מבוא לתורת הקבוצות

משה קמנסקי

2024 במאי 15

מבוא 1

A מטרת הקורס היא לתת מבוא המרוה של המבנים המתמטיים הכי בסיסיים, קבוצות. קבוצה ?Aשייך אוסף האיברים עשייכים אליה: לכל עצם x ניתן לשאול: האם שייך ל-x שייך אוסף אליה: לכל עצם המשאלות שייך ל-x שייך ל-x שייך ל-x שייך ל-x שייך ל-x שייך ל-אנחנו נסמן את הטענה שx שייך ל-x שייך ל-אנחנו נסמן את הטענה שייך ל-

?וות? מבנים מעניינים ניתן לתאר באמצעות קבוצות?

- 1. תכונות כתתי קבוצות
- 2. בניית קבוצות חדשות מקבוצות קיימות
 - 3. יחסים ופעולות

?חיד אינסופיות אינסופיות? איך אפשר לעבוד עם לעבוד אינסופיות?

- 1. קבוצות סופיות ואינסופיות
- 2. גדלים של קבוצות אינסופיות
- ?. על מה אפשר לעשות אינדוקציה?

?חל מהן קבוצות?

- 1. הגישה האקסיומטית
- 2. הגדרה ותכונות של קבוצות מוכרות

1.4 כמה שאלות

- ?. האם לכל מרחב וקטורי יש בסיס?
- 2. האם קיים מספר ממשי שאינו אלגברי?
- ? אבל אה חיבורית שהיא $f:\mathbb{R} \to \mathbb{R}$ ביפה? מונקציה פונקציה לא האם היימת לא האם $f:\mathbb{R} \to \mathbb{R}$
- 4. האם אפשר להגדיר באופן סביר את האורך של כל תת-קבוצה של קטע ממשי חסום?
 - .5 האם כל פונקציה מהטבעיים לטבעיים ניתנת לחישוב על-ידי תכנית מחשב?
 - 6. האם קיימת קבוצה של נקודות במישור שכל ישר פוגש בשתי נקודות בדיוק?
 - ?. האם המישור הוא איחוד של מעגלים זרים? מה לגבי המרחב התלת-מימדי?

2 תורת קבוצות אלמנטרית (תזכורת)

2.1 פעולות בסיסיות

- 1. הכלה
- 2. חיתוך, איחוד, הפרש, הפרש סימטרי
 - 3. קבוצת חזקה

גרפים 2.2

מכפלה קרטזית, יחסים, פונקציות, תחום, תמונה, הרכבה, יחס הפוך

X יחס מעל $R\subseteq X imes X$ יחס מעל רבוצה $\Gamma=\langle X,R
angle$ יחס מעל הגדרה 2.2.1. גרף הוא זוג

הגדרה 2.2.2. נניח ש- $\langle A,R \rangle$ ו- $\langle B,S \rangle$ שני גרפים ו- $f:A \to B$ פונקציה. אז f נקראת העתקה העתקה (של גרפים) אם לכל aRa' אם aRa' אם aRa' אז aRa' אם בנוסף גם הכיוון השני נכון (של גרפים) אם לכל aRa' אם aRa' אם aRa' אז aRa' אז aRa' אם בנוסף גם הכיוון השני נכון (כלומר לכל aRa' אם aRa' אז aRa' אז aRa' אז aRa' אז aRa' אונפינה (כלומר לכל aRa' איז אום העתקה של גרפים, אז aRa' נקראת איזומורפיזם.

יחס שקילות

2.3 יחסי שקילות, מנות

A הגדרה 2.3.1. יחס שקילות על קבוצה A הוא יחס סימטרי, טרנזיטיבי ורפלקסיבי מעל

יחס החפיפה על A הוא המשולשים שווי שוקיים. יחס החפיפה על המשולשים לוגמה במישור A קבוצת קבוצת לוגמה שקילות, וכך גם יחס הדמיון.

 mE_nk בניח על \mathbb{Z} על ידי: $A=\mathbb{Z}$ אם mE_nk מספר שלם, ו- $R=\mathbb{Z}$ נגדיר אם $R=\mathbb{Z}$ על ידי: $R=\mathbb{Z}$ אם $R=\mathbb{Z}$ עבורו פולח יחס החלוקה $R=\mathbb{Z}$ (כלומר $R=\mathbb{Z}$ מחלק את שלם עם יחס החלוקה עבורו $R=\mathbb{Z}$ יחס שקילות (תרגיל) יחס שקילות (תרגיל)

אינטואיטיבית, יחס שקילות על A מבטא את הרעיון שאנחנו רוצים לזהות איברים שונים של אינטואיטיבית, יחס שקילות על אערכי פונקציה מסוימת על האיברים הללו הם זהים. A

הגרעין של f הוא היחס הנרעין פונקציה, $f:A\to B$ אם $A\to B$ הגדרה גרעין אבררה $\ker(f)=\{\langle a_1,a_2\rangle\in A\times A\ |\ f(a_1)=f(a_2)\}$

. שקילות של f של של הגרעין של $f:A \rightarrow B$ שלכל שלכל. הוכיחו

 $r_n:\mathbb{Z} \to C_n$ נניה ש-0 שלם, ונסמן n>0 שלם, ננסמן 2.3.6. נניה ארירי: ... על-ידי: m-k שלם, ונסמן m-k ב- $k\in C_n$ המספר היחיד $k\in C_n$ כך ש- $k\in C_n$ מתחלק ב- $k\in C_n$ מתחלק מדוגמה 2.3.3 (תרגיל).

