## Heaven's light is our guide"

## Rajshahi University of Engineering & Technology Department of Computer Science & Engineering

Discrete Mathematics Course No.: 305

Chapter 2: Basic Structures: Sets, Functions,

Sequences and Sums

Prepared By: Julia Rahman



## 2.1 Sets

- > Sets are one of the basic building blocks for the types of objects considered in discrete mathematics.
  - ✓ Important for counting.
  - ✓ Programming languages have set operations.
- **Definition:** A *set* is an unordered collection of objects.

Example: the students in this class the chairs in this room

- The objects in a set are called the *elements*, or *members* of the set. A set is said to *contain* its elements.
  - ✓ The notation  $a \in A$  denotes that a is an element of the set A.
  - ✓ If a is not a member of A, write  $a \notin A$

**Example 1:** The set V of all vowels in English alphabet can be written as  $\{a,e,i,o,u\}$ .

**Example 2:** The set O of odd positive integers less than 10 can be express by  $O=\{1,3,5,7,9\}$ .

#### **Definition 3:**

- ✓ Two set are *equal* if and only if they have the same elements.
- ✓ If A and B are sets, then A and B are equal if and only if  $\forall x (x \in A \leftrightarrow x \in B)$
- Example  $\{1,3,5\} = \{3,5,1\}$
- $\emptyset$  empty set (null set).
- **Singleton set:** Set contains one element.

#### **Definition 4:**

- ✓ The set A is said to be a **subset** of B if and only if every element of A is also an element of B.
- We use the notation  $A \subseteq B$  to indicate that A is a subset of the set B.



#### Proper Subsets:

- ✓ If  $A \subseteq B$ , but  $A \neq B$ , then we say A is a *proper subset* of B, denoted by  $A \subseteq B$ .
- If  $A \subset B$ , then  $\forall x (x \in A \to x \in B) \land \exists x (x \in B \land x \not\in A) \text{ is true.}$

#### Definition 5:

✓ If there are exactly n distinct elements in S where n is a nonnegative integer, we say that S is *finite*.

Otherwise it is *infinite*.

✓ The *cardinality* of a finite set A, denoted by |A|, is the number of (distinct) elements of A.

#### **✓** Examples:

- 1.  $|\phi| = 0$
- 2. Let S be the letters of the English alphabet. Then |S| = 26
- 3.  $|\{1,2,3\}| = 3$
- 4.  $|\{\emptyset\}| = 1$
- 5. The set of integers is infinite Julia Rahman, Dept. CSE, RUET

#### Definition 7:

- $\checkmark$  The set of all subsets of a set A, denoted P(A), is called the **power set** of A.
- **Example**: If  $A = \{a,b\}$  then  $P(A) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$
- ✓ If a set has *n* elements, then the cardinality of the power set is  $2^n$ .

**Example 13:** What is the power set of the set  $\{0, 1, 2\}$ ?

**Solution:**  $S=\{0,1,2\}.$   $P(S)=\{\emptyset,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$ 

#### **4** Tuples:

- The *ordered n-tuple*  $(a_1,a_2,...,a_n)$  is the ordered collection that has  $a_1$  as its first element and  $a_2$  as its second element and so on until  $a_n$  as its last element.
- ✓ Two n-tuples are *equal* if and only if their corresponding elements are equal.
- ✓ 2-tuples are called *ordered pairs*.
- $\checkmark$  The ordered pairs (a, b) and (c, d) are equal if and only if a = c and b = d.
- ✓ In other words,  $(a_1,a_2,...,a_n)=(b_1,b_2,...,b_n)$  if and only if  $a_i=b_i$  for i=1,2,...,n.

#### Cartesian Products:

✓ The *Cartesian Product* of two sets *A* and *B*, denoted by  $A \times B$  is the set of ordered pairs (a,b) where  $a \in A$  and  $b \in B$ .

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

✓ Note that  $A \times B \neq B \times A$  in general.  $A \times B = B \times A$  if and only if  $A = \emptyset$ ,  $B = \emptyset$ , or A = B.

**Example**: Let  $A = \{1,2\}$  and  $B = \{a,b,c\}$ . Then  $A \times B = \{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$ .

