

O que é um agente

- Em geral um agente é qualquer entidade que:
 - Percebe seu ambiente através de sensores (ex. câmaras, microfone, teclado, ...).
 - Age sobre ele através de actuadores (ex. vídeo, impressora, braços, rodas, ftp, ...)

O que e um agente? Definições formais

- Russel & Norvig 2004
 Um agente é qualquer entidade que percebe seu ambiente e através de sensores actua sobre esse mediante actuadores. Um agente é racional quando realiza a menor acção possível a partir dos dados percebidos;
- Wooldridge 2004
 Um agente inteligente é um sistema (hardware ou software) situado em um determinado ambiente, capaz de actuar de forma autónoma e racional dentro do ambiente para executar seus objectivos predeterminados;

O que e um ageme? Definições formais

- River 1996
 Um agente é um programa de computador que funciona em background, e desenvolve tarefas autónomas
- Michael Coen 1996
 Agentes são programas que desenvolvem diálogos,
 negociam e coordenam transferência de informações;

conforme delegadas pelo utilizador;

 Virdhagriswaran 1995
 Os agentes apresentam conceitos de habilidade para execução autónoma e habilidade para executar raciocínio orientado ao domínio.

Exemplos de Agentes

- Agente humano
 - Sensores: Olho, ouvidos, pele, gosto, etc.
 - Actuadores: Mãos, pés, pernas, boca, etc.
 - Impulsionados pelos músculos.
- Agente robot
 - Sensores: Câmara, infravermelhos, pára-choques, etc.
 - Actuadores: pinças, rodas, luzes, etc.
 - Usualmente impulsionados por motores.
- Agente software
 - Sensores: Inputs
 - Actuadores: Outputs

Agente Racional (McCarthy & Hayes 69, Newell 81)

- Segue o princípio da racionalidade: dada uma sequência perceptiva, o agente escolhe, segundo os seus conhecimentos, as acções que satisfazem melhor o seu objectivo.
 - Racional NÃO É omnisciente;
 - Racional NÃO É clarividente;
 - Racional NÃO É necessariamente bem sucedido;
 - Existem limitações de:
 - Sensores.
 - Actuadores.
 - Raciocinador (conhecimento, tempo, etc.).
 - Agir para obter mais dados perceptivos é racional.

Agente Racional (McCarthy & Hayes 69, Newell 81)

Mas, como avaliar um agente?

Medida de Desempenho

- Critério que define o grau de sucesso de um agente na realização de uma dada tarefa.
 - Esta medida deve ser imposta pelo exterior.
 - Objectiva / Subjectiva.
 - Quantitativa / Qualitativa.
 - Momento de avaliação (antes / depois).
 - Melhor / Pior / Média.

Medida de Desempenho

- Exemplo:
 - Ao atravessar uma rua deve-se observar se não vem carro das duas direcções, assim poderemos atravessar. Mas...
- Não podemos condenar um agente que falha por não levar em conta algo que ele não pode perceber ou por uma acção que ele não é capaz de tomar
- Agente que atravessa a rua sem olhar não racional
- A acção correcta seria <u>olhar</u> porque maximiza o desempenho

(Wooldridge e Jennings)

- Autonomia: agentes que operam sem a intervenção de humanos ou outros, e possuem algum tipo de controlo sobre as suas acções e estado interno;
- Pró Actividade: agentes que não se limitam a agir em resposta ao seu ambiente. Eles são capazes de tomar a iniciativa e exibir comportamento direccionado por objectivos;
- Reactividade: agentes que têm a percepção do seu ambiente e respondem rapidamente às alterações que nele ocorrem;
- Habilidade Social: agentes que são capazes de interagir com outros agentes (e possivelmente com humanos) através de uma dada linguagem de comunicação de agentes.

