20

SECRETED HUMAN PROTEINS

This application claims the benefit of copending provisional application Serial No. 60/032,757, filed December 11, 1996, which is incorporated herein by reference.

TECHNICAL AREA OF THE INVENTION

The invention relates to the area of proteins. More particularly, the invention relates to human secreted proteins.

BACKGROUND OF THE INVENTION

Secreted proteins include such important proteins as growth factors, cytokines and their receptors, extracellular matrix proteins, and proteases. Nucleotide sequences encoding these proteins can be used to detect disease states in which such proteins are implicated and to develop therapeutics for such diseases. Thus, there is a need in the art for methods of identifying secreted proteins and the nucleotide sequences which encode them.

SUMMARY OF THE INVENTION

It is an object of the invention to provide an isolated and purified human protein.

It is yet another object of the invention to provide a fusion protein.

10

It is still another object of the invention to provide a preparation of antibodies.

It is even another object of the invention to provide an isolated and purified subgenomic polynucleotide.

It is yet another object of the invention to provide an isolated gene.

It is a further object of the invention to provide a DNA construct for expressing all or a portion of a human protein.

It is still another object of the invention to provide a host cell comprising a DNA construct.

It is another object of the invention to provide a homologously recombinant cell.

It is even another object of the invention to provide a method of producing a human protein.

It is another object of the invention to provide a method of identifying a secreted polypeptide which is modified by rough microsomes.

These and other objects of the invention are provided by one or more of the embodiments described below.

One embodiment of the invention provides an isolated and purified human protein. The isolated and purified human protein has an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.

Another embodiment of the invention provides an isolated and purified human protein having an amino acid sequence which is at least 85% identical to an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.

Still another embodiment of the invention provides a polypeptide comprising at least 6 contiguous amino acids of an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.

30

25

5

Even another embodiment of the invention provides a fusion protein. The fusion protein comprises a first protein segment and a second protein segment fused together by means of a peptide bond. The first protein segment consists of at least 6 contiguous amino acids selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.

Yet another embodiment of the invention provides a preparation of antibodies. The antibodies specifically bind to a human protein having an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.

Even another embodiment of the invention provides an isolated and purified subgenomic polynucleotide. The isolated and purified subgenomic polynucleotide has a nucleotide sequence selected from the group consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19.

Yet another embodiment of the invention provides an isolated and purified subgenomic polynucleotide consisting of at least 10 contiguous nucleotides selected from the group consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19.

Still another embodiment of the invention provides an isolated gene. The isolated gene corresponds to a cDNA sequence selected from the group consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19.

Another embodiment of the invention provides a DNA construct for expressing all or a portion of a human protein. The DNA construct comprises a promoter and a polynucleotide segment. The polynucleotide segment encodes at least 6 contiguous amino acids of a human protein having an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.

30.

25

10

25

30

The polynucleotide segment is located downstream from the promoter.

Transcription of the polynucleotide segment initiates at the promoter.

Even another embodiment of the invention provides a host cell comprising a DNA construct. The DNA construct comprises a promoter and a polynucleotide segment. The polynucleotide segment encodes at least 6 contiguous amino acids of a human protein having an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38. The polynucleotide segment is located downstream from the promoter. Transcription of the polynucleotide segment initiates at the promoter.

Still another embodiment of the invention provides a homologously recombinant cell having incorporated therein a new transcription initiation unit. The transcription initiation unit comprises in 5' to 3' order an exogenous regulatory sequence, an exogenous exon, and a splice donor site. The transcription initiation unit is located upstream to a coding sequence of a gene. The gene comprises a nucleotide sequence selected from the group consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19. The exogenous regulatory sequence controls transcription of the coding sequence of the gene.

Yet another embodiment of the invention provides a method of producing a human protein. A culture of a cell is grown. The cell comprises a DNA construct. The DNA construct comprises a promoter and a polynucleotide segment. The polynucleotide segment encodes at least 6 contiguous amino acids of a human protein having an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38. The polynucleotide segment is located downstream from the promoter. Transcription of the polynucleotide segment initiates at the promoter. The protein is purified from the culture.

Even another embodiment of the invention provides a method of producing a human protein. A culture of a cell is grown. The cell comprises a new transcription initiation unit. The transcription initiation unit comprises in 5' to 3'

30

5

10

order an exogenous regulatory sequence, an exogenous exon, and a splice donor site. The transcription initiation unit is located upstream to a coding sequence of a gene. The gene comprises a nucleotide sequence selected from the group consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19. The exogenous regulatory sequence controls transcription of the coding sequence of the gene. The protein is purified from the culture.

Another embodiment of the invention provides a method of identifying a secreted polypeptide which is modified by rough microsomes. A population of cDNA molecules is transcribed *in vitro* whereby a population of cRNA molecules is formed. A first portion of the population of cRNA molecules is translated *in vitro* in the absence of rough microsomes whereby a first population of polypeptides is formed. A second portion of the population of cRNA molecules is translated *in vitro* in the presence of rough microsomes whereby a second population of polypeptides is formed. The first population of polypeptides is compared with the second population of polypeptides. Polypeptide members of the second population which have been modified by the rough microsomes are detected.

The present invention thus provides the art with a method for identifying secreted proteins or polypeptides, the amino acid sequences of nineteen novel human secreted proteins, and the nucleotide sequences which encode these proteins. The invention can be used to, *inter alia*, to produce secreted proteins for therapeutic and diagnostic purposes.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The inventors have discovered a method for identifying secreted proteins or polypeptides. Secreted proteins or polypeptides include soluble proteins which can be transported across a membrane, such as a cell membrane, nuclear membrane, or membrane of the endoplasmic reticulum, as well as proteins which can be partially secreted from a cell, such as membrane-bound receptors.

Secreted proteins can contain a signal (or secretion leader) sequence, located at the N-terminus and including at least several hydrophobic amino acids,

25

30

such as phenylalanine, methionine, leucine, valine, or tryptophan. Non-hydrophobic amino acids can also be included in the signal sequence. Signal sequences are described in von Heijne, *J. Mol. Biol. 184*:99-105 (1985) and Kaiser and Botstein, *Mol. Cell. Biol.* 6:2382-2391 (1986). Secreted proteins can also be glycosylated by post-translational modification. The presence of a signal sequence or the presence of glycosylation or both indicate that a particular protein is a secreted protein.

In order to identify secreted proteins or polypeptides, the method of the invention exploits properties of microsomes, which are the closed vesicles that result from fragmentation of endoplasmic reticulum. Microsomes can be rough or smooth, depending on whether the endoplasmic reticulum from which they were derived is studded with ribosomes. Microsomes, particularly rough microsomes, have the ability to perform post-translational modifications, such as glycosylation and cleavage of signal sequences from proteins or polypeptides.

To identify secreted proteins, a population of complementary DNA (cDNA) molecules is transcribed *in vitro* to synthesize a population of complementary RNA (cRNA) molecules. The cDNA molecules can be synthesized by reverse transcription of mRNA molecules isolated from a particular cell or tissue type or organism using, for example, a commercially available reverse transcriptase enzyme. Alternatively, the reverse transcription reaction to form cDNA molecules can be conducted on total RNA, without a preliminary purification of mRNA.

Any organism, such as a bacterium, plant, invertebrate, or vertebrate organism, can be used as a source of RNA. Particularly preferred sources of RNA are mammals, most preferably humans. Tissues, such as liver, brain, kidney, spleen, pancreas, or muscle, can be used as a source of RNA. Individual cell types, either primary cells or members of established cell lines, such as HeLa, CHO, PC12, P19, BHK, COS, or HepG2, are suitable sources of RNA. Tissues or primary cells isolated from organisms at a particular stage in development can be used as RNA sources. Stem cells, such as hematopoietic, neuronal, and embryonic stem cells, can also be used as a source of RNA.

Total RNA or mRNA can be isolated using methods known in the art. Such methods are described, *inter alia*, in Sambrook *et al.*, MOLECULAR CLONING, A

10

25

30

LABORATORY MANUAL (2d ed., Cold Spring Harbor Press, N.Y., 1989), and Ausubel et al., Current Protocols in Molecular Biology (Greene Publishing Associates and John Wiley & Sons, N.Y., 1994). Techniques for RNA isolation can be tailored for a particular organism or cell type, as is known in the art.

Complementary DNA can optionally be obtained from a cDNA library. The cDNA library can be derived from the genome of any organism of interest, particularly a mammal or a human. Tissue- or cell type-specific cDNA libraries can also be used as a source of cDNA.

Transcription of cDNA molecules *in vitro* to form cRNA molecules can be carried out using any methods known in the art. These methods include, for example, placing cDNA into a cloning vector containing a promoter, such as an SP6, T7, or T3 polymerase promoter, and transcribing the cDNA using the appropriate polymerase. A variety of commercial kits are available for this purpose.

A first portion of the population of cRNA molecules can be translated *in* vitro, in the absence of rough microsomes, to form a first population of polypeptides which have not been post-translationally modified. A second portion of the population of cRNA molecules can be translated *in vitro* in the presence of rough microsomes. Under the conditions of the *in vitro* translation reaction, rough microsomes can cleave signal sequences from those polypeptides which comprise such sequences. Under the same conditions, rough microsomes can also glycosylate those polypeptides which contain glycosylation sites.

Methods of *in vitro* translation are those which are known in the art, such as translation in a reticulocyte lysate system, particularly a rabbit reticulocyte lysate. Reticulocyte lysate systems can be assembled in the laboratory or purchased commercially in kit form.

Microsomes can be prepared by disruption of tissues or cells by homogenization, as is known in the art. If desired, rough and smooth microsomes can be separated using well-known techniques, such as sucrose density gradient sedimentation. Microsomes are also available commercially, for example, such as the canine pancreatic microsomes available from Promega Corp., Madison, WI.

10

25

30

The first population of polypeptides can then be compared with the second population of polypeptides. This comparison can be by means of, for example, one-or two-dimensional polyacrylamide gel electrophoresis, as is known in the art. Polypeptides separated in the gels can be detected by any means known in the art, such as staining with copper, silver, Coomassie Brilliant Blue, amido black, fast green FCF, Ponceau S, or a chromophoric label. Separated proteins can also be visualized using radioactive, chemiluminescent, fluorescent, or enzymatic tags incorporated into the proteins before separation.

The gels can be dried or the proteins can be transferred to membranes, such as polyvinylidene difluoride membranes. Either the gels or membranes themselves or photographs of the gels or membranes can be compared by eye. Alternatively, the gels or membranes can be scanned, for example, with a densitometer and analyzed with the aid of a computer.

Polypeptide members of the second population of polypeptides, which have been modified by the rough microsomes, can be detected by any means available in the art. For example, a shift in the position of a polypeptide band can be observed, indicating an increase in molecular weight of a member of the second population compared with the corresponding polypeptide member of the first population. Such an increase in molecular weight indicates that the polypeptide member of the second population was glycosylated by the rough microsomes.

A shift in the position of a polypeptide band indicating a decrease in molecular weight of a member of the second population compared with the corresponding polypeptide member of the first population can also be observed. This decrease in molecular weight indicates that the polypeptide member of the second population contained a signal sequence which was cleaved by the rough microsomes.

Polypeptides which are modified by the rough microsomes are identified as secreted polypeptides. Optionally, quantities of cDNA molecules which encode secreted polypeptides can be obtained. Molecules of cDNA which encode polypeptides which are post-translationally modified by the rough microsomes can be placed into suitable vectors using standard recombinant DNA techniques and

5

THE PART AND THE WAR HAVE THE PART OF THE PART OF THE PART HAVE THE PART OF THE PA

25

30

used to transform host cells. Many vectors are available for this purpose, such as retroviral or adenoviral vectors and bacteriophage, as described below.

Vectors comprising cDNA which encode secreted polypeptides can be introduced into host cells using techniques available in the art. These techniques include, but are not limited to, transferrin-polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome-mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, and calcium phosphate-mediated transfection.

The host cells can be any host cells which are capable of propagating cDNA molecules. A variety of host cells, for example immortalized cell lines such as HeLa, CHO, or HEK, are available for this purpose.

Transformed host cells can be diluted serially and cultured to form individual colonies. Methods of culturing host cells and the media suitable for each host cell type are well known in the art. Preferably, each colony originates from a single transformed host cell. Separate preparations of cDNA from each colony can be prepared, as described above, and transcribed *in vitro* to form cRNA. The cRNA can be transcribed to form secreted polypeptides, which can be purified as is known in the art. If the preparation of secreted polypeptides from a colony contains more than one species of polypeptide, the steps described above can be repeated until a colony is obtained which contains cDNA encoding only a single species of polypeptide.

Complementary DNA molecules which encode secreted proteins can be sequenced using standard nucleotide sequencing techniques. The sequence of each cDNA molecule can be compared with known sequences in a database to determine whether the clone encodes a known or a novel secreted protein.

The inventors have used the method of the invention to identify nineteen novel human secreted proteins. Amino acid sequences for these nineteen human secreted proteins are disclosed in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38. Nucleotide sequences which encode the proteins are disclosed in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19, respectively.

25

30

Clones containing the cDNAs of the secreted proteins were deposited on December 11, 1997, with the ATCC. Individual bacterial cells (*E. coli*) in this composite deposit contain one or more of the polynucleotides encoding the secreted proteins of the invention and can be retrieved using an oligonucleotide probe designed from the sequence for that particular polynucleotide, as provided herein. Each polynucleotide can be removed from the vector by performing an EcoRI/NotI digestion (5' site, EcoRI; 3' site, NotI). The deposit submitted to the ATCC has been designated SECP120997. The nucleotide sequences of these deposits and the amino acid sequences they encode are controlling in the event of a discrepancy between the amino acid and nucleotide sequences disclosed herein and those contained in the deposits.

A purified and isolated subgenomic polynucleotide of the present invention comprises at least 10, 12, 15, 18, 20, 25, 30, 35, 40, 45, or 50 contiguous nucleotides selected from the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19. The isolated and purified subgenomic polynucleotides can comprise an entire nucleotide sequence selected from the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19.

Subgenomic polynucleotides contain less than a whole chromosome and are preferably intron-free. Polynucleotides of the invention can be isolated and purified free from other nucleotide sequences by standard nucleic acid purification techniques, using restriction enzymes and probes to isolate fragments comprising the coding sequences.

Isolated genes corresponding to the cDNA sequences disclosed herein are also provided. Known methods can be used to isolate the corresponding genes using the provided cDNA sequences. These methods include preparation of probes or primers from the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 for use in identifying or amplifying the genes from human genomic libraries or other sources of human genomic DNA.

The coding sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 can be made using reverse transcriptase with

25

30

human mRNA as a template. Amplification by PCR can also be used to obtain the polynucleotides, using either genomic DNA or cDNA as a template. Polynucleotide molecules of the invention can also be made using the techniques of synthetic chemistry given the sequences disclosed herein. The degeneracy of the genetic code permits alternate nucleotide sequences which will encode the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38 to be synthesized. All such nucleotide sequences are within the scope of the present invention.

Polynucleotide molecules of the invention can be propagated in vectors and cell lines as is known in the art. Polynucleotide molecules can be on linear or circular molecules. They can be on autonomously replicating molecules or on molecules without replication sequences. For propagation, polynucleotides of the invention can be introduced into suitable host cells using any techniques available in the art, as described above.

Subgenomic polynucleotides of the invention can be used to propagate additional copies of the polynucleotides or to express protein, polypeptides, or fusion proteins. The subgenomic polynucleotides disclosed herein can also be used, for example, as biomarkers for tissues or chromosomes, as molecular weight markers for DNA gels, to elicit immune responses, such as the formation of antibodies against single- or double-stranded DNA, and in DNA-ligand interaction assays, to detect proteins or other molecules which interact with the nucleotide sequences.

Disease states may be associated with alterations in the expression of genes which encode proteins of the invention. Polynucleotide sequences disclosed herein can also be used to determine the involvement of any of these sequences in disease states. For example, a gene in a diseased cell can be sequenced and compared with a wild-type coding sequence of the invention. Alternatively, nucleotide probes can be constructed and used to detect normal or altered (mutant) forms of mRNA in a diseased cell. Subgenomic polynucleotides of the invention can also be used to design diagnostic tests and therapeutic compositions for diseases which may be associated with altered expression of these genes.

10

The present invention provides both full-length and mature forms of the disclosed proteins. Full-length forms of the proteins have the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38. The full-length forms of a protein can be processed enzymatically to remove a signal sequence, resulting in a mature form of the protein. Signal sequences can be identified by examination of the amino acid sequences disclosed herein and comparison with amino acid sequences of known signal sequences (see, e.g., von Heijne, 1985; Kaiser & Botstein, 1986). Similarly, transmembrane domains can be identified by examination of the amino acid sequences disclosed herein. A transmembrane domain typically contains a long stretch of 15-30 hydrophobic amino acids.

Other domains with predicted functions can also be identified. For example, the protein having the amino acid sequence shown in SEQ ID NO:23 comprises a Kunitz type serine protease inhibitor domain spanning amino acids 68 to 122 of SEQ ID NO:23. The protein having the amino acid sequence shown in SEQ ID NO:20 contains a zinc-finger motif.

Allelic variants of the disclosed subgenomic polynucleotides can occur and encode proteins which are identical, homologous, or substantially related to amino acid sequences disclosed herein (see below).

Allelic variants of subgenomic polynucleotides of the invention can be identified by hybridization of putative allelic variants with nucleotide sequences disclosed herein under stringent conditions. For example, by using the following wash conditions--2 x SCC, 0.1% SDS, room temperature twice, 30 minutes each; then 2 x SCC, 0.1% SDS, 50 °C. once, 30 minutes; then 2 x SCC, room temperature twice, 10 minutes each--allelic variants can be identified which contain at most about 25-30% basepair mismatches. More preferably, allelic variants contain 15-25% basepair mismatches, even more preferably 5-15% basepair mismatches.

Protein variants of secreted proteins of the invention are also included.

Amino acids which are not involved in regions which determine biological activity can be deleted or modified without affecting biological function. Preferably, protein

25

variants of the invention have amino acid sequences which are at least 85%, 90%, or 95% identical to the amino acid sequences disclosed herein and have similar biological properties (see below). More preferably, the molecules are 98% identical. Modifications of interest in the protein sequences can include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue. Proteins or derivatives can be either glycosylated or unglycosylated. Techniques for making such modifications are well known to those skilled in the art (see, e.g., U.S. 4,518,584). Alternatively, variants of proteins disclosed herein can be constructed using techniques of synthetic chemistry or using recombinant DNA methods.

Preferably, amino acid changes in variants or derivatives of proteins of the invention are conservative amino acid changes, i.e., substitutions of similarly charged or uncharged amino acids. A conservative amino acid change involves substitution of one amino acid for another amino acid of a family of amino acids which are structurally related in their side chains. Naturally occurring amino acids are generally divided into four families: acidic (aspartate, glutamate), basic (lysine, arginine, histidine), non-polar (alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), and uncharged polar (glycine, asparagine, glutamine, cystine, serine, threonine, tyrosine) amino acids. Phenylalanine, tryptophan, and tyrosine are sometimes classified as aromatic amino acids. It is reasonable to expect that an isolated replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, a threonine with a serine, or a similar replacement of an amino acid with a structurally related amino acid will not have a major effect on the binding properties of the resulting molecule, especially if the replacement does not involve an amino acid at a binding site involved in an interaction of the protein. Non-naturally occurring amino acids can also be used to form protein variants of the invention.

Whether an amino acid change results in a functional protein or polypeptide can readily be determined by assaying biological properties of the disclosed proteins or polypeptides, as described below. Species homologs of human subgenomic polynucleotides and proteins of the invention can also be identified by making

25

30

suitable probes or primers and screening cDNA expression libraries from other species, such as mice, monkeys, yeast, or bacteria.

In the case of proteins which are membrane-bound, such as cell surface receptor proteins, soluble forms of the proteins can be obtained by deleting the nucleotide sequences which encode part or all of the intracellular and transmembrane domains of the protein and expressing a fully secreted form of the protein in a host cell. Techniques for identifying intracellular and transmembrane domains, such as homology searches, can be used to identify such domains in proteins of the invention using amino acid and nucleotide sequences disclosed herein.

Polypeptides consisting of less than full-length proteins of the present invention are also provided. Polypeptides of the invention can be linear or can be cyclized, for example, as described in Saragovi et al., 1992, Bio/Technology 10, 773-778 and McDowell et al., 1992, J. Amer. Chem. Soc. 114, 9245-9253. Polypeptides can be used, for example, as immunogens, diagnostic aids, or therapeutics, and to create fusion proteins, as described below.

Polypeptide molecules consisting of less than the entire amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38 are also provided. Such polypeptides comprise at least 6, 8, 10, 12, 15, 18, or 20 contiguous amino acids of an amino acid sequence shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38. Polypeptide molecules of the invention can also possess minor amino acid alterations which do not substantially affect the ability of the polypeptides to interact with specific molecules, such as antibodies.

Derivatives of the polypeptides, such as glycosylated forms, aggregative conjugates with other molecules, and covalent conjugates with unrelated chemical moieties, are also provided. Derivatives also include allelic variants, species variants, and muteins. Covalent derivatives are prepared by linkage of functionalities to groups which are found in the amino acid chain or at the N- or C-terminal residue by means known in the art. Truncations or deletions of regions which do not affect biological function are also encompassed. Truncated or deleted

10

20

25

30

polypeptides can be prepared synthetically or recombinantly, or by proteolytic digestion of purified or partially purified secreted proteins of the invention.

