Affine Deodhar Diagrams and Rational Dyck Paths

UCLA Combinatorics Forum

Thomas C. Martinez

UC Los Angeles

A permutation $\overline{f} \in S_n$ is a bijection $\overline{f} : [n] \to [n]$, where $[n] = \{1, 2, ..., n\}$.

Let $k(\bar{f}) = \#\{i \, | \, \bar{f}(i) < i\}.$

A permutation $\overline{f} \in S_n$ is a bijection $\overline{f} : [n] \to [n]$, where $[n] = \{1, 2, ..., n\}$.

Let $k(\bar{f}) = \#\{i \, | \, \bar{f}(i) < i\}.$

A permutation $\overline{f} \in S_n$ is a bijection $\overline{f} : [n] \to [n]$, where $[n] = \{1, 2, ..., n\}$.

Let $k(\bar{f}) = \#\{i \, | \, \bar{f}(i) < i\}.$

A permutation $\overline{f} \in S_n$ is a bijection $\overline{f} : [n] \to [n]$, where $[n] = \{1, 2, ..., n\}$.

Let $k(\bar{f}) = \#\{i \, | \, \bar{f}(i) < i\}.$

A permutation $\overline{f} \in S_n$ is a bijection $\overline{f} : [n] \to [n]$, where $[n] = \{1, 2, \dots, n\}$.

Let $k(\bar{f}) = \#\{i \, | \, \bar{f}(i) < i\}.$

A permutation $\overline{f} \in S_n$ is a bijection $\overline{f} : [n] \to [n]$, where $[n] = \{1, 2, ..., n\}$.

Let
$$k(\overline{f}) = \#\{i \mid \overline{f}(i) < i\}.$$

But I want the transposition of 1 and n to be simple..

Bounded Affine Permutations

For $\overline{f} \in S_n$, we can associate a **bounded affine permutation** $f: \mathbb{Z} \to \mathbb{Z}$ to \overline{f} such that

- 1. $f(i) \equiv \overline{f}(i) \pmod{n}$ for $1 \le i \le n$,
- 2. $\sum_{i=1}^{n} f(i) i = kn$,
- 3. $i \le f(i) < i + n$ for all $i \in \mathbb{Z}$,
- 4. f(i+n) = f(i) + n for all $i \in \mathbb{Z}$.

Bounded Affine Permutations

For $\overline{f} \in S_n$, we can associate a **bounded affine permutation** $f: \mathbb{Z} \to \mathbb{Z}$ to \overline{f} such that

- 1. $f(i) \equiv \overline{f}(i) \pmod{n}$ for $1 \le i \le n$,
- 2. $\sum_{i=1}^{n} f(i) i = kn$,
- 3. $i \le f(i) < i + n$ for all $i \in \mathbb{Z}$,
- 4. f(i+n) = f(i) + n for all $i \in \mathbb{Z}$.

Let $B_{k,n}$ denote the set of (k,n)-bounded affine permutations.

Inversion multiset $\Gamma(f)$

Resolving crossings.

Inversion multiset $\Gamma(f)$

Resolving crossings.

Inversion Multiset

The multiset $\Gamma(f)$ contains a point $\gamma(f_1^{(i,j)}) = (k, n-k)$ for each inversion (i,j), i < j, where f_1 is the cycle with i after resolving.

Properties of $\Gamma(f)$

Repetition-Free

When the multiset $\Gamma(f)$ is a set, we call f repetition-free. When $\Gamma(f)$ contains every lattice points of its convex hull, we call the set $\Gamma(f)$ convex.

Properties of $\Gamma(f)$

Repetition-Free

When the multiset $\Gamma(f)$ is a set, we call f repetition-free. When $\Gamma(f)$ contains every lattice points of its convex hull, we call the set $\Gamma(f)$ convex.

Theorem (Galashin-Lam, '21)

The set $\Gamma(f)$ is centrally symmetric and convex. For any centrally symmetric and convex region Γ , there exists a repetition-free f such that $\Gamma(f) = \Gamma$.

