#### Motivation Contd.





My Profile – amazon.co.uk









### Collaborative Filtering Contd. straining and Contd.





© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

05:04 / 54:31

#### Matrix Factorization



- Matrix Factorization factorizes a matrix to separate matrices, that when multiplied approximate to the completed matrix.
- For the sake of efficiency we would like to factorize the matrix to a long and a wide matrices.











#### Linear Model



```
def plain net(k):
# input
   user = mx.symbol.Variable('user')
                                                                                            output
   item = mx.symbol.Variable('item')
   score = mx.symbol.Variable('score')
                                                                                                        score
# user feature lookup
   user = mx.symbol.Embedding(data = user, input dim = max user, output dim = k)
# item feature lookup
   item = mx.symbol.Embedding(data = item, input dim = max item, output dim = k)
# predict by the inner product, which is elementwise product and then sum
   pred = user * item
                                                                                   Embedding
   pred = mx.symbol.sum(data = pred, axis = 1)
   pred = mx.symbol.Flatten(data = pred)
# loss layer
   pred = mx.symbol.LinearRegressionOutput(data = pred, label = score)
return pred
net1 = plain net(64)
mx.viz.plot network(net1)
© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.
```





## Adding Non-Linearity



```
output
def get one layer mlp (hidden, k):
# input
   user = mx.symbol.Variable('user')
                                                                                                        score
   item = mx.symbol.Variable('item')
   score = mx.symbol.Variable('score')
  user latent features
   user = mx.symbol.Embedding(data = user, input dim = max user, output dim = k)
   user = mx.symbol.Activation(data = user, act type='relu')
   user = mx.symbol.FullyConnected(data = user, num hidden = hidden)
                                                                                      dense
 item latent features
   item = mx.symbol.Embedding(data = item, input dim = max item, output dim = k)
# predict by the inner product
                                                                                      dense
   pred = user * item
   pred = mx.symbol.sum(data = pred, axis = 1)
                                                                                   Embedding
   pred = mx.symbol.Flatten(data = pred)
# loss layer
   pred = mx.symbol.LinearRegressionOutput(data = pred, label = score)
   return pred
```





## Adding Non-Linearity



```
output
def get one layer mlp(hidden, k):
# input
  user = mx.symbol.Variable('user')
                                                                                                        score
  item = mx.symbol.Variable('item')
  score = mx.symbol.Variable('score')
 user latent features
  user = mx.symbol.Embedding(data = user, input dim = max user, output dim = k)
  user = mx.symbol.Activation(data = user, act type='relu')
  user = mx.symbol.FullyConnected(data = user, num hidden = hidden)
                                                                                     dense
 item latent features
   item = mx.symbol.Embedding(data = item, input dim = max item, output dim = k)
# predict by the inner product
                                                                                     dense
  pred = user * item
  pred = mx.symbol.sum(data = pred, axis = 1)
                                                                                   Embedding
  pred = mx.symbol.Flatten(data = pred)
# loss layer
  pred = mx.symbol.LinearRegressionOutput(data = pred, label = score)
  return pred
```





### Adding Non-Linearity Contd.



```
output
def get one layer mlp(hidden, k):
# input
   user = mx.symbol.Variable('user')
                                                                                                        score
   item = mx.symbol.Variable('item')
   score = mx.symbol.Variable('score')
  user latent features
   user = mx.symbol.Embedding(data = user, input dim = max user, output dim = k)
   user = mx.symbol.Activation(data = user, act type='relu')
   user = mx.symbol.FullyConnected(data = user, num hidden = hidden)
                                                                                     dense
  item latent features
   item = mx.symbol.Embedding(data = item, input dim = max item, output dim = k)
   item = mx.symbol.Activation(data = item, act type='relu')
                                                                                     dense
   item = mx.symbol.FullyConnected(data = item, num hidden = hidden)
# predict by the inner product
                                                                                   Embedding
   pred = user * item
   pred = mx.symbol.sum(data = pred, axis = 1)
                                                                                      User
   pred = mx.symbol.Flatten(data = pred)
# loss laver
   pred = mx.symbol.LinearRegressionOutput(data = pred, label = score)
```

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

return pred

# Embedding Layer



- An Embedding Layer is where a network extracts the importance of features from data.
- Embedding is frequently used in NLP. For instance in sentiment analysis, embedding distills sentiment information from words.



https://www.oreilly.com/ideas/deep-matrix-factorization-using-apachemxnet?cmp=tw-data-na-article-engagement\_sponsored+kibird

### Loading Data into an Array



```
train data iter = gluon.data.DataLoader(SparseMatrixDataset(train data, train label),
                                                      shuffle=True, batch size=batch size)
test data iter = gluon.data.DataLoader(SparseMatrixDataset(test data, test label),
                                                      shuffle=True, batch size=batch size)
class SparseMatrixDataset (gluon.data.Dataset):
     def init (self, data, label):
           assert data.shape[0] == len(label)
           self.data = data
            self.label = label
            if isinstance(label, ndarray.NDArray) and len(label.shape) == 1:
                  self. label = label.asnumpy()
           else:
                 self. label = label
     def getitem (self, idx):
            return self.data[idx, 0], self.data[idx, 1], self.label[idx]
     def len (self):
           return self.data.shape[0]
```

### Defining the Network



```
class MFBlock(gluon.Block):
      def __init__(self, max_users, max_items, num_emb, dropout_p=0.5):
             super(MFBlock, self).__init__()
             self.max_users = max_users
             self.max_items = max_items
             self.dropout_p = dropout_p
             self.num_emb = num_emb
             with self.name_scope():
                   self.user_embeddings = gluon.nn.Embedding(max_users, num_emb)
                   self.item_embeddings = gluon.nn.Embedding(max_items, num_emb)
      def forward(self, users, items):
             a = self.user_embeddings(users)
             b = self.item_embeddings(items)
             predictions = a * b
             predictions = nd.sum(predictions, axis=1)
             return predictions
```







## Choosing the Optimizer



trainer = gluon.Trainer(net.collect\_params(), 'sgd', {'learning\_rate': lr, 'wd': wd, 'momentum': 0.9})



## Training the Model



```
epochs = 10
def train(data_iter, net):
       for e in range(epochs):
               print("epoch: {}".format(e))
               for i, (user, item, label) in enumerate(train_data_iter):
                       user = user.as_in_context(ctx).reshape((batch_size,))
                       item = item.as_in_context(ctx).reshape((batch_size,))
                       label = label.as_in_context(ctx).reshape((batch_size,))
                       with mx.autograd.record():
                               output = net(user, item)
                               loss = loss_function(output, label)
                               loss.backward()
                               net.collect_params().values()
                       trainer.step(batch_size)
               print("EPOCH {}: RMSE ON TRAINING and TEST: {}. {}".format(e,
                                                      eval_net(train_data_iter, net)),
                                                              eval_net(test_data_iter, net)))
return output
```









### Adding Non-Linearity



```
class MFBlock(gluon.Block):
        def __init__(self, max_users, max_items, num_emb, dropout_p=0.5):
                 super(MFBlock, self).__init__()
                 self.max_users = max_users
                 self.max_items = max_items
                 self.dropout_p = dropout_p
                 self.num_emb = num_emb
                 with self.name_scope():
                          self.user_embeddings = gluon.nn.Embedding(max_users, num_emb)
                          self.item_embeddings = gluon.nn.Embedding(max_items, num_emb)
                          self.dense = gluon.nn.Dense(num_emb, activation='relu')
        def forward(self, users, items):
                 a = self.user_embeddings(users)
                 a = self.dense(a)
                 b = self.item_embeddings(items)
                 b = self.dense(b)
                 predictions = a * b
                 predictions = nd.sum(predictions, axis=1)
                 return predictions
```

#### Limitations



- Matrix Factorization is ideal for small catalogues and can perform based on small amounts of data.
- As the catalogues get larger, memory becomes a challenge.

