CURRENT TOPICS IN COMPUTER SCIENCE

Business Intelligence Systems and Analytics DATA WAREHOUSE DESIGN

Trong Nhan Phan, PhD

OUTLINE

- Dimensional data modeling
- Slowly changing dimensions
- Data warehouse and tools
- Data warehouse design lab
- Summary
- References

DATA MODELING

DWH ARCHITECTURE

INTEGRATED DATA

- How to place data in data warehouses
- From the operational environment to data warehouse → data integration
 - Same data, different name
 - Different data, same name
 - Incosistent encoding (e.g., 0/1, m/f, male/female, cm, inch, bal, balance, curbal, balcurr)

- A unified view of data
 - Consistency
 - Trust
 - Well-organized abstraction of data
 - Performance (data consolidation was done)
- E.g, date + interval, is_delete='0', delivery experience time by 1st drop-off

TRANSACTIONS VS. ANALYTICS

_id	Mã số sinh viên	Họ tên	Ngày tháng năm sinh	Email	Lớp
6225750748c598abc027bcbb	50501712	Nguyễn Văn A	02-01-86	50501712@hcmut.edu.vn	MT05KH01
6225750748c598abc027bcbc	50503491	Phan Trọng B	05-08-87	50503491@hcmut.edu.vn	MT05KH01
6225750748c598abc027bcbd	50502211	Trần Văn C	04-04-85	50502211@hcmut.edu.vn	MT05KH02

_id	classID	startdate
633fa3ade4411c0cc0774a5e	MT05KH01	01/01/2005
633fa3c8e4411c0cc0774a71	MT05KH02	01/02/2005

```
"_id": ObjectId("62346e38d24cfe35b916477e"),
      "SSN": "123456",
      "Name": "Nguyen Van A",
      "Department": {
           "Dnumber": NumberInt("1"),
          "Dname": "Research",
          "MgrSSN": "456789"
 9
      },
      "hobbies": [
10
          "football",
11
          "swimming",
12
          "chess"
13
14
15 }
```

DISCUSSION

NORMALIZATION VS. DENORMALIZATION

FOR INSTANCE

AgencyID	AgencyName	ProductID	ProductName	ProductPrice	Quantity	Date
1	А	101	Beauty Soap	7	120	01/01/2022
1	Α	102	Tooth Brush	5	100	01/01/2022
2	В	103	Tooth Paste	4	80	01/02/2022
3	С	103	Tooth Paste	4	110	01/02/2022

StudentID	StudentName
1001	NVA
1002	NVB

StudentID	Course
1001	Database Systems
1001	E-commerce
1002	E-commerce

- Operational vs. analytical modeling
 - ER modeling vs. Dimensional modeling

Figure 15. The Cube: A Metaphor for a Dimensional Model

https://www.empiredatasystems.com/data-warehouse-concept.html

- Operational vs. analytical modeling
 - ER modeling vs. Dimensional modeling
 - Drill down vs. Roll up

https://www.empiredatasystems.com/data-warehouse-concept.html

Figure 16. Example of Drill Down and Roll Up

- Operational vs. analytical modeling
 - ER modeling vs. Dimensional modeling
 - Slice & Dice

https://www.empiredatasystems.com/data-warehouse-concept.html

Figure 17. Example of Slice and Dice

- Operational vs. analytical modeling
 - ER modeling vs. Dimensional modeling
- Dimensional modeling is widely accepted
 - Deliver data that's understandable to the business users.
 - Deliver fast query performance.

DIMENSIONAL MODELING

- Dimensional models implemented in relational database management systems are referred to as star schemas.
- Dimensional models implemented in multidimensional database environments are referred to as online analytical processing (OLAP) cubes.

Figure 1-1: Star schema versus OLAP cube.

DISCUSSION

MULTIDIMENSIONAL DATABASES

TWO DIMENSIONS

Item	Store Location	Quantity
Paper, A4	Chennai	40
Chocolate, Munch	Delhi	5
Paper, A3	Delhi	89
Chocolate, 5Star	Chennai	100

Y-axix
Paper
Chocolate

100
5
Chennai
Delhi

x-axis

https://www.educba.com/multidimensional-database/

THREE DIMENSIONS

Item	Store Location	Customer	Quantity
Paper, A4	Chennai	Public	40
Chocolate, Munch	Delhi	Private	5
Paper, A3	Delhi	Public	89
Chocolate, 5Star	Chennai	Private	100

Chennai

Delhi

https://www.educba.com/multidimensional-database/

FOUR DIMENSIONS

https://www.educba.com/multidimensional-database/

DISCUSSION

DATA WAREHOUSE DESIGN APPROACH

Top-down (Bill Inmon) Bottom-up (Ralph Kimball)

