Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

(*E*)-2-[(1-Benzylpiperidin-4-yl)iminomethyl]phenol

Rui-Qin Fang, a,b* Zhu-Ping Xiao and Yun Zuob

^aState Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China, and ^bSchool of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China

Correspondence e-mail: fangrq@uestc.edu.cn

Received 23 November 2011; accepted 2 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean $\sigma(C-C) = 0.009$ Å; R factor = 0.082; wR factor = 0.268; data-to-parameter ratio = 15.9.

There are two molecules in the asymmetric unit of the title compound, $C_{19}H_{22}N_2O$. Both molecules have an E conformation about their C=N bonds and both piperdine rings adopt chair conformations with their N atoms adopting pyramidal geometries [bond angle sums = 329.8 (4) and 330.2 (4)°]. Both molecules feature an intramolecular $O-H\cdots N$ hydrogen bond, which generates an S(6) ring. The dihedral angles between the phenyl and benzene ring planes are 45.97 (18) and $66.0 (2)^\circ$. Short $O-H\cdots O$ contacts occur in the crystal.

Related literature

For a related structure, see: Stilinovic et al. (2008).

Experimental

Crystal data

 $\begin{array}{lll} {\rm C_{19}H_{22}N_{2}O} & & a = 10.603 \; (2) \; {\rm \mathring{A}} \\ M_r = 294.39 & & b = 9.6330 \; (19) \; {\rm \mathring{A}} \\ {\rm Monoclinic}, \; P2_1/c & & c = 32.595 \; (7) \; {\rm \mathring{A}} \end{array}$

 $β = 95.60 (3)^{\circ}$ $μ = 0.07 \text{ mm}^{-1}$ $V = 3313.3 (11) \text{ Å}^3$ T = 293 K Z = 8 $0.40 \times 0.40 \times 0.20 \text{ mm}$ Mo Kα radiation

Data collection

 $\begin{array}{lll} \text{Enraf-Nonius CAD-4} & 6473 \text{ independent reflections} \\ \text{diffractometer} & 2764 \text{ reflections with } I > 2\sigma(I) \\ \text{Absorption correction: } \psi \text{ scan} & R_{\text{int}} = 0.117 \\ \text{(North $\it et al., 1968)} & 3 \text{ standard reflections every } 200 \\ T_{\text{min}} = 0.971, \, T_{\text{max}} = 0.986 & \text{reflections} \\ 6837 \text{ measured reflections} & \text{intensity decay: } 1\% \\ \end{array}$

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.082 & \text{H atoms treated by a mixture of} \\ wR(F^2)=0.268 & \text{independent and constrained} \\ S=1.09 & \text{refinement} \\ 6473 \text{ reflections} & \Delta\rho_{\max}=0.22 \text{ e Å}^{-3} \\ 406 \text{ parameters} & \Delta\rho_{\min}=-0.20 \text{ e Å}^{-3} \end{array}$

Table 1
Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$ \begin{array}{c} O1 - H1 \cdots N1 \\ O2 - H2A \cdots N3 \\ O1 - H1 \cdots O1^{i} \end{array} $	1.01 (8)	1.73 (7)	2.597 (5)	141 (6)
	1.05 (7)	1.66 (7)	2.588 (6)	144 (5)
	1.01 (8)	2.49 (7)	2.869 (7)	102 (5)

Symmetry code: (i) -x + 1, -y + 1, -z + 2.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We are grateful to the China Postdoctoral Science Foundation (20110491380) and the Fundamental Research Funds for the Central Universities (ZYGX2009J085) for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6532).

References

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.Stilinovic, V., Cincic, D. & Kaitner, B. (2008). Acta. Chim. Solv. 55, 874–879.

supplementary m	aterials	

Acta Cryst. (2012). E68, o85 [doi:10.1107/S160053681105197X]

