

Escola Politécnica da Universidade de São Paulo

Programa Unificado de Bolsas de Estudo para Apoio e Formação de Estudantes de Graduação (PUB-USP)

Edital 2021/2022

Desenvolvimento de Equipamentos para Hospital Universitário da USP

Prof. Dr. Leopoldo Rideki Yoshioka

São Paulo Junho de 2021

1. Título:

Desenvolvimento de Equipamentos para o Hospital Universitário da USP

2. Resumo

A Poli e HU vem colaborando para o desenvolvimento de soluções para a área da saúde. Um dos projetos em desenvolvimento é o Robô Hospitalar [1]. A equipe da Poli e do HU vêm realizando reuniões quinzenais para identificação de problemas e necessidades do hospital, tendo em vista a discussão e a criação conjunta de soluções customizadas para o Brasil. Atualmente, a maioria dos equipamentos hospitalares são importados e os custos elevados [2]. Além disso, o Brasil precisa buscar soluções adaptadas às suas características específicas do Sistema Único de Saúde (SUS) [3]. Diante deste cenário, a fim de atender às necessidades atuais do HU, este projeto tem como proposta o desenvolvimento de tecnologias para a fabricação de dois tipos de equipamentos: Dispensador Automático de Medicamentos е Bicicleta Cicloergométrica. Embora aplicação e funcionalidades distintas, ambos equipamentos possuem elementos em comum, incluindo estrutura mecânica, módulos elétricos e eletrônica embarcada. A ideia é a constituição de uma equipe multidisciplinar de alunos das áreas de engenharia elétrica, mecatrônica e de mecânica para realizar o estudo de tecnologias e materiais adequados para a fabricação de equipamentos hospitalares. Um fator essencial é a interação com os médicos e especialistas em saúde, em especial dos setores de farmácia e de fisioterapia. Pois, um dos principais desafios para o desenvolvimento tecnológico na área de saúde é a correta compreensão do ambiente hospitalar, as necessidades operacionais e os problemas específico da realidade dos hospitais do país, incluindo escassez de recursos e capacitação técnica dos profissionais de saúde.

3. Justificativa

A pandemia do COVID-19 evidenciou a difícil missão dos profissionais de saúde que atuam na linha de frente dos hospitais. Trata-se de pessoas que que correm os maiores riscos de contaminação, encontram-se sobrecarregados em executar diversas tarefas. Muito dessas tarefas são atividades frequentes e repetitivas, como transportar medicamentos, amostras de exames laboratoriais e separação de remédios. Diante deste cenário, o uso de sistemas robóticos são uma alternativa para reduzir a carga de esforços dos profissionais de saúde em atividades previsíveis e repetitivas, além de otimizar a operação hospitalar como um todo [4].

O advento da pandemia do coronavírus despertou grande interesse dos alunos da Poli para os problemas de saúde. Criou-se uma oportunidade de trabalhos conjunto, envolvendo profissionais da área de saúde e alunos de engenharia para a resolução de problemas reais. Os alunos poderão aprimorar os conhecimentos técnicos, bem como desenvolver habilidades de comunicação e pensamento crítico por meio de trabalho em equipe multidicisciplinar.

O dispensador automático proposto neste projeto busca atender uma característica específica da forma de comercialização de medicamentos no Brasil, em forma de *blisters*, e ajudará a evitar erros e perdas de dispensação de medicamentos. O cicloergômetro é um equipamento fisioterapia para a recuperação de massa muscular e motricidade articular de pacientes internados em hospitais. O equipamento proposto é de baixo custo e adaptado para a realidade brasileira.

4. Resultados anteriores

Não aplicável, pois se trata de um novo projeto. Embora já existam trabalhos em conjunto entre a Poli e o HU [1], este projeto se refere à uma nova de etapa de trabalho, onde se iniciará o desenvolvimento de tecnologias voltados às aplicações de saúde.

5. Objetivos

O objetivo principal é desenvolver tecnologias para a fabricação de equipamentos de apoio às operações hospitalares, atendendo às características dos hospitais da rede do SUS, em especial a limitação de recursos e capacitação técnica dos profissionais de saúde.