DIMENSIONAL MODELING

- Star model
- Snowflake model
- Variants such as constellation model, multistar model

DIMENSIONAL MODELING

FACT TABLE

- The fact table in a dimensional model stores the performance measurements.
- Composite key and referential integrity
- The most useful facts are numeric and additive.
 - Additive vs. semi-additive vs. non-additive

Retail Sales Facts Date Key (FK) Product Key (FK) Store Key (FK) Promotion Key (FK) Customer Key (FK) Clerk Key (FK) Transaction # Sales Dollars Sales Units

[6]

DIMENSION TABLE

- The dimension tables contain the textual context associated with a business process measurement event.
- Dimension tables often represent hierarchical relationships.

Product Key	Product Description	Brand Name	Category Name
1	PowerAll 20 oz	PowerClean	All Purpose Cleaner
2	PowerAll 32 oz	PowerClean	All Purpose Cleaner
3	PowerAll 48 oz	PowerClean	All Purpose Cleaner
4	PowerAll 64 oz	PowerClean	All Purpose Cleaner
5	ZipAll 20 oz	Zippy	All Purpose Cleaner
6	ZipAll 32 oz	Zippy	All Purpose Cleaner
7	ZipAll 48 oz	Zippy	All Purpose Cleaner
8	Shiny 20 oz	Clean Fast	Glass Cleaner
9	Shiny 32 oz	Clean Fast	Glass Cleaner
10	ZipGlass 20 oz	Zippy	Glass Cleaner
11	ZipGlass 32 oz	Zippy	Glass Cleaner

Product Dimension							
Product Key (PK)							
SKU Number (Natural Key)							
Product Description							
Brand Name							
Category Name							
Department Name							
Package Type							
Package Size							
Abrasive Indicator							
Weight							
Weight Unit of Measure							
Storage Type							
Shelf Life Type							
Shelf Width							
Shelf Height							
Shelf Depth							

A SIMPLE REPORT

Figure 1-6: Dimensional attributes and facts form a simple report.

THE QUERY BEHIND

SFLECT store.district_name, product.brand, sum(sales_facts.sales_dollars) AS "Sales Dollars" FROM store. product, date. sales facts WHFRF date.month_name="June" AND date.year=2013 AND store_key = sales_facts.store_key AND product_product_key = sales_facts.product_key AND date.date_key = sales_facts.date_key GROUP BY store.district_name, product.brand [6]

DIMENSIONAL DESIGN PROCESS

for bottom up approach in building a database

- Select the business process.
- 2. Declare the grain.
- 3. Identify the dimensions.
- 4. Identify the facts.

Collaborative Dimensional Modeling

THE MATRIX

- The matrix plan
 - Vertical: first-level data marts
 - Horizontal: dimensions

Business Process / Event		Time	Customer	Service	Lac.	Call Svc Provid	Par Paris	Long Party	International Provide	"ial Organizati	Employee	Location	- wipment Tyr	Supplier	A Shipped
Customer Billing	X	X	X	X	X			X			X				X
Service Orders	X	X	X		X			X	X	X	X	X			X
Trouble Reports	X	X	X		X	X		X	X	X	X	X	X	X	X
Yellow Page Ads	X	X		X		X			X	X	X				X
Customer Inquiries	Х	Х	X	X	X	Х		X	X	X	Х				X
Promotions & Communication	х	X	X	X	X	X		X	X	X	X	X	X	X	X
Billing Call Detail	X	X	X	X	X	X	X	X	X		X	X	X	X	X
Network Call Detail	X	Х	Х	Х	X	Х	Х	Х	X		Х	X	X	X	X
Customer Inventory	X	Х	Х	Х	X			Х	X		Х	X	X	X	X
Network Inventory	Х		Х						X	χ	Х	X	X	X	
Real Estate	Х								X	Х	X	X			
Labor & Payroll	х								Х	Х	Х				
Computer Charges	х	X	Х		X			X	X	X	Х	X	X	X	
Purchase Orders	х								Х	X	Х	X	X	X	
Supplier Deliveries	х								X	Х	Х	X	X	X	

https://www.kimballgroup.com/1999/12/the-matrix/

CASE STUDY - RETAIL SALES

- Select a business process
 - Customer purchase in POS

which products are selling in which stores on which days under what promotional conditions in which transactions

Figure 3-2: Sample cash register receipt.

