTEVIDEO, URUGUAY; ² UNIDAD DE BIOLOGÍA MOLECULAR, IPMONT, MONTEVIDEO, URUGUAY; ³ SECCIÓN BIOMATEMÁTICA, FACULTAD DE CIENCIAS, UDELAR, MONTEVIDEO, URUGUAY

*adroval2004@gmail.com

^{*}debora_sterzeck@hotmail.com

^{*}thayanaduarte.biomed@yahoo.com.br

S3P723. CARBACHOL INDUCES RETINAL GANGLION CELLS SURVIVAL IN VITRO: THE INVOLVEMENT OF IL-4 AND BDNF

<u>SULA VIEIRA BITENCOURT^{1,2*}, MARCELO GRANJA^{1,2}, ALINE ARAÚJO DOS SANTOS^{1,2}, ELIZABETH GIESTAL-DE-ARAUJO^{1,2}</u>

¹ PROGRAMA DE PÓS-GRADUAÇÃO EM NEUROCIÊNCIAS, UNIVERSIDADE FEDERAL FLUMINENSE; ² DEPARTAMENTO DE NEUROBIOLOGIA - UFF. NITERÓI. RIO DE JANEIRO. BRAZIL

S3P724. CRACKING THE NEURON-SPECIFIC TRANSCRIPTIONAL CODE OF THE DOPAMINE D2 RECEPTOR IN THE BRAIN

M. AGUSTINA VILLA^{1,2*}, RAMIRO LORENZO LOPEZ¹, MARCELO RUBINSTEIN^{1,2}

S3P725. MECHANISMS OF NEUROPROTECTION VIA MYELIN-AXON INTERACTIONS: ROLE OF MYELIN-ASSOCIATED GLYCOPROTEIN AGAINST GLUTAMATE-MEDIATED OXIDATIVE STRESS

ANA VIVINETTO^{1*}, CRISTIAN FALCON², ANABELA PALANDRI¹, VICTORIA ROZÉS-SALVADOR¹, CLARA MONFERRAN², PABLO H. H. LÓPEZ^{1,2}

¹ INIMEC-CONICET-UNIVERSIDAD NACIONAL DE CÓRDOBA; ² FACULTAD DE PSICOLOGÍA, UNIVERSIDAD NACIONAL DE CÓRDOBA

S3P726. A FRET-BASED APPROACH SUGGESTS ALLOSTERIC ACTIVATION OF MIXED LINEAGE KINASES BY MUTANT HUNTINGTIN

CARINA WEISSMANN^{1,2*}, KATHY GALLO³, OSVALDO DANIEL UCHITEL², LUDOVIC D'AURIA⁴, GERARDO MORFINI⁴

S3P727. MITOCHONDRIAL DNA REPAIR ACTIVITIES IN HORMONE-RESPONSIVE BRAIN REGIONS IN OVARIECTOMIZED AND ESTRADIOL-TREATED ADULT RATS

SANDRA CRISTINA ZARATE^{1,2*}, RICARDO GREDILLA ^{2,3}, FLORENCIA MERINO¹, MERCEDES IMSEN¹, ADRIANA SEILICOVICH¹, ANALÍA REINES⁴, TINNA STEVNSNER²

¹ INBIOMED UBA-CONICET; ² DEPARTMENT OF MOLECULAR BIOLOGY AND GENETICS, AARHUS UNIVERSITY, DENMARK; ³ DEPARTAMENTO DE FISIOLOGÍA, FACULTAD DE MEDICINA, UNIVERSIDAD COMPLUTENSE, MADRID; ⁴ IBCN UBA CONICET

Motor Systems

S3P728. TOTAL RUPTURE OF ACHILLES TENDON INDUCES A DECRESCE IN THE CELL NUMBER OF MOTOR AREA FROM L5 MICE SPINAL CORD

<u>DIEGO RODRIGUES</u>1*, MARTHA SOUZA¹, ANALÚ MACIEL¹, KAREN OLIVEIRA¹, EVANDER BATISTA¹, ANDERSON HERCULANO¹

S3P729. A FAST BRAIN-MACHINE INTERFACE IN THE HEAD-FIXED MOUSE INTEGRATING ARTIFICIAL SENSORY FEEDBACK

AAMIR ABBASI 1, DORIAN GOUEYTES 1, LUC ESTEBANEZ 1, VALÉRIE EGO-STENGEL 1, DANIEL SHULZ1*

¹UNITÉ DE NEUROSCIENCE, INFORMATION ET COMPLEXITÉ, UNIC-CNRS, GIF-SUR-YVETTE, 91190, FRANCE; SUPPORTED BY CNRS, ANR NEUROWHISK, LIDEX ICODE AND NEUROSACLAY (IDEX PARIS-SACLAY)

S3P730. DIFFERENT CONNECTIVITY APPROACHES TO EXAMINE MOTOR MEMORY CONSOLIDATION WITH RESTING-STATE FMRI

<u>AGUSTÍN SOLANO</u>^{1*}, IGNACIO GIMENEZ¹, FLORENCIA JACOBACCI¹, IGNACIO SPIOUSIAS¹, SABRINA LÓPEZ¹, VALERIA DELLA-MAGGIORE¹

¹LAB. FISIOLOGÍA DE LA ACCIÓN, DEPTO. DE FISIOLOGÍA, FMED-UBA *asolano@bioingenieria.edu.ar

S3P731. TOTAL RUPTURE OF ACHILLES TENDON INDUCES NITRERGIC ACTIVATION ON NERVOUS CELLS FROM MICE SPINAL CORD

MARTHA SOUZA^{1*}, DIEGO RODRIGUES, SUELLEN MORAES, KAREN OLIVEIRA, EVANDER BATISTA, ANDERSON HERCULANO

¹ UNIVERSIDADE FEDERAL DO PARÁ *marthasouza87@yahoo.com.br

S3P732. EYE-TRACKING DATA MODELING WITH SIMPLE DRIVEN HARMONIC OSCILLATORS

JUAN SPECHT^{1*}, LEONARDO DIMIERI¹, URDAPILLETA EUGENIO¹, ADRIÁN JIMÉNEZ GANDICA¹, GUSTAVO GASANEO¹

¹ DEPARTAMENTO DE FÍSICA, UNIVERSIDAD NACIONAL DEL SUR *juanignaciospecht@gmail.com

S3P733. MOTOR AND SENSORY INVOLVEMENT IN FINGER TAPPING: AUDITORY SENSORY FEEDBACK PREVENTS IMMEDIATE RESYNCHRONIZATION **LEONARDO VERSACI***, RODRIGO LAJE^{1,2}

¹ SENSORIMOTOR DYNAMICS LAB, DEPARTMENT OF SCIENCE AND

^{*}sulabitencourt7@gmail.com

¹ INGEBI-CONICET; ² FCEN, UNIVERSIDAD DE BUENOS AIRES *m.agustinavilla@gmail.com

 $^{^*}$ an.vivinetto@gmail.com

¹ UNIVERSITY OF ILLINOIS AT CHICAGO; ² IFIBYNE-CONICET; ³ MICHIGAN STATE UNIVERSITY; ⁴ UNIVERSITY OF ILLINOIS AT CHICAGO

 $^{{\}it ``carina.weissmann@gmail.com'}$

^{*}szarate@fmed.uba.ar

¹ UNIVERSIDADE FEDERAL DO PARÁ (UFPA)

^{*}diego.rodriguesoficial@hotmail.com

^{*}shulz@unic.cnrs-gif.fr

TECHNOLOGY, UNIVERSITY OF QUILMES; ² CONICET *focodefoco@gmail.com

Neural Circuit Physiology

S3P734. CHARACTERIZATION OF THE NEURONAL ACTIVITY IN THE MEDIAL PREOPTIC AREA DURING THE POSTPARTUM PERIOD AND ITS MODULATION BY HYPOCRETINS

MAYDA RIVAS¹*, LUCIANA BENEDETTO¹, ANNABEL FERREIRA¹, CLAUDIA PASCOVICH¹. PABLO TORTEROLO¹

¹ FACULTAD DE MEDICINA, UNIVERSIDAD DE LA REPÚBLICA, MONTEVIDEO, URUGUAY.

*rivas.mayda@gmail.com

S3P735. COCAINE AND CAFFEINE ALTER EXCITATORY SYNAPTIC PROPERTIES AND INTRACELLULAR [CA2+] IN SOMATOSENSORY THALAMIC NEURONS

CELESTE RIVERO ECHETO^{1*}, CARLOTA GONZÁLEZ-INCHAUSPE¹, PAULA PERISSINOTTI¹, JAVIER MUÑÍZ², BETINA GONZÁLEZ², EDGAR GARCÍA-RILL³, VERONICA BISAGNO², FRANCISCO.J. URBANO SUÁREZ¹

¹ IFIBYNE-CONICET-UBA; ² ININFA-CONICET-UBA; ³ CENTER FOR TRANSLATIONAL NEUROSCIENCE, UAMS, ARKANSAS, U.S.A.; ⁴ ININFA-CONICET-UBA

*macelesteriveroecheto@gmail.com

S3P736. MODULATION OF NEURONAL RESPONSES IN THE OLFACTORY CORTEX BY BASOLATERAL AMYGDALA AND CHOLINERGIC INPUTS

<u>SEBASTIÁN A. ROMANO</u>1*, NOEL FEDERMAN¹, SEBASTIÁN A. ROMANO¹. ANTONIA MARIN BURGIN¹

¹ IBIOBA — CONICET - PARTNER INSTITUTE OF THE MAX PLANCK SOCIETY. BUENOS AIRES, ARGENTINA

*sromano@ibioba-mpsp-conicet.gov.ar

S3P737. NEUROMARKETING: ANALYSIS OF CEREBRAL BEHAVIOR OF CONSUMERS

BRUNO RIBEIRO, PATRICIA SANTOS, LUANA GOMES, <u>Ana</u> <u>Santos</u>¹*, eliã botelho

¹ MESTRANDA PPG LINGUAGENS E SABERES UFPA *belseixas@yahoo.com.br

S3P738. FOOD RESTRICION-INDUCED ANESTRUS CHANGES OVARIES AND UTERUS MORPHOLOGY AND MELANIN-CONCENTRATING HORMONE PRECURSOR MRNA EXPRESSION OF FEMALE MICE JESSICA SILVA^{1*}, ERICA BARBEIRO¹, ESTELA BEVILACQUA², LUCIANE SITA¹

¹DEPARTMENT OF ANATOMY, INST. OF BIOMEDICAL SCIENCES III, UNIVERSITY

OF SAO PAULO, BRAZIL; ² DEPT. OF CELL BIOLOGY AND DEVELOPMENT, INST. OF BIOMEDICAL SCIENCES (ICB/USP), BRAZIL *jessica.beteto@gmail.com

S3P739. REWARD CODING AT THE NUCLEUS ACCUMBENS

AZUL SILVA1*, MARIANO BELLUSCIO1

¹ SYSTEMS NEUROSCIENCE GROUP, IFIBIO , CONICET-UBA *azul.s@hotmail.com

S3P740. METHAMPHETAMINE EFFECTS IN A LEPTIN-DEFICIENCY MOUSE MODEL

BETINA GONZALEZ², CANDELA GONZALEZ³, PAULA P. PERISSINOTTI¹, EDGAR GARCIA-RILL⁴, VERONICA BISAGNO², FRANCISCO J. URBANO^{1*}

¹IFIBYNE-CONICET-UBA, CABA, ARGENTINA;²ININFA-CONICET-UBA, CABA, ARGENTINA;³CEBBAD-UNIV. MAIMONIDES, CABA, ARGENTINA;⁴CENTER TRANSLATIONAL NEUROSCI., UAMS, USA

*fjurbano@fbmc.fcen.uba.ar

S3P741. POTENTIAL ROLE OF HYPOTHALAMIC TANYCYTES MEDIATING THE BLOOD TO BRAIN TRANSPORT OF GHRELIN

MAIA URIARTE¹*, NICOLAS DE FRANCESCO¹, GIMENA FERNÁNDEZ¹, AGUSTINA CABRAL¹, GUADALUPE GARCÍA ROMERO¹, MIRTA REYNALDO¹, MARIO PERELLÓ¹, DANIELA LUFRANO¹

¹LAB. OF NEUROPHYSIOLOGY OF THE IMBICE (CONICET-CICPBA-UNLP) *maiauriarte.90@qmail.com

S3P742. EFFECTS OF MGE-GRAFTED PRECURSOR CELLS ON PRE-ICTAL BRAIN OSCILLATION OF PILOCARPINE MODEL OF EPILEPSY

MAYARA VENDRAMIN PASQUETTI^{1*}, SIMONE AMARO ALVES ROMARIZ¹, ICARO FERRO MESSIAS¹, BEATRIZ DE OLIVEIRA MONTEIRO¹. MARIA ELISA CALCAGNOTTO¹

¹ UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL *mayarapp@gmail.com

Neurochemistry and Neuropharmacology

S3P743. EVALUATION OF APPETITIVE 50-KHZ USV CALLS IN AN ACUTE AND CHRONIC LISDEXAMFETAMINE-INDUCED MANIA MODEL CAMILA PASQUINI DE SOUZA^{1*}, ETIÉLI WENDLER¹, ANA PAULA SEGANTINE LOPER¹, MARKUS WÖHR², RAINER SCHWARTING², ROBERTO ANDREATINI¹

¹ UFPR; ² PHILIPPS-UNIVERSITY OF MARBURG *camilapasquini@gmail.com

S3P744. COCAINE-INDUCED CONDITIONING PLACE PREFERENCE IS ENHANCED IN PRENATALLY STRESSED RATS: RELATION BETWEEN PUBERTAL BEHAVIORAL TRAITS AND INDIVIDUAL DIFFERENCES IN ADULT VULNERABILITY TO COCAINE REWARD

<u>VERÓNICA PASTOR</u>^{1*}, MARÍA EUGENIA PALLARÉS¹, SANTIAGO OLSZEVICKI¹, MARTA CRISTINA ANTONELLI¹

¹ INSTITUTO DE BIOLOGÍA CELULAR Y NEUROCIENCIA "PROF. E. DE ROBERTIS" (IBCN)

*verpastor@gmail.com

S3P745. ANXIOLYTIC AND ANTIDEPRESSANT-LIKE EFFECTS OF ALPHA-LIPOIC IN A DEPRESSION MODEL INDUCED BY RESERPINE

PEDRO LUCAS DE SOUSA BARROSO², KÁTIA CILENE FERREIRA DIAS², PAYRON AUGUSTO NASCIMENTO¹, RENAN BARBOSA RODRIGUES¹, CAREN NÁDIA SOARES SOUSA², INGRIDY DA SILVA MEDEIROS², FERNANDO SILVA SANTOS¹, SILVÂNIA MARIA MENDES VASCONCELOS², MANOEL-CLÁUDIO AZEVEDO PATROCINIO^{1*}

¹ LABORATORY OF PHARMACOLOGY, MEDICAL SCHOOL, UNICHRISTUS, FORTALEZA CE BRAZIL; ² NEUROPSYCHOPHARMACOLOGY LABORATORY, UFC. FORTALEZA CE BRAZIL

*claussil@hotmail.com

S3P746. CLOZAPINE ALONE AND COMBINED WITH ALPHA-LIPOIC ACID IN MODEL OF SCHIZOPHRENIA INDUCED BY KETAMINE IN MICE

CLÁUDIO FELIPE VASCONCELOS PATROCINIO¹, GERMANA SILVA VASCONCELOS², LUANA PAULA BARBOSA DE CASTRO¹, SARAH DIÓGENES ALENCAR¹, FÁBIO AUGUSTO PORTELA OLIVEIRA¹, VINICIUS XIMENES PAULA¹, MAURO HENRIQUE NASCIMENTO RAMALHO FILHO¹, SILVÂNIA MARIA MENDES VASCONCELOS², DANIELLE MACEDO GASPAR², MANOEL CLÁUDIO AZEVEDO PATROCÍNIO¹*

¹ LABORATORY OF PHARMACOLOGY, MEDICAL SCHOOL, UNICHRISTUS, FORTALEZA CE BRAZIL; ² NEUROPSYCHOPHARMACOLOGY LABORATORY, UFC FORTALEZA CE BRAZIL

*claussil@hotmail.com

S3P747. CHARACTERIZATION OF PHENOLIC COMPOUNDS OF ETHYL ACETATE FRACTION FROM TABERNAEMONTANA CATHARINENSIS AND ITS POTENTIAL ANTIDEPRESSANT-LIKE EFFECT

<u>NATHIELLI PAULETI</u>1*, JONAS MELLO¹, MICHELE ALBERTON¹, SARA BARAUNA¹

¹ DEPARTAMENTO DE CIÊNCIAS NATURAIS, UNIVERSIDADE REGIONAL DE BLUMENAU (FURB)

*nathiellip@hotmail.com

S3P748. PUTATIVE NEM ALKYLATION OF RP2X4 SS3 CYSTEINES PREVENTS THE ZINC POSITIVE ALLOSTERIC MODULATION

FRANCISCO ANDRÉS PERALTA^{1,2*}, J. PABLO HUIDOBROTORO^{1,2}

¹ DEPARTAMENTO DE BIOLOGÍA, FACULTAD DE QUÍMICA Y BIOLOGÍA, UNIVERSIDAD DE SANTIAGO DE CHILE; ² CENTRO PARA EL DESARROLLO DE LA NANOCIENCIA Y LA NANOTECNOLOGÍA CEDENNA

*francisco.peralta.p@usach.cl

S3P749. ROLE OF 5-HT3 RECEPTORS IN THE MODULATION OF NOCICEPTIVE RESPONSE IN MICE SUBJECTED TO THE MODEL OF EMPATHY FOR PAIN DANIELE PEREIRA FERRARI^{1*}, DANIELA BAPTISTA-DE-SOUZA², AZAIR CANTO-DE-SOUZA^{2,3,4}

¹ UNDERGRADUATE STUDENT OF DEPT OF PSYCHOLOGY- PSYCHOBIOLOGY GROUP/UFSCAR; ² DEPT PSYCHOLOGY- PSYCHOBIOLOGY GROUP/UFSCAR; ³ GRADUATE PROGRAM IN PSYCHOLOGY/UFSCAR/SÃO CARLOS; ⁴ JOINT GRADUATE PROGRAM IN PHYSIOLOGICAL SCIENCES UFSCAR/UNESP *dani pferrari@hotmail.com

S3P750. EXTRACT OF AMAZON FRUIT (MAURITIA FLEXUOSA) EXERTS PROTECTIVE EFFECT AGAINST METHYLMERCURY TOXICITY IN RETINAL CELL CULTURES

<u>ISABEL PINHEIRO</u>^{1*}, SUSANNE SUELY SANTOS DA FONSECA, ALÓDIA BRASIL, MARTHA SOUZA, KAREN R.H.M. OLIVEIRA, EVANDER J.O. BATISTA, ANDERSON MANOEL HERCULANO

¹UNIVERSIDADE FEDERAL DO PARÁ, BRASIL

*isabelcp2411@gmail.com

S3P751. EFFECTS OF ACUTE AND LONG-TERM ADMINISTRATION OF GOLD NANOPARTICLES ON MITOCHONDRIAL RESPIRATORY CHAIN COMPLEXES IN RAT BRAIN

MORGANA PRÁ^{1,2*}, MARCOS MARQUES DA SILVA PAULA^{1,2}, ÉRIA CARDOSO³, GABRIELA FERREIRA⁴, GISLAINE TEZZA REZIN^{1,2}

¹ LABORATÓRIO DE NEUROBIOLOGIA DE PROCESSOS INFLAMATÓRIOS E METABÓLICOS; ² PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE, UNISUL; ³ INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA CATARINENSE; ⁴ LABORATÓRIO DE FARMACOLOGIA E PATOFISIOLOGIA DA PELE.UFPR

*mor_pra@yahoo.com.br

S3P752. OMEGA-3 PARTIALLY REVERSE BRAIN INFLAMMATION IN OBESITY MICE MODEL INDUCED BY HIGH-FAT DIET

MORGANA PRÁ^{1,2*}, GABRIELA GUZZATTI FRANCISCO^{1,2}, ROSIANE DE BONA SCHRAIBER^{1,2}, LUANA SOUZA^{1,2}, ÉRICA CAMPOS DOS SANTOS^{1,2}, ISABELA CASAGRANDE JEREMIAS^{1,2}, MICHELLE LIMA GARCEZ^{1,2}, JOSIANE BUDNI^{1,2}, GISLAINE

TEZZA REZIN^{1,2}

¹ LABORATÓRIO DE NEUROBIOLOGIA DE PROCESSOS INFLAMATÓRIOS E METABÓLICOS; ² PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA SAÚDE, UNISUL

*mor pra@hotmail.com

S3P753. THE REINFORCING-LIKE PROFILE OF HIGHER DOSES OF THE DISSOCIATIVE ANESTHETIC KETAMINE IN MALE RATS

PILLAR PRADO1*, MANOEL JORGE NOBRE1

¹ UNIVERSIDADE DE SAO PAULO - FFCLRP *pillarprado@usp.br

S3P754. THE IMPORTANCE OF ADULTERANTS IN DRUG OF ABUSE: THE CASE OF CAFFEINE IN COCA-PASTE SEIZED SAMPLES

JOSE PRIETO^{1*}, MARTÍN GALVALISI¹, MARCELA MARTÍNEZ¹, ANDRÉS ABÍN-CARRIQUIRY¹, VALENTINA VALENTINI¹, CECILIA SCORZA¹

¹ DEPARTMENT OF EXPERIMENTAL NEUROPHARMACOLOGY, IIBCE *jose.ppp@qmail.com

S3P755. THE MORPHOLOGY OF THE DOPAMINE CELL GROUPS IN THE SUBSTANTIA NIGRA, VENTRAL TEGMENTAL AREA AND RETRORUBRAL FIELD IN THE COMMON MARMOSET (CALLITHRIX JACCHUS) ANTONIO CARLOS QUEIROZ DE AQUINO¹*, JOSÉ RODOLFO L. P. CAVALCANTI¹, ANDRÉ LUIZ B. PONTES¹, FELIPE P. FIUZA¹, KAYO D. A. SILVA¹, FAUSTO P. GUZEN¹, EUDES. E. S. LUCENA¹, EXPEDITO S. NASCIMENTO-JÚNIOR¹, JUDNEY C. CAVALCANTE¹, MIRIAM S. M. O. COSTA¹, ROVENA C. G. J. ENGELBERTH¹, JEFERSON S. CAVALCANTE¹

¹LABORATORY OF NEUROCHEMICAL STUDIES, UFRN, BRAZIL *tony.carlos.queiroz@gmail.com

S3P756. SOCIAL MODULATION OF PAIN: ARE THE GABAERGIC RECEPTORS IN THE INSULA MODULATING THE HYPERNOCICEPTION IN MICE LIVING WITH A CONSPECIFIC IN CHRONIC PAIN? **CAROLINE R. ZANIBONI**^{1,3*}, **DANIELA BAPTISTA-DE-SOUZA**³, **AZAIR CANTO-DE-SOUZA**^{1,2,3}

¹ UFSCAR - GRADUATE PROGRAM IN PSYCHOLOGY; ² JOINT GRADUATE PROGRAM IN PHYSIOLOGICAL SCIENCES UFSCAR/UNESP; ³ DEPT PSYCHOLOGY-PSYCHOBIOLOGY GROUP/UFSCAR

*carolrzaniboni@gmail.com

S3P757. CENTRAL CRYOGENIC ROLE OF ENDOGENOUS HYDROGEN SULFIDE IN THE RAT MODEL OF ENDOTOXIC SHOCK

RODRIGO ALBERTO RESTREPO FERNÁNDEZ^{1*}, RENATO SORIANO², HELOÍSA DELLA COLETA FRANCESCATO¹, JOÃO PAULO SABINO³, TEREZILA MACHADO COIMBRA¹, LUIZ

GUILHERME BRANCO³

¹ MEDICAL SCHOOL OF RIBEIRÃO PRETO, UNIVERSITY OF SÃO PAULO; ² FEDERAL UNIVERSITY OF JUIZ DE FORA; ³ DENTAL SCHOOL OF RIBEIRÃO PRETO, UNIVERSITY OF SÃO PAULO

*rodrigo.restrepo@usp.br

S3P758. IMPACT OF STRESS INTHE VULNERABILITY TO COCAINE ADDICTION: ROLE OF COFILIN DURING THE ACQUISITION OF COCAINE SELF-ADMINISTRATION IN NUCLEUS ACCUMBENS <u>DAIANA RIGONI</u>^{1*}, MARIA P AVALOS¹, ANDREA S GUZMAN¹, MARIANO BISBAL¹, LILIANA M CANCELA¹, FLAVIA BOLLATI¹ IFEC- CONICET. DEPARTAMENTO DE FARMACOLOGÍA, FAC. DE CIENCIAS QUÍMICAS, UNC

*daiana.rigoni.dr@gmail.com

S3P759. ISRADIPINE AND P. NIGRIVENTER SPIDER VENOMS: PNTX3-4 OR PNTX3-6 ARE NEUROPROTECTIVE IN A MOUSE MODEL OF HUNTINGTON'S DISFASE

<u>FLAVIA RODRIGUES SILVA</u>1*, FABÍOLA MARA RIBEIRO¹, LUCIENE BRUNO VIEIRA¹

1 IIFMG

*dra.flaviarodrigues@hotmail.com

S3P760. NEUROBIOLOGICAL ACTIVITY OF THE LEPIDIUM MEYENII LEAF EXTRACT ON PC12 CELLS <u>ANGEL RODRÍGUEZ</u>^{1*}, LILLYAN LOAYZA¹, JORGE CHÁVEZ¹, ROY ANDRADE², RICHARD CISNEROS², LUIS AGUILAR²

¹ INSTITUTO DE INVESTIGACIÓN DE BIOQUÍMICA (IIBBM). UNIVERSIDAD NACIONAL AGRARIA LA MOLINA; ² LABORATORIO DE NEUROCIENCIAS Y COMPORTAMIENTO. UNIVERSIDAD PERUANA CAYETANO HEREDIA (UPCH) *angelrh93@gmail.com

S3P761. ALCOHOL CONSUMPTION IN ADOLESCENT RATS IS UNAFFECTED BY PREVIOUS METHYLPHENIDATE EXPOSURE

PAUL RUIZ1*, ALDO CALLIARI1, RICARDO PAUTASSI2

¹ ÁREA DE BIOFÍSICA, FACULTAD DE VETERINARIA, UDELAR, URUGUAY; ² INSTITUTO DE INVESTIGACIONES MÉDICAS MERCEDES Y MARTÍN FERREYRA, UNC-CONICET, ARGENTINA

*paulruiz@fvet.edu.uy

S3P762. RELATIONSHIP BETWEEN THYROID HORMONES LEVELS AND ALCOHOL CONSUMPTION PAUL RUIZ^{1*}, ALDO CALLIARI¹, RICARDO PAUTASSI²

¹ ÁREA DE BIOFÍSICA, FACULTAD DE VETERINARIA, UDELAR, URUGUAY; ² INSTITUTO DE INVESTIGACIONES MÉDICAS MERCEDES Y MARTÍN FERREYRA, UNC-CONICET, ARGENTINA

