PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11293345 A

(43) Date of publication of application: 26.10.99

(51) Int. CI

C21D 9/48 B21B 1/22 // B21D 22/20 C22C 38/00 C22C 38/14

(21) Application number: 10104676

(22) Date of filing: 15.04.98

(71) Applicant:

NIPPON STEEL CORP

(72) Inventor:

TANAHASHI HIROYUKI **SENUMA TAKEHIDE**

(54) MANUFACTURE OF COLD-ROLLED STEEL PLATE FOR DEEP DRAWING EXCELLENT IN **UNIFORMILTY OF MATERIAL**

(57) Abstract:

PROBLEM TO BE SOLVED: To manufacture a cold-rolled steel plate excellent in material uniformity and high in r-value by achieving the hot rolling, cold rolling and re- crystallization annealing of a cast steel slab of a specified composition under a specified condition.

SOLUTION: A steel cast slab having a composition consisting of, by mass $\%, \le 0.01$ C, ≤ 2.0 Si, ≤ 3.0 Mn, \leq 0.2 P, \leq 0.05 S, \approx 0.005 to \leq 0.1 Al, and \leq 0.01 N, COPYRIGHT: (C)1999, JPO

one or more kinds or ≤ 0.001 to ≤ 0.2 Ti and ≤ 0.001 to ≤0.2 Nb, and the balance Fe is hot rolled. At least one pass of the finish rolling is achieved so that the total draft is ≈50% in the temperature range below Ar₃ transition point by using a work roll of ≈0.05 μm in center-line mean roughness Ra and a lubricating oil with the viscosity below 450 mm²/S at 40°C, and regulating the oil quantity to 0.2-10 ml/m² and feeding it to the roll. After the coiling, re-crystallization treatment and pickling are successively achieved, the cold rolling achieved at a draft of 50-90%, and the re-crystallization annealing is further achieved in the temperature range of 650-920°C.

BEST AVAILABLE COPY

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-293345

(43)公開日 平成11年(1999)10月26日

(51) Int.Cl. ⁶	識別記号	FI				
C 2 1 D 9/	/48	C 2 1 D 9/48	E			
B 2 1 B 1/	/22	B 2 1 B 1/22	L			
// B 2 1 D 22/	/20	B 2 1 D 22/20	E			
C 2 2 C 38/	/00 3 0 1	C 2 2 C 38/00 3 0 1 S 38/14				
38,	/14					
		審査請求 未請求	請求項の数4 OL (全 6 頁)			
(21)出願番号	特願平10-104676	(71)出顧人 0000066	555			
		新日本領	製鐵株式会社			
(22)出顧日	平成10年(1998) 4月15日	東京都主	千代田区大手町2丁目6番3号			
		(72)発明者 棚橋 🛪	告之			
		千葉県1	富津市新富20-1 新日本製鐵株式			
		会社技術	有開発本部内			
		(72)発明者 瀬沼 記	武秀			
		千葉県 2	富津市新富20-1 新日本製鐵株式			
		会社技術	有開発本部内			
		(74)代理人 弁理士	田村 弘明 (外1名)			
<u> </u>			,			

(54) 【発明の名称】 材質均一性に優れた深絞り用冷延鋼板の製造方法

(57)【要約】

【課題】 材質均一性に優れた深絞り用冷延鋼板の製造 方法を提供する。

【特許請求の範囲】

【請求項1】 質量%で、

C:0.01%以下、

Si:2.0%以下、

Mn: 3. 0%以下、

P:0.2%以下、

S:0.05%以下、

A1:0.005%以上、0.1%以下、

N:0.01%以下

を含有し、かつ、

Ti:0.001%以上、0.2%以下、および、

1

Nb: 0.001%以上、0.2%以下

の一種または二種を含み、残部がFe および不可避不純 物から成る鋼の鋳片を熱間圧延する際、仕上圧延の少な くとも1パスを、中心線平均粗さRaが0.05 μm以 上のワークロールを用いて、40℃の粘度が450mm² / s 未満の粘性を有する潤滑油を、ウォーター・インジ ェクション方式により0.2~10ml/m2の割合でロ ールに供給する潤滑を施しながら、Ar,変態点未満の 温度域で圧延し、かつ、該温度域、該潤滑条件下の圧延 20 の圧延率の合計が50%以上となるように行い、その 後、巻き取り工程、または、焼鈍工程において再結晶処 理を施し、常法により酸洗した後、圧延率が50~95 %の冷間圧延を行い、さらに、650~920℃の温度 域にて再結晶焼鈍を施すことを特徴とする、材質均一性 に優れた深絞り用冷延鋼板の製造方法。

