DS-GA 1018 Modeling Time Series Data Lab 2

Artie Shen | Center for Data Science

- Recap
 - Polynomial Form
 - Forecasting
 - Parameter Estimation
 - Yule-Walker Equations

*

Motivation - Parameter Redundancy

- $\circ \quad x_t = 0.5 x_{t-1} 0.5 w_{t-1} + w_t$
- \circ Is x_t the same as white noise w_t ?

Motivation - MA Non-uniqueness

$$egin{array}{ll} 0 & x_t = w_t + rac{1}{5}w_{t-1}, w_t \sim N(0,25), \ y_t = v_t + 5v_{t-1}, v_t \sim N(0,1). \end{array}$$

Are those two MA process the same?

Parameter Redundancy

- When a model can be expressed using a simple model.
- How can we detect parameter redundancy?

Other Problems

- Stationary series that depends on future
- MA models that are not unique

Backshift Operator

Definition 2.4 We define the backshift operator by

$$Bx_t = x_{t-1}$$

and extend it to powers $B^2x_t = B(Bx_t) = Bx_{t-1} = x_{t-2}$, and so on. Thus,

$$B^k x_t = x_{t-k}.$$

Not a function, nor a polynomial. It's an operator that behaves like a polynomial.

Example

$$x_{t} = 0.5x_{t-1} - 0.5w_{t-1} + w_{t}$$

$$x_{t} - 0.5x_{t-1} = w_{t} - 0.5w_{t-1}$$

$$x_{t} - 0.5Bx_{t} = w_{t} - 0.5Bw_{t}$$

$$(1 - 0.5B)x_{t} = (1 - 0.5B)w_{t}$$

ARMA Model

Definition 3.5 A time series $\{x_t; t = 0, \pm 1, \pm 2, \ldots\}$ is **ARMA**(p, q) if it is stationary and

$$x_t = \phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + w_t + \theta_1 w_{t-1} + \dots + \theta_q w_{t-q}, \tag{3.19}$$

with $\phi_p \neq 0$, $\theta_q \neq 0$, and $\sigma_w^2 > 0$. The parameters p and q are called the autoregressive and the moving average orders, respectively. If x_t has a nonzero mean μ , we set $\alpha = \mu(1 - \phi_1 - \dots - \phi_p)$ and write the model as

Polynomial Form

Definition 3.6 The AR and MA polynomials are defined as

$$\phi(z) = 1 - \phi_1 z - \dots - \phi_p z^p, \quad \phi_p \neq 0,$$

and

$$\theta(z) = 1 + \theta_1 z + \dots + \theta_q z^q, \quad \theta_q \neq 0,$$

respectively, where z is a complex number.

Causality

Property 3.1 Causality of an ARMA(p, q) Process

An ARMA(p, q) model is causal if and only if $\phi(z) \neq 0$ for $|z| \leq 1$. The coefficients of the linear process given in (3.25) can be determined by solving

$$\psi(z) = \sum_{j=0}^{\infty} \psi_j z^j = \frac{\theta(z)}{\phi(z)}, \quad |z| \le 1.$$

Another way to phrase Property 3.1 is that an ARMA process is causal only when the roots of $\phi(z)$ lie outside the unit circle; that is, $\phi(z) = 0$ only when |z| > 1. Finally, to address the problem of uniqueness discussed in Example 3.6, we choose the model that allows an infinite autoregressive representation.

Invertibility

Definition 3.8 An ARMA(p, q) model is said to be **invertible**, if the time series $\{x_t; t = 0, \pm 1, \pm 2, \ldots\}$ can be written as

$$\pi(B)x_t = \sum_{j=0}^{\infty} \pi_j x_{t-j} = w_t, \tag{3.26}$$

where $\pi(B) = \sum_{i=0}^{\infty} \pi_j B^j$, and $\sum_{i=0}^{\infty} |\pi_j| < \infty$; we set $\pi_0 = 1$.

