

. .

FIG. 1B PART ONE: TRIGGER REACTION

FIG. 2A

MAJORITY	MAJORITY [SEO ID NO:7]	AT SXX B G C BAT G C T T T C C C C T T T SA G C C C A A G G C C G G T C C T C C T G G A C G G C C A C C T G G C C T	
DHAPTAO BHAPTFL BHAPTTB	ESEO 10 NO.13 ESEO 10 NO.23 ESEO 10 NO.33	AG G	57 57 07
	MAJORITY	A CC SCA COTTOTT CG CCCT CA GC CCT CA CCA GC CG GG GG GG A A CC GG T G CA GG CG T A CG GCTT	
	DRAPTAO DRAPTE DRAPTTE		140 137 140
	MAJORITY	CGCCAAGAGCCT CCT CAAGGCCCCT GAAGGAGGACGGGGACXXGGGGGGT GXT CGT GGT CTTT GACGCCAAG	
	DKAPTAO DKAPTEL DKAPTTB		207 204 210
	MAJORITY	GCCCCCTCCTTCCGCCACGAGGCCTACGAGGCCTACAAGGCGGGCCGGGCCCCCCCC	
	DRAPTAO DNAPTFL DNAPTTH		277 274 280
	MAJORITY	ccesseaget csccot cat caasca sct set caacet cot sessent sessest csasst scccs sct a	
	BNAPTAO BNAPTEL BKAPTTB	B	347 344 350

FIG. 2B

MAJORITY ESED ID NO.73	COAGGCGCACGACGTXCT GGCCACCCTGGCCAAGGCGGAAAAGGAGGGGGTACGAGGTCCGTCC	417
[SEG 10 NO: 1] [SEG 10 NO: 2] [SEG 10 NO: 3]		414 420
MAJORITY	ACCGCCGACCGCGACCTCTACCAGCTCCTTTCCGACCCCATCGCCGTCCTCCACCCCCGAGGGGTACCTCA	
DRAPTAG DRAPTEL DRAPTTR		487 484 490
MAJORITY	T CACCCCGGCGT GCCTTT GGGABAAGTACGCCCT GAGGCCGGCCAGT GGGT GGGTGGACTACCGGGCCCT GGC	
DRAPTAG DRAPTEL DRAPTTR	6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6	557 554 560
MAJORITY	GBBGGACCCTCCGACAADOTCCCCGGGGTCAAGGGCATCGBBGAGAGACCGCCCXGAAGTCCTCXAG	
DRAPTAO DRAPTEL DRAPTTE	66A6	627 624 630
KAJORITY	GAGT GEGGG GCCT CGAAAACCT CCT CAAGAACCT GGACCGGGT GAAGCCCCCC···CXT CCGGGAGAAGA	
BRAPTAO Braptel Brapttr	6	534 691 700

FIG. 20

MAJORITY	MAJORITY ESEC ID NO:73 TECAG	T CCA GGC CCA CAT GGAX GACT CAX GCT CT CCT GGGAGGT XT CCCAGGT GCGCACCT GCCCCT GCCCT GGA	
DRAPTAG DRAPTFL DRAPTTR	[SEQ 10 NO:1] [SEQ 10 NO:2] [SEQ 10 NO:3]		764 781 770
	MAJORITY	GET GEACTT CGCCAACK GGCGGGGGGCGACCGGGAGGGGCTTAGSGCCTTT CT GGAGAGGCT GGAGTTT	
	DNAPTAG DNAPTFL DNAPTTH	66. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	834 831 840
	MAJORITY	GECAGECT CCT CCACGAGTT CGG CCT CCT GCAGG CCCCCCAAGG CCCT GGAGG CCCCCCT GGCCCCCCCCCC	
	DNAPTAO DNAPTEL DNAPTTR		904 901 910
	MAJORITY	COGAAGOGGCCTTCGTGGCCTTTCTCCCGCCCCCCAAGCCCATGTGCGCCGAGCTTCTGGCCCTGGC	
	DRAPTAO DRAPTEL DRAPTTE		974 971 980
	MAJORITY	COCCOCASSCASSCESS TO CACCESCACOACA COCTTTAX SESCET XAGG CACCTXAA S CAT C	
,	DNAPTAO DNAPTEL DNAPTER	T. 66. 6T 6 6	1044 1041 1050

FIG. 2D

MAJORITY	MAJORITY ESEC ID NO:7]	coocexct cot coccaaces cot occount trecent caceda accounter to coccooccae	
DHAPTAU DHAPTEL DHAPTER	[SED ID NO:1] [SED ID NO:2] [SED ID NO:3]		1114 11120
	MAJORITY	A C C C C A T G C T C C C C C C C C C C C C C C C C	
	DRAPTAG DRAPTEL DRAPTTE		1184 1181 1190
	MAJOSITY	EGGGGAGTGGACGGAKGCGGGGGGGGGGCCCTCCTXTCGGAGAGGCTCTTCCKGAACCTXXXGGAG	
	DRAPTAG DRAPTFL DRAPTFL		1254 1251 1260
	MAJORITY	CGCCTTGABBBBBBBBBBBBCTCCTTTGGCTTTACCAGGRGGTGGAGGCCCCTTTECCGGGTCCTGG	
	DRAPTAG DRAPTE DRAPTE	A. B A A	1324 1321 1330
	MAJORITY	CCCACATGBAGGCCASGBBGTX GGGCT BGACGT GGCCTACCT CCAGGCCCTXT CCCT SGAGGT GGCGGA	
	DNAPTAG DNAPTFL DNAPTTH	3	1394 1391 1400

