第二讲、 Taylor 公式

基本内容: 一元和多元的 Taylor 公式

带 Peano **余项的** Taylor **公式** 若在点 x_0 存在 $f^{(n)}(x_0)$,则有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n) \quad (x \to x_0).$$

带 Lagrange 余项的 Taylor 公式 若 f 在点 x_0 的某邻域 $O(x_0)$ 中 n+1 阶可微, 则对每个给定 的 $x \in O(x_0), x \neq x_0$, 在 x_0 和 x 之间存在 ξ , 使得

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + r_n(x),$$

其中

$$r_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$

向量与矩阵形式的多元 Taylor 公式 考虑定义在一个开区域 $D \subset \mathbf{R}^n$ 上的 n 元二次连续可微函 数 $f(x_1,\dots,x_n)$. 设 $p_0=(x_1^0,\dots,x_n^0)\in D$. 带Peano 余项的二阶Taylor 展式可写为

$$f(\boldsymbol{p}_0 + \Delta \boldsymbol{x}) = f(\boldsymbol{p}_0) + \nabla f(\boldsymbol{p}_0) \cdot \Delta \boldsymbol{x}^T + \frac{1}{2!} \Delta \boldsymbol{x} \cdot \boldsymbol{Q} \cdot \Delta \boldsymbol{x}^T + \circ (r^2)$$

其中 $\Delta x = (\Delta x_1, \cdots, \Delta x_n) = (x_1 - x_1^0, \cdots, x_n - x_n^0), \nabla f(\mathbf{p}_0)$ 是 $f(\mathbf{x})$ 在 \mathbf{p}_0 处的梯度, $\mathbf{Q} = \mathbf{p}_0$ 其中 $\Delta x = (\Delta x_1, \cdots, \Delta x_n)$ $\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{n \times n}$ (p_0) 称为Hesse 矩阵. 记函署 差 $\triangle f = \int (p_0 + \Delta v) - f(p_0)$ 易知 $\partial v = 0$ 证明 不同的 $\partial v = 0$ 证明 不同的 $\partial v = 0$ 证明 $\partial v = 0$ ∂

$$\nabla f(\mathbf{p}_{\alpha}) = \mathbf{0}.$$

又当 $\nabla f(\mathbf{p}_0) \neq \mathbf{0}$, 且 $|\Delta x|$ 为定值时, 在 Δx 与 $\nabla f(\mathbf{p}_0)$ 同向时 Δf 取最大. 因此梯度方向是函数增长最 快的方向. 当 $\nabla f(\mathbf{p}_0) = \mathbf{0}$ 时, 可根据 \mathbf{Q} 的情况来讨论函数增长最快的方向.

Peano 余项和 Lagrange 余项的比较 ξ2.1

例 1 确定 a, b, 使得当 $x \to 0$ 时, $f(x) = x - (a + b \cos x) \sin x$ 是尽可能高阶的无穷小 量. (Peano 余项: 用于局部比较; Lagrange 余项; 用于整体估计)

例 2 设 f 在 \mathbb{R} 上无穷次可微,且 $f(\frac{1}{n}) = 0, n = 1, 2, \dots, ...$

- (1) 证明 $f^{(n)}(0) = 0$, $n = 1, 2, \dots$;
- (2) 若对 $\forall x$, $\forall n$ 还有 $|f^{(n)}(x)| \leq M$, 则 $f(x) \equiv 0$;
- (3) 若 (2) 的条件不满足,则不一定有 $f(x) \equiv 0$. 如

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} \sin \frac{\pi}{x}, & x \neq 0, \\ 0, & x = 0, \end{cases}$$

这也是一个无穷次可微但非解析函数的例子.

例 3 设 f 在 \mathbb{R} 上无穷次可微,且 $f(\frac{1}{n}) = \frac{n^2}{n^2+1}$, $n=1,2,\cdots$, 计算 f 在点 0 处的所 有阶导数.

Taylor 展开的技巧

设 f(x) 有二阶导数, $f(x) \le \frac{1}{2}[f(x-h) + f(x+h)], \forall h > 0$. 证明: $f''(x) \ge 0$.