Fusion proteins comprising at least 6, 8, 10, 12, 15, 18, or 20 contiguous amino acids of the disclosed proteins can also be constructed. Human fusion proteins are useful, *inter alia*, for generating antibodies against amino acid sequences and for use in various assay systems. For example, fusion proteins can be used to identify proteins which interact with secreted proteins of the invention and influence their function. Physical methods, such as protein affinity chromatography, or library-based assays for protein-protein interactions, such as the yeast two-hybrid or phage display systems, can be used for this purpose. Such methods are well known in the art and can also be used as drug screens. Fusion proteins can also be used to target molecules to a specific location in a cell or to cause a molecule to be secreted or to be anchored in a cellular membrane.

Fusion proteins of the invention comprise two protein segments which are fused together with a peptide bond. The first protein segment comprises at least 6, 8, 10, 12, 15, 18, or 20 contiguous amino acids selected from an amino acid sequence shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38. The first protein segment can also be a full-length protein (comprising a signal sequence) or a mature protein (lacking a signal sequence). The second protein segment can be a full-length protein or a protein fragment. The second protein or protein fragment can be labeled with a detectable marker, such as a radioactive, chemiluminescent, biotinylated, or fluorescent tag, or can be an enzyme which will generate a detectable product. Enzymes suitable for this purpose, such as β-galactosidase, are well known in the art.

Techniques for making fusion proteins, either recombinantly or by covalently linking two protein segments, are well known in the art. Fusion proteins comprising amino acid sequences of the invention can also be constructed, for example, using standard recombinant DNA methods to make a DNA construct which comprises contiguous nucleotides selected from SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 and encoding the desired amino

10

THE CHAIN WHEN WITH CHAIN AND THE CHAIN WHEN THE WAS AND THE CHAIN WHEN THE WAS AND THE CHAIN WHEN THE WAS AND THE CHAIN WHEN WHEN THE CHAIN WHEN WHEN THE C

25

30

acids in proper reading frame with nucleotides encoding the second protein segment.

Proteins or polypeptides of the invention can be purified free from other components with which they are normally associated in a cell, such as carbohydrates, lipids, subcellular organelles, or other proteins. An isolated protein or polypeptide is at least 90% pure. Preferably, the preparations are 95% or 99% pure. The purity of a preparation can be assessed, for example, by examining electrophoretograms of protein or polypeptide preparations at several pH values and at several polyacrylamide concentrations, as is known in the art.

Standard biochemical methods can be used to isolate proteins of the invention from tissues which express the proteins or to isolate proteins, polypeptides, or fusion proteins from recombinant host cells into which a DNA construct has been introduced. Methods of protein purification, such as size exclusion chromatography, ammonium sulfate fractionation, ion exchange chromatography, affinity chromatography, crystallization, electrofocusing, or preparative gel electrophoresis, are well known and widely used in the art.

Alternatively, proteins, fusion proteins, or polypeptides of the invention can be produced by recombinant DNA methods or by synthetic chemical methods. Synthetic chemistry methods, such as solid phase peptide synthesis, can be used to synthesize proteins, fusion proteins, or polypeptides. For production of recombinant proteins, fusion proteins, or polypeptides, coding sequences selected from the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 can be expressed in prokaryotic or eukaryotic host cells using expression systems known in the art. These expression systems include bacterial, yeast, insect, and mammalian cells (see below).

The resulting expressed protein can then be purified from the culture medium or from extracts of the cultured cells using purification procedures known in the art. For example, for proteins fully secreted into the culture medium, cell-free medium can be diluted with sodium acetate and contacted with a cation exchange resin, followed by hydrophobic interaction chromatography. Using this method, the desired protein, fusion protein, or polypeptide is typically greater than 95% pure.

5

10

25

30

Further purification can be undertaken, using, for example, any of the techniques listed above. Proteins, fusion proteins, or polypeptides can also be tagged with an epitope, such as a "Flag" epitope (Kodak), and purified using an antibody which specifically binds to that epitope.

It may be necessary to modify a protein produced in yeast or bacteria, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain a functional protein. Such covalent attachments can be made using known chemical or enzymatic methods.

Proteins or polypeptides of the invention can also be expressed in cultured cells in a form which will facilitate purification. For example, a secreted protein or polypeptide can be expressed as a fusion protein comprising, for example, maltose binding protein, glutathione-S-transferase, or thioredoxin, and purified using a commercially available kit. Kits for expression and purification of such fusion proteins are available from companies such as New England BioLabs, Pharmacia, and Invitrogen.

The coding sequences disclosed herein can also be used to construct transgenic animals, such as cows, goats, pigs, or sheep. Female transgenic animals can then produce proteins, polypeptides, or fusion proteins of the invention in their milk. Methods for constructing such animals are known and widely used in the art.

Isolated proteins, polypeptides, or fusion proteins of the invention can be used to obtain a preparation of antibodies which specifically bind to epitopes comprising amino acid sequences of the invention. Antibodies of the invention can be used, for example, to detect proteins, polypeptides, or fusion proteins of the invention which are secreted into culture medium or to identify tissues or cells which express these molecules. The antibodies can be polyclonal or monoclonal or can be single chain antibodies. Techniques for raising polyclonal and monoclonal antibodies and for constructing single chain antibodies are well known in the art.

Antibodies of the invention bind specifically to epitopes comprising amino acid sequences of the invention, preferably to epitopes not present on other proteins. Typically a minimum number of contiguous amino acids to encode an epitope is 6, 8, or 10. However, more amino acids can be part of an epitope, for

10

25

30

example, at least 15, 25, or 50, especially to form epitopes which involve non-contiguous residues. Specific binding antibodies do not detect other proteins on Western blots of proteins or in immunocytochemical assays. Specific binding antibodies provide a signal at least ten-fold lower than the signal provided with epitopes which do not comprise amino acid sequences of the invention. Antibodies which bind specifically to secreted proteins of the invention include those that bind to mature or full-length proteins, to polypeptides or degradation products, to fusion proteins, or to protein variants. In a preferred embodiment of the invention, the antibodies immunoprecipitate the desired protein, fusion protein, or polypeptide from solution and react with the protein, fusion protein, or polypeptide on Western blots of polyacrylamide gels.

Techniques for purifying antibodies are those which are available in the art. In a preferred embodiment, antibodies are affinity purified by passing the antibodies over a column to which amino acid sequences of the invention are bound. The bound antibody is then eluted, for example using a buffer with a high salt concentration. Any such technique may be chosen to purify antibodies of the invention.

The invention also provides DNA constructs, for expressing all or a portion of a protein of the invention in a host cell. The DNA construct comprises a promoter which is functional in the particular host cell selected. The skilled artisan can readily select an appropriate promoter from the large number of cell type-specific promoters known and used in the art. The DNA construct can also contain a transcription terminator which is functional in the host cell.

The expression construct comprises a polynucleotide segment which encodes all or a portion of a human protein encoded by SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 or a variant thereof. The polynucleotide segment is located downstream from the promoter. Transcription of the polynucleotide segment initiates at the promoter. DNA constructs can be linear or circular and can contain sequences, if desired, for autonomous replication.

The host cell comprising the DNA construct can be any suitable prokaryotic or eukaryotic cell. Expression systems in bacteria include those described in Chang

et al., Nature (1978) 275: 615; Goeddel et al., Nature (1979) 281: 544; Goeddel et al., Nucleic Acids Res. (1980) 8: 4057; EP 36,776; U.S. 4,551,433; deBoer et al., Proc. Natl. Acad. Sci. USA (1983) 80: 21-25; and Siebenlist et al., Cell (1980) 20: 269.

5

10

₽ 15

20

25

30

Expression systems in yeast include those described in Hinnen et al., Proc. Natl. Acad. Sci. USA (1978) 75: 1929; Ito et al., J. Bacteriol. (1983) 153: 163; Kurtz et al., Mol. Cell. Biol. (1986) 6: 142; Kunze et al., J. Basic Microbiol. (1985) 25: 141; Gleeson et al., J. Gen. Microbiol. (1986) 132: 3459, Roggenkamp et al., Mol. Gen. Genet. (1986) 202 :302); Das et al., J. Bacteriol. (1984) 158: 1165: De Louvencourt et al., J. Bacteriol. (1983) 154: 737, Van den Berg et al., Bio/Technology (1990) 8: 135; Kunze et al., J. Basic Microbiol. (1985) 25: 141; Cregg et al., Mol. Cell. Biol. (1985) 5: 3376; U.S. 4,837,148; U.S. 4,929,555; Beach and Nurse, Nature (1981) 300: 706; Davidow et al., Curr. Genet. (1985) 10: 380; Gaillardin et al., Curr. Genet. (1985) 10: 49; Ballance et al., Biochem. Biophys. Res. Commun. (1983) 112: 284-289; Tilburn et al., Gene (1983) 26: 205-22; Yelton et al., Proc. Natl. Acad. Sci. USA (1984) 81: 1470-1474; Kelly and Hynes, EMBO J. (1985) 4: 475479; EP 244,234; and WO 91/00357.

Expression of heterologous genes in insects can be accomplished as described in U.S. 4,745,051; Friesen et al. (1986) "The Regulation of Baculovirus Gene Expression" in: THE MOLECULAR BIOLOGY OF BACULOVIRUSES (W. Doerfler, ed.); EP 127,839; EP 155,476; Vlak et al., J. Gen. Virol. (1988) 69: 765-776; Miller et al., Ann. Rev. Microbiol. (1988) 42: 177; Carbonell et al., Gene (1988) 73: 409; Maeda et al., Nature (1985) 315: 592-594; Lebacq-Verheyden et al., Mol. Cell. Biol. (1988) 8: 3129; Smith et al., Proc. Natl. Acad. Sci. USA (1985) 82: 8404; Miyajima et al., Gene (1987) 58: 273; and Martin et al., DNA (1988) 7:99. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts are described in Luckow et al., Bio/Technology (1988) 6: 47-55, Miller et al., in GENERIC ENGINEERING (Setlow, J.K. et al. eds.), Vol. 8 (Plenum Publishing, 1986), pp. 277-279; and Maeda et al., Nature, (1985) 315: 592-594.

Mammalian expression can be accomplished as described in Dijkema et al.,

25

30

EMBO J. (1985) 4: 761; Gorman et al., Proc. Natl. Acad. Sci. USA (1982b) 79: 6777; Boshart et al., Cell (1985) 41: 521; and U.S. 4,399,216. Other features of mammalian expression can be facilitated as described in Ham and Wallace, Meth. Enz. (1979) 58: 44; Barnes and Sato, Anal. Biochem. (1980) 102: 255; U.S. 4,767,704; U.S. 4,657,866; U.S. 4,927,762; U.S. 4,560,655; WO 90/103430, WO 87/00195, and U.S. RE 30,985.

DNA constructs of the invention can be introduced into host cells using any technique known in the art. These techniques include transferrin-polycation-mediated DNA transfer, transfection with naked or encapsulated nucleic acids, liposome-mediated cellular fusion, intracellular transportation of DNA-coated latex beads, protoplast fusion, viral infection, electroporation, and calcium phosphate-mediated transfection.

Alternatively, expression of an endogenous gene encoding a protein of the invention can be manipulated by introducing by homologous recombination a DNA construct comprising a transcription unit in frame with the endogenous gene, to form a homologously recombinant cell comprising the transcription unit. The transcription unit comprises a targeting sequence, a regulatory sequence, an exon, and an unpaired splice donor site. The new transcription unit can be used to turn the endogenous gene on or off as desired. This method of affecting endogenous gene expression is taught in U.S. 5,641,670, which is incorporated herein by reference.

The targeting sequence is a segment of at least 10, 12, 15, 20, or 50 contiguous nucleotides selected from the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19. The transcription unit is located upstream to a coding sequence of the endogenous gene. The exogenous regulatory sequence directs transcription of the coding sequence of the endogenous gene.

Secreted proteins of the invention have a variety of uses. For example, secreted proteins can be used in assays to determine biological activities, such as cytokine, cell proliferation, or cellular differentiation activities, tissue growth or

30

regeneration, activin or inhibin activity, chemotactic or chemokinetic activity, hemostatic or thrombolytic activity, receptor/ligand activity, tumor inhibition, or anti-inflammatory activity. Assays for these activities are known in the art and are disclosed, for example, in U.S. 5,654,173, which is incorporated herein by reference.

Proteins of the invention can also be used as biomarkers, to identify tissues or cell types which express the proteins, or a stage- or disease-specific alteration in protein expression. Proteins of the invention can be used in protein interaction assays, to identify ligands or binding proteins. Compounds which affect the biological activities of the secreted proteins or their ability to interact with specific ligands can be identified using proteins of the invention in screening assays. Proteins and antibodies of the invention can also be used to design diagnostic tests and therapeutic compositions for diseases which may be associated with altered expression of these proteins. Fusion proteins comprising, for example, signal sequences or transmembrane domains of the disclosed proteins, can be used to target other protein domains to cellular locations in which the domains are not normally found, such as bound to a cellular membrane or secreted extracellularly.

Further objects, features, and advantages of the present invention will readily occur to the skilled artisan provided with the disclosure above.

SYNOPSIS OF THE INVENTION

- 1. An isolated and purified human protein having an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.
- 2. An isolated and purified human protein having an amino acid sequence which is at least 85% identical to an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.

- 3. The isolated and purified human protein of item 2 wherein the amino acid sequence is at least 90% identical.
- 4. The isolated and purified human protein of item 2 wherein the amino acid sequence is at least 95% identical.
- 5. The isolated and purified human protein of item 2 wherein the amino acid sequence is at least 98% identical.
- 6. An isolated and purified human polypeptide comprising at least 6 contiguous amino acids of an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.
- 7. A fusion protein comprising a first protein segment and a second protein segment fused together by means of a peptide bond, wherein the first protein segment consists of at least 6 contiguous amino acids selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38.
- 8. A preparation of antibodies which specifically bind to the human protein of item 1.
- 9. The preparation of antibodies of item 8 wherein the antibodies are monoclonal.
- 10. The preparation of antibodies of item 8 wherein the antibodies are polyclonal.
- 11. The preparation of antibodies of item 8 wherein the antibodies are single chain antibodies.
- 12. An isolated and purified subgenomic polynucleotide having a nucleotide sequence selected from the group consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19.
- 13. An isolated and purified subgenomic polynucleotide consisting of at least 10 contiguous nucleotides of a nucleotide sequence selected from the group

consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19.

- 14. An isolated gene corresponding to a cDNA sequence selected from the group consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19.
- 15. A DNA construct for expressing all or a portion of a human protein having an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38, comprising:

a promoter; and

a polynucleotide segment encoding at least 6 contiguous amino acids of the human protein, wherein the polynucleotide segment is located downstream from the promoter, wherein transcription of the polynucleotide segment initiates at or 3' to the promoter.

- 16. A host cell comprising a DNA construct comprising:a promoter; and
- a polynucleotide segment encoding at least 6 contiguous amino acids of a human protein having an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38, wherein the polynucleotide segment is located downstream from the pormoter and wherein transcription of the polynucleotide segment initiates at or 3' to the promoter.
- 17. A homologously recombinant cell having incorporated therein a new transcription initiation unit, wherein the new transcription initiation unit comprises in 5' to 3' order:
 - (a) an exogenous regulatory sequence;
 - (b) an exogenous exon; and
 - (c) a splice donor site,

wherein the transcription initiation unit is located upstream to a coding sequence of a gene, wherein the gene comprises a nucleotide sequence selected from the group

30

25

5

consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19, and wherein the exogenous regulatory sequence controls transcription of the coding sequence of the gene.

- 18. A method of producing a human protein, comprising the steps of: growing a culture of a cell comprising a DNA construct comprising (1) a promoter and (2) a polynucleotide segment encoding at least 6 contiguous amino acids of a human protein having an amino acid sequence selected from the group consisting of the amino acid sequences shown in SEQ ID Nos:20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, and 38, wherein the polynucleotide segment is located downstream from the promoter and wherein transcription of the polynucleotide segment initiates at or 3' to the promoter; and; purifying the protein from the culture.
- 19. A method of producing a human protein, comprising the steps of:
 growing a culture of a homologously recombinant cell having
 incorporated therein a new transcription initiation unit, wherein the new
 transcription initiation unit comprises in 5' to 3' order:
 - (a) an exogenous regulatory sequence;
 - (b) an exogenous exon; and
 - (c) a splice donor site,

wherein the transcription initiation unit is located upstream to a coding sequence of a gene, wherein the gene comprises a nucleotide sequence selected from the group consisting of the nucleotide sequences shown in SEQ ID NOs:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and 19 and wherein the exogenous regulatory sequence controls transcription of the coding sequence of the gene; and

purifying the protein from the culture.

20. A method of identifying a secreted polypeptide which is modified by rough microsomes, comprising the steps of:

transcribing in vitro a population of cDNA molecules whereby a population of cRNA molecules is formed;

5

10

translating a first portion of the population of cRNA molecules in vitro in the absence of rough microsomes whereby a first population of polypeptides is formed;

translating a second portion of the population of cRNA molecules in vitro in the presence of rough microsomes whereby a second population of polypeptides is formed;

comparing the first population of polypeptides with the second population of polypeptides; and

detecting polypeptide members of the second population which have been modified by the rough microsomes.

- 21. The method of item 20 wherein the population of cDNA molecules is synthesized by reverse transcription of a population of mRNA molecules.
- 22. The method of item 21 wherein the mRNA molecules are isolated from a mammal.
- The method of item 22 wherein the mRNA molecules are isolated 23. from a human.
- The method of item 20 wherein the population of cDNA molecules 24. is obtained from a cDNA library.
- 25. The method of item 24 wherein the cDNA library is derived from a mammalian genome.
- 26. The method of item 25 wherein the cDNA library is derived from a human genome.

SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: Escobedo, Jaime
 Quianjin, Hu
 Garcia, Pablo
 Williams, Lewis T.
 Kothakota, Srinivas
- (ii) TITLE OF THE INVENTION: Secreted Human Proteins
- (iii) NUMBER OF SEQUENCES: 38
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Banner & Witcoff
 - (B) STREET: 1001 G Street, NW
 - (C) CITY: Washington
 - (D) STATE: DC
 - (E) COUNTRY: USA
 - (F) ZIP: 20001
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 11-DEC-1997

(C) CLASSIFICATION:

- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 60/032757
 - (B) FILING DATE: 11-DEC-1996

(viii) ATTORNEY/AGENT INFORMATION:

- (A) NAME: Kagan, Sarah A
- (B) REGISTRATION NUMBER: 32141
- (C) REFERENCE/DOCKET NUMBER:

2441.39505;1369.002;1452.001

- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 202-508-9100
 - (B) TELEFAX: 202-508-9299
 - (C) TELEX:
 - (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2063 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ix) FEATURE:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

60	CTCTCTGCTC	GTGTCCGCTT	GCGGCGGTGG	GTCTTCCAGG	CGAGGCCTCA	GAATTCGGCA
120	GCGGTGCTGC	AGTCAGCTCA	GACTCCCCCT	GCGTGACCCT	CCGCACTCGC	TTCGACTGCA
180	CTCTGGCGTT	GGCGTGTTGG	CGGGGCTCGC	AAGCCGGCGT	CGGCGGCGCG	CATGGCGTGG
240	GGTTCTCGGC	GCTCTCGAGT	CCGGGGCCGG	TGCCCGGGGC	ССССТСТССС	COTCCCCTC

300 CGTGGTAAAC ATCGAGTACG TGGACCCGCA GACCAACCTG ACGGTGTGGA GCGTCTCGGA GAGTGGCCGC TTCGGCGACA GCTCGCCCAA GGAGGGCGCG CATGGCCTGG TGGGCGTCCC 360 GTGGGCGCCC GGCGGAGACC TCGAGGGCTG CGCGCCCGAC ACGCGCTTCT TCGTGCCCGA 420 GCCCGCCGC CGAGGGGCCG CGCCCTGGT CGCCCTGGTG GCTCGTGGGG GCTGCACCTT 480 CAAGGACAAG GTGCTGGTGG CGGCGCGGAG GAACGCCTCG GCCGTCGTCC TCTACAATGA 540 GGAGCGCTAC GGGAACATCA CCTTGCCCAT GTCTCACGCG GGAACAGGAA ATATAGTGGT 600 CATTATGATT AGCTATCCAA AAGGAAGAGA AATTTTGGAG CTGGTGCAAA AAGGAATTCC 660 AGTAACGATG ACCATAGGGG TTGGCACCCG GCATGTACAG GAGTTCATCA GCGGTCAGTC 720 TGTGGTGTTT GTGGCCATTG CCTTCATCAC CATGATGATT ATCTCGTTAG CCTGGCTAAT 780 840 ATTTTACTAT ATACAGCGTT TCCTATATAC TGGCTCTCAG ATTGGAAGTC AGAGCCATAG AAAAGAAACT AAGAAAGTTA TTGGCCAGCT TCTACTTCAT ACTGTAAAGC ATGGAGAAAA 900 GGGAATTGAT GTTGATGCTG AAAATTGTGC AGTGTGTATT GAAAATTTCA AAGTAAAGGA 960 TATTATTAGA ATTCTGCCAT GCAAGCATAT TTTTCATAGA ATATGCATTG ACCCATGGCT 1020 TTTGGATCAC CGAACATGTC CAATGTGTAA ACTTGATGTC ATCAAAGCCC TAGGATATTG 1080 GGGAGAGCCT GGGGATGTAC AGGAGATGCC TGCTCCAGAA TCTCCTCCTG GAAGGGATCC 1140 AGCTGCAAAT TTGAGTCTAG CTTTACCAGA TGATGACGGA AGTGATGACA GCAGTCCACC 1200 ATCAGCCTCC CCTGCTGAAT CTGAGCCACA GTGTGATCCC AGCTTTAAAG GAGATGCAGG 1260 AGAAAATACG GCATTGCTAG AAGCCGGCAG GAGTGACTCT CGGCATGGAG GACCCATCTC 1320 CTAGCACACG TGCCCACTGA AGTGGCACCA ACAGAAGTTT GGCTTGAACT AAAGGACATT 1380 TTATTTTTT TACTTTAGCA CATAATTTGT ATATTTGAAA ATAATGTATA TTATTTTACC 1440 TATTAGATTC TGATTTGATA TACAAAGGAC TAAGATATTT TCTTCTTGAA GAGACTTTTC 1500 GATTAGTCCT CATATATTA TCTACTAAAA TAGAGTGTTT ACCATGAACA GTGTGTTGCT 1560 TCAGACTATT ACAAAGACAA CTGGGGCAGG TACTCTAATA TAAAGGACAG GTGGTGTTTC 1620 TAAATAATTG GCTGCTATGG TTCTGTAAAA ACCAGTTAAT TCTATTTTTC AAGGTTTTTG 1680 GCAAAGCACA TCAATGTTAG ACTAGTTGAA GTGGAATTGT ATAATTCAAT TCGATAATTG 1740 1800 AACTTGTAAA CTGAGATGTC TGTAGCTTTT TTGCCCATCT GTAGTGTATG TGAAGATTTC 1860 AAAACCTGAG AGCACTTTTT CTTTGTTTAG AATTATGAGA AAGGCACTAG ATGACTTTAG 1920 GATTTGCATT TTTCCCTTTA TTGCCTCATT TCTTGTGACG CCTTGTTGGG GAGGGAAATC 1980 2040 AAAAAAAA TTCCTGCGGC CGC 2063