São objetivos secundários deste projeto:

- Fortalecer a colaboração entre os alunos e professores da Poli com os médicos e profissionais de saúde do HU, por meio da interação, discussão conjunta dos problemas e soluções.
- Motivar os alunos a desenvolverem, além do conhecimento técnico, as habilidades envolvendo trabalhos em equipes multidisciplinares, criatividade, pensamento crítico.
- Criar e ampliar o ecossistema de inovação entre a Poli e HU por meio de pesquisa e desenvolvimento conjunto de soluções tecnológicas para a área da saúde adequado à realidade brasileira

 Demonstrar a viabilidade de desenvolvimento de soluções nacionais e atrair interesses de empresas e startups para industrialização e comercialização das tecnologias.

6. Métodos

6.1 Escopo do projeto

O projeto consistirá no estudo e desenvolvimento de tecnologias aplicáveis à fabricação de equipamentos de uso hospitalar, em especial o Dispensador Automático de Medicamentos (DAM) e a Bicicleta Cicloergométrica (BCE). O grupo de alunos trabalharão sob a orientação dos professores Leopoldo Yoshioka (PSI) e do professor Oswaldo Horikawa (PMR). Por parte do HU o grupo terá interações com o Dr. Oscar Fugita (coordenador do Núcleo em Inovação de Saúde HU), Dr. Marcelo Borba (Clínica Cirúrgica), Dra. Valentina Porta (Farmácia) e Dra. Alessandra (Fisioterapia). Para a realização do projeto estão sendo solicitados 6 bolsistas que atuarão em três frentes principais do projeto: 1) Design e Mecânica; 2) Sistema Elétrico e Eletrônica; 3) Sistema Computacional. Para cada uma das frentes serão selecionados 2 alunos, preferencialmente das habilitações de eletrônica, mecatrônica e/ou mecânica. A execução das primeiras etapas do projeto poderá ser realizada de forma remota, utilizando ferramentas de simulação de circuitos, modelamento em 3D entre outros. As etapas de prototipação e de testes em bancada serão realizadas no Laboratório de Projetos do LMAG (PEA) sob supervisão do prof. Leopoldo e no Laboratório de Mecatrônica de Precisão (PMR) sob a supervisão do prof. Oswaldo. A prototipação de partes e peças para a validação da concepção do projeto serão feitas com a utilização de impressora 3D, mini fresa CNC, e outras ferramentas disponível no laboratório. As fabricações de peças mais complexas serão realizadas na Metarúrgica Preumec.

6.2 Dispensador Automático de Medicamentos

O Dispensador Automático de Medicamentos (Fig. 2) é um sistema capaz de separar os medicamentos unitarizados (os comprimidos unitários estão contidos em sacos plásticos identificados por códigos de barras) de acordo com a prescrição médica, acondicionar num saco plástico maior e identificar. Estes sacos são então encaminhados aos pacientes. Vale salientar que a demanda para o desenvolvimento do dispensador de medicamentos foi apresentada pelos médicos do HU-USP, em

especial pelo Dr. Oscar Fugita, responsável pelo Núcleo de Inovação em Saúde do HU e a Dra. Valentina Porta responsável pela Farmácia.

Figura 2 – Exemplo de um Dispensador Automático de Medicamentos [5]

Concepção do Dispensador Automático de Medicamentos

O Dispensador Automático de Medicamentos- DAM, possui dois elementos principais: um cabideiro e um braço robótico. O cabideiro, como o próprio nome sugere, consiste de uma série de cabides onde os medicamentos unitarizados são suspensos, cada medicamento em uma cabide própria. Já o braço robótico consiste de uma mesa que realiza movimentos num plano vertical paralelo ao cabideiro. Mediante comandos, o braço se dirige rápida e precisamente para a posição desejada, faz a coleta de uma unidade do medicamento e libera o mesmo numa canaleta de coleta. Os medicamentos coletados são assim direcionados para o interior de um saco plástico que é etiquetado com o nome do paciente e outros dados relevantes. O controlador central do DAM possui em sua memória as diversas prescrições médicas, assim como as informações sobre qual medicamento se encontra em qual cabide.

