Stability

Aayush Goyal*

- 0.1. An op amp designed to have a low-frequency gain of 10⁵ and a high-frequency response dominated by a single pole at 100 rad/s, acquires, through a manufacturing error, a pair of additional poles at 10,000 rad/s.
 - a) At what frequency does the total phase shift reach 180°?
 - b) At this frequency, for what value of β , assumed to be frequency independent, does the loop gain reach a value of unity?
 - c) What is the corresponding value of closed-loop gain at low frequencies?

Solution:

$$G(s) = \frac{A}{1 + \frac{s}{p}} \tag{0.1.1}$$

Considering manufacturing error

$$G(s) = \frac{A}{\left(1 + \frac{s}{p}\right)\left(1 + \frac{s}{p_{error}}\right)} \tag{0.1.2}$$

 $A = \text{Low Frequency Gain} = 10^5$ (0.1.3)

$$p_{error} = 10^4$$
 (0.1.5)

$$G(s) = \frac{10^5}{\left(1 + \frac{s}{100}\right)\left(1 + \frac{s}{104}\right)^2}$$
 (0.1.6)

$$\Delta G(j\omega) = -\tan^{-1}\frac{\omega}{100} - 2\tan^{-1}\frac{\omega}{10^4} \quad (0.1.7)$$

0.2. Calculating the frequency at which the total phase shift reach 180°

At
$$\omega_{180}$$
, $\angle G(j\omega_{180}) = -180^{\circ}$

p = 100

Also $\omega_{180} >> 100$

$$180^{\circ} = 90^{\circ} + 2 \tan^{-1} \left(\frac{\omega_{180}}{10^4} \right) \quad (0.2.1)$$

$$\tan^{-1}\frac{\omega_{180}}{10^4} = 45^{\circ} \tag{0.2.2}$$

$$\frac{\omega_{180}}{10^4} = \tan 45^\circ = 1 \tag{0.2.3}$$

$$\omega_{180} = 10^4 rad/s \tag{0.2.4}$$

Fig. 0.2: Open Loop Gain

0.3. Calculating feedback factor β for which loop gain at ω_{180} is unity

$$H(s) = G(s)\beta = 1$$
 (0.3.1)

$$\frac{10^5 \beta}{\sqrt{1^2 + \left(\frac{\omega_{180}}{10^2}\right)^2}} \sqrt{\left(1 + \frac{\omega_{180}}{10^4}\right)^2} = 1 \quad (0.3.2)$$

$$\beta = 0.002 \quad (0.3.3)$$

0.4. Calculating the closed loop gain at low frequency Let T(s) be the closed loop Transfer Function.

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India. All content in this manual is released under GNU GPL. Free and open source.

Fig. 0.4: Closed loop circuit

$$T(s) = \frac{G(s)}{1 + \beta G(s)}$$

$$T(s) = \frac{10^5}{1 + \beta 10^5 + \frac{s}{100}}$$
(0.4.1)

$$|T(s)| = \frac{10^5}{\sqrt{(200)^2 + \left(\frac{s}{100}\right)^2}}$$
(0.4.3)

At low frequencies

$$|T(s)| = 500V/V$$
 (0.4.4)

Parameter	Value
ω_{180}	$10^4 rad/s$
β	0.002
<i>H</i> (0)	500V/V

TABLE 0.4: Obtained Parameters

The following code performs all the calculations of above equations

codes/code1.py

The following code plots the open loop gains, closed loop gains and step response to the system

codes/code2.py

- 0.5. Designing the circuit for transfer function T(s)
 - 1) Designing G(s)

Let us assume Op-Amp to be ideal. So this means $V_1 = 0$ Applying KCL at node V_1

Fig. 0.4: Closed Loop Gain

Fig. 0.4: Step Response

Fig. 0.5: Open Loop design

$$I_{in} = I_{C_1} + I_{R_2} (0.5.1)$$

$$\frac{V_{in}}{R_1} = \frac{V_{out}}{R_2} + C_1 \frac{dV_{out}}{dt}$$
 (0.5.2)

In Laplace domain

$$\frac{V_{in}(s)}{R_1} = \frac{V_{out}(s)}{R_2} + C_1 s V_{out}(s)$$
 (0.5.3)

$$\frac{V_{out}}{V_{in}} = \frac{R_2/R_1}{1 + sR_2C_1} \tag{0.5.4}$$

$$T(s) = \frac{10^5}{1 + \frac{s}{100}} \tag{0.5.5}$$

$$\frac{R_2}{R_1} = 10^5 \tag{0.5.6}$$

$$R_2C_1 = \frac{1}{100} \tag{0.5.7}$$

2) Designing $H(s) = \beta G(s)$

Fig. 0.5: Loop Gain

$$V_{out} = V_{in} \left(\frac{R_4}{R_3 + R_4} \right) \tag{0.5.8}$$

$$\frac{R_4}{R_3 + R_4} = 0.002 \tag{0.5.9}$$

$$R_4 = 0.002R_3 \tag{0.5.10}$$

3) Closed loop design Figure 0.5 is the final closed loop design for transfer function T(s)

Parameter	Value
R_1	R
R_2	$10^5 R$
C	$10^{-7}/R$
R_3	R'
R_4	0.002R'

TABLE 0.5: Circuit Parameters

The table 0.5 provides the parameters for our circuit design

Fig. 0.5: Closed Loop Circuit

0.6. Verification of circuit design through SPICE

Fig. 0.6: SPICE simulation of circuit 0.5

A SPICE simulation of circuit 0.5 is done by providing a DC input(Unit Step Input). The obtained plot (figure 0.6) is similar to the Step response of the feedback system in figure 0.4. Hence we verify our design is correct.

The following code plots the SPICE simulation results from SPICE plot txt file and spice .net file

codes/spice/plotter.py

codes/spice/spice.net

For instructions to run the spice simulation please refer

codes/spice/readme.md