Academy of PY

```
In [1]: # Panda's HW - Academy of Py by Verna Orsatti
In [2]: # OBSERVED TREND 1 Narrative
        # OBSERVED TREND 2 Narrative
        # OBSERVED TREND 3 Narrative
In [3]: import pandas as pd
        import numpy as np
In [4]: schools csv = "schools complete.csv"
        students_csv = "students_complete.csv"
In [5]: | # Useful
        # Remember that == is for boolean and = is to set a value
        # table_name = pd.DataFrame({"":[],"":[],"":[],"":[],"":[],"":[]
        ,"":[],"":[],"":[],"":[]})
In [6]: # STUDENTS - read csv as pandas dataframe
        df stu = pd.read csv(students csv)
In [7]: # Re-name header labels
        df_stu.columns = ['Student ID', 'Name', 'Gender', 'Grade', 'School', '
        Reading Score', 'Math Score']
In [8]: # SCHOOLS - read csv as pandas dataframe
        df sch = pd.read csv(schools csv)
In [9]: # Re-name Header labels
        df_sch.columns = ['School ID', 'School', 'Type', 'Size', 'Budget']
```

District Summary

```
In [10]: # District Summary - Get data
    # THIS IS A ONE LINE SUMMARY DATA FRAME:
    # One line of data for:
    # Create a high level snapshot (in table form) of the district's key m
```

```
etrics, including:
# Total Schools
tot sch = df sch.School.count()
# Total Students in Schools
tot stu = df sch.Size.sum()
# Total Budget in Schools
tot bud = df sch.Budget.sum()
# Average Math Score from Students # returns boolean for all (True and
False)
ave mathscores all = df stu.Math Score.mean()
# Average Reading Score
ave readscores all = df stu.Reading Score.mean()
# % Passing Math - Based on 70% or better; how many passed/total stude
passing math = df stu.Math Score.between(70,100, inclusive=True) # Ret
urns boolean of all in selected,
df stu[passing math]
dfmp = df stu[passing math]
perc pass math = (dfmp.Math Score.count()/tot stu) * 100
# % Passing Reading - Base on 70% or better
passing reading = df stu.Reading Score.between(70,100, inclusive=True)
# Returns boolean of all in selected,
dfrp = df stu[passing reading]
perc_pass_reading = (dfrp.Reading Score.count()/tot stu) * 100
    * Overall Passing Rate (Average of the above two) - average of th
ose s
overall pass rate = (perc pass math + perc pass reading)/2
# Create Table - District Summary# DISTRICT SUMMARY
district summary = pd.DataFrame({"Total Schools":[tot sch], "Total Stud
ents":[tot stu], "Total Budget":[tot bud],
                                 "Average Math Score": [ave_mathscores_
all], "Average Reading Score":[ave_readscores_all],
                                 "% Passing Math": [perc pass math], "%
Passing Reading":[perc pass reading], "Overall Passing Rate":[overall p
ass rate]})
# Create Table - District Summary
district_summary = district_summary[["Total Schools","Total Students",
"Total Budget", "Average Math Score", "Average Reading Score", "% Passing
```

```
Math","% Passing Reading","Overall Passing Rate"]]
# Need to format $ for budget
district_summary["Total Budget"] = district_summary["Total Budget"].ma
p("${:,.2f}".format)
district_summary
```

Out[10]:

	Total Schools	Total Students	Total Budget	Average Math Score	Reading	% Passing Math	% Passing Reading	Oı Pa:
0	15	39170	\$24,649,428.00	78.985371	81.87784	74.980853	85.805463	80.39

```
In [11]: ## merge data sets df_stu & df_sch
    merge_data = pd.merge(df_sch, df_stu, on=('School'))
```