#### Limitations Contd.



For instance MovieLens 20M has 27278 items and 138493 users. User x
Item matrix will have a dimension of 138,493 X 27,278 =
 3,777,812,054. From all possible ratings the dataset includes only
 20000263. This means only 0.05 percent of the dataset contains data
 and 99.95 percent is just sparsity.

Storing the Matrix

<u>Dense</u> <u>Sparse</u>

3.7B entries 20M non-zero entries

Each entry: Each entry:

•Rating: 1 byte •Rating: 1 byte

Movie\_id: 32-bit integerUser\_id: 32-bit integer

3.7 GB 180 MB

Sparse is 20x smaller!

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

ref: Leo Dirac - re:Invent 2016

### The Scaling Issue Contd.



DiFacto or Distributed
 Factorization Machines are
 capable of distributing
 computation of sub-gradients
 on mini-batches asynchronously
 and can thus distribute load to
 several machines.



asynch SGD







## The Scaling Issue



- Factorization Machines take advantage of combining Support Vector Machines and MF in order to scale and deal with sparsity.
- The problem is that FM runs on a single machine and has huge memory requirements.



parameter server (Alex Smola et al. - 2016)

asynch SGD







### Content (Feature)-Based



 We might not have user data, but there is often a wealth of product information available. We can use this data in order to recommend similar products to a user.

| code  | category | sub category | weight | price | colour | dimentions |
|-------|----------|--------------|--------|-------|--------|------------|
| itm1  | 1        | 1            | 20     | 123.1 | blue   | 23x12x19   |
| itm2  | 2        | 1            | 20     | 900   | white  | 23x12x20   |
| itm3  | 1        | 1            | 22     | 123.1 | green  | 20x10x18   |
| itm4  | 3        | 1            | 20     | 600   | blue   | 23x12x22   |
| itm5  | 1        | 2            | 19     | 200   | yellow | 23x12x23   |
| itm6  | 1        | 1            | 1      | 12    | red    | 2x1x3      |
| itm7  | 1        | 1            | 900    | 2000  | blue   | 100x80x99  |
| itm8  | 9        | 8            | 20     | 6000  | grey   | 99x99x99   |
| itm9  | 7        | 5            | 1000   | 123.1 | blue   | 123x5x8    |
| itm10 | 9        | 8            | 20     | 5000  | brown  | 99x99x99   |







#### Content Based







### Untapped Data



- There is still a wealth of information we have not tapped into.
  - Movies have images.
  - Images can be captioned.
  - Products have names, while we have so far reduced them to item numbers.
  - TV series have episode names.
  - Products have verbose reviews.
- We can harvest all of this information and enrich our recommendation system.

There is a strong similarity in the ambience and composition of these images:



#### Deep Structure Semantic Models



- A Matrix Factorization solution in its core is multiplication of two matrices.
- Neural Networks are good at picking up semantic intent at phrase/sentence level.
- Neural Networks are great at image captioning.
- The output of a network is a tensor.
- So we can use the output of several networks as our embedding layer for an enriched recommendation system.

### DSSM Contd.







# Demo - Matrix Factorization Using Your Own Code and the Amazon SageMaker Factorization Machine

### DataSet



| User Id | Movie Id | Rating | Timestamp |
|---------|----------|--------|-----------|
| 1       | 1        | 5      | 874965758 |
| 1       | 2        | 3      | 876893171 |
| 1       | 3        | 4      | 878542960 |
| 1       | 4        | 3      | 876893119 |
| 1       | 5        | 3      | 889751712 |

#### **MXNet**



- We are using MXNet and Gluon for coding.
- MXNet benchmark shows near linear performance across multiple machines.
- Gluon is a Pytorch-like imperative API for MXNet.



### Amazon SageMaker



- A fully managed service that enables data scientists and developers to quickly and easily build machine-learning based models into production smart applications.
- Amazon SageMaker includes several built-in state of the art algorithms that are fine-tuned to run on distributed environments. <a href="https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html">https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html</a>
- Amongst built-in algorithms there is a Factorization Machine algorithm implemented using MXNet.
- All you need to do it to tune model's hyperparameters and passing your data to the model.



```
code in part inspired by: https://github.com/EthanRosenthal/torchmf
In [19]: import on
         import mxnet as mx
         from exnet import gluon, nd, ndarray
         import pandas as pd
         import numpy as np
In [20]: data path = 'ml-100k/'
         num emb = 64
         opt = 'Adam'
         lr = 0.02
         mants = 0.
         wd = 0.
         batch_size = 50
         ctx = mx.gpu(4)
 In [3]: def download ml_data(prefix):
             if not os.path.exists("ts.zip" t prefix):
                 print("Downloading MovieLens data: %s" % prefix)
                 os.system("wget http://files.grouplens.org/datasets/movielens/%s.zip" % prefix)
                 os.system("unzip ts.zip" t prefix)
 In [4]: download_ml_data('data')
         Downloading MovieLens data: data
 In [5]: def max id(fname):
             mu = 0
             mi = 0
             with open(fname) as f:
                 for line in fr
                     tks = line.strip().split('\t')
                     if len(tks) i= 4:
                         continue
                     mu = max(mu, int(tks[0]))
                     mi = max(mi, int(tks[1]))
             return mu + 1, mi + 1
         max_users, max_items = max_id(data_path + 'u.data')
 In [6]: train df = pd.read csv(data path+'ul.base', header=Nose, sep='\t')
         test_df = pd.read_csv(data_path+'ul.test', header=None, sep='\t')
         train_data = nd.array(train_df[[0,1]].values, dtype=np.float32)
```

```
In [19]: import os
         import mxnet as mx
         from mxnet import gluon, nd, ndarray
         import pandas as pd
         import numpy as np
In [20]: data_path = 'ml-100k/'
         num emb = 64
         opt = 'Adam'
         1r = 0.02
         mmntm = 0.
         wd = 0.
         batch size = 50
         ctx = mx.gpu(4)
In [3]: def download ml data(prefix):
             if not os.path.exists("%s.zip" % prefix):
                 print("Downloading MovieLens data: %s" % prefix)
                 os.system("wget http://files.grouplens.org/datasets/movielens/%s.zip" % prefix)
                 os.system("unzip %s.zip" % prefix)
In [4]: download ml data('data')
         Downloading MovieLens data: data
In [5]: def max id(fname):
             mu = 0
             mi = 0
             with open(fname) as f:
                 for line in f:
                     tks = line.strip().split('\t')
                     if len(tks) 1= 4:
                         continue
                     mu = max(mu, int(tks[0]))
                     mi = max(mi, int(tks[1]))
             return mu + 1, mi + 1
         max users, max_items = max_id(data_path + 'u.data')
```

```
return mu + 1, mi + 1
        max users, max items = max id(data path + 'u.data')
In [6]: train df = pd.read csv(data path+'ul.base', header=None, sep='\t')
        test df = pd.read csv(data path+'ul.test', header=None, sep='\t')
        train_data = nd.array(train_df[[0,1]].values, dtype=np.float32)
        train label = nd.array(train df[2].values, dtype=np.float32)
        test data = nd.array(test df[[0,1]].values, dtype=np.float32)
        test_label = nd.array(test_df[2].values, dtype=np.float32)
In [7]: class SparseMatrixDataset(gluon.data.Dataset):
            def __init__(self, data, label):
                assert data.shape[0] == len(label)
                self.data = data
                self.label = label
                if isinstance(label, ndarray.NDArray) and len(label.shape) == 1:
                    self. label = label.asnumpy()
                else:
                    self._label = label
            def getitem (self, idx):
                return self.data[idx, 0], self.data[idx, 1], self.label[idx]
            def _len_(self):
                return self.data.shape[0]
In [8]: class MFBlock(gluon.Block):
            def __init__(self, max_users, max_items, num_emb, dropout_p=0.5):
                super(MFBlock, self). init ()
```

self.user\_embeddings = gluon.nn.Embedding(max\_users, num\_emb)
self.item embeddings = gluon.nn.Embedding(max\_items, num\_emb)

