Отчёт по выполнению упражнения

Задание для самостоятельного выполнения

Надежда Александровна Рогожина

Содержание

1	Цель	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выводы	30
Список литературы		31

Список иллюстраций

4.1	Схема фигур Лиссажу	8
4.2	$A = B = 1$, $a = 2$, $b = 2$, $\delta = 0$	9
		10
4.4	A = B = 1, a = 2, b = 2, $\delta = \pi/2$	11
4.5	A = B = 1, a = 2, b = 2, δ = $3\pi/4$	12
		13
4.7		14
4.8		15
4.9	A = B = 1, a = 2, b = 4, $\delta = \pi/2$	16
4.10	$A = B = 1$, $a = 2$, $b = 4$, $\delta = 3\pi/4$	17
4.11	$A = B = 1$, $a = 2$, $b = 4$, $\delta = \pi$	18
		19
4.13	$A = B = 1$, $a = 2$, $b = 6$, $\delta = \pi/4$	20
4.14	$A = B = 1$, $a = 2$, $b = 6$, $\delta = \pi/2$	21
4.15	$\delta A = B = 1$, $a = 2$, $b = 6$, $\delta = 3\pi/4$	22
4.16	$A = B = 1$, $a = 2$, $b = 6$, $\delta = \pi$	23
4.17	$A = B = 1$, $a = 2$, $b = 8$, $\delta = 0$	24
4.18	$BA = B = 1$, $a = 2$, $b = 8$, $\delta = \pi/4$	25
4.19	$A = B = 1$, $a = 2$, $b = 8$, $\delta = \pi/2$	26
4.20	$A = B = 1$, $a = 2$, $b = 8$, $\delta = 3\pi/4$	27
4.21	A = B = 1, a = 2, b = 8, $\delta = \pi$	28
4 22	$A = B = 1$ $a = 3$ $b = 2$ $\delta = \pi/2$	29

Список таблиц

1 Цель

Приобрести практические навыки работы с xcos.

2 Задание

Задание:

Постройте с помощью хсоз фигуры Лиссажу со следующими параметрами:

- 1. A = B = 1, a = 2, b = 2, $\delta = 0$; $\pi/4$; $\pi/2$; $3\pi/4$; π ;
- 2. A = B = 1, a = 2, b = 4, $\delta = 0$; $\pi/4$; $\pi/2$; $3\pi/4$; π ;
- 3. A = B = 1, a = 2, b = 6, $\delta = 0$; $\pi/4$; $\pi/2$; $3\pi/4$; π ;
- 4. A = B = 1, a = 2, b = 3, $\delta = 0$; $\pi/4$; $\pi/2$; $3\pi/4$; π .

3 Теоретическое введение

Scilab — система компьютерной математики, предназначенная для решения вычислительных задач. Основное окно Scilab содержит обозреватель файлов, командное окно, обозреватель переменных и журнал команд. Программа хсоз является приложением к пакету Scilab [1]. Для вызова окна хсоз необходимо в меню основного окна Scilab выбрать Инструменты, Визуальное моделирование хсоз. При моделировании с использованием хсоз реализуется принцип визуального программирования, в соответствии с которым пользователь на экране из палитры блоков создаёт модель и осуществляет расчёты.

Более подробно про Scilab и хсоs см. в [2].

4 Выполнение лабораторной работы

Скопировав визуальные элементы из лабораторной работы, получили следующую схему (рис. 4.1):

Рис. 4.1: Схема фигур Лиссажу

Обозначим A и B как амплитуды колебаний, а и b как частоты, а δ как сдвиг фаз. Построим для b = 2 различные варианты δ (рис. 4.2, рис. 4.3, рис. 4.4, рис. 4.5, рис. 4.6).

Рис. 4.2: A = B = 1, a = 2, b = 2, $\delta = 0$

Рис. 4.3: A = B = 1, a = 2, b = 2, $\delta = \pi/4$

Рис. 4.4: A = B = 1, a = 2, b = 2, $\delta = \pi/2$

Рис. 4.5: A = B = 1, a = 2, b = 2, $\delta = 3\pi/4$

Рис. 4.6: A = B = 1, a = 2, b = 2, $\delta = \pi$

Аналогично для b = 4 различные варианты δ (рис. 4.7, рис. 4.8, рис. 4.9, рис. 4.10, рис. 4.11):

Рис. 4.7: A = B = 1, a = 2, b = 4, $\delta = 0$

Рис. 4.8: A = B = 1, a = 2, b = 4, $\delta = \pi/4$

Рис. 4.9: A = B = 1, a = 2, b = 4, $\delta = \pi/2$

Рис. 4.10: A = B = 1, a = 2, b = 4, δ = $3\pi/4$

Рис. 4.11: A = B = 1, a = 2, b = 4, δ = π

Аналогично для b = 6 различные варианты δ (рис. 4.12, рис. 4.13, рис. 4.14, рис. 4.15, рис. 4.16):

Рис. 4.12: A = B = 1, a = 2, b = 6, δ = 0

Рис. 4.13: A = B = 1, a = 2, b = 6, $\delta = \pi/4$

Рис. 4.14: A = B = 1, a = 2, b = 6, $\delta = \pi/2$

Рис. 4.15: A = B = 1, a = 2, b = 6, δ = $3\pi/4$

Рис. 4.16: A = B = 1, a = 2, b = 6, δ = π

И для b = 8 различные варианты δ (рис. 4.17, рис. 4.18, рис. 4.19, рис. 4.20, рис. 4.21):

Рис. 4.17: A = B = 1, a = 2, b = 8, δ = 0

Рис. 4.18: A = B = 1, a = 2, b = 8, $\delta = \pi/4$

Рис. 4.19: A = B = 1, a = 2, b = 8, $\delta = \pi/2$

Рис. 4.20: A = B = 1, a = 2, b = 8, δ = $3\pi/4$

Рис. 4.21: A = B = 1, a = 2, b = 8, δ = π

Также, у нас был дан пример с параметрами A=B=1, a=3, b=2, $\delta=\pi/2$, мы ее также построили (рис. 4.22):

Рис. 4.22: A = B = 1, a = 3, b = 2, $\delta = \pi/2$

5 Выводы

В ходе лабораторной работы мы визуализировали фигуры, указанные в упражнении, включая показанную в работе.

Список литературы

- 1. Хсоз. Официальный сайт Хсоз. 2025.
- 2. А. В. Королькова Д.С.К. Моделирование информационных процессов. 1-е изд. Москва: Типография РУДН, 2014. 191 с.