Logic and Set Theory

February 7, 2018

C0	ONTENTS	2
Contents		
0	Miscellaneous	3
1	Propositional logic	4
2	Syntactic implication	6
3	Well-Orderings and Ordinals	10
4	Ordinals	14

5 Successors and limits

0 Miscellaneous

Some introductory speech

1 Propositional logic

Let P denote a set of primitive proposition, unless otherwise stated, $P = \{p_1, p_2, ...\}$.

Definition. The *language* or *set of propositions* L = L(P) is defined inductively by:

- (1) $p \in L \ \forall p \in P$;
- (2) $\perp \in L$, where \perp is read as 'false';
- (3) If $p, q \in L$, then $(p \implies q) \in L$. For example, $(p_1 \implies L)$, $((p_1 \implies p_2) \implies (p_1 \implies p_3))$.

Note that at this point, each proposition is only a finite string of symbols from the alphabet $(,), \Longrightarrow, \bot, p_1, p_2, ...$ and do not really mean anything (until we define so).

By inductively define, we mean more precisely that we set $L_1 = P \cup \{\bot\}$, and $L_{n+1} = L_n \cup \{(p \implies q) : p, q \in L_n\}$, and then put $L = L_1 \cup L_2 \cup ...$

Each proposition is built up *uniquely* from 1) and 2) using 3). For example, $((p_1 \Longrightarrow p_2) \Longrightarrow (p_1 \Longrightarrow p_3))$ came from $(p_1 \Longrightarrow p_2)$ and $(p_1 \Longrightarrow p_3)$. We often omit outer brackets or use different brackets for clarity.

Now we can define some useful things:

- $\neg p \pmod{p}$, as an abbreviation for $p \Longrightarrow \bot$;
- $p \lor q \ (p \text{ or } q)$, as an abbreviation for $(\neg p) \implies q$;
- $p \wedge q$ (p and q), as an abbreviation for $\neg (p \implies (\neg q))$.

These definitions 'make sense' in the way that we expect them to.

Definition. A valuation is a function $v: L \to \{0, 1\}$ s.t. (1) $v(\bot) = 0$; (2)

$$v(p \implies q) = \left\{ \begin{array}{ll} 0 & v(p) = 1, v(q) = 0 \\ 1 & else \end{array} \right. \forall p,q \in L$$

Remark. On $\{0,1\}$, we could define a constant \bot by $\bot = 0$, and an operation \Longrightarrow by $a \Longrightarrow b = 0$ if a = 1, b = 0 and 1 otherwise. Then a valuation is a function $L \to \{0,1\}$ that preserves the structure (\bot and \Longrightarrow), i.e. a homomorphism.

Proposition. (1) If v, v' are valuations with $v(p) = v'(p) \ \forall p \in P$, then v = v' (on L).

(2) For any $w: P \to \{0,1\}$, there exists a valuation v with $v(p) = w(p) \ \forall p \in P$. In short, a valuation is defined by its value on p, and any values will do.

Proof. (1) We have $v(p) = v'(p) \ \forall p \in L_1$. However, if v(p) = v'(p) and v(q) = v'(q) then $v(p \Longrightarrow q) = v'(p \Longrightarrow q)$, so v = v' on L_2 . Continue inductively we have v = v' on $L_n \forall n$.

(2) Set $v(p) = w(p) \ \forall p \in P \ \text{and} \ v(\bot) = 0$: this defines v on L_1 . Having defined v on L_n , use the rules for valuation to inductively define v on L_{n+1} so we can extend v to L.

Definition. We say p is a tautology, written $\vDash p$, if $v(p) = 1 \ \forall$ valuations v. Some examples:

(1) $p \implies (q \implies p)$: a true statement is implies by anything. We can verify this by:

So we see that this is indeed a tautology;

(2) $(\neg \neg p) \implies p$, i.e. $((p \implies \bot) \implies p$, called the "law of excluded middle";

(3) $[p \Longrightarrow (q \Longrightarrow r)] \Longrightarrow [(p \Longrightarrow q) \Longrightarrow (p \Longrightarrow r)]$. Indeed, if not then we have some v with $v(p \Longrightarrow (q \Longrightarrow r)) = 1$, $v(\Longrightarrow (p \Longrightarrow q) \Longrightarrow (p \Longrightarrow r)) = 0$. So $v(p \Longrightarrow q) = 1$, $v(p \Longrightarrow r) = 0$. This happens when v(p) = 1, v(r) = 0, so also v(q) = 1. But then $v(q \Longrightarrow r) = 0$, so $v(p \Longrightarrow (q \Longrightarrow r)) = 0$.

Definition. For $S \subset L$, $t \in L$, say S entails or semantically implies t, written $S \models t$ if $v(s) = 1 \forall s \in S \implies v(t) = 1$, for each valuation v. ("Whenever all of S is true, t is true as well.")

