

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	1 of 28

Technical specification

EV PowerCharger 110/3000 HE IP67 G2

Part no.: 241121.110

Document title

Technical specification EV PC 1103000 HE IP67

.				
Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	2 of 28

Document Change Record

Rev.	Date (dd.mm.yyyy)	Pages affected	Change Description

 Prepared by
 Date (dd.mm.yyyy)
 Revision
 Document no.
 Page

 Morten Hostvedt
 02.02.2011
 1
 2090189
 3 of 28

Table of Contents

1	<u>GEN</u>	NERAL DESCRIPTION	
	1.1	PERFORMANCE CRITERIA	5
		1.1.1 PERFORMANCE CRITERION A	5
		1.1.2 PERFORMANCE CRITERION B	5
		1.1.3 PERFORMANCE CRITERION C	5
		1.1.4 Performance criterion R	5
<u>2</u>	ELE	CCTRICAL SPECIFICATIONS	6
	2.1	INPUT	6
		2.1.1 Voltage	6
		2.1.2 Current	6
		2.1.3 Frequency	6
		2.1.4 POWER FACTOR	6
		2.1.5 EFFICIENCY VERSUS LOAD	7
		2.1.6 EFFICIENCY IN CURRENT LIMIT	8
		2.1.7 QUIESCENT POWER	8
		2.1.8 DC INPUT	9
	2.2	OUTPUT	10
		2.2.1 Voltage	10
		2.2.2 VOLTAGE REGULATION	11
		2.2.3 DYNAMIC RESPONSE	11
		2.2.4 HOLD-UP TIME	11
		2.2.5 RIPPLE	11
		2.2.6 CURRENT 2.2.7 POWER	11 11
	2.3	PROTECTION	11 12
	4.3	2.3.1 INPUT	12
		2.3.2 OUTPUT	12
		2.3.3 Internal	12
<u>3</u>		VIRONMENT	13
	3.1	TEMPERATURE	13
		3.1.1 STORAGE TEMPERATURE	13
	2.0	3.1.2 OPERATING TEMPERATURE	13
	3.2 3.3	COOLING	13 13
	3.4	ACOUSTIC NOISE SHOCK AND VIBRATION	13
	3.4	3.4.1 VIBRATION	14
		3.4.2 SHOCK	14
		5.112 bliock	11
<u>4</u>	ELE	CTROMAGNETIC COMPATIBILITY	15
	4.1	EMISSIONS	15
	4.2	IMMUNITY	16
	4.3	INPUT CURRENT HARMONICS	17
<u>5</u>	SAF	ETY	18
	5.1	DESIGN STANDARD	18
	5.2	ISOLATION VOLTAGES	18
<u>6</u>	<u>SOF</u>	TWARE	19
_	6.1	DERATING	19
		6.1.1 TEMPERATURE DERATING	19
		6.1.2 Mains derating	19
		6.1.3 Mains frequency derating	19

Prepared by Morten Ho	netvadi		Date (dd.mm.yyyy) 02.02.2011	Revision 1	Document no. 2090189	Page 4 of 28	
Morterin	USIVEU	•	02.02.2011	'	2090109	4 01 20	
	6.2	OUTPUT VOLTAGE CONTROL				19	
	6.3	MAXIMUM CURRENT CONTROL				20	
	6.4	MAXIMUM POWER CONTROL				20	
	6.5	SOFTWARE POWER/CURRENT DEMAN	D			20	
<u>7</u>	INT	ERFACE				21	
	7.1	SIGNALS				21	
	7.2	CONNECTIONS				21	
	7.3	CAN				21	
		7.3.1 AVAILABLE MEASUREMENTS				22	
		7.3.2 Rectifier settings				22	
		7.3.3 FIRMWARE UPDATE				22	
		7.3.4 ALARMS AND STATUS				23	
		7.3.5 CAN IDENTIFIERS				24	
<u>8</u>	ME	CHANICAL SPECIFICATION				25	
	8.1	DIMENSIONS				25	
	8.2	CHASSIS				25	
	8.3	ENCLOSURE				25	
9	CER	TIFICATIONS				26	
<u>10</u>	LIST	T OF COMPLIANCES				27	
	10.1					27	
	10.2	EMC				27	
	10.3	ENVIRONMENT				28	

