

Circulations de coût minimum

CM nº3 — Mobilité (M2 IMPAIRS)

Matěj Stehlík 26/1/2024

Circulations de coût minimum

- Les deux dernières semaines, nous avons étudié les flots et circulations dans les réseaux, avec le but de *maximiser* le flot où *satisfaire les demandes*.
- Dans les applications réelles, il faut souvent tenir compte d'un autre paramètre important : le *coût*.
- Nous supposerons qu'à chaque arc $e \in E$ est associé un coût b_e et une capacité c_e .
- Le problème est alors le suivant :

Problème de circulation de coût minimum

Trouver une circulation admissible de coût minimum.

Coût d'un flot

Définition

- Soit $f \in \mathbb{R}^{|E|}$ une circulation admissible dans un réseau G = (V, E) avec coûts $b \in \mathbb{R}^{|E|}$ et capacités $c \in \mathbb{R}^{|E|}$.
- Le coût de f est défini comme

$$\operatorname{coût}(f) = \sum_{e \in E} f_e b_e.$$

• Une circulation f est de coût minimum si $coût(f) \le coût(f')$ pour tout flot f' t.q. val(f) = val(f').

3

Cycles augmentants (1/2)

- Soit C un cycle dans le réseau G, avec une orientation donné.
- On note C^+ et C^- les arcs avant et arrière, respectivement.
- On définit le coût de C comme

$$\operatorname{coût}(C) = \sum_{e \in C^+} b_e - \sum_{e \in C^-} b_e.$$

- Soit f une circulation admissible dans le réseau G.
- On définit

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{si } e \in C^+ \\ f(e) & \text{si } e \in C^- \end{cases}$$

- On définit aussi $c_f(C) = \min\{c_f(e) : e \in E(C)\}.$
- Un cycle C est f-augmentant si $c_f(C) > 0$ et coût(C) < 0.

Cycles augmentants (2/2)

• Pour tout ε t.q. $0 < \varepsilon \le c_f$, soit

$$f_{arepsilon}(e) = egin{cases} f(e) + arepsilon & ext{si } e \in C^+ \ f(e) - arepsilon & ext{si } e \in C^- \ f(e) & ext{sinon.} \end{cases}$$

• Il est facile à vérifier que f_{ε} est une circulation admissible.

Algorithme de Klein

 Analogue de l'algorithme de Ford–Fulkerson pour les flots de coût minimum

Algorithme de Klein

- Trouver une circulation admissible de coût quelconque.
- Tant qu'il existe un cycle augmentant dans G :
 - Trouver un cycle augmentant C
 - Augmenter le flot dans *C*

Justification de l'algorithme de Klein

Théorème

Un flot est de coût minimum ssi il n'y a pas de cycle augmentant.

- S'il existe un cycle augmentant, alors le flot n'est pas de coût minimum.
- Pour chaque sommet v de G, soit $\varphi(v)=\mathrm{dist}(s,v)$, où les arcs sont pondérés par les coûts.
- Soit (u, v) un arc quelconque.
- Puisque $\varphi(v) \leq \varphi(u) + b_{uv}$, on a $b_{uv} + \varphi(u) \varphi(v) \geq 0$.
- Soit $C = (v_1, v_2, \dots, v_k, v_0)$ un cycle quelconque.
- On a coût(C) = $b_{v_1v_2} + \varphi(v_1) \varphi(v_2) + b_{v_2v_3} + \varphi(v_2) \varphi(v_3) + \dots + b_{v_kv_1} + \varphi(v_k) \varphi(v_1) \ge 0$

Exemple

Le problème du postier chinois

- Un postier veut livrer le courrier le long de toutes les arêtes d'un graphe G=(V,E) et revenir à son point de départ.
- Un tel chemin est appelé un tour de postier chinois de G.
- Il peut être nécessaire de parcourir quelques arêtes plusieurs fois.
- Soit $c_e \ge 0$ le coût associé à chaque traversée d'une telle arête e.
- Le *problème du postier chinois* : trouver un tour de postier chinois de coût minimum.
- Si le graphe G contient un cycle eulérien C, alors C est forcément un tour de postier optimal.
- On peut considérer deux versions de ce problème : la version *orientée*, et la version *non-orientée*.

Quelques applications du problème du postier chinois

- Planification de l'entretien des rues
- Ramassage des poubelles
- Acheminement des chasse-neige
- Vérification des hyperliens d'un site web

Le problème du postier chinois (version orientée)

Problème du postier chinois (version orientée)

Entrée Un graphe orienté G=(V,E) avec pondération $c\in\mathbb{R}^{|E|}$ tel que $c\geq 0$.

Objectif Trouver un plus court tour passant au moins une fois par chaque arc de G.

Graphes eulériens orientés (1/2)

• Un graphe orienté G=(V,E) est *eulérien* s'il existe un cycle qui parcourt chaque arc de G une fois et une seule.

