```
In [7]: !pip install pandas
!pip install numpy
!pip install seaborn
!pip install matplotlib
!pip install xgboost
!pip install scikit-learn
```

```
Requirement already satisfied: pandas in ./.venv/lib/python3.10/site-packages (2.2.2)
Requirement already satisfied: numpy>=1.22.4 in ./.venv/lib/python3.10/site-packages (from pandas) (2.1.0)
Requirement already satisfied: python-dateutil>=2.8.2 in ./.venv/lib/python3.10/site-packages (from pandas) (2.9.0.p
ost0)
Requirement already satisfied: pytz>=2020.1 in ./.venv/lib/python3.10/site-packages (from pandas) (2024.1)
Requirement already satisfied: tzdata>=2022.7 in ./.venv/lib/python3.10/site-packages (from pandas) (2024.1)
Requirement already satisfied: six>=1.5 in ./.venv/lib/python3.10/site-packages (from python-dateutil>=2.8.2->panda
s) (1.16.0)
Requirement already satisfied: numpy in ./.venv/lib/python3.10/site-packages (2.1.0)
Requirement already satisfied: seaborn in ./.venv/lib/python3.10/site-packages (0.13.2)
Requirement already satisfied: numpy!=1.24.0,>=1.20 in ./.venv/lib/python3.10/site-packages (from seaborn) (2.1.0)
Requirement already satisfied: pandas>=1.2 in ./.venv/lib/python3.10/site-packages (from seaborn) (2.2.2)
Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in ./.venv/lib/python3.10/site-packages (from seaborn)
(3.9.2)
Requirement already satisfied: contourpy>=1.0.1 in ./.venv/lib/python3.10/site-packages (from matplotlib!=3.6.1,>=
3.4 - seaborn) (1.3.0)
Requirement already satisfied: cycler>=0.10 in ./.venv/lib/python3.10/site-packages (from matplotlib!=3.6.1,>=3.4->s
eaborn) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in ./.venv/lib/python3.10/site-packages (from matplotlib!=3.6.1,>=
3.4->seaborn) (4.53.1)
Requirement already satisfied: kiwisolver>=1.3.1 in ./.venv/lib/python3.10/site-packages (from matplotlib!=3.6.1,>=
3.4 - seaborn) (1.4.5)
Requirement already satisfied: packaging>=20.0 in ./.venv/lib/python3.10/site-packages (from matplotlib!=3.6.1,>=
3.4->seaborn) (24.1)
Requirement already satisfied: pillow>=8 in ./.venv/lib/python3.10/site-packages (from matplotlib!=3.6.1,>=3.4->seab
orn) (10.4.0)
Requirement already satisfied: pyparsing>=2.3.1 in ./.venv/lib/python3.10/site-packages (from matplotlib!=3.6.1,>=
3.4 - seaborn) (3.1.4)
Requirement already satisfied: python-dateutil>=2.7 in ./.venv/lib/python3.10/site-packages (from matplotlib!=
3.6.1, >= 3.4 -> seaborn) (2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in ./.venv/lib/python3.10/site-packages (from pandas>=1.2->seaborn) (202
4.1)
Requirement already satisfied: tzdata>=2022.7 in ./.venv/lib/python3.10/site-packages (from pandas>=1.2->seaborn) (2
024.1)
Requirement already satisfied: six>=1.5 in ./.venv/lib/python3.10/site-packages (from python-dateutil>=2.7->matplotl