self.max\_users = max\_users
self.max\_items = max\_items
self.dropout\_p = dropout\_p
self.num\_emb = num\_emb

with self.name scope():

```
return mu + 1, mi + 1
        max users, max items = max id(data path + 'u.data')
In [6]: train df = pd.read csv(data path+'ul.base', header=None, sep='\t')
        test df = pd.read csv(data path+'ul.test', header=None, sep='\t')
        train data = nd.array(train df[[0,1]].values, dtype=np.float32)
        train label = nd.array(train df[2].values, dtype=np.float32)
        test data = nd.array(test df[[0,1]].values, dtype=np.float32)
        test_label = nd.array(test_df[2].values, dtype=np.float32)
In [7]: class SparseMatrixDataset(gluon.data.Dataset):
            def __init__(self, data, label):
                assert data.shape[0] == len(label)
                self.data = data
                self.label = label
                if isinstance(label, ndarray.NDArray) and len(label.shape) == 1:
                    self. label = label.asnumpy()
                elser
                    self. label = label
            def getitem (self, idx):
                return self.data(idx, 0), self.data(idx, 1), self.label(idx)
            def _len_(self):
                return self.data.shape[0]
In [8]: class MFBlock(gluon.Block):
            def __init__(self, max_users, max_items, num_emb, dropout_p=0.5):
```

```
assert data.shape[0] == len(label)
self.data = data
self.label = label
if isinstance(label, ndarray.NDArray) and len(label.shape) == 1:
    self._label = label.asnumpy()
else:
    self._label = label

def __getitem__(self, idx):
    return self.data[idx, 0], self.data[idx, 1], self.label[idx]

def __len__(self):
    return self.data.shape[0]
```

```
In [8]: class MFBlock(gluon.Block):
            def __init__(self, max_users, max_items, num_emb, dropout p=0.5):
                super(MFBlock, self).__init__()
                self.max users = max_users
                self.max items = max items
                self.dropout p = dropout p
                self.num_emb = num_emb
                with self.name_scope():
                    self.user_embeddings = gluon.nn.Embedding(max_users, num_emb)
                    self.item embeddings = gluon.nn.Embedding(max items, num emb)
                    self.dropout = gluon.nn.Dropout(dropout_p)
            def forward(self, users, items):
                a = self.user embeddings(users)
                b = self.item_embeddings(items)
                predictions = self.dropout(a) * self.dropout(b)
                predictions = nd.sum(predictions, axis=1)
                return predictions
```

```
In [9]: net = MFBlock(max_users=max_users, max_items=max_items, num_emb=num_emb, dropout_p=0.)
net.collect_params()
```

```
In [11]: net.collect params().initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx, force reinit=True)
In [12]: trainer = gluon.Trainer(net.collect params(), 'sgd',
                                 {'learning rate': lr, 'wd': wd, 'momentum': 0.9})
In [13]: train data iter = gluon.data.DataLoader(SparseMatrixDataset(train data, train label),
                                                  shuffle=True, batch size=batch size)
         test data iter = gluon.data.DataLoader(SparseMatrixDataset(test data, test label),
                                                    shuffle=True, batch size=batch size)
In [14]: def eval net(data, net):
             acc = mx.metric.RMSE()
             for i, (user, item, label) in enumerate(data):
                 user = user.as_in_context(ctx).reshape((batch_size,))
                 item = item.as_in_context(ctx).reshape((batch_size,))
                 label = label.as in context(ctx).reshape((batch size,))
                 predictions = net(user, item)
                 loss = loss function(predictions, label)
                 acc.update(preds=predictions, labels=label)
             return acc.get()[1]
In [15]: eval_net(test_data_iter, net)
Out[15]: 3.5358702216744424
In [16]: epochs = 10
         #smoothing constant = 10
         def train(data iter, net):
             a = []
             b = []
             c = []
             d = []
             for e in range(epochs):
                 print("epoch: ()".format(e))
                 for i, (user, item, label) in enumerate(train data iter):
                     user = user.as in context(ctx).reshape((batch size,))
```

```
loss = loss_runction(predictions, label)
                 acc.update(preds=predictions, labels=label)
             return acc.get()[1]
In [15]: eval net(test data iter, net)
Out[15]: 3.5358702216744424
In [16]: epochs = 10
         #smoothing constant = 10
         def train(data_iter, net):
             a = []
             b = []
             c = []
             d = []
             for e in range(epochs):
                 print("epoch: ()".format(e))
                 for i, (user, item, label) in enumerate(train data iter):
                     user = user.as_in_context(ctx).reshape((batch_size,))
                     item = item.as_in_context(ctx).reshape((batch_size,))
                     label = label.as_in_context(ctx).reshape((batch_size,))
                     with mx.autograd.record():
                         output = net(user, item)
                         loss = loss function(output, label)
                         loss.backward()
                     net.collect_params().values()
                     trainer.step(batch size)
                 a = eval_net(test_data_iter, net)
                 b = eval_net(train_data_iter, net)
                 print("EPOCH (): RMSE ON TRAINING and TEST: (). ()".format(e,a,b))
             return a, b
In [17]: (a,b) = train(train data iter, net)
         epoch: 0
         EPOCH 0: RMSE ON TRAINING and TEST: 3.533845988896489. 3.523215442742407
         epoch: 1
         EPOCH 1: RMSE ON TRAINING and TEST: 3.398607304608822. 3.328483776437491
```

38:04 / 54:31

```
TOSS . Dackwalu()
                     net.collect params().values()
                     trainer.step batch size
                  a = eval net(test data iter, net)
                 b = eval net(train data iter, net)
                 print("EPOCH (): RMSE ON TRAINING and TEST: (). ()".format(e,a,b))
             return a, b
In [17]: (a,b) = train(train data iter, net)
         epoch: 0
         EPOCH 0: RMSE ON TRAINING and TEST: 3.533845988896489. 3.523215442742407
         epoch: 1
         EPOCH 1: RMSE ON TRAINING and TEST: 3.398607304608822. 3.328483776437491
         epoch: 2
         EPOCH 2: RMSE ON TRAINING and TEST: 2.032065240380168. 1.797713072796911
         epoch: 3
         EPOCH 3: RMSE ON TRAINING and TEST: 1.3171076374143362. 1.1745245898365975
         epoch: 4
         EPOCH 4: RMSE ON TRAINING and TEST: 1.0678859624534844. 0.9613828420139849
         epoch: 5
         EPOCH 5: RMSE ON TRAINING and TEST: 0.9528403462797403. 0.866311743491143
         epoch: 6
         EPOCH 6: RMSE ON TRAINING and TEST: 0.8905037337005138. 0.8156895110182464
         epoch: 7
         EPOCH 7: RMSE ON TRAINING and TEST: 0.8528216697186232. 0.785909748146683
         epoch: 8
         EPOCH 8: RMSE ON TRAINING and TEST: 0.8289129304856062. 0.7666749547488988
         epoch: 9
         EPOCH 9: RMSE ON TRAINING and TEST: 0.8108262846082449. 0.7518034620203078
In [18]: (a,b)
Out[18]: (0.8108262846082449, 0.7518034620203078)
 In [ ]:
```

In [7]: class MFBlock(gluon.Block): def init (self, max users, max items, num emb, dropout p=0.5): super(MFBlock, self). init () self.max users = max users self.max items = max items self.dropout p = dropout p self.num emb = num emb with self.name scope(): self.user embeddings = gluon.nn.Embedding(max users, num emb) self.item embeddings = gluon.nn.Embedding(max items, num emb) self.dropout = gluon.nn.Dropout(dropout p) self.dense = gluon.nn.Dense(num emb, activation='relu') def forward(self, users, items): a = self.user embeddings(users) a = self.dense(a) b = self.item embeddings(items) b = self.dense(b) predictions = self.dropout(a) \* self.dropout(b) predictions = nd.sum(predictions, axis=1) return predictions In [8]: net = MFBlock(max users=max users, max items=max items, num emb=num emb, dropout p=0.) net.collect params() Out[8]: mfblock0\_ ( Parameter mfblock0 embedding0 weight (shape=(944, 64), dtype=<class 'numpy.float32'>)

