

В задаче требуется оценка погрешностей!

Теоретическая справка

При небольших скоростях газа или жидкости течение среды является ламинарным. Движение среды при этом происходит как бы слоями, обладающими разными скоростями. С увеличением скорости потока движение приобретает сложный, запутанный характер, слои перемешиваются, течение становится турбулентным. При этом скорость в каждой точке быстро меняет величину и направление, сохраняется только её средняя величина.

Характер движения газа или жидкости зависит от соотношения между кинетической энергией движущейся среды и работой сил вязкости. Если первая величина мала по сравнению со второй, то турбулентные пульсации не развиваются (их подавляет вязкость) и течение остаётся ламинарным. Отношение характерной кинетической энергии к характерным энергетическим потерям на вязкость образует (с точностью до численного коэффициента) безразмерную комбинацию величин, называемую числом Рейнольдса:

$$Re = \frac{\rho vr}{\eta},\tag{1}$$

где v — характерная скорость течения (например, при течении в трубе средняя по расходу скорость), η — вязкость жидкости или газа, ρ — плотность среды, r — некоторый характерный размер задачи (в нашем случае примите его равным радиусу трубы). В гладких трубах круглого сечения переход от ламинарного течения к турбулентному происходит при значениях $\mathrm{Re} \sim 1000$. Важно также отметить, что ламинарное движение при переходе его из широкого сосуда в капилляр радиуса r устанавливается не сразу, а на некотором характерном расстоянии $l_{\mathrm{пер}} \approx 0.2r \cdot \mathrm{Re}$.

При изотермическом ламинарном течении газа (жидкости) объём Q, ежесекундно протекающий через поперечное сечение трубы (объёмный расход), определяется формулой Пуазейля:

$$Q = \frac{\pi \Delta P r^4}{8\eta l},\tag{2}$$

где ΔP – перепад давления между торцами трубы длины l.

Задание

1. Прикрепите иглу к большому шприцу без поршня. Наденьте на корпус шприца гайку. Поставьте на дно стакана два уголка, соединенных магнитами. Установите шприц вертикально на подставку из уголков. Вода в стакане должна доходить до уровня нулевого деления в шприце (см. рис. 1). Вы можете доливать воду из маленького стакана или сливать лишнюю в него же. Выньте шприц из воды, чтобы вода вылилась из его внутреннего объема. Поставьте шприц обратно и проследите за уровнем воды в нем.

Рис. 1. Измерение высоты жидкости внутри шприца.

- 2. Измерьте зависимость объема воздуха в шприце от времени.
- 3. Выведите теоретическую формулу, описывающую измеренную зависимость. Процесс течения считайте изотермическим.
- 4. Постройте график в координатах, в которых он описывается линейной функцией, и определите его угловой коэффициент.
- 5. Определите значение коэффициента вязкости воздуха. Для этого подсоедините трубку к игле и проведите аналогичные измерения. Будьте аккуратны, чтобы не проткнуть стенки трубки иглой. Подробно опишите метод и приведите результаты измерений и расчетов.
- 6. Определите внутренний радиус иглы. Подробно опишите метод и приведите результаты измерений и расчетов.
- 7. Оцените характерное число Рейнольдса для пункта 2. Сделайте вывод о применимости модели ламинарного течения газа в эксперименте. Оцените отношение характерного расстояния $l_{\rm nep}$ к длине иглы.

Оборудование. Стакан литровый с водой, стакан 250 мл с дополнительным количеством воды для регулировки уровня в литровом стакане, шприц на 20 мл без поршня, шприц на 20 мл с поршнем (только для продувания системы воздухом!), шприц на 1 мл, синяя игла, длинная силиконовая трубка, подставка из двух уголков, соединенных магнитами, гайка, линейка пластиковая, секундомер, измерительная лента, бумажные салфетки по требованию.

Примечание. Перед измерением протекания воздуха через иглу или трубку убедитесь, что в них не осталось капелек воды. Чтобы «продуть» систему, воспользуйтесь отдельным сухим шприцем на 20 мл с поршнем.

Решение

Перед началом измерений продуем иголку шприцем с поршнем, чтобы убедиться, что внутри неё нет воды.

