

Introduction

Vous êtes capables :

Problematique

- de modéliser une action mécanique,
- résoudre un problème de statique en utilisant le P.F.S.

Vous devez êtes capables :

• modéliser les actions de contact avec frottements.

200

Lois de Coulomb

Les lois de Charles de **Coulomb** permettent de modéliser une action mécanique locale de contact entre deux solides en tenant compte du frottement entre les matériaux en contact.

Introduction

Inclinaison de la résultante des efforts de contact

- Le phénomène de frottement apparait lorsque l'on essaye d'induire un glissement relatif entre les deux solides parallèlement au plan de contact,
- En considérant la déformation des solides au niveau de leur zone de contact, on constate que la déformation et la répartition des actions élémentaires de contact sont dissymétriques,
- Il en résulte que la résultante des actions mécaniques de contact est inclinée par rapport à la normale au plan de contact théorique.

Remarques:

- La résultante s'incline dans le sens opposé au mouvement relatif des deux solides. Le frottement s'oppose au mouvement relatif des solides en contact,
- Il n'est pas nécessaire qu'il y ait une vitesse relative pour que la résultante s'incline.

200

Modèle de Coulomb

Coefficient de frottement

Dans le modèle proposé par Coulomb, on décompose les actions mécaniques de contact en:

- une composante normale $p.ds.\overrightarrow{n}$ où p est la pression de contact qui règne sur l'élément de surface ds et \overrightarrow{n} la normale à ds,
- une composante tangentielle $q.ds.\overrightarrow{t}$ où q est la densité tangentielle surfacique d'effort, proportionnelle à p,
- p et q sont reliés par : q = f.p où f est le coefficient de frottement.

Renaud Costadoat

S05 - C02

Introduction

Cône de frottement

On défini également l'angle φ tel que $tan\varphi = f = \frac{q}{p}$. Le **cône de frottement**, dans un contact ponctuel, est alors le cône de demi-angle φ dont le sommet est au point de contact et dont l'axe est la normale au contact.

- Cas du glissement: Dans le cas où $\overrightarrow{V_{S/\overline{S}}} \neq \overrightarrow{0}$ (cas du glissement), la résultante des actions mécaniques de contact $\overrightarrow{R_{\overline{S}} \to S}$ se situe alors sur le cône de frottement et est inclinée dans la direction opposée à $\overrightarrow{V_{S/\overline{S}}}$,
- Cas du non-glissement (adhérence) Dans ce cas $\overrightarrow{V_{S/\overline{S}}} = \overrightarrow{0}$. $\overrightarrow{R_{\overline{S}}} \rightarrow \overrightarrow{S}$ est alors à l'intérieur du cône d'adhérence dont le demi-angle est ϕ' , légèrement supérieur à ϕ . Sa position exacte dans le cône est déterminée en fonction des conditions d'équilibre du solide.

Données numériques

Matériaux en contact	Coefficient de frottement f	Coefficient d'adhérence f'
Acier/Acier	0,1-0,2	0,15-0,25
Acier/Bronze	0,12-0,2	0,15-0,2
Acier/Ferrodo	0,2-0,35	0,3-0,4
Acier/PTFE	0,02-0,08	0,1-0,15
Pneu/Route	0,3-0,6	0,6-1,2

DOR

Renaud Costadoat

S05 - C02

ク 2 7

Introduction

Conclusion

avoir

Problematique

Vous êtes capables :

• modéliser les actions de contact avec frottements.

Vous devez êtes capables :

- d'intégrer l'étude des mouvements à l'étude précédente afin de prendre en compte le Principe Fondamental de la Dynamique,
- de prendre en compte la déformation des pièces due à ces efforts.