Proof Techniques

Contents

1 Logic of Solving Equations

Proof by Contradiction

Open Proof by Contraposition

Logic of Solving Equations

Solving Equations

Logically speaking, to say that x=a is a solution of the equation f(x)=0 is to state

$$f(x) = 0 \iff x = a$$

which usually can be seen by a chain of biconditionals.

For example, we see that $x^2 = 5x - 6$ if and only if x = 2 or x = 3 by:

$$x^{2} = 5x - 6 \iff x^{2} - 5x + 6 = 0$$

$$\iff (x - 2)(x - 3) = 0$$

$$\iff x - 2 = 0 \text{ or } x - 3 = 0$$

$$\iff x = 2 \text{ or } x = 3.$$

One needs to be careful to confirm that all steps are true biconditional sentences.

Examples

Rational Equation

Solve the equation

$$\frac{x-2}{x^2+2x-8} = \frac{1}{8}.$$

Erroneous solution.

$$x - 2 = (1/8)(x^{2} + 2x - 8)$$

$$8x - 16 = x^{2} + 2x - 8$$

$$0 = x^{2} - 6x + 8 = (x - 2)(x - 4)$$

$$x = 2, 4$$

Which step is not a true biconditional sentence?

Examples (cont')

Correct solution.

Examples

Equation Involving Radicals

Solve the equation

$$x = -\sqrt{x+6}$$

An erroneous solution:

$$x^{2} = x + 6$$

$$x^{2} - x - 6 = 0$$

$$(x + 2)(x - 3) = 0$$

$$x = -2.3$$

Is x=3 a solution of the original equation?

Examples (cont')

Correct solution.

Proof by Contradiction

Overview: Proof Techniques

The follow is the list of proof techniques discussed in Section 2 of the textbook:

- Conditional proof
- ☐ Proof by contradiction
- □ Proof by contraposition

Contradictions

A *contradiction* is a sentence of the form $Q \land \neg Q$, which is false regardless of the truth value of Q.

Proof by Contradiction

Proof by Contradiction

To prove a sentence P, assume $\neg P$ and deduce a contradiction. This approach is known as the method of *proof by contradiction*.

Template. To prove P:

- Begin with "Assume $\neg P$ is true."
- Deduce a contradiction.
- Conclude that P is true.

Why does it work?

Proof by Contradiction (cont')

Example

Let n be an integer. Using the method of proof by contradiction, prove that

If n^2 is an odd number, then n is an odd number.

Proof of a Negative Sentence

The usual way to prove a negative sentence $\neg P$ to prove by contradiction, that is, assume P and deduce a contradiction.

Why does it work?

Proof of a Negative Sentence (cont')

Section 2, Exercise 23

Use the method of conditional proof to explain in words why

$$[(P \Rightarrow Q) \land \neg Q] \Rightarrow \neg P$$

is a tautology.

Proof of a Negative Sentence (cont')

Proof by Contraposition

Overview: Proof Techniques

The follow is the list of proof techniques discussed in Section 2 of the textbook:

- Conditional proof
- ☐ Proof by contradiction
- ☐ Proof by contraposition

Contrapositive

Given $P\Rightarrow Q$, the related conditional sentence $\neg Q\Rightarrow \neg P$ is called the contrapositive of $P\Rightarrow Q$. Note that $P\Rightarrow Q$ is logically equivalent to $\neg Q\Rightarrow \neg P$. (Confirm this using a truth table.)

Example. Given the conditional sentence

A: If today is Sunday, then I do not have to go to work today.

• Converse of *A*:

• Contrapositive of *A*:

Proof by Contraposition

Proof by Contraposition

To prove $P \Rightarrow Q$, it suffices to prove $\neg Q \Rightarrow \neg P$.

Proof by Contraposition (cont')

Example (revisited)

Let n be an integer. Using the method of proof by contraposition, prove that

If n^2 is an odd number, then n is an odd number.

Solution. The given sentence is logically equivalent to the sentence

If n is not an odd number, then n^2 is not an odd number. (\star)

which we will prove.

A1: Assume that n is not an odd number.

(We wish to show that n^2 is not an odd number.)

Since n is an integer bu n is not an odd number, n is an even number.

Hence n^2 is an even number, so n^2 is not an odd number.

We have shown this under A1.

Discharging A1, we conclude that the conditional sentence (\star) is true under no assumptions. This completes the proof by contraposition that the original conditional sentence is true.

Proof by Contradiction vs Proof by Contraposition

Let's examine the two proof techniques in proving $P \Rightarrow Q$.

Proof by contradiction.

Assume P.

Assume $\neg Q$.

Show $\neg P$.

Contradiction, $P \wedge \neg P!$

So Q must be true.

Therefore, $P \Rightarrow Q$.

Proof by contraposition.

Assume $\neg Q$.

Show $\neg P$. (if this can be done w/o P.)

So $\neg Q \Rightarrow \neg P$.

Therefore, $P \Rightarrow Q$, by contraposition.