#### **Definition:**

- ✓ A subset R of the Cartesian product of A×B is a *relation* from the set A to the set B.
- ✓ For example,  $R = \{(1,a), (1,c), (2,a), (2,b), (2,c)\}$  is a relation from  $A = \{1,2\}$  to  $B = \{a,b,c\}$ .

#### Definition 10:

The *Cartesian product* of the sets  $A_1, A_2, ..., A_n$ , denoted by  $A_1 \times A_2 ... \times A_n$  is the set of ordered n-tuples  $(a_1, a_2, ..., a_n)$ , where  $a_i$  belongs to  $A_i$  for i=1,2,...,n.

$$A_1 \times A_2 \times \dots \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i \text{ for } i = 1, 2, \dots n\}$$

#### Example 18:

What is  $A \times B \times C$  where  $A = \{0,1\}, B = \{1,2\}$  and  $C = \{0,1,2\}$ 

#### **Solution:**

$$A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,1,2)\}$$

# 2.2 Set operations

#### **Definition 1:**

Let A and B be two sets. The *union* of the sets A and B, denoted by  $A \cup B$ , is the set that contains those elements that are either in A or in B.

 $A \cup B = \{x | x \in A \lor x \in B\}$  **Example 1**: What is  $\{1,2,3\} \cup \{3,4,5\}$ ?

**Solution:** {1,2,3,4,5}



#### **Definition 2:**

Venn Diagram for  $A \cup B$ 

Let A and B be two sets. The *intersection* of the sets A and B, denoted by  $A \cap B$ , is the set that contains those elements that are in both A and B.

$$A \cap B = \{x | x \in A \land x \in B\}$$

**Definition 3:** If the intersection is empty, then  $\vec{A}$ and B are said to be *disjoint*.

**Example 3:** What is  $\{1,2,3\} \cap \{3,4,5\}$ ?

**Solution:** {3}

**Example 5:** What is  $\{1,2,3\} \cap \{4,5,6\}$ ?

**Solution:** Ø



 $|A \cup B| = |A| + |B| - |A \cap B|$ 

The generalization of the above result is called the *principle of inclusion-exclusion*.

**Definition 10:** 

Let A and B be two sets. The *difference* of the sets A and B, denoted by A-B, is the set that contains those elements that are in A but not in B. The difference of the sets A and B is also called the complement of B with respect to A.

$$A - B = \{x \mid x \in A \land x \notin B\}$$



Venn Diagram for A - B

**Example 6**: 
$$\{1,3,5\}$$
 - $\{1,2,3\}$ = $\{5\}$ .  $\{1,2,3\}$  - $\{1,3,5\}$ = $\{2\}$ .

#### **Definition 5:**

Let U be the universal set. The complement of the set A, denoted by A, the complement of A with respect to U. In other words, the complement of A is U-Α.

$$\bar{A} = \{x \in U \mid x \notin A\}$$

**Example**: If U is the positive integers less than 100, what is the complement of  $\{x \mid$ x > 70 ?

Solution:  $\{x \mid x \le 70\}$ 

```
Example: U = \{0,1,2,3,4,5,6,7,8,9,10\}
         A = \{1,2,3,4,5\},\
         B = \{4,5,6,7,8\}
```

- 1.  $A \cup B$  Solution: {1,2,3,4,5,6,7,8}
- 2.  $A \cap B$  Solution:  $\{4,5\}$ 3.  $\bar{A}$  Solution:  $\{0,6,7,8,9,10\}$ 4.  $B^c$  Solution:  $\{0,1,2,3,9,10\}$ 5. A B Solution:  $\{1,2,3\}$

- 6. B-A Solution:  $\{6,7,8\}$

#### **Definition 10:**

The symmetric difference of  ${\bf A}$  and  ${\bf B}$ , denoted by  $A\oplus B$  is the set

 $(A-B)\cup(B-A)$ 



#### **Example:**

What is the output  $U = \{0,1,2,3,4,5,6,7,8,9,10\}$   $A = \{1,2,3,4,5\}$   $B = \{4,5,6,7,8\}$ 

