Nuclear Fuel Performance

NE 533: Spring 2024

Last Time

- All reactors have basic requirements they must meet
- Typically, the "fuel system" is thought to consist of the fuel itself, the gap, the cladding, and the coolant
- Mining -> Processing -> Conversion -> Enrichment -> Powder -> Compaction/Sintering -> Rod/Assembly
- U₃O₈ must be converted to UF₆ for enrichment, which is then converted to UO₂ powder for pellet manufacture
- UO₂ microstructure from fabrication strongly impacts fuel performance
- Heat generation rate: $Q = E_f \times N_f \times \sigma_f \times \phi$

HEAT TRANSPORT

Heat transport route

- Heat is produced in the fuel, transports through the cladding and gap, and into the coolant
- Important quantities include
 - Volumetric heat generation rate Q (W/cm³)
 - Fuel Centerline temperature T₀
 - Surface temperature of the fuel T_S
 - Inner cladding temperature T_{CI}
 - Outer cladding temperature T_{CO}
 - Coolant temperature T_{cool}
 - Fuel pellet radius r_F
 - Gap thickness t_G
 - Cladding thickness t_c
 - Coolant heat transfer h_c

Heat can be transported in three ways

- Convection
 - Heat transfer through mass movement of liquid or gas
- Radiation
 - Heat transfer by means of photons in electromagnetic waves
- Conduction
 - Heat transfer by molecular, phonon, and electronic vibration/collisions

Heat transfer mode in fuel systems?

- How is heat transported through the fuel?
 Conduction
- How is the heat transported through the gap?
 Mostly conduction, some convection
- How is heat transported through the cladding?
 Conduction
- How is heat transported to the coolant?
 Convection

Heat conduction equation

- ρ is the density, c_p is the specific heat,
 T is the temperature, t is the time, and
 k is the thermal conductivity, Q is heat
 generation
- It is a partial differential equation in time and space of the temperature, T(x, t), where x is a vector defining the position in space
- What do we need to know to solve this equation?

$$\rho c_p \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + Q$$

- The geometry of our problem
- The initial condition of T
- The boundary conditions of T
- Is each parameter is a function of T
- If they aren't a function of T, do they vary in space and time for some other reason?

What is our geometry for the problem?

- Reactor geometry depends on reactor type
- The ideal geometry of each fuel rod is axisymmetric, but in reality, it is 3D
- Fuel pellet defects cause 3D geometry
- The stacked pellets may not be stacked perfectly, causing their center axis to not be aligned, also causing 3D geometry

The initial condition of T

- The initial condition of T is set by the state of the reactor directly before startup (or before time of interest)
- The initial temperature is uniform throughout the fuel, equal to the initial coolant temperature
- $T(x, 0) = T_{cool}(0)$

Boundary conditions?

- The boundary conditions on T is set by the coolant flow
- The temperature of the coolant T_{cool} is complicated
 - It varies along the length of the fuel rod (axially)
 - It various around the circumference of the fuel rod

Fuel properties

- All properties vary as a function of composition, thus as a function of burnup/time
- Density varies as a function of T (thermal expansion)
- Thermal conductivity also varies with temperature

$$k_0 = \frac{100}{7.5408_{17.629t} + 3.6142t^2} + \frac{6400}{t^{5/2}} exp\left(\frac{-16.35}{t}\right)$$

The heat capacity is a function of temperature

$$C_{
m P} = rac{C_1 heta^2 {
m e}^{ heta/T}}{T^2 {
m (e}^{ heta/T} - 1)^2} + 2C_2 T + rac{C_3 E_{
m a} {
m e}^{-E_{
m a}/T}}{T^2}$$

$$\theta = 548.68,$$
 $C_2 = 2.285 \times 10^{-3}$
 $C_3 = 2.360 \times 10^7$
 $E_a = 18531.7$

The heat generation rate is a function of the thermal neutron flux, which varies in time and space

ANALYTICAL SOLVE OF HEAT CONDUCTION

The most accurate solution is numerical, in 3D, requires modeling the entire core, and is multi-physics

- Solution is 3D and changes in time
- All the properties are functions of temperature
- The boundary conditions comes from information about the coolant flow
- The heat generation rate comes from information about the neutronics in the reactor
- No analytical solution is possible

In order to solve, make assumptions!

