

Normalizing flow neural networks by JKO scheme

Chen Xu¹ Xiuyuan Cheng² Yao Xie¹

¹Georgia Institute of Technology ²Duke University

Introduction

Continuous normalizing flow (CNF) is a class of deep generative models for efficient sampling and likelihood estimation, which achieves attractive performance, particularly in high dimensions. The flow is often implemented using a sequence of invertible residual blocks, each of which can be complex. End-to-end training of such deep models thus often places a high demand on computational resources and memory consumption.

Contributions

- The JKO-iFlow model [3] performs block-wise progressive training
- Inspired by the Jordan-Kinderleherer-Otto (JKO) scheme [2]
- Utilize the density evolution by parameterizing through deterministic optimal transport maps, avoiding SDE sampling (injection of noise) nor score matching
- Likelihood-based training objective for better likelihood estimation.
- Demonstrate improvement in computational cost and generative performance and likelihood estimation against flow and diffusion models on simulated and real data.
- Theory: Prove the convergence and generative guarantee of JKO-flow; quantify # blocks

Dynamic view of density evolution

Comparison with SDE generative models based on score-matching

- ODE, e.g., JKO flow
- Particles $x_0 \sim p$, push particles by velocity field $v(\cdot,t):\mathbb{R}^d\to\mathbb{R}^d$

$$\dot{x}_t = v(x_t, t)$$

• **Distribution**: Continuity equation $X_t \sim \rho_t$ $\partial_t \rho_t + \nabla \cdot (\rho_t v_t) = 0.$

- SDE, score matching
- Noisy samples $X_0 \sim P$, sample noisy trajectory

$$dX_t = -\nabla V(X_t)dt + \sqrt{2}dW_t$$

 Distribution: Fokker-Plank equation $X_t \sim \rho_t$

$$\partial_t \rho_t = \nabla \cdot (\rho_t \nabla V + \nabla \rho_t)$$

Same when setting $v(x,t) = -\nabla V(x) - \nabla \log \rho_t$ "score function"

Particle-based flow model

JKO scheme

• JKO scheme [2] computes a sequence of distributions p_k , $k=0,1,\cdots$, starting from $p_0 = \rho_0 \in \mathcal{P}$. With step size h > 0, the scheme at the k-th step is written as

$$p_{k+1} = \arg\min_{\rho \in \mathcal{P}} \text{KL}(\rho||p_Z) + \frac{1}{2h} W_2^2(p_k, \rho), \tag{1}$$

• Parameterize by transport map T s.t. $\rho = T_{\sharp}p_n$, $(T_{\#}p)(A) = p(T^{-1}(A))$ on a measurable set A

Proposed JKO-iFlow

Solve a sequence of transport maps

$$T_{k+1} = \arg\min_{T:\mathbb{R}^d \to \mathbb{R}^d} \text{KL}(T_{\#}p_k||p_Z) + \frac{1}{2h} \mathbb{E}_{x \sim p_k} ||x - T(x)||^2,$$

Sample version of objective function

$$\min_{\{v(x,t)\}} \mathbb{E}_{x(t_k) \sim p_k} \left(V(x(t_{k+1})) - \int_{t_k}^{t_{k+1}} \nabla \cdot v(x(s), s) ds + \frac{1}{2h} ||x(t_{k+1}) - x(t_k)||^2 \right),$$

Figure 1. Role of Wasserstein-2 regularization.

- represented by residual block
 - Final mapping $T = T_1 \circ \cdots \circ T_N$
 - Numerically, estimate the integral by fixed-stage RK4, and $\nabla \cdot \mathbf{f}$ by Hutchinson's trace estimator

Block-wise progressive training

End-to-end training

Progressive training in JKO flow

Theory [1]

- Connection with Wasserstein proximal gradient descent
- along generalized geodesic (a.g.g.) -convexity of KL
- Exponential convergence rate for "forward process": data to noise
- Data generation guarantee for "backward process": Under Lipschiz conditions and allow optimization algorithm and inversion to have error

When
$$N \sim \log(1/\varepsilon)$$
, $\mathrm{KL}(p||\mathbf{q}_0) = O(\varepsilon^2)$, $\mathrm{TV}(p||\mathbf{q}_0) = O(\varepsilon)$

Experiments

We show the **computational efficiency and competitive performance** of JKO-iFlow on generating real tabular datasets and natural images (by flow in latent space).

