Examen Statistique inférentielle

Exercise 1 On dit que X suit une loi Gamma de paramètres p et θ ($p > 0, \theta > 0$), notée $\gamma(p, \theta)$, si sa densité (par rapport à la mesure de Lebesgue) est :

$$f(x) = \frac{\theta^p}{\Gamma(p)} \exp(-\theta x) x^{p-1} 1_{[0, +\infty[}(x)$$

ou de façon équivalente, si sa fonction caractéristique vaut $\varphi_X(t) = \frac{1}{\left(1 - \frac{it}{t}\right)^p}$ pour tout réel t. On rappelle les propriétés suivantes de la fonction Gamma:

$$\forall \alpha > 0, \ \Gamma(\alpha) = \int_{0}^{\infty} x^{\alpha - 1} \exp(-x) dx; \ \Gamma(\alpha + 1) = \alpha \Gamma(\alpha); \ \Gamma(1/2) = \sqrt{\pi}$$

- 1. Vérifier que la loi $\gamma(p,\theta)$ est bien une loi de probabilité.
- 2. Calculer $E(X^k)$ pour $k \geq 1$. En déduire que $E(X) = \frac{p}{\theta}$ et $Var(X) = \frac{p}{\theta^2}$.
- 3. Si a > 0, montrer que $\frac{X}{a} \sim \gamma(p, a\theta)$.
- 4. Soient X et Y deux v.a. indépendantes de lois respectives $\gamma(p_1, \theta)$ et $\gamma(p_2, \theta)$. Montrer que $X + Y \sim \gamma(p_1 + p_2, \theta)$.
- 5. Si $X_1, ..., X_n$ sont n variables aléatoires indépendantes de même loi $\gamma(1,\theta)$ (dite loi exponentielle de paramètre θ), donner la loi de la somme $S_n = X_1 + ... + X_n$ et calculer $E(S_n)$ et $Var(S_n)$.

Exercise 2 On observe $X_1, ..., X_n$ indépendantes et de même loi. On suppose qu'il existe $\theta > 0$ tel que cette loi admet la densité

$$f(x) = \frac{1}{\sqrt{2\pi\theta^2}} \exp\left(\frac{-x^2}{2\theta^2}\right)$$

- 1. On veut estimer $\tau = \theta^2$. Proposer un estimateur $\hat{\tau}$ de τ et étudier sa loi.
- 2. Construire un intervalle de confiance au niveau $1-\alpha$ de la forme $[S_1, S_2]$ tel que $P(\tau < S_1) = P(\tau > S_2) = \alpha/2$. Lorsque n = 10, $\hat{\tau} = 2$ et $\alpha = 0.05$, calculer l'intervalle de confiance obtenu.
- 3. Constuire un test de niveau de H_0 : $\tau=3$ contre H_1 : $\tau>3$. Pour un seuil de 5%, lorsque n=10 et qu'on observe $\widehat{\tau}=4$, rejette-t-on l'hypothèse nulle ?

Indication : $F^{-1}\chi^2_{10}(0.025)\simeq 3.25,\, F^{-1}\chi^2_{10}(0.975)\simeq 20.48,\, et\, \Phi^{-1}(0.975)\simeq 2.$

Exercise 3 Soient X une v.a. admettant pour densité

$$f(x) = \frac{1}{\theta} \exp\left(-\frac{(x-\theta)}{\theta}\right) 1_{[\theta,+\infty[}(x)$$

où $\theta > 0$ est inconnu, et $(X_1, ..., X_n)$ un échantillon de même loi que X.

- 1. Estimer θ par la méthode des moments.
- 2. Quelle est la loi limite de l'estimateur $\hat{\theta}$ ainsi obtenu ? Etudier également sa convergence en moyenne quadratique.