School Summary

```
In [12]: # School Summary - Get data from
         # school is df sch
         # student is df stu
         # merge data us combined data files
         # Get Name school Type values
         sch type = df sch.set index(["School"])["Type"]
         # Get student count per school
         tot_sch_stu = merge_data["School"].value_counts()
         # Get Total per School Budget
         tot sch bud = merge data.groupby(["School"]).mean()["Budget"]
         # Compute per Student Budget
         stu bud = tot sch bud/tot sch stu
         # Get Average Math and Reading scores per school
         ave math score = merge data.groupby(["School"]).mean()["Math Score"]
         ave reading score = merge data.groupby(["School"]).mean()["Reading Sco
         re"]
         # Compute Percent Passing for Math and Reading
         sch perc pass math = merge data[merge data["Math Score"] >= 70].groupb
         y("School").count()["Name"] #/tot stu) * 100
         sch perc pass math =(sch perc pass math/tot sch stu) * 100
         sch perc pass reading = merge data[merge data["Reading Score"] >= 70].
         groupby("School").count()["Name"]
```

```
sch perc pass reading = (sch perc pass reading/tot sch stu) * 100
# Overall Passing Rate (Average of the above two) - average of those
S
over pass rate = (sch perc pass math + sch perc pass reading)/2
# Create Table - School Summary
school summary = pd.DataFrame({"School Type": sch type, "Total Student
s": tot sch stu, "Total School Budget": tot sch bud, "Per Student Budg
et": stu bud, "Average Math Score": ave math score, "Average Reading S
core": ave reading score, "% Passing Math": sch perc pass math, "% Pas
sing Reading": sch perc pass reading, "Overall Passing Rate": over pas
s rate})
school summary = school summary[["School Type", "Total Students", "Total
School Budget", "Per Student Budget", "Average Math Score", "Average Rea
ding Score", "% Passing Math", "% Passing Reading", "Overall Passing Rate
"]]
# Format columns where needed
school summary["Total School Budget"] = school summary["Total School B
udget"].map("${:,.2f}".format)
school summary["Per Student Budget"] = school summary["Per Student Bud
get"].map("${:,.2f}".format)
school summary
```

Out[12]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math
Bailey High School	District	4976	\$3,124,928.00	\$628.00	77.048432	81.033963	66.680064
Cabrera High School	Charter	1858	\$1,081,356.00	\$582.00	83.061895	83.975780	94.133477
Figueroa High School	District	2949	\$1,884,411.00	\$639.00	76.711767	81.158020	65.988471
Ford High School	District	2739	\$1,763,916.00	\$644.00	77.102592	80.746258	68.309602
Griffin High School	Charter	1468	\$917,500.00	\$625.00	83.351499	83.816757	93.392371
Hernandez							

High School	District	4635	\$3,022,020.00	\$652.00	77.289752	80.934412	66.752967
Holden High School	Charter	427	\$248,087.00	\$581.00	83.803279	83.814988	92.505855
Huang High School	District	2917	\$1,910,635.00	\$655.00	76.629414	81.182722	65.683922
Johnson High School	District	4761	\$3,094,650.00	\$650.00	77.072464	80.966394	66.057551
Pena High School	Charter	962	\$585,858.00	\$609.00	83.839917	84.044699	94.594595
Rodriguez High School	District	3999	\$2,547,363.00	\$637.00	76.842711	80.744686	66.366592
Shelton High School	Charter	1761	\$1,056,600.00	\$600.00	83.359455	83.725724	93.867121
Thomas High School	Charter	1635	\$1,043,130.00	\$638.00	83.418349	83.848930	93.272171
Wilson High School	Charter	2283	\$1,319,574.00	\$578.00	83.274201	83.989488	93.867718
Wright High School	Charter	1800	\$1,049,400.00	\$583.00	83.682222	83.955000	93.333333

Top Performing Schools (By Passing Rate)

```
In [13]: # **Top Performing Schools (By Passing Rate)**

# Resort and take 5
# Create Table - Top Performing Schools (By Passing Rate)
top_schools = school_summary.sort_values(["Overall Passing Rate"], asc ending = False).head(5)
top_schools
```

Out[13]:

	School Type		Total School Budget	Student	Average Math Score	Average Reading Score	% Passing Math	
Cabrera High School	Charter	1858	\$1,081,356.00	\$582.00	83.061895	83.975780	94.133477	9
Thomas High School	Charter	1635	\$1,043,130.00	\$638.00	83.418349	83.848930	93.272171	9
Pena High School	Charter	962	\$585,858.00	\$609.00	83.839917	84.044699	94.594595	9
Griffin High School	Charter	1468	\$917,500.00	\$625.00	83.351499	83.816757	93.392371	9
Wilson High School	Charter	2283	\$1,319,574.00	\$578.00	83.274201	83.989488	93.867718	9

Bottom Performing Schools (By Passing Rate)

In [14]: # * Create a table that highlights the bottom 5 performing schools bas
ed on Overall Passing Rate. Include all of the same metrics as above.
Re-sort and take 5

Create Table - Bottom Performing Schools (By Passing Rate)
bottom_schools = school_summary.sort_values(["Overall Passing Rate"],
 ascending = True).head(5)
bottom_schools

Out[14]:

	School Type	Total Students	Total School Budget	Per Student Budget	Average Math Score	Average Reading Score	% Passing Math
Rodriguez High School	District	3999	\$2,547,363.00	\$637.00	76.842711	80.744686	66.366592
Figueroa High School	District	2949	\$1,884,411.00	\$639.00	76.711767	81.158020	65.988471
Huang High School	District	2917	\$1,910,635.00	\$655.00	76.629414	81.182722	65.683922
Johnson High School	District	4761	\$3,094,650.00	\$650.00	77.072464	80.966394	66.057551
Ford High School	District	2739	\$1,763,916.00	\$644.00	77.102592	80.746258	68.309602