*paulruiz@fvet.edu.uy

S3P763. NEUROCHEMICAL AND FUNCTIONAL CHARACTERIZATION OF A PRIMARY CULTURE OF SEROTONINERGIC NEURONS

<u>EUGENIA SAIZ</u>1*, JESSIKA URBANAVICIUS¹, GISELLE PRUNELL¹, PATRICIA LAGOS¹

¹ DEPARTMENT OF PHYSIOLOGY, FACULTY OF MEDICINE, UNIVERSIDAD DE LA REPÚBLICA

*esaiz_bianco@hotmail.com

S3P764. PDZ DOMAINS 1 AND 2 OF PSD-95 ARE NECESSARY FOR MEMORY CONSOLIDATION ANGELES SALLES^{1*}, MARIA DEL CARMEN KRAWCZYK², ANDREW MALLON³, ARTURO ROMANO¹, MARIANO BOCCIA²,

¹ IFIBYNE CONICET / FCEYN UBA; ² DTP. FARMACOLOGÍA FFYB; ³ CALISTA THERAPFUTICS

RAMIRO FREUDENTHAL¹

S3P765. CHARACTERIZATION OF THE ENDOCANNABINOID SYSTEM IN THE DEVELOPMENT OF THE AVIAN RETINA: POSSIBLE RELATIONSHIP WITH THE DOPAMINERGIC SYSTEM

<u>LUZIA SAMPAIO</u>^{1*}, PRISCILA TRINDADE¹, YOLLANDA PICOLLI¹, ROSILANE TAVEIRA-SILVA¹, PATRÍCIA GARDINO¹, FERNANDO GARCIA DE MELO¹, RICARDO AUGUSTO DE MELO REIS¹

¹ LABORATÓRIO DE NEUROQUÍMICA, IBCCF - UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

*SAMPAIO.LU@GMAIL.COM

S3P766. ANTIPSYCHOTIC EFFECTS OF HYDROALCOHOLIC EXTRACT OF RED PROPOLIS IN MURINE MODELS OF SCHIZOPHRENIA

<u>BRUNO SANTOS</u>1*, MARGARETE GOMES^{1,2}, JULIANA CARDOSO^{1,2}

¹ TIRADENTES UNIVERSITY,300, MURILO DANTAS AVE,FAROLÂNDIA, 49032-490, ARACAJU,SE,BRAZIL; ² RESEARCH AND TECHNOLOGY INSTITUTE (ITP),300,MURILO DANTAS AVE, FAROLÂNDIA,ARACAJU,SE,BRAZI *bruno_psico@yahoo.com.br

S3P767. ALPHA-TERPINEOL REDUCES CANCER PAIN VIA OXIDATIVE STRESS MODULATION DANIELE NASCIMENTO GOUVEIA¹, JANARA SANTOS COSTA¹⁺, MARLANGE ALMEIDA OLIVEIRA¹, ANA MARA DE OLIVEIRA E SILVA¹, JULLYANA DE SOUZA SIQUEIRA QUINTANS¹, ANDRÉ SALES BARRETO¹, ADRIANA GIBARA GUIMARÃES¹

¹ DEPARTMENT OF PHYSIOLOGY; FEDERAL UNIVERSITY OF SERGIPE, BRAZIL *janaracosta@hotmail.com.br

S3P768. Γ-TERPINENE MODULATES OPIOID AND COLINERGIC SYSTEMS

<u>LÍCIA TAIRINY SANTOS PINA</u>1*, JANARA SANTOS COSTA1, LUCIANA SCOTTI1, MARCUS TULLIUS SCOTTI1, LUCINDO JOSÉ QUINTANS JÚNIOR¹, ROSANA DE SOUZA SIQUEIRA BARRETO¹, ADRIANA GIBARA GUIMARÃES¹

¹DEPARTMENT OF PHYSIOLOGY; FEDERAL UNIVERSITY OF SERGIPE, BRAZIL; ²FEDERAL UNIVERSITY OF PARAIBA. BRAZIL

*licia_tairinypina2008@hotmail.com

S3P769. COCAINE ABSTINENCE CHANGES M1- M2 AND M4 MACHRS EXPRESSION

<u>YULI YOHANA SERNA TORRES</u>1*, LIDIA EMMANUELA WIAZOWSKI SPELTA¹, ROSANA CAMARINI¹, RAPHAEL CAIO TAMBORELLI GARCIA², TANIA MARCOURAKIS¹

¹DEPARTMENT OF CLINICAL AND TOXICOLOGICAL ANALYSIS, USP;²INSTITUTE OF ENVIRONMENTAL SCIENCE, CHEMICAL AND PHARMACEUTICAL UNIFESP ^{*}johana2716@usp.br

S3P770. ACTIVATION OF CANNABINOID CB1 RECEPTOR PREVENTS ANXIOGENIC-LIKE EFFECT AND DECREASE IN GABA LEVELS INDUCED BY ACUTE RESTRAIN STRESS

WALDO SILVA^{1*}, NADYME ASSAD¹, DANIELLE BRAGA¹, TATIANA ALVEZ¹, TAYANA CARVALHO¹, EVANDER BATISTA¹, KAREN OLIVEIRA¹, ANDERSON HERCULANO¹

¹ UNIVERSIDADE FEDERAL DO PARÁ

*wlucasluz18@gmail.com

S3P771. INVOLVEMENT OF SEROTONERGIC SYSTEM IN THE ANXIOLYTIC LIKE EFFECT OF NEW PIPERAZINE DERIVATIVE-LOFM104

DAIANY SILVA^{1,2*}, DAIANY SILVA^{1,2}, DAYANE SILVA^{1,2}, DANILLO OLIVEIRA^{1,2}, MERITA GONÇALVES^{1,2}, LORRANE MOREIRA^{1,2}, CARINA CARDOSO^{1,2}, RICARDO MENEGATTI^{1,2}, ELSON COSTA^{1,2} ¹ FEDERAL UNIVERSITY OF GOIÁS; ² LABORATORY OF PHARMACOLOGY OF NATURAL AND SYNTHETIC PRODUCTS

*daiany_priscilla@hotmail.com

S3P772. NEUROPROTECTIVE EVIDENCE OF ALPHA-LIPOIC ACID ON THE MEMORY DEFICIT INDUCED BY CORTICOSTERONE

CAREN NÁDIA SOARES DE SOUSA^{1*}, LUCAS NASCIMENTO MENESES¹, INGRIDY DA SILVA MEDEIROS¹, GERMANA SILVA VASCONCELOS¹, ÍTALO ROSAL LUSTOSA¹, REGILANE CORDEIRO¹ DOS SANTOS¹, NATÁLIA CASTELO BRANCO MATOS¹, SILVÂNIA MARIA MENDES VASCONCELOS¹

¹ FEDERAL UNIVERSITY OF CEARÁ *carensoarez@yahoo.com.br

S3P773. NEUROPEPTIDE S EFFECTS ON A MODEL OF ATTENTION-DEFICIT HYPERACTIVITY DISORDER LISIANE SOUZA^{1*}, PRISCILA SIQUEIRA¹, ALEXANDRE RODRIGUES¹, ELAINE GAVIOLI¹, PABLO PANDOLFO¹

¹ FLUMINENSE FEDERAL UNIVERSITY, NITERÓI-RJ, BRAZIL

*lisianesouzaa@vahoo.com.br

^{*}angiesalles@gmail.com

S3P774. COCAINE COMPULSIVE BEHAVIOR AND ITS IMPLICATIONS IN THE CHOLINERGIC MUSCARINIC SYSTEM

<u>LIDIA SPELTA</u>1*, YULI TORRES¹, RAPHAEL GARCIA², ROSANA CAMARINI¹, TANIA MARCOURAKIS¹

¹ DEPARTMENT OF CLINICAL AND TOXICOLOGICAL ANALYSIS, FCF/ USP; ² INSTITUTE OF ENVIRONMENTAL SCIENCES, CHEMICAL AND PHARMACEUTICAL UNIFESP

*lidia.ews@usp.br

S3P775. GUANOSINE-PROMOTED

NEUROPROTECTION IS DEPENDENT ON ADENOSINE A2A RECEPTORS EXPRESSION: EVIDENCE OF GUANOSINE INTERACTION WITH ADENOSINE A1/ A2A RECEPTORS HETEROMERS

CARLA TASCA^{1*}, DÉBORA LANZNASTER¹, MARICEL GOMEZ-SOLER², VÍCTOR FERNÁNDEZ-DUEÑAS², FRANCISCO CIRUELA² ¹ DEPARTMENT OF BIOCHEMISTRY, FEDERAL UNIVERSITY OF SANTA CATARINA, BRAZIL; ² NEUROPHARMACOLOGY AND PAIN RESEARCH GROUP, UNIVERSITY OF BARCELONA, SPAIN

*carla.tasca@ufsc.br

S3P776. EFFECTS OF MATERNAL SEPARATION AND OF EXPOSURE TO INTERMITTENT ETHANOL BINGE DRINKING IN ADOLESCENT MALE WISTAR RATS: EFFECTS ON BEHAVIOR AND ON PARAMETERS OF OXIDATIVE STRESS

VANESSA TELLES^{1*}, MARTIELO DA MATA¹, DANUSA ARCEGO², ANA PAULA TONIAZZO², VICTOR MARQUES¹, RANDRIELY DE LIMA¹, BITTENCOURT¹, RODRIGUES¹, DALMAZ², BITTENCOURT¹

¹ FEDERAL UNIVERSITY OF ESPIRITO SANTO; ² FEDERAL UNIVERSITY OF RIO GRANDE DO SUL

*tellesvga@gmail.com

S3P777. EFFECTS OF TERPENOIDS ON C. ELEGANS NEUROMUSCULAR TRANSMISSION

ORNELLA TURANI^{1*}, GUILLERMINA HERNANDO¹, CECILIA BOUZAT¹

¹INIBIBB

*ornellaturani@gmail.com

S3P778. STUDY OF DORSAL RAPHE NUCLEUS AS A NEURAL SUBSTRATE FOR MELANIN-CONCENTRATING HORMONE (MCH) PRODEPRESSIVE ACTION IN RATS

<u>JESSIKA URBANAVICIUS</u>^{1*}, PATRICIA LAGOS², PABLO TORTEROLO², CECILIA SCORZA¹

¹ DEPARTEMENT OF EXPERIMENTAL NEUROPHARMACOLOGY, IIBCE; ² DEPARTMENT OF PHYSIOLOGY, FACULTY OF MEDICINE, UDELAR *jessikau@gmail.com

S3P779. EFFECT OF MIRTAZAPINE AND LIPOIC ACID ASSOCIATION ON BRAIN-DERIVED NEUROTROPHIC FACTOR CONCENTRATION IN A DEPRESSION MODEL INDUCED BY CORTICOSTERONE

TATIANA DE QUEIROZ OLIVEIRA¹, <u>GERMANA SILVA VASCONCELOS</u>¹*, CAREN NÁDIA SOARES SOUSA¹, NAIARA COELHO XIMENES¹, JOSÉ EDUARDO RIBEIRO HONÓRIO JÚNIOR²¹, ÍTALO ROSAL LUSTOSA¹, KÁTIA CILENE FERREIRA DIAS¹, FRANCISCA CLÉA FLORENÇO SOUSA¹, NATÁLIA CASTELO BRANCO MATOS¹, SILVÂNIA MARIA MENDES VASCONCELOS¹

¹NEUROPSYCHOPHARMACOLOGY LABORATORY, UFC, FORTALEZA CE BRAZIL; ² LABORATORY OF PHARMACOLOGY, MEDICAL SCHOOL, UNICHRISTUS, FORTALEZA CE BRAZIL

*silvania vasconcelos@yahoo.com.br

S3P780. INVOLVEMENT OF PHOSPHATIDYLINOSITOL-3 KINASE GAMMA IN THE ANTICONVULSANT AND NEUROPROTECTIVE EFFECTS OF CANNABIDIOL

ISABEL VIEIRA DE ASSIS LIMA^{1*}, EDLEUSA MARQUES LIMA BATISTA¹, IVAN LUCAS BRANDAO¹, PAULA MARIA QUAGLIO BELLOZI¹, FABIOLA MARA RIBEIRO², ANTONIO CARLOS PINHEIRO DE OLIVEIRA¹

¹DEPARTMENT OF PHARMACOLOGY, UFMG, BELO HORIZONTE, MG, BRAZIL.; ²DEPARTMENT OF BIOCHEMISTRY, UFMG, BELO HORIZONTE, MG, BRAZIL. *bel.vieira@yahoo.com.br

Neuroendocrinology and Neuroimmunology

S3P781. DAMAGE IN THE BLOOD-BRAIN BARRIER, PLACENTAL BARRIER AND BEHAVIORAL CHANGES IN LONG-TERM IN ANIMALS INDUCED INFECTION BY LIPOPOLYSACCHARIDE IN THE PRENATAL PERIOD

LUTIANA R SIMÕES^{1*}, JAQUELINE S GENEROSO¹, DIOGO DOMINGUINI¹, ALLAN M COLLODEL¹, CRISTIANO J FALLER¹, ALEXANDRA I ZUGNO¹, JOÃO QUEVEDO^{1,2}, TATIANA BARICHELLO^{1,2} ¹ UNIVERSIDADE DO EXTREMO SUL CATARINENSE; ² THE UNIVERSITY OF TEXAS HEALTH SCIENCE CENTER AT HOUSTON

*Irs@unesc.net

S3P782. DEVELOPMENT OF THE VISUAL SYSTEM IN A HYPOTHYROIDISM MODEL

<u>NATÁLIA RIBEIRO</u>1*, WANDILSON RODRIGUES JUNIOR¹, KAREN OLIVEIRA¹, CLAUDIO SERFATY¹

¹ UNIVERSIDADE FEDERAL FLUMINENSE *nataliacristina@id.uff.br

S3P783. DAMAGE ASSOCIATED MOLECULAR PATTERN HMGB-1 EFFECTS IN NEURONAL SURVIVAL AND PROPAGATION OF REACTIVE GLIOSIS

<u>GERARDO ROSCISZEWSKI</u>1*, JERONIMO LUKIN¹, VANESA CADENA¹, FLAVIA GOMES², JAVIER RAMOS¹

¹INSTITUTO DE BIOLOGIA CELULAR Y NEUROCIENCIAS PROF. E. DE ROBERTIS UBA CONICET; ² INSTITUTO DE CIENCIAS BIOMEDICAS UNIVERSIDAD FEDERAL DE RIO DE JANEIRO

*geragen@live.com

S3P784. EFFECT OF CHRONIC INFLAMMATORY CONDITIONS ON MICROGLIAL CELL MORPHOLOGY AND FUNCTION IN THE HIPPOCAMPUS OF ADULT APP/PS1 MICE

NICOLE SALGADO CORTES^{1*}, PAOLA MUÑOZ¹, MANUEL MUNDACA¹, ROMMY VON BERNHARDI¹

¹ DEPARTMENT OF NEUROLOGY, SCHOOL OF MEDICINE, PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

S3P785. THYROID HORMONES INDUCE NEURITE OUTGROWTH AND SYNAPTOGENESIS OF CEREBRAL CORTICAL NEURONS

RÔMULO SPERDUTO DEZONNE^{1*}, SHEILA ARAÚJO ESPÍRITO-SANTO¹, VINICIUS GABRIEL COUTINHO COSTA¹, JOICE STIPURSKY¹, FLÁVIA CARVALHO ALCANTARA GOMES¹

¹ INSTITUTO DE CIÊNCIAS BIOMÉDICAS, UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. BRAZIL

S3P786. SYNERGISTIC EFFECTS OF THE JOINT ADMINISTRATION OF KETAMINE AND DIFFERENT ANTIDEPRESSANT CLASSES ON BEHAVIOR AND OXIDATIVE STRESS

TALITA TUON^{1*}, GISLAINE RÉUS¹, AMANDA MACIEL¹, HELENA ABELAIRA¹, ZULEIDE IGNÁCIO¹, MARIA AUGUSTA SANTOS¹, AIRAM MOURA¹, DANYELA MATOS¹, JÚLIA P. DEMO¹, JÚLIA B. I. DA SILVA¹, LUCINEIA G. DANIELSKI¹, FABRICIA PETRONILHO¹, JOÃO QUEVEDO¹

S3P787. EFFECTS OF CHRONIC EXERCISE ON THE IMMUNE SYSTEM: IMPLICATION OF THE CANNABINERGIC SYSTEM

SALVADOR VALENCIA-SÁNCHEZ^{1*}, JORGE MORALES-MONTOR², OSCAR PROSPÉRO-GRACÍA³, MARCELA PALOMERO-RIVERO¹, DIANA MILLAN-ALDACO¹, MAGDALENA GUERRA-CRESPO¹, RENÉ DRUCKER-COLÍN¹

¹ INSTITUTO DE FISIOLOGÍA CELULAR, UNAM; ² INSTITUTO DE INVESTIGACIONES BIOMÉDICAS, UNAM; ³ FACULTAD DE MEDICINA, UNAM *oistrak@gmail.com

S3P788. ACUTE AND CHRONIC EFFECTS OF TYPE 1 DIABETES MELLITUS ON THE AVERSIVE MEMORY AND NEUROIMMUNOMODULATION IN ADOLESCENCE RATS

FRANCELE VALENTE PIAZZA^{1,2,3*}, ETHIANE SEGABINAZI^{1,2,3}, ANDRÉ LUÍS FERREIRA DE MEIRELES^{1,2,3}, FILIPE MEGA DOS SANTOS^{1,2,3}, CHRISTIANO DE FIGUEIREDO SPINDLER^{1,2,3}, OTÁVIO AMÉRICO AUGUSTIN^{2,3}, GABRIELA DOS SANTOS SALVALAGGIO^{2,3}, MATILDE ACHAVAL^{1,2}, SIMONE MARCUZZO^{1,2,3}

¹PROGRAMA DE PÓS-GRADUAÇÃO EM NEUROCIÊNCIAS, UFRGS, RS, BRAZIL; ² LABORATÓRIO DE HISTOFISIOLOGIA COMPARADA, DEPARTAMENTO DE CIÊNCIAS MORFOLÓGICAS /ICBS.; ³ GRUPO DE PESQUISA EM PLASTICIDADE DO NEURODESENVOLVIMENTO, UFRGS, RS/BRAZIL

S3P789.PROLACTINMEDIATES NEUROPROTECTION AGAINST EXCITOTOXICITY IN PRIMARY CELL CULTURES OF HIPPOCAMPAL NEURONS VIA ITS RECEPTOR

EDGAR VERGARA CASTAÑEDA^{1*}, NADIA A RIVERO SEGURA¹, DAVID R. GRATTAN², HERMINIA PASANTES-MORALES³, MARTHA PÉREZ-DOMÍNGUEZ³, ALEJANDRA ERIKA CABRERA REYES¹, MARCO CERBÓN^{1,4}

¹FACULTAD DE QUÍMICA, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO; ² CENTER FOR NEUROENDOCRINOLOGY AND DEPARTMENT OF ANATOMY, UNIVERSITY OF OTAGO, NEW ZEALAND; ³ INSTITUTO DE FISIOLOGÍA CELULAR, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO; ⁴ UNIDAD DE INVESTIGACIÓN EN REPRODUCCIÓN HUMANA, INSTITUTO NACIONAL DE PERINATOLOGÍA

S3P790. BEHAVIORAL AND NEUROCHEMICAL PROFILES OF KETAMINE IN RESPONSE TO LIPOLYSACCHARIDE (LPS) EXPOSURE DURING EARLY NEONATAL PERIOD

GISLAINE Z. REUS^{1*}, GABRIELA D. COLPO², GISELLI SCAINI², JEAN P. OSES², JOAO QUEVEDO², TATIANA BARICHELLO²

¹ UNIVERSIDADE DO EXTREMO SUL CATARINENSE; ² THE UNIVERSITY OF TEXAS HEALTH SCIENCE CENTER AT HOUSTON

S3P791. EXPRESSION AND FUNCTIONAL ROLE OF NEURONAL ALPHA7 NICOTINIC RECEPTOR IN HUMAN NK CELLS

SAMANTA ZANETTI^{1*}, ANDREA ZIBLAT¹, NICOLÁS TORRES¹, NORBERTO ZWIRNER¹, CECILIA BOUZAT¹

¹ INSTITUTO DE INVESTIGACIONES BIOQUÍMICAS (INIBIBB, UNS-CONICET) *samzanetti@gmail.com

^{*}nasalgad@uc.cl

^{*}rdezonne@gmail.com

¹UNESC

^{*}talitatuon@gmail.com

^{*}francele valente@hotmail.com

 $^{^*}$ vergarae@gmail.com

^{*}gislainezilli@hotmail.com

Sensory Systems

S3P792. NEURONAL CODING OF EXPECTANCY SIGNALS IN THE CEREBRAL CORTEX INDUCED BY REPETITIVE TACTILE STIMULI

MATÍAS GOLDIN1*, DANIEL SHULZ1

¹ UNITÉ DE NEUROSCIENCE, INFORMATION ET COMPLEXITÉ, UNIC-CNRS, GIF-SUR-YVETTE, 91190, FRANCE

*goldin@unic.cnrs-gif.fr

S3P793. USING MULTI-VIBRISSAE TACTILE STIMULATION TO UNVEIL NEURONAL CODING IN THE SECONDARY SOMATOSENSORY CORTEX MATÍAS GOLDIN^{1*}, EVAN HARRELL¹, DANIEL SHULZ¹

¹UNITÉ DE NEUROSCIENCE, INFORMATION ET COMPLEXITÉ, UNIC-CNRS, GIF-SUR-YVETTE, 91190, FRANCE

*goldin@unic.cnrs-gif.fr

S3P794. PROTECTIVE EFFECT OF THE EUTERPE OLERACEA DURING THE DEVELOPMENT OF DIABETIC RETINOPATHY IN ANIMAL MODEL EDWIGES OLIVEIRA^{1*}, LUANA GOMES¹, ALÓDIA BRASIL¹, SIBELE TRINDADE¹, ANDERSON HERCULANO¹, FERNANDO ROCHA¹

*INSTITUTE OF BIOLOGICAL SCIENCES, FEDERAL UNIVERSITY OF PARÁ
*edwigesdeoliveira@hotmail.com

S3P795. POLARIZATION VISION IN GOLDFISH: DO THEY STARTLE TO POLARIZED LIGHT LOOMS? <u>SANTIAGO OTERO CORONEL</u>^{1*}, MARTÍN BERÓN DE ASTRADA¹, VIOLETA MEDAN¹

¹IFIBYNE-CONICET AND FCEN-UBA

*oterocoronel@gmail.com

S3P796. OBJECTIVE ELECTROPHYSIOLOGICAL MEASURES OF THE LOMBARD EFFECT

PAVEL PRADO^{1,2*}, CHRISTIAN CASTRO^{1,2}, GABRIEL GALINDO¹, MATÍAS ZAÑARTU¹

¹ UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA; VALPARAÍSO, CHILE; ² UNIVERSIDAD DE VALPARAÍSO, VALPARAÍSO, CHILE *pavel.prado@usm.cl

S3P797. DIFFERENTIAL RESPONSE OF THE RETINAL NEURAL CODE WITH RESPECT TO THE SPARSENESS OF NATURAL IMAGES

<u>CESAR RAVELLO</u>^{1*}, MARÍA-JOSÉ ESCOBAR², LAURENT PERRINET³, ADRIAN PALACIOS^{1,4}

¹ CENTRO INTERDISCIPLINARIO DE NEUROCIENCIAS DE VALPARAÍSO, UNIVERSIDAD DE VALPARAÍSO; ² DEPARTAMENTO DE ELECTRÓNICA, UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA; ³ TEAM INVIBE, INSTITUT DE NEUROSCIENCES DE LA TIMONE; ⁴ INSTITUTO DE SISTEMAS COMPLEJOS DE VALPARAÍSO

*cesar.ravello@cinv.cl

S3P798. ROLE OF EYE MOVEMENTS DURING MOTOR LEARNING BY IMITATION

<u>BETEL RIVERO</u>^{1,2*}, KRISTOPHER MUÑOZ^{1,2}, PABLO BURGOS³, PEDRO MALDONADO^{1,2}

¹ LABORATORIO DE NEUROSISTEMAS, PROGRAMA DE FISIOLOGÍA Y BIOFÍSICA, FACULTAD DE MEDICINA; ² BIOMEDICAL NEUROSCIENCE INSTITUTE. FACULTY OF MEDICINE, UNIVERSIDAD DE CHILE; ³ ESCUELA DE KINESIOLOGÍA. FACULTAD DE MEDICINA. UNIVERSIDAD DE CHILE

*klga.rivero@gmail.com

S3P799. RECOGNISING THE INFLUENCE OF INTUITIVE KNOWLEDGE BY RECORDING EYE MOVEMENTS

BRENDA RYAN^{1*}, KARINA RODRIGUEZ^{1,2}, GUILLERMINA GOMEZ¹, GUSTAVO GASANEO^{1,2}, LUJAN FREIJE^{1,2}, LEONARDO DIMIERI^{1,2}

¹ DEPARTAMENTO DE FÍSICA, UNIVERSIDAD NACIONAL DEL SUR; ² IFISUR-CONICET

*brenda.ryan238@gmail.com

S3P800. ORGANOTYPIC RETINAL EXPLANT CULTURES AS A NOVEL AND VERSATILE IN VITRO MODEL FOR DIABETIC RETINOPATHY

OLIVER SCHMACHTENBERG^{1*}, JOAQUÍN VALDÉS¹, LAURA TRACHSEL², AYSE SAHABOGLU³, DRAGANA TRIFUNOVIC³, MARÍA MIRANDA², FRANCOIS PAOUET-DURAND³

¹ CENTRO INTERDISCIPLINARIO DE NEUROCIENCIA DE VALPARAÍSO, UNIVERSIDAD DE VALPARAÍSO, CHILE; ² DEPARTAMENTO DE CIENCIAS BIOMÉDICAS, UNIVERSIDAD CEU CARDENAL HERRERA, VALENCIA, ESPAÑA; ³ INSTITUTE FOR OPHTHALMIC RESEARCH, UNIVERSITY OF TÜBINGEN, GERMANY

 * oliver.schmachtenberg@uv.cl

S3P801. SENSING TACTILE REGULARITY: A NOVEL 2-ALTERNATIVE FORCED-CHOICE TASK IN THE RAT PAULINE KEREKES, AURÉLIE DARET, VALÉRIE EGO-STENGEL, DANIEL SHULZ^{1*}

¹UNITÉ DE NEUROSCIENCE, INFORMATION ET COMPLEXITÉ, UNIC-CNRS, GIF-SUR-YVETTE, 91190, FRANCE

SUPPORT: THE HUMAN FRONTIER SCIENCE PROGRAM ORGANIZATION AND ANR NEUROWHISK.

