Chapter exercise3 from ISLR book

Exercise 3.1

"The null hypotheses to Intercept is that means Except the benefit from the TV, radio and newspaper, other benefit – other budget is larger than 0, which rejects the H_0 which is cost = budget in more than 99%.

The null hypotheses to TV is that the benefit of TV ads possibility not equal than the budget of TV ads. There exists more than 99% possibility that benefit of TV ads is not equal than cost of it.

The null hypotheses to Radio is that the benefit of radio ads possibility not equal than the budget of radio ads. There exists more than 99% possibility that benefit of radio ads is not equal than cost of it.

The null hypotheses to newspaper is that the benefit of newspaper ads possibility not equal than the budget of newspaper ads. There exists more than 99% possibility that benefit of newspaper ads is not equal than cost of it. "

Exercise 3.2

KNN regression averages the closest observations to estimate prediction

KNN classifier assigns classification group based on majority of closest observations.

Exercise 3.5

```
In [2]:
```

```
from IPython.display import Latex
Latex(r"""\begin{eqnarray}
\hat{y}_{i} = x_{i} \times \frac{\sum_{i'=1}^{n}\left ( x_{i'} y_{i'} \right )}{\sum_{j=1}^{n} x_{j}^{2}} \\
\hat{y}_{i} = \sum_{i'=1}^{n} \frac{\left ( x_{i'} y_{i'} \right ) \times x_{i}}{\sum_{j=1}^{n} x_{j}^{2}} \\
\hat{y}_{i} = \sum_{i'=1}^{n} \left ( \frac{ x_{i} x_{i'} } { \sum_{j=1}^{n} x_{j}^{2} } \\
\hat{y}_{i} = \sum_{i'=1}^{n} \left ( \frac{ x_{i} x_{i'} } { \sum_{j=1}^{n} x_{j}^{2} } \\
\a_{i'} \right ) \\
a_{i'} = \frac{ x_{i} x_{i'} } { \sum_{j=1}^{n} x_{j}^{2} } \\
\end{eqnarray}""")
```

Out[2]:

Exercise 3.6

```
In [3]:
```

```
from IPython.display import Latex

Latex(r"""\begin{eqnarray}
Using \; equation \; (3.4), when \; x_{i}=\bar{x}, \\
then \; \hat{\beta_{1}}=0 \; and \; \hat{\beta_{0}}=\bar{y} \\
and \; the \; equation \; for\; \hat{y_{i}}\; evaluates\; to \; equal \; \bar{y}
\end{eqnarray}""")
```

Out[3]:

Exercise 3.11

In [4]:

```
# part (a)
import numpy as np

np.random.seed(11)

s = np.random.normal(0,1,100)
x = s
d = np.random.normal(0,1,100)

y = 2*x + d

import statsmodels.api as sm

model1 = sm.OLS(y,x).fit()

model1.summary()
```

Out[4]:

OLS Regression Results

Dep. Variable:	у		R-squared	: 0.790
Model:	OLS	Adj.	R-squared	: 0.787
Method:	Least Squares		F-statistic	: 371.4
Date:	Thu, 31 Jan 2019		Prob (F statistic)	7 876-35
Time:	14:16:24	Log-	Likelihood	: -136.94
No. Observations:	100		AIC	: 275.9
Df Residuals:	99		ВІС	: 278.5
Df Model:	1			
Covariance Type:	nonrobust			
coef std err	t P> t	[0.025	0.975]	
x1 1.9754 0.103	19.272 0.000	1.772	2.179	
Omnibus: 0.5	555 Durbin-W	atson:	1.775	
Prob(Omnibus): 0.7	758 Jarqu	e-Bera (JB):	0.687	
Skew: 0.0)77 Pro	b(JB):	0.709	
Kurtosis: 2.6	624 Co r	d. No.	1.00	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The estimated coefficient 2.04 means with one unit increase in x, y will increase 2.04 units. Standard error rate shows the one standard deviation of beta_x is nearly 0. So the 95% confidence interval of beta_x is [1.872,2.211] P-value close to 0 shows that x is statistically significant.