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1328 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

GAATTCGGCA	CGAGGTAGGC	AAGGGATAAA	AAGGCACCTA	AGGCCCTTTT	GCAATAAGAA	60
GCCAGATGGA	TAAAGGAAGT	GCTGGTCACC	CTGGAGGTGT	ACTGGTTTGG	GGAAGGTCCC	120
CGGCCCCCAC	AGCCCTCTGG	GGAGCCTCAC	CCTGGCTCTC	CCCACTCACC	TCAGCCCTCA	180
GGCAGCCCCT	CCACAGGGCC	CCTCTCCTGC	CTGGACAGCT	CTGCTGGTCT	CCCCGTCCCC	240
TGGAGAAGAA	CAAGGCCATG	GGTCGGCCCC	TGCTGCTGCC	CCTGCTGCTC	CTGCTGCAGC	300
CGCCAGCATT	TCTGCAGCCT	GGTGGCTCCA	CAGGATCTGG	TCCAAGCTAC	CTTTATGGGG	360
TCACTCAACC	AAAACACCTC	TCAGCCTCCA	TGGGTGGCTC	TGTGGAAATC	CCCTTCTCCT	420
TCTATTACCC	CTGGGAGTTA	GCCATAGTTC	CCAACGTGAG	AATATCCTGG	AGACGGGGCC	480
ACTTCCACGG	GCAGTCCTTC	TACAGCACAA	GGCCGCCTTC	CATTCACAAG	GATTATGTGA	540
ACCGGCTCTT	TCTGAACTGG	ACAGAGGGTC	AGGAGAGCGG	CTTCCTCAGG	ATCTCAAACC	600
TGCGGAAGGA	GGACCAGTCT	GTGTATTTCT	GCCGAGTCGA	GCTGGACACC	CGGAGATCAG	660
GGAGGCAGCA	GTTGCAGTCC	ATCAAGGGGA	CCAAACTCAC	CATCACCCAG	GCTGTCACAA	720
CCACCACCAC	CTGGAGGCCC	AGCAGCACAA	CCACCATAGC	CGGCCTCAGG	GTCACAGAAA	780
GCAAAGGGCA	CTCAGAATCA	TGGCACCTAA	GTCTGGACAC	TGCCATCAGG	GTTGCATTGG	840
CTGTCGCTGT	GCTCAAAACT	GTCATTTTGG	GACTGCTGTG	CCTCCTCCTC	CTGTGGTGGA	900
GGAGAAGGAA	AGGTAGCAGG	GCGCCAAGCA	GTGACTTCTG	ACCAACAGAG	TGTGGGGAGA	960
AGGGATGTGT	ATTAGCCCCG	GAGGACGTGA	TGTGAGACCC	GCTTGTGAGT	CCTCCACACT	1020
CGTTCCCCAT	TGGCAAGATA	CATGGAGAGC	ACCCTGAGGA	CCTTTAAAAG	GCAAAGCCGC	1080
AAGGCAGAAG	GAGGCTGGGT	CCCTGAATCA	CCGACTGGAG	GAGAGTTACC	TACAAGAGCC	1140
TTCATCCAGG	AGCATCCACA	CTGCAATGAT	ATAGGAATGA	GGTCTGAACT	CCACTGAATT	1200
AAACCACTGG	CATTTGGGGG	CTGTTTATTA	TAGCAGTGCA	AAGAGTTCCT	TTATCCTCCC	1260
CAAGGATGGA	AAAATACAAT	TTATTTTGCT	TACCATAAAA	ААААААААА	AAAAATTCCT	1320
GCGGCCGC						1328

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1689 base pairs
 - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GAATTCGGCA	CGAGGGCAAG	ATTCGATACA	AAACCAATGA	ACCTGTGTGG	GAGGAAAACT	60
TCACTTTCTT	CATTCACAAT	CCCAAGCGCC	AGGACCTTGA	AGTTGAGGTC	AGAGACGAGC	120
AGCACCAGTG	TTCCCTGGGG	AACCTGAAGG	TCCCCTCAG	CCAGCTGCTC	ACCAGTGAGG	180
ACATGACTGT	GAGCCAGCGC	TTCCAGCTCA	GTAACTCGGG	TCCAAACAGC	ACCATCAAGA	240
TGAAGATTGC	CCTGCGGGTG	CTCCATCTCG	AAAAGCGAGA	AAGGCCTCCA	GACCACCAAC	300
ACTCAGCTCA	AGTCAAACGT	CCCTCTGTGT	CCAAAGAGGG	GAGGAAAACA	TCCATCAAAT	360
CTCATATGTC	TGGGTCTCCA	GGCCCTGGTG	GCAGCAACAC	AGCTCCATCC	ACACCAGTCA	420
TTGGGGGCAG	TGATAAGCCT	GGTATGGAAG	AAAAGGCCCA	GCCCCTGAG	GCCGGCCCTC	480
AGGGGCTGCA	CGACCTGGGC	AGAAGCTCCT	CCAGCCTCCT	GGCCTCCCCA	GGCCACATCT	540
CAGTCAAGGA	GCCGACCCCC	AGCATCGCCT	CGGACATCTC	GCTGCCCATC	GCCACCCAGG	600
AGCTGCGGCA	AAGGCTGAGG	CAGCTGGAAA	ACGGGACGAC	CCTGGGACAG	TCTCCACTGG	660
GGCAGATCCA	GCTGACCATC	CGGCACAGCT	CGCAGAGAAA	CAAGCTTATC	GTGGTCGTGC	720
ATGCCTGCAG	AAACCTCATT	GCCTTCTCTG	AAGACGGCTC	TGACCCCTAT	GTCCGCATGT	780
ATTTATTACC	AGACAAGAGG	CGGTCAGGAA	GGAGGAAAAC	ACACGTGTCA	AAGAAAACAT	840
TAAATCCAGT	GTTTGATCAA	AGCTTTGATT	TCAGTGTTTC	GTTACCAGAA	GTGCAGAGGA	900
GAACGCTCGA	CGTTGCCGTG	AAGAACAGTG	GCGGCTTCCT	GTCCAAAGAC	AAAGGGCTCC	960
TTGGCAAAGT	ATTGGTTGCT	CTGGCATCTG	AAGAACTTGC	CAAAGGCTGG	ACCCAGTGGT	1020
ATGACCTCAC	GGAAGATGGG	ACGAGGCCTC	AGGCGATGAC	ATAGCCGCAG	CAGGCAGGAG	1080
GCGTCCTCTT	CAGCGTAGCT	CTCCACCTCT	ACCCGGAACA	CACCCTCTCA	CAGACGTACC	1140
AATGTTATTT	TTATAATTTC	ATGGATTTAG	TTATACATAC	CTTAATAGTT	TTATAAAATT	1200
GTTGACATTT	CAGGCAAATT	TGGCCAATAT	TATCATTGAA	TTTTCTGTGT	TGGATTTCCT	1260
CTAGGATTTC	GCCAGTTCCT	ACAACGTGCA	GTAGGGCGGC	GGTAGCTCTT	GTGTCTGTGG	1320
ACTCTGCTCA	GCTGTGTCCG	TAGGAGTCGG	ATGTGTCTGT	GCTTTATTAT	GGCCTTGTTT	1380
ATATATCACT	GAGGTATACT	ATGCCATGTA	AATAGACTAT	TTTTTATAAT	CTTAACATGC	1440
TGGTTTAAAT	TCAGAAGGAA	ATAGATCAAG	GAAATATATA	TATTTTCTTC	TAAAACTTAT	1500
TAAATTCGTG	TGACAAATAA	TCATTTTCAT	CTTGGCAGCA	AAAAGTTCTC	AGTGACCTAT	1560
TTTGTGGTGT	TTCTTTTTGA	AAAGAAAAGC	TGAAATATTA	TTAAATGCTA	GTATGTTTCT	1620
GCCCATTATG	AAAGATGAAA	TAAAGTATTC	AAAATATTAA	ААААААААА	AAAAAATTCC	1680
TGCGGCCGC						1689

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1505 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

60	TTGGGCAACA	TGGAGGCTGC	GTTTCGTTTA	ATCTGCAAGA	CGAGGAGCAG	GAATTCGGCA
120	CAAGGTGGGC	TCGGGGTGTG	TTCTAGCCTG	GAAGAGTGCA	CCTTCGGGAA	AGAACAACTA
180	ATGGAAAGGC	GGGCCCCTCC	CTTTCCCCCA	GCTCAGGCGA	CAGCTCTGGG	CTTTGAGAGG
240	AATGGCTGCT	CCGCTGCAGC	CCACCCAGTT	ACCTGTCAGC	GTGCTCTGGC	GCCATCCAGT
300	TCCGACGAGG	CCCCGACGCC	CCCCAACTG	TGTGACGACA	TTTCCTGGAG	GCATCGACAG
360	TTCCCCAGCG	GCGCATCCAT	ACGAGCTCCA	AGTGGCTTTG	AAAATACACG	CTGCCTGTGA
420	ATCCCGCGCT	CAAGGAGAGC	CAGGACTCTG	CTGCCAGACA	CTGCGTGGAC	ACAAAGGGCA
480	TGTTACGGCA	CTATGGTGGT	CCCGCTTTAC	GAACACTGCG	CCCCTTCAGC	GGTACTACAA
540	ATCTCCAAGA	TTGTCGCGGC	GCCTCGAGTC	GAGCAGCAGT	CTTTGAGGAA	ACAAGAACAA
600	GTGGAGATGG	CACAGGCTCT	CCATTCCCAG	CGGGAAATCC	TGGCCTGAGG	AGGATGTGTT
660	GGTTACTGCT	AGCCATCTTG	TGGTGGTGGT	ATCTGCATTG	GTTCCTGGTC	CTGTCGCAGT
720	CCCACCCCTG	CCACCCACCA	GACACCACCA	GACTTCCACG	CCAGAGAAAG	TCTTCAAGAA
780	CACACCACGC	GGTCTATAAC	CGGAGCACCT	ACCGAGGACA	TGTCTCCACT	CCAGCTCCAC
840	CTTGCCAAGG	CTGCTTCCTG	TCACCTGGCC	TCACCGGCTC	AGCCTGGGTC	GGCCCCTCTG
900	CAGGCCCACT	GCCTGTTTCC	CCAGACTCTT	AACTTTGGAA	GGCTGGGAAA	CAGAGGCCTG
960	CTCACGTCCT	CTCAGCTAAG	TTGGAGAAGT	CCAGCCCCTC	GACCAGGGCT	GTGCCTCAGA
1020	CCAGACTAGA	GCCAGAAGTA	AAACCCTTGG	AAGGAGCAGA	AAAGGTTTGG	GAGAAAGCTC
1080	GTTCAAAGCT	TGTTTCCTCT	GTTGGAGTTT	TTTGGAGGAA	TGCATAGGAG	TGGACCTGCC
1140	CCTGGAGGCC	GGTGTCAGAC	GGAGTGGGGT	GCTAGGAAGA	ACCCCATGGT	GCCTGTCCCT
1200	GAGGAAGGAC	CCAGGGCTGG	TGCTGTGCGC	TCCTCTTCCA	CCTCCCGAGC	CCAACCCTGT
1260	TGTGGCATGG	TATTTAATGC	GCTTTTTGTT	GTAAAGAGTT	AGTTTGTGCT	TTCCCTGTGT
1320	TTCCCCCAAG	TCTCTTCCTC	CTCTCTATCC	CCTGTTTGGC	GGGGAAGAGG	GTGAAGAGGA
1380	AGAGCCAGGA	ACCAGCAGAC	CCTGGCCTAG	TCAGCCCCAC	CTGCCCTTGA	ATTGAGCTCT
1440	CAGCCCAGCC	TCCAACATCA	CCCAAGGTTC	AGCCCCCACC	TGCATTCCGC	GAAGCTCAGC
1500	AAGTCCTGCG	AAAAAAAAA	ААААААААА	TGGTTTGTGG	GTAATAAAAG	CGCCCACTGG

GCCGC 1505

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2002 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GAATTCGGCA	CGAGGGCCAT	GGCCGGGCTA	TCCCGCGGGT	CCGCGCGCGC	ACTGCTCGCC	60
GCCCTGCTGG	CGTCGACGCT	GTTGGCGCTG	CTCGTGTCGC	CCGCGCGGG	TCGCGGCGGC	120
CGGGACCACG	GGGACTGGGA	CGAGGCCTCC	CGGCTGCCGC	CGCTACCACC	CCGCGAGGAC	180
GCGGCGCGCG	TGGCCCGCTT	CGTGACGCAC	GTCTCCGACT	GGGGCGCTCT	GGCCACCATC	240
TCCACGCTGG	AGGCGGTGCG	CGGCCGGCCC	TTCGCCGACG	TCCTCTCGCT	CAGCGACGGG	300
CCCCCGGGCG	CGGGCAGCGG	CGTGCCCTAT	TTCTACCTGA	GCCCGCTGCA	GCTCTCCGTG	360
AGCAACCTGC	AGGAGAATCC	ATATGCTACA	CTGACCATGA	CTTTGGCACA	GACCAACTTC	420
TGCAAGAAAC	ATGGATTTGA	TCCACAAAGT	CCCCTTTGTG	TTCACATAAT	GCTGTCAGGA	480
ACTGTGACCA	AGGTGAATGA	AACAGAAATG	GATATTGCAA	AGCATTCGTT	ATTCATTCGA	540
CACCCTGAGA	TGAAAACCTG	GCCTTCCAGC	CATAATTGGT	TCTTTGCTAA	GTTGAATATA	600
ACCAATATCT	GGGTCCTGGA	CTACTTTGGT	GGACCAAAAA	TCGTGACACC	AGAAGAATAT	660
TATAATGTCA	CAGTTCAGTG	AAGCAGACTG	TGGTGAATTT	AGCAACACTT	ATGAAGTTTC	720
TTAAAGTGGC	TCATACACAC	TTAAAAGGCT	TAATGTTTCT	CTGGAAAGCG	TCCCAGAATA	780
TTAGCCAGTT	TTCTGTCACA	TGCTGGTTTG	TTTGCTTGCT	TGTTTACTTG	CTTGTTTACC	840
AATAGAGTTG	ACCTGTTATT	GGATTTCCTG	GAAGATGTGG	TAGCTACTTT	TTTCCTATTT	900
TGAAGCCATT	TŢCGTAGAGA	AATATCCTTC	ACTATAATCA	AATAAGTTTT	GTCCCATCAA	960
TTCCAAAGAT	GTTTCCAGTG	GTGCTCTTGA	AGAGGAATGA	GTACCAGTTT	TAAATTGCCC	1020
ATTGGCATTT	GAAGGTAGTT	GAGTATGTGT	TCTTTATTCC	TAGAAGCCAC	TGTGCTTGGT	1080
AGAGTGCATC	ACTCACCACA	GCTGCCTCTT	GAGCTGCCTG	AGCCTGGTGC	AAAAGGATTG	1140
GCCCCATTA	TGGTGCTTCT	GAATAAATCT	TGCCAAGATA	GACAAACAAT	GATGAAACTC	1200
AGATGGAGCT	TCCTACTCAT	GTTGATTTAT	GTCTCACAAT	CCTGGGTATT	GTTAATTCAA	1260
CATAGGGTGA	AACTATTTCT	GATAAAGAAC	TTTTGAAAAA	CTTTTTATAC	TCTAAAGTGA	1320
TACTCAGAAC	AAAAGAAAGT	CATAAAACTC	CTGAATTTAA	TTTCCCCACC	TAAGTCGAGA	1380

CAGTATTATC	AAAACACATG	TGCACACAGA	TTATTTTTTG	GCTCCAAAAC	TGGATTGCAA	1440
AAGAAAGAGG	AGAGATATTT	TGTGTGTTCC	TGGTATTCTT	TTATAAGTAA	AGTTACCCAG	1500
GCATGGACCA	GCTTCAGCCA	GGGACAAAAT	CCCCTCCCAA	ACCACTCTCC	ACAGCTTTTT	1560
AAAAATACTT	CTACTCTTAA	CAATTACCTA	AGGTTCCTTC	AAACCCCCCC	AACTCTTAAT	1620
AGCTTCTAGT	GCTGCTACAA	TCTAAGTCAG	GTCACCAGAG	GGAAGAGAAC	ATGGCATTAA	1680
AAGAATCACA	TCTTCAGAAG	AGAAGACACT	AATATTATTA	CCCATATACA	TGATTTCAGA	1740
AGATGACATA	AGATTCCTCT	TAAAGAGGAA	ATGTCAGGAA	TCAAGCCACT	GAATCCTTAA	1800
AGAGAAAAGT	TGAATATGAG	TCATTGTGTC	TGAAAACTGC	AAAGTGAACT	TAACTGAGAT	1860
CCAGCAAACA	GGTTCTGTTT	AAGAAAAATA	ATTTATACTA	AATTTAGTAA	AATGGACTTC	1920
TTATTCAAAG	CATCAATAAT	TAAAAGAATT	ATTTTAAAAA	АААААААА	АААААААА	1980
ТАААААААА	TCCTGCGGCC	GC				2002

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1322 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GAATTCGGCA	CGAGGGCCAC	GACTCTGCTG	GCATTTCTTC	TATAGCCACT	GGAATCTGAT	60
CCTGATTGTC	TTCCACTACT	ACCAGGCCAT	CACCACTCCG	CCTGGGTACC	CACCCCAGGG	120
CAGGAATGAT	ATCGCCACCG	TCTCCATCTG	TAAGAAGTGC	ATTTACCCCA	AGCCAGCCCG	180
AACACACCAC	TGCAGCATCT	GCAACAGGTG	TGTGCTGAAG	ATGGATCACC	ACTGCCCCTG	240
GCTAAACAAT	TGTGTGGGCC	ACTATAACCA	TCGGTACTTC	TTCTCTTTCT	GCTTTTTCAT	300
GACTCTGGGC	TGTGTCTACT	GCAGCTATGG	AAGTTGGGAC	CTTTTCCGGG	AGGCTTATGC	360
TGCCATTGAG	AAAATGAAAC	AGCTCGACAA	GAACAAACTA	CAGGCGGTTG	CCAACCAGAC	420
TTATCACCAG	ACCCCACCAC	CCACCTTCTC	CTTTCGAGAA	AGGATGACTC	ACAAGAGTCT	480
TGTCTACCTC	TGGTTCCTGT	GCAGTTCTGT	GGCACTTGCC	CTGGGTGCCC	TAACTGTATG	540
GCATGCTGTT	CTCATCAGTC	GAGGTGAGAC	TAGCATCGAA	AGGCACATCA	ACAAGAAGGA	600
GAGACGTCGG	CTACAGGCCA	AGGGCAGAGT	ATTTAGGAAT	CCTTACAACT	ACGGCTGCTT	660
GGACAACTGG	AAGGTATTCC	TGGGTGTGGA	TACAGGAAGG	CACTGGCTTA	CTCGGGTGCT	720
CTTACCTTCT	ACTCACTTGC	CCCATGGGAA	TGGAATGAGC	TGGGAGCCCC	CTCCCTGGGT	780