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	5 of 28

1 General description

The charger is designed for maximal utilization of a 16A wall socket. It provides an output power in excess of 3 kW with a very high efficiency up to 95%. Through the built in CAN bus connection the unit can be fully controlled from a master unit and all major values can be read back. The mechanical design with thermal coupling of all major heat generating components mounted against a solid aluminium outer wall. This is intended to be mounted against a coldplate, water cooled or with a sufficient heat transfer capacity for the environmental specification applicable.

1.1 Performance criteria

1.1.1 Performance criterion A

The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed.

1.1.2 Performance criterion B

The apparatus shall continue to operate as intended after the test without manual reset. The module shall not stop or reset during the test, and the output voltage must be with normal operating range.

1.1.3 Performance criterion C

Temporary loss of function is allowed, provided the function is self-recoverable.

1.1.4 Performance criterion R

Temporary loss of function is allowed, provided the function is self-recoverable. The protection devices are allowed to break down.

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	6 of 28

2 Electrical specifications

2.1 Input

2.1.1 Voltage

Figure 1: Output power vs. input voltage for AC input

•	Nominal:	230 Vac	
•	Range:	230 - 275 Vac	Full output power
•	Low voltage 1:	0 – 85 Vac	Shutdown
•	Low voltage 2:	85 – 230 Vac	Max Iin 14A. Power 1100W and 3030W
•	High voltage 1	230 – 275Vac	Full output power
•	High voltage 2:	275 –300 Vac	Shut down.
•	High voltage 3:	300 -> Vac	Not allowed, will damage the unit.

2.1.2 Current

Current	
• Nominal:	$14.0 A_{rms}$ at $230 V_{rms}$ at full load
• Maximum:	$14.0~A_{rms}$ at $85\text{-}230V_{rms}$ input and full load
• Inrush:	< 22.4 A peak, excluding X-capacitors, compliant to ETS 300 132-1
• THD:	$<5\ \%$ at nominal input voltage and full load, provided voltage THD $<2\%$
• Inrush:	< 22.4 A peak, excluding X-capacitors, compliant to ETS 300 132-1

2.1.3 Frequency

Nominal Range: 45 – 66 Hz
 Extended range: DC-45 Hz with reduced spec

2.1.4 Power Factor

• > 0.99 at 50% to 100% load, nominal input voltage

1001111104110 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0				
Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	7 of 28

2.1.5 Efficiency versus load

Peak efficiency: 95,6% at 45% load Efficiency >95% at 20-70% load Efficiency >94% at 15-100% load

Figure 2: Typical efficiency at $230V_{ac}$

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	8 of 28

2.1.6 Efficiency in current limit

Figure 3: Efficiency at different input voltages at maximum power/ maximum current

2.1.7 Quiescent power

Power consumption with no load on output: <14W
Power consumption when output is disabled: <5W

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	9 of 28

2.1.8 DC input

Figure 4: Output power vs. input voltage for DC input

Nominal: 230 Vdc Range: 120 - 275 Vdc Startup: 120Vdc Low voltage 1: $0-120\ Vdc$ Shutdown Low voltage 2: 120 - 230 Vdc Linear between 1100W and 3030W High voltage 1: $230 - 275 \ Vdc$ Full output power. High voltage 2: 275 – 300 Vdc Shut down. High voltage 3: 300 -> Vdc Not allowed, will damage the unit.

				•
Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	10 of 28

2.2 Output

2.2.1 Voltage

Nominal: 92-122 V_{dc}
 Adjustable: 70-122 V_{dc}

Minimum output voltages at no load may increase at light load and high input AC voltage.

