Machine Learning Homework 3 Report

-- \cdot Visualization

Fig.1 The scatter plot of concrete compressive strength and other features

根據 Fig.1, Cement 此特徵與 Concrete compressive strength 有較明顯的正相關,所以在接下來的單變數線性回歸中,我們使用 Cement 此特徵作為變數預測結果。

二、Preprocessing

環境設置方面,我們這組使用 python 進行實作、使用 seaborn 進行視覺化。 處理資料方面,對整組資料進行了 normalization,以方便在選取參數出值時 有一個較好的結果,式子如下。

• $(x_i - \mu_x)/\max(x) - \min(x)$ x_i 為第 i 個實例 x 特徵的值, μ_x 為該特徵的平均。

除此之外,我們還加上了一個叫做 Bias 的特徵,並將值全部設成 1,以方便我們後面進行矩陣運算和偏微分的運算。

= \ Model

這邊採用了三種 gradient descent 的算法,分別為 Adam、SGD、和每次僅對一個參數進行調整的 Naïve。然而,經過測試 Adam 的學習效果有點慢所以 調整 $\alpha=0.05$,其餘的優化方法皆設定 learning rate = 0.05。

四、Evaluation

所有模型採用兩種衡量方法 Mean Square Error 和 R²。而 Loss function 則定為 MSE。

•
$$MSE(X, y, \theta) = \frac{1}{m} \sum_{i=1}^{m} (\theta^T \cdot x^i - y^i)^2$$

•
$$\nabla_{\theta} MSE(X, y, \theta) = \frac{2}{m} X^T \cdot (X \cdot \theta - y)$$

X 為特徵所組成的矩陣,y 為目標所形成的向量,而 θ 則是由權重和偏差值所組成的向量。

五、Result

Table 1. The results of different regression model and GD method

Model	Train MSE	Train R ²	Test MSE	Test R ²
SKlearn Linear	0.321	NaN	0.034	NaN
Regression				
Self Linear Regression	0.321	NaN	0.034	NaN
Multivariable(Adam)	0.016	0.616	0.016	0.60
Multivariable(SGD)	0.016	0.623	0.02	0.52
Multivariable(Naive)	0.026	0.383	0.025	0.41
Polynomial(Degree=4)	0.003	0.929	0.006	0.845

Fig.2 The Regression Line of SKlearn model(blue) and self linear regression model(green)

在 Fig.2 中可以發現,經由 SKlearn 所得到的迴歸直線 y = -0.178291952 + 0.43220778 x 和經由我們使用 GD 所得到的直線是完全相同的。

Fig.3 The changing loss after iteration in training process

根據 Table1.同樣是使用全部特徵的 Multivariable linear regression model,Adam 是表現最好的其次是 SGD 最末尾則是 Naïve。個人認為會造成這樣的表現差異是在於考慮的資料量不同 Adam 考慮了所有的實例以及所有的梯度,SGD 則是只考慮了單一筆資料和所有的梯度,Naïve 則是考慮了所有的實例以及單一的偏微分。考慮數量較少的資訊可以加快運算速度,但是可能收斂的效果就變差了。

六、Question Answering

- 1. Overfitting 是指 model 去過度擬合訓練資料集導致喪失了 generalize 的能力進而使得在測試資料集中有很差的表現。
- 2. 較快的運算,因為只考慮單一筆資料,所以適合使用在大型的資料集上 也可達到不錯的成果。
- 3. 在 MSE 為 loss function 的情况下,Error surface 是一個 convex 的表面,所以不會有 local minima 或者是 saddle point 的問題,然而若使用不同的 loss function 例如:cross entropy,初值就有可能影響收斂快慢或者是否卡在 local minima 或 saddle point 等地方了。
- 4. Learning Rate 過大會造成無法收斂或者是跳過最小值,Learning Rate 過小則會造成收斂過慢,太花時間。
- 5. 理解 SGD 的用法並且學會用 numpy 進行矩陣運算。

七、Bonus

其實我們在 Polynomial regression model degree 為 4 時,有幾次的 R² 有大於 0.87。(可以看附錄)

附錄

```
Coefficient of Regression line: [0.41788096] | Interception of Regression line: [0.4037839] | train MSE: 0.03212726019226542 | test_M2: 0.392149291159464 | test_M2: 0.392149291159464 | test_M2: 0.03212726019226542 | test_M2: 0.03212726019226542 | Train MSE: 0.03539696472914595 | Coefficient of Regression line: [0.41780096] | test_MSE: 0.03430513669795984 | Train MSE: 0.03430513669795984 | Train MSE: 0.03430513669795984 | Train MSE: 0.0362815959578646 | Train MSE: 0.01662815959578646 | Train MSE: 0.01662815959578646 | Train MSE: 0.01662815959578646 | Train MSE: 0.01664972115933898 | Train MSE: 0.016674767306927014 | Train MSE: 0.01674767306927014 | Train MSE: 0.016747673069627014 | Train MSE: 0.01674679369627014 | Train MSE: 0.0167467936986791 | Train MSE: 0.0831371875523431792 | Train MSE: 0.0831371875523431792 | Train MF: 0.0831371875523431792 | Train MF: 0.0831371875523431792 | Train MF: 0.083137187553431792 | Train MF: 0.083137187553431792 | Train MF: 0.083137187533831792 | Train MF: 0.083137187533831792 | Train MF: 0.083137187533831792 | Train MF: 0.08325170838662913 | Train MF: 0.0832517083860913 | Train MF: 0.0832517083860913 | Train MF: 0.08
```

```
| Americal Remain | Cause | C:\Usera\Essistant | Colored | Colore
```