ROBEM I

- 1. Assume $\{Y_1(n): n \geq 0\}$, $\{Y_2(n): n \geq 0\}$ are two independent migrating branch process with offspring distribution $(p(i): i \in \mathbb{N})$ and the migrating probability respectively are $(\gamma_1(i): i \in \mathbb{Z}_+), (\gamma_2(i): i \in \mathbb{N})$. Prove: $\{Y_1(n) + Y_2(n): n \geq 0\}$ is migrating branching process with offspring distribution $p(i): i \in \mathbb{N}$ and migrating probability $\gamma_1 * \gamma_2$.
- 2. Let $\{Y(n): n \in \mathbb{N}\}$ be migrating branch process with offspring distribution $p(j): j \in \mathbb{N}$ and the migrating distribution $\gamma(i): i \in \mathbb{N}$. $P_n^{\gamma} = (p_n^{\gamma}(i,j); i,j \in \mathbb{N})$ is the *n*-th transition matrix. Prove: $\forall i, n \geq 1$

$$\sum_{j=0}^{\infty} p_n^{\gamma}(i,j)z^j = g_n(z)^i \prod_{k=1}^n h(g_{k-1}(z)), |z| \le 1$$

where h is the generating function of $(\gamma(j): j \in \mathbb{N})$. g is the generating function of $(p(j): j \in \mathbb{N})$.

3. h, g are defined as above. Assume $m := g'(1-) < \infty, \mu := h'(1-) < \infty$. Prove: $\forall i, n \ge 1$,

$$\mathbb{P}(Y_n \mid Y_0 = i) = im^n + \mu \sum_{k=1}^n m^{k-1}$$

SOUTION. 1. Since Y_1, Y_2 are independent Markov chain, we easily get $\mathbb{P}(Y_1(n+1) + Y_2(n+1) = i \mid \sigma(Y_1(j), Y_2(j) : 0 \le j \le n)) = \mathbb{P}(Y_1(n+1) + Y_2(n+1) = i \mid Y_1(n), Y_2(n))$. So to prove $Y_1 + Y_2$ is Markov chain, we only need to prove $\mathbb{P}(Y_1(n+1) + Y_2(n+1) = i \mid Y_1(n), Y_2(n))\mathbb{P}(Y_1(n+1) + Y_2(n+1) = i \mid Y_1(n), Y_2(n))$.

$$\mathbb{P}(Y_1(n+1) + Y_2(n+1) = i \mid Y_1(n) = j, Y_2(n) = k)
= \sum_{x+y=i} \mathbb{P}(Y_1(n+1) = x \mid Y_1(n) = j) \mathbb{P}(Y_2(n+1) = y \mid Y_2(n) = k)
= \sum_{x+y=i} p^{*j} * \gamma_1(x) p^{*k} * \gamma_2(y)
= p^{*j} * \gamma_1 * p^{*k} * \gamma_2(i)
= p^{*(j+k)} * \gamma_1 * \gamma_2(i)$$

So $\mathbb{P}(Y_1(n+1)+Y_2(n+1)=i\mid Y_1(n),Y_2(n))=p^{*(Y_1(n)+Y_2(n))}*(\gamma_1*\gamma_2)(i)\in\sigma(Y_1(n)+Y_2(n))\subset\sigma(Y_1(n),Y_2(n))$. So Y_1+Y_2 is Markov chain. More over, we have obtained $\mathbb{P}(Y_1(n+1)+Y_2(n+1)=j\mid Y_1(n)+Y_2(n)=i)=p^{*i}*(\gamma_1*\gamma_2)(j)$. So $\{Y_1(n)+Y_2(n):n\geq 0\}$ is migrating branching process with offspring distribution $p(i):i\in\mathbb{N}$ and migrating probability $\gamma_1*\gamma_2$.

