โครงสร้างของการเขียนโปรแกรม

การเขียนโปรแกรมเพื่อสั่งงาน Arduino นั้นจะใช้ภาษาซี โดยโครงสร้างของการเขียนโปรแกรมจะคล้ายๆกับการเขียน โปรแกรมบนไมโครคอนโทรลเลอร์ทั่วๆไป แต่จะมีความง่ายกว่าเพราะ Arduino ได้มีการรวมคำสั่งและ Library ต่างๆไว้ให้ผู้ใช้ สามารถเรียกใช้งานได้เลย ถ้าจะกล่าวถึงการเขียนโปรแกรมด้วยภาษาซีนั้น ฟังชั้นหลักที่จะขาดไม่ได้เลยนั้นคือฟังก์ชัน Main แต่การเขียนโปรแกรมกับ Arduino จะเป็นฟังก์ชัน setup และฟังก์ชัน loop ตามรูป

```
void setup() {
   // put your setup code here, to run once:
}

void loop() {
   // put your main code here, to run repeatedly:
}
```

รูปโครงสร้างการเขียนโปรแกรมขั้นต่ำของ Arduino

การทำงานของฟังก์ชันทั้งสองมีความหมายดังนี้

การทำงานของ void setup() เป็นฟังก์ชันที่ใช้สำหรับกำหนดค่าเริ่มต้นต่างๆให้กับบอร์ด เมื่อเริ่มต้นการทำงาน Arduino จะทำตามคำสั่งต่างๆที่อยู่ใน void setup() ก่อน 1 รอบ หลังจากนั้นจะเข้าสู่ void loop() ต่อไป การกำหนดรูปแบบ โหมดการทำงานของสัญญาณในแต่ละขาที่จะใช้งานของไมโครคอนโทรลเลอร์ว่ามีหน้าที่อะไรนั้นแบ่งออกเป็นสองรูปแบบคือ สัญญาณขาเข้าหรือเรียกว่าสัญญาณอินพุท (input) และสัญญาณขาออกหรือเรียกว่าสัญญาณเอาท์พุท (output) ซึ่งเราต้องกำหนด โหมดการทำงานของมันเสียก่อนด้วยคำสั่ง pinMode(pin, mode) โดย pin เป็นหมายเลขขาของบอร์ดไมโครคอนโทรลเลอร์ และ ในส่วนของ mode เป็นการเลือกโหมดการทำงานของขานั้นโดยมีสามรูปแบบคือ

INPUT กำหนดให้ขานั้นทำหน้าที่เป็น input
OUTPUT กำหนดให้ขานั้นทำหน้าที่เป็น output

INPUT PULLUP กำหนดให้ขานั้นทำหน้าที่เป็น input ที่มีการต่อ internal resistor แบบ pull-up

การทำงานของ void loop() เป็นฟังก์ชันสำหรับสั่งให้ Arduino ทำตามกำสั่งต่างๆที่เราเขียนไว้วนรอบซ้ำกันไป โดย จะเริ่มต้นทำงานเมื่อผ่านจาก void setup() มาแล้ว

การทดลองจะเขียนโปรแกรมควบคุมโดยใช้ Arduino ต่อกับ Protoboard แล้วทำการเชื่อมต่ออุปกรณ์ที่ใช้ในการ ทดลองลงบนโปรโตบอร์ดดังรูป และให้ขาดิจิตอลที่ D2 ของ Arduino ส่งค่าสัญญาณเอาท์พุทแบบดิจิตอลออกมา ด้วยคำสั่ง digitalWrite(pin,value) โดยที่ค่า value ของสัญญาณดิจิตอลที่ได้มีอยู่ 2 รูปแบบคือ สัญญาณ HIGH และ LOW

เมื่ออยู่ในสถานะ "HIGH" ขาของ Arduino Nano จะส่งแรงคัน ไฟฟ้าขนาค 5 โวลต์ออกมา

เมื่ออยู่ในสถานะ "LOW" ขาของ Arduino Nano จะเชื่อมต่อกับ Ground (GND)

แรงดันไฟฟ้าที่ไมโครคอนโทรลเลอร์ส่งออกมา เมื่อเราสั่ง HIGH นั้นขึ้นอยู่กับรุ่นของบอร์คไมโครคอนโทรลเลอร์ที่ เราใช้งาน หากเป็นบอร์คไมโครคอนโทรลเลอร์ที่ใช้แหล่งจ่ายไฟ 3.3 โวลต์ การสั่ง HIGH จะเป็นการสร้างสัญญาณ 3.3 โวลต์ ออกมาที่ขานั้น และหากเป็นไมโครคอนโทรลเลอร์ที่ใช้ไฟ 5 โวลต์ สัญญาณ HIGH ที่ออกมาก็จะเป็น 5 โวลต์

วงจรและตำแหน่งขาต่างๆของบอร์ด Arduino ที่ใช้ในการทดลองเป็นคังนี้

ภายในบอร์ค Arduino ที่ใช้ในการทคลองจะใช้ตัวประมวลผลเป็น Microcontroller AVR ขนาค 8 bit เบอร์ ATmega328P ใช้สถาปัตยกรรม (Architecture) แบบ Reduced Instruction Set Computer (RISC) ที่มีชุคคำสั่งที่สั้นและมีจำนวน คำสั่งไม่มากนัก สามารถกระทำการตามคำสั่งได้อย่างรวคเร็ว ตรงข้ามกับ Complex Instruction Set Computer (CISC) รูป ด้านล่างจะเป็น Block Diagram ภายในของไมโครคอนโทรลเลอร์นี้ รายละเอียดต่างๆเพิ่มเติมให้เปิดดูได้จากเอกสาร ATMEGA328 DataSheet

Block Diagram ของ ATmega328P

การใช้คำสั่ง digitalWrite กับขาที่เลือกโหมคเป็น input จะเป็นการเปิด-ปิด การต่อ pull-up ภายในวงจรของ ไมโครคอนโทรลเลอร์ โดย HIGH เป็นการเปิดโหมดการต่อ Pull-up และ LOW เป็นการปิดโหมด pull-up

