

DATE: 07-12-2018

COURSE									
NUCLEUS									

JEE-MAIN MOCK TEST-8 XII

TEST CODE									
1	1	2	9	7					

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	4	2	2	4	4	2	1	2	3	1	1	2	2	2	4
Q.No.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans	2	1	1	2	4	1	3	1	4	1	4	3	2	2	1
	IOC	ОС	PC												
Q.No.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans	2	1	4	3	3	3	1	3	4	1	4	2	3	3	2
	IOC	ОС	PC												
Q.No.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	2	1	4	1	1	1	3	1	2	3	3	3	3	2	2
Q.No.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans	1	3	4	3	4	2	4	2	3	1	4	3	3	3	4
Q.No.	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Ans	3	2	4	4	2	1	3	3	2	2	3	2	3	2	1

HINTS & SOLUTIONS

PHYSICS

Q.3 As;
$$\frac{V}{2\ell} = \frac{330 \times 100}{2 \times 33}$$

= 500 Hz

$$\begin{split} Q.1 & P = \sigma A T^4 \\ & \Rightarrow \frac{P_A}{P_B} = \frac{A_A}{A_B} \bigg(\frac{T_A}{T_B}\bigg)^4 \Rightarrow T_B = T_A \, 2^{3/4} \end{split}$$

$$\Rightarrow \frac{P_A}{P_B} = \frac{A_A}{A_B} \left(\frac{T_A}{T_B} \right) \Rightarrow T_B = T_A 2^{3/4}$$

as
$$\lambda_m T = constant \Rightarrow \frac{\lambda_A}{\lambda_B} = \frac{T_B}{T_A}$$

$$\Rightarrow \lambda_B = 5000(2)^{-3/4} \text{ Å}.$$

$$\begin{array}{ll} Q.2 & \frac{1}{\lambda_{k\alpha}} = RZ^2 \, (\frac{1}{1^2} - \frac{1}{2^2}) \, \& \, \, \frac{1}{\lambda_{k_B}} = RZ^2 \bigg(\frac{1}{1^2} - \frac{1}{3^2} \bigg) \; \; ; \\ & \text{dividing we get,} \\ & \lambda_{k_B} = 0.27 \; \mathring{A} \end{array}$$

In second harmonic frequency =
$$\frac{V}{\ell}$$
 = 1000 Hz.

Q.4
$$\frac{1}{2}LI_0^2 = \frac{1}{2}(C_1 + C_2)V^2$$
,

$$V = \left[\frac{LI_0^2}{(C_1 + C_2)} \right]^{1/2},$$

$$Q_1 = C_1 V = C_1 I_0 \sqrt{\frac{L}{C_1 + C_2}}$$

Q.5
$$F + f = ma$$
 (1)

Also;
$$FR - fR = I \frac{a}{R}$$

 $F - f = ma$ (2)

$$[I = mR^2]$$

From (1) & (2)
 $f = 0$.

Q.6
$$\sin \theta = \frac{\frac{mv}{\sqrt{2} qB}}{\frac{mv}{qB}} = \frac{1}{\sqrt{2}}$$
$$\Rightarrow \theta = 45^{\circ}$$
$$t = \frac{T}{\sqrt{2}} = \frac{\pi m}{\sqrt{2}}$$

Q.7 Magnetic field at a distance r from the wire will

$$B = \frac{\mu_0}{2\pi} \frac{i_1}{r}$$

force on the small element of length dl on semicircular wire is

$$dF = i_2 d\vec{l} \times \vec{B} = i_2 (dl_\perp) B = i_2 B dr$$

$$(\because dl_\perp = dr)$$

$$F = \int_{R}^{3R} i_2 B dr = \frac{\mu_0}{2\pi} i_1 i_2 \ln 3$$

Q = quantity of energy required Q.8 $P_1t_1 = Q$, $P_2t_2 = Q$

$$P_{series} = \frac{P_1 P_2}{P_1 + P_2}$$

$$P_{\text{series}} t_0 = Q, \quad \left(\frac{P_1 P_2}{P_1 + P_2}\right) t_0 = Q$$