ib!=3.6.1,>=3.4->seaborn) (1.16.0)
Requirement already satisfied: matplotlib in ./.venv/lib/python3.10/site-packages (3.9.2)
Requirement already satisfied: contourpy>=1.0.1 in ./.venv/lib/python3.10/site-packages (from matplotlib) (1.3.0)
Requirement already satisfied: cycler>=0.10 in ./.venv/lib/python3.10/site-packages (from matplotlib) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in ./.venv/lib/python3.10/site-packages (from matplotlib) (4.53.1)
Requirement already satisfied: kiwisolver>=1.3.1 in ./.venv/lib/python3.10/site-packages (from matplotlib) (1.4.5)
```

```
Requirement already satisfied: numpy>=1.23 in ./.venv/lib/python3.10/site-packages (from matplotlib) (2.1.0)
Requirement already satisfied: packaging>=20.0 in ./.venv/lib/python3.10/site-packages (from matplotlib) (24.1)
Requirement already satisfied: pillow>=8 in ./.venv/lib/python3.10/site-packages (from matplotlib) (10.4.0)
Requirement already satisfied: pyparsing>=2.3.1 in ./.venv/lib/python3.10/site-packages (from matplotlib) (3.1.4)
Requirement already satisfied: python-dateutil>=2.7 in ./.venv/lib/python3.10/site-packages (from matplotlib)
(2.9.0.post0)
Requirement already satisfied: six>=1.5 in ./.venv/lib/python3.10/site-packages (from python-dateutil>=2.7->matplotl
ib) (1.16.0)
Collecting xgboost
 Downloading xgboost-2.1.1-py3-none-manylinux 2 28 x86 64.whl.metadata (2.1 kB)
Requirement already satisfied: numpy in ./.venv/lib/python3.10/site-packages (from xgboost) (2.1.0)
Collecting nvidia-nccl-cu12 (from xgboost)
 Downloading nvidia nccl cu12-2.23.4-py3-none-manylinux2014 x86 64.whl.metadata (1.8 kB)
Requirement already satisfied: scipy in ./.venv/lib/python3.10/site-packages (from xgboost) (1.14.1)
Downloading xgboost-2.1.1-py3-none-manylinux 2 28 x86 64.whl (153.9 MB)
                                          - 153.9/153.9 MB 3.2 MB/s eta 0:00:00m eta 0:00:01[36m0:00:02
Downloading nvidia nccl cu12-2.23.4-py3-none-manylinux2014 x86 64.whl (199.0 MB)
                                          - 199.0/199.0 MB 3.4 MB/s eta 0:00:00m eta 0:00:01[36m0:00:02
Installing collected packages: nvidia-nccl-cu12, xgboost
Successfully installed nvidia-nccl-cu12-2.23.4 xgboost-2.1.1
Requirement already satisfied: scikit-learn in ./.venv/lib/python3.10/site-packages (1.5.1)
Requirement already satisfied: numpy>=1.19.5 in ./.venv/lib/python3.10/site-packages (from scikit-learn) (2.1.0)
Requirement already satisfied: scipy>=1.6.0 in ./.venv/lib/python3.10/site-packages (from scikit-learn) (1.14.1)
Requirement already satisfied: joblib>=1.2.0 in ./.venv/lib/python3.10/site-packages (from scikit-learn) (1.4.2)
Requirement already satisfied: threadpoolctl>=3.1.0 in ./.venv/lib/python3.10/site-packages (from scikit-learn)
(3.5.0)
```

