Research Methods for Political Science

Rational Choice and Game Theory

THE UNIVERSITY OF DUBLIN **Dr. Thomas Chadefaux**

21 flags

21 flags

FFFF FFFF FFFF FFFF

Empirical and formal theories

Empirical theories: explaning (parts of) (social) reality

Formal theories: deduce conclusions from a number of (behavioural) assumptions

Why is it useful?

- One way of addressing the endogeneity problem: Strong theoretical reasons to expect x -> y, and not y -> x
- Game theory and modeling provide microfoundations for your argument

Rational choice theory

- Actors are able to order their alternative goals, values, tastes, and strategies.

- Preferences are
 - Complete
 - Transitive

- Actors choose from available alternatives so as to maximize their satisfaction.

Aside: How rationality can fail

Andrew's	Beth's	Connor's
preferences	preferences	preferences
Candidate A	Candidate C	Candidate B
Candidate B	Candidate A	Candidate C
Candidate C	Candidate B	Candidate A

A v. B: A wins

A v. C: C wins

B v. C: B wins

→ A>B>C>A!

Game theory

Von Neumann and Morgenstern, Theory of Games and Economic Behavior (1944)

Cooperative vs. Non-cooperative

Cooperative games: players in the game can interact

Non-cooperative games: players make decisions independently

Strategic game

Set of players

For each player, set of actions

For each player, set of **preferences** over the set of action profiles

		Player 2		
		Quiet	Fink	
Player 1	Quiet	2, 2	0, 3	
	Fink	3, 0	1, 1	

Pay-off for player 1

Pay-off for player 2

Bach or Stravinsky

(Battle of the Sexes)

		Player 2	
		Bach	Stravinsky
Player 1	Bach	2, 1	0, 0
	Stravinsky	0, 0	1, 2

Stag Hunt

		Player 2	
		Stag	Hare
Player 1	Stag	2, 2	0, 1
	Hare	1, 0	1, 1

Matching Pennies

		Player 2	
		Head	Tail
Player 1	Head	1, -1	-1, 1
	Tail	-1, 1	1, -1

John Nash

Nash equilibrium

A Nash equilibrium is an action profile awwith the property that no player *i* can do better by choosing an action different from a_i^* , given that every other player *j* adheres to a_j^* .

Nash equilibrium

No player can improve his pay-off by unilateraly changing his action.

		Player 2	
		Quiet	Fink
Player 1	Quiet	2, 2	0, 3
	Fink	3, 0	1,1

		Player 2	
		Quiet	Fink
Player 1	Quiet	2, 2	9, 3
	Fink	3, 0	1, 1

Not a Nash equilibrium

Security dilemma

(Stag Hunt variant)

		Player 2	
		Refrain	Arm
Player 1	Refrain	3, 3	0, 2
	Arm	2, 0	1, 1

Nash equilibrium

Security dilemma

(Stag Hunt variant)

		Player 2	
		Refrain	Arm
Player 1	Refrain	3, 3	0, 2
	Arm	2, 0	1, 1

Also a Nash equilibrium

Best response function

'Best response' for player *i* given a certain action by player *j* (or any other players): the response(s) with the highest pay-offs

A Nash equilibrium is a profile of actions such that each action is a best response to the others' actions.

		Player 2	
		Quiet	Fink
Player 1	Quiet	2, 2	0, 3
	Fink	3, 0	1, 1
	•		

		Player 2	
		Oviet	Finle
		Quiet	Fink
Player 1	Quiet	2, 2	0, 3
	Fink	3*, 0	1*, 1

		Player 2	
		Quiet	Fink
Player 1	Quiet	2, 2	0, 3
	Fink	3*, 0	1*, 1

		Player 2	
		Quiet	Fink
Player 1	Quiet	2, 2	0, 3*
	Fink	3*, 0	1*, 1*

Nash equilibrium

Bach or Stravinsky

(Battle of the Sexes)

		Player 2	
		Bach	Stravinsky
Player 1	Bach	2, 1	0, 0
	Stravinsky	0, 0	1, 2

Bach or Stravinsky

(Battle of the Sexes)

		Player 2	
		Bach	Stravinsky
Player 1	Bach	2,1	0, 0
	Stravinsky	0, 0	1,2)

Best responses for player 1

Best responses for player 2

Strengths and limitations of game theory and rational choice

Modelling behaviour: simplification

Purely deductive; compare to empirical evidence.