

FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

For

YI Home Camera 3

MODEL NUMBER: YYS.2518

PROJECT NUMBER: 4788573770

REPORT NUMBER: 4788573770-1

FCC ID: 2AFIB-YYS2518

IC: 20436-YYS2518

ISSUE DATE: Aug. 15, 2018

Prepared for

Shanghai Xiaoyi Technology Co., Ltd. Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch Room 101, Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China

> Tel: +86 769 33817100 Fax: +86 769 33244054 Website: www.ul.com

IC: 20436-YYS2518

Revision History

DATE: Aug. 15, 2018

Rev.	Issue Date	Revisions	Revised By
	8/15/2018	Initial Issue	

REPORT NO: 4788573770-1 FCC ID: 2AFIB-YYS2518 IC: 20436-YYS2518

TABLE OF CONTENTS

AT	TESTATION OF TEST RESULTS	4
TES	ST METHODOLOGY	6
FA	CILITIES AND ACCREDITATION	6
CA	LIBRATION AND UNCERTAINTY	7
4.1.	MEASURING INSTRUMENT CALIBRATION	7
4.2.	MEASUREMENT UNCERTAINTY	7
EQ	UIPMENT UNDER TEST	8
5.1.	DESCRIPTION OF EUT	8
5.2.	MAXIMUM OUTPUT POWER	9
5.3.	CHANNEL LIST	9
<i>5.4.</i>	TEST CHANNEL CONFIGURATION	9
5.5.	THE WORSE CASE POWER SETTING PARAMETER	10
5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	11
5.7.	TEST ENVIRONMENT	12
5.8.	DESCRIPTION OF TEST SETUP	13
5.9.	MEASURING INSTRUMENT AND SOFTWARE USED	14
AN'	TENNA PORT TEST RESULTS	16
6.1.	ON TIME AND DUTY CYCLE	16
6.2.	6 dB BANDWIDTH	19
6.3.	PEAK CONDUCTED OUTPUT POWER	27
6.4.	POWER SPECTRAL DENSITY	30
6.5.	CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS	38
Part I	: 1GHz~18GHz	92
AC	POWER LINE CONDUCTED EMISSIONS	122
ΔN	TENNA REQUIREMENTS	125
	TES FAC CAI 4.1. 4.2. EQI 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.9. AN' 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.6. 6.6. 6.6. 6.6. AC	FACILITIES AND ACCREDITATION CALIBRATION AND UNCERTAINTY 4.1. MEASURING INSTRUMENT CALIBRATION 4.2. MEASUREMENT UNCERTAINTY EQUIPMENT UNDER TEST 5.1. DESCRIPTION OF EUT 5.2. MAXIMUM OUTPUT POWER 5.3. CHANNEL LIST 5.4. TEST CHANNEL CONFIGURATION 5.5. THE WORSE CASE POWER SETTING PARAMETER 5.6. DESCRIPTION OF AVAILABLE ANTENNAS 5.7. TEST ENVIRONMENT 5.8. DESCRIPTION OF TEST SETUP 5.9. MEASURING INSTRUMENT AND SOFTWARE USED ANTENNA PORT TEST RESULTS 6.1. ON TIME AND DUTY CYCLE 6.2. 6 dB BANDWIDTH 6.3. PEAK CONDUCTED OUTPUT POWER 6.4. POWER SPECTRAL DENSITY 6.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS 6.6. RADIATED TEST RESULTS 6.6.1. LIMITS AND PROCEDURE 6.6.2. RESTRICTED BANDEDGE

IC: 20436-YYS2518

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Shanghai Xiaoyi Technology Co., Ltd.

Address: 6F, Building E, No. 2889, Jinke Road Shanghai, China

Manufacturer Information

Company Name: Shanghai Xiaoyi Technology Co., Ltd.

Address: 6F, Building E, No. 2889, Jinke Road Shanghai, China

Factory Information

Company Name: Shanghai Xiaoyi Technology Co., Ltd.

Address: 6F, Building E, No. 2889, Jinke Road Shanghai, China

Company Name: Shanghai Xiaoyi Technology Co., Ltd.

