Question 1(a) [3 marks]

Define bit rate, baud rate and bandwidth

Answer:

Parameter	Definition	Unit
Bit Rate	Number of bits transmitted per second	bps (bits per second)
Baud Rate	Number of signal changes per second	Baud
Bandwidth	Range of frequencies in communication channel	Hz (Hertz)

• Bit rate: Actual data transmission speed

Baud rate: Modulation rate or symbol rate

• Bandwidth: Channel capacity for frequency range

Mnemonic: "Bits Baud Bandwidth - BBB for communication"

Question 1(b) [4 marks]

Explain TDM with block diagram

Answer:

- **TDM principle**: Multiple signals share single channel by time slots
- Time slots: Each input gets dedicated time period
- **Synchronization**: Transmitter and receiver must be synchronized
- **Applications**: Digital telephone systems, computer networks

Mnemonic: "Time Divided Multiple - TDM shares time"

Question 1(c) [7 marks]

Explain block diagram of digital communication system

Answer:

Table: System Components

Component	Function
Source Encoder	Converts analog to digital
Channel Encoder	Adds error correction codes
Digital Modulator	Converts digital to analog signal
Channel	Transmission medium
Digital Demodulator	Recovers digital signal
Channel Decoder	Detects and corrects errors
Source Decoder	Reconstructs original signal

- Advantages: Noise immunity, error correction capability
- Processing: Digital signal processing techniques
- Reliability: Better performance over long distances

Mnemonic: "Source Channel Modulate Transmit Demodulate Decode - SCMTDD"

Question 1(c OR) [7 marks]

Explain different types of Communication channel

Answer:

Channel Types Table:

Channel Type	Characteristics	Applications
Telephone Channel	300-3400 Hz bandwidth	Voice communication
Coaxial Cable	High bandwidth, shielded	Cable TV, Internet
Optical Fiber	Very high bandwidth, light signals	Long distance, high speed
Wireless Channel	Radio frequency transmission	Mobile, satellite
Satellite Channel	Long distance, space communication	Global communication

• Bandwidth: Different channels offer varying frequency ranges

- Noise characteristics: Each channel has specific noise properties
- **Distance capability**: Varies from local to global coverage
- Cost factors: Installation and maintenance costs differ

Mnemonic: "Telephone Coax Optical Wireless Satellite - TCOWS channels"

Question 2(a) [3 marks]

Draw the modulation waveform for ASK, FSK and BPSK for the digital sequence 11100110

Answer:

Mnemonic: "ASK Amplitude, FSK Frequency, BPSK Phase - AFP modulation"

Question 2(b) [4 marks]

Explain the basic principle and generation of frequency shift keying (FSK) signal

Answer:

FSK Generation Table:

Binary Data	Frequency	Output
Logic '1'	f ₁ (High frequency)	High freq carrier
Logic '0'	f ₀ (Low frequency)	Low freq carrier

- **Principle**: Binary data controls carrier frequency
- Two frequencies: f₁ for '1' and f₀ for '0'
- Constant amplitude: Only frequency changes
- **Detection**: Frequency discrimination at receiver

Mnemonic: "Frequency Shifts Key - FSK frequency control"

Question 2(c) [7 marks]

Explain the working of QPSK modulator and Demodulator with block diagram and constellation diagram

Answer:

QPSK Modulator Block Diagram:

Constellation Diagram:

QPSK Truth Table:

I	Q	Phase	Symbol
0	0	45°	00
0	1	135°	01
1	1	225°	11
1	0	315°	10

• Four phases: 45°, 135°, 225°, 315°

• Two bits per symbol: Higher data rate

• Constant envelope: Amplitude remains constant

• **Demodulation**: Phase detection and parallel to serial conversion

Mnemonic: "Quadrature Phase Shift Key - QPSK four phases"

Question 2(a OR) [3 marks]

Draw the block diagram of ASK modulator and describe working of it

Answer:

- Working principle: Digital data controls carrier amplitude
- Logic '1': Carrier transmitted with full amplitude
- **Logic '0'**: No carrier transmitted (zero amplitude)

• Simple implementation: Uses analog switch or multiplier

Mnemonic: "Amplitude Shift Key - ASK amplitude control"

Question 2(b OR) [4 marks]

Explain the principal of 16-QAM and draw the constellation diagram

Answer:

16-QAM Constellation:

16-QAM Characteristics Table:

Parameter	Value
Bits per symbol	4 bits
Number of states	16
Amplitude levels	4 levels
Phase levels	4 phases

• **Principle**: Combines amplitude and phase modulation

• **Higher data rate**: 4 bits per symbol

• **Complex modulation**: Requires precise amplitude and phase control

• Applications: High-speed digital communication

Mnemonic: "16 Quadrature Amplitude Modulation - 16QAM complex signals"