In [5]:

```
# part (b)
model2 = sm.OLS(x,y).fit()
model2.summary()
```

Out[5]:

OLS Regression Results

Dep. Variable:	у	I	R-squared	0.790
Model:	OLS	Adj. I	R-squared	0.787
Method:	Least Squares		F-statistic	371.4
Date:	Thu, 31 Jan 2019		Prob (Festatistic)	
Time:	14:16:24	Log-l	_ikelihood	-57.048
No. Observations:	100		AIC	: 116.1
Df Residuals:	99		BIC	: 118.7
Df Model:	1			
Covariance Type:	nonrobust			
coef std err	t P> t	[0.025	0.975]	
x1 0.3997 0.021	19.272 0.000	0.359	0.441	
Omnibus: 0.	720 Durbin-V	Vatson:	2.036	
		Vatson: ue-Bera (JB):	2.0360.823	
Prob(Omnibus): 0.	698 Jarqı	ıe-Bera		

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

The estimated coefficient 0.4175 means with one unit increase in y, x will increase nearly 0.4175. Standard error rate shows the one standard deviation of beta_y is 3.08e^-8. So the 95% confidence interval of beta_y is [0.383, 0.452] P-value close to 0 shows that y is statistically significant.

In [6]:

```
# part (c)
from IPython.display import Latex
Latex(r"""\begin{eqnarray}
\hat {x} = \hat{\beta_{x}} \times y \; versus \; \hat {y} = \hat{\beta_{y}} \times x, the \; betas
\; should \; be \; inverse \; of \; each \; other \; (\hat{\beta_{x}}=\frac{1}{\hat{\beta_{y}}})
\; but \; they \; are \; somewhat \; off
\end{eqnarray}""")
```

Out[6]:

part(e)

I used t- statistic formula from (d) and plug both (x,y) and (y,x) in it. I got same result.

In conclusion, the two regression lines should be the same just with the axes switched.

In [7]:

```
# part(f)

X = sm.add_constant(x)

model3 = sm.OLS(y,X).fit()

model3.summary()
```

Out[7]:

OLS Regression Results

Don Variables v Discusseds 0.700

De	p. variau	ie:		у		r-5	quareu:	0.790
	Mode	el:		OLS	Adj.	R-s	quared:	0.787
	Metho	d: L	east Squ	ares		F-s	tatistic:	367.6
	Dat	te:	Thu, 31	Jan 2019			Prob (F- tatistic):	
	Tim	ne:	14:1	6:24	Log-	-Like	elihood:	-136.94
No. Ob	servation	ns:		100			AIC:	277.9
Df	Residua	ls:		98			BIC:	283.1
	Df Mod	el:		1				
Covar	iance Typ	e:	nonro	bust				
	coef	std err	t	P> t	[0.0)25	0.975]	
const	0.0042	0.096	0.044	0.965	-0.1	187	0.195	
x1	1.9753	0.103	19.172	0.000	1.7	771	2.180	
(Omnibus:	0.555	Durb	in-Wats	on:	1.7	75	
Prob(C)mnibus):	0.758	Ja	arque-B (،	era JB):	0.6	87	
	Skew:	0.077		Prob(JB):	0.7	09	
	Kurtosis:	2.624		Cond.	No.	1.	07	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [8]:

```
Y = sm.add_constant(y)
model4 = sm.OLS(x,Y).fit()
model4.summary()
```

Out[8]:

OLS Regression Results

De	p. Variab	le:		у		R-sc	quared:	0.790
	Mod	el:		OLS	Adj.	R-sc	quared:	0.787
	Metho	d: L	east Squ	ares		F-st	atistic:	367.6
	Da	te:	Thu, 31	Jan 2019			rob (F- atistic):	6.22e-35
	Tim	ne:	14:1	6:24	Log-	Like	lihood:	-57.048
No. Ob	servation	ıs:		100			AIC:	118.1
Df	Residua	ls:		98			BIC:	123.3
	Df Mod	el:		1				
Covar	iance Typ	e:	nonro	bust				
	coef	std err	t	P> t	[0.0]	25	0.975]	
const	0.0007	0.043	0.017	0.986	-0.0	85	0.087	
x 1	0.3997	0.021	19.172	0.000	0.3	58	0.441	
(Omnibus:	0.720	Durk	oin-Wat	son:	2.0	36	
Prob(C)mnibus):	0.698	J	larque-	Bera (JB):	0.8	23	
	Skew:	-0.105		Prob	(JB):	0.6	63	
	Kurtosis:	2.608		Cond	. No.	2.	07	

