2022 eCTF Kickoff

Jake Grycel 1/26/2022

Outline

- 1. Welcome
- 2. Competition Overview
- 3. Challenge Overview
- 4. Requirements
- 5. Attack Deployment
- 6. Flags

Outline

- 1. Welcome
- 2. Competition Overview
- 3. Challenge Overview
- 4. Requirements
- 5. Attack Deployment
- 6. Flags

Participating Schools

Carnegie Mellon University

Massachusetts
Institute of
Technology

TEXAS A&M UMassAmherst

Organizers

MITRE

MITRE is a not-for-profit organization that operates research and development centers sponsored by the federal government. MITRE works with industry and academia to apply science, technology, and systems engineering that enables the government and the private sector to make better decisions. Learn more at www.mitre.org

Follow us on Twitter @MITRECorp

Riverside Research is a not-for-profit organization advancing scientific research in the interest of National Security. Through the company's Open Innovation Center (OIC), it invests in multi-disciplinary research and development and encourages collaboration to accelerate innovation and advance science. Research areas include: AI/ML, Trusted and Resilient Systems, Optics, Electromagnetics, Commercial ISR, and Collection Planning. Learn more at www.riversideresearch.org.

Follow us on Twitter @RiversideRsch

Outline

- 1. Welcome
- 2. Competition Overview
- 3. Challenge Overview
- 4. Requirements
- 5. Attack Deployment
- 6. Flags

Competition Overview

Design

- Begins January 26th, 2022
- Teams design a secure system that meets all the challenge requirements
- Teams attempt to solve development challenges to retrieve design-phase flags

Handoff

- Begins March 9th, 2022
- Teams may submit their designs to the eCTF Organizers
- Organizers verify that each design has met all the functional requirements
- Organizers post verified designs for all teams to evaluate during the attack phase

Attack

- Begins immediately after successful completion of Handoff
- Teams perform a security evaluation of opposing teams' systems
- Teams demonstrate attacks by retrieving flags
- Scoreboard closes April 20th, 2022
- Awards Ceremony on April 27th, 2022

New Features

- Emulated and physical hardware
- Design Phase Points
 - Side-Channel Analysis (SCA) Challenge
- Automated Testing Service
- Hardware Trojans

Prizes and Competition Qualification Requirements

This year the eCTF will award \$5000 in prizes to the winning teams

■ 1st Place: \$2000

2nd Place: \$1000

3rd Place: \$500

Special Awards: \$1500 (may be split among multiple teams)

Any student can compete in the eCTF, but to receive prize money you must meet certain eligibility requirements

Check our website (ectf.mitre.org) for award eligibility terms

Several policies and processes have been put in place to ensure fairness

- All questions and requests for help are taken on a first-come-first-serve basis
- Write-ups are anonymized before judging
- To specifically address and mitigate any potential unfair advantage for participants that have interned at MITRE or Riverside Research:
 - Competition organizers are "firewalled" from current intern participants no discussions allowed outside of official channels
 - The challenge requirements were changed significantly from the summer version that we run each year with interns

Outline

- 1. Welcome
- 2. Competition Overview
- 3. Challenge Overview
- 4. Requirements
- 5. Attack Deployment
- 6. Flags

The Scenario

 Your team is tasked with designing and implementing a secure firmware update system for an avionic device

- This system is called...
 - ...The Secure Avionics Flight Firmware Installation Routine, or SAFFIRe!

The Goal:

- Securely install new firmware and flight configurations on the device...
- ...in the face of physical attacks and...
- …in the face of supply-chain security threats!

