MA 519: Homework 12

Max Jeter, Carlos Salinas November 17, 2016

Problem 12.1 (Handout 15, # 10)

Consider the experiment of picking one word at random from the sentence

All is well in the newell family

Let X be the length of the word selected and Y the number of Ls in it. Find in a tabular form the joint PMF of (X, Y), their marginal PMFs, means, and variances, and the correlation between X and Y.

SOLUTION. The joint PMF of (X, Y) is given by

$_{Y}\backslash ^{X}$	2	3	4	5	6
0	$\frac{2}{7}$	$\frac{1}{7}$	0	0	0
1	0	0	0	0	$\frac{1}{7}$
2	0	$\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	0

The marginal PMF of X is thus given by

$$f_X(x) = \begin{cases} \frac{2}{7} & \text{for } x = 2, 3, \\ \frac{1}{7} & \text{for } x = 4, 5, 6 \end{cases}$$

and the marginal PMF of Y is given by

$$f_Y(x) = \begin{cases} \frac{3}{7} & \text{for } x = 0, 2, \\ \frac{1}{7} & \text{for } x = 1. \end{cases}$$

So the mean and variance of X and Y are

$$\mu_X = \frac{4+6+4+5+6}{7}$$

$$= \frac{25}{7},$$

$$Var(X) = \frac{8+18+16+25+36}{7} - \left(\frac{25}{7}\right)$$

$$= \frac{96}{49},$$

$$Var(Y) = \frac{1+12}{7} - 1$$

$$= \frac{6}{7}.$$

Lastly, the correlation between X and Y is

$$ho_{X,Y} = rac{5}{\sqrt{rac{576}{7}}} pprox 0.551.$$

PROBLEM 12.2 (HANDOUT 15, # 11)

Consider the joint PMF p(x, y) = cxy, $1 \le x \le 3$, $1 \le y \le 3$.

- (a) Find the normalizing constant c.
- (b) Are X and Y independent? Prove your claim.
- (c) Find the expectations of X, Y, and XY.

SOLUTION. Remark: Note that below parts (a), (b), and (c) are out of order.

For part (a): The normalizing constant is $c = \frac{1}{36}$; this is because

$$\sum_{x,y=(1,1)}^{(3,3)} cxy = 36c$$

For part (c): First,

$$E(X) = E(Y) = \sum_{x=1}^{3} x^{2}(1+2+3)c = 6c\sum_{x=1}^{3} x^{2} = \frac{7}{3}$$

and

$$E(XY) = \sum_{(x,y)=(1,1)}^{(3,3)} cx^2y^2 = \frac{49}{9}$$

For part (b): We see that X and Y are independent; E(XY) = E(X)E(Y).

Problem 12.3 (Handout 15, # 12)

A fair die is rolled twice. Let X be the maximum and Y the minimum of the two rolls. By using the joint PMF of X and Y worked out in the text, find the PMF of $\frac{X}{Y}$, and hence the mean of $\frac{X}{Y}$.

SOLUTION. The PMF of $\frac{X}{Y}$ is given by

$$f_{\frac{X}{Y}}(x) = \begin{cases} \frac{1}{6} & \text{for } x = 1, 2, \\ \frac{1}{9} & \text{for } x = \frac{3}{2}, 3, \\ \frac{1}{18} & \text{for } x = \frac{5}{2}, 4, 5, 6, \frac{5}{3}, \frac{4}{3}, \frac{5}{4}, \frac{5}{6}. \end{cases}$$

So that the mean is

$$\mu_{\frac{X}{Y}} = \frac{487}{216} \approx 2.255$$

Problem 12.4 (Handout 15, # 13)

Two random variables have the joint PMF $p(x, x+1) = \frac{1}{n+1}$, x = 0, ..., n. Answer the following question with as little calculation as possible.

- (a) Are X and Y independent?
- (b) What is the variance of Y X?
- (c) What is Var(Y | X = 1)?

Solution. For part (a): No. The probability that Y = 2 given that X = 1 is 1, but the probability that Y = 2 is $\frac{1}{n+1}$. For part (b): Var(Y - X) = 0, because Y - X is constant; it is always 1.

For part (c): Var(Y | X = 1) = 0, because Y = 2 if X = 1.

Problem 12.5 (Handout 15, # 14)

(Binomial Conditional Distribution). Suppose X and Y are independent random variables, and $X \sim \text{Bin}(m, p)$, $Y \sim \text{Bin}(n, p)$. Show that the conditional distribution of X given by X + Y = t is a hypergeometric distribution; identify the parameters of this hypergeometric distribution.

SOLUTION.

Problem 12.6 (Handout 15, # 15)

Suppose a fair die is rolled twice. Let X and Y be the two rolls. Find the following with as little calculation as possible.