Parameter mfblock0 embedding1 weight (shape=(1683, 64), dtype=<class 'numpy.float32'>)

Parameter mfblock0 dense0 weight (shape=(64, 0), dtype=<class 'numpy.float32'>)

```
trainer.step(batch size)
                 print("EPOCH {}: RMSE ON TRAINING and TEST: {}. {}".format(e,
                                                                             eval net(train data iter, net),
                                                                             eval net(test data iter, net)))
             return "end of training"
In [16]: train(train data iter, net)
         epoch: 0
         EPOCH 0: RMSE ON TRAINING and TEST: 0.7461072485804557. 0.7763755543172359
         epoch: 1
         EPOCH 1: RMSE ON TRAINING and TEST: 0.7369058181449771. 0.7680148655653
         epoch: 2
         EPOCH 2: RMSE ON TRAINING and TEST: 0.7472432709142566. 0.7772404563993216
         epoch: 3
         EPOCH 3: RMSE ON TRAINING and TEST: 0.7370284162349999. 0.7691778198421001
         epoch: 4
         EPOCH 4: RMSE ON TRAINING and TEST: 0.7406699358060956. 0.7754190125107765
         epoch: 5
         EPOCH 5: RMSE ON TRAINING and TEST: 0.7273183228254319. 0.7669575016319752
         epoch: 6
         EPOCH 6: RMSE ON TRAINING and TEST: 0.7240261309757828. 0.7765023551046848
         epoch: 7
         EPOCH 7: RMSE ON TRAINING and TEST: 0.693246350326389. 0.7645233050823211
         epoch: 8
         EPOCH 8: RMSE ON TRAINING and TEST: 0.6648808738991618. 0.7582760076761246
         epoch: 9
         EPOCH 9: RMSE ON TRAINING and TEST: 0.6372081472031772. 0.7497557436436415
Out[16]: 'end of training'
In [17]: net1 = gluon.nn.Sequential()
         with netl.name_scope():
             net1.add(gluon.nn.Embedding(max users, num emb))
             net1.add(gluon.nn.Dense(64))
```

loss = loss function(output, label)

loss.backward()

net.collect\_params().values()

```
from scipy.sparse import lil matrix
BUCKET = 'cyrusmv-sagemaker-demos'
s3 = boto3.client('s3')
def download file(s3 source, dest):
    if not os.path.exists(dest):
        os.makedirs(dest)
    url = urlparse(s3 source)
    bucket, key = url.netloc, url.path.lstrip('/')
    file name = key.split('/')[-1]
    with open('%s/%s' % (dest,file name), 'wb') as data:
      83.download fileobj(bucket, key, data)
def loadDataset(filename, lines, columns):
    # Features are one-hot encoded in a sparse matrix
    X = lil matrix((lines, columns)).astype('float32')
    # Labels are stored in a vector
    Y = []
    line=0
    with open(filename, 'r') as f:
        samples=csv.reader(f,delimiter='\t')
        for userId, movieId, rating, timestamp in samples:
            X[line,int(userId)-1] = 1
            X[line,int(nbUsers)+int(movieId)-1] = 1
            Y.append(int(rating))
            line=line+1
    Y=np.array(Y).astype('float32')
    return X, Y
nbUsers=943
nbMovies=1682
```

41:34 / 54:31

```
<_io.BytesIO object at 0x7f9ac0385f50>
Wrote dataset: cyrusmv-sagemaker-demos/exercise4/fm-movielens100k/train/train.protobuf
<_io.BytesIO object at 0x7f9ac0343c50>
Wrote dataset: cyrusmv-sagemaker-demos/exercise4/fm-movielens100k/test/test.protobuf
Output: s3://cyrusmv-sagemaker-demos/exercise4/fm-movielens100k/output
```

42:03 / 54:31

```
In [3]: import sagemaker
        from sagemaker import get execution role
        train data = 's3://%s/exercise4/fm-movielens100k/train/train.protobuf' % BUCKET
        test data = 's3://%s/exercise4/fm-movielens100k/test/test.protobuf' % BUCKET
        containers = { 'us-west-2': '174872318107.dkr.ecr.us-west-2.amazonaws.com/factorization-machines:latest',
                      'us-east-1': '382416733822.dkr.ecr.us-east-1.amazonaws.com/factorization-machines:latest',
                       'us-east-2': '404615174143.dkr.ecr.us-east-2.amazonaws.com/factorization-machines:latest',
                      'eu-west-1': '438346466558.dkr.ecr.eu-west-1.amazonaws.com/factorization-machines:latest')
        fm = sagemaker.estimator.Estimator(containers[boto3.Session().region name],
                                           get execution role(),
                                           train instance count=1,
                                           train instance type='ml.c4.xlarge',
                                           output path=output prefix,
                                           sagemaker session=sagemaker.Session())
        fm.set hyperparameters(feature dim=nbFeatures,
                              predictor type='regressor',
                              mini batch size=1000,
                              num factors=64,
                              speedometer period=10,
                              epochs=50)
        fm.fit({'train': train data, 'test': test data})
        er", "Operation": "training", "Algorithm": "factorization-machines", "epoch": 33}, "StartTime": 1521675975.624592}
```

```
speedometer period=10,
                             epochs=50)
        fm.fit({'train': train data, 'test': test data})
        [03/21/2018 23:46:18 IMFO 139926754449216] Epoch[1] Batch [70]#011Speed: 152590.06 samples/sec#011rmse=0.963353
        #metrics {"Metrics": {"update.time": {"count": 1, "max": 500.90694427490234, "sum": 500.90694427490234, "min": 500.90
        694427490234}}, "EndTime": 1521675978.700887, "Dimensions": {"Host": "algo-1", "Operation": "training", "Algorithm":
         "factorization-machines"}, "StartTime": 1521675978.19969}
        #metrics ("Metrics": ("Max Batches Seen Between Resets": {"count": 1, "max": 80, "sum": 80.0, "min": 80), "Number of
        Batches Since Last Reset": {"count": 1, "max": 80, "sum": 80.0, "min": 80}, "Number of Records Since Last Reset":
        {"count": 1, "max": 80000, "sum": 80000.0, "min": 80000}, "Total Batches Seen": {"count": 1, "max": 3201, "sum": 320
       1.0, "min": 3201}, "Total Records Seen": {"count": 1, "max": 3201000, "sum": 3201000.0, "min": 3201000}, "Max Records
        Seen Between Resets": {"count": 1, "max": 80000, "sum": 80000.0, "min": 80000}, "Reset Count": {"count": 1, "max": 4
       1, "sum": 41.0, "min": 41}}, "EndTime": 1521675978.701077, "Dimensions": {"Host": "algo-1", "Meta": "training data it
       er", "Operation": "training", "Algorithm": "factorization-machines", "epoch": 39}, "StartTime": 1521675978.701025}
        [03/21/2018 23:46:18 INFO 139926754449216] Epoch[1] Batch [10]#011Speed: 144500.13 samples/sec#011rmse=0.999548
        [03/21/2018 23:46:18 INFO 139926754449216] Epoch[1] Batch [20]#011Speed: 158260.69 samples/sec#011rmse=0.974219
        [03/21/2018 23:46:18 INFO 139926754449216] Epoch[1] Batch [30]#011Speed: 146147.58 samples/sec#011rmse=0.982746
        [03/21/2018 23:46:18 INFO 139926754449216] Epoch[1] Batch [40]#011Speed: 144542.45 samples/sec#011rmse=0.973204
        [03/21/2018 23:46:19 INFO 139926754449216] Epoch[1] Batch [50]#011Speed: 150276.38 samples/sec#011rmse=0.971157
        [03/21/2018 23:46:19 INFO 139926754449216] Epoch[1] Batch [60]#011Speed: 148270.97 samples/sec#011rmse=0.964169
        In [4]: fm predictor = fm.deploy(instance type='ml.c4.xlarge', initial instance count=1)
        INFO:sagemaker:Creating model with name: factorization-machines-2018-03-21-23-47-57-115
        INFO:sagemaker:Creating endpoint with name factorization-machines-2018-03-21-23-40-14-697
In [5]: import json
        import numpy as np
        from sagemaker.predictor import json deserializer
```

