Übungsblatt 18 zur Homologischen Algebra II

Aufgabe 1. Informationsverlust beim Dualisieren

- a) Zeige: $(\mathbb{Z}/(2))^{\vee} = 0$. Folgere: $(\mathbb{Z}/(2))^{\vee\vee} \not\cong \mathbb{Z}/(2)$. Dabei ist $M^{\vee} := \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Z})$ für \mathbb{Z} -Moduln M.
- b) Finde eine projektive Auflösung von $\mathbb{Z}/(2)$ der Form $0 \to ? \to ? \to 0$.
- c) Dualisiere diese Auflösung.
- d) Dualisiere den Komplex aus c).
- e) Zeige: Die Komplexe aus b) und d) sind zueinander isomorph.
- f) Was ist die Moral der Geschichte?

Aufgabe 2. Die Kategorie der vollständigen metrischen Räume

Sei Met die Kategorie der metrischen Räume und lipschitzstetigen Abbildungen. Sei Met_{compl} ihre volle Unterkategorie der vollständigen metrischen Räume. Für welche Klasse S von Morphismen gilt $\text{Met}_{\text{compl}} \simeq \text{Met}[S^{-1}]$?

Aufgabe 3. Die K-Theorie einer abelschen Kategorie

Die K-Theorie $K(\mathcal{A})$ einer abelschen Kategorie \mathcal{A} wird als abelsche Gruppe von den Objekten aus \mathcal{A} und, für jede kurze exakte Sequenz $0 \to X' \to X \to X'' \to 0$ in \mathcal{A} , der Relation X = X' + X'' erzeugt.

- a) Gelte $X \cong Y$ in einer abelschen Kategorie \mathcal{A} . Zeige: $X = Y \in \mathcal{K}(\mathcal{A})$.
- b) Zeige: Die K-Theorie der Kategorie der endlich-dimensionalen Vektorräume ist isomorph zu $\mathbb{Z}.$
- c) Zeige: Die K-Theorie der Kategorie aller Vektorräume ist Null.
- d) Sei $\mathrm{Kom^b}(\mathcal{A})$ die Kategorie der beschränkten Kettenkomplexe über einer abelschen Kategorie \mathcal{A} . Zeige: Die auf Erzeugern gegebene Zuordnung

$$K(\mathrm{Kom^b}(\mathcal{A})) \longrightarrow K(\mathcal{A}), \ K^{\bullet} \longmapsto \chi(K^{\bullet}) := \sum_{n \in \mathbb{Z}} (-1)^n K^n$$

induziert einen wohldefinierten Isomorphismus.

 $Tipp \colon \text{Zeige } \chi(K^{\bullet}) = \chi(H^{\bullet}(K^{\bullet}))$ und verwende die lange exakte Sequenz.

Aufgabe 4. Serresche Quotientenkategorien als Lokalisierungen

Sei \mathcal{B} eine Serresche Unterkategorie einer abelschen Kategorie \mathcal{A} . Sei S die Klasse all derjenigen Morphismen in \mathcal{A} , deren Kerne und Kokerne in \mathcal{B} liegen. Zeige: $\mathcal{A}/\mathcal{B} \simeq \mathcal{A}[S^{-1}]$. Du musst nicht alle Details nachrechnen.