

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

3-ANILINO-2-CYCLOALKENONE DERIVATIVES

Patent Number: EP0994100

Publication date: 2000-04-19

Inventor(s): AKIYAMA TOSHIHIKO (JP); INA SHINJI (JP); NODA KYOJI (JP); TAKAHAMA AKANE (JP); YAMANA KENJIROU (JP)

Applicant(s): NIKKEN CHEMICALS CO LTD (JP)

Requested Patent: WO9858901

Application Number: EP19970950410 19971225

Priority Number (s): WO1997JP04857 19971225; JP19970181884 19970624

IPC Classification: C07C225/20; C07D215/12; C07D213/38; A61K31/135; A61K31/44; A61K31/47

EC Classification: C07C225/22, C07D211/86, C07D213/38, C07D215/12, C07D295/10A5, C07D307/20

Equivalents: US6235736

Cited patent(s): US3969409; WO9412461; WO9508534; WO9429277; WO9503794

Abstract

A 3-anilino-2-cycloalkenone derivative of the formula (I): wherein, R1 represents a C1 to C8 alkyl group, which may have a substituent, except for a methyl group, a C3 to C7 cycloalkyl group, a 3-tetrahydrofuryl group, an 2-indanyl group, etc., R2 represents a C1 to C4 alkyl group, R3 represents a hydrogen atom, a C1 to C5 alkyl group, which may have a substituent, a C3 to C7 cycloalkyl group, etc., R4 represents a hydrogen atom, a C1 to C5 alkyl group, which may have a substituent, a halogen atom, etc., R5, R6, R7, and R8 independently represent a hydrogen atom, a C1 to C5 alkyl group, which may have a substituent, etc., X represents -(CR11R12)n-, wherein n is 0 to 2, R11 and R12 independently represent a hydrogen atom, a C1 to C5 alkyl group, which may have a substituent, etc. or -NR13-, wherein R13 represents a hydrogen atom or a C1 to C5 alkyl group, which may have a substituent, and its optical isomers or their pharmaceutically acceptable salts or their hydrates or solvates.

Data supplied from the esp@cenet database - I2

PCT

世界知的所有権機関
国際事務局
特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C07C 225/20, C07D 215/12, 213/38, A61K 31/135, 31/44, 31/47	A1	(11) 国際公開番号 WO98/58901
(21) 国際出願番号 PCT/JP97/04857		(43) 国際公開日 1998年12月30日(30.12.98)
(22) 国際出願日 1997年12月25日(25.12.97)		
(30) 優先権データ 特願平9/181884 1997年6月24日(24.06.97) JP		(81) 指定国 CA, US, 歐州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). 添付公開書類 国際調査報告書
(71) 出願人 (米国を除くすべての指定国について) 日研化学株式会社(NIKKEN CHEMICALS CO., LTD.)[JP/JP] 〒104 東京都中央区築地5丁目4番14号 Tokyo, (JP)		
(72) 発明者 ; および (75) 発明者 / 出願人 (米国についてのみ) 稻 真嗣(INA, Shinji)[JP/JP] 山名研司郎(YAMANA, Kenjiro)[JP/JP] 野田恭二(NODA, Kyoji)[JP/JP] 高瀬あかね(TAKAHAMA, Akane)[JP/JP] 秋山敏彦(AKIYAMA, Toshihiko)[JP/JP] 〒330 埼玉県大宮市北袋町1丁目346番地 日研化学株式会社 大宮研究所内 Saitama, (JP)		
(74) 代理人 弁理士 石田 敬, 外 (ISHIDA, Takashi et al.) 〒105 東京都港区虎ノ門三丁目5番1号 虎ノ門37森ビル 青和特許法律事務所 Tokyo, (JP)		

(54)Title: 3-ANILINO-2-CYCLOALKENONE DERIVATES

(54)発明の名称 3-アニリノ-2-シクロアルケノン誘導体

(57) Abstract

3-anilino-2-cycloalkenone derivatives represented by general formula (I), optical isomers thereof, pharmaceutically acceptable salts thereof, or hydrates or solvates of these: wherein R₁ represents optionally substituted C₁₋₄ alkyl (excluding methyl), cycloalkyl, 3-tetrahydrofuryl, 2-indanyl, etc.; R₂ represents C₁₋₄ alkyl; R₃ represents H, optionally substituted C₁₋₅ alkyl, C₁₋₇ cycloalkyl, etc.; R₄ represents H, optionally substituted C₁₋₅ alkyl, halogeno, etc.; R₅, R₆, R₇ and R₈ each independently represents H, optionally substituted C₁₋₅ alkyl, etc.; and X represents -(CR₁₁R₁₂)_n - (where n is 0 to 2, and R₁₁ and R₁₂ each independently represents H, optionally substituted C₁₋₅ alkyl, etc.) or -NR₁₃- (where R₁₃ represents H or optionally substituted C₁₋₅ alkyl).

(57)要約

式 (I) :

(式中、R₁は置換基を有してもよいC₁～C₆のアルキル基(ただしメチル基を除く)、C₃～C₇のシクロアルキル基、3-テトラヒドロフリル基、2-インダニル基等を表し、R₂はC₁～C₄のアルキル基を表し、R₃はH、置換基を有してもよいC₁～C₅のアルキル基、C₃～C₇のシクロアルキル基等を表し、R₄はH、置換基を有してもよいC₁～C₅のアルキル基、ハロゲン原子等を表し、R₅、R₆、R₇およびR₈は、それぞれ独立してH、置換基を有してもよいC₁～C₅のアルキル基等を表し、Xは-(C(R₁₁R₁₂))_n-(式中、nは0～2、R₁₁およびR₁₂はそれぞれ独立してH、置換基を有してもよいC₁～C₅のアルキル基等を表す)または-NR₁₃- (式中、R₁₃はH、置換基を有してもよいC₁～C₅のアルキル基を表す)を表す]で表される3-アニリノ-2-シクロアルケノン誘導体、その光学異性体もしくはそれらの医薬上許容される塩またはこれらの水和物もしくは溶媒和物。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AL	アルバニア	FI	フィンランド	LK	スリ・ランカ	S I	スロヴェニア
AM	アルメニア	FR	フランス	LR	リベリア	SK	スロヴァキア
AT	オーストリア	GA	ガボン	LS	レソト	SL	ジエラ・レオネ
AU	オーストラリア	GB	英國	LT	リトアニア	SN	セネガル
AZ	アゼルバイジャン	GD	グレナダ	LU	ルクセンブルグ	SZ	スウェーデン
BA	ボスニア・ヘルツェゴビナ	GE	グルジア	LV	ラトヴィア	TD	チャード
BB	ベルバドス	GH	ガーナ	MC	モナコ	TG	トーゴー
BE	ベルギー	GM	ガンビア	MD	モルドヴァ	TJ	タジキスタン
BF	ブルガリア・ファン	GN	ギニア	MG	マダガスカル	TM	トルクメニスタン
BG	ブルガリア	GW	ギニア・ビサオ	MK	マケドニア旧ユーゴスラヴィア 共和国	TR	トルコ
BJ	ベナン	GR	ギリシャ	ML	マリ	TT	トリニダッド・トバゴ
BR	ブラジル	HR	クロアチア	MN	モンゴル	UA	ウクライナ
BY	ベラルーシ	HU	ハンガリー	MR	モーリタニア	UG	ウガンダ
CA	カナダ	ID	インドネシア	MW	マラウイ	US	米国
CF	中央アフリカ	IE	アイルランド	MX	メキシコ	UZ	ウズベキスタン
CG	コンゴー	IL	イスラエル	NE	ニジエール	VN	ヴィエトナム
CH	スイス	IN	インド	NL	オランダ	YU	ユーゴースラビア
CI	コートジボアール	IS	イスランド	NO	ノルウェー	ZW	ジンバブエ
CM	カメルーン	IT	イタリア	NZ	ニュージーランド		
CN	中国	JP	日本	PL	ポーランド		
CU	キューバ	KE	ケニア	PT	ポルトガル		
CY	キプロス	KG	キルギスタン	RO	ルーマニア		
CZ	チェコ	KP	北朝鮮	RU	ロシア		
DE	ドイツ	KR	韓国	SD	スードン		
DK	デンマーク	KZ	カザフスタン	SE	スウェーデン		
EE	エストニア	LC	セントルシア	SG	シンガポール		
ES	スペイン	LI	リヒテンシュタイン				

明細書

3-アニリノ-2-シクロアルケノン誘導体

技術分野

本発明はホスホジエステラーゼ（PDE）IV阻害作用を有する新規な3-アニリノ-2-シクロアルケノン誘導体に関する。

背景技術

気道平滑筋の弛緩および炎症細胞の機能の調節には、細胞内セカンドメッセンジャーであるcAMPが関与しており、このcAMPはホスホジエステラーゼ（PDE）によって分解され不活性な5'-AMPとなる。PDEによる分解を抑制することによりcAMPの濃度を上昇させれば、気管支拡張作用および抗炎症作用が得られ、喘息のごとき炎症性疾患に対する治療効果を示すものと考えられる〔Eur. Respir. J., 7, 579 (1994)〕。現在までに、PDEは5種類のアイソザイム（PDE I～V）に分類されており、それらの分布状態は組織に応じて異なっている〔Trends Pharmacol. Sci., 12, 19 (1991)〕。これは、PDEの各アイソザイムに対する特異的な阻害剤が、様々な組織中において相異なるcAMPの上昇をもたらす可能性を示唆している。

PDEアイソザイムのうちIV型の特異的な阻害剤は、炎症細胞の機能を抑制することが報告され〔Thorax, 46, 512 (1991)〕、喘息〔J. Pharmacol. Exp. Ther., 266, 306 (1993)〕、皮膚炎〔Br. J. Pharmacol., 112, 332 (1994)〕等の炎症性疾患、多発

性硬化症 [Nature Medicine, 1, 244 (1994)] やリューマチ [Clin. Exp. Immunol., 100, 126 (1995)] 等の自己免疫疾患に有用と考えられている。また、PDE のうち IV 型のみを阻害することによってテオフィリン等の非選択的 PDE 阻害剤でみられる心臓等の副作用を低減することができると考えられる。PDE IV に特異的な阻害作用を有する化合物としては、下記式のロリプラム（特開昭 50-157360 号公報）が知られている。

これ以外にも、PDE IV に特異的な阻害を示す化合物が公知であるが（WO 94/10118 号公報、WO 94/12461 号公報、特開平 5-117259 号公報、特開平 7-101861 号公報、WO 95/03794 号公報、WO 95/08534 号公報等）、現在までに臨床上適用されるには至っておらず、更に有用な化合物の開発が望まれている。

式 (IV) :

（式中、R は水素原子またはメチル基を表す）で表される化合物が知られている [Tetrahedron Letters, 25, 5023 (1984)] が、この化合物の生理活性に関する記載はない。特開昭 49-85050 号公報には、式 (V) :

で表される化合物が、鎮痛、鎮静、解熱、精神安定、抗けいれん作用等の中枢神経系に対する薬理作用および血糖値低下作用を有するものとして記載されているが、PDE IVの阻害作用に関する記載はない。

発明の開示

従って、本発明は、PDE IV阻害作用を有する新規な化合物を提供することを目的とする。

本発明に従えば、式(I)：

[式中、R₁ は置換基を有してもよいC₁～C₁₀ のアルキル基（ただし置換基を有しないメチル基を除く）、C₃～C₁₀ のシクロアルキル基、C₆～C₁₀ のビシクロアルキル基、3-テトラヒドロフリル基またはインダニル基を表し、R₂ はC₁～C₄ のアルキル基を表し、R₃ は水素原子、置換基を有してもよいC₁～C₅ のアルキル基、C₃～C₅ のシクロアルキル基またはアシル基を表し、R₄ は水素原子、置換基を有してもよいC₁～C₅ のアルキル基、ハロゲン原子、式(II)：

(式中、R₅ および R₁₀ は、それぞれ独立して、C₁ ~ C₅ のアルキル基を表す) で表される基または式 (III) :

(式中、n は 2 ~ 6 の整数を表すが、一つの CH₂ 基は酸素原子、窒素原子および硫黄原子の中から選ばれた 1 個のヘテロ原子で置換することができる) で表される基を表し、R₅、R₆、R₇ および R₈ は、それぞれ独立して、水素原子、置換基を有してもよい C₁ ~ C₅ のアルキル基、置換基を有してもよいフェニル基を表し、X は -(CR₁₁R₁₂)_n - (式中、R₁₁ および R₁₂ はそれぞれ独立して水素原子、置換基を有してもよい C₁ ~ C₅ のアルキル基、置換基を有してもよいフェニル基を表し、n は 0 ~ 2 の整数を表す) または -NR₁₃- (式中、R₁₃ は水素原子または置換基を有してもよい C₁ ~ C₅ のアルキル基を表す) を表す] で表される 3-アニリノ-2-シクロアルケノン誘導体、その光学異性体もしくはそれらの医薬上許容される塩またはこれらの水和物もしくは溶媒和物が提供される。

発明を実施するための最良の形態

本発明者らは PDE IV 阻害作用を有する新規な化合物を開発すべく探索の結果、前記の 3-アニリノ-2-シクロアルケノン誘導体が強い PDE IV 阻害作用を有し、気管支拡張作用および抗炎症作用を有することを見出し、本発明を完成するに至った。

以下に本発明を詳細に説明する。

上記一般式 (I) の R₁ としては、C₁ ~ C₅ の直鎖もしくは分岐鎖アルキル基 (例えばメチル基、エチル基、プロピル基、イソブ

ロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、1,1-ジメチルプロピル基、n-ヘキシル基、1-メチルペンチル基、1,1-ジメチルブチル基、n-ヘプチル基、n-オクチル基)が挙げられ、これらは置換基(例えば、ハロゲン原子；水酸基；ニトロ基；シアノ基；アミノ基；カルボキシル基；シクロアルキル基；ハロアルキル基；カルバモイル基；アルコキシ基；アルキルカルボニル基；酸素原子、窒素原子、硫黄原子の中から選ばれた1個以上のヘテロ原子を含有してもよいアリール基等)を有していてもよく、置換基を有するC₁～C₈のアルキル基としては、例えばシクロプロピルメチル基、(1-フェニルシクロプロピル)メチル基、(1-メチルシクロプロピル)メチル基、シクロブチルメチル基、シクロペンチルメチル基、シクロヘキシルメチル基、ベンジル基、フェネチル基、3-フェニルプロピル基、4-フェニルブチル基、1-ナフチルメチル基、2-ナフチルメチル基、2-(1-ナフチル)エチル基、2-(2-ナフチル)エチル基、2-イシダニルメチル基、2-(2-インダニル)エチル基等が挙げられるが、ここで、置換基を有しないメチル基はR₁より除かれる。さらにR₁としては、C₃～C₇シクロアルキル基(例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等)、C₆～C₁₀のビシクロアルキル基[rel (1R, 2R, 4S) ビシクロ [2.2.1] ヘプタ-2-イル基等]、3-テトラヒドロフリル基またはインダニル基が挙げられる。R₁として好ましくは、C₄～C₈のアルキル基、C₄～C₇のシクロアルキル基、C₆～C₈のビシクロアルキル基、置換基として、フェニル基、ナフチル基、インダニル基または置換基を有してもよいC₃～C₇のシクロアルキル基を有するC₁～C₅のアルキル基、3-テトラヒドロフリル基もしくはイ

ンダニル基が挙げられ、更に好ましくは、シクロペンチル基、シクロヘキシリル基、シクロプロピルメチル基、シクロペンチルメチル基、2-(2-インダニル)エチル基、rel(1R, 2R, 4S)ビシクロ[2.2.1]ヘプタ-2-イル基または2-インダニル基が挙げられる。

R_2 としては、C₁～C₄の直鎖または分岐鎖アルキル基（例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基等）が挙げられ、好ましくはメチル基またはエチル基、更に好ましくはメチル基が挙げられる。

R_3 としては、C₁～C₅の直鎖もしくは分岐鎖アルキル基（例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基等）が挙げられ、これらは置換基（例えばハロゲン原子；水酸基；ニトロ基；シアノ基；アミノ基；カルボキシリル基；シクロアルキル基；ハロアルキル基；カルバモイル基；アルコキシ基；アルキルカルボニル基；酸素原子、窒素原子、硫黄原子の中から選ばれた1個以上のヘテロ原子を含有してもよいアリール基等）を有していてもよく、置換基を有するC₁～C₅のアルキル基としては、例えばベンジル基、フェネチル基、3-フェニルプロピル基、4-フェニルブチル基、5-フェニルペンチル基、1-ナフチルメチル基、2-ナフチルメチル基、2-ピリジルメチル基、3-ピリジルメチル基、4-ピリジルメチル基、フリルメチル基、チアゾリルメチル基、2-キノリルメチル基等が挙げられる。更にR₃としては、水素原子、C₃～C₇のシクロアルキル基（シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシリル基、シクロヘプチル基等）またはアシル基（例えばフォルミル基、アセチル基、プロピオニル

基、ベンゾイル基等)が挙げられる。R₃として好ましくは、水素原子; C₁～C₅のアルキル基; C₃～C₇のシクロアルキル基または酸素原子、窒素原子、硫黄原子の中から選ばれた1個以上のヘテロ原子を含有してもよいアリール基を置換基として有してもよいC₁～C₂のアルキル基が挙げられ、更に好ましくは水素原子、メチル基、プロピル基、ペンチル基、シクロペンチル基、2-ピリジルメチル基、3-ピリジルメチル基、4-ピリジルメチル基、ベンジル基、2-キノリルメチル基、1-ナフチルメチル基、2-ナフチルメチル基またはアセチル基が挙げられる。

R₄としては水素原子、C₁～C₅の直鎖もしくは分岐鎖アルキル基(メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、t-ブチル基、ペンチル基等)が挙げられ、これらは置換基(ハロゲン原子; 水酸基; ニトロ基; シアノ基; アミノ基; カルボキシル基; シクロアルキル基; ハロアルキル基; カルバモイル基; アルコキシ基; アルキルカルボニル基; 酸素原子、窒素原子、硫黄原子の中から選ばれた1個以上のヘテロ原子を含有してもよいアリール基等)を有していてもよい。さらにR₄としては、ハロゲン原子(塩素原子、臭素原子、ヨウ素原子等)、下記一般式 (II) または下記一般式 (III) の基が挙げられる。

上記式 (II) のR₉およびR₁₀としては、それぞれ独立してC₁～C₅の直鎖もしくは分岐鎖アルキル基(例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、

t-ブチル基、ペンチル基等)が挙げられ、上記式(II)の基の具体例としては、1-アゼチジンメチル基、1-ピロリジンメチル基、1-ピペリジンメチル基、1-ホモピペリジンメチル基、1-ピペラジンメチル基、モルフォリノメチル基等が挙げられる。

上記一般式(III)のnは2~6の整数を表し、また一つのCH₂基は酸素原子、窒素原子、硫黄原子の中から選ばれた1個以上のヘテロ原子で置換することができる。R₄として好ましくは、水素原子、ハロゲン原子、C₁~C₅のアルキル基、ジメチルアミノメチル基、モルフォリノメチル基またはベンジル基が挙げられる。

R₅、R₆、R₇およびR₈としては、それぞれ独立して、水素原子、C₁~C₅の直鎖もしくは分岐鎖アルキル基(例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、*t*-ブチル基、ペンチル基等)またはフェニル基(フェニル基、4-メチルフェニル基、4-クロロフェニル基等)が挙げられ、C₁~C₅のアルキル基およびフェニル基は置換基(例えばハロゲン原子；水酸基；ニトロ基；シアノ基；アミノ基；カルボキシル基；アルキル基；シクロアルキル基；ハロアルキル基；カルバモイル基；アルコキシ基；アルキルカルボニル基；酸素原子、窒素原子、硫黄原子の中から選ばれた1個以上のヘテロ原子を含有してもよいアリール基等)を有していてもよい。R₅、R₆、R₇およびR₈として好ましくは、水素原子またはメチル基が挙げられる。

Xは-(CR₁₁R₁₂)_n-(式中、R₁₁およびR₁₂はそれぞれ独立して水素原子、置換基を有してもよいC₁~C₅のアルキル基、置換基を有してもよいフェニル基を表し、nは0~2の整数を表す)または、-NR₁₃-(式中、R₁₃は水素原子、C₁~C₅の直鎖もしくは分岐鎖アルキル基(例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、*t*-ブチル基

、ペンチル基等)が挙げられ、置換基(例えばハロゲン原子;水酸基;ニトロ基;シアノ基;アミノ基;カルボキシル基;シクロアルキル基;ハロアルキル基;カルバモイル基;アルコキシ基;アルキルカルボニル基;酸素原子、窒素原子、硫黄原子の中から選ばれた1個以上のヘテロ原子を含有してもよいアリール基等)を有してもよく、置換基を有するアルキル基の例としては、ベンジル基、フェネチル基、3-フェニルプロピル基、4-フェニルブチル基、5-フェニルペンチル基、ピリジルメチル基、フリルメチル基、チアゾリルメチル基が挙げられる。Xとして好ましくは、-(C_nR₁₁R₁₂)_nとしてnが0または1(nが1の場合、R₁₁およびR₁₂として好ましくはそれぞれ独立して水素原子、メチル基)の場合、もしくは-NR₁₃-としてR₁₃が水素原子、C₁~C₃アルキル基またはベンジル基の場合が挙げられる。

