

CA2ON
EAB
-0 53

EA-90-01

ENVIRONMENTAL ASSESSMENT BOARD

ONTARIO HYDRO DEMAND/SUPPLY PLAN HEARINGS

VOLUME: 122

DATE: Wednesday, March 25, 1992

BEFORE:

HON. MR. JUSTICE E. SAUNDERS Chairman

DR. G. CONNELL Member

MS. G. PATTERSON Member

FARR
ASSOCIATES &
REPORTING INC.

416 482-3277

2300 Yonge St., Suite 709, Toronto, Canada M4P 1E4

ENVIRONMENTAL ASSESSMENT BOARD
ONTARIO HYDRO DEMAND/SUPPLY PLAN HEARING

IN THE MATTER OF the Environmental Assessment Act,
R.S.O. 1980, c. 140, as amended, and Regulations
thereunder;

AND IN THE MATTER OF an undertaking by Ontario Hydro
consisting of a program in respect of activities
associated with meeting future electricity
requirements in Ontario.

Held on the 5th Floor, 2200
Yonge Street, Toronto, Ontario,
on Wednesday, the 25th day of March,
1992, commencing at 10:00 a.m.

VOLUME 122

B E F O R E :

THE HON. MR. JUSTICE E. SAUNDERS Chairman

DR. G. CONNELL Member

MS. G. PATTERSON Member

S T A F F :

MR. M. HARPUR Board Counsel

MR. R. NUNN Counsel/Manager,
Information Systems

MS. C. MARTIN Administrative Coordinator

MS. G. MORRISON Executive Coordinator

A P P E A R A N C E S

B. CAMPBELL)	ONTARIO HYDRO
L. FORMUSA)	
B. HARVIE)	
J.F. HOWARD, Q.C.)	
J. LANE)	
G. A. KARISH)	
J.C. SHEPHERD)	IPPSO
I. MONDROW)	
J. PASSMORE)	
R. WATSON)	MUNICIPAL ELECTRIC
A. MARK)	ASSOCIATION
S. COUBAN)	PROVINCIAL GOVERNMENT
P. MORAN)	AGENCIES
J. MacDONALD)	
C. MARLATT)	NORTH SHORE TRIBAL COUNCIL,
D. ESTRIN)	UNITED CHIEFS AND COUNCILS
H. DAHME)	OF MANITOULIN, UNION OF
		ONTARIO INDIANS
D. POCH)	COALITION OF ENVIRONMENTAL
D. STARKMAN)	GROUPS
D. ARGUE)	
T. ROCKINGHAM		MINISTRY OF ENERGY
B. KELSEY)	NORTHWATCH
L. GREENSPOON)	
P. MCKAY)	
J.M. RODGER		AMPCO
M. MATTSON)	ENERGY PROBE
D. CHAPMAN)	
A. WAFFLE		ENVIRONMENT CANADA
M. CAMPBELL)	ONTARIO PUBLIC HEALTH
M. IZZARD)	ASSOCIATION, INTERNATIONAL
		INSTITUTE OF CONCERN FOR
		PUBLIC HEALTH
G. GRENVILLE-WOOD		SESCI

A P P E A R A N C E S
(Cont'd)

D. ROGERS		ONGA
H. POCH)	CITY OF TORONTO
J. PARKINSON)	
R. POWER		CITY OF TORONTO, SOUTH BRUCE ECONOMIC CORP.
S. THOMPSON		ONTARIO FEDERATION OF AGRICULTURE
B. BODNER		CONSUMERS GAS
J. MONGER)	CAC (ONTARIO)
K. ROSENBERG)	
C. GATES)	
W. TRIVETT		RON HUNTER
M. KLIPPENSTEIN		POLLUTION PROBE
N. KLEER)	NAN/TREATY #3/TEME-AUGAMA
J. OLTHUIS)	ANISHNABAI AND MOOSE RIVER/
J. CASTRILLI)	JAMES BAY COALITION
T. HILL		TOWN OF NEWCASTLE
M. OMATSU)	OMAA
B. ALLISON)	
C. REID)	
E. LOCKERBY		AECL
C. SPOEL)	CANADIAN VOICE OF WOMEN
U. FRANKLIN)	FOR PEACE
B. CARR)	
F. MACKESY		ON HER OWN BEHALF
D. HUNTER)	DOFASCO
M. BADER)	
B. TAYLOR)	MOOSONEE DEVELOPMENT AREA
D. HORNER)	BOARD AND CHAMBER OF
H. WATSON)	COMMERCE

Digitized by the Internet Archive
in 2022 with funding from
University of Toronto

<https://archive.org/details/31761114685431>

(iii)

A P P E A R A N C E S
(Cont'd)

T. HEINTZMAN)	ATOMIC ENERGY OF CANADA
D. HAMER)	
C. FINDLAY)	
P.A. NYKANEN)	CANADIAN MANUFACTURERS ASSOCIATION - ONTARIO
G. MITCHELL		SOCIETY OF AECL PROFESSIONAL EMPLOYEES
S. GOUDGE		CUPE
D. COLBORNE		NIPIGON ABORIGINAL PEOPLES' ALLIANCE
R. CUYLER		ON HIS OWN BEHALF

I N D E X o f P R O C E E D I N G S

Page No.

<u>DAVID WHILLANS,</u>	
<u>KURT JOHANSEN,</u>	
<u>FRANK CALVIN KING,</u>	
<u>WILLIAM JOHN PENN,</u>	
<u>IAN NICHOL DALY;</u> Resumed.	21279
Direct Examination by Ms. Harvie (Cont'd)	21279

TIME NOTATIONSPage No.

	10:04 a.m. -----	21279
	10:17 a.m. -----	21287
	10:30 a.m. -----	21294
	10:45 a.m. -----	21305
	11:00 a.m. -----	21315
	11:20 a.m. -----	21327
Recess	11:30 a.m. -----	21336
Resume	11:50 a.m. -----	21336
	12:00 p.m. -----	21341
	12:21 p.m. -----	21354
	12:40 p.m. -----	21366
Luncheon recess	1:00 p.m. -----	21377
Resume	2:35 p.m. -----	21377
	2:55 p.m. -----	21389
	3:17 p.m. -----	21401
	3:40 p.m. -----	21413
Recess	3:50 p.m. -----	21419
Resume	4:10 p.m. -----	21419
	4:20 p.m. -----	21424
	4:40 p.m. -----	21436
Adjourned	4:52 p.m. -----	21443

1 ---Upon commencing at 10:04 a.m.

2 THE REGISTRAR: Please come to order.

3 This hearing is now in session. Please be seated.

4 THE CHAIRMAN: Ms. Harvie?

5 MS. HARVIE: I should mention, Mr.

6 Chairman, I have here on the table additional new
7 copies of page 24 of Exhibit 519. The document
8 yesterday that you pointed out was not very clear on
9 the photocopies. Mr. Lucas has helped himself to eight
10 copies, and there are additional sets here for parties
11 who would like to help themselves as well.

12 DAVID WHILLANS,
13 KURT JOHANSEN,
14 FRANK CALVIN KING,
15 WILLIAM JOHN PENN,
16 IAN NICHOL DALY; Resumed.

17 DIRECT EXAMINATION BY MS. HARVIE (Cont'd):

18 Q. Starting again you, Mr. King.

19 Yesterday we went through the regulatory process and
20 its role in safety management and you described the
21 approach to reactor design from a safety perspective
22 and how safety is managed in design.

23 So the next question I would like to ask
24 you is about the systems in place that you have to
25 manage safety and design operation and how do you know
26 that they are working?

27 MR. KING: A. First of all, we have our

1 own audit systems in place which periodically review
2 the performance of our stations in selected areas. Of
3 course, there is always the AECB there to checkup on us
4 to make sure that our nuclear safety management
5 systems, the systems that I described yesterday, are in
6 fact working.

7 However, if you want a more direct
8 evaluation of our performance, you can always look at
9 the record. We have only 20 years of experience in
10 operating large power reactors but in those 20 years we
11 have 200 reactor years of experience. This is still a
12 small amount of experience with respect to the
13 frequency of serious accidents that we looked at, hence
14 you wouldn't expect to find serious accidents in that
15 small time frame. But I think it is always useful to
16 go back to the record and see what is happening in the
17 field.

18 If you consider that the ultimate
19 objective of nuclear safety is really to protect the
20 public from large releases of radioactive materials,
21 the record in Ontario Hydro is clean. What that means
22 is that there has never been an event in any Ontario
23 Hydro reactor which has resulted in any measurable
24 health effect to any member of the public.

25 Also, we have never had an occurrence of

1 serious fuel failures due to the over-heating of the
2 fuel and hence we have never had a large presence of
3 radioactive materials released within containment.

4 Also, there has never been an occasion
5 where we have needed the emergency coolant injection
6 system, which I described yesterday, to actually
7 function following an accident.

8 Q. Mr. King, I understand that the
9 Atomic Energy Control Board has reliability
10 requirements for special safety systems. What are
11 they, please?

12 A. The AECB has established requirements
13 for the four special safety systems, these are the two
14 shutdown systems, the emergency coolant injection
15 system and the containment system which I described
16 yesterday. These requirements are in the form of
17 unavailability targets, where unavailability is the
18 fraction of the time where a system would not be
19 available to do the job it's designed to do if called
20 upon to do so.

21 When Pickering "A" was licenced, this
22 AECB unavailability target was 3 times 10 to the minus
23 3. In terms which are perhaps a little more easy to
24 understand, this is equivalent to an unavailability of
25 24 hours per year, or less than a chance of three in

1 1,000 that the system could not function and do its job
2 if called upon to do so.

3 Subsequent to Pickering "A" being
4 licenced, the AECB with their issue of their 1972
5 sighting guide made the unavailability requirement for
6 the four special safety systems more stringent. In the
7 '72 sighting guide they changed the requirement to one
8 times ten to the minus three. Again, in terms more
9 easy to understand, this is equivalent to an
10 unavailability of less than eight hours a year, or less
11 than one chance in 1,000 that the system would not be
12 available to do its job.

13 These requirements that the AECB have
14 established are very stringent. In fact, I am not
15 aware of any regulatory body anywhere else in the world
16 that has such a stringent sets of requirements for
17 unavailability of safety systems.

18 Q. How do you know that these
19 unavailability targets are in fact being met?

20 A. As I referred to briefly yesterday,
21 there are tests which we put our systems through, I
22 referred to the operational reliability monitoring
23 program. This is where you, whether it's daily,
24 weekly, bi-weekly, monthly, you make sure that the
25 valves will open when they are supposed to, the pumps

1 will start when they are supposed to.

2 Most of the special safety systems are
3 dormant systems, they are not involved in the
4 production of power so they are waiting there for an
5 accident to happen to perform some function.

6 If a single component is detected to be
7 failed when you do such a test this does not mean that
8 the system is unavailable. We would have prepared a
9 significant event report, and I again talked about that
10 system yesterday. If a single component would have
11 been detected in the failed state, the system would not
12 be unavailable.

13 It would normally require several
14 redundant components, redundant meaning components
15 which are all capable of doing the same job, to fail
16 before a system would be declared to be unavailable.

17 However, if the system was found to be
18 unavailable, then the time that it was unavailable
19 would be estimated and compared against the AECB eight
20 hour a year unavailability target.

21 The past unavailability record for each
22 of the special safety systems or each of the stations
23 is reported in the annual report, or it's also called
24 the fourth quarter report for each station.

25 Q. And what has been Ontario Hydro's

1 record in meeting the AECB's special safety system
2 unavailability targets?

3 A. Our record in meeting these targets
4 is mixed. The record with respect to the shutdown
5 systems is fairly good.

6 If you look at the last five years, let's
7 say from 1987 to the end of 1991, as reported in these
8 fourth quarter reports for each of the stations, you
9 will note that for the first shutdown system, the rod
10 drop system, at Pickering "A" and Pickering "B" and at
11 Bruce "A", throughout all this five-year period there
12 has never been an occasion where any system on any unit
13 has exceeded its target.

14 On Bruce "B", in the four units at Bruce
15 "B", there were two occasions two years over that
16 five-year period where the target was exceeded for the
17 second shutdown system, the liquid injection system.

18 I should have said the first shutdown
19 system.

20 So on Bruce "B", if I could just clarify
21 that, there were two years in the last five where there
22 has been occasion where the annual unavailability
23 target has been exceeded for the first shutdown system.

24 With respect to the second shutdown
25 system, for all the Pickering "B", Bruce "A" and Bruce

1 "B" - you will recall that Pickering "A" does not have
2 a second shutdown system - in the five years, '87 to
3 '91, there has been six occasions where a second
4 shutdown system on one unit of those stations did not
5 meet its target.

6 The record with respect to the emergency
7 coolant injection system and the containment systems is
8 not at good.

9 The record with respect to the Bruce "A"
10 ECI system in 1989 and the Bruce "A" containment system
11 in the years 1987 through 1990, and the Pickering "A"
12 and "B" containment systems in 1990 show large
13 exceedances of the AECB target.

14 I would like to go through these cases
15 which I have just mentioned in some detail to give you
16 a flavour of what it really means when a special safety
17 system is declared unavailable.

18 In 1989 the Bruce "A" ECI system had an
19 unavailability of 332 times 10 to the minus 3. You
20 recall the target is 1 times 10 to the minus 3.

21 If I could refer you to a figure, we had
22 this figure, this is on page 44 of the figure handout,
23 I used this yesterday to describe the operation of the
24 ECI system. I just want to bring your attention to the
25 valve which is up in the upper right-hand corner, this

1 is a normally closed valve, isolating the nitrogen,
2 high pressure nitrogen tanks from the light water
3 tanks. When it opens it directs high pressure water
4 into the heat transport system.

5 This valve which is normally closed is
6 tested periodically to make that it will open and in
7 fact open fast enough.

8 We were finding on testing this valve in
9 1989 that it was not opening as fast as it should. It
10 has a requirement of opening within 20 seconds, and it
11 wasn't opening that fast occasionally on the tests that
12 were occurring.

13 The limit in the operating policies and
14 principles document, the safe operating envelope limits
15 which I referred to yesterday, was 20 seconds, and it
16 was opening occasionally in the time a bit longer than
17 20 seconds. However, when this was detected we went
18 back to the safety analysis which had established this
19 20 second limit, looked at it, we did some analysis and
20 showed that in fact the ECI system would have
21 functioned fully even if the valve were to open within
22 40 seconds. However, since the fact that we did exceed
23 one of our own operating policies and principles
24 limits, we declared the system to be fully unavailable.

25 If I could talk right now about the

1 Bruce "A" containment in 1987. The target being 1
2 times 10 to the minus 3, the actual being 385 times 10
3 to the minus 3, and in this case there was a sump
4 pump in the basement of the vacuum building. This sump
5 pump has a small check valve associated with it and
6 this check valve was found to be leaking.

7 If there had been a loss of coolant
8 accident, there could have been water with a slight
9 degree of radioactivity, not to the same degree as
10 would be found within the reactor building, and there
11 could have been a small leakage through this passing
12 check valve. In this case we declared the containment
13 system to be completely unavailable.

14 [10:17 a.m.]

15 In 1988 in Bruce A containment the actual
16 was 266 times 10 to the minus 3. In this case there is
17 a system which takes air from the reactor building
18 atmosphere, puts it through dryers to take out the
19 heavy water from the atmosphere, and brings it back
20 into the reactor vault.

21 There's a small bypass from that which
22 goes to atmosphere through filters in order to keep the
23 containment pressure within the reactor building
24 slightly subatmospheric.

25 In this line going outside the

1 containment envelope there is a detection system which
2 detects high pressure or high activity. If either of
3 these parameters exceed a certain value, then this
4 whole vapour recovery system is isolated. There is a
5 duplicate valve on each line which close and isolate
6 the containment.

7 We found in 1988 that the activity
8 monitor had been isolated by mistake and, hence, we
9 declared the system to be unavailable. In fact, it's
10 not as bad as it sounds in that if there would have
11 been an accident involving high pressure, the high
12 pressure monitor would have isolated the system.

13 Also the emergency operating procedures,
14 this Abnormal Incident Manual which I referred to
15 yesterday, one of the first steps following an
16 accident, what the operator is directed to do is to
17 make sure that the vapour recovery system is isolated
18 and in fact, even with this activity monitor not in
19 place, the containment could have been manually
20 isolated from the control.

21 In Bruce "A" containment in 1989 the
22 actual was 383 times 10 to the minus 3. In this case
23 it was a transfer chamber which is an airlock type
24 device which is used to primarily move equipment in and
25 out of the reactor building. It's a vessel with

1 airlock doors with a rubber seal around the doors which
2 expand and create a boundary. You open one door, you
3 get in, you close that door, you open the other door
4 and go into containment.

5 In one of the doors there is an
6 equalizing valve, a small valve which is normally in
7 the open position, it's supposed to be on the inner
8 door on the reactor building side. On a pressure test
9 which we periodically do to make sure the containment
10 integrity can still withstand a high pressure, the
11 inside of the transfer chamber was pressurized and on
12 the outer door, the one away from the reactor vault
13 side, one of these rubber expanding seals on the
14 outside of the door came out of the groove a wee bit,
15 the wrong seal had been inserted, and that would have
16 led to a small flow path through this equalizing valve
17 in the inner door, off this valve, this seal which had
18 come out of the groove. So, again, we declared
19 containment fully unavailable for that reason.

20 Moving on to Pickering "A". In 1990, a
21 couple of years ago, the actual was 340 times 10 to the
22 minus 3. In this case the target Pickering "A" is 3
23 times 10 to the minus 3, but since several aspects of
24 the Pickering "A" and Pickering "B" containment are the
25 same, the Pickering "B" unavailability limits takes

1 precedent so in fact it's really Pickering "A" and
2 Pickering "B" containment issue I'm about to talk
3 about.

4 There, if you recall, Mr. Penn's figure
5 of the Pickering "A" station, the reactor buildings,
6 there is the vacuum building, there is between them on
7 a raised -- 20 feet off the ground there's a square
8 pressure relief duct which connects all the eight
9 vacuum buildings, all the eight reactor buildings. If
10 there's an accident in any one of them this hot steam
11 air mixture comes through the pressure relief duct and
12 goes into the vacuum building.

13 We were doing a pressure test of
14 containment and this long, whatever it is, half a
15 kilometre long pressure relief duct, concrete duct, has
16 expansion joints, it isn't poured as one whole element
17 and periodically, to allow for concrete expansion,
18 there's a rubber expansion joint. On pressurization of
19 the pressure relief duct one of the expansion joints
20 had a significant tear in it and we declared the
21 containment to be unavailable for that reason.

22 We had tested the pressure up to the full
23 design pressure of containment which was 42 kPa gauge
24 or, in other units perhaps you're more familiar, it's 6
25 psig, that's the design pressure. In fact, the seal

1 failed at 22 kPa gauge or 3.2 psig.

2 However, the design pressure is set not
3 by a lost coolant accident, not by a failure of the
4 heat transport system, but in Pickering the steam mains
5 are inside containment, inside the reactor building and
6 there was a failure of the steam mains which set the
7 design pressure, but with the steam main you don't get
8 the radioactive materials put into containment as you
9 potentially do with a loss of coolant accident.

10 Also, if there was a large loss of
11 coolant accident, the peak pressure would have been 14
12 kPa which is only 2 psig, so even if you would have had
13 the largest loss of coolant accident, that seal would
14 not have failed, but we still declared the containment
15 to be fully unavailable given that we didn't meet its
16 design pressure.

17 Okay. I have just given you a full
18 examples of the cases where there have been large
19 excedances. We are not happy with the overall record
20 because of these excedances in the containment in the
21 CI area, but these targets are not by themselves a good
22 indicator of increased risk.

23 In many cases, as I have discussed, the
24 system performance would only be degraded somewhat and
25 substantial mitigative capability would still be

1 available. Also, a special safety system is declared
2 unavailability if it can't meet its design performance
3 requirements for all postulated accidents. If it could
4 meet its design requirements for all but the most
5 unlikely and demanding postulated accidents it would
6 still be declared fully unavailable.

7 On the more positive side, as a result of
8 the quality improvement process which Mr. Daly talked
9 about in his evidence, the trend in the last three
10 years has shown a reduction in the number of
11 occurrences when special safety systems have not met
12 their unavailability targets.

13 Q. Mr. King, of all the events that have
14 occurred, what is the most serious event that has taken
15 place in Ontario Hydro's reactor program?

16 A. Well, perhaps the most serious event
17 that has occurred was the pressure tube failure which
18 occurred at Pickering "A" Unit 2, channel G16, in 1983.

19 You'll recall that Mr. Daly discussed the
20 causal mechanisms of this event in some detail, but
21 just to refresh your memory, this is the overhead that
22 he used, this is on page 17 of your handout.

23 The only difference between this diagram
24 and the fuel channel at Pickering is that - and as
25 pointed out by Mr. Daly - that the Pickering 1 and 2

1 units have only two garter springs not the four as
2 shown on this diagram.

3 What happened, there was a rupture of the
4 pressure tube due to the sagging and contact with the
5 calandria tube and the formation of blisters that was
6 described by Mr. Daly.

7 The calandria tube held, it did not
8 rupture, there was small loss of coolant accident from
9 the ends of the channel through a ruptured bellows.
10 The bellows is a metal expansion joint which keeps in
11 the annulus gas essentially and allows for some thermal
12 expansion of the fuel channel with respect to the
13 calandria structure. So there was a small leakage out
14 of each end through the bellows onto the floor.

15 We have a system called a D2O recovery
16 system which is not a special safety system, but it
17 does a similar job to the emergency coolant injection
18 system, picks up heavy water from the floor and puts it
19 back into the heat transport system.

20 After the reactor was shut down manually
21 the shutdown systems -- there was no need for them to
22 operate automatically, the reactor was shut down
23 manually. The operators initiated the D2O recovery
24 system and there was no need for the emergency coolant
25 injection system to come in either.

1 And the reactor was cooled down, shut
2 down and the circuit with the heavy water being picked
3 up off the floor with the D2O recovery system was put
4 in place.

5 [10:30 a.m.]

