Class 7: Sets

Schedule

Problem Set 3 is due Friday at 6:29pm.

Notes and Questions

What is a *data type*? What are the differences between a *mathematical data type* and a data type in your favorite programming language?

A **set** is an unordered colection of objects. A set is defined by its membership operation: $x \in S$ is true if x is in the set S.

Set Operations

Subset: \subseteq (note that this does not mean *strict subset*)

$$A \subseteq B \iff \forall x \in A. \in .$$

Set Equality: =

$$A = B \iff A \underline{\hspace{1cm}} B \wedge B \underline{\hspace{1cm}} A.$$

Set Union: \cup

$$\forall x.x \in A \cup B \iff x \in A_{\underline{\hspace{1cm}}} x \in B.$$

Set Intersection: \cap

$$\forall x.x \in A \cap B \iff x \in A_{\underline{\hspace{1cm}}} x \in B.$$

Set Difference: -

$$\forall x.x \in A - B \iff x \in A \land x \notin B.$$

Set Complement: \overline{S}

$$\forall x.x \in D.x \in \overline{A} \iff x \notin A.$$

(D is the "domain of discourse", the universe of all objects under discussion.)

cs2102: Class 7: Sets 2

Russell's Paradox

 S_R = the set of all sets that are not members of themselves

Is $S_R \in S_R$?

Set Practice

Here are some practice problems involving sets. We won't go through these in class, but you should ask questions about any are unclear. (At least a few of these will be on Exam 1.)

- 1. Define $A \subset B$ (strict subset).
- 2. Prove $A \cup B \equiv B \cup A$.
- 3. Prove $A B = \emptyset \iff A \subseteq B$.
- 4. Prove $A = B \iff (\forall a \in A. \ a \in B) \land (\forall b \in B. \ b \in A)$.