Потешкин Е. П.

- 1. Введение. Существует задача обнаружения сигнала в красном шуме с целью его дальнейшего выделения, например для анализа поведения глобального потепления [TODO]. Метод Monte-Carlo SSA (MC-SSA) [TODO] проверяет гипотезу о том, что во временном ряде присутствует сигнал, но самый распространенный вариант является радикальным. Поправка неточных критериев [TODO] делает этот критерий точным. В данной работе рассмотрены две проблемы: выбор параметра L для получения максимально возможной мощности и невозможность применения поправки на практике, если исходно критерий был слишком радикальным.
- **2. Известные результаты.** Опишем уже известные результаты, чтобы в дальнейшем их использовать.
- **2.1. SSA.** Пусть $\mathsf{X} = (x_1, \dots, x_N)$ временной ряд длины N. Зафиксируем L, 1 < L < N, называемый длиной окна. Построим матрицу $\mathbf{X} = [X_1: \dots: X_K]$, состоящую из K = N L + 1 векторов вложения $X_i = (x_i, \dots, x_{i+L-1}) \in \mathbb{R}^L$.

Следующий шаг — разложение в сумму матриц единичного ранга $\mathbf{X} = \sum_{i=1}^d \mathbf{X}_i$. В базовом SSA используется сингулярное разложение матрицы \mathbf{X} .

Далее компоненты полученного матричного разложения разумно группируются, и каждая сгруппированная матрица преобразуется во временной ряд. Таким образом, результатом SSA является разложение временного ряда.

2.2. Toeplitz SSA. Модификация базового SSA, Toeplitz SSA, использует вместо SVD тёплицево разложение матрицы \mathbf{X} :

$$\mathbf{X} = \sum_{i=1}^{L} \sigma_i P_i Q_i^{\mathrm{T}} = \mathbf{X}_1 + \dots \mathbf{X}_L,$$

Потешкин Егор Павлович – студент, Санкт-Петербургский государственный университет; email: тел.: ...

Работа выполнена при финансовой поддержке Р $\Phi\Phi$ И, проект N

где $\{P_i\}_{i=1}^L$ — собственные векторы матрицы $\widetilde{\mathbf{C}}$ с элементами

$$\widetilde{c}_{ij} = \frac{1}{N - |i - j|} \sum_{m=1}^{N - |i - j|} x_m x_{m + |i - j|}, 1 \leqslant i, j \leqslant L.$$
(1)

Такое разложение имеет преимущество для стационарных временных рядов.

2.3. Monte Carlo SSA. Рассмотрим задачу поиска сигнала во временном ряде. Модель:

$$X = S + \xi$$
,

где S — сигнал, ξ — красный шум с параметрами φ и δ . Тогда нулевая гипотеза $H_0:$ S =0 и альтернатива $H_1:$ S $\neq 0$.

Зафиксируем длину окна L и обозначим траекторную матрицу ряда $\pmb{\xi}$ как $\pmb{\Xi}$. Рассмотрим вектор $W \in \mathbb{R}^L$ единичной длины, называемый проекционным вектором. Введем величину

$$p = \|\mathbf{\Xi}^{\mathrm{T}} W\|^2.$$

Статистикой критерия является величина

$$\widehat{p} = \|\mathbf{X}^{\mathrm{T}}W\|^2.$$

Если вектор W — синусоида с частотой ω , то \widehat{p} отражает вклад частоты ω в исходный ряд.

Далее строится доверительный интервал случайной величины p: в большинстве случаев распределение p неизвестно, поэтому оно оценивается методом Монте-Карло.

Построив доверительный интервал, проверяется, лежит ли \widehat{p} в нем. Если нет, гипотеза отвергается.

Стоит отметить, что данный критерий является несостоятельным против H_1 , если частота ω сигнала S неизвестна, что не редкость на практике.