Avionic System

The avionic system has three main components

- Host Computer
- Avionic Device
- Avionics Bus

Host Computer

The host computer runs SAFFIRe host tools

- Protects avionic flight firmware and configurations
- Loads firmware and configuration updates into the avionic device
- Requests data back from the avionic device

CPU

Runs a general-purpose host OS

Flight Firmware Host Computer Protected Firmware Host Tools Protected Configuration Protected Configuration

Avionic Device

The avionic device runs the SAFFIRe bootloader and avionic firmware

- The SAFFIRe bootloader is only responsible for installing flight firmware and configurations created by a secure host
- The avionic firmware runs during aircraft flight and communicates important information over the avionics bus

CPU

Embedded Arm Cortex-M4 microcontroller

Aircraft

- The aircraft contains an avionics bus with various sensors and controllers
 - Reliable and correct operation of all avionic devices is critical for safe flight!
- This component is provided for you and cannot be modified

Outline

- 1. Welcome
- 2. Competition Overview
- 3. Challenge Overview
- 4. Requirements
- 5. Attack Deployment
- 6. Flags

SAFFIRe Build Requirements

- Generate system secrets
- Create a host tool package
- Compile the bootloader
 - The bootloader may use an EEPROM initialization file

Firmware / Configuration Protection Requirements

- Host tools must create images containing protected firmware and protected flight configurations
 - Protected Firmware images should contain a version number and release message
 - Protected Flight Configurations are packaged standalone (i.e., they do not contain a version number or release message)

Firmware / Configuration Update Requirements

- Host tools must send protected images to the bootloader
- The bootloader must install images so they can be executed later

Device Boot Requirements

- The bootloader loads the firmware and configuration images to run attached to the avionics bus
 - Firmware placed at the end of SRAM, Configuration at the end of Flash
- The bootloader returns the release message to the host
- Finally, the bootloader executes the firmware

Readback Requirements

- The host tools request data from either the installed firmware or configuration
- The bootloader returns the amount of data requested

SAFFIRe Security Requirements

Confidentiality

 Avionic firmware and configurations should not be readable by anyone other than the intended SAFFIRe bootloader

Device Integrity and Authenticity

 The SAFFIRe bootloader should only install and boot firmware and configuration images that were created by a secure host computer

Firmware Versioning

 The SAFFIRe bootloader should only install current or newer firmware images, and should never install an old firmware version

Readback Authentication

 The SAFFIRe bootloader should only return installed image data to an authentic host with access to the host secrets

Outline

- 1. Welcome
- 2. Competition Overview
- 3. Challenge Overview
- 4. Requirements
- 5. Attack Deployment
- 6. Flags

Attack Phase Deployment

 This is the context in which your SAFFIRe system will be used

Your team does not have to implement any of this flow

Step 1: Device Fabrication

- The avionic device microcontroller is fabricated at an untrusted foundry
 - Adversaries at the foundry may insert a hardware trojan into the Flash memory controller
- The device is shipped out for commercial purchasing
 - Your company buys it off-the-shelf

Step 2: SAFFIRe Creation

SAFFIRe
Bootloader
Component

Avionic
Component
(Provided)

SAFFIRe
Host Tool

SAFFIRe
Protected Data

- A SAFFIRe system is built in your company's secure facility
- Your company loads the SAFFIRe bootloader into the device and creates protected images
 - Multiple firmware images are protected
 - Multiple configuration images are protected
- Your company may install initial firmware and configurations on the device

Step 3: Arrival at the Depot

- The loaded device is shipped to the aircraft depot
 - Protected images are sent with it

- A disgruntled employee gets physical access to the device
 - They may attempt to extract secret information from the device, or install malicious firmware and configurations on the device

Legend

SAFFIRe

Host Tool

SAFFIRe-

Protected Data

SAFFIRe

Bootloader

Step 4: Aircraft Launch

Attacker loses access

Device is placed on the aircraft

- The aircraft requests the bootloader to boot the system
 - If the bootloader refuses, the aircraft does not take off

■ The aircraft takes off and runs the flight

Legend

Attack Phase Avionic Device

- The avionic device will play the role of the aircraft navigation computer. The firmware (which will be provided to you) does the following:
 - Read the current location from the GPS
 - Calculate the correct heading based on the destination coordinates in the flight configuration
 - Send the heading to the autopilot
- The rest of the avionics bus and aircraft is simulated
 - GPS, Autopilot
 - An altimeter reports the altitude to the autopilot
 - A bus controller informs bus devices of who can send privileged commands, like start and shutdown