#### **Solution:**

{1,2,3,6,7,8}

|                                           | Identity                                   |                                                                | Name              |
|-------------------------------------------|--------------------------------------------|----------------------------------------------------------------|-------------------|
| $A \cup \emptyset = A$                    | and                                        | $A \cap U = A$                                                 | Identity laws     |
| $A \cup U = U$                            | and                                        | $A \cap \emptyset = \emptyset$                                 | Domination laws   |
| $A \cup A = A$                            | and                                        | $A \cap A = A$                                                 | Idempotent laws   |
|                                           | Complementation law                        |                                                                |                   |
| $A \cup B = B \cup$                       | $^{\!\!\!\!/}A$ and $A$                    | $A \cap B = B \cap A$                                          | Commutative laws  |
| $A \cup (B \cup A)$                       | Associative laws                           |                                                                |                   |
| $A \cap (B \cap$                          | C) = (0.0000000000000000000000000000000000 | $A \cap B) \cap C$                                             |                   |
| $A \cap (B \cup C)$                       | =(A)                                       | $\cap B) \cup (A \cap C)$                                      | Distributive laws |
| $A \cup (B \cap C)$                       | $= (A \cup$                                | $\cup B) \cap (A \cup C)$                                      |                   |
| $\overline{A \cup B} = \overline{A} \cap$ | $\overline{B}$ and $\overline{A}$          | $\overline{A \cap B} = \overline{A} \cup \overline{B}$         | De Morgan's laws  |
| $A \cup A \cap A$                         | $\bigcup (A \cap A \cap A \cap A)$         |                                                                | Absorption laws   |
|                                           | and                                        | $A \cap \overline{A} = \emptyset$ Julia Rahman, Dept. CSE, RUE | Complement laws   |

#### Proving Set Identities:

Different ways to prove set identities:

- 1. Prove that each set (side of the identity) is a subset of the other.
- 2. Use set builder notation and propositional logic.
- 3. Membership Tables: Verify that elements in the same combination of sets always either belong or do not belong to the same side of the identity. Use 1 to indicate it is in the set and a 0 to indicate that it is not.

Example: Prove that  $\overline{A \cap B} = \overline{A} \cup \overline{B}$ Solution: We prove this identity by showing that:

1) 
$$\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$$
 and 2)  $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$   
These steps show that:  $\overline{A \cap B} \subset \overline{A} \cup \overline{B}$ 

These steps show that:  $A \cap B \subseteq A \cup B$ 

$$x \in \overline{A \cap B}$$
 by assumption

$$x \notin A \cap B$$
 defn. of complement

$$\neg((x \in A) \land (x \in B))$$
 defn. of intersection

$$\neg(x \in A) \lor \neg(x \in B)$$
 1st De Morgan Law for Prop Logic

$$x \notin A \lor x \notin B$$
 defn. of negation

$$x \in \overline{A} \lor x \in \overline{B}$$
 defn. of complement

$$x \in \overline{A} \cup \overline{B}$$
 defn. of union Julia Rahman, Dept. CSE, RUET

These steps show that: 
$$\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$$
 by assumption  $(x \in \overline{A}) \vee (x \in \overline{B})$  defn. of union  $(x \notin A) \vee (x \notin B)$  defn. of complement  $\neg (x \in A) \vee \neg (x \in B)$  defn. of negation  $\neg ((x \in A) \wedge (x \in B))$  by 1st De Morgan Law for Prop Logic  $\neg (x \in A \cap B)$  defn. of intersection  $x \in \overline{A \cap B}$  defn. of complement  $\overline{A \cap B} = \{x \mid x \notin A \cap B\}$  by defn. of complement

$$\overline{A \cap B} = \{x | x \not\in A \cap B\} \quad \text{by defn. of complement}$$

$$= \{x | \neg (x \in (A \cap B))\} \quad \text{by defn. of does not belong symbol}$$

$$= \{x | \neg (x \in A \land x \in B) \quad \text{by defn. of intersection}$$

$$= \{x | \neg (x \in A) \lor \neg (x \in B)\} \quad \text{by 1st De Morgan law}$$
for Prop Logic
$$= \{x | x \not\in A \lor x \not\in B\} \quad \text{by defn. of not belong symbol}$$

$$= \{x | x \in \overline{A} \lor x \in \overline{B}\} \quad \text{by defn. of complement}$$

$$= \{x | x \in \overline{A} \lor \overline{B}\} \quad \text{by defn. of union}$$

$$= \overline{A} \cup \overline{B} \quad \text{by meaning of notation}$$

$$= \overline{A} \cup \overline{B} \quad \text{Julia Rahman, Dept. CSE, RUEI}$$

#### Membership Table:

**Example**: Construct a membership table to show that the distributive law holds.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

