Однородные уравнения

Однородным называют дифференциальное уравнение вида

$$y' = f\left(\frac{y}{x}\right). \tag{2.1}$$

Введением новой искомой функции u = u(x) по формуле $u = \frac{y}{x}$ это уравнение легко сводится к уравнению с разделяющимися переменными. Действительно, поскольку $y = u \cdot x$, то $y' = u' \cdot x + u$. Подставляя эти выражения в уравнение (2.1), получим уравнение $u' \cdot x = f(u) - u$, или $\frac{du}{f(u) - u} = \frac{dx}{x}$.

Если F(u) — одна из первообразных функции $\frac{1}{f(u)-u}$, то общий интеграл уравнения (2.1) можно записать в виде

$$F\left(\frac{y}{x}\right) = \ln|x| + C.$$

Полагая $C=\ln D$, где D>0, можно придать этой формуле вид $F\left(\frac{y}{x}\right)=\ln D|x|$. Избавимся от модуля, заменив условие D>0 условием $D\neq 0$, и преобразуем общий интеграл к виду

$$F\left(\frac{y}{x}\right) = \ln Dx. \tag{2.2}$$

Интегральные линии однородного уравнения обладают следующим замечательным свойством: преобразование подобия $(x;y) \mapsto (\lambda x; \lambda y)$, $(\lambda \neq 0)$, сохраняет картину интегральных линий неизменной, то есть интегральная линия при этом преобразовании переходит в интегральную линию. Это нетрудно доказать, используя формулу (2.2). Если $F\left(\frac{y}{x}\right) = \ln Dx$, то $F\left(\frac{\lambda y}{\lambda x}\right) = F\left(\frac{y}{x}\right) = \ln Dx = \ln D_1(\lambda x)$.

Напомним, что при разделении переменных могут быть потеряны решения вида y=kx, где k — корень уравнения f(u)=u. Точнее, нужно говорить о непродолжаемых решениях вида y=kx с областью определения x<0 или x>0, поскольку точка (0;0) является особой точкой уравнения (2.1).

На первом занятии мы выяснили, при каких условиях эти решения будут особыми. Переформулируем полученный критерий для однородного уравнения.

Решение y=kx, где k — изолированный корень уравнения f(u)=u, является особым для уравнения (2.1) с непрерывной функцией f(u), если и только если интеграл $\int\limits_{t}^{u} \frac{d\tau}{f(\tau)-\tau}$ сходится в точке k.

Если же функция f(u) непрерывна на (a;b) и всюду на этом интервале $f(u) \neq u$, то через каждую точку $(x_0;y_0)$ такую, что $a < \frac{y_0}{x_0} < b$, проходит одна и только одна интегральная линия, и ее уравнение имеет вид

$$\int_{y_0/x_0}^{y/x} \frac{d\tau}{f(\tau) - \tau} = \ln \left| \frac{x}{x_0} \right|.$$

Пример 1. Найдем решения уравнения $y' = \frac{y(2y-x)}{x^2}$.

Это уравнение однородное, так как его можно преобразовать к виду

$$y' = 2\left(\frac{y}{x}\right)^2 - \left(\frac{y}{x}\right).$$

Замена $y=x\cdot u, y'=x\cdot u'+u,$ приводит к уравнению $x\cdot u'+u=2\,u^2-u,$ и далее к уравнению

$$\frac{du}{u(u-1)} = 2\frac{dx}{x}.$$

Его общий интеграл

$$\ln\left|\frac{u-1}{u}\right| = \ln Dx^2 \quad , \text{ или} \quad \frac{u-1}{u} = Cx^2.$$

Вернемся к исходной переменной у и запишем общее решение:

$$y = \frac{x}{1 - Cx^2}. ag{2.3}$$

При разделении переменных мы «потеряли» решения u=0 и u=1, что соответствует решениям y=0 и y=x исходного уравнения. Эти решения— не особые, в чем можно убедиться непосредственно, исследуя формулу (2.3), или исследуя сходимость интеграла $\int \frac{du}{u(u-1)}$ при $u\to 0$ и $u\to 1$.

