REDUÇÃO DE DADOS PRINCÍPIOS DE REDUÇÃO DE DADOS

Luis Antonio Fantozzi Alvarez

Universidade de São Paulo

Panorama desta aula

- Nesta aula, nós discutiremos o conceito de suficiência e seus derivados.
 - Conceitos capturam ideia crucial de redução de dados: como reduzir a informação nos dados a um conjunto "pequeno" de estatísticas, sem perder informação relevante para o problema de interesse?
 - Estes conceitos são úteis na construção de estimadores e testes de hipóteses com propriedades desejáveis.
- Em seguida, nós veremos que, em famílias exponenciais, a redução de dados toma uma forma bastante conveniente.
 - Veremos que diversas distribuições conhecidas pertencem à família exponencial.
 - Veremos, sob quais condições estatísticas, com boas propriedades de redução de dados são facilmente recuperáveis em famílias exponenciais
- Referências desta aula: Casella e Berger (2001), com tópicos de Schervish (1995), Lehmann e Romano (2005) e Lehmann e Casella (1998).

Suficiência

Ambiente

- Nosso ponto de partida é um espaço mensurável (Ω, Σ) .
 - Ω é o espaço amostral.
 - Σ é o espaço de eventos aos quais podemos atribuir probabilidades (σ -álgebra).
- Pesquisador observa uma amostra, dada pela variável aleatória $\pmb{X} := \operatorname{Id}_{\Omega}$, cuja lei é dada por uma probabilidade P sobre (Ω, Σ) desconhecida.
- O pesquisador postula uma família de leis de probabilidade $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ candidatas a terem gerado a amostra.
 - Θ é o espaço de parâmetros que indexa a família.
- Exemplo: pesquisador observa uma variável escalar, e supõe que tenha sido amostrada de uma distribuição normal com média desconhecida e variância unitária.
 - Quem é \mathcal{P} ?
 - E se a variância é desconhecida?
 - E se pesquisador possui *n* observações independentes?

HIPÓTESES TÉCNICAS

- No que segue, supomos que existe uma medida μ tal que todo elemento de $P_{\theta} \in \mathcal{P}$ admite densidade p_{θ} com respeito a μ .
 - Para famílias de distribuições discretas, μ é a medida de contagem e p_{θ} são as f.m.p.
 - Para famílias de distribuições contínuas, μ é a medida de Lebesgue e p_{θ} são as f.d.p.
- Uma estatística é uma transformação (mensurável) da amostra, i.e. uma função $\mathcal{T}(\boldsymbol{X})$.
- No que segue, vamos supor que, para qualquer estatística, as distribuições condicionais de $\boldsymbol{X}|T(\boldsymbol{X})$ sob cada P_{θ} admitem uma densidade condicional (regular) $p_{\boldsymbol{X}|T(\boldsymbol{X}),\theta}(\cdot|\cdot)$.
 - Essa condição limita a complexidade de (Ω, Σ) .
 - Na maior parte dos casos práticos é satisfeita.
 - Condições suficientes em Durrett (2019, Seção 4.1.3) (fora do escopo do curso).

ESTATÍSTICA SUFICIENTE

- Uma estatística é tão somente uma transformação (mensurável) da amostra, isto é, uma função $T(\boldsymbol{X})$ tal que $T^{-1}(A) \in \Sigma$ para todo A na σ -álgebra do contradomínio.

Definição

Uma estatística T é dita suficiente para θ se a distribuição condicional de $\boldsymbol{X}|T(\boldsymbol{X})$ não depende de θ , isto é, se existe H tal que:

$$P_{\theta}[\mathbf{X} \in A | T(\mathbf{X})] = H(A | T(\mathbf{X})), \quad \forall \theta \in \Theta, A \in \Sigma.$$

- Uma vez que conhecemos $T(\boldsymbol{X})$, não há mais informação adicional sobre θ na amostra.
- Sob nossas condições técnicas, a definição é equivalente a que a densidade condicional $p_{X|T(X),\theta}$ não dependa de θ .

EXEMPLO

Suponha que a amostra consista de duas Bernoullis independentes e identicamente distribuídas, com parâmetro $\theta \in (0,1)$ desconhecido. Neste caso, a f.m.p. é:

$$P_{\theta}[X_1 = x, X_2 = y] = \theta^x (1 - \theta)^{1 - x} \theta^y (1 - \theta)^{1 - y}, \quad \forall x, y \in \{0, 1\},$$

de onde segue que, para todo $t \in \{0, 1/2, 1\}$.

$$P_{\theta}[X_1 = x, X_2 = y | X_1 + X_2 = 2t] = \frac{P_{\theta}[X_1 = x, X_2 = y, X_1 + X_2 = 2t]}{P_{\theta}[X_1 + X_2 = 2t]} = \frac{\theta^{x+y}(1-\theta)^{2-x-y}\mathbf{1}\{x+y=2t\}}{\binom{2}{2t}\theta^{2t}(1-\theta)^{1-2t}} = \mathbf{1}\{x+y=2t\},$$

de onde concluímos que $(X_1 + X_2)/2$ é suficiente.

