(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date 29 November 2001 (29.11.2001)

PCT

(10) International Publication Number WO 01/90359 A2

(51) International Patent Classification⁷: C12N 15/12, 15/10, C12Q 1/68, C07K 14/705, 16/28, A01K 67/027, A61K 38/17, 39/395, G01N 33/53, 33/577

(21) International Application Number: PCT/US01/16833

(22) International Filing Date: 22 May 2001 (22.05.2001)

(25) Filing Language:

English

English

(26) Publication Language:

(30) Priority Data: US 22 May 2000 (22.05.2000) 60/206,222 US 25 May 2000 (25.05.2000) 60/207,476 US 2 June 2000 (02.06.2000) 60/208,834 US 2 June 2000 (02.06.2000) 60/208,861 7 June 2000 (07.06.2000) US 60/209,868

(71) Applicant (for all designated States except US): INCYTE GENOMICS, INC. [US/US]; 3160 Porter Drive, Palo Alto, CA 94304 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PATTERSON, Chandra [US/US]; 490 Sherwood Way #1, Menlo Park, CA 94025 (US). TRIBOULEY, Catherine, M. [FR/US]; 1121 Tennessee Street, #5, San Francisco, CA 94107 (US). YAO, Monique, G. [US/US]; 111 Frederick Court, Mountain View, CA 94043 (US). GRIFFIN, Jennifer, A. [US/US]; 33691 Mello Way, Fremont, CA 94555 (US). THORNTON, Michael [US/US]; 9 Medway Road, Woodside, CA 94062-2612 (US). LU, Yan [CN/US]: 3885 Corrina Way, Palo Alto, CA 94303 (US). KALLICK, Deborah, A. [US/US]; 900 Olive Street, Menlo Park, CA 94025 (US). GANDHI, Ameena, R. [US/US]; 837 Roble Avenue #1, Menlo Park, CA 94025 (US). AU-YOUNG, Janice [US/US]; 233 Golden Eagle Lane, Brisbane, CA 94005 (US).

(74) Agents: HAMLET-COX, Diana et al.; Incyte Genomics, Inc., 3160 Porter Drive, Palo Alto, CA 94304 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

01/90359 A2

(54) Title: G-PROTEIN COUPLED RECEPTORS

(57) Abstract: The invention provides human G-protein coupled receptors (GCREC) and polynucleotides which identify and encode GCREC. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of GCREC.

G-PROTEIN COUPLED RECEPTORS

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of G-protein coupled receptors and to the use of these sequences in the diagnosis, treatment, and prevention of cell proliferative, neurological, cardiovascular, gastrointestinal, autoimmune/inflammatory, and metabolic disorders, and viral infections, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of G-protein coupled receptors.

BACKGROUND OF THE INVENTION

10

15

20

25

35

Signal transduction is the general process by which cells respond to extracellular signals. Signal transduction across the plasma membrane begins with the binding of a signal molecule, e.g., a hormone, neurotransmitter, or growth factor, to a cell membrane receptor. The receptor, thus activated, triggers an intracellular biochemical cascade that ends with the activation of an intracellular target molecule, such as a transcription factor. This process of signal transduction regulates all types of cell functions including cell proliferation, differentiation, and gene transcription. The G-protein coupled receptors (GPCRs), encoded by one of the largest families of genes yet identified, play a central role in the transduction of extracellular signals across the plasma membrane. GPCRs have a proven history of being successful therapeutic targets.

GPCRs are integral membrane proteins characterized by the presence of seven hydrophobic transmembrane domains which together form a bundle of antiparallel alpha (a) helices. GPCRs range in size from under 400 to over 1000 amino acids (Strosberg, A.D. (1991) Eur. J. Biochem. 196:1-10; Coughlin, S.R. (1994) Curr. Opin. Cell Biol. 6:191-197). The amino-terminus of a GPCR is extracellular, is of variable length, and is often glycosylated. The carboxy-terminus is cytoplasmic and generally phosphorylated. Extracellular loops alternate with intracellular loops and link the transmembrane domains. Cysteine disulfide bridges linking the second and third extracellular loops may interact with agonists and antagonists. The most conserved domains of GPCRs are the transmembrane domains and the first two cytoplasmic loops. The transmembrane domains account, in part, for structural and functional features of the receptor. In most cases, the bundle of α helices forms a ligand-binding pocket. The extracellular N-terminal segment, or one or more of the three extracellular loops, may also participate in ligand binding. Ligand binding activates the receptor by inducing a conformational change in intracellular portions of the receptor. In turn, the large, third intracellular loop of the activated receptor interacts with a heterotrimeric guanine nucleotide binding (G) protein complex which mediates further intracellular signaling activities, including the activation of second messengers such as cyclic AMP (cAMP), phospholipase C, and inositol triphosphate, and

10

15

20

25

30

35

the interaction of the activated GPCR with ion channel proteins. (See, e.g., Watson, S. and S. Arkinstall (1994) The G-protein Linked Receptor Facts Book, Academic Press, San Diego CA, pp. 2-6; Bolander, F.F. (1994) Molecular Endocrinology, Academic Press, San Diego CA, pp. 162-176; Baldwin, J.M. (1994) Curr. Opin. Cell Biol. 6:180-190.)

GPCRs include receptors for sensory signal mediators (e.g., light and olfactory stimulatory molecules); adenosine, γ-aminobutyric acid (GABA), hepatocyte growth factor, melanocortins, neuropeptide Y, opioid peptides, opsins, somatostatin, tachykinins, vasoactive intestinal polypeptide family, and vasopressin; biogenic amines (e.g., dopamine, epinephrine and norepinephrine, histamine, glutamate (metabotropic effect), acetylcholine (muscarinic effect), and serotonin); chemokines; lipid mediators of inflammation (e.g., prostaglandins and prostanoids, platelet activating factor, and leukotrienes); and peptide hormones (e.g., bombesin, bradykinin, calcitonin, C5a anaphylatoxin, endothelin, follicle-stimulating hormone (FSH), gonadotropic-releasing hormone (GnRH), neurokinin, and thyrotropin-releasing hormone (TRH), and oxytocin). GPCRs which act as receptors for stimuli that have yet to be identified are known as orphan receptors.

The diversity of the GPCR family is further increased by alternative splicing. Many GPCR genes contain introns, and there are currently over 30 such receptors for which splice variants have been identified. The largest number of variations are at the protein C-terminus. N-terminal and cytoplasmic loop variants are also frequent, while variants in the extracellular loops or transmembrane domains are less common. Some receptors have more than one site at which variance can occur. The splicing variants appear to be functionally distinct, based upon observed differences in distribution, signaling, coupling, regulation, and ligand binding profiles (Kilpatrick, G.J. et al. (1999) Trends Pharmacol. Sci. 20:294-301).

GPCRs can be divided into three major subfamilies: the rhodopsin-like, secretin-like, and metabotropic glutamate receptor subfamilies. Members of these GPCR subfamilies share similar functions and the characteristic seven transmembrane structure, but have divergent amino acid sequences. The largest family consists of the rhodopsin-like GPCRs, which transmit diverse extracellular signals including hormones, neurotransmitters, and light. Rhodopsin is a photosensitive GPCR found in animal retinas. In vertebrates, rhodopsin molecules are embedded in membranous stacks found in photoreceptor (rod) cells. Each rhodopsin molecule responds to a photon of light by triggering a decrease in cGMP levels which leads to the closure of plasma membrane sodium channels. In this manner, a visual signal is converted to a neural impulse. Other rhodopsin-like GPCRs are directly involved in responding to neurotransmitters. These GPCRs include the receptors for adrenaline (adrenergic receptors), acetylcholine (muscarinic receptors), adenosine, galanin, and glutamate (N-methyl-D-aspartate/NMDA receptors). (Reviewed in Watson, S. and S. Arkinstall (1994) The G-Protein Linked Receptor Facts Book, Academic Press, San Diego CA, pp. 7-9, 19-22,

32-35, 130-131, 214-216, 221-222; Habert-Ortoli, E. et al. (1994) Proc. Natl. Acad. Sci. USA 91:9780-9783.)

The galanin receptors mediate the activity of the neuroendocrine peptide galanin, which inhibits secretion of insulin, acetylcholine, serotonin and noradrenaline, and stimulates prolactin and growth hormone release. Galanin receptors are involved in feeding disorders, pain, depression, and Alzheimer's disease (Kask, K. et al. (1997) Life Sci. 60:1523-1533). Other nervous system rhodopsin-like GPCRs include a growing family of receptors for lysophosphatidic acid and other lysophospholipids, which appear to have roles in development and neuropathology (Chun, J. et al. (1999) Cell Biochem. Biophys. 30:213-242).

10

20

35

The largest subfamily of GPCRs, the olfactory receptors, are also members of the rhodopsin-like GPCR family. These receptors function by transducing odorant signals. Numerous distinct olfactory receptors are required to distinguish different odors. Each olfactory sensory neuron expresses only one type of olfactory receptor, and distinct spatial zones of neurons expressing distinct receptors are found in nasal passages. For example, the RA1c receptor which was isolated from a rat brain library, has been shown to be limited in expression to very distinct regions of the brain and a defined zone of the olfactory epithelium (Raming, K. et al. (1998) Receptors Channels 6:141-151). However, the expression of olfactory-like receptors is not confined to olfactory tissues. For example, three rat genes encoding olfactory-like receptors having typical GPCR characteristics showed expression patterns not only in taste and olfactory tissue, but also in male reproductive tissue (Thomas, M.B. et al. (1996) Gene 178:1-5).

Members of the secretin-like GPCR subfamily have as their ligands peptide hormones such as secretin, calcitonin, glucagon, growth hormone-releasing hormone, parathyroid hormone, and vasoactive intestinal peptide. For example, the secretin receptor responds to secretin, a peptide hormone that stimulates the secretion of enzymes and ions in the pancreas and small intestine (Watson, <u>supra</u>, pp. 278-283). Secretin receptors are about 450 amino acids in length and are found in the plasma membrane of gastrointestinal cells. Binding of secretin to its receptor stimulates the production of cAMP.

Examples of secretin-like GPCRs implicated in inflammation and the immune response include the EGF module-containing, mucin-like hormone receptor (Emr1) and CD97 receptor proteins. These GPCRs are members of the recently characterized EGF-TM7 receptors subfamily. These seven transmembrane hormone receptors exist as heterodimers in vivo and contain between three and seven potential calcium-binding EGF-like motifs. CD97 is predominantly expressed in leukocytes and is markedly upregulated on activated B and T cells (McKnight, A.J. and S. Gordon (1998) J. Leukoc. Biol. 63:271-280).

The third GPCR subfamily is the metabotropic glutamate receptor family. Glutamate is the

PCT/US01/16833

10

15

20

35

major excitatory neurotransmitter in the central nervous system. The metabotropic glutamate receptors modulate the activity of intracellular effectors, and are involved in long-term potentiation (Watson, supra, p.130). The Ca²⁺-sensing receptor, which senses changes in the extracellular concentration of calcium ions, has a large extracellular domain including clusters of acidic amino acids which may be involved in calcium binding. The metabotropic glutamate receptor family also includes pheromone receptors, the GABA_B receptors, and the taste receptors.

Other subfamilies of GPCRs include two groups of chemoreceptor genes found in the nematodes <u>Caenorhabditis elegans</u> and <u>Caenorhabditis briggsae</u>, which are distantly related to the mammalian olfactory receptor genes. The yeast pheromone receptors STE2 and STE3, involved in the response to mating factors on the cell membrane, have their own seven-transmembrane signature, as do the cAMP receptors from the slime mold <u>Dictyostelium discoideum</u>, which are thought to regulate the aggregation of individual cells and control the expression of numerous developmentally-regulated genes.

associated with numerous human diseases (Coughlin, <u>supra</u>). For instance, retinitis pigmentosa may arise from mutations in the rhodopsin gene. Furthermore, somatic activating mutations in the thyrotropin receptor have been reported to cause hyperfunctioning thyroid adenomas, suggesting that certain GPCRs susceptible to constitutive activation may behave as protooncogenes (Parma, J. et al. (1993) Nature 365:649-651). GPCR receptors for the following ligands also contain mutations associated with human disease: luteinizing hormone (precocious puberty); vasopressin V_2 (X-linked nephrogenic diabetes); glucagon (diabetes and hypertension); calcium (hyperparathyroidism, hypocalcuria, hypercalcemia); parathyroid hormone (short limbed dwarfism); β_3 -adrenoceptor (obesity, non-insulin-dependent diabetes mellitus); growth hormone releasing hormone (dwarfism); and adrenocorticotropin (glucocorticoid deficiency) (Wilson, S. et al. (1998) Br. J. Pharmocol. 125:1387-1392; Stadel, J.M. et al. (1997) Trends Pharmacol. Sci. 18:430-437). GPCRs are also involved in depression, schizophrenia, sleeplessness, hypertension, anxiety, stress, renal failure, and several cardiovascular disorders (Horn, F. and G. Vriend (1998) J. Mol. Med. 76:464-468).

In addition, within the past 20 years several hundred new drugs have been recognized that are directed towards activating or inhibiting GPCRs. The therapeutic targets of these drugs span a wide range of diseases and disorders, including cardiovascular, gastrointestinal, and central nervous system disorders as well as cancer, osteoporosis and endometriosis (Wilson, supra; Stadel, supra). For example, the dopamine agonist L-dopa is used to treat Parkinson's disease, while a dopamine antagonist is used to treat schizophrenia and the early stages of Huntington's disease. Agonists and antagonists of adrenoceptors have been used for the treatment of asthma, high blood pressure, other cardiovascular disorders, and anxiety; muscarinic agonists are used in the treatment of glaucoma and

tachycardia; serotonin 5HT1D antagonists are used against migraine; and histamine H1 antagonists are used against allergic and anaphylactic reactions, hay fever, itching, and motion sickness (Horn, supra).

Recent research suggests potential future therapeutic uses for GPCRs in the treatment of metabolic disorders including diabetes, obesity, and osteoporosis. For example, mutant V2 vasopressin receptors causing nephrogenic diabetes could be functionally rescued in vitro by coexpression of a C-terminal V2 receptor peptide spanning the region containing the mutations. This result suggests a possible novel strategy for disease treatment (Schöneberg, T. et al. (1996) EMBO J. 15:1283-1291). Mutations in melanocortin-4 receptor (MC4R) are implicated in human weight regulation and obesity. As with the vasopressin V2 receptor mutants, these MC4R mutants are defective in trafficking to the plasma membrane (Ho, G. and R.G. MacKenzie (1999) J. Biol. Chem. 274:35816-35822), and thus might be treated with a similar strategy. The type 1 receptor for parathyroid hormone (PTH) is a GPCR that mediates the PTH-dependent regulation of calcium homeostasis in the bloodstream. Study of PTH/receptor interactions may enable the development of novel PTH receptor ligands for the treatment of osteoporosis (Mannstadt, M. et al. (1999) Am. J. Physiol. 277:F665-F675).

The chemokine receptor group of GPCRs have potential therapeutic utility in inflammation and infectious disease. (For review, see Locati, M. and P.M. Murphy (1999) Annu. Rev. Med. 50:425-440.) Chemokines are small polypeptides that act as intracellular signals in the regulation of leukocyte trafficking, hematopoiesis, and angiogenesis. Targeted disruption of various chemokine receptors in mice indicates that these receptors play roles in pathologic inflammation and in autoimmune disorders such as multiple sclerosis. Chemokine receptors are also exploited by infectious agents, including herpesviruses and the human immunodeficiency virus (HIV-1) to facilitate infection. A truncated version of chemokine receptor CCR5, which acts as a coreceptor for infection of T-cells by HIV-1, results in resistance to AIDS, suggesting that CCR5 antagonists could be useful in preventing the development of AIDS.

The discovery of new G-protein coupled receptors and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cell proliferative, neurological, cardiovascular, gastrointestinal, autoimmune/inflammatory, and metabolic disorders, and viral infections, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of G-protein coupled receptors.

SUMMARY OF THE INVENTION

The invention features purified polypeptides, G-protein coupled receptors, referred to

15

20

25

30

35

collectively as "GCREC" and individually as "GCREC-1," "GCREC-2," "GCREC-3," "GCREC-4," "GCREC-5," "GCREC-6," "GCREC-7," "GCREC-8," "GCREC-9," "GCREC-10," "GCREC-11," "GCREC-12," "GCREC-13," "GCREC-14," "GCREC-15," "GCREC-16," "GCREC-17," "GCREC-18," "GCREC-19," "GCREC-20," "GCREC-21," "GCREC-22," and "GCREC-23." In one aspect, the invention provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-23.

The invention further provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23. In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO:1-23. In another alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:1-24-6.

Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.

The invention also provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, b) a naturally occurring polypeptide comprising an amino acid sequence at least

35

90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.

Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23.

The invention further provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:24-46, b) a naturally occurring polynucleotide comprising a polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:24-46, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.

Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:24-46, b) a naturally occurring polynucleotide comprising a polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:24-46, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 60 contiguous

nucleotides.

25

30

35

The invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:24-46, b) a naturally occurring polynucleotide comprising a polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:24-46, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.

The invention further provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, and a pharmaceutically acceptable excipient. In one embodiment, the composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-23. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional GCREC, comprising administering to a patient in need of such treatment the composition.

The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional GCREC,

comprising administering to a patient in need of such treatment the composition.

15

25

30

Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional GCREC, comprising administering to a patient in need of such treatment the composition.

The invention further provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.

The invention further provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the

absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.

The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence selected from the group consisting of SEQ ID NO:24-46, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.

10

15

25

30

35

The invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:24-46, ii) a naturally occurring polynucleotide comprising a polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:24-46, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:24-46, ii) a naturally occurring polynucleotide comprising a polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:24-46, iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Alternatively, the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

BRIEF DESCRIPTION OF THE TABLES

Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the present invention.

Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog for polypeptides of the invention. The probability score for the match between each polypeptide and its GenBank homolog is also shown.

Table 3 shows structural features of polypeptide sequences of the invention, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.

Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences.

Table 5 shows the representative cDNA library for polynucleotides of the invention.

Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.

Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.

Table 8 shows tissue-specific expression of polynucleotides of the invention.

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

10

15

25

35

"GCREC" refers to the amino acid sequences of substantially purified GCREC obtained from

any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which intensifies or mimics the biological activity of GCREC. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of GCREC either by directly interacting with GCREC or by acting on components of the biological pathway in which GCREC participates.

5

10

15

20

25

30

35

An "allelic variant" is an alternative form of the gene encoding GCREC. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding GCREC include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as GCREC or a polypeptide with at least one functional characteristic of GCREC. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding GCREC, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding GCREC. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent GCREC. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of GCREC is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.

The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence.

Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

5

10

15

20

25

35

The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of GCREC. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of GCREC either by directly interacting with GCREC or by acting on components of the biological pathway in which GCREC participates.

The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind GCREC polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "antisense" refers to any composition capable of base-pairing with the "sense" (coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule.

The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" or "immunogenic"

refers to the capability of the natural, recombinant, or synthetic GCREC, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

"Complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement, 3'-TCA-5'.

A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding GCREC or fragments of GCREC may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

10

15

20

"Consensus sequence" refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.

"Conservative amino acid substitutions" are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.

	Original Residue	Conservative Substitution
-	Ala	Gly, Ser
	Arg	His, Lys
30	Asn	Asp, Gln, His
	Asp	Asn, Glu
	Cys	Ala, Ser
	Gln	Asn, Glu, His
	Glu	Asp, Gln, His
35	Gly	Ala
	His	Asn, Arg, Gln, Glu
	Ile	Leu, Val
	Leu	Ile, Val
	Lys	Arg, Gln, Glu

Met	Leu, Ile
Phe	His, Met, Leu, Trp, Tyr
Ser	Cys, Thr
Thr	Ser, Val
Trp	Phe, Tyr
Tyr	His, Phe, Trp
Val	Ile, Leu, Thr

5

10

15

20

25

30

35

Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to a chemically modified polynucleotide or polypeptide. Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

A "detectable label" refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.

"Differential expression" refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.

A "fragment" is a unique portion of GCREC or the polynucleotide encoding GCREC which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present

embodiments.

10

15

20

35

A fragment of SEQ ID NO:24-46 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:24-46, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ ID NO:24-46 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:24-46 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO:24-46 and the region of SEQ ID NO:24-46 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A fragment of SEQ ID NO:1-23 is encoded by a fragment of SEQ ID NO:24-46. A fragment of SEQ ID NO:1-23 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-23. For example, a fragment of SEQ ID NO:1-23 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-23. The precise length of a fragment of SEQ ID NO:1-23 and the region of SEQ ID NO:1-23 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A "full length" polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A "full length" polynucleotide sequence encodes a "full length" polypeptide sequence.

"Homology" refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.

The terms "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.

Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequences.

Alternatively, a suite of commonly used and freely available sequence comparison algorithms

is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at http://www.ncbi.nlm.nih.gov/BLAST/. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at http://www.ncbi.nlm.nih.gov/gorf/bl2.html. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Reward for match: 1

15 Penalty for mismatch: -2

Open Gap: 5 and Extension Gap: 2 penalties

Gap x drop-off: 50

Expect: 10

Word Size: 11

Filter: on

20

35

Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative

substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.

Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.

Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) with blastp set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Open Gap: 11 and Extension Gap: 1 penalties

Gap x drop-off: 50

Expect: 10

10

15

20

30

35

Word Size: 3

Filter: on

Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.

The term "humanized antibody" refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

"Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity.

Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 µg/ml sheared, denatured salmon sperm DNA.

Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5° C to 20° C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength and pH. The T_m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating T_m and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2^{nd} ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.

10

20

25

30

35

High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 µg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.

The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C_0 t or R_0 t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words "insertion" and "addition" refer to changes in an amino acid or nucleotide

sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.

"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

An "immunogenic fragment" is a polypeptide or oligopeptide fragment of GCREC which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment of GCREC which is useful in any of the antibody production methods disclosed herein or known in the art.

The term "microarray" refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.

10

15

20

25

35

The terms "element" and "array element" refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.

The term "modulate" refers to a change in the activity of GCREC. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of GCREC.

The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.

"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

"Post-translational modification" of an GCREC may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of GCREC.

"Probe" refers to nucleic acid sequences encoding GCREC, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).

Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.

10

15

20

Methods for preparing and using probes and primers are described in the references, for example Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel, F.M. et al. (1987) Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis, M. et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).

Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific

needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.

A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, <u>supra</u>. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.

10

15

20

25

Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.

A "regulatory element" refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.

"Reporter molecules" are chemical or biochemical moieties used for labeling a nucleic acid.

PCT/US01/16833 WO 01/90359

cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.

10

15

20

30

35

A "substitution" refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

A "transcript image" refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.

"Transformation" describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid 25 sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed cells" includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with

a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or <u>in</u> <u>vitro</u> fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), <u>supra</u>.

A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternative splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length of one of the polypeptides.

THE INVENTION

35

10

20

The invention is based on the discovery of new human G-protein coupled receptors (GCREC), the polynucleotides encoding GCREC, and the use of these compositions for the diagnosis, treatment, or prevention of cell proliferative, neurological, cardiovascular, gastrointestinal, autoimmune/inflammatory, and metabolic disorders, and viral infections.

5

10

15

20

30

35

Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ID). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide ID) as shown. Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) as shown.

Table 2 shows sequences with homology to the polypeptides of the invention as identified by BLAST analysis against the GenBank protein (genpept) database. Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for polypeptides of the invention. Column 3 shows the GenBank identification number (Genbank ID NO:) of the nearest GenBank homolog. Column 4 shows the probability score for the match between each polypeptide and its GenBank homolog. Column 5 shows the annotation of the GenBank homolog along with relevant citations where applicable, all of which are expressly incorporated by reference herein.

Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and 2 show the polypeptide sequence identification number (SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for each polypeptide of the invention. Column 3 shows the number of amino acid residues in each polypeptide. Column 4 shows potential phosphorylation sites, and column 5 shows potential glycosylation sites, as determined by the MOTIFS program of the GCG sequence analysis software package (Genetics Computer Group, Madison WI). Column 6 shows amino acid residues comprising signature sequences, domains, and motifs. Column 7 shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were applied.

Together, Tables 2 and 3 summarize the properties of polypeptides of the invention, and these properties establish that the claimed polypeptides are G-protein coupled receptors. For example, SEQ ID NO:2 is 59% identical to rat taste bud receptor protein (GenBank ID g1256389) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 5.7e-95, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:2 also contains a seven transmembrane receptor (rhodopsin family) domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-

PCT/US01/16833 WO 01/90359

based PFAM database of conserved protein family domains. The score is 146.3 and the probability value is 2.2e-45. (See Table 3.) In addition, SEQ ID NO:2 contains G-protein coupled receptor signatures as determined by BLIMPS analysis of the BLOCKS (BL00237) and PRINTS (PR00237) databaes, and by ProfileScan analysis of the Prosite database, as well as an olfactory receptor signature (PR00245) as determined by BLIMPS analysis of the PRINTS database. Based on BLAST, BLIMPS, ProfileScan, and HMM-based analyses, SEQ ID NO:2 is an olfactory G-protein coupled receptor. In an alternative example, SEQ ID NO:15 is 85% identical to murine odorant receptor MOR18 (GenBank ID g6178008) as determined by BLAST. (See Table 2.) The BLAST probability score is 4.6e-138. SEQ ID NO:15 also contains a seven transmembrane receptor domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)based PFAM database of conserved protein family domains. Data from BLIMPS, MOTIFS, and PROFILESCAN analyses provide further corroborative evidence that SEQ ID NO:15 is a G-protein coupled receptor. In alternative examples, SEQ ID NO:16 is 72% identical to a mouse olfactory receptor (GenBank ID g3983392) as determined by BLAST analysis, with a probability score of 2.7e-85; SEQ ID NO:17 is 97% identical to a gorilla olfactory receptor (GenBank ID g7211257), with a probability score of 1.2e-109; and SEQ ID NO:18 is 51% identical to a canine olfactory receptor (GenBank ID g1314663), with a probability score of 4.1e-82. (See Table 2.) SEQ ID NO:17 and SEQ ID NO:18 also contain G-protein coupled receptor domains and signature sequences as determined by searching for statistically significant matches in the hidden Markov model (HMM)-20 based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFILESCAN analyses provide further corroborative evidence that SEQ ID NO:16-18 are G-protein coupled receptors. In an alternative example, SEQ ID NO:19 is 56% identical to mouse odorant receptor S19 (GenBank ID g6532001) as determined by BLAST. (See Table 2.) The BLAST probability score is 1.4e-88. SEQ ID NO:19 also contains a seven transmembrane receptor (rhodopsin family) domain as determined by searching for statistically significant matches in the 25 hidden Markov model (HMM)-based PFAM database of conserved protein family domains. Data from BLIMPS, MOTIFS, and PROFILESCAN analyses provide further corroborative evidence that SEO ID NO:19 is a G-protein coupled receptor. SEQ ID NO:1, SEQ ID NO:3-14, and SEQ ID NO:20-23 were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ ID NO:1-23 are described in Table 7.

As shown in Table 4, the full length polynucleotide sequences of the present invention were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences. Columns 1 and 2 list the polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and the corresponding Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) for each polynucleotide of the invention.

30

Column 3 shows the length of each polynucleotide sequence in basepairs. Column 4 lists fragments of the polynucleotide sequences which are useful, for example, in hybridization or amplification technologies that identify SEQ ID NO:24-46 or that distinguish between SEQ ID NO:24-46 and related polynucleotide sequences. Column 5 shows identification numbers corresponding to cDNA sequences, coding sequences (exons) predicted from genomic DNA, and/or sequence assemblages comprised of both cDNA and genomic DNA. These sequences were used to assemble the full length polynucleotide sequences of the invention. Columns 6 and 7 of Table 4 show the nucleotide start (5') and stop (3') positions of the cDNA and/or genomic sequences in column 5 relative to their respective full length sequences.

10

15

20

25

30

35

The identification numbers in Column 5 of Table 4 may refer specifically, for example, to Incyte cDNAs along with their corresponding cDNA libraries. For example, 7669623H1 is the identification number of an Incyte cDNA sequence, and NOSEDIC02 is the cDNA library from which it is derived. Incyte cDNAs for which cDNA libraries are not indicated were derived from pooled cDNA libraries. Alternatively, the identification numbers in column 5 may refer to GenBank cDNAs or ESTs (e.g., g2525800) which contributed to the assembly of the full length polynucleotide sequences. Alternatively, the identification numbers in column 5 may refer to coding regions predicted by Genscan analysis of genomic DNA. For example, GNN.g7329615_000006_002 is the identification number of a Genscan-predicted coding sequence, with g7329615 being the GenBank identification number of the sequence to which Genscan was applied. The Genscan-predicted coding sequences may have been edited prior to assembly. (See Example IV.) Alternatively, the identification numbers in column 5 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. (See Example V.) Alternatively, the identification numbers in column 5 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon-stretching" algorithm. (See Example V.) In some cases, Incyte cDNA coverage redundant with the sequence coverage shown in column 5 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.

