2 Matrizen und lineare Gleichungssysteme

2.1 Körper

Definition 2.1.1: Endlicher Körper \mathbb{F}_p / Lemma 2.1.3 / Satz 2.1.4

 \mathbb{F}_p als Körper definiert mit den Elementen $\{0,1,\ldots,p-1\}$, Addition $x+y:=(x+y)\mod p$ und Multiplikation $xy:=xy\mod p$.

$$orall x \in \mathbb{F}_p, x
eq 0, \exists y \in \mathbb{F}_p : xy = 1$$

2.2 Matrizen

Definition 2.2.1: Matrix / Definition 2.2.3: Nullmatrix, Einheitsmatrix

 $m, n \ge 1$, eine $(m \times n)$ -Matrix mit Werten in K, oder $A \in M_{m \times n}(K)$ hat m Zeilen und n Spalten, schreibe $A = (a_{ij})$ mit Eintrag a_{ij} in Zeile i und Spalte j.

 $\mathbb{O}_{m \times n} \in M_{m \times n}(K)$ besteht nur aus Nullen. Die Einheitsmatrix \mathbb{I}_n ist definiert als $a_{ij} = \delta_{ij}$.

Definition 2.2.5: Addition und Skalarmultiplikation / Theorem 2.2.7

- 1. $A, B \in M_{m \times n}(K)$, dann ist C = A + B mit $c_{ij} := a_{ij} + b_{ij}$.
- 2. $A \in M_{m imes n}(K), lpha \in K$, dann ist D = lpha A mit $d_{ij} := lpha a_{ij}$.

$$A,B,C\in M_{m imes n}(K),lpha,eta\in K$$

1.
$$A + B = B + A$$

2.
$$A + (B + C) = (A + B) + C$$

3.
$$A + \mathbb{O}_{m \times n} = \mathbb{O}_{m \times n} + A = A$$

4.
$$\alpha(\beta A) = (\alpha \beta)A$$

5.
$$(\alpha + \beta)A = \alpha A + \beta A$$

6.
$$\alpha(A+B) = \alpha A + \alpha B$$

Definition 2.2.8: Matrixmultiplikation / Theorem 2.2.10 / Beispiel 2.2.13

$$A \in M_{m imes n}(K), B \in M_{n imes p}(K)$$
, dann ist $C = AB$ mit $c_{ik} := \sum_{j=1}^n a_{ij} b_{jk}.$

$$A \in M_{m imes n}(K), B \in M_{n imes p}(K), C \in M_{p imes q}(K), D \in M_{n imes p}(K), lpha \in K$$

1.
$$A(BC) = (AB)C$$

$$2. A(B+C) = AB + AC$$

3.
$$\alpha(AB) = (\alpha A)B = A(\alpha B)$$

$$A \in M_{n \times n}(K) \implies A \mathbb{1}_n = \mathbb{1}_n A = A$$

Definition 2.2.14: Kommutierende Matrizen / Definition 2.2.17: Diagonale und Dreiecksmatrizen / Definition 2.2.19: Invertierbare Matrizen / Lemma 2.2.20

 $A, B \in M_{n \times n}(K)$ kommutieren $\iff AB = BA$.

$$A \in M_{n imes n}(K)$$

- 1. A ist diagonal $\iff a_{ij} = 0, \forall i \neq j$
- 2. A ist eine obere Dreiecksmatrix $\iff a_{ij} = 0, \forall i > j$

 $A\in M_{n imes n}(K)$ ist invertierbar $\iff\exists B\in M_{n imes n}(K):AB=BA=\mathbb{1}_n\implies B=A^{-1}.$

Theorem 2.2.23

$$(AB)^{-1} = B^{-1}A^{-1}$$

2.3 Elementare Zeilenoperationen

Definition 2.3.1: Elementare Zeilenoperationen/-umformungen / Definition 2.3.2: Zeilenäquivalent

- P(r,s): Zeilen r und s vertauschen
- $M(r,\lambda)$: Multiplikation der Zeile r mit $\lambda \neq 0$
- $S(r,s,\lambda)$: Addition von λ mal Zeile r zu Zeile s

A,A' heissen zeilenäquivalent, wenn man A' durch endlich viele elementare Zeilenoperationen auf A erhält.

Definition 2.3.5: Reduzierte Zeilenform / Theorem 2.3.7 / Definition 2.3.8: Reduzierte Zeilenstufenform / Theorem 2.3.9

A ist in reduzierter Zeilenform \iff

- 1. In jeder Zeile ist der erste Eintrag $\neq 0$ eine 1 (führende 1).
- 2. Ausser einer führenden 1 sind in derselben Spalte nur 0.

 $\forall A \in M_{m \times n}(K), \exists A' \in M_{m \times n}(K)$ in reduzierter Zeilenform sodass A, A' zeilenäquivalent sind.

A ist in reduzierter Zeilenstufenform \iff

- 1. A ist in reduzierter Zeilenform.
- 2. Alle Nullzeilen sind zuunterst.
- 3. Die führende 1 einer Zeile liegt immer rechts derjenigen in der Zeile darüber.

 $\forall A \in M_{m \times n}(K), \exists A' \in M_{m \times n}(K)$ in reduzierter Zeilenstufenform sodass A, A' zeilenäquivalent sind.

2.4 Lineare Gleichungssysteme

Definition 2.4.2: Lineares Gleichungssystem in Matrixform

(S): Ax = b ein lineares Gleichungssystem

- 1. $L(S) = \{x \in K^n \mid Ax = b\}$
- 2. A|b ist A um die Spalte b erweitert

Theorem 2.4.5

 $(S): Ax = b, (S'): A'x = b' ext{ mit } A|b, A'|b' ext{ zeilenäquivalent } \Longrightarrow L(S) = L(S').$

3 Vektorräume

3.1 Definitionen und Beispiele

Definition 3.1.1: Vektorraum / Satz 3.1.4 / Korollar 3.1.5 / Satz 3.1.6

Ein Vektorraum V über einen Körper K ist eine Menge mit

- Addition: $v+w,v,w\in V$
- Skalarmultiplikation $\alpha v, \alpha \in K, v \in V$ sodass

1.
$$v + w = w + v, \forall v, w \in V$$

2.
$$v + (w + u) = (v + w) + u, \forall v, w, u \in V$$

3.
$$\exists ! 0_V \in V : \forall v \in V : 0_V + v = v$$

4.
$$\forall v \in V, \exists! w \in V : v + w = 0_V \implies w = -v$$

5.
$$\lambda(v+w) = \lambda v + \lambda w, \forall \lambda \in K, v, w, \in V$$

6.
$$(\lambda + \mu)v = \lambda v + \mu v, \forall \lambda, \mu \in K, v \in V$$

7.
$$\lambda(\mu v) = (\lambda \mu) v, \forall \lambda, \mu \in K, v \in V$$

8.
$$1v = v, \forall v \in V$$

$$\lambda \in K, v \in V$$

1.
$$\lambda 0_V = 0_V$$

2.
$$0v = 0_V$$

3.
$$(-\lambda)v = -(\lambda v) = \lambda(-v)$$

4.
$$\lambda v = 0_V \implies \lambda = 0 \lor v = 0_V$$

3.2 Unterräume

Definition 3.2.1: Unterraum / Satz 3.2.2

 $U\subseteq V$ ist ein Unterraum $\iff U\neq\varnothing$ und abgeschlossen unter Addition und Skalarmultiplikation:

1.
$$u+v\in U, \forall u,v\in U$$

2.
$$\lambda u \in U, \forall \lambda \in K, u \in U$$

Schreibe $U \leq V$.

$$U \leq V \iff$$

- 1. $0_V \in U$
- 2. $\lambda u + v \in U, \forall \lambda \in K, u, v, \in V$

Satz 3.2.4 / Bemerkung 3.2.5

 $v_1,\ldots,v_n\in V, U=\{\lambda_1v_1+\cdots+\lambda_nv_n\mid \lambda_i\in K\}=\langle v_1,\ldots,v_n
angle\leq V$ heisst die lineare Hülle von v_1,\ldots,v_n .

$$\{0_V\} = \langle \varnothing \rangle$$

Satz 3.2.8 / Theorem 3.2.9

- $U < V \implies U$ ist ein Vektorraum.
- $W \le U \le V \implies W \le V$

 $U, W \leq V$

- 1. $U \cap W := \{v \in V \mid v \in U \land v \in W\} \leq V$
- 2. $U + W := \{u + w \mid u \in U, w \in W\} \le V$

3.3 Basen von Vektorräumen

Definition 3.3.3: Endlich-Dimensional, Erzeugendensystem

V heisst endlich-dimensional $\iff \exists v_1, \ldots, v_n$ endlich viele, sodass $V = \langle v_1, \ldots, v_n \rangle$; dann heisst $\{v_1, \ldots, v_n\}$ Erzeugendensystem.