(E)-2-[(1-Benzylpiperidin-4-yl)iminomethyl]phenol

R.-Q. Fang, Z.-P. Xiao and Y. Zuo

Comment

The cystal structure of 1,4-bis-((1-benzylpiperidin-4-ylimino)methyl)benzene has been reported, which was synthesized by 4-amino-*N*-benzylpiperidine and terephtaldialdehyde. (Stilinovic *et al.*, 2008). While, the title compund has been obtained by 4-amino-*N*-benzylpiperidine and salicyaldehyde. The molecular structure of title compound (I) with atom numbering are given in is shown in Fig. 1, there are two (*E*)-2-((1-benzylpiperidin-4-ylimino)methyl)phenol in an asymmetric unit. Both C7=N1 and C26=N3 are of the E configuration, with the bond lengths of 1.262 (6) and 1.267 (6) Å. The torsion angle of C9—C8—N1—C7 and C28—C27—N3—C26 is -118.2 (5) ° and 107.9 (5) °, respectively. The Rms of two six-member piperidine rings of chair conformation are 0.2354 Å and 0.2322 Å. The dihedral angles between two phenyl planes in two molecules are 45.97 (18) and 65.97 (21)°. In each molecule, intramolecular O—H···N hydrogen bonds occur, and molecules are linked through intermolecular O—H···O hydrogen bonds to form a packing network along *b* axis.(Fig. 2).

Experimental

The title compound was prepared by stirring a mixture of salicylaldehyde (122 mg, 1 mmol) and 4-amino-*N*-benzylpiperidine (190 mg, 1 mmol) in methanol (15 ml) for 4 h at room temperature. After keeping the solution in air for 3 d, yellow block-shaped crystals of (I) were formed. The crystals were isolated, washed three times with methanol and dried in a vacuum desiccator containing anhydrous CaCl₂.

Refinement

All the H atoms, were placed in idealized positions (C—H = 0.93- 0.96 Å, O—H = 0.82 Å) and refined as riding with $U_{iso}(H) = 1.2 U_{eq}(C)$ and $U_{iso}(H) = 1.5 U_{eq}(O)$.

Figures

Fig. 1. The structure of (I) showing 35% probability displacement ellipsoids.

Fig. 2. The crystal packing of (I), viewed along the b axis. Hydrogen bonds are shown as dashed lines.

(E)-2-[(1-Benzylpiperidin-4-yl)iminomethyl]phenol

Crystal data

 $C_{19}H_{22}N_2O$ F(000) = 1264 $M_r = 294.39$ $D_{\rm x} = 1.180 \; {\rm Mg \; m}^{-3}$

Monoclinic, P2₁/c Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2ybc Cell parameters from 2318 reflections

a = 10.603 (2) Å $\theta = 2.6-24.7^{\circ}$ b = 9.6330 (19) Å $\mu = 0.07 \text{ mm}^{-1}$ T = 293 Kc = 32.595 (7) Å $\beta = 95.60 (3)^{\circ}$ Block, yellow

 $0.40\times0.40\times0.20~mm$ $V = 3313.3 (11) \text{ Å}^3$

Z = 8

Data collection

Enraf-Nonius CAD-4 2764 reflections with $I > 2\sigma(I)$ diffractometer

 $R_{\rm int} = 0.117$ Radiation source: fine-focus sealed tube

 $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 1.3^{\circ}$ graphite

 $h = 0 \rightarrow 13$ $\omega/2\theta$ scan

Absorption correction: ψ scan $k = 0 \rightarrow 11$ (North et al., 1968)

 $T_{\min} = 0.971, T_{\max} = 0.986$ $l = -40 \rightarrow 39$

6837 measured reflections 3 standard reflections every 200 reflections

6473 independent reflections intensity decay: 1%

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring Least-squares matrix: full

H atoms treated by a mixture of independent and $R[F^2 > 2\sigma(F^2)] = 0.082$

constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.0628P)^2 + 4.8871P]$ $wR(F^2) = 0.268$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} < 0.001$ S = 1.09

 $\Delta \rho_{\text{max}} = 0.22 \text{ e Å}^{-3}$ 6473 reflections $\Delta \rho_{min} = -0.20 \text{ e Å}^{-3}$ 406 parameters

