Pretest Solutions

1. Factor to obtain a product of sums. (Simplify where possible.)

$$A'C'D'+ABD'+A'CD+B'D$$

Sol.)
$$A'C'D'+ABD'+A'CD+B'D = D'(A'C'+AB) + D(A'C+B')$$

$$= D'[(A'+B)(A+C')] + D[(B'+A')(B'+C)] \leftarrow \text{Using XY+X'Z} = (X'+Y)(X+Z)$$

$$= [D+(A'+B)(A+C')][D'+(B'+A')(B'+C)] \leftarrow \text{Using XY+X'Z} = (X'+Y)(X+Z)$$

$$= \underline{(D+A'+B)(D+A+C')(D'+B'+A')(D'+B'+C)} \leftarrow \text{Using the distributive Law}$$

Usually factoring of sum-of-products expression (by minterm expansions) gives product-of-sums expression (by maxterm expansions).

2. A switching circuit has three inputs (A, B, C) and one output (F) and is given by

$$F(A, B, C) = A+B'C'+BC$$

- (a) Find the truth table for F.
- (b) Find the minterm and maxterm expansion for F in algebraic and decimal forms.
- (c) Find the minterm and maxterm expansion for F' in decimal form.

Sol.)

(a)

Α	BC	F F'
0	0 0	1 0
0	0 1	0 1
0	1 0	0 1
0	1 1	1 0
1	0 0	1 0
1	0 1	1 0
1	10	1 0
1	1 1	1 0

- (b) F = A(B+B')(C+C') + (A+A')B'C' + (A+A')(BC) = A(BC+BC'+B'C+B'C') + AB'C' + A'B'C' + ABC+A'BC $= ABC+ABC'+AB'C+AB'C'+A'B'C'+A'BC = \sum m(0, 3, 4, 5, 6, 7) = \prod M(1, 2)$
- (c) $F' = \sum m(1, 2) = \prod M(0, 3, 4, 5, 6, 7)$

3. For this function, find a minimum sum-of-products solution, using the Quine-McCluskey method.

$$f(a, b, c, d) = \sum m(1, 3, 4, 5, 6, 7, 10, 12, 13) + \sum d(2, 9, 15)$$

Sol.)

1	0001√	1, 3	00-1√	1, 3, 5, 7	01 a'd
2	0010√	1, 5	0-01√	1, 5, 3, 7	0 1
4	0100√	1, 9	-001√	1, 5, 9, 13	01 c'd
3	0011√	2, 3	001-√	1, 9, 5, 13	01
5	0101√	2, 6	0-10√	2, 3, 6, 7	0-1- a'c
6	0110√	2, 10	-010 b'cd'	2, 6, 3, 7	0-1-
9	1001√	4, 5	010-√	4, 5, 6, 7	01 a'b
10	1010√	4, 6	01-0√	4, 5, 12, 13	-10- bc'
12	1100√	4, 12	-100√	4, 6, 5, 7	01 -
7	0111√	3, 7	0-11√	4, 12, 5, 13	-10-
13	1101√	5, 7	01-1√	5, 7, 13, 15	-1-1 bd
15	11111√	5, 13	-101√	5, 13, 7, 15	11
		6, 7	011-√		
		9, 13	1-01√		
		12, 13	110-√		
		7, 15	-111√		
		13, 15	11-1√		
		13, 15	11-1√		

Prime implicants: b'cd', a'd, c'd, a'c, a'b, bc', bd

Prime implicant chart: Notice that when forming the prime implicant chart, the don't care terms are not listed at the top

		1	3	4	5	6	7	10	12	13
1, 3, 5, 7	a'd	×	×		×		×			
1, 5, 9, 13	c'd	*			*					¥
2, 3, 6, 7	a'c		×			¥	×			
4, 5, 6, 7	a'b			×	*	*	*			
4, 5, 12, 13	bc'			×	*		+		8	*
5, 7, 13, 15	bd				×		×			×
2, 10	b'cd'							\otimes		

Essential Prime Implicant: the essential prime implicants are chosen first because all essential prime implicants must be included in every minimum sum. Here, the essential prime implicants are bc'(minterm 12), b'cd' (minterm 10).

$$f = \underline{bc'} + \underline{b'cd'} + a'd + a'b$$

$$f = bc' + b'cd' + c'd + a'c$$

$$f = bc' + b'cd' + a'c + a'd$$

4. Find a minimum 2-level NAND gate circuit to simultaneously realize

$$F_1(A, B, C, D) = \sum_{i} m(1, 3, 5, 7, 8, 9, 13)$$

$$F_2(A, B, C, D) = \sum_{i=1}^{n} m(1, 3, 5, 7, 8, 10, 13)$$

(Hint: Minimum solution has 6 gates)

Sol.)

$$F_1 = A'D + BC'D + AB'C'$$

$$F_2 = A'D + BC'D + AB'D'$$

