Dwuwymiarowe słowo

VIII OIG — Zawody drużynowe, II trening. Dostępna pamięć: 64 MB.

28 X 2013

Dane jest dwuwymiarowe słowo S, czyli dwuwymiarowa tablica małych liter alfabetu angielskiego. Dla każdego pola P oznaczmy jego współrzędne w tablicy przez X_P i Y_P . Dwuwymiarowym podciągiem tego słowa nazwiemy taki ciąg różnych pól P, że $X_{P_i} \leq X_{P_{i+1}}$ i $Y_{P_i} \leq Y_{P_{i+1}}$. Mając dany wzorzec oblicz, ile jest dwuwymiarowych podciągów słowa S identycznych z tym wzorcem.

Wejście

W pierwszym wierszu zapisano liczby n, m, k ($1 \le k, n, m \le 100$), gdzie n, m to wymiary tablicy znaków, zaś k to długość wzorca. W drugim wierszu znajduje się ciąg małych liter alfabetu angielskiego o długości k, czyli dany wzorzec. W następnych n wierszach zapisano po m małych liter alfabetu angielskiego. Możesz założyć, że w testach wartych łącznie 30% punktów zachodzi $n, m, k \le 10$.

Wyjście

Twój program powinien wypisać na standardowe wyjście jedną liczbę oznaczającą ilość dwuwymiarowych podciągów S identycznych z danym wzorcem. Ponieważ może być ich bardzo dużo, wynik podaj modulo $10^9 + 33$.

Przykłady

Wejście:	Wejście:	Wejście:
4 4 4	2 2 2	6 10 5
tort	as	kajak
torp	as	abcdekujhm
edap	as	dbkajbcdef
reda		afhbcducjm
tort		abcdeakakk
Wyjście:	Wyjście:	Wyjście:
4	3	5

Dwuwymiarowe słowo

Człowiek - najlepsza inwestycja

