Глава 3

Линейна зависимост и независимост. Основна лема на линейната алгебра.

Нулевият вектор $\overrightarrow{\mathcal{O}}$ на линейно пространство V над поле F се представя като линейна комбинация

$$0a_1 + \ldots + 0a_n = \overrightarrow{\mathcal{O}}$$

на произволни вектори $a_1, \ldots, a_n \in V$ с нулеви коефициенти $0 \in F$.

Определение 3.1. Крайна система вектори a_1, \ldots, a_n от линейно пространство V над поле F е линейно независима, ако единствената линейна комбинация

$$\lambda_1 a_1 + \ldots + \lambda_n a_n = \overrightarrow{\mathcal{O}}$$

на a_1,\ldots,a_n с коефициенти $\lambda_1,\ldots,\lambda_n\in F$, представяща нулевия вектор $\overrightarrow{\mathcal{O}}\in V$ е тази с нулеви коефициенти $\lambda_1=\ldots=\lambda_n=0\in F$. Безкрайна система вектори от линейно пространство V над поле F е линейно независима, ако всяка нейна крайна подсистема е линейно независима.

Оттук следва, че крайна система вектори b_1,\ldots,b_m от линейно пространство V над поле F е линейно зависима, ако съществуват $\mu_1,\ldots,\mu_m\in F$ с поне едно $\mu_i\neq 0$, така че

$$\mu_1 b_1 + \ldots + \mu_i b_i + \ldots + \mu_m b_m = \overrightarrow{\mathcal{O}}.$$

Безкрайна система вектори от линейно пространство V над поле F е линейно зависима, ако съдържа крайна линейно зависима подсистема.

Твърдение 3.2. Линейната зависимост и независимост на вектори от линейно пространство V над поле F има следните свойства:

- (i) един вектор $u \in V$ е линейно зависим точно когато е нулевият $u = \overrightarrow{\mathcal{O}}$;
- (ii) векторите $b_1, \ldots, b_k \in V$, $k \geq 2$ са линейно зависими тогава и само тогава, когато някой от тях е линейна комбинация на останалите, т.е.

$$b_i = \mu_1 b_1 + \ldots + \mu_{i-1} b_{i-1} + \mu_{i+1} b_{i+1} + \ldots + \mu_k b_k$$

за някое $1 \le i \le k$;

- (iii) ако $b_1, \ldots b_m \in V$ са линейно зависими, то $b_1, \ldots, b_m, b_{m+1}, \ldots, b_n$ са линейно зависими за произволни $b_{m+1}, \ldots, b_n \in V$;
- (iv) ако $a_1, \ldots, a_n \in V$ са линейно независими вектори, то за произволно естествено число $1 \le k \le n-1$ векторите a_1, \ldots, a_k са линейно независими.

Доказателство. (i) Нулевият вектор $\overrightarrow{\mathcal{O}} \in V$ е линейно зависим, защото за произволно $\lambda \in F, \ \lambda \neq 0$ е в сила $\lambda \overrightarrow{\mathcal{O}} = \overrightarrow{\mathcal{O}}$ съгласно Твърдение 2.4 (iv). Ако $u \in V$ е линейно зависим, то по определение съществува $\lambda \in F \setminus \{0\}$ с $\lambda u = \overrightarrow{\mathcal{O}}$. От Твърдение 2.4 (vii) получаваме, че $u = \overrightarrow{\mathcal{O}}$.

(ii) Ако b_1,\ldots,b_k са линейно зависими и $\lambda_1b_1+\ldots+\lambda_ib_i+\ldots+\lambda_kb_k=\overrightarrow{\mathcal{O}}$ за $\lambda_1,\ldots,\lambda_k\in F$ с поне едно $\lambda_i\neq 0$, то

$$\lambda_i b_i = -\lambda_1 b_1 - \ldots - \lambda_{i-1} b_{i-1} - \lambda_{i+1} b_{i+1} - \ldots - \lambda_k b_k,$$

откъдето

$$b_i = -\frac{\lambda_1}{\lambda_i}b_1 - \dots - \frac{\lambda_{i-1}}{\lambda_i}b_{i-1} - \frac{\lambda_{i+1}}{\lambda_i}b_{i+1} - \dots - \frac{\lambda_k}{\lambda_i}b_k$$

и b_i е линейна комбинация на $b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_k$.

Обратно, ако $b_i = \mu_1 b_1 + \ldots + \mu_{i-1} b_{i-1} + \mu_{i+1} b_{i+1} + \ldots + \mu_k b_k$ е линейна комбинация на $b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_k$ с коефициенти $\mu_i \in F$, то

$$\mu_1 b_1 + \ldots + \mu_{i-1} b_{i-1} + (-1)b_i + \mu_{i+1} b_{i+1} + \ldots + \mu_k b_k = \overrightarrow{\mathcal{O}}$$

 $\mathrm{c} -1 \neq 0$, така че b_1, \dots, b_k са линейно зависими.