 * shulz@unic.cnrs-gif.fr

S3P802. IN VIVO RECORDINGS FROM THE OPTIC NERVE OF RAT

<u>JORGE SOLETTA</u>^{1*}, FERNANDO FARFÁN¹, ANA ALBARRACÍN¹, ALVARO PIZÁ¹, FACUNDO LUCIANNA¹, JUAN SORIA¹, CARMELO FELICE¹

¹ LABORATORIO DE MEDIOS E INTERFASES AND DEPARTAMENTO DE BIOINGENIERÍA, FACET — UNT. INSTITU

*jorge.soletta@gmail.com

S3P803. CB2 RECEPTOR EXPRESSION AND ENDOCANNABINOID ENZYMES IN RAT RETINA AND ITS MODIFICATIONS AFTER CONTINUOUS ILLUMINATION

MANUEL SOLIÑO^{1*}, ESTER MARÍA LÓPEZ¹, MARINA VACOTTO¹, NOELÍ MARTIGNONE¹, LEONARDO JUAREZ¹, MANUEL REYFUNES¹, IGNACIO ILARRAYOZ², ALFREDO MARTÍNEZ², ELENA GIRARDI¹, JUAN JOSÉ LÓPEZ-COSTA¹

¹ IBCN "PROF. E. DE ROBERTIS", FACULTAD DE MEDICINA; UBA-CONICET, BUENOS AIRES, ARGENTINA; ² ANGIOGENESIS STUDY GROUP, CENTER FOR BIOMEDICAL RESEARCH OF LA RIOJA(CIBIR),LOGROÑO, SPAIN

*solino.manu@gmail.com

S3P804. LOW-VOLTAGE ACTIVATED CALCIUM CURRENT IN THE VESTIBULAR AFFERENT NEURONS OF THE RAT

ENRIQUE SOTO^{1*}, ENOCH LUIS¹, MARICRUZ RANGEL¹, ROSARIO VEGA¹

¹ INSTITUTO DE FISIOLOGÍA, BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA, MÉXICO

S3P805. SELECTIVE ATTENTION TO VISUAL STIMULI USING AUDITORY DISTRACTORS IS ALTERED IN ALPHA-9 NICOTINIC RECEPTOR SUBUNIT KNOCKOUT MICE

GONZALO TERREROS^{1*}, PASCAL JORRATT¹, CRISTIAN AEDO^{1,2}, ANA BELÉN ELGOYHEN^{3,4}, PAUL H. DELANO^{1,5}

¹ PROGRAMA DE FISIOLOGÍA Y BIOFÍSICA, ICBM, FACULTAD DE MEDICINA, UNIVERSIDAD DE CHILE; ² DEPARTAMENTO DE TECNOLOGÍA MÉDICA, FACULTAD DE MEDICINA, UNIVERSIDAD DE CHILE; ³ INGEBI, DR. HÉCTOR N. TORRES, CONSEJO NACIONAL DE INVESTIGACIONES CIENTÍFICAS Y TÉCNICAS; ⁴ INSTITUTO DE FARMACOLOGÍA, FACULTAD DE MEDICINA, UNIVERSIDAD DE BUENOS AIRES, ARGENTINA; ⁵ DEPARTAMENTO DE OTORRINOLARINGOLOGÍA, HOSPITAL CLÍNICO DE LA UNIVERSIDAD DE CHILE ® gonzalobenjamin.terreros@gmail.com

S3P806. VESTIBULAR DEVICE FOR ORIENTATION CORRECTION IN BALANCE DISORDERS AND IN MICROGRAVITY

ROSARIO VEGA^{1*}, VLADIMIR ALEXANDROV², TAMARA ALEXANDROVA³, ENRIQUE SOTO¹

¹ INSTITUTO DE FISIOLOGÍA, BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA; ² FACULTAD DE FÍSICO MATEMÁTICAS, BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA; ³ UNIVERSIDAD ESTATAL DE MOSCÚ

*axolotl_56@yahoo.com.mx

S3P807. CANNABINOID RECEPTOR ACTIVATION REGULATES NON-RECIPROCAL INHIBITORY FEEDBACK ONTO OFF BIPOLAR CELLS OF RAT RETINA

ALEX VIELMA^{1,2*}, OLIVER SCHMACHTENBERG¹, ANDRÉS

CHÁVEZ¹, MARCO FUENZALIDA²

¹ CENTRO INTERDISCIPLINARIO DE NEUROCIENCIA DE VALPARAÍSO, UNIVERSIDAD DE VALPARAÍSO, CHILE; ² CENTRO DE NEUROBIOLOGÍA Y PLASTICIDAD CEREBRAL, UNIVERSIDAD DE VALPARAÍSO, CHILE; *alexvielma@gmail.com

S3P808. MENTHOL-INDUCED HYPERTHERMIA IN RATSISATTENUATED AFTERDAILY ADMINISTRATION THROUGH A SHIFT IN THE THERMOREGULATORY EFFECTOR RECRUITMENT

<u>ROBSON VIZIN</u>^{1*}, DÉBORA ISHIKAWA¹, ARIOVALDO CRUZ-NETO², DANIEL CARRETTIERO^{1,3}, CAMILA ALMEIDA^{1,3}

¹GRADUATE PROGRAM ON NEUROSCIENCE AND COGNITION, UNIVERSIDADE FEDERAL DO ABC, SP, BRAZIL; ²DEPT OF ZOOLOGY, BIOSCIENCES INSTITUTE, SÃO PAULO STATE UNIVERSITY, RIO CLARO, SP, BRAZIL; ³NATURAL AND HUMANITIES SCIENCE CENTER, UNIVERSIDADE FEDERAL DO ABC, SP, BRAZIL *robson.vizin@ufabc.edu.br

Synaptic Transmission, Excitability and Glia

S3P809. A CAMKII ENDOGENOUS INHIBITOR REGULATES HOMEOSTATIC SYNAPTIC PLASTICITY IN THE HIPPOCAMPUS

<u>GABRIELA PINO</u>1*, PABLO VERGARA¹, JORGE VERA¹, CECILIA VERGARA¹, MAGDALENA SANHUEZA¹

¹ DEPARTAMENTO DE BIOLOGÍA, FACULTAD DE CIENCIAS, UNIVERSIDAD DE CHILE

 * gabriela.pino.174@gmail.com

S3P810. NMDA EFFICIENTLY EVOKES DENDRITIC RELEASE OF NEUROPEPTIDES: A QUANTITATIVE REAL TIME ASSESSMENT

SOLEDAD PITRA1,2*, JAVIER STERN1

¹ MEDICAL COLLEGE OF GEORGIA, AUGUSTA UNIVERSITY; ² UNIVERSIDAD NACIONAL DE CORDOBA

*mpitra@augusta.edu

S3P811. EFFECTS OF LPS-INDUCED TOLL-LIKE RECEPTOR 4 (TLR4) UPREGULATION ON SPINAL MOTONEURON RESPONSE TO PERIPHERAL AXOTOMY

<u>PATRÍCIA RIBEIRO</u>1*, MATHEUS PEREZ¹, ALEXANDRE OLIVEIRA¹

¹ UNIVERSITY OF CAMPINAS *paty.ribeiro2@hotmail.com

S3P812. PERSISTENT HYPERALGESIA AND SPINAL CORD GLIAL REACTION FOLLOWING NEONATAL NOCICEPTIVE STIMULATION

^{*}esoto24@gmail.com

<u>GREICE ANNE RODRIGUES DA SILVA</u>^{1,2*}, ANA LEDA BERTONCINI SIMÕES ³, ALEXANDRE LEITE RODRIGUES DE OLIVEIRA², VALÉRIA PAULA SASSOLI FAZAN ^{1,3}

¹ DEPARTMENT OF NEUROSCIENCES AND BEHAVIORAL SCIENCE, FMRP/ USP, BRAZIL; ² DEPARTMENT OF STRUCTURAL AND FUNCTIONAL BIOLOGY, INSTITUTE OF BIOLOGY, UNICAMP, BRAZIL; ³ DEPARTMENT OF SURGERY AND ANATOMY, FMRP/USP, BRAZIL

*greanne rs@hotmail.com

S3P813. TIGHT COUPLING OF ASTROCYTE ENERGY METABOLISM TO EXCITATORY ACTIVITY REVEALED BY GENETICALLY ENCODED FRET NANOSENSORS IVÁN RUMINOT^{1,2*}, JANA SCHMÄLZLE¹, BELÉN LEYTON², L.F. BARROS², J.W. DEITMER¹

¹ UNIVERSITY OF KAISERSLAUTERN, GERMANY; ² CENTRO DE ESTUDIOS CIENTÍFICOS (CECS), VALDIVIA, CHILE

*iruminot@cecs.cl

S3P814. GLYCINE RECEPTORS IN MESENCEPHALIC TRIGEMINAL NEURONS OF THE RAT: ELECTROPHYSIOLOGICAL AND MORPHOLOGICAL STUDIES

VALENTINA SILVEIRA^{1*}, FRANCISCO MORALES¹, INÉS POSE¹

DEPARTAMENTO DE FISIOLOGÍA, FACULTAD DE MEDICINA, UDELAR.
MONTEVIDEO, URUGUAY

*ipose@fmed.edu.uy

S3P815. DISTRIBUTION OF HIPPOCAMPAL CONNEXIN 43 AND ITS ROLE IN CELL DEATH AFTER NEONATAL ANOXIA

<u>SILVIATAKADA</u>1*, NATÁLIA DIAS¹, JULIANE IKEBARA¹, DÉBORA CARDOSO¹, BEATRIZ CAMPOS¹, TALITHA BRETHERICK¹, FERNANDA CABOCLO¹. ALEXANDRE KIHARA¹

¹UNIVERSIDADE FEDERAL DO ABC

*takada.silvia@gmail.com

S3P816. THE INWARD RECTIFIER POTASSIUM CURRENT IKIR REGULATES THE INTRINSIC OSCILLATORY PROPERTIES OF THALAMOCORTICAL NEURONS

ANGELA TISSONE^{1,2,3*}, JAVIER PORTILLO⁴, GERMAN MATO^{1,2,5}, MARCELA NADAL^{1,2,3}, YIMY AMARILLO^{1,2}

¹ CONSEJO NACIONAL DE INVESTIGACIONES CIENTÍFICAS Y TÉCNICAS, CONICET; ² FÍSICA ESTADÍSTICA E INTERDISCIPLINARIA, CENTRO ATÓMICO BARILOCHE; ³ UNIVERSIDAD NACIONAL DEL COMAHUE; ⁴ INSTITUTO BALSEIRO; ⁵ COMISIÓN NACIONAL DE ENERGÍA ATÓMICA. SAN CARLOS DE BARILOCHE, ARGENTINA

*angie_sone@hotmail.com

S3P817. FUNCTIONAL PROPERTIES AND ION CHANNELS MEDIATING ACETYLCHOLINE RELEASE AT THE MOUSE MEDIAL OLIVOCOCHLEAR-OUTER

HAIR CELL SYNAPSE AT THE ONSET OF HEARING LUCAS G. VATTINO^{1*}, PAUL A. FUCHS^{2,3}, ANA BELÉN ELGOYHEN^{1,4}, ELEONORA KATZ^{1,5}

¹ INSTITUTO DE INVESTIGACIONES EN INGENIERÍA GENÉTICA Y BIOLOGÍA MOLECULAR (INGEBI-CONICET); ² DEPARTMENT OF OTOLARYNGOLOGY, HEAD AND NECK SURGERY, JOHNS HOPKINS SCHOOL OF MEDICINE; ³ DEPARTMENT OF NEUROSCIENCE, JOHNS HOPKINS SCHOOL OF MEDICINE; ⁴ TERCERA CÁTEDRA DE FARMACOLOGÍA, FACULTAD DE MEDICINA, UBA; ⁵ DEPARTAMENTO DE FISIOLOGÍA, BIOLOGÍA MOLECULAR Y CELULAR, FCEN, IIRA

*lucvatt@gmail.com

S3P818. FAST HOMEOSTATIC SYNAPTIC SCALING IN ACUTE HIPPOCAMPAL SLICES

<u>PABLO VERGARA</u>^{1*}, GABRIELA PINO¹, JORGE VERA¹, MAGDALENA SANHUEZA¹

¹ DEPARTAMENTO DE BIOLOGÍA, FACULTAD DE CIENCIAS, UNIVERSIDAD DE CHILF

*thepandora@hotmail.com

S3P819. CHANGES IN THE KINETIC PROPERTIES OF THE A9A10 HAIR CELL NICOTINIC RECEPTOR INCREASE THE LEVEL OF OLIVOCOCHLEAR INHIBITION IN AUDITORY SYNAPSES

CAROLINA WEDEMEYER^{1*}, LUCAS VATTINO¹, JIMENA BALLESTERO¹, ELEONORA KATZ^{1,2}, ANA BELEN ELGOYHEN^{1,3}

¹ INSTITUTO DE INVESTIGACIONES EN INGENIERÍA GENÉTICA Y BIOLOGÍA MOLECULAR - INGEBI (CONICET); ² UNIVERSIDAD DE BUENOS AIRES, DEPTO. FISIOLOGÍA, BIOLOGÍA CELULAR Y MOLECULAR, FCEN; ³ UNIVERSIDAD DE BUENOS AIRES, INSTITUTO DE FARMACOLOGÍA, FACULTAD DE MEDICINA *cwedemey@qmail.com

S3P820. CHRONIC STRESS ALTERS SYNAPTIC EXCITATORY-INHIBITORY RATIO IN AN INTERLEUKIN-6 TRANS-SIGNALING-DEPENDENT MANNER IN THE PREFRONTAL CORTEX OF THE MOUSE

ERIC ESQUIVEL-RENDON¹, JORGE VARGAS-MIRELES¹, ROBERTO CUEVAS-OLGUIN¹, PALMIRA ACOSTA-MARES¹, MARCELA MIRANDA-MORALES¹, NADIA SADERI¹, ROBERTO SALGADO-DELGADO¹, STEFAN ROSE-JOHN², MARCO ATZORI¹*

¹ UASLP, MEXICO; ² CHRISTIAN ALBRECHT UNIVERSITY, KIEL, GERMANY *marco_atzori@hotmail.com

Theoretical and Computational Neuroscience

S3P821. MOTION DIRECTION SELECTIVITY IN CENTRAL AND PERIPHERAL RETINAL GANGLION CELLS IN A DIURNAL RODENT

MÓNICA OTERO1*, CÉSAR REYES1, RUBÉN HERZOG2, FELIPE

OLIVARES², ADRIÁN G. PALACIOS^{2,3}, MARÍA-JOSÉ ESCOBAR⁴

¹ UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA; ² CENTRO INTERDISCIPLINARIO DE NEUROCIENCIA DE VALPARAÍSO; ³ UNIVERSIDAD DE VALPARAÍSO; ⁴ UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA *monicaot2001@gmail.com

S3P822. A SIMPLIFIED MODEL FOR ELECTROPHYSIOLOGICAL ACTIVITY

<u>ALVARO GABRIEL PIZÁ</u>^{1,2*}, FERNANDO DANIEL FARFÁN^{1,2}, ANA LÍA ALBARRACÍN^{1,2}, FACUNDO ADRIÁN LUCIANNA^{1,2}, JORGE HUMBERTO SOLETTA^{1,2}, CARMELO JOSÉ FELICE^{1,2}

¹ INSTITUTO SUPERIOR DE INVESTIGACIONES BIOLÓGICAS - CONICET-UNT; ² DPTO DE BIOINGENIERÍA - FACET-UNT *piza.ag@gmail.com

S3P823. THE RAT VIBRISSA AS A MECHANICAL SENSOR: FREQUENCY RESPONSE ANALYSIS OF THE VIBRISSAL-FOLLICLE-NERVE SYSTEM

<u>ALVARO GABRIEL PIZÁ^{1,2*}, ANA LÍA ALBARRACÍN^{1,2}, FERNANDO DANIEL FARFÁN^{1,2}, CARMELO JOSÉ FELICE^{1,2}</u>

¹ INSTITUTO SUPERIOR DE INVESTIGACIONES BIOLÓGICAS (CONICET-UNT); ²LABORATORIO DE MEDIOS E INTERFASES (DPTO DE BIOINGENIERÍA - UNT) *piza.ag@gmail.com

S3P824. ELECTRORETINOGRAPHY: ANALYSIS BY PERMUTATION ENTROPY

MARÍA LUZ QUINTEROS QUINTANA1*, MARÍA MERCEDES BENEDETTO², MARÍA ANA CONTÍN², ANA CAROLINA MALDONADO¹

¹ FACULTAD DE CIENCIAS EXACTAS, FÍSICAS Y NATURALES (UNC); ² CIQUIBIC-CONICET. FACULTAD DE CIENCIAS QUÍMICAS (UNC) *mluzgq@qmail.com

S3P825. IDENTIFICATION OF FUNCTIONAL INTERCONNECTED NEURONS

JORGE SOLETTA1*, FERNANDO FARFÁN¹, ANA ALBARRACÍN¹, ALVARO PIZÁ¹, FACUNDO LUCIANNA¹, JUAN SORIA¹, CARMELO FELICE¹

¹ LABORATORIO DE MEDIOS E INTERFASES AND DEPARTAMENTO DE BIOINGENIERÍA, FACET — UNT. INSTITU *jorge.soletta@gmail.com

S3P826. CROSS FREQUENCY COUPLING ANALYSIS OF LOCAL FIELD POTENTIALS RECORDED FROM RAT HIPPOCAMPAL AND PARAHIPPOCAMPAL REGIONS DURING BEHAVIORAL TASKS

JAVIER VELEZ**1,3, EUGENIO URDAPILLETA** 2,4, OSVALDO MATÍAS VELARDE 1,2*, GERMÁN MATO 2,3,4, DAMIÁN DELLAVALE 1,2

¹ LABORATORIO DE BAJAS TEMPERATURAS AND INSTITUTO BALSEIRO, CENTRO ATÓMICO BARILOCHE; ² CONSEJO NACIONAL DE INVESTIGACIONES CIENTÍFICAS Y TÉCNICAS (CONICET); ³ COMISIÓN NACIONAL DE ENERGÍA ATÓMICA (CNEA); ⁴ FÍSICA ESTADÍSTICA E INTERDISCIPLINARIA AND INSTITUTO BALSEIRO, CENTRO ATÓMICO BARILOCHE. **THESE AUTHORS CONTRIBUTED EQUALLY TO THIS WORK.
*dellavaledamian@gmail.com

S3P827. MECHANISMS FOR PATTERN SPECIFICITY OF DEEP-BRAIN STIMULATION IN PARKINSON'S DISEASE

OSVALDO MATÍAS VELARDE^{1,2*}, GERMÁN MATO^{2,3,4}, DAMIÁN DELLAVALE^{1,2}

¹ LABORATORIO DE BAJAS TEMPERATURAS AND INSTITUTO BALSEIRO - CENTRO ATÓMICO BARILOCHE; ² CONSEJO NACIONAL DE INVESTIGACIONES CIENTÍFICAS Y TÉCNICAS (CONICET); ³ FÍSICA ESTADÍSTICA E INTERDISCIPLINARIA AND INSTITUTO BALSEIRO - CENTRO ATÓMICO BARILOCHE; ⁴ COMISIÓN NACIONAL DE ENERGÍA ATÓMICA (CNEA).

*osva velarde@vahoo.com.ar

#FALAN2016

VENUE

FLOOR AND EXHIBITION PLAN

GROUND FLOOR

FIRST FLOOR

#FALAN2016

AUTHOR INDEX

Alban Salvi, Artur, 150 Alves dos Santos Junior, Manuel, 100 Α Albarracín, Ana L., 136 Alves dos Santos Júnior, Manuel, 142 AFFONSO, ARMANDO, 141 Albarracín, Ana. 166 Alvez, Tatiana, 160 AGUIAR, LEANDRO, 87 Albarracín, Ana, 150 Amador, Ana, 96 ALBORNOZ, MICHELLE, 90 Amador, A., 107 Albarracín, Ana, 163 ALVARES, LUCAS DE OLIVEIRA, 81 Albernaz-Mariano, Kairo, 97 Amanda Sanches Bretherick, Talitha, 155 AMARAL, VERONICA, 141 Albert, Scott T., 96 Amaral, Olavo, 136 ANGÉLICA, FLORES RAMÍREZ, 133 Albert, Scott, 96 Amarillo, Yimy, 122 ANJOS, LARISSA, 98 Alberto Serfaty, Claudio, 86 Amarillo, Yimy, 165 ARCEGO, Danusa, 161 Alberton, Michele Debiasi, 98 Amaro, Juan, 121 ATAOĞLU, AHMET, 124 Alberton, Michele, 158 Amaro, Juan, 85 AZEVEDO SOUZA, NATHÁLIA, 78 Alberton, Michele, 102 Amaro Alves Romariz, Simone, 157 Abalem, Cyro, 141 Albornoz, Gabriel, 118 Amaro Jr., Edson, 135 Abbasi, Aamir, 156 Albrecht, Paula A., 98 Ambriz-Tututi, Mónica, 119 Abelaira, Helena, 162 Albrecht, Paula A., 98 Américo Augustin, Otávio, 148 Abilio, Vanessa, 115 Albrecht, Christian, 165 Américo Augustin, Otávio, 162 Abin-Carriquiry, Juan Andrés, 131 Albuquerque Jales de Carvalho, Michele, 129 An, Yu Ling, 141 Aboitiz, Francisco, 139 Albuquerque Jales de Carvalho, Michele, 101 Anastasia, Agustin, 87 Aboitiz, Francisco, 134 Albuquerque Junior, Ricardo, 99 Anderson, Michael, 111 Aboitiz, Francisco, 116 Albuquerque de Melo Júnior, José de Andrade, Roy, 159 Aboitiz, Francisco, 113 Maria, 101 Andrade, Roy, 96 Abreu, Isabella Nogueira, 144 Alcayaga, Julio, 104 Andrade, Bruna FD, 87 Abreu da Rosa, Luciana, 155 Alcayaga, Julio, 104 Andrade Hage, Allan Kaio, 145 Abreu-Villaça, Yael, 141 Alencar, Sarah Diógenes, 158 Andrade-da-Costa, Belmira, 86 Abreu-Villaça, Yael, 112 Alexandre de Aguino, Pedro, 137 Andreatini, Roberto, 146 Abudara, Verónica, 124 Alexandre Neves da Silva, Emerson, 153 Andreatini, Roberto, 144 Aburto, Belén, 128 Alexandre de Aquino, Pedro Everson, 129 Andreatini, Roberto, 157 Aburto, Belen, 82 Alexandrov, Vladimir, 164 Andreoli, María Florencia, 97 Aburto, Belen, 77 Alexandrova, Tamara, 164 Andreoli, Maria Florencia, 103 Aburto, Belen, 89 Alexis Alejandro, Alexis Alejandro, 109 Andreotti, Diana, 100 Abín Carriquiry, Juan Andres, 128 Alfonso, Matias, 142 Andrieux, Annie, 93 Abín-Carriquiry, Andrés, 159 Andrighetti, Matheus, 79 Alfonso, Matias, 110 Achaval, Matilde, 162 Ali, Daniela, 133 Andrighetti, Matheus, 111 Achaval, Matilde, 148 Aline, Dall'Oglio, 132 Angarita, Emperatriz, 149 Achaval, Matilde, 147 Alkema, Mark, 103 Angélica Alves, Verônica, 155 Acion, Laura, 91 Allen Wheeler, Natalie, 118 Antonelli, Marta Cristina, 158 Acosta, Luis Ernesto, 106 Alloatti, Matías, 87 Antonelli, Marta Cristina, 139 Acosta, Julieta, 77 Alloatti, Matías, 90 Antonio Rosa, Matheus, 87 Acosta, Gabriela Beatriz, 115 Alloatti, Matías, 147 Antunes Ramos, Sérgio, 116 Acosta-Mares, Palmira, 165 Almeida, Silvana, 125 Antunes Ramos, Sérgio Augusto, 145 Acutain, Florencia, 103 Almeida, Sebastião, 145 Antunes Ribeiro, Elisa, 106 Acuña, Lucía Raily, 77 Almeida, Roberto, 132 Antunes-Rodrigues, Jose, 128 Acuña, Diego, 118 Almeida, Maria Camila, 89 Anzulovich, Ana, 85 Acuña, Diego, 88 Almeida, Kathleen Yasmin de, 83 Aparecido de Almeida, Alexandre, 153 Acuña, Diego, 120 Almeida, Igor Cerejo, 116 Aparicio, Gabriela, 154 Acuña, Andrés, 94 Almeida, Helena Pereira, 145 Aquino, Jorge B., 86 Adameyko, Igor, 86 Almeida, Glaucia M., 126 Aranda, Marcos L., 98 Adamo, Ana Maria, 123 Almeida, Giorgea, 141 Aranda, Marcos L., 98 Adamo, Ana M., 153 Almeida, Cayo, 136 Arantes Neuber, Gabriela, 84 Adriana, Bruges, 81 Almeida, Camila, 164 Araujo, John Fontenele, 110 Adriani Marques, Suelen, 125 Almeida, Alexandre, 81 Araujo, Cássia R.V., 142 Aedo, Cristian, 164 Almeida, Alexandre, 123 Araujo dos Santos, Aline, 152 Agostino, Patricia V., 77 Almeida, Alexandre, 121 Araujo dos Santos, Aline, 95 Aguado, Gustavo, 150 Almeida Oliveira, Marlange, 160 Araujo dos Santos, Aline, 122 Aguggia, Julieta, 78 Almeida da Silva e Silva, Daniel, 93 Araya, Joaquin, 87 Aguiar, Marcus Vinicius, 118 Alonso, R.G., 107 Araújo Rodrigues, Marcelo, 153 Aguilar, Luis Angel, 96 Alonso, R. G., 107 Araúio, John, 78 Aguilar, Luis, 159 Alsina, Ramiro, 155 Araújo, Cássia Regina Vieira, 143 Aguirre, Pabla, 148 Altamirano and Castro Pascual, Fernando Araújo, Andrezza, 111 Aguirre, Nicolás, 80 Gabriel and Ivanna Carla, 85 Araújo, Andrezza, 113 Aguirre, Florencia, 133 Araújo Espírito-Santo, Sheila, 162 Alvarez, Rodrigo, 95 Aguirre, Alejandra, 92 Araújo dos Santos, Aline, 156 Alvarez, Javier, 143 Aguirrre, Alejandra, 112 Alvarez, Diego D., 96 Arber, Silvia, 118 Agüero Zapata, Ángeles, 78 Alvarez Juliá, Anabel, 153 Arbo, Marcelo, 130 Agüero Zapata, Ángeles, 78 Alvarez-Buylla, Arturo, 130 Arbo, Bruno, 86 Ahumada, Laura, 78 Álvarez, Fernando, 155 Arce, Maria Elena, 92 Ahumada, Laura, 78 Alves, Fernanda, 143 Arce, Maria Elena, 92 Aiello, Ignacio, 146 Alves Albuquerque de Souza, Denia, 129 Ardiles, Alvaro O., 95

