

jc525 U.S. PTO
02/22/99

PTO/SB/05 (4/98)

Approved for use through 09/30/2000 OMB 0651-0032

Patent and Trademark Office, U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

UTILITY PATENT APPLICATION TRANSMITTAL

(Only for new nonprovisional applications under 37 C.F.R. § 1.53(b))

Attorney Docket No. 678-241 (P8679)

First Inventor or Application Identifier Young-Ki KIM

Title DEVICE AND METHOD FOR PROVIDING TIME SWITCHES

Express Mail Label No. EL229887865US

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

1 * Fee Transmittal Form (e.g., PTO/SB/17)
(Submit an original and a duplicate for fee processing)

2 Specification [Total Pages 31]
(preferred arrangement set forth below)
- Descriptive title of the Invention
- Cross References to Related Applications
- Statement Regarding Fed sponsored R & D
- Reference to Microfiche Appendix
- Background of the Invention
- Brief Summary of the Invention
- Brief Description of the Drawings (if filed)
- Detailed Description
- Claim(s)
- Abstract of the Disclosure

3. Drawing(s) (35 U.S.C. 113) [Total Sheets 14]

4. Oath or Declaration [Total Pages]
a. Newly executed (original or copy)
b. Copy from a prior application (37 C.F.R. § 1.63(d))
(for continuation/divisional with Box 16 completed)
i. DELETION OF INVENTOR(S)
Signed statement attached deleting
inventor(s) named in the prior application,
see 37 C.F.R. §§ 1.63(d)(2) and 1.33(b).

* NOTE FOR ITEMS 1 & 13 IN ORDER TO BE ENTITLED TO PAY SMALL ENTITY FEES, A SMALL ENTITY STATEMENT IS REQUIRED (37 C.F.R. § 1.27), EXCEPT IF ONE FILED IN A PRIOR APPLICATION IS RELIED UPON (37 C.F.R. § 1.28).

Assistant Commissioner for Patents
ADDRESS TO: Box Patent Application
Washington, DC 20231

5 Microfiche Computer Program (Appendix)

6. Nucleotide and/or Amino Acid Sequence Submission
(if applicable, all necessary)
a. Computer Readable Copy
b. Paper Copy (identical to computer copy)
c. Statement verifying identity of above copies

ACCOMPANYING APPLICATION PARTS

7. Assignment Papers (cover sheet & document(s))
8. 37 C.F.R. § 3.73(b) Statement Power of
(when there is an assignee) Attorney
9. English Translation Document (if applicable)
10. Information Disclosure Statement (IDS)/PTO-1449 Copies of IDS
Statement (IDS)/PTO-1449 Citations
11. Preliminary Amendment
12. Return Receipt Postcard (MPEP 503)
(Should be specifically itemized)
* Small Entity Statement(s) Statement filed in prior application
(PTO/SB/09-12) Status still proper and desired
13. Certified Copy of Priority Document(s)
(if foreign priority is claimed)
14.
15. Other:

16. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary amendment:

Continuation Divisional Continuation-in-part (CIP) of prior application No: /

Prior application information: Examiner _____

Group / Art Unit: _____

For CONTINUATION or DIVISIONAL APPS only: The entire disclosure of the prior application, from which an oath or declaration is supplied under Box 4b, is considered a part of the disclosure of the accompanying continuation or divisional application and is hereby incorporated by reference. The incorporation can only be relied upon when a portion has been inadvertently omitted from the submitted application parts.

17. CORRESPONDENCE ADDRESS

<input type="checkbox"/> Customer Number or Bar Code Label (Insert Customer No. or Attach bar code label here)	<input checked="" type="checkbox"/> Correspondence address below	
Name Paul J. Farrell Dilworth & Barrese		
Address 333 Earle Ovington Boulevard		
City Uniondale	State NY	Zip Code 11553
Country US	Telephone (516) 228-8484	Fax (516) 228-8516

Name (Print/Type)	Paul J. Farrell	Registration No. (Attorney/Agent)	33,494
Signature		Date	2/22/99

Burden Hour Statement: This form is estimated to take 0 2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231.

DEVICE AND METHOD
FOR PROVIDING TIME SWITCHED TRANSMISSION DIVERSITY
IN MOBILE COMMUNICATION SYSTEM

BACKGROUND OF THE INVENTION

5

1. Field of the Invention

The present invention relates generally to the field of communication systems, and particularly to a method and apparatus for transmitting/receiving data with a time switched transmission diversity (TSTD) function.

2. Description of the Related Art

In a mobile communication system, data transmission/reception performance can generally be enhanced by utilizing diversity techniques in a fading environment. Typically, as shown in FIG. 1 three diversity techniques are applicable to the forward link and a single diversity technique (i.e., receiver diversity) is applicable to the reverse link. Data can be received on the reverse link with receiver diversity by equipping a base station with a plurality of reception antennas. For the forward link, the three well known diversity techniques include transmission diversity, receiver diversity, and mixed diversity. In transmission diversity, a base station transmits a signal through a plurality of transmission antennas and a mobile station receives the signal through a single reception antenna to achieve the same effect as if multiple reception antennas were used. Receiver diversity is provided when the mobile station has a plurality of reception antennas, and mixed diversity is defined as a combination of the two aforementioned techniques.

15

20

Receiver diversity on the forward link, however, is problematic in that diversity gain is low because of the small terminal size which limits the distance between reception antennas. Another problem is that the use of multiple reception antennas requires a separately procured hardware configuration for receiving a forward link signal and

5 transmitting a reverse link signal through a corresponding antenna, thereby imposing constraints on the size and cost of the terminal. In view of these problems, mobile communication systems typically employ transmission diversity exclusively on the forward link.

10
15
20

FIG. 2 illustrates a general block diagram of a mobile communication system employing transmission diversity on a forward link. A base station 100 and a mobile station 200 include transmitting and receiving apparatus, respectively. A baseband signal processor 103 of base station 100 converts user data for transmission on the forward link into a baseband signal. Such conversion by baseband signal processor 103 includes channel encoding, interleaving, orthogonal modulation, and PN (Pseudo Noise) spreading. A signal distributor 102 distributes the signals received from the baseband signal processor 103 into N signal streams with each stream being provided to one of N transmission antennas TXAI to TXAN. As a result, transmission diversity is achieved at the transmission end of the base station 100 through the N antennas.

