Detecting AI Trojans Using Meta Neural Analysis

IEEE S&P 2021

Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A. Gunter, Bo Li

Department of Computer Science

University of Illinois at Urbana-Champaign

Sharing Machine Learning (ML) Models

 Machine Learning (ML) has success in diverse applications.

 Machine Learning (ML) has success in diverse applications.

- Sharing ML models is an effective and efficient way to apply ML algorithms.
 - For producers: share the prediction service without sharing the training set.
 - For consumers: save the resources and expertise required to train a good model.

Adversarial producers can share a ML model with Trojans (a.k.a. backdoors).

Adversarial producers can share a ML model with Trojans (a.k.a. backdoors).

- On normal inputs, the model produces correct results.
- On inputs with a trigger, the model produces results as desired by the adversarial producer.

Different Types of Trojan Attacks

- Modification Attack (denoted by -M)
 - Poison the training dataset by modifying the data to have a chosen trigger pattern.

- Blending Attack (denoted by -B)
 - Poison the training dataset by blending the data with a chosen trigger pattern.

Different Types of Trojan Attacks

- Parameter attack (denoted by -P)
 - Generate a trigger pattern, then fine-tune the model parameters to make it Trojaned.

- Latent attack (denoted by -L)
 - Generate a trigger pattern, then train a malicious model which does not contain a Trojan until it is finetuned by the consumer.

- Attacker: train a Trojaned ML model and share it with others.
 - Full access to training data.
 - Full access to training process.

- Defender: given a model, determine whether it is Trojaned or not.
 - No knowledge of the attack approach.
 - No access to training data.
 - Black-box access to the model.
 - A small set of clean data.

Goal: Detecting Trojaned ML Models

- Attacker: train a Trojaned ML model and share it with others.
 - Full access to training data.
 - Full access to training process.

- Defender: given a model, determine whether it is Trojaned or not.
 - No knowledge of the attack approach.
 - No access to training data.
 - Black-box access to the model.
 - A small set of clean data.

Methodology: Meta Neural Analysis

s.s.vakil64@gmail.com

 Meta Neural Analysis trains a meta-classifier over neural networks (NN) to predict certain property of them.

- Train a set of shadow models with and without certain property.
- Use the shadow models to train the meta-classifier.
- Use the meta-classifier to predict the property of the target model.

Pipeline - Meta Neural Trojan Detection (MNTD)

Pipeline - Meta Neural Trojan Detection (MNTD)

Seyed saeid vakil s.s.vakil64@gmail.co

m

Pipeline - Meta Neural Trojan Detection (MNTD)

Pipeline - Meta Neural Trojan Detection (MNTD)

Step 1: Generate the Shadow Models

Seyed saeid vakil

Seyed saeid vakil

s.s.vakil64@gmail.co

m

Step 1: Generate the Shadow Models

s.s.vakil64@gmail.com

We propose jumbo learning to generate a jumbo of various Trojaned models.

Steps:

- Sample different trigger patterns and malicious behavior.
- Use poisoning attack to generate corresponding Trojaned models.

Example of trigger patterns

Step 1: Generate the Shadow Models

We propose jumbo learning to generate a jumbo of various Trojaned models.

 Trojan distribution: a jumbo distribution of (m, t, α, y_t) such that:

$$\mathbf{x}', y' = \mathcal{I}(\mathbf{x}, y; \mathbf{m}, \mathbf{t}, \alpha, y_t)$$

 $\mathbf{x}' = (\mathbf{1} - \mathbf{m}) \cdot \mathbf{x} + \mathbf{m} \cdot ((1 - \alpha)\mathbf{t} + \alpha\mathbf{x})$
 $y' = y_t$

- m: mask of trigger location.
- t: trigger pattern.
- α: trigger transparency.
- y_t: Target malicious behavior.

Example of trigger patterns

Step 2: Train the Meta Classifier

Seyed saeid vakil

- How do we build a meta-classifier that takes a NN as input?
 - A feature extraction function to extract a numerical feature vector for a NN.

- Choose a set of queries (chosen inputs) on the NN and use their outputs as the feature.
 - A set of queries $\{x_1, x_2, ..., x_k\}$.
 - Given a neural network f, the feature vector is:

$$\mathcal{R} = [[f(x_1) || f(x_2) || ... || f(x_k)]]$$

- Here [[a || b || c]] is the concatenation operation.

- How do we build a meta-classifier that takes a NN as input?
 - A feature extraction function to extract a numerical feature vector for a NN.