CASE STUDY - RETAIL SALES

- Declare the grain
 - Sales for
 - A given product
 - within a shopping cart
 - into a single line item

Allstar Grocery 123 Loon Street Green Prairie, MN 55555 (952) 555-1212 Store: 0022 Cashier: 00245409/Alan 0030503347 Baked Well Multigrain Muffins 2.50 2120201195 Diet Cola 12-pack 4.99 Saved \$.50 off \$5.49 0070806048 Sparkly Toothpaste 1.99 Coupon \$.30 off \$2.29 2840201912 SoySoy Milk Quart 3.19 TOTAL 12.67 AMOUNT TENDERED CASH 12.67 ITEM COUNT: Transaction: 649 4/15/2013 10:56 AM Thank you for shopping at Allstar 0064900220415201300245409

Figure 3-2: Sample cash register receipt.

CASE STUDY - RETAIL SALES

Identify the dimensions

- By date
- By store
- By promotion
- By cashier
- By payment method
- □ Etc.

Allstar Grocery 123 Loon Street Green Prairie, MN 55555 (952) 555-1212 Store: 0022 Cashier: 00245409/Alan 0030503347 Baked Well Multigrain Muffins 2.50 2120201195 Diet Cola 12-pack 4.99 Saved \$.50 off \$5.49 0070806048 Sparkly Toothpaste 1.99 Coupon \$.30 off \$2.29 2840201912 SoySoy Milk Quart 3.19 TOTAL 12.67 AMOUNT TENDERED CASH 12.67 ITEM COUNT: Transaction: 649 4/15/2013 10:56 AM Thank you for shopping at Allstar 0064900220415201300245409

Figure 3-2: Sample cash register receipt.

CASE STUDY – RETAIL SALES

Identify the facts

[6]

CASE STUDY – RETAIL SALES

Detail the dimensions

Figure 3-12: Querying the retail sales schema.

[6]

SAMPLE OLTP DATABASE

https://akela.mendelu.cz/~jprich/vyuka/db2/AdventureWorks2008_db_diagram.pdf;

SAMPLE DATA WAREHOUSE

https://moodle.usth.edu.vn/pluqinfile.php/5907/mod resource/content/1/AdventureWorksDW2008.pdf

DATA WAREHOUSE AND SLOWLY CHANGING DIMENSIONS

CONCEPT

- A slowly changing dimension (SCD) is a dimension that is able to handle data attributes which change over time (i.e., history preservation).
- For example, a customer dimension may hold attributes such as name, address, and phone number.
 - Over time, a customer's details may change (e.g., addresses, phone number).

- Type 0: Retain original
- Type 1: Overwrite
- Type 2: Add new row
- Type 3: Add new attribute
- Type 4: Add mini-dimension
- Type 5: Add mini-dimension and Type 1 outrigger
- Type 6: Add Type 1 attributes to Type 2 dimension
- Type 7: Dual Type 1 and Type 2 dimensions

SCENARIO

Incoming data

Existing data

customer_key	phone_number
01	123
02	345
03	999
04	567
05	789

customer_key	phone_number
01	123
02	345
03	456

- No update and history
- Applying to attributes never change (e.g., Full Name, DOB, the date)

Date	Year	Month	Day
2023-09-15	2023	September	Friday
2023-09-16	2023	September	Saturday
2023-09-17	2023	September	Sunday

- Old values are overwritten with new values
- Update is allowed but not history

customer_key	phone_number
01	123
02	345
03	456

customer_key	phone_number
01	123
02	345
03	999
04	567
05	789

- Adding a new record
- Creating multiple records with duration (e.g., ValidFrom, ValidTo)
- Update is allowed and history is preserved
- Commong columns needed
 - A surrogate key
 - ValidFrom
 - ValidTo
 - isActive

surrogate_key	customer_key	phone_number	is_active	valid_from	valid_to
1	01	123	1	2020-01-01	9999-12-31
2	02	345	1	2020-03-01	9999-12-31
3	03	456	1	2020-08-01	9999-12-31

surrogate_key	customer_key	phone_number	is_active	valid_from	valid_to
1	01	123	1	2020-01-01	9999-12-31
2	02	345	1	2020-03-01	9999-12-31
3	03	456	0	2020-08-01	2021-09-01
4	03	999	1	2021-09-01	9999-12-31
5	04	567	1	2021-09-01	9999-12-31
6	05	789	1	2021-09-01	9999-12-31

- Adding a new field
- Track changes using separate columns (e.g., CurrentValue, PreviousValue)
- Update is allowed and history is preserved with limitation

customer_key	current_phone_number	previous_phone_number
01	123	NULL
02	345	NULL
03	456	NULL

customer_key	current_phone_number	previous_phone_number
01	123	NULL
02	345	NULL
03	999	456
04	567	NULL
05	789	NULL