Address: 6F, Building E, No. 2889, Jinke Road Shanghai, China

EUT Description

Product Name YI Home Camera 3

Model Name YYS.2518
Sample Number 1698877
Data of Receipt Sample July 11, 2018

Date Tested July 12, 2018~ Aug. 14, 2018

APPLICABLE STANDARDS					
STANDARD	TEST RESULTS				
CFR 47 Part 15 Subpart C	PASS				
ISED RSS-GEN Issue 5	PASS				
ISED RSS-247 Issue 2	PASS				

IC: 20436-YYS2518

	Summary of Test Results						
Clause	Test Items	FCC/IC Rules	Test Results				
1	6db DTS Bandwidth and 99% Bandwidth	FCC 15.247 (a) (2) RSS-247 Clause 5.2 (a)	Complied				
2	Peak Conducted Power	FCC 15.247 (b) (3) RSS-247 Clause 5.4 (e)	Complied				
3	Power Spectral Density	FCC 15.247 (e) RSS-247 Clause 5.2 (b)	Complied				
4	Conducted Band edge And Spurious emission	FCC 15.247 (d) RSS-247 Clause 5.5	Complied				
5	Radiated Band edges and Spurious emission	FCC 15.247 (d) FCC 15.209 FCC 15.205 RSS-247 Clause 5.5 RSS-GEN Clause 8.9	Complied				
6	Conducted Emission Test For AC Power Port	FCC 15.207 RSS-GEN Clause 8.8	Complied				
7	Antenna Requirement	FCC 15.203 RSS-GEN Clause 6.8	Complied				

T 4I	D
Tested	HV.

Denny Huang

Engineer Project Associate

Approved By:

Check By:

Shawn Wen

Laboratory Leader

hemy les

Stephen Guo

Laboratory Manage

IC: 20436-YYS2518

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC KDB 558074 D01 DTS Meas Guidance v05, , 414788 D01 Radiated Test Site v01, ANSI C63.10-2013, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-247 Issue 2, and RSS-GEN Issue5.

3. FACILITIES AND ACCREDITATION

Test Location	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Address	Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
Accreditation Certificate	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. The Certificate Registration Number is 4102.01. UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The Designation Number is CN1187. UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch. EMC Laboratory has been registered and fully described in a report filed with Industry Canada. The Company Number is 21320.

Note:

- All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, Song Shan Lake Hi tech Development Zone, Dongguan, 523808, China
- 2. The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.
- 3. For below 30MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30MHz had been correlated to measurements performed on an OATS.

IC: 20436-YYS2518

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Uncertainty	
2.90dB	
4.52dB	
5.04dB(1-6GHz)	
5.30dB (6GHz-18Gz)	
5.23dB (18GHz-26Gz)	

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

IC: 20436-YYS2518

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

Product Name:	YI Home Camera 3		
Model No.:	YYS.2518		
Operating Frequency:	IEEE 802.11B SISO/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz		
Type of Modulation:	IEEE for 802.11M SISO: DSSS (CCK, DQPSK, DBPSK) IEEE for 802.11G SISO: OFDM (64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n (HT20 and HT40): OFDM (64QAM, 16QAM, QPSK, BPSK)		
Channel Number:	IEEE 802.11B SISO/g, IEEE 802.11n(HT20): 11 Channels IEEE 802.11n(HT40): 7 Channels		
Channels Step:	Channels with 5MHz step		
Sample Type:	Fixed production		
Test software of EUT:	Secure CRT (ma	nufacturer declare)	
Antenna Type:	Dipole Antenna		
Antenna Gain:	1 dBi		
Power Supply	Adapter	Model:A18A-050100U-CN2 INPUT:100-240V~50/60Hz Max.0.2A OUTPUT:5.0V 1000mA	

