Lab #9

Nora Mitchell
March 21, 2017

Molecular Evolution

Can we detect a role for selection (or demographic processes) in molecular sequence data?

Fst outliers

Position on Cromosome 7 (Base pairs)

Tajima's D

Test statistic for determining whether sequence data are consistent with population being at neutral mutation-drift equilibrium

- $ightharpoonup \widehat{D} = 0$: no evidence for change in pop size or selection
- $ightharpoonup \widehat{D} < 0$: pop size increasing, or purifying selection
- $ightharpoonup \widehat{D} > 0$: pop bottleneck, or diversifying selection

Back to Protea repens

Let's use Protea repens as an example, again.

In Project #2, we used the Fst outlier loci and ran Structure on it, calculated Fst, etc.

Let's use a different subset of the data (n = 187 individuals, 150 SNP loci) to try and detect Fst outliers

Then, let's use sequence data on just 8 individuals (but 274,405 bp) to estimate Tajima's D.

Previous work

Remember that Prunier et al. found evidence for just 2-3 populations using non-Fst outlier loci

Previous work

Previous work

In project # 2, you found evidence for more populations

To do:

- Use the handout as a guide
- Visually check for Fst outliers using the repens_150.stru data
- Run Structure on repens_150.stru and compare with previous findings
- Esimate the pieces of Tajima's D on repens.fasta data, then estimate Tajima's D using a built-in function
- ► Next week: project # 5 assigned!