МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

ЛАБОРАТОРНАЯ РАБОТА №7

по дисциплине «Математическая статистика» Вариант № 92

Выполнили:

Векшин А. И. Р3216

Дашкевич Е.В. Р3208

Кононова В.В. Р3211

Преподаватель:

Танченко Ю.В.

Цель работы

На основании анализа двумерной выборки:

- 1) Построить точечную оценку линейной функции регрессии по методу средних и методу наименьших квадратов
- 2) Проверить статистическую гипотезу об адекватности выбранной модели экспериментальным данным
- 3) Построить доверительные интервалы для коэффициентов и для всей функции (β=0,95)

Исходные данные

x(i)	4,0	11,0	16	25	32	41	49
y(i)	24,6	22,1	21,4	17,7	14,7	11,8	10,1

n = 7

Линейная модель

Примем за модель линейную, с формулой y = a + bx

Метод средних

Из таблицы получим систему:

$${68.1 = 3a + 31b} \atop {54.3 = 4a + 147b}$$
 решим систему, получив точечную оценку : ${a = 26.2694} \atop {b = -0.3454}$

Метод наименьших квадратов

$$S(a, b) = \sum_{i=1}^{n} (y_i - \tilde{y}(x_i))^2 = \sum_{i=1}^{7} (y_i - \tilde{a} - \tilde{b}x_i)^2 \to min$$

Найдем экстремум:

$$\frac{\partial S}{\partial a} = -2\left(\sum_{i=1}^{7} y_i - 7\tilde{a} - \tilde{b}\sum_{i=1}^{7} x_i\right) = 0$$

$$\frac{\partial S}{\partial a} = -2\left(\sum_{i=1}^{7} x_i y_i - \tilde{a}\sum_{i=1}^{7} x_i - \tilde{b}\sum_{i=1}^{7} x_i^2\right) = 0$$

Получим систему

$$\begin{cases} 7a + 178b = 122.4 \\ 178a + 6124b = 2575.5 \end{cases} \rightarrow \begin{cases} a = -0.3360 \\ b = 26.0317 \end{cases}$$

Подсчитаем отклонение:

$$S(a, b) = \sum_{i=1}^{n} (y_i - \tilde{y}(x_i))^2 = \sum_{i=1}^{7} (y_i - \tilde{a} - \tilde{b}x_i)^2 \approx 1.449$$

Квадратичная модель

Формула: $y = ax^2 + bx + c$

Метод наименьших квадратов

$$S(a,b,c) = \sum_{i=1}^{n} (y_i - \tilde{y}(x_i))^2 = \sum_{i=1}^{7} (y_i - \tilde{c} - \tilde{b}x_i - \tilde{a}x_i^2)^2 \rightarrow min$$

Найдем экстремум:

$$\frac{\partial S}{\partial a} = -2\left(\sum_{i=1}^{7} x_i^2 y_i - \tilde{c} \sum_{i=1}^{7} x_i^2 - \tilde{b} \sum_{i=1}^{7} x_i^3 - \tilde{a} \sum_{i=1}^{7} x_i^4\right) = 0$$

$$\frac{\partial S}{\partial b} = -2\left(\sum_{i=1}^{7} x_i y_i - \tilde{c} \sum_{i=1}^{7} x_i - \tilde{b} \sum_{i=1}^{7} x_i^2 - \tilde{a} \sum_{i=1}^{7} x_i^3\right) = 0$$

$$\frac{\partial S}{\partial c} = -2\left(\sum_{i=1}^{7} y_i - 7\tilde{c} - \tilde{b} \sum_{i=1}^{7} x_i - \tilde{a} \sum_{i=1}^{7} x_i^2\right) = 0$$

Получим систему

$$\begin{cases} 10110196\ a + 240454\ b + 6124\ c = 78747,3 \\ 240454\ a + 6124\ b + 178\ c = 2575.5 \\ 6124\ a + 178\ b + 7\ c = 122.4 \end{cases} \rightarrow \begin{cases} a = 0,0005420308213 \\ b = -0,3648231163 \\ c = 26,28844542 \end{cases}$$

Подсчитаем отклонение:

$$S(a,b,c) = \sum_{i=1}^{n} (y_i - \tilde{y}(x_i))^2 = \sum_{i=1}^{7} (y_i - \tilde{c} - \tilde{b}x_i - \tilde{a}x_i^2)^2 \approx 1,343133$$

Сравнение графиков

Черный – квадратичная линейная регрессия Синий – МС линейная регрессия Зеленый – МНК линейная регрессия

https://www.desmos.com/calculator/fmlesbswia?lang=ru

Проверка гипотезы

Проверка гипотезы об адекватности модели в задаче регрессии:

- Н0: Линейная модель хорошо согласуется с данными эксперемента и можно для дальнейшего исследования оставить её. Переход к квадратичной не требуется.
- Н1 : Линейная модель плохо согласуется с данными эксперемента и можно для дальнейшего исследования оставить её. Переход к квадратичной требуется.

