

Įvadas į žaidimų specialiųjų efektų programavimą

T120B167 Žaidimų grafinių specialiųjų efektų kūrimas ir programavimas

Rytis Maskeliūnas

Skype: rytmask

Rytis.maskeliunas@ktu.lt

© R. Maskeliūnas >2013 © A. Noreika <2013

Apie spec. efektus

Apie spec. efektus

Planas (Naujausias > moodle Naujausias > moodle KATEDRA

- 1 sav. Įvadas
- 2 sav . Apšvietimas
- 3 sav. "Žemėlapiai" / Jūsų kursinio planas
- 🛾 4 sav. Specialieji efektai 1
- 5 sav. Specialieji efektai 2
- 6 sav. 3D scenos (žemė, dangus, vanduo)
- 7 sav. Iškilumų žemėlapiai
- 8 sav. 1'as kursinio pristatymas / 1'ojo laboratorinio darbo ataskaita
- 9 sav. Deformacijos
- 10 sav. Cel (Toon) shading
- 11 sav. Paveikslu paremtas renderiavimas
- 12 sav. Dalelių sistemos
- 13 sav. Šešėlių žemėlapiai
- 14 sav. Kursinio (pabaigto) pristatymas/ antrojo laboratorinio darbo ataskaita
- 15 sav. rezervas
- EGZ. [Egzaminas]

Atsiskaitymų planas

Atsiskaitymo forma	Temos(ų) nr.	Val. sk.	Įtaka vertinimui	Užduoties pateikimo (*) ir atsiskaitymo savaitė (o)															
				1	2	3	4	5	6 7	7 8	3 9	1() 11	. 12	13	14	15	16	17-20
Individualus darbas	1-16	40	35	*						()						0		
Egzaminas žodžiu	1-16	16	15	*					T		Т	Т							0
Laboratorinio darbo gynimas	1-16	40	50		*					() *	:					0		
Iš viso	-	96	100																

^{*}Tikėtina egzamino užduotis – sukurti ir pademonstruoti dėstytojo nurodytą specialųjį efektą.

Atsiskaitymai

- Turėti supratimą kas tie šeideriai / spec. Efektų skriptai ir kaip tai veikia, mokėti "gyvai" padaryti kažką gražaus ir ne copypaste'inti.
- Sukurti ir implementuoti 10 unikalių (5 paremtų skriptais + 5 šeideriais) specialiųjų efektų KURSINIO DARBO PROJEKTE;
- 2 laboratoriniai darbai (skriptai / šeideriai) atliekami KURSINIO DARBO PROJEKTE
- Naudoti kursinio darbo projektą iš T120B169 arba
 T120B166 (kas neturėjo modulio teks kurtis sceną);
- Galima tęsti kaip bakalauro darbą!

Vertinimas

- Kiekvienai lab. Užduočiai / kursinio darbo efektui:
- 33,3% UŽ PADARYMĄ;
- 33,3% UŽ MOKĖJIMĄ PAAIŠKINTI (kaip veikia) IR GYVAI PADARYTI DĖSTYTOJO PAPRAŠYTUS PAKEITIMUS;
- 33,3% UŽ UNIKALUMĄ (dėstytojas tokio dar nematė, neatgooglino).

.EGZAMINO METU REIKĖS PRISTATYTI LAIKMENĄ SU:

- 1. Dokumentacija [DOC ar PDF], kurioje yra
 - Turinys
 - Specialiųjų efektų aprašas su iliustracijomis;
 - Išeities tekstas su aprašytų funkcijų rinkiniu (komentaruose kode, išryškinta kita spalva, <u>funkcijos indeksuojamos turinyje</u>)
 - Viskas kas ne jūsų tikslios nuorodos literatūros šaltinių skyriuje.
- 2. Katalogas su pilnu projektu (*Išeities kodai su visomis bibliotekomis*)
- 3. Katalogas su sukompiliuotu projektu* ir papildomomis bibliotekomis instaliacijai (*jei reikia*)
- *veikimas turės būti parodytas GYVAI IR NE ANT SAVO KOMPIUTERIO
- 4. LABORATORINIŲ DARBŲ ATASKAITOS IR PILNI PROJEKTAI (sukompiliuotų nereikia)

LAB. / KURSINIO GYNIMO METU – prieš ginant BŪTINA PARODYTI "ATASKAITAS" (1,2,3 punktai)!!!

