浙江大学实验报告

 专业:
 电子信息工程

 姓名:

学号:

サラ: _____ 地点: 紫金港东三 401

课程名称: __工程电磁场与波

指导老师: 杨仕友

日期: 2024年6月5日

1 实验一: 球形载流线圈的场分布与自感

1.1 实验目的

- 1. 研究球形载流线圈(磁通球)的典型磁场分布及其自感参数;
- 2. 掌握工程上测量磁场的两种基本方法 感应电势法和霍耳效应法;
- 3. 在理论分析与实验研究相结合的基础上,力求深化对磁场边值问题、自感参数和磁场测量方法等知识点的理解,熟悉霍耳效应高斯计的应用。

1.2 实验原理

1.2.1 磁场分布

球内轴线上 球内 H_1 为均匀场,其取向与磁通球的对称轴(z 轴)一致,即

$$B_1 = \frac{\mu_0 NI}{3R} = \frac{4\pi \cdot 10^{-7} \times 131 \times 1.0}{3 \times 0.05} = 10.97Gs \tag{1}$$

球外轴线上 球外 H_2 为非均匀场,其取向与磁通球的对称轴(z 轴)一致,即

$$B_2 = \frac{\mu_0 N I R^2}{3r^3} \tag{2}$$

(1) z = r = 6cm, $B_6 = 6.35Gs$

(2) z = r = 7cm, $B_6 = 3.99Gs$

球外赤道面处

$$B_2 = \frac{\mu_0 NI}{6R} = 5.49Gs \tag{3}$$

1.2.2 感应电势法测磁感应强度

S 的测量 实验中用的测试线圈的参数为:内径 $R_1 = 1.0mm$,外径 $R_2 = 4mm$,线圈宽度 b = 1.5mm,线匝数 $N_1 = 90$ 。根据实验中用到的测试线圈参数,计算测试线圈等效截面积 S:

$$S = \frac{\pi}{3}(R_1^2 + R_1R_2 + R_2^2) = 7\pi mm^2$$

$$E = 2\pi f B S N_1 = 68.2 mV$$

1.2.3 磁通球自感系数 L

$$L = \frac{2}{9}\pi N^2 \mu_0 R = 0.753 mH$$

则磁激电压有效值为: $U_L = \omega LI = 23.66V$

0.5Ω 无感电阻上的电压 U_R =RI=0.5V

电压 u(t) 超前电流 ${\bf i}({\bf t})$ 间的相位为 $\phi=cos^{-1}(0.5/23.66)=88.79^{\circ}$

1.3 实验过程与结果

1.3.1 磁通球轴线上磁感应强度 B 的分布

正弦激磁电流 I=1A, f=5kHz (通过示波器测量电源频率 f=5.05kHz)

a. 感应电势法测磁感应强度 B 测得实验结果如下:

序号	坐标 r/cm	激磁电流 I/A	实测 E/mV	折算后 E/mV	磁感应强度 B/Gs
1	-5	1.011	73.9	73.1	11.6
2	-4	1.011	73.1	72.3	11.5
3	-3	1.012	71.8	70.9	11.3
4	-2	1.011	70.7	69.9	11.1
5	-1	1.011	70.3	69.5	11.1
6	0	1.011	70.1	69.3	11.0
7	1	1.012	70	69.2	11.0
8	2	1.011	70.8	70.0	11.2
9	3	1.012	71.8	70.9	11.3
10	4	1.011	74.9	74.1	11.8
11	5	1.012	57.3	56.6	9.0
12	6	1.012	30.3	29.9	4.8
13	7	1.011	12.2	12.1	1.9

表 1: 感应电势法测磁感应强度 B 实验数据

图 1: 磁感应强度 B 沿 z 轴实验数据

- (1) 理论上磁通球内磁感应强度应基本不变,但是实际测量结果中靠近球心磁场强度小,两旁稍大可见实验装置并不是非常理想,导致最后结果有所误差。
- (2) 在磁通球外,磁感应强度随且随着距离增大而快速减小,这与理论上的结果是一致的。
- (3) 标尺的 0 刻度和实验装置的球心并不重合,导致实验数据并没有很对称。

b. 霍耳效应法测磁感应强度 B 测得实验结果如下:

- 1. 交流激磁 I = 1A, 高斯计在交流测量模式下测量"赤道"处磁感应强度 B = 8.6Gs
- 2. 直流激磁 I=1A,高斯计在直流测量模式下测量"赤道"处磁感应强度 B=8.23Gs

实验结果分析

- 1. 高斯计测量结果较为偏小,大小为 8.6Gs, 理论值为 10.97Gs, 使用感应电势法大小为 11.8Gs。
- 2. 高斯计测量结果较为偏小的原因应为,由于硬件限制,难以将高斯计的探头深入磁通球内部,导致测量结果偏小。

1.3.2 磁通球赤道处磁感应强度

- 1. 交流激磁 I=1A,高斯计在交流测量模式下测量"赤道"处磁感应强度 B=4.1Gs
- 2. 直流激磁 I=1A,高斯计在直流测量模式下测量"赤道"处磁感应强度 B=4.19Gs
- 高斯计测量结果较为偏小,大小为 4.1Gs,理论值为 5.49Gs;受实验设备等影响,并没有到达理论值。
- 交流和直流的结果基本一致。

1.3.3 磁通球自感系数 L

正弦磁激电流 I = 1.0A, f = 5.00kHz, 测得实验结果如下:

- 1. 测量得到的磁激电压有效值为 $U_L=20.05V$
- 2. 测量 0.5Ω 无感电阻上的电压有效值为 $U_R=0.5161V$
- 3. 磁通球自感系数 L 的测量值为 $L=\frac{U_L}{\omega I}=0.638mH$

图 2: 磁通球自感系数 L 实验数据

- 实验测量结果较理论所得结果较为偏小,可能是由于实验装置的不理想性导致的。
- 实验测量结果与理论值相差不大,误差在 0.115mH 左右。
- 电压电流的实测相位在 84.83° 左右,相位相差比理论计算偏小,理论计算中未考虑线圈本身的电阻,因此测量结果较为准确。

2 实验二:磁悬浮

2.1 实验目的

- 1. 观察自稳定的磁悬浮物理现象;
- 2. 了解磁悬浮的作用机理及其理论分析的基础知识;
- 3. 在理论分析与实验研究相结合的基础上,力求深化对磁场能量、电感参数和电磁力等知识点的理解。

2.2 实验原理

- 1. 计算铝板在工频 50 Hz 激励下的透入深度: $d=\sqrt{\frac{2}{\omega\mu\gamma}}=\sqrt{\frac{2}{2\cdot f\mu_0\gamma}}=11.5mm$
- 2. 计算 $L_0(a = (R_1 + R_2)/2 = 113mm)L_0 = \mu_0 aN^2 = 8.87mH$

3. I 与 h 具有以下关系: $I = \sqrt{\frac{2Mg}{L_0}} \sqrt{h} = 82.8 \sqrt{h}$

2.3 实验过程与结果

有机玻璃棒上刻度尺 0 刻度与铝板表面的距离 $h_0=1.65cm$, 线圈厚度为 $h_c=1.25cm$ 。

序号	刘庇佑 1 (2002)	悬浮高度 h(cm)	磁激电流 $I(A)$	
万 与	刻度值 $h_1(cm)$	总行同及 $n(cm)$	实测值	理论值
1	3.30	4.33	26.4	17.2
2	2.60	3.63	24.0	15.8
3	2.20	3.23	22.8	14.9
4	2.00	3.03	22.2	14.4
5	1.78	2.81	21.6	13.9
6	1.30	2.33	20.0	12.6

表 2: 磁悬浮实验数据

图 3: 磁悬浮实验数据

- 理论结果比实验结果大很多,主要应该由实验装置的不理想性导致的。
- 对实验结果进行拟合,发现也比较符合 $h^{1/2}$ 的曲线 $(y=135.7x^{0.4486})$,说明实验结果比较有效,只是由于设备老化和 L_0 本身的估计原因,有一定的偏差。