Extinction correction: SHELXL97 (Sheldrick, 2008), 0 restraints

 $Fc^* = kFc[1+0.001xFc^2\lambda^3/\sin(2\theta)]^{-1/4}$

Primary atom site location: structure-invariant direct

methods

Extinction coefficient: 0.0089 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	z	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.3352 (5)	0.6495 (5)	1.08004 (15)	0.0556 (13)
C2	0.3051 (6)	0.6876 (5)	1.11893 (17)	0.0748 (16)
H2	0.2226	0.7148	1.1223	0.090*
C3	0.3932 (8)	0.6864 (6)	1.15252 (19)	0.088(2)
Н3	0.3714	0.7136	1.1783	0.106*
C4	0.5159 (7)	0.6437 (6)	1.14746 (18)	0.0829 (18)
H4	0.5767	0.6431	1.1700	0.099*
C5	0.5483 (5)	0.6028 (6)	1.10994 (16)	0.0698 (15)
H5	0.6304	0.5726	1.1072	0.084*
C6	0.4601 (5)	0.6057 (5)	1.07583 (15)	0.0581 (13)
C7	0.2416 (5)	0.6562 (5)	1.04446 (17)	0.0576 (13)
H7	0.1604	0.6872	1.0482	0.069*
C8	0.1693 (5)	0.6312 (5)	0.97399 (15)	0.0566 (13)
Н8	0.0912	0.6681	0.9836	0.068*
C9	0.1432 (5)	0.4880 (5)	0.95584 (16)	0.0632 (14)
H9A	0.2228	0.4443	0.9510	0.076*
Н9В	0.1031	0.4313	0.9755	0.076*
C10	0.0583 (5)	0.4942 (5)	0.91573 (16)	0.0672 (15)
H10A	0.0483	0.4015	0.9043	0.081*
H10B	-0.0248	0.5275	0.9212	0.081*
C11	0.1222 (5)	0.7256 (5)	0.90270 (16)	0.0621 (14)
H11A	0.0398	0.7586	0.9090	0.075*
H11B	0.1527	0.7876	0.8824	0.075*
C12	0.2130 (5)	0.7276 (5)	0.94143 (15)	0.0601 (14)
H12A	0.2195	0.8214	0.9522	0.072*
H12B	0.2965	0.6993	0.9348	0.072*
C13	0.0265 (5)	0.5833 (6)	0.84734 (17)	0.0780 (17)
H13A	-0.0563	0.6171	0.8529	0.094*
H13B	0.0164	0.4879	0.8381	0.094*
C14	0.0717 (5)	0.6680(6)	0.81311 (17)	0.0674 (15)
C15	-0.0101 (6)	0.7503 (7)	0.7894 (2)	0.094(2)
H15	-0.0943	0.7548	0.7950	0.113*
C16	0.0286 (8)	0.8274 (8)	0.7570 (2)	0.112(3)

H16	-0.0295	0.8827	0.7413	0.134*
C17	0.1515 (8)	0.8224 (8)	0.74818 (19)	0.100(2)
H17	0.1779	0.8738	0.7264	0.121*
C18	0.2346 (7)	0.7413 (9)	0.7715 (2)	0.114(3)
H18	0.3188	0.7375	0.7659	0.137*
C19	0.1952 (7)	0.6646 (8)	0.8034(2)	0.095(2)
H19	0.2535	0.6088	0.8189	0.114*
C20	0.8513 (5)	0.8847 (5)	1.08785 (16)	0.0553 (13)
C21	0.8191 (6)	0.8677 (6)	1.12796 (18)	0.0803 (17)
H21	0.7370	0.8410	1.1321	0.096*
C22	0.9048 (7)	0.8893 (8)	1.1613 (2)	0.100(2)
H22	0.8815	0.8767	1.1878	0.120*
C23	1.0274 (6)	0.9302 (6)	1.15529 (19)	0.0836 (18)
H23	1.0865	0.9447	1.1779	0.100*
C24	1.0607 (5)	0.9488 (6)	1.11692 (18)	0.0693 (15)
H24	1.1427	0.9772	1.1134	0.083*
C25	0.9754 (5)	0.9267 (5)	1.08249 (16)	0.0564 (13)
C26	0.7581 (5)	0.8606 (5)	1.05304 (16)	0.0573 (13)
H26	0.6773	0.8313	1.0578	0.069*
C27	0.6858 (5)	0.8565 (5)	0.98220 (15)	0.0605 (14)
H27	0.6128	0.8100	0.9924	0.073*
C28	0.6448 (5)	0.9970 (5)	0.96375 (16)	0.0632 (14)
H28A	0.6056	1.0515	0.9841	0.076*
H28B	0.7185	1.0472	0.9563	0.076*
C29	0.5523 (5)	0.9782 (5)	0.92612 (17)	0.0661 (15)
H29A	0.4767	0.9324	0.9339	0.079*
H29B	0.5278	1.0684	0.9148	0.079*
C30	0.6422 (5)	0.7581 (5)	0.91122 (16)	0.0694 (15)
H30A	0.6789	0.7040	0.8903	0.083*
H30B	0.5669	0.7102	0.9183	0.083*
C31	0.7362 (5)	0.7691 (5)	0.94894 (16)	0.0682 (15)
H31A	0.8142	0.8099	0.9413	0.082*
H31B	0.7557	0.6768	0.9597	0.082*
C32	0.5155 (5)	0.8848 (6)	0.85825 (17)	0.0768 (16)
H32A	0.4821	0.9766	0.8514	0.092*
H32B	0.4453	0.8272	0.8650	0.092*
C33	0.5680 (5)	0.8258 (6)	0.82132 (17)	0.0676 (15)
C34	0.5566 (6)	0.6876 (7)	0.8109(2)	0.0862 (18)
H34	0.5168	0.6284	0.8281	0.103*
C35	0.6009 (7)	0.6343 (8)	0.7766 (2)	0.099(2)
H35	0.5930	0.5398	0.7711	0.119*
C36	0.6567 (7)	0.7187 (10)	0.7504(2)	0.102(2)
H36	0.6847	0.6827	0.7264	0.122*
C37	0.6717 (7)	0.8574 (9)	0.7594 (2)	0.103(2)
H37	0.7110	0.9157	0.7417	0.123*
C38	0.6278 (6)	0.9096 (7)	0.7950(2)	0.0878 (19)
H38	0.6390	1.0032	0.8013	0.105*
N1	0.2660 (4)	0.6217 (4)	1.00875 (13)	0.0562 (11)
N2	0.1097 (4)	0.5853 (4)	0.88561 (12)	0.0586 (11)

