

路由原理及配置

网络层的功能

- · 定义了基于IP协议的逻辑地址
- 连接不同的媒介类型
- 选择数据通过网络的最佳路径

什么是路由

- 将数据包从一个网络发送到另一个网络
 - 需要依靠路由器来完成
 - 路由器只关心网络的状态,决定最佳路径

路由器怎么工作

- 主要完成下列事情
 - 识别数据包的目标IP地址
 - 识别数据包的源IP地址(主要用于策略路由)
 - 在路由表中发现可能的路径
 - 选择路由表中到达目标最好的路径
 - 维护和检查路由信息

路由器怎么工作(续1)

- 根据路由表选择最佳路径
 - 每个路由器都维护着一张路由表,这是路由器转发数据包的关键
 - 每条路由表记录指明了:到达某个子网或主机应从路由器的哪个物理端口发送,通过此端口可到达该路径的下一个路由器的地址(或直接相连网络中的目标主机地址)

如何获得路由表

- 静态、缺省路由
 - 由管理员在路由器上手工指定
 - 适合分支机构、家居办公等小型网络
- 动态路由
 - 根据网络拓扑或流量变化,由路由器通过路由协议自动设置
 - 适合ISP服务商、广域网、园区网等大型网络

静态路由

- 主要特点
 - 由管理员手工配置,为单向条目
 - 通信双方的边缘路由器都需要指定,否则会导致数据包有去无回

配置静态路由

- 使用 ip route 命令
 - 指定到达IP目的网络
 - 基本格式:

Router(config)#ip route 目标网络ID 子网掩码 下一跳

案例1:配置静态路由

按如下网络拓扑配置接口IP地址并通过静态路由的配置 实现全网的互通。

案例3:配置多路由的静态路由

按如下网络拓扑配置接口IP地址并通过静态路由的配置 实现全网的互通。

缺省路由

- 什么是缺省路由?
 - 缺省路由是一种特殊的静态路由,对于末梢网络的主机来说,也被称为"默认网关"
 - 缺省路由的目标网络为0.0.0/0.0.0.0, 可匹配任何目标地址
 - 只有当从路由表中找不到任何明确匹配的路由条目时 , 才会使用缺省路由

案例4:配置默认路由

按如下网络拓扑配置接口IP地址并通过静态路由、默认路由配置实现全网的互通。

vlan间通讯

三层交换概述

Tedu.cn

三层交换技术

- 使用三层交换技术实现VLAN间通信
- 三层交换=二层交换+三层转发

三层交换技术(续1)

- 使用三层交换技术实现VLAN间通信
- 三层交换=二层交换+三层转发

虚接口概述

- 在三层交换机上配置的VLAN接口为虚接口
- 使用SVI(交换虚拟端口)实现VLAN间路由

- 虚接口的引入使得应用更加灵活

Switch(config)# interface vlan vlan-id

虚接口概述(续1)

• 三层交换机VLAN间通信的转发过程

三层交换的配置

三层交换机的配置

- 确定哪些VLAN需要配置网关
- 如果三层交换机上没有该VLAN则创建它
- 为每个VLAN创建相关的SVI
- 给每个SVI配置IP地址
- 启用SVI端口
- 启用三层交换机的IP路由功能
- 如果需要,配置三层交换机的动态或静态路由

三层交换机的配置(续1)

- 在三层交换机启用路由功能
- Switch(config)# ip routing
- 配置虚接口的IP
- Switch(config)# interface vlan vlan-id
- Switch(config-if)# ip address ip_address netmask
- Switch(config-if)# no shutdown
- 配置路由接口
- Switch(config-if)# no switchport
- 在三层交换机上配置Trunk并指定接口封装为802.1q
- Switch(config)#interface fastEthernet 0/24
- Switch(config-if)#switchport trunk encapsulation dot1q
- Switch(config-if)#switchport mode trunk

三层交换机的配置(续2)

- 三层交换机上的路由端口
 - 三层交换机的物理端口默认是二层端口
 - 可以转换为三层端口
 - 转换为三层端口后,该端口不属于任何VLAN
 - 可以像路由器端口一样使用

案例1:三层交换vlan间通信

按如下网络拓扑及IP地址规划通过三层交换实现VLAN间通信

VLAN2:192.168.2.0/24

三层交换机实现VLAN互通

- 需求描述
 - 按照图中规划配置实现VLAN间互通

三层交换机实现VLAN互通(续1)

• 在2层交换机上配置VLAN、Trunk

SW-2L(config)#vlan 2 SW-2L(config-vlan)#exit SW-2L(config)#vlan 3 //添加VLAN SW-2L(config-vlan)#exit

SW-2L(config)#interface range f0/11 - 15
SW-2L(config-if-range)#switchport access vlan 2 //将端口加入VLAN
SW-2L(config-if-range)#switchport mode access

SW-2L(config)#interface range f0/16 - 23 SW-2L(config-if-range)#switchport access vlan 3 SW-2L(config-if-range)#switchport mode access

SW-2L(config)#interface f0/24 SW-2L(config-if)#switchport mode trunk //配置Trunk

三层交换机实现VLAN互通(续2)

