# 章节 08 - 09 函子与自然变换

LATEX Definitions are here.

## 一些特殊的范畴

现在规定几种特殊的范畴。

- **离散范畴**: 只有对象不含箭头(恒等箭头除外)的范畴。
- Set: **所有集合构成的范畴**, 为局部小范畴, 满足
  - Set 中对象为任意集合;
  - *Set* 中箭头为集合间映射。
- *Cat*: **所有范畴构成的范畴**,满足
  - Cat 中任何对象都构成一个范畴;
  - *Cat* 中任何箭头都构成一个函子。

若 $\mathcal{C}$ , $\mathcal{D}$ 为 $\mathcal{C}at$ 中对象,则:

- C<sup>op</sup>: 反范畴,满足
  - C<sup>op</sup> 中对象皆形如 c,
    c 为任意 C 中的对象;
  - $\mathcal{C}^{\mathrm{op}}$  中箭头皆形如  $\phi^{\mathrm{op}}: \mathsf{c}_2 \xrightarrow{\mathcal{C}^{\mathrm{op}}} \mathsf{c}_1$  ,  $\phi: \mathsf{c}_1 \xrightarrow{\mathcal{C}} \mathsf{c}_2$  可为任意  $\mathcal{C}$  中的箭头 。
- C<sup>Cat</sup> ン: **积范畴**, 满足
- $\mathcal{C} \xrightarrow{\mathcal{C}at} \mathcal{D}$ : **所有**  $\mathcal{C}$  **到**  $\mathcal{D}$  **的函子的范畴** , 满足
  - $\mathcal{C} \stackrel{\mathcal{C}at}{\longrightarrow} \mathcal{D}$  中任何对象 都是  $\mathcal{C}$  到  $\mathcal{D}$  的函子;
  - $\mathcal{C} \stackrel{\mathit{Cat}}{\longrightarrow} \mathcal{D}$  中任何箭头都是函子间自然变换。
- C/c: **俯范畴**, 这里 c 为任意 C 中对象;满足
  - $\mathcal{C}/c$  中对象皆形如  $\cancel{x}$   $\cancel{1}$  .  $\phi$  , 其中 x 和  $\phi$  : x  $\overset{c}{\rightarrow}$  c 分别为  $\mathcal{C}$  中任意的对象和箭头 ;







- c/C: **仰范畴**, 这里 c 为任意 C 中对象; 满足
  - c/C 中对象皆形如  $\underbrace{1 \cdot x \cdot \phi}$ , 其中 x 和  $\phi : c \xrightarrow{c} x$  分别为 C 中对象和箭头;
  - $\mathcal{C}/c$  中箭头皆形如  $\mathcal{L}$  点d.  $g_1$  且满足下述交换图 , 其中  $\mathsf{x}_1$  ,  $\mathsf{x}_2$  为  $\mathcal{C}$  中任意对象且  $g_1$  ,  $\phi_1$  ,  $\phi_2$  为  $\mathcal{C}$  中任意箭头 ;







#### 函子

接下来我们来提供函子的正式定义:

- $P: \mathcal{C} \overset{\mathcal{C}at}{\longrightarrow} \mathcal{D}$  为范畴当且仅当
  - 对任意  $\mathcal C$  中对象  $\mathbf c$  ,  $\mathbf c P$  为  $\mathcal D$  中对象且  ${}_{:\mathbf c P}\mathrm{id}$  ;
  - 对任意  $\mathcal C$  中箭头  $\phi_1$ :  $\mathbf c_1 \overset{c}{ o} \mathbf c_2$  和  $\phi_2$ :  $\mathbf c_2 \overset{c}{ o} \mathbf c_3$ , 始终都有等式  $(\phi_1 \circ \phi_2)P = \phi_1 P \overset{\mathcal D}{\circ} \phi_2 P$  成立。

#### 函子的复合运算

假如刚才的 P 确实构成一个函子且  $Q:\mathcal{D}\overset{\mathcal{C}at}{\longrightarrow}\mathcal{E}$  也构成函子 , 那么

•  $P \overset{\mathcal{C}at}{\circ} Q : \mathcal{C} \overset{\mathcal{C}at}{\longrightarrow} \mathcal{E}$  也构成一个函子。

