2IL50 Data Structures

2023-24 Q3

Lecture 3: Heaps

Announcements

Segment 1 in-class interim test Thursday, February 22

Rooms see Canvas group, assignment ready by tomorrow

arrive by 17:30 cannot enter or leave once test has started

follow instructions

https://canvas.tue.nl/courses/25271/pages/in-class-interim-tests

Laptops must take SEB check install the new version of SEB!

problems by end of today or no help

no working laptop by Thursday: fail

no SEB check and problems during test: fail

spare laptops only for emergencies during test

Solving recurrences

one more time ...

Solving recurrences

Easiest: Master theorem

caveat: not always applicable

Alternatively: Guess the solution and use the substitution method

to prove that your guess is correct.

How to guess:

- 1. expand the recursion
- 2. draw a recursion tree

Example

```
Example(A)
     //A is an array of length n
  1 n = A. length
 2 if n == 1
           return A[1]
  3
 4 else
           copy A[1: \lfloor n/2 \rfloor] to auxiliary array B[1: \lfloor n/2 \rfloor]
  5
           copy A[1: \lceil n/2 \rceil] to auxiliary array C[1: \lceil n/2 \rceil]
  6
           b = \text{Example}(B); c = \text{Example}(C)
  7
           for i = 1 to n
  8
                  for j = 1 to i
  9
                         A[i] = A[j]
 10
           return 43
 11
```

Let T(n) be the worst-case running time of Example on an array of length n.

Lines 1, 2, 3, 4, and 11 take $\Theta(1)$ time. Lines 5 and 6 take $\Theta(n)$ time. Line 7 takes $\Theta(1) + 2T(\lceil n/2 \rceil)$ time.

Lines 8 until 10 take $\sum_{i=1}^{n} \sum_{i=1}^{i} \Theta(1) = \sum_{i=1}^{n} \Theta(i) = \Theta(n^2) \text{ time.}$

If n=1 Lines 1, 2, and 3 are executed, else Lines 1, 2, and 4 until 12 are executed.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T(n/2) + \Theta(n^2) & \text{if } n > 1 \end{cases}$$

→ use master theorem ...

The master theorem

Let a and b be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n)$$

Watershed function: $n^{\log_b a}$

Then we have:

- 1. If $f(n) = O(n^{(\log_b a) \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a} \log^k n)$, for some constant $k \ge 0$, then $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$.
- 3. If $f(n) = \Omega(n^{(\log_b a) + \varepsilon})$ for some constant $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Quiz

Recurrence

Master theorem?

1.
$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n^3)$$

yes
$$T(n) = \Theta(n^3)$$

2.
$$T(n) = 4T\left(\frac{n}{2}\right) + \Theta(n)$$

yes
$$T(n) = \Theta(n^2)$$

$$3. \quad T(n) = T\left(\frac{n}{2}\right) + 1$$

yes
$$T(n) = \Theta(\log n)$$

4.
$$T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + n$$

$$T(n) = \Theta(n \log n)$$

5.
$$T(n) = 9T\left(\frac{n}{3}\right) + \Theta(n^2 \log n)$$

yes
$$T(n) = \Theta(n^2 \log^2 n)$$

6.
$$T(n) = \sqrt{n}T(\sqrt{n}) + n$$

no
$$T(n) = \Theta(n \log \log n)$$

Substitution

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \text{ or } n = 2 \\ 7T(\lfloor n/3 \rfloor) + n^2 & \text{if } n > 2 \end{cases} \qquad \begin{array}{l} \text{Claim: } T(n) = O(n^2) \\ \text{(To show: exist constants } c \text{ and } n_0 \text{ such that } \\ T(n) \leq cn^2 \text{ for all } n \geq n_0) \end{array}$$

$$\text{Proof: by induction on } n$$

$$\text{Base case } (n = 1): \qquad 1 \leq c \cdot n^2 = c \cdot 1^2 = c \text{ for } c \geq 1$$