Table 5 shows the representative cDNA libraries for those full length polynucleotide sequences which were assembled using Incyte cDNA sequences. The representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotide sequences. The tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.

Table 8 shows tissue-specific expression of polynucleotides of the invention. Column 1 lists groups of tissues which were tested by polymerase chain reaction (PCR) for expression of the polynucleotides. The remaining columns indicate whether a particular polynucleotide was expressed

in each tissue group. Detection of a PCR product indicated positive expression, denoted by a "+" sign, while inability to detect a PCR product indicated a lack of expression, denoted by a "-" sign.

The invention also encompasses GCREC variants. A preferred GCREC variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the GCREC amino acid sequence, and which contains at least one functional or structural characteristic of GCREC.

The invention also encompasses polynucleotides which encode GCREC. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:24-46, which encodes GCREC. The polynucleotide sequences of SEQ ID NO:24-46, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

10

30

35

The invention also encompasses a variant of a polynucleotide sequence encoding GCREC. In particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding GCREC. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:24-46 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:24-46. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of GCREC.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding GCREC, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring GCREC, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode GCREC and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring GCREC under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding GCREC or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with

which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding GCREC and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode GCREC and GCREC derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding GCREC or any fragment thereof.

5

10

15

20

30

35

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:24-46 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding GCREC may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.)

Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown

sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

15

20

25

30

35

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode GCREC may be cloned in recombinant DNA molecules that direct expression of GCREC, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express GCREC.

The nucleotide sequences of the present invention can be engineered using methods generally

known in the art in order to alter GCREC-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of GCREC, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.

In another embodiment, sequences encoding GCREC may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.)

Alternatively, GCREC itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solution-phase or solid-phase techniques. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY, pp. 55-60; and Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (Applied Biosystems). Additionally, the amino acid sequence of GCREC, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.

25

35

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.)

PCT/US01/16833 WO 01/90359

The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)

In order to express a biologically active GCREC, the nucleotide sequences encoding GCREC or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding GCREC. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding GCREC. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding GCREC and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an inframe ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression 20 vectors containing sequences encoding GCREC and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

25

35

A variety of expression vector/host systems may be utilized to contain and express sequences encoding GCREC. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. (See, e.g., Sambrook, supra; Ausubel, supra; Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509; Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO J. 6:307-311; The McGraw Hill Yearbook of Science and Technology (1992)

McGraw Hill, New York NY, pp. 191-196; Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659; and Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.) Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. (See, e.g., Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5(6):350-356; Yu, M. et al. (1993) Proc. Natl. Acad. Sci. USA 90(13):6340-6344; Buller, R.M. et al. (1985) Nature 317(6040):813-815; McGregor, D.P. et al. (1994) Mol. Immunol. 31(3):219-226; and Verma, I.M. and N. Somia (1997) Nature 389:239-242.) The invention is not limited by the host cell employed.

10

15

20

25

30

35

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding GCREC. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding GCREC can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding GCREC into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of GCREC are needed, e.g. for the production of antibodies, vectors which direct high level expression of GCREC may be used. For example, vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of GCREC. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast <u>Saccharomyces cerevisiae</u> or <u>Pichia pastoris</u>. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, <u>supra</u>; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, C.A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of GCREC. Transcription of sequences encoding GCREC may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology

(1992) McGraw Hill, New York NY, pp. 191-196.)

10

15

20

25

35

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding GCREC may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses GCREC in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of GCREC in cell lines is preferred. For example, sequences encoding GCREC can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk and apr cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate; neo confers resistance to the aminoglycosides neomycin and G-418; and als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β-glucuronide, or luciferase and its substrate

PCT/US01/16833 WO 01/90359

luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding GCREC is inserted within a marker gene sequence, transformed cells containing sequences encoding GCREC can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding GCREC under the control of a single promoter. Expression of the marker gene in response to induction or selection usually 10 indicates expression of the tandem gene as well.

5

15

20

25

30

35

In general, host cells that contain the nucleic acid sequence encoding GCREC and that express GCREC may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of GCREC using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on GCREC is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding GCREC include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding GCREC, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for

ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding GCREC may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode GCREC may be designed to contain signal sequences which direct secretion of GCREC through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

10

15

25

35

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding GCREC may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric GCREC protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of GCREC activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the GCREC encoding sequence and the heterologous protein sequence, so that GCREC may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled GCREC may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, ³⁵S-methionine.

GCREC of the present invention or fragments thereof may be used to screen for compounds that specifically bind to GCREC. At least one and up to a plurality of test compounds may be screened for specific binding to GCREC. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

10

15

20

25

30

35

In one embodiment, the compound thus identified is closely related to the natural ligand of GCREC, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, e.g., Coligan, J.E. et al. (1991) Current Protocols in Immunology 1(2): Chapter 5.) Similarly, the compound can be closely related to the natural receptor to which GCREC binds, or to at least a fragment of the receptor, e.g., the ligand binding site. In either case, the compound can be rationally designed using known techniques. In one embodiment, screening for these compounds involves producing appropriate cells which express GCREC, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing GCREC or cell membrane fractions which contain GCREC are then contacted with a test compound and binding, stimulation, or inhibition of activity of either GCREC or the compound is analyzed.

An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with GCREC, either in solution or affixed to a solid support, and detecting the binding of GCREC to the compound. Alternatively, the assay may detect or measure binding of a test compound in the presence of a labeled competitor. Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a solid support.

GCREC of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of GCREC. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for GCREC activity, wherein GCREC is combined with at least one test compound, and the activity of GCREC in the presence of a test compound is compared with the activity of GCREC in the absence of the test compound. A change in the activity of GCREC in the presence of the test compound is indicative of a compound that modulates the activity of GCREC. Alternatively, a test compound is

combined with an <u>in vitro</u> or cell-free system comprising GCREC under conditions suitable for GCREC activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of GCREC may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.

In another embodiment, polynucleotides encoding GCREC or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent Number 5,175,383 and U.S. Patent Number 5,767,337.) For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stagespecific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.

Polynucleotides encoding GCREC may also be manipulated <u>in vitro</u> in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).

Polynucleotides encoding GCREC can also be used to create "knockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding GCREC is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively, a mammal inbred to overexpress GCREC, e.g., by secreting GCREC in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).

THERAPEUTICS

5

10

15

20

25

35

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of GCREC and G-protein coupled receptors. In addition, the expression of GCREC is closely associated with nasal polyp tissue. Therefore, GCREC appears to play a role in cell proliferative, neurological, cardiovascular, gastrointestinal, autoimmune/inflammatory, and metabolic disorders, and viral infections. In the treatment of disorders associated with increased GCREC expression or activity, it is desirable to decrease the expression or activity of GCREC. In the treatment of disorders associated with decreased GCREC expression or activity, it is desirable to increase the expression or activity of GCREC.

10

15

20

25

Therefore, in one embodiment, GCREC or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of GCREC. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a

cardiovascular disorder such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, vascular tumors, complications of thrombolysis, balloon angioplasty, vascular replacement, and coronary artery bypass graft surgery, congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, congenital heart disease, and complications of cardiac transplantation; a gastrointestinal disorder such as dysphagia, peptic esophagitis, esophageal spasm, esophageal stricture, esophageal carcinoma, dyspepsia, indigestion, gastritis, gastric carcinoma, anorexia, nausea, emesis, gastroparesis, antral or pyloric edema, abdominal angina, pyrosis, gastroenteritis, intestinal obstruction, infections of the intestinal tract, peptic ulcer, cholelithiasis, cholecystitis, cholestasis, pancreatitis, pancreatic carcinoma, biliary tract disease, hepatitis, hyperbilirubinemia, cirrhosis, passive congestion of the liver, hepatoma, infectious colitis, ulcerative colitis, ulcerative proctitis, Crohn's disease, Whipple's disease, Mallory-Weiss syndrome, colonic carcinoma, colonic obstruction, irritable bowel syndrome, short bowel syndrome, diarrhea, constipation, gastrointestinal hemorrhage, acquired immunodeficiency syndrome (AIDS) enteropathy, jaundice, hepatic encephalopathy, hepatorenal syndrome, hepatic steatosis, hemochromatosis, Wilson's disease, alpha 1-antitrypsin deficiency, 20 Reye's syndrome, primary sclerosing cholangitis, liver infarction, portal vein obstruction and thrombosis, centrilobular necrosis, peliosis hepatis, hepatic vein thrombosis, veno-occlusive disease, preeclampsia, eclampsia, acute fatty liver of pregnancy, intrahepatic cholestasis of pregnancy, and hepatic tumors including nodular hyperplasias, adenomas, and carcinomas; an autoimmune/inflammatory disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, 30 erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, 35

10

15

ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a metabolic disorder such as diabetes, obesity, and osteoporosis; and an infection by a viral agent classified as adenovirus, arenavirus, bunyavirus, calicivirus, coronavirus, filovirus, hepadnavirus, herpesvirus, flavivirus, orthomyxovirus, parvovirus, papovavirus, paramyxovirus, picornavirus, poxvirus, reovirus, retrovirus, rhabdovirus, and tongavirus.

In another embodiment, a vector capable of expressing GCREC or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of GCREC including, but not limited to, those described above.

10

15

20

30

35

In a further embodiment, a composition comprising a substantially purified GCREC in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of GCREC including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of GCREC may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of GCREC including, but not limited to, those listed above.

In a further embodiment, an antagonist of GCREC may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of GCREC. Examples of such disorders include, but are not limited to, those cell proliferative, neurological, cardiovascular, gastrointestinal, autoimmune/inflammatory, and metabolic disorders, and viral infections, described above. In one aspect, an antibody which specifically binds GCREC may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express GCREC.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding GCREC may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of GCREC including, but not limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of GCREC may be produced using methods which are generally known in the art. In particular, purified GCREC may be used to produce antibodies or to screen libraries of

pharmaceutical agents to identify those which specifically bind GCREC. Antibodies to GCREC may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with GCREC or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

10

20

25

30

35

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to GCREC have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of GCREC amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.

Monoclonal antibodies to GCREC may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce GCREC-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)

Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as

disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)

Antibody fragments which contain specific binding sites for GCREC may also be generated. For example, such fragments include, but are not limited to, $F(ab')_2$ fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the $F(ab')_2$ fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between GCREC and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering GCREC epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).

10

15

25

30

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for GCREC. Affinity is expressed as an association constant, K_a , which is defined as the molar concentration of GCREC-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple GCREC epitopes, represents the average affinity, or avidity, of the antibodies for GCREC. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular GCREC epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10^9 to 10^{12} L/mole are preferred for use in immunoassays in which the GCREC-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10^6 to 10^7 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of GCREC, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of GCREC-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity,

and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, <u>supra</u>, and Coligan et al. <u>supra</u>.)

In another embodiment of the invention, the polynucleotides encoding GCREC, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding GCREC. Such technology is well known in the art, and antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding GCREC. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totawa NJ.)

10

15

20

In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein. (See, e.g., Slater, J.E. et al. (1998) J. Allergy Cli. Immunol. 102(3):469-475; and Scanlon, K.J. et al. (1995) 9(13):1288-1296.) Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors. (See, e.g., Miller, A.D. (1990) Blood 76:271; Ausubel, supra; Uckert, W. and W. Walther (1994) Pharmacol. Ther. 63(3):323-347.) Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art. (See, e.g., Rossi, J.J. (1995) Br. Med. Bull. 51(1):217-225; Boado, R.J. et al. (1998) J. Pharm. Sci. 87(11):1308-1315; and Morris, M.C. et al. (1997) Nucleic Acids Res. 25(14):2730-2736.)

In another embodiment of the invention, polynucleotides encoding GCREC may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-X1 disease characterized by X-linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C. et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75:207-216; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:643-666; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:667-703), thalassamias, familial hypercholesterolemia, and hemophilia resulting from Factor VIII or Factor IX deficiencies (Crystal, R.G. (1995) Science 270:404-410; Verma, I.M. and N. Somia (1997) Nature 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D.

(1988) Nature 335:395-396; Poeschla, E. et al. (1996) Proc. Natl. Acad. Sci. USA. 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as <u>Candida albicans</u> and <u>Paracoccidioides</u> <u>brasiliensis</u>; and protozoan parasites such as <u>Plasmodium falciparum</u> and <u>Trypanosoma cruzi</u>). In the case where a genetic deficiency in GCREC expression or regulation causes disease, the expression of GCREC from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency.

5

10

15

20

25

35

In a further embodiment of the invention, diseases or disorders caused by deficiencies in GCREC are treated by constructing mammalian expression vectors encoding GCREC and introducing these vectors by mechanical means into GCREC-deficient cells. Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivics, Z. (1997) Cell 91:501-510; Boulay, J-L. and H. Récipon (1998) Curr. Opin. Biotechnol. 9:445-450).

Expression vectors that may be effective for the expression of GCREC include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA). GCREC may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β-actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456), commercially available in the T-REX plasmid (Invitrogen)); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.M.V. and Blau, H.M. supra)), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding GCREC from a normal individual.

Commercially available liposome transformation kits (e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.

In another embodiment of the invention, diseases or disorders caused by genetic defects with

respect to GCREC expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding GCREC under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus cis-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are 5 commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci. USA 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and 10 A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J. Virol. 72:9873-9880). U.S. Patent Number 5,910,434 to Rigg ("Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant") discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4+ Tcells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M.L. (1997) J. Virol. 71:4707-4716; Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. USA 95:1201-1206; Su, L. (1997) Blood 89:2283-2290). 20

In the alternative, an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding GCREC to cells which have one or more genetic abnormalities with respect to the expression of GCREC. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent Number 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P.A. et al. (1999) Annu. Rev. Nutr. 19:511-544 and Verma, I.M. and N. Somia (1997) Nature 18:389:239-242, both incorporated by reference herein.

25

In another alternative, a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding GCREC to target cells which have one or more genetic abnormalities with respect to the expression of GCREC. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing GCREC to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with

ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1-based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res. 169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Patent Number 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent Number 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999) J. Virol. 73:519-532 and Xu, H. et al. (1994) Dev. Biol. 163:152-161, hereby incorporated by reference. The manipulation of cloned. herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.

15

35

In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding GCREC to target cells. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K.-J. Li (1998) Curr. Opin. Biotechnol. 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for GCREC into the alphavirus genome in place of the capsid-coding region results in the production of a large number of GCREC-coding RNAs and the synthesis of high levels of GCREC in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83). The wide host range of alphaviruses will allow the introduction of GCREC into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction. The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.

Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expression. Similarly,

inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding GCREC.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

20

30

35

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding GCREC. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2'O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding GCREC. Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased GCREC expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding GCREC may be therapeutically useful, and in the treatment of disorders associated with decreased GCREC expression or activity, a compound which specifically promotes expression of the polynucleotide encoding GCREC may be therapeutically useful.

10

15

20

25

35

At least one, and up to a plurality, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a polynucleotide encoding GCREC is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding GCREC are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding GCREC. The amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide

sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).

Many methods for introducing vectors into cells or tissues are available and equally suitable for use <u>in vivo</u>, <u>in vitro</u>, and <u>ex vivo</u>. For <u>ex vivo</u> therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.

An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient. Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA). Such compositions may consist of GCREC, antibodies to GCREC, and mimetics, agonists, antagonists, or inhibitors of GCREC.

The compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

20

30

35

Compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol delivery of fast-acting formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides and proteins), recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al., U.S. Patent No. 5,997,848). Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.

Compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

Specialized forms of compositions may be prepared for direct intracellular delivery of macromolecules comprising GCREC or fragments thereof. For example, liposome preparations

containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule. Alternatively, GCREC or a fragment thereof may be joined to a short cationic N-terminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).

5

10

15

20

25

30

35

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example GCREC or fragments thereof, antibodies of GCREC, and agonists, antagonists or inhibitors of GCREC, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED_{50} (the dose therapeutically effective in 50% of the population) or LD_{50} (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD_{50}/ED_{50} ratio. Compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED_{50} with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 μ g to 100,000 μ g, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

10

20

35

In another embodiment, antibodies which specifically bind GCREC may be used for the diagnosis of disorders characterized by expression of GCREC, or in assays to monitor patients being treated with GCREC or agonists, antagonists, or inhibitors of GCREC. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for GCREC include methods which utilize the antibody and a label to detect GCREC in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring GCREC, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of GCREC expression. Normal or standard values for GCREC expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibodies to GCREC under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of GCREC expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding GCREC may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of GCREC may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of GCREC, and to monitor regulation of GCREC levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding GCREC or closely related molecules may be used to identify nucleic acid sequences which encode GCREC. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding GCREC, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the GCREC encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:24-46 or from

genomic sequences including promoters, enhancers, and introns of the GCREC gene.

10

Means for producing specific hybridization probes for DNAs encoding GCREC include the cloning of polynucleotide sequences encoding GCREC or GCREC derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes <u>in vitro</u> by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ³²P or ³⁵S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding GCREC may be used for the diagnosis of disorders associated with expression of GCREC. Examples of such disorders include, but are not limited to, a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a cardiovascular disorder such as arteriovenous fistula, atherosclerosis,

hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, vascular tumors, complications of thrombolysis, balloon angioplasty, vascular replacement, and coronary artery bypass graft surgery, congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, congenital heart disease, and complications of cardiac transplantation; a gastrointestinal disorder such as dysphagia, peptic esophagitis, esophageal spasm, esophageal stricture, esophageal carcinoma, dyspepsia, indigestion, gastritis, gastric carcinoma, anorexia, nausea, emesis, gastroparesis, antral or pyloric edema, abdominal angina, pyrosis, gastroenteritis, intestinal obstruction, infections of the intestinal tract, peptic ulcer, cholelithiasis, cholecystitis, cholestasis, pancreatitis, pancreatic carcinoma, biliary tract disease, hepatitis, hyperbilirubinemia, cirrhosis, passive congestion of the liver, hepatoma, infectious colitis, ulcerative colitis, ulcerative proctitis, Crohn's disease, Whipple's disease, Mallory-Weiss syndrome, colonic carcinoma, colonic obstruction, irritable bowel syndrome, short bowel syndrome, diarrhea, constipation, gastrointestinal hemorrhage, acquired immunodeficiency syndrome (AIDS) enteropathy, jaundice, hepatic encephalopathy, hepatorenal syndrome, hepatic steatosis, hemochromatosis, Wilson's disease, alpha 1antitrypsin deficiency, Reye's syndrome, primary sclerosing cholangitis, liver infarction, portal vein 20 obstruction and thrombosis, centrilobular necrosis, peliosis hepatis, hepatic vein thrombosis, venoocclusive disease, preeclampsia, eclampsia, acute fatty liver of pregnancy, intrahepatic cholestasis of pregnancy, and hepatic tumors including nodular hyperplasias, adenomas, and carcinomas; an autoimmune/inflammatory disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, 25 anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' 30 disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and 35

extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a metabolic disorder such as diabetes, obesity, and osteoporosis; and an infection by a viral agent classified as adenovirus, arenavirus, bunyavirus, calicivirus, coronavirus, filovirus, hepadnavirus, herpesvirus, flavivirus, orthomyxovirus, parvovirus, papovavirus, paramyxovirus, picornavirus, poxvirus, reovirus, retrovirus, rhabdovirus, and tongavirus. The polynucleotide sequences encoding GCREC may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered GCREC expression. Such qualitative or quantitative methods are well known in the art.

10

20

35

In a particular aspect, the nucleotide sequences encoding GCREC may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding GCREC may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding GCREC in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of GCREC, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding GCREC, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the

development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

5

15

20

30

35

Additional diagnostic uses for oligonucleotides designed from the sequences encoding GCREC may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding GCREC, or a fragment of a polynucleotide complementary to the polynucleotide encoding GCREC, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.

In a particular aspect, oligonucleotide primers derived from the polynucleotide sequences encoding GCREC may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from the polynucleotide sequences encoding GCREC are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSCCP, the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in highthroughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed in silico SNP (isSNP), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence. These computer-based methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).

Methods which may also be used to quantify the expression of GCREC include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives

rapid quantitation.

15

20

25

30

35

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray. The microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.

In another embodiment, GCREC, fragments of GCREC, or antibodies specific for GCREC may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.

A particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or cell type. A transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent Number 5,840,484, expressly incorporated by reference herein.) Thus a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type. In one embodiment, the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray. The resultant transcript image would provide a profile of gene activity.

Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies, or other biological samples. The transcript image may thus reflect gene expression <u>in vivo</u>, as in the case of a tissue or biopsy sample, or <u>in vitro</u>, as in the case of a cell line.

Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with <u>in vitro</u> model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed

molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N.L. Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly incorporated by reference herein). If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties. These fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in interpretation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity. (See, for example, Press Release 00-02 from the National Institute of Environmental Health Sciences, released February 29, 2000, available at http://www.niehs.nih.gov/oc/news/toxchip.htm.) Therefore, it is important and desirable in toxicological screening using toxicant signatures to include all expressed gene sequences.

10

15

20

25

35

In one embodiment, the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.

Another particular embodiment relates to the use of the polypeptide sequences of the present invention to analyze the proteome of a tissue or cell type. The term proteome refers to the global pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individually to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type. In one embodiment, the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, supra). The proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains. The optical

density of each protein spot is generally proportional to the level of the protein in the sample. The optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.

A proteomic profile may also be generated using antibodies specific for GCREC to quantify the levels of GCREC expression. In one embodiment, the antibodies are used as elements on a microarray, and protein expression levels are quantified by exposing the microarray to the sample and detecting the levels of protein bound to each array element (Lueking, A. et al. (1999) Anal. Biochem. 270:103-111; Mendoze, L.G. et al. (1999) Biotechniques 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.

10

15

20

25

35

Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the transcript level. There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatures may be useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling may be more reliable and informative in such cases.

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are

incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.

5

10

15

35

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.) Various types of microarrays are well known and thoroughly described in <u>DNA Microarrays: A Practical Approach</u>, M. Schena, ed. (1999) Oxford University Press, London, hereby expressly incorporated by reference.

In another embodiment of the invention, nucleic acid sequences encoding GCREC may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.) Once mapped, the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP). (See, for example, Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357.)

Fluorescent <u>in situ</u> hybridization (FISH) may be correlated with other physical and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, <u>supra</u>, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding GCREC on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.

<u>In situ</u> hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps.

Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, GCREC, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between GCREC and the agent being tested may be measured.

10

15

20

25

30

35

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with GCREC, or fragments thereof, and washed. Bound GCREC is then detected by methods well known in the art. Purified GCREC can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding GCREC specifically compete with a test compound for binding GCREC. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with GCREC.

In additional embodiments, the nucleotide sequences which encode GCREC may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The disclosures of all patents, applications and publications, mentioned above and below,

including U.S. Ser. No. 60/208,834, U.S. Ser. No. 60/206,222, U.S. Ser. No. 60/207,476, U.S. Ser. No. 60/208,861, and U.S. Ser. No. 60/209,868, are expressly incorporated by reference herein.

EXAMPLES

5 I. Construction of cDNA Libraries

Incyte cDNAs were derived from cDNA libraries described in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA) and shown in Table 4, column 5. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A)+ RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), PCDNA2.1 plasmid (Invitrogen, Carlsbad CA), PBK-CMV plasmid (Stratagene), or pINCY (Incyte Genomics, Palo Alto CA), or derivatives thereof. Recombinant plasmids were transformed into competent E. coli cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5α, DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

20

25

35

Plasmids obtained as described in Example I were recovered from host cells by in vivo

excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

15

20

35

Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VIII.

The polynucleotide sequences derived from Incyte cDNAs were validated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The Incyte cDNA sequences or translations thereof were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and hidden Markov model (HMM)-based protein family databases such as PFAM. (HMM is a probabilistic approach which analyzes consensus primary structures of gene families. See, for example, Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361-365.)

The queries were performed using programs based on BLAST, FASTA, BLIMPS, and HMMER. The Incyte cDNA sequences were assembled to produce full length polynucleotide sequences. Alternatively, GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences (see Examples IV and V) were used to extend Incyte cDNA assemblages to full length. Assembly was performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length polypeptide sequences. Alternatively, a polypeptide of the invention may begin at any of the methionine residues of the full length translated polypeptide. Full length polypeptide sequences were subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and hidden Markov model (HMM)-based protein family databases such as PFAM. Full length polynucleotide sequences are also analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments are generated using default parameters specified by the CLUSTAL algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.

5

10

15

20

25

30

35

Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and full length sequences and provides applicable descriptions, references, and threshold parameters. The first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity between two sequences).

The programs described above for the assembly and analysis of full length polynucleotide and polypeptide sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:24-46. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies are described in Table 4, column 4.

IV. Identification and Editing of Coding Sequences from Genomic DNA

Putative G-protein coupled receptors were initially identified by running the Genscan gene identification program against public genomic sequence databases (e.g., gbpri and gbhtg). Genscan is a general-purpose gene identification program which analyzes genomic DNA sequences from a variety of organisms (See Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94, and Burge, C. and S. Karlin (1998) Curr. Opin. Struct. Biol. 8:346-354). The program concatenates predicted exons to

form an assembled cDNA sequence extending from a methionine to a stop codon. The output of Genscan is a FASTA database of polynucleotide and polypeptide sequences. The maximum range of sequence for Genscan to analyze at once was set to 30 kb. To determine which of these Genscan predicted cDNA sequences encode G-protein coupled receptors, the encoded polypeptides were analyzed by querying against PFAM models for G-protein coupled receptors. Potential G-protein coupled receptors were also identified by homology to Incyte cDNA sequences that had been annotated as G-protein coupled receptors. These selected Genscan-predicted sequences were then compared by BLAST analysis to the genpept and gbpri public databases. Where necessary, the Genscan-predicted sequences were then edited by comparison to the top BLAST hit from genpept to correct errors in the sequence predicted by Genscan, such as extra or omitted exons. BLAST analysis was also used to find any Incyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage was available, this information was used to correct or confirm the Genscan predicted sequence. Full length polynucleotide sequences were obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or public cDNA sequences using the assembly process described in Example III. Alternatively, full length polynucleotide sequences were derived entirely from edited or unedited Genscan-predicted coding sequences.

V. Assembly of Genomic Sequence Data with cDNA Sequence Data "Stitched" Sequences

20

Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example III were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that were subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity. For example, if an interval was present on a cDNA and two genomic sequences, then all three intervals were considered to be equivalent. This process allows unrelated but consecutive genomic sequences to be brought together, bridged by cDNA sequence. Intervals thus identified were then "stitched" together by the stitching algorithm in the order that they appear along their parent sequences to generate the longest possible sequence, as well as sequence variants. Linkages between intervals which proceed along one type of parent sequence (cDNA to cDNA or genomic sequence to genomic sequence) were given preference over linkages which change parent type (cDNA to genomic sequence). The resultant stitched sequences were translated and compared

by BLAST analysis to the genpept and gbpri public databases. Incorrect exons predicted by Genscan were corrected by comparison to the top BLAST hit from genpept. Sequences were further extended with additional cDNA sequences, or by inspection of genomic DNA, when necessary.

"Stretched" Sequences

5

· 20

35

Partial DNA sequences were extended to full length with an algorithm based on BLAST analysis. First, partial cDNAs assembled as described in Example III were queried against public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases using the BLAST program. The nearest GenBank protein homolog was then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV. A chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog. The GenBank protein homolog, the chimeric protein, or both were used as probes to search for homologous genomic sequences from the public human genome databases. Partial DNA sequences were therefore "stretched" or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to determine whether it contained a complete gene.

VI. Chromosomal Mapping of GCREC Encoding Polynucleotides

The sequences which were used to assemble SEQ ID NO:24-46 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID NO:24-46 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Généthon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.

Map locations are represented by ranges, or intervals, of human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Généthon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Human genome maps and other resources available to the public, such as the NCBI "GeneMap'99" World Wide Web site (http://www.ncbi.nlm.nih.gov/genemap/), can be employed to determine if previously identified

disease genes map within or in proximity to the intervals indicated above.