For example, $\{p \Longrightarrow q, q \Longrightarrow r\} \vDash (p \Longrightarrow r)$. To prove this, suppose not: so we have v with $v(p \Longrightarrow q) = v(q \Longrightarrow r) = 1$ but $v(p \Longrightarrow r) = 0$. So v(p) = 1, v(r) = 0, so v(q) = 0, but then $v(p \Longrightarrow q) = 0$.

If v(t) = 1 we say t is true in v or that v is a model of t.

For $S \subset L$, v is a model of S if $v(s) = 1 \ \forall s \in S$. So $S \vDash t$ says that every model of S is a model of t. For example, in fact $\vDash t$ is the same as $\phi \vDash t$.

2 Syntactic implication

For a notion of 'proof', we will need axioms and deduction rules. As axioms, we'll take:

1. $p \Longrightarrow (q \Longrightarrow p) \, \forall p, q \in L;$ 2. $[p \Longrightarrow (q \Longrightarrow r)] \Longrightarrow [(p \Longrightarrow q) \Longrightarrow (p \Longrightarrow r)] \, \forall p, q, r \in L;$ 3. $(\neg \neg p) \Longrightarrow p \, \forall p \in L.$

Note: these are all tautologies. Sometimes we say they are 3 axiom-schemes, as all of these are infinite sets of axioms.

As deduction rules, we'll take just modus ponens: from p, and $p \implies q$, we can deduce q.

For $S \subset L$, $t \in L$, a proof of t from S cosists of a finite sequence $t_1, ..., t_n$ of propositions, with $t_n = t$, s.t. $\forall i$ the proposition t_i is an axiom, or a member of S, or there exists j, k < i with $t_j = (t_k \implies t_i)$.

We say S is the *hypotheses* or *premises* and t is the *conclusion*.

If there exists a proof of t from S, we say S proves or syntactically implies t, written $S \vdash t$.

If $\phi \vdash t$, we say t is a theorem, written $\vdash t$.

Example. $\{p \implies q, q \implies r\} \vdash p \implies r$. we deduce by the following:

- $(1) [p \implies (q \implies r)] \implies [(p \implies q) \implies (p \implies r)]; (axiom 2)$
- (2) $q \implies r$; (hypothesis)
- $(3) \ (q \implies r) \implies (p \implies (q \implies r)); \ (\text{axiom 1})$
- $(4) p \implies (q \implies r); (mp on 2,3)$
- (5) $(p \implies q) \implies (p \implies r)$ (mp on 1,4);
- (6) $p \implies q$; (hypothesis)
- (7) $p \implies r$. (mp on 5,6)

Example. Let's now try to prove $\vdash p \implies p$. Axiom 1 and 3 probably don't help so look at axiom 2; if we make $(p \implies q)$ and $p \implies (q \implies r)$ something that's a theorem, and make $p \implies r$ to be $p \implies p$ then we are done. So we need to take $p = p, q = (p \implies p), r = p$. Now:

- $(1) [p \Longrightarrow ((p \Longrightarrow p) \Longrightarrow p)] \Longrightarrow [(p \Longrightarrow (p \Longrightarrow p)) \Longrightarrow (p \Longrightarrow p)];$ (axiom 2)
- $(2) p \implies ((p \implies p) \implies p); (axiom 1)$
- $(3) (p \implies (p \implies p)) \implies (p \implies p); (mp \text{ on } 1,2)$
- $(4) p \implies (p \implies p); (axiom 1)$
- (5) $p \implies p$. (mp on 3,4)

Proofs are made easier by:

Proposition. (2, deduction theorem) Let $S \subset L$, $p, q \in L$. Then $S \vdash (p \implies q)$ if and only if $(S \cup \{p\}) \vdash q$.

Proof. Forward: given a proof of $p \implies q$ from S, add the lines p (hypothesis), q (mp) to optaion a proof of q from $S \cup \{p\}$.

Backward: if we have proof $t_1, ..., t_n = q$ of q from $S \cup \{p\}$. We'll show that $S \vdash (p \implies t_i) \forall i$, so $p \implies t_n = q$.

If t_i is an axiom, then we have $\vdash t_i \implies (p \implies t_i)$, so $\vdash p \implies t_i$;

If $t_i \in S$, write down $t_i, t_i \implies (p \implies t_i), p \implies t_i$ we get a proof of $p \implies t_i$ from S;

If $t_i = p$: we know $\vdash (p \implies p)$, so done;

If t_i obtained by mp: in that case we have some earlier lines t_j and $t_j \implies t_i$. By induction, we may assume $S \vdash (p \implies t_j)$ and $S \vdash (p \implies (t_j \implies t_i))$. Now we can write down $[p \implies (t_j \implies t_i)] \implies [(p \implies t_j) \implies (t_i)]$ by axiom $2, p \implies (t_j \implies t_i), p \implies t_j) \implies (p \implies t_i)$ (mp), $p \implies t_j$, $p \implies t_i$ (mp) to obtain $S \vdash (p \implies t_i)$.