Введём статистический критерий Фишера:

$$F = \frac{\frac{1}{k - m} \left(S_{min}^{(1)} - S_{min}^{(2)} \right)}{\frac{1}{n - k - 1} S_{min}^{(2)}}$$
 где k = 2; m = 1; n = 7

По т. Фишера с уровнем значимости $\alpha=0.05$ и степенями свободы ${\bf r}_1=k-m=1$ и $r_2=n-k-1=4$, по таблице найдем

$$F_{kr} = 7.71$$

$$F = \frac{\frac{1}{1}(1.449 - 1,343133)}{\frac{1}{4} \cdot 1,343133} \approx 0.315237$$

Так как $0 < F < F_{kr}$, то гипотеза H0 принята, используем линейную модель.

Интервальные оценки параметров регрессии

$$y_i = a_0 + a_1 x_i + \varepsilon_i$$
 где ε_i – ошибка измерения.

$$\varepsilon_i \in N(0, D(\varepsilon_i) = \sigma^2)$$

$$\widetilde{\sigma^2} = \frac{S_{min}}{n-2} = \frac{1,449}{7-2} = 0,2898$$

Определим оценку метрик корреляционных моментов:

$$\widetilde{K} = \begin{pmatrix} \widetilde{\sigma^2} [\widetilde{a_0}] & \widetilde{K} [\widetilde{a_0}, \widetilde{a_1}] \\ \widetilde{K} [\widetilde{a_0}, \widetilde{a_1}] & \widetilde{\sigma^2} [\widetilde{a_1}] \end{pmatrix} = \widetilde{\sigma^2} P^{-1}$$

$$P = \begin{pmatrix} 7 & \sum_{i=1}^{7} x_i \\ \sum_{i=1}^{7} x_i & \sum_{i=1}^{7} x_i^2 \end{pmatrix} = \begin{pmatrix} 7 & 178 \\ 178 & 6124 \end{pmatrix}$$

$$P^{-1} = \frac{1}{\det P} \cdot \begin{pmatrix} 6124 & -178 \\ -178 & 7 \end{pmatrix} = \frac{1}{11184} \cdot \begin{pmatrix} 6124 & -178 \\ -178 & 7 \end{pmatrix}$$

Получим:

$$\widetilde{\sigma^2}[\widetilde{a_0}] = \frac{0,2898}{11184} * 6124 \approx 0,15869 \qquad \widetilde{\sigma^2}[\widetilde{a_1}] = \frac{0,2898}{11184} * 7 \approx 0,00018$$
$$\widetilde{K^2}[\widetilde{a_0}, \widetilde{a_1}] = \frac{0,2898}{11184} \cdot (-178) \approx -0,00461$$

Оценим параметры.

По теореме Стьюдента с доверительной вероятностью β = 0.95 и степенью свободы r=5 из таблицы получим $t_{0.95~5}=2.015$. Отсюда получим оценки:

$$\widetilde{a_0} - t_{0.95;5} \sqrt{\widetilde{\sigma^2}[\widetilde{a_0}]} < a_0 < \widetilde{a_0} + t_{0.95;5} \sqrt{\widetilde{\sigma^2}[\widetilde{a_0}]}$$

$$25.2289 < a_0 < 26.8344$$

$$\widetilde{a_1} - t_{0.95;5} \sqrt{\widetilde{\sigma^2}[\widetilde{a_1}]} < a_1 < \widetilde{a_1} + t_{0.95;5} \sqrt{\widetilde{\sigma^2}[\widetilde{a_1}]}$$

$$- 0,36311 < a_1 < -0,3090$$

Оценим функцию:

$$\widetilde{\sigma^2}[\widetilde{y}(x)] = \widetilde{\sigma^2}[\widetilde{a_0}] + 2\widetilde{K}[\widetilde{a_0}, \widetilde{a_1}]x + \widetilde{\sigma^2}[\widetilde{a_1}]x^2 = 0,15869 - 0,00922 \, x + 0,00018 x^2$$

X	y-ε	$y + \varepsilon$
4	23,9758	25,3989
11	21,7682	22,9013
16	20,1723	21,1365
25	17,2232	18,0362
32	14,8358	15,7185
41	11,6710	12,8338
49	8,81236	10,3153