ในกรณีการใช้คำสั่ง digitalWrite เพื่อสั่งให้ LED สว่าง โดยที่ไม่ได้กำหนดโหมดการทำงานของขาด้วยคำสั่ง pinMode จะส่งผลให้ LED ที่ต่ออยู่กับขานั้นไม่สว่างเท่าที่ควร เพราะการไม่ใช้คำสั่ง pinMode จะเปิดการทำงานโหมด pull-up ซึ่งจะทำ ให้กระแสไฟบางส่วนไหลผ่านตัวต้านทานภายในโดยไม่ผ่าน LED

รูปการเชื่อมต่ออุปกรณ์การทคลองลงบน โปรโตบอร์ค

ให้เชื่อมต่อสาย USB ของบอร์คกับคอมพิวเตอร์ เปิดโปรแกรม Arduino ที่ได้ติดตั้งในคอมพิวเตอร์ จากนั้นทำการ เขียนโปรแกรมที่ทำหน้าที่สั่งงานให้ LED ที่อยู่บนบอร์คไมโครคอนโทรลเลอร์กระพริบทุก 1 วินาที จากนั้นทำการ คอมไพล์แล้วทำการ Upload โปรแกรมที่ได้ลงบนบอร์ค Arduino

```
int led = 9;
                                    // LED connected to digital pin 13
void setup()
 pinMode(led, OUTPUT);
                                    // initialize the digital pin as an output
void loop()
 digitalWrite(led, HIGH);
                                    // turn the LED on (HIGH is the voltage level)
 delay(1000);
                                    // wait for a second (1000 milliseconds)
 digitalWrite(led, LOW);
                                    // turn the LED off by making the voltage LOW
 delay(1000);
                                   // wait for a second (1000 milliseconds)
คำสั่งที่ใช้มีความหมายดังนี้
                                         ใช้ในการกำหนดขาที่ต่อ LED ภายในบอร์ด Arduino ว่าต่ออยู่ที่ขา 13
         int led = 9;
                                         กำหนดให้ขาที่ต่อ LED เป็นขาเอาท์พุท
         pinMode(led, OUTPUT);
                                         ให้ส่งค่าลอจิก 1 ออกไปขาที่ต่อกับ LED
        digitalWrite(led, HIGH);
                                         ให้ส่งค่าลอจิก 0 ออกไปขาที่ต่อกับ LED
        digitalWrite(led, LOW);
                                         ให้ทำการหน่วงเวลา 1000 ms (Milliseconds)
        delay(1000);
```

การใช้คำสั่ง digitalWrite กับขาที่เลือกโหมคเป็น input จะเป็นการเปิด-ปิด การต่อ pull-up ภายในวงจรของ ไมโครคอนโทรลเลอร์ โดย HIGH เป็นการเปิดโหมดการต่อ Pull-up และ LOW เป็นการปิดโหมด pull-up

ในกรณีการใช้คำสั่ง digitalWrite เพื่อสั่งให้ LED สว่าง โดยที่ไม่ได้กำหนดโหมดการทำงานของขาด้วยคำสั่ง pinMode จะส่งผลให้ LED ที่ต่ออยู่กับขานั้นไม่สว่างเท่าที่ควร เพราะการไม่ใช้คำสั่ง pinMode จะเปิดการทำงานโหมด pull-up ซึ่งจะทำ ให้กระแสไฟบางส่วนไหลผ่านตัวต้านทานภายในโดยไม่ผ่าน LED

. ให้เชื่อมต่อสาย USB ของบอร์คกับคอมพิวเตอร์ เปิดโปรแกรม Arduino ที่ได้ติดตั้งในคอมพิวเตอร์ จากนั้นทำการ เขียนโปรแกรมที่ทำหน้าที่สั่งงานให้ LED ที่อยู่บนบอร์ดไมโครคอนโทรลเลอร์กระพริบทุก 1 วินาที จากนั้นทำการ

คอมไพล์แล้วทำการ Upload โปรแกรมที่ได้ลงบนบอร์ด Arduino

```
int led = 13;
                                    // LED connected to digital pin 13
void setup()
 pinMode(led, OUTPUT);
                                    // initialize the digital pin as an output
void loop()
 digitalWrite(led, HIGH);
                                    // turn the LED on (HIGH is the voltage level)
 delay(1000);
                                    // wait for a second (1000 milliseconds)
 digitalWrite(led, LOW);
                                    // turn the LED off by making the voltage LOW
 delay(1000);
                                   // wait for a second (1000 milliseconds)
คำสั่งที่ใช้มีความหมายดังนี้
                                         ใช้ในการกำหนดขาที่ต่อ LED ภายในบอร์ค Arduino ว่าต่ออย่ที่ขา 13
         int led = 13;
                                         กำหนดให้ขาที่ต่อ LED เป็นขาเอาท์พุท
         pinMode(led, OUTPUT);
                                         ให้ส่งค่าลอจิก 1 ออกไปขาที่ต่อกับ LED
        digitalWrite(led, HIGH);
                                         ให้ส่งค่าลอจิก 0 ออกไปขาที่ต่อกับ LED
        digitalWrite(led, LOW);
                                         ให้ทำการหน่วงเวลา 1000 ms (Milliseconds)
        delay(1000);
```

 ให้ทำการย้ายขา LED ของโปรแกรมที่ ต่ออยู่ขาที่ 13 ไปเป็นขาที่ 9 และให้ต่อ LED อนุกรมกับตัวความ ต้านทาน 220 Ω เข้ากับขาที่ 9 แล้วลงกราวค์

