1/19/23

The Towers of Hanoi

- Move tower from peg A to C
- One disk can move at a time
- Never place a larger disk atop a smaller one

Questions:

- Is there always a solution?
- How many moves are needed for a tower of n disks?
- Is there a concise program for this problem?
- How do I prove that the program correctly solves the program?
- **Graph theory:** 4 colors in US Map where states that touch each other must be different colors
- Number theory: securing communications channels
 - Account for eavesdropping
 - Ensuring that a message was sent from the right party (spoofing / phishing)
 - Man-in-the-middle attacks interfering with messages sent
 / interactions

What is a "proof"?

- Proof means that something has been examined or evaluated
- Way of establishing a fact

What is truth and how is it established?

- ONLY two values when evaluating statements True or False
- Proposition: declarative statement that is either TRue or False
 - \circ EX: 4 + 3 = 7, 1 + 1 = 3, "I would like an A in CS135.", "Humans are mortal."
 - o NOT EX: "Give me an A!"
 - There is no True or False answer to this statement not declaring anything, more of a command
 - \circ NOT EX: X + 1 = 2
 - You do not know what X is
 - If you stated that X is a number, then it could be a proposition
 - O NOT EX: "This proposition is true.", "This proposition is false."
 - Has to be both false and true if it's true then it's false, if it's false then it's true

• Self-referencing statement

Proposition	Not Proposition
4 + 3 = 7	"Give me an A!"
1 + 1 = 3	X + 1 = 2
1 + 1 = 3	"This proposition is true." (self-referencing statement)
"I would like an A in CS135."	"This proposition is false." (self-referencing statement)
"Humans are mortal."	

1/24/23

- Propositions must be either True or False
- We are not interested in what the statements mean themselves, but the form of the arguments
- Compound propositions: negation, conjunction, disjunction, implication
- Truth tables: tautologies, contradictions, logical equivalence
- ullet If G is a proposition, then the negation of G (\lnot G) is a proposition
 - \circ EX: G = "I am grumpy.", \neg G = "It is not the case that I am grumpy." / "I am not grumpy."
- Double negation two negatives make a positive
- ullet Conjunctions use $igwedge \to$ only True if both sides of the condition are True
- \bullet Disjunctions use V \rightarrow True if either side of the V is True, True if both sides are True
 - o Exclusive OR is only or the other
 - Inclusive OR can have both be True and still have a True output
- Implications: G implies H is if G then H (G \Rightarrow H)
 - \circ Always True until H is False at the same time that G is True
 - AKA antecedent is True but consequence is False
 - As soon as the antecedent is False, the implication is True
- Tautology = proposition that is always True

- o EX: True, "It is raining or it is not raining.", 2 = 1+1
- Logical contradiction: proposition that is always False
 - Ex: False, 1 > 1, $Q \land \neg Q$
- Logically Equivalent: two prepositions have the same truth tables ($P \equiv Q$)
 - o EX: $\neg (p \land q) \equiv (\neg p \lor \neg q)$
- Number of columns in truth table = 2^(number of variables)
- How to prove that two propositions are not equivalent?
 - Come up with counterargument
 - See if everything matches in their truth tables the part(s) that do not match are counterexamples to the question of whether the propositions are equivalent
- Law of conditional identity: $(p \Rightarrow q) \equiv (\neg p \lor q)$

Idempotent laws:	p v p ≡ p	$p \wedge p \equiv p$
Associative laws:	(pvq)vr≡pv(qvr)	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
Commutative laws:	$p \vee q \equiv q \vee p$	$p \wedge q \equiv q \wedge p$
Distributive laws:	$pV(q\Lambda r) \equiv (pVq)\Lambda(pVr)$	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
Identity laws:	p v F ≡ p	$p \wedge T \equiv p$
Domination laws:	p∧F≡F	p∨T≣T
Double negation law:	¬¬p ≡ p	
Complement laws:	p ∧ ¬p ≡ F ¬T ≡ F	p ∨ ¬p ≡ T ¬F ≡ T
De Morgan's laws:	¬(p v q) = ¬p ∧ ¬q	¬(p ∧ q) = ¬p ∨ ¬q
Absorption laws:	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
Conditional identities:	$p \rightarrow q \equiv \neg p \lor q$	$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