(iii) Ако $\lambda_1b_1+\ldots+\lambda_ib_i+\ldots+\lambda_mb_m=\overrightarrow{\mathcal{O}}$ с поне едно $\lambda_i\neq 0$, то

$$\lambda_1 b_1 + \ldots + \lambda_i b_i + \ldots + \lambda_m b_m + 0.b_{m+1} + \ldots + 0.b_n = \overrightarrow{\mathcal{O}}$$
 c $\lambda_i \neq 0$

доказва линейната зависимост на $b_1, \ldots, b_m, b_{m+1}, \ldots, b_n$.

(iv) Ако допуснем, че a_1, \ldots, a_k са линейно зависими, то $a_1, \ldots, a_k, a_{k+1}, \ldots, a_n$ са линейно зависими, съгласно (iii). Това противоречи на допускането и доказва линейната независимост на a_1, \ldots, a_k .

Например, два ненулеви вектора u и v от \mathbb{R}^3 са линейно зависими тогава и само тогава, когато правите

$$L((0,0,0),u) = l(u) = l(v) = L((0,0,0),v)$$
(3.1)

през началото $(0,0,0)\in\mathbb{R}^3$ и тези вектори съвпадат. За да докажем това, да допуснем, че $u,v\in\mathbb{R}^3\setminus\{(0,0,0)\}$ са линейно зависими. Тогава съгласно Твърдение 3.2 (ii) съществува $\lambda\in\mathbb{R}$ с $v=\lambda u\in l(u)$, след евентуална замяна на u с v. Това е достатъчно за $l(v)\subseteq l(u)$, защото l(u) е подпространство на \mathbb{R}^3 . Векторът $v\neq (0,0,0)$ е ненулев, откъдето $\lambda\neq 0$ и $u=\frac{1}{\lambda}v\in l(v)$. Следователно $l(u)\subseteq l(v)$ и l(u)=l(v), защото l(v) е подпространство на \mathbb{R}^3 . Обратно, ако l(u)=l(v), то съществува $\lambda\in\mathbb{R}$, така че $v=\lambda u\in l(v)=l(u)$. По Твърдение 3.2 (ii), това е достатъчно за линейната зависимост на u и v.

Нека $u,v,w\in\mathbb{R}^3$ са ненулеви, непропорциални помежду си вектори. Съгласно Твърдение 3.2 (ii), векторите u,v,w са линейно зависими тогава и само тогава, когато $w=\lambda u+\mu v$ за подходящи $\lambda,\mu\in\mathbb{R}$, след евентуална пермутация на u,v,w. Това е изпълнено точно когато w принадлежи на равнината $l(u,v)=P((0,0,0),u,v)\subset\mathbb{R}^3$ през началото $(0,0,0)\in\mathbb{R}^3, u$ и v.

ЛЕМА 3.3. (Основна лема на линейната алгебра или Лема за линейна зависимост:) $A \kappa o \ a_1, \ldots, a_n, b_1, \ldots, b_m$ са вектори от линейно пространство V над поле F,

$$b_1, \ldots, b_m \in l(a_1, \ldots, a_n) \quad u \quad m > n,$$

 $mo\ b_1,\ldots,b_m\ ca$ линейно зависими.

ДОКАЗАТЕЛСТВО. Ако съществува нулев вектор $b_i = \overrightarrow{\mathcal{O}}$, то b_i е линейно зависим, откъдето и системата $b_1, \ldots, b_{i-1}, b_i = \overrightarrow{\mathcal{O}}, b_{i+1}, \ldots, b_m$ е линейно зависима. Отсега нататък предполагаме, че векторите $b_1, \ldots, b_m \in V \setminus \{\overrightarrow{\mathcal{O}}\}$ са ненулеви и доказваме лемата с индукция по n.

За n=1 и m>1 от $b_1,b_2\in l(a_1)$ следва съществуването на $\lambda_1,\lambda_2\in F$ с $b_1=\lambda_1a_1,\,b_2=\lambda_2a_1.$ Предположението $b_1\neq\overrightarrow{\mathcal{O}}$ изисква $\lambda_1\neq 0$ и предоставя представяния

$$a_1=\frac{1}{\lambda_1}b_1\quad \text{if}\quad b_2=\lambda_2a_1=\lambda_2\left(\frac{1}{\lambda_1}b_1\right)=\frac{\lambda_2}{\lambda_1}b_1\in l(b_1).$$

Следователно b_1, b_2 са линейно зависими, откъдето b_1, b_2, \ldots, b_m са линейно зависими.

