1).	Find the domain of · log (3x - 5).
	D . ln x - ln (2-x)
Sol 2	· We need 34-5 > 0 => x > 5/3
	· We need >1/0 and 2 x >0 -> x <2 Thus D = (0, 2)
2	Find domain of e 12x-1
Solz	Need $\sqrt{2x-1} > 0 \rightarrow x \geqslant \frac{1}{2}$ Thus, $D = \left[\frac{1}{2}, \infty\right)$
3	Find the inflection points of 2e-x2
Soln	f(x) = -4xe-x2; f"(x) = -4e-x2 +8x2e-x2
	f" and existing everywhere at e and

50,	only need to look at.
	$f''(x) = 0 = x - 4e^{-x^2} + 8x^2e^{-x^2} = 0$ $= x - 4e^{-x^2} \left[1 - 2x^2 \right] = 0$
	$= \frac{1}{2} \frac{\partial^2 x^2}{\partial x^2} = 1 \qquad (as. e^{-x^2}) = \frac{1}{2} \left(both are in the domain \right)$
	$\frac{1}{1} - \frac{1}{\sqrt{2}} = 0$ $\frac{1}{\sqrt{2}} = 0$ $\frac{1}{\sqrt{2}} = 0$
· f"(-	$ 1) = -4e^{-1} + 8e^{-1} = 4e^{-1} > 0 \cdot \circ f''(1) = -4e^{-1} + 8e^{-1}$ $ 0) = -4 \approx \langle 0 \rangle = 4e^{-1} > 0 \cdot \circ f''(1) = -4e^{-1} + 8e^{-1}$
	Both $\sqrt{2}$ $\frac{1}{\sqrt{2}}$ $\frac{1}$
4	Could Find abs. max/min of f(x) = xe-x2 on [0,2]
Sol 2	of is continuous on [0,2]. So, closed interval. Method applies. f'(x) = e-x2 - 2x2e-x2.
	f (xy=0) = E

	· f'(x) exists everywhere on (0,2).
	Thus chitical points on (0,2) are obtained
	$= \chi e^{-\chi^2} - 2\chi^2 e^{-\chi^2} = 0$
	$= \frac{e^{-\chi^2} \left(1 - 2\chi^2\right) = 0}{2}$ $= \frac{1}{2} \left(as e^{-\chi^2} \right) = 0$
	Thus, only crit pt on on (0,2) is x = 1/2
	· f(0) = 0 · f(2) = 2e-4 × · 04 (using calculator).
	$f(2) = 2e^{-4} \approx .04 \text{(using calculator)}.$ $f(2) = \frac{1}{\sqrt{2}} e^{-\frac{1}{2}} = \frac{1}{\sqrt{2}} e^{\frac{1}{2}} = \frac{1}{\sqrt{2}} e^{\frac{1}{2}} = \frac{1}{\sqrt{2}} e^{\frac{1}{2}}$
go.	
	and abs. max. value is $\frac{1-1/2 \text{ occurs}}{\sqrt{2}}$ at $\chi = \frac{4}{\sqrt{2}}$.
	[OR] abs. min. (a. (0,0)
	abs. (12) (30)

"deganithmic Differentiation $\int \frac{d}{dx} \left(\ln f(n) \right) = \frac{f'(x)}{f(x)} \text{provided} f(x) > 0 \text{for all } x.$
$\frac{d}{dx}\left(\ln x \right) = \frac{1}{x} \text{for all } x \in (-\infty,0) \cup (0,\infty)$
de (ln x) = \frac{1}{\times for all \times \equiv (0,00). (Mg) tythrag . How do we differentiate (i) f(x) = g(x) h(x)
eg. of (n) = x 2x+1? One of those do we differentiate (x3-2n)(x2+2n)(7n-4) instead of using product rule?
Ans: Both are done using logarathraic differentiation.
1) Take the ln' on both sides of the equation and simplify as much as possible using log' properties
2) differentiate both sides w.t.t. x. Complians differentiate both sides w.t.t. x. x. Complians differentiate both sides w.t.t. x.

```
Let y = f(x). y = \chi(\ln x)
ln y = ln \chi + ln ((ln x)^{2})
= ln y = ln \chi + \chi ln (ln \chi).
          dy = x lnx) x [ + In(lnx) + 1 lnx
                    (x2-2x) (x2+2x) (Ax) (Ax)
n: \ln y = \ln(x^3 - 2x) + \ln(x^2 + 2x) - \ln(7x - 4).

if feventiating both sides w.n.t x_2

1 dy - \frac{3x^2 - 2}{(x^3 - 2x)} + \frac{2x + 2}{x^2 + 2x} - \frac{7}{7x - 4}
```