RESOLUÇÃO DE RECORRÊNCIAS: ÁRVORE DE RECURSÃO

Prof. Daniel Kikuti

Universidade Estadual de Maringá

Algumas fórmulas importantes

Para $x \in \mathbb{R}$, $x \neq 1$, temos a seguinte fórmula fechada para a *série geométrica*:

$$\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \ldots + x^{n} = \frac{x^{n+1} - 1}{x - 1}.$$

Quando a soma é infinita e x < 1, temos que:

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}.$$

Método Iterativo

Consiste em:

- 1. Iterar a recorrência até a condição inicial ser encontrada;
- 2. Encontrar um somatório e tentar limitá-lo usando uma série conhecida.

Exemplo (suponha $n = 2^k$):

$$T(n) = 2T(n/2) + n$$

$$= 2(2T(n/4) + n/2) + n$$

$$= 4T(n/4) + n + n$$

$$= 4(2T(n/8) + n/4) + n + n$$

$$\vdots$$

$$= 2^{k}T(1) + kn$$

$$= n + n \lg n$$

Árvore de Recursão

O que é?

Método para resolver recorrências. Útil para visualizar o que ocorre quando a recursão é iterada.

O método

- 1. Expandimos a recorrência em uma árvore;
- 2. Calculamos o custo em cada nível;
- 3. Somamos os custos de todos os níveis para determinar o custo total;
- Verificamos a solução usando o método da substituição (quando toleramos um pouco de "desleixo" durante o processo).

Um exemplo

Considere a recorrência (assuma $n = 4^k$):

$$T(n) = 3T(n/4) + cn^2$$

Expandindo a recorrência em uma árvore

Um exemplo

$$T(n) = 3T(n/4) + cn^2$$

Expandindo agora T(n/4)

Um exemplo

$$T(n) = 3T(n/4) + cn^2$$

Expandindo até o caso base

Um exemplo: $T(n) = 3T(n/4) + cn^2$

Custo por nível

Um exemplo: $T(n) = 3T(n/4) + cn^2$

Somando tudo

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2} + \dots + \left(\frac{3}{16}\right)^{(\log_{4}n)-1}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= cn^{2}\left(\left(\frac{3}{16}\right)^{0} + \left(\frac{3}{16}\right)^{1} + \left(\frac{3}{16}\right)^{2} + \dots + \left(\frac{3}{16}\right)^{(\log_{4}n)-1}\right) + \Theta(n^{\log_{4}3})$$

$$= \left(cn^{2}\sum_{i=0}^{(\log_{4}n)-1}\left(\frac{3}{16}\right)^{i}\right) + \Theta(n^{\log_{4}3})$$

$$= cn^{2}\frac{(3/16)^{\log_{4}n} - 1}{(3/16) - 1} + \Theta(n^{\log_{4}3}).$$

Para remover o $\log_4 n$ considere que:

$$T(n) \le cn^2 \sum_{i=0} (3/16)^i + \Theta(n^{\log_4 3})$$
$$= cn^2 \frac{1}{1 - (3/16)} + \Theta(n^{\log_4 3})$$
$$= O(n^2).$$

Um exemplo: $T(n) = 3T(n/4) + cn^2$

Usando substituição para comprovar que $T(n) = O(n^2)$

Hipótese: $T(k) \leq dk^2$ para todo 1 < k < n (em particular para k = n/4)

$$\begin{split} T(n) &= 3\,T(n/4) + cn^2 \\ &\leq 3\,d(n/4)^2 + cn^2 \\ &= \frac{3}{16}\,dn^2 + cn^2 \\ &\leq dn^2. \end{split} \qquad \text{(para } d \geq (16/13)\,c\text{)}$$

Mais um exemplo

Considere a recorrência:

$$T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + O(n).$$

Mais um exemplo

Considere a recorrência:

$$T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + O(n).$$

Resolvendo temos $T(n) = O(n \lg n)$.