. בהמשך בסימונים E_n ו- ו- C_n מהדוגמה בסימונים בסימונים נמשיך להשתמש

להיות $f:A\to B$ אם A קבוצת המשולשים במישור שאינם שווי שוקיים, נגדיר את $f:A\to B$ להיות הפונקציה שמתאימה לכל משולש את קבוצת אורכי הצלעות שלו (הבחירה במשולשים שאינם שווי שוקיים היא כדי להבטיח שהקבוצה הזו היא בת שלושה איברים בדיוק, ולכן ניתן לשחזר את אורכי שוקיים היא כדי להבטיח לפי משפט החפיפה צלע-צלע-צלע, f היא העתקת מנה עבור יחס החפיפה.

יחסי שקילות מהצורה $\ker(f)$ הם נוחים במיוחד: על מנת לקבוע האם $\ker(f)$ הסולים, יחסי שקילות מספיק לחשב את הערכים לכן, מעניין לשאול אילו יחסי שקילות הם מהצורה הזו. מסתבר שהתשובה היא: כולם.

משפט 2.3.9. לכל יחס שקילות E על קבוצה A קיימת פונקציה f:A o B שהיא על, כך ש-גווו לכל יחס לכל נקראת העתקת מנה עבור E.

העתקת מנה

על-מנת להוכיח את המשפט, נציג את המינוח הבא: אם Bיחס שקילות על $a\in A$ ו-, מחלקת על-מנת להוכיח את מחלקת את השקילות [$a]_E=\{a'\in A\ |\ aEa'\}$ היא הקבוצה השקילות של

$$\square$$
 . $f(a)=[a]_E$ על ידי $f:A \to B$ ו- $B=\{[a]_E \mid a \in A\}$ הוכחה. נגדיר

תרגיל $[a_1]_E = [a_2]_E$ אם היא שיקרית היא ההוכחה את השלימו את מילות. .2.3.10 אם הרכחה (a_1Ea_2

הערה 2.3.11. בניגוד למקובל במקומות אחרים, אנחנו לא נשתמש במפורש בבנייה שמופיעה בהוכחת המשפט (כלומר, בקבוצת מחלקות השקילות) אלא רק במשפט עצמו. הסיבה היא שהמידע בהוכחת המשפט (כלומר, בקבוצת מחלקות השקילות) אלא רק במשפט עצמו. הסיבה הזו מספקת אינו שימושי לרוב, ומאידך הגמישות שבבחירת העתקת מנה כלשהי היא לעתים שימושית ויותר אינטואיטיבית. למשל, ראינו את העתקת המנה r_n עבור היחס r_n שהיא יותר טבעית מהבניה בהוכחה.

Aכעל איברי שוויון של שוויון בין איברי Aעל Eיחס שקילות בין איברי לחשוב כאמור, ניתן לחשוב על איברי $f:A\to B$ מנקודת המבט הזו, העתקת מנה $f:A\to B$ מנקודת המבט הזו, העתקת לשוויון ממש: $f:A\to B$ ממשויון המוחלש לשוויון ממש: aEa' אם ורק לשוויון ממש: לכן, ניתן לחשוב על איבר שני המוחלש המידע הרלוונטי" אודות ב $a\in A$ אודות המידע הרלוונטי" המידע הרלוונטי" אודות בא שלכל שובר להבין איזה מידע מעניין על א מושרה ל-B. נדגים שלכל של איבר באמצעות השימוש הבא.

שלשה שלשה a,b,c הם שלשה פתגורית היא שלשה שלשה a,b,c של מספרים טבעיים כך ש $a^2+b^2=c^2$ (לכן, הם שלשה פתגורית אורכים של צלעות משולש ישר זווית). אנחנו רוצים להוכיח את הטענה הבאה:

טענה 2.3.12. לא קיימת שלשה פיתגורית בה אורכי הניצבים a,b הם אי-זוגיים.

על מנת להוכיח את הטענה הזו, נשתמש בטענה הבאה:

טענה 2.3.13. נניח ש-n טבעי חיובי, ו-B העתקת מנה עבור m. אז קיימות פעולות פעולות π (m+n) בי π (m+n) של π (m+n) בי π את השוויונות π (m+n) בי π (

נוכיח את הטענה הזו בהמשך. בינתיים, נשים לב שהתנאים בטענה מאפשרים לחשב את נוכיח את בינתיים, בינתיים, נשים לב משרים למשל, כדי למשל, כדי לחשב את $b_1\oplus b_2$ את כדי למשל, כדי למשל, כדי לחשב את $\pi(a_1+a_2)$, ולחשב את לחשב את $\pi(a_1+a_2)$. הטענה מבטיחה שהתשובה אינה תלויה בבחירה של תכונות של הפעולות הללו גם ניתן להסיק מתוך הטענה. למשל:

ו- $u\odot v=v\odot u$, $u\oplus v=v\oplus u$ מתקיים $u,v,w\in B$ מתקיים שלכל .2.3.14 הוכיחו שלכל $u\odot v=v\odot u$ (במונחים של טענה $u\odot v=v\odot u$) במונחים של טענה עובה $u\odot v=v\odot u$

עבור n=4 ר-n=4 רבור" וה"כפל". אפשר בקלות לחשב את טבלת ה"חיבור" וה"כפל" עבור n=4 היברים. אנחנו בעיקר רוצים לשים לב שאם $u\in C_4$ זוגי (כלומר $u\in C_4$ אנחנו בעיקר רוצים עפשר להוכיח את טענה $u\in C_4$ ואחרת $u\odot u=0$ או עכשיו אפשר להוכיח את טענה 2.3.12

 $.a^2+b^2=c^2$ עם כך שלים מים אי-זוגיים מספרים שקיימים בשלילה נניח בשלילה. נניח מענה 2.3.12 מחשב אי-זוגיים מספרים בשלילה בשלילה נוחב איי הצדדים:

$$r_4(c) \odot r_4(c) = r_4(c \cdot c) = r_4(a \cdot a + b \cdot b) =$$

 $(r_4(a) \odot r_4(a)) \oplus (r_4(b) \odot r_4(b)) = 1 \oplus 1 = 2 \in C_4$

... מאשר השוויון הלפני אחרון נובע מההנחה ש-a,b אי-זוגיים, ומהחישוב שעשינו לפני ההוכחה. כאשר השוויון הלפני אחרון נובע מההנחה של חייב להיות a,b אותו חישוב מראה שהגענו לסתירה, שכן צד שמאל חייב להיות a,b

על-מנת להשלים את ההוכחה, עלינו להוכיח את טענה 2.3.13. נשים לב ראשית שהטענה אינה טריוויאלית: ישנן פעולות על השלמים שלא מקיימות את התכונה המקבילה.

igoplus mעבור מספרים שלמים m,k הוכיחו שלא קיימת פעולה שלה עבור $m\star k=m^{|k|}$ נסמן 2.3.15. נסמן על על $m\star k=m^{|k|}$ מתקיים על על בר שלכל על $m,k\in\mathbb{Z}$ מתקיים על על

אנחנו נוכיח את טענה 2.3.13 כמסקנה מטענה כללית על יחסי שקילות. אנחנו מתעניינים בטענה אנחנו נוכיח את טענה 2.3.13 בטענה מהצורה הבאה: נתון יחס שקילות E על קבוצה A, עם העתקת מנה B לנו "מבנה מעניין" על A, ואנחנו מעוניינים להבין באיזה תנאי הוא "משרה" מבנה דומה על A בטענה 2.3.13 המבנה המעניין היה פעולות החיבור והכפל. באופן כללי, זה יכול להיות למשל פונקציה מ-A, תת-קבוצה של A, יחס על A וכו'.

Cכאשר (כאשר מתקד המקד האבית) אנחנו נתמקד האבית במקרה הפשוט של פונקציה. נתונה לנו פונקציה במקרה במקרה הזו "משרה" פונקציה על P אנחנו שואלים האם קיימת פונקציה קבוצה כלשהי). מתי הפונקציה הזו "משרה" פונקציה על g אנחנו שואלים מתקיים g מתקיים g מתקיים g באב בתמונה של האם הגודל g שאנחנו מודדים על איברי g תלוי בעצם רק במידע שבאמת מעניין אותנו, כלומר בתמונה של האיבר ב-g. נשים לב שאם זה המצב, ו-g שקול ל-g על הg (מ') בg(a') בg(a') שקול ל-g מעאנו תנאי המעבר שהוא גם תנאי מספיק:

-שפט 2.3.16. נניח שB יחס שקילות על קבוצה A, עם העתקת מנה B יחס שקילות על קבוצה $g:A\to C$

- $.g = \bar{g} \circ \pi$ -ע כך $\bar{g}: B \to C$ קיימת פונקציה.
- g(a)=g(a') אז aEa' אז aEa' אז aEa' אז aEa' אז aEa' אז aEa' .2

אם התנאים מתקיימים, אז \bar{g} יחידה.

סוף הרצאה 1, 1 במאי 2024

הוכחה. כיוון אחד ראינו בדיוק לפני הניסוח של המשפט. בכיוון השני, נגדיר

$$\bar{g} = \{ \langle \pi(a), g(a) \rangle \mid a \in A \}$$

 π -ש מכך שירות על ויחידה של העובדה שירות מהבניה. העובדה שירות $g=\bar g\circ\pi$ ויחידה בובעת השירות $g=\bar g\circ\pi$ על: הערך של איבר של איבר בקבע על-ידי התנאי הערך של $\bar g$ על: הערך של איבר של האיבר בקבע של-ידי התנאי

למשפט יש מספר מסקנות והכללות שימושיות:

מסקנה F-ו $\pi_X: X \to \bar{X}$ מסקנה 2.3.17. נניח ש-E- יחס שקילות על X, עם העתקת מנה E- יחס שקילות על X, עם העתקת מנה X- יחס שקילות $\pi_Y: Y \to \bar{Y}$ פונקציה. אז שני התנאים הבאים שקולים:

- $\pi_X(h(y))=ar{h}(\pi_Y(y))$ מתקיים $y\in Y$ כך שלכל $ar{h}:ar{Y} oar{X}$ היימת פונקציה. 1
 - .h(y)Eh(y') אז yFy' אם $y,y'\in Y$.2

g(y)=g(y') מתקיים: $y,y'\in Y$ אז לכל $g=\pi_X\circ h$ על-ידי $g:Y\to \bar X$ מתקיים: h(y)Eh(y') אם ורק אם ורק אם לכן, לפי משפט h(y)Eh(y') לכן, לפי משפט h(y)Eh(y') לכך אם h(y)Eh(y') לכך שיh(y)Eh(y') כדרש.

 r_1 כמו r_2 בניח ש- r_2 נניח ש- r_2 ברו r_2 ברו הונה r_1 אם r_2 ברו הונה r_1 אם r_2 ברו ברוני של הונה על-ידי r_1 ברוני של r_2 אם r_2 אם r_2 אם r_2 ברוגמא 2.3.6 ברוגמא r_2 ברוני של ברוני של

אפשר הזה, אין \bar{h} במקרה הזה, במקרה הזה, אפשר אפשר אפשר אפשר גם לחשוב על אותה דוגמא ביז מחליפים בין Fו -F1. במקרה דוגמא איבדנו יותר מדי יותר של השארית של השארית של השארית של הלויה רק בזוגיות של השארית מדע. ל

-ש. $\pi: X \to \bar{X}$ מסקנה 2.3.19 עם העתקת מנה E-ש יחס שקילות על קבוצה $h: X \times X \to X$ פונקציה. אז התנאים הבאים שקולים:

מתקיים $x_1,x_2\in X$ כך שלכל $\bar{h}:\bar{X}\times\bar{X}\to\bar{X}$ (יחידה) פונקציה פונקציה .1 $.\bar{h}(\pi(x_1),\pi(x_2))=\pi(h(x_1,x_2))$

 $.h(x_1,x_2)Eh(x_1',x_2')$ אז x_2Ex_2' י x_1Ex_1' אם $x_1,x_1',x_2,x_2'\in X$ לכל 2.

לפני שנוכיח את המסקנה, נסיק ממנה את טענה 2.3.13.

הוכחת שענה 2.3.13. ניקוח $A: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ ו- $B: E=E_n$ עם $X=\mathbb{Z}$ פונקציית החיבור $ar h: B\times B \to B$ (יחידה) פונקציה מבטיח במסקנה 2.3.19 מתנאי הראשון במסקנה h(m,k)=m+k בחיבור שלכל $\pi(m+k)=\pi(h(m,k))=\bar h(\pi(m),\pi(k))$ מתקיים $\pi(m+k)=\pi(h(m,k))=\bar h(\pi(m),\pi(k))$ כלומר היא בדיוק הפונקציה שאנחנו מחפשים.

המסקנה אומרת שקיומה של הפונקציה הזו שקול לתנאי שאם mEm' וגם kEk' הזו שקיומה של הפונקציה הזו שקול מתחלק ב-m+kEm'+k' מתחלק ההנחה במקרה שלנו היא m-m'+k-k'=m+k-(m'+k') מתחלק המצב, אז גם הסכום שלהם m+k-k'=m+k-(m'+k') מתחלק ב-m+k-k'=m+k-m'+k-k'

ההוכחה עבור כפל דומה (תרגיל).

סוף הרצאה 2, 6 במאי, 2024

עכשיו נוכיח את המסקנה

 $\langle x_1,x_2 \rangle F \langle x_1',x_2' \rangle$ הנתון על-ידי $Y=X\times X$ את היחס על F- מסמן ב-2.3.19 הנתונה על- אם $\pi_Y:X\times X\to \bar X\times \bar X$ הוא הגרעין של הפונקציה אז $\pi_Y:X\times X\to \bar X\times \bar X$ הנתונה על הפרט, הוא הא הגרעין של הפרט, הוא העתקת מנה π_Y - עבור π_Y - עכשיו הטענה נובעת מיידית ממסקנה π_Y - מסקנה π_Y - עבור π_Y - עכשיו הטענה נובעת מיידית ממסקנה π_Y - מרכז אוריבים מיידית ממסקנה ב- π_Y - מרכז אוריבים מיידית ממסקנה π_Y - מרכז אוריבים מיידית ממסקנה ב- π_Y - מרכז אוריבים מיידית ממסקנה מיידית ממסקנה מיידית ממסקנה ב- π_Y - מיידית ממסקנה מיידית מיידית ממסקנה מיידית מיידית ממסקנה מיידית ממסקנה מיידית מייד

 $S\subseteq X$ - יחס שקילות על קבוצה X עם מנה $X\to X$ ונניח ש-E- ונניח ש- $\pi:X\to X$ מסקנה 2.3.20. נניח ש- $\pi:X\to X$ הת-קבוצה. אז התנאים הבאים שקולים:

 $\pi(x)\in ar{S}$ אם ורק אם $x\in S$ מתקיים: $x\in X$ מתקיים לכל $ar{S}\subseteq ar{X}$ אם ורק אם .1

 $x' \in S$ אם ורק אם $x \in S$ אז $x \in X$ אם ורק אם $x \in S$.