M. Wooldridge and N. R. Vennings Intelligent Agents: Theory and Practice. In Knowledge Engineering Review 10(2), 1995.

Outras Propriedades Desejáveis

- Mobilidade. Capacidade de um agente se movimentar de um local para outro. Usualmente esta capacidade é mencionada no contexto de agentes de software e como tal a movimentação verifica-se no interior de uma rede de computadores.
- Conhecimento e Crença. Possuir conhecimento consiste em possuir uma colecção de informação dinâmica e capacidade de raciocínio sobre essa informação. Uma crença representa a noção actual que o agente possui sobre determinado facto. São geralmente dinâmicas, isto é, podem alterar o seu valor de verdade com o tempo.

Outras Propriedades Desejáveis

- Intenções e Obrigações. Intenções são objectivos de longo prazo do agente. Obrigações estão relacionadas com compromissos que o agente assumiu anteriormente.
- Racionalidade. Um agente agirá de forma a atingir os seus objectivos e não agirá de forma a impedir que esses mesmos objectivos sejam atingidos. Em cada instante, face ao seu conhecimento e de acordo com as suas capacidades tentará executar a melhor acção para cumprir esses objectivos.

Outras Propriedades Desejáveis

- Inteligência. O estado de um agente é formalizado por conhecimento (i.e. crenças, objectivos, planos e assunções) e ele interage com outros agentes utilizando uma linguagem simbólica. Possui capacidade de raciocínio abstracto e de resolução de novos problemas e adaptação a novas situações.
- Continuidade Temporal. O agente é um processo que é executado continuamente ao longo do tempo (persistente).

Outras Propriedades Desejáveis

- Carácter. O agente possui uma personalidade credível e eventualmente possui também um "estado emocional".
- Aprendizagem. Capacidades de aprendizagem que fazem com que o agente adquira novo conhecimento e altere o seu comportamento baseado na sua experiência prévia.

Estrutura de um Agente

- Agente = programa + arquitectura
- Programa → uma função que relaciona as percepções (entradas) do agente para acções (saídas).
- ◆ Arquitectura → suporte dado a execução dos programas de agente.
 - A aquisição de percepções (sensores)
 - Execução de acções no ambiente (actuadores)

Definindo Agentes ● Percepções → ● Percepts ● Acções → ● Actions ● Objectivos → ● Goals ● Ambiente → ● Environment

Ambiente

• Classes de Ambiente:

Físicos: RobotsSoftware: Softbot

 As propriedades do ambiente determinam em grande parte o projecto do agente.

Propriedades do Ambiente

- acessível x inacessível
 - É acessível quando os sensores do agente conseguem perceber o estado completo do ambiente.
 - Exemplo: Poker VS. Damas (Checkers)
- estático x dinâmico
 - É estático quando o ambiente não muda enquanto o agente está escolhendo a acção a realizar.
 - Exemplo Civilization II VS. Age of Empires
 - Semi-estático: o ambiente não muda enquanto o agente delibera, mas o "score" do agente muda.

Propriedades do Ambiente

- determinista x não-determinista
 - É determinista quando o próximo estado do ambiente pode ser completamente determinado pelo estado actual e as acções seleccionadas pelo agente.
 - Exemplo: Gamão (Backgammon) VS. Damas (Checkers)
- discreto x contínuo
 - É continuo quando as percepções e acções mudam em um espectro contínuo de valores.
 - Exemplo: ABS (Anti-Block System) Vs. BlackJack

Propriedades do Ambiente

- episódico x não-episódico
 - É episódico quando a experiência do agente é dividida em episódios. Cada episódio consiste em o agente perceber e então agir. Cada episódio não depende das acções que ocorreram em episódios prévios.
 - Exemplo: Roleta vs Xadrez

Outras Propriedades

- agente único x agentes múltiplos
 - Palavras cruzadas agente único.
 - Xadrez agentes múltiplos -> ambiente competitivo.
 - Conduzir um táxi agentes múltiplos ->ambiente cooperativo.
 - A comunicação é necessária em multi-agentes.
- tamanho do ambiente
 - número de percepções, acções, objectivos.