VII. Analysis of Polynucleotide Expression

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, <u>supra</u>, ch. 7; Ausubel (1995) <u>supra</u>, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or LIFESEQ (Incyte Genomics). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

BLAST Score x Percent Identity

5 x minimum {length(Seq. 1), length(Seq. 2)}

15

30

35

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a BLAST alignment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.

Alternatively, polynucleotide sequences encoding GCREC are analyzed with respect to the tissue sources from which they were derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example III). Each cDNA sequence is derived from a cDNA library constructed from a human tissue. Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitalia, female; genitalia, male; germ cells; hemic and immune system; liver; musculoskeletal system; nervous

system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified/mixed; or urinary tract. The number of libraries in each category is counted and divided by the total number of libraries across all categories. Similarly, each human tissue is classified into one of the following disease/condition categories: cancer, cell line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries across all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding GCREC. cDNA sequences and cDNA library/tissue information are found in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA).

VIII. Extension of GCREC Encoding Polynucleotides

10

20

30

Full length polynucleotide sequences were also produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer was synthesized to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and 2-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 μ l PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 μ l of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μ l to 10 μ l aliquot of the reaction mixture was analyzed by

electrophoresis on a 1 % agarose gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent <u>E. coli</u> cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).

In like manner, full length polynucleotide sequences are verified using the above procedure or are used to obtain 5' regulatory sequences using the above procedure along with oligonucleotides designed for such extension, and an appropriate genomic library.

IX. Labeling and Use of Individual Hybridization Probes

10

20

25

30

35

Hybridization probes derived from SEQ ID NO:24-46 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μ Ci of [γ -32P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10^7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases:

Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.

X. Microarrays

10

20

25

35

The linkage or synthesis of array elements upon a microarray can be achieved utilizing photolithography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, <u>supra.</u>), mechanical microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena (1999), <u>supra</u>). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers. Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)

Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microarray. Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). The array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element. Alternatively, laser desorbtion and mass spectrometry may be used for detection of hybridization. The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed. In one embodiment, microarray preparation and usage is described in detail below.

Tissue or Cell Sample Preparation

Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)⁺ RNA is purified using the oligo-(dT) cellulose method. Each poly(A)⁺ RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/µl oligo-(dT) primer (21mer), 1X first strand buffer, 0.03 units/µl RNase inhibitor, 500 µM dATP, 500 µM dGTP, 500 µM dTTP, 40

μM dCTP, 40 μM dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech). The reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)⁺ RNA with GEMBRIGHT kits (Incyte). Specific control poly(A)⁺ RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37°C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85°C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 μl 5X SSC/0.2% SDS.

Microarray Preparation

15

20

25

Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 µg. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).

Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 110° C oven.

Array elements are applied to the coated glass substrate using a procedure described in US Patent No. 5,807,522, incorporated herein by reference. 1 μ l of the array element DNA, at an average concentration of 100 ng/ μ l, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per slide.

Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60°C followed by washes in 0.2% SDS and distilled water as before.

Hybridization

Hybridization reactions contain 9 μl of sample mixture consisting of 0.2 μg each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer. The sample mixture is heated to 65°C for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cm² coverslip. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the addition of 140 μl of 5X SSC in a corner of the chamber. The chamber containing the arrays is incubated for about 6.5 hours at 60°C. The arrays are washed for 10 min at 45°C in a first wash buffer (1X SSC, 0.1% SDS), three times for 10 minutes each at 45°C in a second wash buffer (0.1X SSC), and dried.

10 Detection

15

20

25

30

35

Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.

In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.

The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and control cells), each labeled with a different fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.

The output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC computer. The digitized data are displayed as an image where the signal intensity is mapped using a

linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.

A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).

XI. Complementary Polynucleotides

5

10

15

20

25

35

Sequences complementary to the GCREC-encoding sequences, or any parts thereof, are used to detect, decrease; or inhibit expression of naturally occurring GCREC. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of GCREC. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the GCREC-encoding transcript.

XII. Expression of GCREC

Expression and purification of GCREC is achieved using bacterial or virus-based expression systems. For expression of GCREC in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express GCREC upon induction with isopropyl beta-Dthiogalactopyranoside (IPTG). Expression of GCREC in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding GCREC by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther.

7:1937-1945.)

10

15

20

30

In most expression systems, GCREC is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from GCREC at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified GCREC obtained by these methods can be used directly in the assays shown in Examples XVI, XVII, and XVIII, where applicable.

XIII. Functional Assays

GCREC function is assessed by expressing the sequences encoding GCREC at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include PCMV SPORT (Life Technologies) and PCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 μg of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 μ g of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.

The influence of GCREC on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding GCREC and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding GCREC and other genes of interest can be analyzed by northern analysis or microarray techniques.

XIV. Production of GCREC Specific Antibodies

10

15

20

25

GCREC substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the GCREC amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Applied Biosystems) using FMOC chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, suppra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-GCREC activity by, for example, binding the peptide or GCREC to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XV. Purification of Naturally Occurring GCREC Using Specific Antibodies

Naturally occurring or recombinant GCREC is substantially purified by immunoaffinity chromatography using antibodies specific for GCREC. An immunoaffinity column is constructed by covalently coupling anti-GCREC antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing GCREC are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of GCREC (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/GCREC binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such

PCT/US01/16833 WO 01/90359

as urea or thiocyanate ion), and GCREC is collected.

10

15

20

25

Identification of Molecules Which Interact with GCREC

Molecules which interact with GCREC may include agonists and antagonists, as well as molecules involved in signal transduction, such as G proteins. GCREC, or a fragment thereof, is labeled with 125 I Bolton-Hunter reagent. (See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) A fragment of GCREC includes, for example, a fragment comprising one or more of the three extracellular loops, the extracellular N-terminal region, or the third intracellular loop. Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled GCREC, washed, and any wells with labeled GCREC complex are assayed. Data obtained using different concentrations of GCREC are used to calculate values for the number, affinity, and association of GCREC with the candidate ligand molecules.

Alternatively, molecules interacting with GCREC are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) Nature 340:245-246, or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech). GCREC may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).

Potential GCREC agonists or antagonists may be tested for activation or inhibition of GCREC receptor activity using the assays described in sections XVII and XVIII. Candidate molecules may be selected from known GPCR agonists or antagonists, peptide libraries, or combinatorial chemical libraries.

Methods for detecting interactions of GCREC with intracellular signal transduction molecules such as G proteins are based on the premise that internal segments or cytoplasmic domains from an orphan G protein-coupled seven transmembrane receptor may be exchanged with the analogous domains of a known G protein-coupled seven transmembrane receptor and used to identify the G-proteins and downstream signaling pathways activated by the orphan receptor domains (Kobilka, B.K. et al. (1988) Science 240:1310-1316). In an analogous fashion, domains of the orphan receptor may be cloned as a portion of a fusion protein and used in binding assays to demonstrate 30 interactions with specific G proteins. Studies have shown that the third intracellular loop of G protein-coupled seven transmembrane receptors is important for G protein interaction and signal transduction (Conklin, B.R. et al. (1993) Cell 73:631-641). For example, the DNA fragment corresponding to the third intracellular loop of GCREC may be amplified by the polymerase chain reaction (PCR) and subcloned into a fusion vector such as pGEX (Pharmacia Biotech). The construct is transformed into an appropriate bacterial host, induced, and the fusion protein is purified from the

cell lysate by glutathione-Sepharose 4B (Pharmacia Biotech) affinity chromatography.

For in vitro binding assays, cell extracts containing G proteins are prepared by extraction with 50 mM Tris, pH 7.8, 1 mM EGTA, 5 mM MgCl₂, 20 mM CHAPS, 20% glycerol, 10 µg of both aprotinin and leupeptin, and 20 μ l of 50 mM phenylmethylsulfonyl fluoride. The lysate is incubated on ice for 45 min with constant stirring, centrifuged at 23,000 g for 15 min at 4°C, and the supernatant is collected. 750 µg of cell extract is incubated with glutathione S-transferase (GST) fusion protein beads for 2 h at 4°C. The GST beads are washed five times with phosphate-buffered saline. Bound G subunits are detected by [32P]ADP-ribosylation with pertussis or cholera toxins. The reactions are terminated by the addition of SDS sample buffer (4.6% (w/v) SDS, 10% (v/v) β -mercaptoethanol, 20% (w/v) glycerol, 95.2 mM Tris-HCl, pH 6.8, 0.01% (w/v) bromphenol blue). The [32P]ADP-labeled proteins are separated on 10% SDS-PAGE gels, and autoradiographed. The separated proteins in these gels are transferred to nitrocellulose paper, blocked with blotto (5% nonfat dried milk, 50 mM Tris-HCl (pH 8.0), 2 mM CaCl₂, 80 mM NaCl, 0.02% NaN₃, and 0.2% Nonidet P-40) for 1 hour at room temperature, followed by incubation for 1.5 hours with Gα subtype selective antibodies (1:500; Calbiochem-Novabiochem). After three washes, blots are incubated with horseradish peroxidase (HRP)-conjugated goat anti-rabbit immunoglobulin (1:2000, Cappel, Westchester PA) and visualized by the chemiluminescence-based ECL method (Amersham Corp.).

XVII. Demonstration of GCREC Activity

5

10

20

25

30

35

An assay for GCREC activity measures the expression of GCREC on the cell surface. cDNA encoding GCREC is transfected into an appropriate mammalian cell line. Cell surface proteins are labeled with biotin as described (de la Fuente, M.A. et al. (1997) Blood 90:2398-2405). Immunoprecipitations are performed using GCREC-specific antibodies, and immunoprecipitated samples are analyzed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting techniques. The ratio of labeled immunoprecipitant to unlabeled immunoprecipitant is proportional to the amount of GCREC expressed on the cell surface.

In the alternative, an assay for GCREC activity is based on a prototypical assay for ligand/receptor-mediated modulation of cell proliferation. This assay measures the rate of DNA synthesis in Swiss mouse 3T3 cells. A plasmid containing polynucleotides encoding GCREC is added to quiescent 3T3 cultured cells using transfection methods well known in the art. The transiently transfected cells are then incubated in the presence of [³H]thymidine, a radioactive DNA precursor molecule. Varying amounts of GCREC ligand are then added to the cultured cells. Incorporation of [³H]thymidine into acid-precipitable DNA is measured over an appropriate time interval using a radioisotope counter, and the amount incorporated is directly proportional to the amount of newly synthesized DNA. A linear dose-response curve over at least a hundred-fold GCREC ligand concentration range is indicative of receptor activity. One unit of activity per

milliliter is defined as the concentration of GCREC producing a 50% response level, where 100% represents maximal incorporation of [³H]thymidine into acid-precipitable DNA (McKay, I. and I. Leigh, eds. (1993) Growth Factors: A Practical Approach, Oxford University Press, New York NY, p. 73.)

In a further alternative, the assay for GCREC activity is based upon the ability of GPCR family proteins to modulate G protein-activated second messenger signal transduction pathways (e.g., cAMP; Gaudin, P. et al. (1998) J. Biol. Chem. 273:4990-4996). A plasmid encoding full length GCREC is transfected into a mammalian cell line (e.g., Chinese hamster ovary (CHO) or human embryonic kidney (HEK-293) cell lines) using methods well-known in the art. Transfected cells are grown in 12-well trays in culture medium for 48 hours, then the culture medium is discarded, and the attached cells are gently washed with PBS. The cells are then incubated in culture medium with or without ligand for 30 minutes, then the medium is removed and cells lysed by treatment with 1 M perchloric acid. The cAMP levels in the lysate are measured by radioimmunoassay using methods well-known in the art. Changes in the levels of cAMP in the lysate from cells exposed to ligand compared to those without ligand are proportional to the amount of GCREC present in the transfected cells.

To measure changes in inositol phosphate levels, the cells are grown in 24-well plates containing 1x10⁵ cells/well and incubated with inositol-free media and [³H]myoinositol, 2 μCi/well, for 48 hr. The culture medium is removed, and the cells washed with buffer containing 10 mM LiCl followed by addition of ligand. The reaction is stopped by addition of perchloric acid. Inositol phosphates are extracted and separated on Dowex AG1-X8 (Bio-Rad) anion exchange resin, and the total labeled inositol phosphates counted by liquid scintillation. Changes in the levels of labeled inositol phosphate from cells exposed to ligand compared to those without ligand are proportional to the amount of GCREC present in the transfected cells.

XVIII. Identification of GCREC Ligands

5

10

15

20

25

35

GCREC is expressed in a eukaryotic cell line such as CHO (Chinese Hamster Ovary) or HEK (Human Embryonic Kidney) 293 which have a good history of GPCR expression and which contain a wide range of G-proteins allowing for functional coupling of the expressed GCREC to downstream effectors. The transformed cells are assayed for activation of the expressed receptors in the presence of candidate ligands. Activity is measured by changes in intracellular second messengers, such as cyclic AMP or Ca²⁺. These may be measured directly using standard methods well known in the art, or by the use of reporter gene assays in which a luminescent protein (e.g. firefly luciferase or green fluorescent protein) is under the transcriptional control of a promoter responsive to the stimulation of protein kinase C by the activated receptor (Milligan, G. et al. (1996) Trends Pharmacol. Sci. 17:235-237). Assay technologies are available for both of these second messenger systems to allow high

PCT/US01/16833 WO 01/90359

throughput readout in multi-well plate format, such as the adenylyl cyclase activation FlashPlate Assay (NEN Life Sciences Products), or fluorescent Ca2+ indicators such as Fluo-4 AM (Molecular Probes) in combination with the FLIPR fluorimetric plate reading system (Molecular Devices). In cases where the physiologically relevant second messenger pathway is not known, GCREC may be coexpressed with the G-proteins $G_{\alpha 15/16}$ which have been demonstrated to couple to a wide range of Gproteins (Offermanns, S. and M.I. Simon (1995) J. Biol. Chem. 270:15175-15180), in order to funnel the signal transduction of the GCREC through a pathway involving phospholipase C and Ca2+ mobilization. Alternatively, GCREC may be expressed in engineered yeast systems which lack endogenous GPCRs, thus providing the advantage of a null background for GCREC activation screening. These yeast systems substitute a human GPCR and \boldsymbol{G}_{α} protein for the corresponding components of the endogenous yeast pheromone receptor pathway. Downstream signaling pathways are also modified so that the normal yeast response to the signal is converted to positive growth on selective media or to reporter gene expression (Broach, J.R. and J. Thorner (1996) Nature 384 (supp.):14-16). The receptors are screened against putative ligands including known GPCR ligands and other naturally occurring bioactive molecules. Biological extracts from tissues, biological fluids and cell supernatants are also screened.

15

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table 1

	T	T	7	-	_		T	T	T	T	T	T		_			T							İ				
	Polynucleotide 1D	7475208CBI	7475101CB1	7475152CB1	7475164CB1	7475170CB1	14/31/0021	/4/313/CB1	74/5ZIUCBI	7475221CB1	7475244CB1	7475293CB1	7475297CB1	7475193CB1	1475112011	14/3613CDT	7475272CB1	7475200CB1	7475121CB1	7475165CB1	7475273CB1	1477703777	1470011001	74/6113CB1	7476117CB1	7476079CB1	7476112CB1	
polymicleotide	SEQ ID NO:	24	25		97	2.7	28	29	30	31	32	33	3.7	* 1	35	36	37	38	30	23	40	41	42	43	44	45	46	
	Incyre	FOLY DOUGHOUS	/4/5208CD1	7475101CD1	7475152CD1	7475164CD1	7475170CD1	7475197CD1	7475710001	1475021001	141044071	74/3244001	7475293CDI	7475297CD1	7475193CD1	7475213011	14/3213021	14/32/2CD1	74/5200CDT	7475121CD1	7475165CD1	7475273CD1	7476077CD1	1475113646	14/0113001	14/011/01	14/60/3CD1	/4/0112CD1
	Polypeptide	SEO ID NO:	1	2	3		F U		0	7	8	6	10	11	1.0	77	13	14	15	16	17	18		13	20	21	22	23
	Incyte	Project ID	7475208	7475101	/4/JIOI	7475152	7475164	7475170	7475197	7475210	7475221	7475244	7475293	7475707	1670141	7475193	7475213	7475272	7475200	7475101	7475165	14/JIO	14/32/3	7476077	7476113	7476117	7476079	7476112

Table 2

GenBank Homolog		Extracellular calcium-sensing receptor (Homo sapiens)	l l	Olfactory receptor protein [Homo sapiens] (Bernot, A. et	01. (1991) Mac. Conton. 11.150 cm.		10000	Olfactory receptor [Homo sapiens] (Bernot, A. et al. (1998) Genomics 50:147-160)	Taste bud receptor protein TB 334 [Rattus norvegicus]	١.	Odorant receptor MOR18 [Mus musculus] (Tsuboi, A. et al.	Olfactory receptor [Homo sapiens] (Buettner, J.A. et al.		Olfactory receptor [Pan troglodytes] (Sharon, D. et al. (1999) Genomics 61:24-36)	Odorant receptor MOR18 [Mus musculus] (Tsuboi, A. et al.	Odorant receptor MOR83 [Mus musculus] (Tsubol, A. et al.		nsculus]	Olfactory receptor OR93Gib [Hylobates lar] (Rouquier, S.	
Probability Score	7.00E-91	4.00E-73	5.70E-95	2.30E-82		1.00E-141	1.00E-107	1.60E-90	3.90E-135		2.10E-104	2.90E-84		2.10E-104	3.60E-100	4.60E-84		9.70E-139	4.70E-75	
GenBank ID NO:	g12745520	g683747	g1256389	g2370145		g11692559	g12054409	g2808658	g1256389		g6178008	q3831598)	g6090787	g6178008	g6178006		g1419016	g3746448	
Incyte Polypeptide	7475208CD1		7475101CD1	7475152CD1		7475164CD1	7475170CD1	7475197CD1	7475210CD1		7475221CD1	7475244CD1		7475293CD1	7475297CD1	7475193CD1		7475213CD1	7475272CD1	
Polypeptide SEQ ID NO:		ì	2	3		4	5	9	7		8	.6	1	10	11	12		13	14	

GenBank Homolog	Odorant receptor MOR18 [Mus musculus] (Tsuboi, A. et al.	Olfactory receptor F6 [Mus musculus] (Krautwurst, D. et al. (1998) Cell 95:917-926)	Olfactory receptor [Gorilla gorilla] (Rouquier, S. et al. (2000) Proc. Natl. Acad. Sci. USA 97:2870-2874)	CfOLF2 [Canis familiaris] (Issel-Tarver, L. and J. Rine (1996) Proc. Natl. Acad. Sci. USA 93:10879-10902)	Odorant receptor S19 [Mus musculus]	HsOLF1 [Homo sapiens]	HsOLF1 [Homo sapiens]	Olfactory receptor S83 [Mus musculus]	Olfactory receptor F6 [Mus musculus] (Krautwurst, D. et al. (1908) Call 95.917-926)	מדי (בטעס) כפור ספיטידי ספיס
Probability Score	4.60E-138	2.70E-85	1.20E-109	4.10E-82	1.40E-88	9.30E-92	2.50E-82	1.00E-126	4.00E-100	
GenBank ID NO:	g6178008	g3983392	g7211257	g1314663	g6532001	g1336041	g1336041	g12704541	g3983392	
Incyte Polypeptide	7475200CD1	7475121CD1	7475165CD1	7475273CD1	7476077CD1	7476113CD1	7476117CD1	7476079CD1	7476112CD1	
Polypeptide SEQ ID NO:	15	16	17	18	19	20	21	22	23	

-				1 auto 3		
•	Incyte	Amino	Potential	Potential	w	Analytical
ا بح	Polypeptide ID	Acid Residues	Phosphorylation Sites	Glycosylation Sites	Domains and Motits	Methods and Databases
2	7475208CD1	855	S203 S217 S242 S308 S312 S477	N283 N411	G-PROTEIN COUPLED RECEPTORS FAMILY 3 DM00837 I59362 1-893: N411-E841	BLAST-DOMO
			S 562	N432 N475 N85	G-protein coupled receptor	BLIMPS-
			S74			BLOCKS
			T480		Metabotropic glutamate receptor	BLIMPS-
					signature PR00248: K32-G44,	PRINTS
				•		
					L202-Q221, Q221-V237, V237-F254,	
					Transmembrane domain:	HMMER
					L581-F601, L617-F635, A692-L711	
					G-protein coupled receptors family 3 signature 2: C528-C552	MOTIFS
	7475101CD1	330	T25 S84 T285 S308 S324	N22 N82	Transmembrane domains: P42-L64; I109-M135; L214-F233	HMMER
					7 transmembrane receptor (rhodopsin family) domain: G58-Y307	HMMER-PFAM
						BLIMPS-
					signature BL00237:	BLOCKS
					17664-Y	
					٠١	PROFILESCAN
					Olfactory receptor signature PR00245: M76-K97; F194-D208; F255-G270; A291-L302; S308-F322	BLIMPS- PRINTS
					ים מיסבי פאויו	BT.TWDG_
					PR00237:	PRINTS
					RECEPTOR OLFACTORY RECEPTORLIKE	BLAST-
				•	EIN MULT	
					G-PROTEIN COUPLED RECEPTORS DM00013 P23266 17-306: L34-L321	BLAST-DOMO
					G-protein coupled receptors motif:	MOTIFS
Į					LL2/-I143	

Analytical Methods and Databases	HMMER	HMMER-PFAM	BLIMPS-	BLUCKS	PROFILESCAN	BLIMPS-	CINITA	BLIMPS-	PRINTS		BLAST-	Frodom		BLAST-DOMO	MOTIFS	HMMER	HMMER-PFAM			BLIMPS-	BLOCKS	PROFILESCAN
Signature Sequences, Domains and Motifs	Signal peptide: M1-S21	7 transmembrane receptor (rhodopsin family) domain: G41-Y289	coupled	signature BL00237: K90-P129; V207-Y218; T281-K297	coupled rec	H	PKUUZ45: M59-K8U; F1//-5191; F238-G253: A273-L284; S290-I304	like GPCR su	signature PR00237:	P26-H50; M59-K80; F104-1120; A199-L222; R271-K297	RECEPTOR OLFACTORY RECEPTORLIKE	GPROTEIN COUPLED TRANSMEMBRANE GLYCOPROTEIN MULTIGENE FAMILY	PD000921: L166-L245	G-PROTEIN COUPLED RECEPTORS DM00013 P23266 17-306: L17-1304	pto	Transmembrane domains:	7 transmembrane receptor (rhodobsin	į L	G104-1265; S338-Y353	G-protein coupled receptors	signature BL00237: N153-P192; I345-K361	G-protein coupled receptors signature: Y165-S213
Potential Glycosylation Sites	N5 N276																					
Potential Phosphorylation Sites	367 8	126/ S18 S8/ S290 S315 T318														T368 T44 S130	SIDO TI/9 T329	S200 T223 S354				4
Amino Acid Residues	324															374						
Incyte Polypeptide TD	7475152CD1															7475164CD1						
SEQ ID	3															4						

Analytical Methods and Databases	BLIMPS- PRINTS		BLIMPS- PRINTS		BLAST-		BLAST-DOMO	HMMER	HMMER-PFAM	BLIMPS-		BLIMPS- PRINTS		BLAST-	FRODOM	BLAST-DOMO
Signature Sequences, Domains and Motifs	Olfactory receptor signature PR00245:	V122-K143; Y240-S254; F301-G316; S337-1348: S354-T368	10 1	219macarc 2007 1899-113; V122-K13; F167-I189; 1.062-F285; K335-K361	RECEPTOR OLFACTORY RECEPTORLIKE	GERUIEIN COUFLED INANDIEMENTARIONE GLYCOPROTEIN MULTIGENE FAMILY	25	1 - 0	7 transmembrane receptor (rhodopsin family) domain: G41-Y290	coupled	Signature Buovas/: K90-P129; L207-Y218; T282-K298	receptor si	M59-Q80; F177-D191; F238-G253;	OLFACTORY RECEPTOR RECEPTORLIKE		PD149621: T246-7309 G-PROTEIN COUPLED RECEPTORS DM00013 P23275 17-306: S18-L305
Potential Glycosylation Sites			1					N5 N42 N65								
Potential Phosphorylation								S49 S67 T193								
Amino Acid	Vestades	*						312								
Incyte Polypeptide	71							7475170CD1								
SEQ	1NO:						1 1	S							,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	

Table 3 (cont.)

Analytical Methods and Databases	SPSCAN HMMER	IIMMER-PFAM	BLIMPS- BLOCKS	BLIMPS-		BLAST- PRODOM	BLAST-DOMO		HMMER	HMMER-PFAM	BLIMPS-	BLOCKS	PROFILESCAN	BLIMPS-	FRINIS		BLIMPS-	PRINTS	
Signature Sequences, Domains and Motifs	Signal peptide: M1-G54 Transmembrane domains: L43-I59; V211-F229	7 transmembrane receptor (rhodopsin family) domain: G54-Y303	ed 37:	Olfactory receptor signature PR00245:	M72-K93; F190-D204; F251-G266; G287-I298; S304-I318	RECEPTOR OLFACTORY RECEPTORLIKE GPROTEIN COUPLED TRANSMEMBRANE GLYCOPROTEIN MULTIGENE FAMILY	PTO	DM00013 P23266 17-306: K32-I318	Transmembrane domains: I28-I44; M195-T214	7 transmembrane receptor (rhodopsin family) domain: G39-Y288		signature BL00237; H88-P127; L205-Y216; T280-K296	G-protein coupled receptors signature: Y100-L145	Olfactory receptor signature	FX0243: M57-K78; F175-D189; F236-G251;	A272-L283; S289-F303	like GPCR		M3/-K/8; F102-1124; V138-F159; V197-V220; A235-C259; I270-K296
Potential Glycosylation Sites	N18 N78 N144	J						- 1	N3 N63										
Potential Phosphorylation Sites	S323 T21 S80 S201 T278 T283 S304							إ	S6 S65 S186 S289 S304										
Amino Acid Residues	325							,,,	311										
Incyte Polypeptide ID	7475197CD1							1,010,000	/4/5ZIOCDI						•				
SEQ ID NO:	9			•	***			ſ	`										

Analytical Methods and Databases	BLAST- PRODOM	BLAST-DOMO	MOTIFS	HMMER	HMMER-PFAM	BLIMPS- BLOCKS	PROFILESCAN	BLIMPS- PRINTS		BLIMPS-	FALMIS	BLAST- PRODOM		BLAST-DOMO	MOTIFS
Signature Sequences, Domains and Motifs	RECEPTOR OLFACTORY PROTEIN RECEPTORLIKE GPROTEIN COUPLED TRANSMEMBRANE GLYCOPROTEIN MULTIGENE FAMILY PD000921:	G-PROTEIN COUPLED RECEPTORS DM00013 P23266 17-306:	G-protein coupled receptors motif: 1.108-1124	Transmembrane domain: V54-V75	7 transmembrane receptor (rhodopsin family) domain: G69-Y315	ed 37:	Ario Fig., 2007 and Coproces Coproces 8130-8175	rec	M87-K108; F205-N219; F265-V280; M299-L310: T316-W330	like GPCR s	signature PR0023/: V54-M/8; M87-K108; D132-I154; V168-L189; M277-1250: A264-R288; K297-K323	RECEPTOR OLFACTORY RECEPTORLIKE GPROTEIN COUPLED TRANSMEMBRANE	GLYCOPROTEIN MULTIGENE FAMILY PD000921: 1,194-V272	2	
Potential Glycosylation			,	M26 M290	000										
Potential Phosphorylation	Salta				S115 S252 T316	T C C C									
Amino Acid	Kesidues				344		,								
Incyte Polypeptide	Qī			, , , , ,	7475221CD1										
SEQ	NO:				ω					•					

Table 3 (cont.)

