

Fig. 1

Fig. 2

Fig. 3

Fig. 4

× × $\overset{\scriptscriptstyle \times}{*}$ Ø * 80 75 Anti-E1 levels in NON-responders to IFN treatment 70 99 09 Type 1b Type 1b Type 1b 55 weeks after start of treatment 20 Type 3a Type 3a 5 10 15 20 25 30 35 40 45 Series 1 F 0 5 N/S 7 ω 4 9 10

Fig. 5

¥ π Ø 0 80 70 Anti-E1 levels in RESPONDERS to IFN treatment 9 weeks after start of treatment 50 40 Fig. 6 SERIES 1 30 20 9 FN 0 S/N -10 9 2 ω 9 12

Anti-E1 levels in patients with COMPLETE response to IFN

Anti-E1 levels in INCOMPLETE responders to IFN treatment

months after start of treatment Fig. 8

Å N 3α * dt 7 + G 1b **₩** 80 Anti-E2 levels in NON-RESPONDERS to IFN treatment 9 9 55 weeks after start of treatment 50 45 SERIES 1 40 Fig. 9 35 30 25 20 15 0 Z L 2 ې N/S -10 0 ω 9 0 4 9

dl M ★ , O 3a 9 dl H 本 ۵ 80 65 70 75 Anti-E2 levels in RESPONDERS to IFN treatment 9 55 20 weeks after start of treatment 40 45 SERIES 1 10 15 20 25 30 35 Fig.10 Z L 2 0 ċ N/S -10 0 O 9 ω 4 20 12

Anti-E2 levels in INCOMPLETE responders to IFN treatment

Anti-E2 levels in COMPLETE responders to IFN treatment

■ 6E1A10 55 Competition of reactivity of anti-E1 Mabs with peptides 55 11A10D7 53 53 5 5 49 46 35 35A 37 39 peptides 37 35 3\$A 33 3 31 Fig.14 go 90 0 4 0.5 4. 0 8 0.5 90 0.4 1 2 0.8 15G682 55 | **=** 23C12119B10 | 22 53 53 51 51 49 4 peplides peptides 35A 35A 33 35 33 3 8 0.5 -5 8 0 90 0.4 0.5

Anti-E1 (epitope 1) levels in NON-RESPONDERS to IFN treatment

Anti-E1 (epitope 1) levels in RESPONDERS to IFN treatment

Anti-E1 (epitope 2) levels in NON-RESPONDERS to IFN treatment

dl M ★ .♦ O 3a Anti-E1 (epitope 2) levels in RESPONDERS to IFN treatment 80 75 70 92 99 55 weeks after start of treatment Fig. 18 20 25 30 35 40 45 50 SERIES 1 10 15 FN S 0 ç. N/S 7 9 2

Fig. 21A

5' GGCATGCAAGCTTAATTAATT3' (SEQ ID NO 1)
3'ACGTCCGTACGTTCGAATTAATTAATCGA5' (SEQ ID NO 94)

SEC ID NO 3 (HCCI9A)

SEQ ID NO 5 (HCCI10A)

Fig. 21B

the table

SEQ ID NO 7 (HCCI11A)

SEQ ID NO 9 (HCCI12A)

SEQ ID NO 11 (HCCI13A)

Fig. 21C

GCCCTGCGTTCGGGAGGGCAACTCCTCCCGTTGCTGGGTGGCGCTCACTCCCACGCTC
GCGGCCAGGAACGCCAGCGTCCCCACAACGACAATACGACGCCACGTCGATTTGCTC
GTTGGGGCTGCTTTCTGTTCCGCTATGTACGTGGGGGATCTCTGCGGATCTGTTT
CCTTGTTTCCCAGCTGTTCACCTTCTCACCTCGCCGGCATCAAACAGTACAGGACTGCA
ACTGCTCAATCTATCCCGGCCATGTATCAGGTCACCGCATGGCTTGGGATATGATGAT
GAACTGGTAATAG

SEQ ID NO 13 (HCCI17A)