- #1: steady state -> $\nabla \cdot (k\nabla T) + Q = 0$
- #2: cylindrical, axisymmetric ->

$$\frac{1}{r}\frac{\partial}{\partial r}\left(rk(T)\frac{\partial T}{\partial r}\right) + \frac{\partial}{\partial z}\left(k(T)\frac{\partial T}{\partial z}\right) + Q(r,z) = 0$$

- #3: constant in z $\frac{1}{r} \frac{\partial}{\partial r} \left(rk(T) \frac{\partial T}{\partial r} \right) + Q(r) = 0$
- #4: constant thermal conductivity, volume heat

$$\frac{1}{r}\frac{\partial}{\partial r}\left(rk\frac{\partial T}{\partial r}\right) + Q = 0$$

$$\rho c_p \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + Q$$

Directly Solving for Temperature Profile

• Boundary conditions: $r_0 = 0$, $r_1=R$, T'(0) = 0, $T(R) = T_s$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(rk\frac{\partial T}{\partial r}\right) + Q = 0$$

$$\frac{\partial}{\partial r} \left(rk \frac{\partial T}{\partial r} \right) = -Qr$$

$$rk \frac{\partial T}{\partial r} = -\frac{Qr^2}{2} + C_1 \qquad 0 = -\frac{Q0^2}{2} + C_1$$

$$\frac{\partial T}{\partial r} = -\frac{Qr}{2k}$$

$$T(r) = -\frac{Qr^2}{4k} + C_2 \qquad C_2 = \frac{QR^2}{4k} + T_s$$

$$T(r) = -\frac{Qr^2}{4k} + \frac{QR^2}{4k} + T_s \qquad T(r) = \frac{Q(R^2 - r^2)}{4k} + T_s$$

$$T_0 - T_s = \frac{QR^2}{4k}$$

Linear Heat Rate

- $LHR = \pi R^2 Q_{av}$
 - Where Q_{av} is the radially averaged heat generation rate in W/cm3
 - LHR is in units of power per unit length: W/cm
- Substitute LHR into previous equation on T₀-T_s

$$T_0 - T_s = \frac{QR^2}{4k}$$
 $T_0 - T_s = \frac{R^2}{4k} \frac{LHR}{\pi R^2}$ $T_0 - T_s = \frac{LHR}{4\pi k}$

Alternate Geometries

 Similar derivation with appropriate boundary conditions can be applied to plate and sphere geometries

Plate

$$T(x) - T_s = \frac{LHR}{2\pi k} \left(1 - \frac{x^2}{t_f^2} \right)$$

x is the distance from the midplane of the fuel and tf is the plate fuel thickness

Sphere

$$T(r) - T_s = \frac{LHR}{6\pi k} \left(1 - \frac{r^2}{R_f^2} \right)$$

r is the distance from the sphere center and Rf is the radius of the sphere

Heat transport through the gap

- Heat flux is a conserved quantity, described by Fourier's first and second laws:
- If there are no sources of heat, as if the case in the cladding and gap, the temperature field is constant with time and heat flux is unidirectional
- For boundary conditions T1 and T2 and a thickness d
- This assumes a spatially constant thermal conductivity, consistent with a "thin slab"

$$\vec{q} = -\lambda \nabla T$$
,
$$\rho \, c \, \frac{\partial T}{\partial t} = \nabla (\lambda \nabla T) + q \, *, \qquad \lambda = \text{thermal cond.}$$

$$q = -\lambda \frac{\mathrm{d}T(x)}{\mathrm{d}x},$$

$$q = \frac{T_1 - T_2}{\frac{d}{\lambda}} \qquad T(x) = T_1 - \frac{T_1 - T_2}{d} x$$

Heat transport through the gap

 The heat flux gives the rate, per unit area, at which heat flows in a given direction

$$q = -k \frac{T_2 - T_1}{L} \qquad q_{gap} = -k_{gap} \frac{T_{IC} - T_{fuel}}{R_{IC} - R_{fuel}}$$

- The heat flux from the fuel is the LHR/pellet circumference $q = \frac{LHR}{2\pi R_f}$
- Heat flux from the fuel is the same as heat flux through the the gap – can make this assumption because R_f >> t_g
- Gap thickness = R_{IC}-R_f = t_g
- Cladding thickness = R_{OC}-R_{IC} = t_c

Heat transport through the gap

Set heat flux fuel/gap equal

$$\frac{LHR}{2\pi R_f} = -k_{gap} \frac{T_{IC} - T_{fuel}}{t_{gap}} \qquad \frac{LHR}{2\pi R_f} = k_{gap} \frac{T_{fuel} - T_{IC}}{t_{gap}}$$

Gap conductance is defined as:

$$h_g = \frac{k_{gap}}{t_g}$$

$$h_g = \frac{k_{gap}}{t_a} \qquad T_{fuel} - T_{IC} = \frac{LHR}{2\pi R_f h_g}$$

- Gap conductance depends on the gas filling the gap
 - For pure He, $k_{qap} = 16x10^{-6} * T^{0.79}$ (W/cm-K)
 - For pure Xe, $k_{qap} = 0.7x10^{-6} * T^{0.79}$ (W/cm-K)
 - Simple mixing rule: k_{gap} = k_{He}(1-y) + k_{Xe}y
 Where y is the mole/atom fraction of Xe

