PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/56, 15/80, 1/15, C12P 19/04,
A01H 5/00, A61K 38/47, A23L 1/29

(11) International Publication Number: WO 96/29416

(43) International Publication Date: 26 September 1996 (26.09.96)

(21) International Application Number: PCT/EP96/01009

(22) International Filing Date: 11 March 1996 (11.03.96)

(30) Priority Data: 9505479.7 17 March 1995 (17.03.95) GB

(71) Applicant (for all designated States except US): DANISCO A/S [DK/DK]; Langebrogade 1, P.O. Box 17, DK-1001 Copenhagen K (DK).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MADRID, Susan, Mampusta [DK/DK]; Ellefolden 7, Trørød, DK-2950 Vedback (DK). RASMUSSEN, Preben [DK/DK]; Muldvad 45, DK-2800 Lyngby (DK). BARUCH, Anita [DK/DK]; Brøndbyvestervej 9, DK-2600 Glostrup (DK).

(74) Agents: HARDING, Charles, Thomas et al.; D. Young & Co., 21 New Fetter Lane, London EC4A 1DA (GB). (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: ASPERGILLUS ARABINOFURANOSIDASE

(57) Abstract

An enzyme capable of degrading arabinoxylan is described. In addition, there is described a nucleotide sequence coding for the same and a promoter for controlling the expression of the same.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	1E	Ireland	NZ	New Zealand
BG	Bulgaria	ίŤ	Italy	PL	Poland
BJ	Benin	JP.	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
a	Côte d'Ivoire	ü	Liechtenstein	SK	Slovakia
CM	Cameroon	i.k	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
cz	Czech Republic	เม	Laxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	π	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	ÜA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

ASPERGILLUS ARABINOFURANOSIDASE

The present invention relates to an enzyme. In addition, the present invention relates to a nucleotide sequence coding for the enzyme. Also, the present invention relates to a promoter, wherein the promoter can be used to control the expression of the nucleotide sequence coding for the enzyme.

In particular, the enzyme of the present invention is an arabinofuranosidase enzyme having arabinoxylan degrading activity.

10

15

20

5

It is known that it is desirable to direct expression of a gene of interest ("GOI") in certain tissues of an organism - such as a filamentous fungus (such as Aspergillus Niger) or even a plant crop. The resultant protein or enzyme may be useful for the organism itself. For example, it may be desirable to produce crop protein products with an optimised amino acid composition and so increase the nutritive value of a crop. For example, the crop may be made more useful as a feed.

In the alternative, it may be desirable to isolate the resultant protein or enzyme and then use the protein or enzyme to prepare, for example, food compositions. In this regard, the resultant protein or enzyme can be a component of the food composition or it can be used to prepare food compositions, including altering the characteristics or appearance of food compositions. It may even be desirable to use the organism, such as a filamentous fungus or a crop plant, to express non-plant genes, such as for the same purposes.

25

30

Also, it may be desirable to use an organism, such as a filamentous fungus or a crop plant, to express mammalian genes. Examples of the latter products include interferons, insulin, blood factors and plasminogen activators. It is also desirable to use microorganisms, such as filamentous fungi, to prepare products from GOIs by use of promoters that are active in the micro-organisms.

2

Fruit and vegetable cell walls largely consist of polysaccharide, the major components being pectin, cellulose and xyloglucan (R.R. Selvendran and J.A. Robertson, IFR Report 1989). Numerous cell wall models have been proposed which attempt to incorporate the essential properties of strength and flexibility (P. Albersheim, Sci. Am. 232, 81-95, 1975; P. Albersheim, Plant Biochem. 3rd Edition (Bonner and Varner), Ac. Press, 1976; T. Hayashi, Ann. Rev. Plant Physiol. & Plant Mol. Biol., 40, 139-168, 1989).

The composition of the plant cell wall is complex and variable. Polysaccharides are mainly found in the form of long chains of cellulose (the main structural component of the plant cell wall), hemicellulose (comprising various \(\beta\)-xylan chains) and pectic substances (consisting of galacturonans and rhamnogalacturonans; arabinans; and galactans and arabinogalactans). From the standpoint of the food industry, the pectic substances, arabinans in particular, have become one of the most important constituents of plant cell walls (Whitaker, J.R. (1984) Enzyme Microb. Technol., 6,341).

15

20

25

10

5

One form of plant polysaccharide is arabinan. A review of arabinans may be found in EP-A-0506190. According to this document, arabinans consist of a main chain of α -(1 \rightarrow 5) groups linked to one another. Side chains are linked α -(1 \rightarrow 3) or sometimes α -(1 \rightarrow 2) to the main α -(1 \rightarrow 5)-L-arabinan backbone. In apple, for example, one third of the total arabinose is present in the side chains. The molecular weight of arabinan is normally about 15 kDa.

Arabinans are degraded by enzymes collectively called arabinases. In this regard, arabinan-degrading activity is the ability of an enzyme to release arabinose residues, either monomers or oligomers, from arabinan backbones or from arabinan-containing side chains of other hemicellulose backbone structures such as arabinogalactans, or even the release of arabinose monomers via the cleavage of the $1\rightarrow6$ linkage between the terminal arabinofuranosyl unit and the intermediate glucosyl unit of monoterpenyl α -L-arabinofuranosyl glucosides.

10

15

20

25

30

3

The activity of the arabinan degrading enzymes of EP-A-0506190 include: a) the ability to cleave $(1\rightarrow 2)-\alpha$ -L-arabinosidic linkages; b) the ability to cleave $(1\rightarrow 3)-\alpha$ -L-arabinosidic linkages; c) the ability to cleave $(1\rightarrow 5)-\alpha$ -L-arabinosidic linkages; d) the ability to cleave the $1\rightarrow 6$ linkage between the terminal arabinofuranosyl unit and the intermediate glucosyl unit of monoterpenyl α -L-arabinofuranosyl glucosides.

PCT/EP96/01009

Arabinan-degrading enzymes are known to be produced by a variety of plants and microorganisms, among these, fungi such as those of the genera Aspergillus, Corticium, Rhodotorula (Kaji, A. (1984) Adv. Carbohydr. Chem. Biochem., 42, 383), Dichotomitus (Brillouet et al. (1985) Carbohydrate Research, 144, 113), Ascomycetes and Basidomycetes (Sydow, G. (1977) DDR Patent Application No. 124,812).

Another plant polysaccharide is xylan, whose major monosaccharide unit is xylose. Xylans are abundant components of the hemicelluloses. In monocotyledonous plants the dominant hemicellulose is an arabinoxylan, in which arabinose side chains are attached to a backbone of xylose residues.

Arabinoxylans are carbohydrates found in the cell wall of cereals. A review of arabinoxylans and the enzymatic degradation thereof may be found in Voragen *et al* (1992 Characterisation of Cereal Arabinoxylans, Xylans and Xylanases pages 51-67, edited by J. Visser published by Elsevier Science Publishers).

Typically, arabinoxylans comprise a xylose backbone linked together via β -1,4- bonds. The xylose backbone is substituted with L-arabinose residues which are linked via α -1 bonds to the 2 or 3 position of the xylose residues. The xylose residues can be single or double substituted. In addition to substitution with arabinose the xylose residues can be substituted with acetyl groups, glucuronic acid and various other carbohydrates. The arabinose residues can be further substituted with phenolic acids such as ferulic acid and coumaric acid. The degree and kind of substitution depends on the source of the particular arabinoxylan.

Arabinoxylans are found in cereal cell wall where they are part of the secondary cell wall. Arabinoxylans form about 3 % of wheat flour - part of it is water soluble (WSP), part of it is water insoluble (WIP).

Despite the fact that the arabinoxylans amount to only about 3 % of wheat the importance of the arabinoxylan fraction is much higher. This is because the arabinoxylans of cereals act as hydrocolloids, as they form a gel like structure with water. For example, the arabinoxylans of wheat flour bind up to 30% of the water in a dough despite the fact that they amount to only 3 % of the dry matter. When arabinoxylans bind water they increase the viscosity of the ground cereals and to such an extent that the cereals can become difficult to manage.

The rheological properties of several systems where ground cereals are used can be manipulated using enzymes that degrade arabinoxylans. In modern bakery it is advantageous to reduce the viscosity of the dough in order to reduce the energy needed to process the doughs and also to get a higher volume of the bread. This is usually achieved by using enzymes that can degrade the xylose backbone of arabinoxylans.

15

20

25

30

Enzymes that only cleave the arabinose side chains from the xylan backbone of arabinoxylan are, for the purposes of this application, collectively called arabinoxylan degrading enzymes.

In feeds based on cereals, arabinoxylans in the cereals can increase the viscosity of the fluids in the intestines of the animals after the feeds have been ingested. This is a problem as it causes discomfort, such as indigestion, to the animals. Also, the nutritive value of the feeds is reduced. These problems can be avoided by addition of enzymes that degrade the arabinoxylan (such as xylanases) to the feed to avoid indigestion and to increase the nutritive value of the feed. However, some enzymes that degrade the arabinoxylans (especially some of the xylanases) require the presence of unsubstituted backbones and so their activity can be limited.

Further discussions on arabinoxylans can be found in Xylans and Xylanases (1992, edited by J. Visser published by Elsevier Science Publishers).

An arbinoxylan degrading enzyme is (1,4)- β -D-arabinoxylan arabinofuranohydrolase (AXH), as described by Kormelink *et al* 1991 (Kormelink, F.J.M., Searle-Van Leeuwen M.J.F., Wood. T.M., Voragen, A.G.J.(1991) Purification and characterization of a (1,4)- β -D-arabinoxylan arabinofuranohydrolase from *Aspergillus awamori*. Appl. Microbiol. Biotechnol. 25:753-758). However, this document provides no sequence data for the enzyme or the nucleotide sequence coding for same or for the promoter for the same.

10

25

30

5

Clearly, it would be useful to be able to degrade arabinoxylans, preferably by use of recombinant DNA techniques.

The present invention seeks to provide an enzyme having arabinoxylan degrading activity;

preferably wherein the enzyme can be prepared in certain or specific cells or tissues, such as in just a specific cell or tissue, of an organism, typically a filamentous fungus, preferably of the genus Aspergillus, such as Aspergillus niger, or even a plant.

Also, the present invention seeks to provide a GOI coding for the enzyme that can be expressed preferably in specific cells or tissues, such as in certain or specific cells or tissues, of an organism, typically a filamentous fungus, preferably of the genus Aspergillus, such as Aspergillus niger, or even a plant.

In addition, the present invention seeks to provide a promoter that is capable of directing expression of a GOI, such as a nucleotide sequence coding for the enzyme according to the present invention, preferably in certain specific cells or tissues, such as in just a specific cell or tissue, of an organism, typically a filamentous fungus, preferably of the genus Aspergillus, such as Aspergillus niger, or even a plant. Preferably, the promoter is used in Aspergillus wherein the product encoded by the GOI is excreted from the host organism into the surrounding medium.

10

20

Furthermore, the present invention seeks to provide constructs, vectors, plasmids, cells, tissues, organs and organisms comprising the GOI and/or the promoter, and methods of expressing the same, preferably in specific cells or tissues, such as expression in just a specific cell or tissue, of an organism, typically a filamentous fungus, preferably of the genus Aspergillus, or even a plant.

According to a first aspect of the present invention there is provided an enzyme obtainable from Aspergillus, wherein the enzyme has the following characteristics: a MW of 33,270 D \pm 50 D; a pI value of about 3.7; arabinoxylan degrading activity; a pH optima of from about 2.5 to about 7.0 (more especially from about 3.3 to about 4.6, more especially about 4); a temperature optima of from about 40°C to about 60°C (more especially from about 45°C to about 55°C, more especially about 50°C); and wherein the enzyme is capable of cleaving arabinose from the xylose backbone of an arabinoxylan.

According to a second aspect of the present invention there is provided an enzyme having the sequence shown as SEQ. I.D. No. 1 or a variant, homologue or fragment thereof.

According to a third aspect of the present invention there is provided an enzyme coded by the nucleotide sequence shown as SEQ. I.D. No. 2 or a variant, homologue or fragment thereof or a sequence complementary thereto.

According to a fourth aspect of the present invention there is provided a nucleotide sequence coding for the enzyme according to the present invention.

According to a fifth aspect of the present invention there is provided a nucleotide sequence having the sequence shown as SEQ. I.D. No. 2 or a variant, homologue or fragment thereof or a sequence complementary thereto.

According to a sixth aspect of the present invention there is provided a promoter having the sequence shown as SEQ. I.D. No. 3 or a variant, homologue or fragment thereof or a sequence complementary thereto.

According to a seventh aspect of the present invention there is provided a terminator having the nucleotide sequence shown as SEQ. I.D. No. 13 or a variant, homologue or fragment thereof or a sequence complementary thereto.

7

According to an eighth aspect of the present invention there is provided a signal sequence having the nucleotide sequence shown as SEQ. I.D. No. 14 or a variant, homologue or fragment thereof or a sequence complementary thereto.

According to a ninth aspect of the present invention there is provided a process for expressing a GOI by use of a promoter, wherein the promoter is the promoter according to the present invention.

According to a tenth aspect of the present invention there is provided the use of an enzyme according to the present invention to degrade an arabinoxylan.

According to an eleventh aspect of the present invention there is provided a combination of enzymes to degrade an arabinoxylan, the combination comprising an enzyme according to the present invention and a xylanase.

15

- According to a twelfth aspect of the present invention there is provided plasmid NCIMB 40703, or a nucleotide sequence obtainable therefrom for expressing an enzyme capable of degrading arabinoxylan or for controlling the expression thereof or for controlling the expression of another GOI.
- According to a thirteenth aspect of the present invention there is provided a signal sequence having the sequence shown as SEQ. I.D. No. 15 or a variant, homologue or fragment thereof.

According to a fourteenth aspect of the present invention there is provided the use of the enzyme according to the present invention in the manufacture of a medicament or foodstuff to reduce or prevent indigestion and/or increase digestibility and/or increase nutrient absorption.

According to a fifteenth aspect of the present invention there is provided an arabinofuranosidase enzyme having arabinoxylan degrading activity, which is immunologically reactive with an antibody raised against a purified arabinofuranosidase enzyme having the sequence shown as SEQ. I.D. No. 1.

5

25

According to a sixteenth aspect of the present invention there is provided an arabinofuranosidase promoter wherein the promoter is inducible by an intermediate in xylose metabolism.

According to a seventeenth aspect of the present invention there is provided a process of reducing the viscosity of a branched substrate wherein the enzyme degrades the branches of the substrate but not the backbone of the substrate.

According to a further aspect of the present invention there is provided the use of the enzyme of the present invention as a viscosity modifier.

According to a further aspect of the present invention there is provided the use of the enzyme of the present invention to reduce the viscosity of pectin.

Other aspects of the present invention include constructs, vectors, plasmids, cells, tissues, organs and transgenic organisms comprising the aforementioned aspects of the present invention.

Other aspects of the present invention include methods of expressing or allowing expression or transforming any one of the nucleotide sequence, the construct, the plasmid, the vector, the cell, the tissue, the organ or the organism, as well as the products thereof.

Additional aspects of the present invention include uses of the promoter for expressing GOIs in culture media such as a broth or in a transgenic organism.

Further aspects of the present invention include uses of the enzyme for preparing or treating foodstuffs, including animal feed.

Preferably the enzyme is coded by the nucleotide sequence shown as SEQ. I.D. No. 2 or a variant, homologue or fragment thereof or a sequence complementary thereto.

Preferably the nucleotide sequence has the sequence shown as SEQ. I.D. No. 2 or a variant, homologue or fragment thereof or a sequence complementary thereto.

Preferably the nucleotide sequence is operatively linked to a promoter.

Preferably the promoter comprises the sequence CCAAT.

Preferably the promoter is the promoter having the sequence shown as SEQ. I.D. No. 3 or a variant, homologue or fragment thereof or a sequence complementary thereto.

Preferably, the promoter comprises the 100 bps sequence from the Xma 111 to the BamH1 sites.

20 Preferably the promoter of the present invention is operatively linked to a GOI.

Preferably the GOI comprises a nucleotide sequence according to the present invention.

Preferably the transgenic organism is a fungus.

25

Preferably the transgenic organism is a filamentous fungus, more preferably of the genus Aspergillus.

Preferably the transgenic organism is a plant.

30

Preferably, in the use, the enzyme is used in combination with a xylanase, preferably an endoxylanase.

Highly preferred embodiments of each of the aspects of the present invention do not include any one of the native enzyme, the native promoter or the native nucleotide sequence in its natural environment.

Preferably, in any one of the plasmid, the vector such as an expression vector or a transformation vector, the cell, the tissue, the organ, the organism or the transgenic organism, the promoter is present in combination with at least one GOI.

Preferably the promoter and the GOI are stably incorporated within the transgenic organism's genome.

Preferably the transgenic organism is a filamentous fungus, preferably of the genus Aspergillus, more preferably Aspergillus niger. The transgenic organism can even be a plant, such as a monocot or dicot plant.

15

20

A highly preferred embodiment is an enzyme obtainable from Aspergillus, wherein the enzyme has the following characteristics: a MW of 33,270 D \pm 50 D; a pI value of about 3.7; arabinoxylan degrading activity; a pH optima of from about 2.5 to about 7.0 (more especially from about 3.3 to about 4.6, more especially about 4); a temperature optima of from about 40°C to about 60°C (more especially from about 45°C to about 55°C, more especially about 50°C); and wherein the enzyme is capable of cleaving arabinose from the xylose backbone of an arabinoxylan; wherein the enzyme has the sequence shown as SEQ. I.D. No. 1 or a variant, homologue or fragment thereof.

Another highly preferred embodiment is an enzyme obtainable from Aspergillus, wherein the enzyme has the following characteristics: a MW of 33,270 D ± 50 D; a pI value of about 3.7; arabinoxylan degrading activity; a pH optima of from about 2.5 to about 7.0 (more especially from about 3.3 to about 4.6, more especially about 4); a temperature optima of from about 40°C to about 60°C (more especially from about 45°C to about 55°C, more especially about 50°C); and wherein the enzyme is capable of cleaving arabinose from the xylose backbone of an arabinoxylan; wherein the enzyme is coded by the nucleotide sequence shown as SEQ. I.D. No. 2 or a variant, homologue or fragment

thereof or a sequence complementary thereto.

The advantages of the present invention are that it provides a means for preparing an arabinofuranosidase enzyme having arabinoxylan degrading activity and the nucleotide sequence coding for the same. In addition, it provides a promoter that can control the expression of that, or another, nucleotide sequence.

11

Other advantages are that the enzyme of the present invention can affect the viscosity of ground cereals, such as dough, to ease the handling thereof and for example to get a higher volume of the bread.

The enzyme of the present invention is also advantageous for feed because it degrades arabinoxylan and thus increases the nutritive value of the feed. In addition, it reduces the viscosity of the arabinoxylan in the intestine of the animals and so reduces or prevents indigestion.

The combination of the use of the enzyme of the present invention with a xylanase is particularly advantageous because the enzyme of the present invention and the xylanase have a surprising and unexpected synergistic effect with each other.

20

25

30

15

5

10

In this regard, the enzyme of the present invention increases the degradative effect of the xylanase, and the xylanase increases the degradative effect of the enzyme of the present invention. It is believed that the activity of the xylanase is increased because the enzyme of the present invention provides a polysaccharide substrate having fewer substituted groups.

The present invention therefore provides an enzyme having arabinoxylan degrading activity wherein the enzyme can be prepared in certain or specific cells or tissues, such as in just a specific cell or tissue, of an organism, typically a filamentous fungus, preferably of the genus Aspergillus, such as Aspergillus niger. The enzyme may even be prepared in a plant.

More in particular, the enzyme of the present invention is capable of specifically cleaving

arabinose from the xylose backbone of arabinoxylan.

5

10

20

25

30

The arabinofuranosidase of the present invention is different from the arabinofuranosidases previously known. In this regard, the previous described arabinofuranosidases - such as those of EP-A-0506190 - are characterised by their ability to degrade unbranched arabinan, and are assayed using p-nitrophenyl-arabinoside.

The arabinofuranosidase of the present invention does not degrade unbranched arabinan, and only a minor activity is seen on nitrophenyl-arabinoside. In contrast, the arabinofuranosidase of the present invention is useful for degrading arabinoxylan. Therefore, the arabinofuranosidase of the present invention is quite different from the previous isolated arabinofuranosidases.

Also, the present invention provides a GOI coding for the enzyme that can be expressed preferably in specific cells or tissues, such as in certain or specific cells or tissues, of an organism, typically a filamentous fungus, preferably of the genus Aspergillus, such as Aspergillus niger. The GOI may even be expressed in a plant.

In addition, the present invention provides a promoter that is capable of directing expression of a GOI, such as a nucleotide sequence coding for the enzyme according to the present invention, preferably in certain specific cells or tissues, such as in just a specific cell or tissue, of an organism, typically a filamentous fungus, preferably of the genus Aspergillus, such as Aspergillus niger, or even a plant. Preferably, the promoter is used in Aspergillus wherein the product encoded by the GOI is excreted from the host organism into the surrounding medium. The promoter may even be tailored (if necessary) to express a GOI in a plant.

The present invention also provides constructs, vectors, plasmids, cells, tissues, organs and organisms comprising the GOI and/or the promoter, and methods of expressing the same, preferably in specific cells or tissues, such as expression in just a specific cell or tissue, of an organism, typically a filamentous fungus, preferably of the genus

10

15

20

25

30

Aspergillus, or even a plant.

The terms "variant", "homologue" or "fragment" in relation to the enzyme include any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) amino acid from or to the sequence providing the resultant amino acid sequence has arabinoxylan degrading activity, preferably having at least the same activity of the enzyme shown in the sequence listings (SEQ I.D. No. 1 or 12). In particular, the term "homologue" covers homology with respect to structure and/or function providing the resultant enzyme has arabinoxylan degrading activity. With respect to sequence homology, preferably there is at least 75%, more preferably at least 85%, more preferably at least 90% homology to SEQ ID NO. 1 shown in the attached sequence listings. More preferably there is at least 95%, more preferably at least 98%, homology to SEQ ID NO. 1 shown in the attached sequence listings.

The terms "variant", "homologue" or "fragment" in relation to the nucleotide sequence coding for the enzyme include any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) nucleic acid from or to the sequence providing the resultant nucleotide sequence codes for an enzyme having arabinoxylan degrading activity, preferably having at least the same activity of the enzyme shown in the sequence listings (SEQ I.D. No. 2 or 12). In particular, the term "homologue" covers homology with respect to structure and/or function providing the resultant nucleotide sequence codes for an enzyme having arabinoxylan degrading activity. With respect to sequence homology, preferably there is at least 75%, more preferably at least 85%, more preferably at least 90% homology to SEQ ID NO. 2 shown in the attached sequence listings. More preferably there is at least 95%, more preferably at least 98%, homology to SEQ ID NO. 2 shown in the attached sequence listings.