Заметим, что прямая x=0 также является интегральной линией исходного уравнения, и три прямые y=0, y=x и x=0 делят плоскость xOy на секторы, в каждом из которых достаточно нарисовать одну интегральную линию, а остальные получить из нее преобразованием подобия. Причем, достаточно рассмотреть лишь полуплоскость x>0, так как картина при x<0 получится преобразованием подобия с коэффициентом $\lambda<0$ (или поворотом на 180^o вокруг начала координат).

Рис. 2.1. Интегральные линии в примере 1.

Найдем интегральную линию, проходящую через точку (2;1). Подставим ее координаты в формулу (2.3): $1=\frac{2}{1-4C}$, откуда C=-1/4 и

соответствующее решение $y = \frac{4x}{4+x^2}$. Несмотря на то, что формально эта функция определена при всех $x \in \mathbb{R}$, мы должны исключить особую точку (0;0) и говорить о непродолжаемом решении с областью определения $(0;+\infty)$, проходящем через точку (2;1). Соответствующая интегральная кривая лежит в секторе II (рис. 2.1).

Найдем интегральную линию, проходящую через точку (2;-2/3). Подставим ее координаты в формулу (2.3): $-\frac{2}{3}=\frac{2}{1-4C}$, откуда C=1 и соответствующее решение $y=\frac{x}{1-x^2}$. Очевидно, эта функция не определена в точке x=1, и данная формула задает при x>0 два непродолжаемых решения: с областями определения (0;1) и $(1;+\infty)$. Второе из них и является искомым, так как проходит через точку (2;-2/3). Таким образом мы получили интегральную линию, лежащую в секторе I. А решение $y=\frac{x}{1-x^2}$ с областью определения (0;1) дает нам интегральную линию, лежащую в секторе III.

В этом примере, благодаря полученной формуле общего решения, мы можем указать область определения любого непродолжаемого решения. Так, если $C \leqslant 0$, то непродолжаемое решение определено на луче $(-\infty;0)$ или $(0;+\infty)$. Если же C>0, то областью определения непродолжаемого решения служит один из следующих интервалов: $(-\infty;-\sqrt{C})$, $(-\sqrt{C};0)$, $(0;\sqrt{C})$ или $(\sqrt{C};+\infty)$. В общем случае теорема, с которой мы познакомимся позже, утверждает лишь существование непродолжаемого решения. \square

Пример 2. Решить задачу Коши
$$\begin{cases} xy' = y + \sqrt{x^2 - y^2} \\ y(1) = 0, 5 \end{cases}$$

Заметим, что правая часть уравнения определена только на множестве $|x|\geqslant |y|$, которое представляет собой объединение двух секторов: $x\geqslant |y|$ и $x\leqslant -|y|$, пересекающихся лишь в точке (0;0). Поскольку условие Коши поставлено в точке x=1, нас будут интересовать только интегральные линии, лежащие в первом секторе, то есть при $x\geqslant 0$.

Занятие 2 5

Нетрудно убедиться в том, что это уравнение однородное. Однако мы не будем преобразовывать его к виду (2.1), а сразу сделаем замену $y=u\cdot x,\,y'=u'\cdot x+u,\,$ и, учитывая условие $x\geqslant 0,$ перейдем к уравнению

$$u' \cdot x = \sqrt{1 - u^2}.$$

Разделяя переменные и интегрируя полученное соотношение, найдем общий интеграл $\arcsin u = \ln Dx$, или $\arcsin \frac{y}{x} = \ln Dx$.

Решения y=-x и y=x исходного уравнения, соответствующие значениям $u=\pm 1$, при которых функция $\sqrt{1-u^2}$ обращается в ноль, являются особыми, так как интеграл $\int \frac{du}{\sqrt{1-u^2}}$ сходится в точках $u=\pm 1$.

