Notation

In this subject, a variety of notation is used.

- ullet | read "such that" used largely in set definitions: $\big\{x\in\mathbb{R}\mid x\geq 2\big\}$
- \forall read "for all".
- ∃ read "there exists".
- ullet read "is equivalent to' used to signify function equality, etc.
- ullet < read "much less than".</pre>
- \bullet log denotes the natural logarithm, \ln .
- Inverse trigonometric functions are written \arcsin rather than \sin^{-1} .

Some common sets have specific symbols associated with them.

- Natural numbers, $\mathbb{N} = \{1, 2, 3, \ldots\}$. Exclusive of 0 in this course.
- Integers, $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- \bullet Rational numbers, $\mathbb{Q} = \left\{ \frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0 \right\}$
- Real numbers, ℝ
- $\bullet \ \ \text{Complex numbers, } \mathbb{C} = \left\{ x + iy \mid x,y \in \mathbb{R}, i^2 = -1 \right\}$
- $\bullet \ \, xy \,\, \mathrm{plane,} \,\, \mathbb{R}^2 = \left\{ (x,y) \mid x,y \in \mathbb{R} \right\}$
- \bullet Three dimensional space, $\mathbb{R}^3 = \big\{ (x,y,z) \mid x,y,z \in \mathbb{R} \big\}$

Limits, Continuity, Sequences, Series

Limits

Limits form the fundamental concept behind the definition of a derivative; the instantaneous rate of change of a function at a point is defined in terms of a limit.

A limit is defined as follows. For a function f(x), the limit of f(x) as x approaches a is L, written as

$$\lim_{x \to a} f(x) = L$$

If f(x) gets continually closer to L but $x \neq a$. If a limit exists, it must be a unique finite real number.

Examples

If f(x) is defined as follows

$$f(x) = \begin{cases} 2x, x \neq 1\\ 4, x = 1 \end{cases}$$

Evaluate the following

$$\lim_{x \to 1} f(x)$$

As f(x) gets arbritrarily close to 2 whenever x is close to but not equal to 1, therefore the limit as $x \to 1$ is 2.

Evaluate the following limit.

$$\lim_{x \to 0} f(x) = \frac{1}{x^2}$$

As f(x) is unbounded as $x \to 0$. Therefore, f(x) cannot be made arbritrarily close to any one number and the limit does not exist.

Evaluate the following limit.

$$\lim_{x \to 0} \begin{cases} 1, x < 0 \\ 2, x \ge 0 \end{cases}$$

As x approaches 0 from the right, it grows arbritrarily close to 2, while as it approaches from the left it grows arbritrarily close to 1. As it doesn't grow arbritrarily close to a single value, no limit exists here.

Additional Limt Notation

In the previous examples, we noticed that a common way to examine limits is by considering the values the function approaches from each side. Because this is such a common construct, notation exists for the left and right limits independently. The right and left limits of the function f approaching f0, examined in the final example above are written as

$$\lim_{x \to 0^+} f(x) = 2$$

$$\lim_{x \to 0^{-}} f(x) = 1$$

In general, for a limit to exist the following statement must be true

$$\lim_{x \to a} = L \Leftrightarrow \lim_{x \to a^{-}} = L \text{ and } \lim_{x \to a^{+}} = L$$

i.e. for the limit to be L, both the left and right limits must be L.

Limit Laws

For two real valued functions f and g, and $c \in \mathbb{R}$ a constant. If the limits $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist, then the following limit laws apply.

$$\lim_{x \to a} \left[f(x) + g(x) \right] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \left[cf(x) \right] = c \lim_{x \to a} f(x)$$

$$\lim_{x \to a} \left[f(x)g(x) \right] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \left(\lim_{x \to a} g(x) \neq 0 \right)$$

$$\lim_{x \to a} c = c$$

$$\lim_{x \to a} x = a$$

Example

Using the limit laws, evaluate the limit

$$\lim_{x \to 2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$

$$\lim_{x \to 2} \frac{x^3 + 2x^2 - 1}{5 - 3x} = \frac{\lim_{x \to 2} x^3 + 2x^2 - 1}{\lim_{x \to 2} 5 - 3x} = \frac{8 + 8 - 1}{5 - 6} = \frac{15}{-1} = -15$$

One could use more of the limit laws to break this down further; for instance breaking the added terms into individual limits, or breaking the x^n terms down using the product law.

Limits and Infinity

We can talk about a limit as $x\to\infty$, referring to what happens to the limit as x is made arbitrarily large. So the limit

$$\lim_{x \to \infty} f(x) = L$$

Is stating that as x is made arbritrarily larger, f(x) becomes arbritrarily closer to L. L must be finite for f(x) to take it's value.

For example, in the above plot we can see that as x becomes arbritrarily close to infinity, e^{-x} becomes arbritrarily close to 0. Therefore,

$$\lim_{x \to \infty} e^{-x} = 0$$

While this process of examining a graph and noting its convergence is practical for certain examples, it is a little laborious in the long term, so we use the constructs of standard limits to solve many problems.

Standard Limits

The following limits can be used without proof in this subject, with their truth taken as gospel.

$$\lim_{x \to \infty} \frac{1}{x^p} = 0 \quad (p > 0)$$

$$\lim_{x \to \infty} r^x = 0 \quad (0 \le r < 1)$$

$$\lim_{x \to \infty} \frac{1}{x^p} = 0 \quad (p > 0)$$

$$\lim_{x \to \infty} r^x = 0 \quad (0 \le r < 1)$$

$$\lim_{x \to \infty} a^{\frac{1}{x}} = 1 \quad (a > 0)$$

$$\lim_{x \to \infty} x^{\frac{1}{x}} = 1$$

$$\lim_{x \to \infty} \frac{\log(x)}{x^p} = 0 \quad (p > 0)$$

$$\lim_{x \to \infty} \left(1 + \frac{a}{x}\right)^x = e^a \quad (a \in \mathbb{R})$$

$$\lim_{x \to \infty} \frac{x^p}{a^x} = 0 \quad (p \in \mathbb{R}, a > 1)$$

For example, in the case of e^{-x} , we can use the second limit from above by taking $r=\frac{1}{e}$.

Terminology

If a limit exists, we can state that f(x) converges as x approaches a. Inversely, we can state f(x) diverges as x approaches a.

For example, as $\sin(x)$ oscillates between -1 and 1, it cannot approach a single number and therefore diverges as $x \to \infty$.

It is important to note that ∞ isn't a number; in general it denotes "any arbritrarily large number". A limit cannot be equal to infinity. Because infinity is not a number, certain cases become indeterminate.

$$\lim_{x \to \infty} \frac{3x^2 - 2x + 3}{x^2 + 4x + 4}$$

Here, we can see that both the numerator and the denominator approach infinity as $x \to \infty$. We cannot therefore divide their individual limits to find the overall limit and must instead alter the form to find the limit.

In this case, we can do this by dividing numerator and denominator by $\frac{1}{x^2}$.

$$\frac{\frac{1}{x^2}}{\frac{1}{x^2}} \cdot \frac{3x^2 - 2x + 3}{x^2 + 4x + 4} = \frac{3 - \frac{2}{x} + \frac{3}{x^2}}{1 - \frac{4}{x} + \frac{4}{x^2}}$$

$$\frac{\lim_{x \to \infty} 3 - \frac{2}{x} + \frac{3}{x^2}}{\lim_{x \to \infty} 1 - \frac{4}{x} + \frac{4}{x^2}} = \frac{3}{1} = 3$$

By modifying the fraction and then applying limit laws, we can solve this initially indeterminate limit.

The Sandwhich Theorem

The Sandwhich Theorem states that if $g(x) \leq f(x) \leq h(x)$ when $x \approx a$ but $x \neq a$ and

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$$

 $\lim_{x\to a}g(x)=\lim_{x\to a}h(x)=L$ Then $\lim_{x\to a}f(x)=L.$ In essence, it states that if a function lies between two other functions who each converge to L at a, then that function must also converge to a. This theorem can also be used to solve functions of the indeterminate form $\infty - \infty$. For example, $\lim_{x \to \infty} f(x) = \sqrt{x^2 + 1} - x$ is of this form. We can simplify to some degree, but we need the Sandwhich Theorem to finish the problem.