Alves Reis, Patrícia, 83

Ardiles, Alvaro O., 119

Alaimo, Agustina, 149

Alaimo, Agustina, 150

Ardiles, Alvaro, 111 Baetti, Silvia, 120 Beauquis, Juan, 150 Arenas, Oscar, 126 Baez, Veronica, 92 Beauquis, Juan, 149 Arend Guazzelli, Pedro, 92 Baez, María verónica, 112 Beccaria, Juan Pablo, 122 Arend Guazzelli, Pedro, 92 Baez, María Verónica, 81 Becerra, Diego, 104 Arevalo, María A, 103 Bechelli, Maria Lucila, 86 Baez, M. Veronica, 92 Arevalo, Maria Angeles, 86 Bahia, Carlomagno, 96 Bechelli, Maria Lucila, 151 Arida, Ricardo, 153 Baidanoff, Fernando Martín, 85 Becker, Roberta Oriques, 112 Arida, Ricardo, 153 Bains, Henrietta, 87 Becker, Roberta, 125 Arida, Ricardo, 123 Baldi, Elisabeta, 80 Becker Borin, Diego, 101 Arida, Ricardo, 121 Ballarini, Fabricio, 113 Beckman, Joseph, 151 Arida, Ricardo, 81 Ballarini, Fabricio, 115 Beckman, Danielle, 153 Arida, Ricardo, 83 Ballestero, Jimena, 165 Begatti Victorino, Angélica, 153 Bandeira Fabres, Rafael, 155 Armando, Natalia G., 124 Bekinschtein, Pedro, 116 Arnal, Nathalie, 92 Baptista-de-Souza, Daniela, 159 Bekinschtein, Pedro, 146 Arnon Rikel, Lucas, 99 Baptista-de-Souza, Daniela, 158 Bekinschtein, Pedro, 115 Barauna, Sara, 158 Belforte, Juan E., 128 Arrate, Antonia, 134 Arredondo, Florencia, 128 Baraúna, Valério, 99 Belforte, Juan E, 122 Barbeiro, Érica Olmos, 96 Arribas, Diego, 128 Belforte, Juan, 97 Arroyo-Ríos, Lorena, 106 Barbeiro, Érica Olmos, 96 Belforte, Juan, 95 Artigas, Claudio, 80 Barbeiro, Erica, 157 Bellaver, Bruna, 132 Asprer, Joanna S.T., 104 Barbeito, Luis, 151 Bellaver, Bruna, 150 Assad, Nadyme, 160 Barbeito Andrés, Jimena, 86 Bellettini dos Santos, Tatiani, 111 Assad, Nadyme, 79 Barbosa, Maria Carolina, 96 Bellettini dos Santos, Tatiani, 79 Bellettini-Santos, Tatiani, 111 Assirati Jr, Joao, 126 Barbosa, Leandro R. S., 119 Assis, Danielle, 87 Barbosa Moraes Resstel, Leonardo, 146 Bellini, María José, 96 Assis, Danielle, 121 Barbosa de Castro, Luana Paula, 158 Bellioli, Laouen, 146 Barcelona, Pablo Federico, 77 Bello, Estefanía, 87 Assis, Adriano, 92 Assis, Adriano, 132 Barcelos, Milena, 145 Belluscio, Mariano, 157 Assreuy, Ana Maria, 94 Barichello, Tatiana, 161 Belluscio, Mariano, 97 Asth. Laila, 98 Barichello, Tatiana, 162 Belluscio, Laura M., 92 Asth, Laila, 100 Barichello, Tatiana, 103 Belluscio, Laura M., 92 Asth, Laila, 98 Belmira, Andrade da costa, 150 Barichello, Tatiana, 145 Astucuri, Jhonatan, 96 Bariotto-dos-Santos, Keila, 88 Beltrame, Sabrina, 100 Atzori, Marco, 165 Barnatan, Yair Benjamín, 79 Beltran, Rodrigo, 79 Atzori, Marco, 165 Barrantes, Francisco J., 93 Beltrán González, Andrea N, 117 Augustinho, Jefferson, 141 Barrantes, Francisco, 133 Benatti, Miriã Berzuino, 89 Augusto, Ricielle, 86 Barraviera, Benedito, 136 Benedet, Melissa, 129 Augusto, Ricielle, 147 Barraviera, Benedito, 127 Benedetto, María Mercedes, 166 Auzmendi, Jeronimo, 93 Barraviera, Benedito, 106 Benedetto, Maria Mercedes, 93 Avale, María, 88 Barreiro, Isabel, 117 Benedetto, Maria Mercedes, 93 Avale, M., 91 Barreto, George, 92 Benedetto, Maria Mercedes, 77 Avale, Elena, 95 Barreto-Núñez, Romina, 151 Benedetto, Luciana, 157 Avale, Elena, 81 Benedetto, Luciana, 80 Barrios De Tomasi, Eliana, 79 Avalos, Maria Paula, 98 Benetti, Fernando, 80 Barros, L.F., 165 Avalos, Maria Paula, 98 Barros-Aragão, Fernanda, 119 Benini, Ricardo, 101 Avalos, Maria P. 159 Barroso, Sheilla, 101 Benini, Ricardo, 101 Aveline, Paulo Eduardo, 103 Barroso, Pedro Lucas de Sousa, 158 Benitez Cadiolli, Nicoli, 136 Avendaño Ortiz, José, 128 Barroso Mendes, Wainna Renata, 145 Benowitz, Larry, 149 Ávila, Gerardo, 81 Barrozo, Romina B, 134 Benowitz, Larry, 120 Avila, Gerardo, 111 Bascuñan, Mayra, 148 Berardino, Bruno, 78 Avila, César L., 119 Basnak, Melanie, 140 Berlitz, Caroline, 118 Bastin-Heline, Lucie, 92 Ayala, Yaneri A., 135 Bermedo-García, Francisca, 124 Azevedo Patrocínio, Manoel, 158 Batista, Evander, 127 Bermudez, Isabel, 132 Batista, Evander, 80 Bernabo, Guillermo, 117 Batista, Evander, 79 Bernal, Valeria, 92 Bernal, Valeria, 86 Batista, Evander, 160 B. Pontes, André Luiz, 159 Batista, Camila, 102 Bernardes, Danielle, 87 BALDUCI, CASSIANA, 77 Batista Celani, Marcus Vinicius, 88 Bernardi, Maria M., 113 BARBOSA, RAFAELLA, 88 Bernardi, Caren, 144 Batista da Silva, Hemily, 111 BARBOSA SOUZA, EVELYN, 78 Batista-Silva, Hemily, 111 Bernardi, Alejandra, 119 BERRO, LAIS, 78 Batiz, Luis, 85 Beron de Astrada, Martin, 134 BIGNON, JAMMILY, 77 Batiz, Luis, 88 Berro, Laís, 139 BITTENCOURT, ANA PAULA, 88 Bertarello Zeni, Ana Lucia, 99 Batiz, Luis, 118 BITTENCOURT,, 161 Batiz, Luis, 120 Bertoglio, Leandro José, 79 BOOS, FLÁVIA ZACOUTEGUY, 81 Battaglia, Demian, 107 Bertoglio, Leandro J, 80 BOTELHO, ELIÃ, 157 Bavassi, Luz, 79 Bertoglio, Leandro, 144 **BRUNO VIEIRA, LUCIENE, 159** Bavassi, Luz, 80 Bertoglio, Leandro, 145 Babdor, Joël, 151 Bavassi, Luz, 113 Bertoncini Simões, Ana Leda, 164 Bacaglio, Cristian, 126 Bayer Reichmann, Hugo, 79 Bertone, Nicolás Iván, 97

Bacigalupo, Juan, 134

Bertone, Nicolás Iván, 97 Berón de Astrada, Martín, 163 Berón de Astrada, Martín, 104 Berón de Astrada, Martin, 140 Bevilacqua, Estela, 157 Bezerra, Jéssica, 84 Biacchi, Kimberlly, 99 Biachi, Kimberlly, 101 Bianchi, Paula, 132 Bianchi, Bruno, 80 Billeke, Pablo, 113 Binder, Luisa B., 155 Binder, Luisa B., 100 Binolfi, Andres, 119 Bioni, Vinicius, 90 Bisagno, Veronica, 112 Bisagno, Veronica, 136 Bisbal, Mariano, 159 Bistué, Beatriz, 111 Bistué Millón, Maria Beatriz, 148

Bitoun, Marc, 119

Bittencourt, Jackson Cioni, 127 Bittencourt, Jackson Cioni, 128 Bittencourt, Jackson, 97 Bittencourt, Athelson, 99 Bittencourt, Ana Paula, 99 Bittencourt, Ana, 99 Blake, Mariano, 113 Blanco, María Gabriela, 80 Blanco, María Gabriela, 80

Blanco, María Gabriela, 103 Blanco Calvo, Eduardo, 120 Blanco Martinez, Ana Maria, 125 Blandina, Patrizio, 80

Bloisse, Leonardo, 112 Boari, Santiago, 96 Boari, Santiago, 96 Boccia, Mariano, 95 Boccia, Mariano, 113 Boccia, Mariano, 113 Boccia, Mariano, 160 Boeck, Carina, 99

Boerngen-Lacerda, Roseli, 93

Bolfe, Renan, 111 Bollati, Flavia, 159 Bollati, Flavia, 98 Bollo, Mariana, 102 Bonansco, Christian, 135 Bonansco, Christian, 136 Bonci, Daniela, 105 Bonci, Daniela, 139 Bonetti, Leandro, 135 Bonfiglio, Juan José, 124 Boos, Flávia, 141 Boos, Flávia, 143

Borassi, Cecilia, 136 Bordenave, Martín, 92 Bordone, Melina Paula, 129 Bordone, Melina, 88 Bordone, Melina, 88 Bordone, Melina, 119

Borelli-Tôrres, Rosa Theresa, 99 Borelli-Tôrres, Rosa Theresa, 99

Borges, Áurea, 139 Borges, Kelly, 121 Borin, Diego, 99 Born, Jan, 140 Born, Jan, 79 Born, Jan, 85

Borquez, Margarita, 104 Borquez, Margarita, 121 Borralho, Thaissa, 144 Borralho, Thaissa, 139

Bortolini Simão da Silva, Kathryn Ana, 99 Bortolini Simão da Silva, Kathryn Ana, 99

Bosco, Aleiandra, 129 Botelho, Silvia, 139 Bouzat, Cecilia, 161 Bouzat, Cecilia, 132 Bouzat, Cecilia, 162 Bouzat, Cecilia, 130 Bowen, Macarena, 134 Bozinovic, Francisco, 125 Bozinovic, Francisco, 142 Bracken, Clay, 87 Braga, Filipe, 77

Braga, Danielle, 160 Branco Matos, Natália, 161 Branco, Luiz Guilherme, 159 Brandão, Nina Rosa Nunes, 139 Brandão, Luiz Eduardo M., 121

Brandão, Daniel, 78 Brasil, Alódia, 163

Brasilino, Ligia Santos Bueno, 80

Braz, Glauber, 95 Braz, Bárbara, 122 Brenes, Juan Carlos, 110 Bretherick, Talitha, 80 Bretherick, Talitha, 165 Bringmann, Andreas, 98 Brito, Verônica Bidinotto, 84 Brito, Kianna Matos Modesto, 139 Brocca, Maria Elvira, 102 Brocca, Maria Elvira, 102 Brocco, Marcela Adriana, 95

Brocco, Marcela Adriana, 139 Bronfman, Francisca, 124 Bronhara, Thiago, 121 Brum, Luciano, 86 Brumovsky, Pablo Rodolfo, 134

Brumovsky, Pablo, 125 Brunialti Godard, Ana Lucia, 82

Bruno, Martín A., 111 Bruno, Martin Alejandro, 148 Bruno, Martin A., 86

Brunoni, André, 121 Brusco, Luis Ignacio, 91 Brusco, Alicia, 123 Brusco, Alicia, 154 Bucherelli, Corrado, 80 Budni, Josiane, 79 Budni, Josiane, 111 Budni, Josiane, 111 Budni, Josiane, 158 Buendia, Izaskun, 128 Bueno, Adrián Marcelo, 110

Bueno, Adrian Marcelo, 142 Bueno, Adrian Marcelo, 116 Bumaschny, Viviana Florencia, 155

Burgos, Valeria, 124 Burgos, Valeria, 120 Burgos, Patricia, 85 Burgos, Pablo, 134 Burgos, Pablo, 163

Bura, Stefana, 83

Bussi, Ivana Leda, 77 Bussmann, Regina, 110

Busso, Maria Julia, 95

Bustamante, Juanita, 94 Bustamante, Juanita, 130 Bustamante, Juanita, 130 Bustelo, Martín, 86 Butler, Nicole, 78 Bórquez, Margarita, 140 Bórquez, Margarita, 85 Bórquez, Margarita, 79 Büttner, Karina Andrea, 93 Büttner, Karina Andrea, 93 Büttner, Karina, 96

C Barauna, Sara, 102

C Castro-Faria-Neto, Hugo, 126

C Rosa, Naisa, 102 CALDAS, ARIANE, 141 CAMARINI, ROSANA, 160 CARDOSO, CARINA, 160 CARDOSO BARCELOS, LYS, 78 CARMO, MARTA, 119

CAROBREZ, ANTONIO DE PADUA, 115

CARRI, NESTOR GABRIEL, 94 CARVALLO, CLAUDIA, 90 CASAGRANDE, MIRELLE ARAUJO, 81 CATAPRETA, ELISANGELA, 78 CHIAVEGATTO, SILVANA, 150 CHUC-MEZA, ELIEZER, 81 COLLAVINI, Santiago, 149

CONFESSOR DE CARVALHO, CASSIO, 78

CONTRERAS, DARWIN, 90 CONTRERAS, DARWIN, 90 COSSENZA, MARCELO, 119 COSTA, FRANK, 77 COSTA, EVERTON, 77 COSTA, ELSON, 160 COSTA, ALAN, 77

CR Oliveira, Amanda, 126 CRUZ GAITAN, ANA MARIA, 94 Caballero, Adriana, 86 Cabello-Verrugio, Claudio, 124 Caboclo, Fernanda, 165 Cabral, Francisco Romero, 154

Cabral, Francisco, 153 Cabral, Francisco, 81 Cabral, Agustina, 103 Cabral, Agustina, 157 Cabrera, Mauricio, 126

Cabrera Reyes, Alejandra Erika, 162

Cadena, Vanesa, 93 Cadena, Vanesa, 162 Cadet, Jean Lud, 112 Caeiro, Ximena E., 128 Caeiro, Ximena E., 117 Caffaro, Pedro A., 96 Cagni, Fernanda Carvalho, 88 Cagni, Fernanda Carvalho, 89 Cagni, Fernanda, 100 Cai, Tiantian, 104 Calaza, Karin, 123

Calcagnotto, Maria Elisa, 106 Calcagnotto, Maria Elisa, 157 Calcagnotto, Maria Elisa, 137 Calcagnotto, Maria, 143 Calcagnotto, Maria, 130 Caldart, Carlos Sebastian, 85 Caldart Valle, Carlos Sebastian, 77

Calderón, Fernanda, 110 Calero, Cecilia Inés, 83

Calfa, Gaston, 132 Calo, Girolamo, 100 Calo', Girolamo, 98 Calo', Girolamo, 122 Calou, lana, 130 Caltana, Laura, 154 Calvo, Margarita, 124 Calvo, Daniel J., 117 Calvo, Daniel J, 99 Camargo, Paula, 87 Camargo, Anderson, 99 Camargo-Sánchez, Andrés, 85 Camarini, Rosana, 161 Cambiasso, María Julia, 102 Cambiasso, María J, 103 Cambiasso, M. Julia, 117 Cameron, Heather, 141 Camilo Florio, Jorge, 142 Camino, Pablo A., 93 Camino, Pablo A., 93 Camins, Antonio, 100 Campagnoli, Rafaela Ramos, 143 Campagnoli, Rafaela, 142 Campello-Costa, Paula, 140 Campello-Costa, Paula, 152

Campagnoli, Rafaela Ramos, 143
Campagnoli, Rafaela, 142
Campello-Costa, Paula, 140
Campello-Costa, Paula, 152
Campello-Costa, Paula, 120
Campello-Costa, Paula, 118
Campello-Costa, Paula, 91
Campello-Costa Lopes, Paula, 118
Campello-Costa Lopes, Paula, 18

Campelo, Clarissa, 88 Campolongo, Marcos, 152 Campolongo, Marcos, 122 Campolongo, Marcos, 89

Campolongo, Marcos, 77 Campolongo, Marcos, 89 Campos, Rodrigo, 85

Campos, Roduigo, 83 Campos, Raquel Maria Pereira, 94 Campos, Raquel Maria, 96 Campos, Raquel Maria, 96 Campos, Matías, 134 Campos, German, 110 Campos, Diego, 121

Campos, Diego, 83 Campos, Beatriz, 165 Campos, Ana Carolina, 87 Campos, Ana Carolina, 149 Campos, Adriana, 101 Campos Aragão, Bárbara, 90 Campos dos Santos, Érica, 158

Campêlo, Clarissa, 121 Canan, Jonathan, 120 Cancela, Liliana M, 159 Cancela, Liliana, 114

Candida da Rocha Oliveira, Amanda, 153

Canepa, Eduardo T., 78
Canto-de-Souza, Azair, 97
Canto-de-Souza, Azair, 158
Canto-de-Souza, Azair, 159
Capani, Francisco, 147
Capani, Francisco, 120
Capelli, Paolo, 118

Capucho Sandre, Poliana, 86 Carbone, Julia, 105 Carbone, Julia, 105

Carcagno, Abel, 117 Carcagno, Abel, 86 Cardenas, Juan Camilo, 109 Cardenas, Fernando, 114 Cardenas, Fernando, 82 Cardenas, Fernando, 148 Cardenas, Fernando, 112 Cardenas, Fernando, 109 Cardenas-Díaz, Ana María, 119 Cardenas-Perez, Robbi, 103 Cardinali, Daniel, 121

Cardona-Gómez, Corresponding autor:

Gloria Patricia, 132 Cardoso, Éria, 158 Cardoso, Mariana, 99 Cardoso, Juliana, 160 Cardoso, Juliana, 99 Cardoso, Eria, 129 Cardoso, Débora, 165 Cardoso, Débora, 80

Cardoso Filho, Paulo Cezar, 125 Cargnelutti, Ethelina, 85 Carignano, Camila, 92

Carlos Pinheiro de Oliveira, Antonio, 161 Carneiro Filgueiras, Claudio, 141 Carneiro-de-Oliveira, Paulo, 99

Carniglia, Lila, 95 Carniglia, Lila, 152 Carniglia, Lila, 153 Carobrez, Antonio P., 77 Carpaneto, Agustin, 85 Carpaneto, Agustin, 105 Carpi-Santos, Raul, 123

Carrero Riveros, María Alejandra, 122

Carrettiero, Daniel, 164
Carrettiero, Daniel, 89
Carri, Nestor, 155
Cartarozzi, Luciana, 106
Caruso, Carla, 95
Caruso, Carla, 152
Caruso, Carla, 153
Carvalho, Walther, 96
Carvalho, Tayana, 80
Carvalho, Tayana, 160
Carvalho, Tayana, 79
Carvalho, Milene Cristina, 114
Carvalho, Andrea, 153

Carvalho Alcantara Gomes, Flávia, 118 Carvalho Alcantara Gomes, Flávia, 162 Carvalho Lima, Camila Nayane, 89

Carvallo, Claudia, 106 Casadei, Inelia, 125

Casagrande Jeremias , Isabela, 129 Casagrande Jeremias, Isabela, 158

Casas, Ana, 128

Cascallares, Guadalupe, 110
Casey, Eric, 81
Casiraghi, Leandro Pablo, 77
Casiraghi, Leandro, 81
Cassina, Patricia, 151
Cassina, Patricia, 153
Cassina, Adriana, 125
Castagna, Valeria, 104
Castañeda, Anderson, 140
Castaño, Eduardo, 121
Castelló, María E., 117

Castelló, María, 117

Castelo Branco Matos, Natália, 144 Castelo Branco Matos, Natália, 144 Castelo Branco Matos, Natália, 160 Castelo Branco Matos, Natalia, 100 Castelo Branco Matos, Natalia, 100 Castilho, Gabriel de Lima, 82 Castillo, Rolando, 128 Castillo, Rolando, 82 Castillo, Rolando, 77

Castillo-Gonzalez, William, 123
Castillo-Gonzalez, William, 129
Castro, Mariana Nair, 109
Castro, Maite A, 151
Castro, Emily, 92
Castro, Christian, 163
Castro, Andrea Grisel, 116
Castro de Abrel, Cintya, 82
Castro-Faria-Neto, Hugo, 126
Cavada, Benildo, 94
Cavalcante, Judney, 159
Cavalcante, Jeferson, 159
Cavalcante-Silva, Vanessa, 89

Cavalcanti Capibaribe, Victor, 131

Cavallim, Jéssica, 141 Cavallino, Luciano, 81 Cavallino, Luciano, 145 Cavazzutti, Gian Franco, 122 Cavelli, Matias, 143 Caviares, Viviana, 85 Cecconello, Ana Lúcia, 155 Cecilia, Forcato, 110 Cecilia, Anzulovich,, 116 Cecília, Hedin-Pereira, 147 Celani, Marcus Vinicius, 118 Celani, Marcus Vinicius, 135 Cerbón, Marco, 162 Cercato, Magalí, 112 Cercato, Magali, 92 Ceriani, María Fernanda, 146

Ceriani, María Fernanda, 1 Ceriani, M. Fernanda, 116 Ceriani, M. Fernanda, 146 Ceriani, M. Fernanda, 117 Ceriani, Fernanda, 110 Cerliani, Belén, 146 Cesarini, Martín, 77 Cespedes, Nicole, 133 Cezne, Anna, 144

Chagas Carvalho-Silva, Ana Cristina, 141

Chagas de Souza, Natália, 82 Chaves, Raquel de Castro, 131 Chaves-Filho, Adriano Britto, 142

Chehin, Rosana, 131 Chehín, Rosana, 119 Chertoff, Mariela, 78 Chianelli, Mónica S., 98 Chiarotto, Gabriela, 89 Chiarotto, Gabriela, 127 Chiba, Andrea, 78 Chiesa, Juan José, 146 Chiesa, Juan José, 85 Chisari, Lucia, 113

Christian, Fernanda Lima, 109 Christian Manhães, Alex, 141 Chuc-Meza, Eliezer, 111 Chávez, Jorge, 159 Chávez, Andrés, 164 Cimarosti, Helena, 124 Cinalli, Alejandro R., 117 Cipriani, Andreza, 102 Cipriano, Andreza, 102 Cipriano, Andreza, 104 Ciruela, Francisco, 161 Cisneros, Richard, 159 Cisneros, Richard, 96 Cittolin Santos, Giordano, 92 Ciuffo, Gladys Maria, 92 Claudio-Neto, Sylvio, 113
Codagnone, Martín, 151
Codagnone, Martin, 100
Coelho, Igor, 94
Coelho, Fernanda, 81
Coelho Xiemenes, Naiara, 144
Coelho de Velasco, Patricia, 86
Coimbra, Roney, 89
Coimbra, Norberto Cysne, 101
Coimbra, Norberto, 127
Coirini, Héctor, 125
Coleman, Todd, 78
Colettis, Natalia, 90
Colletis, Natalia, 81
Colli, Yolanda, 153

Clarke, Julia, 119

Comim, Clarissa, 110 Conceição do Nascimento Pinheiro, Maria, 105

Conceição, Maria, 106 Condat, Carlos, 146 Conde, Florencia, 154 Confortim, Heloisa, 84 Confortim, Heloisa, 115 Constantino, Leandra C., 100 Constatino, Leandra C., 155 Contartese, Daniela, 104 Contin, Maria Ana, 93 Contin, Maria, 77 Contín, María Ana, 166 Corbellini, Joana, 95 Corbellini, Joana, 141

Comim, Clarissa, 145

Cordeiro Lima, Carlos Neandro, 144 Cordeiro dos Santos, Regilane, 129 Cordeiro dos Santos, Regilane, 160 Cordeiro dos Santos, Regilane, 137 Cordeiro dos Santos, Regilane, 101 Cordeiro dos Santos, Regilane, 142 Cordero, Nóvaya Právda, 133 Cordisco Gonzalez, Santiago, 77 Coriolano de Aquino, Nayara, 129 Cornejo, Paula, 97 Cornejo, María Paula, 97

Coronel, Maria Florencia, 134 Corral, Sebastián, 128 Corral, Sebastian, 77 Corral, Sebastian, 82 Corral, Sebastian, 89 Correa, Maria Milagros, 92 Correa, Gustavo, 154 Correa Pereira, Patrick, 82 Correa-Neto, Nelson Francisco, 109

Corredor, Karen, 111
Corredor, Karen, 148
Corredor, Karen, 145
Corredor, Karen, 82
Correia, Diego, 82
Correia, Diego, 93
Correia, Diego, 146
Correia Bacarin, Cristiano

Correia Bacarin, Cristiano, 129 Corrêa, Moisés dos Santos, 82 Corrêa, Harrison, 102

Corrêa, Gustavo, 154 Cortes, Maria Izabel, 105 Cortes, Maria Izabel, 135

Cortés Ruiz, Georgina Daniela, 103 Cortés Ruíz, Georgina Daniela, 133

Cortés-Briones, José, 77 Corvedo, Tereza, 106 Cossenza, Marcelo, 95 Costa, Thiago, 97 Costa, Nathália Santos, 82 Costa, Marcos, 148 Costa, Marcos, 147 Costa, Marcos, 121 Costa, Luciano, 140 Costa, Lucas, 124

Costa Vasconcelos Silva, Juciê, 137

Costa, Elson, 99
Costa, Belmira, 147
Costa, Andressa, 151
Costa, Andressa, 90
Costa, Ana, 131
Costa Matos, Gabriel, 82
Costa Valadão, Priscila Aparecida, 90

Costa Valadao, Priscila Aparecida, 90 Costa de Carvalho, Ana Cláudia, 143 Costabeber Guerino, Bruna, 101

Costanzo, Elsa, 109 Court, Felipe, 124

Coutinho Costa, Vinicius Gabriel, 162

Cragnolini, Andrea, 94 Crespo, Rosana, 146 Crestani, Carlos Cesar, 101 Crestani, Carlos, 101 Crestani, Ana Paula, 143 Crestani, Ana Paula, 146 Crestani, Ana, 144 Cribbs, David, 118 Cristina, Duarte, 109

Crivelaro Nascimento, Glauce, 83

Cromberg, Lucas E, 147 Cromberg, Lucas, 90 Crossiol, Beatriz, 80

Crossiol Vicente de Campos, Beatriz, 124 Crossiol Vicente de Campos, Beatriz, 155

Crunfli, Fernanda, 151 Cruz, Marília F., 121 Cruz, Fabio, 132 Cruz, Fabio, 99

Cruz-Neto, Ariovaldo, 164 Cruzblanca, Humberto, 94 Cuadrado, Antonio, 128

Cuaxospa-Blancas, José-Miguel, 90

Cuello, Claudio, 121 Cuello, Claudio, 148 Cuesta, Santiago, 119 Cuevas-Olguin, Roberto, 165

Culturato Padilha Mendonça, Monique, 91

Cunha, Maurício P., 155 Cunha de Almeida, Jamily, 137

Cunha, Débora, 90
Cury, Patricia, 87
Cutraro, Yamila Belen, 95
Czerniczyniec, Analia, 130
Cáceres, Alfredo, 92
Cánepa, Eduardo T., 92
Cánepa, Eduardo, 111
Cárdenas, Melissa, 82
Cárdenas, Fernando, 145
Cárdenas, Fernando, 111
Cárdenas, Fernando, 111
Cárdenas, Ana María, 123
Cândido, Janaína, 101
Cândido, Edna, 101
Córsico, Betina, 122

D

da Silva , Sergio, 81 da Silva , Regina, 88 da Costa , Luiz, 101 da Silva , Júlia, 162 da Costa , Jaderson, 132 da Silva Medeiros, Ingridy, 158 da Silva Medeiros, Ingridy, 142 da Silva , Ilton, 141

da Silva , Ilton, 95

da Silva Souza, Givago, 105

da Silveira Andrade da Costa, Belmira, 153

da Costa Oliveira, Ludhielle, 114 da Cruz, Daniel SG, 133 da Cruz Hofling, Maria Alice, 91 da Cunha Faria Melibeu, Adriana, 91 da Luz Tavares, Tayane Priscila, 144

da Mata, Martielo, 99 da Rosa, Naiana, 83 da S. Gomes, Fábio, 77 da Silva, Thiago Rodrigues, 146 da Silva, Thiago, 144 da Silva, Mariana, 155

da Silva, Maria Carolina Barbosa, 94 da Silva, Maria Carolina Barbosa, 94

da Silva, Maria Carolli la Barbosa, 9 da Silva, Jussemara, 132 da Silva, Flávio Theodoro, 139 da Silva, Eduardo, 121 da Silva. Daniel Moreira Alves, 131

da Silva, Amanda Silva, 148
da Silva Araujo, Tatiane, 89
da Silva Chagas, Luana, 86
da Silva Júnior, Pedro Ismael, 135
da Silva Medeiros, Ingridy, 160
da Silva Mesquita, Dara, 144
da Silva Mesquita, Dara, 100
da Silva Souza, Givago, 87
da Silva-Januário, Mara E., 151
D'auria, Ludovic, 156
D'Alessio, Luciana, 83
D'Almeida, Vânia, 89
D. A. Silva, Kayo, 159
D. Colpo, Gabriela, 162
DA SILVA FREITAS, JOFRE, 119

