Logical Database Design

Dr. John Artz

Overview

- Relational Table Design is Based on Functional Dependency
- 1st NF: All Data Items Must Be Atomic Facts
- 2nd NF: Full Functional Dependencies
- 3rd NF: No Transitive Dependencies
- Normalization Leads to Smaller Tables
- Joins Allow Us to Put Them Back Together Again

Three Level Database Design How Do We Store What Kinds of Things How Do We Map Those Things Into Logical Tables? Do We Have or Need It On a Computer? (Beyond the Scope Data About? of Our Interest) Conceptual Logical **Physical** Design Design Design Categories **Tables** Indexes Next Week's Today's Focus Focus

Recall: What Do You Mean By Course? Course Section Description Day Time How Many Courses ISTM6202 Database 4-6 Are Offered? ISTM6202 ISTM6202 11 12 Database Database 6-8 6-8 The Answer Could ISTM6203 10 Telecom 6-8 Be 4 or 7 Depending On What You Mean M R ISTM6203 Telecom ISTM6204 10 Proj. Mgmt 8-10 By "Course" ISTM6207 10 IRM Is There Some Way To Catch This?

First and Foremost: A Database is a Model

Otherwise, It Is Just Storage

Storage Isn't a Bad Thing

Web Applications Documents Images Videos Big Data

All Need Storage

But, If Your Goal is Information, Storage Alone Isn't Enough

Second, It Must Be Designed Correctly The second correctly to the second cor

Database Design Prevents Junk

This, too, Should be Designed To Provide What You Need

Storage vs. Information Databases

Storage Databases Provide

Provide

Designed Databases

Storage

Information

Storage Databases

These Are Referred to as NoSQL Databases

Storage Database Applications Web Applications

An Analogy for Big Data Gold Mining Produces Gold Dust The Challenge is Turning Gold Dust into Jewelry The Same is True With Big Data

Actually, It's a Spectrum Utility Junk Information Lousy ROI Investment Good Information Good ROI

This Raises a Question

How Do You "Design" a Database?

The Answer is Normalization

- There Are Rules to Follow Called Normalization
- However, the Rules are Not Enough Without a Deeper Understanding
- So, We Will Sneak Up on It By Providing an Understanding of Foundation Concepts:
 - What is Data?
 - What is an Entity?

The World is Made Up of Things

Activities

Products

We Call These Things Entities

- An entity is something that exists as itself, as a subject or as an object, actually or potentially, concretely or abstractly, physically or not. It need not be of material existence. In particular, abstractions and legal fictions are usually regarded as entities. – Wikipedia
- OK, Let's Parse This

Parsing Entity Definition

- An Entity is a "Thing"
- It Exists As Itself (Day vs. Night, War vs. Peace)
- Subject (Acted Upon) or Object (Actor)
- Actually (Now) or Potentially (In the Future)
- Concrete (e.g. Person) or Abstract (e.g. Teenager)
- Physical (e.g. Product) or Not (e.g. Service)

Thing vs Entity

- Every Entity is a "Thing"
- But, Not Every "Thing" is an Entity

Examples of Entities

Day

Soup

Store

Promo Sale

These Are All Entities, In Case You Get Confused As We Tease Out Some Subtleties

Mgr

What Are Some Non Entities

- Air, Water, Outer Space, The Universe
- Love, Justice, Kindness, Well Being
- Evolution, Philosophy, Literature
- Ambition, Motivation, Revenge
- Good, Bad, Right, Wrong, Eternity
- Gravity, Dark Matter, Time, Space

Entities vs. Non Entities

- Some Non Entities Can Become Entities By Redefining Them More Rigorously
- Some Entities Can Become Non Entities Due to Fuzzy Definitions or Sloppy Conversational Usage
- Is Your "Friend" an Entity
- I Was Talking to My "Friend" the Other Day....

