1. 试验3种猪饲料的饲养效果,得到9头猪的增重(单位: kg)如下:

饲料	月增重
1	51,40,43,48
2	23,25,26
3	23,28

试作方差分析,估计各个总体的未知参数 μ ,和 μ .

如有必要, 试求出两两总体均值差的双侧0.95置信区间.

解: H_0 : 各未知参数 μ_i 相等, 即各种饲料的饲养效果相同.

(1) 计算
$$T_{i\bullet} = \sum_{j} x_{ij} (j = 1 \Xi n_i)$$
、 $\overline{x}_{i\bullet}$ 、 $T = \sum_{i} T_{i\bullet} (i = 1 \Xi r) 及 \overline{x}_{i\bullet}$ 并列表

(2)
$$C = T^2/n = 94249/9 = 10472.11$$
, $SST = 11497 - 10472.11 = 1024.89$,

$$SSA = \sum_{i} \frac{T_{i \cdot \bullet}^2}{n_i} - C = \frac{182^2}{4} + \frac{74^2}{3} + \frac{51^2}{2} - 10472.11 = 934.72, \quad SSE = SST - SSA = 90.17;$$

饲料	月增重	n_i	T_{i} .	\overline{x}_{i}	$\sum_{j} x_{ij}^2$
1	51,40,43,48	4	182	45.50	8354
2	23,25,26	3	74	24.67	1830
3	23,28	2	51	25.50	1313
总和		9	307		11497

$$(3)r-1=2$$
, $n-r=6$. 列表:

方差来源	平方和	自由度	均方和	F值	显著性
因素 A	934.72	2	467.36	31.10	* *
误差	90.17	6	15.03		
总和	1024.89	8			

 $F_{0.99}(2,6)=10.90$, $F>F_{0.99}(2,6)$, 故各饲养效果之间有差异.

(4)
$$\hat{\mu}_1 = \overline{x}_1 = 45.50$$
, $\hat{\mu}_2 = \overline{x}_2 = 24.67$, $\hat{\mu}_3 = \overline{x}_3 = 25.50$, $\hat{\mu}_3 = \overline{x}_3 = 34.11$.

根据以上结论,有必要求两两总体均值差的双侧0.95置信区间, $\alpha=0.05$ 例如: 求 $\mu_1-\mu_2$ 的双侧0.95置信区间:

$$\overline{x}_{1} - \overline{x}_{2} = 20.83$$
, $\Delta_{uv} = t_{1-0.5\alpha}(n-r) \sqrt{MSE(\frac{1}{n_u} + \frac{1}{n_v})} = 2.447 \times 2.9 = 7.25$,

其中上式中: $t_{0.975}(6) = 2.447$, MSE = 15.03, $n_1 = 4$, $n_2 = 3$.

故 $\mu_1 - \mu_2$ 的双侧0.95置信区间是(13.58, 28.08).

同理: 另外两个均值差的0.95双侧置信区间分别是(11.79, 28.21)及(-7.83, 9.49).

2. 测定4种种植密度下金皇后玉米的千粒重(单位: g)如下:

种植密度	千粒重
1	247,258,256,251
2	238,244,246,236
3	214,227,221,218
4	210,204,200,210

试作方差分析,估计各个总体的未知参数 μ_i 和 μ .

解: H_0 :各个总体的 μ_i 相同.

(1)计算
$$T_i = \sum_j x_{ij}$$
 (j=1至 \mathbf{n}_i)、 $x_{i\bullet}$ 、 $T = \sum_i T_{i\bullet}$ (i=1至 \mathbf{r})及 $x_{\bullet\bullet}$ 并列表;

(2)
$$C = \frac{T^2}{n} = 3680^2 / 16 = 846400$$
, $SST = 852008 - 846400 = 5608$,

$$SSA = \sum_{i} \frac{T_{i\bullet}^{2}}{n_{i}} - C = \frac{1012^{2} + 964^{2} + 880^{2} + 824^{2}}{4} - 846400 = 5304,$$

SSE = SST - SSA = 304;

密度	千粒重					Τ _i .	\overline{x}_{i}	$\sum_{j} x_{ij}^2$
1	247	258	256	251	4	1012	253	256110
2	238	244	246	236	4	964	241	232392
3	214	227	221	218	4	880	220	193690
4	210	204	200	210	4	824	206	169816
总和					16	3680		852008

(3) r-1=3, n-r=12. 列表:

方差来源	平方和	自由度	均方和	F值	显著性
因素 A	5304	3	1768	69.80	* *
误差	304	12	25.33		
总和	5608	15			

 $F_{0.99}(3,12)=5.95$, $F>F_{0.99}(3,12)$.故四种种植密度下该玉米的千粒重有显著差异.

(4)
$$\hat{\mu}_1 = \overline{x}_1 = 253$$
, $\hat{\mu}_2 = \overline{x}_2 = 241$, $\hat{\mu}_3 = \overline{x}_3 = 220$, $\hat{\mu}_4 = \overline{x}_4 = 206$, $\hat{\mu} = \overline{x}_4 = 230$.

