T

Signaux périodiques analogiques - effet des filtres

«L'étude approfondie de la nature est la source la plus féconde des découvertes mathématiques.» JEAN BAPTISTE JOSEPH FOURIER (1768-1830)

Plan du cours

I	Rappel sur la notion de signal électrique analogique					
II	Sign	naux périodiques : décomposition en série de Fourier (SF)	3			
	II.1	Préliminaire : valeurs moyenne et efficace d'un signal	3			
	II.2	Analyse de Fourier	5			
		a - Théorème de Fourier	6			
		b - Relations entre coefficients de Fourier	6			
		c - Forme complexe : coefficients c_n	7			
		d - En cosinus et sinus : a_n et b_n	7			
		e - En cosinus : coefficients d_n	8			
		f - Propriétés importantes de symétrie des signaux - conséquences	9			
	II.3	Quelques exemples classiques	10			
		a - Signal créneau impair	10			
		b - Signal triangle pair $F(t)$	11			
		c - Signal impulsionnel de rapport cyclique a (très utile en TP!!!)	12			
	II.4	Spectre d'un signal périodique	12			
		a - Définition	12			
		b - Synthèse de Fourier (opération réciproque de la SF)	14			
		c - Retour sur la valeur efficace : calcul à partir du spectre (d.)	16			

III	Sign	naux quelconques : introduction à la transformée de Fourier (TF) (hors					
	programme)						
	III.1	La TF comme limite de la série de Fourier	17				
	III.2	Exemple classique : fonction porte - relation temps fréquence	19				
IV	V Effets des filtres linéaires sur les signaux périodiques						
IV.1 Cas d'un signal sinusoïdal pur : fonction de transfert complexe (harmonique) en se							
		ouverte (FTSO) - caractérisation des filtres $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	20				
		a - Expression	20				
		b - Principales relations utiles : rappels	21				
		c - Réponse en gain - réponse en phase d'un filtre : diagramme de Bode	22				
		d - Bande passante	22				
	IV.2	Cas d'un signal périodique quelconque : de l'utilité de la linéarité	23				
		a - Action d'un système linéaire sur un signal périodique	23				
		b - Filtrage de composantes	23				
		c - Rôle des harmoniques de haut rang $\ \ldots \ \ldots \ \ldots \ \ldots$	27				
	IV.3	Caractère intégrateur des filtres	27				
		a - Conditions d'intégration	28				
		b - Filtres intégrateurs	29				
		c - Exemple : recherche des conditions d'intégration	29				
	IV.4	Caractère dérivateur des filtres	30				
		a - Conditions de dérivation	30				
		b - Filtres dérivateurs	31				
		c - Cas particulier du filtre passe-bande : problème de l'acuité du filtre $\ \ldots \ \ldots$	31				
\mathbf{V}	Peti	te approche des circuits non linéaires	32				
	V.1	Un exemple classique : le multiplieur	33				
	V_2	Exemples d'applications:	33				

Isolement d'une composante continue par filtrage passe bas 1^{er} ordre $(H(jx) = \frac{1}{1+jx})$

Suppression de la composante continue par filtrage passe haut 1^{er} ordre $(H(j\omega) = \frac{jx}{1+jx})$

Extraction de la composante fondamentale par filtrage passe bande (type : $H(jx) = \frac{1}{1+jQ\left(x-\frac{1}{x}\right)}$)

Intégration d'un signal créneau pair par filtrage passe bas (type: $H(jx) = \frac{1}{1+jx}$)

0,6

0,5

0,4

0,3

Intégration d'un signal créneau pair par filtrage passe bande (type : $H(jx) = \frac{1}{1+jQ\left(x-\frac{1}{x}\right)}$)

Filtre passe bande :

$$f_0 = \frac{f}{100}$$
 et $Q = 0.5$

Filtre passe bande :

$$f_0 = \frac{f}{100}$$
 et $Q = 10$

Dérivation d'un signal triangle pair par filtrage passe haut (type : $H(jx) = \frac{jx}{1+jx}$)

Dérivation d'un signal triangle pair par filtrage passe-bande (type : $H(jx) = \frac{1}{1+jQ\left(x-\frac{1}{x}\right)}$) :