The mobile station 200 has a single reception antenna RXA for receiving signals

20 from the base station 100 from the N transmission antennas. To process the received signals, the mobile station 200 includes N demodulators 201 to 20N corresponding to each N transmission antenna. A combiner 211 combines demodulated signals received

from the demodulators 201 to 20N, and a decoder & controller 213 decodes a signal received from the combiner 211 to produce decoded user data.

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

In contrast, the structure of a transmitter in a non-transmission diversity (NTD) CDMA communication system is described with reference to FIG. 3. A base station 300 includes a CRC (Cyclic Redundancy Check) generator 311 for adding CRC bits to input user data in order to detect a frame error which occurs while sending the user data. A tail bit generator 313 adds tail bits indicating termination of a data frame to the data frame prior to channel encoding. Then, a channel encoder 315 encodes the data frame for error correction and an interleaver 317 interleaves the encoded data. A combiner 323 performs an exclusive-OR operation on the interleaved data with a long code sequence. This long code sequence is generated in a long code generator 319 and decimated in a decimator 321 at the same rate as that at the output terminal of the interleaver 317. A signal mapper 325 converts 0s and 1s of the encoded data received from the combiner 323 to +1s and -1s respectively, for orthogonal modulation. A serial-to-parallel (S/P) converter 327 divides the signal received from the signal mapper 325 into I channel and Q channel streams, for QPSK (Quadrature Phase Shift Keying) modulation. The I channel and Q channel streams are subject to orthogonal modulation in multipliers 329 and 331 and PN spreading in a PN spreader 333. The spread signals are filtered for pulse shaping in LPFs (Low Pass Filters) 335 and 337, loaded on a carrier by mixers 339, 341, combined with combiner 343, and finally transmitted through a transmission antenna.

The transmit signal which is output from the NTD transmitter in the base station 300 illustrated in FIG. 3 has a signal structure indicated by 511 of FIG. 5. Specifically,

FIG. 5 illustrates timing characteristics for the case of transmitter diversity and no diversity. Specifically in the case of no diversity, FIG. 5 illustrates user data output from the NTD 511 transmitter, and for the diversity case. FIG. 5 further illustrates timing characterization from an orthogonal transmission diversity (OTD) transmitter with two antennas, A & B (N=2).

FIG. 4 is a block diagram of an OTD transmitter with two transmission antennas (N=2). Improved performance of a forward link is achieved in the OTD transmitter by dividing information for one user into two or more streams and transmitting the divided data through the plurality of transmission antennas, as indicated by 513 and 515 of FIG. 5. The following description is conducted with the understanding that $[W_m - \bar{W}_m]$ is identical to $[W_m \ \bar{W}_m]$.

The OTD transmitter, illustrated in FIG. 4, operates in the same manner as the NTD transmitter of FIG. 3, except for a serial-to-parallel conversion process. In the OTD structure, mapped data branches into N streams, corresponding to the number of transmission antennas in S/P converters 413, 415, and 417, and orthogonally modulated in multipliers 419, 421, 423, and 425, for maintaining mutual orthogonality between the transmission antennas.

In addition to orthogonal modulation, orthogonal codes may be further utilized to ensure mutual orthogonality among the N antennas. The orthogonal code extension is accomplished by a Hadamard matrix extension. In the case of the OTD transmitter with two transmission antennas A and B(i.e., A and B as shown in FIG. 4) the different

orthogonal codes assigned to the antennas are respectively $[W_m \ W_m]$ and $[W_m - W_m]$, extended from an orthogonal code W_m of a length 2^m used in the NTD transmitter. The purpose of orthogonal code extension is to compensate for the data rate of each of the N streams, which is $1/N$ of the data rate prior to serial-to-parallel conversion.

5 A receiver for receiving a signal from the OTD transmitter requires signal demodulators for demodulating user data, a pilot demodulator for providing timing and phase information to be provided to the signal demodulators, and a parallel-to-serial (P/S) converter for converting M signal demodulator outputs to a serial signal stream.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

A pilot channel is used by the base station to provide timing and phase information to a mobile station. The mobile station first activates the pilot demodulator to acquire necessary timing and phase information and demodulates user data based on the acquired information. For an OTD transmitter, each transmission antenna should be assigned a unique pilot channel.

15 In a receiver for use with a conventional OTD transmitter of FIG. 4, the pilot demodulator subjects a received signal to PN despreading and orthogonal demodulation and integrates the resulting signal for one cycle in order to demodulate a pilot channel from the received signal. A time estimator and a phase estimator in the pilot demodulator estimate timing and phase values from the integrated value.

20 A signal demodulator of the receiver performs PN despreading on a user data signal based on timing information received from the pilot demodulator. A phase error

which occurs during transmission is compensated for by multiplying the phase information by an integrated value. The integrated value is obtained by integrating an orthogonally modulated signal for one cycle. The phase-compensated integrator output is converted to a probability value by a soft decision block and fed through the P/S converter to a deinterleaver.

5

Despite improved reception performance as compared to the NTD system, the conventional OTD mobile communication system has certain limitations. First, given that a terminal should be equipped with a number of pilot demodulators and signal demodulators corresponding to the number of transmission antennas of a base station, this results in an increase in the complexity, cost, and power consumption of a receiver.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

Another drawback associated with a conventional OTD system is that the length of an orthogonal code used is increased by N times from that of an NTD case, for N transmission antennas. As a result, the integration interval is extended, thereby degrading reception performance in a frequency error-susceptible channel environment.

15

A further limitation is that the number of available transmission antennas is restricted to be a power of 2, namely 2^n which imposes constraints concerning a number of applications involving antenna arrays. There exists a need, therefore, for a diversity scheme which overcomes the limitations of the prior art.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a time switched transmission diversity (TSTD) apparatus and method for distributing a signal of a base station to a plurality of antennas via time switching.

5 Another object of the present invention is to provide a receiver for receiving a signal from a TSTD transmitter.

10 A further object of the present invention is to provide a TSTD communication apparatus and method in a mobile communication system, in which the length of an orthogonal code remains the same as that required in a conventional mobile communication system.

15 Still another object of the present invention is to provide a receiver and a receiving method in a TSTD mobile communication system, in which a single signal demodulator is utilized irrespective of the number of transmission antennas employed to achieve transmission diversity.

