

MECH 6v29.002 – Model Predictive Control

L10 – Invariant Sets

Outline

- Invariant Sets
 - Positive Invariant Sets
 - Maximal Positive Invariant Sets
 - Control Invariant Sets
 - Maximal Control Invariant Sets
- Determinedness
- Maximal Controllable Sets
- Maximal Stabilizable Sets
- Examples

Invariant Sets

Consider the autonomous systems

Nonlinear Linear
$$x_{k+1} = g(x_k)$$

$$x_{k+1} = Ax_k$$

And the systems with external inputs

Nonlinear Linear
$$x_{k+1} = g(x_k, u_k)$$

$$x_{k+1} = Ax_k + Bu_k$$

 Each system is subject to state and input constraints at each discrete point in time

$$x_k \in \mathcal{X}, \ u_k \in \mathcal{U}, \ \forall k \ge 0$$

- General idea: Find the set of initial states whose trajectory will never violate the state and input constraints.
 - No longer thinking about a target/terminal set

Types of Invariant Sets

• For autonomous systems:

$$x_{k+1} = g(x_k)$$

$$x_{k+1} = Ax_k$$
or

Systems with inputs using a candidate feedback control law

$$x_{k+1} = g(x_k, u_k)$$

$$u_k = k(x_k)$$

$$x_{k+1} = Ax_k + Bu_k$$

$$u_k = Kx_k$$

$$x_{k+1} = Ax_k + Bu_k$$

$$x_{k+1} = Ax_k + Bx_k$$

$$x_{k+1} = Ax_k + Bx_k$$

Positive Invariant Set:

A set $\mathcal{O} \subseteq \mathcal{X}$ is said to be a positive invariant set for a constrained autonomous system if

$$x_0 \in \mathcal{O} \implies x_k \in \mathcal{O} \quad \forall k > 0$$

• Maximal Positive Invariant Set:

A set $\mathcal{O}_{\infty} \subseteq \mathcal{X}$ is the maximal invariant set if it is invariant and contains all the invariant sets.

- Also referred to as Maximal Admissible Set or Maximal Output Admissible Set, depending if the states or outputs are constrained
- For nonlinear systems with multiple equilibria, the maximal positive invariant set may be the union of disconnected sets, each containing one of the equilibrium

Types of Invariant Sets (cont.)

For systems with control inputs:

$$x_{k+1} = g(x_k, u_k)$$
$$x_{k+1} = Ax_k + Bu_k$$

Control Invariant Set:

A set $C \subseteq \mathcal{X}$ is said to be a control invariant set for a constrained autonomous system if

$$x_0 \in \mathcal{C} \implies \exists u_k \in \mathcal{U}, \ s.t. \ x_k \in \mathcal{C} \quad \forall k > 0$$

Maximal Control Invariant Set:

A set $C_{\infty} \subseteq \mathcal{X}$ is the maximal control invariant set if it is control invariant and contains all the control invariant sets.

Invariant Set Conditions

Geometric Condition

A set $\mathcal{O} \subseteq \mathcal{X}$ is positive invariant if and only if $\mathcal{O} \subseteq \operatorname{Pre}(\mathcal{O})$

$$\operatorname{Pre}(\mathcal{O}) = \left\{ x_k \in \mathbb{R}^n \mid x_{k+1} = g(x_k) \in \mathcal{O} \right\}$$

All the points that map to *O* in the next time step

$$\mathcal{O} \subseteq \operatorname{Pre}(\mathcal{O})$$

All the points in *O* are points that map to *O* in the next time step

• Equivalent condition: $Pre(\mathcal{O}) \cap \mathcal{O} = \mathcal{O}$

There are no points in *O* that are not in the precursor of *O*

Maximal Positive Invariant Set

• Algorithm:

$$x_{k+1} = g(x_k)$$
 $x_k \in \mathcal{X}$

Inputs:
$$g(x)$$
, \mathcal{X}
Outputs: \mathcal{O}_{∞}

$$\Omega_0 \leftarrow \mathcal{X}, \ k \leftarrow -1$$
Repeat
$$k \leftarrow k + 1$$

$$\Omega_{k+1} \leftarrow \operatorname{Pre}(\Omega_k) \cap \Omega_k$$
Until $\Omega_{k+1} = \Omega_k$

$$\mathcal{O}_{\infty} = \Omega_k$$

• Generates a sequence such that
$$\Omega_{k+1} \subseteq \Omega_k$$

- Not guaranteed to terminate, but can prove $\mathcal{O}_{\infty} = \lim_{k \to \infty} \Omega_k$
- Sufficient condition for finite termination
 - Linear, stable system
 - State constraint set is bounded and contains the origin

