Elliptic Curve Cryptography

Paolo Bettelini

Contents

1 Elliptic Curves		iptic Curves	2
	1.1	Definition	4
	1.2	Addition	2
	1.3	Scalar Multiplication	•
2	Discrete logarithm problem		4
	2.1	Definition	4
	2.2	Diffie-Hellman	2

1 Elliptic Curves

1.1 Definition

An elliptic curve E is a set of points such that

$$E = \{(x,y) | y^2 = x^3 + ax + b\} \cup \{O\}, \quad 4a^3 + 27b^2 \neq 0$$

Where O is a point at infinity.

The elliptic curve is symmetrical about the x-axis.

The opposite of a point P is its reflection -P.

The coefficients a, b can be part of

- \mathbb{R} Real numbers
- Q Rational numbers
- \bullet $\mathbb C$ Complex numbers
- $\mathbb{Z}/p\mathbb{Z}$ Finite field

1.2 Addition

Given two points $P, Q \in E$ we can describe a unique third point.

We take the line that intersects P and Q, the opposite of the third intersection with the curve is out point.

$$P+Q=-R$$

If P = Q, the intersection line will be given by the tangent at that point.

If
$$P = -Q$$
, $P + Q = O$.

If P = -P (inflection point, the concavity of the curve changes) R = P, P + P = -P = P.

We consider -O to be O.

The intersection line mx + q is given by

$$m = \frac{P_y - Q_y}{P_y - Q_x}$$

and

$$q = P_y - mP_x$$

1.3 Scalar Multiplication

Given a point $P \in E$, multiplying kP where $k \in \mathbb{Z}$ is equivalent to adding P to itself k times. Computing 2P is the equivalent of P + P which can be calculated as P + Q = -R.

2 Discrete logarithm problem

2.1 Definition

Given an elliptic curve E and a point $P \in E$, we consider

$$kP = Q, \quad k \in \mathbb{Z}$$

Given the value of P and Q it is a hard problem to find the value of k.

We can use many ECC multiplication algorithms to compute kP, but reversing this operation for big values of k is not an easy task.

Furthermore, given k_1 and k_2 , we notice that

$$k_1(k_2P) = k_2(k_1P)$$

= $(k_1 + k_2)P$

It does not matter if we first multiply P by k_1 and then k_2 or viceversa, P will always be multiplied $k_1 + k_2$ times.

2.2 Diffie-Hellman

We can use the scalar multiplication function with the Diffie-Hellman method for a key-exchange.

We define an elliptic curve E over a finite field \mathbb{F}_p .

The *client* and the *server* publicly establish the domain parameters

- p The field that the curve is defined over $\mathbb{F}_p \pmod{p}$.
- \bullet a The parameter a of the elliptic curve equation.
- \bullet b The parameter b of the elliptic curve equation.
- G The generator, a fixed point $G \in E$.
- n The prime order of G, the smallest prime such that kG = O. In order words, the number of points that can be generated multiplying G with itself.
- h The cofactor, the ratio between the amount of points in E and the prime order of G. Ideally we would want h = 1, which means that the points are well-distributed.

We then proceed with the Diffie-Hellman key exchange method.

- 1. The *client* generates a private key $k_c \in \mathbb{Z}$ such that $1 \le k_c \le n-1$.
- 2. The server generates a private key $k_s \in \mathbb{Z}$ such that $1 \le k_s \le n-1$.
- 3. The *client* computes a public key $P_c = k_c G$.
- 4. The server computes a public key $P_s = k_s G$.
- 5. The two parts publicly exchange the public keys.
- 6. The *client* computes $R = k_c P_s$.
- 7. The server computes $R = k_c P_s$.

Now both parts share the same secret point $R \in E$.