

Affine Multibanking for High-Level Synthesis

Focus: High-Level Synthesis (HLS) for FPGA, targetting Von Neumann architecture model

Challenge: Memory contention induced by concurrent accesses

Contribution: HLS algorithm for array restructuring with affine multibanking using the polyhedral model

1) High-Level Synthesis at a glance

High-Level Synthesis (HLS): Program → Hardware

- ullet Typically: compute-intensive kernel o hardware accelerator IP
- Target: ASIC or FPGA

Features:

- Von Neumann architecture model (e.g. VivadoHLS)
- Parallelism hindered by limited read ports

3) Our Multibanking Approach Banking constraints:

• Correctness: enforce distinct banks for concurrent access

$$a(\vec{i}) \parallel_{\theta} b(\vec{j}) \land (a, \vec{i}) \neq (b, \vec{j}) \Rightarrow \mathrm{BANK}_a(\vec{i}) \neq \mathrm{BANK}_b(\vec{j})$$

Relaxed as:

$$a(\vec{i}) \parallel_{\theta} b(\vec{j}) \land (a, \vec{i}) \neq (b, \vec{j}) \Rightarrow \phi_a(\vec{i}) \ll \phi_b(\vec{j})$$

• Efficiency: reduce the bank number for each dimension

$$\phi_b(\vec{j}) - \phi_a(\vec{i}) \le \sigma(\vec{N})$$

Analogous to affine scheduling:

9	
operation	array cell
dependence	concurrent access
latency	number of banks

Offset constraints (similar):

• Correctness: enforce distinct offsets for conflicting array cells $\mathsf{BANK}_a(\vec{i}) = \mathsf{BANK}_b(\vec{j}) \land a(\vec{i}) \bowtie_\theta b(\vec{j}) \land (a,\vec{i}) \neq (b,\vec{j}) \Rightarrow \mathsf{OFFSET}_a(\vec{i}) \neq \mathsf{OFFSET}_b(\vec{j})$ Relaxed as:

$$\phi_a(\vec{i}) = \phi_b(\vec{j}) \land a(\vec{i}) \bowtie_{\theta} b(\vec{j}) \land (a, \vec{i}) \neq (b, \vec{j}) \Rightarrow \psi_a(\vec{i}) \ll \psi_b(\vec{j})$$

• Efficiency: minimize the number of offsets (into a same bank)

$$\phi_a(\vec{i}) = \phi_b(\vec{j}) \Rightarrow \psi_b(\vec{j}) - \psi_a(\vec{i}) \le \tau(\vec{N})$$

2) Solution: Multibanking

(Affine) multibanking mappings:

For each array cell in[i,j]:

- Bank number: BANK $_{in}(i,j) = i + 3j \mod 9$
- Position in a bank: OFFSET $_{in}(i, j) = j \mod N$

Source-to-source compilation methodology:

- ullet Rewrite each $in[u(\vec{i})]$ as $\hat{in}[\mathsf{BANK}_{in}(u(\vec{i}))][\mathsf{OFFSET}_{in}(u(\vec{i}))]$
- Add HLS pragmas to partition the bank dimensions:

#pragma HLS ARRAY_PARTITION variable=in_ cycle dim=1 ←
factor=9

4) Experimental Results

Kernel	Version	Latency	Interval	Speed-up	BRAM18K	DSP	FF	LUT	URAM
matvec	Baseline	532	533	10.2	0	320	4799	4423	0
	With banking	52	53		0	320	67618	13518	0
matmul	Baseline	1555	1556	29.9	0	10240	135581	123129	0
	With banking	52	53		0	10240	196648	152161	0
conv2d	Baseline	1442	1443	29.4	0	0	923	4290	0
	With banking	49	50		0	0	65562	33043	0
jacobi2d	Baseline	11011	11012	1.6	0	0	117140	96019	0
	With banking	6851	6852		0	0	192295	137499	0
seidel2d	Baseline	6914	6915	2.0	0	0	452	1280	0
	With banking	3458	3459		0	0	574	2903	0
canny	Baseline	10194	10195	4.3	0	0	669	1837	0
	With banking	2355	2356	4.3	0	0	6616	6085	0
gaussian	Baseline	3922	3923	1.7	0	0	449	1012	0
	With banking	2354	2355		0	0	2367	2811	0
median	Baseline	3362	3363	13	0	0	373	846	0
	With banking	2522	2523		0	0	2367	2501	0
prewitt	Baseline	3846	3847	- 7 O	0	0	371	906	0
	With banking	1924	1925		0	0	2249	2142	0

Experimental setup:

- VivadoHLS 2019.1
- Target: Kintex 7 FPGA (xc6k70T-FBv676-1)
- Preliminary prototyping using fkcc

Benchmarks:

- Linear algebra: matvec, matmul
- Stencils: jacobi2d, seidel2d
- Convolutions: conv2d, canny, gaussian, median, prewitt