Machine Learning Project: Bank Marketing Dataset

Loading Packages

```
In [8]: import os

In [9]: import numpy as np import pandas as pd
import seaborn as sns
```

```
import matplotlib.pyplot as plt

In [10]: from sklearn.linear_model import LogisticRegression
    from sklearn.svm import SVC
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import RandomForestClassifier
    from xgboost import XGBClassifier

    from sklearn.model_selection import train_test_split
    from sklearn.model_selection import GridSearchCV,StratifiedKFold

    from sklearn.metrics import accuracy_score,precision_score,recall_score,fl_score,roc_auc_score
    from sklearn.metrics import confusion_matrix
    from sklearn.preprocessing import LabelEncoder,StandardScaler

In [11]: sns.set_theme(context='paper', style="darkgrid")
```

Loading Dataset

```
In [13]: # Load the dataset
    dir_path = './bank+marketing/bank-additional'
    file_name = 'bank-additional-full.csv'
    # file_name = 'bank-additional.csv'
    file_path = os.path.join(dir_path, file_name)
    print(f"Dataset: {file_path}")
    data = pd.read_csv(file_path, sep=';')
    data.head()
```

Dataset: ./bank+marketing/bank-additional/bank-additional-full.csv

Out[13]:		age	job	marital	education	default	housing	loan	contact	month	day_of_week	•••	campaign	pdays	previous	po
	0	56	housemaid	married	basic.4y	no	no	no	telephone	may	mon	•••	1	999	0	none
	1	57	services	married	high.school	unknown	no	no	telephone	may	mon		1	999	0	non€
	2	37	services	married	high.school	no	yes	no	telephone	may	mon		1	999	0	non€
	3	40	admin.	married	basic.6y	no	no	no	telephone	may	mon		1	999	0	non€
	4	56	services	married	high.school	no	no	yes	telephone	may	mon		1	999	0	non€

5 rows × 21 columns

Dataset Analysis

Initial analysis

Dataset Summary

```
In [15]: print("Summary of dataset:")
print(data.info())
```

<cla< th=""><th>•</th><th>frame.DataFrame' tries, 0 to 4118</th><th></th></cla<>	•	frame.DataFrame' tries, 0 to 4118	
_	columns (total		,
#	Column	Non-Null Count	Dtype
		41100 non null	
0	age	41188 non-null	int64
1	job	41188 non-null	object
2	marital	41188 non-null	object
3	education	41188 non-null	object
4	default	41188 non-null	object
5	housing	41188 non-null	object
6	loan	41188 non-null	object
7	contact	41188 non-null	object
8	month	41188 non-null	object
9	day_of_week	41188 non-null	object
10	duration	41188 non-null	int64
11	campaign	41188 non-null	int64
12	pdays	41188 non-null	int64
13	previous	41188 non-null	int64
14	poutcome	41188 non-null	object
15	emp.var.rate	41188 non-null	float64
16	cons.price.idx	41188 non-null	float64
17	cons.conf.idx	41188 non-null	
18	euribor3m	41188 non-null	float64
19	nr.employed	41188 non-null	float64
20	У	41188 non-null	_
		int64(5), object	(11)
memo	ry usage: 6.6+ M	В	
None			
		frame.DataFrame'	
Rang	eIndex: 41188 en	tries, 0 to 4118	7
Data	columns (total	21 columns):	
#	Column	Non-Null Count	Dtype
0	age	41188 non-null	int64
1	job	41188 non-null	object
2	marital	41188 non-null	object
3	education	41188 non-null	object
4	default	41188 non-null	object
5	housing	41188 non-null	object

```
loan
                    41188 non-null object
6
    contact
                    41188 non-null object
    month
                    41188 non-null object
    day of week
                    41188 non-null object
9
10 duration
                    41188 non-null int64
11 campaign
                    41188 non-null int64
12 pdays
                    41188 non-null int64
13 previous
                    41188 non-null int64
14 poutcome
                    41188 non-null object
15 emp.var.rate
                    41188 non-null float64
16 cons.price.idx 41188 non-null float64
17 cons.conf.idx
                    41188 non-null float64
18 euribor3m
                    41188 non-null float64
19 nr.employed
                    41188 non-null float64
20 y
                    41188 non-null object
dtypes: float64(5), int64(5), object(11)
memory usage: 6.6+ MB
None
```

Missing values in table

```
In [16]: print("Checking for missing values:")
print(data.isnull().sum())
```

Checking for m	issing	values
age	0	
j ob	0	
marital	0	
education	0	
default	0	
housing	0	
loan	0	
contact	0	
nonth	0	
day_of_week	0	
duration	0	
campaign	0	
odays	0	
previous	0	
poutcome	0	
emp.var.rate	0	
cons.price.idx	0	
cons.conf.idx	0	
euribor3m	0	
nr.employed	0	
y 	0	
dtype: int64	0	
age	0	
job 	0	
marital	0	
education	0	
default	0	
housing	0	
loan	0 0	
contact	0	
nonth	0	
day_of_week duration	0	
	0	
campaign odays	0	
orevious	0	
poutcome	0	
emp.var.rate	0	
cons.price.idx	0	
cons.price.lux cons.conf.idx	0	
CONS. CONT. TUX	U	

euribor3m 0 nr.employed 0 y 0 dtype: int64

Dataset statistics

In [17]: print("\nDescriptive statistics:")
 data.describe(include='all')

Descriptive statistics:

Out[17]:		age	job	marital	education	default	housing	loan	contact	month	day_of_week	•••	campaign	
	count	41188.00000	41188	41188	41188	41188	41188	41188	41188	41188	41188		41188.000000	4118
	unique	NaN	12	4	8	3	3	3	2	10	5		NaN	
	top	NaN	admin.	married	university.degree	no	yes	no	cellular	may	thu		NaN	
	freq	NaN	10422	24928	12168	32588	21576	33950	26144	13769	8623		NaN	
	mean	40.02406	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		2.567593	96
	std	10.42125	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		2.770014	18
	min	17.00000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		1.000000	1
	25%	32.00000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	•••	1.000000	99
	50%	38.00000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		2.000000	99
	75%	47.00000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		3.000000	99
	max	98.00000	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	•••	56.000000	99

11 rows × 21 columns

Data Visualization

Categorical features against target

```
In [18]: categorical_feature_names = data.drop('y', axis=1).select_dtypes(include=['object']).columns
    print(f"Number of categorical features: {categorical_feature_names.shape[-1]}")

Number of categorical features: 10

In [19]: fig=plt.figure(figsize=(14, 8))
    for i in range(categorical_feature_names.shape[-1]):
        plt.subplot(2,5,i+1)
        sns.countplot(data=data, x=categorical_feature_names[i], hue='y')
        plt.xticks(rotation=-90)
        plt.xlabel('')
        plt.title(categorical_feature_names[i])
        fig.suptitle('Count Plot of Categorical Features', fontsize=16)
        plt.tight_layout()
```


Numerical features against target variable

```
In [20]: numerical_feature_names = data.drop('y', axis=1).select_dtypes(include=['int', 'float']).columns
    print(f"Number of numerical features: {numerical_feature_names.shape[-1]}")

Number of numerical features: 10

In [21]: fig=plt.figure(figsize=(14, 8))
    for i in range(numerical_feature_names.shape[-1]):
```

```
plt.subplot(2,5,i+1)
sns.violinplot(data=data, x='y', y=numerical_feature_names[i], hue='y')
fig.suptitle('Violin Plot of Numerical Features', fontsize=16)
plt.tight_layout()
```



```
In [22]: fig=plt.figure(figsize=(14, 8))
    for i in range(numerical_feature_names.shape[-1]):
        plt.subplot(2,5,i+1)
        sns.barplot(data=data, x='y', y=numerical_feature_names[i], hue='y')
```

```
fig.suptitle('Box Plot of Numerical Features', fontsize=16)
plt.tight_layout()
```



```
In [23]: fig=plt.figure(figsize=(14, 8))
    for i in range(numerical_feature_names.shape[-1]):
        plt.subplot(2,5,i+1)
        sns.kdeplot(data=data, x=numerical_feature_names[i], hue='y')
        fig.suptitle('Probability Density Function', fontsize=16)
        plt.tight_layout()
```



```
In [24]: grouped = data.drop(categorical_feature_names, axis=1).groupby('y').agg(['mean', 'std'])
    grouped.columns = ['_'.join(col).strip() for col in grouped.columns.values]
    grouped.reset_index(inplace=True)

fig=plt.figure(figsize=(14, 8))
for i in range(numerical_feature_names.shape[-1]):
    plt.subplot(2,5,i+1)
    plt.errorbar(grouped['y'], grouped[f'{numerical_feature_names[i]}_mean'], yerr=grouped[f'{numerical_feature_names
    plt.xlabel('y')
```

```
plt.ylabel('Value')
plt.legend()
fig.suptitle('Mean and Std Dev of Numerical Features', fontsize=16)
plt.tight_layout()
```

Mean and Std Dev of Numerical Features

Class Balance

```
In [25]: plt.figure()
sns.countplot(data=data, x='y', hue='y')
```

```
plt.suptitle("Class Balance")
plt.tight_layout()
```

Class Balance

Binary Classification

Metrics evaluation function

```
In [26]: def get_metrics(model_name:str, y_pred, y_true):
    accuracy = accuracy_score(y_true, y_pred)
```

Categorical features encoding

```
In [27]: encoder = LabelEncoder()
    for col in categorical_feature_names:
        data[col] = encoder.fit_transform(data[col])

data['y'] = encoder.fit_transform(data['y'])
```

