MS Thesis Progress Report for Sem 2, 2020-21

Data Analysis for Predicting Instabilities in Power Systems

Aryan Ritwajeet Jha 2020EEY7525 MS in EE (Power Systems)

Thesis supervisor: Dr. Nilanjan Senroy Department of Electrical Engineering IIT Delhi

Introduction

Transient vs Steady State Stability

Transient Stability	Steady State Stability
A sudden, out-of-trend, high	Accumulation of several
magnitude change in a state	seemingly minor trends in
variable(s) causes blackouts.	state variables over time,
	ultimately leading to a critical
	point where a small change
	could cause blackouts.
Chief parameters of concern	Autocorrelation and
are ROCOF, frequency nadir,	covariance are some of the
steady-state frequency	commonly used parameters
deviation.	for prognosis.
Inertia is a fundamental	Inertia plays a minor role
parameter here.	here.

Bifurcations and Critical Slowing Down

Bifurcation: A qualitative change in the 'motion' of a dynamical System due to a quantitative change in one of its parameters. Serious bifurcations, called **Critical Bifurcations**, cause the system to become unstable from stable.

Bifurcations and Critical Slowing Down

Critical Slowing Down: Dynamical Systems exhibit early statistical warning signs before collapsing:

- · Increased recovery times from perturbations.
- · Increased signal variance from the mean trajectory.
- · Increased flicker and asymmetry in the signal

The above three properties can be identified by increasing variance and autocorrelation in time-series measurements taken from the system.

Theory

Autocorrelation Definition

$$\int_{-\infty}^{\infty} x(t) * x(t+\tau) dt = c(\tau)$$
 (1)

Autcorrelation Decay

$$\mathit{C}(au) \propto \exp(-lpha au)$$

$$C(\tau) \sim \exp(-\tau/T)$$
 (3)

(2)

Procedure

Procedure

- On similar lines of [3], accessed a bunch of real-world frequency time-series data and plotted their:
 - · bulk distribution (pdf)
 - · auto-correlation curves
- · Obtained explanation for the signature dynamics of each grid.

Figure 1: Continental European Grid frequency PDF: Heavier tails than a Gaussian Distribution.

Figure 2: Mallorcan (an islanded Spanish grid) frequency pdf

Figure 3: French grid frequency pdf including a blackout

Figure 4: Autocorrelation decay of different synchronous regions.

Table 1: Inverse-correlation values for different grids

Grid name	Inverse-correlation value T^{-1} [min ⁻¹]
Mallorca	0.0654
Western Interconnection	0.0498
Nordic	0.0235
Continental Europe	0.0829
Great Britain	0.0879

Figure 5: Inverse correlation time is proportional to the damping constant of the grid.

- Examine different mathematical processes for modelling and examining the steady state stability of the grid.
- · Research on optimum sampling rates as done in [7]
- Attempt to simulate different control strategies for increasing grid stability
- Collect Indian grid frequency data from the laboratory and perform the above tasks

- Examine different mathematical processes for modelling and examining the steady state stability of the grid.
- Research on optimum sampling rates as done in [7]
- Attempt to simulate different control strategies for increasing grid stability
- Collect Indian grid frequency data from the laboratory and perform the above tasks

- Examine different mathematical processes for modelling and examining the steady state stability of the grid.
- · Research on optimum sampling rates as done in [7]
- Attempt to simulate different control strategies for increasing grid stability
- Collect Indian grid frequency data from the laboratory and perform the above tasks

- Examine different mathematical processes for modelling and examining the steady state stability of the grid.
- Research on optimum sampling rates as done in [7]
- Attempt to simulate different control strategies for increasing grid stability
- Collect Indian grid frequency data from the laboratory and perform the above tasks

References

References i

- Goodarz Ghanavati, Paul D. H. Hines, and Taras I. Lakoba. [1] "Identifying Useful Statistical Indicators of Proximity to Instability in Stochastic Power Systems". In: IEEE Transactions on Power Systems 31.2 (2016), pp. 1360-1368. DOI: 10.1109/TPWRS.2015.2412115.
- [2] Eduardo Cotilla-Sanchez, Paul D. H. Hines, and Christopher M. Danforth. "Predicting Critical Transitions From Time Series Synchrophasor Data". In: IEEE Transactions on Smart Grid 3.4 (2012), pp. 1832–1840. DOI: 10.1109/TSG.2012.2213848.

References ii

- [3] Benjamin Schäfer et al. "Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics". In: *Nature Energy* 3.2 (2018), pp. 119–126. ISSN: 2058-7546. DOI: 10.1038/s41560-017-0058-z. URL: http://dx.doi.org/10.1038/s41560-017-0058-z.
- [4] Petr Vorobev et al. "Deadbands, Droop, and Inertia Impact on Power System Frequency Distribution". In: IEEE Transactions on Power Systems 34.4 (2019), pp. 3098–3108. DOI: 10.1109/TPWRS.2019.2895547.
- [5] Francesca Madia Mele et al. "Impact of variability, uncertainty and frequency regulation on power system frequency distribution". In: 2016 Power Systems Computation Conference (PSCC). 2016, pp. 1–8. DOI: 10.1109/PSCC.2016.7540970.

References iii

- [6] Muhammad Adeen and Federico Milano. "On the Impact of Auto-Correlation of Stochastic Processes on the Transient Behavior of Power Systems". In: IEEE Transactions on Power Systems (2021), pp. 1–1. DOI: 10.1109/TPWRS.2021.3068038.
- [7] Leonardo Rydin Gorjão et al. "Open database analysis of scaling and spatio-temporal properties of power grid frequencies". In: Nature Communications 11.1 (2020), p. 6362. ISSN: 2041-1723. DOI: 10.1038/s41467-020-19732-7. URL: https://doi.org/10.1038/s41467-020-19732-7.

