## 一、單撰題

1. 設 n 為正整數, 若滿足  $\frac{1}{n+1} < \sqrt{100} - \sqrt{99} < \frac{1}{n}$ , 則 n 值為下列何者?

(A) 9

(B) 10

(C) 18

(D) 19

(E) 20

2. 設函數f(x) = a|x-1| + b|x+1| + c 可以表示為 $f(x) = \begin{cases} x & , x \ge 1 \\ -3x + 4, -1 < x < 1, \\ -x + 6, x \le -1 \end{cases}$ 

則 a+2b+c 之值為下列哪一個選項?

(A) 0

(B) 1

(C) 2

(D) 3

(E) 4

3. 設 a > 0, $a \ne 1$ ,若  $y = a^x$  關於 x - y = 0 的對稱圖形經過點  $\left(\frac{\sqrt{2}}{2}, -\frac{1}{8}\right)$ ,則 a 的值為下列哪一個選項?

(A) 16

(B) 8

(C) 4√2

(D)  $\frac{1}{4}$ 

 $\langle E \rangle \, \frac{\sqrt{2}}{4}$ 

4. 設  $a = \log_3 6 \cdot b = \log_5 10 \cdot c = \log_7 14 \cdot 則下列哪一個選項是正確的?$ 

- (A) c > b > a
- (B) b > c > a
- (C) a > c > b

- (D) a > b > c
- $\langle E \rangle_a = b = c$

二、多選題

5. 設  $i=\sqrt{-1}$ ,已知 f(x) 為實係數三次多項式,滿足 f(1-i)=0 且 f(0)=f(1)=2,則下列敘述何者正確?

- (A) f(1+i) = 0
- (B) f(i-1)=0
- (C) v=f(x) 的圖形與 x 軸恰有一個交點

$$\langle \mathbf{D} \rangle f\left(\frac{1}{2}\right) > f(0)$$

$$\hbox{(E)} f(-3) > f(-4)$$

6. 有一隻青蛙在A,B,C,D四個荷葉上跳來跳去,牠每一次跳躍落下的荷葉必定不是原來跳起的荷葉,且牠選擇任意一個荷葉落下的機會均等,觀察這隻青蛙發現牠停在 A荷葉上,試問下列哪些敘述是正確的?

(A)牠跳躍 4 次後落在 A 荷葉的機率大於牠跳躍 4 次後落在 B 荷葉的機率

(B)牠跳躍 4 次後落在 A 荷葉的機率等於牠跳躍 4 次後落在 B 荷葉的機率

(C)牠跳躍 4 次後落在 A 荷葉的機率小於牠跳躍 4 次後落在 B 荷葉的機率

(D)已知牠第 2 次跳躍後落在 B 荷葉,則牠第 4 次跳躍後落在 B 荷葉的機率為  $\frac{1}{3}$ 

(E)已知牠第 2 次跳躍後落在 A 荷葉,則牠第 4 次跳躍後落在 B 荷葉的機率為  $\frac{1}{3}$ 

- 7. 下列哪些選項是正確的?
  - (A)若  $a \cdot b$  為實數,且  $a+b\sqrt{2}=0$ ,則 a=b=0
  - (B)若 a 為非零實數,且 a3, a5 均為有理數,則 a 為有理數
  - (C)  $\sqrt{3} + \sqrt{6} > 2 + \sqrt{5}$
  - (D)設  $\sqrt{17+12\sqrt{2}} = n+b$ , 其中 n 為正整數  $\cdot 0 < b < 1$  ,則  $b = \sqrt{2}-1$
  - (E)若 a , b 為實數 , 且 a < b , 則  $a < \frac{2a+b}{3} < \frac{3a+b}{4} < b$
- 8. 已知算幾不等式「若a>0,b>0,則 $\frac{a+b}{2} \ge \sqrt{ab}$ ;若a=b,則 $\frac{a+b}{2}$ :

立,則下列哪些選項是正確的?