上記式(I)で表される具体的な化合物としては、後述の実施例で製造される化合物が挙げられる。

上記一般式(I)の化合物は不齊炭素原子を有しているものもあり、これらは光学異性体が存在する。この光学異性体も本発明に含まれる。また上記一般式(I)の化合物およびその光学異性体の塩も本発明に含まれ、その塩としては、薬理学的に許容され得る塩が好ましく、例えば塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、リン酸塩等の無機酸塩、およびシュウ酸塩、マレイイン酸塩、フマル酸塩、乳酸塩、リンゴ酸塩、クエン酸塩、酒石酸塩、安息香酸塩、メタンスルホン酸塩、p-トルエンスルホン酸塩等の有機酸塩が挙げられる。

さらに、本発明には、上記一般式(I)の化合物、その光学異性体およびそれらの塩の水和物および溶媒和物も含まれ、溶媒和物の溶媒としては、メタノール、エタノール、イソプロパノール、ブタ

ノール、アセトン、酢酸エチル、クロロホルム等が挙げられる。

上記一般式(I)の化合物は、公知の方法(特開昭49-85050号公報)で製造することができる。製造方法の例を下記の反応図にて説明する。

製造方法1

上記反応図中の化合物(VIII)、(IX)および(XI)はいずれも上記一般式(I)の化合物に相当する。

工程①：アニリン誘導体(VI)と1,3-ジオン類(VII)とを脱水縮合することにより、化合物(VIII)を合成する。本反応は、無溶媒または反応を阻害しない溶媒(例えばペンタン、ヘキサン等

の脂肪族炭化水素類；ジクロロメタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類；ベンゼン、トルエン等の芳香族炭化水素類；ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、メタノール、エタノール等のアルコール類；ジメチルホルムアミド等）を用い、反応温度は特に限定されないが、通常室温から反応溶媒の沸点の間で行う。また、場合により、縮合剤（例えば、無水炭酸カリウム、無水炭酸ナトリウム、p-トルエンスルホン酸、塩化カルシウム、酢酸）を添加してもよい。反応溶媒として芳香族炭化水素（ベンゼン、トルエン等）を用いる場合、生成する水を共沸分離しながら行ってもよい。この反応によって得られた化合物は、公知の方法（例えば、結晶化、再結晶、クロマトグラフィー等）で精製される。

工程②：化合物(VIII)のR₄が水素原子の化合物とハロゲン化剤を反応させ、Yがハロゲン原子である化合物(IX)を合成する。ハロゲン化剤としては、例えばN-クロロこはく酸イミド、N-ブロモこはく酸イミド、N-ヨードこはく酸イミドを用い、溶媒は反応を阻害しないようなものであればどのようなものでもよく、例えば、エタノール、メタノール、水等が好ましい。この反応によって得られた化合物は公知の方法（例えば、結晶化、再結晶、クロマトグラフィー等）で精製される。

工程③：特開昭49-85050号公報に記載の製造法に従い、化合物(VIII)のR₄が水素原子の化合物と、アミン類(X)およびホルムアルデヒドより反応系中で生成されるアミノアルコールを反応させ、化合物(XI)を合成する。得られた化合物は、公知の方法（例えば、結晶化、再結晶、クロマトグラフィー等）で精製される。

製造方法2

上記反応図中の化合物 (XIV) および (XV) は上記一般式 (I)
の化合物に相当する。

工程④：先に記した工程①と同様の方法により、化合物 (XII)
と化合物 (VII) から化合物 (XIII) へと変換する。

工程⑤：化合物 (XIII) のヒドロキシ基をアルキル化し、化合物
(XIV) を合成する。アルキル化の方法としては、塩基（例えば炭
酸カリウム、水素化ナトリウム等）存在下、ハロゲン化アルキル
(R₁-Z)（式中、Zはハロゲン原子を示す）を反応させる方法や
アルコール誘導体 (R₁-OH) を光延反応により脱水縮合する方
法等が挙げられる。

工程⑥：化合物 (XIV) にさらに水素化ナトリウム等の塩基の存

在下、ハロゲン化アルキル ($R_3 - Z$) (式中、Zはハロゲン原子を示す) を反応させると、化合物 (XV) が得られる。

製造方法 1 および製造方法 2において用いられる出発物質は、市販の化合物が使用できるが、1, 3-ジオン類は、公知の方法 (特開昭 59-25392 号公報、特開昭 61-57583 号公報、米国特許 3671589) により製造することもできる。

本発明化合物を治療剤として用いる場合、単独または薬学的に可能な担体と複合して投与する。その組成は、化合物の溶解度、化学的性質、投与経路、投与計画等によって決定される。

例えば、顆粒剤、散剤、錠剤、丸剤、硬カプセル剤、軟カプセル剤、シロップ剤、乳剤、懸濁剤または液剤等の剤型にして、経口投与してもよいし、注射剤 (静脈内、筋肉内、皮下)、軟膏剤、坐剤、エアゾール剤等の非経口投与してもよい。また、注射用の粉末にして用時調製して使用してもよい。経口、経腸、非経口もしくは局所投与に適した医薬用の有機または無機の固体または液体の担体もしくは希釈剤を本発明化合物と共に用いることができる。例えば、経口剤の場合には乳糖、ブドウ糖、コーンスターク、ショ糖等の賦形剤、カルボキシメチルセルロースカルシウム、ヒドロキシプロピルセルロース等の崩壊剤、ステアリン酸カルシウム、ステアリン酸マグネシウム、タルク、ポリエチレングリコール、硬化油等の滑沢剤、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール、ゼラチン、アラビアゴム等の湿潤剤、その他必要に応じて界面活性剤、矯味剤等を使用して所望の投与剤型に調製することができる。

また、非経口剤の場合には、水、エタノール、グリセリン、プロピレングリコール、ポリエチレングリコール、寒天、トラガントガム等の希釈剤を用いて、必要に応じて溶解補助剤、緩衝剤、保存剤

、香料、着色剤等を使用することができる。製剤の調製法は常法によればよい。

臨床投与量は、経口投与により用いる場合には、成人に対し本発明の化合物として、一般には、1日量0.01～1000mgであり、好ましくは0.01～100mgであるが、年令、病状、症状、同時投与の有無等により適宜増減することが更に好ましい。前記1日量の薬剤（本発明化合物）は、1日1回、または適当間隔をおいて1日に2もしくは3回に分けて投与してもよいし、間欠投与してもよい。また、注射剤として用いる場合には、成人に対し本発明の化合物として、1回量0.001～100mgを連続投与または間欠投与することが好ましい。また、外皮用剤として用いる場合には、成人に対して本発明の化合物を0.01～1.0%含む基剤を1日1～数回患部に塗布するが、年令、病状、症状、同時投与の有無等により適宜増減することが好ましい。

以下に、本発明を実施例および試験例により具体的に説明するが、本発明の範囲をこれらの実施例および試験例に限定されるものでないことはいうまでもない。

実施例

実施例 1

3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2

-シクロペンテン-1-オン（表1の化合物No. 1）の合成

(1) 3-シクロペンチルオキシ-4-メトキシニトロベンゼンの

合成

2-メトキシ-5-ニトロフェノール10.00g(59ミリモル)、プロモシクロペンタン11.01g(74ミリモル)、炭酸カリウム10.21g(74ミリモル)およびヨウ化カリウム0.

9.8 g を N, N-ジメチルホルムアミド 50 ml 中で一晩室温攪拌する。この溶液を塩化メチレン 200 ml で希釈し、水で洗浄する。有機溶液を無水硫酸マグネシウムで乾燥し、減圧下で溶媒を除去し、黄色固体の残渣を得る。この残渣をフラッシュクロマトグラフィー (SiO₂ : 40% 酢酸エチル / ヘキサンから 45% 酢酸エチル / ヘキサンの範囲のグラジェントで溶出) により精製し、真空下にて溶媒を除去・乾燥し、黄色固体の 3-シクロペンチルオキシー-4-メトキシニトロベンゼン 12.52 g (収率 89.3%) を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.64 - 1.68 (2H, m), 1.83 - 1.92 (4H, m), 1.99 - 2.05 (2H, m), 3.95 (3H, s), 4.85 (1H, m), 6.89 (1H, d, J = 8.79 Hz), 7.74 (1H, d, J = 2.44 Hz), 7.88 (1H, dd, J = 8.79, 2.44 Hz)

(2) 3-シクロペンチルオキシー-4-メトキシアニリンの合成

3-シクロペンチルオキシー-4-メトキシニトロベンゼン 1.50 g (6.32 ミリモル) をメタノール 20 ml と塩化メチレン 4 ml の混合液に溶解し、この溶液に 10% Pd/C 150 mg を添加し、水素気流下 (4.0 kgf/cm² に加圧する) 1 時間激しく攪拌する。次いで、反応液の不溶物を除去するために濾過を行い、得られた濾液を減圧下、溶媒を留去し、褐色油状の粗生成物 1.31 g を得る。ここで得られた粗生成物は、精製せずとも十分な純度であるため、このまま次反応に用いることができる。

¹H-NMR (400 MHz, CDCl₃) δ 1.55 - 1.63 (2H, m), 1.80 - 1.92 (6H, m), 3.41 (2H, broad s), 3.77 (3H, s), 4.72 (1

H, m)、6.22 (1H, dd, J = 8.30, 2.44 Hz)、6.31 (1H, d, J = 2.44 Hz)、6.70 (1H, d, J = 8.30 Hz)

(3) 3-(3-シクロペンチルオキシ-4-メトキシアニリノ)

-2-シクロペンテン-1-オンの合成

3-シクロペンチルオキシ-4-メトキシアニリン 1.04 g (5.02 ミリモル)、1,3-シクロペンタンジオン 0.51 g (5.02 ミリモル) およびパラトルエンスルホン酸 0.03 g をベンゼン 3.0 ml に溶解し、水分離管を装着した装置で、生成する水を共沸除去しながら 3 時間還流する。反応後、室温に戻し、析出してくる黄色結晶を吸引濾取し、結晶をジエチルエーテルで洗浄後、真空下で乾燥し、淡黄色結晶の標記化合物 1.16 g (収率 80.4%)を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.52-1.63 (2H, m)、1.81-1.96 (6H, m)、2.47 (2H, m)、2.73 (2H, m)、3.84 (3H, s)、4.72 (1H, m)、5.46 (1H, s)、6.41 (1H, broad s)、6.67 (1H, dd, J = 8.30, 2.44 Hz)、6.73 (1H, d, J = 2.44 Hz)、6.82 (1H, d, J = 8.30 Hz)

実施例 2

3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2-シクロヘキセン-1-オン (表1の化合物No. 2) の合成

実施例 1 (2) で製造される 3-シクロペンチルオキシ-4-メトキシアニリン 0.98 g (4.73 ミリモル) と 1,3-シクロヘキサンジオン 0.53 g (4.73 ミリモル) をベンゼン 5.0 ml に溶解し、実施例 1 (3) と同様の操作を行い、黄色固体の標記

化合物 1. 25 g (収率 87.9%) を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.55-1.96 (8H, m)、2.03 (2H, m, J = 6.35 Hz)、2.35 (2H, t, J = 6.35 Hz)、2.48 (2H, t, J = 6.35 Hz)、3.83 (3H, s)、4.71 (1H, m)、5.43 (1H, s)、6.17 (1H, broad s)、6.67-6.69 (2H, m)、6.80 (1H, m)

実施例 3

3-(3-シクロペニチルオキシ-4-メトキシアニリノ)-5, 5-ジメチル-2-シクロヘキセン-1-オン (表 1 の化合物 N_{o.} 3) の合成

実施例 1 (2) で製造される 3-シクロペニチルオキシ-4-メトキシアニリン 0.91 g (4.40 ミリモル)、ジメドン 0.62 g (4.40 ミリモル) をベンゼン 30 mL に溶解し、実施例 1 (3) と同様の装置で 5 時間還流する。反応後、ベンゼンを減圧除去し、褐色油状の残渣を得る。この残渣をフラッシュクロマトグラフィー (SiO₂: 2% メタノール/塩化メチレンから 4% メタノール/塩化メチレンの範囲のグラジェントで溶出) により精製する。真空下にて溶媒を除去・乾燥し、黄色固体の標記化合物 0.98 g (収率 67.6%) を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.11 (6H, s)、1.52-1.66 (2H, m)、1.74-2.00 (6H, m)、2.21 (2H, s)、2.31 (2H, s)、3.83 (3H, s)、4.72 (1H, m)、5.43 (1H, s)、6.09 (1H, broad s)、6.68-6.70 (2H, m)、6.80 (1H, m)

実施例 4

3 - (3 - シクロペンチルオキシ - 4 - メトキシアニリノ) - 2
- メチル - 2 - シクロペンテン - 1 - オン (表 1 の化合物 No. 4
) の合成

実施例 1 (2) で製造される 3 - シクロペンチルオキシ - 4 - メトキシアニリン 0.91 g (4.40 ミリモル)、2 - メチル - 1, 3 - シクロペンタンジオン 0.49 g (4.40 ミリモル) およびパラトルエンスルホン酸 0.02 g をベンゼン 50 ml に溶解し、後の操作は実施例 1 (3) に準じて行い、黒色油状の標記化合物 1.27 g (収率 96.2%) を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.68 (3 H, s)、1.61 - 1.96 (8 H, m)、2.38 - 2.40 (2 H, m)、2.56 (2 H, m)、3.86 (3 H, s)、4.75 (1 H, m)、6.53 (1 H, broad s)、6.69 - 6.72 (2 H, m)、6.82 - 6.84 (1 H, m)

実施例 5

3 - (3 - シクロペンチルオキシ - 4 - メトキシアニリノ) - 5
- メチル - 2 - シクロヘキセン - 1 - オン (表 1 の化合物 No. 5
) の合成

実施例 1 (2) で製造される 3 - シクロペンチルオキシ - 4 - メトキシアニリン 0.83 g (4.01 ミリモル)、5 - メチル - 1, 3 - シクロヘキサンジオン 0.51 g (4.01 ミリモル) を用い、実施例 1 (3) と同様の方法により、淡黄色固体の標記化合物 1.12 g (収率 88.2%) を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.08 (3 H, d, J = 5.86 Hz)、1.55 - 1.61 (2 H, m)、1.77 - 1.96 (6 H, m)、2.00 - 2.08 (1 H, m)、2.22 - 2.31 (2 H, m)、2.36 - 2.42 (2 H)

, m)、3.82 (3 H, s)、4.70 (1 H, m)、5.41
 (1 H, s)、6.37 (1 H, broad s)、6.66-6
 . 68 (2 H, m)、6.78-6.80 (2 H, m)

実施例 6

2-クロロ-3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オン(表1の化合物No. 6)の合成

実施例1(3)で製造される3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オン0.49 g (1.69ミリモル)のエタノール-水(9:1)溶液5mLにN-クロロコハク酸イミド0.25 g (1.86ミリモル)を加え、室温で1.5時間攪拌する。反応後、減圧下溶媒を留去し、次いで得られた残渣を酢酸エチル100mLで希釈し、この溶液を飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄する。有機溶液を無水硫酸マグネシウムで乾燥し、減圧下で溶媒を除去し、黒色油状の粗生成物を得る。ここで得られた粗生成物をフラッシュクロマトグラフィーにより精製する。真空下にて溶媒を除去・乾燥し、淡桃色固体の標記化合物0.45 g (収率82.5%)を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.53-1
 . 72 (2 H, m)、1.92-2.10 (6 H, m)、2.48
 (2 H, m)、2.68 (2 H, m)、3.90 (3 H, s)、4
 . 86 (1 H, m)、6.74-6.75 (2 H, m)、6.85
 (1 H, d, J = 8.30 Hz)、7.25 (1 H, broad
 s)

実施例 7

2-ブロモ-3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オン(表1の化合物No. 7)

) の合成

実施例 6 と同様の手法を用い、N-クロロコハク酸イミドのかわりに N-ブロモコハク酸イミドを使用し、灰色固体の標記化合物（収率 61.0 %）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.55-1.72 (2H, m)、1.74-2.05 (6H, m)、2.51 (2H, m)、2.69 (2H, m)、3.86 (3H, s)、4.76 (1H, m)、6.75-6.77 (2H, m)、6.86 (1H, d, J = 7.81 Hz)、7.28 (1H, broad s)

実施例 8

3-[3-[rel (1R, 2R, 4S)-ビシクロ[2.2.1]ヘプタ-2-イルオキシ]-4-メトキシアニリノ]-2-シクロペンテン-1-オン（表1の化合物No. 8）の合成

(1) 3-[rel (1R, 2R, 4S)-ビシクロ[2.2.1]ヘプタ-2-イルオキシ]-4-メトキシニトロベンゼンの合成

2-メトキシ-5-ニトロフェノール 1.50 g (8.87 ミリモル)、rel (1R, 2S, 4S)-2-ヒドロキシビシクロ[2.2.1]ヘプタン 1.04 g (8.87 ミリモル) およびトリフェニルホスフィン 3.49 g (13.30 ミリモル) を乾燥テトラヒドロフラン 50 mL に溶解し、この溶液にジエチル アゾジカルボキシレート 2.32 g (13.30 ミリモル) を注意深く滴下する。反応液を 22 時間還流した後、ジエチルエーテル 100 mL を加えて希釈し、水酸化ナトリウム、水で順次洗浄する。有機溶液を無水硫酸マグネシウムで乾燥し、減圧下で溶媒を除去し、褐色油状の残渣を得る。この残渣をフラッシュクロマトグラフィー (SiO₂ : 50%ヘキサン / 塩化メチレンで溶出) により精製する。真空

下にて溶媒を除去・乾燥し、黄色固体の 3 - [rel (1 R, 2 R, 4 S) - ビシクロ [2. 2. 1] ヘプタ - 2 - イルオキシ] - 4 - メトキシニトロベンゼン 2. 04 g (収率 87. 2 %) を得る。

¹ H - NMR (400 MHz, CDCl₃) δ 1. 18 - 1. 26 (3H, m)、1. 49 - 1. 65 (3H, m)、1. 73 (1H, m)、1. 83 - 1. 88 (1H, m)、2. 36 (1H, m)、2. 54 (1H, m)、3. 94 (3H, s)、4. 27 (1H, m)、6. 88 (1H, d, J = 8. 79 Hz)、7. 69 (1H, d, J = 2. 44 Hz)、7. 87 (1H, dd, J = 8. 79, 2. 44 Hz)

(2) 3 - [rel (1 R, 2 R, 4 S) - ビシクロ [2. 2. 1] ヘプタ - 2 - イルオキシ] - 4 - メトキシアニリンの合成

実施例 1. (2) と同様の手法を用い、3 - シクロペンチルオキシ - 4 - メトキシニトロベンゼンのかわりに、3 - [rel (1 R, 2 R, 4 S) - ビシクロ [2. 2. 1] ヘプタ - 2 - イルオキシ] - 4 - メトキシニトロベンゼンを使用し、紫色油状の 3 - [rel (1 R, 2 R, 4 S) - ビシクロ [2. 2. 1] ヘプタ - 2 - イルオキシ] - 4 - メトキシアニリンを得る。

¹ H - NMR (400 MHz, CDCl₃) δ 1. 08 - 1. 19 (3H, m)、1. 43 - 1. 65 (3H, m)、1. 71 - 1. 76 (2H, m)、2. 31 (1H, m)、2. 50 (1H, m)、2. 55 - 2. 56 (2H, m)、3. 76 (3H, s)、4. 13 (1H, m)、6. 21 (1H, dd, J = 8. 30, 2. 44 Hz)、6. 28 (1H, d, J = 2. 44 Hz)、6. 70 (1H, d, J = 8. 30 Hz)

(3) 3 - [3 - [rel (1 R, 2 R, 4 S) - ビシクロ [2. 2. 1] ヘプタ - 2 - イルオキシ] - 4 - メトキシアニリノ] - 2 -

シクロペンテン-1-オンの合成

実施例1(3)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、3-[rel (1R, 2R, 4S)-ビシクロ[2.2.1]ヘプタ-2-イルオキシ]-4-メトキシアニリンを使用し、黄色固体の標記化合物（収率85.0%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.12-1.22 (3H, m), 1.49-1.62 (3H, m), 1.74 (2H, m), 2.33 (1H, m), 2.46-2.50 (3H, m), 2.71-2.74 (2H, m), 3.84 (3H, s), 4.14 (1H, m), 5.45 (1H, s), 6.47 (1H, broad s), 6.66-6.68 (2H, m), 6.82 (1H, d, J = 8.30 Hz)

実施例9

3-[3-(2-インダニルオキシ)-4-メトキシアニリノ]-2-シクロペンテン-1-オン（表1の化合物No. 9）の合成
(1) 3-(2-インダニルオキシ)-4-メトキシニトロベンゼンの合成

