Internet of Things (IoT) and Smart Technologies for Students

Rufino John Aguilar Friday, June 9, 2023

- I wake up at 4:30AM
- Trun on My lights
- Cook Breakfast
- Check my emails
- Wash Dishes
- Go to Office
- Write some code
- Go home
- Play with kids
- And much more ...

IT'S A BEAUTIFUL LIFE

•

But highly inefficient

0

Turn on Switch

• 500,000 microseconds

• 2 weeks in 1 year

2 WEEKS!!

HOME

RUFIN JOHN AGUILAR

Provincial Information and Communications Technology Division (PICTD)

Software Development Lead

Database Administrator

Network Administrator

Freelance Full-stack Developer

Part Time Instructor

Bukidnon State University - College of Technologies - Information Technology Division

Resource Person

Rameses Inc.

Edulearn Technologies

DICT - ICLDB

BSIT - Bukidnon State University

MIS - University of the Philippines Open University

INTRODUCTION TO IOT

- WHAT IS "IOT"?
- IOT DEVICES AROUND US
- BENEFITS OF 10T
- CHALLENGES OF 10T
- SETUP IOT DEVICE
- SENSORS
- APPLICATIONS OF 10T

KEVIN ASHTON 1999

CONNECTING THE PHYSICAL WORLD TO THE INTERNET

USING SENSORS

Internet of Things

THINK OF IT AS A LARGE ECOSYSTEM WHERE DEVICES

- ✓ GATHER DATA (sensors)
- ✓ INTERACT (actuators)
- ✓ CONNECT (internet)

ACTIVE DEVICES (In billions)

30 B Devices (2020) 80 ZB Data collected (2025)

DATA is the key

0

How To Manage Data?

- ·Useful Data
- ·Waste Data
- ·Better Data

IOT DEVICES

"Things"

 REFERS TO DEVICES THAT INTERACT WITH PHYSICAL WORLD

DEVELOPMENT	PRODUCTION
DEVELOPER KITS TAILORED FOR DEV USE	COMMERCIAL USE DEVICES
EXPOSED PARTS ADDED HARDWARE	CUSTOM MADEECPUCIRCUIT BORADROBUSTREGULAR USE

This Photo by Unknown Author is licensed under CC BY-SA-NC

SINGLE BOARD MICRO- CONTROLLERS

SINGLE BOARD COMPUTERS

Single Focused Task

Multi- Tasking

WHAT IS A MICRO CONTROLLER?

- · Special Purpose
- Low-Cost Computing Device
- · open-source electronics platform
- easy-to-use hardware and software
- Sensors + Actuators
- Display Screen
- · Bluetooth + WiFi

100 SECONDS OF

Arduino Nano

- Atmega328P
 Microcontroller
- Power
 - 5V operating voltage
 - 7-12V (nominal) input
 - 19mA consumption
 - 40mA 1/0 pins DC Current
- · Micro USB
- 22 1/0 pins

- 14 Digital 1/0 Pins
- · 6 Analog Pins
- 16Mz Processor
- 2KB SRAM, 32KB Flash, 1KB EEPROM
- 7 g,
- 18 mm W,
- 45 mm L

19

ESP 32

- ESP32-MINI-1 module (Dual- 2 12C pins Core 32-bit LX6 microprocessor)
- Power regulator converts 5 V 2 Digital-to-Analog to 3.3 V to 3.3 V.
- Micro-USB Port
- 3.3 V Power On LED
- 18 Analog-to-Digital Converter (ADC) pins
- 3 Serial Peripheral Interface Wi-Fi: 802.11b/g/n/e/i (SPI) pins
- 3 universal asynchronous receiver-transmitter (UART) pins

- 16 PWM output pins
- 10 Capacitive sensing General Purpose I/O (GPIO) pins
- ROM: 448 KB, SRAM: 520 KB, Support up to: 16MB flash
- Bluetooth: v4.2 BR/EDR and BLE

ESP 32 Cam

- Same Specs as Esp32
- OV2640 camera 2 MP
- 4MB PSRAM for buffering
- · Built in flash LED
- 4G TF Card for storage