Analytical Methods and Databases	HMMER	HMMER-PFAM	BLIMPS-	BLOCKS	PROFILESCAN	BLIMPS-	PRINTS	BLAST-		BLAST-DOMO	MOTIFS	HMMER	HMMER-PFAM	BLIMPS- BLOCKS	PROFILESCAN	BLIMPS- PRINTS	BLAST- PRODOM
Signature Sequences, Domains and Motifs	Transmembrane domains: F29-149; 193-M119; L199-T225	7 transmembrane receptor (rhodopsin family) domain: G42-Y291	G-protein coupled receptors	BL00237: I283-N29	G-protein coupled receptors signature: F104-G153	Olfactory receptor signature	PR00245: M60-K81; F178-D192; F239-G254; A275-L286; S292-V306	RECEPTOR OLFACTORY RECEPTORLIKE		O.	epto	Transmembrane domains: L30-146; V198-1216	7 transmembrane receptor (rhodopsin family) domain: G41-Y290	G-profein coupled receptors signature BL00237: 090-P129; I207-Y218; I282-K298		Olfactory receptor signature PR00245: M59-K80; F177-D191; L238-G253: A274-L285; S291-F305	RECEPTOR OLFACTORY RECEPTORLIKE GPROTEIN COUPLED TRANSMEMBRANE GLYCOPROTEIN MULTIGENE FAMILY PD000921: L166-L245
Potential Glycosylation Sites	9N								;			N5					
Potential Phosphorylation Sites	S68 S168 S189 S3 T79 S138	S196 S233 S292										S8 T108 S188 S193 S268 S230	\$291				
Amino Acid Residues	313											313					
Incyte Polypeptide ID	7475244CD1											7475293CD1					
SEQ LD NO:	6											10				-	

Analytical Methods and Databases	BLAST-DOMO	MOTIFS	SPSCAN	HMMER	HMMER-PFAM	BLIMPS-	BLOCKS	PROFILESCAN	BLIMPS-	PRINTS	BI,IMPS-	PRINTS		BLAST-	PRODOM		BLAST-DOMO	MOTIFS	HMMER	HMMER-PFAM	BLIMPS- BLOCKS
Signature Sequences, Domains and Motifs	G-PROTEIN COUPLED RECEPTORS DM00013 P30953 18-306: P18-N306	G-protein coupled receptors motif: L110-1126	Signal peptide: M1-R54	Transmembrane domains: V28-V44; M57-A76; M204-L220	7 transmembrane receptor (rhodopsin family) domain: E39-Y285	G-protein coupled receptors	signature BL00237: T88-P127; T277-K293	G-protein coupled receptors signature: F100-G144	ı H	M57-K78;	Rhodonsin-like GPCR superfamily	signature PR00237: 124-148;	M5/-K/8; E102-L1Z4; V138-L159; V197-L220; A234-R258; K267-K293	RECEPTOR OLFACTORY RECEPTORLIKE	COUPLED TRANSM	GLYCOPROTEIN MULTIGENE FAMILY PD000921: 1164-L242	200	pto	Transmembrane domains: V26-145; I200-A219	7 transmembrane receptor (rhodopsin family) domain: G41-Y289	in coupled ce BL00237: 9; F281-K29
Potential Glycosylation Sites			N6			•					•								NS		
Potential Phosphorylation Sites			365	22															S229 T77 T192 S148 T235 T290		
Amino Acid Residues			309																313		
Incyte Polypeptide ID			7475297CD1																7475193CD1		
SEQ ID NO:	10		11																12		

Table 3 (cont.)

Analytical Methods and Databases	BLIMPS- PRINTS	BLIMPS- PRINTS	BLAST- PRODOM	BLAST-DOMO	HMMER	HMMER-PFAM	BLIMPS-	BLOCKS	PROFILESCAN	BLIMPS-	PRINTS	BLAST-	PRODOM	BLAST-DOMO
Signature Sequences, Domains and Motifs	Olfactory receptor signature PRO0245: M59-E80; Y177-N191; M239-G254; V273-R284; T290-V304	Rhodopsin-like GPCR superfamily signature PR00237: V26-S50; M59-E80; L104-I126; K271-K297	OLFACTORY RECEPTOR RECEPTORLIKE GPROTEIN COUPLED TRANSMEMBRANE GLYCOPROTEIN MULTIGENE FAMILY PD194621: T247-V304	G-PROTEIN COUPLED RECEPTORS DM00013 S29710 15-301: L17-L303	Transmembrane domains: L27-C50; I196-L219	7 transmembrane receptor (rhodopsin family) domain: A41-Y289	G-protein coupled receptors	signature BL00237: Q90-P129; I206-Y217; T281-Q297	G-protein coupled receptors signature: F102-G147	Olfactory receptor signature	PR00245: M59-R80; F176-D190; F237-G252; L273-L284; S290-L304	RECEPTOR OLFACTORY RECEPTORLIKE	GPROTEIN COUPLED TRANSMEMBRANE	G-PROTEIN COUPLED RECEPTORS DM00013 P30954 29-316; S18-L300
Potential Glycosylation Sites					NS						2			
Potential Phosphorylation Sites					T236 T171 S187 T192 S265 S309	S290								
Amino Acid Residues					342									
Incyte Polypeptide ID					7475213CD1									
SEQ ID NO:	12				13									

Table 3 (cont.)

Analytical Methods and	SPSCAN	HMMER	HMMER-PFAM	BLIMPS-	BLOCKS	PROFILESCAN	BLIMPS- PRINTS	BLIMPS- PRINTS		BLAST-		BLAST-DOMO	MOTIFS	SPSCAN	HMMER	HMMER-PFAM	BLIMPS- BLOCKS
Signature Sequences, Domains and Motifs	Signal peptide: M1-G41	Transmembrane domains: F28-L48; F202-M226	7 transmembrane receptor (rhodopsin family) domain: G41-Y289		signature BL00237: A90-P129; I281-K297	G-protein coupled receptors signature: F102-A146	Olfactory receptor signature PR00245: M59-Q80; I177-E191; F237-G252; V273-L284; S290-L304	Rhodopsin-like GPCR superfamily signature PR00237:	P26-L50; M59-Q80; F104-V126; I199-I222; R271-K297	OLFACTORY RECEPTOR RECEPTORLIKE GPROTEIN COUPLED TRANSMEMBRANE	GLYCOPROTEIN MULTIGENE FAMILY PD149621: T245-R306	G-PROTEIN COUPLED RECEPTORS DM00013 S51356 18-307: T18-1300	G-protein coupled receptors motif: I110-V126	signal cleavage: M1-A54	transmembrane domain: V27-L53, L196-L223	7 transmembrane receptor (rhodopsin family) 7tm 1: G39-Y285	G-protein coupled receptor BL00237A: R88-P127, BL00237D: T277-K203
Potential Glycosylation Sites	NS													N130 N6 N63	d	•	
Potential Phosphorylation Sites	S172 T188 S267	8290												S222 S65 S83			
Amino Acid Residues	310	25.												302			
Incyte Polypeptide ID	7475272CD1		•								•		7475200051	T000001#1			
SEQ ID NO:	14												ر ب	7			

Analytical Methods and Databases	BLIMPS- PRINTS	BLIMPS-PRINTS	PROFILESCAN	MOTIFS	BLAST-DOMO	BLAST- PRODOM	BLAST-DOMO	BLAST- PRODOM	BLIMPS- BLOCKS
Signature Sequences, Domains and Motifs	Olfactory receptor signature PR00245A: V57-K78, PR00245B: F175-N189, PR00245C: L235-V250, PR00245D: M269-L280,		n coupled rece	G_Protein_Receptor: V108-I124	G-PROTEIN COUPLED RECEPTORS DM00013 S29710 15-301: L15-F300, DM00013 P23266 17-306: L15-L299, DM00013 P37067 17-306: L15-L299, DM00013 P23270 18-311: V24-K298	RECEPTOR OLFACTORY RECEPTOR LIKE G-PROTEIN COUPLED TRANSMEMBRANE GLYCOPROTEIN MULTIGENE FAMILY PD000921: L164-L243	G-PROTEIN COUPLED RECEPTORS: DM00013 P30954 29-316: S18-I303	OLFACTORY RECEPTOR-LIKE G-PROTEIN COUPLED TRANSMEMBRANE GLYCOPROTEIN, MULTIGENE FAMILY: PD000921:	G-protein coupled receptor: BL00237A: H91-P130; BL00237C: T284-K300
Potential Glycosylation							N5, N192		
Potential Phosphorylation					,		S68, T79, S138,		
Amino Acid							316		
Incyte Polypeptide							7475121CD1		
SEQ ID	15						16		

Analytical Methods and Databases	BLIMPS- PRINTS	BLIMPS- PRINTS	PROFILESCAN	HMMER	HMMER-PFAM	BLAST-DOMO	BLAST- PRODOM		BLIMPS- BLOCKS	BLIMPS-	PRINTS		PROFILESCAN	HMMER	HMMER-PFAM	MOTTES
Signature Sequences, Domains and Motifs	Olfactory receptor signature: PR00245A: M60-R81; PR00245B: F178- N192; PR00245C: F240-S255; PR00245D: M276-L287; PR00245E: S293-F307	EDG1 orphan receptor signature: PR00642D: T49-F63	G-protein coupled receptors signature: F103-T149	Transmembrane domain: 127-L45, M102-Y121, V204-V224	7-Transmembrane receptor (rhodopsin family; 7tm_1): G42-F292	G-PROTEIN COUPLED RECEPTORS: DM00013 P23265 17-306: D77-L363	OLFACTORY RECEPTOR-LIKE G-PROTEIN COUPLED TRANSMEMBRANE GLYCOPROTEIN	MULTIGENE FAMILY PD149621: V305-R365	G-protein coupled receptor BL00237D: T340-K356: K148-P187	١.	M117-K138;	F235-N249; PR00245C: F296-G311; PR00245D: A332-L343: PR00245F.	G-protein coupled receptors signature: Y160-A205	Transmembrane domain: L88-I104; M117-L140; M194-F213; I255-Y276	7-transmembrane receptor (rhodopsin family; 7tm 1): G99-Y348	
Potential Glycosylation Sites						N123 N63										
Potential Phosphorylation Sites						S125 S288 S349 S364 S57 T225	T35									
Amino Acid Residues						370			=							
Incyte Polypeptide ID						7475165CD1						-				
NO:	9					17										

Analytical Methods and Databases	BLAST-DOMO	BLAST- PRODOM	BLIMPS- BLOCKS	BLIMPS- PRINTS		BLIMPS- PRINTS	HMMER	HMMER-PFAM	MOTIFS	PROFILESCAN	HMMER	HMMER-PFAM	BLIMPS- BLOCKS		PROFILESCAN	BLIMPS-	
Signature Sequences, Domains and Motifs	G-PROTEIN COUPLED RECEPTORS: DM00013 S51356 18-307:T16-M299	OLFACTORY RECEPTOR-LIKE G-PROTEIN COUPLED TRANSMEMBRANE GLYCOPROTEIN, MULTIGENE FAMILY: PD149621:T244-K305	G-protein coupled receptor: BL00237A: K88-P127; BL00237D: I280- K296	Olfactory receptor signature: PR00245A: M57-N78; PR00245B: V175-	D189; PR00245C: F236-G251; PR00245D: V272-L283; PR00245E: S289-F303	EDG1 orphan receptor signature: PR00642D: V46-F60	Transmembrane (transmem_domain):T23-V46; I90- M116; L195-L221	7-transmembrane receptor motif (rhodopsin family; 7tm_1): G39- V138; I209-Y288	G-Protein Receptor: T108-I124	G-Protein Coupled Receptor Signature: F100-1143	Transmembrane domain: L27-E54	7 transmembrane receptor (rhodopsin family) domain: G43-Y294	G-protein coupled receptors	Signature Brooks); G92-P131; E234-S260; P286-R302		Rhodopsin-like GPCR superfamily	M28-A52; V61-K82; I106-I128; A239-T263; I276-R302
Potential Glycosylation Sites	N3, N144										N44 N5						
Potential Phosphorylation Sites	S65, T84, S135,	S289, S298,										T263 T7					
Amino Acid Residues	318										321						
Incyte Polypeptide TD	7475273CD1	·									7476077CD1						
SEQ ID	18										19				· ·		

Analytical Methods and Databases	BLIMPS- PRINTS	BLAST- PRODOM	BLAST-DOMO	MO'LIFS	HMMER	HMMER-PFAM	BLIMPS-	BLOCKS	PROFILESCAN	BLIMPS-	PRINTS		BLAST- PRODOM	BLAST-DOMO		MOTIFS	HMMER	HMMER-PFAM	BLIMPS-	BLOCKS
Signature Sequences, Domains and Motifs	Olfactory receptor signature PR00245: V61-K82; T179-D193; L240-T255	PUTATIVE GPROTEIN COUPLED RECEPTOR RAIC PD170483: V249-A319	TEIN COUPLED	G-protein coupled receptors motif: M112-1128	Transmembrane domains: F29-V48; F102-D122	7 transmembrane receptor (rhodopsin family)domain: G42-Y291	G-protein coupled receptors	signature BL00237: R91-P130; I283-K299	G-protein coupled receptors signature: F103-V147	receptor	M60-K81; F17	F239-6234; A2/3-1200; 3292-1300	RECEPTOR OLFACTORY RECEPTORLIKE GPROTEIN COUPLED TRANSMEMBRANE GLYCOPROTEIN MULTIGENE FAMILY DO00021. 1167-1246	PTO	DM00013 S51356 18-307: P22-K299	G-protein coupled receptors motif: T111-I127	Transmembrane domains: L23-V42; F104-M120; P131-W153; L214-A233	orane recept		signature BL00237: R92-P131; I284-K300
Potential Glycosylation Sites				,	N136 N37 N7												N7			
Potential Phosphorylation Sites					S138 S189 S233 S292 S68 T205	Т3											S139 S190 S293 S69 T206 T227	£		
Amino Acid Residues					313												328			
Incyte Polypeptide ID					7476113CD1												7476117CD1			
SEQ ID NO:	19				20												21			

Analytical Methods and Databases	BLIMPS- PRINTS	BLAST- PRODOM		BLAST-DOMO	SPSCAN	HMMER		HMMER-PFAM	BLIMPS-	BLOCKS		PROFILESCAN	BLIMPS-	PRINTS		BLIMPS-	PRINTS		BLAST-DOMO		MOTIFS	
Signature Sequences, Domains and Motifs	Olfactory receptor signature PR00245: M61-M82; F179-D193; F240-G255; A276-L287; S293-I307	RECEPTOR OLFACTORY RECEPTORLIKE GPROTEIN COUPLED TRANSMEMBRANE	GLYCOPROTEIN MULTIGENE FAMILY PD000921: L168-L247	G-PROTEIN COUPLED RECEPTORS DM00013 S51356 18-307: E24-1303	Signal peptide: M1-A49	Transmembrane domains:	L40-15/; L/5-W95; P142-V165; L211-1230; H253-T273	7 transmembrane receptor (rhodopsin			K99-P138; P292-R308	G-protein coupled receptors signature: Y111-L159	Olfactory receptor signature	1	M68-K89; C186-D200; L247-T262	Melanocortin receptor family	signature PR00534:	Q60-L72; I135-T146; T304-A317	G-PROTEIN COUPLED RECEPTORS	DM00013 G45774 [18-309: P27-L315	G-protein coupled receptors motif:	M119-I135
Potential Glycosylation Sites					N12			٠														
Potential Phosphorylation Sites					S102 S13 S179	S7		•														
Amino Acid Residues					324																	
Incyte . Polypeptide ID					7476079CD1				-													
SEQ ID NO:	27				22						_											

Table 3 (cont.)

			-	-		-				_	_							
Analytical Methods and	Databases	HMMER	HMMER-PFAM	BLIMPS-	BLOCKS	PROFILESCAN	BLIMPS-	PRINTS		BLIMPS-	PRINTS		BLAST-	PRODOM				BLAST-DOMO
Signature Sequences, Domains and Motifs		Transmembrane domains: M26-L44; L61-178; A150-F168; L202-1229	7 transmembrane receptor (rhodopsin family) domain: G41-F291	G-protein coupled receptors	signature BL00237; R90-P129; T283-K299	G-protein coupled receptors signature: F102-C147	Olfactory receptor signature	PR00245: M59-R80; F177-D191;	F239-G254; M275-L286; S292-C306	Melanocortin receptor family	signature PR00534:	S51-L63; I126-S137; V200-F212	RECEPTOR OLFACTORY PROTEIN	RECEPTORLIKE GPROTEIN COUPLED	TRANSMEMBRANE GLYCOPROTEIN	MULTIGENE FAMILY PD000921:	L166-L246	G-PROTEIN COUPLED RECEPTORS DM00013 P30954 29-316.
Potential Glycosylation	SILES	C N											-				1	
Potential Phosphorylation	C137 C202 CE1	S67 S8 T142 T88																
Amino Acid Residues	315) 								•								
Incyte Polypeptide ID	7476112CD1																	
SEQ ID NO:	23																	

Polynucleotide SEQ ID NO:	Incyte Polynucleotide ID	Sequence Length	Selected Fragments	Sequence Fragments	5, Position	3' Position
24	7475208CB1	2739	1276-1513,	7669623H1 (NOSEDICO2)	2123	2739
			1-1200,	GNN.g7523967_000013_002	1	2602
			1622-2183,			
			2299-2335,			
			2463-2739			
25	7475101CB1	993	252-993, 1-149	GNN.g7329615_000006_002	1	993
26	7475152CB1	066	1-27,	GNN.97329615_000004_002	1	066
			919-990, 777-819			
27	7475164CB1	1125	470-1011,	GNN. g3738097_004	ri	1125
			1084-1125, 58-396			
3.8	7476170031	020	1 20	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		020
0 7	/4/31/0CB1	959	1-30, 20-939	GNN. G645399_00016_004	7	439
29	7475197CB1	978	1-872,	GNN.g7024166_000032_004	1	878
			921-978			
30	7475210CB1	936	1-112,	GNN.g7329615_000007_002	H	936
			195-936			
31	7475221CB1	1035	1-89,	GNN.g7321527_000008_004	₽	1035
			1002-1035,		_	
			760-910			
32	7475244CB1	942	1-339,	GNN.g6806865_000020_002	г	942
			396-942			
33	7475293CB1	942	1-98, 190-	GNN.g7329615_000013_002	1	942
			826, 904-			
			942			
34	7475297CB1	930	1-354,	GNN.g6806865_000016_002	1	930
			390-930			
35	7475193CB1	942	1-230,	GNN.g7321521_000022_002	233	942
			479-942	GBI:g7321521_000022.rawcomp	-	360
	CONTRACTOR OF THE PERSON NAMED IN COLUMN 1	The state of the s	district of the last of the la			

ion												
3, Position	1029	933	948	951	1113	934	957	996	975	987	975	0,0
5, Position	1	1	1	T	н	718	1	1	1		-	
Sequence Fragments	GNN.97134787_000015_002	GNN.g7024166_000035_002	GNN.g7143464_000027_004	GNN.g6910525_000003_004	GNN.g4092817_004	g2525800	GNN.g6984471_000006_002	GNN.g7658497_000015_002	GNN.g7705148_000007_002	GNN.g7705148_000018_004	GNN.g7658497_000018_002	
Selected Fragments	1-297, 591-1029	1-835, 893-933	1-381, 415-948	386-951, 1-349	1-210,	418-717, 1068-1113	279-298, 416-635, 876-957	1-333,	439-852, 1-378, 930-975	1-354, 885-987, 411-822	1-190, 426-975	
Sequence Length	1029	933	948	951	1113		957	996	975	987	975	0,0
Incyte Polynucleotide ID	7475213CB1	7475272CB1	7475200CB1	7475121CB1	7475165CB1		7475273CB1	7476077CB1	7476113CB1	7476117CB1	7476079CB1	1100117
Polynucleotide SEQ ID NO:	36	37	38	39	40		41	42	43	44	45	

	1	
Representative	Library	75208CB1 NOSEDIC02
Incyte	Project ID	7475208CB1
Polynucleotide	SEO ID NO:	24

Library	Vector	
NOSEDICO2 P	PSPORT1	This large size fractionated library was constructed using RNA isolated from nasal polyp
		tissue.

Program	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Applied Biosystems, Foster City, CA.	
ABI/PARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25:3389-3402.	ESTs: Probability value= 1.0E-8 or less Full Length sequences: Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises as least five functions: fasta, tfasta, fastx, tfastx, and ssearch.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad Sci. USA 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183:63-98; and Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489.	ESTs: fasta E valúe=1.06E-6 Assembled ESTs: fasta Identity= 95% or greater and Match length=200 bases or greater; fastx E value=1.0E-8 or less Full Length sequences: fastx score=100 or greater
BLIMPS	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S. and J.G. Henikoff (1991) Nucleic Acids Res. 19:6565-6572; Henikoff, J.G. and S. Henikoff (1996) Methods Enzymol. 266:88-105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.	Probability value= 1.0E-3 or less
HMMER	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.	Krogh, A. et al. (1994) J. Mol. Biol. 235:1501-1531; Sonnhammer, E.L.L. et al. (1988) Nucleic Acids Res. 26:320-322; Durbin, R. et al. (1998) Our World View, in a Nutshell, Cambridge Univ. Press, pp. 1-350.	PFAM hits: Probability value=1.0E-3 or less Signal peptide hits: Score=0 or greater

	Table / (Colif.)	(cont.)	
Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.	Normalized quality scorez GCG-specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
Phrap	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M.S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Scattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies.	Gordon, D. et al. (1998) Genome Res. 8:195-202.	12.
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audic (1997) CABIOS 12:431-439.	Score=3.5 or greater
TMAP	A program that uses weight matrices to delineate transmembrane segments on protein sequences and determine orientation.	Persson, B. and P. Argos (1994) J. Mol. Biol. 237:182-192; Persson, B. and P. Argos (1996) Protein Sci. 5:363-371.	
TMHMMER	A program that uses a hidden Markov model (HMM) to delineate transmembrane segments on protein sequences and determine orientation.	Sonnhammer, E.L. et al. (1998) Proc. Sixth Intl. Conf. on Intelligent Systems for Mol. Biol., Glasgow et al., eds., The Am. Assoc. for Artificial Intelligence Press, Menlo Park, CA, pp. 175-182.	l. cial 32.
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	5:217-221; 9, page WI.

Table 8

				Poly	Polynucleotide SEQ ID NO:	otide	SEQ 1	D NO				
	25	27	28	30	32	33	36	37	38	43	44	46
Tissues	6.7	1	2						+	+	!	+
Breast, Fat, Skin	+	+	+	+	'	+	+	+	+	+		Ī
Muscle, Bone, Synovium,	+	+	+	+	1	ì	1	+	+	+	ı	l
Connective tissue							1					
Pancreas, Liver, Gallbladder	+	+	+	+	-	-	+	1	+	f ·	1	
Brain: Amygdala, Thalamus, Hippocampus,	+	+	+	+	+	1	1	١.	+.	+.	1	l
Entorhinal cortex, Archaecortex										1		
Brain: Striatum, Caudate nucleus,	+	ı	1	1	1	1	1	1	+	+	1	1
Putamen, Dentate nucleus,										_		
Globus pallidus, Substantia innominata,												
Ralphe magnus										-		1
Kidney, Fetal colon, Small intestine,	+	+	+	ı	ı	ı	ŀ	+	+	+		
Ileum, Esophagus												
Fetal heart, Aorta, Coronary artery	-	ı	-	,	-	'	+	1	+	+	1	
Fetal lung, Adult lung	+	1	+	-	+	-	+	+	+	+	+	1
Placenta, Prostate, Uterus	1	1	+	+	1	1	+	+	+	+	1	1
Olfactory bulb	+	ı	+	1	1	_	+		+	+	-	,
7-1003440	THE REAL PROPERTY.											

WO 01/90359

What is claimed is:

15

25

1. An isolated polypeptide selected from the group consisting of:

- a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-23,
 - b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-23,
 - c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, and
- d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23.
 - 2. An isolated polypeptide of claim 1 selected from the group consisting of SEQ ID NO:1-23.
 - 3. An isolated polynucleotide encoding a polypeptide of claim 1.
 - 4. An isolated polynucleotide encoding a polypeptide of claim 2.
- 5. An isolated polynucleotide of claim 4 selected from the group consisting of SEQ ID NO:24-46.
 - 6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
 - 7. A cell transformed with a recombinant polynucleotide of claim 6.
 - 8. A transgenic organism comprising a recombinant polynucleotide of claim 6.
- 9. A method for producing a polypeptide of claim 1, the method comprising:
 - a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and
- b) recovering the polypeptide so expressed.

- 10. An isolated antibody which specifically binds to a polypeptide of claim 1.
- 11. An isolated polynucleotide selected from the group consisting of:
- a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting
 of SEQ ID NO:24-46,
 - b) a naturally occurring polynucleotide comprising a polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:24-46,
 - c) a polynucleotide complementary to a polynucleotide of a),
 - d) a polynucleotide complementary to a polynucleotide of b), and
 - e) an RNA equivalent of a)-d).
 - 12. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 11.
- 13. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11, the method comprising:
 - a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and
 - b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.
 - 14. A method of claim 13, wherein the probe comprises at least 60 contiguous nucleotides.
 - 15. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11, the method comprising:
 - a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and
- b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
 - 16. A composition comprising a polypeptide of claim 1 and a pharmaceutically acceptable excipient.

10

20

25

17. A composition of claim 16, wherein the polypeptide has an amino acid sequence selected from the group consisting of SEQ ID NO:1-23.

- 18. A method for treating a disease or condition associated with decreased expression of functional GCREC, comprising administering to a patient in need of such treatment the composition of claim 16.
 - 19. A method for screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:
 - a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
 - b) detecting agonist activity in the sample.

10

15

30

- 20. A composition comprising an agonist compound identified by a method of claim 19 and a pharmaceutically acceptable excipient.
- 21. A method for treating a disease or condition associated with decreased expression of functional GCREC, comprising administering to a patient in need of such treatment a composition of claim 20.
- 22. A method for screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:
 - a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
 - b) detecting antagonist activity in the sample.
- 23. A composition comprising an antagonist compound identified by a method of claim 22 and a pharmaceutically acceptable excipient.
 - 24. A method for treating a disease or condition associated with overexpression of functional GCREC, comprising administering to a patient in need of such treatment a composition of claim 23.
 - 25. A method of screening for a compound that specifically binds to the polypeptide of claim 1, said method comprising the steps of:
 - a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and
- b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a

compound that specifically binds to the polypeptide of claim 1.

5

30

26. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, said method comprising:

- a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1,
- b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and
- c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.
- 27. A method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method comprising:
 - a) exposing a sample comprising the target polynucleotide to a compound, under conditions suitable for the expression of the target polynucleotide,
 - b) detecting altered expression of the target polynucleotide, and
- 20 c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
 - 28. A method for assessing toxicity of a test compound, said method comprising:
 - a) treating a biological sample containing nucleic acids with the test compound;
- b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 11 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 11 or fragment thereof;
 - c) quantifying the amount of hybridization complex; and
 - d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

29. A diagnostic test for a condition or disease associated with the expression of GCREC in a biological sample comprising the steps of:

- a) combining the biological sample with an antibody of claim 10, under conditions suitable for the antibody to bind the polypeptide and form an antibody:polypeptide complex; and
- b) detecting the complex, wherein the presence of the complex correlates with the presence of the polypeptide in the biological sample.
 - 30. The antibody of claim 10, wherein the antibody is:
- a) a chimeric antibody,

15

- b) a single chain antibody,
- c) a Fab fragment,
- d) a F(ab')₂ fragment, or
- e) a humanized antibody.

31. A composition comprising an antibody of claim 10 and an acceptable excipient.

- 32. A method of diagnosing a condition or disease associated with the expression of GCREC in a subject, comprising administering to said subject an effective amount of the composition of claim
 31.
 - 33. A composition of claim 31, wherein the antibody is labeled.
- 34. A method of diagnosing a condition or disease associated with the expression of GCREC in a subject, comprising administering to said subject an effective amount of the composition of claim 33.
 - 35. A method of preparing a polyclonal antibody with the specificity of the antibody of claim 10 comprising:
- a) immunizing an animal with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, or an immunogenic fragment thereof, under conditions to elicit an antibody response;
 - b) isolating antibodies from said animal; and
 - c) screening the isolated antibodies with the polypeptide, thereby identifying a polyclonal

antibody which binds specifically to a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23.

36. An antibody produced by a method of claim 35.

5

10

- 37. A composition comprising the antibody of claim 36 and a suitable carrier.
- 38. A method of making a monoclonal antibody with the specificity of the antibody of claim 10 comprising:
- a) immunizing an animal with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23, or an immunogenic fragment thereof, under conditions to elicit an antibody response;
 - b) isolating antibody producing cells from the animal;
- c) fusing the antibody producing cells with immortalized cells to form monoclonal antibodyproducing hybridoma cells;
 - d) culturing the hybridoma cells; and
 - e) isolating from the culture monoclonal antibody which binds specifically to a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23.
- 20 39. A monoclonal antibody produced by a method of claim 38.
 - 40. A composition comprising the antibody of claim 39 and a suitable carrier.
- 41. The antibody of claim 10, wherein the antibody is produced by screening a Fab expression library.
 - 42. The antibody of claim 10, wherein the antibody is produced by screening a recombinant immunoglobulin library.
- 43. A method for detecting a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23 in a sample, comprising the steps of:
 - a) incubating the antibody of claim 10 with a sample under conditions to allow specific binding of the antibody and the polypeptide; and
 - b) detecting specific binding, wherein specific binding indicates the presence of a

polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23 in the sample.