Théorème

Un graphe orienté G est eulérien ssi G est :

- fortement connexe : il existe un chemin de u à v pour toute paire de sommets $u,v\in V(G)$; et
- équilibré : $d^+(v) = d^-(v)$ pour tout sommet $v \in V(G)$.

Graphes eulériens orientés (2/2)

Démonstration

- Prouvons d'abord la direction \implies .
- Si C est un cycle orienté eulérien dans G, alors en suivant ce cycle, on peut se rendre de n'importe quel sommet à n'importe quel autre sommet.
- Cela montre que G est fortement connexe.
- Chaque fois que C passe par un sommet, il emprunt un arc entrant et un arc sortant.
- Comme tous les arcs doivent être traversés, on voit que $d^+(v) = d^-(v)$ pour tout v.
- Pour prouver la direction ← on peut utiliser l'algorithme de Hierholzer.

L'algorithme de Hierholzer (version orientée)

- ullet Choisir n'importe quel sommet initial v
- Suivre un chemin arbitraire d'arcs jusqu'à retourner à v, obtenant ainsi un cycle C.
- Tant qu'il y a des sommets u dans le cycle C incident à des arcs sortants qu'on n'a pas encore choisis faire
 - Suivre un chemin à partir de u, n'utilisant que des arcs pas encore choisis, jusqu'à retourner à u, obtenant un cycle C
 - Prolonger le cycle C par C'

Existence des tours de postier (1/2)

Théorème

Un graphe orienté G contient un tour de postier ssi G est fortement connexe.

Démonstration (1/2)

- Si G n'est pas fortement connexe, alors il existe des sommets u,v dans G t.q. il n'y a aucun chemin de u à v.
- Donc, il ne peut y avoir un tour de postier chinois dans G.

Existence de tours de postier (2/2)

Démonstration (2/2)

- Inversement, supposons que G est fortement connexe.
- Soit *C* un cycle orienté contenant le nombre maximum d'arcs.
- Si C n'est pas un tour de postier, alors il existe un arc $e \in E(G) \setminus E(C)$.
- Soient u, v la queue et la tête de e, et soit w un sommet arbitraire de G.
- Il existe des chemins P de w à u et Q de v à w.
- Alors en concatenant C, P, e et Q, on obtient un cycle orienté avec plus d'arcs que C.

Reformulation du problème du postier chinois

- Soit x_e le nombre de traversées supplémentaires de l'arc e, pour tout arc $e \in E$.
- Soit G^x le supergraphe de G avec $1 + x_e$ copies de l'arc e, pour tout $e \in E$.
- Le graphe G^x est eulérien!

Problème du postier chinois (version orientée)

Entrée Un graphe orienté G=(V,E) avec pondération $c\in\mathbb{R}^{|E|}$ tel que $c\geq 0.$

Objectif Trouver un supergraphe $G^* = (V, E^*)$ de G équilibré de poids minimum t.q. si $(u, v) \in E^*$, alors il existe un arc $(u, v) \in E$, et $w_{G^*}(u, v) = w_G(u, v)$.

Réduction du problème du postier chinois orienté aux flots

- Pour tout $v \in V(G)$, soit $\rho(v) = d^-(x) d^+(x)$.
- Soient $S = \{v \in V(G) : \rho(v) > 0\}$ et $T = \{v \in V(G) : \rho(v) < 0\}$.
- Si G n'est pas équilibré, alors $S \neq \emptyset$, $T \neq \emptyset$, et $\sum_{v \in S} \rho(v) + \sum_{v \in T} \rho(v) = 0$.
- Soit $\rho(G) = \sum_{v \in S} \rho(v) = -\sum_{v \in T} \rho(v)$.
- Le problème du postier chinois revient alors à choisir ρ chemins arc-disjoints $P_1, P_2, \dots, P_{\rho}$ de S à T dans G qui minimisent $w(P_1) + w(P_2) + \dots + w(P_{\rho})$ et t.q. $G \cup P_1 \cup \dots \cup P_{\rho}$ est équilibré.

Algorithme de postier chinois (version orientée)

- 1. Construire le réseau de flot R :
 - ajouter les sommets s et t et les arcs

$$\{(s,v) \in E(R) : v \in S\} \cup \{(v,t) \in E(R) : v \in T\}.$$

- Si $e \in E(G)$, alors le coût b(e) reste inchangé, et la capacité est $c(e) = \infty$.
- Si e=(s,v), alors le coût est b(e)=0 et la capacité est $c(e)=\rho(v)$.
- Si e=(v,t), alors le coût est b(e)=0 et la capacité est $c(e)=-\rho(v)$.
- 2. Trouver un flot maximal f de coût minimum dans R.
- 3. Construire un super-graphe G^* de G où chaque arc $e \in E(G)$ apparaît 1+f(e) fois.
- 4. Trouver (à l'aide de l'algorithme de Hierholzer) un circuit eulérien dans G^* , qui est un tour de postier optimal dans (G, w).

Exemple

Exemple

flot max f de coût min dans R

