

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

7797816698

CO-ORDINATED SCIENCES

0654/41

Paper 4 Theory (Extended)

May/June 2021

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 (a) Table 1.1 shows some features of aerobic and anaerobic respiration.

Place ticks (✓) in the boxes to show **all** the correct features for each type of respiration.

Table 1.1

type of respiration	oxygen is a reactant	glucose is a reactant	lactic acid is a product	carbon dioxide is a product
aerobic				
anaerobic respiration in muscles				
anaerobic respiration in yeast				

		[4]
(b)	State one industrial use of anaerobic respiration in yeast.	
		[1]
(c)	Describe one disadvantage of anaerobic respiration in terms of energy release.	
		[1]
	П	Total: 61

BLANK PAGE

2 Mixtures of coloured substances can be separated by paper chromatography.

Fig. 2.1

(i)	Explain why the start line is drawn in pencil rather than in ink.					
	[1					

(ii) The result of the chromatography experiment is shown in Fig. 2.2.

Fig. 2.2

The blue spot moves 14.2 cm and the solvent front moves 15.3 cm.

Calculate the $R_{\rm f}$ value of the substance in the blue spot.

Show your working.

$$R_{\rm f}$$
 value = [2]

(b) W, X, Y and Z are mixtures of food colourings.

These mixtures of food colourings are investigated using paper chromatography.

The result of the chromatography experiment is shown in Fig. 2.3.

Fig. 2.3

	(i)	State which mixture contains an insoluble food colouring.
		[1]
	(ii)	Explain which mixture is separated into the greatest number of soluble food colourings.
		Refer to Fig. 2.3 in your answer.
		[2]
(c)	A so	cientist tests the melting point of a sample of a substance.
	The 113	substance starts melting at 96 $^{\circ}\text{C}$ but does not melt completely until the temperature is $^{\circ}\text{C}.$
	Acc	ording to a data book, the melting point of the substance is 116 °C.
	Ехр	lain, using the information given, if this sample of the substance is pure or impure.
		[2]
		[Total: 8]

Fig. 3.1 shows a circuit used by a student to investigate the resistance of a metal wire.

		Fig. 3.1	
(a)	Sug	gest why a fixed resistor has been included in the circuit.	
(b)	Wh	en the switch is closed, the voltmeter reads 1.2V and the ammeter reads 0.40A.	[1]
	(i)	Calculate the resistance of the wire.	
			[0]
	(ii)	resistance = Ω Calculate the amount of energy dissipated by the wire in 15 seconds.	[2]
	(,	State the unit of your answer.	
		energy = unit =	[3]
	(iii)	State the energy transfer happening in the wire as current passes through it.	
		from energy to energy	[1]

(c)	The wire is replaced with a second wire made of the same metal and of the same length bu
	with twice the cross-sectional area

Determine the resistance of the second wire.

! . 4	 \sim	F 4	4 7
resistance =	()	- 1.1	
16313141166 -	 20		11

(d) The student wants to calculate the cross-sectional area of the wire.

State the quantity the student needs to measure **and** suggest a suitable measuring instrument to use.

measuring instrument

(e) Fig. 3.2 shows the wire being placed in between the poles of a permanent magnet.

This causes a force to act on the wire.

Fig. 3.2

(i)	Draw an arrow on Fig. 3.2 to show the direction of the force acting on the wire.	[1]
(1)	Diaw an arrow on rig. 3.2 to show the direction of the force acting on the wife.	111

(ii) State two ways to increase the size of the force acting on the wire.

1	
0	
2	
	2

[Total: 13]

[2]

4 (a) Table 4.1 shows the vitamin D content in 100 g of different foods.

Table 4.1

type of food	vitamin D content in 100 g of food /μg
soya milk	1.3
cow milk	2.8
salmon	15.8
swordfish	19.8
tofu	4.0
mushroom	11.2

The recommended dietary allowance (RDA) of vitamin D is $15.0\,\mu g$.

