Profinite Groups and Group Cohomology

Lectured by Dr Gareth Wilkes Typed by David Kurniadi Angdinata

Lent 2020

Syllabus

Contents

U	Introduction	3
1	Inverse limits	4
	1.1 Categories and limits	4
	1.2 Inverse limits and profinite groups	
	1.3 Change of inverse system	
2	Profinite groups	12
	2.1 The <i>p</i> -adic integers	12
	2.2 The profinite completion of the integers	
	2.3 Profinite matrix groups	
	2.4 Subgroups, quotients, and homomorphisms	
	2.5 Generators of profinite groups	
3	Profinite completions	19
	3.1 Residual finiteness	19
	3.2 Finite quotients of free groups	
4	$\operatorname{Pro-}p$ groups	30
	4.1 Generators of pro- p groups	30
	4.2 Nilpotent groups	
	4.3 Invariance of topology	
	4.4 Hensel's lemma and p -adic arithmetic	
5	Cohomology of groups	36
	5.1 Group rings and chain complexes	36
	5.2 Different projective resolutions	

0 Introduction

A question is, when are things different?

Lecture 1 Thursday 21/01/21

- \mathbb{Z} is in bijection with \mathbb{Q} , by writing down a bijection.
- \mathbb{Q} is not in bijection with \mathbb{R} , by diagonalisation.

A solution is to try to find an invariant, which is

- easier to compute,
- computable, and
- preserved under isomorphism.

Example 0.0.1.

- Cardinality of a set.
- Dimension and base field of a vector space, which is complete.
- For an algebraic field extension K over \mathbb{Q} , the degree $[K:\mathbb{Q}]$ and the Galois group $\mathrm{Gal}(K/\mathbb{Q})$.
- For a topological space X, compactness, connectedness, simplicial homology groups $H_{\bullet}(X)$, and the fundamental group $\pi_1(X)$.

Theorem 0.0.2. There is no algorithm that decides whether a finite presentation represents the trivial group.

Finite groups we can decide.

- List all the finite quotients of a group.
- If you have two such lists, you can compare.
- If two groups have different sets of finite quotients, they are not isomorphic.

How often does this work?

- Combine all the finite quotients into one object to study, the **profinite completion**, which is a limit of the finite groups.
- More generally, a limit of finite groups is called a **profinite group**.

Example 0.0.3.

• In Galois theory, let $K = \bigcup_{N \in \mathbb{N}} K_N$ be the extension of \mathbb{Q} adjoining all p^N -th roots of unity for p a fixed prime and $N \in \mathbb{N}$, which gives a short exact sequence of Galois groups

$$\operatorname{Gal}(K/K_N) \to \operatorname{Gal}(K/\mathbb{Q}) \twoheadrightarrow \operatorname{Gal}(K_N/\mathbb{Q})$$
.

Then
$$\operatorname{Gal}(K_N/\mathbb{Q}) = (\mathbb{Z}/p^N\mathbb{Z})^{\times}$$
 and $\operatorname{Gal}(K/\mathbb{Q}) = \varprojlim_N (\mathbb{Z}/p^N\mathbb{Z})^{\times} = \mathbb{Z}_p^{\times}$.

• In algebraic geometry, étale fundamental groups are profinite groups.

The second part of the course is **group cohomology**, which is another invariant, with the following applications.

- Can tell if a group is free for some profinite groups.
- Given a group G and an abelian group A, group cohomology tells us how many groups E exist such that $A \triangleleft E$ and E/A = G.

1 Inverse limits

1.1 Categories and limits

Let A and B be sets. How to combine into one thing? The disjoint union $A \sqcup B$ has inclusion maps $i_A : A \hookrightarrow A \sqcup B$ and $i_B : B \hookrightarrow A \sqcup B$, and for any other set Z, with functions $j_A : A \to Z$ and $j_B : B \to Z$ there is a unique function defined by

$$\begin{array}{cccc} f & : & A \sqcup B & \longrightarrow & Z \\ & a & \longmapsto & j_A\left(a\right) \ , \\ & b & \longmapsto & j_B\left(b\right) \end{array}$$

such that $f \circ i_A = j_A$ and $f \circ i_B = j_B$, so

$$A \xrightarrow{i_A} A \sqcup B \xleftarrow{i_B} B$$

$$\downarrow_{\exists ! f} \atop Z$$

The product $A \times B$ comes with $p_A : A \times B \to A$ and $p_B : A \times B \to B$ such that

$$A \xleftarrow{p_A} A \times B \xrightarrow{p_B} B$$

$$\downarrow^{q_A} \exists ! f \downarrow^{\uparrow} \qquad \qquad \downarrow^{q_B}$$

where $f(z) = (q_A(z), q_B(z))$. Reversed all arrows, so there is a duality, and disjoint union is a coproduct. What about groups, and group homomorphisms? The product still works, but the disjoint union is not a group. The coproduct is the free product A * B such that

$$A \longrightarrow A * B \longleftarrow B$$

$$\downarrow \qquad \qquad \downarrow$$

$$Z$$

More generally is the pushout. Given groups A, B, and C, and homomorphisms $\phi_A : C \to A$ and $\phi_B : C \to B$, the **pushout** $A \sqcup_C B$ is

Definition 1.1.1. A category C consists of

- a collection of **objects** Obj \mathcal{C} ,
- a collection of **morphisms** or **arrows** Mor \mathcal{C} , such that each $f \in \text{Mor } \mathcal{C}$ has a **domain** $X \in \text{Obj } \mathcal{C}$ and a **codomain** $Y \in \text{Obj } \mathcal{C}$ written as $f : X \to Y$,
- for all objects $X \in \text{Obj } \mathcal{C}$, you have $\text{id}_X : X \to X$, and
- if $f: X \to Y$ and $g: Y \to Z$, we have a defined composition $g \circ f: X \to Z$,

such that

- if $f: X \to Y$, then $id_Y \circ f = f = f \circ id_X$, and
- if $f: W \to X$, $g: X \to Y$, and $h: Y \to Z$, then $h \circ (g \circ f) = (h \circ g) \circ f$.

Example 1.1.2.

- In **Set**, objects are sets and morphisms are functions.
- In **Grp**, objects are groups and morphisms are group homomorphisms.
- In $\mathbf{Grp}_{\mathrm{fin}}$, objects are finite groups.
- \bullet In $\mathbf{Grp}_{\mathrm{inj}},$ morphisms are injective group homomorphisms.

Definition 1.1.3. A partial ordering on a set J is a binary relation \leq such that

- $i \leq i$,
- if $i \leq j$ and $j \leq i$, then i = j, and
- if $i \leq j$ and $j \leq k$, then $i \leq k$.

A **poset** is a pair (J, \leq) , which is a **total ordering** if for all $i, j \in J$ either $i \leq j$ or $j \leq i$. The **poset** category \mathcal{J} has objects Obj $\mathcal{J} = J$ and morphisms Mor $\mathcal{J} = \{i \to j \mid i \leq j\}$.

Lecture 2 Saturday 23/01/21

Definition 1.1.4. Let \mathcal{C} be a category. A **product** of $A, B \in \text{Obj } \mathcal{C}$ is an object P, equipped with morphisms $p_A : P \to A$ and $p_B : P \to B$, such that for all $Z \in \text{Obj } \mathcal{C}$ and for all $q_A : Z \to A$ and $q_B : Z \to B$, there exists a unique $f : Z \to P$ such that $p_A \circ f = q_A$ and $p_B \circ f = q_B$, so

$$A \xleftarrow{q_A} P \xrightarrow{p_B} B$$

Definition 1.1.5. Objects A and B in a category C are **isomorphic** if there exist $f: A \to B$ and $g: B \to A$ such that $g \circ f = \mathrm{id}_A$ and $f \circ g = \mathrm{id}_B$.

Proposition 1.1.6. If a product of A and B in C exists, then it is unique up to a unique isomorphism.

Proof. Let (P, p_A, p_B) and (P', p'_A, p'_B) be products. Then

Consider $f \circ g : P \to P$. Then $p_A \circ f \circ g = p'_A \circ g = p_A$ and $p_B \circ f \circ g = p'_B \circ g = p_B$. By uniqueness, $f \circ g = \mathrm{id}_P$. Similarly, $g \circ f = \mathrm{id}_{P'}$.

Notation 1.1.7. Define $P = A \times B$.

Definition 1.1.8. Let \mathcal{C} be a category and $A, B \in \text{Obj } \mathcal{C}$. Then a **coproduct** is an object $A \sqcup B$, together with maps $i_A : A \to A \sqcup B$ and $i_B : B \to A \sqcup B$, with the universal property

$$A \xrightarrow{i_A} A \sqcup B \xleftarrow{i_B} B$$

$$\downarrow_{\exists ! f} \atop Z \qquad \downarrow_{j_B} \qquad .$$

Products are examples of limits and coproducts are examples of colimits.

Definition 1.1.9. Let \mathcal{C} and \mathcal{D} be categories. A functor $F: \mathcal{C} \to \mathcal{D}$ associates an object $F(X) \in \text{Obj } \mathcal{D}$ to each $X \in \text{Obj } \mathcal{C}$, and a morphism $F(f): F(X) \to F(Y)$ for each $f: X \to Y$ in \mathcal{C} , such that

- $F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$, and
- $F(g \circ f) = F(g) \circ F(f)$.

Definition 1.1.10. Let \mathcal{J} and \mathcal{C} be categories. A diagram of shape \mathcal{J} in \mathcal{C} is a functor $X : \mathcal{J} \to \mathcal{C}$. Often write $X(j) = X_j$, for $j \in \text{Obj } \mathcal{J}$.

Very often, \mathcal{J} is a poset category. In that case, if $i \leq j$, there exists a unique arrow $f: i \to j$ and then denote $X(f) = \phi_{ij}$.

Definition 1.1.11. A **cone** on a diagram $X : \mathcal{J} \to \mathcal{C}$ is an object $Z \in \text{Obj } \mathcal{C}$, together with maps $p_j : Z \to X_j = X(j)$ for all $j \in \text{Obj } \mathcal{J}$ such that for all $f : i \to j$, $X(f) \circ p_i = p_j$, so

$$X_i \xrightarrow{p_i} Z$$

$$X_j \xrightarrow{p_j} X_j$$

A **limit** of a diagram $X: \mathcal{J} \to \mathcal{C}$ is a cone L, with morphisms p_j , such that for any cone Z, with morphisms q_j , there is a unique $g: Z \to L$ such that $p_j \circ f = q_j$, for all $j \in \text{Obj } \mathcal{J}$, so

for $f: i \to j$. Colimits are as limits, but arrows are reversed.

Example 1.1.12.

• If \mathcal{J} is the category

•

then a diagram of shape \mathcal{J} is a pair of objects. The limit is the product and the colimit is the coproduct.

• If \mathcal{J} is the category

then a diagram of shape \mathcal{J} in **Grp** would be

$$\begin{array}{c}
C \xrightarrow{\phi_{CA}} A \\
\downarrow \\
B
\end{array}$$

The colimit is the pushout.

Proposition 1.1.13. Limits and colimits are unique up to unique isomorphism.

1.2 Inverse limits and profinite groups

Let G be a group. Let \mathcal{N} be the poset category whose objects are $\{N \triangleleft_f G\}$, where $N \triangleleft_f G$ are finite index, with ordering $N_1 \leq N_2$ if and only if $N_1 \subseteq N_2$. There is a diagram of shape \mathcal{N} in \mathbf{Grp} ,

$$\begin{array}{cccc} X & : & \mathcal{N} & \longrightarrow & \mathbf{Grp} \\ & N & \longmapsto & X_N = G/N \end{array}.$$

If $N_1 \leq N_2$, then $X(N_1 \to N_2)$ is the quotient map $\phi_{N_1 N_2} : G/N_1 \to G/N_2$, the transition maps.

Definition 1.2.1. Let G be a group. The **profinite completion** of G is the limit of this diagram, denoted \widehat{G} . Then G comes with **projections** $p_N : \widehat{G} \to G/N$ for all $N \triangleleft_f G$ such that

- if $N_1 \subseteq N_2$, then $\phi_{N_1 N_2} \circ p_{N_1} = p_{N_2}$, and
- if Z is a group, with $q_N: Z \to G/N$ such that $\phi_{N_1N_2} \circ q_{N_1} = q_{N_2}$, there exists a unique $f: Z \to \widehat{G}$ such that $p_N \circ f = q_N$ for all N.

Thus

In particular, Z = G works, so there is a unique morphism $\iota_G : G \to \widehat{G}$, the **canonical morphism**, such that the diagrams commute.

Definition 1.2.2. A poset (J, \leq) is an **inverse system** if for all $i, j \in J$ there exists $k \in J$ such that $k \leq i$ and $k \leq j$. An **inverse system of groups** consists of an inverse system (J, \leq) and a diagram of shape \mathcal{J} in **Grp**, so $G: \mathcal{J} \to \mathbf{Grp}$. Thus an inverse system is a group G_j for all $j \in J$ and transition maps $\phi_{ij}: G_i \to G_j$ if $i \leq j$ such that $\phi_{ii} = \operatorname{id}$ and $\phi_{jk} \circ \phi_{ij} = \phi_{ik}$ for all $i \leq j \leq k$. The **inverse limit** of this inverse system of groups G_j is the limit of this diagram, denoted $\varprojlim_i G_j$.

Definition 1.2.3. A **profinite group** is the inverse limit of an inverse system of groups, all of which are finite.

Proposition 1.2.4. Let $(G_j)_{j\in J}$ be an inverse system of groups. Then the inverse limit exists, and is given by the explicit description

$$\underset{j}{\varprojlim} G_{j} = \left\{ \left(g_{j}\right)_{j \in J} \in \prod_{j \in J} G_{j} \middle| \forall i \leq j, \ \phi_{ij}\left(g_{i}\right) = g_{j} \right\}.$$

Proof. This is a group. We have $p_j: \varprojlim_j G_j \to G_j$, restricted from $\prod_{j \in J} G_j \to G_j$. Take a cone Z on the system. Define

$$f : Z \longrightarrow \varprojlim_{j} G_{j}$$

$$z \longmapsto (q_{j}(z))_{j \in J}.$$

Then $\phi_{ij}(q_i(z)) = q_j(z)$, so

Definition 1.2.5. Let $(G_j)_{j\in J}$ be an inverse system of finite groups. Give each G_j the discrete topology. Give $\prod_j G_j$ the product topology. Then $\varprojlim_j G_j \leq \prod_j G_j$ gets the subspace topology.

 $\begin{array}{c} \text{Lecture 3} \\ \text{Tuesday} \\ 26/01/21 \end{array}$

Proposition 1.2.6. $\varprojlim_{i} G_{j}$ is compact Hausdorff.

Proof. $\prod_{j} G_{j}$ is Hausdorff and compact, by Tychonoff's theorem. Each condition $\phi_{ij}(g_{i}) = g_{j}$ is a closed condition, since $\prod_{j \in J} G_{j} \to G_{i} \times G_{j}$, so $\varprojlim_{j} G_{j}$ is closed in $\prod_{j} G_{j}$.

Proposition 1.2.7. Let $(X_j)_{j\in J}$ be an inverse system of non-empty finite sets. Then $\varprojlim_i X_j$ is non-empty.

Proof. Use the finite intersection property. Let $I_1 \subseteq J$ be a finite subset. Define

$$Y_{I_{1}} = \left\{ (x_{j}) \in \prod_{j} X_{j} \mid \forall i, j \in I_{1}, \ \forall i \leq j, \ \phi_{ij} \left(x_{i} \right) = x_{j} \right\} \subseteq \prod_{j} X_{j},$$

a closed subset of the product. Since J is an inverse system and I_1 is finite, there exists $k \in J$ such that $k \leq i$ for all $i \in I_1$. Choose $x_k \in X_k \neq \emptyset$. Define $x_j = \phi_{kj}(x_k)$ for all $j \geq k$. Choose x_j arbitrarily elsewhere. This gives $x = (x_j) \in \prod_{j \in J} X_j$, which lies in Y_{I_1} , since if $i, j \in I_1$ such that $i \leq j$ then

$$x_{i} = \phi_{kj}(x_{k}) = \phi_{ij}(\phi_{ki}(x_{k})) = \phi_{ij}(x_{i}).$$

So Y_{I_1} is non-empty. Then $Y_{I_1} \cap \cdots \cap Y_{I_n} \supseteq Y_{I_1 \cup \cdots \cup I_n} \neq \emptyset$. By the finite intersection property, since $\prod_j X_j$ is compact, $\bigcap_{I_1} Y_{I_1} = \varprojlim_j X_j$ is non-empty. \square

Proposition 1.2.8. Let J be a countable set and let $(X_j)_{j\in J}$ be a family of finite sets. Then $X=\prod_{j\in J}X_j$ is **metrisable**, so the metric topology equals to the other topology.

Proof. Without loss of generality $J = \mathbb{N}$. Give each X_n the discrete metric d_n , where

$$d_n(x_n, y_n) = \begin{cases} 0 & x_n = y_n \\ 1 & x_n \neq y_n \end{cases}, \quad x_n, y_n \in X_n.$$

Define

$$d\left(\left(x_{n}\right),\left(y_{n}\right)\right)=\sum_{n=1}^{\infty}\frac{1}{3^{n}}d_{n}\left(x_{n},y_{n}\right),\qquad\left(x_{n}\right),\left(y_{n}\right)\in\prod_{n}X_{n}.$$

We need to show this gives the product topology. Let $f:(X,\tau_{\text{product}})\to (X,d)$ be the identity function. A basis for the metric topology are open balls $B(x,1/3^n)$ for $x\in X$ and $n\in\mathbb{N}$. Then $d((x_n),(y_n))<1/3^m$ if and only if $x_n=y_n$ for all $n\leq m$, and

$$f^{-1}\left(\mathrm{B}\left(\left(x_{n}\right),\frac{1}{3^{m}}\right)\right) = \left\{\left(y_{n}\right) \mid \forall n \leq m, \ y_{n} = x_{n}\right\} = \bigcap_{n=1}^{m} p_{n}^{-1}\left(\left\{x_{n}\right\}\right), \qquad p_{n} : \prod_{n} X_{n} \to X_{n}$$

is open in the product topology. So f is continuous, so a homeomorphism.

Proposition 1.2.9. A continuous bijection from a compact space to a Hausdorff space is a homeomorphism.

Lemma 1.2.10. Let G be a finitely generated group. For each $n \in \mathbb{N}$, there are only finitely many subgroups of index n.

Proof. For a subgroup $H \leq G$ of index n, we get a homomorphism $G \to \operatorname{Sym} n$, since by labelling cosets $H, \ldots, g_n H$ by symbols $1, \ldots, n$, G permutes these right cosets by $g \cdot g_i H = (gg_i) H$ and H is recovered from this as Stab 1. So there are at most as many subgroups H as homomorphisms to $\operatorname{Sym} n$, and there are only finitely many.

Corollary 1.2.11. If G is finitely generated, the inverse system $\mathcal{N} = \{N \triangleleft_f G\}$ is countable.

Proposition 1.2.12. Let G be a profinite group. Then G is a topological group, so

are continuous.

Definition 1.2.13. Let G and H be topological groups. We say G and H are **isomorphic as topological groups** if and only if there exists $f: G \to H$ which is both an isomorphism of groups and a homeomorphism.

Recall that if G and H are profinite, this is the same as there exists f a continuous isomorphism.

Proposition 1.2.14. Let H be a topological group and $G = \varprojlim_j G_j$ be an inverse limit of finite groups. Let $p_j : G \to G_j$ be the projection maps. A homomorphism $f : H \to G$ is continuous if and only if each map $f_j = p_j \circ f$ is continuous.

Proof. $f: H \to G \leq \prod_j G_j$. This is continuous if and only if all f_j are continuous, by definition of the product topology.

Proposition 1.2.15. Let $f: H \to G_j$ be a homomorphism from a topological group to a finite group, with the discrete topology. Then f is continuous if and only if ker f is open in H.

Proof. If f is continuous then $\ker f = f^{-1}(\{1\})$ is open. Assume $f^{-1}(\{1\})$ is open. Then $f^{-1}(\{g\})$ is open for all $g \in G$, since multiplication is continuous and $f^{-1}(\{g\}) = hf^{-1}(\{1\})$ for some $h \in H$. Taking unions, the preimage of any set in G_i is open in H, so f is continuous.