SEQ ID NO 15 (HCPr51)
ATGCCCGGTTGCTCTTTCTCTATCTT

SEQ ID NO 16 (HCPr52)
ATGTTGGGTAAGGTCATCGATACCCT

SEQ ID NO 18 (HCPr54)
CTATTACCAGTTCATCATCATATCCCA

SEQ ID NO 19 (HCPr107)
ATACGACGCCACGTCGATTCCCAGCTGTTCACCATC

Fig. 21D

SEQ ID NO 20 (HCPr108)

GATGGTGAACAGCTGGGAATCGACGTGGCGTCGTAT

SEQ ID NO 21 (HCCl37)

SEQ ID NO 23 (HCC138)

SEQ ID NO 25 (HCC139)

ATGTTGGGTAAGGTCATCGATACCCTTACATGCGGCTTCGCCGACCTCGTGGGGTACA
TTCCGCTCGTCGGCGCCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG
GGTTCTGGAGGACGGCGTGAACTATGCAACAGGGAATTTGCCCGGTTGCTCTTTCTCT

Fig. 21E

SEQ ID NO 27 (HCCI40)

SEQ ID NO 29 (HCCl62)

Fig. 21F

SEQ ID NO 31 (HCCl63)

ATGGGTAAGGTCATCGATACCCTAACGTGCGGATCTCGCGATCTCATGGGGTATATCC
CGCTCGTAGGCGGCCCCATTGGGGGGCGTCGCAAGGGCTCTCGCACACGGTGTGAGGGT
CCTTGAGGACGGGGTAAACTATGCAACAGGGAATTTACCCGGTTGCTCTTTCTCTATCT
TTATTCTTGCTCTTCTCTCGTGTCTGACCGTTCCGGCCTCTGCAGTTCCCTACCGAAATG
CCTCTGGGATTTATCATGTTACCAATGATTGCCCAAACTCTTCCATAGTCTATGAGGCA
GATAACCTGATCCTACACGCACCTGGTTGCGTGCCTTGTGTCATGACAGGTAATGTGA
GTAGATGCTGGGTCCAAATTACCCCTACACTGTCAGCCCCGAGCCTCGGAGCAGTCAC
GGCTCCTCTTCGGAGAGCCGTTGACTACCTAGCGGGAGGGGCTGCCCTCTGCTCCGCG
TTATACGTAGGAGACGCGTTGGGGGCACTATTCTTGGTAGGCCAAATGTTCACCTATA
GGCCTCGCCAGCACGCTACCGTGCAGAACTGCAACTGTTCCATTTACAGTGGCCATGT
TACCGGCCACCGGATGGCATGGGGATATGATGATGAACTGGTAATAG

SEQ ID NO 33 (HCPr109)
TGGGATATGATGATGAACTGGTC

SEQ ID NO 34 (HCPr72)
CTATTATGGTGGTAAKGCCARCARGAGCAGGAG

SEQ ID NO 35 (HCCL22A)

Fig. 21G

CATTACCCATATAGGCTCTGGCACTACCCCTGCACTGTCAACTTCACCATCTTCAAGGT?

TAGGATGTACGTGGGGGGCGTGGAGCACAGGTTCGAAGCCGCATGCAATTGGACTCG

AGGAGAGCGTTGTGACTTGGAGGACAGGGATAGATCAGAGCTTAGCCCGCTGCTGCTG

TCTACAACAGAGTGGCAGATACTGCCCTGTTCCTTCACCACCCTGCCGGCCCTATCCA

CCGGCCTGATCCACCTCCATCAGAACATCGTGGACGTGCAATACCTGTACGGTGTAGG

GTCGGCGGTTGTCTCCCTTGTCATCAAATGGGAGTATGTCCTGTTGCTCTTCCTT

GGCAGACGCGCGCATCTGCGCCTGCTTATGGATGATGCTGCTGATAGCTCAAGCTGAG

GCCGCCTTAGAGAACCTGGTGGTCCTCAATGCGGCGGCCGTGGCCGGGGCCATGGC

ACTCTTTCCTTCCTTGTGTTCTTCTGTGCTGCCTGGTACATCAAGGGCAGGCTGGTCCC

TGGTGCGGCATACGCCTTCTATGGCGTGGCCGCTGCTCCTGCTTCTGCTGCCTTAC

CACCACGAGCTTATGCCTAGTAA

SEQ ID NO 37 (HCCI-1)