N3	0.7836 (4)	0.8785 (4)	1.0	01623 (13)	0.0578 (11)	
N4	0.6071 (4)	0.8956 (4)	0.0	39468 (13)	0.0597 (11)	
O1	0.4961 (4)	0.5668 (4)	1.0	3919 (12)	0.0746 (11)	
O2	1.0116 (4)	0.9462 (4))4478 (12)	0.0777 (12)	
H2A	0.937 (7)	0.915 (7)		023 (2)	0.14 (3)*	
H1	0.424 (7)	0.574 (8)		017 (2)	0.15 (3)*	
44	1	(82)				
Atomic disj	placement parameters					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.072 (4)	0.037 (3)	0.060(3)	-0.002(2)	0.016(3)	-0.001 (2)
C2	0.102 (5)	0.061 (4)	0.065 (4)	0.009(3)	0.024 (4)	-0.001(3)
C3	0.133 (6)	0.067 (4)	0.066(4)	-0.003(4)	0.019 (4)	-0.013 (3)
C4	0.109 (5)	0.075 (4)	0.062 (4)	-0.018 (4)	-0.009(4)	0.003(3)
C5	0.082 (4)	0.068 (4)	0.059(3)	-0.013 (3)	0.003(3)	0.004(3)
C6	0.074 (4)	0.047 (3)	0.054(3)	-0.011(3)	0.007(3)	-0.003 (2)
C7	0.058 (3)	0.039(3)	0.078 (4)	0.001(2)	0.016(3)	0.007(3)
C8	0.054(3)	0.047 (3)	0.069(3)	0.007(2)	0.008(3)	0.005(3)
C9	0.063 (3)	0.041 (3)	0.086 (4)	-0.002(2)	0.007(3)	0.010(3)
C10	0.066(3)	0.047 (3)	0.087 (4)	-0.005 (3)	0.000(3)	0.008(3)
C11	0.069(3)	0.041 (3)	0.077(4)	0.004(3)	0.004(3)	0.006(3)
C12	0.073 (4)	0.036(3)	0.071(3)	-0.007(2)	0.004(3)	0.000(2)
C13	0.075 (4)	0.069 (4)	0.086 (4)	-0.009(3)	-0.011(3)	-0.005(3)
C14	0.067 (4)	0.066 (4)	0.066(3)	0.004(3)	-0.005(3)	-0.005(3)
C15	0.070 (4)	0.114 (6)	0.094 (5)	0.011 (4)	-0.010 (4)	0.017 (4)
C16	0.114 (7)	0.134 (7)	0.084 (5)	0.015 (5)	-0.007(4)	0.035 (5)
C17	0.104(6)	0.129 (6)	0.067 (4)	-0.009(5)	0.003 (4)	0.009(4)
C18	0.085 (5)	0.163 (8)	0.094 (5)	0.009 (5)	0.011 (4)	0.012 (5)
C19	0.088 (5)	0.115 (6)	0.082(4)	0.028 (4)	0.003 (4)	0.015 (4)
C20	0.060(3)	0.040(3)	0.068(3)	0.003(2)	0.014(3)	0.005(2)
C21	0.074 (4)	0.091 (4)	0.079 (4)	-0.013(3)	0.020(3)	0.005 (4)
C22	0.107 (6)	0.122 (6)	0.072 (4)	-0.023(5)	0.014 (4)	0.010(4)
C23	0.092 (5)	0.087 (5)	0.070(4)	-0.002(4)	-0.002(3)	0.005(3)
C24	0.064 (4)	0.065 (4)	0.078 (4)	0.008(3)	0.005(3)	0.013 (3)
C25	0.061 (3)	0.045 (3)	0.065(3)	0.008(2)	0.014(3)	0.009(2)
C26	0.060(3)	0.038 (3)	0.077(4)	-0.002(2)	0.022(3)	0.003(3)
C27	0.066(3)	0.047 (3)	0.070(3)	-0.009(3)	0.014(3)	0.002(3)
C28	0.062(3)	0.047 (3)	0.081 (4)	0.002(3)	0.013 (3)	-0.004(3)
C29	0.058 (3)	0.049 (3)	0.093 (4)	0.009(3)	0.014(3)	0.002(3)
C30	0.085 (4)	0.049 (3)	0.075 (4)	0.005(3)	0.007(3)	-0.005(3)
C31	0.084 (4)	0.043 (3)	0.077(4)	0.011 (3)	0.007(3)	0.002(3)
C32	0.065 (4)	0.076 (4)	0.088 (4)	0.010(3)	-0.001(3)	0.001 (3)
C33	0.064 (4)	0.063 (4)	0.073 (4)	0.003 (3)	-0.009(3)	0.003(3)
C34	0.089 (5)	0.076 (4)	0.094 (5)	-0.003 (4)	0.008 (4)	-0.008 (4)
C35	0.103 (6)	0.096 (5)	0.095 (5)	0.012 (4)	-0.004 (4)	-0.013 (5)
C36	0.092 (5)	0.140 (7)	0.070(4)	0.032 (5)	-0.005(4)	-0.012 (5)
C37	0.106 (6)	0.123 (7)	0.078 (5)	0.008 (5)	0.003 (4)	0.028 (5)
C38	0.092 (5)	0.076 (4)	0.091 (5)	0.002 (4)	-0.013 (4)	0.007 (4)