IC: 20436-YYS2518

5.2. MAXIMUM OUTPUT POWER

Frequency Range (MHz)	Number of Transmit Chains (NTX)	IEE Std. 802.11	Frequency (MHz)	Channel Number	Max PK Conducted Power (dBm)
2412-2462	1	IEEE 802.11B SISO	2412-2462	1-11[11]	23.64
2412-2462	1	IEEE 802.11G SISO	2412-2462	1-11[11]	22.09
2412-2462	1	IEEE 802.11nHT20	2412-2462	1-11[11]	22.76
2422-2452	1	IEEE 802.11nHT40	2422-2452	3-9[7]	21.98

5.3. CHANNEL LIST

	Channel List for 802.11B SISO/g/n (20 MHz)						
Channel	Frequency (MHz)	Channel	Frequenc y(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	5	2432	9	2452		
2	2417	6	2437	10	2457		
3	2422	7	2442	11	2462		
4	2427	8	2447				

Channel List for 802.11n (40 MHz)							
Channel	Frequency (MHz)	Channel	Frequenc y(MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	5	2432	7	2442	9	2452
4	2427	6	2437	8	2447		

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel (MHz)
	LCH :CH01 2412
IEEE 802.11B SISO	MCH: CH06 2437
	HCH: CH11 2462
	LCH :CH01 2412
IEEE 802.11G SISO	MCH: CH06 2437
	HCH: CH11 2462
	LCH :CH01 2412
IEEE 802.11n HT20	MCH: CH06 2437
	HCH: CH11 2462
	LCH :CH03 2422
IEEE 802.11n HT40	MCH: CH06 2437
	HCH: CH09 2452

IC: 20436-YYS2518

5.5. THE WORSE CASE POWER SETTING PARAMETER

Toot Antonna	Test Software Version	SecureCRT				
Test Antenna	Test Mode	Test Channel	Setting TX Power	Setting data rate (Mbps)		
		LCH	1	CCK_1Mbps		
	IEEE 802.11B SISO	MCH	1	CCK_1Mbps		
		HCH	1	CCK_1Mbps		
	IEEE 802.11G SISO	LCH	2	NO HT_6Mbps		
		MCH	2	NO HT_6Mbps		
		HCH	2	NO HT_6Mbps		
Antenna 1		LCH	3	HT20_MCS_0_20		
	IEEE 802.11n HT20	MCH	3	HT20_MCS_0_20		
		HCH	3	HT20_MCS_0_20		
		LCH	3	HT40+MCS_0_40		
	IEEE 802.11n HT40	MCH	3	HT40+MCS_0_40		
		HCH	3	HT40+MCS 0 40		

IC: 20436-YYS2518

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

Ant.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
1	2400-2483.5	Dipole Antenna	1

Test Mode	Transmit and Receive Mode	Description
WIFI	⊠1TX, 1RX	The antennas can be used as transmitting/receiving antenna.

IC: 20436-YYS2518

5.7. TEST ENVIRONMENT

Environment Parameter	Selected Values During Tests		
Relative Humidity	55 ~ 65%		
Atmospheric Pressure:	1005Pa		
Temperature	TN	23 ~ 28℃	
	VL	N/A	
Voltage :	VN	DC 5.0V	
	VH	N/A	

Note: VL= Lower Extreme Test Voltage

VN= Nominal Voltage

VH= Upper Extreme Test Voltage

TN= Normal Temperature

REPORT NO: 4788573770-1 DATE: Aug. 15, 2018

FCC ID: 2AFIB-YYS2518 IC: 20436-YYS2518

5.8. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Iter	Equipment	Brand Name	Model Name	FCC ID
1	Laptop	ThinkPad	T410	N/A

I/O PORT

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	LAN	LAN	N/A	N/A	N/A

ACCESSORY

Item	Accessory	Brand Name	Model Name	Description
1	N/A	N/A	N/A	N/A

TEST SETUP

The EUT can work in an engineer mode with a software through a table PC.