Non Entity - Not Unique

These Are Entities. They are Uniquely Identifiable

These Are Non Entities Because They Are Not Uniquely Identifiable

Non Entity - Not Distinguishable

The Night Sky is Not an Entity Although It Is a Thing

Cells Could Be Entities Or the Stars Could Be As Well

Poorly Defined Entity Leads to Poor Quality Information

Entities Have Facts About Them

Name Birth Date Height Weight Hair Color Eye Colr Cell Phone Email Addr

What Are Facts?

 Facts Are Verifiable Pieces of Data About an Entity that Can Be Used in Identification, Elaboration, or Summary Regarding the Entity

Fact vs. Opinions

Facts Name Birth Date Height Weight Hair Color Opinions Cute Smart Smells Nice Friendly Too Loud

What is Data?

- Data Is a Set of Values of Qualitative or Quantitative Variables
- Data is Information or Knowledge Represented or Coded in Some Form Suitable for Better Usage or Processing
- A Data Item is a Single Atomic Piece of Data
- <u>Data Items Are Facts About Enti</u>ties

What is Not Data?

- Images
- Documents
- Spreadsheets
- Newspaper Stories
- Gossip
- Online Reviews

© 2018 Dr. John M. Artz

13

What Is a Database?

- A Database Is An Organized Collection Of Data
 - Wikipedia
- Notes
 - Organization Implies Purpose
 - Collection Implies Containment
 - Data Implies Discreet Pieces of Information

What Is a Relational Database?

- A relational database is a digital database whose organization is based on the relational model of data, as proposed by E.F. Codd in 1970. This model organizes data into one or more tables (or "relations") of rows and columns, with a unique key for each row.
 - Wikipedia

Relational vs. Not Relational

Relational

Not Relational

<Soup>
<Id>1/d>
<Type>Chicken Noodle</Type>
<Vendor>Progresso</Vendor>
<Mode>Canned</Mode>
<Vendor>Campbells</Vendor>
<Mode>Canned</Mode>
<Vendor>Lipton</Vendor>
<Mode>Chied</Mode>
</Soup>

Relational Rules

- One Kind of Entity Per Table (Entity Integrity)
- Entities Must Be Uniquely Identifiable
- Facts Must Be Atomic

Entity Integrity

- In the Relational Model We Refer to this as Entity
- This is the Single Most Important Principle in Relational Database Design
- Notice the Slick Linguistic Slight of Hand With "One Kind of Entity"

Uniquely Identifiable Entities

Atomic Values

People

© 2018 Dr. John M. Artz

16

A Few Intuitive Observations

- Table Name Must Describe a Homogenous Group of Entities
- Rows Must Be Instances of Those Entities
- Instances Must Have Unique Identifiers
- All Instances Must Have the Same Attributes
- Attributes Must Be Single Valued Facts

Functional Dependency

- Relational Database Design is Based on a Relationship Between Data Items (Facts) Called Functional Dependency
- Intuitively, Y is Functionally Dependent on X, If a Given Value of X Determines a Unique Value for Y
- Notationally:
 - X → Y (read X determines Y)

Understanding Functional Dependency

- If I Give You a Name, Can You Give Me a Unique Cell Phone Number?
- If I Give You a Cell Phone Number, Can You Give Me a Unique Name?
- If I Give You an Email Address Can You Give Me a Unique Name

18

Functional Dependency Exercise

- What Does a GWID Determine?
- What Determines a GWID?
- What Does a City Name Determine?
- What Determines a City Name?

Intuitive Table Design

Intuitively, A Relational Table has a Determinant Which We Call the Primary Key, Followed By the Facts it Determines

MultiAttribute Dependency

- If X → Y, X may be a Set of Data Items
- For Example, This Class is Determined Uniquely By: Year, Semester, Course, Section
- 2016, Fall, ISTM6200,10 → Duques 351, 28, Artz

Subset Determinants

■ 2016, Fall, ISTM6200,10 → Duques 351, 28, Artz

Python ISTM Dept MS IST Prog On Campus
Credits Grad Level

Subset Determinants Should Not Be in the Same Table

Full Functional Dependency

- An Attribute Y may be Determined by a Set of Attributes A,B,C (ABC → Y)
- If X is a Set of Attributes Such That X → Y and there is no Subset Z of X so that Z → Y Then Y is Fully Functionally Dependent on X