- Choose a set of queries (chosen inputs) on the NN and use their outputs as the feature.
 - A set of queries $\{x_1, x_2, ..., x_k\}$.
 - Given a neural network f, the feature vector is:

$$\mathcal{R} = [[f(x_1) || f(x_2) || ... || f(x_k)]]$$

 Having the feature vector, we apply a 2-layer NN to make the prediction:

$$y = META(R; \theta)$$

Step 2: Train the Meta Classifier

- Choose a set of queries (chosen input) on the NN and use its output as the feature.
 - A set of queries $\{x_1, x_2, ..., x_k\}$.
 - Given a neural network f, the feature vector is:

$$\mathcal{R} = [[f(x_1) || f(x_2) || ... || f(x_k)]]$$

 Having the feature vector, we apply a 2-layer NN to make the prediction:

$$y = META(R; \theta)$$

$$\underset{\theta}{\arg\min} \sum_{i=1}^m L\bigg(\textit{META}(\mathcal{R}_i;\theta), b_i \bigg)$$
 Simple training

Query Tuning:

 We can simultaneously fine-tune the query set when we train the metaclassifier.

$$\underset{\{\mathbf{x}_1, \dots, \mathbf{x}_k\}}{\operatorname{arg\,min}} \sum_{i=1}^m L\bigg(\textit{META}(\mathcal{R}_i; \theta), b_i \bigg)$$
 With query tuning

Train the Meta Classifier: One-Class Learning

- What if we generate only benign shadow models?
 - Fit the meta classifier by novelty detection techniques using only shadow models without Trojans.

- One-class SVM: fit an SVM that separates between all training data and the origin.
 - In practice we use the one-class neural network technique [1] to train the metaclassifier.

Step 3: Target Model Detection

Seyed saeid vakil s.s.vakil64@gmail.com

Detection Results

Seyed saeid vakil

s.s.vakil64@gmail.com

[AC] Detecting backdoor attacks on deep neural networks by activation clustering, Chen et al. 2018.

[NC] Neural cleanse: Identifying and mitigating backdoor attacks in neural networks, Wang et al. S&P 2019.

[Spectral] Spectral signatures in backdoor attacks, Tran el al. NeurIPS 2018.

[STRIP] STRIP: A Defence Against Trojan Attacks on Deep Neural Networks, Gao et al. 2019

Seyed saeid vakil

s.s.vakil64@gmail.com

Out-of-distribution Patterns

Trojan	MNIST			CIFAR-10		
Shape	Pattern Mask	Trojaned Example	Detection AUC	Pattern mask	Trojaned Example	Detection AUC
Apple	ť	5	96.73%	ť		89.38%
Corners		5	98.74%			93.09%
Diagonal		5	99.80%			97.57%
Heart	\bigcirc	\$	99.01%	\bigcirc		93.82%
Watermark	Ó	5	99.93%	É		97.32%

Different Types of Trojan Attacks

- Parameter attack (denoted by -P)
 - Generate a trigger pattern, then fine-tune the model parameters to make it Trojaned.

- Latent attack (denoted by -L)
 - Generate a trigger pattern, then train a malicious model which does not contain a Trojan until it is finetuned by the consumer.

Seyed saeid vakil s.s.vakil64@gmail.com

- Parameter attack (denoted by -P)
 - Generate a trigger pattern, then fine-tune the model parameters to make it Trojaned.

- Latent attack (denoted by -L)
 - Generate a trigger pattern, then train a malicious model which does not contain a Trojan until it is finetuned by the consumer.

These two attacks do not poison the training dataset!

Detection Results – Unforeseen Attacks

Seyed saeid vakil

Detection Results – Unforeseen Attack Goals

Seyed saeid vakil s.s.vakil64@gmail.com

- What we have used so far: Single-target attack goal
 - whenever the model sees the trigger pattern, it classifies the input as a specific class.

- Unforeseen attack goal: All-to-all attack goal
 - when the model sees the trigger pattern, it will **change** its prediction from the *i*-th class to the ((i + 1)%c)-th class.
 - c is the number of classes.

Detection Results – Unforeseen Attacks

Seyed saeid vakil s.s.vakil64@gmail.com

Time Efficiency of MNTD

- Offline Preparation: shadow model generation + meta-training.
- Inference: Target model detection.

Approach	Time (sec)	
AC	27.13	
NC	57.21	
Spectral	42.55	
STRIP	738.5	
MNTD	$2.629 imes 10^{-3}$	
MNTD (offline preparation time)	$\sim 4096 \times 12 + 125$	

Defend against Adaptive Attack

s.s.vakil64@gmail.com

- What if the attacker knows our model and algorithm?
 - The attacker can intentionally generate Trojaned models that seem benign to our detection model.
 - Exp results: the attacker can evade the detection with >99% probability.

 Solution: Incorporate randomness in the algorithm!

- Robust Meta Neural Trojan Detection
 - At running time, randomly sample a meta-classifier and keep it unchanged.
 - Fine-tune the query set w.r.t. the random classifier.
 - Use the fine-tuned query set and random classifier to detect the Trojan.

Detection Results against Adaptive Attack

Seyed saeid vakil

Take-away points

- Meta Neural Analysis achieves a good performance in the detection of Trojaned ML models.
 - It also generalizes well to unforeseen Trojans.
- The inference of MNTD is very efficient.
 - Although it takes a long time to train the MNTD model.

 By incorporating randomness, we can detect Trojans even when the attacker knows our detection algorithm.