

Homework/Programming Assignment #2

Homework/midterm Due: 03/26/2020- 5:00PM

Name/EID:

Email:

Signature (required)

I/We have followed the rules in completing this Assignment.

Name/EID:

Email:

Signature (required)

I/We have followed the rules in completing this Assignment.

Question	Points	Total
HA 1	25	
HA 2	25	
HA 3	25	
HA 4	25	
PA	100	
PA. k (Bonus)	15	
PA. m (Bonus)	30	
Presentation* (Bonus)	20	

Instruction:

- 1. Remember that this is a graded assignment. It is the equivalent of a <u>midterm</u> take-home exam.
- 2. * You should present the results of the PA in the class and receive extra bonus depending on the quality of your presentation!
- 3. **For PA questions**, you need to write a report showing how you derived your equations, describes your approach, test functions, and discusses the results. You should show your test results for each function.
- 3. You are to work alone or in teams of two and are not to discuss the problems with anyone other than the TAs or the instructor.
- 4. It is open book, notes, and web. But you should cite any references you consult.
- 5. Unless I say otherwise in class, it is due before the start of class on the due date mentioned in the P/H Assignment.
- 6. **Sign and append** this score sheet as the first sheet of your assignment.
- 7. Remember to submit your assignment in Canvas.

→ Homework Assignment (HA)

- 1. **Exercise 4.8** (pg.161) in *Modern Robotics: Mechanics, Planning, and Control* (Lynch et al.) [1].
- 2. Exercise 4.11 (pg.162) in *Modern Robotics: Mechanics, Planning, and Control* (Lynch et al.) [1].
- 3. Exercise 5.12 (pg.208) in *Modern Robotics: Mechanics, Planning, and Control* (Lynch et al.) [1].
- 4. **Exercise 5.13** (pg.209) in *Modern Robotics: Mechanics, Planning, and Control* (Lynch et al.) [1].

Programming Assignment (PA)

Fig. 1 shows the <u>Franka Emika Panda</u> 7-DOF robotic manipulator, its pre-defined home/zero position with the assigned frames at each joint, and the corresponding D-H parameters [4].

Joint	a (m)	d (m)	α (rad)	θ (rad)
Joint 1	0	0.333	0	$ heta_1$
Joint 2	0	0	$-\frac{\pi}{2}$	$ heta_2$
Joint 3	0	0.316	$\frac{\pi}{2}$	$ heta_3$
Joint 4	0.0825	0	$\frac{\pi}{2}$	$ heta_4$
Joint 5	-0.0825	0.384	$-\frac{\pi}{2}$	$ heta_5$
Joint 6	0	0	$\frac{\pi}{2}$	$ heta_6$
Joint 7	0.088	0	$\frac{\pi}{2}$	$ heta_7$
Flange	0	0.107	0	0

Fig.1 Panda's kinematic chain (DH-parameters) and assigned coordinate frames at zero position.

Name	Joint 1	Joint 2	Joint 3	Joint 4	Joint 5	Joint 6	Joint 7	Unit
q_{max}	2.8973	1.7628	2.8973	-0.0698	2.8973	3.7525	2.8973	rad
q_{min}	-2.8973	-1.7628	-2.8973	-3.0718	-2.8973	-0.0175	-2.8973	rad
$\dot{q}_{\it max}$	2.1750	2.1750	2.1750	2.1750	2.6100	2.6100	2.6100	$\frac{\text{rad}}{\text{s}}$
\ddot{q}_{max}	15	7.5	10	12.5	15	20	20	$\frac{\text{rad}}{\text{s}^2}$

Fig.2 Panda's joint space limits.

Also, Fig. 2 summarizes the Joint space limits of all 7 DoF of Panda. More information about the Panda can be found in its data-sheet.

Considering Fig. 1 and Fig. 2 and the Panda's datasheet:

- a) Find the forward kinematics (FK) of the robot using the **space form of the exponential products.**
- **b)** Write the function "**FK_space.m**" that calculates the *space form FK* of the robot and represents the defined frames and screw axis graphically. **Note**: <u>your program should be modular and generic</u> such that <u>it can be used for any type of serial open-chain manipulator!</u>
- c) Repeat (a) and (b) for the **body form FK** and write a function "FK_body.m".
- d) Find the space and body form Jacobian of the robot.
- e) Write functions "J_space.m" and "J_body.m" that calculate the space and body-form Jacobians of Panda, respectively.
- f) Write a function "singularity.m" that calculates the singularity configurations of the robot based on the derived Jacobians for both and space frames.
- g) Write functions that based on the Jacobian of the robot at each configuration:
 - a. shows/plots the manipulability ellipsoid and its axes (i.e., "ellipsoid_plot.m") for the 3 smallest singular values of the manipulability ellipsoid.
 - b. Calculates the isotropy "**J_isotropy.m**", condition number "**J_condition.m**", and volume of the ellipsoid "**J_ellipsoid_volume.m**".
- **h)** Using the derived forward kinematics and Jacobians, write a function "**J_inverse_kinematics.m**", that uses the iterative numerical inverse kinematics algorithm to control the robot from arbitrary **configuration a** to desired **configuration b**. Test your algorithm in various configurations.
- i) Use Jacobian Transpose algorithm ("J_transpose_kinematics.m"), and repeat part h.
- j) Using the redundancy resolution approach that we discussed in the class, extend your function in **part h** to define a secondary objective function of the joint variables that **maximizing this manipulability measure and** exploits redundancy to <u>move away from singularities</u> ("redundancy_resolution.m").

- k) (Bonus) extend your written function ("DLS_inverse_kinematics.m") in part h such that utilizing the Damped Least Square Approach can control the robot at configurations near the singularity situations. Hint: you may use your written functions in g) and h) to detect singularity situations and switch to this mode for controlling the robot.
- I) <u>For each function</u>, you should <u>write test functions and discuss the results</u> you obtained in your report. <u>Do not hand in</u> only functions, you will receive half of the points if you do not hand in appropriate reports and modular functions!
- **m**) (Bonus) Graphical simulation of the robot in ROS, Matlab, or similar software has extra bonus.

References:

- 1. Lynch and Park, "Modern Robotics," Cambridge U. Press, 2017, Chapter 3.
- 2. Bruno, Siciliano, Sciavicco Lorenzo, Villani Luigi, and Oriolo Giuseppe. "*Robotics: modelling, planning and control.*" Advanced Textbooks in Control & Signal Processing 4 (2009): 76-82, **Chapter 3**.
- 3. https://www.franka.de/
- 4. https://frankaemika.github.io/docs/control_parameters.html
- 5. https://www.youtube.com/channel/UCjvmirH4BRbWoQwYO4EmXFQ