Math Scores by Grade

In [15]: # **Math Scores by Grade**

```
# Get Average values per grade for all students, grouped by school
m_nineth_score = merge_data[merge_data["Grade"] == "9th"].groupby("Sch
ool").mean()["Math_Score"]
m_tenth_score = merge_data[merge_data["Grade"] == "10th"].groupby("Sch
ool").mean()["Math_Score"]
m_eleventh_score = merge_data[merge_data["Grade"] == "11th"].groupby("
School").mean()["Math_Score"]
m_twelfth_score = merge_data[merge_data["Grade"] == "12th"].groupby("S
chool").mean()["Math_Score"]

# Create Table - Math Scores by Grade
df_ms_by_grade = pd.DataFrame({"9th":m_nineth_score,"10th":m_tenth_sco
re,"11th":m_eleventh_score,"12th":m_twelfth_score})
ms_by_grade = df_ms_by_grade[["9th","10th","11th","12th"]]
ms_by_grade
```

Out[15]:

	9th	10th	11th	12th
School				
Bailey High School	77.083676	76.996772	77.515588	76.492218
Cabrera High School	83.094697	83.154506	82.765560	83.277487
Figueroa High School	76.403037	76.539974	76.884344	77.151369
Ford High School	77.361345	77.672316	76.918058	76.179963
Griffin High School	82.044010	84.229064	83.842105	83.356164
Hernandez High School	77.438495	77.337408	77.136029	77.186567
Holden High School	83.787402	83.429825	85.000000	82.855422
Huang High School	77.027251	75.908735	76.446602	77.225641
Johnson High School	77.187857	76.691117	77.491653	76.863248
Pena High School	83.625455	83.372000	84.328125	84.121547
Rodriguez High School	76.859966	76.612500	76.395626	77.690748
Shelton High School	83.420755	82.917411	83.383495	83.778976
Thomas High School	83.590022	83.087886	83.498795	83.497041
Wilson High School	83.085578	83.724422	83.195326	83.035794
Wright High School	83.264706	84.010288	83.836782	83.644986

Reading Scores by Grade

```
In [16]:
         # **Reading Scores by Grade**
         # Get Average values per grade for all students, grouped by school
         r nineth score = merge data[merge data["Grade"] == "9th"].groupby("Sch
         ool").mean()["Reading Score"]
         r tenth score = merge data[merge data["Grade"] == "10th"].groupby("Sch
         ool").mean()["Reading Score"]
         r eleventh score = merge data[merge data["Grade"] == "11th"].groupby("
         School").mean()["Reading_Score"]
         r twelfth score = merge data[merge data["Grade"] == "12th"].groupby("S
         chool").mean()["Reading Score"]
         # Create Table - Reading Scores by Grade
         df_rs_by_grade = pd.DataFrame({"9th":r nineth score,"10th":r tenth sco
         re, "11th":r eleventh score, "12th":r twelfth score})
         rs by grade = df rs by grade[["9th","10th","11th","12th"]]
         rs by grade
```

Out[16]:

	9th	10th	11th	12th
School				
Bailey High School	81.303155	80.907183	80.945643	80.912451
Cabrera High School	83.676136	84.253219	83.788382	84.287958
Figueroa High School	81.198598	81.408912	80.640339	81.384863
Ford High School	80.632653	81.262712	80.403642	80.662338
Griffin High School	83.369193	83.706897	84.288089	84.013699
Hernandez High School	80.866860	80.660147	81.396140	80.857143
Holden High School	83.677165	83.324561	83.815534	84.698795
Huang High School	81.290284	81.512386	81.417476	80.305983
Johnson High School	81.260714	80.773431	80.616027	81.227564
Pena High School	83.807273	83.612000	84.335938	84.591160
Rodriguez High School	80.993127	80.629808	80.864811	80.376426
Shelton High School	84.122642	83.441964	84.373786	82.781671
Thomas High School	83.728850	84.254157	83.585542	83.831361
Wilson High School	83.939778	84.021452	83.764608	84.317673
Wright High School	83.833333	83.812757	84.156322	84.073171