N1	0.058 (3)	0.049(2)	0.063 (3)	0.004(2)	0.010(2)	0.002(2)
N2	0.065 (3)	0.041 (2)	0.068 (3)	-0.004(2)	-0.005 (2)	0.000(2)
N3	0.058(3)	0.049(2)	0.069(3)	-0.003 (2)	0.016(2)	0.000(2)
N4	0.056(3)	0.047(2)	0.075 (3)	0.007(2)	0.004(2)	0.001(2)
O1	0.065(2)	0.101(3)	0.059(2)	0.006(2)	0.010(2)	-0.011 (2)
O2	0.062(2)	0.101(3)	0.072(3)	-0.010(2)	0.019(2)	0.008(2)
Geometric po	arameters (Å, °)					
C1—C2		1.386 (7)	C20-	—C25	1.4	104 (6)
C1—C6		1.409 (7)	C20-	—C26	1.4	149 (7)
C1—C7		1.453 (7)	C21-	—C22		362 (8)
C2—C3		1.368 (8)		—H21		9300
C2—H2		0.9300		—C23		390 (8)
C3—C4		1.389 (8)		—Н22		9300
С3—Н3		0.9300		—C24		344 (7)
C4—C5		1.361 (7)		—H23		9300
C4—H4		0.9300		—C25		387 (7)
C5—C6		1.381 (7)		—H24		9300
C5—H5		0.9300		—O2		336 (6)
C6—O1		1.342 (6)		—N3		267 (6)
C7—N1		1.262 (6)		—H26		9300
C7—H7		0.9300		—N3		458 (6)
C8—N1		1.455 (6)		—C31		511 (7)
C8—C9		1.516 (7)		—C28		527 (7)
C8—C12		1.517 (6)		—H27		9800
C8—H8		0.9800		—C29		504 (7)
C9—C10		1.514 (7)		—H28A		9700
C9—H9A		0.9700		—H28B		9700
C9—H9B		0.9700		—N4		162 (6)
C10—N2		1.461 (6)		—H29A		9700
C10—H10A		0.9700		—H29B		9700
C10—H10B		0.9700		—N4		164 (6)
C10 1110B		1.462 (6)		—C31		509 (7)
C11—C12		1.512 (6)		—H30A		9700
C11—H11A		0.9700		—Н30В		9700
C11—H11B		0.9700		—H31A		9700
C12—H12A		0.9700		—H31В		9700
C12—H12B		0.9700		—N4		163 (6)
C12 I112B		1.456 (6)		—C33		187 (7)
C13—C14		1.498 (7)		—H32A		9700
C13—C14 C13—H13A		0.9700		—H32В		9700
C13—H13B		0.9700		—C38		376 (8)
C13—H13B		1.360 (7)		—C38 —C34		370 (8) 377 (8)
C14—C13		1.377 (8)		—C34 —C35		353 (8)
C14—C19 C15—C16		1.377 (8)		—С33 —Н34		9300
C15—C16 C15—H15		0.9300		—П34 —С36		357 (9)
C15—R13 C16—C17		1.363 (9)		—С36 —Н35		9300
C16—C17 C16—H16		0.9300		—нзз —С37		374 (10)
C10—1110		0.2300	C30-	C31	1.3	77 (10)

