MATH 2135 Linear Algebra

Fields

Alyssa Motas

February 13, 2021

Contents

1	What is Abstract Algebra?			
2	Fiel	ds	4	
3	mentary Properties of Fields	(
	3.1	Cancellation of addition	(
	3.2	Cancellation of multiplication	(
	3.3	$0a = 0 \dots \dots$	(
	3.4	$ab = 0 \dots \dots$,	
	3.5	$z + a = a \dots \dots \dots \dots \dots \dots \dots \dots \dots $,	
	3.6	Unique additive inverse	ð	
	3.7	Laws of negative and subtraction	ð	
		3.7.1 Laws of negative	8	
		3.7.2 Laws of subtraction	9	

1 What is Abstract Algebra?

In algebra, which is a broad division of mathematics, abstract algebra (occasionally called modern algebra) is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras. 1

Arithmetic involves 2+3=5, and basic algebra involves using laws in 2+x=5. For abstract algebra, we use laws (x+y=y+x) without any arithmetic.

Example. Let $\mathbb{Z}_2 = \{0, 1\}$, the integers modulo 2. We can define the following addition and multiplication rules:

$$0+0=0$$
 $0\cdot 0=0$
 $0+1=1$ $0\cdot 1=0$
 $1+0=1$ $1\cdot 0=0$
 $1+1=0$ $1\cdot 1=1$.

Examples of laws. For all x, y, x + y = y + x

x	y	x+y	y + x
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	1

$$xy = yx \qquad (x+y) + z = x + (y+z)$$

... plus many additional laws.

¹Definition taken from Wikipedia.

2 Fields

Definition. A field is a set F, with distinct elements $0, 1 \in F$, and together with two binary operations

$$+: F \times F \to F \qquad : F \times F \to F,$$

called addition and multiplication, respectively, and satisfying the following nine axioms:

(A1) Commutativity of addition. For all $a, b \in F$, we have

$$a+b=b+a$$
.

(A2) Associativity of addition. For all $a, b, c \in F$, we have

$$(a+b) + c = a + (b+c).$$

(A3) Additive identity. For all $a \in F$, we have

$$0 + a = a$$
.

(A4) Additive inverse. For all $a \in F$, there exists $b \in F$ such that

$$a + b = 0$$
.

(FM1) Commutativity of multiplication. For all $a, b \in F$,

$$ab = ba$$
.

(FM2) Associativity of multiplication. For all $a, b, c \in F$,

$$(ab)c = a(bc).$$

(FM3) Multiplicative identity. For all $a \in F$,

$$1a = a$$
.

(FM4) Multiplicative inverse. For all $a \in F$, if $a \neq 0$, then there exists $b \in F$ such that

$$ab = 1$$
.

In \mathbb{R} , it would look like

$$b=\frac{1}{a}$$
.

(D) Distributivity. For all $a, b, c \in F$, we have

$$a(b+c) = ab + ac.$$

Note. There are many additional laws of fields besides the above 9. But they are all consequences of the 9 axioms stated above.

Examples of fields.

- 1. The set \mathbb{R} of real numbers, with the "usual" addition and multiplication, is a field.
- 2. The set \mathbb{C} of complex numbers is a field.
- 3. The set \mathbb{Q} of rational numbers is a field.
- 4. The set \mathbb{Z} of integers is *not* a field. It only satisfies 8 of the 9 axioms and the one that fails is (FM4).
- 5. The set \mathbb{N} of natural numbers is *not* a field. It only satisfies 7 of the 9 axioms and the ones that fail are (A4) and (FM4).
- 6. The set \mathbb{Z}_2 of integers modulo 2 is a field (with the above addition and multiplication).
- 7. Let $n \geq 2$, and let \mathbb{Z}_n be the integers modulo n, with addition and multiplication taken modulo n. Then, there are two cases:
 - (a) If n is prime, then \mathbb{Z}_n is a field.
 - (b) If n is not prime, then \mathbb{Z}_n is not a field. The only failed axiom is (FM4).