Scores by School Spending

```
In [17]: # **Scores by School Spending**
         # Create Bins as required
         bin spend = [0,585,615,645,675]
         bin spend label = ["<585","585-615","615-645","645-675"]
         spend school summary = school summary
         # Fill bins
         spend school summary["Spending Ranges (Per Student)"] = pd.cut(stu bud
         , bin spend, labels = bin spend label)
         # Get values of average for the columns
         sp ave mathscore = spend school summary.groupby(["Spending Ranges (Per
         Student)"]).mean()['Average Math Score']
         sp ave readscore = spend school summary.groupby(["Spending Ranges (Per
         Student)"]).mean()['Average Reading Score']
         sp pass math = spend school summary.groupby(["Spending Ranges (Per St
         udent)"]).mean()['% Passing Math']
         sp pass read = spend school summary.groupby(["Spending Ranges (Per St
         udent)"]).mean()['% Passing Reading']
         sp over pass = (sp pass math + sp pass read) / 2
         # Create Table - Scores by School Spending
         spendscores = pd.DataFrame({"Average Math Score":sp ave mathscore, "Av
         erage Reading Score":sp ave readscore,
                                         "% Passing Math":sp pass math, "% Passin
         g Reading":sp pass read,
                                             "Overall Passing Rate":sp_over_pas
         s})
         scores by school spending = spendscores[["Average Math Score", "Averag
         e Reading Score",
                                         "% Passing Math", "% Passing Reading", "O
         verall Passing Rate"]]
         scores by school spending
```

Out[17]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Passing Rate
Spending Ranges (Per Student)					
<585	83.455399	83.933814	93.460096	96.610877	95.035486
585-615	83.599686	83.885211	94.230858	95.900287	95.065572
615-645	79.079225	81.891436	75.668212	86.106569	80.887391
645-675	76.997210	81.027843	66.164813	81.133951	73.649382

Scores by School Size

```
In [18]:
         # **Scores by School Size**
         # Define bins for reasonable school spending ranges on average student
         spending amounts
         # Create Bins as required
         bin size = [0,1000,2000,5000]
         bin size label = ["Small <1000", "Medium (1000-2000)", "Large (2000-5000
         )"]
         # Fill bins
         school summary["School Size"] = pd.cut(school summary["Total Students"
         ], bin size, labels = bin size label)
         # Get values of averages for columns
         sz ave mathscore = school summary.groupby(["School Size"]).mean()['Ave
         rage Math Score']
         sz ave readscore = school summary.groupby(["School Size"]).mean()['Ave
         rage Reading Score']
         sz pass math = school summary.groupby(["School Size"]).mean()['% Pass
         ing Math'
         sz pass read = school summary.groupby(["School Size"]).mean()['% Pass
         ing Reading']
         sz_over_pass = (sz_pass_math + sz_pass_read) / 2
         # Create Table - Scores by School Spending
         spendscores = pd.DataFrame({"Average Math Score":sz ave mathscore, "Av
         erage Reading Score":sz ave readscore,
                                         "% Passing Math":sz pass math, "% Passin
         g Reading":sz pass read,
                                              "Overall Passing Rate":sz_over_pas
         s})
         scores by school size = spendscores[["Average Math Score", "Average Re
         ading Score",
                                         "% Passing Math", "% Passing Reading", "O
         verall Passing Rate"]]
         scores by school size
```

Out[18]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Passing Rate
School Size					
Small <1000	83.821598	83.929843	93.550225	96.099437	94.824831
Medium (1000-2000)	83.374684	83.864438	93.599695	96.790680	95.195187
Large (2000- 5000)	77.746417	81.344493	69.963361	82.766634	76.364998

Scores by School Type

```
In [19]: # **Scores by School Type**
         # Get values of averages for columns
         st ave mathscore = school summary.groupby(["School Type"]).mean()['Ave
         rage Math Score']
         st ave readscore = school summary.groupby(["School Type"]).mean()['Ave
         rage Reading Score']
         st pass math = school summary.groupby(["School Type"]).mean()['% Pass
         ing Math'
         st pass read = school summary.groupby(["School Type"]).mean()['% Pass
         ing Reading']
         st over pass = (st pass math + st pass read) / 2
         # Create Table - Scores by School Spending
         typescores = pd.DataFrame({"Average Math Score":st ave mathscore, "Ave
         rage Reading Score":st ave readscore,
                                        "% Passing Math":st pass math, "% Passin
         g Reading":st_pass_read,
                                             "Overall Passing Rate":st over pas
         s})
         scores by school type = typescores[["Average Math Score", "Average Rea
         ding Score",
                                        "% Passing Math", "% Passing Reading", "O
         verall Passing Rate"]]
         scores by school type
```

Out[19]:

	Average Math Score	Average Reading Score	% Passing Math	% Passing Reading	Overall Passing Rate
School Type					
Charter	83.473852	83.896421	93.620830	96.586489	95.103660
District	76.956733	80.966636	66.548453	80.799062	73.673757

In [20]: # All in a day's work... give or take a few more