Mobile Security – LTE (cont.)

Network Security - Lecture 8

Ruxandra F. Olimid

Faculty of Mathematics and Computer Science, University of Bucharest

*slides adapted from the course TTM4137 thought at NTNU

Outline

- UE Identification
- EPS AKA
- Key hierarchy (again)
- Cryptographical aspects
- AS / NAS Protection

UE Identification

- Similar to identification in GSM and UMTS
 - · IMSI
 - IMEI, IMEI SV
- **GUTI** (Global Unique Temporary UE Identity), allocated to provide user identity confidentiality
 - Similar to TMSI in GSM
- C-RNTI (Cell Radio Network Temporary Identifier) with security role in handover preparation

UE Identification

- MME assigns a GUTI to the UE in Attach Accept or Tracking Area Update Accept messages
- MME can also assign GUTI in a separate GUTI Reallocation procedure

GUTI (Global Unique Temporary UE Identity)

Identifies the MME that allocated the GUTI

Identifies the UE within the MME

EPS AKA

SN id: Serving Network Identity

AV: Authentication Vector AUTN: Authentication Token

RES: Response

XRES: Expencted Response

CK: Ciphering Key
IK: Integrity Key

ASME: Access Security
Management Entity

EPS AKA – Network side

- The recommendation is to send a single AV at a time (not more)...
 ... because the need to request fresh AV is reduced due to the existence of the K_{ASME}, which is not exposed as the CK and IK were exposed in UMTS
- Precomputed AV are not longer used when the UE moves to another network...
 ... because the SN id is input to the KDF
- Each AV is used only once
- CK and IK do not leave the HSS
- Operator specific: if AK=0, then AK XOR SQN = SQN (if the operator decides no need for concealment of SQN is required)

EPS AKA – Network side

UMTS AV:

(RAND, XRES, CK, IK, AUTN)

EPS AV:

(RAND, XRES, K_{ASME}, AUTN)

AMF: Authentication

Management Field

AK: Anonymity Key

[Source: D.Forsberg et al. – LTE Security, Wiley 2012]

EPS AKA – Network side

- Both UMTS and EPS authentication vectors are generated
- The AuC generates the AVs in exactly the same way as for UMTS
- The HSS derives the K_{ASME} from CK and IK
- The AuC generates fresh SQN and unpredictable random RAND
- AMF (Authentication Management Field):
 - Indicates the algorithm used to generate a particular auth vector when several exist
 - Sets threshold values for key lifetimes
 - First bit is set to 1 to mark that the AV is for EPS use (this should be checked in the MME)

EPS AKA – User side

[Source: D.Forsberg et al. – LTE Security, Wiley 2012]

EPS AKA – User side

- SQN verification has not been standardized (generation and verification takes place in the home network, so it can be operator specific)
- Requirements for SQN:
 - No SQN should be used twice: USIM should not accept 2 AUTN with the same SQN after AUTN was verified
 - Allow, in a given threshold, out of order SQN numbers (might not accept a SQN if the jump from the last one is too big)
 - Reject too old time-based SQN
- Verification is performed in the USIM

An example: MILENAGE

OPc: Operator variable derived (128 bits)

r1...r5: fixed rotations constants c1...c5: fixed addition constants

 E_K : encryption with they K

Note: f1*, f5* used in case sync.failure at auth. (see Sect.7.2.3, Auth.failures) in the

book

fO	the random challenge generating function;
fl	the network authentication function;
fl*	the re-synchronisation message authentication function;
f2	the user authentication function;
f3	the cipher key derivation function;
f4	the integrity key derivation function;
f5	the anonymity key derivation function.
f5*	the anonymity key derivation function for the re-synchronisation message.

Definition of f1, f1*, f2, f3, f4, f5 and f5*

[Source: ETSI TS 135 205 V13.0.0 (2016-01)]

EPS AKA – User side

If USIM supports GSM, then it converts (CK, IK) to a GSM key K_c and sends it the the ME

Handover and Roaming

- When the UE changes MME, it identifies itself by GUTI in the Attach Request and Tracking Area Update Request
- The MME is unaware of the GUTI, so it has 2 possibilities:
 - Request the IMSI breaks confidentiality!
 - Ask the old MME to translate the GUTI to IMSI
 - Data exchanged between the old and the new MME in 2 scenarios:
 - Old and new MME are in the same network (Handover)
 - Transfer the EPS security context*
 - The old MME transfers the remaining AVs (if any)
 - Old and new MME are in networks of different operators (Roaming)
 - The current security context* is allowed, depending on the security of the networks (EPS to EPS only)
 - The old MME does not transfer the remaining AVs (if any), because they are not good in the new network

Security Context

- A security context is a set of parameters agreed by 2 parties when they engage in a secured communication
- Contains: algorithm identifiers, cryptographic keys, etc.