FIG. 2F

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RITY ESEC 10 NO:71	GCA GAT CC SC CC CCT CCA G GA G G G G G T C T C G G C C C C C C C C C	
S L F	[SEQ ID NO:1] [SEQ ID NO:2] [SEQ ID NO:3]	6	1464 1461 1470
	MAJORITY	CAGOT GEAAAGEST COTTT GACGASOT XGEGOT T COCGCCAT CGSCAAGACSGAGAGACACXGGCAAGC	
	DNAPTAO DNAPTEL DNAPTTR	66. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	1534 1531 1540
	MAJORITY	BCT CCASCAGCGCGCGCGT GCT GGAGGCCCT XCGXGAGGCCCACCCCAT CST GGAGAAGAT CCT GCAGTA	
	DNAPTAO DNAPTEL DNAPTTH		1604 1601 1610
	MAJORITY	CCEBBAGCT CACCAAGCI CAAGAACAGCI ACATXGACCCCOT GCCXGXCCT GGT GDACCCCAGGACGGG	
	DRAPTAG DRAPTE DRAPTE	16. 16. 16. 16. 16. 16. 16. 16. 16. 16.	1674 1671 1680
	MAJORITY	CECCT CCACACOCCTT CAACCAGACGGCCACBGCCACBGCATAGCT AGT AGCT CCGACCCCAACCT GC	
	DRAPTAG DRAPTFL DRAPTTR	6	1744 1741 1750

j

ł

FIG. 2F

GEXTGBET	. 6 6. 1814 . 6 1811 6 1820	LEARCCTG	1884 A 1881	១១១១១១១៥	6. 1854 17 1951	11818888	62024 2021	CTTCCAG	2091 2091
t cet escorabera		jet ct ccesesales.		GEATETTCGCCCT		BOTCOTCTACGO		HICATICAGECTA	
sat ceeéceeeet	• • • • • • • • • • • • • • • • • • •	seest cot esceed		2004640GBGCABC1		Hecatcaacttoge		ia 6 6 a 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
CXCTGGGCCAGAGG		CCASATABAGCTCC		ABBGACATCCACAC		вссвеесвессядв		TSCCATCCCCTACG	
a cat coccest cccca ccccx ct ccc ccasa grat ccc cccc ccc t ccc ccc ccc ca a cat cocc	6. J. 9	GOT GCCCCT GCACTATAGCCAGATAGAGCT CCGGGT CCT GGCCCAGGT CT CCGGGGACGAGAGCT	9	AT CCSGOTCTT CCAGGAGGGGAGGGACAT CCACACCCAGACGGCAGCT GGAT GTT CGGCGT CCCCCGG	GG	A GO C C GT B G A C C C C C C G A T G C G C C C G G C C C A A C C A T C A A C T T C G G G G T C T C C C C A T G T C C C C	B. G.G	CCACCECCTCTCCCAGGAGGITGCCATCCCCTACGAGGGGGGGGTGGCCTTCATTGAGGGGTGG	
404	: : :	61166		ATCCG		AGGCC	99	CCACCE	· · · · · · · · · · · · · · · · · · ·
MAJORITY ESEO 10 NO:73	(SEO ID MO:17 (SEO ID MO:27 (SEO ID MO:37	MAJORITY	DRAPTAU DRAPTEL DRAPTTR	MAJORITY	DRAPTAD DRAPTEL DRAPTER	MAJORITY	DRAPTAO DRAPTEL DRAPTTH	MAJORITY	DNAPTAG DNAPTEL DEADTTE
MAJORITY	DNAPTAO DNAPTEL DNAPTEN								

FIG. 20

FIG. 2H

MAJORITY	MAJORITY ESEC ID NO:7]	GCCCCTGGAGGTGGACGTGGGGGAGGGACTGCCTCTCCCCCAASGAGTAG
DNAPTAO	ESEO 10 NO.13	GA 2499
DHAPTFL	[SE0 ID NO.2]	[SEG ID RE: 2]
READTIE	[SEG 10 NG: 3]	COCT in

FIG. 3A

us indity	MA LODITY FRED TO MD-83	MY AM PLFEPKBRULLUDGHHLAYRTFFALKCLTTSRGEPVDAVYGFAKSLLKALKEDG. DAVXUVFDAK	
TAD PRO TEL PRO	[SE0 10 NO: 4] [SE0 10 NO: 5] [SE0 10 NO: 5]	1208 Hz. 120	63 07
	MAJORITY		
	TAO PRO TEL PRO	## CEC	138 140
	MAJORITY	TADROLYOLL SDRI AVL HPEGYLI TPAWL WEKYGL RPEDWYDYRAL XGDP SONL PGVKGI GEKTAXKLLX	
	TAO PRO TFL PRO	K	209 208 210
	MAJORITY	EWGSLENLLKHLBRUKP·XXREK! XAHMEDLXLSXXLSXVRTDLPLEVDFAXRREPDREGLRAFLERLEF	
	TAG PRO TFL PRO TTH PRO		278 277 280
, # \ *,	MAJORITY	GSLI HEFGLLEXPKALEEAPWPPPEGAFVGFVLSRPEPMWAELLALAAARXGRVHRAXDPLXGLRDLKEV	
·	TAG PROTTEL PROTTEL PRO	S. A.	348 347 350

FIG. 3B

	## 62 84 85		488 487 490		558 557 560		628 627 630		688 687 700
198 198	S	3 E		OLERVLFDELGLPAI ÖKTEKTGKRSTSAAVLEALREAHPIVEKILOYRELTKLKHTYIDPLPXLYHPRTG	S	RLHTRFNOTATATGRLSSSOPNLON! PVRTPLGOR! RRAFVAEEGWXLVALDYSO! ELRVLAHLSGDENL		I RV FOEGROI HTOTA SWMFGV PPEAVOPLMR RAAKTI NFGVLYGMSAHRL SOELAI PYEEAVAFI ERYFO	B
MAJORITY ESEO ID X0:83	[SEG 10 NO:4] [SEG 10 NO:5] [SEG 10 NO:6]	MAJORITY	TAG PRO TFL PRO TTR PRO	MAJORITY	TAG PRO TFL PRO TTH PRO	MAJORITY	TAO PRO TEL PRO TTM PRO	MAJORITY	TAG PRO TEL PRO TTR PRO
MAJORITY	TAO PRO TFL PRO TTR PRO								

FIG. 3C

HAJORITY	HAJORITY ESEQ ID NO: 8] SFPKVF	SF PKV RAWI EKTLE EGRRAGYVET LFGRRRYVP DL NARVKSYRE AA ERMAFNMP V QGT AA DL MK LA MVKL	
TAG PRO TEL PRO	[SED 10 NO: 4] [SED 10 NO: 5] [SED 10 NO: 6]	. ec	887 787 057
	MAJORITY	MAJORITY FPRIXEMBARMILOVHDELVLEAPKXRAEXVAALAKEVMEGVYPLAVPLEVEVGXGEDWLSAKEX	
	TAO PRO TFL PRO		833 831 835

Genes for Wild-Type and Pol(-) DNAPTfl

Cleavage

Cleavage

Sites

Cleavage

Sites

Cognating of the transport of

FIG. 7

FIG. 8

FIG. 9A

FIG. 98

FIG. 10A

FIG. 108

FIG. 12A

a dry

FIG. 12B

)

FIG. 13B

Substrate RNA (46 nt)

5' A A GCUUGCA UGCCUGCA GGUCGA CUCUA GA GGA UCCCC 3'
3' CGT A CGGA CGT CCA GCT GA GA T CT CCT A GG 5'

30-0

FIG. 13A

Section 1

RBS: Ribosome binding site

T∳: T7 ¢ Terminator

FIG. 15C

j

.

