Diversification In The Managed Futures Universe

Derek G Nokes

Monday, May 25, 2015

[1] TRUE

Introduction & Motivation

Objective

Maximize investors' future wealth by determining how to allocate capital among a set of available managed futures investments in such a way as to maximize *compound* growth subject to a set of constraints

- Reducing variability of returns has as much impact on total return as increasing magnitude of returns
- Portfolio return variability is a function of the co-variability of investment component returns
- Select sets of investments with future positive average returns and low co-variability

Problem: Too Many Moving Parts to Understand Intuitively!

As size of a portfolio increases, number of inter-relationships between components explodes

- Becomes increasingly difficult to understand drivers of portfolio return as number of components rises
- Too many moving parts (particularly during a crisis)

Solution

- Group investments that tend to move together
- Focus on trying to find groups that are independent
 - One common way to reduce dimension of portfolio allocation problem
- Can be accomplished through use of statistical factor models

Data

Extract data for all managed futures programs from the website Altergis ()

Raw Data Extraction, Transformation, and Loading (ETL)

For each managed futures program we extract:

[1] Manager Info

► CTA Name / Address

[2] Program Info

- Program Name
- Investment Methodology
- ► Instruments/Sectors/Geographical Focus
- Holding Periods (Short/Medium/Long)
- Investment Terms and Info

[3] Performance Track Record

Monthly Returns

Data Exploration

Systematic -63.6% of the programs are 100% systematic, while 82.6% claim that the proportion of their operation that is systematic is 90% or above

Region of Operations – Vast majority of programs are operated out of either the US or UK (81.55%)

- ▶ 71.84% US-Based
- 9.71% UK-Based
- ▶ 1.94% do not provide information about geographical location

Margin-to-Equity & Leverage – Typical program employes about 9x leverage (i.e., margin-to-equity of 11.11%)

- ▶ Varies a lot across programs (1.7x to 50x)
- Concentrated around 7x and 12x

Systematic

Leverage

Monthly Returns

Data Cleaning

Modeling

Theory

Data Preprocessing: Standardizing Returns

- Standardization rescales a variable while preserving its order
- Denote monthly return of i^{th} investment for m^{th} month as $r_{i,m}$ and define standardized return as:

$$\hat{r}_{i,m} = \frac{(r_{i,m} - \bar{r}_{i,M})}{\sigma(r_{i,M})}$$

- $\hat{r}_{i,m}$ = standardized return of i^{th} investment for m^{th} month using data over time interval 1 to M
- $ightharpoonup r_{i,m} = \text{observed return of } i^{th} \text{ investment for } m^{th} \text{ month}$
- ▶ $\bar{r}_{i,M} = \frac{1}{M} \sum_{m=1}^{M} (\hat{r}_m) = \text{mean of return stream of } i^{th}$ investment over time interval 1 to M
- $\sigma(r_{i,M}) = \text{standard deviation of returns for } i^{th} \text{ investment over time interval } 1 \text{ to } M$

Correlations

Represent standardized returns as an $I \times M$ matrix \hat{R} with an empirical correlation matrix C defined as:

$$C = \frac{1}{M}\hat{R}\hat{R}^T$$

- T denotes the matrix transform
- Correlation matrix (C) of returns (\hat{R}) and covariance matrix ($\Sigma_{\hat{R}}$) of standardized returns (\hat{R}) are *identical*

Principal Component Analysis (PCA)

Objective: Find linear transformation Ω that maps a set of observed variables \hat{R} into a set of uncorrelated variables F. Define $I \times M$ statistical factor matrix as:

$$F = \Omega \hat{R}$$

- Each row f_k (k = 1, ..., N) corresponds to a factor F of \hat{R}
- Transformation matrix Ω has elements $\omega_{k,i}$.
- First row of ω_1 (which contains first set of factor coefficients or 'loadings') chosen such that first factor (f_1) is aligned with direction of maximal variance in I-dimensional space defined by \hat{R} .
- Each subsequent factor (f_k) accounts for as much of remaining variance of \hat{R} as possible (subject to constraint that ω_k are mutually orthogonal)
- $-\omega_k$ constrained by requiring that $\omega_k \omega_k^T = 1$ for all k.