DA SILVA FREITAS, JOFRE, 119 DA MATA, Martielo, 161 DALMAZ, , 161 DALTRO-SANTOS, PENHA, 77

DE SOUZA DOMINGUES, ROBSON, 119 DE OLIVEIRA LIMA, ALEXANDRE, 78

DE LIMA, Randriely, 161

DE OLIVEIRA, Paulo Alexandre, 101

DE OLIVEIRA, PAULO, 101

DE SOUZA RESENDE, LETICIA, 150 DE SÁ GERALDO, ARNALDO, 141

DELGADO, RICARDO, 90

DIANA PAMELA, BENÍTEZ JIMÉNEZ, 133

DINIZ, CRISTOVAM, 144 DOS ANJOS SANTOS, ALEXIA, 78

DUARTE, ANNIBAL, 119
Da Ré Guerra, Flavia, 83
Da-Cim, Tharine, 155
Da-Silva, Celia, 88
Dadam, Florencia, 117
Dadam, Florencia, 128
Dagnino, Alexies, 134
Dajas, Federico, 128
Dal'Jovem, Leandro, 155

Dal-Cim, Tharine Aparecida, 132

Dal-Pizzol, Felipe, 145

Dal-Pont, Gustavo, 151 DalMagro, Ana Paula, 99 Dallegrave, Eliane, 130 Dalmasso, Maria Carolina, 91 Dalmaz, Carla, 130 Dalmaz, Carla, 118 Dalmaz, Carla, 148 Dalmaz, Carla, 84 Dalmedico, Leticia, 102 Damasceno, Samara, 93 Damianich, Ana, 95 Damianich, Ana, 88 Damião, Bruno, 83 Danelon, Victor, 125 Daneyko, Olga, 80 Danielski, Lucineia, 162 Dantas, Camila, 99 Dantas, Camila, 101 Daret, Aurélie, 163 David, Isabel, 116 David, Isabel, 110 David, Isabel, 77 David Hamer, Russell, 147 de Melo Reis, Ricardo, 160 de França Fonteles, Marta, 129 de Lima Silveira, Luiz, 104 de Oliveira Alvares, Lucas, 146 de Souza, Helenice, 142 de Souza, Greicy, 137 de Barros Viana, Glauce, 129 de Carvalho Lima, Camila, 142 de Oliviera Lima, Alexandre, 139 de Albuquerque, Cláudia Almeida Coelho, 98 de Almeida, Kathleen Yasmin, 83 de Almeida Azevedo, Mariana, 94 de Almeida Azevedo, Mariana, 94 de Andrade, Aline, 112 de Aquino, Antônio C.Q., 121 de Araujo, Ivan, 153 de Araujo, Elizabeth, 126 de Arauio-Martins, Leandro, 123 de Araújo Moreira, Fabrício, 91 de Bem, Andreza Fabro, 84 de Bona Schraiber, Rosiane, 158 de Carvalho Lima, Camila Nayane, 101 de Carvalho Lima, Camila Navane, 129 de Castro Reis, Fernanda, 127 de Farias Rocha, Fernando Allan, 87 de Figueiredo Spindler, Christiano, 148 de Figueiredo Spindler, Christiano, 162 de Freitas, Renato Leonardo, 101 de Freitas, Guilherme, 94 de Freitas, Guilherme, 94 de Gois Queiroz, Ana Isabelle, 101 de Lima Passos, Juliane, 83 de Loureiro, Terezinha Medeiros, 97 de Macedo, Isabel, 150 de Mello, Fernando, 153 de Moura, Ana Carolina, 84 de Novaes Okuyama, Martha, 125 de Oliveira, Paulo Eduardo, 132 de Oliveira, Natália Ferreira, 131 de Oliveira, Jose Magalhaes, 145 de Oliveira, Jade, 84 de Oliveira, Dara, 101 de Oliveira Alvares, Lucas, 144

de Oliveira Alvares, Lucas, 113

de Oliveira Alvares, Lucas, 141

de Oliveira Ferreira, Emerson, 84

de Oliveira Goulart, Camila, 149 de Oliveira Matos, Felipe, 84 de Oliveira Monteiro, Beatriz, 157 de Oliveira Silva, Mariana, 101 de Oliveira Silva, Mariana, 101 de Oliveira e Silva, Ana Mara, 160 de Paula, Gabriela Cristina, 84 de Paula Antunes David, Isabel, 80 de Queiroz, Karina, 89 de Queiroz Oliveira, Tatiana, 101 de Oueiroz Oliveira, Tatiana, 144 de Resende, Victor Túlio Ribeiro, 94 de Souza, Lucas Gomes, 101 de Souza Barroso, Pedro Lucas, 144 de Souza Siqueira Barreto, Rosana, 160 de Souza Siqueira Quintans, Jullyana, 160 de Sá Couto Pereira, Natividade, 130 de Sá Couto-Pereira, Natividade, 84 de Sá Lima, Larissa, 100 de Toni, Daniela Cristina, 83 de la Cruz, Gabriel, 116 de la Fuente, Verónica, 122 de la Fuente, Verónica, 114 de la Hera, Diego Pablo, 83 del Rio, Rodrigo, 104 De Ambrosi, Bruno, 91 De Dios, Nataly, 133 De Felice, Fernanda, 119 De Francesco, Nicolas, 157 De Lima, Silmara, 120 De Melo Reis, Ricardo, 147 De Melo Reis, Ricardo, 99 De Nicola, Alejandro Federico, 102 De Nicola, Alejandro, 120 De Paul, Ana, 93 De Pino, Gabriela, 79 De Rosa, María José, 80 De la Fuente, Erwin, 124 De la Garza, Ana Laura, 103 De la Torre, M. Lourdes, 78 Deckmann, Johanna, 84 Deckmann, Iohanna, 115 Degiorgi, Sofia, 113 Deitmer, J.W., 165 Del Bel, Elaine, 83 Del Sarto, Juliana, 149 Del-Bel, Elaine, 88 Delano, Paul H., 164 Delano, Paul H, 105 Delano, Paul, 134 Delgado, Silvina, 85 Delgado, Rafael, 77 Delgado, Carolina, 84 Delgado, Carolina, 134 Della Coleta Francescato, Heloísa, 159 Della Maggiore, Valeria, 96 Della Maggiore, Valeria, 127 Della Vedova, Cecilia, 116 Della-Maggiore, Valeria, 156 Dellavale, Damián, 166 Delorenzi, Alejandro, 112 Delorenzi, Alejandro, 114 Delwing-Dal Magro, Débora, 102 Delwing-de Lima, Daniela, 102 Demo, Júlia, 162 Deniz, Bruna, 84 Deniz, Bruna, 115 Deola Confortim, Heloisa, 91

Depino, Amaicha Mara, 150

Depino, Amaicha, 152 Drausal, Paula, 110 Esquivel, Maria Laura, 95 Drechler, Alfonso, 105 Esquivel-Rendon, Eric, 165 Depino, Amaicha, 122 Depino, Amaicha, 77 Drucaroff, Lucas, 109 Esteban, Freidin, 109 Depino, Amaicha, 89 Drucker-Colín, René, 162 Estebanez, Luc, 156 Deslandes, Andrea Camaz, 115 Drucker-Colín, René, 119 Esteves, Alessandra, 83 Devera, Andrea, 149 Drucker-Colín, René, 149 Etchetto, Miren, 100 Devia, Christ, 84 Duarte, Jessica, 97 Etcheverry, José Luis, 77 Di Bella, Daniela, 117 Duarte Pinheiro, Vitor, 113 Eufrásio, Raí, 115 Di Bella, Daniela, 86 Dubreuil, Patrice, 151 Eugenio, Urdapilleta, 156 Eugênio Araújo de Moraes Mello, Luiz, 91 Di Guilmi, Mariano N, 123 Dueñas, Zulma, 114 Di Guilmi, Mariano, 151 Duhart, José M, 146 Euzébio Cabral-Filho, Paulo, 153 Di Mauro, Giuliana C, 91 Duhart, Jose M., 116 Ewell, Laura, 141 Di Napoli, Jennifer, 154 Duran, Claudia, 87 Ewer, John, 143 Di Napoli, Jennifer, 155 Durand, Daniela, 95 Dias, Natália, 165 Durand, Daniela, 152 Dias, Kátia Cilene Ferreira, 158 Durand, Daniela, 153 F Gonçalves-de-Albuquerque, Cassiano, 126 Diaz, Silvina Laura, 102 Délano, Paul H., 134 F. Xavier, Gilberto, 120 Diaz, Silvina L, 128 Délano, Paul, 134 FELGUEIRAS, LUIZ, 77 Diaz, Ramiro, 91 Díaz, Javier, 85 FERNANDEZ, Mariano, 149 Diaz, Ramiro, 115 Díaz, Javier, 117 FERNANDEZ, JIMENA PIA, 94 Diaz Abrahan, Veronika, 84 Díaz-Amarilla, Pablo, 126 FERREIRA, MARCOS JOSÉ, 119 Diaz Abrahan, Veronika, 85 Díaz-Amarilla, Pablo, 151 FERREIRA, EMERSON, 110 Dieguez, Hernàn H., 98 FERREIRA, ANA, 77 Dimieri, Leonardo, 163 FONTELES, ANALU, 110 Dimieri, Leonardo, 156 Echeverry, Carolina, 128 Faigenbaum, Gustavo, 81 Diniz, Giovanne Baroni, 96 Eckert, Fabiola Boz, 83 Falasco, Germán, 89 Diniz, Daniel, 144 Edson, Quagliotto, 132 Falcon, Cristian, 156 Diniz, Daniel, 116 Edwiges Moura Costa, Ayane, 89 Falconi, Atilio, 143 Diniz, Daniel, 82 Egaña, José, 104 Falconi, Atilio, 149 Diniz, Daniel, 145 Egea, Javier, 128 Falomir L, Eugenia, 92 Diniz, Cristovam Guerreiro, 140 Ego-Stengel, Valérie, 156 Falomir Lockhart, Lisandro J., 122 Diniz, Cristovam, 112 Ego-Stengel, Valérie, 163 Falomir Lockhart, Eugenia, 106 Diniz, Cristovam, 139 Ehrlich, Barbara, 154 Falomir Lockhart, Eugenia, 96 Doctorovich, Fabio, 85 El-Deredy, Wael, 107 Falomir Lockhart *, Eugenia, 96 Dolcetti, Franco Juan Cruz, 96 Elgovhen, Belen, 151 Falzone, Tomás L. 147 Dolcetti, Franco, 106 Elgoyhen, Ana Belén, 104 Falzone, Tomás, 90 Domene, Sabina, 105 Elgoyhen, Ana Belén, 131 Falzone, Tomás, 87 Domingues, Karolina, 109 Elgoyhen, Ana Belén, 164 Farfán, Fernando Daniel, 166 Dominguini, Diogo, 161 Elgoyhen, Ana Belén, 165 Farfán, Fernando D., 107 Domínguez Casalá, Roberto, 103 Elgoyhen, Ana Belen, 105 Farfán, Fernando D. 150 Domínguez Casalá, Roberto, 133 Elgoyhen, Ana, 135 Farfán, Fernando, 163 Donaire, Rocío, 78 Eliana Mailen, Fernandez, 95 Farfán, Fernando, 136 Donato Jr, José, 143 Elias Filho, Daoud, 127 Faria-Neto, Hugo, 110 Donato Jr., Jose, 120 Endo, Shogo, 85 Farias, Talita, 121 Dorfman, Damián, 98 Engedal, Knut, 115 Farias, Talita, 149 Dorfman, Damián, 129 Engel, Daiane Fátima, 84 Farias, Talita, 87 Doria, Juliana G., 149 Engelberth, Rovena, 159 Farina, Marcelo, 84 Dorta-Contreras, Alberto Juan, 129 Engelke, Douglas Senna, 109 Fausto, Lilian, 90 Dorta-Contreras, Alberto Juan, 109 Engelke, Douglas, 109 Fazzioni Passos, Giselle, 118 Dorta-Contreras, Alberto Juan, 123 Epelbaum, Jacques, 103 Federman, Noel, 157 Dos-Santos-Pereira, Maurício, 88 Epstein, Alberto L., 92 Feld, Mariana, 116 dos Santos, Regilane, 131 Erazo, Maria Alejandra, 109 Feld, Mariana, 113 dos Santos, Regilane, 100 Ernfors, Patrik, 86 Felice, Carmelo José, 166 dos Santos, José, 88 Erthal, Fatima, 79 Felice, Carmelo, 107 dos Anjos de Sá, Janine, 125 Escande, Mariela V., 128 Felice, Carmelo, 136 dos Santos Salvalaggio, Gabriela, 148 Felice, Carmelo, 163 Escobar, María-José, 165 dos Santos Salvalaggio, Gabriela, 162 Felice, Carmelo, 150 Escobar, Erica, 94 dos Santos, Aline, 123 Escosteguy-Neto, Joao Carlos, 109 Felício, Luciano F., 113 dos Reis Bastos, Juliana, 91 Espejo, Pablo Javier, 110 Fernandes, Taiany Nogueira, 144 dos Santos, Wagner, 118 Espejo, Pablo Javier, 110 Fernandes, Priscila, 116 dos Santos, Aline, 123 Espindola, Sonia, 91 Fernandes, Mariana, 95 dos Santos Cardoso, Fabrizio, 153 Espindola, Sonia, 95 Fernandes, Juliana, 143 dos Santos Claro, Paula A., 124 Espindula, Izabela, 135 Fernandes, Jansen, 81 dos Santos Felipe, Hanna Katarine, 87 Espinosa, Nelson, 116 Fernandes, Jansen, 95 dos Santos Garcia, Emily, 118 Espinoza, Danay, 117 Fernandes, Cleanto Rogério Rego, 110 dos Santos Junior, Jair Guilherme, 109 Esposito, Maria Soledad, 118 Fernandes, Cleanto, 110 dos Santos Salavaggio, Gabriela, 147 Espíndola de Freitas, Andiara, 128 Fernandes, Artur, 145 dos Santos Vieira, Aline, 130 Espírito Santo Araújo, Sheila, 118 Fernandes, Artur, 126 dos Santos Vieira, Aline, 84 Esquenazi, Dana, 153 Fernandes França, Erivelton, 153

Fernandes Pereira, Juliana, 151 Fernandes da Costa, Marcelo, 147 Fernandez, Mariano, 107 Fernandez, Guillermo, 125 Fernandez, Gimena, 103 Fernandez, Gimena, 102 Fernandez, Eliana Mailen, 95 Fernandez, Claudio, 119 Fernandez Acosta, Magdalena, 117 Fernández, Rodrigo S, 110 Fernández, Rodrigo S, 141 Fernández, Rodrigo, 79 Fernández, Guillermo, 152 Fernández, Gimena, 157 Fernández, Florencia, 117 Fernández Slezak, Diego, 146 Fernández-Dueñas, Víctor, 161 Fernández-Megía, Eduardo, 148 Fernández-Santaella, M, 77 Ferramola, Mariana, 85 Ferrando, Rodolfo, 149 Ferrari, Maria, 125 Ferrario, Mariana, 88 Ferrario, Juan, 119 Ferrario, Juan, 91 Ferrario, Juan, 90 Ferrario, Juan, 88 Ferraris, Jimena, 133 Ferrary Deniz, Bruna, 91 Ferreira, Érica Camila, 95 Ferreira, Érica Camila, 95 Ferreira, Sérgio Henrique, 101 Ferreira, Sérgio, 126 Ferreira, Sergio, 119 Ferreira, Maria, 101 Ferreira Dias, Kátia, 161 Ferreira, Juliano, 150 Ferreira, Jozélia Gomes Pacheco, 128 Ferreira, Jozelia Gomes Pacheco, 127 Ferreira, Jozelia, 97 Ferreira, Jozelia, 97 Ferreira, Gabriela, 158 Ferreira, Diorginis, 86 Ferreira, Dioginis, 150 Ferreira, Carla, 101 Ferreira, Carla, 99 Ferreira, Annabel, 157 Ferreira, Annabel, 80 Ferreira Dias, Kátia Cilene, 137 Ferreira Dias, Katia Cilene, 144 Ferreira Jr, Rui Seabra, 136 Ferreira Jr., Rui, 127 Ferreira Junior, Rui, 106 Ferreira Pinto, Manuel J., 118 Ferreira de Meireles, André Luís, 147 Ferreira de Meireles, André Luís, 148 Ferreira de Meireles, André Luís, 162 Ferreira de Oliveira, Emerson, 151 Ferreira dos Santos, Wagner, 132 Ferreira dos Santos, Wagner, 88 Ferreira dos Santos, Wagner, 135 Ferreira matos, Katia Cilene, 144 Ferreira-Junior, Nilson, 97 Ferreira-Junior, Nilson, 97 Ferrer Monti, Roque Ignacio, 142 Ferrer Monti, Roque Ignacio, 116 Ferreras, Soledad, 125 Ferro Messias, Icaro, 157

Ferroni, Nadina, 111

Figueira, Jéssica, 80 Figueira, Ivan, 79 Figueiredo, Claudia, 119 Figueredo, Diego de Sigueira, 88 Figueredo, Diego de Sigueira, 89 Figueroa, Hector, 133 Figueroa, Daniela, 125 Filgueiras, Claudio, 113 Filippín, Federico, 112 Fiore, Luciano, 154 Fiszbein, Ana, 126 Fix Ventura, Dora, 147 Florenço de Sousa, Francisca, 131 Florenço Sousa, Francisca, 161 Flores, Rafael, 143 Flores, Gonzalo, 118 Flores, Gonzalo, 133 Flores, Carolina, 152 Flores Ramírez, Angélica, 103 Flores Ramírez, Angélica, 133 Flores-Hernandez, Jorge, 106 Flores-Hernández, Jorge, 106 Flores-Muñoz, Carolina, 111 Fogaça, Jéssica, 129 Folch, Jaume, 100 Foltran, Rocío, 102 Fonoff, Erich Talamoni, 89 Fonoff, Erich, 87 Fonoff, Erich, 149 Fonteles, Analu, 143 Fontenele Menezes Mendonça, Ana Paula, 151 Fonzo, Lorena, 116 Forcato, Cecilia, 79 Forcato, Cecilia, 80 Formoso, Karina, 95 Formoso, Karina, 154 Fornari, Raquel Vecchio, 82 Fornari Uberti, Marcela, 129 Forttes, Ignacio, 118 Foureaux, Gisele, 90 Fracchia, Carolina S, 118 Fragomeno, Melisa, 125 Fraiman, Daniel, 118 Francesca Lisboa, Sabrina, 146 Franchini, Lucía Florencia, 93 Franchini, Lucía F., 93 Franchini, Lucía F., 117 Franchini, Lucía, 131 Franchini, Lucia Florencia, 147 Frasch, Carlos Alberto, 95 Frasch, Alberto Carlos, 153 Frasch, Alberto C, 113 Frasch, Alberto, 154 Frash, Carlos Alberto, 95 Freiberger, Viviane, 145 Freiberger, Viviane, 90 Freije, Lujan, 163 Freire Xavier Vieira, Charliene, 101 Freitas, Joyce, 105 Freitas, Joyce, 105 Freitas de Lucena, David, 137 Freitas, Ariane, 83 Freitas Felicio, Luciano, 139

Frenkel, Lia, 146

Freudenthal, Ramiro, 95

Freudenthal, Ramiro, 160

Frontera, Jimena, 123

Fesser, Estefanía A., 92

Fiel, José, 84

Frozino Ribeiro, Andrea, 93 Fuchs, Paul A., 135 Fuchs, Paul A., 135 Fuchs, Paul A., 165 Fuchsova, Beata, 153 Fuentealba, Yerko, 110 Fuentealba, Yerko, 110 Fuentealba, Pablo, 116 Fuentes, Lucia Beatriz, 92 Fuentes, Jaime, 134 Fuentes-Mera, Lizeth, 103 Fuenzalida, Marco, 124 Fuenzalida, Marco, 164 Funck, Vinicius, 96 Furini, Cristiane Regina Guerino, 80 Furlan, Alessandro, 86 Furtado, Cristina, 126 Fuss, Babette, 118 Fusse, Eduardo, 100

G. Britto, Luiz Roberto, 120 G.S. Silva, Tiago, 120 GARCÍA-RAMÍREZ, MARTHA, 81 GIACHERO, MARCELO, 115 GIESTAL ARAUJO, ELIZABETH, 141 GOMES, LUANA, 157 **GONÇALVES, MERITA, 160** GUEDES, RUBEM, 105 Gajardo, Ivana, 119 Galaz, Pablo, 133 Galeano, Pablo, 121 Galiano, Mauricio Raul, 99 Galicia, Salvador, 118 Galicia-Isasmendi, Salvador, 133 Galindo, Gabriel, 163 Galiñanes, Gregorio, 97 Gallegos, Adriana, 134 Gallo, Kathy, 156 Gallo, Francisco, 116 Gallo, Francisco, 115 Gallo, Francisco, 146 Galvalisi, Martín, 131 Galvalisi, Martín, 159 Galvis-Alonso, Orfa Y, 87 Galván, Emilio J., 106 Garcez, Michelle, 158 Garcia, Raphael, 161 Garcia, Raphael, 155 Garcia, Maria Luisa, 100 Garcia, Jessica MM, 87 Garcia, Carlos Gustavo, 95 Garcia Romero, Guadalupe, 103 Garcia de Melo, Fernando, 160 Garcia-Beltran, Olimpo, 148 Garcia-Cairasco, Norberto, 126 Garcia-Cairasco, Norberto, 145 Garcia-Huerta, Paula, 152 Garcia-Rill, Edgar, 157 Garcia-Rill, Edgar, 136 Garcia-Rill, Edgar, 112 Garcia-Rivero, Alexis Alejandro, 123 Garcia-Segura, Luis Miguel, 86 Garcia-Segura, Luis M, 103 García, Ubaldo, 90 García, Ronald, 149 García, Micaela D., 113 García, Micaela, 154 García, Mariana Gabriela, 146

García Romero, Guadalupe, 157 García Segura, Luis Miguel, 106 García-Rill, Edgar, 157 Gardino, Patrícia, 160 Garrido, Marilene Porawski, 112 Garrido-Sanabria, Emilio, 96 Garrão, Natalie, 113 Garza-Cuellar, Miguel, 103 Gasaneo, Gustavo, 156 Gasaneo, Gustavo, 163 Gasaneo,, Gustavo, 109 Gaspar, Pablo A, 122 Gaspar, Pablo, 77 Gaspar, Pablo, 82 Gaspar, Pablo, 89 Gaspar, Pablo, 128 Gaspar, Danielle, 158 Gaspar, Danielle, 144 Gaspar, Danielle, 101 Gatti, Mathias, 139 Gatto, Emilia M., 77 Gavioli, Elaine, 122 Gavioli, Elaine, 100 Gavioli, Elaine, 160 Gavioli, Elaine, 98 Gelman, Diego Matias, 86 Gelman, Diego M, 147 Gelman, Diego, 151 Geraldo, Arnaldo de Sá, 114 Gerez, Juan, 149 German, Olga Lorena, 92 Gershanik, Oscar, 88 Gershanik, Oscar, 119 Gershanik, Oscar, 91 Gevorkian, Goar, 121 Gewehr, Pedro, 132 Ghisleni, Gabriele, 132 Giachero, Marcelo, 80 Giacomini, Damiana P., 96 Giacomini, Damiana P., 96 Giestal de Araujo, Elizabeth, 94 Giestal-de-Araujo, Elizabeth, 156 Giestal-de-Araujo, Elizabeth, 95 Giestal-de-Araujo, Elizabeth, 91 Giestal-de-Araujo, Elizabeth, 152 Giestal-de-Araujo, Elisabeth, 122 Giestal-de-Araújo, Elizabeth, 153 Gilberto, Prof Xavier, 121 Gillen, Daniel, 118 Gimenes, Alexandre, 87 Gimenez, Ignacio, 156 Giménez, Cecilio, 93 Giono, Luciana, 126 Giovambattista, Andrés, 102 Giovenardi, Márcia, 84 Giovenardi, Márcia, 112 Giovenardi, Marcia, 125 Giraldi, Ana CC, 87 Girardi, Elena, 164 Giusti, Sebastian, 92 Giustina Engel, Jéssica, 129 Giza, Joanna, 87 Gleiser, Sonia, 116 Gleiser, Pablo Martín, 117 Gleiser, Pablo Martín, 117 Gleiser, Pablo Martin, 136 Gleiser, Pablo, 86 Gleiser, Pablo, 110

Gobbo-Neto, Leonardo, 88 Gobec, Stanislav, 90 Godino, Andrea, 117 Godino, Andrea, 128 Goin, Juan Carlos, 100 Goitea, Victor Enrique, 99 Goldin, Andrea P., 146 Goldman, Olivia, 87 Golini, Rebeca, 116 Golombek, Diego Andrés, 85 Golombek, Diego A., 77 Golombek, Diego, 146 Gomes de Andrade, Tiago, 89 Gomes de Andrade, Tiago, 88 Gomes, Margarete, 101 Gomes, Margarete, 101 Gomes, Margarete, 99 Gomes, Margarete, 160 Gomes, Luana, 119 Gomes, Luana, 163 Gomes, Karina, 131 Gomes, Flavia, 162 Gomes, Felipe, 112 Gomes, Elisa, 113 Gomes de Souza, Diogo, 92 Gomes, Bruno, 104 Gomes, Anderson, 140 Gomes Braga, Luís Eduardo, 152 Gomes Granja, Marcelo, 122 Gomes da Silva, Sérgio, 83 Gomes da Silva, Sérgio, 127 Gomes da Silva, Sergio, 123 Gomes-de-Souza, Lucas, 101 Gomez, Maria del Pilar, 123 Gomez, Maria del Pilar, 123 Gomez, Maria del Pilar, 126 Gomez, Guillermina, 163 Gomez-Pinilla, Fernando, 123 Gomez-Soler, Maricel, 161 Goncalves, Rafaella, 94 Gonzales, Alex, 96 Gonzales, Alex, 96 Gonzales Maglio, Daniel H, 133 Gonzalez, Wendy, 120 Gonzalez, Paula, 92 Gonzalez, Paula, 86 Gonzalez, Joaquin, 80 Gonzalez, Janneth, 92 Gonzalez, Diego, 82 Gonzalez, Diego, 89 Gonzalez, Candela, 157 Gonzalez, Betina, 157 Gonzalez Garello, Tomas, 112 Gonzalez Lizarraga, Florencia, 131 Gonzalez-Argote, Javier, 129 Gonzalez-Inchauspe3, Carlota, 122 Gonzalez-Leon, Erik, 78 González, Laura E., 117 González, Francisca Mariana, 133 González, Diego, 128 González, Betina, 157 González Fleitas, María F., 98 González-Inchauspe, Carlota, 157 González-Jamett, Arlek, 123 Gonçalves, Carlos Alberto, 144 Gonçalves, Amaziles, 142