C17 C10	1 255 (0)	C2(112(0.0200
C17—C18	1.355 (9) 0.9300	C36—H36	0.9300
C17—H17		C37—C38	1.388 (9)
C18—C19	1.372 (9)	C37—H37	0.9300
C18—H18	0.9300	C38—H38	0.9300
C19—H19	0.9300	01—H1	1.01 (8)
C20—C21	1.393 (7)	O2—H2A	1.05 (7)
C2—C1—C6	118.1 (5)	C20—C21—H21	119.2
C2—C1—C7	121.2 (5)	C21—C22—C23	119.4 (6)
C6—C1—C7	120.7 (5)	C21—C22—H22	120.3
C3—C2—C1	121.9 (6)	C23—C22—H22	120.3
C3—C2—H2	119.0	C24—C23—C22	120.2 (6)
C1—C2—H2	119.0	C24—C23—H23	119.9
C2—C3—C4	118.8 (6)	C22—C23—H23	119.9
C2—C3—H3	120.6	C23—C24—C25	121.5 (6)
C4—C3—H3	120.6	C23—C24—H24	119.2
C5—C4—C3	120.9 (6)	C25—C24—H24	119.2
C5—C4—H4	119.5	O2—C25—C24	120.0 (5)
C3—C4—H4	119.5	O2—C25—C20	120.8 (5)
C4—C5—C6	120.5 (6)	C24—C25—C20	119.2 (5)
C4—C5—H5	119.8	N3—C26—C20	121.8 (5)
C6—C5—H5	119.8	N3—C26—H26	119.1
O1—C6—C5	118.8 (5)	C20—C26—H26	119.1
O1—C6—C1	121.4 (5)	N3—C27—C31	110.5 (4)
C5—C6—C1	119.7 (5)	N3—C27—C28	109.0 (4)
N1—C7—C1	122.6 (5)	C31—C27—C28	108.6 (4)
N1—C7—H7	118.7	N3—C27—H27	109.6
C1—C7—H7	118.7	C31—C27—H27	109.6
N1—C8—C9	109.6 (4)	C28—C27—H27	109.6
N1—C8—C12	110.0 (4)	C29—C28—C27	110.6 (4)
C9—C8—C12	109.9 (4)	C29—C28—H28A	109.5
N1—C8—H8	109.1	C27—C28—H28A	109.5
C9—C8—H8	109.1	C29—C28—H28B	109.5
C12—C8—H8	109.1	C27—C28—H28B	109.5
C10—C9—C8	111.8 (4)	H28A—C28—H28B	108.1
C10—C9—H9A	109.3	N4—C29—C28	111.4 (4)
C8—C9—H9A	109.3	N4—C29—H29A	109.3
C10—C9—H9B	109.3	C28—C29—H29A	109.3
C8—C9—H9B	109.3	N4—C29—H29B	109.3
H9A—C9—H9B	107.9	C28—C29—H29B	109.3
N2—C10—C9	112.0 (4)	H29A—C29—H29B	108.0
N2—C10—H10A	109.2	N4—C30—C31	111.1 (4)
C9—C10—H10A	109.2	N4—C30—H30A	109.4
N2—C10—H10B	109.2	C31—C30—H30A	109.4
C9—C10—H10B	109.2	N4—C30—H30B	109.4
H10A—C10—H10B	107.9	С31—С30—Н30В	109.4
N2—C11—C12	110.9 (4)	Н30А—С30—Н30В	108.0
N2—C11—H11A	109.5	C30—C31—C27	111.8 (4)
C12—C11—H11A	109.5	C30—C31—H31A	109.3
N2—C11—H11B	109.5	C27—C31—H31A	109.3
		-	