Поэтому вместо одного вектора W рассматривают набор W_k и для каждого такого вектора строят доверительные интервалы. Без поправки на множественные сравнения данный вариант дает радикальный критерий. В работе [TODO] был представлен модифицированный алгоритм построения критерия в случае множественного тестирования.

Параметром MC-SSA является способ выбора векторов W_k . В данной работе в качестве векторов для проекции берутся собственные векторы матрицы $\widetilde{\mathbf{C}}$ (1). Такой способ выбора самый распространенный, поскольку, если есть значимые векторы, можно восстановить сигнал с помощью SSA на их основе. Но этот вариант, вообще говоря, дает радикальный критерий, поскольку W_k зависят от ряда X, в котором мы ищем сигнал. С помощью поправки неточных критериев можно бороться с этой проблемой.

2.4. Поправка неточных критериев. Данный алгоритм позволяет преобразовывать радикальные и консервативные статистические критерии в точные.

Зафиксируем нулевую гипотезу H_0 , уровень значимости α^* , количество выборок M для оценки $\alpha_I(\alpha)$ и их объем N.

Сначала моделируется M выборок объема N при верной H_0 . Затем по моделированным данным строится зависимость ошибки первого рода от уровня значимости $\alpha_I(\alpha)$. Результатом работы алгоритма является формальный уровень значимости $\widetilde{\alpha}^* = \alpha_I^{-1}(\alpha^*)$. Критерий с таким уровнем значимости является асимптотически точным при $M \to \infty$.

2.5. ROC-кривая. ROC-кривая — это кривая, задаваемая параметрически:

$$\begin{cases} x = \alpha_I(\alpha) \\ y = \beta(\alpha) \end{cases}, \quad \alpha \in [0, 1],$$

где $\alpha_I(\alpha)$ — функция зависимости ошибки первого рода α_I от уровня значимости α , $\beta(\alpha)$ — функция зависимости мощности β от уровня значимости α .

С помощью ROC-кривых можно сравнивать по мощности неточные критерии. Отметим, что для точного (в частности, поправленного) критерия ROC-кривая совпадает с графиком мощности, так как $\alpha_I(\alpha) = \alpha$.

3. Зависимость радикальности и мощности MC-SSA от параметра L. Поскольку критерий MC-SSA в самом распространенном варианте радикальный, существует проблема выбора такой длины окна L, чтобы получить наилучший по мощности критерий, при этом не слишком радикальный, чтобы можно было применить поправку. Рассмотрим пример: пусть дана модель

где S = $\{A\cos(2\pi\omega n)\}_{n=1}^N$ — сигнал с $\omega=0.075$, а $\pmb{\xi}$ — красный шум с параметрами $\varphi=0.7$ и $\delta=1$. Длина ряда равна N=100. Рассмотрим следующую нулевую гипотезу с альтернативой: $H_0:A=0$, $H_1:A=1$.

Рис. 1. Ошибка І рода ($N=100,\, \varphi=0.7$)

Рис. 2. ROC-кривая $(N=100,\, \varphi=0.7)$

По графику ошибкок первого рода на рис. 1 видно, что чем больше L, тем более радикальным становится критерий. На рис. 2 изображены ROC-кривые критериев, наибольшую мощность дает критерий с L=90. На этом примере видно, что чем сильнее радикальность критерия, тем более мощным он является после поправки.

Посмотрим на другой пример. Рассмотрим теперь красный шум с параметрами $\varphi=0.3$ и $\delta=1$ и увеличим длину ряда до N=200. Для удобства сравнения ROC-кривых, уменьшим амплитуду сигнала до A=0.7 при верной H_1 .

ROC-кривую для этого примера на рис. 4 не удалось построить

Рис. 3. Ошибка I рода $(N=200,\, \varphi=0.3)$

Рис. 4. ROC-кривая $(N=200,\,\varphi=0.3)$

полностью для L=190 из-за сильной радикальности, это видно на рис. 3.

Для многочисленных примеров было получено, что с увеличением L радикальность критерия сильно растет, а мощность, в целом, растет, но несильно. Это верно для разных длин ряда, для разных параметров красного шума и сигнала.