Įrankiai šeideriams


```
X
  *D:\source\notepad4ever.cpp - Notepad++
🔄 Notepad_plus.cpp 🖾 📙 notepad4ever.cpp 🖾
     #include <GPL.h>
     #include <free software.h>
     void notepad4ever()
 5
 6
         while (true)
             Notepad++;
10
11
```

NVIDIA Nsight Visual Studio Edition

OpenGL Shader Designer

Online – Kick.js (WebGL)

Unity standartiniai šeideriai

- Dauguma standartinių shader jau parašyti
- Jie pasirenkami pažymėjus "Materials"
- Galima shader parašyti:
 - Cg
 - ShaderLab
 - GLSL
 - HLSL
- Unity parašytus shader pati konvertuoja

Unity standartiniai šeideriai

Paviršių vaizdavimo tipai:

- Įprastinis (normal), naudojamas daugumai objektų
- Permatomas (transparent/cutout) objektams naudojantiems tekstūras su alpha kanalu
- Self-illuminated save apšviečiantiems objektams, pvz. sienoms prie šviestuvų

Unity3D strumpy

http://u3d.as/content/strumpy-games/strumpy-shader-editor/1C4

IR ?

Maya / Max / Blender

Vaizdo generavimo procesas KAIP TAI VEIKIA?

John Carmack paskaita (ND)

Vaizdo generavimo procesas

Sheideriai...

Istorija

- Iki 2001 (iki DX8) prasta grafika, fixed pipline, nėra manipuliacijų bei transformacijų su pikseliais ir vertexais;
- Nuo 2011 (nuo DX8) atsiranda vertex ir pixel šeideriai.
 Programuojama asembleriu... Fun...
- DX9 atsiranda HLSL.
- DX10 naujas modelis (4), naujas geometrijos šeideris ir Windows Višta ☺;
- DX11 teseliavimas ala realistiški paviršiai in hw...

NEW vs OLD

https://www.youtube.com/watch?v=ISfN7OTUOTA

Kas tas šeideris?

- Viso labo instrukcija
 GPU ką daryti [©]
- Mažomis
 programytėmis galima
 valdyti tris grafikos kelio
 stadijas: vertex,
 geometrinių, pikselių
 šeiderių stadijos.

Viršūnėlių šeideris

- Viršūnėlė (vertex) yra duomenų struktūra kuri nusako tašką 2D ar 3D erdvėje. Ekrano objektai sudaryti ir eilės plokščių figūrų (pvz., trikampių) masyvų, o tos viršūnėlės nurodo tų figūrų kampų vietą ir kažkokius požymius.
- Viršūnėlių šeideris turi būti įvykdomas kiekvienai iš viršūnėlių paduotų jūsų GPU. Esmė transformuoti kiekvienos viršūnėlės poziciją iš 3D virtualios erdvės į 2D ekrano koordinatę. Viršūnėlių šeideryje negalima pridėti naujų viršūnėlių.

HLSL Viršūnėlių šeideris

Objekto į poziciją ekrane transformacija

```
struct VertexShaderInput
    float4 Position : POSITIONO;
}:
struct VertexShaderOutput
    float4 Position : POSITIONO:
}:
VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
    VertexShaderOutput output;
    float4 worldPosition = mul(input.Position, World);
    float4 viewPosition = mul(worldPosition, View);
    output.Position = mul(viewPosition, Projection);
    return output;
}
```

HLSL Pikselių šeideris

Pikselių (fragmentinis) šeideris iš esmės skaičiuoja su spalva susijusią informaciją kiekvienam iš pikselių. Šiame šeideryje pavyzdžiui, galima koreguoti pikselio "gylį" (Z-buffering) ar apjungti keletą spalvų.

Manipuliacija per raudonos spalvos kanalą (RED):

```
float4 PixelShaderFunction(VertexShaderOutput input) : COLORO
{
    return float4(1,0,0,1);
}
```

Efektų failai (fx)

- Juose saugoma šeiderio funkcionalumas (įskaitant vertex, geometrijos ir pixelių šeiderius).
- Šeideryje gali būti naudojamos efektų apdorojimo instrukcijos (angl. techniques). Kiekviena jų turi unikalų vardą, o renderinant vaizdą galima pasirinkti kurią iš šeiderio instrukcijų naudoti.

Unity3D Spalvos pakeitimas


```
Shader "Example/Diffuse Simple" {
  SubShader {
    Tags { "RenderType" = "Opaque" }
    CCPROCRAM
    #pragma surface surf Lambert
    struct Input {
        float4 color : COLOR;
    void surf (Input IN, inout SurfaceOutput o) {
        o.Albedo = 1;
    ENDCG
  Fallback "Diffuse"
```

Unity3D Spalvos pakeitimas

PABAIGA

KLAUSIMAI? / PASIŪLYMAI?

KITĄ SAVAITĘ: KAIP VEIKIA APŠVIETIMAS?