 Do not have to memorize names of these laws, but practice and be comfortable with them

"If I attend lectures then I will do well in CS135" $\,$

"If I do my homeworks ten I will do well in CS135"

"If I attend lectures and do my homeworks then I will do well in CS135" \rightarrow is this equivalent to both above?? NO

1/26/23

• To solve for whether two propositions are equivalent, you can

- Construct truth tables
- O Use laws to find equivalence
- The Contrapositive
 - $o P \Rightarrow Q$
 - $\circ \equiv \neg P \lor Q$ (conditional identity)
 - $\circ \equiv Q \lor \neg P \text{ (commutative)}$
 - $\circ \equiv \neg \neg Q \lor \neg P$ (double negation)
 - $o \equiv \neg Q \Rightarrow \neg P \text{ (conditional)}$
- Logical reasoning
 - o (H1 ∧ H2) ⇒ C
 - Must be a tautology to conclude that a argument is valid
 - An argument is valid if and only if its implication is a tautology
- Tree Method (finding counterexamples)
 - Write down each premise
 - O Negate the conclusion
 - Look for a counter-example
 - If all leaves are checked off: <u>no counterexamples</u> exist
 - Else, if some leaf if not blocked off but all compound propositions are checked off: counterexamples exist
 - If there is an unchecked compound proposition, expand it at every leaf below and check off the proposition
 - Close off every lead whose path to the top contains a contradiction

1/31/23

- Tree method notes
 - You continue expanding at every root that is open one by one
 - If any of the roots are open when the problem is done, counterexamples exist
 - Goal is to make roots get canceled
 - Counter-example is a traceback up the root look at parts that made it cancel and combine
 - Make sure to check your answers afterwards
 - You do not need to use all the hypotheses to conclude that an argument is valid

- If an argument is valid, it does not mean that the conclusion is correct!!
- Scheme notes
 - Identifiers are like variables
 - They can have a variety of variables
 - o Identifiers = names assigned to quantities
 - They have value they must be assigned values when printed etc. or there will be an error
 - o Expressions
 - Atoms: constant (number, boolean value), variable
 - Lists: made up of Atoms and other lists
 - Atoms and Lists can be nested inside Lists as much as you want
 - Evaluating expressions
 - Every expression has a value
 - The value of #t is #t etc.
 - The value of any variable x is whatever it was defined as
 - Once you assign a value to an expression, you can't change it
 - First element of list/expression should be a defined function
 - EX: (+1 2) gives 3
 - EX: (*2 4) is 8
 - EX: (+ (* 2 5) (* 3 4)) = (+ 10 12) = 22
 - o Functions
 - (define (f x y) (+ (* x x) (* y y)))
 - o quote suppresses evaluation of its argument
 - o Functions
 - car returns the first element of a list
 - cdr returns the elements of a list excluding the first
 - cons = construct, adds element to start of list
 - o Lists
 - A list is stored in memory as a sequence of constructor boxes
 - \blacksquare (1 2 3) = (cons 1 (cons 2 (cons 3 '())))
 - car = address part of register
 - cdr = decrement part of the register

2/2/23

- Propositions only deal with nouns
- Predicates: the part of a sentence or clause containing a verb and stating something about the subject
 - \circ Have arguments and variables (x,y) of the predicate
 - Are used in identifying patterns
 - O Value is True / False
 - $\circ \quad EX: \ T(x,y) \quad \bigwedge \ T(y,z) \rightarrow T(x,z)$
 - Generalizing names to variables to work in all situations
- Quantifiers
 - ∀x , ∀y, ∀z
 - \blacksquare "For all x", "for all y", "for all z"
 - O Binds each variable to the domain of discourse
 - Giving information about the value of that variable
 - Every variable in an expression MUST be quantified
 - o "Free variables" are variables that are not quantified
- Predicates over numbers
 - \circ EX: 1+... +n = n(n+1) / 2
- Predicates and quantifiers
 - \circ Possible values are combined with V

