The weak Arthur packets of real classical groups

Ma, Jia-Jun

(joint with Dan Barbasch, Binyong Sun and Chengbo Zhu)

School of Mathematical Sciences, Xiamen University Department of Mathematics, Xiamen University Malaysia Campus

December 12, 2024

(BIRS-IASM, Arthur packets)

Jordan-Chevalley decomposition

■ For each $g \in G := GL_n(\mathbb{C})$, $\exists !$ pair (s, u) such that

$$g = su = us$$
,

• s is semisimple, and u is unipotent (u-1) is nilpotent.) Camille Jordan Claude Chevalley

 \blacksquare Classification of conjugation classes in G:

$$G/\sim = \bigsqcup_{s \in G_{s.s.}/\sim} \{ su \mid u \in G_s \} / \sim \stackrel{bij.}{\longleftrightarrow} \bigsqcup_{s \in G_{s.s.}/\sim} \operatorname{unip}(G_s)$$

Finite group of Lie type: $G := \mathbf{G}(\mathbb{F}_q)$

- Deligne-Lusztig and Lusztig (1970s–1980s)
- Jordan decomposition:

Define dual group \check{G} . E.g. $\mathrm{Sp}_{2n} = G \iff \check{G} = \mathrm{SO}_{2n+1}$

Deligne

$$\operatorname{Irr}(G) = \bigsqcup_{s \in \check{G}_{\operatorname{s.s.}}/\sim} \mathcal{E}(G, s).$$

Lusztig

Lusztig's map to the unipotent packet.

$$\mathcal{E}(G,s) \xrightarrow{bij.} \mathcal{E}(\check{G}_s,1)$$

Representations of Real Lie groups

- $G \in \{ GL_n(\mathbb{R}), U(p,q), O(p,q), Sp(2n,\mathbb{R}), Mp(2n,\mathbb{R}), \cdots \}$ $\{ \text{discrete series } \} \subset \{ \text{tempered } \} \subset \{ \text{unitary } \} \subset Irr(G)$
- Unitary dual of $SL_2(\mathbb{R})$:

• Open problem: Structure of the unitary dual!

Langlands and Arthur

- $W_{\mathbb{R}} = \mathbb{C}^{\times} \cup j \mathbb{C}^{\times}$ such that $jzj^{-1} = \overline{z}, j^2 = -1 \in \mathbb{C}^{\times}$.
- Langlands dual group ${}^LG = \check{G} \rtimes \langle j \rangle$. Eg. $\operatorname{Sp}_{2n}(\mathbb{R}) = G \longleftrightarrow {}^LG = \operatorname{SO}_{2n+1}(\mathbb{C}) \times \langle j \rangle$
- Langlands

$$\operatorname{Irr}(G) \xrightarrow{\text{finite to one}} \left\{ \phi \colon W_{\mathbb{R}} \to {}^{L}G \right\} / \check{G}.$$

■ Arthur

$$\operatorname{Irr}_{\operatorname{temp}}(G) \subset \operatorname{Irr}_A(G) \subset \operatorname{Irr}_{\operatorname{unit}}(G)$$

$$\operatorname{Irr}_A(G) \xrightarrow{\text{finite to finite}} \left\{ \psi \colon W_{\mathbb{R}} \times \operatorname{SL}_2(\mathbb{C}) \to {}^L G \right\} / \check{G}.$$

Arthur's unipotent representations

- $\psi: W_{\mathbb{R}} \times \mathrm{SL}_2(\mathbb{C}) \to {}^L G$
- Unipotent parameter: $\psi|_{\mathbb{C}^{\times}} = \text{trivial}$ $\Leftrightarrow \text{nilpotent orbit of a real from of } \check{G}.$

Conjecture: \exists unipotent Arthur packets

"On some problems suggested by the trace formula" 1980's Mæglin Renard

Reduction to unipotent Arthur packet

"Sur Les paquets d'Arthur des groupes classiques réels" (2020 JEMS)

Barbasch-Vogan's definition of special unip. repn.