Properties of $\Gamma(f)$

Repetition-Free

When the multiset $\Gamma(f)$ is a set, we call f repetition-free. When $\Gamma(f)$ contains every lattice points of its convex hull, we call the set $\Gamma(f)$ convex.

Theorem (Galashin-Lam, '21)

The set $\Gamma(f)$ is centrally symmetric and convex. For any centrally symmetric and convex region Γ , there exists a repetition-free f such that $\Gamma(f) = \Gamma$.

Some Generalized Catalan Number Define $C_f := \# \operatorname{Dyck}(\Gamma(f))$.

For
$$f_{k,n}(i) = i + k$$
, $\Gamma(f) = \emptyset$, so $C_{f_{k,n}} = \# \operatorname{Dyck}_{k,n-k} = C_{k,n-k}$.

Definitions

Definition

For $w \in S_n$, we say w is k-Grassmannian if $w(i) > w(i+1) \Leftrightarrow i = k$.

Example: w = (2, 4, 5, 8, 1, 3, 6, 7) is 4-Grassmannian.

Definitions

Definition

For $w \in S_n$, we say w is k-Grassmannian if $w(i) > w(i+1) \Leftrightarrow i = k$.

Example: w = (2, 4, 5, 8, 1, 3, 6, 7) is 4-Grassmannian.

Proposition

We have a bijection

 $\{w \in S_n \mid w \mid k - Grassmannian\} \leftrightarrow \{\lambda \subseteq k \times (n-k) \text{ rectangle}\}\$

Definitions

Definition

For $w \in S_n$, we say w is k-Grassmannian if $w(i) > w(i+1) \Leftrightarrow i = k$.

Example: w = (2, 4, 5, 8, 1, 3, 6, 7) is 4-Grassmannian.

Proposition

We have a bijection

$$\{w \in S_n \mid w \mid k - Grassmannian\} \leftrightarrow \{\lambda \subseteq k \times (n-k) \text{ rectangle}\}\$$

Theorem (Knutson-Lam-Speyer, '13)

For bounded affine permutations f, we have a bijection

$$\{f \mid k(f) = k, n(f) = n\}$$

$$\updownarrow$$

$$\{(v, w) \in S_n \times S_n \mid w \text{ is } k - \text{Grassmannian and } v \leq w\}$$

Deograms

Deograms

A (maximal) f-Deodhar diagram (Deogram) for f, is a filling of a Young tableau of $\lambda(w)$ with crossings, H, and elbows, S, such that

- 1. The resulting strand permutation is v.
- 2. **Distinguished.** No elbows after an odd number of crossings (from top-left).
- 3. **Maximal.** Contains exactly n c(f) many elbows, where c(f) = #cycles of f.

Grassmannian $Gr(k, n; \mathbb{R}) := \{V \subseteq \mathbb{R}^n \mid dim(V) = k\}.$

Grassmannian

$$Gr(k, n; \mathbb{R}) := \{V \subseteq \mathbb{R}^n \mid dim(V) = k\}.$$

 $Gr(k, n; \mathbb{R}) := \{k \times n \text{ matrices of rank } k\}/(\text{row operations}).$

Grassmannian

$$Gr(k, n; \mathbb{R}) := \{V \subseteq \mathbb{R}^n \mid dim(V) = k\}.$$

 $Gr(k, n; \mathbb{R}) := \{k \times n \text{ matrices of rank } k\}/(\text{row operations}).$

Example

RowSpan
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \in Gr(2,3)$$

Grassmannian

$$Gr(k, n; \mathbb{R}) := \{V \subseteq \mathbb{R}^n \mid dim(V) = k\}.$$

 $Gr(k, n; \mathbb{R}) := \{k \times n \text{ matrices of rank } k\}/(\text{row operations}).$

Example

RowSpan
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \in Gr(2,3)$$

Plücker coordinates: for $I \subseteq [n]$ of size k, define

 $\Delta_I := k \times k$ minor with column set I.