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 1} - x \right) \cdot \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1} + x} = \lim_{x \to \infty} \frac{x^2 + 1 - x^2}{\sqrt{x^2 + 1} + x} = \lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1} + x}$$

Looking at this function, it looks like both $\sqrt{x^2+1}$ and x become arbritrarily large as $x\to\infty$. Thus, we would expect this function to converge to 0 as it approaches ∞ . To prove this with the Sandwhich Theorem, we must find a lower bound and upper bound that each converge to 0.

A lower bound for this function is easy; it never drops below 0, so $g(x)\equiv 0$ will do nicely. To find an upper bound, we can simply make the denominator smaller, so perhaps $h(x)=\frac{1}{x}$ is a good fit. As we know that both of these functions converge to 0 as $x\to\infty$ through the limit laws and standard limits, we can confidently state per the Sandwhich Theorem that $f\to 0$ as $x\to\infty$.

Example

A function which lends itself to use of the Sandwhich Theorem is $x^2 \sin(\frac{1}{x})$

As shown on the above plot, the function never strays beyond the bounds of two parabolas. We can therefore evaluate its limit through the limits of the two bounding functions.

$$\lim_{x \to 0} x^{2} = \lim_{x \to 0} -x^{2} = 0 \Rightarrow \lim_{x \to 0} x^{2} \sin\left(\frac{1}{x}\right) = 0$$

Continuity

Continuity is a property of a function which essentially describes the "smoothness" of the function. For a function f to be continuous at a point x, the limit

$$\lim_{x \to a} f(x) = f(a)$$

Must be true; i.e. the value of f at x must be the value that f approaches as it becomes arbritrarily close to x. As a simple example, let us check if f is continuous at x=1.

$$f(x) = \begin{cases} 2x, & x \neq 1 \\ 4, & x = 1 \end{cases}$$
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} 2x = 2$$
$$f(1) = 4 \neq 2$$

 $\therefore f$ is not continuous at 1

Continuity Theorems

If f and g are real valued functions and c is a constant, then assuming f and g are continuous at x=a, the following functions are additionally continuous at x=a.

- \bullet f+g
- *cf*
- *fg*
- $\frac{f}{g}$ if $g(a) \neq 0$

If f is continuous at x=a and g is continuous at x=f(a), then $g\circ f$ is continuous at x=a. Thus if two continuous functions are composed, the resultant function will in addition be continuous.

All of the following function types are continuous across their domain.

- Polynomials
- Trigonometric functions
- Exponential functions
- Logarithmic functions
- *n*th root functions
- Hyperbolic functions

Example

For which values of x is f continuous?

$$f(x) = \frac{\sin(x^2 + 1)}{\log(x)}$$

We know that \sin is continuous across \mathbb{R} , as is x^2+1 . $\log(x)$ is defined for \mathbb{R}^+ . Using function composition, we know that $\sin(x^2+1)$ is continuous on \mathbb{R} , and using division we can see that f will be continuous for all values in the domain of $\log(x)$ where $\log(x) \neq 0$, i.e. $\mathbb{R}^+ \setminus \{1\}$.

If f is continuous at b and $\lim_{x\to a}g(x)=b$ then

$$\lim_{x \to a} f\left[g(x)\right] = f\left[\lim_{x \to a} g(x)\right] = f(b)$$

Example

$$\lim_{x \to \infty} \sin\left(e^{-x}\right) = \sin\left(\lim_{x \to \infty} e^{-x}\right) = \sin(0) = 0$$

We can only do this because \sin is continuous on \mathbb{R} .

Derivatives

The derivative is defined using a limit.

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

If this limit exists, the function is differentiable at a. Geometrically, this implies that a tangent line can be drawn at a on the graph with gradient yielded by the above limit.

If a function is differentiable at x=a, the the function is continuous at that point.

L'Hôpital's Rule

Given f and g are differentiable functions near some value x=a and $g'(x)\neq 0$ near a but $\neq a$. If the limit

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

Has an indeterminate form of

$$\frac{0}{0}$$
 or $\frac{\infty}{\infty}$

Then L'Hôpital's Rule is applicable.

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

For example, we can solve limits like the one below much more easily.

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{1} = \frac{\cos(0)}{1} = 1$$

L'Hôpital's Rule can be applied repeatedly to the same function as long as its conditions still hold. Sometimes the form of a function must be modified to have a quotient before the rule can be applied to it.

Rigour

Thus far, we have used the phrase arbritrarily close without a proper definition of what that means. A more formal definition of this exists, where we pick an arbritrary positive number ϵ . When we do this, there is another positive number δ for which $|f(x)-L|<\epsilon$ when $0<|x-a|<\delta$.

Sequences

A sequence is a function which maps the natural numbers to $\mathbb R$ i.e. of the form $f:\mathbb N\to\mathbb R$. They can be thought of as ordered lists of real numbers, or as functions where f(n) is the nth number in the sequence. A common notation for a sequence a is $\{a_n\}$, where a_n is a function defining the nth element.

A sequence has the limit L if a_n can be made arbitrarily close to L by making n sufficiently large. To indicate this, we write

$$\lim_{n \to \infty} a_n = L$$

If a limit L exists, then the sequence converges, otherwise it diverges. The only major difference between limits on sequences and limits on functions is that sequences deal with discrete rather than continuous values. This matters significantly in cases like trigonometric functions. If a function converges, then a sequence with that function will also converge.

The limit laws and Sandwhich Theorem apply to limits for sequences as well. For the Sandwhich Theorem, the sandwhiching sequences can consider only a range of n, greater than some value N.

Examples

For each of the following sequences, determine whether they converge or diverge.

- $\left\{\frac{1}{n}\right\}$ converges to 0.
- ullet $\left\{-1^{n-1}\right\}$ diverges, oscillating between 1 and -1.
- $\{n\}$ diverges to ∞ .

Standard Limits of Sequences

A set of standard limits of sequences exist, which can be used to solve other limits involving sequences.

$$\lim_{n \to \infty} \frac{1}{n^p} = 0 \quad (p > 0)$$

$$\lim_{n \to \infty} r^n = 0 \quad (|r| < 1)$$

$$\lim_{n \to \infty} a^{\frac{1}{n}} = 1 \quad (a > 0)$$

$$\lim_{n \to \infty} n^{\frac{1}{n}} = 1$$

$$\lim_{n \to \infty} \frac{a^n}{n!} = 0 \quad (a \in \mathbb{R})$$

$$\lim_{n \to \infty} \frac{\log(n)}{n^p} = 0 \quad (p > 0)$$

$$\lim_{n \to \infty} \left(1 + \frac{a}{n}\right)^n = e^a \quad (a \in \mathbb{R})$$

$$\lim_{n \to \infty} \frac{n^p}{a^n} = 0 \quad (p \in \mathbb{R}, a > 1)$$

Examples

$$\lim_{n\to\infty}\left[\left(\frac{n-2}{n}\right)^n+\frac{4n^2}{3^n}\right]=\lim_{n\to\infty}\left(\frac{n-2}{n}\right)^n+\lim_{n\to\infty}\frac{4n^2}{3^n}$$

$$\left(\frac{n-2}{n}\right)^n = \left(1 - \frac{2}{n}\right)^n \Rightarrow \lim_{n \to \infty} \left(\frac{n-2}{n}\right)^n = e^{-2} \Rightarrow$$

$$\lim_{n \to \infty} \left(\frac{n-2}{n}\right)^n + \lim_{n \to \infty} \frac{4n^2}{3^n} = e^{-2} + 0 = e^{-2}$$

Using standard limits, we can easily find the solution to this fairly complex-looking limit. The key here is recognising that the first term can be easily rearranged to the exponential standard limit, with the second term fairly naturally simplifying to another standard limit.

$$a_n = \frac{3^n + 2}{4^n + 2^n}, n \ge 1$$
$$\frac{3^n + 2}{4^n + 2^n} \cdot \frac{\frac{1}{4^n}}{\frac{1}{4^n}} = \frac{\left(\frac{3}{4}\right)^n + \frac{2}{4^n}}{1 + \left(\frac{1}{2}\right)^n}$$
$$\lim_{n \to \infty} a_n = \frac{0 + 0}{1 + 0} = 0$$