Another way to phrase Property 3.2 is that an ARMA process is invertible only when the roots of $\theta(z)$ lie outside the unit circle; that is, $\theta(z) = 0$ only when |z| > 1. The proof of Property 3.1 is given in Section B.2 (the proof of Property 3.2 is similar). The following examples illustrate these concepts.

Example

Consider the process

$$x_t = .4x_{t-1} + .45x_{t-2} + w_t + w_{t-1} + .25w_{t-2},$$

or, in operator form,

$$(1 - .4B - .45B^2)x_t = (1 + B + .25B^2)w_t.$$

Example - Redundancy

At first, x_t appears to be an ARMA(2, 2) process. But notice that

$$\phi(B) = 1 - .4B - .45B^2 = (1 + .5B)(1 - .9B)$$

and

$$\theta(B) = (1 + B + .25B^2) = (1 + .5B)^2$$

have a common factor that can be canceled. After cancellation, the operators are $\phi(B) = (1 - .9B)$ and $\theta(B) = (1 + .5B)$, so the model is an ARMA(1, 1) model, $(1 - .9B)x_t = (1 + .5B)w_t$, or

$$x_t = .9x_{t-1} + .5w_{t-1} + w_t. (3.27)$$

Example - Invertibility & Causality

$$\phi(B) = (1 - .9B)$$
 and $\theta(B) = (1 + .5B)$.

The model is causal because $\phi(z) = (1 - .9z) = 0$ when z = 10/9, which is outside the unit circle. The model is also invertible because the root of $\theta(z) = (1 + .5z)$ is z = -2, which is outside the unit circle.

Proof in textbook section 3.1

Given a time series $X = \{x_t\}$ and an AR(p) model:

$$ullet$$
 Model Selection $x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \ldots + \phi x_{t-p} + w_t$

- - Select the model family (AR/MA/ARMA/...)
 - Select hyper-parameters. (AR:p, MA:p, ARMA:p,q)

Parameter Estimation

• Given $X = \{x_t\}$ model family, and hyper-parameters find the set of model parameters that minimizes some loss function. $\{\phi_i\}$

Forecast

 Given model and model parameters and a set of data, calculate $\{\phi_i\}$

Best Linear Predictor for AR(p)

$$egin{array}{ll} \hat{x}_{t+1} &= argmax_{x_{t+1}}(p_X(x_{t+1}|x_t,\ldots,x_{t-p+1})) \ &= E(x_{t+1}|x_t,\ldots,x_{t-p+1}) \ &= \mu + \phi_1(x_t-\mu) + \ldots + \phi_p(x_{t-p+1}-\mu) \end{array}$$

Method 1: MLE

- \circ Our predictor $\hat{x}_{t+1} = f_{\phi}(x_t, x_{t-1}, \ldots, x_{t-p+1})$
- Likelihood

$$L(\Sigma_n,\mu,\phi)=(2\pi)^{-n/2}(v_0v_1\dots v_{n-1})^{-1/2}exp(-rac{1}{2}\sum_{j=1}^nrac{(x_j-\hat{x}_j)^2}{v_{j-1}})$$

MLE Estimator

$$\phi^* = argmax_\phi L(\Sigma_n, \mu, \phi)$$

Method 2: Method of Moments

Definitions.

- (1) $E(X^k)$ is the k^{th} (theoretical) moment of the distribution (about the origin), for k = 1, 2, ...
- (2) $E\left[(X-\mu)^k\right]$ is the k^{th} (theoretical) moment of the distribution (about the mean), for k=1,2,...
- (3) $M_k = \frac{1}{n} \sum_{i=1}^n X_i^k$ is the k^{th} sample moment, for k = 1, 2, ...
- (4) $M_k^* = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^k$ is the k^{th} sample moment about the mean, for k = 1, 2, ...

The basic idea behind this form of the method is to:

- (1) Equate the first sample moment about the origin $M_1 = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}$ to the first theoretical moment E(X).
- (2) Equate the second sample moment about the origin $M_2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2$ to the second theoretical moment $E(X^2)$.
- (3) Continue equating sample moments about the origin, M_k , with the corresponding theoretical moments $E(X^k)$, k = 3, 4, ... until you have as many equations as you have parameters.
- (4) Solve for the parameters.

