

Funções binárias

Sistemas Digitais 2020/2021

Pedro Salgueiro CLAV-256 pds@uevora.pt

Funções binárias

- Álgebra de Boole binária
 - Álgebra de Boole
 - Álgebra de Boole binária
 - Tabelas de verdade
 - Propriedades e Teoremas
- Representação de funções
 - Representação Algébrica
 - Logigrama
 - Tabela de verdade
- Formas canónicas
 - Soma de Mintermos
 - Produto de Maxtermos
- Conjunto Universal de funções
- Exercícios

Algebra de Boole

- Definida por George Boole em 1854
- Conceitos básicos
 - Variável com 2 valores possíveis
 - VERDADE (TRUE)
 - o FALSO (FALSE)
- 3 operadores
 - o E (AND)
 - OU (OR)
 - NÃO (NOT)

Variáveis e funções booleanas

- Variável booleana
 - Toma valores do conjunto { V, F }
 - o Exemplos: x, A, z5, w
- Função booleana de *n* variáveis
 - Aplicação do conjunto { V, F }ⁿ no conjunto { V, F }
 - \circ exemplo: $f(x_1, x_2, ..., x_n)$

- É a adaptação da álgebra de Boole aos circuitos digitais
 - Proposta por Claude Shannon em 1938
- Como um circuito digital tem dois estados possíveis
 - LOW: 0
 - HIGH: 1
- Foi proposto o seguinte mapeamento
 - \circ FALSO \rightarrow 0
 - VERDADEIRO → 1

- Variável binária
 - Toma valores do conjunto {0,1}
 - Exemplos: A, B, C, ...
- Função binária de n variáveis
 - A aplicação do conjunto {0,1}ⁿ no conjunto {0,1}
 - \circ Exemplo: $f(x_1, x_2, ..., x_n)$
- Operadores
 - Complemento: ~ ou _____
 - Soma lógica: +
 - Produto lógico: (ponto)

Funções de 1 variável

- Funções constantes
 - \circ f(x) = 1
 - $\circ \quad f(x) = 0$
- Função identidade
 - \circ f(x) = x
- Função complemento (negação, NÃO, NOT)
 - $\circ f(x) = \overline{x}$
 - $\circ \quad \text{Se } x=1 \to f(x)=0$
 - $\circ \quad \text{Se } x=0 \to f(x)=1$

Funções de 2 variáveis

- Funções constantes
 - \circ f(x,y)=0
 - $\circ f(x,y)=1$
- Função identidade
 - f(x,y) = x
 - $_{\circ}$ f(x,y)=y
- Função complemento
 - o negação, NÃO, NOT
 - $\circ f(x,y) = \overline{x}$
 - \circ $f(x,y)=\overline{y}$

- Soma lógica (OU, OR)
 - $\circ f(x,y) = x + y$
 - o f(x) = 1 quando x = 1 ou y = 1
- Produto lógico (E, AND)
 - $\circ \quad f(x,y) = x \cdot y$
 - o f(x) = 1 quando x = 1 e y = 1

Funções de 2 variáveis

- NOR (Negated OR)
 - $\circ \qquad f(x,y) = \overline{x+y}$
 - É o complemento da função OR
- NAND (Negated AND)
 - $\circ f(x,y) = \overline{x.y}$
 - É o complemento da função AND

- XOR (eXclusive OR)
 - \circ $f(x,y)=x\oplus y$
 - o f(x) = 1 quando $x \neq y$
- EQ (Equivalence)
 - Também conhecida como XNOR
 - Negated XOR
 - $\circ \qquad f(x,y) = \overline{x \oplus y}$
 - o f(x) = 1 quando x = y
 - Complemento da função XOR

Funções com mais de 2 variáveis

- AND
 - $f(k,l\ldots,z)=k\cdot l\cdot\ldots\cdot z$
 - É 1 quando todas as variáveis são 1
- OR
 - $_{\circ}$ $f(k,l\ldots,z)=k+l+\ldots+z$
 - É 1 quando pelo menos uma variável é 1
- XOR
 - $f(k,l\ldots,z)=k\oplus l\oplus\ldots\oplus z$
 - É 1 quando um número ímpar de variáveis é 1

NAND

$$\circ \qquad f(k,l\ldots,z) = \overline{k \cdot l \cdot \ldots \cdot z}$$

NOR

$$_{\bigcirc} \qquad f(k,l\ldots,z) = \overline{k+l+\ldots+z}$$

XNOR

$$^{\bigcirc} \qquad f(k,l\ldots,z) = \overline{k \oplus l \oplus \ldots \oplus z}$$

Tabela de verdade

- É uma representação em extensão
 - o Indica o valor da função para cada valor possível da variável
- Funções de 1 variável

