

CROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

FORCED CONVECTION HEAT TRANSFER FROM A FINNED ARRAY WITH AN ADJUSTABLE OUTER CHANNEL BOUNDARY

bу

Terry L. Mellon

June 1986

Thesis Advisor:

A. D. Kraus

Approved for public release; distribution is unlimited.

86 11 19 009

			•	REPORT DOCU	MENTATION	PAGE			
1a REPORT SE	CURITY CLASS	SIFICATI	ION		16. RESTRICTIVE	MARKINGS			
2a SECURITY	CLASSIFICATIO	N AUT	HORITY		3 DISTRIBUTION	/AVAILABILITY O	FREP	ORT	
26. DECLASSIF	ICATION / DOV	VNGRA	DING SCHEDU	LE	1	for publi			e ;
			و المالية الم		<u> </u>	tion is un			
4 PERFORMIN	G ORGANIZA1	TION RE	PORT NUMBE	R(S)	5. MONITORING	ORGANIZATION R	EPORT	NUMBER(S	5)
6a. NAME OF	PERFORMING	ORGAN	NIZATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MO	ONITORING ORGA	NIZAT	ION	
Naval Po	ostgradi	ıate	School	Code 69	Naval Pos	tgraduate	Sc	hool	
6c. ADDRESS (City, State, an	d ZIP C	ode)		7b. ADDRESS (Cit	y, State, and ZIP	Code)		
Monterey	y, Calif	forn	ia, 939	943	Monterey,	Californ	ia,	9394	3
8a. NAME OF I ORGANIZA		NSORI	NG	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	INSTRUMENT ID	ENTIF	CATION NU	MBER
8c ADDRESS (C	lity, State, and	ZIP Co	de)		10. SOURCE OF F	UNDING NUMBER	S	······································	
	-		e Schoo	1	PROGRAM ELEMENT NO	PROJECT	TASK		WORK UNIT
Monter	ey, CA	9394	3-5100		ELEWIEN NO.	NO	NO		ACCESSION NO
11 TITLE (Inclu	ide Security C	lassifica	tion)		<u>. </u>		L		
Forced (Convecti	lon	Heat Tra	nsfer from a	Finned Ar	ray with	an	Adjust	able
Outer Cl	nannel H			(Unclassifi					
Terry L.	. Mellor	1							1
'3a TYPE OF F			136 TIME CO		14 DATE OF REPO		Day)	15 PAGE	COUNT
Engineer			FROM	to	86 June			204	
'6 SUPPLEMEN	NIAKY NOIAI	ION							
. ,						· · · · · · · · · · · · · · · · · · ·			
FELD	GROUP		8-GROUP	18 SUBJECT TERMS (C					4
				Finned, Co Convection	onvection,	Heat Tran	sfe	r, For	ced
19 ABSTRACT	(Continue on	reverse	if necessary	and identify by block in	number)				
An ar	nalysis Ritudina	was 1 f	made of	the heat tr n an adjustab	ansfer cha	racterist	ics	of an	array
constar	it heat	flu	x into t	the base of t	he array.	The chan	nel	bound	arv could
be move	ed to pr	ovi	de fin t	ip clearance	ratios fr	om zero t	o t	wice t	he fin
height.	. Veloc	ity	variati	ons in the i	nterfin sp	aces and	the	open	channel
adjacer	it to th	e f	in tips	caused a var	iation in	the calcu	lat	ed hea	t transfer
coeffic	ients a	TOUS	g the he	eight of the the region of	rinned arr	ay, with	the	maxim	um
fin tir	heat 1	OSS	was a f	function of t	he clearan	ce hetwee	n ti	was s he fin	tin and
the out	er chan	nel	boundar	y, and that	the maximu	m heat lo	ss (could	occur on
or near	the fi	n t	ip. It	was also sho	wn how the	tip heat	lo	ss aff	ected the
heat tr	ansfer	chai	racteris	tics of the	array. Ce	nterline	vel	ocity	profiles
20 DISTRIBUTIO	ON / AVAILARI	LITY OF	F ABSTRACT		21 ABSTRACT SEC	URITY CLASSIFICA	ATION		
. NCLASSI	FIEDWINLIMIT	ED C	SAME AS RE	PT DTIC USERS	Unclas	sified			
Prof. A			DUAL		646-2730		22c	office syl	MBOL Ks
DD FORM 14	73, 84 MAR		83 APF	Redition may be used un All other editions are ob		SECURITY (LASSI	FICATION O	F THIS PAGE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

and streamline profiles developed for laminar flow with the finned array both heated and unheated. For the heated condition, two heat fluxes were used with three different clearance ratios. Temperature profiles within the fin were developed for the lower heat flux for both laminar and turbulent flow. Laminar flow results were compared to the analytical work of Acharya and Patankar.

Account	77.
Accession	FOR
NTIS GRAS	ı I
DTIC TAB	
Unatino Jaca	તો 🗀
Justines	
By	
Distributi	on/
Availabil	
	and/or
l and	cial
	1
1	1
MI	i
	1

5 3 1 1 1 2 2 1 4 5 6 2 1

Unclassified

Approved for public release: distribution is unlimited

Forced Convection Heat Transfer from a Finned Array with an Adjustable Outer Channel Boundary

Ъy

Terry L. Mellon Lieutenant, USN B.S.M.E., Vanderbilt University, Nashville, 1978

Submitted in partial fulfillment of the requirements for the degrees of

> MASTER OF SCIENCE IN MECHANICAL ENGINEERING and MECHANICAL ENGINEER

> > from the NAVAL POSTGRADUATE SCHOOL June 1986

Author:

Paul J. Marko, Chairman Department of Mechanical Engineering

Dean of Science and Engineering

ABSTRACT

of analysis was made the heat transfer characteristics of an array of longitudinal fins adjustable outer channel boundary and a constant heat into the base of the array. The channel boundary could moved to provide fin tip clearance ratios from zero to twice the fin height. Velocity variations in the inter-fin spaces and the open channel adjacent to the fin tips caused variation in the calculated heat transfer coefficients along with height of the finned array, the maximium coefficient occurring in the region of maximum velocity. was shown that fin tip heat loss was a function of clearance between the fin tip and the channel boundary, that the maximum heat loss could occur on or near the fin tip. It was also shown how the tip heat loss affected heat transfer characteristics οf the Centerline velocity profiles and streamline profiles were developed for laminar flow with the finned array both heated and unheated. For the heated condition, two heat fluxes with three different clearance were used ratios. Temperature profiles within the fin were developed for lower heat flux for both laminar and turbulent flow. Laminar flow results were compared to the analytical work of Acharya and Patankar.

Representation of the second contraction of

TABLE OF CONTENTS

I.	INT	RODU	CTIO	N.	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	16
	Α.	Back	grou	n d			•		•	•	•	•	•	•	•	•	•		•	•	16
	В.	Prob	lem	Form	ıu1	at	io	n.	•	•	•				•	•	•	•		•	16
	c.	Theo	ry a	nd A	ss	um	pt:	ion	5	•			•		•	•		•	•	•	18
	D.	Ana1	ysis	•		•	•		•	•	•	•	•	•		•	•				20
II.	EQU	JIPME	NT D	ESIG	N	A N	D N	MEA:	SUE	REM	IEN	T	DE	VI	CE	S	•				23
	A.	Temp	erat	ure	Мe	as	ure	eme	nt	Th	eo	ry	•		•	•	•		•		23
	В.	Long	itud	inal	. F	in	Aı	rra	y a	and	I	'h e	rn	юс	ou	p1	e				
		Place	emen	t.	•		•		•	•			•	•	•		•				27
	c.	Sili	con	Pad	Нe	at	er	•	•	•	•	•			•		•		•	•	29
	D.	Oute	r Ch	anne	1	Во	uno	dar	y a	and	I	n1	et	В	el	1	•				31
	E.	Duct	ing	and	Fa	n	Ass	sem'	b1	7					•		•		•	•	32
	F.	Auto	data	Nin	ıe					•	•			•			•			•	34
	G.	Hot	Wire	Ane	mo	пe	te	r .	•	•	•										38
	н.	Summa	ary		•	•	•			•					•	•			•		41
III.	LAN	MINAR	FLO	w.	•		•		•	•	•										43
	Α.	Purp	ose		•															•	43
	В.	Modi	fied	Gra	sh	οf	N 1	ım b	er	οf	1	04	•	•			•				48
		1. C	lear	ance	e P	ar	ame	ete	r =	= 0	0.0),	Ο.	4	an	đ	1.	0			48
		2. C	ente	rlin	e	۷e	100	it	y I	Pro	fi	1 e	s	•	•						53
	c.	Modi	fied	Gra	sh	οf	Νı	um b	er	o f	1	06)		•	•					57
		1. C	lear	ance	e F	ar	ame	ete	r -	= 0	0.0),	0.	4	an	d	1.	0	•	•	57
		2. C	ente	rlin	ıe	۷e	100	cit	y 1	Pro	fi	le	s								61

	D.	Cen	terl	ine	e V	e1	0 C	it	y	Pr	οf	il	e	Co	m p	ar	is	ОП	l	•	•	•	61
IV.	TUE	RBUL	ENT	FLC	W	•	•	•	•	•	•		•	•	•	•	•		•		•	•	67
	Α.	Pur	pose		•	•	•	•	•	•		•		•	•	•		•	•	•	•	•	67
	В.	Mod	lifie	d G	Fra	sh	οf	Nı	um	bе	r	οf	1	.04	•	•			•	•	•	•	68
		1.	C1ea	ran	ıce	P	ar	a m e	e t	er	=	: 0),	0.	4	ап	đ	1.	0	•		68
		2.	Cent	erl	in	е	۷e	100	сi	tу	P	ro	fi	.1e	S			•	•	•	•	•	72
	c.	Mod	lifie	ed G	Gra	sh	οf	Nı	um	bе	r	οf	1	.06	•	•		•	•	•	•	•	74
		1.	C1ea	ran	ıce	P	ar	amo	еt	er	=	0),	Ο.	4	aл	d	î.	0		•	74
		2.	Cent	er1	in	е	Ve:	100	сi	tу	P	ro	fi	. 1 e	s		•	•	•	•	•	•	74
	D.	Cen	terl	ine	e V	e1	o c :	it	y	Pr	οf	i1	e	Со	m p	ar	is	оп	ì	•	•		74
	E.	Lam	inar	-Tu	ırb	u1	en	t]	F1	o w	C	om	pa	ri	sc	n	•	•	•	•	•	•	82
٧.	TEN	1PER	ATUR	RE F	PRO	FI	LE	S	•	•		•	•	•	•				•		•		89
	Α.	Pur	pose		•	•	•	•	•			•		•	•	•	•		•	•	•	•	89
	В.	Lam	inar	F1	.ow			•	•		•			•	•					•	•		89
	c.	Tur	bule	ent	Fl	o w		•	•	•	•			•	•				•	•	•		94
VI.	CON	NVEC	CTION	CC	EF	FI	CI	EN'	rs										•	•		•	98
	Α.	Bac	kgro	und	i	•		•	•									•					98
	В.	Lam	inar	F1	Low	,	•	•	•														98
	c.	Tur	bule	ent	F1	o w		•	•		•				•				•	•	•	•	105
VII.	COI	NCLU	ISION	1S	•		•	•	•	•	•												108
vIII.	REC	COMM	IENDA	TIC	ONS		•	•	•		•			•	•				•	•	•		110
APPENI	XIC	A:	LONG	SITU	JDI	N A	L	FI	N	A R	R A	Y	DI	ME	ENS	IC	NS	;	•		•		115
APPENI	XIC	B:	AUTO	DAT	ΓA	ΝI	ΝE	Al	N D	Т	ΗE	RM	100	cou	IPL	E							
			CALI	I B R A	TI	ON		•	•	•						•			•			•	119
APPENI	XIC	C:	нот	WIF	RE	SY	ST	EM	С	ΑL	ΙB	BR A	ТІ	ON	ſ							•	126

APPENDIX	D:	LAMINA	R H	OT '	WIRE	DA	TA	FOR	G	r+.	= 10	4 _V	rIV	H			
		C=0.0,	C=	0.4	AND	C=	1.0	, I	NC	LU	KIC	G					
		UNHEAT	ED	TES	T CAS	SE		•	•	•		•	•	•	•	•	135
APPENDIX	E:	LAMINA	R H	ОТ	WIRE	DA	TA	FOR	G	r ⁺ :	= 10	6 _V	VI'I	H			
		C=0.0,	C=	0.4	AND	C=	1.0		•	•		•	•	•	•		154
APPENDIX	F:	TURBUL	ENT	НО	r wi	RE	DAT	'A F	OR	G	-+=	104	, M	/II	H		
		C=0.0,	C=	0.4	AND	C=	1.0		•	•		•	•	•	•	•	170
APPENDIX	G:	TURBUL	ENT	НО	r wi	RE	DAT	'A F	OR	G	r ⁺ =	10	ó W	ΙI	'H		
		C=0.0,	C=	0.4	AND	C=	1.0		•	•			•	•		•	186
LIST OF R	EFE	ERENCES				•		•	•			•	•			•	202
BIBLIOGRA	PHY	·				•		•		•		•	•		•		203
INITIAL D	ISI	RIBUTI	ON	LIS	r.	•				•		•					204

LIST OF TABLES

1.	MURRAY-GARDNER ASSUMPTIONS FOR EXTENDED	
	SURFACES	24
2.	PRELIMINARY CALCULATIONS OF HEAT INPUT TO	
	MATCH MODIFIED GRASHOF NUMBERS	30
3.	EQUIPMENT LIST	42
4.	CALCULATED STEADY STATE FIN TEMPERATURES	
	FOR LAMINAR FLOW	00
5.	CALCULATED STEADY STATE FIN TEMPERATURES	
	FOR TURBULENT FLOW	ი 1

LIST OF FIGURES

1.1	Shrouded Fin Array and Nomenclature	18
1.2	Study and Computations Typical Module	19
2.1	Extended Surface Profile, Terminology, and	
	Coordinate System	23
2.2	Longitudinal Fin Assembly	27
2.3	Thermocouple Placement Map	28
2.4	Finned Array and Outer Channel Boundary	31
2.5	Test Assembly with Finned Array, Inlet Bell,	
	Support Assembly, Insulation, Outer Channel	
	Boundary and Adjusting Bolts	33
2.6	Cooling Fan Characteristics	35
2.7	Final Assembly - Showing All Components	36
2.8	Autodata Nine Data Recorder	37
2.9	Hot Wire Anemometer Traversing Mechanism	39
2.10	Hot Wire Anemometer Equipment	40
3.1	Comparison of a Centerline Velocity Profile to	
	the Original Hot Wire Voltage Readings Profile .	44
3.2	Comparison of Centerline Velocity Profiles	
	for a Heated and Unheated Case	46
3.3	Streamline Profiles for Heated and	
	Unhasted Case	4.7

3.4	Hot Wire Orientation for Measuring Strength	
	of Secondary Flow	49
3.5	Streamlines for $Gr^{+}=10^{4}$, C=0.0, Laminar Flow	50
3.6	Streamlines for $Gr^+=10^4$, C=0.4, Laminar Flow	51
3.7	Streamlines for $Gr^{+}=10^{4}$, $C=1.0$, Laminar Flow	52
3.8	Laminar Flow Centerline Velocities, Gr ⁺ =10 ⁴ ,	
	C=0.0, C=0.4, and C=1.0	54
3.9	Axial Velocity Distribution of Acharya	
	and Patankar for $Gr^{+}=10^{4}$, $C=0.0$ and $C=1.0$	55
3.10	Hot Wire Probe Location from the Exit Plane	
	of the Finned Array	56
3.11	Streamlines for $Gr^{+}=10^{6}$, C=0.0, Laminar Flow	58
3.12	Streamlines for $Gr^+=10^6$, C=0.4, Laminar Flow	59
3.13	Streamlines for $Gr^{+}=10^{6}$, C=1.0, Laminar Flow	60
3.14	Laminar Flow Centerline Velocities, $Gr^+=10^6$	
	C=0.0, C=0.4, and C=1.0	62
3.15	Axial Velocity Distribution of Acharya	
	and Patankar for $Gr^+=10^6$, $C=0.0$ and $C=1.0$	63
3.16	Profile Comparison for C=0.0	64
3.17	Profile Comparison for C=0.4	65
3.18	Profile Comparison for C=1.0	66
4.1	Streamlines for $Gr^{+}=10^{4}$, C=0.0, Turbulent Flow .	69
4.2	Streamlines for $Gr^+=10^4$, C=0.4, Turbulent Flow .	70
4.3	Streamlines for $Gr^{+}=10^{4}$, C=1.0, Turbulent Flow .	71
4.4	Turbulent Centerline Velocity Profiles, $Gr^+=10^4$	
	C=0.0, C=0.4, and C=1.0	73

4.5	Streamlines for $Gr^{+}=10^{6}$, C=0.0, Turbulent Flow.	75
4.6	Streamlines for $Gr^{+}=10^{6}$, C=0.4, Turbulent Flow.	76
4.7	Streamlines for $Gr^{+}=10^{6}$, C=1.0, Turbulent Flow .	77
4.8	Turbulent Centerline Velocity Profiles, $Gr^{+}=10^{6}$	
	C=0.0, C=0.4, and C=1.0	78
4.9	Profile Comparison for C=0.0	79
4.10	Profile Comparison for C=0.4	80
4.11	Profile Comparison for C=1.0	81
4.12	Laminar-Turbulent Comparison $Gr^{+}=10^{4}$, C=0.0	83
4.13	Laminar-Turbulent Comparison $Gr^{+}=10^{4}$, C=0.4	84
4.14	Laminar-Turbulent Comparison $Gr^+=10^4$, C=1.0	85
4.15	Laminar-Turbulent Comparison $Gr^{+}=10^{6}$, C=0.0	86
4.16	Laminar-Turbulent Comparison $Gr^{+}=10^{6}$, C=0.4	87
4.17	Laminar-Turbulent Comparison $Gr^+=10^6$, $C=1.0$	88
5.1	Fin Thermocouple Placement	90
5.2	Temperature Profile Gr ⁺ =10 ⁴ , C=0.0,	
	Laminar Flow	91
5.3	Temperature Profile Gr ⁺ =10 ⁴ , C=0.4,	
	Laminar Flow	92
5.4	Temperature Profile $Gr^+=10^4$, C=1.0,	
	Laminar Flow	93
5.5	Temperature Profile Gr ⁺ =10 ⁴ , C=0.0,	
	Turbulent Flow	95
5.6	Temperature Profile Gr ⁺ =10 ⁴ , C=0.4,	
	Turbulent Flow	9.6

5.7	Temperature Profile Gr = 104, C=1.0,
	Turbulent Flow
6.1	Test Results and Analytical Convection Heat
	Transfer Coefficient Comparison for C=0.0 102
6.2	Test Results and Analytical Convection Heat
	Transfer Coefficient Comparison for C=0.4 103
6.3	Test Results and Analytical Convection Heat
	Transfer Coefficient Comparison for C=1.0 104
6.4	Test Results Convection Heat Transfer
	Coefficient Results for Laminar Flow 106
6.5	Test Results Convection Heat Transfer
	Coefficient Results for Turbulent Flow 107
8.1	Recommended Probe Position

SOURCE SECRECAL MARKET PROPERTY SOURCE SECRETARY SECRETARY SECRETARY SECRETARY

NOMENCLATURE

- A Crosssectional Area, in²
- c Fin Tip to Outer Channel Boundary Distance, in
- C Dimensionless Fin Tip Clearance, c/H
- C Constant Pressure Specific Heat, Btu/1bm OF
- ds Differential Surface Area
- dx Differential Direction x
- g Acceleration of Gravity, ft/sec²
- h Convection Heat Transfer Coefficient, Btu/hr ft OF
- h Average Heat Transfer Coefficient, Btu/hr ft OF
- H Fin Height, in
- k Thermal Conductivity, Btu/hr ft OF
- L Finned Array Length, in
- Q' Heat Transfer per Unit Length, Btu/hr ft
- p Dimensionless Pressure at a Given Section, $p'/\rho(v/H)^2$
- p' Modified Pressure, 1bf/in²
- p Mean Pressure, 1bf/in²
- s Fin Spacing, in
- S Dimensionless Fin Spacing, s/H
- t Fin Thickness, in
- T Local Air Temperature, OF
- T_h Finned Array Base Temperature, ${}^{\rm O}F$
- T_u Finned Array Fin Temperature, ^oF
- u x-Component of Axial Velocity, ft/sec

- \vec{u} Average x-Component of Axial Velocity, ft/sec
- U Dimensionless u velocity, u/(v/H)
- v y-Component of Axial Velocity, ft/sec
- \overline{v} Average y-Component of Axial Velocity, ft/sec
- V Dimensionless v velocity, v/(v/H)
- w z-Component of Axial Velocity, ft/sec
- $\overline{\mathbf{w}}$ Average z-Component of Axial Velocity, ft/sec
- W Dimensionless u velocity, $w/(-dp/dz)(H^2/\mu)$
- X. Dimensionless x-direction, x/H
- y Vertical Coordinate, in
- Y Dimensionless Y-direction, y/H
- z Axial Coordinate, in
- Y Dimensionless z-direction, y/H

Greek Symbols

- ρ Density, $1bm/ft^3$
- ϕ Dimensionless Temperature, k(T-Tw)/Q'
- Absolute Viscosity, 1bm/ft sec
- V Kinematic Viscosity, ft²/sec
- ρ_{ω} Density at Wall Temperature
- ρ_b Density at Base Temperature
- eta Coefficient of Thermal Expansion, $1/{}^{f o}$ F
- $\theta_{\mbox{\scriptsize rr}}$ Temperature Excess in the Fin, ${}^{\mbox{\scriptsize o}} F$

ACKNOWLEDGEMENT

The author wishes to express his sincere appreciation to the staff of the Mechanical Engineering Machine Shop for their efforts in the design and construction of the test apparatus and for their patience with the seemingly endless modifications which took place.

To Professor Kraus, for his patience, encouragement and guidance throughout the course of this effort - Thank you, you helped to make it all possible.

To my lovely wife, Patricia, who assisted in the typing and assembly of the final report, but, more importantly, helped to maintain my sanity; and Christopher, who makes everything better - Thank you.

And to one other, a very special thank you.

I. INTRODUCTION

A. BACKGROUND

The finned structures currently being used for all types of heat exchangers are comprised of a myriad of shapes and sizes, with an almost infinite variety of orientations with respect to the flow of the cooling medium. Previous investigations have not focused specifically οn experimental heat transfer characteristics of longitudinal fins encased in a variable geometry enclosure, i.e., fins operating with an adjustable outer channel Therefore, this study has been undertaken to further the understanding of the forced convection heat transfer performance of a longitudinal finned array with a moveable outer channel boundary. The study is conducted for laminar as well as for turbulent flow conditions.

B. PROBLEM FORMULATION

An analytical but seminal study of "Laminar Mixed Convection in a Shrouded Fin Array" was accomplished by Acharaya and Patankar [Ref. 1]. The first objective of this current study was the design and construction of a test apparatus capable of closely approximating Acharya and Patankar's analytical work, thus helping to verify the analytical results and to establish the credibility of the

equipment design. After verification of laminar results, the same equipment was to be capable of producing turbulent flow in the finned array. It was felt that the high velocities inherent to a turbulent flow field should enchance the local heat transfer characteristics in regions of high velocity. The effect on the overall heat transfer performance of the array was also to be determined.

The basic aspects of the design were established in very general terms. It was necessary to have (1) an array of longitudinal fins, (2) a known heat input into the array, (3) an adjustable outer channel boundary, (4) induced air flow (either turbulent or laminar), and (5) some means of measuring velocity and temperature.

Given a finned surface with the accompanying channel boundary at some position that includes a fin-tip clearance (Figure 1.1), the air flow is in the longitudinal direction, along the length of the fins. The air will seek the path of least resistance, and will flow through the relatively large plenum area above the array. Theoretically, if the fin spacing could be reduced, then it logically follows that the flow imbalance would become even more severe. When combined with viscous effects, this flow imbalance will give rise to relatively low velocities near the fin base, and to relatively larger velocities near the fin tip.

If adjacent to the fin, the effect of increased velocities is to enhance the local heat transfer

coefficient. Acharya and Patankar have analytically verified this effect for laminar flow conditions. However, the overall heat transfer effectiveness of the array is degraded because of low velocity areas near the base [Ref. 2]. The effect of turbulent flow is to be determined.

Figure 1.1 Shrouded Fin Array and Nomenclature.

C. THEORY AND ASSUMPTIONS

The elliptical flow field vastly complicates heat transfer calculations. However, the geometrical similarities of the physical problem can be used to define a typical study module, which is based on inter-fin channel symmetry lines and physical boundaries (Figure 1.2).

Figure 1.2 Study and Computations Typical Module.

Certain assumptions are necessary for both laminar and turbulent flow conditions. These assumptions are as follows:

- 1. Only fully-developed thermal and hydrodynamic conditions are considered.
- 2. The outer channel boundary is considered to be adiabatic when under steady state conditions.
- 3. The base surface and fins transfer heat at a uniform rate per unit axial length.
- 4. At any given cross-section, the temperature of the fin and base surface is considered to be uniform.
- 5. The Prandtl number of air is assumed to be 0.7, to match the work of Acharya and Patankar.

6. The thin fin assumption is valid, i.e., t/h <<1 and t/s <<1.</p>

These assumptions are used primarily to establish the analytical problem, which in turn establishes the characteristics of the test equipment.

D. ANALYSIS

The fully-developed profiles and thermal boundary conditions imply that the temperature rise in the z-direction is linear. The overall heat balance of the domain of a particular module gives the rate of change of temperature in the z-direction as:

$$\frac{\partial T}{\partial z} = \frac{dT_w}{dz} = \frac{Q'}{\rho C_p(s/2)(H+c)w}$$
 (1.1).

With dimensionless variables defined by

$$X = \frac{x}{H}$$
 $Y = \frac{y}{H}$ $S = \frac{s}{H}$ $C = \frac{c}{H}$ (1.2a)

$$U = \frac{u}{(v/H)}$$
 $V = \frac{v}{(v/H)}$ $W = \frac{w}{(-dp/dz)(H^2/\mu)}$ (1.2b)

$$P = \frac{p'}{(v/H)^2 \rho} \qquad \varphi = \frac{(T-T_w)k}{Q'} \qquad (1.2c),$$

the conservation equations for mass, momentum and energy then become

$$\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} = 0 \tag{1.3}$$

$$U\frac{\partial U}{\partial X} + V\frac{\partial U}{\partial Y} = -\frac{\partial P}{\partial X} + \frac{\partial^2 U}{\partial X^2} + \frac{\partial^2 U}{\partial Y^2}$$
 (1.4)

$$U\frac{\partial V}{\partial X} + V\frac{\partial V}{\partial Y} = -\frac{\partial P}{\partial Y} + \frac{\partial^2 V}{\partial X^2} + \frac{\partial^2 V}{\partial Y^2} + Gr^+ \Phi$$
 (1.5)

$$U\frac{\partial W}{\partial X} + V\frac{\partial W}{\partial Y} = 1 + \frac{\partial^2 W}{\partial X^2} + \frac{\partial^2 W}{\partial Y^2}$$
 (1.6)

$$U \frac{\partial \phi}{\partial X} + V \frac{\partial \phi}{\partial Y} = \frac{1}{Pr} \left[\frac{\partial^2 \phi}{\partial X^2} + \frac{\partial^2 \phi}{\partial Y^2} \right] - \frac{2}{Pr} \left[\frac{(W/W)}{S(1+c)} \right]$$
 (1.7)

with equations 1.2a through 1.7 being defined by Acharya and Patankar [Ref. 1].

For fully developed conditions only the magnitude of the modified Grashof number governs the heat transfer results for a fixed duct length and fin spacing [Ref. 1]. Also, the Reynolds number is not a significant factor because of the fully-developed flow condition [Ref. 3]. The modified Grashof number is defined by Acharya and Patankar [Ref. 1] as:

$$Gr^{+} = \frac{g\beta Q^{\dagger}H^{3}}{v^{3}k}$$
 (1.8)

and is a function of the following variables:

 The thermal properties of the cooling medium, specifically the kinematic viscosity, the thermal conductivity, and the coefficient of thermal expansion.

- 2. The energy transferred into the array per unit axial length.
- 3. The characteristic dimension, i.e., height of the fin.

With the problem thus defined, a test apparatus was designed and constructed.

II. EQUIPMENT DESIGN AND MEASUREMENT DEVICES

A. TEMPERATURE MEASUREMENT THEORY.

The Murray-Gardner Assumptions are essential to classical fin theory (Table 1)[Ref. 4:p. 344]. It is these assumptions which make an analytical solution to the problem of fin temperature and heat transfer rate possible. Consider an extended surface in constant temperature surroundings (T_s) with a known temperature at the base of the fin (T_h) (Figure 2.1).

Figure 2.1 Extended Surface Profile, Terminology, and Coordinate System.

A differential element, dx, will have a cross sectional area normal to the path of heat flow given by

$$A=tL \qquad (2.1)$$

TABLE 1

MURRAY-GARDNER ASSUMPTIONS FOR EXTENDED SURFACES

- 1. The heat flow is steady, i.e., the temperature in the fin does not vary with time.
- 2. The fin material is homogeneous; the thermal conductivity is constant and uniform.
- 3. The coefficient of heat transfer is constant and uniform over the entire face surface of the fin.
- 4. The temperature of the surrounding fluid is constant and uniform. Because one is dealing with cooling, this temperature is always assumed to be lower than that at any point on the fin.
- 5. There are no temperature gradients within the fin other than along its height. This requires that the fin length and height be great when compared with the width.

THE PERSON OF THE STATE OF THE STATE OF THE STATES OF THE

- 6. There is no bond resistance to the flow of heat at the base of the fin.
- 7. The temperature at the base of the fin is uniform and constant.
- 8. There are no heat sources within the fin itself.
- 9. Unless otherwise noted, there is a negligible amount of heat transferred by convection from the edge and sides of the fin.

and differential surface area

$$dS=2(L+t)dx \qquad (2.2a)$$

which reduces to

$$dS = 2Ldx (2.2b)$$

if assumptions 5 and 9 of TABLE 1 are honored.

Define the temperature excess as the difference between the fin temperature at any point and the constant temperature surroundings as

$$\theta = T - T_{s} \tag{2.3a}$$

so that

$$d\theta = dT (2.3b)$$

A simple energy balance on the differential element yields

$$-kA\frac{dT}{dx} = -kA\frac{dT}{dx} - \frac{d}{dx}\left(kA\frac{dt}{dx}\right) + 2hL\left(T - T_s\right)dx \qquad (2.4).$$

The differential equation for temperature excess is

$$\frac{d^2\theta}{dx^2} - m^2\theta = 0 \tag{2.5}$$

where

$$m = \left(\frac{2h}{kt}\right)^{\frac{1}{2}} \tag{2.6}.$$

The general solution to the differential equation is of the form

$$\theta(x) = C_1 e^{mx} + C_2 e^{-mx} \tag{2.7}$$

where the arbitrary constants \boldsymbol{C}_1 and \boldsymbol{C}_2 are evaluated from the boundary conditions

$$\theta = \theta_b$$
 at $x=b$ (2.8a)

$$\frac{d\theta}{dx} = 0 \quad \text{at} \quad x=0 \tag{2.8b}$$

and the particular solution is

$$\theta(x) = \theta_b \frac{\cosh mx}{\cosh mb} \tag{2.9}$$

The heat flow into the base of the fin is obtained by the derivative of equation (2.9) multiplied by the quantity $k\cdot A=ktL$ and evaluated at x=b so that

$$q_b = ktL\theta_b tanh mb$$
 (2.10)

The evaluation of the temperature profile and the heat transfer at the base thus involves an evaluation of equation 2.6. This is, in turn, a function of the still-unknown surface heat transfer convection coefficient. Typical values of the convection coefficient for forced convection in gases are $50 \text{ W/m}^2\text{K} - 250 \text{ W/m}^2\text{K}$ [Ref. 5:p. 9], which is approximately 9 BTU/hrft ^2F - 44 BTU/hrft ^2F . Obviously, either the convection coefficient must be determined, or some other means of determining the value of m as given by equation (2.6) must be obtained.

