ŘEŠENÍ NELINEÁRNÍCH ROVNIC

Nelineární rovnice

- Obecný tvar rovnice o jedné neznámé
 - \times f(x) = 0

Typy rovnic

- Lineární rovnice
 - rovnice, kterou lze ekvivalentními úpravami upravit na tvar ax + b = 0
 - všechny ostatní nelineární
- Řešitelnost nelineárních rovnic
 - některé lze řešit přímo
 - ostatní numericky

nebudeme se zabývat

- Rovnice řešitelné přímo
 - např. algebraické rovnice (polynomy) $P_n(x) = 0$
 - P_n je polynom stupně n
 - rovnice umožňující separaci proměnných...
- Ostatní nutno řešit numericky

Numerické řešení

- Omezíme se na hledání kořenů rovnice f(x) = 0
 - × kde $x \in \mathbb{R}$ a f(x) je funkce spojitá
- Většinou budeme řešit jednu rovnici
 - × některé metody (Newtonova) lze využít i pro řešení soustav
- Princip numerického řešení
 - × separace kořenů
 - zjistit, kolik kořenů rovnice má
 - určit intervaly, ve kterých leží právě jeden kořen
 - zpřesňování aproximací
 - pomocí iteračních metod (výhradně)
- Požadavky
 - × konvergence k přesnému řešení
 - x rychlost konvergence k přesnému řešení

- lacktriangle Pro iterační metody potřebujeme "správný" odhad první iterace x^0
 - × úloha není algoritmizovatelná
- Cíl
 - × zjistit, kolik kořenů rovnice má
 - × určit intervaly, ve kterých leží právě jeden kořen
- Možnosti
 - × Sledování znaménkových změn funkce f(x)
 - Grafické řešení hrubou silou
 - × Pomocí znalosti grafů elementárních funkcí
 - Odhad pomocí pomocných přístupů
 - např. půlení intervalu ap.

- ullet Sledování znaménkových změn funkce f(x)
 - × ve vybraných bodech D(f) zjistíme znaménko
 - × kde se mění znaménko, je kořen

x	-2	– 1	0	1	2	3
f(x)	+	+	_	_	+	+

× 2 kořeny, $x_1 \in (-1,0)$ a $x_2 \in (1,2)$

jen hrubé přiblížení nemusíme objevit všechny kořeny

- Grafické řešení hrubou silou
 - imes necháme sestrojit graf a hledáme průsečíky s osou x

nemusíme objevit všechny kořeny:

- nevhodná volba intervalu
- nedostatečné rozlišení

- Pomocí znalosti grafů elementárních funkcí
 - imes uvažuje možnost rozepsat funkci $f(x)=f_1(x)-f_2(x)$ a najít průsečík jednotlivých funkcí
- Příklad: Odhadněte hodnotu první iterace x^0 funkce $0 = x + \ln x$
 - × f(x) hledáme ve tvaru $f_1(x) = x$ a $f_2(x) = -\ln x$
 - x hledáme průsečík rovnice ve tvaru

$$x = -\ln x$$

- \Box první iterace x^0 :
 - × průsečík
- interval s jedním kořenem:
 - $f_1(x) = 0$ a $f_2(x) = 0$
- zpřesnění řešení
 - × jedna z iteračních metod

- Odhad pomocí pomocných přístupů
 - × např. půlení intervalu ap.

$$c = \frac{a+b}{2}$$

Možnosti separace kořenů – cvičení

- Odhad první iterace
- Odhadněte hodnotu první iterace x_0 pomocí grafické metody u následujících funkcí.

$$0 = x + \ln x$$

$$0 = \sin x - \frac{1}{2}x$$

$$0 = e^x + x^2 - 3$$

Numerické řešení

- Máme intervaly, které obsahují vždy po jednom kořenu
- Zpřesňování aproximací
 - × pomocí iteračních metod (výhradně)
- Standardní metody pro řešení nelineárních rovnic:
 - × bisekce
 - × prostá iterace
 - × regula falsi
 - × metoda sečen
 - × Newtonova metoda

