Единый государственный экзамен по ФИЗИКЕ

Инструкция по выполнению работы

Для выполнения экзаменационной работы по физике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 32 задания.

В заданиях 1—4, 8—10, 14, 15, 20, 25 и 26 ответом является целое число или конечная десятичная дробь. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже <u>образцу</u> в бланк ответа № 1. Единицы измерения физических величин писать не нужно.

мим _{Ответ: 7,5 см.} 37,5

Ответом к заданиям 5–7, 11, 12, 16–18, 21, 23 и 24 является последовательность цифр. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже <u>образцу</u> без пробелов, запятых и других дополнительных символов в бланк ответов \mathbb{N} 1.

Ответ: A Б 4 1 7 4 I

Ответом к заданию 13 является слово. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже образцу в бланк ответов № 1.

КИМ _{Ответ:} *вправо* 13 В П Р А В О Блан

Ответом к заданиям 19 и 22 являются два числа. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённым ниже образцам, не разделяя числа пробелом, в бланк ответов \mathbb{N} 1.

Заряд ядра Z	Массовое число ядра А
38	94

КИМ

Ответ: (1,4 ± 0,2) Н.

3894

Ответ к заданиям 27–32 включает в себя подробное описание всего хода выполнения задания. В бланке ответов № 2 укажите номер задания и запишите его полное решение.

При вычислениях разрешается использовать непрограммируемый калькулятор.

Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелиевой или капиллярной ручки.

При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

После завершения работы проверьте, что ответ на каждое задание в бланках ответов №1 и №2 записан под правильным номером.

Желаем успеха!

Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы.

Десятичные приставки

Наиме-	Обозначе-	Множитель	Наиме-	Обозначение	Множитель
нование	ние		нование		
гига	Γ	109	санти	c	10-2
мега	M	10^{6}	милли	M	10-3
кило	К	10^{3}	микро	MK	10-6
гекто	Γ	10^{2}	нано	Н	10-9
деци	Д	10-1	пико	П	10 ⁻¹²

Константы	
число π	$\pi = 3,14$
ускорение свободного падения на Земле	$g = 10 \text{ m/c}^2$
гравитационная постоянная	$G = 6,7 \cdot 10^{-11} \text{ H} \cdot \text{м}^2/\text{к}\Gamma^2$
универсальная газовая постоянная	$R = 8,31 \; \text{Дж/(моль·К)}$
постоянная Больцмана	$k = 1,38 \cdot 10^{-23} \text{Дж/K}$
постоянная Авогадро	$N_A = 6 \cdot 10^{23} \text{моль}^{-1}$
скорость света в вакууме	$c = 3 \cdot 10^8 \mathrm{m/c}$
коэффициент пропорциональности в законе Ку-	1 1 0 109 H 2/W
лона	$k = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \text{H} \cdot \text{m}^2 / \text{Kn}$
	- 0
модуль заряда электрона	$e = 1.6 \cdot 10^{-19} Kn$
(элементарный электрический заряд)	-, 100
постоянная Планка	$h = 6.6 \cdot 10^{-34} \text{Дж} \cdot c$
	о,о 10 дже

Соотношение между различными единицами	
температура	$0 \text{ K} = -273 ^{\circ}\text{C}$
атомная единица массы	1 а.е.м. = $1,66 \cdot 10^{-27}$ кг
1 атомная единица массы эквивалента	931 МэВ
1 электронвольт	1 эB = 1,6 · 10^{-19} Дж

электрона $9,1 \cdot 10^{-31} \ \kappa z \approx 5,5 \cdot 10^{-4} \ a.e.m.$ протона $1,673 \cdot 10^{-27} \ \kappa z \approx 1,007 \ a.e.m.$ нейтрона $1,675 \cdot 10^{-27} \ \kappa z \approx 1,008 \ a.e.m.$

Астрономические величины

средний радиус Земли $R_{\oplus} = 6370 \; \text{км}$ радиус Солнца $R_{\odot} = 6,96 \cdot 10^8 \; \text{м}$ температура поверхности Солнца $T = 6000 \; \text{K}$

Плотность

подсолнечного масла 900 кг/м³

воды $1000 \ \text{кг/м}^3$ алюминия $2700 \ \text{кг/м}^3$ древесины (сосна) $400 \ \text{кг/м}^3$ железа $7800 \ \text{кг/м}^3$ керосина $800 \ \text{кг/м}^3$ ртути $13600 \ \text{кг/м}^3$

Удельная теплоёмкость

воды 4,2·10³ Дж/(кг·К) алюминия 900 Дж/(кг·К) льда 2,1·10³ Дж/(кг·К) меди 380 Дж/(кг·К) железа 460 Дж/(кг·К) чугуна 800 Дж/(кг·К)

свинца 130 Дж/(кг-К)

Удельная теплота

парообразования воды $2.3 \cdot 10^6$ Дж/кг плавления свинца $2.5 \cdot 10^4$ Дж/кг плавления льда $3.3 \cdot 10^5$ Дж/кг

Нормальные условия: давление -10^5 Па, температура -0 °C

Молярная масса			
азота	28⋅ 10-3 кг/моль	гелия	4·10 ⁻³ кг/моль
аргона	40⋅ 10-3 кг/моль	кислорода	$32 \cdot 10^{-3} \ \text{кг/моль}$
водорода	$2 \cdot 10^{-3} \ \text{кг/моль}$	лития	$6 \cdot 10^{-3}$ кг/моль
воздуха	29⋅ 10-3 кг/моль	неона	20·10 ⁻³ кг/моль
воды	$18 \cdot 10^{-3} \ \text{кг/моль}$	углекислого газа	44·10 ⁻³ кг/моль

Часть 1

Ответами к заданиям 1–24 являются слово, число или последовательность цифр или чисел. Запишите ответ в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения физических величин писать не нужно.