例 2 设 f(x) 在[a,b] 有二阶导数, f'(a) = f'(b) = 0. 证明: 存在 $\xi \in (a,b)$, 使得成立

$$|f''(\xi)| \ge \frac{4}{(b-a)^2} |f(b) - f(a)|.$$

例 3 设 f(x) 在 [0,1] 有二阶导数, $0 \le x \le 1$ 时, $|f(x)| \le 1$,|f''(x)| < 2. 证明: 当 $0 \le x \le 1$ 时, $|f'(x)| \le 3$.

例 4 设 f(x) 二次可微, f(0) = f(1) = 0, $\max_{0 \le x \le 1} f(x) = 2$. 证明: $\inf_{0 \le x \le 1} f''(x) \le -16$.

§2.3 多元问题

 \mathbf{M} 1 证明当 |x| 和 |y| 充分小时,有近似式

$$\frac{\cos x}{\cos y} \approx 1 - \frac{1}{2}x^2 + \frac{1}{2}y^2.$$

例 2 设 f(x,y) 在 $B \equiv \{(x,y)|x^2+y^2 \le 1\}$ 上有连续偏导数,写出 $(x,y) \in \partial B \equiv$ $\{(x,y)|x^2+y^2=1\}$ 处的方向导数的表达式, 并证明: 若

$$xf_x(x,y) + yf_y(x,y) < 0, \quad \forall (x,y) \in \partial B,$$

则 f(x,y) 必在 B 的内部取到最大值

例 3
$$\hat{\xi}$$
 $u = \frac{1}{a} + \frac{y^2}{b^2} - \frac{2}{a^2}$, 其中 $a > b > 0$. 求在 $(0,0,0)$ 处国数增记最快力中的.

第二讲练习题

1. 求下列极限:

求下列极限:
$$(1) \lim_{x \to 0} \frac{\sin x - x}{x^2 \ln(1+x)}; \quad (2) \lim_{x \to \infty} \left(\frac{\mathrm{e}^x + \mathrm{e}^{-x}}{\mathrm{e}^x - \mathrm{e}^{-x}}\right)^{\mathrm{e}^{2x}}; \quad (3) \lim_{x \to a} \frac{x^a - a^x}{x^x - a^a} \ (a > 0); \quad (4) \\ \lim_{x \to 0} \frac{\mathrm{e}^x - \mathrm{e}^{\sin x}}{x - \sin x};$$

(5)
$$\lim_{x \to 0} \frac{\tan(\tan x) - \sin(\sin x)}{\tan x - \sin x}$$
; (6) $\lim_{x \to 0^+} \frac{\sqrt{1 - e^{-x}} - \sqrt{1 - \cos x}}{\sqrt{\sin x}}$;

(7)
$$\lim_{x \to 0} (\sqrt[3]{1+x} - 1)^{\arcsin x}$$
; (8) $\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e}{x}$

- 2. 设 f(x) 在 [a,b] 二阶可微, f(a)=f(b)=0. 证明: 对每个 $x\in(a,b)$ 存在 $\xi\in(a,b)$,使得成立 $f(x)=\frac{f''(\xi)}{2}(x-a)(x-b)$.
- 3. 设 f(x) 在 [a,b] 三阶可微, f(a) = f'(a) = f(b) = 0. 证明: 对每个 $x \in [a,b]$, 存在 $\xi \in (a,b)$, 使得成立 $f(x) = \frac{f'''(\xi)}{3!}(x-a)^2(x-b)$.
- 4. 设 f(x) 在 [a,b] 三阶可微. 证明: 存在 $c \in (a,b)$, 使得成立

