Nonlinear Least Squares

Mei-Chen Yeh

Announcements

• Final exam 2022 is available on moodle.

Announcements

- We will have the final on Dec. 22, starting at 14:20.
 - Programming problems
 - Written problems
- A cheat sheet (A5 two sides or A4 one side) is allowed.

A3	A4	
AS	A5	A5

Nonlinear Least Squares

Least squares

- The least squares solution $\underline{\tilde{x}}$ of a linear system $A\underline{x} = \underline{b}$ minimizes the Euclidean norm of the residual $\|A\underline{\tilde{x}} \underline{b}\|_2$.
- Two methods for finding $\underline{\tilde{x}}$
 - Normal equations
 - QR factorization
- But, we have cases in which neither method can be applied...

If the equations are *nonlinear*

Example 1: exponential model

$$y = c_1 e^{c_2 x}$$

$$y = 54.03e^{0.06152x}$$

Example 2: power law model

$$y = c_1 x^{c_2}$$

$$y = 16.3x^{2.42}$$

Example

$$2x + y = 1$$
$$x^2 + y^2 = 1$$

Example

• Given three circles (centers x_i , y_i , and radii R_i), find the point for which the sum of the squared distances to the three circles is minimized.

Global Positioning System (GPS) 全球定位系統

Example

• Given three circles (centers x_i , y_i , and radii R_i), find the point for which the sum of the squared distances to the three circles is

Today

Gauss-Newton method for solving nonlinear least squares problems

Multivariate Newton's method + Normal equations HW#7 HW#10

Recall the method for solving nonlinear systems

- Multivariate Newton's method (HW#7)
 - An iterative method

$$\underline{x}_0$$
 = initial vector
$$\underline{x}_{k+1} = \underline{x}_k - \left(D_F(\underline{x}_k)\right)^{-1} F(\underline{x}_k) \text{ for } k = 0,1,2,...$$

$$F(\underline{x}_k) = ?$$

$$D_F(\underline{x}_k) = ?$$

Review: $F(\underline{x})$ and $D_F(\underline{x})$

 Suppose we have 3 unknowns, 3 nonlinear equations (m = n):

$$f_1 = (u, v, w) = 0$$

 $f_2 = (u, v, w) = 0$
 $f_3 = (u, v, w) = 0$

Define the vector-valued function:

$$F(\underline{x}) = F(u, v, w) = (f_1, f_2, f_3)$$

where

$$\underline{x} = (u, v, w).$$

Review:
$$F(\underline{x})$$
 and $D_F(\underline{x})$

- 3 variables: u, v, w
- 3 equations: f_1, f_2, f_3

$$D_{F}(\underline{x}) = \begin{bmatrix} \frac{\partial f_{1}}{\partial u} & \frac{\partial f_{1}}{\partial v} & \frac{\partial f_{1}}{\partial w} \\ \frac{\partial f_{2}}{\partial u} & \frac{\partial f_{2}}{\partial v} & \frac{\partial f_{2}}{\partial w} \\ \frac{\partial f_{3}}{\partial u} & \frac{\partial f_{3}}{\partial v} & \frac{\partial f_{3}}{\partial w} \end{bmatrix}$$

Jacobian matrix

Review: Multivariate Newton's method

Review: Multivariate Newton's method

$$\underline{x}_0$$
 = initial vector

$$\underline{x}_0$$
 = initial vector $\underline{x}_{k+1} = \underline{x}_k - \left(D_F(\underline{x}_k)\right)^{-1} F(\underline{x}_k)$ for $k = 0,1,2,...$

$$\underline{x}_0$$
 = initial vector
solve $D_F(\underline{x}_k)\underline{s} = -F(\underline{x}_k)$
 $\underline{x}_{k+1} = \underline{x}_k + \underline{s}$ for $k = 0,1,2,...$

Solving nonlinear least squares

Consider the system of m (nonlinear)
 equations in n unknowns: (m > n)

$$r_1(x_1, \dots, x_n) = 0$$

$$\vdots$$

$$r_m(x_1, \dots, x_n) = 0$$

Sum of the squares of the errors

$$r_1(\underline{x})^2 + r_2(\underline{x})^2 + \dots + r_m(\underline{x})^2$$

Find a solution x that minimizes the sum!

