Exercícios

Resolva demonstrando a sua resposta.

Data da entrega: 25/03/2024

Vale 50% da Prova 1

- 1) Seja $f(n) = (n+1)^2$. Determine O(g(n)), determinando n_0 e a constante.
- 2) Seja f(n) = n e $g(n) = n^2$. Mostre que g(n) não é O(n).
- 3) $7n 2 \notin O(n)$?
- 4) $3n^3 + 20 n^2 + 5 \notin O(n^3)$?
- 5) $2n^2 + 100 n \log n \in O(n^2)$?
- 6) Seja $f(n) = (n+1)^2$. Determine $\Omega(g(n))$, determinando n_0 e a constante.
- 7) Seja $f(n) = \log n$ (crescente) e g(n) = n. Mostre que g(n) não é $\Omega(n)$.
- 8) $7n 2 \in \Omega(n)$?
- 9) $3n^3 + 20 n^2 + 5 \notin \Omega(n^3)$?
- 10) $2n^2 + 100 n \log n \in \Omega(n^2)$?
- 11) Prove que $4log_2^n + 16 = O(n)$.
- 12) Prove que $4log_2^n + 16 = O(log_2^n)$.
- 13) $2^{n+1} = O(2^n)$. Verdadeiro ou Falso? Justifique sua resposta.
- 14) $2^{2n} = O(2^n)$. Verdadeiro ou Falso? Justifique sua resposta.
- 15) Considerando as questões 1 a 10 qual delas podemos chamar de O(g(n)).
- 16) Em relação ao limite assintótico de notação O, atribua V (verdadeiro) ou F (falso) às afirmativas a seguir.
 - () Em uma estrutura de laço duplamente aninhado, tem-se imediatamente um limite superior $O(n^2)$.
 - () Em uma estrutura de laço duplamente aninhado, o custo de cada iteração do laço interno é de limite superior O(1).
 - () Em uma estrutura de laço triplamente aninhado, o custo de cada iteração do laço interno é de limite superior O(n³).
 - () O limite $O(n^2)$ para o tempo de execução do pior caso de execução aplica-se para qualquer entrada.
 - () f(n) = O(g(n)) é uma afirmação de que algum múltiplo constante de g(n) é de limite assintótico

inferior.

Assinale a alternativa que contém, de cima para baixo, a sequência correta.

- a) V, V, F, V, F.
- b) V, F, V, F, V.
- c) F, V, V, F, F.
- d) F, F, V, V, F.
- e) F, F, F, V, V.
- 17) Abaixo citamos alguns tipos de problemas/algoritmos, pesquise qual seria sua notação assintótica O, Ω e θ .
 - a) Método Simplex (no pior caso)
 - b) Algoritmos de Busca
 - c) Matrizes
 - d) Algoritmos de Ordenação.
 - e) Algoritmos que solucionam problemas do caixeiro viajante.

- f) Algoritmo Quick Sort .
- g) Algoritmo Tree Sort.
- h) Algoritmo **Shell sort**.
- 18) Para as funções abaixo determine: 0, θ , Ω , o e ω se possível.
 - a) $f(n) = 10n^3 + 5n + n^2$
 - $b) f(n) = n \cdot \log n + \log n$
 - c) $f(n) = 3^x + n^3 + n$
 - d) f(n) = 2 n + 2500