Indian Institute of Information Technology Ranchi

Department of Electronics & Communication Engineering B. Tech Mid Semester Examination - Autumn Semester 2022-23

Semester: First

Course Instructor: Prof. S. K. Mandal, Dr. Rashmi Panda

Course Code: EC-1001

Course Name: Electronics Devices and Circuits

QUESTION PAPER

Duration: 2 hrs.

Instructions:

Max Marks: 60

- (1). Number in [] indicates marks.
- (2). Any missing data can be assumed suitably.
- (3). Symbols have their usual meaning.

Section A (Answer All)

1. (a) Write short notes on varactor diode.

[2]

(b) How Zener diode acts as a voltage regulator?

[2]

[2]

(c) For the circuit shown below, V_z for Zener diode is 50V, find (i) the output voltage across $10 k\Omega$ resistance (ii) the voltage drop across $5 k\Omega$ resistance (iii) the current through zener diode.

- Define Fermi energy level in semiconductors and how does it vary with temperature?
- [2]

Discuss the crystal structure of P-type semiconductor.

- [2] [2]
- An N-type silicon bar 0.1 cm long and 100 µm² in cross-sectional area has a majority carrier concentration of 5×10^{20} /m³ and the carrier mobility is 0.13 m^2 /V·s at 300K. If the charge of an electron is 1.6×10^{-19} C, then calculate the resistivity of the bar.
- [2]
- A sample of germanium is doped with both donor and acceptor impurities with donor concentration of 1014 donor atoms/cm3 and acceptor concentration of 1015 acceptor atoms/cm3. Calculate the resistivity of the semiconductor material. (given that the mobility of holes and electrons in germanium is $1800 \text{ cm}^2/\text{V} \cdot \text{s}$ and 3800 $cm^2/V \cdot s$, respectively)
- How does the addition of impurities affect the energy bands in a semiconductor? (h)

[2]

Determine the currents I_1 , I_2 , and I_{D2} for the following circuit having Silicon diodes (i)

[2]

Implement a logic OR gate using diodes (here, 10 Volts can be considered as logic 1 and 0 [2] (j) volt as logic 0).

Section B

(Answer Any Taxo)

2. What is a clipper circuit? differentiate between series and parallel clipper. Draw the output waveform for the following clipper circuit with appropriate explanations. (Practical diodes are used in the circuit, $V_1 = V_2 = 5 \text{ V}$ and $V_m = 20 \text{ V}$)

What is a clamper circuit? (b) Draw the output waveform for the following clamper circuit where Silicon diode is used [10] with appropriate explanations.

- 3. Explain the operation of bridge full wave rectifier. Derive the expression for DC and RMS value [20] of the rectified output. Find out the maximum efficiency and PIV rating of the same.
- Write Short notes on the followings 4.

[5x4]

- (a) Photodiode
- (b) Diffusion and Drift current
- (c) Avalanche and Zener breakdown
- (d) Diode capacitances