Key hierarchy (remember!)

Key	Length	Info
К	128 bits	Key shared between the subscriber and the network operator, stored in the USIM and AuC; permanent key of the subscriber
CK, IK	128 bits	Ciphering key CK and integrity key IK are for UMTS interconnection
K _{ASME}	256 bits	A local master key of the subscriber from which all other keys will be derived; Shared between the UE and the MME
K _{NASenc} , K _{NASint}	128 / 256 bits	Ciphering key K _{NASenc} and integrity key K _{NASint} for NAS protection
K _{eNB} /NH	256 bits	Intermediate key stored in the eNodeB NH (Next Hop) is used in handover
K _{RRCenc} , K _{RRCint}	128 / 256 bits	Ciphering key K _{RRCenc} and integrity key K _{RRCint} for AS protection
K _{UPenc}	128 / 256 bits	Ciphering key K _{UPenc} for user data

[Source: D.Forsberg et al. – LTE Security, Wiley 2012]

Key hierarchy

- K_{ASME} is derived in the ME (not the USIM!) and the HSS => its derivation it must be standardized; others not necessarily
- KDF used to derive keys in the hierarchy must be one-way; why?
- KDF based on HMAC-SHA-256
- Encryption and integrity keys (K_{NASenc}, K_{NASint}, K_{RRCint}, K_{RRCenc}, K_{UPenc}) are on 256 bits and truncated to 128 last significant bits (EPS accepts both 256 and 128 bits keys)
- Keys are derived in hierarchical manner, with additional parameters as input (e.g.: SN id, SQN xor AK, etc.) the params are all assumed to be known by a potential attacker because they are sent in clear or easy computable from unencrypted communication

Key hierarchy

- A principle that brings advantages:
 - Cryptographic key separation:
 - Each key is used to one context only (e.g.: encryption of signalling traffic)
 - Prevents expanding of leakage: leakage of keys in one context do not help finding the key in another context
 - Related key attacks: the attacker can ask the exchange of the key in a way that he predetermines the relation between the old and new keys
 - Key freshness:
 - Keys can be renewed without affecting other keys (e.g.: renew of K_{eNB} does not require renewal of the K_{ASME} , X2 hadover)
 - Renewal of keys takes place more often
- ... and **disadvantages**: added complexity

Key hierarchy

Question: Can K_{NASenc} , K_{NASint} be refreshed without refreshing the K_{ASME} ? How?

Cryptography

- Algorithm agility / flexibility: the cryptographic algorithms should be replaced without much difficulty
 - Allows removal of out-dated algorithms
 - The number of algorithms should be keep small (for synchronization and management reasons), but more than 1...
 - ... because if one algorithms fails (is broken), others will be used
- Algorithms diversity: the design of the algorithms should differ from each other as much as
 possible
 - Why? Where did you encounter this principle before (in crypto)?
- Emergency scenarios

Emergency

- Null algorithm: provides no cryptographic protection
 - Must exist for emergency cases
 - Problematic from security perspective because it can be triggered in cases where protection should be enabled
- Turn-off principle: the cryptographic protection should be by default on, and only by request (on special scenarios) should be turned off
- EEA0 (EPS Encryption Algorithm): the identity function (i.e. ciphertext equals the cleartext)
- EIA0 (EPS Integrity Algorithm): a 32-bit string of 0's is appended to the message
 - Reason: keep the protected and non-protected scenarios as similar as possible (e.g.: same length)

Confidentiality

- Same structure for NAS and AS protection
- Out-of-the shelf algorithms (easier than to invite submission and go through a selection process) ...
- ... keeping in mind **reusability** from 3G (compatibility reasons)
- 128-EEA1: SNOW 3G adapted to the EPS security architecture
 - 128 bits keys
- 128-EEA2: AES over KASUMI
 - 128 bits keys
 - Counter mode

Integrity

- Same principles as for confidentiality
- Usage of the same main cryptographic blocks (re-usability)
- 128-EIA1: UIA 2 (SNOW 3G) adapted to the EPS security architecture
 - 128 bits keys
- 128-EIA2: Cipher- based MAC (AES)
 - 128 bits keys
- The key length in the naming implies that other key lengths (e.g.:192, 256) can be used in case of improved security

Key derivation

- One-way: an adversary cannot use one key to derive a key located upper in the hierarchy
- Independence: 2 keys derived from the same key should be independent
- SHA-256 used in the HMAC mode

Algorithm negotiation

- Algorithms are negotiated separately for AS (between UE and eNodeB) and NAS (between UE and MME)
- Negotiation is based on the UE capabilities and a list of allowed cryptographic algorithms in the eNodeB, respectively MME in priority order
- eNodeB and MME are responsible for selecting the AS level, respectively the NAS level algorithms, after UE sends its capabilities in the attachment procedure
- Selection is indicated in AS Security Mode Command, respectively NAS Security Mode Commands

[Source: D.Forsberg et al. – LTE Security, Wiley 2012]

eKSI: key set identifier that identifies the key K_{ASME} NONCE_{UF}, NONCE_{MMF}: used for mobility

Question: Why is the NAS Security Mode Command not encrypted?

