Actividad 8

José Carlos Sánchez Gómez

2024-08-25

Problema 1. Enlatados

Los pesos de 21 latas de duraznos empacados elegidas al azar fueron:

Peso de las latas: 11, 11.6, 11.6, 11.7, 10.9, 11.6, 12, 11.2, 11.5, 12, 12, 11.4, 11.2, 10.8, 10.5, 11.8, 12.2, 10.9, 11.8, 11.4, 12.1

Por estudios anteriores se saber que población del peso de las latas se distribuye normalmente.

Si a los dueños no les conviene que el peso sea menor, pero tampoco mayor a 11.7, prueba la afirmación de que el verdadero peso de las latas es de 11.7 con un nivel de confianza de 0.98 haciendo uso de los datos obtenidos en la muestra.

Paso 1: Hipotesis

```
H_0: \mu = 11.7 H_1: \mu \neq 11.7
```

¿Cómo se distribuye \bar{x} ? * Se distribuye como una normal * n < 30 * no conocemos sigma

Entonces a distribución muestral es una t de Student (porque no conocemos sigma, y la muestra es pequeña)

Paso 2: Regla de decisión

Nivel de confianza es de 0.98 Nivel de significancia es de 0.02

Necesitamos encontrar a cuántas desviaciones estandar está lejos el valor frontera.

```
alfa = 0.02
n = 21
t_f = abs(qt(alfa / 2, n - 1))
cat("T Frontera =", t_f, "\n")
## T Frontera = 2.527977
```

Rechazo H0 si:

- $|t_e| > 2.53$
- valor_p < 0.01 (alfa)

Paso 3. Análisis del resultado

• t_e : Número de desviaciones estandar al que \bar{x} se encuentra lejor de $\mu = 11.7$

 Valor p: Probabbilidad de obtener lo que obtuve en la muestra o un vaor más extremo

```
x = c(11, 11.6, 11.6, 11.7, 10.9, 11.6, 12, 11.2, 11.5, 12, 12, 11.4,
11.2, 10.8, 10.5, 11.8, 12.2, 10.9, 11.8, 11.4, 12.1)
xb = mean(x)
s = sd(x)
miu = 11.7
te = (xb - miu) / (s / sqrt(n))
cat("te =", te, "\n")
## te = -2.068884
valor_p = 2 * pt(te, n - 1)
cat("El valor de p es: ", valor p)
## El valor de p es: 0.0517299
t.test(x, mu=11.7, alternative = "two.sided", conf.level = 0.98)
##
## One Sample t-test
##
## data: x
## t = -2.0689, df = 20, p-value = 0.05173
## alternative hypothesis: true mean is not equal to 11.7
## 98 percent confidence interval:
## 11.22388 11.74755
## sample estimates:
## mean of x
## 11.48571
```

Paso 4. Conclusión

Comparar: Regla de decisión vs Analisis del resultado

Entonces:

- $|t_e| = 2.07 < 2.53$ -> No rechazo H_0
- valor_p = 0.052 > 0.02 (alfa) -> No rechazo H_0

En el contexto el durazno tiene el peso requerido

Gráfico de la regla de decisión y el punto dónde queda el estadistico de prueba

```
sigma = sqrt((n - 1) / (n - 3))

x=seq(-4 * sigma,4 * sigma,0.01)
y=dt(x,n-1)
plot(x,y,type="l",col="navy",xlab="",ylab="",ylim=c(-
0.1,0.4),frame.plot=FALSE,xaxt="n",yaxt="n",main="Región de rechazo
(distribución t de Student, gl= 20)")
abline(v= t_f,col="lightcoral",lty=5)
```

```
abline(v= -1 * t_f,col="lightcoral",lty=5)
abline(v = 0,col="navy",pch=19)
abline(h = 0)
points(te, 0, col= "lightcoral", pch=19, cex=1.1)
```

Región de rechazo (distribución t de Student, gl= 2

Problema 2. La decisión de Fowle Marketing Research, Inc.

