

Yes

Yes

Just like in **Part 1** of this series, we start with a leaf that represents an initial **Prediction** for every individual.

When we use **Gradient Boost for Classification**, the initial **Prediction** for every individual is the **log(odds)**.

		Favorite Color	Loves Troll 2
Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

14

No

Yes

No

No

I like to think of the **log(odds)** as the **Logistic Regression** equivalent of the average.

So let's calculate the overall log(odds) that someone Loves Troll 2.

			Loves Troll 2
Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

...and 2 people do not...

		Favorite Color	Loves Troll 2
Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

...then the **log(odds)** that someone **Loves Troll 2** is...

$$\log(\frac{4}{2}) = 0.7$$

...which we will put into our initial leaf.

$$\log(\frac{4}{2}) = 0.7$$

$$log(4/2) = 0.7$$
 So this is the **Initial Prediction**.

How do we use it for **Classification**?

Yes	12	Blue	Yes	
Yes	87	Green	Yes	
No	44	Blue	No	
Yes	19	Red	No	
No	32	Green	Yes	
No	14	Blue	Yes	

log(4/2) = 0.7

Just like with Logistic Regression,
the easiest way to use the log(odds)
for Classification is to convert it to a
Probability...

Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

...and we do that with a **Logistic Function**.

Probability of Loving =
$$\frac{e^{\log(\text{odds})}}{1 + e^{\log(\text{odds})}}$$
Troll 2

log(4/2) = 0.7

...and we get **0.7** as the **Probability of Loving Troll 2**.

NOTE: These two numbers, the **log(4/2)** and the **Probability** are the same only because I'm rounding. If I allowed **4** digits passed the decimal place...

$$\log(\frac{4}{2}) = 0.6931$$

$$\frac{e^{\log(4/2)}}{1 + e^{\log(4/2)}} = 0.6667$$

Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

推荐: THIS VIDEO HAS BEEN UPDATED SEE LINK BELOW (

log(4/2) = 0.7Probability of Loving Troll 2

Since the **Probability** of **Loving Troll 2** is greater than **0.5**, we can **Classify** everyone in the **Training Dataset** as someone who **Loves Troll 2**.

Yes	12	Blue	Yes
Yes	87	Green	Yes
No	.44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

NOTE: While 0.5 is a very common threshold for making Classification decisions based on Probability, we could have just as easily used a different value.

For more details, check out the StatQuest: ROC and AUC, Clearly Explained.

log(4/2) = 0.7

Probability of Loving Troll 2 = 0.7

		Favorite Color	Loves Troll 2
Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

Now, Classifying everyone in the Training Dataset as someone who Loves Troll 2 is pretty lame, because two of the people do not love the movie.

log(4/2) = 0.7

Probability of Loving Troll 2 = 0.7

		Favorite Color	Loves Troll 2
Yes	12	Blue	Yes
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

We can measure how bad the initial **Prediction** is by calculating **Pseudo Residuals**, the difference between the **Observed** and the **Predicted** values.

Residual = (Observed - Predicted)

Likes Popcorn	Age Favorite Color		Loves Troll 2
Yes	12	12 Blue	
Yes	87	Green	Yes
No	44	Blue	No
Yes	19	Red	No
No	32	Green	Yes
No	14	Blue	Yes

Probability of Loving Troll 2

Doesn't Loves
Love

log(4/2) = 0.7

Probability of Loving Troll 2 = 0.7

Observed value...

...we plug in 1 for the

Probability of Loving Troll 2 = 0.7

...and we save the **Residual** in a new column.

Probability of Loving Troll 2 = 0.7

Then we calculate the rest of the **Residuals**...

Likes Popcorn	Age	Favorite Color	Loves Troll 2	Residual
Yes	12	Blue	Yes	0.3
Yes	87	Green	Yes	0.3
No	44	Blue	No	
Yes	19	Red	No	
No	32	Green	Yes	
No	14	Blue	Yes	

 $\frac{\log(4/2) = 0.7}{\text{Probability of Loving Troll 2}} = 0.7$

Likes Popcorn	Age	Favorite Color	Loves Troll 2	Residual
Yes	12	Blue	Yes	0.3
Yes	87	Green	Yes	0.3
No	44	Blue	No	-0.7
Yes	19	Red	No	-0.7
No	32	Green	Yes	0.3
No	14	Blue	Yes	0.3

Hooray! We've calculated the **Residuals** for the leaf's initial **Prediction**.