Aircraft Exceptions

Flight Abort

- If the pilot detects that devices are sending incorrect data, they turn the aircraft around and abort the flight
- Example: An incorrect flight path is set

Aircraft Crash

- If critical safety features are disabled at the bus level, the aircraft will be uncontrollable and crash
- Example: The altimeter is forced to shut down

What Attackers Will Receive (For Each Target System)

- All source code (with the .git directory removed)
- The most recent documentation for the target system
- A protected SAFFIRe bootloader image to load onto their physical hardware
- Access to an emulator with the SAFFIRe bootloader installed
 - Data and reset interfaces
 - Emulated side-channel probe
 - Optional: Trojan running in the microcontroller
- Protected firmware and configuration images

UNDERSTAND WHAT THE ATTACKERS HAVE ACCESS TO

Outline

- 1. Welcome
- 2. Competition Overview
- 3. Challenge Overview
- 4. Requirements
- 5. Attack Deployment
- 6. Flags

Design Phase Flags

Encourage teams to stay on track during development

Milestone	Description	Target	Deadline
		Date	Date
Read Rules	If you read all the rules, you'll know	1/25	2/2
Boot Reference	Provision and boot the example SAFFIRe design to receive a flag (see the	1/28	2/9
	README)		
Use Debugger	Use the GDB target in the top SAFFIRe script to step through a binary and retrieve	1/31	2/16
	a flag. See the reference design for details.		
Design Document	Submit an initial design document containing high-level descriptions of how each	2/9	2/23
	host tool and bootloader function will work in your system.		
Bug Bounty	Find and fix bugs in the reference design	N/A	Handoff

Reverse Engineering Challenge

One firmware binary to RE

- RE Binary
- Determine correct input
- Run binary and send input to dispense flag
- Reveals the bus ID of the altimeter

Avionic bus interface source code

- RE bus interface logic present in every avionic device
- Develop custom code to exploit bus vulnerabilities and shut down a device
- Submit a firmware binary that forces the altimeter to shutdown
- Flag awarded upon aircraft crash

Side-Channel Analysis Challenge

Collect side-channel traces from an emulated device running an AES operation

Three steps to the challenge

- 1. Collect side-channel traces that cover an AES operation
- 2. Filter and align multiple traces
- 3. Recover the cipher key (DPA recommended)

Teams submit trace plots according to a specific format

- Teams submit the key for the last challenge
- Teams awarded flags upon verification of trace collection

Attack Phase Flags

Flag Name	Capturing this flag proves that you can compromise	To Submit this Flag	Requires Aircraft Simulation		
Confidentiality Flags					
IP Extraction	Firmware Confidentiality	Extract the flag by reading any protected firmware image	No		
Flight Extraction	Configuration Confidentiality	Extract the flag by reading any protected flight configuration	No		
Rollback Flags					
Firmware Rollback	Firmware Versioning	Install and boot an old firmware image	No		
Integrity Flags					
Data Extraction	Firmware Integrity / Bootloader Execution	Read out data from EEPROM of device	No		
Flight Abort	Firmware and Configuration Integrity	Boot a corrupted firmware or configuration that makes the aircraft deviate from the flight plan	Yes		
Aircraft Crash	Firmware Integrity	Boot a malicious firmware that exploits bus vulnerabilities to shutdown aircraft safety features, crashing the aircraft	Yes		

Words of Advice

Start development early

- Verify functionality as you go
- Get comfortable with the build process familiarize yourself with how the main components work
- Always think like an attacker
 - Especially with the hardware trojan threat!
- Be creative yet elegant with countermeasures
- Use Slack for help
 - Use #tech-support!
- Understand what attackers have access to

Next Steps

- Read the rules and the technical specifications
- Start designing your system
- Get access to the development server
- Get the reference system running
- Begin development

Jake Grycel
jgrycel@mitre.org
ectf@mitre.org

https://www.linkedin.com/groups/12371545/