Solving $t_0 = t_1 + t_2$

Q.9 $P_{\text{consumed}} = \left(\frac{V_A}{V_B}\right)^2 \times P_R$ $=\left(\frac{110}{115}\right)^2 \times 500 = 457.46 \text{ W}$ So, percentage drop in power output $=\frac{(500-457.46)}{500}\times100=8.6\%$

$$\lambda \alpha \frac{1}{T} \qquad & & P \alpha T^4$$

$$\Rightarrow \qquad P \alpha \frac{1}{\lambda^4} \Rightarrow \qquad P' = 16 P.$$

$$\therefore \qquad P' T' = 32PT$$

$$Q.11 \qquad \frac{q^2}{4\pi\epsilon_0 a} = k$$

Q.12 Rearranging the circuit, we observed that C₁ is joined directly to the cell and acquires its full charge when S is closed. It plays no part in the charging of C₂ through R.

So,
$$q_2 = Q_0(1 - e^{-t/\tau})$$

Q.13
$$300 = e\sigma A (900^4 - 300^4)$$
 ...(i)
$$600 = \frac{\sigma A}{2} (900^4 - 300^4) + \frac{e\sigma A}{2} (900^4 - 300^4)$$
 ...(ii)
$$e = \frac{1}{2}$$

Q.14
$$f \propto \sqrt{g}$$

In water $f_w = 0.8 f_{air}$

$$\therefore \frac{g'}{g} = (0.8)^2 = 0.64$$

or
$$\frac{\rho_{\rm w}}{\rho_{\rm m}} = 0.36$$
 ...(i)

In liquid,
$$\frac{g'}{g} = (0.6)^2 = 0.36$$

or
$$\frac{\rho_L}{\rho_m} = 0.64$$

From equations (i) and (ii)
$$\frac{\rho_L}{\rho_w} = \frac{0.64}{0.36}$$

 $S_L = \rho_L/\rho_w = 1.77$

Q.15 Doppler's effect depends upon velocity of approach and separation of source and observer. hence no change in frequency received by the observer.

: no beat is heard.

Q.16
$$f = \frac{(2n+1)v}{4(l+e)}$$
; $(l_1+e) = \frac{v}{4f}$; $(l_2+e) = \frac{3v}{4f}$
 $\Rightarrow \frac{l_2+e}{l_1+e} = 3$
 $l_2 = (3.6-2.34) \text{ m and } l_1 = (3.6-3.22)$
 $\Rightarrow e = 0.06 \text{ m} = 0.6 \text{ r} \Rightarrow r = 0.1 \text{ m}$
 $A = 100 \pi \text{ cm}^2$

Q.17 $\Delta Pm = 2 P_0 \cos kx$ (assuming closed end as origin)

At point Q,
$$x = L - \frac{7L}{9} = \frac{2L}{9}$$

$$\Delta Pm = 2\Delta P_0 \cos\left(\frac{2\pi}{\lambda} \times \frac{2L}{9}\right) = \Delta P_0$$

 \therefore Required ratio = 1:2

Q.18
$$T = 2\pi \sqrt{\frac{1}{g-a}}$$
, a is the downward

acceleration of box

$$T_0 = 2\pi \sqrt{\frac{1}{g}} \Rightarrow a = \frac{3g}{4}$$

$$Mg - R = Ma \Rightarrow R = \frac{Mg}{4}$$
, $v = \frac{Mg}{4k}$

Q.19 Let elongation of spring be x_0 in equilibrium. Then,

$$2T + mg \sin \theta = 2kx_0 \qquad(i)$$

and
$$T = mg$$
(ii

Let Block B is displaced by x down the inclination

F.B.D. of B

 $- \text{ma}_{\text{B}} = 2k(x_0 + 2x) - 2T' - \text{mg} \sin \theta ...(iii)$ F.B.D. of A

$$mg - T = ma_A$$

Also,
$$a_A = 2a_B$$

$$T' = mg - 2ma_B$$

$$-ma_{B} = 2kx_{0} + 4kx - 2mg + 4ma_{B} - mg\sin\theta$$

$$- ma_{B} = 4kx + 4ma_{B}$$

$$a_B = -\frac{4k}{5m}x$$

$$T = 2\pi \sqrt{\frac{5m}{4k}}$$

$$T = 6.28 \text{ s}$$

Q.20 Current in the circuit is given by

$$i = \frac{\varepsilon}{3 + x}$$

Power generated in 1Ω

$$= \left(\frac{\epsilon}{3+x}\right)^2 \times 1 = \frac{\epsilon^2}{3+x}$$

Power will be max when 3 + x is minimum i.e., for x = 0

Q.21 As the block moves out of the liquid, tension increases.