GACTGCTCAC	TCAGCCTCTG	TGATGGCAGT	GTGAGCTGGA	CTGTGTCAGC	CACGACTCGA	840
GCACTCATTC	TGCTCCCTAT	GTTATTTCAA	GGGCCTCCAA	GGGCAGCTTT	TCTCAGAATC	900
CTTGATCAAA	AAGAGCCAGT	GGGCCTGCCT	TAGGGTACCA	TGCAGGACAA	TTCAAGGACC	960
AGCCTTTTTA	CCACTGCAGA	AGAAAGACAC	AATGTGGAGA	AATCTTAGGA	CTGACATCCC	1020
TTTACTCAGG	CAAACAGAAG	TTCCAACCCC	AGACTAGGGG	TCAGGCAGCT	AGCTACCTAC	1080
CTTGCCCAGT	GCTGACCCGG	ACCTCCTCCA	GGATACAGCA	CTGGAGTTGG	CCACCACCTC	1140
TTCTACTTGC	TGTCTGAAAA	AACACCTGAC	TAGTACAGCT	GAGATCTTGG	CTTCTCAACA	1200
GGGCAAAGAT	ACCAGGCCTG	CTGCTGAGGT	CACTGCCACT	TCTCACATGC	TGCTTAAGGG	1260
AGCACAAATA	AAGGTATTCG	ATTTTTAAAA	АААААААА	AAAAAAAAT	TCCTGCGGCC	1320
GC						1322

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1573 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GAATTCGGCA	CGAGGAGCCT	GCCTTCATCT	AGGATGGCTC	CTCTGGGCAT	GCTGCTTGGG	60
CTGCTGATGG	CCGCCTGCTT	CACCTTCTGC	CTCAGTCATC	AGAACCTGAA	GGAGTTTGCC	120
CTGACCAACC	CAGAGAAGAG	CAGCACCAAA	GAAACAGAGA	GAAAAGAAAC	CAAAGCCGAG	180
GAGGAGCTGG	ATGCCGAAGT	CCTGGAGGTG	TTCCACCCGA	CGCATGAGTG	GCAGGCCCTT	240
CAGCCAGGGC	AGGCTGTCCC	TGCAGGATCC	CACGTACGGC	TGAATCTTCA	GACTGGGGAA	300
AGAGAGGCAA	AACTCCAATA	TGAGGACAAG	TTCCGAAATA	ATTTGAAAGG	CAAAAGGCTG	360
GATATCAACA	CCAACACCTA	CACATCTCAG	GATCTCAAGA	GTGCACTGGC	AAAATTCAAG	420
GAGGGGGCAG	AGATGGAGAG	TTCAAAGGAA	GACAAGGCAA	GGCAGGCTGA	GGTAAAGCGG	480
CTCTTCCGCC	CCATTGAGGA	ACTGAAGAAA	GACTTTGATG	AGCTGAATGT	TGTCATTGAG	540
ACTGACATGC	AGATCATGGT	ACGGCTGATC	AACAAGTTCA	ATAGTTCCAG	CTCCAGTTTG	600
GAAGAGAAGA	TTGCTGCGCT	CTTTGATCTT	GAATATTATG	TCCATCAGAT	GGACAATGCG	660
CAGGACCTGC	TTTCCTTTGG	TGGTCTTCAA	GTGGTGATCA	ATGGGCTGAA	CAGCACAGAG	720
CCCCTCGTGA	AGGAGTATGC	TGCGTTTGTG	CTGGGCGCTG	CCTTTTCCAG	CAACCCCAAG	780
GTCCAGGTGG	AGGCCATCGA	AGGGGGAGCC	CTGCAGAAGC	TGCTGGTCAT	CCTGGCCACG	840

GAGCAGCCGC	TCACTGCAAA	GAAGAAGGTC	CTGTTTGCAC	TGTGCTCCCT	GCTGCGCCAC	900
TTCCCCTATG	CCCAGCGGCA	GTTCCTGAAG	CTCGGGGGGC	TGCAGGTCCT	GAGGACCCTG	960
GTGCAGGAGA	AGGGCACGGA	GGTGCTCGCC	GTGCGCGTGG	TCACACTGCT	CTACGACCTG	1020
GTCACGGAGA	AGATGTTCGC	CGAGGAGGAG	GCTGAGCTGA	CCCAGGAGAT	GTCCCCAGAG	1080
AAGCTGCAGC	AGTATCGCCA	GGTACACCTC	CTGCCAGGCC	TGTGGGAACA	GGGCTGGTGC	1140
GAGATCACGG	CCCACCTCCT	GGCGCTGCCC	GAGCATGATG	CCCGTGAGAA	GGTGCTGCAG	1200
ACACTGGGCG	TCCTCCTGAC	CACCTGCCGG	GACCGCTACC	GTCAGGACCC	CCAGCTCGGC	1260
AGGACACTGG	CCAGCCTGCA	GGCTGAGTAC	CAGGTGCTGG	CCAGCCTGGA	GCTGCAGGAT	1320
GGTGAGGACG	AGGGCTACTT	CCAGGAGCTG	CTGGGCTCTG	TCAACAGCTT	GCTGAAGGAG	1380
CTGAGATGAG	GCCCCACACC	AGGACTGGAC	TGGGATGCCG	CTAGTGAGGC	TGAGGGGTGC	1440
CAGCGTGGGT	GGGCTTCTCA	GGCAGGAGGA	CATCTTGGCA	GTGCTGGCTT	GGCCATTAAA	1500
TGGAAACCTG	AAGGCCAAAA	ааааааааа	ААААААААА	ААААААААА	ААААААААА	1560
TTCCTGCGGC	CGC					1573

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1185 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

60	ATCAGATGTG	CAGGTGGCAG	GCTGAGCCGG	TTAAGGGACA	CGAGGGGGCT	GAATTCGGCA
120	TCGACATCCT	TACGCCAACA	CTTCAGCTTG	CCTCCAGGGC	AAAAGACAAG	GCAGGCTGGG
180	AGTCCATGAT	AGGCTCCTGG	GGTGCGAAGC	AGCCTGCTCA	TTTGATGTGG	CAGACCCTAC
240	GACCTCTCAT	GAACTCTATG	AATTGCAGGT	TCCCCCAGAA	ATGGTCAACT	CCCTATCAAG
300	ACACTATTAT	AAGACGTCTG	CCATGGGATG	CTATCCTACT	ACTCTGGTTG	GCTGGTCTTC
360	GGCTGGGAGT	TTCGGCTACT	TGGCACCTGC	GCACAGCCAT	ACCCTGATGG	CCGGGAGGGC
420	TGCTGCAGAT	CAGATCACCA	GTGCAACGCC	TTGCCTACCT	ATTTACTTCC	CTCATCCTTC
480	TCACCTATAA	GTCCTGTTCA	GCATTGCATT	GCCTCTTTGG	CTGGGCTATG	GTTGGCACTG
540	TGTCCACACT	GTGGGTGGAC	CTGGCTGTTG	TCTACCTCTT	CACGCCCTCT	TATCCACCTC
600	TGCTCCTCTG	ACACAGCGGC	CGTGGGCCCC	TGTCTCGGAC	GCAGTGTTGG	GCGCATGGTA
660	CCTACCACAA	CTGCATTTTG	CCTGCTCTAT	ACATGCTCTT	GCTGCCCTAC	TGGCACCCTG

720	TCCAGAGGGT	ATCCCGCCCA	GGGCCCCAAC	ACACACTGGA	GGGATCCTGG	AGTGGTAGAG
780	TCCTCAACGC	CCCACCACCG	TGCTCGGCTT	TGCTCCCTGC	ATCCCTGCCA	CCCCAGAGAC
840	AATTCTTGGC	CCCCACCTGA	GTCACACTGA	TGACCCTGCA	GCTGTTGCGG	CACAGCCAAA
900	TCCTGATGAC	TAAAGGACAG	GGAAGACTAT	GCAGAGAGGA	TCCCGCAGCT	CAGTCCTCTT
960	TACCTCCTTG	GCTGCGTAAG	CTGAGCTGTA	GCAGCTGCCA	GATGGGGTTT	ATGTTTCGTA
1020	ACTGCAAGGC	CCTGGCCAGG	GCCAAGAACT	AAGGCACAAG	GCACTTCTGA	ATGCCTGTCG
1080	CCTACCCCTT	CCCCTCCCCA	CCTTTGAGAA	TGGGTCAGCT	ATGCAGAAAA	TCTGCAGCCA
1140	TTAAAATGTT	GACTTGGTAA	GCTAAATATA	ACATTGTCTT	TATCTCTCCC	CCTTCCTCTT
1185		GCCGC	AATTCCTGCG	АААААААА	TGGAAAAAA	GATTGAAGTC

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1226 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

60	AAGGCACCCA	CACCCCTTTA	CTTCGGCCTG	CACCATCTTC	CGAGGCAAGC	GAATTCGGCA
120	AGGAGTACTT	CTCCAGCCTA	CTTTGACATC	AACTGAAGCC	GAAAAAGATG	GACCCCTCTG
180	TGGATCTCTC	AACGAGGCCC	GGGAAGTGAG	TCATTAAGAT	CGCCACACGG	CCAGCTCAGC
240	TCCAGGAAGA	CCCCCAATCT	TGAAGTCAGT	TCAAGGCTGG	GTGCCCTGGC	CATGAAGTCA
300	CTGAGACACT	GAGCCTCCCC	CCGGAAATCC	TGGCAGCCCA	GACCTGTCAG	TGCAGCCCTA
360	AACTTCCCAG	GTGATGGAGA	AGGTCACACA	TGGACAGCTC	GGTGCATCAG	GTATGACAGT
420	TGATGGATAG	GCCCCAGCCA	GTCCCATGAG	CCCCTGCCAC	ATTTCTTTTG	TGGCATGGAA
480	ACCCCAGCGG	CAGCCCAACC	GATGCTCAGC	CTGCTACCGA	AGCAGTGATG	TCACATCAGC
540	CCAAGGTCAT	TCCCAGGCGG	GGTGGGCGAG	ACATTGAGAT	GCTGAAAATA	CGAAGTCAAG
600	GCCTCTCAGG	AAGATCAAAG	ATTCTGTGGC	TGCCTACCAT	GAAGATGCTG	TGTCTCTGTC
660	GCTATGACAT	GTGCTTCAGG	AGAAGACTCC	CCTTCAAAAG	AAAAACTTCT	GGTGTCCACC
720	CCATCAAAAA	CTTAGGAAAC	TGCAGAGCCC	CCATGGGAAA	GGGGAAGAGT	CAACAGCCAA
780	CAATCAAAAA	CACATGCTCC	CCAGGAAGTA	AAGTGAACTC	AAGTTAAAGA	CCGGAGCATA
840	ATTTGTATGA	GCTTTTTAAA	GTAAATAACG	TTCCAAGAAA	GCCACCTTTT	ACAACGGCTG
900	AATTATCTTT	ATTTAAAACA	ATAAAAAGGC	CATTGGTTTT	GGGAAAGGTG	TTATAATATG

C	TTAATTATT	TTGGGGAGTA	GTTGGGAAAT	GGAAAGGTGA	ATTGGCTCTA	GAGGCCCTGT	960
P	ATGCTAGTAT	CATTTTCTTT	TTTAATTTTT	GACTTTTCAC	AAATGAGTAA	ATAAGAGCAA	1020
C	CTATTTTC	AAGCAGATTG	CACATTTTTT	GCAGCTTTAA	TGGAATATTG	GGTGAATTAG	1080
2	AGGGGTAAAA	AAAGCTATTT	TCATTGCCAC	AAAGTGCTTT	GATGATGTAA	TACCTAATAA	1140
7	AGGGTAGGAT	GAATATTTCA	CAATAAATGT	TTGTTTGCAC	ТАААААААА	АААААААА	1200
Z	AAAAAAAA	AAATTCCTGC	GGCCGC				1226

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1049 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GAATTCGGCA	CGAGGCCCC	ATGGTGAAGG	TGACGTTCAA	CTCCGCTCTG	GCCCAGAAGG	60
AGGCCAAGAA	GGACGAGCCC	AAGAGCGGCG	AGGAGGCGCT	CATCATCCCC	CCCGACGCCG	120
TCGCGGTGGA	CTGCAAGGAC	CCAGATGATG	TGGTACCAGT	TGGCCAAAGA	AGAGCCTGGT	180
GTTGGTGCAT	GTGCTTTGGA	CTAGCATTTA	TGCTTGCAGG	TGTTATTCTA	GGAGGAGCAT	240
ACTTGTACAA	ATATTTTGCA	CTTCAACCAG	ATGACGTGTA	CTACTGTGGA	ATAAAGTACA	300
TCAAAGATGA	TGTCATCTTA	AATGAGCCCT	CTGCAGATGC	CCCAGCTGCT	CTCTACCAGA	360
CAATTGAAGA	AAATATTAAA	ATCTTTGAAG	AAGAAGAAGT	TGAATTTATC	AGTGTGCCTG	420
TCCCAGAGTT	TGCAGATAGT	GATCCTGCCA	ACATTGTTCA	TGACTTTAAC	AAGAAACTTA	480
CAGCCTATTT	AGATCTTAAC	CTGGATAAGT	GCTATGTGAT	CCCTCTGAAC	ACTTCCATTG	540
TTATGCCACC	CAGAAACCTA	CTGGAGTTAC	TTATTAACAT	CAAGGCTGGA	ACCTATTTGC	600
CTCAGTCCTA	TCTGATTCAT	GAGCACATGG	TTATTACTGA	TCGCATTGAA	AACATTGATC	660
ACCTGGGTTT	CTTTATTTAT	CGACTGTGTC	ATGACAAGGA	AACTTACAAA	CTGCAACGCA	720
GAGAAACTAT	TAAAGGTATT	CAGAAACGTG	AAGCCAGCAA	TTGTTTCGCA	ATTCGGCATT	780
TTGAAAACAA	ATTTGCCGTG	GAAACTTTAA	TTTGTTCTTG	AACAGTCAAG	AAAAACATTA	840
TTGAGGAAAA	TTAATATCAC	AGCATAACCC	CACCCTTTAC	ATTTTGTTGC	AGTTGATTAT	900
TTTTTAAAGT	CTTCTTTCAT	GTAAGTAGCA	AACAGGGCTT	TACTATCTTT	TCATCTCATT	960
AATTCAATTA	AAACCATTAC	CTTAAAAAAA	ааааааааа	ААААААААА	ААААААААА	1020
АААААААА	AAAAAATTCC	TGCGGCCGC				1049

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1142 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GAATTCGGCA	CGAGGGGAGA	ATACTTTTTG	CGATGCCTAC	TGGAGACTTT	GATTCGAAGC	60
CCAGTTGGGC	CGACCAGGTG	GAGGAGGAGG	GGGAGGACGA	CAAATGTGTC	ACCAGCGAGC	120
TCCTCAAGGG	GATCCCTCTG	GCCACAGGTG	ACACCAGCCC	AGAGCCAGAG	CTACTGCCGG	180
GAGCTCCACT	GCCGCCTCCC	AAGGAGGTCA	TCAACGGAAA	CATAAAGACA	GTGACAGAGT	240
ACAAGATAGA	TGAGGATGGC	AAGAAGTTCA	AGATTGTCCG	CACCTTCAGG	ATTGAGACCC	300
GGAAGGCTTC	AAAGGCTGTC	GCAAGGAGGA	AGAACTGGAA	GAAGTTCGGG	AACTCAGAGT	360
TTGACCCCCC	CGGACCCAAT	GTGGCCACCA	CCACTGTCAG	TGACGATGTC	TCTATGACGT	420
TCATCACCAG	CAAAGAGGAC	CTGAACTGCC	AGGAGGAGGA	GGACCCTATG	AACAAATTCA	480
AGGGCCAGAA	GATCGTGTCC	TGCCGCATCT	GCAAGGGCGA	CCACTGGACC	ACCCGCTGCC	540
CCTACAAGGA	TACGCTGGGG	CCCATGCAGA	AGGAGCTGGC	CGAGCAGCTG	GGCCTGTCTA	600
CTGGCGAGAA	GGAGAAGCTG	CCGGGAGAGC	TAGAGCCGGT	GCAGGCCACG	CAGAACAAGA	660
CAGGGAAGTA	TGTGCCGCCG	AGCCTGCGCG	ACGGGGCCAG	CCGCCGCGG	GAGTCCATGC	720
AGCCCAACCG	CAGAGCCGAC	GACAACGCCA	CCATCCGTGT	CACCAACTTG	CGCAGAGGAC	780
ACGCGTGAGA	CCGACCTGCA	GGAGCTCTTC	CGGCCTTTCG	GCTCCATCTC	CCGCATCTAC	840
CTGGCTAAGG	ACAAGACCAC	TGGCCAATCC	AAGGGCTTTG	CCTTCATCAG	CTTCCACCGC	900
CGCGAGGATG	CTGCGCGTGC	CATTGCCGGG	GTGTCCGGCT	TTGGCTACGA	CCACCTCATC	960
CTCAACGTCG	AGTGGGCCAA	GCCGTCCACC	AACTAAGCCA	GCTGCCACTG	TGTACTCGGT	1020
CCGGGACCCT	TGGCGACAGA	AGACAGCCTC	CGAGAGCGCG	GGCTCCAAGG	GCAATAAAGC	1080
AGCTCCACTC	TCAAAAAAA	ААААААААА	ААААААААА	AAAAAAAAT	TCCTGCGGCC	1140
GC						1142

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1696 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GAATTCGGCA	CGAGGGAAAC	ATGGCGGTAG	GCTGGGACCA	TAACACAAGC	ATGACTATAT	60
GAAGGAAGAG	GAAGGTTTTC	CTGAAGATGA	GGCGACTGAA	TCGGAAAAAA	ACTTTAAGTT	120
TGGTAAAAGA	GTTGGATGCC	TTTCCGAAGG	TTCCTGAGAG	CTATGTAGAG	ACTTCAGCCA	180
GTGGAGGTAC	AGTTTCTCTA	ATAGCATTTA	CAACTATGGC	TTTATTAACC	ATAATGGAAT	240
TCTCAGTATA	TCAAGATACA	TGGATGAAGT	ATGAATACGA	AGTAGACAAG	GATTTTTCTA	300
GCAAATTAAG	AATTAATATA	GATATTACTG	TTGCCATGAA	GTGTCAATAT	GTTGGAGCGG	360
ATGTATTGGA	TTTAGCAGAA	ACAATGGTTG	CATCTGCAGA	TGGTTTAGTT	TATGAACCAA	420
CAGTATTTGA	TCTTTCACCA	CAGCAGAAAG	AGTGGCAGAG	GATGCTGCAG	CTGATTCAGA	480
GTAGGCTACA	AGAAGAGCAT	TCACTTCAAG	ATGTGATATT	TAAAAGTGCT	TTTAAAAGTA	540
CATCAACAGC	TCTTCCACCA	AGAGAAGATG	ATTCATCACA	GTCTCCAAAT	GCATGCAGAA	600
TTCATGGCCA	TCTATATGTC	AATAAAGTAG	CAGGGAATTT	TCACATAACA	GTGGGCAAGG	660
CAATTCCACA	TCCTCGTGGT	CATGCACATT	TGGCAGCACT	TGTCAACCAT	GAATCTTACA	720
ATTTTTCTCA	TAGAATAGAT	CATTTGTCTT	TTGGAGAGCT	TGTTCCAGCA	ATTATTAATC	780
CTTTAGATGG	AACTGAAAAA	ATTGCTATAG	ATCACAACCA	GATGTTCCAA	ATTTTTATTA	840
CAGTTGTGCC	AACAAAACTA	CATACATATA	AAATATCAGC	AGACACCCAT	CAGTTTTCTG	900
TGACAGAAAG	GGAACGTATC	ATTAACCATG	CTGCAGGCAG	CCATGGAGTC	TCTGGGATAT	960
TTATGAAATA	TGATCTCAGT	TCTCTTATGG	TGACAGTTAC	TGAGGAGCAC	ATGCCATTCT	1020
GGCAGTTTTT	TGTAAGACTC	TGTGGTATTG	TTGGAGGAAT	CTTTTCAACA	ACAGGCATGT	1080
TACATGGAAT	TGGAAAATTT	ATAGTTGAAA	TAATTTGCTG	TCGTTTCAGA	CTTGGATCCT	1140
ATAAACCTGT	CAATTCTGTT	CCTTTTGAGG	ATGGCCACAC	AGACAACCAC	TTACCTCTTT	1200
TAGAAAATAA	TACACATTAA	CACCTCCCGA	TTGAAGGAGA	AAAACTTTTT	GCCTGAGACA	1260
TAAAACCTTI	TTTTAATAAT	AAAATATTGT	GCAATATATT	CAAAGAAAAG	AAAACACAAA	1320
TAAGCAGAAA	ACATACTTAT	TTTAAAAAAG	AAAAAAAAGG	ATAAAAAAAC	CCAAACTGAA	1380
ATTCTATATA	CGTTGTGTCT	GTTACAAATG	TCGTAGAAGA	AATCATGCAG	CTAAACGATG	1440
AAGAAGCCCA	ACTGGAGTGT	TGCTTTGAAG	ATGACGCCTT	CTTATATTTT	CATAGCAAAT	1500
GGGTGGTATC	AAAATCAGAC	ATTGCTTCTT	GCTGATAAAA	AGCCTGAAGG	AAATAAGTGA	1560
AACTACATCI	ATGGGAAAAA	AAAAAACATT	GAGAAGTGCA	AATGTTCGCA	TCCTTTTGTT	1620
TTTAAAAGAT	ATGATGTCAG	AATAAAATGT	GGAAAACATA	CGGAAAAAAA	AAAAAAAAA	1680
AAATTCCTG	GGCCGC					1696

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1100 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

