Factorial ANOVA

(Note that some aspects of this output have been rearranged for the sake of presentation!)

Descriptives - score								
Fa	ctorA FactorB	Mean	SD	N				
1	1	2.000	2.449	4				
	2	7.000	2.449	4)				
2	1	6.000	2.449	4				
	2	5.000	2.449	4				

These descriptive statistics are calculated separately for each group or condition.

These descriptive statistics are calculated separately for each group or condition. A level (marginal) mean can be determined by taking the weighted average of the appropriate group means. For example, the marginal mean for Level 1 of Factor A:

$$M_{LEVEL} = \frac{\sum n(M_{GROUP})}{n_{LEVEL}} = \frac{4(2) + 4(7)}{8} = 4.500$$

A grand mean can be determined by taking the weighted average of all of the group means:

$$M_{TOTAL} = \frac{\sum n(M_{GROUP})}{N} = \frac{4(2) + 4(7) + 4(6) + 4(5)}{4 + 4 + 4 + 4} = 5.000$$

ANOVA - Outcome

Cases	Sum of Squares	df	Mean Square	F	$p \eta^2$	p
FactorA	4.000		4.000	0.667	0.430 0.0	53
FactorB	16.000	1	16.000	2.667	0.128 0.1	82
FactorA * FactorB	36.000	1	36.000	6.000	0.031 0.3	33
Residual	72.000	12	6.000			_∕∱

Note. Type III Sum of Squares

The statistics for the effects of "Factor A" and Factor B" are functions of the level (marginal) means and sample sizes. For "Factor B":

$$SS_{FACTORB} = \sum_{n} n(M_{LEVEL} - M_{TOTAL})^2$$

 $SS_{FACTORB} = 8(4.5 - 5)^2 + 8(5.5 - 5)^2$
 $SS_{FACTORB} = 4.000$

 $df_{FACTORB} = \#levels - 1 = 2 - 1 = 1$

The "Factor A * Factor B" (interaction) statistics reflect the between- group variability not accounted for by the factors:

$$SS_{INTERACTION} = SS_{MODEL} - SS_{FACTORA} - SS_{FACTORB}$$

 $SS_{INTERACTION} = 56.000 - 4.000 - 16.000 = 36.000$
 $df_{INTERACTION} = df_A \times df_B = 1$

"Residual" (error) statistics are a function of the within group variabilities. Because SS for each group can be determined $(SS = SD^2 \times df)$:

$$SS_{ERROR} = SS_1 + SS_2 + SS_3 + SS_4$$

 $SS_{ERROR} = 18.000 + 18.000 + 18.000 + 18.000 = 72.000$
 $df_{ERROR} = df_1 + df_2 + df_3 + df_4 = 12$

Overall, all of the between-group variability is a function of the group means and sample sizes:

$$SS_{MODEL} = \sum_{MODEL} n(M_{GROUP} - M_{TOTAL})^2 = 4(2-5)^2 + 4(7-5)^2 + 4(6-5)^2 + 4(5-5)^2 = 56.000$$

$$df_{MODEL} = \#groups - 1 = 3$$

"Mean Squares" are estimates of the variances associated with each source. For "Factor B":

$$MS_{FACTORB} = \frac{SS_{FACTORB}}{df_{FACTORB}} = 16.000$$

The "F" statistic is a ratio of the effect and within group (error) variance estimates. For "Factor B":

$$F_{FACTORB} = \frac{MS_{FACTORB}}{MS_{ERROR}} = \frac{16.0}{6.0} = 2.667$$

An *F* with 1 and 12 *df* that equals 2.667 has a two-tailed probability of .128, which is not statistically significant.

The " η^2 p" statistic is a ratio of the effect and the effect plus residual variability. For "Factor B":

$$\eta^{2}p = \frac{SS_{FACTOR}}{SS_{FACTOR} + SS_{ERROR}}$$
$$\eta^{2}p = \frac{16.000}{16.000 + 72.000} = 0.182$$

Thus, 18.2% of the variability among the scores is accounted for by Factor B.