МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Организация ЭВМ и систем»

Тема: Изучение режимов адресации и формирования исполнительного адреса.

Студент гр. 9383	 Камзолов Н.А.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2020

Цель работы.

Применить на практике знания о режимах адресации и формировании исполнительного адреса в языке программирования Ассемблер и исправить ошибки в программе на языке программирования Ассемблер.

Текст задания.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции.

Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя.

На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Исходный код.

```
; Программа изучения режимов адресации процессора IntelX86 EOL EQU '$' ind EQU 2 n1 EQU 500 n2 EQU -50 ; Стек программы AStack SEGMENT STACK DW 12 DUP(?) AStack ENDS ;Данные программы DATA SEGMENT;
```

```
Директивы описания данных
mem1
      DW
               Ω
mem2
          DW
                0
mem3
         DW
              8,7,6,5,1,2,3,4
vec1
          DB
vec2
         DB
                -30, -40, 30, 40, -10, -20, 10, 20
                -1, -2, -3, -4, 8, 7, 6, 5, -5, -6, -7, -8, 4, 3, 2, 1
matr
         DB
DATA
          ENDS
; Код программы
CODE
          SEGMENT
      ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main
          PROC FAR
      push DS
           AX, AX
      sub
      push AX
            AX, DATA
      mov
      mov DS, AX
  ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
  Регистровая адресация
        mov ax, n1
        mov cx, ax
        mov bl, EOL
        mov bh, n2
  Прямая адресация
        mov mem2, n2
        mov bx, OFFSET vec1
        mov mem1, ax
   Косвенная адресация
        mov al,[bx]
        mov mem3, [bx]
  Базированная адресация
        mov al, [bx]+3
        mov cx, 3[bx]
   Индексная адресация
        mov di, ind
        mov al, vec2[di]
        mov cx, vec2[di]
  Адресация с базированием и индексированием
        mov bx, 3
        mov al, matr[bx][di]
        mov cx, matr[bx][di]
        mov ax, matr[bx*4][di]
  ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
  Переопределение сегмента
   ---- вариант 1
        mov ax, SEG vec2
        mov es, ax
        mov ax, es:[bx]
```

```
mov ax, 0
  ---- вариант 2
       mov es, ax
       push ds
       pop
            es
            cx, es:[bx-1]
       mov
       xchq cx, ax
  ---- вариант 3
       mov di,ind
       mov es:[bx+di],ax
   ---- вариант 4
       mov bp,sp
       mov ax,matr[bp+bx]
       mov ax, matr[bp+di+si]
 Использование сегмента стека
       push mem1
       push mem2
       mov bp, sp
             dx, [bp]+2
       mov
       ret
             2
         ENDP
Main
CODE
         ENDS
END Main
```

Ошибки, обнаруженные в коде.

Строка «mov mem3,[bx]» - error A2052: Improper operand type. Нельзя писать в память и читать из памяти одной команды.

Строка «mov cx, vec2[di]» - warning A4031: Operand types must match. Несоответствие типов операнд. Размер элемента cx – 2 байта, а размер vec2[di] – 1 байт.

Строка «cx,matr[bx][di]» - warning A4031: Operand types must match. Несоответствие типов операнд. Размер элемента cx-2 байта, а размер matr[bx][di] -1 байт.

Строка «ах,matr[bx*4][di]» - error A2055: Illegal register value. Нельзя умножать 16-битовые регистры.

Строка «ax,matr[bp+bx]» - error A2046: Multiple base registers. Множественно использование базовых регистров. Разрешен только 1.

Строка «ax,matr[bp+di+si]» - error A2047: Multiple index registers. Множественное использование индексных регистров. Разрешен только 1.

Листинг успешной программы.

Microsoft (R) Macro Assembler Version 5.10 10/7/20 21:43:01

Page 1-1

			; Пр	ограмм	а изу	учения	режи ф	•
			♦ов	адреса	ации	процес	ccopa	
= 002	4			EOL I	EQU	1\$1		
= 000	2			ind 1	EQU	2		
= 01F	4			n1 :	EQU	500		
=-003	2			n2 :	EQU	-50		
			; Ст	ек пр	ограг	ммы		
0000				AStac	k SEC	GMENT	STACK	
0000	000C[DI	W 12	DUP(?)	
	3333							
]						
0018				AStac	k El	NDS		
			;Дан	ные пр	ограг	ММЫ		
0000				DATA		SEGME	NT	
			; Дир	ективы	ОПИО	сания	данны	
			X					
0000	0000				mem1	L	DW	0
0002	0000				mem2	2	DW	0
0004	0000				mem3	3	DW	0
0006	08 07	06 05	01 02		veci	L	DB	8,7,6,5,1,2,3,4
	03 04							
000E	E2 D8	1E 28	F6 EC	;	vec2	2	DB	-30,-40,30,40,-
10,-20,10,								
			20					