Vac	Vout @ Vset = 90	Vout @ Vset = 110	Vout @ Vset = 122
230	91,3	110,5	122,5
270	103,6	110,5	122,5

Output voltage versus input voltage and set voltage at zero load.

		lout @	lout @
	lout @	Vset =	Vset =
Vac	Vset = 90	110	122,5
230	1,92	1,06	1,94
275	2,37	1,15	1,93

Minimum output current to meet set voltage versus input voltage and set voltage

Figure 5 A and B: Minimum load to maintain voltage regulation at output for 230 and 275Vinput

Document title

Technical specification EV PC 1103000 HE IP67

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	11 of 28

2.2.2 Voltage Regulation

• Static regulation: $\pm 1.5 \%$ for 0 - 100% load and nominal input voltage.

2.2.3 Dynamic response

• Dynamic regulation: -12.5/+5% < 30ms for load step 10% to 90% or opposite

2.2.4 Hold-up time

1370W Output:

• 20ms: Output drops from 110 to 87,8V

2.2.5 Ripple

- $<800~\text{mV}_\text{pp}$ (max) , 500 mV_pp (typ) differential, 30 MHz BW limited measurement

2.2.6 Current

• Maximum: $25 (+/-0.25) A_{dc}$ in current limitation

2.2.7 Power

• Nominal: Max 3030W output at nominal input voltage

• Power limit: adjustable 0 - 100 %, automatic reset

• Constant current: adjustable for output voltage 70-122V_{dc}, fixed 25A¹ for 50 to 70V_{dc}

¹Less if the charger is derating (mains voltage or temperature)

.				
Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	12 of 28

2.3 Protection

2.3.1 Input

- 300V varistor L N for transient protection
- Mains fuse: 2x25A (fast) 6.3x32mm in Live and Neutral, accessible to service personnel only.

2.3.2 Output

• Fuse 40A 150Vdc/250Vac in negative output, accessible to service personnel only.

2.3.3 Internal

The rectifier has several internal protection features:

• Low input voltage: If input voltage drops below $85V_{rms}$ or $120V_{dc}$, the module shuts down.

• High input voltage: If the input voltage is > 275Vac or 275Vdc the rectifier will go into self protective

mode. The rectifier will survive up to 300Vac.

High output voltage: The rectifier will selectively shut down if the output voltage exceeds 130V_{dc}.

• High temperature: The unit will derate at heat sink temperatures above 60°C, and finally shut down as

the heat sink temperature increases. Derating and shut down point depends on actual load. The unit is self protective for any cooling and load combination, even

without heat sink.

• Short circuit: The module is short circuit proof, and shuts down when the output goes below

50V.

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	13 of 28

3 Environment

The rectifier complies with the following standards:

• Storage: ETS 300 019-2-1 Class 1.2

• Transportation: ETS 300 019-2-2 Class 2.3

3.1 Temperature

3.1.1 Storage temperature

• -40°C - +85°C

Recommended long-term storage temperature: 10 - 30 °C

3.1.2 Operating temperature

All temperatures are defined as the temperature in the heat sink the charger is mounted to.

Figure 6: Derating curve for 110V (nominal) and 120V (max) output

• -40°C - -10°C full power, reduced performance

• $-10^{\circ}\text{C} - +60^{\circ}\text{C}$ full power at nominal output voltage ($-10^{\circ}\text{C} - +55^{\circ}\text{C}$ at max output voltage)

• +60°C – ca. +80°C reduced¹ output power

Above +80degC
 Shutdown¹, automatic restart at lowered temperature

3.2 Cooling

• Cold plate/ heat sink

3.3 Acoustic noise

< 30dBA at nominal input and full load

¹Derating and shut down temperature depends on load.