Соберем установку и измерим зависимость положения уровня воды в шприце от времени. Для этого будем измерять время перемещения уровня между рисками с помощью секундомера. Для каждого последующего измерения будем вынимать шприц из стакана и наполнять его воздухом. Повторим серии измерений для каждого объема V несколько раз и усредним значение времени t:

V, мл	<i>t</i> , c	$\ln{(V/{\rm м}\pi)}$
20.0	0.00	3.00
19.0	2.10	2.94
18.0	3.40	2.89
17.0	5.20	2.83
16.0	7.40	2.77
15.0	10.10	2.71
14.0	12.10	2.64
13.0	14.70	2.56
12.0	17.30	2.48
11.0	20.20	2.40
10.0	23.80	2.30
9.0	27.40	2.20
8.0	31.30	2.08
7.0	36.10	1.95
6.0	41.20	1.79
5.0	47.90	1.61

Выведем теоретическую формулу, описывающую измеренную зависимость. По мере заполнения цилиндра уровень воды в стакане практически не меняется, поэтому перепад давления на длине капилляра в момент, когда высота столба воздуха равна h (см. рис. 1), равен, очевидно, $\Delta P = \rho_{\text{воды}} gh$, где $\rho_{\text{воды}}$ – плотность воды. Тогда, в соответствии с формулой Пуазейля, для мгновенного расхода воздуха в момент времени t можно записать:

$$Q = -\frac{S_0 dh}{dt} = \frac{\pi \rho_{\text{воды}} ghr^4}{8\eta l},\tag{3}$$

где S_0 - площадь поперечного сечения шприца. После интегрирования в пределах от начального значения $h_0 = h(0)$ уровня воды в цилиндре до значения h в момент времени t,

получим закон изменения уровня воды в цилиндре с течением времени:

$$\ln \frac{h_0}{h} = \ln \frac{V_0}{V} = \frac{\pi \rho_{\text{воды}} g r^4}{8\eta l S_0} t, \tag{4}$$

где $V_0=20\,$ мл - объем, соответствующий началу отсчета. Площадь сечения рассчитаем как отношение объема этой части шприца к ее высоте $H=6.8\,$ см:

$$S_0 = \frac{V_0}{H}. (5)$$

Тогда окончательный вид искомой зависимости:

$$\ln V = \ln V_0 - \frac{\pi \rho_{\text{воды}} g r^4 H}{8\eta l V_0} t. \tag{6}$$

Построим график измеренной зависимости в координатах $\ln V$ от t. Заметим, что экспериментальные точки замечательно ложатся на прямую линию с модулем углового коэффициента:

$$k_1 = \frac{\pi \rho_{\text{воды}} g r_{\text{иглы}}^4 H}{8 \eta_{\text{возлух}} l_{\text{иглы}} V_0} = (29.0 \pm 0.8) \cdot 10^{-3} \text{ c}^{-1}$$
(7)

График зависимости $\ln V$ от t для иглы

Для определения вязкости воздуха проведем дополнительные измерения истечения газа из шприца, надев на иглу длинную трубку. Найдем угловой коэффициент зависимости

логарифма объема воздуха в шприце от времени $k_2 = (17.0 \pm 0.6) \cdot 10^{-3} \text{ c}^{-1}$.

V, мл	t, c	$\ln{(V/{ m M}{ m J})}$
20.0	0.00	3.00
19.0	2.90	2.94
18.0	5.40	2.89
17.0	9.30	2.83
16.0	12.40	2.77
15.0	16.50	2.71
14.0	20.30	2.64
13.0	24.60	2.56
12.0	29.30	2.48
11.0	34.20	2.40
10.0	40.10	2.30
9.0	46.10	2.20
8.0	53.20	2.08
7.0	61.90	1.95
6.0	70.80	1.79
5.0	81.40	1.61

График зависимости $\ln V$ от t для шприца с иглой и трубкой

Заметим, что закон Пуазейля схож с законом Ома. При течении вязкой жидкости по капилляру давление линейно падает с координатой, так же как и потенциал при протекании тока через проводник. В то время как разность давлений можно назвать напряжением, аналогом объемного расхода жидкости или газа будет являться сила тока. Так, введём гидродинамическое сопротивление капилляра.

