

By: Abhinav Vadhera, Rodrigo Lopez, & Vikyath Naradasi

CSCI 567: Machine Learning

Prof: Victor S. Adamchik, TA: Philipp Eibl

TABLE OF CONTENTS

Problem Statement

02 Models

03 Results

04 Q&A

Motivation

- Gold volatility surged post-2020, driven by macroeconomic events.
- Sensitive to CPI inflation, USD fluctuations, and oil market volatility.
- Traders and institutions need short-term forecasts for hedging.
- Ideal candidate for multivariate time-series
 ML prediction.
- High market value: even small forecasting improvements offer significant returns

Dataset

- Collected daily data from Yahoo Finance, Kaggle, & FRED (2010–2025).
- Series:
 - o Gold (GC=F),
 - USD Index (DX-Y.NYB),
 - Oil (CL=F),
 - o CPI.
- Engineered 11 features: returns, moving averages:
 - o (5-day, 20-day), volatility, RSI.
- Min-max scaling applied to standardize features (0–1 range).
- Sliding-window: 30-day inputs \rightarrow next-day gold prediction.
- Final split: 3045 training samples, 760 validation samples.

A MULTIMODAL APPROACH

BI-GRU

TRANSFORMER

TCN

1-layer, 32 units; captures sequential patterns.

HuggingFace Tiny; attention identifies critical days.

Dilated causal convolutions (3 layers); efficient and fast.

- Each model trained individually on identical dataset.
- ☐ Model diversity ensures complementary strengths/weaknesses.
 - I Allows ensemble to capitalize on differing prediction patterns.

Bi-GRU (Bi-GRU) Overview

- Bidirectional Gated Recurrent Unit:
 - Specialized RNN that captures sequential relationships.
 - Uses gates to control information flow (update/reset gates).
- 2 GRUs stacked: one processes data forward (past→future), another backward (future→past).
 - Captures context from both past and future data points.
 - Ideal for time-series data where both previous and subsequent context matter.

- Why did we use Bi-GRU?
 - Excellent for short-term memory:
 - remembers key market events.
 - Lightweight:
 - few parameters, quick to train.
 - Naturally handles time-series:
 - Gold prices strongly dependent on historical context!!

Bi-GRU (Bi-GRU) Overview

- Our Bi-GRU Setup
 - Single-layer Bidirectional GRU.
 - 32 hidden units per direction (forward/backward).
 - o Input:
 - 30-day window of market and indicator features.
 - Output:
 - Prediction of gold price (next-day value, scaled).

Bi-GRU Results

Provided robust baseline for ensemble fusion = (71% weight in final ridge ensemble)

Time taken to train on T4 GPU = ~290 secs

Best single-model RMSE = 0.067 (scaled)

Bi-Direction accuracy = ~49%

Temporal Convolutional Network (TCN) Overview

- TCN Concept:
 - CNN adapted for time series prediction
 - Processes multiple time steps in parallel (vs sequential RNNs)
 - Uses "causal" convolutions NO future data leakage
- Multi-Scale Pattern Detection:
 - - Dilated convolutions see different time scales simultaneously
 - - Dilation 1: Daily patterns [day t-2, t-1, t]
 - o Dilation 2: Weekly patterns [day t-4, t-2, t]
 - Dilation 4: Monthly patterns [day t-8, t-4, t]
- Key Advantages:
 - Faster training: Parallel processing
 - Long memory: Large receptive field
 - o Interpretable: Can visualize learned filters
 - - Causal: Respects temporal order

TCN Code Implementation Details

- Architecture We Built:
 - Input: (batch, 30 days, 11 features)
 - 3 TemporalBlocks with dilations [1, 2, 4]
 - \circ Channel progression: 32 \rightarrow 64 \rightarrow 32 filters
 - Output: Single gold price prediction
- Key Code Components:

```
Causal Convolution: class Chomp1d(nn.Module):

def forward(self, x):

return x[:, :, :-self.chomp_size] # Remove future!
```

- Temporal Block:
 - \circ Conv1D \rightarrow Chomp \rightarrow ReLU \rightarrow Dropout \rightarrow Conv1D \rightarrow Chomp
 - Residual connection: output = input + processed_input
 - Dilation pattern: 2¹ (1, 2, 4)
- Final Model:
 - TCN backbone + Linear layer
 - 36,641 total parameters
 - Trained in ~56 seconds

Transformer Model

- **Data Preparation**: TimeSeriesDataSet with encoder length 30, prediction length 1 (feature dim = 11)
- Core Model: PyTorch Forecasting's TemporalFusionTransformer
 - Hidden size: 64, Attention heads: 4
 - Dropout: 0.1, Continuous size: 32
- **Custom Model**: MVTransformerWithAttn
 - Input projection → d_model=128, n_head=8,
 3 encoder layers
 - Pooling & Dense head for regression
- *Training & Optimization*: PyTorch Lightning Trainer (epochs=10, AdamW, MSELoss)

Results

Time taken to train on T4 GPU = ~50 secs

Validation RMSE = 0.148

Bi-Direction accuracy = 52.7 %

- Magnitude vs. direction trade-off:
 - o Bi-GRU wins on RMSE, Transformer on DA.
 - Ridge focuses on minimizing squared error, so it leans heavily on Bi-GRU and improves RMSE but not DA.
- TCN under-performed in comparison:
 - RMSE > 0.8 indicates a scaling bug or label mis-alignment.
 It still adds slight directional signal but hurts any simple average.
- RMSE-weighted fusion struggled:
 - Because TCN's RMSE is an order of magnitude larger, the 1/RMSE weighting assigns ~100 % weight to Bi-GRU—identical result.

Ensemble Results

Ensemble Results

Benchmark group	Typical setup & metric	What they get	Our result
Naïve baseline("tomorrow = today")	RMSE on scaled prices	0.09 - 0.10	0.067
Academic papers on gold-price forecasting(LSTM / GRU with tech indicators)	RMSE on <i>unscaled</i> USD prices	110–200 USD (≈ 0.07–0.12 when scaled to our range)	≈ 150 USD (0.067 scaled)
Modern SOTA research papers (Temporal Fusion Transformer, Informer, TFT + macro/news)	Directional accuracy (DA) 55–65 %RMSE 0.05–0.06 (scaled)	58% DA 0.050 RMSE	53 % DA 0.062 RMSE
Quant-fund intraday models (thousands of covariates, alt-data)	Hit-rate 50.5–54 % on high-frequency returns; edge proven via Sharpe	55-60%	53 % DA at daily horizon
Commodity banks / research desks (ARIMA + macro judgment)	1-month MAPE ≈ 2–3 %	~65–100 USD error	~4.5 % MAPE (~150 USD)

- Why our numbers are quite respectable, despite accuracy!
- Tiny feature set, no news sentiment:
 - We used only four market series + economic indicators.
 - Big financial firms add FX crosses, gold ETF flows, Fed statements, Twitter/Bloomberg sentiment, etc., to shave the extra few RMSE points.
 - They also have Billions of \$'s in budget
- Ultra-light models:
 - Single-layer Bi-GRU & HF-Tiny weights (~0.5 M params)
 trained in 5% of the time.
 - Cutting-edge transformers run tens of layers and hours of hyper-search.

- Abhinav Vadhera
 - o vadhera@usc.edu
- Rodrigo Lopez
 - o wrlopez@usc.edu
- Vikyath Naradasi
 - o naradasi@usc.edu

Do you have any questions?