Project work ML4CV

SIDE + NVS

Giovanni Minelli

giovanni.minelli2@studio.unibo.it

SIDE task

1 Image

Depth estimation

"Single image depth estimation: An overview"

1 View

NVS task

Arbitrary view

"Multi-view to Novel view: Synthesizing novel views with Self-Learned Confidence"

- Problems with wide angles
- Blurred predictions, holes in images and missing details

- Very long time of convergence
- Use just as side task: not reliable, inconsistent depth [3] Monocular neural image based rendering with Continuous view controls
- [1] Multi-view 3d models from single images with a convolutional network;
- [2] Multi-view to novel view: Synthesizing novel views with self-learned confidence;

 - [4] Hou; Novel View Synthesis via Depth Guided Skip Connections; WACV 2021

Pipeline

https://github.com/Xharlie/ShapenetRender_more_variation

Improvements

- Better encoder: ResNet-18 pretrained
- Revised decoders: UNet like structure
- Focused supervision loss

$$L_{tot} = \alpha L_{recon} + \beta L_{VGG} + \gamma L_{smooth} + \delta L_{skip}$$

- Faster convergence with modified training
- Hyper-parameters tuning

Results

Methods	SSIM ^(†)	$L1^{(\downarrow)}$	$SILog^{(\downarrow)}$	Abs $\mathrm{Rel}^{(\downarrow)}$	Sq Rel ⁽¹⁾	RMSE ^(↓)	$\text{Log RMSE}^{(\downarrow)}$	$\sigma \leq 1.25^{(\uparrow)}$	$\sigma \leq 1.25^{2(\uparrow)}$	$\sigma \le 1.25^{3(\uparrow)}$
						CHAIR	2			X
Hou [2]	0.906	0.136	21.075	0.110	0.035	0.197	0.218	0.818	0.940	0.973
Ours	0.888	0.075	10,100	0,067	0,011	0,114	0,101	0,956	0,992	0,999
						CAR				
Hou [2]	0.930	0.109	36.074	0.268	0.100	0.327	0.399	0.496	0.704	0.942
Ours	0,905	0,059	9,629	0.037	0.010	0,110	0,097	0,952	0,988	0,997

Weak points

- BatchNorm (not needed?)
- No regularization (low model capacity?)
- Small range of rotation
- NVS results blurry, decolorized, missing texture details
- Depth on parallel planes
- Not tested on real world data

Thanks