$$f(b) = f(a) + f'(\frac{a+b}{2})(b-a) + \frac{1}{24}f'''(c)(b-a)^3.$$

- 5. 设 f(x) 在 $[0, +\infty)$ 二阶可微,|f(x)|, |f''(x)| 在 $(0, +\infty)$ 的上确界 $M_0 = \sup_{x \in (0, +\infty)} |f(x)|$ 和 $M_2 = \sup_{x \in (0, +\infty)} |f''(x)|$ 为有限数. 证明: $M_1 = \sup_{x \in (0, +\infty)} |f'(x)|$ 也是有限数,并满足不等式 $M_1 \leq 2\sqrt{M_0M_2}$.
- 6. 证明在上题中若将区间 $(0,+\infty)$ 改为 $(-\infty,+\infty)$, 则可以得到更好的估计: $M_1 \leq \sqrt{2M_0M_2}$.
- 7. 设函数 $\varphi(x)$ 在 $(0,+\infty)$ 上二次连续可微, 如果 $\lim_{x\to +\infty} \varphi(x)$ 存在, 且 $\varphi''(x)$ 在 $[0,+\infty)$ 上有界, 试证: $\lim_{x\to +\infty} \varphi'(x)=0$.
- 8. 设 u(x,y) 在 $x^2+y^2\leqslant 1$ 上连续, 在 $x^2+y^2<1$ 上二阶连续可微且满足 $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=u$, 则
 - (1) 若在 $x^2 + y^2 = 1$ 上 $u(x,y) \ge 0$, 证明: 当 $x^2 + y^2 \le 1$ 时, $u(x,y) \ge 0$;
 - (2) 若在 $x^2 + y^2 = 1$ 上 u(x,y) > 0, 证明: 当 $x^2 + y^2 \le 1$ 时, u(x,y) > 0.
- 9. 设 f(x,y) 在 \mathbb{R}^2 上可微, 且

$$\lim_{x \to +\infty} (x f_x(x, y) + y f_y(x, y)) = a > 0, \quad \sharp \vdash r = \sqrt{x^2 + y^2},$$

证明: f(x,y) 在 \mathbb{R}^2 上必有最小值.

苏州大学数学科学学院

附录 用 Rolle 定理证明 Cauchy 中值定理、导函数性质和 L'Hospital 法则 Cauchy 中值定理的证明

令

$$h(t) = g(t)(f(b) - f(a)) - f(t)(g(b) - g(a)), \quad a \leqslant t \leqslant b.$$

则 h 在 [a,b] 上连续, (a,b) 上可导, 并且 h(b) = h(a) . 由 Rolle 定理存在 $\xi \in (a,b)$, 使 $h'(\xi) = 0$. 整理就得 Cauchy 中值定理.

导函数介值定理的证明

设 f'(x) < c < f'(y), 则必存在 $\xi \in (x,y)$, 使 $f'(\xi) = c$. 事实上令 g(t) = f(t) - ct.于 是 g'(x) < 0 , 从而有 $x_1 \in (x,y)$ 使得 $g(x_1) < g(x)$. 同样 g'(y) > 0 , 从而有 $x_2 \in (x,y)$ 使 得 $g(x_2) < g(x)$. 因此根据闭区间上最值定理, g 在 (x,y) 的某点 ξ 上达到它在 [x,y] 上的最 小值. 再由 Fermat 定理, $g'(\xi) = 0$,即 $f'(\xi) = c$.

$\frac{*}{\infty}$ 型的不定式的 L'Hospital 法则证明

 ∞ 仅对 $x \to a^+$ 证明. 由条件, $\forall \varepsilon > 0, \ \exists \delta > , \ \notin \ a < x < a + \delta \ \text{th},$

$$A - \varepsilon < \frac{f'(x)}{g'(x)} < A + \varepsilon.$$

又结合 $\lim_{x \to a^+} g(x) = +\infty$,知在 $(a, a + \delta)$ 上 g(x) > 0 且是严格单调减少的. 取 $a < x < y < a + \delta$, 由 Cauchy 中值定理

$$A - \varepsilon < \frac{f(x) - f(y)}{g(x) - \varepsilon(t)} = \frac{f'(\xi)}{g'(\xi)} < A + \varepsilon.$$
因此 $f(y) - (A - \varepsilon)g(y) - (A - \varepsilon)g(y) + (A + \varepsilon)f(y) - (A + \varepsilon)f(y)$
$$\frac{f(y) - (A - \varepsilon)g(y)}{g(x)} + A - \varepsilon < \frac{f(x)}{g(x)} < \frac{f(y) - (A + \varepsilon)g(y)}{g(x)} + A + \varepsilon.$$

固定 y, 令 $x \rightarrow a^+$, 则存在 $\delta_2 > 0$, 使 $a < x < a + \delta_2$ 时

$$\left|\frac{f(y)-(A-\varepsilon)g(y)}{g(x)}\right|,\ \left|\frac{f(y)-(A+\varepsilon)g(y)}{g(x)}\right|<\varepsilon.$$

从而就有
$$A-2\varepsilon<\frac{f(x)}{g(x)}< A+2\varepsilon$$
 .
此即 $\lim_{x\to a^+}\frac{f(x)}{g(x)}=A$.