The terms "variant", "homologue" or "fragment" in relation to the promoter include any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) nucleic acid from or to the sequence providing the resultant nucleotide sequence has the ability to act as a promoter in an expression system - such as the transformed cell or the transgenic organism according to the present invention. In

10

15

20

25

30

particular, the term "homologue" covers homology with respect to structure and/or function providing the resultant nucleotide sequence has the ability to act as a promoter. With respect to sequence homology, preferably there is at least 75%, more preferably at least 85%, more preferably at least 90% homology to SEQ ID NO. 3 shown in the attached sequence listings. More preferably there is at least 95%, more preferably at least 98%, homology to SEQ ID NO. 3 shown in the attached sequence listings.

The terms "variant", "homologue" or "fragment" in relation to the terminator or signal nucleotide sequences include any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) nucleic acid from or to the sequence providing the resultant nucleotide sequence has the ability to act as a terminator or codes for an amino acid sequence that has the ability to act as a signal sequence respectively in an expression system - such as the transformed cell or the transgenic organism according to the present invention. In particular, the term "homologue" covers homology with respect to structure and/or function providing the resultant nucleotide sequence has the ability to act as or code for a terminator or signal respectively. With respect to sequence homology, preferably there is at least 75%, more preferably at least 85%, more preferably at least 90% homology to SEQ ID NO.s 13 and 14 (respectively) shown in the attached sequence listings. More preferably there is at least 95%, more preferably at least 98%, homology to SEQ ID NO.s 13 and 14 (respectively) shown in the attached sequence listings.

The terms "variant", "homologue" or "fragment" in relation to the signal amino acid sequence include any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) amino acid from or to the sequence providing the resultant sequence has the ability to act as a signal sequence in an expression system such as the transformed cell or the transgenic organism according to the present invention. In particular, the term "homologue" covers homology with respect to structure and/or function providing the resultant nucleotide sequence has the ability to act as or code for a signal respectively. With respect to sequence homology, preferably there is at least 75%, more preferably at least 85%, more preferably at least 90% homology to SEQ ID NO 15 shown in the attached sequence listings. More preferably there is at least

95%, more preferably at least 98%, homology to SEQ ID NO 15 shown in the attached sequence listings.

The above terms are synonymous with allelic variations of the sequences.

5

15

20

The term "complementary" means that the present invention also covers nucleotide sequences that can hybridise to the nucleotide sequences of the coding sequence or the promoter sequence, respectively.

The term "nucleotide" in relation to the present invention includes genomic DNA, cDNA, synthetic DNA, and RNA. Preferably it means DNA, more preferably cDNA for the coding sequence of the present invention.

The term "construct" - which is synonymous with terms such as "conjugate", "cassette" and "hybrid" - includes a GOI directly or indirectly attached to a promoter. An example of an indirect attachment is the provision of a suitable spacer group such as an intron sequence, such as the Sh1-intron or the ADH intron, intermediate the promoter and the GOI. The same is true for the term "fused" in relation to the present invention which includes direct or indirect attachment. In each case, it is highly preferred that the terms do not cover the natural combination of the gene coding for the enzyme ordinarily associated with the wild type gene promoter and when they are both in their natural environment. A highly preferred embodiment is the or a GOI being operatively linked to a or the promoter.

The construct may even contain or express a marker which allows for the selection of the genetic construct in, for example, a filamentous fungus, preferably of the genus Aspergillus, such as Aspergillus niger, or plants, preferably cereals, such as maize, rice, barley etc., into which it has been transferred. Various markers exist which may be used, such as for example those encoding mannose-6-phosphate isomerase (especially for plants) or those markers that provide for antibiotic resistance - e.g. resistance to G418, hygromycin, bleomycin, kanamycin and gentamycin.

The term "vector" includes expression vectors and transformation vectors.

The term "expression vector" means a construct capable of in vivo or in vitro expression.

The term "transformation vector" means a construct capable of being transferred from one species to another - such as from an *E.coli* plasmid to a filamentous fungus, preferably of the genus *Aspergillus*. It may even be a construct capable of being transferred from an *E.coli* plasmid to an *Agrobacterium* to a plant.

10 The term "tissue" includes tissue per se and organ.

15

20

25

The term "organism" in relation to the present invention includes any organism that could comprise the promoter according to the present invention and/or the nucleotide sequence coding for the enzyme according to the present invention and/or products obtained therefrom, wherein the promoter can allow expression of a GOI and/or wherein the nucleotide sequence according to the present invention can be expressed when present in the organism.

Preferably the organism is a filamentous fungus, preferably of the genus Aspergillus, more preferably Aspergillus niger.

The term "transgenic organism" in relation to the present invention includes any organism that comprises the promoter according to the present invention and/or the nucleotide sequence coding for the enzyme according to the present invention and/or products obtained therefrom, wherein the promoter can allow expression of a GOI and/or wherein the nucleotide sequence according to the present invention can be expressed within the organism. Preferably the promoter and/or the nucleotide sequence is (are) incorporated in the genome of the organism.

Preferably the transgenic organism is a filamentous fungus, preferably of the genus Aspergillus, more preferably Aspergillus niger. Therefore, the transgenic organism of the present invention includes an organism comprising any one of, or combinations of, the promoter according to the present invention, the nucleotide sequence coding for the enzyme according to the present invention, constructs according to the present invention, vectors according to the present invention, plasmids according to the present invention, cells according to the present invention, tissues according to the present invention or the products thereof. For example the transgenic organism can comprise a GOI, preferably an exogenous nucleotide sequence, under the control of the promoter according to the present invention. The transgenic organism can also comprise the nucleotide sequence coding for the enzyme of the present invention under the control of a promoter, which may be the promoter according to the present invention.

In a highly preferred embodiment, the transgenic organism does not comprise the combination of the promoter according to the present invention and the nucleotide sequence coding for the enzyme according to the present invention, wherein both the promoter and the nucleotide sequence are native to that organism and are in their natural environment. Thus, in these highly preferred embodiments, the present invention does not cover the native nucleotide coding sequence according to the present invention in its natural environment when it is under the control of its native promoter which is also in its natural environment. In addition, in this highly preferred embodiment, the present invention does not cover the native enzyme according to the present invention when it is in its natural environment and when it has been expressed by its native nucleotide coding sequence which is also in its natural environment and when that nucleotide sequence is under the control of its native promoter which is also in its natural environment.

25

30

5

10

15

20

The term "promoter" is used in the normal sense of the art, e.g. an RNA polymerase binding site in the Jacob-Mond theory of gene expression.

In one aspect, the promoter of the present invention is capable of expressing a GOI, which can be the nucleotide sequence coding for the enzyme of the present invention.

18

In another aspect, the nucleotide sequence according to the present invention is under the control of a promoter that allows expression of the nucleotide sequence. In this regard, the promoter need not necessarily be the same promoter as that of the present invention. In this aspect, the promoter may be a cell or tissue specific promoter. If, for example, the organism is a plant then the promoter can be one that affects expression of the nucleotide sequence in any one or more of stem, sprout, root and leaf tissues.

By way of example, the promoter for the nucleotide sequence of the present invention can be the α -Amy 1 promoter (otherwise known as the Amy 1 promoter, the Amy 637 promoter or the α -Amy 637 promoter) as described in our co-pending UK patent application No. 9421292.5 filed 21 October 1994. That promoter comprises the sequence shown in Figure 1.

Alternatively, the promoter for the nucleotide sequence of the present invention can be the α -Amy 3 promoter (otherwise known as the Amy 3 promoter, the Amy 351 promoter or the α -Amy 351 promoter) as described in our co-pending UK patent application No. 9421286.7 filed 21 October 1994. That promoter comprises the sequence shown in Figure 2.

20 Preferably, the promoter is the promoter of the present invention.

In addition to the nucleotide sequences described above, the promoters, particularly that of the present invention, could additionally include features to ensure or to increase expression in a suitable host. For example, the features can be conserved regions such as a Pribnow Box or a TATA box. The promoters may even contain other sequences to affect (such as to maintain, enhance, decrease) the levels of expression of the GOI. For example, suitable other sequences include the *Sh1*-intron or an ADH intron. Other sequences include inducible elements - such as temperature, chemical, light or stress inducible elements.

30

25

5

10

15

Also, suitable elements to enhance transcription or translation may be present. An example of the latter element is the TMV 5' signal sequence (see Sleat Gene 217 [1987]

217-225; and Dawson Plant Mol. Biol. 23 [1993] 97).

5

In addition the present invention also encompasses combinations of promoters and/or nucleotide sequences coding for proteins or enzymes and/or elements. For example, the present invention encompasses the combination of a promoter according to the present invention operatively linked to a GOI, which could be a nucleotide sequence according to the present invention, and another promoter such as a tissue specific promoter operatively linked to the same or a different GOI.

- The present invention also encompasses the use of promoters to express a nucleotide sequence coding for the enzyme according to the present invention, wherein a part of the promoter is inactivated but wherein the promoter can still function as a promoter. Partial inactivation of a promoter in some instances is advantageous.
- In particular, with the Amy 351 promoter mentioned earlier it is possible to inactivate a part of it so that the partially inactivated promoter expresses GOIs in a more specific manner such as in just one specific tissue type or organ.

The term "inactivated" means partial inactivation in the sense that the expression pattern of the promoter is modified but wherein the partially inactivated promoter still functions as a promoter. However, as mentioned above, the modified promoter is capable of expressing a GOI in at least one (but not all) specific tissue of the original promoter. One such promoter is the Amy 351 promoter described above.

Examples of partial inactivation include altering the folding pattern of the promoter sequence, or binding species to parts of the nucleotide sequence, so that a part of the nucleotide sequence is not recognised by, for example, RNA polymerase. Another, and preferable, way of partially inactivating the promoter is to truncate it to form fragments thereof. Another way would be to mutate at least a part of the sequence so that the RNA polymerase can not bind to that part or another part.

WO 96/29416

15

20

25

30

20

Another modification is to mutate the binding sites for regulatory proteins for example the CreA protein known from filamentous fungi to exert carbon catabolite repression, and thus abolish the catabolite repression of the native promoter.

The term "GOI" with reference to the present invention means any gene of interest. A GOI can be any nucleotide that is either foreign or natural to the organism (e.g. filamentous fungus, preferably of the genus Aspergillus, or a plant) in question. Typical examples of a GOI include genes encoding for proteins and enzymes that modify metabolic and catabolic processes. The GOI may code for an agent for introducing or increasing pathogen resistance. The GOI may even be an antisense construct for modifying the expression of natural transcripts present in the relevant tissues. The GOI may even code for a non-natural protein of a filamentous fungus, preferably of the genus Aspergillus, or a compound that is of benefit to animals or humans.

For example, the GOI could code for a pharmaceutically active protein or enzyme such as any one of the therapeutic compounds insulin, interferon, human serum albumin, human growth factor and blood clotting factors. In this regard, the transformed cell or organism could prepare acceptable quantities of the desired compound which would be easily retrievable from, the cell or organism. The GOI may even be a protein giving nutritional value to a food or crop. Typical examples include plant proteins that can inhibit the formation of anti-nutritive factors and plant proteins that have a more desirable amino acid composition (e.g. a higher lysine content than a non-transgenic plant). The GOI may even code for an enzyme that can be used in food processing such as chymosin, thaumatin and α -galactosidase. The GOI can be a gene encoding for any one of a pest toxin, an antisense transcript such as that for patatin or α -amylase, ADP-glucose pyrophosphorylase (e.g. see EP-A-0455316), a protease antisense or a glucanase.

The GOI can be the nucleotide sequence coding for the α -amylase enzyme which is the subject of our co-pending UK patent application 9413439.2 filed on 4 July 1994, the sequence of which is shown in Figure 3. The GOI can be the nucleotide sequence coding for the α -amylase enzyme which is the subject of our co-pending UK patent application 9421290.9 filed on 21 October 1994, the sequence of which is shown in Figure 4. The

5

10

15

20

25

30

GOI can be any of the nucleotide sequences coding for the ADP-glucose pyrophosphorylase enzymes which are the subject of our co-pending PCT patent application PCT/EP94/01082 filed 7 April 1994, the sequences of which are shown in Figures 5 and 6. The GOI can be any of the nucleotide sequences coding for the α -glucan lyase enzyme which are described in our co-pending PCT patent application PCT/EP94/03397 filed 15 October 1994, the sequences of which are shown in Figures 7-10.

PCT/EP96/01009

In one preferred embodiment, the GOI is a nucleotide sequence coding for the enzyme according to the present invention.

As mentioned above, a preferred host organism is of the genus Aspergillus, such as Aspergillus niger. The transgenic Aspergillus according to the present invention can be prepared by following the teachings of Rambosek, J. and Leach, J. 1987 (Recombinant DNA in filamentous fungi: Progress and Prospects. CRC Crit. Rev. Biotechnol. 6:357-393), Davis R.W. 1994 (Heterologous gene expression and protein secretion in Aspergillus. In: Martinelli S.D., Kinghorn J.R. (Editors) Aspergillus: 50 years on. Progress in industrial microbiology vol 29. Elsevier Amsterdam 1994. pp 525-560), Ballance, D.J. 1991 (Transformation systems for Filamentous Fungi and an Overview of Fungal Gene structure. In: Leong, S.A., Berka R.M. (Editors) Molecular Industrial Mycology. Systems and Applications for Filamentous Fungi. Marcel Dekker Inc. New York 1991. pp 1-29) and Turner G. 1994 (Vectors for genetic manipulation. In: Martinelli S.D., Kinghorn J.R. (Editors) Aspergillus: 50 years on. Progress in industrial microbiology vol 29. Elsevier Amsterdam 1994. pp. 641-666). However, the following commentary provides a summary of those teachings for producing transgenic Aspergillus according to the present invention.

Filamentous fungi have during almost a century been widely used in industry for production of organic compounds and enzymes. Traditional japanese koji and soy fermentations have used Aspergillus sp for hundreds of years. In this century Aspergillus niger has been used for production of organic acids particular citric acid and for production of various enzymes for use in industry.

15

20

25

30

There are two major reasons for that filamentous fungi have been so widely used in industry. First filamentous fungi can produce high amounts of extracellular products, for example enzymes and organic compounds such as antibiotics or organic acids. Second filamentous fungi can grow on low cost substrates such as grains, bran, beet pulp etc.

The same reasons have made filamentous fungi attractive organisms as hosts for heterologous expression according to the present invention.

In order to prepare the transgenic Aspergillus, expression constructs are prepared by inserting a GOI (such as an amylase or SEQ. I.D. No. 2) into a construct designed for expression in filamentous fungi.

Several types of constructs used for heterologous expression have been developed. The constructs contain the promoter according to the present invention (or if desired another promoter if the GOI codes for the enzyme according to the present invention) which is active in fungi. Examples of promoters other than that of the present invention include a fungal promoter for a highly expressed extracellular enzyme, such as the glucoamylase promoter or the α -amylase promoter. The GOI can be fused to a signal sequence (such as that of the present invention or another suitable sequence) which directs the protein encoded by the GOI to be secreted. Usually a signal sequence of fungal origin is used, such as that of the present invention. A terminator active in fungi ends the expression system, such as that of the present invention.

Another type of expression system has been developed in fungi where the GOI is fused to a smaller or a larger part of a fungal gene encoding a stable protein. This can stabilize the protein encoded by the GOI. In such a system a cleavage site, recognized by a specific protease, can be introduced between the fungal protein and the protein encoded by the GOI, so the produced fusion protein can be cleaved at this position by the specific protease thus liberating the protein encoded by the GOI ("POI"). By way of example, one can introduce a site which is recognized by a KEX-2 like peptidase found in at least some Aspergilli. Such a fusion leads to cleavage in vivo resulting in protection of the POI and production of POI and not a larger fusion protein.

Heterologous expression in Aspergillus has been reported for several genes coding for bacterial, fungal, vertebrate and plant proteins. The proteins can be deposited intracellularly if the GOI is not fused to a signal sequence. Such proteins will accumulate in the cytoplasm and will usually not be glycosylated which can be an advantage for some bacterial proteins. If the GOI is equipped with a signal sequence the protein will accumulate extracellulary.

5

10

15

20

25

30

23

With regard to product stability and host strain modifications, some heterologous proteins are not very stable when they are secreted into the culture fluid of fungi. Most fungi produce several extracellular proteases which degrade heterologous proteins. To avoid this problem special fungal strains with reduced protease production have been used as host for heterologous production.

For the transformation of filamentous fungi, several transformation protocols have been developed for many filamentous fungi (Ballance 1991, *ibid*). Many of them are based on preparation of protoplasts and introduction of DNA into the protoplasts using PEG and Ca^{2+} ions. The transformed protoplasts then regenerate and the transformed fungi are selected using various selective markers. Among the markers used for transformation are a number of auxotrophic markers such as argB, trpC, niaD and pyrG, antibiotic resistance markers such as benomyl resistance, hygromycin resistance and phleomycin resistance. A very common used transformation marker is the amdS gene of A. nidulans which in high copy number allows the fungus to grow with acrylamide as the sole nitrogen source.

Even though the enzyme, the nucleotide sequence coding for same and the promoter of the present invention are not disclosed in EP-B-0470145 and CA-A-2006454, those two documents do provide some useful background commentary on the types of techniques that may be employed to prepare transgenic plants according to the present invention. Some of these background teachings are now included in the following commentary.

The basic principle in the construction of genetically modified plants is to insert genetic information in the plant genome so as to obtain a stable maintenance of the inserted

genetic material.

5

15

20

30

Several techniques exist for inserting the genetic information, the two main principles being direct introduction of the genetic information and introduction of the genetic information by use of a vector system. A review of the general techniques may be found in articles by Potrykus (Annu Rev Plant Physiol Plant Mol Biol [1991] 42:205-225) and Christou (Agro-Food-Industry Hi-Tech March/April 1994 17-27).

24

Thus, in one aspect, the present invention relates to a vector system which carries a promoter or nucleotide sequence or construct according to the present invention and which is capable of introducing the promoter or nucleotide sequence or construct into the genome of an organism, such as a plant.

The vector system may comprise one vector, but it can comprise two vectors. In the case of two vectors, the vector system is normally referred to as a binary vector system. Binary vector systems are described in further detail in Gynheung An et al. (1980), Binary Vectors, *Plant Molecular Biology Manual A3*, 1-19.

One extensively employed system for transformation of plant cells with a given promoter or nucleotide sequence or construct is based on the use of a Ti plasmid from Agrobacterium tumefaciens or a Ri plasmid from Agrobacterium rhizogenes An et al. (1986), Plant Physiol. 81, 301-305 and Butcher D.N. et al. (1980), Tissue Culture Methods for Plant Pathologists, eds.: D.S. Ingrams and J.P. Helgeson, 203-208.

Several different Ti and Ri plasmids have been constructed which are suitable for the construction of the plant or plant cell constructs described above. A non-limiting example of such a Ti plasmid is pGV3850.

The promoter or nucleotide sequence or construct of the present invention should preferably be inserted into the Ti-plasmid between the terminal sequences of the T-DNA or adjacent a T-DNA sequence so as to avoid disruption of the sequences immediately surrounding the T-DNA borders, as at least one of these regions appear to be essential

10

15

20

25

for insertion of modified T-DNA into the plant genome.

As will be understood from the above explanation, if the organism is a plant, then the vector system of the present invention is preferably one which contains the sequences necessary to infect the plant (e.g. the *vir* region) and at least one border part of a T-DNA sequence, the border part being located on the same vector as the genetic construct.

Furthermore, the vector system is preferably an Agrobacterium tumefaciens Ti-plasmid or an Agrobacterium rhizogenes Ri-plasmid or a derivative thereof, as these plasmids are well-known and widely employed in the construction of transgenic plants, many vector systems exist which are based on these plasmids or derivatives thereof.

In the construction of a transgenic plant the promoter or nucleotide sequence or construct of the present invention may be first constructed in a microorganism in which the vector can replicate and which is easy to manipulate before insertion into the plant. An example of a useful microorganism is *E. coli*, but other microorganisms having the above properties may be used. When a vector of a vector system as defined above has been constructed in *E. coli*, it is transferred, if necessary, into a suitable *Agrobacterium* strain, e.g. *Agrobacterium tumefaciens*. The Ti-plasmid harbouring the promoter or nucleotide sequence or construct of the invention is thus preferably transferred into a suitable *Agrobacterium* strain, e.g. *A. tumefaciens*, so as to obtain an *Agrobacterium* cell harbouring the promoter or nucleotide sequence or construct of the invention, which DNA is subsequently transferred into the plant cell to be modified.

- As reported in CA-A-2006454, a large amount of cloning vectors are available which contain a replication system in *E. coli* and a marker which allows a selection of the transformed cells. The vectors contain for example pBR 322, pUC series, M13 mp series, pACYC 184 etc.
- In this way, the nucleotide or construct or promoter of the present invention can be introduced into a suitable restriction position in the vector. The contained plasmid is used for the transformation in *E. coli*. The *E. coli* cells are cultivated in a suitable nutrient

medium and then harvested and lysed. The plasmid is then recovered. As a method of analysis there is generally used sequence analysis, restriction analysis, electrophoresis and further biochemical-molecular biological methods. After each manipulation, the used DNA sequence can be restricted and connected with the next DNA sequence. Each sequence can be cloned in the same or different plasmid.

26

After each introduction method of the desired promoter or construct or nucleotide sequence according to the present invention in the plants the presence and/or insertion of further DNA sequences may be necessary. If, for example, for the transformation the Ti- or Ri-plasmid of the plant cells is used, at least the right boundary and often however the right and the left boundary of the Ti- and Ri-plasmid T-DNA, as flanking areas of the introduced genes, can be connected. The use of T-DNA for the transformation of plant cells has been intensively studied and is described in EP-A-120516; Hoekema, in: The Binary Plant Vector System Offset-drukkerij Kanters B.B., Alblasserdam, 1985, Chapter V; Fraley, et al., Crit. Rev. Plant Sci., 4:1-46; and An et al., EMBO J. (1985) 4:277-284.

Direct infection of plant tissues by Agrobacterium is a simple technique which has been widely employed and which is described in Butcher D.N. et al. (1980), Tissue Culture Methods for Plant Pathologists, eds.: D.S. Ingrams and J.P. Helgeson, 203-208. For further teachings on this topic see Potrykus (Annu Rev Plant Physiol Plant Mol Biol [1991] 42:205-225) and Christou (Agro-Food-Industry Hi-Tech March/April 1994 17-27). With this technique, infection of a plant may be done on a certain part or tissue of the plant, i.e. on a part of a leaf, a root, a stem or another part of the plant.

25

30

5

10

15

20

Typically, with direct infection of plant tissues by Agrobacterium carrying the promoter and/or the GOI, a plant to be infected is wounded, e.g. by cutting the plant with a razor or puncturing the plant with a needle or rubbing the plant with an abrasive. The wound is then inoculated with the Agrobacterium. The inoculated plant or plant part is then grown on a suitable culture medium and allowed to develop into mature plants.