2-メトキシ-5-ニトロフェノール10.00g (59.12ミリモル)、2-インダノール7.93g (59.12ミリモル)およびトリフェニルホスフィン18.60g (70.94ミリモル)を乾燥テトラヒドロフラン250mLに溶解し、この溶液にジエチルアゾジカルボキシレート12.36g (70.94ミリモル)を室温にて注意深く滴下する。室温で一晩攪拌した後、この溶液をジエチルエーテル250mLを加えて希釈し、水酸化ナトリウム水溶液、水で順次洗浄する。有機溶液を無水硫酸マグネシウムで乾燥し、減圧下で溶媒を除去し、淡黄色固体の残渣を得る。この残渣

をフラッシュクロマトグラフィー (SiO_2 : 50%ヘキサン／塩化メチレンで溶出) により精製する。真空下にて溶媒を除去・乾燥し、淡黄色固体の 3-(2-インダニルオキシ)-4-メトキシニトロベンゼン 12.65 g (収率 75.0%) を得る。

$^1\text{H-NMR}$ (400 MHz, CDCl_3) δ 3.26 (2 H, dd, $J = 17.09, 3.42 \text{ Hz}$)、3.48 (2 H, dd, $J = 17.09, 6.83 \text{ Hz}$)、3.91 (3 H, s)、5.26 (1 H, m)、6.90 (1 H, d, $J = 8.79 \text{ Hz}$)、7.19 - 7.29 (4 H, m)、7.81 (1 H, d, $J = 2.44 \text{ Hz}$)、7.93 (1 H, dd, $J = 8.79, 2.44 \text{ Hz}$)

(2) 3-(2-インダニルオキシ)-4-メトキシアニリンの合成

実施例 1 (2) と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシニトロベンゼンのかわりに、3-(2-インダニルオキシ)-4-メトキシニトロベンゼンを使用し、紫色油状の 3-(2-インダニルオキシ)-4-メトキシアニリンを得る。

$^1\text{H-NMR}$ (400 MHz, CDCl_3) δ 3.23 (2 H, dd, $J = 16.60, 3.90 \text{ Hz}$)、3.35 (2 H, dd, $J = 16.60, 6.35 \text{ Hz}$)、3.72 (3 H, s)、5.15 (1 H, m)、6.27 (1 H, dd, $J = 8.30, 2.44 \text{ Hz}$)、6.37 (1 H, d, $J = 2.44 \text{ Hz}$)、6.73 (1 H, d, $J = 8.30 \text{ Hz}$)、7.15 - 7.24 (4 H, m)

(3) 3-[3-(2-インダニルオキシ)-4-メトキシアニリノ]-2-シクロペンテン-1-オンの合成

実施例 1 (3) と同様の手法を用い、3-シクロペンチルオキシ

-4-メトキシアニリンのかわりに、3-(2-インダニルオキシ)-4-メトキシアニリンを使用し、無色固体の標記化合物0.53 g (収率85.1%)を得る。

¹H-NMR (400MHz, CDCl₃) δ 2.46-2.49 (2H, m)、2.72-2.75 (2H, m)、3.23 (2H, dd, J=16.60, 6.35Hz)、3.38 (2H, dd, J=16.60, 6.35Hz)、3.81 (3H, s)、5.14 (1H, m)、5.47 (1H, s)、6.54 (1H, broad s)、6.74 (1H, dd, J=8.30, 2.44Hz)、6.79 (1H, d, J=2.44Hz)、6.85 (1H, d, J=8.30Hz)、7.17-7.25 (4H, m)

実施例10

3-[3-(2-インダニルオキシ)-4-メトキシアニリノ]-2-メチル-2-シクロペンテン-1-オン (表1の化合物No.10) の合成

実施例9(2)で製造される3-(2-インダニルオキシ)-4-メトキシアニリン2.68 g (10.52ミリモル)、2-メチル-1,3-シクロペンタンジオン1.18 g (10.52ミリモル) およびパラトルエンスルホン酸0.07 g をトルエン130mLに溶解し、20時間還流する。反応後、溶媒を減圧留去し、得られた残渣を塩化メチレン100mLで希釈し、この有機溶液を水で洗浄する。次いで溶液を無水硫酸ナトリウムで乾燥した後、減圧下溶媒を留去し、黒褐色油状の残渣を得る。この残渣をフラッシュクロマトグラフィー(SiO₂:2%メタノール/塩化メチレンで溶出)で精製し、真空下で溶媒を留去・乾燥し、褐色固体の標記化合物3.60 g (収率98.2%)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 1.68 (3H, s)、2.38-2.41 (2H, m)、2.57-2.58 (2H, m)、3.23 (2H, dd, J=16.60, 3.42 Hz)、3.38 (2H, dd, J=16.60, 6.83 Hz)、3.81 (3H, s)、5.15 (1H, m)、6.74-6.76 (3H, m)、6.84 (1H, d, J=9.28 Hz)、7.17-7.24 (4H, m)

実施例 1 1

3-(4-メトキシ-3-フェネチルオキシアニリノ)-2-シクロペンテン-1-オン(表1の化合物No. 11)の合成

(1) 4-メトキシ-3-フェネチルオキシニトロベンゼンの合成

実施例9(1)と同様の手法を用い、2-インダノールのかわりに、フェネチルアルコールを使用し、黄色固体の4-メトキシ-3-フェネチルオキシニトロベンゼン(収率100%)を得る。

¹ H-NMR (400MHz, CDCl₃) δ 3.19 (2H, t, J=7.32 Hz)、3.97 (3H, s)、4.28 (2H, t, J=7.32 Hz)、6.90 (1H, d, J=9.28 Hz)、7.27-7.36 (5H, m)、7.73 (1H, d, J=2.93 Hz)、7.91 (1H, dd, J=9.28, 2.93 Hz)

(2) 4-メトキシ-3-フェネチルオキシアニリンの合成

実施例1(2)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシニトロベンゼンのかわりに、4-メトキシ-3-フェネチルオキシニトロベンゼンを使用し、褐色油状の4-メトキシ-3-フェネチルオキシアニリンを得る。

¹ H-NMR (400MHz, CDCl₃) δ 3.15 (2H, t, J=7.33 Hz)、3.77 (3H, s)、4.16 (2H, t, J=7.33 Hz)

2 H, t, J = 7. 33 Hz)、6. 23 (1 H, dd, J = 8. 30, 2. 44 Hz)、6. 30 (1 H, d, J = 2. 44 Hz)、6. 72 (1 H, d, J = 8. 30 Hz)、7. 21 - 7. 33 (5 H, m)

(3) 3-(4-メトキシ-3-フェネチルオキシアニリノ)-2

-シクロペンテン-1-オンの合成

実施例1 (3)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、4-メトキシ-3-フェネチルオキシアニリンを使用し、黄色固体の標記化合物（収率87. 9%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 2. 41 (2 H, m)、2. 69 (2 H, m)、3. 14 (2 H, t, J = 7. 32 Hz)、3. 84 (3 H, s)、4. 14 (2 H, t, J = 7. 32 Hz)、5. 41 (1 H, s)、6. 70 (2 H, m)、6. 82 (1 H, d, J = 7. 81 Hz)、7. 22 - 7. 32 (5 H, m)

実施例12

3-(4-メトキシ-3-フェネチルオキシアニリノ)-2-メチル-2-シクロペンテン-1-オン（表1の化合物No. 12）の合成

実施例4と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、実施例11(2)で製造される4-メトキシ-3-フェネチルオキシアニリンを使用し、茶色固体の標記化合物（収率74. 2%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1. 64 (3 H, s)、2. 35 (2 H, m)、2. 51 (2 H, m)、3. 16 (1 H, t, J = 7. 32 Hz)、3. 87 (3 H, s)、4.

1.8 (1H, t, J = 7.32 Hz)、6.67 (1H, d, J = 2.44 Hz)、6.72 (1H, dd, J = 8.79, 2.44 Hz)、6.61 - 6.77 (1H, broad)、6.84 (1H, d, J = 8.79 Hz)、7.23 - 7.33 (5H, m)

実施例 1 3

3-(3-シクロヘキシルオキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オン(表1の化合物No. 13)の合成

(1) 3-シクロヘキシルオキシ-4-メトキシニトロベンゼンの合成

実施例9(1)と同様の手法を用い、2-インダノールのかわりに、シクロヘキサノールを使用し、黄色固体の3-シクロヘキシルオキシ-4-メトキシニトロベンゼン(収率49.2%)を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.39 - 1.43 (3H, m)、1.56 - 1.64 (3H, m)、1.83 - 1.87 (2H, m)、2.04 - 2.07 (2H, m)、3.95 (3H, s)、4.32 (1H, m)、6.91 (1H, d, J = 8.79 Hz)、7.76 (1H, d, J = 2.44 Hz)、7.89 (1H, dd, J = 8.79, 2.44 Hz)

(2) 3-シクロヘキシルオキシ-4-メトキシアニリンの合成

実施例1(2)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシニトロベンゼンのかわりに、3-シクロヘキシルオキシ-4-メトキシニトロベンゼンを使用し、褐色油状の3-シクロヘキシルオキシ-4-メトキシアニリンを得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.25 - 1.37 (3H, m)、1.50 - 1.58 (3H, m)、1.80 (2H, m)、2.01 (2H, m)、3.41 (2H, broad s)、3.77 (3H, s)、4.13 (1H, m)、6.2

4 (1 H, dd, J = 8.30, 2.44 Hz)、6.35 (1 H, d, J = 2.44 Hz)、6.71 (1 H, d, J = 8.30 Hz)

(3) 3-(3-シクロヘキシルオキシ-4-メトキシアニリノ)

-2-シクロペンテン-1-オンの合成

実施例 1 (3) と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、3-シクロヘキシルオキシ-4-メトキシアニリンを使用し、黄色固体の標記化合物（収率 65.1%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.31-1.36 (3H, m)、1.53-1.60 (3H, m)、1.80 (2H, m)、2.00 (2H, m)、2.46 (2H, m)、2.72 (2H, m)、3.85 (3H, s)、4.16 (1H, m)、5.44 (1H, s)、6.56 (1H, broad s)、6.71 (1H, dd, J = 8.79, 1.96 Hz)、6.76 (1H, d, J = 1.96 Hz)、6.84 (1H, d, J = 8.79 Hz)

実施例 14

3-(3-シクロヘキシルオキシ-4-メトキシアニリノ)-2-メチル-2-シクロペンテン-1-オン（表1の化合物No. 1

4) の合成

実施例 4 と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、実施例 1 3 (2) で製造される3-シクロヘキシルオキシ-4-メトキシアニリンを使用し、茶色固体の標記化合物（収率 86.0%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.26-1.37 (3H, m)、1.56-1.61 (3H, m)、1.68

(3 H, s)、1.82 (2 H, m)、2.00 - 2.05 (2 H, m)、2.38 - 2.41 (2 H, m)、2.55 (2 H, m)、3.86 (3 H, s)、4.18 (1 H, m)、6.45 (1 H, broad s)、6.71 - 6.73 (2 H, m)、6.84 (1 H, d, J = 9.28 Hz)

実施例 15

3-(3-シクロプロピルメトキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オン(表1の化合物No. 15)の合成
(1) 3-シクロプロピルメトキシ-4-メトキシニトロベンゼンの合成

実施例 9 (1) と同様の手法を用い、2-インダノールのかわりに、シクロプロピルカルビノールを使用し、淡黄色固体の3-シクロプロピルメトキシ-4-メトキシニトロベンゼン(収率89.0%)を得る。

¹H-NMR (400 MHz, CDCl₃) δ 0.40 (2 H, m)、0.70 (2 H, m)、1.36 (1 H, m)、3.93 (2 H, d, J = 7.33 Hz)、3.98 (3 H, s)、6.91 (1 H, d, J = 8.79 Hz)、7.73 (1 H, d, J = 2.44 Hz)、7.90 (1 H, dd, J = 8.79, 2.44 Hz)

(2) 3-シクロプロピルメトキシ-4-メトキシアニリンの合成

実施例 1 (2) と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシニトロベンゼンのかわりに、3-シクロプロピルメトキシ-4-メトキシニトロベンゼンを使用し、紫色油状の3-シクロプロピルメトキシ-4-メトキシアニリンを得る。

¹H-NMR (400 MHz, CDCl₃) δ 0.32 (2 H, m)、0.62 (2 H, m)、1.30 (1 H, m)、3.7

6 (2 H, d, J = 7. 33 Hz)、3. 79 (3 H, s)、3. 96 (2 H, broad s)、6. 25 (1 H, dd, J = 8. 30, 2. 44 Hz)、6. 32 (1 H, d, J = 2. 44 Hz)、6. 69 (1 H, d, J = 8. 30 Hz)

(3) 3-(3-シクロプロピルメトキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オンの合成

実施例 1 (3) と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、3-シクロプロピルメトキシ-4-メトキシアニリンを使用し、淡黄色固体の標記化合物（収率 81. 1%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 0. 35 (2 H, m)、0. 65 (2 H, m)、1. 32 (1 H, m)、2. 46 (2 H, m)、2. 73 (2 H, m)、3. 80 (2 H, d, J = 6. 84 Hz)、3. 87 (3 H, s)、5. 44 (1 H, s)、6. 70 (1 H, dd, J = 8. 30, 2. 44 Hz)、6. 74 (1 H, d, J = 2. 44 Hz)、6. 76-6. 88 (1 H, broad s)、6. 83 (1 H, d, J = 8. 30 Hz)

実施例 16

3-(3-シクロプロピルメトキシ-4-メトキシアニリノ)-2-メチル-2-シクロペンテン-1-オン（表1の化合物No. 16）の合成

実施例 4 と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、実施例 15 (2) で製造される3-シクロプロピルメトキシ-4-メトキシアニリンを使用し、黒色固体の標記化合物（収率 94. 4%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 0. 35-0. 38 (2 H, m)、0. 64-0. 69 (2 H, m)、1. 34

(1 H, m)、1.67 (3 H, s)、2.38 - 2.40 (2 H, m)、2.55 (2 H, m)、3.84 (2 H, d, J = 7.32 Hz)、3.89 (3 H, s)、6.43 (1 H, broad s)、6.69 (1 H, d, J = 2.44 Hz)、6.73 (1 H, dd, J = 8.30, 2.44 Hz)、6.85 (1 H, d, J = 8.30 Hz)

実施例 17

3-(3-ブトキシ-4-メトキシアニリノ)-2-シクロペン
テン-1-オン (表1の化合物No. 17) の合成

(1) 3-ブトキシ-4-メトキシニトロベンゼンの合成

実施例1(1)と同様の手法を用い、プロモシクロペンタンのかわりに、ヨウ化ブチルを用い、黄色固体の3-ブトキシ-4-メトキシニトロベンゼン(収率100%)を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.00 (3 H, t, J = 7.33 Hz)、1.52 (2 H, m)、1.87 (2 H, m)、3.97 (3 H, s)、4.09 (2 H, t, J = 6.83 Hz)、6.90 (1 H, d, J = 8.79 Hz)、7.74 (1 H, d, J = 2.93 Hz)、7.90 (1 H, dd, J = 8.79, 2.93 Hz)

(2) 3-ブトキシ-4-メトキシアニリンの合成

実施例1(2)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシニトロベンゼンのかわりに、3-ブトキシ-4-メトキシニトロベンゼンを使用し、紫色油状の3-ブトキシ-4-メトキシアニリンを得る。

¹H-NMR (400 MHz, CDCl₃) δ 0.96 (3 H, t, J = 7.32 Hz)、1.48 (2 H, m)、1.80 (2 H, m)、3.45 (2 H, broad s)、3.77 (3 H,

, s)、3.94 (2H, t, J = 6.84 Hz)、6.20 (1H, dd, J = 8.30, 2.44 Hz)、6.30 (1H, d, J = 2.44 Hz)、6.69 (1H, d, J = 8.30 Hz)

(3) 3-(3-ブトキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オンの合成

実施例1(3)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、3-ブトキシ-4-メトキシアニリンを使用し、淡黄色固体の標記化合物（収率81.6%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 0.98 (3H, t, J = 7.33 Hz)、1.49 (2H, m)、1.82 (2H, m)、2.45-2.47 (2H, m)、2.71-2.74 (2H, m)、3.97 (2H, t, J = 6.83 Hz)、5.46 (1H, s)、6.69 (1H, dd, J = 8.79, 2.44 Hz)、6.72-6.80 (1H, broad)、6.74 (1H, d, J = 2.44 Hz)、6.83 (1H, d, J = 8.79 Hz)

実施例18

3-(3-ブトキシ-4-メトキシアニリノ)-2-メチル-2-シクロペンテン-1-オン（表1の化合物No. 18）の合成

実施例4と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、実施例17(2)で製造される3-ブトキシ-4-メトキシアニリンを使用し、茶色固体の標記化合物（収率66.2%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 0.98 (3H, t, J = 7.33 Hz)、1.50 (2H, m)、1.67 (3H, s)、1.84 (2H, m)、2.38-2.40 (2H,

m)、2.55 - 2.56 (2H, m)、3.87 (3H, s)、
 4.00 (2H, t, J = 6.83 Hz)、6.51 (1H, br o a d s)、6.70 (1H, d, J = 2.44 Hz)、6.72 (1H, dd, J = 8.30, 2.44 Hz)、6.84 (1H, d, J = 8.30 Hz)

実施例 19

3 - [3 - (2 - インダニルオキシ) - 4 - メトキシアニリノ] - 2 - シクロヘキセン - 1 - オン (表 1 の化合物 N o. 19) の合成

(1) 3 - (3 - ヒドロキシ - 4 - メトキシアニリノ) - 2 - シクロヘキセン - 1 - オンの合成

3 - ヒドロキシ - 4 - メトキシアニリン 1.00 g (7.19 ミリモル)、1, 3 - シクロヘキサンジオン 0.83 g (7.19 ミリモル) およびパラトルエンスルホン酸 50 mg をベンゼン 20 mL 中で 4.5 時間還流する。反応液を室温で一晩放置し、析出した褐色固体を吸引濾取する。結晶をベンゼンで洗浄した後、減圧下乾燥を行い、3 - (3 - ヒドロキシ - 4 - メトキシアニリノ) - 2 - シクロヘキセン - 1 - オン 1.68 g (収率 100 %) を得る。

¹H - NMR (400 MHz, CDCl₃) δ 2.04 (2H, m)、2.36 (2H, t, J = 6.35 Hz)、2.47 (2H, t, J = 6.35 Hz)、3.89 (3H, s)、5.47 (1H, s)、5.65 - 5.90 (2H, broad)、6.67 (1H, dd, J = 8.30, 2.44 Hz)、6.75 (1H, d, J = 2.44 Hz)、6.79 (1H, d, J = 8.30 Hz)

(2) 3 - [3 - (2 - インダニルオキシ) - 4 - メトキシアニリノ] - 2 - シクロヘキセン - 1 - オンの合成

実施例 9 (1) と同様の手法を用い、2-メトキシ-5-ニトロフェノールのかわりに、3-(3-ヒドロキシ-4-メトキシアニリノ)-2-シクロヘキセン-1-オンを使用し、褐色固体の標記化合物（収率 54.4%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 2.02-2.08 (2H, m), 2.37 (2H, t, J = 6.35 Hz), 2.48 (2H, t, J = 6.35 Hz), 3.22 (2H, dd, J = 16.61, 3.91 Hz), 3.36 (2H, dd, J = 16.61, 6.35 Hz), 3.80 (3H, s), 5.14 (1H, m), 5.44 (1H, s), 5.91 (1H, broad s), 6.74-6.76 (2H, m), 6.82-6.84 (1H, m), 7.16-7.19 (2H, m), 7.22-7.25 (2H, m)

実施例 20

3-(3-ベンジルオキシ-4-メトキシアニリノ)-2-シクロヘキセン-1-オン(表1の化合物No. 20)の合成

実施例 19 (2) と同様の手法を用い、2-インダノールのかわりに、ベンジルアルコールを使用し、褐色固体の標記化合物（収率 68.0%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 2.01 (2H, m, J = 6.35 Hz), 2.34 (2H, t, J = 6.35 Hz), 2.42 (2H, t, J = 6.35 Hz), 3.88 (3H, s), 5.11 (2H, s), 5.39 (1H, s), 5.87 (1H, broad s), 6.70 (1H, d, J = 2.44 Hz), 6.74 (1H, dd, J = 8.79, 2.44 Hz), 6.84 (1H, d, J = 8.79 Hz), 7.29-7.43 (5H, m)

実施例 2 1

4 - (3 - シクロペンチルオキシ - 4 - メトキシアニリノ) - 1
, 2, 5, 6 - テトラヒドロピリジン - 2 - オン (表 1 の化合物 N
o. 21) の合成

実施例 1 (2) で製造される 3 - シクロペンチルオキシ - 4 - メトキシアニリン 0. 60 g (2. 89 ミリモル)、2, 4 - ジオキソピペリジン 0. 33 g (2. 89 ミリモル) をベンゼン 15 ml、アセトニトリル 4 ml、メタノール 1 ml の混合溶媒に溶解し、室温にて 24 時間攪拌する。反応後、溶媒を減圧留去し、残渣にエーテルを加え、結晶化を行い、析出する褐色結晶を濾取し、減圧下乾燥し、標記化合物 0. 88 g (収率 100 %) を得る。

