Exploration-Exploitation tradeoffs and multi-armed bandit problems

CS7032: AI & Agents for IET

November 24, 2015

Learning and Feedback

- ► Consider the ACO algorithm: how does the system learn?
- Contrast that form of "learning" with, say, our system that learns to play draughts, or to a system that learns to filter out spam mail.

Learning and Feedback

- ► Consider the ACO algorithm: how does the system learn?
- Contrast that form of "learning" with, say, our system that learns to play draughts, or to a system that learns to filter out spam mail.
- ▶ The RL literature often contrasts instruction and evaluation.
- Evaluation is a key component of Reinforcement learning systems:
 - ► Evaluative feedback is local (it indicates how good an action is) but not whether it is the best action possible
 - ► This creates a need for exploration

Associative vs. non-associative settings

- ▶ In general, learning is both
 - selectional: i.e. actions are selected by trying different alternatives and comparing their effects,

Associative vs. non-associative settings

- ▶ In general, learning is both
 - ▶ selectional: i.e. actions are selected by trying different alternatives and comparing their effects,
 - associative: i.e. the actions selected are associated to particular situations.

Associative vs. non-associative settings

- ▶ In general, learning is both
 - ► selectional: i.e. actions are selected by trying different alternatives and comparing their effects,
 - associative: i.e. the actions selected are associated to particular situations.
- However, in order to study evaluative feedback in detail it is convenient to simplify things and consider the problem from a non-associative perspective.

- ► Choice of *n* actions (which yield numerical rewards drawn from a stationary probability distribution)
 - each action selection called a play
- ► Goal: maximise expected (long term) total reward or return.
 - ► Strategy: concentrate plays on the best levers.

- ► Choice of *n* actions (which yield numerical rewards drawn from a stationary probability distribution)
 - each action selection called a play
- ► Goal: maximise expected (long term) total reward or return.
 - ► Strategy: concentrate plays on the best levers.

- ► Choice of *n* actions (which yield numerical rewards drawn from a stationary probability distribution)
 - each action selection called a play
- ► Goal: maximise expected (long term) total reward or return.
 - Strategy: concentrate plays on the best levers.

- ► Choice of *n* actions (which yield numerical rewards drawn from a stationary probability distribution)
 - each action selection called a play
- ► Goal: maximise expected (long term) total reward or return.
 - ► Strategy: concentrate plays on the best levers.

- ► Choice of *n* actions (which yield numerical rewards drawn from a stationary probability distribution)
 - each action selection called a play
- ► Goal: maximise expected (long term) total reward or return.
 - ► Strategy: concentrate plays on the best levers.

- ► Choice of *n* actions (which yield numerical rewards drawn from a stationary probability distribution)
 - each action selection called a play
- ► Goal: maximise expected (long term) total reward or return.
 - ► Strategy: concentrate plays on the best levers.

How to find the best plays

- ► Let's distinguiguish between:
 - reward, the immediate outcome of a play, and
 - value, the expected (mean) reward of a play
- ▶ But how do we estimate values?
- We could keep a record of rewards $r_1^a, \ldots, r_{k_a}^a$ for each chosen action a and estimate the value of choosing a at time t as

$$Q_t(a) = \frac{r_1^a + r_2^a + \dots + r_{k_a}^a}{k_a}$$
 (1)

But how do we choose an action?

- We could be greedy and exploit our knowledge of $Q_t(a)$ to choose at any time t the play with the highest estimated value.
- ▶ But this strategy will tend to neglect the estimates of non-greedy actions (which might have produced greater total reward in the long run).
- ► One could, alternatively, explore the space of actions by choosing, from time to time, a non-greedy action

Balancing exploitation and exploration

- ▶ The goal is to approximate the true value, Q(a) for each action
- ▶ $Q_t(a)$, given by equation (1) will converge to Q(a) as $k_a \to \infty$ (Law of Large Numbers)
- So balancing exploration and exploitation is necessary...
- but finding the right balance can be tricky; many approaches rely on strong assumptions about the underlying distributions
- We will present a simpler alternative...

A simple strategy

► The simplest strategy: choose action *a** so that:

$$a^* = \arg \max_{a} Q_t(a)$$
 (greedy selection) (2)

- ▶ A better simple strategy: ϵ -greedy methods:
 - With probability 1ϵ , exploit; i.e. choose a^* according with (2)
 - ▶ The rest of the time (probability ϵ) choose an action at random, uniformly
 - A suitably small ϵ guarantees that all actions get explored sooner or later (and the probability of selecting the optimal action converges to greater than $1-\epsilon$)

Exploring exploration at different rates

- ► The "10-armed testbed" [Sutton and Barto, 1998]:
 - ▶ 2000 randomly generated *n*-armed bandit tasks with n = 10.
 - For each action, a, expected rewards Q(a) (the "true" expected values of choosing a) are selected from a normal (Gaussian) probability distribution N(0,1)
 - Immediate rewards r_1^a, \ldots, r_k^a are similarly selected from N(Q(a), 1)