$$\text{Base case } (n = 2): \qquad 1 \leq c \cdot n^2 = c \cdot 2^2 = 4c \text{ for } c \geq 0.25$$

$$\text{Inductive step:} \qquad \text{IH: Assume that for all } 1 \leq k < n \text{ it holds that } T(k) \leq ck^2.$$

$$\text{Then} \qquad T(n) = 7T(\lfloor n/3 \rfloor) + n^2$$

Then
$$T(n) = 7T(\lfloor n/3 \rfloor) + n^2$$

 $\leq 7 \cdot c \cdot (\lfloor n/3 \rfloor)^2 + n^2$ (by IH)
 $\leq 7/9 \cdot cn^2 + n^2$
 $= cn^2 - 2/9 \cdot cn^2 + n^2$
 $\leq cn^2$ (for $c \geq 9/2$ we have $-2/9 \cdot cn^2 + n^2 \leq 0$)

Substitution

$$T(n) = \begin{cases} 1 & \text{if } n = 1 \text{ or } n = 2 \\ 7T(\lfloor n/3 \rfloor) + n^2 & \text{if } n > 2 \end{cases}$$

Base case (n = 1): [...]

Base case (n = 2): [...]

Inductive step: [...]

Let $n_0 = 1$ and c = 9/2.

By induction it holds that $T(n) = O(n^2)$.

Claim: $T(n) = O(n^2)$

(To show: exist constants c and n_0 such that $T(n) \le cn^2$ for all $n \ge n_0$)

Proof: by induction on n

Tips

Analysis of recursive algorithms: find the recursion and solve with master theorem if possible

Analysis of loops: summations

Some standard recurrences and sums:

$$T(n) = 2T(n/2) + \Theta(n)$$
 \rightarrow $T(n) = \Theta(n \log n)$

$$\sum_{i=1}^{n} i = \frac{1}{2}n(n+1) = \Theta(n^2)$$

$$\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1) = \Theta(n^3)$$

Heaps

Event-driven simulation

Stores a set of events, processes first event (highest priority)

Supporting data structure:

- insert event
- find (and extract) event with highest priority
- change the priority of an event

Priority queue

Max-priority queue

```
abstract data type (ADT) that stores a set S of elements, each with an associated key (integer value).
```

Operations

```
Insert(S, x): inserts element x into S, that is, S \leftarrow S \cup \{x\}

Maximum(S): returns the element of S with the largest key

Extract-Max(S): removes and returns the element of S with the largest key

Increase-Key(S, x, k): gives x. key the value k condition: k is larger than the current value of x. key
```

Min-priority queue ...

	Insert	Maximum	Extract-Max	Increase-Key
sorted list				
sorted array				

(Doubly) linked list

Linked list collection of objects stored in linear order, with objects pointing to their predecessor and successor

L. head points to the first object

Object x:

- \blacksquare x. prev points to the predecessor
- \blacksquare x. next points to the successor
- \blacksquare x key, x data

Operations

■ Search(
$$L$$
, key) $O(n)$

■ Insert(
$$L, x$$
) $O(1)$

■ Delete(L, x) O(1)

$$L.$$
 head = NIL if L is empty

$$x$$
. prev = NIL if x is first

$$x.next = NIL \text{ if } x \text{ is last}$$

	Insert	Maximum	Extract-Max	Increase-Key
sorted list	$\Theta(n)$	Θ(1)	$\Theta(1)$	$\Theta(n)$
sorted array	$\Theta(n)$	Θ(1)	$\Theta(n)$?	$\Theta(n)$

Today

	Insert	Maximum	Extract-Max	Increase-Key
heap	$\Theta(\log n)$	Θ(1)	$\Theta(\log n)$	$\Theta(\log n)$

Max-heap

Heap

nearly complete binary tree, filled on all levels except possibly the lowest. (lowest level is filled from left to right)

Max-heap property: for every node i other than the root Parent(i). key $\geq i$. key

Tree terminology

Binary tree: every node has 0, 1, or 2 children

Root: top node (no parent)

Leaf: node without children

Subtree rooted at node x: all nodes below and including x

Depth of node x: length of path from root to x

Depth of tree: max. depth over all nodes

Height of node x: length of longest path from x to leaf

Height of tree: height of root

Level: set of nodes with same depth

Family tree terminology

Left/right child

Parent

Grandparent ...

