Algebraic Fixity

Raffaele Rainone

R.Rainone@soton.ac.uk

Introduction

Let G be a finite permutation group acting on a set Ω , for every g in G we define the set of fixed point to be $C_{\Omega}(g) = \{\omega \in \Omega \mid g.\omega = \omega\}$. We call **fixity** of G the maximal order of all the sets of fixed points, i.e. $\operatorname{Fix}(G) = \max_{g \in G^{\sharp}} \{|C_{\Omega}(g)|\}$. We define the **fixed point ratio** of g in G to be $\operatorname{fpr}(g) = |C_{\Omega}(g)|/|\Omega|$. If the action of G is transitive it holds, for every g in G, $\operatorname{fpr}(g) = |x^G \cap H|/|x^G|$, where H is the stabilizer in G of some element $\omega \in \Omega$.

Now, let G be an algebraic group acting on a variety Ω , then the set $C_{\Omega}(x)$ defined above is indeed a subvariety of G. We define **fixity** of G the maximal of $\dim C_{\Omega}(x)$, and we denote it as $\operatorname{Fix}(G)$ or $\operatorname{Fix}(G,\Omega)$ if we want to stress the variety on which G is acting. And the natural analogue of the fixed point ratio for algebraic group is the ratio $f_{\Omega}(x) = \dim C_{\Omega}(x)/\dim \Omega$. If Λ is a subset of G^{\sharp} we define the **relative** Λ -**fixity** to be $\operatorname{Fix}_{\Lambda}(G,\Omega)$. For instance we can consider Λ to be one of the following set: $\mathcal I$ the involutions, $\mathcal S$ the semisimple elements, $\mathcal S_r$ the semisimple elements of prime order r, $\mathcal U$ the unipotent elements, $\mathcal P$ the prime order elements.

A general property characterize the primitive varieties as the cosets of a maximal subgroups of G with the standard action. Therefore G acts on $\Omega = G/H$, for H a maximal subgroup. And for every x in G we have

$$\dim C_{\Omega}(x) = \dim \Omega - \dim x^G + \dim(x^G \cap H) \tag{1}$$

In [1] Burness provided a lower bound for the relative \mathcal{I} -fixity proving the following.

Theorem 1. Let G be a simple algebraic group of adjoint type, over an algebraically closed field K of characteristic $p \geq 0$. Let H be either a maximal closed subgroup of G or a finite subgroup of G, and let G act on the coset variety $\Omega = G/H$. Let h denote the Coxeter number of G. Then there exists an involution $t \in G$ such that $f_{\Omega}(t) \geq \frac{1}{2} - \frac{1}{2h+1}$ unless finitely many known exceptions.

The aim of the project is to provide upper and lower bound to the ratio $f_{\Omega}(g)$ when G is a simple algebraic group over an algebraically closed field of characteristic $p \geq 0$ and all primitive G-varieties $\Omega = G/H$, for g in a set Λ defined above. Eventually we would like to use the results obtained to study a similar problem for finite simple groups.

Preliminaries

The action of a group G on a set Ω is primitive if, and only if, the stabilizer of $\omega \in \Omega$ is a maximal subgroup. Moreover the action of G on Ω is equivalent to the action of G on the cosets of G_{ω} . Therefore all the primitive variety for an algebraic group are $\Omega = G/H$, for H a maximal subgroup.

Let $G = \operatorname{GL}(V)$ where V is a vector space on an algebraically closed field K. Liebeck and Seitz in [3] define six families $\mathcal{C}_1, \ldots, \mathcal{C}_6$ of geometric subgroup of G, determined by the geometric action of the subgroup on V, they write $\mathcal{C}(G) = \mathcal{C}_1 \cup \ldots \cup \mathcal{C}_6$ and thanks to the following they provide a classification of the maximal subgroups of the classical groups.

Theorem 2. Let G = Cl(V) a classical group. Let H be a subgroup of G. Then either H is contained in a member of C(G) or $H \in S$, where S is the collection of almost simple, irreducibly embedded subgroup of G.

For example the members of C_2 are the **stabilizers of orthogonal decompositions** of V, i.e. if H belongs to C_2 then H fixes a decomposition of V in equidimensional subspaces $V = V_1 \oplus \ldots \oplus V_t$. Therefore $H = \operatorname{GL}_{n/t}(K) \wr S_t$, we write H° for the connected component $\operatorname{GL}_{n/t}(K) \times \ldots \times \operatorname{GL}_{n/t}(K)$ (t factors) of H. In $G = \operatorname{GL}(V)$ acting on $\Omega = G/H$, where H is in C_2 we have

$$\dim \Omega = \dim G - \dim H = n^2(1 - 1/t)$$

Given an element x in G it is known its *Jordan-Chevallay* decomposition $x = x_s x_u$, where x_s is a **semisimple** element and x_u is a **unipotent** element. And we know that the conjugacy classes of x_s and x_u are determined by the number of *Jordan blocks*. Where for x_u of order r we write $[J_r^{a_r}, \ldots, J_1^{a_1}]$ to mean that it has a_i blocks J_i along the diagonal, the same for $x_s = [I_{a_0}, \omega I_{a_1}, \ldots, \omega^{r-1} I_{a_{r-1}}]$, where ω is a primitive r-th root of unity.