Examination of equation 2.9 indicates that if the temperature at two points on the fin is a known quantity, then m can be calculated by the relatively simple solution of two simultaneous equations. Thus, the first item of the

equipment design is the determination of temperature measurement locations and appropriate devices.

B. LONGITUDINAL FIN ARRAY AND THERMOCOUPLE PLACEMENT

1

STATES STATES STATES STATES STATES STATES STATES

A longitudinal fin assembly with fins of rectangular profile was obtained and configured to match the requirements of the testing procedure (Figure 2.2).

Figure 2.2 Longitudinal Fin Assembly.

The nominal length of the assembly is 15 inches with a mean fin height of 0.9177 inches and a mean fin spacing of 0.3072 inches. The mean fin thickness is 0.0838 inches, and the mean base thickness is 0.2060 inches. Appendix A presents a listing of the actual dimensions as measured on the array, including the mean values and standard deviations

of each dimension. The assembly is extruded commercial aluminum.

To facilitate temperature measurement, 75 copper-constantin thermocouples were mounted in and on the array. At twenty locations, 0.035-inch holes were drilled to a depth of 0.0375 inches and 0.7500 inches with a longitudinal separation of 0.1875 inches, for a total of 40 thermocouples. An additional 35 thermocouples were surface-mounted to the fin base (Figure 2.3). Thus, 75 thermocouples, numbered 20-94, were available to obtain a two-dimensional temperature profile of the finned array.

20 60 25	21 61 26	22 62 27	23 63 28 80	2- 64 29	3/32 inch Separation
,	93	52	81	}	, 1.3 inch Spacing
30	31	32	37	34	
	40	6.7	0.5	nu	
3.5	34	37	3-	34	
*	86			1	
	00	87			
			88		
			89		
40	4-1	42	43	44	
70	7.1	72	73	74	
45	46	47	48	44	
			90	i	
'			91		
	93	92			
94				i	
50	51	52	53	54	
75	76	77	78	7.9	
55	56	57	58	50	

Trailing Edge - Bottom View

#0 -#4: Set at 3/8 inch depth. #5 -#9: Set at 3/4 inch depth. Above 60: Surface mounted.

Figure 2.3 Thermocouple Placement Map.

An Autodata Nine data recorder with a 100 channel capability was used to record temperatures. Five additional thermocouples were used, four to provide the bulk temperature of the air downstream of the array, and a final thermocouple to provide ambient temperature. With the thermocouples installed a means of heating the unit was necessary.

C. SILICON PAD HEATER

The analytical work of Acharya and Patankar was presented for modified Grashof numbers of 10^4 , 10^6 , and 10^7 . Assuming that air at 100° F is the cooling medium, then the heat input can be calculated to size the heater. From Acharya and Patankar, the modified Grashof number is

$$Gr^{+} = \frac{230' H^{3}}{v^{2} k}$$
 (2.11)

However, the value of

$$\frac{g\beta\rho^2}{\mu^2} \tag{2.12}$$

is a tabulated quantity, yielding

$$Gr^{+} = \left(\frac{2\beta0}{\mu^{2}}\right) \left(\frac{H^{2}Q^{*}}{k}\right)$$
 (2.13).

Rearranging terms yields

$$Q' = \left(\frac{Gr^{+}k}{H^{3}}\right) \left(\frac{u^{2}}{g\beta\rho^{2}}\right)$$
 (2.14)

To size the silicon heater Q' was calculated in (Btu/hr-ft) and Watts (Table 2).

TABLE 2
PRELIMINARY CALCULATIONS OF HEAT INPUT TO MATCH MODIFIED GRASHOF NUMBERS.

air @ 70	$\frac{230}{\mu^2} = 2.3$	S(10 ⁶) 1/ft ** F
	k = 0.1	48 Btu hrft ³ °F
fin arra	у.	H = .9177 in = .0765 ft
	Q'	Q'
Gr ⁺	(Btu/hr ft)	(W)
Gr ⁺ 10 ⁴ 10 ⁶ 10 ⁷	.1390 13.90 139.0	.5930 59.30 593.0

Cost and physical size requirements prohibited the use of a silicon pad heater capable of producing 600 watts. The size is nominally 6.5×15 inches. A heater was readily available with a nominal maximum rating of 450 W, which easily met the requirements of $\mathrm{Gr}^+ = 10^4$ and $\mathrm{Gr}^+ = 10^6$. Therefore, the 450W heater was chosen. Also, the power listings of Table 2 are only preliminary calculations, and the actual determination of the modified Grashof number will be an iterative process.

D. OUTER CHANNEL BOUNDARY AND INLET BELL

The design of the outer channel boundary was straight forward. The channel was to be movable and to provide a fin tip clearance of zero to twice the fin height. The physical dimensions of the channel , nominally 6.5 inches by 15 inches, and the requirement to keep it parallel to the finned array necessitated the use of machine screws. Standard 3/4-inch by 10 TPI screw threads were chosen. Positional accuracy of at least a tenth of an inch was possible, and the screws were readily available (Figure 2.4).

Figure 2.4 Finned Array and Outer Channel Boundary.

The inlet bell was configured to match the array inlet using

$$\frac{h}{h + 2r} = \frac{\pi}{\pi + 2} \tag{2.15}$$

attributable to Moffatt [Ref. 5]. The enclosure hieght is H, and the radius of curvature of the inlet bell is r.

For purposes of this test equipment r was chosen as the mean value for a clearance ratio of one, and the width of the array for a radius of curvature of approximately 2.5 inches. This averaging process led to a decrease in air flow for the outer fins. However, because only the center channels and fins were used, this was not thought to be a problem.

As the outer channel boundary was required to move, a gap was necessary on the lower part of the bell. This gap was sealed with putty during test runs to give a smooth inlet surface. Assembly of the finned array, the heater, all thermocouples, the support base, and the outer channel boundary (Figure 2.5) completed approximately 70 percent of the construction process.

E. DUCTING AND FAN ASSEMBLY

The connecting duct had to satisfy three requirements:

(1) provide an adequate sealing surface at the moveable channel boundary, (2) be long enough to minimize the effect of the fan on the velocity profile at the exit plane of the finned array, and (3) not become unreasonably long.

Assembly, Insulation, Outer Channel Boundary, and Adjusting Bolts. Ligure 2.5 Test Assembly with Finned Array, Inlet Bell, Support

A length of ten fan diameter was chosen as a manageable value for the duct length. The inlet side of the duct was merely sized to fit the exit of the test assembly. The outlet of the duct was sized to match the fan.

The fan chosen was a 115V, 60Hz, alternating current unit capable of delivering 65 SCFM if flow was unrestricted (Figure 2.6). As a hotwire anemometer was being used to measure the velocity field directly, it was unnecessary to calculate fan discharge curves for different pressures and temperatures. It was necessary, however, to be able to control the flow rate through the test assembly. Two methods were available: (1) control the voltage and current to the fan itself, or (2) provide some means of controlling the outlet flow of the fan.

The method chosen was a set of sliding doors at the exit of the fan. These doors were capable of providing flow of approximately zero to full-fan capacity. Figure 2.7 illustrates the final construction of the test unit.

F. AUTODATA NINE

The Autodata Nine is a self-contained, 100-channel, data-recording device (Figure 2.8). Channels are on 10 wafer-style boards so that the master unit may be used to measure either voltages or temperatures with the appropriate value taken directly as output. For this test equipment, 80 channels were configured for thermocouples with direct

115 Volts, 60 Hz, Alternating Current Rated @ 65 SCFM for Unrestricted Flow

Figure 2.6 Cooling Fan Characteristics.

Figure 2.7 Final Assembly - Showing All Components.

KYCCOR SYNYN DAYSON SECOND SYNYN SYNYN

readout of temperatures in ${}^{O}F$. All 80 thermocouples and the Autodata Nine were calibrated as a system (Appendix B).

G. HOTWIRE ANEMOMETER

Use of the Hotwire Anemometer and associative equipment was generously provided by Professor P. Ligrani, of the Naval Postgraduate School. The equipment consisted of six major items: (1) hotwire probe, (2) traversing mechanism (Figure 2.9), (3) resistance bridge, (4) amplifier/filter display unit, (5) oscilloscope, and (6) manometer (Figure 2.10). The oscilloscope was not an essential item, but provided a visual indication of turbulent versus laminar flow.

The basics of the hotwire operation are in terms of electrical resistance. The wire is heated by an initial electric current and cooled by the incident flow. From the resistance of the wire, the flow velocity may be deduced. The hotwire is extremely sensitive to air motion perpendicular to the wire. It is not sensitive to air motion parallel to the wire. This information was used to aid in determining the secondary velocities of the flow field in the channel.

The hotwire is calibrated as a system using the pressure difference of the manometer. Appendix C contains a sample hotwire calibration with (1) the calibration program input, (2) the Program Listing, and (3) the program output.

igure 2.9 Hot Wire Anemometer Traversing Mechanism.

Figure 2.10 Hot Wire Anemometer Equipment.

H. SUMMARY

SCOOL PRINCIPLE CONTROL DIVINION

The equipment is varied, and a summary is provided in TABLE 3. Some items were rather crude in the initial design phase, others became superfluous as the testing progressed, and in some cases the entire test apparatus would have been made more efficient by the use of additional items. Specifics of equipment discrepancies will be discussed more fully in Chapter VI.

TABLE 3
EQUIPMENT LIST

Test Unit	Aluminum finned array 6.5 x 15
	Outer channel boundary, plexiglass
}	Support structure, plexiglass
	Insulation
Autodata Nine	80 copper constantine
	thermocouples
Anemometer	Hotwire probe
	Resistance bridge
	Digital voltage/ohm/amp meter
	Amplifier/filter/display for
	resistance bridge
	Oscilloscope
	Manometer with pressure tap
	Traversing mechanism
Silicon heater	Digital voltage/ohm/amp meter
	Analog amp meter 0-10 amps
	Rheostat
Fan	4-inch AC 65 SCFM fan .
	Ducting, plexiglass
	Doors, plexiglass

III. LAMINAR FLOW

A. PURPOSE

Laminar flow work was done in order to provide a usable comparison to the analytical presentation of Acharya and Patankar [Ref. 1]. Specifically, comparisons at modified Numbers 10⁴ and 10⁶ were Grashof used with the dimensionless parameters as set forth in Reference 1. Within the accuracy and precision limitations of equipment used, in almost all cases the correlations between test and analytical data were very good. While only figures (not tables) will be presented here, a complete listing of the data obtained for each Grashof Number as well each clearance ratio is included in Appendices D and E. Comparisons are presented for both centerline velocity profiles as well as for the streamline profile. An original test case is presented for a clearance ratio of 0.0, with the test unit both heated and unheated. The two heat conditions were essential in order to verify that the hot wire anemometer was capable of the precision required for further comparison.

Figure 3.1 indicates the general relationship between hotwire output voltage and actual centerline velocity in feet per second. The calculation of velocity as a function of voltage may be found in Appendix C. Note that this

Comparison of a Centerline Velocity Profile to the Original Hot Wire Voltage Readings Profile. Figure 3.1

figure is plotted for a velocity ratio in the axial direction; however, the perpendicular direction does not represent a ratio. Figure 3.2 offers a comparison of centerline velocity profiles for an unheated as well as for The unheated profile a heated test. very closely approximates the expected result for pure laminar flow in a duct. The heated profile, however, suggests that an offset of the velocity profile is caused by secondary flow effects, accompanied by a general increase in the velocity ratio. For the same free-stream velocity through the finned array, the increase in mean velocity for the heated case is approximately 2 percent. This increase is due solely to the fact that the finned array is being heated.

The secondary velocities are caused by buoyancy effects, and are readily apparent in Figure 3.3, which shows both the classic streamline profile for flow in a duct, and the streamline profile for $Gr^+=10^4$. The classic profile is lost because buoyancy effects have superimposed a secondary rotational flow velocity field on the primary velocity field through the duct. Because the actual flow direction cannot be determined, the direction must be assumed.

For laminar flow work the oscilloscope was an invaluable tool. Having a direct visual indication of laminar versus turbulent velocities, which was evident in the quiescent profile of the oscilloscope trace, ensured that the required laminar conditions were met.

Comparison of Centerline Velocity Profiles for a Heated and Unheated Case. Figure 3.2

Figure 3.3 Streamline Profiles for Heated Unheated Case.

Figure 3.18 Profile Comparison for C=1.0.

IV. TURBULENT FLOW

A. PURPOSE

The purpose of the turbulent flow testing was threefold: (1) the development of turbulent velocity streamline profiles and centerline velocity profiles similar to those determined for laminar flow, (2) the development temperature profiles within the fin for comparison to temperature profiles for laminar flow, and (3) the development of convection heat transfer coefficients for the turbulent flow case for comparison to the coefficients that Acharya and Patankar derived analytically for laminar flow. Unfortunately, for turbulent flow there is no analytical work for comparison. Therefore, the assumption is that errors detected during laminar testing will also carry over into the turbulent setting.

In order to ensure comparability, the same modified Grashof Numbers 10^4 and 10^6 were used, as were the dimensionless parameters stated by Acharya and Patankar [Ref. 1]. While only figures will be presented here, a complete listing of the data obtained for each Grashof Number as well as for each clearance ratio is included in Appendices F and G. Comparisons are presented for centerline velocity profiles as well as for streamline profiles. As was evident with the laminar flow results, the

velocities are caused by buoyancy effects. As the actual flow direction cannot be determined, the direction of the secondary flow is assumed. The relative lack of quiescence in the "trace" of the oscilloscope offerred additional verification of turbulent testing.

B. MODIFIED GRASHOF NUMBER 104

Three tests were conducted at $\operatorname{Gr}^+=10^4$, with clearance parameters of 0.0, 0.4, and 1.0. The relative strength of the secondary flow is indicated on each figure. As anticipated, there is a general increase in the strength of the secondary field as flow resistance decreases. The orientation of the hot wire probe for the different readings necessary to measure the relative strength of the secondary field was outlined in Chapter III, "Laminar Flow".

1. Clearance Parameter = 0.0, 0.4, and 1.0

Figures 4.1, 4.2, and 4.3 present the streamline profiles for $\operatorname{Gr}^+=10^4$ and $\operatorname{C}=0.0$, $\operatorname{C}=0.4$ and $\operatorname{C}=1.0$ respectively. The relatively high velocities in the turbulent velocity field cause more catter to the data, but the profiles are appropriate for an average flow through the duct. As the clearance is increased, the mean velocity down the channel decreases, the velocity perturbations decrease slightly, and the scatter is less evident. Once again, streamlines are sketched by hand as an approximation of the computer output. In this case actual locations are at the

SECTION CONTRACTOR RECEIPED

Figure 4.1 Streamlines for $Gr^{+}=10^4$, C=0.0, Turbulent Flow.

THE PARTY PARTY CONTROL SECTION STATES SHIPS SECTION DESCRIPT PROPERTY WILLIAM MAJESTS

Figure 4.2 Streamlines for $Gr^+=10^4$, C=0.4, Turbulent Flow.

Figure 4.3 Streamlines for $Gr^{+}=10^{4}$, C=1.0, Turbulent Flow.

SECTION STATES STATES SAME SECTION SECTION SECTION SECTION SECTION SECTION SECTION SECTIONS

discretion of the individual doing the drawing. The resolution of the streamlines in the vicinity of either the solid boundaries or the lines of symmetry is very poor. This result was expected and is consistent with the laminar flow findings.

2. Centerline Velocity Profiles

Figure 4.4 illustrates the centerline velocity profiles for $Gr^{+}=10^{4}$ and clearance ratios C=0.0, C=0.4 and C=1.0. Examination of the illustration indicates that the velocity profile was not fully developed for either C=0.0 or C=0.4. It was not possible for the profile for C=1.0 to be fully developed even though the figure indicates fully-developed conditions. The flatness of the C=1.0 profile is accounted for by the separation distance from the exit plane of the finned array to the hot wire probe. As previsouly discussed, the separation distance allows the "wake" of the exiting flow to impinge on the probe of the hot wire anemometer. This means that the velocity as measured can never truly go to zero at the boundaries, which, in turn, leads to a relatively high mean velocity. Because all figures are based on the mean velocity, the ratios produced by the test are always lower than any analytically-derived value.

Also, when the hot wire probe was reoriented to determine the relative strength of the secondary flow, the "wake" had the effect of increasing the secondary flow percentage.

Figure 4.4 Turbulent Centerline Velocity Profiles, $Gr^{+}=10^4$, $C^{+}=0.0$, C=0.4, and C=1.0.

C. MODIFIED GRASHOF NUMBER 106

1. Clearance Parameter Equal 0.0, 0.4, and 1.0

As with a modified Grashof Number of 10^4 , three test runs were conducted. Figures 4.5, 4.6, and 4.7 are the streamline profiles for C=0.0, C=0.4 and C=1.0 respectively. For these tests the magnitude of the relative strength of the secondary flow is greater than the strength of the secondary flow encountered for $Gr^+=10^4$. This result was expected but the strength of the secondary flow did not increase as much as expected.

2. Centerline Velocity Profile

Figure 4.8 shows the centerline velocity profiles for ${\rm Gr}^+=10^6$, and for clearance parameters ${\rm C=0.0}$, ${\rm C=0.4}$, and ${\rm C=1}$. These centerline velocities show the characteristics discussed previously for ${\rm GR}^+=10^4$.

D. CENTERLINE VELOCITY PROFILE COMPARISON

Figures 4.9, 4.10 and 4.11 indicate the differences in the centerline velocity profiles due to a change in the Grashof number. Even though the free-stream velocity was not intentionally changed during these tests, it was necessary to recalibrate the hot wire anemometer. The changes in the profiles due to recalibration are minimal when compared to other effects (i.e. the heat input). Thus, the figures give a very good indication of how the

Figure 4.5 Streamlines for $Gr^{+}=10^{6}$, C=0.0, Turbulent Flow.

Figure 4.6 Streamlines for $Gr^{+}=10^{6}$, C=0.4, Turbulent Flow.

Figure 4.7 Streamlines for $Gr^{+}=10^{6}$, C=1.0, Turbulent Flow.

Figure 4.8 Turbulent Centerline Velocity Profiles, Gr⁺=10⁶, C=0.0, C=0.4, and C=1.0.

Figure 4.9 Profile Comparison for C=0.0.

Figure 4.10 Profile Comparison for C=0.4.

Figure 4.11 Profile Comparison for C=1.0.

centerline velocity profile would change for an increase in the heat flow.

E. TURBULENT-LAMINAR FLOW COMPARISON

The following figures are provided for a quick visual comparison of the laminar and turbulent flow. Figures 4.12, 4.13, and 4.14 are for $Gr^+=10^4$ and C=0.0, C=0.4, and C=1.0 respectively. Figures 4.15, 4.16, and 4.17 are for $Gr^+=10^6$ with the same clearance ratios.

Laminar-Turbulent Comparison Gr = 104, C=0.0. Figure 4.12

Laminar-Turbulent Comparison $Gr^+=10^4$, C=0.4. Figure 4.13

Laminar-Turbulent Comparison $Gr^+=10^4$, C=1.0. Figure 4.14

Laminar-Turbulent Comparison Gr = 106, C=0.0. Figure 4.15

Laminar-Turbulent Comparison Gr = 106, C=0.4. Figure 4.16

Laminar-Turbulent Comparison Gr⁺=10°, C=1.0.

V. TEMPERATURE PROFILES

A. PURPOSE

Development of temperature profiles along the length of the fin was essential to the determination of the convection heat transfer coefficients. Temperature profiles were developed directly from the temperature readings recorded for steady state conditions. Profiles are presented only for Gr⁺=10⁴ for laminar and turbulent flow with clearance ratios C=0.0, C=0.4, and C=1.0. As in Chapters III and IV, only figures will be presented here, a partial listing of the temperatures being available in Tables 4 and 5. Table 4 contains the information for laminar flow, and Table 5 contains information for turbulent flow.

B. LAMINAR FLOW

Figure 5.1 is presented as a reminder of how the thermocouples were mounted on the longitudinal finned array. Figures 5.2, 5.3, and 5.4 show the temperature profiles obtained under laminar flow conditions for the three clearance ratios. The sinusoidal temperature pattern on the surface was a function of the silicon pad heater. Note that the pattern was no longer evident for thermocouples mounted at the 3/8-inch depth or the 3/4-inch depth. The temperatures are plotted as the differences based on the

Figure 5.1 Fin Thermocouple Placement.

Temperature Profile Gr*=10t, C=0.0, Laminar Flow. Figure 5.2

Temperature Profile Gr⁺=10⁴, C=0.4, Laminar Flow. Figure 5.3

Figure 5.4 Temperature Profile $Gr^+=10^4$, C=1.0, Laminar Flow.

initial temperature of the assembly. This latter value was used as a base value because of the ease of calculation. To have used the surrounding temperature would have required actual calculation of each temperature. However, use of the initial array temperature necessitates only the calculation of one temperature, with all subsequent values based on this value.

There was a general increase of all temperatures along the fin as the fin tip clearance was increased. This was expected because of the flow rate disparity previously discussed. It remains to be determined how the temperature increase will effect the heat transfer coefficient.

C. TURBULENT FLOW

SOUTH A SECOND SECOND SECONDS

As evidenced in Figures 5.5, 5.6, and 5.7, the temperature increase under turbulent flow conditions was less than the increase under laminar conditions. This finding was to be expected and was the result of the increased air flow for turbulent conditions. The temperature profiles are important only in that they allow calculation of the convection coefficients at each point.

Temperature Profile $\operatorname{Gr}^+=10^4$, C=0.0, Turbulent Flow. Figure 5.5

Temperature Profile Gr⁺=10⁴, C=0.4, Turbulent Flow. Figure 5.6

Temperature Profile $Gr^{+}=10^4$, C=1.0, Turbulent Flow. Figure 5.7

VI. CONVECTION COEFFICIENTS

A. BACKGROUND

Results for the laminar flow convection heat transfer coefficients are presented in two forms. First, as comparison to the analytical work of Acharya and Patankar, and second as a summary on a single figure. Note that figures are presented for the dimensionless y coordinate, and for the ratio of the local heat transfer coefficient to the average coefficient. The average heat transfer coefficient was easily determined because the rate of heat transfer into the fin and the fin area were quantities. Turbulent flow results are presented only in summary form.

Determination of the local heat transfer coefficients was incorporated in the following two-step process: (1) calculation of initial local coefficients and (2) calculation of heat transfer rates. If the sum of the calculated heat transfer rates did not equal the known rate, then step 1 was repeated. The assumptions were that the rate of heat transfer from the fin at the base was zero, and that the shape of the heat transfer coefficient curve would be similar to the shape of the velocity curve.

The fin was treated as a set of ten, separate, cascaded, sub-fins [Ref. 4][Ref. 7]. Needed coefficients were then

calculated for each of the ten sub-fins. From the heat transfer coefficients, heat transfer rates were calculated and summed to check against the known value. If the two values did not match, the entire process was repeated.

First guess values for the local heat transfer coefficient were determined using

$$\theta(x) = \theta_b \frac{\cosh mx}{\cosh mb} \tag{6.1}$$

with

CONTROL CONTRO

$$m = \left(\frac{2h}{kt}\right)^{\frac{1}{2}} \tag{6.2}$$

Because the fin, above the base, was approximately isothermal, (actual fin temperatures are given in TABLES 4 and 5) the temperature ratios were very nearly unity, causing errors in the thermocouple readings to be accentuated. Equation 6.1 is predicated on the assumption of a constant surface heat transfer coefficient which was not the case for the overall tests. However for the small sub-fins, the equation was applicable (i.e. the convection was constant for the small fin.

B. LAMINAR FLOW

Laminar flow comparison results are presented in Figure 6.1 for $Gr^+=10^4$ and C=0.0. Comparisons for C=0.4 and C=1.0 are presented in Figures 6.2 and 6.3 respectively. In each case, the test values for the convection coefficients are

TABLE 4

CALCULATED STEADY STATE FIN TEMPERATURES FOR LAMINAR FLOW

Approximate Position (in)				
	0	5	10	15
		Clearance	C=0.0	
Depth	Temperature (°F)			
3/4 inch	71.3	71.6	71.7	70.7
3/8 inch	71.5	71.7	71.8	71.6
Clearance C=0.4				
Depth	Temperature (°F)			
3/4 inch	72.3	72.5	72.6	73.0
3/8 inch	72.6	72.7	72.8	72.6
		Clearance	C=1.0	
Depth	Temperature (°F)			
3/4 inch	72.9	73.0	73.1	73.4
3/8 inch	73.1	73.2	73.3	73.0

STATES STATES BOOKEN AND AND STATES STATES

Figure 3.3 Streamline Profiles for Heated Unheated Case.

Figure 3.18 Profile Comparison for C=1.0.

IV. TURBULENT FLOW

A. PURPOSE

The purpose of the turbulent flow testing was threefold: (1) the development of turbulent velocity profiles and centerline velocity profiles similar to those determined for laminar flow, (2) the development temperature profiles within the fin for comparison to temperature profiles for laminar flow, and (3) the development of convection heat transfer coefficients for the turbulent flow case for comparison to the coefficients that Acharya and Patankar derived analytically for laminar flow. Unfortunately, for turbulent flow there is no analytical work for comparison. Therefore, the assumption is that errors detected during laminar testing will also carry over into the turbulent setting.

In order to ensure comparability, the same modified Grashof Numbers 10^4 and 10^6 were used, as were the dimensionless parameters stated by Acharya and Patankar [Ref. 1]. While only figures will be presented here, a complete listing of the data obtained for each Grashof Number as well as for each clearance ratio is included in Appendices F and G. Comparisons are presented for centerline velocity profiles as well as for streamline profiles. As was evident with the laminar flow results, the

velocities are caused by buoyancy effects. As the actual flow direction cannot be determined, the direction of the secondary flow is assumed. The relative lack of quiescence in the "trace" of the oscilloscope offerred additional verification of turbulent testing.

B. MODIFIED GRASHOF NUMBER 10⁴

Three tests were conducted at $\operatorname{Gr}^+=10^4$, with clearance parameters of 0.0, 0.4, and 1.0. The relative strength of the secondary flow is indicated on each figure. As anticipated, there is a general increase in the strength of the secondary field as flow resistance decreases. The orientation of the hot wire probe for the different readings necessary to measure the relative strength of the secondary field was outlined in Chapter III, "Laminar Flow".

1. Clearance Parameter = 0.0, 0.4, and 1.0

Figures 4.1, 4.2, and 4.3 present the streamline profiles for $Gr^+=10^4$ and C=0.0, C=0.4, and C=1.0 respectively. The relatively high velocities in the turbulent velocity field cause more scatter to the data, but the profiles are appropriate for an average flow through the duct. As the clearance is increased, the mean velocity down the channel decreases, the velocity perturbations decrease slightly, and the scatter is less evident. Once again, streamlines are sketched by hand as an approximation of the computer output. In this case actual locations are at the

Figure 4.1 Streamlines for $Gr^{+}=10^4$, C=0.0, Turbulent Flow.

Figure 4.2 Streamlines for $Gr^{+}=10^{4}$, C=0.4, Turbulent Flow.

Figure 4.3 Streamlines for $Gr^{+}=10^{4}$, C=1.0, Turbulent Flow.

discretion of the individual doing the drawing. The resolution of the streamlines in the vicinity of either the solid boundaries or the lines of symmetry is very poor. This result was expected and is consistent with the laminar flow findings.

2. Centerline Velocity Profiles

Figure 4.4 illustrates the centerline velocity profiles for $Gr^{+}=10^{4}$ and clearance ratios C=0.0, C=0.4 and C=1.0. Examination of the illustration indicates that the velocity profile was not fully developed for either C=0.0 or C=0.4. It was not possible for the profile for C=1.0 to be fully developed even though the figure indicates fully-developed conditions. The flatness of the profile is accounted for by the separation distance from the exit plane of the finned array to the hot wire probe. As previsouly discussed, the separation distance allows "wake" of the exiting flow to impinge on the probe of hot wire anemometer. This means that the velocity as measured can never truly go to zero at the boundaries, which, in turn, leads to a relatively high mean velocity. Because all figures are based on the mean velocity, ratios produced by the test are always lower than analytically-derived value.

Also, when the hot wire probe was reoriented to determine the relative strength of the secondary flow, the "wake" had the effect of increasing the secondary flow percentage.

Figure 4.4 Turbulent Centerline Velocity Profiles, Gr+=104, C=0.0, C=0.4, and C=1.0.

C. MODIFIED GRASHOF NUMBER 10⁶

1. Clearance Parameter Equal 0.0, 0.4, and 1.0

As with a modified Grashof Number of 10^4 , three test runs were conducted. Figures 4.5, 4.6, and 4.7 are the streamline profiles for C=0.0, C=0.4 and C=1.0 respectively. For these tests the magnitude of the relative strength of the secondary flow is greater than the strength of the secondary flow encountered for $Gr^+=10^4$. This result was expected but the strength of the secondary flow did not increase as much as expected.

2. Centerline Velocity Profile

Figure 4.8 shows the centerline velocity profiles for ${\rm Gr}^+{=}10^6$, and for clearance parameters ${\rm C}{=}0.0$, ${\rm C}{=}0.4$, and ${\rm C}{=}1$. These centerline velocities show the characteristics discussed previously for ${\rm GR}^+{=}10^4$.

D. CENTERLINE VELOCITY PROFILE COMPARISON

Figures 4.9, 4.10 and 4.11 indicate the differences in the centerline velocity profiles due to a change in the Grashof number. Even though the free-stream velocity was not intentionally changed during these tests, it was necessary to recalibrate the hot wire anemometer. The changes in the profiles due to recalibration are minimal when compared to other effects (i.e. the heat input). Thus, the figures give a very good indication of how the

Figure 4.5 Streamlines for $Gr^{+}=10^{6}$, C=0.0, Turbulent Flow.

The second process of the second process of

Figure 4.6 Streamlines for $Gr^+=10^6$, C=0.4, Turbulent Flow.

Figure 4.7 Streamlines for $Gr^{+}=10^{6}$, C=1.0, Turbulent Flow.

FORCED CONVECTION HEAT TRANSFER FROM A FINNED ARRAY WITH AN ADJUSTABLE QUITER CHANNEL BOUNDARY(U) MAYAL POSTGRADUATE SCHOOL MONTEREY CA T L MELLON JUN 86 F/G 28/13 AD-A174 138 2/3 UNCLASSIFIED NL .

CROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

Figure 4.8 Turbulent Centerline Velocity Profiles, Gr+=106, C=0.0, C=0.4, and C=1.0.

Figure 4.9 Profile Comparison for C=0.0.

Figure 4.10 Profile Comparison for C=0.4.

Figure 4.11 Profile Comparison for C=1.0.

centerline velocity profile would change for an increase in the heat flow.

E. TURBULENT-LAMINAR FLOW COMPARISON

The following figures are provided for a quick visual comparison of the laminar and turbulent flow. Figures 4.12, 4.13, and 4.14 are for $Gr^+=10^4$ and C=0.0, C=0.4, and C=1.0 respectively. Figures 4.15, 4.16, and 4.17 are for $Gr^+=10^6$ with the same clearance ratios.

Laminar-Turbulent Comparison Gr⁺=10⁴, C=0.0.

Laminar-Turbulent Comparison $Gr^{+}=10^4$, C=0.4.

Figure 4.14 Laminar-Turbulent Comparison Gr⁺=10⁴, C=1.0.

Figure 4.15 Laminar-Turbulent Comparison $Gr^+=10^6$, C=0.0.

Figure 4.16 Laminar-Turbulent Comparison Gr⁺=10⁶, C=0.4.

Laminar-Turbulent Comparison Gr⁺=10⁶, C=1.0. Figure 4.17

V. TEMPERATURE PROFILES

A. PURPOSE

Development of temperature profiles along the length of the fin was essential to the determination of the convection heat transfer coefficients. Temperature profiles were developed directly from the temperature readings recorded for steady state conditions. Profiles are presented only for $Gr^+=10^4$ for laminar and turbulent flow with clearance ratios C=0.0, C=0.4, and C=1.0. As in Chapters III and IV, only figures will be presented here, a partial listing of the temperatures being available in Tables 4 and 5. Table 4 contains the information for laminar flow, and Table 5 contains information for turbulent flow.

B. LAMINAR FLOW

Figure 5.1 is presented as a reminder of how the thermocouples were mounted on the longitudinal finned array. Figures 5.2, 5.3, and 5.4 show the temperature profiles obtained under laminar flow conditions for the three clearance ratios. The sinusoidal temperature pattern on the surface was a function of the silicon pad heater. Note that the pattern was no longer evident for thermocouples mounted at the 3/8-inch depth or the 3/4-inch depth. The temperatures are plotted as the differences based on the

Figure 5.1 Fin Thermocouple Placement.

services acceptance services

Control of the second s

Temperature Profile $Gr^{+}=10^{4}$, C=0.0, Laminar Flow. Figure 5.2

Temperature Profile Gr⁺=10⁴, C=0.4, Laminar Flow. Figure 5.3

Temperature Profile Gr⁺=10⁴, C=1.0, Laminar Flow. Figure 5.4

initial temperature of the assembly. This latter value was used as a base value because of the ease of calculation. To have used the surrounding temperature would have required actual calculation of each temperature. However, use of the initial array temperature necessitates only the calculation of one temperature, with all subsequent values based on this value.

There was a general increase of all temperatures along the fin as the fin tip clearance was increased. This was expected because of the flow rate disparity previously discussed. It remains to be determined how the temperature increase will effect the heat transfer coefficient.

C. TURBULENT FLOW

As evidenced in Figures 5.5, 5.6, and 5.7, the temperature increase under turbulent flow conditions was less than the increase under laminar conditions. This finding was to be expected and was the result of the increased air flow for turbulent conditions. The temperature profiles are important only in that they allow calculation of the convection coefficients at each point.

Temperature Profile Gr⁺=10⁴, C=0.0, Turbulent Flow. Figure 5.5

Temperature Profile Gr⁺=10⁴, C=0.4, Turbulent Flow. Figure 5.6

Temperature Profile Gr⁺=10⁴, C=1.0, Turbulent Flow. Figure 5.7

VI. CONVECTION COEFFICIENTS

A. BACKGROUND

200

CONTRACT SPECIFIC CONTRACT CONTRACT CONTRACT

CONTROL DESCRIPTION DESCRIPTION OF PROPERTY OF

Results for the laminar flow convection heat transfer coefficients are presented in two forms. First. comparison to the analytical work of Acharya and Patankar, and second as a summary on a single figure. Note figures are presented for the dimensionless y coordinate, and for the ratio of the local heat transfer coefficient the average coefficient. The average heat coefficient was easily determined because the rate of transfer into the fin and the fin area quantities. Turbulent flow results are presented only summary form.

Determination of the local heat transfer coefficients was incorporated in the following two-step process: (1) calculation of initial local coefficients and (2) calculation of heat transfer rates. If the sum of the calculated heat transfer rates did not equal the known rate, then step 1 was repeated. The assumptions were that the rate of heat transfer from the fin at the base was zero, and that the shape of the heat transfer coefficient curve would be similar to the shape of the velocity curve.

The fin was treated as a set of ten, separate, cascaded, sub-fins [Ref. 4][Ref. 7]. Needed coefficients were then

calculated for each of the ten sub-fins. From the heat transfer coefficients, heat transfer rates were calculated and summed to check against the known value. If the two values did not match, the entire process was repeated.

First guess values for the local heat transfer coefficient were determined using

$$\theta(x) = \theta_b \frac{\cosh mx}{\cosh mb} \tag{6.1}$$

with

$$m = \left(\frac{2h}{kt}\right)^{\frac{1}{2}} \tag{6.2}$$

Because the fin, above the base, was approximately isothermal, (actual fin temperatures are given in TABLES 4 and 5) the temperature ratios were very nearly unity, causing errors in the thermocouple readings to be accentuated. Equation 6.1 is predicated on the assumption of a constant surface heat transfer coefficient which was not the case for the overall tests. However for the small sub-fins, the equation was applicable (i.e. the convection was constant for the small fin.

B. LAMINAR FLOW

Laminar flow comparison results are presented in Figure 6.1 for $Gr^+=10^4$ and C=0.0. Comparisons for C=0.4 and C=1.0 are presented in Figures 6.2 and 6.3 respectively. In each case, the test values for the convection coefficients are

TABLE 4

CALCULATED STEADY STATE FIN TEMPERATURES FOR LAMINAR FLOW

Approximate Position (in)				
	0	5	10	15
	Clearance C=0.0			
Depth		Temperature (^O F)		
3/4 inch	71.3	71.6	71.7	70.7
3/8 inch	71.5	71.7	71.8	71.6
Clearance C=0.4				
Depth	Temperature (^O F)			
3/4 inch	72.3	72.5	72.6	73.0
3/8 inch	72.6	72.7	72.8	72.6
Clearance C=1.0				
Depth	Temperature (°F)			
3/4 inch	72.9	73.0	73.1	73.4
3/8 inch	73.1	73.2	73.3	73.0

TABLE 5

CALCULATED STEADY STATE FIN TEMPERATURES FOR TURBULENT FLOW

Approximate Position (in)				
	0	5	10	15
Clearance C=0.0				
Depth		Temperature (°F)		
3/4 inch	70.9	70.9	71.1	71.4
3/8 inch	71.1	71.1	71.1	71.0
Clearance C=0.4				
Depth	Temperature (°F)			
3/4 inch	71.0	71.0	71.1	71.5
3/8 inch	71.2	71.2	71.3	71.1
Clearance C=1.0				
Depth	Temperature (°F)			
3/4 inch	71.2	71.2	71.3	71.6
3/8 inch	71.4	71.4	71.4	71.2
				<u> </u>

Figure 6.1 Test Results and Analytical Convection Heat Transfer Coefficient Comparison for C=0.0.

Figure 6.2 Test Results and Analytical Convection Heat Transfer Coefficient Comparison for C=0.4.

Figure 6.3 Test Results and Analytical Convection Heat Transfer Coefficient Comparison for C=1.0.

lower than for the analytical values. As discussed above, the convection coefficients are dependent on several calculated values. An error in the heat flux into the fin carries over into the calculated heat transfer coefficients. Appendix D contains the calculated heat flux for $Gr^+=10^4$, while Appendix E offers the heat flux calculations for $Gr^+=10^6$. The laminar flow convection heat transfer coefficient ratios are presented in Figure 6.4.

C. TURBULENT FLOW

ANTINESS SERVICES SERVICES SERVICES SERVICES SERVICES

For turbulent flow, there are no analytical results which may be used for comparison. However, the same calculation techniques that were used for laminar flow were repeated here. Therefore, the form of the convection coefficient ratio curve should be accurate. Errors in the actual numbers were discussed previously. The turbulent flow convection coefficient ratio results are presented in Figure 6.5.

20.00

Figure 6.5 Test Results -- Convection Heat Transfer Coefficient Results for Turbulent Flow.

Figure 6.4 Test Results -- Convection Heat Transfer Coefficient Results for Laminar Flow.

VII. CONCLUSIONS

Findings for laminar flow are consistent with the analytical results of Acharya and Patankar. The relatively large plenum area between the fin tip and the outer channel boundary allows a preponderance of flow through the larger area. There is also a corresponding increase in velocity. Viscous effects transfer these greater velocities down into the fin channels. In these regions of heightened velocities there is an increase in the local convection heat transfer coefficient.

Unfortunately, for identical mass flow rates, there must be an attendant decrease in velocity in the portions of the Velocity channel adjacent to the fin base. profiles substantiate this decreased velocity. Subsequently, convection coefficients also decline. Increases in the coefficient at or near the fin tip do not compensate for decreases near the base. Thus, the overall effectiveness of the fin as a heat transfer surface is strikingly reduced. Because the same heat flux was used for all tests, the fin temperature must go up as the fin dissipates less heat. general increase in the fin temperature as clearance increases verifies this relationship.

The results for turbulent flow are very similar to the laminar findings, i.e., high velocity areas produce higher

local heat transfer coefficients. However, for C=0.4 there is an area covering approximately one-half of the vertical surface where the coefficient is largely constant, even decreasing slightly. Nevertheless, the overall effectiveness of the fin is once again reduced. The temperatures within the fin for different clearance ratios support this finding.

VIII. RECOMMENDATIONS

This testing project was extensive and ambitious—it is also incomplete. As observed previously, there were inadequacies and limitations in the test equipment. Some of these problems may be easily corrected; others will require enormous investments of time and effort.

The hot wire anemometer must have an automatic data aquisition system. Recording the data manually rapidly becomes monotonous and, subsequently, error prone. This is especially true as the clearance ratio increases. Errors are likely in both the probe position and in the output voltage. Because the output values are voltages, there are many automatic systems which could record not only the voltage, but could also process the data for direct velocity outputs once the anemometer was calibrated, and the appropriate data were entered into the system.

The traversing mechanism is extremely accurate for vertical positioning, with a possible accuracy of ± 0.0002 inches. The horizontal position, however, is an entirely different matter. There was no method for horizontally positioning the wire that was used for these tests. This lack of an accurate horizontal location was especially prominent in the streamline profiles, which were not symmetric about the centerline. For further work in this

area, accurate horizontal placement must be a stringent requirement.

Horizontal accuracy, which is at least as good as vertical accuracy, should be sufficient, and could accomplished by placing the current traversing mechanism a horizontal slide. A standard micrometer could be used to determine the appropriate position. Because the distance necessary for horizontal movement is very small, an oval plate supporting the existing mechanism would satisfactory. This modification would allow sufficient horizontal movement, yet not introduce air leakage problems at the surface interfaces.

Accurate horizontal positioning would allow the probe tip to be placed slightly forward of the exit plane of the finned array (Figure 8.1). This placement offers at least two advantages over the current position: (1) the wake effects discussed previously would be nullified, and (2) secondary velocities could be more accurately measured. In addition, with very precise positioning, secondary velocities could be determined in several locations. To attempt this suggested placement without the recommended horizontal accuracy, would surely mean loss of the hot wire probe.

None courses which propose propose strains courses species

Temperatures were measured at only two locations in the fin, and at four longitudunal positions. Therefore, of the eighty thermocouples installed, only eight were actually

Figure 8.1 Recommended Hot Wire Probe Position.

used to produce the results for a single fin. The ability to install the thermocouples in the array has been demonstrated, but more thermocouples in a single fin would be a far better arrangement. The current locations at 3/8-inch and 3/4-inch are satisfactory, but a third thermocouple at a l-inch depth, with a fourth at the depth of the base thickness, would produce a more accurate vertical temperature profile.

The thermocouples mounted on the base were of no use. Also, accuracy to within at least 0.01°F is necessary. It is essential to know whether the fin is or is not isothermal, because the method of calculating the heat transfer coefficients depends on an accurate determination. In turn, only very accurate thermocouples will determine which conclusion is correct. With the current horizontal arrangement, and with more thermocouples installed in the vertical direction on the single fin, 16 thermocouples will be available to develop an accurate temperature profile.

In order to ascertain the vertical temperature profile of the exiting flow, an array of thermocouples in the exit air stream is essential. This change will help to determine the amount of mixing actually taking place from the secondary flow effects. An automatic data aquisition system would help here, but is probably not critical.

Essentially this project has dealt with the convection coefficient as a one-dimensional problem in the vertical

direction, but the data clearly indicate a two-dimensional problem which is both vertical and horizontal. Development of the convection coefficient curves horizontally as well as vertically would give a more complete description of what is happening along the fin. There is a temperature distribution in the axial direction, and this may enhance the heat transfer characteristics.

The turbulent flow was not fully developed. A longer set of fins is necessary for fully-developed turbulent profiles. Nevertheless, it is possible to study the heat transfer coefficients prior to these ideal conditions. This specific problem was not investigated here.

COLUMN TRANSPORT CONTINUES ALLEGEN

APPENDIX A

LONGITUDINAL FIN ARRAY DIMENSIONS

The following pages contain pertinent information on the dimensions of the array of longitudinal fins of rectangular profile. The array is extruded commercial aluminum and nominally 15 inches by 6.5 inches with 15 fins at a spacing of 0.3 inches. Mean values were simply the sum of the measurements divided by the number of measurements. The plus-minus values were determined using the standard root-mean-square deviation. Readings were taken with the array positioned with fins up, front of the array to the right.

	FIN SPACING	
Channel	Left	Right
#	Width	Width
	(in)	(in)
1	0.310	0.312
2	0.309	0.307
3	0.308	0.306
4 5	0.310	0.307
5	0.308	0.308
6	0.311	0.307
7	0.306	0.308
8	0.308	0.304
9	0.305	0.308
10	0.306	0.305
11	0.304	0.309
12	0.306	0.305
13	0.303	0.307
14	0.304	0.309
15	0.309	0.308
16	0.305	0.307

mean value = 0.307 ± 0.002

	Fin	Thickness	
Fin		Left	Right
#		(in)	(in)
1		0.074	0.081
2		0.091	0.097
3		0.074	0.069
4 5		0.091	0.096
5		0.074	0.074
6		0.096	0.099
7		0.075	0.078
8		0.095	0.094
9		0.076	0.071
10		0.094	0.096
11		0.071	0.074
12		0.096	0.090
13		0.071	0.074
14		0.096	0.097
15		0.076	0.074

mean value = 0.084 ± 0.002

Fin	and Base	Height
Fin	Left	Right
#	(in)	(in)
1 2 3 4 5	1.129	1.130
2	1.130	1.128
3	1.120	1.124
4	1.119	1.126
	1.118	1.119
6	1.118	1.120
7	1.117	1.119
8	1.119	1.124
9	1.124	1.124
10	1.122	1.125
11	1.122	1.126
12	1.123	1.133
13	1.124	1.125
14	1.125	1.124
15	1.123	1.131

mean value = 1.124 ± 0.004

Base	Plate Thick	cness
Channel	Left	Right
#	(in)	(in)
1	0.210	0.196
2 3	0.200	0.197
	0.199	0.201
4	0.202	0.201
4 5 6	0.205	0.204
	0.207	0.207
7	0.210	0.212
8	0.214	0.213
9	0.215	0.212
10	0.212	0.212
11	0.207	0.208
12	0.206	0.207
13	0.204	0.205
14	0.213	0.206
15	0.205	0.204
16	0.204	0.204

mean value = 0.206 ± 0.005

Array	Length
Fin	Length
#	(in)
1	15.016
2	15.000
3	15.000
4	15.016
5	14.984
6	14.984
7	15.000
8	14.984
9	14.969
10	14.953
11	14.969
12	14.977
13	14.969
14	14.953
15	14.953

mean value =15.982 <u>+</u>0.021

VIII. APPENDIX B

AUTODATA NINE AND THERMOCOUPLE CALIBRATION

The Autodata Nine data recorder and all thermocouples were calibrated as system in the Measurements Calibration Lab at Postgraduate School. Naval calibration techniques used to were calibrate the thermocouples at seven points to a maximum of approximately 200°F. Three points were approached with increasing temperature, three points were approached with decreasing seventh temperature, and the maximum temperature is the point.

The following thermocouple data were produced from the calibration run:

Actual Temperatures (°F) 195.84 183.56 163.48 160.03 100.50 99.82 67.70

Thermocouple Readings Temperature (°F) 20 197.2 185.0 164.9 161.3 101.4 100.8 68.4 196.9 21 184.7 164.6 161.1 101.3 100.7 68.4 22 197.2 185.0 164.9 161.3 101.4 100.7 68.4 23 196.8 184.6 164.5 161.0 101.3 100.6 68.4 24 196.9 184.8 164.6 161.1 101.3 100.6 68.3 196.7 100.6 25 184.4 164.3 160.8 101.2 68.4 196.7 101.2 26 184.6 164.4 160.9 100.6 68.4 196.4 160.6 101.2 27 184.2 164.1 100.5 68.3 196.6 28 184.4 164.3 160.8 101.1 100.4 68.1 196.3 29 184.1 164.0 160.6 101.1 100.4 68.2 30 197.0 184.9 164.8 161.3 101.3 100.7 68.4

```
161.0
31
    196.8
             184.5
                     164.5
                                     101.2
                                              100.6
                                                       68.3
32
    196.9
             184.7
                     164.6
                             161.2
                                     101.2
                                              100.6
                                                       68.3
33
    196.5
             184.3
                     164.2
                             160.8
                                      101.2
                                              100.6
                                                       68.3
                                              100.6
                                                       68.2
34
    196.8
             184.6
                     164.5
                             161.0
                                     101.2
                                                       68.2
35
    196.4
             184.2
                     164.1
                             160.7
                                     101.2
                                              100.5
36
             184.4
                     164.2
                             160.8
                                     101.0
                                              100.3
                                                       68.0
    196.5
                             160.5
                                     101.0
                                              100.3
                                                       68.1
37
    196.2
             184.0
                     164.0
                     164.1
                             160.7
                                     100.3
                                              100.2
                                                       67.9
38
    196.4
             184.2
                                     100.9
                                              100.3
                                                       68.0
39
    196.2
             183.9
                     163.9
                             160.4
                     165.3
                             161.8
                                     101.8
                                              101.2
                                                       69.0
40
    197.5
             185.4
                     164.9
                             161.5
                                      101.8
                                              101.2
                                                       68.9
41
    197.1
             185.0
                                              101.2
                                                       68.8
    197.4
                     165.1
                             161.7
                                      101.8
42
             185.3
                                                       68.8
                                              101.1
    197.2
                     164.9
                             161.4
                                      101.8
43
             185.0
                                      101.7
                                              101.0
                                                       68.8
44
    197.2
             185.0
                     164.9
                             161.5
             184.8
                     164.6
                             161.2
                                      101.7
                                              101.0
                                                       68.7
45
    196.9
                             161.3
                                      101.6
                                              100.9
                                                       68.7
46
    197.0
             184.9
                     164.7
                                                       68.7
47
    196.9
             184.7
                     164.6
                             161.2
                                      101.6
                                              100.9
             184.6
                             161.2
                                      101.5
                                              100.8
                                                       68.5
    196.9
                     164.5
48
                                      101.5
                                                       68.6
                             161.1
                                              100.8
49
    196.7
             184.6
                     164.5
                                      100.8
                                              100.1
                                                       67.9
             184.0
                     163.8
                             160.4
50
    196.2
                                               99.7
                                                       67.5
                                      100.5
                     163.7
                             160.2
51
    196.0
             183.9
                                                       68.0
                                              100.3
                                      100.9
52
    196.3
             184.1
                     163.9
                             160.7
                                               99.7
                                                       67.5
                             160.3
                                      100.5
53
    196.2
             183.9
                     163.9
                             160.7
                                      100.9
                                              100.3
                                                       68.0
             184.2
                     164.0
54
    196.4
                                               99.8
                                                       67.5
                                      100.6
55
    196.2
             184.0
                     163.8
                             160.4
                                                       67.9
                                              100.3
     196.5
             183.9
                     164.1
                             160.7
                                      100.9
56
                                      100.5
                                                       67.5
                             160.3
                                               99.7
     196.1
             183.9
                     163.8
57
             184.4
                     164.0
                             160.6
                                      100.8
                                              100.2
                                                       67.8
58
     196.4
                     163.8
                             160.2
                                      100.4
                                               99.8
                                                       67.5
59
     196.1
             183.9
                                              100.0
                                                       67.8
     196.2
             184.0
                     163.9
                             160.5
                                      100.7
60
                                                       67.5
                              160.2
                                      100.4
                                               99.7
                     163.6
61
     195.9
             183.7
                                                       67.9
                                      100.8
                                              100.1
     196.2
             184.0
                     163.9
                              160.5
62
                                              100.1
                                                       67.9
                     163.9
                              160.5
                                      100.8
     196.2
             184.0
63
                                                       67.9
                                              100.2
                             160.6
                                      100.9
64
     196.3
             184.1
                     164.0
                                                        67.6
                                      100.6
                                               99.8
     196.1
             184.0
                     163.8
                              160.4
65
                                                       67.9
                                              100.2
                     163.9
                              160.6
                                      100.8
66
     196.2
             184.1
                     164.0
                              160.4
                                      100.5
                                               99.8
                                                        67.5
     196.2
             184.1
67
                              160.7
                                      100.9
                                              100.2
                                                        67.9
             184.2
                     164.1
68
     196.4
                                               99.8
                                                        67.5
                                      100.5
69
     196.1
             183.9
                     163.8
                              160.3
                                              101.1
                                                        68.8
                     164.8
                              161.4
                                      101.7
     197.2
             185.0
70
                                      101.5
                                              100.8
                                                        68.7
             184.7
                     164.6
                              161.1
71
     196.8
                                              101.2
                                                        68.9
                     164.9
                              161.6
                                      101.8
72
     197.2
             185.0
                                                        68.7
                              161.3
                                      101.6
                                              100.9
     197.0
             184.9
                     164.8
73
                                              101.2
                                                        69.0
             185.1
                     165.0
                              161.5
                                      101.8
74
     197.2
                              161.3
                                      101.6
                                              100.9
                                                        68.8
                     164.8
75
     197.0
             184.8
                     165.0
                              161.6
                                      101.9
                                              101.2
                                                        69.0
     197.3
             185.1
76
                                      101.6
                                              100.9
                                                        68.7
     197.0
             184.8
                     164.7
                              161.2
77
                                              101.2
                                                        69.0
                     165.0
                              161.5
                                      101.8
78
     197.2
             185.0
                                                        68.7
                                      101.7
                                              101.0
79
             184.9
                     164.9
                              161.4
     197.0
                                                        70.5
             186.4
                     166.3
                              162.9
                                      103.4
                                              102.7
80
     198.6
                              162.8
                                      103.2
                                              102.5
                                                        70.3
81
     198.5
             186.3
                     166.1
```

```
198.5
            186.4
                    166.2
82
                           162.9
                                   103.3
                                           102.7 •
                                                    70.5
                           162.8
    198.5
            186.3
83
                    166.2
                                   103.3
                                           102.7
                                                    70.4
84
    198.7
            186.5
                    166.4
                           163.0
                                   103.4
                                           102.8
                                                    70.6
85
    198.5
            186.3
                    166.3
                           162.7
                                   103.2
                                           102.5
                                                    70.4
86
    198.8
            186.6
                    166.6
                           163.1
                                   103.4
                                           102.8
                                                    70.5
87
    198.3
            186.2
                    166.1
                           162.6
                                   103.2
                                           102.5
                                                    70.4
88
    198.7
            186.5
                    166.3
                           162.6
                                   103.4
                                                    70.6
                                           102.8
89
    198.5
            186.3
                    166.3
                           162.8
                                   103.3
                                           102.5
                                                    70.4
    196.1
            183.9
                    163.8
90
                           160.4
                                   100.6
                                            99.9
                                                    67.7
91
    196.1
            183.9
                    163.6
                           160.3
                                   100.5
                                            99.8
                                                    67.6
                                            99.9
92
    196.2
            184.0
                    163.8
                           160.4
                                   100.6
                                                    67.6
93
    196.0
            183.9
                    163.6
                           160.2
                                   100.5
                                            99.9
                                                    67.6
94
    196.2
            184.0
                    163.9
                           160.4
                                   100.6
                                            99.9
                                                    67.6
95
    196.0
            183.9
                    163.7
                           160.2
                                   100.5
                                            99.7
                                                    67.5
96
    196.1
            183.9
                    163.8
                           160.4
                                   100.5
                                            99.9
                                                    67.7
97
    195.9
            183.7
                    163.6
                           160.2
                                   100.4
                                            99.7
                                                    67.5
98
                    163.9
    196.2
            184.0
                           160.5
                                   100.6
                                           100.0
                                                    67.5
99
    196.1
            183.9
                    163.7
                            160.3
                                   100.5
                                            99.8
                                                    67.6
```

With this information, ten data files were produced. The data files were processed by the "EASYPLOT" program to produce a calibration curve similar to the graphs on pages 122 and 123. All files and calibration curves are not included because of the number of pages involved. However, the files are easily reproduced from the original data. Using the files, the curves are easily produced.

Using the original data, the following short fortran program was used to develop linear regression curve fits for each thermocouple:

```
DIMENSION TACT(7), NUM(80), TMEA(80,7)
READ (25,11) (TACT(I), I=1,7)

11 FORMAT (1X,7F9.3)
WRITE (6,11) (TACT(I), I=1,7)
DO 100 I=1,80
READ (25,20) NUM(I), (TMEA(I,J),J=1,7)
20 FORMAT (1X,I4,7F9.3)

100 WRITE (6,20) NUM(I), (TMEA(I,J),J=1,7)
DO 200 J=1,80
C1=0.0
```



```
C2=0.0

C3=0.0

C4=0.0

D0 300 I=1,7

C1=TACT(I)*TMEA(J,I)+C1

C2=TMEA(J,I)+C2

C3=TACT(I)+C3

300 C4=TMEA(J,I)*TMEA(J,I)+C4

B1=((7.0*C1)-(C2*C3))/((7.0*C4)-(C2*C2))

B2=(C3-(B1*C2))/7.0

200 WRITE (6,30) NUM(J),B1,B2

30 FORMAT (1X,I4,' TACT =',F7.4,'* TMEA',F7.4)

END
```

The following equations were produced for the actual temperature as a function of thermocouple reading:

```
20
    TACT = 0.9943 * TMEA - 0.3541
    TACT = 0.9967 * TMEA - 0.5030
21
    TACT = 0.9940 * TMEA - 0.3024
22
    TACT = 0.9974 * TMEA - 0.5379
23
    TACT = 0.9956 * TMEA - 0.3388
24
25
    TACT = 0.9988 * TMEA - 0.6189
    TACT = 0.9979 * TMEA - 0.5436
26
27
    TACT = 1.0005 * TMEA - 0.6979
   TACT = 0.9969 * TMEA - 0.2562
28
29
    TACT = 1.0004 * TMEA - 0.5924
    TACT = 0.9950 * TMEA - 0.3709
30
    TACT = 0.9970 * TMEA - 0.4320
31
    TACT = 0.9955 * TMEA - 0.3093
32
33
   TACT = 0.9996 * TMEA - 0.6571
34
    TACT = 0.9962 * TMEA - 0.3214
    TACT = 0.9999 * TMEA - 0.6091
35
    TACT = 0.9965 * TMEA - 0.1206
36
    TACT = 1.0002 * TMEA - 0.4811
37
    TACT = 0.9952 * TMEA + 0.2566
38
    TACT = 1.0001 * TMEA - 0.3914
39
    TACT = 0.9955 * TMEA - 0.9513
40
    TACT = 0.9990 * TMEA - 1.2087
41
42
   TACT = 0.9957 * TMEA - 0.8811
   TACT = 0.9980 * TMEA - 1.0401
43
    TACT = 0.9973 * TMEA - 0.9299
44
45
   TACT = 0.9996 * TMEA - 1.0774
   TACT = 0.9980 * TMEA - 0.8874
46
   TACT = 0.9993 * TMEA - 1.0037
47
    TACT = 0.9983 * TMEA - 0.7742
48
49
    TACT = 0.9997 * TMEA - 0.9458
    TACT = 0.9986 * TMEA - 0.1335
50
    TACT = 0.9964 * TMEA + 0.4239
```

```
52
    -TACT = 0.9986 * TMEA - 0.2742
53
    TACT = 0.9951 * TMEA + 0.5311
54
    TACT = 0.9977 * TMEA - 0.1955
    TACT = 0.9953 * TMEA + 0.4540
55
    TACT = 0.9976 * TMEA -0.1492
56
    TACT = 0.9956 * TMEA + 0.4803
57
    TACT = 0.9957 * TMEA + 0.1264
58
    TACT = 0.9958 * TMEA + 0.4729
59
60
    TACT = 0.9973 * TMEA + 0.0673
61
    TACT = 0.9973 * TMEA + 0.3663
    TACT = 0.9983 * TMEA - 0.1178
62
63
    TACT = 0.9983 * TMEA - 0.1178
    TACT = 0.9978 * TMEA - 0.1371
64
    TACT = 0.9962 * TMEA + 0.3307
65
    TACT = 0.9981 * TMEA - 0.1364
66
    TACT = 0.9944 * TMEA + 0.5519
67
    TACT = 0.9968 * TMEA - 0.0517
68
69
    TACT = 0.9959 * TMEA + 0.4287
    TACT = 0.9979 * TMEA - 0.9981
70
    TACT = 0.9993 * TMEA - 0.9477
71
    TACT = 0.9984 * TMEA -1.1623
72
    TACT = 0.9978 * TMEA - 0.8775
73
    TACT = 0.9986 * TMEA - 1.2134
74
    TACT = 0.9986 * TMEA - 0.9906
75
76
    TACT = 0.9983 * TMEA - 1.2166
77
    TACT = 0.9985 * TMEA - 0.9233
78
    TACT = 0.9989 * TMEA -1.2423
    TACT = 0.9980 * TMEA - 0.9644
79
80
    TACT = 1.0004 * TMEA - 2.8926
    TACT = 0.9995 * TMEA - 2.6117
81
82
    TACT = 1.0007 * TMEA - 2.8916
83
    TACT = 1.0006 * TMEA - 2.8428
84
    TACT = 1.0001 * TMEA - 2.9395
    TACT = 0.9998 * TMEA - 2.6824
85
    TACT = 0.9984 * TMEA - 2.7576
86
    TACT = 1.0014 * TMEA - 2.8251
87
88
    TACT = 1.0009 * TMEA - 2.9740
89
    TACT = 0.9999 * TMEA - 2.7285
    TACT = 0.9973 * TMEA + 0.1670
90
    TACT = 0.9968 * TMEA + 0.3266
91
    TACT = 0.9961 * TMEA + 0.3196
92
    TACT = 0.9976 * TMEA + 0.2278
93
    TACT = 0.9959 * TMEA + 0.3293
94
    TACT = 0.9964 * TMEA + 0.4239
95
96
    TACT = 0.9970 * TMEA + 0.2179
97
    TACT = 0.9973 * TMEA + 0.3663
98
    TACT = 0.9955 * TMEA + 0.3665
    TACT = 0.9966 * TMEA + 0.3364
99
```

