Proposition 1 (1.1). $(\delta_{x_n} \implies \delta_x) \iff x_n \to x$

Proposition 2 (1.2). $\frac{1}{n}\sum_{1}^{n}\delta_{k/n} \implies \lambda$, λ Lebesgue measure on [0,1].

Proposition 3 (1.3). If $X_n \to X$ a.s., then $X_n \Longrightarrow X$.

If $X_n \xrightarrow{\mathbb{P}} X$, then $X_n \Longrightarrow X$.

If $X_n \implies c$, then $X_n \stackrel{\mathbb{P}}{\to} c$.

Proposition 4 (1.7). If $np_n \to \lambda$, then $Bin(p_n, n) \Longrightarrow Poiss(\lambda)$.

Proposition 5 (1.12). $\mathcal{N}(a_n, \sigma_n^2) \implies \mathcal{N}(a, \sigma^2)$ iff $a_n \to a$ and $\sigma_n^2 \to \sigma^2$.

Proposition 6 (2.1). Let X have density and $a_n, a \ge 0$, then $a_nX + b_n \implies aX + b$ iff $a_n \to a$ and $b_n \to b$.

Proposition 7 (2.2). If f continuous, $X_n \implies X$, then $f(X_n) \implies f(X)$.

Theorem 8 (Scheffe; problem 2.4). If $g_n \to g$ a.s., then $\mu_n \implies \mu$.

Proposition 9 (2.7). $X_n \implies X$, X has continuous distribution, then $F_{X_n} \rightrightarrows F_X$.

Proposition 10 (3.4). Convex combinations of characteristic functions are characteristic functions.

Proposition 11 (3.7). If φ_X has second derivative in 0, then $\mathbb{E}X^2 < \infty$.

Proposition 12 (5.9). If $X_n \implies X, Y_n \implies c$, then $X_n + Y_n \implies c + X$ and $X_n Y_n \implies cX$.

Proposition 13 (6.5). X_1, X_2, \ldots iid, $\mathbb{E}X_1 = 0$, $\operatorname{Var}X_1 = 1$, (a_n) bounded sequence, $s_n = \sqrt{a_1^2 + \ldots + a_n^2} \to \infty$, then $s_n^{-1}(a_1X_1 + \ldots + a_nX_n) \Longrightarrow \mathcal{N}(0, 1)$.

Proposition 14 (6.7). $X \sim \mathcal{N}(a, B)$ has density iff B is nondegenerate and then $g_X(x) = \frac{\sqrt{\det C}}{(2\pi)^{d/2}} \exp\left(\frac{\langle C(x-a), x-a \rangle}{2}\right)$ for $C = B^{-1}$.

Proposition 15 (7.6). X, Y independent, f Borel function, $\mathbb{E}|f(X,Y)| < \infty$, then $\mathbb{E}(f(X,Y)|Y) = g(Y)$ a.s. where $g(y) = \mathbb{E}(f(X,y))$.

Proposition 16 (7.7). X, Y integrable iid, then $\mathbb{E}(X|X+Y) = \mathbb{E}(Y|X+Y) = \frac{1}{2}(X+Y)$.

Proposition 17 (8.1). τ, σ are stopping times for (\mathcal{F}_n) . Then $\tau + \sigma$ is too. Notice $\sigma = 1$ is a stopping time, so $\tau + 1$ is too. Notice $\tau - 1$ in not a stopping time in general.

Proposition 18 (8.2). Let X_n be (\mathcal{F}_n) -adapted, B a borel set. Then $\tau_1 = \inf\{n : X_n \in B\}$ is a stopping time. And $\tau_k = \inf\{n > \tau_{k-1} : X_n \in B\}$ is also.

Proposition 19 (8.3). τ, σ stopping times with respect to (\mathcal{F}_n) , then $\{\tau < \sigma\}, \{\tau \leq \sigma\}, \{\tau = \sigma\} \in \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma} \text{ and } \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma} = \mathcal{F}_{\tau \wedge \sigma}$.

Proposition 20 (8.5). X_1, X_2, \ldots iid, $\mathbb{E}X_1 = 0, \operatorname{Var}X_1 < \infty, S_n = X_1 + \ldots + X_n$. Then $S_n, S_n^2 - \operatorname{Var}(S_n)$ are martingales with respect to the filtration generated by (X_n) .

Proposition 21 (9.1). Let X_n be a martingale.

Then $|X_n|^p$ for $p \ge 1$ is a submartingale.

And $X_n \wedge a$ is a supermartingale.

And $X_n \vee a$ is a submartingale.

Proposition 22 (normal distribution). $X \sim \mathcal{N}(\mu, \sigma^2)$

$$\mathbb{E}X = \mu \qquad \text{Var}X = \sigma^2 \qquad g(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad \varphi(t) = e^{i\mu t - \frac{1}{2}\sigma^2 t^2}$$

Proposition 23 (binomial distribution). $X \sim Bin(n, p)$

$$\mathbb{E}X = pn \qquad \text{Var}X = np(1-p) \qquad g(k) = \binom{n}{k} p^k (1-p)^{n-k} \qquad \varphi(t) = (1-p+pe^{it})^n$$

Proposition 24 (geometric distribution – 1st success). $X \sim \text{Geom}(p)$

$$\mathbb{E}X = \frac{1}{p}$$
 $\operatorname{Var}X = \frac{1-p}{p^2}$ $g(k) = (1-p)^{k-1}p$ $\varphi(t) = \frac{pe^{it}}{1-(1-p)e^{it}}$

Proposition 25 (Poisson distribution). $X \sim \text{Poiss}(\lambda)$

$$\mathbb{E}X = \lambda$$
 $\operatorname{Var}X = \lambda$ $g(x) = \frac{\lambda^k}{k!}e^{-\lambda}$ $\varphi(t) = e^{\lambda(e^{it}-1)}$

Proposition 26 (exponential distribution). $X \sim \text{Exp}(\lambda)$

$$\mathbb{E}X = \frac{1}{\lambda}$$
 $\operatorname{Var}X = \frac{1}{\lambda^2}$ $g(x) = \lambda e^{-\lambda x}$ $\varphi(t) = \left(1 - \frac{it}{\lambda}\right)^{-1} = \frac{\lambda}{\lambda - it}$

Proposition 27 (Cauchy distribution). $X \sim \text{Cauchy}(h)$ Not integrable!

$$g(x) = \frac{h}{\pi(h^2 + x^2)} \qquad \varphi(t) = e^{-h|t|}$$