Agenda

- O que é um Agente
- Como Definir Agentes
- Arquitectura dos Agentes

Algoritmo Básico de um Agente

function ESQUELETO_DE_AGENTE(percepção):acção
 static: memória (memória do agente sobre o mundo)

memória \leftarrow ACTUALIZA_MEMÓRIA(memória, percepção) acção \leftarrow ESCOLHA_A_MELHOR_ACÇÃO(memória) memória \leftarrow ACTUALIZA_MEMÓRIA(memória,acção)

return acção

- Q agente percebe apenas uma coisa de cada vez e não uma sequência.
 - Deve decidir se armazena a sequência ou não.
- O objectivo não faz parte da "template" (medido externamente).

Agente Tabela

- Dada uma percepção simplesmente procura a resposta.
- Problemas
 - A tabela pode ser muito grande.
 - Ex.: um agente para jogar xadrez teria 35¹⁰⁰ entradas.
 - Mesmo que fosse possível construí-la esta poderia levar muito tempo.
 - O agente não tem autonomia, pois as acções são derivadas do seu conhecimento interno (e não da sua experiência).
 - Uma troca inesperada no ambiente poderia resultar em falha.
 - Se for dado ao agente um mecanismo de aprendizagem para aumentar o grau de autonomia, ele poderá ficar aprendendo para sempre sem que todas as entradas da tabela sejam preenchidas.
- Ambientes
 - Acessível, determinista, episódico, estático, discreto e minúsculo!

Agente Reactivo

- A tabela perfeita / completa é totalmente inviável.
- É possível sumarizar a tabela usando:
 - Entradas/saídas comuns.
 - Pré processamento do sinal de entrada para identificar condições comuns.
- Usa regras de condição → acção
 - Se velocidade > 60 então multar

Agente Reactivo

- Problemas
 - A decisão do agente só depende da percepção actual.
 - Muitas soluções não podem ser alcançadas se o agente não souber o que fez antes ou como o mundo era antes.
 - Não pode armazenar uma sequência perceptiva, e tem pouca autonomia.
 - Aplicabilidade restrita: funciona apenas se o ambiente for completamente observável.
 - <u>Exemplo</u>: Para carros sem luz central de freio, um agente reactivo não consegue determinar com uma única imagem se o carro da frente está fazendo sinal de mudança de direcção, alerta ou freio.
- Ambientes
 - Reflexo imprescindível em ambientes dinâmicos
 - Acessível episódico, pequeno

Agente Reactivo com Estado Interno

- O estado actual é dado em função do estado anterior (histórico) e do que foi percebido no ambiente.
- O agente tem um estado interno com as informações colectadas do ambiente.
- Dois tipos de conhecimento são necessários para actualizar a memória do agente (modelo do mundo):
 - Como o ambiente evoluí independente do agente
 - Um carro que está ultrapassando em geral estará mais perto do que estava um instante antes.
 - Como as acções do próprio agente afectam o mundo
 - Se o agente virar o volante à direita, o carro irá virar para a direita.

Agentes Reactivos com Estado Interno

- Problemas
 - Conhecer os estados do ambiente não é suficiente para tomar uma boa decisão.
 - <u>Exemplo</u>: o agente Motorista de Táxi chega a um cruzamento com três caminhos, qual será a direcção que deve escolher?
 - simplesmente reagir não dá, existem três reacções possíveis
 - saber do passado do ambiente também não ajuda a decidir qual o caminho
 - A decisão depende apenas do destino que o táxi está tentando chegar.
- Ambientes
 - determinista e pequeno

Agente Cognitivo (baseado em objectivo)

- O agente precisa de algum tipo de informação sobre o seu objectivo.
 - Objectivos descrevem situações desejáveis. Ex.: estar no destino.
- Combinando informações sobre:
 - O objectivo do agente.
 - Os resultados de suas acções.
- Q agente pode escolher acções que alcancem o objectivo.
- A selecção da acção baseada em objectivo pode ser:
 - Directa quando o resultado de uma única acção atinge o objectivo.
 - Mais complexa: quando será necessário longas sequências de acções para atingir o objectivo.