APPENDIX C

HOT WIRE SYSTEM CALIBRATION

The hot wire system is calibrated in the following manner: (1) a series of voltage and pressure readings are taken at various flow rates, (2) the data are read into the hot wire calibration program, and (3) the program provides the appropriate values necessary to calculate velocity as a function of voltage. A sample input file is:

Output Label - Heading: Hot Wire Calibration Saturday 14 June 86

processe telescope appropria contrata withing white contrata property telescope and

Static Voltage, Marker: 2.3998,1

Note: the marker, 1, tells the program that pressure readings are in inH₂O

First Point- Voltage, Pressure: .070,3.6106
Secend Point066,3.5769
Third Point065,3.5721
Fourth Point06,3.5378
Fifth Point05,3.4698
Sixth Point04,3.4057
Seventh Point0325,3.2740
Eighth Point024,3.1846

Only the information after the colons is put into the data file, the comments are to ensure that the correct information goes into the file. Once the data file has been constructed, the hot wire calibration program reads the file and calculates the constants necessary for:

$$U (m/sec) = \left(\frac{EOC^2}{B} - \frac{EOM^2}{A}\right)^{1/N}$$

The program listing is as follows:

```
PROGRAM HWCAL
C
   THIS PROGRAM IS USED FOR CALCULATION OF HOT WIRE
   CALIBRATION PARAMETERS% N,B,EO
                                      FOR USE IN THE
   RELATION U=((E^{**2}-E0^{**2})/B)^{**}(1/N)
      DIMENSION U(50), E(50), G(50), F(50)
      DIMENSION TITLE(20), X(50), Y(50), XX(10), YY(10)
      READ(50,10)TITLE
   10 FORMAT(20A4)
      READ(50,*)DIA
      READ(50,*)TA
      READ(50,*)AP
      READ(50,*)N
      READ(50,*)EOM, NKKK
      READ(50,*) (G(I),E(I),I=1,N)
      P0 = 760.0
      T0=273.15
      TA = TO + TA
      D0=1.292
      DA=(DO*TO*AP)/(TA*PO)
      DW = 998.2
      GC = 9.81
      C=(((2.*DW*GC)/(1000.*DA))**0.5)
      ZNUU=13.30+(16.00-13.30)*((TA-273.)/(303.-273.))
      ZNUU=ZNUU/1000000.
      ULIM=0.068*ZNUU/(DIA*0.000001)
      DO 16 I=1,N
      IF(NKKK.EQ.1) G(I)=G(I)*25.4
      U(I)=C*(G(I)**0.5)
   16 CONTINUE
      DO 100 I=1,N
      IF(U(I).GE.ULIM)M=N
      IF(U(I).LT.ULIM)M=I-1
      IF(U(I).LT.ULIM)GO TO 101
  100 CONTINUE
  101 CONTINUE
      DO 60 I=1.M
```

```
G(I)=ALOG(U(I))
      F(I)=ALOG((E(I)**2.)-(EOM**2.))
    60 CONTINUE
       CALL CORREL(G, F, M, SLO, ORD, RCC)
       RCC1=RCC
       EX=SLO
       EXI=1./SLO
       DO 18 I=1.M
       G(I)=U(I)**EX
       F(I)=E(I)**2.
    18 CONTINUE
       CALL CORREL(G, F, M, SLO, ORD, RCC)
       RCC2=RCC
       B=SLO
       EOC=(ORD)**0.5
    PRINT OUT THE FINAL RESULTS
       WRITE(6,20)
    20 FORMAT(//,5X,'HOT-WIRE CALIBRATION RESULTS'./)
       KKK=0
    30 WRITE(6,21)TITLE
    21 FORMAT(5X,20A4,/)
       WRITE(6,22) EX, EXI, RCC1, EOM
       WRITE(6,23) B,EOC,RCC2,ULIM
   22 FORMAT(5X,'N=',F10.6,3X,'OR 1/N=',F10.6,3X,'CORR.COEF.
=',F10.6,
        3X,'EOM=',F10.6)
   23 FORMAT(5X, 'B=', F10.6, 6X, 'EOC=', F10.6, 3X, 'CORR. COEFF.='
,F10.6,
      1 3X, 'ULIM=',F10.6,/)
       WRITE (6,40)
   40 FORMAT(/,6X,'I',6X,'U(I)',12X,'E(I)',8X,'E(I)2-EOC2',5
Х,
      1 'LN U(I)',4X,'LN(E(I)2-EOC2)',2X,'U(I)**N',/)
       DO 24 I=1.N
       AAA = (E(I) **2.) - (EOC **2.)
       BBB=ALOG(AAA)
       CCC=ALOG(U(I))
       DDD=(U(I))**EX
       Y(I) = DDD
       X(I) = AAA
       WRITE(6,25)I,U(I),E(I),AAA,CCC,BBB,DDD
   25 FORMAT(5X,I2,3X,F10.5,4X,F10.5,4X,F10.5,4X,F10.5,2(4X,
F10.5))
    24 CONTINUE
       ACHK = EOM **2. - EOC **2.
       WRITE(6,172) ACHK
   172 FORMAT (30X, 'EOM**2-EOC**2=',2X,F10.5)
```

```
IF(KKK.EQ.O)GO TO 70
      NL=N-M+2
      JJJ=0
      IF(NL.LT.4)M=N-2
      IF(NL.LT.4)NL=4
      DO 170 I=M, N
      JJJ=JJJ+1
      Y(JJJ)=Y(I)
      X(JJJ)=X(I)
  170 CONTINUE
      Y(NL)=0.0
      X(NL)=(EOM**2.)-(EOC**2.)
C REORDER DATA AND FIT THIRD ORDER POLYNOMIAL TO DATA
      X1 = 0.0
      X2 = X1
      X3 = X2
      X4=X3
      X5 = X4
      X6 = X5
      Y1 = X6
      Y2=Y1
      Y3 = Y2
      Y4=Y3
      DO 190 I=1.NL
      YY(I)=Y(I)
      XX(I)=X(I)
  190 CONTINUE
      DO 171 I=1,NL
      Y(NL-I+1)=YY(I)
      X(NL-I+1)=XX(I)
  171 CONTINUE
C FIX DATA POINT ON LINE CALIBRATION AT Y=ULIM**0.45
      XCAT=B*(ULIM**0.45)
      YCAT=ULIM**0.45
      J = NL
  301 IF(Y(J).LT.YCAT) GO TO 300
      X(J+1)=X(J)
      Y(J+1)=Y(J)
      J=J-1
      GO TO 301
  300 CONTINUE
      X(J+1)=XCAT
      Y(J+1) = YCAT
      NL = NL + 1
      DO 303 I=1,NL
      WRITE (6,302) X(I),Y(I)
  302 FORMAT (///,5X,'X(I)=',2X,F10.5,5X,'Y(I)=',2X,F10.5)
  303 CONTINUE
      DO 102 I=1.NL
      X1 = X1 + X(I)
      X2 = X2 + X(I) * * 2.
```

Secretary secretary secretary secretary secretary secretary secretary

```
X3 = X3 + X(I) **3.
       X4 = X4 + X(I) * * 4.
       X5 = X5 + X(I) **5.
       X6 = X6 + X(I) **6.
       Y1 = Y1 + Y(I)
       Y2 = Y2 + X(I) * Y(I)
       Y3 = Y3 + X(I) * X(I) * Y(I)
       Y4=Y4+X(I)*X(I)*X(I)*Y(I)
  102 CONTINUE
       XO=FLOAT(NL)
C SOLVE MATRIX GAUSS/JORDAN ELIMINATION
       A12=X1/X0
       A13=X2/X0
       A14=X3/X0
       A22 = X2/X1
       A23 = X3/X1
       A24 = X4/X1
       A32 = X3/X2
       A33 = X4/X2
       A34 = X5/X2
       A42=X4/X3
       A43 = X5/X3
       A44 = X6/X3
       YA1=Y1/X0
       YA2=Y2/X1
       YA3=Y3/X2
       YA4=Y4/X3
       Y1 = YA1
       Y2 = YA2
       Y3 = YA3
       Y4 = YA4
       B22 = A22 - A12
       B23=A23-A13
       B24 = A24 - A14
       B32 = A32 - A12
       B33=A33-A13
       B34 = A34 - A14
       B42 = A42 - A12
       B43=A43-A13
       B44 = A44 - A14
       YY2 = Y2 - Y1
       YY3 = Y3 - Y1
       YY4 = Y4 - Y1
       C23 = B23 / B22
       C24 = B24/B22
       C33=B33/B32
       C34 = B34 / B32
       C43 = B43/B42
       C44 = B44 / B42
       Y2 = YY2 / B22
       Y3=YY3/B32
```

```
Y4=YY4/B42
       D33=C33-C23
       D34=C34-C24
       D43=C43-C23
       D44=C44-C24
       W3 = Y3 - Y2
       W4 = Y4 - Y2
       E34=D34/D33
       E44 = D44 / D43
       Y3=W3/D33
       Y4=W4/D43
       D44=E44-E34
       YY4 = (Y4 - Y3)/D44
       Y4=YY4
       A3=Y4
       A2=Y3-E34*A3
       A1=Y2-C23*A2-C24*A3
       A0=Y1-A12*A1-A13*A2-A14*A3
       WRITE(6.200)
  200 FORMAT(//,5X,'HOT WIRE CALIBRATION RESULTS LOW VELOCIT
Y')
       WRITE(6,201)
  201 FORMAT(5X, 'FORM OF CURVE% Y=A0+A1*X+A2*X**2+A3*X**3',/
)
       WRITE(6,202) AO,A1,A2,A3
  202 FORMAT(5X, 'AO=',E15.5,2X, 'A1=',E15.5,2X, 'A2=',E15.5
,2X,
      1 ' A3=',E15.5,///////////
    70 IF(KKK.EQ.1) GO TO 31
       DO 27 I=1.M
       G(I)=U(I)**0.45
       F(I) = E(I) **2.
    27 CONTINUE
       CALL CORREL(G,F,M,SLO,ORD,RCC)
       EX = 0.45
       EXI=1./EX
       RCC1=1.000
       RCC2 = RCC
       B = SLO
       EOC = (ORD) **0.5
       WRITE(6,33)
   33 FORMAT(///,5X,'HOT-WIRE CALIBRATION RESULTS WITH N=0.4
5',/)
       KKK = 1
       GO TO 30
    31 CONTINUE
       STOP
```

```
END
   SUBROUTINE CORREL(G,F,M,SLO,ORD,RCC)
   DIMENSION G(50), F(50)
   X=0.
   Y=0.
   Z=0.
   X2=0.
   Y2=0.
   DO 50 I=1,M
   X=X+G(I)
   Y = Y + F(I)
   X2=X2+(G(I)**2)
   Y2=Y2+(F(I)**2)
   Z=Z+(G(I)*F(I))
50 CONTINUE
   SLO=(Z-((X*Y)/FLOAT(M)))/(X2-((X**2)/FLOAT(M)))
   ORD=(Y-(SLO*X))/FLOAT(M)
   R = ((FLOAT(M)*X2) - (X**2))/((FLOAT(M)*Y2) - (Y**2))
   RCC=SLO*SQRT(R)
   RETURN
   END
```

The program has the following output:

N= 0.941391 OR 1/N= 1.062257 CORR.COEF.= 0.994688 EDM= 2.399800

HOT-WIRE CALIBRATION RESULTS

8= 1.483775

HOT WIRE CALIBRATION SATURDAY 14 JUNE 86

I	U(I)	E(I)	E(I)2-E0C2	LN U(I)	LN(E(I)2-E0C2)	U(I)**N
1	5.36902	3.61060	7.21428	1.68064	1.97606	4.86538
2	5.21336	3.57690	6.97206	1.65123	1.94191	4.73248
3	5.17372	3.57210	6.93774	1.64359	1.93698	4.69859
4	4.97075	3.53780	6.69387	1.60357	1.90119	4.52486
5	4.53765	3.46980	6.21736	1.51241	1.82734	4.15274
6	4.05860	3.40570	5.77664	1.40084	1.75382	3.73869
7	3.65837	3.27400	4.89692	1.29702	1.58861	3.39058
8	- 3.14378	3.18460	4.31952	1.14542	1.46314	2.93966
		E0M**2-6	EOC**2= -0.06	311		

EOC= 2.412914 CORR.COEFF.= 0.994873 ULIM= 0.204319

HOT-WIRE CALIBRATION RESULTS WITH N=0.45

HOT WIRE CALIBRATION SATURDAY 14 JUNE 86

N=	0.450000	OR	1/N=	2.222221	CORR.COEF.=	1.000000	EOM= 2.399800	
8=	6.319242		EOC=	0.674877	CORR.COEFF.=	0.996123	ULIM= 0.204319	
	4 = \$			-4-1	-4-1-			
I	U(I)			E(I)	E(I)2-E0C2	LN U(I)	LN(E(I)2-EDC2)	U(I)**N
1	5.36902		3.	.61060	12.58098	1.68064	2.53219	2.13036
2	5.21336		٥.	57690	12.33875	1.65123	2.51274	2.10234
3	5.17372		3.	.57210	12.30444	1.64359	2.50996	2.09513
4	4.97075		3.	.53780	12.06057	1.60357	2.48994	2.05774
5	4.53765		3.	46980	11.58405	1.51241	2.44963	1.97503
5	4.05860		3.	40570	11.14333	1.40084	2.41084	1.87832
7	3.65837		3.	27400	10.26362	1.29702	2.32860	1.79258
8	3.14378		3.	18460	9.68622	1.14542	2.27070	1.67438
				EDM**2-ED	C**2* 5.30	358		

$$X(I) = 5.30358$$
 $Y(I) = 0.00000$

$$X(I) = 3.09246$$
 $Y(I) = 0.48937$

$$X(I) = 9.68622$$
 $Y(I) = 1.67438$

$$X(I) = 10.26362$$
 $Y(I) = 1.79258$

$$X(I) = 11.14333$$
 $Y(I) = 1.87832$

HOT WIRE CALIBRATION RESULTS LOW VELOCITY FORM OF CURVES Y=AO+A1*X+A2*X**2+A3*X**3

A0= 0.52919E+01 A1= -0.25975E+01 A2= 0.38874E+00 A3= -0.16439E-01

A hotwire calibration curve (p. 134) is then drawn to determine if the data is linear. If it is not, the hot wire must be recalibrated.

APPENDIX D

LAMINAR HOT WIRE DATA FOR Gr⁺=10⁴ WITH C=0.0, C=0.4, AND C=1.0, INCLUDING THE UNHEATED TEST CASE

The following pages contain the data as listed above in the following format: (1) the original voltage readings, (2) the streamline patterns, and (3) the calculated velocities. The readings were taken in accordance with the diagram below. The second position, #5, is taken with the hot wire rotated 90 degrees, as shown in Figure 3.4, Page 49.

Unheated Test Case
Original Voltage Readings

# 1	#2	#3	#4	#5	# 5
2.3741	2.3775	2.3778	2.3811	2.3785	2.3789
2.3857	2.3875	2.3810	2.3869	2.3848	2.3870
2.4133	2.4099	2.3895	2.3950	2.3891	2.3888
2.4619	2.4538	2.4087	2.4029	2.4014	2.4044
2.5474	2.5268	2.4537	2.4166	2.4122	2.4096
2.6061	2.5872	2.5124 2.5559	2.4327	2.4216 2.4316	2.4220
2.6610 2.6955	2.6328 2.6649	2.5903	2.4520 2.4682	2.4316	2.4300 2.4405
2.0933	2.6874	2.5905	2.4002	2.4391	2.4485
2.7443	2.7032	2.6371	2.4883	2.4527	2.4530
2.7571	2.7168	2.6495	2.4908	2.4552	2.4550
2.7684	2.7259	2.6623	2.4945	2.4533	2.4543
2.7753	2.7304	2.6660	2.4894	2.4531	2.4534
2.7808	2,7373	2.6745	2.4917	2.4477	2.4481
2.7835	2.7381	2.6720	2.4860	2.4439	2.4425
2.7852	2.7425	2.6787	2.4868	2.4380	2.4365
2.7882	2.7423	2.6762	2.4794	2.4330	2.4331
2.7893	2.7456	2.6801	2.4824	2.4291	2.4319
2.7875	2.7409	2.6780	2.4734	2.4228	2.4230
2.7881	2.7449	2.6792	2.4754	2.4187	2.4295
2.7882	2.7397	2.6743	2.4686	2.4150	2.4125
2.7872	2.7398	2.6773	2.4713	2.4101	2.4096
2.7845	2.7375	2.6694	2.4637	2.4086	2.4091
2.7832	2.7370	2.6728	2.4672	2.4058	2.4045
2.7799	2.7305	2.6657	2.4618	2.4057	2.4057
2.7742	2.7284	2.6674	2.4660	2.4042	2.4038
2.7680	2.7200	2.6578	2.4601	2.4059	2.4055
2.7482 2.7347	2.7029 2.6921	2.6420 2.6354	2.4601 2.4617	2.4091 2.4098	2.4099 2.4095
2.7153	2.6689	2.6152	2.4517	2.4096	2.4093
2.6907	2.6425	2.5958	2.4353	2.4056	2.4095
2.6499	2.5985	2.5572	2.4271	2.3997	2.4005
2.5964	2.5423	2.5118	2.4123	2.3950	2.3945
2.5190	2.4669	2.4535	2.3974	2.3920	2.3920
2.4570	2.4220	2.4195	2.3939	2.3923	2.3930

ENTRY OFFICE STREET SESSEN SESSEN STREET STREET SESSEN SESSEN SESSEN SESSEN

Unheated Test Case

Streamlines

#1	#2	#3	#4	#5	
0.46	0.47	0.47	0.47	0.47	-0.0008
0.47	0.48	0.47	0.48	0.47	-0.0045
0.50	0.50	0.48	0.48	0.48	0.0006
0.55	0.54	0.50	0.49	0.49	-0.0060
0.65	0.63	0.54	0.50	0.50	0.0052
0.72	0.70	0.61	0.52	0.51	-0.0008
0.80	0.76	0.66	0.54	0.52	0.0032
0.85	0.81	0.70	0.56	0.53	-0.0028
0.89	0.84	0.74	0.57	0.54	0.0000
0.93	0.86	0.77	0.58	0.54	-0.0006
0.95	0.88	0.78	0.58	0.54	0.0004
0.97	0.90	0.80	0.59	0.54	-0.0020
0.98	0.90	0.81	0.58	0.54	-0.0006
	0.91	0.82	0.58	0.54	-0.0008
0.99	0.92	0.82	0.58	0.53	0.0028
1.00	0.92	0.82	0.58 0.57	0.53	0.0030
1.00	0.93	0.83	0.57	0.52	-0.0002
1.00	0.92	0.82	0.56	0.51	-0.0056 -0.0004
1.00	0.93	0.83	0.57	0.51	-0.0217
1.00	0.92	0.82	0.56	0.50	0.0050
1.00	0.92	0.82	0.56	0.50	0.0010
0.99	0.92	0.81	0.55	0.50	-0.0010
0.99	0.91	0.82	0.56	0.49	0.0026
0.98	0.90	0.81	0.55	0.49	0.0000
0.97	0.90	0.81	0.56	0.49	0.0008
0.96	0.89	0.80	0.55	0.49	0.0008
0.93	0.86	0.77	0.55	0.50	-0.0016
0.91	0.85	0.76	0.55	0.50	0.0006
0.88	0.81	0.74	0.54	0.50	0.0006
0.84	0.77	0.71	0.54	0.49	-0.0038
0.78	0.71	0.66	0.52	0.49	-0.0016
0.71	0.64	0.61	0.50	0.48	0.0010
0.62	0.56	0.54	0.49	0.48	0.0000
0.55	0.51	0.51	0.48	0.48	-0.0014

MINIMUM PSI = -0.0217 AVERAGE PSI = -0.0008 MAXIMUM PSI = 0.0052

Unheated Test Case

Velocities

# 1	# 2	#3	#4	#5	
#1 2.1100 2.1603 2.2837 2.5137 2.9605 3.3005 3.6446 3.8743 4.0737 4.2180 4.3118 4.3960 4.4480 4.4898 4.5104 4.5234 4.5234 4.5465 4.5549 4.5465 4.5465 4.5388 4.5181	#2 2.1247 2.1682 2.2682 2.4742 2.8478 3.1880 3.4646 3.6700 3.8194 3.9271 4.0216 4.0858 4.1178 4.1673 4.1731 4.2049 4.2034 4.2274 4.1933 4.2223 4.1846 4.1854 4.1687	#3 2.1260 2.1398 2.1770 2.2627 2.4737 2.7709 3.0080 3.2062 3.3576 3.4916 3.5704 3.6531 3.6772 3.7332 3.7167 3.7611 3.7445 3.7705 3.7565 3.7645 3.7565 3.7645 3.7518 3.6996	#4 2.1403 2.1656 2.2013 2.2366 2.2987 2.3735 2.4655 2.5447 2.5997 2.6458 2.6585 2.6775 2.6514 2.6632 2.6341 2.6381 2.6007 2.6158 2.5706 2.5806 2.5467 2.5601 2.5225	#5 2.1290 2.1564 2.1752 2.2298 2.2786 2.3218 2.3683 2.4037 2.4486 2.44810 2.44718 2.44708 2.4447 2.4265 2.3985 2.3749 2.3566 2.3273 2.3084 2.2914 2.2691 2.2623	2.1307 2.1660 2.1739 2.2433 2.2668 2.3236 2.3608 2.4103 2.4486 2.4703 2.4800 2.4766 2.4722 2.4467 2.4198 2.3914 2.3697 2.3697 2.3282 2.3585 2.2800 2.2668 2.2645
4.5181 4.5081 4.4829 4.4397 4.3930 4.2464 4.1486 4.0111 3.8417 3.5729 3.2424 2.8059 2.4897	4.1687 4.1651 4.1185 4.1036 4.0441 3.9250 3.8512 3.6963 3.5257 3.2549 2.9323 2.5383 2.3236	3.6996 3.7220 3.6753 3.6864 3.6238 3.5226 3.4809 3.3558 3.2388 3.0153 2.7677 2.4727 2.3121	2.5225 2.5398 2.5132 2.5339 2.5049 2.5049 2.5127 2.4815 2.4409 2.3473 2.2791 2.2120 2.1964	2.2623 2.2496 2.2492 2.2424 2.2501 2.2645 2.2677 2.2668 2.2487 2.2222 2.2013 2.1880 2.1893	2.2645 2.2438 2.2492 2.2406 2.2483 2.2682 2.2664 2.2655 2.2573 2.2258 2.1991 2.1880 2.1924

MINIMUM VELOCITY = 2.1100 AVERAGE VELOCITY = 3.1083 MAXIMUM VELOCITY = 4.5549

Heated Test Case Gr⁺=10⁴, C=0.0
Original Voltage Readings

#1	#2	#3	#4	#5	#5
2.3828	2.3700	2.3716	2.3762	2.3822	2.3822
2.3865	2.3726	2.3792	2.3799	2.3893	2.3849
2.4021	2.3803	2.3897	2.3870	2.3946	2.3858
2.4198	2.4021	2.4154	2.3906	2.4038	2.3905
2.4502	2.4398	2.4714	2.4102	2.4148	2.3969
2.4873 2.5095	2.5206	2.5498	2.4470	2.4248	2.4022
2.5367	2.5822 2.6380	2.6161	2.4848	2.4340	2.4067
2.5357	2.6380	2.6614 2.6959	2.5320	2.4419	2.4098
2.5603	2.7036	2.7203	2.5688 2.5900	2.4500	2.4131
2.5592	2.7197	2.7411	2.5900	2.4530 2.4550	2.4113 2.4084
2.5686	2.7387	2.7411	2.6206	2.4537	2.4084
2.5663	2.7435	2.7616	2.6333	2.4513	2.3951
2.5732	2.7541	2.7673	2.6339	2.4473	2.3863
2.5666	2.7587	2.7721	2.6426	2.4426	2.3768
2.5728	2.7640	2.7741	2.6389	2.4364	2.3659
2.5650	2.7643	2.7779	2.6456	2.3137	2.2332
2.5701	2.7675	2.7775	2.6410	2.4267	2.3465
2.5624	2.7670	2.7799	2.6468	2.4227	2.3477
2.5668	2.7689	2.7801	2.6405	2.4174	2.3475
2.5569	2.7664	2.7794	2.6436	2.4137	2.3488
2.5600	2.7672	2.7808	2.6374	2.4098	2.3499
2.5518	2.7655	2.7755	2.6419	2.4084	2.3533
2.5587	2.7643	2.7749	2.6350	2.4053	2.3551
2.5497	2.7609	2.7742	2.6380	2.4052	2.3597
2.5528	2.7568	2.7711	2.6292	2.4040	2.3632
2.5434	2.7517	2.7642	2.6333	2.4059	2.3698
2.5442	2.7481	2.7578	2.6233	2.4065	2.3750
2.5291	2.7397	2.7531	2.6220	2.4093	2.3823
2.5165	2.7322	2.7417	2.6103	2.4091	2.3867
2.4942	2.7123	2.7229	2.6065	2.4081	2.3903
2.4695	2.6968	2.7025	2.5865	2.4024	2.3891
2.4308	2.6707	2.6656	2.5679	2.3973	2.3885
2.4041	2.6305	2.6216	2.5276	2.3919	2.3875
2.3970	2.5740	2.5789	2.4898	2.3892	2.3892

STATE CONTROL STATEMENT OF THE STATEMENT STATEMENT STATEMENT STATEMENT STATEMENT STATEMENT STATEMENT STATEMENT

Heated Test Case Gr⁺=10⁴, C=0.0 Streamlines

#1	#2	#3	#4	#5	
0.48	0.47	0.47	0.47	0.48	0.0000
0.48	0.47	0.47	0.48	0.48	0.0089
0.50	0.48	0.49	0.48	0.49	0.0176
0.52	0.50	0.51	0.49	0.50	0.0264
0.55	0.54	0.57	0.51	0.51	0.0353
0.59	0.63	0.66	0.54	0.52	0.0441
0.61	0.70	0.75	0.59	0.53	0.0529
0.65	0.78	0.81	0.64	0.54	0.0618
0.66	0.84	0.86	0.69	0.55	0.0705
0.68	0.88	0.90	0.71	0.55	0.0792
0.67	0.90	0.93	0.74	0.55	0.0882
0.69	0.93	0.95	0.75	0.55	0.0969
0.68	0.94	0.97	0.77	0.55	0.1057
0.69	0.96	0.98	0.77	0.54	0.1146
0.68	0.96	0.99	0.79	0.54	0.1234
0.69	0.97	0.99	0.78	0.53	0.1321
0.68	0.97	1.00	0.79	0.41	0.1585
0.69	0.98	0.99	0.78	0.52	0.1499
0.68	0.98	1.00	0.79	0.52	0.1410
0.68	0.98	1.00	0.78	0.51	0.1322
0.67	0.98	1.00	0.79	0.51	0.1234
0.68	0.98	1.00	0.78	0.51	0.1145
0.66	0.97	0.99	0.78	0.50	0.1058
0.67	0.97	0.99	0.77	0.50	0.0969
0.66	0.97	0.99	0.78	0.50	0.0882
0.67	0.96	0.98	0.77	0.50	0.0794
0.65	0.95	0.97	0.77	0.50	0.0704
0.66	0.95	0.96	0.76	0.50	0.0616
0.64	0.93	0.95	0.76	0.50	0.0530
0.62	0.92	0.94	0.74	0.50	0.0441
0.60	0.89	0.91	0.74	0.50	0.0352
0.57	0.86	0.87	0.71	0.50	0.0264
0.53	0.83	0.82	0.69	0.49	0.0176
0.50	0.77	0.76	0.64	0.49	0.0089
0.49	0.69	0.70	0.59	0.48	0.0000

MINIMUM PSI = 0.0000 AVERAGE PSI = 0.0733 MAXIMUM PSI = 0.1585

Heated Test Case Gr⁺=10⁴, C=0.0 Velocities

#1	#2	#3	#4	# 5	
2.1477	2.0925	2.0993	2.1191	2.1451	2.1451
2.1638	2.1036	2.1320	2.1351	2.1761	2.1568
2.2330 2.3135	2.1368 2.2330	2.1779 2.2932	2.1660 2.1818	2.1995	2.1608
2.4568	2.4070	2.2932	2.1616	2.2406 2.2905	2.1814 2.2098
2.6407	2.8145	2.9739	2.4414	2.2305	2.2334
2.7556	3.1587	3.3613	2.6280	2.3796	2.2537
2.9015	3.4973	3.6472	2.8759	2.4170	2.2677
2.9500	3.7551	3.8771	3.0812	2.4558	2.2827
3.0328	3.9299	4.0462	3.2045	2.4703	2,2745
3.0266	4.0420	4.1948	3.3429	2.4800	2.2614
3.0801	4.1774	4.2588	3.3889	2.4737	2.2339
3.0669	4.2122	4.3452	3.4677	2.4621	2.2017
3.1065	4.2897	4.3877	3.4715	2.4428	2.1630
3.0686 3.1042	4.3237 4.3631	4.4238	3.5264	2.4203	2.1217
3.1042	4.3653	4.4389 4.4677	3.5030 3.5454	2.3909 1.8623	2.0750
3.0887	4.3892	4.4647	3.5162	2.3454	1.5671 1.9939
3.0447	4.3855	4.4829	3.5531	2.3268	1.9989
3.0698	4.3997	4.4844	3.5131	2.3024	1.9980
3.0137	4.3810	4.4791	3.5327	2.2855	2.0034
3.0312	4.3870	4.4898	3.4935	2.2677	2.0080
2.9850	4.3743	4.4495	3.5219	2.2614	2.0221
3.0238	4.3653	4.4450	3.4784	2.2474	2.0296
2.9733	4.3400	4.4397	3.4973	2.2469	2.0488
2.9906	4.3096	4.4163	3.4421	2.2415	2.0636
2.9384	4.2720	4.3646	3.4677	2.2501	2.0916
2.9428	4.2457	4.3170	3.4055	2.2528	2.1139
2.8602 2.7926	4.1846 4.1307	4.2823 4.1991	3.3975	2.2655	2.1455
2.7920	3.9901	4.1991	3.3259 3.3029	2.2645 2.2600	2.1647 2.1805
2.5512	3.8832	3.9223	3.1839	2.2343	2.1752
2.3646	3.7081	3.6746	3.0761	2.2115	2.1726
2.2420	3.4502	3.3950	2.8521	2.1876	2.1682
2.2102	3.1111	3.1395	2.6534	2.1757	2.1757