Barbasch

Unip(G) := repn. with smallest "size"

■ Wavefront cycle/Associated cycle:

 $AC: Irr(G) \longrightarrow \mathcal{K}(equiv. sheaves on nil-cone)$

• E.g.: Lie($SL_2(\mathbb{R})$) $\cong \mathbb{R}^3$.

Barbasch-Vogan's definition of special unip. repn. II

G: a real reductive group.

■ $\check{\mathcal{O}}$: a nilpotent orbit in $\check{\mathcal{G}} \leadsto$ inf. char. $\chi_{\check{\mathcal{O}}}$. Duflo \leadsto the maximal primitive ideal $\mathcal{I}_{\check{\mathcal{O}}} \subset \mathcal{U}(\mathfrak{g})$.

■ Definition (Barbasch-Vogan):

An irr. adm. G-module is called special unipotent if

$$\operatorname{Ann}_{\mathcal{U}(\mathfrak{g})}(\pi) = \mathcal{I}_{\check{\mathcal{O}}}.$$

$$\iff \pi$$
 has inf. char. $\chi_{\check{\mathcal{O}}}$ and $\mathrm{AV}_{\mathbb{C}}(\pi) = \overline{\mathcal{O}}$

 $lackbox{
ightharpoonup} \operatorname{Nil}^{\operatorname{special}}(\mathbf{G})
ightharpoonup} := \operatorname{the}$

dual of

Ŏ.

■ Unip_O(G) := { special unipotent repn. attached to O}.

Conjecture/Open problems

■ Major open problem: Classify the unitary dual:

$$Irr_{unit}(G) = \{ irr. unitary repn. of G \}.$$

■ Philosophy: Unip_O(G) = the building blocks of the unitary dual.

Special unip. repn. are not enough in general E.g., Complex Spin group, by Wong-Zhang. Losev, Mason-Brown and Matvieievskyi for the generalization.

■ Conjecture (1980s): Unip $_{\mathcal{O}}(G)$ consists of unitary repn.

Question 1: Size of Unip $_{\mathcal{O}}(G)$?

Question 2: Construction of unipotent repn.

Question 3: Character formula?

- Barbasch-Vogan 1985: Classification for complex groups.
- Barbasch 1989: Proved the conj. for complex classical groups.

Special unip. repn. of simply conn. classical groups

Theorem (Barbasch-M.-Sun-Zhu)

Suppose G is a simply connected real classical group, i.e. one of the following groups

$$\mathrm{SU}(p,q),\mathrm{Spin}(p,q),\mathrm{Spin}(2n,\mathbb{H}),\mathrm{Sp}(2n,\mathbb{R}),\mathrm{Mp}(2n,\mathbb{R}),\mathrm{Sp}(p,q)$$

Arthur-Barbasch-Vogan's unitarity conj. for special unipotent repn. holds:

All special unipotent repn. of G are unitarizable.

Answer for exceptional groups

J. Adams, S. Miller, M. van Leeuven, and D. A. Vogan

Counting G-module with a specific ann. variety

- Fix inf. char. $\mu \in \mathfrak{h}^*/W$
- integral Weyl group

$$W(\mu) := \{ w \in W \mid \langle \mu - w\mu, \check{\alpha} \rangle \in \mathbb{Z}, \ \forall \alpha \in \Delta(\mathfrak{g}, \mathfrak{h}) \}$$

double cell $\mathcal{D} \subset \operatorname{Irr}(W(\mu)) \rightsquigarrow$ the special repn. τ_0 \rightsquigarrow truncated ind. $J_{W(\mu)}^W \tau_0 \xrightarrow{\operatorname{Springer corr.}} \mathcal{O}$.

$$W_{\mu} = \{ w \in W \mid w\mu = \mu \}.$$

■ $\mathcal{G}_{\mu}(G)$: the coherent countinuation repn. of $W(\mu)$.

