Measuring Music

Ramifications of Reifying Issues and Music and Sciences Dr. David John Baker HU Berlin, Winter 2020

Outline

- I. We're never directly manipulating or getting at the "Truth"
- All models are wrong, some are useful
- III. It's important we think about what we are measuring
- IV. We always lose something when we turn it into a number

Falsifiability and Operationalization

Review from last week

What is <u>falsifiability</u>, who proposed it as a demarcation criteria, and why is it important we are able to differentiate scientific from non-scientific questions?

Falsifiability

- If something can be proven wrong
- Karl Popper
- Public health, pseudoscience, severity testing
- Demarcation criteria

Operationalization / Operationalize

- → Rarely do we get to directly study a concept of interest
- → For example, pitch is perceptual approximation for fundamental frequency
- → For example, no one universally agreed upon definition of musicality
- → Need to pick something that approximates

Operationalizing Musicianship

- → There is no universally agreed on metric of who counts as a musician
- → In many ways, matters only personally and culturally, maybe with union?
- → But clearly there are people who are more of a musician than others
- → From scientific point of view, important to find way to agree on this
- → Why might it be important to have an agreed upon definition of musicianship?
- → What do we gain when we come to agreement about musicianship?
- → What do we lose when we come to an agreement about musicianship?

Operationalizing Complexity

- \rightarrow Problems at the individual level are similar when talking about sonic elements?
- → What music is the most complex?
- → What music is the least complex?
- → What (and whose!?) tools are we using to make these assessments?

Operationalizing

- Necessary evil in scientific research
- Goal is to find measure that we believe reflects what we want to study
- Important to consider the values we have when we reduce
 - Musicianship Example
 - Complexity Example
- Operationalizing makes us commit to a specific world view
 - OK if wrong, that is iterative nature of science
 - Keeps us honest about the tools that we use
- Makes our assumptions explicit!
- We have specific language for talking about common errors when operationalizing

Validity and Reliability

→ How consistent is your measure?

<u>Validity</u>

→ How well does your measure actually represent what it sets out to do?

- What do you expect to happen every time you step on your bathroom scale?
- If you get the same result every time you use a tool, you have a reliable measure
- Reliability is related, but not the same as validity!

- Test-retest reliability
 - Give same measure twice
- Internal consistency
 - Ask same type of questions on a test
- Inter-rater reliability
 - Ask two people to score the same thing

- Variables that can be directly measured (height, weight, speed) tend to have higher reliability
- But just because you can't measure something directly doesn't mean you can't measure it: what constructs do you believe exist but need to be indirectly measured?

- Variables that can be directly measured (height, weight, speed) tend to have higher reliability
- But just because you can't measure something directly doesn't mean you can't measure it: what constructs do you believe exist but need to be indirectly measured?
- Personality, musicality, working memory capacity, tonality?

Check for Understanding

If I wanted to create a new tool to measure absolute pitch (the ability to name a musical pitch without using an external reference), what would be an reliable way to do this?

Validity

- Are we measuring what we think we are!?
- Depends on the definition of the construct
- You can come up with a measure for anything you want, but still might not measure something "real"

Validity

- Personality
- Why use the Big Five (OCEAN)?
 - Openness to New Experiences
 - <u>C</u>onscientiousness
 - Extraversion
 - <u>Agreeableness</u>
 - Neuroticism
- Why not Meyers Briggs, Astrology?

Check for Understanding

Come up with a new psychometric* measure that would be very reliable, but not valid. Explain why.

*psycho (mind) metric (measuring)

BREAK

Check for Understanding

Why is it important to be able to measure something that we are interested in studying?

Small World and Big World

Working with models

Models

- Almost everything in the world is too complex to study and account for everything
 - Weather patterns, human brain, the musculoskeletal system, migration of whales, musical improvisation, the early universe
- Scientists get around this cumbersome task by making models
- "All models are wrong, some are useful" -- George Box
- Models are only meant to approximate part of a process
- Statistical models are extremely important in modern science

Example: Regression

- Statistical model that answers question: How much?
- Formulate as mathematical model of a line

$$Y = 2.3x_1 + 1.05x_2 + 7$$

- Y: Number of measures a piano player can memorize
- \circ x_1 : number of hours they have practiced a piece of music
- X₂: number of years they have played piano

How many measures could a piano player who has practiced 10 hours with 3 years of experience memorize?

- Statistical model that answers question: How much?
- Formulate as mathematical model of a line

$$Y = 2.3x_1 + 1.05x_2 + 7$$

- o Y: Number of measures a piano player can memorize
- \circ x_1 : number of hours they have practiced a piece of music
- o X₂: number of years they have played piano

How many measures could a piano player who has practiced 10 hours with 3 years of experience memorize?

$$Y = (2.3 * 10) + (1.05 * 3) + 7$$

$$= 23 + 3.15 + 7$$

Y = 33.15 measures of music

Discussion Questions

 What are some of the <u>advantages</u> of using a model to discuss something you wish to study scientifically?

 What are some of the <u>disadvantages</u> of using a model to discuss something you wish to study scientifically?

→ Break out rooms!

Discussion Points

Advantages

- Have common language to discuss assumptions
- Clear ways in which the model can be wrong to different extent
- Ability to incorporate uncertainty in measurements
- Removes what is special about each individual case

Disadvantages

- Reductionist approach
- Will never capture all of the nuances involved in the task at hand
- Models can be deceiving in how the represent what is important about the world
- Removes what is special about each individual case

Measuring Sounds

+

Measuring People

Measuring

(Moved to week 4)

Check for Understanding

Based on what you have learned thus far, what would you say to a scientist who wanted to create a psychometric tool that will measure if a child is a musical genius?