These are all of the cases. So $S \vdash (p \implies q)$.

This is why we chose axiom 2 as we did – to make this proof work.

Example. To show $\{p \implies q, q \implies r\} \vdash (p \implies r)$, it's enough to show that $\{p \implies q, q \implies r, p\} \vdash r$, which is trivial by mp.

Now, how are \vdash and \vDash related? We are going to prove the *completeness theorem*: $S \vdash t \iff S \vDash t$.

This ensures that our proofs are sound, in the sense that everything it can prove is not absurd $(S \vdash t \text{ then } S \vDash t)$, and are adequate, i.e. our axioms are powerful enough to define every semantic consequence of S, which is not obvious $(S \vDash t \text{ then } S \vdash t)$.

Proposition. (3)

Let $S \subset L$, $t \in L$. Then $S \vdash t \implies S \vDash t$.

Proof. Given a valuation v with $v(s) = 1 \ \forall s \in S$, we want v(t) = 1.

We have $v(p) = 1 \ \forall p$ axiom as our axioms are all tautologies (proven earier); $v(p) = 1 \ \forall p \in S$ by definition of v; also if v(p) = 1 and $v(p \Longrightarrow q) = 1$, then also v(q) = 1 (by definition of \Longrightarrow). So v(p) = 1 for each line p of our proof of t from S.

We say $S \subset L$ consistent if $S \not\vdash \bot$. One special case of adequacy is: $S \vDash \bot \Longrightarrow S \vdash \bot$, i.e. if S has no model then S inconsistent, i.e. if S is consistent then S has a model. This implies adequacy: given $S \vDash t$, we have $S \cup \{\neg t\} \vDash \bot$, so by our special case we have $S \cup \{\neg t\} \vdash \bot$, i.e. $S \vdash ((\neg t) \Longrightarrow t)$ by deduction theorem, so $S \vdash \neg \neg t$. But $S \vdash ((\neg \neg t) \Longrightarrow t)$ by axiom $S \vdash S \vdash T$, i.e.

Theorem. (4)

Let $S \subset L$ be consistent, then S has a model.

The idea is that we would like to define valuation v by $v(p) = 1 \iff p \in S$, or more sensibly, $v(p) = 1 \iff S \vdash p$.

But maybe $S \not\vdash p_3, S \not\vdash \neg p_3$, but a valuation maps half of L to 1, so we want to 'grow' S to contain one of p or $\neg p$ for each $p \in L$, while keeping consistency.

Proof. Claim: for any consistent $S \subset L$, $p \in L$, $S \cup \{p\}$ or $S \cup \{\neg p\}$ consistent. *Proof of claim.* If not, then $S \cup \{p\} \vdash \bot$ and $S \cup \{\neg p\} \vdash \bot$, then $S \vdash (p \Longrightarrow \bot)$ (deduction theorem), i.e. $S \vdash \not p$, so $S \vdash \bot$ contradiction.

Now L is countable as each L_n is countable, so we can list L as t_1, t_2, \ldots Put $S_0 = S$; set $S_1 = s_0 \cup \{t_1\}$ or $s_0 \cup (\neg t_1\}$ so that S_1 is consistent. Then set $S_2 = S_1 \cup \{t_2\}$ or $S_1 \cup \{\neg t_2\}$ so that S_2 is consistent, and continue likewise. Set $\bar{S} = S_0 \cup S_1 \cup S_2 \cup \ldots$ Then $\bar{S} \supset S$, and \bar{S} is consistent (as each S_n is, and each proof is finite). $\forall p \in L$, we have either $p \in S$ or $(\neg p) \in S$. Also, \bar{S} is deductively closed, meaning that is $\bar{S} \vdash p$ then $p \in \bar{S}$: if $p \notin \bar{S}$ then $(\neg p) \in \bar{S}$, so $\bar{S} \vdash p$, $\bar{S} \vdash (p)$ so $\bar{S} \vdash \bot$ contradiction.