The UE does not know what algorithm and key to use for decryption

eKSI: key set identifier that identifies the key K_{ASMF} NONCE_{UF}, NONCE_{MMF}: used for mobility

Question: Why is the NAS Security Mode Complete encrypted?

- Integrity and replay protection are part of the NAS protocol itself
- Integrity algorithm's input params:
 - K_{NASint} , 128 bits key
 - COUNT, 32 bits
 - DIRECTION, 1 bit indicating upstream or downstream signalling
 - BEARER, constant value used for similarity with AS

COUNT = 0x00 || NAS OVERFLOW || NAS SQN

- NAS OVERFLOW, 16 bits incremented every time NAS SQN overflows
- Integrity algorithm's output:
 - NAS-MAC, 32 bits
- For efficiency reasons, NAS Service Request message uses 16 bits NAS-MAC (e.g.: when UE responds to paging from the MME)

- General rule: messages that are not integrity protected are discarded in the UE and MME once the NAS protection has been activated
- Exceptions: emergency calls, etc.
- Ciphering: same inputs, except K_{NASenc} instead of K_{NASint} and an additional parameter LENGTH that specifies the length of the keystream to be generated

[Source: D.Forsberg et al. – LTE Security, Wiley 2012]

Question: Why is the AS Security Mode Complete not encrypted?

No need, it contains no private information

AS signalling and User data protection

- Radio Resource Control (RRC): the AS level signalling protocol
- The security is implemented in the PDCP (Packet Data Convergence Protocol) layer, which carries both RRC and user data
- Integrity algorithm's input params:
 - K_{RRCint}, 128 bits key
 - COUNT, 32 bits, for each radio bearer (PDCP seg.no).
 - DIRECTION, 1 bit, indicating upstream or downstream
 - BEARER, 5 bits indicating the radio bearer identity, mapped from RRC bearer identity:

Signalling Radio Bearers (SRB):	SRB0 RRC control messages not protected	SRB1 RRC control messages protected after sec. activation	SRB2 NAS messages Always protected
Data Radio Bearers (DRB)	multiple ciphered, but not integrity-protected		

- Integrity algorithm's output:
 - MAC-I, 32 bits

Same inputs as for NAS, but a different key and BEARER not constant

AS signalling and User data protection

• Ciphering: same inputs, except K_{RRCenc} instead of K_{RRCint} and an additional parameter LENGTH that specifies the length of the keystream to be generated

NAS vs AS Security Mode Commands (SMC)

AS (Access Stratum)

- Signalling protection and user data protection
- Security is implemented in the PDCP protocol
- It is **not possible** to change algorithms using AS Security Mode Command
- Encryption starts after the AS Security
 Mode Complete
- Several bearers (there are several AS level connections between UE and eNodeB)

NAS (Non-Access Stratum)

- Signalling protection
- Security is implemented in the NAS protocol itself
- It is possible to change algorithms using NAS Security Mode Command
- Encryption starts with the NAS Security
 Mode Complete
- One bearer of constant value (there is only one NAS level connection between UE and MME)

RRC Connection re-establishment

 Initiated by the UE when there are problems (physical connection, integrity checksum errors, handover errors, etc.)

Purpose:

- Resume SRB1 operation
- Reactivate security without change of security algorithms

[Source: D.Forsberg et al. – LTE Security, Wiley 2012]

RRC Connection re-establishment

Parameters:

RRC Connection Reestablishment Request		
ShortMAC-I	16 lsb of MAC-I (calculated with the RRC integrity key used in the source cell or the cell in case of handover, or in the cell that triggers reestablishment)	
COUNT BEARER DIRECTION	All set to binary ones	

RRC Connection Reestablishment				
NCC (Next hop Chaining Count)	Used to synchronize the K _{eNB}			

RRC Connection re-establishment

- Upon failure, UE moves to idle state
- Coming back from idle to connection state include new C-RNTI allocation, NAS signalling and fresh key delivery from the MME

[Source: D.Forsberg et al. – LTE Security, Wiley 2012]

To remember!

- 1. The principles of EPS AKA
- 2. The advantages of key hierarchy
- 3. Principles to select and use cryptographic algorithms
- 4. Implementation in LTE