¹ H - NMR (400 MHz, CDCl₃) δ 1. 58 - 1. 62 (2H, m)、1. 78 - 1. 93 (6H, m)、2. 51 (2H, t, J = 6. 84 Hz)、3. 44 (2H, ddd, J = 6. 84, 6. 84, 2. 44 Hz)、3. 83 (3H, s)、4. 72 (1H, m)、5. 12 (1H, s)、5. 34 (1H, broad)、5. 83 (1H, broad s)、6. 69 (1H, dd, J = 8. 30, 1. 95 Hz)、6. 71 (1H, d, J = 1. 95 Hz)、6. 80 (1H, d, J = 8. 30 Hz)

実施例 2 2

1 - ベンジル - 4 - (3 - シクロペンチルオキシ - 4 - メトキシアニリノ) - 1, 2, 5, 6 - テトラヒドロピリジン - 2 - オン (表 1 の化合物 N o. 22) の合成

実施例 1 (2) で製造される 3 - シクロペンチルオキシ - 4 - メトキシアニリン 0. 50 g (2. 41 ミリモル)、1 - ベンジル - 2, 4 - ジオキソピペリジン 0. 49 g (2. 41 ミリモル) をベンゼン 20 ml に溶解し、室温で 20 時間攪拌する。反応後、析出

する結晶を濾取し、ベンゼンで洗浄した後、減圧下乾燥し、淡桃色固体の標記化合物 0.76 g (収率 80.6%) を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.55-1.63 (2H, m)、1.81-1.96 (6H, m)、2.46 (2H, t, J = 6.84 Hz)、3.33 (2H, t, J = 6.84 Hz)、3.84 (3H, s)、4.63 (2H, s)、4.74 (1H, m)、5.25 (1H, s)、5.40 (1H, broad s)、6.67-6.71 (2H, m)、6.80 (1H, d, J = 8.30 Hz)、7.28-7.37 (5H, m)

実施例 2 3

4-[3-[3-[rel (1R, 2R, 4S)-ビシクロ[2.2.1]ヘプタ-2-イルオキシ]-4-メトキシアニリノ]-1,2,5,6-テトラヒドロピリジン-2-オン (表1の化合物 No. 23) の合成

実施例 2 1 と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、実施例 8 (2) で製造される 3-[rel (1R, 2R, 4S)-ビシクロ[2.2.1]ヘプタ-2-イルオキシ]-4-メトキシアニリンを使用し、淡褐色固体の標記化合物 (収率 74.3%) を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.12-1.22 (3H, m)、1.49-1.62 (3H, m)、1.73-1.78 (2H, m)、2.33 (1H, m)、2.49-2.53 (3H, m)、3.45-3.50 (2H, m)、3.83 (3H, s)、4.15 (1H, m)、5.05 (1H, broad s)、5.12 (1H, s)、5.52 (1H, broad s)、6.65 (1H, d, J = 2.44 Hz)、6.69 (1H, dd, J = 8.30, 2.44 Hz)、6.81 (1H, d, J =

8. 30 Hz)

実施例 24

3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2- -ジメチルアミノメチル-2-シクロペンテン-1-オン(表1の 化合物No. 24)の合成

ジメチルアミン塩酸塩 0.16 g (1.91 ミリモル) およびホルムアルデヒド 35% 水溶液 0.18 g (2.09 ミリモル) をベンゼン 2 ml に溶解し、この溶液に実施例 1 で得られる 3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オン 0.50 g (1.74 ミリモル) をベンゼン-メタノール (1:2) 溶液 1.5 ml に溶解し、室温にて注意深く滴下する。室温で一晩攪拌した後、減圧下で溶媒を除去し、淡黄色固体の残渣を得る。この残渣をフラッシュクロマトグラフィーにより精製する。真空下にて溶媒を除去、乾燥し無色固体の標記化合物 0.55 g (収率 92.2%) を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.60-1.63 (2H, m)、1.82-1.89 (4H, m)、1.96-1.99 (2H, m)、2.41-2.44 (2H, m)、2.68-2.72 (8H, m)、3.77 (2H, s)、3.84 (3H, s)、4.75-4.78 (1H, m)、6.81 (2H, s)、6.94 (1H, s)

実施例 25

3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2- -(4-モルフォリノメチル)-2-シクロペンテン-1-オン(表1の化合物No. 25)の合成

実施例 24 と同様の手法を用い、ジメチルアミン塩酸塩のかわりに、モルフォリンを使用し、無色固体の標記化合物 (収率 29.2

%)を得る。

¹H-NMR (400MHz, CDCl₃) δ 1.95 (8H, m)、2.40-2.43 (2H, m)、2.51 (4H, broad s)、2.67 (2H, m)、3.37 (2H, s)、3.75 (4H, broad s)、3.85 (3H, s)、4.74-4.76 (1H, m)、6.61-6.63 (2H, m)、6.84 (1H, d, J=8.79Hz)、9.66 (1H, broad s)

実施例26

3-(3-シクロペンチルオキシ-4-メトキシ-N-メチルアニリノ)-2-シクロペンテン-1-オン(表1の化合物No. 26)の合成

実施例1で製造される3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オン0.10g (0.35ミリモル)、水素化ナトリウム(60%)0.02gおよびヨウ化メチル0.06g (0.42ミリモル)をN,N-ジメチルホルムアミド4mLに溶解し室温で一晩攪拌する。反応溶液に水を加え、塩化メチレンで抽出し、抽出液を無水硫酸マグネシウムで乾燥後、減圧下で溶媒を除去し、粗生成物を得る。この粗生成物をフラッシュクロマトグラフィー(SiO₂; 2%メタノール/塩化メチレンで溶出)により精製し、無色固体の標記化合物0.10g(収率93.4%)を得る。

¹H-NMR (400MHz, CDCl₃) δ 1.64 (2H, m)、1.80-1.97 (6H, m)、2.40 (4H, m)、3.30 (3H, s)、3.86 (3H, s)、4.72-4.76 (1H, m)、5.11 (1H, broad s)、6.70 (1H, d, J=1.95Hz)、6.73 (1H,

d d, J = 8. 31, 1. 95 Hz)、6. 86 (1 H, d, J = 8. 31 Hz)

実施例 27

3 - (3 - シクロペンチルオキシ - 4 - メトキシ - N - メチルアニリノ) - 2 - シクロヘキセン - 1 - オン (表 1 の化合物 No. 27) の合成

実施例 26 と同様の手法を用い、3 - (3 - シクロペンチルオキシ - 4 - メトキシアニリノ) - 2 - シクロペンテン - 1 - オンのかわりに、実施例 2 で製造される 3 - (3 - シクロペンチルオキシ - 4 - メトキシアニリノ) - 2 - シクロヘキセン - 1 - オンを使用し、褐色固体の標記化合物（収率 53. 6 %）を得る。

¹ H - NMR (400 MHz, CDCl₃) δ 1. 61 - 1. 64 (2 H, m)、1. 81 - 1. 95 (8 H, m)、2. 21 (2 H, t, J = 6. 35 Hz)、2. 30 (2 H, t, J = 6. 34 Hz)、3. 20 (3 H, s)、3. 86 (3 H, s)、4. 72 - 4. 75 (1 H, m)、5. 30 (1 H, s)、6. 61 (1 H, d, J = 2. 44 Hz)、6. 66 (1 H, dd, J = 8. 30, 2. 44 Hz)、6. 84 (1 H, d, J = 8. 30 Hz)

実施例 28

3 - [3 - シクロペンチルオキシ - 4 - メトキシ - N - (4 - ピリジルメチル) アニリノ] - 2 - シクロペンテン - 1 - オン (表 1 の化合物 No. 28) の合成

実施例 26 と同様の手法を用い、ヨウ化メチルのかわりに、4 - (クロロメチル) ピリジン塩酸塩を使用し、褐色固体の標記化合物（収率 66. 7 %）を得る。

¹ H - NMR (400 MHz, CDCl₃) δ 1. 71 (2 H, m)、1. 75 - 1. 82 (6 H, m)、2. 42 (2 H, b

r o a d s) 、 2 . 5 2 (2 H, b r o a d s) 、 3 . 8 4 (3 H, s) 、 4 . 6 3 - 4 . 6 4 (1 H, m) 、 4 . 7 7 (2 H, s) 、 5 . 1 9 (1 H, b r o a d s) 、 6 . 5 9 (1 H, d, J = 2 . 4 4 H z) 、 6 . 6 9 (1 H, d d, J = 8 . 7 9 , 2 . 4 4 H z) 、 6 . 8 1 (1 H, d, J = 8 . 7 9 H z) 、 7 . 1 7 (2 H, m) 、 8 . 5 8 (2 H, m)

実施例 2 9

3 - (N - アセチル - 3 - シクロペンチルオキシ - 4 - メトキシアニリノ) - 2 - シクロペンテン - 1 - オン (表 1 の化合物 N o .

2 9) の合成

実施例 2 6 と同様の手法を用い、ヨウ化メチルのかわりに、アセチルクロライドを使用し、無色固体の標記化合物（収率 7 7 . 6 %）を得る。

¹ H - NMR (4 0 0 M H z, C D C l₃) δ 1 . 5 9 - 1 . 6 3 (2 H, m) 、 1 . 8 5 - 1 . 9 5 (6 H, m) 、 1 . 9 8 (3 H, s) 、 2 . 3 8 - 2 . 4 0 (2 H, m) 、 2 . 9 7 - 2 . 9 9 (2 H, m) 、 3 . 8 9 (3 H, s) 、 4 . 7 4 (1 H, m) 、 5 . 6 9 (1 H, s) 、 6 . 7 0 (1 H, d, J = 2 . 4 4 H z) 、 6 . 7 6 (1 H, d d, J = 8 . 3 0 , 2 . 4 4 H z) 、 6 . 9 2 (1 H, d, J = 8 . 3 0 H z)

実施例 3 0

3 - (N - ベンジル - 3 - シクロペンチルオキシ - 4 - メトキシアニリノ) - 2 - シクロペンテン - 1 - オン (表 1 の化合物 N o .

3 0) の合成

実施例 2 6 と同様の手法を用い、ヨウ化メチルのかわりに、臭化ベンジルを使用し、褐色油状の標記化合物（収率 8 7 . 9 %）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.56-1.59 (2H, m)、1.73-1.79 (6H, m)、2.40 (4H, broad s)、3.83 (3H, s)、4.58 (1H, m)、4.76 (2H, s)、5.27 (1H, broad s)、6.53 (1H, d, J=2.44 Hz)、6.67 (1H, dd, J=8.30, 2.44 Hz)、6.79 (1H, d, J=8.30 Hz)、7.19-7.32 (5H, m)

実施例 3 1

3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2-エチル-2-シクロペンテン-1-オン (表1の化合物No. 3 1) の合成

実施例 1 (3) と同様の手法を用い、1, 3-シクロペンタンジオンのかわりに、2-エチル-1, 3-シクロペンタンジオンを使用し、褐色固体の標記化合物（収率 94.1%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.05 (3H, t, J=7.33 Hz)、1.61-1.66 (2H, m)、1.82-1.96 (6H, m)、2.22 (2H, q, J=7.33 Hz)、2.36-2.39 (2H, m)、2.55 (2H, t, J=4.88 Hz)、3.86 (3H, s)、4.74-4.77 (1H, m)、6.48 (1H, broad s)、6.69-6.71 (2H, m)、6.83 (1H, d, J=8.79 Hz)

実施例 3 2

2-エチル-3-[3-(2-インダニルオキシ)-4-メトキシアニリノ]-2-シクロペンテン-1-オン (表1の化合物No. 3 2) の合成

実施例 9 と同様の手法を用い、1, 3-シクロペンタンジオンの

かわりに、2-エチル-1, 3-シクロペンタンジオンを使用し、褐色固体の標記化合物（収率 91.5%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.06 (3H, t, J = 7.32 Hz)、2.22 (2H, q, J = 7.32 Hz)、2.38 - 2.41 (2H, m)、2.57 - 2.58 (2H, m)、3.25 (2H, dd, J = 1.6.60, 3.90 Hz)、3.39 (2H, dd, J = 1.6.60, 6.34 Hz)、3.83 (3H, s)、5.16 - 5.20 (1H, m)、6.44 (1H, broad s)、6.74 - 6.77 (2H, m)、6.84 - 6.87 (1H, m)、7.18 - 7.25 (4H, m)

実施例 3 3

2-ベンジル-3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オン（表1の化合物No. 33）の合成

実施例1(3)と同様の手法を用い、1, 3-シクロペンタンジオンのかわりに、2-ベンジル-1, 3-シクロペンタンジオンを使用し、褐色固体の標記化合物（収率 96.5%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.62 - 1.91 (8H, m)、2.44 - 2.47 (2H, m)、2.57 - 2.59 (2H, m)、3.62 (2H, s)、3.81 (3H, s)、4.64 - 4.66 (1H, m)、6.32 (1H, s)、6.40 (1H, d, J = 2.44 Hz)、6.46 (1H, d, J = 8.30, 2.44 Hz)、6.75 (1H, d, J = 8.30 Hz)、7.22 - 7.33 (5H, m)

実施例 3 4

3-[3-[2-(2-インダニル)エトキシ]-4-メトキシ

アニリノ] - 2 - シクロペンテン - 1 - オン (表 1 の化合物 N o.

3 4) の合成

(1) 3 - [2 - (2 - インダニル) エトキシ] - 4 - メトキシニ
トロベンゼンの合成

実施例 9 (1) と同様の手法を用い、2 - インダノールのかわりに、2 - (2 - インダニル) エタノールを使用し、黄色固体の3 - [2 - (2 - インダニル) エトキシ] - 4 - メトキシニトロベンゼン (収率 97. 2 %) を得る。

¹ H - NMR (400 MHz, CDCl₃) δ 2.12 (2 H, q, J = 6.83 Hz)、2.68 - 2.74 (3 H, m)、3.11 - 3.17 (2 H, m)、3.97 (3 H, s)、4.18 (2 H, t, J = 6.83 Hz)、6.91 (1 H, d, J = 9.27 Hz)、7.13 - 7.16 (2 H, m)、7.19 - 7.22 (2 H, m)、7.77 (1 H, d, J = 2.93 Hz)、7.92 (1 H, dd, J = 9.27, 2.93 Hz)

(2) 3 - [3 - [2 - (2 - インダニル) エトキシ] - 4 - メト
キシアニリノ] - 2 - シクロペンテン - 1 - オンの合成

実施例 1 (2) と同様の手法を用い、3 - シクロペンチルオキシ - 4 - メトキシニトロベンゼンのかわりに、3 - [2 - (2 - インダニル) エトキシ] - 4 - メトキシニトロベンゼンを使用し、桃色固体の3 - [2 - (2 - インダニル) エトキシ] - 4 - メトキシアニリンを得る。次いで実施例 1 (3) と同様の手法を用い、3 - シクロペンチルオキシ - 4 - メトキシアニリンのかわりに、3 - [2 - (2 - インダニル) エトキシ] - 4 - メトキシアニリンを使用し、淡褐色固体の標記化合物 (収率 97.7 %) を得る。

¹ H - NMR (400 MHz, CDCl₃) δ 2.08 (2 H, q, J = 6.35 Hz)、2.47 - 2.50 (2 H, m)、

2. 65 - 2. 75 (5 H, m)、3. 09 - 3. 13 (2 H, m)
)、3. 87 (3 H, s)、4. 06 (2 H, t, J = 6. 35 Hz)
)、5. 48 (1 H, s)、6. 47 (1 H, broad s)
)、6. 72 (1 H, dd, J = 8. 30, 2. 44 Hz)、6. 7
 6 (1 H, d, J = 2. 44 Hz)、6. 85 (1 H, d, J = 8
 30 Hz)、7. 12 - 7. 15 (2 H, m)、7. 18 - 7.
 22 (2 H, m)

実施例 3 5

3 - [3 - [2 - (2 - インダニル) エトキシ] - 4 - メトキシ
 アニリノ] - 2 - メチル - 2 - シクロペンテン - 1 - オン (表 1 の
 化合物 No. 35) の合成

実施例 10 と同様の手法を用い、3 - (2 - インダニルオキシ) - 4 - メトキシアニリンのかわりに、実施例 34 (2) で製造される 3 - [2 - (2 - インダニル) エトキシ] - 4 - メトキシアニリンを使用し、褐色固体の標記化合物 (収率 96. 3 %) を得る。

¹ H-NMR (400 MHz, CDCl₃) δ 1. 68 (3 H, s)、2. 08 (2 H, m)、2. 39 - 2. 40 (2 H, m)
)、2. 56 (2 H, m)、2. 67 - 2. 70 (3 H, m)、3
 . 11 - 3. 13 (2 H, m)、3. 87 (3 H, s)、4. 08
 (2 H, t, J = 6. 83 Hz)、6. 63 (1 H, broad
 s)、6. 72 - 6. 74 (2 H, m)、6. 84 (1 H, d, J
 = 8. 78 Hz)、7. 12 - 7. 14 (2 H, m)、7. 18 -
 7. 20 (2 H, m)

実施例 3 6

3 - [4 - メトキシ - 3 - (3 - 2, 3, 4, 5 - テトラヒドロ
 フラニルオキシ) アニリノ] - 2 - シクロペンテン - 1 - オン (表
 1 の化合物 No. 36) の合成

(1) 4-メトキシ-3-(3-2, 3, 4, 5-テトラヒドロフラニルオキシ)ニトロベンゼンの合成

実施例9(1)と同様の手法を用い、2-インダノールのかわりに、3-ヒドロキシ-2, 3, 4, 5-テトラヒドロフランを使用し、淡橙色固体の4-メトキシ-3-(3-2, 3, 4, 5-テトラヒドロフラニルオキシ)ニトロベンゼン(収率84.2%)を得る。

¹H-NMR (400MHz, CDCl₃) δ 2.17-2.23 (1H, m)、2.25-2.35 (1H, m)、3.91-3.95 (1H, m)、3.96 (3H, s)、3.98-4.07 (3H, m)、5.02 (1H, m)、6.93 (1H, d, J=8.79Hz)、7.70 (1H, d, J=2.45Hz)、7.94 (1H, dd, J=8.79, 2.45Hz)

(2) 3-[4-メトキシ-3-(3-2, 3, 4, 5-テトラヒドロフラニルオキシ)アニリノ]-2-シクロペンテン-1-オンの合成

実施例1(2)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシニトロベンゼンのかわりに、4-メトキシ-3-(3-2, 3, 4, 5-テトラヒドロフラニルオキシ)ニトロベンゼンを使用し、紫色固体の4-メトキシ-3-(3-2, 3, 4, 5-テトラヒドロフラニルオキシ)アニリンを得る。次いで実施例1(3)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、4-メトキシ-3-(3-2, 3, 4, 5-テトラヒドロフラニルオキシ)アニリンを使用し、淡黄色固体の標記化合物(収率87.4%)を得る。

¹H-NMR (400MHz, CDCl₃) δ 2.17-2.21 (2H, m)、2.47-2.50 (2H, m)、2.73

- 2. 7.5 (2 H, m)、3. 8.5 (3 H, s)、3. 8.7 - 3. 9.3 (1 H, m)、3. 9.6 - 4. 0.6 (3 H, m)、4. 9.1 (1 H, m)、5. 4.4 (1 H, s)、6. 4.7 (1 H, broad s)、6. 6.9 (1 H, d, J = 2. 4.4 Hz)、6. 7.6 (1 H, dd, J = 8. 3.0, 2. 4.4 Hz)、6. 8.7 (1 H, d, J = 8. 3.0 Hz)

実施例 3 7

3 - [4 - メトキシ - 3 - (3 - 2, 3, 4, 5 - テトラヒドロフラニルオキシ) アニリノ] - 2 - メチル - 2 - シクロペンテン - 1 - オン (表 1 の化合物 No. 37) の合成

実施例 10 と同様の手法を用い、3 - (2 - インダニルオキシ) - 4 - メトキシアニリンのかわりに、実施例 36 (2) で製造される 4 - メトキシ - 3 - (3 - 2, 3, 4, 5 - テトラヒドロフラニルオキシ) アニリンを使用し、暗紫色固体の標記化合物（収率 6.7 %）を得る。

¹ H-NMR (400 MHz, CDCl₃) δ 1. 6.8 (3 H, s)、2. 1.8 - 2. 2.2 (2 H, m)、2. 3.9 - 2. 4.1 (2 H, m)、2. 5.6 (2 H, m)、3. 8.7 (3 H, s)、3. 8.9 - 3. 9.4 (1 H, m)、3. 9.7 - 4. 0.7 (3 H, m)、4. 9.4 (1 H, m)、6. 4.7 (1 H, broad s)、6. 6.7 (1 H, d, J = 1. 9.6 Hz)、6. 7.7 (1 H, dd, J = 8. 3.0, 1. 9.6 Hz)、6. 8.7 (1 H, d, J = 8. 3.0 Hz)

実施例 3 8

3 - (3 - シクロペンチルオキシ - 4 - メトキシアニリノ) - 6 , 6 - ジメチル - 2 - シクロヘキセン - 1 - オン (表 1 の化合物 No. 38) の合成

実施例 1 と同様の手法を用い、1, 3-シクロペンタンジオンのかわりに、4, 4-ジメチル-1, 3-シクロヘキサンジオンを使用し、無色固体の標記化合物（収率 93.6%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.15 (6 H, s)、1.56-1.62 (2 H, m)、1.80-1.94 (6 H, m)、1.87 (2 H, t, J = 6.35 Hz)、2.49 (2 H, t, J = 6.35 Hz)、3.83 (3 H, s)、4.72 (1 H, m)、5.33 (1 H, s)、5.78 (1 H, broad s)、6.68-6.71 (2 H, m)、6.80 (1 H, d, J = 7.81 Hz)

実施例 39

3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-5-フェニル-2-シクロヘキセン-1-オン（表 1 の化合物 No. 39）の合成

実施例 1 と同様の手法を用い、1, 3-シクロペンタンジオンのかわりに、5-フェニル-1, 3-シクロヘキサンジオンを使用し、淡黄色固体の標記化合物（収率 87.0%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.60-1.63 (2 H, m)、1.81-2.05 (6 H, m)、2.53-2.63 (3 H, m)、2.83 (1 H, dd, J = 16.11, 12.21 Hz)、3.43 (1 H, m)、3.84 (3 H, s)、4.73 (1 H, m)、5.50 (1 H, s)、5.95 (1 H, broad s)、6.70-6.72 (2 H, m)、6.81-6.83 (1 H, m)、7.27-7.29 (3 H, m)、7.35-7.39 (2 H, m)

実施例 40

3-(3-シクロペンチルメトキシ-4-メトキシアニリノ)-

2-シクロペンテン-1-オン(表1の化合物No. 40)の合成(1) 3-シクロペンチルメトキシ-4-メトキシニトロベンゼンの合成

実施例9(1)と同様の手法を用い、2-インダノールのかわりに、シクロペンチルメタノールを使用し、黄色固体の3-シクロペンチルメトキシ-4-メトキシニトロベンゼン(収率98.6%)を得る。

¹H-NMR (400MHz, CDCl₃) δ 1.34-1.43 (2H, m), 1.55-1.69 (4H, m), 1.85-1.92 (2H, m), 2.47 (1H, m, J=7.32Hz), 3.95 (2H, d, J=7.32Hz), 3.96 (3H, s), 6.90 (1H, d, J=8.79Hz), 7.74 (1H, d, J=2.93Hz), 7.90 (1H, dd, J=8.79, 2.93Hz)

(2) 3-(3-シクロペンチルメトキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オンの合成

実施例1(2)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシニトロベンゼンのかわりに、3-シクロペンチルメトキシ-4-メトキシニトロベンゼンを使用し、紫色油状の3-シクロペンチルメトキシ-4-メトキシアニリンを得る。次いで実施例1(3)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、3-シクロペンチルメトキシ-4-メトキシアニリンを使用し、淡黄色固体の標記化合物(収率97.1%)を得る。

¹H-NMR (400MHz, CDCl₃) δ 1.31-1.40 (2H, m), 1.55-1.70 (4H, m), 1.83-1.90 (2H, m), 2.40-2.49 (3H, m), 2.