Define $v: L \to \{0,1\}$ by $p \to 1$ if $p \in \bar{S}$, 0 otherwise. Then v is a valuation: $v(\bot) = 0$ as $\bot \notin \bar{S}$; for $v(p \Longrightarrow q)$:

If v(p) = 1, v(q) = 0: We have $p \in \bar{S}$, $q \notin \bar{S}$, and want $v(p \implies q) = 0$, i.e. $(p \implies q \notin \bar{S}$. But if $9p \implies q) \in \bar{S}$ then $\bar{S} \vdash q$ contradiction;

If v(q) = 1: have $q \in \bar{S}$, and want $v(p \implies q) = 1$, i.e. $(p \implies q) \int \bar{S}$. But $\vdash q \implies (p \implies q)$ so $\bar{S} \vdash (p \implies q)$;

If v(p) = 0: have $p \notin \bar{S}$, i.e. $(\neg p) \in \bar{S}$ and want $(p \implies q) \in \bar{S}$. So we need $(p \implies \bot) \vdash (p \implies q)$, i.e. $p \implies \bot, p \vdash q$ (deduction theorem). Thus it's enough to show that $\bot \vdash q$. But $(\neg \neg q) \implies q$, and $\vdash (\bot \implies (\neg \neg q))$ (axiom 3 and 1 – to see the second one, write \neg explicitly using \implies and \bot), so $\vdash (\bot \implies q)$, i.e. $\bot \vdash q$.

Remark. Sometimes this is called 'completeness theorem'. The proof used P being countable to get L countable; in fact, result still holds if P is uncountable (see chapter 3).

By remark before theorem 4, we have

Corollary. (5, adequacy) Let $S \subset L$, $t \in L$. Then if $S \models t$ then $S \vdash t$.

And hence,

Theorem. (6, completeness theorem) Let $S \subset L$, $t \in L$. Then $S \vdash t \iff S \vDash t$.

Some consequences:

Corollary. (7, compactness theorem) Let $S \subset L$, $t \in L$ with $S \models t$. Then \exists finite $S' \subset S$ with $S' \models t$. This is trivial if we replace \models by \vdash (as proofs are finite).

Special case for $t = \perp$: If S has no model then some finite $S' \subset S$ has no model. Equivalently,

Corollary. (7', compactness theorem, equivalent form) Let $S \subset L$. If every finite subset of S has a model then S has a model. This isi equivalent to corollary 7 because $S \vDash t \iff S \cup \{\neg t\}$ has no model and $S' \vDash t \iff S' \cup (\neg t)$ has no model.

Corollary. (8, decidability theorem)

There is an algorithm to determine (in finite time) whether or not, for a given finite $S \subset L$ and $t \in L$, we have $S \vdash t$.

This is highly non-obviuos; however it's trivial to decide if $S \vDash t$ just by drawing a truth table, and $\vDash \iff \vdash$.

3 Well-Orderings and Ordinals

Definition. A total order or linear order on a set X is a relation < on X, such that

- (1) Irreflexive: Not $x < x \ \forall x \in X$;
- (2) Transitive: $x < y, y < z \implies x < z \ \forall x, y, z \in X$;
- (3) Trichotomous: x < y or x = y or $y < x \ \forall x, y \in X$.

Note: two of (iii) cannot hold: if x < y, y < x then x < x by transitivity.

Write $x \le y$ if x < y or x = y, and y > x if x < y.

We can also define total order in terms of \leq :

- (1) Reflexive: $x \le x \ \forall x \in X$;
- (2) Transitive: $x \le y, y \le z \implies x \in z \ \forall x, y, z \in X$;
- (3) Antisymmetric: $x \le y, y \le x \implies x = y \ \forall x, y \in X$;
- (4) 'Tri'chotomous (although it's only two): $x \leq y$ or $y \leq x \ \forall x, y \in X$.

Example. $\mathbb{N}, \mathbb{Q}, \mathbb{R}$ with the usual orders are all total orders.

 \mathbb{N}^+ the relation 'divides' is not a total order: for example we don't have any of 2|3,3|2 or 2=3.

 $\mathcal{P}(S)$ for some S (with $|S| \geq 2$ to be rigorous), with $x \leq y$ if $x \subseteq y$ is not a total order for the same reason.

A total order is a well-ordering if every (non-empty) subset has a least element, i.e. $\forall S \subset X, S \neq \phi \implies \exists x \in S, x \leq y \forall y \in S$.

Example. 1. \mathbb{N} with the usual < is a well ordering.

 $2.\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ with the usual < are not well orderings.

 $3.\mathbb{Q}^+ \cup \{0\}$ with the usual < is not a well ordering (e.g. $(0, \infty) \subset \mathbb{Q}^+ \cup \{0\}$).

4.The set $\{1-\frac{1}{n}:n=2,3,...\}$ as a subset of $\mathbb R$ with the usual ordering is a well ordering. 5.The set $\{1-\frac{1}{n}:n=2,3,...\}\cup\{1\}$ as a subset of $\mathbb R$ with the usual ordering is a well ordering. 6.The set $\{1-\frac{1}{n}:n=2,3,...\}\cup\{2-\frac{1}{n}:n=2,3,...\}$ (same assumption) is a well ordering.