Q.22
$$T = \frac{2\pi R}{\sqrt{\frac{GM}{R}}}$$
, $T \propto R^{3/2}$

 $Radius\, of\, 2^{nd}\, satellite\, is\, 1\%\, greater$

Hence time period is $1 \times \frac{3}{2} = 1.5 \%$ larger

- Q.23 From perpendicular axis theorem $I_z = I_x + I_y = 2I$
- Q.24 $(A_{CM})_x = \frac{mA + MA}{m + M} = A$

$$(A_{CM})_y = \frac{M \times 0 + mR\alpha}{m + M} = \frac{mR\alpha}{m + M}$$

$$(M+m)g - N = (M+m)(A_{CM})_v$$
 ...(ii)

$$mgR = I_A \alpha$$
 ...(iii)

$$A = R\alpha$$
 ...(iv)
 $\therefore N = 70 N$

Q.25 In steady state no current flows through capacitor. The potential difference across capacitor and resistor of resistance R₂ is same.
∴ charge on capacitor

=
$$CV = C \times \frac{R_2}{r + R_2} \times 3 = 1 \mu F \times \frac{1}{5 + 1} \times 3$$

= $2 \mu C$.

Q.26 [
$$\beta$$
] = L

$$ML^{2}T^{-2} = \frac{\alpha[L]^{1/2}}{[L]}$$

$$\alpha = [M][L^{5/2}][T^{-2}]$$

Q.27 For safe crossing, the condition is that the man must cross the road by the time the truck covers the distance 4 + AC or 4 + 2cot

$$\therefore \frac{4+2\cot\theta}{8} = \frac{2/\sin\theta}{v}$$

or
$$v = \frac{8}{2\sin\theta + \cos\theta}$$
 ...(i)

- For minimum v, $\frac{dv}{d\theta} = 0 \implies \tan \theta = 2$
- From equation (i), $v_{min} = \frac{8}{\sqrt{5}} = 3.57 \text{ m/s}$
- Q.28 Acceleration of block m with respect to inclined plane = 6

Acceleration of inclined plane = $\frac{2}{\sqrt{3}}$

Q.29 Work done by friction = $-\mu \text{ mg}l$ Work done by gravity = - mghSo work done by force = $\text{mgh} + \mu \text{ mg}l$

Q.30
$$\vec{r} = (t^2 - 4t + 6)\hat{i} + t^2\hat{j}$$
; $\vec{v} = \frac{d\vec{r}}{dt} = (2t - 4)\hat{i}$

$$+2t \hat{j}, \vec{a} = \frac{d\vec{v}}{dt} = 2\hat{i} + 2\hat{j}$$

if \vec{a} and \vec{v} are perpendicular

$$\vec{a} \cdot \vec{v} = 0$$

 $(2\hat{i} + 2\hat{j}) \cdot ((2t - 4)\hat{i} + 2t\hat{j}) = 0$
 $8t - 8 = 0$
 $t = 1 \text{ sec.}$

Ans. t = 1 sec.

CHEMISTRY

- Q.31 $IE_1 \longrightarrow 24.6 \text{ eV}$ $IE_2 \longrightarrow 54.4 \text{ eV}$ $He \xrightarrow{(IE_1 + IE_2)} He^{2+}$ = 24.6 + 54.4 eV = 79.0 eV $In \text{ kJ} \rightarrow 79.0 \times 1.6 \times 10^{-22} \times 6 \times 10^{23}$ = 7584 kJ
- Q.33 Reaction is endothermic $\Rightarrow \Delta H = positive$ So on increasing temperature reaction will shift forward. On decreasing volume concentration of every species will increases.

Q.34 H 98.8 pm 90.2° H

Q.35 due to H-bonding butan-1-ol has highest boiling point out of the three compounds. Butanal has higher boiling point than butane due to its higher polarity.

