# Continuous Query Engine to Detect Anomalous Electronic Transactions Patterns Using Bank Cards

#### Fernando Martín Canfrán

Supervisor: Edelmira Pasarella Sánchez Co-Supervisor: Amalia Duch Brown

> Facultat d'Informàtica de Barcelona Universitat Politècnica de Catalunya

#### Overview

- Motivation
- 2 Proposal
- 3 Continuous Query Engine
- 4 Experiments
- 6 Results
- 6 Conclusions & Future Work

#### Motivation: Card Fraud Trends

 The total value of transactions using cards issued in SEPA (Single Euro Payments Area) amounted to €5.40 trillion in 2021, of which €1.53 billion (0.028%) was fraudulent¹.



Value of ATM fraud ~ €74M; POS terminals €177M (2021).

#### Motivation: ATM Fraud Detection - State of the Art

- Classical treatment: by consulting log files because of the complaint of customers when detecting by themselves some weird movement in their accounts.
- ML systems: delayed detection based on prediction. Need training processes and big volume of data. Rahman et al. survey (2019) [4].
- $\rightarrow$  To our knowledge, most of the works are based on artificial intelligence techniques. No clear characterization of the problem.

#### Contributions

- A general technique for addressing the problem of continuous query evaluation against an evolving graph database.
- A characterization of some possible fraud (graph) patterns.
- A continuous query engine (DP<sub>ATM</sub>) to detect abnormal or suspicious ATM transactions in real-time, with 100% accuracy.
- A synthetic dataset bank and transaction stream generator tool (lack of real-world data).

#### Proposal

 $\Rightarrow$  Continuous Query Engine for the detection of anomalous ATM card fraud patterns in real-time: DP<sub>ATM</sub>.



#### Proposal

- Architecture of the System
- Oata Model
- Of Definition of Anomalous Patterns of Transactions
- Query Model
- Ontinuous Query Engine DP<sub>ATM</sub>

# Proposal: Architecture of the System



#### Proposal: Data Model

- Nature of our data: ATM transactions on a bank system.
  - ⇒ Evolving/Dynamic data sources. Transactions occur continuously and are not (necessarily) bounded.
- Continuously evolving database data can be stable and volatile.
  - ⇒ Suitable data model: Graph Data Model Property Graph (PG).
- Continuously evolving property data graph:
  - ⇒ Stable PG: Central bank database persistent relations of standard graph databases.
  - ⇒ Volatile PG: Transactions non-persistent relations. Edges arriving in the data stream.

#### Proposal: Data Model

#### ⇒ Stable PG

Models the data a bank typically gathers on cards, ATMs...



#### Proposal: Data Model

#### ⇒ Volatile PG

- Volatile relations (transactions) are the edges arriving in data streams during a set time interval.
- Induce subgraphs that exist only while the relations are still valid.



# Proposal: Definition of Anomalous Patterns of Transactions

 Continuous queries are characterized as (constrained) graph patterns



Card cloning

Lost-and-stolen card

# Proposal: Definition of Anomalous Patterns of Transactions



t1=22:00 t2=23:00

#### Proposal: Query Model

- Continuous query model: Fixed queries evaluated over data streams.
- Progressive query evaluation process. Based on:

- Graph pattern matching in the volatile subgraph.
- Satisfiability of constraints over the properties: possibly querying the stable graph database (retrieve some additional info).
- Different kinds of anomalous patterns:
  - Card cloning characterization
  - Lost-and-stolen card characterization
  - Anomalous location usage
  - Anomalous number of operations
  - Anomalous high expenses



#### Proposal: Query Model

- Continuous Query Evaluation Engine based on the Dynamic Computational Approach - Pasarella [3]. Stream processing computational model.
- Useful to address the problem of evaluating continuous queries over continuously evolving PGs (Royo-Sales [5])



## Continuous Query Engine: DP<sub>ATM</sub>



# DP<sub>ATM</sub> - Input Stream

**Note**: 2 edges per transaction - the *opening* edge and the *closing* edge.



Figure: Opening edge

## DP<sub>ATM</sub> - Input Stream

**Note**: 2 edges per transaction - the *opening* edge and the *closing* edge.



Figure: Closing edge

• **Source:** Manages the in-connection with the outside: streaming input / file reading... & general transactions log.



- Source: Manages the in-connection with the outside: streaming input / file reading... & general transactions log.
- **Sink:** Manages the out-connection. Outside answers/alerts emission & alert log.





- Source: Manages the in-connection with the outside: streaming input / file reading... & general transactions log.
- **Sink:** Manages the out-connection. Outside answers/alerts emission & alert log.
- Generator: Generation of new filters.

Sr



- Source: Manages the in-connection with the outside: streaming input / file reading... & general transactions log.
- **Sink:** Manages the out-connection. Outside answers/alerts emission & alert log.
- **Generator:** Generation of new filters.
- **Filter:** (Stateful) stage. Anomalous detection tracking process of *maxFilterSize* cards.



