0.1 Mengder

En samling av tall kalles en $mengde^1$, og et tall som er en del av en mengde kalles et element. Mengder kan inneholde et endelig antall elementer og de kan inneholde uendelig mange elementer.

0.1 Mengder

For to reelle tall a og b, hvor $a \leq b$, har vi at

- [a,b] er mengden av alle reelle tall større eller lik a og mindre eller lik b.
- (a, b] er mengden av alle reelle tall større enn a og mindre eller lik b.
- [a,b) er mengden av alle reelle tall større eller lik a og mindre enn b.

[a,b] kalles et lukket intervall, (a,b) kalles et åpent intervall, og både (a,b] og [a,b) kalles halvåpne intervall.

Mengden som inneholder bare a og b skrives som $\{a, b\}$.

At x er et element i en mengde M, skrives som $x \in M$.

At x ikke er et element i en mengde M, skrives som $x \notin M$.

At x er et element i både en mengde M_1 og en mengde M_2 , skrives som $x \in M_1 \cup M_2$.

Språkboksen

 $x \in M$ uttales "x inneholdt i M".

Mange tekster bruker \langle istedenfor \langle for å indikere åpne (eller halvåpne) intervall.

Merk

Når vi heretter i boka definerer et intervall beskrevet av a og b, tar vi det for gitt at a og b er to reelle tall og at $a \le b$.

¹En mengde kan også være en samling av andre matematiske objekter, som for eksempel funksjoner, men i denne boka holder det å se på mengder av tall.

Eksempel 1

Mengden av alle heltall større enn 0 og mindre enn 10 skriver vi \mathbf{som}

$$\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

Denne mengden inneholder 9 elementer. 3 er et element i denne mengden, og da kan vi skrive $3 \in \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

10 er ikke et element i denne mengden, og da kan vi skrive $10 \notin \{1, 2, 3, 4, 5, 6, 7, 8, 9\}.$

Eksempel 2

Skriv opp ulikhetene som gjelder for alle $x \in M$, og om 1 er inneholdt i M.

- a) M = [0, 1]
- b) M = (0, 1]
- c) M = [0, 1)

Svar

- a) $0 \le x \le 1$. Videre er $1 \in M$.
- b) $0 < x \le 1$. Videre er $1 \in M$.
- c) $0 \le x < 1$. Videre er $1 \notin M$.

0.2 Navn på mengder

- \mathbb{N} Mengden av alle positive heltall¹
- \mathbb{Z} Mengden av alle heltall²
- $\mathbb Q$ Mengden av alle rasjonale tall
- \mathbb{R} Mengden av alle reelle tall
- \mathbb{C} Mengden av alle komplekse tall

¹Inneholder ikke 0.

 $^{^{2}}$ Inneholder 0.

Symbolet for uendelig

Mengdene i definisjon 0.2 inneholder uendelig mange elementer. Noen ganger ønsker vi å avgrense deler av en uendelig mengde, og da melder det seg et behov for et symbol som er med på å symbolisere dette. ∞ er symbolet for en uendelig stor, positiv verdi.

Eksempel

Et vilkår om at $x \geq 2$ kan vi skrive som $x \in [2, \infty)$.

Et vilkår om at x < -7 kan vi skrive som $x \in (-\infty, -7)$.

Språkboksen

De to intervallene i eksempelet over kan også skrives som $[2, \rightarrow)$ og $(\leftarrow, -7)$.

Merk

 ∞ er ikke noe bestemt tall. Å bruke de fire grunnleggende regneartene alene med dette symbolet gir derfor ingen mening.

0.2 Verdi- og definisjonsmengder

0.3 Verdi- og definisjonsmengder

Gitt en funksjon f(x). Mengden som utelukkende inneholder alle verdier x kan ha, er definisjonsmengden til f. Denne mengden skrives som D_f . Mengden som utelukkende inneholder alle verdier f kan ha når $x \in D_f$, er verdimengden til f. Denne mengden skrives som V_f .

Eksempel 1

Figuren under viser f(x) = 2x + 1, hvor $D_f = [1, 3]$. Da er $V_f = [1, 5]$.

Eksempel 2

Figuren under viser $f(x) = \frac{1}{x}$, hvor $D_f = [-3, -1] \cup [2, 5]$. Da er $V_f = \left[-1, -\frac{1}{3}\right] \cup \left[\frac{1}{2}, \frac{1}{5}\right]$.

Merk

Definisjonsmengden til en funksjon bestemmes av to ting; hvilken sammenheng funksjonen skal brukes i og eventuelle verdier som gir et udefinert funksjonsuttrykk. I *Eksempel 1* på side 4 er definisjonsmengden helt vilkårlig valgt, siden funksjonen er definert for alle x. I *Eksempel 2* derimot er ikke funksjonen definert for x=0, så en definisjonsmengde som inneholdt denne verdien for x ville ikke gitt mening.

0.3 Vilkår

Symbolet \Rightarrow bruker vi for å vise til at hvis et vilkår er oppfylt, så er en annen (eller flere) vilkår også oppfylt. For eksempel; i MB så vi at hvis en trekant er rettvinklet, er Pytagoras' setning gyldig. Dette kan vi skrive slik:

trekanten er rettvinklet ⇒ Pytagoras' setning er gyldig

Men vi så også at det omvendte gjelder; hvis Pytagoras' setning er gyldig, må trekanten være rettvinklet. Da kan vi skrive

trekanten er rettvinklet \iff Pytagoras' setning er gyldig

Det er veldig viktig å være bevisst forskjellen på \Rightarrow og \iff ; at vilkår A oppfylt gir B oppfylt, trenger ikke å bety at vilkår B oppfylt gir vilkår A oppfylt!

Eksempel 1

firkanten er et kvadrat \Rightarrow firkanten har fire like lange sider

Eksempel 2

tallet er et primtall større enn 2 \Rightarrow tallet er et oddetall

Eksempel 3

tallet er et partall \iff tallet er delelig med 2

Funksjoner med vilkår

Funksjoner kan gjerne ha flere uttrykk som gjelder ved forskjellige vilkår. La oss for eksempel definere en funksjon f(x) slik:

For x < 1 er funksjonsuttrykket -2x + 1For $x \ge 1$ er funksjonsuttrykket $x^2 - 2x$

Figur 1: Grafen til f på intervallet [-1,3].

Dette kan vi skrive som

$$f(x) = \begin{cases} -2x + 1 & , & x < 1 \\ x^2 - 2x & , & x \ge 1 \end{cases}$$