Denoising Autoencoders

John Thickstun

The idea of a DAE [Vincent et al., 2010] is to recover a data point $x \sim p$ given a noisy observation, for example $x = x + \varepsilon$ where $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$. These models were initially introduced to provide an objective for unsupervised pre-training of deep networks. While that training methodology has become less relevant over time, the DAE has been adapted as a means of constructing generative models [Bengio et al., 2013] leading to recent spectacular results [Ho et al., 2020].

DAEs

let $x \sim p$, $x^{\sim} \sim p(\cdot|x)$, which together define a joint distribution $p(x, x^{\sim}) = p(x^{\sim}|x)p(x)$. A DAE is a model of the posterior distribution

$$p(x|\tilde{x}) = \frac{p(\tilde{x}|x)p(x)}{\int_{\mathcal{X}} p(\tilde{x}|y)p(y) \, dy}.$$
 (1)

Specifically, we model $p_{\theta}(x|x^{\sim}) = \mathcal{N}(g_{\theta}(f_{\varphi}(^{\sim}x)), \sigma^{2}I)$, where $f_{\varphi}: \mathcal{X} \to \mathcal{Z}$ and $g_{\theta}: \mathcal{Z} \to \mathcal{X}$ are NNs . Fitting this model using the MLE ==>

$$\theta^*, \varphi^* = \underset{\theta, \varphi}{\operatorname{arg\,min}} \underset{(x,\tilde{x}) \sim p}{\mathbb{E}} \|x - g_{\theta}(f_{\varphi}(\tilde{x}))\|^2. \tag{2}$$

We can think of the composition $g_{\theta} \circ f_{\varphi}(\tilde{x})$ as projecting a corrupted data point $\tilde{x} \sim p(\cdot|x)$ back onto the support of p (the data manifold) and we can think of the latent space \mathcal{Z} as a coordinate system on the data manifold. Previewing the work of Bengio et al. [2013] and [Ho et al., 2020], we can imagine constructing a Markov chain of DAEs that guides us from samples $x_0 = \varepsilon \sim \mathcal{N}(0, I)$ through a sequence of denoising operations $x_s \sim p_{s,\theta}(\cdot|x_{s-1})$ to produce a final sample x_t distributed approximately according to p.

Denoising Score Matching

We can use a DAE to construct an explicit SME, following Vincent [2011]. Recall that the score function estimator given by minimization of the Fisher divergence

$$\hat{\theta} = \arg\min_{\theta} \mathbb{E}_{x \sim p} \left[\frac{1}{2} \| s_{\theta}(x) - \nabla_x \log p(x) \|_2^2 \right]. \tag{3}$$

This expression requires that we evaluate gradients of the unknown density p(x), which are not accessible to us. Previously, we saw an implicit score matching estimator [Hyvärinen, 2005] for estimating this quantity using samples. DAEs offer another alternative.

Suppose we are willing to settle for samples of an estimate of the density p(x) given by the noisy distribution

$$q(\tilde{x}) = \int_{\mathcal{X}} p(\tilde{x}|x)p(x) dx. \tag{4}$$

For example, if $p(\tilde{x}|x) = p_{\sigma}(\tilde{x}|x) = \mathcal{N}(\tilde{x}; x, \sigma^2 I)$ for small variance σ^2 , then $q(\tilde{x}) = q_{\sigma}(\tilde{x})$ is a Gaussian convolution corresponding to a mildly-smoothed version of p(x), with $D(q_{\sigma} \parallel p) \to 0$ as $\sigma^2 \to 0$. Suppose we want to calculate the score matching estimator for this noisy distribution q_{σ} . The following proposition shows that this is much easier than score matching with p.

Proposition 1. (DSM) [Vincent, 2011]

$$\underset{\theta}{\operatorname{arg\,min}} \underset{\tilde{x} \sim q_{\sigma}}{\mathbb{E}} \left[\frac{1}{2} \| s_{\theta}(\tilde{x}) - \nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}) \|_{2}^{2} \right] = \underset{\theta}{\operatorname{arg\,min}} \underset{\tilde{x} \sim p_{\sigma}(\cdot|x)}{\mathbb{E}} \left[\frac{1}{2} \| s_{\theta}(\tilde{x}) - \nabla_{\tilde{x}} \log p_{\sigma}(\tilde{x}|x) \|_{2}^{2} \right]. \quad (5)$$

Proof. Expanding the quadratic and dropping the constant term, we have

$$\arg\min_{\theta} \underset{\tilde{x} \sim q_{\sigma}}{\mathbb{E}} \left[\frac{1}{2} \| s_{\theta}(\tilde{x}) - \nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}) \|_{2}^{2} \right] = \arg\min_{\theta} \underset{\tilde{x} \sim q_{\sigma}}{\mathbb{E}} \left[\frac{1}{2} \| s_{\theta}(\tilde{x}) \|^{2} - s_{\theta}(\tilde{x})^{T} \nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}) \right]. \quad (6)$$

lemma.
$$\mathbb{E}_{\tilde{x} \sim q_{\sigma}} \left[s_{\theta}(\tilde{x})^{T} \nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}) \right] = \mathbb{E}_{\substack{x \sim p \\ \tilde{x} \sim p_{\sigma}(\tilde{x}|x)}} \left[s_{\theta}(\tilde{x})^{T} \nabla_{\tilde{x}} \log p_{\sigma}(\tilde{x}|x) \right].$$
 (13)

From this and Eq 6, ==>

$$\arg\min_{\theta} \underset{\tilde{x} \sim q_{\sigma}}{\mathbb{E}} \left[\frac{1}{2} \| s_{\theta}(\tilde{x}) \|^{2} - s_{\theta}(\tilde{x})^{T} \nabla_{\tilde{x}} \log q_{\sigma}(\tilde{x}) \right]$$
(14)

$$= \underset{\theta}{\operatorname{arg\,min}} \underset{\substack{x \sim p \\ \tilde{x} \sim p_{\sigma}(\tilde{x}|x)}}{\mathbb{E}} \left[\frac{1}{2} \|s_{\theta}(\tilde{x})\|^{2} - s_{\theta}(\tilde{x})^{T} \nabla_{\tilde{x}} \log p_{\sigma}(\tilde{x}|x) \right]$$

$$\tag{15}$$

$$= \arg\min_{\theta} \underset{\tilde{x} \sim p_{\sigma}(\cdot|x)}{\mathbb{E}} \left[\frac{1}{2} \| s_{\theta}(\tilde{x}) - \nabla_{\tilde{x}} \log p_{\sigma}(\tilde{x}|x) \|_{2}^{2} \right]$$

$$(17)$$

References

Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. Generalized denoising auto-encoders as generative models. In *Advances in neural information processing systems*, pages 899–907, 2013. (document)

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, 2020. (document)

Aapo Hyv arinen. Estimation of non-normalized statistical models by score matching. *Journal of Machine Learning Research*, 2005. (document)

Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computation*, 2011. (document), 1

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol, and L´eon Bottou. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. *Journal of machine learning research*, 2010. (Document)