- Adding a mini-dimension
- Dealing with browsing performance and change tracking challenges when dimension grows rapidly due to the frequently changing dimension attributes
- The idea is to break off frequently changing attributes into a separate dimension, referred to as a minidimension
- Mini-dimension does not store the historical attributes, but the fact table preserved the history of dimension attribute assignment
- Multiple mini-dimensions may be applied

Customer Dimension

Customer Key (PK)

Customer ID (NK)

Customer Name

Customer Address

Customer City-State

Customer State

Customer ZIP-Postal Code

Customer Date of Birth

Age Band

Purchase Frequency Score

Income Level

is_active

valid_from

valid_to

Fact Table

Date Key (FK)

Customer Key (FK)

Demographics Key (FK)

More FKs...

Facts...

[6]

Customer Dimension

Customer Key (PK)

Customer ID (NK)

Customer Name

Customer Address

Customer City-State

Customer State

Customer ZIP-Postal Code

Customer Date of Birth

Fact Table

Date Key (FK)

Customer Key (FK)

Demographics Key (FK)

More FKs...

Facts...

Demographics Dimension

Demographics Key (PK)

Age Band

Purchase Frequency Score

Income Level

Demographics		Purchase Frequency	
Key	Age Band	Score	Income Level
1	21-25	Low	<\$30,000
2	21-25	Medium	<\$30,000
3	21-25	High	<\$30,000
4	21-25	Low	\$30,000-39,999
5	21-25	Medium	\$30,000-39,999
6	21-25	High	\$30,000-39,999
142	26-30	Low	<\$30,000
143	26-30	Medium	<\$30,000
144	26-30	High	<\$30,000

[6]

- The combination of SCD Type 4 and Type 1
- Querying the dimension itself at any one time to find out the value of those attributes, without having to go via the Fact.

Fact Table View of Demographics Dimension **Customer Dimension** Date Key (FK) Customer Key (PK) Customer Key (FK) **Demographics Dimension Current Demographics Dimension** Demographics Key (FK) Current Demographics Key (PK) Customer ID (NK) Demographics Key (PK) **Customer Name** More FKs... Current Age Band Age Band Current Purchase Frequency Score Facts Purchase Frequency Score Current Demographics Key (FK) Current Income Level Income Level

Logical representation to the BI tools:

[6]

- The combination of SCD Type 2, Type 3 and Type 1
 - It's a type 2 row with a type 3 column that's overwritten as a type 1
- The current attributes are updated on all prior type 2 rows

Original row in Product dimension:

			Historic	Current	Row	Row	Current
Product		Product (Department	Department Q	Effective	Expiration	Row
Key	SKU (NK)	Description	Name	Name	Date	Date	Indicator
12345	ABC922-Z	IntelliKidz	Education	Education	2012-01-01	9999-12-31	Current

Rows in Product dimension following first department reassignment:

			Historic	Current	Ro	ow	Row	Current
Product		Product	Department	Department	<u>k</u> f	fective	Expiration	Row
Key	SKU (NK)	Description	Name	Name	D	ite	Date	Indicator
12345	ABC922-Z	IntelliKidz	Education	Strategy	2	12-01-01	2012-12-31	Expired
25984	ABC922-Z	IntelliKidz	Strategy	Strategy	70	13-01-01	9999-12-31	Current

Rows in Product dimension following second department reassignment:

Product			Historic Department	Current Department			Current Row
Key	SKU (NK)	Description	Name /	Name	Date	Date	Indicator
12345	ABC922-Z	IntelliKidz	Education	Critical Thinking	2012-01-01	2012-12-31	Expired
25984	ABC922-Z	IntelliKidz	Strategy	Critical Thinking	2013-01-01	2013-02-03	Expired
31726	ABC922-Z	IntelliKidz	Critical Thinking	Critical Thinking	2013-02-04	9999-12-31	Current

- Dual Type 1 and Type 2 Dimensions
- This approach delivers the same functionality as type 6, but requires less ETL effort and queries based on current attribute values would be filtering on a smaller dimension table than previously described with type 6

Product Dimension

Product Key (PK)

Durable Product Key

Product Description

Department Name

•••

Row Effective Date
Row Expiration Date

Current Row Indicator

Fact Table

Date Key (FK) Product Key (FK) More FKs...

