Fachhochschule Aachen Studienort Köln

Fachbereich 9: Medizintechnik und Technomathematik Studiengang: Angewandte Mathematik und Informatik

Abgabeübung COBOL Dreiecksberechnung

Abgabeübung

von

Leon Jarosch

Matrikelnummer: 3283258

Köln, den 2. November 2023

Inhaltsverzeichnis

1	Pro	grammbeschreibung	4
	1.1	Programmablaufplan	4
	1.2	Entwicklungsdokumentation	4
2	Ver	fahrensbeschreibung	6
	2.1	Mathematischer Hintergrund	6
		2.1.1 Formel von Heron	6
		2.1.2 Satz des Pythagoras	6
3	Test	tdokumentation	8
	3.1	Vordefinierte Tests	8
	3.2	Ergänzende Tests	8
Α	Ver	wendete Hilfsmittel	9

В	Erklärung	10
C	Aufgabenstellung	11
D	Quellcode	13

1 Programmbeschreibung

1.1 Programmablaufplan

Der Ablauf des Programms ist sequenziell und kann daher gut mit Programmablaufplänen dargestellt werden. Die folgenden Abbildungen beschreiben Teile des Programms. Abbildung ?? zeigt, wie aus wiederholten Benutzereingaben Sätze konstruiert werden. Die Auswahl eines externen Wörterbuchs wird in Abbildung ?? beschrieben. In Abbildung ?? wird der Ablauf des Explizimodus visualisiert. Die Ermittlung eines Wortes, aus einem eingegebenen T9-Code, kann in Abbildung ?? beobachtet werden.

1.2 Entwicklungsdokumentation

Es wurden grundsätzlich sprechende Namen für Variablen, Abschnitte und Paragrafen gewählt. Daher bedarf es nur geringer Dokumentation. Die Funktionen der einzelnen Paragrafen sind in Tabelle 1.1 beschrieben.

Wenn Variablen zu einer bestimmten logischen Einheit gehören, haben sie einen passenden Präfix.

Bezeichnung	Beschreibung			
MAIN-PROCEDURE	Hauptablauf, in dem einzelne Aufgaben			
	an andere Paragrafen delegiert werden			
Vorlauf SECTION	Abschnitt zur Vorbereitung des Pro-			
	gramms			
Auswahl-WBuch	Es wird die Auswahl eines externen			
	Wörterbuchs angeboten			
Einlesen-WBuch	Paragraf zum Einlesen eines, zuvor spe-			
	zifizierten, Wörterbuchs			
Lese-Satz	Verarbeitungsschritt einer einzelnen			
	Zeile eines externen Wörterbuchs			
Init-Explizit-Tab	Initialisierung des strukturellen Auf-			
	baus der Handytastatur			
Hauptlauf SECTION	Abschnitt zur Hauptaufgabe des Pro-			
D. J. D. I.	gramms			
Benutzer-Dialog	Paragraf zum Steuern des Benutzer-			
T 1411 XX 4	Dialogs			
Ermittle-Wort	Ermittelt ein Wort aus einem eingege-			
Wort-Auswahl	benen T9-Code			
Wort-Auswani	Paragraf schlägt passende Wörter zum			
	eingegebenen T9-Code vor, und ermög- licht eine Auswahl			
Finde-Moeglichkeiten	Es werden alle, zum eingegebenen Co-			
r mde-woeghenkerten	de passenden, Wörter im Wörterbuch			
	gefunden und zwischengespeichert			
Sortiere-Nach-Haeuf	Bubble-Sort zum Sortieren der zwi-			
Solution (Vacil Hacul	schengespeicherten Treffer			
Explizit-Eingabe	Steuerung der Eingabe im Explizitmo-			
2	dus			
Suche-Wort-In-WBuch	Prüft, ob ein Wort bereits im Wörter-			
	buch vorhanden ist			
Konstruiere-Wort	Konstruiert ein Wort aus einem einge-			
	gebenen Explizit-Code			
Pruefe-Explizit-Eingabe	Validiert eine Benutzereingabe im Ex-			
	plizitmodus			
Pruefe-Eingabe	Validiert eine Benutzereingabe im nor-			
	malen Modus			
Nachlauf SECTION	Abschnitt zum Speichern des Wörter-			
	buchs			
Schreibe-WBuch-Sortiert	Sortiert das Wörterbuch alphabetisch			
	und speichert es in einer Datei			

Tabelle 1.1: Aufgaben der einzelnen logischen Einheiten.

2 Verfahrensbeschreibung

2.1 Mathematischer Hintergrund

Das System arbeitet verschiedenen mathematischen Verfahren mit welchen die benötigten Berechnungen durchgeführt werden.

2.1.1 Formel von Heron

Zum berechnen des Flächeninhalts eines Dreiecks wird die Formel von Heron verwendet.