Now we will build a **Tree**, using **Likes Popcorn**, **Age** and **Favorite Color**...

Likes Popcorn	Age	Favorite Color	Loves Troll 2	Residual
Yes	12	Blue	Yes	0.3
Yes	87	Green	Yes	0.3
No	44	Blue	No	-0.7
Yes	19	Red	No	-0.7
No	32	Green	Yes	0.3
No	14	Blue	Yes	0.3

...to Predict the Residuals.

Likes Popcorn	Age	Favorite Color	Loves Troll 2	Residual
Yes	12	Blue	Yes	0.3
Yes	87	Green	Yes	0.3
No	44	Blue	No	-0.7
Yes	19	Red	No	-0.7
No	32	Green	Yes	0.3
No	14	Blue	Yes	0.3

NOTE: Just like when we used
Gradient Boost for
Regression, we are limiting the
number of leaves that we will
allow in the tree.

In this simple example, we are limiting the number of leaves to **3**.

In practice people often set the maximum number of leaves to be between 8 and 32

In contrast, when we use **Gradient Boost** for **Classification**, the situation is a little more complex.

The numerator is the sum of the all of the Residuals in the leaf...

...and the denominator is the sum of the previously predicted probabilities for each Residual times 1 minus the same predicted probability.

0.3 + -0.7

Previous Probability x (1 - Previous Probability)

...for each residual.

add up...

So we plug in the **Previous Probability** for each **Residual**.

NOTE: For now, the Previous
Probabilities are the same for all of
the Residuals, but this will change
when we build the next tree.

Hooray!!! We've calculated Output Values for all three leaves in the tree!

Now we are ready to update our **Predictions** by combining the initial leaf with the new tree.

NOTE: Just like before, the new tree is scaled by a Learning Rate.

This example uses a relatively large **Learning Rate** for illustrative purposes. However, **0.1** is more common.

...and the new log(odds) Prediction = 1.8.

Now we convert the new log(odds) Prediction into a Probability...

Probability =
$$\frac{e^{1.8}}{1 + e^{1.8}} = 0.9$$

$$log(odds) Prediction = 0.7 + (0.8 \times 1.4) = 1.8$$

				The second second
Likes Popcorn	Age	Favorite Color	Loves Troll 2	Predicted Prob.
Yes	12	Blue	Yes	0.9
Yes	87	Green	Yes	
No	44	Blue	No	
Yes	19	Red	No	
No	32	Green	Yes	
No	14	Blue	Yes	

We save the new **Predicted**
Probability here.

Probability =
$$\frac{e^{1.8}}{1 + e^{1.8}} = 0.9$$

 $log(odds) Prediction = 0.7 + (0.8 \times 1.4) = 1.8$

And now, just like before, we calculate the new **Residuals**...

				Predicted Prob.	Residual
Yes	12	Blue	Yes	0.9	
Yes	87	Green	Yes	0.5	
No	44	Blue	No	0.5	
Yes	19	Red	No	0.1	
No	32	Green	Yes	0.9	
No	14	Blue	Yes	0.9	

					Residual
Yes	12	Blue	Yes	0.9	0.1
Yes	87	Green	Yes	0.5	0.5
No	44	Blue	No	0.5	-0.5
Yes	19	Red	No	0.1	-0.1
No	32	Green	Yes	0.9	0.1
No	14	Blue	Yes	0.9	0.1

BAM!

Blue	Yes	0.9	0.1
Green	Yes	0.5	0.5
Blue	No	0.5	-0.5
Red	No	0.1	-0.1
Green	Yes	0.9	0.1

...and the **Predicted Probability** that this individual will **Love Troll 2** is **0.9**.

that someone **Loves** = $0.7 + (0.8 \times 1.4) + (0.8 \times 0.6) = 2.3$ **Troll 2**:

Likes	Age	Favorite	Loves
Popcorn		Color	Troll 2
Yes	25	Green	???

...we will **Classify** this person as someone who **Loves Troll 2**.

Log(odds) Prediction

that someone **Loves** = $0.7 + (0.8 \times 1.4) + (0.8 \times 0.6) = 2.3$ **Troll 2**:

Probability =	$e^{2.3}$	= 0.9
1 Tobability =	$1 + e^{2.3}$	- 0.0

Likes	Age	Favorite	Loves
Popcorn		Color	Troll 2
Yes	25	Green	YES!!!