Agente Cognitivo (baseado em objectivo)

- Para encontrar sequências de acções que alcançam os objectivos
 - Algoritmos de Busca (procura) e Planeamento.
- A tomada de decisão envolve a consideração do futuro.
 - "O que acontecerá se eu fizer isso ou aquilo?"
 - "O quanto isso melhorará o meu desempenho?"
- Exemplos:
 - Objectivo: não bater no carro da frente.
 - Se o carro da frente pára, pela forma de funcionamento do mundo, a única acção que atinge o objectivo de não bater é também parar.

Agente Cognitivo (baseado em objectivo)

- Considerações / Problemas
 - O agente que funciona orientado a objectivos é mais flexível.
 - Agente reflexo → acções pré compiladas.
 - Agente p/ objectivo → pode alterar somente o objectivo sem necessidade de se reescrever as regras de comportamento.
 - Mais flexível representação do conhecimento permite modificações
 - Ex.: Se começar a chover, todas as informações relevantes podem ser alteradas para se operar de forma eficiente.
 - Contudo, o objectivo não garante o melhor comportamento para o agente, apenas a distinção entre os estados, objectivos e não objectivos.
 - <u>Exemplo:</u> algumas alternativas de planeamento de acções futuras podem ser mais rápidas, seguras ou baratas que outras.
- Ambientes
 - Determinista.

Agente Optimizador

- Também chamado "baseado em utilidade".
- Se um estado do mundo é mais desejável que outro, então ele terá maior utilidade para o agente.
- Utilidade é uma <u>função</u> que relaciona um <u>estado</u> para um número real, que representa o <u>grau de satisfação</u> com este <u>estado</u>.
- Nos casos onde existem objectivos conflituantes (velocidade x segurança) a utilidade pode determinar o peso adequado a cada objectivo.
- Qualquer agente racional deve se comportar como se possuísse uma função de utilidade, cujo o valor esperado ele tenta maximizar.
- (A origem da utilização da função de utilidade vem da teoria da decisão).

Agentes Optimizador

- Desvantagem
 - Não tem adaptabilidade
- Ambientes
 - sem restrição

Agentes que Aprendem

- Quatro componentes conceituais
 - Elemento de aprendizado:
 - Responsável pela execução dos aperfeiçoamentos.
 - Crítico:
 - O elemento de aprendizado "realimenta" o crítico sobre somo o agente está funcionando.
 - Determina de que maneira o elemento de desempenho deve ser modificado.

Agentes que Aprendem

- Quatro componentes conceituais
 - Elementos de desempenho:
 - Responsável pela selecção de acções externas.
 - Antes visto como o agente completo recebe percepções e decide sobre acções.
 - Gerador de problemas:
 - Responsável por sugerir acções que levarão a experiências novas e informativas.

Agentes que Aprendem

- Ambientes
 - Sem restrição.

Agentes Inteligentes

- Constituem um paradigma especialmente adequado para a modelagem de sistemas de IA.
- A racionalidade dos agentes é o seu principal atributo e corresponde ao seu componente inteligente.
- Apresentam-se em diferentes graus de complexidade e sempre são capazes de aprender.

Leituras

LIVROS

- Russel, Norvig, Artificial Intelligence: A Modern Approach, Cap. 2.
- Costa, Simões, *Inteligência Artificial. Fundamentos e Aplicações*. Cap 1.5, 2.1,3.1,4.1,5.1.

ARTIGOS

Intelligent Agents: Theory and Practice. M. Wooldridge e
 N. R. Jennings. Knowledge Engineering Review 10(2), 1995.

http://www.csc.liv.ac.uk/~mjw/pubs/ker95.pdf