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	14 of 28

3.4 Shock and vibration

3.4.1 Vibration

The EV PC performs within the specified limits after exposure to the following vibration profile while unpowered (connectors and cables attached), and one sweep on each axis while powered: (Reference WDS 00.00EA-D11, 4.6.1)

The table should reflect a Moderate vibration level, vibration method B

Freq (Hz)	Accel (m/s ²)	Type	Time/sweep (min)	Sweeps/axis	Total
5-21.1	10mm p-p	Log	5	18	54 sweeps/18 hours
21.1-50	88.3 (9g's)	Log	5	18	54 sweeps/18 hours
50-100	68.6 (7g's)	Log	5	18	54 sweeps/18 hours
100-200	44.1 (4.5g's)	Log	5	18	54 sweeps/18 hours

Table 3.1. Vibration test

3.4.2 Shock

The PCU performs within the specified limits after exposure to the following while unpowered: (Reference WDS 00.00EA-D11, 4.6.3.3) – Medium Shock

Six 100g 10ms half-sine shock pulses, one in each opposite direction of each perpendicular axis.

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	15 of 28

4 Electromagnetic compatibility

The module complies with the European and International standards for EMC, details about levels and test conditions are listed in the following sections.

4.1 Emissions

Compliant to:

• **Radiated:** EN 61000-6-3, January 2007

CISPR 22 Class B

IEC 61000-6-4, 2nd edition, 2006

• **Conducted - Input:** EN 61000-6-3, January 2007

CISPR 22 Class B

IEC 61000-6-4, 2nd edition, 2006

• Conducted - Output: EN 61000-6-3, January 2007

CISPR 22 Class A

Port	Frequency Range (MHz)	Limits (Note	
Enclosure	30 – 230 230 – 1000	30 37		1
		Quasi-peak	Average	
	0,15 - 0,50	66 – 56	56 – 46	
AC port	0,50-5	56	46	2
	5 – 30	60	50	
DC Port	0,15-0,5	79	66	
DC Poft	0,5 –30	73	60	

Notes:

- 1) 10 m distance
- 2) Limit decrease linearly with logarithm of the frequency in the range 0.15 0.50

Table 4.1. Limits for emissions

always on			ELTEK VALERE always on
-----------	--	--	------------------------

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	16 of 28

4.2 Immunity

Compliant to:

- EN 61000-6-1
- EN 61000-6-2
- EN 61000-6-3
- EN 61000-6-4

Immunity specification – Enclosure ports

11111111	minumty specification – Enclosure ports							
Test	Environmental	Basic Standard	Test value	Remarks				
	phenomena	IEC						
1.1	Power frequency magnetic field	IEC 61000-4-8	30A/m					
1.2	Radiated, radio- frequency electromagnetic field	IEC 61000-4-3	80MHz - 2000MHz: 10V / m 2.0GHz - 2.7GHz: 3V / m	This level normally allows the use of portable radiating equipment at 1m to 2m distance from installed equipment (see details in the basic standard)				
1.3	Electrostatic discharge	IEC 61000-4-2	8 kV contact 15 kV air	-				
1.4	Pulsed magnetic fields	IEC 61000-4-9	2000A/m					

Immunity specification – Signal ports

Test	Environmental phenomena	Basic Standard IEC	Test value	Remarks
2.5	Conducted disturbances		0.15-80MHz:	
	Induced by radio	IEC 61000-4-6	$10 V_{RMS}$	$10V = 140 \text{ dB } (\mu V)$
	frequency fields			