Feature Correlation

```
In [28]: plt.figure(figsize=(14,8))
    sns.heatmap(data.corr(method='pearson'),vmin=-1,vmax=1,annot=True,cmap='coolwarm')
    plt.title('Feature Correlation',fontsize=25)
    plt.tight_layout()
    plt.show()
```



```
In [29]: ss_scaler = StandardScaler()
    data[categorical_feature_names] = ss_scaler.fit_transform(data[categorical_feature_names])
    data.head()
```

Out[29]:	age		job	marital	education	default	housing	loan	contact	month	day_of_week	•••	campaign	pdays	previou
	0	56	-0.201579	-0.283741	-1.753925	-0.513600	-1.087707	-0.452491	1.31827	0.762558	-0.718834		1	999	
	1	57	0.911227	-0.283741	-0.349730	1.945327	-1.087707	-0.452491	1.31827	0.762558	-0.718834		1	999	
	2	37	0.911227	-0.283741	-0.349730	-0.513600	0.942127	-0.452491	1.31827	0.762558	-0.718834		1	999	
	3	40	-1.036184	-0.283741	-1.285860	-0.513600	-1.087707	-0.452491	1.31827	0.762558	-0.718834		1	999	
	4	56	0.911227	-0.283741	-0.349730	-0.513600	-1.087707	2.311440	1.31827	0.762558	-0.718834		1	999	

5 rows × 21 columns

Train test split

```
In [30]: TEST_SIZE = 0.2
    feature_names = data.columns.drop('y')
    X = data[feature_names]
    y = data['y']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=TEST_SIZE, stratify=y, random_state=42)
```

Simple classifier based on class count

```
In [31]: from collections import Counter
         class ClassCountClassifier:
             def fit(self, y):
               class counts = Counter(y)
               total samples = len(y)
               self.class probabilities = {cls: count / total samples for cls, count in class counts.items()}
               self.classes = list(self.class probabilities.keys())
               self.probabilities = list(self.class probabilities.values())
               return self.class probabilities
             def predict(self, X):
                 # np.random.seed(seed=42)
                 return np.random.choice(self.classes, size=len(X), p=self.probabilities)
In [32]: class count clf = ClassCountClassifier()
         class probabilities=class count clf.fit(y train)
         print(class probabilities)
        {0: 0.8873444613050075, 1: 0.11265553869499241}
In [33]: y pred = class count clf.predict(X train)
         class count clf metrics, class count clf cm = get metrics("Class Count Classifier", y pred, y train)
In [34]: fig, ax = plt.subplots()
         ax=sns.heatmap(class count clf cm,annot=True, ax=ax, fmt='.4g')
         ax.xaxis.set ticklabels(['No Deposit','Deposit'])
         ax.yaxis.set ticklabels(['No Deposit', 'Deposit'])
         ax.set title('Class Count Classifier-Train', fontsize=18)
         print(class count clf metrics.to string(index=False))
                         model precision recall f1 score accuracy ROC AUC
        Class Count Classifier 0.109491 0.111261 0.110369 0.797936 0.498188
```


Logistic regression

```
In [37]: lr = LogisticRegression(solver='liblinear', class_weight='balanced', random_state=42)

param_grid = {
    'C': [0.01, 0.1, 1, 10],
    'penalty': ['ll', 'l2']
}

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
grid_search = GridSearchCV(lr, param_grid, cv=cv, scoring='f1', refit=True, verbose=1, n_jobs=-1)
grid_search.fit(X_train, y_train)
lr_clf = grid_search.best_estimator_
print("Best_parameters:", grid_search.best_params_)
```

```
print("Best score:", grid_search.best_score_)
```