# DP<sub>ATM</sub> - Filter Stage

- Stores the induced card subgraph(s) of the incoming belonging edges.
- Evaluation of (many possible) continuous query pattern(s) simultaneously.
- Emission of alerts in case of matching a query pattern.
- Decoupled event handling: Filter worker FW to avoid bottlenecks - in parallel.



# DP<sub>ATM</sub> - Filter Stage

Card cloning fraud pattern algorithmic evaluation

```
\textbf{Algorithm} \ \texttt{checkFraud}(S_c, e_{new})
```

```
Require: S_c is a non-empty subgraph of interaction edges of card c, e_{new} is the
    Edge related to the new incoming opening interaction EdgeStart of card c
 1: e_{last} \leftarrow S_c[|S_c| - 1]

    Retrieve last edge from S<sub>c</sub>

 2: if elast.Tx_end is empty then
        LOG: Warning: A tx (enew) starts before the previous
    (elast) ends! return
 4: end if
 5: if e_{last}.ATM_id \neq e_{new}.ATM_id then
 6:
        t_{min} \leftarrow obtainTmin(e_{last}, e_{new})
 7: t_diff \leftarrow e_{new}.Tx_start - e_{last}.Tx_end
 8: if t diff < t min then
            emitAlert(e<sub>last</sub>, e<sub>new</sub>)
 9:
10.
        end if
11: end if
```

# **Experiments**

- Datasets
- Design of Experiments
- Results

#### **Experiments: Datasets**

- No public real bank dataset found. Confidential and private nature of bank data.
- Synthetic bank dataset generation tool: (i) Bank database and (ii) streams of transactions generators.
  - ⇒ Customisable data generation.
  - ⇒ Based on a previously developed synthetic bank database Wisabi Bank Dataset (publicly available). Used as a reference for the geographical distribution of ATM locations and card/client transaction behavior.

#### **Experiments: Datasets**

- (i) Bank database generator. bankDataGenerator.py: creates a dataset of n ATMs and m Cards.
- (ii) Transaction stream generator. txGenerator.py: parametrizable, with ratio  $\in [0,1]$  of anomalous tx..
  - 1. Regular transactions: avoiding creation of fraud scenarios. Based on gathered customer behavior from Wisabi DS.
  - 2. Injection of transactions that create anomalous scenarios: taylored injection depending on the ATM fraud considered.



Figure: Creation of anomalous scenario I - Card\_cloning

#### **Experiments: Design of Experiments**

- E0: Evaluation in a real-world stress scenario.
  - → Impractical simulation due to large time needed.
  - → Meaningless insights due to insufficient stress.

Therefore, two options were considered:

- Scaling of the transaction stream to smaller-sized time intervals streams.
- (ii) Consider larger bank database system.

 E1: Evaluation in a high-load stress scenario - highest possible transaction stream frequency so to identify the system limits.

## **Experiments: Considered Datasets**

• Bank databases g:

| Name             | Card   | ATM  | ATM <sub>Internal</sub> | ATM <sub>External</sub> |
|------------------|--------|------|-------------------------|-------------------------|
| $GDB_A$          | 2000   | 50   | 40                      | 10                      |
| GDB <sub>B</sub> | 500000 | 1000 | 900                     | 100                     |

• Synthetic streams s(k, p), for each g:

| Bank DB (g)      | <b>D</b> ays  (k) | Anomalous Ratio $(p)$ | Stream Size<br> Tx |  |
|------------------|-------------------|-----------------------|--------------------|--|
| $GDB_A$          | 30                | 0.02 (2%)             | 39959              |  |
| $GDB_A$          | 60                | 0.02 (2%)             | 80744              |  |
| $GDB_A$          | 120               | 0.02 (2%)             | 160750             |  |
| GDB <sub>B</sub> | 7                 | 0.03 (3%)             | 2428286            |  |
| GDB <sub>B</sub> | 15                | 0.03 (3%)             | 4856573            |  |

# Experiments: E1 - Evaluation in a high-load stress scenario

#### Objectives:

- Comparison to sequential baseline.
- Analysis of the number of filters configuration.
- Analysis of the behavior and suitability of the DP<sub>ATM</sub> as a real-time engine.

#### **Experimental variations:**

We performed experiments  $\Sigma = (g, s(k, p), f, c)$  with the following combinations of number of filters and cores

- Number of filters f:
  - $g = GDB_A$  f = 1, 2, 5, 10, 20, 40, 100, 200, 500, 1000, 2000.
  - $g = \mathsf{GDB}_\mathsf{B} \ f = 1, 5, 10, 100, 250, 500, 1000, 2000, 5000, 10000.$
- Number of cores: c = 1, 2, 4, 8, 16.



## Experiments: E1 - Evaluation in a high-load stress scenario

#### Metrics:

As a real-time system, we evaluated the performance of the  $\mathsf{DP}_{\mathsf{ATM}}$  in terms of:

- Response Time (RT) and Mean Response Time (MRT).
- Execution Time (ET).
- Throughput (T) (results emitted per second) and Interactions per second (interactions/s).
- dief@t: evaluation of the continuous emission of results. Acosta, Vidal et al.[1].