- 44. A method of purifying a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23 from a sample, the method comprising:
 - a) incubating the antibody of claim 10 with a sample under conditions to allow specific binding of the antibody and the polypeptide; and
 - b) separating the antibody from the sample and obtaining the purified polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-23.
 - 45. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:1.
 - 46. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:2.
 - 47. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:3.

10

15

20

- 48. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:4.
- 49. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:5.
- 50. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:6.
- 51. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:7.
- 25 52. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:8.
 - 53. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:9.
 - 54. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:10.
 - 55. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:11.
 - 56. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:12.

57. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:13. 58. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:14. 59. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:15. 5 60. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:16. 61. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:17. 10 62. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:18. 63. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:19. 64. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:20. 15 65. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:21. 66. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:22. 20 67. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:23. 68. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:24. 25 69. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:25. 70. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:26. 30 71. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:27.

	72.	A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID
NO:28.		

- 73. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ IDNO:29.
 - 74. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:30.
- 75. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:31.
- 76. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:32.
 - 77. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:33.
- 78. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:34.
 - 79. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:35.
- 80. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:36.

- 81. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID30 NO:37.
 - 82. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:38.

	83.	A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID
NO:39.		

- 84. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ IDNO:40.
 - 85. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:41.
- 86. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ IDNO:42.
- 87. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:43.
 - 88. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:44.
 - 89. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:45.
- 90. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ IDNO:46.

PCT/US01/16833 WO 01/90359

```
<110> INCYTE GENOMICS, INC.
      PATTERSON, Chandra
      TRIBOULEY, Catherine M.
      YAO, Monique G.
      GRIFFIN, Jennifer A.
      THORNTON, Michael
      LU, Yan
      KALLICK, Deborah A.
      GANDHI, Ameena R.
      AU-YOUNG, Janice
<120> G-PROTEIN COUPLED RECEPTORS
<130> SF-0781 PCT
<140> To Be Assigned
<141> Herewith
<150> 60/206,222; 60/207,476; 60/208,834; 60/208,861; 60/209,868
<151> 2000-05-22; 2000-05-25; 2000-06-02; 2000-06-02; 2000-06-07
<160> 46
<170> PERL Program
<210> 1
<211> 855
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475208CD1
<400> 1
Met Leu Gly Pro Ala Val Leu Gly Leu Ser Leu Trp Ala Leu Leu
                                      10 .
  7
His Pro Gly Thr Gly Ala Pro Leu Cys Leu Ser Gln Gln Leu Arg
                                      25
Met Lys Gly Asp Tyr Val Leu Gly Gly Leu Phe Pro Leu Gly Glu
                                      40
                 35
Ala Glu Glu Ala Gly Leu Arg Ser Arg Thr Arg Pro Ser Ser Pro
                                      55
                 50
Val Cys Thr Arg Phe Ser Ser Asn Gly Leu Leu Trp Ala Leu Ala
                                      70
                 65
Met Lys Met Ala Val Glu Glu Ile Asn Asn Lys Ser Asp Leu Leu
                                      85
                 80
Pro Gly Leu Arg Leu Gly Tyr Asp Leu Phe Asp Thr Cys Ser Glu
                                                          105
                                     100
                 95
Pro Val Val Ala Met Lys Pro Ser Leu Met Phe Leu Ala Lys Ala
                                                          120
                                     115
                110
Gly Ser Arg Asp Ile Ala Ala Tyr Cys Asn Tyr Thr Gln Tyr Gln
                                     130
                                                          135
                125
Pro Arg Val Leu Ala Val Ile Gly Pro His Ser Ser Glu Leu Ala
                                                          150
                                     145
                 140
Met Val Thr Gly Lys Phe Phe Ser Phe Phe Leu Met Pro Gln Val
                                                          165
                                     160
                 155
Ala Pro Pro Thr Ile Thr His Pro His Pro Ala Leu Pro Val Gly
                                                          180
                                     175
                 170
Ala Pro Val Ser Gly Asp Ala Ser Trp Pro Leu Gln Val Ser Tyr
                                                          195
                                     190
                 185
Gly Ala Ser Met Glu Leu Leu Ser Ala Arg Glu Thr Phe Pro Ser
                                                          210
                                     205
```

```
Phe Phe Arg Thr Val Pro Ser Asp Arg Val Gln Leu Thr Ala Ala
                                     220
                215
Ala Glu Leu Leu Gln Glu Phe Gly Trp Asn Trp Val Ala Ala Leu
                                     235
                230
Gly Ser Asp Asp Glu Tyr Gly Arg Gln Gly Leu Ser Ile Phe Ser
                                     250
                245
Ala Leu Ala Arg His Ala Ala Ser Ala Ser Arg Thr Arg Ala Trp
                                     265
                260
Cys Arg Cys Pro Val Gln Asp Val Leu His Gln Val Asn Gln Ser
                                     280
                275
Ser Val Gln Val Val Leu Leu Phe Ala Ser Val His Ala Ala His
                290
                                     295
Ala Leu Phe Asn Tyr Ser Ile Ser Ser Arg Leu Ser Pro Lys Val
                305
                                     310
Trp Val Ala Ser Glu Ala Trp Leu Thr Ser Asp Leu Val Met Gly
                                     325
                320
Leu Pro Gly Met Ala Gln Met Gly Thr Val Leu Gly Phe Leu Gln
                                     340
                335
Arg Gly Ala Gln Leu His Glu Phe Pro Gln Tyr Val Lys Thr His
                                     355
                 350
Leu Ala Leu Ala Thr Asp Pro Ala Phe Cys Ser Ala Leu Gly Glu
                                     370
                 365
Arg Glu Gln Gly Leu Glu Glu Asp Val Val Gly Gln Arg Cys Pro
                 380
                                     385
Gln Cys Asp Cys Ile Thr Leu Gln Asn Arg Ala Gln Ala Leu His
                                     400
                 395
Asn Thr Leu Gln Cys Asn Ala Ser Gly Cys Pro Ala Gln Asp Pro
                                                          420
                                     415
                 410
Val Lys Pro Trp Gln Leu Leu Glu Asn Met Tyr Asn Leu Thr Phe
                                                          435
                                     430
                 425
His Val Gly Gly Leu Pro Leu Arg Phe Asp Ser Ser Gly Asn Val
                                     445
                 440
Asp Met Glu Tyr Asp Leu Lys Leu Trp Val Trp Gln Gly Ser Val
                                     460
                 455
Pro Arg Leu His Asp Val Gly Arg Phe Asn Gly Ser Leu Arg Thr
                                     475
                 470
Glu Arg Leu Lys Ile Arg Trp His Thr Ser Asp Asn Gln Pro Ser
                                     490
                 485
Arg Ala Arg Pro Gln Ala Cys Ala Gln Lys Pro Val Ser Arg Cys
                                     505
                 500
Ser Arg Gln Cys Gln Glu Gly Gln Val Arg Arg Val Lys Gly Phe
                 515
                                     520
His Ser Cys Cys Tyr Asp Cys Val Asp Cys Glu Ala Gly Ser Tyr
                                                          540
                                     535
                 530
Arg Gln Asn Pro Asp Asp Ile Ala Cys Thr Phe Cys Gly Gln Asp
                                      550
                 545
Glu Trp Ser Pro Glu Arg Ser Thr Arg Cys Phe Arg Arg Arg Ser
                                      565
                 560
Arg Phe Leu Ala Trp Gly Glu Pro Ala Val Leu Leu Leu Leu Leu
                                      580
                 575
Leu Leu Ser Leu Ala Leu Gly Leu Val Leu Ala Ala Leu Gly Leu
                                      595
                 590
Phe Val His His Arg Asp Ser Pro Leu Val Gln Ala Ser Gly Gly
                                      610
                 605
Pro Leu Ala Cys Phe Gly Leu Val Cys Leu Gly Leu Val Cys Leu
                                      625
                 620
Ser Val Leu Leu Phe Pro Gly Gln Pro Ser Pro Ala Arg Cys Leu
                                      640
                 635
Ala Gln Gln Pro Leu Ser His Leu Pro Leu Thr Gly Cys Leu Ser
                 650
Thr Leu Phe Leu Gln Ala Ala Glu Ile Phe Val Glu Ser Glu Leu
                                      670
                 665
Pro Leu Ser Trp Ala Asp Arg Leu Ser Gly Cys Leu Arg Gly Pro
```

```
685
                680
Trp Ala Trp Leu Val Val Leu Leu Ala Met Leu Val Glu Val Ala
                695
                                    700 ·
Leu Cys Thr Trp Tyr Leu Val Ala Phe Pro Pro Glu Val Val Thr
                710
                                    715
Gly Leu Ala His Ala Ala His Gly Gly Ala Gly Ala Leu Pro His
                                    730
                725
Thr Leu Leu Gly Gln Leu Arg Pro Ser Ala Arg His His Ala Thr
                740
                                    745
Leu Ala Phe Leu Cys Phe Thr Gly His Phe Pro Gly Ala Glu Pro
                                    760
                755
Ala Gly Pro Leu Gln Pro Cys His Val Ala Ser His Ile Cys His
                770
                                     775
Ala Gly Leu Leu His His Thr Gly Ser His Phe Val Pro Leu Leu
                                                         795
                785
                                    790
Ala Gln Cys Ala Gly Gly His Ser Gly Pro Ala Val Gln Met Gly
                                                         810
                                     805
                800
Ala Leu Leu Cys Val Leu Gly Ile Leu Ala Ala Phe His Leu
                815
                                     820
Pro Arg Cys Tyr Leu Leu Met Arg Gln Pro Gly Leu Asn Thr Pro
                830
                                    835
Glu Phe Phe Leu Gly Gly Gly Pro Gly Asp Ala Thr Arg Pro Glu
                                     850
<210> 2
<211> 330
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475101CD1
<400> 2
Met Glu Gly Phe Tyr Leu Arg Arg Ser His Glu Leu Gln Gly Met
                  5
Gly Lys Pro Gly Arg Val Asn Gln Thr Thr Val Ser Asp Phe Leu
                                      25
Leu Leu Gly Leu Ser Glu Trp Pro Glu Glu Gln Pro Leu Leu Phe
                                      40
Gly Ile Phe Leu Gly Met Tyr Leu Val Thr Met Val Gly Asn Leu
                                      55
                 50
Leu Ile Ile Leu Ala Ile Ser Ser Asp Pro His Leu His Thr Pro
                                     70
                 65
Met Tyr Phe Phe Leu Ala Asn Leu Ser Leu Thr Asp Ala Cys Phe
                                      85
Thr Ser Ala Ser Ile Pro Lys Met Leu Ala Asn Ile His Thr Gln
                                     100
                 95
Ser Gln Ile Ile Ser Tyr Ser Gly Cys Leu Ala Gln Leu Tyr Phe
                110
                                    115
Leu Leu Met Phe Gly Gly Leu Asp Asn Cys Leu Leu Ala Val Met
                                    130
                125
Ala Tyr Asp Arg Tyr Val Ala Ile Cys Gln Pro Leu His Tyr Ser
                                    145
                140
Thr Ser Met Ser Pro Gln Leu Cys Ala Leu Met Leu Gly Val Cys
                                    160
Trp Val Leu Thr Asn Cys Pro Ala Leu Met His Thr Leu Leu Leu
                                     175
                170
Thr Arg Val Ala Phe Cys Ala Gln Lys Ala Ile Pro His Phe Tyr
                                    190
                                                         195
                185
Cys Asp Pro Ser Ala Leu Leu Lys Leu Ala Cys Ser Asp Thr His
                                     205
                                                         210
```

```
WO 01/90359
Val Asn Glu Leu Met Ile Ile Thr Met Gly Leu Leu Phe Leu Thr
                                    220
                215
Val Pro Leu Leu Ile Val Phe Ser Tyr Val Arg Ile Phe Trp
                                    235
                230
Ala Val Phe Val Ile Ser Ser Pro Gly Gly Arg Trp Lys Ala Phe
                                    250
                245
Ser Thr Cys Gly Ser His Leu Thr Val Val Leu Leu Phe Tyr Gly
                                    265
                260
Ser Leu Met Gly Val Tyr Leu Leu Pro Pro Ser Thr Tyr Ser Thr
                                    280
                275
Glu Arg Glu Ser Arg Ala Ala Val Leu Tyr Met Val Ile Ile Pro
                                    295
                290
Thr Leu Asn Pro Phe Ile Tyr Ser Leu Arg Asn Arg Asp Met Lys
                                    310
                305
Glu Ala Leu Gly Lys Leu Phe Val Ser Gly Lys Thr Phe Phe Leu
                                    325
<210> 3
<211> 324
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475152CD1
<400>3
Met Gly Met Ser Asn Leu Thr Arg Leu Ser Glu Phe Ile Leu Leu
Gly Leu Ser Ser Arg Ser Glu Asp Gln Arg Pro Leu Phe Ala Leu
                                      25
                 20
Phe Leu Ile Tyr Leu Val Thr Leu Met Gly Asn Leu Leu Ile
                                      40
Ile Leu Ala Ile His Ser Asp Pro Arg Leu Gln Asn Pro Met Tyr
                  50
Phe Phe Leu Ser Ile Leu Ser Phe Ala Asp Ile Cys Tyr Thr Thr
                                      70
                  65
Val Ile Val Pro Lys Met Leu Val Asn Phe Leu Ser Glu Lys Lys
                                      85
                 80
```

```
265
                260
Arg Ile Ala Thr Ile Asn Tyr Thr Val Leu Thr Ser Val Leu Asn
                                    280
                275
Pro Phe Ile Tyr Ser Leu Arg Asn Lys Asp Met Lys Arg Gly Leu
                                    295
                290
Gln Lys Leu Ile Asn Lys Ile Lys Ser Gln Met Ser Arg Phe Ser
                                    310
                305
Thr Lys Thr Asn Lys Ile Cys Gly Pro
<210> 4
<211> 374
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475164CD1
<400> 4
Met Ala Ile Cys Asn Pro Leu Leu Tyr Asn Ile Ala Met Ser Pro
                                      10
Lys Val Cys Ser Ser His Met Leu Gly Ser Tyr Phe Trp Pro Phe
                                      25
                 20
Ser Gly Ala Met Ala His Thr Arg Cys Met Leu Lys Leu Thr Ser
                                      40
                 35
Cys Glu Ala Asn Thr Ile Asn His Tyr Phe Cys Asp Thr Leu His
                                      55
                 50
Leu Leu Gln Leu Ser Cys Thr Ser Thr Tyr Val Arg Ala Glu Phe
                                      70
                 65
Ile Leu Ala Gly Leu Thr Gln Arg Pro Glu Leu Gln Leu Pro Leu
                                      85
                 80
Phe Leu Leu Phe Leu Gly Ile Tyr Val Val Thr Val Val Gly Asn
                                     100
                 95
Leu Gly Met Ile Phe Leu Ile Ala Leu Ser Ser Gln Leu Tyr Pro
                                     115
                                                         120
                110
Pro Val Tyr Tyr Phe Leu Ser His Leu Ser Phe Ile Asp Leu Cys
                125
                                     130
Tyr Ser Ser Val Ile Thr Pro Lys Met Leu Val Asn Phe Val Pro
                140
                                     145
Glu Glu Asn Ile Ile Ser Phe Leu Glu Cys Ile Thr Gln Leu Tyr
                                     160
                155
Phe Phe Leu Ile Phe Val Ile Ala Glu Gly Tyr Leu Leu Thr Ala
                                     175
                170
Met Glu Tyr Asp Arg Tyr Val Ala Ile Cys Arg Pro Leu Leu Tyr
                                     190
                185
Asn Ile Val Met Ser His Arg Val Cys Ser Ile Met Met Ala Val
                                     205
                200
Val Tyr Ser Leu Gly Phe Leu Trp Ala Thr Val His Thr Thr Arg
                                     220
                215
Met Ser Val Leu Ser Phe Cys Arg Ser His Thr Val Ser His Tyr
                                     235
                230
Phe Cys Asp Ile Leu Pro Leu Leu Thr Leu Ser Cys Ser Ser Thr
                                     250
                245
His Ile Asn Glu Ile Leu Leu Phe Ile Ile Gly Gly Val Asn Thr
                                     265
                260
Leu Ala Thr Thr Leu Ala Val Leu Ile Ser Tyr Ala Phe Ile Phe
                                     280
                275
Ser Ser Ile Leu Gly Ile His Ser Thr Glu Gly Gln Ser Lys Ala
                290
                                    295
Phe Gly Thr Cys Ser Ser His Leu Leu Ala Val Gly Ile Phe Phe
                                    310
                305
Gly Ser Ile Thr Phe Met Tyr Phe Lys Pro Pro Ser Ser Thr Thr
```

PCT/US01/16833 WO 01/90359

```
325
                320
Met Glu Lys Glu Lys Val Ser Ser Val Phe Tyr Ile Thr Ile Ile
                                     340
                335
Pro Met Leu Asn Pro Leu Ile Tyr Ser Leu Arg Asn Lys Asp Val
                                     355
                350
Lys Asn Ala Leu Lys Lys Met Thr Arg Gly Arg Gln Ser Ser
                                     370
                365
<210> 5
<211> 312
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte ID No: 7475170CD1
Met Asp Gln Lys Asn Gly Ser Ser Phe Thr Gly Phe Ile Leu Leu
Gly Phe Ser Asp Arg Pro Gln Leu Glu Leu Val Leu Phe Val Val
Leu Leu Ile Phe Tyr Ile Phe Thr Leu Leu Gly Asn Lys Thr Ile
Ile Val Leu Ser His Leu Asp Pro His Leu His Thr Pro Met Tyr
                                      55
Phe Phe Phe Ser Asn Leu Ser Phe Leu Asp Leu Cys Tyr Thr Thr
                                      70
                 65
Gly Ile Val Pro Gln Leu Leu Val Asn Leu Arg Gly Ala Asp Lys
                                      85
Ser Ile Ser Tyr Gly Gly Cys Val Val Gln Leu Tyr Ile Ser Leu
                                    100
                 95
Gly Leu Gly Ser Thr Glu Cys Val Leu Leu Gly Val Met Val Phe
                110
                                    115
Asp Arg Tyr Ala Ala Val Cys Arg Pro Leu His Tyr Thr Val Val
                                     130
                125
Met His Pro Cys Leu Tyr Val Leu Met Ala Ser Thr Ser Trp Val
                140
                                    145
Ile Gly Phe Ala Asn Ser Leu Leu Gln Thr Val Leu Ile Leu Leu
                                                         165
                155
                                    160
Leu Thr Leu Cys Gly Arg Asn Lys Leu Glu His Phe Leu Cys Glu
                                    175
                170
Val Pro Pro Leu Leu Lys Leu Ala Cys Val Asp Thr Thr Met Asn
                                    190
                                                         195
                1.85
Glu Ser Glu Leu Phe Phe Val Ser Val Ile Ile Leu Leu Val Pro
                                    205
                200
Val Ala Leu Ile Ile Phe Ser Tyr Ser Gln Ile Val Arg Ala Val
                215
                                    220
Met Arg Ile Lys Leu Ala Thr Gly Gln Arg Lys Val Phe Gly Thr
                                    235
                230
Cys Gly Ser His Leu Thr Val Val Ser Leu Phe Tyr Gly Thr Ala
                                    250
                245
Ile Tyr Ala Tyr Leu Gln Pro Gly Asn Asn Tyr Ser Gln Asp Gln
                                    265
                                                         270
                260
Gly Lys Phe Ile Ser Leu Phe Tyr Thr Ile Ile Thr Pro Met Ile
                                    280
                275
Asn Pro Leu Ile Tyr Thr Leu Arg Asn Lys Asp Val Lys Gly Ala
                290
                                    295 .
Leu Lys Lys Val Leu Trp Lys Asn Tyr Asp Ser Arg
                305
<210> 6
```

