Práctica 07. Clave Privada: Cifrado por Bloques	
19 de abril de 2023	
APELLIDOS:	Nombre:
Apellidos:	Nombre:
Grupo	G3. Ordenador:

En esta práctica vamos a cifrar y descifrar mensajes usando el cifrado de Hill y el cifrado afín. En ambos casos son cifrados que trabajan con bloques. En los dos problemas a resolver la información está escrita en el alfabeto *alf* formado por los 85 símbolos:

"aábcdeéfghiíjklmnñoópqrstuúvwxyzAÁBCDEÉFG HIÍJKLMNÑOÓPQRSTUÚVWXYZ0123456789 ,.:;-();.?"

(alfabeto disponible en la variable alf del fichero entrada_datos_07.txt, dentro de la carpeta práctica 07 de la moodle)

Los procesos de cifrado siguen los siguientes pasos:

- 1. Codificación numérica: A cada símbolo α del alfabeto se le asigna el número $n(\alpha) = p(\alpha) 1$, donde $p(\alpha)$ es la posición que ocupa α dentro del alfabeto $(0 \le n(\alpha) \le 84)$. El mensaje numérico será una lista con las codificaciones numéricas de sus símbolos.
- 2. Relleno del mensaje numérico (**padding**). Si k es la longitud del bloque que usa el cifrado, se completa el mensaje numérico realizando os siguientes pasos:
 - Se rellena el último bloque del mensaje numérico con números aleatorios en \mathbb{Z}_{85} .
 - Se añade un último bloque con la expresión (en base 85) de la longitud del mensaje numérico (completada con ceros a la izquierda hasta obtener longitud k).
- 3. Cifrado por bloques. Para cada bloque $\underline{z} \in (\mathbb{Z}_{85})^k$ del mensaje numérico, se le aplica la función de cifrado.

Cifrado de Hill. En el caso del cifrado de Hill, la función de cifrado es:

$$f: (\mathbb{Z}_{85})^k \to (\mathbb{Z}_{85})^k$$

$$\underline{z} \mapsto \underline{z} \cdot C$$

siendo C una matriz en \mathbb{Z}_{85} , cuadrada de orden k y con inversa. La matriz C es la clave del cifrado de Hill.

Cifrado afin. En el caso del cifrado de afín, la función de cifrado es:

$$f: (\mathbb{Z}_{85})^k \to (\mathbb{Z}_{85})^k$$

$$\underline{z} \mapsto \underline{z} \cdot C + \underline{x}$$

siendo C una matriz en \mathbb{Z}_{85} , cuadrada de orden k, invertible y siendo \underline{x} un vector (ó matriz fila) de $(\mathbb{Z}_{85})^k$. El par (C,\underline{x}) es la clave del cifrado afín.

El mensaje numérico cifrado es la concatenación del cifrado de los bloques.

4. Decodificación numérica: Una vez obtenida la lista del mensaje numérico cifrado, se realiza el proceso inverso al descrito para la codificación numérica.

PROBLEMA 1

Supongamos que un mensaje M escrito en el alfabeto alf lo ciframos con el cifrado de **Hill** de clave $clave_cif_1$ (ver $entrada_datos_07.txt$). Sabiendo que el mensaje cifrado es el indicado en $texto_cifrado_1$ (ver fichero de datos), obtener el mensaje M.

10 últimos simbolos de M

PROBLEMA 2

Supongamos que un mensaje M escrito en el alfabeto alf lo ciframos con el cifrado de **afín** de clave $clave_cif_2$ (ver $entrada_datos_07.txt$). Sabiendo que el mensaje cifrado es el indicado en $texto_cifrado_2$ (ver fichero de datos), obtener el mensaje M.

10 últimos simbolos de M