Warnings:

In conclusion, the t- statistic of two linear regression line are same.

exercise 3.12

```
In [9]:
```

```
# part(a)
from IPython.display import Latex
Latex(r"""\begin{eqnarray}
When \ x_{i}=y_{i}, or\; more\; generally\; when\; the <math>\; beta \; denominators\; are\; equal\; \sum \
x_{i}^2=\sum y_{i}^2
\end{eqnarray}""")
```

Out[9]:

\end{eqnarray}

In [10]:

```
# part(b)
import pandas as pd
print("Model1's coefficient for Betal : ", model1.params)
print("Model2's coefficient for Beta2 : ",model2.params)
Modell's coefficient for Betal : [1.97540554]
Model2's coefficient for Beta2 : [0.39968647]
```

In [11]:

```
# part(c)
np.random.seed(111)
u = np.random.normal(1000, 0.1, 100)
v = np.random.normal(1000,0.1,100)
model5 = sm.OLS(v,u).fit()
model6 = sm.OLS(u,v).fit()
print("Model5's coefficient for Beta1 : ",model5.params)
print("Model6's coefficient for Beta2 : ", model6.params)
```

Model5's coefficient for Betal : [1.00000464] Model6's coefficient for Beta2 : [0.99999534]

Excercise 3.13

```
In [12]:
```

```
#part (a)
np.random.seed(1111)
X1 = np.random.normal(0,1,100)
```

```
In [13]:
```

```
#part(b)
```

```
eps = np.random.normal(U,U.25,1UU)
```

```
In [14]:
```

```
#part(c)
Y1 = -1 + 0.5*X1 + eps
print(len(Y1))

Latex(r"""\begin{eqnarray}
\beta_{0}=-1 \\
\beta_{1}=0.5
\end{eqnarray}""")
```

100

Out[14]:

In [15]:

```
#part(d)
import matplotlib.pyplot as plt
plt.scatter(X1,Y1)
```

Out[15]:

<matplotlib.collections.PathCollection at 0x18136ff0cf8>

X and Y are nearly positively relative.

In [16]:

```
#part(e)
X2= sm.add_constant(X)

model8 = sm.OLS(Y1,X2).fit()

print(model8.params)

Latex(r"""\begin{eqnarray}
\beta_{0}= -0.75049222 \\beta_{1}= 0.44058306 \\end{eqnarray}""")
```

[-1.04409137 0.01356952]

Out[16]:

```
In [17]:
```

```
#part(f)
plt.scatter(X1,Y1)
plt.plot(X1,-1 + 0.5*X1,'r')
plt.plot(X1, -0.75049222 + 0.44058306*X1, 'b')
plt.show()
```

```
0.5

0.0

-0.5

-1.0

-1.5

-2.0

-2.5
```

In [18]:

```
#part(g)
import statsmodels.formula.api as smf

data = {"Y1": Y1, "X1": X1}

model9 = smf.ols(formula = 'Y1 ~ np.power(X1,2) + X1', data = data).fit()

print(model9.params)

table = sm.stats.anova_lm(model9,type = 2)

print(table)
```

from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression

```
poly\_reg = PolynomialFeatures(2) \ xpoly = poly\_reg.fit\_transform(X1)
```

print(xpoly)

linearreg_2 = LinearRegression() linearreg_2.fit(xpoly,Y1)

 $plt.scatter(X1,Y1) \ plt.plot(X1,-1 + 0.5X1,'r') \ plt.plot(X1, -0.75049222 + 0.44058306X1, 'b') \ plt.plot(X1, linearreg_2.predict(xpoly)) \ plt.plot(X1,Y1) \ plt.plot(X1,$

plt.show()