<211> 325

```
<212> PRT
  <213> Homo sapiens
  <220>
  <221> misc_feature
  <223> Incyte ID No: 7475197CD1
  <400> 6
 Met Lys Thr Phe Ser Ser Phe Leu Gln Ile Gly Arg Asn Met His
 Gln Gly Asn Gln Thr Thr Ile Thr Glu Phe Ile Leu Leu Gly Phe
                   20
 Phe Lys Gln Asp Glu His Gln Asn Leu Phe Val Leu Phe Leu
                   35
 Gly Met Tyr Leu Val Thr Val Ile Gly Asn Gly Leu Ile Ile Val
                   50
 Ala Ile Ser Leu Asp Thr Tyr Leu His Thr Pro Met Tyr Leu Phe
                   65
 Leu Ala Asn Leu Ser Phe Ala Asp Ile Ser Ser Ile Ser Asn Ser
                  80
                                       85
 Val Pro Lys Met Leu Val Asn Ile Gln Thr Lys Ser Gln Ser Ile
                  95
                                      100
 Ser Tyr Glu Ser Cys Ile Thr Gln Met Tyr Phe Ser Ile Val Phe
                 110
                                      115
 Val Val Ile Asp Asn Leu Leu Gly Thr Met Ala Tyr Asp His
                 125
                                      130
 Phe Val Ala Ile Cys His Pro Leu Asn Tyr Thr Ile Leu Met Arg
                 140
                                      145
 Pro Arg Phe Gly Ile Leu Leu Thr Val Ile Ser Trp Phe Leu Ser
                 155
                                     160
 Asn Ile Ile Ala Leu Thr His Thr Leu Leu Leu Ile Gln Leu Leu
                 170
                                      175
 Phe Cys Asn His Asn Thr Leu Pro His Phe Phe Cys Asp Leu Ala
                 185
                                     190
 Pro Leu Leu Lys Leu Ser Cys Ser Asp Thr Leu Ile Asn Glu Leu
                 200
                                     205
 Val Leu Phe Ile Val Gly Leu Ser Val Ile Ile Phe Pro Phe Thr
                 215
                                     220
Leu Ser Phe Phe Ser Tyr Val Cys Ile Ile Arg Ala Val Leu Arg
                 230
                                     235
Val Ser Ser Thr Gln Gly Lys Trp Lys Ala Phe Ser Thr Cys Gly
                245
                                     250
Ser His Leu Thr Val Val Leu Leu Phe Tyr Gly Thr Ile Val Gly
                260
                                     265
Val Tyr Phe Phe Pro Ser Ser Thr His Pro Glu Asp Thr Asp Lys
                275
                                     280
Ile Gly Ala Val Leu Phe Thr Val Val Thr Pro Met Ile Asn Pro
                290
                                     295
Phe Ile Tyr Ser Leu Arg Asn Lys Asp Met Lys Gly Ala Leu Arg
                305
                                    310
Lys Leu Ile Asn Arg Lys Ile Ser Ser Leu
<210> 7
<211> 311
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475210CD1
<400> 7
```

```
Met Glu Asn Gln Ser Ser Ile Ser Glu Phe Phe Leu Arg Gly Ile
Ser Ala Pro Pro Glu Gln Gln Ser Leu Phe Gly Ile Phe Leu
                                     25
                 20
Cys Met Tyr Leu Val Thr Leu Thr Gly Asn Leu Leu Ile Ile Leu
                                     40
                 35
Ala Ile Gly Ser Asp Leu His Leu His Thr Pro Met Tyr Phe Phe
                                     55
                 50
Leu Ala Asn Leu Ser Phe Val Asp Met Gly Leu Thr Ser Ser Thr
                                     70
                 65
Val Thr Lys Met Leu Val Asn Ile Gln Thr Arg His His Thr Ile
                                     85
                 80
Ser Tyr Thr Gly Cys Leu Thr Gln Met Tyr Phe Phe Leu Met Phe
                                    100
                 95
Gly Asp Leu Asp Ser Phe Phe Leu Ala Ala Met Ala Tyr Asp Arg
                                    115
                110
Tyr Val Ala Ile Cys His Pro Leu Cys Tyr Ser Thr Val Met Arg
                                    130
                125
Pro Gln Val Cys Ala Leu Met Leu Ala Leu Cys Trp Val Leu Thr
                                     145
                140
Asn Ile Val Ala Leu Thr His Thr Phe Leu Met Ala Arg Leu Ser
                                     160
                155
Phe Cys Val Thr Gly Glu Ile Ala His Phe Phe Cys Asp Ile Thr
                                     175
                170
Pro Val Leu Lys Leu Ser Cys Ser Asp Thr His Ile Asn Glu Met
                                     190
                185
Met Val Phe Val Leu Gly Gly Thr Val Leu Ile Val Pro Phe Leu
                                     205
                200
Cys Ile Val Thr Ser Tyr Ile His Ile Val Pro Ala Ile Leu Arg
                                     220
                215
Val Arg Thr Arg Gly Gly Val Gly Lys Ala Phe Ser Thr Cys Ser
                                     235
                230
Ser His Leu Cys Val Val Cys Val Phe Tyr Gly Thr Leu Phe Ser
                                     250
                245
Ala Tyr Leu Cys Pro Pro Ser Ile Ala Ser Glu Glu Lys Asp Ile
                                     265
                260
Ala Ala Ala Met Tyr Thr Ile Val Thr Pro Met Leu Asn Pro
                                     280
                 275
Phe Ile Tyr Ser Leu Arg Asn Lys Asp Met Lys Gly Ala Leu Lys
                                     295
                 290
Arg Leu Phe Ser His Arg Ser Ile Val Ser Ser
                305
<210> 8
<211>.344
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475221CD1
<400> 8
Met Glu Leu Leu Thr Asn Asn Leu Lys Phe Ile Thr Asp Pro Phe
                                     10
Val Cys Arg Leu Arg His Leu Ser Pro Thr Pro Ser Glu Glu His
                                      25
                  20
Met Lys Asn Lys Asn Asn Val Thr Glu Phe Ile Leu Leu Gly Leu
                                      40
                  35
Thr Gln Asn Pro Glu Gly Gln Lys Val Leu Phe Val Thr Phe Leu
                                     55
                  50
Leu Ile Tyr Met Val Thr Ile Met Gly Asn Leu Leu Ile Ile Val
                                      70
```

```
Thr Ile Met Ala Ser Gln Ser Leu Gly Ser Pro Met Tyr Phe Phe
                                     85
Leu Ala Ser Leu Ser Phe Ile Asp Thr Val Tyr Ser Thr Ala Phe
                                    100
                 95
Ala Pro Lys Met Ile Val Asp Leu Leu Ser Glu Lys Lys Thr Ile
                                    115
                110
Ser Phe Gln Gly Cys Met Ala Gln Leu Phe Met Asp His Leu Phe
                                    130
                125
Ala Gly Ala Glu Val Ile Leu Leu Val Val Met Ala Tyr Asp Arg
                                    145
                140
Tyr Met Ala Ile Cys Lys Pro Leu His Glu Leu Ile Thr Met Asn
                                    160
                155
Arg Arg Val Cys Val Leu Met Leu Leu Ala Ala Trp Ile Gly Gly
                                    175
                170
Phe Leu His Ser Leu Val Gln Phe Leu Phe Ile Tyr Gln Leu Pro
                                    190
                185
Phe Cys Gly Pro Asn Val Ile Asp Asn Phe Leu Cys Asp Leu Tyr
                                    205
                200
Pro Leu Leu Lys Leu Ala Cys Thr Asn Thr Tyr Val Thr Gly Leu
                                    220
                215
Ser Met Ile Ala Asn Gly Gly Ala Ile Cys Ala Val Thr Phe Phe
                                    235
                230
Thr Ile Leu Leu Ser Tyr Gly Val Ile Leu His Ser Leu Lys Thr
                                    250
                245
Gln Ser Leu Glu Gly Lys Arg Lys Ala Phe Tyr Thr Cys Ala Ser
                                    265
                260
His Val Thr Val Val Ile Leu Phe Phe Val Pro Cys Ile Phe Leu
                                    280
                275
Tyr Ala Arg Pro Asn Ser Thr Phe Pro Ile Asp Lys Ser Met Thr
                                    295
                290
Val Val Leu Thr Phe Ile Thr Pro Met Leu Asn Pro Leu Ile Tyr
                305
                                    310
Thr Leu Lys Asn Ala Glu Met Lys Ser Ala Met Arg Lys Leu Trp
                                    325
                320
Ser Lys Lys Val Ser Leu Ala Gly Lys Trp Leu Tyr His Ser
                                     340
                335
<210> 9
<211> 313
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475244CD1
<400> 9
Met Ala Ser Glu Arg Asn Gln Ser Ser Thr Pro Thr Phe Ile Leu
Leu Gly Phe Ser Glu Tyr Pro Glu Ile Gln Val Pro Leu Phe Leu
Val Phe Leu Phe Val Tyr Thr Val Thr Val Val Gly Asn Leu Gly
                                      40
                 35
Met Ile Ile Ile Arg Leu Asn Ser Lys Leu His Thr Ile Met
                                      55
                 50
Tyr Phe Phe Leu Ser His Leu Ser Leu Thr Asp Phe Cys Phe Ser
                                      70
                 65
Thr Val Val Thr Pro Lys Leu Leu Glu Asn Leu Val Val Glu Tyr
                                      85
                 80
Arg Thr Ile Ser Phe Ser Gly Cys Ile Met Gln Phe Cys Phe Ala
                                     100
                 95
Cys Ile Phe Gly Val Thr Glu Thr Phe Met Leu Ala Ala Met Ala
                                    115
                110
```

```
Tyr Asp Arg Phe Val Ala Val Cys Lys Pro Leu Leu Tyr Thr Thr
                                                         135
                                    130
                125
Ile Met Ser Gln Lys Leu Cys Ala Leu Leu Val Ala Gly Ser Tyr
                                    145
                140
Thr Trp Gly Ile Val Cys Ser Leu Ile Leu Thr Tyr Phe Leu Leu
                                                         165
                                    160
                155
Asp Leu Ser Phe Cys Glu Ser Thr Phe Ile Asn Asn Phe Ile Cys
                                                         180
                                    175
                170
Asp His Ser Val Ile Val Ser Ala Ser Tyr Ser Asp Pro Tyr Ile
                                                         195
                                     190
                185
Ser Gln Arg Leu Cys Phe Ile Ile Ala Ile Phe Asn Glu Val Ser
                                                         210
                                     205
                200
Ser Leu Ile Ile Leu Thr Ser Tyr Met Leu Ile Phe Thr Thr
                                                         225
                                     220
                215
Ile Met Lys Met Arg Ser Ala Ser Gly Arg Gln Lys Thr Phe Ser
                                                         240
                                     235
                230
Thr Cys Ala Ser His Leu Thr Ala Ile Thr Ile Phe His Gly Thr
                                                         255
                                     250
                245
Ile Leu Phe Leu Tyr Cys Val Pro Asn Pro Lys Thr Ser Ser Leu
                                                         270
                                     265
                260
Ile Val Thr Val Ala Ser Val Phe Tyr Thr Val Ala Ile Pro Met
                                                         285
                                     280
                275
Leu Asn Pro Leu Ile Tyr Ser Leu Arg Asn Lys Asp Ile Asn Asn
                                     295
                290
Met Phe Glu Lys Leu Val Val Thr Lys Leu Ile Tyr His
<210> 10
<211> 313
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte ID No: 7475293CD1
Met Lys Arg Glu Asn Gln Ser Ser Val Ser Glu Phe Leu Leu
                                      10
Asp Leu Pro Ile Trp Pro Glu Gln Gln Ala Val Phe Phe Thr Leu
                                      25
                  20
Phe Leu Gly Met Tyr Leu Ile Thr Val Leu Gly Asn Leu Leu Ile
                                      40
                  35
Ile Leu Leu Ile Arg Leu Asp Ser His Leu His Thr Pro Met Phe
                                      55
                  50
Phe Phe Leu Ser His Leu Ala Leu Thr Asp Ile Ser Leu Ser Ser
                                      70
                  65
Val Thr Val Pro Lys Met Leu Leu Ser Met Gln Thr Gln Asp Gln
                                      85
                  80
Ser Ile Leu Tyr Ala Gly Cys Val Thr Gln Met Tyr Phe Phe Ile
                                                          105
                                     100
                  95
Phe Phe Thr Asp Leu Asp Asn Phe Leu Leu Thr Ser Met Ala Tyr
                                                          120
                                     115
                 110
Asp Arg Tyr Val Ala Ile Cys His Pro Leu Arg Tyr Thr Thr Ile
                                                          135
                                     130
                 125
Met Lys Glu Gly Leu Cys Asn Leu Leu Val Thr Val Ser Trp Ile
                                                          150
                                     145
                 140
Leu Ser Cys Thr Asn Ala Leu Ser His Thr Leu Leu Leu Ala Gln
                                                          1.65
                                     160
                 155
 Leu Ser Phe Cys Ala Asp Asn Thr Ile Pro His Phe Phe Cys Asp
                                                          180
                                     175
                 170
Leu Val Ala Leu Leu Lys Leu Ser Cys Ser Asp Ile Ser Leu Asn
                                     190
                 185
```

```
Glu Leu Val Ile Phe Thr Val Gly Gln Ala Val Ile Thr Leu Pro
                                     205
                200
Leu Ile Cys Ile Leu Ile Ser Tyr Gly His Ile Gly Val Thr Ile
                                     220
                215
Leu Lys Ala Pro Ser Thr Lys Gly Ile Phe Lys Ala Leu Ser Thr
                                     235
                230
Cys Gly Ser His Leu Ser Val Val Ser Leu Tyr Tyr Gly Thr Ile
                                     250
                245
Ile Gly Leu Tyr Phe Leu Pro Ser Ser Ser Ala Ser Ser Asp Lys
                                                         270
                                     265
                260
Asp Val Ile Ala Ser Val Met Tyr Thr Val Ile Thr Pro Leu Leu
                                     280
                275
Asn Pro Phe Ile Tyr Ser Leu Arg Asn Arg Asp Ile Lys Gly Ala
                                                         300
                                     295
                290
Leu Glu Arg Leu Phe Asn Arg Ala Thr Val Leu Ser Gln
                                     310
<210> 11
<211> 309
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475297CD1
Met Glu Asn Gln Asn Asn Val Thr Glu Phe Ile Leu Leu Gly Leu
                                      10
                  - 5
Thr Glu Asn Leu Glu Leu Trp Lys Ile Phe Ser Ala Val Phe Leu
                                      25
                 20
Val Met Tyr Val Ala Thr Val Leu Glu Asn Leu Leu Ile Val Val
                                      40
                 35
Thr Ile Ile Thr Ser Gln Ser Leu Arg Ser Pro Met Tyr Phe Phe
                                      55
                  50
Leu Thr Phe Leu Ser Leu Leu Asp Val Met Phe Ser Ser Val Val
                                      70
                  65
Ala Pro Lys Val Ile Val Asp Thr Leu Ser Lys Ser Thr Thr Ile
                                      85
                  80
Ser Leu Lys Gly Cys Leu Thr Gln Leu Phe Val Glu His Phe Phe
                                     100
                  95
Gly Gly Val Gly Ile Ile Leu Leu Thr Val Met Ala Tyr Asp Arg
                                     115
                 110
Tyr Val Ala Ile Cys Lys Pro Leu His Tyr Thr Ile Ile Met Ser
                                     130
                 125
Pro Arg Val Cys Cys Leu Met Val Gly Gly Ala Trp Val Gly Gly
                                     145
                 140
Phe Met His Ala Met Ile Gln Leu Leu Phe Met Tyr Gln Ile Pro
                                     160
                 155
Phe Cys Gly Pro Asn Ile Ile Asp His Phe Ile Cys Asp Leu Phe
                                     175
                 170
Gln Leu Leu Thr Leu Ala Cys Thr Asp Thr His Ile Leu Gly Leu
                                     190
                 185
Leu Val Thr Leu Asn Ser Gly Met Met Cys Val Ala Ile Phe Leu
                                     205
                 200
Ile Leu Ile Ala Ser Tyr Thr Val Ile Leu Cys Ser Leu Lys Ser
                                     220
                 215
Tyr Ser Ser Lys Gly Arg His Lys Ala Leu Ser Thr Cys Ser Ser
                                     235
                 230
His Leu Thr Val Val Val Leu Phe Phe Val Pro Cys Ile Phe Leu
                                     250
                 245
Tyr Met Arg Pro Val Val Thr His Pro Ile Asp Lys Ala Met Ala
                                     265
                 260
```

```
Val Ser Asp Ser Ile Ile Thr Pro Met Leu Asn Pro Leu Ile Tyr
                275
                                    280
Thr Leu Arg Asn Ala Glu Val Lys Ser Ala Met Lys Lys Leu Trp
                                    295
                290
Met Lys Trp Glu Ala Leu Ala Gly Lys
                305
<210> 12
<211> 313
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475193CD1
<400> 12
Met Glu Thr Ala Asn Tyr Thr Lys Val Thr Glu Phe Val Leu Thr
                                      10
Gly Leu Ser Gln Thr Pro Glu Val Gln Leu Val Leu Phe Val Ile
                                      25
                 20
Phe Leu Ser Phe Tyr Leu Phe Ile Leu Pro Gly Asn Ile Leu Ile
                                      40
                 35
Ile Cys Thr Ile Ser Leu Asp Pro His Leu Thr Ser Pro Met Tyr
                 50
                                     55
Phe Leu Leu Ala Asn Leu Ala Phe Leu Asp Ile Trp Tyr Ser Ser
                                     70
                 65
Ile Thr Ala Pro Glu Met Leu Ile Asp Phe Phe Val Glu Arg Lys
                                     85
                 80
Ile Ile Ser Phe Asp Gly Cys Ile Ala Gln Leu Phe Phe Leu His
                                    100
                 95
Phe Ala Gly Ala Ser Glu Met Phe Leu Leu Thr Val Met Ala Phe
                110
                                    115
Asp Leu Tyr Thr Ala Ile Cys Arg Pro Leu His Tyr Ala Thr Ile
                                    130
                125
Met Asn Gln Arg Leu Cys Cys Ile Leu Val Ala Leu Ser Trp Arg
                140
                                    145
Gly Gly Phe Ile His Ser Ile Ile Gln Val Ala Leu Ile Val Arg
                155
                                    160
Leu Pro Phe Cys Gly Pro Asn Glu Leu Asp Ser Tyr Phe Cys Asp
                170
                                    175
Ile Thr Gln Val Val Arg Ile Ala Cys Ala Asn Thr Phe Pro Glu
                                                         195
                                    190
                185
Glu Leu Val Met Ile Cys Ser Ser Gly Leu Ile Ser Val Val Cys
                                    205
                200
Leu Ile Ala Leu Leu Met Ser Tyr Ala Phe Leu Leu Ala Leu Phe
                                    220
                215
Lys Lys Leu Ser Gly Ser Gly Glu Asn Thr Asn Arg Ala Met Ser
                                    235
                230
Thr Cys Tyr Ser His Ile Thr Ile Val Val Leu Met Phe Gly Pro
                                    250
                2.45
Ser Ile Tyr Ile Tyr Ala Arg Pro Phe Asp Ser Phe Ser Leu Asp
                                    265
                                                         270
                260
Lys Val Val Ser Val Phe Asn Thr Leu Ile Phe Pro Leu Arg Asn
                275
                                    280
Pro Ile Ile Tyr Thr Leu Arg Asn Lys Glu Val Lys Ala Ala Met
                                    295
                290
Arg Lys Leu Val Thr Lys Tyr Ile Leu Cys Lys Glu Lys
<210> 13
<211> 342
<212> PRT
```

```
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475213CD1
Met Lys Arg Lys Asn Phe Thr Glu Val Ser Glu Phe Ile Phe Leu
<400> 13
Gly Phe Ser Ser Phe Gly Lys His Gln Ile Thr Leu Phe Val Val
                 20
Phe Leu Thr Val Tyr Ile Leu Thr Leu Val Ala Asn Ile Ile Ile
                                      40
                 35
Val Thr Ile Ile Cys Ile Asp His His Leu His Thr Pro Met Tyr
                                      55
                 50
Phe Phe Leu Ser Met Leu Ala Ser Ser Glu Thr Val Tyr Thr Leu
                                                           75
                                      70
                 65
Val Ile Val Pro Arg Met Leu Leu Ser Leu Ile Phe His Asn Gln
                                      85
                 80
Pro Ile Ser Leu Ala Gly Cys Ala Thr Gln Met Phe Phe Val
                                                          105
                                     100
                 95
Ile Leu Ala Thr Asn Asn Cys Phe Leu Leu Thr Ala Met Gly Tyr
                                                          120
                                     115
                 110
Asp Arg Tyr Val Ala Ile Cys Arg Pro Leu Arg Tyr Thr Val Ile
                                     130
                 125
Met Ser Lys Gly Leu Cys Ala Gln Leu Val Cys Gly Ser Phe Gly
                                                          150
                                     145
                 140
Ile Gly Leu Thr Met Ala Val Leu His Val Thr Ala Met Phe Asn
                                     160
                 155
Leu Pro Phe Cys Gly Thr Val Val Asp His Phe Phe Cys Asp Ile
                                                          180
                                     175
                 170
Tyr Pro Val Met Lys Leu Ser Cys Ile Asp Thr Thr Ile Asn Glu
                                     190
                 185
Ile Ile Asn Tyr Gly Val Ser Ser Phe Val Ile Phe Val Pro Ile
                                     205
                 200
 Gly Leu Ile Phe Ile Ser Tyr Val Leu Val Ile Ser Ser Ile Leu
                                     220
                 215
 Gln Ile Ala Ser Ala Glu Gly Arg Lys Lys Thr Phe Ala Thr Cys
                                      235
                 230
 Val Ser His Leu Thr Val Val Ile Val His Cys Gly Cys Ala Ser
                                      250
                 245
 Ile Ala Tyr Leu Lys Pro Lys Ser Glu Ser Ser Ile Glu Lys Asp
                                      265
                 260
 Leu Val Leu Ser Val Thr Tyr Thr Ile Ile Thr Pro Leu Leu Asn
                                      280
                 275
 Pro Val Val Tyr Ser Leu Arg Asn Lys Glu Ile Gln Glu Ser Leu
                                      295
                 290
 Gln Ala Gly Leu Arg Leu Leu Val Ser Val Leu Glu Asp Phe Ser
                                      310
                 305
 Phe Glu Ser Phe Leu Ala Pro Ile Leu Pro Glu Leu Ser Asp Ser
                                                          330
                                      325
                 320
 Gln Ile Phe Glu Leu Val Trp Leu Gly Asp Val Glu
                                      340
                 335
 <210> 14
 <211> 310
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID No: 7475272CD1
```

```
<400> 14
Met Ala Glu Met Asn Leu Thr Leu Val Thr Glu Phe Leu Leu Ile
                                     10
                 5
Ala Phe Thr Glu Tyr Pro Glu Trp Ala Leu Pro Leu Phe Leu Leu
                                     25
                 20
Leu Leu Phe Met Tyr Leu Ile Thr Val Leu Gly Asn Leu Glu Met
                                     40
                 35
Ile Ile Leu Ile Leu Met Asp His Gln Leu His Ala Pro Met Tyr
                                     55
                 50
Phe Leu Leu Ser His Leu Ala Phe Met Asp Val Cys Tyr Ser Ser
                                     70
                 65
Ile Thr Val Pro Gln Met Leu Ala Val Leu Leu Glu His Gly Ala
                                     85
                 80
Ala Leu Ser Tyr Thr Arg Cys Ala Ala Gln Phe Phe Leu Phe Thr
                                    100
                 95
Phe Phe Gly Ser Ile Asp Cys Tyr Leu Leu Ala Leu Met Ala Tyr
                                    115
                110
Asp Arg Tyr Leu Ala Val Cys Gln Pro Leu Leu Tyr Val Thr Ile
                                     130
                125
Leu Thr Gln Gln Ala Arg Leu Ser Leu Val Ala Gly Ala Tyr Val
                                     145
                140
Ala Gly Leu Ile Ser Ala Leu Val Arg Thr Val Ser Ala Phe Thr
                                     160
                155
Leu Ser Phe Cys Gly Thr Ser Glu Ile Asp Phe Ile Phe Cys Asp
                                     175
                170
Leu Pro Pro Leu Leu Lys Leu Thr Cys Gly Glu Ser Tyr Thr Gln
                                                         195
                                     190
                185
Glu Val Leu Ile Ile Met Phe Ala Ile Phe Val Ile Pro Ala Ser
                                     205
                200
Met Val Val Ile Leu Val Ser Tyr Leu Phe Ile Ile Val Ala Ile
                                     220
                215
Met Gly Ile Pro Ala Gly Ser Gln Ala Lys Thr Phe Ser Thr Cys
                                     235
                230
Thr Ser His Leu Thr Ala Val Ser Leu Phe Phe Gly Thr Leu Ile
                                     250
                245
Phe Met Tyr Leu Arg Gly Asn Ser Asp Gln Ser Ser Glu Lys Asn
                                     265
                260
Arg Val Val Ser Val Leu Tyr Thr Glu Val Ile Pro Met Leu Asn
                                     280
                 275
Pro Leu Ile Tyr Ser Leu Arg Asn Lys Glu Val Lys Glu Ala Leu
                                     295
                 290
Arg Lys Ile Leu Asn Arg Ala Lys Leu Ser
                305
<210> 15
<211> 302
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475200CD1
<400> 15
Met Asp Ile Pro Gln Asn Ile Thr Glu Phe Phe Met Leu Gly Leu
                                      10
Ser Gln Asn Ser Glu Val Gln Arg Val Leu Phe Val Val Phe Leu
                                      25
                  20
Leu Ile Tyr Val Val Thr Val Cys Gly Asn Met Leu Ile Val Val
                                      40
                  35
Thr Ile Thr Ser Ser Pro Thr Leu Ala Ser Pro Val Tyr Phe Phe
                                      55
                  50
Leu Ala Asn Leu Ser Phe Ile Asp Thr Phe Tyr Ser Ser Ser Met
```

```
70
                  65
Ala Pro Lys Leu Ile Ala Asp Ser Leu Tyr Glu Gly Arg Thr Ile
                                      85
                  80
Ser Tyr Glu Cys Cys Met Ala Gln Leu Phe Gly Ala His Phe Leu
                  95
                                     100
Gly Gly Val Glu Ile Ile Leu Leu Thr Val Met Ala Tyr Asp Arg
                                     115
                110
Tyr Val Ala Ile Cys Lys Pro Leu His Asn Thr Thr Ile Met Thr
                                     130
                125
Arg His Leu Cys Ala Met Leu Val Gly Val Ala Trp Leu Gly Gly
                                     145
                140
Phe Leu His Ser Leu Val Gln Leu Leu Leu Val Leu Trp Leu Pro
                                     160
                155
Phe Cys Gly Pro Asn Val Ile Asn His Phe Ala Cys Asp Leu Tyr
                                     175
                170
Pro Leu Leu Glu Val Ala Cys Thr Asn Thr Tyr Val Ile Gly Leu
                                     190
                185
Leu Val Val Ala Asn Ser Gly Leu Ile Cys Leu Leu Asn Phe Leu
                                     205
                200
Met Leu Ala Ala Ser Tyr Ile Val Ile Leu Tyr Ser Leu Arg Ser
                                     220
                215
His Ser Ala Asp Gly Arg Cys Lys Ala Leu Ser Thr Cys Gly Ala
                                     235
                230
His Phe Ile Val Val Ala Leu Phe Phe Val Pro Cys Ile Phe Thr
                                     250
                245
Tyr Val His Pro Phe Ser Thr Leu Pro Ile Asp Lys Asn Met Ala
                                     265
                260
Leu Phe Tyr Gly Ile Leu Thr Pro Met Leu Asn Pro Leu Ile Tyr
                                     280
                275
Thr Leu Arg Asn Glu Glu Val Lys Asn Ala Met Arg Lys Leu Phe
                                     295
Thr Trp
<210> 16
<211> 316
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475121CD1
<400> 16
Met Pro Ser Gln Asn Tyr Ser Ile Ile Ser Glu Phe Asn Leu Phe
                                      10
Gly Phe Ser Ala Phe Pro Gln His Leu Leu Pro Ile Leu Phe Leu
Leu Tyr Leu Leu Met Phe Leu Phe Thr Leu Leu Gly Asn Leu Leu
                                      40
Ile Met Ala Thr Ile Trp Ile Glu His Arg Leu His Thr Pro Met
Tyr Leu Phe Leu Cys Thr Leu Ser Val Ser Glu Ile Leu Phe Thr
                                     70
                 65
Val Ala Ile Thr Pro Arg Met Leu Ala Asp Leu Leu Ser Thr His
                                      85
                 80
His Ser Ile Thr Phe Val Ala Cys Ala Asn Gln Met Phe Phe Ser
                                     100
                 95
Phe Met Phe Gly Phe Thr His Ser Phe Leu Leu Val Met Gly
                                    115
Tyr Asp Arg Tyr Val Ala Ile Cys His Pro Leu Arg Tyr Asn Val
                                    130
Leu Met Ser Pro Arg Asp Cys Ala His Leu Val Ala Cys Thr Trp
```

```
145
                140
Ala Gly Gly Ser Val Met Gly Met Met Val Thr Thr Ile Val Phe
                                    160
                155
His Leu Thr Phe Cys Gly Ser Asn Val Ile His His Phe Phe Cys
                                     175
                170
His Val Leu Ser Leu Leu Lys Leu Ala Cys Glu Asn Lys Thr Ser
                                     190
                185
Ser Val Ile Met Gly Val Met Leu Val Cys Val Thr Ala Leu Ile
                                     205
                200
Gly Cys Leu Phe Leu Ile Ile Leu Ser Tyr Val Phe Ile Val Ala
                                     220
                215
Ala Ile Leu Arg Ile Pro Ser Ala Glu Gly Arg His Lys Thr Phe
                                     235
                230
Ser Thr Cys Val Ser His Leu Thr Val Val Val Thr His Tyr Ser
                                     250
                245
Phe Ala Ser Phe Ile Tyr Leu Lys Pro Lys Gly Leu His Ser Met
                                     265
                260
Tyr Ser Asp Ala Leu Met Ala Thr Thr Tyr Thr Val Phe Thr Pro
                                     280
                275
Phe Leu Ser Pro Ile Ile Phe Ser Leu Arg Asn Lys Glu Leu Lys
                                     295
                290
Asn Ala Ile Asn Lys Asn Phe Tyr Arg Lys Phe Cys Pro Pro Ser
                                    _310
                305
<210> 17
<211> 370
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475165CD1
Met Leu Val Leu Asn Ser Trp Ala Gln Val Ile His Trp Pro Gln
                                      10
Pro Pro Lys Val Leu Gly Leu Gln Pro Leu Glu Lys Thr Gln Tyr
                                      25
                  20
Gly Phe Leu Gly Thr Asp Arg Val Glu Glu Lys Thr Ser Val Ile
                                      40
                  35
Thr Ile Arg Val Ser Val Thr His Arg His Asn Ser Tyr Met Glu
                                      55
                  50
Ala Glu Asn Leu Thr Glu Leu Ser Lys Phe Leu Leu Gly Leu
                                      70
                  65
 Ser Asp Asp Pro Glu Leu Gln Pro Val Leu Phe Gly Leu Phe Leu
                                      85
                  80
 Ser Met Tyr Leu Val Thr Val Leu Gly Asn Leu Leu Ile Ile Leu
                                     100
                  95
Ala Val Ser Ser Asp Ser His Leu His Thr Pro Met Tyr Phe Phe
                                     115
                 110
 Leu Ser Asn Leu Ser Phe Val Asp Ile Cys Phe Ile Ser Thr Thr
                                     130
                 125
 Val Pro Lys Met Leu Val Ser Ile Gln Ala Arg Ser Lys Asp Ile
                                     145
                 140
 Ser Tyr Met Gly Cys Leu Thr Gln Val Tyr Phe Leu Met Met Phe
                                     160
                 155
 Ala Gly Met Asp Thr Phe Leu Leu Ala Val Met Ala Tyr Asp Arg
                                     175
                 170
 Phe Val Ala Ile Cys His Pro Leu His Tyr Thr Val Ile Met Asn
                                     190
                 185
 Pro Cys Leu Cys Gly Leu Leu Val Leu Ala Ser Trp Phe Ile Ile
```

```
205
                200
Phe Trp Phe Ser Leu Val His Ile Leu Leu Met Lys Arg Leu Thr
                                    220
                215
Phe Ser Thr Gly Thr Glu Ile Pro His Phe Phe Cys Glu Pro Ala
                230
Gln Val Leu Lys Val Ala Cys Ser Asn Thr Leu Leu Asn Asn Ile
                                    250
                245
Val Leu Tyr Val Ala Thr Ala Leu Leu Gly Val Phe Pro Val Ala
                                    265
                260
Gly Ile Leu Phe Ser Tyr Ser Gln Ile Val Ser Ser Leu Met Gly
                                    280
                275
Met Ser Ser Thr Lys Gly Lys Tyr Lys Ala Phe Ser Thr Cys Gly
                                    295
                290
Ser His Leu Cys Val Val Ser Leu Phe Tyr Gly Thr Gly Leu Gly
                                    310
                305
Val Tyr Leu Ser Ser Ala Val Thr His Ser Ser Gln Ser Ser
                                    325
                320
Thr Ala Ser Val Met Tyr Ala Met Val Thr Pro Met Leu Asn Pro
                                    340
                335
Phe Ile Tyr Ser Leu Arg Asn Lys Asp Val Lys Gly Ala Leu Glu
                                    355
                350
Arg Leu Leu Ser Arg Ala Asp Ser Cys Pro
                365
<210> 18
<211> 318
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475273CD1
Met Lys Asn Val Thr Glu Val Thr Leu Phe Val Leu Lys Gly Phe
                                     10
Thr Asp Asn Leu Glu Leu Gln Thr Ile Phe Phe Leu Phe Leu
                 20
Ala Ile Tyr Leu Phe Thr Leu Met Gly Asn Leu Gly Leu Ile Leu
                                     40
Val Val Ile Arg Asp Ser Gln Leu His Lys Pro Met Tyr Tyr Phe
                                     55
Leu Ser Met Leu Ser Ser Val Asp Ala Cys Tyr Ser Ser Val Ile
                 65
                                     70
Thr Pro Asn Met Leu Val Asp Phe Thr Thr Lys Asn Lys Val Ile
                                     85
Ser Phe Leu Gly Cys Val Ala Gln Val Phe Leu Ala Cys Ser Phe
                                    100
                 95
Gly Thr Thr Glu Cys Phe Leu Leu Ala Ala Met Ala Tyr Asp Arg
                                    115
                110
Tyr Val Ala Ile Tyr Asn Pro Leu Leu Tyr Ser Val Ser Met Ser
                                    130
                125
Pro Arg Val Tyr Met Pro Leu Ile Asn Ala Ser Tyr Val Ala Gly
                                    145
                140
Ile Leu His Ala Thr Ile His Thr Val Ala Thr Phe Ser Leu Ser
                                    160
                155
Phe Cys Gly Ala Asn Glu Ile Arg Arg Val Phe Cys Asp Ile Pro
                                    175
                170
Pro Leu Leu Ala Ile Ser Tyr Ser Asp Thr His Thr Asn Gln Leu
                                    190
                185
Leu Leu Phe Tyr Phe Val Gly Ser Ile Glu Leu Val Thr Ile Leu
                                    205
                200
Ile Val Leu Ile Ser Tyr Gly Leu Ile Leu Leu Ala Ile Leu Lys
```

```
225
                                    220
                215
Met Tyr Ser Ala Glu Gly Arg Arg Lys Val Phe Ser Thr Cys Gly
                                    235
                230
Ala His Leu Thr Gly Val Ser Ile Tyr Tyr Gly Thr Ile Leu Phe
                                    250
                245
Met Tyr Val Arg Pro Ser Ser Ser Tyr Ala Ser Asp His Asp Met
                                     265
                260
Ile Val Ser Ile Phe Tyr Thr Ile Val Ile Pro Leu Asn Pro
                                     280
                275
Val Ile Tyr Ser Leu Arg Asn Lys Asp Val Lys Asp Ser Met Lys
                                     295
                290
Lys Met Phe Gly Lys Asn Gln Val Ile Asn Lys Val Tyr Phe His
                                     310
Thr Lys Lys
<210> 19
<211> 321
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7476077CD1
<400> 19
Met Glu Ser Pro Asn His Thr Asp Val Asp Pro Ser Val Phe Phe
Leu Leu Gly Ile Pro Gly Leu Glu Gln Phe His Leu Trp Leu Ser
                                      25
                  20
Leu Pro Val Cys Gly Leu Gly Thr Ala Thr Ile Val Gly Asn Ile
                                      40
                 35
Thr Ile Leu Val Val Val Ala Thr Glu Pro Val Leu His Lys Pro
                                      55
                 5.0
Val Tyr Leu Phe Leu Cys Met Leu Ser Thr Ile Asp Leu Ala Ala
                                      70
                  65
Ser Val Ser Thr Val Pro Lys Leu Leu Ala Ile Phe Trp Cys Gly
                                      85
                 80
Ala Gly His Ile Ser Ala Ser Ala Cys Leu Ala Gln Met Phe Phe
                                     100
                 95
Ile His Ala Phe Cys Met Met Glu Ser Thr Val Leu Leu Ala Met
                                     115
                 110
Ala Phe Asp Arg Tyr Val Ala Ile Cys His Pro Leu Arg Tyr Ala
                                     130
                 125
Thr Ile Leu Thr Asp Thr Ile Ile Ala His Ile Gly Val Ala Ala
                                     145
                 140
Val Val Arg Gly Ser Leu Leu Met Leu Pro Cys Pro Phe Leu Ile
                                     160
                 155
Gly Arg Leu Asn Phe Cys Gln Ser His Val Ile Leu His Thr Tyr
                                     175
                 170
 Cys Glu His Met Ala Val Val Lys Leu Ala Cys Gly Asp Thr Arg
                                     190
                 185
 Pro Asn Arg Val Tyr Gly Leu Thr Ala Ala Leu Leu Val Ile Gly
                                     205
                 200
 Val Asp Leu Phe Cys Ile Gly Leu Ser Tyr Ala Leu Ser Ala Gln
                                     220
                 215
 Ala Val Leu Arg Leu Ser Ser His Glu Ala Arg Ser Lys Ala Leu
                                     235
                 230
Gly Thr Cys Gly Ser His Val Cys Val Ile Leu Ile Ser Tyr Thr
                                     250
                 245
Pro Ala Leu Phe Ser Phe Phe Thr His Arg Phe Gly His His Val
                                     265
                 260
 Pro Val His Ile His Ile Leu Leu Ala Asn Val Tyr Leu Leu Leu
```