2/7/23

- Quantified propositions declare a domain
- Universal instantiation
 - \circ If you have a universally quantified proposition, then you can plug in any value for x and it will be True
- Existential instantiation
 - \circ a rule of inference which says that, given a formula of the form , one may infer for a new constant symbol c
- Universal generalization
- Existential generalization
 - O Generalization statements make conclusions about P(x)'s domain

2/9/23

• Scheme

- Don't use cons on an atom or you will get a dotted expression as a result
- O Conditionals
 - (eq? x y) tells you whether x and y are equal or not equal
 - (if cond expr1 expr2)
 - Conditional expression has a bunch of conditions are arguments
- o Recursive functions
 - Define the value on a bigger argument by defining the value on a smaller argument and doing minimal work
 - (cdr L) if L is empty, cdr is undefined
 - You can have a list of conditions for recursive functions
- Sets
 - \circ Φ means that the set is empty
 - \circ {{ Φ }} has one member
 - O A set cannot contain itself
 - If it does contain itself, it fits into neither the group of sets that contain themselves nor the group of sets that don't contain themselves
 - If A contains B then B cannot contain A.
- \star Did recursion exercises in Lecture 7

2/14/23

- ullet A \subseteq B means that every member of A is also a member of B
- ullet A \subset B means that every member of A is a member of B, but B has elements that are not members of A
- Set notation consists of symbols used to represent real numbers, natural numbers, etc.
- Union = U (similar to or)
- Intersection = \cap (similar to and)
- Complement EX: Ā (similar to negation of A)
- Cartesian Product: combination of all elements in two sets
- $(1, a) \neq (a, 1) \rightarrow \text{not commutative}$
- Power set = the set of all subsets of S
- Set identities and laws of propositional logic are very similar
- $\bullet \quad A B \equiv (A \cap \overline{B})$
- A relation R with domain and range B is a subset of A x B

- A relation R over set A is a subset of A x A
- Relations properties
 - O Reflexive every element points back to itself
 - O Anti-reflexive no element points back to itself
 - \circ Symmetric $(x, y) \leftarrow (y, x)$
 - Anti-symmetric x and y are not interchangeable
 - \circ Transitive $(x, y) \rightarrow (y, z) \rightarrow (x, z)$
- Relations can be symmetric but not reflective and vice-versa
 - O Symmetric and reflexive are diff properties
- Equivalence relations: reflexive, symmetric, and transitive

2/16/23

- Equivalence relations: reflexive, symmetric, and transit
- Reflexive relations need every element to point to itself
 - O Reflexive closure: smallest reflexive relation
- Symmetric closures are the smallest symmetric relation
 - O Needs (a, b) and (b, a)
- Transitive: if you have two arrows, they should be connected in some way (like a triangle)
- Composing relations
 - o R = direct flights, R^2 = one-stop flights, R^3 = two-stop flights, etc.
 - R^k gives k 1 stops
- Functions
 - $\circ\,$ A relation where every element in the domain has exactly one arrow coming out of it
 - No restriction on where the arrow leads
 - One-to-one: every domain element is mapped to a unique element in the target
 - Every element of domain is matched
 - Surjective: every element in the target is the target of at least one domain element
 - Every element of target is matched
 - Bijective or one-to-one correspondence: every domain element is matched with exactly one element in the target and vice versa
 - Domain size = range size
 - Every element is matched up
 - o EX:
 - $f(x) = x^2$: one-to-one but not onto

- \blacksquare f(x) = x^2 -1 : NOT A FUNCTION
- \blacksquare f(x) = (x-1)^2 : not one-to-ne, not onto
- \blacksquare f(x) = x : one-to-one and onto
- Pigeonhole Principle
 - If k+1 pigeon occupy pigeonholes, then at least 2 pigeons share a pigeonhole
 - No function from a domain size k+1 to a target of size k is injective
- Well-ordering principle
 - Every non-empty subset of N has at least one element (least element)
- Pigeonhole principle = well-ordering principle
- Proof techniques
 - o Direct method
 - o Proof by contradiction