Immunity specification – Low voltage AC input power ports

Test	Environmental	Basic Standard	Test value	Remarks
	phenomena	IEC		
3.1	Voltage dips	IEC 61000-4-11	ΔU 100% for 0,5 periods	ΔU 100% for 0,5 periods
			ΔU 100% for 1 periods	ΔU 100% for 1 periods
			ΔU 30% for 25 periods	ΔU 30% for 25 periods
			ΔU 60% for 10 periods	ΔU 60% for 10 periods
3.2	Voltage interruptions	IEC 61000-4-11	ΔU 100% for 250 periods	ΔU 100% for 250 periods
3.3	Surge 1,2/50 μs	IEC 61000-4-5		
	Line to ground		2 kV	-
	Line to line		1 kV	
3.4	Fast transient / burst	IEC 61000-4-4	2 kV	-
3.5	Power Quality - Flicker	IEC 61000-3-3	Dmax 4%	
			Dc 3.3%	
			Dt 500msec	
			Pst 1	
			Plt 0.65	
3.6	Conducted disturbances	IEC 61000-4-6	0.15-80MHz:	$10V = 140 \text{ dB } (\mu V)$
	Induced by radio		$10 V_{RMS}$	
	frequency fields			

Immunity specification –DC output power ports

	minumety specification –DC output power ports						
Test	Environmental	Basic Standard	Test value	Remarks			
	phenomena	IEC					
4.6	Fast transient / burst	IEC 61000-4-4	2 kV	-			
4.8	Conducted disturbances	IEC 61000-4-6	0.15-80MHz:				
	Induced by radio		$10 \text{ V}_{\text{RMS}}$	$10V = 140 \text{ dB } (\mu V)$			
	frequency fields						

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	17 of 28

4.3 Input current harmonics

Table 4.2 defines the maximum permissible harmonic currents.

Harmonic number	Maximum current
[n]	[A]
Odd har	rmonics
3	2,30
5	1,14
7	0,77
9	0,40
11	0,33
13	0,21
15 – 39	0,15 x 15/n
Even ha	rmonics
2	1,08
4	0,43
6	0,30
8 – 40	0,23 x 8/n

Table 4.2. Limits for harmonic currents

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	18 of 28

5 Safety

5.1 Design standard

UL60950/EN60950 - classification of equipment:

Mobility: Fixed, for building in, direct plug-in

• Protection class: 1 (permanent connection to protective earth)

• Supply connection: Pluggable equipment type B

• Clearance and creepage class: Pollution degree 2, Material group III

Intended site and usage: For use in restricted access locations - service access area

• Module IEC protection class: IP67. Total current from AC inputs to safety earth: < 3.5 mA at 50 Hz

5.2 Isolation voltages

 $\begin{array}{lll} \bullet & Input - earth: & 1.5 \ kV_{ac} \ (basic insulation) \\ \bullet & Input - output: & 1.5 \ kV_{ac} \ (basic insulation) \\ \bullet & Output - earth: & 3.0 \ kV_{ac} \ (reinforced insulation) \\ \bullet & Can \ bus - primary & 3.0 \ kV_{ac} \ (reinforced insulation) \\ \bullet & Can \ bus - secondary & 3.0 \ kV_{ac} \ (reinforced insulation) \\ \bullet & Can \ bus - earth & 0.5 \ kV_{ac} \ (functional insulation) \\ \end{array}$

Hi-pot test in production:

Input – earth¹: 2.12kVdc for 5s, max 50uA
 Input – output: 2.12kVdc for 5s, max 50uA
 Output – earth¹: 2.12kVdc for 5s, max 50uA
 Can bus – earth: 500V dc for 5s, max 50uA

¹ Can bus connected to earth.

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	19 of 28

6 Software

The rectifier has two controller cards; a primary and secondary card.

The primary card hosts a Freescale MC56F8014 DSP that controls the PFC gates, monitors and controls the input stage and communicates with the secondary controller via a serial-line communications interface (SCI).

The secondary card hosts a Freescale MC56F8037 DSP that controls the DCDC stage, monitors and controls the output stage, communicates with the primary controller over SCI and with external devices on CAN.

6.1 Derating

The rectifier can derate due to:

- 1. Low mains voltage
- 2. High internal temperature
- 3. Low mains frequency

6.1.1 Temperature derating

The secondary controller derates the output power when one or more of the three internal temperature measurements exceed their derating thresholds. The rectifier shuts down when one of the temperature measurement exceed the shutdown threshold.

