Lecture 8: Reinforcement Learning and Generative Models

Isaiah Hull^{1,2}

Unsupervised Learning

Lecture 8: Overview

- 1. Generative Models.
- 2. Reinforcement Learning.
- 3. Applications.

Types of ML Models

- ► Discriminative models:
 - ► Applied to classification or regression.
 - ► Input: set of features.
 - Output: probabilities or predicted values.

Types of ML Models

- ► Generative models:
 - ► Learn the data distribution.
 - ► Produce new class examples.

Advancements in Generative ML

- ► Significant progress in generative ML.
- ► Notably:
 - Variational autoencoders (VAEs).
 - ► Generative adversarial networks (GANs).
- ▶ Breakthroughs in image, text, and music generation.

Generative ML in Economics

- ► Limited use of generative models in economics and finance.
- ► Growing interest in GANs.
- ► Example applications:
 - ► Athey et al. (2019).
 - ► Kaji et al. (2018).
- ► Potential future uses in the field.

Types of ML Models

Source: Hull (2021).

Variational Autoencoders

- ► Autoencoders:
 - ► Two networks: encoder and decoder with shared weights.
 - ► Encoder: Transforms input to latent state.
 - ▶ Decoder: Reconstructs features from latent state.
 - ► Trained via reconstruction loss.
- ▶ Uses: dimensionality reduction, generative tasks (images, music, texts).

Issues with Autoencoders

- ► Location and distribution of latent states:
 - ightharpoonup Latent states are in R^N .
 - ► Clustering is not explicitly defined.
 - ► Affects determination of valid latent states for generation.
- ► Performance for unobserved latent states:
 - ► Only trained for specific examples.
 - ► Perturbations might lead to unconvincing outputs.

Variational Autoencoders (VAEs)

- ► Developed to address autoencoder limitations.
- ► Components:
 - Mean layer.
 - ► Log variance layer.
 - ► Sampling layer (from normal distribution).
- Output of sampling is the latent state.
- ► Encoder yields different latent states for same inputs.

VAE Architecture and Loss

- ► VAE modifies loss to include Kullback-Leibler (KL) divergence.
- ► KL divergence:
 - ► Penalizes distance between normal distributions.
 - ► Targets a mean and log variance of zero.

VAE Architecture and Loss

- ► Eliminates determinism of latent states.
- ► Improves generative performance.
- ► Solves sampling problem with sampling layer.
- ► Adjusts latent distribution with KL divergence.

VAEs in TensorFlow

- ▶ Detailed exploration: See Kingma and Welling (2019).
- ▶ Data used: GDP growth from 1961:Q2 to 2020:Q1 for 25 OECD countries.
- ► Previous usage: Dimensionality reduction.
- ► Objective: Train VAE to generate similar series.

Prepare GDP Growth Data for Use in a VAE

```
import tensorflow as tf
import pandas as pd
import numpy as np
# Load and transpose data.
GDP = pd.read_csv(data_path+'gdp_growth.csv',
    index col = 'Date').T
# Print data preview.
print(GDP head())
```

Model Architecture Summary

Time 4/1/61 7/1/61 10/1/61 1/1/62 AUS -1.097616 -0.715607 1.139175 2.806800 AUT -0.349959 1.256452 0.227988 1.463310 BEL 1.167163 1.275744 1.381074 1.346942 CAN 2.529317 2.409293 1.396820 2.650176 CHE 1.355571 1.242126 1.958044 0.575396

Model Architecture Summary

```
# Convert data to numpy array.

GDP = np.array(GDP)

# Set number of countries and quarters.

nCountries, nQuarters = GDP.shape

# Set number of latent nodes and batch size.

latentNodes = 2

batchSize = 1
```

VAE Model Architecture

- ► Contains encoder and decoder.
- ▶ Differs from autoencoder.
- ► Latent states sampled from independent normal distributions.

Sampling Layer in VAE

- ► Takes two parameters as inputs.
- ▶ Draws epsilon from standard normal distribution for each output node.
- ► Transforms each draw using mean and lvar parameters.

Model Architecture Summary

```
# Define function for sampling layer.
def sampling(params, batchSize = batchSize, latentNodes = latentNodes):
    mean, lvar = params
    epsilon = tf.random.normal(shape=(batchSize, latentNodes))
    return mean + tf.exp(lvar / 2.0) * epsilon
```

Encoder Model in VAE

- ► Takes full time series for a country as input.
- ► Mean and log variance layers differ from autoencoder.
- ► Mean and log variances layers have nodes for latent state.