3. จากข้อ 1 ให้แก้ไขโปรแกรมให้ LED กระพริบเป็นความถี่ 10 Hz

โดยที่ความถี่ (Frequency) เป็นจำนวนรอบที่แสดงว่าคลื่นเคลื่อนที่ไปได้กี่รอบในหนึ่งวินาที (Second) มีหน่วย เป็น รอบต่อวินาทีหรือเฮิรตซ์ (Hz) ใช้แทนสัญลักษณ์ด้วย f

คาบเวลา (Period) คือ เวลาที่ใช้ในการเคลื่อนที่ครบ 1 รอบ (One Cycle) มีหน่วยเป็นวินาที (Second) ใช้แทน สัญลักษณ์ด้วย T

จากรูปเมื่อเวลาผ่านไปหนึ่งวินาที คลื่นเคลื่อนที่ได้สองลูก แสดงว่าคลื่นนี้มีความถี่ 2 Hz หรือถ้าพิจารณาจากคาบเวลาจะเห็นว่าใน 1 รอบจะใช้เวลา T = TON + TOFF = 0.5 Sec ดังนั้นจะได้ความสัมพันธ์ระหว่างความถี่ (f) และคาบ (T) ตามสมการ

$$f = \frac{1}{T}$$

$$f = \frac{1}{0.5}$$

$$f = 2 Hz$$

 ให้วัดแรงดัน ไฟฟ้าตกคร่อมตัว LED ในช่วงที่ LED กำลังทำงาน (LED ON) โดยที่ LED จะต้องต่ออนุกรมกับตัว ความต้านทาน 220 Ω

LED	Forward Voltage	5-V _F
infrared (IR)	1.26	3.74
Red	1.85	3.15
Yellow	2.02	2.98
Green	2.03	2.99
Blue	2.88	2.12
White	2.93	2.09
Ultraviolet (UV)	3-13	1.87

ค่าแรงคันไฟฟ้าที่ตกคร่อม LED ขณะป้อนแรงคันไฟฟ้าแบบตรงตามขั้ว (Forward) จะแปรผันตาม กระแสที่ไหลผ่าน และจะขึ้นอยู่กับค่าความยาวคลื่นของแสงที่ส่องสว่างออกมาจาก LED ด้วย ดังตัวอย่างจะเป็น กราฟ แสดงค่า Characteristic ของ LED แต่ละสี

5. ให้คำนวณหากระแสที่ใหลผ่าน LED ที่ใช้ทดลองมา 7 ตัวในช่วงขณะที่ LED กำลังทำงาน (LED ON) โดยใช้กฎ ของโอห์ม

VIR * 3.74	= 17 mA.
12.6	
	= 14 ma.
220	
	= 14 mA.
29.0	
	² (Ç m4,
220	

 I Blye >	2.12 = 10 mA
	220
	2.07 = 9 mg.
	220
	187 = 9mp.
	270

กฎของโอห์ม (Ohm's Law) กล่าวไว้ว่ากระแสไฟฟ้าที่ใหลในตัวนำไฟฟ้าจะแปรผันตามแรงคันที่ตก คร่อมตัวนำนั้น และจะแปรผกผันกับค่าความต้านทานของตัวนำนั้น ดังสมการ

$$I = V / R$$

เมื่อ I = กระแสไฟฟ้ามีหน่วยเป็นแอมป์แปร์ (A)

V = แรงคันไฟฟ้ามีหน่วยเป็นโวลต์ (V)

 $\mathbf{R} =$ ความต้านทานมีหน่วยเป็นโอห์ม (Ω)

โดยที่แรงคันตกคร่อมตัวความต้านทานได้จากแรงคันของแหล่งจ่ายไฟลบด้วยแรงคันตกคร่อม LED มี ความสัมพันธ์ดังรูป

- 6. ให้ทดลองทำการเปลี่ยนค่าความต้านทานจาก 220 Ω ไปเป็น 1K Ω แล้วให้อธิบายผลที่ได้เป็นอย่างไร
- 7. ให้แสดงวิธีการคำนวณหาค่าความด้านทานที่เหมาะสม เมื่อกำหนดให้ Forward Current ของ LED เท่ากับ 20 mA