Remark. X is well-ordered iff there is no $x_1 > x_2 > x_3 > ...$ in X.

Clearly if there is such a sequence then $S = \{x_1, x_2, ...\}$ has no least element. Conversely, if $S \subset X$ has no least element, then for each element $x \in S$ there exists a $x' \in S$ with x' < x, so we can just pick x, x', ... inductively.

Definition. We say total orders X, Y are isomorphic if there exists a bijection $f: X \to Y$ that is order-preserving, i.e. $x < y \iff f(x) < f(y)$.

For example, 1 and 4 above are isomorphic; 5 and 6 are isomorphic; 4 and 5 are not isomorphic (one has a greatest element, and the other doesn't).

Here comes the first reason why well orderings are useful:

Proposition. (1, Proof by induction)

Let X be well-ordered, and let $S \subset X$ be s.t. if $y \in S \ \forall y < x \ \text{then} \ x \in S$ (each $x \in X$). Then S = X.

Equivalently, if p(x) is a property s.t. $\forall x$: if $p(y)\forall y < x$ then p(x), then $p(x)\forall x$. (I think we must assert S to be non-empty here, but the lecturer didn't agree with me; need to check later.)

Proof. If $S \neq X$ then let x be the least element of $X \setminus S$. Then $x \notin S$. But $y \in S \ \forall y < x$, contradiction.

A typical use:

Proposition. Let X, Y be isomorphic well-orderings. Then there is a *unique* isomorphism from X to Y.

Proof. Let f,g be isomorphisms. We'll show $f(x) = g(x) \ \forall x$ by induction. Thus we may assume $f(y) = g(y) \ \forall y < x$, and want f(x) = g(x). Let a be the least element of $Y \setminus \{f(y) : y < x\}$. Then we must have f(x) = a: if f(x) > a, then some x' > x has f(x') = a by surjectivity, contradiction. The same shows g(x) =least element of $Y \setminus \{g(y) : y < x\}$, but this is the same as a. So f(x) = g(x).

Remark. This is false for total orders in general. One example is, consider from $\mathbb{Z} \to \mathbb{Z}$, we could either take identity, or $x \to x - 5$; or from \mathbb{R} to \mathbb{R} we could take identity or $x \to x - 5$ or $x \to x^3$...

Definition. In a total order X, an *initial segment* I is a subset of X such that $x \in I, y < x \implies y \in I$.

Example. For any $x \in X$, set $I(x) = \{y \in X : y < x\}$. Then this is an initial segment.

Obviously, not every initial segment is of this form: for example, in \mathbb{R} we can take $\{x:x\leq 3\}$; or in \mathbb{Q} , take $\{x:x^2< 2\}\cup \{x< 0\}$ (this cannot be written as above form as $\sqrt{2}\not\in\mathbb{Q}$.

Note: in a well-ordering, every proper initial segment is of the above form: let x be the least elemnt of $X \setminus I$. Then $y < x \implies y \in I$. Conversely, if $y \in I$, then we must have y < x: otherwise $x \in I$, contradiction.

Our aim is to show that every subset of a well-ordered X is isomorphic to an initial segment.

Note: this is very false for total orders: e.g. $\{1,5,9\} \subset \mathbb{Z}$, or $\mathbb{Q} \subset \mathbb{R}$. If we have $S \subset X$, Wwe would like to define $f: S \to X$ that sends the smallest of S to the smallest of X, then remove them from both sets and send the smallest of the remaining to the smallest of the remaining, etc... But to do this we need a theorem.

Theorem. (3, definition by recursion)

Let X be well-ordered, Y be a set, and $G: \mathcal{P}(X \times Y) \to Y$. Then $\exists f: X \to Y$ s.t. $f(x) = G(f|_{I_x})$ for all $x \in X$. Moreover, such f is unique.

Here we define the restriction as: for $f: A \to B$, and $C \subset A$, the restriction of f to C is $f|_C = \{(x, f(x)) : x \in C\}$. (I think the lecturer is regarding a function as subset of a cartesian product)

In defining f(x), make use of $f|_{I_x}$, i.e. the values of f(y), y < x.

Proof. Existence: define 'h is an attempt' to mean: $h: I \to Y$, some initial segment I of X, and $\forall x \in I$ we have $h(x) = G(h|_{I_X})$. Note that is h, h' are

attempts, both defined at x, then h(x) = h'(x) by induction on x. Since if $h(y) = h'(y) \forall y < x$ then h(x) = h'(x).

Also, $\forall x \in X$ there exists an attempt defined at x by induction on x: we want attempt definde at x, given $\forall y < x$ there exists attempt defined at y. For each y < x, we have unique attempt h_y defined on $\{z : z \le y\}$ (unique by what we just showed).