60	CATGGGGTCT	ATATCACGGC	CGAGGGTGGC	CGAGGCGGCA	CGAGGCGGCA	GAATTCGGCA
120	TGACAGGGAC	AGCAAGAAGA	TGCAGGCGAA	CCCCTCCTCC	CTGCTGCTCG	CAGCATTCCG
180	TGTGGAATTC	AGTTCCCATA	GCCATTGCTC	GCAGGAAGAA	CTGAACGAGA	GGTTTGCTGG
240	TCCAACAGAG	CAGGCTACAT	TGCCAGGGGA	CTGTCTCACG	ATAGCATCAC	ACCGGGAGAG
300	CCCTCAGCGA	AGAGATTGCG	CACAGTGATC	TTTGATCCCA	AGTTGGTGGC	CAAGTAAATG
360	TTTGGTGGTT	TGGCATCTGG	CTTTGTCTCC	GTCCATCCTG	ATGTCCTCCT	ACTAAGCAAT
420	GGTGAAAGTC	GCATCAAAGT	GATGATGACG	AGTCCTTGTG	TTCCGCATTC	TTCTTCCTGT
480	GAAAATCAGG	TGGCCACCCT	CTCACCATCA	CCTTGTAATT	AGCAAGACTC	ACATTTAATA
540	GTACATGAAC	GCCAGATTCA	AGCCTGTCCA	GGCAGTGACC	TCTACACGGT	AACTCCAACT
600	GAGTGAGCAA	TTCCACCTCG	GTCTCCCTTA	GACTACTAAC	GTACATATGT	ACAGTGGTCA
660	GTACTTCTTC	TTTCCTATGT	GGAGGACCGT	GGCCGAGATG	TTACCGGGAA	CTGGTGAATT
720	TTCAGTGAAG	TCATGCGAAC	ATAGTGATCT	GGTGCACAAC	CTGAGATCCT	TGCACGGTAC
780	TGTGGATTGT	CACATCACTA	TCCTTGGAGA	GACCCAGAGC	TTGGCCTCAT	ATTTCATACA
840	CGCCTGTAGA	TTCCACACAG	CTATTGGTTC	TTAACAACTG	CCACAGCTAT	GGAGGAAATT
900	GTGGTGTAAG	CTACCCCCAC	AGTTCTGGAC	CCAAGGCCTG	GCATATGTTC	AGAGAGCACA
960	TAGGAGGAAA	TCCTGCCACT	GCAAACATCC	TTAACTCCCA	ATTGGTTCAC	CAGAGGAGGA
1020	CTAGCCTGTG	GAATCAGTGC	AGAACCAGCA	TATGTTTCTC	TGGTACCATT	CACCTCCCTA
1080	ААААААААА	ТАААААААА	TTGCAGAATT	CAATAAAGAT	AGTTGGCACT	CCCAGCAAAT
1100				!	CTGCGGCCGC	AAAAAAATTC

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1588 base pairs
- (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GAATTCGGCA	CGAGGGTACC	TGCTTTTCTA	TTGCCTCTTT	GAAACAATGG	TCACGTGTTT	60
CCATGTTCCC	TACTCGGCTC	TCACCATGTT	CATCAGCACC	GAGCAGACTG	AGCGGGATTC	120
TGCCACCGCC	TATCGGATGA	CTGTGGAAGT	GCTGGGCACA	GTGCTGGGCA	CGGCGATCCA	180
GGGACAAATC	GTGGGCCAAG	CAGACACGCC	TTGTTTCCAG	GACCTCAATA	GCTCTACAGT	240
AGCTTCACAA	AGTGCCAACC	ATACACATGG	CACCACCTCA	CACAGGGAAA	CGCAAAAGGC	300
ATACCTGCTG	GCAGCGGGG	TCATTGTCTG	TATCTATATA	ATCTGTGCTG	TCATCCTGAT	360
CCTGGGCGTG	CGGGAGCAGA	GAGAACCCTA	TGAAGCCCAG	CAGTCTGAGC	CAATCGCCTA	420
CTTCCGGGG	CTACGGCTGG	TCATGAGCCA	CGGCCCATAC	ATCAAACTTA	TTACTGGCTT	480
CCTCTTCACC	TCCTTGGCTT	TCATGCTGGT	GGAGGGGAAC	TTTGTCTTGT	TTTGCACCTA	540
CACCTTGGG	TTCCGCAATG	AATTCCAGAA	TCTACTCCTG	GCCATCATGC	TCTCGGCCAC	600
TTTAACCATT	CCCATCTGGC	AGTGGTTCTT	GACCCGGTTT	GGCAAGAAGA	CAGCTGTATA	660
TGTTGGGAT	TCATCAGCAG	TGCCATTTCT	CATCTTGGTG	GCCCTCATGG	AGAGTAACCT	720
CATCATTACA	A TATGCGGTAG	CTGTGGCAGC	TGGCATCAGT	GTGGCAGCTG	CCTTCTTACT	780
ACCCTGGTC	ATGCTGCCTG	ATGTCATTGA	CGACTTCCAT	CTGAAGCAGC	CCCACTTCCA	840
TGGAACCGAC	CCCATCTTCT	TCTCCTTCTA	TGTCTTCTTC	ACCAAGTTTG	CCTCTGGAGT	900
GTCACTGGG	ATTTCTACCC	TCAGTCTGGA	CTTTGCAGGG	TACCAGACCC	GTGGCTGCTC	960
GCAGCCGGAI	A CGTGTCAAGT	TTACACTGAA	CATGCTCGTG	ACCATGGCTC	CCATAGTTCT	1020
CATCCTGCT	GGCCTGCTGC	TCTTCAAAAT	GTACCCCATT	GATGAGGAGA	GGCGGCGGCA	1080
GAATAAGAA	GCCCTGCAGG	CACTGAGGGA	CGAGGCCAGC	AGCTCTGGCT	GCTCAGAAAC	1140
AGACTCCAC	A GAGCTGGCTA	GCATCCTCTA	GGGCCCGCCA	CGTTGCCCGA	AGCCACCATG	1200
CAGAAGGCC	A CAGAAGGGAT	CAGGACCTGT	CTGCCGGCTT	GCTGAGCAGC	TGGACTGCAG	1260
GTGCTAGGA	A GGGAACTGAA	GACTCAAGGA	GGTGGCCCAG	GACACTTGCT	GTGCTCACTG	1320
TGGGGCCGG	C TGCTCTGTGG	CCTCCTGCCT	CCCCTCTGCC	TGCCTGTGGG	GCCAAGCCCT	1380
GGGGCTGCC	A CTGTGAATAT	GCCAAGGACT	GATCGGGCCT	AGCCCGGAAC	ACTAATGTAG	1440
AAACCTTTT	T TTTACAGAGC	CTAATTAATA	ACTTAATGAC	TGTGTACATA	GCAATGTGTG	1500
TGTATGTAT	A TGTCTGTGAG	CTATTAATGT	TATTAATTTT	CATAAAAGCT	GGAAAGCAAA	1560
AAAAAAAA	A AAAAATTCCT	GCGGCCGC				1588

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1535 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GAATTCGGCA	CGAGGCGGAA	GTCCCGTCTC	ACGGTTGCCC	TGGCAGCGCG	CGAGGCTGGT	60
GAGTCGGCAG	CCCTGTGGCA	GCCGGCGGGC	TGGTTTCCAT	GGTTGCACGA	TTAGGAACCA	120
CCAGCTGCTG	CATCCCATGG	CCAGGGGTGG	CGTCCAGGTG	GCAGAGCAGC	TAGGAACGCA	180
AGGCCTGAAC	CTGGGGCCAG	ACACCCTGCT	CTCCCGGCCA	TGGTCAACGA	CCCTCCAGTA	240
CCTGCCTTAC	TGTGGGCCCA	GGAGGTGGGC	CAAGTCTTGG	CAGGCCGTGC	CCGCAGGCTG	300
CTGCTGCAGT	TTGGGGTGCT	CTTCTGCACC	ATCCTCCTTT	TGCTCTGGGT	GTCTGTCTTC	360
CTCTATGGCT	CCTTCTACTA	TTCCTATATG	CCGACAGTCA	GCCACCTCAG	CCCTGTGCAT	420
TTCTACTACA	GGACCGACTG	TGATTCCTCC	ACCACCTCAC	TCTGCTCCTT	CCCTGTTGCC	480
AATGTCTCGC	TGACTAAGGG	TGGACGTGAT	CGGGTGCTGA	TGTATGGACA	GCCGTATCGT	540
GTTACCTTAG	AGCTTGAGCT	GCCAGAGTCC	CCTGTGAATC	AAGATTTGGG	CATGTTCTTG	600
GTCACCATTT	CCTGCTACAC	CAGAGGTGGC	CGAATCATCT	CCACTTCTTC	GCGTTCGGTG	660
ATGCTGCATT	ACCGCTCAGA	CCTGCTCCAG	ATGCTGGACA	CACTGGTCTT	CTCTAGCCTC	720
CTGCTATTTG	GCTTTGCAGA	GCAGAAGCAG	CTGCTGGAGG	TGGAACTCTA	CGCAGACTAT	780
AGAGAGAACT	CGTACGTGCC	GACCACTGGA	GCGATCATTG	AGATCCACAG	CAAGCGCATC	840
CAGCTGTATG	GAGCCTACCT	CCGCATCCAC	GCGCACTTCA	CTGGGCTCAG	ATACCTGCTA	900
TACAACTTCC	CGATGACCTG	CGCCTTCATA	GGTGTTGCCA	GCAACTTCAC	CTTCCTCAGC	960
GTCATCGTGC	TCTTCAGCTA	CATGCAGTGG	GTGTGGGGGG	GCATCTGGCC	CCGACACCGC	1020
TTCTCTTTGC	AGGTTAACAT	CCGAAAAAGA	GACAATTCCC	GGAAGGAAGT	CCAACGAAGG	1080
ATCTCTGCTC	ATCAGCCAGG	GCCTGAAGGC	CAGGAGGAGT	CAACTCCGCA	ATCAGATGTT	1140
ACAGAGGATG	GTGAGAGCCC	TGAAGATCCC	TCAGGGACAG	AGGTCAGCTG	TCCGAGGAGG	1200
AGAAACCAGA	TCAGCAGCCC	CTGAGCGGAG	AAGAGGAGCT	AGAGCCTGAG	GCCAGTGATG	1260
GTTCAGGCTC	CTGGGAAGAT	GCAGCTTTGC	TGACGGAGGC	CAACCTGCCT	GCTCCTGCTC	1320
CTGCTTCTGC	TTCTGCCCCT	GTCCTAGAGA	CTCTGGGCAG	CTCTGAACCT	GCTGGGGGTG	1380
CTCTCCGACA	GCGCCCACC	TGCTCTAGTI	CCTGAAGAAA	AGGGGCAGAC	TCCTCACATT	1440
CCAGCACTT	CCCACCTGAC	TCCTCTCCC	CTCGTTTTTCC	TTCAATAAAC	TATTTTGTGT	1500
СААААААА	AAAAAAAAA	AATTCCTGC	GCCGC			1535

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1322 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GAATTCGGCA	CGAGGGCGGG	CGCTACGGGC	TTGACTCCCC	CAAGGCCGAG	GTCCGCGGCC	60
AGGTGCTGGC	GCCGCTGCCC	CTCCACGGAG	TTGCTGATCA	TCTGGGCTGT	GATCCACAAA	120
CCCGGTTCTT	TGTCCCTCCT	AATATCAAAC	AGTGGATTGC	CTTGCTGCAG	AGGGGAAACT	180
GCACGTTTAA	AGAGAAAATA	TCACGGGCCG	CTTTCCACAA	TGCAGTTGCT	GTAGTCATCT	240
ACAATAATAA	ATCCAAAGAG	GAGCCAGTTA	CCATGACTCA	TCCAGGCACT	GGAGATATTA	300
TTGCTGTCAT	GATAACAGAA	TTGAGGGGTA	AGGATATTTT	GAGTTATCTG	GAGAAAAACA	360
TCTCTGTACA	AATGACAATA	GCTGTTGGAA	CTCGAATGCC	ACCGAAGAAC	TTCAGCCGTG	420
GCTCTCTAGT	CTTCGTGTCA	ATATCCTTTA	TTGTTTTGAT	GATTATTTCT	TCAGCATGGC	480
TCATATTCTA	CTTCATTCAA	AAGATCAGGT	ACACAAATGC	ACGCGACAGG	AACCAGCGTC	540
GTCTCGGAGA	TGCAGCCAAG	AAAGCCATCA	GTAAATTGAC	AACCAGGACA	GTAAAGAAGG	600
GTGACAAGGA	AACTGACCCA	GACTTTGATC	ATTGTGCAGT	CTGCATAGAG	AGCTATAAGC	660
AGAATGATGT	CGTCCGAATT	CTCCCCTGCA	AGCATGTTTT	CCACAAATCC	TGCGTGGATC	720
CCTGGCTTAG	TGAACATTGT	ACCTGTCCTA	TGTGCAAACT	TAATATATTG	AAGGCCCTGG	780
GAATTGTGCC	GAATTTGCCA	TGTACTGATA	ACGTAGCATT	CGATATGGAA	AGGCTCACCA	840
GAACCCAAGC	TGTTAACCGA	AGATCAGCCC	TCGGCGACCT	CGCCGGCGAC	AACTCCCTTG	900
GCCTTGAGCC	ACTTCGAACT	TCGGGGATCT	CACCTCTTCC	TCAGGATGGG	GAGCTCACTC	960
CGAGAACAGG	AGAAATCAAC	ATTGCAGTAA	CAAAAGAATG	GTTTATTATT	GCCAGTTTTG	1020
GCCTCCTCAG	TGCCCTCACA	CTCTGCTACA	TGATCATCAG	AGCCACAGCT	AGCTTGAATG	1080
CTAATGAGGT	AGAATGGTTT	TGAAGAAGAA	AAAACCTGCT	TTCTGACTGA	TTTTGCCTTG	1140
AAGGAAAAA	GAACCTATTT	TTGTGCATCA	TTTACCAATC	ATGCCACACA	AGCATTTATT	1200
TTTAGTACAT	TTTATTTTT	CATAAAATTG	CTAATGCCAA	AGCTTTGTAT	TAAAAGAAAT	1260
AAATAATAAA	АТААААААА	АААААААА	ААААААААА	AAAAAAAAT	TCCTGCGGCC	1320
GC						1322

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1711 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

	GAATTCGGCA	CGAGGCCCTC	CCGCGCTCCC	GGGGCGCGCG	GGCCGCGCCC	CCGACGCCCT	60
	ACATATACTC	AGGTGCGCCC	CACCTGTCCG	CCCGCACCTG	CTGGCTCACC	TCCGAGCCAC	120
	CTCTGCTGCG	CACCGCAGCC	TCGGACCTAC	AGCCCAGGAT	ACTTTGGGAC	TTGCCGGCGC	180
	TCAGAAACGC	GCCCAGACGG	CCCCTCCACC	TTTTGTTTGC	CTAGGGTCGC	CGAGAGCGCC	240
	CGGAGGGAAC	CGCCTGGCCT	TCGGGGACCA	CCAATTTTGT	CTGGAACCAC	CCTCCCGGCG	300
	TATCCTACTC	CCTGTGCCGC	GAGGCCATCG	CTTCACTGGA	GGGGTCGATT	TGTGTGTAGT	360
	TTGGTGACAA	GATTTGCATT	CACCTGGCCC	AAACCCTTTT	TGTCTCTTTG	GGTGACCGGA	420
	AAACTCCACC	TCAAGTTTTC	TTTTGTGGGG	CTGCCCCCCA	AGTGTCGTTT	GTTTTACTGT	480
	AGGGTCTCCC	GCCCGGCGCC	CCCAGTGTTT	TCTGAGGGCG	GAAATGGCCA	ATTCGGGCCT	540
	GCAGTTGCTG	GGCTTCTCCA	TGGCCCTGCT	GGGCTGGGTG	GGTCTGGTGG	CCTGCACCGC	600
	CATCCCGCAG	TGGCAGATGA	GCTCCTATGC	GGGTGACAAC	ATCATCACGG	CCCAGGCCAT	660
	GTACAAGGGG	CTGTGGATGG	ACTGCGTCAC	GCAGAGCACG	GGGATGATGA	GCTGCAAAAT	720
	GTACGACTCG	GTGCTCGCCC	TGTCCGCGGC	CTTGCAGGCC	ACTCGAGCCC	TAATGGTGGT	780
	CTCCCTGGTG	CTGGGCTTCC	TGGCCATGTT	TGTGGCCACG	ATGGGCATGA	AGTGCACGCG	840
	CTGTGGGGGA	GACGACAAAG	TGAAGAAGGC	CCGTATAGCC	ATGGGTGGAG	GCATAATTTT	900
	CATCGTGGCA	GGTCTTGCCG	CCTTGGTAGC	TTGCTCCTGG	TATGGCCATC	AGATTGTCAC	960
	AGACTTTTAT	AACCCTTTGA	TCCCTACCAA	CATTAAGTAT	GAGTTTGGCC	CTGCCATCTT	1020
	TATTGGCTGG	GCAGGGTCTG	CCCTAGTCAT	CCTGGGAGGT	GCACTGCTCT	CCTGTTCCTG	1080
-	TCCTGGGAAT	GAGAGCAAGG	CTGGGTACCG	TGCACCCCGC	TCTTACCCTA	AGTCCAACTC	1140
	TTCCAAGGAG	TATGTGTGAC	CTGGGATCTC	CTTGCCCCAG	CCTGACAGGC	TATGGGAGTG	1200
	TCTAGATGCC	TGAAAGGGCC	TGGGGCTGAG	CTCAGCCTGT	GGGCAGGGTG	CCGGACAAAG	1260
	GCCTCCTGGT	CACTCTGTCC	CTGCACTCCA	TGTATAGTCC	CTCTTGGGTTG	GGGGTGGGGG	1320
	GGTGCCGTTG	GTGGGAGAGA	CAAAAAGAGG	GAGAGTGTGC	TTTTTGTACA	GTAATAAAAA	1380
	ATAAGTATTG	GGAAGCAGGG	TTTTTTCCCT	TCAGGGCCTC	TGCTTTCCTC	CCGTCCAGAT	1440
	CCTTGCAGGG	AGCTTGGAAG	CTTAGTGCAC	CTACTTCAGI	TCAGAACACI	TAGCACCCCA	1500
	CTGACTCCAC	TGACAATTG	A CTAAAAGATG	CAGGTGCTC	TATCTCGAC	A TTCATTCCCA	1560
	CCCCCTCTT	ATTTAAATA	CTACCAAAGI	ACTTCTTTT	TAATAAAA	A ATAAAGATTT	1620
				١			

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1553 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

GAATTCGGCA	CGAGGGCAGG	TCCAGAGTAA	AGTCACTGAA	GAGTGGAAGC	GAGGAAGGAA	60
CAGGATGATT	AGACCTCAGC	TGCGGACCGC	GGGGCTGGGA	CGATGCCTCC	TGCCGGGGCT	120
GCTGCTGCTC	CTGGTGCCCG	TCCTCTGGGC	CGGGGCTGAA	AAGCTACATA	CCCAGCCCTC	180
CTGCCCCGCG	GTCTGCCAGC	CCACGCGCTG	CCCCGCGCTG	CCCACCTGCG	CGCTGGGGAC	240
CACGCCGGTG	TTCGACCTGT	GCCGCTGTTG	CCGCGTCTGC	CCCGCGGCCG	AGCGTGAAGT	300
CTGCGGCGGG	GCGCAGGGCC	AACCGTGCGC	CCCGGGGCTG	CAGTGCCTCC	AGCCGCTGCG	360
CCCCGGGTTC	CCCAGCACCT	GCGGTTGCCC	GACGCTGGGA	GGGGCCGTGT	GCGGCAGCGA	420
CAGGCGCACC	TACCCCAGCA	TGTGCGCGCT	CCGGGCCGAA	AACCGCGCCG	CGCGCCGCCT	480
GGGCAAGGTC	CCGGCCGTGC	CTGTGCAGTG	GGGGAACTGC	GGGGATACAG	GGACCAGAAG	540
CGCAGGCCCG	CTCAGGAGGA	ATTACAACTT	CATCGCCGCG	GTGGTGGAGA	AGGTGGCGCC	600
ATCGGTGGTT	CACGTGCAGC	TGTGGGGCAG	GTTACTTCAC	GGCAGCAGGC	TTGTTCCTGT	660
GTACAGTGGC	TCTGGGTTCA	TAGTGTCTGA	GGACGGGCTC	ATTATTACCA	ATGCCCATGT	720
TGTCAGGAAC	CAGCAGTGGA	TTGAGGTGGT	GCTCCAGAAT	GGGGCCCGTT	ATGAAGCTGT	780
TGTCAAGGAT	ATTGACCTTA	AATTGGATCT	TGCGGTGATT	AAGATTGAAT	CAAATGCTGA	840
ACTTCCTGTA	CTGATGCTGG	GAAGATCATC	TGACCTTCGG	GCTGGAGAGT	TTGTGGTGGC	900
TTTGGGCAGC	CCATTTTCTC	TGCAGAACAC	AGCTACTGCA	GGAATTGTCA	GCACCAAACA	960
GCGAGGGGGC	AAAGAACTGG	GGATGAAGGA	TTCAGATATG	GACTACGTCC	AGATTGATGC	1020
CACAATTAAC	TATGGGAATT	CTGGTGGTCC	TCTGGTGAAC	TTGGATGGTG	ATGTGATTGG	1080
CGTCAATTCA	TTGAGGGTGA	CTGATGGAAT	CTCCTTTGCA	ATTCCTTCAG	ATCGAGTTAG	1140
GCAGTTCTTG	GCAGAATACC	ATGAGCACCA	GATGAAAGGA	AAGGCGTTTT	CAAATAAGAA	1200
ATATCTGGGT	CTGCAAATGC	TGTCCCTCAC	TGTGCCCCTT	AGTGAAGAAT	TGAAAATGCA	1260
TTATCCAGAT	TTCCCTGATG	TGAGTTCTGG	GGTTTATGTA	TGTAAAGTGG	TTGAAGGAAC	1320

