

In the claims

Please amend Claim 16 as shown below. Claims 27-42, and 55 are reinstated and listed as previously presented.

1. (Cancelled)
2. (Previously Presented) The device as in Claim 56, wherein the packaged semiconductor is packaged in a ball grid array package.
3. (Previously Presented) The device as in Claim 56, wherein the unpackaged semiconductor die is a graphics processor.
4. (Previously Presented) The device as in Claim 56, wherein the packaged semiconductor is a memory.
5. (Previously Presented) The device as in Claim 56, wherein a plurality of packaged semiconductors are attached to the package module.
6. (Previously Presented) The device as in Claim 56, wherein the unpackaged semiconductor die is wire bonded to the package module.
7. (Withdrawn)
8. (Previously Presented) The device as in Claim 56, wherein attached includes surface-mount technology reflow.
9. (Previously Presented) The device as in Claim 56, wherein the encapsulated structure has a footprint greater than the footprint of the unpackaged semiconductor die.
10. (Withdrawn)
11. (Previously Presented) The device as in Claim 56, wherein the footprint size of the package module is one of 35 mm × 35 mm, 31 mm × 31 mm, 27 mm × 27 mm, 37.5 mm × 37.5 mm, 40 mm × 40 mm, 42 mm × 42 mm, or 42.5 mm × 42.5 mm.

12. (Withdrawn)

13. (Withdrawn)

14. (Withdrawn)

15. (Cancelled)

16. (Previously Presented) The device as in Claim 56, wherein the packaged semiconductor die is packaged in a ball grid array package.

17. (Previously Presented) The device as in Claim 57, wherein a plurality of packaged memory are attached to the package module.

18. (Previously Presented) The device as in Claim 57, wherein directly attached includes the graphics processing die being wire bonded to the package module.

19. (Withdrawn)

20. (Previously Presented) The device as in Claim 57, wherein attached includes surface-mount technology reflow.

21. (Cancelled)

22. (Withdrawn)

23. (Previously Presented) The device as in Claim 57, wherein the standard package sizes include one of 35 mm × 35 mm, 31 mm × 31 mm, 27 mm × 27 mm, 37.5 mm × 37.5 mm, 40 mm × 40 mm, 42 mm × 42 mm, or 42.5 mm × 42.5 mm.

24. (Withdrawn)

25. (Withdrawn)

26. (Withdrawn)

27. (Previously Presented) A method comprising the steps of:
directly attaching a first semiconductor die to a package substrate;
forming electrical connections between the first semiconductor die and

- the package substrate;
- securing the electrical connections;
- placing a second semiconductor die in a die package;
- attaching the die package to the package substrate; and
- forming electrical connections between the die package and the package substrate.
28. (Previously Presented) The method as in Claim 27, wherein the step of placing the second semiconductor die in a die package includes placing the semiconductor die in a ball grid array package.
29. (Previously Presented) The method as in Claim 27, wherein the steps of directly attaching and forming electrical connections are performed using a flip-chip process.
30. (Previously Presented) The method as in Claim 27, wherein the steps of attaching and forming electrical connections are performed using surface mount technology reflow.
31. (Previously Presented) The method as in Claim 27, wherein the step of directly attaching includes the use of adhesives.
32. (Previously Presented) The method as in Claim 27, wherein the steps of forming electrical connections include wire-bonding.
33. (Previously Presented) The method as in Claim 27, wherein securing the electrical connections includes encapsulating the first semiconductor die.
34. (Previously Presented) The method as in Claim 27, wherein securing the electrical connections includes underfilling the first semiconductor die.
35. (Previously Presented) The method as in Claim 27, further including the step of attaching solder balls to an underside of the package substrate.

36. (Previously Presented) The method as in Claim 27, wherein the package substrate has a footprint of one of 35mm X 35mm, 31mm X 31mm, 27mm X 27mm, 37.5mm X 37.5mm, 40mm X 40mm, 42mm X 42mm, or 42.5mm X 42.5mm.