2. Use MI to prove it. Write $G_n(i,z) := \sum_{j=0}^{\infty} p_n^{\gamma}(i,j)z^j$. When n=0, we have $p_0^{\gamma}(i,j) = \delta_{ij}$, so $G_0(i,z) = z^i = g_0(z)^i$. When n=1, we have $p_1^{\gamma}(i,j) = p^{*i} * \gamma(j)$. So $G_1(i,z) = g(z)^i h(z)$. Assume for certain n we have proved that $G_n(i,z) = g_n(z)^i \prod_{k=1}^n h(g_{k-1}(z))$, Consider n+1.

Easily
$$p_{n+1}^{\gamma}(i,j) = \sum_{k \in \mathbb{N}} p_n^{\gamma}(k,j) p(i,\cdot) * \gamma(k)$$
. So

$$G_{n+1}(i,z) = \sum_{j \in \mathbb{N}} \sum_{k \in \mathbb{N}} p_1^{\gamma}(i,k) p_n^{\gamma}(k,j) z^j$$

$$= \sum_{k \in \mathbb{N}} p_1^{\gamma}(i,k) G_n(k,z)$$

$$= \prod_{k=1}^n h(g_{k-1}(z)) \sum_{k \in \mathbb{N}} p_1^{\gamma}(i,k) g_n(z)^k$$

$$= \prod_{k=1}^n h(g_{k-1}(z)) G_1(i,g_n(z))$$

$$= g_{n+1}(z) \prod_{k=1}^{n+1} h(g_{k-1}(z))$$

3. Easily $\mathbb{P}(Y_n \mid Y_0 = i) = D_z G_n(i, z) \mid_{z \to 1-}$. Noting g(1) = h(1) = 1, easy to get that $\mathbb{P}(Y_n \mid Y_0 = i) = im^n + \mu \sum_{k=1}^n m^{k-1}$.

ROBEM II Assume $b \in (0,1), p \in (0,1)$. Let $\mu(0) = \frac{1-b-p}{1-p}, \mu(j) = bp^{j-1}, j \ge 1$. Prove:

1. $(\mu(j): j \in \mathbb{N})$ is probability distribution and

$$g(z) := \sum_{j=0}^{\infty} \mu(j)z^j = \frac{1-b-p}{1-p} + \frac{bz}{1-pz}.$$

2. Let $b = (1 - p)^2$. Then g'(1) = 1 and

$$g(z) = p + \frac{(1-p)^2 z}{1-pz} = \frac{p - (2p-1)z}{1-pz}.$$

Prove: $\forall n \geq 1$,

$$g_n(z) = \frac{np - ((n+1)p - 1)z}{1 + (n-1)p - npz}.$$

- SOLUTION. 1. Easily $\sum_{j=1}^{\infty} \mu(j) = \frac{b}{1-p}$. So $\sum_{j=0}^{\infty} \mu(j) = 1$. Easily $\sum_{j=1}^{\infty} \mu(j)z^j = \frac{bz}{1-pz}$. So $g(z) = \mu(0) + \frac{bz}{1-pz} = \frac{1-b-p}{1-p} + \frac{bz}{1-pz}$.
 - 2. $g_{n+1}(z) = g(g_n(z)) = \frac{p (2p-1)g_n(z)}{1 pg_n(z)}$. So $g_{n+1}(z) 1 = \frac{(g_n(z)-1)(1-p)}{1 pg_n(z)}$. Thus, we obtain $\frac{1}{g_{n+1}(z)-1} = \frac{1}{g_n(z)-1} \frac{p}{1-p}$. So $\frac{1}{g_n(z)-1} = \frac{1}{z-1} \frac{np}{1-p}$, and finally we get $g_n(z) = \frac{np ((n+1)p-1)z}{1 + (n-1)p npz}$.

ROBEM III Let $\{X(n): n \in \mathbb{N}\}$ be branch process with offspring distribution $p(j): j \in \mathbb{N}$. And g is the generating function. Let $m_2 := g'(1) + g''(1) < \infty$. Let $m = g'(1) < \infty$. $\forall k \geq 1$, $X_n^{(k)} = k^{-1}X_n$. Prove: $\forall \varepsilon > 0, i, n \geq 1$, $\mathbb{P}(|X_n^{(k)} - im^n| \geq \varepsilon \mid X_0^{(k)} = i) \to 0, k \to \infty$.

