DEFAULT OF CREDIT CARD MODELING AND VISUALIZATION

GROUP 8:
JINGTIAN YAO
CHENFEI JIANG
MICHAEL UTOMO

CATEGORY

I. Problem Description

2 Data Preprocessing

3. Model Selection

4. Visualization

PROBLEM DESCRIPTION

The accuracy of the result of customers' credit card default payment is essential from the perspective of risk management.

We aimed at predicting customers' default payments status next month and compares the predictive accuracy among different algorithms.

We also built a Shiny App for the bank to help them with better risk management.

DATA PREPROCESSING

Data Source:

https://archive.ics.uci.edu/ml/datasets/defa Age ult+of+credit+card+clients

- 23 attributes
- Amount of given credit
- Gender
- Education

- Marital Status
- History of past payment (last 6 months)
- Amount of bill statement (last 6 months)
- Amount of previous payment (last 6) months)

Divide data into training set (24,000 observations) and test et (6,000 observations)

I. SVM (radial basis function kernel)

• Tunning parameters: cost & gamma

range of cost: 10^(-6:2)

range of gamma: 10^(-4:4)

• Best parameters: cost = 10, gamma = 0.001

2. Random Forest

• Tunning parameters : mtry & ntree

range of mtry: 1,2,3,4

range of ntree: 100, 200, 300, ..., 1000

• Best parameters: mtry = 2, ntree = 600

3. Xgboost

• Tunning parameters: eta & gamma & max depth

range of eta: 0.3, 0.5, 0.7

range of gamma: 0, 0.5, I

range of max depth: 2, 3, 4, ..., 10

Best parameters: eta = 0.5, gamma = 0.5, max depth = 4

4. Logistic Regression

•	Variables [‡]	Formula	Var1	Var2	Var3	Var4	Var5	Var6	Var7	Var8	Var9	Var10	AUC [‡]	P < 0.05
2474	2	Y ~ X21 + X16	X21	X16	0	0	0	0	0	0	0	0	0.5731454	0
2056	2	Y ~ X19 + X14	X19	X14	0	0	0	0	0	0	0	0	0.5820459	0
2483	2	Y ~ X21 + X17	X21	X17	0	0	0	0	0	0	0	0	0.5825252	0
2274	2	Y ~ X20 + X15	X20	X15	0	0	0	0	0	0	0	0	0.5834993	0
2367	2	Y ~ X21 + X4	X21	X4	0	0	0	0	0	0	0	0	0.5836388	0
2547	3	Y ~ X21 + X22 + X13	X21	X22	X13	0	0	0	0	0	0	0	0.5837639	0
2665	3	Y ~ X22 + X21 + X13	X22	X21	X13	0	0	0	0	0	0	0	0.5837639	0
2067	2	Y ~ X19 + X15	X19	X15	0	0	0	0	0	0	0	0	0.5841984	0
2548	3	Y ~ X21 + X22 + X15	X21	X22	X15	0	0	0	0	0	0	0	0.5846775	0
2666	3	Y ~ X22 + X21 + X15	X22	X21	X15	0	0	0	0	0	0	0	0.5846775	0
2560	3	Y ~ X21 + X23 + X13	X21	X23	X13	0	0	0	0	0	0	0	0.5849772	0

AUC: Area under the ROC curve - assessing discrimination in logistic regression

5. Neural Network

Size: Number of units in the hidden layer (Choose 2 from 1 to 5)

Decay: parameter for weight decay (0.1)

Maxit: maximum number of iterations (200)

Algorithm	Test Accuracy	Prediction Time (6000 observations)			
SVM	0.779	28.75s			
Random Forest	0.815	3.07s			
Xgboost	0.878	0.05s			
Logistic Regression	0.808	0.10s			
Neural Network	0.779	4.41s			

According to the test accuracy, Xgboost algorithm performs the best.

VISUALIZATION

The homepage of our app.

The app includes 5 parts:

Welcome

Introduction

Algorithm Evaluation

Multiple Predictions

Individual Prediction

VISUALIZATION

VISUALIZATION

VISUALIZATION

VISUALIZATION

FUTURE PLAN

• Add "Model Training" feature in our app.

Idea: Allow user to upload their own training dataset, and we can train a new model for the user based on the data user given.