37. (Previously Presented) The method as in Claim 37, further including the step of attaching a heat sink to the package substrate.

38. (Previously Presented) The method as in Claim 37, further including the step of positioning a shim on top of the first semiconductor die such that a top of the shim and a top surface of the die package are of substantially equal distance from a surface of the package substrate.

39. (Previously Presented) The method as in Claim 27, further including the step of testing the first semiconductor die prior to the step of attaching the die package to the package substrate.

40. (Previously Presented) The method as in Claim 27, further including the step of testing the second semiconductor die after the step of placing the second semiconductor die in a die package and prior to the step of attaching the die package.

41. (Previously Presented) The device as in Claim 9, wherein the encapsulated semiconductor die forms a substantially rectangular structure on the package module.

42. (Previously Presented) The device as in Claim 22, wherein the encapsulated graphics-processing die forms a substantially rectangular structure on the package module.

43. (Cancelled)

44. (Previously Presented) The multi-die module as in Claim 58, further including a second packaged semiconductor die mounted on the first surface of the substrate.

45. (Previously Presented) The multi-die module as in Claim 58, further including a plurality of unpackaged semiconductor die mounted on the first surface of the substrate.
46. (Previously Presented) The multi-die module as in Claim 58, wherein the unpackaged semiconductor die is mounted to the first surface of the substrate by wire bonding.
47. (Previously Presented) The multi-die module as in Claim 58, wherein the encapsulating structure is further comprised of an encapsulating material including epoxy, metal cap or silicon coatings.
48. (Withdrawn)
49. (Cancelled)
50. (Withdrawn)
51. (Withdrawn)
52. (Withdrawn)
53. (Previously Presented) The multi-die module as in Claim 58, wherein the unpackaged semiconductor die is a graphics processor.
54. (Previously Presented) The multi-die module as in Claim 58, wherein the packaged semiconductor die is a memory.
55. (Previously Presented) A method of forming a multi-die module, comprising:
mounting a first semiconductor die to a module substrate;
forming an electrical connection between the first semiconductor die and the package module substrate;
encapsulating the first semiconductor die in a rectangular structure;
placing a second semiconductor die in a corresponding die package;
mounting the die package to the module substrate; and

forming an electrical connection between the die package and the module substrate.

56. (Previously Presented) A device comprising:
a package module including a substrate having a standard package footprint;
an unpackaged semiconductor die directly attached to the package module, the
unpackaged semiconductor die encapsulated onto the package module in a structure
having a planar top surface; and
a packaged semiconductor die having a top surface and attached to the package
module;

wherein the planar top surface of the encapsulated structure and the top surface of
the packaged semiconductor die are of equal distance from the substrate.

57. (Previously Presented) A device comprising:
a package module sized to be interchangeable with standard package sizes;
a graphics-processing die directly attached to the package module, the graphics-
processing die encapsulated on the package module in a structure having a planar top
surface; and
a packaged memory die having a top surface and attached to the package module;
wherein the planar top surface of the encapsulated structure and the top surface of the
packaged memory die are of equal distance from the package module.

58. (Previously Presented) A multi-die module, comprising:
a substrate having a first surface and a second surface;
an unpackaged semiconductor die mounted to the first surface of the substrate, the
semiconductor die encapsulated in a structure having a planar top surface; and

a packaged semiconductor die having a top surface and mounted on the first surface of the substrate;

wherein the planar top surface of the encapsulated structure and the top surface of the packaged semiconductor die are of equal distance from the substrate.

59. (Previously Presented) A multi-die module, comprising:

a substrate having a first surface;
an unpackage semiconductor die mounted to the first surface of the substrate, the semiconductor die encapsulated in a structure; and

a packaged semiconductor die mounted on the first surface of the substrate
wherein the encapsulating structure is further comprised of an encapsulating material of a metal cap.

60. (Previously Presented) The device of claim 56 further including a planar heat sink adapted to engage the encapsulated structure and the top surface of the packaged semiconductor.