FIG. 16D

FIG. 17

FIG. 18

FIG. 19A

j

)

GOCCAGGGTTTTCCCAGTCACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGGAATTCGAGTCAGGCCCTAAGGGCTCAGGCCCCTAGGGCCCTAGGGCCCTAGGGCCCTAGGGCCCTAAGGGCTCAGGCCCTAGGGCCTAGGGCCTAGGGCCATGGCCCTAGGAGCTCAGGGCCCTAGGGCCATGGCCCTAGGAGCTCAGGGCCATGGCCCTAGGAGCTCAGGGCCATGGCCCTAGGAGCTCAGGAGCCTTAAGAGCTCGAGGCCATGGCCCTAGGAGCTCAGAGGCTCAGGGCCATGGCCCATGGCCCTAGGAGCTCCAGGCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGAGCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGAGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGGCCCATGCCCCATGGCCCATGCCCCATGGCCCATGCCCCATGCCCCATGCCCCATGCCCCATGCCCCATGCCCCATGCCCCATGCCCCCCATGCCCCCATGCCCCCATGCCCCCATGCCCCCATGCCCCCATGCCCCCATGCCCCCATGCCCCCATGCCCCCATGCCCCCATGCCCCCATGCCCCCATGCCCCCATGCCCCCATGCCCCCATGCCCCCATGCCCCCCATGCCCCCCATGCCCCCCATGCCCCCCATGCCCCCCATGCCCCCCATGCCCCCCATGCCCCCCATGCCCCCATGCCCCCCATGCCCCCCATGCCCCCCATGCCCCCCATGCCCCCCTATGCCCCCCTATGCCCCCCTATGCCCCCCTATGCCCCCCTATGCCCCCCTATGCCCCCCTATGCCCCCCTATGCCCCCCTATGCCCCCCTATGCCCCCCTATGCCCCCCTATGCCCCCCTATGCCCCCCTATGCCCCCCTATGCCCCCCTATGCCCCCCTATGCCCCCCCTATGCCCCCCATGCCCCCCTATGCCCCCCTATGCCCCCCTATGCCCCCCTATGCCCCCCCTATGCCCCCCCC	Sol / BspM / BspM / Acc / BspM / Acc / Hind // Hind // Hind // Hinc // Hinc // Hinc // Hind //	. 228 FIG. 21
CGCCACGGTTTTCCCAGTCACGACGTTGTAAAACGAC GCGGTCCCAAAAGGGTCAGTGCTGCAACATTTTGCTG	Sal / BspM / BspM / Sph / Sph / Sph / Hind III TAGAGTCGACCTCCAGGCATGGAAGCTTCAGTATTCT ATCTCAGCTGGACGTCCTAGGACTCATAAGA ATCTCAGCTGGACGTCCGTACGTTCGAACTCATAAGA ATCTCAGCTGGACGTCCGTACGTTCGAACTCATAAGA	TCCGCTCACAATTCCACACATACGA 228 AGGCGAGTGTTAAGGTGTGTTGTATGCT48 Reverse206

FIG. 22A

FIG. 22B

FIG. 24

FIG. 25A

FIG. 25B

FIG. 27

FIG. 28A

FIG. 28B

FIG. 29

FIG. 30

FIG. 31

FIG. 32

\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$

FIG. 33

FIG. 34

FIG. 35

FIG. 36

FIG. 37

FIG. 38

FIG. 39

FIG. 40

FIG. 41

FIG. 42

FIG. 43

FIG. 44

FIG. 45

FIG. 46

FIG. 47

FIG. 48

L	_	>
L	1	

5'GGCTGACAAGAAGGAAACTCGCTGAGATAGCAGGGACTTTCCACAAGGGG 3'CCGACTGTTCTTCCTTTGAGCGACTCTATCGTCCTGAAAGGTGTTCCCC L.46.16-10 (SEQ ID NO:

5'GCTGACAAGAAGGAAACTCGCTGAGATAGCAGGGACTTTCCACAAGGGG 3'CCGACTGTTCTTCCTTTGAGCGACTCTATCGTCCCTGAAAGGTGTTCCCC 78) L.46.16-12 (SEQ ID NO:

5'GGCTGACAAGAAGGAAACTCGCTGAGACAGCAGGGACTTTCCACAAGGGG 3'CCGACTGTTCTTCCTTTGAGCGACTCTGTCGTCCTGAAAGGTGTTCCCC 79) L19.16-3 (SEQ ID NO: 7

5'GGCTGACAAGAAGGAAACTCGCTGAAACAGCAGGGACTTTCCACAAGGGG 3'CCGACTGTTCTTCCTTTGAGCGACTTTGTCGTCCTGAAAGGTGTTCCCC 80) L.CEM/251 (SEQ ID NO: 8

5.GCTGACAAGAAGGAAACTCGCTGAGACAGCAGGGACTTTCCACAAGGGG 3.CCGACTGTTCTTCCTTTGAGCGACTCTGTCGTCCTGAAAGGTGTTCCCC L.36.8-3 x(SEQ ID NO: 81)