SOUTON. In fact, we don't need $m_2 < \infty$. We let $(Y(k,n): n \in \mathbb{N}), k \in \mathbb{N}$ are independent branch process with offspring distribution $p(j): j \in \mathbb{N}$ and Y(k,0) = i. Then $\sum_{j=1}^k Y(j,n)$ is branch process with offspring distribution $p(j): j \in \mathbb{N}$ and initial value ki. So $\sum_{j=1}^k Y(j,n) \stackrel{d}{=} X_n \mid X_0^{(k)} = i$. So $\mathbb{P}(|X_n^{(k)} - im^n| \ge \varepsilon \mid X_0^{(k)} = i) = \mathbb{P}(|\frac{\sum_{j=1}^k Y(j,n)}{k} - im^n| \ge \varepsilon)$. By LLN we obtain $\frac{1}{k} \sum_{j=1}^k Y(j,n) \stackrel{\text{a.s.}}{\to} im^n$. So finally we get $\lim_{k\to\infty} \mathbb{P}(|X_n^{(k)} - im^n| \ge \varepsilon \mid X_0^{(k)} = i) = \lim_{k\to\infty} \mathbb{P}(|\frac{\sum_{j=1}^k Y(j,n)}{k} - im^n| \ge \varepsilon) = 0$.

ROBEM IV Let $\{X(n): n \in \mathbb{N}\}$ be branch process with offspring distribution $p(j): j \in \mathbb{N}$. And g is the generating function, where $m := g'(1) \in (1, \infty), m_2 := g'(1) + g''(1) < \infty$. Let $\sigma^2 := m_2 - m^2 = \mathbb{D}(X(1))$. It is well known that $\exists W, \lim_{n \to \infty} \frac{X_n}{m^n} = W$. Prove:

$$\lim_{n \to \infty} \mathbb{E}_1[(m^{-n}X_n - W)^2] = 0, \mathbb{D}_1(W) = \sigma^2 m^{-1}(m-1)^{-1}$$

SOUTON. For convenience we write \mathbb{E}, \mathbb{D} instead of $\mathbb{E}_1, \mathbb{D}_1$. Easy to get that $\mathbb{E}(m^{-2n}X_n^2) = \frac{\sigma^2(1-m^{-n})}{m^2-m} + 1$. So by Fatou theorem we get that $\mathbb{E}(W^2) \leq \lim_{n \to \infty} \mathbb{E}(m^{-2n}X_n^2) = \frac{\sigma^2}{m^2-m} + 1 < \infty$. And by Doob Stochastic Processes p317 theorem 3.4 we get that $\mathbb{E}(\max_{n \in \mathbb{N}} m^{-2n}X_n^2) < \infty$. Thus, $m^{-2n}X_n^2$ are integrable uniformly, and so do $(m^{-n}X_n - W)^2$. So by LCDT we can get $\lim_{n \to \infty} \mathbb{E}((m^{-n}X_n - W)^2) = 0$. Noting that

$$\mathbb{E}(m^{-2n}X_n^2 - W^2) = \mathbb{E}((m^{-n}X_n + W)(m^{-n}X_n - W)) \le \sqrt{\mathbb{E}((m^{-n}X_n + W)^2)\mathbb{E}((m^{-n}X_n - W)^2)} \to 0$$
, we get $\mathbb{E}(W^2) = \lim_{n \to \infty} \mathbb{E}(m^{-2n}X_n^2) = \frac{\sigma^2}{m^2 - m} + 1$. And $\mathbb{E}(W) = \lim_{n \to \infty} \mathbb{E}(m^{-n}X_n) = 1$. So $\mathbb{D}(W) = \mathbb{E}(W^2) - \mathbb{E}(W)^2 = \frac{\sigma^2}{m(m-1)}$.