In [19]:

```
#part(h)

np.random.seed(11111)

eps2 = np.random.normal(0,0.1,100)

Y2 = -1 + 0.5*X1 + eps2

model10 = sm.OLS(Y2,X2).fit()

print(model10.params)

plt.scatter(X1,Y2)
```

```
plt.plot(X1,-1 + 0.5*X1,'r')
plt.plot(X1, -0.7887987 + 0.09120311*X1, 'b')
plt.show()
```

[-1.05679919 0.00845146]

In [20]:

```
# part(i)
np.random.seed(11111)

eps3 = np.random.normal(0,1,100)

Y3 = -1 + 0.5*X1 + eps3

model11 = sm.OLS(Y3,X2).fit()

print(model11.params)

plt.scatter(X1,Y3)
plt.plot(X1,-1 + 0.5*X1,'r')
plt.plot(X1, -0.45189999 + 0.07522537*X1, 'b')
plt.show()
```

[-1.15037271 0.02118244]

part(j)

In [21]:

```
model8.summary()
```

Out[21]:

OLS Regression Results

0.000	R-squared:	у	Dep. Variable:
-0.010	Adj. R-squared:	OLS	Model:
0.04620	F-statistic:	Least Squares	Method:
	Prob (F-	Thu. 31 Jan	

	Dat	e:	2019		sta	itistic):	0.830
	Tim	e:	14:16:	25 L	.og-Like	og-Likelihood:	
No. Observ	ation	s:	1	00		AIC:	179.9
Df Res	idual	s:		98		BIC:	185.1
Df	Df Model:			1			
Covariance	е Тур	e:	nonrob	ust			
	coef	std err	t	P> t	[0.025	0.975]	
const -1.0)441	0.059	-17.723	0.000	-1.161	-0.927	
x1 0.0	136	0.063	0.215	0.830	-0.112	0.139	
Omn	ibus:	0.419	Durbin	-Watso	n: 1.79	14	
Prob(Omni	bus):	0.811	Jar	que-Be (JE		'2	
S	kew:	0.027	ı	Prob(JE	3): 0.75	51	
Kurt	osis:	2.633	C	Cond. N	o. 1.0)7	

Warnings:

 $\label{thm:covariance} \mbox{[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.}$

In [22]:

```
model10.summary()
```

Out[22]:

OLS Regression Results

De	p. Variabl	e:		у	R-sq	uared:	0.000
	Mode	el:	0	LS A	ldj. R-sq	uared:	-0.010
	Metho	d: Le	east Squa	res	F-st	atistic:	0.02733
	Dat	e:	Thu, 31 J	lan 119		rob (F- itistic):	0.869
	Tim	e:	14:16:	25 L	og-Likel	ihood:	-66.854
No. Ob	servation	s:	1	00		AIC:	137.7
Df	Residual	s:		98		BIC:	142.9
	Df Mode	el:		1			
Covar	iance Typ	e:	nonrob	ust			
	coef	std err	t	P> t	[0.025	0.975]	
const	-1.0568	0.048	-22.155	0.000	-1.151	-0.962	
x1	0.0085	0.051	0.165	0.869	-0.093	0.110	
(Omnibus:	0.074	Durbin	-Watso	n: 1.95	9	
Prob(C)mnibus):	0.964	Jar	que-Be (JE	0.73	5	
	Skew:	0.029	I	Prob(JE	3): 0.88	9	
	Kurtosis:	2.770	(Cond. N	o. 1.0	7	

Warnings

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [23]:

```
model11.summary()
```

Out[23]:

OLS Regression Results

De	p. Variabl	e:		у	ı	R-sq	uared:	0.000
	Mode	el:	0	LS A	∖dj.∣	R-sq	uared:	-0.010
	Metho	d: Le	east Squa	res		F-sta	atistic:	0.03133
	Dat	e:	Thu, 31 J	lan 119			rob (F- tistic):	0.860
	Tim	e:	14:16:	25 L	.og-l	Likel	ihood:	-151.91
No. Ob	servation	s:	1	00			AIC:	307.8
Df	Residual	s:		98			BIC:	313.0
	Df Mode	el:		1				
Covar	iance Typ	e:	nonrob	ust				
	coef	std err	t	P> t	[0.	025	0.975]	
const	-1.1504	0.112	-10.301	0.000	-1.	372	-0.929	
x 1	0.0212	0.120	0.177	0.860	-0.	216	0.259	
(Omnibus:	2.211	Durbi	n-Watso	on:	1.95	59	
Prob(C)mnibus):	0.331	Ja	rque-B (J	era B):	1.78	35	
	Skew:	-0.176		Prob(J	B):	0.41	10	
	Kurtosis:	2.448		Cond. I	No.	1.0	07	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [24]:

```
from matplotlib import pyplot as plt
from pandas.tools.plotting import scatter_matrix
from mpl_toolkits.mplot3d import Axes3D
from statsmodels.stats.outliers_influence import OLSInfluence
%matplotlib inline
plt.style.use('ggplot')
```

