UCS1302: DATA STRUCTURES

Graphs

Session Meta Data

Author	Dr. B. Bharathi
Reviewer	
Version Number	1.2
Release Date	20 August 2019

Revision History

Revision Date	Details	Version no.
22 September	New SSN template applied	1.2
2017		

Session Objectives

To learn about graph and its representations

Session Outcomes

- At the end of this session, participants will be able to
 - Understand graph terminologies
 - Represent the graphs using different methods

Agenda

- Graph introduction
- Terminologies
- Representation of graphs

Graphs

Dr. B. Bharathi SSNCE

August 20, 2019

What is a Graph?

• A graph G = (V,E) is composed of:

V: set of vertices

E: set of edges or arcs connecting the vertices in V

- An edge e = (u,v) is a pair of vertices belonging to E
- weight or cost

Example:

Directed vs. Undirected Graph

- An undirected graph is one in which the pair of vertices in a edge is unordered, (vo, v1) = (v1,v0)
- A directed graph is one in which each edge is a directed pair of vertices, <vo, v1>!= <v1,v0>

Applications

CS16

electronic circuits

networks (roads, flights, communications)

Terminology: Degree of a Vertex

- The degree of a vertex is the number of edges incident to that vertex
- For directed graph,
 - the in-degree of a vertex v is the number of edges that have v as the head
 - the out-degree of a vertex v is the number of edges that have v as the tail
 - if di is the degree of a vertex i in a graph G with n vertices and e edges, the number of edges is

$$e = (\sum_{i=0}^{n-1} d_i) / 2$$

Examples

Path

v 1.2

 path: sequence of vertices v₁, v₂,...v_k such that consecutive vertices v_i and v_{i+1} are adjacent.

The **length** of the path is the number of edges along the path

Simple path: No repeated vertices

Cycle: simple path, except that the last vertex is the same as the first vertex

acda

14 v 1.2

- A directed graph that has no cyclic paths is called a DAG (a Directed Acyclic Graph).
- An undirected graph that has an edge between every pair of vertices is called a complete graph.

Let $\mathbf{n} = \text{no. of vertices}$, and $\mathbf{m} = \text{no. of edges}$

- How many total edges in a complete graph?
 - Each of the n vertices is incident to n-1 edges, however, we would have counted each edge twice! Therefore, intuitively, m = n(n-1)/2.
- Therefore, if a graph is not complete, m < n(n -1)/2

Note: A directed graph can also be a complete graph; in that case, there must be an edge from every vertex to every other vertex.

15

$$n = 5$$

 $m = (5 * 4)/2 = 10$

•connected graph: any two vertices are connected by some path

not connected

subgraph: subset of vertices and edges forming a graph

- An undirected graph is connected if a path exists from every vertex to every other vertex
- A directed graph is strongly connected if a path exists from every vertex to every other vertex
- A directed graph is weakly connected if a path exists from every vertex to every other vertex, disregarding the direction of the edge

Graph representations

- Adjacency matrix graph can be represented using a matrix of size total number of vertices by total number of vertices.
- Adjacency lists every vertex of graph contains list of its adjacent vertices.

Adjacency matrix

- Let G=(V,E) be a graph with n vertices.
- The adjacency matrix of G is a two-dimensional n by n array, say adj_mat
- If the edge (vi, vj) is in E(G), adj_mat[i][j]=1
- If there is no such edge in E(G), adj_mat[i][j]=0
- The adjacency matrix for an undirected graph is symmetric;
 the adjacency matrix for a digraph
 need not be symmetric

Examples for Adjacency Matrix

 \mathbf{G}_{1}

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Adjacency Lists

Each row in adjacency matrix is represented as an adjacency list

```
#define MAX_VERTICES 50
typedef struct node *node_pointer;
typedef struct node
{
   int vertex;
   struct node *link;
};
node_pointer graph[MAX_VERTICES];
```


Examples for Adjacency Lists

557

Summary

- Introduction to graph
- Graph terminologies
- Representation of graph
 - Adjacency matrix
 - Adjacency list