SETUP DIAGRAM FOR TESTS

IC: 20436-YYS2518

MEASURING INSTRUMENT AND SOFTWARE USED

DATE: Aug. 15, 2018

	5.9. MEASURING INSTRUMENT AND SOFTWARE USED								
Conducted Emissions(Instrument)									
Used	Equipment	Manufacturer	Мо	del No.	Seri	al No.	Last Cal.	Next Cal.	
	EMI Test Receiver	R&S	E	SR3	10	1961	Dec.12, 2017	Dec.11, 2018	
V	Two-Line V- Network	R&S	ΕN	NV216	10 ⁻	1983	Dec.12, 2017	Dec.11, 2018	
V	Artificial Mains Networks	Schwarzbeck	NSL	K 8126	812	6465	Dec.12, 2017	Dec.11, 2018	
			Sof	tware					
Used	Des	cription		Man	ufact	urer	Name	Version	
	Test Software for 0	Conducted distu	rbanc	е	UL		Antenna port	Ver. 7.2	
		Radiated	Emis	sions(Ins	trum	ent)			
Used	Equipment	Manufacturer	Мо	del No.	Seri	al No.	Last Cal.	Next Cal.	
V	MXE EMI Receiver	KESIGHT	N9	9038A		56400 36	Dec. 12, 2017	Dec. 11, 2018	
V	Hybrid Log Periodic Antenna	TDK	HLP	HLP-3003C		0960	Jan.09, 2016	Jan.09, 2019	
V	Preamplifier	HP	8	447D		1A090 99	Dec. 12, 2017	Dec. 11, 2018	
V	EMI Measurement Receiver	R&S	Ë	SR26	10 ⁻	1377	Dec.12, 2017	Dec.11, 2018	
\checkmark	Horn Antenna	TDK	HR	N-0118	130	0939	Jan. 09, 2016	Jan. 09, 2019	
V	High Gain Horn Antenna	Schwarzbeck	BBH	HA-9170	6	91	Jan.06, 2016	Jan.06, 2019	
V	Preamplifier	TDK	PA-0	02-0118	00	S-305- 066	Dec. 12, 2017	Dec. 11, 2018	
V	Preamplifier	TDK	PA	A-02-2		S-307- 003	Dec.12, 2017	Dec.11, 2018	
V	Loop antenna	Schwarzbeck		519B	00	800	Mar. 26, 2016	Mar. 26, 2019	
	Band Reject Filter	Wainwright	235 24	RCJV8- 0-2400- 183.5- 3.5-40SS		4	Dec.12, 2017	Dec.11, 2018	
			Sof	tware					
Used	Descr	ription	Manufacti				Name	Version	
V	Test Software for R	adiated disturba	ance Farad		d EZ-EMC		EZ-EMC	Ver. UL-3A1	
		Oth	ner in	strument	ts				
Used	Equipment	Manufacturer	Мо	del No.		al No.	Last Cal.	Next Cal.	
V	Spectrum Analyzer	Keysight	NS	9030A	5	55410 512	Dec.12, 2017	Dec.11, 2018	
V	Power Meter	Keysight	NS	9031A		55416 24	Dec.12, 2017	Dec.11, 2018	

IC: 20436-YYS2518 MY55440 $\sqrt{}$ Power Sensor Keysight N9323A Dec.12, 2017 Dec.11, 2018

DATE: Aug. 15, 2018

013

IC: 20436-YYS2518

6. ANTENNA PORT TEST RESULTS

6.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only

PROCEDURE

FCC KDB 558074 Zero-Span Spectrum Analyzer Method

TEST SETUP

RESULTS

Mode	On Time (msec)	Period (msec)	Duty Cycle x (Linear)	Duty Cycle	Duty Cycle Correction Factor (db)	1/T Minimum VBW (KHz)
11B	0.9348	1.14	1	0.8200	0.86	1.07
11G	0.1697	0.3774	1	0.4497	3.47	5.89
11N20SISO	0.1596	0.3673	1	0.4345	3.62	6.27
11N40SISO	0.0937	0.3015	1	0.3108	5.07	10.67

Note: 1) Duty Cycle Correction Factor=10log(1/x).