PCT/US01/16833 WO 01/90359

```
285
                                    280
                275
Pro Pro Ala Leu Asn Pro Val Val Tyr Gly Val Lys Thr Lys Gln
                                   295
                290
Ile Arg Lys Arg Val Val Arg Val Phe Gln Ser Gly Gln Gly Met
                            310
                305
Gly Ile Lys Ala Ser Glu
                320
<210> 20
<211> 313
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7476113CD1
<400> 20
Met Leu Leu Thr Asp Arg Asn Thr Ser Gly Thr Thr Phe Thr Leu
                                     10
                  5
Leu Gly Phe Ser Asp Tyr Pro Glu Leu Gln Val Pro Leu Phe Leu
                                     25
                 20
Val Phe Leu Ala Ile Tyr Asn Val Thr Val Leu Gly Asn Ile Gly
                                     40
                 35
Leu Ile Val Ile Ile Lys Ile Asn Pro Lys Leu His Thr Pro Met
                                      55
                 50
Tyr Phe Phe Leu Ser Gln Leu Ser Phe Val Asp Phe Cys Tyr Ser
                                     70
                 65
Ser Ile Ile Ala Pro Lys Met Leu Val Asn Leu Val Val Lys Asp
                                     85
                 80
Arg Thr Ile Ser Phe Leu Gly Cys Val Val Gln Phe Phe Phe Phe
                                     100
                 95
Cys Thr Phe Val Val Thr Glu Ser Phe Leu Leu Ala Val Met Ala
                                     115
                110
Tyr Asp Arg Phe Val Ala Ile Cys Asn Pro Leu Leu Tyr Thr Val
                                    130
                125
Asn Met Ser Gln Lys Leu Cys Val Leu Leu Val Val Gly Ser Tyr
                                                         150
                                     145
                140
Ala Trp Gly Val Ser Cys Ser Leu Glu Leu Thr Cys Ser Ala Leu
                                     160
                155
Lys Leu Cys Phe His Gly Phe Asn Thr Ile Asn His Phe Phe Cys
                                                         180
                                     175
                170
Glu Phe Ser Ser Leu Leu Ser Leu Ser Cys Ser Asp Thr Tyr Ile
                                     190
                185
Asn Gln Trp Leu Leu Phe Phe Leu Ala Thr Phe Asn Glu Ile Ser
                                     205
                200
 Thr Leu Leu Ile Val Leu Thr Ser Tyr Ala Phe Ile Val Val Thr
                                     220
                215
 Ile Leu Lys Met Arg Ser Val Ser Gly Arg Arg Lys Ala Phe Ser
                                     235
                 230
 Thr Cys Ala Ser His Leu Thr Ala Ile Thr Ile Phe His Gly Thr
                                     250
                 245
 Ile Leu Phe Leu Tyr Cys Val Pro Asn Ser Lys Asn Ser Arg His
                                     265
                 260
 Thr Val Lys Val Ala Ser Val Phe Tyr Thr Val Val Ile Pro Met
                                     280
                 275
 Leu Asn Pro Leu Ile Tyr Ser Leu Arg Asn Lys Asp Val Lys Asp
                                     295
                 290
 Thr Val Thr Glu Ile Leu Asp Thr Lys Val Phe Ser Tyr
                                     310
                 305
 <210> 21
```

<211> 328

```
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7476117CD1
Met Phe Leu Thr Glu Arg Asn Thr Thr Ser Glu Ala Thr Phe Thr
Leu Leu Gly Phe Ser Asp Tyr Leu Glu Leu Gln Ile Pro Leu Phe
                 20
Phe Val Phe Leu Ala Val Tyr Gly Phe Ser Val Val Gly Asn Leu
                 35
Gly Met Ile Val Ile Ile Lys Ile Asn Pro Lys Leu His Thr Pro
                 50
                                      55
Met Tyr Phe Phe Leu Asn His Leu Ser Phe Val Asp Phe Cys Tyr
                 65
Ser Ser Ile Ile Ala Pro Met Met Leu Val Asn Leu Val Val Glu
                 80
Asp Arg Thr Ile Ser Phe Ser Gly Cys Leu Val Gln Phe Phe
                 95
                                     100
Phe Cys Thr Phe Val Val Thr Glu Leu Ile Leu Phe Ala Val Met
                                    115
                110
Ala Tyr Asp His Phe Val Ala Ile Cys Asn Pro Leu Leu Tyr Thr
                                    130
Val Ala Ile Ser Gln Lys Leu Cys Ala Met Leu Val Val Val Leu
                                    145
                140
Tyr Ala Trp Gly Val Ala Cys Ser Leu Thr Leu Ala Cys Ser Ala
                                    160
                155
Leu Lys Leu Ser Phe His Gly Phe Asn Thr Ile Asn His Phe Phe
                                    175
                170
Cys Glu Leu Ser Ser Leu Ile Ser Leu Ser Tyr Pro Asp Ser Tyr
                185
                                    190
Leu Ser Gln Leu Leu Phe Thr Val Ala Thr Phe Asn Glu Ile
                                    205
                200
Ser Thr Leu Leu Ile Ile Leu Thr Ser Tyr Ala Phe Ile Ile Val
                                    220
                215
Thr Thr Leu Lys Met Pro Ser Ala Ser Gly His Arg Lys Val Phe
                                    235
                230
Ser Thr Cys Ala Ser His Leu Thr Ala Ile Thr Ile Phe His Gly
                                    250
                245
Thr Ile Leu Phe Leu Tyr Cys Val Pro Asn Ser Lys Asn Ser Arg
                                    265
                260
His Thr Val Lys Val Ala Ser Val Phe Tyr Thr Val Val Ile Pro
                                    280
                275
Leu Leu Asn Pro Leu Ile Tyr Ser Leu Arg Asn Lys Asp Val Lys
                290
                                    295
Asp Ala Ile Arg Lys Ile Ile Asn Thr Lys Tyr Phe His Ile Lys
                305
                                    310
His Arg His Trp Tyr Pro Phe Asn Phe Val Ile Glu Gln
                320
                                    325
<210> 22
<211> 324
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7476079CD1
<400> 22
```

20/33

```
Met Asn His Met Ser Ala Ser Leu Lys Ile Ser Asn Ser Ser Lys
                                     10
Phe Gln Val Ser Glu Phe Ile Leu Leu Gly Phe Pro Gly Ile His
                                     25
                 20
Ser Trp Gln His Trp Leu Ser Leu Pro Leu Ala Leu Leu Tyr Leu
                                     40
                 35
Ser Ala Leu Ala Ala Asn Thr Leu Ile Leu Ile Ile Ile Trp Gln
                                      55
Asn Pro Ser Leu Gln Gln Pro Met Tyr Ile Phe Leu Gly Ile Leu
                                     70
                 65
Cys Met Val Asp Met Gly Leu Ala Thr Thr Ile Ile Pro Lys Ile
                 80
                                     85
Leu Ala Ile Phe Trp Phe Asp Ala Lys Val Ile Ser Leu Pro Glu
                                    100
                 95
Cys Phe Ala Gln Ile Tyr Ala Ile His Phe Phe Val Gly Met Glu
                                    115
                110
Ser Gly Ile Leu Leu Cys Met Ala Phe Asp Arg Tyr Val Ala Ile
                125
                                    130
Cys His Pro Leu Arg Tyr Pro Ser Ile Val Thr Ser Ser Leu Ile
                140
                                    145
Leu Lys Ala Thr Leu Phe Met Val Leu Arg Asn Gly Leu Phe Val
                                    160
                155
Thr Pro Val Pro Val Leu Ala Ala Gln Arg Asp Tyr Cys Ser Lys
                170
                                    175
Asn Glu Ile Glu His Cys Leu Cys Ser Asn Leu Gly Val Thr Ser
                185
                                    190
Leu Ala Cys Asp Asp Arg Arg Pro Asn Ser Ile Cys Gln Leu Val
                200
                                    205
Leu Ala Trp Leu Gly Met Gly Ser Asp Leu Ser Leu Ile Ile Leu
                215
                                    220
Ser Tyr Ile Leu Ile Leu Tyr Ser Val Leu Arg Leu Asn Ser Ala
                                    235
                230
Glu Ala Ala Ala Lys Ala Leu Ser Thr Cys Ser Ser His Leu Thr
                                    250
                245
Leu Ile Leu Phe Phe Tyr Thr Ile Val Val Val Ile Ser Val Thr
                260
                                    265
His Leu Thr Glu Met Lys Ala Thr Leu Ile Pro Val Leu Leu Asn
                275
                                    280
Val Leu His Asn Ile Ile Pro Pro Ser Leu Asn Pro Thr Val Tyr
                290
                                    295
Ala Leu Gln Thr Lys Glu Leu Arg Ala Ala Phe Gln Lys Val Leu
                305
                                    310
Phe Ala Leu Thr Lys Glu Ile Arg Ser
                320
<210> 23
<211> 315
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7476112CD1
<400> 23
Met Gln Gly Leu Asn His Thr Ser Val Ser Glu Phe Ile Leu Val
                                     10
Gly Phe Ser Ala Phe Pro His Leu Gln Leu Met Leu Phe Leu Leu
                                     25
                 20
Phe Leu Leu Met Tyr Leu Phe Thr Leu Leu Gly Asn Leu Leu Ile
                 35
                                     40
Met Ala Thr Val Trp Ser Glu Arg Ser Leu His Met Pro Met Tyr
```

```
Leu Phe Leu Cys Ala Leu Ser Ile Thr Glu Ile Leu Tyr Thr Val
                                     70
                 65
Ala Ile Ile Pro Arg Met Leu Ala Asp Leu Leu Ser Thr Gln Arg
                                                          90
                                     85
                 80
Ser Ile Ala Phe Leu Ala Cys Ala Ser Gln Met Phe Phe Ser Phe
                                    100
                 95
Ser Phe Gly Phe Thr His Ser Phe Leu Leu Thr Val Met Gly Tyr
                                    115
                110
Asp Arg Tyr Val Ala Ile Cys His Pro Leu Arg Tyr Asn Val Leu
                                    130
                125
Met Ser Leu Arg Gly Cys Thr Cys Arg Val Gly Cys Ser Trp Ala
                                    145
                140
Gly Gly Leu Val Met Gly Met Val Val Thr Ser Ala Ile Phe His
                                    160
                155
Leu Ala Phe Cys Gly His Lys Glu Ile His His Phe Phe Cys His
                                    175
                170
Val Pro Pro Leu Leu Lys Leu Ala Cys Gly Asp Asp Val Leu Val
                                                         195
                                    190
                185
Val Ala Lys Gly Val Gly Leu Val Cys Ile Thr Ala Leu Leu Gly
                                                         210
                200
                                     205
Cys Phe Leu Leu Ile Leu Leu Ser Tyr Ala Phe Ile Val Ala Ala
                                    220
                215
Ile Leu Lys Ile Pro Ser Ala Glu Gly Arg Asn Lys Ala Phe Ser
                                     235
                230
Thr Cys Ala Ser His Leu Thr Val Val Val His Tyr Gly Phe
                                     250
                                                         255
                245
Ala Ser Val Ile Tyr Leu Lys Pro Lys Gly Pro Gln Ser Pro Glu
                                     265
                                                         270
                260
Gly Asp Thr Leu Met Gly Ile Thr Tyr Thr Val Leu Thr Pro Phe
                                                         285
                                     280
                275
Leu Ser Pro Ile Ile Phe Ser Leu Arg Asn Lys Glu Leu Lys Val
                                     295
                290
Ala Met Lys Lys Thr Cys Phe Thr Lys Leu Phe Pro Gln Asn Cys
                                                         315
                                     310
                305
<210> 24
<211> 2739
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475208CB1
<400> 24
atgctgggcc ctgctgtcct gggcctcagc ctctgggctc tcctgcaccc tgggacgggg 60
gccccattgt gcctgtcaca gcaacttagg atgaaggggg actacgtgct gggggggctg 120
ttcccctgg gcgaggccga ggaggctggc ctccgcagcc ggacacggcc cagcagccct 180
gtgtgcacca ggttctcctc aaacggcctg ctctgggcac tggccatgaa aatggccgtg 240
gaggagatca acaacaagtc ggatctgctg cccgggctgc gcctgggcta cgacctcttt 300
gatacgtgct cggagcctgt ggtggccatg aagcccagcc tcatgttcct ggccaaggca 360
ggcagccgcg acatcgccgc ctactgcaac tacacgcagt accagccccg tgtgctggct 420
gtcatcgggc cccactcgtc agagctcgcc atggtcaccg gcaagttctt cagcttcttc 480
ctcatgcccc aggtggcgcc ccccaccatc acccacccc acccagccct gcccgtggga 540
gcccctgtgt caggagatgc ctcttggccc ttgcaggtca gctacggtgc tagcatggag 600
ctgctgagcg cccgggagac cttcccctcc ttcttccgca ccgtgcccag cgaccgtgtg 660
cagctgacgg ccgccgcgga gctgctgcag gagttcggct ggaactgggt ggccgccctg 720
ggcagcgacg acgagtacgg ccggcagggc ctgagcatct tctcggccct ggctcggcac 780
geggeatetg categegeae gagggeetgg tgeegetgee eegtgeagga egteetgeae 840
caggtgaacc agagcagcgt gcaggtggtg ctgctgttcg cctccgtgca cgccgcccac 900
geeetettea actacageat cageageagg etetegeeca aggtgtgggt ggeeagegag 960
```