20

0016 FF FE FD FC 08 07 matr DB -1,-2,-3,-4,8,7,6,5,-5,-6 ,-7,-8,4,3,2,1 06 05 FB FA F9 F8 04 03 02 01 DATA ENDS 0026 ; Код программы 0000 CODE SEGMENT ASSUME CS:CODE, DS:DATA, SS:AStack ; Головная процедура 0000 Main PROC FAR 0000 1E push DS 0001 2B C0 sub AX, AX 0003 50 push AX

> ; ПРОВЕРКА РЕЖИМОВ АДРЕСА ЦИИ НА УРОВНЕ СМЕЩЕНИЙ

mov AX, DATA

mov DS, AX

; Регистровая адресация

0009 B8 01F4 mov ax,n1
000C 8B C8 mov cx,ax
000E B3 24 mov b1,EOL
0010 B7 CE mov bh,n2
; Прямая адресация
0012 C7 06 0002 R FFCE mov mem2,n2

0004 B8 ---- R

0007 8E D8

0018 BB 0006 R mov bx,OFFSET vec1

21:43:01

Page 1-2

0037 8E CO

001B A3 0000 R mov mem1,ax ; Косвенная адресация 001E 8A 07 mov al, [bx] ;mov mem3,[bx];не можем пер� фдавать из памяти в память ; Базированная адресация 0020 8A 47 03 mov al, [bx]+30023 8B 4F 03 mov cx, 3[bx]; Индексная адресация 0026 BF 0002 mov di, ind 0029 8A 85 000E R mov al, vec2[di] ; mov cx, vec2[di]; байт пихаем в ворд ; Адресация с базирование м и индексированием mov bx,3 002D BB 0003 0030 8A 81 0016 R mov al, matr[bx][di] ;mov cx,matr[bx][di] ;mov ax,matr[bx*4][di];Нельзя у множать 16-битовые регистр ы ; ПРОВЕРКА РЕЖИМОВ АДРЕСА ЦИИ С УЧЕТОМ СЕГМЕНТОВ ; Переопределение сегмен� a ; ---- вариант 1 0034 B8 ---- R mov ax, SEG vec2

mov es, ax

```
0039 26: 8B 07
                          mov ax, es:[bx]
003C B8 0000
                          mov ax, 0
            ; ----- вариант 2
003F 8E C0
                          mov es, ax
0041 1E
                      push ds
0042 07
                      pop es
0043 26: 8B 4F FF
                     mov cx, es:[bx-1]
0047 91
                      xchg cx,ax
               ; ----- вариант 3
0048 BF 0002
                          mov di, ind
004B 26: 89 01
                          mov es:[bx+di],ax
              ; ----- вариант 4
004E 8B EC
                         mov bp,sp
                      ; mov ax, matr[bp+bx]
                      ; mov ax, matr[bp+di+si]
               ; Использование сегмента
               стека
0050 FF 36 0000 R push mem1
0054 FF 36 0002 R
                         push mem2
0058 8B EC
                         mov bp,sp
005A 8B 56 02
                           mov dx, [bp]+2
005D CA 0002
                         ret 2
0060
                  Main ENDP
0060
                   CODE ENDS
               END Main
```

Symbols-1

Segments and Groups:

							1	J á	a n	η ∈)					Length	Ali	gn	Combine
Clas	S																		
	ASTA(マレ														0018 PARA	Q TT 7\ C 1	V	
					•	•	•	•	•	•	•	•	•	•	•			I.V.	
	CODE			•	•	•	•	•	•	•	•	•	•	•	•	0060 PARA			
	DATA	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0026 PARA	NONE		
	Symbo	. l c	s :																
	e y me c	J	•																
							1	J á	a n	Λ ∈)					Type Val	ue	Att	r
	EOL	•	•	•	•		•	•	•			•	•	•		NUMBER	0024		
	IND	•		•	•	•						•		•		NUMBER	0002		
0060	MAIN	•	•	•	•	•	•									F PROC	0000	CODE	Length =
0060	MAMD															I DVMD	0016		
	MATR	•	•	•	•	•	•	•	•	•	•	•	•	•	•	L BYTE		DATA	
	MEM1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	L WORD		DATA	
	MEM2	•	•	•	•	•	•	•	•	•	•	•	•	•	•	L WORD	0002	DATA	
	MEM3	•	•	•	•	•	•	•	•	•	•	•	•	•	•	L WORD	0004	DATA	
	N1 .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	NUMBER	01F4		
	N2 .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	NUMBER	-003	2	
	VEC1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	L BYTE	0006	DATA	
	VEC2															L BYTE	000E	DATA	

- 0 Warning Errors
- O Severe Errors

Протокол работы на компьютере.

Рисунок 1 – Начальные значения регистров и ячеек памяти.