 R = V = 5 1.26 = 2.74 × 10²

 1 20×10⁻³ Z

8.	8. ให้ทำการแก้ไขโปรแกรมโดยการเปลี่ยนค่า delay() เพื่อให้ LED ติด สว่าง 0.5 วินาที และดับ 1.5 วินาที จากนั้ LED กระพริบเร็วขึ้นเรื่อยๆ ตามลำดับจนกว่าเราจะไม่เห็นการกระพริบ โดยใช้คำสั่ง for ()	
9.	จากข้อ 8 ค่าความถี่ในขณะที่เริ่มจะไม่เห็น LED กระพริบคือความถี่เท่าไร	
	$T_1 = T_{ON} + T_{OFF} = 20 + b0 = 80 \text{ ms.}$ $f_2 \frac{1}{T_1} = \frac{1}{90 \times 10^3} = 12.5 \text{ Hz.}$	
10.	จากข้อ 8 ค่าความสว่างของ LED ในขณะที่เริ่มจะไม่เห็น LED กระพริบ ความสว่างนั้นเท่าเดิมหรือน้อยลง และให้ เหตุผลว่าทำไมจึงเป็นเช่นนั้น	
	คามลง ป้ององ เพราง เมื่อมีการกรามใบเร็ว จีนี้ เรื่อง การจ่างใน (แมคันไม่) ไปน้อง	
11.	ให้ต่อ LED หลอดที่ 2 อนุกรมกับตัวความต้านทาน 220 Ω เข้ากับขาที่ 10 แล้วลงกราวค์	
12.	ให้เขียนโปรแกรมให้ LED ขาที่ 9 กระพริบเป็นความถี่ 1 Hz และให้ LED ขาที่ 10 กระพริบเป็นความถี่ 2 Hz	
13.	ให้ต่อ LED อนุกรมกับตัวความต้านทาน 220 Ω เพิ่มอีกเป็นจำนวน 5 หลอด แล้วให้เขียนโปรแกรมควบคุมให้ หลอดไฟ LED กระพริบไล่จากขวาไปซ้าย แล้วกระพริบไล่จากซ้ายสุดและขวาสลับกันไปมา โดยใช้คำสั่ง for ()	
	การสื่อสารกับอุปกรณ์ภายนอกของบอร์ค Arduino จะใช้พอร์ตที่เรียกว่าพอร์ตอนุกรม (Serial Port) ในการ กับอุปกรณ์อื่น หรือสื่อสารระหว่างไมโครคอนโทรลเลอร์กับคอมพิวเตอร์ การสื่อสารนี้เรียกว่า UART โดยจะใช้ เลข 0 (RX) ในการรับค่า และขาหมายเลข 1 (TX) ในการส่งค่า คำสั่งต่างๆที่จำเป็นมีดังนี้ void serial.begin(rate) เป็นการกำหนดอัตราของการรับส่งข้อมูล หน่วยเป็น bits per second (baud rate)	
	int serial.available() ใช้ตรวจสอบว่าบัฟเฟอร์รับข้อมูลไว้จำนวนกี่ไบต์	
	int serial.read() อ่านค่าข้อมูลที่ถูกส่งเข้ามายังพอร์ตอนุกรมของใมโครคอนโทรลเลอร์	
	void Serial.flush() เคลียร์บัฟเฟอร์ของพอร์ตอนุกรมให้ว่าง	
	void Setial.print() พิมพ์ข้อมูล ออกทางพอร์ตอนุกรม	
	void Setial.println() พิมพ์ข้อมูล ออกทางพอร์ตอนุกรมและขึ้นบรรทัดใหม่	
14.	ให้เพิ่มคำสั่ง Serial.begin(9600); // initialize serial communication at 9600 bits per second ลงใน void setup() เพื่อใช้กำหนดอัตราความเร็วในการรับส่งข้อมูลผ่าน Serial Monitor มีค่าเท่ากับ 9600 bps	
15.	ให้เพิ่มคำสั่ง int Temp = analogRead(A0); // read the input on analog pin 0 avใน void loop() เพื่อใช้รับค่าสัญญาณอนาลีอกจากขา A0 ของบอร์ค Arduino และแปลงค่าที่ได้ไปเป็น สัญญาณคิจิตอลขนาค 10 บิท แล้วเก็บไว้ที่ตัวแปร Temp ซึ่งค่าที่ได้จะอยู่ระหว่าง 0 ถึง 1023 (คำนวณได้จาก 2 ¹⁰)	
16.	ให้เพิ่มคำสั่ง Serial.println(Temp); // print out the value	

ต่อจากกำสั่งในข้อ 15 เพื่อให้พิมพ์ผลลัพธ์ค่าข้อมูลตัวแปร Temp ส่งออกไปทาง Serial Monitor

การทดลองเขียนโปรแกรมเพื่อสั่งงานให้ไมโครคอนโทรลเลอร์อ่านค่าสัญญาณของขาที่ทำการเชื่อมต่ออยู่กับวงจรที่ เป็นอุปกรณ์ภายนอก เมื่อมีการกำหนดให้ขาใดขาหนึ่งของไมโครคอนโทรลเลอร์อ่านค่าสัญญาณที่เป็น Input ด้วยคำสั่ง pinMode ก็ สามารถใช้คำสั่ง digitalRead เพื่อสั่งให้ไมโครคอนโทรลเลอร์อ่านค่าสัญญาณที่เป็นแบบดิจิตอลเข้ามาจากอุปกรณ์ที่เชื่อมต่ออยู่ กับขานั้นๆได้ ด้วยการใช้คำสั่ง digitalRead(pin) โดยที่ pin เป็นค่าของหมายเลขขาดิจิตอลที่ต้องการอ่านค่าว่าเป็นสัญญาณ HIGH หรือ LOW ในบอร์ด Arduino จะมีขาที่มีวงจรที่ทำหน้าที่แปลงสัญญาณสัญญาณอนาล็อกไปเป็นสัญญาณดิจิตอล หรือ Analog to Digital Converter (ADC) ขนาด 10 บิท ซึ่งจะใช้ในการอ่านค่าของสัญญาณที่เป็นแบบอนาล็อกเข้ามาจากวงจร ภายนอกหรือเซนเซอร์ต่างๆที่เป็นแบบอนาล็อกที่เชื่อมต่ออยู่ ซึ่งจะต้องใช้เป็นคำสั่ง analogRead(pin) โดยที่ pin จะเป็น หมายเลขขาอินพุทที่เป็นสัญญาณอนาล็อกซึ่งจะขึ้นด้นด้วย A ใน Arduino จะมีขาที่เป็นอนาล็อกอยู่ทั้งหมด 8 ขา ซึ่งค่าของ สัญญาณอนาล็อกที่อ่านได้นี้จะต้องถูกแปลงค่าจากสัญญาณอนาล็อกไปเป็นสัญญาณดิจิตอลขนาด 10 บิท ทำให้ได้ค่าที่อ่าน ออกมาทั้งหมดเท่ากับ 2¹⁰ ซึ่งค่าที่ได้จะอยู่ในช่วง 0 ถึง 1023 นอกจากนี้แล้วยังมีขา Analog Reference ใช้สำหรับอ้างอิงค่า Analog ในการเปรียบเทียบแรงดันแบบ Analog

17. ให้ต่อตัวความต้านทาน 10 K Ω อนุกรมกับสวิทช์ เข้ากับขา Vcc ของบอร์ด Arduino แล้วลงกราวด์ โดยให้ขา A0 ที่ทำหน้าทีเป็น Analog to Digital Converter ต่อเข้ากับจุดต่อร่วมระหว่างตัวความด้านทานกับสวิทช์