20 A still further object of the present invention is to provide a transmitter and a transmitting method in a TSTD mobile communication system, where the number of transmission antennas can be easily increased.

According to one aspect of the present invention, the above objects are achieved

by providing a time diversity transmitting apparatus in a base station of a mobile communication system. The transmitting apparatus includes a plurality (N) of transmission antennas with a corresponding number of radio frequency transmitters connected therewith for outputting signals on a forward link. The transmitter further

5 includes a controller for generating a switch controlling signal in a non-overlapped time cycle, an orthogonal modulator for modulating a transmit signal by an orthogonal code, a spreader for spreading the output of the orthogonal modulator, and a switch connected to an output terminal of the spreader, for connecting the output of the spreader to a corresponding transmitter based on the switch controlling signal.

10
15
20

According to another aspect of the present invention, there is provided a receiving device in a mobile station of a mobile communication system. The receiving device has a pilot channel receiver for detecting a pilot channel signal from an input forward link signal and generating estimated phase and time values, a controller for generating a selection control signal based on cycle information and switching pattern information, in synchronization of a reference time to a base station, a selector for selectively outputting the estimated phase and time values received from the pilot channel receiver based on the selection control signal, and a traffic channel receiver for detecting a traffic channel signal at the selected estimated time position and correcting a phase error of the detected traffic channel signal based on the estimated phase value, for signal decoding.

BRIEF DESCRIPTION OF THE DRAWINGS

The above objects and advantages of the present invention will become more

apparent by describing in detail preferred embodiments thereof with reference to the attached drawings in which:

FIG. 1 illustrates diversity techniques on forward and reverse links in a mobile communication system;

5 FIG. 2 is a block diagram of a transmission diversity-based apparatus on a forward link in a mobile communication system according to the present invention;

FIG. 3 is a block diagram of an NTD transmitter in a mobile communication system according to the prior art;

10 FIG. 4 is a block diagram of a conventional OTD transmitter in a mobile communication system according to the prior art;

FIG. 5 illustrates data structures transmitted from the NTD and OTD transmitters shown in FIGS. 3 and 4, respectively;

FIG. 6 is a block diagram of a TSTD transmitter in a mobile communication system according to an embodiment of the present invention;

15 FIG. 7 is a block diagram of a controller shown in FIG. 6;

FIG. 8 illustrates timing characteristics of data transmitted in a periodic pattern from the TSTD transmitter of FIG. 6;

20 FIG. 9 illustrates timing characteristics of data transmitted in a random pattern from the TSTD transmitter of FIG. 6;

FIG. 10 illustrates timing characteristics of data for plural users synchronously transmitted from the TSTD transmitter of FIG. 6;

FIG. 11 illustrates timing characteristics of data for a plurality of users asynchronously transmitted from the TSTD transmitter of FIG. 6;

FIG. 12 describes transmission antenna extensibility in a TSTD transmitter of the

mobile communication system according to the embodiment of the present invention;

FIG. 13 is a block diagram of an embodiment of a receiving device for receiving data from a TSTD transmitting device in the mobile communication system according to the present invention; and

5 FIG. 14 is a block diagram of another embodiment of a receiving device for receiving data from a TSTD transmitting device in the mobile communication system according to the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

A mobile communication system according to an embodiment of the present invention distributes user data to a plurality of transmission antennas by time switching to achieve transmission diversity. The system further demodulates the time diversity-based signal in a single signal demodulator. The features of time diversity according to the present invention may be summarized as:

(1) A single signal demodulator is provided for demodulating user data regardless 15 of the number N of transmission antennas utilized. That is, only one orthogonal code is available per user. As such, the single demodulator simplifies the receiver design, accommodates low power dissipation and results in low terminal costs;

(2) The length of an orthogonal code is the same as that of an orthogonal code used 20 in an NTD device, regardless of the number N of transmission antennas. This implies that there is no increase of an integration interval for providing time diversity; and

(3) The number of available transmission antennas is not restricted to be a power

of 2, 2^n but is limitlessly extensible, thereby imposing no constraints on other applications.

Prior to describing the structure and operation of a transmitter in a base station and a receiver in a terminal according to the embodiment of the present invention, it is to be noted that the method of time diversity in accordance with the present invention is applied to the forward link in a mobile communication system of the present invention.

FIG. 6 is a block diagram of a TSTD transmitter with two ($N=2$) transmission antennas in a base station according to the present invention.

10 *Journal of Health Politics, Policy and Law*

Referring to FIG. 6, a signal mapper 611 receives a signal resulting from combining encoded user data with a long code whereby the long code changes the level of the received signal by converting 0s and 1s to +1s and -1s, respectively. An S/P converter 613, coupled to the signal mapper output, converts a serial signal received from the signal mapper 611 to an odd-numbered signal and an even-numbered signal. A multiplier 615, coupled to the even output of the S/P converter, multiplies the even-numbered signal by an orthogonal code \mathbf{W}_m . A multiplier 617, coupled to the odd output of the S/P converter, multiplies the odd-numbered signal by an orthogonal code \mathbf{W}_m . These multipliers 615 and 617 function to subject a user signal to orthogonal modulation (i.e., orthogonal spreading) by multiplication. The orthogonal code can be a Walsh code. A PN spreader 619 multiplies the orthogonally modulated signals received from the multipliers 615 and 617 by corresponding PN sequences PN_I and PN_Q , for PN spreading (or PN masking) of a signal to be transmitted.

A controller 600 generates a switch controlling signal for distributing a transmit signal to a plurality of antennas in the TSTD transmitter of the present invention. The controller 600 synchronizes to a GPS (Global Positioning System) signal in a synchronous mode and a switching cycle is an integer multiple of the orthogonal code length. In addition, a look-up table for storing switching information with respect to a hopping pattern may be provided to the controller 600 in an alternate embodiment whereby time switching is performed in a specific pattern.

10 A switch 621 switches in response to a switch controlling signal output by the controller 600, and has a common terminal coupled to output terminals of the PN spreader 619 from which I channel and Q channel spread signals are transmitted, a first output terminal coupled to LPFs 623 and 625, and a second output terminal coupled to LPFs 627 and 629. As previously stated, the switch 621 switches based on a switch controlling signal received from the controller 600 and selectively outputs the spread signals received from the PN spreader 619 to the low pass filters LPFs 623 and 625 or to the LPFs 627 and 629.