- (a) E(X + Y | Y = y).
- (b) E(XY | Y = y).
- (c) $Var(X^2Y | Y = y)$.
- (d) $\rho_{X+Y,X-Y}$.

SOLUTION. For part (a):

$$E(X + Y | Y = y) = E(X | Y = y) + E(Y | Y = y) = 3.5 + y.$$

For part (b):

$$E(XY | Y = y) = E(X | Y = y)E(Y | Y = y) = 3.5y.$$

For part (c):

$$Var(X^2Y \mid Y = y) = E((X^2Y)^2 \mid Y = y) - E(X^2Y \mid Y = y)^2 = c^2 \left(\frac{91}{6} - 3.5\right).$$

For part (d):

$$Cov(X + Y, X - Y) = E((X + Y)(X - Y)) - E(X + Y)E(X - Y)$$

$$= E(X)E(X) - E(Y)E(Y) - E(X)E(X) + E(Y)E(Y)$$

$$= 0.$$

so $\rho_{X+Y,X-Y} = 0$.

Problem 12.7 (Handout 15, # 16)

(A Standard Deviation Inequality). Let X and Y be two random variables. Show that $\sigma_{X+Y} \leq \sigma_X + \sigma_Y$.

Solution. Suppose σ_X and σ_Y exist and are finite. We want to show

$$\sigma_{X+Y} \leq \sigma_X + \sigma_Y;$$

this is the same as showing that

$$\sigma_{X+Y}^2 \le \sigma_X + \sigma_Y^2 + 2\sigma_X \sigma_Y$$
$$\operatorname{Var}(X+Y) \le \operatorname{Var}(X) + \operatorname{Var}(Y) + 2[\operatorname{Var}(X)\operatorname{Var}(Y)]^{\frac{1}{2}}.$$

First, let us expand Var(X + Y) using the definition of variance, we have

$$Var(X + Y) = E((X + Y)^{2}) - E(X + Y)^{2}$$

$$= E(X^{2}) + 2E(XY) + E(Y^{2}) - E(X)^{2} - 2E(X)E(Y) - E(Y)^{2}$$

$$= (E(X^{2}) - E(X)^{2}) + (E(Y^{2}) - E(Y)^{2}) + 2[E(XY) - E(X)E(Y)]$$

$$= Var(X) + Var(Y) + 2[E(XY) - E(X)E(Y)].$$

Therefore, it suffices to show that

$$E(XY) - E(X)E(Y) \le [\operatorname{Var}(X)\operatorname{Var}(Y)]^{\frac{1}{2}},$$

or, rewritten using covariance,

$$Cov(X, Y)^2 \le Var(X) Var(Y).$$

By the Cauchy-Schwartz inequality, we have

$$\operatorname{Cov}(X,Y)^{2} = E[(X - E(X))(Y - E(Y))]^{2}$$

$$\leq E[(X - E(X))^{2}]E[(Y - E(Y))^{2}]$$

$$= \operatorname{Var}(X)\operatorname{Var}(Y).$$

Problem 12.8 (Handout 15, # 17)

Seven balls are distributed randomly in seven cells. Let X_k be the number of cells containing exactly k balls. Using the probabilities tabulated in II, 5, write down the joint distribution of X_2, X_3 .

SOLUTION. The tabled referenced in this problem is on p. 40 of Feller. Let us write down a table of our own for the joint distribution of (X_2, X_3) :

$X_3 \setminus X_2$	0	1	2	3
0	0.048	0.156	0.321	0.107
1	0.109	0.214	0.027	0
2	0.018	0	0	0

Let us do a sanity check by summing over all of the entries in the table above

$$0.048 + 0.156 + 0.321 + 0.107 + 0.109 + 0.214 + 0.027 + 0 + 0.018 + 0 + 0 + 0 \approx 1.$$

PROBLEM 12.9 (HANDOUT 15, # 18)

Two ideal dice are thrown. Let X be the score on the first die and Y be the larger of two scores.

- (a) Write down the joint distribution of X and Y.
- (b) Find the means, the variances, and the covariance.

SOLUTION. For part (a): The random variable X takes on integer values between zero and six and so does Y. Moreover, the dependence of Y on X tells us that $P(\{X = k\} \cap \{Y = \ell\}) = 0$ if $\ell < k$; this allows us to fill in a significant portion of the joint distribution table:

$_{Y}\backslash ^{X}$	1	2	3	4	5	6
1	$\frac{1}{36}$	0	0	0	0	0
2	$\frac{1}{36}$	$\frac{2}{36}$	0	0	0	0
3	$\frac{1}{36}$	1 1	$\frac{3}{36}$	0	0	0
4	$ \begin{array}{r} \frac{1}{36} \\ \frac{1}{36} \\ \frac{1}{36} \\ \frac{1}{36} \end{array} $	$\frac{\overline{36}}{\overline{36}}$	$\frac{\frac{3}{36}}{\frac{1}{36}}$	$\frac{4}{36}$	0	0
5	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{5}{36}$	0
6	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{1}{36}$	$\frac{6}{36}$

(One can easily verify that the sum of the entries in this table do in fact add up to one.)