# E1 - Comparison to Seq. Baseline: $\Sigma(GDB_A, s(120, 0.02), f, c)$



#### E1 - Num. Filters Configuration: $\Sigma(GDB_B, s(15, 0.03), f, 8)$

- Best MRT for f = 5-10.
- Best ET, dief@t for higher f's.



## E1 - Num. Filters Configuration: $\Sigma(GDB_B, s(15, 0.03), f, 8)$

- Check results trace for  $\Sigma(\mathsf{GDB}_\mathsf{B}, s(15, 0.03), f, 8)$ .
- Higher number of filters outperform in continuous behavior.



#### E1 - Num. Filters Configuration: $\Sigma(GDB_B, s(7, 0.03), f, c)$

- Degradation of the behavior of the configurations with high number of filters f for low number of cores c executions.
- Possible causes: (i) goroutines overhead; (ii) Neo4j multiple parallel connections overhead; (iii) Sink (Sk) stage bottleneck.



# E1 - Achieved Performance (RT and MRT)

- Achieved low and constant RT values.
- For the largest tested streams for each g the MRT achieved is around 5-6 s for  $\Sigma(\mathsf{GDB}_\mathsf{A},s(120,0.02),f,c)$  and around 10s for  $\Sigma(\mathsf{GDB}_\mathsf{B},s(15,0.03),f,c)$ .

| <b>MRT</b> (s) for $\Sigma(GDB_A, s(120, 0.02), f, c)$ |    |    |    |    |    |  |  |
|--------------------------------------------------------|----|----|----|----|----|--|--|
| Number of Cores                                        |    |    |    |    |    |  |  |
| # Filters                                              | 1  | 2  | 4  | 8  | 16 |  |  |
| 0                                                      | 13 | 13 | 13 | 13 | 13 |  |  |
| 1                                                      | 26 | 26 | 26 | 27 | 23 |  |  |
| 2                                                      | 14 | 14 | 14 | 14 | 12 |  |  |
| 5                                                      | 6  | 6  | 6  | 6  | 5  |  |  |
| 10                                                     | 5  | 6  | 6  | 6  | 6  |  |  |
| 20                                                     | 11 | 12 | 12 | 12 | 12 |  |  |
| 40                                                     | 25 | 24 | 24 | 23 | 24 |  |  |
| 100                                                    | 37 | 34 | 33 | 33 | 33 |  |  |
| 200                                                    | 36 | 35 | 33 | 33 | 34 |  |  |
| 500                                                    | 38 | 36 | 35 | 33 | 34 |  |  |
| 1000                                                   | 42 | 37 | 35 | 33 | 33 |  |  |
| 2000                                                   | 51 | 43 | 38 | 34 | 33 |  |  |

| <b>MRT</b> (s) for $\Sigma(GDB_B, s(15, 0.03), f, c)$ |      |      |      |      |      |  |
|-------------------------------------------------------|------|------|------|------|------|--|
| Number of Cores                                       |      |      |      |      |      |  |
| # Filters                                             | 1    | 2    | 4    | 8    | 16   |  |
| 0                                                     | 13   | 13   | 13   | 13   | 13   |  |
| 5                                                     | 11   | 10   | 11   | 11   | 9    |  |
| 10                                                    | 11   | 9    | 10   | 9    | 7    |  |
| 100                                                   | 33   | 40   | 29   | 23   | 37   |  |
| 250                                                   | 124  | 80   | 91   | 69   | 90   |  |
| 500                                                   | 221  | 161  | 134  | 136  | 138  |  |
| 1000                                                  | 502  | 301  | 267  | 256  | 263  |  |
| 2000                                                  | 937  | 702  | 618  | 562  | 554  |  |
| 5000                                                  | 2830 | 1732 | 1422 | 1124 | 1060 |  |
| 10000                                                 | 4957 | 2535 | 2025 | 1410 | 1249 |  |

January, 2025

# E1 - Achieved Performance (RT and MRT)

- Achieved low and constant RT values.
- E.g. Check results trace for  $\Sigma(GDB_A, s(120, 0.02), f, 16)$ .



# E1 - Achieved Performance (interactions/s)

- Achieved large transaction processing rates:
  - $\Sigma(\mathsf{GDB}_\mathsf{A}, s(120, 0.02), f, c)$ : 5,000 interactions/s (2,500 transactions/s). 216,000,000 per day.
  - $\Sigma(\text{GDB}_{\text{B}}, s(15, 0.03), f, 16)$ : 2,500 interactions/s (1,250 transactions/s). 108,000,000 per day.



#### Conclusions & Future Work

 $\rightarrow$  (For small number of filters configurations (5-10)) DP<sub>ATM</sub> proved to be a effective real-time system with 100% accuracy with low and constant response time RT (less than 11s in all cases), with a stream processing capacity speed that suggest that the DP<sub>ATM</sub> can be extrapolated to real big bank systems (> 100M of transactions per day).

#### Future work:

- Investigate/Improve the response time performance for the combinations with large number of filters.
- Include more types of ATM card frauds or even other kind of frauds (POS or CNP).
- Study the problem of window management.
- Experiment with larger banking data graphs.