15 The LPFs 623 and 625 low-pass-filter the I channel and Q channel PN spread signals received from the switch 621. Multipliers 631 and 633 multiply outputs of the LPFs 623 and 625 by carriers, for frequency up conversion. An adder 641 adds signals received from the multipliers 631 and 633 and sends the resulting signal to a transmission 20 antenna A.

The LPFs 627 and 629 low-pass-filter the I channel and Q channel PN spread

signals received from the switch 621. Multipliers 635 and 637 multiply outputs of the LPFs 627 and 629 by carriers, for frequency up conversion. An adder 643 adds signals received from the multipliers 631 and 633 and sends the resulting signal to a transmission antenna B.

5 The structure shown in FIG. 6 can be adapted as a forward channel transmitter in the TSTD base station. Forward channel transmitters include a pilot channel transmitter, a sync channel transmitter, a control channel transmitter, and a traffic channel transmitter. Considering that a pilot channel provides time synchronization for transmission of data on a forward link, the pilot channel transmitter can be configured to be an OTD structure, while the other channel transmitters can use the TSTD structure shown in FIG. 6.

10 FIG. 7 is a block diagram of the controller 600 shown in FIG. 6. Referring to FIG. 7, a reference cycle register 711 stores a reference cycle signal received from an upper-level processor. The reference cycle signal acts as a time switching cycle in a channel transmitter. A clock counter 713 receives clock pulses from a base station system, counts the clock pulses in a reference cycle unit, and generates read pulses. A look-up table 715 stores switching pattern information received from the upper-level processor and outputs corresponding switching information in response to the read pulses received from the clock counter 713. A control signal generator 717 generates a switch controlling signal for distributing a PN spread signal to a plurality of transmission antennas according to the 20 pattern information read from the look-up table 715.

By way of example, the controller 600 of FIG. 7 functions to connect a baseband

output to N antennas for transmission in successive time intervals in a TSTD base station transmitter. The reference cycle register 711 stores a time switching cycle for a channel so that each channel can be uniquely time-switched. That is, designating a different reference cycle signal for each channel in the reference cycle register 711 results in
5 transmission of each channel at a unique switching cycle rate. The value stored in the reference cycle register 711 is designated separately for each channel in the upper-level processor prior to transmission of the channel, and can be changed during data transmission under a separately determined control.

5
10
15

The clock pulses input to the clock counter 713 are provided from the base station system, synchronized to a reference time in the base station, and have a clock cycle proportional to an orthogonal code length. The clock counter 713 counts the clock pulses, compares the counted value with the value stored in the reference cycle register 711, and sends read pulses to the look-up table 715 at the time point when the values are equal.

The look-up table 715 is a memory for storing a time switching pattern of data transmitted through the N transmission antennas. A different switching pattern can be assigned to each channel, or channels can share the same switching pattern. The switching pattern stored in the look-up table 715 is to be transmitted from the base station to the terminal to allow the terminal to demodulate data based on the switching pattern.

20 The control signal generator 717 analyzes the switching pattern read from the look-up table 715 and controls signal paths to the N transmission antennas. That is, only one selected transmission antenna is enabled and the other transmission antennas are

disabled.

In summary, the controller 600 counts input clock pulses, compares the counted value with a reference cycle value, and generates a read signal corresponding to a switching pattern stored in the look-up table 715 if the values are equal. The switching
5 pattern information is used to select a transmission antenna in a subsequent step. The thus-obtained switching information is changed to an enable/disable signal for each transmission path.

FIG. 8 illustrates a comparison between signal characteristics transmitted from a conventional NTD transmitter and the TSTD transmitter of the present invention shown
10 in FIG. 6. In FIG. 8, reference numeral 811 illustrates an output timing of an NTD transmitter. Reference numerals 813 and 815 illustrate the timings of signals respectively transmitted through transmission antennas A and B in the TSTD transmitter. It is apparent that only one antenna is active (i.e., A or B) at any point in time in accordance with the teachings of the present invention.

15 In operation, the TSTD transmitter uses one orthogonal code per user, as compared to an OTD transmitter requiring as many orthogonal codes as there are transmission antennas. Further, the OTD transmitter operates in the same manner as the NTD transmitter, up to PN spreading. Then, for an TSTD transmitter the PN spread data is switched to each transmission antenna in a cycle equal to an integer multiple of an
20 orthogonal code length, either in a periodic pattern for sequential data transmission to the N transmission antennas or in a random pattern. The time switching pattern used is

determined by the output of the look-up table 715 in the controller 600, and a time switching cycle is determined by a reference cycle value stored in the reference cycle register 711.

FIG. 9 illustrates, by way of example, a random transmission pattern from two antennas (i.e., A and B), while FIG. 8 illustrates a periodic pattern for antennas A and B. With reference to FIG. 9, look-up table 715 would be loaded, for example, with a switching pattern requiring that data should be connected to the transmission antenna A for two consecutive iterations and then to transmission antenna B once in the TSTD transmitter of FIG. 6. In response, the controller 600 control the switch 621 to connect the output of the PN spreader 619 to the LPFs 623 and 625 for two consecutive switching cycles and to the LPFs 627 and 629 for one subsequent switching cycle. As a result, the timings of signals output from the transmission antennas A and B are shown as indicated by 913 and 915 of FIG. 9, respectively. Random time switching patterns can additionally offer the data scrambling effect.

FIG. 10 is a timing diagram of user data under the following conditions: N=2, two users, and synchronous time switching in the TSTD transmitter of a base station.

FIG. 11 is a timing diagram of user data under the following condition: N=2, two users, and asynchronous time switching in the TSTD transmitter. Synchronous time switching is distinguishable from asynchronous time switching depending upon whether the same or different time switching schemes are applied to all terminals for a base station.

FIG. 12 is a timing diagram comparing user data transmitted from a TSTD transmitter and the OTD transmitter. In FIG. 12, N=3 and a periodic pattern is selected. As illustrated, the TSTD transmitter exhibits time diversity with three transmission antennas. This result is not obtainable in the OTD case.

5 Two types of receiving devices may be used for a terminal corresponding to a TSTD transmitting device. In one type, OTD is applied to a pilot channel and TSTD to all other channels. In the second type, TSTD is applied to all channels including the pilot channel and user data channels.

