Задача

Дискретная математика, ФИИТ, III семестр, экзамен

Доп. Вопрос № 13

Два демона Максвелла раздобыли черный ящик, который по нажатию кнопки случайно и равновероятно генерирует натуральное число от 1 до 100, и играют в увлекательную игру. В каждом раунде генерируется число i; если число Каталана C_i четно, то первый демон платит второму 6 золотых, а если нечетно — второй платит первому 66 золотых. Оба демона одинаково жадны до денег. Кто из них умнее?

Решение

Сначала обозначим рекуррентную формулу для числа Каталана:

$$C_n = \sum_{i=0}^{n-1} C_i \cdot C_{n-1-i}$$

Заметим, что кол-во слагаемых будет n-1, а слагаемые повторяются (т.е. есть $C_0\cdot C_{n-1}$ и $C_{n-1}\cdot C_0$). Значит, что когда n - нечётное, сумма всегда будет чётной. При четном n, у нас будет единственное слагаемое без пары - это $C_{\frac{n-1}{2}}\cdot C_{\frac{n-1}{2}}$. От его чётности зависит чётность C_n , т.к. остальные слагаемые чётные. Произведение может быть нечётным тогда и только тогда, когда оба слагаемых нечётны.

Рассмотрим последовательность C_n :

$$C_0=1$$
, значит следующее нечётное число будет n, при $\frac{n-1}{2}=0\Rightarrow n=1$ $\frac{n-1}{2}=1\Rightarrow C_3$ - нечёт. $\frac{n-1}{2}=3\Rightarrow C_7$ - нечёт.

и так далее. Можем вывести рекуррентную формулу для следующего порядкового номера числа Каталана:

$$N_i = 2 \cdot N_{i-1} + 1$$

Получим набор номеров чисел, при которых число Каталана будет нечетным:

$$N=\{1,3,7,15,31,63\}$$

Получилось 6 чисел нечётных и 94 - чётных. Теперь построим случайную величину: ξ - случайная величина, насколько первый обогатился:

$$\xi = egin{cases} 66, & x \in N \ -6, & x
otin N \end{cases}$$

	ξ	66	-6
I	$\mathbb{P}[oldsymbol{\xi}]$	$\frac{6}{100}$	$\frac{94}{100}$

Посчитаем, сколько в среднем будет зарабатывать первый демон:

$$\mathbb{E}[\xi] = \frac{94}{100} \cdot (-6) + \frac{6}{100} = -5.64 + 3.96 < 0$$

значит первый тупой, а второй умный.