Q.36
$$CN^- + H_2O \rightleftharpoons HCN + OH^-$$

0.1-0.1 h 0.1 h
 $[OH^-] = 0.1 \times 0.04 = 4 \times 10^{-3} \text{ M}$
 $K_{sp} = [Al^{3+}] [OH^-]^3$
6.4 × 10⁻²⁰ = S × [4 × 10⁻³]³
S = 10⁻¹² mol L⁻¹

Q.37
$$2MH + B_2H_6 \longrightarrow 2M^+$$

 $[BH_4]^- \{M = \text{Li or Na}\}$

Q.38 (1) $PhNH_2 + CHCl_3 + KOH \rightarrow PhNC + 3KCl + 3H_2O$ unpleasant smell (isocyanide test) $PhNHMe + CHCl_3 + KOH - ve \text{ isocyanide test as it not } 1^\circ \text{ amine.}$ (2) $PhNH_2 + NaNO_2 + HCl \rightarrow PhN_2^+ Cl^-$ (Diazonium reaction) $PhNHMe + NaNO_2 + HCl \rightarrow NO$

Q.39 The formation of micelle only above certain temperature called Kraft temperature suggests positive ΔS of micelle formation which even overcome effect of positive ΔH of micelle

formation. Besides kinetic effect also become important at high temperature.

Q.40 Ma₄bc

G.I. = 2, O.I. =0, S.I. = 2 All S.I. are optically inactive

Q.41 Teflon is a addition polymer

net
$$2H^{+} + H_{2}(P_{1}) \longrightarrow 2H^{+} + H_{2}(P_{2})$$

cell (M_{2}) (M_{1}) reaction
$$E_{Cell} = E_{Cell}^{\circ} - \frac{0.06}{2} \log \frac{[H^{+}]^{2}(P_{2})}{(H^{+})^{2}(P_{1})}$$

$$\therefore P_{1} = P_{2}$$

$$E_{Cell}^{\circ} = 0$$

$$E_{\text{Cell}} = -\frac{0.06}{2} \log \frac{[\text{H}^+]_{\text{M}_1}^2}{[\text{H}^+]_{\text{M}_2}^2}$$
$$= -\frac{0.06}{2} \log (1.5)^2$$
$$= -0.0108 \text{ V} \qquad \text{Ans.}$$

Q.43 Ni (s) + 4CO (g) \longrightarrow Ni(CO)₄(g) d¹⁰, sp³, tetrahedral complex

Q.46 Carbonates of alkali metals

(a) Covalent character
$$\rightarrow$$
 Li₂CO₃ > Na₂CO₃
> K₂CO₃ > Rb₂CO₃ > Cs₂CO₃

(b) Solubility
$$\rightarrow$$
 Li₂CO₃ $<$ Na₂CO₃ $<$ K₂CO₃ $<$ Rb₂CO₃ $<$ Cs₂CO₃

(c) Thermal stability
$$\rightarrow$$
 Li₂CO₃ < Na₂CO₃ < K₂CO₃ < Rb₂CO₃ < Cs₂CO₃

$$v = \frac{e}{\sqrt{4\pi\epsilon_0 rm}}$$

Q.53

Q.52
$$(\text{Yellow})^{2-}$$
 $\stackrel{\text{H}^+}{\underbrace{\text{OH}^-}}$ $Cr_2O_7^{2-} + H_2O_7^{2-}$ $(d^3s, \text{tetrahedral})$

is most stable conjugate base.

Q.48
$$A(g) \rightleftharpoons B(g) + C(g) + D(g)$$

$$\alpha = 0.2 \quad VD = 60$$

$$\Rightarrow M_{obs} = 120 \qquad n = 3 - 1 = 2$$

$$\alpha = \frac{M_{Th} - M_{Obs}}{M_{Obs}(n - 1)}$$

$$0.2 = \frac{M_{Th} - 120}{120(3 - 1)}$$

$$M_{Th} = (0.2 \times 240) + 120$$

$$= 48 + 120$$

$$= 168 \text{ Ans.}$$

Q.49
$$d^5 \rightarrow WFL (\Delta_0 < PE)$$

eg
$$\begin{bmatrix} 1 & 1 \end{bmatrix}$$
 Symmetrical distribution in both eg and t_2g orbitals

