Jeanie's Route

Byteland has N cities (numbered from 1 to N) and N-1 bidirectional roads. It is guaranteed that there is a route from any city to any other city.

Jeanie is a postal worker who must deliver K letters to various cities in Byteland. She can start and end her delivery route in any city. Given the destination cities for K letters and the definition of each road in Byteland, find and print the minimum distance Jeanie must travel to deliver all K letters.

Note: The letters can be delivered in any order.

Input Format

The first line contains two space-separated integers, N (the number of cities) and K (the number of letters), respectively.

The second line contains K space-separated integers describing the delivery city for each letter. Each line i of the N-1 subsequent lines contains 3 space-separated integers describing a road as $u_i \ v_i \ d_i$, where d_i is the distance (length) of the bidirectional road between cities u_i and v_i .

Constraints

- $2 \le K \le N \le 10^5$
- $1 \le d_i \le 10^3$
- Byteland is a weighted undirected acyclic graph.

Output Format

Print the minimum distance Jeanie must travel to deliver all $oldsymbol{K}$ letters.

Sample Input 0

5 3 1 3 4 1 2 1 2 3 2 2 4 2 3 5 3

Sample Output 0

6

Explanation 0

Jeanie has $\bf 3$ letters she must deliver to cities $\bf 1$, $\bf 3$, and $\bf 4$ in the following map of Byteland:

One of Jeanie's optimal routes is $\underbrace{3 \to 2}_{2} \xrightarrow{1} \underbrace{1}_{1} \xrightarrow{2} \underbrace{4}_{1}$, for a total distanced traveled of 2+1+1+2=6.

Thus, we print ${\bf 6}$ on a new line.