By dividing through by the largest term, we find out that it outweighs the terms in the denominator, an that the whole limit collapses to 0. A tool for doing this is the *order hierarchy*, which indicates the growth rate of various forms for large n

$$\log(n) \ll n^p \ll a^n \ll n!$$

A situation where the Sandwhich Theorem is very applicable is one where the function in question clearly falls into some well defined range. For example

$$\lim_{n \to \infty} \frac{1 + \sin^2\left(\frac{n\pi}{3}\right)}{\sqrt{n}}$$

$$0 \le \sin^2\left(\frac{n\pi}{3}\right) \le 1 \Rightarrow 1 \le 1 + \sin^2\left(\frac{n\pi}{3}\right) \le 2$$

$$\frac{1}{\sqrt{n}} \le \frac{\sin^2\left(\frac{n\pi}{3}\right)}{\sqrt{n}} \le \frac{2}{\sqrt{n}}$$

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} = \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0 \Rightarrow$$

$$\lim_{n \to \infty} \frac{1 + \sin^2\left(\frac{n\pi}{3}\right)}{\sqrt{n}} = 0$$

Here, we attack the most complex part of the problem and construct two equations which elegantly border it. We then use the limits of these equations to solve the overall limit.

Series

A series arises when one attempts to sum up the values in a sequence. For a sequence $\{a_n\}$, if we add each a_n in order, we create another sequence $\{s_n\}$.

$$s_1 = a_1$$

 $s_2 = a_1 + a_2$
 $s_3 = a_2 + a_2 + a_2$

This sequence of partial sums $\{s_n\}$ may or may not converge. In the case that it does, we describe the sum S as

$$S = \lim_{n \to \infty} s_n = \lim_{n \to \infty} (a_1 + a_2 + \ldots + a_n)$$

For example, we can find the sum of a sequence like so:

$$a_n = \left(\frac{1}{2}\right)^n, n \ge 1$$

$$s_1 = a_2 = \frac{1}{2}$$

$$s_2 = a_1 + a_2 = \frac{3}{4}$$

$$s_n = \frac{2^n - 1}{2^n} = 1 - \frac{1}{2^n}$$

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} 1 - \frac{1}{2^n} = \lim_{n \to \infty} 1 - \lim_{n \to \infty} \frac{1}{2^n} = 1 - 0 = 1$$

This is example is a *geometric series*. More generally, a series with terms a_n is denoted with the sum

$$s_n = \sum_{n=1}^{\infty} a_n$$

Where the value on the bottom (n=1) is the starting value of n and the value on the top is the value we limit towards. If the limit of s_n exists, the series converges. If it does not, the series diverges. For the sequence $\{n\}=1,2,3,4,\ldots$ we have the series

$$\sum_{n=1}^{\infty} n = 1 + 2 + 3 + 4 + 5 + \dots$$

Because the sequence and series both diverge to infinity, the series diverges. Decimal representations of numbers can be thought of as a series. If we take

$$\left\{\frac{1}{10^n}\right\} = 0.1, 0.01, 0.001, \dots$$

$$\sum_{n=1}^{\infty} \frac{1}{10^n} = 0.1 + 0.01 + 0.001 + \dots = 0.1111\dots$$

A general case exists, for a number $x \in (0,1)$ with the decimal digits d_1, d_2, \ldots then

$$x = 0.d_1d_2d_3... = \sum_{n=1}^{\infty} \frac{d_n}{10^n}$$

It is important to note that a sequence differs from a sequence of partial sums differs from a series. The sequence of partial sums represents a *finite* approximation of the sum of the sequence.

Properties of Series

If $\sum\limits_{n=1}^{\infty}a_n$ and $\sum\limits_{n=1}^{\infty}b_n$ are converging series, and $c\in\mathbb{R}\backslash\left\{0\right\}$ is a constant then

- $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$ also converges.
- $\sum_{n=1}^{\infty}(ca_n)=c\sum_{n=1}^{\infty}a_n$ and still converges. If $\sum_{n=1}^{\infty}a_n$ diverges, then $\sum_{n=1}^{\infty}(ca_n)$ also diverges.

Geometric Series

A geometric series has the form

$$\sum_{n=0}^{\infty} ar^n = \sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + ar^3 + \dots$$

Where $a \in \mathbb{R} \setminus \{0\}$ and $r \in \mathbb{R}$. If |r| < 1, the series will converge while if $|r| \ge 1$ the series will diverge. In the case that |r| < 1, we have that

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$$

In addition, there is a general form for a geometric series (though it is somewhat less elegant)

$$\sum_{k=0}^{n} ar^{k} = \frac{a(1-r^{n+1})}{1-r}$$

Though it must be noted that this formula is only valid for $r \neq 1$.

Harmonic *p* **Series**

A harmonic p series has the form

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

These series converge if p > 1 and diverge if $p \le 1$. For instance

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

Converges while

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Diverges.

It is worth noting that thanks to the previously explored properties of series, we know that any multiple of a harmonic p series has the same divergence behaviour as it's base.

Divergence Test

A test exists to determine whether a series diverges. If the limit of the sequence the series is based on is not zero, then the series diverges. More precisely

$$\lim_{n\to\infty} a_n \neq 0 \Rightarrow \sum_{n=1}^{\infty} a_n \text{ diverges}$$

If the limit is exactly 0, the series may converge or diverge and another test must be used to identify convergence or divergence.

Comparison Test

For two positive series (all elements non-negative) of the forms

$$\sum_{n=1}^{\infty} a_n \text{ and } \sum_{n=1}^{\infty} b_n$$

- if $a_n \leq b_n$ for all n and $\sum\limits_{n=1}^{\infty} b_n$ converges, then $\sum\limits_{n=1}^{\infty} a_n$ converges.
- if $a_n \ge b_n$ for all n and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

In general, we compare a given unknown series (a above) to a harmonic p series or a geometric series, because we know the behaviour of these in some detail. As an example, we can try and identify the convergence or divergence of the following series.

$$\sum_{n=1}^{\infty} \frac{3 + \frac{5}{n}}{2n^2 + n + 2}$$
$$\frac{3 + \frac{5}{n}}{2n^2 + n + 2} \approx \frac{3}{2n^2}$$

By identifying the most significant terms in the denominator and the numerator, we have identified that we expect the series to converge.

$$\frac{3 + \frac{5}{n}}{2n^2 + n + 2} \le \frac{8}{2n^2} = \frac{4}{n^2}$$

Here, we wanted to simplify the denominator into something that we recognise and can deal with while making it larger. To do that, we would ideally like to reduce the term to have only a single term in both the numerator and denominator. To simplify and enlarge the denominator, we can simply remove the n denominator of the 5, as we know $n \geq 1$. Removing terms from the denominator inherently makes the fraction larger, so we can just remove the n+2 term, rearranging into a harmonic p series.

$$\sum_{n=1}^{\infty} \frac{4}{n^2} \text{ converges} \Rightarrow \sum_{n=1}^{\infty} \frac{3 + \frac{5}{n}}{2n^2 + n + 2} \text{ converges}$$

Ratio Test

For a positive term series of the form

$$\sum_{n=1}^{\infty} a_n$$

With the limit

$$L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

Then, this series has the following properties.

- If L < 1, the series converges
- If L > 1, the series diverges
- If L=1, the ratio test is inconclusive.

The ratio test is most useful in situations where a_n contains an exponential or factorial function of n. For instance, we can figure out whether the following series converges or diverges.

$$\sum_{n=1}^{\infty} \frac{10^n}{n!}$$

$$\lim_{n \to \infty} \frac{10^{n+1}}{(n+1)!} \div \frac{10^n}{n!} = \lim_{n \to \infty} \frac{10^{n+1}}{(n+1)!} \times \frac{n!}{10^n} = \lim_{n \to \infty} \frac{10^1}{1} \times \frac{n!}{(n+1)!}$$

$$= \lim_{n \to \infty} \frac{10}{n+1} = 0 \Rightarrow \sum_{n=1}^{\infty} \frac{10^n}{n!} \text{ converges}$$

Hyperbolic Functions

To deal with hyperbolic functions, it can help to revise a few function properties. Even functions have the property that

$$f(-x) = f(x)$$

For example, x^2 is an even function, as is $\cos(x)$. An odd function has the property that

$$f(-x) = -f(x)$$

They have a kind of rotational symmetry, where a rotation by π doesn't alter the graph. sin(x) and x^3 are odd functions.