10
15
20

FIGS. 13 and 14 are block diagrams of the two types of receiving devices. Because the pilot channel is a common channel for synchronizing the PN code between the base station and the terminal. Either OTD or TSTD with a predetermined cycle and pattern can be rendered to transmission of the pilot channel.

15 FIG. 13 is a block diagram of a receiving device for receiving a baseband signal from a transmitting device having two transmission antennas, a TSTD traffic channel transmitter, and an OTD pilot channel transmitter. Referring to FIG. 13, the receiver includes a number of pilot channel receivers equal to the number of transmission antennas of the transmitting device. Specifically, two pilot channel receivers 1310 and 1320 are provided corresponding to transmission antennas A and B. The pilot channel receivers should preferably use orthogonal codes extended in length, proportional to the number of 20 the transmission antennas.

In the pilot channel receiver 1310, a PN despreader 1311 multiplies an input signal by a PN sequence, for PN despreading. A multiplier 1313 orthogonally demodulates the signal received from the PN despreader 1311 by multiplying the received signal by the same orthogonal code $[W_m \ W_{m'}]$ as the one used in the pilot channel transmitter. An 5 integrator 1315 integrates a signal received from the multiplier 1311 for a time T and sums the integrated values. A phase estimator 1317 analyzes a signal received from the integrator 1315 and outputs an estimated phase value 0 of the pilot signal received through the transmission antenna A. A time estimator 1319 analyzes the signal received from the integrator 1315 and outputs an estimated time value 0 as the transmission time 10 of the pilot signal received through the transmission antenna A. The time estimator 1319 outputs an estimated time value 1 as the transmission time of the pilot signal received through the transmission antenna B.

10
15
20

In the pilot channel receiver 1320, a PN despreader 1321 multiplies the input signal by a PN sequence, for PN despreading. A multiplier 1323 orthogonally demodulates the signal received from the PN despreader 1321 by multiplying the received signal by the same orthogonal code $[W_m \ \overline{W_m}]$ as the other used in the pilot channel transmitter. An integrator 1325 integrates a signal received from the multiplier 1321 for a time T and sums the integrated values. A phase estimator 1327 analyses a signal received from the integrator 1325 and outputs an estimated phase value 1 of the pilot signal 20 received through the transmission antenna B. A time estimator 1329 analyses the signal received from the integrator 1325 and outputs an estimated time value 1 as the transmission time of the pilot signal received through the transmission antenna B.

A controller 1341 synchronizes to a reference time of the base station and generates a control signal for selecting the outputs of the pilot channel receivers 1310 and 1320 in a time switching cycle unit. A selector 1343 selectively outputs the estimated phase and time values received from the pilot channel receivers 1310 and 1320 on the 5 basis of the control signal of the controller 1341.

In a traffic channel receiver 1330, a PN despreader 1331 multiplies an input signal at a transmission time position indicated by the time signal received from the selector 1343 by a PN sequence. That is, the PN despreader 1331 despreads the input signal by the PN code at the estimated switching time position. A multiplier 1333 multiplies the orthogonal code $[W_n]$ used in the traffic channel transmitter by a signal received from the PN despreader 1331. An integrator 1335 integrates a signal received from the multiplier 1333 for the time T and sums the integrated values. A phase sign converter 1345 changes the sign of the phase value received from the selector 1343. A multiplier 1337 multiplies the output of the integrator 1335 by the output of the phase sign converter 1345, to synchronize the phase of the input signal. A level decision block 1339 detects the level of a signal received from the multiplier 1337 and changes the signal level to a gray level. The signal output from the level decision block 1339 is fed to a decoder in the receiver.

The receiving device shown in FIG. 13 includes pilot channel demodulators equal to the number of transmission antennas employed, N. In the present example, N=Z. 20 These pilot channel receivers are similarly configured as the OTD receivers and operate in the same manner. A single traffic channel receiver 1330 is all that is required because even though modulation of user data is distributed to N transmission antennas, each of the

n data paths use the same orthogonal code.

The estimated time and phase information for the N transmission antennas is selectively provided from the pilot channel receivers 1310 and 1320 to the traffic channel receiver 1330 by the selector 1343 based on the clock signal of the controller 1341
5 synchronized to the base station. That is, the terminal obtains switching cycle and pattern information from the base station during a call set-up.

The controller 1341 obtains the information pertaining to the current selected switching scheme by demodulating a sync channel based on time and phase information pilot obtained from a demodulated pilot channel and analyzing information loaded on the demodulated sync channel. Upon detection of the switching scheme for TSTD in a receiving device, the terminal can be synchronized to the base station for time switching.
10

The traffic channel receiver 1330 subjects a user data signal to PN despreading using the estimated time value selectively received from the selector 1343 and orthogonally demodulates the PN spread signal. Then, it integrates the orthogonal modulation signal for one cycle, and multiplies the integrated value by a value obtained from converting the sign of phase information selected by the selector 1343, to thereby
15 compensate for a phase error which occurs during data transmission. The phase-compensated integrator output is subjected to soft decision and converted to a probability value in the level decision block 1339 and fed through a P/S converter (not shown) to a
20 deinterleaver (not shown).

FIG. 14 is a block diagram of another embodiment of a receiving device for receiving a signal from a transmitting device having a TSTD structure for all channel transmitters. The receiving device in this embodiment includes a single pilot channel receiver since a pilot channel signal is also time switched for transmission.

5 In a pilot channel receiver 1410, a PN despreader 1411 multiplies an input signal by a PN sequence, for PN despreading. A multiplier 1413 orthogonally demodulates the signal received from the PN despreader 1411 by multiplying the received signal by the same orthogonal code \mathbf{W}_m as that used in a corresponding pilot channel transmitter. An integrator 1415 integrates a signal received from the multiplier 1411 for a time T and sums the integrated values. A phase estimator 1417 analyses a signal received from the integrator 1415 and outputs an estimated phase value of a pilot channel signal received through transmission antennas. A time estimator 1419 analyzes the signal received from the integrator 1415 and outputs an estimated time value as the transmission time of the pilot channel signal received through the transmission antennas.

10 15 A controller 1441 synchronizes to a reference time of the base station and generates a control signal for selecting the outputs of the pilot channel receiver 1410 in a time switching cycle unit. A selector 1443 selectively outputs the estimated phase and time values received from the pilot channel receiver 1410 on the basis of the control signal of the controller 1441.