2) Where: x is Duty Cycle(Linear)

3) Where: T is On Time (transmit duration)

IC: 20436-YYS2518

ON TIME AND DUTY CYCLE MID CH

REPORT NO: 4788573770-1 FCC ID: 2AFIB-YYS2518 IC: 20436-YYS2518

IC: 20436-YYS2518

6.2. 6 dB BANDWIDTH

LIMITS

FCC Part15 (15.247) Subpart C						
Section	Frequency Range (MHz)					
FCC 15.247(a)(2) RSS-247 5.1 (a)	6dB Bandwidth	>= 500KHz	2400-2483.5			
RSS-Gen Clause 6.6	99% Bandwidth	For reporting purposes only.	2400-2483.5			

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
	For 6 dB Bandwidth :100K For 99% Bandwidth :1% to 5% of the occupied bandwidth
IV/R\//	For 6dB Bandwidth : ≥3 × RBW For 99% Bandwidth : approximately 3×RBW
Trace	Max hold
Sweep	Auto couple

Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB and 99% relative to the maximum level measured in the fundamental emission.

TEST SETUP

Page 19 of 125

IC: 20436-YYS2518

RESULTS

Test Mode	Test Channel	6dB bandwidth (MHz)	99% bandwidth (MHz)	Result
	LCH	10.00	12.19	Pass
11B	MCH	10.00	12.18	Pass
	HCH	10.02	12.16	Pass
	LCH	16.47	16.45	Pass
11G	MCH	16.48	16.44	Pass
	HCH	16.46	16.45	Pass
	LCH	17.55	17.58	Pass
11N20 SISO	MCH	17.48	17.59	Pass
	HCH	17.62	17.58	Pass
	LCH	36.13	36.14	Pass
11N40 SISO	MCH	36.37	36.19	Pass
	HCH	36.31	36.19	Pass

IC: 20436-YYS2518

Test Graphs

IC: 20436-YYS2518

DATE: Aug. 15, 2018

IC: 20436-YYS2518

DATE: Aug. 15, 2018

IC: 20436-YYS2518

6.3. PEAK CONDUCTED OUTPUT POWER

LIMITS

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	
FCC 15.247(b)(3) RSS-247 5.4 (e)	Peak Output Power	1 watt or 30dBm	2400-2483.5	

TEST PROCEDURE

Refer to FCC KDB 558074

TEST SETUP

IC: 20436-YYS2518

RESULTS

1) Maximum Peak Conducted Output Power

Test Mode	Test Channel	Maximum Peak Conducted Output Power(dBm)	EIRP (dBm)	Result
	LCH	23.64	24.64	Pass
11B SISO	MCH	23.21	24.21	Pass
	HCH	22.63	23.63	Pass
11G SISO	LCH	22.09	23.09	Pass
	MCH	21.79	22.79	Pass
	HCH	21.22	22.22	Pass
11N20SISO	LCH	22.76	23.76	Pass
	MCH	22.34	23.34	Pass
	HCH	21.80	22.80	Pass
11N40SISO	LCH	21.98	22.98	Pass
	MCH	21.62	22.62	Pass
	HCH	21.47	22.47	Pass

IC: 20436-YYS2518

2) Maximum Average Conducted Output Power

Test Mode	Test Channel	Maximum Average Conducted Output Power(dBm)	EIRP (dBm)	Result
11B SISO	LCH	18.53	19.53	Pass
	MCH	18.08	19.08	Pass
	HCH	17.54	18.54	Pass
	LCH	18.35	19.35	Pass
11G SISO	MCH	17.87	18.87	Pass
	HCH	17.34	18.34	Pass
11N20SISO	LCH	19.13	20.13	Pass
	MCH	18.68	19.68	Pass
	HCH	18.13	19.13	Pass
11N40SISO	LCH	19.52	20.52	Pass
	MCH	19.35	20.35	Pass
	HCH	19.01	20.01	Pass

DATE: Aug. 15, 2018

IC: 20436-YYS2518

6.4. POWER SPECTRAL DENSITY

LIMITS

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	
FCC §15.247 (e) RSS-247 5.2 (b)	Power Spectral Density	8 dBm in any 3 kHz band	2400-2483.5	

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following settings:

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	3 kHz ≤ RBW ≤100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum amplitude level within the RBW.