FIG. 49A

ATGTTACGGGGAGGTACTGGGGAGGAGCCGGICGGAALGLLAALIGLAAALIGLAAALIGLAAALIGLAAALIGLAAALIGLAAALIGLAAAAAAAA	ATGTTATGGGGAGGAGCCGGTCGGGAACACCCCACTTTCT) TACAATACCCCTCCTCGGCCAGCCTTGTGGGTGAAGA	ATGTTATGGGGAGGAGCCGGTCGGGAACACCCCACTTTCT) TACAATACCCCTCCTCGGCCAGCCTTGTGGGTGAAAGA	ATGTTACGGGGAGGTACTGGGGAGGAGCCGGTCGGGAACGCCCCCCTCTCT TACAATGCCCCTCCATGACCCCTCCTCGGCCAGCCCTTGCGGGGGGGAGA	ATGTTACGGGGAGGTACTGGGAAGGAGCCGGTCGGGAACGCCCACTTTCT () TACAATGCCCCTCCATGACCCTTCCTCGGCCAGCCTTGCGGGTGAAGA
76)	77)	78)	19)	80)
L.100.8-1 (SEQ_ID_NO:	L.46.16-10 (SEQ ID NO:	L.46.16-12 (SEQ ID NO:	L19.16-3 (SEQ ID NO:	L.CEM/251 (SEQ ID NO:

FIG. 49B

ATGTTACGGAGAGGTACTGGGGAGGAGCCGGTCGGGAACGCCCCACTCTCT TACAATGCCTCTCCATGACCCCTCCTCGGCCAGCCCTTGCGGGTGAGAGA

(SEQ ID NO: 81)

L.100.8-1	150 5'TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA 3'ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT
L.46.16-10	5'TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA3'ACTACATATTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCT
L.46.16-12	5'TGGTGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA 3'ACCACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT
L.19.16-3	5'TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA 3'ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT
L.CEM/251	5'TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA 3'ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCCT

FIG. 49C

5'TGATGTATAAATATCACTGCATTTCGCTCTGTATTCAGTCGCTCTGCGGA3'ACTACATATTTATAGTGACGTAAAGCGAGACATAAGTCAGCGAGACGCT

L.100.8-1 L.46.16-10	200 GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGTCGTGATCGTCATC GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGCTAG
L.46.16-12	GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGGTCGTGATCGTCCATC
L.19.16-3	GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGTCGTGATCGTCCATC
L.CEM/251	GAGGCTGGCAGATTGAGCCCTGGGAGGTTCTCTCCAGCACTAGCAGGTAG CTCCGACCGTCTAACTCGGGACCCTCCAAGAGAGGTCGTGATCGTCCATC

FIG. 49D

L.36.8-3

250 5'AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTGGCCGGTGCTGGG 3'TCGGACCCACAAGGGACCATCTGAGAGTGGTCGTGAACCGGCCACGACCC	5'AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTAGCCAGTGCTGGG 3'TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAATCGGTCACGACCC	5'AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTGGCCAGTGCTGGG 3'TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAACCGGTCACGACCC	5'AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTGGCCGGTGCTGGG 3'TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAACCGGCCACGACCC	5'AGCCTGGGTGTTCCCTGCTAGACTCTCACCAGCACTTGGCCGGTGCTGGG 3'TCGGACCCACAAGGGACGATCTGAGAGTGGTCGTGAACCGGCCACGACCC	5'AGCCTGAGTGTTCCCTGCTAAACTCTCACCAGCACTTGGCCGGTGCTGGG 3'TCGGACTCACAAGGGACGATTTGAGAGTGGTCGTGAACCGGCCACGACCC
5'AG CCTGGGT GTTCCCTGCTAGA0 3'TCGGACCCACAAGGGACCATCT0	5'AGCCTGGGTGTTCCCTGCTAGA(3'TCGGACCCACAAGGGACGATCT(5'AGCCTGGGTGTTCCCTGCTAGA03'TCGGACCCACACGGACGATCT	5'AGCCTGGGTGTTCCCTGCTAGA 3'TCGGACCCACAAGGGACGATCT	S'AGCCTGGGTGTTCCCTGCTAGA 3'TCGGACCCACAAGGGACGATCT	5'AGCCTGAGTGTTCCCTGCTAAA 3'TCGGACTCACAAGGGACGATTT
(92	77)	78)	79)	80)	81)
L. 100.8 -1	L. 46.16-10 (SEO ID NO:	L. 46.16-12 (SEO ID NO:	L. 19.16-3	L. CEM/251 (SEQ ID NO:	S.L. 36.8-3 (SEQ ID NO:

HAIRPIN

FIG. 49E

L. 100. 8 -1 (SEQ ID NO: 76) (SEQ ID NO: 77) (SEQ ID NO: 77) (SEQ ID NO: 78) (SEQ ID NO: 79) (SEQ ID NO: 79) (SEQ ID NO: 80) (SEQ ID NO: 81) (SEQ ID NO: 81)	CAGAGTGGCTCCACGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC GTCTCAGCGAGCGAACGAATTTCTGGAAGTTATTTCGACGC CAGAGTGGCTCCACGCTTGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC GTCTCAGCGAGGTGCGAACGAATTTCTGGAGAATTTCGACGG GTCTCAGCGAGGTGCGAACGAACTTTCTGGAGATTATTTCGACGG GTCTCAGCGAGGTGCGAACGAACTTTCTGGAGAGTTATTTCGACGG GTCTCAGCGAGGTGCGAACGAACTTTCTGGAGAGTTATTTCGACGG GTCTCAGCGAGGTGCGAACGAACTTTCTGGAGAGTTATTTCGACGG GTCTCAGCGAGGTGCGAACGAACTTATTCTGGAGAGTTATTTCGACGG GTCTCAGCGGTGCGAACGAACGAATTTCTGGAGAGTTATTTCGACGG GTCTCAGTGGTGCGAACGAACGAATTTCTGGAGAGTTATTTCGACGG GTCTCAGTGAGGTGCGAACGAACGAATTTCTGGAGAGTTATTTCGACGG GTCTCGCGAGGTGCGAACGAACGAATTTCTGGAGAGTTATTTCGACGG GTCTCGCCGAGGTGCGAACGAACGAATTTCTGGAGAGTTATTTCGACGG
	300
L. 100. 8 -1 (SEQ ID NO: 76)	CAGAGTGCTCCACGCTTGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC GTCTCAGCGAGGTGCGAACGAATTTCTGGAGAAGTTATTCGACGC
L. 46.16-10 (SEQ ID NO: 77)	CAGAGTGGCTCCACGCTTGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC GTCTCAGCGAGGGACGAACGAATTTCTGGAGAAGTTATTCGACGG
L. 46.16-12 (SEQ ID NO: 78)	CAGAGTGCCTCCACGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC GTCTCAGCGAGGTGCGAACGAATTTCTGGAGAAGTTATTTCGACGG
L. 19.16-3 (SEQ ID NO: 79)	CAGAGTGGCTCCACGCTTGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC GTCTCAQCGAGGTGCGAACGAATTTCTGGAGAAGTTATTTCGACGG
	CAGAGTGACTCCACGCTTGCTTGCTTAAAGCCCTCTTCAATAAAGCTGCC GTCTCAGTGAGGGACGAACGAATTTCGGGAGAGTTATTCGAGG
	CAGAGCGGCTCCACGCTTGCTTAAAGACCTCTTCAATAAAGCTGCC GTCTCGCCGAGGTGCGAACGAATTTCTGGAGAAGTTATTCGACGG
HAIRPIN	
,	