6/9/2023 21

NodeMCU ESP8266

- ESP-8266 32-bit
- 49mm x 26mm
- Clock Speed 80 MHz
- Micro USB
- 3.3 V operating voltage
- 4.5V-10V input voltage
- Flash Memory 4MB, SRAM 64KB
- 11 Digital 1/0 Pins
- 1 Analog input pin
- Wifi Built In 802.11 b/g/n

Microcontroller for KIDS

mCore

HaloCode

6/9/2023

+

t

WHAT IS A SINGLE **BOARD COMPUTER?**

- · General Purpose
- Small Computing Device
- Complete Computer
- Close to Desktop
 Cheaper, Smaller, Less Power

CPU, Memory, 1/0 (like MCU)

GRAPHICS CHIP (display)

USB PORT (add peripherals)

SD CARD (storage)

Raspberry Pi 4

- •Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.8GHz
- •1GB, 2GB, 4GB or 8GB LPDDR4-3200 SDRAM (depending on model)
- •2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE
- •Gigabit Ethernet
- •2 USB 3.0 ports; 2 USB 2.0 ports.
- •Raspberry Pi standard 40 pin GPIO header (fully backwards compatible with previous boards)
- •2 × micro-HDMI ports (up to 4kp60 supported)
- •2-lane MIPI DSI display port
- •2-lane MIPI CSI camera port

- •4-pole stereo audio and composite video port
- •H.265 (4kp60 decode), H264 (1080p60 decode, 1080p30 encode)
- •OpenGL ES 3.1, Vulkan 1.0
- Micro-SD card slot for loading operating system and data storage
- •5V DC via USB-C connector (minimum 3A*)
- •5V DC via GPIO header (minimum 3A*)
- Power over Ethernet (PoE) enabled (requires separate PoE HAT)
- •Operating temperature: 0 50 degrees C ambient

6/9/2023 26

Raspberry Pi Pico

- 21 mm × 51 mm form factor
- RP2040 microcontroller chip designed by Raspberry Pi in the UK
- Dual-core Arm Cortex-MO+ processor, Pico WH) flexible clock running up to 133 MHz
- 264kB on-chip SRAM
- 2MB on-board QSPI flash
- 2.4GHz 802.11n wireless LAN (Raspberry Pi Pico W and WH only)
- 26 multifunction GPIO pins, including 3 analogue inputs
- 2 × UART, 2 × SPI controllers, 2 × 12C controllers, 16 × PWM channels
- 1 × USB 1.1 controller and PHY, with host and device support
- 8 × Programmable I/O (PIO) state machines for custom peripheral support

- Supported input voltage 1.8-5.5V DC
- Operating temperature -20°C to +85°C (Raspberry Pi Pico and Pico H); -20°C to +70°C (Raspberry Pi Pico W and Pico WH)
- Castellated module allows soldering direct to carrier boards (Raspberry Pi Pico and Pico W only)
- Drag-and-drop programming using mass storage over USB
- · Low-power sleep and dormant modes
- · Accurate on-chip clock
- Temperature sensor
- Accelerated integer and floatingpoint libraries on-chip

Orange Pi

- •CPU H3 Quad-core Cortex-A7 H.265/HEVC 4K
- •GPU Mali400MP2 GPU @600MHz
- •Memory (SDRAM) 512MB / 1GB DDR3 (shared with GPU)
- •Onboard Storage TF card (Max. 32GB) MMC card slot
- •Onboard Network 10/100M Ethernet RJ45
- ·Video Input
- •HDMI output with HDCP Supports
- •USB OTG input don't supply power USB 2.0 Ports

- •Only One USB 2.0 HOST, one USB 2.0 OTG Buttons
- Power Button(SW4) Low-level peripherals
- •40 Pins Header LED Power led & Stat led Key POWER Supported OS Androic Ubuntu, Debian Image Interface definition
- •Product size 69 mm × 48mm