【請求項2】 前記鋼が、さらに、質量%で、

B : 0.0001%以上、0.005%以下 を含有することを特徴とする、請求項1に記載の材質均 一性に優れた深絞り用冷延鋼板の製造方法。

【請求項3】 前記鋼が、さらに、質量%で、

Cu: 0.01%以上、1.5%以下

を含有することを特徴とする、請求項1または請求項2 に記載の材質均一性に優れた深絞り用冷延鋼板の製造方 法。

【請求項4】 前記冷間圧延後の再結晶焼鈍を溶融亜鉛 めっき工程にて行うことを特徴とする、請求項1ないし 請求項3のいずれか1項に記載の材質均一性に優れた深 絞り用冷延鋼板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、特に、電気製品や 自動車などの工業製品の製造分野において有用となり得 る、材質均一性に優れた深絞り用冷延鋼板の製造方法に 関するものである。

[0002]

【従来の技術】電気製品や自動車などの工業製品には、 深絞り加工された鋼板が広く用いられている。そして、 こうした用途に用いられる鋼板には、高いランクフォー

ることが知られている。高い r 値を有する鋼板は、一般 的には、鋼片を加熱後、Ar,変態点以上の温度域で圧 延し、更に冷間圧延と再結晶焼鈍を行う方法によって製 造されている。

【0003】しかし、近年、より一層高い r 値を有する 鋼板を得ることを目的に、Ar」変態点以下の温度域 で、潤滑を施しながら熱間圧延を行い、得られた鋼板を さらに冷延、焼鈍する製造方法が提案されている。

【0004】例えば、特開昭61-119621号公報 10 には、所定の化学成分を有する鋼を、550°C以上、A r,変態点以下の温度範囲で、摩擦係数が0.2以下と なるように潤滑を施しつつ、合計圧下率が50%以上の 圧延を行い、400℃以上の温度域で巻き取り、更に酸 洗、冷延、焼鈍することにより、深絞り性のすぐれた冷 延鋼板を得る方法が開示されている。また、特開平8-92656号公報には、所定の化学成分を有する鋼を、 Ar,変態点~500℃の温度域にて、潤滑を施しつ つ、合計圧下率50~95%の熱間仕上げ圧延を行い、 次いで、熱延板再結晶処理を行ってから、圧下率50~ 90%の冷間圧延を施し、その後、700~950℃で 冷延板再結晶焼鈍を行うことにより深絞り性に優れる冷 延鋼板を得る方法が提案されている。

[0005]

【発明が解決しようとする課題】しかしながら、上記従 来技術には、最も重要な技術要素である潤滑方法に関す る記載が全くなされていない。すなわち、特開昭61-119621号公報には、単に摩擦係数が0.2以下と なるように潤滑を施しつつ熱間圧延を行うとの記載があ るのみで、実際の鋼板製造に欠かせない具体的な潤滑の 30 実施方法が示されていない。また、特開平8-9265 6号公報には、鉱油ベースの潤滑油を用いて摩擦係数を 0. 15とした実施例が示されているものの、どのよう な方法で潤滑圧延を行ったかに関する具体的な記載はな されていない。

【0006】一方、自動車などの工業製品の製造分野に おいては、部品数の削減や製造工程の簡略化などを主た る目的に、テーラードブランクなどの先進的な一体成形 技術が採用され始めている。こうした用途における鋼板 には、高いr値のみならず、より高い材質(強度、およ 40 び、延性)の均一性も求められる。なぜなら、その不均 一は、成形後の製品形状に影響を及ぼし、延いては材料 の歩留まりを低下させるからである。

【0007】一般に、潤滑を施しながら熱延を行うと、 通板制御の困難さが増すため、板厚の不均一さが増大す る。そして、そのようにして得られた鋼板を冷延すると 結果的に材質の均一性に劣る鋼板となり、それが深絞り 成形後の製品形状にも影響を与える懸念が持たれてい た。従って、熱延板段階での板厚の均一性を損なわない ように潤滑圧延を行わなければならないが、そうした視 ド値(平均r 値、以下単に「r 値」と記す)が求められ som 点にまで踏み込んで製造方法を検討した例は見当たらな 3

63.

