

Taller 3 Metodos Numericos

Integrantes: Fabián Mariqueo (ICI mod 3)

Javier Torres (ICI mod 3)

Profesor: Erwin Henriquez

Introducción

En el presente documento se presentará el desarrollo de los ejercicios planteados en el taller, además de mostrar los resultados de algunas rutinas que se programaron con anterioridad, y comprobar la convergencia en el resultado de diferentes sistemas de ecuaciones cambiando algunos valores de esta.

Para la resolución de la pregunta 3 se utilizará la siguiente matriz y vector

```
A =
                                 b =
          0
                        0
 17
       0
             0
                0
                   0
                     0
                           0
                             -1
                                    3
       4
    17
          0
             0
                0
                  0
                     0
                        0
                           -1
                              0
                                    4
      17
                  0
                     0
                          0
    4
          4 0
                        -1
                              0
  0
               0
                                    6
            4
               0
                          0
  0
    0 4 17
                  0
                     -1
                       0
                              0
                                    9
  0
    0
       0 4 17
               4
                    0
                       0
                          0
                             0
                  -1
                                   13
    0
       0 0 4 17
                  4 0 0 0 0
  0
                                   18
  0
    0
       0 0 -1 4 17
                     4 0 0 0
                                   24
    0
       0 -1 0 0 4 17
                                   31
    0 -1 0 0 0 0 4 17
                             0
                                   39
    -1 0 0 0 0 0 0
  0
                       4 17
                              4
                                   48
    0 0 0 0 0 0 0 4 17
 -1
                                   58
```

3.-

a) Para el vector x0=(0 0 0 0....0) los resultados fueron los siguientes:

```
x =

0.3088
0.1925
0.3093
0.3958
0.5671
0.6920
0.9919
1.2343
1.6112
1.7453
3.0193

niter =

niter =

7.0967e-006
```

y para el vector x0=(1 0 1 0 0 1) los resultados fueron los siguientes:

```
x =

0.3088
0.1925
0.3093
0.3958
niter =

0.5671
0.6920
18
0.9919
1.2343
1.6112
error =

1.7453
3.0193
9.0512e-006
```

Comparando los resultados anteriores, ambos convergen en la misma cantidad de iteraciones, pero el vector $x0=(0\ 0\ 0...0)$ resulta con menos error que el vector $x0=(1\ 0\ 1...\ 0\ 1)$, por lo tanto el primer vector es mejor como punto inicial.

```
b)

>> convergej(A)

Diagonal estrictamente dominante
Converge

0.5049

radio espectral menor a 1
Converge
```

Como se aprecia en la captura de pantalla, jacobi converge en la matriz A ya que posee una diagonal estrictamente dominante y además su radio espectral es menor a 1.

c) Si los valores de la diagonal son menor a 9, la matriz no converge ya que la matriz no es estrictamente dominante y su radio espectral es mayor a 1, por otro lado cuando los valores de la diagonal son iguales a 9, esta no tiene una matriz estrictamente dominante, pero su radio espectral es menor a 1 por lo que esta converge con el método de jacobi y por último para valores mayores a 9 siempre converge ya que el radio espectral es menor a 1, mientras mayores sean los valores de la diagonal menor radio espectral tiene, por lo tanto su convergencia es más rápida.

Ejemplo:

```
A =
                                                                                                                                                                                              b =
            223
                      4 223 4 0 0 0 0 0 -1 0 0
            0

      4
      223
      4
      0
      0
      0
      0
      -1
      0
      0
      0
      9

      0
      4
      223
      4
      0
      0
      -1
      0
      0
      0
      0
      9

      0
      0
      4
      223
      4
      -1
      0
      0
      0
      0
      0
      13

      0
      0
      0
      1
      4
      223
      4
      0
      0
      0
      18

      0
      0
      -1
      0
      0
      4
      223
      4
      0
      0
      31

      0
      -1
      0
      0
      0
      0
      4
      223
      4
      0
      39

      -1
      0
      0
      0
      0
      0
      0
      4
      223
      4
      48

      0
      0
      0
      0
      0
      0
      0
      0
      4
      223
      58

            0
            0
            0
            0
            0
            0
            0
           -1
                                      x =
                                                    0.0143
                                                    0.0181
                                                    0.0266
                                                    0.0395
                                                                                                                                       niter =
                                                    0.0567
                                                    0.0778
                                                                                                                                                        5
                                                    0.1041
                                                    0.1343
                                                    0.1689
                                                                                                                                        error =
                                                    0.2077
                                                    0.2564
                                                                                                                                               4.5013e-007
```

Como se puede observar, la convergencia es más rápida si se compara con el 17 en la diagonal.

- <u>Ejercicio de bacterias de laboratorio</u>

Días	1	2	4	5	6	7	8
Población	5008	5370	30196	103320	303398	766600	1717824

Para resolver el problema se trabajó con la matriz de Vandermonde y se utilizó la cantidad de días como α , de esta manera llegamos a lo siguiente:

1	1	1	1	1	1	1
1	2	4	8	16	32	64
1	4	16	64	256	1024	4096
1	5	25	125	625	3125	15625
1	6	36	216	1296	7776	46656
1	7	49	343	2401	16807	117649
1	8	64	512	4096	32768	262144

Con la matriz, se aplicó la instrucción $x = A \setminus b$, donde A es la matriz de obtenida y b es la población. Resultado:

a ₆ <i>x</i> ⁶	a ₅ x^5	a ₄ <i>x</i> ⁴	$\mathbf{a}_3 x^3$	$\mathbf{a}_2 x^2$	a ₁ X	a o	
7	-4	2	1	3	-1	5000	
$f(x) = 7x^6 - 4x^5 + 2x^4 + x^3 + 3x^2 - x + 5000$							

Cada número corresponde al coeficiente del polinomio de interpolación.

Además, se programó la función de lagrange, la cual recibe un vector con la cantidad de días y un segundo vector con el valor de la población y retorna los coeficientes del polinomio de Lagrange, para comparar los resultados, y ambos coinciden. Cabe mencionar que el valor para el día 3, según la función obtenida, debería ser cercano a 9344, ya que también se comprobaron los resultados y estos coincidieron.

En cuanto a resolverlo con el método de jacobi, nos damos cuenta que la matriz no converge dado que el radio espectral es mayor a 1, específicamente 3.0035. Por lo tanto, cuando se prueba con X_0 = [0 0 0 0 0 0 0] y con 100 iteraciones, nos damos cuenta que ocupa las 100 iteraciones y que además, el error es $1.6354*10^{51}$., lo cual nos da a entender que para ese punto y para esa matriz, jacobi no converge.

Conclusion

Se pudo comprobar lo aprendido en clases respecto a la convergencia de una matriz para posteriormente utilizar el método iterativo, ya que una matriz con todos los elementos de su diagonal mayores a la suma, o cercanos a esta, el resultado era convergente, sin embargo, cuando ocurría lo contrario, como por ejemplo con el de bacterias de laboratorio, era imposible llegar a la solución con el método de jacobi.