problema:

BTW, y de aici e y-ul aflat la ex 1 avem ponderea p(x) = 1

pentru ca iti cere $\int y(x)dx$ aka $\int y(x) \cdot 1dx$ daca cerea de ex $\int e^{-x}y(x)dx$, atunci ponderea era e^{-x}

si cum ponderea e 1, "o formula gauss" inseamna Gauss-Legendre de ex daca era e^{-x} era gauss-laguerre

si acum ar trebui sa convertim functia de la una pe [-1,2] la una pe [-1,1] (practic e schimbare de

(Gauss-Legendre cere ca functia sa fie pe intervalul [-1,1])

https://en.wikipedia.org/wiki/Gauss%E2%80%93Legendre_quadrature

deci folosim:

formula e

[-1, 1], the rule takes the form:

$$\int_{-1}^1 f(x)\,dx pprox \sum_{i=1}^n w_i f(x_i)$$

where

- n is the number of sample points used,
- w_i are quadrature weights, and
- x_i are the roots of the nth Legendre polynomial.

aici e un tabel pt alte ponderi (am vazut doar ponderea 1 in exercitii) (sau newton cotes- dar asta e alta treaba)

https://en.wikipedia.org/wiki/Gaussian_quadrature

Interval	$\omega(x)$	Orthogonal polynomials	A & S	For more information, see
[-1, 1]	1	Legendre polynomials	25.4.29	§ Gauss-Legendre quadrature
(-1, 1)	$(1-x)^\alpha(1+x)^\beta, \alpha,\beta>-1$	Jacobi polynomials	25.4.33 (β = 0)	Gauss-Jacobi quadrature
(-1, 1)	$\frac{1}{\sqrt{1-x^2}}$	Chebyshev polynomials (first kind)	25.4.38	Chebyshev-Gauss quadrature
[-1, 1]	$\sqrt{1-x^2}$	Chebyshev polynomials (second kind)	25.4.40	Chebyshev-Gauss quadrature
[0, ∞)	e^{-x}	Laguerre polynomials	25.4.45	Gauss-Laguerre quadrature
[0, ∞)	$x^{lpha}e^{-x}, lpha > -1$	Generalized Laguerre polynomials		Gauss-Laguerre quadrature
(-∞,∞)	e^{-x^2}	Hermite polynomials	25.4.46	Gauss-Hermite quadrature

cum cere pe 3 noduri, n=3 deci avem nevoie de al 3-lea polinom lagrange - notat de profa cu T_3 pe care-l calculam asa

The Rodrigues representation provides the formula

$$P_l(x) = \frac{1}{2^l l!} \frac{d^l}{d x^l} (x^2 - 1)^l,$$

which vields upon expansion

si ar trebui sa dea atat

$$P_3(x) = \frac{1}{2} (5x^3 - 3x)$$

(sunt mai multe valori aici:

https://mathworld.wolfram.com/LegendrePolynomial.html)

si trebuie sa afli radacinile polinomului

aici are o expresie mai simpla si se vede aproape automat ca radacinile sunt: $0, \pm \sqrt{5/3}$

deci in formula asta stim n = 3, stim $x_i = \text{radacinile}$, stim functia definita pe [-1, 1]

[-1, 1], the rule takes the form:

$$\int_{-1}^1 f(x)\,dx pprox \sum_{i=1}^n w_i f(x_i)$$

where

- n is the number of sample points used,
- w_i are quadrature weights, and
- x_i are the roots of the *n*th Legendre polynomial.

deci mai avem nevoie doar de w_i

care au minunata forma:

weights are given by the formula

$$w_i = rac{2}{\left(1-x_i^2
ight)\left[P_n'(x_i)
ight]^2}.$$

cu $P_n = T_3$ notatia profei adica asta:

$$P_3(x) = \frac{1}{2} (5x^3 - 3x)$$

si acum ai tot ce-ti trebuie, doar inlocuiesti (si speri la ce e mai bun :)))) si asta e restul:

The error of a Gaussian quadrature rule can be stated as follows (Stoer & Bulirsch 2002, Thm 3.6.24). For an integrand which has 2n continuous derivatives,

$$\int_a^b \omega(x)\,f(x)\,dx - \sum_{i=1}^n w_i\,f(x_i) = rac{f^{(2n)}(\xi)}{(2n)!}\,(p_n,p_n)$$

for some ξ in (a,b), where p_n is the monic (i.e. the leading coefficient is 1) orthogonal polynomial of degree n and where

$$(f,g)=\int_a^b \omega(x)f(x)g(x)\,dx.$$

aici calculam cu functia pe care am facut-o pe [-1,1] si acel p_n (cred că) e polinomul lagrange la care impartim prin coef lui x^3 (adica $\frac{5}{2}$):

$$x^3 - \frac{6}{5}x$$

(de aici https://en.wikipedia.org/wiki/Gaussian_quadrature#Error_estimates)

si acum ultima parte din problema:

se poate itera daca $w_i > 0, \forall i = 1..n$

sanity check:

calculeaza integrala (cu wolfram alpha eventual) si verifica daca "seamană" cu ce ti-a dat