Super Resolution WGAN Model for Low Resolution Images & GIFs

Honglin Wu Sang Uk Park Shilai Yang Yash Bafna

CSCI 2470

Everyone be like:

Def not us:

Trying Stuff Until it Works

O RLY?

The Practical Developer @ThePracticalDev Does it run? Just leave it

O RLY?

Writing Code that Nobody Else Can Read

The Definitive Guide

@ThePracticalDev

Western Building

Forgetting How Your Own Code Works

//TODO: Comment

O RLY

FunctionZero

We have all had this happen

O RLY?

@ThePracticalDev

Introduction and Aim of the Project

- Leverage SRGAN & WGAN to increase the resolution of an image by a factor of four or more
- What is SRGAN (Super Resolution GAN)?
 - A variant of GAN used to generate the super resolution of a single image
- What is WGAN GP (Wasserstein Distance with Gradient Penalty)
 - A variant of GAN with a modified loss function (Wasserstein Distance v.s. Jensen-Shannon Divergence) and a gradient penalty term (Lipschitz Constraint) to avoid mode collapse and promote stability

Dataset & Preprocessing

- We used the DIV2K dataset
- It is a popular super-resolution dataset of different scenes which contains 800 images for training and 100 images for validation
- All the images were of 2k resolution
- Preprocessing involved cropping all the images to a specific size
- A low resolution version of the images by was obtained down scaling the images by a factor of 4

Generator

Architecture of the Generator: (PReLU + Residual Blocks + SubPixel Convs)

Discriminator

Architecture of the Discriminator: (LeakyReLU + Convs + Linear Block)

Loss Function

Given G(Low-Res) = Super-Res

Discriminator Loss:

E(D(Super-Res)) - E(D(High-Res)) + L * Gradient-Penalty
$$\sim 0.20$$

Lipschitz Constant

Generator Loss:

Evaluation Metrics: Peak Signal-to-Noise Ratio (PSNR)

PSNR:

A metric used to measure the quality of an image signal. It compares the peak signal power to the noise power (MSE differences) in pixel values, expressed in decibels (dB).

 $PSNR = 10 \cdot \log \left(MAX^2 / MSE \right)$

Results

PSNR: 24.903938 20.02493 17.960169

Results

Low-Res 0

PSNR:

15.887534

25.741234

Low-Res 1

24.10814

Low-Res 2

18.081806

Low-Res 3

Future Improvements

- Video Support
- Adding a feature for the user to be able to choose by what factor to increase the image (of different sizes)
- Adding a feature where the model selects the faces and other important areas of the image specifically to increase the resolution
- Incorporating Optimal Transport Theory in generating Super Resolution Images (code for Sinkhorn Algorithm included)

Ethics

- Privacy
 - E.g.) Facial Recognition via low resolution CCTV Footage
- Manipulation and misrepresentation of the original image
 - E.g.) Medical Imaging
 - E.g.) Misidentification in Facial Recognition