The first hyperbolic function is the hyperbolic cosine function, \cosh , often pronounced as it's written ("cosh").

$$\cosh(x) = \frac{1}{2}(e^x + e^{-x})$$

 \cosh is an even function. At 0, it is equal to one, and the two sides rise evenly on each side. It essentially looks like a parabola. The plot of \cosh is below.

The second hyperbolic function is hyperbolic sine, \sinh , often read as "shine". It is defined as

$$\sinh(x) = \frac{1}{2}(e^x - e^{-x})$$

 \sinh has a x-intercept at 0. It is an odd function. The plot of \sinh is below.

To complete the set, we have hyperbolic tangent, \tanh , often read as "than". It is defined as the quotient of \sinh on \cosh , i.e.

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

 \tanh has the range (-1,1), with an x-intercept at 0. It is an odd function, due to the presence of \cosh in it's definition. The plot of \tanh is below.

The trigonometric functions have the trigonometric identity

$$\cos^2(\theta) + \sin^2(\theta) = 1$$

Which mirrors the form of the equation of a circle, $x^2 + y^2 = r$. This tells us that a $(\sin(\theta), \cos(\theta))$ pair encodes a position on the unit circle.

The hyperbolic functions mirror this behaviour for a hyperbola $(x^2-y^2=1)$), having the property that $\cosh^2(t)-\sinh^2(t)=1$. i.e. for a pair $(\cosh(t),\sinh(t))$, a point on the hyperbola $x^2-y^2=1$ is uniquely encoded. Only points on the right hand side of the hyperbola are encoded in this way.

Hyperbolic Identities

We can use the relationship between \cosh and \sinh to solve equations. For example, in the following case we can find \sinh and \tanh from the value of \cosh and the fact that x<0.

$$\cosh(x) = \frac{13}{12}$$

$$\cosh^{2}(x) - \sinh^{2}(x) = 1 \Rightarrow \sinh^{2}(x) = \left(\frac{13}{12}\right)^{2} - 1 \Rightarrow$$

$$\sinh(x) = \sqrt{\frac{169}{144} - 1} = \sqrt{\frac{25}{144}} = \pm \frac{5}{12}$$

$$x < 0 \Rightarrow \sinh(x) = -\frac{5}{12}$$

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{-\frac{5}{12}}{\frac{13}{12}} = -\frac{5}{13}$$

The key identity that allowed us to solve this was the fundamental hyperbolic identity, that of

A variety of other more specialised identities also exist, beginning with the addition formulae.

$$\begin{vmatrix} \sinh(x+y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y) \\ \cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y) \\ \sinh(x-y) = \sinh(x)\cosh(y) - \cosh(x)\sinh(y) \\ \sinh(x+y) = \cosh(x)\cosh(y) - \sinh(x)\sinh(y) \end{vmatrix}$$

We also have the double angle formulae, just as with trigonometric functions.

$$\sinh(2x) = 2\sinh(x)\cosh(x)$$

$$\cosh(2x) = \cosh^2(x) + \sinh^2(x)$$

$$\cosh(2x) = 2\cosh^2(x) - 1$$

$$\cosh(2x) = 2\sinh^2(x) + 1$$

Reciprocal Hyperbolic Functions

Three reciprocal hyperbolic functions exist. These are

$$\operatorname{sech}(x) = \frac{1}{\cosh(x)}$$
$$\operatorname{cosech}(x) = \frac{1}{\sinh}(x)$$
$$\operatorname{coth}(x) = \frac{1}{\tanh(x)} = \frac{\cosh(x)}{\sinh(x)}$$

The plots of these functions are below.

These functions have the associated identities

$$\cosh^{2}(x) - \sinh^{2}(x) = 1$$

$$\coth^{2}(x) - 1 = \operatorname{cosech}^{2}(x)$$

$$1 - \tanh^{2}(x) = \operatorname{sech}^{2}(x)$$

Derivatives of Hyperbolic Functions

$$\frac{d}{dx} \left[\cosh(x) \right] = \sinh(x)$$

$$\frac{d}{dx} \left[\sinh(x) \right] = \cosh(x)$$

$$\frac{d}{dx} \left[\tanh(x) \right] = \operatorname{sech}^{2}(x)$$

$$\frac{d}{dx} \left[\operatorname{sech}(x) \right] = -\operatorname{sech}(x) \tanh(x)$$

$$\frac{d}{dx} \left[\operatorname{cosech}(x) \right] = -\operatorname{cosech}(x) \coth(x) \ (x \neq 0)$$

$$\frac{d}{dx} \left[\coth(x) \right] = -\operatorname{cosech}^{2}(x) \ (x \neq 0)$$

These derivatives bear some resemblance to trigonometric derivatives, however it is worth noting that no negative signs appear when taking derivatives of \sinh and \cosh as they do with trigonometric functions.

Inverse Hyperbolic Functions

Finally, inverses of some of the hyperbolic functions exist. For $\sinh(x)$, we have the inverse function \arcsin . This function can also be written in terms of a logarithm, which makes sense as it is the inverse of an exponential function.

$$\operatorname{arcsinh} = \log(x + \sqrt{x^2 + 1})$$

Because \sinh is a nice one-to-one function, it has a simple inversion function, pictured below.

For \cosh , the domain of \cosh must be restricted to yield a one-to-one function. The domain is therefore restricted to $[0,\infty)$. Because the range of \cosh is $[1,\infty)$, this is the domain of $\mathrm{arccosh}$.

$$\operatorname{arccosh} = \log(x + \sqrt{x^2 - 1}), (x \ge 1)$$

The plot of arccosh is below.

This means that $\operatorname{arccosh}(\cosh(x)) = |x|$ rather than x. The final inverse is $\operatorname{arctanh}$. As \tanh is one-to-one, this function is a perfect inverse.

$$\frac{1}{2}\log\left(\frac{1+x}{1-x}\right),\ (-1 < x < 1)$$

The range of \tanh because the domain of $\operatorname{arctanh}$, so $\operatorname{arctanh}$ accepts values in the range (-1,1) and spits out values in \mathbb{R} .

The inverse reciprocal hyperbolic functions are also defined, though they are seldom used. The formulas for the inverse functions are obtained in the usual way of obtaining inverse functions, by taking $y = \operatorname{arcsinh}(x)$ and then solving for x in terms of y.

Derivatives of Inverse Hyperbolic Functions

$$\frac{d}{dx} \left[\operatorname{arcsinh}(x) \right] = \frac{1}{\sqrt{x^2 + 1}}$$

$$\frac{d}{dx} \left[\operatorname{arccosh}(x) \right] = \frac{1}{\sqrt{x^2 - 1}}, (x > 1)$$

$$\frac{d}{dx} \left[\operatorname{arctanh}(x) \right] = \frac{1}{1 - x^2}, (-1 < x < 1)$$

Complex Numbers

Complex numbers extend the natural, integer, rational and real numbers. By introducing the number i with the property that $i^2=-1$, we gain access to another set of numbers of the form

$$\mathbb{C} = \{x + yi | x, y \in \mathbb{R}\}\$$

This allows us to do some powerful things, like to solve any polynomial function with complex coefficients. Their basic operations follow. The most basic is of course addition, where one just adds the relevant terms.

$$(2+3i) + (4+i) = 6+4i$$

Multiplication is performed piecewise in F.O.I.L. style.

$$(1+i)(2+i) = 2+i+2i+i^2 = 1+3i$$

The complex conjugate of a complex number is found by multiplying the imaginary part (the multiple of i) by -1.

$$z = x + iy \Rightarrow \bar{z} = x - iy$$

The modulus of a complex number can be thought of as the vector norm of the number and is calculated as

$$z = x + iy \Rightarrow |z| = \sqrt{x^2 + y^2}$$

The argument of a complex number is the angle it forms with the positive real axis (usually the x-axis). This argument θ has the property that

$$\tan(\theta) = \frac{y}{x}$$

Using this argument we can write a complex number in trigonometric polar form, so where r is the norm of the complex number it can be written as

$$z = r(\cos(\theta) + i\sin(\theta))$$

The argument θ is non-unique, and so the concept of the principal argument as the single possible θ which lies in the interval $(-\pi,\pi]$ is called the *principal argument* and is unique.