1 Начальная скорость тележки равна 4 м/с. Тележка движется с ускорением 2 м/с², направленным противоположно начальной скорости. Определите проекцию скорости тележки через 4 с.

Ответ: м/с.

При исследовании зависимости силы трения скольжения $F_{\tau p}$ деревянного бруска по горизонтальной поверхности стола от массы m бруска получен график, представленный на рисунке. Определите коэффициент трения, используя данный график.

Ответ: _____

3 Шарик на длинной легкой нерастяжимой нити совершает колебания. Максимальная потенциальная энергия шарика в поле тяжести, если считать ее раной нулю в положении равновесия, равна 0,8 Дж. Максимальная скорость шарика в процессе колебаний равна 2 м/с. Какова масса шарика? Сопротивлением воздуха пренебречь.

Ответ: ____ кг.

На тонкий рычаг действуют силы так, как показано на рисунке. Сила $F_1=10H$; сила $F_2=2,5H$. Рычаг находится в равновесии. С какой силой рычаг давит на опору в точке O? Массой рычага пренебречь.

Ответ: _____ Н

На рисунке представлены графики зависимости давления р от глубины погружения h для двух покоящихся жидкостей: воды и легкой жидкости эфира (плотность эфира $\rho_3 = 0.72 \text{ г/см}^3$), при постоянной температуре.

Из приведенного ниже списка выберите два правильных утверждения, соответствующих данным графикам.

- 1) С глубиной погружения давление в воде возрастает быстрее.
- 2) В воде давление возрастет вдвое на глубине 20 м.
- 3) Плотность оливкового масла 0,92 г/см³, график аналогичной зависимости давления от глубины для масла окажется между зависимостью для эфира и осью абсцисс.
- 4) По мере подъема из воды давление падает до нуля.
- 5) Плотность ртути 13,59 г/см³, график аналогичной зависимости давления от глубины для ртути окажется между зависимостью для воды и осью ординат.

Ответ:		
--------	--	--

6 Шарик висит на нити. В нем застревает пуля, летящая горизонтально, в результате чего нить отклоняется на некоторый угол. Как изменятся при увеличении массы шарика следующие величины: импульс, полученный шариком в результате попадания в него пули; максимальная высота подъема шарика при отклонении нити.

Для каждой величины определите соответствующий характер изменения:

- 1) увеличивается
- 2) уменьшается
- 3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Импульс, полученный шариком в результате попадания в него пули	Максимальная высота подъема шарика при отклонении нити

Ответ:	

Тело движется вдоль оси ОХ, при этом его координата изменяется с течением времени в соответствии с формулой $x(t) = -6 + 4t - 3t^2$ (все величины выражены в СИ).

Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.

ГРАФИКИ

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- 1) Проекция перемещения S_x
- 2) Пройденный путь l
- 3) Проекция равнодейстующей сил, дйствующих на тело F_x
- 4) Модуль проекции ускорения a_x

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ: А Б

8

В одном сосуде находится аргон, а в другом – неон. Средние кинетические энергии теплового движения молекул газов одинаковы. Давление аргона в 2 раза больше давления неона. Чему равно отношение концентрации молекул аргона к концентрации молекул неона?

Ответ: ______.

	внешние силы совершили работу 2000 Дж. Какое количество теплоты было передано при этом газом окружающим телам?
	Ответ:Дж
10	Половину закрытого сосуда занимает жидкость; другую половину – её насыщенный пар. Во сколько раз изменится давление пара, если медленно увеличить объём пара над жидкостью в 2 раза, не изменяя температуры?
	Ответ:
11	Горячее вещество, первоначально находившееся в жидком состоянии, медленно охлаждали. Мощность теплоотвода постоянна. В таблице приведены результаты измерений температуры вещества с течением

При сжатии идеального одноатомного газа при постоянном давлении

Время, мин.	0	5	10	15	20	25	30	35
Температура, °С	250	242	234	232	232	232	230	216

Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведенных измерений, и укажите их номера:

- 1) Температура плавления вещества в данных условиях равна 232°C.
- 2) Через 20 мин. после начала измерений вещество находилось только в твердом состоянии.
- 3) Удельная теплоемкость вещества в жидком и твердом состояниях одинакова.
- 4) Через 30 мин. после начала измерений вещество находилось только в твердом состоянии.
- 5) Процесс кристаллизации вещества занял более 25 мин.

Ответ:		
--------	--	--

времени.

На рисунках A и Б приведены графики двух процессов: 1-2 и 3-4, в каждом из которых участвует 1 моль аргона. Графики построены в координатах p-V и V-T, где p – давление, V – объем и T – абсолютная температура газа.

Установите соответствие между графиками и утверждениями, характеризующими изображенные на графиках процессы.

УТВЕРЖДЕНИЯ

- Внутренняя энергия газа уменьшается, при этом газ отдает теплоту
- Над газом совершают работу, при этом газ отдает теплоту
- 3) Газ получает теплоту, но не совершает работы
- Газ получает теплоту и совершает работу

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

Ответ:

13	По двум тонким проводникам, параллельным друг другу, текут одинаковы токи I (см. рисунок). Как направлено создаваемое ими магнитное поле
	¹ токи I (см. рисунок). Как направлено создаваемое ими магнитное поле
	точке С?

Ответ запишите словом (словами): **вправо, влево, от наблюдателя, к наблюдателю, вниз, веерх.**

Ответ:

Два точечных положительных заряда: $q_1 = 85$ нКл и $q_2 = 140$ нКл - находятся в вакууме на расстоянии L = 2 м друг от друга. Определите величину напряженности электрического поля этих зарядов в точке A, расположенной на прямой, соединяющей заряды, на расстоянии L от первого заряда (см. рисунок).

Ответ: _____ В/м.

