Universidade de Pernambuco - UPE Escola Politécnica de Pernambuco - POLI

Disciplina: Teoria da Informação - Prof $^{\underline{a}}$ Verusca Severo - 2020.1 $1^{\underline{o}}$ Lista de Exercícios

-Só serão aceitas as respostas com as devidas justificativas e/ou cálculos-

1. Considere o experimento aleatório de jogar dois dados de seis faces. Seja D_1 o número de pontos (número de cada face) obtidos no dado 1 e D_2 o número de pontos (número de cada face) obtidos no dado 2. Considere os dois seguintes eventos, A e B, em que:

$$A = \{(D_1, D_2)|D_1 + D_2 = 10\}$$
 e $B = \{(D_1, D_2)|D_1 > D_2\}$

Determine:

- (a) P(A).
- **(b)** P(B).
- (c) P(A|B).
- (d) P(B|A).
- 2. O histograma apresentado na Figura 1 apresenta a probabilidade de que uma pessoa, escolhida ao acaso em um grupo de mulheres com idades de 25 a 35 anos, tenha um certo número de filhos.

Figura 1: Quesito 2 - Lista de Exercícios 1

Responda:

- (a) Se uma mulher é escolhida ao acaso neste grupo, é mais provável que ela tenha quantos filhos? Qual é a probabilidade correspondente?
- (b) Se uma mãe é escolhida ao acaso neste grupo, é mais provável que ela tenha quantos filhos? Qual é a probabilidade correspondente?
- (c) Suponhamos que, dentre todos os filhos das mulheres da amostra, um seja escolhido ao acaso. Qual é a probabilidade de que ele seja filho único?

3. Seja a distribuição conjunta P(X = x, Y = y) das variáveis aleatórias X e Y apresentada na Tabela 1 (nas células em destaque na cor azul, com algumas entradas faltando).

X Y	0	1	2	3	P(X=x)
0		3/64	1/32		5/16
1	1/16	1/16	0		
2	1/64	11/64		1/64	5/16
3	5/64		3/64	1/32	
P(Y=y)		5/16		1/4	1

Table 1: Quesito 3 - Lista de Exercícios 1

- (a) Complete a tabela.
- (b) Obtenha as probabilidades marginais de X, ou seja, P(X = x), e de Y, ou seja, P(Y = y).
- (c) X e Y são independentes? Justifique.
- **4.** Seja X uma variável aleatória discreta que modela a saída de uma fonte de informação. O símbolos que a fonte emitem compõem o alfabeto da fonte, ou seja, $X = \{x_1, x_2, \ldots, x_K\}$, com probabilidades $P(X = x_i) = p_i$, para $i = 1, 2, \ldots, K$, que satisfaz a igualdade $\sum_{i=1}^K p_i = 1$. A quantidade de informação H(X), segundo Shannon, produzida pela fonte está associada à incerteza ou surpresa do símbolos que fonte emite. Responda:
- (a) Qual a condição necessária para que $H(X) = H(X)_{\text{max}}$ (entropia máxima)?
- (b) Determine $H(X)_{\text{max}}$.
- 5. Seja Z uma variável aleatória discreta que possui M possíveis valores, ou seja, $Z = \{z_1, z_2, \dots, z_M\}$, com distribuição de probabilidade $P(Z = z_j)$, com $j = 1, 2, \dots, M$. Demonstre que $H(Z) \ge 0$.
- **6.** Seja S uma fonte discreta com alfabeto $S=\{s_0,s_1,s_2,s_3,s_4\}$ e com distribuição de probabilidades $p_{s_0}=p_{s_1}=0,3,\ p_{s_2}=0,2$ e $p_{s_3}=p_{s_4}=0,1$. Determine a entropia desta fonte.
- 7. Suponha que o vetor aleatório $[X_1, X_2, X_3]$ assume os valores [0, 0, 0], [0, 1, 0], [1, 0, 0] e [0, 0, 1], cada um deles com probabilidade igual a $p = \frac{1}{4}$. Calcule:
- (a) $H(X_1)$.
- **(b)** $H(X_2)$.
- (c) $H(X_3)$.
- 8. Considere as variáveis aleatórias binárias, X e Y, ou seja, $X=\{0,1\}$ e $Y=\{0,1\}$, tais que $P(X=1)=0,5,\ P(Y=1/X=0)=0,2$ e P(Y=1/X=1)=0,5. Calcule:
- (a) H(X).
- **(b)** H(Y).