Função constante 0

Х	f(x)=0
0	0
1	0

Função constante 1

Х	f(x)=1
0	1
1	1

Função identidade

Х	f(x)=x
0	0
1	1

Função complemento

Х	$f(x) = \overline{x}$
0	1
1	0

Tabela de verdade

Funções de 2 variáveis

• Existem 16 funções diferentes

x	у	f_0	f_I	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_g	f_{10}	f_{II}	f_{12}	f_{I3}	f_{14}	f_{15}
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

$$f_0(x,y) = 0$$

$$f_{10}(x,y) = y$$

$$f_8(x,y) = x \cdot y$$
 AND

$$f_7(x,y)=\overline{x\cdot y}$$
 NAND

$$f_{15}(x,y) = 1$$

$$f_3(x,y)=\overline{x}$$
 NOT x

$$f_{14}(x,y) = x + y$$
 OR

NOR

$$f_6(x,y)=x\oplus y$$
 XOR

$$f_{12}(x,y)=x$$

$$f_5(x,y)=ar{y}$$
 NOT y

$$f_1(x,y)=\overline{x+y}$$

$$f_5(x,y)=\overline{x\oplus y}$$
 XNOR

Tabela de verdade

Nº de funções distintas

- 1 variável
 - 4 funções
 - 1 variável: 2 valores possíveis (2¹)
 - \circ 4 = $(2^2)^1$
- 2 variáveis
 - 16 funções
 - 2 variáveis: 4 valores possíveis (2²)
 - \circ 16 = $(2^2)^2$
- ...
- n variáveis
 - o (2²)ⁿ funções
 - o n variáveis: 2ⁿ valores possíveis

Convenções

- Precedência
 - produto lógico > soma lógica
 - \circ A + B . C = A + (B . C)
- Omissão do operador lógico
 - o AB = A . B

0

• Um literal é uma variável ou o seu complemento

Propriedades das funções

- Comutativa
 - \circ A \cdot B = B \cdot A
 - \circ A + B = B + A
- Associativa
 - $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
 - \circ (A + B) + C = A + (B + C)
- Distributiva
 - $\circ \quad A \cdot (B + C) = (A \cdot B) + (A \cdot C)$
 - \circ A + B \cdot C = (A + B) \cdot (A + C)

Propriedades das funções

- Elemento neutro
 - \circ A·1 = A
 - \circ A + 0 = A
- Elemento absorvente
 - \circ A \cdot 0 = 0
 - \circ A + 1 = 1
- Complemento
 - \circ A \cdot \overline{A} = 0
 - \circ A + \overline{A} = 1

Teoremas principais

- Idempotência
 - \circ A · A = A
 - \circ A+A=A
- Dupla negação
 - \circ $\overline{A} = A$
- Leis de DeMorgan
 - $\circ \quad \overline{A \cdot B} = \overline{A} + \overline{B}$
 - \circ $\overline{A + B} = \overline{A} \cdot \overline{B}$

Outro teoremas

- Absorção
 - \circ A+A·B = A
 - \circ A \cdot (A + B) = A
- Redundância
 - \circ A + $\overline{A} \cdot B = A + B$
 - $\circ \quad A \cdot (\overline{A} + B) = A \cdot B$
- Adjacência
 - \circ A · B + A · \overline{B} = A
 - $\circ \quad (A + B) \cdot (A + \overline{B}) = A$

Propriedades do XOR - OU-exclusivo

- Comutativa
 - \circ A \oplus B = B \oplus A
- Associativa
 - \circ A \oplus (B \oplus C)= (A \oplus B) \oplus C
- Outras
 - A ⊕ 0 = A
 - \circ A \oplus 1 = \overline{A}
 - $\circ \quad A \oplus B = \overline{A \cdot B} + A \cdot \overline{B}$
 - $A \oplus B = A \oplus B = A \oplus B$

Representação de funções

Representação algébrica

- Utiliza expressões booleanas
- Várias expressões podem representar a mesma função
 - Passa-se de uma para as outras através de manipulações algébricas
- Exemplo
 - \circ F(A, B, C) = AB + A \overline{C} = A(B+ \overline{C})
 - A 2ª expressão é obtida utilizando a distributividade do produto em relação à soma

Representação algébrica

Formas de representação

- Forma normal disjuntiva ou soma de produtos
 - \circ F = AB + A \overline{C}
- Forma normal conjuntiva ou produto de somas

$$\circ \quad \mathsf{F} = \mathsf{A} \left(\mathsf{B} + \overline{\mathsf{C}} \right)$$

