Листок 3.

- 1. Найти интеграл от $|x|^p$ по половине единичного шара в \mathbb{R}^3 при тех p, для которых он конечен.
 - 2. Найти интеграл функции $|\sin(x-y)|$ по квадрату $[0,\pi]^2$.
- 3. Выяснить, при каких $\alpha \in \mathbb{R}$ функция $(\sin |x|)^{\alpha}$ на \mathbb{R}^n интегрируема по множеству $\{x\colon |x|\leq 1, x_i\geq 0,\ i=1,\ldots,n\}.$
- 4. (а) Вычислить интеграл функции x^2y^2 по кругу радиуса π с центром в нуле. (b) Вычислить интеграл функции x^2+y^2 по множеству $|x|+|y|\leq 1$.
- 5. Вычислить площадь фигуры, ограниченной кривыми $y^2=2px,\ y^2=2qx,\ x^2=2sy,$ где $0< p< q,\ 0< r< s.$
 - 6. Найти объем тела, ограниченного поверхностями z = xy, x + y + z = 1, z = 0.
- 7. Найти интеграл от функции $\sqrt{x^2+y^2}$ по области в \mathbb{R}^3 , ограниченной поверхностями $z^2=x^2+y^2,\,z=1.$
 - 8. Найти объем тела, ограниченного поверхностями $z=6-x^2-y^2,\,z=\sqrt{x^2+y^2}.$
 - 9. Выяснить, интегрируемо ли преобразование Фурье индикатора квадрата $[0,1]^2$ в \mathbb{R}^2 .
- 10. Пусть $A: \mathbb{R}^n \to \mathbb{R}^n$ линейный оператор, e_1, \dots, e_n стандартный базис в \mathbb{R}^n . Доказать, что мера параллелепипеда, порожденного векторами Ae_1, \dots, Ae_n , равна $|\det(A^*A)|^{1/2}$, а также $|\det G|^{1/2}$, где G матрица Грама с элементами $\langle Ae_i, Ae_j \rangle$.