Abstract

In this thesis we sought to methodically confirm the quantum nature of the quantum dot, for which our mode of confirmation was not the usual entanglement, but rather in the detection of Rabi oscillations. Motivated by the statistical description of photons and the mechanism and structure behind the quantum dot. A rationale for expecting Rabi oscillations is developed, along with a theoretical understanding for Rabi oscillations which include a model used at present. Furthermore, we wished to fine tune this model, by including dampening mechanisms detailed by Huber et. al. in Coherence and Degree of Time-Bin Entanglement from Quantum Dots. The suggested Linblad Master Equation implemented in QuTiP using the master equation solver program. Ground, exciton, and biexciton populations modelled with dephasing present, all three populations oscillating about the 35% population probability. Quantum nature of the quantum dot confirmed, with considerations for further research suggested in the conclusion.

Table of Contents

<u>Chapter 1 – Introduction</u>	1
Chapter 2 – Experimental and Theoretical Context	4
2.1 What is Modelled - Rabi Oscillations	4
2.1.1 General Intuition	4
2.1.2 The Idealized Scenario	8
2.1.3 Approaching the Real World	9
2.2 Object Studied – The Photon	11
2.2.1 The Toy Model	12
2.3 Production of Object – The Quantum Dot	15
2.3.1 Quantum Dot Structure and Mechanism - Core-Shell Quantum Dot	16
2.3.2 Quantum Dot Used in Thesis	20
2.4 Lindblad Master Equation.	21
Chapter 3 – Methodology, Findings, and Analysis	25
3.1 General Methodology	25
3.1.1. Motivation	26
3.1.2 General QuTiP Implementation	28
3.2 Implementation, Findings, and Analysis	29
3.2.1 Challenges	29
3.2.2 Results and their Analysis.	33
Chapter 4 – Conclusions and Future Considerations	35
Acknowledgements	38
Bibliography	39

Table of Figures

Figure 1 – 1.1 Spontaneous Parametric Down Conversion [17]	2
Figure 2 – 2.1.1 Two State System	5
Figure 3 – 2.2.1 Toy Model	12
Figure 4 – 2.2.2 Classifying light	14
Figure 5 – 2.2.3 Classifying Sub-Poissonian Light	15
Figure 6 – 2.3.1 Bandgap	16
Figure 7 – 2.3.2 Core-Shell Quantum Dot	17
Figure 8 – 2.3.3 Radiative Recombination	17
Figure 9 – 2.3.4 Biexciton-Exciton Cascade [1]	17
Figure 10 – 2.3.5 Reimer Group Quantum Dot [1]	20
Figure 11 – 2.4.1 Hilbert Spaces	21
Figure 12 – 3.1.1 Pennacchietti Experimental Data and Fit	25
Figure 13 – 3.2.1 Initial Curve	32
Figure 14 – 3.2.2.1-3 Results of Model (ground, exciton and biexciton respectively)	34