Subsistema robótico – mecânico, eletrônico e controle

A parte mecânica consiste de um cabideiro e de um braço robótico. O cabideiro consiste de uma placa disposta na vertical, onde diversas barras esbeltas (cabides) são fixadas em espaçamentos regulares. Já o braço robótico consite de uma pequena mesa que se move ao longo de um guia linear. A mesa é acionada por meio de cabos e um motor elétrico e polias fixados nas extremidades dos guias. O motor elétrico será acionado por meio de um circuido eletrônico de potência (driver) que envia potência

elétrica ao motor mediante comandos do computador de controle. De modo a assegurar um posicionamento rápido e preciso, será implementado um sensor para o monitoramento da posição da mesa e um algoritmo de controle por realimentação. Propõe-se implementar um sistema de posicionamento, conforme descrito, para cada carreira horizontal do cabideiro. Havendo várias carreiras, instala-se um braço para cada carreira adicional. Reduz-se assim a complexidade do braço e se obtém rapidez na operação. Será preciso ainda desenvolver um capturador de saquinho de medicamento suspenso no cabideiro. No momento em que o braço atingir a posição comandada, o capturador deve ser ativado de modo a capturar um único saquinho, conduzir até uma posição adequada e soltar sobre uma calha disposta na parte inferior do conjunto.

Requisitos

Este projeto tratará inicialmente de um cabideiro de menor porte, com capacidade para acondicionar aproximadamente 15 medicamentos. Assumindo que cada saquinho de medicamento tenha uma largura de 40mm, a extensão total a ser considerada pelo braço robótico será de 600 mm. Assumindo que cada saquinho de medicamento tenha a espessura de 5mm e assumindo o acondicionamento máximo de 20 saquinhos, resulta que devemos considerar cabides de no mínimo 100mm. Este será o curso de movimentação a ser considerado no projeto do capturador de saquinhos. O peso aproximado de cada saquinho é em torno de 5 gramas.

Em termos de precisão de posicionamento, uma vez que os saquinhos tem dimensões aproximadas de 40mm x 50mm, uma precisão de posicionamento em torno de ±5mm (grosseira em termos de engenharia mecânica) seria o suficiente.

Mais que precisão, um quesito importante será a velocidade de operação. Uma referência de comparação é a dispensação manual, que resultaria em um ciclo médio em torno de 15 s para a coleta de um medicamento. Assim, um ciclo médio de coleta de 1 segundo já representaria um ganho de produtividade significativo. Lembre-se que neste projeto, mais importante que a produtividade, a redução no risco de erro na dispensação de medicamento é o aspecto mais importante.

6.3 Bicicleta Cicloergométrica

A recuperação de pacientes que sobrevivem a doenças graves e a um tempo de internação prolongado têm chamado atenção, particularmente nos últimos tempos,

pelo risco aumentado de sequelas funcionais e neuropsicológicas e pelo impacto na qualidade de vida após a alta hospitalar.

A permanência prolongada no leito resulta em inatividade ou pouco atividade dos músculos, quando comparado a situações normais do dia a dia, levando à fraqueza muscular generalizada, além da perda da massa muscular e de motricidade articular. Entre 25 e 60% dos pacientes sob ventilação mecânica (VM) em Unidades de Terapia Intensiva (UTI) cursam com fraqueza muscular. Pacientes com Covid-19 são exemplos recentes desta realidade, levando a uma reabilitação (quando disponível e acessível) longa, financeiramente custosa, de difícil engajamento e com resultados modestos.

O início precoce da mobilização dos pacientes críticos de UTI é fundamental para prevenir as complicações e fatores adversos decorrentes desse imobilismo, destacando-se benefícios como diminuição do tempo de VM, diminuição do tempo de internação na UTI e no hospital (com consequente redução de custos de internação), aumento da força muscular, diminuição do número de infecções decorrentes da internação, manutenção e/ou recuperação do grau prévio de funcionalidade do indivíduo, melhor qualidade de vida após a alta hospitalar e redução dos custos para a Sociedade do afastamento dos pacientes de suas atividades produtivas.

A European Respiratory Society e a European Society of Intensive Care Medicine estabelecem uma hierarquia de atividades de mobilização na UTI, baseada em incremento de intensidade de exercícios que inclui, além de mudança de decúbito e posicionamento, mobilização passiva e assistida, ortostatismo, marcha estática e deambulação e o uso precoce do cicloergômetro.

O cicloergômetro, conforme ilustrado na Figura 2, quando bem indicado e utilizado, é capaz de reduzir a sensação de dispneia (falta de ar), de aumentar a força muscular e de melhorar a qualidade de vida de pacientes graves. Os equipamentos atualmente disponíveis que contemplam, razoavelmente, as necessidades dos pacientes são importados, de alto custo, de difícil manutenção e pouco adaptados à realidade brasileira.