Definition 3.3.6: Linear (Un-)Abhängig / Satz 3.3.8

 $\{v_1,\ldots,v_n\}$ heisst linear unabhängig, wenn $\alpha_1v_1+\cdots+\alpha_nv_n=0_V\implies \alpha_i=0, \forall i.$ Sonst heisst $\{v_1,\ldots,v_n\}$ linear abhängig.

 v_1,\ldots,v_n linear unabhängig $\implies \forall v\in \langle v_1,\ldots,v_n\rangle$ kann eindeutig dargestellt werden.

Lemma 3.3.10 / Lemma 3.3.11 / Satz 3.3.12

 $v_1,\dots,v_n\in V$

• $v_i = \lambda v_j, \lambda \in K, \lambda
eq 0, i
eq j \implies$ linear abhängig

- v_1,\ldots,v_n linear unabhängig und $c_1,\ldots,c_n\in K$, alle $eq 0\implies c_1v_1,\ldots,c_nv_n$ linear unabhängig
- $0_V = v_i \implies$ linear abhängig
- 1. $v \in V, v \neq 0_V \implies v$ linear unabhängig
- 2.0_V ist linear abhängig

 v_1,\ldots,v_n linear unabhängig, $v_{n+1} \notin \langle v_1,\ldots,v_n \rangle \implies v_1,\ldots,v_n,v_{n+1}$ linear unabhängig.

Definition 3.3.13: Basis

Eine Basis von V ist ein linear unabhängiges Erzeugendensystem.

Theorem 3.3.15 / Korollar 3.3.16

Jedes endliche Erzeugendensystem enthält eine Basis.

Jeder endlich-dimensionale Vektorraum hat eine Basis.

Lemma 3.3.17: Austauschlemma / Satz 3.3.19: Austauschsatz / Korollar 3.3.20

$$B=\{v_1,\ldots,v_n\}$$
 Basis von V mit $w\in V, w\neq 0_V, w=lpha_1v_1+\cdots+lpha_nv_n, lpha_j\neq 0\implies B'=\{v_1,\ldots,v_{j-1},w,v_{j+1},\ldots,v_n\}$ auch eine Basis von V .

 v_1, \ldots, v_n Basis von V mit w_1, \ldots, w_k linear unabhängig $\implies k \le n, \exists (n-k)$ Basisvektoren, die zusammen mit w_1, \ldots, w_k eine Basis von V bilden.

Alle Basen von V haben dieselbe Anzahl Elemente.

Definition 3.3.21: Dimension

B Basis von V, dann ist die Dimension von V definiert als $\dim_K V = |B|$. Wenn V nicht endlich-dimensional, dann ist $\dim_K V = \infty$.

Satz 3.3.23 / Satz 3.3.24

 $\dim V = n, v_1, \ldots, v_n \in V$, äquivalente Aussagen:

1. v_1, \ldots, v_n linear unabhängig

- 2. v_1, \ldots, v_n Erzeugendensystem
- 3. v_1, \ldots, v_n Basis
- 4. $k < n \implies v_1, \ldots, v_n$ kein Erzeugendensystem
- 5. $k > n \implies v_1, \ldots, v_n$ linear abhängig

3.4 Basen von Unterräumen

Theorem 3.4.4

V endlich-dimensional mit $U, W \leq V$, dann gilt: $\dim(U+W) = \dim U + \dim W - \dim(U\cap W)$.

Kann nicht einfach für drei Unterräume angepasst werden.

Definition 3.4.7: Komplement

 $U \leq V$, dann ist W ein Komplement von $U \iff U + W = V \wedge U \cap W = \{0_V\} \iff U \oplus W = V.$

4 Lineare Abbildungen

4.1 Definition und Beispiele

Definition 4.1.1: Homomorphismus / Endomorphismus

T:V o W ist linear oder heisst Homomorphismus falls $T(\alpha v+u)=\alpha Tv+Tu, orall \alpha\in K, u,v\in V.$

 $T:V \to V$ heisst Endomorphismus.

4.2 Kern und Bild

Definition 4.2.1: Kern / Bild / Lemma 4.2.3

 $T:V \to W$ linear.

- 1. Der Kern von T ist $\ker(T) := \{v \in V \mid Tv = 0_W\} \le V$.
- 2. Das Bild von T ist $\operatorname{im}(T) := \{Tv \mid v \in V\} \leq W$.

Satz 4.2.6

 $T: V \to W$ ist injektiv $\iff \ker(T) = \{0_V\}.$

Definition 4.2.8: Rang

rk(T) := dim(im(T))

Theorem 4.2.9

T:V o W linear. $\dim V=\operatorname{rk} T+\dim\ker T$

Korollar 4.2.10

 $T:V \to W$ linear.

- 1. $\dim W < \dim V \implies T$ nicht injektiv.
- 2. $\dim W > \dim V \implies T$ nicht surjektiv.
- 3. $\dim W = \dim V \implies T$ bijektiv $\iff T$ injektiv $\iff T$ surjektiv

Definition 4.2.13: Isomorphismus / Bemerkung 4.2.17

T:V o W heisst Isomorphismus, falls $\exists S:W o V:ST=\mathrm{id}_V\wedge TS=\mathrm{id}_W$, wir schreiben $S=T^{-1}\iff T=S^{-1}.$

 $\exists T:V \to W \text{ Isomorphismus} \iff V \cong W.$

 $T:V \to V$ Isomorphismus heisst Automorphismus.

Theorem 4.2.22

 $\dim_K V = \dim_K W \iff V \cong W$

4.3 Lineare Abbildungen als Matrizen

Definition 4.3.1: Abbildungsmatrix

 $T:V \to W$ mit Basen B,C von V,W. Die Abbildungsmatrix von T ist $[T]_C^B=(a_{ij})$ mit $Tb_j=\sum_{i=1}^m a_{ij}c_i$.

Satz 4.3.7

V,W,U mit Basen A,B,C und $T:V\to W,S:W\to U$, dann gilt: $[ST]_C^A=[S]_C^B[T]_B^A.$

4.4 Matrizen als Lineare Abbildungen

Lemma 4.4.3 / Bemerkung 4.4.4

1.
$$L_{[T]_C^B} = T$$

2.
$$[L_A]_C^B = A$$

Nicht kanonisch, sondern von Basen abhängig!

Satz 4.4.5

T ist ein Isomorphismus $\iff [T]_B^B$ invertierbar, dann gilt: $[T^{-1}]_B^B = ([T]_B^B)^{-1}$.

4.5 Basiswechsel

Definition 4.5.1: Basiswechselmatrix / Satz 4.5.3

V mit Basen B,B', dann ist die Basiswechselmatrix von B nach B' als Koeffiziententransformationsmatrix $[\mathrm{id}]_{B'}^B$ mit $[\mathrm{id}]_{B'}^{B'}=([\mathrm{id}]_{B'}^B)^{-1}$.

Theorem 4.5.5

T:V o W mit Basen B,B',C,C', dann gilt: $[T]_{C'}^{B'}=[\mathrm{id}_W]_{C'}^C[T]_C^B[\mathrm{id}_V]_B^{B'}$.

Definition 4.5.10: Ähnlich, Äquivalent / Korollar 4.6.3

- 1. A,B sind ähnlich falls $\exists P \in GL_n: B = P^{-1}AP$, schreibe $A \sim B \iff \operatorname{rk}(A) = \operatorname{rk}(B)$.
- 2. A, B sind äquivalent falls $\exists P, Q \in GL_n : B = PAQ$ (auch für nichtquadratische Matrizen).

4.6 Zeilenrang = Spaltenrang

Definition 4.6.5: Transponierte

$$B = A^ op \mathsf{mit}\ b_{ij} = a_{ji}$$

4.7 Zurück zu Linearen Gleichungssystemen

Lemma 4.7.1

$$\dim L(S_A) = n - \operatorname{rk}(A)$$

Satz 4.7.9 / Korollar 4.7.10

$$A \in M_{m imes n}(K)$$

$$\operatorname{rk}(A) = \operatorname{rk}(A|b) \iff Ax = b$$
 hat eine Lösung.

$$\operatorname{rk}(A) = \operatorname{rk}(A|b) = n \iff Ax = b$$
 hat genau eine Lösung.