FIG. 49F

0 3 . C 2 3 .	0 0 0 0 0	0 0 2 3	 	
5.ATTTTAGAAGTAAGCCAGTGTGTGTTCCCATCTCCCTAGCCGCCGCCTG 3.TAAAATCTTCATTCGGTCACACACAAGGGTAGAGAGGATCGGCGGCGGAC	5'ATTTTAGAAGTAAGCCAGTGTGTGTTTCCCATCTCCTAGCCGCCGCCTG 3'TAAAATCTTCATTCGGTCACACACAAGGGTAGAGAGGATCGGCGGCGGGAC	5'ATTTTAGAAGTAGGCTAGTGTGTGTTCCCATCTCTCCTAGCCGCCGCCTG 3'TAAAATCTTCATCCGATCACACACAAGGGTAGAGAGGATCGGCGGGGGGAC	5'ATTTTAGAAGTAAGCTAGTGTGTTTCCCATCTCCCTAGCCGCCGCCTG 3'TAAAATCTTCATTCGATCACACACAAGGGTAGAGAGGATCGGCGGCGGAC	5'ATTTTAGAAGTAGGCTAGTGTGTTTCCCATCTCCCTAGCCGCCGCCTG 3'TAAAATCTTCATCCGATCACACACAAGGGTAGAGAGGATCGGCGGGGGAC
L.46,16-10	L.46.16-12	L.19,16-3	L.CEM/251	
	5'ATTTTAGAAGTAAGCCAGTGTGTGTTCCCATCTCCTAGCCGCCGCCTG 3'TAAAATCTTCATTCGGTCACACACAGGGTAGAGGGATCGGCGGGGGAC	5.ATTTTAGAAGTAAGCCAGTGTGTTCCCATCTCCTAGCCGCCGCCTG 3.TAAAATCTTCATTCGGTCACACACAGGGTAGAGAGGATCGGCGGCGGAC 5.ATTTTAGAAGTAAGCCAGTGTGTGTTCCCATCTCCTAGCCGCCGCCTG 3.TAAAATCTTCATTCGGTCACACACAAGGGTAGAGAGGATCGGCGGCGGAC	5 ATTTTAGAAGTAAGCCAGTGTGTTCCCATCTCCTAGCCGCCGCCTG 3 TAAAATCTTCATTCGGTCACACACAGGGTAGAGGATCGGCGGCGGAC 5 ATTTTAGAAGTAAGCCAGTGTGTGTTCCCATCTCTAGCCGCCGCCTG 3 TAAAATCTTCATTCGGTCACACACAGGGTAGAGAGGATCGGCGGCGGCGG 5 ATTTTAGAAGTAGGCTAGTGTGTGTTCCCATCTCTCCTAGCCGCCGCGGAC 3 TAAAATCTTCATTCGGTCACACACAGGGTAGAGGATCGGCGGCGGCGGCGG	S'ATTTTAGAAGTAAGCCAGTGTGTTTCCCATCTCCTAGCCGCCGCCTG 3'TAAAATCTTCATTCGGTCACACACAGGGTAGAGAGGTCGGCGGCGGCGGCG 5'ATTTTAGAAGTAAGCCAGTGTGTTTCCCATCTCTCTAGCCGCCGCCTG 3'TAAAATCTTCATTCGGTCACACACACAGGGTAGAGGATCGGCGCGCGC