Рис. 2.2. Интегральные линии в примере 2.

Найдем решение, проходящее через точку (1;0,5). Из формулы общего решения получаем: $\arcsin 0, 5 = \ln D$, то есть $\ln D = \pi/6$. Следовательно, искомое решение задается формулой

$$\arcsin \frac{y}{x} = \ln Dx = \ln D + \ln x = \frac{\pi}{6} + \ln x.$$

Поскольку по определению $|\arcsin t| \leqslant \pi/2$, то эта формула имеет смысл лишь при $|\ln x + \pi/6| \leqslant \pi/2$, то есть $-2\pi/3 \leqslant \ln x \leqslant \pi/3$, или $e^{-2\pi/3} \leqslant x \leqslant e^{\pi/3}$.

Разрешая равенство $\arcsin\frac{y}{x}=\ln x+\frac{\pi}{6}$ относительно переменной y, получаем ответ: решением поставленной задачи Коши является функция $y=x\cdot\sin(\ln x+\frac{\pi}{6}).$

При $x=e^{-2\pi/3}$ это решение касается прямой y=-x, а при $x=e^{\pi/3}$ — прямой y=x (рис. 2.2). Поэтому для сохранения единственности мы должны считать областью определения непродолжаемого решения, проходящего через точку (1;0,5), интервал $(e^{-2\pi/3};e^{\pi/3})$. \square

Пусть уравнение задано в симметричной форме

$$M(x; y) dx + N(x; y) dy = 0.$$

Оно является однородным, если M(x;y) и N(x;y) — однородные функции одной и той же степени однородности p, то есть для любого $t \neq 0$

$$M(tx; ty) = t^p \cdot M(x; y),$$

$$N(tx; ty) = t^p \cdot N(x; y).$$

В этом случае можно не преобразовывать уравнение к виду (2.1), а сразу сделать замену переменных $y=u\cdot x$, выражая дифференциал dy по формуле $dy=du\cdot x+u\cdot dx$.

Пример 3. Найти общее решение уравнения $(y^2 - 2xy) dx + x^2 dy = 0$.

Выполнив замену $y = u \cdot x$, получим уравнение

$$x^{2}(u^{2} - 2u) dx + x^{2}(x du + u dx) = 0.$$

Оно распадается на два уравнения: $x^2 = 0$ или $(u^2 - u) dx + x du = 0$.

Первое из них дает нам одну интегральную линию x=0, а второе представляет собой дифференциальное уравнение с разделяющимися переменными.

Рис. 2.3. Интегральные линии в примере 3.

Это уравнение имеет решения $u \equiv 0$ и $u \equiv 1$, соответствующие решениям y = 0 и y = x исходного уравнения, а также общий интеграл

$$\ln\left|\frac{u}{1-u}\right| = \ln Dx,$$

из которого получается общее решение $y = \frac{Dx^2}{1 + Dx}$.

Обратим внимание на поведение интегральных линий, входящих в точку (0;0). Если в примере 1 все они, за исключением прямых x=0 и y=0, касались прямой y=x, то в примере 3 все входящие в точку (0;0) интегральные кривые, за исключением прямых x=0 и y=x, касаются прямой y=0. Это хорошо видно на рис. 2.3. \square

Сформулируем без доказательства следующее утверждение:

Пусть прямая y = kx является решением уравнения (2.1) (то есть

f(k)=k), и функция f(u) дифференцируема в точке u=k, тогда при условии f'(k)<1 ни одно из решений не касается этой прямой в начале координат, а при условии f'(k)>1 этой прямой в начале координат касается бесконечно много решений.

Проверьте справедливость этого утверждения на примерах 1 и 3.

Дифференциальное уравнение называется обобщенным однородным, если замена $y=z^m$ приводит его к однородному уравнению. Чтобы подобрать число m, нужно сначала сделать указанную замену, а потом сформулировать условие однородности.