Таблица 1 – Результаты пошагового выполнения *lab2.asm*.

Адрес	Символический код	16-ричный код	Содержимое регис	стров и ячеек памяти
команды	комманды	команды	До выполнения	После выполнения
0000	PUSH DS	1E	(SP) = 0018	(SP) = 0016
			(DS) = 19F5	(DS) = 19F5
			Stack: +0 0000	Stack: +0 19F5
0001	SUB AX,AX	2BC0	(AX) = 0000	(AX) = 0000
0003	PUSH AX	50	(AX) = 0000	(AX) = 0000
			(SP) = 0016	(SP) = 0014
			Stack: +0 19F5	Stack: +0 0000
			Stack: +2 0000	Stack: +2 19F5
0004	MOV AX, 1A07	BB071A	(AX) = 0000	(AX) = 1A07
0007	MOV DS,AX	8ED8	(DS) = 19F5	(DS) = 1A07
			(AX) = 1A07	(AX) = 1A07
0009	MOV AX, 01F4	B8F401	(AX) = 1A07	(AX) = 01F4
000C	MOV CX, AX	8BC8	(CX) = 00B0	(CX) = 01F4
			(AX) = 01F4	(AX) = 01F4
000E	MOV BL, 24	B324	(BX) = 0000	(BX) = 0024
0010	MOV BH, CE	B7CE	(BX) = 0024	(BX) = CE24
0012	MOV [0002], FFCE	C7060200CEFF	DS: 0002 = 00	DS: 0002 = CE
			DS: 0003 = 00	DS: $0003 = FF$
0018	MOV BX, 0006	BB0600	(BX) = CE24	(BX) = 0006
001B	MOV [0000], AX	A30000	(AX) = 01F4	(AX) = 01F4
			DS: $0000 = 00$	DS: $0000 = F4$
			DS: $0001 = 00$	DS: $0001 = 01$
001E	MOV AL, [BX]	8A07	(AX) = 01F4	(AX) = 0108
			(BX) = 0006	(BX) = 0006
0020	MOV AL, [BX+03]	8A4703	(AX) = 0108	(AX) = 0105
			(BX) = 0006	(BX) = 0006

0023	MOV CX, [BX+03]	8B4F03	(CX) = 01F4	(CX) = 0105
			(BX) = 0006	(BX) = 0006
0026	MOV DI, 0002	BF0200	(DI) = 0000	(DI) = 0002
0029	MOV AL, [000E+DI]	8A850E00	(AX) = 0105	(AX) = 011E
			(DI) = 0002	(DI) = 0002
002D	MOV BX, 0003	BB0300	(BX) = 0006	(BX) = 0003
0030	MOV AL,	8A811600	(AX) = 011E	(AX) = 0107
	[0016+BX+DI]		(BX) = 0003	(BX) = 0003
			(DI) = 0002	(DI) = 0002
0034	MOV AX, 1A07	B8071A	(AX) = 0107	(AX) = 1A07
0037	MOV ES, AX	8EC0	(ES) = 19F5	(ES) = 19F5
			(AX) = 1A07	(AX) = 1A07
0039	MOV AX, ES:[BX]	268B07	(AX) = 1A07	(AX) = 00FF
			(ES) = 1A07	(ES) = 1A07
			(BX) = 0003	(BX) = 0003
003C	MOV AX,0000	B80000	(AX) = 00FF	(AX) = 0000
003F	MOV ES, AX	8EC0	(AX) = 0000	(AX) = 0000
			(ES) = 1A07	(ES) = 0000
0041	PUSH DS	1E	(DS) = 1A07	(DS) = 1A07
			(SP) = 0014	(SP) = 0012
			Stack: +0 0000	Stack: +0 1A07
			Stack: +2 19F5	Stack: +2 0000
			Stack: +4 0000	Stack: +4 19F5
0042	POP ES	07	(ES) = 0000	(ES) = 1A07
			(SP) = 0012	(SP) = 0014
			Stack: +0 1A07	Stack: +0 0000
			Stack: +2 0000	Stack: +2 19F5
			Stack: +4 19F5	Stack: +4 0000
0043	MOV CX, ES:[BX-01]	268B4FFF	(CX) = 0105	(CX) = FFCE
			(ES) = 1A07	(ES) = 1A07
			(BX) = 0003	(BX) = 0003