2/21/23

- What does it mean for 2 sets to be the same size?
 - Bijective = injective and subjective
 - O Associate every member of A with a unique member of B
 - \circ |A| = |B| if and only if there is a bijection from A to B
- \bullet A set S is countable if there is an injective function f : S \rightarrow N
 - Every finite set is countable
 - Every subset of N is countable
 - If we can list all the elements of an infinite set without repetition, then the set is countably infinite
- A set is countably infinite if there is a bijective function f : N \rightarrow S
- Countability
 - O N x N is countable
 - The set of Q of Rationals is countable
- The power set of the set of natural numbers (N) has a cardinality that is a larger infinity than the cardinality of N
- Mapping subsets to binary strings
 - \circ {0,2} = 1010000000
 - \circ {0,2,4,5} = 1010110000
 - o Odd = 010101010101010
 - o Even = 101010101010101
 - Every subset has a unique string

- ullet Cardinality of power sets ullet infinite hierarchy of infinite sets
- Cardinality of sets of infinities (power sets of power sets) → cantor's continuum hypothesis

2/23/23

- Propositions have quantifiers in front of them
- To prove that P(x) is true for all natural numbers:
 - O Step 1: basis, show that P(0) is True
 - Step 2: inductive hypothesis, state P(k), k is an arbitrary number
 - o Step 3: inductive step, show that $P(k) \rightarrow P(k+1)$ is true for all k
- Induction: assuming at P(k) is true, we can conclude P(k+1) is true etc.

2/28/23

- Lem's proof
 - The hypothesis should all be true and the conclusion should be true as a result
- Induction:
 - o Base case
 - Inductive hypothesis
 - o Inductive step
 - o Conclusions
- Hole agriculture question
 - You need to place a hole in each of the 4 courtyards to do induction
 - Use the 3 pieces to touch each quadrant
- Chocolate question
 - Must expand because one cut may not be the end result
 - 80 pieces, one cut does not break all the pieces individually
- Strong induction: hypothesis has more info + assume more;

Now that we know how standard induction works, it's time to look at a variant of it, strong induction. In many ways, strong induction is similar to normal induction. There is, however, a difference in the inductive hypothesis. Normally, when using induction, we assume that P(k) is true to prove P(k+1). In strong induction, we assume that all of P(1), P(2), ..., P(k) are true to prove P(k+1).

- https://brilliant.org/wiki/strong-induction/

3/2/23 (zoom) + 3/7/23

- Proofs by strong induction
- Steps for induction
 - o Basis
 - Inductive hypothesis
 - o Inductive step
- Normal fibonacci function
 - Makes the same calculations over and over again very slow!
 - Solution: pass completed calculations as arguments of the function to keep it iterative but more practical
 - Tail recursion

3/21/23 + 3/23/23

- Greatest common divisor (gcd) greatest common factor between two numbers
- Linear combination EX: $\{12s + 30t : s, t \in z\}$
 - Find the smallest positive linear combination using the equation made!
- GCD Theorem: The smallest positive linear combination m of two integers a, b (at least one of which is non-zero) equals g = qcd(a, b)
 - EX: The smallest positive linear combination of 12, 30 is gcd(12, 30) = 6

Proof of GCD included in slides

• Euclid's algorithm for GCD - repeated use (recursive) of GCD theorem formula until one of the values used equals 0

3/28/23

- Perfect numbers
- ullet Prime numbers: not divisible by any number smaller than it that is greater than 1
- How many numbers are prime?
 - o Theorem: infinitely many primes
 - o P = 1 + p1 + p2 + p... etc.