#### **Solution:**

| Α | В | С | $B \cap C$ | $A \cup (B \cap C)$ | $A \cup B$ | $A \cup C$ | $(A \cup B) \cap (A \cup C)$ |
|---|---|---|------------|---------------------|------------|------------|------------------------------|
| 1 | 1 | 1 | 1          | 1                   | 1          | 1          | 1                            |
| 1 | 1 | 0 | 0          | 1                   | 1          | 1          | 1                            |
| 1 | 0 | 1 | 0          | 1                   | 1          | 1          | 1                            |
| 1 | 0 | 0 | 0          | 1                   | 1          | 1          | 1                            |
| 0 | 1 | 1 | 1          | 1                   | 1          | 1          | 1                            |
| 0 | 1 | 0 | 0          | 0                   | 1          | 0          | 0                            |
| 0 | 0 | 1 | 0          | 0                   | 0          | 1          | 0                            |
| 0 | 0 | 0 | 0          | 0                   | 0          | 0          | 0                            |

#### **4** Generalized Unions and Intersections:

Let A1, A2,..., An be an indexed collection of sets.

We define:

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \ldots \cup A_n$$

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \ldots \cap A_n$$

These are well defined, since union and intersection are associative.

For 
$$i = 1, 2, ..., let Ai = \{i, i + 1, i + 2, ....\}$$
. Then,

$$\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} \{i, i+1, i+2, \dots\} = \{1, 2, 3, \dots\}$$

$$\bigcap_{i=1}^{n} A_i = \bigcap_{i=1}^{n} \{i, i+1, i+2, \dots\} = \{n, n+1, n+2, \dots\} = A_n$$

## 2.3 Functions

#### Definitions 1:

- Let A and B be nonempty sets. A *function* from A to B is an assignment of exactly one element of B to each element of A. We write f(a)=b if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write  $f:A \rightarrow B$ .
- > Functions are sometimes called *mappings* or *transformations*.

#### **Lesson :** Definitions 2:

If f is a function from A to B, we say that A is the *domain* of f and B is the *codomain* of f. If f(a)=b, we say that b is the *image* of a, and a is a *preimage* of b. The *range* of f is the set of all images of A. Also, if f is a function from A to B, we say that f *maps* A to B.





- **Example 3:** Let f be a function that assigns the last two bits of a bit string of length 2 or greater to that string. Foe example, f(100001)=01. Then the domain of f the set of all bit strings of length 2 or greater, and both the codomain and range are the set {00,01,10,11}.
- **Example 4:** Let  $f:Z \rightarrow Z$  assign the square of an integer to this integer. Then  $f(x) = x^2$  where the domain of f is the set of integers, we take the codmain of f to be the domain of f is the set of integers, and the range of f is the set of integers that are perfect squares, namely,  $\{0,1,4,9,\ldots\}$ .

#### **Real-valued functions:**

Let f1 and f2 be functions from A to R. Then f1+f2 and f1f2 are the functions from A to R defined by

$$(f1+f2)(x)=f1(x)+f2(x)$$
  
 $(f1f2)(x)=f1(x)f2(x)$ 

**Example 6:** Let f1 and f2 be functions from R to R such that  $f1(X) = X^2$  and  $f2(X)=X - X^2$ . f1+f2=? And f1f2=?

**Solution:** 
$$(f1+f2)(X) = f1(X)+f2(X) = X$$
 and  $(f1f2)(X) = X^3 - X^4$ 

#### Definitions 4:

Let f be a function from A to B and S be a subset of A. The *image* of S under the function f is the subset of B that consists of the images of elements of S. We denote the image of S by f(S).

**Example 7:** Let  $A = \{a,b,c,d,e\}$  and  $B = \{1,2,3,4\}$  with f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 1, and f(e) = 1. The image of the set  $S = \{b,c,d\}$  is the set  $f(S) = \{1,4\}$ .

#### Definitions 5:

- ✓ A function f is said to be *one-to-one*, or *injective*, if and only if f(a)=f(b) implies a=b for all a and b in the domain of f. A function is said to be an *injection* if it is one-to-one.
- ✓ Note that f is one-to-one if and only if  $f(a) \neq f(b)$  whenever  $s \ a \neq b$ .