PCT/EP96/01009 WO 96/29416

When plant cells are constructed, these cells may be grown and maintained in accordance with well-known tissue culturing methods such as by culturing the cells in a suitable culture medium supplied with the necessary growth factors such as amino acids, plant hormones, vitamins, etc.

5

Regeneration of the transformed cells into genetically modified plants may be accomplished using known methods for the regeneration of plants from cell or tissue cultures, for example by selecting transformed shoots using an antibiotic and by subculturing the shoots on a medium containing the appropriate nutrients, plant hormones, etc.

10

Further teachings on plant transformation may be found in EP-A-0449375.

In summation, the present invention provides an arabinofuranosidase enzyme having arabinoxylan degrading activity and the nucleotide sequence coding for the same. In addition, it provides a promoter that can control the expression of that, or another, nucleotide sequence. In addition it includes terminator and signal sequences for the same.

20

15

The following sample was deposited in accordance with the Budapest Treaty at the recognised depositary The National Collections of Industrial and Marine Bacteria Limited (NCIMB) at 23 St. Machar Drive, Aberdeen, Scotland, United Kingdom, AB2 1RY on 16 January 1995:

25

E. coli containing plasmid pB53.1 (i.e. E.coli DH5αpB53.1}. The deposit number is NCIMB 40703.

The present invention will now be described by way of example.

30 In the following Examples reference is made to the accompanying figures in which:

WO 96/29416

28

PCT/EP96/01009

Figures 1-10 are sequences of promoters and GOIs of earlier patent applications that are useful for use with the aspects of the present invention;

Figure 11 is a plasmid map of the plasmid pB53.1, which is the subject of deposit NCIMB 40703;

Figure 12 is a schematic diagram of deletions made to the promoter of the present invention;

Figure 13 is a plasmid map of pXP-AMY;

Figure 14 is a plasmid map of pXP-XssAMY;

Figure 15 is a graph;

15

Figure 16 is an HP-TLC profile;

Figure 17 is an HP-TLC profile;

20 Figure 18 is an HPLC profile;

Figure 19 is a viscosity plot;

Figure 20 is an activity plot;

25

Figure 21 is an activity plot; and

Figure 22 is an activity plot.

The following text discusses the use of *inter alia* recombinant DNA techniques. General teachings of recombinant DNA techniques may be found in Sambrook, J., Fritsch, E.F., Maniatis T. (Editors) Molecular Cloning. A laboratory manual. Second edition. Cold

29

Spring Harbour Laboratory Press. New York 1989.

In these Examples, the enzyme of the present invention is sometimes referred to as AbfC. In addition, the promoter of the present invention is sometimes referred to as the AbfC promoter.

Purification of the arabinofuranosidase

Aspergillus niger 3M43 was grown in medium containing wheat bran and beet pulp. The fermentation broth was separated from the solid part of the broth by filtration. Concentrated fermentation broth was loaded on a 25X100mm Q-SEPHAROSE (Pharmacia) high Performance column, equilibrated with 20 mM Tris, HCl pH 7.5, and a linear gradient from 0-500 Mm NaCl was performed and fractions of the eluate was collected. The Arabinofuranosidase was eluted at 130-150 Mm NaCl.

15

10

5

The fractions containing the arabinofuranosidase were combined and desalted using a 50x200 mm G-25 SEPHAROSE Superfine (Pharmacia). The column was eluted with distilled water.

- After desalting the enzyme was concentrated using High-Trap spin columns. Next the concentrated and desalted fractions were subjected to gel filtration on a 50x600 mm SUPERDEX 50 column. The sample was loaded and the column was eluted with 0.2 M Phosphate buffer pH 7.0 plus 0.2 M NaCl, and fractions of the eluate were collected.
- The fractions containing arabinofuranosidase were combined and desalted and concentrated as described above. The combined fractions were loaded on a 16X100 mm Phenylsepharose High Performance column (Pharmacia), equilibrated with 50 mM Phosphate buffer pH 6.0, containing 1.5 M (NH₄)₂SO₄. A gradient where the (NH₄)₂SO₄ concentration was varied from 1.5 0 M was applied and the eluate collected in fractions.
- The fractions containing Arabinofuranosidase were combined. The purity of the arabinofuranosidase was evaluated by SDS-PAGE using the Phast system gel (Pharmacia).

PCT/EP96/01009

Characterization

The molecular weight of the purified arabinofuranosidase was determined by mass spectrometry using laser desorption technology. The MW of the arabinofuranosidase was found to be 33,270 D \pm 50 D.

The pI value was determined by use of a Broad pI Kit (Pharmacia). The arabinofuranosidase has a pI value of about 3.7.

After SDS-PAGE analysis, treatment PAS reagent showed that the arabinofuranosidase was glycosylated. The PAS staining was done according to the procedure of I. Van-Seuningen and M. Davril (1992) Electrophoresis 13 pp 97-99.

Activity Studies

Activity of AbfC as a function of water soluble pentosan (WSP) concentrations (mg/ml) was determined. The results are shown in Figure 21. The results show that AbfC activity reached maximum at substrate concentration of 8 mg/ml WSP.

pH Activity Studies

20

25

5

The effect of pH on the activity of the arabinofuranosidase of the present invention was investigated using water soluble pentosan (10 mg/ml) from wheat as a substrate in 50 mM citric acid sodium phosphate buffer. The incubation time was 15 minutes. The arabinofuranosidase of the present invention was observed to have a wide pH optima range of from about 2.5 to about 7.0 (see Figure 20), more especially from about 3.3 to about 4.6, more especially about 4.

Temperature Activity Studies

The effect of temperature on the activity of the arabinofuranosidase of the present invention was investigated using water soluble pentosan (10 mg/ml) from wheat as a substrate in 50 mM sodium acetate at a pH of 5.0. The incubation time was 15 minutes.

The arabinofuranosidase of the present invention was observed to have an optimal activity at a temperature of from about 40°C to about 60°C, more especially from about 45°C to about 55°C, more especially about 50°C (Figure 22). The enzyme is still active at about 10°C and showed residual activity at 70°C and 80°C.

5

10

Amino acid sequencing of the arabinofuranosidase

The enzyme was digested with endoproteinase Lys-C sequencing grade from Boehringer Mannheim using a modification of the method described by Stone & Williams 1993 (Stone, K.L. and Williams, K.R. (1993). Enzymatic digestion of Proteins and HPLC Peptide Isolation. In: Matsudaira P. (Editor). A practical Guide to Protein and Peptide Purification for Microsequencing. Second Edition. Academic Press, San Diego 1993. pp 45-73).

Freeze dried β-arabinofuranosidase (0.4 mg) was dissolved in 50 μl of 8M urea, 0.4 M NH₄HCO₃, pH 8.4. After overlay with N₂ and addition of 5 μl of 45 Mm DTT, the protein was denatured and reduced for 15 min at 50°C under N₂. After cooling to RT, 5 μl of 100 Mm iodoacetamide was added for the cysteines to be derivatised for 15 min at RT in the dark under N₂. Subsequently, 90 μl of water and 5 μg of endoproteinase Lys-C in 50 μl of 50 Mm Tricine and 10 mM EDTA, pH 8.0, was added and the digestion was carried out for 24h at 37°C under N₂. The resulting peptides were separated by reversed phase HPLC on a VYDAC C18 column (0.46 x 15 cm; 10 μm; The Separations Group; California) using solvent A: 0.1% TFA in water and solvent B: 0.1% TFA in acetonitrile. Selected peptides were rechromatographed on a Develosil C18 column (0.46 x 10 cm; 3μm) using the same solvent system prior to sequencing on an Applied Biosystems 476A sequencer using pulsed-liquid fast cycles.

The following peptide sequences were found:

30 SEQ I.D. No. 4

SEQ I.D. No. 5

SEQ I.D. No. 6

SEQ I.D. No. 7

SEQ I.D. No. 8

Isolation of a PCR clone of a fragment of the gene

5

PCR primers were synthesised using an Applied Biosystems DNA synthesiser model 392. In this regard, PCR primers were synthesized from one of the found peptide sequences, namely SEQ ID No. 5. The primers were:

10 One primer from EMTAQA (reversed)

15 One primer from MIVEAIG

PCR amplification was performed with 100 pmol of each of these primers in 100 μ l reactions using Amplitaq polymerase (PERKIN ELMER). The following program was:

	STEP	TEMP	TIME
25	1	94°C	2 min
	2	94°C	1 min
	3	55°C	2 min
	4	72°C	2 min
	5	72°C	5 min
30	6	5°C	SOAK

Steps 2-4 were repeated for 40 cycles.

PCR reactions were performed on a PERKIN ELMER DNA Thermal Cycler.

A 100 bp amplified fragment was isolated and cloned into a pT7-Blue T-vector, according to the manufacturers instructions (Novagen).

5

10

15

20

Isolation of A. niger genomic DNA

1g. of frozen A. niger mycelium was ground in a mortar under liquid nitrogen. Following evaporation of the nitrogen cover, the ground mycelium was extracted with 15ml of an extraction buffer (100mM Tris·Hcl, pH 8.0, O.50mM EDTA, 500mM NaCl, 10mM β -mercaptoethanol) containing 1ml 20% sodium dodecyl sulphate. After incubation at 65°C for 10 min. 5ml 5M KAc. pH 5.0, was added and the mixture further incubated, after mixing, on ice for 20 mins. After extraction, the mixture was centrifuged for 20 mins. and the supernatant mixed with 0.6 vol. isopropanol to precipitate the extracted DNA. After further centrifugation for 15 mins. the DNA pellet was dissolved in 0.7 ml TE (10mM Tris, HCl pH 8.0, 1mM EDTA) and precipitated with 75 μ l 3M NaAc, pH 4.8, and 500 μ l isopropanol.

After centrifugation the pellet was washed with 70% ETOH and dried under vacuum. The DNA was dissolved in 200 μ l TE and stored at -20°C.

Construction of a library

20 μ g genomic DNA was partly digested with Tsp509I, which gives ends which are compatible with EcoRI ends. The digested DNA was separated on a 1 % agarose gel and fragments of 4-10 kb was purified. A λ ZAPII EcoRI/CIAP kit from Stratagene was used for library construction according to the manufacturers instructions. 2 μ l of the ligation (totally 5 μ l) was packed with Gigapack Gold II packing extract from Stratagene. The library contained 650,000 independent clones.

25

Screening of the library

2 X 50,000 pfu was plated on NZY plates and plaquelifts were done on Hybond N sheets (Amersham). Plaquelifts were done in duplicates. The sheets were hybridized with the PCR clone labelled with ³²P dCTP (Amersham) using Ready-to-go labelling kit from Pharmacia. Positive clones were reckoned only when hybridization was detected on both sheets. The gene was sequenced, and the found sequence showed that all of the peptides sequenced were coded by the found sequence.

10 Sequence information

SEQ. ID. No. 12 presents the promoter sequence, the enzyme coding sequence, the terminator sequence and the signal sequence and the amino acid sequence of the enzyme of the present invention.

15

20

25

5

Arabinofuranosidase assay

Two different arabinoxylan preparations from wheat flour, Wheat Insoluble Pentosan (WIP) and Wheat soluble Pentosan (WSP), were degraded with the arabinofuranosidase enzyme of the present invention alone and in combination with an endoxylanase purified from A. niger. The assays were done on 1% substrate in 50 Mm 50 Mm Na-acetate buffer at pH 5.0. The reactions were performed at 30 °C for 2.5 hours. The reactions were stopped by addition of 3 vol. ethanol which precipitates the high molecular weight material. The samples were centrifuged and the supernatants were collected, dried under vacuum and resuspended in 0.5 ml distilled water. The samples were diluted 1:1 in water and analysed on a Chromopack Carbohydrate Pb column (300X7.8 mm, cat. 29010) using Shimadzu C-R4A Chromatopac HPLC system using a Shimadzu RI D-6A refractive index detector in accordance with the suppliers instructions.

The column was calibrated using a standard composed of 0.48 mg/ml xylotriose, 0.48 mg/ml xylobiose, 0.60 mg/ml xylose and 0.58 mg/ml L-arabinose. The peaks were identified and quantified using the software supplied with the equipment.

Results - Liberated saccharides from Wheat Insoluble Pentosan

Substrate 1% WIP in 50 Mm Na-acetate buffer pH 5.0. Values are expressed in mg/ml.

	xylotriose	xylobiose	xylose	arabinose
no enzyme	0.0	0.0	0.0	0.0
abfC	0.0	0.0	0.0	0.11
xyl	0.09	0.14	0.0	0.0
abfC + xyl	0.37	0.41	0.0	0.30

10

5

abfC denotes the enzyme according to the present invention; and xyl denotes the xylanase described before.

Results - Saccharides liberated from Wheat Soluble Pentosan

15

Substrate 1 % WSP in 50 Mm Na-acetate buffer pH 5.0. Values are expressed in mg/ml.

•		١	ı	•
ı,	1	۲.	ţ	

	xylotriose	xylobiose	xylose	агавіпоѕе
по епгуте	0.0	0.0	0.0	0.0
abfC	0.0	0.0	0.0	0.30
xyl	0.08	0.14	0.0	0.0
abfC + xyl	0.42	0.47	0.0	0.42

abfC denotes the enzyme according to the present invention; and xyl denotes the xylanase described before.

Figure 17 shows HP-TLC profiles of the AbfC enzyme acting synergistically with Xylanase A. In this Figure, the following abbreviations are used: water-soluble pentosan (WSP); water-insoluble pentosan (WIP); and oat xylan as substrate. The standards were: X-xylose; X₂-xylobiose; X₃-xylotriose; A-arabinose.

5

Figure 18 shows the HPLC analysis of hydrolysis products using 1% oat spelt xylan as the substrate. Figure 18(a) and Figure 18(b) show the products when the AbfC enzyme and the xylanase enzyme respectively were used alone. Figure 18(c) show the products when the AbfC enzyme and the xylanase enzyme when combined.

10

The results of these experiments provide two important findings.

First the enzyme of the present invention liberates arabinose, in particular L-arabinose, from arabinoxylan.

15

Second the combined actions of the enzyme according to the present invention with the endoxylanase is significantly higher than the sum of their individual action. Accordingly, the two enzymes affect each others enzymatic activities in a synergistic fashion.

20 Induction of the AbfC gene: Identification of inducers

The regulation of transcription of the AbfC encoding gene of Aspergillus niger was studied using a strain containing a fusion of the AbfC promoter to the β -glucuronidase encoding gene (uid A) of E coli.

25

GUS producing transformants were grown on different carbon sources and assayed both qualitatively and quantitatively for the ability to hydrolyse p-nitrophenol glucuronide.

The results are shown below:

CARBON SOURCE GUS ACTIVITY AFTER 24 HOURS INDUCTION

	(1%)	(units/mg)
	xylose	12.37
5	xylitol	1.49
	arabinose	6.66
	arabitol	5.30
	glucose	0.70
	cellubiose	0.95
10	xylo-oligomer 70	17.26
	glucopyranoside	0.40
	methyl-xylopyranoside	24.20
	xyloglucan	1.00
	pectin	0.27
15	arabinogalactan	2.60
	arabitol + glucose	2.20

The results show that the AbfC promoter is switched on after 24 hours when grown in the presence of xylose, xylo-oligomer 70, methyl-xylopyranoside, arabinose and arabitol.

These studies also suggest that methyl-xylopyranoside is the natural and strongest inducer of this promoter.

The AbfC promoter is strongly repressed by glucose and is therefore under carbon catabolite repression. However, unlike all the published promoters for arabinofuranosidases, which are induced by arabinose and arabitol, the AbfC promoter of the present invention is regulated strongly by the intermediates in xylose metabolism. Accordingly, the present invention also covers an arabinofuranosidase promoter wherein the promoter is inducible by an intermediate in xylose metabolism.

38

Effects of different promoter deletions on the regulation of the expression of the AbfC gene

To study the regulation at the molecular level, experiments were set up to detect possible upstream regulating sequences required for expression of the AbfC gene. A series of plasmids with deletions in the 5' upstream region of the gene was constructed (see Figure 12). The *E coli* uid A gene was used as the reporter gene and a qualitative GUS assay was performed.

The results indicated that the truncated AbfC promoter of 590 bp contains sufficient information for the inducibility of the AbfC gene and its regulation. Deletion of 100 bps sequence from the *Xma* 111 to the *BamH*1 sites of the promoter led to a reduction in activity of this promoter. Therefore, this 100 bps area is important for good levels of gene expression. Deletion of 290 bps before the ATG identified this region to be important but not sufficient to abolish the activity of this promoter. All the transformants analysed containing this promoter construct showed very pale blue when tested (+-GUS). This region is as follows:

-170 TCATCCAATAT

20

25

5

As seen, this region contains the CCAAT element and is a putative target for a general transcriptional activator. This sequence is similar to the nuclear protein binding sites found in two starch inducible promoters: the Aspergillus niger glucoamylase gene and the Aspergillus oryzae amylase gene as well as the amdS gene of Aspergillus nidulans.

HETEROLOGOUS PROTEIN PRODUCTION USING ASPERGILLUS NIGER
TRANSFORMED WITH THE AbfC PROMOTER AND THE AbfC SIGNAL
SEQUENCE

5 Transformation of Aspergillus Niger

The protocol for transformation of A. niger was based on the teachings of Buxton, F.P., Gwynne D.I., Davis, R.W. 1985 (Transformation of Aspergillus niger using the argB gene of Aspergillus nidulans. Gene 37:207-214), Daboussi, M.J., Djeballi, A., Gerlinger, C., Blaiseau, P.L., Cassan, M., Lebrun, M.H., Parisot, D., Brygoo, Y. 1989 (Transformation of seven species of filamentous fungi using the nitrate reductase gene of Aspergillus nidulans. Curr. Genet. 15:453-456) and Punt, P.J., van den Hondel, C.A.M.J.J. 1992 (Transformation of filamentous fungi based on hygromycin B and Phleomycin resistance markers. Meth. Enzym. 216:447-457).

15

20

25

30

For the purification of protoplasts, spores from one PDA (Potato Dextrose Agar - from Difco Lab. Detroit) plate of fresh sporulated N400 (CBS 120.49, Centraalbureau voor Schimmelcultures, Baarn) (7 days old) are washed off in 5-10 ml water. A shake flask with 200 ml PDC (Potato Dextrose Broth, Difco 0549-17-9, Difco Lab. Detroit) is inoculated with this spore suspension and shaken (250 rpm) for 16-20 hours at 30°C.

The mycelium is harvested using Miracloth paper and 3-4 g wet mycelium are transferred to a sterile petri dish with 10 ml STC (1.2 M sorbitol, 10 mM Tris Hcl pH 7.5, 50 Mm CaCl₂) with 75 mg lysing enzymes (Sigma L-2265) and 4500 units lyticase (Sigma L-8012).

The mycelium is incubated with the enzyme until the mycelium is degraded and the protoplasts are released. The degraded mycelium is then filtered through a sterile $60 \mu m$ mesh filter. The protoplasts are harvested by centrifugation 10 min at 2000 rpm in a swing out rotor. The supernatant is discarded and the pellet is dissolved in 8 ml 1.5 M MgSO₄, and then centrifuged at 3000 rpm for 10 min.

The upper band, containing the protoplasts is transferred to another tube, using a transfer pipette and 2 ml 0.6 M KCl is added. Carefully 5 ml 30% sucrose is added on the top and the tube is centrifuged 15 min at 3000 rpm.

- The protoplasts, lying in the interface band, are transferred to a new tube and diluted with 1 vol. STC. The solution is centrifuged 10 min at 3000 rpm. The pellet is washed twice with STC, and finally solubilized in 1 ml STC. The protoplasts are counted and eventually concentrated before transformation.
- For the transformation, 100 μ l protoplast solution (10⁶-10⁷ protoplasts) are mixed with 10 μ l DNA solution containing 5- 10 μ g DNA and incubated 25 min at room temperature. Then 60 % PEG-4000 is carefully added in portions of 200 μ l, 200 μ l and 800 μ l. The mixture is incubated 20 min at room temperature. 3 ml STC is added to the mixture and carefully mixed. The mixture is centrifuged 3000 rpm for 10 min.

15

25

30

The supernatant is removed and the protoplasts are solubilized in the remaining of the supernatant. 3-5 ml topagarose is added and the protoplasts are quickly spread on selective plates.

20 AbfC promoter and heterologous gene expression

The expression vector pXP-Amy (Figure 13) contains the 2.1 kb α -amylase encoding gene from *Thermomyces lanuginosus* cloned downstream of the AbfC promoter (2.1 kb) and upstream of the Xylanase A terminator. This vector together with the hygromycin gene as a selectable marker was used for co-transformation experiments to test the functionality of the AbfC promoter.

The best transformant was accumulated in shake flask experiments at least 1 gram per litre of α -amylase in the culture media. Starch degrading activity was then detected within 48 hours and a peak of enzyme activity is observed at 4 days of growth on sugar beet pulp and wheat bran (Figure 15).

AbfC signal sequence functions in protein secretion

An expression construct containing the signal peptide of the AbfC gene translationally fused to the mature α -amylase from T. lanuginosus was prepared and expression of this construct in the production strains was observed. In this regard, the translational fusion construct pXPXss-Amy (Figure 14) was placed under the transcriptional control of the AbfC promoter and the xylanase A termination signal. The incorporation of an endogenous signal peptide resulted in increased detectability of co-transformants expressing both amylase and the hygromycin resistance marker. The endogenous signal peptide directed the secretion of amylase out of the cell.

41

Substrate Specificity of AbfC Protein

The substrate specificity of the purified AbfC was determined using arabinose containing hemicelluloses: arabinoxylans from wheat, oat and larch, branched and debranched arabinans; arabinogalactan, sugar beet pectin, and xyloglucan.

The HPLC and HP-TLC results are shown in Figure 16, in which the following abbreviations are used: WSP - water-soluble pentosan, WIP - water-insoluble pentosan, AG - arabinogalactan, deB-A - debranched arabinan. The standards used were: A-arabinose, X-xylose.

The results indicate that arabinose is the hydrolysis product from arabinoxylans. No hydrolysis products were released from arabinogalactan, debranched arabinan or xyloglucan. Arabinose was released as a hydrolysis product from branched arabinan. AbfC is therefore a 1,2/1,2 debranching enzyme and it has no activity towards linear 1,5 α -linked L-arabinofuranose residues found in debranched arabinans and arabinogalactan. This enzyme also releases a product when pectin is used as the substrate. It is believed that this product is an arabinose containing ferulic acid or an arabinobiose.

25

5

10

42

Reduction of Viscosity By AbfC

The results for the substrate specificity studies also suggest that the enzyme of the present invention could be used to reduce the viscosity of feeds. In this regard, the enzyme would reduce the viscosity of branched substrates by removing the branches but not the backbone of that substrate. This is in contrast to the known viscosity modifiers which degrade the substrate backbone.

