Personalized Expedia Hotel Searches – 1st place

ICDM 2013 – Dallas, 8 December 2013

Author: Owen Zhang

Compiled and presented by Adam Woznica, PhD

Preprocessing / Feature Engineering

Models

Preprocessing / Feature Engineering

Models

Preprocessing Steps

- Missing value imputation
 - Imputed with a negative value
- Bounding numerical variables (e.g. price)
- Down sampling negative instances
 - Faster learning

Five groups of features

- All original features
- Numerical features averaged over
 - srch_id
 - prop_id
 - destination_id
- Composite features
- EXP features
- Estimated position

Composite features

Feature name	Description	
price_diff_from_recent	Difference between hotel	
	price and recent price	
price_order	order of the price within	
	same srch_id	
•••	•••	

EXP Features: categorical features converted into numerical features

Each factor F replaced with an average of the target variable related with F, excluding the current observation

 \[
 \text{W(x, y)} - \text{weighted average of x and y}
 \]

Cat. **Target Factor Factor** Factor A **Factor C** feature W(0.5, 0.4) W(0, 0.4)1 0.5 Α W(0.5, 0.4) W(0, 0.4)0.5 W(1, 0.4) W(0, 0.4)0 1 W(0, 0.4)W(0, 0.4)0W(0, 0.4)W(0, 0.4)0 0 0

0.4: overall average of the target

Estimated position

- EXP feature of position based on prop_id/dest_id/target_month
- Position of the same hotel in same destination in the previous and next search
- Average of the two above

Preprocessing / Feature Engineering

Models

Ensemble of Gradient Boosting Machines (GBM)

- R GBM implementation (NDCG loss function)
- Two types of models
 - without EXP features (A)
 - 5000 elementary trees
 - 30 hours to train
 - with EXP features (B)
 - 2500 elementary trees
 - 20 hours to train

26 GBM models

Model Type	EXP feature included	Problem fix	# Instances Trained
A1	N	N	8
A2	N	Υ	2
B1	Υ	N	12
B2	Υ	Υ	4

Final score =
$$\frac{\sum A1 + \sum A2}{10} + 2 * \frac{\sum B1 + \sum B2}{16}$$

Preprocessing / Feature Engineering

Models

- Most important features:
 - Position
 - Price
 - Location desirability (ver. 2)
- Random impressions are not fully random
- Down sampling negative instances improves training time and predictive performance
- Ideas:
 - Release user id

Thank you