UTN - 2° Parcial	Sistemas Operativos	18/11/2017

Nombre y Apellido: Curso:

TEORÍA			PRÁCTICA			NOTA		
1	2	3	4	5	1	2	3	

TEORÍA: Responda brevemente las siguientes preguntas. Justifique.

- Explique en términos de tamaño, accesos a memoria (para buscar el dato), y accesos a disco en caso de un reemplazo de página, las diferencias entre Tabla de páginas de un nivel, multinivel e invertida (sin tener en cuenta la TLB).
- 2. Verdadero o falso:
 - a. No puede ocurrir deadlock en un sistema operativo que ejecuta procesos sin concurrencia.
 - b. El algoritmo SSTF es más justo que SCAN.
- 3. Explique porqué las entrada-salidas no bloqueantes son más complejas a la hora de programar. En qué situaciones recomendaría usarlas?
- 4. Explique el principio de localidad. ¿Cómo se relaciona con el algoritmo Clock Modificado?
- 5. Explique cómo funciona la prevención de deadlock, para cada una de las condiciones.

PRÁCTICA: Resuelva los siguientes ejercicios justificando las conclusiones obtenidas.

Ejercicio 1

Un sistema capaz de detectar y recuperarse de Deadlock se encuentra en la siguiente situación:

RECURSOS ASIGNADOS

	R1	R2	R3	R4
P1	0	0	0	2
P2	1	0	0	0
Р3	0	0	1	0
P4	1	0	0	0

SOLICITUDES ACTUALES

	R1	R2	R3	R4
P1	0	0	1	0
P2	0	1	0	0
Р3	0	0	0	2
P4	1	1	1	0

RECURSOS TOTALES

R1	R2	R3	R4
4	1	1	2

- a) Determine qué procesos se encuentran en Deadlock y cómo lo solucionaría.
- b) Realice el grafo de asignación de recursos y determine si llega a la misma conclusión del punto a).
- c) Si tuviese la posibilidad de agregar una instancia de cualquier recurso ¿De qué recurso sería?

Ejercicio 2

Considere un sistema de administración de memoria virtual paginada, donde el grado de multiprogramación ha sido fijado en cuatro. El sistema fue recientemente medido para determinar la utilización de CPU y el disco de paginación. Tenemos los siguientes resultados como alternativa.

- a) Utilización de CPU 13%, utilización de disco 97%
- b) Utilización de CPU 87%, utilización de disco 3%
- c) Utilización de CPU 13%, utilización de disco 3%
- 1 ¿Qué está sucediendo, para cada resultado?
- 2 ¿Puede ser aumentado el grado de multiprogramación? ¿Esto aumentaría la utilización de CPU?
- 3 Ejemplifique cada caso usando procesos y trazas de al menos 10 páginas, mediante el algoritmo Clock. Explique cada ejemplo

Ejercicio 3

Se leyó de la pista 8 y luego la pista 5, tardando 3ms. El disco en donde se lleva a cabo estas operaciones tiene 100 pistas y 10 sectores por pista. Se reciben los siguientes pedidos:

t = 0ms: 48, 9 t = 25ms: 50, 57, 56, 69 t = 30ms: 15

- a) Planifique el brazo del disco utilizando los algoritmos FSCAN y SCAN
- b) Indique a partir del instante 25ms que tipos de pedidos deberían llegar para que se produzca inanición.

Condiciones de aprobación: 3 preguntas correctamente respondidas y 2 ejercicios correctamente resueltos.