WHAT IS CLAIMED IS:

1	 An apparatus for supplying a chemical solution to a
2	chemical injection part in a semiconductor manufacturing process,
3	comprising:
4	a chemical solution supply source;
5	a feed line in which the chemical solution is supplied from the
6	chemical solution supply source to the chemical solution injection part
7	using a pressure of the chemical solution supply source; and
8	means for measuring/controlling a flow rate of the supplied
9	chemical solution, the measuring/controlling means being mounted in
10	the feed line,
11	wherein the feed line comprises:
12	a recycle line for preventing coagulation of the chemical
13	solution, the recycle line being connected to the chemical solution
14	supply source; and
15	a branch line branching from the recycle line, the branch line
16	being connected to the chemical solution injection part, and
17	wherein the means for measuring/controlling the flow rate of
18	the supplied chemical solution comprises:
19	a flow rate control valve;
20	a detector for detecting the flow rate of the chemical solution
21	and generating a flow rate data signal, the detector being mounted in
22	the feed line of the flow rate control valve; and
23	a controller for receiving the flow rate data signal and
24	comparing the flow rate data signal with a reference flow rate data
25	signal in order to output a control signal for controlling a degree of
26	opening the flow rate control valve.

- 2. An apparatus as claimed in claim 1, wherein the controller comprises a proportional integral derivative (PID) automatic controller.
- 3. An apparatus as claimed in claim 1, wherein the controller further comprises a display device for displaying the measured flow rate and an alarm device for warning an operator that the measured flow rate is different from a required flow rate.
 - 4. An apparatus as claimed in claim 1, wherein the chemical injection part is included in a polishing apparatus having a rotate-able turntable and a polishing pad.
 - 5. An apparatus as claimed in claim 1, wherein the chemical solution is a slurry comprising one or more from the group consisting of a reaction reagent, friction particles, and a chemical reaction catalyst.
 - 6. An apparatus for supplying a chemical solution to a chemical injection part in a semiconductor manufacturing process, comprising:
 - a plurality of chemical solution supply sources, each source supplying a different chemical solution;
 - a plurality of feed lines into which the chemical solutions are injected from the chemical solution supply sources to the chemical injection part by a pressure of the chemical solution supply sources; and

11

12

1

2

3

3

4

5

6

7

6

injection part.

a means for measuring/controlling flow rates of the chemical
solutions supplied to the chemical solution injection part, the means for
measuring/controlling flow rates being mounted in each of the feed lines.

- 7. An apparatus as claimed in claim 6, wherein the chemical solutions are mixed with each other just before being supplied to the chemical solution injection part.
- 8. An apparatus as claimed in claim 6, wherein each one of the plurality of feed lines further comprises:
 - a recycle line for preventing coagulation of the chemical solution, the recycle line being connected to an associated chemical solution supply source; and
 - a branch line branching from the recycle line, the branch line being connected to an associated chemical solution injection part.
- 9. An apparatus as claimed in claim 8, wherein the branch lines of each one of the plurality of feed lines are coupled by a coupling part to a single line just before supplying the chemical solutions to the chemical solution injection part, and wherein the coupling part is adjacent the chemical solution
- 1 10. An apparatus as claimed in claim 9, further comprising a mixer for mixing the chemical solutions with each other,
- the mixer being installed at the coupling part.

1	11. An apparatus as claimed in claim 6, wherein each
2	one of the plurality of chemical solutions comprises one or more from
3	the group consisting of a polishing agent, a chemical additive mixed
4	with the polishing agent, and de-ionized (DI) water.

- 12. An apparatus as claimed in claim 6, wherein each of the measuring/controlling means comprises:
- 3 a flow rate control valve;
 - a detector for detecting the flow rate of the associated chemical solution, the detector being mounted in the feed line of the flow rate control valve; and
 - a controller for receiving a flow rate data signal and comparing the flow rate data signal with reference flow rate data signal in order to output a control signal for controlling a degree of opening the flow rate control valve.
 - 13. An apparatus as claimed in claim 12, wherein the controller comprises a proportional integral derivative (PID) automatic controller.
 - 14. An apparatus as claimed in claim 12, wherein each one of the controllers further comprises a display device for displaying the measured flow rate and an alarm device for warning an operator that the measured flow rate is different from a required flow rate.

2

3

4

Į	15. An apparatus as claimed in claim 6, wherein the
2	chemical solution injection part is included in a polishing apparatus
3	having a rotate-able turntable and a polishing pad.
3	having a rotate-able turntable and a polishing pad.

1	 A method of supplying chemical solutions using the
2	apparatus claimed in claim 6, comprising the steps of:
3	respectively providing a pressure to a plurality of chemical
4	solution supply sources;
5	respectively carrying chemical solutions from the chemical
6	supply sources to a plurality of feed lines using the pressure; and
7	respectively measuring/controlling flow rates of the chemica
8	solutions carried through the feed lines.

17. A method of supplying chemical solutions as claimed in claim 16, further comprising a step of mixing the measured/controlled chemical solutions just before supplying the chemical solutions to the chemical solution injection part.

Mantage of the second state of the second stat

1	18. A method as claimed in claim 16, wherein the step of
2	respectively measuring/controlling the flow rates comprises the steps
3	of:
4	detecting flow rates of chemical solutions flowing into the feed
5	lines and generating flow rate data signals indicating the detected flow
6	rates of each respective chemical solution;
7	receiving flow rate data signals indicating the detected flow
8	rates of each respective chemical solution and comparing the flow rate
9	data signals with reference flow rate data signals in order to output
10	control signals for controlling flow rate control valves of each respective
11	chemical solution; and
12	controlling the flow rate control valves by means of the control
13	signals to control the flow rate of the chemical solutions.

- 19. A method as claimed in claim 18, further comprising a step of displaying the measured flow rates.
- 20. A method as claimed in claim 18, further comprising a step of generating an alarm for warning an operator when any measured flow rate exceeds a permissible error range of a required flow rate.