

Assimilação de dados por aprendizado de máquina

Haroldo F. de Campos Velho - INPE

Helaine C. M. Furtado - UFOPA

Juliana A. Anochi - INPE

Roberto P. Souto - LNCC

Marcelo Paiva - INPE

Geronimo Lemos - INPE

MT04: Assimilação de dados por aprendizado de máquina

- O que é "assimilação de dados"?
 - O porque da necessidade e beve histórico
- Métodos de assimilação de dados
 - Nudging e Métodos Variacionais
 - Filtro de Kalman e filtro de Kalman por conjunto
- Aprendizado de máquina
 - Breve descrição: MLP, Recorrente, Deep Learning
 - Pacote TensorFlow: (1) Lorenz; (2) Modelo Fluidity
 - Pacote XGBoost: Método variacional 3DVAR
- Aplicações
 - Modelos de baixa ordem: Lorenz-63, shallow water 1D e 2D
 - Processamento paralelo para assimilação com redes neurais
 - Modelos atmosféricos 3D: WRF (regional), SPEED e FSU (globais)

Inteligência Artificial

INTELIGÊNCIA ARTIFICIAL

Técnicas com habilidades de aprendizado que capacitam uma máquina a imitar a inteligência humana

MACHINE LEARNING

Algoritmos com habilidades de aprender por treinamento

DEEP LEARNING

Rede neural profunda

Inteligência Artificial

Teste de Turing 1950

Jogo da imitação

1. Configuração

 Um juiz humano faz perguntas a dois participantes. As respostas são trocadas via texto.

2. Objetivo

 A máquina deve gerar respostas convincentes para enganar o juiz, fazendo-o acreditar que está conversando com um humano.

3. Critério de Aprovação

 Se a máquina conseguir convencer o juiz em uma proporção significativa, considera-se que ela passou no <u>Teste de Turing</u>.

Fonte: ChatGPT

O que é uma rede neural artificial?

- Aprendizado: adquire conhecimento através de amostras de treinamento.
- Armazenamento: reuni todo o conhecimento (conexões sinápticas).
- Adaptação: ajustando-se a uma nova realidade (nova amostra de informação).

Inspiração biológica

Neurônio biológico

Neurônio artificial

$$v_j(n) = \sum_{i=1}^p x_i w_{ij} + b_i$$
$$y_j(n) = \varphi_j(v_j(n))$$

Regressão

Classificação

Aprendizado de máquina

Decisão em tempo real

Navegação de robôs

Agrupamento

Redução de dimensão

Perceptron de Múltiplas Camadas (MLP)

Redes recorrentes

Hiperparâmetros

- Os hiperparâmetros são configurações ajustáveis que controlam o aprendizado do modelo, mas que não são aprendidas a partir dos dados.
- RNA: taxa de aprendizado, número de camadas, quantidade de neurônio em cada camada, função de ativação, entre outros.
- Floresta Aleatória: número de árvores que será considerado.

Problema: como definir os hiperparâmetros? 4

Métodos

- Busca Exaustiva:
- Busca Aleatória
- Otimização Bayesiana
- Metaheurísticas
- Abordagem Empírica

Solução: Metaheurística

TRATAR COMO UM PROBLEMA DE OTIMIZAÇÃO

ENCONTRAR O MELHOR CONJUNTO DE PARÂMETROS QUE OTIMIZEM UMA FUNÇÃO OBJETIVO

Disponível para download: www.epacis.net/jcis/PDF_JCIS/JCIS11-art.01.pdf

Journal of Computational Interdisciplinary Sciences (2008) 1(1): 3-10

© 2008 Pan-American Association of Computational Interdisciplinary Sciences ISSN 1983-8409

http://epacis.org

A new multi-particle collision algorithm for optimization in a high performance environment

Eduardo Fávero Pacheco da Luz, José Carlos Becceneri and Haroldo Fraga de Campos Velho

Manuscript received on July 31, 2008 / accepted on October 5, 2008

- O PCA explora o espaço de busca com uma única partícula.
- O MPCA, simula a adoção de n-partículas na exploração colaborativa do espaço de buscas, apresentando ganho de performance.


```
Gera uma solução inicial: Old Config
Best Fitness = Fitness(Old Config)
Para n=0 até # de iterações
   Para p=0 até # de partículas
          Perturbation()
          Se Fitness(New_Config) > Fitness(Old_Config)
             Se Fitness(New Config) > Best Fitness
                Best Fitness := Fitness(New Config)
             Fim-se
                Old Config = New Config
                Exploration()
             Senão
                Scattering()
          Fim-se
   Fim-para
Fim-para
```


Parâmetro	Intervalo de Valores
Número de camadas ocultas	[1, 2]
Neurônios por camada	[1, 100]
Taxa de aprendizado	[0.01, 0.9]
Momentum	[0.01, 0.9]
Função de ativação	Tangente Logística Gaussiana

$$F_{obj} = penalty * \frac{\left[\rho_{1} * E_{trein} + \rho_{2} * E_{gen}\right]}{\rho_{1} + \rho_{2}}$$

$$penalty = \left(c_{1} * \left(e^{\# neuron}\right)^{2}\right) \times \left(c_{2} * (\# epoch)\right) + 1$$

$$complexity factor-1$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Aplicações usando RNA&MPCA

- Aplicações RNA&MPCA
 - Assimilação de dados (Furtado, 2012)
 - Previsão climática (Anochi, 2021)
 - Estimação de temperatura (Perfil atmosférico) (Sambati, 2012)
 - Navegação autônima de Vant (Braga, 2018)

- RNA&MPCA está disponível para download:
 - https://github.com/scsr-inpe/mpca-ann
 - 2. https://github.com/sabrinabms/RNA-MPCA

MT04: Assimilação de dados por aprendizado de máquina

- O que é "assimilação de dados"?
 - O porque da necessidade e beve histórico
- Métodos de assimilação de dados
 - Nudging e Métodos Variacionais
 - Filtro de Kalman e filtro de Kalman por conjunto
- Aprendizado de máquina
 - Breve descrição: MLP, Recorrente, Deep Learning
 - Pacote TensorFlow: (1) Lorenz; (2) Modelo Fluidity
 - Pacote XGBoost: Método variacional 3DVAR
- Aplicações
 - Modelos de baixa ordem: Lorenz-63, shallow water 1D e 2D
 - Processamento paralelo para assimilação com redes neurais
 - Modelos atmosféricos 3D: WRF (regional), SPEED e FSU (globais)