2. Internet Overview

2017 Fall

Yusung Kim yskim525@skku.edu

A closer look at network structure

- network edge:
 - hosts: clients and servers
 - servers often in data centers
- access networks, physical media:
 - wired, wireless communication links
- network core:
 - interconnected routers
 - network of networks

Host: sends packets of data

- Breaks application data into smaller packets of length L bits
- Transmits a packet into access network at transmission rate R
 - link transmission rate, aka
 link capacity or link bandwidth


```
packet time needed to transmission = transmit L bit = \frac{L \text{ (bits)}}{R \text{ (bits/sec)}}
```

Packet Switching: store-and-forward

- Store and forward: entire packet must arrive at router before it can be transmitted on next link
- (End-to-end) sum of transmission delays = 2x(L/R)
 - If L = 1 Mbits and R = 1 Mbps, E2E transmission delay is 2 seconds.
 - How about other delays?: propagation delay, queuing delay

Packet Switching: queueing delay, loss

- If packet arrival rate exceeds packet forwarding rate;
 - Packets should wait to be transmitted on link
 - Packets can be dropped (lost) if queue (buffer) fills up

Alternative circuit switching

 End to end resources are reserved between src & dest:

- Dedicated resources: no sharing
 - guaranteed performance
- Commonly used in traditional telephone networks

Packet switching vs. circuit switching

- 1 Mb/s link
- Each user:
 - 100 kb/s when "active"
 - Active 10% of time
- Circuit switching:
 - 10 users
- Packet switching:
 - with 35 users, the probability in case of more than 10 active users at same time is less than 0.0004
- Packet switching allows more users to use network!

Packet switching vs. circuit switching

Is packet switching is always better?

- Great for bursty data (only one user generates 1 Mbit data.)
 - better resource sharing
 - simpler, no call setup
- Excessive congestion possible: packet delay and loss
 - Needed for reliable data transfer, congestion control
- How to provide bandwidth guarantees for audio/video apps?

Delay, Loss, Throughput in packet switched networks

How do loss and delay occur?

- Packets queue in router buffers
 - Packet arrival rate to link (temporarily)
 exceeds output link capacity

Free (available) buffers.
Arriving packets drop (loss) if no free buffers.

Four sources of packet delay

 d_{trans} : transmission delay

- L: packet length (bits)
- R: link bandwidth (bps)
- $d_{trans} = L/R$

 d_{prop} : propagation delay

- *D*: distance of physical link
- S: propagation speed in medium (~2x10⁸ m/sec)

•
$$d_{prop} = D/S$$

Four sources of packet delay

 d_{proc} : processing delay

- check bit errors
- determine output link
- typically < msec

 d_{queue} : queueing delay

- time waiting for transmission
- depends on congestion level of router

Packet loss

- Queue (or buffer) has finite capacity
- Packet arriving to full queue is lost
- Lost packet may be retransmitted by previous node, by source / end system, or not at all

Throughput

- Throughput: rate (bits/time unit) at which bits transferred between sender/receiver
 - Instantaneous: rate at given point in time
 - Average: rate over longer period of time

Throughput (more)

• $R_{s-r} < R_{r-c}$ What is average end-end throughput?

• $R_{s-r} > R_{r-c}$ What is average end-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput

Throughput (more)

Question: How can multiple flows (fairly) share bottleneck link?

The network core

- Mesh of interconnected routers
- Routers forward packets to the next router on path from source to destination

Two key network-core functions

routing: determines route of packets by routing algorithms

forwarding: move packets from a router input to a router output

Internet structure: network of networks

Question: given millions of access ISPs, how to connect them together?

Internet structure: network of networks

Option: connect each access ISP to every other access ISP?

Internet structure: network of networks

Option: connect each access ISP to a global transit ISP.

Protocol Layers and Encapsulation

What is a protocol?

Human protocols:

- "What time is it now?"
- "May I have a question?"
- "Would you like a coffee?"
- ... specific msgs sent
- ... specific actions taken when received msgs

Network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg receipt

What is a protocol?

a human protocol and a computer network protocol:

Protocol "layers"

Networks are complex, with many "pieces":

- hosts
- routers
- links of various media
- applications
- protocols
- hardware
- software

Question:

How to organize the network structure?

Organization of air travel

ticket (purchase)

ticket (complain)

baggage (check)

baggage (claim)

gates (load)

gates (unload)

runway takeoff

runway landing

airplane routing

airplane routing

airplane routing

Layering of airline functionality

layers: each layer implements a specific service

- via its own internal-layer actions
- relying on services provided by layer below

Why layering?

Dealing with complex systems:

- Layered architecture allows identification, relationship of complex system's pieces
- Modularization eases maintenance, updating of system
 - change of implementation of layer's service transparent to rest of system

Internet protocol stack

- *application*: supporting network applications
 - FTP, SMTP, HTTP
- transport: process-process data transfer
 - TCP, UDP
- network: routing of datagrams from source to destination
 - IP, routing protocols
- link: data transfer between neighboring network elements
 - Ethernet, 802.11 (WiFi), token ring
- physical: bits "on the wire"

application transport network link physical