MINIMUM VELOCITY = 1.8623 AVERAGE VELOCITY = 3.1722 MAXIMUM VELOCITY = 4.4898

Heated Test Case Gr⁺=10⁴, C=0.4
Original Voltage Readings

#1	#2	#3	#4	# 5	# 5
2.3834	2.3867	2.3848	2.4267	2.4036	2.4034
2.4020	2.4150	2.3926	2.4522	2.4283	2,4239
2.4584 2.5339	2.4798 2.5251	2.4476 2.5272	2.5158 2.5903	2.5207	2.5122
2.6033	2.6190	2.5272	2.5903	2.6046 2.6386	2.5887 2.6189
2.6454	2.6549	2.6421	2.6718	2.6680	2.6421
2.6791	2.6839	2.6760	2.6970	2.6925	2.6618
2.6986	2.7057	2.6981	2.7137	2.7124	2.6724
2.7169	2.7174	2.7165	2.7227	2.7208	2.6788
2.7253	2.7279	2.7228	2.7262	2.7238	2.6717
2.7283	2.7325	2.7303	2.7289	2.7223	2.6637
2.7260	2.7259	2.7310	2.7209	2.7145	2.6555
2.7190	2.7238	2.7250	2.7081	2.7000	2.6328
2.7080	2.7120	2.7217	2.6941	2.6751	2.6068
2.6876	2.7006	2.7058	2.6701	2.6463	2.5775
2.6653 2.6286	2.6807 2.6588	2.6934	2.6423	2.6028	2.5246
2.5890	2.6335	2.6754 2.6584	2.6114 2.5769	2.5474	2.4611
2.5458	2.6123	2.6371	2.5436	2.4732 2.4240	2.3891 2.3320
2.5047	2.5955	2.6257	2.5224	2.3985	2.3036
2.4816	2.5801	2.6081	2.5032	2.3899	2.3030
2.4702	2.5649	2.5984	2.4947	2.3867	2.3052
2.4583	2.5589	2.5886	2.4872	2.3859	2.3054
2.4506	2.5510	2.5883	2.4840	2.3858	2.3099
2.4515	2.5479	2.5751	2.4802	2.3860	2.3113
2.4462	2.5398	2.5733	2.4784	2.3869	2.3160
2.4487	2.5415	2.5686	2.4756	2.3872	2.3132
2.4443	2.5360	2.5677	2.4740	2.3882	2.3230
2.4471	2.5378	2.5641	2.4732	2.3885	2.3222
2.4420 2.4460	2.5335 2.5329	2.5650	2.4739	2.3896	2.3301
2.4420	2.5295	2.5608 2.5621	2.4725 2.4723	2.3899 2.3908	2.3352
2.4441	2.5310	2.5580	2.4723	2.3913	2.3369 2.3442
2.4414	2.5290	2.5566	2.4718	2.3924	2.3442
2.4425	2.5271	2.5552	2.4679	2.3929	2.3473
2.4393	2.5251	2.5520	2.4679	2.3938	2.3560
2.4409	2.5238	2.5498	2.4664	2.3942	2.3541
2.4381	2.5189	2.5471	2.4657	2.3953	2.3570
2.4389	2.5172	2.5448	2.4120	2.3954	2,3609
2.4336	2.5122	2.5423	2.4589	2.3960	2.3641
2.4346	2.5074	2.5363	2.4540	2.3954	2.3661
2.4304	2.5005	2.5319	2.4510	2.3951	2.3687
2.4266	2.4932	2.5230	2.4444	2.3936	2.3699

2,4193	2,4821	2.5122	2.4358	2.3917	2.3708
2.4144	2.4717	2.4980	2.4251	2.3893	2.3710
	- ·				
2.4057	2.4538	2.4853	2.4154	2.3866	2.3709
2.3979	2.4336	2.4640	2.4028	2.3839	2.3779
2.3903	2.4168	2.4409	2.3924	2.3811	2.3707
2.3849	2.4002	2.4172	2.3849	2.3790	2.3712
2.3804	2.3879	2.3984	2.3802	2.3774	2.3722
2.3784	2.3820	2.3875	2.3822	2.3806	2.3760
2.3805	2.3834	2.3857	2.3873	2.3973	2.3973

Heated Test Case $Gr^+=10^4$, C=0.4

Streamlines

0.56	0.63	0.67	0.58	0.53	0.0415
0.55	0.62	0.65	0.57	0.53	0.0365
0.54	0.60	0.64	0.55	0.52	0.0314
0.54	0.58	0.61	0.54	0.52	0.0121
0.53	0.56	0.58	0.53	0.52	0.0209
0.52	0.54	0.56	0.52	0.52	0.0158
0.52	0.53	0.54	0.52	0.51	0.0105
0.52	0.52	0.52	0.52	0.52	0.0093
0.52	0.52	0.52	0.52	0.54	0.0000

MINIMUM PSI = 0.0000 AVERAGE PSI = 0.0832 cAXIMUM PSI = 0.1776

Heated Test Case $Gr^+=10^4$, C=0.4

Velocities

#1	#2	#3	#4	# 5	
2.1503 2.2325 2.4966 2.8862 3.2836 3.5442 3.7638 3.8955 4.0223 4.0815 4.1029 4.0865 4.0370 3.9603 3.8208 3.6726	2.1647 2.2914 2.6027 2.8386 3.3790 3.6051 3.7959 3.9443 4.0258 4.1000 4.1328 4.0858 4.0709 3.9880 3.9092 3.7745	2.1564 2.1907 2.4443 2.8499 3.1768 3.5232 3.7432 3.8921 4.0195 4.0638 4.1171 4.1221 4.0794 4.0561 3.9450 3.8601	2.3454 2.4664 2.7889 3.2062 3.4815 3.7154 3.8846 3.9999 4.0631 4.0879 4.1071 4.0504 3.9610 3.8648 3.7042 3.5245	2.2397 2.3529 2.8150 3.2915 3.5011 3.6903 3.8539 3.9908 4.0497 4.0709 4.0603 4.0055 3.9051 3.7372 3.5499 3.2806	2.2388 2.3324 2.7698 3.1968 3.3784 3.5232 3.6498 3.7193 3.7618 3.7147 3.6622 3.6089 3.4646 3.3047 3.1314 2.8359
3.4384 3.1986 2.9516 2.7304 2.6118 2.5547 2.4961 2.4587 2.4630 2.4375 2.4495 2.4284	3.6303 3.4690 3.3381 3.2370 3.1465 3.0590 3.0249 2.9806 2.9633 2.9185 2.9279 2.8977	3.7392 3.6277 3.4916 3.4204 3.3126 3.2543 3.1962 3.1944 3.1175 3.1071 3.0801 3.0749	3.3245 3.3326 3.1279 2.9395 2.8241 2.7226 2.6786 2.6402 2.6239 2.6047 2.5956 2.5816 2.5736	2.9605 2.5696 2.3329 2.2169 2.1788 2.1647 2.1612 2.1608 2.1656 2.1656 2.1669 2.1713	2.5098 2.1752 1.9349 1.8231 1.8258 1.8293 1.8301 1.8475 1.8529 1.8713 1.8603 1.8989
2.4419 2.4175 2.4366 2.4175 2.4275 2.4146 2.4198 2.4046 2.4122 2.3989 2.4027 2.3777 2.3824 2.3627 2.3449 2.3112	2.9076 2.8841 2.8808 2.8623 2.8705 2.8596 2.8494 2.8386 2.8316 2.7963 2.7698 2.7446 2.7086 2.6709 2.6143	3.0544 3.0595 3.0357 3.0430 3.0199 3.0120 3.0041 2.9862 2.9739 2.9589 2.9461 2.9323 2.8993 2.8754 2.8273 2.7698	2.5696 2.5731 2.5661 2.5651 2.5547 2.5626 2.5433 2.5433 2.5358 2.5324 2.2777 2.4990 2.4751 2.4606 2.4289 2.3881	2.1726 2.1774 2.1788 2.1827 2.1849 2.1898 2.1920 2.1960 2.1978 2.2026 2.2031 2.2057 2.2031 2.2017 2.1951 2.1867	1.8958 1.9273 1.9478 1.9547 1.9845 1.9841 1.9972 2.0333 2.0254 2.0375 2.0539 2.0674 2.0759 2.0869 2.0920 2.0959

2.2887	2.5621	2.6956	2.3380	2.1761	2.0967
2.2492	2.4742	2.6305	2.2932	2.1643	2.0963
2.2142	2.3777	2.5240	2.2361	2.1525	2.1264
2.1805	2.2997	2.4122	2.1898	2.1403	2.0955
2.1568	2.2245	2.3015	2.1568	2.1312	2.0976
2.1372	2.1700	2.2164	2.1364	2.1243	2.1019
2.1286	2.1442	2.1682	2.1451	2.1381	2.1182
2.1377	2.1503	2.1603	2.1673	2.2115	2,2115

MINIMUM VELOCITY = 2.1243 AVERAGE VELOCITY = 2.8785 MAXIMUM VELOCITY = 4.1328

COCCUPIES CONTRACTOR SECURITION

ASSESSED ASSESSED ASSESSED ASSESSED ASSESSED.

Heated Test Case Gr⁺=10⁴, C=1.0
Original Voltage Readings

#1	#2	#3	#4	# 5	#5
2.3357	2.3509	2.3610	2.3903	2.3555	2.3553
2.3449	2.3649	2.3649	2.4029	2.3676	2.3525
2.3540	2.3788	2.3687	2.4154	2.3797	2.3695
2.4092	2.4426	2.4231	2.4781	2.4703	2.4532
2.4832	2.4872	2.5019	2.5514	2.5525	2.5251
2.4995 2.5084	2.5192 2.5263	2.5286 2.5296	2.5274 2.5506	2.4974 2.5333	2.4442 2.4874
2.5172	2.5335	2.5307	2.5737	2.5692	2.4874
2.5512	2.5797	2.5594	2.5960	2.5858	2.5429
2.5587	2.5778	2.5810	2.5974	2.5800	2.5255
2.5925	2.6151	2.6157	2.6317	2.6146	2.5598
2.6090	2.6294	2.6325	2.6441	2.6266	2.5666
2.6255	2.6436	2.6492	2.6565	2.6386	2.5732
2.6446	2.6651	2.6711	2.6730	2.6582	2.5807
2.6541	2.6735	2.6924	2.6559	2.6272	2.5212
2.6626	2.6766	2.6893	2.6819	2.6664	2.5810
2.6644	2.6813	2.6982	2.6699	2.6468	2.5374
2.6667	2.6818	2.6925	2.6836	2.6679	2.5717
2.6696	2.6854	2.7002	2.6792	2.6597	2.5487
2.6708	2.6870	2.6956	2.6853	2.6693	2.5623
2.6711	2.6869	2.6996	2.6846	2.6662	2.5533
2.6723	2.6893	2.6993	2.6867	2.6686	2.5525
2.6737	2.6915	2.7030	2.6880	2.6679	2.5455
2.6726	2.6883 2.6850	2.7034 2.7037	2.6841 2.6801	2.6641 2.6602	2.5386 2.5316
2.6715 2.6681	2.6840	2.7037	2.6738	2.6531	2.5316
2.6695	2.6855	2.6959	2.6851	2.6683	2.5414
2.6646	2.6829	2.6978	2.6675	2.6460	2.5005
2.6592	2.6771	2.6962	2.6606	2.6338	2.4848
2.6538	2.6713	2.6945	2.6537	2.6216	2.4692
2.6438	2.6657	2.6866	2.6419	2.6075	2.4517
2.6338	2.6601	2.6787	2.6300	2.5934	2.4345
2.6120	2,6405	2.6665	2.6027	2.5507	2.3797
2.5760	2.6189	2.6486	2.5722	2.4965	2.3146
2.5372	2.5940	2.6318	2.5382	2.4237	2.2410
2.4949	2.5731	2.6107	2.5054	2.3755	2.1881
2.4546	2.5566	2.5994	2.4846	2.3505	2.1631
2.4320	2.5414	2.5820	2.4657	2.3421	2.1668
2.4208	2.5264	2.5724	2.4573	2.3390	2.1706
2.4091	2.5205	2.5627	2.4499	2.3382	2.1738
2.4016	2.5127	2.5624	2.4467	2.3381	2.1811
2.4025 2.3973	2.5097 2.5017	2.5493 2.5476	2.4430 2.4412	2.3383 2.3392	2.1855
2.3973	2.5017	2.5429	2.4412	2.3395	2.1930 2.1932
	2.5057	4.7447	2.4303	4.3373	4.17.74

2.3954	2.4980	2.5420	2.4369	2.3404	2.2057
2.3982	2.4997	2.5385	2.4361	2.3407	2.2080
2.3932	2.4955	2.5393	2.4368	2.3418	2.2186
2.3971	2.4949	2.5352	2.4354	2.3421	2.2266
2.3932	2.4916	2.5365	2.4352	2.3430	2.2312
2.3952	2.4930	2.5324	2.4331	2.3435	2.2413
2.3937	2.4892	2.5296	2.4309	2.3450	2.2473
2.3926	2.4911	2.5310	2.4347	2.3446	2.2471
2.3905	2.4872	2.5265	2.4309	2.3459	2.2617
2.3921	2.4859	2.5243	2.4294	2.3463	2.2628
2.3893	2.4811	2.5216	2.4287	2.3474	2.2686
2.3901	2.4794	2.5194	2.3758	2.3475	2.2754
2.3849	2.4745	2.5169	2.4220	2.3481	2.2814
2.3859	2.4698	2.5109	2.4172	2.3475	2.2864
2.3818	2.4630	2.5066	2.4142	2.3472	2.2918
2.3781	2.4558	2.4978	2.4077	2.3457	2.2960
2.3709	2.4449	2.4871	2.3993	2.3439	2.2998
2.3661	2.4346	2.4730	2.3887	2.3415	2.3030
2.3576	2.4170	2.4604	2.3792	2.3389	2.3058
2.3499	2.3971	2.4394	2.3668	2.3362	2.3156
2.3425	2.3805	2.4165	2.3565	2.3335	2.3115
2.3372	2.3642	2.3930	2.3491	2.3314	2.3150
2.3328	2.3521	2.3744	2.3445	2.3299	2.3189
2.3308	2.3463	2.3636	2.3465	2.3330	2.3256
2.3329	2.3476	2.3618	2.3515	2.3494	2.3499

Heated Test Case $Gr^+=10^4$, C=1.0

Streamlines

#1	#2	#3	#4	#5	
#1 0.50 0.51 0.52 0.58 0.67 0.69 0.70 0.71 0.76 0.77 0.82 0.84 0.87 0.90 0.92	#2 0.51 0.53 0.54 0.62 0.67 0.71 0.72 0.73 0.80 0.85 0.88 0.90 0.93	#3 0.52 0.53 0.53 0.59 0.69 0.73 0.73 0.77 0.80 0.85 0.88 0.91 0.94 0.98	#4 0.55 0.57 0.58 0.66 0.76 0.73 0.76 0.79 0.82 0.83 0.90 0.92	#5 0.52 0.53 0.54 0.65 0.76 0.69 0.73 0.78 0.81 0.85 0.87 0.89 0.92 0.87	0.0004 0.0305 0.0206 0.0328 0.0503 0.0983 0.0839 0.0696 0.0768 0.0970 0.0961 0.1043 0.1127 0.1314
0.92 0.93 0.94 0.94 0.95 0.95 0.95 0.94 0.94 0.94	0.95 0.96 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.95	0.98 0.97 0.99 0.99 0.99 0.99 1.00 1.00 0.99 0.99	0.92 0.96 0.97 0.97 0.97 0.97 0.97 0.95 0.95 0.93	0.87 0.94 0.90 0.94 0.93 0.94 0.94 0.93 0.93 0.91 0.94 0.90 0.88	0.1784 0.1435 0.1823 0.1604 0.1838 0.1770 0.1862 0.1909 0.2005 0.2054 0.2104 0.2212 0.2072 0.2366 0.2429
0.92 0.90 0.88 0.85 0.79 0.74 0.68 0.63 0.60 0.59 0.57 0.57	0.94 0.94 0.93 0.89 0.86 0.79 0.77 0.74 0.72 0.72 0.71 0.69 0.69	0.98 0.97 0.96 0.94 0.91 0.88	0.92 0.90 0.88 0.83 0.79 0.74 0.67 0.64 0.63 0.62 0.62 0.62 0.61	0.86 0.84 0.82 0.76 0.68 0.59 0.51 0.50 0.50 0.50 0.50 0.50	0.2490 0.2554 0.2613 0.2836 0.3058 0.3163 0.3299 0.3335 0.3161 0.3057 0.2995 0.2877 0.2809 0.2701

0.56	0.69	0.75	0.61	0.50	0.2510
0.56	0.69	0.74	0.61	0.50	0.2476
0.56	0.68	0.74	0.61	0.50	0.2315
0.56	0.68	0.74	0.61	0.50	0.2183
0.56	0.68	0.74	0.61	0.50	0.2118
0.56	0.68	0.73	0.60	0.50	0.1951
0.56	0.67	0.73	0.60	0.51	0.1870
0.56	0.68	0.73	0.61	0.51	0.1867
0.55	0.67	0.72	0.60	0.51	0.1628
0.56	0.67	0.72	0.60	0.51	0.1615
0.55	0.66	0.72	0.60	0.51	0.1529
0.55	0.66	0.71	0.54	0.51	0.1406
0.55	0.66	0.71	0.59	0.51	0.1306
0.55	0.65	0.70	0.59	0.51	0.1202
0.55	0.64	0.70	0.58	0.51	0.1095
0.54	0.63	0.69	0.57	0.51	0.0988
0.53	0.62	0.67	0.56	0.50	0.0881
0.53	0.61	0.65	0.55	0.50	0.0773
0.52	0.59	0.64	0.54	0.50	0.0668
0.51	0.56	0.61	0.53	0.50	
0.50	0.54	0.58	0.52	0.49	0.0449
0.50	0.53	0.56	0.51	0.49	0.0337
0.49	0.51	0.54	0.51	0.49	
0.49	0.51	0.53	0.51	0.49	0.0153
0.49	0.51	0.52	0.51	0.51	-0.0010

MINIMUM PSI = -0.0010 AVERAGE PSI = 0.1666 MAXIMUM PSI = 0.3335

Heated Test Case Gr⁺=10⁴, C=1.0 Velocities

#1	#2	#3	#4	#5	
1.9498 1.9873	2.0121	2.0543	2.1805 2.2366	2.0312	2.0304 2.0187
2.0250	2.1303	2.0869	2.2932	2.1342	2.0903
2.2650	2.4203 2.6402	2.3287	2.5941 2.9828	2.5552	2.4713
2.6199 2.7034	2.8070	2.7158 2.8575	2.9528	2.9890 2.6925	2.8386 2.4280
2.7498	2.8451	2.8629	2.9783	2.8830	2.6412
2.7963	2.8841	2.8688	3.1094	3.0835	2.8688
2.9817 3.0238	3.1441 3.1331	3.0278 3.1517	3.2400 3.2483	3.1798 3.1459	2.9356 2.8408
3.2192	3.3551	3.3588	3.4577	3.3521	3.0300
3.3180	3.4434	3.4627	3.5359	3.4260	3.0686
3.4191	3.5327	3.5684	3.6154	3.5011	3.1065
3.5391 3.5999	3.6713 3.7266	3.7107 3.8533	3.7233 3.6115	3.6264 3.4297	3.1499 2.8177
3.6550	3.7472	3.8323	3.7825	3.6798	3.1517
3.6668	3.7785	3.8928	3.7028	3.5531	2.9054
3.6818	3.7818	3.8539	3.7939	3.6897	3.0979
3.7009 3.7088	3.8060 3.8167	3.9065 3.8750	3.7645 3.8053	3.6361 3.6989	2.9678 3.0442
3.7000	3.8161	3.9024	3.8006	3.6785	2.9934
3.7187	3.8323	3.9003	3.8147	3.6943	2.9890
3.7279	3.8472	3.9257	3.8235	3.6897	2.9500
3.7207	3.8255	3.9285	3.7972	3.6648	2.9119
3.7134 3.6910	3.8033 3.7966	3.9305 3.9106	3.7705 3.7286	3.6394 3.5935	2.8737 2.7985
3.7002	3.8066	3.8771	3.8040	3.6923	2.9273
3.6681	3.7892	3.8900	3.6871	3.5480	2.7086
3.6329	3.7505	3.8791	3.6420	3.4709	2.6280
3.5980 3.5340	3.7121 3.6753	3.8675 3.8140	3.5973 3.5219	3.3950 3.3090	2.5497 2.4640
3.4709	3.6387	3.7611	3.4471	3.2246	2.3819
3.3363	3.5131	3.6805	3.2800	2.9789	2.1342
3.1227	3.3784	3.5646	3.1007	2.6878	1.8658
2.9043 2.6796	3.2281 3.1059	3.4583 3.3283	2.9098 2.7341	2.3315 2.1161	1.5940 1.4179
2.4781	3.0120	3.2603	2.6269	2.0104	1.3400
2.3702	2.9273	3.1575	2.5324	1.9759	1.3514
2.3181	2.8456	3.1019	2.4912	1.9632	1.3631
2.2645 2.2307	2.8139 2.7725	3.0464 3.0447	2.4553 2.4399	1.9600 1.9596	1.3730 1.3958
2.2348	2.7566	2.9711	2.4399	1.9604	1.4097
2.2115	2.7148	2.9616	2.4137	1.9640	1.4336
2.2222	2.7236	2.9356	2.4008	1.9653	1.4342

2.6956	2.9306	2.3933	1.9689	1.4748
2.7044	2.9114	2.3895	1.9702	1.4824
2.6827	2.9158	2.3928	1.9746	1.5176
2.6796	2.8933	2.3862	1.9759	1.5445
2.6626	2.9004	2.3852	1.9796	1.5602
2.6698	2.8781	2.3754	1.9816	1.5951
2.6504	2.8629	2.3650	1.9878	1.6160
2.6601	2.8705	2.3829	1.9861	1.6153
2.6402	2.8461	2.3650	1.9915	1.6672
2.6335	2.8343	2.3580	1.9931	1.6712
	2.8198	2.3547	1.9976	1.6922
	2.8081	2.1174	1.9980	1.7170
2.5761		2.3236	2.0005	1.7392
2.5527		2.3015	1.9980	1.7578
		2.2878	1.9968	1.7781
	2.6946	2.2582	1.9906	1.7941
	2.6397	2.2204	1.9832	1.8085
		2.1735	1.9734	1.8208
	_			1.8316
	2.4051	2.0788		1.8697
	2.2983	2.0354		1.8537
				1.8674
				1.8827
				1.9093
1.9985	2.0577	2.0146	2.0059	2.0080
	2.7044 2.6827 2.6796 2.6626 2.6698 2.6504 2.6601 2.6402 2.6335 2.6092 2.6007 2.5761	2.7044 2.9114 2.6827 2.9158 2.6796 2.8933 2.6626 2.9004 2.6698 2.8781 2.6504 2.8629 2.6601 2.8705 2.6402 2.8461 2.6335 2.8343 2.6092 2.8198 2.6007 2.8081 2.5761 2.7947 2.5527 2.7630 2.5191 2.7404 2.4839 2.6946 2.4313 2.6397 2.3824 2.5686 2.3006 2.5063 2.2106 2.4051 2.1377 2.2983 2.0678 2.1924 2.0171 2.1113 1.9931 2.0653	2.7044 2.9114 2.3895 2.6827 2.9158 2.3928 2.6796 2.8933 2.3862 2.6626 2.9004 2.3852 2.6698 2.8781 2.3754 2.6504 2.8629 2.3650 2.6601 2.8705 2.3829 2.6402 2.8461 2.3650 2.6335 2.8343 2.3580 2.6092 2.8198 2.3547 2.5761 2.7947 2.3236 2.5527 2.7630 2.3015 2.5191 2.7404 2.2878 2.4839 2.6946 2.2582 2.4313 2.6397 2.2204 2.3824 2.5686 2.1735 2.3006 2.5063 2.1320 2.2106 2.4051 2.0788 2.1377 2.2983 2.0354 2.0678 2.1924 2.0047 2.0171 2.1113 1.9857 1.9931 2.0653 1.9939	2.7044 2.9114 2.3895 1.9702 2.6827 2.9158 2.3928 1.9746 2.6796 2.8933 2.3862 1.9759 2.6626 2.9004 2.3852 1.9796 2.6698 2.8781 2.3754 1.9816 2.6504 2.8629 2.3650 1.9878 2.6601 2.8705 2.3829 1.9861 2.6402 2.8461 2.3650 1.9915 2.6335 2.8343 2.3580 1.9931 2.6092 2.8198 2.3547 1.9976 2.6007 2.8081 2.1174 1.9980 2.5761 2.7947 2.3236 2.0005 2.5527 2.7630 2.3015 1.9980 2.5191 2.7404 2.2878 1.9980 2.4313 2.6397 2.2204 1.9832 2.3824 2.5686 2.1735 1.9734 2.3006 2.5063 2.1320 1.9628 2.2106 2.4051 2.0788 1.9519 2.1377 2.2983 2.0354 1.9409

MINIMUM VELOCITY = 1.9265 AVERAGE VELOCITY = 2.8549 MAXIMUM VELOCITY = 3.9305

APPENDIX E

LAMINAR HOT WIRE DATA FOR $Gr^+=10^6$ WITH C=0.0, C=0.4, AND C=1.0.

The following pages contain the data as listed above in the following format: (1) the original voltage readings, (2) the streamline patterns, and (3) the calculated velocities. The readings were taken in accordance with the diagram below. The second position, #5, is taken with the hot wire rotated 90 degrees, as shown in Figure 3.4, Page 49.

Heated Test Case Gr⁺=10⁶, C=0.0
Original Voltage Readings

#1	#2	#3	#4	#5	#5
2.3757	2.3653	2.3692	2.3714	2.3751	2.3751
2.3793	2.3679	2.3768	2.3751	2.3821	2.3748
2.3949	2.3755	2.3873	2.3822	2.3874	2.3727
2.4125	2.3973	2.4130	2.3858	2.3966	2.3745
2.4428	2.4349	2.4689	2.4054	2.4076	2.3779
2.4798	2.5156	2.5472	2.4421	2.4175	2.3803
2.5020	2.5770	2.6135	2.4798	2.4267	2.3818
2.5291	2.6327	2.6587	2.5269	2.4346	2.3820
2.5379	2.6724	2.6932	2.5637	2.4426	2.3823
2.5526	2.6982	2.7176	2.5848	2.4456	2.3776
2.5515	2.7143	2.7384	2.6079	2.4476	2.3717
2.5609	2.7332	2.7471	2.6154	2.4463	2.3627
2.5586	2.7380	2.7588	2.6280	2.4439	2.3525
2.5655	2.7486	2.7645	2.6286	2.4400	2,3408
2.5622	2.7509	2.7669	2.6330	2.4377	2.3332
2.5589	2.7532	2.7693	2.6373	2.4353	2.3255
2.5620	2.7559	2.7703	2.6355	2.4322	2.2109
2.5651	2.7585	2.7713	2.6336	2.4291	2.2084
2.5612	2.7587	2.7733	2.6370	2.3680	2.1452
2.5573	2.7588	2.7751	2.6403	2.3068	2.0820
2.5624	2.7620	2.7747	2.6357	2.4194	2.1979
2.5598	2.7604	2.7748	2.6379	2.3631	2.1543
2.5586	2.7618	2.7749	2.6386	2.4163	2.2044
2.5547	2.7615	2.7771	2.6415	2.4154	2.2080
2.5591	2.7634	2.7773	2.6352	2.4101	2.2107
2.5492	2.7609	2.7766	2.6383	2.4065	2.2150
2.5523 2.5441	2.7617	2.7780	2.6321	2.4026	2.2189
2.5510	2.7600	2.7727	2.6366	2.4012	2.2253
2.5310	2.7588	2.7721	2.6297	2.3981	2.2300
2.5358	2.7554 2.7462	2.7714	2.6327	2.3980	2.2376
2.5336	2.7462	2.7614	2.6280	2.3987	2.2506
2.3213	2.7342	2.7503 2.7202	2.6168 2.6013	2.4021	2.3661
2.4235	2.7009	2.7202	2.5628	2.4009	2.3769
2.4233	2.5689	2.5763	2.3628	2.3901 2.3820	2.2899
4.3070	4.7007	4.0/03	4.4040	4.3040	2.3817

Heated Test Case $Gr^+=10^6$, C=0.0 Streamlines

#1	#2	#3	#4	#5	
#1 0.47 0.48 0.54 0.55 0.66 0.66 0.68 0.68 0.68 0.68 0.68 0.68	#2 0.447 0.447 0.532 0.7837 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	#3 0.47 0.47 0.57 0.66 0.75 0.88 0.93 0.93 0.99 0.99 0.99 0.99 0.99 0.99	#4 0.47 0.48 0.54 0.55 0.54 0.55 0.57 0.77 0.77 0.77 0.77 0.77 0.78 0.78 0.7	0.47 0.48 0.49 0.51 0.52 0.52 0.53 0.54 0.55 0.54 0.55 0.54 0.53 0.47 0.41 0.51 0.51	0.0000 0.0147 0.0294 0.0438 0.0582 0.0721 0.0862 0.1000 0.1136 0.1271 0.1409 0.1544 0.1681 0.1908 0.1999 0.3708 0.3704 0.3828 0.3956 0.3730 0.3634 0.3599 0.3536 0.3428 0.3317
0.68 0.66 0.67 0.66	0.98 0.97 0.97 0.97	1.00 1.00 1.00 0.99	0.78 0.78 0.77 0.78	0.51 0.50 0.50 0.50	0.3428 0.3317 0.3206 0.3090
0.67 0.66 0.65 0.63 0.59 0.52 0.49	0.97 0.96 0.95 0.93 0.88 0.82 0.69	0.99 0.99 0.97 0.95 0.91 0.82 0.70	0.77 0.78 0.77 0.75 0.73 0.68 0.59	0.50 0.50 0.50 0.50 0.50 0.49 0.48	0.2975 0.2856 0.2661 0.0704 0.0474 0.1875 0.0006
	- •		/		2.2000