Heat transport through the cladding

Heat flux through the cladding

$$q = -k \frac{T_2 - T_1}{L} \qquad q_{clad} = -k_{clad} \frac{T_{CO} - T_{CI}}{R_{CO} - R_{CI}}$$

$$q = \frac{LHR}{2\pi R_f} \qquad q_{clad} = k_{clad} \, \frac{T_{CI} - T_{CO}}{t_{clad}}$$

Set equal your heat fluxes

$$\frac{LHR}{2\pi R_f} = k_{clad} \frac{T_{CI} - T_{CO}}{t_{clad}} \qquad T_{CI} - T_{CO} = \frac{LHR}{2\pi R_f} \frac{t_{clad}}{k_{clad}}$$

Heat transfer to the coolant

Heat is transported from the cladding to the coolant via convection

$$T_{CO} - T_{cool} = \frac{LHR}{2\pi R_{E} h_{cool}}$$

- T_{cool} is the coolant temperature, h_{cool} is the convective heat transfer coefficient between cladding wall and coolant
- Adding gap + cladding + coolant: $\frac{1}{h} = \frac{t_{gap}}{k_{gap}} + \frac{t_{clad}}{k_{clad}} + \frac{1}{h_{cool}}$

Summary of analytical solutions

•
$$T_0 - T_{fuel} = \frac{Q}{4k} R_{fuel}^2$$
 $T_0 - T_{fuel} = \frac{LHR}{4\pi k}$

•
$$T_{fuel} - T_{CI} = \frac{Q}{2h_{gap}} R_{fuel}$$
 $T_{fuel} - T_{CI} = \frac{LHR}{2\pi R_{fuel} h_{gap}}$ $h_{gap} = \frac{k_{gap}}{t_{gap}}$

•
$$T_{CI} - T_{CO} = \frac{Qt_{clad}}{2k_{clad}}R_{fuel}$$
 $T_{CI} - T_{CO} = \frac{LHRt_{clad}}{2\pi R_{fuel}k_{clad}}$

•
$$T_{CO} - T_{cool} = \frac{Q}{2h_{cool}} R_{fuel} T_{CO} - T_{cool} = \frac{LHR}{2\pi R_{fuel} h_{cool}}$$

Solving for the temperature profile

- You solve for the transition temperatures
- Start from the coolant and work inward
- Have a linear profile everywhere except in the fuel
- Finally, solve for the temperature profile throughout the fuel

Fuel and Cladding Thermal Properties

Material	Density (g/cm ³)	Heat Capacity	Thermal	Thermal
		Cp (J/g-K)	Conductivity k	Expansion
			(W/cm-K)	Coefficient a (K ⁻¹)
UO ₂	10.98	0.33	0.03	1.2 x 10 ⁻⁵
Zr	6.5	0.35	0.17	1.0 x 10 ⁻⁵
Stainless steel	8.0	0.5	0.17	9.6 x 10 ⁻⁶

Example Problem

- $T_{cool} = 580 \text{ K}$; LHR = 200 W/cm; $h_{cool} = 2.65 \text{ W/cm}^2\text{-K}$
- $R_{fuel} = 0.5 \text{ cm}$; $t_{clad} = 0.06 \text{ cm}$; $t_{gap} = 0.003 \text{ cm}$; $k_f = 0.03 \text{ W/cm-K}$
- Work from outside->in, calculate cladding temperature

$$T_{co} = (200)/(2*pi*0.5*2.65) + 580$$

$$T_{co} - T_{cool} = \frac{LHR}{2\pi R_{fuel} h_{cool}}$$

 $T_{co} = 604 \text{ K}$

Calculate inner cladding temp

$$T_{ci} = (200*0.06)/(2*pi*0.5*0.17) + 604$$
 $T_{ci} - T_{clad} = \frac{LHRt_{clad}}{2\pi R_{fuel}k_{clad}}$ $T_{ci} = 626 \text{ K}$

- Calculate fuel surface temperature
- Calculate gap conductance
 - gap with He; k_{gap} =16x10⁻⁶ * T^{0.79} (W/cm-k); assume T_{ci} is appropriate for entire gap; k_{gap} = 0.0026 W/cm-K; t_{gap} = 0.003 cm

$$- h_{gap} = 0.87 \text{ W/cm}^2\text{-K}$$

$$T_{\text{fuel}} = 200/(2 \text{*pi*}0.5 \text{*}0.87) + 626$$

$$T_{\text{fuel}} = 699 \text{ K}$$

$$T_{fuel} - T_{ci} = \frac{LHR}{2\pi R_{fuel} h_{gap}}$$

Calculate centerline temperature

$$T_0 = 200/(4*pi*0.03) + 699$$
 $T_0 - T_{fuel} = \frac{LHR}{4\pi k}$
 $T_0 = 1230 \text{ K}$