20 In a traffic channel receiver 1420, a PN despreader 1421 multiplies an input signal at a time position indicated by the time signal received from the selector 1443 by a PN

sequence. That is, the PN despreader 1421 despreads the input signal by the PN code at the estimated switching time position. A multiplier 1423 multiplies the orthogonal code $[W_n]$ used in a corresponding traffic channel transmitter by a signal received from the PN despreader 1421. An integrator 1425 integrates a signal received from the multiplier 5 1423 for the time T and sums the integrated values. A phase sign converter 1431 changes the sign of the phase value received from the selector 1443. A multiplier 1427 multiplies the output of the integrator 1425 by the output of the phase sign converter 1431, to synchronize the phase of the input signal. A level decision block 1429 detects the level of a signal received from the multiplier 1427 and changes the signal level to a gray level.

10 The signal output from the level decision block 1429 is fed to a decoder in the receiver.

10
15
20

The receiving device shown in FIG. 14 shows an example where TSTD is executed on a pilot channel as well as traffic channels. Since one orthogonal code is used for the pilot channel, which differs from the receiving device of FIG. 13, all necessary timings and estimated phases can be generated by the use of the single pilot channel receiver 1410 with implementation of the same time switching technique as that for the traffic channel receiver 1420.

In summary, TSTD on a forward link in a mobile communication system offers the following advantages:

(1) only one traffic channel receiver is needed for demodulating user data 20 regardless of the number N of transmission antennas, since one orthogonal code is available per user, which enables simplification of a receiver, low power dissipation and low terminal costs;

(2) The length of an orthogonal code is unchanged by virtue of using the orthogonal code in an NTD device. Therefore, there is no increase of an integration interval for providing time diversity and no degradation of the reception performance possibly caused by a channel environment such as a frequency error;

5 (3) The number of available transmission antennas is not limited, thereby imposing no constraints on other applications; and

(4) A scrambling effect can be added to improvement in reception performance by applying different switching techniques to users in a base station.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
33310
33311
33312
33313
33314
33315
33316
33317
33318
33319
33320
33321
33322
33323
33324
33325
33326
33327
33328
33329
33330
33331
33332
33333
33334
33335
33336
33337
33338
33339
333310
333311
333312
333313
333314
333315
333316
333317
333318
333319
333320
333321
333322
333323
333324
333325
333326
333327
333328
333329
333330
333331
333332
333333
333334
333335
333336
333337
333338
333339
3333310
3333311
3333312
3333313
3333314
3333315
3333316
3333317
3333318
3333319
3333320
3333321
3333322
3333323
3333324
3333325
3333326
3333327
3333328
3333329
3333330
3333331
3333332
3333333
3333334
3333335
3333336
3333337
3333338
3333339
33333310
33333311
33333312
33333313
33333314
33333315
33333316
33333317
33333318
33333319
33333320
33333321
33333322
33333323
33333324
33333325
33333326
33333327
33333328
33333329
33333330
33333331
33333332
33333333
33333334
33333335
33333336
33333337
33333338
33333339
333333310
333333311
333333312
333333313
333333314
333333315
333333316
333333317
333333318
333333319
333333320
333333321
333333322
333333323
333333324
333333325
333333326
333333327
333333328
333333329
333333330
333333331
333333332
333333333
333333334
333333335
333333336
333333337
333333338
333333339
3333333310
3333333311
3333333312
3333333313
3333333314
3333333315
3333333316
3333333317
3333333318
3333333319
3333333320
3333333321
3333333322
3333333323
3333333324
3333333325
3333333326
3333333327
3333333328
3333333329
3333333330
3333333331
3333333332
3333333333
3333333334
3333333335
3333333336
3333333337
3333333338
3333333339
33333333310
33333333311
33333333312
33333333313
33333333314
33333333315
33333333316
33333333317
33333333318
33333333319
33333333320
33333333321
33333333322
33333333323
33333333324
33333333325
33333333326
33333333327
33333333328
33333333329
33333333330
33333333331
33333333332
33333333333
33333333334
33333333335
33333333336
33333333337
33333333338
33333333339
333333333310
333333333311
333333333312
333333333313
333333333314
333333333315
333333333316
333333333317
333333333318
333333333319
333333333320
333333333321
333333333322
333333333323
333333333324
333333333325
333333333326
333333333327
333333333328
333333333329
333333333330
333333333331
333333333332
333333333333
333333333334
333333333335
333333333336
333333333337
333333333338
333333333339
3333333333310
3333333333311
3333333333312
3333333333313
3333333333314
3333333333315
3333333333316
3333333333317
3333333333318
3333333333319
3333333333320
3333333333321
3333333333322
3333333333323
3333333333324
3333333333325
3333333333326
3333333333327
3333333333328
3333333333329
3333333333330
3333333333331
3333333333332
3333333333333
3333333333334
3333333333335
3333333333336
3333333333337
3333333333338
3333333333339
33333333333310
33333333333311
33333333333312
33333333333313
33333333333314
33333333333315
33333333333316
33333333333317
33333333333318
33333333333319
33333333333320
33333333333321
33333333333322
33333333333323
33333333333324
33333333333325
33333333333326
33333333333327
33333333333328
33333333333329
33333333333330
33333333333331
33333333333332
33333333333333
33333333333334
33333333333335
33333333333336
33333333333337
33333333333338
33333333333339
333333333333310
333333333333311
333333333333312
333333333333313
333333333333314
333333333333315
333333333333316
333333333333317
333333333333318
333333333333319
333333333333320
333333333333321
333333333333322
333333333333323
333333333333324
333333333333325
333333333333326
333333333333327
333333333333328
333333333333329
333333333333330
333333333333331
333333333333332
333333333333333
333333333333334
333333333333335
333333333333336
333333333333337
333333333333338
333333333333339
3333333333333310
3333333333333311
3333333333333312
3333333333333313
3333333333333314
3333333333333315
3333333333333316
3333333333333317
3333333333333318
3333333333333319
3333333333333320
3333333333333321
3333333333333322
3333333333333323
3333333333333324
3333333333333325
3333333333333326
3333333333333327
3333333333333328
3333333333333329
3333333333333330
3333333333333331
3333333333333332
3333333333333333
3333333333333334
3333333333333335
3333333333333336
3333333333333337
3333333333333338
3333333333333339
33333333333333310
33333333333333311
33333333333333312
33333333333333313
33333333333333314
33333333333333315
33333333333333316
33333333333333317
33333333333333318
33333333333333319
33333333333333320
33333333333333321
33333333333333322
33333333333333323
33333333333333324
33333333333333325
33333333333333326
33333333333333327
33333333333333328
33333333333333329
33333333333333330
33333333333333331
33333333333333332
33333333333333333
33333333333333334
33333333333333335
33333333333333336
33333333333333337
33333333333333338
33333333333333339
333333333333333310
333333333333333311
333333333333333312
333333333333333313
333333333333333314
333333333333333315
333333333333333316
333333333333333317
333333333333333318
333333333333333319
333333333333333320
333333333333333321
333333333333333322
333333333333333323
333333333333333324
333333333333333325
333333333333333326
333333333333333327
333333333333333328
333333333333333329
333333333333333330
333333333333333331
333333333333333332
333333333333333333
333333333333333334
333333333333333335
333333333333333336
333333333333333337
333333333333333338
333333333333333339
3333333333333333310
3333333333333333311
3333333333333333312
3333333333333333313
3333333333333333314
3333333333333333315
3333333333333333316
3333333333333333317
3333333333333333318
3333333333333333319
3333333333333333320
3333333333333333321
3333333333333333322
3333333333333333323
3333333333333333324
3333333333333333325
3333333333333333326
3333333333333333327
3333333333333333328
3333333333333333329
3333333333333333330
3333333333333333331
3333333333333333332
3333333333333333333
3333333333333333334
3333333333333333335
3333333333333333336
3333333333333333337
3333333333333333338
3333333333333333339
33333333333333333310
33333333333333333311
33333333333333333312
33333333333333333313
33333333333333333314
33333333333333333315
33333333333333333316
33333333333333333317
33333333333333333318
33333333333333333319
33333333333333333320
33333333333333333321
33333333333333333322
33333333333333333323
33333333333333333324
33333333333333333325
33333333333333333326
33333333333333333327
33333333333333333328
33333333333333333329
33333333333333333330
33333333333333333331
33333333333333333332
33333333333333333333
33333333333333333334
33333333333333333335
33333333333333333336
33333333333333333337
33333333333333333338
33333333333333333339
333333333333333333310
333333333333333333311
333333333333333333312
333333333333333333313
333333333333333333314
333333333333333333315
333333333333333333316
333333333333333333317
333333333333333333318
333333333333333333319
333333333333333333320
333333333333333333321
333333333333333333322
333333333333333333323
333333333333333333324
333333333333333333325
333333333333333333326
333333333333333333327
333333333333333333328
333333333333333333329
333333333333333333330
333333333333333333331
333333333333333333332
333333333333333333333
333333333333333333334
333333333333333333335
333333333333333333336
333333333333333333337
333333333333333333338
333333333333333333339
3333333333333333333310
3333333333333333333311
3333333333333333333312
3333333333333333333313
3333333333333333333314
3333333333333333333315
3333333333333333333316
3333333333333333333317
3333333333333333333318
3333333333333333333319
3333333333333333333320
3333333333333333333321
3333333333333333333322
3333333333333333333323
3333333333333333333324
3333333333333333333325
3333333333333333333326
3333333333333333333327
3333333333333333333328
3333333333333333333329
3333333333333333333330
3333333333333333333331
3333333333333333333332
3333333333333333333333
3333333333333333333334
3333333333333333333335
3333333333333333333336
3333333333333333333337
3333333333333333333338
3333333333333333333339
33333333333333333333310
33333333333333333333311
33333333333333333333312
33333333333333333333313
33333333333333333333314
33333333333333333333315
33333333333333333333316
33333333333333333333317
33333333333333333333318
33333333333333333333319
33333333333333333333320
33333333333333333333321
33333333333333333333322
33333333333333333333323
33333333333333333333324
33333333333333333333325
33333333333333333333326
33333333333333333333327
33333333333333333333328
33333333333333333333329
33333333333333333333330
33333333333333333333331
33333333333333333333332
33333333333333333333333
33333333333333333333334
33333333333333333333335
33333333333333333333336
33333333333333333333337
33333333333333333333338
33333333333333333333339
333333333333333333333310
333333333333333333333311
333333333333333333333312
333333333333333333333313
333333333333333333333314
333333333333333333333315
333333333333333333333316
333333333333333333333317
333333333333333333333318
333333333333333333333319
333333333333333333333320
33

