

Cyber Security

01 IPv4

02 IPv6

03 NAT / Routing

04 Port-Forwarding

01 IPv4

- Darstellung in Dezimal
- Gesamtlänge: 32 Bit
- Besteht aus 4 Oktetten mit je 8 Bit

Beispiel:

- 192.168.0.0/16
- Netzanteil 192.168.X.X
- Hostanteil X.X.0.0
- /16 CIDR-Notation = Subnetzmaske 255.255.0.0

Netz	Range	Anzahl IPs	Information
10.0.0.0/8	10.0.0.0 - 10.255.255.255	16 Millionen	Riesiges Netz + viele Subnetze
172.16.0.0/12	172.16.0.0 - 172.31.255.255	16 Millionen	Großes Netz + einige Subnetze
192.168.0.0/16	192.168.0.0 - 192.168.255.255	1 Millionen	Vermutlich mehrere /24 Netze
192.168.178.0/24	192.168.178.0 - 192.168.178.255	64 Tausend	Router spezifisches Heimnetz
169.254.0.0/16	169.254.0.0 - 169.254.255.255	256	Link-local
127.0.0.1/8	127.0.0.0 127.255.255.255	16 Millionen	Loopback / Localhost

Wiederholung: IPv4

Die Netze

- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16

Beschreiben die ehemaligen Netzklassen A,B und C, welche durch die variable Angabe der Subnetzmaske und der daraus entstandenen CIDR-Notation abgelöst wurden.

Die Subnetzmaske wird zur Bestimmung des Subnetzes mit angegeben, was eine Einteilung in Klassen unnötig macht.

02 IPv6

Wiederholung: IPv6

IPv6

- Darstellung in Hexadezimal
- Gesamtlänge: 128 Bit
- Acht Blöcke mit je vier Hexadezimalzahlen

Angabe des letzten Blocks auch in "IPv4-Schreibweise" möglich, um die Zuordnung zu vereinfachen

- Beispiel: 2001:0db8:85a3:08d3:1319:8a2e:0370:127.0.0.1
- Wobei 127.0.0.1 = localhost

Wiederholung: IPv6

2001:0db8:85a3:08d3:1319:8a2e:0370:7347/64 Provider / ISP / 2001:0db8:: Internetanbieter Netz für den 2001:0db8:85a3:: Kunden Segmentierung 2001:0db8:85a3:0800:: durch Provider Endkundensegment 2001:0db8:85a3:08d3:: / Netzanteil Erste 2001:0db8:85a3:08d3::0001

Endkundenadresse

IPv6

Besondere IP-Adressen und Netze im IPv6

Adresse / Netz	Nutzen
0:: /128	Keine Adresse vorhanden
0:: /0	Standardroute / Alle Netze
::1	loopback / localhost
fe80::	link-locale
fc00::	local unicast
ff00::	multicast

O3 NAT / Routing

Wiederholung: NAT

NAT (Network-Adress-Translation)

- Lässt mehrere lokale Geräte über eine öffentliche IP-Adresse kommunizieren
- So wird nur eine externe IP-Adresse pro Netzwerk benötigt, die eindeutig ist
- Vorbeugung des IPv4 Address Mangel
- Verschleierung der internen IP-Adressen
- Übersetzung durch Router

NAT (Network-Adress-Translation)

04 Port-Forwardin

Wiederholung: Port-Weiterleitung

Port-Forwarding (Port-Weiterleitung)

Port-Weiterleitung wird verwendet, wenn der lokale Port nicht dem gewünschten Kommunikations-Port der öffentlichen IP-Adresse entspricht

Beispiel:

- Eine Anwendung kommuniziert auf einem lokalen Gerät über den Port 22
- Die öffentliche IP leitet ankommenden Datenverkehr auf Port 22 bereits an ein anderes Gerät weiter
- Nun wird eine Port-Weiterleitung von zB. Port 2222 der öffentlichen Adresse, an Port 22 unseres lokalen Gerätes weitergleitet
- Die Anwendung muss also nicht den Port ändern, nur weil ein anderes Gerät auch über diesen kommunizieren möchte

Wiederholung: Port-Weiterleitung

Port-Forwarding (Port-Weiterleitung)

DANKE!

Gibt es noch Fragen?

