B. Electron Deficient (less than an octet)

Be does not need an octet Total of 4 valence electrons

Not the same as unsaturated systems that achieve the 8e⁻ (octet) through the formation of multiple bonds.

C. Electron Rich (greater than an octet)
Valence shell expansion occurs with elements beyond the 2nd row

e.g., transition metals have expanded electron counts, typically 18e⁻

referred to as valence shell expansion

PCl₅ P 5e⁻ 5e⁻
$$Cl 7e^{-} x 5 = \frac{35e^{-}}{40e^{-}}$$

- Q. What about transition metals?
- A. They tend to exhibit 18e⁻ valence shells (full s, p, d levels). They form bonds to lone pairs of molecules (called ligands) until they reach the 18e⁻ configuration.

Ex. Ni²⁺ compounds
Ni has 10 valence electrons - it needs 4 bonds to reach 18 valence electrons.

- Ni(CO)₄ is a compound that illustrates this point.

CO valence electrons $4+6 = 10e^{-1}$

 $:C \equiv O:$ Lewis structure is this one (unsaturated) to allow for an octet

CO can then act as a ligand with the lone pair of C bonding to the Ni atom.*

* :C ≡ O:

The C lone pair is more basic (donating) than the O lone pair

The ligand, $:C \equiv O:$, is considered to be a Lewis base (electron –pair donor) and the metal, Ni, is the Lewis acid (electron – pair acceptor).

The bonds formed in this way are coordinate covalent bonds.

→ The ligand supplies both electrons of the metal – ligand bond.

 $\left[Co(NH_3)_6\right]^{3+}$

6 valence electrona 6e-6 x 2e - per NH3 ligard 12t the real structure is a resonance

- Q. How did we justify the concept of resonance?
- A. Experimental evidence says that all the bonds are the same length in these molecules.
 - \rightarrow more of a delocalization model.

Summary of Resonance Hybrids

- (a.) None of these "canonical forms" is an actual representation of the real structure. These structures don't really exist, but their average corresponds to the real structure.
- (b.) Experiment shows that all bonds A-B are equal in length so theory and experiment correlate.
- (c.) The average "hybrid" structure has a lower energy than any of the contributing structures.

A special case of resonance is covalent ↔ ionic resonance

$$A-B \leftrightarrow A: B^+$$
Covalent ionic

- A is more electronegative than B
- A-B bond enthalpy is a combination of the two contributing structures.

Consequently

<u>A-B</u> ΔH_{A-B} (bond energy) is greater than the average of ΔH_{A-A} & ΔH_{B-B} due to the ionic contribution.

In the end, however, Lewis structures are not enough to describe localized bonding in molecules.

- Q. Besides Lewis structures, what other localized bond theories do we need?
- A. VSEPR and Hybridization

- Q. Why do we need to go further than the concept of Lewis?
- A. Because there are numerous issues that <u>Lewis</u> structures do not address such as:
 - (a). How is the electron pair bond shared?
 - (b). Which orbitals are involved in the bonding?
 - (c). What geometry should one assign to the molecule? (bonds, angles?)
 - (d). Why does sharing electrons lead to stability for a molecule?

IN LOCALIZED BONDING THEORY, WE USE EITHER VSEPR OR HYBRIDIZATION TO ANSWER THESE QUESTIONS.

2. <u>Hybridzation Thoery or Model</u> For this, we need the concept of <u>valence state</u>

Ex: H-Be-H X - Be - X

X = halogen

How does one explain the linear shape?

- (a.) Be $1s^2 2s^2$
 - 2s² is the valence shell

 If we promote an e⁻ to the 2p level it is now possible to pair the two unpaired electrons with those of incoming group H or X (halide)
 - 2s¹2p¹ valence state requires 323 kJ/mol (this doesn't explain the shape, only how it happens)
- (b.) Hybridization occurs between the s and p orbitals

 $2s+2p_z$ $2s-2p_z$

OVELAP OF HYBRIDS WITH H atoms

So, the linear shape of the H-Be-H molecule is due to best overlap with H 15 orbitals and sp hybride

Be Cla molecule

Main Point about Hybrid Orbitals

- They have a huge lobe pointed in a particular direction that can overlap strongly with an atom along that direction.
- Calculations show that the extent of overlap obtained with the hybrid orbitals of H-Be-H (sp) is much greater than it would be with pure s and p orbitals on Be

sp² Hybridization

B 1s²2s²2p¹ is the starting, standard electron config. B tends to form BX₃ if the bonding configuration is 1s²2s¹2p², this allows for three decoupled spins, 2s¹2p², to form three bonds with H·, X·

Sigma bond frame work in benzene based on Sp2 hybrids

C 1s²2s²2p²
For hybridization:
1s₂2s¹2p³
4 uncoupled spins
now we can hybridize these orbitals

sp³ hybridization

Summary s, p Hybridization

sp linear molecule sp² planar triangular molecule sp³ tetrahedral molecule

The geometries arise from maximum overlap along these directions (sp, sp²) and from the algebra of the hybridization for sp³ (it also happens to be the maximum distance from each other in each case)

familia Sp3 hybrida

Hybridization

Hybridization with s,p,d orbitals: d orbitals become available after the second row

Five Main Types

Geometries are:

Six coordinate (octahedron)

<u>Five</u> coordinate (trigonal bipyramidal tbp and square pyramid)

Four coordinate (tetrahedral, square planar)

(Note that the dx^2-y^2 and dz^2 are chosen in particular cases because of standard coordinate labels – we assign the x and y axis to coincide with the ligands)

1.
$$d^2sp^3$$
 octahedral hybridization dx^2-y^2 , dz^2 , p_x , p_y , p_z

2.
$$dsp^2$$
 square planar hybridization dx^2-y^2 , s, p_x , p_y

4.
$$dsp^3$$
 trigonal bipyramidal hybridization dz^2 , s, p_x , p_y , p_z

5.
$$dsp^3$$
 square pyramidal hybridization dx^2-y^2 , s, p_x , p_y , p_z

These hybridization schemes help to explain bonding and to correlate structures, albeit in a qualitative sense. (molecular orbital theory is used more commonly now, as it is possible to be quantitative)