Define Encoder Model for VAE

```
# Define input layer for encoder.
encoderInput = tf.keras.layers.Input(shape = (nQuarters))
# Define latent state.
latent = tf.keras.layers.Input(shape = (latentNodes))
# Define mean layer.
mean = tf.keras.layers.Dense(latentNodes)(encoderInput)
```

Define Encoder Model for VAE

Further Details on Encoder

- ► Mean and lvar layers parameterize normal distributions.
- ► Lambda layer defined with the sampling function.
- ► Lambda layer takes mean and lvar parameters.

Further Details on Encoder

- ► Encoder model defined functionally.
- ► Inputs: quarterly GDP growth observations.
- Outputs: mean layer, log variance layer, and sampled outputs.

Functional Models for Decoder and VAE

- ▶ Decoder: accepts latent state and produces a reconstruction.
- ► VAE: takes a time series and transforms it into its reconstruction.

Defining the Loss Function

- ► Two-part loss function:
 - ► Reconstruction loss: same as autoencoder.
 - KL divergence: measures distance of sampling layer distributions from a standard normal.
- ► Further from standard normal distribution implies higher penalty.

Define Decoder Model for VAE

```
# Define output for decoder.

decoded = tf.keras.layers.Dense(nQuarters, activation = 'linear')(latent)

# Define the decoder model.

decoder = tf.keras.Model(latent, decoded)

# Define functional model for autoencoder.

vae = tf.keras.Model(encoderInput, decoder(encoded))
```

Define VAE Loss

```
# Compute the reconstruction component of the loss.

reconstruction = tf.keras.losses.binary_crossentropy(vae.inputs[0], vae.outputs[0])

# Compute the KL loss component.

kl = -0.5 * tf.reduce_mean(1 + lvar - tf.square(mean) - tf.exp(lvar), axis = -1)

# Combine the losses and add them to the model.

combinedLoss = reconstruction + kl
```

vae.add loss(combinedLoss)

Trained Variational Autoencoder

- ► Capabilities of the trained VAE:
 - ► Use predict() method of vae to reconstruct given time series.
 - Generate realization of latent state for specific inputs, e.g., GDP growth for the US.
 - Perturb latent states by adding noise and generate new time series using predict() of decoder.

Compile and Fit VAE

```
# Compile the model.
vae.compile(optimizer='adam')
# Fit model.
vae.fit(GDP, batch_size = batchSize, epochs = 100)
```

Generate Latent States and Time Series with Trained VAE

```
# Generate series reconstruction.
prediction = vae.predict(GDP[0,:].reshape(1,236))
# Generate (random) latent state from inputs.
latentState = encoder.predict(GDP[0,:].reshape(1,236))
# Perturb latent state.
latentState[0] = latentState[0] + np.random.normal(1)
# Pass perturbed latent state to decoder.
decoder predict(latentState)
```

Generated Time Series for U.S. GDP Growth

- ▶ Based on a latent state realization for the U.S. GDP growth series.
- ► Perturbations over a 5x5 grid:
 - ▶ Rows: Add evenly-spaced values over the [-1,1] interval to the first latent state.
 - ► Columns: Add evenly-spaced values over the [-1,1] interval to the second latent state.
- ► Center series (in red): Adds [0,0] Represents the original latent state.

VAE-Generated Time Series for U.S. GDP Growth

Source: Hull (2021).

VAE Application and Flexibility

- ► VAE architecture's broad applicability:
 - ► Add convolutional layers to encoder/decoder ⇒ Generate images.
 - ▶ Incorporate LSTM cells \Rightarrow generate text or music.
- LSTM-based architecture potential:
 - ▶ Possible improvements in time series generation.
 - ► A shift from the dense network approach used in the given example.

Generative Adversarial Networks

- ► Dominant generative ML models:
 - ► Variational Autoencoders (VAEs).
 - ► Generative Adversarial Networks (GANs).
- ► VAEs: Manipulate latent states for granular control.
- ► GANs: Convincing generation of class examples.
- ► Notable GAN results: Highly convincing generated images.

GANs vs VAEs

- ► VAEs:
 - ► Encoder + Decoder, joined by sampling layer.
- ► GANs:
 - ► Generator + Discriminator.
 - $\blacktriangleright \ \ \text{Generator: Latent state input} \Rightarrow \text{class example (e.g. GDP growth time series)}.$
 - ▶ Discriminator: Differentiate between real and fake examples.