Solving nonlinear least squares

• Consider the system of m (nonlinear) equations in n unknowns: (m > n)

$$r_1(x_1, \dots, x_n) = 0$$

$$\vdots$$

$$r_m(x_1, \dots, x_n) = 0$$

• D_r

$$\begin{bmatrix} \frac{\partial r_1}{\partial x_1} & \dots & \frac{\partial r_1}{\partial x_n} \\ \vdots & \dots & \vdots \\ \frac{\partial r_m}{\partial x_1} & \dots & \frac{\partial r_m}{\partial x_n} \end{bmatrix} m \times n$$

Analogy

•
$$F(\underline{x})$$
 $n \times 1$ • $r(\underline{x})$ $m \times 1$ • $D_r(\underline{x})$ $m \times n$

Example: the exponential model

•
$$y = c_1 e^{c_2 t}$$

– Unknowns?
$$\underline{x} = [c_1, c_2]$$

– Equations? 7

$$r_1$$
: $c_1 e^{1950c_2} - 53.05 \times 10^6 = 0$
 r_2 : $c_1 e^{1955c_2} - 73.04 \times 10^6 = 0$
:
:
:
:
:
:

year	cars (×10 ⁶)	
1950	53.05	
1955	73.04	
1960	98.31	
1965	139.78	
1970	193.48	
1975	260.20	
1980	320.39	
t	<i>y</i>	

Find c_1 and c_2 that minimizes $r_1^2 + \cdots + r_m^2$

$$y = c_1 e^{c_2 t}$$

•
$$\underline{r}(\underline{x}_k)$$
 $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$

```
r_1: c_1 e^{1950c_2} - 53.05 \times 10^6
r_2: c_1 e^{1955c_2} - 73.04 \times 10^6
r_m: c_1 e^{1980c_2} - 320.39 \times 10^6
```

$$\begin{bmatrix} c_1 e^{c_2 t} - y_1 \\ \vdots \\ c_1 e^{c_2 t} - y_m \end{bmatrix} \quad m \times 1$$

$$y = c_1 e^{c_2 t}$$

•
$$D_r(\underline{x}_k) \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

$$r_i = c_1 e^{c_2 t_i} - y_i$$
, $i = 1..m$

$$\frac{\partial r_i}{\partial c_1} \Rightarrow e^{c_2 t_i}$$

$$\frac{\partial r_i}{\partial c_2} \Rightarrow c_1 t_i e^{c_2 t_i}$$

$$\begin{bmatrix} e^{c_2t_1} & c_1t_1e^{c_2t_1} \\ \vdots & \vdots \\ e^{c_2t_m} & c_1t_me^{c_2t_m} \end{bmatrix} m$$

$$D_r = \begin{bmatrix} \frac{\partial r_1}{\partial c_1} & \dots & \frac{\partial r_1}{\partial c_n} \\ \vdots & \dots & \vdots \\ \frac{\partial r_m}{\partial c_1} & \dots & \frac{\partial r_m}{\partial c_n} \end{bmatrix}_{m \times n}$$

Multivariate Newton

$$\underline{x}_0 = \text{initial vector}$$
 $\underline{x}_{k+1} = \underline{x}_k - \left(D_F(\underline{x}_k)\right)^{\frac{1}{2}} F(\underline{x}_k) \text{ for } k = 0,1,2,...$

$$\begin{array}{l} F(\underline{x}_k) \to r(\underline{x}_k) \\ D_F(\underline{x}_k) \to D_r(\underline{x}_k) \end{array} \to normal\ equations$$
$$A^T A \underline{\tilde{x}} = A^T b$$

Gauss-Newton

$$\underline{x}_0 = \text{initial vector}$$

$$\underline{x}_{k+1} = \underline{x}_k - \left(D_r(\underline{x}_k)^T D_r(\underline{x}_k)\right)^T D_r(\underline{x}_k)^T r(\underline{x}_k) \text{ for } k = 0,1,2,...$$

$$\underline{v}_{k} = -\left(D_{r}(\underline{x}_{k})^{T} D_{r}(\underline{x}_{k})\right)^{-1} D_{r}(\underline{x}_{k})^{T} r(\underline{x}_{k})$$

$$\left(D_{r}(\underline{x}_{k})^{T} D_{r}(\underline{x}_{k})\right) \underline{v}_{k} = -D_{r}(\underline{x}_{k})^{T} r(\underline{x}_{k})$$

$$n \times m \quad m \times n \quad n \times 1 \quad n \times m \quad m \times 1$$

