

Rapport de projet 1A : groupe 38

Photographie Schlieren et onde de choc

Hovanes BOKSYAN
Aymeric FREREJEAN
Nada KOUDDANE
Léo LAFFAY
Alexandre OCKIER
Yvonne SAUTRIOT
Nino VIVIAND

Tuteur du projet : David RIASSETTO

Membres des Jurys:

Daniel BELLET
Benoit CLEYET-MAREL

 $\begin{array}{c} {\rm Nicolas~RUTY} \\ {\rm Mathias~VOISIN\text{-}FRADIN} \end{array}$

Table des matières

Ta	able	des fig	ures	3
Li	ste d	les tab	oleaux	4
In	trod	uction		5
1	Asp	ECTS T	THÉORIQUES	6
	1.1	Effet S	Schlieren	. 6
		1.1.1	Principe	. 6
		1.1.2	Etude du dispositif Schlieren	. 6
			a. Dispositif avec miroir sphérique	. 6
			b. Dispositif avec lentilles convergentes	. 6
		1.1.3	Objectif à atteindre	. 6
2	Asp	ECTS C	ORGANISATIONNELS	7
	2.1	Livral	bles (Product Breakdown Structure)	. 7
	2.2	Risqu	es et contraintes	. 8
	2.3	Matér	riel utilisé	. 8
3	Con	NCEPTI(ON DES DISPOSITIFS	10
\mathbf{R}	é <mark>fér</mark> e	nces		11
\mathbf{R}	ésum	ıé		11
\mathbf{A}	bstra	ct		11

Table des figures

2.1	Organigramme	du PB	S prévu .																		7
-----	--------------	-------	-----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Liste des tableaux

2.1	Tableau	$r\'ecapitulatif$	des	risques											8
2.2	Tableau	récapitulatif	des	contraint	es										8

Introduction

La visualisation des ondes de choc générées par les avions permet d'étudier leur mouvement et contribue aux recherches dans le domaine de l'aéronautique et au développement de nouveaux engins. L'observation du mouvement de l'air autour des appareils supersoniques peut être réalisée à l'aide d'un dispositif simple et efficace : le dispositif d'imagerie Schlieren. Celui-ci s'appuie sur les principes de base de transferts thermiques et d'optique géométrique, principes utiles à tout étudiant ingénieur spécialisé en physique à Phelma. Ce projet constitue donc un moyen de mise en œuvre de connaissances théoriques pour la réalisation d'un livrable concret.

Cependant, l'enjeu du projet réside dans les différentes contraintes qui s'imposent à l'étudiant, notamment les contraintes budgétaires. Etant donné que le projet 1A est effectué en groupe, il nécessite un bon travail de planification, de coordination et de répartition des tâches. La deuxième difficulté majeure consiste à identifier correctement les causes d'un éventuel mauvais fonctionnement du dispositif et à proposer des pistes d'amélioration.

L'objectif de ce rapport est donc de présenter les différents moyens déployés afin de mener à bien ce projet, ce que soit sur le niveau technique ou organisationnel. Il présentera également une analyse détaillée des résultats obtenus, en plus des difficultés rencontrées et les améliorations effectuées.

Ainsi, ce document est réparti en trois parties : la première porte sur les aspects techniques du dispositif d'imagerie Schlieren et de l'onde de choc. La deuxième est, quant à elle, consacrée à tous les aspects de la gestion du projet. La troisième présente les résultats obtenus, les problèmes rencontrés et les solutions auxquels il y a eu recours afin de les résoudre. Enfin, une conclusion en guise de récapitulatif sera donnée à la fin du rapport.

Partie 1

ASPECTS THÉORIQUES

- 1.1 Effet Schlieren
- 1.1.1 Principe
- 1.1.2 Etude du dispositif Schlieren
- a. Dispositif avec miroir sphérique
- b. Dispositif avec lentilles convergentes
- 1.1.3 Objectif à atteindre

Partie 2

ASPECTS ORGANISATIONNELS

Afin d'assurer une bonne réalisation technique du projet, il a fallu rédiger un cahier des charges comprenant les livrables du projet, les risques et contraintes qui y sont liés, le matériel utilisé, le budget humain et financier, le diagramme de GANTT et enfin la répartition des tâches.

2.1 Livrables (Product Breakdown Structure)

Le livrable final comporte deux systèmes principaux : le montage d'imagerie Schlieren et le dispositif à onde de choc. Le PBS comprend donc le matériel nécessaire à chaque partie du projet, en plus du mode d'emploi. L'organigramme de la figure 2.1 représente le PBS prévu.