Question 2(c OR) [7 marks]

Explain working of BPSK modulator and demodulator with block diagram and waveform

Answer:

BPSK Modulator:

BPSK Demodulator:

BPSK Waveforms:

• Phase shift: 180° between '1' and '0'

• Coherent detection: Requires synchronized carrier

• **Best performance**: Lowest bit error rate

• **Constant envelope**: Amplitude remains constant

Mnemonic: "Binary Phase Shift Key - BPSK two phases"

Question 3(a) [3 marks]

Define Channel Capacity in terms of SNR and explain importance of it

Answer:

Shannon's Channel Capacity Formula:

Formula	$C = B \log_2(1 + S/N)$
С	Channel capacity (bps)
В	Bandwidth (Hz)
S/N	Signal-to-Noise ratio

• Importance: Maximum theoretical data rate

• **SNR effect**: Higher SNR allows higher capacity

• Bandwidth trade-off: Can exchange bandwidth for SNR

• **Design limit**: Sets upper bound for system design

Mnemonic: "Channel Capacity Shannon's Limit - CCSL"

Question 3(b) [4 marks]

Describe Asynchronous and synchronous serial data communication techniques

Answer:

Comparison Table:

Parameter	Synchronous	Asynchronous
Clock	Separate clock signal	No separate clock
Start/Stop bits	Not required	Start and stop bits
Speed	Higher	Lower
Cost	Higher	Lower

• Synchronous: Clock synchronization required

• **Asynchronous**: Self-synchronizing with start/stop bits

• **Applications**: Synchronous for high-speed, Asynchronous for simple systems

• **Efficiency**: Synchronous more efficient, Asynchronous more flexible

Mnemonic: "Sync Clock, Async Start-Stop - SCSS"

Question 3(c) [7 marks]

Explain Huffman coding with help of suitable example

Answer:

Example: Characters A, B, C, D with probabilities 0.4, 0.3, 0.2, 0.1

Step-by-step Huffman Tree Construction:

```
Step 1: List probabilities
A: 0.4, B: 0.3, C: 0.2, D: 0.1
Step 2: Combine lowest
     0.3
  C:0.2 D:0.1
Step 3: Continue combining
     0.6
     / \
  B:0.3 0.3
      C:0.2 D:0.1
Step 4: Final tree
      1.0
      / \
   A:0.4 0.6
         / \
       B:0.3 0.3
           C:0.2 D:0.1
```

Huffman Codes Table:

Character	Probability	Code
A	0.4	0
В	0.3	10
С	0.2	110
D	0.1	111

• Average code length: $0.4 \times 1 + 0.3 \times 2 + 0.2 \times 3 + 0.1 \times 3 = 1.9$ bits

• Compression achieved: Reduces average bits per character

• **Prefix property**: No code is prefix of another

Mnemonic: "Huffman Minimum Average Length - HMAL"

Question 3(a OR) [3 marks]

State the significance of probability and entropy in communication

Answer:

Significance Table:

Concept	Significance
Probability	Measures likelihood of information occurrence
Entropy	Measures average information content
Maximum Entropy	Occurs with equal probability events

• Information content: I = log₂(1/P) bits

• Entropy formula: $H = -\Sigma P(x) \log_2 P(x)$

• Channel design: Helps optimize communication systems

• Coding efficiency: Guides source coding design

Mnemonic: "Probability Entropy Information - PEI communication"

Question 3(b OR) [4 marks]

Explain simplex, half duplex and full duplex data transmission mode

Answer:

Transmission Modes Table:

Mode	Direction	Example	Diagram
Simplex	One-way only	Radio broadcast	$A \rightarrow B$
Half Duplex	Both ways, not simultaneous	Walkie-talkie	A ⇌ B
Full Duplex	Both ways, simultaneous	Telephone	$A \rightleftharpoons B$

• **Simplex**: Unidirectional communication

• Half duplex: Bidirectional but alternate

• Full duplex: Simultaneous bidirectional

• **Bandwidth requirement**: Full duplex needs twice the bandwidth

Mnemonic: "Simple Half Full - SHF transmission modes"

Question 3(c OR) [7 marks]

Explain Shannon Fano coding with help of suitable example

Answer:

Example: Characters A, B, C, D with probabilities 0.4, 0.3, 0.2, 0.1

Shannon-Fano Algorithm Steps:

```
Step 1: Arrange in descending order A: 0.4, B: 0.3, C: 0.2, D: 0.1
```

```
Step 2: Divide into two groups
Group 1: A(0.4) \rightarrow Code starts with 0
Group 2: B(0.3), C(0.2), D(0.1) \rightarrow Code starts with 1

Step 3: Subdivide Group 2
B(0.3) \rightarrow Code: 10
C(0.2), D(0.1) \rightarrow Code starts with 11

Step 4: Final subdivision
C(0.2) \rightarrow Code: 110
D(0.1) \rightarrow Code: 111
```

