

INTRODUCTION

- Explore tuning parameters of random forest in order to collect data
- Goal is to find the most important tuning parameters of random forest that can best facilitate cross-validation accuracy,
- Two subsets in order to compare the two: one builds a random forest; the other evaluates the algorithm.
- Cardiovascular disease data
- Build a design for the tuning parameters using different techniques and deciding on one for cross-validation.

102 + 03 METHODOLOGY AND RESULTS

design + analysis process and final model + evaluation

Experimental Design

- Fractional factorial design + experimental design using optimal design approach + 7 factors
- 7 total factors → 2^(7-2) design with
 Resolution IV
- No main effects will be aliased
- Fractional factorial design: FrF2 function,32 runs using the 7 factors
- Center points to address large ranges
- Optimal design: optFederov function, same 7 factors, 35 trials, 100 repeats

METHODOLOGY

run	ntree	mtry	replace	nodesize	classwt	cutoff	maxnodes
1	-1	-1	-1	-1	-1	-1	1
2	1	-1	-1	- 1	-1	1	-1
3	-1	1	-1	- 1	-1	1	-1
4	1	1	-1	- 1	-1	-1	1
5	-1	-1	1	-1	-1	1	1
6	1	-1	1	- 1	-1	-1	-1
7	-1	1	1	- 1	- 1	-1	-1
8	1	1	1	- 1	-1	1	1
9	-1	-1	-1	1	-1	-1	-1
10	1	-1	-1	1	-1	1	1
11	-1	1	-1	1	-1	1	1
12	1	1	-1	1	-1	-1	-1
13	-1	-1	1	1	-1	1	-1
14	1	-1	1	1	- 1	-1	1
15	-1	1	1	1	-1	-1	1
16	1	1	1	1	-1	1	-1
17	-1	-1	- 1	-1	1	-1	-1
18	1	-1	-1	- 1	1	1	1
19	-1	1	- 1	- 1	1	1	1
20	1	1	-1	- 1	1	-1	-1
21	-1	-1	1	- 1	1	1	-1
22	1	-1	1	-1	1	-1	1
23	-1	1	1	- 1	1	-1	1
24	1	1	1	- 1	1	1	-1
25	-1	-1	- 1	1	1	-1	1
26	1	-1	-1	1	1	1	-1
27	-1	1	- 1	1	1	1	-1
28	1	1	-1	1	1	-1	1
29	-1	-1	1	1	1	1	1
30	1	-1	1	1	1	-1	-1
31	-1	1	1	1	1	-1	-1
32	1	1	1	1	1	1	1

		4.1	,	, .	7 .		,
run	ntree	mtry		nodesize		cutoff	maxnodes
2	1	-1	-1	-1	-1	-1	-1
4	1	1	-1	-1	-1	-1	-1
8	1	1	1	-1	-1	- 1	-1
9	-1	-1	-1	1	-1	- 1	-1
11	-1	1	-1	1	-1	-1	-1
15	- 1	1	1	1	-1	-1	-1
17	- 1	-1	-1	-1	1	-1	-1
22	1	-1	1	-1	1	-1	-1
30	1	-1	1	1	1	-1	-1
39	- 1	1	1	-1	-1	1	-1
41	-1	-1	-1	1	-1	1	-1
44	1	1	- 1	1	-1	1	-1
49	- 1	-1	- 1	-1	1	1	-1
54	1	- 1	1	-1	1	1	-1
55	-1	1	1	-1	1	1	-1
60	1	1	-1	1	1	1	- 1
62	1	-1	1	1	1	1	-1
63	-1	1	1	1	1	1	-1
69	- 1	- 1	1	-1	-1	-1	1
72	1	1	1	-1	-1	-1	1
77	- 1	- 1	1	1	-1	-1	1
81	- 1	-1	-1	-1	1	-1	1
83	- 1	1	-1	-1	1	-1	1
90	1	-1	- 1	1	1	-1	1
92	1	1	-1	1	1	-1	1
95	- 1	1	1	1	1	-1	1
98	1	-1	- 1	-1	-1	1	1
99	-1	1	- 1	-1	-1	1	1
102	1	-1	1	-1	-1	1	1
108	1	1	- 1	1	-1	1	1
109	-1	-1	1	1	-1	1	1
110	1	-1	1	1	-1	1	1
116	1	1	-1	-1	1	1	1
119	-1	1	1	-1	1	1	1
121	-1	-1	-1	1	1	1	1
121	_	-	-	-	_	-	

METHODOLOGY: COMPARISON OF FRACTIONAL FACTORIAL DESIGN AND OPTIMAL DESIGN

FRACTIONAL FACTORIAL

OPTIMAL

METHODOLOGY: COMPARISON OF FRACTIONAL FACTORIAL DESIGN AND OPTIMAL DESIGN

(Intercept)	ntree	replace	mtry	nodesize
1.178323	2.741298	3.037319	2.648838	1.934686
maxnodes	classwt	cutoff	ntree:replace	ntree:mtry
2.564909	1.660915	3.200686	3.073128	5.232742
ntree:nodesize	ntree:maxnodes	ntree:classwt	ntree:cutoff	replace:mtry
2.823134	4.998752	2.220494	3.261080	4.804835
replace:nodesize	replace:maxnodes	replace:classwt	replace:cutoff	mtry:nodesize
2.402817	2.317594	2.176831	3.102789	2.330797
mtry:maxnodes	mtry:classwt	mtry:cutoff	nodesize:maxnodes	nodesize:classwt
4.170552	1.955657	2.253476	2.007650	2.264969
nodesize:cutoff	maxnodes:classwt	maxnodes:cutoff	classwt:cutoff	
2.259380	1.927194	3.905456	1.652216	

RESULTS

- Used Half Normal plots to
 determine significant
 parameters: classwt,
 mtry:maxnodes,
 nodesize:classwt, nodesize,
 nodesize:cutoff, mtry, maxnodes,
 cutoff:maxnodes, mtry:nodesize,
 classwt:cutoff, cutoff,
 classwt:maxnodes
- We wanted to consider the more significant factors so...

RESULTS

- We chose classwt, cutoff, classwt:maxnodes, and classwt:cutoff
- This was based off of numerous model testings with combinations of several significant factors. We ended up with these four when we eliminated those that were not significant when running the summary function.
- The final model is:

CV = 0.9319 - 0.5456(classwt) - 0.2270(cutoff)

- 6.867x10⁻⁵(classwt:maxnodes) - 0.4642(classwt:cutoff)

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.319e-01 5.942e-02 15.684 4.35e-15 ***
classwt -5.456e-01 8.246e-02 -6.616 4.25e-07 ***
cutoff -2.270e-01 1.019e-01 -2.228 0.03444 *
classwt:maxnodes 6.867e-05 2.330e-05 2.947 0.00654 **
classwt:cutoff 4.642e-01 1.400e-01 3.316 0.00261 **
```

RESULTS: RESIDUAL ANALYSIS

04

CONCLUSIONS

recommendations and strengths

CONCLUSIONS

STRENGTHS

- We added center points to our experiment to address some of the larger quantitative ranges
- We made sure our residual plot did not have any clumping or obvious patterns
- Our factors are significant
- Inspected multicollinearity via several methods

RECOMMENDATIONS

- Keep the classwt and the cutoff levels lower because the coefficients were negative
- Many of our factors were significant based on the half normal plot. The two-factor interactions included all main effects, however we wanted to keep the recommendation simpler. There may be more to consider in the future
- Make some more factors three levels (mixed-level design) to account for larger ranges

THANK YOU FOR WATCHING!