MINIMUM PSI = 0.0000 AVERAGE PSI = 0.2031 MAXIMUM PSI = 0.3956

Heated Test Case Gr⁺=10⁶, C=0.0 Velocities

#1	#2	#3	#4	#5	
2.1169	2.0725	2.0891	2.0985	2.1143	2.1143
2.1325	2.0835	2.1217	2.1143	2.1446	2.1130
2.2009	2.1161	2.1673	2.1451	2.1678	2.1040
2.2800	2.2115	2.2823	2.1608	2.2084	2.1118
2.4213	2.3838	2.5482	2.2478	2.2578	2.1264
2.6027	2.7878	2.9594	2.4179	2.3029	2.1368
2.7164	3.1285	3.3454	2.6027	2.3454	2.1433
2.8602	3.4640	3.6296	2.8483	2.3824	2.1442
2.9081	3.7193	3.8587	3.0521	2.4203	2.1455
2.9895	3.8928	4.0272	3.1739	2.4347	2.1251
2.9834	4.0041	4.1752	3.3114	2.4443	2.0997
3.0362	4.1378	4.2384	3.3570	2.4380	2.0615
3.0232	4.1723	4.3244	3.4347	2.4265	2.0187
3.0624	4.2493	4.3668	3.4384	2.4080	1.9706
3.0436	4.2662	4.3847	3.4659	2.3970	1.9397
3.0249 3.0425	4.2831 4.3030	4.4027	3.4929	2.3857	1.9089
3.0601	4.3030	4.4103	3.4815	2.3711	1.4919
3.0379	4.3237	4.4178 4.4329	3.4696	2.3566	1.4837
3.0159	4.3237	4.4329	3.4910 3.5118	2.0839 1.8355	1.2863
3.0447	4.3482	4.4434	3.4828	2.3116	1.1093
3.0300	4.3363	4.4442	3.4966	2.0632	1.4494 1.3134
3.0232	4.3467	4.4450	3.5011	2.2974	1.4705
3.0013	4.3445	4.4616	3.5194	2.2932	1.4824
3.0261	4.3586	4.4631	3.4797	2.2691	1.4913
2.9705	4.3400	4.4578	3.4992	2.2528	1.5055
2.9878	4.3459	4.4685	3.4602	2.2352	1.5186
2.9422	4.3333	4.4283	3.4885	2.2290	1.5401
2.9806	4.3244	4.4238	3.4452	2.2151	1.5561
2.9312	4.2993	4.4185	3.4640	2.2146	1.5822
2.8966	4.2318	4.3437	3.4347	2.2178	1.6276
2.8193	4.1450	4.2618	3.3655	2.2330	2.0759
2.6376	3.9526	4.0455	3.2716	2.2276	2.1221
2.3306	3.6733	3.6570	3.0470	2.1796	1.7710
2.1783	3.0818	3.1244	2.6280	2.1442	2.1429

MINIMUM VELOCITY = 1.8355 AVERAGE VELOCITY = 3.1816 MAXIMUM VELOCITY = 4.4685

services transfel invariate transfer stransfer transfers transfer transfers soldiers

Heated Test Case $Gr^+=10^6$, C=0.4 Original Voltage Readings

#1	#2	#3	#4	#5	#5
2.3210 2.3303 2.3539 2.3393	2.3386 2.3526 2.3483 2.3665	2.3510 2.3549 2.3568	2.3780 2.3906 2.3544	2.3408 2.3529 2.3533	2.3406 2.3368 2.3508
2.3575 2.3523 2.3639	2.3509 2.3604 2.3704	2.3587 2.3645 2.3655 2.3687	2.4032 2.3580 2.3640 2.3698	2.3651 2.3603 2.3567 2.3630	2.3520 2.3472 2.3485 2.3536
2.3615	2.3696	2.3725	2.4096	2.3617	2.3671
2.3730	2.3584	2.3750	2.3651	2.3656	2.3336
2.3915	2.3928	2.3772	2.3779	2.3673	2.3467
2.3801 2.4398 2.3906 2.4363	2.3980 2.4367 2.3802 2.4627	2.3803 2.3965 2.4008	2.4351 2.3858 2.3687 2.4987	2.4063 2.3795 2.3747	2.3788 2.3565 2.3237
2.4208 2.5116 2.4577	2.4177 2.5079 2.4985	2.4355 2.4566 2.5151 2.5352	2.4987 2.3883 2.5730 2.4249	2.4985 2.3857 2.5821 2.3956	2.4581 2.3214 2.5285 2.2837
2.3680	2.5517	2.5641	2.4676	2.3602	2.2841
2.5808	2.6017	2.5732	2.6181	2.6160	2.5195
2.4798	2.5597	2.6014	2.4627	2.4047	2.2120
2.6228	2.6375	2.6301	2.6545	2.6453	2.4744
2.5068	2.6153	2.6466	2.5097	2.4126	2.2180
2.4016	2.6481	2.6508	2.5456	2.3683	2.1288
2.6564	2.6664	2:6639	2.6796	2.6696	2.5027
2.5156	2.6551	2.6811	2.5465	2.4206	2.2269
2.6757	2.6883	2.6861	2.6963	2.6896	2.5191
2.6940	2.7000	2.7045	2.7053	2.6979	2.5285
2.5302	2.6807	2.7056	2.5674	2.4236	2.2309
2.4646	2.6895	2.7082	2.5840	2.3790	2.2331
2.7023	2.7104	2.7108	2.7087	2.7009	2.5300
2.7053	2.7149	2.7183	2.7114	2.6994	2.5249
2.7030	2.7084	2.7190	2.7035	2.6917	2.5196
2.6961	2.7064	2.7130	2.6907	2.6771	2.5000
2.6852	2.6946	2.7097	2.6766	2.6524	2.4769
2.6648 2.6426 2.6060	2.6832 2.6632 2.6414	2.6938 2.6813 2.6633	2.6528 2.6249 2.5941	2.6237 2.5803 2.5251	2.4769 2.4506 2.4008 2.3403
2.4595	2.5627	2.5960	2.4860	2.3681	2.1928
2.4295	2.5307	2.5629	2.4630	2.3641	2.2084
2.4251	2.5205	2.5519	2.4561	2.3667	2.2281
2.4221	2.5137	2.5458	2.4531	2.3694	2.2588
2.4061	2.5142	2.5628	2.4451	2.3243	2.1301
2.3826	2.4895	2.5381	2.4290	2.3245	2.1534
2.3785	2.4833	2.5298	2.4245	2.3271	2.1800

2.3785	2.4794	2.5269	2.4229	2.3283	2.1936
,2.3790	2.4770	2.5200	2.4186	2.3304	2.2107
2.3758	2.4750	2.5169	2.4186	2.3312	2.2260
2.3746	2.4689	2.5120	2.4164	2.3327	2.2339
2.3702	2.4624	2.5073	2.4098	2.3335	2.2477
2.3562	2.4327	2.4774	2.3870	2.3292	2.2670
2.3278	2.3682	2.4067	2.3442	2.3188	2.2797
2.3182	2.3353	2.3518	2.3392	2.3348	2.3190

Heated Test Case Gr⁺=10⁶, C=0.4 Streamlines

#1	#2	#3	#4	#5	
#1 0.47 0.59 0.51 0.551 0.552 0.553 0.554 0.557 0.62 0.578 0.62 0.62 0.648 0.655 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69	#2 0.49 0.50 0.51 0.551 0.552 0.552 0.553 0.552 0.554 0.559 0.67 0.81 0.838 0.997 0.999 0.999	#3 0.50 0.51 0.51 0.52 0.52 0.53 0.555 0.552 0.69 0.77 0.81 0.94 0.97 0.98 0.99 0.99 0.99 0.99 0.99	#4 0.534 0.555 0.551 0.555 0.551 0.556 0.557 0.584 0.688 0.738 0.688 0.738 0.798 0.798 0.998	#5 0.49 0.50 0.51 0.551 0.551 0.553 0.552 0.553 0.551	0.0004 0.0327 0.0051 0.0265 0.0266 0.0167 0.0191 0.0293 0.0638 0.0414 0.0540 0.0459 0.0954 0.0753 0.1239 0.0954 0.2070 0.1471 0.1643 0.2650 0.3337 0.2732 0.3354 0.4061 0.2650 0.3331 0.2649 0.2675 0.2726
0.98 0.97 0.96 0.94 0.91	0.99 0.98 0.98 0.96 0.94	1.00 1.00 0.99 0.98 0.96	0.99 0.97 0.95 0.93 0.89	0.97 0.95 0.93 0.89 0.84	0.2726 0.2701 0.2785 0.2789 0.2786
0.87 0.82 0.62 0.58 0.58	0.91 0.87 0.75 0.71 0.70	0.94 0.91 0.80 0.75 0.74	0.85 0.80 0.65 0.62 0.62	0.78 0.70 0.52 0.51 0.51	0.2924 0.3065 0.3125 0.2823 0.2544
0.58 0.56 0.53 0.53	0.69 0.69 0.66 0.65	0.73 0.75 0.72 0.71	0.61 0.60 0.58 0.58	0.52 0.47 0.47 0.47	0.2072 0.3476 0.3119 0.2730

0.53	0.64	0.71	0.58	0.48	0.2523
0.53	0.64	0.70	0.57	0.48	0.2267
0.52	0.64	0.69	0.57	0.48	0.2015
0.52	0.63	0.69	0.57	0.48	0.1900
0.52	0.62	0.68	0.56	0.48	0.1667
0.50	0.59	0.64	0.54	0.48	0.1234
0.48	0.52	0.56	0.49	0.47	0.0794
0.47	0.48	0.50	0.49	0.48	0.0324

MINIMUM PSI = 0.0004 AVERAGE PSI = 0.1896 MAXIMUM PSI = 0.4061

essence elicated besident decesse addition strains adsisted

Heated Test Case $Gr^+=10^6$, C=0.0

Velocities

#1	# 2	#3	#4	#5	
#1 1.8910 1.9281 2.0246 1.9644 2.0396 2.0179 2.0665 2.0564 2.1053 2.1858 2.1359 2.4070 2.1818 2.3904 2.3181 2.7667 2.4931 2.0839 3.1505 2.6027	#2 1.9616 2.0192 2.0013 2.0776 2.0121 2.0518 2.0942 2.0908 2.0434 2.1916 2.2146 2.3923 2.1364 2.5176 2.3038 2.7472 2.6982 2.9845 3.2740 3.0295	#3 2.0125 2.0287 2.0367 2.0446 2.0691 2.0733 2.0869 2.1032 2.1139 2.1234 2.1368 2.2080 2.2272 2.3867 2.4878 2.7852 2.8933 3.0544 3.1065 3.2722	#4 2.1268 2.1818 2.0267 2.2379 2.0417 2.0670 2.0916 2.2668 2.0716 2.1264 2.3848 2.1608 2.0869 2.6992 2.1717 3.1053 2.3370 2.5418 3.3735 2.5176	1.9706 2.0204 2.0221 2.0716 2.0514 2.0363 2.0627 2.1429 2.0737 2.0810 2.2519 2.1333 2.1126 2.6982 2.1603 3.1581 2.2040 2.0509 3.3606	1.9697 1.9543 2.0117 2.0167 1.9968 2.0022 2.0233 2.0801 1.9413 1.9947 2.1303 2.0354 1.9017 2.4951 1.8926 2.8569 1.7478 1.7493 2.8086 1.4956
3.4024 2.7414 2.2307 3.6148 2.7878 3.7412 3.8641 2.8661	3.4941 3.3564 3.5614 3.6798 3.6064 3.8255 3.9051 3.7745	3.4477 3.5518 3.5787 3.6635 3.7771 3.8107 3.9361 3.9437	3.6025 2.7566 2.9505 3.7671 2.9555 3.8798 3.9416 3.0732	2.2447 3.5435 2.2805 2.0852 3.7009 2.3171 3.8343 3.8907 2.3310	1.4956 2.5756 1.5155 1.2385 2.7200 1.5456 2.8065 2.8569 1.5592
2.5270 3.9209 3.9416 3.9257 3.8784 3.8046 3.6694 3.5264 3.2999	3.8336 3.9769 4.0083 3.9630 3.9492 3.8682 3.7912 3.6589 3.5188	3.9616 3.9797 4.0321 4.0370 3.9950 3.9720 3.8628 3.7785 3.6596	3.1692 3.9651 3.9839 3.9292 3.8417 3.7472 3.5915 3.4154 3.2287	2.1312 3.9113 3.9010 3.8485 3.7505 3.5890 3.4080 3.1476 2.8386	1.5667 2.8651 2.8375 2.8091 2.7060 2.5881 2.4587 2.2272 1.9685
2.5019 2.3585 2.3380 2.3241 2.2510 2.1468 2.1290	3.0464 2.8688 2.8139 2.7778 2.7804 2.6519 2.6204	3.2400 3.0476 2.9856 2.9516 3.0470 2.9092 2.8640	2.6341 2.5191 2.4853 2.4708 2.4323 2.3561 2.3352	2.0844 2.0674 2.0784 2.0899 1.9041 1.9049 1.9153	1.4330 1.4837 1.5496 1.6568 1.2422 1.3107 1.3923

2.1290	2.6007	2.8483	2.3278	1.9201	1.4355
2.1312	2.5886	2.8113	2.3079	1.9285	1.4913
2.1174 2.1122	2.5786	2.7947	2.3079	1.9317	1.5425
	2.5482	2.7688	2.2978	1.9377	1.5695
2.0933	2.5161	2.7440	2.2677	1.9409	1.6174
2.0342	2.3735	2.5906	2.1660	1.9237	1.6864
1.9180	2.0848	2.2537	1.9845	1.8823	1.7329
	1.9482	2.0158	1.9640	1.9462	1.8831

MINIMUM VELOCITY = 1.8800 AVERAGE VELOCITY = 2.7256 MAXIMUM VELOCITY = 4.0370

Heated Test Case Gr⁺=10⁶, C=1.0
Original Voltage Readings

# 1	#2	#3	#4	#5	#5
2.3060	2.3086	2.3115	2.3086	2.3060	2.3058
2.3424	2.3450	2.3480	2.3450	2.3424	2.3253
2.3760	2.3787	2.3817	2.3787	2.3760	2.3610
2.4034	2.4060	2.4091	2.4060	2.4034	2.3872
2.4525 2.4531	2.4553 2.4559	2.4584 2.4590	2.4553	2.4525	2,4462 2,4399
2.4608	2.4636	2.4390	2.4559 2.4636	2.4531 2.4608	2.4399
2.4608	2.4636	2.4667	2.4636	2.4608	2.4393
2.5434	2.5463	2.5495	2.5463	2.5434	2.5015
2.5545	2.5573	2.5606	2.5573	2.5545	2.5238
2.5656	2.5684	2.5717	2.5684	2.5656	2.5269
2.5864	2.5893	2.5926	2.5893	2.5864	2.5511
2.5985	2.6014	2.6047	2.6014	2.5985	2.5313
2.6031	2.6060	2.6093	2.6060	2.6031	2.5491
2.6205	2.6235	2.6268	2.6235	2.6205	2.5364
2.6272	2.6301	2.6335	2.6301	2.6272	2.5536
2.6323	2.6352	2.6386	2.6352	2.6323	2.4936
2.6377	2.6406	2.6440	2.6406	2.6377	2.5353
2.6404	2.6433	2.6467	2.6433	2.6404	2.6239
2.6452	2.6481	2.6515	2.6481	2.6452	2.4140
2.6473	2.6502	2.6536	2.6502	2.6473	2.4150
2.6481	2.6510	2.6544	2.6510	2.6481	2.4128
2.6485	2.6514	2.6548	2.6514	2.6485	2.3576
2.6493	2.6522	2.6556	2.6522	2.6493	2.4621
2.6496	2.6525 2.6543	2.6559 2.6577	2.6525	2.6496	2.4124 2.4599
2.6514 2.6522	2.6551	2.6585	2.6543 2.6551	2.6514 2.6522	2.4599
2.6537	2.6566	2.6600	2.6566	2.6537	2.4143
2.6542	2.6571	2.6605	2.6571	2.6542	2.4613
2.6570	2.6600	2.6634	2.6600	2.6570	2.4616
2.6590	2.6620	2.6654	2.6620	2.6590	2.4588
2.6567	2.6597	2.6631	2.6597	2.6567	2.4575
2.6564	2.6594	2.6628	2.6594	2.6564	2.4526
2.6559	2.6589	2.6623	2.6589	2.6559	2.4530
2.6532	2.6561	2.6595	2.6561	2.6532	2.4513
2.6537	2.6566	2.6600	2.6566	2.6537	2.4527
2.6528	2.6557	2.6591	2.6557	2.6528	2.4526
2.6517	2.6546	2.6580	2.6546	2.6517	2.4527
2.6507	2.6536	2.6570	2.6536	2.6507	2.4526
2.6507	2.6536	2.6570	2.6536	2.6507	2.4536
2.6491	2.6520	2.6554	2.6520	2.6491	2.4531
2.6473	2.6502	2.6536	2.6502	2.6473	2.4524
2.6463	2.6492	2.6526	2.6492	2.6463	2.4525
2.6452	2.6481	2.6515	2.6481	2.6452	2.4524

2.6429	2.6458	2.6492	2.6458	2.6429	2.4512
2.6460	2.6489	2.6523	2.6489	2.6460	2.4551
2.6406	2.6435	2.6469	2.6435	2.6406	2.4509
2.0352	2.6381	2.6415	2.6381	2.6352	2.4468
2.6249	2.6278	2.6312	2.6278	2.6249	2.4382
2.6242	2.6271	2.6305	2.6271	2.6242	2.4324
2.6156	2.6186	2.6219	2.6186	2.6156	2.4254
2.6037	2.6066	2.6099	2.6066	2.6037	2.4156
2.5958	2.5987	2.6020	2.5987	2.5958	2.3995
2.5871	2.5900	2.5933	2.5900	2.5871	2.3829
2.5708	2.5736	2.5769	2.5736	2.5708	2.3661
2.5397	2.5426	2.5458	2.5426	2.5397	2.3592
2.4972	2.5000	2.5032	2.5000	2.4972	2.3389
2.4871	2.4898	2.4930	2.4898	2.4871	2.3598
2.4587	2.4615	2.4646	2.4615	2.4587	2.2430
2.4330	2.4357	2.4388	2.4357	2.4330	2.2448
2.3814	2.3841	2.3871	2.3841	2.3814	2.2229
2.3583	2.3609	2.3639	2.3609	2.3583	2.2148
2.3050	2.3076	2.3105	2.3076	2.3050	2.1805
					2.1724
2.2804	2.2829	2.2858	2.2829	2.2804	
2.2702	2.2727	2.2756	2.2727	2.2702	2.1699
2.2602	2.2627	2.2656	2.2627	2.2602	2.1740
2.2510	2.2536	2.2564	2.2536	2.2510	2.1890

Heated Test Case $\mathrm{Gr}^+ = 10^6$, C=1.0 Streamlines

#1	#2	#3	#4	#5	
0.50 0.54 0.58 0.61 0.67 0.68 0.82 0.83 0.87 0.99 0.93 0.94 0.95 0.97 0.97 0.97 0.98 0.98	0.50 0.54 0.58 0.68 0.69 0.82 0.84 0.89 0.93 0.94 0.97 0.97 0.97 0.98 0.98 0.98 0.99 0.98 0.99 0.99 0.99	0.54 0.58 0.68 0.69 0.81 0.93 0.93 0.93 0.93 0.93 0.93 0.94 0.93 0.94 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99	0.54 0.58 0.68 0.68 0.69 0.82 0.82 0.93 0.93 0.94 0.95 0.97 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99	0.50 0.54 0.58 0.67 0.68 0.68 0.82 0.83 0.89 0.92 0.93 0.94 0.95 0.97 0.97 0.97 0.98 0.98 0.98	0.0004 0.0349 0.0302 0.0321 0.0123 0.0256 0.0297 0.0413 0.0764 0.0562 0.0701 0.0635 0.1176 0.0952 0.1441 0.1267 0.2278 0.1721 0.0294 0.3545 0.3557 0.3594 0.4276 0.2954 0.3616 0.3011 0.3005 0.3639 0.3027 0.3058
0.98 0.99 0.99	0.99 0.99 0.99	0.99 1.00 1.00	0.99 0.99 0.99	0.98 0.99 0.99	0.3027 0.3058 0.3120
0.98 0.98 0.98	0.99 0.99 0.99 0.98	1.00 1.00 0.99 0.99	0.99 0.99 0.99 0.98 0.98	0.98 0.98 0.98 0.98	0.3109 0.3171 0.3160 0.3150 0.3137
0.98 0.98 0.98 0.97 0.97	0.98 0.98 0.98 0.98	0.99 0.99 0.99 0.99	0.98 0.98 0.98 0.98	0.98 0.98 0.97 0.97	0.3137 0.3127 0.3112 0.3101 0.3088
0.97 0.97 0.97 0.96	0.98 0.97 0.97 0.97	0.98 0.98 0.98 0.98	0.98 0.97 0.97 0.97	0.97 0.97 0.97 0.96	0.3075 0.3062 0.3048 0.3036

0.96	0.97	0.97	0.97	0.96	0.3023
0.97	0.97	0.98	0.97	0.97	0.3009
0.96	0.96	0.97	0.96	0.96	0.2998
0.95	0.95	0.96	0.95	0.95	0.2987
0.93	0.93	0.94	0.93	0.93	0.2975
0.93	0.93	0.94	0.93	0.93	0.3046
0.91	0.92	0.92	0.92	0.91	0.3034
0.89	0.90	0.90	0.90	0.89	0.3018
0.88	0.89	0.89	0.89	0.88	0.3141
0.87	0.87	0.88	0.87	0.87	0.3261
0.84	0.85	0.85	0.85	0.84	0.3288
0.79	0.80	0.80	0.80	0.79	0.2986
0.73	0.74	0.74	0.74	0.73	0.2707
0.72	0.72	0.73	0.72	0.72	0.2237
0.68	0.68	0.69	0.68	0.68	0.3591
0.65	0.65	0.65	0.65	0.65	0.3232
0.58	0.59	0.59	0.59	0.58	0.2846
0.56	0.56	0.56	0.56	0.56	0.2634
0.50	0.50	0.50	0.50	0.50	0.2377
0.47	0.47	0.48	0.47	0.47	0.2114
0.46	0.46	0.47	0.46	0.46	0.1985
0.45	0.45	0.46	0.45	0.45	0.1734
0.44	0.45	0.45	0.45	0.44	0.1278

MINIMUM PSI = 0.0004 AVERAGE PSI = 0.2360 MAXIMUM PSI = 0.4276

Heated Test Case Gr⁺=10⁶, C=1.0 Velocities

STATES STATES STATES STATES STATES STATES STATES STATES STATES STATES

3.5283	3.5467	3.5684	3.5467	3.5283	2.4616
3.5480	3.5665	3.5883	3.5665	3.5480	2.4805
3.5137	3.5321	3.5537	3.5321	3.5137	2.4601
3.4797	3.4979	3.5194	3.4979	3.4797	2.4404
3.4154	3.4334	3.4546	3.4334	3.4154	2.3994
3.4111	3.4291	3.4502	3.4291	3.4111	2.3721
3.3582	3.3766	3.3969	3.3766	3.3582	2.3394
3.2860	3.3035	3.3235	3.3035	3.2860	2.2942
3.2388	3.2561	3.2758	3.2561	3.2388	2.2213
3.1874	3.2045	3.2240	3.2045	3.1874	2.1481
3.1074	3.1088	3.1279	3.1088	3.1074	2.0759
	2.9339		2.9339	2.9180	
2.9180		2.9516			2.0467
2.6915	2.7060	2.7226	2.7060	2.6915	1.9628
2.6397	2.6534	2.6698	2.6534	2.6397	2.0493
2.4980	2.5117	2.5270	2.5117	2.4980	1.6010
2.3749	2.3876	2.4023	2.3876	2.3749	1.6073
2.1416	2.1533	2.1665	2.1533	2.1416	1.5320
2.0430	2.0539	2.0665	2.0539	2.0430	1.5049
1.8285	1.8386	1.8498	1.8386	1.8285	1.3939
1.7355	1.7448	1.7556	1.7448	1.7355	1.3686
1.6980	1.7071	1.7178	1.7071	1.6980	1.3609
1.6618	1.6708	1.6813	1.6708	1.6618	1.3736
1.6291	1.6383	1.6482	1.6383	1.6291	1,4208

MINIMUM VELOCITY = 1.6291 AVERAGE VELOCITY = 3.0973 MAXIMUM VELOCITY = 3.6733

APPENDIX F

TURBULENT HOT WIRE DATA FOR $Gr^+=10^4$ WITH C=0.0, C=0.4, AND C=1.0.

The following pages contain the data as listed above in the following format: (1) the original voltage readings, (2) the streamline patterns, and (3) the calculated velocities. The readings were taken in accordance with the diagram below. The second position, #5, is taken with the hot wire rotated 90 degrees, as shown in Figure 3.4, Page 49.

Heated Test Case Gr⁺=10⁴, C=0.0 Original Voltage Readings

#1	#2	#3	. #4	#5	#5
3.3550	3.3518	3.3686	3.3589	3.3578	3.3447
3.3590	3.3703	3.3766	3.4102	3.3790	3.3645
3.3704	3.3593	3.3791	3.3659	3.3630	3.3312
3.3774	3.3986	3.3844	3.4355	3.4035	3.3761
3.4368	3.4371	3.4005	3.3865	3.3768	3.3540
3.3879	3.3809	3.4048	3.3694	3.3721	3.3214
3.4333 3.4179	3.4630 3.4183	3.439 3.4604	3.4988 3.3890	3.4951 3.3830	3.4550 3.3191
3.5081	3.5080	3.5187	3.5727	3.5782	3.5250
3.4546	3.4986	3.5387	3.4254	3.3928	3.2816
3.3654	3.5516	3.5675	3.4678	3.3577	3.2820
3.5769	3.6014	3.5765	3.6177	3.6119	3.5160
3.4765	3.5596	3.6047	3.4630	3.4019	3.2103
3.6187	3.6370	3.6333	3.6539	3.6410	3.4712
3.5034	3.6149	3.6496	3.5098	3.4097	3.2163
3.3988	3.6475	3.6538	3.5455	3.3657	3.1278
3.6521	3.6658	3.6669	3.6788	3.6653	3.4993
3.5121	3.6545	3.6841	3.5464	3.4177	3.2252
3.6714	3.6875	3.6890	3.6955	3.6851	3.5156
3.6895	3.6992	3.7074	3.7045	3.6934	3.5249
3.5267	3.6800	3.7085	3.5673	3.4207	3.2292
3.4614	3.6887	3.7111	3.5837	3.3763	3.2314
3.6978	3.7096	3.7137	3.7079	3.6964	3.5265
3.7008	3.7141	3.7212	3.7106	3.6949	3.5214
3.6985	3.7076	3.7219	3.7027	3.6872	3.5161
3.6916 3.6807	3.7056 3.6938	3.7159 3.7126	3.6899 3.6759	3.6727	3.4966
3.6605	3.6824	3.6967	3.6522	3.6481 3.6196	3.4736 3.4475
3.6384	3.6626	3.6843	3.6244	3.5764	3.3980
3.6020	3.6409	3.6663	3.5938	3.5216	3.3379
3.4564	3.5626	3.5993	3.4862	3.3655	3.1913
3.4265	3.5306	3.5663	3.4633	3.3616	3.2069
3.4222	3.5205	3.5553	3.4565	3.3641	3.2264
3.4192	3.5138	3.5492	3.4535	3.3668	3.2569
3.3159	3.3362	3.3560	3.3401	3.3324	3.3167

Heated Test Case $Gr^+=10^4$, C=0.0

Streamlines

#1	#2	#3	#4	# 5	
0.62 0.63 0.64 0.69 0.65 0.69 0.71 0.83 0.73 0.88 0.76 0.92 0.77 0.96 0.97 0.97 0.97 0.95 0.93	0.62 0.63 0.62 0.66 0.69 0.64 0.75 0.81 0.81 0.92 0.93 0.93 0.95 0.95 0.95 0.95	0.63 0.64 0.65 0.66 0.70 0.77 0.77 0.82 0.83 0.91 0.92 0.93 0.95 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99	0.62 0.67 0.63 0.69 0.65 0.65 0.68 0.72 0.76 0.88 0.72 0.76 0.89 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99	0.62 0.64 0.63 0.66 0.64 0.63 0.65 0.62 0.63 0.66 0.63 0.66 0.63 0.66 0.63 0.66 0.63 0.66 0.63 0.66 0.63 0.66 0.63 0.66 0.63 0.66 0.66	0.0179 0.0197 0.0431 0.0367 0.0309 0.0678 0.0519 0.0845 0.0667 0.1431 0.1003 0.1167 0.2358 0.1976 0.2372 0.2886 0.1923 0.2357 0.1950 0.1935 0.1948 0.1948 0.1948 0.1948 0.1948 0.1948 0.1966 0.2026 0.2023 0.2013 0.2104
0.90 0.86	0.93 0.90	0.95 0.93	0.89 0.85	0.83 0.78	0.2104 0.2194
0.90	0.93	0.95	0.89	0.83	0.2104
0.68 0.59	0.77	0.80	0.71	0.63	0.1426 0.0217

MINIMUM PSI = 0.0179 AVERAGE PSI = 0.1530 MAXIMUM PSI = 0.2886

Heated Test Case $\mathrm{Gr}^+ = 10^4$, C=0.0 Velocities

#1	#2	#3	# 4	# 5	
10.7962	10.7486	11.0004	10.8545	10.8380	10.6435
10.8560	11.0261	11.1219	11.6433	11.1585	10.9385
11.0276	10.8604	11.1600	10.9596	10.9160	10.4459
11.1341	11.4612	11.2413	12.0482	11.5379	11.1142
12.0692 11.2952	12.0741 11.1876	11.4909 11.5583	11.2736 11.0125	11.1249	10.7813
12.0125	12.5004	12.1115	13.1084	11.0534 13.0445	10.3042 12.3675
11.7654	11.7718	12.4571	11.3122	11.2198	10.2712
13.2700	13.2683	13.4560	14.4351	14.5378	13.5675
12.3609	13.1049	13.8125	11.8853	11.3710	9.7439
10.9521	14.0463	14.3385	12.5806	10.8365	9.7494
14.5135	14.9772	14.5060	15.2919	15.1794	13.4085
12.7270	14.1927	15.0405	12.5004	11.5128	8.7986
15.3114	15.6711	15.5979	16.0091	15.7506	12.6377
13.1881	15.2375	15.9226	13.2997	11.6354	8.8754
11.4643	15.8804	16.0070	13.9353	10.9566	7.7943
15.9728	16.2504	16.2728	16.5171	16.2402	13.1171
13.3400	16.0212	16.6269	13.9517	11.7622	8.9901
16.3649	16.6975	16.7288	16.8648	16.6476	13.4014
16.7392	16.9425	17.1159	17.0544	16.8207	13.5658
13.5978	16.5419	17.1392	14.3348	11.8100	9.0420
12.4737	16.7225	17.1945	14.6410	11.1173	9.0707
16.9131	17.1626	17.2500	17.1265	16.8836	13.5942
16.9762	17.2585	17.4107	17.1839	16.8522	13.5038
16.9278	17.1201	17.4257	17.0163	16.6913	13.4102
16.7831	17.0777	17.2970	16.7476	16.3915	13.0704
16.5564	16.8291	17.2265	16.4574	15.8925	12.6781
16.1425	16.5916	16.8899	15.9748	15.3290	12.2439
15.6989	16.1852	16.6310	15.4228	14.5041	11.4519
14.9887	15.7486	16.2605	14.8321	13.5073	10.5436
12.3907	14.2479	14.9370	12.8919	10.9536	8.5590
11.9029	13.6673	14.3163	12.5054	10.8949	8.7554
11.8340	13.4878	14.1138	12.3923	10.9325	9.0057
11.7861	13.3698	14.0025	12.3427	10.9732	9.4083
10.2254	10.5188	10.8111	10.5759	10.4634	10.2368

MINIMUM VELOCITY = 10.2254 AVERAGE VELOCITY = 13.9405 MAXIMUM VELOCITY = 17.4257

CROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Heated Test Case $\mathrm{Gr}^+ = 10^4$, C=0.4
Original Voltage Readings

