MLEA: Machine Learning Kernels methods

Réda DEHAK reda.dehak@epita.fr

EPITA

January 22, 2020

- VC Dimension
- 2 Feature Space
- 3 The Kernel Trick
- 4 Using SVM on a Toy Problem

Vapnik-Chervonenkis dimension

- measure of the capacity of a statistical classification algorithm (how complicated it can be)
- cardinality of the largest set of points that the algorithm can shatter, for each possible combination of labels
- Core concept in Vapnik-Chervonenkis theory

Example

Example

VC dimension for a linear classifier handling data of dimension N: ${\sf N}+1$

VC dim-based model selection

Definition

TestingSet Error \leq TrainingSet Error $+ \sqrt{\frac{h(\log(2R/h)+1)-\log(\mu/4)}{R}}$ With h the VC dimension of the classification model R the size of the trainingset True with probability $1-\mu$

- 1 VC Dimension
- Peature Space
- The Kernel Trick
- 4 Using SVM on a Toy Problem

Separability of patterns

Cover's Theorem (1965)

A complex pattern-classification problem cast in a high-dimensional space nonlinearly is more likely to be linearly separable than in low dimensional space

Feature Space projection

the two spirals

Separated by a hyperplane in feature space (gaussian kernels)

Feature and Feature Space

Definition

A function $\phi_i: \chi \to \mathbb{R}$ that maps each object $x \in \chi$ to a real value $\phi_i(x)$ is called a feature.

To be valid, $\forall x \in \chi, \phi_i(x)$ should be finite.

Feature and Feature Space

Definition

A function $\phi_i: \chi \to \mathbb{R}$ that maps each object $x \in \chi$ to a real value $\phi_i(x)$ is called a feature.

To be valid, $\forall x \in \chi, \phi_i(x)$ should be finite.

Combining n features $\phi_1...\phi_n$ results in a feature mapping

 $\phi: \chi \to \kappa \subseteq \mathbb{R}^n$ and the space κ is called a feature space.

- 1 VC Dimension
- 2 Feature Space
- The Kernel Trick
- 4 Using SVM on a Toy Problem

Kernel

Definition

Suppose we are given a feature mapping $\phi: \chi \to \kappa \subseteq \mathbb{R}^n$ The corresponding kernel is the inner product function $K: \chi \times \chi \to \mathbb{R}$ such as:

$$K(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$$

The kernel trick for SVM

- Replace dot product by kernel functions
- the dot product is done in the feature space

• Maximize $Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$ \Rightarrow

- Maximize $Q(\alpha) = \sum \alpha_i \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$ \Rightarrow Maximize $Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j K(x_i, x_j)$
- Decision function: $f(x) = w^T x + b$

- Maximize $Q(\alpha) = \sum \alpha_i \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$ \Rightarrow Maximize $Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j K(x_i, x_j)$
- Decision function: $f(x) = w^T x + b = \sum \alpha_i y_i \langle x_i, x \rangle + b$

- Maximize $Q(\alpha) = \sum \alpha_i \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$ \Rightarrow Maximize $Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j K(x_i, x_j)$
- Decision function: $f(x) = w^T x + b = \sum \alpha_i y_i \langle x_i, x \rangle + b$ \Rightarrow

- Maximize $Q(\alpha) = \sum \alpha_i \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$ \Rightarrow Maximize $Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \sum \alpha_i \alpha_j y_i y_j K(x_i, x_j)$
- Decision function: $f(x) = w^T x + b = \sum \alpha_i y_i \langle x_i, x \rangle + b$ $\Rightarrow f(x) = \sum \alpha_i y_i K(x_i, x) + b$

Example: XOR problem revisited

4 points dataset :

Data	Class
(-1,-1)	-1
(-1,+1)	+1
(+1, -1)	+1
(+1, +1)	-1

Find the Large margin SVM corresponding to the dataset using the polynomial Kernel $K(x, y) = (1 + x^t y)^2$.

Example: XOR problem revisited

4 points dataset :

Data	Class
(-1,-1)	-1
(-1,+1)	+1
(+1,-1)	+1
(+1, +1)	-1

Find the Large margin SVM corresponding to the dataset using the polynomial Kernel $K(x, y) = (1 + x^t y)^2$.

Consider $x = [x_1, x_2]^t$ and $y = [y_1, y_2]^t$.