Accordingly, the present invention covers a process of reducing the viscosity of a branched substrate wherein the enzyme degrades the branches of the substrate but not the backbone of the substrate.

In particular, the present invention covers the use of the enzyme of the present invention as a viscosity modifier.

15

10

5

In this regard, an experiment was carried out to investigate the reduction of viscosity of the water-soluble pentosan fraction from wheat flour by arabinofuranosidase. In this experiment, 6 ml water-soluble pentosan was incubated with 100 μ l of AbfC for 20 hours, 20°C at pH 5.5.

20

25

The results (see Figure 19) show that the enzyme of the present invention can be used to reduce the viscosity of pectins, especially pectins that are used in beverages - such as fruit juices.

Accordingly, the present invention covers the use of the enzyme of the present invention to reduce the viscosity of pectin.

ANTIBODY PRODUCTION

Antibodies were raised against the enzyme of the present invention by injecting rabbits with the purified enzyme and isolating the immunoglobulins from antiserum according to procedures described according to N Harboe and A Ingild ("Immunization, Isolation

of Immunoglobulins, Estimation of Antibody Titre" In A Manual of Quantitative Immunoelectrophoresis, Methods and Applications, N H Axelsen, et al (eds.). Universitetsforlaget, Oslo, 1973) and by T G Cooper ("The Tools of Biochemistry", John Wiley & Sons, New York, 1977).

5

10

15

20

SUMMARY

Even though it is known that Aspergillus niger produces arabinofuranosidases, the present invention provides a novel and inventive arabinofuranosidase, as well as the coding sequence therefor and the promoter for that sequence. An important advantage of the present invention is that the enzyme can be produced in high amounts.

In addition, the promoter and the regulatory sequences (such as the signal sequence and the terminator) can be used to express or can be used in the expression of GOIs in organisms, such as in A. niger.

The arabinofuranosidase of the present invention is different from the arabinofuranosidases previously known. In this regard, the previous described arabinofuranosidases - such as those of EP-A-0506190 - are characterised by their ability to degrade arabinan, and are assayed using p-nitrophenyl-arabinoside.

The arabinofuranosidase of the present invention does not degrade arabinan, and only a minor activity is seen on p-nitrophenyl-arabinoside.

In contrast, the arabinofuranosidase of the present invention is useful for degrading arabinoxylan. Therefore, the arabinofuranosidase of the present invention is quite different from the previous isolated arabinofuranosidases.

More in particular, the enzyme of the present invention is capable of specifically cleaving arabinose from the xylose backbone of arabinoxylan.

44

The enzyme of the present invention is useful as it can improve processes for preparing foodstuffs and feeds as well as the foodstuffs and feeds themselves. For example, the enzyme of the present invention may be added to animal feeds which are rich in arabinoxylans. When added to feeds (including silage) for monogastic animals (e.g. poultry or swine) which contain cereals such as barley, wheat, maize, rye or oats or cereal by-products such as wheat bran or maize bran, the enzyme significantly improves the break-down of plant cell walls which leads to better utilization of the plant nutrients by the animal. As a consequence, growth rate and/or feed conversion are improved. Moreover, arabinoxylan-degrading enzymes may be used to reduce the viscosity of feeds containing arabinans. The arabinoxylan-degrading enzyme may be added beforehand to the feed or silage if pre-soaking or wet diets are preferred.

Of particular benefit is the use of the enzyme according to the present invention in combination with a xylanase, especially an endoxylanase.

15

20

25

10

5

A possible further application for the enzyme according to the present invention is in the pulp and paper industry. The application of xylanases is often reported to be beneficial in the removal of lignins and terpenoids from the cellulose and hemicellulose residues of a hemicellulose backbone, an essential step in the processing of wood, wood pulp or wood derivative product for the production of paper. The addition of arabinoxylandegrading enzymes, produced according to the present invention, to the xylanase treatment step should assist in the degradation of an arabinan-containing hemicellulose backbone and thus facilitate an improved, more efficient removal of both lignins and terpenoids. The application of arabinoxylan-degrading enzymes should be particularly advantageous in the processing of soft woods in which the hemicellulose backbone contains glucuronic acid.

The enzyme according to the present invention is also useful as it acts in a synergistic manner with endoxylanase (see results presented above).

30

Other modifications of the present invention will be apparent to those skilled in the art without departing from the scope of the invention.

45

```
SEQUENCE LISTINGS
SEQ ID NO: 1
ENZYME SEQUENCE
       (1) SEQUENCE CHARACTERISTICS:
          (A) LENGTH: 296 amino acids
          (B) TYPE: amino acid
          (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: protein
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
Lys Cys Ser Leu Pro Ser
Ser Tyr Ser Trp Ser Ser Thr Asp Ala Leu Ala Thr Pro Lys Ser Gly
             10
                                 15
                                                      20
Trp Thr Ala Leu Lys Asp Phe Thr Asp Val Val Ser Asp Gly Lys His
         25
                             30
                                                  35
Ile Val Tyr Ala Ser Thr Thr Asp Glu Ala Gly Asn Tyr Gly Ser Met
                         45
Thr Phe Gly Ala Phe Ser Glu Trp Ser Asn Met Ala Ser Ala Ser Lys
 55
                     60
                                          65
                                                              70
Thr Ala Thr Pro Tyr Asn Ala Val Ala Pro Thr Leu Phe Tyr Phe Lys
                 75
                                     80
Pro Lys Ser Ile Trp Val Leu Ala Tyr Gln Trp Gly Ser Ser Thr Phe
             90
                                 95
                                                     100
Thr Tyr Arg Thr Ser Gln Asp Pro Thr Asn Val Asn Gly Trp Ser Ser
        105
                            110
                                                 115
Glu Lys Ala Leu Phe Thr Gly Lys Leu Ser Asp Ser Ser Thr Gly Ala
                        125
                                             130
Ile Asp Gln Thr Val Ile Gly Asp Asp Thr Asn Met Tyr Leu Phe Phe
135
                    140
                                         145
                                                             150
```

Ala Gly Asp Asn Gly Lys Ile Tyr Arg Ser Ser Met Ser Ile Asp Glu

160

165

Phe	Pro	Gly	Ser	Phe	Gly	Ser	Gln	Tyr	Glu	Glu	Пe	Leu	Ser	Gly	Ala
			170					175					180		
Thr	Asn	Asp	Leu	Phe	Glu	Ala	Val	Gln	Val	Tyr	Thr	Val	Asp	Gly	Gly
		185					190					195			
Glu	Gly	Asn	Ser	Lys	Tyr	Leu	Met	He	Val	Glu	Ala	He	Gly	Ser	Thr
	200					205					210				
G1y	His	Arg	Tyr	Phe	Arg	Ser	Phe	Thr	Ala	Ser	Ser	Leu	Gly	Gly	Glu
215					220					225					230
Trp	Thr	Ala	Gln	Ala	Ala	Ser	Glu	Asp	Lys	Pro	Phe	Ala	Ala	Lys	Pro
				235					240					245	
Thr	۷al	Ala	Pro	Pro	Gly	Pro	Lys	Thr	Leu	Ala	Met	Val	Thr	Trp	Phe
			250					255					260		
Ala	Thr	Thr	Leu	He	Lys	Pro	*								
		265					270								

47

SEQ ID NO: 2

NUCLEOTIDE CODING SEQUENCE

AAA TGC TCT CTT CCA TCG TCC TAT AGT TGG AGT TCA ACC GAT GCT CTC GCA ACT CCT AAG TCA GGA TGG ACC GCA CTG AAG GAC TTT ACT GAT GTT GTC TCT GAC GGC AAA CAT ATC GTC TAT GCG TCC ACT ACT GAT GAA GCG GGA AAC TAT GGC TCG ATG ACC TTT GGC GCT TTC TCA GAG TGG TCG AAC ATG GCA TCT GCT AGC AAG ACA GCC ACC CCC TAC AAT GCC GTG GCT CCT ACC CTG TTC TAC TTC AAG CCG AAA AGC ATC TGG GTT CTG GCC TAC CAA TGG GGC TCC AGC ACA TTC ACC TAC CGC ACC TCC CAA GAT CCC ACC AAT GTC AAC GGC TGG TCG TCG GAG AAG GCG CTT TTC ACC GGA AAA CTC AGC GAC TCA AGC ACC GGT GCC ATT GAC CAG ACG GTG ATT GGC GAC GAT ACG AAT ATG TAT CTC TTC TTT GCT GGC GAC AAC GGC AAG ATC TAC CGA TCC AGC ATG TCC ATC GAT GAA TTT CCC GGA AGC TTC GGC AGC CAG TAC GAG GAA ATT CTG AGT GGT GCC ACC AAC GAC CTA TTC GAG GCG GTC CAA GTG TAC ACG GTT GAC GGC GGC GAG GGC AAC AGC AAG TAC CTC ATG ATC GTT GAG GCG ATC GGG TCC ACT GGA CAT CGT TAT TTC CGC TCC TTC ACG GCC AGC AGT CTC GGT GGA GAG TGG ACA GCC CAG GCG GCA AGT GAG GAT AAA CCC TTC GCA GCA AAG CCA ACA GTG GCG CCA CCT GGA CCG AAG ACA TTA GCC ATG GTG ACT TGG TTC GCA ACA ACC CTG ATC AAA CCA TGA

48

SEQ ID NO: 3

PROMOTER SEQUENCE

CTGCAGAAGA	TGGCAGTCGC	CACAGCCGAT	CACCCGATCC	ATACTGGATG	TTGTAACTTG	60
GAGACAGCCT	GCAGATGCTC	TGATGAAGGT	CTGCAAATAG	TTCCTGGACC	TCGATAGTGA	120
AGTATACCGA	TTCGTCAATG	TTGTATATCC	AGCCACTTTG	AAAGTACCAA	CTTTTAGTTC	180
GATTGATCAG	AATACTTTTG	GTGTGTAACA	TTGACAAGCC	AAATTATCAA	TCTCTTCTAC	240
CGGTAAGGTG	TCAACTACCC	GGCCGAAAGT	ACCGGAAGGT	CGTGGTGTTT	TAAGGTGAAA	300
CAACTATCAG	GGCGGCAATG	TGTCAAAGTA	GAACCAGTTT	GCTTAGCGCC	ATTAGGATCC	360
ACGCCTAGAC	CCTTGATGCC	CGGGAGTTAT	CCGTCCTGTC	ACAGCAATTA	TTTCCCCGAG	420
TCTACTGCCG	AAGAACAGCC	ATTGTGGCGT	ACTCACGGAA	TTACCCACTG	TGTAGGGTAG	480
TCTTGAACGC	CGTTCTAGAC	ACGGCAACGC	TCCGGTGGAC	GATCGTTTCT	GGCTAATGTA	540
CTCCGTAGTT	TAGGCAGCAT	GCTGATCATC	TTCCCCCTAG	GGAAAGGCCC	CTGAATAGTG	600
CGCCAAAATG	AGCTTGAGCA	AAGGAATGTT	CTTTCTAAGC	CAAAGTGAGG	GAAATAACCA	660
AGCAGCCCAC	TTTTATCCGA	AACGTTTCTG	GTGTCATCCA	ATATGGATAA	ATCCCGATTG	720
TTCTTCTGCA	CATATCTCTA	TTGTCATAAG	TGCAACTACA	TATATTTGAA	CATGGTTTGG	780
тсстстттсс	AAGTTATTCG	TTCTCCGTGA	CCAGCGATTT	CAGCCATTGA	ттсттты	840
TCTTTCCCCG	CGGATAAACT	CATACGAAG				

INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(v) FRAGMENT TYPE: N-terminal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Lys Cys Ser Leu Pro Ser Ser Tyr Ser Trp Ser Ser Thr Asp Ala Leu I 5 10 15
Ala Thr Pro Lys

20

INFORMATION FOR SEQ ID NO: 5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

Tyr Leu Met Ile Val Glu Ala Ile Gly Ser Thr Gly His Arg Tyr Phe
1 5 10 15

Arg Ser Phe Thr Ala Ser Ser Leu Gly Gly Glu Met Thr Ala Gln Ala 20 25 30

Ala Ser Glu Asp Lys Pro Phe Xaa Gly
35 40

15

30

50 INFORMATION FOR SEQ ID NO: 6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide (v) FRAGMENT TYPE: internal (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6: Ser Ile Trp Val Leu Ala Tyr Gln Trp Gly Ser Ser Thr Phe Thr Tyr 1 5 10 15 Arg Thr Ser Gln Asp Pro Thr Asn Val 20 25 INFORMATION FOR SEQ ID NO: 7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: peptide

Asp Ile Val Tyr Ala Ser Thr Thr Asp Glu Ala Gly Asn Tyr Gly Ser

25

Met Thr Phe Gly Ala Phe Ser Glu Xaa Ser Asn Met Ala Ser

10

(v) FRAGMENT TYPE: internal

20

1

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

51

INFORMATION FOR SEQ ID NO: 8:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 41 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (v) FRAGMENT TYPE: internal
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Ile Tyr Arg Ser Ser Met Ser Ile Asp Glu Phe Pro Gly Ser Phe Gly

1 5 10 15

Ser Gln Tyr Glu Glu Ile Leu Ser Gly Ala Thr Asn Asp Leu Phe Glu 20 25 30

Ala Val Gln Val Tyr Thr Val Asp Gly
35 40

INFORMATION FOR SEQ ID NO: 9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

GCYTGNGCNG TCATYTC

CTIGNOCHO TCATTIC

INFORMATION FOR SEQ ID NO: 10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: other nucleic acid
 - (A) DESCRIPTION: /desc = "OLIGONUCLEOTIDE"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

ATG ATH GTN GAR GCN ATH GG

INFORMATION FOR SEQ ID NO: 11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 89 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: other nucleic acid	
(A) DESCRIPTION: /desc = "PCR fragment"	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
ATGATTGTGG AGGCGATCGG GTCCACTGGA CATCGTTATT TCCGCTCCTT CACGGCCAGC	60
AGTCTCGGTG GAGAGATGAC CGCACAGGC	89
INFORMATION FOR SEQ ID NO: 12:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 2555 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic) (vi) ORIGINAL SOURCE:	
(VI) ORIGINAL SOURCE: (A) ORGANISM: Aspergillus niger	
(B) STRAIN: 3M43	
(ix) FEATURE:	
(A) NAME/KEY: CDS	
(B) LOCATION: 8701757	
(ix) FEATURE:	
(A) NAME/KEY: sig_peptide	
(B) LOCATION:870947	
(ix) FEATURE:	
(A) NAME/KEY: mat_peptide	
(B) LOCATION:9481754	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
CTGCAGAAGA TGGCAGTCGC CACAGCCGAT CACCCGATCC ATACTGGATG TTGTAACTTG	60
GAGACAGCCT GCAGATGCTC TGATGAAGGT CTGCAAATAG TTCCTGGACC TCGATAGTGA	120
AGTATACCGA TTCGTCAATG TTGTATATCC AGCCACTTTG AAAGTACCAA CTTTTAGTTC	180
GATTGATCAG AATACTTTTG GTGTGTAACA TTGACAAGCC AAATTATCAA TCTCTTCTAC	240

CGG	TAAG	GTG	TCAA	CTAC	CC G	GCCG.	AAAG	T AC	CGGA	AGGT	CGT	GGTG	Ш	TAAG	GTGAA	A 3	00
CAA	CTAT	CAG	GGCG	GCAA	TG T	GTCA	AAGT.	A GA	ACCA	GTTT	GCT	TAGC	GCC	ATTA	GGATC	C 3	60
ACG	CCTA	GAC	CCTT	GATG	CC C	GGGA	GTTA	T CC	GTCC	TGTC	ACA	GCAA	TTA	TTC	CCCGA	G 47	20
TCT	ACTG	CCG	AAGA	ACAG	CC A	TTGT	GGCG	T AC	TCAC	GGAA	TTA	CCCA	CTG	TGTA	GGGTA	G 48	80
TCT	TGAA	CGC	CGTT	CTAG	AC A	CGGC	AACG	C TC	CGGT	GGAC	GAT	CGTT	TCT	GGCT.	AATGT	A 5	40
CTC	CGTA	GIT	TAGG	CAGC	AT G	CTGA	TCAT	CTT	CCCC	CTAG	GGA	4AGG!	CCC	CTGA	ATAGT	G 6	00
CGC	CAAA	ATG	AGCT	TGAG	CA A	AGGA	ATGT	T CT	TTCT	4AGC	CAA	AGTG/	AGG	GAAA	TAACC	A 60	60
AGC	AGCC	CAC	TTTT	ATCC	GA A	ACGT	TTCT	G GT(GTCA	TCCA	ATA	rgga [·]	TAA .	ATCC	CGATT	G 72	20
TTC	TTCT	GCA	CATA	TCTC	TA T	TGTC	ATAA	G TG	CAAC	TACA	TATA	ATTT(GAA	CATG	GTTTG	G 78	30
TCC	TCTT	TCC	AAGT	TATT(CG T	TCTC	CGTG	A CC/	AGCG/	ATTT	CAG	CCAT	TGA	TTCT	FTTGT	T 84	40
TCT	TTCC	CCG	CGGA	ΓΑΑΑ(CT C	ATAC	GAAG	ATG	AAG	TTC	TTC	AAT	GCC	AAA	GGC	89	93
								Met	Lys	Phe	Phe	Asn	Ala	Lys	Gly		
								-26	-25					-20			
AGC	ΠG	CTG	TCA	TCA	GGA	ATC	TAC	CTC	ATT	GCA	TTA	ACC	CCC	Ш	GTT	94	11
Ser	Leu	Leu	Ser	Ser	Gly	He	Tyr	Leu	He	Ala	Leu	Thr	Pro	Phe	Val		
			-15					-10					-5				
AAC	GCC	AAA	TGC	TCT	CTT	CCA	TCG	TCC	TAT	AGT	TGG	AGT	TCA	ACC	GAT	98	39
Asn	Ala	Lys	Cys	Ser	Leu	Pro	Ser	Ser	Tyr	Ser	Trp	Ser	Ser	Thr	Asp		
		1				5					10						
GCT	CTC	GCA	ACT	CCT	AAG	TCA	GGA	TGG	ACC	GCA	CTG	AAG	GAC	Ш	ACT	103	37
	Leu	Ala	Thr	Pro	Lys	Ser	Gly	Trp	Thr	Ala	Leu	Lys	Asp	Phe	Thr		
15					20					25					30		
			TCT													108	35
Asp	Val	Val	Ser		Gly	Lys	His	He	Va1	Tyr	Ala	Ser	Thr	Thr	Asp		
				35					40					45			
			AAC													113	33
Glu	Ala	Gly		Tyr	Gly	Ser	Met		Phe	Gly	Ala	Phe			Trp		
T 00			50					55					60				
			GCA													118	31
Ser	Asn		Ala	Ser	Ala	Ser		Thr	Ala	Thr	Pro		Asn	Ala	Val		
007	007	65					70				4	75					
			CTG													122	29
Ala		Ihr	Leu	Phe	lyr		Lys	Pro	Lys	Ser		Trp	Val	Leu	Ala		
T	80	***	000	T00		85	T		-	000	90	~ ^ -	•		20-		. –
			GGC													127	17
	GIN	ırp	Gly	5er		Ihr	Phe	Thr	lyr	_	Ihr	Ser	Gin	Asp			
95					100					105					110		

ACC AAT GTC AAC GGC TGG TCG TCG GAG AAG GCG CTT TTC ACC GGA AAA	1325
Thr Asn Val Asn Gly Trp Ser Ser Glu Lys Ala Leu Phe Thr Gly Lys	
115 120 125	
CTC AGC GAC TCA AGC ACC GGT GCC ATT GAC CAG ACG GTG ATT GGC GAC	1373
Leu Ser Asp Ser Ser Thr Gly Ala Ile Asp Gln Thr Val Ile Gly Asp	
130 135 140	
GAT ACG AAT ATG TAT CTC TTC TTT GCT GGC GAC AAC GGC AAG ATC TAC	1421
Asp Thr Asn Met Tyr Leu Phe Phe Ala Gly Asp Asn Gly Lys Ile Tyr	
145 150 155	
CGA TCC AGC ATG TCC ATC GAT GAA TTT CCC GGA AGC TTC GGC AGC CAG	1469
Arg Ser Ser Met Ser Ile Asp Glu Phe Pro Gly Ser Phe Gly Ser Gln	
160 165 170	
TAC GAG GAA ATT CTG AGT GGT GCC ACC AAC GAC CTA TTC GAG GCG GTC	1517
Tyr Glu Glu Ile Leu Ser Gly Ala Thr Asn Asp Leu Phe Glu Ala Val	
175 180 185 190	
CAA GTG TAC ACG GTT GAC GGC GGC GAG GGC AAC AGC AAG TAC CTC ATG	1565
Gln Val Tyr Thr Val Asp Gly Gly Glu Gly Asn Ser Lys Tyr Leu Met	
195 200 205	
ATC GTT GAG GCG ATC GGG TCC ACT GGA CAT CGT TAT TTC CGC TCC TTC	1613
Ile Val Glu Ala Ile Gly Ser Thr Gly His Arg Tyr Phe Arg Ser Phe	
210 215 220	
ACG GCC AGC AGT CTC GGT GGA GAG TGG ACA GCC CAG GCG GCA AGT GAG	1661
Thr Ala Ser Ser Leu Gly Gly Glu Trp Thr Ala Gln Ala Ala Ser Glu	
225 230 235	
GAT AAA CCC TTC GCA GCA AAG CCA ACA GTG GCG CCA CCT GGA CCG AAG	1709
Asp Lys Pro Phe Ala Ala Lys Pro Thr Val Ala Pro Pro Gly Pro Lys	
240 245 250	. 757
ACA TTA GCC ATG GTG ACT TGG TTC GCA ACA ACC CTG ATC AAA CCA TGA	1757
Thr Leu Ala Met Val Thr Trp Phe Ala Thr Thr Leu Ile Lys Pro *	
255 260 265 270	1017
CTGTCGATCC TTGCAACCTC CAGTTGCTCT ATCAGGGCCA TGACCCCCAA CAGCAGTGGC	1817
GACTACAACC TCTTGCCATG GAAGCCGGGC GTCCTTACCT TGAAGCAGTG ACGAGCTTAT	1877
CTTTAGTTGC AGATCGTGTT TCTCCTTTCT TCTTCAAGTA GTTTTAGTGG TGGAAGACAG	1937
CAGAAGGTGG TCATCATCTT AGGCTCAGTT GGGGTGGGCT CCTGCCACGT TTTGTCCATA	1997
GGCTAGTAAT TTGCACGGAA TTCAGTTCAT TGGCAAGGAG TGCGGTACGA ATACCTGTTT	2057
TCACAATAGC AATTAGGCCC AGTAGTTATA CTACGTACTG GAATTGAGTA CTCGTAGTAG	2117
CAAGATTGTT TGCCTCAGAG GGAATGGCCG ACACGTGAGC AAGTCACCTT CATCAGCTAG	2177