אם g(x)=1 . כלומר: g(x)=1, כלומר: $g:X\to C$, ו- $C=\{0,1\}$ אם הוכחה. נגדיר ורק אם 2.3.17 לכן, לפי אותה שני שקול לתנאי השני שקול לכן, לפי אז התנאי השני $x \in S$ אותה מסקנה, הוא שקול לקיומה של פונקציה $\overline{g}: \bar{X} o C$ כך ש $g(x) = \bar{g}(\pi(x))$ לכל $x \in X$. נגדיר . אז התנאי האחרון שקול לתנאי הראשון במסקנה (תרגיל). $\bar{S} = \bar{q}^{-1}[\{1\}]$

דוגמה 2.3.21. נניח שאני יודע מהי השארית של מספר שלם m ביחס ל-7. האם אני יכול לגלות אם אהרית ביחס ל-7. זוגיות שונה, אבל אותה שארית ביחס ל-7. זהו m אם mהמקרה של מסקנה 2.3.20 בו $S\subseteq X=\mathbb{Z}$ בו מסקנה מסקנה

התשובה שונה אם מחליפים את 7 ב-6: לכל שני מספרים שההפרש ביניהם מתחלק ב-6 אותה $\bar{S}\subseteq C_6$ זוגיות. הקבוצה $\bar{S}\subseteq C_6$ מהמסקנה היא, במקרה הזה,

הערה 2.3.22. נשים לב לעקרון הכללי שהשתמשנו בו בהוכחת מסקנה 2.3.20: יש התאמה טבעית כל ידי: לכל בתונה $C:X \rightarrow \{0,1\}$ ופונקציות אל-ידי: לכל של ההתאמה בתונה על-ידי: לכל תת-קבוצה כ- $c_S(x)=1$ המוגדרת כ- $c_S:X o \{0,1\}$ אם ורק אם מתאימה מתאימה מת-קבוצה מת-קבוצה מתאימה מת-קבוצה מתאימה מת-קבוצה מתאימה מת-קבוצה מתאימה מת-קבוצה מתאימה מת-קבוצה מ הפנקציה המציינת $c:X \to \{0,1\}$ אם הפונקציה המציינת של $c:X \to \{0,1\}$ הפונקציה המציינת $x \in S$ $S_c = \{x \in X \mid c(x) = 1\}$ פונקציה כלשהי, מתאימה לה קבוצה

ולכל $S=S_{c_S}$ מתקיים $S\subseteq X$ שלכל (2.3.22 של הערה בסימונים של הוכיחו (בסימונים של הערה ב (כלומר, שתי ההתאמות הפוכות אחת לשנייה) $c = c_{S_c}$ מתקיים $c: X \to \{0, 1\}$

E אקילות יחס שקילות בהינת, נאמר כפי שכבר האינו, המנה והעתקת המנה והעתקת המנה. על X, ישנן לרוב הרבה העתקות מנה עבור E (וראינו שלעתים זה מועיל). למרות זאת, נסביר בתרגיל הבא שניתן לזהות כל שתיים מהן באופן יחיד.

 $\pi:X \to ar{X}$ מנה מנה העתקת על קבוצה על קבוצה שקילות שקילות של היום E-ש נניח מנה E-ש

- .1. נניח ש $ar{X}
 ightarrow ar{X}$ פונקציה המקיימת $\pi = \pi$. הוכיחו ש $h: ar{X}
 ightarrow ar{X}$. נניח
- .2 נניח ש- $ar{X}_1$ ביימת פונקציה יחידה $\pi_1:X oar{X}_1$ העתקת מנה נוספת עבור רמז:) $q\circ\pi_1=\pi$ כך ש $q:\bar{X}_1 o ar{X}$ כך יחידה $f\circ\pi=\pi_1$, ופונקציה יחידה $f:\bar{X} o ar{X}_1$ משפט 2.3.16.
 - .3 הוכיחו ש-f ו-g הפוכות אחת לשניה.

בגלל התרגיל הזה, לרוב מתייחסים אל העתקת מנה שונות (עבור יחס שקילות נתון) כאל אובייקט יחיד, וקוראים לו העתקת המנה.

מנות במרחבים וקטוריים 2.3.25

נניח ש.k מעל שדה מעל וקטוריים מרחבים שני בין שני לינארית העתקה $T:U \to V$ אבל , $E=\ker(T)=\{\langle u_1,u_2\rangle\,|\,u_1,u_2\in U,T(u_1)=T(u_2)\}$ אבל יש גרעין ל-7 אבל $T(u_1 - u_2) = T(u_1) - T(u_2) = 0$ כה בנה התנאי את התנאי לרשום את הלינארי מאפשר המבנה הלינארי כלומר $\ker(T)=\{u\in U\mid T(u)=0\}\subseteq U$ כאשר, כאשר הקבוצה היא $\ker(T)=\{u\in U\mid T(u)=0\}$

הגרעין של E-ט ביחס ל-E. אז המידע של הגרעין של באלגברה לינארית. היים לינאריות של אד באלגברה לינאריות. של $\ker(T)$ שקול עבור העתקות לינאריות.

