Week 1 - Halley's Comet

Main Tasks:

- get familiar with build system(CMake) and documentation(doxygen)
- insert force, velocity and position calculation in given Project Frame
- implement ParticleContainer class
- get familiar with Paraview and use program output to visualize the simulation

Simulation:

\$./MolSim -e 0.014 -t 1500 -f eingabe-sonne.txt

First Celestial Body:

Assumption: all masses are normalized to the mass of the sun, which is $~1.9855 imes 10^{30} kg$

$$\longrightarrow 3.0 \times 10^{-6} (sununit) = 3.0 \times 10^{-6} \cdot 1.9855 \times 10^{30} kg \approx 5.972 \times 10^{24} kg$$

Second Celestial Body:

$$\longrightarrow 9.55 \times 10^{-4} (sununit) = 9.55 \times 10^{-4} \cdot 1.9855 \times 10^{30} kg \approx 1.8987 \times 10^{27} kg$$

Third Celestial Body:

$$\longrightarrow 1.0 \times 10^{-14} (sununit) = 1.0 \times 10^{-14} \cdot 1.9855 \times 10^{30} kg \approx 1.9855 \times 10^{16} kg$$

ParticleContainer:

- offers iteration over particles and particle pairs
- uses std::vector<Particle> class preliminarily
- first approach to multi-threading
- similar to producer-consumer pattern

Force Calculation:

- all particle pair combinations needed
- making use of Fij = -Fji

Р	0	1	2	3	4	5
0	x	•	•	•	•	•
1	/	X				
2	~		Х			
3	/			х		
4	/				х	
5	/					Х

Sources:

- https://en.wikipedia.org/wiki/List_of_gravitationally_rounded_objects_of_the_Solar_System
- https://en.wikipedia.org/wiki/Halley%27s_Comet
- [image]https://allthatsinteresting.com/halleys-comet-1910
- slides meeting 1