#1	#2	#3	#4	#5	#5
3.3087	3.3328	3.3518	3.3719	3.3284	3.3282
3.3179 3.3413	3.3468 3.3425	3.3557 3.3576	3.3845	3.3403	3.3226
3.3269	3.3606	3.3576	3.3486 3.3970	3.3407 3.3524	3.3345 3.3339
3.3449	3.3451	3.3652	3.3570	3.3324	3.3271
3.3398	3.3546	3.3662	3.3581	3.3441	3.3266
3.3512	3.3644	3.3694	3.3638	3.3503	3.3297
3.3489	3.3636	3.3732	3.4034	3.3689	3.3412
3.3603	3.3526	3.3757	3.3592	3.3529	3.3061
3.3785	3.3867	3.3779	3.3718	3.3546	3.3172
3.3673	3.3918	3.3810	3.4286	3.3933	3.3470
3.4265 3.3777	3.4302 3.3741	3.3971 3.4014	3.3797	3.3667	3.3232
3.4230	3.4561	3.4014	3.3627 3.4918	3.3620 3.4846	3.2887 3.4201
3.4076	3.4115	3.4569	3.4918	3.4040	3.2826
3.4976	3.5010	3.5152	3.5656	3.5675	3.4861
3.4442	3.4916	3.5352	3.4185	3.3826	3.2727
3.3553	3.5445	3.5639	3.4609	3.3476	3.1756
3.5662	3.5942	3.5729	3.6105	3.6011	3.4107
3.4661	3.5525	3.6011	3.4561	3.3917	3.2073
3.6078	3.6297	3.6297	3.6466	3.6301	3.3699
3.4929	3.6077	3.6460	3.5028	3.3995	3.2171
3.3886	3.6402	3.6501	3.5384	3.3556	3.1307
3.6411	3.6585	3.6632	3.6714	3.6543	3.4037
3.5016	3.6472	3.6804	3.5393	3.4074	3.2316
3.6604 3.6784	3.6801 3.6918	3.6853	3.6881	3.6740	3.4237
3.5161	3.6726	3.7037 3.7048	3.6971 3.5602	3.6823	3.4348
3.4510	3.6813	3.7074	3.5765	3.4104 3.3662	3.2413 3.1459
3.6867	3.7022	3.7100	3.7005	3.6853	3.4421
3.6897	3.7067	3.7175	3.7032	3.6838	3.4389
3.6874	3.7002	3.7182	3.6953	3.6761	3.4356
3.6805	3.6982	3.7122	3.6825	3.6617	3.4179
3.6697	3.6864	3.7089	3.6685	3.6372	3.3970
3.6495	3.6750	3.6930	3.6449	3.6087	3.3728
3.6275	3.6553	3.6806	3.6172	3.5657	3.3254
3.5912	3.6336	3.6626	3.5866	3.5110	3.2673
3.4460	3.5555	3.5957	3.4792	3.3554	3.1231
3.4162	3.5235	3.5627	3.4564	3.3515	3.1405
3.4119 3.4089	3.5135	3.5517	3.4496	3.3540	3.1619
3.3931	3.5068 3.5073	3.5457 3.5626	3.4466 3.4386	3.3567	3.1941
3.3698	3.4827	3.5381	3.4225	3.3120 3.3122	3.0687 3.0935
3.3657	3.4765	3.5298	3.4181	3.3148	3.1218
					3.1210

3.3657	3.4726	3.5270	3.4166	3.3160	3.1371
3.3662	3.4702	3.5201	3.4123	3.3180	3.1560
3.3630	3.4682	3.5170	3.4123	3.3189	3.1730
3.3619	3.4622	3.5121	3.4102	3.3204	3.1828
3.3575	3.4558	3.5074	3.4036	3.3211	3.1982
3.3436	3.4262	3.4776	3.3809	3.3169	3.2194
3.3155	3.3622	3.4073	3.3384	3.3066	3.2337
3.3060	3.3295	3.3526	3.3334	3.3224	3.2746

Heated Test Case Gr⁺=10⁴, C=0.4 Streamlines

#1	#2	#3	#4	·# 5	
0.58 0.59 0.61 0.60 0.61 0.61	0.60 0.62 0.61 0.63 0.61 0.62 0.63	0.62 0.62 0.63 0.63 0.63	0.64 0.65 0.62 0.66 0.62 0.63	0.60 0.61 0.61 0.62 0.62 0.61	0.0003 0.0243 0.0086 0.0253 0.0282 0.0240
0.62 0.63 0.64 0.63 0.69 0.64 0.68	0.63 0.62 0.65 0.65 0.69 0.64 0.71	0.64 0.64 0.65 0.66 0.70 0.71	0.67 0.63 0.64 0.69 0.64 0.63 0.75	0.63 0.62 0.66 0.63 0.63 0.74 0.64	0.0375 0.0631 0.0506 0.0616 0.0585 0.0971 0.0827 0.1182
0.75 0.70 0.62 0.83 0.72 0.87	0.76 0.75 0.80 0.86 0.81 0.90	0.77 0.79 0.82 0.83 0.86 0.90	0.82 0.68 0.72 0.87 0.71 0.91	0.83 0.65 0.62 0.86 0.65 0.90 0.66	0.1010 0.1420 0.2172 0.2218 0.2284 0.2906 0.2257 0.2755
0.65 0.91 0.76 0.93 0.95 0.77 0.71	0.91 0.93 0.92 0.95 0.97 0.94 0.96	0.92 0.93 0.95 0.96 0.98 0.99	0.80 0.94 0.80 0.96 0.97 0.82 0.84 0.98	0.62 0.92 0.67 0.95 0.96 0.67 0.63	0.2795 0.2178 0.2778 0.2744 0.2100 0.2697 0.2700
0.97 0.96 0.95 0.94 0.92 0.89	0.99 0.98 0.98 0.96 0.95 0.92	1.00 1.00 0.99 0.99 0.97 0.95 0.93	0.98 0.97 0.96 0.94 0.91 0.88 0.85	0.96 0.95 0.93 0.90 0.87 0.82 0.77	0.2718 0.2680 0.2723 0.2704 0.2681 0.2757 0.2832
0.70 0.68 0.67 0.67 0.66 0.64	0.81 0.78 0.77 0.76 0.76 0.74	0.86 0.82 0.81 0.80 0.82 0.80	0.74 0.71 0.71 0.71 0.70 0.68 0.68	0.62 0.62 0.62 0.62 0.59 0.59	0.2835 0.2607 0.2396 0.2058 0.2988 0.2722 0.2434

0.63	0.73	0.78	0.68	0.59	0.2272
0.63	0.73	0.78	0.67	0.59	0.2075
0.63	0.73	0.77	0.67	0.59	0.1885
0.63	0.72	0.77	0.67	0.59	0.1785
0.62	0.71	0.76	0.67	0.59-	0.1606
0.61	0.69	0.73	0.64	0.59	0.1293
0.59	0.63	0.67	0.61	0.58	0.0983
0.58	0.60	0.62	0.60	0.59	0.0650

MINIMUM PSI = 0.0003 AVERAGE PSI = 0.1765 MAXIMUM PSI = 0.2988

Heated Test Case Gr⁺=10⁴, C=0.4 Velocities

#1	#2	#3	#4	#5	
10.1228	10.4692	10.7486	11.0504	10.4053	10.4024
10.2540	10.6745	10.8067	11.2428	10.5788	10.3215
10.5935	10.6111	10.8350	10.7011	10.5847	10.4940
10.3835	10.8799	10.8634	11.4363	10.7575	10.4852
10.6465	10.6494	10.9491	10.7545	10.6878	10.3864
10.5715	10.7902 10.9370	10.9641 11.0125	10.8425	10.6347	10.3792 10.4241
10.7056	10.9370	11.0701	11.5363	11.0049	10.5920
10.8754	10.7605	11.1082	10.8589	10.7649	10.0860
11.1509	11.2767	11.1417	11.0489	10.7902	10.2439
10.9807	11.3555	11.1891	11.9367	11.3788	10.6775
11.9029	11.9625	11.4378	11.1692	10.9717	10.3301
11.1386	11.0838	11.5050	10.9115	10.9009	9.8421
11.8468	12.3857	12.0563	12.9878	12.8646	11.8005
11.6023	11.6639	12.3989	11.2075	11.0656	9.7577
13.0877	13.1465	13.3944	14.3033	14.3385	12.8902
12.1898 10.8007	12.9843 13.9172	13.7496 14.2719	11.7750 12.4654	11.2136 10.6863	9.6218 8.3648
14.3144	14.8397	14.4388	15.1523	14.9714	11.6512
12.5521	14.0627	14.9714	12.3857	11.3539	8.7605
15.1001	15.5269	15.5269	15.8624	15.5347	11.0201
13.0067	15.0982	15.8504	13.1777	11.4753	8.8856
11.3060	15.7347	15.9326	13.8071	10.8052	7.8280
15.7526	16.1020	16.1974	16.3649	16.0171	11.5410
13.1569	15.8744	16.5502	13.8233	11.5992	9.0733
16.1405	16.5440	16.6518	16.7100	16.4182	11.8580
16.5089	16.7873	17.0375	16.8984	16.5895	12.0368
13.4102	16.3895	17.0608	14.2037	11.6465	9.2005
12.3015 16.6809	16.5688 17.0058	17.1159 17.1711	14.5060 16.9699	10.9641 16.6518	8.0067 12.1555
16.7434	17.1010	17.3312	17.0269	16.6206	12.1034
16.6954	16.9636	17.3462	16.8606	16.4614	12.0498
16.5523	16.9215	17.2180	16.5937	16.1669	11.7654
16.3300	16.6747	17.1477	16.3055	15.6751	11.4363
15.9205	16.4388	16.8124	15.8284	15.1175	11.0640
15.4836	16.0373	16.5543	15.2822	14.3052	10.3619
14.7828		16.1852	14.6957	13.3207	9.5483
12.2193		14.8683	12.7728	10.8022	7.7398
11.7384	13.5410	14.2498	12.3907	10.7441	7.9429
11.6702	13.3645	14.0481 13.9390	12.2784	10.7813	8.1981
11.6228 11.3756	13.2473 13.2560	13.9390	12.2292 12.0985	10.8216	8.5940 7.1305
11.0185		13.8017	11.8388	10.1726	7.1303
10.9566		13.6530	11.7686	10.2096	7.7248

10.9566	12.6612	13.6031	11.7447	10.2268	7.9029
		13.4808			8.1271
		13.4261			8.3330
		13.3400		-	8.4535
		13.2578			8.6455
		12.7457			8.9152
		11.5976			9.1007
- -		10.7605			9.6478

MINIMUM VELOCITY = 10.0845 AVERAGE VELOCITY = 12.9886 MAXIMUM VELOCITY = 17.3462

Heated Test Case Gr⁺=10⁶, C=1.0
Original Voltage Readings

#1	#2	#3	#4	#5	#5
3.3157	3.3375	3.3542	3.3767	3.3354	3.3352
3.3249	3.3515	3.3581	3.3893	3.3474	3.3306
3.3339	3.3653	3.3619	3.4018	3.3595	3.3455
3.3888 3.4623	3.4288 3.4732	3.4163 3.4949	3.4642	3.4495	3.4269
3.4785	3.5052	3.4949	3.5372 3.5133	3.5312 3.4764	3.4964
3.4874	3.5122	3.5226	3.5364	3.4764	3.4142 3.4551
3.4961	3.5193	3.5237	3.5595	3.5478	3.4963
3.5299	3.5654	3.5522	3.5816	3.5643	3.5065
3.5374	3.5635	3.5738	3.5830	3.5586	3.4874
3.5710	3.6007	3.6085	3.6172	3.5930	3.5195
3.5874	3.6149	3.6253	3.6295	3.6049	3.5244
3.6038 3.6228	3.6290	3.6420	3.6419	3.6168	3.5290
3.6322	3.6505 3.6589	3.6637 3.6850	3.6584	3.6363	3.5347
3.6406	3.6619	3.6819	3.6413 3.6672	3.6055 3.6444	3.4735
3.6424	3.6666	3.6908	3.6553	3.6250	3.5312 3.4858
3.6447	3.6671	3.6851	3.6688	3.6459	3.5181
3.6476	3.6706	3.6928	3.6645	3.6378	3.4933
3.6488	3.6722	3.6882	3.6705	3.6473	3.5049
3.6491	3.6721	3.6922	3.6698	3.6442	3.4940
3.6503	3.6745	3.6919	3.6719	3.6466	3.4914
3.6517	3.6767	3.6956	3.6732	3.6459	3.4825
3.6506 3.6495	3.6735 3.6702	3.6960	3.6693	3.6421	3.4738
3.6461	3.6692	3.6963 3.6934	3.6654 3.6592	3.6383	3.4648
3.6475	3.6707	3.6885	3.6703	3.6312 3.6463	3.4491 3.4708
3.6426	3.6681	3.6904	3.6529	3.6242	3.4708
3.6373	3.6624	3.6888	3.6460	3.6120	3.4107
3.6319	3.6567	3.6871	3.6391	3.5999	3.3934
3.6220	3.6511	3.6792	3.6273	3.5859	3.3740
3.6120	3.6455	3.6713	3.6155	3.5719	3.3551
3.5904	3.6259	3.6591	3.5883	3.5294	3.2987
3.5546 3.5160	3.6045 3.5796	3.6414	3.5580	3.4755	3.2284
3.4739	3.5589	3.6246 3.6035	3.5240	3.4032	3.1570
3.4339	3.5424	3.5922	3.4914 3.4706	3.3553 3.3304	3.1064
3.4114	3.5272	3.5748	3.4519	3.3221	3.0833 3.0890
3.4003	3.5123	3.5652	3.4435	3.3190	3.0946
3.3887	3.5065	3.5555	3.4361	3.3182	3.0998
3.3812	3.4987	3.5552	3.4329	3.3181	3.1089
3.3821	3.4957	3.5423	3.4292	3.3183	3.1152
3.3769	3.4877	3.5406	3.4274	3.3192	3.1244
3.3793	3.4894	3.5359	3.4247	3.3195	3.1266

3.3750	3.4840	3.5350	3.4231	3.3204	3.1409
3,3778	3.4857	3.5315	3.4223	3.3207	3.1452
3.3729	3.4815	3.5323	3.4230	3.3218	3.1575
3.3767	3.4809	3.5282	3.4216	3.3221	3.1674
3.3729	3.4776	3.5295	3.4214	3.3230	3.1738
3.3748	3.4790	3.5254	3.4193	3.3235	3.1859
3.3733	3.4752	3.5226	3.4172	3.3250	3.1937
3.3723	3.4771	3.5240	3.4209	3.3246	3.1955
3.3702	3.4732	3.5195	3.4172	3.3259	3.2117
3.3718	3.4719	3.5173	3.4157	3.3263	3.2148
3.3690	3.4672	3.5146	3.4150	3.3274	3.2224
3.3698	3.4655	3.5124	3.3623	3.3275	3.2312
3.3646	3.4607	3.5099	3.4084	3.3281	3.2390
3.3656	3.4560	3.5039	3.4036	3.3275	3.2459
3.3616	3.4492	3.4996	3.4006	3.3272	3.2531
3.3579	3.4420	3.4908	3.3941	3.3257	3.2592
3.3507	3.4311	3.4801	3.3857	3.3239	3.2648
3.3459	3.4208	3.4660	3.3751	3.3215	3.2700
3.3375	3.4034	3.4534	3.3657	3.3189	3.2746
3.3299	3.3835	3.4326	3.3534	3.3162	3.2864
3.3225	3.3670	3.4097	3.3431	3.3135	3.2841
3.3172	3.3508	3.3862	3.3357	3.3114	3.2896
3.3128	3.3387	3.3676	3.3311	3.3099	3.2952
3.3108	3.3329	3.3568	3.3331	3.3130	3.3039
3.3129	3.3342	3.3550	. 3.3381	3.3294	3.3299
3.3793	3.4894	3.5359	3.4247	3.3195	3.1266
3.3750	3.4840	3.5350	3.4231	3.3204	3.1409
3.3778	3.4857	3.5315	3.4223	3.3207	3.1452
3.3729	3.4815	3.5323	3.4230	3,3218	3.1575
3.3767	3.4809	3.5282	3.4216	3.3221	3.1674
3.3793	3.4894	3.5359	3.4247	3.3195	3.1266
3.3750	3.4840	3.5350	3.4231	3.3204	3.1409
3.3778	3.4857	3.5315	3.4223	3.3207	3.1452
3.3729	3.4815	3.5323	3.4230	3.3218	3.1575
3.3767	3.4809	3.5282	3.4216	3.3221	3.1674

Heated Test Case Gr⁺=10⁶, C=1.0
Streamlines

#1	#2	#3	#4	#5	
0.61	0.62	0.64	0.66	0.62	0.0003
0.61	0.64	0.64	0.67	0.63	0.0230
0.62	0.65	0.65	0.68	0.64	0.0192
0.67	0.71	0.70	0.74	0.73	0.0299
0.74	0.75	0.77	0.82	0.81	0.0447
0.76 0.76	0.78 0.79	0.80	0.79	0.79	0.0801 0.0728
0.77	0.80	0.80	0.84	0.83	0.0652
0.81	0.85	0.83	0.86	0.85	0.0726
0.82	0.84	0.86	0.87	0.84	0.0890
0.85	0.89	0.90	0.91	0.88	0.0909
0.87	0.90	0.91	0.92	0.89	0.0989
0.89	0.92	0.93	0.93	0.90	0.1071
0.91	0.94	0.96	0.95	0.93	0.1224
0.92	0.95	0.99	0.93	0.89	0.1580
0.93	0.96	0.98	0.96	0.94	0.1353
0.93	0.96	0.99	0.95	0.91	0.1652
0.94	0.96	0,99	0.97	0.94	0.1516
0.94	0.97	1.00	0.96	0.93	0.1704
0.94	0.97	0.99	0.97	0.94	0.1677 0.1763
0.94	0.97 0.97	0.99	0.97 0.97	0.94	0.1817
0.95	0.98	1.00	0.97	0.94	0.1905
0.94	0.97	1.00	0.97	0.93	0.1960
0.94	0.97	1.00	0.96	0.93	0.2017
0.94	0.97	1.00	0.95	0.92	0.2112
0.94	0.97	0.99	0.97	0.94	0.2034
0.93	0.97	0.99	0.95	0.91	0.2261
0.93	0.96	0.99	0.94	0.90	0.2325
0.92	0.95	0.99	0.93	0.89	0.2387
0.91	0.94	0.98	0.92	0.87	0.2452
0.90	0.94	0.97	0.90	0.85	0.2512
0.87	0.92	0.95	0.87	0.81	0.2685
0.84	0.89	0.93	0.84	0.75	0.2894
0.79 0.75	0.86 0.84	0.91	0.80	0.68	0.2943 0.3011
0.71	0.82	0.88	0.75	0.62	0.3011
0.69	0.81	0.86	0.73	0.61	0.2871
0.68	0.79	0.85	0.72	0.61	0.2779
0.67	0.78	0.84	0.71	0.61	0.2714
0.66	0.78	0.84	0.71	0.61	0.2613
0.66	0.77	0.82	0.71	0.61	0.2545
0.66	0.77	0.82	0.71	0.61	0.2451
0.66	0.77	0.82	0.70	0.61	0.2429

0.66	0.76	0.81	0.70	0.61	0.2276
0.66	0.76	0.81	0.70	0.61	0.2230
0.66	0.76	0.81	0.70	0.61	0.2100
0.66	0.76	0.81	0.70	0.61	0.1987
0.66	0.76	0.81	0.70	0.61	0.1922
0.66	0.76	0.80	0.70	0.61	0.1783
0.66	0.75	0.80	0.70	0.61	0.1706
0.65	0.75	0.80	0.70	0.61	0.1680
0.65	0.75	0.80	0.70	0.61	0.1497
0.65	0.75	0.80	0.69	0.61	0.1464
0.65	0.74	0.79	0.69	0.62	0.1383
0.65	0.74	0.79	0.65	0.62	0.1274
0.65	0.74	0.79	0.69	0.62	
0.65			0.68	0.62	
0.65		0.78	0.68	0.62	
0.64		0.77	0.67	0.61	0.0895
0.64	0.71	0.76	0.67	0.61	0.0799
0.63	0.70	0.74	0.66	0.61	
0.62	0.68	0.73	0.65	0.61	0.0604
0.62	0.67	0.71	0.64	0.61	0.0410
0.61	0.65	0.69	0.63	0.60	
0.61	0.64	0.67	0.62	0.60	
0.60	0.63	0.65	0.62	0.60	
0.60	0.62	0.64	0.62	0.60	
0.60	0.62	0.64	0.62	0.62	-0.0007

MINIMUM PSI = -0.0007 AVERAGE PSI = 0.1538 MAXIMUM PSI = 0.3013

Heated Test Case Gr⁺=10⁶, C=1.0

Velocities

#1	#2	#3	#4	#5	
10.2225	10.5378	10.7843	11.1234	10.5071	10.5042
10.3547	10.7441	10.8425	11.3168	10.6834	10.4372
10.4852	10.9506	10.8994	11.5112	10.8634	10.6553
11.3091	11.9399	11.7400	12.5204	12.2768	11.9094
12.4887 12.7609	12.6714 13.2195	13.0411 13.5073	13.7855 13.3610	13.6780 12.7254	13.0669
12.7609	13.3417	13.5250	13.7711	13.3400	12.3691
13.0618	13.4666	13.5445	14.1909	13.9771	13.0652
13.6548	14.2996	14.0572	14.6016	14.2793	13.2421
13.7891	14.2646	14.4556	14.6279	14.1744	12.9124
14.4035	14.9638	15.1136	15.2822	14.8169	13.4702
14.7108	15.2375	15.4404	15.5229	15.0443	13.5569
15.0232	15.5131	15.7705	15.7685	15.2744	13.6387
15.3914	15.9406	16.2076	16.1000	15.6573	13.7407
15.5762 15.7427	16.1101 16.1710	16.6456 16.5812	15.7566 16.2789	15.0559 15.8184	12.6764 13.6780
15.7785	16.2667	16.7663	16.0373	15.4345	12.8850
15.8244	16.2769	16.6476	16.3116	15.8484	13.4455
15.8825	16.3485	16.8082	16.2239	15.6870	13.0136
15.9065	16.3813	16.7121	16.3464	15.8764	13.2142
15.9125	16.3792	16.7956	16.3321	15.8144	13.0256
15.9366	16.4285	16.7894	16.3751	15.8624	12.9809
15.9648	16.4738	16.8668	16.4018	15.8484	12.8288
15.9427	16.4080	16.8753	16.3219	15.7725	12.6815
15.9205	16.3403	16.8815	16.2422	15.6969	12.5304
15.8524 15.8804	16.3198 16.3505	16.8207 16.7184	16.1162 16.3423	15.5564 15.8564	12.2702 12.6310
15.7825	16.2973	16.7580	15.9889	15.4188	11.9319
15.6771	16.1811	16.7246	15.8504	15.1813	11.6512
15.5702	16.0656	16.6892	15.7128	14.9485	11.3803
15.3758	15.9527	16.5254	15.4797	14.6825	11.0823
15.1813	15.8404	16.3628	15.2491	14.4202	10.7977
14.7676	15.4522	16.1142	14.7278	13.6459	9.9817
14.1010	15.0366	15.7586	14.1633	12.7102	9.0316
13.4085	14.5640	15.4267	13.5498	11.5332	8.1391
12.6832	14.1799 13.8793	15.0175 14.8017	12.9809 12.6276	10.8007	7.5487 7.2903
12.0222 11.6623	13.6067	14.8017	12.02/0	10.4343 10.3143	7.2903
11.4878	13.3435	14.4742	12.3103	10.3143	7.4158
11.3075	13.2421	14.1175	12.0579	10.2583	7.4742
11.1922	13.1067	14.1120	12.0061	10.2568	7.5771
11.2060	13.0549	13.8774	11.9464	10.2597	7.6490
11.1264	12.9175	13.8467	11.9174	10.2726	7.7549
11.1631	12.9466	13.7622	11.8740	10.2769	7.7803

11.0975	12.8544	13.7460	11.8484	10.2899	7.9476
11.1402	12.8833	13.6834	11.8356	10.2942	7.9984
11.0656	12.8118	13.6977	11.8468	10.3100	8.1452
11.1234	12.8016	13.6245	11.8244	10.3143	8.2648
11.0656	12.7457	13.6477	11.8212	10.3273	8.3428
11.0944	12.7694	13.5747	11.7877	10.3345	8.4919
11.0716	12.7051	13.5250	11.7543	10.3561	8.5890
11.0564	12.7372	13.5498	11.8133	10.3503	8.6116
11.0246	12.6714	13.4702	11.7543	10.3691	8.8165
11.0489	12.6495	13.4314	11.7304	10.3749	8.8561
11.0064	12.5706	13.3838	11.7193	10.3908	8.9539
11.0185	12.5421	13.3452	10.9054	10.3923	9.0681
10.9400	12.4621	13.3014	11.6149	10.4009	9.1703
10.9551	12.3841	13.1968	11.5394	10.3923	9.2614
10.8949	12.2718	13.1223	11.4925	10.3879	9.3572
10.8395	12.1539	12.9706	11.3912	10.3662	9.4389
10.7323	11.9770	12.7880	11.2613	10.3402	9.5145
10.6612	11.8117		11.0990	10.3057	9.5850
10.5378	11.5363	12.3410	10.9566	10.2683	9.6478
10.4270	11.2275	12.0012	10.7724	10.2296	9.8102
10.3201	10.9762	11.6354	10.6200	10.1911	9.7784
10.2439	10.7337	11.2690	10.5115	10.1612	9.8546
10.1811	10.5553		10.4445	10.1398	9.9327
10.1526	10.4706		10.4736	10.1840	10.0549
10.1825	10.4896	10.7962	10.5466	10.4198	10.4270

MINIMUM VELOCITY = 10.1398 AVERAGE VELOCITY = 13.2941 MAXIMUM VELOCITY = 16.8815

APPENDIX G

TURBULENT HOT WIRE DATA FOR $Gr^+=10^6$ WITH C=0.0, C=0.4, AND C=1.0

The following pages contain the data as listed above in the following format: (1) the original voltage readings, (2) the streamline patterns, and (3) the calculated velocities. The readings were taken in accordance with the diagram below. The second position, #5, is taken with the hot wire rotated 90 degrees, as shown in Figure 3.4, Page 49.

Heated Test Case Gr⁺=10⁶, C=0.0 Original Voltage Readings

#1	#2	#3	#4	#5	#5
3.5149	3.5188	3.5227	3.5181	3.5142	3.5003
3.5166	3.5205	3.5244	3.5198	3.5159	3.5006
3.5210	3.5249	3.5288	3.5242	3.5203	3.4865
3.5239	3.5279	3.5318	3.5272	3.5233	3.4946
3.5319	3.5359	3.5398	3.5352	3.5313	3.5071
3.5415	3.5455	3.5494	3.5448	3.5408	3.4870
3.5516	3.5555	3.5595	3.5549	3.5509	3.5097
3.5551	3.5590	3.5630	3.5584	3.5544	3.4864
3.5575	3.5614	3.5654	3.5608	3.5568	3.5033
3.5597	3.5636	3.5676	3.5630	3.5590	3.4411
3.5602	3.5641	3.5681	3.5635	3.5595	3.4785
3.5607	3.5646	3.5686	3.5640	3.5600	3.4646
3.5601	3.5640	3.5680	3.5634	3.5594	3.3570
3.5615	3.5654	3.5694	3.5648	3.5608	3.3934
3.5624	3.5663	3.5703	3.5657	3.5617	3.3580
3.5630	3.5669	3.5709	3.5663	3.5623	3.3083
3.5623	3.5662	3.5702	3.5656	3.5616	3.3991
3.5622	3.5661	3.5701	3.5655	3.5615	3.3593
3.5621	3.5660	3.5700	3.5654	3.5614	3.3965
3.5611	3.5650	3.5690	3.5644	3.5604	3.3971
3.5612	3.5651	3.5691	3.5645	3.5605	3.3596
3.5608	3.5647	3.5687	3.5641	3.5601	3.4062
3.5600	3.5639	3.5679	3.5633	3.5593	3.3948
3.5614	3.5653	3.5693	3.5647	3.5607	3.3926
3.5591	3.5630	3.5670	3.5624	3.5584	3.3924
3.5608	3.5647	3.5687	3.5641	3.5601	3.3884
3.5582	3.5621	3.5661	3.5615	3.5575	3.3863
3.5591	3.5630	3.5670	3.5624	3.5584	3.3881
3.5529	3.5568	3.5608	3.5562	3.5522	3.3739
3.5466	3.5505	3.5545	3.5499	3.5459	3.3597
3.5417	3.5457	3.5496	3.5450	3.5410	3.3560
3.5273	3.5313	3.5352	3.5306	3.5267	3.3628
3.5115	3.5154	3.5193	3.5147	3.5108	3.3656
3.5028	3.5067	3.5106	3.5060	3.5021	3.3866
3.4785	3.4824	3.4863	3.4818	3.4779	3.4613

THE CONTROL CONTROL CONTROL OF THE C

Heated Test Case Gr += 106, C=0.0

Streamlines

#1	#2	#3	#4	#5	
0.93	0.93	0.94	0.93	0.93	0.0181
0.93	0.94	0.94	0.94	0.93	0.0199
0.94	0.94	0.95	0.94	0.94	0.0436
0.94	0.95	0.95	0.94	0.94	0.0370
0.95	0.96	0.96	0.95	0.95	0.0312
0.96	0.97	0.97	0.97	0.96	0.0682
0.98	0.98	0.99	0.98	0.97	0.0524
0.98	0.98	0.99	0.98	0.98	0.0853
0.98	0.99	0.99	0.99	0.98	0.0675
0.99	0.99	1.00	0.99	0.98	0.1440
0.99	0.99	1.00	0.99	0.99	0.1008
0.99	0.99	1.00	0.99	0.99	0.1178
0.99	0.99	1.00	0.99	0.99	0.2370
0.99	0.99	1.00	0.99	0.99	0.1994
0.99	0.99	1.00	0.99	0.99	0.2382
0.99	0.99	1.00	0.99	0.99	0.2896
0.99	0.99	1.00	0.99	0.99	0.1940
0.99	0.99	1.00	0.99	0.99	0.2367
0.99	0.99	1.00	0.99	0.99	0.1966
0.99	0.99	1.00	0.99	0.99	0.1949
0.99	0.99	1.00	0.99	0.99	0.2354
0.99	0.99	1.00	0.99	0.99	0.1846
0.99	0.99	1.00	0.99	0.99	0.1963
0.99	0.99	1.00	0.99	0.99	0.2002
0.98	0.99	0.99	0.99	0.98	0.1980
0.99	0.99	1.00	0.99	0.99	0.2041
0.98	0.99	0.99	0.99	0.98	0.2037
0.98	0.99	0.99	0.99	0.98	0.2027
0.98	0.98	0.99	0.98	0.98	0.2117
0.97	0.97	0.98	0.97	0.97	0.2206
0.96	0.97	0.97	0.97	0.96	0.2196
0.94	0.95	0.95	0.95	0.94	0.1974
0.93	0.93	0.94	0.93	0.92	0.1774
0.92	0.92	0.92	0.92	0.91	0.1436
0.89	0.89	0.90	0.89	0.89	0.0219