C12—C11—H11B	109.5	C30—C31—H31B	109.3
H11A—C11—H11B	108.1	C27—C31—H31B	109.3
C11—C12—C8	111.3 (4)	H31A—C31—H31B	107.9
C11—C12—H12A	109.4	N4—C32—C33	114.4 (4)
C8—C12—H12A	109.4	N4—C32—H32A	108.7
C11—C12—H12B	109.4	C33—C32—H32A	108.7
C8—C12—H12B	109.4	N4—C32—H32B	108.7
H12A—C12—H12B	108.0	C33—C32—H32B	108.7
N2—C13—C14	114.8 (5)	H32A—C32—H32B	107.6
N2—C13—H13A	108.6	C38—C33—C34	116.6 (6)
C14—C13—H13A	108.6	C38—C33—C32	120.8 (6)
N2—C13—H13B	108.6	C34—C33—C32	122.6 (6)
C14—C13—H13B	108.6	C35—C34—C33	122.8 (7)
H13A—C13—H13B	107.5	C35—C34—H34	118.6
C15—C14—C19	116.8 (6)	C33—C34—H34	118.6
C15—C14—C13	120.6 (6)	C34—C35—C36	120.0 (7)
C19—C14—C13	122.6 (5)	C34—C35—H35	120.0
C14—C15—C16	121.7 (7)	C36—C35—H35	120.0
C14—C15—H15	119.1	C35—C36—C37	119.8 (7)
C16—C15—H15	119.1	C35—C36—H36	120.1
C17—C16—C15	120.2 (7)	C37—C36—H36	120.1
C17—C16—H16	119.9	C36—C37—C38	119.3 (7)
C15—C16—H16	119.9	C36—C37—H37	120.4
C18—C17—C16	119.0 (7)	C38—C37—H37	120.4
C18—C17—H17	120.5	C33—C38—C37	121.5 (7)
C16—C17—H17	120.5	C33—C38—H38	119.3
C17—C18—C19	120.4 (7)	C37—C38—H38	119.3
C17—C18—H18	119.8	C7—N1—C8	120.6 (4)
C19—C18—H18	119.8	C13—N2—C10	109.5 (4)
C18—C19—C14	121.8 (6)	C13—N2—C11	111.3 (4)
C18—C19—H19	119.1	C10—N2—C11	109.0 (4)
C14—C19—H19	119.1	C26—N3—C27	119.9 (4)
C21—C20—C25	118.0 (5)	C29—N4—C32	109.3 (4)
C21—C20—C26	120.4 (5)	C29—N4—C30	109.8 (4)
C25—C20—C26	121.7 (5)	C32—N4—C30	111.1 (4)
C22—C21—C20	121.7 (6)	C6—O1—H1	111 (4)
C22—C21—H21	119.2	C25—O2—H2A	109 (4)
C6—C1—C2—C3	1.4 (8)	C21—C20—C25—C24	0.3 (7)
C7—C1—C2—C3	-177.8 (5)	C26—C20—C25—C24	179.7 (5)
C1—C2—C3—C4	-1.0 (9)	C21—C20—C26—N3	178.2 (5)
C2—C3—C4—C5	-0.5 (9)	C25—C20—C26—N3	-1.1 (7)
C3—C4—C5—C6	1.4 (9)	N3—C27—C28—C29	174.9 (4)
C4—C5—C6—O1	178.9 (5)	C31—C27—C28—C29	54.5 (6)
C4—C5—C6—C1	-0.9 (8)	C27—C28—C29—N4	-58.7 (6)
C2—C1—C6—O1	179.7 (5)	N4—C30—C31—C27	57.2 (6)
C7—C1—C6—O1	-1.1 (7)	N3—C27—C31—C30	-173.5 (4)
C2—C1—C6—C5	-0.5 (7)	C28—C27—C31—C30	-54.0 (6)
C7—C1—C6—C5	178.7 (5)	N4—C32—C33—C38	-85.8 (7)
C2—C1—C7—N1	-179.7 (5)	N4—C32—C33—C34	96.1 (7)