На шахматной доске на расстоянии трех клеток от вертикального плоского зеркала стоит ферзь. Его придвинули на одну клетку ближе к зеркалу. Каким стало расстояние между ферзем и его изображением? В ответе указать количество клеток.

Ответ: _____

Однородное электростатическое поле создано равномерно заряженной протяжённой горизонтальной пластиной. Линии напряжённости поля направлены вертикально вверх (см. рисунок).

Из приведенного ниже списка выберите два верных утверждения, соответствующих условию задачи.

- 1) Пластина имеет отрицательный заряд;
- 2) Потенциал электростатического поля в точке В ниже, чем в точке С;
- 3) Работа электростатического поля по перемещению пробного точечного отрицательного заряда из точки А в точку В равна нулю;
- 4) Если в точку А поместить пробный точечный отрицательный заряд, то на него со стороны пластины будет действовать сила, направленная вертикально вниз;
- 5) Напряженность поля в точке А меньше, чем в точке С.

Ответ:

: _____

17

Плоский воздушный конденсатор с диэлектриком между пластинами подключен к аккумулятору. Не отключая конденсатор от аккумулятора, диэлектрик удалили из конденсатора. Как изменятся при этом емкость конденсатора и напряжение на обкладках конденсатора?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличится
- 2) уменьшится
- не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Емкость конденсатора	Напряжение на обкладках конденсатора	

^	
Этвет:	

18

Пучок монохроматического света переходит из воды в воздух. Частота световой волны – ν , длина световой волны в воде - λ , показатель преломления воды относительно воздуха – n.

Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ФОРМУЛЫ

- А) скорость света в воздухе
- λ·ν
- Б) длина световой волны в воздухе
- 2) λ·n
- 3) λ·ν·n
- 4) $\frac{\lambda}{v}$

Ядро $^{237}_{93}Np$, испытав серию α- и электронных β-распадов, превратилось в ядро $^{213}_{83}Bi$. Определите число α- и β-распадов

Число β-распадов

Ответ:

A	Б

В бланк ответов N = 1 перенесите только числа, не разделяя их пробелом или другим знаком.

Какова длина волны электромагнитного излучения, в котором импульс фо-

20 какова длина волны электромагнитного излучен тонов равен $1 \cdot 10^{-27}$ кг·м/с? Ответ выразите в км.

Ответ: _____ нм.

21

На рисунке представлен фрагмент диаграммы энергетических уровней атома. Какой из четырех переходов связан с поглощением света наименьшей частоты, а какой – с излучением света наибольшей длины? Установите соответствие между процессами поглощения и излучения света и осуществляемыми переходами.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ЭНЕРГЕТИЧЕСКИЕ ПЕРЕХОДЫ

- А) поглощение света наименьшей частоты
- Б) излучение света наибольшей длины
- 1) $E_1 \rightarrow E_5$
- 2) $E_1 \rightarrow E_2$
- 3) $E_5 \rightarrow E_1$
- 4) $E_2 \rightarrow E_1$

Ответ:

A	Б

22

Определите показания амперметра (см. рисунок), если погрешность прямого измерения силы тока амперметром на пределе измерения 3A равна $\Delta I_1 = 0.15A$, а на пределе измерения 0.6A равна $\Delta I_2 = 0.03A$.

Запишите в ответ показания амперметра с учетом погрешности?

Ответ: $(\underline{} \pm \underline{})$ А

В бланк ответов N 1 перенесите только числа, не разделяя их пробелом или другим знаком.

Школьник изучает силу Архимеда, действующую на тела, полностью погруженные в жидкость. В его распоряжении имеются пять установок, состоящие из емкостей с различными жидкостями и сплошных шариков различного объема, и сделанных из разного материала (см. таблицу).

Какие две установки необходимо использовать ученику для того, чтобы на опыте обнаружить зависимость силы Архимеда от объема тела?

№ установки	Жидкость, налитая	Объём шарика	Материал, из которого
	в ёмкость		сделан шарик
1	керосин	30 см ³	сталь
2	вода	20 см ³	дерево
3	керосин	20 см ³	дерево
4	подсолнечное масло	30 см ³	сталь
5	вода	30 см ³	дерево

В ответ запишите номера выбранных установок.

Ответ:	

Отв

Рассмотрите таблицу, содержащую характеристики некоторых астероидов Солнечной системы.

Эксцентриситет орбиты определяется по формуле: $e = \sqrt{1 - \frac{b^2}{a^2}}$, где b – малая полуось орбиты, a – большая полуось орбиты, e = 0 – окружность, 0 < e < 1 - эллипс.

Название астероида	Примерный радиус астероида, км	Большая полуось орбиты, а.е.	Период обращения вокруг Солнца, земных лет	Эксцентриситет орбиты е*	Масса, кг
Веста	265	2,36	3,63	0,089	3,0 · 10 ²⁰
Эвномия	136	2,65	4,30	0,185	8,3 · 10 ¹⁸
Церера	466	2,78	4,60	0,079	8,7 · 10 ²⁰
Паллада	261	2,77	4,62	0,230	3,2 · 10 ²⁰
Юнона	123	2,68	4,36	0,256	2,8 · 10 ¹⁹
Геба	100	2,42	3,78	0,202	1,4 · 10 ¹⁹
Аквитания	54	2,79	4,53	0,238	1,1 · 10 ¹⁸

Выберите все утверждения, которые соответствуют характеристикам планет.

- Чем дальше от Солнца располагается орбита астероида, тем больше его масса.
- Астероид Геба движется по орбите Земли и представляет астероидную опасность.
- 3) Астероид Паллада вращается по более «вытянутой» орбите, чем астероид Веста.
- 4) Орбита астероида Юнона находится между орбитами Марса и Юпитера.
- Вторая космическая скорость для астероида Церера составляет более 11 км/с.