6/9/2023 28

PISO WIFI
WI (Fi

Piso WiFi

Crypto Mining Farm

VIRTUAL DEVICE

- Proteus
- · Tinkercad
- · Wokwi
- Shortcuits (Steam)

ARDUINO DEVELOPMENT KIT

- IDE Options
 - · Arduino IDE
 - · Visual Studio Code IDE
 - Platform 10
- 1. Code on Desktop/Laptop
- 2. Compile Code
- 3. Upload Code to Target Device
- · Programming Language
 - C/C++, MicroPython

SINGLE BOARD COMPUTER DEV KIT

- Code on Physical Device or Virtual Device (Virtual Machine)
- IDE OptionsVisual Studio Code
- 1. Code Directly on R-Pi
- 2. VS Code for R-Pi
- 3. VS Code + Remote SSH (extension)
- Programming Language
 - · Python

MICROCONTROLLER: MANAGEMENTS

- CENTRAL PROCESSING UNIT (BRAIN)
- SEND/ RECEIVES MESSAGE
- EXECUTES ONE INSTRUCTION PER CLOCK TICK
 - MILLIONS/ BILLIONS OF TICKS PER SEC
 - HIGHER SPEED MEANS MORE INSTRUCTIONS
- One Clock tick means CPU Fetch, Decode and Execute

MICROCONTROLLER: MEMORY

- 2 TYPES
 - PROGRAM MEMORY
 - STORE CODE
 - PERSIST DATA WHEN THERE
 IS NO POWER
 - RAM
 - USE TO RUN CODE WHEN POWERED
 - RESETS WHEN THERE IS NO POWER

INPUT/OUTPUT

FRAMEWORK & OPERATING SYSTEM

MICROCONTROLLER DON'T RUN A TRADITIONAL OPERATING SYSTEM

MCU HAVE LOW SPEED, MEMORY

PERFORM FOCUS TASKS

MCU USE FRAMEWORKS (ARDUINO) USE API TO TALK TO PERIPHERALS STANDARD FRAMEWORK ACROSS MULTIPLE MICROCONTROLLER

ARDUINO: CORE SETUP

2 CORE FUNCTIONS

- setup()
- loop()

WHEN BOARD POWERS UP

- RUNS setup() ONCE
- THEN RUNS loop() CONTINUOUSLY (till power off)

ARCHITECTURE: EVENT LOOP

SETUP

- LOOP
- IS FOR ONE TIME INITIALIZATION CODE
 - Connect to WiFi, Cloud Service, Settings etc.
- IS FOR PRECESSING CODE (sleep/wake cycle)
 - Sensor read
 - Send/receive message
- LISTENS FOR:
 - MESSAGE FROM UI (button click, keyboard..)
 - MESSAGE FROM NETWORK (actuator request)

6/9/2023

ARDINO: STANDARD LIBRARIES

- STANDARD LIBRARIES FOR INTERACTING WITH I/O PINS AND MICROCONTROLLER
- EXPOSES CONSISTENT API ACROSS DRIVERS
- delay() PAUSE PROGRAM FOR GIVEN PERIOD OF TIME
- digitalRead() READ VALUE OF
 I/O PIN (HIGH OR LOW)

6/9/2023 4

LET'S TRY!

6/9/2023

ARDINO IDE

- •ARDUINO IDE
- ·Visual Studio Code (platrofm.io extension)
 - Copilot & Copilot X
- •https://wokwi.com/
 - Devices/Sensors

IOT DEMO APP

- •ESP32 & ESP32-Cam
- Node JS, expressjs, ejs, socketio
- ·AdminLTE, Bootstrap

Benefits of IoT

- Increased Efficiency
- · Improved Safety
- Enhanced Customer Experience
- · Cost Saving

Increased Efficiency

- automate routine tasks
 and provide real-time data
- allowing businesses to make better decisions
- · optimize their operations

This Photo by Unknown Author is licensed under CC BY

6/9/2023 46

Improved Safety

- monitor and control safety systems in factories, homes, and public spaces
- Sensors for gas Leaks, Air Quality,
 Fire Hazards
- IoT can also respond to the hazard.
 Extinguish fire