GATCCCACAGCTGTCGTGGACATGGTGGCGGGGCCCATTGGGGAGTCCTGGCGGG CCTCGCCTACTATTCCATGGTGGGGAACTGGGCTAAGGTTTTGGTTGTGATGCTACTCT TTGCCGGCGTCGACGGGCATACCCGCGTGTCAGGAGGGGCAGCAGCCTCCGATACCA GGGGCCTTGTGTCCCTCTTTAGCCCCGGGTCGGCTCAGAAAATCCAGCTCGTAAACAC AGGGTTCTTTGCCGCACTATTCTACAAACACAAATTCAACTCGTCTGGATGCCCAGAG CGCTTGGCCAGCTGTCGCTCCATCGACAAGTTCGCTCAGGGGTGGGGTCCCCTCACTT ACACTGAGCCTAACAGCTCGGACCAGAGGCCCTACTGCTGGCACTACGCGCCTCGACC GTGTGGTATTGTACCCGCGTCTCAGGTGTGCGGTCCAGTGTATTGCTTCACCCCGAGCC CTGTTGTGGTGGGACGACCGATCGGTTTGGTGTCCCCACGTATAACTGGGGGGGCGAA CGACTCGGATGTGCTGATTCTCAACAACACGCGGCCGCCGCGAGGCAACTGGTTCGGC TGTACATGGATGAATGGCACTGGGTTCACCAAGACGTGTGGGGGCCCCCCGTGCAACA CGAGGCCACCTACGCCAGATGCGGTTCTGGGCCCTGGCTGACACCTAGGTGTATGGTT CATTACCCATATAGGCTCTGGCACTACCCCTGCACTGTCAACCTTCACCATCTTCAAGGT TAGGATGTACGTGGGGGGGGGGGGGAGCACAGGTTCGAAGCCGCATGCAATTGGACTCG AGGAGAGCGTTGTGACTTGGAGGACAGGGGATAGATCAGAGCTTAGCCCGCTGCTGCTG

SEQ ID NO 39 (HCCI42)

GATCCCACAAGCTGTCGTGGACATGGTGGCGGGGCCCATTGGGGAGTCCTGGCGGGCCCACTACTATTCCATGGTGGGGAACTGGGCTAAGGTTTTGGTTGTGATGCTACTCT

Fig. 21H

TTGCCGGCGTCGACGGGCATACCCGCGTGTCAGGAGGGGCAGCAGCCTCCGATACCA GGGGCCTTGTGTCCCTCTTTAGCCCCGGGTCGGCTCAGAAAATCCAGCTCGTAAACAC AGGGTTCTTTGCCGCACTATTCTACAAACACAAATTCAACTCGTCTGGATGCCCAGAG CGCTTGGCCAGCTGTCGCTCCATCGACAAGTTCGCTCAGGGGTGGGGTCCCCTCACTT ACACTGAGCCTAACAGCTCGGACCAGAGGCCCTACTGCTGGCACTACGCGCCTCGACC GTGTGGTATTGTACCCGCGTCTCAGGTGTGCGGTCCAGTGTATTGCTTCACCCCGAGCC CTGTTGTGGTGGGGACGACCGATCGGTTTGGTGTCCCCACGTATAACTGGGGGGCGAA CGACTCGGATGTGCTGATTCTCAACAACACGCGGCGCCGCGCGAGGCAACTGGTTCGGC TGTACATGGATGAATGGCACTGGGTTCACCAAGACGTGTGGGGGCCCCCCGTGCAACA CGAGGCCACCTACGCCAGATGCGGTTCTGGGCCCTGGCTGACACCTAGGTGTATGGTT CATTACCCATATAGGCTCTGGCACTACCCCTGCACTGTCAACTTCACCATCTTCAAGGT TAGGATGTACGTGGGGGGGGGGGGAGCACAGGTTCGAAGCCGCATGCAATTGGACTCG AGGAGAGCGTTGTGACTTGGAGGACAGGGATAGATCAGAGCTTAGCCCGCTGCTG TCTACAACAGGTGATCGAGGGCAGACACCATCACCACCATCACTAATAG

