Classifying Heart Disease Status using Clinical and Demographic Data

Pranit Yadav

Context and Background

Introduction

Heart disease is the **leading** cause of death worldwide

Responsible for about **18 million** deaths annually

The Question:

Based on a patient's demographics and clinical data, can we reliably predict if they have heart disease?

Dataset Overview

Why This Dataset?

Dynamic Demographic

Reputable & Rich Clinical Data

Access to Multi Factor Analysis

Source

This dataset represents the largest available resource for heart disease research, created by integrating five well-known datasets.

Dataset Composition

The final dataset was compiled from the following sources:

- Cleveland: 303 observations
- Hungarian: 294 observations
- Switzerland: 123 observations
- Long Beach VA: 200 observations
- Statlog (Heart): 270 observations

Pre-Cleaned Data

- Initial Combined Records: 1,190
- Identified & Eliminated Duplicates: 272
- Final Unique Records: 918
- Missing Values: 0

Variables

Explanatory Variables (Predictors)

- Age Patient age (years)
- Sex Male (M) / Female (F)
- ChestPainType TA (Typical Angina), ATA (Atypical Angina), NAP (Non-Anginal Pain), ASY (Asymptomatic)
- RestingBP Resting blood pressure (mm Hg)
- Cholesterol Serum cholesterol (mg/dl)
- FastingBS Fasting blood sugar > 120 mg/dl (1 = Yes, 0 = No)
- RestingECG Normal, ST (ST-T wave abnormality), LVH (ventricular hypertrophy)
- MaxHR Maximum heart rate achieved (60–202 bpm)
- ExerciseAngina Exercise-induced angina (Y = Yes, N = No)
- Oldpeak ST depression (numeric value)
- **ST_Slope** Up (upsloping), Flat, Down (downsloping)

HeartDisease[1: Heart Disease, 0: Normal]

Dataframe Info & Summary Statistics

	columns (total		
#	Column	Non-Null Count	Dtype
	A	918 non-null	int64
0	Age		
		918 non-null	
2		918 non-null	object
3	RestingBP	918 non-null	int64
4	Cholesterol	918 non-null	int64
5	FastingBS	918 non-null	int64
6	RestingECG	918 non-null	object
7	MaxHR	918 non-null	int64
8	ExerciseAngina	918 non-null	object
9	01dpeak	918 non-null	float64
10	ST_Slope	918 non-null	object
11	HeartDisease	918 non-null	int64
	ry usage: 86.2+	int64(6), object KB	(5)

Categorical Variables

Variable	Category	Percentage
Sex	М	79.0%
Sex	F	21.0%
ChestPainType	ASY	54.0%
ChestPainType	NAP	22.1%
ChestPainType	ATA	18.8%
ChestPainType	TA	5.0%
RestingECG	Normal	60.1%
RestingECG	LVH	20.5%
RestingECG	ST	19.4%
ExerciseAngina	N	59.6%
ExerciseAngina	Y	40.4%
ST_Slope	Flat	50.1%
ST_Slope	Up	43.0%
ST_Slope	Down	6.9%

Clinical Insights and Risk Factors

Dataset Preparation for ML Models

Feature Engineering & Preprocessing

Step 1 — Feature Engineering

- Created new, more informative columns by converting raw values (e.g., cholesterol, age) into clinical flags and descriptive categories
- Purpose to boost model accuracy by making key patterns and relationships easier for the models to learn

Step 2 — Preprocessing

- Built a pipeline using scikit-learn which encoded categorical variables
- Purpose to ensure data was totally clean and model-ready, improving consistency and models' ability to learn

Our Models

Random Forest Classifier

AUC: 0.95

- Accuracy: 91.3%
- Recall (True Positive Rate): 92.7%
- Precision: 92.7%

Gradient Boosting

- Accuracy: 87%
- Recall (True Positive Rate): 88.04%
- Precision: 88.04%

Ensemble Method

Accuracy: 90.22%

Recall: 90%

AUC: 0.935

Individual Model Test Accuracies:

RandomForest: 84.78%

GradientBoosting: 88.04%

SVM: 89.13%

LogisticRegression: 88.59%

Neural Network: 84.78% Voting Ensemble: 89.67%

Final Weighted Ensemble: 90.22%

Our Best Model: Logistic Regression

• AUC: 0.95

- Accuracy: 92.9%
- Recall (True Positive Rate): 94.5%
- **Precision: 93.7%**

Conclusion

Real Time Impact

Empowers Preventive Healthcare

Reduces Healthcare Costs

Lowers Hospitalization Rates

Promotes Health Equity

Improvements / Future Work

Hyperparameter Tuning

External Validation

Cost - Sensitive Learning

Deployment Readiness - Real Time

Continuous Learning Pipeline

Thank You