Temperature measurement	Derate start $[^{\circ}C(W)]$	Shutdown [°C (W)]
Primary temperature	100 (3030W)	> 110 (2100W)
Secondary temperature	95 (3030W)	> 100 (2100W)
Transformer temperature	115 (3030W)	> 120 (2100W)

Table 3 Temperature derating and shutdown

6.1.2 Mains derating

The secondary controller derates the output power depending on the input voltage. See Section 2.1.1 for derating characteristics.

6.1.3 Mains frequency derating

The secondary controller derates the output power depending on the input voltage frequency.

Frequency [Hz]	Available power [W]
< 4 (DC)	3030W
5	970W
> 45	3030W

Table 4 Frequency derating

6.2 Output voltage control

An external control system can adjust the maximum voltage limit (float voltage) for a rectifier over CAN. Allowed limits are described in Section 2.2.1.

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	20 of 28

6.3 Maximum current control

The maximum current limit for the rectifier is 25A. If the rectifier derates due to low mains voltage, low mains frequency or high temperature the maximum current limit is decreased.

The maximum current limit is met by analog current limitation.

The hardware current control will always choose the **lowest** current demand from the following alternatives:

Current setting	Origin	Minimum	Maximum
Maximum current limit	Internal	25A _{dc}	25A _{dc}
Derated current limit	Internal	5.8A _{dc}	25A _{dc}

Table 5 Maximum current limits

6.4 Maximum power control

The maximum output power for the rectifier is 3030W and is available at max output voltage only. If the rectifier derates due to low mains voltage, low mains frequency or high temperature the maximum output power is decreased.

The maximum power limit is met by output voltage regulation.

The power limit regulator will always choose the lowest power demand from the following alternatives:

Power setting	Origin	Minimum	Maximum
Maximum power	Internal	3030W	3030W
Derated power	Internal	706W	3030W

Table 6 Maximum power limits

6.5 Software power/current demand

The output power and current can be controlled over CAN. The rectifier will use the user-defined current or power limits only if they are lower than the maximum current limit (Section 6.3) or the maximum power limit (Section 6.4).

The user-defined current and power limits are met by output voltage regulation.

The power and current demands are active in the range from 70 to $122V_{\rm dc}$. Only the maximum current control is active below $70V_{\rm dc}$.

Power setting	Origin	Minimum	Maximum
Power reference ²	CAN	0W	3030W
DC current reference ²	CAN	0A _{dc}	25A _{dc}
AC current reference ¹	CAN	10A _{ac}	14A ac

Table 7 Software power/current demand

¹ The AC current reference is calculated to a DC current reference. Power losses are accounted for.

²For minimum load requirements refer to chapter 2.2.1.

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page	
Morten Hostvedt	02.02.2011	1	2090189	21 of 28	

7 Interface

7.1 Signals

Floating isolated CAN bus, reinforced insulation to primary and secondary circuits, functional insulation to chassis.

7.2 Connections

Figure 7: Charger with pigtails

The charger is delivered without connectors. Three cables come out of the charger:

- 1. Power output:
 - DC -
 - DC +
- 2. Power input:
 - Neutral
 - Live
 - PE
- 3. CAN communication:
 - CAN H
 - CAN L
 - CAN Ref

Colour map for the cables is found in the installation manual.

7.3 CAN

CAN protocol: CAN 2.0 A/B (11-bit identifier)

CAN baud rate: 500 Kbit (adjustable)

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	22 of 28

The rectifiers require an external control system to instruct them with control commands over CAN. Once receiving control commands from the control system the rectifiers will automatically transmit measurements and alarms at specific time intervals. The control system can turn the rectifiers on or off and adjust output power, output voltage and output current limits. When the rectifiers lose communication with the control system they turn off and await further instructions.

The rectifiers do not start until instructed to by an external control system.

7.3.1 Available measurements

The following rectifier measurements are automatically transmitted when communicating with an external control system.

