Map Reduce

O que é

- Um paradigma de programação que permite processar grandes quantidades de informação de forma paralela.
- Divide-se em duas etapas:
 - "Map" responsavel por seleccionar/ordenar/processar informação de forma independente/isolada. Resultado é um conjunto de pares ordenados "keyvalue"
 - "Reduce" responsavel por combinar/agregar informação da etapa anterior num conjunto de dados muito reduzido (no limite 1)

Algoritmo

- Pedaços de informação ("chunks") são processados de forma isolada por "Mappers" que podem ser distribuidos numa rede pois tratam a informação de forma isolada.
- O resultados do trabalho dos "Mappers" é um sub-produto intermédio que é fornecido aos processos "Reducers" num processo denominado por "shuffling process".
- O resultado dos "Reducers" é também o resultado final do algoritmo

Um exemplo

- Queremos fazer um histograma de palavras nos lusiadas.
 - Começamos por criar chunks para simplificar cada chunk é uma estrofe
 - Map: Para cada estrofe vou obter uma lista de k,v com cada palavra e número de ocorrências.
 - Reduce: com os resultados anteriores vou somando e agregando
 - No final obtenho o histograma pretendido

Vantagens

- Processamento Paralelo
 - Cada tarefa é completamente independente, partimos o problema para o simplificar ("divide & conquer")
- Localidade da Informação
 - Os dados não estão centralizados, mas sim distribuidos por todos os nós de computação.
 - Em vez de transmitir os dados entre nós, as funções "Map" e "Reduce" é que migram para a localização dos dados.

Hadoop

- Hadoop é uma implementação
 Open Source do MapReduce
- Hadoop é um motor de analise assente num sistema de ficheiros distribuido de seu nome HDFS (Hadoop File System)
- HDFS é uma "cópia" do Google File System (GFS)

Arquitectura de Software

- Arquitectura master-slave
- Master tem o nome de Job Tracker (JT)
- Slave tem o nome de Task
 Tracker (TT)
- Estratégia de comunicação é pull scheduling
 - Não é o master quem atribui trabalho, mas sim os slaves que pedem tarefas

Task Scheduling

Cada Task Tracker envia um heartbeat periodicamente ao Job Tracker com um pedido para realizar trabalho

- Job Tracker satisfaz o pedido atribuindo tarefas de mapping aos nós que teem informação por processar
- Job Tracker pode também atribuir tarefas de reduce independentemente da localização da informação

Sumário

- O seu modelo de funcionamento simples permite ao utilizador escrever e testar rápidamente sistemas distribuidos
- Distribui de forma automática e eficiente carga de processamento entre máquinas
- Apresenta uma curva de escalabilidade quase plana (10 nós ou 1000 nós com o mesmo esforço)

Comparação com Modelos Tradicionais

Aspecto	Memória Partilhada	Mensagens	MapReduce
Comunicação	Implicita (via load/store)	Explicita	Limitada e Implicita
Sincronização	Explicita	Implicita (via mensagens)	Imutavel (K, V)
Suporte em Hardware	Necessario	Nenhum	Nenhum
Esforço de Desenvolvimento	Baixo	Alto	Baixo
Esforço de Aprefeiçoamento	Alto	Baixo	Baixo