The Complex Exponential

The complex exponential is an alternate way of representing a complex number. According to Euler's formula, a complex number has the following property.

$$re^{i\theta} = r(\cos(\theta) + i\sin(\theta))$$

According to this formula, we can see Euler's identity.

$$e^{i\pi} = -1$$

Multiplication of the complex exponential results in addition of angles.

$$r_1 e^{i\theta} r_2 e^{i\phi} = r_1 r_2 e^{i(\theta + \phi)}$$

Likewise division results in subtraction.

$$\frac{z}{w} = \frac{r_1}{r_2} e^{i(\theta - \phi)}$$

To raise a complex exponential to a positive power, we can use De Moivre's theorem, which states.

$$z^n = \left(re^{i\theta}\right)^n = r^n e^{in\theta}$$

Exponential Form of \sin and \cos

The real and imaginary parts of complex numbers have certain interesting interactions with the conjugate operation.

$$z + \bar{z} = (x + iy) + (x - iy) = 2x = 2\operatorname{Re}(z) \Rightarrow \operatorname{Re}(z) = \frac{1}{2}(z + \bar{z})$$

$$z - \bar{z} = (x + iy) - (x - iy) = 2iy = 2i\text{Im}(z) \Rightarrow \text{Im}(z) = \frac{1}{2i}(z - \bar{z})$$

Applying this to the exponential form, we can find some interesting representations of \sin and \cos

$$e^{i\theta} = \cos(\theta) + i\sin(\theta) \Rightarrow \cos(-\theta) + i\sin(\theta) \Rightarrow e^{-i\theta} = \cos(\theta) - i\sin(\theta)$$

This tells us that

$$e^{i\theta} + e^{-i\theta} = 2\cos(\theta) \Rightarrow \cos(\theta) = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$$

Applying the same working to \sin we find

$$\sin(\theta) = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$$

Referring back to our imaginary and real part representations earlier, we see that this tells us what we already knew in a different way; \cos is the real part of a complex number and \sin is the imaginary part.

These formulas bear an interesting resemblance to the hyperbolic functions we explored earlier. Plugging $i\theta$ into \cosh and \sinh one finds

$$\cosh(i\theta) = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right) = \cos(\theta)$$

$$\sinh(i\theta) = \frac{1}{2} \left(e^{i\theta} - e^{-i\theta} \right) = \sin(\theta)$$

Differentiation via the Complex Exponential

For a complex number $z = x + iy, x, y \in \mathbb{R}$, we have

$$e^z = e^{x+iy} = e^x e^{iy} = e^x (\cos(y) + i\sin(y))$$

To take a derivative of a complex number, we take the derivative of real parts and imaginary parts seperately. For example.

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[\cos(x) + (x^2 + 1)i\right] = -\sin(x) + 2xi$$

For a complex exponential function of the form e^{zx} where z the derivative is

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[e^{zx} \right] = z e^{zx}$$

This can be proven by splitting the function as follows

$$e^{(a+ib)x} = e^{ax}e^{ibx} = e^{ax}(\cos(bx) + i\sin(bx))$$

And using the product rule to solve the derivative. This can be used to solve some fairly complex derivatives quite efficiently.

$$\frac{d^{56}}{dt^{56}} \left[e^{-t} \cos(t) \right]$$

$$e^{-t} \cos(t) = e^{-t} \operatorname{Re} \left(e^{it} \right) = \operatorname{Re} \left(e^{-t} e^{it} \right) = \operatorname{Re} \left(e^{(-1+i)t} \right)$$

$$\frac{d^{56}}{dt^{56}} \left[\operatorname{Re} \left(e^{(-1+i)t} \right) \right] = \operatorname{Re} \left((-1+i)^{56} e^{(-1+i)t} \right)$$

$$(-1+i)^{56} = \left(\sqrt{2} e^{\frac{3\pi}{4}i} \right)^{56} = \sqrt{2}^{56} e^{56\frac{3\pi}{4}i} = 2^{28} e^{0} = 2^{28}$$

$$\frac{d^{56}}{dt^{56}} \left[e^{-t} \cos(t) \right] = \operatorname{Re} \left(2^{28} e^{-(1+i)t} \right) = \operatorname{Re} \left(2^{28} e^{-t} (\cos(t) + i \sin(t)) \right)$$

$$= 2^{28} e^{-t} \cos(t)$$

Here, we used the fact that taking a complex derivative simply entails doing the real and imaginary parts seperately, in combination with the fact that the form of the original term was the real part of a complex number to perform the derivative much more rapidly than would ordinarily be possible.

Knowledge of this derivative makes simple the inverse; it's integral.

$$\int e^{kx} \, \mathrm{d}x = \frac{1}{k} e^{kx} + D$$

Where k is a complex number and x is the real input to the function. D may be a complex number. Like in the previous example, the real and imaginary parts of complex numbers can be considered distinctly.

Integral Calculus

Derivative Substitution

For a function F'(x) we may know f(x) = F'(x). We then know that

$$\int f(x) \, \mathrm{d}x = F(t) + C$$

Applying the chain rule, we also know that

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[F(g(x)) \right] = F'(g(x))g'(x)$$

In reverse, this means that

$$\int f(g(x))g'(x) dx = F(g(x)) + C$$
$$\int f(u)\frac{du}{dx} dx = F(u) + c$$

This fact is known as *derivative substitution*, and is a useful technique for calculating integrals. The general process for using derivative substitution is

$$\int f(g(x))g'(x) dx = \int f(u)\frac{du}{dx} dx = \int f(u) du$$

An example

$$\int (6x^2 + 10) \sinh(x^3 + 5x - 2) dx$$

$$u = x^3 + 5x - 2, \quad u' = 3x^2 + 5$$

$$\int 2(3x^2 + 5) \sinh(x^3 + 5x - 2) dx = \int 2u' \sinh(x) dx = 2 \int \sinh(u) du = 2 \cosh(u) + C = 2 \cosh(x^3 + 5x - 2) + C$$

So with the key observation that $6x^2+10$ is twice the derivative of the \sinh term, we can rewrite the integal in terms of u and integrate the simpler resultant function using a standard integral. Another example

$$\int \frac{\operatorname{sech}^2(3x)}{10 + 2\tanh(3x)} \,\mathrm{d}x$$

$$u = 10 + 2 \tanh(3x), \quad u' = 12 \operatorname{sech}^{2}(3x)$$

$$\int \frac{\operatorname{sech}^{2}(3x)}{10 + 2 \tanh(3x)} \, dx = \frac{1}{12} \int \frac{u'}{u} \, dx = \frac{1}{12} \int \frac{1}{u} \, du$$

$$= \frac{1}{12} \log(|u|) + C = \frac{1}{12} \log\left(\left|12 \operatorname{sech}^{2}(3x)\right|\right) + C$$

Trigonometric and Hyperbolic Substitution

For expressions of the form

$$\sqrt{a^2-x^2}$$
, $\sqrt{a^2+x^2}$, $\sqrt{x^2-a^2}$

We can use a trick where we substitute x for a function $g(\theta)$.

$$\int f(x) dx = \int f(g(\theta))g'(\theta) d\theta$$

This entails replace x and then using derivative substitution to simplify the resultant expression. The appropriate substitution in a few cases is contained in the below table.