Lemma: If \mathfrak{g} has no E_8 factor, then

$$# \{ \pi \in \operatorname{Irr}_{\mu}(\mathfrak{g}, K)(G) \mid \operatorname{AV}_{\mathbb{C}}(\pi) = \overline{\mathcal{O}} \}$$

$$= \sum_{\substack{\mathcal{D} \hookrightarrow \mathcal{O} \\ \tau \in \mathcal{D}}} [\tau : 1_{W_{\mu}}] \cdot [\tau : \mathcal{G}_{\mu}(G)]$$

Applications

- $\operatorname{Unip}_{\mathcal{O}}(\operatorname{SL}_n(\mathbb{H})) = \operatorname{restricition} \text{ of } \operatorname{Unip}_{\mathcal{O}}(\operatorname{GL}_n(\mathbb{H})).$
- $Unip_{\check{\mathcal{O}}}(SL_n(\mathbb{R})) = components in the rest. of <math>Unip_{\check{\mathcal{O}}}(GL_n(\mathbb{R})).$
- $\blacksquare \mbox{ Unip}_{\tilde{\mathcal{O}}}(\mbox{SU}_(p,q)) = \mbox{rest. of } \mbox{Unip}_{\tilde{\mathcal{O}}}(\mbox{det double cover of } \mbox{U}(p,q)).$
- genuine special unipotent repn. of Spin(p,q) are some obvious irreducibly parabolicaly induced module.

Nilpotent orbits with "good/bad parity"

■ Bad parity (must occur with even multiplicity in $\check{\mathcal{O}}$):

 $\begin{cases} \text{even number}, & \text{when } \check{G} \text{ is type } B \text{ or } D \\ \text{odd number}, & \text{when } \check{G} \text{ is type } C \end{cases}$

lacktriangle $\check{\mathcal{O}}$ has "good parity" if $\check{\mathcal{O}}$ only contains

 $\begin{cases} \text{odd rows,} & \text{when } \check{G} \text{ is type } B \text{ or } D \\ \text{even rows,} & \text{when } \check{G} \text{ is type } C \end{cases}$

 $\check{\mathcal{O}}$ good parity $\leadsto \chi_{\check{\mathcal{O}}}$ is integral.

 $Sp(14,\mathbb{C})$

 $SO(15,\mathbb{C})$

Reduction to the "good parity"

- Consider $G = \operatorname{Sp}(2n, \mathbb{R})$.
- $\check{\mathcal{O}}$ decompose into two parts $\check{\mathcal{O}}_g$ (good parity) and $\check{\mathcal{O}}_b$ (bad parity).
- Assume $\check{\mathcal{O}}_b = \{r_1, r_1, \cdots, r_k, r_k\}.$

Theorem Let
$$\check{\mathcal{O}}_b' = \{ r_1, \cdots, r_k \} \in \text{Nil}_{\text{GL}}.$$

$$\begin{array}{cccc} \operatorname{Unip}_{\mathcal{O}_b'}(\operatorname{GL}) \times \operatorname{Unip}_{\mathcal{O}_g}(\operatorname{Sp}) & \xrightarrow{bij.} & \operatorname{Unip}_{\mathcal{O}}(\operatorname{Sp}) \\ \\ (\pi', \pi_0) & \mapsto & \operatorname{Ind}_{\operatorname{GL}_{|\mathcal{O}_b'|} \times \operatorname{Sp}(2n_0, \mathbb{R}) \times U}^{\operatorname{Sp}(2n, \mathbb{R})} \end{array}$$

$$\operatorname{Unip}_{\check{\mathcal{O}}'_b}(\operatorname{GL}) = \left\{ \left. \operatorname{Ind} \mathop{\otimes}_{j=1}^k \operatorname{sgn}_{\operatorname{GL}(r_j,\mathbb{R})}^{\epsilon_j} \, \right| \, \epsilon_j \in \mathbb{Z}/2\mathbb{Z} \, \right\}$$

- Use theta correspondence to study $\operatorname{Unip}_{\mathcal{O}_{\alpha}}(G)$.
- We assume $\check{\mathcal{O}}$ has good parity from now on.