Forma mista

$$\circ \quad G = AB + \overline{AB}C(X + Y)$$

- Nota
 - É sempre possível obter as formas normais

Representação através de Logigrama

- Representação através de simbologia gráfica
 - Conjunto de entradas, uma saída e componentes
- Conjunto de entradas
 - Variáveis da função
- Saída
 - Valor da função
- Componentes
 - Circuitos lógicos
 - Ligações

Representação através de Logigrama

Porta lógica

Representação gráfica de cada função lógica básica

 O nº de entradas pode ser estendido para um número de n ≥ 2, excepto o NOT que apenas tem uma entrada

Circuito Lógico

- Um circuito lógico é construído ligando as saídas das portas lógicas à entrada de outras conforme a função a implementar
- $F(A,B,C) = AB + A\overline{C}$

Representação através de Tabela de verdade

- É única para cada função
- Estrutura
 - o n + 1 colunas
 - n para as variáveis booleanas
 - 1 para o resultado da função
 - 2ⁿ linhas
 - 1 para cada combinação possível de valores das variáveis

Exemplo

• F(A,B,C) = AB + AC

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Construção das linhas da tabela de verdade

- N variáveis → 2ⁿ linhas
- Começa-se por preencher a variável mais à esquerda
 - as primeiras 2ⁿ/2 linhas têm valor 0
 - as últimas têm valor 1
- Preenche-se depois a variável à direita
 - o as primeiras 2ⁿ / 4 linhas têm valor 0
 - o as seguintes 2ⁿ / 4 linhas têm valor 0
 - o repete-se o procedimento para as restantes 2ⁿ / 2 linhas
- Vai-se repetindo o procedimento. A última variável tem, alternadamente os valores
 0 e 1 em cada linha

Construção das linhas da tabela de verdade

Exemplo: 3 variáveis

3 variáveis: 8 linhas

Α	В	С	
0	0		
0	0		
0	1		
0	1		
1	0		
1	0		
1	1		
1	1		

Α	В	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Leitura da tabela de verdade

Cada linha corresponde a um produto lógico de todos os literais

- F é 1 quando
 - (A,B,C) = (1,0,0), ou seja $A \overline{B} \overline{C} = 1$
 - o (A,B,C) = (1,1,0), ou seja ABC = 1
 - (A,B,C) = (1,1,1), ou seja A B \overline{C} = 1
- Ou seja
 - \circ F = A \overline{B} \overline{C} + A B \overline{C} + A B C
- Por manipulação algébrica

$$F = A B C + A B C + A B C$$

$$= A \overline{C} (\overline{B} + B) + A B C$$

$$= A \overline{C} + A B C$$

$$= A (\overline{C} + B C)$$

$$= A (\overline{C} + B)$$

$$= A \overline{C} + A B$$

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Escrita da tabela de verdade

- Analisar os casos em que a função é 1
- G(A,B,C) = A B C + A B + A
- G é quando

$$\circ$$
 $\overline{A} \, \overline{B} \, \overline{C} = 1$, ou seja, $(A,B,C) = (0,0,0)$

$$\overline{A} B = 1$$
, ou seja, $(A,B,C) = (0,1,0)$
 $(A,B,C) = (0,1,1)$

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Escrita da tabela de verdade

- Para funções mais complexas
 - o pode-se gerar as tabelas de funções parciais para construir a função final
- $G(A,B,C) = \overline{A} \overline{B} \overline{C} + A \overline{B} + A$

Α	В	С	ABC	$\overline{A}B$	Α	G
0	0	0	1	0	0	1
0	0	1	0	0	0	0
0	1	0	0	1	0	1
0	1	1	0	1	0	1
1	0	0	0	0	1	1
1	0	1	0	0	1	1
1	1	0	0	0	1	1
1	1	1	0	0	1	1

Formas canónicas

Soma de mintermos

Mintermo ou termo minimal

- Produto que envolve todos os literais
- Corresponde a uma linha da tabela de verdade

Soma de mintermos

- Soma de produtos onde todos os factores são mintermos
- Cada mintermo está associado a um 1 da tabela

Também conhecida como

- 1ª Forma canónica
- Forma canónica disjuntiva
- Forma canónica AND-OR

Soma de mintermos

Representação decimal

- Ao numerar as linhas, cada mintermo pode ser referido através das respectiva linha linha da tabela de verdade
- Soma de mintermos

$$\circ \qquad \mathsf{F} = \mathsf{A}\,\overline{\mathsf{B}}\,\overline{\mathsf{C}} + \mathsf{A}\,\mathsf{B}\,\overline{\mathsf{C}} + \mathsf{A}\,\mathsf{B}\,\mathsf{C}$$