5 Gruppen und Ringe

5.1 Gruppen

Definition 5.1.1: Gruppe

Eine Gruppe ist eine Menge G mit einer Operation $+:G\times G\to G$ mit

$$1. \; (g+h)+k=g+(h+k), \forall g,h,k \in G$$

2.
$$\exists 0 \in G : g + 0 = 0 + g = g, \forall g \in G$$

3.
$$\forall g \in G, \exists g^{-1} \in G : g + g^{-1} = g^{-1} + g = 0$$

4. abelsch:
$$g + h = h + g, \forall g, h \in G$$

5.2 Ringe

Definition 5.2.1: Ring

Ein Ring ist eine Menge R mit zwei Operationen $+,\cdot:R imes R o \mathbb{R}$ mit

- 1. (R,+) ist eine abelsche Gruppe
- 2. $(a \cdot b) \cdot c = a \cdot (b \cdot c), \forall a, b, c \in R$
- 3. $\exists 1 \in R : 1 \cdot a = a \cdot 1 = a, \forall a \in R \setminus \{0\}$
- 4. $a \cdot (b+c) = a \cdot b + a \cdot c \wedge (b+c) \cdot a = b \cdot a + c \cdot a, \forall a,b,c \in R$
- 5. kommutativ: $a \cdot b = b \cdot a, \forall a, b \in R$

6 Vektorräume Linearer Abbildungen

6.1 Definition und erste Eigenschaften

Definition 6.1.1: Vektorraum der Homomorphismen / Satz 6.1.2 / Korollar 6.1.4

 $\operatorname{Hom}_K(V,W)=\{T:V o W\mid T ext{ linear}\}$ ist ein Vektorraum mit $\dim\operatorname{Hom}_K(V,W)=\dim V\dim W.$

6.2 Der Duale Vektorraum

Definition 6.2.1: Dualraum

$$V^* := \operatorname{Hom}_K(V, K)$$

Definition 6.2.4: Elemente des Dualraums / Satz 6.2.5 / Definition 6.2.7: Duale Basis

V mit Basis $B=(v_1,\ldots,v_n)$, dann ist $B^*=(v_1^*,\ldots,v_n^*)$ eine Basis von V^* (genannt duale Basis) mit $v_i^*(v_j):=\delta_{ij}$.

Satz 6.2.9 / Korollar 6.2.10

$$[\mathrm{id}]_{C^*}^{B^*} = ([\mathrm{id}]_B^C)^{ op} = (([\mathrm{id}]_C^B)^{-1})^{ op}$$

6.3 Die Duale Abbildung

Definition 6.3.1: Duale Abbildung

$$T^*:W^*\to V^*, \ell\mapsto \ell\circ T$$

Satz 6.3.5 / Theorem 6.3.9

$$(ST)^* = T^*S^*$$

$$[T^*]_{B^*}^{C^*} = ([T]_C^B)^\top$$

6.4 Annullator

Definition 6.4.1: Annullator

 $U \leq V$, dann ist der Annullator

$$U^{\perp} := \{\ell \in V^* \mid \ell u = 0_V, orall u \in U\} = \{\ell \in V^* \mid \ell U = \{0_V\}\}.$$

Oder: $\ell \in U^{\perp} \iff U \leq \ker \ell$.

Theorem 6.4.5

 $U \leq V : \dim U + \dim U^\perp = \dim V$

Satz 6.4.6 / Korollar 6.4.7

- 1. $(\operatorname{im} T)^{\perp} = \ker(T^*)$
- 2. $(\ker T)^{\perp} = \operatorname{im}(T^*)$
- 3. T ist injektiv $\iff T^*$ ist surjektiv
- 4. T ist surjektiv $\iff T^*$ ist injektiv

6.5 Reflexivität

Definition 6.5.1: Bidualraum

Bidualraum: $V^{**} := (V^*)^*$

7 Quotientenräume

7.1 Definition und Erste Eigenschaften

Definition 7.1.1: Quotientenraum

 $U \leq V$, dann ist der Quotientenraum

$$V/U := \{[v] \mid v \in V\} = \{v + U \mid v \in V\} = \{\{v + u \mid u \in U\} \mid v \in V\}.$$

Satz 7.1.4 / Korollar 7.1.5 / Satz 7.1.6

 $q_U:V o V/U,v\mapsto [v]$ die kanonische Quotientenabbildung mit $\ker(q_U)=U$ und $\operatorname{im}(q_U)=V/U.$

 $\dim V/U = \dim V - \dim U$

$$U,W \leq V ext{ mit } U \oplus W = V ext{, damit ist } \gamma:W \stackrel{\cong}{\longrightarrow} V/U ext{ mit } \gamma = q_U \bigm|_W.$$

Satz 7.1.10

7.2 Die Isomorphiesätze

Theorem 7.2.1: Erster Isomorphiesatz

T:V o W, damit $\overline{T}:V/\ker(T) o \operatorname{im}(T)$ mit

Theorem 7.2.2: Zweiter Isomorphiesatz

 $U,W \leq V ext{ mit } \imath: U \hookrightarrow V \xrightarrow{q_W} V/W, u \mapsto q_W(u), ext{ somit } \ker(\imath) = U \cap W ext{ und induziert } \overline{\imath}: U/(U \cap W) \overset{\cong}{\longrightarrow} (U+W)/W.$

Satz 7.2.3

 $U \leq W \leq V$ mit $arpi_{U,W}: V/U
ightarrow V/W, v+U \mapsto v+W$ und

Theorem 7.2.4 Dritter Isomorphiesatz

 $U \leq W \leq V$, dann ist $\ker(\varpi_{U,W}) = W/U$ und $\overline{\varpi_{U,W}} : (V/U)/(W/U) \stackrel{\cong}{\longrightarrow} V/W$.

8 Determinanten

8.2 Permutationen

Definition 8.2.1: Permutation / Transposition / Satz 8.2.3 / Satz 8.2.6 / Definition 8.2.11: Vorzeichen der Permutation

 $\sigma:\{1,\ldots,n\}\to\{1,\ldots,n\}$ bijektiv heisst Permutation. Eine Transposition vertauscht nur zwei Elemente.

 $\{\sigma\} = S_n$ ist eine Gruppe unter \circ mit n! Elementen.

Jede Permutation kann als endliche Verknüpfung von Transpositionen geschrieben werden.

Eine Permutation heisst gerade oder ungerade abhängig von der Anzahl nötigen Transpositionen. $sgn(\sigma) = 1$ wenn gerade, $sgn(\sigma) = -1$ wenn ungerade.

8.2 Determinantenfunktionen

Definition 8.3.2: n-Linearität / Definition 8.3.5: Alternierend

f heisst n-linear, wenn

$$f(v_1,\ldots,\lambda v_i+u,\ldots,v_n)=\lambda f(v_1,\ldots,v_i,\ldots,v_n)+f(v_1,\ldots,u,\ldots,v_n).$$

f heisst alternierend, wenn für $v_i = v_{i+1} \implies f(v_1, \ldots, v_i, v_{i+1}, \ldots, v_n) = 0.$

Lemma 8.3.7

Wenn f alternierend und n-linear ist, gilt:

- 1. $f(v_1,\ldots,v_i,v_{i+1},\ldots,v_n)=-f(v_1,\ldots,v_{i+1},v_i,\ldots,v_n)$
- 2. $v_i = v_j, i
 eq j \implies f(v_1, \ldots, v_i, \ldots, v_j, \ldots, v_n) = 0$
- 3. $f(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_n)=-f(v_1,\ldots,v_j,\ldots,v_i,\ldots,v_n)$

Definition 8.3.8: Determinantenfunktion / Korollar 10.2.2

Eine Determinantenfunktion D ist

- 1. n-linear in den Spalten/Zeilen
- 2. alternierend in den Spalten/Zeilen

3.
$$D(\mathbb{1}_n) = 1$$

Theorem 8.3.16

$$D(A) = \sum_{\sigma \in S_n} \mathrm{sgn}(\sigma) a_{\sigma(1),1} a_{\sigma(2),2} \cdots a_{\sigma(n),n}$$

10 Zurück zu Determinanten

10.2 Erste Eigenschaften

Satz 10.2.1 / Satz 10.2.3

$$\det A = \det A^\top$$

Elementare Zeilenumformungen:

1.
$$B = P(r, s)A \implies \det B = -\det A$$

2.
$$B = M(r, \lambda)A \implies \det B = \lambda \det A$$

3.
$$B = S(r, s, \lambda)A \implies \det B = \det A$$

Theorem 10.2.5 / Korollar 10.2.7

$$M = egin{pmatrix} A & B \ \mathbb{O} & C \end{pmatrix}$$

mit A, C quadratisch, dann ist $\det M = \det A \det B$.

M eine obere Dreiecksmatrix, dann $\det M = m_{11}m_{22}\cdots m_{nn}$.

10.3 Determinanten und Invertierbarkeit

Satz 10.3.2 / Korollar 10.3.3 / Korollar 10.3.4

$$\det AB = \det A \det B$$

$$\det(A^{-1}) = \det(A)^{-1}$$

$$B = C^{-1}AC \implies \det B = \det A$$

Definition 10.3.7: Kofaktormatrix / Adjunkte Matrix

Kofaktormatrix $C = (c_{ij})$ mit $c_{ij} = (-1)^{i+j} \det A_{ij}$.

Satz 10.3.11 / Lemma 10.3.12 / Theorem 10.3.13

$$A \cdot \operatorname{adj}(A) = \det(A) \cdot \mathbb{1}_n$$
 $\operatorname{adj}(A) \cdot A = \det(A) \cdot \mathbb{1}_n$ $A^{-1} = \det(A)^{-1} \cdot \operatorname{adj}(A)$

10.4 Die Determinante eines Endomorphismus

Definition 10.4.1: Determinante des Endomorphismus / Lemma 10.4.2

T:V o V mit Basen B,C, dann ist $\det T = \det[T]_B^B = \det[T]_C^C$.