6 This G16 event initiated a massive
7 inspection program on other reactors, research
8 activities and ultimately ended up in pressure tube
9 replacement programs which have been described.

10 All of this with the intention of
11 preventing any G16 type of event from occurring in the
12 future.

13 Q. What plans are in place if there was
14 a serious accident?

15 A. If there was a serious accident with
16 potential for off-site releases there are emergency
17 plans in place to respond to the situation.

18 The legal basis for emergency planning
19 and response in Ontario is the Provincial Emergency
20 Plans Act. This Act establishes the Solicitor General
21 of Ontario as responsible for off-site emergency
22 planning.

23 The Ministry of the Solicitor General has
24 subsequently issued a document called Province of
25 Ontario Nuclear Emergency Plan, Plan 1, which is

1 generic to all reactors. It has also issued plans
2 specific to each reactor.

3 These plans establish the
4 responsibilities for each of the participating
5 organizations, various municipalities, the various
6 government ministries, local municipalities, as I said,
7 Ontario Hydro. These plans are also exercised
8 regularly.

9 Typically, each shift crew, again I
10 referred yesterday to five shift crews on a reactor,
11 would train with respect to their functions in a plan
12 several times a year, and they would also have a formal
13 exercise with observers once a year. There would be a
14 major exercise at each station once a year to test all
15 the response groups at the station.

16 There would also be, organized by Ontario
17 Hydro, a large corporate exercise once a year rotated
18 amongst the various stations. And this would exercise
19 all the key groups, not only those at the station but
20 throughout Ontario Hydro.

21 There would be either participation from
22 the Ministry, Solicitor General and local
23 municipalities directly or via role playing. What I
24 mean is they don't have their whole organization in
25 place, they just have somebody role playing their whole

1 organization.

2 That's with respect to the Ontario Hydro
3 annual exercise.

4 The province themselves periodically have
5 large provincial exercises which fully test all the
6 other aspects, the non-Ontario Hydro parts of the plan.
7 And this large provincial exercise would rotate amongst
8 the various sites.

9 Ontario Hydro also has emergency plans
10 for the transportation accidents involving radioactive
11 materials, and these are exercised on an annual basis
12 as well.

13 Transport Canada here is the government
14 body which has jurisdiction with respect to
15 transportation accidents, and it is to Transport Canada
16 that we submit our emergency plans with respect to
17 radioactive transportation accidents.

18 Q. As we all know there have been
19 several significant reviews of the safety of Ontario
20 Hydro's reactors conducted by external agencies. Mr.
21 King, I wonder if you care to discuss these in a little
22 more detail, please.

23 A. Well, in addition to the AECB, which
24 is an external agency and is continually reviewing the
25 safety of all our reactors, there are several other

1 reviews of Ontario Hydro's nuclear program which drew
2 conclusions with respect to nuclear safety.

3 In particular, the Select Committee on
4 Ontario Hydro Affairs, the Operational Safety Review at
5 Pickering which was organized by the IAEA,
6 International Atomic Energy Agency, and the Ontario
7 Nuclear Safety Review, which is headed up by Dr.
8 Kenneth Hare. If I could go through these one by one.

9 In its June 1980 final report on the
10 Safety of Ontario Hydro Reactors, the Select Committee
11 on Ontario Hydro Affairs stated that:

12 On the basis of evidence examined so
13 far, the nuclear reactors operated by
14 Ontario Hydro are acceptably safe.

15 Moving on to the next one, 1987, the 12
16 member IAEA appointed Operational Safety Review Team,
17 know as OSRT, performed a review of Pickering operation
18 as invested by the provincial and federal governments.
19 Their report states that:

20 OSRT was satisfied to find all the
21 equipment, personnel and resources
22 necessary at Pickering nuclear generating
23 station to ensure continued safe
24 operation of the station.

25 And finally, in 1988 in his report to the

1 Minister of Energy, Dr. Hare's first conclusion was
2 that:

3 The Ontario Hydro reactors are being
4 operated safely and at high standards of
5 technical performance. No significant
6 adverse impact has been detected in
7 either the work force or the public. The
8 risk of accidents serious enough to
9 affect the public adversely can never be
10 zero, but is very remote.

11 Q. Mr. King, are you convinced that
12 Ontario Hydro's nuclear power plants can be operated
13 safely now and until the end of their service lives?

14 A. The short answer to that question is
15 yes.

16 What is needed to ensure safety in the
17 long term is a basic soundness of design, it needs
18 institutions and processes in place to foster safe
19 operation. To do this, you need an operating
20 organization with a strong safety culture, with open
21 debate and with internal self-correcting mechanisms.

22 I think you also need a strong,
23 independent regulatory body, but I believe that all of
24 these are in place and, yes, I am convinced that we can
25 continue to operate our reactors safely.

1 Q. Thank you.

2 Mr. Johansen, I am going to ask you some
3 questions about the natural environmental implications
4 of the nuclear generating system.

5 Would you begin, please, giving us a
6 brief overview of the scope of the evidence that you
7 will be presenting this morning.

8 MR. JOHANSEN: A. Yes, I propose to
9 cover three main areas. First, how nuclear power is
10 regulated and managed for protection of the
11 environment; secondly, a general description of the
12 different types of emissions and effluents associated
13 with our nuclear operations, and our performance in
14 controlling the effects of these emissions and
15 effluents on the environment, and thirdly, how Ontario
16 Hydro currently manages radioactive materials that
17 result from our operations and we how we plan in future
18 to continue managing and disposing of these materials.

19 Q. Dealing then with the first category.

20 As we have heard from Dr. Whillans and Mr. King, we
21 have heard about how the regulation nuclear power for
22 health and safety purposes is managed, how is nuclear
23 power regulated in Ontario for environmental protection
24 purposes?

25 A. Environmental protection is regulated

1 at both the provincial as well as the federal level.
2 The major provincial environmental legislation
3 applicable to our current operations are the
4 Environmental Protection Act and the Ontario Water
5 Resources Act.

6 The main applicable federal legislation
7 includes the Atomic Energy Control Act which we have
8 already talked about to a considerable extent, as well,
9 there is the Canadian Environmental Protection Act and
10 the Transportation of Dangerous Goods Act. There are
11 number of others, but these are the mains ones.

12 Under these provincial and federal acts
13 there are a lot of regulations, codes of practice, and
14 guidelines that either limit or have significant
15 bearing on Ontario Hydro's projects and operations.

16 Following environmental assessment
17 approval and Atomic Energy Control Board approval to
18 construct a nuclear facility, a nuclear project would
19 still require several environmental permits and
20 approvals in addition to the operating licence that Mr.
21 King talked about.

22 These environmental permits and approvals
23 include things like a permit to operate equipment like
24 combustion turbine units that are used to drive the
25 standby generators at our nuclear facilities; a permit

1 to operate a waste management system or a waste
2 management site, and these are all under the
3 Environmental Protection Act; we need permits to take
4 cooling water from the Great Lakes or another water
5 body if that were the case; we need a permit to
6 discharge cooling water back into these Great Lakes or
7 other water bodies, and we need permits to discharge
8 effluents from our liquid waste management systems, and
9 these are all under the Ontario Water Resources Act.
10 There are a number of others at both the provincial and
11 federal level that we have to obtain before we can
12 commence a new project.

13 These permits have to be reviewed
14 periodically and renewed, depending on what the
15 site-specific conditions of approval are.

16 Under the conditions of these permits we
17 are typically required to submit to the Ministry of the
18 Environment monthly environmental monitoring reports,
19 as well as annual summary reports.

20 Q. How is environmental protection
21 managed by Ontario Hydro?

22 A. Our corporate environmental policy
23 and management system are described in some detail in
24 Exhibit 256 which is the 1990 edition of our corporate
25 environmental performance report or what we used to

1 call the State-of-the-Environment Report. Panel 2
2 provided an overview in the context of the total
3 existing power system.

4 There are a couple of areas that I would
5 like to emphasize here in the context of nuclear
6 environmental protection management. The first is the
7 extensive monitoring and reporting that we routinely
8 carry out, and secondly is our ongoing management of
9 radioactive materials and advanced planning for the
10 eventual disposal of these materials.

11 Q. Would you discuss monitoring in
12 greater detail, please.

13 A. Yes, I propose to talk about first of
14 all, the monitoring for radioactive emissions and
15 effluents and then monitoring for non-radioactive
16 emissions.

17 Radioactive emissions from our existing
18 nuclear facilities are monitored by both in-station
19 instruments, or what we refer to as the emission
20 monitoring system, and by monitors located in the
21 surrounding area around our facilities, and we refer to
22 this as our environmental monitoring system.

23 In-station monitoring is routinely
24 carried out on all of the gaseous and liquid streams
25 that have the potential to exceed our operating target

1 for emission control; that is the 1 per cent of the
2 derived emission limits.

3 Airborne emissions are monitored
4 continuously and liquid effluents are monitored prior
5 to any discharge.

6 The results of these routine monitoring
7 efforts are analyzed weekly for airborne emissions and
8 they are analyzed monthly for waterborne emissions, and
9 this is to ensure that the emission rates remain
10 normal; that is to ensure that we don't discharge a
11 significant proportion of the annual emission amount
12 that we are allowed over a relatively short period of
13 time without taking some control action.

14 For those streams that might potentially
15 contain enough radioactive material to exceed a derived
16 emission limit, special monitoring and warning is
17 provided to the control room so that the operators can
18 take appropriate control action to ensure that the
19 regulatory limits and our 1 per cent operating targets
20 aren't exceeded. I will have more to say later on
21 about our actual performance in controlling emissions
22 to less than the 1 per cent operating target.

23 Q. All right. Dealing with Hydro's 1
24 per cent operating target, is there a regulatory
25 requirement in the station licences that Hydro not

1 exceed 1 per cent the derived emission limit?

2 A. No, there is isn't. The regulatory
3 requirement is that we not exceed the derived emission
4 limits, and this is to ensure that we don't exceed the
5 annual public dose limit which is the primary
6 requirement.

7 These derived emission limits, or DELS,
8 are calculated by Hydro for each station and they are
9 documented in station specific reference plans which
10 are directly referred to in the conditions of the
11 operating licence for each station.

12 Hydro's operating policies and
13 principles, which Mr. King referred to, are also
14 referred to in the operating licence conditions, and
15 these state that if we were to frequently or
16 significantly exceed this 1 per cent operating target,
17 then a review of the need and practicality of
18 modifications to either equipment or procedures would
19 be initiated. So, this is a Hydro operating guide
20 which has been endorsed by the AECB. However, it's
21 clear from the licence conditions that the regulatory
22 emission limit is the derived emission limit, not the 1
23 per cent operating target.

24 Q. You mentioned the environmental
25 monitoring system, that is the monitoring of emissions

1 in the area surrounding the station, would you describe
2 that monitoring system in more detail, please.

3 [10:45 a.m.]

4 A. Yes. In addition to the in-station
5 emission monitoring, Hydro carries out monitoring for
6 radioactivity around all of the nuclear facilities and
7 monitoring is also conducted at remote locations in
8 Ontario to establish the background levels.

9 These environmental monitoring programs
10 are also a condition of the AECB licence and results
11 must be reported to the AECB.

12 Hydro's environmental radiological
13 monitoring programs are designed to obtain data to
14 assess on an ongoing basis the radiation exposures to
15 the public resulting from airborne and waterborne
16 emissions from our nuclear operations.

17 Radioactive emissions from our facilities
18 may reach the public through a number of routes or
19 pathways through the environment and my first overhead,
20 which appears on page 45 of your package, Exhibit 519
21 that is, illustrates this pathway model that we use.

22 The box at the left of the overhead
23 labelled source is our nuclear facility, of course.
24 The box at the right-hand side, the far right,
25 represents the radiation dose to a member of the most

1 exposed group in the surrounding population and this is
2 the critical group that Dr. Whillans referred to
3 yesterday.

4 All of the boxes inbetween represent
5 different compartments, if you will, compartments of
6 the environment and these compartments tend to reduce
7 the concentration of the radioactivity received prior
8 to passing that radioactivity on to the next
9 compartment or on to the exposed population. For
10 example, dilution and decay in the atmosphere or water
11 body.

12 The lines and arrows inbetween the boxes
13 represent various pathways along which the radioactive
14 emissions may be conveyed towards the critical group.

15 So, in overview then, the total dose that
16 the critical group may receive could potentially be a
17 combination of external exposure from airborne
18 emissions directly plus external exposure from airborne
19 emissions deposited on the ground or other surfaces,
20 plus ingestion of drinking water affected by our
21 airborne or waterborne emissions, plus ingestion of
22 food affected by these emissions.

23 This diagram, of course, is a general
24 picture only of the environmental pathways but
25 illustrates the concept. Every site situation is

1 different in detail.

2 So in order to assess public exposures
3 via these pathways on an ongoing basis, samples and
4 measurements are taken regularly around the nuclear
5 sites corresponding to these different compartments of
6 the environment in the pathway model that I just
7 showed, and typically this sampling includes sampling
8 of air, precipitation, drinking water, both municipal
9 and private supplies, milk which has been locally
10 produced, raw lake water, fish, sediments, farm
11 produce, fruit, vegetables, things like that.

12 I should add that produce from commercial
13 aquaculture or or greenhouse facilities that receive
14 warm water or steam from our nuclear operations are
15 included in this sampling program as well. But our
16 standard procedure is to formally review these
17 environmental monitoring programs every three years or
18 so.

19 Hydro also operates meteorological
20 monitoring systems at each nuclear site and this is to
21 obtain site-specific weather data for dispersion
22 analysis which is used in the safety assessments that
23 Mr. King talked about.

24 And, finally, Health and Welfare Canada
25 and the Ministry of the Environment of Ontario conduct

1 routine monitoring in the vicinity of our nuclear
2 facilities as well and Environment Canada periodically
3 conducts measurements right across the country to help
4 establish background levels.

5 Q. You mentioned non-radioactive
6 emissions as well, Mr. Johansen. Could you briefly
7 outline Ontario Hydro's monitoring of these emissions?

8 A. Yes. There aren't any
9 non-radioactive atmospheric emissions from our nuclear
10 generating stations themselves that need to be
11 monitored, but we do carry out routine air monitoring
12 for hydrogen sulphide and sulphur dioxide emissions
13 around our Bruce site and this is because we have the
14 heavy water plant and the steam plant operations there
15 and we have got seven environmental monitors, seven for
16 hydrogen sulphide and seven for SO(2) around the Bruce
17 site and, in addition, there is a monitoring station
18 operated by the Ministry of Environment in that area as
19 well.

20 We also monitor odour complaints around
21 the Bruce heavy water plant and we even monitor for
22 noise complaints even though our nuclear operations
23 don't tend to be a source of intrusive noise.

24 On the water side there are a number of
25 non-radioactive effluents that we monitor and these

1 include things like cooling water discharge
2 temperature, both absolute temperature and temperature
3 rise across the plant, and discharges from conventional
4 liquid waste management systems including the effluent
5 process water lagoon at the heavy water plant.

6 And, finally, under the province's MISA
7 program and, again, this is the strategy, the Municipal
8 Industrial Strategy for Abatement of liquid effluents,
9 under the MISA program we have carried out an intensive
10 program of monitoring of non-radioactive effluents from
11 all of our nuclear facilities as well as fossil and
12 hydraulic facilities.

13 Q. And to whom do you report all this
14 monitoring of radiological and non-radiological
15 emissions to?

16 A. Radioactive emissions are routinely
17 reported to the Atomic Energy Control Board every
18 quarter and they are summarized and assessed annually.
19 The annual reports are distributed to the AECB and to a
20 number of other federal and provincial agencies as
21 well.

22 For example, our annual environmental
23 summary reports issued by our nuclear operations branch
24 go to Environment Canada as well as to the Ontario
25 Ministry of the Environment and the Ministry of Natural

1 Resources.

2 The annual summary and assessment of
3 environmental radiological data which is issued by the
4 health and safety division goes to Environment Canada
5 and Health and Welfare Canada, plus the Ontario
6 Ministries of Environment and Labour and local
7 municipalities and a number of other interested
8 stakeholders.

9 And, finally, our corporate annual
10 environmental performance reports have much wider
11 circulation.

12 Non-radioactive emissions and other
13 environmental performance parameters are routinely
14 reported to the Ministry of the Environment every month
15 and they are summarized annually. Again, these annual
16 reports are widely distributed.

17 So, in summary, monitoring, reporting
18 and, if necessary, remedial action are key functions in
19 any environmental impact management process. Hydro's
20 monitoring and assessment achieve a number of
21 objectives in that they provide assurance that the
22 public health and environment are protected, they
23 provide confirmation of the models that we use in
24 deriving emission limits, they provide evidence of our
25 compliance with these emission limits, and they provide

1 a warning to the station operators of control action
2 where required.

3 Q. All right. Well, you've told us
4 about monitoring. I would like to ask you now about
5 the environmental performance of Hydro's existing
6 nuclear system and the effects of those emissions on
7 the natural environment.

8 Would you describe, first of all, the
9 kind of emissions that are typically associated with
10 nuclear generating stations?

11 A. Yes. I would like to describe these
12 in four categories. First and foremost, of course, are
13 the routine controlled radioactive emissions to air and
14 water from normal operation of our nuclear stations and
15 from related facilities, related facilities include the
16 radioactive waste operations site at Bruce and the
17 tritium removal facility at Darlington.

18 Although these stations and facilities
19 are designed to emit very small amounts of
20 radioactivity, there are many potential leakage points
21 in any complex plant. The design anticipates that
22 these leaks will occur from time to time, so emissions
23 to the environment are controlled through a combination
24 of controls and monitoring including leakage recovery,
25 liquid waste hold-up and treatment, airborne emission

1 hold-up and filtration.

2 Typically airborne emissions include
3 radionuclides such as tritium, noble gases, radioactive
4 isotopes of iodine, particulates and carbon 14.

5 Tritium, as most of you probably know, is an isotope of
6 hydrogen which is produced when heavy water is
7 irradiated in the reactor.

8 The noble gases are isotopes of elements
9 like xenon and argon which are produced either in the
10 fission process, in which case we refer to them as
11 fission products, or through irradiation of air or
12 other materials in the reactor, in which case we refer
13 to them as activation products. Radioactive isotopes
14 of iodine are fission products as well.

15 The particulates group includes isotopes
16 of elements like caesium, zirconium, cobalt and so on
17 which are produced either in the fission process or
18 through activation in the reactor system.

19 And finally carbon 14 is produced mainly
20 by irradiation of oxygen in the reactor system or
21 irradiation of trace impurities in the fuel or the fuel
22 planning.

23 Waterborne emissions include tritium,
24 again, plus a number of dissolved and suspended fission
25 and activation products which are measured as total

1 radiation from beta particles and gamma rays or
2 referred to commonly as gross beta gamma.

3 The second category of emissions that I
4 would like to talk about is the emissions from our
5 nuclear facilities of the non-radioactive emissions,
6 that is to air from the heavy water plant operation and
7 from the steam plant at Bruce, as well as minor
8 emissions from the combustion turbines that drive the
9 standby generators at each site.

10 The third category is cooling water which
11 we draw from the Great Lakes at each site and discharge
12 back to the lake at a higher temperature which we refer
13 to as thermal discharge.

14 The fourth and final category includes
15 non-radioactive waste water effluents from various
16 process at the generating facilities and other
17 facilities. We provided a lot of information on
18 nuclear emission sources, our control performance and
19 our assessment of effects in documents such as Exhibit
20 4, which was the environmental analysis accompanying
21 the original DSP Plan, other documents were Exhibits 19
22 to 22 and 256, these are the annual environmental
23 performance reports or State-of-the-Environment Reports
24 as they used to be called.

25 And recently we have documented a lot of

1 information in Exhibit 507 which is the document
2 entitled Materials Relating to Environmental and Health
3 Effects of Nuclear Generation, and a lot of information
4 has gone out through the interrogatory process.

5 Q. All right. Well, regarding
6 radioactive emissions, what are the levels that have
7 been typically measured as compared against the
8 regulatory limits?

9 A. Our records, going back to the
10 beginning of our nuclear operations over 20 years ago,
11 show that we have consistently controlled our emissions
12 from each facility to less than 1 per cent of the
13 regulatory annual emission limits and this includes
14 emissions from the radioactive waste operations site at
15 Bruce and the tritium removal facility at Darlington.

16 The radioactive emission trends for some
17 of our nuclear facilities over a five-year period from
18 1986 to 1990 are illustrated by a number of charts in
19 Exhibit 519, pages 46 to 49.

20 My next overhead is based on the first of
21 these charts and I don't propose to show them all
22 because they are all quite similar and they are all
23 fairly busy, I'm afraid.

24 We don't need to get into the complexity
25 of the charts but, in overview, each of the charts in

1 the package referred to shows monitoring performance
2 for the different groups of radionuclides that we
3 routinely emit and monitor.

4 [11:00 a.m.]

5 These are the ones that I referred to
6 earlier, tritium, noble gases, iodine, and particulates
7 going to air, tritium and gross beta going to water.

8 This particular overhead is similar to
9 the one that Dr. Whillans showed yesterday, and it
10 shows a set of bar charts for Pickering "A". The
11 height of each bar in each small chart represents the
12 annual emission total for the particular radionuclide
13 group for each year, 1986 to '90. Each chart has a
14 line drawn across the top representing the 1 per cent
15 of annual emission limit.

16 The main thing to note in all of these
17 charts is that the bars in all cases are below that 1
18 per cent target line, and in many cases quite a bit
19 below.

20 They three other charts in the handout,
21 pages 47 to 49, which I won't show, illustrate similar
22 trends for Bruce GSA, the waste operation site at Bruce
23 and for Darlington.

24 In the case of Darlington, of course, we
25 don't have a five-year trend as that plant only came

1 into service in 1990, so that's all we have to show.

2 Similar trends can be seen in charts for
3 all of our other nuclear facilities published in our
4 annual environmental summary reports. The annual
5 emission totals are consistently below the 1 per cent
6 target. I guess that is all I can say about that.

7 Q. Well, even though these limits are
8 already very low as we can see from looking at the
9 tables, is Hydro doing anything to reduce them further?

