Tougaloo College MAT414 - Modern Algebra Howework 04 - Spring, 2025

Due Date: 03/21/2025

Finite Groups; Subgroups - Exercises

- 1. (Problem 6) In the group \mathbb{Z}_{12} , find |a|, |b| and |a+b| for each case.
 - (a) a = 6, b = 2

Solution: |a| = 2, |b| = 6, |a + b| = 3

(10 Points)

(b) a = 3, b = 8

Solution: |a| = 4, |b| = 3, |a + b| = 12

(10 Points)

Total for Question 1: 20 Points

2. (Problem 7) If a, b, and c are group elements and |a| = 6, |b| = 7, express $(a^4c^{-2}b^4)^{-1}$ without using negative exponents.

Solution: $b^3c^2a^2$; Use Socks-Shoes properties.

Total for Question 2: 20 Points

3. (Problem 13) For any group elements a and x, prove that $|xax^{-1}| = |a|$.

Solution: Use method of contradiction.

Total for Question 3: 20 Points

4. (Problem 14) Prove that if a is the only element of order 2 in a group, then a lies in the center of the group.

Solution:

- We can see that any $g \in G$, if |g| = 2 then g = a.
- Then prove $|xax^-1| = |a|$

Total for Question 4: 20 Points

5. (Problem 34) If H and K are subgroups of a group G, prove that $H \cap K$ is a subgroup of G.

Solution: Use the one-step subgroup test.

- $H \cap K$ is non-empty.
- If $x, y \in H \cap K$, then $xy^{-1} \in H$ and $xy^{-1} \in K$.

Total for Question 5: 20 Points

6. (Problem 35) Let G be a group. Show that $Z(G) = \bigcap_{a \in G} C(a)$.

Solution: Show that $Z(G) \subset \bigcap_{a \in G} C_a$ and $\bigcap_{a \in G} C(a) \subset Z(G)$.

Total for Question 6: 20 Points

7. (Problem 36) Let G be a group and let $a \in G$. Prove that $C(a) = C(a^{-1})$.