SEQ ID NO 41 (HCCI43)

ATGGTGGGGAACTGGGCTAAGGTTTTGGTTGTGATGCTACTCTTTGCCGGCGTCGACG GGCATACCCGCGTGTCAGGAGGGGCAGCAGCCTCCGATACCAGGGGCCTTGTGTCCCT CTTTAGCCCCGGGTCGGCTCAGAAAATCCAGCTCGTAAACACCAACGGCAGTTGGCAC ATCAACAGGACTGCCTGAACTGCAACGACTCCCTCCAAACAGGGTTCTTTGCCGCAC TATTCTACAAACACAAATTCAACTCGTCTGGATGCCCAGAGCGCTTGGCCAGCTGTCG CTCCATCGACAGTTCGCTCAGGGGTGGGGTCCCCTCACTTACACTGAGCCTAACAGC TCGGACCAGAGGCCCTACTGCTGGCACTACGCGCCTCGACCGTGTGGTATTGTACCCG CGTCTCAGGTGTGCGGTCCAGTGTATTGCTTCACCCCGAGCCCTGTTGTGGTGGGGGAC ATTCTCAACACACGCGGCCGCCGCGAGGCAACTGGTTCGGCTGTACATGGATGAATG GCACTGGGTTCACCAAGACGTGTGGGGGCCCCCCGTGCAACATCGGGGGGGCCGGCA ACAACACCTTGACCTGCCCACTGACTGTTTTCGGAAGCACCCCGAGGCCACCTACGC CAGATGCGGTTCTGGGCCCTGGCTGACACCTAGGTGTATGGTTCATTACCCATATAGG CTCTGGCACTACCCCTGCACTGCAACTTCACCATCTCAAGGTTAGGATGTACGTGGG GGGCGTGGAGCACAGGTTCGAAGCCGCATGCAATTGGACTCGAGGAGAGCGTTGTGA CTTGGAGGACAGGGATAGATCAGAGCTTAGCCCGCTGCTGCTGTCTACAACAGAGTGG CAGAGCTTAATTAATTAG

Fig. 21I

SEQ ID NO 43 (HCCI44)

ATGGTGGGGAACTGGGCTAAGGTTTTGGTTGTGATGCTACTCTTTGCCGGCGTCGACG GGCATACCCGCGTGTCAGGAGGGGCAGCAGCCTCCGATACCAGGGGCCTTGTGTCCCT CTTTAGCCCCGGGTCGGCTCAGAAATCCAGCTCGTAAACACCAACGGCAGTTGGCAC ATCAACAGGACTGCCCTGAACTGCAACGACTCCCTCCAAACAGGGTTCTTTGCCGCAC TATTCTACAACACAAATTCAACTCGTCTGGATGCCCAGAGCGCTTGGCCAGCTGTCG CTCCATCGACAAGTTCGCTCAGGGGTGGGGTCCCCTCACTTACACTGAGCCTAACAGC TCGGACCAGAGGCCCTACTGCTGGCACTACGCGCCTCGACCGTGTGGTATTGTACCCG CGTCTCAGGTGTGCGGTCCAGTGTATTGCTTCACCCCGAGCCCTGTTGTGGTGGGGAC GACCGATCGGTTTGGTGTCCCCACGTATAACTGGGGGGGCGAACGACTCGGATGTGCTG ATTCTCAACAACACGCGGCGCCGCGAGGCAACTGGTTCGGCTGTACATGGATGAATG GCACTGGGTTCACCAAGACGTGTGGGGGCCCCCCGTGCAACATCGGGGGGGCCCGCA ACAACACCTTGACCTGCCCCACTGACTGTTTTCGGAAGCACCCCGAGGCCACCTACGC CAGATGCGGTTCTGGGCCCTGGCTGACACCTAGGTGTATGGTTCATTACCCATATAGG CTCTGGCACTACCCCTGCACTGTCAACTTCACCATCTTCAAGGTTAGGATGTACGTGGG GGGCGTGGAGCACAGGTTCGAAGCCGCATGCAATTGGACTCGAGGAGAGCGTTGTGA CTTGGAGGACAGGGATAGATCAGAGCTTAGCCCGCTGCTGCTGTCTACAACAGGTGAT CGAGGGCAGACACCATCACCACCATCACTAATAG