Let $h = \bigcup_{y < x} h_y$: an attempt defined on I_x . This is single-valued by uniqueness, so is indeed a function.

So $h' = h \cup \{(x, G(h))\}$ is an attempt defined at x.

Now set f(x) = y if \exists attempt h, defined at x, with h(x) = y (single-valued). Uniqueness: if f, f' suitable then $f(x) = f'(x) \forall x \in X$ (induction on X) – since if $f(y) = f'(y) \forall y < x$ then f(x) = f'(x).

A typical application:

Proposition. (4, subset collapse)

Let X be well-ordered, $Y \subset X$. Then Y is isomorphic to an initial segment of X. Moreover, such initial segment is unique.

Proof. To have f an isomorphism from y to an initial segment of X, we need precisely that $\forall x \in Y : f(x) = \min X \setminus \{f(y) : y < x\}$. So done (existence and uniqueness) by theorem 3.

Note that $X \setminus \{f(y) : y < x\} \neq \phi$, e.g. because $f(y) \leq y \ \forall y$ (induction), so $x \notin \{f(y) : y < x\}$.

In particular, a well-ordered X cannot be isomorphic to a proper initial segment of X – by uniqueness in subset collapse, as X is isomorphic to X.

How do different well-orderings relate to each other?

We say $X \leq Y$ if X is isomorphic to an initial segment of Y. For example, $\mathbb{N} \leq \{1 - \frac{1}{n} : n = 2, 3, ...\} \cup \{1\}.$

Theorem. (5)

Let X, Y be well-orderings. Then $X \leq Y$ or $Y \leq X$.

Proof. Suppose $Y \not \leq X$. To obtain $f: X \to Y$ that is an isomorphism with an initial segment of Y, need $\forall x \in X: f(x) = \min Y \setminus \{f(y): y < x\}$. So we are done by theorem 3.

Note that we cannot have $\{f(y) : y < x\} = X$, as then Y is isomorphic to I_x . \square

Proposition. (6)

Let X, Y be well-orderings with $X \leq Y$ and $Y \leq X$. Then X and Y are isomorphic.

Proof. We have isomorphism f from X to an isomorphism of Y, and g the other way round. Then $g \circ f : X \to X$ is an isomorphism from X to an initial segment of X (i.s. of i.s. is i.s.), but that is impossible unless the initial segment is X

itself. So $g \circ f$ is identity (by uniqueness in subset collapse). Similarly, $f \circ g$ is identity on Y.

New well-orderings from old:

Write X < Y if $X \le Y$ but X not isomorphic to Y. Equivalently, X < Y iff X is isomorphic to a proper initial segment of Y. For example, if $X = \mathbb{N}$, $Y = \{1 - \frac{1}{n}\} \cup \{1\}$ then X < Y.

Make a bigger one: given well-ordered X, choose $x \notin X$, and set x > y for all $y \in X$. This is a well-ordering on $X \cup \{x\}$: written X^+ . Clearly $X < X^+$.

Put some together:

Let $(X, <_X)$ and $(Y, <_Y)$ be well-orderings. Say Y extends X if $X \subset Y$, and $<_X$, $<_Y$ agree on X, and X an initial segment of $(Y, <_Y)$. Well-orderings $(X_i : i \in I)$ are nested if $\forall i, j \in I : X_i$ extends X_j or X_j extends

Proposition. (7)

 X_i .

Let $(X_i : i \in I)$ be a nested family of well-orderings. Then there exist well-ordering X with $X \geq X_i \ \forall i$.

Proof. Let $X = \bigcup_{i \in I} X_i$, with x < y if $\exists i$ with $x, y \in X_i$ and $x <_i y$, Then < is a well-defined total order on X. given $S \subset X$, $S \neq \phi$, choose i with $S \cap X_i \neq \phi$. Then $S \cap X_i$ has a minimal element (as X_i is well-ordered), which must also be a minimal element of S (as X_i an i.s. of X). Also, $X \geq X_i \forall i$.

4 ORDINALS 14

4 Ordinals

Are the well-orderings themselves well-ordered?

An ordinal is a well-ordered set, with two sell-ordered sets regarded as the same if they are isomorphic. (Just as a rational is an expression $\frac{M}{N}$, with $\frac{M}{N}$, $\frac{M'}{N'}$ regarded as the same if MN' = M'N. But, unlike for \mathbb{Q} , we cannot formalise by equivalence classes – see later).

If X is a well-ordering corresponding to ordinal X, say X has order-type α .