3 Elementary Properties of Fields

3.1 Cancellation of addition

For all $x, y, a \in F$, if x + a = y + a, then x = y.

Proof. Take arbitrary² elements $x, y, a \in F$. Assume³ x + a = y + a and we need to show that x = y. By (A4), a has an additive inverse. So, let b be its additive inverse, a + b = 0.

$$x = 0 + x$$
 by (A3)
 $= x + 0$ by (A1)
 $= x + (a + b)$ because b is the additive inverse of a
 $= (x + a) + b$ by (A2)
 $= (y + a) + b$ by assumption
 $= y + (a + b)$ by (A2)
 $= y + 0$ because b is the additive inverse of a
 $= 0 + y$ by (A1)
 $= y$ by (A3).

Therefore, x = y, which is what we had to show.

3.2 Cancellation of multiplication

3.3 0a = 0

For all elements a of a field F, we have

$$0a = 0.$$

Proof. Consider an arbitrary element $a \in F$. We must show that 0a = 0.

$$0 + 0a = 0a$$
 by (A3)
 $= (0 + 0)a$ by (A3)
 $= a(0 + 0)$ by (FM1)
 $= a0 + a0$ by (D)
 $= 0a + 0a$ by (FM1)

²When we need to prove a "for all" statement, we do it by taking arbitrary elements and prove it.

 $^{^3}$ When we need to prove an "if-then" statement, we do it by assuming the if-part then proving the else-part.

Therefore, by cancellation of addition (Proposition 3.1), it follows that

$$0 = 0a$$
.

3.4 ab = 0

In any field F, for all $a, b \in F$, if ab = 0, then a = 0 or b = 0.4

Proof. Take arbitrary $a, b \in F$ and assume that ab = 0. We need to show that a = 0 or b = 0.

Case 1. When a = 0, then the conclusion holds.

Case 2. When $a \neq 0$, by (FM4), a has a multiplicative inverse. Let c be such an inverse, i.e. ac = 1. Then

b = 1b	by $(FM3)$
=(ac)b	by definition of c
=(ca)b	by (FM1)
=c(ab)	by (FM2)
= c0	by assumption
=0c	by (FM1)
=0	by Proposition 3.3

So b = 0 as desired.

3.5 z + a = a

In any field F, if $z \in F$ is an element that acts like a zero, i.e. such that for all $a \in F$, z + a = a, then z = 0.

Proof. Let $z \in F$ be such an element. Assume that z + a = a. Then we have

$$z = 0 + z$$
 by (A3)
 $= z + 0$ by (A1)
 $= 0$ by assumption.

⁴We use this all the time when solving equations such as $x^2 + 3x + 2 = 0 \Rightarrow x = -1, -2$.

3.6 Unique additive inverse

Let F be a field. For every $a \in F$, the element $b \in F$ in axiom (A4) is uniquely determined. In other words, if $b, c \in F$ are two additive inverses of a, then b = c.

Proof. Because b is an additive inverse of a, we have

$$a + b = 0. (1)$$

Similar to c, we also have

$$a + c = 0. (2)$$

From (1) and (2), we get

$$a+b=a+c$$
.

From (A1), we get

$$b + a = c + a$$
.

By Proposition 3.1 (cancellation of addition), we get

$$b = c$$
.

Definition. Since the additive inverse of a is unique, we can introduce a notation for it. We write b = (-a) when b is the additive inverse of a.

From now on, we can write

$$a + (-a) = 0.$$

We define subtraction as a - b which is an abbreviation for a + (-b).

All of the "usual" laws of negative and subtraction follow from the field axioms.

3.7 Laws of negative and subtraction

3.7.1 Laws of negative

1.
$$-(-a) = a$$

2.
$$-(ab) = (-a)b = a(-b)$$

 $(-a)(-b) = ab$

3.
$$-a = (-1)a$$

3.7.2 Laws of subtraction

1.
$$(a-b)(c-d) = ac - ad - bc + bd$$