Satz 10.4.4

- 1. $\det(ST) = \det S \det T$
- 2. T Isomorphismus $\iff \det T \neq 0 \implies \det(T^{-1}) = \det(T)^{-1}$
- 3. $\det(\mathrm{id}_V) = 1, \det(\mathbb{O}_V) = 0$

12 Eigenwerte und Eigenvektoren

12.1 Definitionen und Erste Eigenschaften

Definition 12.1.1: Eigenwert / Eigenvektor

T:V o V

- 1. $\lambda \in K$ ist ein Eigenwert von T wenn $\exists v \in V, v
 eq 0_V : Tv = \lambda v$
- 2. $v \in V, v
 eq 0_V$ ist ein Eigenvektor von T zum Eigenwert λ wenn $Tv = \lambda v$

 $\sigma(T) := \{ \lambda \text{ Eigenwert von } T \}$

Korollar 12.1.5

Äquivalente Aussagen:

1.
$$\lambda \in \sigma(T)$$

- 2. $\ker(T \lambda \mathrm{id}) \neq \{0_V\}$
- 3. $T \lambda id$ ist kein Isomorphismus
- 4. $\det(T \lambda id) = 0$

12.2 Das Charakteristische Polynom

Definition 12.2.1 / Definition 12.2.3: Charakteristisches Polynom

 $\chi_A(x) = \det(A - x \cdot \mathbb{1}_n)$ ist das charakteristische Polynom von A.

 $\chi_T(x) = \det([T]_B^B - x \cdot \mathbb{1}_n)$ ist das charakteristische Polynom von T.

Theorem 12.2.5

 $\lambda \in \sigma(T) \iff \chi_T(\lambda) = 0.$

 $\sigma(T) = \{\lambda \in K \mid \chi_T(\lambda) = 0\}$

Satz 12.2.9

$$\chi_T(x) = (-1)^n x^n + (-1)^{n-1} \mathrm{Tr}(T) x^{n-1} + \cdots + \det(T)$$

12.3 Diagonalisierung

Satz 12.3.2 / Korollar 12.3.4

 $\lambda_1,\dots,\lambda_n$ verschiedene Eigenwerte mit v_i Eigenvektor zu $\lambda_i \implies v_1,\dots,v_n$ sind linear unabhängig.

 $\dim V = |\sigma(T)| \implies V$ hat eine Basis aus Eigenvektoren; T ist diagonalisierbar.

Definition 12.3.5: Diagonalisierbarkeit

 $T:V \to V$ ist diagonalisierbar, wenn V eine Basis aus Eigenvektoren von T besitzt.

 $A \in M_{n imes n}(K)$ ist diagonalisierbar, wenn T_A diagonalisierbar ist.

12.4 Eigenräume

Definition 12.4.1: Eigenraum / Lemma 12.4.2

Eigenraum von λ ist $E_{\lambda} := \{v \in V \mid Tv = \lambda v\} = \ker(T - \lambda \mathrm{id}) \leq V$.

Satz 12.4.8 / Korollar 12.4.9

$$E_{\lambda_1} + \cdots + E_{\lambda_k} = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_k}$$

T diagonalisierbar $\iff \dim V = \dim E_{\lambda_1} + \cdots + \dim E_{\lambda_k}$

12.5 Algebraische und Geometrische Vielfachheit

K algebraisch abgeschlossen.

Definition 12.5.2: Geometrische / Algebraische Vielfachheit

- 1. geometrische Vielfachheit: $g_{\lambda} = \dim E_{\lambda}$
- 2. algebraische Vielfachheit: a_{λ} = Vielfachheit Nullstelle von $\chi_T(\lambda)$

Satz 12.5.4 / Korollar 12.5.5 / Theorem 12.5.6

 $g_{\lambda} \leq a_{\lambda}$

T diagonalisierbar $\iff g_{\lambda_i} = a_{\lambda_i}, orall 1 \leq i \leq n$

Äquivalente Aussagen:

- $1.\ T$ diagonalisierbar
- 2. $g_{\lambda}=a_{\lambda}, orall \lambda \in \sigma(T)$
- 3. $\chi_T(x) = \prod_{i=1}^k (\lambda_i x)^{g_{\lambda_i}}$
- 4. $V = \bigoplus_{i=1}^k E_{\lambda_i}$

13 Das Minimale Polynom

Definition und Erste Eigenschaften

Definition 13.1.8: Minimales Polynom / Lemma 13.1.9 / Satz 13.1.10

Das minimale Polynom von T ist das monische Polynom $m_T(x) \in K[x]$ kleinsten Grades mit $m_T(x) = 0$.

Das minimale Polynom ist wohldefiniert und eindeutig.

Satz 13.1.14 / Korollar 13.1.15

K algebraisch abgeschlossen, mit

$$C = egin{pmatrix} A & \mathbb{0} \ \mathbb{0} & B \end{pmatrix}$$

dann ist $m_C(x) = \operatorname{lcm}(m_A(x), m_B(x))$.

Wenn

$$C=egin{pmatrix} A_1 & 0 & \cdots & & \ 0 & A_2 & 0 & \cdots \ & & \ddots & \ & & 0 & A_k \end{pmatrix}$$

dann ist $m_C(x) = \operatorname{lcm}(m_{A_1}(x), \dots, m_{A_k}(x)).$

13.2 Der Satz von Cayley-Hamilton

Theorem 13.2.1: Cayley-Hamilton

$$\chi_T(T) = 0$$

Korollar 13.2.2

$$m_T(x) \mid \chi_T(x)$$

Lemma 13.2.4 / Satz 13.2.5

 $T:V o V,W\leq V$ mit $T(W)\subseteq W$ und $T'=T\bigm|_W$, dann gilt $\chi_{T'}(x)\mid \chi_T(x).$

$$T:V
ightarrow V,v\in V,W=\left\langle w,Tw,T^2w,\ldots
ight
angle \implies T(W)\subseteq W,T'=T\left|_{W}\Longrightarrow
ight. \chi_{T'}(T')v=0$$

14 Die Jordan'sche Normalform einer Matrix

14.1 Definition und Theorem

Definition: Jordanblock / Lemma 14.1.1

Ein Jordanblock hat die folgende Form:

$$J_n(\lambda) = egin{pmatrix} \lambda & 1 & 0 & \cdots & \ 0 & \lambda & 1 & 0 & \cdots \ & & \ddots & \ddots & \ & \cdots & 0 & \lambda & 1 \ & & \cdots & 0 & \lambda \end{pmatrix} = \lambda \cdot \mathbb{1}_n + N_n$$

mit einzigem Eigenwert $\lambda,g_\lambda=1,a_\lambda=n, E_\lambda=\langle e_1 \rangle, m_{J_n(\lambda)}(x)=(x-\lambda)^n.$

Theorem 14.1.2: Jordan'sche Normalform

 $T: V \to V, \exists B$ Basis von V, sodass

$$[T]_B^B = egin{pmatrix} J_{n_1}(lpha_1) & & & & & \ & J_{n_2}(lpha_2) & & & & \ & & \ddots & & & \ & & & J_{n_k}(lpha_k) \end{pmatrix}$$

eindeutig ist (abgesehen von der Vertauschung der Blöcke).

14.2 Eigenschaften der Jordan'sche Normalform

Lemma 14.2.2

$$C = egin{pmatrix} A & \mathbb{0} \ \mathbb{0} & B \end{pmatrix} \in M_{n imes n}(K), A \in M_{\ell imes \ell}(K)$$

 $\mathsf{mit}\ U = \langle e_1, \dots, e_\ell \rangle, W = \langle e_{\ell+1}, \dots, e_n \rangle, v = u + w \in V, v \neq 0_V, u \in U, w \in W.$

Dann gilt: v ist Eigenvektor von C zu $\lambda \in \sigma(C) \iff Au = \lambda u \wedge Bw = \lambda w$.

Zusätzlich: $E_{\lambda}(C)=E_{\lambda}(A)\oplus E_{\lambda}(B)$ und damit $g_{\lambda}(C)=g_{\lambda}(A)+g_{\lambda}(B)$.

Theorem 14.2.3

- ullet $g_{\lambda}=\# {\sf Jordanbl\"{o}cke}$ mit Eigenwert λ
- arithmetische Vielfachheit von λ in $m_T(x)=$ Länge des grössten Jordanblocks mit Eigenwert λ
- $a_{\lambda}=$ kombinierte Länge aller Jordanblöcke mit Eigenwert λ

14.3 Verallgemeinerte Eigenräume

Definition 14.3.1: Verallgemeinerter Eigenraum / Lemma 14.3.3

$$ilde{E}_{\lambda} := igcup_{j=1}^{\infty} \ker(T - \lambda \mathrm{id})^j = \ker(T - \lambda \mathrm{id})^n$$

Lemma 14.3.2

 $T:V\to V,v\in V,v\neq 0_V,T^kv=0_V$ aber $T^{k-1}v\neq 0_V\implies v,Tv,\ldots,T^{k-1}v$ sind linear unabhängig.