PCT/EP96/01009

_	_
٦,	7
.,	_

TCGCGTTCCA CATAGACAAT GGTCCAGCTC CAGAGTGGAA TTTGGGCTAC TTTGAACGAT	2237
GGCCGATTGA ATCGCGCGTC TCCTCAATTG TATTTAACCA CAATAGGCCA GGTATTGGCA	2297
TTCACTCTCC GCCTTTGCGG GTGCCGGCAC GAGATGTCTC CTGAAGAAAC TAGGCAACGA	2357
GCAGACTGTG GATATGGGAG ATGGTTGACG ATGTGCTTCT TGGTAAATTT GAAGCCTCCA	2417
GGGCCTCTAG AAAGGCGGGA ATTTAAATCT CAAGTGCCCT AACGTGTCCG ACCACGGTGT	2477
TGATCATCAT TCATTGAATC GGATAACAGT CTTGGTTCGG AAACTGAACA GGCGGCTCTT	2537
GAATGACACT CTGGATCC	2555
(2) INFORMATION FOR SEQ ID NO: 13:	
TERMINATOR SEQUENCE	
CTGTCGATCC TTGCAACCTC CAGTTGCTCT ATCAGGGCCA TGACCCCCAA CAGCAGTGGC	60
GACTACAACC TCTTGCCATG GAAGCCGGGC GTCCTTACCT TGAAGCAGTG ACGAGCTTAT	120
CTTTAGTTGC AGATCGTGTT TCTCCTTTCT TCTTCAAGTA GTTTTAGTGG TGGAAGACAG	180
CAGAAGGTGG TCATCATCTT AGGCTCAGTT GGGGTGGGCT CCTGCCACGT TTTGTCCATA	240
GGCTAGTAAT TTGCACGGAA TTCAGTTCAT TGGCAAGGAG TGCGGTACGA ATACCTGTTT	300
TCACAATAGC AATTAGGCCC AGTAGTTATA CTACGTACTG GAATTGAGTA CTCGTAGTAG	360
CAAGATTGTT TGCCTCAGAG GGAATGGCCG ACACGTGAGC AAGTCACCTT CATCAGCTAG	420
TCGCGTTCCA CATAGACAAT GGTCCAGCTC CAGAGTGGAA TTTGGGCTAC TTTGAACGAT	480
GGCCGATTGA ATCGCGCGTC TCCTCAATTG TATTTAACCA CAATAGGCCA GGTATTGGCA	540
TTCACTCTCC GCCTTTGCGG GTGCCGGCAC GAGATGTCTC CTGAAGAAAC TAGGCAACGA	600
GCAGACTGTG GATATGGGAG ATGGTTGACG ATGTGCTTCT TGGTAAATTT GAAGCCTCCA	660
GGGCCTCTAG AAAGGCGGGA ATTTAAATCT CAAGTGCCCT AACGTGTCCG ACCACGGTGT	720
TGATCATCAT TCATTGAATC GGATAACAGT CTTGGTTCGG AAACTGAACA GGCGGCTCTT	780
GAATGACACT CTGGATCC	798
(2) INFORMATION FOR SEQ ID NO: 14	
Signal SEQUENCE	
ATG AAG TTC TTC AAT GCC AAA GGC AGC TTG CTG TCA TCA GGA ATC TAC	48
CTC ATT GCA TTA ACC CCC TTT GTT AAC GCC	78

56

SEQ ID NO: 15

_	T CALAI	-		N/CC
`	IGNAL	SE0	l l F	NI F
	LONG		ᇿ	1100

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 26 amino acids

(B) TYPE: amino acid

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(x1) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

Met Lys Phe Phe Asn Ala Lys Gly Ser Leu 10 Leu Ser Ser Gly Ile Tyr Leu Ile Ala Leu 20 Thr Pro Phe Val Asn Ala 26

INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)

A. The indications made below relate to the microorganism referred to in th			
on page 27 , line S 25 - an	d 26		
B. IDENTIFICATION OF DEPOSIT Funhe	deposits are identified on an additional spee:		
Name of depositary institution			
The National Collections of Industrial and Mari	ne Bacteria Limited (NCIMB)		
Address of depositary institution (including postal code and country)	_		
23 St. Machar Drive Aberdeen	1		
Scotland			
AB2 1RY United Kingdom			
Date of deposit Accession	Yumper		
16 JANUARY 1995 N	CIMB 40703		
C. ADDITIONAL INDICATIONS (leave blank if not applicable) This is	iformation is continued on an additional spee:		
In respect of those designations in which a European patent is sought, and any other designated state having equivalent legislation, a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample. (Rule 18(4) EPC).			
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE lifthe indications are not for all designated States:			
	!		
	:		
E. SEPARATE FURNISHING OF INDICATIONS ileave Diana il noi d	DDUCADIC:		
The indications listed below will be submitted to the international Bureau later isoccióuse general nature of the indications e.g., "- cremo- Number of Deposit")			
For receiving Office use only	For International Bureau use only		
This sheet was received with the international application This	sneet was received by the International Bureau on:		
Authorize office: Authoriz	ec officer		
J. van Aubei			
Form PCT/RO/134 (july 1002)			

CLAIMS

1. An enzyme that is obtainable from Aspergillus, wherein the enzyme has the following characteristics:

5

10

15

- a. a MW of 33,270 D \pm 50 D
- b. a pI value of about 3.7
- c. arabinoxylan degrading activity
- d. a pH optima of from about 2.5 to about 7.0 (more especially from about 3.3 to about 4.6, more especially about 4)
- e. a temperature optima of from about 40°C to about 60°C (more especially from about 45°C to about 55°C, more especially about 50°C);

wherein the enzyme is capable of cleaving arabinose from the xylose backbone of an arabinoxylan.

- 2. An enzyme having the sequence shown as SEQ. I.D. No. 1 or a variant, homologue or fragment thereof.
- 20 3. An enzyme coded by the nucleotide sequence shown as SEQ. I.D. No. 2 or a variant, homologue or fragment thereof or a sequence complementary thereto.
 - 4. A nucleotide sequence coding for the enzyme according to claim 1.
- 25 5. A nucleotide sequence coding for the enzyme according to claim 2.
 - 6. A nucleotide sequence having the sequence shown as SEQ. I.D. No. 2 or a variant, homologue or fragment thereof or a sequence complementary thereto.
- 30 7. A nucleotide sequence according to any one of claims 4 to 6 operatively linked to a promoter.

8. A nucleotide sequence according to claim 7 wherein the promoter is the promoter having the sequence shown as SEQ. I.D. No. 3 or a variant, homologue or fragment thereof or a sequence complementary thereto.

- 5 9. A promoter having the sequence shown as SEQ. I.D. No. 3 or a variant, homologue or fragment thereof or a sequence complementary thereto.
 - 10. A promoter according to claim 9 operatively linked to a GOI.
- 10 11. A promoter according to claim 10 wherein the promoter is operatively linked to a GOI, wherein the GOI comprises a nucleotide sequence according to any one of claims 4-6.
- 12. A terminator having the nucleotide sequence shown as SEQ. I.D. No. 13 or a variant, homologue or fragment thereof or a sequence complementary thereto.
 - 13. A signal sequence having the nucleotide sequence shown as SEQ. I.D. No. 14 or a variant, homologue or fragment thereof or a sequence complementary thereto.
- 20 14. A construct comprising or expressing the invention according to any one of claims 1 to 13.
 - 15. A vector comprising or expressing the invention of any one of claims 1 to 14.
- 25 16. A plasmid comprising or expressing the invention of any one of claims 1 to 15.
 - 17. A transgenic organism comprising or expressing the invention according to any one of claims 1 to 16.
- 30 18. A transgenic organism according to claim 17 wherein the organism is a fungus.

- 19. A transgenic organism according to claim 18 wherein the organism is a filamentous fungus, preferably of the genus Aspergillus.
- 20. A transgenic organism according to claim 17 wherein the organism is a plant.

5

- 21. A process of preparing an enzyme according to any one of claims 1 to 3 comprising expressing a nucleotide sequence according to any one of claims 4-8.
- 22. A process according to claim 21 wherein the enzyme has the sequence shown as SEQ. I.D. No. 1 or a variant, homologue or fragment thereof, and the nucleotide sequence has the sequence shown as SEQ. I.D. No. 2 or a variant, homologue or fragment thereof or a sequence complementary thereto.
- 23. A process according to claim 21 or claim 22 wherein the expression is controlled (partially or completely) by use of a promoter according to claim 9.
 - 24. A process for expressing a GOI by use of a promoter, wherein the promoter is the promoter according to claim 9.
- 25. Use of an enzyme according to any one of claims 1 to 3 or prepared by a process according to any one of claims 21 to 24 to degrade an arabinoxylan.
 - 26. Use according to claim 24 wherein the enzyme is used in combination with a xylanase, preferably an endoxylanase.

- 27. A combination of enzymes to degrade an arabinoxylan, the combination comprising an enzyme according to any one of claims 1 to 3 or prepared by a process according to any one of claims 21 to 24 claims; and a xylanase.
- 28. Plasmid NCIMB 40703, or a nucleotide sequence obtainable therefrom for expressing an enzyme capable of degrading arabinoxylan or for controlling the expression thereof or for controlling the expression of another GOI.

WO 96/29416

61

PCT/EP96/01009

- 29. A signal sequence having the sequence shown as SEQ. I.D. No. 15 or a variant, homologue or fragment thereof.
- 30. The use of the enzyme according to any one of claims I to 3 or prepared by a process according to any one of claims 21 to 24 claims, in the manufacture of a medicament or foodstuff to reduce or prevent indigestion and/or increase nutrient absorption.
- 31. An arabinofuranosidase enzyme having arabinoxylan degrading activity, which is immunologically reactive with an antibody raised against a purified arabinofuranosidase enzyme having the sequence shown as SEQ. I.D. No. 1.

FIGURE 1

AMY 637 PROMOTER
SEQUENCE TYPE: Nucleotide
MOLECULE TYPE: DNA

ORIGINAL SOURCE: Solanum Tuberosum

SEQUENCE LENGTH: 2094

SEQUENCE:

SEQUENCE	•		
10	20	30	40
ATTAAGGGGA 50	GCATAAGTGC 60	AGCTCAGAAA 70	TTCACACCTG 80
ATATTTTCCC	AAAGCCCTCA	AAAATGTGAA	CAAATCTGCT
90 AAAATGTCAG	100 TCAGAAGGAC	TGTTCTTTTA	GGTTTCTTC
130 TCTCGAGTCA	140 CGAAATCAGA		160 AGAAATTATG
170 GAGGATTTAT	180 AATGTATCTG	190 TCTGTTCTTA	200 GGTATAATTA
TGTGTTCCTT	220 TATGATGTAG	230 TAATGGAATT	240 CTGGGCTTAT
250 ATTAAAGGAA	260 CTGAATATAA	270 ATGTTCGCAT	280 TTTAACTGCG
290 GAGACTTCGA	300 GTTAGAGCCT	310 TATAATTATG	320 TCTTATCATT
330 TTATACTGAG	340 ATCATATTAC	350 AGATGATGAA	360 AGCTGACATT
370 GCATTAGTTA	380	390 TACAAGTCAT	400 GTAACTGCTG
410	420	430	440
CTTGTGAGTT 450	GTGACTGTAA 460	470	TTCAGCCTTC 480
TGTGGCATTA 490	GCGGAGATCT 500	GATTATACTC 510	TCATCGTCTT 520
ATCTAAGTTG 530	CTCATGCAAC 540	TTTGTCCTTG 550	ATAGTTGGCT 560
AATACTACAA 570	CTGGAATTAA 580	GTGTAGTTAT 590	TCGAAATCTC 600
TGTTGGAAGT 610	TGCTAAGTGC 620	TTAAGTGCTG 630	GTTATTGTAA 640
ACCCCATCCG 650	AGTTATTATA 660	CAGCATCTGG 670	CTGATGAAAT
GCTGCTCATT 690	TGCAATGGTG 700	ACATAACCAA 710	ATGTTAGTAA 720
AACATACTAG 730	CTGGTTGAAT	GTTAGATGAT	TGTTCAACGT
TACATCTCAC	AGAAACCTTA		ACATGTTAGT

FIGURE 1 CONTINUED

770	780	790	800
	GATCCTTCTT	TTAAATGCCA	AAGCTTGTTA
	820	830	840
CAGATTTGAG	GAGTTCTTTT	ACTITETTIT	GTTATATCTA
850	860	870	880
	ATTTTGACGT	TCAGCCTCAC	AGATGTTGTC
890	900	910	920
ATACTTAGAA	ATGTGCGTAT	ATATATAGAG	AGAGAGAGAT
930	940	950	960
AGAGTGAAAT	GATTATATAG	TCGAAGATTA	CGAAACTTGA
970	980	990	1000
CATTGAGACA	TCTGTGATTG	TTTGAAATTT	ATGTATATAT
1010	1020	1030	1040
CTGTAGCATT	AGAAACTATA	AGAGTTGTTA	GCTTCACTTG
1050	1060	1070	1080
TCTTATTGTT	GTGCTCAAAG	CAACTTCATC	ATACAGTATG
1090	1100	1110	1120
GTTTTTATAT	GCTCTTCCAT	TATCACCGAA	CCTTATGATT
1130	1140	1150	1160
ATGTGTACGA	GCTTATAATA	TTACTGATGG	TGATTCAGTA
1170	1180	1190	1200
TTATGATTAT	GTCCTCCATT	AATTATTCTG	TTTCATACAA
1210	1220	1230	1240
GTCGTGTAAT	TTGCTGTTTG	TGATTGTACG	ATAAATTGAT
1250	1260	1270	1280
TCAACCTTCT 1290	GCGGTGTTGG	TTGAAGTTCA	AGTAAATTAG
	1300	1310	1320
CTTTATTTAT 1330	CATAGTAGCA 1340	TTTGATTATT	GATGCTCTGT 1360
AGCTAATGAT	AAGCCATTGA	AGGGAAGCAG	AAATGGTAAA
1370	1380	1390	1400
GCTTTCTAAA	ATGAATCTAC	GAATGGATGA	TAAAGTTAAT
1410	1420	1430	1440
GAATATTGTT	GATACTTCTG	CAATCAGATT	ATGAGTTACT
1450	1460	1470	1480
GAGTCTACTG	TTTTTTAAGC	CTGTTTCAGA	TGATCGATCA
1490	1500	1510	1520
TCAACAACAA	CATATTCAGT	GTAGTAGACA	TGATCGATCA
1530	1540	1550	1560
CTTTCTAATT	TTCGATTATG	CACCCTCTTT	TCTCCAATTT
1570	1580	1590	
GGTCGTCTTC	1500 1111111CAT 1620	GATGTCACTG 1630	AATTATTCTC
TGGTCGTCCC	CACCATTCAG	GAAGTCACTT	CGAGCATAAT
1650	CCACATTTTT	1670	1680
GTGAAAACAT		CAAATCCAGC	AGAATTITCA

FIGURE 1 CONTINUED

1690	1700	1710	1720
		ACTACATGTA	
		1750	
		AGATGGTGCA	
		1790	
		CTCAATTTTT	
		1830	
		CAACTCCCGT	
		1870	
		CTCAATTAAG	
		1910	
		ACCCCTATAT	
		1950	
		CACTGAAATT	
		1990	
TAATCHIGIA	CCCAGTGTGT	GTACTTTTAA	AAAAAAAAGT
		2030	
		CACATTTAAA	
		2070	
	TIGHTCCTCA	TACTAGACTT	CGGAGTCAAC
2090	4464		
ACAACACAAC	AALA		

FIGURE 2

AMY 351 PROMOTER SEQUENCE TYPE: Nucleotide MOLECULE TYPE: DNA (genomic) ORIGINAL SOURCE: Solanum tuperosum SEQUENCE LENGTH: 1734 bp. STRANDEDNESS: Double TOPOLOGY: Linear SEQUENCE: TETTTAAGTT GTTTGCTTGA TTTTTCTTCT TCAATCTTCT ATAT: TAATT CGTTTTAGCT TCAAACTTCT TCAATTITAT TTCAATTTAA TTCTACAAAA AAAATCTCTA TTTAGCACCA TTCATAAAAT TCATGCTCAA AATGGGCAAA CATAAATAAT AAATGTGAAG TAAATAATGG ATTAAAATAT ATATTTTTGG GCCTCACATC AACCTTCATA ATTCTTGAAT GAATGAATGA TAGACTTCAT AATTTTTTAA CCTATACATA TAAGAAAATT GAGAGTAACT CAAATAACAA GTTGTAGTAT CACATCTTA CTATTTGATA ACATTATGAA GGTGATTATA CATTACGTAA CATTICTITI AAAAATATGT AAGCAAATTT ACTITITAAC TTATCATTGA TCTTCATGGT TTTGTCATAA ATCTCAAAGT TACTCATCAT TGAGTGATGC TTTTATTATA ATACTAGTAA GTTTTATTTA TTATTTTCTT TTAGGGGTGA ATTGTATAAT ATAATAAAAA ATATATTIIT AGAAATAATG ATTCTTTAT TATTAAAAAG TTAAGATATT AGATTATTTA TGCTTGTATA ATAATGAACG AAGTTTTATT TTCTATGAGT TTCATTAATC

TITGTATTAT TATATTATTA TACTATATTT AAAAATTTAA

TTTTGATGTA TTTTTATAAT

ATGITTGTAA TTATTTCAAA

FIGURE 2 CONTINUED

770	780	790	800
AGATCCATAG	GGCTTACGCC	CCACGTCAAG	AGGCTTGCGC
810	820	830	840
CTTTCCCTAA	ATTAAGTAAA	ACTCTTCGCC	TCATGCCTTA
850	860	870	880
CGCCTCCGCC	TTTTAAAACA	CTGATTCCTT	TOCTCATATA
890	900	910	920
GCTTGAGGCG	AAAATATTTA	ATAAAAAACAC	TICTTAATTT
930	940	950	960
GTTTATATGT	TCAATTGAAC	ATGTCCGTGA	TTAGAAAATT
970	980	9 9 0	1000
AAATTAAATT	CAATGACAAA	TTTAATAATT	TGACACAAAA
1010	1020	1030	1040
TTTATGAAAA	AAATATCAAA	ATATAAAGAA	ATATTTTTT
1050	1060	1070	1080
TGAAATGGAT	TAAAAAGAAA	AAAAAAACAA	ATAAATTGAA
1090	1100	1110	1120
CCGGGATAAG	TIGGTIGITI	AATTGATTÄT	TGATTATGAT
1130	1140	1150	1160
CTCAATTTGA	CATTTTGCGC	GATCTTTCGA	CCTCAATTCG
1170	1180	1190	1200
TATGAACTGA	CACTACGCCA	ATGGACAGTC	GCCGTCGTCA
1210	1220	1230	1240
CCGCCACCGC	ACTATTCTCG	ACGCGTCGTC	TATCTCCTCC
1250	1260		
		1270	1280
ACCCCACAGC	CGTCAATTCC	AAGCTTCCAA	TGAACCGTTG
1290	1300	1310	1320
CCATGTGTCA	CTGCCTATTC	ACCGCGAAAC	ATGAATATCA
1330	1340	1350	1360
CTGACGAACG	ATTTCGGAGC	GGAACGAATC	CAGAAAATGG
1370	1380	1390	1400
ATTACTTTCT	ATAAATTCCT	CGAATCTCAA	CTCCATTICG
1410	1420	1430	1440
TAAAAATAAA	ATTAAAAATA	ПСПТСПТ	TIGTATTICT
1450	1460	1470	1480
TTTTGTATTT	CTGGTTTATG	TGGTGATCGA	ATTTTCAATT
1490	1500	1510	1520
TTTTTACTGG	TAGTGATTCC	TACTTTTCTT	CAATTGCATT
1530	1540	1550	1560
TCTCCTTTTT	CCATTTCACG	GTTGAGAATT	CATGATTCCT
1570	1580	1590	1600
TATCAGAGGA	ATCGATCCGA	TTTGACTAAT	TTCACTTTTC
1610	1620	1630	1640
GTCTGTATAA	ATACCAGAGT	ATCTAGGTTG	AGGAACGTAA
1650	1660	1670	1680
TTTCAAGCTG	CGATCGGCTT	TTTCCCCTGA	ACGAGCAAAC
	,		

6/38

FIGURE 2 CONTINUED

1690 1700 1710 1720
ACAGGTTGTG GGTTCGAGTT AGCAAGGGAC GTATAATCTC
1730
AACTACAATC CATT

7/38

FIGURE 3

α-AMYLASE CODING SEQUENCE (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2017 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (A) LENGTH: 475 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
ATG AAG TOT OTO GOO GOA ATT GOT GOT OTG OTG TOG COO ACA CTG GTO Met Lys Ser Leu Ala Ala Ile Ala Ala Leu Leu Ser Pro Thr Leu Val -18 -15 -5	48
CGG GCA GCG ACT CCG GAT GAG TGG AAA GCT CAG TCG ATC TAT TTC ATG Arg Ala Ala Thr Pro Asp Glu Trp Lys Ala Gln Ser Ile Tyr Phe Met 1 5	96
CTG ACG GAC CGG TTT GCG CGT ACC GAC AAT TCG ACC ACG GCT CCC TGT Leu Thr Asp Arg Phe Ala Arg Thr Asp Asn Ser Thr Thr Ala Pro Cys 15 20 25 30	144
GAC ACC ACT GCC GGG GTATGCAACT AACCCTGTGT TTCTCTTCCC GGGACGTACA Asp Thr Thr Ala Gly 35	199
AGGGGTCTTC TCCATGCTAA CCGTGCACAT GCAG AAA TAT TGC GGG GGA ACA Lys Tyr Cys Gly Gly Thr 40	251
TGG CGA GGT ATC ATC AAC AAC GTAAGTGGCT TCTGATTTTC GCTCAATAAT Trp Arg Gly Ile Ile Asn Asn 45	302
CTTCGTCGCG TGACTTTATT TCCTAG CTG GAT TAC ATC CAG GAT ATG GGC TTC Leu Asp Tyr Ile Gln Asp Met Gly Phe 50	355
ACA GCT ATC TGG ATA ACT CCA GTG ACA GCC CAG TGG GAC GAC GAT GTG uThr Ala Ile Trp Ile Thr Pro Val Thr Ala Gln Trp Asp Asp Asp Val 60 65 70	403
GAT GCG GCA GAT GCA ACG TCG TAT CAC GGT TAT TGG CAG AAA GAC CT Asp Ala Ala Asp Ala Thr Ser Tyr His Gly Tyr Trp Gln Lys Asp Leu 75 80 85	450
STGCGCAACC CTGCTCCATG GATCGCTGGC TGCAAACTCG TGCTGATCGG TGATTTTTTT	510
TTTTTTTTT TTGAAACAG A TAC TCT CTG AAT TCG AAA TTC GGC ACT GCC Tyr Ser Leu Asn Ser Lys Phe Gly Thr Ala 90 95	560