Proposition 1.2.16. Let G be a compact topological group. A subgroup of G is open if and only if it is closed and of finite index.

Proposition 1.2.17. Let $(G_j)_{j\in J}$ be an inverse system of finite groups. If $G = \varprojlim_j G_j$, then the open subgroups $U_j = \ker(p_j : G \to G_j)$ form a **basis of open neighbourhoods** of the identity $1 \in G$, so if $V \subseteq G$ is any open set with $1 \in V$, then there exists j such that $U_j \subseteq V$.

Proof. Let $V \ni 1$ be open. By definition of the product topology,

$$V \supseteq p_{j_1}^{-1}(X_{j_1}) \cap \dots \cap p_{j_n}^{-1}(X_{j_n}) \supseteq p_{j_1}^{-1}(\{1\}) \cap \dots \cap p_{j_n}^{-1}(\{1\}) = U_{j_1} \cap \dots \cap U_{j_n}.$$

for $X_{j_i} \subseteq G_{j_i}$. There exists k such that $k \leq j_i$. Since $p_{j_i} = \phi_{kj_i} \circ p_k$, $\ker p_k = U_k \subseteq U_{p_{j_i}} = \ker p_{j_i}$ for all i. Thus $V \supseteq U_k$.

Lecture 4 Thursday 28/01/21

Corollary 1.2.18. If $g = (g_j)_{j \in J} \in G$, then the open cosets $gU_j = p_j^{-1}(\{g_j\})$ form a neighbourhood base at g, so for all open set $V \ni g$, there exists $j \in J$ such that $gU_j \subseteq V$.

Proof. Continuity of multiplication.

Corollary 1.2.19. A subset $X \subseteq G$ is dense if and only if $p_j(X) = p_j(G)$ for all $j \in J$.

Proof. Suppose X is not dense. There exists a non-empty open set V such that $V \cap X = \emptyset$. Pick $g \in V$. There exists $j \in J$ such that $p_j^{-1}(\{g_j\}) = gU_j \subseteq V$, where $g_j = p_j(g)$. Then $g_j \in p_j(G)$. But for any $x \in X$, $p_j(x) \neq g_j$, otherwise $x \in p_j^{-1}(\{g_j\}) = gU_j \subseteq V$, so $p_j(X) \neq p_j(G)$. Assume X is dense. Then $p_j(X) \subseteq p_j(G)$ is obvious. If $g_j \in p_j(G)$, then $p_j^{-1}(\{g_j\})$ is a non-empty open set, so there exists $x \in X \cap p_j^{-1}(\{g_j\})$, then $p_j(x) = g_j$. So $g_j \in p_j(X)$, so $p_j(X) = p_j(G)$.

Corollary 1.2.20. Let Y be a compact topological space and let $f: Y \to G$ be a continuous function. Then f is surjective if and only if $p_j(f(Y)) = p_j(G)$ for all $j \in J$.

Proof. $p_j(f(Y)) = p_j(G)$ if and only if f(Y) is dense, if and only if f(Y) = G, since f(Y) is closed. \Box

Proposition 1.2.21. Let G be a profinite group and $X \subseteq G$ be a subset. Then the closure of X is

$$\overline{X} = \bigcap_{N \leq_{\mathrm{o}} G} XN,$$

where $N \leq_{o} G$ are open subgroups.

Proof. XN is a union of cosets, hence it is open and closed in G. So $\overline{X} \subseteq XN$ for all $N \leq_0 G$, so $\overline{X} \subseteq \bigcap_{N \leq_0 G} XN$. Take $g \notin \overline{X}$. There exists an open $V \subseteq G$ such that $g \in V$ but $X \cap V = \emptyset$. Then there exists $j \in J$ such that $V \supseteq gU_j$ for $N = U_j = \ker p_j$. Then $g \notin XN$, since if g = xn for $x \in X$ and $n \in N = U_j$ then $x = gn^{-1} \in gN = gU_j \subseteq V$, a contradiction. Thus $g \notin \bigcap_N XN$, so $\bigcap_N XN \subseteq \overline{X}$.

Proposition 1.2.22. Let G be a profinite group and let \mathcal{U} be a collection of open normal subgroups which form a neighbourhood base at the identity. Then

$$G\cong \varprojlim_{U\in\mathcal{U}} G/U,$$

as topological groups, where G/U are finite groups.

Proof. The quotient maps G woheadrightarrow G/U are a cone on the inverse system, so we get a well-defined homomorphism $f: G \to \varprojlim_U G/U$. Then

- f is continuous, since compositions with projection maps are continuous,
- f is surjective, since G woheadrightarrow G/U are surjective, and
- f is injective, since if $g \in G \setminus \{1\}$, there exists an open subset V such that $1 \in V$ and $g \notin V$ and there exists $U \in \mathcal{U}$ such that $1 \in U \subseteq V$, then $g \notin \ker(G \to G/U)$, so $g \notin \ker f$.

1.3 Change of inverse system

Definition 1.3.1. Let (J, \leq) be an inverse system. A **cofinal subsystem** of J is a subset $I \subseteq J$ such that for all $j \in J$ there exists $i \in I$ such that $i \leq j$.

Then I is an inverse system.

Example 1.3.2. If $k \in J$, then the set

$$J_{\leq k} = \{ j \in J \mid j \leq k \},\$$

the **principal cofinal subsystem**, is cofinal in J.

Proposition 1.3.3. Let $(G_j)_{j\in J}$ be an inverse system of finite groups, and let $I\subseteq J$ be cofinal. Then $H=\varprojlim_{i\in I}G_i$ is topologically isomorphic to $G=\varprojlim_{j\in J}G_j$.

Proof. The projection map $\prod_{j\in J} G_j \to \prod_{i\in I} G_i$ is a continuous homomorphism, and it restricts to $f: G \to H$. Check that f is bijective.

- Injective. Take $g = (g_j)_{j \in J} \in G$. Assume f(g) = 1, so $g_i = p_i(f(g)) = 1$ for all $i \in I$. For any $j \in J$, there exists $i \in I$ such that $i \leq j$. Then $g_j = \phi_{ij}(g_i) = \phi_{ij}(1) = 1$. So g = 1.
- Surjective. Let $h=(h_i)_{i\in I}\in H$ for $h_i\in G_i$. Define $g=(g_j)\in \prod_{j\in J}G_j$ by setting $g_j=\phi_{ij}\,(h_i)$ for some $i\in I$ such that $i\leq j$. If $i_1\leq j$ and $i_2\leq j$, there exists $i_0\in I$ such that $i_0\leq i_1$ and $i_0\leq i_2$, then

$$\phi_{i_1j}(h_{i_1}) = \phi_{i_1j}(\phi_{i_0i_1}(h_{i_0})) = \phi_{i_0j}(h_{i_0}) = \phi_{i_2j}(\phi_{i_0i_2}(h_{i_0})) = \phi_{i_2j}(h_{i_2}).$$

It also follows that $g \in G$, since if $j_1 \leq j_2$, choose $i \in I$ such that $i \leq j_1$, then

$$g_{i_2} = \phi_{ij_2}(h_i) = \phi_{j_1j_2}(\phi_{ij_1}(h_i)) = \phi_{j_1j_2}(g_{j_1}).$$

Finally, f(g) = h, since $g_i = \phi_{ii}(h_i) = h_i$ for all $i \in I$.

Definition 1.3.4. An inverse system of groups is **surjective** if all transition maps are surjective.

Proposition 1.3.5. Let $(X_j)_{j\in J}$ be an inverse system of finite sets where all transition maps are surjective. Then the projection maps $p_j: \varprojlim_j X_j \to X_j$ are surjective.

Proposition 1.3.6. Let $(G_j)_{j\in J}$ be an inverse system of finite groups. Then there exists an inverse system $(G'_j)_{j\in J}$ such that $G'_j \leq G_j$, with surjective transition maps, such that $\varprojlim_j G_j = \varprojlim_j G'_j$.

Proof. Let $p_j: G = \varprojlim_j G_j \to G_j$ be the projection. Define $G'_j = p_j(G)$. Since $\phi_{ij} \circ p_i = p_j$, $\left(G'_j\right)$ is an inverse system with $\phi_{ij}|_{G'_i}: G'_i \to G'_j$, and $\phi_{ij}|_{G'_i}$ is surjective. If $g = (g_j) \in G$ then $g_j = p_j(g) \in G'_j$, so $g \in \varprojlim_j G'_j \le G \le \prod_j G_j$. Thus $\varprojlim_j G'_j = G$.

Definition 1.3.7. An inverse system (J, \leq) is **linearly ordered** if there exists a bijection $f: J \to \mathbb{N}$ such that $i \leq j$ if and only if $f(i) \geq f(j)$, the **wrong-way ordering** on \mathbb{N} .

Thus cofinal if and only if increasing subsequence.

Proposition 1.3.8. If J is a countable inverse system, with no **global minimum**, so there does not exist $m \in J$ such that $m \leq j$ for all j, then J has a linearly ordered cofinal subsystem.

2 Profinite groups

2.1 The p-adic integers

Let p be a prime. Consider

$$\cdots \to \mathbb{Z}/p^2\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z} \to 1.$$

Lecture 5 Saturday 30/01/21

The ring of p-adic integers is

$$\mathbb{Z}_p = \varprojlim_{n \in \mathbb{N}} \mathbb{Z}/p^n \mathbb{Z}.$$

Thus $\alpha \in \mathbb{Z}_p$ is a sequence $(a_n)_{n \in \mathbb{N}}$ of integers modulo p^n for $a_n \in \mathbb{Z}/p^n\mathbb{Z}$ such that $a_n \equiv a_m \mod p^m$ whenever $n \geq m$, since $\mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^m\mathbb{Z}$, and

$$\begin{array}{cccc} p_n & : & \mathbb{Z}_p & \longrightarrow & \mathbb{Z}/p^n\mathbb{Z} \\ & \alpha & \longmapsto & a_n = \alpha \mod p^n \end{array}.$$

Given $a \in \mathbb{Z}$, setting $a_n = a \mod p^n$ gives an element $\iota(a) \in \mathbb{Z}_p$ for $\iota : \mathbb{Z} \to \mathbb{Z}_p$. Then ι is injective, since if $a \in \mathbb{Z}$, and $p^n > |a|$ then $a \not\equiv 0 \mod p^n$, so $\iota(a) \not\equiv 0$ in \mathbb{Z}_p . Often $\mathbb{Z} \leq \mathbb{Z}_p$.

Definition 2.1.1. Let $\alpha = (a_n)$, $\beta = (b_n) \in \mathbb{Z}_p$. If $\alpha = \beta$ then $d(\alpha, \beta) = 0$. If $\alpha \neq \beta$, take the smallest n such that $a_n \neq b_n$, and set $d(\alpha, \beta) = p^{-n}$, the p-adic metric on \mathbb{Z}_p . The restriction of d to $\iota(\mathbb{Z})$ is the p-adic metric on \mathbb{Z} .

Thus α and β are close if (a_n) and (b_n) agree modulo p^n for all but large n. Since

$$B\left(0,r\right) = \left\{\alpha = \left(a_{n}\right) \mid \forall n \leq -\log_{p} r, \ a_{n} = 0\right\} = \ker\left(\mathbb{Z}_{p} \to \mathbb{Z}/p^{\left\lfloor -\log_{p} r\right\rfloor}\mathbb{Z}\right),\,$$

open balls are the subgroups $p^n \mathbb{Z}_p \leq \mathbb{Z}_p$.

- $\iota(\mathbb{Z})$ is dense in this metric. Let $\alpha = (a_n) \in \mathbb{Z}_p$ and $\epsilon > 0$. Take $n > -\log_p \epsilon$, and choose $a \in \mathbb{Z}$ such that $a \equiv a_n \mod p^n$. Then $\mathrm{d}(\alpha, \iota(a)) \leq p^{-n} < \epsilon$.
- The p-adic metric on \mathbb{Z} is not complete, since $a_n = 1 + \cdots + p^n$ does not converge in \mathbb{Z} , but does converge in \mathbb{Z}_p .
- The *p*-adic metric on \mathbb{Z}_p is complete. Let $\alpha^{(k)} = \left(a_n^{(k)}\right)_{n \in \mathbb{N}}$ be a Cauchy sequence in \mathbb{Z}_p . For all n there exists K_n such that for all $k, l \geq K_n$, we have $d\left(\alpha^{(k)}, \alpha^{(l)}\right) \leq p^{-n}$, so $a_n^{(k)} = a_n^{(l)}$ for all $k, l \geq K_n$ so for fixed $n, a_n^{(k)}$ is eventually a constant b_n . Then $\beta = (b_n) \in \mathbb{Z}_p$, and $\alpha^{(k)} \to \beta$ in \mathbb{Z}_p .

Thus \mathbb{Z}_p is a completion of \mathbb{Z} , but is not the profinite completion of \mathbb{Z} .

Definition 2.1.2. Let p be a prime. A p-group is a finite group of order p^n for $n \ge 0$. A **pro-**p group is an inverse limit of p-groups.

Definition 2.1.3. Let G be a group and p prime. The set of normal subgroups $N \triangleleft G$ such that $[G:N] = p^n$ for some n form an inverse system \mathcal{N}_p . Since $G/N_1 \times G/N_2$ are p-groups, $N_1 \cap N_2 = \ker(G \to G/N_1 \times G/N_2)$ is a p-group. The **pro-**p **completion** is

$$\widehat{G_{(p)}} = \varprojlim_{N \in \mathcal{N}_p} G/N,$$

where $G/N_1 \to G/N_2$ if $N_1 < N_2$.

Proposition 2.1.4. The additive group \mathbb{Z}_p is abelian and torsionfree.

Proof. $\mathbb{Z}_p \leq \prod_{n \in \mathbb{N}} \mathbb{Z}/p^n \mathbb{Z}$ is abelian. Let $\alpha = (a_n) \in \mathbb{Z}_p \setminus \{0\}$. Suppose $m\alpha = 0$ for $m \in \mathbb{Z}$. We want m = 0. Assume $m = p^r s$ for s coprime to p. Then $\alpha \neq 0$, so there exists n such that $a_n \neq 0$. Consider a_{n+r} . Then $0 \equiv ma_{n+r} \equiv p^r a_{n+r} s \mod p^{n+r}$, so $p^n \mid a_{n+r} s$. Thus $p^n \mid a_{n+r}$, so $a_n \equiv a_{n+r} \equiv 0 \mod p^n$, a contradiction.

Proposition 2.1.5. The ring \mathbb{Z}_p has no zero-divisors.

Proof. Exercise. 1

2.2 The profinite completion of the integers

The profinite completion of the integers is

$$\widehat{\mathbb{Z}} = \varprojlim_{n} \mathbb{Z}/n\mathbb{Z},$$

where $\mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ whenever $n\mathbb{Z} \leq m\mathbb{Z}$, which is if and only if $m \mid n$, so n = mr.

Theorem 2.2.1 (Chinese remainder theorem). There is an isomorphism of topological rings

$$\widehat{\mathbb{Z}} \cong \prod_{p \ prime} \mathbb{Z}_p.$$

Proof. Each natural number n is written as a product of prime powers $n = \prod_{p \text{ prime}} p^{e_p(n)}$. The classical CRT gives natural isomorphisms

$$f_n : \mathbb{Z}/n\mathbb{Z} \longrightarrow \prod_{\substack{p \text{ prime} \\ 1 \longmapsto (1, \dots, 1)}} \mathbb{Z}/p^{e_p(n)}\mathbb{Z},$$

and commutative diagrams

$$\mathbb{Z}/mn\mathbb{Z} \xrightarrow{f_{mn}} \prod_{p} \mathbb{Z}/p^{\mathbf{e}_{p}(mn)}\mathbb{Z}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z}/n\mathbb{Z} \xrightarrow{\sim} \prod_{p} \mathbb{Z}/p^{\mathbf{e}_{p}(n)}\mathbb{Z}$$

Passing to inverse limits,

$$\widehat{\mathbb{Z}} = \varprojlim_{n} \mathbb{Z}/n\mathbb{Z} \xrightarrow{\sim} \varprojlim_{n} \prod_{p} \mathbb{Z}/p^{\mathbf{e}_{p}(n)}\mathbb{Z}$$

$$\prod_{n} \mathbb{Z}/n\mathbb{Z} \xrightarrow{\sim} \prod_{n} \prod_{p} \mathbb{Z}/p^{\mathbf{e}_{p}(n)}\mathbb{Z}$$

The natural continuous surjections

$$\prod_{p} \mathbb{Z}_{p} \twoheadrightarrow \prod_{p} \mathbb{Z}/p^{\mathbf{e}_{p}(n)} \mathbb{Z}$$

form a cone on the inverse system $\left\{\prod_{p}\mathbb{Z}/p^{\mathbf{e}_{p}(n)}\mathbb{Z}\right\}$, so there exists

$$f: \prod_{p} \mathbb{Z}_{p} \twoheadrightarrow \varprojlim_{n} \prod_{p} \mathbb{Z}/p^{e_{p}(n)}\mathbb{Z},$$

which is continuous by Proposition 1.2.14, surjective by Corollary 1.2.20, and injective since every non-trivial element of $\prod_p \mathbb{Z}_p$ is non-trivial in some quotient $\mathbb{Z}/p^e\mathbb{Z}$. So f is a topological isomorphism as required. \square

Corollary 2.2.2. The abelian group $\widehat{\mathbb{Z}}$ is torsionfree abelian.

Corollary 2.2.3. The ring $\widehat{\mathbb{Z}}$ is not an integral domain.

Proof. Any product of non-trivial rings $R_1 \times R_2$ has zero-divisors, since $(r_1, 0) \cdot (0, r_2) = (0, 0)$. An element of $\widehat{\mathbb{Z}}$ is a zero-divisor if and only if it is zero in some \mathbb{Z}_p -factor.

Elements of $\iota(\mathbb{Z})$ are not zero divisors in $\widehat{\mathbb{Z}}$.

 $^{^{1}}$ Exercise

2.3 Profinite matrix groups

For a commutative ring R, we have

Lecture 6 Tuesday 02/02/21

$$\operatorname{Mat}_{N\times M} R = \{N\times M \text{ matrices with elements in } R\}.$$

If N=M, we have a ring structure, where addition and multiplication are given by the usual formula. There exists a determinant function det: $\operatorname{Mat}_{N\times N}R\to R$. Then

$$\mathbb{Z}_p^{NM} \cong \operatorname{Mat}_{N \times M} \mathbb{Z}_p = \varprojlim_{n \in \mathbb{N}} \operatorname{Mat}_{N \times M} \mathbb{Z}/p^n \mathbb{Z}.$$

By continuity of ring operations on \mathbb{Z}_p , addition and multiplication on matrices are continuous, and det: $\operatorname{Mat}_{N\times N}\mathbb{Z}_p\to\mathbb{Z}_p$ is continuous. Since \mathbb{Z}_p is an integral domain, it has a field of fractions \mathbb{Q}_p , so you can do linear algebra over \mathbb{Q}_p . A matrix over \mathbb{Q}_p has an inverse over \mathbb{Q}_p if and only if its determinant is non-zero, and a matrix over \mathbb{Z}_p has an inverse over \mathbb{Z}_p if and only if its determinant and its inverse are in \mathbb{Z}_p^{\times} . Define

$$\operatorname{GL}_N \mathbb{Z}_p = \left\{ A \in \operatorname{Mat}_{N \times N} \mathbb{Z}_p \mid \det A \in \mathbb{Z}_p^{\times} \right\}, \qquad \operatorname{SL}_N \mathbb{Z}_p = \left\{ A \in \operatorname{Mat}_{N \times N} \mathbb{Z}_p \mid \det A = 1 \right\}.$$

Both are profinite groups.