GANs vs VAEs

- ► Adversarial Network:
 - ► Combines Generator + Discriminator.
 - ► Shares weights with both networks.
 - ► Trains the generator to maximize discriminator's loss.

GAN: Zero Sum Game

- ► Goodfellow et al. (2017):
 - ► Two networks in a zero-sum game.
 - ► Discriminator: v(g,d).
 - ► Generator: -v(g,d).
 - ► Evolutionary equilibrium.

GAN: Zero Sum Game

- ightharpoonup Equilibrium Equation: $g^* = \arg \min_g \max_d v(g, d)$
- ► Freeze discriminator weights during adversarial training.
- ► Improve generation, rather than weakening the discriminator.

GAN Architecture Illustrated

- ► GAN's generator and discriminator networks.
- ► Generator produces novel examples.
- ▶ Discriminator combines novel and true examples for classification.
- Adversarial Network:
 - ► Trains generator.
 - ► Attached to discriminator with frozen weights.
 - ► Iterative training for equilibrium.

Practical Application: GDP Growth Data

- ► GDP growth data (similar to VAE section).
- ► Train GAN for credible GDP growth time series generation from random vector input.
- ► Approach to GAN construction from Krohn et al. (2020).

Depiction of the Generator and Discriminator from a GAN.

Source: Hull (2021).

Prepare GDP Growth Data for Use in a GAN.

```
import tensorflow as tf
import pandas as pd
import numpy as np
# Load and transpose data.
GDP = pd.read_csv(data_path+'gdp_growth.csv',
    index col = 'Date').T
# Convert pandas DataFrame to numpy array.
GDP = np.array(GDP)
```

Generative Model Definition

- ► Simple VAE model.
- ► Generator's input:
 - ► Vector with two elements.
 - ► Analogous to latent vector in VAE.

Generative Model Definition

- ► Generator viewed as a decoder.
- ► Architecture:
 - ► Start with bottleneck-type layer.
 - ► Upsample to produce GDP growth time series.

Generator's Architecture

- ► Simplest version:
 - ► Input layer: Accepts latent vector.
 - Output layer: Upsamples input layer.
- Output layer:
 - ► Represents GDP growth values.
 - ► Activation function: Linear.

Define the Generative Model of a GAN

```
# Set dimension of latent state vector.

nLatent = 2

# Set number of countries and quarters.

nCountries, nQuarters = GDP.shape

# Define input layer.

generatorInput = tf.keras.layers.Input(shape = (nLatent,))
```

Define the Generative Model of a GAN

```
# Define hidden layer.
generatorHidden = tf.keras.layers.Dense(16, activation='relu')(generatorInput)

# Define generator output layer.
generatorOutput = tf.keras.layers.Dense(236, activation='linear')(generatorHidden)

# Define generator model.
generator = tf.keras.Model(inputs = generatorInput, outputs = generatorOutput)
```

Discriminator Definition

- ► Inputs:
 - ► Real GDP growth series.
 - ► Generated GDP growth series.
- ► Each series length: nQuarters.
- ▶ Output: Probability of being a real GDP growth series for each input series.

Compilation Details

- ► Generator: Not compiled.
- ► Discriminator: Compiled.
- Use of an adversarial network to train the generator.

Define and Compile the Discriminator Model of a GAN

Define and Compile the Discriminator Model of a GAN

```
# Define discriminator output layer.
discriminatorOutput = tf.keras.layers.Dense(1,
             activation='sigmoid')(discriminatorHidden)
# Define discriminator model.
discriminator = tf.keras Model(inputs = discriminatorInput,
           outputs = discriminatorOutput)
# Compile discriminator.
discriminator.compile(loss='binary_crossentropy',
           optimizer=tf.optimizers.Adam(0.0001))
```

Adversarial Model

- ► Shares weights with the generator.
- ► Uses a frozen version of discriminator's weights.
- ► Discriminator weights:
 - ▶ Do not update during adversarial training.
 - ► Update during discriminator training.

Adversarial Network

- ► Input: Latent vector (same size as generator input).
- ▶ Output of generator: timeSeries (fake GDP growth time series).
- ► Set discriminator's trainability to 'False' during adversarial training.
- ► Network's output: Discriminator's output.
- ▶ Defined and compiled functional model: adversarial.