Full temperature profile
$$T(r) = \frac{Q(R^2 - r^2)}{4k} + T_s$$

$$T(r) = \frac{LHR(R_f^2 - r^2)}{4\pi k R_f} + T_s$$
 $T(r) = \frac{LHR}{4\pi k} \left(1 - \frac{r^2}{R_f^2}\right) + T_s$

- Parabolic temperature profile in fuel
- Linear in gap and clad
- Steep temperature drop over gap, very low thermal conductivity
- Smaller temperature drop over cladding

Temperature profile modification

- Instead of pure He gap, 30% of gas is Xe; how is T₀ affected?
- First, how is gap conductance affected?
- Gap conductance depends on the gas filling the gap
 - For pure He, $k_{qap}=16x10^{-6} * T^{0.79}$ (W/cm-K)
 - For pure Xe, $k_{gap}=0.7x10^{-6} * T^{0.79}$ (W/cm-K)
 - Simple mixing rule: $k_{qap} = k_{He}(1-y) + k_{Xe}y$
 - T_{CI} , T_{CO} , and T_{cool} is unchanged from previous example, also T_0 - T_{fuel} is unchanged
 - $-k_{gap} = ((16x10^{-6})*(626)^{0.79})(1-0.3) + ((0.7x10^{-6})*(626)^{0.79})(0.3) = 1.85E-3$ W/cm-K

Temperature profile modification

- $k_{qap} = 1.85E-3 \text{ W/cm-K}$
- $h_{gap} = 1.85E-3 / 0.003 = 0.62 \text{ W/cm}^2-\text{K}$
- $T_{fuel} = 200/(2*pi*0.5*0.62) + 626 = 729 K$
- $T_0 T_{fuel} = 530.5 \text{ K}$ (unchanged from before)
- $T_0 = 729 + 530.5 = 1259.5 \text{ K}$
- Increase in T₀ of 30 K
- Caveat: linear mixing of gases is not the best approach

Neutron flux varies axially, so does LHR

Taking a fuel rod with length, L = 2*Z₀

$$LHR\left(\frac{z}{Z_o}\right) = LHR^o \cos\left[\frac{\pi}{2\gamma}\left(\frac{z}{Z_o} - 1\right)\right] = LHR^o F\left(\frac{z}{Z_o}\right)$$

- LHR⁰ is the midpoint linear heat rate, i.e. @ z=Z₀
- $\gamma = \frac{Z_{ex} + Z_0}{Z_0}$, where Z_{ex} is the extrapolation distance
- A typical value is $\gamma = 1.3$; can reduce $\pi/2\gamma$ to 1.2

Coolant temperature varies with Z

- Each rod has a given flow area
- Mass flow rate: m
- Coolant specific heat: C_{PW}

$$\dot{m}C_{PW} \frac{dT_{cool}}{dz} = LHR \left(\frac{z}{Z_o}\right)$$

$$\dot{m}C_{PW}(T_{cool} - T_{cool}^{in}) = Z_o \int_{0}^{z/Z_o} LHR\left(\frac{z}{Z_o}\right) d\left(\frac{z}{Z_o}\right)$$

$$\dot{m}C_{PW}(T_{cool} - T_{cool}^{in}) = Z_o \times LHR^o \int_0^{z/Z_o} F\left(\frac{z}{Z_o}\right) d\left(\frac{z}{Z_o}\right)$$

$$T_{cool} - T_{cool}^{in} = \frac{1}{1.2} \frac{Z_o \times LHR^o}{\dot{m}C_{PW}} \left\{ \sin(1.2) + \sin\left[1.2\left(\frac{z}{Z_o} - 1\right)\right] \right\}$$

Calculate LHR and T_{cool} with axial variation

• mdot = 0.25 kg/s-rod; Z_0 = 150 cm; LHR⁰ = 150 W/cm; C_{PW} = 4200 J/kg-K; T_{in} = 570 K

$$T_{cool} - T_{cool}^{in} = \frac{1}{1.2} \frac{Z_o \times LHR^o}{\dot{m}C_{PW}} \left\{ \sin(1.2) + \sin\left[1.2\left(\frac{z}{Z_o} - 1\right)\right] \right\}$$

Summary

- Developed analytical expressions for the temperature profile within a fuel rod
- Required to make four assumptions:
 - Steady-state solution
 - Temperature is axisymmetric
 - T is constant in Z
 - Thermal conductivity is independent of temperature
- Temperature profile in the fuel is parabolic, assume linear profiles in gap, clad and coolant
- Can incorporate axial variation in T_{cool} with axial variation in LHR