Definition 14.3.4: Jordankette

 $v\in ilde E_\lambda, v
eq 0_V, k\geq 1$ minimal, sodass $(T-\lambda \mathrm{id})^k v=0_V$. Dann ist $\left\{v, (T-\lambda \mathrm{id})v, \ldots, (T-\lambda \mathrm{id})^{k-1}v
ight\}$ die Jordankette von v.

Lemma 14.3.8 / Satz 14.3.9 / Korollar 14.3.10

 $T(ilde{E}_{\lambda})\subseteq ilde{E}_{\lambda}$

$$\{\lambda\} = \sigma(T \mid_{\tilde{E}_{\lambda}})$$

$$\exists m_\lambda \leq a_\lambda(T): \chi_{T|_{ ilde{E}_\lambda}}(x) = (\lambda-x)^{m_\lambda}$$

Lemma 14.3.12

$$ilde{E}_{\lambda_1}+\cdots+ ilde{E}_{\lambda_k}= ilde{E}_{\lambda_1}\oplus\cdots\oplus ilde{E}_{\lambda_k}$$

vgl. <u>Satz 12.4.8 / Korollar 12.4.9</u>

Theorem 14.3.15 / Korollar 14.3.16

$$T:V o V\implies V=igoplus_{\lambda\in\sigma(T)} ilde{E}_{\lambda}.$$

14.4 Beweis der Jordan'schen Normalform für Nilpotente Abbildungen

Theorem 14.4.1 / Korollar 14.4.4

Für eine nilpotente Abbildung $N:V\to V$ gibt es eine Basis von V bestehend aus Jordanketten.

Dies gilt auch für ein allgemeines $T:V\to V$, wo $\tilde E_\lambda$ eine Basis bestehend aus Jordanketten von $T\mid_{\tilde E_\lambda}$ hat.

14.5 Berechnung der Jordan'sche Normalform Satz 14.5.7

 $C^{-1}J_n(\lambda)C$ in Jordan'sche Normalform \iff

$$C=egin{pmatrix} x_1&x_2&\cdots&x_n\ 0&x_1&\cdots&x_{n-1}\ dots&\ddots&\ddots&\ddots\ 0&\cdots&0&x_1 \end{pmatrix}$$

15 Euklidische und Hermitesche Räume

15.1 Normierte Räume

Definition 15.1.1: Norm

 $K \in \{\mathbb{R}, \mathbb{C}\}$, dann ist eine Norm auf V Vektorraum $\|\cdot\|: V o \mathbb{R}_{\geq 0}$ mit

- $||u+v|| \leq ||u|| + ||v||, \forall u,v \in V$ (Dreiecksungleichung)
- $\|\alpha v\| = |\alpha| \|v\|, \forall \alpha \in K, v \in V$ ("Linearität")
- $\|v\|=0 \implies v=0_V$ (Nicht-Degeneriertheit)

Definition 15.1.6: Einheitsvektor, Distanz / Bemerkung 15.1.7

- 1. v heisst Einheitsvektor $\iff \|v\| = 1$
- 2. Distanz zwischen v,w ist $d(v,w):=\|v-w\|$

Normalisierung von v ist $\frac{1}{\|v\|} \cdot v$.

15.2 Innere Produkte

Definition 15.2.1: Inneres Produkt für Euklidische Räume / Bemerkung 15.2.4

 $K=\mathbb{R}$, dann ist ein inneres Produkt auf V Vektorraum $\langle\cdot,\cdot\rangle:V\times V\to\mathbb{R}$ mit

1. Linearität in der ersten Variablen:

$$\langle lpha v_1 + v_2, w
angle = lpha \, \langle v_1, w
angle + \langle v_2, w
angle, orall lpha \in K, v_1, v_2, w \in V$$

2. Linearität in der zweiten Variablen:

$$\langle v, \alpha w_1 + w_2 \rangle = \alpha \, \langle v, w_1 \rangle + \langle v, w_2 \rangle, orall \alpha \in K, v, w_1, w_2 \in V$$

- 3. Symmetrie: $\langle v,w\rangle=\langle w,v\rangle, \forall v,w\in V$
- 4. Positivität: $\langle v,v \rangle > 0, \forall v \in V \setminus \{0_V\}$

Dann heisst $(V, \langle \cdot, \cdot \rangle)$ euklidischer Raum.

Standard-inneres Produkt: $\langle u,v \rangle = u^{ op} u^{ op} = u^{ op} \mathbb{1}_n v.$

Definition 15.2.6: Inneres Produkt für Hermitesche Räume / Bemerkung 15.2.8

 $K=\mathbb{C}$, dann ist ein inneres Produkt auf V Vektorraum $\langle\cdot,\cdot\rangle:V\times V\to\mathbb{C}$ mit

1. Linearität in der ersten Variablen:

$$\langle lpha v_1 + v_2, w
angle = lpha \, \langle v_1, w
angle + \langle v_2, w
angle, orall lpha \in K, v_1, v_2, w \in V$$

2. Sesquilinearität in der zweiten Variablen:

$$\langle v, lpha w_1 + w_2
angle = \overline{lpha} \, \langle v, w_1
angle + \langle v, w_2
angle, orall lpha \in K, v, w_1, w_2 \in V$$

- 3. Hermitesche Eigenschaft: $\langle v,w \rangle = \overline{\langle w,v \rangle}, \forall v,w \in V$
- 4. Positivität: $\langle v,v \rangle > 0, \forall v \in V \setminus \{0_V\}$

Dann heisst $(V, \langle \cdot, \cdot \rangle)$ hermitescher Raum.

Standard-inneres Produkt: $\langle u,v \rangle = u^{\top} \overline{v} = u^{\top} \mathbb{1}_n \overline{v}$.

Lemma 15.2.9

V innerer Produktraum, dann gilt:

1.
$$\langle 0_V, v
angle = \langle v, 0_V
angle = 0, orall v \in V$$

2.
$$\langle v,w
angle = 0, orall v \in V \implies w = 0_V$$

3.
$$\langle v, w_1
angle = \langle v, w_2
angle, orall v \in V \implies w_1 = w_2$$

Satz 15.2.10

V innerer Produktraum, dann ist $\|v\|:=\sqrt{\langle v,v\rangle}$ eine Norm.

Lemma 15.2.11: Cauchy-Schwartz-Ungleichung

V innerer Produktraum, dann ist $|\langle u,v\rangle| \leq \|u\|\cdot\|v\|, \forall u,v\in V$ mit Gleichheit $\iff u,v$ linear abhängig.

Lemma 15.2.12

V euklidisch, dann ist $\langle u,v
angle = rac{1}{2}(\|u+v\|^2 - \|u\|^2 - \|v\|^2), orall u,v \in V.$

Definition 15.2.14: Orthogonal / Orthonormal

- 1. $v \perp w \iff \langle v, w \rangle = 0$
- 2. $S \subseteq V$ ist ein orthogonales System $\iff u \perp v, \forall u, v \in S$
- 3. orthogonales System $S\subseteq V$ ist orthonormal $\iff \|v\|=1, \forall v\in S$

Satz 15.2.16: Satz des Pythagoras

V innerer Produktraum, $u\perp v\in V\implies \|u+v\|=\|u\|^2+\|v\|^2.$

Definition 15.2.17: Projektion / Bemerkung 15.2.18

 $v \in V, v
eq 0_V$, dann ist die Projektion von u auf v definiert als $\mathrm{proj}_v(u) := rac{\langle u,v
angle}{\langle v,v
angle} \cdot v.$

$$u\perp v
eq 0_V \iff \mathrm{proj}_v(u) = 0_V$$

Lemma 15.2.20

$$v
eq 0_V \implies u - \mathrm{proj}_v(u) \perp v$$

15.3 Konstruktion innerer Produkte

Definition 15.3.1

$$A \in M_{n imes n}(\mathbb{R}), \left\langle u,v
ight
angle_A := u^ op A v$$

Definition 15.3.2: Symmetrisch

 $A \in M_{n imes n}(K)$ ist symmetrisch $\iff A = A^ op \iff a_{ij} = a_{ji}.$

Lemma 15.3.3

 $A \in M_{n imes n}(\mathbb{R}) ext{ symmetrisch } \Longrightarrow \langle u,v
angle_A = \langle v,u
angle_A, orall u,v \in \mathbb{R}^n.$

Definition 15.3.5: Positiv Definit

 $A \in M_{n imes n}(\mathbb{R})$ symmetrisch ist positiv definit $\iff \langle v, v
angle_A = v^ op A v > 0, orall v \in \mathbb{R}^n, v
eq 0.$

Satz 15.3.7

 $A\in M_{n imes n}(\mathbb{R})$, dann ist $\left<\cdot,\cdot
ight>_A$ ein inneres Produkt $\iff A$ positiv definit.

