EEE 317 Tutorial questions – PN sequences and S.S. systems

We're dealing with binary here, so p=2, and 4 shift registers, so n=4. The PN code generator looks like this.

2) Barker codes are especially designed PN sequences to give excellent autocorrelation properties. This property makes them especially useful for synchronisation applications.

- 4) DSSS; $G = T_b/T_{CH}$ FHSS; $G = f_h T_b$ where symbols have their usual meanings
- 5) A FHSS system is defined as 'fast hopping' if the hop frequency, f_h is greater than the inverse symbol period, $1/T_b$.
- The quality of a square wave waveform, i.e. the abruptness of the transition between high and low and vice versa, is roughly proportional to the bandwidth. Hence SS systems, which occupy a large bandwidth by definition, give high quality square waves and hence accurate timing signals.

X	X	X	1	1	0	Autocorrelation
1	1	0	0	0	0	-1
0	1	1	0	0	0	-1
0	0	1	1	0	0	+1
0	0	0	1	1	0	+3
0	0	0	0	1	1	-1
0	0	0	0	0	1	-3

The code is not good for synchronisation applications because of the poor autocorrelation.

8) Before spreading...

After spreading....

- 9) The spectrum of a PN code is discrete as it repeats, whereas a true noise sequence (which does not repeat) is continuous.
- 10) The resulting PN code 110 has two 1's and one zero so it meets the balance and run requirements. Autocorrelation is not good because of the -3 side lobe but if we wrap the code around itself we eliminate that and it becomes a good PN code. Actually this is a Barker code with 3 bits length.