18. ให้เขียนโปรแกรมทคสอบการกคสวิทช์ โดยอ่านจากขา A0 แล้วให้บันทึกค่าที่ได้

เมื่อกคสวิทช์	Temp มีค่าเท่ากับ	0	
เมื่อปล่อยสวิทช์	Temp มีค่าเท่ากับ	~ 1023	

- 19. ให้แก้ไขโปรแกรมในข้อ 18 โดยกำหนดให้เมื่อกดสวิทช์ให้ LED ขาที่ 9 จะสว่าง และเมื่อปล่อยสวิทช์ ให้ LED ขาที่ 10 สว่าง โดยใช้กำสั่ง if (.......) else
- 20. ให้ทดลองต่อตัวความต้านทาน 1 KΩ จำนวน 5 ตัวอนุกรมกันแล้วต่อเข้ากับขา Vcc ของบอร์ด Arduino เพื่อทำ วงจรแบ่งแรงดันไฟฟ้า (Voltage Divider) และให้ขา A0 ต่อเข้ากับจุดต่อร่วมระหว่างตัวความต้านทานจุดแรก แล้วให้ใช้สวิทช์ 3 ตัวต่อเข้ากับจุดต่อร่วมของตัวความต้านทานที่เหลือแล้วลงกราวด์ โดยกำหนดให้ค่าที่อ่าน ออกมาได้ไม่ให้ซ้ำกัน แล้วบันทึกผลที่ได้

เมื่อไม่กดสวิทช์	Temp มีค่าเท่ากับ	819 , 820	
	•	513,514	
	_	687, 688	
เมื่อกดสวิทช์ตัวที่ 3	Temp มีค่าเท่ากับ	768, 769	

21. จากข้อ 20 ให้แสดงวิธีคำนวณหาค่า A0 ที่ได้จากวงจรแบ่งแรงดันไฟฟ้า (Voltage Divider) เมื่อกำหนดเงื่อนไข ไว้ดังนี้

เมื่อไม่กดสวิทช์ A0 มีค่าแรงคันไฟฟ้าเท่าไร ?

Vout : 5	x 4 7 6 V,
	5
เมื่อกคสวิทช์ตัวที่ 1	A0 มีค่าแรงคันไฟฟ้าเท่าไร ?
Vout = 5 =	: <u>1</u> = 2,5 V.
	2
เมื่อกคสวิทช์ตัวที่ 2	A0 มีค่าแรงคันไฟฟ้าเท่าไร ?
Vout = 5 x	2 = 3.33 V.
	3

22.

เมื่อกคสวิท	ช์ตัวที่ 3	A0 มีค่าแรงคันไฟฟ้าเท่าไร ?
Vout		5 × 3 = 3.75 V
• จากวงจรแบ่งแรงดันไ	ฟฟ้า (ง	20 กับค่า A0 ในข้อ 21 ว่ามีความสัมพันธ์กันอย่างไร และถ้ากำหนดให้ A0 ที่ได้ Voltage Divider) มีค่าเท่ากับ 2 V จงคำนวณหาค่าตัวแปร Temp ที่ได้จากขา Analog duino ว่าจะอ่านเข้ามามีค่าเท่ากับเท่าไร
Temp	۷	VAO x 1023
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	2 x 1023
		2 × 204. b
		409.2

23. จากข้อ 20 ให้เขียนโปรแกรมที่มีข้อกำหนดคือ เมื่อกดสวิทช์ตัวที่ 1 ให้ LED ขาที่ 9 ติดสว่าง ถ้ากดสวิทช์ตัวที่ 2 ให้ LED ขาที่ 10 ติดสว่าง และถ้ากดสวิทช์ตัวที่ 3 ให้ LED ขาที่ 11 ติดสว่าง โดยให้ใช้คำสั่ง switch (.....) case หรือ if (.......) else ก็ได้

LDR (Light Dependent Resistor) เป็นตัวต้านทานที่เปลี่ยนค่าความนำไฟฟ้าได้เมื่อมีแสงมากระทบ หรือ เรียกว่าโฟโตรีซีสเตอร์ (Photo Resistor) ทำมาจากสารกึ่งตัวนำ (Semiconductor) ประเภทแคดเมี่ยมซัลไฟด์ (Cadmium Sulfide) หรือแคดเมี่ยมซิลินายส์ (Cadmium Selenide) ซึ่งเป็นสารประเภทกึ่งตัวนำที่เอามาฉาบลงบนแผ่นเซรามิกที่ใช้ เป็นฐานรองแล้วต่อขาจากสารที่ฉาบนั้นออกมา เมื่อมีแสงตกกระทบลงบนสารกึ่งตัวนำที่ฉาบอยู่ นี้จะถ่ายทอดพลังงาน ทำให้เกิดโฮลกับอิเล็กตรอนอิสระวิ่งพล่านกันมากเป็นผลให้ค่าความต้านทานลดลง

LDR Basic Structure

LDR ที่ทำจากแกดเมียมซัลไฟด์ จะมีตอบสนองทางสเปกตรัมต่อแสงได้ดีที่ช่วงความยาวคลื่น (Wavelength) ประมาณห้าร้อยห้าสิบนาโนเมตร (nm) ซึ่งจะเป็นช่วงที่อยู่ระหว่างแสงสีเขียวกับสีเหลือง และในช่วงแสงสีแดงผลการ ตอบสนองจะลดลงเหลือเพียง 30% เมื่อเทียบกับแสงสีเขียว ดังแสดงในกราฟด้านล่าง

เมื่อไม่มีแสงมาตกกระทบในสภาวะมืดจะทำให้ค่าความด้านทานระหว่างขั้วจะสูงถึง 1 MΩ หรือมากกว่านั้น ความด้านทานจะลดลงตามระดับแสงที่เพิ่มขึ้นและจะลดลงเหลือไม่กี่ร้อยโอห์มที่ความสว่างสูงดังแสดงในรูปกราฟ แต่ อุปกรณ์ชนิดนี้ยังมีผลตอบสนองทางเวลา (Response time) ที่ไม่ดีนักคือจะช้ากว่าอุปกรณ์พวกโฟโต้ทรานซิสเตอร์มาก โดย จะมีค่าอยู่ในช่วงประมาณ 2 ถึง 50 mSec รายละเอียดต่างๆเพิ่มเติมให้เปิดดูได้จากเอกสาร LDR 3190 DataSheet