Use Method of Moments on AR(p) model

- \circ Express moments as functions of ϕ
- Replace theoretical moments with empirical moments
- \circ Solve for ϕ

Assumption

 \circ AR(p) process with $\mu=0$

• Step 1: Express moments as functions of ϕ Consider the general AR(p)

$$x_{i+1} = \phi_1 x_i + \phi_2 x_{i-1} + \dots + \phi_n x_{i-n+1} + \xi_{i+1}.$$

• multiply by x_{i-p-1} ,

$$x_{i-p+1}x_{i+1} = \sum_{j=1}^{p} (\phi_j x_{i-p+1} x_{i-j+1}) + x_{i-p+1} \xi_{i+1},$$

• take expectance,

$$\langle x_{i-p+1}x_{i+1}\rangle = \sum_{j=1}^{p} \left(\phi_j \langle x_{i-p+1}x_{i-j+1}\rangle\right) + \langle x_{i-p+1}\xi_{i+1}\rangle$$

• Step 1: Express moments as functions of ϕ

• eliminate the zero correlation forcing term

$$\langle x_{i-p+1}x_{i+1}\rangle = \sum_{j=1}^{p} \left(\phi_j \langle x_{i-p+1}x_{i-j+1}\rangle\right)$$

• divide through by (N-1), and use $c_{-l}=c_l$,

$$c_p = \sum_{j=1}^p \phi_j c_{j-p}$$

• divide through by c_o ,

$$r_p = \sum_{j=1}^p \phi_j r_{j-p}.$$

$$r_p = \sum_{j=1}^p \phi_j r_{j-p}$$
.

Rewriting all the equations together yields

which can also be written as

$$\left(egin{array}{c} r_1 \ r_2 \ dots \ r_{p-1} \ r_p \end{array}
ight) = \left(egin{array}{ccccc} r_o & r_1 & r_2 & \cdots & r_{p-2} & r_{p-1} \ r_1 & r_o & r_1 & \cdots & r_{p-3} & r_{p-2} \ dots & dots & dots \ r_{p-2} & r_{p-3} & r_{p-4} & \cdots & r_o & r_1 \ r_{p-1} & r_{p-2} & r_{p-3} & \cdots & r_1 & r_o \end{array}
ight) \left(egin{array}{c} \phi_1 \ \phi_2 \ dots \ \phi_2 \ dots \ \phi_{p-1} \ \phi_p \end{array}
ight).$$

Recalling that $r_o = 1$, the above equation is also

$$\underbrace{\begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_{p-1} \\ r_p \end{pmatrix}}_{\mathbf{r}} = \underbrace{\begin{pmatrix} 1 & r_1 & r_2 & \cdots & r_{p-2} & r_{p-1} \\ r_1 & 1 & r_1 & \cdots & r_{p-3} & r_{p-2} \\ \vdots & & & \vdots & & \vdots \\ r_{p-2} & r_{p-3} & r_{p-4} & \cdots & 1 & r_1 \\ r_{p-1} & r_{p-2} & r_{p-3} & \cdots & r_1 & 1 \end{pmatrix}}_{\mathbf{R}} \underbrace{\begin{pmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_{p-1} \\ \phi_p \end{pmatrix}}_{\mathbf{\Phi}}$$

or succinctly

Yule-Walker Equations $\mathbf{R}\mathbf{\Phi} = \mathbf{r}$.

- Step 2: Replace theoretical moments with empirical moments
 - Replace auto-correlation r_i with empirical auto-correlations
 \hat{r}_i
 - $R\Phi = r$ now becomes $\hat{R}\Phi = \hat{r}$
 - We can estimate \hat{R} and \hat{r} from data!

- Step 3: Solve for ϕ
 - $\hat{\Phi}=\hat{R}^{-1}\hat{r}$
 - Direct matrix inverse takes $O(n^3)$

• Due Date 10/05/2021 11:59 pm on Brightspace

*