Computer Systems Coursework 2 Anyi Guo Msc. Data Science, Student ID: 13154855 04/2019

1. Uni and multiprogramming

(a) Uniprogrammed

20s + 30s + 40s + 60s * 3 = 270 seconds = 4 min 30 seconds

(b) Multiprogrammed:

Assuming that there is enough memory for the 3 jobs to be run at the same time, and that there is no resource conflict (i.e. the 3 jobs can do I/O at the same time):

1 minute 40 seconds (1 minute for I/O, 40 seconds for the job with the longest execution time)

2. Paging and TLB

TLB look up 100 ns, update 200 nsPT lookup 1 μs , update 2 μs Load word from Main Memory to the CPU 10 μs Load page from Disk into Main Memory 10 ms

(a) Time it takes to find out the physical address

Assume 100 operations in total. This calculation doesn't include the time it takes to update the page tables & TLB, which is shown in (c) below:

TLB hit

0.4 * 100 * 100 ns = 4000 ns

TLB miss (100 ns), main memory hit (1 μ s)

 $(1-0.4) * 0.3* 100 * (100 ns + 1 \mu s) = 19800 ns$

TLB miss (100 ns), main memory miss (1 μs), load page from disk (10 ms)

 $(1-0.4) * (1-0.3) * 100 * (100 ns + 1 \mu s + 10 ms) = 420046200 ns$

Average access time to find out the physical address:

(4000 ns + 19800 ns + 420046200 ns) / 100 = 4200700 ns = 4.2007 ms

(b) Time it takes to load the reference word onto the CPU

Assuming 100 operations in total.

TLB hit (100 ns), reference word is found in physical memory via TLB (10 μs)

 $0.4 * 100 * (100 ns + 10 \mu s) = 404000 ns$

TLB miss (100 *ns*), main memory hit, reference word is found in main memory via PT (1 μ s + 10 μ s) (1-0.4) * 0.3 * 100 * (100 *ns* + 1 μ s + 10 μ s) = 199800 *ns*

TLB miss (100 ns), main memory miss, reference word is loaded from disk into main memory (10 ms), then to CPU via PT (1 μ s + 10 μ s)

 $(1-0.4) * (1-0.3) * 100 * (100 ns + 1 \mu s + 10 \mu s + 10 ms) = 420466200 ns$

Average access time to load the reference word onto the CPU:

(404000 ns + 199800 ns + 420466200 ns) / 100 = 4210700 ns = 4.2107 ms

(c) Time it takes to perform the necessary updates to the page tables

Assuming 100 operations in total:

TLB hit: no update to TLB/page table

n ns

TLB miss, main memory hit: update to TLB (200 ns) via PT lookup (1 μs), no update to page table (1-0.4) * 0.3* 100 * (200 ns + 1 μs) = 21600 ns

TLB miss, main memory miss (page fault): update to TLB (200 *ns*) via PT look up, update to PT through loading page from disk (10 *ms*)

 $(1-0.4) * (1-0.3) * 100 * (200 ns + 1 \mu s + 2 \mu s + 10 ms) = 420134400 ns$

Average access time to perform the necessary updates to the page tables:

(0 + 21600 ns + 420134400 ns) / 100 = 4201560 ns = 4.20156 ms

3. Compute the average turnaround time using the multilevel queues (round robin) scheduling algorithm.

	Arrival Time	Run Time	Run Time (Total)	Priority
Α	40	1	20	1
В	50	2	60	1
С	40	1	20	0
D	0	2	160	0

I'm using quantum of 1 here:

0 - 40 : D (120)

40 - 50 : A (10), C(20), D(120)

50 - 70: A(0), B (50), C(20), D(120) < — Runtime for A: 70 - 40 = **30**

70 - 120: B(0), C(20), D(120) \leftarrow Runtime for B: 120 -50 = **70**

120 - 160: C(0), D(100) <- Runtime for C: 160 - 40 = **120**

160 - 260: D(0) <-Runtime for D: 260 - 0 = **260**

Average runtime:

(30 + 70 + 120 + 260) / (20 + 30 + 20 + 80) =**3.2 seconds**