MINIMUM PSI = 0.0181 AVERAGE PSI = 0.1540 MAXIMUM PSI = 0.2896

Heated Test Case $\mathrm{Gr}^+ = 10^6$, C=0.0 Velocities

#1	#2	#3	#4	#5	
13.3891	13.4578	13.5268	13.4455	13.3768	13.1344
13.4190	13.4878	13.5569	13.4755	13.4067	13.1396
13.4967	13.5658	13.6352	13.5534	13.4843	12.8970
13.5480	13.6191	13.6887	13.6067	13.5374	13.0359
13.6905	13.7622	13.8323	13.7496	13.6798	13.2526
13.8630	13.9353	14.0062	13.9227	13.8504	12.9055
14.0463 14.1102	14.1175 14.1817	14.1909 14.2553	14.1065 14.1707	14.0335 14.0974	13.2979 12.8953
14.1102	14.1817	14.2555	14.1707	14.09/4	13.1864
14.1946	14.2664	14.2996	14.2553	14.1413	12.1392
14.1940	14.2756	14.3496	14.2646	14.1909	12.7609
14.2130	14.2848	14.3589	14.2738	14.2001	12.5271
14.2019	14.2738	14.3478	14.2627	14.1890	10.8261
14.2277	14.2996	14.3737	14.2886	14.2148	11.3803
14.2443	14.3163	14.3905	14.3052	14.2314	10.8410
14.2553	14.3274	14.4016	14.3163	14.2424	10.1171
14.2424	14.3144	14.3886	14.3033	14.2295	11.4690
14.2406	14.3126	14.3867	14.3015	14.2277	10.8604
14.2387	14.3107	14.3849	14.2996	14.2258	11.4285
14.2203	14.2922	14.3663	14.2812	14.2074	11.4378
14.2222	14.2941	14.3682	14.2830	14.2093	10.8649
14.2148	14.2867	14.3607	14.2756	14.2019	11.5803
14.2001	14.2719	14.3459	14.2609	14.1872	11.4021
14.2258	14.2978	14.3719	14.2867	14.2130	11.3679
14.1835	14.2553	14.3293	14.2443	14.1707	11.3648
14.2148	14.2867	14.3607	14.2756	14.2019	11.3029
14.1670	14.2387	14.3126	14.2277	14.1542	11.2705
14.1835	14.2553	14.3293	14.2443	14.1707	11.2983
14.0700	14.1413	14.2148	14.1303	14.0572	11.0808
13.9553 13.8666	14.0262 13.9390	14.0992	14.0153 13.9263	13.9426 13.8540	10.8665 10.8111
13.6084	13.6798	13.7496	13.9203	13.5978	10.9129
13.3295	13.3979	13.4666	13.3856	13.3172	10.9129
13.3293	13.2456	13.3137	13.2334	13.1656	11.2751
12.7609	12.8271	12.8936	12.8169	12.7507	12.4720
, 00,	, _ , _ ,		,	,	

MINIMUM VELOCITY = 12.7507 AVERAGE VELOCITY = 14.0117 MAXIMUM VELOCITY = 14.4016

Heated Test Case Gr⁺=10⁶, C=0.4
Original Voltage Readings

#1	# 2	#3	#4	#5	#5
3.3800	3.3837	3.4359	3.3837	3.3800	3.3314
3.3474	3.3511	3.4484	3.3511	3.3474	3.2736
3.3142	3.3178 3.3094	3.4553	3.3178 3.3094	3.3142 3.3057	3.2167
3.3057 3.3103	3.3139	3.4616 3.4665	3.3139	3.3103	3.1833 3.1731
3.3103	3.3141	3.4704	3.3141	3.3104	3.1649
3.3104	3.3157	3.4718	3.3157	3.3104	3.1503
3.3052	3.3089	3.4720	3.3089	3.3052	3.1269
3.3027	3.3064	3.4721	3.3064	3.3027	3.1104
3.2983	3.3020	3.4714	3.3020	3.2983	3.0805
3.2984	3.3020	3.4715	3.3020	3.2984	3.0561
3.3297	3.3334	3.4717	3.3334	3.3297	3.1684
3.3264	3.3301	3.4711	3.3301	3.3264	3.1359
3.3201	3.3238	3.4708	3.3238	3.3201	3.1110
3.3179	3.3216	3.4704	3.3216	3.3179	3.0882
3.3931	3.3969	3.4689	3.3969	3.3931	3.1576
3.4096	3.4134	3.4679	3.4134	3.4096	3.1799
3.4174	3.4212	3.4665	3.4212	3.4174	3.1940
3.4195	3.4233	3.4644	3.4233	3.4195	3.1937
3.4253	3.4291	3.4631	3.4291	3.4253	3.1972 3.2004
3.4245 3.4260	3.4283 3.4298	3.4614 3.4601	3.4283 3.4298	3.4245 3.4260	3.1982
3.4280	3.4296	3.4581	3.4296	3.4281	3.1982
3.2105	3.2141	3.4574	3.2141	3.2105	3.0004
3.2715	3.2751	3.4554	3.2751	3.2715	3.1093
3.4227	3.4265	3.4546	3.4265	3.4227	3.1927
3.4244	3.4282	3.4560	3.4282	3.4244	3.1911
3.2789	3.2825	3.4546	3.2825	3.2789	3.1097
3.4269	3.4307	3.4560	3.4307	3.4269	3.1919
3.1994	3.2029	3.4546	3.2029	3.1994	2.9849
3.3019	3.3056	3.4550	3.3056	3.3019	3.1248
3.4259	3.4297	3.4550	3.4297	3.4259	3.1803
3.3170	3.3207	3.4545	3.3207	3.3170	3.1366
3.4404	3.4442	3.4552	3.4442	3.4404	3.2585
3.2453	3.2489	3.4554	3.2489	3.2453	3.0786
3.3583	3.3621	3.4554	3.3621	3.3583	3.2492
3.4307	3.4345	3.4563	3.4345	3.4307	3.3524
3.3984 3.4337	3.4022	3.4559 3.4551	3.4022 3.4376	3.3984 3.4337	3.3074
3.4337	3.4376 3.4256	3.4541	3.4256	3.4337	3.3702 3.3472
3.4764	3.4230	3.4549	3.4230	3.4216	3.4315
3.4323	3.4361	3.4546	3.4361	3.4323	3.3855
3.4466	3.4504	3.4543	3.4504	3.4466	3.4082
3.4283	3.4321	3.4523	3.4321	3.4283	3.3804

3.4171	3.4209	3.4502	3.4209	3.4171	3.3890
3.4201	3.4239	3.4470	3.4239	3.4201	3.3991
3.4009	3.4047	3.4361	3.4047	3.4009	3.3831
3.3983	3.4021	3.4272	3.4021	3.3983	3.3774
3.3831	3.3869	3.4245	3.3869	3.3831	3.3644
3.3903	3.3941	3.4151	3.3941	3.3903	3.3840
3.3668	3.3706	3.4134	3.3706	3.3668	3.3490
3.3602	3.3640	3.4122	3.3640	3.3602	3.3600

Heated Test Case Gr⁺=10⁶, C=0.4 Streamlines

#1 #2	#3	#4	#5	
#1 #2 0.87 0.8 0.84 0.8 0.80 0.8 0.79 0.7 0.79 0.8 0.79 0.7 0.78 0.7 0.78 0.7 0.78 0.7 0.78 0.7 0.78 0.7 0.93 0.9	8 4 0 0 9 9 6 0 0 9 9 9 9 9 9 9 9 9 9 9 9 9	#4 0.88 0.89 0.80 0.79 0.78 0.80 0.79 0.78 0.82 0.81 0.91 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93	#5 0.87 0.84 0.89 0.79 0.79 0.78 0.78 0.81 0.80 0.91 0.92 0.93 0.93 0.93 0.75 0.93 0.78 0.78	0.0649 0.0982 0.1295 0.1608 0.1785 0.1885 0.2075 0.2273 0.2435 0.2723 0.2989 0.2060 0.2397 0.2610 0.2837 0.2839 0.2764 0.2692 0.2716 0.2736 0.2732 0.2732 0.2713 0.2708 0.2708 0.2758 0.2758 0.2758 0.2767 0.2185 0.2767 0.2261 0.2918
0.93 0.9 0.80 0.8 0.95 0.9 0.72 0.7	3 0.97 0 0.97 5 0.97 3 0.97	0.93 0.80 0.95 0.73	0.93 0.80 0.95 0.72	
0.85 0.8 0.94 0.9 0.90 0.9 0.94 0.9 0.92 0.9 0.99 1.0 0.94 0.9 0.96 0.9 0.93 0.9	4 0.97 0 0.97 4 0.97 3 0.97 0 0.97 4 0.97 6 0.97	0.85 0.94 0.90 0.94 0.93 1.00 0.94 0.96	0.85 0.94 0.90 0.94 0.92 0.99 0.94 0.96	0.1420 0.1013 0.1181 0.0827 0.0970 0.0583 0.0615 0.0505

0.92	0.92	0.96	0.92	0.92	0.0375
0.92	0.93	0.96	0.93	0.92	0.0281
0.90	0.90	0.94	0.90	0.90	0.0240
0.90	0.90	0.93	0.90	0.90	0.0281
0.88	0.88	0.93	0.88	0.88	0.0253
0.89	0.89	0.92	0.89	0.89	0.0086
0.86	0.86	0.91	0.86	0.86	0.0243
0.85	0.85	0.91	0.85	0.85	0.0003

MINIMUM PSI = 0.0003 AVERAGE PSI = 0.1769 MAXIMUM PSI = 0.2989

Heated Test Case Gr += 106, C=0.4

Velocities

#1	#2	#3	#4	#5	
11.1738	11.2305	12.0547	11.2305	11.1738	10.4488
10.6834	10.7382	12.2587	10.7382	10.6834	9.6341
10.2011	10.2525	12.3725	10.2525	10.2011	8.8805
10.0803	10.1327	12.4770 12.5588	10.1327	10.0803	8.4597 8.3342
10.1455	10.1903	12.6242	10.1903	10.1469	8.2344
10.1697	10.2225	12.6478	10.2225	10.1697	8.0590
10.0732	10.1256	12.6511	10.1256	10.0732	7.7838
10.0380	10.0902	12.6528	10.0902	10.0380	7.5941
9.9761	10.0281	12.6411	10.0281	9.9761	7.2595
9.9775	10.0281	12.6427	10.0281	9.9775	6.9948
10.4241	10.4779	12.6461	10.4779	10.4241	8.2769
10.3763	10.4299	12.6360	10.4299	10.3763	7.8888
10.2855	10.3388	12.6310	10.3388	10.2855	7.6010
10.2540 11.3756	10.3071	12.6242 12.5990	10.3071	11.3756	7.3445 8.1464
11.6338	11.6939	12.5823	11.6939	11.6338	8.4177
11.7575	11.8180	12.5588	11.8180	11.7575	8.5928
11.7909	11.8516	12.5237	11.8516	11.7909	8.5890
11.8837	11.9447	12.5020	11.9447	11.8837	8.6329
11.8708	11.9319	12.4737	11.9319	11.8708	8.6732
11.8949	11.9560		11.9560	11.8949	8.6455
11.9287	11.9899	12.4189	11.9899	11.9287	8.6921
8.8012	8.8472	12.4072	8.8472	8.8012	6.4182
9.6055	9.6546	12.3741	9.6546	9.6055	7.5816
11.8420 11.8692	11.9029	12.3609 12.3841	11.9029	11.8420 11.8692	8.5765 8.5565
9.7067	9.7563	12.3609	9.7563	9.7067	7.5862
11.9094	11.9705	12.3841	11.9705	11.9094	8.5665
8.6606	8.7047	12.3609	8.7047	8.6606	6.2644
10.0267	10.0789	12.3675	10.0789	10.0267	7.7595
11.8933	11.9544	12.3675	11.9544	11.8933	8.4226
10.2411	10.2942	12.3592	10.2942	10.2411	7.8970
12.1278	12.1898	12.3708	12.1898	12.1278	9.4295
9.2534	9.3012	12.3741	9.3012	9.2534	7.2386
		12.3741			9.3052
11.9705	12.0320	12.3890 12.3824	12.0320	11.9705	10.7575
11.4581 12.0190	11.5175 12.0822	12.3624	11.5175	11.4581 12.0190	10.1044 11.0246
11.8276	11.8885	12.3526	11.8885	11.8276	10.6804
12.7254	12.7914	12.3658	12.7914	12.7254	11.9835
11.9964	12.0579	12.3609	12.0579	11.9964	11.2582
12.2292	12.2916	12.3559	12.2916	12.2292	11.6118
11.9319	11.9931	12.3229	11.9931	11.9319	11.1799

11.7527	11.8133	12.2883	11.8133	11.7527	11.3122
11.8005	11.8612	12.2357	11.8612	11.8005	11.4690
11.4971	11.5567	12.0579	11.5567	11.4971	11.2213
11.4565	11.5159	11.9142	11.5159	11.4565	11.1341
11.2213	11.2798	11.8708	11.2798	11.2213	10.9370
11.3323	11.3912	11.7209	11.3912	11.3323	11.2351
10.9732	11.0307	11.6939	11.0307	10.9732	10.7071
10.8739	10.9310	11.6749	10.9310	10.8739	10.8709

MINIMUM VELOCITY = 8.6606 AVERAGE VELOCITY = 11.2972 MAXIMUM VELOCITY = 12.7914

Heated Test Case Gr⁺=10⁶, C=1.0
Original Voltage Readings

#1	#2	#3	#4	#5	#5
3.3911	3.3949	3.4425	3.3949	3.3911	3.3916
3.3891 3.3819	3.3929 3.3856	3.4445 3.4461	3.3929 3.3856	3.3891 3.3819	3.3798 3.3668
3.3698	3.3736	3.4482	3.3736	3.3698	3.3476
3.3548	3.3586	3.4512	3.3586	3.3548	3.3251
3.3420	3.3457	3.4534	3.3457	3.3420	3.3120
3.3313	3.3350	3.4553	3.3350	3.3313	3.2868
3.3295	3.3332	3.4573	3.3332	3.3295	3.2778
3.3198	3.3235	3.4563	3.3235	3.3198	3.2607
3.3184	3.3221	3.4581	3.3221	3.3184	3.2521
3.3143	3.3180	3.4587	3.3180	3.3143	3.2405
3.3149 3.3100	3.3186 3.3137	3.4595 3.4613	3.3186 3.3137	3.3149 3.3100	3.2337 3.2214
3.3141	3.3178	3.4627	3.3178	3.3141	3.2182
3.3121	3.3158	3.4636	3.3158	3.3121	3.2076
3.3136	3.3173	3.4649	3.3173	3.3136	3.2025
3.3093	3.3129	3.4642	3.3129	3.3093	3.1956
3.3073	3.3110	3.4644	3.3110	3.3073	3.1789
3.3098	3.3134	3.4646	3.3134	3.3098	3.1791
3.3087	3.3124	3.4647	3.3124	3.3087	3.1717
3.3029	3.3066	3.4646	3.3066	3.3029	3.1546
3.3079	3.3116	3.4647	3.3116	3.3079	3.1539
3.3004	3.3041	3.4647	3.3041	3.3004	3.1371
3.3059 3.2998	3.3096 3.3035	3.4647 3.4646	3.3096 3.3035	3.3059 3.2998	3.1312 3.1214
3.3033	3.3070	3.4647	3.3070	3.3033	3.1113
3.2966	3.3003	3.4648	3.3003	3.2966	3.1032
3.2998	3.3034	3.4644	3.3034	3.2998	3.0978
3.2872	3.2909	3.4647	3.2909	3.2872	3.0799
3.2939	3.2976	3.4644	3.2976	3.2939	3.0771
3.2962	3.2999	3.4644	3.2999	3.2962	3.0733
3.2984	3.3020	3.4647	3.3020	3.2984	3.0669
3.3036	3.3072	3.4642	3.3072	3.3036	3.0585
3.3310	3.3347	3.4636	3.3347	3.3310	3.0839
3.3510 3.3704	3.3547 3.3741	3.4628 3.4610	3.3547 3.3741	3.3510 3.3704	3.1085 3.1307
3.3873	3.3911	3.4605	3.3911	3.3873	3.1659
3.3954	3.3992	3.4595	3.3992	3.3954	3.1893
3.3961	3.3999	3.4581	3.3999	3.3961	3.1954
3.3969	3.4007	3.4569	3.4007	3.3969	3.2021
3.3991	3.4029	3.4556	3.4029	3.3991	3.2097
3.4021	3.4059	3.4551	3.4059	3.4021	3.2182
3.4076	3.4114	3.4542	3.4114	3.4076	3.2436
3.4021	3.4059	3.4546	3.4059	3.4021	3.2315

3.4014	3.4052	3.4533	3.4052	3.4014	3.2392
3.4032	3.4069	3.4538	3.4069	3.4032	3.2459
3:4034	3.4072	3.4526	3.4072	3.4034	3.2508
3.4055	3.4093	3.4526	3.4093	3.4055	3.2605
3.4037	3.4075	3.4522	3.4075	3.4037	3.2634
3.4061	3.4099	3.4512	3.4099	3.4061	3.2731
3.4012	3.4050	3.4517	3.4050	3.4012	·
3.4059	3.4097	3.4520	3.4097		3.2661
3.3984	3.4022	3.4519		3.4059	3.2865
3.4060	3.4098		3.4022	3.3984	3.2679
3.3951	3.3989	3.4530	3.4098	3.4060	3.3002
		3.4528	3.3989	3.3951	3.2708
3.4051	3.4089	3.4519	3.4089	3.4051	3.3100
3.4070	3.4108	3.4514	3.4108	3.4070	3.3243
3.4080	3.4118	3.4523	3.4118	3.4080	3.3319
3.4081	3.4119	3.4522	3.4119	3.4081	3.3384
3.4088	3.4126	3.4522	3.4126	3.4088	3.3406
3.4204	3.4242	3.4503	3.4242	3.4204	3.3649
3.4131	3.4169	3.4484	3.4169	3.4131	3.3636
3.4029	3.4066	3.4455	3.4066	3.4029	3.3476
3.3831	3.3869	3.4333	3.3869	3.3831	3.3226
3.3847	3.3885	3.4248	3.3885	3.3847	3.3513
3.3830	3.3868	3.4187	3.3868	3.3830	3.3608
3.3747	3.3785	3.4113	3.3785	3.3747	3.3607
3.3703	3.3741	3.4122	3.3741	3.3703	3.3534
3.3640	3.3678	3.4113	3.3678	3.3640	3.3638
		- 1 - 1 1 1 1	3.3070	247040	3.3038

Heated Test Case $Gr^+=10^6$, C=1.0 Streamlines

#1	#2	#3	#4	#5	
0.91 0.90 0.89	0.91 0.91 0.90	0.97 0.97 0.98	0.91 0.91 0.90	0.91 0.90 0.89	-0.0007 0.0126 0.0205
0.88 0.86 0.85	0.88 0.87 0.85	0.98 0.98 0.98	0.88 0.87 0.85	0.88 0.86 0.85	0.0301 0.0404 0.0409
0.83	0.84	0.99	0.84	0.83 0.83	0.0605
0.82	0.82 0.82	0.99	0.82 0.82	0.82	0.0800
0.81	0.82 0.82	0.99	0.82 0.82	0.81 0.81	0.0992
0.81	0.81	1.00	0.81	0.81	0.1184
0.81	0.82	1.00	0.82	0.81	0.1274 0.1383
0.81	0.82	1.00	0.82	0.81	0.1465
0.81	0.81	1.00	0.81	0.81	0.1680 0.1707
0.81	0.81	1.00	0.81	0.81	0.1784 0.1923
0.81 0.80	0.81 0.80	1.00	0.81	0.81 0.80	0.1987 0.2102
0.80 0.80	0.81 0.80	1.00	0.81 0.80	0.80	0.2231 0.2278
0.80 0.79	0.81 0.80	1.00	0.81	0.80 0.79	0.2431 0.2451
0.80 0.78	0.80 0.79	1.00	0.80 0.79	0.80 0.78	0.2546 0.2615
0.79	0.80	1.00	0.80 0.80	0.79 0.79	0.2716 0.2781
0.80 0.80	0.80	1.00	0.80	0.80	0.2873 0.3015
0.83 0.86	0.84 0.86	1.00	0.84 0.86	0.83 0.86	0.3013 0.2947
0.88	0.91	0.99	0.88 0.91	0.88	0.2901 0.2693
0.91	0.92 0.92	0.99	0.92	0.91	0.2521 0.2462
0.91 0.92	0.92 0.92	0.99	0.92 0.92	0.91	0.2396 0.2335
0.92 0.93	0.92 0.93	0.99	0.92 0.93	0.92 0.93	0.2272
0.92	0.92	0.99	0.92	0.92	0.2122

0.92	0.92	0.98	0.92	0.92	0.2027
0.92	0.92	0.99	0.92	0.92	0.1970
0.92	0.93	0.98	0.93	0.92	0.1916
0.92	0.93	0.98	0.93	0.92	0.1826
0.92	0.93	0.98	0.93	0.92	0.1772
0.92	0.93	0.98	0.93	0.92	0.1685
0.92	0.92	0.98	0.92	0.92	0.1713
0.92	0.93	0.98	0.93	0.92	0.1524
0.91	0.92	0.98	0.92	0.91	0.1660
0.92	0.93	0.98	0.93	0.92	0.1360
0.91	0.91	0.98	0.91	0.91	0.1587
0.92	0.93	0.98	0.93	0.92	0.1230
0.93	0.93	0.98	0.93	0.93	0.1076
0.93	0.93	0.98	0.93	0.93	0.0993
0.93	0.93	0.98	0.93	0.93	0.0912
0.93	0.93	0.98			
			0.93	0.93	
0.94	0.95	0.98	0.95	0.94	0.0729
0.93	0.94	0.98	0.94	0.93	0.0654
0.92	0.92	0.97	0.92	0.92	0.0730
0.90	0.90	0.96	0.90	0.90	0.0802
0.90	0.90	0.95	0.90	0.90	0.0449
0.90	0.90	0.94	0.90	0.90	0.0300
0.89	0.89	0.93	0.89	0.89	0.0191
0.88	0.88	0.93	0.88	0.88	0.0230
0.87	0.88	0.93	0.88	0.87	0.0003
0.07	0.00	0.75	0.00	0.07	0.0003

MINIMUM PSI = -0.0007 AVERAGE PSI = 0.1542 MAXIMUM PSI = 0.3015

CONTROL CONTRO

Heated Test Case Gr⁺=10⁶, C=1.0

Velocities

#1	#2	#3	#4	#5	
11.3446	11.4036	12.1621	11.4036	11.3446	11.3524
11.3137	11.3725	12.1948	11.3725	11.3137	11.1707
11.2029	11.2598	12.2210	11.2598	11.2029	10.9732
11.0185	11.0762	12.2554	11.0762	11.0185	10.6863
10.7932	10.8500	12.3048	10.8500	10.7932	10.3575
10.6038	10.6583	12.3410 12.3725	10.6583	10.6038	10.1697 9.8157
10.4212	10.3013	12.4056	10.3013	10.4212	9.6916
10.2812	10.3345	12.3890	10.3345	10.2812	9.4591
10.2612	10.3143	12.4189	10.3143	10.2612	9.3438
10.2025	10.2554	12.4288	10.2554	10.2025	9.1900
10.2111	10.2640	12.4421	10.2640	10.2111	9.1007
10.1413	10.1939	12.4720	10.1939	10.1413	8.9410
10.1997	10.2525	12.4954	10.2525	10.1997	8.8997
10.1711	10.2239	12.5104	10.2239	10.1711	8.7643
10.1925	10.2454	12.5321	10.2454	10.1925	8.6997
10.1313	10.1825	12.5204	10.1825	10.1313	8.6128
10.1030	10.1555	12.5237	10.1555	10.1030	8.4054
10.1384	10.1897	12.5271	10.1897	10.1384	8.4078
10.1228	10.1754	12.5287	10.1754	10.1228	8.3171
10.0408	10.0930		10.0930	10.0408	8.1104
10.1115	10.1640	12.5287	10.1640	10.1115	8.1020
10.0056	10.0577	12.5287	10.0577	10.0056	7.9029
10.0831	10.1356	12.5287	10.1356	10.0831	7.8338
9.9971	10.0492	12.5271 12.5287	10.0492 10.0987	9.9971	7.7202
9.9523	10.0042	12.5304	10.0967	10.0464 9.9523	7.6044 7.5125
9.9971	10.0042	12.5337	10.0042	9.9971	7.4517
9.8213	9.8727	12.5287	9.8727	9.8213	7.2529
9.9145	9.9663	12.5237	9.9663	9.9145	7.2221
9.9466	9.9985	12.5237	9.9985	9.9466	7.1806
9.9775	10.0281	12.5287	10.0281	9.9775	7.1110
10.0507	10.1015	12.5204	10.1015	10.0507	7.0205
10.4430	10.4969	12.5104	10.4969	10.4430	7.2969
10.7367	10.7917	12.4970	10.7917	10.7367	7.5725
11.0276	11.0838		11.0838	11.0276	7.8280
11.2859	11.3446	12.4587	11.3446	11.2859	8.2466
11.4114	11.4706	12.4421	11.4706	11.4114	8.5341
11.4223	11.4815	12.4189	11.4815	11.4223	8.6103
11.4347	11.4940	12.3989	11.4940	11.4347	8.6946
11.4690	11.5285	12.3774	11.5285	11.4690	8.7910
11.5159	11.5756	12.3691	11.5756	11.5159	8.8997
11.6023	11.6623	12.3543	11.6623	11.6023	9.2309
11.7173	11.5756	14.3009	11.5756	11.5159	9.0720

```
11.5050 11.5646 12.3394 11.5646 11.5050
                                                9.1729
11.5332 11.5913 12.3477 11.5913 11.5332
                                                9.2614
11.5363 11.5960 12.3278 11.5960 11.5363
                                                9.3265
11.5693 11.6291 12.3278 11.6291 11.5693
                                                9.4564
11.5410 11.6007 12.3212 11.6007 11.5410
                                                9.4955
11.5787 11.6386 12.3048 11.6386 11.5787
                                                9.6273
11.5018 11.5614 12.3130 11.5614 11.5018
                                                9.5321
11.5756 11.6354 12.3179 11.6354 11.5756
                                                9.8116
11.4581 11.5175 12.3163 11.5175 11.4581
                                                9.5565
11.5771 11.6370 12.3344 11.6370 11.5771
                                               10.0028
11.4067 11.4659 12.3311 11.4659 11.4067
                                                9.5959
11.5630 11.6228 12.3163 11.6228 11.5630
                                               10.1413
11.5929 11.6528 12.3081 11.6528 11.5929
                                               10.3460
11.6086 11.6686 12.3229 11.6686 11.6086
                                               10.4561
11.6102 11.6702 12.3212 11.6702 11.6102
                                               10.5510
11.6212 11.6813 12.3212 11.6813 11.6212
                                               10.5832
11.8053 11.8660 12.2900 11.8660 11.8053
                                               10.9445
11.6892 11.7495 12.2587 11.7495 11.6892
                                               10.9250
11.5285 11.5866 12.2111 11.5866 11.5285
                                               10.6863
11.2213 11.2798 12.0125 11.2798 11.2213
                                               10.3215
11.2459 11.3045 11.8756 11.3045 11.2459
                                               10.7412
11.2198 11.2782 11.7782 11.2782 11.2198
                                               10.8829
11.0929 11.1509 11.6607 11.1509 11.0929
                                               10.8814
11.0261 11.0838 11.6749 11.0838 11.0261
                                               10.7724
10.9310 10.9883 11.6607 10.9883 10.9310
                                               10.9280
```

MINIMUM VELOCITY = 9.8213 AVERAGE VELOCITY = 11.1839 MAXIMUM VELOCITY = 12.5321

design spring receptor received another

LIST OF REFERENCES

- 1. Acharya S. and Patankar, S.V., "Laminar Mixed Convection in a Shrouded Fin Array," Journal of Heat Transfer, Vol. 103, pp. 559-565, August 1981.
- 2. Sparrow, E.M., Baliga, B.R. and Patankar, S.V., "Forced Convection Heat Transfer from a Shrouded Fin Array with or without Tip Clearance," Journal of Heat Transfer, Vol. 100, pp. 572-579, November 1978.
- 3. Patankar, S.V., Ramadhvani, S. and Sparrow, E.M., "Effect of Circumferentially Non-Uniform Heating on Laminar Combined Convection in a Horizontal Tube," Journal of Heat Transfer, Vol. 100, pp. 63-69, February 1978.
- 4. Kraus, A.D. and Bar-Cohen, A., <u>Thermal Analysis and Control of Electronic Equipment</u>, McGraw-Hill Book Co., 1983.
- 5. Incropera R.P. and Dewitt, D.R., <u>Fundamentals of Heat Transfer</u>, John Wiley & Sons, 1981.
- 6. Moffat, R.J. to Mellon, T.L., Personal Communication, April 18, 1986.
- 7. Kraus, A.D. to Mellon, T.L., Personal Communication, June 9, 1986.

BIBLIOGRAPHY

Bar-Cohen, A., "Fin Thickness for an Optimized Natural Convection Array of Rectangular Fins," Journal of Heat Transfer, Vol. 101, August 1979.

Eckert, E.R.G., "Pioneering Contributions to Our Knowledge of Convective Heat Transfer: One Hundred Years of Heat Transfer Research," Journal of Heat Transfer, Vol. 103, August 1981.

Grant, H.P. and Kronauer, R.E., "Fundamentals of Hot Wire Anemometry," Paper presented at the ASME Hydraulic Division Conference, May 21-23, 1962 and published in <u>Symposium on Measurement in Unsteady Flow</u> by The American Society of Mechanical Engineers.

Keyhani, M. and Kulacki, F.A., "Experiments on Transient Thermal Convection With Internal Heating--Large Time Results," Journal of Heat Transfer, Vol. 105, May 1983.

Kraus, A.D. and Snider, A.D., "New Parametrizations for Heat Transfer in Fins and Spines," Journal of Heat Transfer, Vol. 102, August 1980.

Meyer, B.A., Mitchell, J.W. and El-Wakil, M.M., "Natural Convection Heat Transfer in Moderate Aspect Ratio Enclosures," Journal of Heat Transfer, Vol. 101, November 1979.

Sernas, V. and Lee, E.I., "Heat Transfer in Air Enclosures of Aspect Ratio Less than One," Journal of Heat Transfer, Vol. 103, November 1981.

Test, F.L. and Lessmann, R.C., "An Experimental Study of Heat Transfer During Forced Convection over a Rectangular Body," Journal of Heat Transfer, Vol. 102, February 1980.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145	No.	Copies 2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93943-5000		2
3.	Department Chairman, Code 69 Department of Mechanical Engineering Naval Postgraduate School Monterey California 93943-5000		1
4.	Dr. Allan D. Kraus Department of Mechanical Engineering Naval Postgraduate School Monterey, California 93943-5000		3
5	Dr. R. J. Moffat Thermosciences Division Department of Mechanical Engineering Stanford University Palo Alto, California 94305	-	1
6	Dr. Robert L. Lott, Jr. Department of Mechanical Engineering Vanderbilt University Box 1632 Station B Nashville, Tennessee 37235		1
7.	Ms. Lillian Mackin 304 Oak Street Mt Vernon, Ohio 43050		2
8.	LT Terry L. Mellon 304 Oak Street		3