

credit card fraud detection

▼ import libarary

```
1 import numpy as np
 2 import pandas as pd
 3 import matplotlib.pyplot as plt
 4 import seaborn as sns
 5 from sklearn.linear_model import LinearRegression
 6 from sklearn.svm import SVC
 7 from xgboost import XGBClassifier
 8 from sklearn import preprocessing
 9 import plotly.express as ex
10 from matplotlib import gridspec
11 from sklearn import model_selection
12 from sklearn.model_selection import train_test_split
13 from sklearn.linear_model import LogisticRegression
14 from sklearn.svm import LinearSVC
15 from pandas.plotting import scatter matrix
16 from sklearn.metrics import classification_report
17 from sklearn.metrics import confusion_matrix
18 from sklearn.metrics import accuracy_score
19 from sklearn.metrics import (
20
                               precision_score, recall_score,
21
                              f1_score, matthews_corrcoef,
22
                              confusion matrix)
23 from sklearn.preprocessing import LabelEncoder
24 from sklearn.preprocessing import StandardScaler
25 from sklearn.ensemble import RandomForestClassifier
26
 1 data= pd.read_csv('/content/creditcard.csv')
 1 data.head()
```

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	• • •	V21	V22	V23	V24	V25	V26	V27	V28	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787		-0.018307	0.277838	-0.110474	0.066928	0.128539	-0.189115	0.133558	-0.021053	
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425		-0.225775	-0.638672	0.101288	-0.339846	0.167170	0.125895	-0.008983	0.014724	
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654		0.247998	0.771679	0.909412	-0.689281	-0.327642	-0.139097	-0.055353	-0.059752	
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024		-0.108300	0.005274	-0.190321	-1.175575	0.647376	-0.221929	0.062723	0.061458	

1 data.isnull().sum()

Time V1 0 V2 0 0 V3 V4 V5 0 V6 0 V7 0 V8 0 V9 0 V10 0 V11 V12 V13 0 V14 0 V15 V16 0 V17 0 V18 0 V19 V20 V21 0 V22 V23 V24 0 V25 0 V26 0 V27 V28 0 Amount 0 Class 0 dtype: int64

1 data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284807 entries, 0 to 284806
Data columns (total 31 columns):
Column Null Count Data

Data	columns	(total	31 column	s):
#	Column	Non-Nu	ll Count	Dtype
0	Time	284807	non-null	float64
1	V1	284807	non-null	float64
2	V2	284807	non-null	float64
3	V3	284807	non-null	float64
4	V4	284807	non-null	float64
5	V5	284807	non-null	float64
6	V6	284807	non-null	float64
7	V7	284807	non-null	float64
8	V8	284807	non-null	float64
9	V9	284807	non-null	float64

```
10 V10
               284807 non-null float64
    11 V11
                284807 non-null float64
    12 V12
               284807 non-null float64
    13 V13
                284807 non-null float64
    14 V14
                284807 non-null float64
    15 V15
                284807 non-null float64
    16 V16
               284807 non-null float64
                284807 non-null float64
    17 V17
    18 V18
               284807 non-null float64
    19 V19
               284807 non-null float64
    20 V20
               284807 non-null float64
    21 V21
               284807 non-null float64
    22 V22
               284807 non-null float64
               284807 non-null float64
    23 V23
    24 V24
               284807 non-null float64
    25 V25
               284807 non-null float64
               284807 non-null float64
    26 V26
    27 V27
               284807 non-null float64
    28 V28
               284807 non-null float64
    29 Amount 284807 non-null float64
    30 Class 284807 non-null int64
   dtypes: float64(30), int64(1)
   memory usage: 67.4 MB
1 data.columns
   Index(['Time', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10',
          'V11', 'V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20',
          'V21', 'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28', 'Amount',
          'Class'],
         dtype='object')
1 data = data.dropna()
1 data.isnull().sum()
   Time
   V1
            0
   V2
            0
            0
   V3
   V5
            0
   V6
            0
   V7
            0
   V8
            0
   V9
            0
   V10
   V11
   V12
   V13
            0
   V14
            0
   V15
            0
   V16
            0
   V17
            0
   V18
   V19
   V20
            0
   V21
            0
   V22
            0
   V23
            0
   V24
```

```
V25 0
V26 0
V27 0
V28 0
Amount 0
Class 0
dtype: int64
```