For part (b): We can recover the individual PMFs for X and Y using the table in part (a) and so recover the mean and variance. These are

$$E(X) = \frac{6}{36} + 2\left(\frac{6}{36}\right) + 3\left(\frac{6}{36}\right) + 4\left(\frac{6}{36}\right) + 5\left(\frac{6}{36}\right) + 6\left(\frac{6}{36}\right)$$

$$= 3.5,$$

$$E(X) = 1^2\left(\frac{6}{36}\right) + 2^2\left(\frac{6}{36}\right) + 3^2\left(\frac{6}{36}\right) + 4^2\left(\frac{6}{36}\right) + 5^2\left(\frac{6}{36}\right) + 6^2\left(\frac{6}{36}\right)$$

$$\approx 15.167,$$

$$Var(X) \approx 2.917,$$

and

$$\begin{split} E(Y) &= \frac{1}{36} + 2 \left(\frac{3}{36} \right) + 3 \left(\frac{5}{36} \right) + 4 \left(\frac{7}{36} \right) + 5 \left(\frac{9}{36} \right) + 6 \left(\frac{11}{36} \right) \\ &\approx 4.472, \\ E(Y^2) &= 1^2 \left(\frac{1}{36} \right) + 2^2 \left(\frac{3}{36} \right) + 3^2 \left(\frac{5}{36} \right) + 4^2 \left(\frac{7}{36} \right) + 5^2 \left(\frac{9}{36} \right) + 6^2 \left(\frac{11}{36} \right) \\ &\approx 21.972, \\ \mathrm{Var}(Y) &\approx 1.971, \end{split}$$

and lastly (after a long calculation which we omit) the covariance is

$$Cov(X,Y) \approx 2.061.$$

PROBLEM 12.10 (HANDOUT 15, # 19)

Let X_1 and X_2 be independent and have the common geometric distribution $\{q^kp\}$ (as in problem 4). Show without calculations that the *conditional distribution of* X_1 *given* $X_1 + X_2$ *is uniform*, that is,

$$P(X_1 = k \mid X_1 + X_2 = n) = \frac{1}{n+1}, \quad k = 0, \dots, n.$$
 (12.1)

SOLUTION. By definition of conditional probability, we have

$$P(X_1 = k \mid X_1 + X_2 = n) = \frac{P(\{X_1 = k\} \cap \{X_1 + X_2 = n\})}{P(X_1 = k)}$$

$$= \frac{P(X_2 = n - k)}{P(X_1 + X_2 = n)}$$

$$= \frac{q^{n-k}p}{q^{n-k}p(n+1)}$$

$$= \frac{1}{n+1}.$$

Problem 12.11 (Handout 15, # 20)

If two random variables X and Y assume only two values each, and if Cov(X,Y) = 0, then X and Y are independent.

SOLUTION. We show that the joint PDF of (X, Y) is

$$f_{X,Y}(x,y) = f_X(x)f_Y(y).$$

Suppose X assumes the values $\{a,b\}$ and Y assumes the values $\{c,d\}$ where, without loss of generality, we may assume a < b and c < d; however, we may have a = c, b = c, a = d, etc. Let p_a , p_b , p_c , and p_d be the probabilities associated to a, b, c, and d, respectively. Then, we have

$$p_a + p_b = 1$$
, $p_c + p_d = 1$,

and more significantly

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

$$E(XY) = (ap_a + bp_b)(cp_c + dp_d)$$

$$\sum_{\substack{x \in \{a,b\}, \\ y \in \{c,d\}}} xyf_{X,Y}(x,y) = (ap_a + bp_b)(cp_c + dp_d)$$

$$\frac{acf_{X,Y}(a,c) + adf_{X,Y}(a,d)}{+ bcf_{X,Y}(b,c) + bdf_{X,Y}(b,d)} = \frac{acp_ap_c + adp_ap_d}{+ bcp_bp_c + bdp_bp_d}.$$

A term by term comparison shows that we must have

$$f(x,y) = xyp_xp_y$$

for $x \in \{a,b\}, y \in \{c,d\}$. Thus, $f_{X,Y}(x,y) = f_X(x)f_Y(y)$; i.e., X and Y are independent.