(3) Lengyel formából hogyan állíthatjuk elő a teljesen zárójelezett alakot.

lengyelformabol_teljesen_zarojelezett(n:N):Tkif

V:Stack		
read(x)		
	Operator(x)	Operandus(x)
	jobb:=V.pop()	V.push(x)
	bal:=V.pop()	
	s:='(' ⊕ bal ⊕ x ⊕ jobb ⊕ ')'	
	V.push(s)	
return V.pop()		

Sor Queue = |2|1|3| = |4|Q: Queul Q. length () Q. add (X) Q. is Empty () (): T leiveren () set Empty () (2. first (): Tlekerderen

Megvalositàs

tönllel

tonllel

times vige

läh colt listaval

Példa sor alkalmazásra: dadogós szöveg

Oldjuk meg két sor segítségével a következő feladatot:

Olvassunk be karakterenként egy szöveget (hossza nem ismert), és döntsük el, hogy "dadogós" –e.

Pl.: abcabc dadogós, abccbb nem dadogós

abcabcabcabcabcabc

Q1, Q2 sorokban egy-egy egynél nagyobb szám prímtényezős felbontása található növekvő sorrendben. Készítsünk egy függvényt, ami egy új sorba előállítja a legkisebb közös többszörös prímtényezős felbontását. Q1 sor lebontható, Q2 maradjon meg!

Trükk: Q2 végére szúrjunk egy ideiglenes "végjelet", pl. -1-et, ezzel tudjuk vizsgálni, hogy hol van a sor vége.

H = :

1 db sor és az összeadás művelet segítségével állítsuk elő a Pascal-háromszög k-adik sorát (feltehető, hogy $k \ge 1$)!