LDR มักนิยมใช้ในวงจรสวิทช์ที่เปิด-ปิดไฟด้วยแสง ตัวอย่างตามรูป วงจรภายในมักจะใช้ Op-Amp ทำเป็น วงจร Comparator โดยมีตัวต้านทานปรับค่าได้ ทำหน้าที่ปรับระดับแสงที่ต้องการให้เปิดปิดไฟ

LDR Photoresistor Light Detection Sensor Module

24. การทดลองจะไม่ใช้ Op-Amp แต่จะใช้การเขียนโปรแกรมเพื่อเปรียบเทียบบน Arduino แทน โดยนำสัญญาณที่ต่อ เข้าขา 3 ของ Op-Amp ไปป้อนเข้า Analog to Digital Converter (ADC) ขาอนาลีอกอินพุท A0 บนบอร์ด Arduino แทน ซึ่งจะทำให้ได้ค่าเป็นสัญญาณดิจิตอลขนาด 10 บิท ในช่วงระหว่าง 0 ถึง 1023 หรือก็คือได้ค่าทั้งหมดเท่ากับ 2 10

25. ให้นักศึกษาทำการแก้ไขโปรแกรมในข้อ 23 เพื่อทำเป็นเครื่องวัดความเข้มของแสงสว่าง โดยใช้ LDR เป็น เซ็นเซอร์วัดแสง และให้แสดงผลออกมาเป็นสีต่างๆ 7 สี ด้วย LED ที่เป็นแม่สี 3 สีคือ RGB โดย LED ที่ใช้ใน การทดลองนี้จะต้องให้ขาของ LED ที่เป็นแม่สีทั้ง 3 ขาต่อกับตัวความด้านทาน 220 Ω และต่อเข้ากับขา 9, 10, 11 ของ Arduino ตามลำดับ แล้วให้ขา Common Cathode ที่เป็นจุดร่วมซึ่งจะเป็นขาที่ยาวที่สุดให้ต่อลงกราวด์ (GND)

การทดลองนี้จะเหมือนวงจรเซ็นเซอร์ตรวจจับแสงที่ใช้ Op-Amp ทำเป็นวงจร Comparator มาแก้ไข โดยใช้ Infrared Emitting Diode TSAL6200 ที่ทำหน้าที่ส่งแสงความยาวคลื่น 940 นาโนเมตรออกไป และใช้ Phototransistor ชนิด NPN silicon เป็นอินฟาเรดเซ็นเซอร์ ช่วง 840-1200 nm ทำหน้าที่รับแสงที่สะท้อนเข้ามา เพื่อใช้ในการวัดระยะห่าง รายละเอียดต่างๆของอุปกรณ์ทั้งสองชนิดนี้ให้เปิดดูได้จากเอกสาร Infrared Emitting Diode TSAL6200 DataSheet และ Phototransistor PT334 DataSheet

26. ให้ต่อวงจรเซ็นเซอร์ที่มีหน้าที่ตรวจจับแสงอินฟาเรคที่สะท้อนเพื่อใช้ในการวัคระยะห่างตามรูปด้านล่าง แล้วนำ สัญญาณ SIGNAL ที่ได้ป้อนเข้า ADC ขาอนาล็อกอินพุท A1 ของบอร์ค Arduino

27. ให้นักศึกษาทำการแก้ไขโปรแกรมในข้อ 23 เพื่อทำเป็นเครื่องตรวจธนบัตรปลอมแบบอัตโนมัติ โดยเพิ่มวงจรใช้ Ultra Violet (UV) LED ที่มีช่วงความยาวคลื่น 390 นาโนเมตร ต่ออนุกรมกันตัวความต้านทาน 100 โอห์ม เมื่อ นำธนบัตรมาเข้าใกล้ให้สั่งเปิด LED ที่เป็นแสง UV ให้ติดสว่าง

Pulse Width Modulation Pin

Arduino สามารถส่งสัญญาณที่เป็น Pulse width modulation หรือเรียกย่อว่า PWM ซึ่งเป็นเทคนิคในการสร้างสัญญาณ อนาถือกด้วยค่าเฉลี่ยของสัญญาณคิจิตอล ออกมาผ่านทางขา PWM ได้ ในบอร์ด Arduino Nano มีขา PWM ให้ใช้งานทั้งหมด 6 ขา แต่ละขาจะเป็นขนาด 8 bit โดยผู้ใช้สามารถสร้างความถี่ที่เป็นสัญญาณคิจิตอลรูปคลื่นสี่เหลี่ยม (square wave) พร้อมกับ ควบคุม Percent of Duty Cycle ได้ด้วยคำสั่ง analogWrite การกำหนดเพื่อปรับค่าคิวตี้ไซเคิล จะเป็นการควบคุมคาบเวลาของ สัญญาณที่เป็นลอจิก 1 เทียบกับคาบเวลาที่เป็นลอจิก 0 ซึ่งจะทำให้ค่าแรงคันเฉลี่ยของสัญญาณที่จำลองเป็นค่าอนาล็อกต่างกัน ออกไป โดยค่าของคิวดี้ไซเคิลจะเรียกเป็นเปอร์เซ็น ตัวอย่างของคำสั่งตามรูป