10 A. Yes. I have already talked about the
11 tritium removal facility at Darlington, tritiated heavy
12 water from all of our nuclear plants will be treated
13 there, and we expect that that will result in a
14 significant reduction in tritium emissions in future.

15 We are looking at improving the leak
16 tightness of heavy water piping systems and improving
17 the heavy water recovery systems at our various plants.

18 In addition, there are a number of
19 research and development activities that were listed in
20 Exhibit 256, and these include things like better
21 methods for testing of airborne emission filters,
22 improvements in liquid waste management systems, and we
23 are also in the process of evaluating the feasibility
24 of upgrading the waste volume reduction facility at
25 Bruce, rad waste operation site. And while the

1 feasibility of these and other options for reducing
2 emissions haven't yet been established in all cases,
3 these kinds of evolutionary improvements are quite
4 consistent with our ALARA policy; that is our policy of
5 maintaining emissions as low as reasonably achievable,
6 taking social and economic factors into account.

7 Q. All right. As we heard from Dr.
8 Whillans, we dealt with the health effects, his
9 evidence dealt with human health effects, but I would
10 like to know from you how these emissions have affected
11 the natural environment.

12 A. This is a question which has recently
13 been studied by a number of international scientific
14 bodies that Dr. Whillans referred to, including the
15 U.N. Scientific Community on effects of atomic
16 radiation, or UNSCEAR; the U.S. Academy of Sciences
17 Committee on the biological effects of ionizing
18 radiation, or BEIR, as well as a International
19 Commission on Radiological Production, ICOP.

20 In summary, the general consensus of
21 these scientific groups is that the standard of
22 radiation protection considered necessary for
23 protection of human health is also adequate to ensure
24 that the health of other biota in the ecosystem is not
25 unduly at risk.

1 Although while it's acknowledged that
2 individual members of these other biota in the
3 ecosystem might be harmed, for example, in the event of
4 a local spill, the general consensus is that this would
5 not be expected to endanger the entire species or
6 create a significant imbalance in the ecosystem.

7 Q. What about non-radioactive emissions
8 from nuclear generation, how do they affect the
9 environment? Referring back to the emission
10 categories, and why don't you deal first with emissions
11 from the heavy water plant and steam plant at Bruce.

12 A. Okay. I will begin by explaining why
13 it is that we use hydrogen sulphide or H(2)S gas at
14 heavy water plant.

15 Heavy water consists of deuterium plus
16 oxygen instead of hydrogen plus oxygen, as in the case
17 of ordinary water. Deuterium is a form of hydrogen
18 with a proton and a neutron in the nucleus, whereas
19 hydrogen only has a proton. So deuterium is heavier
20 than hydrogen.

21 Heavy water or deuterium oxide occurs
22 naturally in water at the ratio of about one molecule
23 of heavy water for every 7,000 molecules of ordinary
24 water.

25 The heavy water production process uses

1 H(2)S gas to extract deuterium out of natural lake
2 water. The initial production stage in the process,
3 referred to as enrichment, takes advantage of the fact
4 that deuterium tends to concentrate in the water at low
5 temperatures and it concentrates in H(2)S gas at higher
6 temperatures. This enrichment stage is then followed
7 by a series of distillation steps to increase the
8 concentration of deuterium close to 100 per cent at
9 which point we refer to it then as heavy water.

10 Most of the H(2)S is then subsequently
11 removed from the heavy water, recovered and recycled,
12 but some residual H(2)S is discharged to the
13 environment.

14 There is a flare stack at the heavy water
15 plant which we use to convert most of the atmospheric
16 H(2)S discharge to sulphur dioxide which is less toxic
17 and has a somewhat higher odour threshold.

18 So typical emissions from the Bruce heavy
19 water plant then include SO(2) from the flare stack,
20 and small amounts of H(2)S either from incomplete
21 combustion at the flare stack, or from so-called
22 fugitive emissions or leaks at various points in the
23 heavy water plant process.

24 Most of the H(2)S as I said is recovered
25 and recycled except for controlled releases to the

1 flare stack and except for leaks. Propane is added to
2 in the flare stack gases to maximize that conversion of
3 H(2)S to SO(2).

4 Emissions from the Bruce steam plant are
5 pretty typical of oil-fired industrial boilers,
6 including SO(2). I should explain perhaps that the
7 Bruce steam plant is used to augment the steam supply
8 from Bruce GSA which Mr. Daly referred to yesterday,
9 either for supply of steam to the heavy water
10 production process or supply of steam to the adjacent
11 Bruce Energy Centre.

12 Dr. Effer during Panel 8 already talked
13 about the effects of SO(2) and other pollutants
14 associated with the combustion of fossil fuel, so I
15 don't propose to go into that again.

16 Regarding H(2)S, my next overhead which
17 is page 50 of Exhibit 519, this overhead summarizes
18 some of the evidence that we have seen in the
19 literature on health and environmental effects of
20 exposure to H(2)S; that largely was presented in a risk
21 assessment that we did a few years ago on the Bruce
22 heavy water plant, and this risk assessment was issued
23 in response to Interrogatory 9.21.1.

24 This table shows a range of effects
25 associated with exposures to different concentrations

1 of H(2)S for periods up to an hour, and looking from
2 the bottom of the chart up, the evidence indicates to
3 us that death in humans and domestic animals occurs
4 rapidly at 500 parts per million, or PPM. It indicates
5 that there are no serious irreversible health effects
6 in humans or domestic animals from exposure to about
7 100 PPM for up to an hour.

8 Effects below this level tend to be
9 limited to things like irritation of the eyes and the
10 respiratory tract.

11 There is no significant evidence of
12 damage to plants or crops below about 40 PPM. And most
13 people can smell down to about 0.15 PPM, although the
14 odour threshold can be lower in very sensitive
15 individuals.

16 So, in summary, in comparison to the
17 regulatory Ministry of the Environment criteria for
18 ambient air quality, that criterion being 0.02 PPM on
19 an hourly average basis, or 0.02 PPM, same number, on
20 and a half hourly basis at ground level or other points
21 of impingement. This regulatory criterion is many
22 times lower than levels which we understand are
23 required to cause death or serious health effects in
24 human or domestic animals. It's many times lower than
25 levels required to cause significant damage to plants

1 or crops, and it is even lower than the levels that
2 most people can smell.

3 Continuous monitoring around the Bruce
4 site over the years has shown that both H(2)S and SO(2)
5 concentrations are generally very low, well below the
6 regulatory criteria for ambient air quality.

7 The half hour point of impingement
8 standard which I referred to for H(2)S, is exceeded
9 very infrequently. For example, it was exceeded once
10 in 1990, but not by very much. In that particular case
11 it was .024 PPM as compared to the criterion of .02.

12 Nevertheless, there have been a number of
13 odour incidents over the years reported by employees
14 and by members of the public. Most frequently in the
15 early years of heavy water plant operation, for
16 example, in 1973 when the first plant, the "A" plant
17 came into service, we had something like 50 reported
18 incidents.

19 Typical causes of odour incidents include
20 H(2)S leaks at the enriching units of the heavy water
21 plant. They can also be caused by incomplete
22 combustion at the flare stack, and occasionally we get
23 odour from activities at Bruce that are completely
24 unrelated to the heavy water production process, for
25 example, unloading of the heavy oil for the steam

1 plant.

2 The frequency of odour incidents has
3 decreased substantially over the years as our
4 monitoring and emission controls and general operating
5 experience have improved.

6 Q. Would you describe the typical
7 cooling water system and how it affects the
8 environment, please.

9 A. Yes. Panel 8 described the basic
10 steam cycle and related once-through cooling water
11 systems that we use at all our of thermal and nuclear
12 plants. And I would like to take another look at the
13 overhead that Mr. Penn used yesterday. This was the
14 simplified CANDU unit flow diagram which appears on
15 page 5 of the overhead package, Exhibit 519.

16 Just briefly, this diagram, or at least
17 the part that I would like to refer to, illustrates
18 three straight flow circuits. First of all, there is
19 the heat transport circuit between the reactors or the
20 boilers or the steam generators. And secondly, there
21 is the steam and condensation circuit. Steam flowing
22 from the boilers, or steam generators, to the turbines,
23 where it's condensed and water is then returned to the
24 steam generators.

25 Thirdly, and this is the key I guess for

1 my part, is the open cooling water system whereby
2 cooling water is taken into the condenser where it
3 picks up heat from the steam before being discharged
4 back to the lake at somewhat higher temperature.

5 I just want to emphasize a separation
6 between the open cooling water system and the reactor
7 circuits. I guess that's sufficient.

8 The nuclear plant requires more cooling
9 water per megawatt of electricity produced than a
10 fossil fuel plant, something like 50 per cent more than
11 a fossil plant. There are two main reasons for this.
12 First of all, the lower temperature and pressure
13 conditions in a typical CANDU steam cycle result in a
14 somewhat lower overall efficiency. And secondly, a
15 fossil plant emits about 15 per cent of its fuel,
16 energy up the stack, whereas a nuclear plant doesn't.

17 Hydro's cooling water designs have
18 evolved considerably over the years in light of a
19 program initiated in the mid-70s to improve the design
20 of cooling water systems, to minimize aquatic
21 environmental effects.

22 Exhibit 507 summarizes the different
23 cooling water system arrangements at our nuclear sites.

24 Pickering "A" and "B", for example, share
25 a single channel type intake and they have separate

1 channel type discharges.

2 Bruce "A" and "B" have separate offshore
3 submerged intakes and channel type discharges. These
4 were generally illustrated in the photos that Mr. Penn
5 showed yesterday.

6 The Darlington cooling water system
7 represents what we consider to be the state-of-the-art,
8 in once-through cooling design, including an offshore
9 submerged diffuser type discharge, as well as an
10 improved off-shore intake design. And Dr. Effer and
11 Mr. Dawson during Panel 8 described the particulars of
12 this design, so I don't propose to go into that again.

13 Q. What are the environmental effects of
14 these cooling water systems?

15 A. Again, during Panel 8 Dr. Effer
16 described the environmental concerns associated with
17 once-through cooling. In terms of cooling water intake
18 effects he talked about entrapment, impingement and
19 entrainment, and he talked about effects at the other
20 end of the pipe, you might say, the cooling water
21 discharge effects related to heat. And nuclear plants
22 are similar to fossil plants in this regard.

23 Based on the results of years of study
24 and the once-through cooling improvement program which
25 was initiated in the mid-70s and carried through to the

1 early 80s, plus the results of site-specific
2 environmental studies, it is our conclusion that
3 lake-wide adverse effects are insignificant and local
4 effects are minor.

Finally, I would just like to note that Hydro does supply warm water and steam for other beneficial uses, for example, at Pickering we supply warm water from the condenser cooling water discharge to a commercial aquacultural facility adjacent to the site. At Bruce we supply steam from the Bruce complex to a greenhouse facility at the adjacent Bruce Energy Centre.

16 Q. Thank you. Referring now to your
17 fourth emission category, your fourth and final, what
18 are the sources of waste water effluents at a nuclear
19 plant and what is Hydro doing to control them?

20 A. Well, routine effluents from our
21 nuclear facilities include controlled discharges from
22 the active liquid waste managements systems and from a
23 number of fairly conventional, non-radioactive streams.

As indicated earlier, the active liquid waste management systems are designed to control

1 discharges to less than 1 per cent of the regulatory
2 emission limits. Non-radioactive waste water streams
3 from the nuclear stations include things like water
4 treatment plant effluent, boiler blowdown, oily water
5 treatment effluent, laundry and sewage treatment
6 effluent, yard drainage and that sort of thing.

7 In addition, effluents from the Bruce
8 heavy water plant includes controlled process water
9 discharges either directly to the lake or via the
10 process effluent lagoons, and this depends on whether
11 the H(2)S concentration in the process water is high
12 enough to be detected by the automatic monitoring and
13 control system.

14 All of our nuclear plants as well as
15 fossil plants use a number of conventional bulk
16 chemicals in the various processes, where these
17 chemicals combine with other chemicals or materials
18 before being discharged at a controlled rate. For
19 example, we use acids and alkalies in water treatment
20 and these effluents are neutralized before discharge.
21 We use ammonia and other chemicals to condition or
22 control the chemistry of the boiler water and to
23 prevent corrosion.

24 [11:20 a.m.]

25 We use chlorine in the treatment of

1 boiler water and in the treatment of domestic water as
2 well as sewage effluent, and we have recently received
3 Ministry of Environment permission to use chlorine in
4 combating zebra mussel infestation on an interim basis
5 until some alternative solution can be found.

6 So, in summary, routine waste water
7 discharges are generally at low concentrations approved
8 by the Ministry through the certificate of approval
9 process. Non-routine discharges include periodic
10 effluents from maintenance activities like boiler
11 cleaning which are performed in a controlled manner
12 with prior approval from the Ministry of the
13 Environment.

14 Occasional spills of oil and other
15 chemicals do occur and these are mostly recovered and
16 are reported to the Ministry of the Environment also.
17 More details on discharges and control performance are
18 given in our annual environmental summary of reports
19 which are issued to the Ministry of the Environment, to
20 the Atomic Energy Control Board and others and, for
21 example, a copy of this was given in response to
22 Interrogatory 9.22.13.

23 Finally, as Dr. Effer indicated during
24 Panel 8, Hydro is currently working with the Ministry
25 of the Environment under the MISA program which I

1 referred to earlier and we are currently in the process
2 of identifying the best available technology
3 economically achievable basis for purposes of
4 regulating the reduction of any toxic contamination in
5 waste water from our facilities, and this is in keeping
6 with the Ministry's ultimate goal of virtually
7 eliminating persistent toxic effluents from industry
8 and municipal discharges across the province.

9 MS. HARVIE: There's a third section to
10 Mr. Johansen's evidence, Mr. Chairman, and that is
11 dealing with the radioactive materials management.
12 Shall we proceed on for the next 10 minutes?

13 All right.

14 Q. Mr. Johansen, you mentioned advanced
15 planning earlier in your evidence in connection with
16 the management of radioactive materials. Would you
17 describe briefly what kinds of advanced planning Hydro
18 is doing?

19 MR. JOHANSEN: A. Yes. We have done a
20 lot of planning for long-term management of radioactive
21 materials and issued a number of documents of these
22 plans as they have evolved and these include an
23 overview of the present management and plans for all of
24 the radioactive materials that Hydro produces, and this
25 document was provided in response to Interrogatory

1 9.9.41 and a number of others.

2 We have also prepared a plan for
3 long-term management and disposal of used fuel and this
4 document was provided in response to Interrogatory
5 9.41.6 and a number of others.

6 We have also prepared conceptual plans
7 for decommissioning of our various nuclear facilities
8 at Pickering, Bruce and Darlington and, incidentally,
9 these are required as conditions of our operating
10 licences, and a copy of the plan for Pickering, Bruce
11 and Darlington decommissioning was provided in response
12 to Interrogatory 9.6.8, and we are currently in the
13 process of updating our plan for low and intermediate
14 level radioactive waste.

15 These plans are important in ensuring
16 that the technology and the resources are available
17 when needed in future to continue managing the
18 materials and protect the environment.

19 Q. In general terms, what kinds of
20 radioactive materials are involved in Hydro's nuclear
21 operations?

22 A. Well, there are those radioactive
23 materials that result directly from our nuclear
24 operations including the used nuclear fuel, low and
25 intermediate level radioactive waste, or rad waste as

1 we refer to it, from the operation and maintenance and
2 rehabilitation of these facilities, and eventually we
3 will have so-called back-end waste when we begin to
4 actually decommission these facilities.

5 In addition to there are what we might
6 refer to as front-end wastes from uranium mining,
7 refining and fabrication processes involved in
8 supplying the nuclear fuel that we use.

9 Q. What is Hydro's position regarding
10 radioactive wastes and effects of the so-called front
11 end of the nuclear fuel cycle?

12 A. Well, in addition to maintaining
13 responsibility for materials that we produce in
14 operating our facilities, Hydro will deal only with
15 licensed materials suppliers and contractors, we will
16 stipulate full compliance with all government
17 regulations as a minimum standard through contractual
18 requirements, and we will consider an adjustment in the
19 price payable for uranium or fuel if the supplier can
20 demonstrate an increase in production costs due to a
21 regulatory change, and this is a provision that we
22 intend to ensure that the Hydro contract condition is
23 not a deterrent to meeting regulatory requirements.

24 All suppliers involved in the supply of
25 uranium and fuel have to comply with the AECB

1 requirements, they have to be licensed by the AECB and
2 they are responsible for the control of radioactive
3 materials within their possession, just as Ontario
4 Hydro is responsible for controlling and managing the
5 materials it produces in its operations.

6 The compliance with regulations by these
7 suppliers is monitored by the Atomic Energy Control
8 Board. Exhibit 507 outlines the nuclear fuel supply
9 process in an overview fashion and provides some
10 environmental and health effects of the process with a
11 focus on the wastes and effluents from uranium mining
12 and milling.

13 I should add that we did address
14 front-end fuel cycle factors in our 1989 environmental
15 analysis on the Demand/Supply Plan options in a generic
16 comparative way which we felt was appropriate for a
17 plan stage analysis.

18 Q. Now, how hazardous is used nuclear
19 fuel and how is Hydro presently managing it?

20 A. In short, used nuclear fuel is highly
21 radioactive and hot when it comes out of the reactor
22 but the activity and heat reduce or decay substantially
23 over time.

24 Mr. Daly yesterday showed what a typical
25 CANDU fuel bundle looks like. Well, after about 18

1 months or so in the reactor a fuel bundle is
2 effectively depleted and is removed from the reactor
3 while new fuel is inserted to keep the nuclear energy
4 process going.

5 While in the reactor a small part of the
6 uranium in the fuel, and it's slightly over a per cent,
7 is transformed into a number of new radioactive
8 elements or isotopes. These are generally grouped into
9 two categories, fission products and actinines.

10 Fission products are those isotopes which
11 are formed directly in the fission process or through a
12 subsequent decay or neutron absorption and they are
13 characterized by high energy radiation and relatively
14 short half-lives; hours, days, a few years. For
15 example, strontium 90 in and caesium 137 have
16 half-lives of about 30 years.

17 The actinine group includes all the heavy
18 elements initially in the fuel plus those that form
19 subsequently through the decay and neutron absorption
20 process, and they are characterized by relatively weak
21 radiation but longer half-lives. For example,
22 plutonium 239 has a half-life of about 24,000 years.

23 After the used fuel is out of the reactor
24 its radioactivity decays with time. For example,
25 within an hour it loses more than half of its activity.

1 The activity decreases by a factor of about 50 after a
2 year, by a factor of about 500 after 10 years, and it's
3 predicted that it will decrease by a factor of about
4 50,000 after 300 years.

5 Most of the initial radiation comes from
6 the fission products, but after about 300 years most of
7 it will continue to come from the longer lived
8 actinines.

9 After about 500 years in tact fuel
10 bundles, in fact, could be handled without shielding
11 and if they were placed in an underground repository
12 the hazard from the fuel would be comparable in hazard
13 to that from high grade uranium ore body.

14 Nevertheless, the long lived isotopes
15 that remain in the fuel would be hazardous long after
16 this and if inhaled or ingested, so used fuel certainly
17 needs to be carefully managed and ultimately isolated
18 so that it doesn't contaminate the environment in
19 future.

20 Q. Can you go back to how Ontario Hydro
21 manages used fuel.

22 A. Yes, okay. When the used fuel comes
23 out of the reactor it's very radioactive and hot, as I
24 said before and, therefore, it needs both shielding and
25 cooling, and water-filled pools are an effective means

1 of accomplishing both and, for that reason, have been
2 used and are being used at all of our nuclear
3 facilities for initial storage at least.

4 From the reactor the used fuel is
5 transferred to a so-called primary fuel bay within the
6 plant. After about six years the fuel is cooled
7 sufficiently that it can be transferred to some other
8 facility on site for storage in the longer term. To
9 date these auxiliary storage facilities have also been
10 of the water-pool type.

11 My next overhead appears on page 51 of
12 your package. This is a rather simplified diagram
13 taken from our used fuel plan document. It illustrates
14 the transfer of used fuel by remotely controlled
15 fueling machines from the reactor to a primary fuel bay
16 and later on from there to an auxiliary fuel bay.

17 Although this diagram doesn't show it,
18 these bays are typically constructed with double walls
19 with provision for collection of any leakage that might
20 enter the space between the walls. Any leakage would
21 then be drained to the bay water clean-up system and,
22 in turn, returned to the bay and more detail on this
23 design feature is given in Exhibit 43 on page 229.

24 Wet storage like this is the primary
25 method for used fuel storage used throughout the world,

1 so our practice is consistent with what other utilities
2 are doing and our studies have shown that fuel can be
3 safely stored like this for at least 50 years.

4 MS. HARVIE: Would this be an appropriate
5 time to take a break, Mr. Chairman.

6 THE CHAIRMAN: Thank you. Take a
7 15-minute break.

8 THE REGISTRAR: Please come to order.
9 This hearing will take a 15-minute recess.

10 ---Recess at 11:30 a.m.

11 ---On resuming at 11:50 a.m.

12 THE REGISTRAR: Please come to order.
13 The hearing is again in session. Please be seated.

14 THE CHAIRMAN: Ms. Harvie.

15 MS. HARVIE: Mr. Chairman, my estimate of
16 how long the panel will be continuing to give evidence
17 was a little overly optimistic yesterday.

18 I think we are unlikely to be finished
19 before lunch, very unlikely to be finished before
20 lunch, and probably will go as late as the afternoon
21 break.

22 So I would like to let people know. I
23 have spoken to Mr. Heintzman who is the first party up
24 cross-examining and with Ms. McClenaghan who is
25 bringing the motion.

1 Q. All right. Perhaps we can go back.

2 We had an overhead that was just being placed on the
3 screen and the question that I had asked was how Hydro
4 presently manages used fuel, and Mr. Johansen had
5 described the wet storage, and perhaps you can take it
6 from there?

7 MR. JOHANSEN: A. Yes. I think I was
8 just making the point that our studies on the wet
9 storage technology indicated that we can continue
10 safely using this wet storage technology for at least
11 50 years safely.

