<u>Assignment3 – Report</u>

Part-1:

This part contains Hadoop setup steps and running hadoop's example package to calculate the value of pi.

• First check if oracle java-8 compatible version is properly installed on your system. If not, need to download and install:

```
C:\Users\charu>javac -version
javac 1.8.0_401

C:\Users\charu>java -version
java version "1.8.0_401"
Java(TM) SE Runtime Environment (build 1.8.0_401-b10)
Java HotSpot(TM) 64-Bit Server VM (build 25.401-b10, mixed mode)
```

• Next download Hadoop 3.3.6 bin from the official site and extract the package in C:\hadoop:

Now check and add environment variables 'JAVA_HOME',
 'HADOOP_HOME' and the path of bin folders for both from
 advanced system settings as shown below:

• Now create a data folder inside Hadoop folder and two folders, namenode and datanode inside the data folders:

- Edit the below files to add configuration and JAVA_HOME path as shown:
 - 1. Core-site.xml

2. Mapred-site.xml

3. Hdfs-site.xml

4. Yarn-site.xml

5. Hadoop-env.cmd

```
@rem The java implementation to use. Required.
set JAVA_HOME=C:\java\jdk-1.8
```

Now open cmd and format namenode folder using command:
 hdfs namenode –format

```
::\Windows\System32>hdfs namenode -format
2024-02-23 02:19:24,556 INFO namenode.NameNode: STARTUP_MSG:
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = Charul/192.168.1.74
STARTUP MSG:
                                 args = [-format]
STARTUP MSG:
                                 version = 3.3.6
STARTUP MSG:
                                classpath = C:\hadoop\etc\hadoop;C:\hadoop\share\hadoop\common;C:\hadoop\share\hado
r;C:\hadoop\share\hadoop\common\lib\avro-1.7.7.jar;C:\hadoop\share\hadoop\common\lib\checker-qual
 cli-1.2.jar;C:\hadoop\share\hadoop\common\lib\commons-codec-1.15.jar;C:\hadoop\share\hadoop\com-
adoop\common\lib\commons-configuration2-2.8.0.jar;C:\hadoop\share\hadoop\common\lib\commons-daemon
3-3.12.0.jar;C:\hadoop\share\hadoop\common\lib\commons-logging-1.1.3.jar;C:\hadoop\share\hadoop\c
 ommon\lib\commons-text-1.10.0.jar;C:\hadoop\share\hadoop\common\lib\curator-client-5.2.0.jar;C:\ha
jar;C:\hadoop\share\hadoop\common\lib\dnsjava-2.1.7.jar;C:\hadoop\share\hadoop\common\lib\failure
ar;C:\hadoop\share\hadoop\common\lib\hadoop-annotations-3.3.6.jar;C:\hadoop\share\hadoop\common\li
 nmon\lib\hadoop\-shaded\-protobuf\_3\_7\-1.1.1.jar; C:\hadoop\-share\hadoop\-common\lib\httpclient\-4.5.13.incline and the common\-lib\-httpclient\-4.5.13.incline and the common\-httpclient\-4.5.13.incline and the common\-httpclient\-4.
1.jar;C:\hadoop\share\hadoop\common\lib\jackson-annotations-2.12.7.jar;C:\hadoop\share\hadoop\com
op\common\lib\jackson-databind-2.12.7.1.jar;C:\hadoop\share\hadoop\common\lib\jackson-mapper-asl-
vax.servlet-api-3.1.0.jar;C:\hadoop\share\hadoop\common\lib\jaxb-api-2.2.11.jar;C:\hadoop\share\ha
e\hadoop\common\lib\jersey-core-1.19.4.jar;C:\hadoop\share\hadoop\common\lib\jersey-json-1.20.jar;
```

 Navigate to sbin folder and run 'start-all.cmd' command to test the setup and run jps command to check:

```
C:\hadoop\sbin>jps
11536 NameNode
12176 DataNode
10684 Jps
```

• Run 'start-yarn.cmd' and check using jps:

```
C:\hadoop\sbin>start-yarn.cmd
starting yarn daemons
C:\hadoop\sbin>jps
11536 NameNode
12176 DataNode
22048 Jps
5284 NodeManager
18924 ResourceManager
```