1	
1	
1	
1	

Не забудьте перенести все ответы в бланк ответов № 1 в соответствии с инструкцией по выполнению работы. Проверьте, чтобы каждый ответ был записан в строке с номером соответствующего задания.

Часть 2

Ответом к заданиям 25–26 является число. Запишите это число в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТ-ВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения физических величин писать не нужно.

25	В колебательном контуре из конденсатора и катушки индуктивностью 0,5Гн происходят свободные электромагнитные колебания с циклической частотой $\omega=1000~{\rm c}^{-1}$. Амплитуда колебаний силы тока в контуре 0,01 А. Определите амплитуду колебаний напряжения на катушке.
	Ответ: В.
26	К потолку комнаты высотой 4 м прикреплена люстра накаливания. На высоте 2 м от пола параллельно ему расположен круглый непрозрачный диск диаметром 2 м. Центр лампы и центр диска лежат на одной вертикали. Каков диаметр тени диска на полу?
	Ответ: м.

Проверьте, что каждый ответ записан в строке с номером соответствующего задания

Для записи ответов на задания 27–32 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер задания (27, 28 и т. д.), а затем решение соответствующей задачи. Ответы записывайте чётко и разборчиво.

На площадку падает зеленый свет от лазера. Лазер заменяют на другой, который генерирует красный свет. Мощность излучения, падающего на площадку, в обоих случаях одна и та же. Как меняется в результате такой замены число фотонов, падающих на площадку в единицу времени. Ответ поясните, указав какие физические закономерности Вы использовали для объяснения

Полное правильное решение каждой из задач 28–32 должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчёты с численным ответом и при необходимости рисунок, поясняющий решение.

- На какой высоте от поверхности планеты обращается искусственный спутник по круговой орбите со скоростью 5,7 км/с. Радиус планеты равен 5700 км. Ускорение свободного падения на поверхности планеты 6 м/с².
- На границе раздела двух несмешивающихся жидкостей, имеющих плотности $\rho_1 = 400 \text{ кг/м}^3$ и $\rho_2 = 800 \text{ кг/м}^3$, плавает шарик (см. рисунок). Какой должна быть плотность шарика ρ , чтобы выше границы раздела жидкостей была одна четверть его объема?

- В комнате размерами 4х3х5 м³, в которой воздух имеет температуру 20⁰ С и относительную влажность 30%, включили увлажнитель воздуха производительностью 0,2 л/ч. Сколько времени необходимо работать увлажнителю, чтобы относительная влажность воздуха в комнате повысилась до 65%? Давление насыщенного водяного пара при температуре 20⁰ С равно 2,33 кПа. Комнату считать герметичным сосудом.
- В электрической схеме, показанной рисунке, ключ К замкнут. ЭДС батарейки 24 В, сопротивление резистора 25 Ом, заряд конденсатора 2 мкКл. После размыкания ключа К, в результате разряда конденсатора, на резисторе выделяется количество теплоты 20 мкДж. Найдите внутреннее сопротивление батарейки.

Период свободных электромагнитных колебаний в идеальном колебательном контуре, состоящем из конденсатора и катушки индуктивности, равен 6,3 мкс. Амплитуда колебаний силы тока $I_m = 5$ мА. В момент времени t сила тока в катушке равна 3 мА. Найдите заряд конденсатора в этот момент.

Проверьте, чтобы каждый ответ был записан рядом с номером соответствующего задания.

О проекте «Пробный ЕГЭ каждую неделю»

Данный ким составлен командой всероссийского волонтёрского проекта «ЕГЭ 100 баллов» https://vk.com/ege100ballov и безвозмездно распространяется для любых некоммерческих образовательных целей.

Нашли ошибку в варианте?

Напишите нам, пожалуйста, и мы обязательно её исправим! Для замечаний и пожеланий: https://vk.com/topic-10175642 39951777 (также доступны другие варианты для скачивания)

Список источников:

- открытый банк заданий ЕГЭ (ФИПИ новая версия) http://os.fipi.ru/tasks/3/a
- открытый банк заданий ЕГЭ (ФИПИ)

 $\underline{http://ege.fipi.ru/os11/xmodules/qprint/index.php?proj=BA1F39653304A5B041}B656915DC36B38$

СОСТАВИТЕЛЬ ВАРИАНТА:		
ФИО:	Вахнина Светлана Васильевна	
Предмет:	физика	
Стаж:	11 лет	
Аккаунт ВК:	https://vk.com/id249117870	
Сайт и доп. информация:	https://vk.com/examcourses	

Система оценивания экзаменационной работы по физике

Задания 1-24

Задания 1—4, 8—10, 13—15, 19, 20, 22 и 23 части 1 и задания 25 и 26 части 2 оцениваются 1 баллом. Эти задания считаются выполненными верно, если правильно указаны требуемое число, два числа или слово.

Задания 5–7, 11, 12, 16–18 и 21 части 1 оцениваются 2 баллами, если верно указаны оба элемента ответа; 1 баллом, если допущена ошибка в указании одного из элементов ответа, и 0 баллов, если допущено две ошибки. Если указано более двух элементов (в том числе, возможно, и правильные), то ставится 0 баллов. Задание 24 оценивается 2 баллами, если указаны все верные элементы ответа; 1 баллом, если допущена одна ошибка (в том числе указана одна лишняя цифра наряду со всеми верными элементами или не записан один элемент ответа); 0 баллов, если допущено две ошибки. В заданиях 5, 11, 16 и 24 порядок записи цифр в ответе может быть различным.