1 data.describe()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	• • •	V21	V22
count	284807.000000	2.848070e+05		2.848070e+05	2.848070e+05								
mean	94813.859575	1.168375e-15	3.416908e-16	-1.379537e-15	2.074095e-15	9.604066e-16	1.487313e-15	-5.556467e-16	1.213481e-16	-2.406331e-15		1.654067e-16	-3.568593e-16
std	47488.145955	1.958696e+00	1.651309e+00	1.516255e+00	1.415869e+00	1.380247e+00	1.332271e+00	1.237094e+00	1.194353e+00	1.098632e+00		7.345240e-01	7.257016e-01
min	0.000000	-5.640751e+01	-7.271573e+01	-4.832559e+01	-5.683171e+00	-1.137433e+02	-2.616051e+01	-4.355724e+01	-7.321672e+01	-1.343407e+01		-3.483038e+01	-1.093314e+01
25%	54201.500000	-9.203734e-01	-5.985499e-01	-8.903648e-01	-8.486401e-01	-6.915971e-01	-7.682956e-01	-5.540759e-01	-2.086297e-01	-6.430976e-01		-2.283949e-01	-5.423504e-01
50%	84692.000000	1.810880e-02	6.548556e-02	1.798463e-01	-1.984653e-02	-5.433583e-02	-2.741871e-01	4.010308e-02	2.235804e-02	-5.142873e-02		-2.945017e-02	6.781943e-03
75%	139320.500000	1.315642e+00	8.037239e-01	1.027196e+00	7.433413e-01	6.119264e-01	3.985649e-01	5.704361e-01	3.273459e-01	5.971390e-01		1.863772e-01	5.285536e-01
max	172792.000000	2.454930e+00	2.205773e+01	9.382558e+00	1.687534e+01	3.480167e+01	7.330163e+01	1.205895e+02	2.000721e+01	1.559499e+01		2.720284e+01	1.050309e+01
8 rows >	31 columns												

EXPLORATORY DATA ANALYSIS¶

```
1 fraud = data[data['Class'] == 1]
2 valid = data[data['Class'] == 0]
3 fraction = len(fraud)/float(len(valid))
5 print(fraction)
6 print("Fraud Cases: {}".format(len(data[data['Class'] == 1])))
7 print("Valid Cases: {}".format(len(data[data['Class'] == 0])))
   0.0017304750013189597
   Fraud Cases: 492
   Valid Cases: 284315
1 # Print the amount of details for Fraudulent Transaction
2 print("Amount of details for the Fraudulent Transaction")
3 fraud.Amount.describe()
   Amount of details for the Fraudulent Transaction
           492.000000
   count
   mean
             122.211321
             256.683288
   std
               0.000000
   min
```

```
25%
                1.000000
    50%
                9.250000
    75%
              105.890000
    max
             2125.870000
    Name: Amount, dtype: float64
 1 # Print the amount of details for Normal Transaction
 2 print("Amount of details for Normal Transaction")
 3 valid.Amount.describe()
    Amount of details for Normal Transaction
    count 284315.000000
                 88.291022
    mean
    std
                250.105092
                  0.000000
    min
    25%
                  5.650000
    50%
                 22.000000
    75%
                 77.050000
              25691.160000
    max
    Name: Amount, dtype: float64
visualization
```

- 1 # Plot histograms of each parameter 2 data.hist(figsize = (20, 20)) 3 plt.show()

1 ## Correlation matrix
2 corrmat=data.corr()
3 fig=plt.figure(figsize=(36,25))
4
5 sns.heatmap(corrmat, vmax = .8, square = True,annot=True,cmap="coolwarm",linewidth=2)
6 plt.show()

- 0.4

- 0.2

1 sns.displot(data = data, x = 'Amount', y = 'Class')

```
<seaborn.axisgrid.FacetGrid at 0x7d98c4c7caf0>
```


1 data['Class'].value_counts().plot(kind = 'pie', autopct='%1.1f%%')
2

<Axes: ylabel='Class'>

Data preprocessing

1 # Get all the columns from the dataFrame

```
2 columns = data.columns.tolist()
3 print(columns)

['Time', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11', 'V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21', 'V22', 'V23', 'V24', 'V25', 'V26',
```

```
1 print(data.shape)
    (284807, 31)
1 columns = [c for c in columns if c not in ["Class"]]
2 # remove class columns bcoz we want to target with Class so
3
4 print(columns)
    ['Time', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11', 'V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21', 'V22', 'V23', 'V24', 'V25', 'V26',
1
2 # Store the variable we'll be predicting on
3 target = "Class"
1 X = data[columns] # all the columns data there except class
2 Y = data[target] # only Class columns data there
3 #display shape
4 print(X.shape)
5 print(Y.shape)
    (284807, 30)
    (284807,)
```

