MA 374 Financial Engineering Lab

Karan Garg 210123076

Question 1:

The price of European Call and Put Option given by BSM framework obtained after solving Black-Scholes-Merton PDE is:

$$C(x,t) = xN(d_1) - Ke^{-r(T-t)}N(d_2)$$

 $P(x,t) = Ke^{-r(T-t)}N(-d_2) - xN(-d_1)$

Where,

$$d_1 = \frac{\log\left(\frac{x}{K}\right) + (r + \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}$$

$$d_2 = \frac{\log\left(\frac{x}{K}\right) + (r - \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}$$

$$N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}y^2} dy$$

I have included an example to check the working of code: S=1, t=0, T=1, k=1, r=5%, sigma=0.6

price of call option= 0.255232056656095
price of put option= 0.20646148115680896

Question 2:

The plot of C(t, S(t)) and P(t, S(t)) as a function of S(t) is as follows:

The 3-dimensional plots for C(t, S(t)) & P(t, S(t)) are:

Variation of C(t,S(t)) for change in t and S(t)

Variation of P(t,S(t)) for change in t and S(t)

Question 3:

The plots for C(t, S(t)) and P(t, S(t)) as smooth surfaces above the (t, S(t)) plane are:

Variation of C(t,S(t)) for change in t and S(t)

Variation of P(t,S(t)) for change in t and S(t)

Question 4:

The parameters values are varied accordingly, and where some particular values of parameters are required, they are taken from the following:

$$s = 0.8$$
, $t = 0$, $T = 1$, $k = 1$, $r = 0.05$, $\sigma = 0.6$

Variation of Call and Put price with stock price has been done in question 2 and 3 already. Rest of the sensitivity analysis plots are attached here:

Т	C(t,S(t))	P(t,S(t))
0.5	0.0771391	0.252449
1	0.139135	0.290364
1.5	0.188581	0.316324
2	0.230477	0.335314
2.5	0.267111	0.349608
3	0.299765	0.360473
3.5	0.329249	0.368706
4	0.356118	0.374849
4.5	0.380775	0.379291
5	0.403524	0.382325

+		
k	C(t,S(t))	P(t,S(t))
+===== + 0.205411	 0.605331	-
+		
0.40481	0.432374	0.0174404
0.604208	0.297769	0.0725099
+		+
0.803607	0.202769	0.167184
1.00301	0.138342	0.292431
+		
1.2024	0.0951514	0.438914
1.4018	0.0661524	0.599589
++		+
1.6012	0.0465331	0.769644
1.8006	0.0331217	0.945907
+		
2 ++	0.0238485	1.12631

++	+	+
r	C(t,S(t))	P(t,S(t))
0.098	0.152134	0.258783
0.198	0.181038	0.201408
0.298	0.212075	0.154376
0.398	0.244772	0.116434
0.498	0.278598	0.086343
0.598	0.312995	0.062905
0.698	0.347413	0.044993
0.798	0.381344	0.0315727
0.898	0.414339	0.0217228
0.998	0.446029	0.0146454
++	+	+

+ sigma	C(t,S(t))	P(t,S(t))
0.0990982	0.00140663	0.152636
0.199198	0.0184037	0.169633
0.299299	0.0453279	0.196557
0.399399	0.0755956	0.226825
0.499499	0.107102	0.258331
0.599599	0.139007	0.290236
0.699699	0.17089	0.322119
0.7998	0.202501	0.353731
1	0.264275	0.415504

Variation of C(t,S(t)) for change in k and r

Variation of P(t,S(t)) for change in k and r

Variation of C(t,S(t)) for change in k and sigma

Variation of P(t,S(t)) for change in k and sigma

Variation of C(t,S(t)) for change in k and T

Variation of P(t,S(t)) for change in k and T

Variation of C(t,S(t)) for change in k and S(t)

Variation of P(t,S(t)) for change in k and S(t)

Variation of C(t,S(t)) for change in T and S(t)

Variation of P(t,S(t)) for change in T and S(t)

Variation of C(t,S(t)) for change in T and r

Variation of P(t,S(t)) for change in T and r

Variation of C(t,S(t)) for change in T and sigma

Variation of P(t,S(t)) for change in T and sigma

Variation of C(t,S(t)) for change in r and S(t)

Variation of P(t,S(t)) for change in r and S(t)

Variation of C(t,S(t)) for change in r and sigma

Variation of P(t,S(t)) for change in r and sigma

Variation of C(t,S(t)) for change in sigma and S(t)

Variation of P(t,S(t)) for change in sigma and S(t)

