4. Übungsblatt zum Ferienkurs Mathematik für Physiker 1

1. Normen und Skalarprodukte

Aufgabe 1 Bilinearformen

Begründen Sie bei den folgenden Aussagen jeweils, ob sie wahr oder falsch ist.

- a) Es sei V ein \mathbb{R} -Vektorraum und $f:V\times V\to\mathbb{R}$ eine symmterische Bilinearform. Dann gilt: f(v,0)=0 für alle $v\in V$.
- b) Es ist $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, ((x_1, x_2)^T, (y_1, y_2)^T) \mapsto x_1 y_1$ eine Billinearform.
- c) Es ist $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}, ((x_1, x_2)^T, (y_1, y_2)^T) \mapsto 2x_1y_2 3x_2y_2$ eine Billinearform.
- d) Es ist $f: \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \to \mathbb{R}, (A, B) \mapsto \det(AB)$ eine Billinearform.

Aufgabe 2 Skalarprodukte als Matrizen

Welche der folgenden Matrizen definiert ein Skalarprodukt auf \mathbb{R}^2 ?

$$A_1 := \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix}, \quad A_2 := \begin{pmatrix} 4 & 1 \\ 1 & 1 \end{pmatrix}, \quad A_3 := \begin{pmatrix} -4 & 1 \\ 1 & -1 \end{pmatrix}.$$

Zur Erinnerung, das induzierte Skalarprodukt ist definiert als $\langle v, w \rangle = v^T A_i w$ für alle $v, w \in \mathbb{R}^2$.

Aufgabe 3 Skalarprodukt für Polynome

Sei $V \subseteq \mathbb{R}[X]$ der Unterraum der Polynome vom Grad ≤ 2 .

a) Zeige, dass die Abbildung

$$(\cdot,\cdot): V \times V \to \mathbb{R}, (f,g) \mapsto \int_0^1 f(x)g(x)dx$$

ein Skalarprodukt auf V definiert. (Rechenregeln aus der Analysis dürfen verwendet werden)

- b) Kontruiere eine Orthonormalbasis von V bezüglich dieses Skalarprodukts.
- b) Berechne die Darstellungsmatrix dieses Skalarprodukts bezüglich der Basis $\{1, x, x^2\}$.

Aufgabe 4 Spur als Skalarprodukt

Sei $n \in \mathbb{N}$. Zeige, dass die Spur

$$\operatorname{tr}: M_n(\mathbb{R}) \times M_n(\mathbb{R}) \to \mathbb{R}$$

 $(A, B) \mapsto \operatorname{tr}(AB^T)$

ein Skalarprodukt definiert und bestimme eine Orthonormalbasis von $M_2(\mathbb{R})$ bezüglich tr.

2. Orthogonalität

Aufgabe 5 Orthonormalbasen für Unterräume I

Finde Orthonormalbasen der Unterräume

$$\langle \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \rangle \subseteq \mathbb{R}^3 \quad \text{und} \quad \langle \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 2 \\ 1 \end{pmatrix} \rangle \subseteq \mathbb{R}^4$$

bezüglich des Standardskalarprodukts.

Aufgabe 6 Orthonormalbasen für Unterräume II

Bestimme Orthonormalbasen der Lösungsräume folgender Gleichungssysteme als Unterräume des \mathbb{R}^3 mit Standardskalarprodukt.

a)
$$2x + y - z = 0$$
 und $y + z = 0$,

b)
$$x - y + z = 0$$
,

c)
$$4x + 7y - \pi z = 0$$
 und $2x - y + z = 0$,

d)
$$x + y + z = 0, x - y = 0, y + z = 0.$$

Aufgabe 7 Orthogonale Matrix

Gegeben ist die Matrix $A = \begin{pmatrix} \frac{1}{2} & 0 & \frac{-\sqrt{3}}{2} \\ 0 & 1 & 0 \\ \frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \end{pmatrix} \in \mathbb{R}^{3\times3}$, sowie der Vektor $b_0 = \begin{pmatrix} -1 \\ -2 \\ \sqrt{3} \end{pmatrix}$ des euklidis-

chen Vektorraumes \mathbb{R}^3 mit dem Standardskalarprodukt.

- a) Bestimme A^{-1} . (Hinweis: Name der Aufgabe)
- b) Löse das lineare Gleichungssystem $Ax = b_0$.
- c) Die Norm eines Vektors $b_1 \in \mathbb{R}^3$ beträgt 2. Bestimme die Norm einer Lösung y des LGS $Ay = b_1$.
- d) Ist jede orthogonale Matrix symmetrisch?

Aufgabe 8 (*) Orthogonales Komplement

Sei V ein endl.-dim. unitärer \mathbb{C} -Vektorraum und $U,W\subseteq V$ Untervektorräume. Beweise:

2

a)
$$U \oplus U^{\perp} = V$$
,

b)
$$(U^{\perp})^{\perp} = U$$
,

c)
$$(U + W)^{\perp} = U^{\perp} \cap W^{\perp}$$
,

d)
$$(U \cap W)^{\perp} = U^{\perp} + W^{\perp}$$
.

Hinweis: Beginne mit einer ONB von U und erweitere auf V.

3. Hauptachsentransformation

Aufgabe 9 Diagonalisierbare Matrix

Sei

$$A = \begin{pmatrix} 17 & -2 & -2 \\ -2 & 6 & 4 \\ -2 & 4 & 6 \end{pmatrix} \in M_3(\mathbb{R}).$$

Finde eine Matrix $B \in GL_3(\mathbb{R})$, sodass B^TAB eine Diagonalmatrix ist.

Aufgabe 10 Definitheit und Eigenwerte

- a) Zeige, dass eine positiv semidefinite Matrix nur nichtnegative Eigenwerte besitzt.
- b) Folgern Sie aus a), dass für $A \in \mathbb{R}^{m \times n}$ die Matrix A^TA nur nichtnegative Eigenwerte besitzt.

Aufgabe 11 Singulärwertzerlegung explizit

Bestimme die Singulärwertzerlegung der Matrizen

$$A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}.$$