משפט 2.3.26. נניח ש-W תת-מרחב וקטורי של מרחב וקטורי U מעל שדה k. אז קיים מרחב וקטורי U והעתקה לינארי $T:U \to V$ בך ש- $T:U \to V$.

הפילות (תרגיל). לפי $u_1-u_2\in W$ אם u_1Eu_2 ידי: U על-ידי. גדיר יחס שקילות (תרגיל). לפי משפט 2.3.9, קיימת ל-E העתקת מנה $U\to V$ מנה $T:U\to V$ העתקת מנה עלינו להראות: פירוט, עלינו להראות:

מתקיים
$$u_1,u_2\in U$$
 שלכל $\oplus:V\times V\to V$ מתקיים .1
$$T(u_1+u_2)=T(u_1)\oplus T(u_2)$$

- ש- $u\in U$ המקיימת לכל ,(c בסקלר הכפלה (הכפלה בסקלר), קיימת פונקציה , $t\in U$ ש- .2 המקיימת לכל . $T(cu)=f_c(T(u))$
- ו- $c \in k$ לכל $c \cdot_V v = f_c(v)$ ידי שנתון על-ידי הכפל בסקלרים והכפל לכל $c \cdot_V v = f_c(v)$ הידי שנתון שנתוך של מרחב את ההגדרה של מרחב וקטורי מעל על $v \in V$

על מנת להוכיח את (1), נשתמש במסקנה 2.3.19, עבור הנתונים X=U יחס השקילות על מנת להוכיח את (1), נשתמש במסקנה $h:X\times X\to X$ פונקציית החיבור של D. התנאי הראשון באותה מסקנה מבטיח שקיימת פונקציה D באותה מסקנה מבטיח שקיימת פונקציה עובר (1) שלנו. D באותה מסקנה מבטיח שקיימת פונקציה עובר (1) שלנו. D באות (1) שלנו. D באות (1) שלנו שלנו (1) שלנו. D באות (1) שלנו (1) ש

-ש המרחב הווקטורי נובעות בקלות ממה שכבר הוכחנו. למשל, על-מנת להוכיח ש-תכונות המרחב וובעות נובעות בקלות ממה לכל על v_1 (זה אפשרי משום $v_1,v_2\in V$ לכל לכל $v_1\oplus v_2=v_2\oplus v_1$ על). אז

$$v_1 \oplus v_2 = T(u_1) \oplus T(u_2) = T(u_1 + u_2) =$$

= $T(u_2 + u_1) = T(u_2) \oplus T(u_1) = v_2 \oplus v_1$

הוכחת יתר האקסיומות דומה.

תרגיל 2.3.27. השלימו את ההוכחה

מרחב V כמו במשפט נקרא מרחב מנה של U ב-W, ומסומן ב-U/W. ההעתקה נקראת נקראת נקראת מנה. כמו במקרה של קבוצות, מרחב המנה והעתקת המנה אינם יחידים, אבל הם יחידים עד כדי העתקה לינארית יחידה:

.Wעבור שתי העתקות העת ד $T_2:U\to V_2$ ו ו- היו היו , $W\subseteq U$ שתי נניח העתקות ארגיל מרגיל הייטו הייטו איז הארית הפיכה הייטו אינארית העתקה העתקה הייטו אינארית הפיכה הייטו אינארית העתקה העתקה העתקה אינארית הפיכה הייטו אינארית הייטו אינאר הייטו אינארית הייטו אינאר א

סוף הרצאה 3, 8 במאי, 2024

יחסי סדר 2.4

יחס סדר

X הוא יחס רפלקסיבי, אנטי-סימטרי וטרנזיטיבי מעל אנטי-סימטרי הוא הוא הוא קבוצה אנטי-סימטרי וטרנזיטיבי מעל אנטי-סדר פוצה סדורה הוא הוא הוא זוג לא אוג לא לא אוג לא ריקה, ו-R יחס סדר מעל אנטי-סדר אוג לא אוג לא אוג לא אנטי-סימטרי הוא הוא זוג לא אנטי-סימטרי הוא הוא זוג לא אנטי-סדר מעל אנטי-סדר הוא זוג לא אנטי-סדר מעל אנטי-סדר הוא זוג לא אנטי-סדר מעל אנטי-

 \lozenge עם הסדר הרגיל $R=\leqslant$ עם הסדר הרגיל עם המספרים \mathbb{Q} . ו- \mathbb{Q} ו- \mathbb{Q} ו- \mathbb{Q} קבוצות המספרים . $X=\mathcal{P}(A)$ הוא החזקה על קבוצת קבוצה כלשהי, אז R=R הוא האם אם $R \upharpoonright_Y=R\cap (Y\times Y)$ אז הצמצום $R \upharpoonright_Y=R\cap (Y\times Y)$ הוא האס סדר על . $R \upharpoonright_Y=R\cap (Y\times Y)$ העתים נמשיך לסמן $R \upharpoonright_Y=R$ במקום . $R \upharpoonright_Y=R$