Shannon-Fano Codes Table:

Character	Probability	Code
A	0.4	0
В	0.3	10
С	0.2	110
D	0.1	111

• Average length: Same as Huffman (1.9 bits)

• Top-down approach: Divides from root to leaves

• Not always optimal: Huffman is generally better

Mnemonic: "Shannon Fano Top-Down - SFTD coding"

Question 4(a) [3 marks]

Describe Ethical and Privacy Considerations in Data Communication

Answer:

Ethics and Privacy Table:

Aspect	Consideration
Data Privacy	User consent, data protection
Security	Encryption, access control
Transparency	Clear data usage policies

• Privacy rights: Users control over personal data

• Ethical use: Responsible data handling practices

• Legal compliance: Following data protection laws

• Security measures: Protecting against unauthorized access

Mnemonic: "Privacy Security Transparency - PST ethics"

Question 4(b) [4 marks]

Explain RS 232 standard with pin diagram

Answer:

RS-232 Pin Configuration (DB-9):

Pin	Signal	Function
1	DCD	Data Carrier Detect
2	RXD	Receive Data
3	TXD	Transmit Data
4	DTR	Data Terminal Ready
5	GND	Ground
6	DSR	Data Set Ready
7	RTS	Request To Send
8	CTS	Clear To Send
9	RI	Ring Indicator

• Voltage levels: +3V to +25V for '0', -3V to -25V for '1'

• Maximum distance: 50 feet at 19.2 kbps

• Applications: Serial communication between computers and modems

Mnemonic: "RS-232 Nine pins Serial - RNS communication"

Question 4(c) [7 marks]

Explain Hamming code with help of suitable example

Answer:

Example: 4-bit data 1011

Hamming Code Construction:

Position	1	2	3	4	5	6	7
Туре	P1	P2	D1	P4	D2	D3	D4
Value	?	?	1	?	0	1	1

Parity Calculations:

• **P1** (positions 1,3,5,7): P1 \oplus 1 \oplus 0 \oplus 1 = 0, so P1 = 0

• **P2** (positions 2,3,6,7): P2 ⊕ 1 ⊕ 1 ⊕ 1 = 1, so P2 = 1

• **P4** (positions 4,5,6,7): P4 ⊕ 0 ⊕ 1 ⊕ 1 = 0, so P4 = 0

Final Hamming Code: 0110111

Error Detection Process:

• Calculate syndrome S = S4S2S1

• If S = 000, no error

• If S ≠ 000, error at position indicated by S

• Single error correction: Can correct one-bit errors

• **Double error detection**: Can detect two-bit errors

• Systematic approach: Organized parity bit placement

Mnemonic: "Hamming Single Error Correction - HSEC"

Question 4(a OR) [3 marks]

Define Edge Computing and explain feature of it

Answer:

Edge Computing Features:

Feature	Description
Low Latency	Processing near data source
Bandwidth Saving	Reduces network traffic
Real-time Processing	Immediate data analysis

• **Definition**: Computing at network edge, close to data sources

• Reduced latency: Faster response times

• **Distributed processing**: Reduces central server load

• **Applications**: IoT, autonomous vehicles, smart cities

Mnemonic: "Edge Low-latency Real-time - ELR computing"

Question 4(b OR) [4 marks]

Explain needs of multimedia processing for communication and various file formats of different data

Answer:

Multimedia File Formats Table:

Data Type	Formats	Characteristics
Audio	MP3, WAV, AAC	Compressed/Uncompressed
Video	MP4, AVI, MOV	Different codecs
Image	JPEG, PNG, GIF	Lossy/Lossless compression
Text	TXT, PDF, DOC	Various encodings

- Processing needs: Compression, format conversion, quality optimization
- **Bandwidth optimization**: Reducing file sizes for transmission
- Quality preservation: Maintaining acceptable quality levels
- Compatibility: Supporting multiple devices and platforms

Mnemonic: "Audio Video Image Text - AVIT multimedia"

Question 4(c OR) [7 marks]

Explain different Line coding with help of waveform

Answer:

Line Coding Waveforms for data 1011:

Line Coding Comparison:

Code Type	Bandwidth	DC Component	Synchronization
NRZ-L	Low	Present	Poor
NRZ-I	Low	Present	Poor
RZ	High	Present	Good
Manchester	High	Absent	Excellent