- Fundamental theorem of arithmetic: every number greater than 1 is uniquely expressed as a product of primes
 - o Lemma in slides
- Modular arithmetic
 - \circ r = rem(a, b)
 - DOES NOW FOLLOW standard arithmetic properties (may be true but also may not be true! - okay in some examples, not in others)
 - Add common term to both sides
 - Multiply by common term on both sides
 - Add equal numbers
 - Multiply equal numbers
 - When can you use arithmetic properties??
 - If gcd(c, m) == 1 in a * c = b * c (mod m)
 - Proof included in slides
- Congruence modulo $m \rightarrow is$ a relation (specifically an equivalence relation!!)
 - o Equivalence relation
 - reflective , commutative, transitive
 - Equivalence classes are created by the relation
 - Congruence by itself is not a relation
 - o Only if (a b) is divisible into $m \rightarrow (a b)$ is congruence modulo m
 - \circ EX: m = 7, a = 25, b = 4
- Basic theorem example
 - o r1 and r2 are equal so r1 r2 is 0

3/30/23 + 4/4/23

- \bullet Modulus arithmetic does not always follow standard arithmetic
 - Using the pulverizer can be useful
- Examples in notebook
- A series of calculating remainders and a list of pairwise relatively prime moduli can be used in combination with the chinese remainder theorem to do arithmetic with larger numbers
- Theorems
 - o Fermat's lit
 - o Euler's totient function
 - Euler's generalization of fermat's little theorem
- Cryptosystem: hiding messages from outside people

4/6/23 + 4/11/23

- Pairwise relatively prime: choosing any two values, the gcd will be 1
- Chinese remainder theorem: representing numbers repeatedly up
 - o Least common multiple = m = all values multiplied together
 - O Combine solutions to individual pieces
 - Requirement: moduli are pairwise relatively prime
 - After the theorem, you still need to prove that the solution is unique
- CRT Proof of Uniqueness
 - o Base case of lemma: = 1

4/13/23

- Graph Theory Intro ${\color{blue} f c}$
- Terminology:
 - o Vertex = node
 - o Edge = set of two nodes
 - o Degree of a vertex = # of edges indecent to it
 - Walk : sequence of vertices and edges
 - Closed walk: same start and end node
 - Trail: a walk in which no edge is repeated
 - Circuit: closed walk combined with no edge repeated (closed walk + trail regulations)
 - Cycle: circuit of length >= with the same first and last vertices and no repeated vertex
 - O DEFINITELY WILL BE ON TRUE/FALSE ON FINAL
- Directed graphs terminology
 - Outdegree = number of outgoing edges
 - Indegree = number of incoming edges
 - o Length of walk: # of edges in the walk
 - o Path: a walk with no repeated nodes
 - Cycle: walk that begins and ends at same node with no repeated nodes
- Strongly connected graph: a directed graph where there is a directed path from every node to every other node
 - If you can connect all the codes in a cycle, a graph is strongly connected

- Directed acyclic graph (DAG): directed graph that does not have a direct cycle to it
- Proofs use recursion :)

4/18/23 + 4/20/23

- Undirected graph: finite set V of vertices and a set of edges E
 = {e: e = {a,b}, a, b ∈ V}
- Property of a eulerian trail:
 - In an eulerian trail at every vertex, other than possibly the start and end vertices, has even degree.
- Connected graph: graph with connection between any two given vertices
- Color theorems
 - o Proving 4, 5 colors is possible
 - It is impossible to prove / tell if 3 colors can be true
- Planar Graph: can be drawn in the plane without any crossing edges
- Complete graph: k3,3 or K5
- Every non-planar graph has a combo of K3,3 or K5
- Euler's formula in graphs only applies to connected planar graphs

4/25/23

- For every connected planar graph with n vertices, m edges, and r regions: n m + r = 2
 - The number of regions in every planar graph is invariant
- Theorems:
 - For every connected planar graph G with $n \ge 3$ vertices: $m \le 3n 6$
 - Five color theorem: every planar graph can be colored with 5 or fewer colors
 - Proof by induction included in slides
 - Hall's theorem: a biparte graph G(A,B,E) has a perfect matching if and only if |N(S)| >= |S| for every subset $S \subseteq A$
- K5 and K3,3 are not planar \rightarrow a graph that is not planar may not be planar because it may have K5 or K3,3 incorporated within it
- Look on slides for more info