• Finally run the below command to calculate value of pi: jar C:\hadoop\share\hadoop\mapreduce\hadoop-mapreduceexamples-3.3.6.jar pi with two parameters, number of map tasks and number of samples.

```
C:\hadoop\sbin>hadoop jar C:\hadoop\share\hadoop\mapreduce\hadoop-mapreduce-examples-3.3.6.jar pi 10 1000

Number of Maps = 10
Samples per Map = 1000
Wrote input for Map #1
Wrote input for Map #1
Wrote input for Map #2
Wrote input for Map #2
Wrote input for Map #3
Wrote input for Map #3
Wrote input for Map #3
Wrote input for Map #4
Wrote input for Map #4
Wrote input for Map #6
Wrote input for Map #8
Wrote input for Map #9
Starting Job
2024-02-23 02:40:53,2021 INFO client.DefaultNoHARMFailoverProxyProvider: Connecting to ResourceManager at /0.0.0.0:8032
2024-02-23 02:40:53,3021 INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for path: /tmp/hadoop-yarn/staging/charu/.staging/job_1708673197994_0001
2024-02-23 02:40:53,3021 INFO mapreduce.JobSubmitter: number of splits:10
2024-02-23 02:40:53,306 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1708673197994_0001
2024-02-23 02:40:53,206 INFO mapreduce.JobSubmitter: Executing with tokens: []
2024-02-23 02:40:53,306 INFO mapreduce.JobSubmitter: Executing with tokens: []
2024-02-23 02:40:53,306 INFO mapreduce.JobSubmitter: Info found for info fo
```

```
Total vcore-milliseconds taken by all map tasks=52058
               Total vcore-milliseconds taken by all reduce tasks=41
               Total megabyte-milliseconds taken by all map tasks=53
               Total megabyte-milliseconds taken by all reduce tasks
       Map-Reduce Framework
               Map input records=10
               Map output records=20
               Map output bytes=180
               Map output materialized bytes=280
               Input split bytes=1460
               Combine input records=0
               Combine output records=0
               Reduce input groups=2
               Reduce shuffle bytes=280
               Reduce input records=20
               Reduce output records=0
               Spilled Records=40
               Shuffled Maps =10
               Failed Shuffles=0
               Merged Map outputs=10
               GC time elapsed (ms)=706
               CPU time spent (ms)=2447
               Physical memory (bytes) snapshot=3804241920
               Virtual memory (bytes) snapshot=5060141056
               Total committed heap usage (bytes)=2776629248
               Peak Map Physical memory (bytes)=407756800
               Peak Map Virtual memory (bytes)=625606656
               Peak Reduce Physical memory (bytes)=239374336
               Peak Reduce Virtual memory (bytes)=413782016
       Shuffle Errors
               BAD ID=0
               CONNECTION=0
               IO ERROR=0
               WRONG LENGTH=0
               WRONG_MAP=0
               WRONG_REDUCE=0
       File Input Format Counters
               Bytes Read=1180
       File Output Format Counters
               Bytes Written=97
Job Finished in 22.917 seconds
stimated value of Pi is 3.14080000000000000000
```

<u>Part-2:</u>

We are running the hadoop-mapreduce-examples-3.3.6.jar pi to calculate pi using 2 parameters. First is number of maps that should be used and second is number of random points. So, in this case the value of pi is approximated by using QuasiMonteCarlo algorithm.

Code Analysis:

- In the QuasiMonteCarlo class, the estimatePi method is the driver. It takes in the number of map tasks the number of points (numPoints), a temporary directory (tmpDir), and a Hadoop Configuration object.
- In this class a job is MapReduce job is created. The mapper class QuasiMonteCarlo.QmcMapper and the reducer class is QuasiMonteCarlo.QmcReducer
- Temporary directories for input and output are set and job is configured and run.

Map-part: QmcMapper

- map Method: The map method contains the logic for mapper. It takes three arguments: offset (input key), size (input value), and context.
- Halton Sequence: A QuasiMonteCarlo.HaltonSequence object is created. This used to generate random points inside the square.
- Each point (x,y) is checked to be inside or outside the circle based on its distance from the center (0.5, 0.5).
- Point is considered outside the circle if (x * x + y * y > 0.25D) otherwise inside.
- Every 1000 points, the status of the mapper is updated and results are recorded.

Reduce-Part: QmcReducer

- The reducer class aggregates the results from all mappers.
- The reduce method takes three arguments: isInside (input key), values (input values), and context.
- If sums up the total count where is inside values are true and where is inside values are false.
- The cleanup method records the aggregation which can be used to estimate pi value.

Logic used to calculate the pi value:

