Francisco Edson Birimba Brito
Gisele Ribeiro Gomes
Gabriel Marques de Silva Abreu
Matheus Paolo dos Anjos Mourão
Paulo Chaves dos Santos Júnior

Relatório X

Rio Branco, Acre

Francisco Edson Birimba Brito
Gisele Ribeiro Gomes
Gabriel Marques de Silva Abreu
Matheus Paolo dos Anjos Mourão
Paulo Chaves dos Santos Júnior

Relatório X

Relatório de Laboratório de Eletrônica I, entregue para a composição parcial da nota da N1. Orientador : Elmer Osman Hancco

Universidade Federal do Acre - UFAC Bacharelado em Engenharia Elétrica Laboratório de Eletrônica I

Rio Branco, Acre 2017

Resumo

A prática presente baseia-se na montagem dos circuitos com o transistor 2N3391, sendo simulado com a utilização do software MULTISIM, aplicado um gerador de funções com uma tensão de 1,0mV e frequência 1kHz e com o ganho gerado, analisamos a relação com a frequência. Utilizando o diagrama de Bode, sendo uma forma de caracterizar sinais no domínio da frequência. E apresentação de conceitos de filtros, apresentando um exemplo prático desta aplicação.

Palavras-chaves:bode plots, frequência, amplificador

Abstract

The present practice is based on the assembly of the circuits with the transistor 2N3391, being simulated using the software MULTISIM, a manager of functions with a voltage of 1,0mV and frequency 1kHz and with the gain generated, we analyzed the relationship with frequency. Using the Bode diagram, it is a way of characterizing signals in the frequency domain. And presentation of filter concepts, presenting a practical example of this application.

Keyword: bode plots, frequency, amplifier

Sumário

	Introdução
1	DESENVOLVIMENTO (
1.1	Fundamentação Teórica
1.2	Procedimentos
1.2.1	Amplificador 1° estágio
1.2.2	Amplificador 2° estágio
1.2.3	Amplificador com dois estágios
1.2.4	Analise
1.3	Resultados
1.3.1	Amplificador 1° estágio
1.3.2	Amplificador 2° estágio
1.3.3	Amplificador com dois estágios
2	CONCLUSÃO
	REFERÊNCIAS 18

Introdução

Neste relatório temos como objetivo a familiarização a resposta em frequência e o uso do diagrama de bode, onde trabalhamos no 1° e 2° estágio e depois com os dois ao mesmo tempo do amplificador, sendo usado o transistor 2N3391. Analisando o ganho do amplificador e depois relacionando com a frequência. Apresentando também conceitos de filtro passa baixa, passa alta, rejeita faixa e passa faixa.

1 Desenvolvimento

1.1 Fundamentação Teórica

- 1. Diagrama de bode
- 2. Resposta em frequência
- 3. Explicar um filtro passa baixa, passa alta, rejeita faixa e passa faixa (um exemplo prático desta aplicação) \dots

1.2 Procedimentos

1.2.1 Amplificador 1° estágio

Figura 1 – Circuito elétrico do 1° estágio do amplificador

- 1. Dado o circuito da figura 1, aplicar o gerador de funções com uma tensão 1,0mV e frequência de 1kHz;
- 2. Medir o ganho com o osciloscópio. Para tanto medir a tensão de saída V_s e de entrada V_e .
- 3. Usar o Bode Plotter (amplitude) e medir as frequências de corte e o ganho da banda passante em dB A $db = 20 \log(V_s/V_e)$;
- 4. Usar o Bode Plotter (fase) e medir os ângulos nas frequências importantes; Anotar todos os dados obtidos na tabela 1.

1.2.2 Amplificador 2° estágio

Figura 2 – Circuito elétrico do 2° estágio do amplificador

- 1. Dado o circuito figura 2, aplicar o gerador de funções com uma tensão 1,0mV e frequência de 1kHz;
- 2. Medir o ganho com o osciloscópio. Para tanto medir a tensão de saída V_s e de entrada V_e .
- 3. Usar o Bode Plotter (amplitude) e medir as frequências de corte e o ganho da banda passante em dB;
- 4. Usar o Bode Plotter (fase) e medir os ângulos nas frequências importantes; Anotar todos os dados obtidos na tabela 1.