П

```
speedometer period=10,
                              epochs=50)
        fm.fit({'train': train data, 'test': test data})
        [03/21/2018 23:46:23 INFO 139926754449216] Saved checkpoint to "/tmp/tmpTlZMG /state-0001.params"
        [03/21/2018 23:46:23 INFO 139926754449216] #test score (algo-1) : rmse
        [03/21/2018 23:46:23 INFO 139926754449216] #test score (algo-1): 1.00061402047
        #metrics {"Metrics": {"Max Batches Seen Between Resets": {"count": 1, "max": 20, "sum": 20.0, "min": 20}, "Number of
         Batches Since Last Reset": {"count": 1, "max": 20, "sum": 20.0, "min": 20}, "Number of Records Since Last Reset":
         {"count": 1, "max": 20000, "sum": 20000.0, "min": 20000}, "Total Batches Seen": {"count": 1, "max": 20, "sum": 20.0,
         "min": 20}, "Total Records Seen": {"count": 1, "max": 20000, "sum": 20000.0, "min": 20000}, "Max Records Seen Betwee
        n Resets": {"count": 1, "max": 20000, "sum": 20000.0, "min": 20000}, "Reset Count": {"count": 1, "max": 1, "sum": 1.
        0, "min": 1}}, "EndTime": 1521675983.980208, "Dimensions": {"Host": "algo-1", "Meta": "test data iter", "Operation":
         "training", "Algorithm": "factorization-machines"), "StartTime": 1521675983.980173}
        #metrics {"Metrics": {"totaltime": {"count": 1, "max": 26234.050989151, "sum": 26234.050989151, "min": 26234.05098915
        1), "setuptime": {"count": 1, "max": 40.194034576416016, "sum": 40.194034576416016, "min": 40.194034576416016}}, "End
        Time": 1521675983.981656, "Dimensions": {"Host": "algo-1", "Operation": "training", "Algorithm": "factorization-machi
        nes"}, "StartTime": 1521675983.902766}
        ==== Job Complete =====
        Billable seconds: 217
In [4]: fm predictor = fm.deploy(instance type='ml.c4.xlarge', initial instance count=1)
        INFO:sagemaker:Creating model with name: factorization-machines-2018-03-21-23-47-57-115
        INFO:sagemaker:Creating endpoint with name factorization-machines-2018-03-21-23-40-14-697
In [5]: import json
        import numpy as np
```

from sagemaker.predictor import json deserializer

```
In [5]: import json
        import numpy as np
        from sagemaker.predictor import json deserializer
        nbUsers=943
        nbMovies=1682
        nbFeatures=nbUsers+nbMovies
        def fm serializer(data):
            js = {'instances': []}
            for row in data:
                keys = np.argwhere(row == np.amax(row)).flatten().tolist()
                js['instances'].append({
                     'data':{
                         'features': {
                             'keys': keys,
                             'shape': [nbFeatures],
                             'values': [1]*len(keys)
            #print js
            return json.dumps(js)
        fm predictor.content type = 'application/json'
        fm predictor.serializer = fm serializer
        fm predictor.deserializer = json deserializer
        result = fm_predictor.predict(X_test[1000:1010].toarray())
        print( sult)
        print()
        print (  test[1000:1010])
```

```
def fm serializer(data):
    js = {'instances': []}
    for row in data:
        keys = np.argwhere(row == np.amax(row)).flatten().tolist()
        js['instances'].append({
            'data':{
                'features': {
                    'keys': keys,
                    'shape': [nbFeatures],
                    'values': [1]*len(keys)
    #print js
    return json.dumps(js)
fm predictor.content type = 'application/json'
fm predictor.serializer = fm serializer
fm predictor.deserializer = json deserializer
result = fm predictor.predict(X test[1000:1010].toarray())
print(result)
print()
print (Y test[1000:1010])
{u'predictions': [{u'score': 3.3320837020874023}, {u'score': 3.0627427101135254}, {u'score': 3.305492639541626}, {u's
core': 2.9380016326904297}, {u'score': 2.8458235263824463}, {u'score': 3.073624849319458}, {u'score': 3.0407218933105
47}, {u'score': 3.3230855464935303}, {u'score': 3.044969081878662}, {u'score': 3.535712480545044}]}
[2. 1. 3. 3. 3. 1. 3. 3. 1. 4.]
```













## **Factorization Machines Hyperparameters**

| Parameter Name  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| feature_dim     | Dimension of the input feature space. This could be very high with sparse input. Required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                 | Valid values: Positive integer. Suggested value range: [10000,10000000]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | Default value: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| num_factors     | Dimensionality of factorization. Required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                 | Valid values: Positive integer. Suggested value range; [2,1000]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | Default value: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| predictor_type  | Type of predictor. Required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | Valid values: String: binary_classifier or regressor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | Default value: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| mini_batch_size | Size of mini-batch used for training.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | Valid values: positive integer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | Default value: 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| epochs          | Number of training epochs to run.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | Valid values: positive integer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | Default value: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| clip_gradient   | Optimizer parameter. Clip the gradient by projecting onto the box [-clip_gradient, +clip_gradient].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 | Valid values: float                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 | Default value: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ops             | Optimizer parameter. Small value to avoid division by 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | Valid values: float                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 | A STATE OF THE STA |

THE DOLLED RECORD FOR MALE AND REPORT OF THE PARTY OF THE

Random Cut Forest 🖼 Using Your Own Algorithms















C English - Sign in to the Console

| Amazon SageMaker                                           | Q  |
|------------------------------------------------------------|----|
| Developer Guide                                            |    |
| Documentation - This Guide                                 | B  |
| Search                                                     | ø. |
| ☐ What is Amazon SageMaker?                                |    |
| □ How It Works                                             |    |
| Getting Started                                            |    |
| Using Built-in Algorithms                                  |    |
| Common Information                                         |    |
| □ Linear Learner                                           |    |
| Factorization Machines                                     |    |
| □ How It Works                                             |    |
| Hyperparameters                                            |    |
| Inference Formats                                          |    |
| XG8oost Algorithm                                          |    |
| □ Image Classification Algorithm                           |    |
| Sequence to Sequence (seq2seq)                             |    |
| C K-Means Algorithm                                        |    |
| <ul> <li>Principal Component Analysis<br/>(PCA)</li> </ul> |    |
| C Latent Dirichlet Allocation (LDA)                        |    |
| ■ Neural Topic Model (NTM)                                 |    |
| ■ DeepAR Forecasting                                       |    |
| □ BlazingText                                              |    |
| CRandom Cut Forest                                         |    |
| Using Your Own Algorithms                                  |    |

| predictor_type  | Type of predictor. Required.  Valid values: String: binary_classifier or regressor  Default value: -                                                              |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mini_batch_size | Size of mini-batch used for training.  Valid values: positive integer  Default value: 1000                                                                        |
| epochs          | Number of training epochs to run.  Valid values: positive integer  Default value: 1                                                                               |
| clip_gradient   | Optimizer parameter. Clip the gradient by projecting onto the box [-olip_gradient, *olip_gradient].  Valid values: float  Default value: -                        |
| eps             | Optimizer parameter. Small value to avoid division by 0.  Valid values: float  Default value: -                                                                   |
| rescale_grad    | Optimizer parameter. If set, multiplies the gradient with reacale_grad before updating. Often choose to be 1.0/batch_size.  Valid values: float  Default value: - |
| bias_lr         | Learning rate for the bias term.  Valid values: Non-negative float. Suggested value range: [1e-8, 512].  Default value: 0.1                                       |
| linear_lr       | Learning rate for linear terms.  Valid values: Non-negative float. Suggested value range: [1e-8, 512].  Default value: 0.001                                      |