The feature mapping is quite explicit:

$$K(x,y) = 1 + x_1^2 y_1^2 + 2x_1 x_2 y_1 y_2 + x_2^2 y_2^2 + 2x_1 y_1 + 2x_2 y_2$$

The projection of x in the feature space is :

$$\phi(x) = [1, x_1^2, \sqrt{2}x_1 x_2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2]^t$$

Common Kernels

- Linear : $K(x, y) = x^T y$
- Polynomial : $K(x,y) = (x^Ty + 1)^d$
- Laplacian RBF : $exp\left(-\gamma\|x-y\|\right) = exp\left(-\frac{\|x-y\|}{\sigma^2}\right)$
- RBF : $K(x, y) = exp(-\gamma ||x y||^2) = exp(-\frac{||x y||^2}{\sigma^2})$

Common Kernels

- Linear : $K(x, y) = x^T y$
- Polynomial : $K(x,y) = (x^Ty + 1)^d$
- Laplacian RBF : $exp\left(-\gamma\|x-y\|\right) = exp\left(-\frac{\|x-y\|}{\sigma^2}\right)$
- RBF : $K(x, y) = exp(-\gamma ||x y||^2) = exp(-\frac{||x y||^2}{\sigma^2})$
- RTFL...

Exercise: Kernel VC Dimension

Give the VC dimension of a SVM using:

- Linear Kernel
- RBF Kernel
- Polynomial Kernel

Polynomial Kernel Mapping

$$dim = \begin{pmatrix} d+m \\ d \end{pmatrix} = \frac{(d+m)!}{d!m!}$$

Polynomial Kernel Mapping

$$dim = \begin{pmatrix} d+m \\ d \end{pmatrix} = \frac{(d+m)!}{d!m!}$$

- implicit mapping not necessary
- allow to project the data to infinite feature space

Positive semi-definite Kernel Function

Definition

A kernel function K is said to be positive semi-definite if

$$\forall (x_1,..,x_n) \in \chi^n, \forall (c_1,..,c_n) \in \mathbb{R}^n \neq 0$$

$$\sum_{i,j} K(x_i,x_j) c_i c_j \geq 0$$

Gram matrix

Definition

Given a kernel K: $\chi \times \chi \to \mathbb{R}$ and a set $\mathbf{x} = (x_1, ..., x_m) \in \chi^m$ of m objects in χ , we call the $m \times m$ matrix \mathbf{G} with:

$$\mathbf{G_{ij}} = K(x_i, x_j)$$

the Gram matrix of K at x.

Lemma

Definition

A $N \times N$ matrix \mathcal{M} is said to be positive semi-definite if and only if:

$$\forall v \in \mathbb{R}^N, v^T \mathcal{M} v \geq 0$$

Lemma

Given a positive semi-definite kernel function K

$$\forall \mathbf{x} = (x_1, ..., x_m) \in \chi^m$$

the corresponding Gram Matrix **G** will be positive semi-definite.

Mercer Theorem

Theorem

If K is a positive semi-definite kernel then there exists a function ϕ such that:

$$K(x, y) = \langle \phi(x), \phi(y) \rangle$$

•
$$K(x,y) = K_1(x,y) + K_2(x,y)$$

•
$$K(x,y) = K_1(x,y) + K_2(x,y)$$

•
$$K(x, y) = a K_1(x, y)$$

•
$$K(x,y) = K_1(x,y) + K_2(x,y)$$

•
$$K(x, y) = a K_1(x, y)$$

•
$$K(x,y) = K_1(x,y)K_2(x,y)$$

•
$$K(x,y) = K_1(x,y) + K_2(x,y)$$

•
$$K(x, y) = a K_1(x, y)$$

•
$$K(x,y) = K_1(x,y)K_2(x,y)$$

•
$$K(x, y) = f(x)f(y)$$

•
$$K(x,y) = K_1(x,y) + K_2(x,y)$$

•
$$K(x, y) = a K_1(x, y)$$

•
$$K(x,y) = K_1(x,y)K_2(x,y)$$

$$K(x,y) = f(x)f(y)$$

•
$$K(x, y) = K_3(\phi(x), \phi(y))$$

Let K_1 and K_2 be kernels over χ , $a \ge 0$, B a symmetric positive semi-definite matrix, and K_3 a kernel over \mathbb{R}^n . Prove the following functions are kernels:

•
$$K(x,y) = K_1(x,y) + K_2(x,y)$$

•
$$K(x, y) = a K_1(x, y)$$

•
$$K(x,y) = K_1(x,y)K_2(x,y)$$

$$\bullet \ K(x,y) = f(x)f(y)$$

•
$$K(x, y) = K_3(\phi(x), \phi(y))$$

•
$$K(x,y) = x^t By$$

Let K_1 and K_2 be kernels over χ , $a \ge 0$, B a symmetric positive semi-definite matrix, and K_3 a kernel over \mathbb{R}^n . Prove the following functions are kernels:

•
$$K(x,y) = K_1(x,y) + K_2(x,y)$$

•
$$K(x, y) = a K_1(x, y)$$

•
$$K(x,y) = K_1(x,y)K_2(x,y)$$

$$\bullet \ K(x,y) = f(x)f(y)$$

$$\bullet \ K(x,y) = K_3(\phi(x),\phi(y))$$

•
$$K(x, y) = x^t By$$

•
$$K(x,y) = \frac{K(x,y)}{\sqrt{K(x,x)K(y,y)}}$$

Let K_1 and K_2 be kernels over χ , $a \ge 0$, B a symmetric positive semi-definite matrix, and K_3 a kernel over \mathbb{R}^n . Prove the following functions are kernels:

•
$$K(x,y) = K_1(x,y) + K_2(x,y)$$

•
$$K(x, y) = a K_1(x, y)$$

•
$$K(x,y) = K_1(x,y)K_2(x,y)$$

$$\bullet \ K(x,y) = f(x)f(y)$$

$$\bullet \ K(x,y) = K_3(\phi(x),\phi(y))$$

•
$$K(x, y) = x^t By$$

•
$$K(x,y) = \frac{K(x,y)}{\sqrt{K(x,x)K(y,y)}}$$

Prove the following functions are kernels:

• $K(x,y) = p(K_1(x,y))$ with p(x) a polynomial with positive coefficients

Prove the following functions are kernels:

- $K(x,y) = p(K_1(x,y))$ with p(x) a polynomial with positive coefficients
- $K(x, y) = exp(K_1(x, y))$

Prove the following functions are kernels:

- $K(x, y) = p(K_1(x, y))$ with p(x) a polynomial with positive coefficients
- $K(x,y) = exp(K_1(x,y))$ Help: $exp(x) = \sum_{i=0}^{\infty} \frac{x^i}{i!}$

Prove the following functions are kernels:

- $K(x, y) = p(K_1(x, y))$ with p(x) a polynomial with positive coefficients
- $K(x, y) = exp(K_1(x, y))$ Help: $exp(x) = \sum_{i=0}^{\infty} \frac{x^i}{i!}$
- $K(x,y) = exp(-\frac{\|x-y\|^2}{2\sigma^2})$

Kernels in practice

- Data should be centered and reduced
- if the number of feature is large, non linear mapping may not improve performances

Kernels in practice

- Data should be centered and reduced
- if the number of feature is large, non linear mapping may not improve performances
- moreover it will be much slower!!
- Don't start with the RBF Kernel.

- VC Dimension
- Peature Space
- The Kernel Trick
- 4 Using SVM on a Toy Problem

Donut...

Linear Kernel

SVM parameters should be chosen wisely

Underfitting and Overfitting

Kernel trick

- Is there other algorithms such that we don't need to know ϕ ?
- Compute L₂ distance in feature space

Kernel trick

- Is there other algorithms such that we don't need to know ϕ ?
- Compute L₂ distance in feature space

$$\|\phi(x) - \phi(y)\|^{2} = (\phi(x) - \phi(y))^{T} (\phi(x) - \phi(y))$$

$$= \phi(x)^{T} \phi(x) + \phi(y)^{T} \phi(y) - 2\phi(x)^{T} \phi(y)$$

$$= K(x, x) + K(y, y) - 2K(x, y)$$

Compute Class center

$$\mu_c = \frac{1}{|C_c|} \sum_{x_i \in C_c} \phi(x_i)$$

Compute Class center

$$\mu_c = \frac{1}{|C_c|} \sum_{\mathbf{x}_i \in C_c} \phi(\mathbf{x}_i)$$

2 Compute distance between example and Class center

$$\|\phi(x) - \mu_c\|^2 = (\phi(x) - \mu_c)^T (\phi(x) - \mu_c)$$

$$= \phi(x)^T \phi(x) - 2\phi(x)^T \mu_c + \mu_c^T \mu_c$$

$$= K(x, x) - \frac{2}{|C_c|} \sum_{x_i \in C_c} \phi(x)^T \phi(x_i)$$

$$+ \frac{1}{|C_c|^2} \sum_{x_i \in C_c} \sum_{x_i \in C_c} \phi(x_i)^T \phi(x_i)$$

Compute Class center

$$\mu_c = \frac{1}{|C_c|} \sum_{x_i \in C_c} \phi(x_i)$$

2 Compute distance between example and Class center

$$\|\phi(x) - \mu_c\|^2 = K(x, x) - \frac{2}{|C_c|} \sum_{x_i \in C_c} K(x, x_i) + \frac{1}{|C_c|^2} \sum_{x_i \in C_c} \sum_{x_i \in C_c} K(x_i, x_j)$$