【0008】そこで、本発明は、従来の製造方法によっ て得られる冷延鋼板より一層高い r 値を有し、併せて、 テーラードブランクなどの先進的な一体成形技術への使 用にも耐え得る材質の均一性を備えた冷延鋼板の製造方米

C : 0.01%以下、

Si: 2.0%以下、

Mn: 3.0%以下、

P:0.2%以下、

[0009]

S:0.05%以下、

A1:0.005%以上、0.1%以下、

用されている40℃の値とした。

* 法を提供することを目的とするものである。

成するためになされたものであり、質量%で、

【課題を解決するための手段】本発明は、上記目的を達

N:0.01%以下を含有し、かつ、

Ti:0.001%以上、0.2%以下、および、

Nb: 0.001%以上、0.2%以下の一種または二種

を含み、残部がFe、および、不可避不純物から成る鋼 の鋳片を熱間圧延する際、仕上圧延の少なくとも1パス を、中心線平均粗さRaが0.05 μm以上のワークロ ールを用いて、40°Cの粘度が450mm / s未満の粘 性を有する潤滑油を、ウォーター・インジェクション方 式により、その油量を0.2~10m1/m2に調整し て、ロールに供給する潤滑を施しながら、Ar,変態点 未満の温度域で圧延し、かつ、該温度域、該潤滑条件下 の圧延の圧延率の合計が50%以上となるように行い、 その後、巻き取り工程、または、焼鈍工程において再結 晶処理を施し、常法により酸洗した後、圧延率が50~ 95%の冷間圧延を行い、さらに、650~920℃の 温度域にて再結晶焼鈍を施すことを特徴とする材質均一 性に優れた深絞り用冷延鋼板の製造方法を要旨とするも のである。また、上記の化学成分に加えて、0.000 1%以上、0.005%以下のBを二次加工脆性の改善 の目的で、また、0.01%以上、1.5%以下のCu を高強度化の目的で必要に応じて含有させた鋼板の製造 方法、更に、冷間圧延後の再結晶焼鈍を溶融亜鉛めっき 30 工程にて行うこととした材質均一性に優れた深絞り用冷 延鋼板の製造方法も要旨とするものである。

[0010]

【発明の実施の形態】本発明者らの調査によれば、一般 的な熱間圧延機にはウォーター・インジェクション方式 の潤滑剤供給装置が装備されていることが多い。本発明 において、用いる潤滑媒体を液体とし、その供給をウォ ーター・インジェクション方式としたのは、そうした設 備をそのまま使用し、特別に設備改造をすることなく本 ある。

【0011】また、望ましい鋼板の化学成分、熱延条 件、潤滑剤の条件、および、冷延条件などは以下の実験 結果に基づいて限定した。実験のうち熱間圧延は、図2 に模式的に示す潤滑剤の供給装置と圧延装置を用いて行 った。図において1は圧延ロール、2は被圧延材、3は 噴射ノズル、4は流量計、5は定量ポンプ、6はオリフ ィス、7は潤滑油タンク、8はキャリア水タンクを示 す。

【0012】との実験に先立って、まず潤滑油の粘度に 50 【0015】とうした実験結果に基づき、更に鋭意検討

ついて検討した。潤滑油、および、キャリア水の温度を 40℃とし、様々な粘度を有する潤滑油を用いてロール に潤滑剤を連続して噴射し濃度の安定性を調べる実験を 行った。潤滑剤の噴射開始後5分毎に10回、各々10 Omlをノズル直近で採取して濃度を分析し、10回全て においてその変動範囲が設定した濃度の100分の5未 満であれば合格として安定性を評価した。その結果、粘 度が450mm²/s未満の潤滑油であれば潤滑油の種類 20 によらず濃度の安定性は合格となった。本発明で、用い る潤滑油の粘度を450mm²/s未満としたのは、この ように潤滑圧延を安定して行えるものとするためであ る。なお、粘度の値は、油脂の粘度の表記に汎用的に使