Definition 15.3.9

 $B \in M_{n imes n}(\mathbb{C}), \left\langle u, v
ight
angle_B = u^ op B \overline{v}$

Definition 15.3.10: Adjungierte, Hermitesch

 $B\in M_{n imes n}(\mathbb{C})$

- 1. adjungierte Matrix von B ist $B^* = \overline{B}^{\top}$
- 2. B ist hermitesch $\iff B=B^* \iff b_{ij}=\overline{b_{ji}}$

Definition 15.3.13: Positiv Definit

 $B \in M_{n imes n}(\mathbb{C})$ hermitesch ist positiv definit $\iff \langle v, v
angle_B = v^ op B \overline{v} > 0, orall v \in \mathbb{C}^n, v
eq 0$

Satz 15.3.15

 $B \in M_{n \times n}(\mathbb{C})$, dann ist $\langle \cdot, \cdot \rangle_B$ ein inneres Produkt $\iff B$ positiv definit.

15.4 Gram-Schmidt-Orthogonalisierung

Satz 15.4.1

- 1. $S \subseteq V$ orthogonales System mit $0_V \notin S \implies S$ linear unabhängig.
- 2. $\{v_1,\ldots,v_n\}$ orthogonales System mit $v_i \neq 0_V, orall 1 \leq i \leq n$ und $v=a_1v_1+\cdots+a_nv_n \implies a_i=rac{\langle v,v_i
 angle}{\langle v_i,v_i
 angle}.$

Theorem 15.4.4: Gram-Schmidt-Orthogonalisierungsverfahren

 v_1,\dots,v_n Basis von V, dann ist w_1,\dots,w_n mit $w_1=v_1$ und $w_j=v_j-\sum_{i=1}^{j-1}\mathrm{proj}_{w_i}v_j$ eine orthogonale Basis von V.

Für Orthonormalisierung kann man folgende Formel anwenden:

 v_1,\dots,v_n Basis von V, dann ist w_1,\dots,w_n mit $w_1=rac{v_1}{\|v_1\|}$ und $w_j'=v_j-\sum_{i=1}^{j-1}{\langle v_j,w_i
angle}w_i,w_j=rac{w_j'}{\|w_j'\|}$ eine orthonormale Basis von V.

15.5 Das orthogonale Komplement

Definition 15.5.1: Orthogonales Komplement / Bemerkung 15.5.2

 $arnothing
eq S \subseteq V$, dann ist das orthogonale Komplement von S definiert als $S^\perp := \{v \in V \mid \langle v,s \rangle = 0, \forall s \in S\}.$

$$S = \{v\} \implies v^{\perp} := \{v\}^{\perp}$$

$$0_V^\perp = V$$
 und $V^\perp = \{0_V\}$

Lemma 15.5.3

$$arnothing
eq S\subseteq V$$

1.
$$S^{\perp} \leq V$$

2.
$$S \cap S^{\perp} \in \{\varnothing, \{0_V\}\}$$

3.
$$S \subseteq T \subseteq V \implies T^{\perp} \subseteq S^{\perp}$$

4.
$$LH(S)^{\perp} = S^{\perp}$$

5.
$$S\subseteq (S^\perp)^\perp$$

Theorem 15.5.4

$$U \leq V \implies V = U \oplus U^{\perp}$$

Definition 15.5.9: Orthogonale Projektion / Bemerkung 15.5.10

 $U\leq V,v\in V$ mit $v=u+w,u\in U,w\in U^{\perp}.$ Definiere die orthogonale Projektion von v auf U als ${\rm pr}_U(v)=u.$

$$orall u \in U : \mathrm{pr}_U(u) = u$$

Lemma 15.5.11

- 1. pr_U ist linear
- 2. $\ker(\operatorname{pr}_U) = U^{\perp} \wedge \operatorname{im}(\operatorname{pr}_U) = U$
- 3. $v \mathrm{pr}_U(v) \in U^{\perp}, \forall v \in V$

Satz 15.5.12 / Korollar 15.5.13

$$U \leq V \implies U = (U^{\perp})^{\perp}$$

$$U \le V \implies \dim V = \dim U + \dim U^{\perp}$$

15.6 QR-Zerlegung

Definition 15.6.1: Orthogonale und Unitäre Matrizen / Lemma 15.6.3 / Bemerkung 15.6.4 / Satz 15.6.5

- 1. $A \in M_{n \times n}(\mathbb{R})$ ist orthogonal \iff Spaltenvektoren bilden eine orthonormale Basis $\iff A^{-1} = A^{\top}$. $O(n) := \{A \in M_{n \times n}(\mathbb{R}) \mid A \text{ orthogonal}\}$
- 2. $B \in M_{n \times n}(\mathbb{C})$ ist unitär \iff Spaltenvektoren bilden eine orthonormale Basis $\iff B^{-1} = B^*$. $U(n) := \{B \in M_{n \times n}(\mathbb{C}) \mid B \text{ unitär}\}$

$$A \in O(n) \iff A^{ op} \in O(n) \; \mathsf{und} \; B \in U(n) \iff B^* \in U(n)$$

O(n) ist eine Untergruppe von $GL_n(\mathbb{R})$ und U(n) ist eine Untergruppe von $GL_n(\mathbb{C})$

Theorem 15.6.6

- 1. $A\in GL_n(\mathbb{R}) \implies \exists Q\in O(n), R\in M_{n imes n}(\mathbb{R})$ obere Dreiecksmatrix sodass A=QR.
- 2. $B\in GL_n(\mathbb{C}) \implies \exists Q\in U(n), R\in M_{n imes n}(\mathbb{C})$ obere Dreiecksmatrix sodass B=QR.

Wir finden $Q=(w_1,\dots,w_n)$ nach Gram-Schmidt-Orthogonalisierung und $\mathit{Normalisierung}$ und

$$R = egin{pmatrix} \langle v_1, w_1
angle & \langle v_2, w_1
angle & \cdots & \langle v_n, w_1
angle \ 0 & \langle v_2, w_2
angle & \cdots & \langle v_n, w_2
angle \ dots & \ddots & dots \ 0 & \cdots & 0 & \langle v_n, w_n
angle \end{pmatrix}$$

Theorem 15.6.9

$$A\in M_{m imes n}(K), r=\mathrm{rk}(A)\implies \exists Q\in U(n), R=egin{pmatrix} C & \star \ 0 & 0 \end{pmatrix}, C\in M_{r imes r}(K) ext{ observed}$$
 Dreiecksmatrix, sodass $A=QR$.

15.7 Dualräume von Inneren Produkträumen

Definition 15.7.1: φ -Abbildung / Lemma 15.7.2

 $u \in V$, definiere $arphi_u(v) := \langle v, u
angle.$

$$\varphi_u \in V^*, \forall u \in V$$

Theorem 15.7.3: Darstellungssatz von Riesz / Bemerkung 15.7.4

 $\varphi \in V^* \implies \exists ! u \in V : \varphi = \varphi_u$

 $\Phi: V o V^*, u \mapsto \varphi_u$ ist bijektiv.

Satz 15.7.6

 $U \leq V \implies \Phi(U^{\perp}) \leq V^*$ entspricht dem Annihilator.

15.8 Die adjungierte Abbildung

 $T:V \to W$ linear

Definition 15.8.1: Adjungierte Abbildung / Satz 15.8.3 / Bemerkung 15.8.4

Die adjungierte Abbildung von T ist $T^*:W\to V$ sodass $\langle Tv,w\rangle_W=\langle v,T^*w\rangle_V, \forall v\in V,w\in W.$

 T^* ist wohldefiniert und linear.

•
$$id^* = id$$

•
$$(T^*)^* = T$$

Satz 15.8.6

 $T^*_{\mathrm{dual}}:W^* o V^*$ die duale Abbildung, dann ist $T^*=\Phi_V^{-1}\circ T^*_{\mathrm{dual}}\circ \Phi_W.$

Bemerkung 15.8.7

Identifikationen:

- V^* mit V
- ullet U^\perp Annihilator mit U^\perp orthogonalem Komplement
- $T^*:W^* \to V^*$ mit $T^*:W \to V$

Lemma 15.8.8 / Lemma 15.8.9

S,T:V o W,R:W o U

- 1. $(S+T)^* = S^* + T^*$
- 2. $(\lambda T)^* = \overline{\lambda} \cdot T^*, \forall \lambda \in K$
- 3. $(T^*)^* = T$
- 4. $(RT)^* = T^*R^*$
- 5. $\ker(T^*) = \operatorname{im}(T)^{\perp}$
- 6. $\ker(T) = \operatorname{im}(T^*)^{\perp}$
- 7. $\operatorname{im}(T^*) = \ker(T)^{\perp}$
- 8. $\operatorname{im}(T) = \ker(T^*)^{\perp}$

15.9 Die Abbildungsmatrix der adjungierten Abbildung

Lemma 15.9.1 / Satz 15.9.2 / Korollar 15.9.3

T:V o W mit orthonormalen Basen $B=(v_1,\ldots,v_n), C=(w_1,\ldots,w_m)$ und $A=(a_{ij})=[T]_C^B$, dann ist $a_{ji}=\left\langle Tv_i,w_j
ight
angle_W.$

$$[T^*]_B^C = ([T]_C^B)^*$$

$$A \in M_{n imes m}(K) \implies (T_A)^* = T_{A^*}$$

16 Spektraltheorie

16.1 Normale Endomorphismen

Definition 16.1.1: Orthogonal Diagonalisierbar

 $T:V \to V$ ist orthogonal diagonalisierbar $\iff V$ hat eine orthonormale Basis aus Eigenvektoren.