FIG. 49G

FIG. 50

M 1 2 3 4 5 6 7 8 9 10 11 12

FIG. 51

FIG. 52

FIG. 53

FIG. 54

FIG. 55

FIG. 56

FIG. 57

FIG. 58

FIG. 59

FIG. 60

FIG. 61

FIG. 62

FIG. 63

FIG. 64A

FIG. 64B

FIG. 65A

FIG. 65B

FIG. 66

FIG. 67

FIG. 68

FIG. 69

FIG. 70

5' CLEAVAGE SITE

3' CLEAVAGE SITE

FIG. 71

FIG. 72

FIG. 73

MUTANT WI 1 2 3

1 2 3 4 M

FIG. 74A

ISOLATE #

M 1 2 3 4 5 M

FIG. 74B

FIG. 75

FIG. 76

FIG. 78

FIG. 79

1 2 3 4 5 6 7 8

MIXING PROPORTIONS 1 1 0 2 4 9 WILD TYPE UNCUT 1 9 1 1 1 1 MUTANT WT MUT 0 14 9 10

FIG. 81

20	100	150
6AGTGTCGTG GAGTGTCGTG GAGTGTCGTG GAGTGTCGTG GAGTGTCGTA GAGTGTCGTA	CTGCGGAACC CTGCGGAACC CTGCGGAACC CTGCGGAACC CTGCGGAACC	TTGGAT- <u>A</u> AA TTGGAT-CAA GTGGAT <u>GI</u> AA TTGGAT- <u>A</u> AA TTGGA <u>G</u> -CAA
GCGTTAGTAT GCGTTAGTAT GCGTTAGTAT GCGTTAGTAT GCGTTAGTAT GCGTTAGTAT	CCATAGTGGT CCATAGTGGT CCATAGTGGT CCATAGTGGT CCATAGTGGT	666TCCTTTC 666TCCTTTC 666TCCTTTC 666TCCTTTC 666TCCTTTC
TCTGGCCATG TCTAGCCATG TCTAGCCATG TCTAGCCATG TCTAGCCATG	CCCGGGAGAG CCCGGGAGAGAG CCCGGGAGAGAG CCCGGGAGAGAG	CAGGACGACC CAGGACGACC CAGGACGACC CAGGACGACC CGGGAGACT TGGGGTGACC
GCAGAAAGCG GCAGAAAGCG GCAGAAAGCG GCAGAAAGCG GCAGAAAGCG	6ACCCCCCT 6ACCCCCCCT 6TCCCCCCCT 6ACCCCCCT 6ACCCCCCT	CCGGAATTGC CCGGAATTGC CCGGAATTGC CCGGAATTGC CCGGAATTGC CCGGAATTGC
CTGTCTTCAC CTGTCTTCAC CTGTCTTCAC CTGTCTTCAC CTGTCTTCAC	CAGCCTCCAG CAGCCTCCAG CAGCCTCCAG CAGCCTCCAG	GGTGAGTACA GGTGAGTACA GGTGAGTACA GGTGAGTACA GGTGAGTACA GGTGAGTACA
~	51	101
L ID NO:121) LID NO:122) LID NO:123) LID NO:124) LID NO:125) LID NO:125)		
SEQ SEQ	~ ~ ~ ~ ~ ~ ~ ~	
HCVI. HCV2. HCV3. HCV4. HCV6.		HCV2. HCV3. HCV3. HCV4.
		Maria Maria Maria

FIG. 82A

200	250	
CTGCTAGCCG CTGCTAGCCG CTGCTAGCCG CTGCTAGCCG CTGCTAGCCG	TAGGGTGCT TAGGGTGCTT TAGGGTGCTT TAGGGTGCTT TAGGGTGCTT	
CCCGCAAGA CCCGCGAGA CCCGCGAGA CCCGCAAGA CCCGCAAGA	TACTGCCTGA TACTGCCTGA TACTGCCTGA TACTGCCTGA TACTGCCTGA	60 282 60 60 60 60 60
TTGGGCGTGC TTGGGCGTGC TTGGGCGTGC TTGGGCGTGC	66CCTTGTGG 66CCTTGTGG 66CCTTGTGG 66CCTTGTGG 66CCTTGTGG	CGTAGACCGT CGTAGACCGT CGTAGACCGT CGTAGACCGT CGTAGACCGT
6CCTGGAGAT 6CCTGGAGAT 6CCTGGAGAT 6CCTGGAGAT 6CCCGGCCAT	GGTCGCGAAA GGTCGCGAAA GGTCGCGAAA GGTCGCGAAA GGTCGCGAAA	CGGGAGGTCT CGGGAGGTCT CGGGAGGTCT CGGGAGGTCT CGGGAGGTCT
CCCGCTCAAT CCCGCTCAAT CCCGCTCAAT CCCGCTCAAT CCCGCTCAAT	AGTAGTGTTG AGTAGTGTTG AGTAGTGTTG AGTAGTGTTG AGTAGCGTTG AGTAGCGTTG	GCGAGTGCCC GCGAGTGCCC GCGAGTGCCC GCGAGTGCCC GCGAGTACCC
151	201	251
HCV21 HCV21 HCV43	HCVI.1 HCV2.1 HCV3.1 HCV4.2 HCV6.1	HCVI HCV2 HCV3 HCV43 HCV4

FIG. 82B

FIG. 83

FIG. 84

FIG. 85A

ì

Marin Wall

SENSE STRAND

FIG. 86

ANTISENSE STRAND

FIG. 87

1628	0	ER10					1659
09	ACACATGCAA TGTGTACGTT	120 GGGTGAGTAA	GGGTGAGTAA CCCACTCATT	180 AATACCGCAT TTATGGCGTA	240 TGCCCAGATG ACGGGTCTAC	300 TGGTCTGAGA ACCAGACTCT	360 GCAGCAGTGG CGTCGTCACC CGTCGTC
20	GGCAGGCCTA CCGTCCGGAT	110 GGCGGAC	AGT <u>GGCGGAC</u> TCACCGCCTG	170 AACGGTAGCT TTGCCATCGA	230 CCATCGGATG GGTAGCCTAC	290 GATCCCTAGC CTAGGGATCG	350 CCTACGGGAG GGATGCCCTC GGATGCCCTC
40	GAACGCTGGC CTTGCGACCG	100	TTTGCTGACG AAACGACTGC	160 AACTACTGGA TTGATGACCT	220 GGGCCTCTTG CCCGGAGAAC	280 CCTAGGCGAC GGATCCGCTG	340 GGTCCAGACT CCAGGTC <u>TGA</u> TGA
30	GGCTCAG GGCTCAGATT CCGAGTCTAA	06	AGCTTGCTTC TCGAACGAAG	150 GGAGGGGGAT CCTCCCCCTA	210 GGGGACCTTC CCCCTGGAAG	270 TAACGGCTCA ATTGCCGAGT	330 ACTGAGACAC TGACTCTGTG
20	GTTTGATCCT GTTTGATCAT CAAACTAGTA	80	AACAGGAAGA TTGTCCTTCT	140 ACTGCCTGAT TGACGGACTA	200 GACCAAAGAG CTGGTTTCTC	260 GTAGGTGGGG CATCCACCC	320 CCACACT GGA GGTGTGACCT
10	AGA AAATTGAAGA TTTAACTTCT	70	GTCGAACGGT CAGCTTGCCA	130 TGTCTGGGAA ACAGACCCTT	190 AACGTCGCAA TTGCAGCGTT	250 .GGATTAGCTA CČTAATCGAT	310 GGATGACCAG CCTACTGGTC
				·		1	George States