Gonçalves Mina, Francielle, 79

Goncalves Pamplona, Hanna, 82

Gonçalves-Pimentel, Catarina, 86

Gonçalves-de-Albuquerque, Cassiano, 126 Gorojod, Roxana, 149 Gorojod, Roxana, 150 Gory-Fauré, Sylvie, 93 Gottardo, Florencia, 133 Gouevtes, Dorian, 156 Goutman, Juan D., 135 Goutman, Juan, 104 Gouveia Jr, Amauri, 143 Goya, Rodolfo, 125 Goya, Eugenia, 85 Gralle, Matthias, 94 Gramacho, Kátia, 101 Granja, Marcelo, 156 Grant, Kirsty, 117 Grattan, David R., 162 Gravielle, María, 129 Gravielle, María, 129 Grañana, Nora, 124 Gredilla, Ricardo, 156 Greggio, Samuel, 132 Grima Murcia, Maria D., 136 Grings, Mateus, 92 Gros, Laurent, 151 Groves, Andrew K, 104 Gu, Rende, 104 Guardia de Souza e Silva, Tiago, 120 Guatimosim, Cristina, 90 Guedes Holanda, Francisco Thiago, 137 Guedes Holanda, Francisco Thiago, 142 Guelman, Laura Ruth, 115 Guelman, Laura, 147 Guerino, Bruna, 99 Guerra de Souza, Ana Cristina, 101 Guerra-Crespo, Magdalena, 149 Guerra-Crespo, Magdalena, 162 Guerreiro, Daniela Barbosa, 116 Guerreiro Diniz, Daniel, 82 Guerreiro Diniz, Cristovam, 82 Guerrero, Sandra, 88 Guerrini, Remo, 98 Guerrini, Remo, 100 Guido, Mario Eduardo, 93 Guillo, Matthias, 151 Guimarães, Francisco, 131 Guimarães, Francisco, 112 Guimarães, Francisco, 100 Guimarães Moreira, Renata, 115 Guinjoan, Salvador, 109 Gulin, Henrique, 141 Gutierrez-Vargas, Johanna Andrea, 132 Gutnisky, Alicia, 130 Guzman, Guido, 120 Guzman, Guido, 120 Guzman, Andrea S, 159 Guzman, Andrea, 98 Guzmán, Luis, 155 Guzzatti Francisco, Gabriela, 158 Gómez, Gimena, 88 Gómez, Angela, 148 Gómez Pinto, Laura, 153 Gómez-Casati, María Eugenia, 104 Gómez-Rangel, Vanessa, 128 Gómez-Sena, Leonel, 112

Gobbo, Denise Ribero, 128

Н HARRES, VANESSA, 88 HERCULANO, ANDERSON, 98 Haas de Mello, Aline, 129 Haase, Santiago, 125 Hallak, Marta Elena, 99 Hallberg, Alan, 87 Hallgrímsson, Benedikt, 86 Hallgrímsson, Benedikt, 92 Han, Sang, 148 Hardy, Paulina, 148 Harrell, Evan, 163 Haubrich, Josué, 143 Hazin, Izabel, 78 Hedin-Pereira, Cecília, 99 Held, Martin, 88 Helguera, Pablo, 125 Hempstead, Barbara L, 87 Henley, Jeremy, 124 Henrique, Jéssica, 81 Henriquez, Juan Pablo, 124 Henriquez, Juan Pablo, 124 Henriquez, Juan, 124 Henriquez, Fernando, 84 Henríquez, Juan Pablo, 124 Henríquez, Bastian, 134 Heppenstall, Paul, 127 Herculano, Anderson, 79 Herculano, Anderson, 80 Herculano, Anderson, 127 Herculano, Anderson, 160 Herculano, Anderson, 163 Hereñu, Claudia Beatriz, 96 Hereñú, Claudia, 106 Hermine, Olivier, 151 Hermitte, Gabriela, 140 Hermosilla, Tamara, 148 Hernandez-Gonzalez, Brenda, 103 Hernandez-Mesa, Nibaldo, 109 Hernando, Guillermina, 130 Hernando, Guillermina, 161 Hernando, Guillermina, 130 Hernández, Sergio, 133 Hernández, Sergio, 155 Herrera, Romina, 117 Herrera, Maria Laura, 112 Herrera, Maria Laura, 142 Herrera Chaustre, Maria Laura, 112 Herrera-Marschitz, Mario, 98 Herzog, Rubén, 165 Herzog, Ruben, 143 Hetz, Claudio, 114 Hetz, Claudio, 152 Hetz, Claudio, 87 Heuser, Maria, 135 Hidalgo, Patricia, 123 Hidalgo-Gudiño, César David, 133 Hidalgo-Gudiño, César David, 133 Higgs, Josefina, 90 Hita, Francisco, 102 Holanda, Victor, 100 Hollborn, Margrit, 98 Honda Takada, Silvia, 155 Honório Júnior, José Eduardo Ribeiro, 161 Huerta, Victor Manuel, 114 Huerta, Victor, 112 Huerta-Briceno, Victor, 82

Huidobro-Toro, J. Pablo, 158

Hurtado, Fabio, 114

Hurtado, Fabio, 142 Huzita, Claudia, 129 Hérzog*, Ruben, 87 Höcht, Christian, 128 Höcht, Christian, 77

I Zugno, Alexandra, 161 Ibaceta*, Cristobal, 87 Ibarburu, Sofia, 151 Ibarra, Muriel, 117 Idesis, Sebastian Ariel, 78 Idiart, Marco, 137 Ignácio, Zuleide, 162 Ikebara, Juliane Midori, 124 Ikebara, Juliane, 80 Ikebara, Juliane, 165 Ikebara, Juliane, 124 Ikebara, Juliane, 124 llarrayoz, Ignacio, 164 Imsen, Mercedes, 156 Inestrosa, Nibaldo, 125 Inestrosa, Nibaldo, 142 Inostroza, Marion, 79 Inostroza, Marion, 85 Inostroza, Marion, 140 Institute, Linus, 151 Inês Tasca, Carla, 131 Iorio, Alberto Andrés, 78 Iribarne, Leticia, 117 Iribarren, Pablo, 98 Irigoyen, Juan, 91 Isaac, Alinny, 86 Isaac, Alinny, 147 Isasi, Eugenia, 91 Ishikawa, Débora, 164 Isnardo-Fernandes, Jemima, 113 Israel, Yedy, 98 Itri, Rosangela, 119 Ivagnes, Rodrigo, 117 lyomasa, Mamie, 83 Iyomasa, Daniela, 83 Izidoro, Andreza, 136 Izquierdo, Ivan, 80

J

J Faller, Cristiano, 161 J. Bertoglio, Leandro, 143 JAVIER DURÓN, CINTIA YOLANDA, 133 Jacob, Mellina Monteiro, 104 Jacobacci, Florencia, 156 Jacobs, Kimberle, 118 Jacques, Flavia, 131 Jandar, Milena, 87 Januário da Mata, Martielo, 114 Jara, Oscar, 152 Jara, Maria Clara, 88 Jara, Daniela, 124 Jausoro, Ignacio, 125 Javier Durón, Cintia Yolanda, 103 Jayanthi, Subramaniam, 112 Jeong, Nuri, 87 Jeremias Fortunato, Jucélia, 83 Jerez, Carolina, 114 Jerez, Carolina, 152 Jerusalinsky, Diana, 81 Jerusalinsky, Diana, 92

Jimenez del Rio, Marlene, 152

Jiménez Gandica, Adrián, 156 Johnson, Teryn, 78 Johnson, Stephanie Lynn, 104 Jorratt, Pascal, 134 Jorratt, Pascal, 134 Jorratt, Pascal, 164 Josiowicz, Alejandro, 112 Jover, Eduardo, 136 Jr, Amaury, 80 Juarez, Leonardo, 164 Junior, Ivair, 123 Junior, Eraldo, 147 Junqueira, Stella, 94 Justel, Nadia, 141 Justel, Nadia, 84 Justel, Nadia, 85 Juárez, Jorge, 79 Juárez, Jorge, 112

K

KIETZER, KATIA, 119 KILIÇ, OSMAN, 124 KLAGGES, JORGE, 90 KOCHEN, Silvia, 149 Kaczer, Laura, 143 Kaiser, Michaela, 93 Kamienkowski, Juan Esteban, 139 Kamienkowski, Juan E., 80 Kamm, Gretel B., 117 Kamm, Gretel B., 127 Kamm, Gretel, 127 Karadayian, Analía, 130 Karadayian, Analia, 94 Karina V, Rodriguez, 109 Karmelic, Daniel, 135 Karmelic, Daniel, 135 Kaster, Manuella, 131 Kato, Luiza, 144 Katz, Eleonora, 135 Kaufman, Bruno, 117 Kawamoto, Elisa, 100 Kazlauskas, Nadia, 89 Kazlauskas, Nadia, 150 Kazlauskas, Nadia, 152 Keller Sarmiento, Maria I., 98 Kelmansky, Diana, 91 Kerekes, Pauline, 163 Kerr, Bredford, 133 Kerr, Bredford, 155 Kihara, Alexandre, 80 Kihara, Alexandre, 126 Kihara, Alexandre, 155 Kihara, Alexandre, 165 Kilday, Kelley, 118 Kilemi, Caroline Gakii, 104 Kim, Yun-Soung, 78 Kincheski, Grasielle, 84 Kirschbaum, Frank, 117 Kline, Nathan, 128 Knabbe, Johannes, 93 Knez, Damijan, 90 Kochen, Silvia, 89 Kochen, Silvia, 94 Kochen, Silvia, 124 Kolliker-Frers, Rodolfo, 120 Konopka, Hector, 94 Kornblihtt, Alberto, 126 Kornisiuk, Edgar, 112 Kornisiuk, Edgar, 81

Kotler, Mónica, 149 Lazzari, Virgínia, 125 Locatelli, Feranando, 134 Lazzari, Virgínia, 125 Kotler, Mónica, 150 Loidl, Fabián, 151 Kozuchovski Ferreira, Gabriela, 129 Lazzarino, Gisela, 97 Loidl, César F., 104 Koc, Volkan, 97 Lazzarotto, Gabriel, 92 Loidl, C. Fabián, 86 Le Gall, Valentine, 114 Lombardi, Paulina, 130 Krause, Juliana, 80 Krause, Juliana, 124 Leal, Rodrigo, 94 Lombardi, Paulina, 130 Krause, Juliana, 124 Leal, Mirna, 130 Lombardi, Paulina, 130 Krawczyk, Maria del Carmen, 160 Leal Luiz, Gabrielli, 83 London, King's, 153 Krolow, Rachel, 148 Lebarch, Evandro, 111 Lopes, Samantha, 101 Krolow, Rachel, 130 Lopes, Norberto Peporine, 121 Lebarch, Evandro, 113 Krolow, Rachel, 118 Lebrun -4, Ivo, 142 Lopes, Luiza, 127 Kropff, Emilio, 112 Lee, Francis S, 87 Lopes Ferreira, Jardel, 145 Kropff, Emilio, 137 Lehmann, Marianne, 125 Lopes, Janice, 130 Krutman, Laura, 77 Lehmann, Marianne, 125 Lopes, lardia Stefane, 131 Kuner, Thomas, 93 Leite, Radfan, 101 Lopes, Flávia Garcia, 132 Kyrylenko, Sergiy, 136 Leite Rodrigues Oliveira, Alexandre, 106 Lopes, Flávia, 89 Kähne, Thilo, 120 Leite Rodrigues Oliveira, Alexandre, 136 Lopes Augusto, Ricielle, 153 Leite Rodrigues de Oliveira, Alexandre, 87 Lopes Cendes, Iscia Teresinha, 95 Leite Rodrigues de Oliveira, Alexandre, 164 Lopes-Silva, Leonardo, 90 Lema, Constanza, 118 Lopez, Pablo H. H., 126 L P Bonde, Henrique, 102 Lemos, Vanessa Ferreira de, 139 Lopez, Mateo, 123 L. Fausto, Lilian, 145 Lent, Roberto, 92 Lopez, Manuela, 128 L. P. Cavalcanti, José Rodolfo, 159 Leon, Laura, 148 Lopez Leon, Micaela, 125 L. P. daSilva, Luis, 151 Leoni, Juliana, 133 Lopez-Vales, Rubén, 133 L. Sandoval, Maria Regina, 120 Lescano Uliana, Daniela, 146 Lopim, Glauber, 123 LAGROTA-CANDIDO, JUSSARA, 141 Leutgeb, Stefan, 141 Lopim, Glauber, 83 LAURA, LEÓN, 81 Leutgeb, Jill, 141 Lorca, Enrique, 121 LEAO, LUANA, 98 Lew, Sergio, 89 Lorca, Enrique, 119 LIMA, ODAIR, 153 Leyton, Belén, 165 Lorca, Enrique, 106 LOPES, ISVANIA, 87 Leão, Rodrigo, 99 Lorenzo Lopez, Ramiro, 156 LUCE FLORES LIRA, MARIE, 141 Leão, Rodrigo, 132 Lores Arnaiz, Silvia, 130 LUCENA, AMANDA, 144 Lores Arnaiz, Silvia, 130 Leão, Richardson, 136 Labarthe, Alexandra, 103 Leão, Luana, 79 Lores Arnaiz, Silvia, 130 Labombarda, Florencia, 120 Leão, Anderson, 90 Lores-Arnaiz, Silvia, 94 Lacerda, Eliza Maria da Costa Brito, 104 Leão, Anderson, 122 Lotufo, Bruna, 113 Lacerda, Eliza Maria, 105 Lotufo, Bruna, 81 León, Laura Andrea, 111 Lacerda, Eliza Maria, 135 León, Laura, 114 Loureiro, Terezinha, 97 Lacoste, Maria Gabriela, 85 León, Germán, 133 Loures, Liliany, 133 Lago, Natalia, 133 Liberato, José Luiz, 132 Louzada, Paulo R., 126 Lago, Natalia, 125 Liberato, José Luiz, 118 Louzada, Paulo, 145 Lagos, Patricia, 143 Liberato, José Luiz, 135 Lovick, Thelma, 114 Lagos, Patricia, 149 Liberato, Jose Luiz, 88 Loyola, Rocío, 77 Lagos, Patricia, 160 Liberato, Jose Luiz, 121 Loyola, Rocio, 89 Lagos, Patricia, 161 Liberato, Jose Luiz, 121 Loyola, Rocio, 128 Lagranha, Claudia, 86 Lima, Randriely, 99 Loyola, Rocio, 128 Lagranha, Claudia, 95 Lima, Odair, 126 Lovola, Rocio, 82 Laje, Rodrigo, 127 Lima, Leandro, 143 Lucas, Guilherme, 136 Laje, Rodrigo, 156 Lima, Analía, 102 Lucas Brandao, Ivan, 161 Laks, Jerson, 115 Lima, Ana Paula, 81 Lucena, Eudes., 159 Lampert, Carine, 118 Lima de Brito, Ana, 139 Lucena, Amanda, 139 Lampert, Carine, 84 Lima, Alvaro, 90 Luchelli, Luciana, 126 Landeira, Jesus, 81 Lima Garcez, Michelle, 79 Lucianna, Facundo Adrián, 166 Landeira-Fernandez, Jesus, 120 Lima Garcez, Michelle, 111 Lucianna, Facundo A., 107 Langhain, María, 149 Lucianna, Facundo, 166 Lima, UFRN, Ramon, 121 Lanuza, Guillermo, 117 Lindsay, Carolina, 142 Lucianna, Facundo, 163 Lanuza, Guillermo, 86 Linhares,, Sarah, 121 Ludka, Fabiana Kalyne, 132 Lanznaster, Débora, 161 Lino de Oliveira, Cilene, 109 Ludka, Fabiana K., 155 Lanznaster, Débora, 131 Lipaus, Ingryd, 111 Lufrano, Daniela, 157 Lara, Marcelo, 106 Lipina, Sebastián Javier, 139 Luis, Jose, 121 Lara, Marcelo, 119 Lipina, Sebastian, 118 Luis, Enoch, 164 Lasaga, Mercedes, 153 Luiz Herdeiro da Silva, Sandro, 82 Lipovsek, Marcela, 131 Lasaga, Mercedes, 152 Lira Brandão, Marcus, 114 Luiz Tavares Mendes, João, 129 Lasaga, Mercedes, 95 Lisboa, Sabrina, 112 Lukin, Jeronimo, 93 Lasaga, Mercedes, 132 Lukin, Jeronimo, 162 Loayza, Lillyan, 159 Lattig, María Claudia, 145 Lobo, Isabela, 110 Luna, Rosalina, 133 Laura, Kaczer, 110 Lobo, Isabela, 80 Luna Leal, Aldo, 106 Laureano, Daniela, 115 Lobo Torres, Larissa Helena, 136 Lunardi, Paula, 113 Lavaise, Nicolas, 112 Lobão, Bruno, 116 Lustosa, Ítalo Rosal, 161 Lavanderos, Boris, 153

Locatelli, Fernando, 114

Lustosa, Ítalo, 101

Lazzaretti, Camilla, 84

Lustosa, Ítalo, 129 Lustosa, Italo, 137 Luz, Bavassi, 110 Luz, Aline, 111 López, Sabrina, 156 López, Pablo H. H., 156 López, Mario, 124 López Costa, Juan, 104 López, Ester María, 164 López, Ester María, 104 López, Dolores, 118 López Ramírez, Matías, 83 López Steinmetz, Lorena Cecilia, 102 López Steinmetz, Lorena C, 128 López-Costa, Juan, 164 López-Leal, Rodrigo, 147 López-López, José Gustavo, 106

M Collodel, Allan, 161 M. O. Costa, Miriam, 159 M. A. Saragossa, Giorgea, 95 M. Winkler, Anderson, 135 M. da Silva Paula, Marcos, 129 M.D. Escarabaial, 78 MACHADO-PINHEIRO, WALTER, 141 MARA RIBEIRO, FABÍOLA, 159 MARCOURAKIS, TANIA, 160 MARQUES, Victor, 161 MATOS, RHOWENA, 153 MATOS DE ANDRADE, GEANNE, 110 MATOS, GEANNE, 119 MATURANA, WAYSON, 141 MENDONÇA, ANA PAULA, 110 MENEGATTI, RICARDO, 160 MENEZES, ANA PAULA, 119 MOLINA, VICTOR, 115 MOREIRA, LORRANE, 160 MULLER, CLAUDIA, 88 Maass, Juan C, 134 Maass, Juan, 104 Macedo-Júnior, Sérgio José, 150 Machado, Rebeca, 114 Machado, Rebeca, 114 Machado, Ivana, 132 Machado, Helio Rubens, 127 Machado, Helio, 123 Machado, Francyne, 95 Machado, Francyne, 141 Machado Cardoso, Mariana, 101 Machado Coimbra, Terezila, 159 Machado Magalhães Moreno, Giselle, 153 Machado-Pinheiro, Walter, 80 Maciel, Thiago T., 151 Maciel, Analú, 156 Maciel, Amanda, 162 Mack, Josiel Mileno, 101 Mack, Josiel M., 150 Macêdo, Priscila T., 121 Macêdo, Priscila, 121 Macêdo, Danielle, 89 Madalena Cabrera Mori, Cláudia, 139 Madariaga, Samuel, 141 Madrid, Rodolfo, 134

Marin, Daniela, 82 Madrid, Rodolfo, 153 Madrid, Rodolfo, 134 Magalhães, Nara, 112 Magalhães, Nara, 140 Maripillán, Jaime, 152 Magistrelli, María Cristina, 109

Maia Chaves Filho, Adriano, 101 Maidana Capitan, Melisa, 137 Maidana Capitan, Melisa, 137 Maidana Miguel, Patrícia, 91 Mainieri, Alessandra, 133 Maione, Sabatino, 101 Maisonnette, Silvia, 81 Maisonnette, Silvia, 120 Malagón-Bautista, Paulina, 150 Malanga, Gabriela, 130 Maldonado, Pedro E., 84 Maldonado, Pedro E, 122 Maldonado, Pedro, 104 Maldonado, Pedro, 163 Maldonado, Pedro, 141 Maldonado, Pedro, 127 Maldonado, Pedro, 134 Maldonado, Ana Carolina, 166 Maldonado-Ruiz, Roger, 103 Malet, Mariana, 134 Malezan, Willian, 121 Malezan, William, 121 Malfacini, Davide, 98 Malgarin, Fernanda, 112 Mallon, Andrew, 160 Malmierca, Manuel S., 135 Malmierca, Manuel, 135 Malysz, Taís, 135 Manhães, Alex, 112 Manrique Perico, Katherinne, 91 Mansfield, Colin, 151 Mantellero, Carola, 85

Mahecha Castañeda, Juan Guillermo, 155

Maia, Tássia Farias da Silva, 148

Maia, Matheus Rocha, 148

Mai. Sandra, 91

Manuelli, Paula N, 133 Mar Arcego, Danusa, 148 Mar Arcego, Danusa, 130 Mara Ribeiro, Fabiola, 161 Marachlian, Emiliano, 134 Marcela, Delgado,, 116 Marcelo, Sapognikoff, 109 Marcenaro, Bruno, 105 Marchese, Natalia, 106 Marcourakis, Tania, 161 Marcourakis, Tania, 155 Marcourakis, Tania, 136 Marcucci, Carolina, 90 Marcuzzo, Simone, 162 Marcuzzo, Simone, 147 Marcuzzo, Simone, 148 Marder, Mariel, 90 Mardones, Pablo, 114 Mardones, Gonzalo, 120 Marengo, Fernando D., 136 Marengo, Fernando D., 106 Maria Blanco Martinez, Ana, 149 Maria Quaglio Bellozi, Paula, 161 Maria Rocha de Lima, Neila, 84 Maria-Engler, Silvya, 155 Marin, Fernanda N, 80 Marin Burgin, Antonia, 157 Marin-Burgin, Antonia, 107 Marin-Burgin, Antonia, 151 Marinho Reis Silva, Thiago, 142 Mario Arida, Ricardo, 95

Marmora, Claudia, 133 Maroteaux, Luc, 102 Margues, Rubenita, 80 Margues, Naiani F., 100 Marques, Naiani, 131 Marques Jucá, Mércia, 142 Marques Ribeiro, Maria, 155 Marques Ribeiro, Maria, 86 Marques Juca, Mercia, 100 Marques Jucá, Mércia, 144 Marques Lima Batista, Edleusa, 161 Marques da Silva Paula, Marcos, 158 Marquez, Liliana, 82

Marquez, Guillermo, 85 Marrubia, Mariana, 100 Martha Bernardi, Maria, 139 Martignone, Noelí, 164 Martijena, Irene, 139 Martin, Josefina, 93 Martinez, Valentina, 125 Martinez, Melissa, 84 Martinez, Marcela, 128 Martinez, Gladys, 82 Martinez, Antigona, 82 Martinez, Ana, 120 Martinez, Ana, 148 Martinez, Agustin, 111

Martinez-Larrarte, Jose Pedro, 109 Martinez-Larrarte, Jose Pedro, 129 Martinez-Larrarte, Jose Pedro, 123 Martino Adami, Pamela, 121 Martino Adami, Pamela, 121 Martins, Wagner, 155 Martins, Leo, 132

Martins, Isabelle Christine, 105 Martins, Cleciane, 111 Martins, Cleciane, 113

Martins Laurentino, Ana Olívia, 83 Martins de Almeida, Fernanda, 125 Martins de Carvalho, Luana, 82 Martos, Yanina V, 122 Martos, Yanina, 122

Martynhak, Bruno Jacson, 146 Martínez, Marcela, 159 Martínez, Antígona, 128 Martínez, Antígona, 77 Martínez, Alfredo, 164 Martínez, Agustín D., 95 Martínez, Agustín, 152

Martínez Damonte, Valentina, 125 Martínez-Palma, Laura, 151 Martínez-Palma, Laura, 125 Martínez-Palma, Laura, 153

Martínez-Paniagua, Carlos Humberto, 93

Marzolo, Maria Paz, 125 Marín Burgin, Antonia, 128 Mascarello, Lidiomar José, 109 Mascó, Daniel, 125

Mascó, Daniel, 125 Mascó, Daniel, 94 Massaaki Honji, Renato, 115 Massari, Caio, 131 Massoco, Cristina O., 133 Masssari, Caio, 155 Matheus, Filipe Carvalho, 101 Mathieu, Patricia, 123 Mathieu, Patricia, 153 Matias Barbosa, Talita, 129 Matias Barbosa, Talita, 137

Matias Barbosa, Talita, 142 Matias Barbosa, Talita, 101 Matias Junior, Ivair, 127 Matias dos Santos, Sabrina, 129 Mato, German, 165 Matos, Rhowena, 126 Matos de Andrade, Geanne, 84 Matos, Geanne, 143 Matos, Gabriel Costa, 116 Matos, Danyela, 162

Matos de Andrade, Geanne, 151
Matsumoto, Priscila, 148
Mattalloni, Mara Soledad, 126
Mattalloni, Mara S., 98
Mattalloni, Mara S, 126
Maturana, Alejandro, 128
Maturana, Alejandro, 89
Matute, Esmeralda, 112
Mayol, Rocío, 77
Mayol, Rocio, 82
Mayol, Rocio, 89
Mayol, Rocio, 128

Mazucanti, Caio Henrique, 100 Mazzei, Rodrigo, 145 Mazzola Cuogo, Ana Luiza, 83 Mazzone, Graciela L, 91 McAlpine, David, 104 Mecawi, Andres, 128 Medan, Violeta, 104 Medan, Violeta, 163 Medeiros, Íris, 100

Medeiros Fernandes, Geraldo José, 83 Medina Solano, Martha Liliana, 142

Medori, Mara, 155 Mega, Filipe, 147

Medeiros, Priscila, 101

Mega dos Santos, Filipe, 162 Mega dos Santos, Filipe, 148 Meira Martins, Leo, 92 Mejia, Jorge, 87

Melleu, Fernando Falkenburger, 109

Mello, Luiz Eugenio, 109
Mello, Jonas, 158
Mello, Fernando, 153
Melo, Stefano, 99
Melo Silva , Paulo, 144
Melo, Mauro, 112
Melo, Mauro, 140
Melo-Silva, Joyce, 141

Mendes Vasconcelos , Silvânia, 160 Mendes Vasconcelos , Silvânia, 161 Mendes Vasconcelos , Silvânia, 158 Mendes Vasconcelos , Silvânia, 158 Mendes de Vasconcelos , Silvânia, 101 Mendes Vasconcelos , Silvania, 100

Mendes, Rafaela F., 142

Mendes, Fabíola de Carvalho, 148 Mendes Soares, Ligia, 131 Mendes Soares, Ligia, 140

Mendes Vasconcelos, Silvania Maria, 144

Mendonça, Josidéia, 111 Mendonça, Josidéia, 113 Mendonça, Henrique, 120 Mendonça, Ana Paula, 143 Menegatti, Ricardo, 99 Meneses, Lucas Nascimento, 131

Meneses, Drielly, 101

Menezes Rodrigues , Meliza, 82 Menezes, Grasielle, 152 Menezes Schulte Ferreira, Roberta, 155