การทดลองจะเขียนโปรแกรมควบคุมให้ LED ที่อยู่บนบอร์ดไมโครคอนโทรลเลอร์ หรือ LED ที่เรานำมาต่อวงจรเพิ่ม เข้าไป สามารถปรับความสว่างได้ ด้วยคำสั่งที่ใช้ในการสร้างสัญญาณ PWM คือ analogWrite คำสั่งนี้ขาที่กำหนดจะสร้าง สัญญาณคลื่นสี่เหลี่ยมด้วย Duty Cycle ค่าหนึ่งตามที่กำหนด และจะไม่เปลี่ยนค่าสัญญาณจนกว่าจะมีการเรียกคำสั่ง analogWrite ในครั้งต่อไป การใช้คำสั่ง analogWrite ไม่จำเป็นจะต้องมีการกำหนดขาด้วยคำสั่ง pinMode ก่อน รูปแบบของคำสั่งคือ analogWrite(pin, value) โดยที่ pin คือขาที่ต้องการให้สร้างสัญญาณ PWM และ value จะเป็น เปอร์เซ็นต์ของ duty cycle ที่เรา ต้องการโดย 0 หมายถึง 0 เปอร์เซ็นต์ และ 255 หมายถึง 100 เปอร์เซ็นต์

28. ให้ต่อวงจรใช้ตัวต้านทาน 220 ohm และ LED เข้าที่ขา D3 โดยขาอีกด้านหนึ่งให้ต่อลงกราวด์ และป้อนโปรแกรม ดังตัวอย่างที่จะใช้คำสั่ง analogWrite ในการควบคมปรับความสว่างของ LED

```
int led = 3;
int fade = 5;

// LED connected to digital pin 3
// how many points to fade the LED

void setup()
{
```

```
void loop()
{
    for(int brightness = 0; brightness <= 255; brightness +=fade)  // fade in from min to max
    {
        analogWrite(led, brightness);  // sets the brightness
        delay(30);
    }
    for(int brightness = 255; brightness >= 0; brightness -=fade)  // fade out from max to min
    {
        analogWrite(led, brightness);  // sets the brightness
        delay(30);
    }
}

29. ถ้าต้องการจะหรื่หลอดไฟ LED มีวิธีอะไรบ้าง
```

30. ให้ต่อ LED เพิ่มเป็นจำนวน 6 หลอด โดยใช้ขา PWM แล้วให้เขียนโปรแกรมควบคุมให้หลอดไฟแอลอีดีวิ่งแล้วหรึ่ ลักษณะเหมือนฝนดาวตก หรือมีรูปแบบอื่นๆ ตามที่ต้องการมาหลายๆแบบ

Temperature Sensor

การทดลองการวัดอุณหภูมิ จะใช้เซ็นเซอร์สำหรับวัดอุณหภูมิเป็นตัวเทอร์มิสเตอร์ ซึ่งจะเป็นตัวต้านทานที่มีค่า ของความด้านทานเปลี่ยนแปลงตามอุณหภูมิ การทดลองจะต้องวัดค่าความต้านทานของเทอร์มิสเตอร์นั้นและเปลี่ยนค่า ความต้านทานที่ได้ไปเป็นระดับแรงดันไฟฟ้า โดยต่อค่าแรงดันไฟฟ้าที่วัดได้ผ่านเข้าทางขาอนาล็อกของ Arduino และใช้ การคำนวณค่าอุณหภูมิโดยสมการ Steinhart-Hart ซึ่งอธิบายค่า thermistor resistance – temperature curve โดยวงจรที่จะ ใช้ทดลองเป็นวงจรแบ่งแรงดันไฟฟ้าแสดงได้ตามรูป

การวัดแรงคันไฟฟ้า เราจะต้องเชื่อมต่อตัวเทอร์มิสเตอร์เข้ากับตัวต้านทาน R1 ขนาด $10 \mathrm{K}\Omega$ 1% และถูกต่อเข้ากับ แรงคันไฟฟ้า Vcc ของวงจร เพื่อทำวงจรแบ่งแรงคันไฟฟ้า ตัวความต้านทานของเทอร์มิสเตอร์ R จะใช้ NTC Thermistor เบอร์MF52-3435 มีความต้านทาน $10 \mathrm{K}\Omega$ ที่ $25 \mathrm{°C}$ และมีความคลาดเคลื่อน 1% รายละเอียดต่างๆเพิ่มเติมให้เปิดดูได้จาก เอกสาร Thermistor MF52 3435 DataSheet

กำหนดให้แรงดันขาเอาท์พุทเป็น Vo , แหล่งจ่ายไฟเป็น Vcc , ความด้านทานของตัวแปรเทอร์มิสเตอร์เป็น R และ ตัวความต้านทานคงที่เป็น R1 จะได้แรงดันขาเอาท์พุทคือ

$$Vo = Vcc \frac{R}{R + R1}$$

แรงคันขาเอาท์พุทเชื่อมต่อเข้ากับขาแบบอนาลีอก A1 ของ Arduino Micro เป็นวงจร ADC ทำหน้าที่แปลง สัญญาณอนาลีอกเป็นคิจิตอล (Analog to Digital Converter) ขนาค 10 บิต ซึ่งจะทำให้แรงคันไฟฟ้าถูกแปลงเป็นตัวเลข ระหว่าง 0 ถึง 1023 ค่า ADC ที่วัดจาก Arduino Micro จะได้แรงคันขาเอาท์พทคังนี้

$$Vo = Vcc \frac{A1}{1023}$$

โดยการแทนค่า vo ทั้งสองสมการเข้าด้วยกันเป็น

$$Vcc \frac{R}{R+R1} = Vcc \frac{A1}{1023}$$

จะได้

$$\frac{R}{R+R1} = \frac{A1}{1023}$$

การวัดอุณหภูมิได้ตัวแปรความต้านทานเทอร์มิสเตอร์ R คือ

$$R = R1 \frac{A1}{1023 - A1} \qquad \dots (1)$$

เพื่อให้การวัดความต้านทานของเทอร์มิสเตอร์มีเสถียรภาพมากขึ้น ป้องกันไม่ให้ค่าที่วัดได้เปลี่ยนแปลงไปตาม แรงคันไฟฟ้าของแหล่งจ่ายไฟที่มาจาก USB ของคอมพิวเตอร์ ซึ่งใช้เป็นแหล่งจ่ายพลังงานกับบอร์คและวงจรต่างๆ ดังนั้น อาจจะมีสัญญาณรบกวนได้ จึงอาจจะใช้การเชื่อมต่อ Vcc กับขา Arduino 3V แทนขา 5V เพราะมันจะผ่านมาจากวงจร ควบคุมแรงคันอีกครั้งและความถูกต้องของอุณหภูมิจะขึ้นอยู่กับแรงคันไฟฟ้าที่ต่ำกว่า