2.64

(a) True data τ: **2.79e-4**, MMD-c: 2.73e-4

(b) FFJORD 3.88e-4

(c) OT-Flow 1.42e-3 3.30

3.14e-3 3.35

(e) ScoreSDE 6.90e-4 3.2

Table 1. Results on tabular datasets. All competitors are trained in a fixed-budget setup using 10 times more mini-batches (their performances using same number of mini-batches are worse and not comparable to JKO-iFlow).

Data Set	Model	# Param	Test MMD-m	Test MMD-1	NLL
POWER $d = 6$			τ: 1.73e-4	τ: 2.90e-4	
	JKO-iFlow	76K	9.86e-5	2.40e-4	-0.12
	OT-Flow	76K	7.58e-4	5.35e-4	0.32
	FFJORD	76K	9.89e-4	1.16e-3	0.63
	IGNN	304K	1.93e-3	1.59e-3	0.95
	IResNet	304K	3.92e-3	2.43e-2	3.37
	ScoreSDE	76K	9.12e-4	6.08e-3	3.41
GAS $d = 8$			τ: 1.85e-4	τ: 2.73e-4	
	JKO-iFlow	76K	1.52e-4	5.00e-4	-7.65
	OT-Flow	76K	1.99e-4	5.16e-4	-6.04
	FFJORD	76K	1.87e-3	3.28e-3	-2.65
	IGNN	304K	6.74e-3	1.43e-2	-1.65
	IResNet	304K	3.20e-3	2.73e-2	-1.17
	ScoreSDE	76K	1.05e-3	8.36e-4	-3.69

NLL	Data Set	Model	# Param	Test MMD-m	Test MMD-1	NL
				τ: 2.46 e-4	τ: 3.75e-4	
-0.12	$\begin{array}{l} \text{MINIBOONE} \\ d = 43 \end{array}$	JKO-iFlow	112K	9.66e-4	3.79e-4	12.55
0.32		OT-Flow	112K	6.58e-4	3.79e-4	11.44
0.63		FFJORD	112K	3.51e-3	4.12e-4	23.77
0.95		IGNN	448K	1.21e-2	4.01e-4	26.45
3.37		IResNet	448K	2.13e-3	4.16e-4	22.3
3.41		ScoreSDE	112K	5.86e-1	4.33e-4	27.38
				τ: 1.38e-4	τ: 1.01e-4	
-7.65		JKO-iFlow	396K	2.24e-4	1.91e-4	-153.82
-6.04	BSDS300	OT-Flow	396K	5.43e-1	6.49e-1	-104.62
-2.65	d = 63	FFJORD	396K	5.60e-1	6.76e-1	-37.80
-1.65		IGNN	990K	5.64e-1	6.86e-1	-37.68
-1.17		IResNet	990K	5.50e-1	5.50e-1	-33.11
-3.69		ScoreSDE	396K	5.61e-1	6.60e-1	-7.55

(a) Generated MNIST digits. FID: 7.95.

(b) Generated CIFAR10 images. FID: 29.10.

References

- [1] Xiuyuan Cheng, Jianfeng Lu, Yixin Tan, and Yao Xie. Convergence of flow-based generative models via proximal gradient descent in Wasserstein space. arXiv preprint arXiv:2310.17582, 2023.
- [2] Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the fokker-planck equation. SIAM journal on mathematical analysis, 29(1):1–17, 1998.
- [3] Chen Xu, Xiuyuan Cheng, and Yao Xie. Normalizing flow neural networks by JKO scheme. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

This work is partially supported by an NSF CAREER CCF-1650913, NSF DMS-2134037, CMMI-2015787, CMMI-2112533, DMS-1938106, DMS-1830210, and the Coca-Cola Foundation.