Meredith, Andrea, 135 Merino, Florencia, 156 Mesquita Barreto, Bruna, 82 Messore, Fernando, 123 Metzger, Martin, 143 Meurer, Ywlliane S., 121 Meurer, Ywlliane, 90 Meurer, Ywlliane, 122 Meyer, Erica, 131 Miceli, María, 147 Michalak, Camila, 83 Michelini, Lisete, 97 Midiwo, Jacob, 128 Midori Ikebara, Juliane, 155 Miguel, Patrícia, 84 Miguel, Patrícia, 115

Miguel, Patrícia, 115
Miguel, Patrícia, 115
Miguel, Martin A., 146
Milani, Humberto, 102
Milani, Humberto, 131
Millan-Aldaco, Diana, 162
Miller, Annelise, 78
Millán, Julieta, 96
Millán, Julieta, 113
Millán-Aldaco, Diana, 119
Millán-Aldaco, Diana, 149

Mina, Francielle, 111 Minaya, Cinthya, 96 Mindlin, Gabriel B., 96 Mindlin, G.B., 107 Minini, Camilo, 151 Mininni, Camilo, 89 Minteguiaga, Manuel, 131 Miquel, Ernesto, 153

Miquel, Ernesto, 125

Miranda, Renan, 126 Miranda, Renan, 126 Miranda, María, 163 Miranda, Marcia, 133 Miranda, Magdalena, 111 Miranda, Magdalena, 146 Miranda, Magdalena, 116

Miranda-Morales, Marcela, 165 Miro, Maria Paz, 88 Miró, Maria Paz, 85 Miyamoto, Sayuri, 142 Mocaiber, Izabela, 142 Mocaiber, Izabela, 143 Moffatt, Luciano, 107 Moglie, Marcelo J., 135 Moglie, Marcelo J., 135 Molina, Vitor, 84

Molina, Victor Alejandro, 110 Molina, Victor, 112

Molina, Victor, 139 Molina, Sonia Jazmín, 115 Monferran, Clara, 156

Montaner, Alejandro Daniel, 134

Montani, Fernando, 137

Monteiro Weffort de Oliveira, Rúbia Maria,

29

Monteiro-Junior, Renato Sobral, 115 Monteiro-Junior, Renato Sobral, 115 Monteleone, Melisa Carolina, 139 Monteleone, Melisa Carolina, 95

Moraes, Suellen, 127 Moraes, Suellen, 156 Moraes, Lucam, 133 Moraes, Fanildes, 101 Morales, Susana, 112 Morales, Ricardo, 80 Morales, Juan, 136 Morales, Juan, 136 Morales, Jaime R, 150 Morales, Francisco, 165 Morales-Montor, Jorge, 162 Moralles, Natália, 80

Moralles Dias, Natália Myuki, 124

Morandini, Leonel, 81 Morandini, Leonel, 145 Moreira, Natalia, 142 Moreira, Natalia, 81 Moreira, Lorrane, 99 Moreira, Karin, 115 Moreira, Karin, 115

Moreira, Eduardo Luiz Gasnhar, 84 Moreira Alves da Silva, Daniel, 129

Moreira, Ana, 103

Morel, Gustavo Ramón, 146

Morelli, Luis, 128 Morelli, Luis, 107 Morelli, Laura, 91 Morelli, Laura, 121 Moreno, Pedro, 126 Moreno, Giselle, 147 Moreno Ayala, Mariela, 133 Moreno-Gómez, Felipe, 134 Moretti, Morgana, 131 Moretti, Morgana, 131 Moretti, Morgana, 150 Morfini, Gerardo, 156 Mori, Marco Aurélio, 131 Mori, Marco Aurélio, 131 Morici, Juan Facundo, 146 Morici, Facundo, 111 Morici, Facundo, 115 Mosqueira, Alejo, 93

Mota, Mailce Borges, 109 Mota, Bruna Eugênia Ferreira, 143 Mota-Ortiz, Sandra Regina, 127 Mota-Ortiz, Sandra Regina, 128 Motta-Teixeira, Lívia, 80

Moura, Ivan, 151 Moura, Airam, 162 Moussy, Alain, 151 Moya-Díaz, José A., 106 Mozafari, roghayeh, 136 Mozafari, roghayeh, 136 Mpodozis, Jorge, 105 Muchnick, Carolina, 91 Mul Fedele, Malena Lis, 77 Mul Fedele, Malena L, 146 Muller Igaz, Lionel, 149 Munari, Leonardo, 80 Mundaca, Manuel, 162 Muniz, Jhonata, 103 Muraro, Nara I., 117 Muraro, Nara I, 117 Murer, Mario Gustavo, 128 Murer, M. Gustavo, 128

Murer, M. Gustavo, 128 Murer, M. Gustavo, 122 Murer, Gustavo, 119 Murer, Gustavo, 97 Murta, Veronica, 93 Musa, Gada, 84 Muñoz, Yorka, 148 Muñoz, Rosa Iris, 120 Muñoz, Rosa, 85 Muñoz, Rosa, 88 Muñoz, Rosa, 118 Muñoz, Paola, 162 Muñoz, Kristopher, 163 Muñoz, Camilo, 85 Muñíz, Javier, 157 Myskiw, Jociane de Carvalho, 80 Myuki Moralles Dias, Natália, 124 Márquez, Liliana, 114 Móvio, Marília, 126 Móvio, Marília, 126

Ν

Nascimiento, Jose, 98

Nascimiento Silva Vasconcelos, Pedro E., 150 NEVES, JULLIANA CATHARINA, 119 NOGUEIRA, ROMILDO, 87 Nadal, Marcela, 122 Nadal, Marcela, 165 Nadia Soares de Sousa, Caren, 100 Nakamura-Palacios, Ester, 111 Nakamura-Palacios, Ester, 112 Nascimento, Tatiana, 79 Nascimento, Payron Augusto, 158 Nascimento, Osvaldo José, 115 Nascimento Ramalho Filho, Mauro, 158 Nascimento, Kyria, 94 Nascimento Gouveia, Daniele, 160 Nascimento Meneses, Lucas, 160 Nascimento-Júnior, Expedito, 159 Nasi, Enrico, 123 Navarrete, Marcela, 105 Navarro, Nicolás, 113 Navarro, Elisa, 128 Navas, M. Eugenia, 111 Navas Guimaraes, Maria Eugenia, 148 Navas Guimaraes, Maria Eugenia, 148 Neandro Cordeiro Lima, Carlos, 82 Nedel, Cláudia Beatriz, 132 Neder, Luciano, 126 Neely, Alan, 123 Negro Demontel, María Luciana, 133 Negro Demontel, María Luciana, 133 Negrão Frota de Almeida, Luciana, 148 Neils, Aline Vilar, 121 Neis, Vivian, 131 Neri, Hiasmin, 99 Neto, Reinaldo, 101 Neves, Kelly, 143 Neves, Fernanda, 119 Neves Andrade, Jéssica, 90 Nieradka, Kenny, 95 Nieradka, Kenny, 141 Nieto, Denis Alejandro, 154 Nishida, Fabián, 154 Nishio, Laryssa, 126 Nistri, Andrea, 122 Nitsch, Rodrigo, 141 Nobre, Manoel Jorge, 141 Nobre, Manoel Jorge, 143 Nobre, Manoel Jorge, 159 Nobre, Manoel Jorge, 80 Nobre, Manoel Jorge, 127 Nogueira, Maria Ines, 130 Nogueira, Maria Ines, 120

Nogueira, MAria Ines, 121

Nogueira, José, 90 Nogueira de Oliveira, Débora, 89 Nogueira Abreu, Isabella, 82 Nogueira Lotz Alves, Fernanda, 146 Nonose, Yasmine, 92 Novaes Barros, Vanessa, 91 Nunes, Tâmara, 99 Nunes Costa Okamura, Adriana Mary, 101 Nunes-Tavares, Nilson, 123 Nunes-de-Souza, Ricardo Luiz, 144 Nunes-de-Souza, Ricardo Luiz, 182 Nunes-de-Souza, Ricardo Luiz, 131 Nunes-de-Souza, Ricardo Luiz, 140 Nuñez, Oscar, 96 Nuñez, Marco T., 148

O

Nuñez, Marco T., 148

OLIVEIRA, WELLINGTON, 153 OLIVEIRA, VICTOR DOUGLAS, 119 OLIVEIRA, Rúbia Maria, 102 OLIVEIRA, Rubia Maria, 102 OLIVEIRA, LEONIA, 98 OLIVEIRA, KAREN, 98 OLIVEIRA, DANILLO, 160 **OUVERNEY, THIAGO, 88** Ocampo-Garcés, Adrián, 85 Ocampo-Garcés, Adrián, 140 Ocampo-Garcés, Adrián, 117 Ocampo-Garcés, Adrián, 79 Ocampo-Garcés, Adrián, 121 Ogando, Mora, 107 Ogando, Mora, 128 Ogando, Mora, 128 Ogando, Mora, 151 Ojeda, Patricia, 133 Ojeda, Patricia, 155 Ojeda, Patricia, 133 Ojeda, Loreto, 120 Ojeda, Loreto, 85 Ojeda, Jorge, 124 Olaviaga, Alejandro, 99 Oliva, Damian, 105 Olivar, Natividad, 91 Olivares, Felipe, 87 Olivares, Felipe, 165 Olivatto, Laura, 90 Oliveira, Wellington, 126 Oliveira, Wellington, 126 Oliveira, Tássia, 101 Oliveira, Thavnara Silva, 139 Oliveira, Tatiana de Queiroz, 161 Oliveira, Ludhielli, 99 Oliveira, Letícia, 79 Oliveira, Letícia, 77 Oliveira, Leticia, 116 Oliveira, Leticia, 110 Oliveira, Leonam, 119 Oliveira, Leandro, 101 Oliveira, Karen Andrinéia, 132 Oliveira, Karen Andrinéia, 132 Oliveira, Karen, 127 Oliveira, Karen, 156 Oliveira, Karen, 156 Oliveira, Karen, 160

Oliveira, Karen, 79

Oliveira, Karen, 161

Oliveira, Karen, 80

Oliveira, Júlia, 148

Oliveira, Julia, 148 Oliveira, Jose Antonio, 145 Oliveira, Jose, 79 Oliveira, Jose, 116 Oliveira, Jose, 116 Oliveira, Gabriel, 113 Oliveira, Fábio Augusto Portela, 158 Oliveira, Danillo, 99 Oliveira Godeiro Júnior, Clécio, 88 Oliveira, Cilene Lino de, 83 Oliveira, Alexandre Pereira, 139 Oliveira, Alexandre, 106 Oliveira, Alexandre, 164 Oliveira, Alexandre, 89 Oliveira, Alexandre, 136 Oliveira Bonci, Daniela Maria, 105 Oliveira Corvelo, Tereza Cristina, 105 Oliveira Junior, Luiz Gonzaga, 88 Oliveira Júnior, Luiz Gonzaga, 89 Oliveira-Lima, Alexandre Justo, 139 Olivera-Bravo, Silvia, 124 Olivera-Bravo, Silvia, 126 Olivera-Bravo, Silvia, 91 Oliviera, Edilamar, 99 Olmedo, Diego, 134 Olmos Carreño, Cindy, 154 Olmos Carreño, Cindy, 155 Olszevicki, Santiago, 158 Onaivi, Emmanuel S., 109 Ordoñez Sierra, Rodrigo, 146 Orgambide, Federico, 130 Orio, Patricio, 107 Ornelas, Isis, 131 Ortega, Arturo, 93 Ortiz, Ignacio, 104 Ortiz-Rodriguez, Ana, 86 Osorio-Forero, Alejandro, 111 Osorno, Tomas, 126 Ossandon, Tomás, 79 Otero, Gabriela, 147 Otero, Gabriel, 126 Oyarce, Maria Paz, 104 Özcetin, Adnan, 124

D

P. Cunha, Mauricio, 132 P. Fiuza, Felipe, 159 P. Guzen, Fausto, 159 P. Oses, Jean, 162 PAIXAO, LUISA, 144 PANDOLFO, PABLO, 141 PANTOJA, EMANUELLE, 144 PASSOS, ADELAIDE, 98 PEDRAZA, LIZETH KATHERINE, 81 PEREIRA, JULIANA, 110 PEREIRA, JULIANA, 119 PINTO, CAMILA, 77 PORTES, ALEX, 141 PRINCICH, Juan Pablo, 149 PRINCICH, Juan Pablo, 149 PROGÊNIO, RAPHAELY, 119 Pacchioni, Alejandra M., 119 Pacheco, Luiza, 110 Pacheco, Luis, 96 Padilha, Francine, 101 Padín, María Eugenia, 97 Paez, Hector, 139 Paez, Hector, 139 Pagano, Rosana Lima, 89

Pagano, Rosana, 149 Pagano, Rosana, 87 Paglini, Gabriela, 125 Paiva-Santos, Murilo, 122 Paiva-Santos, Murilo, 90 Paixão, Luisa, 144 Palacios, Adrián G., 165 Palacios, Adrián G, 106 Palacios, Adrian, 87 Palacios, Adrian, 163 Paladino, Natalia, 146 Palandri, Anabela, 126 Palandri, Anabela, 156

Palazzo de Mello, João Carlos, 129 Pallarés, María Eugenia, 158

Pallia, Roberto, 120 Pallàs, Merce, 100 Palma, Verónica, 135 Palma, Ricardo, 140 Palombo, Paola, 99

Palomero-Rivero, Marcela, 119 Palomero-Rivero, Marcela, 149 Palomero-Rivero, Marcela, 162

Pandolfi, Matías, 115 Pandolfi, Matias, 81 Pandolfi, Matias, 145 Pandolfo, Pablo, 160 Pandolfo, Pablo, 114 Pandolfo, Pablo, 120 Papy-Garcia, Dulce, 119 Paquet-Durand, Francois, 163

Parada, Esther, 128 Pardi, Ma. Belén, 107 Pardo, Grace, 137 Parga, Cristian, 120 Parmigiani, Raphael, 87 Parra, Camila, 129 Parra-Chico, Andrés, 85 Partata, Wania, 135

Pasantes-Morales, Herminia, 162

Paschoa, Amanda, 87 Paschoa, Amanda, 121 Paschoalini, Marta, 143 Pascovich, Claudia, 157 Pasquini, Laura A., 129 Pasquini, Juana, 151 Pasquini, Camila, 144 Pasquini de Souza, Camila, 157 Passani, Maria Beatrice, 80 Pastor, Verónica, 139

Patrocinio, Manoel-Cláudio, 158 Paula, Vinicius Ximenes, 158 Pauleti, Nathielli Nayara, 98 Pauleti, Nathielli, 158 Pautassi, Ricardo, 141 Pautassi, Ricardo, 159 Pautassi, Ricardo, 159 Paz, Maria Constanza, 77 Pazinatto Aguiar, Rafael, 140 Pazinatto Aguiar, Rafael, 140 Pedraja, Federico, 140 Pedraza, Lizeth, 141 Pedraza, Lizeth, 144 Pedraza Correa, Lizeth, 146

Pedrazza, Lizeth, 113 Pedreira, María Eugenia, 80 Pedreira, María Eugenia, 143 Pedreira, Maria Eugenia, 113 Pedreira, Maria E, 141

Pedreira, Maria E, 110 Pedreira, M. Eugenia, 79 Pedro, Bekinschtein, 111 Pedroncini, Olivia, 140 Pedroncini, Olivia, 140 Pedroza, Anderson, 95

Peixoto-Rodrigues, Maria Carolina, 140 Peixoto-Rodrigues, Maria Carolina, 140

Pelição, Fabrício, 111 Pelição, Fabricio, 112 Pellerin, Luc, 132 Peluffo, Hugo, 133 Pelufo Silveira, Patrícia, 115 Penagos, Marion, 140 Penagos-Gil, Marion, 140 Peporine Lopes, Norberto, 88 Peralta-Ramos, Javier, 98 Pereira, Patrick, 140 Pereira, Patrick, 140 Pereira, Patrick, 140 Pereira, Patrick, 140 Pereira, Patrick, 112 Pereira, Mirtes, 110 Pereira, Mirtes, 116 Pereira, Mirtes, 77

Pereira, Marilia, 145 Pereira, Lenir, 84 Pereira Silva, Lenir, 91 Pereira, Lenir, 115 Pereira, Lais da Silva, 127 Pereira, Danilo Marinho, 145 Pereira, Claúdio Renan, 116 Pereira, Antônio, 78 Pereira Bolfe, Renan, 79 Pereira Henrique, Ediely, 82

Pereira, Mirtes, 79

Pereira Junior, Antonio, 96 Pereira dos Santos, Josefa Cristina, 114

Perello, Mario, 103 Perelló, Mario, 102 Perelló, Mario, 157 Pereyra, Beatriz, 101 Perez, Matheus, 106 Perez, Matheus, 136 Perez, Matheus, 136 Perez, Matheus, 164 Perissinotti, Paula P., 157 Perissinotti, Paula, 157 Perissinotti, Paula, 136 Perissinotti, Paula, 136 Perrinet, Laurent, 163 Perrone, Rossana, 140

Perrone, Rossana, 140

Pertusa, María, 153

Pessoa, Rodrigo, 143

Pereira Jr., Antônio, 84

Pessoa Nobre, Paulo, 101 Pessoa Nobre, Paulo Henrique, 89 Petronilho, Fabrícia, 129 Petronilho, Fabricia, 162 Petrs, Hilda, 152

Peña, Florencia, 80 Peña, Elena, 151 Pfutzenreuter, Gabrielle, 95

Pianaro, Jaqueline, 141 Picanço Diniz, Cristovam, 82 Picanço Diniz, Cristovam, 116 Picanco Diniz, Cristovam, 140 Picanço Diniz, Cristovam, 144

Picanço Diniz, Cristovam, 145 Picanço Diniz, Cristovam, 148 Picolli, Yollanda, 160

Pietranera, Luciana, 102 Pietranera, Luciana, 120 Pietto, Marcos Luis, 139 Pietto, Marcos Luis, 139 Pietto, Marcos L, 118

Pimentel, Catarina, 153 Pimentel, Catarina, 147 Pincerati, Márcia, 95 Pincerati, Márcia, 141 Pinho Braga, Eduardo, 155 Pini, Renata, 145

Pino, Gabriela, 165 Pino, Gabriela, 135 Pino, Diego, 148 Pinto Borges, Lidiane, 83 Pires, Rita, 112 Piriz, Joaquín, 97

Pisera, Daniel, 133 Pivetta, Chiara, 118 Piza, Alvaro G., 136 Pizá, Álvaro G, 150 Pizá, Alvaro G., 107 Pizá, Alvaro, 166 Pizá, Alvaro, 163 Piña, Ricardo, 134

Piñero, Pâmella Pimentel, 154

Piñero, Pâmella, 123 Piñero, Gonzalo, 154 Piñeyro, Marcelo, 110 Piñeyro, Marcelo, 142 Planeta, Cleopatra, 99 Planeta, Cleopatra, 132 Plano, Santiago, 85 Platt, Nicolle, 132 Plazas, Paola, 131 Poeppel, David, 96 Pohle, Jörg, 127 Polari, Daniel, 116

Politti Cartarozzi, Luciana, 136

Pomilio, Carlos, 150 Ponce, Ivana, 85 Porawski, Marilene, 84 Porcari, Cintia, 117 Porte Alcón, Soledad, 150 Portes, Alex, 114

Portiansky, Enrique Leo, 154 Portillo, Javier, 165 Portillo, Javier, 117 Pose, Inés, 165 Pozo Devoto, Victorio, 87 Prado, Pillar, 159 Prado, Pillar, 159

Prado, Pavel, 163 Prado, Pavel, 163 Prata Mendonça, Ingrid, 153

Prats, Lucía, 118 Prediger, Rui D., 150 Prediger, Rui, 101 Pregi, Nicolás, 92 Prickaerts, Jos, 102 Prickaerts, Jos, 140 Prieto, Juan Diego, 123 Prieto, José Pedro, 131 Prieto, Jose, 159 Prieto, Jose, 159 Primini, Eduardo, 118

Prizon, Tamiris, 121 RODRIGUES FILHO, RENATO, 119 Ribeiro Honorio Junior, Jose Eduardo, 100 ROSA, MURILO, 144 Proença S. Magalhães Gomes, Matheus, 90 Ribeiro Honório Jr, José Eduardo, 144 Prospéro-Gracía, Oscar, 162 ROSA RAMOS DA SILVA, RAIANY, 78 Ribeiro Honório iúnior, José Eduardo, 144 Provensi, Gustavo, 80 ROZAS, CARLOS, 90 Ribeiro Krasilchik, Lucas, 111 Prunell, Giselle, 128 Ribeiro da Silva, Veronica Gabriela, 87 Rabinovich Orlandi, Iván, 115 Prunell, Giselle, 160 Rabossi, Aleiandro, 121 Ribeiro-Resende, Victor Túlio, 96 Prymaczok, Natalia Cecilia, 149 Radi, Rafael, 121 Ribeiro-Resende, Victor, 153 Radmilovich, Milka, 117 Prymaczok, Natalia Cecilia, 149 Riberti Zaniboni, Caroline, 159 Rafael, William, 121 Ricci, Milena, 87 Prá, Morgana, 129 Psyrdellis, Mariana, 84 Richard, Silvina, 146 Raingo, Jesica, 125 Raisman-Vozari, Rita, 119 Pyott, Sonja, 135 Rico, Javier L, 140 Pérez, Viviana, 124 Raisman-Vozari, Rita, 131 Ridano, Magali Evelin, 77 Pérez-Domínguez, Martha, 162 Ramallo, Martín Roberto, 115 Riggio, Lucia, 80 Píriz, Joaquín, 142 Ramirez, Delia, 153 Rigoni, Daiana, 98 Ramirez, Darío, 116 Rigoni, Daiana, 159 Rigoni, Daiana, 159 Ramos, Javier, 162 0 Ramos, Guillermo, 97 Rio-Tsonis, Katia, 153 Quarracino, Cecilia, 120 Riquelme-Sandoval, Agustín, 99 Ramos, Guillermo, 103 Ouasollo, Gonzalo, 152 Ramos, Alberto Javier, 107 Risau Gusman, Sebastian, 110 Quassollo, Gonzalo, 93 Ramos, A. Javier, 93 Rivarola, María Angélica, 78 Queiroz, Claudio, 148 Ramos Souza Barbosa, Leandro, 131 Rivas, Mayda, 149 Oueiroz, Ariane N. 87 Ramé, Maria Emilia, 110 Rivas, Mavda, 80 Quevedo, João, 79 Ramé, Maria Emilia, 142 Rivera, Daniela, 125 Quevedo, João, 103 Ramírez, Delia, 95 Rivera, Claudia, 152 Ouevedo, João, 145 Rangel, Maricruz, 164 Rivera-Meza, Mario, 98 Ouevedo, João, 151 Rangel, Maria Luiza Sales, 145 Rivero Segura, Nadia A, 162 Quevedo, João, 161 Robello, Carlos, 155 Rasia-Filho, Alberto, 132 Quevedo, João, 162 Rasia-Filho, Alberto, 106 Roberto Zampronio, Aleksander, 82 Quevedo, Joao, 162 Ratis, Mauro Augusto, 135 Robles, Luis, 134 Quillfedt, Jorge, 113 Rayes, Diego, 103 Rocco, Ana Paula, 110 Quillfeldt, Jorge Alberto, 84 Rayes, Diego, 80 Rocha Rego, Vanessa, 142 Quillfeldt, Jorge, 141 Real, Ana L.C.V., 149 Rocha, Talita, 148 Quillfeldt, Jorge, 146 Refojo, Damián, 92 Rocha, Gifone, 89 Quillfeldt, Jorge, 144 Reggiani, Paula Cecilia, 146 Rocha, Fernando, 163 Quillfeldt, Jorge, 143 Regina Pereira, Nariana, 102 Rocha Mendonça, Henrique, 118 Ouincozes-Santos, André, 150 Regina Santos do Carmo, Marta, 84 Rocha Silveira, Edilberto, 129 Quinn, Laleh, 78 Rego, Vanessa Rocha, 143 Rodrigues, Vinícius Dias, 115 Quintanilla, María Elena, 98 Rehen, Stevens, 87 Rodrigues, Taís, 126 Quintanilla, Juan Pablo, 142 Reines, Analía, 156 Rodrigues, Renan Barbosa, 158 Quintanilla, Juan Pablo, 112 Reinés, Analía, 151 Rodrigues, Maísa, 150 Quintanilla, Juan Pablo, 114 Reinés, Analía, 100 Rodrigues, Maria Rita, 83 Quintanilla, Juan Pablo, 142 Reis, Ricardo, 153 Rodrigues, Marcelo, 147 Quintanilla, Juan P, 82 Rodrigues, Marcelo, 86 Reis, Patrícia, 90 Quintans Júnior, Lucindo José, 160 Reis, Patrícia, 110 Rodrigues, Lívia, 112 Quinteros, Maria Luz, 77 Rela, Lorena, 106 Rodrigues, Lívia, 111 Ouinteros Ouintana, María Luz, 166 Rela, Lorena, 128 Rodrigues, Guilherme, 102 Quinteros Quintana, María Luz, 166 Remedi, Carolina, 83 Rodrigues, Erika C., 145 Quinteros-Quintana, Maria Luz, 93 Rodrigues, Dario, 105 Resende, Wilson, 151 Quiroz, Ubaldo, 118 Resende, Victor, 126 Rodrigues, Claudio, 153 Quiroz, Nicolás, 120 Resende, Victor, 154 Rodrigues dos Santos, Angela, 82 Quiroz, Nicolás, 124 Resstel, Leonardo, 98 Rodrigues, Anderson, 135 Ouiroz, Camila, 106 Rodrigues, Ana Lúcia, 131 Reves Szemere, Juliana, 140 Quiróz López, Ubaldo, 133 Rey Funes, Manuel, 104 Rodrigues, Alexandre, 160 Rodrigues Boeck, Carina, 101 Rey-Funes, Manuel, 164 Reyes, Juan G., 92 Rodrigues Junior, Wandilson, 161 R Reyes, César, 165 Rodrigues Junior, Dario, 105 R. Gamba, Humberto, 135 Reyes Toso, Carlos, 121 Rodrigues da Silva, Francisco Eliclécio, 101 R. Hryb, Ana Belen, 132 Reynaldo, Mirta, 157 Rodrigues da Silva, Francisco Eliclécio, 89 R. Souza, Rimenez, 97 Reynaldo, Mirta, 103 Rodrigues de Moraes Barriga, Jessica, 144 R. Zaniboni, Caroline, 159 Reynaldo, Mirta, 102 Rodrigues de Oliveira, Michelle, 153 R. de Andrade, Jéssica, 77 Riadi, Michelle, 118 Rodrigues de Oliveira, Michelle, 153 RABELO, JESSICA, 119 Ribas, Anderson, 143 Rodriguez, Karina, 163 RIBEIRO, JULIANA, 153 Ribeiro, Priscila, 90 Rodriguez, Eugenio, 110 RIBEIRO, BRUNO, 157 Ribeiro, Juliana, 126 Rodriguez, Débora, 153 RIBEIRO DE ARAÚJO, MELISSA, 150 Ribeiro, Fabíola, 90 Rodriguez, Debora, 153 ROBERTO, DOMÍNGUEZ, 133 Ribeiro, Fabiola M., 149 Rodriguez Muñoz, Angela Maria, 114 ROCHA, MICHAEL, 77 Ribeiro, Fabiola M, 149 Rodriguez-Padilla, Cristina, 103 RODRIGUES, PATRICIA, 119