В общия случай са дадени ненулевите вектори

$$b_1 = x_{1,1}a_1 + \ldots + x_{1,n-1}a_{n-1} + x_{1,n}a_n = \sum_{j=1}^n x_{1,j}a_j,$$

$$\vdots$$

$$b_i = x_{i,1}a_1 + \ldots + x_{i,n-1}a_{n-1} + x_{i,n}a_n = \sum_{j=1}^n x_{i,j}a_j$$

$$\vdots$$

$$\vdots$$

$$b_{m-1} = x_{m-1,1}a_1 + \ldots + x_{m-1,n-1}a_{n-1} + x_{m-1,n}a_n = \sum_{j=1}^n x_{m-1,j}a_j$$

$$b_m = x_{m,1}a_1 + \ldots + x_{m,n-1}a_{n-1} + x_{m,n}a_n = \sum_{j=1}^n x_{m,j}a_j,$$

които са линейни комбинации на $a_1,\ldots,a_n\in V$ с коефициенти $x_{i,j}\in F$. От $b_m\neq \overrightarrow{\mathcal{O}}$ следва съществуването на $1\leq j\leq n$ с $x_{m,j}\neq 0$. След преномериране на a_1,\ldots,a_n можем да считаме, че $x_{m,n}\neq 0$. Прибавяйки подходящи кратни на b_m към b_1,\ldots,b_{m-1} , елиминираме a_n от представянията на b_1,\ldots,b_{m-1} . По-точно, заменяме b_i с

$$b'_{i} := b_{i} - \frac{x_{i,n}}{x_{m,n}} b_{m} = \left(\sum_{j=1}^{n} x_{i,j} a_{j}\right) - \frac{x_{i,n}}{x_{m,n}} \left(\sum_{j=1}^{n} x_{m,j} a_{j}\right) =$$

$$= \sum_{j=1}^{n} \left(x_{i,j} - \frac{x_{i,n}}{x_{m,n}} x_{m,j}\right) a_{j} = \sum_{j=1}^{n-1} \left(x_{i,j} - \frac{x_{i,n}}{x_{m,n}} x_{m,j}\right) a_{j} \in l(a_{1}, \dots, a_{n-1})$$

за $1 \le i \le m-1$, вземайки предвид

$$\left(x_{i,j} - \frac{x_{i,n}}{x_{m,n}} x_{m,j}\right)\Big|_{j=n} = x_{i,n} - \frac{x_{i,n}}{x_{m,n}} x_{m,n} = 0.$$

Геометрично, векторите $b'_1, \ldots, b'_{m-1} \in l(a_1, \ldots, a_{n-1})$ са проекциите на векторите b_1, \ldots, b_{m-1} върху $l(a_1, \ldots, a_{n-1})$, успоредно на b_m . По индукционно предположение, векторите

$$b'_1, \ldots, b'_{m-1} \in l(a_1, \ldots, a_{n-1})$$
 c $m-1 > n-1$

са линейно зависими и съществуват $\mu_1,\dots,\mu_{m-1}\in F$ с поне едно $\mu_k\neq 0$, така че

$$\mu_1 b'_1 + \ldots + \mu_k b'_k + \ldots + \mu_{m-1} b'_{m-1} = \overrightarrow{\mathcal{O}}.$$

Заместваме с

Заместваме с
$$b_i' = b_i - \frac{x_{i,n}}{x_{m,n}} b_m \quad \text{за} \quad 1 \leq i \leq m-1$$
 в горното равенство и получаваме

$$\overrightarrow{\mathcal{O}} = \sum_{i=1}^{m-1} \mu_i b_i' = \sum_{i=1}^{m-1} \mu_i \left(b_i - \frac{x_{i,n}}{x_{m,n}} b_m \right) = \sum_{i=1}^{m-1} \mu_i b_i - \left(\sum_{i=1}^{m-1} \frac{\mu_i x_{i,n}}{x_{m,n}} \right) b_m$$

с $\mu_k \neq 0$. Това доказва линейната зависимост на b_1, \ldots, b_m .

ЛЕМА 3.4. (Лема за линейна независимост): Ако a_1, \ldots, a_n са линейно независими вектори от линейно пространство V над поле F и

$$a_{n+1} \in V \setminus l(a_1, \dots, a_n)$$

е вектор извън тяхната линейна обвивка, то $a_1, \ldots, a_n, a_{n+1}$ са линейно независими вектори.

Доказателство. Допускаме противното и разглеждаме представяне

$$\lambda_1 a_1 + \ldots + \lambda_n a_n + \lambda_{n+1} a_{n+1} = \overrightarrow{\mathcal{O}}$$

на нулевия вектор $\overrightarrow{\mathcal{O}}$ като линейна комбинация на a_1,\dots,a_{n+1} с коефициенти $\lambda_1, \dots, \lambda_n, \lambda_{n+1} \in F$, поне един от които е ненулев. Ако $\lambda_{n+1} \neq 0$, то

$$a_{n+1} = -\frac{\lambda_1}{\lambda_{n+1}} a_1 - \dots - \frac{\lambda_n}{\lambda_{n+1}} a_n \in l(a_1, \dots, a_n)$$

противоречи на предположението $a_{n+1} \notin l(a_1, \ldots, a_n)$.

Следователно $\lambda_{n+1}=0$ и $\lambda_1a_1+\ldots+\lambda_na_n=\overline{\mathcal{O}}$ с поне едно $\lambda_i\neq 0$ за някое $1 \leq i \leq n$. В резултат, a_1, \ldots, a_n са линейно зависими, противно на предположението. Противоречието доказва Лемата за линейна независимост,