12 And my next overhead, which appears as
13 page 52 in Exhibit 519, summarizes the total quantity
14 of used fuel that we have accumulated to the end of
15 1990 at all of our nuclear plants and it also projects
16 the total quantity that we forecast to the end of the
17 lives of each of these existing facilities assuming
18 that they operate for 40 years.

19 As shown in the second column from the
20 left, the total used fuel accumulated to the end of
21 1990 is some 14,400 metric tonnes, which is equivalent
22 to about -- well, a little over 700,000 fuel bundles.

23 The next column over indicates the
24 in-service dates for the various nuclear plants.

25 The third and last column indicates the

1 forecast total, and the total lifetime accumulation
2 from these existing plants is forecast to be about
3 75,000 metric tonnes, the number is shown at the bottom
4 of the right-hand column, and this is equivalent to
5 about 3.8 million fuel bundles.

6 And to put this into some kind of
7 perspective that means something, the total volume is
8 75,000 metric tonnes. If placed in a standard hockey
9 rink would fill that hockey rink to a depth of about 21
10 metres.

11 Additional storage facilities will be
12 required at Pickering by 1993 and at Bruce by about
13 1997. At Darlington we won't require additional
14 facilities until about 2010 at least.

15 The years of research and development
16 with Atomic Energy of Canada Limited AECL going back to
17 the 1960s have brought us to the point where we have
18 now got two types of storage technology to choose from
19 for purposes of additional storage. We have got the
20 dry storage in special concrete based containers, as
21 well as the conventional wet storage technology that I
22 have already talked about.

23 This dry storage technology is being
24 proposed for additional storage at Pickering, in fact,
25 where we have been demonstrating two containers with

1 six- and 10-year old fuel since 1988 under AECB
2 approval.

3 This dry storage method is also being
4 used by AECL at the Douglas Point site where they have
5 got fuel in storage that was taken out of the reactor
6 at Douglas Point when that plant was shut down, and
7 it's also in use by New Brunswick Power at their Point
8 Lepreau station.

9 My next overhead which appears at page 52
10 in the handout, this overhead illustrates the design of
11 our proposed dry storage container. What it shows
12 basically is the design consisting of inner and outer
13 steel shells filled by reinforced concrete inbetween
14 these shells.

15 Each container stands about 3-1/2 metres
16 high and is designed to hold 384 fuel bundles in four
17 standard modules. The exploded view indicates what the
18 standard module looks like and indicates a typical fuel
19 bundle that would fit into that module.

20 After the dry storage container is filled
21 with used fuel, and this would be conducted under water
22 in the storage bays at the station, the lid would then
23 be welded on to the container and the whole thing would
24 be leak tested before the entire package is moved to a
25 storage facility on the site.

1 Extensive studies by Ontario Hydro and
2 AECL indicate that this dry storage technology can be
3 used to store used fuel safely for at least 100 years.
4 We submitted a safety analysis to AECB late last year
5 for approval to proceed with the dry storage project at
6 Pickering and we expect an AECB decision on this
7 application later on this year.

8 I should point out that we have a dual
9 purpose in going to dry storage technology. Our dry
10 storage container in fact has been designed, in fact,
11 not just for storage but it's been designed and tested
12 to meet stringent international criteria for
13 transportation as well, and these were conducted in
14 June of '91 to early this year.

15 Talking about transportation, Hydro has
16 had extensive experience in on-site transfer of used
17 fuel between on-site storage facilities and we have
18 been involved in a number of off-site shipments to
19 research facilities since 1963, mainly to the research
20 laboratories of AECL at Chalk River.

21 The shipment containers in all cases have
22 been approved by the Atomic Energy Control Board. Over
23 a span of about 30 years of operation amounting to
24 something like 500 shipments of radioactive materials
25 we have never had a transportation accident that has

1 resulted in any release of radioactive material.

2 So I guess the bottom line is that Hydro
3 is managing its used fuel safely and we can continue to
4 do so for decades at the existing facilities.

5 [12:00 p.m.]

6 Q. What plans does Hydro have for
7 long-term management and disposal of used fuel?

8 A. The essence of Hydro's plan is to
9 continue to store the used fuel at the nuclear stations
10 until some future point in time when the used fuel can
11 be transported to a disposal facility when that becomes
12 available, and the target date in our plan for used
13 fuel is that this disposal facility will be available,
14 we assume, by the year 2025.

15 The Canadian Nuclear Fuel Waste
16 Management Program was established in 1978 by an
17 agreement between the Governments of Canada and
18 Ontario. Under that agreement AECL was given the
19 responsibility for developing and assessing a disposal
20 concept, and Hydro had the responsibility for
21 developing transportation and storage technology under
22 that agreement.

23 I have already talked about our present
24 and longer term storage technology development. In
25 preparation for eventually disposal we are currently

1 investigating and assessing different options for large
2 scale transportation of used fuel, this would be from
3 storage to eventual disposal. We have looked at a
4 variety of technologies including transportation modes
5 by road, rail, water, or combinations thereof. We have
6 developed, built, tested and obtained AECB design
7 approval of a stainless steel transportation cask,
8 which is illustrated in my next overhead, which appears
9 at page 54 of Exhibit 519.

10 The main features to note are the solid
11 stainless steel construction, its dimensions of
12 approximately 2 metres cubed, and the impact limiter on
13 the top which is designed to protect the lid bolts in
14 the seal.

15 It's designed to hold two of the standard
16 fuel modules that I showed earlier, that is 192 fuel
17 bundles.

18 It's extremely robust, and we have proven
19 this through a series of successful international tests
20 that were intended to illustrate the effects of severe
21 transportation accident conditions, crushing,
22 penetration, fire tests, hydrostatic pressure tests and
23 so on.

24 In addition to storage and transportation
25 developments, Hydro has been contributing in many

1 technical areas of AECL's disposal development program,
2 including assistance with environmental and safety
3 assessment of the disposal concept, as that concept has
4 evolved over the years.

5 The disposal concept which has been
6 developed, basically involves placing the used fuel in
7 durable, long-lasting metal containers. Right now the
8 reference material for those containers is titanium,
9 and then placing these containers in an engineered
10 vault some 500 to 1,000 metres underground within rock
11 formations of the Canadian Shield.

12 This concept is illustrated in my next
13 overhead at page 55 of Exhibit 519. There are two
14 diagrams there. The diagram at the top illustrates the
15 general arrangement of shafts, access tunnels and
16 disposal rooms in the overall repository facility. The
17 diagram at the bottom shows a typical cross-section
18 through one of the disposal rooms in the vault.

19 The current reference design has each
20 disposal container placed in a bore hole surrounded by
21 sand and bentonite buffer materials.

22 The disposal rooms would eventually be
23 backfilled with mixtures of crushed granite, clays,
24 sand and then sealed off from the access tunnels with
25 heavy thick concrete bulkheads. And ultimately after a

1 period of monitoring, and once everyone is satisfied
2 and confident of the performance of this facility, the
3 whole vault, including tunnels and shafts, would be
4 backfilled and sealed.

5 One disposal facility like this would be
6 able to handle all of the fuel from Ontario Hydro that
7 we project, and the fuel from other nuclear utilities
8 in Canada.

9 Hydro plans to continue its support of
10 the disposal development program towards the 2025
11 disposal target date that I talked about.

12 In the near term our support will be
13 focusing on assisting AECL to complete an environmental
14 impact statement for review through the federal
15 environmental assessment and review process.

16 A review panel within that process has
17 already been established, and in fact it produced a
18 final EIS guidelines just very recently, earlier this
19 month.

20 AECL haven't completed their EIS
21 obviously as these guidelines have just been received,
22 but it's my understand that they intend to show in
23 their EIS that the technology does exist to safely,
24 site, build and operate and eventually close and seal a
25 disposal facility, that the methodology exists to

1 assess the performance of a disposal facility sited
2 somewhere within the Canadian Shield in terms of the
3 regulatory requirements for protection of human health
4 and the environment.

5 MR. D. POCH: Mr. Chairman, I'm sorry,
6 this seems to be all hearsay. He is telling us what
7 the AECL tells us.

8 THE CHAIRMAN: Mr. Poch, it's been that
9 kind of evidence all the way through the hearing.

10 MR. D. POCH: Mr. Chairman, if I may.
11 This seems to me to be a central matter, the whole
12 question of waste disposal and what test is being
13 proposed, what is being proposed for this Board to
14 review.

15 He has told us there is no environmental
16 assessment statement available. He is telling us the
17 speculations of another party, those materials aren't
18 available for us to question or cross-examine on. I am
19 not sure of the relevance of any of this anymore.
20 Clearly, that is a matter you are going to have to
21 wrestle within the context of the other motion.

22 THE CHAIRMAN: That whole matter is being
23 dealt with by another body as well. Isn't that also a
24 relevant consideration? It's a federal group dealing
25 with the whole issue of disposal; isn't that correct?

1 MR. D. POCH: Perhaps my friends can tell
2 us. Is it their assumption that this Board should just
3 accept that that will be dealt with adequately and
4 assume zero impact and zero risk. That could be the
5 relevant evidence here. But I don't see the point of
6 vague suggestions about what that impact is. Either
7 they should present the evidence or take the position
8 that it is not relevant to this hearing. But I am
9 concerned that this kind of half measure discussion is
10 just that, and it is a bit of a waste of time.

11 THE CHAIRMAN: Well, I am going to let
12 them put it in. It is matter of a wait. Let them deal
13 with their presentation. You can deal with it in
14 cross-examination.

15 MR. D. POCH: Thank you, Mr. Chairman.

16 MS. HARVIE: Q. Mr. Johansen?

17 MR. JOHANSEN: A. To continue then.

18 Finally, AECL also, as we understand it,
19 intend to show that there are many potentially suitable
20 sites or rock formations across the Canadian Shield.

21 AECL has been planning to submit their
22 EIS in 1993. Public hearings would follow sometime
23 after that, and I think a government decision on
24 acceptability of the concept could be reached very soon
25 by about 1995.

1 The Canadian geologic disposal concept is
2 consistent in our view with the direction taken in
3 other countries.

4 Several countries are at advanced stages
5 in development of disposal technology, and in fact,
6 Sweden and Switzerland have both completed assessments
7 of disposal technology, and they have concluded that
8 deep geologic disposal can be developed safely using
9 current technology and knowledge.

10 Assuming that government's decision on
11 the Canadian concept is positive, and we are not
12 prejudging that at all, there would still be a lot of
13 additional developments, reviews and approvals required
14 in order to actually have a repository in-service by
15 the year 2025, and these are broadly outlined in my
16 next overhead at page 56 in the package.

17 I guess it goes without saying that these
18 dates are very approximate.

19 Again, assuming a positive government
20 decision by 1995, there would have to be a government
21 decision at that time, or shortly after that, as to who
22 the disposal facility developer and operator will be,
23 that is a decision that has not yet been made. Beyond
24 that, the developer would have to undertake and
25 complete detailed disposal facility design and

1 engineering, site selection process development with
2 all the due consultation, broad based site screening
3 would then have to be undertaken and eventually site
4 selection, and both site and facility design would have
5 to be reviewed and approved through the appropriate
6 consultation and regulatory processes before site
7 development and construction could begin.

8 Finally, we should note that in parallel
9 with these disposal facility developments, Hydro and
10 other nuclear utilities would need to be developing
11 transportation systems.

12 So clearly, there will be a lot of
13 government regulatory and public checks and balances
14 before the concept assessment and review process that
15 we are in right now, before a disposal facility can be
16 realized.

17 We have provided considerable information
18 on this issue through the interrogatory process,
19 including response to 9.41.6, which was the used fuel
20 plan document.

21 So in summary, Hydro is managing its used
22 fuel safely and we can continue to do so for decades.
23 So there is no urgency in developing a disposal
24 facility, but nevertheless plans are in hand and
25 technology is being developed in an orderly fashion, so

1 that eventually we should be able to dispose of this
2 material.

3 Q. All right. Moving on to a different
4 kind of radioactive waste. I understand that the
5 operation and maintenance of nuclear plants results in
6 other radioactive wastes which are not as radioactive
7 as used fuel. How is Hydro presently managing these
8 wastes?

9 A. Yes, that's right, there are a number
10 of other radioactive materials that we generally refer
11 to as low and intermediate level wastes.

12 The radioactivity of this material is
13 typically less than 1 per cent of used fuel. We
14 classify this waste as either type 1 or type 2 or type
15 3, depending on the level of radioactivity that it
16 contains.

17 Type 1 waste is the least radioactive,
18 mainly consisting of common items like paper, rags,
19 mops, protective clothing and so on that become
20 contaminated during the operation and routine
21 maintenance and clean-up activities at our facilities.
22 And generally speaking, these materials don't require
23 shielding for handling purposes.

24 Some of this waste in fact is so low in
25 activity that it can be reduced in volume through

1 compaction or incineration, for example, papers and
2 cottons.

3 Type 2 waste, and this is somewhat more
4 radioactive than type 1 one, it generally consists of
5 filters and spent ion exchange resins used in various
6 water purification systems in the stations, and
7 shielding is generally required to handle this type of
8 waste.

9 Type 3 waste, which is the most
10 radioactive of the three categories, includes the more
11 radioactive filters and ion exchange resins, as well as
12 reactor components, for example, pressure tubes that
13 have been removed from the reactor, and shielding is
14 certainly required to handle this material.

15 Most of the radioactivity in low and
16 intermediate level waste decays to background levels in
17 a few hundred years, but some of it will remain active
18 for longer periods. So even though this waste is much
19 less radioactive than used fuel, it still needs to be
20 carefully managed for a long period of time.

21 Most of these wastes are or will be
22 transported from the individual reactor sites to our
23 central waste management site or the radioactive waste
24 operation site properly at the Bruce Complex.

25 Wastes from the retubing of reactors are

1 or they will be stored at the reactor site in special
2 concrete containers that are approved by the AECB.
3 This waste will be disposed of together with other
4 wastes that will arise when we start decommissioning
5 the reactors themselves.

6 Approximately 7,000 cubic metres of low
7 and intermediate level waste is produced each year and
8 sent to the Bruce site. By far the greatest proportion
9 of this, in fact some 97 per cent on average is type 1
10 waste, the least radioactive. Type 3 waste usually
11 accounts for less than 1 per cent of the annual volume
12 of this material.

13 Total quantities over a five-year period
14 from 1986 to 1990 were given by Panel 2 in Exhibit
15 1937, at page 19, for your information.

16 A breakdown for 1990 is given in my next
17 overhead, which appears at page 57 of your overheard
18 package.

19 This shows the annual, or at least for
20 1990, the volumes transported to the Bruce waste
21 management site in each waste category, and the total
22 quantity, as I said, is some 7,000 cubic metres.

23 In a typical year we make over 1,000
24 shipments of radioactive material without incident.
25 This includes tritiated heavy water going to the

1 tritium removal facility at Darlington, as well as low
2 and intermediate wastes going to the Bruce Complex.

3 All the shipments are carried out in
4 accordance with the AECB and Transport Canada
5 regulations.

6 My next overhead shows the facility that
7 I have been talking about, that is the radioactive
8 waste operation site at Bruce.

9 I should apologize for the quality of
10 this overhead, it's not as good as I had hoped it would
11 be. But perhaps it will be clearer in the hard copy
12 you have got in the package.

13 I want to emphasize that this facility is
14 anything but a landfill site. It's a highly engineered
15 and monitored waste management facility that has been
16 developed over the years to serve the needs our growing
17 nuclear system.

18 It includes a range of processing and
19 storage facilities specifically designed for different
20 types and different forms of waste. For example, in
21 the centre of the picture at what is labelled 2 is the
22 waste volume reduction facility which includes
23 compaction equipment, as well as a two-section
24 incinerator system, one section for radioactive low
25 level wastes, combustible wastes that is, and one

1 section for non-radioactive wastes.

2 This facility is currently able to reduce
3 the volume of waste that it processes by about 60 per
4 cent overall, and we are currently looking at the
5 feasibility of upgrading this facility so that it would
6 be able to reduce the volume of future wastes by some
7 90 per cent.

8 To the right of the waste volume
9 reduction facility at label 5 is shown the storage
10 building, low level radioactive waste storage building
11 which is a pretty conventional building used for low
12 level wastes and ash from the incinerator. The ash,
13 incidentally, is stored in steel drums.

14 Shown below the waste volume reduction
15 facility are a number of areas or stages of in-ground
16 concrete structures referred to as trenches and tile
17 holes which are used for low to median level wastes,
18 and these are the shown at labels 1A, 1B, 3A, 3B and
19 3E.

20 And finally, at the lower left-hand
21 corner of the picture is a row of above-ground
22 structures, concrete structures referred to a
23 quadricells, they contain four compartments, and these
24 are used for special type 3 wastes such as bulk resin
25 containers.

1 [12:21 p.m.]

2 The overall site here is serviced by both
3 surface and subsurface drainage systems and effluent
4 monitoring.

5 These waste management facilities at
6 Bruce, plus available unused space at the site, are
7 expected to provide sufficient storage capacity for our
8 nuclear system needs until the year 2015 at least.

9 Our current radioactive waste management
10 operations are similar to those used in other countries
11 that produce low and intermediate level rad wastes.
12 Some countries now are beginning to put disposal
13 facilities into service for disposal of these kinds of
14 wastes, for example, France, Sweden and the U.K.

15 Q. Mr. Johansen, what are Hydro's plans
16 for longer-term management of these wastes and the
17 future waste from decommissioning of existing nuclear
18 facilities?

19 A. First of all, we have set a target as
20 I think I alluded to before of reducing by some 50 per
21 cent the volume of waste produced from our nuclear
22 operations by the year 2000.

23 Exhibit 43 which was Ontario Hydro's
24 presentation to ONCI, the Nuclear Cost Inquiry,
25 describes our planned three-phased decommissioning

1 approach which is referred to as deferred
2 dismantlement.

3 We have already developed conceptual
4 plans for decommissioning each of our existing nuclear
5 facilities based on this deferred approach and these
6 plans have been registered with the AECB and a copy of
7 the plan for Pickering, Bruce and Darlington was
8 submitted in response to Interrogatory 9.6.8.

9 Our general plan following retirement of
10 each station is to remove the used fuel and the heavy
11 water from the reactors and to keep these materials in
12 on-site storage until a disposal facility is available.
13 This would be Phase 1 of the three-phased approach.
14 Heavy water alternatively can be reused or sold,
15 depending on future circumstances and needs.

16 The station structures and other
17 radioactive materials would subsequently be maintained
18 under surveillance for some 30 years, this would be
19 Phase 2, prior to final dismantlement and disposal of
20 materials and restoration of the site, which would be
21 Phase 3.

22 The majority of the waste materials which
23 would be produced from decommissioning of a nuclear
24 facility, in fact over 90 per cent by volume, would not
25 be radioactive and this is shown in Exhibit 43.

1 We are in the process of developing a
2 plan for disposal of these wastes some time earlier
3 than the target date I indicated for disposal of used
4 fuel. The year 2015 is considered to be an achievable
5 date, a target date for bringing a low and intermediate
6 level waste disposal facility into service, compared to
7 2025 for used fuel. This 2015 target year will be well
8 in advance of the time when the first of our nuclear
9 stations is likely to be dismantled.

10 Finally, our planning approach for
11 disposal of all low and intermediate level waste is
12 described in more detail in our radioactive materials
13 management overview document which we provided in
14 response to Interrogatory 9.9.41.

15 Q. Thank you for that very thorough
16 description of radioactive materials management.

17 For the final question, from an
18 environmental protection viewpoint do you believe that
19 Hydro's nuclear power plants can be operated safely to
20 the end of their planned service lives?

21 A. Yes, I do. I believe that our plants
22 are basically well designed, monitored and controlled.
23 Maintenance programs are planned and feasibility
24 studies and research is under way that could lead to
25 further reductions in emissions and effluents

1 consistent with our ALARA policy and we have got plans
2 and development programs under way for long-term
3 management of radioactive materials.

4 So, yes, I do believe that our plants can
5 operate to the end of their planned service lives.

6 Q. Thank you, Mr. Johansen.

7 MS. HARVIE: The next segment of
8 evidence, Mr. Chairman, will be delivered by Mr. Penn
9 and it deals with economics of Hydro's existing nuclear
10 program.

11 Q. Mr. Penn, I understand you will be
12 dealing with the current and expected cost levels
13 associated with existing nuclear facilities including
14 Darlington; is that correct?

15 MR. PENN: A. That's right. And I would
16 like to do this by first explaining the various cost
17 categories which contribute to the current costs of our
18 nuclear generating supply; and, secondly, changes in
19 these costs that might be expected during the planning
20 period which include both increases and decreases.

21 Q. I take it that considerable evidence
22 on these subjects is available to the Board?

23 A. Yes, substantial information is
24 included in the following documents: Exhibit 3, which
25 is of course the Demand/Supply Plan report, Exhibit 43,

1 the ONCI document prepared by Ontario Hydro, and this
2 contains a comprehensive 1988 review of every aspect of
3 nuclear costs of the current system and a potential
4 multi-unit 4 by 881 megawatt CANDU option in the
5 future.

6 While detailed changes have occurred
7 since 1988 and more is now known about our operating
8 stations, including Darlington, Exhibit 43 continues to
9 be a major reference and a valuable resource of nuclear
10 generation cost data and methodology for the entire
11 nuclear lifecycle.

12 Third, Exhibit 44, Report to the Minister
13 of Energy on ONCI; and, lastly, fourth, Ontario Hydro's
14 answers to about 400 DSP interrogatories on costs.

15 Q. In order to provide some context for
16 the discussion of costs, I understand you will be
17 referring to the nuclear cost model used during the
18 nuclear cost --

19 THE CHAIRMAN: Just so that we don't lose
20 sight of this, an interrogatory isn't evidence until
21 it's been referred to at the hearing.

22 MS. HARVIE: No, that's correct, Mr.
23 Chairman.

24 Q. Could you describe further this
25 nuclear cost model?

1 MR. PENN: A. Yes. This model is not a
2 computer model, it's as shown on the easel immediately
3 to your right and on the overhead and it's also
4 referred to on page 59 of Exhibit 519, and it shows
5 that the total costs are made up of three cost
6 divisions called capital, operations, maintenance and
7 administration, and fueling costs.