Figura 2 – Ilustração de Cicloergômetro Hospitalar [6]

O atual projeto tem como objetivo desenvolver um equipamento para mobilização precoce e realização de exercícios passivos e ativos em pacientes que estejam em leitos hospitalares com a sua mobilidade reduzida.

A parceria entre a POLI e o Hospital Universitário da USP permitirá o trabalho conjunto de alunos e profissionais de ambas as instituições para o desenvolvimento de um cicloergômetro que contemple as necessidades identificadas pelos profissionais do HU, adaptado a realidade brasileira, viável financeiramente e que possa ser utilizado em inúmeros serviços de saúde do Brasil, com impactos social, econômico e, principalmente, na recuperação e qualidade de vida de tantos pacientes.

7. Detalhamento das atividades a serem desenvolvidos pelos bolsistas

Para o desenvolvimento deste projeto, os bolsistas deverão atuar realizando estudos das tecnologias construtivas e funcionais, análise das especificações técnicas dos equipamentos existentes, definição dos requisitos funcionais dos equipamentos, desenvolvimentos de modelos de simulação, prototipação mecânica e eletrônica, implementação do software e realização de testes.

Para tanto, cada bolsista deverá participar ativamente do projeto, participando de reuniões com os profissionais de saúde para o entendimento do problema, estudando

o funcionamento dos equipamentos existentes, e realizar o desenvolvimento das respectivas frentes de trabalho do projeto.

Além disso, junto com os professores e médicos devem discutir os problemas e as soluções que melhor se adequam às necessidades do HU, tanto do ponto de vista tecnológico como do ponto de vista de custos e processos de fabricação.

Concomitantemente, os bolsistas deverão aprender a utilizar ferramentas de projetos mecânicos, eletrônicos e computacionais. Pois, uma parte importante do projeto será realizado com a utilização de ferramentas de simulação de modelos em 3D, circuitos eletrônicos e modelos de controle. Os bolsistas receberão treinamento sobre gestão de projetos, técnicas de brainstorming, mapas conceituais e análise funcional.

Os bolsistas do projeto serão identificados da seguinte forma:

- Bolsista 1 Design e sistema mecânico
- Bolsista 2 Design e sistema mecânico
- Bolsista 3 Sistema elétrico e eletrônico
- Bolsista 4 Sistema elétrico e eletrônico
- Bolsista 5 Sistema computacional embarcado
- Bolsista 6 Sistema computacional embarcado

DESCRIÇÃO GERAL ATIVIDADES DOS BOLSISTAS

I. Estudo e definição da arquitetura do DAM e BCE

Através de estudo amparado em literaturas em robótica, detalhar o conceito básico de funcionamento do DAM. A interação entre cada subsistemas. Em seguida, realizar o detalhamento dos subsistemas: projeto mecânico, projeto de acionamento, projeto do sensor de posição e assim por diante.

II. Projeto e Desenvolvimento de modelos de simulação

Implementação dos subsistemas mecânicos e eletrônicos, utilizando ferramentas computacionais: 1) modelagem mecânica em 3D (Fusion 360ºe Solid Works); 2) simulação de subsistemas eletrônicos (Multisim e LabView), modelagem de sistemas (Matlab e Simulink).

III. Prototipação dos equipamentos

Fabricação das partes mecânicas, montagem de circuitos eletrônicos, implementação e teste de todos os subsistemas, com testes individuais. Corrigir os eventuais erros e realizar ajustes.

IV. Integração e testes de validação

Realização de testes de integração avaliando o sistema obtido à luz das especificações iniciais.

V. Elaboração de Relatórios Técnicos

Ao longo do projeto os alunos deverão registrar os estudos realizados, memória de cálculos e análises técnicas e códigos-fontes em formas de notas técnicas que deverão ser apresentados nas reuniões periódicas de projeto. Posteriormente, as notas técnicas devem ser compiladas para compor o Relatório Parcial e o Relatório Final.