| Amazon SageMaker                                           | Q  |
|------------------------------------------------------------|----|
| Developer Guide                                            |    |
| Decumentation - This Guide                                 | B  |
| Search                                                     | a. |
| ☐ What is Amazon SageMaxer?                                |    |
| ☐ How It Works                                             |    |
| Getting Started                                            |    |
| Using Built-in Algorithms                                  |    |
| Common Information                                         |    |
| ☐ Linear Learner                                           |    |
| Factorization Machines                                     |    |
| □ How It Works                                             |    |
| Hyperparameters                                            |    |
| □ Inference Formats                                        |    |
| ■ XGBoost Algorithm                                        |    |
| ☐ Image Classification Algorithm                           |    |
| Sequence to Sequence (seq2seq)                             |    |
| C K-Means Algorithm                                        |    |
| <ul> <li>Principal Component Analysis<br/>(PCA)</li> </ul> |    |
| ☐ Latent Dirichlet Allocation (LDA)                        |    |
| Neural Topic Model (NTM)                                   |    |
| □ DeepAR Forecasting                                       |    |
| □ BlazingText                                              |    |
| Candom Cut Forest                                          |    |
| Using Your Own Algorithms                                  |    |

|                  | Control Control Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Valid values: Non-negative float, Suggested value range: {1e-8, 512}.  Default value: 0.1                                                                                                                                                                                                                                                                                                                                                                                                    |
| linear_lr        | Learning rate for linear terms.  Valid values: Non-negative float. Suggested value range: [1e-8, 512].  Default value: 0.001                                                                                                                                                                                                                                                                                                                                                                 |
| factors_lr       | Learning rate for factorization terms.  Valid values: Non-negative float. Suggested value range: [1e-8, 512].  Default value: 0.0001                                                                                                                                                                                                                                                                                                                                                         |
| bias_wd          | Weight decay for the bias term.  Valid values: Non-negative float. Suggested value range: (1e-8, 512).  Default value: 0.01                                                                                                                                                                                                                                                                                                                                                                  |
| linear_wd        | Weight decay for linear terms.  Valid values: Non-negative float. Suggested value range: [1e-8, 512].  Default value: 0.001                                                                                                                                                                                                                                                                                                                                                                  |
| factors_wd       | Weight decay for factorization terms.  Valid values: Non-negative float. Suggested value range: [1e-8, 512].  Default value: 0.00001                                                                                                                                                                                                                                                                                                                                                         |
| bias_init_method | Initialization method for the bias term.  • normal Initializes weights with random values sampled from a normal distribution with a mean of zero and standard deviation specified bias_init_signa.  • uniform: Initializes weights with random values uniformly sampled from a range specified by [-bias_init_scale, +bias_init_scale + constant: Initializes the weights to a scalar value specified by bias_init_value.  Valid values: uniform, normal, or constant  Default value: normal |
| bias_init_scale  | Range for initialization of the bias term. Takes effect if bias_init_method is set to uniform.                                                                                                                                                                                                                                                                                                                                                                                               |









C English

| Amazon SageMaker Developer Guide      | Q |
|---------------------------------------|---|
| Documentation - This Guide            | B |
| Search                                | ū |
| ☐ What is Amazon SageMaker?           |   |
| □ How It Works                        |   |
| Getting Started                       |   |
| Using Buit-in Algorithms              |   |
| Common Information                    |   |
| ☐ Linear Learner                      |   |
| E Factorization Machines              |   |
| □ How It Works                        |   |
| ☐ Hyperparameters                     |   |
| □ Inference Formats                   |   |
| ■ XGBoost Algorithm                   |   |
| ☐ Image Classification Algorithm      |   |
| Sequence to Sequence (seq2seq)        |   |
| C K-Means Algorithm                   |   |
| Principal Component Analysis<br>(PCA) |   |
| Catent Dirichlet Allocation (LDA)     |   |
| ■ Neural Topic Model (NTM)            |   |
| ■ DeepAR Forecasting                  |   |
| □ BlazingText                         |   |
| Candom Cut Forest                     |   |
| Using Your Own Algorithms             |   |

|                    | Valid values: Non-negative float. Suggested value range: [1e-8, 512].  Default value: 0.01                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| linear_wd          | Weight decay for linear terms.  Valid values: Non-negative float. Suggested value range: [1e-8, 512].  Default value: 0.001                                                                                                                                                                                                                                                                                                                                                                        |
| factors_wd         | Weight decay for factorization terms.  Valid values: Non-negative float. Suggested value range: (1e-8, 512).  Default value: 0.00001                                                                                                                                                                                                                                                                                                                                                               |
| bies_init_method   | Initialization method for the bias term.  • normal initializes weights with random values sampled from a normal distribution with a mean of zero and standard deviation specified by bias_init_signa.  • uniform: initializes weights with random values uniformly sampled from a range specified by [-bias_init_scale, +bias_init_scale].  • constant: initializes the weights to a scalar value specified by bias_init_value.  Valid values: uniform, normal, or constant  Default value: normal |
| bias_init_scale    | Range for initialization of the bias term. Takes effect if bias_init_method is set to uniform.  Valid values: Non-negative float. Suggested value range: [1e-8, 512].  Default value: -                                                                                                                                                                                                                                                                                                            |
| bias_init_siqma    | Standard deviation for initialization of the bias term. Takes effect if bias_init_method is set to normal.  Valid values: Non-negative float. Suggested value range: [1e-8, 512].  Default value: 0.01                                                                                                                                                                                                                                                                                             |
| bias_init_value    | Initial value of the bias term. Takes effect if bias_init_method is set to constant.  Valid values: Float. Suggested value range: [1e-8, 512]/  Default value: -                                                                                                                                                                                                                                                                                                                                   |
| linear_init_method | Initialization method for linear terms.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |











| Amazon SageMaker  Developer Guide  Documentation - This Guide  Search  What is Amazon SageMaker? | bias_init_method   | Initialization method for the bias term.  • normal initializes weights with random values sampled from a normal distribution with a mean of zero and standard deviation specified by bias_init_sigms.  • uniform: Initializes weights with random values uniformly sampled from a range specified by [-bias_init_scale, *bias_init_scale].  • constant: Initializes the weights to a scalar value specified by bias_init_value.  Valid values: uniform, normal, or constant  Default value: normal |
|--------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Getting Started                                                                                  | bias_init_scale    | Range for initialization of the bias term. Takes effect if bias_init_method is set to uniform.                                                                                                                                                                                                                                                                                                                                                                                                     |
| Using Built-in Algorithms Common Information                                                     |                    | Valid values: Non-negative float. Suggested value range: (1e-8, 512).                                                                                                                                                                                                                                                                                                                                                                                                                              |
| □ Linear Learner                                                                                 |                    | Default value: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Factorization Machines How It Works                                                              | bias_init_sigme    | Standard deviation for initialization of the bias term. Takes effect if bias_init_method is set to normal.                                                                                                                                                                                                                                                                                                                                                                                         |
| ☐ Hyperparameters                                                                                |                    | Valid values: Non-negative float. Suggested value lange: (1e-8, 512).                                                                                                                                                                                                                                                                                                                                                                                                                              |
| □ Inference Formats                                                                              |                    | Default value: 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| □ XGBoost Algorithm                                                                              | blas_init_value    | Initial value of the bias term. Takes effect if bias_init_method is set to constant.                                                                                                                                                                                                                                                                                                                                                                                                               |
| □ Image Classification Algorithm                                                                 |                    | Valid values: Float. Suggested value range: [1e-8, 512]/                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sequence to Sequence (seq2seq)                                                                   |                    | Default value:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ■ K-Means Algorithm                                                                              | linear_init_method | Initialization method for linear terms,                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Principal Component Analysis (PCA)                                                               |                    | normal initializes weights with random values sampled from a normal distribution with a mean of zero and standard deviation specified by linear init signa.                                                                                                                                                                                                                                                                                                                                        |
| □ Latent Dirichlet Allocation (LDA)                                                              |                    | uniform Initializes weights with random values uniformly sampled from a range specified by [-linear_init_scale, +linear_init_scale].                                                                                                                                                                                                                                                                                                                                                               |
| Neural Topic Model (NTM)                                                                         |                    | constant initializes the weights to a scalar value specified by linear_init_value.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ☐ DeepAR Forecasting                                                                             |                    | Valid values: uniform, normal, or constant.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| □ BlatingText                                                                                    |                    | Default value: normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Random Cut Forest                                                                                | linear_init_scale  | Range for initialization of linear terms. Takes effect if linear init method is set to uniform.                                                                                                                                                                                                                                                                                                                                                                                                    |
| Using Your Own Algorithms                                                                        |                    | Valid values: Non-negative float. Suggested value range: [1e-8, 512].                                                                                                                                                                                                                                                                                                                                                                                                                              |