gcctggctga cctctgacct ggtcatgggg ctgcccggca tggcccagat gggcacggtg 1020

```
cttggcttcc tccagagggg tgcccagctg cacgagttcc cccagtacgt gaagacgcac 1080
ctggccctgg ccaccgaccc ggccttctgc tctgccctgg gcgagaggga gcagggtctg 1140
gaggaggacg tggtgggcca gcgctgcccg cagtgtgact gcatcacgct gcagaaccgt 1200
geccaggeee tgeacaacae tetteagtge aacgeeteag getgeeeege geaggaeece 1260
gtgaageeet ggeageteet ggagaacatg tacaacetga cettecacgt gggegggetg 1320
ccgctgcggt tcgacagcag cggaaacgtg gacatggagt acgacctgaa gctgtgggtg 1380
tggcaggget cagtgcccag gctccacgac gtgggcaggt tcaacggcag cctcaggaca 1440
gagegeetga agateegetg geacacgtet gacaaccage egageagage cagaccecag 1500
geetgtgege agaageeegt gteeeggtge tegeggeagt geeaggaggg eeaggtgege 1560
egggtcaagg ggttccactc etgetgctac gactgtgtgg actgegagge gggcagetac 1620
cggcaaaacc cagacgacat cgcctgcacc ttttgtggcc aggatgagtg gtccccggag 1680
cgaagcacac gctgcttccg ccgcaggtct cggttcctgg catggggcga gccggctgtg 1740
ctgctgctgc tcctgctgct gagcctggcg ctgggccttg tgctggctgc tttggggctg 1800
ttcgttcacc atcgggacag cccactggtt caggcctcgg gggggcccct ggcctgcttt 1860
ggectggtgt geetgggeet ggtetgeete agegteetee tgtteeetgg ceageceage 1920
cctgcccgat gcctggccca gcagcccttg tcccacctcc cgctcacggg ctgcctgagc 1980
acactettee tgeaggegge egagatette gtggagteag aactgeetet gagetgggea 2040.
gaccggctga gtggctgcct gcgggggccc tgggcctggc tggtggtgct gctggccatg 2100
ctggtggagg tcgcactgtg cacctggtac ctggtggcct tcccgccgga ggtggtgact 2160
ggactggcac atgctgccca cggaggcgct ggtgcactgc cgcacacgct cctgggtcag 2220
ctteggeeta gegeacgeea ecatgeeacg etggeettte tetgetteae tgggeacttt 2280
cctggtgcgg agccagccgg gccgctacaa ccgtgccacg tggcctcaca catttgccat 2340
getggeetae tteateaeae tgggteteae tttgtgeece teetggeaea atgtgeaggt 2400
ggtcactcag gcccagccgt gcagatgggc gccctcctgc tctgtgtcct gggcatcctg 2460
getgeettee acetgeecag gtgttacetg etcatgegge agecaggget caacacecee 2520
gagttettee tgggagggg ecetggggat gecaeaagge cagaatgaeg ggaacaeagg 2580
aaatcagggg aaacatgggt gacccaacca ctgtgatctc agccccggtg aacccagact 2640
tagctgcgat ccccccaag ccagcaatga cccgtgtctc gctacagaga ccctcccgct 2700
                                                                   2739
ctaggttctg accccaggtt gtctcctgac ctgaccccc
<210> 25
<211> 993
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475101CB1
<400> 25
atggaaggtt tttatctgcg cagatcacac gaactacaag ggatgggaaa accaggcaga 60
gtgaaccaaa ccactgtttc agacttcctc cttctaggac tctctgagtg gccagaggag 120
cagectette tgtttggcat etteettgge atgtacetgg teaceatggt ggggaacetg 180
ctcattatcc tggccatcag ctctgaccca cacctccata ctcccatgta cttctttctg 240
gccaacctgt cattaactga tgcctgtttc acttctgcct ccatccccaa aatgctggcc 300
aacattcata cccagagtca gatcatctcg tattctgggt gtcttgcaca gctatatttc 360
ctccttatgt ttggtggcct tgacaactgc ctgctggctg tgatggcata tgaccgctat 420
gtggccatct gccaaccact ccattacagc acatctatga gtccccagct ctgtgcacta 480
atgctgggtg tgtgctgggt gctaaccaac tgtcctgccc tgatgcacac actgttgctg 540
accegegtgg ctttctgtgc ccagaaagcc atcectcatt tctattgtga tcctagtgct 600
ctcctgaagc ttgcctgctc agatacccat gtaaacgagc tgatgatcat caccatgggc 660
ttgctgttcc tcactgttcc cctcctgctg atcgtcttct cctatgtccg cattttctgg 720
getgtgtttg teateteate teetggaggg agatggaagg cettetetae etgtggttet 780
catctcacgg tggttctgct cttctatggg tctcttatgg gtgtgtattt acttcctcca 840
 tcaacttact ctacagagag ggaaagtagg gctgctgttc tctatatggt gattattccc 900
acgctaaacc cattcattta tagcttgagg aacagagaca tgaaggaggc tttgggtaaa 960
                                                                   993
ctttttgtca gtggaaaaac attctttta tga
 <210> 26
 <211> 990
 <212> DNA
 <213> Homo sapiens
```

```
<220>
<221> misc_feature
<223> Incyte ID No: 7475152CB1
<220>
<221> unsure
<222> 1
<223> a, t, c, g, or other
<400> 26
ngtgagtaca agtccatggg aatgtccaac ctgacaagac tctctgaatt tattctcttg 60
ggactetect eteggtetga agaccagagg ceaetetttg ecetetttet tateatatae 120
ctggtcactt tgatgggaaa tctgctcatc atcttggcta tccactctga tcctcgactt 180
caaaacccta tgtatttttt cctaagcatc ttgtcctttg ctgatatttg ctacacaaca 240
gtcatagtcc caaagatgct cgtgaacttc ttatcagaga aaaagaccat ttcctatgct 300
gaatgtctgg cacagatgta tttcttcctg gtttttggaa acatagatag ttatctcctg 360
geggetatgg ceatcaaceg etgtgtagee atttgtaace cattecatta tgtcactgtt 420
atgaaccgca gatgctgtgt gttgctacta gcattcccca tcactttctc ctatttccac 480
tctctcctac atgtcctcct ggtgaatcgg ctcacctttt gtacatcaaa tgttatccat 540
cattttttt gtgatgtcaa ccctgtgctg aaactgtcct gctcctccac ctttgtcaat 600
gaaattgtgg ccatgacaga agggctggcc tctgtgatgg ctccatttgt ctgtatcatc 660
atctcttatc taagaattct catcgctgtt ctcaagattc cctcagcagc tggaaaacac 720
aaagcettet ceacetgeag eteceatete aetgtggtga ttetgtttta tgggagtatt 780
agetatgtet atttgcagee tttgtccage tatactgtca aggacegaat ageaacaate 840
aactacactg tgttgacatc agtgttgaac ccatttatct acagtttaag aaacaaagac 900
atgaaacggg gcttacagaa attgataaac aagattaagt ctcaaatgag taggttctct 960
acaaagacca ataaaatctg tggaccctga
<210> 27
<211> 1125
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475164CB1
atggccatct gtaacccgct tctgtataac attgccatgt cccctaaagt gtgttccagc 60
catatgcttg gttcctactt ctggcccttt tctggggcca tggcccatac caggtgcatg 120
ctgaaactga cctcctgtga ggcaaacacc atcaaccact acttctgtga cacccttcat 180
ctgctccage tetettgcac cagcacctac gtcagggetg agtttatect ggcaggettg 240
acacaacgcc cagaacttca actgccactc ttcctcctgt tccttggaat atatgtggtc 300
acagtggtgg ggaacctggg catgatette ttaattgete teagttetea aetttaecet 360
ccagtgtatt attttctcag tcatttgtct ttcattgatc tctgctactc ctctgtcatt 420
acccctaaga tgctggtgaa ctttgttcca gaggagaaca ttatctcctt tctggaatgc 480
attactcaac tttatttctt ccttattttt gtaattgcag aaggctacct tctgacagcc 540
atggaatatg accepttatgt tgctatctgt cgcccactgc tttacaatat tgtcatgtcc 600
cacagggtct gttccataat gatggctgtg gtatactcac tgggttttct gtgggccaca 660
gtccatacta cccgcatgtc agtgttgtca ttctgtaggt ctcatacggt cagtcattat 720
ttttgtgata ttctcccctt attgactctg tcttgctcca gcacccacat caatgagatt 780
ctgctgttca ttattggagg agttaatacc ttagcaacta cactggcggt ccttatctct 840
tatgctttca ttttctctag tatccttggt attcattcca ctgaggggca atccaaagcc 900
tttggcactt gtagctccca tctcttggct gtgggcatct tttttgggtc tataacattc 960
atgtatttca agcccccttc cagcactact atggaaaaag agaaggtgtc ttctgtgttc 1020
tacatcacaa taatccccat gctgaatcct ctaatctata gcctgaggaa caaggatgtg 1080
aaaaatgcac tgaagaagat gactagggga aggcagtcat cctga
                                                                  1125
<210> 28
<211> 939
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> misc_feature
<223> Incyte ID No: 7475170CB1
atggatcaga aaaatggaag ttctttcact ggatttatcc tactgggttt ctctgacagg 60
<400> 28
cctcagctgg agctagtcct ctttgtggtt cttttgatct tctatatctt cactttgctg 120
gggaacaaaa ccatcattgt attatctcac ttggacccac atcttcacac tcctatgtat 180
tttttcttct ccaacctaag ctttttggat ctgtgttaca caaccggcat tgttccacag 240
ctcctggtta atctcagggg agcagacaaa tcaatctcct atggtggttg tgtagttcag 300
ctgtacatet ctctaggett gggatetaca gaatgegtte tettaggagt gatggtattt 360
gaccgctatg cagctgtttg caggcccctc cactacacag tagtcatgca cccttgtctg 420
tatgtgctga tggcttctac ttcatgggtc attggttttg ccaactecct attgcagacg 480
gtgctcatct tgcttttaac actttgtgga agaaataaat tagaacactt tctttgtgag 540
gttectecat tgeteaaget tgeetgtgtt gacactacta tgaatgaate tgaactette 600
tttgtcagtg tcattattct tcttgtacct gttgcattaa tcatattctc ctatagtcag 660
attgtcaggg cagtcatgag gataaagtta gcaacagggc agagaaaagt gtttgggaca 720
tgtggctccc acctcacagt ggtttccctg ttctacggca cagctatcta tgcttacctc 780
cageceggea acaactacte teaggateag ggeaagttea tetetetet etacaceate 840
attacaccca tgatcaaccc cctcatatat acactgagga acaaggatgt gaaaggagca 900
cttaagaagg tgctctggaa gaactacgac tccagatga
<210> 29
<211> 978
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
 <223> Incyte ID No: 7475197CB1
 <400> 29
atgaagactt ttagtteett tetteagate ggeagaaata tgeateaagg aaaccaaace 60
accatcactg aattcattct cctgggattt ttcaagcagg atgagcatca aaacctcctc 120
tttgtgcttt tcttgggtat gtacctggtc actgtgattg ggaacgggct catcattgtg 180
gctatcagct tggatacgta ccttcatacc cccatgtatc tcttccttgc caatctatcc 240
tttgctgata tttcctccat ttccaactca gtccccaaaa tgctggtgaa tattcaaacc 300
aagagtcaat ccatctctta tgagagctgc atcacacaga tgtacttttc tattgtgttt 360
gtcgtcattg acaatttgct cttggggacc atggcctatg accactttgt ggcgatctgc 420
 caccetetga attatacaat teteatgegg eccaggeteg geattetget cacagteate 480
 teatggttee teagtaatat tattgetetg acacacace ttetgeteat teaattgete 540
 ttetgtaace acaacactet cecacactte ttetgtgact tggcccetet getcaaactg 600
 tectgtteag atacattgat caatgagett gtgttgttta ttgtgggttt ateagttate 660
 atcttcccct ttacactcag cttctttcc tatgtctgca tcatcagagc tgtcctgaga 720
 gtatetteca cacagggaaa gtggaaagee ttetecaett gtggetetea eetgacagtt 780
 gtattactgt tctacggaac cattgtaggc gtgtactttt tcccctcctc cactcaccct 840
 gaggacactg ataagattgg tgctgtccta ttcactgtgg tgacacccat gataaacccc 900
 ttcatctaca gcttgaggaa taaggatatg aaaggtgccc tgagaaagct catcaataga 960
 aaaatttctt ccctttga
 <210> 30
 <211> 936
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID No: 7475210CB1
 <400> 30
 atggaaaacc aatccagcat ttctgaattt ttcctccgag gaatatcagc gcctccagag 60
 caacagcagt coctettegg aatttteetg tgtatgtate ttgtcacett gaetgggaac 120
 ctgctcatca tcctggccat tggctctgac ctgcacctcc acacccccat gtactttttc 180
```

```
ttggccaacc tgtcttttgt tgacatgggt ttaacgtcct ccacagttac caagatgctg 240
gtgaatatac agactcggca tcacaccatc tcctatacgg gttgcctcac gcaaatgtat 300
ttctttctga tgtttggtga tctagacagc ttcttcctgg ctgccatggc gtatgaccgc 360
tatgtggcca tttgccaccc cctctgctac tccacagtca tgaggcccca agtctgtgcc 420
ctaatgcttg cattgtgctg ggtcctcacc aatatcgttg ccctgactca cacgttcctc 480
atggctcggt tgtccttctg tgtgactggg gaaattgctc actttttctg tgacatcact 540
cetgtcetga agetgtcatg ttetgacace cacateaacg agatgatggt ttttgtcttg 600
ggaggcaccg tactcatcgt ccccttttta tgcattgtca cctcctacat ccacattgtg 660
ccagctatec tgagggtccg aacccgtggt ggggtgggca aggccttttc cacctgcagt 720
teceaectet gegttgtttg tgtgttetat gggaecetet teagtgeeta cetgtgteet 780
ccctccattg cctctgaaga gaaggacatt gcagcagctg caatgtacac catagtgact 840
cccatgttga acccctttat ctatagccta aggaacaagg acatgaaggg ggccctaaag 900
                                                                   936
aggetettea gteacaggag tattgtttee tettag
<210> 31
<211> 1035
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475221CB1
<400> 31
atggagette tgacaaataa teteaaattt ateaetgace ettttgtttg taggeteega 60
cacctgagte caacacette agaagaacae atgaaaaata agaacaatgt gactgaattt 120
atcetettag ggeteacaca gaaceetgag gggeaaaagg tittatttgt cacattetta 180
ctaatctaca tggtgacgat aatgggcaac ctgcttatca tagtgaccat catggccage 240
cagtccctgg gttcccccat gtacttttt ctggcttctt tatcattcat agataccgtc 300
tattctactg catttgctcc caaaatgatt gttgacttgc tctctgagaa aaagaccatt 360
teettteagg gttgtatgge teaactittt atggateatt tatttgeigg tgeigaagte 420
attettetgg tggtaatgge etatgatega tacatggeea tetgtaagee tetteatgaa 480
ttgatcacca tgaatcgtcg agtctgtgtt cttatgctgt tggcggcctg gattggaggc 540
tttcttcact cattggttca atttctcttt atttatcagc tccctttctg tggacccaat 600
gtcattgaca acttcctgtg tgatttgtat cccttattga aacttgcttg caccaatacc 660
tatgtcactg ggctttctat gatagctaat ggaggagcga tttgtgctgt caccttcttc 720
actatectge tittectatgg ggtcatatta cactetetta agacteagag tittggaaggg 780
aaacgaaaag ctttctacac ctgtgcatcc cacgtcactg tggtcatttt attctttgtc 840
ccctgtatct tcttgtatgc aaggcccaat tctacttttc ccattgataa atccatgact 900
gtagttctaa cttttataac tcccatgctg aacccactaa tctataccct gaagaatgca 960
gaaatgaaaa gtgccatgag gaaactttgg agtaaaaaag taagcttagc tgggaaatgg 1020
ctgtatcact catga
 <210> 32
 <211> 942
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID No: 7475244CB1
 <400> 32
 atggcatctg aaagaaatca aagcagcaca cccactttta ttctcttggg tttttcagaa 60
 tacccagaaa tccaggttcc actctttctg gttttcttgt tcgtctacac agtcactgta 120
 gtggggaact tgggcatgat aataatcatc agactcaatt caaaactcca tacaatcatg 180
 tactttttcc ttagtcactt gtccttgaca gacttctgtt tttccactgt agttacacct 240
 aaactgttgg agaacttggt tgtggaatac agaaccatct ctttctctgg ttgcatcatg 300
 caattttgtt ttgcttgcat ttttggagtg acagaaactt tcatgttagc agcgatggct 360
 tatgaccgtt ttgtggcagt ttgtaaaccc ttgctgtata ccactattat gtctcagaag 420
 ctctgtgctc ttctggtggc tgggtcctat acatggggga tagtgtgctc cctgatactc 480
 acatattttc ttcttgactt atcgttttgt gaatctacct tcataaataa ttttatctgt 540
 gaccactctg taattgtttc tgcctcctac tcagacccct atatcagcca gaggctatgc 600
```

```
tttattattg ccatattcaa tgaggtgagc agcctaatta tcattctgac atcatatatg 660
cttattttca ctaccattat gaagatgcga tctgcaagtg ggcgccagaa aactttctcc 720
acctgtgcct cccacctgac agccatcact atcttccatg gaactatect tttcctttac 780
tgtgttccta atcctaaaac ttctagcctc atagttacag tggcttctgt gttttacaca 840
gtggcgattc caatgctgaa cccattgatc tacagcctta ggaacaaaga tatcaataac 900
atgtttgaaa aattagttgt caccaaattg atttaccact ga
<210> 33
<211> 942
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475293CB1
<400> 33
atgaagaggg agaatcagag cagtgtgtct gagttcctcc teetggacct ecceatetgg 60
ccagagcagc aggetgtgtt etteacectg ttettgggca tgtacetgat caeggtgetg 120
gggaacctgc tcatcatcct getcatccgg ctggactctc accttcacac ccccatgttc 180
ttetteetea gecaettgge teteaetgae ateteeettt catetgteae tgteecaaag 240
atgttattaa gcatgcaaac tcaggatcaa tccattcttt atgcagggtg tgtaactcag 300
atgtattttt tcatattttt cactgatcta gacaatttcc ttctcacttc aatggcatac 360
gateggtatg tggccatetg teacecete egetacacea etateatgaa agagggaetg 420
tgtaacttac tagtcactgt gtcctggatc ctctcctgta ccaatgccct gtctcacact 480
etecteetgg eccagetgte ettttgtget gacaacacca teccecattt ettetgtgat 540
cttgttgccc tactcaagct ctcatgctca gacatctccc tcaatgagct ggtcattttc 600
acagtgggac aggcagtcat tactctacca ctaatatgca tcttgatctc ttatggccac 660
attggggtca ccatcctcaa ggctccatct actaagggca tcttcaaagc tttgtccacc 720
tgtggctete acctetetgt ggtgtetetg tattatggca caattattgg actgtatttt 780
etececteat ceagtgeete cagtgacaag gacgtaattg cetetgtgat gtacacggtg 840
atcaccccat tgctgaatcc cttcatttat agcctaagga acagggacat aaagggagcc 900
ctggagagac tcttcaacag ggcaacagtc ttatctcaat ga
 <210> 34
 <211> 930
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID No: 7475297CB1
 <400> 34
 atggaaaatc aaaacaatgt gactgaattc attcttctgg gtctcacaga gaacctggag 60
 ctgtggaaaa tattttctgc tgtgtttctt gtcatgtatg tagccacagt gctggaaaat 120
 ctacttattg tggtaactat tatcacaagt cagagtctga ggtcacctat gtatttttt 180
 cttaccttct tgtccctttt ggatgtcatg ttctcatctg tcgttgcccc caaggtgatt 240
 gtagacacce tetecaagag cactaccate teteteaaag getgeeteae ecagetgttt 300
 gtggagcatt tctttggtgg tgtggggatc atcctcctca ctgtgatggc ctatgaccgc 360
 tacgtggcca tctgtaagcc cctgcactac acgatcatca tgagtccacg ggtgtgctgc 420
 ctaatggtag gaggggcttg ggtgggggga tttatgcacg caatgataca acttctcttc 480
 atgtatcaaa taccettctg tggtcctaat atcatagatc actttatatg tgatttgttt 540
 cagttgttga cacttgcctg cacggacacc cacatcctgg gcctcttagt taccctcaac 600
 agtgggatga tgtgtgtggc catctttctt atcttaattg cgtcctacac ggtcatccta 660
 tgctccctga agtcttacag ctctaaaggg cggcacaaag ccctctctac ctgcagctcc 720
 cacctcacgg tggttgtatt gttctttgtc ccctgtattt tcttgtacat gaggcctgtg 780
 gtcactcacc ccatagacaa ggcaatggct gtgtcagact caatcatcac acccatgtta 840
 aatcccttga tctatacact gaggaatgca gaggtgaaaa gtgccatgaa gaaactctgg 900
 atgaaatggg aggctttggc tgggaaataa
 <210> 35
 <211> 942
```

```
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475193CB1
<400> 35
atggaaactg caaattacac caaggtgaca gaatttgttc tcactggcct atcccagact 60
ceagaggtee aactagteet atttgttata tttetateet tetatttgtt cateetacea 120
ggaaatatee ttateatttg caccateagt etagaceete atetgacete teetatgtat 180
ttcctgttgg ctaatctggc cttccttgat atttggtact cttccattac agcccctgaa 240
atgctcatag acttctttgt ggagaggaag ataatttctt ttgatggatg cattgcacag 300
ctcttcttct tacactttgc tggggcttcg gagatgttct tgctcacagt gatggccttt 360
gacctctaca ctgctatctg ccgacccctc cactatgcta ccatcatgaa tcaacgtctc 420
tgctgtatcc tggtggctct ctcctggagg gggggcttca ttcattctat catacaggtg 480
geteteattg ttegaettee tttetgtggg cecaatgagt tagacagtta ettetgtgae 540
atcacacagg ttgtccggat tgcctgtgcc aacaccttcc cagaggagtt agtgatgatc 600
tgtagtagtg gtctgatctc tgtggtgtgt ttgattgctc tgttaatgtc ctatgccttc 660
cttctggcct tgttcaagaa actttcaggc tcaggtgaga ataccaacag ggccatgtcc 720
acctgctatt cccacattac cattgtggtg ctaatgtttg ggccatccat ctacatttat 780
gctcgcccat ttgactcgtt ttccctagat aaagtggtgt ctgtgttcaa tactttaata 840
ttccctttac gtaatcccat tatttacaca ttgagaaaca aggaagtaaa ggcagccatg 900
                                                                   942
aggaagttgg tcaccaaata tattttgtgt aaagagaagt ga
<210> 36
<211> 1029
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475213CB1
<400> 36
atgaagagaa agaacttcac agaagtgtca gaattcattt tcttgggatt ttctagcttt 60
ggaaagcate agataaccet ctttgtggtt ttcctaactg tctacatttt aactetggtt 120
gctaacatca tcattgtgac tatcatctgc attgaccatc atctccacac tcccatgtat 180
ttetteetaa geatgetgge tagtteagag aeggtgtaca caetggteat tgtgeeacga 240
atgettttga geeteatttt teataaccaa ectateteet tggeaggetg tgetacacaa 300
atgttctttt ttgttatctt ggccactaat aattgcttcc tgcttactgc aatggggtat 360
gaccgctatg tggccatctg cagacccctg agatacactg tcatcatgag caagggacta 420
tgtgcccagc tggtgtgtgg gtcctttggc attggtctga ctatggcagt tctccatgtg 480
acagccatgt tcaatttgcc gttctgtggc acagtggtag accacttctt ttgtgacatt 540
tacccagtca tgaaactttc ttgcattgat accactatca atgagataat aaattatggt 600
gtaagttcat ttgtgatttt tgtgcccata ggcctgatat ttatctccta tgtccttgtc 660
atctcttcca tccttcaaat tgcctcagct gagggccgga agaagacctt tgccacctgt 720
gtctcccacc tcactgtggt tattgtccac tgtggctgtg cctccattgc ctacctcaag 780
ccgaagtcag aaagttcaat agaaaaagac cttgttctct cagtgacgta caccatcatc 840
actcccttgc tgaaccctgt tgtttacagt ctgagaaaca aggagataca agaatcactc 900
caagetggat taagactact tgtttctgtg cttgaagatt tcagttttga aagetttttg 960
gctcccattt tacctgaact ctctgacagt caaatctttg agcttgtctg gttaggggat 1020
                                                                   1029
gtggagtag
<210> 37
<211> 933
<212> DNA
 <213> Homo sapiens
<220>
 <221> misc_feature
 <223> Incyte ID No: 7475272CB1
```

```
<400> 37
atggcagaga tgaacctcac cttggtgacc gagttcctcc ttattgcatt cactgaatat 60
cctgaatggg cactccctct cttcctcttg ttattattta tgtatctcat caccgtattg 120
gggaacttag agatgattat tetgateete atggateace ageteeaege tecaatgtat 180
tteettetga gteacetege ttteatggae gtetgetaet catetateae tgteececag 240
atgctggcag tgctgctgga gcatggggca gctttatctt acacacgctg tgctgctcag 300
ttetttetgt teacettett tggttecate gactgetace tettggeeet catggeetat 360
gaccgctact tggctgtgtg ccagccctg ctttatgtca ccatcctgac acagcaggcc 420
cgcttgagtc ttgtggctgg ggcttacgtt gctggtctca tcagtgcctt ggtgcggaca 480
gtetcageet teactetete ettetgtgga accagtgaga ttgaetttat tttetgtgae 540
etecetecte tgttaaagtt gacetgtggg gagagetaca eteaagaagt getgattatt 600
atgtttgcca titttgtcat ccctgcttcc atggtggtga tcttggtgtc ctacctgttt 660
atcatcgtgg ccatcatggg gatccctgct ggaagccagg ccaagacctt ctccacctgc 720
acctcccacc tcactgctgt gtcactcttc tttggtaccc tcatcttcat gtacttgaga 780
ggtaactcag atcagtcttc ggagaagaat cgggtagtgt ctgtgcttta cacagaggtc 840
atccccatgt tgaatcccct catctacagc ctgaggaaca aggaagtgaa ggaggccctg 900
                                                                   933
agaaaaattc tcaatagagc caagttgtcc taa
<210> 38
<211> 948
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475200CB1
<220>
<221> unsure
<222> 1
<223> a, t, c, g, or other
<400> 38
ngcaatactg cacctgcatt ctcagtgacc ttggaatcta tggacatacc acaaaatatc 60
acagaatttt tcatgctggg gctctcacag aactcagagg tacagagagt tctctttgtg 120
gtetttttge tgatetatgt ggteaeggtt tgtggeaaca tgeteattgt ggteaetate 180
acctccagec ccaegetgge tteecetgtg tatttttee tggccaacet atcetttatt 240
gacacctttt attettette tatggeteet aaacteattg etgacteatt gtatgagggg 300
agaaccatct cttatgagtg ctgcatggct cagctctttg gagctcattt tttgggaggt 360
gttgagatca ttctgctcac agtgatggct tatgaccgct atgtggccat ctgtaagccc 420
ctgcacaata ctaccatcat gaccaggcat ctctgtgcca tgcttgtagg ggtggcttgg 480
cttgggggct tcctgcattc attggttcag ctcctcctgg tcctttggtt gcccttctgt 540
gggcccaatg tgatcaatca ctttgcctgt gacttgtacc ctttgctgga agttgcctgc 600
 accaatacgt atgtcattgg totgctggtg gttgccaaca gtggtttaat ctgcctgttg 660
 aactteetea tgetggetge etectacatt gteateetgt acteettgag gteecacagt 720
 gcagatggga gatgcaaagc cetetecace tgtggagece actteattgt tgttgeettg 780
 ttetttgtge cetgtatatt tacttatgtg catceatttt ctactttace tatagacaaa 840
 aatatggcat tattttatgg tattctgaca cctatgttga atccactcat ttataccctg 900
 agaaatgaag aggtaaaaaa tgccatgaga aagctcttta catggtaa
 <210> 39
 <211> 951
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID No: 7475121CB1
 <400> 39
 atgectagte agaactatag cateatatet gaatttaace tetttggett etcageette 60
 ceccageace teetgeecat ettgtteetg etgtacetee tgatgtteet gtteacattg 120
 ctgggcaacc ttctcatcat ggccacaatc tggattgaac acagactcca cacacccatg 180
```

```
tacetettet tgtgcaccet etcegtetet gagattetgt teaetgttge cateacceet 240
cgcatgctgg ctgatctgct ttccacccat cattccatca cctttgtggc ttgtgccaac 300
cagatgttet teteetteat gtttggette acteaeteet teetteteet ggteatggge 360
tatgatcgct atgtggccat ctgccaccca ctgcgttaca atgtgctcat gagcccccgt 420
gactgtgccc atcttgtggc ctgtacctgg gctggtggct cagtcatggg gatgatggtg 480
acaacgatag ttttccacct cactttctgt gggtctaatg tgatccacca ttttttctgt 540
catgtgcttt ccctcttgaa gttggcctgt gaaaacaaga catcatctgt catcatgggt 600
gtgatgctgg tgtgtgtcac agccctgata ggctgtttat tcctcatcat cctctcctat 660
gtcttcattg tggctgccat cttgaggatt ccctctgccg aaggccggca caagacattt 720
tetacgtgtg tateceaect caetgtggtg gteaegeaet atagttttge eteettate 780
tacctcaagc ccaagggcct ccattctatg tacagtgacg ccttgatggc caccacctat 840
actgtcttca cccccttcct tagcccaatc attttcagcc taaggaacaa ggagctgaag 900
aatgccataa ataaaaactt ttacagaaaa ttctgtcctc caagttcctg a
<210> 40
<211> 1113
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475165CB1
<400> 40
atgctggtct tgaactcctg ggctcaagtg atccactggc ctcagcctcc caaagtgctg 60
ggattacagc ctttggaaaa aacccagtac ggcttcctag gaacagatcg tgtagaagag 120
aaaacttcag tgataaccat cagagttagt gtgacccaca gacacaacag ctacatggaa 180
gcagaaaacc ttacagaatt atcaaaattt ctcctcctgg gactctcaga tgatcctgaa 240
ctgcagcccg tcctctttgg gctgttcctg tccatgtacc tggtcacggt gctggggaac 300
ctgctcatca ttctggccgt cagctctgac tcccacctcc acacccccat gtacttcttc 360
ctctccaacc tgtcctttgt tgacatctgt ttcatctcca ccacagtccc caagatgcta 420
gtgagcatcc aggcacggag caaagacatc tcctacatgg ggtgcctcac tcaggtgtat 480
tttttaatga tgtttgctgg aatggatact ttcctactgg ccgtgatggc ctatgaccgg 540
tttgtggcca tctgccaccc actgcactac acggtcatca tgaacccctg cctctgtggc 600
ctcctggttc tggcatcttg gttcatcatt ttctggttct ccctggttca tattctactg 660
atgaagaggt tgaccttctc cacaggcact gagattccgc atttcttctg tgaaccggct 720
caggtcctca aggtggcctg ctctaacacc ctcctcaata acattgtctt gtatgtggcc 780
acggcactgc tgggtgtgtt tcctgtagct gggatcctct tctcctactc tcagattgtc 840
tcctccttaa tgggaatgtc ctccaccaag ggcaagtaca aagccttttc cacctgtgga 900
totcacctct gtgtggtctc cttgttctat ggaacaggac ttggggtcta tctgagttct 960
gctgtgaccc attcttccca gagcagctcc accgcctcag tgatgtacgc catggtcacc 1020
cccatgctga accccttcat ctacagcctg aggaacaagg atgtgaaggg ggccctggaa 1080
                                                                  1113
agactectea geagggeega etettgteea tga
<210> 41
<211> 957
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7475273CB1
atgaagaatg tcactgaagt taccttattt gtactgaagg gcttcacaga caatcttgaa 60
ctgcagacta tcttcttctt cctgtttcta gcaatctacc tcttcactct catgggaaat 120
ttaggactga ttttagtggt cattagggat tcccagctcc acaaacccat gtactatttt 180
ctgagtatgt tgtcttctgt ggatgcctgc tattcctcag ttattacccc aaatatgtta 240
gtagatttta cgacaaagaa taaagtcatt tcattccttg gatgtgtagc acaggtgttt 300
cttgcttgta gttttggaac cacagaatgc tttctcttgg ctgcaatggc ttatgatcgc 360
tatgtagcca tctacaaccc tctcctgtat tcagtgagca tgtcacccag agtctacatg 420
ccactcatca atgcttccta tgttgctggc attttacatg ctactataca tacagtggct 480
acatttagcc tatccttctg tggagccaat gaaattaggc gtgtcttttg tgatatccct 540
```

```
cetetecttg ctatttetta ttetgacaet cacacaaace agettetaet ettetaettt 600
gtgggctcta tcgagctggt cactatectg attgttctga tctcctatgg tttgattctg 660
ttggccattc tgaagatgta ttctgctgaa gggaggagaa aagtcttctc cacatgtgga 720
geteacetaa etggagtgte aatttattat gggacaatee tetteatgta tgtgagacea 780
agttccagct atgcttcgga ccatgacatg atagtgtcaa tattttacac cattgtgatt 840
cccttgctga atcccgtcat ctacagtttg aggaacaaag atgtaaaaga ctcaatgaaa 900
aaaatgtttg ggaaaaatca ggttatcaat aaagtatatt ttcatactaa aaaataa
<210> 42
<211> 966
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7476077CB1
<400> 42
atggaatctc ctaatcacac tgatgttgac ccttctgtct tcttcctcct gggcatccca 60
ggtctggaac aatttcattt gtggctctca ctccctgtgt gtggcttagg cacagccaca 120
attgtgggca atataactat tetggttgtt gttgccactg aaccagtett gcacaagcet 180
gtgtacettt ttetgtgcat geteteaace ategaettgg etgeetetgt etecacagtt 240
cecaagetae tggetatett etggtgtgga geeggacata tatetgeete tgeetgeetg 300
gcacagatgt tetteattea tgeettetge atgatggagt ceaetgtget actggecatg 360
gcetttgate gctacgtggc catetgccac ccactccgct atgccacaat cctcactgac 420
accatcattg cccacatagg ggtggcagct gtagtgcgag gctccctgct catgctccca 480
tgtcccttcc ttattgggcg tttgaacttc tgccaaagcc atgtgatcct acacacgtac 540
tgtgagcaca tggctgtggt gaagctggcc tgtggagaca ccaggcctaa ccgtgtgtat 600
gggctgacag ctgcactgtt ggtcattggg gttgacttgt tttgcattgg tctctcctat 660
gccctaagtg cacaagctgt ccttcgcctc tcatcccatg aagctcggtc caaggcccta 720
gggacctgtg gttcccatgt ctgtgtcatc ctcatctctt atacaccage cctcttctcc 780
ttttttacac accgctttgg ccatcacgtt ccagtccata ttcacattct tttggccaat 840
gtttatctgc ttttgccacc tgctcttaat cctgtggtat atggagttaa gaccaaacag 900
atccgtaaaa gagttgtcag ggtgtttcaa agtgggcagg gaatgggcat caaggcatct 960
                                                                   966
gagtga
<210> 43
<211> 975
<212> DNA
<213> Homo sapiens
<220>
 <221> misc_feature
 <223> Incyte ID No: 7476113CB1
<220>
 <221> unsure
 <222> 1
 <223> a, t, c, g, or other
 <400> 43
naactaactt tcagattcga agaaacagaa gcgatgctgc tgactgatag aaatacaagt 60
gggaccacgt tcaccctctt gggcttctca gattacccag aactgcaagt cccactcttc 120
ctggtttttc tggccatcta caatgtcact gtgctaggga atattgggtt gattgtgatc 180
 atcaaaatca accccaaact gcatacccc atgtactttt tcctcagcca actctccttt 240
 gtggatttet gctattecte catcattget cccaagatgt tggtgaacet tgttgtcaaa 300
 gacagaacca tttcatttt aggatgcgta gtacaattct ttttcttctg tacctttgtg 360
 gtcactgaat cetttttatt agetgtgatg gectatgace gettegtgge catttgcaac 420
 cetetgetet acacagttaa catgteecag aaactetgeg tgetgetggt tgtgggatee 480
 tatgcctggg gagtctcatg ttccttggaa ctgacgtgct ctgctttaaa gttatgtttt 540
 catggtttca acacaatcaa tcacttcttc tgtgagttct cctcactact ctccctttct 600
 tgctctgata cttacatcaa ccagtggctg ctattctttc ttgccacctt taatgaaatc 660
 agcacactac tcatcgttct cacatcttat gcgttcattg ttgtaaccat cctcaagatg 720
```

```
cgttcagtca gtgggcgccg caaagccttc tccacctgtg cctcccacct gactgccatc 780
accatettee atggeaceat cetetteett tactgtgtge ceaacteeaa aaacteeagg 840
cacacagtca aagtggcctc tgtgttttac accgtggtga tccccatgtt gaatcccctg 900
atctacagtc tgagaaataa agatgtcaag gatacagtca ccgagatact ggacaccaaa 960
                                                                   975
gtcttctctt actga
<210> 44
<211> 987
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7476117CB1
<400> 44
atgtttctga cagagagaaa tacgacatct gaggccacat tcactctctt gggcttctca 60
gattacctgg aactgcaaat tcccctcttc tttgtatttc tggcagtcta cggcttcagt 120
gtggtaggga atcttgggat gatagtgatc atcaaaatta acccaaaatt gcataccccc 180
atgtattttt tcctcaacca cctctccttt gtggatttct gctattcctc catcattgct 240
cccatgatgc tggtgaacct ggttgtagaa gatagaacca tttcattctc aggatgtttg 300
gtgcaattct ttttcttttg cacctttgta gtgactgaat taattctatt tgcggtgatg 360
gcctatgacc actttgtggc catttgcaat cctctgctct acacagttgc catctcccag 420
aaactctgtg ccatgctggt ggttgtattg tatgcatggg gagtcgcatg ttccctgaca 480
ctcgcgtgct ctgctttaaa gttatctttt catggtttca acacaatcaa tcatttcttc 540
tgtgagttat cctccctgat atcactctct taccctgact cttatctcag ccagttgctt 600
cttttcactg ttgccacttt taatgagata agcacactac tcatcattct gacatcttat 660
gcattcatca ttgtcaccac cttgaagatg ccttcagcca gtgggcaccg caaagtcttc 720
tecaectgtg ecteecaect gaetgecate accatettee atggeaccat cetetteete 780
tactgtgtac ccaactccaa aaactccagg cacacagtca aagtggcctc tgtgttttac 840
accgtggtga tccccttgtt gaatcccctg atctacagtc tgagaaataa agatgttaag 900
gatgcaatcc gaaaaataat caatacaaaa tattttcata ttaaacatag gcattggtat 960
                                                                   987
ccatttaatt ttgttattga acaataa
<210> 45
<211> 975
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7476079CB1
<400> 45
atgaatcata tgtctgcatc tctcaaaatc tccaatagct ccaaattcca ggtctctgag 60
ttcatcctgc tgggattccc gggcattcac agctggcaac actggctatc tctgcccctg 120
gcactactgt atctctcagc acttgctgca aacaccctca tcctcatcat catctggcag 180
aaccettett tacageagee catgtatatt tteettggea teetetgtat ggtagacatg 240
ggtctggcca ctactatcat ccctaagatc ctggccatct tctggtttga tgccaaggtt 300
attagcctcc ctgagtgctt tgctcagatt tatgccattc acttctttgt gggcatggag 360
tctggtatcc tactctgcat ggcttttgat agatatgtgg ctatttgtca ccctcttcgc 420
tatccatcaa ttgtcaccag ttccttaatc ttaaaagcta ccctgttcat ggtgctgaga 480
aatggcttat ttgtcactcc agtgcctgtg cttgcagcac agcgtgatta ttgctccaag 540
aatgaaattg aacactgcct gtgctctaac cttggggtca caagcctggc ttgtgatgac 600
aggaggccaa acagcatttg ccagttggtt ctggcatggc ttggaatggg gagtgatcta 660
agtettatta tactgteata tattttgatt etgtaetetg taettagaet gaacteaget 720
gaagctgcag ccaaggccct gagcacttgt agttcacatc tcaccctcat ccttttcttt 780
tacactattg ttgtagtgat ttcagtgact catctgacag agatgaaggc tactttgatt 840
ccagttctac ttaatgtgtt gcacaacatc atcccccctt ccctcaaccc tacagtttat 900
gcacttcaga ccaaagaact tagggcagcc ttccaaaagg tgctgtttgc ccttacaaaa 960
                                                                  975
gaaataagat cttag
```

<210> 46

```
<211> 948
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7476112CB1
<400> 46
atgcaggggc taaaccacac ctccgtgtct gaattcatcc tcgttggctt ctctgccttc 60
ccccacctcc agctgatgct cttcctgctg ttcctgctga tgtacctgtt cacgctgctg 120
ggcaacctgc tcatcatggc cactgtctgg agcgagcgca gcctccacat gcccatgtac 180
ctettectgt gtgccctctc catcaccgag atcctctaca ccgtggccat catcccgcgc 240
atgetggeeg acetgetgte cacecagege tecategeet teetggeetg tgecagteag 300
atgttettet cetteagett eggetteace cacteettee tgeteactgt catgggetae 360
gaccgctacg tggccatctg ccaccccttg cgttacaacg tgctcatgag cctgcggggc 420
tgcacctgcc gggtgggctg ctcctgggct ggtggcttgg tcatggggat ggtggtgacc 480
teggecattt tecacetege ettetgtgga cacaaggaga tecaceattt ettetgecae 540
gtgccacctc tgttgaagtt ggcctgtgga gatgatgtgc tggtggtggc caaaggcgtg 600
ggettggtgt gtatcacgge cetgetggge tgttttetee teatesteet etectatgee 660
ttcatcgtgg ccgccatctt gaagatccct tctgctgaag gtcggaacaa ggccttctcc 720
acctgtgcct ctcacctcac tgtggtggtc gtgcactatg gctttgcctc cgtcatttac 780
ctgaagccca aaggtcccca gtctccggaa ggagacacct tgatgggcat cacctacacg 840
gtecteacac cettecteag ecceateate tteageetea ggaacaagga getgaaggte 900
gccatgaaga agacttgctt caccaaactc tttccacaga actgctga
```