7.3 (2H, m)、3.83 (2H, d, J = 7, 32 Hz)、3
 8.6 (3H, s)、5.47 (1H, s)、6.53 (1H, b
 broad s)、6.69 (1H, dd, J = 8, 7.9, 1, 9.6
 Hz)、6.74 (1H, d, J = 1, 9.6 Hz)、6.84 (1
 H, d, J = 8, 7.9 Hz)

実施例 4 1

3 - (3 - シクロペンチルメトキシ - 4 - メトキシアニリノ) -
2 - メチル - 2 - シクロペンテン - 1 - オン (表 1 の化合物 N o.
4 1) の合成

実施例 1 0 と同様の手法を用い、3 - (2 - インダニルオキシ)
 - 4 - メトキシアニリンのかわりに、実施例 4 0 (2) で製造され
 る 3 - シクロペンチルメトキシ - 4 - メトキシアニリンを使用し、
 無色固体の標記化合物 (収率 95.9%) を得る。

¹ H - NMR (400 MHz, CDCl₃) δ 1.34 - 1
 3.9 (2H, m)、1.57 - 1.66 (4H, m)、1.68
 (3H, s)、1.83 - 1.90 (2H, m)、2.39 - 2.
 4.6 (3H, m)、2.55 - 2.56 (2H, m)、3.86 (2H,
 d, J = 6, 8.4 Hz)、3.87 (3H, s)、6.38
 (1H, broad s)、6.70 - 6.73 (2H, m)、6
 8.4 (1H, d, J = 8, 3.0 Hz)

実施例 4 2

3 - [4 - メトキシ - 3 - [2 - (1 - ナフチル) エトキシ] ア
ニリノ] - 2 - シクロペンテン - 1 - オン (表 1 の化合物 N o.
4 2) の合成

(1) 4 - メトキシ - 3 - [2 - (1 - ナフチル) エトキシ] ニト
ロベンゼンの合成

実施例 9 (1) と同様の手法を用い、2 - インダノールのかわり

に、2-(1-ナフチル)エタノールを使用し、黄色固体の4-メトキシ-3-[2-(1-ナフチル)エトキシ]ニトロベンゼン(収率9.8.6%)を得る。

¹H-NMR (400MHz, CDCl₃) δ 3.68 (2H, t, J=7.32Hz)、3.97 (3H, s)、4.41 (2H, t, J=7.32Hz)、6.90 (1H, d, J=9.28Hz)、7.42-7.50 (2H, m)、7.50-7.58 (2H, m)、7.71 (1H, d, J=2.93Hz)、7.79 (1H, dd, J=6.35, 2.93Hz)、7.88 (1H, dd, J=6.84, 1.47Hz)、7.90 (1H, dd, J=9.28, 2.93Hz)、8.11 (1H, d, J=8.30Hz)

(2) 3-[4-メトキシ-3-[2-(1-ナフチル)エトキシ]アニリノ]-2-シクロペンテン-1-オンの合成

実施例1(2)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシニトロベンゼンのかわりに、4-メトキシ-3-[2-(1-ナフチル)エトキシ]ニトロベンゼンを使用し、紫色油状の4-メトキシ-3-[2-(1-ナフチル)エトキシ]アニリンを得る。次いで実施例1(3)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、4-メトキシ-3-[2-(1-ナフチル)エトキシ]アニリンを使用し、淡黄色固体の標記化合物(収率95.5%)を得る。

¹H-NMR (400MHz, CDCl₃) δ 2.42-2.45 (2H, m)、2.65-2.68 (2H, m)、3.66 (2H, t, J=7.33Hz)、3.88 (3H, s)、4.30 (2H, t, J=7.33Hz)、5.40 (1H, s)、6.34 (1H, broad s)、6.65 (1H, d, J=2.4

5 Hz)、6.71 (1H, dd, J = 8.30, 2.45 Hz)、
 6.85 (1H, d, J = 8.30 Hz)、7.42 - 7.56
 (4H, m)、7.77 (1H, dd, J = 6.35, 3.42 Hz)
 7.86 - 7.88 (1H, m)、8.10 (1H, d, J
 = 8.30 Hz)

実施例 4 3

3 - [4 - メトキシ - 3 - [2 - (1 - ナフチル) エトキシ] アニリノ] - 2 - メチル - 2 - シクロペンテン - 1 - オン (表 1 の化合物 No. 43) の合成

実施例 1 0 と同様の手法を用い、3 - (2 - インダニルオキシ) - 4 - メトキシアニリンのかわりに、実施例 4 2 (2) で製造される 4 - メトキシ - 3 - [2 - (1 - ナフチル) エトキシ] アニリンを使用し、暗褐色固体の標記化合物 (収率 98.2%) を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.63 (3H, s)、2.34 - 2.36 (2H, m)、2.47 - 2.48 (2H, m)、3.67 (2H, t, J = 7.82 Hz)、3.90 (3H, s)、4.32 (2H, t, J = 7.82 Hz)、6.27 (1H, broad s)、6.58 (1H, d, J = 2.44 Hz)、6.71 (1H, dd, J = 8.30, 2.44 Hz)、6.85 (1H, d, J = 8.30 Hz)、7.42 - 7.45 (2H, m)、7.48 - 7.55 (2H, m)、7.77 (1H, dd, J = 6.84, 2.93 Hz)、7.87 - 7.89 (1H, m)、8.10 (1H, d, J = 7.82 Hz)

実施例 4 4

3 - [3 - [rel (1R, 2R, 4S) - ビシクロ [2.2.1] ヘプタ - 2 - イルオキシ] - 4 - メトキシアニリノ] - 2 - メチル - 2 - シクロペンテン - 1 - オン (表 1 の化合物 No. 44) の

合成

実施例 10 と同様の手法を用い、3-(2-インダニルオキシ)-4-メトキシアニリンのかわりに、実施例 8(2)で製造される3-[rel-(1R, 2R, 4S)-ビシクロ[2.2.1]ヘプタ-2-イルオキシ]-4-メトキシアニリンを使用し、褐色油状の標記化合物（収率100%）を得る。

¹H-NMR (400MHz, CDCl₃) δ 1.12-1.18 (2H, m)、1.21-1.23 (1H, m)、1.48-1.54 (1H, m)、1.56-1.64 (2H, m)、1.68 (3H, s)、1.72-1.80 (3H, m)、2.39-2.41 (2H, m)、2.51 (1H, d, J=4.39Hz)、2.55-2.56 (2H, m)、3.85 (3H, s)、4.16-4.17 (1H, m)、6.47 (1H, broad s)、6.65 (1H, d, J=2.44Hz)、6.69 (1H, d, J=8.79, 2.44Hz)、6.83 (1H, d, J=8.79Hz)

実施例 45

3-[3-[rel-(1R, 2R, 4S)-ビシクロ[2.2.1]ヘプタ-2-イルオキシ]-4-メトキシアニリノ]-2-エチル-2-シクロペンテン-1-オン（表1の化合物No. 45）の

合成

実施例 1(3)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、実施例 8(2)で製造される3-[rel-(1R, 2R, 4S)-ビシクロ[2.2.1]ヘプタ-2-イルオキシ]-4-メトキシアニリンを使用し、1,3-シクロペンタンジオンのかわりに2-エチル-1,3-シクロペンタジオンを使用し、暗褐色油状の標記化合物（収率100%）を得

る。

¹H-NMR (400MHz, CDCl₃) δ 1.05 (3H, t, J = 7.81Hz)、1.14-1.18 (2H, m)、1.21-1.24 (1H, m)、1.49-1.64 (3H, m)、1.71-1.80 (3H, m)、2.22 (2H, q, J = 7.81Hz)、2.36-2.39 (2H, m)、2.50-2.51 (1H, m)、2.53-2.55 (2H, m)、3.85 (3H, s)、4.17 (1H, d, J = 6.35Hz)、6.51 (1H, broad s)、6.65 (1H, d, J = 2.44Hz)、6.69 (1H, dd, J = 8.30, 2.44Hz)、6.83 (1H, d, J = 8.30Hz)

実施例4 6

3-[3-[rel-(1R, 2R, 4S)-ビシクロ[2.2.1]ヘプタ-2-イルオキシ]-4-メトキシアニリノ]-2-メチル-2-シクロヘキセン-1-オン（表1の化合物No. 46）の合成

実施例4 5と同様の手法を用い、2-エチル-1, 3-シクロペンタンジオンのかわりに、2-メチル-1, 3-シクロヘキサンジオンを使用し、淡褐色固体の標記化合物（収率86.0%）を得る。

¹H-NMR (400MHz, CDCl₃) δ 1.13-1.26 (3H, m)、1.48-1.63 (3H, m)、1.74-1.80 (3H, m)、1.83 (3H, s)、1.88 (2H, m)、2.36-2.39 (4H, m)、2.50-2.51 (1H, m)、3.85 (3H, s)、4.17 (1H, d, J = 5.86Hz)、6.16 (1H, broad s)、6.59 (1H, d, J = 2.44Hz)、6.64 (1H, dd, J = 8.3

0, 2, 44 Hz)、6, 82 (1 H, d, J = 8, 30 Hz)

実施例 4 7

3 - [3 - [rel (1 R, 2 R, 4 S) - ビシクロ [2, 2, 1] ヘプタ - 2 - イルオキシ] - 4 - メトキシ - N - メチルアニリノ] - 2 - メチル - 2 - シクロペンテン - 1 - オン (表 1 の化合物 No. 47) の合成

実施例 2 6 と同様の手法を用い、3 - (3 - シクロペンチルオキシ - 4 - メトキシアニリノ) - 2 - シクロペンテン - 1 - オンのかわりに、実施例 4 4 で得られる 3 - [3 - [rel (1 R, 2 R, 4 S) - ビシクロ [2, 2, 1] ヘプタ - 2 - イルオキシ] - 4 - メトキシアニリノ] - 2 - メチル - 2 - シクロペンテン - 1 - オンを使用し、褐色油状の標記化合物 (収率 42.2%) を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.10 - 1.16 (2 H, m)、1.19 - 1.22 (1 H, m)、1.25 (3 H, s)、1.47 - 1.60 (3 H, m)、1.72 - 1.76 (2 H, m)、2.33 (1 H, broad)、2.38 - 2.41 (2 H, m)、2.48 - 2.49 (1 H, m)、2.60 - 2.61 (2 H, m)、3.42 (3 H, s)、3.85 (3 H, s)、4.16 (1 H, d, J = 6, 35 Hz)、6.65 (1 H, d, J = 2, 44 Hz)、6.72 (1 H, dd, J = 8, 7.9, 2, 44 Hz)、6.83 (1 H, d, J = 8, 7.9 Hz)

実施例 4 8

3 - [3 - (2 - インダニルオキシ) - 4 - メトキシアニリノ] - 2 - メチル - 2 - シクロヘキセン - 1 - オン (表 1 の化合物 No. 48) の合成

実施例 1 (3) と同様の手法を用い、3 - シクロペンチルオキシ - 4 - メトキシアニリンのかわりに、実施例 9 (2) で製造される

3 - (2 - インダニルオキシ) - 4 - メトキシアニリンを使用し、1, 3 - シクロヘキサンジオンのかわりに2 - メチル - 1, 3 - シクロヘキサンジオンを使用し、淡褐色固体の標記化合物（収率 9.4%）を得る。

¹ H - NMR (400 MHz, CDCl₃) δ 1.84 (3H, s)、1.89 - 1.94 (2H, m)、2.36 - 2.40 (4H, m)、3.24 (2H, dd, J = 16.60, 3.42 Hz)、3.39 (2H, dd, J = 16.60, 6.35 Hz)、3.83 (3H, s)、5.17 (1H, m)、6.13 (1H, broad s)、6.70 - 6.72 (2H, m)、6.85 (1H, d, J = 8.79 Hz)、7.18 - 7.23 (2H, m)、7.24 - 7.28 (2H, m)

実施例 4.9

3 - [4 - メトキシ - 3 - [(1 - フェニルシクロプロピル) メトキシ] アニリノ] - 2 - シクロヘキサン - 1 - オン（表 1 の化合物 No. 4.9）の合成

(1) 4 - メトキシ - 3 - [(1 - フェニルシクロプロピル) メトキシ] ニトロベンゼンの合成

実施例 9 (1) と同様の手法を用い、2 - インダノールのかわりに、1 - フェニルシクロプロピルメタノールを使用し、黄色固体の4 - メトキシ - 3 - [(1 - フェニルシクロプロピル) メトキシ] ニトロベンゼン（収率 69.3%）を得る。

¹ H - NMR (400 MHz, CDCl₃) δ 1.03 - 1.06 (4H, m)、3.92 (3H, s)、4.14 (2H, s)、6.86 (1H, d, J = 8.79 Hz)、7.20 - 7.24 (1H, m)、7.29 - 7.32 (2H, m)、7.43 - 7.45 (2H, m)、7.63 (1H, d, J = 2.44 Hz)、

7. 87 (1 H, d d, J = 8. 79, 2. 44 Hz)

(2) 3 - [4 - メトキシ - 3 - [(1 - フェニルシクロプロピル) メトキシ] アニリノ] - 2 - シクロペンテン - 1 - オンの合成

実施例 1 (2) と同様の手法を用い、3 - シクロペンチルオキシ - 4 - メトキシニトロベンゼンのかわりに、4 - メトキシ - 3 - [(1 - フェニルシクロプロピル) メトキシ] ニトロベンゼンを使用し、紫色油状の4 - メトキシ - 3 - [(1 - フェニルシクロプロピル) メトキシ] アニリンを得る。次いで実施例 1 (3) と同様の手法を用い、3 - シクロペンチルオキシ - 4 - メトキシアニリンのかわりに、4 - メトキシ - 3 - [(1 - フェニルシクロプロピル) メトキシ] アニリンを使用し、淡褐色固体の標記化合物（収率 93.3%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 0.98 - 1.03 (4 H, m)、2.42 - 2.45 (2 H, m)、2.67 - 2.69 (2 H, m)、3.79 (3 H, s)、4.03 (2 H, s)、5.40 (1 H, s)、6.61 (1 H, d, J = 1.95 Hz)、6.66 (1 H, dd, J = 8.79, 1.95 Hz)、6.78 (1 H, broad s)、6.79 (1 H, d, J = 8.79 Hz)、7.18 - 7.22 (1 H, m)、7.27 - 7.31 (2 H, m)、7.42 - 7.44 (2 H, m)

実施例 50

3 - [4 - メトキシ - 3 - [(1 - フェニルシクロプロピル) メトキシ] アニリノ] - 2 - メチル - 2 - シクロペンテン - 1 - オン
(表 1 の化合物 No. 50) の合成

実施例 10 と同様の手法を用い、3 - (2 - インダニルオキシ) - 4 - メトキシアニリンのかわりに、実施例 49 (2) で製造される4 - メトキシ - 3 - [(1 - フェニルシクロプロピル) メトキシ

] アニリンを使用し、無色固体の標記化合物（収率 42.1%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 0.98-1.00 (2H, m)、1.03-1.06 (2H, m)、1.64 (3H, s)、2.35-2.36 (2H, m)、2.47 (2H, m)、3.81 (3H, s)、4.07 (2H, s)、6.54 (2H, broad)、6.68 (1H, dd, J = 8.79, 1.95 Hz)、6.80 (1H, d, J = 8.79 Hz)、7.16-7.31 (3H, m)、7.43-7.44 (2H, m)

実施例 5 1

3-(3-シクロブチルメトキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オン (表1の化合物No. 51) の合成
(1) 3-シクロブチルメトキシ-4-メトキシニトロベンゼンの合成

実施例 9 (1) と同様の手法を用い、2-インダノールのかわりに、1-フェニルシクロプロピルメタノールを使用し、黄色固体の3-シクロブチルメトキシ-4-メトキシニトロベンゼン（収率 90.6%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.86-2.02 (4H, m)、2.15-2.23 (2H, m)、2.87 (1H, m)、3.96 (3H, s)、4.06 (2H, d, J = 6.84 Hz)、6.90 (1H, d, J = 9.28 Hz)、7.74 (1H, d, J = 2.93 Hz)、7.90 (1H, dd, J = 9.28, 2.93 Hz)

(2) 3-(3-シクロブチルメトキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オンの合成

実施例 1 (2) と同様の手法を用い、3-シクロペンチルオキシ

-4-メトキシニトロベンゼンのかわりに、3-シクロブチルメトキシ-4-メトキシニトロベンゼンを使用し、紫色油状の3-シクロブチルメトキシ-4-メトキシアニリンを得る。次いで実施例1(3)と同様の手法を用い、3-シクロペンチルオキシ-4-メトキシアニリンのかわりに、3-シクロブチルメトキシ-4-メトキシアニリンを使用し、淡褐色固体の標記化合物(収率92.8%)を得る。

¹H-NMR (400MHz, CDCl₃) δ 1.83-1.98 (4H, m), 2.13-2.20 (2H, m), 2.47-2.49 (2H, m), 2.73-2.74 (2H, m), 2.83 (1H, m), 3.86 (3H, s), 3.95 (2H, d, J=7.33Hz), 5.47 (1H, s), 6.60 (1H, broad s), 6.70 (1H, d, J=8.30Hz), 6.75 (1H, s), 6.83 (1H, d, J=8.30Hz)

実施例52

3-(3-シクロブチルメトキシ-4-メトキシアニリノ)-2-
-メチル-2-シクロペンテン-1-オン(表1の化合物No.5
2)の合成

実施例10と同様の手法を用い、3-(2-インダニルオキシ)-4-メトキシアニリンのかわりに、実施例51(2)で製造される3-シクロブチルメトキシ-4-メトキシアニリンを使用し、無色固体の標記化合物(収率92.7%)を得る。

¹H-NMR (400MHz, CDCl₃) δ 1.68 (3H, s), 1.84-2.00 (4H, m), 2.07-2.21 (2H, m), 2.39-2.41 (2H, m), 2.56-2.57 (2H, m), 2.84 (1H, m, J=6.84Hz), 3.87 (3H, s), 3.97 (2H, d, J=6.84Hz),

6. 44 (1 H, broad s)、6. 71 - 6. 73 (2 H, m)、6. 84 (1 H, d, J = 8. 30 Hz)

