04_Linear_Regression

RANSAC: RANdom SAmpling Consensus

Robust regression fit of model to data set S which contains outliers

MSE(Mean Square Error)

Given dataset: $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$, x with only one attribute.

Linear regression is to learn a model $f(x_i) = \omega x_i + b$ making $f(x_i) \approx y_i$

Minimum sum of squared residuals **(RSS)** is to minize total Euclidean Distances between all samples to the line. i.e.

$$argmin_{\omega,b} \sum_{i=1}^{n} (\omega x_i + b - y_i)^2$$

• Ridge regression

Remove unimportant variables (setting the coefficients to zero)

Introduce a small amount of bias to avoid overfitting, lower the variance and provide better long term prediction.

$$argmin_{\omega,b} \sum_{i=1}^{n} (\omega x_i + b - y_i)^2 + \lambda \sum_{i} \omega_i^2$$

$$argmin (RSS + \lambda slope^2)$$

 $\lambda \sum_{i} \omega_{i}^{2}$: shrinkage penalty. small when ω_{i} are close to zero.

 λ determines how severe the penalty is. Utilize Cross-Validation to determine λ . As λ increases, the standardized coefficients shrinks

towards zero.

• LASSO

(Least Absolute Shrinkage and Selection Operator)

$$\begin{aligned} & argmin_{\omega,b} \sum_{i=1}^{n} (\omega x_i + b - y_i)^2 + \lambda \sum_{i} |\omega_i| \\ & argmin\left(|RSS + \lambda| |slope| \right) \\ & Another\ expression: argminRSS, subject\ to\ \sum_{i} |slope| < s \end{aligned}$$

With s increasing from o, variance \uparrow , bias \downarrow , training RSS \downarrow test RSS \downarrow initially, but will \uparrow because of overfitting.

Distinguish RSS of Training samples and RSS of test samples.

References

Ridge Regression https://www.youtube.com/watch?v=Q81RR3yKn30
LASSO https://www.youtube.com/watch?v=NGfovoTMlcs