【0013】次に、C:0.0025%、Si:0.0 1%, Mn: 0. 10%, P: 0. 012%, S: 0. 0095%, A1:0.035%, N:0.0017 %、および、Ti:0.062%を含み、残部がFe、 および、不可避不純物から成る鋼片を、加熱後、750 ℃で圧延し、引き続いて、750℃、3時間の再結晶処 理をする実験を行った。圧延は、1パスで60%圧延す るスケジュールとし、その際に使用するワークロールの 表面粗さ、噴射する潤滑剤中の油の濃度、および、全供 給量を変化させた。その後、さらに、圧延率75%の冷 延、800℃、60秒の再結晶焼鈍を施し、得られた鋼 板の強度、延性、および、r値を調査した。調査は、鋼 板45000mm 毎に1点の割合で各々10点を得た (調査母数n=10)。強度と延性について各々の最大 値と最小値の差、ΔTSとΔE1を求め、各々を各々の 発明で提案する製造方法を実行可能なものとするためで 40 平均値で除した値が、ともに0.075未満であれば材 質均一性を「良」、少なくとも一方が0.075以上で あれば同「不良」と判定した。

> 【0014】その結果を、図1に示す。これらの図か ら、被圧延材の単位面積当たりに供給される油量が0. 2m1/m'以上、10m1/m'以下であり、かつ、中心 線平均粗さRaが0.05μm以上の場合に、材質均一 性が「良」であり、かつ、高い r 値を有する鋼板の得ら れることが明らかとなった。ただし、r値は、10点の 平均値を採用した。

を行って本発明を限定した。まず、鋼板の化学成分につ いて述べる。Cは、深絞り性と密接に関わる元素であ り、0.01%を超えると深絞り性を劣化させるので、 その上限を0.01%とする。

【0016】Si, Mn、および、Pは各々鋼を高強度 化する作用を有し、製造しようとする鋼の強度に応じて 必要量を添加すればよいが、それぞれ、Si>2.0 %、Mn>3.0%、および、P>0.2%となると深 絞り性を劣化させるので、Si:2.0%以下、Mn: 3.0%以下、P:0.2%以下と上限を限定した。S 10 は、少ない程深絞り性には有利であるが、0.05%以 下であれば特段問題とならないので0.05%を上限と する。

【0017】A1は、鋼の脱酸、脱窒を目的に添加する ものであるが、含有量が0.005%未満ではその効果 が得られず、また、0.1%を超えて含有させると延性 の劣化をもたらすので、0.005%以上、0.1%以 下とする。Nは、窒化物の生成や固溶量の増加にともな い延性を劣化させるので、0.01%以下としなければ ならない。

【0018】Tiは、固溶C、および、固溶Nを低減さ せる働きを有し、r値を高めるのに非常に有効な元素で ある。しかし、0.001%未満では効果がなく、一 方、0.2%を超えて含有させてもそれ以上の効果は得 られず、鋼のコストを高めてしまう。そのため、含有量 を0.001%以上0.2%以下とした。

【0019】Nbは、固溶Cを低減させ、また、仕上げ 圧延前の結晶粒径を微細化する働きをするのでr値を高 めるのに有効であるが、0.001%未満では効果がな く、0.2%を超えて含有させてもそれ以上の効果は期 30 待できないので、含有量を0.001%以上、0.2% 以下とする。

【0020】Bは、二次加工脆性を改善する効果を有す るので、必要に応じて添加することができる。しかし、 0.0001%未満では効果が得られず、逆に0.00 5%を超えると深絞り性に悪影響を及ぼすので、含有量 は、0.0001%以上、0.005%以下とする。 【0021】Cuは、鋼を高強度化する作用を有するの で、必要に応じて添加することができる。その効果は、 0.01%以上の添加で得られるが、1.5%を超える 40 を10m1/m²以下に限定した。 と深絞り性を劣化させるので、含有量は0.01%以 上、1.5%以下とする。

【0022】次に、圧延条件、および、潤滑条件につい て述べる。冷延鋼板の r 値を高めるためには、冷延素材 となる熱延鋼板のr値を高めることが有効である。その 熱延鋼板の r 値を高めるには、圧延と再結晶処理工程を 利用して集合組織制御を行い、板面に平行な { 1 1 1 } 面を高く集積させる方法が有効である。このためには、 熱間圧延をAr,変態点未満の温度域において行う必要 がある。なぜなら、Ar,変態点以上の温度域における 50 は、冷延、焼鈍後、板面に平行な(111)面が形成さ