Training Process

- ► Train the discriminator.
- ► Train the adversarial network.

Define and Compile the Adversarial Model of a GAN

```
# Define input layer for adversarial network.
adversarialInput = tf.keras.layers.Input(shape=(nLatent))
# Define generator output as generated time series.
```

timeSeries = generator(adversarialInput)

Set discriminator to be untrainable. discriminator.trainable = False

Define and Compile the Adversarial Model of a GAN

```
# Set discriminator to be untrainable.
discriminator trainable = False
# Compute predictions from discriminator.
adversarialOutput = discriminator(timeSeries)
# Define adversarial model.
adversarial = tf.keras.Model(adversarialInput, adversarialOutput)
# Compile adversarial network.
adversarial.compile(loss='binary_crossentropy',
         optimizer=tf.optimizers.Adam(0.0001))
```

Train the Discriminator and the Adversarial Network

```
# Set batch size.
batch, halfBatch = 12, 6
for j in range(1000):
  # Draw real training data.
  idx = np random randint(nCountries,
       size = halfBatch)
  real gdp series = GDP[idx,:]
  # Generate fake training data.
  latentState = np.random.normal(size=[halfBatch, nLatent])
  fake gdp_series = generator.predict(latentState)
```

Train the Discriminator and the Adversarial Network

Train the Discriminator and the Adversarial Network

```
# Train discriminator.
discriminator train on batch(features, labels)
# Generate latent state for adversarial net.
latentState = np.random.normal(size=[batch, nLatent])
# Generate labels for adversarial network.
labels = np.ones([batch, 1])
# Train adversarial network.
adversarial train on batch(latentState, labels)
```

Initialization

- ► Define the batch size.
- ► Begin training loop consisting of multiple steps.

Training the Discriminator

- ▶ Draw random integers for row selection in GDP matrix.
- ► Each row contains GDP growth time series (real samples for discriminator).
- ► Generate fake data:
 - Draw latent vectors.
 - ► Pass through generator.
- ightharpoonup Combine real and fake series with labels (1 = real, 0 = fake).
- ► Train discriminator with combined data.

Training the Adversarial Network

- ► Generate a batch of latent states.
- ► Input latent states into generator.
- ► Train with intent to trick discriminator into classifying as real.
- ► Iterative training over two models.
- ► Stopping criteria: stable evolutionary equilibrium.

Model Evaluation

- ► Observe model losses over time.
- ► Approx. 500 iterations: neither model shows significant improvement.
- ► Indicates a stable evolutionary equilibrium reached.

Discriminator and Adversarial Model Losses by Training Iteration

Source: Hull (2021).

Adversarial Network Performance

- ► White noise vector inputs used.
- ► Adversarial network informed by discriminator's performance.
- ► Achieved fairly credible fake GDP growth series after 1000 training iterations.

Performance Enhancement

- ► More latent features could improve performance.
- ► Can use a more advanced model architecture, such as LSTM.

Example Fake GDP Growth Series.

Source: Hull (2021).

Applications in Economics and Finance

- ► Concentrated on generating simulated series.
- ▶ Alternative to more familiar methods in Monte Carlo simulation.
- ► Must generate realistic series and capture interdependencies.

Early Applications of GANs in Economics

- ► Athey et al. (2019) used Wasserstein GANs.
- ► Simulate data appearing similar to small existing datasets.
- ▶ Bypasses drawing randomly or generating simulated series with deficiencies.

Value of GANs in Economics

- ► Athey et al. evaluated estimators using WGAN generated data.
- ► Kaji et al. (2018) used WGANs for indirect inference.
- ► Indirect inference: estimating structural models in economics and finance.

Generative Models

Kaji et al.'s Approach

- ► Estimate a model for workers choosing wage and location.
- ► Parameters are structural.
- ► Coupled model simulation with a discriminator.

Generative Models

Further Applications

- ► GANs and VAEs in image and text generation.
- ▶ Visual counterfactual simulations with economic data.
- ► NLP in economics: text generation to study company press releases.

2. Deep Reinforcement Learning

Deep Reinforcement Learning

- ► In standard models, agents are rational optimizers.
- ► Agents form unbiased expectations about the future.
- ► Optimizers choose the exact optimum.
- ► No heuristics or rule-of-thumb used.

