FunGraph-vignette library(FunGraph) take a look at genotypic data used in example View(geno) Linkage Genetic_Distances(cM) 2 4 6 9 11 12 15 17 nn_np_9292 lg1 0.00 0 1 9 0 lm | 11315 | lg1 1.71 0 1 1 1 0 0 1 1 lm_ll_4392 lg1 2.34 0 1 1 1 9 9 nn_np_8171 lg1 2.55 0 1 9 0 0 1 9 0 lm_ll_12452 lg1 2.89 1 0 0 0 1 1 0 0 lm_II_7926 3.63 0 1 1 1 0 0 1 9 take a look at phenotypic data used in example View(pheno) N2.x N5.x N1.x N3.x N4.x N6.x N7.x N8.x N9.x 2.000000 3.000000 8.000000 12.000000 16.000000 18.000000 18.00000 21.00000 23.00000 3.666667 4.333333 5.000000 5.666667 6.666667 8.33333 11.00000 13.66667 17.33333 24.33333 2.000000 2.666667 2.666667 2.666667 0.000000 1.000000 2.500000 5.000000 7.000000 13.000000 15.50000 23.50000 25.50000 26.00000 11 1.000000 1.000000 6.000000 19.000000 38.000000 43.000000 56.00000 74.00000 82.00000 85.00000 12 5.000000 6.000000 5.000000 6.000000 13.000000 18.000000 31.00000 41.00000 42.00000 52.00000 1.biFunMap exampleples first plot mean curve to check initial parameters is OK get_mean_curve_plot(pheno_df = pheno, times = 1:14) Control 200 Stress 150 150 Phenotype 001 100 50 50 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 #Notice wrong given inital parameters results in incorrect mean curve(blue line) get_mean_curve_plot(pheno_df = pheno, times = 1:14, init_sd_par = c(2,0.1,2,0.1)) Control 200 Stress 150 150 Phenotype .001 100 50 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Time (day) calculate LR value for a SNP #geno[, -1:-2] remove redundant information for calculation get_LR_effect(marker = 1, $geno_df = geno[, -1:-2],$ pheno_df = pheno, times = 1:14)#> \$LR *#>* [1] 2.967023 #> \$genetic_effect #> [1] 0.201284440 0.264772200 0.346411862 0.456347711 0.610781174 0.830762203 #> [7] 1.133019240 1.516061350 1.952992338 2.399895761 2.813927481 3.167246698 #> [13] 3.450041283 3.665821955 0.250562724 0.176137078 0.123056444 0.084406580 #> [19] 0.055011630 0.031269674 0.011047813 0.006439401 0.020841086 0.031011650 #> [25] 0.035465411 0.032863884 0.022421353 0.004131180 #> \$NHO_pars #> [1] 38.7016809 17.3447288 0.4081965 -2.6843421 10.4652100 31.1062723 #> [7] 8.9873842 0.2298382 3.0402288 0.1321409 0.8847419 13.1424409 #> [13] 1.0636326 6.6143222 #> \$NH1_pars #> [1] 42.2212696 18.9548114 0.4060741 1.0666182 11.6341456 35.8311259 #> [7] 10.4193945 0.2290326 3.7232069 0.2276818 33.7701211 17.6666255 #> [13] 0.4254191 -7.0663826 8.8127371 36.7754624 10.0386477 0.2210702 #> [19] 3.2022028 0.1827884 0.8758515 13.0793325 1.0659165 6.5823555 calculate all biFunMap result get_biFunMap_result(geno_df = geno[,-1:-2], pheno_df = pheno, times = 1:14)manhattan plot using calculate LR values get_manh_plot(geno_df = geno, LR = LR) 25 nn_np_2890 20 15 10 11 12 13 Chromosome choose 10 SNPs to show their genetic effect get_genetic_effect_plot(genetic_effect = genetic_effect, number = 10) #> Using rownames(df_ck) as id variables #> Using rownames(df_salt) as id variables hk_hk_512 hk_hk_1339 hk_hk_1404 Im_II_11007 lm_II_11811 4 genetic Effect Im_II_4169 Im_II_8524 Im_II_8946 nn_np_10418 nn_np_11220 salt $1234567891 \mathbf{0123}41234567891 \mathbf{0123}41234567891$ Time (day) run permutation if have enough computer resoruce #example use permutation 5 times, each permutation use first 3 SNPs $get_permutation(n = 5,$

N10.x

prepare initial parameters for biFunClu (may need to change init_sd_par manually) in this example only use first

 $geno_df = geno[1:3, -1:-2],$

pheno_df = pheno, times = 1:14)

2.biFunClu exampleples

#> Finish biFunClu Calculationcluster result data written

#> Warning: Use of `long_df\$time` is discouraged. Use `time` instead.

get_cluster_base_plot(c1\$clustered_data[[1]])

see more about how FunMap work on funmap2.