Fitting 5 folds for each of 8 candidates, totalling 40 fits

```
/home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
linear failed to converge, increase the number of iterations.
 warnings.warn(
/home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
linear failed to converge, increase the number of iterations.
  warnings.warn(
/home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
linear failed to converge, increase the number of iterations.
 warnings.warn(
/home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
linear failed to converge, increase the number of iterations.
 warnings.warn(
/home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
linear failed to converge, increase the number of iterations.
 warnings.warn(
/home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
linear failed to converge, increase the number of iterations.
 warnings.warn(
/home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
linear failed to converge, increase the number of iterations.
  warnings.warn(
/home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
linear failed to converge, increase the number of iterations.
 warnings.warn(
/home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
linear failed to converge, increase the number of iterations.
 warnings.warn(
/home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/_base.py:1235: ConvergenceWarning: Lib
linear failed to converge, increase the number of iterations.
  warnings.warn(
/home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
linear failed to converge, increase the number of iterations.
 warnings.warn(
/home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
linear failed to converge, increase the number of iterations.
 warnings.warn(
/home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
linear failed to converge, increase the number of iterations.
  warnings.warn(
/home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
```

```
linear failed to converge, increase the number of iterations.
          warnings.warn(
        /home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
        linear failed to converge, increase the number of iterations.
          warnings.warn(
        /home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
        linear failed to converge, increase the number of iterations.
          warnings.warn(
        /home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
        linear failed to converge, increase the number of iterations.
          warnings.warn(
        /home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
        linear failed to converge, increase the number of iterations.
          warnings.warn(
        /home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
        linear failed to converge, increase the number of iterations.
          warnings.warn(
        /home/pc/Documents/MU projekat/.venv/lib/python3.10/site-packages/sklearn/svm/ base.py:1235: ConvergenceWarning: Lib
        linear failed to converge, increase the number of iterations.
          warnings.warn(
        Best parameters: {'C': 0.1, 'penalty': 'l2'}
        Best score: 0.5732759779610809
In [38]: y pred = lr clf.predict(X train)
         lr clf metrics, lr clf cm = get metrics("Logistic Regression", y pred, y train)
In [39]: fig, ax = plt.subplots()
         ax=sns.heatmap(lr clf cm,annot=True, ax=ax, fmt='.4g')
         ax.xaxis.set ticklabels(['No Deposit', 'Deposit'])
         ax.yaxis.set ticklabels(['No Deposit', 'Deposit'])
         ax.set title('Logistic Regression-Train',fontsize=18)
         print(lr clf metrics.to string(index=False))
                      model precision recall f1 score accuracy ROC AUC
        Logistic Regression 0.428363 0.868265 0.573692 0.854628 0.860581
```


Support Vector Machine

```
In [40]: svm = SVC(kernel='rbf', class_weight='balanced', random_state=42)

param_grid = {
    'C': [1, 10, 100],
    'gamma': ['scale', 0.1, 0.01, 0.001],
}

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
grid_search = GridSearchCV(svm, param_grid, cv=cv, scoring='f1', refit=True, verbose=1, n_jobs=-1)
grid_search.fit(X_train, y_train)
svm_clf = grid_search.best_estimator_
```

```
print("Best parameters:", grid_search.best_params_)
print("Best score:", grid_search.best_score_)

Fitting 5 folds for each of 12 candidates, totalling 60 fits
Best parameters: {'C': 1, 'gamma': 0.001}
Best score: 0.573934420125766

In [41]: y_pred = svm_clf.predict(X_train)
svm_clf_metrics, svm_clf_cm = get_metrics("SVM Classifier", y_pred, y_train)

In [42]: fig, ax = plt.subplots()
ax=sns.heatmap(svm_clf_cm,annot=True, ax=ax, fmt='.4g')
ax.xaxis.set_ticklabels(['No Deposit','Deposit'])
ax.yaxis.set_ticklabels(['No Deposit','Deposit'])
ax.set_title('SVM-Train', fontsize=18)
print(svm_clf_metrics.to_string(index=False))

model precision recall f1 score accuracy ROC AUC
SVM Classifier 0.433077 0.924838 0.589913 0.8855144 0.885567
```


