Sales Forecasting API Documentation

Introduction

This document explains the Python Flask API that serves as an interface for the trained XGBoost sales forecasting model. The API allows users to input a future month and year, and it predicts sales for different product categories.

1. Installation Requirements

Installing Python

- 1. Download Python from the official website: Python Downloads
- 2. Install Python and ensure that the Add Python to PATH option is checked.
- 3. Verify installation by running:
- 4. python --version

Installing Required Python Packages

After installing Python, install the required dependencies using pip:

pip install flask pandas numpy xgboost scikit-learn

2. Importing Required Libraries

import pickle

import pandas as pd

import numpy as np

import xgboost as xgb

from flask import Flask, request, jsonify

Explanation:

- pickle → Loads the previously saved label encoders and sales data.
- pandas → Handles data processing.
- numpy → Used for numerical operations.
- xgboost → Loads the pre-trained XGBoost model for prediction.
- flask → Web framework to handle API requests.

3. Loading the Trained Model

```
model = xgb.XGBRegressor()
model.load_model("sales_forecast_model.json")
```

- Initializes an empty XGBRegressor model.
- Loads the pre-trained model from the sales_forecast_model.json file.

4. Loading Encoders and Sales Data

```
with open("label_encoders.pkl", "rb") as f:
```

```
le_category, le_sub_category, sales_data = pickle.load(f)
```

Explanation:

- Loads the saved LabelEncoders and sales_data from the label_encoders.pkl file.
- le_category → Converts numerical category values back to their original text.
- le_sub_category → Converts numerical sub-category values back to their original text.
- sales_data → Previously processed sales dataset.

5. Defining Feature Columns Used for Prediction

```
FEATURES = ['Category_Encoded', 'Sub_Category_Encoded', 'Lag_1', 'Lag_2', 'Rolling_Mean_3', 'Month', 'Year']
```

Explanation:

This list contains all the feature columns that were used to train the model. The
new data must also have these columns to ensure compatibility with the
model.

6. Initializing Flask App

```
app = Flask(__name__)
```

Explanation:

Creates a Flask web application instance.

7. Creating the Prediction Endpoint

```
@app.route('/predict', methods=['POST'])
def predict():
    data = request.get_json()
    year = int(data['year'])
    month = int(data['month'])
```

Explanation:

- Defines an API route /predict that accepts POST requests.
- Extracts the **year** and **month** values from the JSON request body.

8. Preparing the Data for Prediction

```
last_month_sales = sales_data[sales_data['Year-Month'] == sales_data['Year-Month'].max()].copy()
```

last_month_sales['Lag_2'] = last_month_sales['Lag_1'].fillna(method='bfill')

- Selects sales data from the most recent month available in the dataset.
- Fills missing Lag_2 values using backward fill (bfill).

9. Creating a Future Dataframe for Prediction

```
future_data = last_month_sales.copy()
future_data['Year-Month'] = pd.Timestamp(year, month, 1)
future_data['Month'] = month
future_data['Year'] = year
```

Explanation:

- Creates a copy of the last available sales data.
- Updates the Year-Month, Month, and Year columns with the future values provided by the user.

10. Running the Prediction

```
predictions = model.predict(future_data[FEATURES])
future_data['Predicted_Sales'] = np.round(predictions).astype(int)
```

- Uses the XGBoost model to predict future sales based on the given month and year.
- Rounds the predictions and converts them to integers for readability.

11. Mapping Encoded Values Back to Categories

```
future_data['Predicted_Category'] =
le_category.inverse_transform(future_data['Category_Encoded'])
future_data['Predicted_Sub_Category'] =
le_sub_category.inverse_transform(future_data['Sub_Category_Encoded'])
```

Explanation:

- Converts encoded category numbers back into their original text labels.
- Converts encoded sub-category numbers back into their original text labels.

12. Formatting the API Response

```
result = future_data[['Month', 'Predicted_Category', 'Predicted_Sub_Category', 'Predicted_Sales']].to_dict(orient='records')
return jsonify(result)
```

- Extracts only the necessary columns for the response.
- Converts the DataFrame into a JSON format using .to_dict(orient='records').
- Sends the JSON response back to the user.

13. Running the Flask Application

```
if __name__ == '__main__':
    app.run(host='0.0.0.0', port=5000, debug=True)
```

Explanation:

- Runs the Flask application on port 5000.
- host='0.0.0.0' → Makes the API accessible from any device on the network.
- debug=True → Enables debugging mode to display errors in real time.

How to Use the API

- 1. Start the Flask Server:
- 2. python server.py
- 3. Send a POST request to /predict with JSON input:

```
4. {
```

- 5. "year": 2025,
- 6. "month": 6
- 7. }
- 8. Expected JSON Response:

```
9. [
```

- 10. {
- 11. "Month": 6,
- 12. "Predicted_Category": "Furniture",
- 13. "Predicted_Sub_Category": "Chairs",
- 14. "Predicted_Sales": 150

```
15. },
16. {
17. "Month": 6,
18. "Predicted_Category": "Office Supplies",
19. "Predicted_Sub_Category": "Binders",
20. "Predicted_Sales": 210
21. }
22.]
```

Conclusion

This API allows users to predict future sales by sending a request with a **year** and **month**. The Flask server processes the request, prepares the necessary data, makes a prediction using the trained XGBoost model, and returns the results in JSON format.

This setup enables seamless integration with other applications like **dashboards**, **mobile apps**, **or other backend services**.