№ зада- ния	Ответ	№ за- дания	Ответ
1	-4	14	270
2	0,32	15	4
3	0,4	16	34 43
4	7,5	17	23
5	15 51	18	32
6	12	19	62
7	23	20	660
8	2	21	24
9	5000	22	1,400,15
10	1	23	25 52
11	14 41	24	34 43
12	14	25	5
13	от наблюдателя	26	4

Критерии оценивания выполнения заданий с развёрнутым ответом

Решения заданий 27–32 части 2 (с развёрнутым ответом) оцениваются экспертной комиссией. На основе критериев, представленных в приведённых ниже таблицах, за выполнение каждого задания в зависимости от полноты и правильности данного экзаменуемым ответа выставляется от 0 до 2 баллов за задание 27 и от 0 до 3 баллов за задания 28 и 29–32.

На площадку падает красный свет от лазера. Лазер заменяют на другой, который генерирует зеленый свет. Мощность излучения, падающего на площадку, в обоих случаях одна и та же. Как меняется в результате такой замены число фотонов, падающих на площадку в единицу времени. Ответ поясните, указав какие физические закономерности Вы использовали для объяснения.

Возможное решение:

Свет, падающий на предмет, можно представить как поток фотонов с энергией $E_\phi=h\nu$. Частота зеленого света больше частоты красного света. Следовательно, энергия фотонов зеленого света больше, чем красного. Мощность светового излучения, падающего на площадку $P=\frac{E_\phi N}{t}, \ \mathrm{rge}\,N-\mathrm{число}\, \mathrm{фотонов}, \ \mathrm{падающиx}\ \mathrm{на}\ \mathrm{площадкy}\ \mathrm{за}\ \mathrm{время}\ \mathrm{t}.\ \mathrm{По}$

условию задачи $P_{\kappa}=P_{_3}$, тогда $\frac{h\nu_{_{\kappa}}N_{_{\kappa}}}{t}=\frac{h\nu_{_3}N_{_3}}{t}$, получим $\nu_{_{\kappa}}N_{_{\kappa}}=\nu_{_3}N_{_3}$,

$$\frac{v_{\scriptscriptstyle K}}{v_{\scriptscriptstyle 3}} = \frac{N_{\scriptscriptstyle 3}}{N_{\scriptscriptstyle K}}$$
, учитывая, что $v_{\scriptscriptstyle K} < v_{\scriptscriptstyle 3}$, получим $N_{\scriptscriptstyle K} > N_{\scriptscriptstyle 3}$.

Следовательно, число фотонов уменьшается.

Ответ: число фотонов уменьшается.

Критерии оценивания выполнения задания	Баллы
Приведено полное правильное решение, включающее правильный ответ (в данном случае: п. 1) и исчерпывающие верные рассуждения с прямым указанием наблюдаемых яв-	3
лений и законов (в данном случае: формула энергии фотонов, формула мощности светового излучения).	

Дан правильный ответ, и приведено объяснение, но в реше-
нии имеются один или несколько из следующих недостат-
KOB.

В объяснении не указано или не используется одно из физических явлений, свойств, определений или один из законов (формул), необходимых для полного верного объяснения. (Утверждение, лежащее в основе объяснения, не подкреплено соответствующим законом, свойством, явлением, определением и т.п.)

И (ИЛИ)

Указаны все необходимые для объяснения явления и законы, закономерности, но в них содержится один логический недочёт.

И (ИЛИ)

В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения и не зачёркнуты.

И (ИЛИ)

В решении имеется неточность в указании на одно из физических явлений, свойств, определений, законов (формул), необходимых для полного верного объяснения

Представлено решение, соответствующее **одному** из следующих случаев.

Дан правильный ответ на вопрос задания, и приведено объяснение, но в нём не указаны два явления или физических закона, необходимых для полного верного объяснения.

ИЛИ

Указаны все необходимые для объяснения явления и законы, закономерности, но имеющиеся рассуждения, направленные на получение ответа на вопрос задания, не доведены до конца.

ИЛИ

Указаны все необходимые для объяснения явления и законы, закономерности, но имеющиеся рассуждения, <u>приводящие к ответу</u>, содержат ошибки.

ИЛИ

Указаны не все необходимые для объяснения явления и законы, закономерности, но имеются верные рассуждения, направленные на решение задачи

Все случаи решения, которые не соответствуют вышеука-	0
занным критериям выставления оценок в 1, 2, 3 балла	
Максимальный балл	3

На какой высоте от поверхности планеты обращается искусственный спутник по круговой орбите со скоростью 5,7 км/с. Радиус планеты равен 5700 км. Ускорение свободного падения на поверхности планеты 6 м/с 2 .

Возможное решение:

Согласно закону всемирного тяготения для спутника, вращающегося на высоте h от поверхности планеты $F = G \frac{Mm}{(R+h)^2} = ma_u = \frac{mv^2}{R+h}$. T.e.

 $v^2 = G \frac{M}{R+h}$. Ускорение свободного падения на поверхности планеты

 $g=Grac{M}{R^2}.$ Найдем отношение квадрата скорости на орбите к ускоре-

нию свободного падения на поверхности планеты $\frac{v^2}{g} = \frac{GM}{R+h} : \frac{GM}{R^2} = \frac{R^2}{R+h}.$ Выразим высоту $h = \frac{gR^2}{v^2} - R$. Подставим

численные значения:

$$h = \frac{6 \cdot (5, 7 \cdot 10^6)^2}{(5, 7 \cdot 10^3)^2} - 5, 7 \cdot 10^6 = (6 - 5, 7) \cdot 10^6 \,\mathrm{m} = 0, 3 \cdot 10^6 \,\mathrm{m},$$

h = 300 км.

Ответ: $h = 300 \kappa M$.