#### 恒等函子

对于函子我们也有恒等映射,即:

$$ullet :_{\mathcal{C}} \mathrm{id} \overset{\mathcal{C}at}{\circ} P = P \ = P \overset{\mathcal{C}at}{\circ}_{:\mathcal{D}} \mathrm{id}$$

#### 忠实和完全函子

若 C , D , E 皆为**局部小范畴** , 则

- P 是**忠实的**当且仅当对任意  $\mathcal{C}$  中的对象  $\mathbf{c}_1$ ,  $\mathbf{c}_2$   $(\mathbf{c}_1 \overset{\mathcal{C}}{\rightarrow} \mathbf{c}_2)$  与  $(\mathbf{c}_1 P\overset{\mathcal{D}}{\rightarrow} \mathbf{c}_2 P)$  之间始终存在单射;
- P 是**完全的**当且仅当对任意  $\mathcal{C}$  中的对象  $\mathbf{c}_1$  ,  $\mathbf{c}_2$   $(\mathbf{c}_1 \overset{\mathcal{C}}{\rightarrow} \mathbf{c}_2)$  与  $(\mathbf{c}_1 P\overset{\mathcal{D}}{\rightarrow} \mathbf{c}_2 P)$  之间始终存在满射 ;
- P 是**完全忠实的**当且仅当对任意  $\mathcal{C}$  中的对象  $\mathbf{c}_1$  ,  $\mathbf{c}_2$   $(\mathbf{c}_1 \overset{\mathcal{C}}{\rightarrow} \mathbf{c}_2)$  与  $(\mathbf{c}_1 P \overset{\mathcal{D}}{\rightarrow} \mathbf{c}_2 P)$  之间始终存在双射 ( 即集合间同构 ) 。

#### (i) Note

刚才提到的"单/满/双射" 针对的都是范畴的箭头部分。

### 自然变换

如果还知道  $P':\mathcal{C} \overset{\mathcal{C}at}{\longrightarrow} \mathcal{D}$  为函子 , 那么

•  $\eta: P \xrightarrow{c \xrightarrow{cat} \mathcal{D}} P'$  为自然变换当且仅当对任意  $\mathcal{C}$  中对象  $\mathbf{x}_1$  ,  $\mathbf{x}_2$  始终都会有下述交换图成立:



## 自然变换的纵复合

若已知  $\eta: P \xrightarrow{c \xrightarrow{Cat} \mathcal{D}} P'$  构成自然变换且 还知道  $\eta': P' \xrightarrow{c \to \mathcal{D}} P''$  为自然变换则

•  $\eta \overset{c\overset{cat}{\longrightarrow}\mathcal{D}}{\circ} \eta': P \overset{c\overset{cat}{\longrightarrow}\mathcal{D}}{\longrightarrow} P'$  为自然变换,称作  $\eta$  和  $\eta'$  的**纵复合** 。



# 自然变换的横复合

若还知道  $Q':\mathcal{D} \xrightarrow{\mathcal{C}at} \mathcal{E}$  也是个函子 及自然变换  $\theta:Q \xrightarrow{\mathcal{D} \to \mathcal{E}} Q'$  ,则有

•  $\eta \circ \theta : P \overset{cat}{\circ} Q \overset{c \overset{cat}{\longrightarrow} \mathcal{E}}{\longrightarrow} P' \overset{cat}{\circ} Q'$  为自然变换, 称作  $\eta$  和  $\theta$  的**横复合** 。



• 函子  $P: \mathcal{C} \xrightarrow{\mathcal{C}at} \mathcal{D}$ , 函子  $Q: \mathcal{C} \xrightarrow{\mathcal{C}at} \mathcal{D}$ , 函子的复合: $P \circ Q$  • 自然变换  $\eta_1: P_1 \xrightarrow[Cat]{Cat} Q_1$ ,自然变换  $\eta_2: P_1 \xrightarrow[Cat]{Cat} Q_1$ ,自然变换  $\theta_1: Q_1 \xrightarrow[Cat]{Cat} R_1$ 自然变换的纵复合: $\eta_1 \circ_{\mathbf{v}} \eta_2$ ,自然变换的横复合: $\eta_1 \circ_{\mathbf{h}} \theta_1$ ,