ROBEM V Let $\{Y(n): n \in \mathbb{N}\}$ be branch process with offspring distribution $p(j): j \in \mathbb{N}$. And g is the generating function, where $m := g'(1) \le 1$. Prove $(p^{\gamma}(j): j \in \mathbb{N})$ is the steady-state vector of transition matrix P_n^{γ} , that is $\sum_{i=0}^{\infty} p^{\gamma}(i) p_n^{\gamma}(i,j) = p^{\gamma}(j), i \ge 0$.

SOLITION. Since $\lim_{m\to\infty} p_m^{\gamma}(i,j) = p^{\gamma}(j)$, and fix $k \in \mathbb{N}$, we have $\sum_{j=0}^{\infty} p_m^{\gamma}(k,i) p_n^{\gamma}(i,j) = p_{n+m}^{\gamma}(k,j)$, we only need to prove that $\lim_{m\to\infty} \sum_{i=0}^{\infty} (p_m^{\gamma}(k,i) - p^{\gamma}(i)) p_n^{\gamma}(i,j) = 0$. Since $\lim_{m\to\infty} p_m^{\gamma}(k,i) = p^{\gamma}(i)$ and $\sum_{i\in\mathbb{N}} p_m^{\gamma}(k,i) = 1$, we can easily get that $\sum_{i\in\mathbb{N}} p^{\gamma}(i) = 1$. For $\varepsilon > 0$, we let N large enough such that $\sum_{k=N}^{\infty} p^{\gamma}(k) < \varepsilon$. Then we let M large enough such that $\forall i: 0 \leq i < N, \forall m \geq 1$

$$M, |p_m^{\gamma}(k,i) - p^{\gamma}(k)| < \frac{\varepsilon}{N}$$
. Then

$$\begin{split} &\left|\sum_{i=0}^{\infty}(p_{m}^{\gamma}(k,i)-p^{\gamma}(i))p_{n}^{\gamma}(i,j)\right| \\ \leq &\sum_{i=0}^{\infty}|p_{m}^{\gamma}(k,i)-p^{\gamma}(i)|p_{n}^{\gamma}(i,j) \\ \leq &\sum_{i=0}^{N-1}|p_{m}^{\gamma}(k,i)-p^{\gamma}(i)|p_{n}^{\gamma}(i,j) + \sum_{i=N}^{\infty}(p_{m}^{\gamma}(k,i)+p^{\gamma}(i))p_{n}^{\gamma}(i,j) \\ \leq &\sum_{i=0}^{N-1}\frac{\varepsilon}{N} + \sum_{i=N}^{\infty}p_{m}^{\gamma}(k,i) + p^{\gamma}(i) \\ \leq &\varepsilon + \sum_{i=N}^{\infty}p^{\gamma}(i) + 1 - \sum_{i=1}^{N-1}p_{m}^{\gamma}(k,i) \\ \leq &\varepsilon + \varepsilon + 1 - \sum_{i=1}^{N-1}p^{\gamma}(i) + \sum_{i=1}^{N-1}|p_{m}^{\gamma}(k,i)-p^{\gamma}(i)| \\ \leq &4\varepsilon \end{split}$$

So finally we get $\lim_{m\to\infty}\sum_{i=0}^{\infty}(p_m^{\gamma}(k,i)-p^{\gamma}(i))p_n^{\gamma}(i,j)=0$. Thus, $\sum_{i=0}^{\infty}p^{\gamma}(i)p_n^{\gamma}(i,j)=p^{\gamma}(j), i\geq 0$.

ROBEM VI Let $\{Y(n): n \in \mathbb{N}\}$ be branch process with offspring distribution $p(j): j \in \mathbb{N}$ and migrating distribution γ . And g is the generating function, where $m := g'(1) \leq 1$. Discuss $\lim_{n \to \infty} \mathbb{E}(Y_n \mid Y_0 = i)$.

SOLION. Easy to get that $\mathbb{E}(Y_n \mid Y_0 = i) = im^n + \mu \sum_{k=1}^n m^{k-1}$. When m = 1, we know $\mathbb{E}(Y_n \mid Y_0 = i) \to \infty$. When m < 1, we know $\mathbb{E}(Y_n \mid Y_0 = i) \to \frac{\mu}{1-m}$.