Gauss-Newton

$$\underline{x}_0 = \text{initial vector}$$

$$\underline{x}_{k+1} = \underline{x}_k \left[-\left(D_r(\underline{x}_k)^T D_r(\underline{x}_k) \right)^{-1} D_r(\underline{x}_k)^T r(\underline{x}_k) \right] \text{ for } k = 0,1,2,...$$

$$\underline{x}_{k+1} = \underline{x}_k + \underline{v}_k$$

Multivariate Newton

$$\underline{x}_0$$
 = initial vector
solve $D_F(\underline{x}_k)\underline{s} = -F(\underline{x}_k)$
 $\underline{x}_{k+1} = \underline{x}_k + \underline{s}$ for $k = 0,1,2,...$

Gauss-Newton

$$\underline{x}_0 = \text{initial vector}$$

$$\text{solve } \left(D_r (\underline{x}_k)^T D_r (\underline{x}_k) \right) \underline{v} = -D_r (\underline{x}_k)^T r (\underline{x}_k)$$

$$\underline{x}_{k+1} = \underline{x}_k + \underline{v} \text{ for } k = 0, 1, 2, \dots$$

Gauss-Newton method

To minimize

$$r_1(\underline{x})^2 + r_2(\underline{x})^2 + \dots + r_m(\underline{x})^2$$

Set \underline{x}^0 = initial vector,

for
$$k = 0, 1, 2, ...$$

$$A = D_r(\underline{x}^k)$$

$$A^T A \underline{v}^k = -A^T r(\underline{x}^k)$$

$$\underline{x}^{k+1} = \underline{x}^k + \underline{v}^k$$

end

Example

Given centers (-1,0), (1, 0.5), (1, -0.5) and radii 1, 0.5,
 0.5, find the point for which the sum of the squared distances to the three circles is minimized.

Unknowns? (x, y)
Equations? 3 distances between
the point to the circles

$$r_1(x, y) = \sqrt{(x - x_1)^2 + (y - y_1)^2} - R_1$$

$$r_2(x, y) = \sqrt{(x - x_2)^2 + (y - y_2)^2} - R_2$$

$$r_3(x, y) = \sqrt{(x - x_3)^2 + (y - y_3)^2} - R_3.$$

$$\underline{x}_0 = \text{initial vector } [x_0, y_0]^T \qquad \underline{x}_k = [x, y]^T$$

$$\text{solve } \left(D_r(\underline{x}_k)^T D_r(\underline{x}_k)\right) \underline{v} = -D_r(\underline{x}_k)^T r(\underline{x}_k)$$

$$\underline{x}_{k+1} = \underline{x}_k + \underline{v} \text{ for } k = 0, 1, 2, \dots$$

$$r_{1}(x,y) D_{r}(x,y) = \begin{bmatrix} \frac{\partial r_{1}}{\chi} & \frac{\partial r_{1}}{y} \\ \frac{\partial r_{2}}{\chi} & \frac{\partial r_{2}}{y} \end{bmatrix} = \begin{bmatrix} \frac{x - x_{1}}{S_{1}} & \frac{y - y_{1}}{S_{1}} \\ \frac{x - x_{2}}{S_{2}} & \frac{y - y_{2}}{S_{2}} \\ \frac{x - x_{3}}{S_{3}} & \frac{y - y_{3}}{S_{3}} \end{bmatrix}$$

$$r_1(x,y) = \sqrt{(x-x_1)^2 + (y-y_1)^2} - R_1$$

$$\frac{\partial r_1}{x} = \frac{1}{2} ((x-x_1)^2 + (y-y_1)^2)^{-\frac{1}{2}} (2x-2x_1)$$

$$= \frac{x-x_1}{S_1} \qquad S_1 = \sqrt{(x-x_1)^2 + (y-y_1)^2}$$

$$\underline{x}_0 = \text{initial vector}$$

$$\text{solve} \left(D_r (\underline{x}_k)^T D_r (\underline{x}_k) \right) \underline{v} = -D_r (\underline{x}_k)^T r (\underline{x}_k)$$

$$\underline{x}_{k+1} = \underline{x}_k + \underline{v} \text{ for } k = 0, 1, 2, \dots$$

• Using Gauss-Newton iteration with initial vector (0, 0), get (x, y) = (0.4129, 0).

程式練習

And, please upload your program on moodle.

- Find the point (x, y) for which the sum of the squared distances from the point to the three circles is minimized.
- Circle 1: (0, 1) R = 1
- Circle 2: (1, 1) R = 1
- Circle 3: (0, -1) R = 1