Lemma 2.3.1. For all $N \geq 1$ and p prime,

$$\operatorname{GL}_N \mathbb{Z}_p = \varprojlim_n \operatorname{GL}_N (\mathbb{Z}/p^n \mathbb{Z}), \qquad \operatorname{SL}_N \mathbb{Z}_p = \varprojlim_n \operatorname{SL}_N (\mathbb{Z}/p^n \mathbb{Z}).$$

Proof. The diagrams

$$\begin{array}{ccc} \operatorname{Mat}_{N \times N} \mathbb{Z}_p & \longrightarrow & \operatorname{Mat}_{N \times N} \mathbb{Z}/p^n \mathbb{Z} \\ & & & & \downarrow^{\det} \\ \mathbb{Z}_p & \longrightarrow & \mathbb{Z}/p^n \mathbb{Z} \end{array}$$

commute.

- $A \in \operatorname{GL}_N \mathbb{Z}_p$ if and only if $\det A \in \mathbb{Z}_p^{\times}$, if and only if $\det A_n \in \left(\mathbb{Z}/p^n\mathbb{Z}\right)^{\times}$ for all n, if and only if $A_n \in \operatorname{GL}_N\left(\mathbb{Z}/p^n\mathbb{Z}\right)$ for all n.
- $A \in \operatorname{SL}_N \mathbb{Z}_p$ if and only if $\det A = 1$, if and only if $\det A_n = 1$ for all n, if and only if $A_n \in \operatorname{SL}_N (\mathbb{Z}/p^n\mathbb{Z})$ for all n.

Also have matrices over $\widehat{\mathbb{Z}}$. A warning is that $\widehat{\mathbb{Z}}$ is not an integral domain. Analogously,

$$\operatorname{GL}_N \widehat{\mathbb{Z}} = \left\{ A \in \operatorname{Mat}_{N \times N} \widehat{\mathbb{Z}} \; \middle| \; \det A \in \widehat{\mathbb{Z}}^\times \right\} = \varprojlim_n \operatorname{GL}_N \left(\mathbb{Z} / n \mathbb{Z} \right) = \prod_p \operatorname{GL}_N \mathbb{Z}_p,$$

$$\operatorname{SL}_N\widehat{\mathbb{Z}} = \left\{ A \in \operatorname{Mat}_{N \times N}\widehat{\mathbb{Z}} \; \middle| \; \det A = 1 \right\} = \varprojlim_n \operatorname{SL}_N\left(\mathbb{Z}/n\mathbb{Z}\right) = \prod_p \operatorname{SL}_N\mathbb{Z}_p,$$

since $\operatorname{Mat}_{N\times N}\widehat{\mathbb{Z}} = \prod_{p} \operatorname{Mat}_{N\times N} \mathbb{Z}_{p}$, and

$$\operatorname{SL}_N \mathbb{Z} \leq \operatorname{SL}_N \mathbb{Z}_p, \qquad \operatorname{SL}_N \mathbb{Z} \leq \operatorname{SL}_N \widehat{\mathbb{Z}} = \varprojlim_n \operatorname{SL}_N (\mathbb{Z}/n\mathbb{Z})$$

are dense. See problem sheet 2.

Example 2.3.2. $\binom{79}{49} \in SL_2(\mathbb{Z}/13\mathbb{Z})$ is in the image of $SL_2\mathbb{Z}$.

2.4 Subgroups, quotients, and homomorphisms

Proposition 2.4.1. A closed subgroup of a profinite group is a profinite group.

Proof. Let $G = \varprojlim_{j \in J} G_j$ be a profinite group for G_j finite. Take a closed subgroup $H \leq_{\mathbf{c}} G$ of G. Define $H_j = p_j(H) \leq G_j$. Then H_j , with transition maps $\phi_{ij}|_{H_i} : H_i \to H_j$, are an inverse system of finite groups. Define

$$H' = \varprojlim_{j} H_{j} = \left\{ (g_{j}) \in \prod_{j \in J} G_{j} \mid \forall i \leq j, \ \phi_{ij} \left(g_{i} \right) = g_{j}, \ g_{j} \in H_{j} \right\}.$$

Show that H = H'. If $h = (h_j) \in H$, by definition $h_j = p_j(h) \in H_j$, so $H \leq H'$. Suppose $g = (g_j) \notin H$. Since H is closed, $G \setminus H$ is open, so there exists a basic open set containing g, which does not intersect H. There exists $j \in J$ such that $gU_j = p_j^{-1}(\{g_j\}) \leq G \setminus H$. Therefore for all $h \in H$, $p_j(h) \neq g_j$, since then $h \in H \cap p_j^{-1}(\{g_j\})$, so $g_j \notin H_j$, so $g \notin H'$. So H = H'.

Remark 2.4.2.

- The two topologies on H agree by id : $(H, \tau_{\text{profinite}}) \to (H, \tau_{\text{subspace}})$, which is continuous by Proposition 1.2.14.
- A better name for H' is \overline{H} , the closure. Actually proved that $H' = \overline{H} = H$.

Proposition 2.4.3. Let $G = \varprojlim_{j} G_{j}$ and $H \leq G$. Set $H_{j} = p_{j}(H) \leq G_{j}$. Then the closure of H is

$$\overline{H} = \varprojlim_{j} H_{j}.$$

Lemma 2.4.4. Let $f: G_1 \to G_2$ be a surjective homomorphism and $H \leq G_1$. Then $[G_1: H] \geq [G_2: f(H)]$.

Proposition 2.4.5. Let $G = \varprojlim_j G_j$ for (G_j) a surjective inverse system, so $G \twoheadrightarrow G_j$. Let $H \leq_{\mathbf{c}} G$ and set $H_j = p_j(H) \leq G_j$. Then H is finite index if and only if $[G_j : H_j]$ is constant on a cofinal subsystem, if and only if $[G_j : H_j]$ is bounded for all j. If this is true, then $[G : H] = [G_i : H_i]$ for $i \in I$.

Proof. $p_j: G \to G_j$ are surjective, so $[G:H] \geq [G_j:H_j]$. Suppose $[G:H] \geq N$. There exist distinct cosets g_1H,\ldots,g_NH of H in G, if and only if $g_n^{-1}g_m \notin H$ if $n \neq m$, so there exists $j_{n,m} \in J$ such that $p_{j_{n,m}}\left(g_n^{-1}g_m\right) \notin H_{j_{n,m}}$. Take $k \leq j_{n,m}$ for all n and m. Then $p_k\left(g_n^{-1}g_m\right) \notin H_k$ for all $n \neq m$, so $p_k\left(g_n\right)H_k$ are distinct cosets of H_k in G_k , so $[G_k:H_k] \geq N$. For any i in the cofinal subsystem $J_{\leq k}$, it follows $[G_i:H_i] \geq N$ for all $i \leq k$. If [G:H] = N is finite, take k as above and $I = J_{\leq k}$. Then $[G:H] \geq [G_i:H_i] \geq N = [G:H]$ for all $i \in I$. If [G:H] is infinite, assume I is cofinal and $[G_i:H_i] = N$ for all $i \in I$. Then there exists k such that $[G_k:H_k] \geq N+1$. But there exists $i \in I$ such that $i \leq k$, then $[G_i:H_i] \geq [G_k:H_k] \geq N+1 > N = [G_i:H_i]$, a contradiction.

Proposition 2.4.6. Let G be a profinite group and N a closed normal subgroup. Then G/N, with the quotient topology, is a profinite group.

Proof. Take $G = \varprojlim_j G_j$ for (G_j) a surjective inverse system. Let $N_j = p_j(N) \triangleleft G_j = p_j(G)$. Recall $N = \varprojlim_j N_j$. Define $Q_j = G_j/N_j$. Since $\phi_{ij}(N_i) \leq N_j$, we get quotient homomorphisms $\psi_{ij}: Q_i \to Q_j$, which are transition maps for the Q_j . Set $Q = \varprojlim_j Q_j$. The map $\prod_h G_j \to \prod_j Q_j$ is continuous, so there is a continuous surjective group homomorphism $f: G \to Q$. The kernel of this map is N, since f(g) = 1 if and only if $q_j(f(g)) = 1$ for all j, if and only if $g_j \in N_j$ for all j, if and only if $g \in \varprojlim_j N_j = N$. By the first isomorphism theorem for groups,

Since $G \to Q$ is continuous and $G \to G/N$ is the quotient map, \overline{f} is continuous. Since G/N is compact and Q is Hausdorff, \overline{f} is a homeomorphism.

This is the first isomorphism theorem for profinite groups.

Definition 2.4.7. Let $(G_j)_{j\in J}$ and $(H_j)_{j\in J}$ be inverse systems of finite groups, over the same poset J. A morphism of inverse systems (f_j) is a family of homomorphisms $f_j: G_j \to H_j$, such that for all $i \leq j$,

Lecture 7 Thursday 04/02/21

$$G_{i} \xrightarrow{f_{i}} H_{i}$$

$$\phi_{ij}^{G} \downarrow \qquad \qquad \downarrow \phi_{ij}^{H}$$

$$G_{j} \xrightarrow{f_{i}} H_{j}$$

commutes, so $\phi_{ij}^H \circ f_i = f_j \circ \phi_{ij}^G$.

Proposition 2.4.8. Let $(f_j): (G_j) \to (H_j)$ be a morphism of inverse systems. Then there is a unique continuous homomorphism $f: G = \varprojlim_j G_j \to H = \varprojlim_j H_j$ such that

$$\begin{array}{ccc} G & \stackrel{f}{\longrightarrow} & H \\ p_j^G & & & \downarrow p_j^H \; , \\ G_j & \stackrel{f}{\longrightarrow} & H_j \end{array}$$

so $p_i^H \circ f = f_j \circ p_i^G$ for all $j \in J$.

Proof. The maps $f_j \circ p_j^G : G \to H_j$ form a cone on the inverse system (H_j) ,

since

$$\phi_{ij}^H \circ f_i \circ p_i^G = f_j \circ \phi_{ij}^G \circ p_i^G = f_j \circ p_j^G.$$

So by definition of limits, there exists a unique $f:G\to H=\varprojlim_j H_j$ such that $p_j^H\circ f=f_j\circ p_j^G$.

Thus f is **induced** by the f_j by passing to an inverse limit.

Proposition 2.4.9. Let $G = \varprojlim_{j \in J} G_j$ and $H = \varprojlim_{i \in I} H_i$ be inverse limits of finite groups, where I and J are countable inverse systems with no minimal element. Let $f: G \to H$ be a continuous homomorphism. Then there exist cofinal subsystems $J' \subseteq J$ and $I' \subseteq I$, an order-preserving bijection $J' \cong I'$, and a morphism of inverse systems $(f_j): (G_j)_{j \in J'} \to (H_i)_{i \in I'}$ inducing f.

Proof. Without loss of generality, use Proposition 1.3.8 to assume J and I are linearly ordered. Without loss of generality both are \mathbb{N} , with the wrong-way ordering. Construct an increasing sequence (k_n) of natural numbers as follows. Each map $p_n^H \circ f: G \to H \to H_n$ is a continuous homomorphism, so its kernel is open in G. By Proposition 1.2.17 there exists k_n such that $\ker(G \to G_{k_n}) \leq \ker(G \to H_n)$, which means there is a quotient homomorphism

$$\begin{array}{c|c} G & \xrightarrow{f} & H \\ p_{k_n}^G & & \downarrow p_n^H \\ G_{k_n} & \xrightarrow{f_n} & H_n \end{array}$$

Then $\ker(G \to G_{n+1}) \le \ker(G \to G_n)$, so without loss of generality $k_n > k_{n-1}$. Now $J' = \{k_n\}_{n \in \mathbb{N}}$ give a cofinal subsystem of $J = \mathbb{N}$, and the f_n are the required morphisms of inverse systems.

2.5 Generators of profinite groups

Definition 2.5.1. Let G be a topological group, and let S be a subset of G. Then S is a **topological** generating set for G if the subgroup $\langle S \rangle$ is dense in G, and G is **topologically finitely generated** if it has some finite topological generating set S.

Definition 2.5.2. Let G be a topological group and $S \subseteq G$. The closed subgroup of G topologically generated by S is the smallest closed subgroup of G which contains S. Denoted $\overline{\langle S \rangle}$.

Proposition 2.5.3. Let G be a topological group and H a subgroup of G. Then \overline{H} is a subgroup of G. Hence for $S \subseteq G$, the closed subgroup of G generated by S is equal to the closure of $\langle S \rangle$.

Proof. Exercise. 2

Lemma 2.5.4. A finite index subgroup of a finitely generated group is finitely generated.

Proposition 2.5.5. If a profinite group G is topologically finitely generated and U is an open subgroup of G then U is topologically finitely generated.

Proof. Let S be a finite set such that $\langle S \rangle$ is dense in G. Then $\Gamma = U \cap \langle S \rangle$ is finite index in $\langle S \rangle$, hence Γ is finitely generated, so $\Gamma = \langle S' \rangle$ for S' finite. Since U is open, and $\langle S \rangle$ is dense, $\langle S' \rangle = U \cap \langle S \rangle$ is dense in U. So U is topologically finitely generated.

Proposition 2.5.6. Let (G_j) be a surjective inverse system of finite groups with $G = \varprojlim_j G_j$. Let $S \subseteq G$. Then S is a topological generating set for G if and only if $p_j(S)$ generates G_j for all j.

Proof. By Corollary 1.2.19, $\langle S \rangle$ is dense in G if and only if $G_j = p_j(\langle S \rangle) = \langle p_j(S) \rangle$ for all j.

Lemma 2.5.7. Let G be a topologically finitely generated profinite group. Then G may be written as the inverse limit of a countable inverse system of finite groups.

Proof. A continuous homomorphism from G to a finite group is determined by the image of a topological generating set S, since a function on S determines all of a homomorphism from $\langle S \rangle$ and continuity gives the behaviour on all of G. So there are only countably many continuous homomorphisms from G to $\operatorname{Sym} n$ for $n \in \mathbb{N}$. Every open normal subgroup of G is the kernel of such a continuous homomorphism. So there are only countably many open normal subgroups of G. Then $\mathcal{U} = \{U \triangleleft_O G\}$ is a neighbourhood base of the identity, so by Proposition 1.2.22, $G = \varprojlim_{U \in \mathcal{U}} G/U$.

Example 2.5.8. Let G be a topologically finitely generated profinite group. Then there are only finitely many open subgroups of G of index at most n. See Lemma 1.2.10. Define

$$G_n = \bigcap \{ U \mid U \leq_{o} G, \ [G:U] \leq n \}.$$

Then $G_n \triangleleft G$, and G_n is open in G. And $\{G_n\}$ is a neighbourhood base of the identity. So

$$G = \varprojlim_{n \in \mathbb{N}} G/G_n.$$

Proposition 2.5.9. Let \mathbb{Z}_p^{\times} be the set of elements α of \mathbb{Z}_p which topologically generate \mathbb{Z}_p . Then $\alpha \in \mathbb{Z}_p^{\times}$ if and only if $\alpha \not\equiv 0 \mod p$. Hence \mathbb{Z}_p^{\times} is a closed uncountable subset of \mathbb{Z}_p . For every n, and every generator $a_n \in (\mathbb{Z}/p^n\mathbb{Z})^{\times}$ there is some $\alpha \in \mathbb{Z}_p^{\times}$ such that $\alpha \equiv a_n \mod p^n$.

Proof. For the last part, a_n is the image of α , since it is a surjective inverse system, and if a_n generates $\mathbb{Z}/p^n\mathbb{Z}$, it is coprime to p. If $\alpha=(a_n)$ such that $a_1\neq 0$, then $p\nmid a_n$ for any n. Hence a_n is coprime to p, and so generates $\mathbb{Z}/p^n\mathbb{Z}$ for all n. So $\langle \alpha \rangle$ is dense in \mathbb{Z}_p by an earlier result.

Remark 2.5.10. \mathbb{Z}_p^{\times} is the set of units in the ring \mathbb{Z}_p .

 \Leftarrow If α is a unit, then $\alpha \mod p^n$ is a unit in $\mathbb{Z}/p^n\mathbb{Z}$, so generates $\mathbb{Z}/p^n\mathbb{Z}$. Then α topologically generates \mathbb{Z}_p .

Lecture 8 Saturday 06/02/21

 $^{^2}$ Exercise

⇒ Consider the group homomorphism

$$f : \mathbb{Z}_p \longrightarrow \mathbb{Z}_p \\ x \longmapsto \alpha x ,$$

which is continuous as multiplication in a ring is continuous. So im f is a closed subgroup of \mathbb{Z}_p , containing α . Then α generates \mathbb{Z}_p , so the only closed subgroup containing α is \mathbb{Z}_p itself. So $1 \in \text{im } f$, so there exists β such that $\alpha\beta = 1$.

Thus α is a unit if and only if $\{\alpha\}$ is a topological generating set for \mathbb{Z}_p .

Example 2.5.11. If $p \neq 2$, then 2 is invertible in \mathbb{Z}_p , so 2^{-1} exists. If p = 3, then $2^{-1} = (\dots, 5, 2) \in \mathbb{Z}_3 \leq \prod_{n \in \mathbb{N}} \mathbb{Z}/3^n \mathbb{Z}$.

Proposition 2.5.12. $\alpha \in \widehat{\mathbb{Z}}^{\times}$ if and only if $\alpha \mod n \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ for all n. For any n, and every $k \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ there exists a generator $\alpha \in \widehat{\mathbb{Z}}^{\times}$ such that $\alpha \equiv k \mod n$.

Proof. Follows from Proposition 2.5.9 via the CRT, since $\widehat{\mathbb{Z}} = \prod_{p} \mathbb{Z}_{p}$.

Theorem 2.5.13 (Gaschutz's lemma for finite groups). Let f: G o H be a surjective homomorphism of finite groups. Suppose G has some generating set of size d. For any generating set $\{z_1, \ldots, z_d\} \subseteq H$, there exists a generating set $\{x_1, \ldots, x_d\} \subseteq G$ such that $f(x_i) = z_i$ for all i.

Really, talking about generating vectors $\underline{x} = (x_1, \dots, x_d) \in G^d$. Extend f to $f: G^d \to H^d$.

Proof. We will prove, by induction on |G|, for H fixed, the following statement. The number

$$N_G(\underline{y}) = |\{\text{generating vectors } \underline{x} \text{ of } G \mid f(\underline{x}) = \underline{y}\}|,$$

where $\underline{y} \in H^d$ is a generating vector of H, is independent of \underline{y} . Want to show $N_G(\underline{z}) > 0$, and G has some generating vector $\underline{x'} \in G^d$ so $N_G(\underline{z}) = N_G(f(\underline{x'})) > 0$. Let $y \in H^d$ be a generating vector. Let

 $C = \{d\text{-generator proper subgroups of } G\}.$

Every $\underline{x} \in G^d$ such that $f(\underline{x}) = y$ either generates G or generates some $C \in \mathcal{C}$. Therefore

$$N_G(\underline{y}) + \sum_{C \in \mathcal{C}} N_C(\underline{y}) = |\{\underline{x} : f(\underline{x}) = \underline{y}\}| = |\ker f|^d.$$

Thus $N_G(\underline{y}) = |\ker f|^d - \sum_{C \in \mathcal{C}} N_C(\underline{y})$, which is independent of \underline{y} by induction.

Theorem 2.5.14 (Gaschutz's lemma for profinite groups). Let $f: G \to H$ be a continuous surjective homomorphism of profinite groups. Suppose G has a topological generating set of size d. Then for any topological generating set $\{z_1, \ldots, z_d\}$ of H, there is a topological generating set $\{x_1, \ldots, x_d\}$ of G such that $f(x_i) = z_i$ for all i.

Proof. By Proposition 1.3.6 and Proposition 2.4.9 we may assume and write $G = \varprojlim_{j \in J} G_j$ and $H = \varprojlim_{j \in H} H_j$, surjective inverse systems of finite groups, with a morphism of inverse systems $(f_j) : (G_j) \to (H_j)$ such that $f = \varprojlim_j f_j$. It is forced that f_j is surjective, since

$$\begin{array}{ccc} G & \stackrel{f}{\longrightarrow} & H \\ p_j^G & & & \downarrow p_j^H \\ G_j & \stackrel{f}{\longrightarrow} & H_j \end{array}.$$

Let \underline{z} be the given topological generating set of H. Set \underline{z}_j for $j \in J$ to be the image of \underline{z} in H_j , so $\underline{z}_j = p_j^H(\underline{z})$ is a generating vector of H_j . Consider the finite sets

$$X_{j} = \{\text{generating vectors } \underline{x}_{i} \in G_{i}^{d} \mid f_{j}(\underline{x}_{i}) = \underline{z}_{i}\} \neq \emptyset,$$

by Gaschutz. The X_j form an inverse system, since $\phi_{ij}\left(X_i\right)\subseteq X_j$. Therefore $\varprojlim_j X_j$ is non-empty. If $\underline{x}\in\varprojlim_j X_j\subseteq G^d$ such that $p_j^G\left(\underline{x}\right)\in X_j$, then \underline{x} is a topological generating set of G and $p_j^H\left(f\left(\underline{x}\right)\right)=\underline{z}_j$ for all j, so $f\left(\underline{x}\right)=\underline{z}$.