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие эле-	
менты:	
I) записаны положения теории и физические законы, законо-	
мерности, применение которых необходимо для решения за-	2
дачи выбранным способом (в данном случае: закон всемирного	
тяготения, формула для центростремительного ускорения,	
для ускорения свободного падения на поверхности планеты);	

п) проведены неооходимые математические преооразования и	
расчёты, приводящие к правильному числовому ответу (допус-	
кается решение «по частям» с промежуточными вычислени-	
ями);	
III) представлен правильный ответ с указанием единиц изме-	
рения искомой величины	
Представлены записи, соответствующие <u>одному</u> из следующих	
случаев. Правильно записаны все необходимые положения тео-	
рии, физические законы, закономерности, и проведены необхо-	
димые преобразования. Но допущена ошибка в ответе или в ма-	
тематических преобразованиях или вычислениях.	1
ИЛИ	1
Представлены только положения и формулы, выражающие фи-	
зические законы, применение которых необходимо и доста-	
точно для решения данной задачи, без каких-либо преобразова-	
ний с их использованием, направленных на решение задачи	
Все случаи решения, которые не соответствуют вышеуказан-	0
ным критериям выставления оценок в 1 или 2 балла	0
Максимальный балл	2

П) проведены необходимые математические преобразования и

На границе раздела двух несмешивающихся жидкостей, имеющих плотности $\rho_1 = 400 \text{ кг/м}^3$ и $\rho_2 = 800 \text{кг/м}^3$, плавает шарик (см. рисунок). Какой должна быть плотность шарика р, чтобы выше границы раздела жидкостей была одна четверть его объема?

Возможное решение:

Шарик и жидкости неподвижны в ИСО, связанной с Землей. Условие равновесия, согласно второму закону Ньютона, примет вид: $m\vec{g}+\vec{F}_{a1}+\vec{F}_{a2}=0$, где $\vec{F}_{a1},\vec{F}_{a2}$ силы Архимеда, действующие на объемы тела $V_{\scriptscriptstyle 1}, V_{\scriptscriptstyle 2}$ выше и ниже границы раздела жидкостей, соответственно. Так как объем тела $V = V_1 + V_2$, то для проекций можем записать

$ ho Vg = ho_1 V_1 g + ho_2 V_2 g$, или $ ho V = ho_1 V_1 + ho_2 V_2$. Так как $V_1 = rac{1}{4} V$, а
$V_2 = \frac{3}{4}V$, то $\rho V = \frac{1}{4}\rho_1 V + \frac{3}{4}\rho_2 V$. Тогда плотность шарика
$\rho = \frac{1}{4}\rho_1 + \frac{3}{4}\rho_2$. Подставим численные значения
$\rho = \frac{400}{4} + \frac{3 \cdot 800}{4} = 700 \frac{\kappa z}{M^3}.$

Ответ: 700 кг/м^3 .

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие эле-	
менты:	
I) Записаны положения теории и физические законы, законо-	
мерности, применение которых необходимо для решения за-	
дачи выбранным способом (в данном случае: второй закон	
Ньютона, сила Архимеда).	
II) сделан правильный рисунок с указанием сил, действую-	
щих на шайбу, указано направление силы трения, действую-	
щей на доску;	
III) описаны все вновь вводимые в решении буквенные обо-	
значения физических величин (за исключением обозначений	3
констант, указанных в варианте КИМ, обозначений величин,	
используемых в условии задачи, и стандартных обозначений	
величин, используемых при написании физических зако-	
нов);	
IV) проведены необходимые математические преобразова-	
ния и расчёты, приводящие к правильному числовому ответу	
(допускается решение «по частям» с промежуточными вы-	
числениями);	
IV) представлен правильный ответ с указанием единиц изме-	
рения искомой величины	
Правильно записаны все необходимые положения теории,	
физические законы, закономерности, и проведены необхо-	
димые преобразования. Но имеются один или несколько из	
следующих недостатков.	2
Записи, соответствующие пунктам II и III, представлены не	
в полном объёме или отсутствуют.	
И (ИЛИ)	

В решении имеются лишние записи, не входящие в решение,	
которые не отделены от решения и не зачёркнуты.	
И (ИЛИ)	
В необходимых математических преобразованиях или вы-	
числениях допущены ошибки, и (или) в математических пре-	
образованиях/ вычислениях пропущены логически важные	
шаги.	
И (ИЛИ)	
Отсутствует пункт V, или в нём допущена ошибка	
Представлены записи, соответствующие одному из следую-	
щих случаев.	
Представлены только положения и формулы, выражающие	
физические законы, применение которых необходимо для	
решения данной задачи, без каких-либо преобразований с их	
использованием, направленных на решение задачи.	
ИЛИ	
В решении отсутствует ОДНА из исходных формул, необхо-	
димая для решения данной задачи (или утверждение, лежа-	1
щее в основе решения), но присутствуют логически верные	1
преобразования с имеющимися формулами, направленные	
на решение задачи.	
или	
В ОДНОЙ из исходных формул, необходимых для решения	
данной задачи (или в утверждении, лежащем в основе реше-	
ния), допущена ошибка, но присутствуют логически верные	
преобразования с имеющимися формулами, направленные	
на решение задачи	
Все случаи решения, которые не соответствуют вышеука-	0
занным критериям выставления оценок в 1, 2, 3 балла	_
Максимальный балл	3

В комнате размерами 4x3x5 м³, в которой воздух имеет температуру 20^{0} С и относительную влажность 30%, включили увлажнитель воздуха производительностью 0,2 л/ч. Сколько времени необходимо работать увлажнителю, чтобы относительная влажность воздуха в комнате повысилась до 65%? Давление насыщенного водяного пара при температуре 20^{0} С равно 2,33 кПа. Комнату считать герметичным сосудом.