Exploring exploration at different rates

- ► The "10-armed testbed" [Sutton and Barto, 1998]:
 - ▶ 2000 randomly generated *n*-armed bandit tasks with n = 10.
 - For each action, a, expected rewards Q(a) (the "true" expected values of choosing a) are selected from a normal (Gaussian) probability distribution N(0,1)
 - Immediate rewards r_1^a, \dots, r_k^a are similarly selected from N(Q(a), 1)

```
nArmedBanditTask <- function(n=10, s=2000)

{
    qtrue <- rnorm(n)
    r <- matrix(nrow=s,ncol=n)
    for (i in 1:n){
        r[,i] <- rnorm(s,mean=qtrue[i])
    }
    return(r)
}</pre>
```

Some empirical results

▶ Averaged results of 2000 rounds of 1000 plays each:

Softmax methods

- Softmax action selection methods grade action probabilities by estimated values.
- ► Commonly use Gibbs, or Boltzmann, distribution. I.e. choose action *a* on the *t*-th play with probability

$$\pi(a) = \frac{e^{Q_t(a)/\tau}}{\sum_{b \in A} e^{Q_t(b)/\tau}}$$
 (3)

• where τ is a positive parameter called the *temperature*, as in simulated annealing algorithms.

(ロ) (部) (注) (注) (注) の(の

Keeping track of the means

Maintaining a record of means by recalculating them after each play can be a source of inefficiency in evaluating feedback. E.g.:

```
## inefficient way of selecting actions
   selectAction <- function(r, e=0) {</pre>
2
     n < -\dim(r)[2] \# number of arms (cols in r)
      if (sample(c(T,F),1,prob=c(e,1-e))) {
        return (sample(1:n,1)) \# explore if e > 0 and chance allows
 5
 6
      else { \# all Q_t(a_i), i \in [1, n]
7
       Qt < - sapply(1:n, function(i)mean(r[,i], na.rm=T))
8
        ties <- which(Qt == max(Qt))
       ## if there are ties in Q_t(a); choose one at random
10
        if (length(ties)>1)
11
          return (sample(ties, 1))
12
        else
13
          return (ties)
14
15
16
```

▶ Do we really need to store all rewards?

▶ Do we really need to store all rewards? NO

- Do we really need to store all rewards? NO
- ▶ Let Q_k be the mean of the first k rewards for an action,
- We can express the next mean value as

$$Q_{k+1} = \frac{1}{k+1} \sum_{i=1}^{k+1} r_i$$

$$= \dots$$

$$= Q_k + \frac{1}{k+1} [r_{k+1} - Q_k]$$
 (4)

- Do we really need to store all rewards? NO
- ▶ Let Q_k be the mean of the first k rewards for an action,
- We can express the next mean value as

$$Q_{k+1} = \frac{1}{k+1} \sum_{i=1}^{k+1} r_i$$

$$= \dots$$

$$= Q_k + \frac{1}{k+1} [r_{k+1} - Q_k]$$
 (4)

- ▶ Equation (4) is part of family of formulae in which the new estimate (Q_{k+1}) is the old estimate (Q_k) adjusted by the estimation error $(r_{k+1} Q_k)$ scaled by a step parameter $(\frac{1}{k+1}$, in this case)
- ► (Recall the LMS weight update step described in the introduction to machine learning).

Non-stationary problems

- ► What happens if the "n-armed bandit" changes over time? How do we keep track of a changing mean?
- ► An approach: weight recent rewards more heavily than past ones.
- ▶ So, our update formula (4) could be modified to

$$Q_{k+1} = Q_k + \alpha [r_{k+1} - Q_k] \tag{5}$$

where $0 < \alpha \le 1$ is a constant

▶ This gives us Q_k as an exponential, recency-weighted average of past rewards and the initial estimate

Recency weighted estimates

• Given (5), Q_k can be rewritten as:

$$Q_{k} = Q_{k-1} + \alpha [r_{k} - Q_{k-1}]$$

$$= \alpha r_{k} + (1 - \alpha) Q_{k-1}$$

$$= \dots$$

$$= (1 - \alpha)^{k} Q_{0} + \sum_{i=1}^{k} \alpha (1 - \alpha)^{k-i} r_{i}$$
 (6)

- Note that $(1-\alpha)^k + \sum_{i=1}^k \alpha (1-\alpha)^{k-i} = 1$. I.e. weights sum to 1.
- ▶ The weight $\alpha(1-\alpha)^{k-i}$ decreases exponentially with the number of intervening rewards

Picking initial values

- ▶ The above methods are biased by Q₀
 - For sample-average, bias disappears once all actions have been selected
 - For recency-weighted methods, bias is permanent (but decreases over time)
- One can supply prior knowledge by picking the right values for Q₀
- One can also choose optimistic initial values to encourage exploration

Picking initial values

- ▶ The above methods are biased by Q₀
 - ► For sample-average, bias disappears once all actions have been selected
 - For recency-weighted methods, bias is permanent (but decreases over time)
- One can supply prior knowledge by picking the right values for Q₀
- One can also choose optimistic initial values to encourage exploration (Why?)

The effects of optimism

The effects of optimism

▶ With Q_0 's set initially high (for each action)q, the learner will be disappointed by actual rewards, and sample all actions many times before converging.