C6—C1—C7—N1	1.2 (7)	(C38—C33—C34—C35		-0.1 (9)
N1—C8—C9—C10	-171.3 (4)	(C32—C33—C34—C35		178.0 (6)
C12—C8—C9—C10	-50.2 (6)	(C33—C34—C35—C36		-1.6 (10)
C8—C9—C10—N2	55.4 (6)	(C34—C35—C36—C37		2.1 (11)
N2—C11—C12—C8	-58.8 (6)	(C35—C36—C37—C38		-0.9 (11)
N1—C8—C12—C11	172.8 (4)	(C34—C33—C38—C37		1.4 (9)
C9—C8—C12—C11	52.1 (5)	(C32—C33—C38—C37		-176.8 (5)
N2—C13—C14—C15	-136.4 (6)	(C36—C37—C38—C33		-0.9 (10)
N2—C13—C14—C19	45.2 (8)	(C1—C7—N1—C8		-179.5 (4)
C19—C14—C15—C16	-0.2 (10)	(C9—C8—N1—C7		-118.2 (5)
C13—C14—C15—C16	-178.7 (6)	(C12—C8—N1—C7		120.8 (5)
C14—C15—C16—C17	0.0 (12)	(C14—C13—N2—C10		-177.4 (5)
C15—C16—C17—C18	-0.1 (12)	(C14—C13—N2—C11		62.1 (6)
C16—C17—C18—C19	0.5 (12)	(C9—C10—N2—C13		178.0 (4)
C17—C18—C19—C14	-0.7 (12)	(C9—C10—N2—C11		-60.0 (5)
C15—C14—C19—C18	0.6 (10)	(C12—C11—N2—C13		-177.6 (4)
C13—C14—C19—C18	179.0 (6)	(C12—C11—N2—C10		61.6 (5)
C25—C20—C21—C22	-0.8(9)	(C20—C26—N3—C27		-178.4 (4)
C26—C20—C21—C22	179.9 (6)	(C31—C27—N3—C26		-132.8 (5)
C20—C21—C22—C23	0.5 (11)	(C28—C27—N3—C26		107.9 (5)
C21—C22—C23—C24	0.3 (10)	(C28—C29—N4—C32		-177.8 (4)
C22—C23—C24—C25	-0.7(9)	(C28—C29—N4—C30		60.1 (5)
C23—C24—C25—O2	180.0 (5)	(C33—C32—N4—C29		169.3 (5)
C23—C24—C25—C20	0.4(8)	(C33—C32—N4—C30		-69.5 (6)
C21—C20—C25—O2	-179.3 (5)	(C31—C30—N4—C29		-58.7 (6)
C26—C20—C25—O2	0.1 (7)	(C31—C30—N4—C32		-179.7 (4)
Hydrogen-bond geometry (Å, °)					
D— H ··· A	D-	—Н	$H\cdots A$	D··· A	D— H ··· A
O1—H1···N1	1.0	01 (8)	1.73 (7)	2.597 (5)	141 (6)
O2—H2A···N3	1.0	05 (7)	1.66 (7)	2.588 (6)	144 (5)
O1—H1···O1 ⁱ	1.0	01 (8)	2.49 (7)	2.869 (7)	102 (5)

Symmetry codes: (i) -x+1, -y+1, -z+2.

Fig. 1

Fig. 2