Возможное решение:

Относительная влажность определяется парциальным давлением водяного пара и давлением насыщенного пара при этой же температуре

$$\varphi = \frac{p}{p_{_{\!\mathit{HaC}}}}$$
. За время работы увлажнителя с производительностью *I* ис-

паряется масса воды $m = \rho It$. Тогда влажность в комнате станет

$$arphi = rac{p_1 + \Delta p}{p_{_{\it HaC}}} = rac{p_1}{p_{_{\it HaC}}} + rac{\Delta p}{p_{_{\it HaC}}} = arphi_0 + rac{\Delta p}{p_{_{\it HaC}}}$$
. Для водяного пара в комнате

можем записать уравнение Менделеева-Клапейрона (так как пар явля-

ется разреженным газом) $pV = \frac{m}{M}RT$. Откуда получим

$$\Delta p = rac{\Delta mRT}{MV} = rac{
ho ItRT}{MV}$$
. Тогда $arphi = arphi_0 + rac{
ho ItRT}{MV p_{vac}}, \;\; arphi - arphi_0 = rac{
ho ItRT}{MV p_{vac}},$

$$t = (\varphi - \varphi_0) \cdot \frac{MVp_{\text{\tiny Hac}}}{\rho IRT}$$
. Подставим численные значения

$$t = (0,65-0,3) \cdot \frac{0,018 \cdot 2330 \cdot 4 \cdot 5 \cdot 3}{1000 \cdot 0,2 \cdot 10^{-3} \cdot 8.31 \cdot 293} \approx 1,84.$$

Ответ: t ≈ 1,8 ч.

Критерии оценивания выполнения задания	Балли
Приведено полное решение, включающее следующие эле-	
менты:	
I) записаны положения теории и физические законы, законо-	
мерности, применение которых необходимо для решения за-	
дачи выбранным способом (в данном случае формулы для опре-	
деления относительной влажности, массы испаряемой воды,	
уравнение Менделеева-Клапейрона).	
II) описаны все вновь вводимые в решении буквенные обозна-	3
чения физических величин (за исключением обозначений кон-	3
стант, указанных в варианте КИМ, обозначений, используе-	
мых в условии задачи, и стандартных обозначений величин, ис-	
пользуемых при написании физических законов);	
III) проведены необходимые математические преобразования и	
расчёты, приводящие к правильному числовому ответу (допус-	
кается решение «по частям» с промежуточными вычислени-	
ями);	

Максимальный балл

IV) представлен правильный ответ с указанием единиц измерения искомой величины Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования. Но имеются один или несколько из следующих недостатков. Записи, соответствующие пункту II, представлены не в пол-ном объёме или отсутствуют. И (ИЛИ) В решении имеются лишние записи, не входящие в решение, которые не отделены от решения и не зачёркнуты. И (ИЛИ) В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/ вычислениях пропущены логически важные шаги. И (ИЛИ) Отсутствует пункт IV, или в нём допущена ошибка Представлены записи, соответствующие одному из следующих случаев. Представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи. ИЛИ В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. ИЛИ В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи Все случаи решения, которые не соответствуют вышеуказан-0

В электрической схеме, показанной рисунке, ключ К замкнут. ЭДС батарейки 24 В, сопротивление резистора 25 Ом, заряд конденсатора 2 мкКл. После размыкания ключа К, в результате разряда конденсатора, на резисторе выделяется количество теплоты 20 мкДж. Найдите внутреннее сопротивление батарейки.

Возможное решение:

Согласно закону Ома для полной цепи: $I = \frac{E}{r+R}$, напряжение на конденсаторе равно падению напряжения на резисторе, тогда, согласно закону Ома для участка цепи $U = IR = \frac{\mathsf{E} R}{r+R}$. Количество теплоты, выделяющееся на резисторе после размыкания ключа: $Q = W_c = \frac{CU^2}{2} = \frac{qU}{2}$.

Тогда
$$U = \frac{2Q}{q}$$
.

Следовательно, $\frac{\mathsf{E} R}{r+R} = \frac{2Q}{q}$, $r+R = \frac{\mathsf{E} Rq}{2Q}$, откуда получим

$$r = \frac{\mathsf{E} R q}{2Q} - R = R \left(\frac{\mathsf{E} q}{2Q} - 1 \right)$$
. Тогда $r = 25 \cdot \left(\frac{24 \cdot 2 \cdot 10^{-6}}{2 \cdot 20 \cdot 10^{-6}} - 1 \right) = 5 \, O$ м.

Ответ: r = 50м.

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие эле-	
менты:	2
I) записаны положения теории и физические законы, законо-	3
мерности, применение которых необходимо для решения за-	

ным критериям выставления оценок в 1, 2, 3 балла

_		
	дачи выбранным способом (в данном случае: формула для определения энергии конденсатора, закон Ома для полной цепи и для	
	участка цепи);	
	II) описаны все вновь вводимые в решении буквенные обозна-	
	чения физических величин (за исключением обозначений кон-	
	стант, указанных в варианте КИМ, обозначений, используе-	
	мых в условии задачи, и стандартных обозначений величин, ис-	
	пользуемых при написании физических законов);	
	III) проведены необходимые математические преобразования и	
	расчёты, приводящие к правильному числовому ответу (допус-	
	кается решение «по частям» с промежуточными вычислени-	
	ями);	
	IV) представлен правильный ответ с указанием единиц измере-	
	ния искомой величины	
ŀ	Правильно записаны все необходимые положения теории, фи-	
	зические законы, закономерности, и проведены необходимые	
	преобразования. Но имеются один или несколько из следую-	
	щих недостатков.	
	Записи, соответствующие пункту II, представлены не в полном	
	объёме или отсутствуют.	
	И (ИЛИ)	2
	В решении имеются лишние записи, не входящие в решение,	2
	которые не отделены от решения и не зачёркнуты.	
	И (ИЛИ)	
	В необходимых математических преобразованиях или вычис-	
	лениях допущены ошибки, и (или) в математических преобра-	
	зованиях/ вычислениях пропущены логически важные шаги.	
	И (ИЛИ)	
	Отсутствует пункт IV, или в нём допущена ошибка	
	Представлены записи, соответствующие одному из следующих	
	случаев.	
	Представлены только положения и формулы, выражающие	
	физические законы, применение которых необходимо и доста-	
	точно для решения данной задачи, без каких-либо преобразо-	1
	ваний с их использованием, направленных на решение задачи.	
	ИЛИ	
	В решении отсутствует ОДНА из исходных формул, необходи-	
I	мая для решения данной задачи (или утверждение, лежащее в	