Ribeiro, Alessandra, 89

Ribeiro, Alessandra, 88

RODRIGUES, MARTA, 77

RODRIGUES,, 161

Rodríguez, Silvia S., 125

Rodríguez, Eugenio, 84

Rodríguez, Eugenio, 81 Sanhueza, Magdalena, 135 S Rodríguez, Debora Vanesa, 123 Sanhueza, Magdalena, 164 S Generoso, Jaqueline, 161 Rodríguez, Angelina, 93 Sanhueza, Magdalena, 165 S. Rodrigues, Ana, 155 Rodríguez de Fonseca, Fernando, 120 Santana, Íris, 101 S. Rodrigues, Ana Lúcia, 132 Rodríguez de Lores Arnaiz, Georgina, 130 Santana, Fabiana, 143 SAMPAIO, LUZIA, 160 Rodríguez-García, Edgar, 93 Santana, David, 86 SAMPAIO, LUZIA, 160 Rodríguez-Ruiz, Sonia, 77 Santana de Vasconcellos Bittencourt, Ana SANTANA, FABIANA, 81 Rodríguez-Torres, Angelina, 150 Paula 114 SANTOS, PATRICIA, 157 Rohde, Luis Augusto, 150 Santiago, Zárate, 81 SCHUENCK, JULIANE, 141 Roig, Paulina, 102 Santiago, Fernando, 89 SCICOLONE, GABRIEL, 94 Rojas, Patricio, 148 Santiago, Amanda, 102 SIERRA, RODRIGO, 81 Roias, Patricio, 106 Santiagos, Camila, 118 SILVA, TERCYA, 153 Rojas, Patricio, 119 Santos, Wagner Ferreira, 121 SILVA, RENATA, 119 Roias, Patricio, 85 Santos, Victor, 145 SILVA, DAYANE, 160 Rojas, Mijail, 110 Santos, Renata, 147 SILVA, DAIANY, 160 Rojas, Jose, 118 Santos, Raphael, 154 SILVA, DAIANY, 160 Rojas, Felipe, 118 Santos, Raphael, 154 SILVA, ANA THAIS, 110 Rojas, Daniel, 127 Santos Barros, Rafael, 116 SILVA, ANA THAIS, 119 Rojas-Barahona, Cristian, 139 Santos, Nancy Belem, 133 SILVA MÉNDEZ, CARLOS CAMILO, 133 Rojo, Yanina, 151 Santos, Matheus Libarino, 139 Roldán, Emilio, 83 SOUSA, MARCOS PAULO, 144 Santos, Maria Fernanda, 79 SPELZINI, GONZALO, 94 Romano, Arturo, 160 Santos, Maria Augusta, 162 Romano, Arturo, 114 SUÁREZ-ROJAS, JESSICA, 81 Santos, Marcela, 90 Saba, Julieta, 152 Romano, Arturo, 113 Santos, Luís, 153 Romano, Arturo, 78 Saba, Julieta, 153 Santos, Luis E., 126 Romanowski, Victor, 125 Saba, Julieta, 153 Santos, José Ronaldo, 89 Romero Cabral., Francisco, 123 Saba, Julieta, 95 Santos, Josefa, 99 Román, Fernanda R, 146 Sabino, João Paulo, 159 Santos, Fabiana, 81 Romão, Pedro, 122 Sachser, Ricardo, 113 Santos, Daniel, 99 Rosa, Priscila, 131 Sader, Luana, 155 Santos, Aline, 126 Rosa, Murilo, 139 Saderi, Nadia, 165 Santos Vieira, Aline, 118 Rosa Porto, Rossana, 146 Saez, Trinidad MM, 90 Santos, Adair, 94 Rosal Lustosa, Ítalo, 129 Saffi, Jenifer, 84 Santos Freitas, Joyce, 105 Rosal Lustosa, Ítalo, 137 Sahaboglu, Ayse, 163 Santos da Silva, Mayra, 154 Rosal Lustosa, Ítalo, 160 Sahuquillo, Juan, 133 Santos da Silva, Mayra, 154 Rosal Lustosa, Ítalo, 101 Sakashita, Beatriz, 100 Santos da Silva, Mayra, 154 Rosal Lustosa, Italo, 144 Sala, Thais, 100 Santos da Silva, Mayra, 154 Rosato Siri, Victoria, 151 Salatino, Lucia, 105 Santos-Junior, Jair Guilherme, 109 Rosciszewski, Gerardo, 93 Salazar, Hugo, 112 Sanz-Blasco, Sara, 88 Rose Tavares Neves, Kelly, 84 Salazar, Claudia, 111 Sanz-Blasco, Sara, 119 Rose-John, Stefan, 165 Salazar, Carolina, 121 Saravia, Flavia, 150 Rosenstein, Ruth, 98 Salazar-Enríquez, Diana, 94 Saravia, Flavia, 149 Rosenstein, Ruth, 129 Salazar-Vázquez, Beatriz Yadira, 150 Sartor, Manuela, 95 Rosseti, Flávia, 120 Sales Cysne Filho, Francisco, 137 Sartor, Manuela, 91 Rosseti, Flávia, 81 Sales Barreto, André, 160 Rossi, Francesco M., 152 Sasso, Simone, 102 Sales da Veiga, Marco Aurélio, 144 Sassoli Fazan, Valéria Paula, 164 Rossi Junior, Wagner Costa, 83 Salgado, Florencia, 118 Rosso, Silvana B., 119 Saucedo, Daniela, 93 Salgado-Delgado, Roberto, 165 Rosso, Silvana, 125 Savoldi, Robson, 116 Salinas, Catalina, 98 Routurou, Carolina, 120 Sayós, Joan, 133 Salles, Angeles, 95 Roversi, Katiane, 150 Scaini, Giselli, 162 Salvetti, Anna, 92 Scavone, Cristoforo, 100 Roversi, Katiane, 150 Samengo, Inés, 112 Rozés-Salvador, Victoria, 156 Schamne, Marissa, 101 Samengo, Inés, 137 Rubinstein, Marcelo, 156 Scheid, Maylton, 111 Sampaio, Tatiana, 154 Rubinstein, Marcelo, 81 Scheid, Maylton, 79 Sanches, Érica, 143 Rubinstein, Marcelo, 117 Schenk, Marcela, 88 Sanches, Eduardo, 155 Rubinstein, Marcelo, 147 Schiavo, Gustavo, 111 Sanches, Eduardo, 144 Rubio, Natalia, 112 Schinder, Alejandro Fabian, 93 Sanches Bretherick, Talitha Amanda, 124 Rubio, Ivan, 110 Schinder, Alejandro F., 127 Sanches Bretherick, Talitha, 124 Ruggeri, Adriana, 97 Schinder, Alejandro, 96 Sanchez, Viviana, 154 Ruiz, Gabriel, 150 Schitine, Clarissa, 99 Sanchez, Viviana, 155 Ruiz-Nuño, Ana, 128 Schitine, Clarissa, 147 Sanchez, Susana Ines, 92 Ruiz-Palmero, Isabel, 86 Schlenner, Anna Lena, 141 Sanchez, Pamela, 111 Ruiz-Viroga, Vicente, 130 Schmachtenberg, Oliver, 163 Sanchez, Maria, 77 Russo, Raúl, 155 Schmachtenberg, Oliver, 164 Sande, Pablo H., 98 Ruzza, Chiara, 122 Schmälzle, Jana, 165 Sande, Pablo, 129 Ruzza, Chiara, 98 Schuck, Patricia, 112 Sandini, Thaísa, 81 Ryan, Brenda E, 109 Schultz, Michele, 122 Sangiogo, Gustavo, 103 Réus, Gislaine, 162 Schuster, Luisa, 78 Sanguinetti, Ana, 77

Sanhueza, Magdalena, 105

Schwambach Vieira, Andre, 95

Réus, Gislaine, 151

Schwarting, Rainer, 157 Silva, Regina, 122 Somoza, Gustavo Manuel, 115 Scicolone, Gabriel, 154 Silva, Pedro, 119 Sondertoft Braga Pedersen, Agatha, 82 Scicolone, Gabriel, 155 Silva, Natalia M. L., 126 Song, Kun, 127 Scicolone, Gabriel, 153 Silva, Mateus O., 121 Sonza, Anelise, 135 Scienza, Krislei, 146 Silva, Jéssica Beteto, 96 Sonzogni, Silvina, 111 Scienza Martin, Krislei, 143 Silva, Hernán, 89 Soria, Juan C., 107 Scienza Martin, Krislei, 143 Silva, Hernán, 128 Soria, Juan C., 136 Scimonelli, Teresa Nieves, 132 Silva, Hernan, 77 Soria, Juan, 166 Scorticati, Camila, 95 Silva, Hernan, 82 Soria, Juan, 163 Scorticati, Camila, 113 Silva, Heraldo Diones, 143 Soria, Carlos, 83 Scorza, Cecilia, 149 Silva Vasconcelos, Germana, 100 Soriano, Renato, 159 Scorza, Cecilia, 159 Silva Vasconcelos, Germana, 142 Sosthenes, Marcia, 139 Scorza, Cecilia, 143 Silva, Flavio theodoro, 139 Sosthenes, Marcia, 144 Scorza, Cecilia, 131 Silva, Flavia R., 149 Soto, Paula, 154 Scorza, Cecilia, 161 Silva Santos, Fernando, 158 Sousa, Caren Nádia Soares, 161 Scotti, Luciana, 160 Silva, Eduardo, 83 Sousa, Caren Nádia Soares, 158 Scoz Silva, Rafael, 143 Silva, Davane, 99 Sousa, Ana, 130 Sousa Rodrigues Maia, Francisca Taciana, 101 Scoz-Silva, Rafael, 143 Silva, Cristina, 112 Seabra, Maria, 147 Silva Medeiros, Ingrid, 144 Souza, Érica, 155 Sebollela, Adriano, 126 Silva Morais, Fanildes, 99 Souza, Martha, 127 Sebollela, Adriano, 145 Silva Méndez, Carlos Camilo, 133 Souza, Martha, 80 Segabinazi, Ethiane, 148 Silva Méndez, Carlos Camilo, 103 Souza, Luana, 158 Segabinazi, Ethiane, 162 Silva Neto, Antônio Braz, 89 Souza, Lidiane, 145 Segantine Loper, Ana Paula, 157 Silva Neto, Antônio Braz, 88 Souza, Givago, 135 Seiffe, Araceli, 152 Silva Vasconcelos, Germana, 160 Souza, Givago, 106 Seilicovich, Adriana, 156 Silva de Miranda, Aline, 91 Souza, Givago, 97 Selvaraj, Sudhakar, 145 Silva de Siqueira, Lucas, 82 Souza Izídio, Geison, 89 Senin, Sergio A., 124 Silva dos Santos, Narrery, 84 Souza Izídio, Geison, 88 Seoane, Pablo, 94 Silva, UNIFESP, Regina, 121 Souza, Gabriela Guerra Leal, 143 Sepúlveda Díaz, Julia, 119 Silva-Hernandez, Ivan, 103 Souza, Gabriela G.L., 142 Sequeira, Sabrina, 131 Silva-Junior, Ivanildo, 86 Souza, Diogo, 132 Silveira, Vanessa, 116 Serafin Budny, Júlia, 79 Souza, Bruna, 150 Serafini, Matías, 83 Silveira, Luiz Carlos, 97 Souza, Ana Cristina, 124 Serfaty, Cláudio, 118 Silveira, Luiz Carlos, 135 Souza Oliveira, João Victor, 129 Serfaty, Claudio Alberto, 91 Silveira, Luiz, 106 Specht, Juan, 156 Serfaty, Claudio, 103 Silveira, Débora, 99 Specht, Juan, 156 Serfaty, Claudio, 152 Silveira, Alicia, 149 Spejo, Aline, 89 Serfaty, Claudio, 161 Silveira Guimarães, Francisco, 146 Spejo, Aline, 127 Sergio, Gomes da Silva, 123 Silveira Guimarães, Francisco, 106 Spezia, Inaê de Azevedo, 109 Serra, Fernando, 81 Silveira Guimarães, Francisco, 136 Spillere, Leonardo, 79 Serra, Fernando, 123 Silverio Rodrigues, Ana Paula, 147 Spindler, Christiano, 147 Sesarini, Carla, 124 Simpson, Eleanor, 87 Spinosa, Helenice, 81 Setton-Avruj, Patricia, 154 Simão Machado, Fabiana, 91 Spiousas, Ignacio, 127 Sevlever, Federico, 140 Simão da Silva, Eduardo, 99 Spiousias, Ignacio, 156 Shadmehr, Reza, 96 Simón, Diego, 147 Spitzmaul, Guillermo, 92 Shadmehr, Reza, 96 Simões, Róli, 94 Stapenhorst Azambuja, Amanda, 155 Shalom, Diego E., 80 Simões, Lutiana, 103 Stefani, Fernando, 92 Stefanon Bittencourt, Athelson, 114 Sherry, David, 112 Siqueira, Raphael, 126 Shkedy, Avishag, 114 Sigueira, Priscila, 160 Stern, Javier, 164 Shulz, Daniel, 156 Sigueira, Lucas, 112 Stern, Cristina Jark, 146 Shulz, Daniel, 156 Siqueira Mendes, Fabíola, 144 Stevnsner, Tinna, 156 Siqueira Mendes, Fabiola, 139 Siemens, Jan, 127 Stipursky, Joice, 162 Sierra, Romina, 86 Sita, Luciane Valéria, 96 Stopiello, Juan Matias, 147 Sierra, Rodrigo, 144 Sita, Luciane, 157 Stopiello, Juan Matias, 147 Sierra, Rodrigo, 143 Siviero, Silvia, 90 Strambio, Fabiana, 121 Sierra, Rodrigo, 141 Slachevsky, Andrea, 84 Stürmer de Fraga, Luciano, 155 Sierra Ordoñez, Rodrigo, 113 Smyth, Monique Ashlee, 104 Stürmer de Fraga, Luciano, 155 Sigman, Mariano, 81 Soares, Sanaira Suyan Lima, 148 Suarez, Lucas, 125 Subirada Caldarone, Paula Virginia, 77 Sigman, Mariano, 83 Soares, Lígia, 102 Sigman, Mariano, 118 Soares Dias Fernandes, Mara Yone, 84 Suchecki, Deborah, 122 Soares Sousa, Caren Nádia, 144 Sigman, Mariano, 146 Suiama, Mayra, 115 Soares de Sousa, Caren Nádia, 160 Sulkes-Cuevas, Jessica Natalí, 93 Sigman, Mari, 140 Silberstein, Susana, 124 Soares de Sousa, Caren Nádia, 144 Sutherland, Mary Elizabeth, 113 Silva, Waldo, 79 Suárez, Marta, 78 Socias, Benjamin, 131 Silva, Veronica, 97 Socías, Sergio B., 119 Suárez, Andrea Beatriz, 118 Silva, Tercya, 126 Soletta, Jorge Humberto, 166 Szczupak, Lidia, 127 Silva, Sebastian, 134 Soletta, Jorge H., 136 Szklo, Andre, 116 Silva, Regina, 89 Soletta, Jorge H., 107 Sztarker, Julieta, 114

Soliño, Manuel, 104

Silva, Regina, 90

Sztarker, Julieta, 79

Sánchez, Mónica, 110 Sánchez, Julio, 154 Sánchez, Julio, 154 Sánchez, Francisco, 93 Sánchez-López, Elena, 100

Т T Zaveri, Nurulain, 98 TAMBORELLI GARCIA, RAPHAEL CAIO, 160 TAVEIRA, GUSTAVO, 77 TONIAZZO, Ana Paula, 161 Tabares, Lucía, 124 Tadeu Serra, Fernando, 153 Takada, Silvia Honda, 121 Takada, Silvia, 120 Takada, Silvia, 80 Takahashi, Reinaldo, 101 Takahashi, Reinaldo, 144 Takahashi, Reinaldo, 150 Tamarit, Francisco Antonio, 136 Tantiongloc, Justin, 78 Tapia, Victoria, 148 Tapia, Juan, 90 Taravini, Irene RE, 128 Taravini, Irene, 119 Taravini Irene 91 Taravini, Irene, 88 Tasca, Carla Inês, 131 Tasca, Carla Inês, 132 Tasca, Carla I., 100 Tasca, Carla I., 155 Tasca, Carla, 161 Taschetto, Ana, 143 Tassino, Bettina, 147 Tavares, Priscila Macêdo, 88 Tavares, Gisella, 116 Tavares Neves, Kelly Rose, 151 Taveira-Silva, Rosilane, 160 Teixeira, Mauro, 149 Teixeira, Manoel, 149 Teixeira, Manoel, 87 Teixeira, Jessica, 96 Teixeira, Estefani, 82 Teixeira Júnior, Antônio Lúcio, 91 Teixeira Nunes Borges, Lucas, 101 Teixeira Nunes Borges, Lucas, 137 Teixeira Nunes Borges, Lucas, 142

Teixeira Nunes Borges, Lucas, 12 Tejero, Rocío, 124 Telles, Vanessa, 99 Temprana, Silvio G., 127 Temprana, Silvio, 96 Tentes Cortes, Maria Izabel, 105

Teodorov, Elizabeth, 139 Teruel, Luisa Renée, 154

Teruya, Pablo Y, 150 Tezza Rezin , Gislaine, 129 Tezza Rezin, Gislaine, 129 Tezza Rezin, Gislaine, 158

Theindl, Lais Cristina, 109 Thomases, Daniel, 86 Tiba, Paula Ayako, 82

Todero, María Florencia, 149 Toldo, Pollyanna, 102 Tolle, Virginie, 103

Tomasella, María Eugenia, 86 Tomasella, Maria Eugenia, 151

Tomasella, Maria Eugenia, 151 Tomsic, Daniel, 79 Tonello, Raguel, 150 Toniazzo, Ana Paula, 118 Toniazzo, Ana Paula, 130 Toro, Gabriela, 85

Torquato, Kamilla, 144 Torquato, Kamilla, 144

Torres, Yuli, 161 Torres, Nicolás, 162

Torres, Laila Brito, 154

Torres, Iraci, 150

Torres Aguiar, Carlos, 101

Torres, Bruno Henrique Silva Araújo, 154

Torres Batán, Santiago, 78 Torres-Bugeau, Clarisa M., 119

Torrão, Andréa, 90 Torterolo, Pablo, 143 Torterolo, Pablo, 161

Torterolo, Pablo, 149

Torterolo, Pablo, 130 Torterolo, Pablo, 97

Torterolo, Pablo, 80 Torterolo, Pablo, 157

Toscani, Andrés Martín, 122 Trachsel, Laura, 163

Traetta, Marianela, 100 Traetta, Marianela, 151

Treviño, R., 96

Trifunovic, Dragana, 163 Trigila, Anabella, 131 Trigo, Natalia, 136

Trinchero, Mariela Fernanda, 93

Trinchero, Mariela F., 96 Trinchero, Mariela, 127 Trindade, Thaís Pantoja, 116 Trindade, Sibele, 163 Trindade, Priscila, 160 Trindade, Pablo, 103 Troncoso, Paulina, 152

Trípodi, Lucia Soledad, 146 Tseng, Kuei, 86 Tubert, Cecilia, 128 Tullius Scotti. Marcus, 160

Tuon, Talita, 162 Turani, Ornella, 130 Turati, Juan, 95

Turati, Juan, 152 Turati, Juan, 153 Turcato, Flávia, 136 Turcato, Flávia, 100

U

UGARTE, GONZALO, 90 Uccelli, Nonthué, 100 Ucella de Medeiros, Iris, 98 Uchitel, Osvaldo Daniel, 156 Uchitel, Osvaldo D., 123 Uchitel, Osvaldo D, 91 Uchitel, Osvaldo D, 122 Ugarte, Gonzalo, 134 Uliana, Daniela, 98 Undurraga, Jaime, 104 University, Yale, 77 University, McGill, 115 Urbanavicius, Jessika, 130 Urbanavicius, Jessika, 149 Urbanavicius, Jessika, 160 Urbano Suárez, Francisco.J., 157 Urbano, Francisco J., 112 Urbano, Francisco J, 123 Urbano, Francisco, 136

Urdapilleta, Eugenio, 166 Urrutia, Leandro, 89 Usach, Vanina, 154 Utida, Hingrid, 141

V

VILLELA MARINHO , EDUARDO, 78
Vacotto, Marina, 164
Valchi, Paula, 81
Valdati, Dhiozer, 83
Valderrama, Mario, 142
Valderrama, Mario, 111
Valderrama, Mario, 111
Valderrama, Mario, 148
Valdes, Jose Luis, 82
Valdivia, Spring, 97
Valdivia, Sharin, 155
Valdivia, Sharin, 155
Valdés, Jose Luis, 110
Valdés, Joaquín, 163
Valencia-Sánchez, Salvador, 162

Valencia-Sánchez, Salvador, 162 Valencia-Sánchez, Salvador, 162 Valentim, José Tiago, 131 Valentini, Valentina, 159 Valle, Marina, 130 Valvassori, Samira, 103 Valvassori, Samira, 151 van Goethem, Nick, 140 van Hagen, Britt, 140 Varela, Roger, 151

van Hagen, Britt, 140 Varela, Roger, 151 Varela, Roger, 151 Varela, Diego, 148 Vargas, Rafael, 85 Vargas, Claudia D., 145 Vargas-Mireles, Jorge, 165 Vargas-Roberts, Sofia, 124

Vargas-Roberts, Sofia, 124 Varin, Danielle, 121 Varin, Danielle, 149 Vasconcelos, Vivian C., 149

Vasconcelos, Silvânia Maria Mendes, 161

Vasconcelos, Silvânia, 89 Vasconcelos, Igor, 90 Vasconcelos, Germana Silva, 158

Vasconcelos, Germana Silva, 161
Vasconcelos, Auriana Serra, 131

Vasconcelos Joviano-Santos, Julliane, 90

Vasilevko, Vitaly, 118 Vattino, Lucas G., 165 Vattino, Lucas G., 165 Vattino, Lucas, 135 Vattino, Lucas, 165 Vazquez, Cecilia, 92

Veeraraghavan, Priyadharishini, 122

Velasquez, Zahady, 88 Velasquez, Zahady, 85 Velez, Javier, 166 Veline de Lima, Silmara, 149

Venancio, Aline, 119
Vendite, Deusa, 130
Ventura, Letícia, 110
Ventura, Letícia, 90
Ventura, Dora, 106

Ventura, Dora, 97 Ventura, Dora, 105 Ventura, Ana, 131 Venturin, Gianina, 132 Vera, Jorge, 105 Vera, Jorge, 104 Vera, Jorge, 164

Vera, Jorge, 165 Vera, Cecilia, 131 Vercelli, Claudia, 92 Vergara, Rodrigo, 134 Vergara, Pablo, 164 Vergara, Cecilia, 164 Vergara, Cecilia, 92 Veuthey, Tania, 80 Veuthey, Tania, 103 Viana, Glauce, 130 Viana Lima, Francisco Arnaldo, 84 Vicencio, Isidora, 151 Victorino, Angélica Begatti, 154 Victorino, Angélica, 81 Victorino, Angelica, 123 Vidal, Rene L, 114 Vidal, Rene, 152 Vidal, Rene, 152 Vieira, Marcela, 100 Vieira, Karoline, 137 Vieira, Aline, 148 Vieira-Marques, Claudia, 86 Vielma,, Alex H, 106 Vilar Higa, Guilherme Shigueto, 124 Vilar Machado-Nils, Aline, 145 Villa, Andrés, 133 Villalta, Jorge I., 96 Villalta, Jorge, 96 Villar, Pablo, 92 Villar, María, 89 Villar, Maria Eugenia, 113 Villar, Marcelo Jose, 134 Villarreal, Mirta, 79 Villarreal, Mirta, 107 Villarreal, Mirta, 109 Vinuesa, Ángeles, 149 Vinuesa, Angeles, 150 Viola, Haydee, 113 Virgolini, Miriam, 98 Virgolini, Miriam, 114 Vivaldi, Ennio, 79 Vivaldi, Ennio, 85 Vivaldi, Ennio, 140 Vivar, Juan Pablo, 114 Vivas, Laura, 117 Vivas, Laura, 128 Vivinetto, Ana, 126 Vladisauskas, Melina, 146 Vladisauskas, Melina, 146 Volchan, Eliane, 77 Volchan, Eliane, 143 Volchan, Eliane, 116 Volchan, Eliane, 79 Volchan, Elaine, 142 Volg, Annette, 92 von Bernhardi, Rommy, 162 von-Guericke, Otto, 120 von-Held-Ventura, Juliana, 126 Von Zuben, Daniela, 148 Vrechi, Talita, 151 Vrechi, Talita, 90

W

Wiazowski Spelta, Lidia Emmanuela, 160 Waiswol, Mauro, 147 Waldner, Claudia, 100 Wallinger, Marina, 121 Walsh-Monteiro, André, 143

Vélez Pardo, Carlos Alberto, 152

Walter, Laís, 126 Wan, Ying-Wooi, 104 Wang, Hong, 127 Wasowski, Cristina, 90 Watanabe, li sei, 130 Wedemever, Carolina, 135 Wedemeyer, Carolina, 105 Weffort de Oliveira, Rúbia, 131 Weffort de Oliveira, Rúbia, 140 Weisstaub, Noelia, 146 Weisstaub, Noelia, 116 Weisstaub, Noelia, 111 Weisstaub, Noelia, 115 Wellmann, Mario, 135 Wempe, Mike, 148 Wende, Hagen, 127 Wendler, Etiéli, 157 Wiedemann, Peter, 98 Wilkinson, Kevin, 124 Wojnicz, Aneta, 128 Wöhr, Markus, 157

X

Xavier, Gilberto Fernando, 78 Xavier, Gilberto, 145 Xavier Vieira , Charliene, 144 Xiemenes, Naiara, 142 Ximenes, Naiara Coelho, 161

Y

Y. Helou, Ammir, 95 Yacoub, Ammir, 141 Yang, Sung-Min, 127 Yang, Sung M., 96 Yévenes, Macarena, 134

Ζ

Z. D. Bianca, Angela, 95 ZEISE, MARC, 90 Zabot, Bruno, 103 Zafra, Francisco, 93 Zalcman, Gisela, 78 Zamorano, Francisco, 113 Zancan, Mariana, 132 Zanetti, Bianca, 148 Zanin, Angela, 141 Zanon, Sônia, 136 Zanona, Querusche, 143 Zanoni, Belén, 115 Zanoni, Belen, 116 Zanutto, Silvano, 151 Zanutto, B. Silvano, 140 Zanuzzi, Carolina Natalia, 154 Zappa Villar, Maria Florencia, 146 Zappa Villar, Maria Florencia, 146 Zarate, Sandra Cristina, 156 Zañartu, Matías, 163 Ziblat, Andrea, 162 Zimmer, Eduardo, 132 Zimmermann-Peruzatto, Josi, 125 Zubillaga, Marlene, 92 Zubiria, Guillermina, 102 Zubiry, Paula, 99 Zwirner, Norberto, 162 Zárate, Sandra, 133

IBRO 2019 will be held in Daegu, Korea

10th IBRO World Congress of Neuroscience

- One Week Young Investigators Training Program
 - . Strong Support for Young Scientists
 - Affordable Registration Fee & Free Shuttle Bus
 - Various Cultural Tour Programs
 - Free Satellite Events

Korean government has recently announced the 'Korea Brain Initiative,' a national roadmap to facilitate the development of novel neurotechnologies and explore the unknown frontiers of the brain

IBRO 2019 local office is located at Korea Brain Research Institute (KBRI), a national brain research institute of Korea (IBRO) http://ibro.info/

Co-hosted by

