МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Санкт-Петербургский национальный исследовательский университет ИТМО»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №2

по дисциплине «ИНФОРМАТИКА»

Вариант № 70

Выполнил: Студент группы R3116 Колбасин Владислав Ильич Преподаватель: Балакшин Павел Валерьевич

Оглавление

Задание	
Основные этапы вычисления	4
D.	
Вывол	7

Задание

Вариант			2	3		
70	52	89	14	11	20	744

	ALT 1		2	3	4	5	6	7
		r1	r2	i1	r3	i2	i3	i4
1.	11	1	0	1	1	0	0	0
1.	14	1	1	1	1	0	0	0
1	52	1	0	1	1	0	1	1
1	89	0	1	0	1	1	1	0

	ALT	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		r1	r2	i1	r3	i2	i3	i4	r4	i5	i6	i7	i8	i9	i10	i11
2.	20	0	1	1	0	0	0	1	0	1	0	0	0	0	0	1

Основные этапы вычисления

1. Схема декодирования классического кода Хэмминга (7; 4)

<u>11</u>

	1	2	3	4	5	6	7	
сообщение	1	0	1	1	0	0	0	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i_1	\mathbf{r}_3	i_2	i ₃	i_4	S
1								S_1
2								S_2
4								S_3

$$S_1 = 1 \oplus 1 \oplus 0 \oplus 0 = 0$$

$$S_2 = 0 \oplus 1 \oplus 0 \oplus 0 = 1$$

$$S_3 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$$

Ошибка в бите із. Правильное сообщение: 1011010.

<u>14</u>

	1	2	3	4	5	6	7	
сообщение	1	1	1	1	0	0	0	
2 ^x	\mathbf{r}_1	r_2	i_1	r ₃	i_2	i ₃	i_4	S
1								S_1
2								S_2
4								S_3

 $S_1=1\!\oplus\!1\!\oplus\!0\!\oplus\!0=0$

 $S_2=1\!\oplus\!1\!\oplus\!0\!\oplus\!0=0$

 $S_3 = 1 \oplus 0 \oplus 0 \oplus 0 = 1$

Ошибка в бите г₃. Правильное сообщение: 1110000.

<u>52</u>

	1	2	3	4	5	6	7	
сообщение	1	0	1	1	0	1	1	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i_2	i ₃	i_4	S
1								S_1
2								S_2
4								S_3

 $S_1=1\!\oplus\!1\!\oplus\!0\!\oplus\!1=1$

 $S_2=0\!\oplus\!1\!\oplus\!1\!\oplus\!1=1$

 $S_3 = 1 \oplus 0 \oplus 1 \oplus 1 = 1$

Ошибка в бите і₄. Правильное сообщение: 1011010.

<u>89</u>

	1	2	3	4	5	6	7	
сообщение	0	1	0	1	1	1	0	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	i_1	r ₃	i_2	i ₃	i 4	S
1								S_1
2								S_2
4								S_3

 $S_1=0{\oplus}0{\oplus}1{\oplus}0=1$

 $S_2=1\!\oplus\!0\!\oplus\!1\!\oplus\!0=0$

 $S_3 = 1 \oplus 1 \oplus 1 \oplus 0 = 1$

Ошибка в бите і2. Правильное сообщение: 0101010.

2. Схема декодирования классического кода Хэмминга (15; 11)

<u>20</u>

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
сообщение	0	1	1	0	0	0	1	0	1	0	0	0	0	0	1	
2 ^x	\mathbf{r}_1	\mathbf{r}_2	\mathbf{i}_1	\mathbf{r}_3	\mathbf{i}_2	i ₃	i 4	r_4	i 5	i_6	\mathbf{i}_7	i_8	i 9	\mathbf{i}_{10}	\mathbf{i}_{11}	S
1																S_1
2																S_2
4																S_3
8	·															S_4

 $S_1 = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 0$

 $S_2=1\!\oplus\!1\!\oplus\!0\!\oplus\!1\!\oplus\!0\!\oplus\!0\!\oplus\!0\!\oplus\!1=0$

 $S_3 = 0 \oplus 0 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 0$

 $S_4 = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 0$

Ошибок в битах нет, полученное сообщение верно.

3. Вычисление минимального числа проверочных разрядов и коэффициента избыточности для сообщения из 744 информационных разрядов

1 Найдем минимальное число проверочных разрядов по формуле:

$$2^r \ge r + i + 1$$

 Γ де r – кол-во проверочных разрядов, i – кол-во информационных разрядов. Для сообщения из 744 информационных разрядов получаем:

$$2^r \ge r + 744 + 1$$

$$2^r \ge r + 745$$

Из графического решения видно, что $r \ge 9,559$. Таким образом, минимальное кол-во проверочных разрядов r для сообщения из 745 информационных разрядов равно 10.

 $\underline{\mathbf{2}}$ Коэффициент избыточности — отношение числа проверочных разрядов (r) к общему числу разрядов n. Для сообщения из 745 информационных разрядов и 10 проверочных разрядов равно:

$$\frac{r}{n} = \frac{r}{r+i} = \frac{10}{10+745} = \frac{10}{755} = 0.013245033$$

Вывод

Во время выполнения работы я узнал о коде Хэмминга, научился искать ошибки в сообщениях, закодированных с помощью этого кода, разобрался со схемами кодирования и декодирования кода Хэмминга, повторил таблицы истинности исключающего или для нескольких переменных. Теперь я умею рассчитывать минимальное количество проверочных разрядов для того или иного сообщения, находить коэффициент его избыточности и определять правильность передачи этого сообщения.