Exercise 3.14

In [25]:

```
#part(a)

np.random.seed(2)

a1 = np.random.random(100)

a2 = 0.5*a1 + np.random.randn(100)/10

b = 2+2* a1 +0.3* a2 + np.random.randn(100)

data2 = {"b":b , "a1": a1, "a2": a2}
```

In [26]:

```
#part(b)
from numpy import corrcoef
print(corrcoef(a1,a2))

df = pd.DataFrame(np.column_stack((b,a1,a2)), columns=['b','a1','a2'])
df.head()

scatter matrix(df, figsize = (8,8),alpha=1);
```

```
[[1. 0.81145744]
[0.81145744 1. ]]
```

C:\Users\husiw\Anaconda3\lib\site-packages\ipykernel_launcher.py:9: FutureWarning:
'pandas.tools.plotting.scatter_matrix' is deprecated, import 'pandas.plotting.scatter_matrix' inst ead.

```
if __name__ == '__main__':
```


In [27]:

```
#part(c)
model12 = smf.ols(formula = 'b ~ a1 + a2', data = data2).fit()
print(model12.summary())
print(model12.params)
```

OLS Regression Results

Dep. Variable:	b	R-squared:	0.335
Model:	OLS	Adj. R-squared:	0.322
Method:	Least Squares	F-statistic:	24.47
Date:	Thu, 31 Jan 2019	Prob (F-statistic):	2.48e-09
Time:	14:16:26	Log-Likelihood:	-137.23
No. Observations:	100	AIC:	280.5
Df Residuals:	97	BIC:	288.3
Df Model:	2		
Covariance Type:	nonrobust		

==========						
	coef	std err	t	P> t	[0.025	0.975]
Intercept a1 a2	1.7199 1.8561 1.1244	0.195 0.624 0.874	8.817 2.975 1.287	0.000 0.004 0.201	1.333 0.618 -0.610	2.107 3.095 2.859
==========		=========				=======
Omnibus:		0.358	8 Durbi	n-Watson:		1.843
Prob(Omnibus)	:	0.83	6 Jarqu	e-Bera (JB):		0.501
Skew:		-0.120	O Prob(JB):		0.778
Kurtosis:		2.749	9 Cond.	No.		12.1

Warnings:

Intercept 1.719888 a1 1.856144 a2 1.124409

dtype: float64

The intercept \$\beta_0 = 1.72\$ is significant and \$\beta_1\$ is barely significant so we reject the hypothesis that \$\beta_0=0\$ and the hypothesis that \$\beta_1=0\$ but we can't reject the hypothesis that \$\beta_2 = 0\$. Also notice the SE and confidence intervals for all three coeffecients are verly large.

```
In [28]:
```

```
# part(c)-(e)
model13 = smf.ols(formula = 'b ~ a1', data = data2).fit()
print(model13.summary())

model14 = smf.ols(formula = 'b ~ a2', data = data2).fit()
print(model14.summary())
```