| Decumentation - This Guide  Search  What is Amazon SageMaker?  How it Works  Getting Started.  Using Built-in Algorithms Common Information  Linear Learner Factorization Machines How it Works Hyperparameters Inference Formats  XGBoost Algorithm Sequence to Sequence (seq2seq) K-Means Algorithm Sequence to Sequence (seq2seq) K-Means Algorithm Principal Component Analysis (PCA) Latent Dirichlet Allocation (LDA) Neural Topic Model (NTM) DeepAR Forecasting BlatingText Random Cut Forest Using Your Own Algorithms | Amazon SageMaker                  | Q  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----|
| Search  What is Amazon SageMaker?  How it Works  Getting Started.  Using Built-in Algorithms Common information  Linear Learner Factorization Machines How it Works Hyperparameters Inference Formats  XGBoost Algorithm Image Classification Algorithm Sequence to Sequence (seq2seq) K-Means Algorithm Principal Component Analysis (PCA)  Latent Dirichlet Allocation (LDA) Neural Topic Model (NTM) DeepAR Forecasting BlazingText Random Cut Forest                                                                        | Developer Guide                   |    |
| ☐ What is Amazon SageMaker?  ☐ How it Works ☐ Getting Started. ☐ Using Built-in Algorithms ☐ Common Information ☐ Linear Learner ☐ Factorization Machines ☐ How it Works. ☐ Hyperparameters ☐ Inference Formats ☐ XGBoost Algorithm ☐ Image Classification Algorithm ☐ Sequence to Sequence (seq2seq) ☐ K-Means Algorithm ☐ Principal Component Analysis (PCA) ☐ Latent Dirichlet Allocation (LDA) ☐ Neural Topic Model (NTM) ☐ DeepAR Forecasting ☐ BlazingText ☐ Random Cut Forest                                            | Documentation - This Guide        | B  |
| ☐ How It Works ☐ Getting Started. ☐ Using Built-in Algorithms ☐ Common Information ☐ Linear Learner ☐ Factorization Machines. ☐ How It Works. ☐ Hyperparameters ☐ Inference Formats ☐ XGBoost Algorithm ☐ Image Classification Algorithm ☐ Sequence to Sequence (seq2seq) ☐ K-Means Algorithm ☐ Principal Component Analysis (PCA) ☐ Latent Dirichlet Allocation (LDA) ☐ Neural Topic Model (NTM) ☐ DeepAR Forecasting ☐ BlatingText ☐ Random Cut Forest                                                                        | Search                            | Ø. |
| ☐ Getting Started ☐ Using Built-in Algorithms ☐ Common Information ☐ Linear Learner ☐ Factorization Machines ☐ How It Works ☐ Hyperparameters ☐ Inference Formats ☐ XGBoost Algorithm ☐ Image Classification Algorithm ☐ Sequence to Sequence (seq2seq) ☐ X-Means Algorithm ☐ Principal Component Analysis (PCA) ☐ Latent Dirichlet Allocation (LDA) ☐ Neural Topic Model (NTM) ☐ DeepAR Forecasting ☐ BlatingText ☐ Random Cut Forest                                                                                          | ☐ What is Amazon SageMaker?       |    |
| □ Using Built-in Algorithms □ Common Information □ Linear Learner □ Factorization Machines □ How it Works □ Hyperparameters □ Inference Formats □ XGBoost Algorithm □ Image Classification Algorithm □ Sequence to Sequence (seq2seq) □ X-Means Algorithm □ Principal Component Analysis (PCA) □ Latent Dirichlet Allocation (LDA) □ Neural Topic Model (NTM) □ DeepAR Forecasting □ BlastingText □ Random Cut Forest                                                                                                           | How It Works                      |    |
| ☐ Common Information ☐ Linear Learner ☐ Factorization Machines ☐ How it Works ☐ Hyperparameters ☐ Inference Formats ☐ XGBoost Algorithm ☐ Image Classification Algorithm ☐ Sequence to Sequence (seq2seq) ☐ K-Means Algorithm ☐ Principal Component Analysis (PCA) ☐ Latent Dirichlet Allocation (LDA) ☐ Neural Topic Model (NTM) ☐ DeepAR Forecasting ☐ BlastingText ☐ Random Cut Forest                                                                                                                                       | Getting Started                   |    |
| □ Linear Learner □ Factorization Machines □ How it Works □ Hyperparameters □ Inference Formats □ XGBoost Algorithm □ Image Classification Algorithm □ Sequence to Sequence (seq2seq) □ K-Means Algorithm □ Principal Component Analysis (PCA) □ Latent Dirichlet Allocation (LDA) □ Neural Topic Model (NTM) □ DeepAR Forecasting □ BlastingText □ Random Cut Forest                                                                                                                                                            | Using Built-in Algorithms         |    |
| ☐ Factorization Machines ☐ How it Works ☐ Hyperparameters ☐ Inference Formats ☐ XGBoost Algorithm ☐ Image Classification Algorithm ☐ Sequence to Sequence (seq2seq) ☐ K-Means Algorithm ☐ Principal Component Analysis (PCA) ☐ Latent Dirichlet Allocation (LDA) ☐ Neural Topic Model (NTM) ☐ DeepAR Forecasting ☐ BlazingText ☐ Random Cut Forest                                                                                                                                                                              | Common Information                |    |
| ☐ How it Works ☐ Hyperparameters ☐ Inference Formats ☐ XGBoost Algorithm ☐ Image Classification Algorithm ☐ Sequence to Sequence (seq2seq) ☐ X-Means Algorithm ☐ Principal Component Analysis (PCA) ☐ Latent Dirichlet Allocation (LDA) ☐ Neural Topic Model (NTM) ☐ DeepAR Forecasting ☐ BlatingText ☐ Random Cut Forest                                                                                                                                                                                                       | □ Linear Learner                  |    |
| ☐ Hyperparameters ☐ Inference Formats ☐ XGBoost Algorithm ☐ Image Classification Algorithm ☐ Sequence to Sequence (seq2seq) ☐ K-Means Algorithm ☐ Principal Component Analysis (PCA) ☐ Latent Dirichlet Allocation (LDA) ☐ Neural Topic Model (NTM) ☐ DeepAR Forecasting ☐ BlazingText ☐ Random Cut Forest                                                                                                                                                                                                                      | Factorization Machines            |    |
| ☐ Inference Formats ☐ XGBoost Algorithm ☐ Image Classification Algorithm ☐ Sequence to Sequence (seq2seq) ☐ K-Means Algorithm ☐ Principal Component Analysis (PCA) ☐ Latent Dirichlet Allocation (LDA) ☐ Neural Topic Model (NTM) ☐ DeepAR Forecasting ☐ BlatingText ☐ Random Cut Forest                                                                                                                                                                                                                                        | □ How It Works                    |    |
| ■ XG8oost Algorithm ■ Image Classification Algorithm ■ Sequence to Sequence (seq2seq) ■ K-Means Algorithm ■ Principal Component Analysis (PCA) ■ Latent Dirichlet Allocation (LDA) ■ Neural Topic Model (NTM) ■ DeepAR Forecasting ■ BlazingText ■ Random Cut Forest                                                                                                                                                                                                                                                            | Hyperparameters                   |    |
| □ Image Classification Algorithm □ Sequence to Sequence (seq2seq) □ K-Means Algorithm □ Principal Component Analysis (PCA) □ Latent Dirichlet Allocation (LDA) □ Neural Topic Model (NTM) □ DeepAR Forecasting □ BlatingText □ Random Cut Forest                                                                                                                                                                                                                                                                                | □ Inference Formats               |    |
| Sequence to Sequence (seq2seq)  K-Means Algorithm Principal Component Analysis (PCA)  Latent Dirichlet Allocation (LDA)  Neural Topic Model (NTM)  DeepAR Forecasting BlatingText Random Cut Forest                                                                                                                                                                                                                                                                                                                             | ■ XGBoost Algorithm               |    |
| K-Means Algorithm     Principal Component Analysis (PCA)     Latent Dirichlet Allocation (LDA)     Neural Topic Model (NTM)     DeepAR Forecasting     BlatingText     Random Cut Forest                                                                                                                                                                                                                                                                                                                                        | ■ Image Classification Algorithm  |    |
| Principal Component Analysis (PCA)  Latent Dirichlet Allocation (LDA)  Neural Topic Model (NTM)  DeepAR Forecasting BlazingText Random Cut Forest                                                                                                                                                                                                                                                                                                                                                                               | Sequence to Sequence (seq2seq)    |    |
| (PCA)  Latent Dirichlet Allocation (LDA)  Neural Topic Model (NTM)  DeepAR Forecasting BlatingText Random Cut Forest                                                                                                                                                                                                                                                                                                                                                                                                            | C K-Means Algorithm               |    |
| Neural Topic Model (NTM)     DeepAR Forecasting     BlasingText     Random Cut Forest                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |    |
| ☐ DeepAR Forecasting ☐ BlastingText ☐ Random Cut Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Latent Dirichlet Allocation (LDA) |    |
| ☐ BlatingText ☐ Random Cut Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Neural Topic Model (NTM)          |    |
| Random Cut Forest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ■ DeepAR Forecasting              |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ■ BlazingText                     |    |
| Using Your Own Algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Random Cut Forest                 |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Using Your Own Algorithms         |    |