Max-heap

Heap

nearly complete binary tree, filled on all levels except possibly the lowest. (lowest level is filled from left to right)

Max-heap property: for every node i other than the root Parent(i), $key \ge i$, key

Properties of a max-heap

Lemma

The largest element in a max-heap is stored at the root.

Proof:

Properties of a max-heap

Lemma

The largest element in a max-heap is stored at the root.

Proof: x root

y arbitrary node

 z_1 , z_2 , ..., z_k nodes on path between x and y

max-heap property

- \Rightarrow x. key $\geq z_1$.key $\geq \cdots \geq z_k$.key $\geq y$. key
- \rightarrow the largest element is stored at x

Storing a heap

How to store a heap?

- Tree structure?
- In an array?

Implementing a heap with an array

- A. length = length of array A
- A. heap-size = number of elements in the heap

Implementing a heap with an array

 k^{th} node on level j is stored at position $A[2^j + k - 1]$ left child of node at position i = Left(i) = 2i right child of node at position i = Right(i) = 2i + 1 parent of node at position $i = \text{Parent}(i) = \lfloor i/2 \rfloor$

Priority queue

Max-priority queue

```
abstract data type (ADT) that stores a set S of elements, each with an associated key (integer value).
```

Operations

```
Insert(S, x): inserts element x into S, that is, S = S \cup \{x\}

Maximum(S): returns the element of S with the largest key

Extract-Max(S): removes and returns the element of S with the largest key

Increase-Key(S, x, k): gives x. key the value k condition: k is larger than the current value of x. key
```

Set *S* is stored as a heap in an array *A*.

Operations: Maximum, Extract-Max, Insert, Increase-Key.

Set *S* is stored as a heap in an array *A*.

Operations: Maximum, Extract-Max, Insert, Increase-Key.

Maximum(*A*)

- 1 **if** *A*. heap-size < 1
- error "heap is empty"
- 3 return A[1]

running time: O(1)

Set *S* is stored as a heap in an array *A*.

Operations: Maximum, Extract-Max, Insert, Increase-Key.

Set *S* is stored as a heap in an array *A*.

Operations: Maximum, Extract-Max, Insert, Increase-Key.

Set *S* is stored as a heap in an array *A*.

Operations: Maximum, Extract-Max, Insert, Increase-Key.

```
Extract-Max(A)
```

```
1 if A. heap-size < 1
```

- error "heap is empty"
- 3 $\max = A[1]$
- 4 A[1] = A[A]. heap-size
- 5 A. heap-size = A. heap-size 1
- 6 Max-Heapify(A, 1)
- 7 **return** max

restore heap property

Max-Heapify

```
Max-Heapify(A, i)

// ensures that the heap whose root is stored at position i has the max-heap property

// assumes that the binary subtrees rooted at Left(i) and Right(i) are max-heaps
```

Max-Heapify

```
Max-Heapify(A, i)
    // ensures that the heap whose root is stored at position i has the max-heap property
   // assumes that the binary subtrees rooted at Left(i) and Right(i) are max-heaps
Max-Heapify(A, 1)
exchange A[1] with largest child
Max-Heapify(A, 2)
exchange A[2] with largest child
Max-Heapify(A, 5)
A[5] larger than its children \rightarrow done.
```