Note: Δ_l is defined up to rescaling.

Grassmannian

$$Gr(k, n; \mathbb{R}) := \{V \subseteq \mathbb{R}^n \mid dim(V) = k\}.$$

 $Gr(k, n; \mathbb{R}) := \{k \times n \text{ matrices of rank } k\}/(\text{row operations}).$

Example

RowSpan
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \in Gr(2,3)$$
 $\Delta_{12} = 2$, $\Delta_{13} = 1$, $\Delta_{24} = 3$

Plücker coordinates: for $I \subseteq [n]$ of size k, define

 $\Delta_I := k \times k$ minor with column set I.

Note: Δ_l is defined up to rescaling.

Grassmannian

$$Gr(k, n; \mathbb{R}) := \{ V \subseteq \mathbb{R}^n \mid dim(V) = k \}.$$

 $Gr(k, n; \mathbb{R}) := \{k \times n \text{ matrices of rank } k\}/(\text{row operations}).$

Example

RowSpan
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \in Gr(2,3)$$
 $\Delta_{12} = 2$, $\Delta_{13} = 1$, $\Delta_{24} = 3$

Plücker coordinates: for $I \subseteq [n]$ of size k, define

$$\Delta_I := k \times k$$
 minor with column set I .

Note: Δ_l is defined up to rescaling.

Definition (Postnikov, 2006)

The non-negative Grassmannian is

$$\operatorname{Gr}_{\geq 0}(k,n) := \{ V \in \operatorname{Gr}(k,n;\mathbb{R}) \mid \Delta_{I}(V) \geq 0 \text{ for all } I. \}$$

TNN Grassmannian

Grassmannian

 $Gr(k, n; \mathbb{R}) := \{ V \subseteq \mathbb{R}^n \mid dim(V) = k \}.$

 $Gr(k, n; \mathbb{R}) := \{k \times n \text{ matrices of rank } k\}/(\text{row operations}).$

Example

RowSpan
$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \in Gr_{\geq 0}(2,3)$$
 $\Delta_{12} = 2$, $\Delta_{13} = 1$, $\Delta_{24} = 3$

Plücker coordinates: for $I \subseteq [n]$ of size k, define

 $\Delta_I := k \times k$ minor with column set *I*.

Note: Δ_l is defined up to rescaling.

Definition (Postnikov, 2006)

The non-negative Grassmannian is

$$\operatorname{Gr}_{\geq 0}(k,n) := \{ V \in \operatorname{Gr}(k,n;\mathbb{R}) \mid \Delta_{I}(V) \geq 0 \text{ for all } I. \}$$

g

Positroid Varieties

For any $f \in B_{k,n}$, we define a **positroid variety** $\Pi_f^{\circ} \subseteq Gr_{\geq 0}(k,n)$.

Theorem (Knutson-Lam-Speyer, 2013) We have a stratification

$$\operatorname{Gr}_{\geq 0}(k,n) = \bigsqcup_{f \in \mathbf{B}_{k,n}} \Pi_f^{\circ}.$$

Positroid Varieties

For any $f \in \mathbf{B}_{k,n}$, we define a **positroid variety** $\Pi_f^{\circ} \subseteq \operatorname{Gr}_{\geq 0}(k,n)$.

Theorem (Knutson-Lam-Speyer, 2013)
We have a stratification

$$\operatorname{Gr}_{\geq 0}(k,n) = \bigsqcup_{f \in \mathbf{B}_{k,n}} \Pi_f^{\circ}.$$

Theorem (Deodhar, 1985)

For any field \mathbb{F} , we have a decomposition

$$\Pi_f^{\circ} = \bigsqcup_{D \in \mathsf{Deo}_f} (\mathbb{F}^*)^{\#\mathsf{elbows}(D)} \times \mathbb{F}^{(\#\mathsf{crossings}(D) - \ell(f))/2}.$$

Corollary

$$\#\Pi_f^{\circ}(\mathbb{F}_q) = \sum_{D \in \mathsf{Deo}_f} (q-1)^{\#\mathsf{elbows}(D)} q^{(\#\mathsf{crossings}(D)-\ell(f))/2}.$$

Positroid Varieties

For any $f \in \mathbf{B}_{k,n}$, we define a **positroid variety** $\Pi_f^{\circ} \subseteq \operatorname{Gr}_{\geq 0}(k,n)$.