This Photo by Unknown Author is licensed under CC BY-NC

6/9/2023 47

Enhanced Customer Experience

- provide personalized services and support
- virtual assistants
- smart homes
- connected cars (waze/google app for traffic/navigation or routing)

This Photo by Unknown Author is licensed under CC BY-SA-NC

6/9/2023

Cost Saving

- reduce costs by optimizing energy consumption
- reducing waste
- streamlining processes
- smart lighting systems can automatically adjust brightness and turn off when not in use

This Photo by Unknown Author is licensed under CC BY-SA

6/9/2023 49

IoT Applications

- · Consumer 10T
- · Commercial 10T
- Industrial IoT
- · Healthcare 10T

CONSUMER IOT

- DEVICES THAT CONSUMERS USE AROUND THEIR HOME
- USERS WITH DISABILITY (PWD)
- SMART SPEAKERS, ROBOT CLEANERS, VOICE CONTROLLED DEVICES, HEALTH MONITORS, TIME TRACKERS..ETC.

COMMERCIAL IOT

IOT IN WORKPLACE

• OCCUPANCY SENSOR, MOTION TRACKER, SAFETY/SECURITY MONITORING, TEMPERATURE TRACKING, VEHICLE TRACKING

INDUSTRIAL IOT

- IOT IN FACTORIES WITH LARGE SCALE MACHINERY
- DIGITAL AGRICULTURE
- PREDICTIVE MAINTAINANCE, PREDICTIVE HARVEST READINESS, SOIL MOISTURE MONITORING, CROP MONITORING (HEALTH), SAFTY MONITORING

HEALTH CARE IOT

- DEVICES THAT MONITOR HEALTH
- SMART WATCH (WEARABLE DEVICES)
- REMOTE PATIENT MONITORING, MEDICAL MANAGEMENT, HOSPITAL ASSET TRACKING, TELEMEDICINE, FALL DETECTION AND ELDERLY CARE, ENVIROMENTAL MONITORING

Arduino/ ESP32 Applications

- Home Automation (Lights, Blinds, Appliance, Gate)
- · Home Security (Motion Sensors, Window Sensors, Alarm, Camera)
- Robotics (Autonomous Vehicles, Robotic Arms)
- Wearable Technology
- Environmental Monitoring (Humidity, Air Quality, Pollution)
- Smart Agriculture (Soil Moisture, Temperature, Humidity Levels, Optimize Crop Growth and Production)
- Education and Learning (Teach Electronics, Programming and Prototyping, Robotics)

Raspberry Pi Industrial Application

- Desktop Computer
- Print Server
- · Web Server/ Game Servers
- Retro Gaming Machine
- Robot Controller
- Network Video Recorder (NVR)
- Network Access Storage (NAS)
- Smart Home/Building Solutions
- IoT Gateway
- · Network Router, DHCP Server, DNS, VPN, Firewall.. etc.

Challenges

- · Security
- Privacy
- Interoperability

SECUIRTY

• IOT DEVICES CONNECTED TO THE CLOUD ARE ONLY AS SECURED AS THE CLOUD / THE NETWORK

- MALICIOUS DEVICES
- VIRUS ATTACKS
- MALICIOUS DATA/ DEVICES

PRIVACY

- IOT DEVICES COLLECT AND TRANSMIT LARGE AMOUNT OF PERSONAL DATA
- TARGETED ADVERTISING
- ONLINE TRACKING
- PROFILING AND DISCRIMINATION
- LOCATION TRACKING
- DATA SHAREING AND SELLING
- GOVERNMENT SURVEILLANCE

INTEROPERABILITY

- IOT DEVICES AND SYSTEMS MAY USE DIFFERENT PROTOCOLS AND STANDARDS
- DIFFICULT TO CONNECT
- DIFFICULT TO EXCHANGE DATA
- COMMUNICATION STANDARDS

WHAT V.S. HOW

THANK YOU

Rufino John Aguilar aguilarufino@gmail.com https://rufdev.github.io