3 Profinite completions

3.1 Residual finiteness

Notation 3.1.1. Discrete abstract groups will be Greek letters and profinite groups will be Roman letters. Given an abstract group Γ and an inverse system $\mathcal{N} = \{N \triangleleft_f \Gamma\}$, there is an inverse system of finite groups Γ/N . Then $\widehat{\Gamma} = \varprojlim_{N \in \mathcal{N}} \Gamma/N$, where $\Gamma/N_1 \to \Gamma/N_2$ if $N_1 \leq N_2$. Also had a canonical morphism $\iota_{\Gamma} = \iota : \Gamma \to \widehat{\Gamma}$. The image of ι is dense by Corollary 1.2.19. Also implies for any finite generating set $S \subseteq \Gamma$, $\iota(S)$ is a topological generating set of $\widehat{\Gamma}$, so if Γ is finitely generated, then $\widehat{\Gamma}$ is topologically finitely generated.

Proposition 3.1.2. Let $f: \Delta \to \Gamma$ be a group homomorphism. Then there exists a unique continuous group homomorphism $\hat{f}: \hat{\Delta} \to \hat{\Gamma}$ such that $\hat{f} \circ \iota_{\Delta} = \iota_{\Gamma} \circ f$, so

$$\begin{array}{ccc} \Delta & \stackrel{f}{\longrightarrow} & \Gamma \\ \iota_{\Delta} \downarrow & & \downarrow \iota_{\Gamma} \\ \widehat{\Delta} & \stackrel{\cdots}{\longrightarrow} & \widehat{\Gamma} \end{array}$$

Proof. Uniqueness will follow from the density of $\iota_{\Delta}(\Delta)$ in $\widehat{\Delta}$. Take two \widehat{f}_1 and \widehat{f}_2 satisfying Proposition 3.1.2. Consider

$$S = \left\{ \delta \in \widehat{\Delta} \mid \widehat{f}_1(\delta) = \widehat{f}_2(\delta) \right\}.$$

Then S is closed, since it is the preimage of the diagonal in $\widehat{\Gamma} \times \widehat{\Gamma}$ under $(\widehat{f}_1, \widehat{f}_2) : \widehat{\Delta} \to \widehat{\Gamma} \times \widehat{\Gamma}$, and S contains $\iota_{\Delta}(\Delta)$, which is dense. So $S = \widehat{\Delta}$.

Case 1. Γ is finite, so $\Gamma = \widehat{\Gamma}$. Then ker f is a finite index normal subgroup M of Δ , so there exists a projection map $p_M : \widehat{\Delta} \to \Delta/M$. So we get a composition

Case 2. General case. Take some $N \triangleleft_f \Gamma$. There exists a unique $q_N : \widehat{\Delta} \to \Gamma/N$ such that $q_N \circ \iota_{\Delta} = p_N \circ \iota_{\Gamma} \circ f$. Then (q_N) form a cone on the inverse system, since

$$\phi_{N_1N_2}^{\Gamma} \circ q_{N_1} \circ \iota_{\Delta} = \phi_{N_1N_2}^{\Gamma} \circ p_{N_1} \circ \iota_{\Gamma} \circ f = p_{N_2} \circ \iota_{\Gamma} \circ f = q_{N_2} \circ \iota_{\Delta}.$$

Thus there exists a unique $\widehat{f}:\widehat{\Delta}\to\widehat{\Gamma}$ such that $p_N\circ\widehat{f}=q_N$ for all N, so

and

$$p_N \circ \widehat{f} \circ \iota_{\Delta} = q_N \circ \iota_{\Delta} = p_N \circ \iota_{\Gamma} \circ f.$$

Corollary 3.1.3. $\hat{\cdot}$ is a functor.

Definition 3.1.4. Let Γ be an abstract group. Then Γ is **residually finite** if for every $\gamma \in \Gamma \setminus \{1\}$, there exists $N \triangleleft_{\mathrm{f}} \Gamma$ such that $\gamma \notin N$, if and only if $\gamma N \neq 1$ in Γ/N , if and only if there exists $\phi : \Gamma \to G$ finite such that $\phi(\gamma) \neq 1$.

Lecture 9 Tuesday 09/02/21

Proposition 3.1.5. Γ is residually finite if and only if $\iota : \Gamma \to \widehat{\Gamma}$ is injective.

Proof.

$$\begin{array}{cccc} \iota & : & \Gamma & \longrightarrow & \widehat{\Gamma} \leq \prod_{N} \Gamma/N \\ & & \gamma & \longmapsto & (\gamma N) \end{array}$$

Proposition 3.1.6. Any subgroup of a residually finite group is residually finite.

Proposition 3.1.7. Let Γ be an abstract group, and let $\Delta \leq \Gamma$ be finite index. If Δ is residually finite, then Γ is residually finite.

Proof. Let $\gamma \in \Gamma \setminus \{1\}$.

Case 1. If $\gamma \notin \Delta$, consider

$$\gamma \notin N = \operatorname{Core}_{\Gamma} \Delta = \bigcap_{g \in \Gamma} g \Delta g^{-1} \triangleleft_{\mathsf{f}} \Gamma,$$

which has finitely many distinct terms, since if $g\Delta = g'\Delta$ then $g = g'\delta$ so $g\Delta g^{-1} = g'\delta\Delta\delta^{-1}g'^{-1} = g'\Delta g'^{-1}$.

Case 2. If $\gamma \in \Delta$, there exists $N \triangleleft_f \Delta$ such that $\gamma \notin N$. Now $\gamma \notin \operatorname{Core}_{\Gamma} N \triangleleft_f \Gamma$.

Proposition 3.1.8. Finitely generated abelian groups are residually finite.

Proof. Exercise. 3

Proposition 3.1.9. The groups $SL_N \mathbb{Z} \leq_f GL_N \mathbb{Z}$ are residually finite for all N.

Proof. For $A \in GL_N \mathbb{Z} \setminus \{I\}$. Take a prime p larger than the absolute value of all entries of A. Then we have the homomorphism

$$\begin{array}{ccc} \operatorname{GL}_N \mathbb{Z} & \longrightarrow & \operatorname{GL}_N \left(\mathbb{Z}/p\mathbb{Z} \right) \\ A & \longmapsto & A_p \neq \mathbf{I} \end{array}.$$

These linear groups have as subgroups many important groups, such as free groups in $SL_2\mathbb{Z}$.

Theorem 3.1.10 (Malcev's theorem). Let Γ be a finitely generated subgroup of GL_N K where K is a field. Then Γ is residually finite.

Proof. The entries of a generating set of Γ generate a finitely generated subring R of K. Commutative algebra says that R has many maximal ideals $\mathfrak{p} \subseteq R$, such that R/\mathfrak{p} is a finite field. Use maps $\operatorname{GL}_N R \to \operatorname{GL}_N (R/\mathfrak{p})$ to show residual finiteness.

Proposition 3.1.11. The fundamental group of a surface is residually finite.

Proof. Surface groups, via geometry, are subgroups of Isom $\mathbb{H}^2 \cong \operatorname{PSL}_2 \mathbb{R}$.

³Exercise: classification of finitely generated abelian groups

Lemma 3.1.12. Let Γ be an abstract group. The open subgroups of $\widehat{\Gamma}$ are exactly $\overline{\iota(\Delta)}$ for $\Delta \leq_f \Gamma$.

Proof. If $\Delta \leq_{\rm f} \Gamma$ is finite index, take a finite set of coset representatives $\{\gamma_i\}$ of Δ in Γ , so $\Gamma = \bigcup_i \gamma_i \Delta$. Then

$$\widehat{\Gamma} = \overline{\iota\left(\Gamma\right)} = \overline{\bigcup_{i} \iota\left(\gamma_{i}\Delta\right)} = \bigcup_{i} \iota\left(\gamma_{i}\right) \overline{\iota\left(\Delta\right)},$$

so $\overline{\iota(\Delta)}$ is closed, and finite index, if and only if open. If $U \leq_{o} \widehat{\Gamma}$, then $\iota(\Gamma)$ is dense, so $U = \overline{\iota(\Gamma) \cap U}$. Set $\Delta = \iota^{-1}(U) \leq_{f} \Gamma$, and $\iota(\Delta) = \iota(\Gamma) \cap U$. Thus $U = \overline{\iota(\Delta)}$.

Theorem 3.1.13. Let G and H be topologically finitely generated profinite groups. Suppose the sets of isomorphism types of continuous finite quotients of G and H are equal. Then G and H are isomorphic profinite groups.

Topologically finitely generated is necessary since $(\mathbb{Z}/2\mathbb{Z})^{\mathbb{N}} \ncong (\mathbb{Z}/2\mathbb{Z})^{\mathbb{R}}$. Continuous is not actually necessary by a hard theorem by Nikolov and Segal.

Proof. Let G_n be the intersection of all open subgroups of G of index at most n. Similarly, H_n . By Example 2.5.8, $G = \varprojlim_n G/G_n$ and $H = \varprojlim_n H/H_n$. By assumption there exists $V \triangleleft_0 H$, such that $G/G_n \cong H/V$. The intersection of index at most n subgroups of G/G_n is trivial, and the intersection of index at most n subgroups of H/V is trivial. Taking preimages, there exist index at most n open subgroups of H whose intersection is contained in V. Then $H_n \leq V$, so $|G/G_n| = |H/V| \leq |H/H_n|$. By symmetry, $|G/G_n| \geq |H/H_n|$, so equality holds and $V = H_n$. So $G/G_n \cong H/H_n$ for all n. We want a morphism of inverse systems, so commuting diagrams

$$G/G_n \longrightarrow H/H_n$$

$$\downarrow \qquad \qquad \downarrow$$

$$G/G_{n-1} \longrightarrow H/H_{n-1}$$

Let

$$S_n = \{\text{isomorphisms } f_n : G/G_n \to H/H_n\} \neq \emptyset.$$

If $f_n \in S_n$, then f_n takes an index at most n-1 subgroup of G/G_n to an index at most n-1 subgroup of H/H_n . The intersection of such subgroups is G_{n-1}/G_n . So f_n maps G_{n-1}/G_n to H_{n-1}/H_n . So there is a well-defined quotient map such that the diagram

$$G/G_{n-1} \xrightarrow{\phi_{n,n-1}(f_n)} H/H_{n-1}$$

$$\uparrow \qquad \qquad \uparrow$$

$$G/G_n \xrightarrow{\sim} H/H_n$$

commutes. The $\phi_{n,n-1}: S_n \to S_{n-1}$ make (S_n) into an inverse system. Then $\varprojlim_n S_n$ is non-empty, and an element of $\varprojlim_n S_n \le \prod_n S_n$ is a sequence of f_n such that all diagrams commute. Thus there is an isomorphism of inverse systems, so $G \cong H$.

Theorem 3.1.14. Let Γ and Δ be finitely generated abstract groups. Suppose the sets of isomorphism types of finite quotients of Γ and Δ are equal. Then $\widehat{\Gamma} \cong \widehat{\Delta}$.

Lecture 10 Thursday 11/02/21

Definition 3.1.15. A property \mathcal{P} of groups is a **profinite invariant** if, whenever two finitely generated residually finite groups G and H have $\widehat{G} \cong \widehat{H}$, G has \mathcal{P} if and only if H has \mathcal{P} .

Proposition 3.1.16. Being abelian is a profinite invariant.

Proof. Let G and H be finitely generated residually finite groups such that $\widehat{G} \cong \widehat{H}$, with H abelian. Every quotient group of H is abelian, so every finite quotient of G is abelian. Suppose G is not abelian. There exist $g_1, g_2 \in G$ such that $[g_1, g_2] \neq 1$. Since G is residually finite, there exists a finite quotient Q of G and $\phi: G \twoheadrightarrow Q$, such that $[\phi(g_1), \phi(g_2)] = \phi([g_1, g_2]) \neq 1$. But Q is abelian, a contradiction.

Proposition 3.1.17. Let G and H be finitely generated groups with $\widehat{G} \cong \widehat{H}$. Then the abelianisations $G_{ab} = G/[G,G]$ and $H_{ab} = H/[H,H]$ are isomorphic.

Proof. Suppose $\widehat{G} \cong \widehat{H}$. We claim $\widehat{G_{ab}} \cong \widehat{H_{ab}}$. Since G and H have the same finite quotients they have the same abelian finite quotients, which are the finite quotients of G_{ab} and H_{ab} , since

It remains to show, if A and A' are finitely generated abelian groups with $\widehat{A} \cong \widehat{A'}$ then $A \cong A'$. By the classification, $A = \mathbb{Z}^r \times T$ and $A' \cong \mathbb{Z}^s \times T'$ for $r, s \in \mathbb{N}$ and T and T' finite. We can see r and T from finite quotients, since

$$r = \max \left\{ k \mid \forall n, \ A \twoheadrightarrow (\mathbb{Z}/n\mathbb{Z})^k \right\} = \max \left\{ k \mid \forall n, \ A' \twoheadrightarrow (\mathbb{Z}/n\mathbb{Z})^k \right\} = s.$$

Having found r, T is the largest finite group such that $A woheadrightarrow (\mathbb{Z}/n\mathbb{Z})^r \times T$ for all n, which is T'.

Corollary 3.1.18. If G is abelian, the property of being isomorphic to G is a profinite invariant.

Example 3.1.19. Let

$$\phi : \mathcal{C}_{25} \longrightarrow \mathcal{C}_{25}
t \longmapsto t^6$$

be an automorphism, where $C_{25} = \mathbb{Z}/25\mathbb{Z} = \langle t \rangle$. Form semidirect products

$$G_1 = \mathcal{C}_{25} \rtimes_{\phi} \mathbb{Z}, \qquad \left(t^a, s^b\right) *_1 \left(t^c, s^d\right) = \left(t^a \phi^b \left(t^c\right), s^{b+d}\right),$$

$$G_2 = \mathcal{C}_{25} \rtimes_{\phi^2} \mathbb{Z}, \qquad (t^a, s^b) *_2 (t^c, s^d) = (t^a \phi^{2b} (t^c), s^{b+d}),$$

where $\mathbb{Z} = \langle s \rangle$. Note that ϕ is of order five, so $\phi^5 = \mathrm{id}$ and $\phi^k = \phi^l$ if and only if $k \equiv l \mod 5$.

• Claim that G_1 is not isomorphic to G_2 . Suppose $\Phi: G_2 \to G_1$ is an isomorphism. Each G_i has a unique order 25 subgroup. So $\Phi(\mathcal{C}_{25}) = \mathcal{C}_{25}$ and $\Phi(t,1) = (t^a,1)$ for some a coprime to 25. Set $\Phi(1,s) = (t^b,s^c)$, and s^c generates \mathbb{Z} , so $c = \pm 1$. A contradiction comes from the computation of

and since $\phi^2(t^a) = \phi^c(t^a)$, $\phi^2 = \phi^c$, so $c \equiv 2 \mod 5$.

• Consider finite quotients of G_1 . Let $f: G_1 \to Q$ be a finite quotient map. If $\operatorname{im}(\mathbb{Z} \to G_1 \to Q)$ has order m, then $\operatorname{ker} f \geq 5m\mathbb{Z}$. Then f factors through the quotient $\mathcal{C}_{25} \rtimes_{\phi} \mathbb{Z}/5m\mathbb{Z}$, which is cofinal, so

$$\widehat{G}_1 = \varprojlim_m \mathcal{C}_{25} \rtimes_{\phi} \mathbb{Z}/5m\mathbb{Z} = \mathcal{C}_{25} \rtimes_{\phi} \widehat{\mathbb{Z}}.$$

By Gaschutz lemma, there exists $\kappa \in \widehat{\mathbb{Z}}^{\times}$ such that $\kappa \equiv 2 \mod 5$. We may now build an isomorphism defined by

$$\Omega : \widehat{G_2} \longrightarrow \widehat{G_1}$$
 $(t^b, s^{\lambda}) \longmapsto (t^b, s^{\lambda \kappa})$.

This is a continuous bijection, and can compute it is a group homomorphism.

Question 3.1.20 (Remeslennikov's question). Let F be a finitely generated free group, and G a finitely generated residually finite group. Is it true that $\widehat{F} \cong \widehat{G}$ implies that $F \cong G$?

Question 3.1.21. Does there exist G a finitely generated residually finite group, other than a free group, and an integer n such that a finite group Q is a quotient of G if and only if Q has a generating set with n elements?

Proposition 3.1.22. Let F and F' be finitely generated free groups. If $\widehat{F} \cong \widehat{F'}$ then $F \cong F'$.

$$\textit{Proof.} \ \text{From earlier, if} \ \widehat{F} \cong \widehat{F'} \ \text{then} \ \mathbb{Z}^{\operatorname{rk} F} = F_{\operatorname{ab}} \cong F'_{\operatorname{ab}} = \mathbb{Z}^{\operatorname{rk} F'}. \ \text{Thus } \operatorname{rk} F = \operatorname{rk} F', \text{ so } F \cong F'. \\ \square$$

How about surface groups? If S_q is the fundamental group of an orientable surface of genus g, then

$$S_q = \langle a_1, b_1, \dots, a_q, b_q \mid [a_1, b_1] \dots [a_q, b_q] = 1 \rangle.$$

Then the abelianisation of S_g is \mathbb{Z}^{2g} . Hence $\widehat{S_g} \not\cong \widehat{F_r}$, unless possibly r = 2g.

Theorem 3.1.23 (Basic correspondence). Let G_1 and G_2 be finitely generated residually finite groups, and suppose $\phi : \widehat{G_1} \cong \widehat{G_2}$. Then there is a bijection

 $\psi: \{\mathit{finite index subgroups of}\ G_1\} \rightarrow \{\mathit{finite index subgroups of}\ G_2\}\,,$

such that, if $K \leq_f H \leq_f G_1$, then

- $\psi(K) \leq \psi(H)$ and $[H:K] = [\psi(H):\psi(K)]$,
- $K \triangleleft H$ if and only if $\psi(K) \triangleleft \psi(H)$,
- if $K \triangleleft H$, then $H/K \cong \psi(H)/\psi(K)$, and
- $\widehat{H} \cong \widehat{\psi(H)}$.

By the Nielsen-Schreier theorem, F_{2g} has an index two subgroup, which is free of rank 4g-1, so has abelianisation odd rank. Any finite index subgroup of a surface group is a surface group, so it has even rank abelianisation, contradicting the basic correspondence, so $\widehat{F_{2g}} \not\cong \widehat{S_g}$.

Lecture 11 Saturday 13/02/21

Remark 3.1.24.

- Residually finite is not actually necessary, by replacing G_1 by $G_1/\ker\iota_{G_1}$ for $\iota:G_1\to \widehat{G_1}$.
- ϕ and ψ do not depend on any homomorphism $G_1 \to G_2$.

Proposition 3.1.25. Let G be a finitely generated residually finite group. Let ψ be the function

$$\psi : \{ \text{finite index subgroups } H \leq G \} \longrightarrow \left\{ \begin{array}{ccc} \text{open subgroups of } \widehat{G} \\ H & \longmapsto & \overline{H} \end{array} \right. .$$

Then, if $K \leq_{\mathrm{f}} H \leq_{\mathrm{f}} G$,

- 1. ψ is a bijection,
- 2. $[H:K] = [\overline{H}:\overline{K}],$
- 3. $K \triangleleft H$ if and only if $\overline{K} \triangleleft \overline{H}$,
- 4. if $K \triangleleft H$, then $H/K \cong \overline{H}/\overline{K}$, and
- 5. $\overline{H} \cong \widehat{H}$.