実施例 5 3

3 - [3 - [2 - (2 - インダニル) エトキシ] - 4 - メトキシアニリノ] - 2 - メチル - 2 - シクロヘキセン - 1 - オン (表 1 の化合物 N o. 53) の合成

実施例 4 6 と同様の手法を用い、3 - [rel (1 R, 2 R, 4 S) - ビシクロ [2. 2. 1] ヘプタ - 2 - イルオキシ] - 4 - メトキシアニリンのかわりに、実施例 3 4 (2) で製造される 3 - [2 - (2 - インダニル) エトキシ] - 4 - メトキシアニリンを使用し、淡褐色固体の標記化合物（収率 92. 0 %）を得る。

¹ H-NMR (400 MHz, CDCl₃) δ 1. 84 (3 H, s)、1. 89 (2 H, m)、2. 09 (2 H, q, J = 6. 35 Hz)、2. 36 - 2. 39 (4 H, m)、2. 68 - 2. 70 (3 H, m)、3. 12 - 3. 14 (2 H, m)、3. 88 (3 H, s)、4. 09 (2 H, t, J = 6. 35 Hz)、6. 13 (1 H, broad s)、6. 67 (1 H, s)、6. 68 (1 H, d, J = 8. 30 Hz)、6. 84 (1 H, d, J = 8. 30 Hz)、7. 14 (2 H, m)、7. 19 - 7. 20 (2 H, m)

実施例 5 4

3 - (3 - シクロペンチルメトキシ - 4 - メトキシアニリノ) - 2 - メチル - 2 - シクロヘキセン - 1 - オン (表 1 の化合物 N o. 54) の合成

実施例 4 6 と同様の手法を用い、3 - [rel (1 R, 2 R, 4 S) - ビシクロ [2. 2. 1] ヘプタ - 2 - イルオキシ] - 4 - メトキシアニリンのかわりに、実施例 4 0 (2) で製造される 3 - シクロペンチルメトキシ - 4 - メトキシアニリンを使用し、淡褐色固体

の標記化合物（収率 91.6 %）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.35-1.39 (2H, m)、1.60-1.66 (4H, m)、1.83 (3H, s)、1.83-1.90 (4H, m)、2.36-2.39 (4H, m)、2.44 (1H, m)、3.86 (2H, d, J = 9.76 Hz)、3.87 (3H, s)、6.15 (1H, broad s)、6.65-6.67 (2H, m)、6.83 (1H, d, J = 8.79 Hz)

実施例 5 5

3-(3-シクロヘキシリオキシ-4-メトキシアニリノ)-2-メチル-2-シクロヘキセン-1-オン（表1の化合物No. 55）の合成

実施例 4 6 と同様の手法を用い、3-[rel (1R, 2R, 4S)-ビシクロ[2.2.1]ヘプタ-2-イルオキシ]-4-メトキシアニリンのかわりに、実施例 1 3 (2) で製造される 3-シクロヘキシリオキシ-4-メトキシアニリンを使用し、淡褐色固体の標記化合物（収率 81.2 %）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.24-1.42 (3H, m)、1.49-1.62 (2H, m)、1.65-1.92 (5H, m)、1.83 (3H, s)、2.01-2.04 (2H, m)、2.37-2.39 (4H, m)、3.86 (3H, s)、4.18 (1H, m)、6.11 (1H, broad s)、6.66-6.68 (2H, m)、6.84 (1H, d, J = 9.27 Hz)

実施例 5 6

3-(N-ベンジル-3-シクロヘキシリオキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オン（表1の化合物No.

5 6) の合成

実施例 2 6 と同様の手法を用い、3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オンのかわりに、実施例 1 3 (3) で製造される3-(3-シクロヘキシルオキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オンを使用し、ヨウ化メチルのかわりに臭化ベンジルを使用し、黄色油状の標記化合物(収率 89.4%)を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.22-1.29 (3H, m)、1.41-1.49 (2H, m)、1.56-1.58 (1H, m)、1.76-1.79 (2H, m)、1.85-1.88 (2H, m)、2.41 (4H, broad s)、3.84 (3H, s)、3.96-4.01 (1H, m)、4.75 (2H, s)、5.38 (1H, broad s)、6.52 (1H, d, J=2.44 Hz)、6.69 (1H, dd, J=8.79, 2.44 Hz)、6.81 (1H, d, J=8.79 Hz)、7.20-7.34 (5H, m)

実施例 5 7

3-[3-シクロヘキシルオキシ-4-メトキシ-N-(2-ナフチルメチル)アニリノ]-2-シクロペンテン-1-オン(表1の化合物No. 57)の合成

実施例 5 6 と同様の手法を用い、臭化ベンジルのかわりに、2-(プロモメチル)ナフタレンを使用し、淡褐色油状の標記化合物(収率 85.1%)を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.08-1.18 (3H, m)、1.31-1.40 (2H, m)、1.47-1.51 (1H, m)、1.61-1.64 (2H, m)、1.73-1.75 (2H, m)、2.42 (4H, broad s)

、 3. 82 (3 H, s) 、 3. 84 - 3. 90 (1 H, m) 、 4. 90 (2 H, s) 、 5. 47 (1 H, broad s) 、 6. 49 (1 H, broad) 、 6. 72 (1 H, dd, J = 8. 79, 2. 44 Hz) 、 6. 80 (1 H, d, J = 8. 79 Hz) 、 7. 35 (1 H, d, J = 8. 30 Hz) 、 7. 46 - 7. 48 (2 H, m) 、 7. 60 (1 H, s) 、 7. 74 - 7. 83 (3 H, m)

実施例 5 8

3 - [3 - シクロペンチルオキシ - 4 - メトキシ - N - (2 - キノリンメチル) アニリノ] - 2 - シクロペンテン - 1 - オン (表 1 の化合物 No. 58) の合成

実施例 2 6 と同様の手法を用い、ヨウ化メチルのかわりに、2 - (クロロメチル) キノリン塩酸塩を使用し、黒褐色油状の標記化合物 (収率 96. 8 %) を得る。

¹ H - NMR (400 MHz, CDCl₃) δ 1. 52 (2 H, m) 、 1. 76 (6 H, m) 、 2. 42 (2 H, broad) 、 2. 61 (2 H, broad) 、 3. 83 (3 H, s) 、 4. 60 (1 H, m) 、 5. 08 (2 H, s) 、 5. 19 (1 H, broad) 、 6. 79 - 6. 85 (3 H, m) 、 7. 38 (1 H, d, J = 8. 30 Hz) 、 7. 55 (1 H, dd, J = 7. 33, 6. 83 Hz) 、 7. 73 (1 H, dd, J = 8. 30, 6. 83 Hz) 、 7. 82 (1 H, d, J = 8. 30 Hz) 、 8. 03 (1 H, d, J = 8. 30 Hz) 、 8. 15 (1 H, d, J = 8. 30 Hz)

実施例 5 9

3 - (3 - シクロペンチルオキシ - 4 - メトキシ - N - プロピルアニリノ) - 2 - シクロペンテン - 1 - オン (表 1 の化合物 No. 59) の合成

実施例 26 と同様の手法を用い、ヨウ化メチルのかわりに、ヨウ化プロピルを使用し、褐色油状の標記化合物（収率 95.1%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 0.99 (3 H, t, J = 7.33 Hz)、1.63 (4 H, m)、1.82 - 1.95 (6 H, m)、2.35 (4 H, broad)、3.50 (2 H, t, J = 7.32 Hz)、4.74 (1 H, m)、5.20 (1 H, broad)、6.66 (1 H, d, J = 2.45 Hz)、6.71 (1 H, dd, J = 8.30, 2.45 Hz)、6.86 (1 H, d, J = 8.30 Hz)

実施例 60

3-(N-シクロペンチル-3-シクロペンチルオキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オン（表1の化合物 No. 60）の合成

実施例 26 と同様の手法を用い、ヨウ化メチルのかわりに、プロモシクロペンタンを使用し、淡褐色油状の標記化合物（収率 27.3%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.46 (2 H, broad)、1.55 (4 H, m)、1.63 (2 H, m)、1.85 - 1.93 (8 H, m)、2.30 (4 H, broad)、3.87 (3 H, s)、4.11 (1 H, broad)、4.73 (1 H, m)、5.26 (1 H, broad)、6.59 (1 H, d, J = 2.44 Hz)、6.64 (1 H, dd, J = 8.30, 2.44 Hz)、6.84 (1 H, d, J = 8.30 Hz)

実施例 61

3-[3-シクロペンチルオキシ-4-メトキシ-N-(2-ビリジルメチル)アニリノ]-2-シクロペンテン-1-オン（表1

の化合物No. 61) の合成

実施例26と同様の手法を用い、ヨウ化メチルのかわりに、2-(クロロメチル)ピリジン塩酸塩を使用し、黄褐色油状の標記化合物(収率81.6%)を得る。

¹H-NMR (400MHz, CDCl₃) δ 1.60-1.63 (2H, m)、1.80-1.87 (6H, m)、2.41-2.58 (4H, broad)、3.84 (3H, s)、4.65 (1H, broad)、4.90 (2H, s)、5.12 (1H, broad)、6.76-6.82 (3H, m)、7.19-7.22 (2H, m)、7.66 (1H, ddd, J=7.81, 7.81, 1.47Hz)、8.58 (1H, d, J=4.40Hz)

実施例62

3-[3-シクロペンチルオキシ-4-メトキシ-N-(2-ナフチルメチル)アニリノ]-2-シクロペンテン-1-オン(表1)
の化合物No. 62) の合成

実施例26と同様の手法を用い、ヨウ化メチルのかわりに、2-(ブロモメチル)ナフタレンを使用し、淡桃色油状の標記化合物(収率92.3%)を得る。

¹H-NMR (400MHz, CDCl₃) δ 1.46-1.49 (2H, m)、1.65-1.71 (6H, m)、2.42 (4H, broad)、3.82 (3H, s)、4.48 (1H, m)、4.91 (2H, s)、5.45 (1H, broad)、6.49 (1H, broad)、6.69 (1H, dd, J=8.79, 2.44Hz)、6.78 (1H, d, J=8.79Hz)、7.35 (1H, dd, J=8.30, 1.47Hz)、7.47-7.49 (2H, m)、7.61 (1H, s)、7.75-7.

7.7 (1 H, m)、7.80 - 7.83 (2 H, m)

実施例 6 3

3-[3-シクロペンチルオキシ-4-メトキシ-N-(3-ピリジルメチル)アニリノ]-2-シクロペンテン-1-オン(表1の化合物No. 63)の合成

実施例 2 6 と同様の手法を用い、ヨウ化メチルのかわりに、3-(クロロメチル)ピリジン塩酸塩を使用し、褐色油状の標記化合物(収率 77.2%)を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.59 - 1.60 (2 H, m)、1.80 - 1.85 (6 H, m)、2.41 (4 H, broad)、3.84 (3 H, s)、4.61 (1 H, m)、4.78 (2 H, s)、5.29 (1 H, broad)、6.52 (1 H, d, J = 2.44 Hz)、6.64 (1 H, dd, J = 8.30, 2.44 Hz)、6.80 (1 H, d, J = 8.30 Hz)、7.25 - 7.28 (1 H, m)、7.56 (1 H, d, J = 7.32 Hz)、8.45 (1 H, d, J = 1.95 Hz)、8.55 (1 H, dd, J = 4.88, 1.95 Hz)

実施例 6 4

3-(3-シクロペンチルオキシ-4-メトキシ-N-ペンチルアニリノ)-2-シクロペンテン-1-オン(表1の化合物No. 64)の合成

実施例 2 6 と同様の手法を用い、ヨウ化メチルのかわりに、ヨウ化アミルを使用し、褐色油状の標記化合物(収率 100%)を得る。

¹H-NMR (400 MHz, CDCl₃) δ 0.88 (3 H, t, J = 6.84 Hz)、1.25 - 1.33 (4 H, m)、1.63 - 1.68 (4 H, m)、1.82 - 1.86 (2 H, m)

)、1. 89 - 1. 95 (4 H, m)、2. 35 (4 H, broad)、3. 53 (2 H, b t, J = 7. 81 Hz)、3. 87 (3 H, s)、4. 74 (1 H, m)、5. 20 (1 H, broad)、6. 65 (1 H, d, J = 2. 44 Hz)、6. 70 (1 H, d d, J = 8. 30, 2. 44 Hz)、6. 86 (1 H, d, J = 8. 30 Hz)

実施例 6 5

3 - [3 - (2 - インダニルオキシ) - 4 - メトキシ - N - メチルアニリノ] - 2 - シクロヘキセン - 1 - オン (表 1 の化合物 N o 65) の合成

実施例 2 6 と同様の手法を用い、3 - (3 - シクロペンチルオキシ - 4 - メトキシアニリノ) - 2 - シクロペンテン - 1 - オンのかわりに、実施例 1 9 (1) で製造される 3 - [3 - (2 - インダニルオキシ) - 4 - メトキシアニリノ] - 2 - シクロヘキセン - 1 - オンを使用し、黄色油状の標記化合物 (収率 83. 2 %) を得る。

¹ H - NMR (400 MHz, CDCl₃) δ 1. 90 - 1. 93 (2 H, m)、2. 24 (2 H, t, J = 6. 35 Hz)、2. 32 (2 H, t, J = 6. 35 Hz)、3. 23 (2 H, dd, J = 1. 6. 60, 3. 4. 2 Hz)、3. 23 (3 H, s)、3. 39 (2 H, dd, J = 1. 6. 60, 6. 34 Hz)、3. 83 (3 H, s)、5. 16 (1 H, m, J = 3. 42 Hz)、5. 31 (1 H, s)、6. 69 (1 H, d, J = 2. 44 Hz)、6. 72 (1 H, dd, J = 8. 30, 2. 44 Hz)、6. 86 (1 H, d, J = 8. 30 Hz)、7. 18 - 7. 21 (2 H, m)、7. 24 - 7. 26 (2 H, m)

実施例 6 6

3 - [N - ベンジル - 3 - (2 - インダニルオキシ) - 4 - メト

キシアニリノ] - 2 - シクロヘキセン - 1 - オン (表 1 の化合物 N
o. 66) の合成

実施例 65 と同様の手法を用い、ヨウ化メチルのかわりに臭化ベンジルを使用し、淡褐色油状の標記化合物（収率 55.6%）を得る。

¹ H-NMR (400 MHz, CDCl₃) δ 1.94-1.97 (2H, m)、2.31-2.36 (4H, m)、3.09 (2H, dd, J = 16.60, 6.34 Hz)、3.23 (2H, dd, J = 16.60, 6.34 Hz)、3.80 (3H, s)、4.79 (2H, s)、5.00 (1H, m, J = 3.42 Hz)、5.45 (1H, s)、6.56 (1H, d, J = 2.44 Hz)、6.72 (1H, dd, J = 8.30, 2.44 Hz)、6.82 (1H, d, J = 8.30 Hz)、7.16-7.23 (7H, m)、7.28-7.35 (2H, m)

実施例 67

3-[3-(2-インダニルオキシ)-4-メトキシ-N-(2-ナフチルメチル)アニリノ]-2-シクロヘキセン-1-オン (表 1 の化合物 N o. 67) の合成

実施例 65 と同様の手法を用い、ヨウ化メチルのかわりに 2-(プロモメチル)ナフタレンを使用し、淡褐色油状の標記化合物（収率 48.9%）を得る。

¹ H-NMR (400 MHz, CDCl₃) δ 1.96-1.99 (2H, m)、2.33-2.38 (4H, m)、2.95 (2H, m)、3.06 (2H, dd, J = 16.60, 6.35 Hz)、3.79 (3H, s)、4.90 (1H, m, J = 3.42 Hz)、4.94 (2H, s)、5.56 (1H, s)、6.50 (1H, d, J = 2.44 Hz)、6.76 (1H, dd, J =

8. 79, 2. 44 Hz)、6. 82 (1 H, d, J = 8. 79 Hz)、7. 04 - 7. 06 (2 H, m)、7. 12 - 7. 14 (2 H, m)、7. 35 - 7. 37 (1 H, m)、7. 47 - 7. 50 (2 H, m)、7. 62 (1 H, s)、7. 77 - 7. 84 (3 H, m)

実施例 6 8

3-[3-(2-インダニルオキシ)-4-メトキシ-N-(2-ピリジルメチル)アニリノ]-2-シクロヘキセン-1-オン (表1の化合物No. 68) の合成

実施例 6 5 と同様の手法を用い、ヨウ化メチルのかわりに 2-(クロロメチル) ピリジン塩酸塩を使用し、淡褐色油状の標記化合物(収率 70. 5%)を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1. 94 - 1. 99 (2 H, m)、2. 31 (2 H, t, J = 6. 35 Hz)、2. 40 (2 H, t, J = 6. 35 Hz)、3. 16 (2 H, dd, J = 16. 60, 3. 42 Hz)、3. 32 (2 H, dd, J = 16. 60, 6. 84 Hz)、3. 81 (3 H, s)、4. 92 (2 H, s)、5. 09 (1 H, m)、5. 29 (1 H, s)、6. 82 - 6. 85 (3 H, m)、7. 17 - 7. 28 (6 H, m)、7. 67 (1 H, dd, J = 7. 81, 7. 81, 1. 96 Hz)、8. 58 (1 H, bd, J = 3. 91 Hz)

実施例 6 9

2-ベンジル-3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2-シクロヘキセン-1-オン (表1の化合物No. 69) の合成

実施例 1 と同様の手法を用い、1, 3-シクロペンタンジオンのかわりに、2-ベンジル-1, 3-シクロヘキサンジオンを使用し

、淡桃色固体の標記化合物（収率 9.4. 1%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.61 (2 H, broad)、1.82-1.91 (6 H, m)、1.95 (2 H, m, J = 6.35 Hz)、2.40 (2 H, t, J = 6.35 Hz)、2.47 (2 H, t, J = 6.35 Hz)、3.81 (3 H, s)、3.84 (2 H, s)、4.63 (1 H, m)、6.21 (1 H, broad s)、6.31 (1 H, d, J = 2.44 Hz)、6.40 (1 H, dd, J = 8.79, 2.44 Hz)、6.73 (1 H, d, J = 8.79 Hz)、7.18-7.31 (5 H, m)

実施例 70

3-(3-シクロペンチルオキシ-4-メトキシ-N-メチルアニリノ)-2-メチル-2-シクロペンテン-1-オン（表1の化合物No. 70）の合成

実施例 26 と同様の手法を用い、3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2-シクロペンテン-1-オンのかわりに、実施例 4 で製造される 3-(3-シクロペンチルオキシ-4-メトキシアニリノ)-2-メチル-2-シクロペンテン-1-オンを使用し、茶褐色固体の標記化合物（収率 62.8%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.26 (3 H, s)、1.59-1.62 (2 H, m)、1.81-1.94 (6 H, m)、2.39-2.41 (2 H, m)、2.59-2.60 (2 H, m)、3.42 (3 H, s)、3.86 (3 H, s)、4.73 (1 H, m, J = 3.42 Hz)、6.69 (1 H, d, J = 2.44 Hz)、6.73 (1 H, dd, J = 8.79, 2.44 Hz)、6.83 (1 H, d, J = 8.79 Hz)

実施例 7 1

3 - (N - ベンジル - 3 - シクロペンチルオキシ - 4 - メトキシ
アニリノ) - 2 - メチル - 2 - シクロペンテン - 1 - オン (表 1 の
化合物 No. 7 1) の合成

実施例 7 0 と同様の手法を用い、ヨウ化メチルのかわりに臭化ベンジルを使用し、褐色固体の標記化合物（収率 27.5%）を得る。

¹ H - NMR (400 MHz, CDCl₃) δ 1.30 (3H, s)、1.55 - 1.56 (2H, m)、1.77 (6H, broad)、2.41 - 2.43 (2H, m)、2.66 - 2.67 (2H, m)、3.79 (3H, s)、4.55 (1H, m)、4.92 (2H, s)、6.55 (1H, d, J = 2.44 Hz)、6.66 (1H, dd, J = 8.79, 2.44 Hz)、6.75 (1H, d, J = 8.79 Hz)、7.21 - 7.37 (5H, m)

実施例 7 2

3 - [3 - シクロペンチルオキシ - 4 - メトキシ - N - (2 - キ
ノリンメチル) アニリノ] - 2 - メチル - 2 - シクロペンテン - 1
- オン (表 1 の化合物 No. 7 2) の合成

実施例 7 0 と同様の手法を用い、ヨウ化メチルのかわりに 2 - (クロロメチル) キノリン塩酸塩を使用し、赤褐色油状の標記化合物（収率 36.2%）を得る。

¹ H - NMR (400 MHz, CDCl₃) δ 1.29 (3H, s)、1.50 (2H, broad)、1.73 (6H, broad)、2.42 - 2.43 (2H, m)、2.76 (2H, broad)、3.81 (3H, s)、4.55 (1H, m)、5.20 (2H, s)、6.74 - 6.80 (3H, m)、7.35 (

1 H, d, J = 8. 30 Hz)、7. 55 (1 H, m)、7. 74 (1 H, m)、7. 83 (1 H, d, J = 8. 30 Hz)、8. 04 (1 H, d, J = 8. 30 Hz)、8. 16 (1 H, d, J = 8. 30 Hz)