По аналогии с электрическими цепями при последовательном соединении капилляров их гидродинамические сопротивления складываются. Величина гидродинамического сопротивления обратно пропорциональна угловым коэффициентам построенных графиков. Таким образом, величина углового коэффициента графика зависимости логарифма уровня воды в шприце от времени, соответствующая протеканию газа лишь через трубку, может быть рассчитана из коэффициентов аналогичных графиков измеренных ранее:

$$\frac{1}{k} = \frac{1}{k_2} - \frac{1}{k_1},\tag{8}$$

где

$$k = \frac{\pi \rho_{\text{воды}} g r_{\text{трубки}}^4 H}{8 \eta_{\text{воздух}} l_{\text{трубки}} V_0}.$$
 (9)

Заметим, что эту величину измерить напрямую не удается, так как отсутствует возможность прямого (без использования иглы) и достаточно плотного соединения трубки с носиком шприца.

Измерим длину части трубки, по которой течет газ из шприца $l_{\rm трубки}=98.6\pm0.5~{\rm cm}.$ Эта длина меньше длины трубки на величину длины иглы, на которую надета трубка.

Измерим также внутренний радиус трубки. Для этого подсоединим к ней шприц объемом 1 мл, наполненный заранее водой. Соединение между шприцем и трубкой обеспечим с помощью иглы. Закачаем в трубку небольшое количество воды, сделаем отметку на трубке и запомним деление, на котором остановился поршень шприца. Закачаем в трубку большую часть воды из шприца, и вновь измерим уровень воды в шприце, оставив отметку на трубке. Измерим расстояние между отметками $L=92.3\pm0.1$ см и объем воды, помещающийся в трубку между ними $V_1=0.70\pm0.01$ мл. Тогда для радиуса трубки имеем:

$$r_{\text{трубки}} = \sqrt{\frac{V_1}{\pi L}} = (0.491 \pm 0.004) \text{ мм.}$$
 (10)

Рассчитаем на основе полученных данных вязкость воздуха:

$$\eta_{\text{воздух}} = \frac{\pi \rho_{\text{воды}} g r_{\text{трубки}}^4 H}{8 l_{\text{трубки}} V_0} \left(\frac{1}{k_2} - \frac{1}{k_1} \right) = (1.83 \pm 0.05) \cdot 10^{-5} \text{ } \Pi \text{a} \cdot \text{c}$$
(11)

Определим радиус иглы. Для этого достаточно найти отношение угловых коэффициентов исследованных графиков:

$$\frac{k_1}{k} = \frac{k_1 - k_2}{k_2} = \frac{r_{\text{иглы}}^4}{r_{\text{трубки}}^4} \frac{l_{\text{трубки}}}{l_{\text{иглы}}}.$$
(12)

Измерим длину иглы $l_{\text{иглы}} = 3.6$ см. Обратим внимание, что начало иглы видно внутри ее пластиковой части, если смотреть на нее на просвет. Тогда для радиуса иглы получаем:

$$r_{\text{иглы}} = r_{\text{трубки}} \left(\frac{k_1 - k_2}{k_2} \frac{l_{\text{иглы}}}{l_{\text{трубки}}} \right)^{1/4} = (0.197 \pm 0.07) \text{ мм.}$$
 (13)

Рассчитаем характерную скорость течения газа в первом эксперименте, как:

$$v = \frac{Q_{\rm cp}}{\pi r^2} \approx 2.5 \text{ M/c.}$$
 (14)

Оценим значение плотности воздуха, используя уравнение состояния газа:

$$p = \frac{\rho}{M}R \cdot T,\tag{15}$$

где M — молярная масса, для воздуха равная M=29 г/моль. Тогда значение плотности воздуха $\rho=1.3$ кг/м 3 . А число Рейнольдса можно оценить как:

$$Re = \frac{\rho vr}{\eta} \approx 35. \tag{16}$$

Полученное значение Re много меньше критического, поэтому в данной работе течение газа можно считать ламинарным. Оцениваем характерное расстояние установления ламинарного течения:

$$l_{\text{nep}} = 0, 2r \cdot \text{Re} \approx 1, 4 \text{ MM}. \tag{17}$$

Получаем, что $l_{\rm пер}/l_{\rm иглы}\ll 1$, поэтому можно пренебречь длиной «переходных» отрезков системы.