$$\sqrt{a^2 - x^2}, \quad \frac{1}{\sqrt{a^2 - x^2}}, \quad (a^2 - x^2)^{\frac{3}{2}}, \quad \text{etc} \qquad x = a\sin(\theta) \text{ or } x = a\cos(\theta)$$

$$\sqrt{a^2 + x^2}, \quad \frac{1}{\sqrt{a^2 + x^2}}, \quad (a^2 + x^2)^{-\frac{3}{2}}, \quad \text{etc} \qquad x = a\sinh(\theta)$$

$$\sqrt{x^2 - a^2}, \quad \frac{1}{\sqrt{x^2 - a^2}}, \quad (x^2 - a^2)^{\frac{5}{2}}, \quad \text{etc} \qquad x = a\cosh(\theta)$$

$$\frac{1}{a^2 + x^2}, \quad \frac{1}{(a^2 + x^2)^2}, \quad \text{etc} \qquad x = a\tan(\theta)$$

This is useful because these functions have useful identities when squared. An example

$$\int \frac{1}{\sqrt{x^2 - 25}} dx$$
$$x = 5\cosh(\theta) \Rightarrow \theta = \operatorname{arccosh}\left(\frac{x}{5}\right) \Rightarrow x \ge 5$$

Because we are rewriting x as a hyperbolic function, we must be careful that the values of x are valid for the function. Here, for $g(\theta)$ to output x, $x \geq 5$ must be true. In addition, for the overall function to be valid we need $\sqrt(x^2-25) \neq 0$, thus $x>5 \Rightarrow \theta>0$.

$$x = 5\cosh(\theta) \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}\theta} = 5\sinh(\theta)$$

$$\frac{1}{\sqrt{x^2 - 25}} = \frac{1}{\sqrt{25\cosh^2(\theta) - 25}} = \frac{1}{\sqrt{25(\cosh^2(\theta) - 1)}} = \frac{1}{5\sqrt{\sinh^2(\theta)}}$$

$$= \frac{1}{5|\sinh(\theta)|}, \quad \theta > 0 \Rightarrow \frac{1}{5\sinh(\theta)}$$

Here, we were able to use the identity $\cosh^2(\theta) - \sinh^2(\theta) = 1$ to simplify the denominator. We then used the established fact of $\theta > 0$ to remove the absolute value from the denominator.

$$\int \frac{1}{\sqrt{x^2 - 25}} \mathrm{d}x = \frac{1}{5 \sinh(\theta)} 5 \sinh(\theta) \mathrm{d}\theta = \int 1 \mathrm{d}\theta = \theta + C = \operatorname{arccosh}\left(\frac{x}{5}\right) + C$$

Here we see the result of the derivative substitution, as we multiply by $5\sinh(\theta)$. We use the value of θ we calculated earlier to put the final answer back in terms of x.

Another example

$$\int \sqrt{9 - 4x^2} \, dx, \quad |x| \le \frac{3}{2}$$

$$\int \sqrt{9 - 4x^2} \, dx = 2 \int \sqrt{\frac{9}{4} - x^2}$$

$$x = \frac{3}{2} \sin^2(\theta) \Rightarrow \theta = \arcsin\left(\frac{2x}{3}\right)$$

$$\frac{-\pi}{2} \le \theta \le \frac{\pi}{2} \Rightarrow \frac{-3}{2} \le x \le \frac{3}{2}$$

$$\frac{dx}{d\theta} = \frac{3}{2} \cos(\theta)$$

$$\sqrt{\frac{9}{4} - x^2} = \sqrt{\frac{9}{4} - \frac{9}{4}\sin^2(\theta)} = \sqrt{\frac{9}{4}\cos^2(\theta)} = \frac{3}{2}|\cos(\theta)| = \frac{3}{2}\cos(\theta)$$

Because we know the range of θ is restricted, we can know that \cos will always be positive here, which allows us to remove the absolute value.

$$2\int \sqrt{\frac{9}{4} - x^2} = 2\int \frac{3}{2}\cos(\theta) \cdot \frac{3}{2}\cos(\theta) d\theta = \frac{9}{2}\int \cos^2(\theta) d\theta$$

$$\frac{9}{2}\int \cos^2(\theta) d\theta = \frac{9}{2}\frac{1}{2}\int \cos(2\theta) + 1 d\theta = \frac{9}{4}\frac{1}{2}\sin(2\theta) + \theta + C$$

$$= \frac{9}{4}\left(\sin(\theta)\cos(\theta) + \theta\right) + C = \frac{9}{4}\left(\sin(\theta)\sqrt{1 - \sin^2(\theta)} + \theta\right) + C$$

$$= \frac{9}{4}\left(\frac{2x}{3}\sqrt{1 - \frac{4x^2}{9}} + \arcsin\left(\frac{2x}{3}\right)\right) + C = x\sqrt{\frac{9}{4} - x^2} + \frac{9}{4}\arcsin\left(\frac{2x}{3}\right) + C$$

A lot going on here, some of which is explained by the application of a couple of double angle formulae. The first instance is where we use the double angle formula $\cos(2x) = 2\cos^2(x) - 1$ to remove the \cos^2 term and enable integration. Later, the formula $\sin(2x) = 2\sin(x)\cos(x)$ is used to remove the $\sin(2\theta)$ term. The \cos is then replaced according to $\sin^2 + \cos^2 = 1$ to enable substitution with the value for θ determined earlier, the \arcsin term of which annihilates with the \sin in the $\sin(\theta)$ expressions to yield $\frac{2x}{3}$.

Integration of Powers of Hyperbolic Functions

$$\int \sinh^m(x) \cosh^n(x) \, \mathrm{d}x$$

Consider the above integral with two integer powers of \sinh and \cosh . There are two processes for this; one for the case of one power being odd and another for the case where both are even. First, an example of an even case.

$$\int \cosh^4(\theta) d\theta$$
$$\cosh^4(\theta) = \left(\cosh^2(\theta)\right)^2 = \left(\frac{\cosh(2\theta) + 1}{2}\right)^2 =$$

$$\frac{1}{4} \left(\cosh^2(2\theta) + 2\cosh(2\theta) + 1 \right) = \frac{1}{4} \left(\frac{\cosh(4\theta) + 1}{2} + 2\cosh(2\theta) + 1 \right) \Rightarrow$$

$$\int \cosh^4(\theta) \, d\theta = \frac{1}{4} \int \frac{1}{2} \cosh(4\theta) + 2\cosh(2\theta) + \frac{3}{2} \, d\theta$$

$$= \frac{1}{4} \left(\frac{1}{8} \sinh(4\theta) + \sinh(2\theta) + \frac{3}{2} \theta \right) + C$$

Here, we rearranged an integral we didn't know (\cosh^4) to one that we did know (\cosh) through repeated application of the double angle formula

$$\cosh^2(\theta) = \frac{\cosh(2\theta) + 1}{2}$$

For the odd power case, the approach is a little different.

$$\int \sinh^{5}(x) \cosh^{6}(x) dx$$

$$\int \sinh^{4}(x) \cosh^{6}(x) dx = \int \sinh \left(\sinh^{2}(x)\right)^{2} \cosh^{6}(x) dx =$$

$$\int \sinh(x) \left(\cosh^{2}(x) - 1\right)^{2} \cosh^{6}(x) dx$$

$$u = \cosh(x) \Rightarrow \frac{du}{dx} = \sinh(x)$$

$$\int \sinh(x) \left(\cosh^{2}(x) - 1\right)^{2} \cosh^{6}(x) dx = \int (u^{2} - 1)^{2} u^{6} \frac{du}{dx} dx =$$

$$\int (u^{4} - 2u^{2} + 1) u^{6} dx = \int u^{10} - 2u^{8} + u^{6} dx = u^{11} - \frac{2u^{9}}{9} + \frac{u^{7}}{7} + C \Rightarrow$$

$$\int \sinh^{5}(x) \cosh^{6}(x) dx = \frac{\cosh^{1}(x)}{11} - \frac{2\cosh^{9}(x)}{9} + \frac{\cosh^{7}(x)}{7} + C$$

Here, we took aside one \sinh as our sacrifice to the integral gods and used it to change variable of integration from x to u. We did this by using the hyperbolic identity $\cosh^2(x) - \sinh^2(x) = 1$ to convert all of the other \sinh terms into \cosh terms and then substituting u for $\cosh(x)$.