**Example 8:** Determine whether the function f from  $\{a,b,c,d\}$  to  $\{1,2,3,4,5\}$  with f(a)=4, f(b)=5, f(c)=1, and f(d)=3 is one-to-one.

**Solution:** Function f is one to one because f takes on different values at the four elements of its domain.

**Example 9**: Determine whether the function  $f(x)=X^2$  from the set of integers to the set of integers is one-to-one.

**Solution**: The function  $f(x)=X^2$  is not one to one because for instance, f(1)=1 and f(-1)=1, but  $1 \neq -1$ .

**Example 10**: Determine whether the function f(x)=x+1 from the set of real numbers to itself is one-to-one.

**Solution**: The function f(x)=x+1 is a one to one to demonstrate this, note that  $x+1 \neq y+1$  when  $x\neq -y$ .

#### **4Definitions 6:**

A function f which domain and codomain are the set of real numbers is called *increasing* if  $f(x) \le f(y)$ , and *strictly increasing* if f(x) < f(y), whenever x < y, and x and y are in the domain of f. Similarly, called *decreasing* if  $f(x) \ge f(y)$ , and *strictly increasing* if f(x) > f(y), whenever x < y, and x and y are in the domain of f.

#### Definitions 7:

A function f from A to B is called *onto*, or *surjective* if and only if for every element  $b \in B$  there is an element  $a \in A$  with f(a)=b. A function f is called a *surjection* if it is onto.

**Example 11:** Determine whether the function f from  $\{a,b,c,d\}$  to  $\{1,2,3\}$  with f(a)=3, f(b)=2, f(c)=1, and f(d)=3 is onto.

**Solution:** Because all three elements of the codomain are images of elements of domain, so it is onto.

**Example 12:** Determine whether the function  $f(x) = X^2$  from the set of integers to the set of integers is onto.

**Solution:** The function  $f(x)=X^2$  is not onto because there is no integer x with  $X^2=-1$  for instance.

**Example 13:** Determine whether the function f(x)=x+1 from the set of real numbers to itself is onto.

**Solution**: The function f(x) = x+1 is a onto because for every integer y there is an integer x, such that f(x) = y.

#### Definitions 8:

The function f is a *one-to-one correspondence*, or *bijection*, if it is both one-to-one and onto.

**Example 14**: Determine whether the function f from  $\{a,b,c,d\}$  to  $\{1,2,3,4\}$  with f(a)=4, f(b)=2, f(c)=1, and f(d)=3 is a bijection.

Solution: Function f is one to one and onto. Function f is one to one because f takes on different values at the four elements of its domain. Three elements of the codomain are images of elements of domain, so it is onto. Hence it is bijection.

**Example 15**: Let A be a set. The identity function on A is the function  $i_A: A \rightarrow A$ , where  $i_A(x)=x$  for all  $x\rightarrow A$ . The function  $i_A$  is a bijection.

#### Definitions 9:

- Let f be a one-to-one correspondence from the set A to the set B. The *inverse function* of f is the function that assigns to an element b belonging to B the unique element a in A such that f(a)=b. The inverse function of f is denoted by f<sup>-1</sup>. Hence, f<sup>-1</sup>(b)=a when f(a)=b.
- A one-to-one correspondence is called *invertible* because we can define an inverse of the function. A function is *not invertible* if it is not invertible.
- ➤ If f is not a bijection then the inverse does not exist.



**Example 16:** Let f be the function from  $\{a,b,c\}$  to  $\{1,2,3\}$  with f(a)=3, f(b)=2, and f(c)=1. Is f invertible, and if f is invertible, what is its inverse?

**Solution:** Function f is invertible because it is one to one correspondence. The inverse function  $f^{-1}$  reverses the correspondence given by f, so  $f^{-1}(1) = c$ ,  $f^{-1}(2) = a$  and  $f^{-1}(3) = b$ .

**Example 17:** Let  $f:Z \rightarrow Z$  be such that f(x)=x+1. Is f invertible, and if f is invertible, what is its inverse?

