

国防科技大学计算机学院 刘 芳

计算机系统总体性能的提高很不匹配

- 处理器和主存性能改进快
- 辅存性能改进慢

假定某基准程序运行时间为100s,其中90s是CPU时间,剩余的是磁盘 I/O时间。若处理器数目每两年增长一倍,但处理器的速度保持不变, I/O性能保持不变,那么6年后运行该程序需要耗费多少时间?

解:程序运行耗费时间=CPU时间+I/O时间,

- 100s = 90s+I/O时间, I/O时间=10s
- 6年后程序运行耗费时间 = CPU时间 + I/O时间 = 11s + 10s = 21s
- CPU性能的提高: 90s/11s = 8 (倍)
- 程序运行速度提高: 100/21=4.7 (倍)

第n年后	CPU时间	I/O 时间
0	90s	10s
+2	45s	10s
+4	23s	10s
+6	11s	10s

假定某基准程序运行时间为100s,其中90s是CPU时间,剩余的是磁盘 I/O时间。若处理器数目每两年增长一倍,但处理器的速度保持不变, I/O性能保持不变,那么6年后运行该程序需要耗费多少时间?

解:程序运行耗费

- 100s = 90s + I/C
- 6年后程序运行CPU时间+I
- CPU性能的提
- 程序运行速度

第n年后	CPU时间	I/O 时间	耗费时间	I/O时间(%)
0	90s	10s	100s	10%
+2	45s	10s	55s	18%
+4	23s	10s	33s	31%
+6	11s	10s	21s	47%

计算机系统总体性能的提高很不匹配

- 处理器和主存性能改进快
- 辅存性能改进慢

廉价磁盘冗余阵列 (Redundant Array of Inexpensive Disks , RAID)

- UC, Berkeley: David A. Patterson
- RAID0~RAID6

存储容量

读写速度

可靠性

RAID的基本思想

将多个具有独立操作的廉价磁盘按某种方式组织成一个磁盘阵列 (Disk Array),以增加容量,利用类似于主存中的多体交叉技术,将数据存储在多个盘体上,让这些盘并行工作来提高数据传输速度,并采用冗余(redundancy)磁盘技术来进行错误恢复(error correction)以提高系统可靠性(reliability)

- RAID是一组物理盘,操作系统将其视为单个逻辑盘
- 独立冗余磁盘阵列RAID: Redundant Arrays of Independent Disks,独立磁盘构成的具有冗余能力的阵列

RAID 0

■条带化

一计算机原理一一

RAID 1

■ 镜像盘实现1+1冗余

存储容量

读写速度

可靠性

RAID 2

- 采用海明码,冗余信息开销大
- 读操作性能高(多盘并行)、写操作时要同时写数据盘和校验盘

RAID 3

- 适用于大量顺序数据访问的应用场合,如:医学、图像处理等
- 某个磁盘损坏时,可以通过其它磁盘重新生成

RAID 4

■ 独立存取技术,使用更大条区,各个盘相互独立访问,并发I/O

- 适合于较小的数据访问,允许并发地发生多个独立访问
- 多个并发写时,唯一的共享校验盘成为性能瓶颈,应用不广泛

RAID 5

- RAID5兼顾存储性能、数据可靠性和存储成本,广泛应用于文件和应用服务器、数据库服务器、万维网、邮件服务器等
- RAID5可以对单盘失效进行恢复

D2

D₁

E1

Fp

RAID 6 ■ 两个独立的奇偶校验块 P₀代表数据块A的奇偶校验值 P₀代表第0条区的奇偶校验值 A1 A2 A3 B3 B3 B4 B4 B4 C_P P₁ C5

 D_{P}

F2

• 两个独立的奇偶校验系统,数据可靠性非常高,可以容两块磁盘同时出错

E3

F3

D5

E5

F5

D4

E4

F4

• 校验开销更大、写性能较差、复杂的控制方式,限制了RAID6的广泛应用

RAID盘阵:用来改进I/O性能

- · RAID 1 and RAID 5 广泛用于服务器,约80% 服务器磁盘采用RAID
- RAID 0+1 (镜像) -同时拥有RAID0的超凡速度和RAID1的数据高可靠性,用于银行、金融、商业超市等
- · RAID 3 适用于大量顺序数据访问的应用
- · RAID 4 校验盘成为瓶颈,应用少