Proof.

1. Let $H \leq_{\mathrm{f}} G$ and take coset representatives $\{g_i\}$ of H in G. Since $\widehat{G} = \overline{\bigcup_i g_i H} = \bigcup_i g_i \overline{H}$, \overline{H} is finite index, so open. Conversely, if $U \leq_{\mathrm{o}} \widehat{G}$ then $U = \overline{G \cap U}$, since G is dense and U is open and closed, so let $H = G \cap U$. So ψ is surjective. To show ψ is injective, we show $\overline{H} \cap G = H$. Considering the action of G on G/H, gives a continuous homomorphism

$$\begin{array}{ccc} G & \longrightarrow & \operatorname{Sym}\left(G/H\right) \\ \cap & & & \\ \widehat{G} & & & \end{array}.$$

Then H fixes the coset 1H. By continuity of the action, \overline{H} fixes 1H. But if $g \in G \setminus H$, then $g \cdot 1H = gH \neq 1H$, so $g \notin \overline{H}$. So $\overline{H} \cap G = H$.

- 2. Let $\{g_i\}$ be a set of coset representatives. We know that the $g_i\overline{H}$ cover \widehat{G} . They are distinct cosets, since if $g_i\overline{H}=g_j\overline{H}$, then $g_i^{-1}g_j\in\overline{H}\cap G=H$. So $g_iH=g_jH$, so $g_i=g_j$, so $\left[\widehat{G}:\overline{H}\right]=[G:H]$. Also, there is a natural bijection of coset spaces $G/H\to\widehat{G}/\overline{H}$.
- 3. If $\overline{K} \triangleleft \overline{H}$ then $K = \overline{K} \cap G \triangleleft \overline{H} \cap G = H$. Conversely, if $K \triangleleft H$, consider the action of \overline{H} on Sym $(\overline{H}/\overline{K}) = \operatorname{Sym}(H/K) \leq \operatorname{Sym}(G/K)$. Then $K \triangleleft H$ if and only if K acts trivially on K, since $K \cdot hK = hK$ if and only if $K \cdot hK = K$. By continuity of the action, $K \cdot hK = K$.
- 4. If $K \triangleleft H$, we already have our bijection $H/K \to \overline{H}/\overline{K}$, and this is an isomorphism of groups.
- 5. \overline{H} maps onto all finite quotients H/K in a natural way, so we get a continuous homomorphism $\overline{H} \to \widehat{H}$. This is surjective because H is dense in \widehat{H} . For injectivity, if $h \in \overline{H} \setminus \{1\}$, then there is $U \triangleleft_{o} \widehat{G}$ such that $h \notin U$, and the map

shows that $h \not\mapsto 1 \in \widehat{H}$.

Remark 3.1.26. $\overline{H} \cap G = H$ and $\overline{H} \cong \widehat{H}$ are not always true if H is not of finite index.

Definition 3.1.27. A topological group G is **Hopfian**, or **has the Hopf property**, if every continuous surjection from G to itself is an isomorphism of topological groups.

Example 3.1.28. Finite groups, by the pigeonhole principle.

Proposition 3.1.29. Let G be a topologically finitely generated profinite group. Let $f: G \to G$ be a continuous surjection. Then f is an isomorphism.

Proof. Let G_n be the intersection of open subgroups of G of index at most n. Then $G_n \triangleleft_0 G$, and $G \cong \varprojlim_n G/G_n$. Since f is a surjection, $[G:f^{-1}(U)] = [G:U]$ for all $U \leq_0 G$. If U has index at most n, then $f^{-1}(U)$ has index at most n, so $f^{-1}(U) \geq G_n$, so $f^{-1}(G_n) \geq G_n$, so $f(G_n) \leq G_n$. So we have a quotient map $f_n: G/G_n \twoheadrightarrow G/G_n$, which are surjections, hence isomorphisms. So (f_n) are a morphism of inverse systems giving f, so $f = \varprojlim_n f_n$ is an isomorphism. Or, if $g \in G \setminus \{1\}$, then $g \notin G_n$ for some n and then $p_n(f(g)) = f_n(p_n(g)) \neq 1$ so $g \notin \ker f$.

Corollary 3.1.30. Finitely generated residually finite groups are Hopfian.

Proof. Let $f: G \to G$ be a surjection where G is finitely generated residually finite. By Proposition 3.1.2, we get an induced map

$$\widehat{G} \xrightarrow{\widehat{f}} \widehat{G}
\uparrow \qquad \uparrow
G \xrightarrow{f} G$$

Then \widehat{f} is surjective, so it is an isomorphism. Thus f is injective.

Proposition 3.1.31. Let G be a Hopfian topological group and let H be a topological group. Suppose there exist continuous surjections $f: G \to H$ and $f': H \to G$. Then f and f' are isomorphisms of topological groups.

Proof. $f' \circ f : G \to G$ is a surjection, hence an isomorphism, and a homeomorphism. So f is injective and f' is injective, because f is a surjection, so isomorphisms. Also $f^{-1} = (f' \circ f)^{-1} \circ f'$ and $f'^{-1} = f \circ (f' \circ f)^{-1}$ are continuous.

Let d be the minimal size of a generating set.

Proposition 3.1.32. Let G be a finitely generated residually finite group. Assume there is a finite quotient Q of G such that d(Q) = d(G). If \widehat{G} is isomorphic to \widehat{F} for F a free group, then $G \cong F$.

Proof. Assume $\widehat{G} \cong \widehat{F}$. Then Q is a quotient of F, so $d(F) \geq d(Q) = d(G)$. So there is a surjection $f: F \to G$. This induces $\widehat{f}: \widehat{F} \to \widehat{G}$. Then \widehat{f} is surjective, so by the Hopf property, since $\widehat{F} \cong \widehat{G}$, \widehat{f} is an isomorphism. Thus f is an isomorphism, since

$$F \xrightarrow{f} G$$

$$\downarrow \qquad \qquad \downarrow$$

$$\widehat{F} \xrightarrow{\sim} \widehat{G}$$

Corollary 3.1.33. $\widehat{S}_q \not\cong \widehat{F}_{2q}$.

Proof. S_q has rank 2g, and maps onto $Q = (\mathbb{Z}/2\mathbb{Z})^{2g}$.

Example 3.1.34. Let n and m be coprime integers such that |n|, |m| > 1. Define

$$BS(n,m) = \langle a, t \mid ta^n t^{-1} = a^m \rangle,$$

a HNN extension. Define

$$\begin{array}{cccc} f & : & \mathrm{BS}\,(n,m) & \longrightarrow & \mathrm{BS}\,(n,m) \\ & & t & \longmapsto & t \\ & a & \longmapsto & a^n \end{array} .$$

This is well-defined, since

$$f: ta^n t^{-1} a^{-m} \mapsto ta^{n^2} t^{-1} a^{mn} = (ta^n t^{-1})^n a^{-mn} = a^{mn} a^{-mn} = 1.$$

- f is surjective. Since im $f \ni a^n, t$, im $f \ni ta^n t^{-1} = a^m$, and so im $f \ni a$, since there exist r and s such that nr + ms = 1 so $a = (a^n)^r (a^m)^s$.
- But f is not injective. By Britton's lemma, tat^{-1} does not commute with a, so $[tat^{-1}, a] \neq 1$. But $f([tat^{-1}, a]) = [ta^n t^{-1}, a^n] = [a^m, a^n] = 1$.

So BS (m, n) is not Hopfian, hence not residually finite.

3.2 Finite quotients of free groups

Theorem 3.2.1. Free groups are residually finite.

Previously, $F_2 \hookrightarrow \operatorname{SL}_2 \mathbb{Z} \to \operatorname{SL}_2(\mathbb{Z}/n\mathbb{Z})$.

Lecture 12 Tuesday 16/02/21

Remark 3.2.2. This is true for infinitely generated free groups. If $F = \langle a_i \rangle_{i \in I}$, take some $g \in F \setminus \{1\}$. Then g can be written as a finite product of $a_i^{\pm 1}$, so you need only finitely many a_i . Factoring out the others gives $F \twoheadrightarrow F' \twoheadrightarrow Q$, where F' is a finitely generated free group in which g is mapped to a non-trivial element.

Residual finiteness if and only if $\iota: G \hookrightarrow \widehat{G}$. Residual *p*-finiteness, stronger than residual finiteness, is $\iota: G \hookrightarrow \widehat{G_{(p)}}$, if and only if for all $g \in G \setminus \{1\}$, there exists $\phi: G \to Q$ where $|Q| = p^m$ such that $\phi(g) \neq 1$.

Proof 1. Let p be a prime. Let X be a wedge of k circles, and $F = \pi_1(X)$. Construct $F_n \triangleleft F$ inductively, by

$$F_1 = F, \qquad F_{n+1} = \bigcap \left\{ \ker f \mid f : F_n \to \mathbb{Z}/p\mathbb{Z} \right\} = \ker \left(F_n \to \prod_f \mathbb{Z}/p\mathbb{Z} \right).$$

Then F_n are characteristic subgroups, so normal, and $[F:F_n]$ is a power of p, by induction. Let $X_n \to X$ be the cover corresponding to $F_n \triangleleft F$. Claim that girth $X_{n+1} > \text{girth } X_n$, so girth $X_n \ge n$. Let l be any loop in X_n of minimal length, girth X_n . We show l does not lift to X_{n+1} . Because l is minimal length, there exists an edge e which it crosses once exactly. Collapsing everything except e,

$$F_n = \pi_1(X_n) \longrightarrow \pi_1(S^1) = \mathbb{Z}$$

 $[l] \longmapsto 1$

So we have a homomorphism

$$\begin{array}{ccc} F_n & \longrightarrow & \mathbb{Z}/p\mathbb{Z} \\ [l] & \longmapsto & 1 \neq 0 \end{array},$$

so $[l] \notin F_{n+1}$, hence l does not lift to X_{n+1} . Let $g \in F \setminus \{1\}$. Write g as a loop in X. Let n be the number of edges of l. Then l cannot lift to X_{n+1} , with girth at least n+1. So $g \notin F_{n+1}$.

Proof 2. Let $F = \langle a_1, \ldots, a_k \rangle$ be a free group. Let X be a bouquet of k circles with $\pi_1(X) = F$. Let $g \in F \setminus \{1\}$. Write g as a product $g = s_1 \ldots s_m$ where s_i is $a_j^{\pm 1}$. Let Y be a line segment labelled $s_1 \ldots s_m$. We add edges to Y to make it a covering space of X. This covering space \widetilde{X} does not lift g, so $g \notin \pi_1(\widetilde{X})$. \square

Example 3.2.3. Let $F = \langle a, b \rangle$, and let X be

If $g = aba^{-1}b$, then \widetilde{X} is

We get a homomorphism

$$\begin{array}{ccc} \phi & : & F & \longrightarrow & \operatorname{Sym} 5 \\ & a & \longmapsto & (12) (34) (5) \\ & b & \longmapsto & (1) (23) (45) \end{array},$$

acting on the right. Then

$$\phi(g): 1 \mapsto 5, \quad 2 \mapsto 3, \quad 3 \mapsto 4, \quad 4 \mapsto 1, \quad 5 \mapsto 2,$$

so $\phi(g) = (15234)$.

We can also answer stronger questions.

- Given $S \subseteq F$, does S generate F? Given $g \in F \setminus \{1\}$, does $g \in \langle S \rangle$?
- Does $\{abcb^2cb^{-1}c^{-1}b^{-1}a^{-1}, bc^{-1}b^{-1}abc, bcb^{-1}\}\$ or $\{abcb^2cb^{-1}c^{-1}b^{-1}a^{-1}, bc^{-1}b^{-1}a^{-1}bc, bcb^{-1}\}\$ generate $\langle a, b, c \rangle$?

Theorem 3.2.4 (Marshall Hall's theorem). Let S be a finite subset of a finitely generated free group F. Let $y \notin \langle S \rangle$. Then there exists a finite group Q and $f: F \to Q$ such that $f(y) \notin f(\langle S \rangle)$.

Corollary 3.2.5. A finite subset $S \subset F$ generates F if and only if S topologically generates \widehat{F} .

Proof. If S generates F, it generates \widehat{F} topologically since $\langle S \rangle = F$ is dense in \widehat{F} . If $\langle S \rangle \neq F$, there exists $y \notin \langle S \rangle$. Take a finite group Q and $f: F \to Q$ as in Theorem 3.2.4. Then $f(y) \notin f(\langle S \rangle)$, so $f(\langle S \rangle) \neq f(F)$. Thus $\langle S \rangle$ is not dense in \widehat{F} .

Marshall Hall's theorem says there exists $H \leq_{\mathrm{f}} F$ such that $H = \langle S \rangle * H'$.

Example 3.2.6. Let $F = \langle a, b \rangle$, and let $S = \{aba, ba^2b\}$. We will show $\langle S \rangle \neq F$. Start by writing the elements of S as loops

Lecture 13 Thursday 18/02/21

and call it Y. We have a natural continuous map $Y \to X$, where X is

Then $\pi_1(Y) \to \langle S \rangle \leq \pi_1(X)$. Now add edges to make a covering space

The explicit homomorphism to a finite group is

$$\begin{array}{cccc} \phi & : & F & \longrightarrow & \operatorname{Sym} 6 \\ & a & \longmapsto & (123) \, (456) \\ & b & \longmapsto & (15234) \, (6) \end{array}.$$

Note that $\phi(\langle S \rangle) \leq \operatorname{Stab} 1$ and $\phi(a) \notin \operatorname{Stab} 1$.

A Stallings fold is an operation on oriented, labelled graphs such that

Fact 3.2.7. Folding Y gives a new graph Y' such that the image of $\pi_1(Y) \to \pi_1(Y') \to \pi_1(X)$ is still $\langle S \rangle$.

Example 3.2.8. Let $F = \langle a, b \rangle$, and let $S = \{a^3, ab^2aba^{-1}, ab^{-1}ab^3\}$. Folding,

Now can add edges to make a covering

The homomorphism is

Then $\phi(\langle S \rangle) \leq \operatorname{Stab} 1$ and $\phi(a) \notin \operatorname{Stab} 1$, so $\phi(\langle S \rangle) \neq \phi(F)$. Thus $\langle S \rangle \neq F$. The other case is that folding gives a one-vertex graph, then $\langle S \rangle$ is generated by some standard generators of F.

What if we want to know if a specific y lies in $\langle S \rangle$? Add y into the starting graph as a line.

Example 3.2.9. Let $y = a^{-1}ba$. Fold

and make a covering space

Thus $\phi(\langle S \rangle) \leq \text{Stab 1}$ and $\phi(y) = (1 \mapsto 11) \notin \text{Stab 1}$. The other option is that y gets folded into being a loop, then $y \in \langle S \rangle$.

4 Pro-p groups

Recall that a pro-p group is an inverse limit of finite p-groups, groups of order p^n for p a fixed prime. For example, the pro-p completion of a group such as $\mathbb{Z}_p = \widehat{\mathbb{Z}_{(p)}}$.

4.1 Generators of pro-p groups

Definition 4.1.1. Let G be a finite group. The **Frattini subgroup** of G, denoted $\Phi(G)$, is

$$\Phi(G) = \bigcap \{M \mid M \text{ is a maximal proper subgroup of } G\},\,$$

such that if $M \leq H \leq G$ then M = H or H = G.

Importantly, if G is finite, then every proper subgroup is contained in a maximal proper subgroup.

Proposition 4.1.2. For G a finite group and $S \subseteq G$, the following are equivalent.

- 1. S generates G.
- 2. $S\Phi(G)$ generates G, so $\Phi(G)$ are non-generators.
- 3. The image of S in $G/\Phi(G)$ generates $G/\Phi(G)$.

Proof.

- $1 \implies 2$. Trivial.
- $2 \implies 3$. Trivial.
- 3 \Longrightarrow 1. Suppose S does not generate G. Then $\langle S \rangle$ is a proper subgroup, so, since G is finite, $\langle S \rangle$ is contained in a maximal proper subgroup M of G. Since $\Phi = \Phi(G) \leq M$, $M/\Phi \neq G/\Phi$, so $S\Phi/\Phi \leq M/\Phi \neq G/\Phi$, so $S\Phi/\Phi$ does not generate G/Φ .

Proposition 4.1.3. Let $f: G \to H$ be a surjection of finite groups. Then $f(\Phi(G)) \leq \Phi(H)$. Hence, $\Phi(G)$ is a characteristic subgroup of G.

 $(G) \quad 20/02/21$

Lecture 14 Saturday

Remark 4.1.4. Surjection is necessary. For example, let $\mathbb{Z}/4\mathbb{Z} = \mathcal{C}_4 \hookrightarrow \operatorname{Sym} 5$. Then $\Phi(\mathbb{Z}/4\mathbb{Z}) = 2\mathbb{Z}/4\mathbb{Z} = \langle 2 \rangle$ and $\Phi(\operatorname{Sym} 5) = 1$, since \mathcal{A}_5 is ruled out by Stab 1, a maximal proper subgroup not containing \mathcal{A}_5 .

Proof. Let M be a maximal proper subgroup of H. We claim $f^{-1}(M)$ is a maximal proper subgroup of G. Properness follows from surjectivity. If $\ker f \leq f^{-1}(M) < G' \leq G$, then $M < f(G') \leq H = f(G)$. Since M is maximal, f(G') = H. Then G' = G, since if $g \in G$, then $f(g) = f(g') \in H$, for some $g' \in G'$, then $gg'^{-1} \in \ker f$, so $g \in g' \ker f \leq G'$. Thus $\Phi(G) \leq f^{-1}(M)$, so $f(\Phi(G)) \leq M$, so $f(\Phi(G)) \leq \Phi(H)$.

Definition 4.1.5. Let G be a group and $H, K \leq G$. Let m be an integer. Define

$$[H,K] = \langle \{[h,k] \mid h \in H, k \in K\} \rangle, \qquad H^m = \langle \{h^m \mid h \in H\} \rangle, \qquad HK = \{hk \mid h \in H, k \in K\}.$$

If $H \triangleleft G$ then HK is a subgroup and H^m is normal. If $H \triangleleft G$ and $K \triangleleft G$ then $HK \triangleleft G$ and $H \cap K \geq [H, K] \triangleleft G$.

Proposition 4.1.6. Let G be a finite p-group. Then

$$\Phi\left(G\right) = \left[G,G\right]G^p = \left\langle \left\{\left[g_1,g_2\right]g_3^p \ | \ g_1,g_2,g_3 \in G\right\}\right\rangle = \ker\left(G \to G_{\mathrm{ab}} \to G_{\mathrm{ab}}/pG_{\mathrm{ab}}\right),$$

where $H_1(G, \mathbb{F}_p) = G_{ab}/pG_{ab}$ is a vector space $\mathbb{F}_p^{d(G)}$ over \mathbb{F}_p .

Proof. On example sheet 3.

Definition 4.1.7. Let G be a profinite group. Define the **Frattini subgroup**

$$\Phi\left(G\right) = \bigcap \left\{M \mid M \text{ is a maximal proper closed subgroup of } G\right\},$$

which is closed, where if $M \leq_{c} H \leq_{c} G$ then H = M or H = G.

Proposition 4.1.8. Any proper closed subgroup of a profinite group G is contained in a proper open subgroup. Hence a maximal proper closed subgroup is open, and any closed subgroup is contained in a maximal proper closed subgroup.

Proof. Let $H \leq_{\mathbf{c}} G$ such that $H \neq G$. Then by Corollary 1.2.19, there exists $p: G \to Q$ for Q finite such that $p(H) \neq p(G)$. Then $p^{-1}(p(H))$ is open and proper, and contains H. Open subgroups have finite index, so maximal if and only if smallest index.

Proposition 4.1.9. Let $f: G \to H$ be a surjective continuous homomorphism of profinite groups. Then $f(\Phi(G)) \leq \Phi(H)$.

Proposition 4.1.10. Let G be profinite and $S \subseteq G$. Then the following are equivalent.

- S topologically generates G.
- $S\Phi(G)$ topologically generates G.
- $S\Phi(G)/\Phi(G)$ topologically generates $G/\Phi(G)$.