 $\begin{array}{lll} \text{Output voltage} & 0-135 V_{dc} \pm 1\% \\ \text{Output current} & 0-43 A_{dc} \pm 0.5 A \\ \text{Maximum output power} & 3030 W \\ \text{Available output power} & 0-3030 W \\ \text{Internal temperatures} & -40-+125 \pm 3^{\circ} C \end{array}$

Mains voltage $0 - 300V_{ac} \pm 3.5Vac (1\%)$ at load > 5%

 $\begin{array}{ll} \text{Mains frequency} & 0-63 \text{Hz} \\ \text{Mains current} & 0-14 \text{A} \end{array}$

Rectifier status All warnings and alarms

7.3.2 Rectifier settings

An external control system can adjust the following settings.

 $\begin{array}{lll} \text{Output enable:} & \text{Output ON/OFF} \\ \text{Output voltage maximum limit:} & 70\text{-}122V_{DC} \\ \text{Output current maximum limit} & 0-25A \\ \text{Input current maximum limit} & 10-14A \\ \text{Output power reference } (0\text{-}100\%) & 0-3030W \\ \end{array}$

The minimum load requirements given in chapter 2.1.1 are hardware limitations and limit the regulation range at low voltage and light loads.

7.3.3 Firmware update

Firmware updates are conducted over CAN. Mains voltage must be present.

•				
Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	23 of 28

7.3.4 Alarms and status

Table 8 lists all alarms, the corresponding status and action taken by the rectifier.

Alarm	Status	Description
DC overvoltage shutdown	Recoverable error	If the output voltage reaches 130V, the rectifier will
		selectively shut down. The rectifier attempts to restart
		three times within one minute before permanent
		shutdown.
Internal SCI communication	Non-recoverable error	The secondary controller (DC side) is unable to
failure	Tron recoverable error	communicate with the primary controller (AC side) over
Tullule		the serial communication interface. The secondary
		controller turns off the DC/DC.
High mains	Recoverable error	If the input voltage reaches 275V the rectifier will shut
Tigh mains	Recoverable cirol	down. The rectifier will turn back on when the input
		voltage sinks below 270V.
Low mains	Recoverable error	If the input voltage sinks below 79V the rectifier will shut
Low manis	Recoverable error	down. The rectifier will turn back on when the input
		voltage reaches 84V.
III ah taman anatum	Recoverable error	The rectifier shuts down if one of the three internal
High temperature	Recoverable error	
		temperature measurements exceeds the maximum
		threshold:
		Primary temperature: 110°C (AC side)
		Secondary temperature: 100°C (DC side)
	D 11	Transformer temperature: 120°C
Low temperature	Recoverable error	The rectifier shuts down if the primary temperature (AC
		side) falls below -45°C. The rectifier will turn back on
		when the temperature reaches -40°C.
Current limit	Recoverable error	The rectifier reports a current limit situation if it has
		derated the available output power due to high
		temperature, low mains or low AC frequency and is
		unable to deliver the desired power demand (over CAN).
		The rectifier does not shut down but continues to operate
		with limited power.
Module failure	Non-recoverable error	The rectifier reports module failure if the DC/DC has
		failed. The rectifier does not shut down.
DC undervoltage shutdown	Recoverable error	If the output voltage falls below 50V the rectifier will
		selectively shut down. The rectifier attempts to restart
		three times within one minute before permanent
		shutdown.
CAN communication timeout	Recoverable error	When communicating with an external control system the
		rectifier expects to receive a specific control message. If
		the control message interval exceeds one second the
		rectifier will shut down and signal a CAN communication
		timeout (in the last status message to the control system).

Table 8 Rectifier alarms

•				
Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	24 of 28

7.3.5 CAN identifiers

A rectifier reserves 16 CAN identifiers. 9 CAN identifiers are reserved for charger control, status messages, configuration and software updates. The remaining 7 CAN identifiers are reserved for future use.