1.2.3 Amplificador com dois estágios

Figura 3 – Circuito elétrico do amplificador com dois estágios

Fonte: Produzido pelos autores

- 1. Dado o circuito figura 3, aplicar o gerador de funções com uma tensão 1,0mV e frequência de 1kHz;
- 2. Medir o ganho com o osciloscópio. Para tanto medir a tensão de saída V_s e de entrada V_e .
- 3. Usar o Bode Plotter (amplitude) e medir as frequências de corte e o ganho da banda passante em dB;

1.2.4 Analise

- 1. Analise os resultados apontados na Tabela 2 e explique:
 - a) Por que a frequência de corte inferior (fr_1) para o circuito 1 é maior que para o circuito 2?
 - b) Por que o ganho, para a faixa de frequência médias, do circuito 1 é bem maior do que o circuito 2?

Tabela 1 – Valores obtidos dos circuitos

		Circuito 1	Circuito 2	Circuito 3
	$V_e \ (V_{pp})$			
Osciloscópio	V_s (V_{pp})			
	$A_V (V_s/V_e)$			
	A_V em frequências médias (dB)			
Bode Plotter	frequência 1 a $(-3dB)$			
	frequência 2 a $(-3dB)$			

1.3 Resultados

Ao montar os circuitos 1,2 e 3 no software MULTISIM, conseguimos obter os seguinte dados preenchidos na Tabela 2:

Tabela 2 – Valores obtidos dos circuitos

		Circuito 1	Circuito 2	Circuito 3
Osciloscópio	$V_e (V_{pp})$			
	$V_s (V_{pp})$			
	$A_V (V_s/V_e)$			
	A_V em frequências médias (dB)			
Bode Plotter	frequência 1 a $(-3dB)$			
	frequência 2 a $(-3dB)$			

Fonte: Produzido pelos autores

1.3.1 Amplificador 1° estágio

Figura 4 – Imagem do osciloscópio do Circuito 1

Fonte: Produzido pelos autores

Para uma melhor visualização, a escala dos dois gráficos estão diferentes.

Figura 5 – Bode Plotter do Circuito 1

Figura 6 – Bode Plotter do Circuito 1

Fonte: Produzido pelos autores

Tabela 3 – Valores obtidos do circuito 1

		Circuito 1
	$V_e (V_{pp})$	2mV
Osciloscópio	$V_s (V_{pp})$	55, 1mV
	$A_V (V_s/V_e)$	27,55
	A_V em frequências médias (dB)	28,8
Bode Plotter	frequência 1 a $(-3dB)$	454,523mHz
	frequência 2 a $(-3dB)$	7,256MHz

1.3.2 Amplificador 2° estágio

Figura 7 – Imagem do osciloscópio do Circuito 2

Fonte: Produzido pelos autores

Para uma melhor visualização, a escala dos dois gráficos estão diferentes.

Figura 8 – Bode Plotter do Circuito $2\,$

Figura 9 – Bode Plotter do Circuito 2

Tabela 4 – Valores obtidos do circuito 2

		Circuito 1
	$V_e (V_{pp})$	2mV
Osciloscópio	$V_s \ (V_{pp})$	4,81mV
	$A_V (V_s/V_e)$	2,405
	A_V em frequências médias (dB)	7,62
Bode Plotter	frequência 1 a $(-3dB)$	$\boxed{435,032mHz}$
	frequência 2 a $(-3dB)$	5,138MHz

1.3.3 Amplificador com dois estágios

Figura 10 – Imagem do osciloscópio do Circuito 3

Fonte: Produzido pelos autores

Para uma melhor visualização, a escala dos dois gráficos estão diferentes.

Figura 11 – Bode Plotter do Circuito 3

Figura 12 – Bode Plotter do Circuito 3

Tabela 5 – Valores obtidos do circuito 3

		Circuito 1
	$V_e (V_{pp})$	2mV
Osciloscópio	$V_s \ (V_{pp})$	4,81mV
	$A_V (V_s/V_e)$	2,405
	A_V em frequências médias (dB)	7,62
Bode Plotter	frequência 1 a $(-3dB)$	$\boxed{435,032mHz}$
	frequência 2 a $(-3dB)$	5,138MHz

2 Conclusão

A prática presente baseia-se na montagem e obtenção de dados de um circuito amplificador com polarização de base comum. A realização de todo processo de experimentação deste relatório foi relativamente complexo, após a montagem, a obtenção de todos os dados necessários eram de fácil intuição. Quanto aos conceitos e conhecimentos demandados durante a execução e resolução das questões teóricos, todos são compatíveis com os vistos durante as aulas de eletrônica I.

Referências