9/38

8/38				
FIGURE 3 CONTINUED				
GAT GAC TTG AAA GCC CTG GCT GAT GCC CTT CAC GCC CGT GGG ATG CTT Asp Asp Leu Lys Ala Leu Ala Asp Ala Leu His Ala Arg Gly Met Leu 100 105 110 115	38			
CTC ATG GTC GAC GTC GTG GCT AAT CAC TTT GTACGGACCA TCTACATACC 65 Leu Met Val Asp Val Val Ala Asn His Phe 120 125	58			
TGGGAAACGC GAAGAAGGAA AAAAAAAAAA AGGCGCACGC TAACATTTCG CGTTTAG 71	15			
GGC TAC GGC GGT TCT CAT AGC GAG GTG GAT TAC TCG ATC TTC AAT CCT Gly Tyr Gly Gly Ser His Ser Glu Val Asp Tyr Ser Ile Phe Asn Pro 130 135	53			
CTG AAC AGC CAG GAT TAC TTC CAC CCG TTC TGT CTC ATT GAG GAC TAC Leu Asn Ser Gln Asp Tyr Phe His Pro Phe Cys Leu Ile Glu Asp Tyr 145 150 155	11			
GAC AAC CAG GAA GAA GTC GAA CAA TGC TGG CTG GCC GAT ACT CCG ACG Asp Asn Gln Glu Glu Val Glu Gln Cys Trp Leu Ala Asp Thr Pro Thr 160 165 170	59			
ACA TTG CCC GAC GTG GAC ACC ACC AAT CCT CAG GTT CGG ACG TTT TTC Thr Leu Pro Asp Val Asp Thr Thr Asn Pro Gln Val Arg Thr Phe Phe 175 180 185) 7			
AAC GAC TGG ATC AAG AGC CTG GTG GCG AAC TAC TCC A GTATGATTGT Asn Asp Trp Ile Lys Ser Leu Val Ala Asn Tyr Ser 190 195 200	54			
TCCCGCGGTA ACGCTTTAGG GCTTGCTCTA ACTGAAATCG ACAG TC GAT GGT CTG Ile Asp Gly Leu 205	ງ9			
CGC GTC GAC ACC GTT AAG CAC GTG GAG AAA GAT TTC TGG CCC GAC TTC Arg Val Asp Thr Val Lys His Val Glu Lys Asp Phe Trp Pro Asp Phe 210 215 220	57			
AAC GAA GCT GCT GCG TGT ACC GTC GGC GAG GTG TTC AAC GGT GAC CCA Asn Glu Ala Ala Cys Thr Val Gly Glu Val Phe Asn Gly Asp Pro 225 230 235	05			
GCG TAC ACC TGC CCA TAC CAG GAA GTG CTG GAT GGC GTT CTG AAC TAT Ala Tyr Thr Cys Pro Tyr Gln Glu Val Leu Asp Gly Val Leu Asn Tyr 240 245 250	53			
CCG AT GTGAGTGATT CCGAAAGTTC CATCGATCAG GCTTTCTGAC GCATGAGAAC Pro lle 255	80			

9/38

9/38	
FIGURE 3 CONTINUED	
AGC TAC TAT CCT GCG CTT GAT GCA TTC AAG TCT GTC GGC GGC AAT CTC Tyr Tyr Pro Ala Leu Asp Ala Phe Lys Ser Val Gly Gly Asn Leu 260 265 270	256
GGC GGC TTG GCT CAG GCC ATC ACC ACC GTG CAG GAG AGC TGC AAG GAT Gly Gly Leu Ala Gln Ala Ile Thr Thr Val Gln Glu Ser Cys Lys Asp 275 280 285	1304
TCC AAT CTG CTC GGC AAT TTC CTT GAG AAT CAC GAC ATT GCT CGC TTT Ser Asn Leu Leu Gly Asn Phe Leu Glu Asn His Asp Ile Ala Arg Phe 290 295 300	1352
GCT TC GTATGGACAC TCTTTTTGAA GCCCTCATCG ATTGGGGATG CTGACACGGA 1 Ala Ser	.407
CAACAACAAC AG G TAC ACG GAT GAC CTT GCT CTC GCC AAG AAT GGT CTC Tyr Thr Asp Asp Leu Ala Leu Ala Lys Asn Gly Leu 305 310 315	1456
GCT TTC ATC ATC CTC TCG GAT GGT ATT CCG ATC ATC TAC ACG GGC CAG Ala Phe Ile Ile Leu Ser Asp Gly Ile Pro Ile Ile Tyr Thr Gly Gln 320 325 330	1504
GAG CAG CAC TAC GCC GGT GAT CAC GAT CCC ACA AAT CGT GAG GCC GTC Glu Gln His Tyr Ala Gly Asp His Asp Pro Thr Asn Arg Glu Ala Val 335	1552
TGG CTG TCT GGC TAC AAT ACC GAC GCC GAG CTG TAC CAG TTC ATC AAG Trp Leu Ser Gly Tyr Asn Thr Asp Ala Glu Leu Tyr Gln Pne Ile Lys 350 360	1600
AAG GCC AAT GGC ATC CGC AAC TTG GCT ATC AGC CAG AAC CCG GAA TTC Lys Ala Asn Gly Ile Arg Asn Leu Ala Ile Ser Gln Asn Pro Glu Phe 365 370 380	1648
ACC TCC TCC AAG GTGAGTACAA TAACAAACTT TTCGAAAAAT TTTTCACCGG 1 Thr Ser Ser Lys	1700
AGAAAACCTA AGATTCGGCT AACAAAACAA AAAAAAAAAA	1753
TAC CAA GAC GAT TCG ACC CTT GCC ATT AAC CGG GGC GGC GTC GTT ACT Tyr Gln Asp Asp Ser Thr Leu Ala Ile Asn Arg Gly Gly Val Val Thr 390 395 400	1801
GTC CTG AGC AAT GAA GGC GCC TCC GGG GAG ACC GGG ACT GTC TCC ATT Val Leu Ser Asn Glu Gly Ala Ser Gly Glu Thr Gly Thr Val Ser Ile 405 410 420	1849

WO 96/29416	PCT/EP96/01009

FIGURE 3 CONTINUED

	GGA Gly				Gใน											1897
TGC Cys	AAG Lys	ACC Thr	GTG Val 440	Thr	GCG Ala	GGG Gly	Αsp	AGC Ser 445	G; y	GCG Ala	GTC Val	GAC Asp	GTG Val 450	CCC Pro	TTG Leu	1945
	GGC Gly		Leu													1993
	GGT G1y 470						TGA									2017

FIGURE 4

a-AMYLASE CODING SEQUENCE SEQUENCE TYPE: Nucleotide MOLECULE TYPE: DNA ORIGINAL SOURCE: Solanum Tuberosum SEQUENCE LENGTH: 1570

SEQUENCE

TGTGGTGATC GAATTITCAA TTTTTTTACT GAGTATCTAG GTTGAGGAAC GTAATITCAA GCTGCGATCG GCTTTTTCCC CTGAACGAGC AAACACAGGT TGTGGGT7CG AGTTAGCAAG GGACGTATAA TCTCAACTAC AATCCATTAT GGCGCTTGAT GAAAGTCAGC AGTCTGATCC ATTGGTTGTG ATACGCAATG GAAAGGAGAT CATATTGCAG GCATTCGACT GGGAATCTCA TAAACATGAT TGGTGGCTAA ATTTAGATAC GAAAGTTCCT GATATTGCAA AGTCTGGTTT CACAACTGCT TGGCTGCCTC CGGTGTGTCA GTCATTGGCT CCTGAAGGTT ACCTTCCACA GAACCTTTAT TCTCTCAATT CTAAATATGG TTCTGAGGAT CTCTTAAAAG CTTTACTTAA TAAGATGAAG CAGTACAAAG TTAGAGCGAT GGCGGACATA GTCATTAACC ACCGTGTTGG GACTACTCAA GGGCATGGTG GAATGTACAA CCGCTATGAT GGAATTCCTA TGTCTTGGGA TGAACATGCT ATTACATCTT GCACTGGTGG AAGGGGTAAC AAAAGCACTG GAGACAACTT TAATGGAGTT CCAAATATAG ATCATACACA ATCCTTTGTT CGGAAAGATC TCATTGACTG GATGCGGTGG CTAAGATCCT CTGTTGGCTT CCAAGATTTT CGTTTTGATT TTGCCAAAGG TTATGCTTCA AAGTATGTAA AGGAATATAT CGAGGGAGCT GAGCCAATAT TTGCAGTTGG AGAATACTGG GACACTTGCA ATTACAAGGG CAGCAATTTG GATTACAACC AAGATAGTCA CAGGCAAAGA ATCATCAATT GGATTGATGG CGCGGGACAA CTTTCAACTG CATTCGATTT TACAACAAAA GCAGTCCTTC

PCT/EP96/01009

12/38

FIGURE 4 CONTINUED

940	950	960
		1000
		GTGGCCTTCA 1040
CTITTATIGA		ACTGGATCAA
1060	1070	1080
TTGGCCTTTC		ATGTTATGGA
		1120
		GATACCATCA 1160
		AATTCCATGC
1180	1190	1200
		GGAGGAATCA
		1240 TCTTGAGGCA
	1270	1280
TATACGCTGC		GAAAAGGTTA
1300	1310	1320
		CTGCTGGGAA
		1360 CTATGCAGTC
		1400
		ACTTAATATA
		1440
		1480 ATGGAGTGAT
		1520
1540	1550	1560
GITAATAAA	GIGITCHIGA	TCAATGCAAT
	CAAAGGAGAA 980 CCCCCAGGAG 1020 CTTTATTGA 1060 TTGGCCTTTC 1100 TACATTCTTA 1140 ACCATTTCTA 1180 TGTAAAGCTG 1220 AGCCGTTCAT 1260 TATACGCTGC 1300 TGGGGACGGA 1340 CTCGCGACCA 1380 AATCTTACAG 1420 TATATATGTT 1460 ATCCGCCTCT 1500 TTCCTGTTCA 1540	CAAAGGAGAA TTCTGGCGTT 980 990 CCCCCAGGAG TTTTAGGATT 1020 1030 CTTTATTGA TAATCACGAC 1060 1070 TTGGCCTTTC CCTTCACGTC 1100 1110 TACATTCTTA CACACCCAGG 1140 1150 ACCATTTCTA CGAATGGGAT 1180 1190 TGTAAAGCTG ATTGCTATTC 1220 AGCCGTTCAT CTATAAGAAT 1260 1270 TATACGCTGC AACCATTGAT 1300 TGGGGACGGA TAATCGCTGC TCATGAGAGCC 1340 TCATGGAGCC 1340 TCATGGAGCC 1340 TCATGCATCGT 1380 AATCTTACAG CTATTCCGTT 1420 TATATATGTT TTAAACCCGA 1460 ATCCGCCTCT ACAGGCTTGG 1500 TTCCTGTTCA TTAGACATTG

FIGURE 5 13/38

SEQUENCE: Nucleotide sequence of a cDNA encoding the large subunit of ADP-

glucose pyrophosphorylase from barley seed endosperm (bepl10)

SEQUENCE TYPE: NUCLEIC ACID

MOLECULE TYPE: DNA
ORIGINAL SOURCE: BARLEY
SEQUENCE LENGTH: 2037
STRANDEDNESS: DOUBLE
TOPOLOGY: LINEAR

ACGACCACCT CCGAACTCAA CGCCTCCACG GACCATCTCT 41 CTECTETECE CTECCETCAC CACCACCACC ACCACCACC 81 CTTCTCCCTC CCTGCATTTG ATTCGTTCAT ATTCATCCGT 121 CGCTTGCCCG GTCGCCACCC CGTCGATCCC TCACCCCGCC GTCCCCGGCA GTTGCAGGTG GACTGCTAAT GTCATCGATG CAGTTCAGCA GCGTGCTGCC CCTGGAGGGC AAGGCGTGCG 161 201 241 TTTCCCCAGT CAGGAGAGAG GGATCGGCCT GCGAGCGCCT 281 CAAGATCGGG GACAGCAGCA GCATCAGGCA CGAGAGAGCG 321 TCCAGGAGGA TGTGCAACGG CGGCGCAGGG GCCCCGCCGC 361 CACCGGTGCG CAGTGCGTGC TCACCTCCGA CGCCAGCCCG GCCGACACCC TTGTTCTCCG GACGTCCTTC CGGAGGAATT 401 ACGCCGATCC GAACGAGGTC GCGGCCGTCG GTCGCGGCCG
TCATACTCGG CGGCGGCACC GGGACTCAGC TCTTCCCGCT
CACAAGCACA AGGGCCACAC CTGCTGTTCC TATTGGAGGA
TGTTACAGGC TCATCGATAT TCCCATGAGC AACTGCTTCA
ACAGTGGCAT CAACAAGATA TTCGTCATGA CCCAGTTCAA 601 CTCGGCATCT CTCAATCGCC ACATTCACCG CACCTACCTC GGCGGGGAA TCAATTTCAC TGATGGATCT GTTGAGGTAT TGGCCGCGAC ACAAATGCCT GGGGAGGCTG CTGGATGGTT CCGCGGAACA GCGGATGCCG TCAGAAAATT TATCTGGGTG CTTGAGGACT ACTATAAGCA TAAATCCATA GAGCACATTT 801 TGATCTTGTC GGGCGATCAG CTTTATCGCA TGGATTACAT GGAGCTTGTG CAGAAACATG TGGATGACAA TGCTGACATT ACTTTATCAT GTGCCCCTGT TGGAGAGAGC CGGGCATCTG AGTACGGGCT AGTGAAGTTC GACAGTTCAG GCCGTGTGAT 1001 CCAGTTTTCT GAGAAGCCAA AGGGCGACGA TCTGGAAGCG ATGAAAGTGG ATACCAGTTT TCTCAATTTC GCCATAGACG ACCCTGCTAA ATATCCATAC ATTGCTTCGA TGGGAGTTTA TGTCTTCAAG AGAGATGTTC TGCTGAACCT TCTAAAGTCA AGATACGCAG AACTACATGA CTTTGGGTCT GAAATCCTCC 1201 CGAGAGCTCT GCATGATCAC AATGTACAGG CATATGTCTT CACTGACTAC TGGGAGGACA TTGGAACAAT CAGATCCTTC TTCGATGCGA ACATGGCCCT CTGCGAACAG CCTCCAAAGT TTGAATTTTA TGATCCAAAA ACCCCCTTCT TCACTTCGCC TCGGTACTTA CCGCCAACAA AGTCAGACAA GTGCAGGATC 1401 AAAGAAGCGA TCATTTCGCA CGGCTGCTTC TTGCGTGAAT GCAAAATCGA GCACTCCATC ATCGGCGTTC GTTCACGCCT AAACTCCGGA AGCGAGCTCA AGAACGCGAT GATGATGGGC GCGGACTCGT ACGAGACCGA GGACGAGATC TCGAGGCTGA TGTCTGAGGG CAAGGTTCCC ATCGGCGTCG GGGAGAACAC
1601 AAAGATCAGC AACTGCATCA TCGACATGAA CGCGAGGATA

PCT/EP96/01009

W 96/29416

14/38

FIGURE 5 CONTINUED

	GGAAGGGACG	TGGTCATCTC	AAACAAGGAG	GGGGTGCAAG
	AAGCCGACAG	GCCGGAGGAA	GGGTACTACA	TCAGGTCCGG
	GATCGTGGTG	ATCCAGAAGA	ACGCGACCAT	CAAGGACGGC
	ACCGTCGTGT	AGGGCGTGCC	GGGTCGGCGC	GACGGGGTTC
1801	TGCGACAACC	TGTGCGCTGC	GTCGGTCGTC	ATCATCTTCT
	CAAACTCCGG	GACTGAAGAA	GTGATCCGGG	GACGGGAGAC
	GTTTGAAGCT	TGAATGACTG	AGACTGAAAG	TGAAGGCGCA
	GCAGAGGCAG	GCAGCATTAG	TAGTAAGTAG	TAAGTAAGTA
	GCAGTGGAAC	AAAGTAATAG	TCGTTCGTTT	TTCCCCTGTA
2001	ATAAATAAGA	GGCTGTGTGT	TGAGGTAAAA	AAAAAA

PCT/EP96/01009 WO 96/29416

15/38 FIGURE 6

Nucleotide sequence of a cDNA encoding the small subunit of ADP-glucose pyrophosphorylase from barley seed endosperm (beps) NUCLEIC ACID SEQUENCE:

SEQUENCE TYPE: MOLECULE TYPE: DNA ORIGINAL SOURCE: SEQUENCE LENGTH: STRANDEDNESS: BARLEY 1822 COUBLE TOPOLOGY:

LINEAR The "." at 1569 denotes a purine. COMMENT:

AAAAGTGAAC			
			TTGGCATCTA
			AACAATGCAA
			TGCAGATCTC
	-		TGACGAAGAA
			CAACTACAGG
			AACAGCAACA
			ACTCAGCTTC
			GAGCAACATT
			GTCCTTGCTG
			TCCAGGGTAC
	GTAAGGCAGT		ATTCGAGGAG
CATAATGTTA	TGGAGTATCT		GGAGATCACC
TGTACCGAAT	GGACTATGAA	AAGTTTATTC	AGGCACACAG
AGAAACGGAT	GCTGATATTA	CTGTTGCTGC	CTTGCCCATG
GATGAGGAAC	GTGCAACTGC	ATTTGGCCTT	ATGAAAATCG
ATGAAGAAGG	GAGGATAATT	GAATTCGCAG	AGAAACCAAA
			TACGACCATA
			ATGCCTTATA
			AACATGTGAT
			AGCTAATGAC
			AGCACTGGCA
			ACTGGGAAGA
			AAATTTGGGA
			TTCTATGACC
			ACTTGCCTCC
			CAGTGTAATT
			ATACACCATT AAGGTGCAAT
			CTACTATGAG
			AAAGGTGGCA
			TCAAAAGAGC
			TAACGTGATG
			GCGAGGGAGA
			TAACTGTGAT
			CATATGAAGC
			TACTTGCGTC
			GAGATCATAA
AATAAAAA.G	GAGTGCCATG	CGAGTCACTT	CTACACCCTT
TTCCCCCCTT	GATGTATTAG	GAACTGTGAT	GTACAAGCAA
	ATTITATATC AAGTTCCCTT CGTTTATAGT AATCCCCATG GAGGTGGTGC GCGTGCAAAG CTTATTGATA TATCAAAGAT TCTTAATCGT GGAGGTTACA CACAGCAGAG TGCAGATGCT CATAATGTTA TGTACCGAAT AGAAACGGAT AGAAACGGAT GATGAGAACAG CTTGGCCTTG TTGCTAGCAT TTCGGAAGTG TTCGCTCC TTCAAAGGTT TCGGAAGTG TGGTGAAGGTT CATAGTTGG CATAGTTGG AATAGAGGAT CAGTAGTTGG AATAGAGGAT CAGTTGGAAGCTG TCCCATTGG AATCATTGAC AATCAATG CAGATGGAAT AATCAATG CAGATGGAAT CAGATGGAAT AATAAAAA.G	ATTITATATC CCTCGGTGAT AAGTTCCCTT GCCCTCCCCT CGTTTATAGT CATAAGAGCT AATCCCCATG CATATGATAG GAGGTGGTGC AGGGGCTAGAG GCGTGCAAAG CCTGCAGTGC CTTATTGATA TTCCTGTCAG TATCAAAGAT TCCTGTCAC GGAGGTTACA AGAATGAAGG CACAGCAGAG CACAGCAGAC CATGAAGCAT CATGAGGAAC CTTGGCCTTG CACAGCAT CTCGGAAGTG TTCGCACAT CTCCGTGAGC TTCGGAAGCT CTCCGTGAGC TTCGAAGCTA CTTCAGCAT CTCCGTGAGC TTCGAAGCTA CTTCAAAGAT CCATTAC CACAAAA AACCAATAC CACCAATAC CATTGAC CACTTGCTCC CATTTACACA TTCACAAAA CCATTGCT CACTTGCTCC CATTTACACA TTCCCATTGG ACCCGTTCC AATAGAAGCT TTCCCATTGG ACCCGTTCC AATAGAAGCT TTCCCATTGC ATAGCAAAC CACCAATAC CAAGGATGCT TTGACAAAC CAAGCAACAA AATAAAAAA.G GAGTGCCATG	ATTITATATC AAGTTCCTT GCCCTCCCT TCCAAGCATG CGTTTATAGT CATAAGAGCT CATCGAAGCA AATCCCCATG CTATTGATAG GAGGTGGTGC CAGGGACTAGA TGTTCTCGGT GAGGTGGTGC AGGGACTAGA TTGTATCCCC GCGTGCAAAG CCTGCAGTGC CATTGGGTGC CTTATTGATA TTCCTGTCAG TAATTGTCT TATCAAAGAT TCCTGTCAG GAACCTATGG GAGGTTACA CCTCATCTCAC GAGCCTATGG GGAGGTTACA AGAATGAAGG CCCAGATAAC CCTGACTGGT CATAATGTT TGAAGCAGT CATAATGTT TGAAGCAGT CATAATGTT TGAACGCAGT AGAAACGGAT AGAAACGGAT AGAAACGGAT AGAAACGGAT AGAAACGGAT AGAAACGGAT CTGACACTGC ATTGGCCTTG AAGAACAGA CCTGAATTTA AATTCTTGCT ATTGAAAGCTA AGATTCCCAG ATTGGCCTTG AAGAACAGA CTTGACACTG CTTCAGCAT TCCGTGAGC TTCAGCAT TCCGTGAGC TTCAGAGCAT TCTCTGCC TTCAGAGTG AAGATTCCC TGAGGGTACA AGCATACCTA TATTGGTACA AAGCTTCCTGG TTCGAAGGT TTCTATAATGC ATTACCAAAA AACCAATACC TGATTTCAGT GTTCTGCTC CATTTACACA CAACCTCGAC TTCAAAGGTT CTTGATGCTA TCTATAATGC ATTACCAAAA AACCAATACC TGATTTCAGT GTTCTGCTC CATTTACACA CAACCTCGAC TTCAAAGGTT CTTGATGCTA TCTATAATGC AATCAAGA ACCCAATAC TTCATAATGC AATCATTGG ATTGGAAAC CATTCCCTTG TCGAAGCTG TTTGATGCTA TCTATAATGC AATCATTGG AATCACAA AACCAATACC TGATTTCAGA CAGTAGTTGG ATTAGCAAA AACCAATACC TTCAAGAGGC TTCAAAGGTT TCTTGATGCTA TCTATACTC AATCACAC AACTTCACAA AACTTCCCTA TCCCATTGG TTTGACAATGT TCCAAGAAGCG CAGTGGAAC ATTACCAAA AACCAACAA AACCAACAA AACCAACAA AACCAACAA

