

HKUSTx: ELEC1200.1x A System View of Communications: From Signals to Packets (Part 1)

KarenWest (/dashboard)

Courseware (/courses/HKUSTx/ELEC1200.1x/3T2014/courseware) Course In

Course Info (/courses/HKUSTx/ELEC1200.1x/3T2014/info)

Course Outline (/courses/HKUSTx/ELEC1200.1x/3T2014/05fb01b36df14eb99ab54545dabc47f6/)

Grading Scheme (/courses/HKUSTx/ELEC1200.1x/3T2014/6e2be4dac3e44b4d9f812e7b5a5d5a29/)

요 - 의 Instructors (/courses/HKUSTx/ELEC1200.1x/3T2014/674fdd6887fe4f4bb73b984df4a5675b/)

-kesources (/courses/HKUSTx/ELEC1200.1x/3T2014/a6a8267fef364cccbccd0128d091f11c/)

Discussion (/courses/HKUSTx/ELEC1200.1x/3T2014/discussion/forum)

Progress (/courses/HKUSTx/ELEC1200.1x/3T2014/progress)

LAB 2 TASK 2 - CHANGE THE TRANSMISSION DISTANCE (1/1 point)

In this task, you will investigate the effect of the transmission distance on the communications system.

The code window below contains a MATLAB script similar to that of Task 1. Your task here is to investigate the effect of the transmission distance by fitting the step responses with different transmission distances.

```
1 tx_wave = [zeros(1,150) ones(1,250)]; % define step-like waveform
2 distance_list = [10 20 30]; % list of distances to simulate
3 num_dist = length(distance_list);
4 mse_list = zeros(1,num_dist);
5
6 % parameters of best fits for each distance
7 % modify these to find the best fit at each distance
8 c_list = [0.23 0.25 0.26];
9 d_list = [150 150 150];
10 k_list = [(0.82-0.23) (0.4-0.25) (0.33-0.26)];
11 a_list = [(0.93 0.93 0.93)];
12
13 % the for loop below simulates the channel at each distance
14 % we run through the distance list backwards so figures appear in correct
15 % order on the edX platform
```

Correct

1 of 4 10/06/2014 11:47 AM

```
c_list = [0.23 0.25 0.26];
d_list = [150 150 150];
k_list = [0.6 0.15 0.07];
a_list = [0.93 0.93 0.93];
```

Help

Figure 1

Figure 2

Figure 3

MSE at distance 10 = 5.8937e-05

MSE at distance 20 = 5.1513e-05

MSE at distance 30 = 6.1838e-05

Check Reset Save Hide Answer You have used 1 of 10 submissions

INSTRUCTIONS

Help

Step 1: Simulate the channel at the given transmission distances

Run the code as presented. You will see three figures comparing the received and the fitted waveforms at different transmission distances.

Step 2: Adjust the parameters for different distances

You will see that the predicted waveforms cannot fit the received waveforms. You need to adjust the parameters listed in the variables c_list, d_list, k_list and a_list to fit the received waveforms with ${\it MSE}$ less than 1×10^{-4} .

How does the change of the transmission distance affect the response of the channel? *Hint: some parameters are distance dependent; but some are not. Can you explain why?*

Step 3: Submit your work

You can run your code as many times as you like to understand the effect of the transmission distance on the communications sytem. Once you are ready, click on the **Check** button to submit your work. Make sure the distance list is set to [10 20 30] and that **MSEs** of your fits are all less than 1×10^{-4} .

Step 4: Answer the questions

Based on what you observed in your experiments, answer the question below.

Lab 2 Task 2 - Change the transn	nission dista
LAB 2 TASK 2 - OUESTION 1	(1/1 noint)

https://courses.edx.org/courses/HKUSTx/EL...

As the transmission distance increases, the value of the signal range parameter k _____?

Help

Increases

EXPLANATION

In a physical system, this typically occurs because the transmitted signal energy is spread over a larger area for a larger transmission distance. Since the size of the receiver remains fixed, the magnitude of the received signal decreases.

Hide Answer

You have used 1 of 1 submissions

About (https://www.edx.org/about-us) Jobs (https://www.edx.org/jobs) Press (https://www.edx.org/press) FAQ (https://www.edx.org/student-faq) Contact (https://www.edx.org/contact)

EdX is a non-profit created by founding partners Harvard and MIT whose mission is to bring the best of higher education to students of all ages anywhere in the world, wherever there is Internet access. EdX's free online MOOCs are interactive and subjects include computer science, public health, and artificial intelligence.

(http://www.meetup.com/YourMeetup)

(http://www.facebook.com/EdxOnline)

(https://twitter.com /YourPlatformTwitterAccount)

(https://plus.google.com /YourGooglePlusAccount/)

(http://youtube.com/user/edxonline) © 2014 edX, some rights reserved.

Terms of Service and Honor Code - Privacy Policy (https://www.edx.org/edx-privacy-policy)