CAN identifier offset	CAN message
1	Charger control ¹
2	Software update
3	Software update response
4	Configuration
5	Configuration response
6	Status #1
7	Status #2
8	Errors / Warnings
9	Serial number
10-16	RESERVED

Table 9 CAN identifiers

The CAN identifiers used by a rectifier are determined by a *base CAN identifier*, the rectifier's logical *address* and a CAN message offset. Both the base CAN identifier and a rectifier's logical address are configurable.

The CAN identifier for a specific CAN message, base CAN identifier and rectifier address configuration is:

Base CAN identifier: 0 - 0x6FF (0x2FF is default)

Rectifier address: 1-16 (1 is default)

Message CAN identifier: CAN identifier offset + base CAN identifier + (rectifier address - 1) * 16

¹ The base CAN identifier is used as broadcast charger control

Document title

Technical specification EV PC 1103000 HE IP67

				1
Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	25 of 28

8 Mechanical specification

The module is a stand-alone unit for permanent installation in electric vehicles.

8.1 Dimensions

Width: 167mm
 Height: 60.8 mm
 Depth: 356 mm
 Weight: 4.3 Kg

8.2 Chassis

• Chassis material: Aluminium.

8.3 Enclosure

The enclosure is qualified according to following IP-ratings:

- IP67
- IP6K9K

Document title

Technical specification EV PC 1103000 HE IP67

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	26 of 28

9 Certifications

- CE
- UL recognised
- RoHS compliant

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	27 of 28

10 List of compliances

10.1 Safety

- IEC60950 3rd edition
- IEC60950-1
- UL60950 3rd edition
- UL60950-1

10.2 EMC

- IEC61000-6-1 (2005), immunity standard for residential, commercial and light-industrial environments:
 - o IEC61000-4-2:2001
 - o IEC61000-4-3: 2007
 - o IEC61000-4-4: 2004
 - o IEC61000-4-5: 2005
 - o IEC61000-4-6 : 2006
 - o IEC61000-4-8 : 2001
 - o IEC61000-4-9: 2001
 - o IEC61000-4-11: 2004
- IEC61000-6-2 (2005), immunity standard for industrial environments:
 - o IEC61000-4-2: 2001
 - o IEC61000-4-3: 2007
 - o IEC61000-4-4: 2004
 - o IEC61000-4-5 : 2005
 - o IEC61000-4-6 : 2006
 - o IEC61000-4-8: 2001
 - o IEC61000-4-9 : 2001
 - o IEC61000-4-11 : 2004
- IEC61000-6-3 / A1 (2005), emissions standard for residential, commercial and light-industrial environments:
 - o EN55022: 2005
 - o CISPR22 : 2005
 - o IEC61000-3-2: 2005
 - o IEC61000-3-3: 2005
 - o IEC61000-3-11:2000
- IEC61000-6-4 (2001-10), emissions standard for industrial environments:
 - o EN55011: 2006
 - o CISPR11: 2006
 - o IEC61000-3-2:2005
 - o IEC61000-3-3:2005
 - o IEC61000-3-11:2000
- FCC part 15 Subpart 109

Document title

Technical specification EV PC 1103000 HE IP67

Prepared by	Date (dd.mm.yyyy)	Revision	Document no.	Page
Morten Hostvedt	02.02.2011	1	2090189	28 of 28

10.3 Environment

• ETSI EN 300 019-2-1 V2.1.2 : 2000, Specification for environmental tests; Storage. Class 1.2, Weather protected, not temperature-controlled storage locations

o IEC60068-2-1:2007

o IEC60068-2-2:2007

o IEC60068-2-6: 2007

o IEC60068-2-30: 2005

o IEC60068-2-56

o IEC60068-2-64 : 2008

- ETSI EN 300 019-2-2 V2.1.2 : 1999, Specification for environmental tests; Transportation. Class 2.3, public transportation.
- Ford WDS 00.00EA-D11