Project-1: Design and Comparison of Adders

Due Date

❖ Nov. 4, 19:00 pm

Summary

- Design ripple carry adder (RCA) and carry look-ahead adder (CLA) using Verilog language.
- Compare delay and price of the modules using given gate delays and prices.

Submit Form

Submit all Verilog files (files with .v extension) and a report file.

Implementation Specifics

- Implement RCA and CLA modules with Verilog language. Modules should be named as 'rca' and 'cla'.
- ❖ The adders should perform 4-bit + 4-bit operation. The module should have two 4-bit inputs, one 4-bit result output, and 1-bit overflow flag output. Subtraction is not required for this project.
- A sample testbench will be given as 'testbench.v' file and your modules should be compatible with the given testbench.
- Use only the gates in the following table. You can't use other gates or expressions (4-bit and gate, if-else clause, etc.)

Module	Delay	Price	Module	Delay	Price
Inverter	5ps	2			
2 input AND	20ps	5	3 input AND	30ps	8
2 input OR	20ps	5	3 input OR	30ps	8
2 input NAND	15ps	4	3 input NAND	25ps	7
2 input NOR	15ps	4	3 input NOR	25ps	7
2 input XOR	30ps	7	3 input XOR	45ps	10

The sample testbench

```
`timescale lns/lns
module testbench prjl();
       reg [3:0] a,b; // 4-bit inputs
       wire [3:0] s rca,s cla; // 4-bit sum outpus
       wire o rca, o cla; // 1-bit overflow flags
       rca my rca(a,b,s rca,c rca);
       cla my cla(a,b,s cla,c cla);
       initial begin
               a=5;b=3; #1; // s=8(-8), o=1
               a=4;b=-2; #1; // s=2, o=0
               a=7;b=6; #1; // s=13(-3), o=1
               a=8;b=9; #1; // s=1, o=1
       end
endmodule
```


Setting Radix

Decimal

\$ 1 ₹	Msgs				
+	4'd5	4'd5	4'd4	4'd7	-4'd8
 /testbench_prj1/b	4'd3	4'd3	-4'd2	4'd6	-4'd7
≖ - ♦ /testbench_prj1/s_rca	-4'd8	-4'd8	4'd2	-4'd3	4'd1

Unsigned

+	4'd5	4'd5	4'd4	4'd7	4'd8
≖ -♦ /testbench_prj1/b	4'd3	4'd3	4'd14	4'd6	4'd9
+- /testbench_prj1/s_rca	4'd8	4'd8	4'd2	4'd13	4'd1

Analysis Report

- Calculate and compare the delay and price of the RCA and CLA modules with gate delays and prices in the table above.
- Take a screenshot of the waveform which expresses the calculated delay.

Maximum delay matters

but not all inputs give maximum delays

Q & A

email: dawnshin2000@naver.com

