2005-2-2 页码,1/3

北京航空航天大学 2004-2005学年第二学期期末

考试统一用答题册(A)

考试课程	数学	分析	B
------	----	----	---

	班级	学号	姓名
--	----	----	----

题目	_	二	三	四	五	六	セ	总分
得分								

2005年7月9日

一. 填空题(每题5分,共20分)

- 1. 函数 $z = x^2 xy + y^2$ 在点 (1,1) 处最大的方向导数值为______.
- 2. $\int_0^1 dx \int_x^{\sqrt{x}} \frac{\sin y}{y} dy =$ ______.
- 3. 在曲面 $\Sigma: z = xy$ 上点 P_0 (, ,) 处的法线垂直于平面 x + 3y + z + 9 = 0.

4. 设_{Γ}是以 O(0,0), A(1,0), B(0,1) 为顶点的三角形的边界, 则 Γ $xyds = _{----}$.

二. 单项选择题 (每题5分,共20分)

- 1. 函数 $z = x^3 + y^3 3xy$ 在点 P(,) 处取得极值.
 - A. (1, 1)
- B. (1,0) C. (0,0)
- D. (0,1)
- 2. 设 Σ是单位球面 $x^2 + y^2 + z^2 = 1$. 则曲面积分 $I = \iint_{\Sigma} xyzdS = ($

- A. $\frac{\pi}{3}$ B. π C. 0 D. $-\frac{\pi}{2}$
- - A. $\frac{\cos(2x^2)}{x} \frac{\cos(x^2)}{x}$ B. $\frac{\cos(2x^2)}{2x} \frac{\cos(x^2)}{x}$

 - C. $2\left[\frac{\cos(2x^2)}{x} \frac{\cos(x^2)}{x}\right]$ D. $\frac{1}{2}\left[\frac{\cos(2x^2)}{x} \frac{\cos(x^2)}{x}\right]$
- 4. 设 $P(x_0, y_0)$ 为函数 z = f(x, y) 在条件 $\varphi(x, y) = 0$ 下的条件极值点, 并且 z = f(x, y)和 $\varphi(x,y)$ 在 $P(x_0,y_0)$ 的某邻域内有一阶连续的偏导数, 设曲面 z = f(x,y) 和曲 面 $\varphi(x,y) = 0$ 的交线在点 $\tilde{P}(x_0, y_0, f(x_0, y_0))$ 处切向量为 $\vec{T} = \{T_x, T_y, T_z\}$. 则
 - A. $T_{r} = 0$

B. $T_{v} = 0$

C. $T_{5} = 0$

D. 以上均不正确

三. 计算题(每题10分; 共20分)

- 1. 设 $u=e^xyz^2$,其中z=z(x,y)是由方程x+y+z+xyz=0确定的隐函数,求偏导数 $\frac{\partial u}{\partial x}$ π $\frac{\partial u}{\partial x}$.
- 2. 求 $I = \iiint_{\Omega} z dx dy dx$, 其中 Ω 是上半椭球: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$, $z \ge 0$.

四. 计算题(每题9分; 共18分)

1. 计算曲面积分 $I = \iint_{\Sigma} x(8y+1)dydz + 2(1-y^2)dzdx - 4yzdxdy$, 为由曲线

2005-2-2 页码,3/3

 $\begin{cases} y=1+x^2 \\ z=0 \end{cases} (1 \le y \le \sqrt{2})$ 绕 y 轴旋转一周而成的曲面,它的法向量与 y 轴正向的夹角 始终为锐角.

2. 计算曲线积分 $I = \oint_{\Gamma} y^2 dx + z^2 dy + x^2 dz$, 其中 $_{\Gamma}$ 是球面 $x^2 + y^2 + z^2 = a^2$ 位于第一卦 限部分的边界曲线,从原点看去为顺时针方向.

五. 计算题(每题8分,共16分)

- 1. 设 f(x) 是有二阶连续导数的函数, 且 f(0) = f'(0) = 1. 试确定 f(x) 使得曲线积分 $\int_{A}^{B} [f'(x) + 2f(x)]ydx + [f'(x) 2x^{2}]dy$ 与路径无关.
- 2. 通过引入参数,计算广义积分 $\int_0^{+\infty} \frac{\ln(1+x^2)}{1+x^2} dx$.

六.证明题(6分)

设函数 u(x,y) 在以一条分段光滑的闭曲线围成的有界闭区域 D 上有一阶连续的偏导数, 并且 $(0,0) \in D(D$ 的内部). 则

$$u(0,0) = \frac{1}{2\pi} \oint_{\partial D} u(x,y) \frac{xdy - ydx}{x^2 + y^2} - \frac{1}{2\pi} \iint_D \frac{xu_x + yu_y}{x^2 + y^2} dxdy,$$

其中∂D为 D的正向边界.