Principal Component Analysis (PCA) - Continued

Correlation matrix C is an $I \times I$ diagonalizable symmetric matrix that can be written in the form:

$$C = \frac{1}{M} E D E^T$$

- ightharpoonup D = diagonal matrix of eigenvalues d
- ightharpoonup E = orthogonal matrix of corresponding eigenvectors
- Eigenvectors of correlation matrix ${\it C}$ correspond to directions of maximal variance such that $\Omega = {\it E}^T$
- Statistical factors \slash principal components \slash are found using the diagonalization above

Proportion of Variance

Covariance matrix Σ_F for statistical factor matrix F written as:

$$\Sigma_F = \frac{1}{M} F F^T = \frac{1}{M} \Omega \hat{R} \hat{R}^T \Omega^T = D$$

Total variance of standardized returns \hat{R} for I investments is:

$$\sum_{i=1}^{I} \sigma^{2}(\hat{r}_{i}) = tr(\Sigma_{\hat{R}}) = \sum_{i=1}^{I} d_{i} = \sum_{i=1}^{N} \sigma^{2}(f_{i}) = tr(D) = I$$

- $ightharpoonup \Sigma_{\hat{R}} = ext{covariance matrix for } \hat{R}$
- $\sigma^2(\hat{r}_i) = 1$ = variance of vector \hat{r}_i of standardized returns for investment i

Proportion of total variance in \hat{R} explained by k^{th} factor is:

$$\frac{\sigma^2(f_k)}{\sum_{i=1}^I \sigma^2(\hat{r}_i)} = \frac{d_k}{\sum_{i=1}^I d_k} = \frac{d_k}{I}$$

Inverse Participation Ratio (IPR)

 IPR_k of k^{th} factor ω_k is defined as:

$$IPR_k = \sum_{i=1}^{I} (\omega_{k,i})^4$$

- IPR quantifies reciprocal of the number of elements that make a significant contribution to each eigenvector
- IPR is bounded by two cases:
 - 1. An eigenvector with identical contributions $\omega_{k,i}=\frac{1}{\sqrt{I}}$ from all I investments has $IPR_k=\frac{1}{I}$
 - 2. An eigenvector with a single factor $\omega_{k,i}=1$ and remaining factors equal to zero has $\mathit{IPR}=1$

Participation Ratio (PR)

 Inverse of IPR provides more intuitive measure of significance of a given factor

$$PR = \frac{1}{\sum_{i=1}^{I} (\omega_{k,i})^4}$$

- Large PR indicates that many investments contribute to the factor; small PR indicates that few investments contribute to the factor
- PRs facilitate identification of statistical facotrs that represent macroeconomic scenarios, namely those with many participants
- Also help us identify factors that represent microeconomic scenarios, namely factors with few participants

Application

Portfolio Return & Variability

- Portfolio compounded return for interval from months 1 to *M*:

$$r_{P,M} = \left(\prod_{1=m}^{M} \left(1 + \left(\sum_{i=1}^{I} (r_{i,m}w_{i,m})\right)\right)\right) - 1 = \left(\prod_{1=m}^{M} (1 + r_{P,m})\right) - 1$$

- Assume:
 - Component returns are normally distributed
 - Portfolio returns are multivariate normally distributed
- Standard deviation of portfolio returns (using matrix notation as_:

$$\sigma_{P,M} = \sqrt{\textit{Var}\left(\textit{W_m}^{\mathsf{T}}\textit{R}_{\textit{m}}\right)} = \sqrt{\textit{W_m}^{\mathsf{T}} \Sigma \textit{W}_{\textit{m}}}$$

• W_m = vector of portfolio component weights for month m, T denotes transpose operator, R_m = vector of month m component returns, and Σ = return covariance matrix

Correlation Matrix

Top 10 Factors

-First 10 factors explain a very significant proportion of total variance

Table 1:Top 5 Factors

Factors	% of Variance	Cumulative % of Variance
Factor 1	36.8	36.8
Factor 2	8.8	45.7
Factor 3	6.5	52.1
Factor 4	4.0	56.1
Factor 5	3.6	59.8
Factor 6	3.0	62.8
Factor 7	2.5	65.3
Factor 8	2.2	67.6
Factor 9	2.2	69.8
Factor 10	2.0	71.8

1st Factor

- -Sort factor loadings and look at top and bottom
 - Long- and medium- term trend-following programs make strongest positive contributions
 - Volatility selling, short-term and relative value programs having small or negative loadings
- Participation ratio indicates that 52 components make significant contributions to first factor
- In strong contrast to other factors where number of components making significant contributions is between 2 and 34