Lemma 16.1.3

T orthogonal diagonalisierbar $\implies TT^* = T^*T$.

Definition 16.1.5: Normale Abbildungen / Bemerkung 16.1.6 / Satz 16.1.7

 $T: V \to V$ ist normal $\iff TT^* = T^*T$.

 $A \in M_{n \times n}(K)$ ist normal $\iff AA^* = A^*A$.

- 1. $A \in O(n) \implies A$ normal und $B \in U(n) \implies B$ normal
- 2. T orthogonal diagonalisierbar $\implies T$ normal (aber nicht umgekehrt!)
- 3. $T:V \to V$ normal, B orthonormale Basis $\implies [T]_B^B$ normal.
- 4. $A \in M_{n \times n}(K)$ normal, Standard-inneres Produkt $\implies T_A : K^n \to K^n$ normal.

Lemma 16.1.9

 $T:V \rightarrow V$ normal

- 1. $\|Tv\| = \|T^*v\|, \forall v \in V$
- 2. $T \lambda id$ normal $\forall \lambda \in K$
- 3. v Eigenvektor von T zu $\lambda \implies v$ Eigenvektor von T^* zu $\overline{\lambda}$
- 4. v_1, v_2 Eigenvektoren von T zu verschiedenen Eigenwerten $\implies v_1 \perp v_2$

Theorem 16.1.10: Spektralsatz über \mathbb{C} / Korollar 16.1.12 / Korollar 16.1.13

 $T:V \to V$ über $\mathbb C$ orthogonal diagonalisierbar $\iff T$ normal.

 $T:V \to V$ über \mathbb{R} , wenn V eine Jordanbasis hat $\implies T$ orthogonal diagonalisierbar.

 $A \in M_{n \times n}(\mathbb{C})$ normal $\implies \exists U \in U(n) : U^{-1}AU$ diagonal.

16.2 Spektraltheorie über $\mathbb R$

Lemma 16.2.1

 $T:V \to V$ über $\mathbb R$ orthogonal diagonalisierbar $\implies T^* = T$.

Definition 16.2.2: Selbstadjungiert / Satz 16.2.3 / Bemerkung 16.2.4

 $T: V \to V$ heisst selbstadjungiert $\iff T = T^*$.

 $A \in M_{n \times n}(K)$ heisst selbstadjungiert $\iff A = A^*$.

- 1. $T:V \to V$ selbstadjungiert, B orthonormale Basis $\implies [T]_B^B$ selbstadjungiert.
- 2. $A \in M_{n \times n}(K)$ selbstadjungiert, Standard-inneres Produkt $\implies T_A$ selbstadjungiert.

T selbstadjungiert $\implies T$ normal.

Satz 16.2.6

 $T:V \to V$ selbstadjungiert

- 1. $\sigma(T)\subseteq\mathbb{R}$
- 2. $\chi_T(x)$ zerfällt in Linearfaktoren

Theorem 16.2.7 / Korollar 16.2.8

T:V o V über $\mathbb R$ orthogonal diagonalisierbar $\iff T$ selbstadjungiert.

 $A \in M_{n imes n}(\mathbb{R})$ selbstadjungiert / symmetrisch $\implies \exists O \in O(n) : O^{ op}AO$ diagonal.

18 Isometrien

18.1 Definition und erste Eigenschaften

Definition 18.1.1: Isometrie / Bemerkung 18.1.3 / Lemma 18.1.4

T:V o W heisst Isometrie $\iff \|Tv\|_W=\|v\|_V.$

Isometrien sind injektiv.

T:V o W ist eine Isometrie $\iff \langle Tv_1,Tv_2
angle_W=\langle v_1,v_2
angle_V, orall v_1,v_2\in V.$

Satz 18.1.5 / Satz 18.1.6 / Beachte 18.7.1

 $T:V \to V$ linear. Äquivalente Aussagen:

- 1. T ist eine Isometrie
- 2. \forall orthonormale Basis B ist TB auch eine orthonormale Basis
- 3. $TT^* = id = T^*T$
- 4. T^* ist eine Isometrie
- 5. B orthonormale Basis $\implies [T]_B^B \in U(n)$
- 6. $A \in U(n) \implies T_A$ ist eine Isometrie bezüglich des Standard-inneren Produkts
- 7. $A \in O(n) \implies \det A = \pm 1$
- 8. $B \in U(n) \implies |\det B| = 1$

Lemma 18.1.8: Spezielle Orthogonale und Unitäre Matrizen

Die Untermenge der speziellen orthogonalen Matrizen

$$SO(n) := \{A \in O(n) \mid \det A = 1\} \subseteq O(n)$$
 ist eine Untergruppe von $O(n)$.

Die Untermenge der speziellen unitären Matrizen

$$SU(n) := \{B \in U(n) \mid \det B = 1\} \subseteq U(n)$$
 ist eine Untergruppe von $U(n)$.

18.2 Klassifikation der Elemente in O(2) und SO(3)

Lemma 18.2.1

$$A \in O(n) \implies \sigma(A) \subseteq \{\pm 1\}$$

Lemma 18.2.2 / Satz 18.2.3 / Korollar 18.2.4

 $v \in \mathbb{R}^2, \|v\| = 1 \implies \exists heta \in [0, 2\pi) : v = (\cos heta, \sin heta)$

 $A \in O(2)$

1. $\det A=1 \implies \exists \theta \in [0,2\pi): A=R_{\theta}=\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ (Rotation gegen den Uhrzeigersinn um θ)

2.
$$\det A=-1\implies\exists$$
 Basis $B=(v_1,v_2):[T_A]_B^B=\begin{pmatrix}1&0\\0&-1\end{pmatrix}$ (Reflexion in $LH(v_1)$

T:V o V über $\mathbb R$ mit $\dim V=2, \det T=-1 \implies \exists$ orthonormale Basis B sodass

$$[T]_B^B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Satz 18.2.5

 $A\in SO(3) \implies 1\in \sigma(A), \exists B=(v_1,v_2,v_3)$ orthonormale Basis und $\theta\in [0,2\pi)$ sodass

$$[T_A]_B^B = egin{pmatrix} 1 & 0 & 0 \ 0 & \cos heta & -\sin heta \ 0 & \sin heta & \cos heta \end{pmatrix}$$

$$1. -1 \in \sigma(A) \implies \theta = \pi$$

$$2. -1 \notin \sigma(A) \implies \theta \neq \pi$$

19 Tensorprodukte von Vektorräumen

19.1 Die äussere direkte Summe zweier Vektorräume

Definition 19.1.1: Äussere direkte Summe / Bemerkung 19.1.3 / Lemma 19.1.4

 $V\oplus W$ mit Elementen $(v,w)\in V\oplus W, v\in V, w\in W$ und $lpha(v_1,w_1)+(v_2,w_2):=(lpha v_1+v_2,lpha w_1+w_2).$

Damit ist konkret $V \oplus W \cong V \times W$ und auch $V \oplus V \cong V \times V \cong V^2$.

$$\dim(V \oplus W) = \dim V + \dim W$$

 $V,W \leq V \oplus W$ mit kanonischen Injektionen

19.2 Komplexifizierung

Definition 19.2.2: Komplexifizierung / Bemerkung 19.2.3 / Beispiel 19.2.5

Komplexifizierung $V_\mathbb{C}$ über \mathbb{C} von V über \mathbb{R} ist $V\oplus V$ mit (a+bi)(u,v):=(au-bv,bu+av).

- 1. i(u,v) = (-v,u)
- 2. $V \leq V_{\mathbb{C}}$ mit kanonischer Injektion $\iota : v \mapsto (v, 0_V)$

 $(\mathbb{R}^n)_{\mathbb{C}}\cong\mathbb{C}^n$

Satz 19.2.3 / Bemerkung 19.2.7

 $V=\{0\} \implies V_{\mathbb C}=\{0\} \ \mathrm{und} \ V
eq \{0\} \ \mathrm{mit} \ \mathbb R$ -Basis $B=\{v_1,\ldots,v_n\} \implies B_{\mathbb C}=\{(v_1,0_V),\ldots,(v_n,0_V)\} \ \mathrm{ist} \ \mathrm{eine} \ \mathbb C$ -Basis von $V_{\mathbb C} \ \mathrm{mit} \ \mathrm{dim}_{\mathbb C} \ V_{\mathbb C}=\mathrm{dim}_{\mathbb R} \ V.$

 $B_\mathbb{R}=\{(v_1,0_V),\ldots,(v_n,0_V),(0_V,v_1),\ldots,(0_V,v_n)\}$ ist eine \mathbb{R} -Basis von $V_\mathbb{C}$ mit $\dim_\mathbb{R}V_\mathbb{C}=2\dim_\mathbb{C}V_\mathbb{C}$.