▼ Train model

```
1 X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
1 print(X_train.shape)
2 print(X_test.shape)
3 print(y_train.shape)
4 print(y_test.shape)
    (227845, 30)
    (56962, 30)
    (227845,)
    (56962,)
1 X_train.head()
```

		Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	• • •	V20	V21	V22	V23	V24	V25	V26
	223361	143352.0	1.955041	-0.380783	-0.315013	0.330155	-0.509374	-0.086197	-0.627978	0.035994	1.054560		-0.125390	0.238197	0.968305	0.053208	-0.278602	-0.044999	-0.216780
	165061	117173.0	-0.400975	-0.626943	1.555339	-2.017772	-0.107769	0.168310	0.017959	-0.401619	0.040378		-0.470372	-0.153485	0.421703	0.113442	-1.004095	-1.176695	0.361924
1 y_train.he		ad()																	
	23361	0																	
	65061	0																	
2	38186	0																	
1	50562	0																	
1	38452	0																	
N	ame: Cl	ass, dtype	e: int64																

1 X_test.head()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	• • •	V20	V21	V22	V23	V24	V25	
43428	41505.0	-16.526507	8.584972	-18.649853	9.505594	-13.793819	-2.832404	-16.701694	7.517344	-8.507059		-1.514923	1.190739	-1.127670	-2.358579	0.673461	-1.413700	-0.462
49906	44261.0	0.339812	-2.743745	-0.134070	-1.385729	-1.451413	1.015887	-0.524379	0.224060	0.899746		0.506044	-0.213436	-0.942525	-0.526819	-1.156992	0.311211	-0.746
29474	35484.0	1.399590	-0.590701	0.168619	-1.029950	-0.539806	0.040444	-0.712567	0.002299	-0.971747		0.212877	0.102398	0.168269	-0.166639	-0.810250	0.505083	-0.232
276481	167123.0	-0.432071	1.647895	-1.669361	-0.349504	0.785785	-0.630647	0.276990	0.586025	-0.484715		-0.244633	0.358932	0.873663	-0.178642	-0.017171	-0.207392	-0.157
278846	168473.0	2.014160	-0.137394	-1.015839	0.327269	-0.182179	-0.956571	0.043241	-0.160746	0.363241		-0.255293	-0.238644	-0.616400	0.347045	0.061561	-0.360196	0.174
5 rows × 3	30 columns																	

1 y_test.head()

43428 1 49906 0 29474 0 276481 0 278846 0

Name: Class, dtype: int64

train using Support vector Classifie

```
1 sc=StandardScaler()
2 X_train_sc=sc.fit_transform(X_train) # convert all data into float data type
3 X_test_sc=sc.transform(X_test)
4 X_test_sc.dtype
    dtype('float64')

1 classifier=SVC()
2 classifier.fit(X_train,y_train)
3 y_pred_svc=classifier.predict(X_test)
4 print('Accuracy is ',accuracy_score(y_test,y_pred_svc)*100)
```

Accuracy is 99.82795547909133

```
1 # Trained With Standard Sclaer data
2 svc_clf_sc=SVC()
3 svc_clf_sc.fit(X_train_sc,y_train)
4 y_pred_svc_sc=svc_clf_sc.predict(X_test_sc)
5 print('Accuracy is ',accuracy_score(y_test,y_pred_svc_sc)*100)
    Accuracy is 99.93153330290369
Train using Logistic Regression
1 model_log = LogisticRegression()
1 model_log.fit(X_train,y_train)
    /usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:458: ConvergenceWarning: lbfgs failed to converge (status=1):
    STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
    Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
    Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
      n_iter_i = _check_optimize_result(
     ▼ LogisticRegression
     LogisticRegression()
1 y_pred_log=model_log.predict(X_test)
3 print('Accuracy is ',accuracy_score(y_test,y_pred_log)*100)
    Accuracy is 99.89817773252344
Random Forest Classifier
1 model RF= RandomForestClassifier()
1 model RF.fit(X train,y train)
     ▼ RandomForestClassifier
     RandomForestClassifier()
1 y_pre_RF= model_RF.predict(X_test)
2 print('Accuracy is ',accuracy_score(y_test,y_pre_RF)*100)
    Accuracy is 99.95962220427653
Train using XGBClassifier
1 model XGB = XGBClassifier()
```

XGBClassifier

XGBClassifier(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, gamma=None, gpu_id=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, n_estimators=100, n_jobs=None, num_parallel_tree=None, predictor=None, random_state=None, ...)

1 y_pre_XGB = model_XGB.predict(X_test)

1 print('Accuracy is ',accuracy_score(y_test,y_pre_XGB)*100)

Accuracy is 99.96137776061234