Representação decimal

$$\circ$$
 F = $m_4 + m_6 + m_7$

$$\circ$$
 F = $\sum m(4,6,7)$

	Α	В	С	F	
0	0	0	0	0	m_0
1	0	0	1	0	m_1
2	0	1	0	0	m_2
3	0	1	1	0	m_3
4	1	0	0	1	m_4
5	1	0	1	0	m_{5}
6	1	1	0	1	$m_{\scriptscriptstyle{6}}$
7	1	1	1	1	m ₇

Produto de maxtermos

Maxtermo ou termo maximal

- Soma que envolve todos os literais
- Corresponde a uma linha da tabela de verdade

Produto de maxtermos

- Produto das somas onde todas as parcelas são maxtermos
- Cada maxtermo está associado a um 0 da tabela

Também conhecida como:

- Segunda forma canónica
- Forma canónica conjuntiva
- Forma canónica OR-AND

Produto de maxtermos

Representação decimal

- Cada maxtermo é construído utilizando uma função
 - É 0 para uma linha da tabela em que a função é zero
 - É 1 para as restantes linhas

Produto de maxtermos

$$\circ \qquad \mathsf{F} = \mathsf{G1} \cdot \mathsf{G2} \cdot \mathsf{G3} \cdot \mathsf{G4} \cdot \mathsf{G5}$$

$$\circ$$
 G1 = A + B + C

$$\circ$$
 G2 = A + B + \overline{C}

$$\circ$$
 G3 = A + \overline{B} + C

$$G4 = A + \overline{B} + \overline{C}$$

$$G5 = \overline{A} + B + \overline{C}$$

Representação decimal

$$\circ \qquad \mathsf{F} = \mathsf{M}_0 \cdot \mathsf{M}_1 \cdot \mathsf{M}_2 \cdot \mathsf{M}_3 \cdot \mathsf{M}_5$$

$$\circ \qquad \mathsf{F} = \prod \mathsf{M}(0, \, 1, \, 2, \, 3, \, 5)$$

	Α	В	С	F	G_1	G.	G.	G,	G.	
0	0	0	0	0	0	1	1	1	1	M_0
1	0	0	1	0	1	0	1	1	1	M_1
2	0	1	0	0	1	1	0	1	1	M_2
3	0	1	1	0	1	1	1	0	1	M_3
4	1	0	0	1	1	1	1	1	1	M_4
5	1	0	1	0	1	1	1	1	0	M_5
6	1	1	0	1	1	1	1	1	1	M_6
7	1	1	1	1	1	1	1	1	1	M_7

Mintermos e Maxtermos

- Para qualquer função booleana de n variáveis
 - \circ $m_i = \overline{M}_i$
 - $\circ \quad M_i = \overline{m}_i, \quad \text{com } 0 \le i \le 2^n 1$
- No entanto,
 - se a função possui m_i, na primeira forma canónica, não pode conter M_i
- Exemplo
 - \circ F(A,B,C) = AB + A \overline{C}
 - $\circ \quad F = m_4 + m_6 + m_7 = A \overline{B} \overline{C} + A B \overline{C} + A B C$
 - $F = M_0 \cdot M_1 \cdot M_2 \cdot M_3 \cdot M_5$ = (A + B + C) (

Conjunto universal de funções

Conjunto universal de funções

- Conjunto Universal ou Completo
 - É um conjunto de funções booleanas (básicas) que permite representar qualquer função booleana simples
- {AND, OR, NOT}
 - o 1ª e 2ª formas canónicas
- {NAND}
- {NOR}

Conjunto universal {NAND}

NOT

AND

$$A \rightarrow AB$$

OR

Conjunto universal {NOR}

NOT

AND

OR

$$A \longrightarrow A+B$$
 $A \longrightarrow A+B$
 $A \longrightarrow A+B$
 $A \longrightarrow A+B$

Outra simbologia usada

Exercícios

- 1. Determine a expressão mais simples na forma normal disjuntiva da função
 - a. $f(A, B, C) = (\overline{A} + B)(A + C)(B + C)$
- 2. Desenhe a tabela de verdade e logigrama das funções seguintes e identifique as correspondentes formas canónicas
 - a. $f(A, B, C, D) = \overline{A} (\overline{B} + \overline{C}(B + D))$
 - b. $g(A, B, C) = \overline{AC} + BC$
- 3. Numere os seguintes mintermos e maxtermos
 - a. A + B
 - b. ABC
 - c. ABCD
- 4. Desenhe o logigrama da função f(A, B, C) = (A ⊕ C) B + BC + AC utilizando apenas
 - a. AND, OR e NOT
 - b. NANDs
 - c. NORs

Tarefas até à próxima aula prática

- Ficha 3: Funções binárias e álgebra de Boole
 - o 1.a)
 - o 2.a)
 - o 3.a), 3.b)
 - o 5.a), 5.b, 5.c)