Integration by Parts

The product rule used during differentiation is

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[uv\right] = \frac{\mathrm{d}u}{\mathrm{d}x}v + u\frac{\mathrm{d}v}{\mathrm{d}x}$$

To perform integration by parts, this experssion is integrated to yield the rule

$$\int u \frac{\mathrm{d}v}{\mathrm{d}x} \, \mathrm{d}x = uv - \int v \frac{\mathrm{d}u}{\mathrm{d}x} \, \mathrm{d}x$$

An example

$$\int x^2 \log(x) \, dx, \quad (x > 0)$$

$$u = \log(x) \Rightarrow \frac{du}{dx} = \frac{1}{x}$$

$$\frac{dv}{dx} = x^2 \Rightarrow v = \frac{x^3}{3}$$

$$\int x^2 \log(x) \, dx = \frac{x^3}{3} \log(x) - \int \frac{x^3}{3} \frac{1}{x} \, dx$$

$$= \frac{x^3 \log(x)}{3} - \frac{x^3}{9} + C$$

This can also be used cleverly in some settings to rearrange integrals one doesn't know how to solve.

$$\int \log(x) dx$$

$$u = \log(x) \Rightarrow \frac{du}{dx} = \frac{1}{x}$$

$$\frac{dv}{dx} = 1 \Rightarrow v = x$$

$$\int \log(x) dx = x \log(x) - \int \frac{x}{x} dx = x \log(x) - \int 1 = x \log(x) - x + C$$

Partial Fractions

For two polynomials f(x), of degree n and g(x), of degree d,

$$\frac{f(x)}{g(x)}$$

can be written as the sum of partial fractions. In the case that n < d, the process for this is to factorise g, write down the partial fraction expansion and finally to find unknown coefficients. To write down the partial fraction expansion for a denominator g, we use the expansions from the below table.

Denominator Factor	Partial Fraction Expansion
(x-a)	$\frac{A}{x-a}$
$(x-a)^r$	$\frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \ldots + \frac{A_r}{(x-a)^r}$
$x^2 + bx + c$	$\frac{Ax+B}{x^2+bx+c}$
$(x^2 + bx + c)^r$	$\frac{A_1x+B_1}{x^2+bx+c} + \frac{A_2x+B_2}{(x^2+bx+c)^2} + \dots + \frac{A_rx+B_r}{(x^2+bx+c)^r}$

As an example of using this process, let us attempt to integrate.

$$\int \frac{4}{x^2(x+2)} \, \mathrm{d}x, \quad (x \neq 0, -2)$$

$$\frac{4}{x^2(x+2)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+2} =$$

$$\frac{Ax(x+2) + B(x+2) + Cx^2}{x^2(x+2)} = \frac{(A+C)x^2 + (2A+B)x + 2B}{x^2(x+2)} \Rightarrow$$

$$A+C=0, \quad 2A+B=0, \quad 4=2B \Rightarrow$$

$$A=-1, \quad B=2, \quad C=1 \Rightarrow$$

$$\int \frac{4}{x^2(x+2)} \, \mathrm{d}x = \int \frac{-1}{x} + \frac{2}{x^2} + \frac{1}{x+2} \, \mathrm{d}x = \log(|x|) - \frac{2}{x} + \log(|x+2|) + C$$

In the case that $n \ge d$, we must first use polynomial long division to reduce the degree of the denominator.

Differential Equations

Ordinary Differential Equations

An ordinary differential equation or ODE is an equation of the form

$$f\left(x, y\frac{\mathrm{d}y}{\mathrm{d}x}\frac{\mathrm{d}^2y}{\mathrm{d}x^2}, \dots \frac{\mathrm{d}^ny}{\mathrm{d}x^n}\right) = 0$$

Here, there is only one independent variable x, and one dependent variable y. The equation is then expressed in terms of functions and derivatives of these two functions. The *order* of a differential equation is the highest derivative that appears in the equation (second, third, etc).

A solution of this equation is a function y(x) which satisfies the equation for all x in some interval. For example

$$y(x) = x^2 + \frac{2}{x}$$

Is a solution for all $x \in \mathbb{R} \setminus \{0\}$ to

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} = 3x$$

Which can be shown via substitution, replacing all y with y(x).

$$\frac{\mathrm{d}}{\mathrm{d}x}\left[x^2 + \frac{2}{x}\right] + \frac{x^2 + \frac{2}{x}}{x} = 3x$$

$$2x - \frac{2}{x^2} + x + \frac{2}{x^2} = 3x$$
$$2x + x = 3x$$

First Order

A first order differential equation is a differential equation containing only at most first derivatives such as

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x^3$$

This example can be easily solved through integration.

$$y = \int x^3 \, \mathrm{d}x = \frac{x^4}{4} + c$$

These solutions usually contain an arbritrary constant $c \in \mathbb{R}$, and the solutions represented by various values of c are known as the family of solutions to this differential equation. It is interesting to note that these solutions can never intersect, as the differ by some value at all x.

To find a particular solution, we need some starting conditions for our differential equation, and we can then solve to find the value of c. If for instance we knew that our previous example had y(0)=2 we could solve to find

$$y(0) = \frac{0^4}{4} + c = 2 \Rightarrow c = 2$$

Seperable First Order

A seperable first order differential equation has the form

$$\frac{\mathrm{d}y}{\mathrm{d}x} = M(x)N(y), \quad (M(x) \neq 0, N(y) \neq 0)$$

To solve, we seperate our variables like so

$$\frac{\mathrm{d}y}{\mathrm{d}x} = M(x)N(y) \Rightarrow \frac{1}{N(y)}\frac{\mathrm{d}y}{\mathrm{d}x} = M(x), \quad N(Y \neq 0) \Rightarrow$$

$$\int \frac{1}{N(y)} \frac{\mathrm{d}y}{\mathrm{d}x} \, \mathrm{d}x = \int M(x) \, \mathrm{d}x \Rightarrow \int \frac{1}{N(y)} \, \mathrm{d}y = \int M(x) \, \mathrm{d}x$$

This is essentially an application of derivative substitution to clean up the equation and seperate the two variables.

Examples

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{1+x}, \quad (x \neq -1)$$

$$\frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1+x} \Rightarrow \int \frac{1}{y}\frac{\mathrm{d}y}{\mathrm{d}x} \,\mathrm{d}x = \int \frac{1}{1+x} \,\mathrm{d}x = \int \frac{1}{y} \,\mathrm{d}y \Rightarrow$$

$$\log(|1+x|) + c = \log(|y|) + c \Rightarrow e^{\log(|1+x|) + c} = e^{\log(|y|)} \Rightarrow |y| = e^c |1+x| \Rightarrow y = \pm A(1+x)$$

In this example we made the assumption that y was non-zero when we divided by y initially. This works out in the end because we know $A=\pm e^c\neq 0$ so our solution covers us, however we should also check whether $y(x)\equiv 0$ is a solution, which in this case it is. We can incorporate this into our previous solution by allowing A to be 0.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2y\sqrt{1-x^2}}, \quad (-1 < x < 1, y \neq 0), \quad y(0) = 3$$

$$2y\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{1-x^2}} \Rightarrow \int 2y \, \mathrm{d}y = \int \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x \Rightarrow$$

$$x = \cos(\theta) \Rightarrow \theta = \arccos(x)$$

$$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -\sin(\theta) \Rightarrow \int \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x = \int \frac{1}{\sqrt{1-\cos^2(\theta)}} \times -\sin(\theta) \, \mathrm{d}\theta$$

$$\frac{1}{\sqrt{1-\cos^2(\theta)}} = \frac{1}{\sqrt{\sin^2(\theta)}} = \frac{1}{\sin(\theta)} \Rightarrow$$

$$\int 2y \, \mathrm{d}y = \int \frac{1}{\sin(\theta)} \times -\sin(\theta) \, \mathrm{d}\theta = \int -\frac{\sin(\theta)}{\sin(\theta)} \, \mathrm{d}\theta = \int -1 \, \mathrm{d}\theta \Rightarrow$$

$$y^2 = -\theta + c = -\arccos(x) + c \Rightarrow |y| = \sqrt{-\arccos(x) + c} \Rightarrow$$

$$y = \pm \sqrt{-\arccos(x) + c}$$

$$y(0) = 3 \Rightarrow 3 = \pm \sqrt{-\arccos(0) + c} = \pm \sqrt{-\frac{\pi}{2} + c} \Rightarrow$$

$$9 = -\frac{\pi}{2} + c \Rightarrow c = 9 + \frac{\pi}{2}$$

This is actually the wrong way to do it. The correct way to do it is to realise that the right hand side is a standard integral of \arcsin and use that to find c=9 for the solution

$$y = \pm \sqrt{\arcsin(x) + 9}$$

The two solutions are however equivalent so either works. y(0) = 3 tells us that the positive side of each of these two solutions are the correct one.