SEQ ID NO 45 (HCCL64)

ATGGTGGCGGGGCCCATTGGGGAGTCCTGGCGGGCCTCGCCTACTATTCCATGGTGG
GGAACTGGGCTAAGGTTTTGGTTGTATGCTACTCTTTGCCGGCGTCGACGGCATAC
CCGCGTGTCAGGAGGGCAGCACCTCCGATACCAGGGGCCTTGTGTCCCTCTTTAGC
CCCGGGTCGGCTCAGAAAATCCAGCTCGTAAACACCAACGGCAGTTGGCACATCAAC
AGGACTGCCCTGAACTGCAACGACTCCCTCCAAACAGGGTTCTTTGCCGCACTATTCT
ACAAACACAAATTCAACTCGTCTGGATGCCCAGAGCGCTTGGCCAGCTGTCGCTCCAT
CGACAAGTTCGCTCAGGGGTGGGTCCCCTCACTTACACTGAGCCTAACAGCTCGGAC
CAGAGGCCCTACTGCTGGCACTACGCGCCTCGACCGTGTGTTGTACCCGCGTCTC
AGGTGTGCGGTCCAGTGTATTGCTTCACCCCGAGCCTGTTGTGTGGGGGACGACCGA
TCGGTTTGGTGTCCCCACGTATAACTGGGGGGGCGAACAGCTCGGATGTGCTGATTCTC
AACAACACGCGGCCGCGGAGGCAACTGGTTCGGCTGTACATGGATGAATGCACT
GGGTTCACCAAGACGTGTGGGGGGCCCCCCGTGCAACATCGGGGGGGCCACCAACAC
ACCTTGACCTGCCCCACTGACTGTTTTCGGAAGCACCCCGAGGCCACCTACGCCAGAT
GCGGTTCTGGGCCCTGGCTGACACCTAGGTGTATGGTTCATTACCCATATAGGCTCTGG
CACTACCCCTGCACTGTCAACTTCACCATCTTCAAGGTTAAGGATGTACGTGGGGGGGCC

Fig. 21J

SEC ID NO 47 (HCC!65)