|                    | Carl Sand Continue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | constant: Initializes the weights to a scalar value specified by bias_init_value.  Valid values: uniform, normal, or constant  Default value: normal                                                                                                                                                                                                                                                                                                                                                    |
| bias_init_scale    | Range for initialization of the bias term. Takes effect if bias_init_method is set to uniform.  Valid values: Non-negative float. Suggested value range: (1e-8, 512).  Default value: -                                                                                                                                                                                                                                                                                                                 |
| bias_init_sigma    | Standard deviation for initialization of the bias term. Takes effect if bias_init_method is set to normal.  Valid values: Non-negative float. Suggested value range: [1e-8, 512].  Default value: 0.01                                                                                                                                                                                                                                                                                                  |
| bias_init_value    | Initial value of the bias term. Takes effect if bias_init_method is set to constant.  Valid values: Float. Suggested value range: [1e-8, \$12]/  Default value:                                                                                                                                                                                                                                                                                                                                         |
| linear_init_method | Initialization method for linear terms.  • normal initializes weights with random values sampled from a normal distribution with a mean of zero and standard deviation specified by linear_init_sigma.  • uniform initializes weights with random values uniformly sampled from a range specified by [-linear_init_scale, +linear_init_scale]  • constant initializes the weights to a scalar value specified by linear_init_value.  Valid values: uniform, normal, or constant.  Default value: normal |
| linear_init_scale  | Range for initialization of linear terms. Takes effect if linear_init_method is set to uniform.  Valid values: Non-negative float. Suggested value range: [1e-8, 512].  Default value: -                                                                                                                                                                                                                                                                                                                |
| linear_init_sigma  | Standard deviation for initialization of linear terms. Takes effect if linear_init_method is set to normal.  Valid values: Non-negative float. Suggested value range: [1e-8, 512].  Default value: 0.01                                                                                                                                                                                                                                                                                                 |











C English - Sign in to the Console

| Amazon           | SageMaker                | -    |
|------------------|--------------------------|------|
| Developer G      | uide                     |      |
| Documental       | Ion - This Guide         |      |
| Search           |                          |      |
| □ What is /      | Amazon SageMaker?        |      |
| B How It V       | Vorks                    |      |
| Getting !        | Started.                 |      |
| Using Bu         | ult-in Algorithms        |      |
| Comm             | non information          |      |
| D Linear         | Learner                  |      |
| Factor           | ization Machines         |      |
| □ Hov            | v It Works               |      |
| Hyp              | erparameters             |      |
| □ Infe           | rence Formats            |      |
| ■ XGBox          | ost Algorithm            |      |
| □ image          | Classification Algorith  | m    |
| ☐ Seque          | nce to Sequence (seq2    | seq) |
| □ K-Mea          | ins Algorithm            |      |
| Princip<br>(PCA) | pal Component Analysi    | 15   |
| ☐ Latent         | Dirichlet Allocation (LI | DAJ  |
|                  |                          |      |
| □ Neura          | Topic Model (NTM)        |      |
|                  | Topic Model (NTM)        |      |
|                  | AR Forecasting           |      |

|                    | CAST TOTAL CONTROL OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | constant: Initializes the weights to a scalar value specified by bias_init_value.  Valid values: uniform, normal, or constant  Default value: normal                                                                                                                                                                                                                                                                                                                                                    |
| bias_init_scale    | Range for initialization of the bias term. Takes effect if bias_init_method is set to uniform.  Valid values: Non-negative float. Suggested value range: (1e-8, 512).  Default value: -                                                                                                                                                                                                                                                                                                                 |
| bias_init_sigma    | Standard deviation for initialization of the bias term. Takes effect if bias_init_method is set to normal.  Valid values: Non-negative float. Suggested value range: [1e-8, 512].  Default value: 0.01                                                                                                                                                                                                                                                                                                  |
| bias_init_value    | Initial value of the bias term. Takes effect if bias_init_method is set to constant.  Valid values: Float. Suggested value range: [1e-8, \$12]/  Default value:                                                                                                                                                                                                                                                                                                                                         |
| linear_init_method | Initialization method for linear terms.  • normal initializes weights with random values sampled from a normal distribution with a mean of zero and standard deviation specified by linear_init_sigma.  • uniform initializes weights with random values uniformly sampled from a range specified by [-linear_init_scale, +linear_init_scale]  • constant initializes the weights to a scalar value specified by linear_init_value.  Valid values: uniform, normal, or constant.  Default value: normal |
| linear_init_scale  | Range for initialization of linear terms. Takes effect if linear_init_method is set to uniform.  Valid values: Non-negative float. Suggested value range: [1e-8, 512].  Default value: -                                                                                                                                                                                                                                                                                                                |
| linear_init_sigma  | Standard deviation for initialization of linear terms. Takes effect if linear_init_method is set to normal.  Valid values: Non-negative float. Suggested value range: [1e-8, 512].  Default value: 0.01                                                                                                                                                                                                                                                                                                 |

## Development and Deployment



- Loss function is one of the most important areas to pay attention to.
- Multi-label cross-entropy loss has worked well in the past.
- This is relatively simple to apply to a wide variety of model types.
   Ranking loss often works better, but is more complex to apply correctly.
- Scalability is always a big challenge. Offline batch computation and saving the results can help.

## Logging and Measurement



- Deploying a recommender system requires some care since a model only succeeds if good behavioral data can be logged.
- Moreover, without good logging it is impossible to assess the quality of the deployment. Tools such as Amazon Kinesis are ideally suited for this purpose.
- Display bias is very strong this means that customers are more likely to click on a mediocre recommendation that they see than an excellent recommendation they don't see.