実施例 7 3

3 - [3 - (2 - インダニルオキシ) - 4 - メトキシ - N - (4 - ピリジルメチル) アニリノ] - 2 - メチル - 2 - シクロペンテン - 1 - オン (表 1 の化合物 No. 73) の合成

実施例 26 と同様の手法を用い、3 - (3 - シクロペンチルオキシ - 4 - メトキシアニリノ) - 2 - シクロペンテン - 1 - オンのかわりに、実施例 10 で製造される 3 - [3 - (2 - インダニルオキシ) - 4 - メトキシアニリノ] - 2 - メチル - 2 - シクロペンテン - 1 - オンを使用し、ヨウ化メチルのかわりに 4 - (クロロメチル) ピリジン塩酸塩を使用し、褐色油状の標記化合物 (収率 38. 8 %) を得る。

¹ H-NMR (400 MHz, CDCl₃) δ: 1. 34 (3 H, s)、2. 43 - 2. 45 (2 H, m)、2. 63 (2 H, m)、3. 12 (2 H, dd, J = 16. 60, 3. 90 Hz)、3. 25 (2 H, dd, J = 16. 60, 6. 84 Hz)、3. 80 (3 H, s)、4. 95 (2 H, s)、5. 04 (1 H, m, J = 3. 42 Hz)、6. 64 (1 H, d, J = 2. 44 Hz)、6. 72 (1 H, dd, J = 8. 30, 2. 44 Hz)、6. 79 (1 H, d, J = 8. 30 Hz)、7. 17 - 7. 23 (6 H, m)、8. 62 - 8. 64 (2 H, m)

実施例 7 4

3 - [3 - (2 - インダニルオキシ) - 4 - メトキシ - N - (2 - ナフチルメチル) アニリノ] - 2 - メチル - 2 - シクロペンテン

-1-オン(表1の化合物No. 74)の合成

実施例73と同様の手法を用い、4-(クロロメチル)ピリジン塩酸塩のかわりに、2-(ブロモメチル)ナフタレンを使用し、褐色油状の標記化合物(収率24.9%)を得る。

¹H-NMR (400MHz, CDCl₃) δ 1.35 (3H, s)、2.45-2.48 (2H, m)、2.75 (2H, broad)、2.93 (2H, dd, J=16.60, 3.91Hz)、3.04 (2H, dd, J=16.60, 6.35Hz)、3.78 (3H, s)、4.86 (1H, m, J=3.42Hz)、5.09 (2H, s)、6.54 (1H, broad s)、6.77 (2H, s)、7.03-7.05 (2H, m)、7.11-7.13 (2H, m)、7.36-7.39 (1H, m)、7.50-7.52 (2H, m)、7.64 (1H, s)、7.80-7.88 (3H, m)

実施例75

3-(3-シクロペンチルオキシ-4-メトキシアニリン)-2-メチル-2-シクロヘキセン-1-オン(表1の化合物No. 75)の合成

実施例46と同様の手法を用い、3-[rel (1R, 2R, 4S)-ビシクロ[2.2.1]ヘプタ-2-イルオキシ]-4-メトキシアニリンのかわりに、実施例1(2)で製造される3-シクロペンチルオキシ-4-メトキシアニリンを使用し、淡灰色固体の標記化合物(収率85.9%)を得る。

¹H-NMR (400MHz, CDCl₃) δ 1.63 (2H, m)、1.83 (3H, s)、1.87-1.96 (8H, m)、2.38 (4H, t, J=6.35Hz)、3.86 (3H, s)、4.75 (1H, m, J=2.93Hz)、6.13 (1H

, broad s)、6.64 - 6.66 (2 H, m)、6.82
(1 H, d, J = 7.82 Hz)

実施例 7 6

3 - [3 - (2 - インダニルオキシ) - 4 - メトキシ - N - メチルアニリノ] - 2 - シクロペンテン - 1 - オン (表 1 の化合物 N o. 7 6) の合成

実施例 2 6 と同様の手法を用い、3 - (3 - シクロペンチルオキシ - 4 - メトキシアニリノ) - 2 - シクロペンテン - 1 - オンのかわりに、実施例 9 (3) で製造される 3 - [3 - (2 - インダニルオキシ) - 4 - メトキシアニリノ] - 2 - シクロペンテン - 1 - オンを使用し、淡褐色油状の標記化合物（収率 100%）を得る。

¹ H - NMR (400 MHz, CDCl₃) δ 2.42 (4 H, broad)、3.23 (2 H, dd, J = 16.60, 3.42 Hz)、3.32 (3 H, s)、3.39 (2 H, dd, J = 16.60, 6.83 Hz)、3.84 (3 H, s)、5.16 (2 H, m)、6.76 - 6.80 (2 H, m)、6.88 (1 H, d, J = 8.30 Hz)、7.18 - 7.26 (4 H, m)

実施例 7 7

3 - [N - ベンジル - 3 - (2 - インダニルオキシ) - 4 - メトキシアニリノ] - 2 - シクロペンテン - 1 - オン (表 1 の化合物 N o. 7 7) の合成

実施例 7 6 と同様の手法を用い、ヨウ化メチルのかわりに、臭化ベンジルを使用し、無色油状の標記化合物（収率 94.3%）を得る。

¹ H - NMR (400 MHz, CDCl₃) δ 2.43 (4 H, broad)、3.08 (2 H, dd, J = 16.60, 3.42 Hz)、3.22 (2 H, dd, J = 16.60, 6.84 Hz)

z)、3.81(3H, s)、4.78(2H, s)、4.98(1H, m)、5.32(1H, broad)、6.55(1H, broad s)、6.74(1H, dd, J = 8.79, 2.45 Hz)、6.82(1H, d, J = 8.79 Hz)、7.16-7.36(9H, m)

実施例 7 8

3 - [3 - (2 - インダニルオキシ) - 4 - メトキシ - N - (4 - ピリジルメチル) アニリノ] - 2 - シクロペンテン - 1 - オン (表 1 の化合物 No. 78) の合成

実施例 7 6 と同様の手法を用い、ヨウ化メチルのかわりに、4 - (クロロメチル) ピリジン塩酸塩を使用し、茶褐色油状の標記化合物（収率 77.2%）を得る。

¹ H - NMR (400 MHz, CDCl₃) δ 2.45-2.55(4H, broad)、3.13(2H, dd, J = 16.60, 3.42 Hz)、3.28(2H, dd, J = 16.60, 6.84 Hz)、3.82(3H, s)、4.79(2H, s)、5.06(1H, m)、5.20(1H, broad)、6.65(1H, d, J = 2.44 Hz)、6.76(1H, dd, J = 8.30, 2.44 Hz)、6.84(1H, d, J = 8.30 Hz)、7.18-7.24(6H, m)、8.60-8.62(2H, m)

実施例 7 9

3 - [3 - (2 - インダニルオキシ) - 4 - メトキシ - N - (2 - ナフチルメチル) アニリノ] - 2 - シクロペンテン - 1 - オン (表 1 の化合物 No. 79) の合成

実施例 7 6 と同様の手法を用い、ヨウ化メチルのかわりに、2 - (プロモメチル) ナフタレンを使用し、淡褐色固体の標記化合物（

収率 100%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 2.45 (4 H, broad)、2.92 (2 H, dd, J = 16.60, 3.42 Hz)、3.03 (2 H, dd, J = 16.60, 6.83 Hz)、3.79 (3 H, s)、4.86 (1 H, m, J = 3.42 Hz)、4.93 (2 H, s)、5.51 (1 H, broad)、6.48 (1 H, broad)、6.77 (1 H, dd, J = 8.79, 2.44 Hz)、6.82 (1 H, d, J = 8.79 Hz)、7.03 - 7.05 (2 H, m)、7.11 - 7.14 (2 H, m)、7.38 (1 H, m)、7.50 - 7.52 (2 H, m)、7.62 (1 H, s)、7.78 - 7.80 (1 H, m)、7.83 - 7.85 (2 H, m)

実施例 80

3-[3-(2-インダニルオキシ)-4-メトキシ-N-(2-キノリルメチル)アニリノ]-2-シクロペンテン-1-オン (表1の化合物No. 80) の合成

実施例 76 と同様の手法を用い、ヨウ化メチルのかわりに、2-(クロロメチル)キノリン塩酸塩を使用し、淡褐色固体の標記化合物（収率 76.1%）を得る。

¹H-NMR (400 MHz, CDCl₃) δ 2.45 - 2.64 (4 H, broad)、3.06 (2 H, dd, J = 16.60, 3.42 Hz)、3.20 (2 H, dd, J = 16.60, 6.35 Hz)、3.80 (3 H, s)、5.01 (1 H, m)、5.09 (2 H, s)、5.22 (1 H, broad)、6.82 - 6.90 (3 H, m)、7.11 - 7.17 (4 H, m)、7.41 (1 H, broad)、7.56 (1 H, dd, J = 8.30, 6.83 Hz)、7.72 (1 H, dd, J = 8.30, 6.8

3 Hz)、7.83 (1 H, d, J = 8.30 Hz)、8.04 (1 H, d, J = 8.30 Hz)、8.17 (1 H, d, J = 8.79 Hz)

実施例 8 1

3 - [N - ベンジル - 3 - [rel (1 R, 2 R, 4 S) - ビシクロ [2.2.1] ヘプタ - 2 - イルオキシ] - 4 - メトキシアニリノ] - 2 - シクロペンテン - 1 - オン (表 1 の化合物 No. 8 1)

の合成

実施例 2 6 と同様の手法を用い、3 - (3 - シクロペンチルオキシ - 4 - メトキシアニリノ) - 2 - シクロペンテン - 1 - オンのかわりに、実施例 8 (3) で製造される 3 - [3 - [rel (1 R, 2 R, 4 S) - ビシクロ [2.2.1] ヘプタ - 2 - イルオキシ] - 4 - メトキシアニリノ] - 2 - シクロペンテン - 1 - オンを使用し、ヨウ化メチルのかわりに臭化ベンジルを使用し、淡黄色油状の標記化合物 (収率 92.3%) を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.00 - 1.11 (2 H, m)、1.16 - 1.18 (1 H, m)、1.47 - 1.69 (5 H, m)、2.29 (1 H, m)、2.34 (1 H, m)、2.40 (4 H, broad)、3.83 (3 H, s)、3.96 - 3.98 (1 H, m)、4.76 (2 H, s)、5.30 (1 H, broad)、6.46 (1 H, broad)、6.67 (1 H, dd, J = 8.30, 2.44 Hz)、6.79 (1 H, d, J = 8.30 Hz)、7.20 - 7.22 (2 H, m)、7.28 - 7.34 (3 H, m)

実施例 8 2

3 - [3 - [rel (1 R, 2 R, 4 S) - ビシクロ [2.2.1] ヘプタ - 2 - イルオキシ] - 4 - メトキシ - N - (2 - キノリン

メチル) アニリノ] - 2 - シクロペンテノン - 1 - オン (表 1 の化合物 N o . 8 2) の合成

実施例 8 1 と同様の手法を用い、臭化ベンジルのかわりに、2 - (クロロメチル) キノリン塩酸塩を使用し、褐色油状の標記化合物 (収率 9 2 . 8 %) を得る。

¹ H - NMR (4 0 0 MHz, CDCl₃) δ 0 . 9 6 - 1 . 0 2 (2 H, m)、1 . 1 1 - 1 . 1 4 (1 H, m)、1 . 4 3 - 1 . 4 4 (3 H, m)、1 . 5 4 (1 H, m)、1 . 6 2 - 1 . 6 5 (1 H, m)、2 . 2 3 (1 H, broad)、2 . 3 3 (1 H, broad)、2 . 4 3 - 2 . 6 7 (4 H, broad)、3 . 8 2 (3 H, s)、3 . 9 7 (1 H, broad)、5 . 0 7 (2 H, s)、5 . 2 2 (1 H, broad)、6 . 7 2 (1 H, broad)、6 . 7 9 - 6 . 8 4 (2 H, m)、7 . 3 8 - 7 . 3 9 (1 H, m)、7 . 5 5 (1 H, m)、7 . 7 3 (1 H, m)、7 . 8 2 (1 H, d, J = 8 . 3 0 Hz)、8 . 0 3 (1 H, d, J = 8 . 3 0 Hz)、8 . 1 5 (1 H, d, J = 8 . 3 0 Hz)

実施例 8 3

3 - [3 - [rel (1 R, 2 R, 4 S) - ビシクロ [2 . 2 . 1] ヘプタ - 2 - イルオキシ] - 4 - メトキシアニリノ] - 2 - シクロヘキセン - 1 - オン (表 1 の化合物 N o . 8 3) の合成

実施例 8 と同様の手法を用い、1 , 3 - シクロペンタンジオンのかわりに、1 , 3 - シクロヘキサンジオンを使用し、淡黄色固体の標記化合物 (収率 9 0 . 1 %) を得る。

¹ H - NMR (4 0 0 MHz, CDCl₃) δ 1 . 1 1 - 1 . 1 3 (2 H, m)、1 . 1 9 - 1 . 2 1 (1 H, m)、1 . 4 8 - 1 . 5 8 (3 H, m)、1 . 7 2 - 1 . 7 5 (2 H, m)、2 . 0 4 (2 H, m, J = 6 . 3 5 Hz)、2 . 3 2 - 2 . 3 7 (1 H

, m)、2.36 (2H, t, J = 6.35 Hz)、2.46 - 2.49 (1H, m)、2.48 (2H, t, J = 6.35 Hz)、3.83 (3H, s)、4.13 - 4.14 (1H, m)、5.42 (1H, s)、5.96 (1H, broad s)、6.63 (1H, d, J = 2.44 Hz)、6.69 (1H, dd, J = 8.30, 2.44 Hz)、6.80 (1H, d, J = 8.30 Hz)

実施例 8 4

3 - [N - ベンジル - 3 - [rel (1R, 2R, 4S) - ビシクロ[2.2.1]ヘプタ - 2 - イルオキシ] - 4 - メトキシアニリノ] - 2 - シクロヘキセン - 1 - オン (表 1 の化合物 No. 8 4)
の合成

実施例 2 6 と同様の手法を用い、3 - (3 - シクロペンチルオキシ - 4 - メトキシアニリノ) - 2 - シクロペンテン - 1 - オンのかわりに、実施例 8 3 で製造される 3 - [3 - [rel (1R, 2R, 4S) - ビシクロ[2.2.1]ヘプタ - 2 - イルオキシ] - 4 - メトキシアニリノ] - 2 - シクロヘキセン - 1 - オンを使用し、ヨウ化メチルのかわりに臭化ベンジルを使用し、淡黄色油状の標記化合物 (収率 60.8%) を得る。

¹H-NMR (400 MHz, CDCl₃) δ 1.04 - 1.10 (2H, m)、1.16 - 1.18 (1H, m)、1.48 - 1.54 (3H, m)、1.60 - 1.61 (1H, m)、1.67 - 1.69 (1H, m)、1.93 (2H, m, J = 6.35 Hz)、2.30 - 2.31 (4H, broad)、2.33 (1H, m)、2.35 (1H, m)、3.83 (3H, s)、3.99 - 4.01 (1H, m)、4.77 (2H, s)、5.44 (1H, s)、6.47 (1H, d, J = 2.44 Hz)、6.65 (

1 H, d d, J = 8. 30, 2. 44 Hz)、6. 79 (1 H, d, J = 8. 30 Hz)、7. 19 - 7. 21 (2 H, m)、7. 25 - 7. 32 (3 H, m)

実施例 8 5

3 - [3 - [rel (1 R, 2 R, 4 S) - ビシクロ [2. 2. 1] ヘプタ - 2 - イルオキシ] - 4 - メトキシ - N - (4 - ピリジルメチル) アニリノ] - 2 - シクロヘキセシ - 1 - オン (表 1 の化合物 No. 8 5) の合成

実施例 8 4 と同様の手法を用い、臭化ベンジルのかわりに、4 - (クロロメチル) ピリジン塩酸塩を使用し、淡褐色油状の標記化合物 (收率 44. 6 %) を得る。

¹ H - NMR (400 MHz, CDCl₃) δ 1. 07 - 1. 13 (2 H, m)、1. 18 - 1. 21 (1 H, m)、1. 57 - 1. 70 (5 H, m)、1. 94 (2 H, m, J = 6. 35 Hz)、2. 29 - 2. 33 (5 H, m)、2. 38 (1 H, m)、3. 84 (3 H, s)、4. 05 - 4. 06 (1 H, m)、4. 77 (2 H, s)、5. 32 (1 H, s)、6. 52 (1 H, d, J = 2. 44 Hz)、6. 67 (1 H, d d, J = 8. 30, 2. 44 Hz)、6. 80 (1 H, d, J = 8. 30 Hz)、7. 17 (2 H, d, J = 5. 86 Hz)、8. 57 (2 H, d, J = 5. 86 Hz)

表 1

化合物No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	X
1		Me	H	H	H	H	H	H	-
2		Me	H	H	H	H	H	H	CH ₂
3		Me	H	H	H	H	Me	Me	CH ₂
4		Me	H	Me	H	H	H	H	-
5		Me	H	H	H	H	Me	H	CH ₂
6		Me	H	Cl	H	H	H	H	-
7		Me	H	Br	H	H	H	H	-
8		Me	H	H	H	H	H	H	-
9		Me	H	H	H	H	H	H	-
10		Me	H	Me	H	H	H	H	-

表 1 (続き)

化合物No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	X
11		Me	H	H	H	H	H	H	-
12		Me	H	Me	H	H	H	H	-
13		Me	H	H	H	H	H	H	-
14		Me	H	Me	H	H	H	H	-
15		Me	H	H	H	H	H	H	-
16		Me	H	Me	H	H	H	H	-
17	CH ₃ (CH ₂) ₃	Me	H	H	H	H	H	H	-
18	CH ₃ (CH ₂) ₃	Me	H	Me	H	H	H	H	-
19		Me	H	H	H	H	H	H	CH ₂
20		Me	H	H	H	H	H	H	CH ₂
21		Me	H	H	H	H	H	H	NH
22		Me	H	H	H	H	H	H	NBn

表 1 (続き)

化合物No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	X
23		Me	H	H	H	H	H	H	NH
24		Me	H		H	H	H	H	-
25		Me	H		H	H	H	H	-
26		Me	Me	H	H	H	H	H	-
27		Me	Me	H	H	H	H	H	CH ₂
28		Me		H	H	H	H	H	-
29		Me	CH ₃ CO	H	H	H	H	H	-
30		Me		H	H	H	H	H	-
31		Me	H	Et	H	H	H	H	-
32		Me	H	Et	H	H	H	H	-
33		Me	H		H	H	H	H	-
34		Me	H	H	H	H	H	H	-

表 1 (続き)

化合物No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	X
35		Me	H	Me	H	H	H	H	-
36		Me	H	H	H	H	H	H	-
37		Me	H	Me	H	H	H	H	-
38		Me	H	H	H	H	H	H	CMe ₂
39		Me	H	H	H	H	Ph	H	CH ₂
40		Me	H	H	H	H	H	H	-
41		Me	H	Me	H	H	H	H	-
42		Me	H	H	H	H	H	H	-
43		Me	H	Me	H	H	H	H	-
44		Me	H	Me	H	H	H	H	-
45		Me	H	Et	H	H	H	H	-
46		Me	H	Me	H	H	H	H	CH ₂

表 1 (続き)

化合物No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	X
47		Me	Me	Me	H	H	H	H	-
48		Me	H	Me	H	H	H	H	CH ₂
49		Me	H	H	H	H	H	H	-
50		Me	H	Me	H	H	H	H	-
51		Me	H	H	H	H	H	H	-
52		Me	H	Me	H	H	H	H	-
53		Me	H	Me	H	H	H	H	CH ₂
54		Me	H	Me	H	H	H	H	CH ₂
55		Me	H	Me	H	H	H	H	CH ₂
56		Me		H	H	H	H	H	-
57		Me		H	H	H	H	H	-
58		Me		H	H	H	H	H	-

表 1 (続き)

化合物No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	X
59		Me	CH ₃	H	H	H	H	H	-
60		Me		H	H	H	H	H	-
61		Me		H	H	H	H	H	-
62		Me		H	H	H	H	H	-
63		Me		H	H	H	H	H	-
64		Me	CH ₃	H	H	H	H	H	-
65		Me	Me	H	H	H	H	H	CH ₂
66		Me		H	H	H	H	H	CH ₂
67		Me		H	H	H	H	H	CH ₂
68		Me		H	H	H	H	H	CH ₂
69		Me	H		H	H	H	H	CH ₂
70		Me	Me	Me	H	H	H	H	-

表 1 (続き)

化合物No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	X
71		Me		Me	H	H	H	H	-
72		Me		Me	H	H	H	H	-
73		Me		Me	H	H	H	H	-
74		Me		Me	H	H	H	H	-
75		Me	H	Me	H	H	H	H	CH ₂
76		Me	Me	H	H	H	H	H	-
77		Me		H	H	H	H	H	-
78		Me		H	H	H	H	H	-
79		Me		H	H	H	H	H	-
80		Me		H	H	H	H	H	-
81		Me		H	H	H	H	H	-
82		Me		H	H	H	H	H	-

