Exercise

1. Which of the following are true and which are false?

- (i) Bisection means to divide into two equal parts. (True)
- (ii) Right bisection of line segment means to draw perpendicular which passes through the mid-point. (True)
- (iii) Any point on the right bisector of a line segment is not equidistant from its end points. (False)
- (iv) Any point equidistant from the end points of a line segment is on the right bisector of it. (True)
- (v) The right bisectors of the sides of a triangle are not concurrent. (False)
- (vi) The bisectors of the angles of a triangle are concurrent. (True)
- (vii) Any point on the bisector of an angle is not equidistant from its arms

(False)

- (viii) Any point inside an angle, equidistant from its arms, is on the bisector of it. (True)
- 2. If \overrightarrow{CD} is right bisector of line segment \overrightarrow{AB} , then:

(i)
$$m\overline{OA} = m\overline{OB}$$

(ii)
$$m\overline{AO} = m\overline{BQ}$$

3. The given triangle ABC is equilateral triangle and \overline{AD} is bisector of angle A, then find the values of unknowns x^0 , y^0 and z^0 .

∴ ABC is an equilateral triangle. Its each angle = 60°

$$\begin{array}{rcl}
\therefore & z & = & 60^{\circ} \\
x + y & = & 60^{\circ} \\
\text{But} & y & = & x \\
x + x & = & 60^{\circ} \\
2x & = & 60^{\circ} \\
x & = & \frac{60^{\circ}}{2} \\
x & = & 30^{\circ} \\
\therefore & y & = & 30^{\circ} \\
\text{Hence } z & = & 60^{\circ}
\end{array}$$

- 4. $\overline{\text{CD}}$ is right bisector of the line segment $\overline{\text{AB}}$.
 - (i) if $\overline{MAB} = 6cm$, then find the \overline{MAL} and \overline{MLB} .
 - (ii) If $\overline{mBD} = 4cm$, then find \overline{mAD} .

Given CD is a right bisector on the line segment AB.

to find (i) \overline{MAL} , \overline{MLB} when $\overline{MAB} = 6cm$

points of line segment is on the

 \overline{MAD} when $\overline{MBD} = 4cm$ (ii) Construction Join B with D.

Proof:

Statements	Reasons			
(i) $m\overline{AL} = m\overline{LB}$	$\overline{\text{CD}}$ is a right bisector of $\overline{\text{AB}}$			
$m\overline{AL} = \frac{1}{2}m\overline{AB}$				
$=\frac{1}{2}(6)$	$\therefore \qquad m\overline{AB} = 6cm$			
= 3cm				
$m\overline{LB} = m\overline{AL}$				
= 3cm.				
(ii) $m\overline{AD} = m\overline{BD}$: LD is a right bisector of AB			
$\therefore \qquad m\overline{AD} = 4cm$	\therefore mBD = 4cm			

	Objec	ctive			
1.	Bisection means to divide into equal parts	of it: (a) Right bisector (b) Angle			
	(a) Two (b) Three	bisector (c) Median (d) Altitude			
2.	(c) Four (d) Five o f line segment means to draw perpendicular which passes through the mid-point of line	5. The bisectors of the angles of a triangle are: (a) Concurrent (b) Congruent (c) Parallel (d) None			
3.	segment. (a) Right bisection (b) Bisection (c) Congruent (d) mid-point Any point on the of a line	6. Bisection of an angle means to draw a ray to divide the given angle into equal parts: (a) Four (b) Three			
.	segment is equidistant from its end points: (a) Right bisector (b) Angle bisector	(c) Two (d) Five 7. If \overrightarrow{CD} is right bisector of line segment \overrightarrow{AB} then: (i) $\overrightarrow{MOA} =$			
4.	(c) Median (d) Altitude Any point equidistant from the end	mox=			

- (a) mOQ
- (b) $m\overline{OB}$
- (c) mAQ
- (d) $m\overline{BQ}$

- 8. If \overrightarrow{CD} is right bisector of line segment \overrightarrow{AB} , then $\overrightarrow{mAQ} =$
 - (a) mOA
- (b) $m\overline{OB}$
- (c) mBQ
- (d) mOD

- 9. The right bisector s of the sides of an acute triangle intersects each other ___ the triangle.
 - (a) Inside
- (b) Outside
- (c) Midpoint (d) None
- 10. The right bisectors of the sides of a right triangle intersect each other on the ____
 - (a) Vertex
- (b) Midpoint
- (c) Hypotenuse
- (d) None
- 11. The right bisectors of the sides of an obtuse triangle intersect each other ____ the triangle.
 - (a) Outside
- (b) Inside
- (c) Midpoint
- (d) None

ANSWER KEY

1.	a	2.	a	3.	a	4.	a	5.	a
6.	c	7.	b	8.	С	9.	a	10.	c
11.	a								