4. Алгоритм поиска оптимального L. В предыдущем примере из-за слишком сильной радикальности невозможно применить поправку для L=190. Поэтому нужно найти такое L, чтобы ошибка первого рода была не слишком большой.

Учитывая, что с увеличением L растет радикальность исходного критерия и мощность поправленного, предлагаем алгоритм поиска оптимальной длины окна, для которой ошибка I рода критерия не превосходит порогового значения.

4.1. Вход алгоритма. Временной ряд X, уровень значимости

 α^* , порог ошибки первого рода $\hat{\alpha}_I$ при уровне значимости α^* , интервал $[L_{\mathrm{left}}, L_{\mathrm{right}}]$ поиска оптимального L, желаемая точность ε .

4.2. Выход алгоритма. Оптимальная длина окна L_{optim} :

$$L_{\mathrm{optim}} = \max \left\{ L \in [L_{\mathrm{left}}, L_{\mathrm{right}}] : |\alpha_I^{(L)} - \hat{\alpha_I}| < \varepsilon \right\}.$$

4.3. Алгоритм.

- 1. Вычислить $\alpha_I^{(L_{\mathrm{left}})}$ и $\alpha_I^{(L_{\mathrm{right}})}$. Если $\alpha_I^{(L_{\mathrm{right}})} \leqslant \hat{\alpha}_I$, завершить алгоритм с $L_{\mathrm{optim}} = L_{\mathrm{right}}$. Иначе, если $|\alpha_I^{(L_{\mathrm{left}})} \hat{\alpha_I}| < \varepsilon$, завершить алгоритм с $L_{\mathrm{optim}} = L_{\mathrm{left}}$. Иначе, если $\alpha_I^{(L_{\mathrm{left}})} > \hat{\alpha_I}$, оптимальной длины окна на этом интервале нет, завершить алгоритм.
- 2. Вычислить $\alpha_I^{(L_{\mathrm{mid}})}$, где $L_{\mathrm{mid}} = \lfloor (L_{\mathrm{left}} + L_{\mathrm{right}})/2 \rfloor$. Если $|\alpha_I^{(L_{\mathrm{mid}})} \hat{\alpha}_I| < \varepsilon$, завершить алгшоритм с $L_{\mathrm{optim}} = L_{\mathrm{mid}}$. Иначе, если $\alpha_I^{(L_{\mathrm{mid}})} < \hat{\alpha_I}$, $L_{\mathrm{left}} = L_{\mathrm{mid}}$. Если $\alpha_I^{(L_{\mathrm{mid}})} > \hat{\alpha_I}$, $L_{\mathrm{right}} = L_{\mathrm{mid}}$.
- 3. Если $|\alpha_I^{(L_{
 m mid})} \hat{lpha}_I| \geqslant arepsilon$, повторить пункт 2 до тех пор, пока $L_{
 m left} < L_{
 m right} 5$.
- 4. Если $L_{\mathrm{left}} \geqslant L_{\mathrm{right}} 5$, завершить алгоритм с $L_{\mathrm{optim}} = L_{\mathrm{left}}$.

5. Проверка работы алгоритма. Проверим работу алгоритма

Рис. 5. ROC-кривая ($N=200,\, \varphi=0.3$), $L_{\mathrm{optim}}=145$

на втором примере из раздела 3. Поиск $L_{\rm optim}$ велся на интервале [100,190] со следующими параметрами: $\alpha^*=0.05,\,\hat{\alpha}_I=0.5,\,\varepsilon=0.05.$

Результат алгоритма: $L_{\rm optim}=145$ с $\alpha_I^{(L_{\rm optim})}=0.494$. По рис. 5 изображены ROC-кривые критериев с добавлением $L_{\rm optim}$. Как видно, ROC-кривую для $L_{\rm optim}$ уже удалось построить и такая длина окна действительно оптимальна.

Литература