AGCTGCTCAA AGCTCTGGAT TGAGAGATCA CGATGTAATT GTCAACATAA ATGGGAAACC 1380
TATTACTACT ACAACTGATG TTGTTAAAGC TCTTGACAGT GATTCCCTTT CCATGGCTGT 1440
TCTTCGGGGA AAAGATAATT TGCTCCTGAC AGTCATACCT GAAACAATCA ATTAAATATC 1500
TTGTTTTAAA GTGGGATTAT CTAAAAAAAA AAAAAAAAA TTCCTGCGGC CGC 1553

- (2) INFORMATION FOR SEQ ID NO:19:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1596 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GAATTCGGCA	CGAGGGGAGC	CGCTCCCGGA	GCCCGGCCGT	AGAGGCTGCA	ATCGCAGCCG	60
GGAGCCCGCA	GCCGCGCCC	CGAGCCCGCC	GCCGCCCTTC	GAGGGCGCCC	CAGGCCGCGC	120
CATGGTGAAG	GTGACGTTCA	ACTCCGCTCT	GGCCCAGAAG	GAGGCCAAGA	AGGACGAGCC	180
CGAGAGCGGC	GAGGAGGCGC	TCATCATCCC	CCCCGACGCC	GTCGCGGTGG	ACTGCAAGGA	240
CCCAGATGAT	GTGGTACCAG	TTGGCCAAAG	AAGAGCCTGG	TGTTGGTGCA	TGTGCTTTGG	300
ACTAGCATTT	ATGCTTGCAG	GTGTTATTCT	AGGAGGAGCA	TACTTGTACA	AATATTTTGC	360
ACTTCAACCA	GATGACGTGT	ACTACTGTGG	AATAAAGTAC	ATCAAAGATG	ATGTCATCTT	420
AAATGAGCCC	TCTGCAGATG	CCCCAGCTGC	TCTCTACCAG	ACAATTGAAG	AAAATATTAA	480
AATCTTTGAA	GAAGAAGAAG	TTGAATTTAT	CAGTGTGCCT	GTCCCAGAGT	TTGCAGATAG	540
TGATCCTGCC	AACATTGTTC	ATGACTTTAA	CAAGAAACTT	ACAGCCTATT	TAGATCTTAA	600
CCTGGATAAG	TGCTATGTGA	TCCCTCTGAA	CACTTCCATT	GTTATGCCAC	CCAGAAACCT	660
ACTGGAGTTA	CTTATTAACA	TCAAGGCTGG	AACCTATTTG	CCTCAGTCCT	ATCTGATTCA	720
					TCTTTATTTA	780
TCGACTGTGT				AGAGAAACTA		840
TCAGAAACGT	GAAGCCAGCA				AATTTGCCGT	900
					ATTAATATCA	960
	CCACCCTTTA					1020
	AGGGCTTTAC				CCATTACCTT	1080
	TCTTTCGAAG			AATTAGTAAC	TGTATGAAGT	1140

CATAGATAAT	AGTACATGTC	ACCTTAGGTA	GTAGGAAGAA	TTACAATTTC	TTTAAATCAT	1200
TTATCTGGAT	TTTTATGTTT	TATTAGCATT	TTCAAGAAGA	CGGATTATCT	AGAGAATAAT	1260
CATATATATG	CATACGTAAA	AATGGACCAC	AGTGACTTAT	TTGTAGTTGT	TAGTTGCCCT	1320
GCTACCTAGT	TTGTTAGTGC	ATTTGAGCAC	ACATTTTAAT	TTTCCTCTAA	TTAAAATGTG	1380
CAGTATTTTC	AGTGTCAAAT	ATATTTAACT	ATTTAGAGAA	TGATTTCCAC	CTTTATGTTT	1440
TAATATCCTA	GGCATCTGCT	GTAATAATAT	TTTAGAAAAT	GTTTGGAATT	TAAGAAATAA	1500
CTTGTGTTAC	TAATTTGTAT	AACCCATATC	TGTGCAATGG	AATATAAATA	TCACAAAGTT	1560
GTTTAAAAAA	ААААААААА	AAATTCCTGC	GGCCGC			1596

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 400 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Met	Ala	Trp	Arg	Arg	Arg	Glu	Ala	Gly	Val	Gly	Ala	Arg	Gly	Val	Leu
1				5					10					15	
Ala	Leu	Ala	Leu	Leu	Ala	Leu	Ala	Leu	Сув	Val	Pro	Gly	Ala	Arg	Gly
			20					25					30		
Arg	Ala	Leu	Glu	Trp	Phe	Ser	Ala	Val	Val	Asn	Ile	Glu	Tyr	Val	Asp
		35					40					45			
Pro	Gln	Thr	Asn	Leu	Thr	Val	Trp	Ser	Val	Ser	Glu	Ser	Gly	Arg	Phe
	50					55					60				
Gly	Asp	Ser	Ser	Pro	Lys	Glu	Gly	Ala	His	Gly	Leu	Val	Gly	Val	Pro
65					70					75					80
Trp	Ala	Pro	Gly	Gly	Asp	Leu	Glu	Gly	Сув	Ala	Pro	Asp	Thr	Arg	Phe
				85					90					95	
Phe	Val	Pro	Glu	Pro	Gly	Gly	Arg	Gly	Ala	Ala	Pro	Trp	Val	Ala	Leu
			100					105					110		
Val	Ala	Arg	Gly	Gly	Сув	Thr	Phe	Lys	Asp	Lys	Val	Leu	Val	Ala	Ala

		115					120					125			
Arg	Arg	Asn	Ala	Ser	Ala	Val	Val	Leu	Tyr	Asn	Glu	Glu	Arg	Tyr	Gly
	130					135					140				
Asn	Ile	Thr	Leu	Pro	Met	Ser	His	Ala	Gly	Thr	Gly	Asn	Ile	Val	Val
145					150					155					160
Ile	Met	Ile	Ser	Tyr	Pro	Lys	Gly	Arg	Glu	Ile	Leu	Glu	Leu	Val	Gln
				165					170					175	
Lys	Gly	Ile	Pro	Val	Thr	Met	Thr	Ile	Gly	Val	Gly	Thr	Arg	His	Val
			180					185					190		
Gln	Glu	Phe	Ile	Ser	Gly	Gln	Ser	Val	Val	Phe	Val	Ala	Ile	Ala	Phe
		195					200					205			
Ile	Thr	Met	Met	Ile	Ile	Ser	Leu	Ala	Trp	Leu	Ile	Phe	Tyr	Tyr	Ile
	210					215					220				
Gln	Arg	Phe	Leu	Tyr	Thr	Gly	Ser	Gln	Ile	Gly	Ser	Gln	Ser	His	Arg
225					230					235					240
Lys	Glu	Thr	Lys	Lys	Val	Ile	Gly	Gln	Leu	Leu	Leu	His	Thr	Val	Lys
				245					250					255	
His	Gly	Glu	Lys	Gly	Ile	Asp	Val	Asp	Ala	Glu	Asn	Cys	Ala	Val	Сув
			260	,				265					270		
Ile	Glu	Asn	Phe	Lys	Val	ГÄа	Asp	Ile	Ile	Arg	Ile	Leu	Pro	Cys	Lys
		275					280					285			
His	Ile	Phe	His	Arg	Ile	Сув	Ile	Asp	Pro	Trp	Leu	Leu	Asp	His	Arg
	290					295					300				
Thr	СЛв	Pro	Met	Cys	Lys	Leu	Asp	Val	Ile	Lys	Ala	Leu	Gly	Tyr	Trp
305					310					315					320
Gly	Glu	Pro	Gly	Asp	Val	Gln	Glu	Met	Pro	Ala	Pro	Glu	Ser	Pro	Pro
				325					330					335	
Gly	Arg	Asp	Pro	Ala	Ala	Asn	Leu	Ser	Leu	Ala	Leu	Pro	Asp	Asp	Asp
			340					345					350		
Gly	Ser			Ser	Ser	Pro			Ala	Ser	Pro		Glu	Ser	Glu
		355					360					365			
Pro		_	Asp	Pro	Ser	Phe	Lys	Glγ	Asp	Ala	Gly	Glu	Asn	Thr	Ala
	370					375					380				
		Glu	Ala	Gly			Asp	Ser	Arg		_	Gly	Pro	Ile	Ser
385					390					395					400

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 291 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Met	Asp	Lys	Gly	Ser	Ala	Gly	His	Pro	Gly	Gly	Val	Leu	Val	Trp	Gly
1				5					10					15	
Arg	Ser	Pro	Ala	Pro	Thr	Ala	Leu	Trp	Gly	Ala	Ser	Pro	Trp	Leu	Ser
			20					25					30		
Pro	Leu	Thr	Ser	Ala	Leu	Arg	Gln	Pro	Leu	His	Arg	Ala	Pro	Leu	Leu
		35					40					45			
Pro	Gly	Gln	Leu	Сув	Trp	Ser	Pro	Arg	Pro	Leu	Glu	Lys	Asn	Lys	Ala
	50					55					60				
Met	Gly	Arg	Pro	Leu	Leu	Leu	Pro	Leu	Leu	Leu	Leu	Leu	Gln	Pro	Pro
65					70					75					80
Ala	Phe	Leu	Gln	Pro	Gly	Gly	Ser	Thr	Gly	Ser	Gly	Pro	Ser	Tyr	Leu
				85					90					95	
Tyr	Gly	Val	Thr	Gln	Pro	Lys	His	Leu	Ser	Ala	Ser	Met	Gly	Gly	Ser
			100					105					110		
Val	Glu	Ile	Pro	Phe	Ser	Phe	Tyr	Tyr	Pro	Trp	Glu	Leu	Ala	Ile	Val
		115					120					125			
Pro	Asn	Val	Arg	Ile	Ser	Trp	Arg	Arg	Gly	His	Phe	His	Gly	Gln	Ser
	130					135					140				
Phe	Tyr	Ser	Thr	Arg	Pro	Pro	Ser	Ile	His	Lys	Asp	Tyr	Val	Asn	Arg
145					150					155					160
Leu	Phe	Leu	Asn	Trp	Thr	Glu	Gly	Gln	Glu	Ser	Gly	Phe	Leu	Arg	Ile
				165					170					175	
Ser	Asn	Leu	Arg	Lys	Glu	Asp	Gln	Ser	Val	Tyr	Phe	Cys	Arg	Val	Glu
			180					185					190		

Leu Asp Thr Arg Arg Ser Gly Arg Gln Gln Leu Gln Ser Ile Lys Gly 200 205 195 Thr Lys Leu Thr Ile Thr Gln Ala Val Thr Thr Thr Thr Trp Arg 215 220 Pro Ser Ser Thr Thr Thr Ile Ala Gly Leu Arg Val Thr Glu Ser Lys 235 240 225 230 Gly His Ser Glu Ser Trp His Leu Ser Leu Asp Thr Ala Ile Arg Val 245 250 Ala Leu Ala Val Ala Val Leu Lys Thr Val Ile Leu Gly Leu Leu Cys 270 265 Leu Leu Leu Trp Trp Arg Arg Lys Gly Ser Arg Ala Pro Ser 285 280 275 Ser Asp Phe 290

- (2) INFORMATION FOR SEQ ID NO:22:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 293 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

 Met
 Thr
 Val
 Ser
 Gln
 Arg
 Phe
 Gln
 Leu
 Ser
 Asn
 Ser
 Gly
 Pro
 Asn
 Ser

 1
 5
 5
 10
 10
 15
 15

 Thr
 1le
 Lys
 Met
 Lys
 Ile
 Ala
 Leu
 Arg
 Val
 Leu
 His
 Leu
 Glu
 Lys
 Arg
 Arg

 Glu
 Arg
 Pro
 Arg
 His
 Glu
 His
 Ser
 Ala
 Glu
 Val
 Lys
 Arg
 Pro
 Ser

 Glu
 Arg
 Pro
 Arg
 Lys
 Ala
 Glu
 Val
 Lys
 Arg
 Pro
 Ser

 Wal
 Ser
 Lys
 Glu
 Arg
 Lys
 Thr
 Ser
 His
 Met
 Ser
 Glu

 Val
 Ser
 Lys
 Glu
 Arg
 Lys
 Thr
 Ser
 His
 Met
 Ser
 Glu

 Val
 Ser
 Lys
 Frage
 Lys
 Thr
 Net
 Ser
 His

65					70					75					80
Gly	Gly	Ser	Asp	Lys	Pro	Gly	Met	Glu	Glu	Lys	Ala	Gln	Pro	Pro	Glu
				85					90					95	
Ala	Gly	Pro	Gln	Gly	Leu	His	Asp	Leu	Gly	Arg	Ser	Ser	Ser	Ser	Leu
			100					105					110		
Leu	Ala	Ser	Pro	Gly	His	Ile	Ser	Val	Lys	Glu	Pro	Thr	Pro	Ser	Ile
		115					120					125			
Ala	Ser	Asp	Ile	Ser	Leu	Pro	Ile	Ala	Thr	Gln	Glu	Leu	Arg	Gln	Arg
	130					135					140				
Leu	Arg	Gln	Leu	Glu	Asn	Gly	Thr	Thr	Leu	Gly	Gln	Ser	Pro	Leu	Gly
145					150					155					160
Gln	Ile	Gln	Leu	Thr	Ile	Arg	His	Ser	Ser	Gln	Arg	Asn	Lys	Leu	Ile
				165					170					175	
Val	Val	Val	His	Ala	Сув	Arg	Asn	Leu	Ile	Ala	Phe	Ser	Glu	Asp	Gly
			180					185					190		
Ser	Asp	Pro	Tyr	Val	Arg	Met	Tyr	Leu	Leu	Pro	Asp	Lys	Arg	Arg	Ser
		195					200					205			
Gly	Arg	Arg	Lys	Thr	His	Val	Ser	Lys	Lys	Thr	Leu	Asn	Pro	Val	Phe
	210					215					220				
Asp	Gln	Ser	Phe	Asp	Phe	Ser	Val	Ser	Leu	Pro	Glu	Val	Gln	Arg	Arg
225					230					235					240
Thr	Leu	Asp	Val	Ala	Val	Lys	Asn	Ser	Gly	Gly	Phe	Leu	Ser	Lys	Asp
				245					250					255	
Lys	Gly	Leu	Leu	Gly	Lys	Val	Leu	Val	Ala	Leu	Ala	Ser	Glu	Glu	Leu
			260					265					270		
Ala	Lys	Gly	Trp	Thr	Gln	Trp	Tyr	Asp	Leu	Thr	Glu	Asp	Gly	Thr	Arg
		275					280					285			
Pro	Gln	Ala	Met	Thr											
	290														

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 206 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Met Glu Arg Arg His Pro Val Cys Ser Gly Thr Cys Gln Pro Thr Gln 10 Phe Arg Cys Ser Asn Gly Cys Cys Ile Asp Ser Phe Leu Glu Cys Asp 30 25 20 Asp Thr Pro Asn Cys Pro Asp Ala Ser Asp Glu Ala Ala Cys Glu Lys 40 35 Tyr Thr Ser Gly Phe Asp Glu Leu Gln Arg Ile His Phe Pro Ser Asp 55 Lys Gly His Cys Val Asp Leu Pro Asp Thr Gly Leu Cys Lys Glu Ser 75 65 Ile Pro Arg Trp Tyr Tyr Asn Pro Phe Ser Glu His Cys Ala Arg Phe 90 Thr Tyr Gly Gly Cys Tyr Gly Asn Lys Asn Asn Phe Glu Glu Glu Gln 110 100 Gln Cys Leu Glu Ser Cys Arg Gly Ile Ser Lys Lys Asp Val Phe Gly 125 120 Leu Arg Arg Glu Ile Pro Ile Pro Ser Thr Gly Ser Val Glu Met Ala 140 135 Val Ala Val Phe Leu Val Ile Cys Ile Val Val Val Ala Ile Leu 155 150 145 Gly Tyr Cys Phe Phe Lys Asn Gln Arg Lys Asp Phe His Gly His His 170 165 His His Pro Pro Pro Thr Pro Ala Ser Ser Thr Val Ser Thr Thr Glu 190 180 185 Asp Thr Glu His Leu Val Tyr Asn His Thr Thr Arg Pro Leu 205 195 200

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 220 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Met	Ala	Gly	Leu	Ser	Arg	Gly	Ser	Ala	Arg	Ala	Leu	Leu	Ala	Ala	Leu
1				5					10					15	
Leu	Ala	Ser	Thr	Leu	Leu	Ala	Leu	Leu	Val	Ser	Pro	Ala	Arg	Gly	Arg
			20					25					30		
Gly	Gly	Arg	Asp	His	Gly	Asp	Trp	Asp	Glu	Ala	Ser	Arg	Leu	Pro	Pro
		35					40					45			
Leu	Pro	Pro	Arg	Glu	Asp	Ala	Ala	Arg	Val	Ala	Arg	Phe	Val	Thr	His
	50					55					60				
Val	Ser	yab	Trp	Gly	Ala	Leu	Ala	Thr	Ile	Ser	Thr	Leu	Glu	Ala	Val
65					70					75					80
Arg	Gly	Arg	Pro	Phe	Ala	Asp	Val	Leu	Ser	Leu	Ser	Asp	Gly	Pro	Pro
				85					90					95	
Gly	Ala	Gly	Ser	Gly	Val	Pro	Tyr	Phe	Tyr	Leu	Ser	Pro	Leu	Gln	Leu
			100					105					110		
Ser	Val		Asn	Leu	Gln	Glu	Asn	Pro	Tyr	Ala	Thr	Leu	Thr	Met	Thr
		115					120					125			
Leu	Ala	Gln	Thr	Asn	Phe		Lys	Lys	His	Gly	Phe	Asp	Pro	Gln	Ser
	130					135					140				
	Leu	Сув	Val	His		Met	Leu	Ser	Gly	Thr	Val	Thr	Lys	Val	Asn
145	_				150					155					160
Glu	Thr	Glu	Met		Ile	Ala	Lys	His	Ser	Leu	Phe	Ile	Arg	His	Pro
				165					170					175	
Glu	Met	Lys		Trp	Pro	Ser	Ser		Asn	Trp	Phe	Phe	Ala	Lys	Leu
_			180			_		185					190		
Asn	Ile		Asn	Ile	Trp	Val		yab	Tyr	Phe	Gly	Gly	Pro	Lys	Ile
		195		_			200					205			
Val	Thr	Pro	Glu	Glu	Tyr	Tyr	Asn	Val	Thr	Val	Gln				

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 197 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Met Asp His His Cys Pro Trp Leu Asn Asn Cys Val Gly His Tyr Asn 15 10 1 His Arg Tyr Phe Phe Ser Phe Cys Phe Phe Met Thr Leu Gly Cys Val 25 Tyr Cys Ser Tyr Gly Ser Trp Asp Leu Phe Arg Glu Ala Tyr Ala Ala 45 35 Ile Glu Lys Met Lys Gln Leu Asp Lys Asn Lys Leu Gln Ala Val Ala 55 Asn Gln Thr Tyr His Gln Thr Pro Pro Pro Thr Phe Ser Phe Arg Glu 80 75 Arg Met Thr His Lys Ser Leu Val Tyr Leu Trp Phe Leu Cys Ser Ser 90 Val Ala Leu Ala Leu Gly Ala Leu Thr Val Trp His Ala Val Leu Ile 105 Ser Arg Gly Glu Thr Ser Ile Glu Arg His Ile Asn Lys Lys Glu Arg 125 115 Arg Arg Leu Gln Ala Lys Gly Arg Val Phe Arg Asn Pro Tyr Asn Tyr 135 Gly Cys Leu Asp Asn Trp Lys Val Phe Leu Gly Val Asp Thr Gly Arg 160 150 155 145 His Trp Leu Thr Arg Val Leu Leu Pro Ser Thr His Leu Pro His Gly 170 175 165

Asn Gly Met Ser Trp Glu Pro Pro Pro Trp Val Thr Ala His Ser Ala
180 185 190

Ser Val Met Ala Val
195

190

- (2) INFORMATION FOR SEQ ID NO:26:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 451 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

Met Ala Pro Leu Gly Met Leu Leu Gly Leu Leu Met Ala Ala Cys Phe 10 1 Thr Phe Cys Leu Ser His Gln Asn Leu Lys Glu Phe Ala Leu Thr Asn 25 30 20 Pro Glu Lys Ser Ser Thr Lys Glu Thr Glu Arg Lys Glu Thr Lys Ala Glu Glu Glu Leu Asp Ala Glu Val Leu Glu Val Phe His Pro Thr His 55 50 Glu Trp Gln Ala Leu Gln Pro Gly Gln Ala Val Pro Ala Gly Ser His 75 Val Arg Leu Asn Leu Gln Thr Gly Glu Arg Glu Ala Lys Leu Gln Tyr 90 Glu Asp Lys Phe Arg Asn Asn Leu Lys Gly Lys Arg Leu Asp Ile Asn 105 100 Thr Asn Thr Tyr Thr Ser Gln Asp Leu Lys Ser Ala Leu Ala Lys Phe 120 Lys Glu Gly Ala Glu Met Glu Ser Ser Lys Glu Asp Lys Ala Arg Gln 140 130 135 Ala Glu Val Lys Arg Leu Phe Arg Pro Ile Glu Glu Leu Lys Lys Asp

