VECTOR

Question: P and **Q** are any two points lying on the sides DC and AD respectively of a parallelogram ABCD. Show that, $ar\left(\triangle APB\right) = ar\left(\triangle BQC\right)$. **Figure:**

Figure 1

Solution: From figure 1 , considering $\triangle BQC$ and parallelogram ABCD, having same base BC and, AD is parallel to BC.

$$\implies \triangle BQC = \frac{1}{2} \times arABCD. \tag{1}$$

Considering $\triangle APB$ and parallelogram ABCD, having same base AB and DC is parallel to AB.

$$\implies \triangle APB = \frac{1}{2} \times arABCD. \tag{2}$$

By comparing equation (1) and equation (2) we obtain that,

$$ar\left(\triangle APB\right) = ar\left(\triangle BQC\right).$$
 (3)

Hence proved.

Proof by the help of diagram: (figure 1, table 1, table 2) Let the points \mathbf{Q} and \mathbf{P} divide AD and CD by $k_1:1$ and $k_2:1$ ratio respectively.

Input Parameters	Description	Value
A	Vertex(at origin)	0
a	Side of the parallelogram, $AB = DC$	6
b	Side of the parallelogram, $AD = BC$	$\sqrt{29}$
θ	Angle of parallelogram, $\angle BAD$	$\sin^{-1}\left(\frac{5}{\sqrt{29}}\right)$
k_1	AQ:QD	k_1
k_2	DP:PC	k_2

Table 1: Table of input parameters

Output Parameters	Description	Value
В	Vertex of parallelogram	$a\begin{pmatrix}1\\0\end{pmatrix}$
D	Vertex of parallelogram	$b \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$
C	Vertex of parallelogram	$\mathbf{B} + \mathbf{D}$
Q	Vertex of $\triangle BQC$	$\frac{k_1\mathbf{D}+\mathbf{A}}{k_1+1}$
P	Vertex of $\triangle APB$	$\frac{k_2\mathbf{C}+\mathbf{D}}{k_2+1}$

Table 2: Table of output parameters

For the $\triangle BQC$, the vertices of the triangle are taken from table 1 and table 2.

$$\implies \triangle BQC = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ 6 & \frac{2k_1}{k_1 + 1} & 8 \\ 0 & \frac{5k_1}{k_1 + 1} & 5 \end{vmatrix}$$
 (4)

$$\Rightarrow \triangle BQC = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ 6 & \frac{2k_1}{k_1 + 1} & 8 \\ 0 & \frac{5k_1}{k_1 + 1} & 5 \end{vmatrix}$$

$$\xrightarrow{C_2' = C_2 - C_1, C_3' = C_3 - C_1} \underbrace{1}_{2} \begin{vmatrix} 1 & 0 & 0 \\ 6 & \frac{-4k_1 - 6}{k_1 + 1} & 2 \\ 0 & \frac{5k_1}{k_1 + 1} & 5 \end{vmatrix}$$

$$(5)$$

$$= \frac{1}{2} \times 30 \tag{6}$$

$$=15\tag{7}$$

For the $\triangle APB$, the vertices of the triangle are taken from table 1 and table 2.

$$\implies \triangle APB = \frac{1}{2} \begin{vmatrix} 1 & 1 & 1 \\ 0 & \frac{8k_2+2}{k_2+1} & 6 \\ 0 & 5 & 0 \end{vmatrix}$$
 (8)

$$=\frac{1}{2}\times30\tag{9}$$

$$= 15 \tag{10}$$

For parallelogram ABCD, the vertices are taken from table 1 nd table 2.

$$\implies arABCD = ab\sin\theta \tag{11}$$

$$=6\sqrt{29}\sin\left(\sin^{-1}\frac{5}{\sqrt{29}}\right)\tag{12}$$

$$=6\sqrt{29}\frac{5}{\sqrt{29}}\tag{13}$$

$$=30\tag{14}$$

Therefore, $arABCD = 2 \times ar\triangle APB = 2 \times ar\triangle BQC(proved)$.