Vegans do not eat any animal products and consume plant-based products such as tofu and soya milk.

(i)	Calculate the mass	s of tofu you would	need to eat to get y	our RDA of vitamin D.
-----	--------------------	---------------------	----------------------	-----------------------

		g [2]
(ii	Explain why vegans may be animal products.	more at risk of vitamin D deficiency than people who eat
	Use the information in Table 4	1.1 in your answer.
		[2]
(b) E	xplain why pregnant women are	recommended to increase their vitamin D intake.
		[21

(c)	Name one disease caused by protein deficiency in the diet.
	[1]
(d)	Describe the chemical digestion of protein in the stomach.
	[3]
(e)	Describe how chemical digestion differs from mechanical digestion.
	[1]
	[Total: 11]

- **5** An atom of chlorine has a *proton number* (atomic number) of 17 and a *nucleon number* (mass number) of 37.
 - (a) (i) Complete Table 5.1 to show the numbers of protons, neutrons and electrons in this atom of chlorine.

Table 5.1

particle	number
proton	
neutron	
electron	

[3]

		ړی
	(ii)	Chlorine is in Group VII of the Periodic Table.
		State what information this gives about the number of electrons in the outer shell of a chlorine atom.
	(iii)	Chlorine exists as isotopes.
		Explain what is meant by the term isotopes.
		[2]
(b)	Chl	orine atoms bond together to form the covalent molecule, $\mathrm{C}\mathit{l}_2$.
	Chl	orine, Cl_2 , is a gas at room temperature.
	Chl	orine atoms bond with sodium atoms to form the ionic compound sodium chloride, NaC $\it l.$
	Soc	lium chloride, NaC <i>l</i> , is a solid at room temperature.
		olain why chlorine is a gas but sodium chloride is a solid at room temperature in terms of active forces.

(c)	Chlorine reacts with sodium bromide, NaBr.
	Write the balanced symbol equation for this reaction.
	[2]
	[Total: 11]

6	Strontium-90	(⁹⁰ Sr) i	s a	radioactive	isotope
---	--------------	-----------------------	-----	-------------	---------

(a) 5th	rontium-90	decays by	≀ beta	emission	to torm	an Isotoi	pe or	vttrium	and a	เร-barticie
---------	------------	-----------	--------	----------	---------	-----------	-------	---------	-------	-------------

- (i) State the nature of a β -particle.
- (ii) Use the correct nuclide notation to complete the symbol equation for this decay process.

$$^{90}_{38}$$
Sr \rightarrow $^{.....}_{....}$ Y + $^{0}_{-1}\beta$

(b) Fig. 6.1 shows how this isotope of strontium can be used in a paper mill to determine the thickness of paper passing through a set of rollers.

Fig. 6.1

becomes	and explain thicker.						
		 	 	 	 	 	 رد _ا

(c) Table 6.1 shows how the activity of a strontium source varies over a 60-year period.

Table 6.1

age of source /years	activity of source /counts per minute
0	2000
15	1400
30	1000
45	700
60	500

(i)	Use Table 6.1 to determine the half-life of strontium-90.	
		[1]
(ii)	Suggest why this half-life makes it suitable for use in a paper mill.	
		[Total: 7]

7 (a) Fig. 7.1 is a diagram of the human eye.

Fig. 7.1

(i)	Identify the letter on Fig. 7.1 that represents the part of the eye which:
	carries impulses to the brain
	refracts light as it enters the eye
	controls how much light enters the eye.
(ii)	Describe what happens to parts A , E and F when someone changes from focusing on a distant object to focusing on a near object.
	A
	E
	F
	[3]
The	pupil reflex is a response to changes in light intensity.
(i)	Name the part of the eye that is the receptor in a pupil reflex.
(ii)	Name the part of the eye that is the effector in a pupil reflex.
	[1]

© UCLES 2021 0654/41/M/J/21

(b)

(c) The pupil reflex is an involuntary action.