8 The model then sets out various cost
9 components which are shown below which contribute to
10 each of these three cost divisions.

11 Q. All right. I would like you then to
12 take us across the boxes on the next row and giving us
13 a bit of a description about what each covers, its
14 importance with respect to the economics of the current
15 nuclear system?

16 A. I would like to start with initial
17 capital cost. That's the cost of our stations at the
18 date the units go into service. The initial or
19 original cost of a CANDU station consists of five
20 subcomponents; namely, the dry cost, heavy water cost,
21 initial fuel, commissioning, and staff training costs.

22 The dry costs are those associated with
23 putting the completed structures in place and with many
24 other important activities which determine the eventual
25 success of the station. These activities included in

1 dry cost are: The approvals process for the project,
2 including a hearing such as this, site characterization
3 and preparation of the site, design engineering of the
4 plant, construction of the plant, the purchase of
5 material and equipment acquisition, project engineering
6 during the building of the plant, supply contract
7 supervision, project control of costs and schedule,
8 quality engineering and assurance, and not least of
9 all, the satisfaction of our regulatory authorities
10 during the process of building the nuclear power
11 station.

12 Beyond this dry costs also include the
13 cost of community impact agreements. Of course, they
14 also include the important components of interest
15 accumulated on all expenditures prior to in-service and
16 overhead costs. The dry costs are the largest single
17 lifetime cost component in this cost model and amount
18 to about 58 per cent of the total lifetime costs as
19 shown in Interrogatory 9.2.118.

20 The second component of the initial
21 capital cost is for the fill of the heavy water
22 moderator and coolant systems. These costs include the
23 heavy water production at the Bruce heavy water plant,
24 its transportation to the station site and then the
25 process of filling the reactors.

1 Moving down the list to the third
2 component, half of the initial uranium fuel charge of
3 the reactors is capitalized. The fourth component of
4 initial capital cost is commissioning of the station.
5 Commissioning is a process of checking that all of the
6 systems and components perform their intended function
7 and the resolution of any deficient performance. It
8 also includes placing the station in-service.

9 Commissioning activities are very
10 important. They ensure that all equipment is reliable
11 and safe. The process trains future operating
12 personnel and maintenance staff with hands-on
13 experience.

14 The fifth and final component under
15 initial capital is staff training. The capitalized
16 training costs are about 1 per cent of the lifetime
17 cost of a four-unit CANDU station. These expenditures
18 are important to the smooth operation of the plant.
19 The training costs including the acquisition of
20 simulators which are like airplane simulators, are
21 partly capitalized since the benefit is received by the
22 future customers once the units are in-service.

23 The training includes that of authorized
24 staff who assume control of the operating station,
25 technicians, training for maintenance personnel,

1 support engineering staff and administrative staff.
2 All of these initial capital costs that I have
3 described are sunk costs; that is, money which has
4 already been spent to build our existing stations.
5 Except for the money being spent to complete
6 Darlington, these costs won't now change. During the
7 station's lifetime these costs are depreciated over the
8 40-year life of each generating station.

9 In total, the initial capital costs
10 represent about 64 per cent of the total lifetime costs
11 of a four-unit nuclear plant expressed on a present
12 value basis.

13 In ONCI, Exhibit 43, there is further
14 extensive information on this subject which I will
15 update during my evidence.

16 Q. The next box to the right of initial
17 capital is labelled LSFCR. Would you expand on that
18 please, Mr. Penn?

19 A. Well as I mentioned in my
20 introductory evidence, LSFCR or large scale fuel
21 channel replacement or, in simple terms, retubing of
22 CANDU reactors, means the replacement of the pressure
23 tubes which are part of the coolant and contain the
24 uranium fuel.

25 This process with which Hydro has

1 extensive experience entails a major repair to the
2 heart of a CANDU reactor. It involves the removal of
3 all pressure tubes throughout the reactor and
4 replacement with new ones.

5 When the CANDU horizontal pressure tube
6 concept was first committed in 1957, there was limited
7 pressure tube technology. Pressure tubes in Pickering
8 "A" were assumed to have an economic lifetime of 15
9 years, accordingly, all CANDU reactors have been
10 designed to permit pressure tube replacement.

11 Subsequent reactors, as I noted earlier,
12 have improved fuel channel design features which has
13 led to expected 30 year lives for the pressure tubes in
14 the "B" stations and in Darlington.

15 We have extensive knowledge on how to
16 retube reactors safely. Our record is one of reducing
17 time to do the job. Retubing costs are expected to
18 represent about 2 per cent of the total lifetime cost
19 for the "B" reactors and Darlington. Including the "A"
20 reactors which have pressure tube lives between 12 and
21 25 years, this cost increases to about 4 per cent of
22 the lifetime current nuclear system costs.

23 Q. All right. The next box is capital
24 modifications. Would you describe that in further
25 detail, please?

1 A. Capital modifications add improvement
2 to the current nuclear assets and, therefore, provide
3 benefits to future customers, that's why they are
4 capitalized.

5 They involve replacement of a plant
6 component that is identified as having a shorter life
7 than the station. These costs are subject to annual
8 reviews before the Ontario Energy Board. Modifications
9 that cost less than \$100,000 are expensed and are
10 included in OM&A costs, which I will address later.

11 Examples of projects that are included in
12 the planning estimates for capital modifications are as
13 follows, and there are five categories.

14 First, repair projects of all kinds
15 including repair to ensure equipment continues to meet
16 regulatory needs.

17 Second, replacement of station components
18 with shorter lives than the station life, for example,
19 condensers and moderator heat exchangers.

20 Third - and a point that Mr. Johansen
21 mentioned - addition of new facilities to accommodate
22 low level waste.

23 Fourth, unidentified major
24 contingencies - a subject I will talk about later - but
25 an example is possible steam generator replacement.

1 And, finally, fifth, major new spare
2 parts such as turbine rotors, generator rotor and
3 generator status. Capital modifications are expected
4 to contribute about 7 per cent of the power station's
5 total lifetime costs.

6 Q. And decommissioning, what does that
7 include?

8 A. Decommissioning involves the removal
9 of the station structures and restoration of the site
10 to the point where it can be used for other purposes.
11 The procedures and methods are included in
12 Interrogatory answers 9.7.25 and 9.6.8 and were
13 mentioned by Mr. Johansen. These methods and costs
14 have been reviewed by the Ontario Energy Board.

15 Chapter 25 of the ONCI document, Exhibit
16 43, also provides a comprehensive description of the
17 methods to decommission CANDU nuclear plants and
18 compares these methods and costs with those elsewhere
19 in the world.

20 The recommended method is to remove the
21 irradiated uranium fuel and heavy water from the
22 reactors when the station is declared out of service.
23 Mr. Johansen said then the station is secured for 30
24 years to allow reactor radiation to reduce by a factor
25 of 1,000 and then we intend to use methods known today

1 to demolish the entire station.

2 In addition, it is an AECB's requirement
3 in granting the Darlington operating licence that
4 satisfactory evidence be provided for the plant's
5 eventual decommissioning. This information is given in
6 Interrogatory 9.7.25.

7 Our knowledge of how to safely remove
8 highly active pressure tubes in retubing, our
9 experience in assisting Atomic Energy of Canada Limited
10 with their process of decommissioning the nuclear power
11 demonstration plant and Douglas Point, and our
12 involvement in other world decommissioning studies,
13 such as the Shipping Port Reactor in the United States
14 and our collaboration with the United Kingdom and
15 Sweden gives us confidence in our decommissioning plans
16 and their costs.

17 Decommissioning represents 0.2 per cent
18 of total lifetime costs. This percentage is very small
19 because costs are discounted over a very long period of
20 time. Provisions to pay for our CANDU station's
21 removal using an annuity method started in 1982 and now
22 amounts to \$314 million.

23 [12:40 p.m.]

24 Q. The next section is labelled OM&A and
25 the first category under that section is called POMA.

1 Could you describe that, please, Mr. Penn.

2 A. POMA is an acronym for partial
3 operations maintenance and administration costs, and it
4 is related to the day-to-day costs of operating a CANDU
5 nuclear station.

6 POMA is divided into two sub categories,
7 which are direct OM&A and OM&A training.

8 On page 60 of Exhibit 519 we have
9 described the type of things done in POMA and in
10 training. These activities comprehensively describe
11 how Hydro accounts for all the necessary actions to
12 operate its reactors reliably and safely, including the
13 continuous training of all staff during the station's
14 life.

15 POMA is expected to represent about 20
16 per cent of the lifetime nuclear costs and is, of
17 course, related to operating performance. Future OM&A
18 over the balance of the planning period will be
19 discussed later.

20 Q. The next category on page 59 of
21 Exhibit 519 is labelled heavy water upkeep. What is
22 involved in this activity?

23 A. Heavy water upkeep is also comprised
24 of several components, actually three, and is shown on
25 the next overhead and listed on page 61 of our Exhibit

1 519.

2 The three components are loss makeup,
3 upgrading of isotopic concentration of recovered water,
4 and tritium removal from station water to improve
5 operating staff and public protection.

6 The CANDU design ensures that 95 per cent
7 of the small amount of heavy water that escapes from
8 the system is recovered, purified and reused.

9 The unrecovered portion, that is 5 per
10 cent of that which escapes, is the loss makeup that's
11 shown on this overhead. This portion is small in terms
12 of cost over the nuclear station lifecycle.

13 The tritium removal facility at the
14 Darlington site is now in operation and will contribute
15 to reduced tritium exposure at all of our nuclear
16 stations. It is, however, being used first initially
17 to reduce exposures at Pickering nuclear generating
18 station.

19 Heavy water upkeep in total is less than
20 1/2 per cent of the total lifetime costs.

21 Q. Going back once again to the nuclear
22 cost model, the next heading is called fueling, and the
23 first box beneath is called acquisition, what does that
24 cover, Mr. Penn?

25 A. Fuel acquisition includes the cost of

1 uranium concentrate at the mines, the subsequent
2 refining of the uranium, its conversion to oxide, and
3 the manufacture of fuel bundles.

4 These procedures and processes are
5 straightforward and representative of a mature
6 industry.

7 The fuel bundles delivered to our
8 stations are highly dependable.

9 Future fueling costs depend mainly on the
10 source of uranium supply. At this time fuel
11 acquisition is 6 per cent of the total lifetime costs
12 of nuclear electricity generation.

13 Q. The next box is labelled disposal,
14 what does that cover?

15 A. Mr. Johansen spoke about disposal of
16 used fuel and it's further described comprehensively in
17 Exhibit 43.

18 In addition, Interrogatory 9.41.6
19 describes Ontario Hydro's used fuel management plan.
20 The conceptual design of the disposal facility has been
21 developed by Atomic Energy of Canada Limited on behalf
22 the federal government. The design is the result of
23 more than 12 years of research and development which
24 includes an underground laboratory in the Canadian
25 Shield at Whiteshell, Manitoba, examination of major

1 natural radioactive sources known to have stably
2 existed for thousands of years, and extensive
3 international collaboration.

4 As Mr. Johansen stated, the conceptual
5 design of the repository calls for final disposal of
6 the used fuel deep in plutonic rock in the Canadian
7 Shield.

8 The cost estimate of our participation,
9 that is Ontario Hydro's participation, in a detailed
10 design and construction of this eventual facility is
11 \$3.4 five billion in 1992 dollars. Such a facility
12 would be first in-service in 2025.

13 The estimated Hydro capital cost includes
14 room for all used fuel from our current reactors to the
15 end of their life. It also includes a further margin,
16 that for assumption purposes is associated with the
17 total discharged fuel from a future 4 by 881 megawatt
18 station, so that our cost provisions are related to
19 storing permanently five million fuel bundles.

20 The operating cost of this facility
21 including transportation, immobilization at site and
22 disposal of used fuel is estimated in 1992 dollars to
23 be \$1,575 per bundled.

24 A provision for this predicted
25 eventuality has been collected since 1982. The cost to

1 the electricity consumer in 1992, that's this year, is
2 0.07 cents per kilowatthour. And the accrued provision
3 to date including interest earned is \$624 million.
4 This matter is also subject to annual review by the
5 Ontario Energy Board.

6 Disposal of used fuel represents just
7 over 1 per cent of the total lifetime nuclear
8 generation cost. The reason for this small percentage
9 is the extensive time extending to the middle of the
10 next century that these activities will occur.
11 Provisions for this cost extend to 2033, which is the
12 current date that Darlington would be declared out of
13 service.

14 Q. And finally, under the fueling
15 category the box inventory appears. Would you describe
16 what that covers, please.

17 A. Inventory cost is the interest
18 charged on the new fuel in storage at all our nuclear
19 generating stations.

20 Sufficient fuel is kept at our stations
21 to allow each reactor to operate at full power for six
22 months. This policy is followed to ensure no
23 interruption of electrical output due to loss of fuel
24 production in any part of the fuel acquisition process.
25 This inventory or interest cost in our inventory

1 contributes about 0.4 per cent of the total lifetime
2 nuclear generation cost.

3 Q. Now, Mr. Penn, the percentage figures
4 you have been giving I take it are your general
5 expectations for stations of the kind now in Ontario
6 Hydro's system. What is the basis for the 1 per cent
7 of lifetime costs that you have been quoting?

8 A. They apply to large four unit
9 integrated CANDU stations of the type we have on our
10 system.

11 Page 62 of Exhibit 519 summarizes the
12 figures I have quoted and updates the ONCI data to 1991
13 information.

14 The percentages could vary somewhat for
15 our existing stations. For instance, I would expect
16 the capital modifications and the retubing percentages
17 to be somewhat higher for our "A" stations, but I think
18 they provide a good general indication of the relative
19 size of the various cost components involved.

20 Q. Well, looking across the top row of
21 this overhead, I take it that within each of the three
22 major cost divisions there are some items which are of
23 particular interest with respect to the ongoing cost of
24 operating the nuclear system. Would you identify what
25 these are first in the capital section?

1 A. Well, looking at the way in which
2 costs might vary for the balance of the planning period
3 and starting with capital.

4 Initial capital cost, as I mentioned
5 earlier, is sunk, and when looking at the future
6 capital costs the main areas of interest are large
7 scale fuel channel replacement or retubing that will be
8 done in the future; capital modifications in the
9 future, and the eventually decommissioning of our
10 nuclear generating stations.

11 Q. I take it dealing with large scale
12 fuel channel replacement, that this is an area where
13 you have considerable experience in which to project
14 future costs; is that correct?

15 A. Yes.

16 Retubing is required when the reactor
17 pressure tubes reach the end of their service life.
18 The pressure tubes during their life are limited by
19 irradiation induced axial growth or by a failure
20 process known has delayed hydride cracking. Hydro has
21 extensive knowledge of both processes, including how to
22 mitigate them to extend life for pressure tubes and
23 when to replace the pressure tubes.

24 The life of the pressure tubes depends on
25 the particular design of the fuel channel assemblies

1 which varies from Pickering type station to Bruce type
2 station, and it also depends on the position of the
3 supports or the garter springs that we have mentioned
4 to you several times.

5 Prolonged contact, if these garter
6 springs are not in their correct place, can prematurely
7 end the life of the pressure tubes. Due to the fact
8 that if there is prolonged contact of the hot pressure
9 tube on the cold calandria tube and accompanied by
10 tensile stress, then hydrogen or deuterium that's
11 present will ingress to the zirconium tube and cause a
12 delayed cracking process of the zirconium alloy.

13 The Hydro "A" stations are prone to this
14 problem. But pressure tube lives are being extended by
15 repositioning the garter springs.

16 The Hydro "B" nuclear stations have
17 designs which avoid this problem. Their pressure tube
18 lives are limited to 30 years by axial elongation.

19 Retubing has now been successfully
20 carried out at Pickering Units 1, 2 and 3. Unit 4 is
21 now being retubed, so that we feel we have a growing
22 data base on which to be confident of future costs.

23 I should mention that the Unit 4 work is
24 ahead of schedule and within cost estimates. In fact,
25 taking the retubing program as a whole, it has been

1 successful in performing the work and within estimated
2 costs.

3 Q. Could you outline Hydro's plan for
4 retubing its reactors in the future?

5 A. The following table, which is shown
6 on page 63 of Exhibit 519 shows our current plans.

7 On of the left-hand side of the table we
8 list all 20 units in the present nuclear generating
9 system. The next column in gives you the dates on
10 which each of these units was declared in-service, and
11 the third column provides the pressure tube life in
12 years.

13 You will note that for Pickering 1 and 2,
14 as Mr. King was mentioning this fateful day on August
15 3rd, 1983, when we had a pressure tube failure in Unit
16 2, caused a reduced life of the pressure tubes to 12
17 years. The lives of Pickering 3 and 4, when the
18 reactors were shut down to retube, was 17 and 18 years
19 respectively.

20 The life is also limited at Bruce 1 and 2
21 by axial elongation in the channel assembly design, but
22 from there onwards lives extend up to 30 years, and the
23 lives are chosen such that we will never be retubing
24 more than one nuclear reactor at a given station at a
25 particular time. We found by experience of retubing 1

1 and 2 of Pickering in parallel, that this is not an
2 effective and efficient thing to do.

3 The next column provides the retubing
4 outage in months. You will note a significant
5 reduction from the first reactor, Pickering 2, through
6 to Pickering 1 and there onwards.

7 The Bruce units, at Bruce "A", are of a
8 different fuel channel design, and containment, as I
9 noted in my introductory comments, square and of
10 different size, and will cause us to have a slightly
11 longer period than, for example, a continuing decline
12 as shown by Pickering 3 and 4.

13 The actual proposed dates that we are
14 planning to do the retubing of all these nuclear
15 stations is shown in the fourth column, fifth column
16 and the final column on the right-hand side shows the
17 station retube costs, that includes removal and
18 replacement, in 1992 dollars per kilowatt for each of
19 the five stations.

20 You will note that the costs of Pickering
21 B, that's the third row, is substantially lower, at
22 \$321 per kilowatt, than Pickering "A" at 477. And
23 also, a comparison of Bruce "B" costs relative to Bruce
24 "A" costs show a similar decline.

25 One of the main reasons is that we, in

1 retubing Pickering "A" and Bruce "A", have put in place
2 facilities on site and tooling in order to carry out
3 the repair which would be subsequently utilized in the
4 "B" stations. Similarly, at Darlington we would have
5 to set up an infrastructure there to carry out that
6 work.

7 The next figure --

8 MS. HARVIE: Mr. Penn, perhaps this would
9 be an appropriate time to break before we go on to the
10 next overhead.

11 THE CHAIRMAN: We will break until 2:30
12 this afternoon.

13 THE REGISTRAR: Please come to order.
14 This hearing will adjourn until 2:30.
15 ---Luncheon recess at 1:00 p.m.

16 ---On resuming at 2:35 p.m.

17 THE REGISTRAR: Please come to order.
18 This hearing is again in session. Be seated, please.

19 THE CHAIRMAN: Ms. Harvie.

20 MS. HARVIE: Q. Mr. Penn, you were
21 outlining Hydro's plans for retubing its reactors in
22 the future and you dealt with the schedule and were
23 beginning to speak to the costs in more detail when we
24 took a break for lunch and I wonder if you could
25 continue on starting with this overhead on page 64 of

1 Exhibit 519.

2 MR. PENN: A. Yes. This figure from
3 Exhibit 519 provides the actual retubing costs in
4 constant 1992 dollars per kilowatt of total capacity
5 per annum until 1991 and that predicted for the balance
6 of the planning period.

7 The variation in time reflects the
8 increasing life of pressure tubes and the eventual
9 overlapping and parallel activities of Pickering "B"
10 and Bruce "B" stations. The figure shows that the
11 retubing campaign at Pickering "A" is 10 years, that at
12 Bruce "A" will be spread over a period of 17 years, and
13 we will have activities at Pickering "B" and Bruce "B"
14 for 12 years towards the end of the planning period.

15 This series of events explain the shape
16 of the retubing cost variation over the planning
17 period.

18 Q. And what has your experience been
19 with the next area, capital modifications?

20 A. Capital modifications have been made
21 to Ontario Hydro's operating nuclear stations to
22 enhance public safety and improve station performance.
23 Important modifications have occurred between 1976 and
24 1990 and the major ones are shown on page 65 of our
25 exhibit.

1 I don't intend to discuss the detail of
2 them, but I would like to talk about capital
3 modification costs.

4 The cost of the nuclear program capital
5 modifications between 1976 and 1991, whose activities I
6 have just shown on the previous slide, per unit of
7 totally installed capacity in dollars per kilowatt is
8 shown on page 66 of Exhibit 519. The costs are
9 provided in constant dollars.

10 Please remember that I previously defined
11 capital modifications to include major repairs,
12 replacements due to wear, system additions, major
13 contingencies and significant new spares. Capital
14 modifications, as you can see from this figure, are on
15 average about \$22 dollars kilowatt per year for the
16 last 15 years. This is equivalent of slightly more
17 than 1 per cent per year of the average initial capital
18 cost of the current operating nuclear stations which,
19 in 1991 dollars, is \$2,025 per kilowatt installed,
20 assuming a 4 per cent real interest rate.

21 Q. Will it be the older stations where
22 the greatest expenditures will occur for capital
23 modifications in the future?

24 A. Yes. Most capital modifications will
25 be associated with Pickering "A" and Bruce "A"

1 stations. They will be completed during the planned
2 and retube outages. Capital modifications on Pickering
3 "B", Bruce "B" and Darlington are also included in the
4 planning period estimates but they are smaller costs
5 than those for the "A" stations.

6 Equipment replacement is based on
7 continuous in-service inspection of the equipment and
8 the cost is reviewed annually by the Ontario Energy
9 Board. Rehabilitation categories include reliability
10 and operating cost improvements, regulatory and
11 environmental upgrades, and employee safety
12 improvements.

13 Many individual equipment modifications
14 are shown in the rehabilitation categories. Regulatory
15 safety improvements involve actions such as the upgrade
16 of the safety shutdown system at Pickering "A" that Mr.
17 King alluded to.

