Figura 7.2.10 A medida que t varía de a a b, $\mathbf{p}(t)$ se mueve alrededor de la curva C en algún sentido fijo.

Una cierta curva cerrada simple se puede parametrizar de muchas formas diferentes. La Figura 7.2.10 muestra C representada como la imagen de una aplicación \mathbf{p} , con $\mathbf{p}(t)$ avanzando en una dirección prescrita alrededor de una curva orientada C cuando t varía entre a y b. Obsérvese que $\mathbf{p}'(t)$ apunta también en ese sentido. La rapidez con la que recorremos C puede variar de una parametrización a otra, pero siempre y cuando se conserve la orientación, la integral no cambia, de acuerdo con los Teoremas 1 y 2.

Debe tenerse en cuenta la siguiente precaución en relación a estos comentarios. Es posible tener dos funciones ${\bf c}$ y ${\bf p}$ con la misma imagen que induzcan la misma orientación en la imagen, tal que

$$\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} \neq \int_{\mathbf{p}} \mathbf{F} \cdot d\mathbf{s}.$$

Por ejemplo, sean $\mathbf{c}(t) = (\cos t, \sin t, 0)$ y $\mathbf{p}(t) = (\cos 2t, \sin 2t, 0)$, $0 \le t \le 2\pi$, con $\mathbf{F}(x, y, z) = (y, 0, 0)$. Entonces $F_1(x, y, z) = y$, $F_2(x, y, z) = 0$ y $F_3(x, y, z) = 0$, de modo que

$$\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} = \int_{0}^{2\pi} F_{1}(\mathbf{c}(t)) \frac{dx}{dt} dt = -\int_{0}^{2\pi} \sin^{2} t dt = -\pi.$$

Sin embargo, $\int_{\mathbf{p}} \mathbf{F} \cdot d\mathbf{s} = -2 \int_{0}^{2\pi} \operatorname{sen}^{2} 2t \ dt = -2\pi$. Evidentemente, \mathbf{c} y \mathbf{p} tienen la misma imagen, a saber, la circunferencia unidad en el plano xy. Además, ambas recorren la circunferencia unidad en el mismo sentido; no obstante, $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} \neq \int_{\mathbf{p}} \mathbf{F} \cdot d\mathbf{s}$. La razón de esto es que \mathbf{c} es inyectiva, pero \mathbf{p} no lo es (\mathbf{p} recorre la circunferencia unidad $dos\ veces$ en sentido antihorario); por tanto, \mathbf{p} no es una parametrización de la circunferencia unidad considerada como una curva cerrada simple.

Como consecuencia del Teorema 1 y generalizando la notación del Ejemplo 10, establecemos el siguiente convenio:

Integrales de línea sobre curvas con orientaciones opuestas Sea C^- la misma curva que C, pero con la orientación opuesta. Entonces

$$\int_C \mathbf{F} \cdot d\mathbf{s} = -\int_{C^-} \mathbf{F} \cdot d\mathbf{s}.$$