圧延によって形成される集合組織は、その後のヶ相から α相への相変態の際にランダム化してしまうため、望ま しい集合組織の形成には有効ではないからである。本発 明において、熱延温度域をAr,変態点未満としたのは このためである。一方、熱延温度域の下限は、高r値鋼 板を得る目的からは存在しないが、温度の低下とともに 鋼の変形抵抗が増加して圧延機の負荷を増大させるた め、500℃を下限とするのが望ましい。

【0023】熱延時に潤滑を施こさないと、圧延ロール と被圧延材の間の摩擦に起因する剪断変形により、被圧 延材の、特に表層部に、深絞り性に好ましくない、板面 に平行な (110) 面が形成されてしまうため、潤滑の 実施は不可欠である。なおかつ、既述の実験結果が示す ように、使用する潤滑剤の制御のみならず、どのような 表面粗さのワークロールを用いるかも非常に重要であ

【0024】圧延時にワークロールに対してウォーター ・インジェクション方式で供給された潤滑剤中の油分 は、ロール表面に油膜を形成するので、それによって圧 20 延ロールと被圧延材の間に摩擦に起因する剪断変形が抑 制されるものと考えられる。こうしたメカニズムによれ ば、潤滑剤中の潤滑油の濃度と潤滑剤の供給量の積によ って定まる油量が所定量以上必要であること、および、 油分をその表面に保持できる程度のロールの表面粗さも 必要であることが推定される。詳細な検討の結果、それ らは各々、油量が0.2ml/m²以上、ロールの中心線 平均粗さRa(以下、単にRaともいう)が0.05μ m以上であり、両者が共に満たされた場合に高 r 値鋼板 の得られることがわかった。被圧延材の単位面積当たり の油量を0.2m1/m²以上、Raを0.05μm以上 に限定したのはこうしたためである。なお、Raは、J IS B 0610の規定に基づき、ロールの幅方向の 中央部分を全周に渡って測定した値を採用した。

【0025】一方、油量が多すぎる場合には、高 r 値鋼 板を得る目的上は問題ないものの、被圧延材の通板制御 がより難儀になるため、圧延後の鋼板の形状に悪影響が 発生するようになる。具体的には、油量が10m1/m² を超えて供給されると板厚の均一性が劣化し、その結 果、冷延鋼板の材質均一性が不良となる。そとで、油量

【0026】また、Raの上限は、高r値鋼板を得る目 的上はないものの、表面疵の発生など、鋼板の表面性状 を損ねる恐れがあるので、1μm以下とするのが望まし い。なお、潤滑油の成分は、特に限定しない。鉱油や合 成エステルの他に各種化合物やポリマーなどを添加した 潤滑油を用いることも本発明の要旨を損ねるものではな 61

【0027】Ar,変態点未満の温度域での熱延の圧延 率の合計を50%以上としたのは、これより少なくて

れるような集合組織が、高r値を得るのに十分な程に集 積しないからである。

【0028】熱延直後の鋼板は、加工組織を呈してお り、そのままではその後の冷延に好ましくないため、ま た、高r値の冷延素材を得るための再結晶集合組織を形 成するために、再結晶処理を行う必要がある。その再結 晶処理は、鋼板をコイルに巻き取ることによる自己焼鈍 法で行ってもよいし、箱型焼鈍炉、あるいは連続焼鈍炉 を用いて行ってもよい。

工程である。その圧延率が50%未満では、高r値が得 られない。また、95%超では、高r値が得られる効果 が飽和するだけでなく、冷延の負荷が増大する。そのた め、冷延の圧延率は、50%以上、95%以下に限定し た。

【0030】冷延工程を経た鋼板には、鋼板の延性を付 与するため、さらには、再結晶集合組織を形成して深絞 り性を付与するために、再結晶焼鈍が必要である。この 焼鈍は、箱型焼鈍炉、あるいは連続焼鈍炉のいずれで行* *ってもよく、また、溶融亜鉛めっき工程で行ってもよ い。適切な再結晶集合組織を形成させるために、650 ℃以上、920℃以下の温度域で行わねばならない。 [0031]