Counting unipotent representations I

■ Example: $G = \operatorname{Sp}(2n, \mathbb{R})$ and $\chi_{\mathcal{O}} \in \rho_G +$ weight lattice.

$$W(\chi_{\breve{\mathcal{O}}}) = S_n \ltimes \{\pm 1\}^n,$$

$$\mathscr{G}_{\rho_G}(G) = \sum_{\substack{b,c,d,r,\\\sigma \in \widehat{S_r}}} \operatorname{Ind}_{S_r \times W_{2b} \times W_c \times W_d}^{W_n} \operatorname{sgn} \otimes (\sigma \times \sigma) \otimes \mathbf{1} \otimes \mathbf{1}.$$

$$\uparrow$$

max. torus $\mathbb{C}^b \times \mathrm{U}(1)^r \times \mathbb{R}^{c+d}$

$$\check{\mathcal{O}} \leadsto \operatorname{special\ repn.}\ \tau = \operatorname{Springer}(\check{d}_{BV}(\check{\mathcal{O}}))$$

Lusztig left cell $\mathcal{C} = \{ \tau_1, \cdots, \tau_{2^l} \}$ containing τ

$$[\tau_i : 1_{W_{\lambda_{\check{\mathcal{O}}}}}] = 1 \text{ and } [\tau_i : \mathscr{G}_{\rho_G}(G)] = [\tau : \mathscr{G}_{\rho_G}(G)]$$

$$#Unip_{\check{\mathcal{O}}}(G) = 2^l \cdot [\tau : \mathscr{G}_{\rho_G}(G)]$$

• $[\tau: \mathscr{G}_{\rho_G}(G)]$ is counted by painted bi-partitions PBP($\check{\mathcal{O}}$).

Example of PBP

Associated character

Inductive structure of nilpotent orbits

Kraft

Procesi

resolution of singularities of nilpotent orbit closures.

Example of descent sequences

Ohta's resolution of singularities of a nilpotent orbit closure in symmetric pairs.

Construction of elements in $Unip_{\emptyset}(G)$

- $\chi_j \in \{1, \operatorname{sgn}^{+,-}, \operatorname{sgn}^{-,+}, \operatorname{det}\}\$ when G_j is an orthogonal group.
- Define a smooth repn. of $G = G_a$

$$\pi_{\chi} := (\omega_{G_a,G_{a-1}} \widehat{\otimes} \omega_{G_{a-1},G_{a-2}} \widehat{\otimes} \cdots \widehat{\otimes} \omega_{G_1,G_0} \otimes \chi)_{G_{a-1} \times G_{a-2} \times \cdots \times G_0}$$

Theorem (Barbasch-M.-Sun-Zhu)

Suppose $\check{\mathcal{O}}$ is an orbit with good parity. Then

- either $\pi_{\chi} = 0$ or
- $\pi_{\chi} \in \text{Unip}_{\check{O}}(G)$ and unitarizable.
- Moreover,

$$\mathrm{Unip}_{\mathcal{O}}(G) = \{ \pi_{\chi} \mid \pi_{\chi} \neq 0 \}.$$

Example: Coincidences of theta liftings

Lift to $G = \operatorname{Sp}(6,\mathbb{R})$ from real forms of $G = \operatorname{O}(4,\mathbb{C})$. $\check{\mathcal{O}} = 3^2 1^1$ and $\mathcal{O} = 2^3$.

