Notes on SVD

Contents

Properties of SVD

Reduction of Dimensions

3 Appendix: Unitary Diagonalization and SVD

Recap SVD. Illustration for myn Let $A \in \mathbb{C}^{m \times n}$ Then (Thick) $A = U \sum V^*$ Where · U & C mxm unitary Mxn M Xm MXn · V ∈ C^{n×n} unitary $\cdot \sum \in \mathbb{R}^{m \times n}$ d'agonal (Thin) $\frac{\text{Note}:}{\text{Ohmman}} = \begin{bmatrix} \overline{\sigma_1} & \overline{\sigma_2} \\ \overline{\sigma_2} & \overline{\sigma_2} \\ \overline{\sigma_1} & \overline{\sigma_2} \\ \overline{\sigma_2} & \overline{\sigma_2} \\ \overline{\sigma_1} & \overline{\sigma_2} \\ \overline{\sigma_2} & \overline{\sigma_2} \\ \overline{\sigma_1} & \overline{\sigma_2} \\ \overline{\sigma_1} & \overline{\sigma_2} \\ \overline{\sigma_2} & \overline{\sigma_2} \\ \overline{\sigma_2} & \overline{\sigma_2} \\ \overline{\sigma_1} & \overline{\sigma_2} \\ \overline{\sigma_2} & \overline{\sigma_2} \\ \overline$ mxn n×n

linearly dependent columns. >> Not orthogonal.

$$\begin{bmatrix} 1 & 0 \\ 0 & \sqrt{2} \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 1 & 0 \\ \sqrt{2} & 0 & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} -1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 0 & 0 & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{bmatrix}$$
An SVD

$$= \begin{bmatrix} -1/2 & 0 & -1/2 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ -1/2 & 0 & 1/2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$
An SVD

Properties of SVD

SVD and the 2-Norm

largest singular value because ti > 05>, ... > Tn > 0.

Theorem 1

Let $A \in \mathbb{C}^{m \times n}$ have an SVD $A = U\Sigma V^*$. Then

- 2 The rank of A is the number of nonzero singular values.
- **3** Let $r = \min\{m, n\}$. Then

$$\kappa_2(A) = \|A\|_2 \|A^+\|_2 = \frac{\sigma_1}{\sigma_r}.$$

Connection to EVD

BERMAN

Let $A = U\Sigma V^* \in \mathbb{C}^{m\times n}$ and $B = A^*A$. Observe that

- $B \in \mathbb{C}^{n \times n}$ is a hermitian matrix¹, i.e., $B^* = B$. $(Pf: B^* = (A^*A)^* = A^*(A^*)^* = A^*A = B)$
- *B* has an EVD:

$$B = (V\Sigma^*U^*)(U\Sigma V^*) = V\Sigma^*\Sigma V^* = V(\Sigma^*\Sigma)V^{-1}.$$

- The squares of singular values of A are eigenvalues of B.
- An EVD of $B = A^*A$ reveals the singular values and a set of right singular vectors of A.

vectors of
$$A$$
.

Assume $M > M$

$$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right$$

¹This is the \mathbb{C} -extension of real symmetric matrices

5/16

Q. How would you find left-singular verters of A?

A. Form $C = AA^*$ and find its eigenvectors.

Note:
$$C = (U \Sigma V^{*})(V \Sigma^{*} U^{*})$$

$$= U \Sigma \Sigma^{T} U^{-1}$$

$$= U \Sigma^{T$$

Connection to EVD (cont')

Theorem 2

The nonzero singular values of $A \in \mathbb{C}^{m \times n}$ are the square roots of the nonzero eigenvalues of A^*A or AA^* .

Reduction of Dimensions

Low-Rank Approximations

Let $A \in \mathbb{C}^{m \times n}$ with $m \geqslant n$. Its thin SVD $A = \hat{U} \hat{\Sigma} V^*$ can be written as

where r is the rank of A.

- Each outer product $\mathbf{u}_j \mathbf{v}_j^*$ is a rank-1 matrix.
- Since $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_r > 0$, important contributions to A come from terms with small j.

$$\vec{\mathcal{U}} \vec{\mathcal{V}}^* = \vec{\mathcal{U}} \left[\vec{\mathcal{V}}_1 \vec{\mathcal{V}}_2 \cdots \vec{\mathcal{V}}_n \right]$$

$$= \begin{bmatrix} \bar{v}_1 \\ \bar{u} \end{bmatrix} \quad \bar{v}_2 \\ \bar{u} \quad \cdots \quad \bar{v}_n \\ \bar{u} \end{bmatrix}$$
linearly dependent on
$$= vank 1_{ij}$$

linearly dependent on
$$\vec{u}$$

Low-Rank Approximations (cont')

 $\text{For } 1\leqslant k\leqslant r\text{, define}$

$$A_k = \sum_{j=1}^k \sigma_j \mathbf{u}_j \mathbf{v}_j^* = U_k \Sigma_k V_k^*,$$

where

- U_k is the first k columns of U;
- V_k is the first k columns of V:
- Σ_k is the upper-left $k \times k$ submatrix of Σ .