Full FD Example

- 2016, Fall, ISTM6200,10 → Python, 28
- A Functional Dependency Exists:
 - 2016, Fall, ISTM6200,10 → Python
- But, It is Not a Full Functional Dependency As:
 - ISTM6200 → Python
- Course Name Is Determined By a Subset

© 2018 Dr. John M. Artz

19

Transitive Determinants

Not Be in the Same Table

■ 2016, Fall, ISTM6200,10 → Duques 351, 28, Artz

ISTM Dept

Capacity

Email

Dept Chair

Subset Determinants Should

Transitive Dependency

■ Let X, Y, and Z be Attributes such that

$$X \rightarrow Y$$
 and

$$Y \rightarrow Z$$

 Then a Transitive Dependency Exists Between X and Z such that

$$X \rightarrow Z$$

Normalization

- Normalization Helps Us Achieve Atomicity
- 1st Addresses Attribute Atomicity
- 2nd and 3rd Normal Forms Addresses Entity Kind Atomicity

Higher Normal Forms

- 4th Normal Form Addresses Multivalued Dependencies
- 5th Normal Form Addresses Lossless Joins
- Boyce-Codd Normal Form Defines Normalization in Terms of Alternative Keys
- These Are Beyond the Scope of this Introduction

All Fields Must Be Atomic Chicken Noodle Pea Minestrone 132458664 No No Repeating Groups Room No Composite Fields

Non Atomic Key Problem

Date	Leap Year	Day of Week	Season	Weekend
Apr 06 2016	Υ	Weds	Spring	N
May 8 2017	N	Mon	Spring	N
July 15 2017	N	Sat	Summer	Υ

Non Atomic Value Problem

CRN	Description	Course
13311	Database	ISTM6202
15166	Python	ISTM6290

What Department is Responsible For the Python Course? How Many Courses Does That Department Offer?

Structured Numbers

	Work Order Charges						
Account	Date	Charger	Amount	Code			
195-2436-023	02/06/2015	Jones, Fred	\$394	2A7			
↑				↑			
Account is	a Structu	ıred	Code C	Consists			
Number Co	onsisting	Of a	Catego	ry, Level			
Project Id,	Task Id a	nd	Importance and a				
Work Orde	r Numbe	r	Labor L	_evel			

Why Is This a Problem?

Repeating Groups

Account Charge												
Account	1	2	3	4	5	6	7	8	9	10	11	12
195-2436-023	23	17	19	26	26	24	33	22	19	17	22	25

This Table Maintains the Account Charges for the Past Twelve Months

Why Is This a Problem?

Non Text Attributes

Employees						
Employee Number	Name	Picture Id				
000000001	Gates, Bill					

This Table Has a Non Text Attribute

Why Is This a Problem?

Violations of First Normal Form

- All Violations of 1NF Must Be Removed in Order for a Table to Be in 1NF
- And a Table Must Be in1NF Before Proceeding to Higher Normal Forms

2nd Normal Form

 All Non Key Attributes Must Be Dependent on the Whole Key

Soup Sales								
Promo	Store	Soup	Store	Day Id	Soup	Sales		
ld	ld	ld	ld		Type			
8	5	3	4	17	Split Pea	432.25		
\								
Soup Type is a Fact								
			Abou	t The	Soup			
Not the Sale								

2nd Normal Form Solution

Soup Sales						
Promo	Store	Soup	Store	Day Id	Sales	
ld	ld	ld	ld			
8	5	3	4	17	432.25	

Soups				
Soup	Soup			
ld	Type			
3	Split Pea			

We Decompose the Larger Table into Smaller Atomic Tables

3rd Normal Form

• No Transitive Dependencies

Manager Grade and Years Are Facts About The Manager, Not About the Store

3rd Normal Form Solution

Normalization

- The Process of Logically Designing Tables in a Relational Database is Called Normalization
- We Will Get to That in Week 12
- For Now, We Can Simply Say That Normalization Tends to Break Larger Tables into Smaller Ones

