AGG0012 – Problemas Integrados em Ciências da Terra II

Bloco I - Victor Sacek

Programa do Bloco I

- 1/8: Python: esquentando a máquina
- 8/8: Diferenciação numérica
- 15/8: Equação de difusão (introdução)
- 22/8: Equação de difusão (solução numérica)
- 29/8: Aplicação da solução numérica

Recordando um pouco de

Alguns tipos

int (número inteiro) (número real)

float

str (caracter ou conjunto de caracteres)

Alguns tipos

int (número inteiro) (número real)

float

str (caracter ou conjunto de caracteres)

```
In [1]: r = 2
```

In [3]: r = 2.0

In [5]: r = "2.0"

```
In [2]: type(r)
Out[2]: int
```

In [4]: type(r) Out[4]: float

In [6]: type(r) Out[6]: str

from __future__ import ...

```
print_function print só irá funcionar com
parênteses:
In []: print(r)
2.0
```


Ferramenta numérica do Python

import numpy as np

MUITAS funções matemáticas:

http://docs.scipy.org/doc/numpy/reference/routines.math.html

e MUITAS rotinas:

http://docs.scipy.org/doc/numpy/reference/routines.html

numpy.arange

```
In [18]: np.arange(3)
Out[18]: array([0, 1, 2])

In [19]: np.arange(3.0)
Out[19]: array([ 0.,  1.,  2.])

In [20]: np.arange(1.0,3.0)
Out[20]: array([ 1.,  2.])

In [21]: np.arange(1.0,3.0,.3)
Out[21]: array([ 1.,  1.3,  1.6,  1.9,  2.2,  2.5,  2.8])
```

numpy.arange

```
In [24]: x = np.arange(0,10.,1)
In [25]: print(x)
[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
In [26]: print(x[2])
2.0
In [27]: y = x*x
In [28]: print(y)
[ 0. 1. 4. 9. 16. 25. 36. 49. 64. 81.]
```

Como rodar o script a partir de um arquivo?

quadrado.py

```
from __future__ import division, print_function
import numpy as np

x = np.arange(0,10.,1)

print(x)

y = x*x

print(y)
```

```
In []: %run quadrado.py
[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
[ 0. 1. 4. 9. 16. 25. 36. 49. 64. 81.]
```


Ferramenta gráfica do Python

import matplotlib.pyplot as plt

Uma infinidade de recursos:

http://matplotlib.org/

```
from __future__ import division, print_function
import numpy as np
import matplotlib.pyplot as plt
plt.ion() #permite trabalhar em modo interativo com os plots
x = np.arange(0,10.,.1)
y = x * x
                             100
plt.plot(x,y)
                             80
                             60
                             20
```

Outros comandos básicos do Matplotlib

```
plt.close() Fecha a janela do gráfico criado plt.savefig("fig.png") Salva a figura em um arquivo plt.title("blablabla") Adiciona um título plt.xlim([0,10]) Ajusta os limites do eixo x plt.ylim([0,10]) Ajusta os limites do eixo y
```

Exercício

Plote a seguinte função

$$y = e^{\frac{-x^2}{100}} \cdot \cos(x)$$

no intervalo

$$-50 \le x < 50$$

com o título sendo o seu nome e número USP.

Salve a figura e envie por email para a Janine

Janine A. Carmo (janine.carmo@usp.br)