**Solution:** The function f has an inverse because it is one to one correspondence. To reverse the correspondence, suppose that y is the image of x, so that y=x+1. then x=y-1. This means that y-1 is the unique element of Z that is sent to y by f. Consequently,  $f^{-1}(y) = y-1$ .

**Example 18:** Let f be the function from R to R with  $f(x) = X^2$ . Is f invertible?

**Solution:** f is not invertible. Because f(2)=f(-2)=4, f is not one to one function.

#### Definitions 10:

Let g be a function from the set A to the set B and f be a function from the set B to the set C. The *compositition* of the function f and g, denoted by  $f \bullet g$ , is defined by  $(f \bullet g)(a) = f(g(a))$ .



**Example 20:** Let g be the function from the set  $\{a,b,c\}$  to itself such that g(a)=b, g(b)=c, and g(c)=a. Let f be the be the function from the set  $\{a,b,c\}$  to  $\{1,2,3\}$  such that f(a)=3, f(b)=2, and f(c)=1. What is the composition of f and g, and what is the composition of g and f?

**Solution:** Then  $(f \bullet g)(a)=2$ ,  $(f \bullet g)(b)=1$ , and  $(f \bullet g)(c)=3$ . But  $g \bullet f$  is not defined. Because the range of f is not a subset of the domain of g.

**Example 21:** Let f and g be the functions from the set of integers to the set of integers defined by f(x)=2x+3 and g(x)=3x+2. What is the composition of f and g, and what is the composition of g and f?

**Solution:**  $(f \bullet g)(x) = f(g(x)) = f(3x+2) = 2(3x+2) + 3 = 6x+7$ .

And

$$(g \bullet f)(x)=g(f(x))=g(2x+3)=3(2x+3)+2=6x+11$$

**Example 18:** Let f be the function from R to R with  $f(x) = X^2$ . Is f invertible?

**Solution:** f is not invertible. Because f(2)=f(-2)=4, f is not one to one function.

#### **Definitions 1:**

A *sequence* is a function from the set of integers (usually either the set  $\{0,1,2,\ldots\}$  or the set  $\{1,2,3,\ldots\}$ ) to a set S. We use the notation an to denote the images of the integer n. We call an a *term* of the sequence.

**Example**:  $a_n = 1/n$  for n=1,2,... (1, 1/2, 1/3, 1/4,...)

#### Definitions 2:

A *geometric progression* is a sequence of the form a, ar,  $ar^2$ , ...,  $ar^n$ ,... where the *initial term* a and the *common ratio* r are real numbers.

**Example:** 2,10,50,250,1250,...

#### Definitions 3:

An *arithmetic progression* is a sequence of the form a, a+d, a+2d,...,a+nd,... where the *initial* term a and the *common difference* d are real numbers.

**Example:** -1,3,7,11,...

#### **Definitions**:

The *string* is a finite sequence of bits denoted by  $a_1, a_2, \ldots, a_n$ . The length of the string S is the number of terms in this string. The *empty* string, denoted by  $\lambda$ , is the string that has no term.

#### **4** Summations:

We use the notation to denote

$$\sum_{j=m}^{n} a_{j}, \quad \sum_{j=m}^{n} a_{j}, \text{ or } \sum_{m \leq j \leq n} a_{j}$$

to repressent  $a_m + a_{m+1} + ... + a_n$ .

Here the variable j is called the index of summation.

m is the lower limit, and n us the upper limit.

#### **Example:**

$$\sum_{j=1}^{5} j^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$$

$$\sum_{k=4}^{8} (-1)^k = 1$$

$$\sum_{s \in \{0,2,4\}} s = 0 + 2 + 4 = 6$$

#### Some useful summation formula:

$$\sum_{k=0}^{n} ar^{k} = \frac{ar^{n+1} - a}{r - 1}, r \neq 1$$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2},$$

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} k^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$\sum_{k=0}^{\infty} x^{k} = \frac{1}{1 - x}, |x| < 1$$

$$\sum_{k=0}^{\infty} kx^{k-1} = \frac{1}{(1 - x)^{2}}, |x| < 1$$

Example:

$$\sum_{k=50}^{100} k^2 = \sum_{k=1}^{100} k^2 - \sum_{k=1}^{49} k^2 = \frac{100 \cdot 101 \cdot 201}{6} - \frac{49 \cdot 50 \cdot 99}{6}$$
$$= 297925$$