Theorem (Knutson-Lam-Speyer, 2013)
We have a stratification

$$\operatorname{Gr}_{\geq 0}(k,n) = \bigsqcup_{f \in \mathsf{B}_{k,n}} \Pi_f^{\circ}.$$

Theorem (Deodhar, 1985)

For any field \mathbb{F} , we have a decomposition

$$\Pi_f^{\circ} = \bigsqcup_{D \in \mathsf{Deo}_f} (\mathbb{F}^*)^{\#\mathsf{elbows}(D)} \times \mathbb{F}^{(\#\mathsf{crossings}(D) - \ell(f))/2}.$$

Corollary

$$\#\Pi_f^{\circ}(\mathbb{F}_q) = \sum_{D \in \mathsf{Deo}_f} (q-1)^{\#\mathsf{elbows}(D)} q^{(\#\mathsf{crossings}(D)-\ell(f))/2}.$$

Some Positroid Numbers Define $C_f = \# \operatorname{Deo}_f^{\mathsf{max}}$.

Positroid Catalan Numbers

Theorem (Galashin-Lam, '21) For 0 < k < n with $\gcd(k,n) = 1$ and $f \in \mathbf{B}_{k,n}$ repetition-free, $\# \operatorname{Deo}_f^{\max} = \# \operatorname{Dyck}(\Gamma(f))$.

Positroid Catalan Numbers

Theorem (Galashin-Lam, '21) For 0 < k < n with $\gcd(k,n) = 1$ and $f \in \mathbf{B}_{k,n}$ repetition-free, $\# \operatorname{Deo}_f^{\max} = \# \operatorname{Dyck}(\Gamma(f))$.

Definition

 $C_f = \# \operatorname{Deo}_f^{\mathsf{max}} = \# \operatorname{Dyck}(\Gamma(f))$ are the **Positroid Catalan Numbers**.

We find a bijection!

```
Theorem (Galashin-Lam, '21) For 0 < k < n with \gcd(k,n) = 1 and f \in \mathbf{B}_{k,n} repetition-free, \# \operatorname{Deo}_f^{\max} = \# \operatorname{Dyck}(\Gamma(f)).
```

However, the proof is non-bijective.

We find a bijection!

Theorem (Galashin-Lam, '21) For 0 < k < n with $\gcd(k, n) = 1$ and $f \in B_{k,n}$ repetition-free, $\# \operatorname{Deo}_f^{\max} = \# \operatorname{Dyck}(\Gamma(f))$.

However, the proof is non-bijective.

Theorem (M., '25+) For 0 < k < n with $\gcd(k, n) = 1$ and $f \in \mathbf{B}_{k,n}$ repetition-free, we find a bijection $\mathsf{Deo}_f^{\mathsf{max}} \to \mathsf{Dyck}(\Gamma(f))$.

Dyck Path Recurrence

Dyck Path Recurrence

Let f_1, f_2 the cycles obtained by resolving f at i, i + 1, and $f' = s_i f s_i$.

Goal: Find the same recurrence for Deograms.

Main Tool: Affine Deograms

A (maximal) f-affine Deogram is a periodic filling of the space between a path P with k up-steps and n-k right steps and its vertical translate with:

- 1. Strand permutation equal to $f \in \mathbf{B}_{k,n}$,
- 2. (Distinguished) No elbows after an odd number of crossings,
- 3. (Maximal) Exactly n (# cycles of f) elbows (inside a red region).

We let $AffDeo_{f,P}$ denote the set of f-affine Deograms under P.

Remark

These are similar to Affine Pipe Dreams introduced by Snider in 2010.