CLAIMS

WHAT IS CLAIMED IS:

1. A transmitting apparatus for a wireless communication system, comprising:

a spreader for spreading a transmit signal;

5

at least two antennas;

a plurality of RF transmitters operatively coupled to the antennas for converting an input signal to an RF signal and outputting the RF signal through the antennas; and

10 a time switching transmission controller coupled between the spreader and the RF transmitters, for mutually exclusively switching an output of the spreader between the plurality of transmitters in non-overlapping time intervals, thereby providing transmission time diversity.

2. The transmitting apparatus of claim 1, wherein the time switching

transmission controller comprises:

15 a controller having pre-stored switching patterns, for generating a switch

controlling signal based on one of the pre-stored switching patterns, said controlling signal being generated at said fixed non-overlapping predetermined time interval; and

20 a switch connected between an output terminal of the spreader and an input terminal each of said plurality of RF transmitters, for switching the output of the spreader to a corresponding RF transmitter based on the switch controlling signal.

20 3. The transmitting apparatus of claim 2, wherein the controller comprises:

a reference cycle storage for storing a reference switching cycle value;

a counter for counting clock pulses of a base station and outputting a counted value based on the reference switching cycle value;

a memory for storing a plurality of switching patterns and outputting one of said

5 plurality of switching patterns based on the counted value; and

a control signal generator for generating the switch controlling signal according to the switching pattern selected from the memory.

4. The transmitting apparatus of claim 3, wherein the memory stores at least one of a sequential switching pattern, a random switching pattern, a switching pattern with a uniform switching cycle, and a switching pattern with a variable switching cycle, and the control signal generator generates the switch controlling signal with length equal to an integer multiple of an orthogonal code length.