Decision Tree

```
In [43]: dtree = DecisionTreeClassifier(class_weight='balanced', criterion='gini', random_state=42)
    param_grid = {
        'max_depth': [5, 10, 20],
        'min_samples_split': [5, 10, 20],
        'min_samples_leaf': [2, 5, 10]
}

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
    grid_search = GridSearchCV(dtree, param_grid, cv=cv, scoring='f1', refit=True, verbose=1, n_jobs=-1)
    grid_search.fit(X_train, y_train)
    dt_clf = grid_search.best_estimator_
```

```
print("Best parameters:", grid_search.best_params_)
print("Best score:", grid_search.best_score_)

Fitting 5 folds for each of 27 candidates, totalling 135 fits
Best parameters: {'max_depth': 10, 'min_samples_leaf': 2, 'min_samples_split': 5}
Best score: 0.5801383257294856

In [44]: y_pred = dt_clf.predict(X_train)
dt_clf_metrics, dt_clf_cm = get_metrics("Decision Tree Classifier", y_pred, y_train)

In [45]: fig, ax = plt.subplots()
ax=sns.heatmap(dt_clf_cm,annot=True, ax=ax, fmt='.4g')
ax.xaxis.set_ticklabels(['No Deposit','Deposit'])
ax.yaxis.set_ticklabels(['No Deposit','Deposit'])
ax.set_title('Decision Tree-Train',fontsize=18)
print(dt_clf_metrics.to_string(index=False))

model precision recall f1 score accuracy ROC AUC
Decision Tree Classifier 0.472839 0.975485 0.636939 0.874719 0.918706
```


Random Forest

```
cv = StratifiedKFold(n splits=5, shuffle=True, random state=42)
         grid search = GridSearchCV(rf, param grid, cv=cv, scoring='f1', refit=True, verbose=1, n jobs=-1)
         grid search.fit(X train, y train)
         rf clf = grid search.best estimator
         print("Best parameters:", grid search.best params )
         print("Best score:", grid search.best score )
        Fitting 5 folds for each of 9 candidates, totalling 45 fits
        Best parameters: {'max depth': 10, 'n estimators': 50}
        Best score: 0.6131917036193764
In [47]: y pred = rf clf.predict(X train)
         rf clf metrics, rf clf cm = get metrics("Random Forest Classifier", y pred, y train)
In [48]: fig, ax = plt.subplots()
         ax=sns.heatmap(rf clf cm,annot=True, ax=ax, fmt='.4g')
         ax.xaxis.set ticklabels(['No Deposit', 'Deposit'])
         ax.yaxis.set ticklabels(['No Deposit','Deposit'])
         ax.set title('Random Forest-Train',fontsize=18)
         print(rf clf metrics.to string(index=False))
         print(f"Out Of Bag Score (OOB): {rf clf.oob score }")
                           model precision recall f1 score accuracy ROC AUC
        Random Forest Classifier 0.494489 0.954741 0.65153 0.884947 0.915414
        Out Of Bag Score (00B): 0.8711684370257967
```


XGBoost

```
print("Best parameters:", grid_search.best_params_)
print("Best score:", grid_search.best_score_)

Fitting 5 folds for each of 36 candidates, totalling 180 fits
Best parameters: {'learning_rate': 0.05, 'max_depth': 10, 'n_estimators': 200}
Best score: 0.6302911493186312

In [64]: y_pred = xgb_clf.predict(X_train)
    xgb_clf_metrics, xgb_clf_cm = get_metrics("XGBoost", y_pred, y_train)

In [65]: fig, ax = plt.subplots()
    ax=sns.heatmap(xgb_clf_cm,annot=True, ax=ax, fmt='.4g')
    ax.xaxis.set_ticklabels(['No Deposit','Deposit'])
    ax.yaxis.set_ticklabels(['No Deposit','Deposit'])
    ax.set_title('XGBoost-Train',fontsize=18)

    print(xgb_clf_metrics.to_string(index=False))

    model precision recall f1 score accuracy ROC AUC
    XGBoost    0.652136    0.999461    0.789278    0.939879    0.965888
```


