Image Stitching

Gang Pan gpan@zju.edu.cn

Slide credit: Darya Frolova, Denis Simakov

Image Stitching

Zhejiang University 17-Oct-17

Application: Image Stitching

- Procedure:
 - Detect feature points in both images

Image Stitching

- Procedure:
 - Detect feature points in both images
 - Find corresponding pairs

Application: Image Stitching

• Procedure:

- Detect feature points in both images
- Find corresponding pairs
- Use these pairs to align the images

Main Flow

Detect key points

Detect Key Points

Main Flow

 (v_1,v_2,\ldots,v_{128})

- Detect key points
- Build the SIFT descriptors

Build the SIFT Descriptors

Zhejiang University

Main Flow

- Detect key points
- Build the SIFT descriptors
- Match SIFT descriptors

Match SIFT Descriptors

Euclidean distance between descriptors

Main Flow

- Detect key points
- Build the SIFT descriptors
- Match SIFT descriptors
- Fitting the transformation

$$T = egin{bmatrix} t_{11} & t_{12} & t_{13} \ t_{21} & t_{22} & t_{23} \ 0 & 0 & 1 \end{bmatrix}$$

Fitting the transformation

• 2D transformations

Skeleton Code

Fit the transformation matrix

$$H = egin{bmatrix} h_{11} & h_{12} & h_{13} \ h_{21} & h_{22} & h_{23} \ 0 & 0 & 1 \end{bmatrix}$$

- Six variables
 - each point give two equations
 - at least three points
- Least squares

Main Flow

 $(v_1, v_2, \ldots, v_{128})$

- (u_1,u_2,\ldots,u_{128}) Detect key points
- Build the SIFT descriptors
- Match SIFT descriptors
- Fitting the transformation
- RANSAC

RANSAC

• A further refinement of matches

Zhejiang University

1

RANSAC [Fischler & Bolles 1981]

- RANdom SAmple Consensus
- Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use only those.

• <u>Intuition</u>: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

RANSAC [Fischler & Bolles 1981]

RANSAC loop:

- 1. Randomly select a *seed group* of points on which to base transformation estimate (e.g., a group of matches)
- Compute transformation from seed group
- 3. Find *inliers* to this transformation
- 4. If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers

Keep the transformation with the largest number of inliers

- Task: Estimate the best line
 - How many points do we need to estimate the line?

 Task: Estimate the best line 1 inlier points" Slide credit: Jinxiang Chai Repeat, until we get a good result.

Algorithm 15.4: RANSAC: fitting lines using random sample consensus

Determine:

n — the smallest number of points required

k — the number of iterations required

t — the threshold used to identify a point that fits well

d — the number of nearby points required

to assert a model fits well

Until k iterations have occurred

- Oraw a sample of n points from the data uniformly and at random
- Fit to that set of n points
- For each data point outside the sample Test the distance from the point to the line against t; if the distance from the point to the line is less than t, the point is close

end

If there are d or more points close to the line then there is a good fit. Refit the line using all these points.

end

Use the best fit from this collection, using the fitting error as a criterion

RANSAC: How many samples?

- How many samples are needed?
 - Suppose w is fraction of inliers (points from line).
 - n points needed to define hypothesis (2 for lines)
 - k samples chosen.
- Prob. that a single sample of n points is correct: w^n
- Prob. that all k samples fail is: $(1-w^n)^k$
- \Rightarrow Choose k high enough to keep this below desired failure rate.

Slide credit: David Lowe

RANSAC: Computed k (p=0.99)

Sample size	Proportion of outliers						
n	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Slide credit: David Lowe

After RANSAC

- RANSAC divides data into inliers and outliers and yields estimate computed from minimal set of inliers.
- Improve this initial estimate with estimation over all inliers (e.g. with standard least-squares minimization).
- But this may change inliers, so alternate fitting with re-classification as inlier/outlier.

RANSAC: Pros and Cons

• Pros:

- General method suited for a wide range of model fitting problems
- Easy to implement and easy to calculate its failure rate

• Cons:

- Only handles a moderate percentage of outliers without cost blowing up
- Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)
- A voting strategy, The Hough transform, can handle high percentage of outliers

Skeleton Code

- RANSAC
 - ComputeError

$$\left\|egin{bmatrix} x_2 \ y_2 \ 1 \end{bmatrix} - H egin{bmatrix} x_1 \ y_1 \ 1 \end{bmatrix}
ight\|_2$$

Main Flow

- Build the SIFT descriptors
- Match SIFT descriptors
- Fitting the transformation
- RANSAC

$$(v_1,v_2,\ldots,v_{128})$$

Results

Results

Image Blending

Pyramid Creation

- "Gaussian" Pyramid
- "Laplacian" Pyramid
 - Created from Gaussian pyramid
 by subtraction
 L_I = G_I expand(G_{I+1})

Octaves in the Spatial Domain

Lowpass Images

Bandpass Images

Pyramid Blending

Main Flow

- Detect key points
- Build the SIFT descriptors
- Match SIFT descriptors
- Fitting the transformation
- RANSAC
- Image Blending