MATH-GA.2012.001 Selected Topics in Numerical Analysis: Convex and Nonsmooth Optimization, Spring 2020 Homework Assignment 2 Yves Greatti - yg390

1. Prove that a function is convex if and only if its epigraph is a convex set. Suppose f is a convex function, $f: \mathbf{R}^n \to \mathbf{R}$ then $\forall (x, t_1), (y, t_2) \in \mathbf{epi}f$, and $\forall \theta \in$ [0,1], we want to show that $\theta(x,t_1)+(1-\theta)(y,t_2)$ is in **epi** f. we have:

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

$$< \theta t_1 + (1 - \theta)t_2$$

thus **epi** f is convex. The other direction is similar $\forall (x, t_1), (y, t_2) \in \mathbf{epi} f$, **epi** f is a convex set, and $\forall \theta \in [0,1]$: Let $t_1 = f(x)$, $t_2 = f(y)$ thus $\theta(x,t_1) + \theta(x,t_2)$ $(1-\theta)(y,t_2)=(\theta x+(1-\theta)y,\theta t_1+(1-\theta)t_2)$ is in **epi**f which implies: $f(\theta x + (1-\theta)y) \le \theta t_1 + (1-\theta)t_2 \Rightarrow f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y) \Rightarrow$ f is convex.

- 2. BV Ex. 2.31 Properties of dual cones. Let K^* be the dual cone of a convex cone K. Prove the following.
 - (a) K^* is indeed a convex cone. $\forall y_1, y_2 \in K^*, \theta_1, \theta_2 \geq 0$, and $\forall x \in K$, $x^T(\theta_1y_1+\theta_2y_2)=\theta_1x^Ty_1+\theta_2x^Ty_2\geq 0$ thus K^* is a convex cone.
 - (b) $K_1 \subseteq K_2$ implies $K_2^* \subseteq K_1^*$. Suppose $y \in K_2^*$, $\forall x \in K_1$, $x^T y \geq 0$, and since $x \in K_2$ also, then $y \in K_1^*$ and $K_2^* \subseteq K_1^*$.
- 3. Show that if a convex cone K is closed, then $(K^*)^*$, the dual cone of the dual cone of K, is equal to K.
- 4. BV Ex. 233 Find the dual cone of $\{A \mid x \mid x > 0\}$, where $A \in \mathbf{R}^{m \times n}$. The dual of $K = \{A | x \ge 0\} \text{ is } K^* = \{y | (Ax)^T y \ge 0, \forall x \ge 0\} \text{ or } K^* = \{y | x^T (A^T y) \ge 0\}$ $0, x \ge 0$ } = { $y | (A^T y)^T x \ge 0, x \ge 0$ }. Given $u = A^T y$, we are looking for vectors u such that the inner product is non-negative for any $x \geq 0$. Let $\{e_1, \dots, e_n\}$ the canonical basis for \mathbf{R}^n , for any vector $u = A^T y, y \in K^*$, we have $u^T e_i \geq 0 \Rightarrow u_i \geq 0, i \in [1, n]$. Thus $K^* = \{y | A^T y \geq 0, x \geq 0\}$, this is sufficient as if $x \geq 0$ then $x^T A^T y \geq 0$.
- 5. Show that the second-order cone defined on p.31 of BV is self-dual, that is, it satisfies $K^* = K$. Let C the second-order cone, $C = \{(x, t) \in \mathbf{R}^n | ||x||_2 \le t\}$. $C^* = \{(y,s) | \begin{bmatrix} x \\ t \end{bmatrix}^T \begin{bmatrix} y \\ s \end{bmatrix} \geq 0, \forall (x,t) \in C\}. \text{ if } (y,s) \in C \text{ then } x^Ty \leq \|x\|_2 \|y\|_2$ using Cauchy-Schwarz or $x^Ty \leq t$ s. $\begin{bmatrix} x \\ t \end{bmatrix}^T \begin{bmatrix} y \\ s \end{bmatrix} = x^Ty + ts$, and by the

triangle inequality, $||x^Ty + ts|| \ge t$ $s - |x^Ty| \ge 0 \Rightarrow y \in C^*$. Suppose $(y,s) \notin C$, then $||y||_2 > s$ and let m the index of the largest component of y, thus $||y||_2 = (\sum_{i=1,n} y_i^2)^{\frac{1}{2}} \le (n^2 |y_m|^2)^{\frac{1}{2}} = n|y_m| \Rightarrow$. WLOG $|y_m| = y_m$,

then $y_m>\frac{n}{s^2}$ and let x the vector with the only component non-zero $x_m=-\frac{n}{s^2}$ then $x^Ty=-\frac{n}{s^2}\ y_m\leq -1$ so $y\notin C^*$. In conclusion, $C=C^*$, C is self-dual.