Numerické řešení

- ullet Hledáme řešení, tj. kořeny, $x \in \mathbb{R}$ rovnice f(x) = 0
 - × definované a spojité na intervalu $\langle a, b \rangle$, kde platí
 - $f(a) \cdot f(b) < 0$
- Poté existuje alespoň jeden bod x, náležející do intervalu $\langle a,b \rangle$, který splňuje rovnici f(x)=0

Metoda bisekce

- Postupné půlení intervalu $\langle a, b \rangle$
- Konstrukce posloupnosti nových intervalů
 - × vyhovujících podmínce
 - $\times f(a^i) \cdot f(x^i)$ nebo $f(x^i) \cdot f(b^i)$,
 - imes kdy posloupnost intervalů konverguje k hledanému kořenu rovnice x
- První aproximace kořene rovnice je dána vztahem $x^0 = \frac{a+b}{2}$

- Metoda konverguje vždy
- Konvergence pomalá
 - × každým krokem se výchozí interval zkrátí na polovinu
 - \times řád konvergence p=1
- ullet Rychlost konvergence je závislá na vhodné volbě první aproximace x^0

 $\lim_{n\to\infty} \frac{E_{n+1}}{E_n^p} = konst > 0$

- Využívá se zejména pro zúžení intervalu, kde hledáme kořen rovnice
 - × poté se pokračuje s rychlejší metodou

Metoda bisekce

- Postup metody bisekce (krok i)
 - × Rozpůlíme interval $\langle a^i, b^i \rangle$ tak, že $x^i = \frac{a^i + b^i}{2}$.
 - × Dostaneme subintervaly $\langle a^i, x^i \rangle \langle x^i, b^i \rangle$.
 - imes Posoudíme podmínku $f(a^i) \cdot f(x^i) < 0$ a $f(x^i) \cdot f(b^i) < 0$
 - imes Vybereme interval vyhovující podmínce a dostaneme nový interval $\langle a^{i+1},b^{i+1}
 angle$
 - × Celý postup opakujeme.

Metoda bisekce

- Iterační proces končí (STOP podmínka), když
 - x nalezneme kořen rovnice
 - × je splněna konvergenční podmínka
 - $b^k a^k < 2\epsilon$
 - \cdot ϵ je požadovaná přesnost
- Kořen rovnice je poté určen jako

$$x = \frac{a^k + b^k}{2}$$

Metoda regula falsi

- Jedna z prvotních metod pro hledání kořenů rovnice
 - × někdy se nazývá metoda tětiv nebo false position method (metoda falešné polohy)
- Předpoklad
 - imes máme definovanou a spojitou funkci f(x) na intervalu $\langle a,b \rangle$
- Volba dělícího bodu xⁱ intervalu
 - imes průsečík sečny funkce f(x) na intervalu $\langle a^i, b^i
 angle$ a osy x
 - tedy ne polovina intervalu
 - × stále platí podmínka $f(a^i)f(b^i) < 0$.

Metoda regula falsi

- ullet Sečnu funkce f(x) vyjádřit pomocí rovnice přímky y=kx+q
 - $\times \quad \mathrm{kde} \ q = f(a) \quad \text{a} \quad k = \frac{f(b) f(a)}{b a}$

$$y = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

- \square Průsečík s osou x:
 - \times položíme y = 0
 - \times vyjádříme x

$$x = a - f(a)\frac{b - a}{f(b) - f(a)}$$

Metoda regula falsi

Určíme průsečík

imes na intervalu $\langle a^i, b^i
angle$ jako

$$x^{i} = a^{i} - f(a^{i}) \frac{b^{i} - a^{i}}{f(b^{i}) - f(a^{i})}$$

- Určíme, který z intervalů $\langle a^i, x^i \rangle$ nebo $\langle x^i, b^i \rangle$ budeme dále používat
 - × dle podmínky $f(a) \cdot f(b) < 0$