AATTTGGGTAAGGTCATCGATACCCTTACATGCGGCTTCGCCGACCTCGTGGGGTACA TTCCGCTCGTCGGCGCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGGCGTCCG GGTTCTGGAGGACGGCGTGAACTATGCAACAGGGAATTTGCCCGGTTGCTCTTTCTCT ATCTTCCTCTTGGCTTTGCTGTCCTGTCTGACCGTTCCAGCTTCCGCTTATGAAGTGCG CAACGTGTCCGGGATGTACCATGTCACGAACGACTGCTCCAACTCAAGCATTGTGTAT AACTOTTCCCGCTGCTGGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCCAGCG TCCCCACCACGACATACGACGCCACGTCGATTTGCTCGTTGGGGCGGCTGCTTTCTG TTCCGCTATGTACGTGGGGGACCTCTGCGGATCTGTCTTCCTCGTCTCCCAGCTGTTCA CCATCTCGCCTCGCCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATCCCGG CCACATAACGGGTCACCGTATGGCTTGGGATATGATGATGAACTGGTCGCCTACAACG GCCCTGGTGGTATCGCAGCTGCTCCGGATCCCACAAGCTGTCGTGGACATGGTGGCGG GGGCCCATTGGGGAGTCCTGGCGGGCCTCGCCTACTATTCCATGGTGGGGAACTGGGC TAAGGTTTTGGTTGTGATGCTACTCTTTGCCGGCGTCGACGGGCATACCCGCGTGTCAG GAGGGCAGCAGCCTCCGATACCAGGGGCCTTGTGTCCCTCTTTAGCCCCGGGTCGGC TCAGAAAATCCAGCTCGTAAACACCAACGGCAGTTGGCACATCAACAGGACTGCCCT GAACTGCAACGACTCCCTCCAAACAGGGTTCTTTGCCGCACTATTCTACAAACACAAA TTCAACTCGTCTGGATGCCCAGAGCGCTTGGCCAGCTGTCGCTCCATCGACAAGTTCG CTCAGGGGTGGGGTCCCCTCACTTACACTGAGCCTAACAGCTCGGACCAGAGGCCCTA CTGCTGGCACTACGCGCCTCGACCGTGTGGTATTGTACCCGCGTCTCAGGTGTGCGGT CCAGTGTATTGCTTCACCCCGAGCCCTGTTGTGGTGGGGACGACCGATCGGTTTGGTGT CCCCACGTATAACTGGGGGGGGGAACGACTCGGATGTGCTGATTCTCAACAACACGCGG CCGCCGCGAGGCAACTGGTTCGGCTGTACATGGATGAATGGCACTGGGTTCACCAAGA CGTGTGGGGGCCCCCCGTGCAACATCGGGGGGGCCGGCAACACACCTTGACCTGCC

Fig. 21K

SEQ ID NO 49 (HCC166)

ATGAGCACGAATCCTAAACCTCAAAGAAAAACCAAACGTAACACCAACCGCCGCCCA CAGGACGTCAAGTTCCCGGGCGGTGGTCAGATCGTTGGTGGAGTTTACCTGTTGCCGC GCAGGGCCCCAGGTTGGGTGTGCGCGCGACTAGGAAGACTTCCGAGCGGTCGCAAC CTCGTGGGAGGCGACAACCTATCCCCAAGGCTCGCCGACCCGAGGGTAGGGCCTGGG CTCAGCCGGGTACCCTTGGCCCCTCTATGGCAATGAGGGCATGGGGTGGGCAGGATG GCTCCTGTCACCCCGCGGCTCTCGGCCTAGTTGGGGCCCTACAGACCCCCGGCGTAGG TCGCGTAATTTGGGTAAGGTCATCGATACCCTTACATGCGGCTTCGCCGACCTCGTGG GGTACATTCCGCTCGTCGGCGCCCCCCTAGGGGGCGCTGCCAGGGCCCTGGCGCATGG CGTCCGGGTTCTGGAGGACGGCGTGAACTATGCAACAGGGAATTTGCCCGGTTGCTCT TTCTCTATCTTCCTCTTGGCTTTGCTGTCCTGTCTGACCGTTCCAGCTTCCGCTTATGAA GTGCGCAACGTGTCCGGGATGTACCATGTCACGAACGACTGCTCCAACTCAAGCATTG GAACAACTCTTCCCGCTGCTGGGTAGCGCTCACCCCCACGCTCGCAGCTAGGAACGCC AGCGTCCCCACCACGACAATACGACGCCACGTCGATTTGCTCGTTGGGGCGGCTGCTT TCTGTTCCGCTATGTACGTGGGGGACCTCTGCGGATCTGTCTTCCTCGTCTCCCAGCTG TTCACCATCTCGCCTCGCCGGCATGAGACGGTGCAGGACTGCAATTGCTCAATCTATC CCGGCCACATAACGGGTCACCGTATGGCTTGGGATATGATGATGAACTGGTCGCCTAC AACGGCCCTGGTGGTATCGCAGCTGCTCCGGATCCCACAAGCTGTCGTGGACATGGTG GCGGGGGCCCATTGGGGAGTCCTGGCGGGCCTCGCCTACTATTCCATGGTGGGGAACT GGGCTAAGGTTTTGGTTGTGATGCTACTCTTTGCCGGCGTCGACGGGCATACCCGCGT GTCAGGAGGGGCAGCAGCCTCCGATACCAGGGGCCTTGTGTCCCTCTTTAGCCCCGGG