Results on Test set

```
In [66]: y_pred = class_count_clf.predict(X_test)
    class_count_clf_metrics, class_count_clf_cm = get_metrics("Class Count Classifier", y_pred, y_test)

y_pred = lr_clf.predict(X_test)
    lr_clf_metrics, lr_clf_cm = get_metrics("Logistic Regression", y_pred, y_test)

y_pred = svm_clf.predict(X_test)
    svm_clf_metrics, svm_clf_cm = get_metrics("SVM Classifier", y_pred, y_test)

y_pred = dt_clf.predict(X_test)
```

```
dt clf metrics, dt clf cm = get metrics("Decision Tree Classifier", y pred, y test)
         y pred = rf clf.predict(X test)
         rf clf metrics, rf clf cm = get metrics("Random Forest Classifier", y pred, y test)
         y pred = xgb clf.predict(X test)
         xqb clf metrics, xqb clf cm = qet metrics("XGBoost", y pred, y test)
In [68]: results = pd.concat([class_count_clf_metrics,
                               lr clf metrics,
                               svm clf metrics,
                               dt clf metrics,
                               rf clf metrics,
                               xgb clf metrics],axis=0)
         results.reset index(drop=True)
         # print(results.to string(index=False))
Out[68]:
                          model precision
                                             recall f1 score accuracy ROC AUC
         0
               Class Count Classifier 0.110521 0.112069 0.111289 0.798373 0.498784
         1
                 Logistic Regression 0.433194 0.894397 0.583685 0.856276 0.872916
         2
                     SVM Classifier 0.431303 0.923491 0.587993 0.854212 0.884454
              Decision Tree Classifier 0.435560 0.892241 0.585366 0.857611 0.872728
         4 Random Forest Classifier 0.474444 0.920259 0.626100 0.876184 0.895423
         5
                         XGBoost 0.517173 0.843750 0.641278 0.893664 0.871875
In [61]: fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(14,8))
         ax = ax.ravel()
         ax[0]=sns.heatmap(class count clf cm,annot=True, ax=ax[0], fmt='.4g')
         ax[0].xaxis.set ticklabels(['No Deposit', 'Deposit'])
         ax[0].yaxis.set ticklabels(['No Deposit', 'Deposit'])
         ax[0].set title('Class Count Classifier',fontsize=18)
         ax[1]=sns.heatmap(lr clf cm,annot=True, ax=ax[1], fmt='.4g')
         ax[1].xaxis.set ticklabels(['No Deposit', 'Deposit'])
```

```
ax[1].yaxis.set ticklabels(['No Deposit', 'Deposit'])
ax[1].set title('Logistic Regression', fontsize=18)
ax[2]=sns.heatmap(svm clf cm,annot=True, ax=ax[2], fmt='.4g')
ax[2].xaxis.set ticklabels(['No Deposit', 'Deposit'])
ax[2].yaxis.set ticklabels(['No Deposit','Deposit'])
ax[2].set title('SVM',fontsize=18)
ax[3]=sns.heatmap(dt clf cm,annot=True, ax=ax[3], fmt='.4g')
ax[3].xaxis.set ticklabels(['No Deposit', 'Deposit'])
ax[3].yaxis.set_ticklabels(['No Deposit','Deposit'])
ax[3].set title('Decision Tree', fontsize=18)
ax[4]=sns.heatmap(rf clf cm,annot=True, ax=ax[4], fmt='.4g')
ax[4].xaxis.set ticklabels(['No Deposit','Deposit'])
ax[4].yaxis.set ticklabels(['No Deposit','Deposit'])
ax[4].set title('Random Forest', fontsize=18)
ax[5]=sns.heatmap(xgb clf cm,annot=True, ax=ax[5], fmt='.4g')
ax[5].xaxis.set ticklabels(['No Deposit', 'Deposit'])
ax[5].yaxis.set ticklabels(['No Deposit','Deposit'])
ax[5].set title('XGBoost',fontsize=18)
fig.suptitle("Confusion Matrices on Test Set", fontsize=24)
plt.tight layout()
```


Feature Importance

Deposit

No Deposit

Deposit

No Deposit

Deposit

No Deposit

```
'Features': feature_names,
    'Importance': xgb_clf.feature_importances_
})

importance_rf = importance_rf.sort_values(by='Importance', ascending=False)
importance_xgb = importance_xgb.sort_values(by='Importance', ascending=False)

fig, ax = plt.subplots(ncols=2, figsize=(14,6))
ax[0]=sns.barplot(x='Importance', y='Features', data=importance_rf, ax=ax[0])
ax[0].set_title('Random Forest')

ax[1]=sns.barplot(x='Importance', y='Features', data=importance_xgb, ax=ax[1])
ax[1].set_title('XGBoost')

plt.suptitle('Feature Importance')
plt.tight_layout()
plt.show()
```

