

Lecture 11: Red-Black Trees

#### **Red-Black Tree**

Designed to represent 2-3-4 tree without the additional link overhead

A Red-Black tree is a binary search tree in which each node is colored red or black

Red nodes represent the extra keys in 3-nodes and 4-nodes

2-node = black node







[Brinton,Rosenfeld,Ozbirn]

#### Red-Black vs. 2-3-4 Nodes

3-node = black node with one red child









• center value becomes the parent (black) with outside values becoming the children (red)







Red-black trees are not unique, but the corresponding 2-3-4 tree is unique

[Brinton,Ozbirn]

## Red-Black vs. 2-3-4 Trees



#### 

[Brinton,Rosenfeld,Sedgewick,Walter]







# Black-height Rule bh = 30 bh = 70 bh = 65 bh = 40 bh

Every path from a node x to an external node must contain

the same number of black nodes = black-height(x)

Red-Black Rules and Properties

- I. Every node is either red or black
- 2. The root is black [root rule]
- 3. External nodes (nulls) are black
- 4. If a node is red, then both its children are black [red rule]



- 5. Every path from a node to a null must have the same number of black nodes (black height) [black-height rule]
  - a. this is equivalent to a 2-3-4 tree being a perfect tree: all the leaf nodes of the 2-3-4 tree are at the same level (black-height=1)
  - b. a black node corresponds to a level change in the corresponding 2-3-4 tree

[Walter,Brinton]

#### Implications of the Rules

If a red node has any children, it must have two children and they must be black (why?)

- $\bullet$  can't have 2 consecutive reds (double red) on a path
- however, any number of black nodes may appear in a sequence



[McCollam]

If a black node has only one child that child must be a red leaf (why?)



[Scott,Ozbirn]

#### Red-Black Tree Height Bound

Red-black tree rules constrain the adjacency of node coloring, ensuring that no root-to-leaf path is more than twice as long as any other path, which limits how unbalanced a red-black tree may become

Theorem: The height of a red-black tree with n internal nodes is between  $\log_2(n+1)$  and  $2\log_2(n+1)$ 

[Walter, Brinton, Singh]

#### Red-Black Tree Height Bound

Start with a red black tree with height h (note: height here includes the external nodes) Merge all red nodes into their black parents



#### Red-Black Tree Height Bound

Nodes in resulting tree have degrees between 2 and 4 All external nodes are at the same level



It's the equivalent 2-3-4 tree to the red-black tree! Height of the resulting tree is  $h' \ge h/2$ 

[McCollam,Singh]

#### Red-Black Tree Height Bound

Let  $h' \ge h/2$  be the height of the collapsed tree

The tree is tallest if all internal nodes have degree 2, i.e., there were no red-node in the original red-black tree, h' = h, and number of internal nodes is  $n = 2^{h'}-1$  and  $h' = 2 \log_2(n+1)$ 

The tree is shortest if all internal nodes have degree > 2, and h' = h/2; e.g., if all internal nodes have degree 4, the number of internal nodes is  $n = 4^{h'}-1$  and  $h' = \log_2(n+1)$ 

In the mixed case,  $\log_2(n+1) \le h' \le 2 \log_2(n+1)$ 

## Red-Black Tree Height Bound (Alternate Proof)

Prove: an n-internal node RB tree has height

 $h \le 2 \log(n+1)$ 

Claim: A subtree rooted at a node x contains at least  $2^{bh(x)} - 1$  internal nodes

- proof by induction on height h
- base step: x has height 0 (i.e., external node)
- What is bh(x)?
- (
- So...subtree contains  $2^{bh(x)} 1$
- $= 2^{0} 1$
- = 0 internal nodes (claim is TRUE)

l uebkel

[Singh]

## Red-Black Tree Height Bound (Alternate Proof)

Inductive proof that subtree at node x contains at least  $2^{bh(x)} - 1$  internal nodes

- inductive step: x has positive height and 2 children
- each child has black-height of bh(x) or bh(x)-1 (Why?)
- the height of a child = (height of x) 1
- so the subtrees rooted at each child contain at least  $2^{\mathrm{bh}(x)}-1$  internal nodes by induction hypothesis
- thus subtree at x contains  $(2^{bh(x)-1}-1)+(2^{bh(x)-1}-1)+1 = 2*2^{bh(x)-1}-1=2^{bh(x)}-1$  nodes

[Luebke]

#### Time Complexity of Red-Black Trees

All non-modifying BST operations (min, max, successor, predecessor, search) run in  $O(h) = O(\log n)$  time on red-black trees

 small storage issue per node to include a color flag (no big deal)

Insertion and deletion must maintain rules of red-black trees and are therefore more complex: still  $O(\log_2 n)$  time but a bit slower empirically than in ordinary BST

[Kellih,Walter]

## Red-Black Tree Height Bound (Alternate Proof)

Thus at the root of the red-black tree:

 $n \ge 2^{\operatorname{bh}(root)} - 1$  $n \ge 2^{\operatorname{bh}(root)} - 1 \ge 2^{h/2} - 1$  (Why!)