FIGURE 6 CONTINUED

16/38

CTGTGATGCA CTTACGCGAA GTGCCCCTGG ATTCAGCTTT
CTCTTTGCTT GTAACTGGTT TCCAGCAGAC CATGCTATTT
GTTGTATGGT TCGTGCAAAA CCTTGCGATG CTTTATATAT
GCTTTATATA TAAACAAGAT GAATCCCCGC GCGTTGCTGC
2001 GGCACAAAAA AAAAAAAAAA AA

FIGURE 7

α-GLUCAN LYASE CODING SEQUENCE
SEQUENCE TYPE: NUCLEIC ACID
MOLECULE TYPE: DNA (GENOMIC)
ORIGINAL SOURCE: FUNGALLY INFECTED ALGAE
SEQUENCE LENGTH: 3267 BP
STRANDEDNESS: DOUBLE

SEQUENCE:

GUENCE		20	20	4.0	-0	5.3
	10	20	30	40	50	50)
7	ATGTTTTCAA	recorded t	TGTCGCACCT	AGTGCGCTGG	GAGCCAGTAC	STEESTAGES
6Ĩ			TCGTATCCAT			
121			TGTATCCATG			
			GGACGGTATC			
			CAACACGAAC			
301			TACAATGAAT			
361			TCAGGTTCAG			
			CCCTATTCGT			
			GCAGGAGCTG			
541	ACATCAGAAG	GTTTCTTGAC	TTTTGAGACC	AAGGATCTAA	GCGTCATCAT	CTACGGAAAT
601	TTCAAGACCA	GAGTTACGAG	AAAGTCTGAC	GGCAAGGTCA	TCATGGAAAA	TGATGAAGTT
			CAAGTGCCGG			
			CAAGAACTTC			
			CTGTAAGTAC			
			CTACGATAAC			
			CAACCCAGAC			
			CGCCGGTACT			
			CATGAATACT			
			GCAGTATGGA		· · · · · -	
			GGTCACAGCG			
			TTCAGTAATG			
			CTTGTTGAGA AGGTTATCAA			
			CAACTTGCGG			
			CGGGGATCCA			
			GACAAATATA			
			GACGTTAAGG			
			AATGACCGAC			
			AGAATGTGAT			
			TAACTATAAG			
			AGCAATGATG			
			GAATGCGGAC			
			TGTAACTGAT			
			TCATGCGTAT			
			TCTAACGAAG			
			TTTCGGGGGT			
			TGCCAACAAT			
2221	GICGGCICCG	ACATIGGAGG	ATTCACCTCA	TACGACAATG	AGAA TCAGCG	AACGCCGTGT
2281	ALLGUGGALI	TUATUUTUAU CCTCCATCCA	GTATGTGCAG	GLUGGE I GLE	IGHIGUUGIG	GITCAGGAAC
			GTCCAAGGAC			
			GTTGAGGAAG			
			CCAGAATGCG AAACGTTCGC			
			TCTGTGCGCG			
530 I	GUMCHIUMIU	GATATOGCAT	i Ci i di di di di	CCIGITATA	GOGHOMATIC	GACCGAACGC

18/38

FIGURE 7 CONTINUED

2641 GAATTGTACT	TGCCCGTGCT	GACCCAATGG	TACAAATTCG	GTCCCGACTT	TGACACCAAG
2701 CCTCTGGAAG	GAGCGATGAA	CGGAGGGGAC	CGAATTTACA	ACTACCCTGT	ACCGCAAAGT
2761 GAATCACCAA	TCTTCGTGAG	AGAAGGTGCG	ATTCTCCCTA	CCCGCTACAC	GTTGAACGGT
2821 GAAAACAAAT	CATTGAACAC	GTACACGGAC	GAAGATCCGT	TGGTGTTTGA	AGTATTCCCC
2881 CTCGGAAACA	ACCGTGCCGA	CGGTATGTGT	TATCTTGATG	ATGGCGGTGT	GACCACCAAT
2941 GCTGAAGACA	ATGGCAAGTT	CTCTGTCGTC	AAGGTGGCAG	CGGAGCAGGA	TGGTGGTACG
3001 GAGACGATAA					
3061 CGAGTGCGCG					
3121 GACATGAAGG					
3181 GATTTCTGGG			CTGTGGCTGA	AGTTGCCCAA	CGTTGTTCTC
3241 CCGGACGCTG	TGATCACAAT	TACCTAA			

19/38 FIGURE 8

α-GLUCAN LYASE CODING SEQUENCE
SEQUENCE TYPE: NUCLEIC ACID
MOLECULE TYPE: DNA (GENOMIC)
ORIGINAL SOURCE: FUNGALLY INFECTED ALGAE
SEQUENCE LENGTH: 3276 BP
STRANDEDNESS: DOUBLE
SEQUENCE.

QUENCE	10	20	30	40	50	60
61 121 181	ATGTATCCAA GTGGGCATTT GTGCGCAAAA GTTACTGGAG GTGTGGCGCT GGCGATATTG	CCCTCACCTT TTAGGTCACA GCAACCGCCT GGAAGGACAA TCGACCCCCT ACGACTGGAC TCGAGAAACC	CGTGGCGCCT CATTCTTATT CAATGTATCC CCCGGACAAT CAGCAATACG GGCGACAATG	AGTGCGCTAG CATTCGGTTG ATGTCCGCTT ATCAATTACA AACTGGTTTG AATGTGAACT	GGGCCAGAAC TTCCAGCGGT TGTTCGACAA CCACTTATGA CTGCCGGATC TCGACCGTAT	TTTCACGTGT GCGTCTAGCT ACCGACTGCT CTACGTCCCT TTCCACTCCC CGACAATCCA
481 541 601 661 721	CAGCAACTAA TTCACAAAAG AATTTTAAGA GTGCCGGCAG GGCACTGCCA	TCAACCCTGA ATTGGATCCG AAGGTTTCTT CTAGAGTTAC GATCGTTAGG TCGCTTCCGT	GAAGCAGGAG GAAATTTGAG GAGGAAGAGG GAACAAGTGC TAATGAAAAT	CAGTCGAAGG ACCAAGGATC GATGGAAAAG CGGGGATTGA TACCGCAACG	GGTTTGATCC TGAACGTTAT GGATCATGGA TGTTTGTCGA ATCCCGACAG	CATATATGGC GAATAATGAA CAGGTTGTAC GAAAGAGGGG
961 1021 1081	TACATCTTAG AACCAGTCAG TATTTTGCAG TCGTACGGAT TGGAACTGTG	CAGGAGAAGT AACGAACTGG ATCTTATTGC CACCTTGGGT GGTTTATGGA GAGAGGAGAA ATGGTGATGG	AATCGCCATG TCCAGGATAT AGTTGTTAAG TAATGTCTCC CTTGGCATAC	ACAAATTACA CCTTCCGACC GGATGCAGTG CAAACTTACA ATGGGAGCAC	ATTATGACAA CGAACTTCTA GCAACAGCGA TGAATACTGG AGTGCGGTCC	CTATAACTAC CATTCCCATG TGAACAGTAC TGGTACTTCC ATTTGACCAA
1201 1261 1321 1381 1441	CAAGGCAAAG GTGTTTGGTT GAGGGTGGTA CCTTTAGAGG AAGATTGAAT	AGTTTGAGAA ACTTTCAGGG ATAACATCTC GGTTAGCCGT TTTGGACGGC GGGCACATGA	CCAAGTTCTG AGTCTTTGGG TGTTCAAGAG AGATGTGGAT AAATAAGGTA	AACAAACGTG ATTGCTTCCT ATTGTCGAAG ATGCAACAAG GGCACCGGGG	CCGTAATGCC TGTTGAGAGA GTTACCAAAG ATTTGCGCGT GAGACTCGAA	TCCGAAATAT GCAAAGACCA CAATAACTTC GTTCACCACG TAACAAGTCG
1561 1621 1681 1741 1801 1861	AGAAACGACA TACACGAAGA GATGCGTACA GACTGGGGTC ATTGGTCTGG GGCGACGCAG	ACGGCGGGGC ATGACTCACT TTGGACATCT GACCGGGTGT ATTTCGTCTG TCGATACGAG	AGATTACGAA GACGAACACT GGACTATGGT GGCTGAATGG GCAAGACATG ATCACCTTAC	GTCAATCAGA AACTTCGGAA GGCGGAGGGA TGGGGTGATA ACAGTTCCAG GGCTGGCCGA	CATTGAGGGA CTACCAACGA ATTGTGATGC ACTACAGCAA CTATGATGCC ATGAGAATGA	GAAGGGTTTG CGGGCCGAGC ACTTTTCCCA GCTCTTCAAA ACACAAAGTT TCCTTCGAAC
1981 2041 2101 2161	AATCATGGAA TCTACGAGGA TATATTATCA GACAACTCTT	ATTGGAAATC GGGAACCGAT AGGAAGGGAT GTCGTGGAGG CCTCCCAAAG TTCCACTAGT CCGGGGATCT	GTTCACTCAA TGTTGCAAAT TTACATTGGC ATACCTCCAA TGGGTCCGAC	CGCAATATGC GCAGACACTC AACCAGCATT ATGATGATCG ATTGGAGGTT	ATGCGTACAC TAACGAAGTT TTGGAGGAAT CGAACATCGT	ACTCTGTGAA CCGCCGCAGT GTGGGTTGGA CAACATGAAC TGATGGACGA
2341 2401 2461 2521 2581	TGGCAGGAGG AAGGCAGCTT	ACTATGGTAG ACAAGGACGA TGTTGTACAC CCATGTACGA GACACGATGG	GATGGCTACA TGCTATGTAC CAACGACAGA	TTGAGAAAAT CAGAATGCGG AACGTTCGCG	CTTTCGGGAA GCGCACAGGA	CCGTTACCGC ACCGATTATC TGACCACTTC

FIGURE 8 CONTINUED

2641	ACCAGTCGCG	ATCTGTACTT	GCCTGTGCTG	ACCAAATGGT	ACAAATTCGG	CCCTGACTAT
2701	GACACCAAGC	GCCTGGATTC	TGCGTTGGAT	GGAGGGCAGA	TGATTAAGAA	CTATTCTGTG
2761	CCACAAAGCG	ACTCTCCGAT	ATTTGTGAGG	GAAGGAGCTA	TTCTCCCTAC	CCGCTACACG
2821	TTGGACGGTT	CGAACAAGTC	AATGAACACG	TACACAGACA	AAGACCCGTT	GGTGTTTGAG
			CCGTGCCGAC			
			TGGCAAATTC			
			GTTTGCGTAT			
			TCTTACGACT			
			GACCTCTGCG			
3181	GGTGTTGGAG	AATACTGGGC	TGACAATGAT	ACGTCTTCTC	TGTGGATGAA	GTTGCCAAAC
3241	CTGGTTCTGC	AAGACGCTGT	GATTACCATT	ACGTAG		

PCT/EP96/01009

WO 96/29416

21/38

FIGURE 9

α-GLUCAN LYASE CODING SEQUENCE SEQUENCE TYPE: NUCLEIC ACID MOLECULE TYPE: DNA (GENOMIC) ORIGINAL SOURCE: FUNGUS SEQUENCE LENGTH: 3201 BP STRANDEDNESS: DOUBLE

SEQUENCE.

10	20	30	40	50	60
ATGGCAGGAT	TTTCTGATCC				
70	80	90	100	110	120
	AGGGCCCTCA				AAAGAGCACC
130	140		160	170	180
190	AAAACTGGCA 200	210	220	230	TTTAGGTGTG 240
	TTAGGCCGTG				
250	260	270	280	290	300
	GTGATGAĞAA				TACTCTGAGT
310	320	330	340	350	360
	ATACTTATAG		TGGGAAACCA	AGTGTGAGGA	
370	380	390	400	410	420
	TCTCATCCAA				
430	CCCTCACAAT	450	460	TCCCCATCCA	480
490	GCCTCAGAAT 500		520	530	540
	CTTTGAAGGA				
550	560	570	580	590	600
	AGGTCGTTTG				
610	620	630	640	650	660
CAACACAAGA	TGCTAAAGGA			AACCTGGACA	TGGCGAGTAT
670	680	690	700	710	720
	GAGAGATGGG		:		
730	740	750	760	770	780
790	ACAATATGCA 800	810	820	830	CGATTCTCGC 840
	ACCACTCGGA				
850	860	870	880	890	900
	CAACCTTTAT				
910	920	930	940	950	960
	ACATC.AAGCT				
970	980	990	1000	1010	1020
1030	TCCCGGAAAT 1040	1050			TTCAAAGTTG
	ATATTCTCGG	CCCC ATCAA	1060	1070	1080
1090	1100	1110	1120	1130	1140
	TGGTCCAGCA				
1150	1160	1170	1180	1190	1200
	TTCAGGACGG		TTCACCACCA	ACCCACACAC	TTTCCCTAAC
1210	1220	1230	1240	1250	1260
	TGTTTACTAA				
1270	1280	1290	1300	1310	1320
CCIGITATCA	GCATTAACAA	CAGAGAGGG	GGATACAGTA	CCCTCCTTGA	GGCAGT TGAC

FIGURE 9 CONTINUED

1330	1340	1350	1360	1370	1380
AAAAAATACT	TTATCATGGA	CGACAGATAT	ACCGAGGGAA	CAAGTGGGAA	TGCGAAGGAT
1390	1400	1410	1420	1430	1440
GTTCGGTACA	TGTACTACGG	TGGTGGTAAT	AAGGTTGAGG	TCGATCCTAA	TGATGTTAAT
1450	1460	1470	1480 TTCCCCGCGA	1490	1500
GGTCGGCCAG	ACTITAAAGA	CAACTATGAC	TTCCCCGCGA	ACTTCAACAG	CAAACAATAC
1510	1520	1530	1540 GGGAACGGTA	1550	1560
CCCTATCATG	GTGGTGTGAG	CTACGGTTAT	GGGAACGGTA	GTGCAGGTTT	TTACCCGGAC
1570	1580	1590	1600	1610	1620
CTCAACAGAA	AGGAGGTTCG	TATCTGGTGG	1600 GGAATGCAGT	ACAAGTATCT	CTTCGATATG
1630	1640	1650	1660	1670	1680
GGACTGGAAT	TTGTGTGGCA	AGACATGACT	ACCCCAGCAA	TCCACACATC	ATATGGAGAC
1690	1700	1710	1720	1730	1740
ATGAAAGGGT	TGCCCACCCG	TCTACTCGTC	1720 ACCTCAgACT	CCGTCACCAA	TGCCTCTGAG
1/50	1760	1770	1780	1790	1800
AAAAAGCTCG	CAATTGAAAC	TTGGGCTCTC	TACTCCTACA	ATCTCCACAA	AGCAACTTGG
1810	1820	1830	1840	1850	1860
			AACAAACGAA		
1870	1880	1890	1900	1910	1920
AGTTA TGCCG	GAGCCTATCG	TITIGCTGGT	CTCTGGACTG	GGGATAATGC	AAGTAACTGG
1930	1940	1950	1960	1970	1980
GAATICIGGA	AGATATCGGT	CICICAAGII	CTTTCTCTGG	GCCTCAATGG	IGIGIGCAIC
1990	2000	2010	2020 TACCGTGATG	2030	2040
3050	ATACGGG	1111GAACCC	TACCGIGATG	CAAA I GGGGI	CGAGGAGAAA
ZUDU TACTCTACCC	ZUDU	ZU/U	2080 TATACTGGTT	2090	2100
2110	CAGAGCIACI	CATCAGGIGG	TATACIDGIT	CALICULUI	21.60
ACCAACCATT	712U	CCACAGGAAA	2140 TGGTTCCAGG	0.000 A C C A C C C C C C C C C C C C C C	2100
2170	2190	2100	2200	2210	2220
CATCTTGAAA	CCCATCCAGA	ACTCGCAGAC	CAAGCATGGC	TCTATAAATC	CGTTTTGGAG
2230	2240	2250	2260	2270	2280
ATCTGTAGGT	ACTATGTGGA	GCTTAGATAC	2260 TCCCTCATCC	AACTACTTTA	CGACTGCATG
2290	2300	2310	2320	2330	2340
TTTCAAAACG	TaGTCGACGG	TATGCCAATC	ACCAGATCTA	TGCTCTTGAC	CGATACTGAG
2350	2360	2370	2380	2390	2400
GATACCACCT	TCTTCAACGA	GAGCCAAAAG	TTCCTCGACA	ACCAATATAT	GGCTGGTGAC
2410	2420	2430	2440 CGCAAAGAAA	2450	2460
GACATTCTTG	TTGCACCCAT	CCTCCACAGT	CGCAAAGAAA	TTCCAGGCGA	AAACAGAGAT
24/0	2480	2490	2500	2510	2520
			CCCTCAAATT		
2530	2540	2550	2560	2570	2580
GGAGTCGCTT			GGTAGTGTCA		
2590	2600	2610	2620	2630	2640
			AGCGTGGTAC		
2650	2660	2670	2680 TGGACTGGCC	2690	2700
2710	2720	2730	2740	2750	2760
			GAGTACTGTA		
2770	2780	2790	2800	2810	2820
			CAGTACAAAG	AGACCCACGA	ACAGTCGAAG
2830	2840	2850	2860	2870	2880
			GGAAAGAAGA	CGGGTTACAA	CATCTCAGGA
2890	2900	2910	2920	2930	2940
-434				2,50	25 10

PCT/EP96/01009

WO 96/29416

23/38

FIGURE 9 CONTINUED

	AAGCAAAGGG				
2950	2960	2970	2980	2990	3000
AAGACGCGTA	CTGTCACTAT		CACAATGGAT	ACGACCCTTC	CAAAGAGGTG
3010	3020		3040		
GGTGATTATT	ATACCATCAT				CATCGTCGAT
3070	3080	3090	3100	3110	3120
GTGAGCAAGA	CGACTGTGAA	TGTTGAGGGT	GGGGTGGAGC	ACCAAGTTTA	TAAGAACTCC
3130			3160		
GATTTACATA	CGGTTGTTAT	CGACGTGAAG	GAGGTGATCG	GTACCACAAA	GAGCGTCAAG
3190	3200				
ATCACATGTA	CTGCCGCTTA	A			

FIGURE 10

α-GLUCAN LYASE CODING SEQUENCE SEQUENCE TYPE: NUCLEIC ACID MOLECULE TYPE: DNA (GENOMIC) ORIGINAL SOURCE: FUNGUS SEQUENCE LENGTH 3213 BP STRANDEDNESS: DOUBLE SEQUENCE.

30 40 ATGGCAGGAT TATCCGACCC TCTCAATTTC TGCAAAGCAG AGGACTACTA CGCTGCTGCC 70 80 90 100 110 120 AAAGGCTGGA GTGGCCCTCA GAAGATCATT CGCTATGACC AGACCCCTCC TCAGGGTACA 130 140 150 160 170 AAAGATOCGA AAAGCTGGCA TGCGGTAAAC CTTCCTTTCG ATGACGGGAC TATGTGTGTA 190 200 210 220 230 240 GTGCAATTCG TCAGACCCTG TGTTTGGAGG GTTAGATATG ACCCCAGTGT CAAGACTTCT 250 260 270 280 290 300 GATGAGTACG GCGATGAGAA TACGAGGACT ATTGTACAAG ACTACATGAC TACTCTGGTT 320 330 310 340 350 GGAAACTTGG ACATTTTCAG AGGTCTTACG TGGGTTTCTA CGTTGGAGGA TTCGGGCGAG 380 370 390 400 410 TACTACACCT TCAAGTCCGA AGTCACTGCC GTGGACGAAA CCGAACGGAC TCGAAACAAG 430 440 450 460 470 GTCGGCGACG GCCTCAAGAT TTACCTATGG AAAAATCCCT TTCGCATCCA GGTAGTGCGT 530 490 500 510 520 CTCTTGACCC CCCTGGTGGA CCCTTTCCCC ATTCCCAACG TAGCCAATGC CACAGCCCGT 560 570 580 590 550 GTGGCCGACA AGGTTGTTTG GCAGACGTCC CCGAAGACGT TCAGGAAAAA CTTGCATCCG 620 640 650 610 630 660 CAGCATAAGA TGTTGAAGGA TACAGTTCTT GATATTATCA AGCCGGGGCA CGGAGAGTAT 680 670 690 700 710 720 GTGGGTTGGG GAGAGATGGG AGGCATCGAG TTTATGAAGG AGCCAACATT CATGAATTAT 750 740 780 730 760 770 TTCAACTTTG ACAATATGCA ATATCAGCAG GTCTATGCAC AAGGCGCTCT TGATAGTCGT 790 800 810 820 830 840 GAGCCGTTGT ATCACTCTGA TCCCTTCTAT CTCGACGTGA ACTCCAACCC AGAGCACAAG 850 860 870 890 900 880 AACATTACGG CAACCTITAT CGATAACTAC TCTCAGATTG CCATCGACTT TGGGAAGACC 920 910 930 940 950 AACTCAGGCT ACATCAAGCT GGGTACCAGG TATGGCGGTA TCGATTGTTA CGGTATCAGC 970 980 990 1000 1010 1020 GCGGATACGG TCCCGGAGAT TGTGCGACTT TATACTGGAC TTGTTGGGCG TTCGAAGTTG 1030 1040 1050 1060 1070 AAGCCCAGGT ATATTCTCGG AGCCCACCAA GCTTGTTATG GATACCAGCA GGAAAGTGAC 1090 1110 1120 1100 1130 TTGCATGCTG TTGTTCAGCA GTACCGTGAC ACCAAGTTTC CGCTTGATGG GTTGCATGTC 1180 1160 1170 1190 GATGTCGACT TTCAGGACAA TTTCAGAACG TTTACCACTA ACCCGATTAC GTTCCCTAAT 1210 1220 1230 1240 1250 1260 CCCAAAGAAA TGTTTACCAA TCTAAGGAAC AATGGAATCA AGTGTTCCAC CAACATCACC 1270 1280 1290 1300 1310

