Contents

0.1	Algebr	a on a set											1
		Standard algeb											

0.1 Algebra on a set

0.1.1 Standard algebra

An algebra, Σ , on set s is a set of subsets of s such that:

- Closed under intersection: If a and b are in Σ then $a \wedge b$ must also be in Σ
- $\forall ab[(a \in \Sigma \land b \in \Sigma) \rightarrow (a \land b \in \Sigma)]$
- Closed under union: If a and b are in Σ then $a \vee b$ must also be in Σ .
- $\forall ab[(a \in \Sigma \land b \in \Sigma) \rightarrow (a \lor b \in \Sigma)]$

If both of these are true, then the following is also true:

• Closed under complement: If a is in Σ then $s \setminus a$ must also be in Σ

We also require that the null set (and therefore the original set, null's complement) is part of the algebra.