Fig. 21L

TCGGCTCAGAAAATCCAGCTCGTAAACACCAACGGCAGTTGGCACATCAACAGGACT GCCCTGAACTGCAACGACTCCCTCCAAACAGGGTTCTTTGCCGCACTATTCTACAAAC ACAAATTCAACTCGTCTGGATGCCCAGAGCGCTTGGCCAGCTGTCGCTCCATCGACAA GTTCGCTCAGGGGTGGGGTCCCCTCACTTACACTGAGCCTAACAGCTCGGACCAGAGG CCCTACTGCTGGCACTACGCGCCTCGACCGTGTGGTATTGTACCCGCGTCTCAGGTGT GCGGTCCAGTGTATTGCTTCACCCCGAGCCCTGTTGTGGTGGGGACGACCGATCGGTT TGGTGTCCCCACGTATAACTGGGGGGGGGAACGACTCGGATGTGCTGATTCTCAACAAC ACGCGGCGCGCGAGGCAACTGGTTCGGCTGTACATGGATGAATGGCACTGGGTTCA CCAAGACGTGTGGGGGCCCCCGTGCAACATCGGGGGGGCCGGCAACAACACTTGA CCTGCCCACTGACTGTTTTCGGAAGCACCCGAGGCCACCTACGCCAGATGCGGTTC TGGGCCTGGCTGACACCTAGGTGTATGGTTCATTACCCATATAGGCTCTGGCACTAC CCCTGCACTGTCAACTTCACCATCTTCAAGGTTAGGATGTACGTGGGGGGGCGTGGAGC ACAGGTTCGAAGCCGCATGCAATTGGACTCGAGGAGAGCGTTGTGACTTGGAGGACA GGGATAGATCAGAGCTTAGCCCGCTGCTGCTGTCTACAACAGAGTGGCAGATACTGCC CTGTTCCTCACCACCCTGCCGGCCCTATCCACCGGCCTGATCCACCTCCATCAGAAC ATCGTGGACGTGCAATACCTGTACGGTGTAGGGTCGGCGGTTGTCTCCCTTGTCATCA AATGGGAGTATGTCCTGTTGCTCTTCCTTCTCTGCAGACGCGCGCATCTGCGCCTGC TTATGGATGATGCTGCTGATAGCTCAAGCTGAGGCCGCCTTAGAGAACCTGGTGGTCC GCTGCCTGGTACATCAAGGGCAGGCTGGTCCCTGGTGCGGCATACGCCTTCTATGGCG TGTGGCCGCTGCTCCTGCTTCTGCCGCCTTACCACCACGAGCTTATGCCTAGTAA

Fig. 22

OD measured at 450 nm construct

Fraction	volume dilution	39 Type 1b	40 Type Ib	62 Type 3a	63 Type 5a
START FLOW THROU 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	23 ml 1/20 IGH 23 ml 1/20 0.4 ml 1/200	2.517 0.087 0.102 0.396 2.627 3 2.694 2.408 2.176 1.461 1.236 0.981 0.812 0.373 0.653 0.441 0.321 0.525 0.351 0.192	1.954 0.085 0.051 0.550 2.603 2.967 2.310 2.499 2.481 1.970 1.422 0.926 0.781 0.650 0.432 0.371 0.348 0.374 0.186 0.171 0.164	1.426 0.176 0.048 0.090 2.481 3 2.640 1.359 0.347 1.624 0.387 0.543 0.294 0.249 0.239 0.145 0.151 0.098 0.099 0.083 0.084	1.142 0.120 70.050 0.067 2.372 2.694 2.154 1.561 1.390 0.865 0.604 0.519 0.294 0.199 0.209 0.184 0.151 0.106 0.108 0.090 0.087

