Regularized Hazard Estimation for Age-Period-Cohort Analysis

V. Goepp[†], G. Nuel[‡], O. Bouaziz[†]

†: MAP5 (CNRS 8145), Université Paris Descartes ‡: LPSM (CNRS 8001), Sorbonne Université

IWAP 2018, Budapest

Introduction: right-censored data

• We want to infer T^* , time before an event of interest.

Introduction: right-censored data

- We want to infer T^* , time before an event of interest.
- But we don't observe the T_i^* s, but

$$T_i = \min(T_i^*, C_i)$$
.

Introduction: survival analysis

Framework of survival analysis:

- C is the censoring variable.
- We also observe $\Delta_i = \mathbb{1}_{T_i^* = T_i}$.
- We infer the conditional density called hazard rate:

$$\lambda(t) = \lim_{\delta t \to 0} \frac{\mathbb{P}\left(t \le T^* \le t + \delta t | T^* > t\right)}{\delta t}$$

• If $C \perp T^*$, the likelihood writes:

$$L_{n} = \sum_{i=1}^{n} \left(\Delta_{i} \log \left(\lambda \left(T_{i} \right) \right) - \int_{0}^{T_{i}} \lambda \left(t \right) dt \right).$$

Introduction

Lexis Diagram

Age-Cohort Diagram

- · age effect: menopause
- cohort effect: carcinogenic baby food
- · period effect: nuclear incident

Introduction

Lexis Diagram

Age-Cohort Diagram

- · age effect: menopause
- cohort effect: carcinogenic baby food
- · period effect: nuclear incident

Additional variable u.

 \rightarrow Bi-dimensional hazard $\lambda \left(t|u\right)$

Parametric estimation

• The hazard λ is discretized into J age intervals and K cohort intervals:

$$\lambda(t|u) = \sum_{j=1}^{J} \sum_{k=1}^{K} \lambda_{j,k} \mathbb{1}_{[c_{j-1},c_j) \times [d_{k-1},d_k)}(t,u)$$

Goal: infer $\lambda_{j,k}$

Parametric estimation

 The hazard λ is discretized into J age intervals and K cohort intervals:

$$\lambda(t|u) = \sum_{j=1}^{J} \sum_{k=1}^{K} \lambda_{j,k} \mathbb{1}_{[c_{j-1},c_j) \times [d_{k-1},d_k)}(t,u)$$

Goal: infer $\lambda_{j,k}$

• Log-likelihood: $\ell_n = \sum O_{j,k} \log (\lambda_{j,k}) - R_{j,k} \lambda_{j,k}$, with exhaustive statistics

$$\begin{cases} O_{j,k} = \text{number of events} \\ R_{j,k} = \text{time at risk.} \end{cases}$$

Explicit MLE: $\lambda_{j,k} = \log \frac{O_{j,k}}{R_{j,k}} \rightarrow$ **overfitting**.

Maximum likelihood estimate

Illustration of overfitting

Reparametrization:

$$\log \lambda_{j,k} = \eta_{j,k},$$

Reparametrization:

$$\log \lambda_{j,k} = \eta_{j,k},$$

And η is inferred by *penalized* maximum likelihood:

$$\ell_n^{\mathsf{pen}}(oldsymbol{\eta}) = \underbrace{\ell_n(oldsymbol{\eta})}_{\mathsf{goodness}}$$

Reparametrization:

$$\log \lambda_{j,k} = \eta_{j,k},$$

And η is inferred by *penalized* maximum likelihood:

$$\ell_n^{\mathsf{pen}}(\boldsymbol{\eta}) = \underbrace{\ell_n(\boldsymbol{\eta})}_{\substack{\mathsf{goodness} \\ \mathsf{of fit}}} - \frac{\mathsf{pen}}{2} \underbrace{\sum_{j,k} \left(\eta_{j+1,k} - \eta_{j,k}\right)^2 + \left(\eta_{j,k+1} - \eta_{j,k}\right)^2}_{\substack{\mathsf{regularization}}},$$

Reparametrization:

$$\log \lambda_{j,k} = \eta_{j,k},$$

And η is inferred by *penalized* maximum likelihood:

$$\ell_n^{\text{pen}}(\boldsymbol{\eta}) = \underbrace{\ell_n(\boldsymbol{\eta})}_{\text{goodness of fit}} - \frac{\text{pen}}{2} \underbrace{\sum_{j,k} \left(\eta_{j+1,k} - \eta_{j,k}\right)^2 + \left(\eta_{j,k+1} - \eta_{j,k}\right)^2}_{\text{regularization}},$$

- pen \rightarrow 0; $\hat{\eta} \rightarrow \hat{\eta}^{\text{mle}}$; bias \searrow ; variance \nearrow
- pen $\to \infty$; $\hat{\eta} \to \text{constant}$; bias \nearrow ; variance \searrow
- pen is a bias-variance trade-off parameter.

Ridge regularization

Illustration

Regularization path:

Ridge regularization

Illustration

Regularization path:

 $\begin{array}{lll} \mathrm{pen} \to \mathbf{0} & : & \widehat{\lambda} \to \widehat{\lambda}^{\mathrm{mle}} \\ \mathrm{pen} \to \infty & : & \widehat{\lambda} \ \mathrm{constant} \end{array}$

Ridge regularization

Illustration

Regularization path:

 $\begin{array}{lll} \text{pen} \to \mathbf{0} & : & \widehat{\lambda} \to \widehat{\lambda}^{\text{mle}} \\ \text{pen} \to \infty & : & \widehat{\lambda} \text{ constant} \end{array}$

The estimated hazard is **smoothed**.