Proposition 4.1.11. Let $(G_j)_{j\in J}$ be a surjective inverse system of finite groups and $G=\varprojlim_{j}G_{j}$. Then

$$\Phi\left(G\right) = \varprojlim_{i} \Phi\left(G_{j}\right).$$

Proof. $\Phi\left(G\right) = \varprojlim_{j} p_{j}\left(\Phi\left(G\right)\right) \leq \varprojlim_{j} \Phi\left(G_{j}\right)$. Let M be a maximal proper closed subgroup of G. Since M is open, there exists $i \in J$ such that $\ker p_{i} \leq M$. This implies $\ker p_{j} \leq M$ for $j \leq i$. Then $p_{j}\left(M\right)$ is a maximal proper subgroup of G_{j} for all $j \leq i$, so $\Phi\left(G_{j}\right) \leq p_{j}\left(M\right)$ for all $j \leq i$. Pass to the cofinal subsystem $\{j \leq i\}$. Now $\varprojlim_{j} \Phi\left(G_{j}\right) \leq \varprojlim_{j} p_{j}\left(M\right) = M$. So $\varprojlim_{j \in J} \Phi\left(G_{j}\right) \leq M$ for all M, so $\varprojlim_{j \in J} \Phi\left(G_{j}\right) \leq \Phi\left(G\right)$. \square

Proposition 4.1.12. Let G be a topologically finitely generated pro-p group. Then

$$\Phi\left(G\right)=\overline{\left[G,G\right]G^{p}}=\mathrm{H}_{1}\left(G,\mathbb{F}_{p}\right),\qquad G/\Phi\left(G\right)\cong\mathbb{F}_{p}^{d},$$

where d = d(G) is the minimal size of a topological generating set of G.

Proof. Write $G = \varprojlim_j G_j$ as a surjective inverse system of finite p-groups. We know $\Phi(G) = \varprojlim_j [G_j, G_j] G_j^p$. For any $[g_1, g_2] g_3^p$ for $g_1, g_2, g_3 \in G$ we have $p_j([g_1, g_2] g_3^p) = [p_j(g_1), p_j(g_2)] p_j(g_3)^p \in [G_j, G_j] G_j^p$, so $\overline{[G, G] G^p} \leq \varprojlim_j [G_j, G_j] G_j^p = \Phi(G)$. Since $G/\overline{[G, G] G^p}$ is topologically finitely generated, abelian, and every element has order p, it is finite and equal to \mathbb{F}_p^d for some d. But $\Phi(\mathbb{F}_p^d) = \{0\}$, so $\Phi(G) \leq \overline{[G, G] G^p}$. \square

Example 4.1.13. Generation of $\widehat{F_{(p)}}$ is easy. Let $F = \langle a, b \rangle$. Then

$$\begin{array}{ccc} \widehat{F_{(p)}} & \longrightarrow & \widehat{F_{(p)}}/\Phi = \mathbb{F}_p^2 \\ a & \longmapsto & (1,0) \\ b & \longmapsto & (0,1) \end{array}.$$

Corollary 4.1.14. Let $f: G \to H$ be a continuous homomorphism of topologically finitely generated pro-p groups. Then $f(\Phi(G)) \leq \Phi(H)$. So f induces a map

$$f_*: G/\Phi(G) \to H/\Phi(H)$$
,

and f is surjective if and only if f_* is surjective.

Proof. $f([g_1,g_2]g_3^p) = [f(g_1),f(g_2)]f(g_3)^p \in \Phi(H)$ for all $g_1,g_2,g_3 \in G$. Then $f([G,G]G^p) \leq \Phi(H)$, so $f(\Phi(G)) = f(\overline{[G,G]G^p}) \leq \Phi(H)$. If f_* is surjective, then the image of f(G) in $H/\Phi(H)$ generates $H/\Phi(H)$, so f(G) topologically generates H. So f(G) = H.

4.2 Nilpotent groups

Definition 4.2.1. The **lower central series** of a group G to be the sequence $G_n = \gamma_n(G)$ defined by

Lecture 15 Tuesday 23/02/21

$$G_1 = G,$$
 $G_{n+1} = [G, G_n],$ $G_{n+1} \le G_n.$

Then G is nilpotent of class c if $\gamma_{c+1}(G) = 1$ but $\gamma_c(G) \neq 1$.

The following are properties.

Proposition 4.2.2. $\gamma_n(G)$ is **fully characteristic**, so if $f: G \to H$ then $f(\gamma_n(G)) \leq \gamma_n(H)$. If f is surjective, we have equality.

Proposition 4.2.3. Subgroups and quotients of nilpotent groups are nilpotent.

Proposition 4.2.4. Finite p-groups G are nilpotent.

Proof. Proof by induction on |G|.

Base case. $\gamma_2(\mathbb{F}_p) = 1$.

Inductive step. There exists $z \in \mathbb{Z}(G) \setminus \{1\}$. Then $G/\langle z \rangle$ is nilpotent, so $\gamma_{c+1}(G/\langle z \rangle) = 1$ for some c. Thus $\gamma_{c+1}(G) \leq \langle z \rangle$, so $\gamma_{c+2}(G) = [G, \gamma_{c+1}(G)] = 1$.

The following is a variant. For pro-p groups, the lower central p-series is

$$\gamma_{1}^{(p)}\left(G\right)=G,\qquad \gamma_{n+1}^{(p)}\left(G\right)=\overline{\left[G,\gamma_{n}^{(p)}\left(G\right)\right]\left(\gamma_{n}^{(p)}\left(G\right)\right)^{p}},$$

so $\gamma_{2}^{(p)}\left(G\right)=\Phi\left(G\right)$. Then $\gamma_{n}^{(p)}\left(G\right)$ is open for topologically finitely generated pro-p groups, since by induction, $\gamma_{n+1}^{(p)}\left(G\right)\geq\Phi\left(\gamma_{n}^{(p)}\left(G\right)\right)$.

Proposition 4.2.5. Let G be a p-group. Then $\gamma_n^{(p)}(G) = 1$ for some n.

Proposition 4.2.6. Let G be a topologically finitely generated pro-p group, then $\left\{\gamma_n^{(p)}(G)\right\}$ are a basis of open normal subgroups of G.

Proof. If
$$N \triangleleft_{o} G$$
, then G/N is a p-group, so $\gamma_{n}^{(p)}(G/N) = 1$. Thus $N \geq \gamma_{n}^{(p)}(G)$.

4.3 Invariance of topology

Theorem 4.3.1 (Serre). Let G be a topologically finitely generated pro-p group. Then all finite index subgroups are open.

Thus

- every homomorphism to a finite group is continuous,
- by Proposition 1.2.14 every homomorphism to a profinite group is continuous, and
- no other topology on G makes it a profinite group, by applying Theorem 4.3.1 to id: $G \to G$.

Proposition 4.3.2. Let G be a pro-p group and let $K \leq_f G$. Then [G:K] is a power of p.

Proof. Without loss of generality K is normal. Let $[G:K]=m=p^rm'$ for m' coprime to p. Let

$$X = G^{\{m\}} = \{g^m \mid g \in G\} \subseteq K.$$

Then X is closed, since it is the image of G under $g\mapsto g^m$. Thus $X=\overline{X}=\bigcap_{N\multimap_o G}XN$, by Proposition 1.2.21. Let $g\in G$. We will show $g^{p^r}\in K$ for all $g\in G$. This implies the result by Cauchy's theorem. Let $N\multimap_o G$. Let $[G:N]=p^s$. Let $t=\max(r,s)$. Then $g^{p^t}\in N$ and $\gcd(p^t,m)=p^r$. So there exist $a,b\in\mathbb{Z}$ such that $p^r=ma+p^tb$. Then $g^{p^r}=(g^a)^m\left(g^{p^t}\right)^b\in XN$.

Lemma 4.3.3. Let G be a nilpotent group with a finite generating set a_1, \ldots, a_d . Then every $g \in [G, G]$ may be written

$$g = [a_1, x_1] \dots [a_d, x_d], \quad x_1, \dots, x_d \in G.$$

Proof. We induct on the nilpotency class c of G.

Base case. If c = 1, then $1 = \gamma_2(G) = [G, G]$, so G is abelian, which is trivial.

Inductive step. The result is true for $G/\gamma_c(G)$. So there exist $x_1, \ldots, x_d \in G$ and $u \in \gamma_c(G) = [G, \gamma_{c-1}(G)]$ such that

$$g = [a_1, x_1] \dots [a_d, x_d] u.$$

Seek a nice form of u. There are commutator relations

$$[xy, z] = [x, z]^y [y, z], [x, yz] = [x, z] [x, y]^z.$$

For any $v \in \gamma_{c-1}(G)$, these imply that

$$[a_i a_j, v] = [a_i, v] [a_j, v], \qquad [a_i, v]^2 = [a_i, v^2],$$

$$[a_i^{-1}, v] = [a_i, v]^{-1} = [a_i, v^{-1}], \qquad [a_i, v] [a_i, w] = [a_i, vw],$$

since $[\cdot, v] \in \gamma_c(G)$ is central in G. We can write u in the form

$$u = [a_1, v_1] \dots [a_d, v_d], \quad v_i \in \gamma_{c-1}(G).$$

Finally,

$$g = [a_1, x_1] \dots [a_d, x_d] [a_1, v_1] \dots [a_d, v_d] = [a_1, x_1 v_1] \dots [a_d, x_d v_d].$$

Proposition 4.3.4. If G is a topologically finitely generated pro-p group, then [G, G] G^p is open and closed, and equals $\Phi(G)$.

Proof. Let

$$G^{\{p\}} = \{q^p \mid q \in G\} \subseteq G^p.$$

Then G/[G,G] is abelian, and in abelian groups we have $g^ph^p=(gh)^p$, so $g^ph^p(gh)^{-p}\in [G,G]$, so $[G,G]G^p=[G,G]G^{\{p\}}$. Claim that [G,G] is closed. Let a_1,\ldots,a_d be a topological generating set of G. Let

$$X = \{[a_1, x_1] \dots [a_d, x_d] \mid x_1, \dots, x_d \in G\}.$$

Then X is closed, since it is the image of a continuous map $G^d \to G$. So $X = \overline{X} = \bigcap_{N \lhd_0 G} XN$. We show X = [G, G]. Let $g \in [G, G]$. For any $N \lhd_0 G$, $gN \in [G/N, G/N]$. Since G/N is nilpotent,

$$gN = [a_1N, x_1N] \dots [a_dN, x_dN], \quad x_iN \in G/N.$$

Then $g \in XN$ for all $N \triangleleft_0 G$, so $g \in \bigcap_N XN = \overline{X} = X$. Thus $[G, G] G^{\{p\}}$ is the image of $[G, G] \times G$ under the continuous function

$$\begin{array}{ccc} [G,G]\times G & \longrightarrow & G \\ (x,g) & \longmapsto & xg^p \end{array},$$

so $[G, G] G^{\{p\}}$ is closed.

Proof of Theorem 4.3.1. Proof by contradiction. Suppose G is topologically finitely generated pro-p and K is finite index but not open, such that [G:K] is as small as possible. Without loss of generality K is normal. Consider

$$M = \Phi(G) K = [G, G] G^p K.$$

Then G/K is a non-trivial p-group. So the image of M is $\Phi\left(G/K\right)=\left[G/K,G/K\right]\left(G/K\right)^{p}< G/K$. So M is proper in G, so M=K, otherwise $K<_{\mathrm{o}}M<_{\mathrm{o}}G$. Hence $\Phi\left(G\right)\leq K$ is open, so K is open.

4.4 Hensel's lemma and p-adic arithmetic

Previously, there exists x such that $\alpha x = 1$ if and only if $\alpha \not\equiv 0 \mod p$.

Lecture 16 Thursday 25/02/21

Lemma 4.4.1. Let f(X) be a polynomial with coefficients in \mathbb{Z}_p . Then f has a root in \mathbb{Z}_p if and only if f has a root modulo p^k for all k.

Example 4.4.2. Hensel lifting. Let p = 7. Then $3^2 = 9 \equiv 2 \mod 7$, so $X^2 - 2$ has a root modulo 7. To get a root modulo 49, consider 3 + 7a for $0 \le a \le p - 1 = 6$. Then

$$(3+7a)^2 = 3^2 + 7(6a) + 49a^2 \equiv 2 + 7(1+6a) \mod 49.$$

Choose the unique a such that $1+6a \equiv 0 \mod 7$, so a=1. Then 3+7(1)=10 is a root of $X^2-2 \mod 49$, and $10^2=49(2)+2$. Now we can repeat. To solve modulo 7^3 ,

$$(10+49a)^2 = 10^2 + 49(20a) + 49^2a^2 \equiv 2 + 49(2+20a) \mod 7^3$$

and solve for a=2.

Proposition 4.4.3 (Hensel's lemma for square roots). Let $p \neq 2$ be prime. Suppose $\lambda \in \mathbb{Z}_p$ is congruent to a non-zero square $r_1^2 \mod p$, where $r_1 \in \mathbb{Z}$. Then there is a unique $\rho \in \mathbb{Z}_p$ such that $\rho^2 = \lambda$ and $\rho \equiv r_1 \mod p$.

Proof. Construct elements $r_k \in \mathbb{Z}$, unique modulo p^k , such that $r_k^2 \equiv \lambda \mod p^k$ and $r_{k+1} \equiv r_k \mod p^k$. Then (r_k) is Cauchy, so there exists $\rho \in \mathbb{Z}_p$ such that $r_k \to \rho$ and $\rho^2 = \lambda$.

- r_1 is given.
- Suppose we have r_k . Consider $r_k + p^k a$ for $0 \le a \le p-1$. We have $r_k^2 = \lambda + p^k b_k$ for $b_k \in \mathbb{Z}_p$. Then

$$(r_k + p^k a)^2 = r_k^2 + 2r_k a p^k + p^{2k} a^2 \equiv \lambda + (b_k + 2r_k a) p^k \mod p^{k+1}.$$

Now $2r_k \equiv 2r_1 \not\equiv 0 \mod p$, so we can solve $b_k + 2r_k a \equiv 0 \mod p$ and find a_k such that $(r_k + p^k a_k)^2 \equiv \lambda \mod p^{k+1}$. Set $r_{k+1} = r_k + p^k a_k$.

Proposition 4.4.4 (Hensel's lemma). Let f(x) be a polynomial with coefficients in \mathbb{Z}_p . Let $r \in \mathbb{Z}_p$ such that $f(r) \equiv 0 \mod p^k$ for some k and $f'(r) \not\equiv 0 \mod p$, where $f': \sum_n a_n x^n \mapsto \sum_n n a_n x^{n-1}$ is the formal derivative, and f'(r) only depends on $r \mod p$. There there exists a unique $\rho \in \mathbb{Z}_p$ such that $f(\rho) = 0$ and $\rho \equiv r \mod p^k$.

Lemma 4.4.5. For $r, a \in \mathbb{Z}_p$ and $k \geq 1$ we have

$$f(r+p^ka) \equiv f(r) + p^kaf'(r) \mod p^{k+1}$$
.

Proof. It suffices to do $f(x) = x^r$. Then

$$(r+p^ka)^n = r^n + nr^{n-1}p^ka + \sum_{i=2}^n \binom{n}{i}p^{ki}a^ir^{n-i},$$

and $p^{k+1} | p^{2k} | p^{ki}$.

Proof of Proposition 4.4.4. Construct r_k for $k \geq K$, such that $f(r_k) \equiv 0 \mod p^k$ and $r_{k+1} \equiv r_k \mod p^k$, and r_{k+1} will be unique modulo p^{k+1} with these properties. Then (r_k) is Cauchy and $r_k \to \rho$, so $f(\rho) = 0$.

- r_K is given.
- If r_k is constructed, consider $r_k + p^k a$ for $0 \le a \le p-1$. We have $f(r_k) = b_k p^k$ for some $b_k \in \mathbb{Z}_p$. Now

$$f(r_k + p^k a) \equiv f(r_k) + p^k a f'(r_k) \equiv p^k (b_k + a f'(r_k)) \mod p^{k+1}.$$

Can solve $b_k + af'(r_k) \equiv 0 \mod p$ since $f'(r_k) \equiv f'(r) \not\equiv 0 \mod 0$ is invertible modulo p. So set a_k such that $b_k + af'(r_k) \equiv 0 \mod p$ and set $r_{k+1} = r_k + p^k a_k$.

We can also do Hensel-type things in $GL_N \mathbb{Z}_p$.

Definition 4.4.6. Let

$$GL_N^{(k)} \mathbb{Z}_p = \ker \left(GL_N \mathbb{Z}_p \to GL_N \left(\mathbb{Z}/p^k \mathbb{Z} \right) \right) = \left\{ I + p^k A \mid A \in \operatorname{Mat}_{N \times N} \mathbb{Z}_p \right\},$$

$$SL_N^{(k)} \mathbb{Z}_p = \ker \left(SL_N \mathbb{Z}_p \to SL_N \left(\mathbb{Z}/p^k \mathbb{Z} \right) \right).$$

Proposition 4.4.7. $\operatorname{GL}_N^{(1)} \mathbb{Z}_p$ and $\operatorname{SL}_N^{(1)} \mathbb{Z}_p$ are pro-p groups.

Proof. $\left|\operatorname{GL}_N^{(1)}\left(\mathbb{Z}/p^m\mathbb{Z}\right)\right|=p^{(m-1)N^2},$ and

$$\operatorname{SL}_{N}^{(1)} \mathbb{Z}_{p} \leq \operatorname{GL}_{N}^{(1)} \mathbb{Z}_{p} = \varprojlim_{m} \operatorname{GL}_{N}^{(1)} (\mathbb{Z}/p^{m}\mathbb{Z}).$$

Remark 4.4.8. GL_N \mathbb{Z}_p and SL_N \mathbb{Z}_p are not pro-p groups, since SL_N ($\mathbb{Z}/p\mathbb{Z}$) is not a p-group.

Proposition 4.4.9. Let $p \neq 2$. The continuous function

$$\operatorname{GL}_N^{(k)} \mathbb{Z}_p \longrightarrow \operatorname{GL}_N^{(k+1)} \mathbb{Z}_p$$

$$A \longmapsto A^p$$

maps surjectively for $k \geq 1$. Also for $\operatorname{SL}_N^{(k)} \mathbb{Z}_p \twoheadrightarrow \operatorname{SL}_N^{(k+1)} \mathbb{Z}_p$.

Proof. For $r \geq 1$ and A a matrix over \mathbb{Z}_p , we have

$$(I + p^r A)^p = I + p^{r+1} A + \sum_{l=2}^p p^{rl} \binom{p}{p-l} A^l = I + p^{r+1} A + p^{r+2} B,$$

for some B which commutes with A, unless p=2, l=2, and r=1. Let $I+p^{k+1}A\in GL_N^{(k+1)}\mathbb{Z}_p$. We show the following inductive statement for $n\geq 1$. There exist B_n and E_n , which are polynomials in A, hence commute with A and each other, such that

$$B_{n+1} \equiv B_n \mod p^n$$
, $(I + p^k B_n)^p = I + p^{k+1} A + p^{k+n+1} E_n$.

Then (B_n) is Cauchy so $B_n \to B_\infty \in \operatorname{Mat}_{N \times N} \mathbb{Z}_p$, and $(I + p^k B_\infty)^p = I + p^{k+1} A$.

• Start with $B_1 = A$. Then

$$(I + p^k A)^p = I + p^{k+1} A + p^{k+2} E_1.$$

• Assume B_n and E_n are given. Set $B_{n+1} = B_n - p^n E_n$. Then

$$(I + p^k B_{n+1})^p = (I + p^k B_n - p^{k+n} E_n)^p = (I + p^k B_n)^p - p (I + p^k B_n)^{p-1} p^{k+n} E_n + \dots$$

$$= I + p^{k+1} A + p^{k+n+1} E_n - p^{k+n+1} E_n + \dots = I + p^{k+1} A + p^{k+n+2} E_{n+1}.$$

Proposition 4.4.10.

$$\Phi\left(\operatorname{GL}_{N}^{(k)}\mathbb{Z}_{p}\right) = \operatorname{GL}_{N}^{(k+1)}\mathbb{Z}_{p}, \qquad \operatorname{GL}_{N}^{(k)}\mathbb{Z}_{p}/\operatorname{GL}_{N}^{(k+1)}\mathbb{Z}_{p} \cong \mathbb{F}_{p}^{N^{2}},$$

a uniform pro-p group, with isomorphisms

$$\operatorname{GL}_N^{(k)} \mathbb{Z}_p / \operatorname{GL}_N^{(k+1)} \mathbb{Z}_p \longrightarrow \operatorname{GL}_N^{(k+1)} \mathbb{Z}_p / \operatorname{GL}_N^{(k+2)} \mathbb{Z}_p$$

$$x \longmapsto x^p$$

Theorem 4.4.11. Let H be any closed subgroup of $GL_N^{(1)} \mathbb{Z}_p$. Then $d(H) \leq N^2$.

