Plasma-assisted combustion: applications and fundamental mechanisms

Christophe Laux, Diane Rusterholtz, Da Xu, Marien Simeni Simeni, Guillaume Pilla, Séverine Barbosa, Deanna Lacoste, Jonas Moeck*, Gabi Stancu, Denis Veynante

Ecole Centrale Paris

Laboratoire EM2C

* TU Berlin

Work supported by: ANR PLASMAFLAME, ANR PREPA, Chaire d'Excellence

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding and DMB control number.	tion of information. Send commer tarters Services, Directorate for In	nts regarding this burden estimate formation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE OCT 2013		2. REPORT TYPE		3. DATES COVE 00-00-2013	RED 3 to 00-00-2013
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
Plasma-assisted combustion: applications and fundamental mechanisms				5b. GRANT NUMBER	
				5c. PROGRAM E	ELEMENT NUMBER
6. AUTHOR(S)			5d. PROJECT NUMBER		
			5e. TASK NUMBER		
				5f. WORK UNIT	NUMBER
	ZATION NAME(S) AND AI ris, Grande voie des	` /	?tenay-Malabry,	8. PERFORMING REPORT NUMB	G ORGANIZATION ER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distribut	ion unlimited			
13. SUPPLEMENTARY NO	OTES				
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON
a. REPORT	b. ABSTRACT	c. THIS PAGE	Same as	37	

unclassified

Report (SAR)

Report Documentation Page

unclassified

unclassified

Form Approved OMB No. 0704-0188

Outline

- Demonstrations of plasma assisted combustion:
 - Lean flame stabilization
 - Control of thermo-acoustic instabilities

- Fundamental mechanisms:
 - Chemical and thermal effects of NRP discharges
 - Measurements of NO emissions

Conclusions

Stabilization of Lean Premixed Flames using NRP discharges

Mini-PAC burner:

Clark

25-kW Lean Premixed Propane-Air Burner

Mini-PAC burner

Stability regimes of mini-PAC burner

NRP discharge lowers the lean extinction limit by about 10% and consumes less than 1% of the flame power

Stabilization of Larger Scale Combustors

52-kW two-stage swirled gas turbine injector

Propane/air at 1 bar

Combustion chamber

Air: 105 m³/h

Propane: 2.1 m³/h Max power: 52 kW Exit velocity: 40 m/s

S. Barbosa, G. Pilla, D. Lacoste P. Scouflaire, S. Ducruix, C.O. Laux, D. Veynante, European Combustion Meeting, Vienna, 2009

Two-stage swirled gas turbine injector

Premixed propane/air, 52 kW, 1 atm

S. Barbosa, G. Pilla, D. Lacoste P. Scouflaire, S. Ducruix, C.O. Laux, D. Veynante, European Combustion Meeting, Vienna, 2009

Constant air flow rate: 105 m³/h

Without plasma

2.1 m 3 /h Φ =0.47

 $1.95 \text{ m}^3/\text{h}$ $\Phi = 0.44$

1.8 m 3 /h Φ =0.4

Gain 70%

Extinction with plasma $\Phi=0.11$

With plasma, 30 kHz

2.1 m 3 /h Φ =0.47

1.95 m 3 /h Φ =0.44

1.8 m³/h $\Phi = 0.4$

1.65 m³/h Φ =0.37

1.35 m³/h Φ =0.3

1.2 m³/h Φ =0.27

 $1.05 \text{ m}^3/\text{h}$ $\Phi = 0.23$

200 kW Turbulent Aerodynamic Injector (ONERA/MERCATO)

Kerosene/air at 3 bar

G. Heid, G. Pilla, R. Lecourt D.A. Lacoste, ISABE 2009

Without plasma

Extinction: $\Phi = 0.44$

With plasma, 100 kHz

Extinction: $\Phi = 0.21$

- 52% reduction of the Lean Extinction Limit
- Power consumed by NRP discharge: < 1% of flame power

Dynamic control of thermo-acoustic instabilities

Closed loop control of a turbulent swirled flame

Pulse duration 10 ns

Pulse amplitude 12 kV

Pulse repetition frequency 10–50 kHz

 $P_{\text{NRP}}/Q_{\text{th}} < 1\%$

Closed loop control of a turbulent swirled flame

$$\phi = 0.66$$
, $Q_{\text{th}} = 43 \,\text{kW}$

FUNDAMENTAL MECHANISMS

Chemical and thermal effects of NRP discharges

Study NRP discharge in air at 1000 K, 1 atm:

- 10-ns pulse
- 5.7 kV
- Gap: 4.5 mm
- 10 kHz
- 0.67±0.02 mJ/pulse

Investigation of two-step mechanism for oxygen dissociation

$$N_2 + e \rightarrow N_2^* + e \quad (N_2^* = N_2 \text{ A, B, C})$$
Thresholds: 6.2, 7.4, 11.0 eV
$$N_2^* + O_2 \rightarrow N_2 + O + O + \Delta T$$
 $\Delta T = 1.0, 2.2, 5.9 \text{ eV}$

Measured quantities:

- Electrodynamics: U, I, Energy
- Discharge radius
- O atoms: TALIF
- N₂ A: CRDS
- N₂ B and N₂ C: OES
- Electrons: Stark broadening
- Temperature: OES (T_{rot} N₂ C and T_{rot} N₂B)

Discharge radius

Synchronized measurements of V, I, temperature, densities

Ultrafast heating: 900 K in 20 ns

50% dissociation of O_2

Measured and predicted temporal profiles of O and Temperature

- Confirmation of the two-step mechanism of ultrafast heating and oxygen dissociation
- Full reference test case for numerical simulations

Synchronized measurements of V, I, temperature, densities

Rusterholtz et al., J. Phys D., 2013, in press

Quenching rates of N₂ C by O₂ at high temperature

- Recommended rate: 3x10⁻¹⁰(T/300)^{0.3}
- Same value obtained at 2000 K by Packan (NRP glow with no O atoms) and present work (NRP spark with 50% O₂, 50% O)

TALIF measurements of O density during one pulse cycle (100 μs)

- O lifetime in air: 25 μs
- Even shorter in presence of fue (Uddi, Jiang, Mintusov, Adamovich, Lempert,

Proc. Combust. Inst. 2009)

Processes involved in flame stabilization by NRP discharges

CH* emission and OH PLIF

Propane/air ϕ = 0.8, 1 bar, Flame power: 1.2 kW, Discharge power 12 W, PRF 30 kHz

Dynamic response of flame to discharge

Propane/air ϕ = 0.8, 1 bar, Flame power: 1.2 kW, Discharge power 12 W, PRF 30 kHz

Relative importance of Thermal and Chemical Effects

Temporal evolution of flame front vs discharge power

Propane/air ϕ = 0.8, 1 bar, Flame power: 1.2 kW

Effect of pulse frequency on heating and O production at fixed discharge power = 12 W

- Heating increases with PRF
- O density decreases with PRF

Effect of pulse frequency on flame front evolution at fixed discharge power = 12 W

Thermal vs chemical effects

Pulse frequency	10 kHz	80 kHz
Average discharge power	12 W	12 W
Energy per pulse	1.2 mJ	0.15 mJ
Normalized O density at end of pulse	1	0.1
Temperature at end of pulse	2300 K	2600 K
Time to reattach flame	5 ms	5 ms

 Stabilization does not depend on whether the energy goes into heat or dissociation. It only depends on the TOTAL discharge power

NO measurements

Setup for NO measurements

- Sb1770 DN model (Alpes laser)
- 2mW maximum power
- Interpulse (10 ns pulse, at 200 kHz)
- Spectral range: 10 cm⁻¹, [1899 cm⁻¹; 1909 cm⁻¹]
- Spectral width: 0.006 cm⁻¹

$$(X_{1/2}, \nu = 0) \rightarrow (X_{1/2}, \nu = 1) \text{ R6.5 at } 1900.076 \text{ cm}^{-1}$$

NO measurements in a premixed methane/air flame (mini-PAC)

Conclusions

- NRP discharges can efficiently stabilize lean flames, with < 1% of flame power:
 - Mini-Pac: propane/air at 1 bar, 25 kW
 - Two-stage injector: propane/air at 1 bar, 52 kW
 - Aerodynamic injector: kerosene/air at 3 bar, 200 kW
 - Dynamic control of combustion instabilities
- Fundamental processes:
 - Complete reference test case for 2 D simulations of NRP discharge in pin-pin geometry
 - High temperature quenching rates for N₂ C and N₂ B
 - Chemical and thermal effects (ultrafast heating and O₂ dissociation) inducing production of OH. Appear to have equivalent impact on flame stailization
- Need to investigate
 - How to reduce NOx emissions
 - Higher pressure applications