Place ticks (\checkmark) next to **all** the examples of involuntary actions.

eating	
running	
sneezing	
sweating	
talking	

17
_
_

Involuntary actions are controlled by the central nervous system.	
Name both parts of the central nervous system.	
and	[1]
	Name both parts of the central nervous system.

- 8 Electrolysis is used to break down ionic compounds using electricity.
 - (a) Fig. 8.1 shows an electrolysis experiment.

Complete the labels on Fig. 8.1.

Choose your answers from the list.

anion anode cation cathode electrolyte

Fig. 8.1

[3]

(b) A student investigates the electrolysis of aqueous copper(II) sulfate using carbon electrodes. Fig. 8.2 shows her experiment.

Fig. 8.2

	G	
(i)	A gas is made at the positive electrode.	
	State the name of this gas.	
		[1]
(ii)	At the negative electrode copper ions, Cu ²⁺ , gain electrons to form copper metal, Cu	
	Construct the ionic half-equation for the formation of copper at the negative electrode) .
	Use e ⁻ to represent an electron.	
		[2]

)	ın tı	ne electrolysis of molten lead(II) bromide, bromine is formed at the positive electrode.	
	The	e ionic half-equation is shown.	
		$2Br^- \rightarrow Br_2 + 2e^-$	
	(i)	State, in terms of electrons, if this reaction is oxidation or reduction.	
		Explain your answer.	
		statement	
		explanation	
			 [1]
	(ii)	The total mass of bromine gas made in an electrolysis experiment is 20 g.	
		Calculate the volume of bromine gas made.	
		The volume of one mole of any gas is 24 dm ³ at room temperature and pressure (r.t.p	.).
		Show your working.	
		[A _r : Br, 80]	
		volume of bromine gas =dm ³	[3]
		[Total:	

9 Fig. 9.1 shows the motion of a sprinter running a race.

Fig. 9.1

(a)	Describe the motion of the sprinter during the first 0.5 seconds of the race.
<i>a</i> .	
(b)	Show that the maximum acceleration of the sprinter is 2.0 m/s ² .

[1]

(c) This acceleration is caused by a resultant force of 160 N.Calculate the mass of the sprinter.

mass = kg [2]

(d) Fig. 9.2 shows the forces acting on the sprinter at various points during the race.

The lengths of the arrows represent the magnitude of the forces.

(i) Put a tick (\checkmark) in the box which shows the horizontal forces acting on the sprinter 5.0s after the race started.

Fig. 9.2

[1]

(ii)	Use the motion of the sprinter in Fig. 9.1 to explain your answer to (d)(i).
	[1]

(e)	At t	he end of the race, the sprinter's skin is coated in a layer of sweat.
	(i)	Describe, in terms of particles and their energies, how the sweat cools the skin.
		[3]
	(ii)	Describe two differences between evaporation and boiling.
		1
		2
		[2]
		[Total: 11]

10 (a) Fig. 10.1 is a flowchart showing the process of eutrophication.

Complete the flowchart in Fig. 10.1.

Fig. 10.1

[4]

[2]

		eutrophication		

Suggest why deforestation causes an increase in eutrophication.

.....[2]

(c) List two undesirable effects of deforestation on animals living in the forest.

1

0654/41/M/J/21

© UCLES 2021

(d)	Trees make their own organic nutrients through photosynthesis.	
	State the term used to describe organisms that make their own nutrients.	
		[1]
(e)	List three substances plants need to make their own organic nutrients.	
	1	
	2	
	3	
		[3]

[Total: 12]

11 Ethene and propene are both members of the homologous series called the alkenes.

Fig. 11.1 shows the structures of ethene and propene.

Fig. 11.1

(a)	State two reasons why ethene and propene are members of the same homologous series	s.
	reason 1	
	reason 2	
		[2]
(b)	Ethene can be made by the cracking of large alkane molecules.	

i) State the conditions needed for cracking.

(ii) Ethene, C_2H_4 , can be made by the cracking of octane, C_8H_{18} .