Compare to a free group as a subgroup of $SL_2 \mathbb{Z}$.

Theorem 4.4.12. If G is a pro-p group, such that $d(H) \leq R$ for all $H \leq_c G$, then

$$G/\mathbb{Z}_p^a \hookrightarrow \operatorname{GL}_R \mathbb{Z}_p \times F$$
,

where F is finite.

5 Cohomology of groups

In the homology of spaces, a simplicial complex X gives a family of abelian groups $H_n(X)$ with \mathbb{Z} coefficients. In the cohomology of groups, a group G gives a family of abelian groups $H^n(G, M)$ with M coefficients.

Lecture 17 Saturday 27/02/21

5.1 Group rings and chain complexes

Let G be an abstract group.

Definition 5.1.1. The **group ring** of G is a ring $\mathbb{Z}G$ defined as follows. The additive group of $\mathbb{Z}G$ is the free abelian group with basis $\{g \mid g \in G\}$, so an element is a finite formal sum $\sum_{g \in G} n_g g$ for $n_g \in \mathbb{Z}$. The ring multiplication is defined on the basis by $g \cdot h = gh$ and extended bilinearly.

Thus $\mathbb{Z}G$ is non-commutative unless G is abelian, and has an identity e, the multiplicative identity in $\mathbb{Z}[G]$, usually called 1.

Example 5.1.2. If *e* is the identity of *G*, then (e + g)(e - 2h) = e + g - 2h - 2gh.

Definition 5.1.3. A **left** G-module, or $\mathbb{Z}G$ -module, is an abelian group M equipped with a G-action, a function

$$\begin{array}{ccc} \mathbb{Z}G \times M & \longrightarrow & M \\ (r,m) & \longmapsto & r \cdot m \end{array},$$

such that for all $r_1, r_2 \in \mathbb{Z}G$ and for all $m_1, m_2 \in M$,

$$r_1 \cdot (m_1 + m_2) = r_1 \cdot m_1 + r_1 \cdot m_2, \qquad (r_1 + r_2) \cdot m_1 = r_1 \cdot m_1 + r_2 \cdot m_1, \qquad (r_1 r_2) \cdot m_1 = r_1 \cdot (r_2 \cdot m).$$

A trivial module, or a module with trivial G-action, is a module such that $g \cdot m = m$ for all $g \in G$ and for all $m \in M$.

Definition 5.1.4. Let M_1 and M_2 be G-modules. A morphism of G-modules, or G-linear map, is an abelian group homomorphism $\alpha: M_1 \to M_2$ such that $\alpha(r \cdot m) = r \cdot \alpha(m)$ for all $r \in \mathbb{Z}G$ and $m \in M$.

Note that only need to check this for basis elements r = g.

Definition 5.1.5. Let M and N be G-modules. Define the **Hom-group**

$$\operatorname{Hom}_G(M, N) = \{G \text{-linear maps } \alpha : M \to N \},$$

with abelian group structure $(\alpha + \beta)(m) = \alpha(m) + \beta(m)$. If Hom(M, N), this means $\text{Hom}_1(M, N)$, the abelian group homomorphisms.

Definition 5.1.6. If $f: M_1 \to M_2$ is a morphism of G-modules then we have a dual map

$$\begin{array}{cccc} f^{*} & : & \operatorname{Hom}_{G}\left(M_{2},N\right) & \longrightarrow & \operatorname{Hom}_{G}\left(M_{1},N\right) \\ & \alpha & \longmapsto & \alpha \circ f \end{array}.$$

Also, we have an **induced map**

$$\begin{array}{cccc} f_{*} & : & \operatorname{Hom}_{G}\left(N, M_{1}\right) & \longrightarrow & \operatorname{Hom}_{G}\left(N, M_{2}\right) \\ \beta & \longmapsto & f \circ \beta \end{array}.$$

Thus

Submodules and quotients are the obvious things.

Definition 5.1.7. Let M be a G-module. Then a G-submodule is a subgroup $N \leq M$ such that $g \cdot n \in N$ for all $g \in G$ and $n \in N$. If N is a submodule, we have a **quotient module** M/N, the abelian group M/N, with the G-action $g \cdot (m+N) = g \cdot m + N$.

Definition 5.1.8. A chain complex of G-modules $(M_n) = (M_n, d_n)_{1 \le n \le s}$ is a sequence of G-modules

$$M_s \xrightarrow{d_s} M_{s-1} \to \cdots \to M_{t+1} \xrightarrow{d_{t+1}} M_t$$

where $s = \infty$ or $t = -\infty$ are possible, such that $d_n \circ d_{n+1} = 0$, so im $d_{n+1} \le \ker d_n$. The complex is **exact** at M_n if im $d_{n+1} = \ker d_n$. The complex is **exact** if it is exact at M_n for all t < n < s. The **homology** of the chain complex is the family of G-modules

$$H_n(M_{\bullet}) = \begin{cases} \ker d_s & n = s \\ \ker d_n / \operatorname{im} d_{n+1} & t < n < s \\ M_t / \operatorname{im} d_{t+1} & n = t \end{cases}$$

Example 5.1.9.

• The complex

$$0 \to M_1 \xrightarrow{\alpha} M_2$$

is exact if and only if α is injective.

• The complex

$$M_1 \xrightarrow{\alpha} M_2 \to 0$$

is exact if and only if α is surjective.

• A short exact sequence is an exact sequence

$$0 \to M_1 \xrightarrow{\alpha} M_2 \xrightarrow{\beta} M_3 \to 0$$

that is α is injective, β is surjective, and $\ker \beta = \operatorname{im} \alpha$, such as

$$0 \to N \to M \to M/N \to 0$$
.

Definition 5.1.10. Given a set X, the **free** $\mathbb{Z}G$ -module on X, denoted $\mathbb{Z}G\{X\}$, is set of finite formal sums $\sum_{x\in X} r_x x$ for $r_x\in \mathbb{Z}G$. The G-action is the obvious one $g\cdot (\sum_x r_x x)=\sum_x (gr_x)\,x$.

If X is finite, $\mathbb{Z}G\{X\} \cong (\mathbb{Z}G)^{|X|}$.

Definition 5.1.11. A G-module P is **projective** if, for every surjective G-linear map $\alpha: M_1 \twoheadrightarrow M_2$ and every G-linear $\beta: P \to M_2$ there exists a G-linear $\overline{\beta}: P \to M_1$ such that $\alpha \circ \overline{\beta} = \beta$, so

$$P \downarrow \beta \qquad .$$

$$M_1 \xrightarrow{\overline{\beta}} M_2 \longrightarrow 0$$

Proposition 5.1.12. Free modules are projective.

Proof. Let $\mathbb{Z}G\{X\}$ be a free module and take $\alpha: M_1 \twoheadrightarrow M_2$ and $\beta: \mathbb{Z}G\{X\} \to M_2$. For each $x \in X$ choose $m_x \in M_1$ such that $\alpha(m_x) = \beta(x)$, since α is surjective. Define

$$\overline{\beta} \ : \ \mathbb{Z}G\left\{X\right\} \ \stackrel{}{\longrightarrow} \ M_1 \\ x \ \longmapsto \ m_x \ ,$$

and extend linearly, so $\overline{\beta}\left(\sum_{x\in X} r_x x\right) = \sum_{x\in X} r_x m_x$.

Definition 5.1.13. A projective resolution of \mathbb{Z} by $\mathbb{Z}G$ -modules is an exact sequence

$$\dots \xrightarrow{d_2} F_1 \xrightarrow{d_1} F_0 \xrightarrow{d_0} \mathbb{Z} \to 0,$$

where each F_n is projective, and \mathbb{Z} has trivial G-action.

Definition 5.1.14. Take a projective resolution as above. Let M be a G-module. Apply the functor $\operatorname{Hom}_G(-,M)$ to get a sequence

$$\dots \stackrel{d^2=d_2^*}{\longleftarrow} \operatorname{Hom}_G(F_1, M) \stackrel{d^1=d_1^*}{\longleftarrow} \operatorname{Hom}_G(F_0, M)$$

where $d^n = d_n^*$ is the dual map, so $C_n = \operatorname{Hom}_G(F_{-n}, M)$ for $n \leq 0$ is a chain complex. The *n*-th cohomology group of G with coefficients in M is

$$\mathbf{H}^{n}\left(G,M\right) = \begin{cases} \ker d^{1} & n=0\\ \ker d^{n+1}/\operatorname{im} d^{n} & n>0 \end{cases}.$$

Elements of ker d^{n+1} are called *n*-cocycles. Elements of im d^n are called *n*-coboundaries.

Lecture 18 Tuesday 02/03/21

Where do these come from? From topology. Consider a connected simplicial complex X whose universal cover \widetilde{X} is contractible, with $\pi_1(X) = G$. Let X_n be the set of n-simplices of X. Then G acts on \widetilde{X} with quotient X, and without fixing any points. Therefore the n-simplices of \widetilde{X} are in bijection with $G \times X_n$. The simplicial chain complex of \widetilde{X} is of the form

$$\dots \xrightarrow{d_2} \mathbb{Z}G\{X_1\} \xrightarrow{d_1} \mathbb{Z}G\{X_0\} \to \mathbb{Z} \to 0.$$

Since \widetilde{X} is contractible, $H_n\left(\widetilde{X}\right)=0$ for n>0, so exact at $\mathbb{Z}G\left\{X_n\right\}$ for n>0, and $H_0\left(\widetilde{X}\right)\cong\mathbb{Z}$. So we get a free resolution of \mathbb{Z} . Applying $\operatorname{Hom}_G\left(-,M\right)$ gives $\operatorname{Hom}_G\left(\mathbb{Z}G\left\{X_n\right\},M\right)$. Take the case $M=\mathbb{Z}$. Then $\operatorname{Hom}_G\left(\mathbb{Z}G\left\{X_n\right\},M\right)\cong\operatorname{Hom}\left(\mathbb{Z}\left\{X_n\right\},\mathbb{Z}\right)$, so

$$\cdots \leftarrow \operatorname{Hom}\left(\mathbb{Z}\left\{X_{1}\right\}, \mathbb{Z}\right) \leftarrow \operatorname{Hom}\left(\mathbb{Z}\left\{X_{0}\right\}, \mathbb{Z}\right),$$

which gives $\mathrm{H}^n\left(G,\mathbb{Z}\right)$. The dual is

$$\cdots \to \mathbb{Z} \{X_1\} \to \mathbb{Z} \{X_0\},$$

which gives $H_n(X)$.

Example 5.1.15. Let $G = \mathbb{Z} = \langle t \rangle$. Consider the sequence

$$0 \to \mathbb{Z}G \xrightarrow{d_1} \mathbb{Z}G \xrightarrow{\epsilon} \mathbb{Z} \to 0,$$

where $d_1(x) = x(t-1)$ and

$$\epsilon \left(\sum_{g \in G} n_g g \right) = \sum_{g \in G} n_g$$

is the **augmentation map**. Claim that this is a free resolution of \mathbb{Z} .

- ϵ is obviously surjective.
- $\ker \epsilon \geq \operatorname{im} d_1$. If $x = \sum_{g} n_g g$, then

$$\epsilon (d_1(x)) = \epsilon (x(t-1)) = \epsilon (xt) - \epsilon (x) = \epsilon \left(\sum_g n_g(gt)\right) - \epsilon \left(\sum_g n_g g\right) = \sum_g n_g - \sum_g n_g = 0.$$

• $\ker \epsilon \leq \operatorname{im} d_1$. Let $x = \sum_g n_g g$ such that $\sum_g n_g = 0$. Relabel each $g = t^k$ for some k, so rewriting,

$$x = \sum_{k} n_k t^k = n_L t^L + \dots + n_K t^K$$

$$= n_L t^{L-1} (t-1) + \dots + (n_L + \dots + n_{K-2}) t^{K-1} (t-1) + (n_L + \dots + n_K) t^K$$

$$= (n_L t^{L-1} + \dots + (n_L + \dots + n_{K-2}) t^{K-1}) (t-1) \in \operatorname{im} d_1.$$

• d_1 is injective. Let $x = \sum_k n_k t^k = n_L t^L + \dots$ for $n_L \neq 0$. Then x(t-1) has highest coefficient $n_L t^{L+1} \neq 0$.

Let M be a G-module. Then

$$0 \longleftarrow \operatorname{Hom}_{G}\left(\mathbb{Z}G, M\right) \xleftarrow{d^{1}} \operatorname{Hom}_{G}\left(\mathbb{Z}G, M\right)$$

$$\downarrow \downarrow \sim \qquad \qquad \sim \downarrow \iota \qquad ,$$

$$0 \longleftarrow M \longleftarrow M$$

where $\iota(\phi) = \phi(1)$. Let $m \in M$, and let $\phi \in \operatorname{Hom}_G(\mathbb{Z}G, M)$ such that $\iota(\phi) = \phi(1) = m$. Then

$$\iota(d^{1}(\phi)) = d^{1}(\phi)(1) = \phi(d_{1}(1)) = \phi(t-1) = (t-1)\phi(1) = (t-1)m.$$

Thus

- $H^0(G, M) = \{m \in M \mid tm = m\} = M^G$ are the **invariants**, the elements on which G acts trivially,
- $H^1(G, M) = M/(t-1)M = M_G$ are the **coinvariants**, and
- $H^n(G, M) = 0$ for $n \ge 2$.

Let $\alpha: \mathbb{Z}G\{X\} \to \mathbb{Z}G\{Y\}$ be G-linear for $X = \{x_1, \dots, x_n\}$ and $Y = \{y_1, \dots, y_m\}$ finite, so $\mathbb{Z}G\{X\} \cong (\mathbb{Z}G)^n$ and $\mathbb{Z}G\{Y\} \cong (\mathbb{Z}G)^m$. Then α can be written as a matrix multiplication

$$\alpha(x_i) = \sum_j a_{ij} y_j, \quad a_{ij} \in \mathbb{Z}G.$$

If (r_1, \ldots, r_n) is a row vector corresponding to $\sum_i r_i x_i$, then

$$\alpha(r_1, \dots, r_n) = \left(\sum_i r_i a_{i1}, \dots, \sum_i r_i a_{im}\right) = (r_1, \dots, r_n) \begin{pmatrix} a_{11} & \dots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nm} \end{pmatrix}.$$

Now if M is a G-module, we have

$$\iota_{X} : \operatorname{Hom}_{G}\left(\mathbb{Z}G\left\{X\right\}, M\right) \longrightarrow M^{n} \qquad \iota_{Y} : \operatorname{Hom}_{G}\left(\mathbb{Z}G\left\{Y\right\}, M\right) \longrightarrow M^{m}$$

$$\psi \longmapsto \begin{pmatrix} \psi\left(x_{1}\right) \\ \vdots \\ \psi\left(x_{n}\right) \end{pmatrix}, \qquad \psi \mapsto \begin{pmatrix} \phi\left(y_{1}\right) \\ \vdots \\ \phi\left(y_{m}\right) \end{pmatrix}.$$

Then

$$\begin{array}{ccc}\operatorname{Hom}_{G}\left(\mathbb{Z}G\left\{X\right\},M\right)\xleftarrow{\alpha^{*}}&\operatorname{Hom}_{G}\left(\mathbb{Z}G\left\{Y\right\},M\right)\\ & & & \sim \downarrow_{\iota_{Y}}\\ & & & & \sim \downarrow_{\iota_{Y}}\\ & & & & & M^{m} \end{array}.$$

Let $(b_1, \ldots, b_m)^{\mathsf{T}} \in M^m$, and let $\phi \in \operatorname{Hom}_G(\mathbb{Z}G\{Y\}, M)$ such that $\iota_Y(\phi) = (b_1, \ldots, b_m)^{\mathsf{T}}$, so $\phi(y_i) = b_i$. Then

$$\widetilde{\alpha}(b_{1},\ldots,b_{m}) = \iota_{X}(\alpha^{*}(\phi)) = \begin{pmatrix} \alpha^{*}(\phi)(x_{1}) \\ \vdots \\ \alpha^{*}(\phi)(x_{n}) \end{pmatrix} = \begin{pmatrix} \phi(\alpha(x_{1})) \\ \vdots \\ \phi(\alpha(x_{n})) \end{pmatrix} = \begin{pmatrix} \phi\left(\sum_{j} a_{1j}y_{j}\right) \\ \vdots \\ \phi\left(\sum_{j} a_{nj}y_{j}\right) \end{pmatrix}$$

$$= \begin{pmatrix} \sum_{j} a_{1j}\phi(y_{j}) \\ \vdots \\ \sum_{j} a_{nj}\phi(y_{j}) \end{pmatrix} = \begin{pmatrix} \sum_{j} a_{1j}b_{j} \\ \vdots \\ \sum_{j} a_{nj}b_{j} \end{pmatrix} = \begin{pmatrix} a_{11} & \ldots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \ldots & a_{nm} \end{pmatrix} \begin{pmatrix} b_{1} \\ \vdots \\ b_{m} \end{pmatrix}.$$

Proposition 5.1.16. Let G be a finitely generated free group. If $n \geq 2$ then $H^n(G, M) = 0$ for all G-modules M.

Proof. Let X be a wedge of circles with $\pi_1(X) = G$. Then \widetilde{X} is a tree, so contractible, which gives a free resolution of G

$$0 \to \mathbb{Z}G\{X_1\} \to \mathbb{Z}G\{X_0\} \to \mathbb{Z} \to 0,$$

where $|X_0| = 1$ and $|X_1| = \operatorname{rk} G$. Thus $\operatorname{H}^n(G, M) = 0$ for all $n \geq 2$.

Definition 5.1.17. A group G has **cohomological dimension** n if $H^m(G, M) = 0$ for all m > n and all G-modules M but there exists M such that $H^n(G, M) \neq 0$. If no n exists then the cohomological dimension of G is infinity.

Free groups have cohomological dimension one. By Stallings, groups with cohomological dimension one are free.

Definition 5.1.18. Let (A_n, α_n) and (B_n, β_n) be chain complexes. A **chain map** (f_n) is a sequence of G-linear maps $f_n: A_n \to B_n$ such that $f_{n-1} \circ \alpha_n = \beta_n \circ f_n$, so

$$A_n \xrightarrow{\alpha_n} A_{n-1}$$

$$f_n \downarrow \qquad \qquad \downarrow f_{n-1}$$

$$B_n \xrightarrow{\beta_n} B_{n-1}$$

commutes.

Proposition 5.1.19. If (f_n) is a chain map, then (f_n) gives induced maps

$$(f_*)_n: \mathrm{H}_n\left(A_{\bullet}\right) \to \mathrm{H}_n\left(B_{\bullet}\right).$$

These maps are functorial, so if $(g_n):(B_n)\to (C_n)$ then $(g_*)_n\circ (f_*)_n=((g\circ f)_*)_n:H_n(A_\bullet)\to H_n(C_\bullet)$.

Proof. Take $x \in \ker \alpha_n$. Define

$$(f_*)_n([x]) = [f_n(x)], \qquad [x] = x + \operatorname{im} \alpha_{n+1} \in H_n(A_{\bullet}).$$

Then $\beta_n(f_n(x)) = f_{n-1}(\alpha_n(x)) = 0$, so $f_n(x) \in \ker \beta_n$. The choice of x does not matter, since if $x' = x + \alpha_{n+1}(y)$, then

$$f_n(x') + \operatorname{im} \beta_{n+1} = f_n(x) + f_n(\alpha_{n+1}(y)) + \operatorname{im} \beta_{n+1} = f_n(x) + \beta_{n+1}(f_{n+1}(y)) + \operatorname{im} \beta_{n+1} = f_n(x) + \operatorname{im} \beta_{n+1}$$

Corollary 5.1.20. Let $f: M \to N$ be a map of G-modules. Then we get maps

$$(f_*)_n : \operatorname{Hom}_G(F_n, M) \longrightarrow \operatorname{Hom}_G(F_n, N)$$

 $\phi \longmapsto f \circ \phi$.