【実施例】表1に化学成分を示す鋼片を、加熱し、粗圧 延した後、ウォーター・インジェクション方式で潤滑剤 をロールに供給しながら熱間仕上げ圧延を行った。さら に、再結晶処理後、酸洗、冷延、再結晶焼鈍を施し、得 られた鋼板の強度、延性、r値を調査した。既述の方法 【0029】冷間圧延は、高r値を得るためには必須の 10 に基づき、強度、延性の測定結果から材質均一性を評価 した。熱延条件、ロールのRa、潤滑条件、冷延条件、 および、再結晶焼鈍条件と鋼板の材質均一性の判定結 果、および、 r 値を表2に示す。また、これらの表に は、本発明の範囲外となる比較例を併せて記載した。 【0032】このように、本発明の範囲内で製造した冷 延鋼板は、優れた材質均一性と深絞り性を有することが わかる。

> [0033] 【表 1 】

(mass%)

	(88370											
鐊	C	Si	Mn	P	S	Al	N	Ti	Nb	В	Cu	
Α	0.0021	0.01	0.29	0.010	0.005	0.045	0.001	0.042	0.010	•	-	
В	0.0020	0.01	0.20	0.010	0.005	0.053	0.002	0.065	-	-	-	
C	0.0023	0.01	0.18	0.013	0.006	0.044	0.001	-	0.036	-	-	
D	0.0022	0.01	0.13	0.011	0.004	0.051	0.002	0.051	0.009	0.0006	-	
E	0.0020	1.05	1.20	0.033	0.006	0.059	0.002	0.050	0.012	0.0030	-	
F	0.0026	1.54	2.00	0.055	0.007	0.061	0.001	-	0.030	0.0019	-	
G	0.0022	0.01	0.14	0.009	0.005	0.058	0.001	0.063	-	0.0008	0.4	
Н	0.0030	1.48	2.04	0.080	0.005	0.064	0.001	-	0.037	0.0022	0.9	
ī	0.0025	0.01	0.19	0.014	0.008	0.039	0.001		-	-	-	比較例
J	0.0240	0.01	0.24	0.012	0.024	0.034	0.002	0.054	-	-	-	比較例

[0034]

※ ※【表2】

No.	m	Ar3 変態点以下の	抽量	Ra	冷延率	冷延後の姨蜘条件	材質均一性	r值	
		組度域での熱延率 (%)	(ml/m²)	(μm)	(%)	(温度、時間)	評価		
1	A	70	1.0	0.1	75	800℃、60秒	良	2.69	
2	A	40	1.0	0.1	75	800℃、60秒	良	1.60	比較例
3	В	70	0.5	0.1	75	800℃、60秒	良	2.64	
4	В	70	11.0	0.1	75	800℃、60秒	不良	2.70	比較例
5	С	70	0.2	0.06	75	800℃、60秒	良	2.60	
6	c	70	0.2	0.3	75	800℃、60秒	良	2.54	
7	C	90	11.0	0.6	75	800℃、60秒	不良	2.68	比較例_
8	D	70	9.0	0.2	75	800℃、60秒	良	2.75	
9	D	70	6.0	0.05	75	800℃、60秒	良	2.72	
10	Б	70	2.0	0.9	75	800℃、60秒	良	2.70	
11	F	70	0.2	0.9	75	800℃、60秒	良	2.50	
12	G	70	9.0	0.9	75	800℃、60秒	良	2.65	
13	н	70	2.0	0.5	75	800℃、60秒	良	2.74	
14	н	70	2.0	0.2	75	800℃、60秒	良	2.73	
15	н	70	11.0	1.1	75	800℃、60秒	不良	2.61	比較例
16	ī	70	1.0	0.2	75	800℃、60秒	良	1.58	比較例
17	ī	70	1.0	0.2	75	800℃、60秒	良	1.51	比較例

[0035] 性に優れ、かつ、高「値を有する冷延鋼板を、新たに潤 【発明の効果】本発明の製造方法を用いれば、材質均一 50 滑装置を設置することなく、有利に得ることができる。

【図面の簡単な説明】

【図1】鋼板の材質均一性、および、r値に及ぼす潤滑剤中の油量、および、ロール表面の中心線平均粗さRaの影響を示すグラフである。

【図2】潤滑剤の供給装置と圧延装置を示す模式図である。

【符号の説明】

1 圧延ロール

* 2 被圧延材

- 3 噴射ノズル
- 4 流量計
- 5 定量ポンプ
- 6 オリフィス
- 7 潤滑油タンク
- 8 キャリア水タンク

【図1】

【図2】

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.