• 配置3层交换机

SW-3L(config)#vlan 2 SW-3L(config-vlan)#exit SW-3L(config)#vlan 3 SW-3L(config-vlan)#exit

SW-3L(config)#interface fastEthernet 0/24 SW-3L(config-if)#switchport trunk encapsulation dot1q SW-3L(config-if)#switchport mode trunk

三层交换机实现VLAN互通(续3)

启动路由功能

SW-3L(config)#ip routing

SW-3L(config)#interface vlan 1

SW-3L(config-if)#ip address 192.168.1.1 255.255.255.0

SW-3L(config-if)#no shut

配置VLAN的IP地址

SW-3L(config)#interface vlan 2

SW-3L(config-if)#ip address 192.168.2.1 255.255.255.0

SW-3L(config-if)#no shut

SW-3L(config)#interface vlan 3

SW-3L(config-if)#ip address 192.168.3.1 255.255.255.0

SW-3L(config-if)#no shut

三层交换机实现VLAN互通(续4)

• 在三层交换机上查看路由表

SW-3L#show ip route

Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS inter area, * - candidate default, U - per-user static route o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

- C 192.168.1.0/24 is directly connected, Vlan1
- C 192.168.2.0/24 is directly connected, Vlan2
- C 192.168.3.0/24 is directly connected, Vlan3

案例2:多交换机vlan间通信

按照如下拓扑及IP规划通过三层交换实现多交换机 VLAN间通信

VLAN5:192.168.5.0/24

在三层交换机上配置路由

- 需求描述
 - 配置路由实现内网访问路由器及其外网

在三层交换机上配置路由(续1)

- Vlan、 trunk配置
- 在三层交换上配置路由

SW-3L(config)#int f0/23

SW-3L(config-if)#no switchport

SW-3L(config-if)#ip address 10.1.1.1 255.255.255.252

SW-3L(config)#ip route 0.0.0.0 0.0.0.0 10.1.1.2

配置默认路由

配置路由接口, 配置IP地址

在三层交换机上配置路由(续2)

• 在路由器上配置接口和路由

Router(config)#interface f0/0
Router(config-if)#ip address 10.1.1.2 255.255.255.252
Router(config-if)#no shutdown
Router(config-if)#exit

Router(config)#ip route 192.168.1.0 255.255.255.0 10.1.1.1 Router(config)#ip route 192.168.2.0 255.255.255.0 10.1.1.1 Router(config)#ip route 192.168.3.0 255.255.255.0 10.1.1.1

在三层交换机上配置路由(续3)

• 在三层交换机上查看路由表

SW-3L#show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route

Gateway of last resort is 10.1.1.2 to network 0.0.0.0

```
10.0.0.0/30 is subnetted, 1 subnets
C 10.1.1.0 is directly connected, FastEthernet0/23
C 192.168.1.0/24 is directly connected, Vlan1
C 192.168.2.0/24 is directly connected, Vlan2
C 192.168.3.0/24 is directly connected, Vlan3
S* 0.0.0.0/0 [1/0] via 10.1.1.2
//默认路由
```


案例3:三层交换配置路由

按照如下拓扑及IP规划通过静态路由实现三层交换与路由间通信

VLAN5:192.168.5.0/24

动态路由

认识动态路由

动态路由概述

- 动态路由
 - 基于某种路由协议实现
- 动态路由特点
 - 减少了管理任务
 - 占用了网络带宽

动态路由概述(续1)

Routing Table		
	NET	Metric
С	20.0.0.0	0
С	30.0.0.0	0

动态路由概述(续2)

动态路由不需要手工写路由,路由器之间能够自己互相学习!

知 识

动态路由概述(续3)

20.0.0.0和30.0.0.0

f0/0 1 .2 R2 20.0.0.0 f0/1 .1 .2 30.0.0.0

我的路由表是:

30.0.0.0和40.0.0.0

40.0.0.0

R3

我的路由表是:

10.0.0.0和20.0.0

Routing Table			
	NET	Metric	
С	20.0.0.0	0	
С	30.0.0.0	0	
?	10.0.0.0	Ş	
?	40.0.0.0	?	

动态路由概述(续4)

Routing Table			
	NET	Metric	
С	20.0.0.0	0	
С	30.0.0.0	0	
	10.0.0.0	根据拓扑变化	
	40.0.0.0	做出及时反映	
	50.0.0.0		

OSPF

OSPF

• Open Shortest Path First (开放式最短路径优先)

OSPF(续1)

- 邻居列表
- 链路状态数据库
- 路由表

- OSPF区域
 - 为了适应大型的网络, OSPF在AS内划分多个区域
 - 每个OSPF路由器只维护所在区域的完整链路状态信息
- 区域ID
 - 区域ID可以表示成一个十进制的数字
 - 也可以表示成一个IP
- 骨干区域Area 0
 - 负责区域间路由信息传播
- 非骨干区域

配置

- 启动OSPF路由进程
 - Router(config)# router ospf process-id
- ⁴ 指定OSPF协议运行的接口和所在的区域
 - Router(config-router)# network address inverse-mask area area-id