1	45					150					155					160
P	he	Asp	Glu	Leu	Asn	Val	Val	Ile	Glu	Thr	Asp	Met	Gln	Ile :	Met	Val
					165					170					175	
A	rg	Leu	Ile	Asn	Lys	Phe	Asn	Ser	Ser	Ser	Ser	Ser	Leu	Glu	Glu	Lys
				180					185					190		
I	le	Ala	Ala	Leu	Phe	Asp	Leu	Glu	Tyr	Tyr	Val	His	Gln	Met	Asp	Asn
			195					200					205			
P	la	Gln	Asp	Leu	Leu	Ser	Phe	Gly	Gly	Leu	Gln	Val	Val	Ile	Asn	Gly
		210	_				215					220				
Ι	Leu	Asn	Ser	Thr	Glu	Pro	Leu	Val	Lys	Glu	Tyr	Ala	Ala	Phe	Val	Leu
	225					230					235					240
		Ala	Ala	Phe	Ser	Ser	Asn	Pro	Lys	Val	Gln	Val	Glu	Ala	Ile	Glu
	-				245					250					255	
(3ly	Gly	Ala	Leu	Gln	Lys	Leu	Leu	Val	Ile	Leu	Ala	Thr	Glu	Gln	Pro
	-	_		260					265					270		
1	Leu	Thr	Ala	Lys	Lys	Lys	Val	Leu	Phe	Ala	Leu	Cys	Ser	Leu	Leu	Arg
			275		_			280					285			
]	His	Phe	Pro	Tyr	Ala	Gln	Arg	Gln	Phe	Leu	Lys	Leu	Gly	Gly	Leu	Gln
		290		_			295					300				
,	Val	Leu	Arg	, Thr	Leu	Val	Gln	Glu	Lys	Gly	Thr	Glu	Val	Leu	Ala	Val
	305					310					315					320
	Arg	Val	. Val	Thr	Leu	Leu	Tyr	Asp	Leu	Val	Thr	Glu	Lys	Met	Phe	Ala
					325					330					335	
	Glu	Glu	ı Glu	ı Ala	Glu	Leu	Thr	Gln	Glu	Met	Ser	Pro	Glu	Lys	Leu	Gln
				340)				345	;				350		
	Gln	Tyr	: Arg	g Gln	ı Val	. His	Lev	ı Leu	Pro	Gly	Lev	Trp	Glu	Gln	Gly	Trp
			35!	5				360)				365	;		
	Сув	Glu	1 Ile	e Thr	. Ala	. His	Let	ı Lev	Ala	Lev	Pro	Glu	His	: Asp	Ala	Arg
		370					375					380				
	Glu	Lys	s Vai	l Lev	ı Glı	1 Thi	: Le	ı Gly	val	Le	ı Lev	ı Thı	Thr	: Cys	Arg	Asp
	385	;				390)				399	5				400
	Arg	ј Ту	r Ar	g Glı	n Asj	, Pro	Gl:	n Lei	ı Gly	y Arq	g Thi	r Lev	a Ala	a Ser	Leu	Gln
		-			40!					410					415	
	Ala	a Gl	u Ty	r Gli	n Vai	l Le	ı Ala	a Sei	. Le	ı Glı	u Le	u Gl	n Ası	g Gly	g Glu	. Asp
				420					42					430		
	G1.	. (21)	er Mer	r Dh	- G1:	n Gli	ı T.e.	u Lei	a G1:	v Se:	r Va	l Ası	n Sei	r Lev	ı Lev	. Lys

then the first wife there was the true to the first that the true that the

Hall grand

Glu Leu Arg

- (2) INFORMATION FOR SEQ ID NO:27:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 254 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

Met Trp Gln Ala Gly Lys Arg Gln Ala Ser Arg Ala Phe Ser Leu Tyr 10 Ala Asn Ile Asp Ile Leu Arg Pro Tyr Phe Asp Val Glu Pro Ala Gln 20 25 30 Val Arg Ser Arg Leu Leu Glu Ser Met Ile Pro Ile Lys Met Val Asn 40 Phe Pro Gln Lys Ile Ala Gly Glu Leu Tyr Gly Pro Leu Met Leu Val 55 60 Phe Thr Leu Val Ala Ile Leu Leu His Gly Met Lys Thr Ser Asp Thr 70 75 Ile Ile Arg Glu Gly Thr Leu Met Gly Thr Ala Ile Gly Thr Cys Phe 90 Gly Tyr Trp Leu Gly Val Ser Ser Phe Ile Tyr Phe Leu Ala Tyr Leu 100 105 110 Cys Asn Ala Gln Ile Thr Met Leu Gln Met Leu Ala Leu Leu Gly Tyr 120 Gly Leu Phe Gly His Cys Ile Val Leu Phe Ile Thr Tyr Asn Ile His 130 135 140 Leu His Ala Leu Phe Tyr Leu Phe Trp Leu Leu Val Gly Gly Leu Ser 145 150 155 160 Thr Leu Arg Met Val Ala Val Leu Val Ser Arg Thr Val Gly Pro Thr 165 170 Gln Arg Leu Leu Cys Gly Thr Leu Ala Ala Leu His Met Leu Phe 185 Leu Leu Tyr Leu His Phe Ala Tyr His Lys Val Val Glu Gly Ile Leu 205 200 195 Asp Thr Leu Glu Gly Pro Asn Ile Pro Pro Ile Gln Arg Val Pro Arg 220 215 Asp Ile Pro Ala Met Leu Pro Ala Ala Arg Leu Pro Thr Thr Val Leu 240 235 230 Asn Ala Thr Ala Lys Ala Val Ala Val Thr Leu Gln Ser His 250 245

- (2) INFORMATION FOR SEQ ID NO:28:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 221 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

 Met
 Gly
 Ser
 Glu
 Asn
 Glu
 Ala
 Leu
 Asp
 Leu
 Ser
 Met
 Lys
 Ser
 Val
 Fro

 Trp
 Leu
 Lys
 Ala
 Gly
 Glu
 Val
 Ser
 Pro
 Pro
 Ile
 Phe
 Glu
 Glu
 Asp
 Ala

 Ala
 Leu
 Asp
 Leu
 Ser
 Val
 Ala
 Ala
 His
 Arg
 Lys
 Ser
 Glu
 Pro
 Pro

 Glu
 Thr
 Leu
 Tyr
 Asp
 Ser
 Gly
 Ala
 Ser
 Val
 Asp
 Ser
 Gly
 Ala

 Val
 Met
 Glu
 Lys
 Leu
 Pro
 Ser
 Gly
 Met
 Glu
 Ile
 Ser
 Gly
 His
 Thr

 Val
 Met
 Glu
 Lys
 Leu
 Pro
 Ser
 Gly
 Met
 Glu
 Ile
 Ser
 Ala
 Pro
 Ala

 Val
 Met
 Glu
 Lys
 Leu
 Pro
 Ser
 Gly
 Met
 G

				85					90					95	
Asp	Ala	Ala	Thr	Glu	Met	Leu	Ser	Gln	Pro	Asn	His	Pro	Ser	Gly	Glu
			100					105					110		
Val	Lys	Ala	Glu	Asn	Asn	Ile	Glu	Met	Val	Gly	Glu	Ser	Gln	Ala	Ala
		115					120					125			
Lys	Val	Ile	Val	Ser	Val	Glu	Asp	Ala	Val	Pro	Thr	Ile	Phe	Сув	Gly
	130					135					140				
Lys	Ile	Lys	Gly	Leu	Ser	Gly	Val	Ser	Thr	Lys	Asn	Phe	Ser	Phe	Lys
145					150					155					160
Arg	Glu	Asp	Ser	Val	Leu	Gln	Gly	Tyr	Asp	Ile	Asn	Ser	Gln	Gly	Glu
				165					170					175	
Glu	Ser	Met	Gly	Asn	Ala	Glu	Pro	Leu	Arg	Lys	Pro	Ile	Lys	Asn	Arg
			180					185					190		
Ser	Ile	Lys	Leu	Lys	Lys	Val	Asn	Ser	Gln	Glu	Val	His	Met	Leu	Pro
		195					200					205			
Ile	Lys	Lys	Gln	Arg	Leu	Ala	Thr	Phe	Phe	Pro	Arg	Lys			
	210					215					220				

- (2) INFORMATION FOR SEQ ID NO:29:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 266 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

 Met Val
 Lys
 Val
 Thr
 Phe
 Asn
 Ser
 Ala
 Leu
 Ala
 Gln
 Lys
 Glu
 Ala
 Lys

 Lys
 Asp
 Glu
 Ser
 Gly
 Glu
 Glu
 Ala
 Leu
 Ile
 Ile
 Pro
 Pro
 Asp

 Ala
 Val
 Val
 Asp
 Cys
 Lys
 Asp
 Pro
 Asp
 Asp
 Val
 Pro
 Val
 Pro
 Val
 Gly

 Ala
 Val
 Val
 Asp
 Val
 Val
 Pro
 Val
 Gly

Gln	Arg	Arg	Ala	Trp	Cys	Trp	Сув	Met	Сла	Phe	Gly	Leu	Ala	Phe	Met
	50					55					60				
Leu	Ala	Gly	Val	Ile	Leu	Gly	Gly	Ala	Tyr	Leu	Tyr	Lys	Tyr	Phe	Ala
65					70					75					80
Leu	Gln	Pro	Asp	Asp	Val	Tyr	Tyr	Cys	Gly	Ile	Lys	Tyr	Ile	ГÄЗ	Aap
				85					90					95	
Asp	Val	Ile	Leu	Asn	Glu	Pro	Ser	Ala	Asp	Ala	Pro	Ala	Ala	Leu	Tyr
			100					105					110		
Gln	Thr	Ile	Glu	Glu	Asn	Ile	Lys	Ile	Phe	Glu	Glu	Glu	Glu	Val	Glu
		115					120					125			
Phe	Ile	Ser	Val	Pro	Val	Pro	Glu	Phe	Ala	Asp	Ser	Asp	Pro	Ala	Asn
	130					135					140				
Ile	Val	His	Asp	Phe	Asn	Lys	Lys	Leu	Thr	Ala	Tyr	Leu	Asp	Leu	Asn
145					150					155					160
Leu	Asp	Lys	САв	Tyr	Val	Ile	Pro	Leu	Asn	Thr	Ser	Ile	Val	Met	Pro
				165					170					175	
Pro	Arg	Asn	Leu	Leu	Glu	Leu	Leu	Ile	Asn	Ile	Lys	Ala	Gly	Thr	Tyr
			180					185					190		
Leu	Pro	Gln	Ser	Tyr	Leu	Ile	His	Glu	His	Met	Val	Ile	Thr	Asp	Arg
		195					200					205			
Ile	Glu	Asn	Ile	Asp	His	Leu	Gly	Phe	Phe	Ile	Tyr	Arg	Leu	Сув	His
	210					215					220				
Asp	Lys	Glu	Thr	Tyr	Lys	Leu	Gln	Arg	Arg	, Glu	Thr	· Ile	Lys	Gly	Ile
225					230					235					240
Glr	Lys	Arg	, Glu	Ala	Ser	Asr	Cys	Phe	Ala	Ile	e Arc	J His	Phe	Glu	Asn
				245	5				250)				255	5
Lys	Ph∈	a Ala	val	Glu	Thr	Lev	ı Ile	е Сув	s Ser	:					
			260)				265	5						

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 251 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Μe	et	Pro	Thr	Gly	Asp	Phe	Asp	Ser	Lys	Pro	Ser	Trp	Ala	Asp	Gln	Val
1	1				5					10					15	
G]	lu	Glu	Glu	Gly	Glu	Asp	Asp	Lys	Сув	Val	Thr	Ser	Glu	Leu	Leu	Lys
				20					25					30		
G]	ly	Ile	Pro	Leu	Ala	Thr	Gly	Asp	Thr	Ser	Pro	Glu	Pro	Glu	Leu	Leu
			35					40					45			
Pı	ro	Gly	Ala	Pro	Leu	Pro	Pro	Pro	Lys	Glu	Val	Ile	Asn	Gly	Asn	Ile
		50					55					60				
L	ys	Thr	Val	Thr	Glu	Tyr	Lys	Ile	Asp	Glu	Asp	Gly	Lys	ГЛа	Phe	Lys
6	5					70					75					80
I	le	Val	Arg	Thr	Phe	Arg	Ile	Glu	Thr	Arg	Lys	Ala	Ser	Lys	Ala	Val
					85					90					95	
A	la	Arg	Arg	ГÄв	Asn	Trp	Lys	Lys	Phe	Gly	Asn	Ser	Glu	Phe	Asp	Pro
				100					105					110		
P	ro	Gly	Pro	Asn	Val	Ala	Thr	Thr	Thr	Val	Ser	Asp	Asp	Val	Ser	Met
			115					120					125			
T	hr	Phe	Ile	Thr	Ser	Lys	Glu	Asp	Leu	Asn	Сув	Gln	Glu	Glu	Glu	Asp
		130					135					140				
P	ro	Met	Asn	Lys	Phe	Lys	Gly	Gln	Lys	Ile	Val	Ser	Cys	Arg	Ile	Cys
1	.45					150					155					160
L	ys	Gly	Asp	His	Trp	Thr	Thr	Arg	Сув	Pro	Tyr	ГЛя	Asp	Thr	Leu	Gly
					165	ı				170					175	
P	ro	Met	Gln	Lys	Glu	Leu	Ala	Glu	Gln	Leu	Gly	Leu	Ser	Thr	Gly	Glu
				180	•				185					190		
I	ys	Glu	Lys	Leu	Pro	Gly	Glu	Leu	Glu	Pro	Val	Gln	Ala	Thr	Gln	Asn
			195	;				200	•				205	;		
I	.ys	Thr	Gly	Lys	з Туг	· Val	. Pro	Pro	Ser	Leu	Arg	Asp	Gly	Ala	Ser	Arg
		210)				215	5				220)			
7	Arg	Gly	Glu	ı Ser	Met	: Glr	Pro) Asn	Arg	Arg	Ala	Asp) Asr	Asr	Ala	Thr
2	225	i				230)				235	;				240
1	Ile	Arg	y Val	Thi	Asr	Lev	ı Arç	y Arg	g Gly	His	Ala	l.				
					245	-				250	`					

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 377 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

Met	Arg	Arg	Leu	Asn	Arg	Lys	Lys	Thr	Leu	Ser	Leu	Val	Lys	Glu	Leu
1				5					10					15	
Asp	Ala	Phe	Pro	Lys	Val	Pro	Glu	Ser	Tyr	Val	Glu	Thr	Ser	Ala	Ser
			20					25					30		
Gly	Gly	Thr	Val	Ser	Leu	Ile	Ala	Phe	Thr	Thr	Met	Ala	Leu	Leu	Thr
		35					40					45			
Ile	Met	Glu	Phe	Ser	Val	Tyr	Gln	Asp	Thr	Trp	Met	Lys	Tyr	Glu	Tyr
	50					55					60				
Glu	Val	Asp	Lys	Asp	Phe	Ser	Ser	Lys	Leu	Arg	Ile	Asn	Ile	Asp	Ile
65					70					75					80
Thr	Val	Ala	Met	Lys	Cys	Gln	Tyr	Val	Gly	Ala	Asp	Val	Leu	Asp	Leu
				85					90					95	
Ala	Glu	Thr	Met	Val	Ala	Ser	Ala	Asp	Gly	Leu	Val	Tyr	Glu	Pro	Thr
			100					105					110		
Val	Phe	Asp	Leu	Ser	Pro	Gln	Gln	Lys	Glu	Trp	Gln	Arg	Met	Leu	Gln
		115					120					125			
Leu	Ile	Gln	Ser	Arg	Leu	Gln	Glu	Glu	His	Ser	Leu	Gln	Asp	Val	Ile
	130					135					140				
Phe	Lys	Ser	Ala	Phe	Lys	Ser	Thr	Ser	Thr	Ala	Leu	Pro	Pro	Arg	Glu
145		`			150					155					160
Asp	Asp	Ser	Ser	Gln	Ser	Pro	Asn	Ala	Сув	Arg	Ile	His	Gly	His	Leu
-	_			165					170					175	
Tyr	· Val	Asn	Lys	Val	Ala	Gly	Asn	Phe	His	Ile	Thr	Val	Gly	Lys	Ala
			180			_		185					190		

Ile	Pro	His	Pro	Arg	Gly	His	Ala	His	Leu	Ala	Ala	Leu	Val	Asn	His
		195					200					205			
Glu	Ser	Tyr	Asn	Phe	Ser	His	Arg	Ile	Asp	His	Leu	Ser	Phe	Gly	Glu
	210					215					220				
Leu	Val	Pro	Ala	Ile	Ile	Asn	Pro	Leu	Asp	Gly	Thr	Glu	Lys	Ile	Ala
225					230					235					240
Ile	Asp	His	Asn	Gln	Met	Phe	Gln	Tyr	Phe	Ile	Thr	Val	Val	Pro	Thr
				245					250					255	
Lys	Leu	His	Thr	Tyr	Lys	Ile	Ser	Ala	Asp	Thr	His	Gln	Phe	Ser	Val
			260					265					270		
Thr	Glu	Arg	Glu	Arg	Ile	Ile	Asn	His	Ala	Ala	Gly	Ser	His	Gly	Val
		275					280					285			
Ser	Gly	Ile	Phe	Met	Lys	Tyr	Asp	Leu	Ser	Ser	Leu	Met	Val	Thr	Val
	290					295					300				
Thr	Glu	Glu	His	Met	Pro	Phe	Trp	Gln	Phe	Phe	Val	Arg	Leu	Сув	Gly
305					310					315					320
Ile	Val	Gly	Gly	Ile	Phe	Ser	Thr	Thr	Gly	Met	Leu	His	Gly	Ile	Gly
				325					330)				335	;
Lys	Phe	Ile	val	Glu	Ile	Ile	сув	Сув	Arg	Phe	Arg	Lev	Gly	Ser	Tyr
			340)				345	;				350)	
Lys	Pro	Val	. Asr	Ser	. Val	Pro	Phe	Glu	ı Asp	Gly	His	Thr	: Asp) Asr	His
		355	5				360)				365	5		
Lev	ı Pro	Lev	ı Lev	Glu	ı Asr	Asr	Thi	His	3						
	370)				375	5								

- (2) INFORMATION FOR SEQ ID NO:32:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 250 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

Met	Gly	Ser	Gln	His	Ser	Ala	Ala	Ala	Arg	Pro	Ser	Ser	Сув	Arg	Arg
1				5					10					15	
Lys	Gln	Glu	Asp	Asp	Arg	Asp	Gly	Leu	Leu	Ala	Glu	Arg	Glu	Gln	Glu
			20					25					30		
Glu	Ala	Ile	Ala	Gln	Phe	Pro	Tyr	Val	Glu	Phe	Thr	Gly	Arg	Asp	Ser
		35					40					45			
Ile	Thr	Cys	Leu	Thr	Cys	Gln	Gly	Thr	Gly	Tyr	Ile	Pro	Thr	Glu	Gln
	50					55					60				
Val	Asn	Glu	Leu	Val	Ala	Leu	Ile	Pro	His	Ser	Asp	Gln	Arg	Leu	Arg
65					70					75					80
Pro	Gln	Arg	Thr	ГÄа	Gln	Tyr	Val	Leu	Leu	Ser	Ile	Leu	Leu	Cys	Leu
				85					90					95	
Leu	Ala	Ser	Gly	Leu	Val	Val	Phe	Phe	Leu	Phe	Pro	His	Ser	Val	Leu
			100					105					110		
Val	Asp	Asp	Asp	Gly	Ile	Lys	Val	Val	Lys	Val	Thr	Phe	Asn	Lys	Gln
		115					120					125			
Asp	Ser	Leu	Val	Ile	Leu	Thr	Ile	Met	Ala	Thr	Leu	Lys	Ile	Arg	Asn
	130					135					140				
Ser	Asn	Phe	Tyr	Thr	Val	Ala	Val	Thr	Ser	Leu	Ser	Ser	Gln	Ile	Gln
145					150					155					160
Tyr	Met	Asn	Thr	Val	Val	Ser	Thr	Tyr	Val	Thr	Thr	Asn	Val	Ser	Leu
				165					170					175	
Ile	Pro	Pro	Arg	Ser	Glu	Gln	Leu	Val	Asn	Phe	Thr	Gly	Lys	Ala	Glu
			180					185					190		
Met	Gly	Gly	Pro	Phe	Ser	Tyr	Val	Tyr	Phe	Phe	Cys	Thr	Val	Pro	Glu
		195					200					205			
Ile	Leu	Val	His	Asn	Ile	Val	Ile	Phe	Met	Arg	Thr	Ser	Val	ГÀВ	Ile
	210					215					220				
Ser	Tyr	Ile	Gly	Leu	Met	Thr	Gln	Ser	Ser	Leu	Glu	Thr	His	His	Tyr
225					230					235					240
Val	Asp	Cys	Gly	Gly	Asn	Ser	Thr	Ala	Ile						
				245					250						