18 The other categories, other initiative
19 categories I mentioned include items such as MISA, that
20 is Municipal Industrial Strategy for Abatement of
21 Effluents, PCB elimination, environmental qualification
22 of equipment for post-accident conditions, nuclear
23 plant life assurance, and quality improvement
24 initiatives.

25 Q. All right. Would you please

1 summarize the costs of capital modifications to the
2 nuclear system in the future?

3 A. My overhead shown on page 67 of our
4 exhibit shows costs in 1992 dollars for capital
5 modifications that have already been carried out, those
6 planned, and those forecast through to the year 2014.

7 In approximate terms the trend between
8 1976 and '91 was \$22 per kilowatt per annum. From 1992
9 to 2001, it is forecast at \$27 per kilowatt per annum
10 including possible steam generator rehabilitation and
11 22 kilowatts per annum is forecast from 2001 onwards.

12 The expected costs between 1992 and 2002
13 are based on our 10-year business budget. As shown by
14 the shaded area in the middle of the graph, there is
15 potential for increased costs associated with the Bruce
16 "A" steam generators, however, that situation is being
17 investigated and no decision has yet been taken.

18 The costs represented by the shaded area
19 allows, if we have to, the replacement of all eight
20 steam generators in Bruce Unit 2 and the refurbishment
21 of steam generators in Units 1, 3 and 4. The variation
22 in time for the forecast period, that's beyond the ones
23 I have been talking about, reflects the extensive
24 modifications to Bruce "A". It also shows the range of
25 our predictions for the balance of the planning period

1 to the year 2014.

2 Q. Mr. Penn, has Ontario Hydro performed
3 economic or financial tests to ensure that these future
4 capital modifications are economic?

5 A. Yes. Financial tests have compared
6 the economics of needed modifications and retubing with
7 replacement energy options. An example of that is
8 shown on page 68 of Exhibit 519 and it shows the net
9 present value of the future incremental costs of Bruce
10 "A", including OM&A costs, fuel costs, capital
11 modifications, and retubing to its retirement date, and
12 that is the block shown to the right and headed \$2.7
13 billion.

14 The net present value of the incremental
15 costs of continuing Bruce "A" operation for its 40-year
16 service life until 2018, including retubing, capital
17 modifications, and other initiatives I described
18 earlier, is \$2.3 billion shown in the bottom half of
19 that block diagram.

20 When steam generator refurbishment is
21 included and if it becomes necessary to replace all
22 eight steam generators in Bruce Unit 2 when it is
23 retubed, the net present value increases to 2.71
24 billion.

25 Looking over to the left of the first

1 block diagram, the present value of replacing Bruce "A"
2 station with existing fossil and new fossil generation,
3 which would include combustion turbines and
4 combined-cycle units, at the time that the Bruce "A"
5 units are each retubed, is \$4.5 billion. Thus, the
6 advantage of refurbishing the Bruce "A" station is
7 \$1.79 billion net present value when compared with
8 replacement fossil capacity and energy, taking all
9 costs into account.

10 The detail of these types of comparisons
11 can be provided by Panel 10.

12 At this time only one of the eight steam
13 generators on Bruce Unit 2 indicate concerns to us
14 warranting consideration for future replacement.

15 Continuing inspections indicate that the
16 steam generators on Bruce Units 1, 3 and 4 can be
17 cleaned and refurbished, thus, the net present value
18 shown on figure 68 is considered conservative.

19 If we took an extreme scenario where we
20 assume that all 32 steam generators in the Bruce "A"
21 station in every unit were replaced when each of those
22 units were retubed, the advantage of refurbishing the
23 station would become \$1.63 billion relative to fossil
24 energy and capacity replacement.

25 Q. Thank you, Mr. Penn. The next box on

1 the overhead, being page 62 of Exhibit 519 is -- oh,
2 yes, is decommissioning. What costs have been allowed
3 for that purpose?

4 A. Current cost estimates for
5 decommissioning our nuclear plants are unchanged from
6 those given in Exhibit 43 which is the ONCI document,
7 except for escalation from 1988 dollars to 1992
8 dollars.

9 As mentioned before, decommissioning
10 represents 0.2 per cent of the 40-year lifetime
11 generation of a CANDU station, taking into account the
12 extreme length of time into the future that such an
13 activity would occur.

14 The 1992 cost estimates for
15 decommissioning our nuclear stations are \$1.11 billion
16 for both Pickering "A" and "B"; \$1.27 billion for both
17 Bruce "A" and Bruce "B"; and \$960 million for
18 Darlington. The provisions collected to do this so far
19 amount, with interest, to \$314 million, that's 1992
20 dollars.

21 Allowing for the 30-year stop and store
22 period, our present plans call for completing the
23 decommissioning of our nuclear stations, starting with
24 Pickering "A", by the year 2060 and ending with
25 Darlington in the year 2073.

1 Q. All right. Turning now to the OM&A
2 area, could you give the panel a general picture of how
3 those costs attract over time?

4 A. Yes, and here we are really talking
5 about partial operations, maintenance and
6 administration costs. We don't expect any significant
7 increase in the cost of heavy water upkeep.

8 If we turn to the next page, to page 69,
9 this figure shows for the existing nuclear program how
10 the OM&A unit capacity costs have changed over the
11 period 1974 to 1991 in 92 dollars per kilowatt.

12 During the period 1974 to 1982, costs
13 rose slightly on a constant dollar basis. Following
14 this period when we had surplus generation and also
15 economic conditions led to budget restraints which cut
16 into OM&A resources, you can note that the OM&A cost
17 declined, and it was over that period that the
18 performance of our nuclear stations tended to decline
19 also.

20 The resulting backlogs of preventative
21 maintenance, repairs of minor system deficiencies, and
22 installation of testing of modifications contributed to
23 the decline in our nuclear performance.

24 Our cost analysis reported in ONCI in
25 1988 recognized that direct OM&A costs needed to

1 increase starting in '88 to respond to declining "A"
2 station capability factors.

3 OM&A resources, mainly staff, were
4 increased starting in that year. The rate of increase
5 of OM&A costs over the past few years has been high to
6 restore performance to an appropriate level.
7 Nevertheless, our current OM&A cost level at the end of
8 1991 is still about 50 per cent of the United States
9 average for light water reactors.

10 Q. You see the OM&A costs remaining at
11 this higher level in the future?

12 A. Yes, I do. It's clear that adequate
13 operations support, both at the stations and by
14 engineering science and administrative staff at head
15 office and within Canadian industry, is most important
16 to achieve high capability and, therefore, low system
17 costs.

18 The figure on page 70 consolidates actual
19 OM&A costs in the '74 to '91 period with those budgeted
20 over the next 10 years and predicted up to 2014 in '92
21 dollars per kilowatt.

22 In the forecast period, that's beyond to
23 the right-hand side at the vertical dotted line, the
24 initial drop is related to the capacity of Darlington
25 coming on line, therefore, increasing the kilowatt

1 capacity. From 1993 onwards the projected OM&A is
2 shown as a diverging band. This band is based on ONCI
3 assumptions for 80 per cent confidence limits of the
4 future OM&A cost to 2014.

5 Q. All right. Turning now to the
6 fueling costs, could you give a general picture of how
7 these costs attract over time as well?

8 A. The fueling costs are shown on the
9 next overhead, page 71 of our exhibit. This shows the
10 fueling cost variation in cents per kilowatthour of
11 energy delivered during the period 1974 to the end of
12 1991.

13 The actual cost experience between 1974
14 and 1986 increased by nearly a factor of three,
15 however, the costs since the mid-80s have moderated.
16 This cost variation is mainly due to escalating uranium
17 ore prices in the Ontario/Elliot Lake contracts and the
18 subsequent influence of lower cost supplies from
19 Saskatchewan.

20 Q. Overall then, what does Ontario Hydro
21 see happening to its nuclear fueling costs in the
22 future?

23 A. Our fueling unit energy costs in
24 constant cents per kilowatthour are summarized on page
25 72 for the period 1974 to 2014. By 1997 it is expected

1 that the average cost in constant dollars will decrease
2 to half its current value. After 1997 the price is
3 expected to increase slightly until the year 2009 and
4 then remain relatively constant.

5 The reason for the expected cost decrease
6 is that, as announced on April the 29th, 1991, for the
7 Denison Mines contract, and on June the 17th, 1991 for
8 the Rio Algom contract, Hydro will be moving from these
9 high priced contracts to lower cost uranium.

10 Much of the new supply is expected to
11 come from Saskatchewan. All grades in Saskatchewan are
12 on an average between 2 and 3 weight per cent of
13 uranium in ore contained, whereas the ore grades in
14 Ontario are typically 0.05 per cent to 0.1 uranium by
15 weight, therefore, recovery costs are substantially
16 lower for Saskatchewan ores.

17 I would like to note that the uranium
18 reserves, both proven and probable in Saskatchewan, are
19 greater than 400,000 tonnes compared to Hydro's current
20 requirements of 1,700 tonnes per year.

21 Q. Mr. Penn, one of the components of
22 the fueling cost is the future disposal of used nuclear
23 fuel including its transportation and final repository
24 costs. Describe what happens with that fuel currently
25 and its eventual disposal costs?

1 [2:55 p.m.]

2 A. Used fuel, as you have heard, is
3 currently stored safely at Hydro's generating stations
4 under water. We know it can be stored under water
5 without concern for at least 50 years. The storage
6 cost is charged to OM&A.

7 As Mr. Johansen stated, we have also
8 developed dry fuel storage in special concrete
9 containers and this method is used at Douglas Point and
10 Point Lepreau. We intend to use that method at
11 Pickering.

12 Extensive R&D indicates that this method
13 is safe for one years and the containers are designed,
14 as you have heard before lunch, for transportation
15 which will reduce final used fuel disposal costs.

16 It is expected that these engineered
17 concrete containers will be used at all Ontario Hydro
18 sites in the future. The costs of storage in these
19 containers is \$11,000 per tonne of uranium, compared
20 with \$12,000 per tonne of uranium for water pools.

21 As stated earlier we plan to dispose of
22 our used fuel in a deep repository, built in plutonic
23 granitic rock within the Canadian Shield. As Mr.
24 Johansen described, the technology for doing this is
25 the subject of a federal environmental assessment and

1 review process which is under way.

2 The estimated cost of used fuel disposal
3 including all activities necessary to place it securely
4 in a repository is \$1,575 per fuel bundle in 1992
5 dollars. As I mentioned earlier in my evidence,
6 Hydro's cost for acquiring the repository is 3.45
7 billion in '92 dollars.

8 Q. And again, I take it that provision
9 for these future costs is made in the current rates?

10 A. Yes, just as with decommissioning
11 costs, the OEB reviews this matter in relation to
12 provides is being made in current rates. Since 1982 we
13 have a crude \$624 million for this purpose.

14 Provisions for used fuel disposal will
15 continue on an annual basis until all of our nuclear
16 stations are declared out of service, and they will be
17 determined, that is the provisions will be determined,
18 by the nuclear fuel usage in that year.

19 Another provision we plan to make,
20 starting in 1993 is for the disposal of low and
21 intermediate radioactive waste currently stored at the
22 Bruce waste management site which was described by Mr.
23 Johansen. The expected cost of low and intermediate
24 active waste disposal is \$215 million in '91 dollars.

25 The 1993 provision for this disposal

1 facility is \$14 million, and is subject this year to an
2 OEB review.

3 Q. Mr. Penn, the last component in the
4 costs model, referring back again to page 62 of Exhibit
5 519, is the carrying charge and the fuel inventory held
6 at the stations. Can we expect any significant change
7 in this cost in the future?

8 A. There will be no significant change
9 in the inventory interest carrying charge. It will of
10 course decline slightly as we reduce our Elliot Lake
11 inventory, but it is a small portion of the total
12 generation cost.

13 Q. All right. I would like you now to
14 conclude by summarizing your overall generation cost
15 trend for the current nuclear system. You have
16 explained the reasons why various cost components could
17 be expected to increase or reduce. In a nutshell I
18 would like you explain what is the overall picture on
19 costs.

20 A. The overall picture of our nuclear
21 generating costs both in the past and to the end of the
22 planning period is shown on page 73, and is provided on
23 the overhead.

24 This graph provides the accounting unit
25 energy cost for the total existing nuclear program,

1 also referred to as total unit energy cost.

2 It also provides the variation of the
3 main cost divisions that I defined earlier; namely,
4 sunk capital, capital modifications including retubing,
5 fueling, and OM&A for our present nuclear program.

6 Actual costs are provided for the period
7 1974 to 1991, and forecast costs are provided for the
8 balance of the planning period to 2014.

9 These costs are provided in terms of
10 cents per kilowatthour and are in constant 1992
11 dollars. In this way we avoid the complication of
12 inflation and we can make comparisons in terms of the
13 value of money today.

14 The capital costs shown in black and
15 labelled sunk capital are the dominant component for
16 most of the time. They relate to the depreciation and
17 financing charges associated with paying for the
18 stations, and the capital modifications including
19 retubing that have already been placed in-service.
20 They also include the annual provision for
21 decommissioning our station.

22 In the forecast period, to the right of
23 the vertical dotted line, we have separated two
24 categories of capital cost. The first category shown
25 in the upper part of the graph is the sunk capital

1 depreciation and financing charges of all assets in our
2 stations, including Darlington.

3 The second category is future capital
4 charges associated with the capital modifications,
5 rehabilitation and retubing which we plan and expect to
6 do between 1992 and 2014.

7 These are incremental capital costs to
8 the present sunk costs and are shown above the fueling
9 costs in the graph.

10 Q. All right. Would you explain why
11 that graph shows an irregular shape for the unit energy
12 costs and an obviously decreasing capital cost
13 component of the unit capital cost?

14 A. Yes, I would like to explain the
15 irregular shape of the unit energy cost variation and
16 increasing capital component in that period in
17 comparison to the much smoother variation in the
18 forecast period.

19 Looking at the left-hand side of the
20 graph there are there distinction increases starting in
21 1976, 1983 and 1990. These increases relate to the
22 sequential in-service declaration of the Bruce "A",
23 Pickering "B" and Bruce "B", and Darlington units.

24 The fluctuation in costs is also
25 influenced by the average interest rate on the mix of

1 outstanding bonds of different maturities associated
2 with Hydro's debt.

3 These financing charges are apportioned
4 according to the book value of Hydro's total assets.

5 Finally, annual capacity factor
6 variations influence cost variations. After all units
7 at Darlington are declared in-service and the existing
8 nuclear program is complete, there will be no new
9 initial capital depreciation costs.

10 Q. All right. You have covered the
11 past. Could you conclude by summarizing the main
12 issues that are expected to determine future energy
13 costs of the existing nuclear program?

14 A. During the next three years the trend
15 will be increasing unit energy costs. Thereafter,
16 costs are expected to decline in constant dollar terms
17 for the balance of the planning period. The decline
18 will equal about 35 per cent of today's costs.

19 The total unit energy cost will reach a
20 peak in 1994 when all of our 20 nuclear units are
21 expected to have been declared in-service and all are
22 being depreciated at a full year's cost.

23 The peak level depends on the total
24 initial capital cost of the Darlington station. The
25 present expected cost in dollars of the year spent for

1 Darlington is \$13.8 billion including accrued interest
2 costs of \$5.8 billion.

3 This cost is based on the assumption that
4 our current plans to replace the 5 vane impellers with
5 7 vane impellers that Mr. Daly spoke of in the primary
6 heat transport pumps will enable full power without
7 further modifications to the units.

8 There is understanding that this fix will
9 be successful and we will know whether we are
10 successful by this July. But if additional
11 modifications are required to the heat transport system
12 piping, the time to reach maximum unit energy cost
13 could extend to the 1994/95 period.

14 The dominant reason for the declining
15 costs over the balance of the period is the significant
16 reduction in sunk cost depreciation and financing
17 charges as we pay off our mortgage on our nuclear
18 assets.

19 The continuing economy of our existing
20 nuclear program is related to the future incremental
21 costs of OM&A, fueling and capital modifications,
22 including retubing.

23 These costs are bound by the envelope of
24 the future capital costs as shown on the graph, and
25 which I have previously referred to as the second

1 category of capital costs.

2 The trend of these incremental costs is
3 expected, as you can see, to be slightly upwards in
4 terms of constant 1992 dollars.

5 Finally, in terms of cost to our
6 customers, the graph before you represents our
7 expectation of the cost of electricity from the
8 existing nuclear system over the balance of the
9 planning period.

10 Q. Thank you. Turning to the last area
11 Mr. Penn, I take it that Ontario Hydro has undertaken
12 what the update document refers to as a preliminary of
13 review of nuclear options.

14 A. Yes, we have, and there were three
15 reasons for this. First, the Demand/Supply Plan
16 requested nuclear approvals based on a 4 by 881
17 megawatt CANDUs taking advantage of their low leveled
18 unit energy costs for this option for base load supply.

19 However, the 4 by 881 megawatt CANDU has
20 the longest project lead schedule of all nuclear
21 alternatives and is relatively inflexible to changing
22 load requirements. On the other hand, single unit as
23 opposed to multi-unit nuclear stations offer potential
24 for added planning flexibility in future uncertain
25 times. They can be sequentially committed at any given

1 site.

2 The second reason that we undertook this
3 preliminary view of nuclear options is that the
4 moratorium on nuclear project studies meant that the
5 in-service dates for 4 by 881 facilities were clearly
6 extended well beyond this in-service date set out in
7 the DSP for the earliest nuclear stations.

8 Third, our start up problems at
9 Darlington were troublesome, so we wanted to review
10 options with shorter lead times and reduced investment
11 risk which might provide increased flexibility for our
12 planners, albeit with a higher levelized unit energy
13 cost in most cases.

14 Q. Having started the review on that
15 basis, were there other factors that came into play?

16 A. Yes, our review started by focusing
17 on options which seemed reasonable to consider if we
18 assumed the nuclear moratorium was lifted in mid-1993.
19 These included proven CANDUs of various types: The 4
20 by 881, a four-unit station of the Pickering "B" type,
21 and the CANDU 6 reactor.

22 We estimated the earliest in-service date
23 for a 4 by 881 station as 2005, and for a CANDU 6 of
24 2003, as shown under the heading proven options on the
25 table that's now on the screen and is listed on page 74

1 of our exhibit.

2 Q. I take it from this table that you
3 also considered light water reactors?

4 A. Yes. Although we really focused on
5 the more current work on evolutionary designs such as
6 the advanced light water, ALWR designs. I should say
7 that the advanced light water designs are either being
8 built or planned in France, Finland, England, Korea,
9 Japan and Taiwan, and there is an active development
10 program in the United States as well.

11 As shown on our exhibit, page 74, we
12 included for illustrative purposes a design, ALWR
13 design called System 80 Plus and I will be describing
14 the various designs in a moment.

15 Q. I take it there are also CANDU
16 evolutionary designs?

17 A. Yes, there are. These include
18 designs such as the CANDU 3 and the CANDU 9.

19 Q. Did you look at any other designs?

20 A. Yes. We considered what are known as
21 passive safety designs, but initially did not focus on
22 them because from a practical viewpoint, they were not
23 expected to be in-service and proven until well toward
24 the end of the planning period. However, with the
25 Update DSP calling for base load supply in about 2010,

1 these could become relevant, so I have added some
2 information on these passive designs in my evidence.
3 But I emphasize that although there is considerable
4 work being done on various evolutionary and passive
5 designs, none have been fully designed, licenced in the
6 country of origin or built.

7 Q. I would ask you now, Mr. Penn, to
8 explain some of the terminology. What is meant by
9 evolutionary and by passive design?

10 A. Future designs of nuclear power
11 stations targeted for operation at the turn of the
12 century and continuing into the 21st century are either
13 classed as evolutionary or passive safety design.

14 Evolutionary designs build on the
15 knowledge of current proven plants, but also
16 incorporate improved safety features and station layout
17 arrangement. They incorporate designs to allow
18 modularized construction if factories and on the
19 construction site. This approach permits shorter
20 schedules, that is lead time for in-service, lower
21 capital costs and simpler operation which enhances
22 safety provided by the improved safety concepts.

23 The intention of all world vendors on
24 evolutionary designs whether CANDU or light water
25 reactors is to standardize the concepts so that

1 subsequent plants will be the same and the learning
2 curve will result in declining costs and schedule with
3 improved performance reliability.

4 On the other hand, passive safety designs
5 are new concepts which adopt the fundamental aspects of
6 the evolutionary design but have safety systems which
7 heavily rely on the natural laws of physics as opposed
8 to use of applied energy to cause safety systems to
9 operate.

10 The passive safety design concepts of
11 future nuclear plants go further than the evolutionary
12 designs in their quest for simplification.

13 World-wide there are different views on
14 the advantages of evolutionary and passive safety
15 designs. It is felt that the evolutionary designs do
16 not require prototype demonstration since they are
17 based on proven principles. On the other hand, it is
18 generally recognized that the passive designs do need
19 to undergo large scale laboratory testing and possibly
20 prototype demonstration. There is, however, unanimous
21 agreement that both designs offer advantages over
22 current operating stations in terms of planning
23 flexibility, costs and lead time to in-service.

24 Q. Going back to the different designs
25 then, what improvements are reflected in the cost and

1 schedules associated with future multi-unit CANDU
2 station designs?

3 A. Talking first about Hydro multi-unit
4 CANDU station designs, we reviewed two types of Hydro
5 multi-unit stations, an improved Darlington station
6 with a total capacity of 3,524 megawatts, and an
7 improved Pickering "B" station whose capacity is 264
8 megawatts. I described their basic design features
9 earlier in my introductory evidence.

10 I will briefly comment on the
11 improvements to these designs resulting from our
12 schedule and cost reduction studies that Hydro carried
13 out from 1986 to 1990.

14 The improvements are reported in Exhibit
15 43, that is ONCI, until 1988, and in Interrogatory
16 9.2.118, from 1988 to 1990.

17 This work was the basis for the selection
18 in 1989 of the 4 by 881 megawatt station design called
19 CANDU A in the original Demand/Supply Plan.