Q.51
$$\frac{mv^2}{r} = \frac{KZe^2}{r^2}$$
For H: Z = 1
$$\frac{mv^2}{r} = \frac{Ke^2}{r^2} \left(K = \frac{1}{4\pi\epsilon_0} \right)$$

$$\frac{mv^2}{r} = \frac{1}{4\pi\epsilon_0} \frac{e^2}{r^2}$$

$$v^2 = \frac{e^2}{4\pi\epsilon_0 rm}$$

$$\begin{array}{c} H_{3}C \\ \\ H_{3}C \\ \\ CH_{3} \\ \end{array} \xrightarrow{CH_{3}} \begin{array}{c} CH_{3} \\ CH_{3}-C-Br \\ CH_{3}-C-Br \\ CH_{3} \\ \end{array}$$

$$\begin{array}{c} H_{3}C \\ H_{3}C \\ \end{array} \xrightarrow{Br_{2}} \begin{array}{c} CH_{3} \\ Br-C-CH_{3} \\ CH_{2} \\ CH_{3} \\ \end{array}$$

$$Chiral center present$$

Q.54
$$\frac{d_{bcc}}{d_{fcc}} = \frac{(2M \times 3\sqrt{3}/(N_A \times 64r^3))}{(4M \times 2\sqrt{2}/(N_A \times 64r^3))} = 0.918$$

- Q.55 Stability of halogen oxide : $I_2O > Cl_2O > Br_2O$
- Q.57 Theory based
- Q.58 (1) $Pb(NO_3)_2$ (White) $\xrightarrow{Excess} Pb(OH)_2 \downarrow$ (White)
 - (2) $\operatorname{Fe(NO_3)_2}(\operatorname{White}) \xrightarrow{\operatorname{Excess}} \operatorname{Fe(OH)_2} \downarrow$ (Green)

(3) AgNO₃ (White)
$$\xrightarrow{\text{Excess}}$$
 [Ag(NH₃)₂]⁺

(soluble complex)

(4)
$$Hg(NO_3)_2$$
 (White)
$$\xrightarrow{\text{Excess}} HgO.HgNH_2NO_3 \downarrow$$

Q.59 OH OH SOCI₂

$$CI \longrightarrow CH_{3}ONa$$

$$CI \longrightarrow CH_{3}ONa$$

$$OCH_{3}$$

Q.60 Reaction is exothermic
$$\therefore \Delta H = -ve$$

 $\Delta G = \Delta H - T\Delta S$
Since process is spontaneous
 $\Delta G = -ve$
This is possible only if magnitude of
 $\Delta H > T\Delta S$

$$=e+\frac{1}{e}-2$$

ellipse is

Q.67

MATHEMATICS

Q.61
$$\therefore gof(x) = g(x^3 + 3) = 2x^3 + 7$$

 $gof(2) = 2 \cdot 8 + 7 = 23$
 $\therefore gof(2) = 23 \Rightarrow f^{-1}og^{-1}(23) = 2$

Required probability = 1 - all students are Q.62 evaluating their own answer sheet

$$=1-\frac{1}{120}=\frac{119}{120}$$

Q.63 number of elements in
$$A \times B = 6$$

 \therefore number of required subsets = ${}^{6}C_{2} + {}^{6}C_{3} + {}^{4}C_{4}$
= 15 + 20 + 15 = 50

: number of required subsets =
$${}^{6}C_{2} + {}^{6}C_{3} + {}^{4}C_{4}$$

= 15 +20 + 15 = 50

Q.64
$$\therefore$$
 ellipse is $\frac{x^2}{4} + \frac{y^2}{3} = 1$
Its eccentricity $e = \sqrt{1 - \frac{3}{4}} = \frac{1}{2} = 0.5$

- \therefore eccentricity of auxiliary circle = 0
- : ellipse will coincide with auxiliary circle in 5 seconds.