Der Satz von Heron besagt, dass die Fläche eines Dreiecks durch die Länge seiner Seiten berechnet werden kann. Mathematisch ausgedrückt:

$$A = \sqrt{s(s-a)(s-b)(s-c)}$$
(2.1)

(2.2)

Wobei s für die Hälfte des Umfangs steht:

$$s = \frac{a+b+c}{2} \tag{2.3}$$

2.1.2 Satz des Pythagoras

Zum überprüfen ob ein Dreieck rechtwinklig ist, wird der Satz des Pythagoras verwendet.

Der Satz des Pythagoras besagt, dass in einem rechtwinkligen Dreieck die Summe der Kathetenquadrate gleich dem Hypothenusenquadrat ist. Mathematisch ausgedrückt:

Abbildung 2.1: Satz des Pythagoras

$$a^2 + b^2 = c^2 (2.4)$$

(2.5)

Bildlich veranschaut sieht die Formel wie folgt aus:

3 Testdokumentation

Im folgenden Testfälle mit welchem das Programm getestet wurde.

3.1 Vordefinierte Tests

a	b	С	U	F	Art
5	3	4	12	6,00	r, s
11	11	10	32	48,990	nr, gsch
29	29	29	87	364,164	nr, gs

3.2 Ergänzende Tests

a	b	С	U	F	Art
2	3	5	-	-	kein dreieck
?	?	?	?	?	r, gsch
?	?	?	?	?	?,?
?	?	?	?	?	?,?

A Verwendete Hilfsmittel

Als Hilfsmittel wurden hauptsächlich die Inhalte der, von Prof. Dr. rer. nat. Karola Merkel (https://www.fh-aachen.de/fachbereiche/medizintechnik-und-technomathematik/einrichtungen/sp-studienort-koeln/kontakt) angebotenen, Vorlesung "COBOL" verwendet. Ergänzend dazu wurde die offizielle COBOL-Dokumentation von IBM (https://www.ibm.com/docs/en) zurate gezogen.

Zudem konnten unterschiedliche Fragen durch das Durchsuchen von Foren gelöst werden. Besonders häufig konnten das "Expertforum" (https://ibmmainframes.com/forum-1.html) und "stackoverflow" (stackoverflow.com) Antworten liefern.

B Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit mit dem Thema

Abgabeübung COBOL Dreiecksberechnung

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Alle Ausführungen, die anderen Schriften wörtlich oder sinngemäß entnommen wurden, sind kenntlich gemacht und die Arbeit ist in gleicher oder ähnlicher Fassung noch nicht Bestandteil einer Studien- oder Prüfungsleistung.

Köln,	den	2.	Nover	nber	2023	,
Leon	Jaro	scł	1			-

C Aufgabenstellung

FH AACHEN UNIVERSITY OF APPLIED SCIENCES

ABGABEÜBUNG COBOL

Bitte per Mail schicken als Cobol-Code UND pdf-Datei

Schreiben Sie ein COBOL-Programm, das drei positive ganze Zahlen a, b und c einliest, sie als Seitenlängen eines Dreiecks interpretiert und dessen Umfang, Flächeninhalt und Art ausgibt.

Input:

Solange werden drei positive ganze Zahlen a, b und c eingelesen, bis sie die Seitenlängen eines Dreiecks sind.

Output:

- Umfang U,
- Flächeninhalt F (auf drei Nachkommastellen gerundet),
- die Angabe "rechtwinklig" oder "nicht rechtwinklig",
- die Angabe "schief" oder "gleichschenklig" oder "gleichseitig".

Ein Dreieck ist genau dann

- schief, wenn es keine
- gleichschenklig, wenn es zwei
- gleichseitig, wenn es drei

gleich langen Seiten besitzt.

Beispiele:

а	b	С	U	F	Art
5	3	4	12	6,000	rechtwinklig, schief
11	11	10	32	48,990	nicht rechtwinklig, gleichschenklig
29	29	29	87	364,164	nicht rechtwinklig, gleichseitig

Abzugeben sind:

- Programmentwurf
- © Programmcode
- Mathematische Verfahrensbeschreibung/mathematischer Hintergrund
- Weitere 4 geeignete Testfälle (incl. erwartetem und erreichtem Ergebnis)

Mathematischer Hintergrund:

Drei positive Zahlen bilden die Seitenlängen eines Dreiecks, wenn je zwei Seiten zusammen länger als die dritte Seite sind.

Der Flächeninhalt eines Dreiecks errechnet sich nach der Formel von Heron:

 $F = [s (s - a) (s - b) (s - c)]^{1/2}$, wobei s der halbe Umfang ist.

Ein Dreieck ist genau dann rechtwinklig, wenn der Satz des Pythagoras mit a oder b oder c als Hypotenuse gilt.

D Quellcode