Lema da fatoração de Neyman-Fisher

LEMA

 $T(\mathbf{X})$ é suficiente para θ se, e somente se, existem funções h_{θ} , $\theta \in \Theta$, e c tais que, para todo $\theta \in \Theta$:

$$p_{\theta}(\mathbf{x}) = h_{\theta}(T(\mathbf{x}))c(\mathbf{x}), \quad \mu\text{-q.t.p.}$$

- Critério conveniente para encontrar uma estatística suficiente.
 - No caso discreto, " μ -q.t.p." pode ser lido como para todo x.
 - No caso contínuo, condição pode ser violada num conjunto de medida de Lebesgue zero (por exemplo, conjuntos enumeráveis de pontos).

EXEMPLO

Suponha que o pesquisador observe uma amostra iid X_1, X_2, \ldots, X_n de uma distribuição exponencial com parâmetro $\lambda > 0$ desconhecido. Neste caso, observe que:

$$p_{\lambda}(x_1, x_2, \dots x_n) = \prod_{i=1}^n (\lambda e^{-\lambda x} \mathbf{1}\{x > 0\}) =$$

$$= \lambda^n \exp\left(-\lambda \sum_{i=1}^n x_i\right) \mathbf{1}\{\min_i x_i > 0\} = h_{\lambda}\left(\sum_{i=1}^n x_i\right) c(\mathbf{x}),$$

de onde concluímos que $(X_1 + X_2 + \dots X_n)/n$ é estatística suficiente.

ESTATÍSTICA SUFICIENTE MINIMAL

- Observe que o conceito de estatística suficiente só nos informa sobre a capacidade de uma transformação em condensar a informação relevante na amostra sobre θ .
- Este conceito não versa sobre o "tamanho" desta estatística.
 - De fato, a própria amostra, T(X) = X, é sempre uma estatística suficiente.
- Note que, se T é estatística suficiente e T = M ∘ U, então U é estatística suficiente.
 - Estatísticas mais "finas" que uma estatística suficiente são estatísticas suficientes.
- Na outra direção, podemos pensar na estatística suficiente mais "grossa" possível.

ESTATÍSTICA SUFICIENTE MINIMAL (CONT.)

Definição

Uma estatística T é dita suficiente minimal, se:

- 1. T é suficiente.
- 2. Para qualquer outra estatística S suficiente, existe M tal que $T = M \circ S$.

Lema

Considere uma estatística T tal que:

$$T(\mathbf{x}) = T(\mathbf{y}) \iff \mathbf{y} \in D(\mathbf{x}),$$

onde

$$D(\mathbf{x}) = \{ \mathbf{y} : p_{\theta}(\mathbf{y}) = p_{\theta}(\mathbf{x})h(x,y), \quad \forall \theta \in \Theta \text{ e algum } h(x,y) > 0 \}.$$

Então T é suficiente minimal.

EXEMPLO

Suponha que o espaço amostral é \mathbb{R}^n_+ . Considere uma amostra aleatória de $U[0,\theta]$, $\theta>0$. Neste caso:

$$p_{\theta}(x_1,\ldots,x_n) = \frac{1}{\theta^n} \mathbf{1}\{\max_i x_i < \theta\}.$$

Pelo critério de fatoração, $X_{(n)} := \max_i X_i$ é suficiente. Vamos mostrar que é minimal suficiente usando o lema anterior. Observe que $D(\mathbf{x}) = \{\mathbf{y}: y_{(n)} = x_{(n)}\}$. De fato, se $y_{(n)} \neq x_{(n)}$, ao considerar $\theta' = (x_{(n)} + y_{(n)})/2$, teremos que $0 = p_{\theta'}(\mathbf{x}) < p_{\theta'}(\mathbf{y})$ ou $0 = p_{\theta'}(\mathbf{y}) < p_{\theta'}(\mathbf{x})$. Segue do lema anterior que $X_{(n)}$ é minimal.

Ancilaridade

Definição

Uma estatística é dita ancilar para θ se sua distribuição não depende de θ , i.e., se existe F tal que:

$$P_{\theta}[T(X) \in A] = F[A], \quad \forall \theta \in \Theta, A \in \mathcal{S},$$

onde ${\mathcal S}$ é σ -álgebra acoplada ao contradomínio de ${\mathcal T}$.