- $\frac{\left(\frac{3x+4y-1}{5}\right)^2}{5} + \frac{\left(\frac{4x-3y+2}{5}\right)^2}{5} = 1$
 - \therefore radius of auxiliary circle = $\sqrt{10}$
 - : radius of its director circle =

$$\sqrt{2} \cdot \sqrt{10} = \sqrt{20}$$

- The number will be divisible by 9 if sum of the Q.68 digits is divisible by 9.
 - \therefore digits should be 1, 2, 3, 5, 7 or 1, 2, 4, 5, 6

$$\therefore \text{ Probability} = \frac{2 \times 5!}{^{7}\text{C}_{5} \times 5!} = \frac{2}{21}$$

Q.69 ·· for non trivial solution

$$D = 0 \Rightarrow \begin{vmatrix} 2 & k & 0 \\ 0 & -2 & k \\ k & 0 & 2 \end{vmatrix} = 0$$
$$\Rightarrow 2(-4 - 0) - k(0 - k^2) = 0$$
$$\Rightarrow k^3 = 8 \Rightarrow k = 2$$

Q.70 z-axis is
$$\vec{r} = \vec{0} + \lambda(\hat{k})$$

line is
$$\vec{r} = (2\hat{i} + 5\hat{j} - \hat{k}) + \mu (3\hat{i} + 2\hat{j} - 5\hat{k})$$

: shortest distance

$$= \left| \frac{(2\hat{i} + 5\hat{j} - \hat{k}) \cdot ((3\hat{i} + 2\hat{j} - 5\hat{k}) \times \hat{k})}{|(3\hat{i} + 2\hat{j} - 5\hat{k}) \times \hat{k}|} \right| = \frac{11}{\sqrt{13}}$$

$$\therefore \sim p \land q = \sim (q \rightarrow p)$$

Q.72 Given limit=

$$\lim_{x \to \infty} \frac{(x+1)^{2010} + (x+2)^{2010} + \dots + (x+10)^{2010}}{(x^{1006} + 1)(2x^{1004} + 1)} = \frac{10}{2} = 5$$

Q.73
$$y'(x) = f'(e^x) e^{f(x)} + f(e^x) \cdot e^{f(x)} \cdot f'(x)$$

 $y'(0) = f'(1) e^{f(0)} + f(1) \cdot e^{f(0)} \cdot f'(0)$
 $y'(0) = 2 \cdot 1 + 0 = 2$

Q.74 Clearly $x^2 - 7x + a$ should have x - 4 as a factor

 $\therefore 16 - 28 + a = 0 \Rightarrow a = 12 \text{ and } x^2 + 5x + b$ should have x + 1 as a factor

$$\therefore +1-5+b=0 \Rightarrow b=4$$

Q.75
$$\therefore \text{ C-V} \cdot = \frac{\sigma}{\overline{x}} \times 100 \Rightarrow \sigma = \frac{\text{C-V} \cdot \times \overline{x}}{100}$$

$$\therefore \sigma_1 = \frac{50 \times 30}{100} = 15$$
and $\sigma_2 = \frac{60 \times 25}{100} = 15$

Q.76
given sum =
$$i + i + i^2 + i^6 + i^{4!} + \dots + i^{100!}$$

 $i + i - 1 - 1 + 1 + 1 + \dots = 95 + 2i$
97 times

Q.77
$$|A|^{2^4} = (2.5)^{16} \Rightarrow |A| = \pm 10$$

 \therefore | A | = x + y + z, where x, y, z \in N

 $\therefore x + y + z = 10$

 \therefore number of solutions = ${}^{10-1}C_{3-1}$

$$= {}^{9}C_{2} = \frac{9 \times 8}{2} = 36$$

Q.78
$$\therefore |\vec{c} - \vec{a}| = 2\sqrt{2} \Rightarrow |\vec{c} - \vec{a}|^2 = 8$$

$$\Rightarrow |\vec{c}|^2 + 9 - 2 \vec{c} \cdot \vec{a} = 8 \Rightarrow |\vec{c}|^2 - 2|\vec{c}| + 1$$

$$= 0 \Rightarrow |\vec{c}| = 1$$

$$\Rightarrow \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & -2 \\ 1 & 1 & 0 \end{vmatrix} = 2\hat{i} - 2\hat{j} + \hat{k}$$

$$\therefore 10 \left| (\vec{a} \times \vec{b}) \times \vec{c} \right| = 10 \left| \vec{a} \times \vec{b} \right| \left| \vec{c} \right| \sin 30^{\circ}$$
$$= 10 \times 3 \times 1 \times \frac{1}{2} = 15$$