Figure 24

				OD measured (450 nm				
Fraction	volume	dilution	39 Type 1b	nstruct 40 Type 1b	62 Type 3a	63 Type 5a		
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	250 μl	1/200	0.072 0.109 0.279 0.093 0.080 0.251 3 3 3 2.227 0.263 0.071 0.103 0.045 0.045 0.045 0.045 0.045	0.130 0.293 0.249 0.151 0.266 0.100 1.649 3 3 3 1.921 0.415 0.172 0.054 0.045 0.045 0.047 0.045 0.047	0.096 0.084 0.172 0.297 0.438 0.457 0.722 2.528 3 2.849 1.424 0.356 0.154 0.096 0.044 0.045 0.045 0.046 0.047 0.050 0.048	0.051 0.052 0.052 0.054 0.056 0.056 0.066 0.889 2.345 2.580 1.333 0.162 0.064 0.057 0.051 0.046 0.040 0.048 0.057 0.049		

Fig. 25

Fig.27

Fig.28

M 1 2 3 4 5 6 Fig. 29

67 kD -

45 kD -

29 kD -

18 kD -

14 kD -

Lane 1: Crude Lysate

Lane 2: Flow through Lentil Chromatography

Lane 3: Wash with EMPIGEN Lentil Chromatography

Lane 4: Eluate Lentil Chromatography

Lane 5: Flow through during concentration lentil eluate

Lane 6: Pool of Elafter Size Exclusion Chromatography

Fig. 30

SILVER STAIN OF PURIFIED E2

1. 30 mM IMIDAZOLE WASH Ni-IMAC

2. 05 ug E2

Fig.33

No.	Ret. (ml)	Peak start (mi)	Peak end (ml)	Dur <u>(</u> mi)	Area (ml~mAU)	Height (mAU)
•	0.15	-0.46	-0.43	0.04	0.0976	4.579
1	-0.45 1.55	0.75	3.26	2.51	796.4167	889.377
3	3,27		3.31 3.33	0.05	0.0067 0.0002	0.224 0.018
2 .1	3.=/	3.20		0.02		

Total number of detected peaks = 4
Total Area above baseline = 0.796522 mi*AU
Total area in evaluated peaks = 0.796521 mi*AU
Ratio peak area / total area = 0.999999

Total peak duration = 2.613583 ml

Fig. 34

Fig. 35A-8

Fig. 35B-1

Fig. 35B-2

Fig. 35B-3

Fig. 35B-4

Fig. 35B-5

Fig. 35B-6

Fig. 35B-7

Fig. 35B-8

Fig. 36A **E1 Ab**

Fig. 36B **E2 Ab**

Fig. 38

Relative Map Positions of anti-E2 monoclonal antibodies

PARTIAL TREATMENT OF HCV E2/E2s ENVELOPE PROTEINS BY PNGase F

Fig. 40

Fig. 41 In Vitro Mutagenesis of IICV El glycoprotein

Fig. 42A In Vitro Mutagenesis of HCV E1 glycoprotein

First step of PCR amplification (Gly-# and Ovr-# primers)

Fig. 42B 25 cycles (1 min at 95°C; 1 min at 55°C; 1 min at 72°C) TKr-2 2 cycles (1 min at 95°C; 1 min at 50°C; 1 min at 72°C) OVR-# antisense strand b. Nested PCR amplification (GPT-2 and TKr-2 primers) Bam III E1Gly-# 2. Overlap extension and nested PCR GLY-# sense strand a. Overlap extension EcoR I GPT-2

Fig. 43 In Vitro Mutagenesis of HCV E1 glycoprotein

)

)

Fig. 44A

Fig.44B

Fig.45

Fig.46