This is a rank-k approximation of A.

Best Rank-k Approximation

Theorem 3 (Eckart-Young)

Let $A \in \mathbb{C}^{m \times n}$. Suppose A has rank r and let $A = U\Sigma V^*$ be an SVD. Then

- $||A A_k||_2 = \sigma_{k+1}$ for k = 1, ..., r 1.
- For any matrix B with $\mathrm{rank}(B) \leqslant k$, $\|A B\|_2 \geqslant \sigma_{k+1} = \|A A_k\|_2$

the first omitted singular value in construction of Ak.

Appendix: Unitary Diagonalization and SVD

Unitary Diagonalization of Hermitian Matrices

The previous discussion is relevant to hermitian matrices constructed in a specific manner. For a generic hermitian matrix, we have the following result.

Theorem 4 (Spectral Decomposition)

Let $A \in \mathbb{C}^{n \times n}$ be hermitian. Then A has a unitary diagonalization

$$A = VDV^{-1},$$

where $V \in \mathbb{C}^{n \times n}$ is unitary and $D \in \mathbb{R}^{n \times n}$ is diagonal.

In words, a hermitian matrix (or symmetric matrix) has a complete set of orthonormal eigenvectors and all its eigenvalues are real.

Notes on Unitary Diagonalization and Normal Matrices

- A unitarily diagonalizable matrix $A = VDV^{-1}$ with $D \in \mathbb{C}^{n \times n}$, is called a **normal matrix**². All hermitian matrices are normal.
- Let $A = VDV^{-1} \in \mathbb{C}^{n \times n}$ be normal. Since $\kappa_2(V) = 1$ (why?), Bauer-Fike implies that eigenvalues of A can be changed by no more than $\|\delta A\|_2$.

²Usual defintion: $A \in \mathbb{C}^{n \times n}$ is normal if $AA^* = A^*A$.

Unitary Diagonalization and SVD

Theorem 5

Let $A \in \mathbb{C}^{n \times n}$ be hermitian. Then the singular values of A are the absolute values of the eigenvalues of A.

Precisely, if $A = VDV^{-1}$ is a unitary diagonalization of A, then

$$A = (V \operatorname{sign}(D)) |D| V^*$$

is an SVD, where

$$\operatorname{sign}(D) = \begin{bmatrix} \operatorname{sign}(d_1) & & & \\ & \ddots & & \\ & & \operatorname{sign}(d_n) \end{bmatrix}, \qquad |D| = \begin{bmatrix} |d_1| & & \\ & \ddots & & \\ & & |d_n| \end{bmatrix}.$$

When Do Unitary EVD and SVD Coincide?

Theorem 6

If $A = A^*$, then the following statements are equivalent:

- **1** Any unitary EVD of A is also an SVD of A.
- \mathbf{Q} The eigenvalues of A are positive numbers.
- **3** $\mathbf{x}^* A \mathbf{x} > 0$ for all nonzero $\mathbf{x} \in \mathbb{C}^n$.

(HPD)

- The equivalence of 1 and 2 is immediate from Theorem 5
- The property in 3 is called the **hermitian positive definiteness**, *c.f.*, symmetric positive definiteness.
- The equivalence of 2 and 3 can be shown conveniently using Rayleigh quotient; see next slide.

Note: Rayleigh Quotient

Let $A \in \mathbb{R}^{n \times n}$ be fixed. The **Rayleigh quotient** is the map $R_A : \mathbb{R}^n \to \mathbb{R}$ given by

$$R_A(\mathbf{x}) = \frac{\mathbf{x}^{\mathrm{T}} A \mathbf{x}}{\mathbf{x}^{\mathrm{T}} \mathbf{x}}.$$

- R_A maps an eigenvector of A into its associated eigenvalue, *i.e.*, if $A\mathbf{v} = \lambda \mathbf{v}$, then $R_A(\mathbf{v}) = \lambda$.
- If $A = A^{\mathrm{T}}$, then $\nabla R_A(\mathbf{v}) = \mathbf{0}$ for an eigenvector \mathbf{v} , and so

$$R_A(\mathbf{v} + \epsilon \mathbf{z}) = R_A(\mathbf{v}) + 0 + O(\epsilon^2) = \lambda + O(\epsilon^2), \quad \text{as } \epsilon \to 0.$$

The Rayleigh quotient is a quadratic approximation of an eigenvalue.