Exemplo

No modelo linear Gaussiano homocedástico com regressores fixos:

$$\mathbf{y}_{n\times 1} \sim \mathcal{N}(\mathbf{Z}\beta, \sigma^2 \mathbb{I}_n),$$

onde posto(Z) = k, $\beta \in \mathbb{R}^k$ desconhecido e $\sigma^2 > 0$ conhecido; veremos em Econometria I que a estatística $S = \hat{e}'\hat{e}$, onde $\hat{e} = y - Z\hat{\beta}_{MQO}$, é ancilar.

SUFICIÊNCIA COMPLETA

- Gostaríamos de que uma estatística suficiente fosse independente de estatísticas ancilares, visto que essas não nos trazem informação de θ .
- Conceito apropriado para isto é o de estatística completa suficiente.

Definição

Uma estatística T é dita completa para θ se, para qualquer f mensurável com valores reais:

$$\mathbb{E}_{\theta}[f(T)] = 0, \forall \theta \in \Theta \implies \mathbb{P}_{\theta}[f(T) = 0] = 1, \forall \theta \in \Theta$$

TEOREMA (BASU)

Uma estatística completa suficiente para θ é independente de qualquer estatística ancilar de θ .

Suficiência completa vs. suficiência minimal

TEOREMA (BAHADUR)

Se U é estatística completa suficiente de dimensão finita, então é suficiente minimal.

 Recíproca não é verdadeira: existem estatísticas minimais suficientes de dimensão finita que não são completas (veja Lehmann e Casella, 1998).

Famílias Exponenciais

FAMÍLIA EXPONENCIAL

Definição

Uma família de distribuições $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ sobre um espaço mensurável (Ω, Σ) é dita uma família exponencial se:

- 1. Existe uma medida μ tal que cada elemento $P_{\theta} \in \mathcal{P}$ admite densidade p_{θ} com respeito a μ .
- 2. Existem $\eta:\Theta\mapsto\mathbb{R}^s$, $T:\Omega\mapsto\mathbb{R}^s$, $B:\Theta\mapsto\mathbb{R}$ e $h:\Omega\mapsto\mathbb{R}_+$ tais que:

$$p_{\theta}(\mathbf{x}) = \exp(\eta(\theta)' T(\mathbf{x}) - B(\theta)) h(\mathbf{x})$$

- Diversas distribuições conhecidas pertecem a esta família: Gamma, Chi-Quadrado, Beta, Normal, Poisson, Negativo-Binomial.
- Propriedade útil: se $\mathcal{P}_1,\ldots,\mathcal{P}_n$ são famílias exponenciais, então $\mathcal{P}^n:=\{\otimes_{i=1}^n P_i: P_i\in\mathcal{P}_i\}$ é uma família exponencial.
 - Consequência: a distribuição amostral de uma amostra aleatória de uma família exponencial também constitui uma família exponencial.

EXEMPLO

Sejam $\mathbf{X}=(X_1,X_2,\ldots,X_n)'$ uma amostra aleatória de $N(\mu,\sigma^2)$, onde $\mu\in\mathbb{R}$ e $\sigma^2>0$ são desconhecidos. Neste caso, fazendo $\theta=(\mu,\sigma^2)'$, temos:

$$p_{\theta}(x_{1}, x_{2}, \dots, x_{n}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(\frac{-(x_{i} - \mu)^{2}}{2\sigma^{2}}\right) = \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} x_{i}^{2} + \frac{\mu}{\sigma^{2}} \sum_{i=1}^{n} x_{i} - \frac{\mu^{2}}{2\sigma^{2}} n\right) \left(\frac{1}{\sqrt{2\pi\sigma^{2}}}\right)^{n},$$
(1)

de onde segue que a família é exponencial com

$$T(\mathbf{x}) = \left(\sum_{i=1}^n x_i^2, \sum_{i=1}^n x_i\right)' \in \eta(\theta) = \left(-\frac{1}{2\sigma^2}, \frac{\mu}{\sigma^2}\right)'.$$

Identificabilidade de famílias de distribuições

DEFINIÇÃO

Para uma família $\{P_{\theta}: \theta \in \Theta\}$, dizemos que o parâmetro é identificável se:

$$\theta = \theta' \iff P_{\theta} = P_{\theta'}$$

- Identificação é o requerimento básico para estimação pontual.
 - Requer a existência de um mapa 1-1 entre parâmetro e distribuição amostral.
- No exemplo anterior, θ é identificado, visto que $f_1(P_\theta) := \mathbb{E}_{\theta}[X_1] = \mu$ e $f_2(P_\theta) := \mathbb{E}[X_1^2] = \sigma^2 + \mu^2$.
- Por outro lado, se a família paramétrica fosse $\{\mathcal{N}(\theta \lor 0,1): \theta \in \mathbb{R}\}$, θ não é identificável.