Theorem 19.2.8

$$T:V o W\implies \exists !T_{\mathbb{C}}:V_{\mathbb{C}} o W_{\mathbb{C}}:\imath_{W}\circ T=T_{\mathbb{C}}\circ\imath_{V}$$

Lemma 19.2.9

$$[T_{\mathbb{C}}]_{C_{\mathbb{C}}}^{B_{\mathbb{C}}}=[T]_{C}^{B} ext{ und } \chi_{T}(x)=\chi_{T_{\mathbb{C}}}(x)$$

19.3 Vektorräume über einer freien Menge

Definition 19.3.1: Vektorraum über Menge / Bemerkung 19.3.2

S Menge, K Körper. Der von S erzeugte K-Vektorraum K(S) ist definiert mit:

- Elemente von K(S) sind formale Summen: $v = \sum_{s \in S} \alpha_s \cdot s$
- Addition: $\sum_{s \in S} \alpha_s \cdot s + \sum_{s \in S} \beta_s \cdot s = \sum_{s \in S} (\alpha_s + \beta_s) \cdot s$
- Skalarmultiplikation: $\lambda\left(\sum_{s\in S} lpha_s \cdot s\right) = \sum_{s\in S} (\lambda lpha_s) \cdot s$

 $|S| < \infty \implies \dim K(S) = |S|, S$ ist eine Basis von K(S).

19.4 Konstruktion des Tensorproduktes

Definition 19.4.1: Tensorprodukt / Bemerkung 19.4.2 / Bemerkung 19.4.3 / Beispiele 19.4.4

V,W endlich-dimensional über K mit Basen v_1,\ldots,v_n und w_1,\ldots,w_m . Wir definieren $S:=\{v_i\otimes w_j\mid 1\leq i\leq n, 1\leq j\leq m\}$ und das Tensorprodukt $V\otimes_K W:=K(S)$. Elemente: $\sum_{i,j}a_{ij}\cdot v_i\otimes w_j, a_{ij}\in K$.

$$\dim(V \otimes W) = \dim V \dim W$$

 $v\otimes w$ heisst reiner Tensor.

- 1. $K \otimes K \cong K$ mit Basis $1 \otimes 1$
- 2. $V \otimes K \cong V$
- 3. $V \otimes \{0\} \cong \{0\}$

Satz 19.4.7 / Satz 19.4.9

U,V,W Vektorräume, $\Phi:V\times W\to U$ bilinear $\implies \exists!\phi:V\otimes W\to U$ linear, sodass $\phi\circ\otimes=\Phi.$

<u>Definition 19.4.1 Tensorprodukt / Bemerkung 19.4.2 / Bemerkung 19.4.3 / Beispiele 19.4.4</u> ist unabhängig von der Wahl der Basen.

Lemma 19.4.11

- 1. $U \otimes (V \otimes W) \cong (U \otimes V) \otimes W$
- 2. $U \otimes (V \oplus W) \cong (U \otimes V) \oplus (U \otimes W)$

Satz 19.4.12 / Lemma 19.4.13

 $T:V o V', S:W o W' \implies \exists !T \otimes S:V \otimes W o V' \otimes W' ext{ sodass} \ (T \otimes S)(v \otimes w) = Tv \otimes Sw.$

19.5 Komplexifizierung revisited

Satz 19.5.1

 $\gamma_V:V_\mathbb{C} o V\otimes_\mathbb{R}\mathbb{C}, (u,v)\mapsto u\otimes 1+v\otimes i$ ist ein Isomorphismus von \mathbb{R} -Vektorräumen.

Definition 19.5.3: \mathbb{C} -Skalarmultiplikation auf $V \otimes_{\mathbb{R}} \mathbb{C}$ I Lemma 19.5.5

$$\beta \cdot (v \otimes \alpha) := v \otimes \beta \alpha$$

 $\dim_{\mathbb{C}}V\otimes_{\mathbb{R}}\mathbb{C}=\dim_{\mathbb{R}}V$

Satz 19.5.6

 γ_V aus <u>Satz 19.5.1</u> ist ein Isomorphismus von \mathbb{C} -Vektorräumen.

19.6 Tensorprodukte linearer Abbildungen

Satz 19.6.1 / Lemma 19.6.3

Satz 19.4.12 / Lemma 19.4.13

Lemma 19.6.4 / Satz 19.6.5

$$(S_1\otimes S_2)(T_1\otimes T_2)=(S_1T_1)\otimes (S_2T_2)$$

$$(T\otimes S)^{-1}=T^{-1}\otimes S^{-1}$$

Theorem 19.6.7

$$T:V o V,S:W o W\implies \det(T\otimes S)=\det(T)^{\dim W}\cdot\dim(S)^{\dim V}$$

19.7 Tensorprodukte und duale Abbildungen

Theorem 19.7.1 / Satz 19.7.3 / Korollar 19.7.5

$$\exists ! \chi : U^* \otimes V^* o (U \otimes V)^* ext{ sodass } \chi(f \otimes g)(u \otimes v) = f(u)g(v)$$

$$\exists !\Theta: U^*\otimes V
ightarrow \mathrm{Hom}(U,V) ext{ sodass } \Theta(f\otimes v)(u) = f(u)v$$

 \exists kanonischer Isomorphismus $\operatorname{End}(V) \cong V \otimes V^*$

19.9 Das symmetrische und alternierende Produkt

Bemerkung 19.9.1

$$V^{\otimes r} := \underbrace{V \otimes V \otimes \cdots \otimes V}_{r \text{ mal}}$$

$$\sigma \in S_r, v_1 \otimes v_2 \otimes \cdots \otimes v_r \in V^{\otimes r}: \sigma(v_1 \otimes v_2 \otimes \cdots \otimes v_r) := v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes \cdots \otimes v_{\sigma(r)}$$

Definition 19.9.2: Symmetrisches Produkt / Beachte 19.9.4

$$\operatorname{Sym}^r V := \{v \in V^{\otimes r} \mid \sigma(v) = v, orall \sigma \in S_r\} \leq V^{\otimes r}$$

Definition 19.9.6: Symmetrisches Produkt als Quotient / Satz 19.9.7

$$U = LH\left\{v - \sigma(v) \mid v \in V^{\otimes r}
ight\} \leq V^{\otimes r}, S^rV := V^{\otimes r}/U$$

 $\operatorname{Sym}^r V \cong S^r V$

Theorem 19.9.10

$$\dim V = n \implies \dim \operatorname{Sym}^r V = \binom{n+r-1}{r}$$

Definition 19.9.12: Alternierendes Produkt

$$\operatorname{Alt}^r V := \{v \in V^{\otimes r} \mid \sigma(v) = \operatorname{sgn}(\sigma)v, \forall \sigma \in S_r \}$$

Satz 19.9.14

$$V \otimes V \cong \operatorname{Sym}^2 V \oplus \operatorname{Alt}^2 V$$

Definition 19.9.15: Alternierendes Produkt als Quotient / Notation 19.9.17 / Lemma 19.9.18 / Satz 19.9.19

$$U = LH\left\{v - \operatorname{sgn}(\sigma)\sigma(v) \mid v \in V^{\otimes r}
ight\} \leq V^{\otimes r}, \wedge^r V := V^{\otimes r}/U$$

 $\wedge: V^{\otimes r} o \wedge^r V$ als natürliche Projektionsabbildung mit $\wedge (v_1 \otimes \cdots \otimes v_r) = v_1 \wedge \cdots \wedge v_r.$

 \wedge ist *r*-linear und alternierend.

$$\operatorname{Alt}^r V \cong \wedge^r V$$

Theorem 19.9.20

$$\dim \operatorname{Alt}^r V = \binom{n}{r}$$

Korollar 19.9.22

- $ullet \ r>\dim V \implies \wedge^r V=\{0\}$
- $\dim \wedge^n V = 1$ mit v_1, \ldots, v_n Basis von $V \implies v_1 \wedge \cdots \wedge v_n$ Basis von $\wedge^n V$

Theorem 19.9.24

$$egin{aligned} v_1,\dots,v_n & ext{ Basis von } V,A=(a_{ij})\in M_{n imes n}(K) ext{ mit} \ w_j:=\sum_{i=1}^n a_{ij}v_i \implies w_1\wedge\dots\wedge w_n=\det A\cdot v_1\wedge\dots\wedge v_n. \end{aligned}$$