The effects of optimism

- ▶ With Q_0 's set initially high (for each action)q, the learner will be disappointed by actual rewards, and sample all actions many times before converging.
- ▶ E.g.: Performance of Optimistic ($Q_0 = 5, \forall a$) vs Realistic ($Q_0 = 0, \forall a$) strategies for the 10-armed testbed

Evaluation vs Instruction

- ► RL searches the action space while SL searchs the parameter space.
- Binary, 2-armed bandits:
 - \blacktriangleright two actions: a_1 and a_2
 - two rewards: success and failure (as opposed to numeric rewards).
- ▶ SL: select the action that returns success most often.

Evaluation vs Instruction

- ▶ RL searches the action space while SL searchs the parameter space.
- ▶ Binary, 2-armed bandits:
 - ▶ two actions: *a*₁ and *a*₂
 - two rewards: success and failure (as opposed to numeric rewards).
- ▶ SL: select the action that returns success most often.
- ► Stochastic case (a problem for SL?):

Success probability for action a₁

Two stochastic SL schemes (learning automata)

- ▶ L_{r-p} , Linear reward-penalty: choose the action as in the naive SL case, and keep track of the successes by updating an estimate of the probability of choosing it in future.
- ▶ Choose $a \in A$ with probability $\pi_t(a)$
- Update the probability of the chosen action as follows:

$$\pi_{t+1}(a) = \begin{cases} \pi_t(a) + \alpha(1 - \pi_t(a)) & \text{if success} \\ \pi_t(a)(1 - \alpha) & \text{otherwise} \end{cases}$$
 (7)

▶ All remaining actions $a_i \neq a$ are adjusted proportionally:

$$\pi_{t+1}(a_i) = \begin{cases} \pi_t(a_i)(1-\alpha) & \text{if a succeeds} \\ \frac{\alpha}{|A|-1} + \pi_t(a_i)(1-\alpha) & \text{otherwise} \end{cases}$$
(8)

▶ L_{r-i} , Linear reward-inaction: like L_{r-p} but update probabilities only in case of success.

Performance: instruction vs evaluation

► See [Narendra and Thathachar, 1974], for a survey of learning automata methods and results.

Reinforcement comparison

▶ Instead of estimates of values for each action, keep an estimate of overall reward level \bar{r}_t :

$$\bar{r}_{t+1} = \bar{r}_t + \alpha [r_{t+1} - r_t] \tag{9}$$

▶ and action preferences $p_t(a)$ w.r.t. reward estimates:

$$p_{t+1}(a) = p_t(a) + \beta[r_t - \bar{r}_t]$$
 (10)

► The softmax function can then be used as a PMF for action selection:

$$\pi_t(a) = \frac{e^{p_t(a)}}{\sum_{b \in A} e^{p_t(b)}}$$
 (11)

• ($0 < \alpha \le 1$ and $\beta > 0$ are step-size parameters.)

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶ 臺 めのの

How does reinforcement comparison compare?

▶ Reinforcement comparison ($\alpha = 0.1$) vs action-value on the 10-armed testbed.

Pursuit methods

- maintain both action-value estimates and action preferences,
- preferences continually "pursue" greedy actions.
- ▶ E.g.: for greedy action $a^* = \arg \max_a Q_{t+1}(a)$, increase its selection probability:

$$\pi_{t+1}(a^*) = \pi_t(a^*) + \beta[1 - \pi_t(a^*)]$$
 (12)

• while decreasing probabilities for all remaining actions $a \neq a^*$

$$\pi_{t+1}(a) = \pi_t(a) + \beta[0 - \pi_t(a)] \tag{13}$$

Performance of pursuit methods

Pursuit ($\alpha=1/k$ for Q_t update, $\pi_0(a)=1/n$ and $\beta=0.01$) versus reinforcement comparison ($\alpha=0.1$) vs action-value on the 10-armed testbed.

Further topics

- Associative search:
 - suppose we have many different bandit tasks and the learner is presented with a different one at each play.
 - ► Suppose each time the learner is given a clue as to the which task it is facing...

Further topics

- Associative search:
 - suppose we have many different bandit tasks and the learner is presented with a different one at each play.
 - ► Suppose each time the learner is given a clue as to the which task it is facing...
 - ► In such cases, the best strategy is a combination of *search* for the best actions and association of actions to situations

Further topics

- Associative search:
 - suppose we have many different bandit tasks and the learner is presented with a different one at each play.
 - ► Suppose each time the learner is given a clue as to the which task it is facing...
 - ▶ In such cases, the best strategy is a combination of *search* for the best actions and association of actions to situations
- Exact algorithms for computation of Bayes optimal way to balance exploration and exploitation exist [Bellman, 1956], but are intractable.

References

Bellman, R. (1956).

A problem in the sequential design of experiments. *Sankhya*, 16:221–229.

Narendra, K. and Thathachar, M. (1974).

Learning automata - a survey.

IEEE Transactions on Systems, Man and Cybernetics, SMC-4(4):323-334.

Sutton, R. S. and Barto, A. G. (1998).

Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA.

VIII Press, Cambridge, IVIA.