We let $AffDeo_{f,P}$ denote the set of f-affine Deograms under P.

Remark

These are similar to Affine Pipe Dreams introduced by Snider in 2010.

For some paths P, we have a bijection $\mathsf{Deo}_f \to \mathsf{AffDeo}_{f,P}$.

Moves on Affine Deograms

We have 3 moves on f-affine Deograms:

- 1. Box Addition/Removal
- 2. Zipper
- 3. Decoupling

Moves on Affine Deograms

We have 3 moves on f-affine Deograms:

- 1. Box Addition/Removal
- 2. Zipper
- 3. Decoupling

Box Addition/Removal

Motto: We change our path at index *i* and move the box up/down

Box Addition/Removal

Motto: We change our path at index i and move the box up/down

Box Addition/Removal

Motto: We change our path at index *i* and move the box up/down

The move B_0 is why we need affine Deograms. It has no simple "lift" to rectangular Deograms.

Moves on Affine Deograms

We have 3 moves on f-affine Deograms:

- 1. Box Addition/Removal
- 2. Zipper
- 3. Decoupling

Yang-Baxter Moves

No bijection...

Yang-Baxter Moves

No bijection...

Bijection if we require Condition 3. (No elbow after an odd number of crossings)

Moves on Affine Deograms

We have 3 moves on f-affine Deograms:

- 1. Box Addition/Removal
- 2. Zipper
- 3. Decoupling

Decoupling

Let $f=f_1f_2\dots f_r$ be a decomposition of $f\in \mathbf{B}_{k,n}$ into cycles. Then,

$$\#\operatorname{AffDeo}_{f,P}^{\max} = \prod_{i=1}^r \#\operatorname{AffDeo}_{f_i,P_i}^{\max}.$$

Decoupling

Let $f=f_1f_2\dots f_r$ be a decomposition of $f\in \mathbf{B}_{k,n}$ into cycles. Then,

$$\#\operatorname{AffDeo}_{f,P}^{\mathsf{max}} = \prod_{i=1}^r \#\operatorname{AffDeo}_{f_i,P_i}^{\mathsf{max}}.$$

We color the wires according to which cycle they are in. We then restrict ourselves to boxes with the same color.

Decoupling

Let $f=f_1f_2\dots f_r$ be a decomposition of $f\in \mathbf{B}_{k,n}$ into cycles. Then,

$$\#\operatorname{AffDeo}_{f,P}^{\mathsf{max}} = \prod_{i=1}^{r} \#\operatorname{AffDeo}_{f_i,P_i}^{\mathsf{max}}.$$

We color the wires according to which cycle they are in. We then restrict ourselves to boxes with the same color.

Dyck Path and (Affine) Deogram Recurrence

Dyck Path and (Affine) Deogram Recurrence

Dyck Path and (Affine) Deogram Recurrence

Possible directions

QuestionCan we make this bijection direct?

Possible directions

Question

Can we make this bijection direct?

So far, yes for:

- 1. Catalan case, i.e., (k, k + 1). (Galashin Lam, '23)
- 2. 2-row and 2-column case. (M., '25+)

Possible directions

Dyck paths carry a lot of statistics.

$$C_{k,n}(q,t) = \sum_{D \in \mathsf{Dyck}_{k,n}} q^{\mathsf{area}(D)} t^{\mathsf{dinv}(D)}.$$

Question

Can we find statistics on Deograms which makes the bijection statistic-preserving? Can we bijectively prove these statistics are symmetric?

Questions?

Geometric Background

For every $f \in \mathbf{B}_{k,n}$, let $C_f = \chi_T(\Pi_f^\circ)$, the toric-equivariant Euler characteristic of the positroid variety associated to f. Then $C_f = \#\operatorname{AffDeo}_{f,P}$, when P is the first element of the Grassmannian necklace for f.

This is also related to

- 1. Kazhdan-Lusztig R-polynomials,
- 2. HOMFLY polynomials,
- 3. Khovanov-Rozansky triply-graded link invariants.