These are chain maps, so we have

$$(f_*)_n : \mathrm{H}^n (G, M) \to \mathrm{H}^n (G, N)$$
.

Lemma 5.1.21 (Snake lemma). If

$$0 \to A_{\bullet} \xrightarrow{f_{\bullet}} B_{\bullet} \xrightarrow{g_{\bullet}} C_{\bullet} \to 0$$

is a short exact sequence of chain complexes, where f_{\bullet} and g_{\bullet} are chain maps and each

$$0 \to A_n \to B_n \to C_n \to 0$$

is exact. Then there exists $\delta_n: \mathcal{H}_{n+1}\left(C_{\bullet}\right) \to \mathcal{H}_n\left(A_{\bullet}\right)$ such that

$$\cdots \to \mathrm{H}_{n+1}\left(C_{\bullet}\right) \xrightarrow{\delta_{n}} \mathrm{H}_{n}\left(A_{\bullet}\right) \xrightarrow{\left(f_{*}\right)_{n}} \mathrm{H}_{n}\left(B_{\bullet}\right) \xrightarrow{\left(g_{*}\right)_{n}} \mathrm{H}_{n}\left(C_{\bullet}\right) \to \ldots$$

Proof. See algebraic topology.

Lecture 19 Thursday 04/03/21

Proposition 5.1.22. Let

$$0 \to M_1 \xrightarrow{\alpha} M_2 \xrightarrow{\beta} M_3 \to 0$$

be a short exact sequence of G-modules. There is a long exact sequence

$$\cdots \to \mathrm{H}^{n}\left(G,M_{1}\right) \xrightarrow{(\alpha_{*})_{n}} \mathrm{H}^{n}\left(G,M_{2}\right) \xrightarrow{(\beta_{*})_{n}} \mathrm{H}^{n}\left(G,M_{3}\right) \xrightarrow{\delta} \mathrm{H}^{n+1}\left(G,M_{1}\right) \to \ldots,$$

where δ are connecting homomorphisms.

Proof. Apply the snake lemma to

$$0 \to \operatorname{Hom}_{G}(F_{\bullet}, M_{1}) \xrightarrow{(\alpha_{*})_{\bullet}} \operatorname{Hom}_{G}(F_{\bullet}, M_{2}) \xrightarrow{(\beta_{*})_{\bullet}} \operatorname{Hom}_{G}(F_{\bullet}, M_{3}) \to 0,$$

where F_{\bullet} is a projective resolution of \mathbb{Z} by G-modules. It remains to prove

$$0 \to \operatorname{Hom}_{G}(F_{n}, M_{1}) \xrightarrow{(\alpha_{*})_{n}} \operatorname{Hom}_{G}(F_{n}, M_{2}) \xrightarrow{(\beta_{*})_{n}} \operatorname{Hom}_{G}(F_{n}, M_{3}) \to 0$$

is exact for each n.

- $\ker(\alpha_*)_n = 0$. Let $\phi: F_n \to M_1$. If $(\alpha_*)_n(\phi) = 0$ then $0 = \alpha \circ \phi$, so for all $x \in F_n$, $0 = \alpha(\phi(x))$, so $0 = \phi(x)$ for all x, so $\phi = 0$.
- $\ker (\beta_*)_n = \operatorname{im} (\alpha_*)_n$. Let $\phi : F_n \to M_2$ be in the kernel of $(\beta_*)_n$. Then $\beta (\phi(x)) = 0$ for all $x \in F_n$, so $\phi(x) \in \ker \beta = \operatorname{im} \alpha$, so there exists a unique $y_x \in M_1$ such that $\alpha(y_x) = \phi(x)$. Declare

$$\begin{array}{cccc} \psi & : & F_n & \longrightarrow & M_1 \\ & & x & \longmapsto & y_x \end{array}.$$

Then $(\alpha_*)_n(\psi) = \phi$, and ψ is G-linear follows from uniqueness of y_x , since $\alpha(gy_x) = g\alpha(y_x) = g\phi(x) = \phi(gx)$ implies that $gy_x = y_{gx}$.

• $(\beta_*)_n$ is surjective. Exactly the definition of F_n projective.

5.2 Different projective resolutions

Theorem 5.2.1. The definition of $H^n(G,M)$ is independent of the choice of projective resolution.

Proof. Take two projective resolutions (F_n, d_n) and (F'_n, d'_n) of \mathbb{Z} by G-modules. Suppose we construct chain maps

- $f_n: F_n \to F'_n$ such that $f_{n-1} \circ d_n = d'_n \circ f_n$,
- $g_n: F'_n \to F_n$ such that $g_{n-1} \circ d'_n = d_n \circ g_n$,
- $s_n: F_n \to F_{n+1}$ such that $d_{n+1} \circ s_n + s_{n-1} \circ d_n = g_n \circ f_n$ id, and
- $s'_n: F'_n \to F'_{n+1}$ such that $d'_{n+1} \circ s'_n + s'_{n-1} \circ d'_n = f_n \circ g_n \mathrm{id}$.

These maps prove Theorem 5.2.1. Take a G-module M. Chain maps (f_n) and (g_n) give homomorphisms $f_n^* : \operatorname{Hom}_G(F_n', M) \to \operatorname{Hom}_G(F_n, M)$, which give homomorphisms $f_n^* : \operatorname{H}_{F_n'}^n(G, M) \to \operatorname{H}_{F_n}^n(G, M)$. Take $\phi : F_n \to M$ such that $\phi \in \ker d^{n+1}$. Then

$$f_n^* (g_n^* (\phi)) = \phi \circ g_n \circ f_n = \phi \circ (\operatorname{id} + d_{n+1} \circ s_n + s_{n-1} \circ d_n) = \phi + \phi \circ d_{n+1} \circ s_n + \phi \circ s_{n-1} \circ d_n$$
$$= \phi + s_n^* (d^{n+1} (\phi)) + d^n (s_{n-1}^* (\phi)) = \phi + d^n (s_{n-1}^* (\phi)) \in \phi + \operatorname{im} d^n.$$

So $f_n^*(g_n^*(\phi + \operatorname{im} d^n)) = \phi + \operatorname{im} d^n$, that is $f_n^* \circ g_n^* = \operatorname{id}$, on cohomology.

Construct f_n , inductively.

- Start with the identity $f_{-1}: \mathbb{Z} \to \mathbb{Z}$ and $f_{-2}: 0 \to 0$.
- Suppose we have f_n and f_{n-1} . Build f_{n+1} . Since $d'_n \circ f_n \circ d_{n+1} = f_{n-1} \circ d_n \circ d_{n+1} = 0$, there exists $f_{n+1}: F_{n+1} \to F'_{n+1}$ such that $d'_{n+1} \circ f_{n+1} = f_n \circ d_{n+1}$, so

$$F_{n+1} \xrightarrow{f_{n+1}} F_n \xrightarrow{d_n} F_{n-1}$$

$$\downarrow^{f_n \circ d_{n+1}} \qquad \downarrow^{f_n} \qquad \downarrow^{f_{n-1}}.$$

$$F'_{n+1} \xrightarrow{d'_{n+1}} \ker d'_n = \operatorname{im} d'_{n+1} \quad \subset \quad F'_n \xrightarrow{d'_n} F'_{n-1}$$

Construct s_n such that $d_{n+1} \circ s_n + s_{n-1} \circ d_n = g_n \circ f_n - \mathrm{id} = h_n$.

- Start with the zero map $s_{-1}: \mathbb{Z} \to F_0$.
- Assume s_{n-1} and s_{n-2} are constructed. Define $t_n = h_n s_{n-1} \circ d_n$. Since $d_n \circ t_n = d_n \circ h_n d_n \circ s_{n-1} \circ d_n = h_{n-1} \circ d_n (-s_{n-2} \circ d_{n-1} + h_{n-1}) \circ d_n = s_{n-2} \circ d_{n-1} \circ d_n = 0,$ there exists s_n such that $d_{n+1} \circ s_n = t_n = h_n s_{n-1} \circ d_n$, so

Definition 5.2.2. Let

$$G^{(n)} = \{ [g_1 \mid \dots \mid g_n] : g_1, \dots, g_n \in G \}, \qquad G^{(0)} = \{ [] \}.$$

The bar resolution is $F_n = \mathbb{Z}G\left\{G^{(n)}\right\}$, the free module with basis $G^{(n)}$, with

and the augmentation map

Fact. This is a chain complex, so $d_{n-1} \circ d_n = 0$.

Proposition 5.2.3. The bar resolution is exact.

Proof. Forget the G-action. Then F_n is free abelian on the set $G \times G^{(n)} = \{g [g_1 \mid \cdots \mid g_n]\}$. Define abelian group homomorphisms

$$s_n: F_n \longrightarrow F_{n+1}$$

 $g[g_1|\cdots|g_n] \longmapsto [g|g_1|\cdots|g_{n+1}].$

By a calculation, $d_{n+1} \circ s_n + s_{n-1} \circ d_n = \mathrm{id}_{F_n}$. If $x \in \ker d_n$, then

$$x = id(x) = d_{n+1}(s_n(x)) + s_{n-1}(d_n(x)) = d_{n+1}(s_n(x)) \in im d_{n+1},$$

so $\ker d_n = \operatorname{im} d_{n+1}$.

Let M be a G-module. The **cochain group** is

$$C^{n}\left(G,M\right)=\left\{ \mathrm{functions}\ \phi:G^{n}\rightarrow M\right\} \cong\mathrm{Hom}_{G}\left(\mathbf{F}_{n},M\right).$$

The dual of the d_n in the bar resolution is

$$d^{n} : C^{n-1}(G, M) \longrightarrow C^{n}(G, M)$$

$$\phi \longmapsto \begin{pmatrix} g_{1}\phi(g_{2}, \dots, g_{n}) \\ - \phi(g_{1}g_{2}, \dots, g_{n}) \\ (g_{1}, \dots, g_{n}) \mapsto + \dots \\ + (-1)^{n-1}\phi(g_{1}, \dots, g_{n-1}g_{n}) \\ + (-1)^{n}\phi(g_{1}, \dots, g_{n-1}) \end{pmatrix}.$$

The group of n-cocycles is

$$Z^{n}(G, M) = \ker d^{n+1} \leq C^{n}(G, M).$$

The group of n-coboundaries is

$$B^{n}(G, M) = \operatorname{im} d^{n} \leq C^{n}(G, M).$$

Then

$$H^{n}(G, M) = Z^{n}(G, M)/B^{n}(G, M).$$

Lecture 20 Saturday

06/03/21

Corollary 5.2.4. Let G be a group and M a G-module. Then

$$H^{0}(G, M) = Z^{0}(G, M) = \ker d^{1} = \{m \in M \mid \forall g, gm = m\} = M^{G},$$

the invariants. A function $\phi: G \to M$ is a **crossed homomorphism** if $\phi(gh) = g\phi(h) + \phi(g)$, and a **principal crossed homomorphism** if $\phi(g) = gm - m$ for some $m \in M$. Then

 $H^1(G, M) = \{crossed\ homomorphisms\} / \{principal\ crossed\ homomorphisms\},$

which is $\operatorname{Hom}(G, M)$ if M is trivial.

Proof. Take $\phi \in C^0(G, M)$ such that $\phi(1) = m$. Then

$$d^{1}(\phi)(g) = g\phi(1) - \phi(1) = gm - m.$$

Let $\phi \in C^1(G, M)$. Then

$$d^{2}(\phi)(q,h) = q\phi(h) - \phi(qh) + \phi(q),$$

so $\phi \in \ker d^2$ if and only if $\phi(gh) = g\phi(h) + \phi(g)$. If M has trivial G-action, ϕ is a homomorphism $G \to M$.

Proposition 5.2.5. Let $\alpha: G_1 \to G_2$ be a group homomorphism. Let M be a G_2 -module and make M into a G_1 -module via

$$g_1 \cdot m = \alpha(g_1) m, \qquad g_1 \in G_1, \qquad m \in M.$$

Then there is a natural homomorphism

$$\alpha^* : \mathrm{H}^n (G_2, M) \to \mathrm{H}^n (G_1, M)$$
.

If $\beta: G_0 \to G_1$ then $(\alpha \circ \beta)^* = \beta^* \circ \alpha^*$.

Proof. Define maps by

$$\alpha^* : C^n(G_2, M) \longrightarrow C^n(G_1, M)$$

 $\phi \longmapsto ((g_1, \dots, g_n) \mapsto \phi(\alpha(g_1), \dots, \alpha(g_2)))$.

Then $d^n \circ \alpha^* = \alpha^* \circ d^n$, so

$$\begin{array}{ccc}
\mathbf{C}^{n}\left(G_{2},M\right) & \xrightarrow{\alpha^{*}} & \mathbf{C}^{n}\left(G_{1},M\right) \\
\downarrow^{\mathbf{d}^{n}} & & \downarrow^{\mathbf{d}^{n}} & \cdot \\
\mathbf{C}^{n+1}\left(G_{2},M\right) & \xrightarrow{\alpha^{*}} & \mathbf{C}^{n+1}\left(G_{1},M\right)
\end{array}$$

Thus α^* induce maps on cohomology.

We might like a sequence of groups

$$1 \to H \to G \to Q \to 1$$
, $H \triangleleft G$, $G/H = Q$

to give a long exact sequence in cohomology. This is false.

Example 5.2.6. Let

$$1 \to \mathbb{Z} \to \mathbb{Z}^2 \to \mathbb{Z} \to 1.$$

Then

$$\dots \longrightarrow \mathrm{H}^2\left(\mathbb{Z},M\right) \longrightarrow \mathrm{H}^2\left(\mathbb{Z}^2,M\right) \longrightarrow \mathrm{H}^2\left(\mathbb{Z},M\right) \longrightarrow \dots \\ 0 \qquad \qquad 0,$$

and there exists M such that $H^2(\mathbb{Z}^2, M) \neq 0$.

Lemma 5.2.7. Let $H \triangleleft G$. Let M be a G-module. Let G act on $\mathbb{C}^n(H,M)$ by

$$g \cdot \phi = ((h_1, \dots, h_n) \mapsto g\phi (g^{-1}h_1g, \dots, g^{-1}h_ng)).$$

Then this descends to an action of G on $H^n(H, M)$, and H acts trivially, so this is an action of G/H.

Proof. We want $g \cdot d^n(\phi) = d^n(g \cdot \phi)$, which holds by direct computation. So the action of G is by chain maps, so gives an action on cohomology. For H acts trivially, we will just do n = 1. Take $\phi \in Z^1(H, M)$ and let $\eta, h \in H$. Then

$$(\eta \cdot \phi) (h) - \phi (h) = \eta \phi \left(\eta^{-1} h \eta \right) - \phi (h) = \eta \left(\eta^{-1} \phi (h \eta) + \phi \left(\eta^{-1} \right) \right) - \phi (h) = \phi (h \eta) + \eta \phi \left(\eta^{-1} \right) - \phi (h)$$

$$= h \phi (\eta) + \phi (h) + \eta \phi \left(\eta^{-1} \right) - \phi (h) = h \phi (\eta) + \eta \phi \left(\eta^{-1} \right) = h \phi (\eta) - \phi (\eta) = d^{1} \left(\phi (\eta) \right) (h) ,$$

since
$$\phi\left(1\cdot1\right)=1\phi\left(1\right)+\phi\left(1\right)$$
 so $\phi\left(1\right)=0$ and $0=\phi\left(1\right)=\phi\left(\eta\eta^{-1}\right)=\eta\phi\left(\eta^{-1}\right)+\phi\left(\eta\right).$

The useful case is n = 1. If $\phi : H \to M$ is a crossed homomorphism $(g \cdot \phi)(h) = g\phi(g^{-1}hg)$. If M is trivial, this reads $(g \cdot \phi)(h) = \phi(g^{-1}hg)$ so the homomorphism ϕ is G-invariant.

Theorem 5.2.8 (Five-term inflation-restriction exact sequence). Let $H \triangleleft G$ and Q = G/H and let M be a G-module. There is exact sequence

$$0 \to \mathrm{H}^{1}\left(Q, M^{H}\right) \to \mathrm{H}^{1}\left(G, M\right) \to \mathrm{H}^{1}\left(H, M\right)^{Q} \to \mathrm{H}^{2}\left(Q, M^{H}\right) \to \mathrm{H}^{2}\left(G, M\right).$$

Proof. Just define the maps.

• Restriction maps

$$\begin{array}{cccc} \operatorname{Res} & : & \operatorname{H}^{k}\left(G,M\right) & \longrightarrow & \operatorname{H}^{k}\left(H,M\right)^{Q} \\ & \left(f:G^{k} \to M\right) & \longmapsto & \left(\operatorname{Res}f:H^{k} \leq G^{k} \xrightarrow{f} M\right) \end{array}.$$

• Inflation maps

$$\begin{array}{cccc} \operatorname{Inf} & : & \operatorname{H}^k\left(Q,M^H\right) & \longrightarrow & \operatorname{H}^k\left(G,M\right) \\ & \left(f:Q^k \to M^H\right) & \longmapsto & \left(\operatorname{Inf} f:G^k \twoheadrightarrow Q^k \xrightarrow{f} M^H \le M\right) \end{array}.$$

• Transgression maps. Let $s:Q\to G$ be a set-theoretic section, so $(Q\to G\to Q)=\mathrm{id}_Q$, with s(1)=1. Define

$$\rho : G \longrightarrow H
g \longmapsto gs(gH)^{-1}$$

If $f: H \to M$ represents a Q-invariant cohomology class define

$$\begin{array}{cccc} \operatorname{Tg} & : & \operatorname{H}^{1}\left(H,M\right)^{Q} & \longrightarrow & \operatorname{H}^{2}\left(Q,M^{H}\right) \\ & f & \longmapsto & \left(\left(g_{1},g_{2}\right) \mapsto f\left(\rho\left(g_{1}\right)\rho\left(g_{2}\right)\right) - f\left(\rho\left(g_{1}g_{2}\right)\right)\right) \end{array}.$$

If G is a free group, $H^2(G, M) = 0$ for all M.

Corollary 5.2.9 (Hopf's formula). Let F be a free group and $R \triangleleft F$ and Q = F/R. Let A be an abelian group, viewed as a trivial module. Then

$$\mathrm{H}^{2}\left(Q,A\right)\cong\left\{ F\text{-invariant homomorphisms }R\rightarrow A\right\} /\left\{ homomorphisms\ F\rightarrow A\right\} .$$

Proof. There is an exact sequence

$$\operatorname{Hom}(F, A) \to \operatorname{Hom}(R, A)^F \to \operatorname{H}^2(Q, A) \to 0.$$

If $Q = \langle x_1, \dots, x_d \mid r_1, \dots, r_m \rangle$ is a presentation, then $F = \langle x_1, \dots, x_d \rangle$ is free and $R = \langle \langle r_1, \dots, r_m \rangle \rangle$ is a normal subgroup generated by r_i . Then d $(H^1(Q, \mathbb{Z})) = d(Hom(Q, \mathbb{Z})) \leq d$. An F-invariant homomorphism $R \to \mathbb{Z}$ is determined by images of r_i , so d $(H^2(Q, \mathbb{Z})) \leq m$.

Example. Let $Q = \mathbb{Z}/3\mathbb{Z}$ and let Q act on $M = \mathbb{Z}^2$ via the order three matrix $A = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$. Consider the short exact sequence of groups

Since H acts trivially on M, $H^1(H, M) = \text{Hom}(H, M) \cong \mathbb{Z}^2$ by $f \mapsto f(1)$. Then $f \in H^1(H, M)^Q$ if and only if f(1) is Q-invariant, if and only if Af(1) = f(1). If Ax = x, then x = 0, so $H^1(H, M)^Q = 0$ and $H^2(G, M) = 0$. By the five-term exact sequence, $H^2(Q, M) = 0$.