Facts

View of Product Dimension

Current Product Dimension

Product Key (PK)
Durable Product Key
Current Product Description
Current Department Name

Rows in Product dimension:

Product Key	SKU (NK)	Durable Product Key	Product Description	Department Name	 Row Effective Date	Row Expiration Date	Current Row Indicator
12345	ABC922-Z	12345	IntelliKidz	Education	 2012-01-01	2013-01-31	Expired
25984	ABC922-Z	12345	IntelliKidz	Strategy	 2013-02-01	2013-06-30	Expired
31726	ABC922-Z	12345	IntelliKidz	Critical Thinking	 2013-07-01	9999-12-31	Current

Rows in Product dimension's current view:

Product Key	SKU (NK)	Durable Product Key		Current Department Name	
12345	ABC922-Z	12345	IntelliKidz	Critical Thinking	
25984	ABC922-Z	12345	IntelliKidz	Critical Thinking	
31726	ABC922-Z	12345	IntelliKidz	Critical Thinking	

[6]

SCD SUMMARIZATION

SCD Type	Dimension Table Action	Impact on Fact Analysis		
Type 0	No change to attribute value.	Facts associated with attribute's original value.		
Type 1	Overwrite attribute value.	Facts associated with attribute's current value.		
Type 2	Add new dimension row for profile with new attribute value.	Facts associated with attribute value in effect when fact occured.		
Type 3	Add new column to preserve attribute's current and prior values.	Facts associated with both current and prior attribute alternative values.		
Type 4	Add mini-dimension table containing rapidly changing attributes.	Facts associated with rapidly changing attributes in effect when fact occured.		
Type 5	Add type 4 mini-dimension, along with overwritten type 1 mini-dimension key in base dimension.	Facts associated with rapidly changing attributes in effect when fact occurred, plus current rapidly changing attribute values.		
Type 6	Add type 1 overwritten attributes to type 2 dimension row, and overwrite all prior dimension rows.	Facts associated with attribute value in effect when fact occurred, plus current values.		
Type 7	Add type 2 dimension row with new attribute value, plus view limited to current rows and/or attribute values.	Facts associated with attribute value in effect when fact occurred, plus current values.		

DATA WAREHOUSE AND TOOLS

POPULAR ETL TOOLS

- SSIS
- OpenTalend
- Xplenty
- Informatica
- IBM Infosphere

OLAP TYPES

- Relational OLAP
- Multidimensional OLAP
- Hybrid OLAP

DISCUSSION

DATA WAREHOUSE DESIGN LAB

INTERNET SALES (1/2)

INTERNET SALES (2/2)

```
SELECT st.Name ,p.Name ,ps.Name ,sum(od.LineTotal)
  FROM Sales.SalesOrderDetail od
  JOIN Production.Product p ON od.ProductID = p.ProductID
  JOIN sales.SalesOrderHeader oh on od.SalesOrderID =
oh.SalesOrderID
  JOIN sales.SalesTerritory st on oh.TerritoryID =
st.TerritoryID
  JOIN production. Product Subcategory ps on
p.ProductSubcategoryID = ps.ProductSubcategoryID
  --where st.Name = 'Canada'
  group by st.Name ,p.Name ,ps.Name
  order by st.Name ,p.Name ,ps.Name
```

SUMMARY

- Dimensional data modeling
- Slowly changing dimensions
- Data warehouse and tools
- Data warehouse design lab

QUESTIONS AND ANSWERS

 $Picture\ from: http://philadelphiasculpturegym.blogspot.com/2013/09/save-date-free-talk-and-q-on-affordable.html$

REFERENCES

- 1. Tobias Zwingmann, "Al-Powered Business Intelligence," Kindle Edition, O'reilly Press, 2022
- 2. Jiawei Han, Micheline Kamber, "Data Mining: Concepts and Techniques," Third Edition, Morgan Kaufmann Publishers, 2012.
- David L. Olson, Dursun Delen, "Advanced Data Mining Techniques," Springer-Verlag, 2008.
- 4. Jeen Su Lim, John Heinrichs, "Digital Business Intelligence Management with Big Data Analytics," Kindle Edition, O'reilly Press, 2021.
- 5. William H. Inmon, "Building the Data Warehouse," Fourth Edition, Wiley Publishing, Inc., 2005.
- 6. R. Kimball, M. Ross, "The Data Warehouse ToolKit," 3rd Edition, Wiley Publishing, Inc., 2013.
- 7. Turban, E., Aronson, J.E., "Decision Support Systems and Intelligent Systems" -7th Edition, Prentice-Hall, 2005.
- 8. Ramesh Sharda, Dursun Delen, Efraim Turban, "Analytics, Data Science, & Artificial Intelligence: Systems for Decision Support," 7th Edition, Pearson Education, Inc., 2020.