Samlefil for alle data til prøveeksamen

$Filen~1A/Oppgave1AFigur_A.png$

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png

Filen 1B.txt Luminositeten øker med en faktor 1.90e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjernas luminositet er halvparten av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE B) Stjerna har en overflatetemperatur på 10000K. Luminositeten er betydelig mindre enn solas luminositet.

STJERNE C) stjernas luminositet er 3 ganger solas luminositet og den fusjonerer

hydrogen til helium i kjernen

STJERNE D) kjernen består av helium og er degenerert

STJERNE E) stjerna fusjonerer helium i kjernen

Filen 1H.png

Figure 8: Figur fra filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 8.213e+06 kg/m3̂ og temperatur 16 millioner K.

Kjernen i stjerne B har massetet
thet 2.400e+06 kg/m3 og temperatur 19 millioner K.

Kjernen i stjerne C har massetet
thet 6.743e+06 kg/m3̂ og temperatur 39 millioner K.

Kjernen i stjerne D har massetet
thet 4.285e+06 kg/m3̂ og temperatur 33 millioner K.

Kjernen i stjerne E har massetet
thet 6.292e+06 kg/m3̂ og temperatur 33 millioner K.

Filen 1K/1K.txt

Påstand 1: den absolutte størrelseklassen (magnitude) med UV filter er betydelig større enn den absolutte størrelseklassen i blått filter

Påstand 2: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 3: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig mindre enn den tilsynelatende størrelseklassen i blått filter

Påstand 4: denne har den største tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Figur D tilsynelatende størrelseklasse 10.53

Filen 1L/1L_Figure_E.png

Figure 17: Figur fra filen 1L/1L_Figure_E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 1.412e+05 kg/m3̂ og temperatur 33.99 millioner K.

Kjernen i stjerne B har massetet
thet 2.380e+05 kg/m3̂ og temperatur 31.48 millioner K.

Kjernen i stjerne C har massetet
thet 2.468e+05 kg/m3̂ og temperatur 19.34

millioner K.

Kjernen i stjerne D har massetet
thet 1.036e+05 kg/m3̂ og temperatur 21.95 millioner K.

Kjernen i stjerne E har massetet
thet 1.300e+05 kg/m3̂ og temperatur 29.01 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_F$ igur_2_.png

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_Figur_4$..png

0.93
0.88
0.88
0.73
0.68
0.2574
0.2584
0.2594
0.2604
0.2614
0.2624
0.2634
0.2634
0.2644

Bølgelengde (nm) minus 656nm

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

0.00 + 0.00

4.46

8.93

13.39 17.86 22.32 26.78 31.25

x-posisjon (10⁻⁶ buesekunder)

35.71 40.18

Figure 25: Figur fra filen $2B/2B_Figur_1.png$

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

4.46

8.93

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 4.22 buesekunder i løpet av et millisekund. 40.18 35.71 y-posisjon (10⁻⁶ buesekunder) 31.25 26.78 22.32 17.86 13.39 8.93 4.46 0.00

13.39 17.86 22.32 26.78 31.25

x-posisjon (10⁻⁶ buesekunder)

35.71 40.18

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Filen 3A.txt

Din destinasjon er Tromsø som ligger i en avstand av 1400 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 97.07760 km/t.

Filen 3E.txt

Tog1 veier 51100.00000 kg og tog2 veier 65700.00000 kg.

Filen 4A.png

8.40 8.20 Tilsynelatende størrelsklasse mv 8.00 7.80 7.60 7.40 7.20 5 10 15 20 30 35 ó 25 40 Observasjonstid (dager)

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 460 km/s.

Filen 4E.txt

Massen til gassklumpene er 4200000.00 kg.

Hastigheten til G1 i x-retning er 37200.00 km/s.

Hastigheten til G2 i x-retning er 43380.00 km/s.

Filen 4G.txt

Massen til stjerna er 49.25 solmasser og radien er 1.47 solradier.