การทำวงจรจะต้องใช้อุปกรณ์ชิ้นส่วนอิเล็กทรอนิกส์แบบพาสซีฟทุกชิ้นที่มีค่าความคลาดเคลื่อนน้อยที่สุด เพราะ จะมีความสัมพันธ์กับค่าที่อ่านออกมาเกิดความผิดพลาด ดังนั้นจึงให้เลือกใช้เทอร์มิสเตอร์ 10 ΚΩ ที่มีความคลาดเคลื่อน 1% ซึ่งจะมีผลให้ค่าความต้านทานเกิดความผิดพลาดได้สูงสุด 100 โอห์มที่อุณหภูมิ 25 องสาเซลเซียส โดยที่อุณหภูมิ 25 องสาเซลเซียส โดยที่อุณหภูมิ 25 องสาเซลเซียส โดยที่อุณหภูมิ 25 องสาเซลเซียส โดยที่อุณหภูมิน่ากลามต้านทานที่มีความผิดพลาด 1% จะได้ความผิดพลาดของอุณหภูมิประมาณ 0.2 องสาเซลเซียส การแปลงค่าความ ด้านทานไปเป็นการวัดอุณหภูมิของเทอร์มิสเตอร์มีความสัมพันธ์ที่ค่อนข้างซับซ้อนระหว่างความต้านทานและอุณหภูมิโดยทั่วไปแล้วสามารถใช้ตารางการค้นหาความต้านทานต่อการเปลี่ยนแปลงอุณหภูมิได้ตาม datasheet ของอุปกรณ์ได้ แต่ในที่นี้จะใช้ สมการ Steinhart-Hart (สมการพารามิเตอร์ В) ซึ่งเป็นการคำนวณค่าของความต้านทานเทอร์มิสเตอร์ที่มีความสัมพันธ์กับอุณหภูมิ จะได้

$$\frac{1}{T} = \frac{1}{T0} + \frac{1}{B} * l \, n \frac{R}{R0} \qquad \dots (2)$$

โดยที่ R เป็นความต้านทานของเทอร์มิสเตอร์ที่อุณหภูมิ T ในขณะนั้น

Ro คือความต้านทานที่ To = 25 ° C

B เป็นค่าคงที่ขึ้นอยู่กับเทอร์มิสเตอร์ ค่า B มักอยู่ระหว่าง 3000-4,000 สมการขึ้นอย่กับพารามิเตอร์ (Ro, To และ B) ซึ่งหาได้จาก datasheet ของ thermistor ที่ใช้

- 1. การทดลองจะใช้ตัวเซ็นเซอร์วัดอุณหภูมิด้วย Thermistor ขนาด 10K ohm เบอร์ NTC-MF52-103/3435 คลาดเคลื่อน 1% ต่อระหว่างขา A1 กับกราวด์ และใช้ตัวความต้านทาน R1 ขนาด 10K ohm 1% ต่อระหว่างขา A1 กับไฟบวก 5V เพื่อทำเครื่องวัดอุณหภูมิระบบดิจิตอล
- 2. ให้ทดลองป้อนโปรแกรมโดยกำหนดค่าต่างของอุปกรณ์ต่างๆ ซึ่งได้จาก datasheet ของ thermistor และอ่านค่าที่ ได้จาก ADC ขา A1 แสดงผลออกไปทาง Serial Monitor ดังนี้

```
#define THERMISTOR A1
                                             // \Omega resistance at 25 Celsius
#define R0 10000
                                             // B: 3435 K the beta coefficient of the thermistor
#define B 3435
#define R1 10000
                                             // 10K\Omega the value of the series resistor
float T0 = 25;
                                              // °C reference temp.
void setup()
 T0 = T0 + 273.15:
                                              // conversion from Celsius to kelvin
 Serial.begin(9600);
void loop() {
 int samples:
 samples = analogRead(THERMISTOR);
                                              // read the input on analog pin 0
 Serial.print("Analog reading : "):
                                              // print out the value
 Serial.println(samples);
 delay(1000);
                                              // Wait for next sample
```

- 3. ให้ทำการเพิ่มโปรแกรมการกำนวณเปลี่ยนค่าที่อ่านได้ จากขา A1 ตัวแปร sample ไปเป็นค่าความต้านทานของตัว Thermistor โดยใช้สมการที่ 1 และกำหนดให้ตัวแปรความต้านทานเทอร์มิสเตอร์ R เป็นชนิด float แล้วให้ พิมพ์ผลที่ได้ออก Serial.print(R);
- 4. ให้เพิ่มโปรแกรมการคำนวณค่าของความต้านทานเทอร์มิสเตอร์ที่มีความสัมพันธ์กับอุณหภูมิ โดยใช้สมการที่ 2 ซึ่ง จะได้ค่าอุณหภูมิของเทอร์มิสเตอร์ออกมาเป็นตัวแปร T โดยค่าอุณหภูมิที่ได้นี้จะเป็น kelvin ให้แปลงค่าเป็น Celsius และพิมพ์ผลที่ได้ออกไปทาง Serial Monitor
- 5. จากการทคลองจะเห็นได้ว่าค่าที่อ่านออกมาอาจจะกระโดดไปมาไม่นิ่ง ให้แก้ไขโปรแกรมเพิ่มการคำนวณหาค่าเฉลี่ย การวัดอุณหภูมิแสดงผลออกมาทุกครึ่งวินาที