$$f(a^i) \cdot f(x^i) < 0 \rightarrow b^i = x^i$$

$$f(x^i) \cdot f(b^i) < 0 \rightarrow a^i = x^i$$

Celý postup opakujeme

× až do splnění STOP podmínky

$$f\big(a^i\big)\cdot f\big(b^i\big) \leq \delta$$

$$\left| x^{i+1} - x^i \right| \le \delta$$

Metoda regula falsi a metoda sečen

Metoda konverguje vždy

- obvykle rychleji než bisekce
 - pokud blízko lineární funkci
- × v okolí kořene rovnice konverguje pomalu
- \times lze použít pro prvotní zúžení intervalu $\langle a, b \rangle$ a kořen najít rychleji konvergující metodou
 - pod. jako bisekce

Metoda sečen

- x modifikace regula falsi
- × další iterace se počítá ze dvou posledních bodů
- imes nedochází k úpravě intervalu dle průsečíku x^i , ale ihned k výpočtu nového odhadu kořene
- Konvergence metody sečen
 - x nemusí konvergovat vždy
 - × pokud konverguje, tak rychleji než regula falsi

- 1669 formulovována a použita pro řešení kubické rovnice
- Použita pro aproximaci řešení Keplerových rovnic (transcendentní) pro pohyb planet
- Pro stanovení odhadu kořene používá derivaci funkce f(x) metoda tečen

$$f'(x) = \lim_{(b-a)\to\infty} \frac{f(b) - f(a)}{b - a}$$

Z Taylorova rozvoje funkce f(x) kolem bodu x_0 , kde $x=x_0+a$, dostaneme řadu ve tvaru

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \dots$$

$$o((x - x_0)^2)$$

ullet Nahradíme formálně $x o x^{i+1}$, $x_0 o x^i$

$$f(x^{i+1}) = f(x^{i}) + f'(x^{i})(x^{i+1} - x^{i}) \implies x^{i+1} = x^{i} - \frac{f(x^{i})}{f'(x^{i})} - \frac{f(x^{i+1})}{f'(x^{i})}$$

Hledáme řešení rovnice f(x)=0, další iterace by měla být blíže ke skutečnému řešení; předpokládáme tedy $f(x^{i+1}) \to 0$

$$x^{i+1} = x^i - \frac{f(x^i)}{f'(x^i)}$$

kde x^{i+1} je (i+1). odhad kořene rovnice f(x) pomocí Newtonovy metody

Odhad kořene

$$x^{i+1} = x^i - \frac{f(x^i)}{f'(x^i)}$$

- odhad kořene x^{i+1} pomocí derivace f'(x)
- iterujeme do splnění STOP podmínky $|x^{i+1}-x^i|<\delta$
 - imes δ je přesnost, se kterou chceme kořen najít

- Metoda nekonverguje vždy
 - × ale pokud konverguje, jde o jednu z nejrychleji konvergujících metod
 - \times záleží i na volbě x^0
- Konvergence je zaručena při splnění Fourierovy podmínky

Fourierova podmínka

- Mějme funkci f(x) definovanou a spojitou na intervalu $\langle a,b\rangle$ tak, že existují derivace f' a f'', které nemění znaménko
- \square Zvolíme počáteční aproximaci $x^0 \in \langle a, b \rangle$ tak, aby byla splněna podmínka

$$f(x^0) \cdot f''(x^0) > 0$$

Potom bude Newtonova metoda konvergovat.

- Pokud f'(x) nemění znaménko, tak funkce na celém intervalu $\langle a,b \rangle$ klesá nebo roste
- Pokud f''(x) nemění znaménko, tak je funkce na celém intervalu $\langle a,b \rangle$ konvexní nebo konkávní
- Metoda nemusí fungovat, pokud kolem počátečního odhadu nebo kořene existují inflexní body, lokální maxima nebo minima

Cvičení

Pomocí výše uvedených metod najděte kořeny následujících rovnic

$$0 = x + \ln x$$

$$0 = \sin x - \frac{1}{2}x$$

$$0 = e^x + x^2 - 3$$

$$0 = x - e^{-x}$$

$$0 = x \arctan x - 1$$