FIG. 88A

370 380 420 420 420 6GAGCCTGAT GCAGCCATGC CGCGTGTATG AAGAAGGCCT CCTTATATG AAGAAGGCCT CCTTATAGC GCGTGTATG AAGAAGGCCT CCTTATAACG TGTTACCCGC GTTCGGACTA CGTCGGTACG GCGCACATAC TTCTTCCGGA	480 430 440 450 460 460 480 480 480 480 480 480 480 480 480 48	6ACGTTACCC GCAGAAGAAG CACCGGCTAA CTCCGTGCCA GCAGCCGCGG TAATACGGAG CTGCAATGGG CGTCTTCTTC GTGGCCGATT GAGGCACGGT CGTCGGCGCC ATTATGCCTC	550 550 560 560 570 580 590 590 590 590 590 590 590 500 500 50	650 650 650 640 650 650 640 650 650 650 650 650 650 650 650 650 65	680 710 720 670 690 700 700 710 710 710 710 710 710 710 71	780 730 740 750 760 760 770 780 6GGGGGCCCCCT GGACGAAGAC TGACGCTCAG GTGCGAAAGC GTGGGAGGAGAAAAAAAAAA
400	460	520	580	640	700	760
SCAGCCATGC	AAGGGAGTAA	CTCCGTGCCA	TAAAGCGCAC	CTGCATCTGA	GTGAAATGCG	TGACGCTCAG
SGTCGGTACG	TTCCCTCATT	GAGGCACGGT	ATTTCGCGTG	GACGTAGACT	CACTTTACGC	ACTGCGAGTC
410	470	530	590	650	710	770
CGCGTGTATG	AGTTAATACC	GCAGCCGCGG	GCAGGCGGTT	TACTGGCAAG	TAGAGATCTC	GTGCGAAAGC
GCGCACATAC	TCAATTATGG	CGTCGGCGCC	CGTCCGCCAA	ATGACCGTTC	ATCTCTAGAC	CACGCTTTCG
420	480	540	600	660	720	780
AAGAAGGCCT	TTTGCTCATT	TAATACGGAG	TGTTAAGTCA	CTTGAGTCTC	GAGGAATACC	GTGGGGAGCA
TTCTTCCGGA	AAACGAGTAA	ATTATGCCTC	ACAATTCAGT	GAACTCAGAG	CTCCTTATGG	CACCCCTCGT

FIG. 88B

840 AGGTTGTGCC TCCAACACGG	900 TACGGCCGCA ATGCCGGCGT	960 GTGGTTTAAT CACCAAATTA	1020 CAGAGATGAG GTCTCTACTC	1080 CGTGTTGTGA GCACACACT	1140	GCGGTCCGGC CGCCAGGCCG	1200 ACGTCAAGTC	ACGTCAAGTC ACGTCAAGTC TGCAGTTCAG
830 GTCGACTTGG CAGCTGAACC	890 GCCTGGGGAG CGGACCCCTC	950 GGTGGAGCAT CCACCTCGTA	1010 CGGAAGTTTT GCCTTCAAAA	1070 GTCGTCAGCT CAGCAGTCGA	1130	TTTGTTGCCA AAACAACGGT	1190 ATG	ATG GGTGGGG <u>ATG</u> CCACCCCTAC
820 CGTAAACGAT GCATTTGCTA	880 TAAGTCGACC ATTCAGCTGG	940 CCGCACAAGC GGCGTGTTCG	1000 TTGACATCCA AACTGTAGGT	1060 CTGCATGGCT GACGTACCGA	1120 ACCC	ACCCTTATCC TGGGAATAGG	1180	ACTGGAGGAA TGACCTCCTT
810 TAGTCCACGC ATCAGGTGCG	870 GCTAACGCGT CGATTGCGCA	930 TGACGGGGG ACTGCCCCG	990 TTACCTGGTC AATGGACCAG	1050 GAGACAGGTG CTCTGTCCAC	1110 AACGAGCGCA	AACGAGCGCA TTGCTCGCGT	1170	CCAGTGATAA GGTCACTATT
800 GATACCCTGG CTATGGGACC	860 GGCTTCCGGA CCGAAGGCCT	920 TCAAATGAAT AGTTTACTTA	980 GCGAAGAACC CGCTTCTTGG	1040 CGGGAACCGT GCCCTTGGCA	1100 GC	TAAGTCCC <u>GC</u> ATTCAGGGCG	1160	AAGGAGACTG TTCCTCTGAC
790 AACAGGATTA TTGTCCTAAT	850 CTTGAGGCGT GAACTCCGCA	910 AGGTTAAAAC TCCAATTTTG	970 TCGATGCAAC AGCTACGTTG	1030 AATGTGCCTT TTACACGGAA	1090	AATGTTGGGT TTACAACCCA	1150	CGGGAACTCA GCCCTTGAGT
						Sa Pag	seri k	

SB-3 SB-4

SB-1

FIG. 88C

SB-3	ν σ 4		1743	1743		
1260	AAGAGAAGCG TTCTTCGC	1320 AGTCTGCAAC TCAGACGTTG	1380 GTGAATACGT CACTIAIGCA CACTTATGCA	1440 AGAAGTAGGT TCTTCATCCA	1500 GAAGTCGTAA CTTCAGCATT	
1250	GGCGCATACA CCGCGTATGT	1310 TCCGGATTGG AGGCCTAACC	1370 GAATGCCACG CTTACGGT <u>GC</u> GC	1430 GGGTTGCAAA CCCAACGTTT	1490 TGACTGGGGT ACTGACCCCA	1550 TA
1240	GTGCTACAAT CACGATGTTA	1300 TGCGTCGTAG ACGCAGCATC	1360 TCGTGGATCA AGCACCTAGT	1420 CCATGGGAGT GGTACCCTCA	1480 TTGTGATTCA AACACTAAGT	1540 ATCACCTCCT TAGTGGAGGA
1230	GGCTACACAC CCGATGTGTG	1290 CCTCATAAAG GGAGTATTTC	1350 TCGCTAGTAA AGCGATCATT	1410 GCCCGTCACA CGGGCAGTGT	1470 GCTTACCACT CGAATGGTGA	1530 CTGCGGTTGG GACGCCAACC
1220	TTACGA TTACGACCAG AATGCTGGTC	1280 AGCAAGCGGA TCGTTCGCCT	1340 GAAGTCGGAA CTTCAGCCTT	1400 TGTACACACC <u>ACATG</u> TGTGG ACATG	1460 TCGGGAGGGC AGCCCTCCCG	1520 GTAGGGGAAC CATCCCCTTG
1210	ATCATGGCCC ATCATGGCCC ATCATGGCCC TAGTACCGGG	1270 ACCTCGCGAG TGGAGCGCTC	1330 TCGACTCCAT AGCTGAGGTA	1390 TCCCGGGCCT AGGCCCGGA AGGGCCCGGA	1450 AGCTTAACCT TCGAATTGGA	CAAGGTAACC GTTCCATTGG

