HPC

Dra. María Guadalupe Sánchez Cervantes

HPC

¿Cuándo lo necesitaremos?

Se utiliza HPC para resolver problemas que no se podrían resolver (o si, pero no en un periodo de tiempo razonable) en un único procesador.

Problemas:

- Si se puede resolver pero tarda 6 meses (Excesivos tiempos de computación)
- La memoria (Hardware). Problemas que ni si quiere caben en memoria.
- Gran cantidad de ejecuciones

¿QUIÉN PUEDE UTILIZARLO?

- Dinámica de Fluidos
- Nanotecnología
- Bioinformática
- Robótica
- Medicina
- Modelado financiero. HPF.
- Procesos con robots.
- Procesamiento de señales e imágenes
- Química y bioquímica
- Data Mining y bases de datos.
- Ciencias ambientales

IMPLEMENTACIÓN |

CPU GPU **SYSTEM** MULTIPLE GPU **SYSTEM**

TERMINOLOGÍA DE HPC

- HPC →SUPERCOMPUTACIÓN → DE ALTO RENDIMIENTO Afrontar problemas que están limitados, demasiados grandes, requisitos muy altos → Google
- SUPERCOMPUTADORAS
- ARQUITECTURAS
- SOFTWARE
- PROGRAMACIÓN
- RENDIMIENTO, ESCALABILIDAD

Se ofrece solución que no se tiene problema.

TOP 500

TOP 10 Sites for November 2014

For more information about the sites and systems in the list, click on the links or view the complete list.

RANK	SITE	SYSTEM	CORES	RMAX (TFLOP/S)	RPEAK (TFLOP/S)	POWER (KW)
1	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB- FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
2	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209
3	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1,572,864	17,173.2	20,132.7	7,890
4	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10,510.0	11,280.4	12,660
5	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786,432	8,586.6	10,066.3	3,945
6	Swiss National Supercomputing Centre (CSCS)	Piz Daint - Cray XC30, Xeon E5- 2670 8C 2.600GHz, Aries interconnect, NVIDIA K20x	115,984	6,271.0	7,788.9	2,325

http:// www.top500. org

¿CÓMO SE OBTIENE EL RENDIMIENTO?

A través de Linpack Benchmark

■The Linpack Benchmark is a numerically intensive test that has been used for years to measure the floating point performance of computers.

FLOPS(for FLoating-point Operations Per Second)

SOLUCIONES DE CLUSTER

- DIY
- OSCAR
- PELICAN HPC
- MICROSFOT SOLUTIONS
- ROCKS

HIGH PERFORMANCE COMPUTING CENTER

- http://www.cns-ipicyt.mx/supercomputo
- http://www.mghpcc.org
- http://www.hlrs.de/home/
- http://www.csi.cuny.edu/cunyhpc/
- https://www.chpc.utah.edu