Example

Consider the constrained autonomous stable 2nd order system

$$x_{k+1} = Ax_k = \begin{bmatrix} 0.5 & 0 \\ 1 & -0.5 \end{bmatrix} x_k \qquad x_k \in \mathcal{X} = \begin{cases} x \in \mathbb{R}^2 \mid \begin{bmatrix} -10 \\ -10 \end{bmatrix} \le x \le \begin{bmatrix} 10 \\ 10 \end{bmatrix} \end{cases}$$

 It is unreasonable to expect that we can start anywhere within these constraints and remain within this set at every future point in time (even for stable systems)

Inputs: g(x), \mathcal{X} Outputs: \mathcal{O}_{∞} $\Omega_0 \leftarrow \mathcal{X}, \ k \leftarrow -1$ Repeat $k \leftarrow k + 1$ $\Omega_{k+1} \leftarrow \operatorname{Pre}(\Omega_k) \cap \Omega_k$

Example (cont.)

Consider the constrained autonomous stable 2nd order system

$$x_{k+1} = Ax_k = \begin{bmatrix} 0.5 & 0 \\ 1 & -0.5 \end{bmatrix} x_k \qquad x_k \in \mathcal{X} = \left\{ x \in \mathbb{R}^2 \mid \begin{bmatrix} -10 \\ -10 \end{bmatrix} \le x \le \begin{bmatrix} 10 \\ 10 \end{bmatrix} \right\}$$

• It is unreasonable to expect that we can start anywhere within these constraints and remain within this set at every future point in time (even for stable systems)

Maximal Control Invariant Set

- Same geometric conditions from invariant sets apply to control invariant sets
- Algorithm:

$$x_{k+1} = g(x_k, u_k)$$
 $x_k \in \mathcal{X}, u_k \in \mathcal{U}$

$$x_k \in \mathcal{X}, \ u_k \in \mathcal{U}$$

Inputs: g(x,u), \mathcal{X} , \mathcal{U}

Outputs: \mathcal{C}_{∞}

$$\Omega_0 \leftarrow \mathcal{X}, k \leftarrow -1$$

Repeat

$$k \leftarrow k + 1$$

$$\Omega_{k+1} \leftarrow \operatorname{Pre}(\Omega_k) \cap \Omega_k$$

Until
$$\Omega_{k+1} = \Omega_k$$

$$C_{\infty} = \Omega_k$$

Same steps as invariant sets

$$\operatorname{Pre}(\Omega_k) = \left\{ x_k \in \mathbb{R}^n \mid \exists u_k \in \mathcal{U} \ s.t. \ x_{k+1} = g(x_k, u_k) \in \Omega_k \right\}$$

Requires projection operator

Maximal Control Invariant Set

• Algorithm:

$$x_{k+1} = g(x_k, u_k)$$
 $x_k \in \mathcal{X}, u_k \in \mathcal{U}$

$$x_k \in \mathcal{X}, \ u_k \in \mathcal{U}$$

Same steps as

invariant sets

Inputs: g(x,u), \mathcal{X} , \mathcal{U}

Outputs: \mathcal{C}_{∞}

$$\Omega_0 \leftarrow \mathcal{X}, \ k \leftarrow -1$$

Repeat

$$k \leftarrow k + 1$$

$$\Omega_{k+1} \leftarrow \operatorname{Pre}(\Omega_k) \cap \Omega_k$$

Until
$$\Omega_{k+1} = \Omega_k$$

$$C_{\infty} = \Omega_k$$

- Generates a sequence such that $\Omega_{k+1} \subseteq \Omega_k$
- Not guaranteed to terminate, and $C_{\infty} \neq \lim \Omega_k$
- Sufficient condition for convergence
 - System is continuous
 - Polyhedral constraint sets are bounded

Determinedness

• Algorithm:

$$x_{k+1} = g(x_k, u_k)$$
 $x_k \in \mathcal{X}, u_k \in \mathcal{U}$

$$x_k \in \mathcal{X}, \ u_k \in \mathcal{U}$$

Same steps as

invariant sets

Inputs: g(x,u), \mathcal{X} , \mathcal{U}

Outputs: \mathcal{C}_{∞}

$$\Omega_0 \leftarrow \mathcal{X}, \ k \leftarrow -1$$

Repeat

$$k \leftarrow k + 1$$

$$\Omega_{k+1} \leftarrow \operatorname{Pre}(\Omega_k) \cap \Omega_k$$

Until
$$\Omega_{k+1} = \Omega_k$$

$$C_{\infty} = \Omega_k$$

• The set O_{∞} or C_{∞} is finitely determined if and only if there exists *i* such that $\Omega_{i+1} = \Omega_i$

• The smallest *i* such that $\Omega_{i+1} = \Omega_i$ is called the determinedness index.