Fowle Marketing Research, Inc., basa los cargos a un cliente bajo el supuesto de que las encuestas telefónicas (para recopilación de datos) pueden completarse en un tiempo medio de 15 minutos o menos. Si el tiempo es mayor a 15 minutos entonces se cobra una tarifa adicional. Compañías que contratan estos servicios piensan que el tiempo promedio es mayor a lo que especifica Fowle Marketing Research Inc. así que realizan su propio estudio en una muestra aleatoria de llamadas telefónicas y encuentran los siguientes datos:

Tiempo: 17, 11, 12, 23, 20, 23, 15, 16, 23, 22, 18, 23, 25, 14, 12, 12, 20, 18, 12, 19, 11, 11, 20, 21, 11, 18, 14, 13, 13, 19, 16, 10, 22, 18, 23

Por experiencias anteriores, se sabe que σ =4 minutos. Usando un nivel de significación de 0.07, ¿está justificada la tarifa adicional?

Usando la z grande o z pequeña h0 miu es igual a 15 h1 miu es mayor a 15

Paso 1: Hipotesis

 H_0 : $\mu = 15 H_1$: $\mu > 15$

¿Cómo se distribuye \bar{x} ?

- Se distribuye como una normal
- n > 35
- sigma = 4

Entonces a distribución muestral es una z

Paso 2: Regla de decisión

Nivel de confianza es de 0.93 Nivel de significancia es de 0.07

```
alfa = 0.07
x_tiempo = c(17, 11, 12, 23, 20, 23, 15, 16, 23, 22, 18, 23, 25, 14, 12,
12, 20, 18, 12, 19, 11, 11, 20, 21, 11, 18, 14, 13, 13, 19, 16, 10, 22,
18, 23)
n_tiempo = length(x_tiempo)
sigma_tiempo = 4
z_tiempo = qnorm(1 - alfa)
ds = sigma_tiempo / sqrt(n_tiempo)
cat("Z Frontera es:", z_tiempo, "\n")
## Z Frontera es: 1.475791

cat("Error de la desviación estándar es:", ds)
## Error de la desviación estándar es: 0.6761234
```

Rechazo HO si:

- *Z* > 1.48
- $valor_p < 0.07$ (alfa)

Paso 3. Análisis del resultado

- *Z*: Número de desviaciones estandar al que \bar{x} se encuentra lejor de $\mu = 15$
- Valor p: Probabbilidad de obtener lo que obtuve en la muestra o un vaor más extremo

```
xb_tiempo = mean(x_tiempo)
s_tiempo = sd(x_tiempo)
miu_tiempo = 15
z = (xb_tiempo - miu_tiempo) / (sigma_tiempo / sqrt(n_tiempo))
cat("Z =", z, "\n")

## Z = 2.95804

valor_p_tiempo = 1 - pnorm(z)
cat("El valor de p es: ", valor_p_tiempo)

## El valor de p es: 0.00154801

t.test(x_tiempo, mu=15, alternative = "two.sided", conf.level = 0.93)
```

```
##
## One Sample t-test
##
## data: x_tiempo
## t = 2.6114, df = 34, p-value = 0.01332
## alternative hypothesis: true mean is not equal to 15
## 93 percent confidence interval:
## 15.56721 18.43279
## sample estimates:
## mean of x
## 17
```

Paso 4. Conclusión

Comparar: Regla de decisión vs Analisis del resultado

Entonces:

- $Z = 2.96 > 1.48 -> \text{Rechazo } H_0$
- valor_p = 0.0015 < 0.07 (alfa) -> Rechazo H_0

En el contexto el tiempo medio es mayor a 15 minutos.

```
Gráfico de la regla de decisión y el punto dónde queda el estadistico de prueba
```

```
x = seq(-3, 3, 0.01)
y = dnorm(x)

plot(x, y, type="l", col="navy", xlab="Z", ylab="Densidad", main="Región
de rechazo (distribución Z)")
abline(v = qnorm(1 - alfa), col="red", lty=2)
abline(v = z, col="lightcoral", lty=5)
points(z, dnorm(z), col="red", pch=19)
```

Región de rechazo (distribución Z)