Figure 2.1 – Organigramme du PBS prévu

2.2 Risques et contraintes

Les tableaux 2.1 et 2.2 représentent respectivement les risques et les contraintes associés au projet ainsi que les mesures de prévention et les solutions d'optimisation :

Activité	Équipement	Risques	Mesures de
	${f utilis\acute{e}}$	associés	prévention
Réalisation du	Perceuse, scie	Blessure	Formation à l'utilisation du
tube à choc			matériel, gants de protection
Test de l'onde	Air à pression	Explosion,	Casque et/ou boules quies,
de choc	élevée (5 bar)	traumatisme sonore	lunettes de protection
Réalisation des	Ensemble du	Matériel défectueux/	Mieux labelliser les lentilles
différents dispositifs	matériel requis	manquant	et faire un inventaire
du projet			du matériel à Phelma

Table 2.1 – Tableau récapitulatif des risques

Types de contraintes	Description	Solutions
Contraintes budgétaires	Miroir parabolique à	Miroir de petit diamètre ou lentilles
	prix élevé et budget limité,	convergentes (moins cher), prendre
	appareil photo à prix élevé	un appareil photo d'un proche
Contraintes techniques	Distance focale à déterminer	Réalisation d'une source ponctuelle
	pour le miroir en salle de TP.	afin de déterminer la distance focale.
	Nécessité d'une source	LED ou source de lumière
	de lumière	recouverte de papier aluminium
Contraintes	Tâches interdépendantes	Répartition en groupes réalisant
organisationnelles		les tâches simultanément

Table 2.2 – Tableau récapitulatif des contraintes

2.3 Matériel utilisé

Une fois évalués, les risques et les contraintes permettent le choisir le matériel à utiliser de façon optimale. Pour réaliser le montage optique, le matériel suivant a été utilisé :

- **Système optique :** Dans un premier temps, le choix a porté sur le miroir parabolique, étant donné qu'il est plus simple à utiliser en théorie que les lentilles convergentes. Une fois les tests sur le miroir effectués, une deuxième version du dispositif s'est basée sur les lentilles;
- Sources lumineuses : on a respectivement utilisé la lampe fournie en salle de TP, le flash d'un téléphone portable et une LED de forte intensité lumineuse;
- Sources de chaleur : Un briquet, une bougie et un sèche-cheveux;
- Un appareil photo.

Pour l'onde de choc, le matériel suivant a été utilisé :

Partie 3

CONCEPTION DES DISPOSITIFS

Résumé

La chaleur émanant d'une bougie, l'air traversant un sèche-cheveux ou encore l'onde de choc produite par un avion entraînent des fluctuations de la densité optique. Celles-ci sont toutefois invisibles à l'œil nu, il faut donc concevoir des dispositifs d'imagerie afin de pouvoir les visualiser. Ce projet a porté sur l'étude d'un système d'imagerie Schlieren, dont le principe est similaire au filtrage du son : il s'agit de couper une partie des rayons déviés par un changement d'indice de réfraction afin d'agir sur la luminosité de l'image en sortie. L'équipement consiste en un miroir sphérique, dont le but est de concentrer la lumière d'une source ponctuelle, et d'une lame de rasoir en guise de filtre. L'effet de la source de chaleur est ensuite observé à l'aide d'un appareil photo. Le système conçu a donné des résultats satisfaisants : le contraste pourrait être amélioré, mais l'effet Schlieren est bien visible. L'objectif final de ce projet est de concevoir une onde de choc et de la visualiser à l'aide du dispositif optique.

Mots-clés: effet Schlieren, onde de choc, densité optique, indice de réfraction, filtre

Abstract

Heat emanating from a candle, air coming through a hairdryer or a shock wave produced by a plane create fluctuations in optical density. However, they aren't visible to the naked eye; a specific system is needed in order to observe and analyse these phenomena. Schlieren imaging systems are based on light filtering: similarly to sound filtering, the purpose is to cut off part of the incoming light to create darker spots where it has been deflected by a change in the refractive index of the air. The device that was set in place consists of a spherical mirror that focuses the light coming from a point source and a razor blade that acts as a filter. Once the components are all in place, the interfering object is set in front of the mirror and the result is captured on camera. Experiments with matches gave pretty convincing results: although the contrast and focus still need to be improved, the heat coming out was clearly visible on screen. The final aim of this project is to generate a shockwave through a series of tubes directing air pressure and to observe it with Schlieren photography.

Keywords: Schlieren effect, shock wave, optical density, refractive index, filter