Example

• Consider the unstable 2nd order system

$$x_{k+1} = Ax_k + Bu_k = \begin{bmatrix} 1.5 & 0 \\ 1 & -1.5 \end{bmatrix} x_k + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u_k$$

$$u_k \in U = \left\{ u \in \mathbb{R} \mid -5 \le u \le 5 \right\}$$
$$x_k \in \mathcal{X} = \left\{ x \in \mathbb{R}^2 \mid \begin{bmatrix} -10 \\ -10 \end{bmatrix} \le x \le \begin{bmatrix} 10 \\ 10 \end{bmatrix} \right\}$$

Convergence to compute maximal control invariant set

$$\Omega_{k+1} \leftarrow \operatorname{Pre}(\Omega_k) \cap \Omega_k$$

$$\Omega_{k+1} = \Omega_k$$

Maximal Controllable Sets

- With the maximal positive invariant set \mathcal{O}_{∞} and maximal control invariant set \mathcal{C}_{∞} , there is no notion of a target set
- Now we introduce target sets
- Maximal Controllable Set:

For a given target set $S \subseteq \mathcal{X}$, the maximal controllable set $\mathcal{K}_{\infty}(S)$ for a constrained system with inputs is the union of all N-step controllable sets $\mathcal{K}_N(S)$

$$\mathcal{K}_{N} = \begin{cases} x_{0} \in \mathbb{R}^{n} \mid \exists U_{0} \text{ s.t. } x_{k} \in \mathcal{X}, u_{k} \in \mathcal{U}, \forall k = 0, ..., N-1 \\ x_{N} \in \mathcal{S}, x_{k+1} = Ax_{k} + Bu_{k}, \forall k = 0, ..., N-1 \end{cases}$$

• We will often choose the target set to be a control invariant set so that once we drive the system to the target set, we know we can stay there

Maximal Stabilizable Sets

- If we choose the target set to be invariant, we get
- Maximal Stabilizable Set:

For a given control invariant set $\mathcal{O} \subseteq \mathcal{X}$, the maximal stabilizable set for a constrained system with inputs is the maximal controllable set (the only difference is now our target set is invariant) $\mathcal{K}_{\infty}(\mathcal{O})$

- Same relationship is true for the N-step stabilizable and N-step controllable sets $\mathcal{K}_N(\mathcal{O})$
- Algorithm:

Inputs:
$$g(x,u)$$
, \mathcal{X} , \mathcal{U} Control invariant set

Outputs: $\mathcal{K}_{\infty}(\mathcal{O})$
 $\mathcal{K}_{0} \leftarrow \mathcal{O}$, $k \leftarrow -1$

Repeat

 $k \leftarrow k + 1$ State constraint set

 $\mathcal{K}_{k+1} \leftarrow \operatorname{Pre}(\mathcal{K}_{k}) \cap \mathcal{X}$

Until $\mathcal{K}_{k+1} = \mathcal{K}_{k}$
 $\mathcal{K}_{\infty}(\mathcal{O}) = \mathcal{K}_{k}$

Summary

- Positive Invariant $\mathcal{O} \subseteq \mathcal{X}$ $x_0 \in \mathcal{O} \implies x_k \in \mathcal{O} \quad \forall k > 0$
- Maximal Invariant Set $\mathcal{O}_{\infty} \subseteq \mathcal{X}$ (Union of all invariant sets)
- Control Invariant $C \subseteq \mathcal{X}$ $x_0 \in C \implies \exists u_k \in \mathcal{U}, \ s.t. \ x_k \in C \ \forall k > 0$
- Maximal Control Invariant Set $C_{\infty} \subseteq \mathcal{X}$ (Union of all ctrl. inv. sets)
- Determinedness index number of steps for max controllable invariant set algorithm to converge (if it does)
- Maximal Controllable Sets $\mathcal{K}_{\infty}(\mathcal{S})$
 - Union of all *N*-step controllable sets that drive system to a target set
- Maximal Stabilizable Sets $\mathcal{K}_{\infty}(\mathcal{O})$
 - Same as Maximal Controllable Sets, but now the target is invariant
- Next steps:
 - Use all of this information to prove persistent feasibility of MPC