20 The improvements relate to advanced
21 engineering prior to construction, numerous
22 constructability studies, the use of standardization
23 and repeatability of proven systems and equipment, and
24 modular construction where possible.

25 [3:17 p.m.]

1 Other key areas of improvement were the
2 use of refined seismic analysis, distributed control
3 systems, fibrooptic use, selective concrete embedded
4 parts, and Hydro's development of a three-dimensional
5 electronic drafting and management database system.

6 These improvements and many more related
7 to lessons learned from the French, Japanese and
8 Americans and led to improved future plant construction
9 times.

10 Nevertheless, planning flexibility of
11 this option in uncertain times is low. Darlington
12 costs have risen to high values in part because of five
13 scheduled interruptions during construction. These
14 interruptions were very costly. The leveled unit
15 energy cost of multi-unit stations is favourable
16 compared with single unit stations if constructed
17 without interruptions.

18 Other important characteristics such as
19 commercial availability, safety and environmental
20 protection offered by Hydro designed future multi-unit
21 stations are regarded to be high.

22 Q. What other future CANDU developments
23 are there that might be suitable for potential
24 in-service around the year 2010?

25 A. We have consulted with Atomic Energy

1 of Canada Limited and have a confident understanding of
2 the characteristic of these alternative CANDU designs
3 including the proven CANDU 6 and the evolutionary CANDU
4 3 and 9, which are in the design stage. I will
5 describe each of these designs, their attributes and
6 specific lead times and costs.

7 First, the CANDU 6. It's a single 670
8 megawatt unit concept with positive pressure
9 containment with no vacuum building. The stand alone
10 units can be committed one at a time to permit
11 increased flexibility and reduced financial risk.
12 Multiple units can be built on a common site to gain
13 savings.

14 The CANDU 6 is a proven design with over
15 36 reactor years of experience in New Brunswick,
16 Quebec, Korea and Argentina. CANDU 6 units have
17 demonstrated reliable performance and have achieved
18 capability factors of 89 per cent on average over the
19 last five years.

20 Point Lepreau in New Brunswick
21 demonstrated a capacity factor of 97.7 per cent during
22 '91 and with a lifetime performance record of 91.1 per
23 cent, it is a co-leader of all world reactors which
24 have been operating over eight years.

25 CANDU 6 has demonstrated an excellent

1 safety record. It offers improved planning flexibility
2 in uncertain times to us compared with the 4 by 881
3 CANDU because of its smaller unit size and shorter lead
4 time.

5 On the next overhead, page 78 of the
6 exhibit, this shows the critical path lead time of a
7 CANDU 6 station for in-service in the year 2010. The
8 start of the critical path activities is late 1999 and
9 that is the start date for preparing an environmental
10 assessment document which would be ready for submission
11 in spring 2001.

12 You'll note that in preparing this
13 schedule, I have taken the liberty of suggesting that
14 an approval through a hearing process could be
15 accomplished in 24 months which would bring us to an
16 approval of the concept, if that was the case, in
17 spring to summer 2003, the critical path would follow
18 to gain Atomic Energy Control Board's approval to
19 construct, followed by Ontario Hydro Board of Director
20 approval to proceed with acquisition and
21 order-in-council to follow. That would signal the
22 order of the major equipment being the reactor
23 calandria vessel.

24 There would be a period of 16 months,
25 given that this particular example is taken to be an

1 existing site, to clear the site and perform the
2 excavation. The critical path then follows from first
3 concrete for a 59-month construction period to give
4 in-service at the beginning of 2010.

5 I have just shown you this as an
6 illustration of the nature of the critical path lead
7 times that we have investigated.

8 I would like now to move and say a few
9 words about the evolutionary CANDU 3.

10 It's a single 450 megawatt unit of
11 evolutionary design based on proven technology. The
12 detailed design is currently 80 per cent complete.
13 Design features like the CANDU 6 include high pressure
14 containment with no vacuum building but does include
15 extensive modular construction techniques to reduce
16 construction time.

17 This design is being reviewed by the
18 Atomic Energy Control Board for upfront licensing of
19 construction and operation.

20 Modular design is predicted to yield
21 improved performance over proven CANDU options largely
22 because of the ease of maintainability. A lifetime
23 capability factor of 85 per cent or greater is
24 expected.

25 Lead time is expected to be shorter than

1 for proven CANDU options, but greater uncertainty
2 exists regarding its untried concepts. The stand alone
3 nature of the station allows capital commitment risk to
4 be reduced by committing one unit at a time closer to
5 the need dates.

6 I would now like to say a few words about
7 CANDU 9. It is also a single but this time 880
8 megawatt unit design. The design is evolutionary and
9 will incorporate features of both the CANDU 3 and the
10 Bruce Darlington type units. Indeed it is based upon
11 the Darlington style reactor.

12 It features high pressure containment
13 with no vacuum building and modular construction
14 techniques. Detailed engineering has recently started.
15 The design, like CANDU 3, includes improved station
16 layout to enhance safety and longer life pressure tubes
17 which are easier to replace, however, there are time
18 and cost risks compared to proven CANDU options for
19 this design.

20 Lead time is expected to be shorter than
21 for proven CANDU options, but uncertainty exists
22 because the design is at the conceptual stage. The
23 stand alone nature of the station allows capital
24 commitment risk to be reduced by committing one unit at
25 a time.

1 The design has to be approved by the
2 Atomic Energy Control Board. The CANDU 9 is predicted
3 to yield higher performance largely because of ease of
4 maintainability. A lifetime capability factor of 85
5 per cent is expected.

6 I would now like to end this short
7 discussion on the CANDU options before I move to the
8 light water reactor options by showing a series of
9 overheads shown on pages 75, 76 and 77 which show the
10 lead times and the cost ranges for various CANDU
11 nuclear options as a result of variations in their
12 size, numbers of units that would be committed on a
13 particular site, the site location where this may
14 occur, either being a new site or an existing owned
15 site by Hydro, and the level of contingency that Hydro
16 has seen fit to put on the uncertainty of the costs
17 provided to us.

18 The first figure on page 79 shows the
19 range -- I'm sorry, excuse me, my package is not in
20 order, so...

21 Q. Page 75.

22 A. Referring to page 75, thank you. The
23 lead time shown on page 75 at the top, first of all,
24 for the proven multi-unit Hydro design. The lower
25 limit or the shortest lead time is that associated with

1 building a Pickering style four-unit station on an
2 existing site. The longest lead time for a multi-unit
3 station at 180 months is that associated with building
4 a 4 by 881 megawatt station on a new site.

5 Similarly, information on lead time is
6 given for the CANDU 6 in the middle and the CANDU 3 and
7 9 below. Again, for the CANDU 6, the 123 months from
8 start of putting together the environmental assessment
9 document to in-service, and given the assumptions that
10 you saw earlier on the critical path diagram, would be
11 123 months at an existing site, 168 months at a new
12 site.

13 Moving to page 76 this provides a summary
14 of the range of initial capital costs that Hydro would
15 expect for an Ontario Hydro multi-unit station either 4
16 by 516 megawatts or 4 by 881 megawatts at, for the
17 lower limit, and for a 4 by 881 megawatt station at an
18 existing site.

19 The \$2,700 per kilowatt would represent
20 the cost of a 4 by 516 megawatt station at a new site.

21 Moving down, the CANDU single unit, the
22 lowest capital cost of \$2,750 per kilowatt is that
23 associated with a single CANDU 9 station at an existing
24 site, and \$4,000 per kilowatt for a CANDU 3 at a new
25 site.

1 If, on the other hand, Hydro were to
2 commit 12 months apart four separate CANDU units of
3 either of the CANDU 3, 6, 9 variety, then the lower
4 limit of cost of \$2,000 dollars per kilowatt would
5 relate to four CANDU 9s on an existing site, or \$2,800
6 per kilowatt for four CANDU 3s on a new site.

7 And moving to page 77 this provides a
8 similar summary of leveled unit energy costs in 1991
9 cents per kilowatthour and follows along the same lines
10 of description that I gave to you on the capital costs
11 in dollars per kilowatt.

12 So, therefore, as an example, CANDU 9
13 with four units at an existing site has the lowest
14 initial capital cost and the lowest leveled unit
15 energy cost, and CANDU 3 at an existing site has the
16 shortest lead time of 112 months and a construction
17 duration of only 38 months but has the highest cost.

18 MS. HARVIE: Mr. Chairman, as it's just
19 past 3:30 maybe we should take our break now. My
20 prediction, although I've been quite inaccurate so far,
21 is that we are going to be another 15 minutes in chief.

22 THE CHAIRMAN: Would you rather finish
23 and then we will take a break?

24 MS. HARVIE: Yes.

25 THE CHAIRMAN: Why don't we do that.

1 MS. HARVIE: All right.

2 Q. All right. Mr. Penn, would you turn
3 to nuclear option developments outside Canada. I
4 understand these are the light water reactors that you
5 referred to earlier?

6 MR. PENN: A. Advanced light water
7 reactor designs, known for short as ALWR, are expected
8 to make the nuclear option more attractive. France,
9 Finland, U.K. Korea, Japan and the United States have
10 plans to build or are building new evolutionary light
11 water reactor designs.

12 The U.S. ALWR development programs are
13 utility driven and have participation and sponsorship
14 of numerous international utility companies and close
15 cooperation and support from the United States
16 Department of Energy.

17 The U.S. ALWR program was established
18 under the Nuclear Power Oversight Committee known as
19 NPOC. NPOC, whose members include chief executive
20 officers of major utilities and industry, has taken the
21 lead in bringing utilities, designers and industry
22 support organizations together to define policies,
23 design features and operational aspects of a new
24 generation of nuclear reactors in the United States.

25 Two evolutionary designs proposed by

1 General Electric and ABB Combustion Engineering, known
2 as ABWR and System 80 Plus, and two passive designs
3 proposed by Westinghouse and General Electric called AP
4 600 and Simplified Volume Order Reactor are currently
5 undergoing United States nuclear regulatory review and
6 approval.

7 At this stage none of the advanced LWR
8 designs have been licensed in the United States. The
9 passive safety designs are expected to be ready for
10 ordering in the late 1990s. These will be 600 megawatt
11 nuclear plants with greatly simplified safety systems.

12 The United States' proposed one-step
13 licensing process, which enables early site permit,
14 standard design certification, and combined
15 construction permit and operating license is an
16 important concept for the future of nuclear power in
17 the United States. This regulatory area still requires
18 great efforts before it becomes a reality, but progress
19 is being made.

20 The United Kingdom LWR development
21 program and studies are focused on the advanced size
22 well pressurized water reactor, however, cost estimates
23 for these plants are currently high.

24 The European Economic Community nuclear
25 program, including France and Germany, is developing a

1 unified pressurized water reactor evolutionary design
2 using the best of their proven designs. This program
3 has high promise given the success of the French
4 nuclear program.

5 Initiatives in Sweden involve the
6 evolutionary BWR 90, boiling water for the 90s, and
7 passive safety design called PIUS. BWR 90 has been
8 tendered to Finland where it is found licensable. The
9 design of PIUS has entered the early design stage and
10 has support from Italy but the licensing reviews have
11 not yet started.

12 Japan has committed to two advance
13 boiling water reactors in December, 1991, ahead of
14 others, and is expected to take the lead on ordering an
15 evolutionary advanced pressurized water reactors in
16 late 1992.

17 Japan is doing research on passive safety
18 systems but is not expected to commit to them prior to
19 2010 in-service.

20 I would now like to refer to two
21 overheads given on pages 79 and 80 of our Exhibit 519.
22 These provide consecutive lead times for the designs
23 I've discussed and estimated capital costs.

24 On page 79 we provide our view of the
25 lead times using similar assumptions to those including

1 an approval period through a public hearing of some two
2 years following the preparation of an environmental
3 assessment document. In this case, since these are
4 advanced light water reactors where Hydro has less
5 knowledge of CANDUS, we have allowed longer periods of
6 time to prepare the environmental assessment document.

7 It shows for the evolutionary advanced
8 light water reactors that have capacities ranging from
9 a 1,010 megawatts to 1,356 megawatts a range which has
10 a lower limit on lead time of 132 months, which would
11 be for a plant at an existingly owned Ontario Hydro
12 site, or as long as 177 months if it was at a site, a
13 new site not owned by Hydro currently.

14 [3:40 p.m.]

15 Similarly, data is given for the advance
16 light water reactor passive design below.

17 Moving over to page 80 we provided, based
18 upon information given to us by vendors - and I must
19 comment that in these times where people are tendering,
20 this is commercially restricted information, at least
21 the base information is - we have included Hydro added
22 costs in providing these numbers.

23 The total initial capital cost therefore
24 that we estimate currently to Ontario Hydro of building
25 one to four ALWR evolutionary designs would range from

1 \$2,150 to \$4,150 per kilowatt. Here again, the lower
2 limit would be for the building of four such units on
3 an existing site.

4 The higher cost of over \$4,000 per
5 kilowatt would be for building one of these particular
6 alternative units on a new site.

7 Similar information is given below for
8 one of four passive ALWRs.

9 The contingencies that we have assumed in
10 projecting these costs in our preliminary nuclear
11 options review ranges from 25 to 30 per cent of the
12 vendor's target cost.

13 Q. Okay. Mr. Penn, you reviewed the
14 CANDU and light water reactor future nuclear options
15 separately. Would you bring them together now and
16 summarize their respective characteristics and
17 estimated capital and lifetime costs.

18 A. For the future it is likely that
19 there will be a choice of single nuclear unit size
20 ranging from 450 to 1,400 megawatts. We could also
21 adopt multi-unit stations or commit sequentially one,
22 two, three or four single units on a site, any site,
23 that in fact would give us a range of capacity varying
24 from as low as 900 megawatts to 5,600 megawatts. This
25 is a wide range of choice and represents considerable

1 flexibility.

2 The characteristics of the various
3 designs are summarized in a very precise way and shown
4 on page 81 of Exhibit 519. This chart lists the
5 options and provides the expected lifetime performance,
6 planning flexibility, commercial feasibility, safety
7 level, environmental performance and lead time from
8 concept to in-service. It notes the impact of
9 committing to non-Canadian designs.

10 On the following two pages, page 82 and
11 83 of Exhibit 519, it provides a comparison of
12 leveled unit energy costs for all options over the
13 entire generation cycle represented by the lifetime
14 cost models for in-service in 2010. They give the
15 leveled unit energy costs for single and four-unit
16 stations on the same site.

17 So if I may interpret what they mean on
18 page 82, it summarizes for both CANDUs, evolutionary,
19 and evolutionary ALWRs and passive ALWRs, for single
20 units the range of leveled unit energy costs between
21 building on an existing Hydro site and a new site
22 somewhere in the province.

23 Similarly, on page 83 it provides Ontario
24 Hydro's estimate, our estimate, for the leveled unit
25 energy cost of four single unit stations of either

1 evolutionary CANDU or ALWR evolutionary and passive
2 compared with Ontario Hydro's multi-unit 4 by 516 or 4
3 by 881 megawatt station.

4 There is one thing, Mr. Chairman, that I
5 want to bring to your attention, that on page 81 - and
6 I only noticed this when I was reviewing this material
7 again last night - I have a typographical error. If
8 you look down the first column against BWR 90, that is
9 the eighth entry down, a design from Sweden, and move
10 over to the last but one column on the right-hand side
11 under levelized unit energy cost, the range should be
12 6.0 to 7.5. And, indeed, on the figure that's next on
13 page 82, that number is correct, that 7.5.

14 I'm sorry for that, sir.

15 These costs that I have just reviewed
16 include contingencies of 15 per cent on proven designs,
17 20 to 25 per cent on evolutionary designs, and 30 per
18 cent on passive designs. These costs represent Hydro's
19 assessment based on its preliminary review and include
20 allowances for Hydro's costs and those necessary to
21 meet Canadian regulations, specifically with regard to
22 offshore designs.

23 In summary, this cost information which
24 embraces both existing and new nuclear site locations
25 and singularly are multi-unit stations of different

1 capacity, shows that proven and evolutionary CANDUs are
2 competitive with future light water reactors. More
3 importantly, future costs and lead times are reduced
4 from those of past stations in real and actual terms.

5 Q. Finally, Mr. Penn, why can Hydro
6 expect either CANDUs or light water nuclear reactor
7 options to be available for in-service around 2010, if
8 needed?

9 A. Well, in summary, there five reasons
10 in my view why Ontario Hydro can expect nuclear options
11 to be available for in-service in 2010, if needed. And
12 they are: Firstly, significant Canadian industrial
13 effort will be required to maintain and improve the
14 performance of Hydro's current nuclear stations. This
15 activity will consolidate the CANDU proven options and
16 assist in export orders by Atomic Energy of Canada.

17 Secondly, Canadian industry is investing
18 significant effort and funds in the development of
19 evolutionary CANDU single unit stations. Enhancement
20 of current CANDU passive safety systems are being
21 developed which are innovative and will add to public
22 safety assurance.

23 Third, extensive efforts and
24 infrastructure support throughout the developed
25 countries is occurring in the development of light

1 water reactors. These efforts are being driven by the
2 major world activities and regulatory authorities are
3 actively assessing designs for one-step licensing.
4 Several world utilities are currently ordering or
5 evaluating tenders for advance reactor designs which
6 represent an ongoing commitment to the nuclear
7 electricity option.

8 Fourth, both CANDU and light water
9 systems under development are simplified designs, we
10 believe will be easier to construct and to operate and
11 maintain, and they employ an evolution of proven safety
12 concepts.

13 And finally, nuclear plant studies in the
14 U.S., Europe, Japan and Canada are concentrating on
15 reduced lead times, lower costs, and in particular,
16 assured regulatory licensing and public approval.

17 MS. HARVIE: That concludes our evidence
18 in chief, Mr. Chairman.

19 THE CHAIRMAN: Thank you, Ms. Harvie.

20 We will take an adjournment now. The
21 panel are going to have some questions of this panel.
22 I don't know whether we will be able to reach, Mr.
23 Mattson, I don't know if we will be able to reach your
24 motion this afternoon or not. I am not sure we will be
25 able to do that.

1 MS. McCLENAGHAN: Tomorrow is fine as
2 well. That is fine.

3 MR. MATTSON: Mr. Chairman, this is Ms.
4 McClenaghan.

5 THE CHAIRMAN: Yes, that's right, I
6 didn't see her. That will be fine.

7 We will adjourn now for 10 minutes.

8 THE REGISTRAR: Please come to order.
9 The hearing will take a 15-minute recess.

10 ----Recess at 3:50 p.m.

11 ----On resuming at 4:10 p.m.

12 THE REGISTRAR: Please come to order.
13 This hearing is again in session. Please be seated.

14 DR. CONNELL: Panel, I would like to ask
15 a few basic questions about technology, just to clear
16 up some of the issues that you covered but weren't
17 entirely transparent to me.

18 If I could just begin with the reactor
19 itself. As I understand it, the fuel is inside the
20 pressure tube, with D₂O coolant flowing through the
21 pressure tube. So far...

22 MR. PENN: That's correct, sir.

23 DR. CONNELL: Right. And outside the
24 pressure tube there is an annular space--

25 MR. PENN: Yes.

1 THE CHAIRMAN: --where you have the
2 springs. That's filled with gas?

3 MR. PENN: Carbon dioxide.

4 DR. CONNELL: Carbon dioxide, thank you.

5 And outside the calandria tube?

6 MR. PENN: Yes.

7 DR. CONNELL: With a moderator, then
8 outside the calandria tube.

9 MR. PENN: Correct, sir.

10 There is, if you like, a whole forest of
11 calandria tubes and the moderator is within it.

12 DR. CONNELL: Surrounding throughout the
13 whole calandria chamber..

14 MR. PENN: Yes.

15 DR. CONNELL: Right. There is coolant
16 flow then through the pressure tube as indicated on
17 page 5 of your overheads, and this flows then to the
18 headers and steam generators?

19 MR. PENN: That's quite correct, sir.

20 It flows through the outer headers, they are the ones
21 at the extreme left and right to the steam generator
22 and then returns through the inlet headers to the
23 reactor.

24 DR. CONNELL: Right. Now, I would like
25 to understand something about the tritium problem.

1 This is essentially a nuclear reaction, the interaction
2 of the neutrons with the heavy water with deuterium.

3 MR. PENN: It's an absorption of a
4 neutron by deuterium oxide to form tritium oxide. It
5 is just the addition of one neutron to the nucleus.

6 DR. CONNELL: Yes. So it remains as
7 tritium oxide not as molecular tritium.

8 MR. JOHANSEN: Yes.

9 THE CHAIRMAN: Did you say something to
10 that, Mr. Johansen? Did you have some answer to that
11 that you wanted to make?

12 MR. JOHANSEN: Yes, I just agreed with
13 Dr. Connell.

14 DR. CONNELL: Now, is this reaction
15 predominantly in the coolant or in the moderator or
16 both?

17 MR. PENN: It occurs at both.

18 DR. CONNELL: Which is predominant?

19 MR. KING: There is more moderator in the
20 core at any one time, so it would be primary in the
21 moderator. The moderator is resident the core -- it's
22 only heavy water in the pressure tubes which is
23 resident at any one time and hence acceptable to this
24 absorption process. The rest of the heavy water is in
25 steam generators and outlet headers in the headers, et

1 cetera.

2 DR. CONNELL: Can one of you give me some
3 kind of quantitative figure for the generation of
4 tritium, say, per days operation. Are we talking one
5 part in a million or more or less?

6 MR. KING: I can't.

7 MR. DALY: I think that part of the
8 difficulty we are having is that we replace the heavy
9 water with fresh water periodically. On average when
10 the station is running on a mature condition, the level
11 of tritium in the moderator is about 10 times the level
12 of tritium in the heat transport system, order of
13 magnitude.

14 DR. CONNELL: When you say periodically,
15 how often would that be? A week or two weeks?

16 MR. DALY: Pretty well on a small
17 continuous basis. There are small leaks periodically
18 and periodically the systems are topped up.