Q.79 Differentiating,
$$f'(x) = \frac{1}{(f(x))^2}$$

$$\Rightarrow \int (f(x))^2 f'(x) dx = \int 1 dx$$

$$\Rightarrow \frac{(f(x))^3}{3} = x + C$$
putting $x = 2$,

$$\frac{6}{3} = 2 + C \Rightarrow C = 0$$

$$f(x) = (3x)^{\frac{1}{3}}$$

$$f(9) = 3$$

Q.80 : Using LMVT for
$$f(x)$$
 in [1, 6]

$$f'(c) = \frac{f(6) - f(1)}{6 - 1} \ge 2$$

$$\Rightarrow f(6) + 2 \ge 10 \Rightarrow f(6) \ge 8$$

Q.81 number of ways =

Total selections – (number of ways when exactly two consecutive) – (number of ways when all three consecutive $= {}^{10}C_3 - 10 \cdot {}^{6}C_1 - 10$ = 120 - 60 - 10 = 50

- Q.82 Let equation of line be $\frac{x}{a} + \frac{y}{b} = 1$
 - \therefore Perpendicular distance from (0,0)=4

$$\Rightarrow \frac{1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} = 4 \Rightarrow \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{16}$$

$$\therefore AM \ge HM \Rightarrow \frac{a^2 + b^2}{2} \ge \frac{2}{\frac{1}{a^2} + \frac{1}{b^2}}$$

$$\Rightarrow$$
 a² + b² \geq 64

 \therefore minimum value of $OA^2 + OB^2$ is equal to 64.

Q.83
$$\int_{0}^{2a} f(x) dx = \int_{0}^{a} f(x) dx + \int_{\underbrace{a}}^{2a} \underbrace{f(x) dx}_{\underbrace{bet \ x = 2a - t}_{dx = -dt}}$$

$$= \int_{0}^{a} f(x)dx - \int_{a}^{0} f(2a - t)dt$$
$$= \int_{0}^{a} f(x)dx + \int_{0}^{a} f(2a - x)dx = 2 + 4 = 6$$

Q.84 Clearly, AD = CD = hcot 30° = h $\sqrt{3}$ $\therefore BD = AD\sqrt{2} = h\sqrt{6}$

$$\therefore \tan \theta = \frac{1}{\sqrt{6}}$$
(5) XII MT-8 [JEE Main]

Q.85 Clearly, x = 0 is point of local max.

Q.86 equation of line parallel to given line through P is

$$\frac{x-1}{1} = \frac{y+5}{1} = \frac{z-9}{1} = \lambda$$

Its point of intersection with plane is

Q
$$(\lambda + 1, \lambda - 5, \lambda + 9)$$

$$\therefore (\lambda + 1) - (\lambda - 5) + (\lambda + 9) = 5$$

$$\Rightarrow \lambda = -10$$

$$\therefore Q = (-9, -15, -1)$$

$$\therefore PQ = 10\sqrt{3}$$

Q.87
$$\therefore x^2 + 4y^2 = 4 \Rightarrow \frac{x^2}{4} + \frac{y^2}{1} = 1$$

$$\therefore x = 2 \cos \theta$$
 and $y = \sin \theta$

$$\therefore x^2 - xy = 4\cos^2\theta - 2\cos\theta \cdot \sin\theta$$

$$= 2(1 + \cos 2\theta) - \sin 2\theta$$

$$=2+2\cos 2\theta -\sin 2\theta$$

$$\therefore$$
 maximum value = $2 + \sqrt{5}$

Q.88
$$\therefore \frac{2b^2}{a} = a \Rightarrow 2a^2(e^2 - 1) = a^2$$

 $\Rightarrow 2e^2 = 3 \Rightarrow e = \sqrt{\frac{3}{2}}$

- Q.89 Let w = 5(z-i)-6 $\Rightarrow w+1=5(z-i-1)$ $\Rightarrow |w+1|=5|z-i-1|=5$ $\therefore \text{ locus of } w \text{ is a circle with centre } (-1,0) \text{ of radius } 5.$
- Q.90 After reflection both passes through locus \therefore AB is a focal chord Let A be $(t^2, 2t)$ \therefore 2t = 4 \Rightarrow t = 2

$$\therefore \mathbf{B} = \left(\frac{1}{t^2}, \frac{-2}{t}\right)$$

 \therefore Distance of QB from axis = $\left| \frac{-2}{t} \right| = 1$