Adaptive Ridge regularization

Approximation of the L₀ norm

We want to detect breakpoint moments of λ .

Adaptive Ridge regularization

Approximation of the L₀ norm

We want to detect breakpoint moments of λ .

The differences in the penalty are weighted:

$$\ell_n^{\text{pen}}(\boldsymbol{\eta}) = \ell_n(\boldsymbol{\eta}) - \frac{\text{pen}}{2} \sum_{j,k} \underbrace{v_{j,k} \left(\eta_{j+1,k} - \eta_{j,k}\right)^2 + \underbrace{w_{j,k} \left(\eta_{j,k+1} - \eta_{j,k}\right)^2}_{},$$

Adaptive Ridge regularization

Approximation of the L₀ norm

We want to detect breakpoint moments of λ .

The differences in the penalty are weighted:

$$\ell_n^{\text{pen}}(\boldsymbol{\eta}) = \ell_n(\boldsymbol{\eta}) - \frac{\text{pen}}{2} \sum_{j,k} \frac{\mathbf{v}_{j,k}}{\left(\eta_{j+1,k} - \eta_{j,k}\right)^2} + \frac{\mathbf{w}_{j,k}}{\left(\eta_{j,k+1} - \eta_{j,k}\right)^2},$$

Weights are iteratively adapted:

$$\begin{cases} \mathbf{v}_{j,k} = \left(\left(\eta_{j+1,k} - \eta_{j,k} \right)^2 + \varepsilon^2 \right)^{-1} \\ \mathbf{w}_{j,k} = \left(\left(\eta_{j,k} - \eta_{j,k-1} \right)^2 + \varepsilon^2 \right)^{-1} \end{cases}, \quad \text{with} \quad \varepsilon \ll 1.$$

[1] F. Frommlet and G. Nuel, An Adaptive Ridge Procedure for L0 Regularization, *Public Library of Science*, 2016.

L₀ norm approximation

When $\varepsilon \ll 1$:

$$V_{j,k} (\eta_{j+1,k} - \eta_{j,k})^{2} \simeq \|\eta_{j+1,k} - \eta_{j,k}\|_{0}^{2} = \begin{cases} 0 & \text{si } \eta_{j+1,k} = \eta_{j,k} \\ 1 & \text{si } \eta_{j+1,k} \neq \eta_{j,k} \end{cases}$$

L₀ regularization

Regularization path:

 $\begin{array}{lll} \mathrm{pen} \to \mathbf{0} & : & \widehat{\lambda} \to \widehat{\lambda}^{\mathrm{mle}} \\ \mathrm{pen} \to \infty & : & \widehat{\lambda} \ \mathrm{constant} \end{array}$

L₀ regularization

Regularization path:

 $\begin{array}{lll} \text{pen} \to 0 & : & \widehat{\lambda} \to \widehat{\lambda}^{\text{mle}} \\ \text{pen} \to \infty & : & \widehat{\lambda} \text{ constant} \end{array}$

The estimated hazard is piecewise constant.

Comparision: smoothed vs segmented estimate

L₂ regularization: Each penalty yields an estimate

L₀ regularization: Each penalty yields a *model*

True λ

True λ

AGE-COHORT model: $\lambda_{j,k} = \exp(\alpha_j + \beta_k)$

True λ

AGE-COHORT model: $\lambda_{j,k} = \exp(\alpha_j + \beta_k)$

True λ

AGE-COHORT model: $\lambda_{i,k} = \exp(\alpha_i + \beta_k)$

L₀ Regularization

True λ

True λ

AGE-COHORT model: $\lambda_{j,k} = \exp(\alpha_j + \beta_k)$

True λ

AGE-COHORT model: $\lambda_{j,k} = \exp(\alpha_j + \beta_k)$

True λ

AGE-COHORT model: $\lambda_{i,k} = \exp(\alpha_i + \beta_k)$

L₀ Regularization

Presentation of the data

SEER breast cancer mortality data:

- US cancer survey
- Period: 1986 –.
- Sample size $\simeq 400,000$
- Cohort = Time of diagnosis
- Age = Time after diagnosis
- · Cancer stage is registered

Question: has the mortality of breast cancer evolved with time?

Death after diagnosis of stage 1 breast cancer

MLE: stage 1 cancers

MLE: stage 1 cancers

L₀ Regularization: stage 1 cancers

L₀ Regularization: stage 2 cancers

L₀ Regularization: stage 2 cancers

L₀ Regularization: stage 3 cancers

Summary and Perspectives

Summary:

- The hazard is estimated as a piecewise constant function
- Our model performs well even when the true hazard is not piecewise constant.

Perspectives:

· We can add age and cohort effects:

$$\log(\lambda_{j,k}) = \alpha_j + \beta_k + \delta_{j,k},$$

with regularization of δ .

• Piecewise linear hazard estimation with penalty $\propto \left(\Delta^2 \eta_{j,k}\right)^2$.