#> iter= 10 LL= -1146.848

#plot the result

module_ode1 <- get_ode_par(data = module_data[[1]],</pre> times = 1:14,order = 3, reduction = FALSE, parallel = FALSE) #> Start variable selection

module_data <- get_module_data(data_par = c1\$curve_par, times = 1:14)</pre>

#alternatively, use a cluster data(ck) for variable selection

col = 1,

#for module, just input module data

#> Finish variable selection

#> initial value 231.202046 #> iter 10 value 0.004505 #> iter 20 value 0.004431 #> iter 30 value 0.004232 #> iter 40 value 0.004145 #> iter 50 value 0.004096 #> iter 60 value 0.004079 #> iter 70 value 0.004072 #> iter 80 value 0.004063 #> final value 0.004062

#> initial value 3.134045 #> iter 10 value 0.001245 #> iter 20 value 0.000372 #> iter 30 value 0.000372 #> iter 40 value 0.000372 #> iter 50 value 0.000372 #> final value 0.000372

#> initial value 0.919899 #> iter 10 value 0.001476 #> iter 20 value 0.000684 #> iter 30 value 0.000683 #> iter 40 value 0.000683

#> Start ODE solving

#> converged

#> converged

#> [[1]]

#> [[2]]

#> [[3]]

#> [1] "nn_np_9292"

#> [1] "lm_ll_2416"

#> [1] 2.981482

reduction = TRUE)

4.ODE solving examples

get_interaction(data = c1\$clustered_data[[1]][,-ncol(c1\$clustered_data[[1]])],

#> iter 40 value 0.000683 #> iter 40 value 0.000683 #> final value 0.000683 #> converged *#> initial value 0.391978* #> iter 10 value 0.000187 #> iter 20 value 0.000119 #> iter 30 value 0.000118 #> iter 40 value 0.000117 #> iter 50 value 0.000117 #> iter 60 value 0.000117 #> iter 70 value 0.000117 #> final value 0.000117 *#> converged #> initial value 3.792728* #> iter 20 value 0.004033 #> iter 30 value 0.004023 #> iter 40 value 0.004022 #> iter 40 value 0.004022 *#> final value 0.004022* #> converged #> Finish ODE solving #the result should be further processed module_net1 <- get_all_net(module_ode1)</pre> take a look at whats going on with 1st and 3rd module(i=1, i=3) of CK data get_decomposition_plot(module_ode1, module_net1, 1) Module1 2 5 10 Times get_decomposition_plot(module_ode1, module_net1, 3) Module5 Module3 Effect Module2

Module1

10

Times

5.construct network examples

get_net_output(module_ode1, module_net1, write_data = FALSE)

write files for Cytoscape

#> 1 Module3 Module1 0.193903577 #> 2 Module3 Module2 0.047638701 #> 3 Module4 Module2 0.181438366 #> 4 Module1 Module3 0.157234797 #> 5 Module2 Module3 0.046536628 #> 6 Module5 Module3 0.135069370 #> 7 Module2 Module4 0.017824990

construct network for module 1 (CK)

#> Start variable selection #> Finish variable selection

#> initial value 38.570698 #> iter 10 value 0.003212 #> iter 20 value 0.001157 #> iter 30 value 0.001157 #> iter 40 value 0.001156 #> iter 50 value 0.001156 #> final value 0.001156

#> Start ODE solving

m1_ck <- get_subset_data(data = c1\$clustered_data[[1]], cluster = 1)</pre>

m1_ck_ode <- get_ode_par(data = m1_ck, times = 1:14, order = 3, reduction = TRUE, parallel = FALS

#> \$links

Module1_CK

hk_hD_582

hk_hk_1304 http://doi.org/1591