- NRZ: Non-Return-to-Zero, simple but has DC component
- RZ: Return-to-Zero, better synchronization
- Manchester: Self-synchronizing, no DC component
- Selection criteria: Bandwidth, synchronization, complexity

Mnemonic: "NRZ RZ Manchester - NRM line codes"

Question 5(a) [3 marks]

Explain concept of spread spectrum technology

Answer:

Spread Spectrum Characteristics:

Parameter	Description
Bandwidth Spreading	Signal spread over wide frequency
Low Power Density	Power distributed across spectrum
Interference Resistance	Resistant to jamming

- Principle: Spreads signal over much wider bandwidth than required
- **Techniques**: Direct Sequence (DS-SS), Frequency Hopping (FH-SS)
- Advantages: Security, interference resistance, multiple access
- Applications: GPS, CDMA, WiFi, Bluetooth

Mnemonic: "Spread Spectrum Security - SSS technology"

Question 5(b) [4 marks]

Explain block diagram of satellite communication

Answer:

Satellite Communication Components:

Component	Function
Earth Station	Ground-based transmit/receive
Uplink	Earth to satellite transmission
Transponder	Satellite receiver-transmitter
Downlink	Satellite to earth transmission

• Frequency bands: C-band, Ku-band, Ka-band

• Coverage area: Large geographical coverage

• Applications: Broadcasting, telephony, internet

• Advantages: Wide coverage, long-distance communication

Mnemonic: "Earth Uplink Transponder Downlink - EUTD satellite"

Question 5(c) [7 marks]

Demonstrate model of Multimedia Communications and elements of Multimedia system

Answer:

Multimedia Communication Model:

Multimedia System Elements:

Element	Function	Examples
Capture	Input multimedia data	Camera, microphone
Storage	Store multimedia files	Hard disk, memory
Processing	Edit and manipulate	Video editing software
Communication	Transmit multimedia	Networks, internet
Presentation	Display multimedia	Monitor, speakers

• **Synchronization**: Audio-video synchronization critical

• **Compression**: Reduces bandwidth requirements

• Quality of Service: Maintains acceptable quality

• Real-time constraints: Time-sensitive data delivery

Mnemonic: "Capture Store Process Communicate Present - CSPCP multimedia"

Question 5(a OR) [3 marks]

Explain importance of Block chain in Communication Security

Answer:

Blockchain Security Features:

Feature	Benefit
Decentralization	No single point of failure
Immutability	Cannot alter past records
Transparency	All transactions visible

- Cryptographic security: Hash functions and digital signatures
- Distributed ledger: Multiple copies prevent tampering
- Smart contracts: Automated security protocols
- **Applications**: Secure messaging, identity verification

Mnemonic: "Blockchain Distributed Immutable - BDI security"

Question 5(b OR) [4 marks]

Explain important elements, features and advantages of 5G technology

Answer:

5G Technology Elements:

Element	Specification
Speed	Up to 10 Gbps
Latency	Less than 1 ms
Connections	1 million devices per km²
Reliability	99.999% availability

Key Features:

- Enhanced Mobile Broadband: Ultra-high-speed internet
- Ultra-Reliable Low Latency: Critical applications
- Massive Machine Communication: IoT connectivity
- Network Slicing: Customized network services

Advantages:

- Higher capacity: More simultaneous users
- Energy efficiency: Better battery life for devices
- New applications: AR/VR, autonomous vehicles

Mnemonic: "5G Speed Latency Connections - SLC features"

Question 5(c OR) [7 marks]

Compare RS 232, RS 422 and RS 485 standard

Answer:

RS Standards Comparison Table:

Parameter	RS-232	RS-422	RS-485
Mode	Single-ended	Differential	Differential
Max Distance	50 feet	4000 feet	4000 feet
Max Speed	20 kbps	10 Mbps	10 Mbps
Drivers	1	1	32
Receivers	1	10	32
Topology	Point-to-Point	Point-to-Multipoint	Multipoint

Voltage Levels:

Standard	Logic 1	Logic 0
RS-232	-3V to -25V	+3V to +25V
RS-422	Differential > +200mV	Differential < -200mV
RS-485	Differential > +200mV	Differential < -200mV

Applications:

• RS-232: Computer serial ports, modems

• RS-422: Industrial automation, long-distance

• RS-485: Building automation, industrial networks

Key Differences:

• **Noise immunity**: Differential signaling in RS-422/485 better than RS-232

• Distance capability: RS-422/485 much longer than RS-232

• Multi-drop capability: RS-485 supports multiple devices

• Cost: RS-232 cheapest, RS-485 most complex

Mnemonic: "RS-232 Simple, RS-422 Long, RS-485 Multi - SLM standards"