Parametrização natural de família

EXPONENCIAL

Note que, da definição de família exponencial:

$$p_{\theta}(\mathbf{x}) = \exp(\eta(\theta)' T(\mathbf{x}) - B(\theta)) h(\mathbf{x}), \quad \theta \in \Theta,$$

segue uma reparametrização natural

$$p_{\eta}(\mathbf{x}) = \exp(\eta' T(\mathbf{x}) - B^*(\eta)) h(\mathbf{x}), \quad \eta \in \Xi,$$

onde $\Xi := \{ \eta(\theta) : \theta \in \Theta \} \subseteq \mathbb{R}^s$ é o espaço paramétrico natural; e $B^*(\eta) = B(\theta)$ para algum (qualquer) $\theta \in \Theta$ tal que $\eta(\theta) = \eta$

DEFINIÇÃO

Uma família exponencial $\{P_{\theta}: \theta \in \Theta\}$ é dita uma família de posto cheio se sua reparametrização natural é tal que η é identificável e Ξ contém uma bola aberta de \mathbb{R}^s .

- No exemplo de amostra aleatória normal, $\Theta=(-\infty,0)\times\mathbb{R}$, logo a família tem posto cheio.
- $\{N(\mu, \mu^2) : \mu \in \mathbb{R}\}$ não tem posto cheio (família curvada).

SUFICIÊNCIA EM FAMÍLIAS EXPONENCIAIS

Corolário

Numa família exponencial, T(X) é uma estatística suficiente.

Corolário

Numa família exponencial de posto cheio, T(X) é uma estatística suficiente minimal.

TEOREMA

Numa família exponencial de posto cheio, $T(\mathbf{X})$ é uma estatística suficiente completa.

Tópicos adicionais

Momentos de T

TEOREMA

Para uma família exponencial em sua parametrização natural, e $\eta \in \operatorname{int}(\Xi)$, temos que, para toda h tal que

$$\int_{\Omega} |h(\mathbf{x})| p_{\eta'}(\mathbf{x}) \mu(d\mathbf{x}) < \infty,$$

para todo η' numa vizinhança de η ; a função:

$$\psi \mapsto \int_{\Omega} h(\mathbf{x}) p_{\psi}(\mathbf{x}) \mu(d\mathbf{x}),$$

é diferenciável em η , com derivada dada por diferenciação dentro da integral.

- Aplicação do resultado: momentos de \mathcal{T} .

TEOREMA DE RAO-BLACKWELL

- Considere o problema de estimar um parâmetro $\psi(\theta)$ escalar de uma família P_{θ} .
- Seja $L(\theta; \hat{\delta})$ a perda incorrida em utilizar o estimador $\hat{\delta}$ para estimar $\psi(\theta)$.
- A perda esperada, ou risco, é dada por $R_{\theta}(\hat{\delta}) = \mathbb{E}_{\theta}[L(\theta; \hat{\delta})]$.

TEOREMA (RAO-BLACKWELL)

Suponha que $z\mapsto L(\theta,z)$ é convexa e não negativa, para todo $\theta\in\Theta$. Dado um estimador $\hat{\delta}$ de $\psi(\theta)$ e T uma estatística suficiente integrável de θ , temos que:

- 1. $S = \mathbb{E}_{\theta}[\hat{\delta}|T]$ define um estimador.
- 2. $R_{\theta}(S) \leq R_{\theta}(\hat{\delta})$ para todo $\theta \in \Theta$.
- 3. Se $\hat{\delta}$ é não viciado, S também o é.

Referências

Referências

- Casella, George e Roger L Berger (2001). Statistical inference. Duxbury.
 - Durrett, Rick (2019). *Probability: Theory and Examples*. 5^a ed. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press. DOI: 10.1017/9781108591034.
- Lehmann, E e George Casella (1998). Theory of point estimation. Springer Science & Business Media.
- Lehmann, E e J Romano (2005). Testing Statistical Hypotheses.

 Springer Texts in Statistics. Springer New York. ISBN: 9780387276052.

 URL: https://books.google.com.br/books?id=K6t5qn-SEp8C.
- Schervish, Mark J. (1995). *Theory of Statistics*. Springer New York. DOI: 10.1007/978-1-4612-4250-5. URL: https://doi.org/10.1007/978-1-4612-4250-5.