表 1 (続き)

化合物No.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	R ₈	X
83		Me	H	H	H	H	H	H	CH ₂
84		Me		H	H	H	H	H	CH ₂
85		Me		H	H	H	H	H	CH ₂

実施例 8 6錠剤の製造

30 g の 3 - (3 - シクロヘキシルオキシ - 4 - メトキシアニリノ) - 2 - シクロヘキテン - 1 - オン (表 1 の 化合物 No. 1) 、 乳糖 253 g 、 トウモロコシデンプン 63 g 、 低置換ヒドロキシブロピルセルロース 40 g 、 ステアリン酸カルシウム 4 g を混和し、 通常の方法で圧縮して各錠剤が前記化合物 10 mg を含むように調製した。

実施例 8 7カプセル剤の製造

30 g の 3 - [3 - [rel (1R, 2R, 4S) - ビシクロ [2.2.1] ヘプタ - 2 - イルオキシ] - 4 - メトキシアニリノ] - 2 - シクロヘキテン - 1 - オン (表 1 の 化合物 No. 8) 、 乳糖 260 g 、 トウモロコシデンプン 66 g 、 ステアリン酸カルシウム 4 g を混和した後、 通常の方法でゼラチンカプセルに充填し、 各カプセルが前記化合物 10 mg を含むように調製した。

実施例 8 8吸入剤の製造

4-(3-シクロペンチルオキシ-4-メドキシアニリノ)-1,2,5,6-テトラヒドロピリジン-2-オン(表1の化合物No. 21)をよく粉碎し、粒子径を1~5 μmとしたもの0.15gと乳糖(325メッシュ、ディー・エム・ブイ・社製)60gを混和する。通常の方法でカプセルに充填し、各カプセルが前記化合物50μgを含むように調製した。吸入は粉末吸入容器にカプセルを装填して行う。

実施例 8 9

軟膏剤の製造

4-[3-(2-インダニルオキシ)-4-メトキシアニリノ]-2-シクロペンテン-1-オン(表1の化合物No. 9)100mg、オリーブ油20gおよび白色ワセリン79.9gを無菌条件下で混和する。

試験例 1

フォスフォジエステラーゼ(PDE)の分離およびPDE阻害活性の測定

本発明の化合物のPDE阻害活性および選択性を調べるために、I型、III型、IV型およびV型の、4種類のPDEアイソザイムを準備した[Trends Pharmacol. Sci., 12, 19-27 (1992)]。I型PDEはシグマ社より購入したものを用いた。また、III型、IV型およびV型のPDEアイソザイムはラットより採取した血小板(III型およびV型)または好中球(V型)から部分精製した。各酵素源を20 mMビストリス、EDTA(エチレンジアミン四酢酸)2 mM、PMSF(フェニルメチルスルフォニルフルオライド)0.1 mM、2-メルカプトエタノール5 mM、ペプスタチン0.001 mM、ロイペプチド0.01 mMを含む緩衝液(pH 6.5)中でホモジナイズし、30000

gで30分間遠心して得られた遠心上清をイオン交換樹脂（Qセファロースファーストフロー、ファルマシア社製）を充填したカラムにかけ、0～1Mの酢酸ナトリウムで溶離した。部分精製したアイソザイムは各々既知の選択的阻害剤の効果を調べることによって同定した。

被検物質はDMSO（ジメチルスルホキシド）中に溶解し、5mMの塩化マグネシウムを含む50mMトリス塩酸緩衝液中に添加した。この反応液に上記のPDEアイソザイムおよび³H-cAMP（III型、IV型PDEのとき）または³H-cGMP（I型、V型PDEのとき）を基質として加え、30度で30分間反応させた。反応は100度の沸騰液中に5分間つけることによって停止した。PDEによって生成したヌクレオチドは5'-ヌクレオチダーゼで³H-アデノシンまたは³H-グアノシンに分解し、未反応の基質と反応生成物はイオン交換樹脂（QAEセファデックス、ファルマシア社製）を充填したカラムを通して分離した。

溶出した³H-ヌクレオシドの放射活性を液体シンチレーションカウンターで測定した。各被検物質の阻害活性はIC₅₀値で表し、IV型に対する阻害活性を表2に示した。また、各被検物質のI型、III型、V型に対する阻害活性はIV型に対する阻害活性の10分の1以下であった。

表 2

化合物No.	PDE IV阻害作用 IC ₅₀ (M)
1	1.6×10^{-6}
2	3.7×10^{-6}
3	4.9×10^{-6}
4	3.9×10^{-7}
5	2.2×10^{-6}
6	5.4×10^{-7}
7	2.8×10^{-7}
8	1.3×10^{-6}
9	6.9×10^{-7}
10	1.4×10^{-7}
11	4.0×10^{-6}
12	7.1×10^{-7}
13	7.4×10^{-6}
14	2.4×10^{-6}
15	7.1×10^{-6}
16	1.0×10^{-6}
17	1.4×10^{-5}
18	1.7×10^{-6}
19	1.8×10^{-6}
20	4.4×10^{-5}
21	1.1×10^{-6}
22	2.4×10^{-5}
23	2.4×10^{-6}
24	6.1×10^{-5}

表 2 (続き)

化合物No.	P D E I V阻害作用 I C ₅₀ (M)
25	1.7×10^{-5}
26	8.0×10^{-7}
27	1.9×10^{-6}
28	4.3×10^{-6}
29	4.8×10^{-5}
30	2.6×10^{-6}
31	2.2×10^{-7}
32	5.0×10^{-8}
33	4.0×10^{-7}
34	1.8×10^{-6}
35	2.9×10^{-7}
36	8.9×10^{-6}
37	1.2×10^{-6}
38	1.7×10^{-5}
39	3.9×10^{-6}
40	4.0×10^{-6}
41	9.4×10^{-7}
42	9.6×10^{-6}
43	1.3×10^{-6}
44	2.2×10^{-7}
45	8.0×10^{-8}
46	2.6×10^{-7}
47	1.6×10^{-6}
48	8.2×10^{-8}

表2(続き)

化合物No.	PDEIV阻害作用 I C ₅₀ (M)
49	2.3×10^{-6}
50	6.2×10^{-7}
51	1.9×10^{-6}
52	5.5×10^{-7}
53	2.2×10^{-7}
54	7.3×10^{-7}
55	2.0×10^{-6}
56	5.5×10^{-6}
57	1.9×10^{-6}
58	5.3×10^{-7}
59	7.4×10^{-6}
60	4.4×10^{-5}
61	3.2×10^{-6}
62	1.2×10^{-6}
63	5.3×10^{-6}
64	4.4×10^{-6}
65	2.9×10^{-7}
66	5.7×10^{-7}
67	3.8×10^{-6}
68	4.9×10^{-7}
69	1.1×10^{-6}
70	3.1×10^{-6}
71	8.2×10^{-6}
72	3.0×10^{-6}

表 2 (続き)

化合物No.	P D E I V 阻害作用 I C ₅₀ (M)
73	3.2×10^{-6}
74	3.5×10^{-6}
75	4.7×10^{-7}
76	1.3×10^{-7}
77	9.1×10^{-7}
78	1.3×10^{-6}
79	7.3×10^{-7}
80	1.2×10^{-7}
81	1.0×10^{-6}
82	5.3×10^{-7}
83	1.6×10^{-6}
84	1.4×10^{-6}
85	3.6×10^{-6}

試験例 2ラット好中球の活性化抑制作用

炎症性白血球である好中球の活性化抑制作用を調べるためにスーザン・オキサイドアニオンの放出量を測定した。

エーテル麻酔下のウィスター系雄性ラットから採血し、得られた血液を血球分離液（ポリモルフォプレップ 1. 113、ナイコメッドファーム社製）に重層して好中球を遠心分離した。好中球はハンクス液中で 0.5×10^4 cells/m¹ に調整し、この細胞浮遊液 2 m¹ にルシゲニン 0.1 mM および DMSO に溶解した被検物質を添加した。カルシウムイオノフォアーア 23187 0.3 μM の刺激によって発生する化学発光をケモルミネッセンスリーダー

ーで測定し、スーパーオキサイドアニオン放出量を算出し、スーパーオキサイドアニオン放出抑制作用に対する本発明の化合物の効果を $I C_{50}$ 値で表し、表 3 に示す。

表 3

化合物No.	ラット好中球からのスーパーオキサイド アニオン放出抑制作用 $I C_{50}$ (M)
1	1.2×10^{-7}
8	1.4×10^{-7}
21	4.1×10^{-7}
22	3.3×10^{-6}
23	1.9×10^{-7}

試験例 3

抗原誘発気道収縮抑制作用（抗喘息作用）

ハートレイ系雄性モルモットに卵白アルブミン (O A) を 3 5 mg 筋肉内投与して感作し、4 日後に同様に追加感作を行った。初回感作から 2 5 ~ 2 9 日後、ペントバルビタール麻酔したモルモットに気管カニューレを挿入して人工呼吸を施した。Konzett-Roessler 法により気道抵抗をモニターし、O A 0. 2 mg / kg 静脈内投与で惹起される気道抵抗の増加を調べた。被検物質はポリエチレングリコール 4 0 0 に溶解して抗原投与の 1 0 分前に静脈内投与した。本発明の化合物の効果を $E D_{50}$ 値で表し、表 4 に示す。

表 4

化合物No.	抗原誘発気道収縮抑制作用 E D ₅₀ (mg/kg)
1	1.4
8	3.0
9	5.5
10	0.86
21	1.0
32	7.34

試験例 4マウスTPA誘発耳介浮腫抑制作用

5週齢のICR系雄性マウスを一群7～8匹として用いた。起炎剤として2μgのTPA (phorbol 12-myristate; SIGMA社) を含むアセトン溶液20μlをマウスの右耳介の両面に塗布し、反応を惹起した。被検物質0.1mgをテトラヒドロフラン-メタノール混合液(混合比1:1)20μlに溶解し、この溶液(20μl)をTPA塗布直後に右耳介に塗布した。TPA塗布6時間後、マウスを屠殺し、右耳介を直径6mmのパンチで打ち抜き重量を測定した。溶媒対照群の浮腫率を100%とし、被検物質による浮腫抑制率を求めた。本発明の化合物の効果を耳介浮腫抑制率で表し、表5に示す。

表 5

化合物No.	耳介浮腫抑制率 (%)
1	68.2
2	65.0
7	55.8
8	73.1
9	72.3
12	52.5
13	51.8
14	73.4
16	72.1
17	57.1
19	76.3
22	76.8
23	73.0
26	82.0
27	86.4
28	71.5
30	78.4
31	73.4
32	75.5
33	81.7
35	52.5
37	51.8
44	74.1
45	75.3

表 5 (続き)

化合物No.	耳介浮腫抑制率 (%)
47	59.9
48	53.8
49	54.3
50	62.6
53	55.9
55	70.8
56	86.1
57	89.7
58	58.7
59	60.1
60	78.5
61	66.2
62	78.8
63	75.4
64	52.0
65	52.5
66	72.8
67	60.8
68	52.0
73	54.3
75	64.8
76	52.7
77	50.9
78	82.2

表 5 (続き)

化合物No.	耳介浮腫抑制率 (%)
79	89.0
80	64.4
81	82.7
82	84.4
83	70.5
84	71.8
85	70.3

試験例 5マウス I V型アレルギー抑制作用 (D N F B 誘発接触性皮膚炎モ
デル)

8 ~ 9 週齢の I C R 系雄性マウスを一群 8 ~ 9 匹として用いた。剪毛したマウス腹部皮膚に 0. 5 % D N F B (2, 4 - ジニトロフルオロベンゼン) アセトン - オリーブオイル溶液 ($v/v = 4/1$) $25 \mu l$ / 日を 2 日間にわたり塗布にて感作した。2 日目の感作から 4 日後に耳介に 0. 2 % D N F B アセトン - オリーブオイル溶液 $25 \mu l$ を塗布し、接触性皮膚炎を誘発した。24 時間後に耳介の厚さを dial thickness gauge を用いて測定し、浮腫誘発前値との差を求めた。被験物質はテトラヒドロフラン - メタノール溶液 (混合比 1 : 1) $25 \mu l$ に溶解し、耳介浮腫誘発 1 時間前と 5 時間後の 2 回 ($25 \mu l$ / 回) 塗布した。溶媒対照群の浮腫率を 100 % とし、被験物質による浮腫抑制率を求めた。本発明の化合物の効果を E D₅₀ 値で表し、表 6 に示す。

表 6

化合物No.	ED ₅₀ (μg / e a r)
9	94
14	16
22	32

試験例 6急性毒性

本発明の化合物のNo. 1～No. 85を0.5%カルボキシルメチルセルロースナトリウムを含む生理食塩水に懸濁して ddY 系雄性マウスに腹腔内投与し、翌日生死を観察した。30mg/kg の投与量で死亡例が認められた化合物はなかった。

産業上の利用性

本発明の化合物は、優れたPDE IV阻害作用を有しており、喘息、皮膚炎等の炎症性疾患；多発性硬化症；リューマチ等の自己免疫疾患等の治療薬として有用である。

請求の範囲

1. 式(I) :

(式中、R₁は置換基を有してもよいC₁～C₈のアルキル基（ただし置換基を有しないメチル基を除く）、C₃～C₇のシクロアルキル基、C₆～C₁₀のビシクロアルキル基、3-テトラヒドロフリル基またはインダニル基を表し、R₂はC₁～C₄のアルキル基を表し、R₃は水素原子、置換基を有してもよいC₁～C₅のアルキル基、C₃～C₇のシクロアルキル基またはアシル基を表し、R₄は水素原子、置換基を有してもよいC₁～C₅のアルキル基、ハロゲン原子、式(II) :

(式中、R₉およびR₁₀は、それぞれ独立して、C₁～C₅のアルキル基を表す)で表される基または式(III) :

(式中、nは2～6の整数を表すが、一つのCH₂基は酸素原子、窒素原子及び硫黄原子の中から選ばれた1個のヘテロ原子で置換することができる)で表される基を表し、R₅、R₆、R₇およびR₈は、それぞれ独立して、水素原子、置換基を有してもよいC₁～C₅のアルキル基、置換基を有してもよいフェニル基を表し、Xは

$-(CR_{11}R_{12})_n$ - (式中、 R_{11} および R_{12} はそれぞれ独立して水素原子、置換基を有してもよい $C_1 \sim C_5$ のアルキル基、置換基を有してもよいフェニル基を表し、 n は0～2の整数を表す)または $-NR_{13}-$ (式中、 R_{13} は水素原子、置換基を有してもよい $C_1 \sim C_5$ のアルキル基を表す)を表す]で表される3-アニリノ-2-シクロアルケノン誘導体、その光学異性体もしくはそれらの医薬上許容される塩またはこれらの水和物もしくは溶媒和物。

2. R_1 が $C_4 \sim C_6$ のアルキル基、 $C_4 \sim C_7$ のシクロアルキル基、 $C_6 \sim C_8$ のビシクロアルキル基、置換基として、フェニル基、ナフチル基、インダニル基もしくは置換基を有してもよい $C_3 \sim C_7$ のシクロアルキル基を有する $C_1 \sim C_5$ のアルキル基、3-テトラヒドロフリル基またはインダニル基である請求項1に記載の化合物。

3. R_1 がブチル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、シクロブチルメチル基、シクロペンチルメチル基、(1-フェニルシクロプロピル)メチル基、ベンジル基、フェネチル基、2-(1-ナフチル)エチル基、2-(2-インダニル)エチル基、rel (1R, 2R, 4S) ビシクロ[2.2.1]ヘプタ-2-イル基、3-テトラヒドロフリル基、2-インダニル基であることを特徴とする請求項2に記載の化合物。

4. R_2 がメチル基である請求項1～3のいずれか1項に記載の化合物。

5. R_3 が水素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、2-ピリジルメチル基、3-ピリジルメチル基、4-ピリジルメチル基、ベンジル基、1-ナフチルメチル基、2-ナフチルメチル基、2-キノリルメチル基、シクロペンチル基また

はアセチル基である請求項1～4のいずれか1項に記載の化合物。

6. R_4 が水素原子、ハロゲン原子、メチル基、エチル基、ジメチルアミノメチル基、モルフォリノメチル基またはベンジル基である請求項1～5のいずれか1項に記載の化合物。

7. Xにおいて、 $- (C R_{11} R_{12})_n -$ の n が0または1、 R_{11} および R_{12} がそれぞれ独立して水素原子またはメチル基であるか、もしくは $- N R_{13} -$ の R_{13} が水素原子、 $C_1 \sim C_3$ アルキル基もしくはベンジル基である請求項1～6のいずれか1項に記載の化合物。

8. R_5 、 R_6 、 R_7 および R_8 が、それぞれ独立して、水素原子またはメチル基である請求項1～7のいずれか1項に記載の化合物。

9. 請求項1～8のいずれか1項に記載の化合物を含有してなる医薬組成物。

10. 請求項1～8のいずれか1項に記載の化合物を含有してなる炎症性疾患の予防または治療薬。

11. 請求項1～8のいずれか1項に記載の化合物を含有してなる喘息の予防または治療薬。

12. 請求項1～8のいずれか1項に記載の化合物を含有してなる皮膚炎治療薬。

13. 前記皮膚炎治療薬がアトピー性皮膚炎治療薬、接触性皮膚炎治療薬、乾癬治療薬又は蕁麻疹治療薬である請求項12に記載の皮膚炎治療薬。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP97/04857

A. CLASSIFICATION OF SUBJECT MATTER
 Int.Cl⁶ C07C225/20, C07D215/12, C07D213/38, A61K31/135,
 A61K31/44, A61K31/47

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int.Cl⁶ C07C225/20, C07D213/38, C07D215/12, A61K31/135,
 A61K31/44, A61K31/47

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
REGISTRY (STN), CA (STN), CAOLD (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP, 49-5944, A (Takeda Chemical Industries, Ltd.), January 19, 1974 (19. 01. 74) & NL, 7306650, A & BE, 799291, A & FR, 2184095, A & JP, 49-85050, A & GB, 1425606, A & CA, 992545, A & US, 3969409, A & CH, 581094, A & US, 4064133, A	1-9
A	JP, 6-100510, A (Nikken Chemicals Co., Ltd.), April 12, 1994 (12. 04. 94) (Family: none)	1-9
A	JP, 6-100509, A (Nikken Chemicals Co., Ltd.), April 12, 1994 (12. 04. 94) (Family: none)	1-9
A	JP, 6-100444, A (Nikken Chemicals Co., Ltd.), April 12, 1994 (12. 04. 94) (Family: none)	1-9
A	JP, 5-97783, A (Nikken Chemicals Co., Ltd.), April 20, 1993 (20. 04. 93) (Family: none)	1-9

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A"	document defining the general state of the art which is not considered to be of particular relevance
"B"	earlier document but published on or after the international filing date
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O"	document referring to an oral disclosure, use, exhibition or other means
"P"	document published prior to the international filing date but later than the priority date claimed
"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"&"	document member of the same patent family

Date of the actual completion of the international search March 17, 1998 (17. 03. 98)	Date of mailing of the international search report March 31, 1998 (31. 03. 98)
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer
Facsimile No.	Telephone No.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP97/04857

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP, 5-51317, A (Nikken Chemicals Co., Ltd.), March 2, 1993 (02. 03. 93) (Family: none)	1-9

国際調査報告

国際出願番号 PCT/JP97/04857

A. 発明の属する分野の分類(国際特許分類(IPC))

Int.Cl⁶ C07C225/20, C07D215/12, C07D213/38, A61K31/135, A61K31/44, A61K31/47

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl⁶ C07C225/20, C07D213/38, C07D215/12, A61K31/135, A61K31/44, A61K31/47

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

REGISTRY(STN)

CA(STN)

CAOLD(STN)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP, 49-5944, A(武田薬品工業株式会社) 19. 1月. 1974 (19. 01. 74) & NL, 7306650, A & BE, 799291, A & FR, 2184095, A & JP, 49-85050, A & GB, 1425606, A & CA, 992545, A & US, 3969409, A & CH, 581094, A & US, 4064133, A	1-9
A	JP, 6-100510, A(日研化学株式会社) 12. 4月. 1994 (12. 04. 94) (ファミリーなし)	1-9
A	JP, 6-100509, A(日研化学株式会社) 12. 4月. 1994 (12. 04. 94) (ファミリーなし)	1-9
A	JP, 6-100444, A(日研化学株式会社) 12. 4月. 1994 (12. 04. 94) (ファミリーなし)	1-9
A	JP, 5-97783, A(日研化学株式会社) 20. 4月. 1993 (20. 03. 93) (ファミリーなし)	1-9

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示すもの

「E」先行文献ではあるが、国際出願日以後に公表されたもの

「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって出願と矛盾するものではなく、発明の原理又は理論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

17. 03. 98

国際調査報告の発送日

31.03.98

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100-8915

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

脇 村 善 一 印

4H 7457

電話番号 03-3581-1101 内線 3443

C(続き) 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP, 5-51317, A(日研化学株式会社)2.3月.1993(02.03.93) (ファミリーなし)	1-9