}

FIG. 88D

158)0 159)0 160)0	GGCGGACGGG 60 AGTCGAACGGTAACAG——GAAGAAGCTTGCTTCTTT——GCTGACGAGTGGCGGACGGG 62 AGTCGAACGAT——GAAGCTTCTAGCTTGCTAGAAGTGGA——TTAGTGGCGCACGGG 61 AGTCGAGCGAA———CGGACGAGAAGCTTGCTTCTCTGATG———TTAGCGGCGGACGGG	TGAGTAA 114 tgagtaatgictggga <u>-</u> aactgcctgatggaggggggataactactggaaacggtagctaata 114 tgagtaaggtatagttaatctgccctacaaaagaggacaacagttggaaacggagctaata 113 tgagtaacacgtggataacctacctataagactgggataacttcgggaaaccggagctaata	175 CCGCATAAC <u></u> GTCGCAAGAC <u></u> CAAAGAGGGGGACCTTCG_GGCCTCTTG 176 CTCTATACTCCTGCTTAACACACAGTTGAGTAGG_GAAAGGTTTTTCG 175 CCGGATAATATTTGAACCGCATGGTTCAAAGTGAAAGACGGTCTTGCTGTCA	221 CCATCGGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACGA 221 GTGTAGGATGAGACTATATAGTATCAGCTAGTTGGTAAGGTAATGGCTTACCAAGGCTATGA 229 CTTATAGATGGATCGCGCTGCATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAACGA	283 TCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTA 283 CGCTTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACTGAGACACGGTCCAGACTCCTA 291 TACGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGAACTGAGACACGGTCCAGACTCTA ACTCCTA	
1638 (SEQ ID NO:151) E.colirrsE(SEQ ID NO:1 Cam.jejun5(SEQ ID NO:1 Stp.aureus(SEQ ID NO:1	R10 .col am.j tp.a	ER10 E.colirrsE Cam.jejun5 Stp.aureus	· 4 +	بهها	E.ColirrsE Cam.jejun5 Stp.aureus 1659(COMPL)	

FIG. 89A

345 CGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCCAAGCCTGATGCAGCCATGCCGCGTG 345 CGGGAGGCAGTAGGGAATATTGCGCAATGGGGGGAAACCCTGACGCAGCAACGCGGTG 353 CGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGGCGAAAGCCTGACGGAGCAACGCCGCGTG CGGGAGGCAGCAGCAG	407 TATGAAGAGGCCTTCGGGTTGTAAAGTACTTTCAGCGGGGGAA-GGGAGTAAAGTTAAT 407 gaggatgacacttttcggagcgtaaactccttttcttagggaagaaatt 415 agtgatgaaggtcttcggatcgtaaaactctgttattagggaagaacatatgtgaagtaac	468 ACCTTTGCTCATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCGGG 455 C <u></u> TGACGGTACCTAAGGAATAAGCACCGGCTAACTCCGTGCCAGCAGCGGG 476 <u>-</u> TGTGCACATCTTGACGGTACCTAATCAGAAAGCCACGGCTAACTACGTGCCAGCAGCGGG
E.colirrsE Cam.jejun5 Stp.aureus	E.colirrsE Cam.jejun5	E.colirrsE Cam.jejun5 Stp.aureus

FIG. 89B

530 GTAATAC GGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAG CGCACGCAGGCGGGTTT	S92 GTTAAGTCAGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCTGATACTGGCAAGCTT	654 GAGTCTCGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGA	716 ATACCGGTGGCGAAGGCGCCCCCTGGACGAAGACTGACGCTCAGGTGCGAAAGCGTGGGGA	
506 gtaatac ggagggtg caagcgttactcggaatcact gggcgt aaagggcgcgctagggggatt	S68 ATCAAGTCTCTTGTGAAATCTAATGGCTTAACCATTAAACTGCTTGGGAAACTGATAGTCTA	630 gagtgagggagaggcagatggaattggtggtgtagggggtaaaatccgtagatatcaccaaga	692 atacccattgcgaaggcgatctgctggaactcaactgacgctaaggcgcgaaagcgtgggga	
538 gtaatacgta ggt ggcaagcgttatccggaattatt gggc gtaaagcgcgcgtaggcgggttt	600 tttaagtctgatgtgaaagcccacggctcaacgtggagggtcattggaaactggaaactt	662 gagtgcagaagagggaaagtggaattccatgtgtagcggtgaaatgcgcagagatatggagga	724 acaccagtggcgaaggcgactttctggtctgtaactgacgctgatgtgcgaaagcgtgggga	
E.colirrsE	E.colirrsE	E.colirrsE	E.colirrsE	E.colirrsE
Cam.jejun5	Cam.jejun5	Cam.jejun5	Cam.jejun5	Cam.jejun5
Stp.aureus	Stp.aureus	Stp-aureus	Stp.aureus	Stp.aureus

FIG. 89C

840 C_CTTGA_GCGTGGCTTCCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGG816 816 G_CTAGT_CATCTCAGTAATGCAGCTAACGCATTAAGTGTACCGCCTGGGGAGTACGGTCGG848 828 GT_TTCCGCCCTTTAGTGCTGCAGCTAACGCATTAAGTGTACCGCCTGGGGAGTACGGTCGCCGCGCGCG	
E.colirrsE Cam.jejun5 Stp.aureus	9.33

FIG. 89D

ATGACGTCAAGICAIC 157) 154) 666AACTCAAAGGAGACTGCCAGTGATAAACTGGAGGAAGGTGGGGATGACGTCAAGTCATC 6AGCACTCTAAATAGACTGCCTTCG_TAAGGAGGAGGAGGTGTGGACGACGTCAAGTCATC 6GGCACTCTAAATAGACTGCCGTGACAAACCGGAGGAAGGTGGGGGATGACGTCAAGTCATC
ID NO:157) ID NO:154) 1142 GGGAAC 1122 GAGCAC 1152 GGCAC
SB-3 (SEQ SB-4 (SEQ E.colirrsE Cam.jejun5 Stp.aureus

1338 CATGAAGCCGGAATCGCTAGTAATCGTAGAILAGLLAIGLTALGAGGTGAATACGTTCCCGGGT 1338 CATGAAGCTGGAATCGCTAGTAATCGTAGATCAGC-ATGCTACGGTGAATACGTTCCCGGGC otp.aureus 1743 (compl)

FIG. 89E

FIG. 89F

FIG. 90

FIG. 91A

1 2 3

FIG. 92

FIG. 93

FIG. 94