 $\log{(n+1)} \ge h/2$  By the black-height rule, the additional nodes in paths longer than the black height of the tree can consist only of red nodes

Thus  $h = O(\log_2 n)$  By the red rule, at least 1/2 of the nodes on

any path from root to an external node are black

Since the longest path of the tree is h, the black-height of the root must be at least h/2

#### Red-Black Insert

[Luebke, Walter]

- I. as with BST, insert new node as leaf, must be red
  - can't be black or will violate black-height rule
  - therefore the new leaf must be red
- 2. insert new node, if inserting into a 2-node representation (black parent), done
- 3. if inserting into a 3-node, could result in double red

  → need to rotate and recolor nodes to represent a
  4-node, with a black parent
- 4. if inserting into a 4-node, "split" 4-node → recolor children black, parent red, and "promote" parent
- 5. maintain root as black node

[Brinton]

#### Inserting into a 3-node: Two Cases

1. **a** 

Inserting node b to a black parent that is part of a 3-node, creating a 4-node, done

⇒ inserting a new node to a black parent is always simple



Inserting node b to a red parent that is part of a 3-node, creating double red

- → how to recognize that parent and grandparent are part of a 3-node? parent is red, grandparent and uncle (w) are black
- → need to rotate to create a new 4-node

[Ozbirn]

#### 3-Node, Red-Parent



Make the new node (b) along with parent (c) and grandparent (a) a 4-node

Rotate to make parent (c) the middle value of the 4-node

There are four possible combinations of a, b, and c corresponding to LL, RR, LR, RL rotations (see next slide)

As the middle value of a 4-node, parent (c) will be black, and the two outer nodes (a) and (b) will be red

[Ozbirn]









#### Red-Black Insert

- 1. as with BST, insert new node as leaf, must be red
  - can't be black or will violate black-height rule
  - therefore the new leaf must be red
- 2. insert new node, if inserting into a 2-node representation (black parent), done



- 4. if inserting into a 4-node, "split" 4-node → recolor children black, parent red, and "promote" parent
- 5. maintain root as black node

Inserting into a 4-node







Inserting node d causes double red, and d's parent has red sibling w

- → parent, aunt, and grandparent are part of a 4-node
- → need to recolor, to split the 4-node and "promote" grandparent parent and aunt become black grandparent becomes red

If grandparent is root, change it back to black Otherwise, insert grandparent to great-grandparent, applying the same insertion rules as before depending on whether great-grandparent is a 2-node, 3-node, or 4-node

[Ozbirn]











































#### **RBT** Removal

If we delete a node, what was the color of the node removed?

- Red? easy, since
- · we won't have changed any black heights,
- nor will we have created 2 red nodes in a row;
- · also, it could not have been the root
- Black?
- could violate any of root rule, red rule, or black-height rule

[Walter]

#### Red-Black Tree Removal

#### Observations:

- if we delete a red node, tree is still a red-black tree
- a red node is either a leaf node or must have two children

#### Rules:

- I. if node to be deleted is a red leaf, remove leaf, done
- 2. if it is a single-child parent, it must be black (why?); replace with its child (must be red) and recolor child black
- 3. if it has two internal node children, swap node to be deleted with its in-order successor
  - if in-order successor is red (must be a leaf, why?), remove leaf, done
  - if in-order successor is a single child parent, apply second rule

In both cases the resulting tree is a legit red-black tree (we haven't changed the number of black nodes in paths)

4. if in-order successor is a black leaf, or if the node to be deleted is itself a black leaf, things get complicated ...

#### **RB-Trees:** Alternative Definition

#### Colored edges definition

- I. child pointers are colored red or black
- 2. the root has black edges
- 3. pointer to an external node is black
- 4. no root-to-external-node path has two consecutive red edges



#### Black-Leaf Removal

We want to remove v, which is a black leaf Replace v with external node u, color u **double black** 



To eliminate double black edges, idea:

- find a red edge nearby, and change the pair (red, double black) into (black, black)
- · as with insertion, we recolor and/or rotate
- rotation resolves the problem locally, whereas recoloring may propagate it two levels up
- slightly more complicated than insertion

[**Š**altenis]

[Saltenis]

#### **Red Sibling**

If sibling is red, rotate such that a black node becomes the new sibling, then treat it as a black-sibling case (next slides)



[Caltonic]

#### Black Sibling and Nephew/Niece

If sibling and its children are black, recolor sibling and parent

If parent becomes double black, percolate up



#### Black Sibling but Red Nephew

If sibling is black and one of its children is red, rotate and recolor red nephew involved in rotation



[**Š**altenis]







#### Efficiency of Red Black Trees

Insertions and removals require additional time due to requirements to recolor and rotate

Most insertions require on average a single rotation: still  $O(\log_2 n)$  time but a bit slower empirically than in ordinary BST

[Kellih]