10 Largest Factor Loadings for Factor 1

Table 2:Largest Factor 1 Loadings

	Program Name	Factor 1
75	Global Directional Portfolio	0.1514
41	Genesis	0.1516
66	Diversified Futures	0.1522
28	Alpha Trend	0.1522
22	World Monetary and Agriculture (WMA)	0.1525
1	Abraham Diversified	0.1530
49	Global Diversified	0.1550
38	Systematic	0.1563
56	AlphaQuest Original (AQO)	0.1586
26	Classic	0.1603

10 Smallest Factor Loadings for Factor 1

Table 3:Smallest Factor 1 Loadings

	Program Name	Factor 1
18	Relative Value Volatility 2X	-0.0434
19	Relative Value Volatility 1X	-0.0410
74	Strategic Fund	-0.0228
52	Contrarian 3X Stock Index	-0.0209
50	S&P 500 Option Overwriting	-0.0039
54	Global	0.0023
42	Kinkopf S&P	0.0034
68	Systematic Alpha Futures	0.0044
2	Ag Trading	0.0052
32	Goldman Management Stock Index Futures	0.0079

Participation Ratio (PR)

Determining Impact of Factors on Portfolio Variability

- Perturb 'importance of first factor' up and down
- Use equation for portfolio standard deviation to determine impact on portfolio

Scenario 1: Importance of First Factor Falls Hard - Way More Diversification

Scenario 1: Importance of First Factor Rises Hard - Way Less Diversification

Conclusions

- Factor analysis revealed a very significant proportion of the total variance of modeled managed futures universe can be captured by a single statistical factor
- First factor corresponds to a very intuitive scenario.
- Sensitivity analysis developed given the intuitive interpretation of first factor - can be used to better understand variation in managed futures universe
- Can be used to identify programs that provide better diversification in different market regimes
- Will use my sophisticated versions of this to help my employer understand risk and return drivers of our \$3.5 billion fund

References

- 1. C. Bacon [2008], Practical Portfolio Performance Measurement and Attribution, 2nd Ed, John Wiley & Sons, Inc.
- D. J. Fenn, N. F. Johnson, N. S. Jones, M. McDonald, M. A. Porter, S. Williams [2011], Temporal evolution of financial-market correlations, Physical Review E 84, 026109
- 3. F. J. Fabozzi, S. M. Focardi, P. N. Kolm [2010], Quantitative Equity Investing: Techniques and Strategies (Frank J. Fabozzi Series), John Wiley & Sons, Inc.
- 4. N. Fenton, M. Neil [2013], Risk Assessment and Decision Analysis With Bayesian Networks, CRC Press
- 5. D. Koller, N. Friedman [2009], Probabilistic graphical models: principles and techniques, MIT press.
- A. Golub and Z. Guo [2012], Correlation Stress Tests Under the Random Matrix Theory: An Empirical Implementation to the Chinese Market
- 7. A Meucci [2009], Risk and Asset Allocation, 1st Ed, Springer Berlin Heidelberg

References - Continued

- R. Rebonato [2010], Plight of the Fortune Tellers: Why We Need to Manage Financial Risk Differently, Princeton University Press
- R. Rebonato [2010], Coherent Stress Testing: A Bayesian Approach to the Analysis of Financial Stress, John Wiley & Sons, Inc.
- R. Rebonato and A. Denev [2014], Portfolio Management Under Stress: A Bayesian-net Approach to Coherent Asset Allocation, Cambridge University Press
- 11. D. Skillicorn [2007], Understanding Complex Datasets: Data Mining with Matrix Decompositions, Chapman and Hall/CRC
- 12. R. Vince [2007], The Handbook of Portfolio Mathematics: Formulas for Optimal Allocation and Leverage, John Wiley & Sons, Inc.

Appendix A: GitHub Repository

All of the R code used to produce this paper can be found in the following github repository:

https://github.com/dgn2/managed_futures

The github repository also includes the .Rmd file used to generate the .pdf working paper file and includes code to:

- extract CTA manager, program, and monthly return data from the Altegris managed futures website
- create a MySQL database with tables to store extracted CTA manager, program, and monthly return data
- load CTA manager, program, and monthly return data to the MySQL database
- conduct limited exploratory analysis of the data
- conduct limited cleaning of the data used in subsequent statistical modeling
- estimate statistical factors based on the monthly returns of a select set of CTA programs
- compute sensitivities

Contact Information

Thank you!

Derek G Nokes

dgnokes@gmail.com

https://github.com/dgn2/managed_futures