Signal compression: Quantization

To store, transmit or manipulate signals, they first must be digitized.

Matlab demo

A mathematical model of a quantizer

In coming sequence U_1, U_2, \ldots is mapped into a sequence of discrete random variables V_1, V_2, \ldots . The objective is that, for each m, V_m should represent U_m with as little distortion as possible.

When an analog random variable U is quantized into a discrete random variable V=V(U), the mean-squared distortion (MSE, mean-squared error) is defined by

$$E \left[\begin{array}{cc} U - V \end{array} \right]$$

A scalar quantizer partitions the set of real numbers into M quantizer regions (intervals): $R_1, R_2, ..., R_M$ containing representation points a_i and separated by boundaries $b_1, ..., b_{M-1}$

An analog sequence $u_1, u_2, ...$ These real numbers are sample values of random variables $U_1, U_2, ...$

- \square Given a set of representation points $\{a_i\}$, how to choose $\{R_i\}$?
- ☐ Given a set of intervals $\{R_j\}$, how to choose representation points $\{a_i\}$?

Choice of intervals for given representation points

Given representation points $a_j: 1 \le j \le M$, determine b_j

Given u, the squared error to a_j is $u - a_j$ If u is between a_j and a_{j+1} then u is mapped to the closest one.

This implies that $b_j = a_j + a_{j+1} / 2$ and the quantization regions are determined.

Note that, in this case, the quantization result does not depend on on the probabilistic model for $U_1, U_2, ...$

Given intervals (i.e., b_j) find representation points a_j

$$MSE = \mathbf{E} \begin{bmatrix} U - V & U \end{bmatrix} = \int_{-\infty}^{\infty} f_U u u - v u^2 du$$

$$= \sum_{j=1}^{M} \int_{R_j} f_U \ u \ u - a_j^2 du \rightarrow \min \text{ over } a_j$$

Let f_j u be the conditional pdf of U given that $u \in R_j$

$$MSE = \mathbf{E} \begin{bmatrix} U - V & U \end{bmatrix} = \int_{-\infty}^{\infty} f_U u u - v u^2 du$$

$$= \sum_{j=1}^{M} \int_{R_j} f_U \ u \ u - a_j^2 du \rightarrow \min \text{ over } a_j$$

Let f_j u be the conditional pdf of U given that $u \in R_j$

$$f_{j} u = \begin{cases} f_{U} & u / Q_{j} & \text{if } u \in R_{j} \\ 0 & \text{otherwise} \end{cases} \text{ where } Q_{j} = \text{Pr } U \in R_{j}$$

Thus
$$\int_{R_j} f_U u u - a_j^2 du = Q_j \int_{R_j} f_j u u - a_j^2 du$$

We have to minimize $\int_{R_i} f_j u u - a_j^2 du$ w.r.t. a_j

We have to minimize $\int_{R_i} f_j u u - a_j^2 du$ over a_j

$$\frac{\int_{R} f u u - a^{2} du = \int_{R} f u u^{2} du - 2a \int_{R} f u u du + a^{2}}{X - a^{2}} = \overline{X^{2}} - 2a\overline{X} + a^{2}$$

a quadratic polynomial which is minimized over a when a = X

We arrive at a set of conditions that the endpoints $\{b_j\}$ and the points $\{a_j\}$ must satisfy to achieve the MSE:

- \square Each b_j must be the midpoint between a_j and a_{j+1}
- \square Each a_i and must be the mean of random variable U_i with pdf $f_i(u)$

The Lloyd-Max algorithm 1

- Necessary conditions that the endpoints $\{b_j\}$ and the points $\{a_j\}$ must satisfy to achieve the MSE:
- \square Each b_j must be the midpoint between a_j and a_{j+1}
- \square Each a_j and must be the mean of random variable U_j with pdf $f_j(u)$

The Lloyd-Max algorithm alternates between

- 1. optimising the endpoints $\{b_i\}$ for a given set $\{a_i\}$ of and then
- 2. optimising the points $\{a_j\}$ for the new endpoints $\{b_j\}$.

Assume that M and $f_U(u)$ are given.

- 1. Choose an arbitrary initial set of $a_1 < a_2 < ... < a_M$
- 2. Set $b_j = (a_{j+1} + a_j)$
- 3. Set a_j equal to the conditional mean of U given $U \in (b_{i-1}b_i]$
- 4. Repeat 2. and 3. until further improvement in MSE is negligible.

The Lloyd-Max algorithm 2

- 1. Start from an initial set of representation points a_j
- 2. Find M-1 interval endpoints $b_j=a_j+a_{j+1}/2$
- 3. Compute the mean-squared error (MSE)

$$MSE = \sum_{k=1}^{M} \int_{b_{k-1}}^{b_k} x - a_k^2 f x dx$$

- 4. Stop if MSE changes little from last time.
- 5. Otherwise, update $a_j = \int_{b_{i-1}}^{b_j} x f x dx / \int_{b_{i-1}}^{b_j} f x dx$
- 6. Go to Step 2.

The Lloyd-Max algorithm: an example

$$b_{j} = a_{j} + a_{j+1} / 2 \qquad a_{j} = \int_{b_{j-1}}^{b_{j}} x f x dx / \int_{b_{j-1}}^{b_{j}} f x dx$$

Consider a random variable **uniformly distributed** between 0 and 2. Let us use the Lloyd-Max algorithm to find the 2-bit quantizer that minimizes the MSE.

f x = const

$$a_{j} = \int_{b_{j-1}}^{b_{j}} x f x dx / \int_{b_{j-1}}^{b_{j}} f x dx = \frac{1}{2} b_{j}^{2} - b_{j-1}^{2} / b_{j} - b_{j-1} = \frac{b_{j} + b_{j-1}}{2}$$

$$b_0 = 0$$
, $b_1 = 0.5$, $b_2 = 1$, $b_3 = 1.5$, $b_4 = 2$
 $a_1 = 0.25$, $a_2 = 0.75$, $a_3 = 1.25$, $a_4 = 1.75$

The Lloyd-Max algorithm can be used in the multidimensional case.

A nice Java

applet: http://www.raskob.de/fun/d/index-en.php