Álgebra Universal e Categorias

2° teste (30 de maio de 2018) — duração: 2 horas _____

1. (a) Seja ${f C}$ a categoria definida pelo diagrama seguinte

Diga, justificando, se é verdadeira a seguinte afirmação: A categoria \mathbf{C}/C tem dois objetos iniciais.

- (b) Seja ${\bf C}$ a categoria definida na alínea anterior. Dê um exemplo, ou justifique que não existe um exemplo, de uma subcategoria ${\bf D}$ de ${\bf C}$ tal que ${\bf D}$ seja uma subcategoria plena de ${\bf C}$, $A,B\in {\rm Obj}({\bf D})$ e A e B não sejam isomorfos em ${\bf D}$.
- (c) Diga, justificando, se é verdadeira a seguinte afirmação: Na categoria **Set**, todo o morfismo que tem por domínio um objeto terminal é um monomorfismo.
- 2. Sejam ${\bf C}$ uma categoria, A, B, C objetos de ${\bf C}$ e $f:A\to C$ e $g:B\to C$ monomorfismos de ${\bf C}$. Mostre que se $i:A\to B$ e $j:B\to A$ são morfismos de ${\bf C}$ tais que $f\circ j=g$ e $g\circ i=f$, então i e j são invertíveis e $i^{-1}=j$.
- 3. Sejam ${\bf C}$ uma categoria e A, B e C objetos de ${\bf C}$ tais que, para qualquer objeto X de ${\bf C}$, $\hom(B, X) \neq \emptyset$ e $i_A: A \to C$ e $i_B: B \to C$ são morfismos de ${\bf C}$. Mostre que se $(C, (i_A, i_B))$ é um coproduto de A e B, então i_A é invertível à esquerda.
- 4. Na categoria **Set**, considere os conjuntos $\{0\}$, \mathbb{N}_0 , \mathbb{Z} e as funções i, f e g definidas por

Mostre que $(\{0\}, i)$ é um igualizador de f e g.

- 5. Sejam ${\bf C}$ uma categoria com objeto inicial I e $f_A:I\to A$ e $f_B:I\to B$ morfismos de ${\bf C}$. Mostre que se $(C,(i_A,i_B))$ é um coproduto de A e B, então $(C,(i_A:A\to C,i_B:B\to C))$ é uma soma amalgamada de (f_A,f_B) .
- 6. Seja $F:\mathbf{Set}\to\mathbf{Set}$ o funtor que a cada conjunto A associa o produto cartesiano $A\times A$ e que a cada função $f:A\to B$ associa a função

$$\begin{array}{cccc} F(f): & F(A) & \to & F(B) \\ & (x,y) & \mapsto & (f(x),f(y)) \end{array}$$

Diga, justificando, se:

- (a) O funtor F é fiel.
- (b) O funtor F preserva e reflete monomorfismos.