DESCRIÇÃO DAS ATIVIDADES ESPECÍFICAS DOS BOLSISTAS

Design e Sistema Mecânico - Bolsistas 1 e 2

1) Modelagem 3D do projeto a partir do uso do programa SolidWorks 2) Refinamento do design, 3) Concepção e projeto do design, 4) Realização da simulação mecânica de peças (como de esforços, forças e fluxo de ar), 5) Acompanhamento do processo de fabricação de partes e peças junto ao fabricante (Preumec e outros) 6) Fabricação de peças auxiliares na Impressora 3D 7) Integração da parte mecânica com o subsistema elétrico, 8) Realização de testes de validação, 9) Desenvolvimento de relatórios técnicos, produção de artigo técnico e apresentar o projeto no SIICUSP.

Sistema Elétrico e Eletrônico - Bolsistas 3 e 4

1) Modelagem dos sensores e circuitos eletrônicos utilizando o Multisim e o LabView, 2) Concepção e projeto dos módulos eletrônicos de sensoriamento e controle, 3) Realização da simulação computacional, 4) Acompanhamento de placas de circuitos impressos, 5) Montagem e testes dos circuitos 6) Integração da parte mecânica com o subsistema elétrico, 7) Realização de testes de validação, 9) Desenvolvimento de relatórios técnicos, produção de artigo técnico e apresentar o projeto no SIICUSP.

Sistema Computacional - Bolsistas 5 e 6

1) Levantamento de requisitos funcionais do software 2) Definição da arquitetura computacional, 3) Modelagem e projeto do software utilizando diagramas UM, 4) Implementação e testes do software, 5) Integração do software com subsistema elétrico e eletrônico, 6) Realização de testes de validação, 7) Desenvolvimento de relatórios técnicos, produção de artigo técnico e apresentar o projeto no SIICUSP.

8. Resultados previstos e seus respectivos indicadores de avaliação

Os resultados previstos para o projeto são o conhecimento tecnológico (know-how) envolvido para a fabricação de equipamentos hospitalares, consubstanciado em forma de documentações técnicas do projeto, relatórios técnicos dos estudos de tecnologia, especificações técnicas, projetos mecânicos, elétricos e eletrônicos, código-fonte e relatório de testes.

Os indicadores de avaliações dos resultados alcançados são os seguintes.

- a) Relatórios técnicos revisados e aprovados
- b) Protótipos de engenharia (modelos funcionais de avaliação de funcionamento dos equipamentos)
- c) Divulgação do projeto em seminários e workshops com envolvimento de alunos, professores e profissionais de saúde.

9. Cronograma de Execução

	Mês/Ano											
Atividade	2021				2022							
	09	10	11	12	01	02	03	04	05	06	07	08
Revisão Bibliográfica	х	х	х	х								
Interação com os profissionais de saúde	х	х	Х	х	Х	х	Х	х	Х	Х	х	
Estudo e definição de arquitetura do DAM e BCE			х	х	х	х						
Projeto e desenvolvimentos de modelos de simulação computacional				х	х	х	х					
Prototipação dos equipamentos						х	Х	х	х			
Integração e testes de validação								х	Х	Х	х	
Preparação de trabalho para apresentar no SIICUSP										X	x	x
Elaboração e apresentação do "Relatório final"											х	х

10. REFERÊNCIAS

- 1 Mariz, F. "Robô Transportador Hospitalar inicia fase de testes no Hospital Universitário da USP", Jornal da USP, 2020.
- Nascimento, L.N., "Um método para avaliação de custos dos equipamentos médico-hospitalares nos procedimentos de assistência à saúde", Dissertação de Mestrado, UNICAMP, 2008.
- 3 Viacava, F., "SUS: oferta, acesso e utilização de saúde nos últimos 30 anos", Ciência e Saúde, 2018. https://doi.org/10.1590/1413-81232018236.06022018
- 4 Stollnberger, G. "Robotic systems in health care". 7th Internacional Conference on Human System Interaction, 2014. **DOI:** 10.1109/HSI.2014.6860489
- 5 Robots give rise to the future of pharmacy dispensing. AJP, 2016. https://ajp.com.au/features/robots-give-rise-future-pharmacy-dispensing/
- A viabilidade do uso do cicloergômetro como recurso terapêutico em pacientes internados na unidade de terapia intensiva: revisão de literatura.

https://interfisio.com.br/a-viabilidade-do-uso-do-cicloergometro-como-recurso-terapeutico-empacientes-internados-na-unidade-de-terapia-intensiva-revisao-de-literatura/