(A)當
$$x > 0$$
 時, $x + \frac{1}{x} \ge 2$ 

- (B)當x>0且x=1時, $\log x+\frac{1}{\log x}\geq 2$
- (C)若x 為實數,則  $2^{x}+2^{-x}$  的最小值為 2
- (D)若x>0,y>0且 $\frac{1}{x}+\frac{4}{y}=1$ ,則xy的最大值為 16
- (E)若x,y為實數且滿足 2x+y=2,則  $9^x+3^y$ 的最小值為 8
- 9. 若  $a \cdot b \cdot c$  均為整數  $i = \sqrt{-1}$  ,則下列哪些選項是正確的?

(A) 
$$x^2 - x + 1 = 0$$
 有兩個共軛虛根  $\frac{1 \pm \sqrt{3} i}{2}$ 

- (B)  $1+i+i^2+\cdots+i^{51}=0$
- (C)方程式  $(x^2-x+1)^3+8=0$  有實根
- (D)若方程式  $x^3 + ax^2 + bx + c = 0$  有有理根,則此有理根必為整數根
- (E)方程式 $x^3 + ax^2 + bx + c = 0$  可能沒有實根
- 10. 下列哪些選項中的大小關係是正確的?
  - (A)  $3^{20} > 2^{30}$
  - (B)  $3^{\sqrt{2}} > (\sqrt{2})^3$
  - (C)  $2^{\sqrt{2}} > 2\sqrt{2}$
  - $\langle D \rangle \log_{20} 30 > \log_2 3$
  - (E) x < 0 時, $\left(\frac{1}{3}\right)^x > x^2$  恆成立
- 11. 下列哪些選項中的圖形,其圖形上過相異任兩點的直線斜率恆為正數?
  - (A)  $y = 2^{-x}$

(B)  $y = 2^x$ 

(C)  $v = \log_2 x$ 

(D)  $y = x^3$ 

 $\langle \mathbf{E} \rangle_{\mathcal{Y}} = |\log_{\frac{1}{2}} x|$ 

## 三、填充顯

- 12. 若方程式  $\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}=6$  ,則滿足此方程式之所有實數 x 值的總和為
- 13. 若 a 為實數, $i=\sqrt{-1}$ ,且複數  $\frac{a+3i}{1+2i}$  為純虛數,則實數 a 的值為\_\_\_\_。
- 14. 如右圖,設實係數二次函數  $f(x) = ax^2 + bx + c$  的圖形與 x 軸交於 A, B 兩點,與 y 軸交於 C 點。若  $\overline{AC} = 20$ ,  $\overline{BC} = 15$ ,  $\angle ACB = 90$ °,則  $f(12) = \_____$ 。



- 15. 已知實係數二次函數f(x) 的二次項係數為a,且不等式f(x) > -2x 的解為 1 < x < 3。若方程式 f(x) + 6a = 0 有兩相等實根,則  $a = -\infty$
- 16. 設 n 為正整數,已知點  $A_n(n, \log_2 n)$  在函數  $f(x) = \log_2 x$  圖形上,若直線  $A_n A_{n+1}$  的斜率為  $m_n$ ,且  $\sum_{k=1}^n m_k = 5$ ,則 n =\_\_\_\_\_。
- 17. 一個職業籃球隊有 12 位正式球員,每次上場 5 位球員。現在有一支職業球隊當中有 5 個後衛、4 個前鋒與 3 個中鋒,其中某一位前鋒啟民亦可當中鋒上場打球,如果此球隊要派 2 位後衛、2 位前鋒與 1 位中鋒上場比賽,則此隊的總教練共有\_\_\_\_\_\_\_種指派球員的方法。
- 19. 某一個音樂社團有 5 位男生與 4 位女生, 今有 2 件相同的小提琴與 1 件直笛要分配給這社團當中的 2 位男生與 1 位女生且每人一件,則共有\_\_\_\_\_\_\_種分配方法。
- 20. 已知點 P 停在數線原點上,今將一枚均勻硬幣擲出,若出現正面,點 P 就在數線上向右移動 1 單位;若出現反面就向左移動 1 單位,若投擲此硬幣 10 次,最終點 P 仍然停在數線上原點的 機率最接近  $\frac{1}{n}$ ,則正整數 n 值為 \_\_\_\_\_。