Max-Heapify

```
Max-Heapify(A, i)
    // ensures that the heap whose root is stored at position i has the max-heap property
    // assumes that the binary subtrees rooted at Left(i) and Right(i) are max-heaps
 1 if Left(i) \leq A. heap-size and A[Left(i)] > A[i]
        largest = Left(i)
 3 else largest = i
 4 if Right(i) \leq A. heap-size and A[Right(i)] > A[largest]
        largest = Right(i)
 5
 6 if largest \neq i
        exchange A[i] and A[largest]
        Max-Heapify(A, largest)
 8
```

running time? $O(\text{height of the subtree rooted at } i) = O(\log n)$

Set *S* is stored as a heap in an array *A*.

Operations: Maximum, Extract-Max, Insert, Increase-Key.

```
Insert(A, key)

1 A. heap-size = A. heap-size + 1

2 A[A. heap-size] = -\infty

3 Increase-Key(A, A. heap-size, key)
```

Set *S* is stored as a heap in an array *A*.

Operations: Maximum, Extract-Max, Insert, Increase-Key.

Set *S* is stored as a heap in an array *A*.

Operations: Maximum, Extract-Max, Insert, Increase-Key.

```
Increase-Key(A, i, key)

1 if key < A[i]

2 error "cannot decrease key"

3 A[i] = \text{key}

4 while i > 1 and A[\text{Parent}(i)] < A[i]

5 exchange A[\text{Parent}(i)] \leftrightarrow A[i]

6 i = \text{Parent}(i)
```


Building a heap

```
Build-Max-Heap(A)
   // Input: array A[1:n] of numbers
   // Output: array A[1:n] with the same numbers, but rearranged, such that the
   // max-heap property holds
 1 A. heap-size = A. length
 2 for i = A. length downto 1
                                            starting at |A. length/2| is sufficient
        Max-Heapify(A, i)
 3
Loop Invariant
   P(i): nodes i + 1, ..., n are each the root of a max-heap
Maintenance
   P(i) holds before line 3 is executed,
   P(i-1) holds afterwards
```

Building a heap

Build-Max-Heap(A)

- 1 A.heap-size = A.length
- 2 **for** i = A. length **downto** 1
- 3 Max-Heapify(A, i)

 \longrightarrow O(height of node i)

height of node *i*# edges longest simple downward
path from *i* to a leaf.

$$\sum_{i} O(1 + \text{height of } i)$$

$$= \sum_{0 \le h \le \log n} (\# \text{ nodes of height } h) \cdot O(1 + h)$$

$$= \sum_{0 \le h \le \log n} \left(\frac{n}{2^{h+1}}\right) \cdot O(1 + h)$$

$$= O(n) \cdot \sum_{0 \le h \le \log n} \left(\frac{h}{2^{h+1}}\right)$$

$$= O(n)$$

The sorting problem

```
Input: a sequence of n numbers A = \langle a_1, a_2, ..., a_n \rangle
Output: a permutation of the input such that \langle a_{i1} \leq a_{i2} \leq \cdots \leq a_{in} \rangle
```

Important properties of sorting algorithms:

running time: how fast is the algorithm in the worst case

in place: only a constant number of input elements are

ever stored outside the input array

Sorting with a heap: Heapsort

Running time: $O(n \log n)$

```
HeapSort(A)
 1 Build-Max-Heap(A)
 2 for i = A. length downto 2
        exchange A[1] \leftrightarrow A[i]
 3
        A. heap-size = A. heap-size - 1
 4
        Max-Heapify(A, 1)
 5
Loop invariant
   P(i): A[i+1:n] is sorted and contains the n-i largest elements,
         A[1:i] is a max-heap on the remaining elements
Maintenance
   P(i) holds before lines 3-5 are executed,
   P(i-1) holds afterwards
```

Sorting algorithms

	worst case running time	in place
InsertionSort	$\Theta(n^2)$	yes
MergeSort	$\Theta(n \log n)$	no
HeapSort	$\Theta(n \log n)$	yes