основе решения), но присутствуют логически верные преобра-	
зования с имеющимися формулами, направленные на решение	
задачи.	
ИЛИ	
В ОДНОЙ из исходных формул, необходимых для решения	
данной задачи (или в утверждении, лежащем в основе реше-	
ния), допущена ошибка, но присутствуют логически верные	
преобразования с имеющимися формулами, направленные на	
решение задачи.	
Все случаи решения, которые не соответствуют вышеуказан-	0
ным критериям выставления оценок в 1, 2, 3 балла	U
Максимальный балл	3
мол свобольну электромагнитину колебаний в илеальном коле	батепь-

Период свободных электромагнитных колебаний в идеальном колебательном контуре, состоящем из конденсатора и катушки индуктивности, равен 6,3 мкс. Амплитуда колебаний силы тока $I_m = 5 \, MA$. В момент времени t сила тока в катушке равна 3 мА. Найдите заряд конденсатора в этот момент.

Возможное решение:

1. Запишем закон сохранения энергии в колебательном контуре:

$$\frac{LI_{max}^2}{2} = \frac{q^2}{2C} + \frac{LI^2}{2}$$

$$q^2 = (LI_{max}^2 - LI^2)C = LC(I_{max}^2 - I^2)$$

$$q = \sqrt{LC(I_{max}^2 - I^2)}$$

2. Период колебаний определяется формулой Томсона: $T=2\pi\sqrt{LC},$ откуда получим $\sqrt{LC}=\frac{T}{2\pi}$

3.
$$q = \frac{T}{2\pi} \sqrt{I_{max}^2 - I^2} = \frac{6.3 \cdot 10^{-6}}{2 \cdot 3.14} \cdot \sqrt{25 \cdot 10^{-6} - 9 \cdot 10^{-6}}$$

$$q \approx 4 \cdot 10^{-9} \, \mathrm{K}$$
л

Ответ: $q \approx 4 \cdot 10^{-9} \, \text{Кл}$

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3

I) записаны положения теории и физические законы, законо-	
мерности, применение которых необходимо для решения за-	
дачи выбранным способом (в данном случае: закон сохранения	
энергии в колебательном контуре, формула Томсона);	
II) описаны все вновь вводимые в решении буквенные обозна-	
чения физических величин (за исключением обозначений кон-	
стант, указанных в варианте КИМ, обозначений, используе-	
мых в условии задачи, и стандартных обозначений величин, ис-	
пользуемых при написании физических законов);	
III) проведены необходимые математические преобразования и	
расчёты, приводящие к правильному числовому ответу (допус-	
кается решение «по частям» с промежуточными вычислени-	
ями);	
IV) представлен правильный ответ с указанием единиц измере-	
ния искомой величины	
Правильно записаны все необходимые положения теории, фи-	
зические законы, закономерности, и проведены необходимые	
преобразования. Но имеются один или несколько из следую-	
щих недостатков.	
Записи, соответствующие пункту II, представлены не в полном	
объёме или отсутствуют.	
И (ИЛИ)	2
В решении имеются лишние записи, не входящие в решение,	2
которые не отделены от решения и не зачёркнуты.	
И (ИЛИ)	
В необходимых математических преобразованиях или вычис-	
лениях допущены ошибки, и (или) в математических преобра-	
зованиях/ вычислениях пропущены логически важные шаги.	
И (ИЛИ)	
Отсутствует пункт IV, или в нём допущена ошибка	
Представлены записи, соответствующие одному из следующих	
случаев.	
Представлены только положения и формулы, выражающие	
физические законы, применение которых необходимо и доста-	1
точно для решения данной задачи, без каких-либо преобразо-	
	l
ваний с их использованием, направленных на решение задачи. ИЛИ	

В решении отсутствует ОДНА из исходных формул, необходи-	
мая для решения данной задачи (или утверждение, лежащее в	
основе решения), но присутствуют логически верные преобра-	
зования с имеющимися формулами, направленные на решение	
задачи.	
ИЛИ	
В ОДНОЙ из исходных формул, необходимых для решения	
данной задачи (или в утверждении, лежащем в основе реше-	
ния), допущена ошибка, но присутствуют логически верные	
преобразования с имеющимися формулами, направленные на	
решение задачи.	
Все случаи решения, которые не соответствуют вышеуказан-	0
ным критериям выставления оценок в 1, 2, 3 балла	
Максимальный балл	3

В соответствии с Порядком проведения государственной итоговой аттестации по образовательным программам среднего общего образования (приказ Минпросвещения России и Рособрнадзора от 07.11.2018 № 190/1512, зарегистрирован Минюстом России 10.12.2018 № 52952)

«82. По результатам первой и второй проверок эксперты независимо друг от друга выставляют баллы за каждый ответ на задания экзаменационной работы $E\Gamma \ni c$ развернутым ответом.

В случае существенного расхождения в баллах, выставленных двумя экспертами, назначается третья проверка. Существенное расхождение в баллах определено в критериях оценивания по соответствующему учебному предмету.

Эксперту, осуществляющему третью проверку, предоставляется информация о баллах, выставленных экспертами, ранее проверявшими экзаменационную работу».

Если расхождение составляет 2 или более балла за выполнение любого из заданий 25–32, то третий эксперт проверяет только те ответы на задания, которые вызвали столь существенное расхождение.

