Optimisation : approches géométriques

Recalage (appariement) de primitives non-labellisées

- Algorithme ICP (Iterative Closest Point) Besl et Mc Kay, 1992
 - Étant donné 2 nuages de points xk et yk
 - on cherche à les mettre en correspondance **et** à trouver la transformation spatiale correspondante
 - On procède itérativement :
 - Association des points par le critère du plus proche voisin.
 - Estimation des paramètres de transformation
 - Transformer les points en utilisant les paramètres estimés.
 - Itération (ré-associer les points etc).

36/127

Optimisation : approches géométriques

Recalage (appariement) de primitives non-labellisées

- Algorithme ICP (Iterative Closest Point) Besl et Mc Kay, 1992
- 2 Estimation de la transformation et 3 Transformer les points

Optimisation : approches géométriques

Recalage (appariement) de primitives non-labellisées

- Algorithme ICP (Iterative Closest Point), Besl et Mc Kay, 1992
- 1 Association des points par les critères du plus proche voisin.

37/12

Optimisation : approches géométriques

Recalage (appariement) de primitives non-labellisées

Algorithme ICP (Iterative Closest Point) Besl et Mc Kay, 1992

1 (bis) Association des points par les critères du plus proche voisin.

Optimisation, approche hybride: Block-Matching

- Appariement de blocs dans les images (géométrique) en utilisant un critère de similarité sur l'intensité des blocs (iconique)
- Algorithme itératif :
 - Calcul d'appariements entre les blocs
 - Calcul d'une correction δT^i à la transformation courante
 - Composition de la correction et de la transformation courante

$$T^{i+1} = T^i \circ \delta T^i$$

42/127

Optimisation, approche hybride: Block-Matching

3 On obtient ainsi des appariements entre images ou régions (et donc points)

Optimisation : 3 algorithmes en non-linéaire

avec éventuellement des outliers (données aberrantes)

- Approches géométriques plutôt en linéaire (moindre carré)
- \bullet Approches iconiques : en linéaire (petit nombre de paramètres) \to descente de gradient
- en non-linéaire : algorithmes plus sophistiqués. Exemples
 - Démons difféomorphes

<u>Diffeomorphic Demons : Efficient Non-parametric Image Registration,</u> T. Vercauteren, X. Pennec, A. Perchant, N. Ayache, **NeuroImage 2008**

Free Form Deformations

Nonrigid Registration using Free-Form Deformations : Application to Breast MR Images, D.Rueckert, L.Sonoda, I.Hayes, D.Hill, M.Leach,

Recalage localement affine

Rigid, affine and locally affine registration of free-form surfaces, J.Feldmar, N.Ayache, IJCV 1996

Optimisation, approche hybride: Block-Matching

 Pour obtenir ce bloc le "plus similaire" on choisit un critère de similarité : SSD (souvent), coefficient de corrélation, information mutuelle, . . .

approche iconique

On obtient ensuite un appariement entre blocs :

• 4 on cherche la transformation qui apparie ces blocs : Moindre carré

approche géométrique

• 5 on itère (lien avec ICP)

46/197

Optimisation, 3 algorithmes en non-linéaire

1 - Démons difféomorphes

- Type de transformation
 - Dense
 - Difféomorphisme : inversible
- Critère de similarité
 - Différence des intensités au carré (SSD)
- Optimisation et contraintes
 - Approche multi-résolution
 - Régularité (fluide et élastique)
 - Inversibilité est assurée

48/12