Deviation from Rational Optimizer Framework

- ► Palmer (2015).
- ▶ Policy rule formation, rather than rationality.
- ► Improved computational tractability by breaking requirements.

Reinforcement Learning in Economics

- ► Alternative to standard model.
- Described in Sutton and Barto (1998).
- ▶ Value discussed in Athey and Imbens (2019), Palmer (2015).
- ► Application: Hull (2015) for dynamic programming problems.

Agents in Reinforcement Learning

- Agents perform optimization.
- ► Limited information about the system state.
- ► Tradeoff: "exploration" vs "exploitation."
- ► Learning about the system vs optimizing known system parts.

Deep Q-learning Introduction

- ► Variant of reinforcement learning.
- Combines deep learning and reinforcement learning.
- ► Can solve high-dimensional state space problems.
- ► Solves rational optimizer's problem via deep Q-learning.

Dynamic Programming vs Q-learning

- ▶ Dynamic programming uses "look-up table" for value states.
- ► Iterative table updates until convergence.
- ► Solution found in the value function table.
- ► Q-learning constructs a state-action table.
- ► Example: State capital stock; Action level of consumption.

Q-table Update Mechanism

- Updated using temporal difference learning.
- ▶ Updates state-action pair (s_t, a_t) in iteration i + 1.
- Uses value in iteration i and adds learning rate.
- ► Multiplied by expected change in value from optimal action.

Updating the Q Table

$$Q_{(i+1)}(s_t, a_t) \leftarrow Q_i(s_t, a_t) + \lambda \left[r_t + eta \max_{oldsymbol{a}} Q(k_{(t+1)}, oldsymbol{a}) - Q_i(s_t, a_t)
ight]$$

(1)

Deep Q-learning

- ► Replaces look-up table with a deep neural network: "deep Q-network."
- ► Approach introduced in Mnih et al. (2015).
- Originally used to train Q-networks for superhuman video game performance.

Applying Deep Q-learning to Economic Models

- ► Neoclassical business cycle model.
- ► Solutions implemented in TensorFlow.
- ► Two common TensorFlow options:
 - ► tf-agents: Native TensorFlow implementation.
 - ► keras-rl2: Uses high-level Keras API.
- ► We use keras-rl2 for simpler, familiar syntax.

Implementation Details

- ► Install keras-rl2 module.
- ► Submodules from rl module:
 - ▶ DQNAgent: Define a deep Q-learning agent.
 - ► EpsGreedyQPolicy: Set policy decisions process on training path.
 - ► SequentialMemory: Retain decision paths/outcomes for training.
- ► Import gym to define the model environment.

Install and Import Modules to Perform Deep Q-learning

```
# Install keras-rl2.
pip install keras-rl2
```

```
# Import numpy and tensorflow. import numpy as np import tensorflow as tf
```

Install and Import Modules to Perform Deep Q-learning

Import reinforcement learning modules from keras. from rl.agents.dqn import DQNAgent from rl.policy import EpsGreedyQPolicy from rl.memory import SequentialMemory

Import module for comparing RL algorithms. import gym

Setting up the Environment

- ► Set the number of capital nodes.
- ▶ Define environment: planner, a subclass of gym.Env.
- ► Specifies details of the social planner's reinforcement learning problem.

The planner Class: Initialization

- ► Define a discrete capital grid.
- ▶ Define action and observation spaces.
- ► Initialize the number of decisions to zero.
- ► Set the max number of decisions.
- ► Set node index of initial value of capital: 500 out of 1000.
- ► Set the production function parameter (alpha).

Action and Observation Spaces

- ▶ Both are discrete objects with 1000 nodes (defined using gym.spaces).
- ► Observation space: Entire state space (all capital nodes).
- ► Action space: Identical to the observation space.

```
# Define number of capital nodes.
n capital = 1000
# Define environment.
class planner(gym.Env):
    def __init (self):
         self.k = np.linspace(0.01, 1.0, n capital)
         self.action space = \
         gym spaces Discrete(n capital)
         self.observation space = \
         gym spaces Discrete(n_capital)
         self.decision count = 0
```

```
self.decision_max = 100
self.observation = 500
self.alpha = 0.33
def step(self, action):
    assert self.action_space.contains(action)
    self.decision_count += 1
    done = False
```

```
if(self.observation**self.alpha - action) > 0:
    reward = \
np.log(self.k[self.observation]**self.alpha -
self.k[action])
else:
    reward = -1000
self.observation = action
```

```
if (self.decision_count >= self.decision_max)\
    or reward == -1000:
        done = True
    return self.observation, reward, done,\
    {"decisions": self.decision_count}

def reset(self):
    self.decision_count = 0
    self.observation = 500
    return self.observation
```

Defining the step Method

- ► Method returns observation (state), reward (utility), reset indicator (done), and debugging info.
- ► Increment decision_count attribute.
- ► Initially sets done to False.
- ► Evaluates validity of agent's decision: selects positive consumption value.

