Math 4000/6000 - Homework #7

posted November 4, 2016; due November 15, 2016

Examiner: What is a root of multiplicity m?

Examinee: Well, this is when we plug a number to a function, and obtain zero; then we plug it again, and obtain zero again... and this happens m times. But on the (m+1)-st time we do not obtain zero.

- math joke of the day

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

In this assignment, "ring" always means "commutative ring."

- 1. Exercise 4.1.1. When answering part (b), assume neither of R and S is the zero ring.
- 2. Let R be a ring. Recall that if x_1, \ldots, x_n are elements of R, then (by definition)

$$\langle x_1, \dots, x_n \rangle = \{r_1 x_1 + \dots + r_n x_n : \text{all } r_i \in R\}.$$

In other words, $\langle x_1, \ldots, x_n \rangle$ is the set of all linear combinations of x_1, \ldots, x_n with coefficients from R. Prove that $\langle x_1, \ldots, x_n \rangle$ is an ideal of R by directly verifying the three definining properties.

- 3. Exercise 4.1.3. (In part (c), assume R is not the zero ring.)
- 4. Let $R = \mathbb{Z}$, and let a_1, \ldots, a_n be positive integers. By Exercise 2, $\langle a_1, \ldots, a_n \rangle$ is an ideal of \mathbb{Z} . Since \mathbb{Z} is a principal ideal ring, we know there is an integer d with

$$\langle a_1, \ldots, a_n \rangle = \langle d \rangle.$$

Show that d divides every a_i and that if d' is any integer dividing every a_i , then d' divides d. [Thus, d' is the "greatest common divisor" of a_1, \ldots, a_n .]

- 5. Let F be a field. Use the theorem on the division in algorithm in F[x] to prove that F[x] is a principal ideal ring.
- 6. Use the theorem on the division algorithm in $\mathbb{Z}[i]$ (from earlier homework) to prove that $\mathbb{Z}[i]$ is a principal ideal ring.
- 7. (a) Let R be an integral domain. Show that if $a, b \in R$, then $\langle a \rangle = \langle b \rangle$ if and only if $a = u \cdot b$ for some unit $u \in R$. Hint: First show that $\langle a \rangle = \langle b \rangle$ if and only if $a \mid b$ and $b \mid a$.
 - (b) Now let R = F[x]. Show that $\langle a(x) \rangle = \langle b(x) \rangle$, where $a(x), b(x) \in F[x]$, if and only if $a(x) = c \cdot b(x)$ for some nonzero $c \in F$.
- 8. Prove that if F is a field and $f(x) \in F[x]$ has degree $n \geq 1$, then the elements of $F[x]/\langle f(x)\rangle$ all have the form $a_0 + a_1x + \cdots + a_{n-1}x^{n-1}$, where $a_0, \ldots, a_{n-1} \in F$. Moreover, show that this representation is unique; i.e., distinct choices of a_i lead to distinct elements of $F[x]/\langle f(x)\rangle$.

Hint for the first half: For any $a(x) \in F[x]$, we can write $a(x) = \underline{f(x)}q(x) + r(x)$, where r(x) = 0 or deg r(x) < n. Argue that $\overline{a(x)} = \overline{r(x)}$, and that $\overline{r(x)}$ has the form appearing in the problem statement.

- 9. Exercise 4.1.14(c). Make sure to answer the two questions at the end (is it a field? is it an integral domain?).
- 10. Exercise 4.1.10. *Hint:* If you get stuck, try Exercise 4.1.9 first.
- 11. (*) Exercise 3.3.7.
- 12. (*) Exercise 3.3.10.