FIGURE 10 CONTINUED

2072774754	07.170.40.40.4	T00000011T	0007101071	00000044504	0001717017
CCIGITATCA	GIAICAGAGA	TUGUCCGAAT	GGGTACAGTA	CLCTCAATGA	GGGATATGAT
1330	1340	1350	1360	1370	1380
AAAAAGTACT	TCATCATGGA	TGACAGATAT	ACCGAGGGGA	CAAGTGGGGA	TAAAAAAAA
. 100	1400	1/11/1	1420	1430	11/10
	1400	1410	1420	TT4400744	TO 4 TO TO TO TO
GITCOM!ACT	LIIIIIACia	CGG TGGGAAC	CCGGTTGAGG	TTAACCCTAA	
1450	1460	1470	1480	1490	1500
GCTCGGCCAG	ACTITIGGAGA	CAATTATGAC	TTCCCTACGA	ACTTCAACTG	CAAAGACTAC
1510	1520	1530	1540	1550	1560
CCCTATCATC	CTCCTCTCAC	TTACCCATAT	CCCAATCCCA		CTACCCTCAC
CCCIAICAIG	GIGGIGIGAG	TIACGUATAT	GGGAATGGCA	LILLAGGIIA	
1570		1590	1600	1610	1620
CTTAACAGAG	AGGAGGTTCG	TATCTGGTGG	GGATTGCAGT	ACGAGTATCT	CTTCAATATG
	1640		1660		1680
			ACCCCAGCGA		
1.00					
	1700	1/10	1720	1/30	1740
ATGAAAGGGT	TGCCCACCCG	TCTGCTCGTC	ACCGCCGACT	CAGTTACCAA	TGCCTCTGAG
1750	1760	1770	1780	1790	1800
AAAAAGCTCG	CAATTGAAAG	TTGGGCTCTT	TACTCCTACA	ΔΕΕΤΕΓΕΛΤΑΔ	AGCAACCTTC
1010	1020	1020	1040	1050	1060
1010	UZOI CTCCTCTTCA	1000	1840 AACAAACGTA	UCOI	1000
LACUGILIIG	GICGICIIGA	GICICGIAAG	AACAAACGTA	ACTICATOO	CabALa Iba I
1870	1880	1890	1900	1910	1920
AGTTACGCCG	GTGCCTATCG	TTTTGCTGGT	CTCTGGACTG	GAGATAACGC	AAGTACGTGG
1930	1940	1950	1960	1970	1980
CAATTCTCCA	ACATTTCCCT	CTCCCAAGTT	CTTTCTCTAG	CTCTCAATGG	TOTOTOTATA
	AUATTICUUT	CICCCAAGII	CHICICIAG	CICICAAIGG	TOTOTOTATA
1990			2020		2040
			GCACGTACTG		
2050	2060		2080		2100
TGCAGTCCGG	AGCTACTCAT	CAGGTGGTAT	ACTGGATCAT	TCCTTTTGCC	ATGGCTTAGA
2110	2120			2150	2160
			TTCCAGGAAC		
			2200	2210	2220
			GCATGGCTTT		
2230	2240	2250	2260	2270	2280
TGCAGATACT	GGGTAGAGCT	AAGATATTCC	CTCATCCAGC	TCCTTTACGA	CTGCATGTTC
2290	2300	2310	2320	2330	2340
CAAAACGTGG	TOCATOCTAT	CCCACTTCCC	00C0	2000	2340
220	ICUATUUTAT			TOTTCACCCA	TACTGAGGAT
2350	2260	2270	AGATCTATGC	TCTTGACCGA	2340 TACTGAGGAT
ACGACCLIC	2360	2370	2380	2390	2400
	2360 TCAATGAGAG	2370 CCAAAAGTTC	2380 CTCGATAACC	2390 AATATATGGC	2400 TGGTGACGAC
2410	2360 TCAATGAGAG 2420	2370 CCAAAAGTTC 2430	2380 CTCGATAACC 2440	2390 AATATATGGC 2450	2400 TGGTGACGAC 2460
2410	2360 TCAATGAGAG 2420	2370 CCAAAAGTTC 2430	2380 CTCGATAACC 2440	2390 AATATATGGC 2450	2400 TGGTGACGAC 2460
2410 ATCCTTGTAG	2360 TCAATGAGAG 2420 CACCCATCCT	2370 CCAAAAGTTC 2430 CCACAGCCGT	2380 CTCGATAACC 2440 AACGAGGTTC	2390 AATATATGGC 2450 CGGGAGAGAA	2400 TGGTGACGAC 2460 CAGAGATGTC
2410 ATCCTTGTAG 2470	2360 TCAATGAGAG 2420 CACCCATCCT 2480	2370 CCAAAAGTTC 2430 CCACAGCCGT 2490	2380 CTCGATAACC 2440 AACGAGGTTC 2500	2390 AATATATGGC 2450 CGGGAGAGAA 2510	2400 TGGTGACGAC 2460 CAGAGATGTC 2520
2410 ATCCTTGTAG 2470 TATCTCCCTC	2360 TCAATGAGAG 2420 CACCCATCCT 2480 TATTCCACAC	2370 CCAAAAGTTC 2430 CCACAGCCGT 2490 CTGGTACCCC	2380 CTCGATAACC 2440 AACGAGGTTC 2500 TCAAACTTGA	2390 AATATATGGC 2450 CGGGAGAGAA 2510 GACCGTGGGA	2400 TGGTGACGAC 2460 CAGAGATGTC 2520 CGATCAGGGA
2410 ATCCTTGTAG 2470 TATCTCCCTC 2530	2360 TCAATGAGAG 2420 CACCCATCCT 2480 TATTCCACAC 2540	2370 CCAAAAGTTC 2430 CCACAGCCGT 2490 CTGGTACCCC 2550	2380 CTCGATAACC 2440 AACGAGGTTC 2500 TCAAACTTGA 2560	2390 AATATATGGC 2450 CGGGAGAGAA 2510 GACCGTGGGA 2570	2400 TGGTGACGAC 2460 CAGAGATGTC 2520 CGATCAGGGA 2580
2410 ATCCTTGTAG 2470 TATCTCCCTC 2530 GTCGCTTTAG	2360 TCAATGAGAG 2420 CACCCATCCT 2480 TATTCCACAC 2540 GGAATCCTGT	2370 CCAAAAGTTC 2430 CCACAGCCGT 2490 CTGGTACCCC 2550 CGAAGGTGGC	2380 CTCGATAACC 2440 AACGAGGTTC 2500 TCAAACTTGA 2560 AGCGTTATCA	2390 AATATATGGC 2450 CGGGAGAGAA 2510 GACCGTGGGA 2570 ACTACACTGC	2400 TGGTGACGAC 2460 CAGAGATGTC 2520 CGATCAGGGA 2580 CAGGATTGTT
2410 ATCCTTGTAG 2470 TATCTCCCTC 2530 GTCGCTTTAG 2590	2360 TCAATGAGAG 2420 CACCCATCCT 2480 TATTCCACAC 2540 GGAATCCTGT 2600	2370 CCAAAAGTTC 2430 CCACAGCCGT 2490 CTGGTACCCC 2550 CGAAGGTGGC 2610	2380 CTCGATAACC 2440 AACGAGGTTC 2500 TCAAACTTGA 2560 AGCGTTATCA 2620	2390 AATATATGGC 2450 CGGGAGAGAA 2510 GACCGTGGGA 2570 ACTACACTGC 2630	2400 TGGTGACGAC 2460 CAGAGATGTC 2520 CGATCAGGGA 2580 CAGGATTGTT 2640
2410 ATCCTTGTAG 2470 TATCTCCCTC 2530 GTCGCTTTAG 2590	2360 TCAATGAGAG 2420 CACCCATCCT 2480 TATTCCACAC 2540 GGAATCCTGT 2600	2370 CCAAAAGTTC 2430 CCACAGCCGT 2490 CTGGTACCCC 2550 CGAAGGTGGC 2610	2380 CTCGATAACC 2440 AACGAGGTTC 2500 TCAAACTTGA 2560 AGCGTTATCA 2620	2390 AATATATGGC 2450 CGGGAGAGAA 2510 GACCGTGGGA 2570 ACTACACTGC 2630	2400 TGGTGACGAC 2460 CAGAGATGTC 2520 CGATCAGGGA 2580 CAGGATTGTT 2640
2410 ATCCTTGTAG 2470 TATCTCCCTC 2530 GTCGCTTTAG 2590 GCCCCAGAGG	2360 TCAATGAGAG 2420 CACCCATCCT 2480 TATTCCACAC 2540 GGAATCCTGT 2600 ATTATAATCT	2370 CCAAAAGTTC 2430 CCACAGCCGT 2490 CTGGTACCCC 2550 CGAAGGTGGC 2610 CTTCCACAAC	2380 CTCGATAACC 2440 AACGAGGTTC 2500 TCAAACTTGA 2560 AGCGTTATCA 2620 GTGGTGCCGG	2390 AATATATGGC 2450 CGGGAGAGAA 2510 GACCGTGGGA 2570 ACTACACTGC 2630 TCTACATCAG	2400 TGGTGACGAC 2460 CAGAGATGTC 2520 CGATCAGGGA 2580 CAGGATTGTT 2640 AGAGGGTGCC
2410 ATCCTTGTAG 2470 TATCTCCCTC 2530 GTCGCTTTAG 2590 GCCCCAGAGG 2650	2360 TCAATGAGAG 2420 CACCCATCCT 2480 TATTCCACAC 2540 GGAATCCTGT 2600 ATTATAATCT 2660	2370 CCAAAAGTTC 2430 CCACAGCCGT 2490 CTGGTACCCC 2550 CGAAGGTGGC 2610 CTTCCACAAC 2670	2380 CTCGATAACC 2440 AACGAGGTTC 2500 TCAAACTTGA 2560 AGCGTTATCA 2620 GTGGTGCCGG 2680	2390 AATATATGGC 2450 CGGGAGAGAA 2510 GACCGTGGGA 2570 ACTACACTGC 2630 TCTACATCAG 2690	2400 TGGTGACGAC 2460 CAGAGATGTC 2520 CGATCAGGGA 2580 CAGGATTGTT 2640 AGAGGGTGCC 2700
2410 ATCCTTGTAG 2470 TATCTCCCTC 2530 GTCGCTTTAG 2590 GCCCCAGAGG 2650 ATCATTCCGC	2360 TCAATGAGAG 2420 CACCCATCCT 2480 TATTCCACAC 2540 GGAATCCTGT 2600 ATTATAATCT 2660 AAATTCAGGT	2370 CCAAAAGTTC 2430 CCACAGCCGT 2490 CTGGTACCCC 2550 CGAAGGTGGC 2610 CTTCCACAAC 2670 ACGCCAGTGG	2380 CTCGATAACC 2440 AACGAGGTTC 2500 TCAAACTTGA 2560 AGCGTTATCA 2620 GTGGTGCCGG 2680 ATTGGCGAAG	2390 AATATATGGC 2450 CGGGAGAGAA 2510 GACCGTGGGA 2570 ACTACACTGC 2630 TCTACATCAG 2690 GAGGGCCTAA	2400 TGGTGACGAC 2460 CAGAGATGTC 2520 CGATCAGGGA 2580 CAGGATTGTT 2640 AGAGGGTGCC 2700 TCCCATCAAG
2410 ATCCTTGTAG 2470 TATCTCCCTC 2530 GTCGCTTTAG 2590 GCCCCAGAGG 2650 ATCATTCCGC 2710	2360 TCAATGAGAG 2420 CACCCATCCT 2480 TATTCCACAC 2540 GGAATCCTGT 2600 ATTATAATCT 2660 AAATTCAGGT 2720	2370 CCAAAAGTTC 2430 CCACAGCCGT 2490 CTGGTACCCC 2550 CGAAGGTGGC 2610 CTTCCACAAC 2670 ACGCCAGTGG 2730	2380 CTCGATAACC 2440 AACGAGGTTC 2500 TCAAACTTGA 2560 AGCGTTATCA 2620 GTGGTGCCGG 2680 ATTGGCGAAG 2740	2390 AATATATGGC 2450 CGGGAGAGAA 2510 GACCGTGGGA 2570 ACTACACTGC 2630 TCTACATCAG 2690 GAGGGCCTAA 2750	2400 TGGTGACGAC 2460 CAGAGATGTC 2520 CGATCAGGGA 2580 CAGGATTGTT 2640 AGAGGGTGCC 2700 TCCCATCAAG 2760
2410 ATCCTTGTAG 2470 TATCTCCCTC 2530 GTCGCTTTAG 2590 GCCCCAGAGG 2650 ATCATTCCGC 2710 TTCAATATCT	2360 TCAATGAGAG 2420 CACCCATCCT 2480 TATTCCACAC 2540 GGAATCCTGT 2600 ATTATAATCT 2660 AAATTCAGGT 2720 ACCCTGGAAA	2370 CCAAAAGTTC 2430 CCACAGCCGT 2490 CTGGTACCCC 2550 CGAAGGTGGC 2610 CTTCCACAAC 2670 ACGCCAGTGG 2730 GGACAAGGAG	2380 CTCGATAACC 2440 AACGAGGTTC 2500 TCAAACTTGA 2560 AGCGTTATCA 2620 GTGGTGCCGG 2680 ATTGGCGAAG 2740 TATGTGACGT	2390 AATATATGGC 2450 CGGGAGAGAA 2510 GACCGTGGGA 2570 ACTACACTGC 2630 TCTACATCAG 2690 GAGGGCCTAA 2750 ACCTTGATGA	2400 TGGTGACGAC 2460 CAGAGATGTC 2520 CGATCAGGGA 2580 CAGGATTGTT 2640 AGAGGGTGCC 2700 TCCCATCAAG 2760 TGGTGTTAGC
2410 ATCCTTGTAG 2470 TATCTCCCTC 2530 GTCGCTTTAG 2590 GCCCCAGAGG 2650 ATCATTCCGC 2710 TTCAATATCT 2770	2360 TCAATGAGAG 2420 CACCCATCCT 2480 TATTCCACAC 2540 GGAATCCTGT 2600 ATTATAATCT 2660 AAATTCAGGT 2720 ACCCTGGAAA 2780	2370 CCAAAAGTTC 2430 CCACAGCCGT 2490 CTGGTACCCC 2550 CGAAGGTGGC 2610 CTTCCACAAC 2670 ACGCCAGTGG 2730 GGACAAGGAG 2790	2380 CTCGATAACC 2440 AACGAGGTTC 2500 TCAAACTTGA 2560 AGCGTTATCA 2620 GTGGTGCCGG 2680 ATTGGCGAAG 2740 TATGTGACGT 2800	2390 AATATATGGC 2450 CGGGAGAGAA 2510 GACCGTGGGA 2570 ACTACACTGC 2630 TCTACATCAG 2690 GAGGGCCTAA 2750 ACCTTGATGA 2810	2400 TGGTGACGAC 2460 CAGAGATGTC 2520 CGATCAGGGA 2580 CAGGATTGTT 2640 AGAGGGTGCC 2700 TCCCATCAAG 2760 TGGTGTTAGC 2820
2410 ATCCTTGTAG 2470 TATCTCCCTC 2530 GTCGCTTTAG 2590 GCCCCAGAGG 2650 ATCATTCCGC 2710 TTCAATATCT 2770	2360 TCAATGAGAG 2420 CACCCATCCT 2480 TATTCCACAC 2540 GGAATCCTGT 2600 ATTATAATCT 2660 AAATTCAGGT 2720 ACCCTGGAAA 2780	2370 CCAAAAGTTC 2430 CCACAGCCGT 2490 CTGGTACCCC 2550 CGAAGGTGGC 2610 CTTCCACAAC 2670 ACGCCAGTGG 2730 GGACAAGGAG 2790	2380 CTCGATAACC 2440 AACGAGGTTC 2500 TCAAACTTGA 2560 AGCGTTATCA 2620 GTGGTGCCGG 2680 ATTGGCGAAG 2740 TATGTGACGT 2800	2390 AATATATGGC 2450 CGGGAGAGAA 2510 GACCGTGGGA 2570 ACTACACTGC 2630 TCTACATCAG 2690 GAGGGCCTAA 2750 ACCTTGATGA 2810	2400 TGGTGACGAC 2460 CAGAGATGTC 2520 CGATCAGGGA 2580 CAGGATTGTT 2640 AGAGGGTGCC 2700 TCCCATCAAG 2760 TGGTGTTAGC 2820
2410 ATCCTTGTAG 2470 TATCTCCCTC 2530 GTCGCTTTAG 2590 GCCCCAGAGG 2650 ATCATTCCGC 2710 TTCAATATCT 2770	2360 TCAATGAGAG 2420 CACCCATCCT 2480 TATTCCACAC 2540 GGAATCCTGT 2600 ATTATAATCT 2660 AAATTCAGGT 2720 ACCCTGGAAA 2780	2370 CCAAAAGTTC 2430 CCACAGCCGT 2490 CTGGTACCCC 2550 CGAAGGTGGC 2610 CTTCCACAAC 2670 ACGCCAGTGG 2730 GGACAAGGAG 2790	2380 CTCGATAACC 2440 AACGAGGTTC 2500 TCAAACTTGA 2560 AGCGTTATCA 2620 GTGGTGCCGG 2680 ATTGGCGAAG 2740 TATGTGACGT	2390 AATATATGGC 2450 CGGGAGAGAA 2510 GACCGTGGGA 2570 ACTACACTGC 2630 TCTACATCAG 2690 GAGGGCCTAA 2750 ACCTTGATGA 2810	2400 TGGTGACGAC 2460 CAGAGATGTC 2520 CGATCAGGGA 2580 CAGGATTGTT 2640 AGAGGGTGCC 2700 TCCCATCAAG 2760 TGGTGTTAGC 2820

26/38

FIGURE 10 CONTINUED

GAAGGCAAAG	ACGTCCAGAA	GCAACTTGCG	GTCATTCAAG	GGAATAAGAC	TAATGACTTC
2890	2900	2910	2 9 20	2930	2940
TCCGCCTCCG	GGATTGATAA	GGAGGCAAAG	GGTTATCACC	GCAAAGTTTC	TATCAAACAG
2950	2960	2970	2980	2990	3000
GAGTCAAAAG	ACAAGACCCG	TACTGTCACC	ATTGAGCCAA	AACACAACGG	ATACGACCCC
3010	3020	3030	3040	3050	3060
TCTAAGGAAG	TTGGTAATTA	TTATACCATC	ATTCTTTGGT	ACGCACCGGG	CTTTGACGGC
3070	3080	3090	3100	3110	3120
AGCATCGTCG	ATGTGAGCCA	GGCGACCGTG	AACATCGAGG	GCGGGGTGGA	ATGCGAAATT
3130	3140	3150	3160	3170	3180
	CCGGCTTGCA		GTCAACGTGA	AAGAGGTGAT	CGGTACCACA
3190	3200	3210			
AAGTCCGTCA	AGATCACTTG	CACTACCGCT	TAG		

FIG. 11

FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

a

* ARKBINOSE D724.015 XYLO910SE/17.589 XYL0SE/20.416 8

I

7/8.807

b

c

FIG. 18

FIG. 19

Fig 20

A550, net change

A550, net change

In tional Application No PLIFEP 96/01009

A. CLASSIFICATION OF SUBJECT MATTER
1PC 6 C12N15/56 C12N15/80 C12N1/15 C12P19/04 A01H5/00 A61K38/47 A23L1/29 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C12P A01H A61K A23L Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category " Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X 1,2,26, APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, vol. 35, no. 6, September 1991, 29,31 pages 753-758, XP000574930 KORMELINK, F.J.M., ET AL.: "Purification and characterization of a (1,4)-beta-D-arabinoxylan arabinofuranohydrolase from Aspergillus awamori" cited in the application see the whole document P.X WO,A,96 06935 (GIST BROCADES BV ; WOUW 1-19, MONIQUE JOSINA ANDREA V D (NL); OOIJEN 21-25. ALBE) 7 March 1996 29-31 see the whole document -/--Further documents are listed in the continuation of box C. Patent family members are listed in annex. IX. Special categories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application but sited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to sixvolve an inventive step when the document is taken alone *L* document which may throw doubts on priority claim(t) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other nuch documents, such combination being obvious to a person shilled "O" document referring to an oral disclorure, use, exhibition or other means *P* document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 2 9, 07, 96 19 July 1996 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2220 HV Rinnink Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Maddox, A

1

Intrational Application No
PCT/EP 96/01009

		PCT/EP 96/01009		
	IDON) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
Α	EP,A,O 463 706 (GIST BROCADES NV) 2 January 1992 see the whole document	1-31		
A	WO,A,90 01059 (UNIV CALIFORNIA) 8 February 1990 see the whole document	1-31		
А	BIOTECHNOLOGY, vol. 13, no. 1, January 1995, page 63 XP002008876 HERBERS, K., ET AL.: "A thermostable xylanase from Clostridium thermocellum expressed at high levels in the apoplast of transgenic tobacco has no detrimental effects and is easily purified" see the whole document	20		
A	EP,A,O 479 359 (GIST BROCADES NV ;MOGEN INT (NL)) 8 April 1992 see page 24, line 25 - line 32	20		
A	EP,A,O 507 369 (GIST BROCADES NV) 7 October 1992 see claims 11-13	25-27,30		
A	WO,A,92 10945 (ENZYMATIX LTD ;BIOTAL LTD (GB)) 9 July 1992 see the whole document	25-27,30		
A	EP,A,O 506 190 (GIST BROCADES NV) 30 September 1992 cited in the application see claim 36	25-27,30		
A	BIOCHEMICAL JOURNAL, vol. 272, no. 2, 1990, pages 369-376, XP000576098 KELLETT, L.E., ET AL.: "Xylanase B and arabinofuranosidase from Pseudomonas fluorescens subsp. cellulosa contain identical cellulose-binding domains and are encoded by adjacent genes" see the whole document	1-6		

information on patent family members

In: Jonal Application No PCT/EP 96/01009

Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
WO-A-9606935	07-03-96	AU-B-	3387795	22-03-96	
EP-A-0463706	02-01-92	AT-T-	124844	15-07-95	
		AU-B-	654147	27-10-94	
		AU-B-	8318691	18-02-92	
		AU-B-	647170	17-03-94	
		AU-B-	8320591	18-02-92	
		CA-A-	2066734	25-01-92	
		CA-A-	2067329	25-01-92	
		DE-D-	69111148	17-08-95	
		DE-T-	69111148	04-01-96	
		EP-A-	0468596	29-01-92	
		JP-T-	5501657	02-04-93	
		JP-T-	5500907	25-02-93	
		WO-A-	9201389	06-02-92	
		WO-A-	9201793	06-02-92	
		US-A-	5358864	25-10-94	
WO-A-9001059	08-02-90	US-A-	4954447	04-09-90	
EP-A-0479359	08-04-92	AU-B-	656920	23-02-95	
		AU-B-	8651491	15-04- 9 2	
		CA-A-	2072656	14-03-92	
		JP-T-	5502591	13-05-93	
		WO-A-	9205259	02-04-92	
		NZ-A-	239789	27-06-94	
EP-A-0507369	07-10-92	CA-A-	2063352	19-09-92	
		JP-A-	5123173	21-05-93	
		US-A-	5426043	20-06-95	
W0-A-9210945	09-07-92	AT-T-	126972	15-09-95	
11 11 JE20J7J	0, 0, 32	AU-B-	9062291	22-07-92	
		CA-A-	2098708	18-06-92	
		DE-D-	69112643	05-10-95	
		DE-T-	69112643	07-03-96	
		EP-A-	0563133	06-10-93	
		La C			
		ËS-T-	2079173	01-01-96 11-07-95	

Information on patent family members

Is stional Application No PCT/EP 96/01009

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0506190		AU-B-	651194	14-07-94
		AU-B-	1575592	02-11-92
		CA-A-	2084056	28-09-92
		JP-T-	6500022	06-01-94
		W0-A-	9217592	15-10-92