19 DR. CONNELL: Yes. In Exhibit 4 on page
20 5.5, if you have Exhibit 4 with you. I wasn't going to
21 quote from it extensively, but there is a reference, in
22 the left-hand column, towards the bottom it refers
23 briefly to:

24 Radioactive releases may occur in
25 cooling water systems or air exhaust

1 ventilation systems as result of
2 inadvertent discharges and spills.

3 Now, you described certain classes of
4 incidents in which there are significant spills, but I
5 take it there are others which are so small as to be
6 undetected or unrecognized as special events; is that
7 correct? I am thinking here primarily of tritium,
8 tritiated water.

9 Would it be fair to say there are sort of
10 acute incidents plus in addition to chronic emissions?

11 MR. JOHANSEN: Well, I did describe the
12 so-called chronic emissions of tritium to water
13 associated with normal operation of our plants, if
14 that's what you are questioning.

15 DR. CONNELL: Yes. If you look at the
16 pattern over a whole year, how much of the tritium
17 emission would be attributable to recognizable
18 incidents? Would you be able to account for most of it
19 by some known fault or not?

20 MR. JOHANSEN: You are asking, if I
21 understand your question, whether most of the emission
22 is the result of a planned or controlled emissions as
23 opposed to unplanned or accidental emissions?

24 DR. CONNELL: I am sorry, I didn't
25 realize they were planned emissions. That confused me.

1 MR. JOHANSEN: Well, these are emissions
2 that are monitored and that we expect. In that sense,
3 I suppose they are anticipated or routine emissions as
4 opposed to emissions associated with abnormal or
5 accident conditions.

6 DR. CONNELL: Let's discuss the normal
7 ones for a minute then. Where do they come from? You
8 must have some idea.

9 MR. JOHANSEN: Yes. As I indicated in my
10 direct, they are typically the result of leakage of
11 small quantities of heavy water that has become
12 tritiated whilst in the reactor, and the leaked heavy
13 water in either vapor form can be released through the
14 ventilation system after a drying stage which is part
15 of the control system to recover as much of this heavy
16 water, which is expensive to produce in the first
17 place, and thereby minimize the emission of tritium to
18 the atmosphere.

19 [4:20 p.m.]

20 Another fraction of the H(2)O may be
21 picked up in the collection and recovery system and
22 wind up by going to the active liquid waste management
23 system which then, on a batch basis after being
24 monitored for radioactive levels, may be released to
25 the cooling water discharge, and in that sense it's a

1 controlled release. So there are those two emission
2 pathways.

3 DR. CONNELL: Do you know whether the -
4 if I can continue to use the term chronic leakage or
5 planned leakage - whether it comes from the coolant
6 circuit or the moderator?

7 MR. JOHANSEN: Well, I'm probably not the
8 best one to answer that.

9 MR. PENN: Maybe I can try and answer.
10 We've always recognized that with such a large piping
11 system you could never expect that it would be totally
12 leak tight all the time and that's why there's a vapor
13 recovery and heavy water recovery system within the
14 station.

15 And these minor leaks that can't be seen
16 but can be detected with monitors typically come from
17 valve stems or flange joints, although most of the
18 piping in the plant is seam welded, but there are
19 obviously places that one has to be able to take the
20 pipes apart for maintenance, and this is the type of
21 cause of loss of heavy water which would be tritiated
22 in the form of vapor.

23 DR. CONNELL: You're referring mainly to
24 the coolant circuit then?

25 MR. PENN: I would be referring to the

1 high pressure systems, yes, the coolant system.

2 DR. CONNELL: What is the operating
3 pressure, Mr. Penn?

4 MR. KING: Well, as Mr. Penn just
5 suggested, most of the leakage would come from the high
6 pressure heat transport system because it's at
7 typically 10 megapascals which is around 1,500 psig,
8 where the moderator system is at a very small pressure,
9 perhaps the moderator pump discharge going back into
10 the moderator would be 40, 50 psig, so there just isn't
11 the driving force in the moderator piping to get as
12 much out as there is in the heat transport piping.

13 DR. CONNELL: No. Is there ever any
14 transfer of tritium into the steam channel itself?

15 MR. KING: You're referring to---

16 DR. CONNELL: In the heat exchanger.

17 MR. KING: --moving from the heat
18 transport system to the light water, boiler water and
19 steam system?

20 DR. CONNELL: Yes.

21 MR. KING: That would only occur if there
22 were small leaks or leaks of any sort in the steam
23 generator tubing.

24 DR. CONNELL: Does it happen?

25 MR. KING: Yes, it does happen.

1 DR. CONNELL: Is that a serious causal --

2 MR. KING: There are limits in operation
3 on the amount of leakage that is allowed before the
4 plant has to be shut down and that tube typically
5 plugged.

6 DR. CONNELL: Right. The isotopes of
7 krypton and xenon that are emitted, these may come from
8 the fuel itself, that would be the predominant source,
9 I take it. And what are those isotopes; are they
10 long-lived isotopes?

11 MR. JOHANSEN: They're short lived.

12 DR. CONNELL: But what are the
13 half-lives, roughly?

14 MR. JOHANSEN: We're talking about days.

15 MR. KING: I believe there's a table of
16 half-lives in Exhibit 507 which is the material, the
17 Health Effect Report which was tabled. I believe
18 there's a table of half-lives for the noble gases in
19 there.

20 DR. CONNELL: Thank you. And are the
21 decay products stable isotopes?

22 MR. JOHANSEN: Eventually. Just as a
23 matter of interest, you were asking about xenon. The
24 half-life of xenon 133 is 5 days approximately, xenon
25 135 is about 9 hours, so reasonably short.

1 DR. CONNELL: There are no long-lived
2 daughters in the chain?

3 MR. JOHANSEN: No.

4 DR. CONNELL: Dr. Whillans is looking
5 puzzled.

6 MR. JOHANSEN: I don't have a number for
7 krypton handy.

8 DR. WHILLANS: I would prefer to look it
9 up to be sure, but I believe one of the xenons has a
10 minor long-lived daughter.

11 MR. KING: Well, I have the table in
12 front of me right now. The xenon's range in --

13 THE CHAIRMAN: Are you referring to 507?

14 MR. KING: I am talking about Exhibit
15 507.

16 THE CHAIRMAN: Page...?

17 MR. KING: Page 4-18. And the half-lives
18 range for xenon 131 metastable, 12-day half-life. The
19 other isotopes vary: 5.3 days, 2.2 days, 9.2 hours,
20 15 minutes, and 14 minutes. Those are all isotopes of
21 xenon.

22 The krypton half-lives -- krypton 85,
23 10.7 years; krypton -- another metastable form of
24 krypton 85, 4.5 hours; krypton 87, 1.1 hours; krypton
25 88, 2.8 hours.

1 DR. CONNELL: Thank you. Any additional
2 information?

3 DR. WHILLANS: Well, I guess just to
4 complete my comment, I believe one of the caesiums
5 that's listed in this table is fairly long lived, but
6 I'm not sure of it's half-life.

7 Oh yes, it is, sorry

8 MR. KING: You were just asking noble
9 gases?

10 DR. CONNELL: Yes.

11 DR. WHILLANS: The caesium daughter of
12 xenon 135 has a half-live of 2.3 million years.

13 DR. CONNELL: Sorry, is that one that's
14 not in the table that you --

15 DR. WHILLANS: It's on the table as the
16 daughter of the xenon 135. The caesium listed beside
17 it is the daughter.

18 DR. CONNELL: I haven't got mine in front
19 of me.

20 DR. WHILLANS: Oh, sorry.

21 DR. CONNELL: What page is this?

22 DR. WHILLANS: Page 4-18.

23 DR. CONNELL: I take it that's not of
24 high abundance for any products?

25 DR. WHILLANS: Right. The limiting

1 concern about exposures to the noble gases is primarily
2 direct irradiation.

3 DR. CONNELL: Right. Someone on the
4 panel mentioned the monitoring of emissions from the
5 RWO at Bruce, but I don't think you provided any data.
6 Have there been significant emissions?

7 MR. JOHANSEN: In fact, one of the charts
8 that I happened to attach, I didn't show it on the
9 overhead, but one of the charts that I included in
10 Exhibit 519 I chose, I think it was --

11 MR. PENN: Page 48.

12 MR. JOHANSEN: 48, shows the emission
13 trend from the waste volume reduction facility at the
14 waste management site at Bruce and, again, as was the
15 case with the example that I showed on the overhead,
16 the emissions are well below the one per cent target.

17 And in the source document from which
18 these charts were selected, there are similar charts
19 for all of the other facilities at Bruce.

20 DR. CONNELL: These are just air
21 emissions. Are there any water emissions?

22 MR. JOHANSEN: In the source document,
23 and this is the health and safety division annual
24 report that was given in response to Interrogatory
25 9.17.36, you will find similar charts for the rest of

1 the waste management site and the water emissions shown
2 for that facility are similarly below the one per cent
3 target.

4 DR. CONNELL: Has that interrogatory been
5 cited before?

6 MS. HARVIE: Yes, it has, Mr. Chairman.

7 THE CHAIRMAN: Yes, 15.

8 DR. CONNELL: Thank you. And are the
9 storage bays also covered in that?

10 MR. JOHANSEN: Excuse me, I didn't...

11 DR. CONNELL: Are the storage bays also
12 covered in that document?

13 MR. JOHANSEN: They are to the extent
14 that the emissions from fuel storage bays are included
15 in the station emissions, yes.

16 DR. CONNELL: And I just have one
17 question about the health data, it concerns the so far
18 I believe unique findings at Sellafield which I believe
19 to be a nuclear reprocessing plant; is that correct?

20 DR. WHILLANS: It does reprocessing, it
21 also develops some power, does research, it's a mixed
22 complex and has been for many years.

23 DR. CONNELL: Is there anything about the
24 environment there which might lead you to expect
25 singular health effects not found at normal power

1 stations?

2 DR. WHILLANS: Well, I think I described
3 in the evidence that other similar sites have not shown
4 the same association.

5 DR. CONNELL: Yes, you mentioned Dounray
6 too.

7 DR. WHILLANS: Dounray as an example.

8 DR. CONNELL: Is also a reprocessing
9 site?

10 DR. WHILLANS: That's right.

11 DR. CONNELL: Are there any differences
12 between Sellafield and Dounray?

13 DR. WHILLANS: Well, there's been a lot
14 of speculation of course about what the possibilities
15 might be. There are a lot of chemicals used, not just
16 in the reprocessing but in the research facility.

17 Geographical sighting is a little bit
18 different and there has been suggestion that the actual
19 physical environment rather than the presence of a
20 nuclear station itself might be responsible for these.

21 And one of the key theories, I guess,
22 about the cause of this has to do with the influx of
23 new populations into rural areas, this so-called viral
24 hypothesis, but I don't think any of these is proven
25 yet.

1 DR. CONNELL: Just turning to emissions
2 for a moment, I noted down radioactive particulates and
3 I don't think I discovered exactly what that term
4 means. Could someone define radioactive particulates
5 for me?

6 MR. JOHANSEN: It's a general term that
7 we use to describe a number of fission products and
8 activation products that arise in the reactor system
9 and attach themselves to dust and, hence, the general
10 term particulate.

11 DR. CONNELL: This is relevant then only
12 to air emissions?

13 MR. JOHANSEN: Yes, that's right.

14 DR. CONNELL: And not to water emissions?

15 MR. JOHANSEN: We use the word
16 particulate in the context of air emissions and I
17 referred also to, under the heading of water emissions,
18 to another group of particulates which we generally
19 label gross beta gamma. These are dissolved or
20 suspended particulates.

21 So there are particulates that could go
22 either way, but generally speaking when we talk about
23 particulates, we're talking about airborne emissions.

24 DR. CONNELL: Can you tell me a little
25 bit about the chemistry of the particulates?

1 MR. JOHANSEN: Well, they would be
2 typically the --

3 DR. CONNELL: Similar to used fuel?

4 MR. JOHANSEN: Yes, many of them would
5 be. The isotopes of elements like caesium and
6 zirconium and cobalt, for example, would be formed in
7 the reactor during the fission process or as a result
8 of neutron absorption in the reactor system and would
9 be monitored and emitted in a controlled way through
10 high efficiency particulate air filters if it were
11 being released to the environment.

12 DR. CONNELL: Would it be fair to say if
13 there were an accidental release then, this would be
14 the most hazardous of the possible emissions?

15 MR. KING: It depends on, of course, the
16 amount, the half-lives and the energy of any particles
17 that would come off of the radioactive species.

18 Generally the releases in an accident
19 would be in gaseous form, noble gases which are not
20 filterable, they would be iodine or various chemical
21 forms of iodine which can be attracted to charcoal
22 filters or onto other components or into water which is
23 in the environment.

24 Particulates can act like gases if
25 they're in an aerosol form. They are very fine

1 particles and they get attached to dust or whatever and
2 act in -- they're referred to as aerosols.

3 The particulates, a good one is the
4 caesiums. Caesium 137 with its 30-year half-life
5 which, if it was released, it would deposit generally
6 on the ground and depending on -- and the rate of
7 deposit depends on atmospheric conditions and whether
8 it's raining, et cetera.

9 DR. CONNELL: The figures that you've
10 given for example on pages 46, 47, 48, these are all
11 calibrated against DEL, so you can't really compare one
12 with another, but I would assume that the DEL for the
13 particulates is probably more stringent than for, say,
14 tritium. Is that the case?

15 DR. WHILLANS: The DELs are listed in
16 fairly small print but just at the top of the figures.

17 DR. CONNELL: Oh, I see, yes. These are
18 curies?

19 DR. WHILLANS: Yes.

20 DR. CONNELL: Oh. I think that does
21 verify what I've just said then; doesn't it?

22 DR. WHILLANS: Yes.

23 DR. CONNELL: Of the order of 10 to the
24 6th compared to tritium. Thank you.

25 Turning to pressure tube failure for a

1 moment - this was Mr. Penn I think - apart from the
2 garter spring problem, you referred to the hydride
3 penetration and to the elongation effect as the two
4 principal technical problems.

5 Do I understand that the present
6 generation of pressure tubes are no longer susceptible
7 to the hydride effect or at least not within the
8 lifetime?

9 MR. PENN: Well, delayed hydride cracking
10 in zirconium occurs down the temperature gradient and,
11 therefore, it's associated with when the hot pressure
12 tube is in contact with the cold surface.

13 DR. CONNELL: I see.

14 MR. PENN: It requires also stress to be
15 applied to cause delayed hydride -- well, what happens
16 first is that the ingress -- well, let me start again.

17 It requires three factors to cause
18 delayed hydride cracking. It requires a temperature
19 gradient to be caused to happen, it requires stress in
20 the metal to have to act at the same time, and it
21 requires the presence of free hydrogen or deuterium to
22 ingress at that location.

23 [4:40 p.m.]

24 What happens is that the hydrogen or
25 deuterium goes into solution in the zirconium alloy and

1 remains in solution until what is termed total solid
2 solubility limits are reached when the platelets of
3 zirconium hydride and precipitate out and then not in
4 solution of the metal, and delayed hydride cracking
5 occurs when these platelets of hydride get orientated
6 in a certain direction and then hydride is formed in
7 the metal and this whole process takes a very long
8 time. It doesn't happen in weeks or months; it takes
9 years.

10 Then as zirconium hydride occupies a
11 bigger volume than the parent metal, it causes further
12 stresses and the blisters Mr. Daly talked about crack,
13 and that's the process of delayed hydride cracking.
14 And it is prevented by removing any one of or all of
15 the three conditions that cause it to happen.

16 So, if you have got enough garter springs
17 in the channel and they are in the right place and the
18 pressure tube can't touch the calandria tube, you don't
19 form the temperature gradient to cause the process to
20 start.

21 DR. CONNELL: So in fact that is a
22 problem of the past then.

23 MR. PENN: We believe so. We now have
24 what we call tight garter springs that clasp the
25 pressure tube and don't move and we believe that's the

1 solution.

2 DR. CONNELL: With regard to the
3 remaining problem, the elongation, I got the
4 impression, I can't seem to find the overhead at the
5 moment, but I got the impression that there were some
6 quite striking differences in life expectancies even
7 within Bruce "B", for example, that two of the reactors
8 seem to have considerably shorter tube lives than the
9 other two.

10 MR. PENN: Yes. Well, the lives aren't
11 set by either delayed hydride cracking or axial
12 elongation; they are set by Hydro's desire, first of
13 all, not to exceed 30 years life at this point in time,
14 and secondly to avoid retubing two reactors, shall we
15 say, at Bruce "B", at one and the same time in
16 parallel. And that's why these dates have been chosen,
17 and the lives as you mentioned for Bruce 5, for
18 example, is 26 years.

19 DR. CONNELL: What is that figure number?

20 MR. PENN: I'm sorry, this is page 63 of
21 our Exhibit 519.

22 DR. CONNELL: Thank you.

23 MR. PENN: And you can see that in Bruce
24 "B", of course, Bruce 5 was the first unit -- I'm
25 sorry, Bruce 6 was the first unit to go into service.

1 We, in our planning, have decided to start retubing
2 Bruce 5 first, February 2011, and the consequential
3 result is that those tubes would have 26 years life
4 from a depreciation point of view. And whereas Bruce
5 6, which would be retubed in May 2013 and would follow
6 the completion of work in Bruce 5, would then have 29
7 years, and Bruce 7, because its startup date was a year
8 and a half later than Bruce 6, when it's being retubed
9 in 2015, also happens to have 29 years. And this is
10 how these particular service lives have come about.

11 Now, Hydro, given ongoing knowledge of
12 pressure tubes, may or may not decide to retube them
13 exactly on those dates. Clearly, if we can get more
14 life safely out of them and economically out of them,
15 we will do so. But those are our present plans.

16 DR. CONNELL: This is true also of Bruce
17 "A" where the difference in the tube life is even more
18 striking.

19 MR. PENN: Well, there is another reason
20 for Bruce 1 and 2 being less than Bruce 3 and 4, and
21 that is this question of provision of axial elongation.
22 And the fact that Bruce 1 and 2, and I ask Mr. Daly to
23 correct me if I am wrong, Bruce 1 and 2 doesn't have
24 four garter springs in it, I believe it has two garter
25 springs, and we have more concern for those units for

1 delayed hydride cracking than Bruce 3 and 4.

2 There was a change in design at about
3 that time that they were being built.

4 DR. CONNELL: Thank you.

5 Can you confirm that, Mr. Daly?

6 MR. DALY: That's confirmed, yes.

7 DR. CONNELL: Thank you.

8 With regard to the power generator
9 cracks, I would like to know whether the experience you
10 have had is specific to the nuclear option or would
11 this have been as likely to happen in the current
12 generation for fossil stations?

13 MR. DALY: This is just as likely to
14 happen with a fossil station for a generator of the
15 same size. I am not aware of any specific failures of
16 this particular manufacturer's generator on a fossil
17 station, but by and large the generators on our fossil
18 stations are very similar to the generators on the
19 nuclear stations. The steam conditions are slightly
20 different, the higher pressure, higher temperature
21 steam on the fossil side, so that the turbines are --
22 there are some slight differences, but the generators
23 are essentially the same.

24 So yes, it could equally happen to a
25 fossil station.

1 DR. CONNELL: The fact that the capacity
2 is 880, it might as likely happen at the 500 megawatt
3 level, might it?

4 MR. DALY: I think there is perhaps
5 slightly more potential with the larger machines. This
6 was a problem with the overall flexibility of the
7 shaft, and as machines get larger, you have to be a
8 little more careful in the design and balancing of the
9 machines.

10 So I would say, subject to what Mr. Penn
11 is going to say, perhaps it's something that you have
12 to be more careful with, with the larger machines.

13 MR. PENN: I can confirm that the problem
14 with the generator rotors at Darlington was related to
15 the degree of flexibility in the shaft itself, creating
16 high tensile stresses locally. And in fact, the final
17 solution, which is at Brown and Boveri's cost, is to
18 increase the diameter of the rotor shaft in the area
19 where we had problems.

20 DR. CONNELL: I take it their liability
21 amounts just to replacement, not to cover the debt
22 service related to any delays.

23 MR. PENN: It relates to replacement of
24 the rotors. There is no consequential damage where
25 they are required to replace energy lost.

1 We would love to gain a contract with
2 clauses of that nature, but it's not possible to do
3 business with companies on that basis.

4 DR. CONNELL: With regard to fuel, I
5 wonder if I could just ask you to give us a brief
6 account of the provision for the Elliot Lake contract
7 extension, the implications of that arrangement with
8 respect to its overall cost.

9 MR. PENN: I am afraid, Dr. Connell, I am
10 I am not familiar with an extension that you are
11 speaking of. I pointed out in my direct evidence that
12 we are in fact terminating contracts in 1993 and 1996
13 with Denison Mines and Rio Algom.

14 DR. CONNELL: I was relying on press
15 reports and I thought the contracts were going on
16 longer than Hydro had initially intended them to.

17 MR. PENN: Well, I will certainly confirm
18 whether I am right or wrong with you. I don't have
19 that knowledge.

20 DR. CONNELL: Thank you.

21 Finally, I would just like to draw the
22 attention of the panel to transcript Volume 16, which
23 was part of Panel 2. I asked a question about some
24 data on isotopes in used fuel. This appears on page
25 2890 and 2891, and I think it was Ms. Ryan told me, and

1 I quote: "The people on Panel 9 would have that
2 information."

3 So may I leave that with you for further
4 study.

5 Thank you.

6 THE CHAIRMAN: I think we might adjourn
7 now for the day and we will start tomorrow morning at
8 ten o'clock with the motion by Energy Probe; is that
9 correct?

10 MS. McClenaghan: Yes.

11 THE CHAIRMAN: When that is over, we will
12 start the cross-examinations.

13 The witnesses don't have to be here for
14 the motion. Of course, if they would like to come,
15 they can, but they don't have to be here for that.

16 We will adjourn until tomorrow morning at
17 ten o'clock.

18 THE REGISTRAR: Please come to order.

19 This hearing is adjourned until ten o'clock tomorrow
20 morning.

21 ---Whereupon the hearing was adjourned at 4:52 p.m. to
be resumed on Thursday, March 26, 1992, at 10:00
22 a.m.

23

24

25 JAS/BD [c. copyright 1985]

3 1761 11468543 1