אינטואיטיבית, אם $B \leq C$ ו- $B \leq C$ בעניה, היינו רוצים אינטואיטיבית, אם $B \leq C$ ו- $B \leq C$ אותו איבר. ראינו איך ניתן לעשות זאת: עלינו לומר שהן "כמעט שוות", ולהתייחס אליהן כאל אותו איבר. ראינו איך ניתן לעשות זאת: עלינו לחלק ביחס שקילות. בתרגיל הבא נעשה זאת באופן כללי.

תרגיל 2.4.7. נניח ש- \geq יחס רפלקסיבי וטרנזיטיבי על קבוצה X (יחס כזה נקרא $y \leq x$ אם רפלקסיבי וטרנזיטיבי על על-ידי: $y \leq x$ אם אוגם $x \leq y$ אם אל-ידי: $x \sim y$

- X יחס שקילות על - \sim יחס שקילות על .1
- - .B יחס סדר על .3
- נגדיר ב. C על סדר פונקציה, ו-R פונקציה, פונקציה, אך $q:Y\to C$ על .4 נניח ש- \tilde{R} קדם-סדר, אך אך אך $\tilde{R}=\{\langle x,y\rangle\in Y\times Y\ |\ \langle q(x),q(y)\rangle\in R\}$ בהכרח סדר.

- בור שבות העתקת הערך היא העתקת הערך המוחלט $|\cdot|:\mathbb{Z} \to \mathbb{N}$ הוכיחו שבות עבור על \mathbb{Z} , ושפונקציית הערך המוחלט הבנייה בסעיפים הקודמים. יחס השקילות המתאים \sim . תארו את יחס הסדר שמתקבל מהבנייה בסעיפים הקודמים.
- אם ורק אם אם אם הסדר הוא: $B \sim C$ הוא: הסדר מקדם שמתקבל שמקילות יחס השקילות, יחס האחרונה, הוא: $B \wedge C$

יחסי סדר הם טבעיים ונפוצים מאוד במתמטיקה, האם יש לנו אפשרות להבין, באיזשהו אופן, מהם כל יחסי סדר הסדר? בשלב ראשון, עלינו להבין איך להשוות בין שני יחסי סדר שונים, ובפרט מהם כל יחסי הסדר, עד כדי "שינוי שמות". כיוון שקס"ח היא מקרה פרטי של גרף, המושגים להבין מתי הם אותו דבר, עד כדי "שינוי שמות". בהקשר הזה, העתקה של גרפים נקראת גם העתקה שיכון ואיזומורפיזם תקפים גם עבורן. בהקשר הזה, העתקה של גרפים נקראת גם העתקה שומרת סדר.

העתקה שומרת סדר

לקס"ח איזומורפית איזומורפית איזומורפית איזומורפית איזומורפית איזומורפית איזומורפית איזומורפית איזומורפיזם איזומורפיזים איזומורפיזים איזומורפיזים איזומורייים איזומורייים איזומורפייים איזומורייים איזומורייים איזומורייים איזומורייים איזומוריייים

דוגמה 2.4.9. הקס"ח $X=\langle\mathbb{Z},\leqslant\rangle$ איזומורפית לקס"ח לקס"ח $X=\langle\mathbb{Z},\leqslant\rangle$ איזומורפיזם נתון על-ידי $X=\langle\mathbb{Z},\leqslant\rangle$ הקס"ח לקס"ח לקס"ח איזומורפיזם נתון על-ידי f(n)=-n

העתקה העתקה ל-($\mathcal{P}(A),\supseteq$). איזומורפית איזומורפית אז קבוצה. אז קבוצה. אז קבוצה העתקה .2.4.10 איזומורפיזם, איזומורפיזם, על-ידי $f\circ f=\operatorname{Id}_X$ -שוב משום איזומורפיזם, איזומורפיזם $f:X\to X$

 $\langle \mathbb{N}, \geqslant \rangle$ - אינה איזומורפית ל- $\langle \mathbb{N}, \geqslant \rangle$ - האם כל קס"ח איזומורפית ל- $\langle \mathbb{N}, \geqslant \rangle$ - האם כל קס"ח אינה איזומורפית לקס"ח ההפוך? נראה שיבל איך ניתן להוכיח זאת? ב- $\langle \mathbb{N}, \geqslant \rangle$ - ש מינימום: איבר $\alpha = 0 \in \mathbb{N}$ יהיה מינימום ב-Y- לכן, אם ב-Y- איזומורפיזם של הקס"ח לקס"ח כלשהו Y- איזומורפית ל-Y- בפרט, זה המצב ב-Y- מינימום איז מינימום ב-Y- מינימום ב-Y- וזה לא קיים.