0047	XCHG AX, CX	91	(AX) = 0000	(AX) = FFCE
			(CX) = FFCE	(CX) = 0000
0048	MOV DI, 0002	BF0200	(DI) = 0002	(DI) = 0002
004B	MOV ES:[BX+DI], AX	268901	(ES) = 1A07	(ES) = 1A07
			(BX) = 0003	(BX) = 0003
			(DI) = 0002	(DI) = 0002
			(AX) = FFCE	(AX) = FFCE
			DS:0005 = 00	DS: $0005 = CE$
			DS: $0006 = 08$	DS: 0006 = FF
004E	MOV BP, SP	8BEC	(BP) = 0000	(BP) = 0014
			(SP) = 0014	(SP) = 0014
0050	PUSH [0000]	FF360000	DS:0000 = F4	DS:0000 = F4
			DS:0001 = 01	DS:0001 = 01
			(SP) = 0014	(SP) = 0012
			Stack: +0 0000	Stack: +0 01F4
			Stack: +2 19F5	Stack: +2 0000
			Stack: +4 0000	Stack: +4 19F5
0054	PUSH [0002]	FF360200	DS:0002 = CE	DS:0002 = CE
			DS:0003 = FF	DS:0003 = FF
			(SP) = 0012	(SP) = 0010
			Stack: +0 01F4	Stack: +0 FFCE
			Stack: +2 0000	Stack: +2 01F4
			Stack: +4 19F5	Stack: +4 0000
			Stack: +6 0000	Stack: +6 19F5
0058	MOV BP, SP	8BEC	(BP) = 0014	(BP) = 0010
			(SP) = 0010	(SP) = 0010
005A	MOV DX, [BP+02]	8B5602	(DX) = 0000	(DX) = 01F4
			(BP) = 0010	(BP) = 0010
005D	FAR 0002	CA0200	(SP) = 0010	(SP) = 0016
			(CS) = 1A0A	(CS) = 01F4
			Stack: +0 FFCE	Stack: +0 19F5
			Stack: +2 01F4	Stack: +2 0000

Stack: +4 0000	Stack: +4 0000
Stack: +6 19F5	Stack: +6 0000

Выводы.

Были применены на практике знания о работе с регистрами процессора, произошло знакомство с основами программирования на языке ассемблер в операционной системе DOS. Были исправлены синтаксические ошибки, программы были выполнены без ошибок.

ПРИЛОЖЕНИЕ А ИСПРАВЛЕННЫЙ КОД ПРОГРАММЫ

Название файла: lab2.asm

```
; Программа изучения режимов адресации процессора
EOL EQU '$'
IND EQU 2
N1 EQU 500
N2 EQU -50
; Стек программы
ASTACK SEGMENT STACK
   DW 12 DUP(?)
ASTACK ENDS
; Данные программы
DATA
        SEGMENT
; Директивы описания данных
    мем1
            DW 0
    MEM2 DW 0
    MEM3 DW 0
    VEC1 DB 8,7,6,5,1,2,3,4
    vec2
            DB -30,-40,30,40,-10,-20,10,20
                 -1, -2, -3, -4, 8, 7, 6, 5, -5, -6, -7, -8, 4, 3, 2, 1
           DB
    MATR
DATA
     ENDS
; Код программы
CODE SEGMENT
    ASSUME CS:CODE, DS:DATA, SS:ASTACK
; Головная процедура
Main PROC FAR
    PUSH DS
    SUB AX, AX
    PUSH AX
    MOV AX, DATA
```

```
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; РЕГИСТРОВАЯ АДРЕСАЦИЯ
      MOV AX, N1
       MOV CX, AX
       MOV BL, EOL
       MOV BH, N2
; Прямая адресация
       MOV MEM2, N2
       MOV BX, OFFSET VEC1
       MOV MEM1, AX
; Косвенная адресация
       MOV AL, [BX]
       ; MOV MEM3, [BX]; HE MOЖЕМ ПЕРЕДАВАТЬ ИЗ ПАМЯТИ В ПАМЯТЬ
; Базированная адресация
       MOV AL, [BX] + 3
       MOV CX, 3 [BX]
; Индексная адресация
       MOV DI, IND
       MOV AL, VEC2 [DI]
       ; MOV CX, VEC2 [DI]; BAЙT ПИХАЕМ В ВОРД
; Адресация с вазированием и индексированием
       MOV BX, 3
       MOV AL, MATR[BX][DI]
       ; MOV CX, MATR[BX][DI]
       ; моv ах, матк[вх*4][DI]; Нельзя умножать 16-битовые регистры
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
       MOV AX, SEG VEC2
       MOV ES, AX
       MOV AX, ES: [BX]
       MOV AX, 0
```

```
; ----- вариант 2
      MOV ES, AX
      PUSH DS
      POP ES
      MOV CX, ES: [BX-1]
       XCHG CX, AX
; ----- вариант 3
      MOV DI, IND
      MOV ES: [BX+DI], AX
; ----- вариант 4
      MOV BP, SP
      ; MOV AX, MATR[BP+BX]
      ; MOV AX, MATR[BP+DI+SI]
; Использование сегмента стека
      PUSH MEM1
      PUSH MEM2
      MOV BP, SP
      MOV DX, [BP]+2
      RET 2
Main ENDP
CODE
       ENDS
END Main
```