Пример 4. Найти общее решение уравнения $2y' + x = 4\sqrt{y}$.

Подставив $y = z^m$, мы придем к уравнению $2mz^{m-1}z' = 4z^{m/2} - x$.

Для того, чтобы это уравнение было однородным, оба слагаемых в правой части должны иметь одну и ту же степень, то есть m/2=1. Кроме того, такую же степень должен иметь коэффициент при z', то есть m-1=1.

Оба эти требования совместны, и при m=2 уравнение станет однородным. Итак, замена $z=\sqrt{y}$, или $y=z^2$, приводит нас к уравнению $4z\cdot z'=4z-x$. Оно имеет общий интеграл $\frac{x}{2z-x}-\ln\left|\frac{2z-x}{x}\right|=\ln|x|+C$ и частное решение z=x/2, которое не является особым.

Возвращаясь к переменной y, получаем ответ: общий интеграл $\frac{x}{2\sqrt{y}-x}=\ln|2\sqrt{y}-x|+C$ и частное решение $y=x^2/4$. \square

Замечание: если m<0, то возможна потеря решения $y\equiv 0$. Перед тем, как делать замену $y=z^m$, проверьте, является ли функция $y\equiv 0$ решением.

Наконец, рассмотрим уравнение вида $y' = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$.

Если коэффициенты $(a_1;b_1)$ и $(a_2;b_2)$ пропорциональны, то есть

 $a_1: a_2 = b_1: b_2$, то замена $z = a_1x + b_1y$ или $z = a_1x + b_1y + c$ приведет нас к уравнению с разделяющимися переменными.

Пример 5. Решить уравнение (x - y - 1) + (y - x + 2)y' = 0.

Положим z=y-x+2. Тогда y'=z'+1, и уравнение превращается в (1-z)+z(z'+1)=0, или $z\cdot z'+1=0$.

Его общий интеграл $z^2 + 2x = C$, или $(y - x + 2)^2 + 2x = C$. \square

Если же коэффициенты $(a_1;b_1)$ и $(a_2;b_2)$ не пропорциональны, то это означает, что прямые $a_1x+b_1y+c_1=0$ и $a_2x+b_2y+c_2=0$ имеют единственную точку пересечения $(x_0;y_0)$. Замена переменных $x=x_0+\xi$, $y=y_0+\eta$ приводит уравнение к однородному.

Пример 6. Решить уравнение (2x - 4y + 6) dx + (x + y - 3) dy = 0.

Прямые 2x - 4y + 6 = 0, x + y - 3 = 0 пересекаются в точке (1; 2). Введем новые переменные $(\xi; \eta)$, положив $x = \xi + 1$, $y = \eta + 2$, и получим однородное уравнение

$$(2\xi - 4\eta) d\xi + (\xi + \eta) d\eta = 0.$$

Далее, положим $\eta=u\cdot\xi$, и уравнение распадется на $\xi=0$ и

$$(u^2 - 3u + 2) d\xi + \xi(1+u) du = 0.$$

Последнее уравнение, в свою очередь, тоже распадается на $u=1,\,u=2$ и

$$\frac{(1+u)\,du}{(u^2-3u+2)} + \frac{d\xi}{\xi} = 0$$

$$\ln\frac{|u-2|^3}{(u-1)^2} + \ln|\xi| = C$$

$$\frac{(u-2)^3\xi}{(u-1)^2} = D$$

$$(\eta - 2\xi)^3 = D(\eta - \xi)^2.$$

Из u=1 и u=2 получаем частные решения $\eta=\xi$ и $\eta=2\xi$, причем последнее можно получить из формулы общего решения при D=0.

Осталось только вернуться к переменным (x;y) и записать ответ: $(y-2x)^3=D(y-x-1)^2;\ y=x+1.$ \square