3. 比较4个青种平头甘蓝的自交系,从每个自交系中任取5个叶球称其重量(单位: kg)得到观测值如下:

自交系	叶球重量
1	2.21 2.00 1.90 1.95 2.14
2	1.40 1.25 0.90 1.08 0.97
3	1.65 1.94 1.44 1.51 1.78
4	1.42 1.66 1.21 1.61 1.33

试作方差分析,估计各个总体的未知参数 μ_i 和 μ .

解: H_0 : 各个总体的 μ_i 相同.

(1) 计算
$$T_i = \sum_j x_{ij}$$
 (j=1至 \mathbf{n}_i)、 $\bar{x}_{i\bullet}$ 、 $T = \sum_i T_{i\bullet}$ (i=1至r)及 $\bar{x}_{\bullet\bullet}$ 并列表

自交系	叶球重量						n _i	T _{i•}	\overline{x}_{i}	$\sum_{j} x_{ij}^{2}$
1	2.21	2.00	1.90	1.95	2.14		5	10.20	2.04	20.88
2	1.40	1.25	0.90	1.08	0.97		5	5.60	1.12	6.44
3	1.65	1.94	1.44	1.51	1.78		5	8.32	1.664	14.01
4	1.42	1.66	1.21	1.61	1.33		5	7.23	1.446	10.60
总和							20	31.35		51.921

(2)
$$C = \frac{T^2}{n} = 31.35^2/20 = 49.14$$
, $SST = 51.92-49.14 = 2.78$,

$$SSA = \sum_{i} \frac{T_{i\bullet}^{2}}{n_{i}} - C = \frac{10.20^{2} + 5.60^{2} + 8.32^{2} + 7.23^{2}}{5} - 49.14 = 2.24,$$

SSE = SST - SSA = 0.54.

(3) r-1=3, n-r=16. 列表:

方差来源	平方和	自由度	均方和	F值	显著性
因素 A	2.24	3	0.757	22.12	* *
误差	0.54	16	0.034		
总和	2.78	19			

 $F_{0.99}(3,16)=5.29$, $F>F_{0.99}(3,16)=5.29$ 。 故四种自交系的平均叶球重量差异显著.

(4)
$$\hat{\mu}_1 = \overline{x}_1 = 2.040$$
, $\hat{\mu}_2 = \overline{x}_2 = 1.120$, $\hat{\mu}_3 = \overline{x}_3 = 1.664$, $\hat{\mu}_4 = \overline{x}_4 = 1.446$, $\hat{\mu}_1 = \overline{x}_4 = 1.446$, $\hat{\mu}_1 = \overline{x}_4 = 1.446$, $\hat{\mu}_2 = \overline{x}_4 = 1.446$, $\hat{\mu}_3 = \overline{x}_4 = 1.446$, $\hat{\mu}_4 = \overline{x}_4 = 1.446$, $\hat{\mu}_4 = \overline{x}_4 = 1.446$, $\hat{\mu}_5 = \overline{x}_5 = 1.568$.

4. 为研究华农2号玉米品种花粉的生活力,设计了3种不同的储藏方法,用萨尔达柯夫法在显微镜下得到有生活力的花粉的百分率数据如下:

方法	百分率
1	95,77,72,64,56,68
2	93,78,75,76,63,71
3	70,68,66,49,55,64
对照	97,91,82,85,78,77

试先作百分率数据的平方根反正弦变换后再作方差分析.

解: H_0 :各个总体的 μ_i 相同.

(1)计算
$$T_i = \sum_i x_{ij} (j = 1 \le n_i)$$
、 \overline{x}_i 、 $T = \sum_i T_i$ ($i = 1 \le r$)及 \overline{x} ...并列表

(是原表中的数据求平方根反正弦后的数据表格)

方法	百	百分率的反正弦							\overline{x}_{i}	$\sum_{j} x_{ij}^2$
1	77.1	61.3	58.1	53.1	48.5	55.6	6	353.7	58.95	21340.93
2	74.7	62.0	60.0	60.7	52.5	57.4	6	367.3	61.22	22759.59
3	56.8	55.6	54.3	44.4	47.9	53.1	6	312.1	52.02	16351.47
4	80.0	72.5	64.9	67.2	62.0	61.3	6	407.9	67.98	27985.79
总和							24	1441		88437.78

(2)
$$C = \frac{T^2}{n} = \frac{1441^2}{24} = 86520.04$$
, $SST = 88437.78 - 86520.04 = 1917.74$,

$$SSA = \sum_{i} \frac{T_{i\bullet}^{2}}{n_{i}} - C = \frac{353.7^{2} + 367.3^{2} + 312.1^{2} + 407.9^{2}}{6} - 86520.04 = 780.26,$$

$$SSE = SST - SSA = 1137.48$$
.

(3) r-1=3, n-r=20. 列表:

方差来源	平方和	自由度	均方和	F 值	显著性
因素 A	780.26	3	260.09	4.57	*
误差	1137.48	20	56.87		
总和	1917.74	23			

 $F_{0.95}(3,20)=3.10 < F < F_{0.99}(3,20)=4.94$,故采取不同的储存方法有较为显著的差异(说明:本解答中的平方根反正弦变换采用的是"角度",不是"弧度",当然采用"弧度亦可",注意此解答中的中间有些具体的数值和课本答案不同(如均方和),但 F 值相同,最后结论亦相同,请思考原因何在.)