The balanced symbol equation for the reaction is shown.

$$C_8H_{18} \rightarrow C_4H_{10} + 2C_2H_4$$

State the name of the other product made and complete Fig. 11.2 to show its structure.

Show all the covalent bonds.

name

structure

Fig. 11.2

[2]

(c) Ethene reacts with bromine, Br ₂ , in an addition rea	(C)
--	-----

Write the balanced symbol equation for this reaction.

(d) Propene forms poly(propene) in an addition polymerisation reaction.

Complete the structure of poly(propene).

[1]

(e) Nylon is a polymer made in a **condensation** polymerisation reaction.

Complete the equation to show the formation of nylon.

$$+ H2N - NH2 - C - N - N + 2H2O$$

[1]

[Total: 11]

12 A student plans to measure the speed of sound through wood.

The student places a microphone at one end of a wooden desk and knocks loudly on the other end of the desk with a hammer.

She measures the time it takes for the sound to travel through the desk to the microphone.

(a) It takes 1.5 ms for the sound to travel 6.0 m through the wooden desk.

Calculate the speed of sound in wood.

	speed = m/s	[3]
(b)	Explain, in terms of particles, why the speed of sound in wood is much greater than the speed of sound in air.	ed
		[3]
(c)	Sound is an example of a longitudinal wave.	
	State what is meant by a longitudinal wave.	
		[1]

(d) When a wave travels through a gap similar in size to its wavelength, diffraction occurs.

Complete Fig. 12.1 to show diffraction of a sound wave through a doorway.

Fig. 12.1

[2]

[Total: 9]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

	III/	2]	helium	4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
	IIA				6	ட	fluorine 19	17	Cl	chlorine 35.5	35	B	bromine 80	53	Н	iodine 127	85	Αt	astatine -			
	IN				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ро	molouium –	116	_	livermorium -
	^				7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Bi	bismuth 209			
	<u> </u>				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	S	tin 119	82	Ъ	lead 207	114	Εl	flerovium -
					2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	g	cadmium 112	80	Нg	mercury 201	112	ő	copernicium —
											29	Cn	copper 64	47	Ag	silver 108	79	Αn	gold 197	111	Rg	roentgenium -
Group											28	ïZ	nickel 59	46	Pd	palladium 106	78	₫	platinum 195	110	Ds	darmstadtium -
ğ											27	රි	cobalt 59	45	몬	rhodium 103	77	٦	iridium 192	109	¥	meitnerium -
		- ⊐	T hydrogen	1							26	Fe	iron 56	44	R	ruthenium 101	92	Os	osmium 190	108	Hs	hassium -
											25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
					_	pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
		Key	Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	Б	tantalum 181	105	Op	dubnium —	
					(0	atc	rela				22	j	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	Ŗ	rutherfordium -
											21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	99	Ba	barium 137	88	Ra	radium —
	_				ო	=	lithium 7	7	Na	sodium 23	19	¥	potassium 39	37	ВВ	rubidium 85	55	S	caesium 133	87	ъ̈́	francium -

rı Lu	lutetium 175	103	ئ	lawrencium	I
70 Yb	ytterbium 173	102	%	nobelium	I
69 Tm	thulium 169	101	Md	mendelevium	1
68 Ē	erbium 167	100	Fm	ferminm	I
67 79	holmium 165	66	Es	einsteinium	I
66 Dy	dysprosium 163	86	ŭ	califomium	_
65 Tb	terbium 159	26	番	berkelium	I
64 G d	gadolinium 157	96	CB	curium	I
e3 Eu	europium 152	98	Am	americium	I
62 Sm	samarium 150	94	Pu	plutonium	1
e1 Pm	promethium -	93	Ν d	neptunium	_
 9 N	neodymium 144	92	\supset	uranium	238
59 P	praseodymium 141	91	Ра	protactinium	231
Se Ce	cerium 140	06	Ħ	thorium	232
57 La	lanthanum 139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).