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 374 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Met	Val	Thr	Сув	Phe	His	Val	Pro	Tyr	Ser	Ala	Leu	Thr	Met	Phe	Ile
1				5					10					15	
Ser	Thr	Glu	Gln	Thr	Glu	Arg	Asp	Ser	Ala	Thr	Ala	Tyr	Arg	Met	Thr
			20					25					30		
Val	Glu	Val	Leu	Gly	Thr	Val	Leu	Gly	Thr	Ala	Ile	Gln	Gly	Gln	Ile
		35					40					45			
Val	Gly	Gln	Ala	Asp	Thr	Pro	Сув	Phe	Gln	Asp	Leu	Asn	Ser	Ser	Thr
	50					55					60				
Val	Ala	Ser	Gln	Ser	Ala	Asn	His	Thr	His	Gly	Thr	Thr	Ser	His	Arg
65					70					75					80
Glu	Thr	Gln	Lys	Ala	Tyr	Leu	Leu	Ala	Ala	Gly	Val	Ile	Val	Cys	Ile
				85					90					95	
Tyr	Ile	Ile	Сув	Ala	Val	Ile	Leu	Ile	Leu	Gly	Val	Arg	Glu	Gln	Arg
			100					105					110		
Glu	Pro	Tyr	Glu	Ala	Gln	Gln	Ser	Glu	Pro	Ile	Ala	Tyr	Phe	Arg	Gly
		115					120					125			
Leu	Arg	Leu	Val	Met	Ser	His	Gly	Pro	Tyr	Ile	Lys	Leu	Ile	Thr	Gly
	130	ı				135					140)			
Ph∈	Leu	Phe	Thr	Ser	Leu	Ala	Phe	Met	Leu	. Val	Glu	Gly	Asr	Phe	Val
145	5				150)				155	;				160
Lev	. Phe	Суя	Thr	Tyr	Thr	Leu	Gly	Phe	Arç	, Asr	Glu	Phe	e Glr	a Asn	Leu
				165	i				170)				175	;
Lev	ı Lev	Ala	a Ile	e Met	Leu	ı Ser	Ala	Thr	Let	ı Thı	: Ile	Pro	o Ile	Tr	Gln
			180	ס				185	i				190)	
Tr	Phe	e Le	ı Thi	r Arç	, Phe	e Gly	, Lys	Lys	Thi	c Ala	a Val	L Ty	c Va	L Gly	Ile
		19	5				200)				20	5		
Se	r Sei	c Ala	a Vai	l Pro	Phe	e Le	ı Ile	e Lei	ı Va	l Ala	a Le	ı Me	t Gl	ı Sei	. Asn

	210					215					220				
Leu	Ile	Ile	Thr	Tyr	Ala	Val	Ala	Val	Ala	Ala	Gly	Ile	Ser	Val	Ala
225					230					235					240
Ala	Ala	Phe	Leu	Leu	Pro	Trp	Ser	Met	Leu	Pro	Asp	Val	Ile	Asp	Asp
				245					250					255	
Phe	His	Leu	Lys	Gln	Pro	His	Phe	His	Gly	Thr	Glu	Pro	Ile	Phe	Phe
			260					265					270		
Ser	Phe	Tyr	Val	Phe	Phe	Thr	Lys	Phe	Ala	Ser	Gly	Val	Ser	Leu	Gly
		275					280					285			
Ile	Ser	Thr	Leu	Ser	Leu	Asp	Phe	Ala	Gly	Tyr	Gln	Thr	Arg	Gly	Cys
	290					295	,				300				
Ser	Gln	Pro	Glu	Arg	Val	Lys	Phe	Thr	Leu	Asn	Met	Leu	Val	Thr	Met
305					310					315					320
Ala	Pro	Ile	Val	Leu	Ile	Leu	Leu	Gly	Leu	Leu	Leu	Phe	Lys	Met	Tyr
				325					330					335	
Pro	Ile	Asp	Glu	Glu	Arg	Arg	Arg	Gln	Asn	Lys	Lys	Ala	Leu	Gln	Ala
			340					345					350		
Leu	Arg	Asp	Glu	Ala	Ser	Ser	Ser	Gly	Сув	Ser	Glu	Thr	Asp	Ser	Thr
		355					360					365			
Glu	Leu	Ala	Ser	Ile	Leu										
	370														

- (2) INFORMATION FOR SEQ ID NO:34:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 334 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
- : (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

Met Val Asn Asp Pro Pro Val Pro Ala Leu Leu Trp Ala Gln Glu Val

1 5 10 15

Gly	Gln	Val		Ala	Gly	Arg	Ala		Arg	Leu	Leu	Leu		Phe	Gly
			20					25	_	_			30	5 1	7
Val	Leu	Phe	Сув	Thr	Ile	Leu	Leu	Leu	Leu	Trp	Val		Val	Pne	Leu
		35					40					45			
Tyr	Gly	Ser	Phe	Tyr	Tyr	Ser	Tyr	Met	Pro	Thr	Val	Ser	His	Leu	Ser
	50					55					60				
Pro	Val	His	Phe	Tyr	Tyr	Arg	Thr	Asp	CAa	Asp	Ser	Ser	Thr	Thr	Ser
65					70					75					80
Leu	Cys	Ser	Phe	Pro	Val	Ala	Asn	Val	Ser	Leu	Thr	Lys	Gly	Gly	Arg
				85					90					95	
Asp	Arg	Val	Leu	Met	Tyr	Gly	Gln	Pro	Tyr	Arg	Val	Thr	Leu	Glu	Leu
			100					105					110		
Glu	Leu	Pro	Glu	Ser	Pro	Val	Asn	Gln	Asp	Leu	Gly	Met	Phe	Leu	Val
		115					120					125			
Thr	Ile	Ser	Сув	Tyr	Thr	Arg	Gly	Gly	Arg	Ile	Ile	Ser	Thr	Ser	Ser
	130					135					140				
Arg	Ser	Val	Met	Leu	His	Tyr	Arg	Ser	Asp	Leu	Leu	Gln	Met	Leu	Asp
145					150					155					160
Thr	Leu	Val	Phe	Ser	Ser	Leu	Leu	Leu	Phe	Gly	Phe	Ala	Glu	Gln	Lys
				165					170)				175	ı
Gln	Leu	Lev	Glu	. Val	Glu	Leu	Tyr	Ala	Asp	Tyr	Arg	Glu	Asn	Ser	Tyr
			180)				185	;				190)	
Val	Pro	Thr	Thr	Gly	Ala	Ile	: Ile	Glu	Ile	e His	Ser	Lys	Arg	Ile	Gln
		195	5				200)				205	5		
Let	ı Tyr	Gly	, Ala	а Туг	Lev	Arg	, Ile	His	a Ala	a His	Phe	Thi	: Gly	Lev	a Arg
	210)				215	5				220)			
Ту	Lei	ı Le	туз	c Asr	ı Phe	e Pro	Met	Thi	Cys	s Ala	a Phe	: Ile	e Gly	val	l Ala
22!	5				230)				23	5				240
Se	c Ası	n Phe	e Thi	r Phe	e Let	ı Sei	r Val	L Ile	e Vai	l Le	ı Phe	e Se	г Ту	c Met	: Gln
				24	5				250	0				25	5
Tr	o Vai	l Tr	p Gl	y Gly	y Ile	e Tr	p Pro	o Ar	g Hi	s Ar	g Phe	e Se	r Le	ı Gl	n Val
			26	0				26	5				27	0	
As	n Ile	e Ar	g Ly:	s Ar	g Asj	p As:	n Se:	r Ar	g Ly	s Gl	u Vai	l Gl	n Ar	g Ar	g Ile
		27					28					28			
Se	r Al	a Hi	s Gl	n Pr	o Gl	y Pr	o Gl	u G1	y Gl	n Gl	u Gl	u Se	r Th	r Pr	o Glr
	29				•	- 29					30				

Ser Asp Val Thr Glu Asp Gly Glu Ser Pro Glu Asp Pro Ser Gly Thr

305 310 315 320

Glu Val Ser Cys Pro Arg Arg Arg Asn Gln Ile Ser Ser Pro

325 330

- (2) INFORMATION FOR SEQ ID NO:35:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 276 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

Met Thr His Pro Gly Thr Gly Asp Ile Ile Ala Val Met Ile Thr Glu 1 Leu Arg Gly Lys Asp Ile Leu Ser Tyr Leu Glu Lys Asn Ile Ser Val 20 25 Gln Met Thr Ile Ala Val Gly Thr Arg Met Pro Pro Lys Asn Phe Ser 40 Arg Gly Ser Leu Val Phe Val Ser Ile Ser Phe Ile Val Leu Met Ile 60 55 Ile Ser Ser Ala Trp Leu Ile Phe Tyr Phe Ile Gln Lys Ile Arg Tyr 75 70 Thr Asn Ala Arg Asp Arg Asn Gln Arg Arg Leu Gly Asp Ala Ala Lys 90 85 Lys Ala Ile Ser Lys Leu Thr Thr Arg Thr Val Lys Lys Gly Asp Lys 105 100 Glu Thr Asp Pro Asp Phe Asp His Cys Ala Val Cys Ile Glu Ser Tyr 120 Lys Gln Asn Asp Val Val Arg Ile Leu Pro Cys Lys His Val Phe His 135 130 Lys Ser Cys Val Asp Pro Trp Leu Ser Glu His Cys Thr Cys Pro Met

145					150					155					160
Сув	Lys	Leu	Asn	Ile	Leu	Lys	Ala	Leu	Gly	Ile	Val	Pro	Asn	Leu	Pro
				165					170					175	
Cys	Thr	Asp	Asn	Val	Ala	Phe	Asp	Met	Glu	Arg	Leu	Thr	Arg	Thr	Gln
			180					185					190		
Ala	Val	Asn	Arg	Arg	Ser	Ala	Leu	Gly	Asp	Leu	Ala	Gly	Asp	Asn	Ser
		195					200					205			
Leu	Gly	Leu	Glu	Pro	Leu	Arg	Thr	Ser	Gly	Ile	Ser	Pro	Leu	Pro	Gln
	210					215					220				
Asp	Gly	Glu	Leu	Thr	Pro	Arg	Thr	Gly	Glu	Ile	Asn	Ile	Ala	Val	Thr
225					230					235					240
Lys	Glu	Trp	Phe	Ile	Ile	Ala	Ser	Phe	Gly	Leu	Leu	Ser	Ala	Leu	Thr
				245					250					255	
Leu	Сув	Tyr	Met	Ile	Ile	Arg	Ala	Thr	Ala	Ser	Leu	Asn	Ala	Asn	Glu
			260					265					270		
Val	Glu	Trp	Phe												
		275													

- (2) INFORMATION FOR SEQ ID NO:36:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 210 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

 Met
 Ala
 Asn
 Ser
 Gly
 Leu
 Gln
 Leu
 Gly
 Phe
 Ser
 Met
 Ala
 Leu
 Leu

 1
 5
 5
 5
 10
 5
 10
 5
 15
 15

 Gly
 Trp
 Val
 Ala
 Ala
 Cys
 Thr
 Ala
 Ile
 Pro
 Gln
 Trp
 Gln
 Met

 Ser
 Tyr
 Ala
 Gly
 Asp
 Asn
 Ile
 Ile
 Thr
 Ala
 Gln
 Ala
 Met
 Tyr
 Lys

 35
 45
 45
 45
 45
 45
 45
 45

Gly	Leu	Trp	Met	Asp	Cys	Val	Thr	Gln	Ser	Thr	Gly	Met	Met	Ser	Сув
	50					55					60				
Lys	Met	Tyr	Asp	Ser	Val	Leu	Ala	Leu	Ser	Ala	Ala	Leu	Gln	Ala	Thr
65					70					75					80
Arg	Ala	Leu	Met	Val	Val	Ser	Leu	Val	Leu	Gly	Phe	Leu	Ala	Met	Phe
				85					90					95	
Val	Ala	Thr	Met	Gly	Met	Lys	Cys	Thr	Arg	Сув	Gly	Gly	Asp	Asp	Lys
			100					105					110		
Val	Lys	Lys	Ala	Arg	Ile	Ala	Met	Gly	Gly	Gly	Ile	Ile	Phe	Ile	Val
		115					120					125			
Ala	Gly	Leu	Ala	Ala	Leu	Val	Ala	Cys	Ser	Trp	Tyr	Gly	His	Gln	Ile
	130					135					140				
Val	Thr	Asp	Phe	Tyr	Asn	Pro	Leu	Ile	Pro	Thr	Asn	Ile	Lys	Tyr	Glu
145					150					155					160
Phe	Gly	Pro	Ala	Ile	Phe	Ile	Gly	Trp	Ala	Gly	Ser	Ala	Leu	Val	Ile
				165					170					175	
Leu	Gly	Gly	Ala	Leu	Leu	Ser	Cys	Ser	Cys	Pro	Gly	Asn	Glu	Ser	Lys
			180					185					190		
Ala	Gly	Tyr	Arg	Ala	Pro	Arg	Ser	Tyr	Pro	Lys	Ser	Asn	Ser	Ser	Lys
		195					200					205			
Glu	Tyr														
	210														

- (2) INFORMATION FOR SEQ ID NO:37:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 476 amino acids
 - (B) TYPE: amino acid
- (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

Met Ile Arg Pro Gln Leu Arg Thr Ala Gly Leu Gly Arg Cys Leu Leu

1				5					10					12	
Pro	Gly	Leu	Leu	Leu	Leu	Leu	Val	Pro	Val	Leu	Trp	Ala	Gly	Ala	Glu
			20					25					30		
Lys	Leu	His	Thr	Gln	Pro	Ser	Cys	Pro	Ala	Val	Сув	Gln	Pro	Thr	Arg
		35					40					45			
Сув	Pro	Ala	Leu	Pro	Thr	Сув	Ala	Leu	Gly	Thr	Thr	Pro	Val	Phe	Asp
	50					55					60				
Leu	Cys	Arg	Сув	Cys	Arg	Val	Сув	Pro	Ala	Ala	Glu	Arg	Glu	Val	Cys
65					70					75					80
Gly	Gly	Ala	Gln	Gly	Gln	Pro	Сув	Ala	Pro	Gly	Leu	Gln	Сув	Leu	Gln
				85					90					95	
Pro	Leu	Arg	Pro	Gly	Phe	Pro	Ser	Thr	Cys	Gly	Cys	Pro	Thr	Leu	Gly
			100					105					110		
Gly	Ala	Val	Cys	Gly	Ser	Asp	Arg	Arg	Thr	Tyr	Pro	Ser	Met	Сув	Ala
		115					120					125			
Leu	Arg	Ala	Glu	Asn	Arg	Ala	Ala	Arg	Arg	Leu	Gly	Lys	Val	Pro	Ala
	130					135					140				
Val	Pro	Val	Gln	Trp	Gly	Asn	Сув	Gly	Asp	Thr	Gly	Thr	Arg	Ser	Ala
145					150					155					160
Gly	Pro	Leu	Arg	Arg	Asn	Tyr	Asn	Phe	Ile	Ala	Ala	Val	Val	Glu	Lys
				165					170)				175	
Val	Ala	Pro	Ser	Val	Val	His	. Val	Gln	Leu	Trp	Gly	Arg	Leu	Leu	His
			180)				185	,				190		
Gly	Ser	: Arg	, Leu	val	. Pro	Val	Tyr	Ser	Gly	Ser	Gly	Phe	lle	Val	Ser
		195	5				200)				205	;		
Glu	Asp	Gly	Lev	ı Ile	: Ile	Thi	Asn	Ala	His	. Val	. Val	Arg	J Asn	Gln	Gln
	210)				215	5				220)			
Trp	Ile	e Glu	ı Val	L Val	Lev	ı Glı	n Asr	Gly	, Ala	a Arg	туз	Glu	ı Ala	. Val	Val
225	;				230)				235	5				240
Lys	Ası	o Ile	e Ası	, Le	ı Lys	Le	ı Ası	Le	ı Ala	a Val	llle	∍ Lys	3 Ile	e Glu	Ser
				24	5				250)				255	5
Asr	a Ala	a Gl	u Lei	ı Pro	o Vai	l Le	u Met	Le	ı Gly	y Arc	g Se	r Sei	c Ası	Lev	a Arg
			260	0				26	5				270)	
Ala	a Gl	y Gl	u Pho	e Va	l Vai	l Al	a Le	ı Gl	y Se	r Pro	o Ph	e Se	r Le	ı Glr	n Asn
		27	5				280)				28	5		
mb.	- 77	a ጠኤ	יות יי	- C1		a 17a	1 50	e ጥሎ	r T.w	g (2):	n Ar	a 61.	v Gla	v Lvs	3 Glu

	290					295					300				
Leu	Gly	Met	Lys	Asp	Ser	Asp	Met	Asp	Tyr	Val	Gln	Ile	Asp	Ala	Thr
305					310					315					320
Ile	Asn	Tyr	Gly	Asn	Ser	Gly	Gly	Pro	Leu	Val	Asn	Leu	Asp	Gly	Asp
				325					330					335	
Val	Ile	Gly	Val	Asn	Ser	Leu	Arg	Val	Thr	Asp	Gly	Ile	Ser	Phe	Ala
			340					345					350		
Ile	Pro	Ser	Asp	Arg	Val	Arg	Gln	Phe	Leu	Ala	Glu	Tyr	His	Glu	His
		355					360					365			
Gln	Met	Lys	Gly	Lys	Ala	Phe	Ser	Asn	Lys	Lys	Tyr	Leu	Gly	Leu	Gln
	370					375					380				
Met	Leu	Ser	Leu	Thr	Val	Pro	Leu	Ser	Glu	Glu	Leu	Lys	Met	His	Tyr
385					390					395					400
Pro	Asp	Phe	Pro	Asp	Val	Ser	Ser	Gly	Val	Tyr	Val	Cys	Lys	Val	Val
				405					410					415	
Glu	Gly	Thr	Ala	Ala	Gln	Ser	Ser	Gly	Leu	Arg	Asp	His	Asp	Val	Ile
			420					425					430		
Val	Asn	Ile	Asn	Gly	Lys	Pro	Ile	Thr	Thr	Thr	Thr	Asp	Val	Val	Lys
		435					440					445			
Ala	Leu	Asp	Ser	Asp	Ser	Leu	Ser	Met	Ala	Val	Leu	Arg	Gly	Lys	Asp
	450					455					460				
Asn	Leu	Leu	Leu	Thr	Val	Ile	Pro	Glu	Thr	Ile	Asn				
465					470					475					

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 266 amino acids
- (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

Met	Val	Lys	Val	Thr	Phe	Asn	Ser	Ala	Leu	Ala	Gln	Lys	Glu .	ата .	rās
1				5					10					15	
Lys	Asp	Glu	Pro	Glu	Ser	Gly	Glu	Glu	Ala	Leu	Ile	Ile	Pro	Pro	Asp
			20					25					30		
Ala	Val	Ala	Val	Asp	Caa	Lys	Asp	Pro	Asp	Asp	Val	Val	Pro	Val	Gly
		35					40					45			
Gln	Arg	Arg	Ala	Trp	Сув	Trp	Сув	Met	Сув	Phe	Gly	Leu	Ala	Phe	Met
	50					55					60				
Leu	Ala	Gly	Val	Ile	Leu	Gly	Gly	Ala	Tyr	Leu	Tyr	Lys	Tyr	Phe	Ala
65					70					75					80
Leu	Gln	Pro	Asp	Asp	Val	Tyr	Tyr	Cys	Gly	Ile	Lys	Tyr	Ile	ГÀв	Asp
				85					90					95	
Asp	Val	Ile	Leu	Asn	Glu	Pro	Ser	Ala	Asp	Ala	Pro	Ala	Ala	Leu	Tyr
			100					105					110		
Gln	Thr	Ile	Glu	Glu	Asn	Ile	Lys	Ile	Phe	Glu	Glu	Glu	Glu	Val	Glu
		115					120					125			
Phe	Ile	Ser	Val	Pro	Val	Pro	Glu	Phe	Ala	Asp	Ser	Asp	Pro	Ala	Asn
	130					135					140				
Ile	Val	His	Asp	Phe	Asn	Lys	Lys	Leu	Thr	Ala	Tyr	Leu	Asp	Leu	
145					150					155					160
Lev	. Asp	Lys	з Сув	Tyr	Val	Ile	Pro	Leu	Asr	Thr	Ser	Ile	val	Met	Pro
				165					170					175	
Pro	Arg	J Ası	ı Lev	ı Lev	Glu	Leu	Leu	Ile	Ası	ı Ile	e Lye	Ala			Tyr
			180					185					190		
Let	ı Pro	o Gl	n Sei	с Туг	Leu	Ile	Hi:	Glu	ı His	s Met	: Val	. Ile	∍ Thr	yst	Arg
		19					200					209			
Ile	e Gl	u Ası	n Ile	e Ası	His	Lev	ı Gly	Phe	e Pho	e Ile	е Туі	Arg	g Lev	і Суя	His
	21					215					220				
As	р Lу	s Gl	u Th	r Ty	r Lys	Let	ı Glı	n Arg	g Ar	g Gl	u Thi	r Ile	e Lys	3 Gly	, Ile
22					230					23					240
Gl	n Ly	s Ar	g Gl	u Al	a Sei	r Ası	n Cy	B Pho	e Al	a Il	e Ar	g Hi	s Pho		ı Asn
				24	5				25	0				25	5
Ly	s Ph	e Al	a Va	l Gl	u Th	r Le	u Il	е Су	s Se	r					
			26	Λ.				26	5						