k-coloreado de aristas

Un **k-coloreado de aristas** de un grafo G es una función (de etiquetado) $c: E(G) \mapsto S$, donde |S| = k.

- Las etiquetas de *S* son los "colores".
- Las aristas del mismo color forman una clase de color.

k-coloreado propio

Un *k*-coloreado de aristas es **propio** si aristas incidentes tienen etiquetas diferentes:

$$(\forall e, e' \in E(G))(e \sim e' \rightarrow c(e) \neq c(e')),$$

es decir, si cada clase de color es un emparejamiento.

Grafo k-coloreable

Un grafo es k-coloreable por aristas si tiene un k-coloreado de aristas propio.

Índice cromático

El **índice cromático** $\chi'(G)$ de un grafo sin bucles G es el menor valor de k tal que G es k-coloreable por aristas.

Nota

- Si G tiene bucles, G no es coloreable por aristas.
- Las aristas múltiples si afectan el coloreado de aristas.

Ejemplo

$$\chi'(Km, n) = \max\{m, n\}$$

3-coloreado de aristas

Ejemplo

 $\chi'(C_n) = 3$, si n es impar y $\chi'(C_n) = 2$, si n es par.

$$\cdot \triangle(C_n) = 2 \rightarrow \chi'(C_n) \gamma_2$$

4 - coloración por aristas

Grafo lineal

El **grafo lineal** de G, notado L(G), es el grafo simple cuyos vértice son las aristas de G. Dos vértices son adyacentes en L(G) sii las aristas correspondientes en G tienen un extremo común.

Nota

Todo coloreado por aristas de un grafo G puede interpretarse como un coloreado del grafo lineal asociado L(G). Así,

$$\chi'(G) = \chi(L(G))$$

Algoritmo de coloreado voraz

Input: Un grafo G con n vértices ordenados: v_1, v_2, \ldots, v_n .

Output: f(v), $\forall v \in V(G)$, un coloreado propio de G.

Iteración:

- 1. c = 0
- 2. Mientras que algún vértice no esté coloreado:
 - a. c = c + 1.
 - b. Para $^{\vee}i = 1$ hasta $^{\vee}n$:
 - 1. Si v_i no está coloreado y ningún vecino de v_i tiene asignado el color c:
 - a. $f(v_i) = c$.

$$C = 1$$

$$C = 2$$

$$C = 3$$

$$C = 3 = \bullet$$

$$C = 1 = \bullet$$
 $f(x) = f(5) = f(7) = f(10) = 1$

$$C=2=0$$
 $f(2)=f(3)=f(4)=2$

$$C = 3 = \bullet$$
 $f(e) = f(3) = f(4) = 3$

Algoritmo voraz de coloreado por aristas

Input: Un grafo G con n aristas ordenadas: e_1, e_2, \ldots, e_n .

Output: c(e), $\forall e \in E(G)$, un coloreado por aristas propio de G.

Iteración:

- 1. c = 0
- 2. Mientras que alguna arista no esté coloreada:
 - a. c = c + 1.
 - b. Para = 1 hasta n:
 - 1. Si e_i no está coloreada y ninguna arista vecina de e_i tiene asignado el color c:
 - a. $c(e_i) = c$.

$$C = 1$$

$$C = 2$$

$$(= 3)$$

$$C = 4$$