Example. For each $k \in \mathbb{N}$, write k for the order-type of the (unique) well-ordering of a set of size k, and write ω for order-type of \mathbb{N} . So, in \mathbb{R} , $\{1,3,7\}$ has order-type 3. $\{1-\frac{1}{n}:n=2,3,...\}$ has order-type ω . For X of o-t α and Y of o-t β , write $\alpha \leq \beta$ if $X \leq Y$ (this is independent of choice of X,Y). Similarly for $\alpha < \beta$ etc.

We know: $\forall \alpha, \beta, \alpha \leq \beta$ or $\beta \leq \alpha$, and if $\alpha \leq \beta, \beta \leq \alpha$ then $\alpha = \beta$.

Theorem. Let α be an ordinal. Then the ordinals $< \alpha$ form a well-ordered set of order-type α . e.g. the ordinals $< \omega$ are 0, 1, 2, 3, ...

Proof. Let X have o-t α . the well-orderings < X are precisely (up to isomorphism) the proper initial segments of X, i.e. the $I_x, x \in X$. But these are isomorphic to X itself, via $x \to I_x$.

We often write I_{α} to be the set of ordinals less than α .

Proposition. (9)

Let S be a non-empty set of ordinals. Then S has a least element.

Proof. Choose $\alpha \in S$. If α minimal in S then done. If not, then $S \cap I_{\alpha} \neq \phi$, so have a minimal element of $S \cap I_{\alpha}$, which is therefore minimal in S.

Theorem. (10, Burali-Forti paradox): The ordinals do not form a set.

The ordinals do not form a set.

Proof. Suppose not, let X be set of all ordinals. Then X is a well-orderings, say order-type α . So X is isomorphic to I_{α} . But I_{α} is a proper i.s. of X.

Given α , we have $\alpha^+ > \alpha$. Also, if $\{\alpha_i : i \in I\}$ is a set of ordinals, then there exists α with $\alpha \ge \alpha_i \forall i$ (by applying prop 7 to the nested family of $I_{\alpha_i}; i \in I$).

In fact, there is therefore a least upper bound for $\{\alpha_i : i \in I\}$ by applying prop 9 to the set $\{\beta \leq \alpha : \beta \text{ an upper bound for the } \alpha_i\}$. This is written $\sup\{\alpha_i : i \in I\}$, e.g. $\sup\{2, 4, 6, 8, \ldots\} = \omega$.

Some ordinals: $0, 1, 2, ..., \omega, \omega + 1$ (officially ω^+), $\omega + 2, ..., \omega + \omega = \omega = \sup\{\omega + 1, \omega + 2, ..., \}, \omega^2 + 1, \omega^2 + 2, ...,$

4 ORDINALS 15

However, although this thing looks quite magnificent, they are all just countable (as we have just done it). Is there an uncountable ordinal? In other words, is there an uncountable well-ordered set?

Theorem. (11)

There is an uncountable ordinal.

Proof.

IDEA: take sup of all countable ordinals. However, this might not be a set.

Let $R = \{A \in \mathcal{P}(\mathbb{N} \times \mathbb{N})\}$ s.t. A is a well-ordering of a subset of \mathbb{N} . Let S be image of R under 'order-type', i.e. S is the set of all order-types of well-orderings of some subset of \mathbb{N} . Then S is the set of all countable ordinals. Let ω_1 be $\sup S$. Then ω_1 is uncountable: otherwise, then $\omega_1 \in S$, so ω_1 would be the greatest member of S. But then $\omega_1 + 1$ is also in S.

Note that, by contradiction, ω_1 is the *least* uncountable ordinal. ω_1 has some strange properties, e.g.

- 1. ω_1 is uncountable, but for any $\alpha < \omega_1$, we have $\{\beta : \beta < \alpha\}$ countable.
- 2. If $\alpha_1, \alpha_2, ... < \omega_1$ is any sequence, then it is bounded in ω_1 : sup $\{\alpha_1, ..., \alpha_2\}$ is countable, so is less than ω_1 .

Similarly we have

Theorem. (11', Hartogs' lemma)

For any set X, there is an ordinal that does not inject into X.

To see that, just replace $\mathcal{P}(\mathbb{N} \times \mathbb{N})$ by $\mathcal{P}(X \times X)$ in the previous proof.

Write $\gamma(X)$ for the least such ordinal – e.g. $\gamma(\omega) = \omega_1$.

5 Successors and limits

Given ordinal α , does α (any set of order-type α , e.g. I_{α}) have a greatest element?

If yes: say β is that greatest element. Then $\gamma < \beta$ or $\gamma = \beta \implies \gamma < \alpha$, and $\gamma < \alpha \implies \gamma < \beta$ or $\gamma = \beta$ (as we can't have $\gamma > \beta$). In other words, $\alpha = \beta^+$. In that case, we call α a *successor*;

If not: then $\forall \beta < \alpha$, $\exists \gamma < \alpha$ s.t. $\gamma > \beta$. So $\alpha = \sup\{\beta : \beta < \alpha\}$. (this is false in general, e.g. $\omega + 5$). We call α a *limit*.