5. A transmitter device in a mobile communication system, comprising:

i) a plurality of dedicated channel transmitters, each channel transmitter having at least two antennas, a plurality of RF transmitters operatively coupled to the antennas for converting an input signal to an RF signal and outputting the RF signal through the antennas,

15 ii) a dedicated channel spreader for spreading a dedicated channel signal,

iii) a time switching transmission controller connected between the dedicated channel spreader and the RF transmitters, for switching the output of the

20

spreader between the RF transmitters in non-overlapping time intervals; and

iv) a pilot channel transmitter having a symbol distributor for distributing pilot channel symbols to the antennas, a plurality of orthogonal spreaders for spreading the distributed symbols by different orthogonal codes, and a plurality of PN spreaders for spreading the orthogonally spread signals by PN codes and outputting the PN spread signals to the RF transmitters.

5

6. The transmitter of claim 5, wherein the time switching transmission controller comprises:

10 a controller having switching patterns, for generating a switch controlling signal based on a switching pattern at a predetermined time; and

15 a switch connected between an output terminal of the spreader and input terminals of the RF transmitters, for switching the output of the spreader to a corresponding RF transmitter based on the switch controlling signal.

7. The transmitting device of claim 6, wherein the controller comprises:

15 a reference cycle storage for storing a reference switching cycle value;

20 a counter for counting clock pulses of a base station and outputting the counted value based on the reference switching cycle value;

a memory for storing switching patterns and outputting a switching pattern based on the counted value; and

20 a control signal generator for generating the switch controlling signal according to the switching pattern received from the memory.

8. The transmitting device of claim 7, wherein the memory stores at least one
of a sequential switching pattern, a random switching pattern, a switching pattern with a
uniform switching cycle, and a switching pattern with a variable switching cycle, and the
control signal generator generates the switch controlling signal as long as an integer
5 multiple of an orthogonal code length.

9. A channel receiving device in a mobile communication system, comprising:
a pilot channel receiver for despreading a pilot channel signal from an input signal
and estimating phase and time values;

10 a reception controller for selecting the estimated phase and time values according
to the switching cycle and pattern of a TSTD (time switching transmission diversity)
signal from a base station through at least two antennas at the base station; and
a traffic channel receiver for receiving the TSTD signal from the base station,
detecting a channel signal based on the estimated time value, and correcting a phase error
of the detected channel signal based on the estimated phase value, for demodulation.

15 10. The channel receiving device of claim 9, wherein the traffic channel
receiver comprises:

a PN despreader for PN-despread the input signal at a time position in
accordance with the estimated time value;

20 an orthogonal despread for depreading the PN-despread signal by a
corresponding channel orthogonal code; and
a demodulator for correcting a phase error of the orthogonal despread signal based
on the estimated phase value.

11. A channel receiving device in a mobile communication system, comprising:
a plurality of pilot channel receivers for receiving Orthogonal Transmission
Diversity (OTD) pilot signals through at least two antennas, and estimating phase and
time values of corresponding pilot channel signals by despreading the pilot channel
signals;

5 a reception controller for selecting estimated phase and time values according to
the switching cycle and pattern of TSTD signals received from a base station through at
least two antennas; and

10 a traffic channel receiver for receiving the TSTD signals, detecting a channel
signal based on the estimated time values, and correcting a phase error of the detected
channel signal based on the estimated phase values, for demodulation.

15 12. The channel receiving device of claim 11, wherein the traffic channel
receiver comprises:

20 a PN despreader for PN-despread the input signal at a time position in
accordance with the estimated time value;

25 an orthogonal despread for depreeding the PN-despread signal by a
corresponding channel orthogonal code; and

30 a demodulator for correcting a phase error of the orthogonal despread signal based
on the estimated phase value.

20 13. A channel signal transmitting method in a mobile communication system,
comprising the steps of:

spreading a transmit signal by a corresponding orthogonal signal for a dedicated

channel;
spreading the orthogonally spread signal by a PN code; and
switchedly supplying the PN-spread signal to a corresponding antenna selected
from at least two antennas in non-overlapping time intervals thereby generating a TSTD
5 signal according to a predetermined switching pattern.

14. The transmitting method of claim 13, wherein the TSTD signal generating
step comprises the steps of:

generating a switch controlling signal based on the switching pattern at a
predetermined time; and

10 switching the PN-spread signal to a corresponding transmission antenna based on
the switch controlling signal.

15. The transmitting method of claim 14, wherein the switch controlling step
comprises the steps of:

generating a reference switching cycle signal;
counting clock pulses of a base station and outputting the counted value at the time
point when the reference switching cycle value is generated;
outputting a switching pattern based on the counted value; and
generating the switch controlling signal according to the switching pattern.

16. The transmitting method of claim 15, wherein the switching pattern is at
20 least one of a sequential switching pattern, a random switching pattern, a switching
pattern with a uniform switching cycle, and a switching pattern with a variable switching

cycle, and the switch controlling signal is an integer multiple of an orthogonal code length.

17. A channel signal receiving method in a mobile communication system, comprising the steps of:

5 (1) despreading a pilot channel signal from an input signal and estimating phase and time values;

(2) selecting the estimated phase and time values according to the switching cycle and pattern of a TSTD signal received from a base station through at least two antennas; and

10 (3) detecting an TSTD dedicated channel signal based on the estimated time value, and correcting a phase error of the detected TSTD signal based on the estimated phase value, for demodulation.

15 18. The channel signal receiving method of claim 17, wherein step (3) further comprises the steps of:

PN-despread the input signal at a time position indicated by the estimated time value;

despreading the PN-despread signal by a corresponding dedicated channel orthogonal code; and

20 correcting a phase error of the orthogonal despread signal based on the estimated phase value.

ABSTRACT OF THE DISCLOSURE

The invention provides a method and apparatus for transmitting signalling information to a receiver using a plurality of transmission antennas in a time switching configuration. The apparatus includes a controller for generating a switch controlling signal in a non-overlapped time cycle for selecting one of the plurality of transmission antennas to output a transmission signal in a fixed, non-overlapped time interval.

5 The invention further provides for a receiving device for detecting a pilot channel signal from an input forward link signal and generating estimated phase and time values for detecting a traffic channel signal at the selected estimated time position and correcting a phase error of the detected traffic channel signal based on the estimated phase value, for

10 signal decoding.

FORWARD LINK:

- TRANSMISSION DIVERSITY
- RECEIVER DIVERSITY
- MIXED DIVERSITY

REVERSE LINK:

- RECEIVER DIVERSITY

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12

FIG. 13

FIG. 14