

PRESSURE AND FLOW EQUATIONS

Q = Flow in gpm	$Q = 29.92 \times d^2 \times P^{1/2} \times Cd$
V = Velocity in ft/sec	$V = 12.186 \text{ x P}^{1/2} = Cd \text{ x } .4085 \text{ x Q}/d^2$
P = Pressure in psi	$P = .00112 \times Q^2/(d^4 \times Cd^2)$
Hp = Horsepower	$Hp = .0174 \text{ x } d^2 \text{ x } P^{3/2} \text{ x } Cd, \approx P \text{ x } Q/1714$
Cv = Flow Coefficient	$Cv = Q/\Delta P^{1/2}$, = 53 x (D2.5/L ^{1/2})
$\Delta P = Pressure Drop$	$\Delta P = (Q/Cv)^2$
F = Thrust in lb	$F = \Pi/2 \times d^2 \times P \times Cd$, = .052 x $P^{1/2} \times Q$, \approx .0018 x $(Q/D)^2 \times Cd$
ΔT = Temp Change °F	ΔT =ΔP/337.6

For all equations:

- L = Tube length in feet
- D = Tube ID in inches
- d = Orifice diameter in inches
- Cd = Discharge Coefficient
 - Cd = 0.90 for long cone orifice
 - ∘ Cd = 0.70 for drilled steel orifice
 - Cd = 0.65 for sapphire orifice