Conditions for reset() Method

- ► Agent makes more than decision_max decisions.
- ► Agent chooses a non-positive consumption value.
- ► The reset() method reinitializes state and decision count.

Instantiating planner and Neural Network

- ► Instantiate a planner environment.
- ▶ Define a neural network using TensorFlow.
- ► Use the Sequential model.
- ► One dense layer with relu activation.
- ► Output layer should have n_capital nodes.

```
# Instantiate planner environment.
env = planner()

# Define model in TensorFlow.
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten(input_shape=(1,) + env.observation_space.shape))
model.add(tf.keras.layers.Dense(32, activation='relu'))
model.add(tf.keras.layers.Dense(n_capital, activation='linear'))
```

Hyperparameters and Training

- ► Define environment and network.
- ▶ Use SequentialMemory for a "replay buffer" of 50,000 decision paths.
- ► Model uses epsilon-greedy policy:
 - ightharpoonup epsilon = 0.30.
 - ► Maximize utility 70% of the time.
 - ► Random decision for exploration 30% of the time.

DQNAgent Model Training

- ► Set hyperparameters of the DQNAgent model.
- ► Compile the model.
- ► Perform training.

Set Model Hyperparameters and Train.

```
# Specify replay buffer.
memory = SequentialMemory(limit=10000, window_length=1)
# Define policy used to make training-time decisions.
policy = EpsGreedyQPolicy(0.30)
```

Set Model Hyperparameters and Train.

```
# Define deep Q-learning network (DQN).
dqn = DQNAgent(model=model, nb_actions=n_capital,
    memory=memory, nb_steps_warmup=100,
gamma=0.95, target_model_update=1e-2,
policy=policy)

# Compile and train model.
dqn.compile(tf.keras.optimizers.Adam(0.005), metrics=['mse'])
dqn.fit(env, nb_steps=10000)
```

Monitoring the Training Process

- ► Two main observations from the training process:
 - ► Number of decisions per session increases across iterations.
 - ► Implication: Agent learns not to sharply draw down capital.
- ► Loss declines while the average reward starts to increase.
- ► Agent approaches optimality.

Summary

- ▶ Presents an alternative to standard computational economic methods.
- ▶ Deep Q-learning networks (DQN) in TensorFlow:
 - ► Can solve higher dimensional models.
 - ► Works in non-linear settings.
- ► Benefits:
 - ► No need to change model assumptions.
 - ► Minimizes numerical error introduction.

3. Applications

Applications

Colab Tutorial

- Generative Models
- ► Theoretical Models

References I

Athey, S. and G.W. Imbens (2019) "Machine Learning Methods Economist Should Know About," *Annual Review of Economics*, 11, 685–725.

Athey, S., G.W. Imbens, J. Metzger, and E. Munro (2019) "Using Wasserstein Generative Adversarial Networks for the Design of Monte Carlo Simulations," Working Paper 3824.

Goodfellow, I., Y. Bengio, and A. Courville (2017) *Deep Learning*, Cambridge, MA: MIT Press.

Hull, Isaiah (2021) *Machine Learning for Economics and Finance in TensorFlow 2*: Apress, 10.1007/978-1-4842-6373-0.

Kaji, T., E. Manresa, and G. Pouliot (2018) "Deep Inference: Artificial Intelligence for Structural Estimation," working paper.

References II

Kingma, D.P. and M. Welling (2019) "An Introduction to Variational Autoencoders," *Foundations and Trends in Machine Learning*, 12 (4), 307–392.

Krohn, J., G. Beyleveld, and A. Bassens (2020) *Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence*: Addison-Wesley.

Palmer, N.M. (2015) *Individual and Social Learning: An Implementation of Bounded Rationality from First Principles* Ph.D. dissertation, George Mason University, Fairfax, VA.

Sutton, R.S. and A.G. Barto (1998) *Reinforcement Learning: An Introduction,* Cambridge: MIT Press.