If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST SETUP

IC: 20436-YYS2518

RESULTS

Test Mode	Test Channel	Maximum Peak power spectral density (dBm)	Result
	LCH	2.593	Pass
11B SISO	MCH	2.259	Pass
	HCH	1.627	Pass
11G SISO	LCH	-1.342	Pass
	MCH	-1.375	Pass
	HCH	-2.165	Pass
	LCH	-0.715	Pass
11N20SISO	MCH	-1.04	Pass
	HCH	-1.254	Pass
	LCH	-3.984	Pass
11N40SISO	MCH	-4.313	Pass
	HCH	-4.69	Pass

IC: 20436-YYS2518

Test Graphs:

IC: 20436-YYS2518

DATE: Aug. 15, 2018

IC: 20436-YYS2518

DATE: Aug. 15, 2018

IC: 20436-YYS2518

6.5. CONDUCTED BANDEDGE AND SPURIOUS EMISSIONS

LIMITS

FCC Part15 (15.247) , Subpart C			
Section Test Item Limit			
FCC §15.247 (d) RSS-247 5.5	Conducted Bandedge and Spurious Emissions	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Refer to FCC KDB 558074, connect the UUT to the spectrum analyser and use the following

Center Frequency	The centre frequency of the channel under test
Detector	Peak
RBW	100K
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

settings:

Use the peak marker function to determine the maximum PSD level.

Span	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100K
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Use the peak marker function to determine the maximum amplitude level.

TEST SETUP

IC: 20436-YYS2518

Part I : Conducted Bandedge

RESULTS TABLE

Test Mode	Test Channel	Carrier Power[dBm]	Max. Spurious Level [dBm]	Limit [dBm]	Verdict
11B SISO	2412	7.262	-39.179	-12.74	PASS
116 3130	2462	6.154	-40.126	-13.85	PASS
11G SISO	2412	3.752	-40.158	-16.25	PASS
	2462	2.793	-39.644	-17.21	PASS
11N20SISO	2412	4.324	-39.504	-15.68	PASS
1111/205150	2462	3.105	-39.597	-16.9	PASS
441400100	2422	0.972	-36.132	-19.03	PASS
11N40SISO	2452	0.390	-38.717	-19.61	PASS

IC: 20436-YYS2518

TEST GRAPHS

Page 41 of 125

REPORT NO: 4788573770-1 DATE: Aug. 15, 2018

FCC ID: 2AFIB-YYS2518 IC: 20436-YYS2518

Part II : Conducted Spurious Emissions

Test Result Table

Test Mode	Channel	Pref(dBm)	Puw(dBm)	Verdict
	LCH	7.105	<limit< td=""><td>PASS</td></limit<>	PASS
11B SISO	MCH	6.761	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	6.224	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	3.689	<limit< td=""><td>PASS</td></limit<>	PASS
11G SISO	MCH	3.198	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	2.739	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	4.212	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	3.649	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	3.249	<limit< td=""><td>PASS</td></limit<>	PASS
	LCH	0.989	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	MCH	0.628	<limit< td=""><td>PASS</td></limit<>	PASS
	HCH	0.28	<limit< td=""><td>PASS</td></limit<>	PASS

IC: 20436-YYS2518

Test Plots

Test Mode	Channel	Verdict
11B SISO	LCH	PASS

Puw test Plot

IC: 20436-YYS2518

Test Mode	Channel	Verdict
11B SISO	MCH	PASS

IC: 20436-YYS2518

Test Mode	Channel	Verdict
11B SISO	HCH	PASS

IC: 20436-YYS2518

Test Mode	Channel	Verdict
11G SISO	LCH	PASS

IC: 20436-YYS2518

Test Mode	Channel	Verdict
11G SISO	MCH	PASS

IC: 20436-YYS2518

Test Mode	Channel	Verdict
11G SISO	HCH	PASS

IC: 20436-YYS2518

Test Mode	Channel	Verdict
11N20SISO	LCH	PASS

IC: 20436-YYS2518

Test Mode	Channel	Verdict
11N20SISO	MCH	PASS