For example, 5 is a successor, $\omega + 5$ is a successor, ω is a limit, $\omega + \omega$ is a limit. (0 is a limit as well).

For ordinals α, β , define $\alpha + \beta$ by recursion on β (α fixed) by: $\alpha + 0 = \alpha$, $\alpha + \beta^+ = (\alpha + \beta)^+$, $\alpha + \lambda = \sup{\alpha + \gamma : \gamma < \lambda}$ for λ a non-zero limit.

For example, $\omega + 1 = (\omega + 0)^+ = \omega^+$, $\omega + 2 = \omega^{++}$, $1 + \omega = \sup\{1 + \gamma : \gamma < \omega\} = \omega$ – so addition is not commutative.

Officially, by 'recursion on the ordinals', we mean: define $\alpha + \gamma$ on $\{\gamma : \gamma \leq \beta\}$ (a set) recursively, plus uniqueness. Similarly for induction: if know $p(\beta) \forall \beta < \alpha \implies p(\alpha)$ (for each α), then must have $p(\alpha) \forall \alpha$. If not, say $p(\alpha)$ false: then look at $\{\beta \leq \alpha : p(\beta) \text{ false }\}$.

Note that $\beta \leq \gamma \implies \alpha + \beta \leq \alpha + \gamma$ (induction on γ). Also, $\beta < \gamma \implies \alpha + \beta < \alpha + \gamma$. Indeed, $\gamma \geq \beta^+$, so $\alpha + \gamma \geq \alpha + \beta^+ = (\alpha + \beta)^+ > \alpha + \beta$. However, 1 < 2, but $1 + \omega = 2 + \omega$.

Proposition. (12)

 $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma \forall \alpha, \beta, \gamma \text{ ordinals.}$

Proof. Induction on γ :

0: $\alpha + (\beta + 0) = \alpha + \beta = (\alpha + \beta) + 0$.

Successors: $(\alpha + \beta) + \gamma^+ = ((\alpha + \beta) + \gamma)^+ = (\alpha + (\beta + \gamma))^+ = \alpha + (\beta + \gamma)^+ = \alpha + (\beta + \gamma^+).$

 λ a non-zero limit: $(\alpha+\beta)+\lambda=\sup\{(\alpha+\beta)+\gamma:\gamma<\lambda\}=\sup\{\alpha+(\beta+\gamma):\gamma<\lambda\}.$

Claim: $\beta + \lambda$ is a limit.

Proof of claim: We have $\beta + \gamma = \sup\{\beta + \gamma : \gamma < \lambda\}$. But $\gamma < \lambda \implies \exists \gamma' < \lambda$ with $\gamma < \gamma' \implies \beta + \gamma < \beta + \gamma'$. So $\{\beta + \gamma : \gamma < \lambda\}$ does not have a greatest element.

Back to the main proof, now $\alpha + (\beta + \gamma) = \sup\{\alpha + \delta : \delta < \beta + \lambda\}$. So want $\sup\{\alpha + (\beta + \gamma) : \gamma < \lambda \{= \sup\{\alpha + \delta : \delta < \beta + \lambda\}$.

 $\leq: \gamma < \lambda \implies \beta + \gamma < \beta + \lambda$, so LHS \subset RHS;

 \geq : $\delta < \beta + \lambda \implies \delta < \beta + \gamma$, some $\gamma < \lambda$ (definition of $\beta + \lambda$). So $\alpha + \delta \leq \alpha + (\beta + \gamma)$.

Alternative viewpoint:

Above is the 'inductive' definition of +. There is also a synthetic definition: $\alpha + \beta$ is the order-type of $\alpha \sqcup \beta$ (α disjoint union β), with all of α coming before all of β .

Clearly we have $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$ with this definition (same order-type). We need:

Proposition. (13)

The synthetic and inductive definition of + coincide.

Proof. Write $\alpha + \beta$ for inductive, $\alpha +' \beta$ for synthetic. Do induction on β (α fixed).

0: $\alpha + 0 = \alpha = \alpha + 0$:

Successors: $\alpha + \beta^+ = (\alpha + \beta)^+ = (\alpha + \beta)^+ = \alpha + \beta^+$;

 λ a non-zero limit: $\alpha + \gamma = \text{order-type of } \alpha \sqcup \lambda = \text{sup of order-type of } \alpha \sqcup \gamma$, $\gamma < \lambda$ (nest union, so order-type of union = sup – this was proved before) = $\sup(\alpha + \gamma) = \sup(\alpha +$

Normally we prefer to use synthetic than inductive, if we do have a synthetic definition available.