Engenharia de Reatores Químicos — IQD0048 Semestre 2024/1 — Turma T01 — Prof. Alexandre Umpierre

Estudo Dirigido 1

Alguns Mecanismos Reacionais em Reator Batelada a Volume Constante &

Determinação da Expressão da Taxa de Reação em Retores Batelada

1) Para cada um dos mecanismos reacionais a seguir, determine os perfis de concentração para todas as espécies envolvidas em um reator batelada. Todas as etapas elementares são de primeira ordem. Para fins de cálculo, assuma $k_1 = 1 \text{ min}^{-1}$, $k_2 = 1,5 \text{ min}^{-1}$, $k_ k_ k_-$

a)
$$A \xrightarrow{k_1} bB$$
 e) $A \xrightarrow{k_2} bB$
$$bB \xrightarrow{k_{-1}} aA$$

$$pP \xrightarrow{k_2} A$$

b)
$$A \xrightarrow{k_1} bB$$

$$B \xrightarrow{k_2} pP$$
f) $A \xrightarrow{k_1} bB$

$$bB \xrightarrow{k_{-1}} aA$$

c)
$$A \xrightarrow{k_1} bB$$
 $A \xrightarrow{k_2} pP$ $bB \xrightarrow{k_{-1}} aA$ $pP \xrightarrow{k_{-2}} A$

d)
$$A \xrightarrow{k_1} bB$$

$$bB \xrightarrow{k_{-1}} aA$$

$$A \xrightarrow{k_2} pP$$

2) A Tabela 1 apresentam a concentração c do reatante na reação $A \rightarrow B$, realizada em reator batelada com volume constante entre 27 K e 450 K. A taxa de reação é dada por kc^n em que k é a constante cinética e n é a ordem de reação de A. Inicialmente, se assume que a constante cinética obedece ao modelo de Arrhenius. Calcule a energia de ativação e o fator pré-exponencial da equação de Arrhenius, e avalie a validade do modelo. (dados produzidos com $A = 0.074 \text{ mol}^{-1}\text{L h}^{-1}$ e $E_a = 12345 \text{ J/mol}$).

Tabela 1. Tempo de reação t e concentração c de A a 27 °C, 57 °C, 97 °C, 147 °C e 197 °C.

@ 27 °C		@ 57 °C		@ 97 °C		@ 147 °C		@ 197 °C	
<i>t</i> (h)	c (mol/L)	t (h)	c (mol/L)	t (h)	c (mol/L)	t (h)	c (mol/L)	t (h)	c (mol/L)
0	3,028	0	2,972	0	2,978	0	2,988	0	3,006
4	2,205	4	1,92	2	2,029	1	2,188	1	1,994
8	1,732	8	1,405	4	1,527	2	1,703	2	1,534
12	1,406	12	1,107	6	1,234	3	1,409	3	1,193
16	1,199	16	0,867	8	1,079	4	1,187	4	1,028
20	1,063	20	0,751	10	0,883	5	1,008	5	0,865
24	0,946	24	0,707	12	0,763	6	0,919	6	0,784
28	0,838	28	0,588	14	0,719	7	0,796	7	0,669
32	0,745	32	0,518	16	0,66	8	0,735	8	0,628
36	0,682	36	0,465	18	0,527	9	0,667	9	0,566
40	0,636	40	0,447	20	0,554	10	0,605	10	0,524
44	0,609	44	0,416	22	0,448	11	0,55	11	0,469
48	0,599	48	0,371	24	0,408	12	0,538	12	0,454
52	0,513	52	0,35	26	0,402	13	0,508	13	0,409
56	0,496	56	0,337	28	0,385	14	0,466	14	0,401
60	0,469	60	0,285	30	0,385	15	0,455	15	0,355