		$Sp(6,\mathbb{R})$	
O(4,0)		$\theta(\operatorname{sgn}^{+,-})$	
O(3,1)	heta(1)	$\theta(\operatorname{sgn}^{+,-})$	$\theta(\operatorname{sgn}^{-,+})$
O(2,2)	$\theta(1)$	$\theta(\operatorname{sgn}^{+,-})$	$\theta(\operatorname{sgn}^{-,+})$
O(1,3)	$\theta(1)$	$ heta(ext{sgn}^{+,-})$	$\theta(\operatorname{sgn}^{-,+})$
O(0,4)			$\theta(\operatorname{sgn}^{-,+})$

Matching unipotent representations with PBP

- $PBP(\check{\mathcal{O}})$ is complicate.
- LS($\check{\mathcal{O}}$) = { AC(π_{χ}) } is also complicate.
- Proof of Exhaustion

Define descent of painted bi-part., compatible with the theta!

For $\tau \in PBP^{ext}(\check{\mathcal{O}})$, define

$$\pi_{\tau} := \Theta(\pi_{\nabla(\tau)} \otimes \chi_{\tau}') \otimes \chi_{\tau}$$

Lifting of Associated characters I

■ Example $(G, G') = (\operatorname{Sp}(2n, \mathbb{R}), \operatorname{O}(p, q))$

- $\overline{\mathcal{O}} \cap \mathfrak{p} \supset \varphi(\varphi'^{-1}(\mathfrak{p}' \cap \mathcal{O}'))$ where \mathcal{O} is a cplx. nil. **G**-orbit.
- Upper bound of associated cycle: we can define

$$\vartheta^{\mathrm{geo}} \colon \mathcal{K}_{\mathcal{O}'}(G') \longrightarrow \mathcal{K}_{\mathcal{O}}(G)$$

such that

$$AC(\Theta(\pi')) \leq \vartheta^{geo}(AC(\pi')),$$

for every π' with $AV(\pi') \subset \overline{\mathcal{O}'}$

Lifting of Associated Characters II

- $\blacksquare \text{ Recall } (G,G') = (\operatorname{Sp}(2n,\mathbb{R}),\operatorname{O}(p,q))$
- For $\mathcal{L}' \in \mathcal{K}_{\mathcal{O}'}(G')$, $\mathcal{L} = \vartheta(\mathcal{L}') \in \mathcal{K}_{\mathcal{O}}(G)$,

$$\mathscr{L}_{X} = \vartheta_{w}(\mathscr{L}_{X'}) := \det^{(p-q)/2}|_{\mathsf{K}_{X}} \otimes (\mathscr{L}'_{X'})^{\mathsf{K}'_{2,X'}} \circ \alpha_{w},$$

 $\alpha_w \colon K_X \longrightarrow K'_{1,X'}$: a homomorphism between isotropic subgroups.

- The twisting is crucial.
 ⇒ admissible orbit data → admissible orbit data.
- Support of $\vartheta(\mathcal{L}')$ could be reducible.

Key ideas in the proof

- double θ -lift \approx parabolic induction θ -lift $\approx \sqrt{\text{parabolic induction}}$ use the structure of degenerate principle series.
- Estimation of matrix coeff. integrals \leadsto unitarity
- Sharp formula of Asso. Char.: lower bound=upper bound
 - double θ -lift \rightsquigarrow lower bound.
 - double fibration of moment maps → upper bound
- Exhaustion: lower bound=upper bound (Combinatorics)
 - Character theory (Kazhdan-Lusztig-Vogan theory)
 → upper bound by counting painted bipartitions.
 - Asso. Char.+Injectivity of $\theta \rightsquigarrow$ lower bound.

Relevant papers

- Definition for metaplectic groups
 On the notion of metaplectic Barbasch-Vogan duality https://arxiv.org/abs/2010.16089
- Counting and reduction to good parity https://arxiv.org/abs/2205.05266
- Construction and unitarity using θ -lifting https://arxiv.org/abs/1712.05552

Thank you for your attention!