From (1) we need to know how to compute dimension of conjugacy classes, it is well known how to compute $\dim x^G$ for unipotent or semisimple element in a classical group. In general, it is hard to compute the dimension of $x^G \cap H$ since it splits in finitely many H-conjugacy classes, i.e.

$$x^G \cap H = x_1^H \cup \ldots \cup x_l^H$$

And $\dim(x^G \cap H) = \max_i \{\dim(x_i^H)\}$. For semisimple element we proved the following

Theorem 3. Let x be a semisimple element of prime order r, in H° . Say $x = [I_{a_0}, \omega I_{a_1}, \dots, \omega^{r-1} I_{a_{r-1}}]$. Then

$$\dim(x^G \cap H) = \frac{n^2}{t} - n + \sum_{i=0}^{r-1} t \left\lfloor \frac{a_i}{t} \right\rfloor^2 + (t - 2a_i) \left\lfloor \frac{a_i}{t} \right\rfloor$$
 (2)

Similarly one can obtain good bound on $\dim(x^G \cap H)$ when x is unipotent.

Main result

Theorem 4. Let t=2, n>2 and $\Lambda=\mathcal{U},\mathcal{S},\mathcal{S}_r,\mathcal{I}\subseteq G^{\sharp}$. Then for $x\in\Lambda\cap H$ we have $f_{\Lambda}\leq f_{\Omega}(x)\leq g_{\Lambda}$, where $g_{\Lambda}=1-\frac{2}{n}$. The values of f_{Λ} are recorded in the following table. Moreover the elements x and y in G such that $f_{\Omega}(x)=f_{\Lambda}$ and $f_{\Omega}(x)=g_{\Lambda}$ have been determined.

Λ p, r	f_{Λ}	x	y
$\mathcal{U} p \geq \frac{n}{2}$	$\frac{2}{n}$	$[J_{n/2},z]$	$[J_2, J_1^{n-2}]$
$p < \frac{n}{2}$	$rac{1}{p}$	$[J_p^m,z]$	
S -	0	$[1,\omega,\ldots,\omega^{n-1}]$	$[I_{n-1},\omega]$
$S_r \ r \ge n$	0	$[1,\omega,\ldots,\omega^{n-1}]$	$[I_{n-1},\omega]$
r < n	-	•	
\mathcal{I} –	$\begin{cases} \frac{1}{2} - \frac{2}{n^2} & n \equiv 2(4) \\ \frac{1}{2} & n \equiv 0(4) \end{cases}$	$x = [-I_{n/2}, I_{n/2}]$	$[I_{n-1}, -1]$

In the general case we got bounds on $\dim(x^G\cap H^\circ)$ that give bounds on the ratio

$$f_{\Omega}^{\circ}(x) = \frac{\dim \Omega - \dim x^{G} + \dim(x^{G} \cap H^{\circ})}{\dim \Omega}$$

We got $f_{\Lambda} \leq f_{\Omega}^{\circ}(x) \leq g_{\Lambda}$, where $g_{\Lambda} = 1 - 2/n$, and we call x and y the elements for which $f_{\Omega}^{\circ}(x) = f_{\Lambda}$, $f_{\Omega}^{\circ}(y) = g_{\Lambda}$.

 \spadesuit The lower bound for $f_{\Omega}(\cdot)$ for semisimple element of prime order r < n is given by the element

$$x = [I_{\lfloor \frac{n}{r} \rfloor + \epsilon_0}, \omega I_{\lfloor \frac{n}{r} \rfloor + \epsilon_1}, \dots, \omega^{r-1} I_{\lfloor \frac{n}{r} \rfloor + \epsilon_{r-1}}]$$

where $\epsilon_i \in \{0,1\}$ and $\sum_i \epsilon_i = n - r |\frac{n}{r}|$.

References

- [1] Burness T. C., *Fixed point spaces in primitive actions of simple algebraic groups*, J. of Algebra, vol. **265**, 2003, pg. 744–771
- [2] Burness T. C., *Fixed point spaces in actions of classical algebraic groups*, J. Group Theory, vol. 7, 2004, pg. 311–346
- [3] Liebeck M. W., Seitz G. M., *On the subgroup structure of classical groups*, Invent. Math., vol. **134** 1998, pg. 427–453
- [4] Liebeck M. W., Shalev A., *Simple groups, permutation groups, and probabiltiy*, J. of the American Mathematical Society, vol **12**, 1999, pg 497–520
- [5] Saxl J., Shalev A., *The fixity of permutation groups*, J. of Algebra, vol. **174**, 1995, pg. 1122–1140