An Un-normalized Table Day of Sale Info Store Info Promo Info Store Info Info Info Info Info Info Store Info Info Info Store Info Soup Info Raw Data Usually Contains Information About a Variety of Things

The Problem With Normalizing | Store | Location | State | Elevation | Mgrid |

Joining Tables

- Joining Tables Allows Us To Denormalize Tables on the Fly By Matching Foreign Keys With The Corresponding Primary Keys In Other Tables
- In Order To Do This We Must Specify The Tables Involved and the Columns With Matching Values

Without Joins

Select SoupId, Sales from Sales Where Sales > 1999.50;

We Get →

Soup Id	Sales
10	1999.53
11	1999.73
15	1999 96

But, Which Soups Are They?

The Soup Name is In the Soups Table

With a Join

Select Type, Sales from Sales, Soups Where Soups.SoupId = Sales.SoupId And Sales > 1999.50;

←This Is The Join Criteria

Now We Get →

Туре	Sales
Split Pea	1999.53
Clam Chowder	1999.73
Minnestrone	1999.96

Multiple Table Joins

If We Want to Turn All of These Key Values Into Recognizable Values, We Will Have to Join Multiple Tables

 $\hat{\mathbf{U}}$ $\hat{\mathbf{U}}$ $\hat{\mathbf{U}}$ $\hat{\mathbf{U}}$

ĮШ	Sales						
	TrxId •	DoY •	Storell •	Soupic -	Promole •	Sales -	i
		1	. 1	. 1	1	405.18	
	2	1	1	2	1	453.3	
	3	1	1	3	1	868.81	
	4	1	1	- 4	1	425.61	
	5	1	1	5	1	267.48	
-							

Multiple Table Example

Select DoW, Medium, Location, MgrName, Type, Sales from Days, Promotions, Stores, Managers, Soups, Sales Where Days.DoY = Sales.DoY
And Promotions.Promold = Sales.Promold
And Stores.StoreId = Sales.StoreId
And Managers.MgrId = Stores.MgrId
And Soups.SoupId = Sales.SoupId
And Sales > 1999.50;

Ta Da!!

DoW	Medium	Location	MgrName	Туре	Sales
Fri	Newsppr	Gaithersburg	Costenably	Split Pea	1999.53
Fri	Radio	Frederick	Gershman, L.	Clam Chowder	1999.73
Tues	Instore	Potomac	Williams, K.	Minnestrone	1999.96

Renaming Tables

Select DoW, Medium, Location, MgrName, Type, Sales from Days D, Promotions P, Stores St, Managers M, Soups So, Sales Sa
Where D.DoY = Sa.DoY
And P.Promold = Sa.Promold
And St.Storeld = Sa.Storeld
And M.Mgrld = St.Mgrld
And So.Soupld = Sa.Soupld
And Sales > 1999.50;

Multi-Table Selection Criteria

Select DoW, Type, Sales from Days, Promotions, Soups, Sales Where Days.DoY = Sales.DoY And Promotions.Promold = Sales.Promold And Soups.SoupId = Sales.SoupId And Soups.Type = "Chicken Noodle" And Days.Weather = "Clear" And Promotions.Medium = "Radio" And Sales > 1400;

Joining = Denormalizing Join Join

Where Do the Tables Come From

- We Have Been Assuming That We Have Tables to Normalize
 - What If We Don't Have Tables
 - Where Do We Start
- Answer: We Define Categories and Map Them Into Tables

Summary

- Relational Table Design is Based on Functional Dependency
- 1st NF: All Data Items Must Be Atomic Facts
- 2nd NF: Full Functional Dependencies
- 3rd NF: No Transitive Dependencies
- Normalization Leads to Smaller Tables
- Joins Allow Us to Put Them Back Together Again