	14. Se a A una matriz tridiagonal simétrica definida positiva. S i $A=LL^t$ es la factorización de Cholesky																
	de A , demostrar que L es tridiagonal (de hecho es bidiagonal).																
-																	

rodemos	suponer		QVQ	
abs A	•		L ∈ R(0+1) x(ntu) es bidiagonal
				7 .0.

$$A = LL^T$$

$$\forall \tilde{A} \in \mathbb{R}^{n \times n} + ridiagonal \Rightarrow \tilde{L} \text{ bidiagonal}$$

$$L = \begin{bmatrix} \hat{L} & O \\ 1 & X \end{bmatrix} \quad L^T = \begin{bmatrix} \hat{L}^T & 1 \\ 0 & X \end{bmatrix} \quad LeiR^{(n+1)\times(n+1)} \quad \hat{L}eiR^{n\times n}$$

$$1eiR^n \quad \text{if } R$$

$$LL^{\mathsf{T}} = \begin{bmatrix} \hat{L}\hat{L}^{\mathsf{T}} & \hat{L} \\ \hat{L}^{\mathsf{T}}\hat{L}^{\mathsf{T}} & \hat{L}^{\mathsf{T}} \\ \hat{L}^{\mathsf{T}}\hat{L}^{\mathsf{T}} & \hat{L}^{\mathsf{T}} \\ \end{pmatrix} = A$$

Sea
$$\tilde{A} \in \mathbb{R}^{n \times n}$$
, $\tilde{A} = \tilde{L}\tilde{L}^{T}$ una matriz sdp y tridiagonal de n×n porque es una submatriz de A. Por HI \tilde{L} es bidiagonal.

QVQ L es bidiagonal. Basta probar que
$$l = (0, ..., 0, *) \in \mathbb{R}^n$$
.

Como A es tridiagonal,
$$\hat{L}l = (0, ..., 0, *) \in \mathbb{R}^n$$

Entonces
$$(\hat{L}l)_i = [(\hat{L}l)^T]_i = (l^T\hat{L}^T)_i = 0 \quad \forall i < n$$
.