OLS Regression Results

Dep. Variable:		b	R-squa	red:		0.324
Model:		OLS	Adj. R	-squared:		0.317
Method:		Least Squares	F-stat	istic:		46.98
Date:	Th	u, 31 Jan 2019	Prob (F-statistic)	:	6.43e-10
Time:		14:16:26	Log-Li	kelihood:		-138.08
No. Observations:		100	AIC:			280.2
Df Residuals:		98	BIC:			285.4
Df Model:		1				
Covariance Type:		nonrobust				
	=====		======			
C	coef	std err	t	P> t	[0.025	0.9751

	coef	std err	t	P> t	[0.025	0.975]
Intercept al	1.6908 2.5078	0.194 0.366	8.698 6.854	0.000	1.305 1.782	2.077
=========						
Omnibus:		0.247	' Durbi	n-Watson:		1.868
Prob(Omnibus)	:	0.884	Jarqu	e-Bera (JB):		0.341
Skew:		-0.112	Prob ((JB):		0.843
Kurtosis:		2.823	Cond.	No.		4.61
==========						=======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. $\hspace{0.1in}$ OLS Regression Results

Dep. Variable:	b	R-squared:	0.275
Model:	OLS	Adj. R-squared:	0.267
Method:	Least Squares	F-statistic:	37.12
Date:	Thu, 31 Jan 2019	Prob (F-statistic):	2.18e-08
Time:	14:16:26	Log-Likelihood:	-141.60
No. Observations:	100	AIC:	287.2
Df Residuals:	98	BIC:	292.4
Df Model:	1		
Covariance Type:	nonrohuet		

DI 110000I.		_						
Covariance Type:		nonrobust						
					======		=====	
	coef st	td err	+	D>1+1	0.1	025	Λ	9751

	coef	std err	t	P> t	[0.025	0.975]		
Intercept a2	2.0661 3.2334	0.163 0.531	12.702 6.093	0.000	1.743 2.180	2.389		
Omnibus: Prob(Omnibus Skew: Kurtosis:):	1.1 0.5 -0.0 2.5	56 Jarqu 93 Prob	. ,		1.787 1.095 0.578 5.58		

Warnings:

In model13, \$b \sim a_1\$, we find that the coeffecient is close to the true value and is now very significant. In model14 \$b \sim a_2\$, we find that the coeffecient for \$a_2\$ is now very significant. Note there is no contradiction here. \$a_1\$ and \$a_2\$ are strongly correlated and each is related to \$b\$ independent of each other.

In [31]:

```
df.loc[len(df)] = [0.1, 0.8, 6]
A = sm.add\_constant(df[['al','a2']])
model = sm.OLS(df.b, A)
estimate = model.fit()
print(estimate.summary())
# Obtain the residuals, studentized residuals and the leverages
fitted values = estimate.fittedvalues.values
residuals = estimate.resid.values
studentized residuals = OLSInfluence (estimate).resid studentized internal
leverages = OLSInfluence(estimate).influence
fig, (ax1,ax2) = plt.subplots(1,2,figsize=(16,4))
# Studentized Residuals
ax1.scatter(fitted values[:-1], studentized residuals[:-1], facecolors='none', edgecolors='b');
# Plot the possible Outlier in red
ax1.scatter(fitted_values[-1], studentized_residuals[-1], facecolors='none', edgecolors='r');
ax1.set_xlabel('fitted values');
ax1.set ylabel('studentized residuals');
# Leverages
ax2.scatter(leverages[:-1], studentized residuals[:-1], facecolors='none', edgecolors='b');
# plot the possible high leverager in red
ax2.scatter(leverages[-1], studentized residuals[-1], facecolors='none', edgecolors='r');
ax2.set xlabel('Leverage');
ax2.set ylabel('studentized residual');
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model:	ns:	OL Least Square Thu, 31 Jan 201 14:16:2 10	Adj. F-st. Prob Log- AIC: BIC:	uared: R-squared: atistic: (F-statistic Likelihood:):	0.403 0.391 33.77 6.22e-12 -141.94 289.9 297.8
Covariance Typ	e:	nonrobus	t 			
	coef	std err	t	P> t	[0.025	0.975]
a1	1.6794 2.8495 -0.6217	0.195 0.384 0.104	7.423	0.000		
Omnibus: Prob(Omnibus): Skew: Kurtosis:		0.19 0.90 -0.09 2.91	6 Jarq 8 Prob	in-Watson: ue-Bera (JB): (JB): . No.		1.908 0.196 0.907 5.70

Warnings:

0.0 0.5 10 1.5 2.0 2.5 3.0 3.5 4.0 fitted values

-0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100 Leverage