Corrigé

Exo1

1. Comme f est positive, il suffit de vérifier que $\int\limits_{\mathbb{R}} f(x) dx = 1$. Ceci s'obtient:

$$\int_{\mathbb{R}} f(x)dx = \int_{0}^{\infty} \frac{\theta^{p}}{\Gamma(p)} \exp(-\theta x) x^{p-1} dx$$

$$= \int_{0}^{\infty} \frac{(\theta x)^{p-1}}{\Gamma(p)} \exp(-\theta x) \theta dx \quad \text{on pose } y = \theta x \text{ et donc } dy = \theta dx$$

$$= \frac{1}{\Gamma(p)} \int_{0}^{\infty} y^{p-1} \exp(-y) dy = 1$$

2. De la même façon, on a

$$E(X^k) = \int_{\mathbb{R}} x^k f(x) dx = \int_0^\infty x^k \frac{\theta^p}{\Gamma(p)} \exp(-\theta x) x^{p-1} dx$$

$$= \int_0^\infty \frac{(\theta x)^{k+p-1}}{\theta^k \Gamma(p)} \exp(-\theta x) \theta dx = \frac{1}{\theta^k \Gamma(p)} \int_0^\infty y^{k+p-1} \exp(-y) dy$$

$$= \frac{\Gamma(k+p)}{\theta^k \Gamma(p)}$$

Ainsi, on a

$$E(X) = \frac{\Gamma(1+p)}{\theta\Gamma(p)} = \frac{p}{\theta} \quad \text{et} \quad E(X^2) = \frac{\Gamma(2+p)}{\theta^2\Gamma(p)} = \frac{p(p+1)}{\theta^2}$$
$$Var(X) = E(X^2) - (EX)^2 = \frac{p(p+1)}{\theta^2} - \left(\frac{p}{\theta}\right)^2 = \frac{p}{\theta^2}$$

3. pour a > 0

$$P(\frac{X}{a} < y) = P(X < ay) = F_X(ay)$$

 \Longrightarrow

$$f_{\frac{X}{a}}(y) = af_X(ay) = a\frac{\theta^p}{\Gamma(p)} \exp(-\theta ay)(ay)^{p-1} 1_{[0,+\infty[}(y)$$
$$= \frac{(a\theta)^p}{\Gamma(p)} \exp(-\theta ay) y^{p-1} 1_{[0,+\infty[}(y)$$

$$\frac{X}{a} \sim \gamma(p, a\theta)$$

4. Pour déterminer la loi de X+Y, on calcule sa fonction caractéristique $\varphi_{X+Y}(t)=E[e^{it(X+Y)}]$. Grâce à l'indépendance, cette fonction est égale au produit des fonctions caractéristiques de X et de Y:

$$\varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t) = \frac{1}{\left(1 - \frac{it}{\theta}\right)^{p_1}} \times \frac{1}{\left(1 - \frac{it}{\theta}\right)^{p_2}} = \frac{1}{\left(1 - \frac{it}{\theta}\right)^{p_1 + p_2}}$$

Ainsi, X + Y est la fonction caractéristique de la loi $\gamma(p_1 + p_2, \theta)$. 6. D'après la question précédente (et par une récurrence triviale),

$$S_n \sim \gamma(n, \theta)$$
.

En utilisant la question 2, nous avons donc $E(S_n) = \frac{n}{\theta}$, $Var(S_n) = \frac{n}{\theta^2}$.

1. Les X_i suivent une loi normale $N(0, \theta^2)$. On sait donc que $Var(X_i) = E(X_i^2) = \theta^2 = \tau$. Pour estimer τ , on propose l'estimateur suivant : $\widehat{\tau} = \frac{1}{n} \sum_{i=1}^{n} X_i^2$. On a alors $\frac{n\widehat{\tau}}{\tau} = \sum_{i=1}^{n} \left(\frac{X_i}{\theta}\right)^2$. Or comme pour tout $i, \frac{X_i}{\theta} \sim N(0, 1)$ et

comme les v.a. X_i sont i.i.d., on en déduit que $\frac{n\widehat{\tau}}{\tau} \sim \chi^2(n)$. Cette caractérisation de la loi de $\widehat{\tau}$ suffit, cependant on peut remarquer qu'une loi du $\chi^2(n)$ est aussi une loi $\gamma\left(\frac{n}{2},\frac{1}{2}\right)$. Ainsi,

$$\widehat{\tau} \sim \gamma \left(\frac{n}{2}, \frac{1}{2\tau}\right)$$

2. On note $F_{\chi^2(n)}$ la f.d.r. de la loi du $\chi^2(n)$ et $F_{\chi^2(n)}^{-1}$ la fonction quantile (qui est ici l'inverse de $F_{\chi^2(n)}$ car cette dernière est une bijection). On peut alors écrire :

$$P\left(F_{\chi^{2}(n)}^{-1}(\alpha/2) \le \frac{n\hat{\tau}}{\tau} \le F_{\chi^{2}(n)}^{-1}(1 - \alpha/2)\right) = 1 - \alpha$$

donc

$$P\left(\frac{n\widehat{\tau}}{F_{\chi^2(n)}^{-1}(1-\alpha/2)} \leq \tau \leq \frac{n\widehat{\tau}}{F_{\chi^2(n)}^{-1}(\alpha/2)}\right) = 1 - \alpha$$

En posant $S_1 = \frac{n\widehat{\tau}}{F_{\chi^2(n)}^{-1}(1-\alpha/2)}$ et $S_2 = \frac{n\widehat{\tau}}{F_{\chi^2(n)}^{-1}(\alpha/2)}$, on en déduit que

$$I_{\alpha} = [0.97, 6.16]$$

3. Le test rejette H_0 si $\hat{\tau} > 3n^{-1}F_{\chi^2(n)}^{-1}(1-\alpha/2)$ au niveau α . Pour n=10, et $\alpha=5\%$, nous avons $F_{\chi^2(n)}^{-1}(1-\alpha/2) \simeq 20.48$. Ainsi H_0 est acceptée lorsque $\hat{\tau}=4$.

Exo3

1-

$$EX = \int_{\mathbb{R}} x f(x) dx = \int_{\theta}^{\infty} x \frac{1}{\theta} \exp(-\frac{x-\theta}{\theta}) dx = \theta \int_{0}^{\infty} (y+1) \exp(-y) dy = 2\theta$$

en posant

$$x - \theta = \theta y \Longrightarrow dx = \theta dy \text{ et } x = \theta(y+1) \text{ et } \int_{0}^{\infty} (y+1) \exp(-y) dy = 2$$

Ceci nous permet de proposer l'estimateur de θ suivant:

$$\widehat{\theta} = \frac{\overline{X}}{2}$$

2-
$$varX = \int_{\theta}^{\infty} x^2 \frac{1}{\theta} \exp(-\frac{x-\theta}{\theta}) dx - 4\theta^2 = \theta^2 \operatorname{car} \int_{0}^{\infty} (y+1)^2 \exp(-y) dy = 5$$
 D'après le TLC, on a

$$\begin{split} \sqrt{n} \left(\frac{\overline{X} - 2\theta}{\theta} \right) &\to \mathcal{N}(0, 1) \\ \Longrightarrow \sqrt{n} \left(\frac{\overline{X} - 2\theta}{\theta} \right) &= \sqrt{n} \left(\frac{2\widehat{\theta} - 2\theta}{\theta} \right) = \frac{2}{\theta} \sqrt{n} (\widehat{\theta} - \theta) \to \mathcal{N}(0, 1) \text{ on en déduit que} \\ \\ \sqrt{n} (\widehat{\theta} - \theta) &\to \mathcal{N}(0, \frac{\theta^2}{4}) \end{split}$$

Le risque quadratique on a $E\widehat{\theta} = \theta \Longrightarrow$

$$E(\widehat{\theta} - \theta)^2 = var\widehat{\theta} = var\frac{\overline{X}}{2}$$

or $var\frac{\overline{X}}{2}=\frac{1}{4n}varX=\frac{\theta^2}{4n}$ d'où le risque quadratique tend vers 0 quand $n\to\infty.$