Problem 1 (2). If the curve $\phi : \mathbb{R} \to \mathbb{R}^n$ is an embedding then show that $\phi_*(d/dt)$ coincides with the classical notion of the tangent vector to the curve ϕ under the identification of the tangent space to a euclidean space with the euclidean space.
Proof.
Problem 2 (3). For a smooth function f defined on a neighborhood of a point $p \in \mathbb{R}^n$, the gradient $\nabla f = \text{grad} f$ of f is the vector $\left\langle \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n} \right\rangle$
For a vector $v \in \mathbb{R}^n$ show that the directional derivative D_v , denoted by D_{γ_v} where $\gamma_v(t) = p + tv$, satisfies the equation $D_v f = \langle \nabla f, v \rangle$
the standard inner product of ∇f with v in \mathbb{R}^n .
Proof.
Problem 3 (4). If $M^m \subset \mathbb{R}^n$ is a smoothly embedded manifold and f is a smooth real valued function defined on a neighborhood of $p \in M^m$ in \mathbb{R}^n and which is constant on M , show that ∇f is perpendicular to $T_p(M)$ at p .
Proof.