את העקרון הזה ניתן להכליל: כיוון שקס"ח איזומורפיות הן "אותו קסח בשינוי שמות האיברים", כל תכונה של יחסי סדר שמוגדרת רק במונחי היחס נשמרת תחת איזומורפיזם, ולכן אם התכונה מופיעה רק באחת הקס"ח, אז הן אינן איזומורפיות.

T איז מינימום איז מינימום $Y=\langle\mathbb{N},|^{-1}\rangle$ איז מינימום איז איז מינימום $Y=\langle\mathbb{N},|^{-1}\rangle$ איז מינימום איז הגישה הקודמת איז הגישה לא תעזור. למינימום ב-X יש התכונה הבאה: קיים איבר ב-y איבר איז מקסימום, איז הגישה הקודמת איז אף איבר שנמצא ממש בין y ל-y למשל y באופן כללי, כל ראשוני שונה מ-0). איבר y כזה נקרא עוקב מיידי של y איז שומר על המינימום, ואם y עוקב מיידי של y איז איז בריך להיות לוקב מיידי של y בריך אבל ל-y און עוקבים מידיים ב-y (תרגיל).

ננסח את ההגדרה שהופיעה בדוגמא.

הגדרה 2.4.12. נניח ש- $\langle X, \leq \rangle$ קס"ח.

איבר מינימלי (מזערי)

עוקב עוקב מיידי

- $b \leq a$ כך ש- כך Xכך ב- $A \neq a$ בים לא קיים אם מינימלי (מזערי) איבר מינימלי $a \in X$ ב- .1
- עוקב מיידי $a \leq b$ ו- $a \leq b$ ו- $a \leq b$ המקיים ווא איבר $a \in X$ איבר עוקב מיידי $a \in X$ איבר מינימלי בקבוצת העוקבים של a

3. המושגים איבר מקסימלי (מירבי), קודם וקודם מיידי מוגדרים כמושגים המקבילים עבור איבר מקסימלי (מירבי), החדם וקודם מיידי מוגדרים המושגים המקבילים עבור \leq^{-1} פודם מיידי ההפוך \leq^{-1}

 $a \leq c$ ו רב b אם $c \in X$ ולכל $a \neq b$ אם $a \leq b$ אם מיידי של עוקב מיידי b-ש הוכיחו $a \neq c$ ולכל $a \neq c$ אז a = c אז a = c

כאמור, כל תכונה של סדר (או, באופן כללי, של גרפים) נשמרת על-ידי איזומורפיזמים. אין לנו (כרגע) אפשרות לנסח במדויק מה זה "תכונה של סדר", ולכן נסתפק בדוגמאות. הטענה הבאה מנוסחת עבור המושגים שהזכרנו עד כה, אבל נכונה גם ליתר התכונות שמופיעות בהמשך.

טענה f:X o Y ו-X o ppY,S ו-X o ppY,S איזומורפיזם. 2.4.14 טענה

- ת קס"ח אנטי סימטרי, אנטי סימטרי, או טרנזיטיבי אם ורק אם Y כזה. בפרט, אנטי סימטרי, או טרנזיטיבי אם אם אם Y קס"ח.
- הוא כזה. בפרט, $f(a) \in Y$ אם ורק אם מקטימלי או מינימלי מינימלי הוא מינימום, מינימום, $a \in X$.2 ב-X יש מינימום אם ורק אם ב-Y הוא ישנו, ובדומה עבור התכונות האחרות.
- עבור קודם (ובדומה עבור f(a) עוקב מיידי של $a \in X$ אם אם ורק אם $b \in X$.3 מיידי).

הערה 2.4.15. ההגדרות של מינימום, מינימלי וכו' נוסחו עבור קבוצות סדורות, אבל הן תקפות לגרפים כלשהם.

הוכחה. נוכיח עבור עוקבים מידיים. נשתמש בניסוח בתרגיל 2.4.13. נניח ש-b ו $a,b\in X$ עוקב מידיים. נשתמש בניסוח בתרגיל f(a)Sd אם $d\in Y$ שלכל הושלכל f(a)=f(a)Sf(b), ש-f(a)Sf(b) אם העלכל הושני מכך מידי של d=f(a) אז מכך של העתקה, והשני מכך d=f(a) אז מכך אז אז מכך אז העתקה, ונשתמש ב-d=f(a) אז הבעיה מ-d=f(a) אז מכך אז ההפכית של d=f(a) ונשתמש ב-d=f(a) על-מנת לתרגם את הבעיה מ-f חח"ע. נסמן ב-g את ההפכית של f, ונשתמש ב-fוב-gעל-מנת לתרגם את הבעיה אר הבעיה מ-f

מרגיל 2.4.16. הוכיחו את הסעיפים האחרים

X' איזומורפי ל-X' הערה 2.4.17. במונחים של הסעיף הקודם, אפשר לנסח את הטענה כך: היחס איזומורפי ל-X' העתקת הוא יחס שקילות על האוסף \mathcal{G} של כל הגרפים (או על אוסף כל הקס"חים). אם $\pi:\mathcal{G}\to\mathcal{B}$ העתקת מנה עבורו, התכונות מהטענה (כמו קיום מינימום) מוגדרות על \mathcal{B} .

סוף הרצאה 4, 15 במאי 2024