Integrating Factor and Linear First Order

By working through the following differential equation, we can make an observation which will be useful in solving a certain form of differential equations.

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + y = e^x$$

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + y = \frac{\mathrm{d}}{\mathrm{d}x} [xy] \Rightarrow \frac{\mathrm{d}}{\mathrm{d}x} [xy] = e^x \Rightarrow$$

$$\int \frac{\mathrm{d}}{\mathrm{d}x} [xy] \, \mathrm{d}x = \int e^x \, \mathrm{d}x \Rightarrow xy = e^x + c \Rightarrow$$

$$y = \frac{e^x + c}{x}, \quad x \neq 0$$

By obsering that $x\frac{\mathrm{d}y}{\mathrm{d}x}+y$ is the result of the application of the product rule in finding a derivative of xy, we were able dramatically simplify the solving of this equation. This process can be made more general as well.

For an ordinary differential equation to be linear it must be of the form

$$f_1(x)\frac{\mathrm{d}y}{\mathrm{d}x} + f_0(x)y + q(x) = 0$$

for example, the equation solved at the start of this section was linear, which becomes more clear when one rearranges it.

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + y = e^x \Rightarrow x\frac{\mathrm{d}y}{\mathrm{d}x} + y - e^x = 0$$

This is important, because it is the first step in solving differential equations using the product rule. We start by arranging our differential equation into the standard form

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)$$

To solve it, we then multiply by our integrating factor I(x), a function which we don't yet know.

$$I(x)\frac{\mathrm{d}y}{\mathrm{d}x} + I(x)P(x)y = I(x)Q(x)$$

We want I to cause our equation to satisfy the condition

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[y(x)I(x) \right] = Q(x)I(x)$$

To find an I with this property we need to solve such that

$$\frac{\mathrm{d}I}{\mathrm{d}x} = P(x)I \Rightarrow I = \pm e^{\int P(x) \, \mathrm{d}x}$$

We have observed that this condition yields a seperable differential equation solved it for the general form and used this to generate our I. Because we need only a single integrating factor I, we can discard the negative solutions to yield

$$I(x) = e^{\int P(x) \, \mathrm{d}x}$$

For the same reason, we can ignore any absolute values or constants of integration in the integral as well. Applying this to our first example:

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + y = e^x \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} = \frac{e^x}{x} \Rightarrow P(x) = \frac{1}{x}$$
$$I(x) = e^{\int \frac{1}{x} \, \mathrm{d}x} = e^{\log(x)} = x$$
$$I(x)\frac{\mathrm{d}y}{\mathrm{d}x} + I(x)\frac{y}{x} + I(x)\frac{e^x}{x} = x\frac{\mathrm{d}y}{\mathrm{d}x} + y + e^x \Rightarrow \frac{\mathrm{d}}{\mathrm{d}x}[xy] = e^x$$

Through our general formula, we found our way to the same solution we arrived at through a leap of intuition in the initial example.

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{y}{x} = \sin(x), \quad (x \neq 0)$$

$$I(x) = e^{\int P(x) \, \mathrm{d}x} = e^{\int \frac{1}{x} \, \mathrm{d}x} = e^{\log(x)} = x$$

$$x \frac{\mathrm{d}y}{\mathrm{d}x} + y = x \sin(x) = \frac{\mathrm{d}}{\mathrm{d}x} [xy] \Rightarrow$$

$$\int \frac{\mathrm{d}}{\mathrm{d}x} [xy] \, \mathrm{d}x = \int x \sin(x) \, \mathrm{d}x \Rightarrow xy = -x \cos(x) + \int \cos(x) \, \mathrm{d}x \Rightarrow$$

$$xy = -x \cos(x) + \sin(x) + c \Rightarrow y = -\cos(x) + \frac{\sin(x)}{x} + \frac{c}{x}$$

Here we used an integrating factor to solve the left side, and then integrated the right side through derivative substitution.

Other First Order

It is sometimes possible to apply a substitution to simplify a differential equation down to a seperable or linear differential equation. A differentiable equation of a *homogenous type* has the form

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f\left(\frac{y}{x}\right)$$

In this case, we can substitute $y=\frac{y}{x}$ to reduce to a seperable differential equation. Another case is differential equations with the form of Bernoulli's equation, that is

$$\frac{\mathrm{d}y}{\mathrm{d}x} + P(x)y = Q(x)y^n$$

In this case, a substitution of $u = y^{1-n}$ reduces the equation to linear.

Homogenous Example

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} + \cos^2\left(\frac{y}{x}\right), \quad \left(-\frac{\pi}{2} < \frac{y}{x} < \frac{\pi}{2}\right)$$

$$u = \frac{y}{x} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = x\frac{\mathrm{d}y}{\mathrm{d}x} + u$$

$$x\frac{\mathrm{d}u}{\mathrm{d}x} + u = u + \cos^2(u) \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\cos^2(u)}{x} \Rightarrow$$

$$\sec^2(u)\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x} \Rightarrow \int \sec^2\frac{\mathrm{d}u}{\mathrm{d}x} \, \mathrm{d}x = \int \frac{1}{x} \, \mathrm{d}x \Rightarrow \int \sec^2\mathrm{d}x = \int \frac{1}{x} \, \mathrm{d}x \Rightarrow$$

$$\tan(u) = \log(|x|) + C \Rightarrow \tan\left(\frac{y}{x}\right) = \log(|x|) + C \Rightarrow$$

$$y = x \arctan(\log(|x| + C))$$

Bernoulli Example

$$\frac{\mathrm{d}y}{\mathrm{d}x} + y = e^{3x}y^4, \quad (y \neq 0)$$

$$u = y^{-3}$$

We want to express y and $\frac{dy}{dx}$ in terms of u, x and $\frac{du}{dx}$.

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \left[y^{-3} \right] \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = -3y^{-4} \frac{\mathrm{d}y}{\mathrm{d}x}$$

Because we are diffentiating an equation of y, we need to use implicit differentiation, hence the $\frac{\mathrm{d}y}{\mathrm{d}x}$ term. Now that we have this equation, we can multiply our other equation by the coefficient to replace.

$$-3y^{-4}\left(\frac{\mathrm{d}y}{\mathrm{d}x} + y\right) = -3y^{-4}\left(e^{3x}y^4\right) \Rightarrow$$

$$\frac{\mathrm{d}u}{\mathrm{d}x} - 3y^{-3} = -3e^{3x} = \frac{\mathrm{d}u}{\mathrm{d}x} - 3u$$

At this stage we simple have a linear differential equation, and the solution is fairly easy to find.

Population Models

Malthus (Doomsday) Model

The Malthus or Doomsday model for population growth states that rate of growth at a time t of a population p is proportional to the population.

$$\frac{\mathrm{d}p}{\mathrm{d}t} \propto p \Rightarrow \frac{\mathrm{d}p}{\mathrm{d}t} = kp$$

Here, k is a proportionality constant which corresponds to net births per unit population per unit time. If we take $p(0) = p_0$ we find that

$$p(t) = p_0 e^{kt}$$

Thus, the model is clearly an exponential relationship. Obviously this model is somewhat unrealistic; for a k > 0 it implies unending exponential growth.

Equilibrium Solutions

An equilibrium solution to a differential equation is a constant solution. For example, in the Malthusian example $p_0=0$ is an equilibrium solution of $p(t)\equiv 0$. For these to exist, we must have

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 0$$

For a differential equation with variables x and t. For example

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 3x - 2$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 0 \Rightarrow x = \frac{2}{3}$$

The equilibrium solution is $x(t)\equiv \frac{2}{3}$. A phase plot is a plot of the derivative of a function against the value of the function. On these plots, the equilibria are the horizontal axis intercepts. These plots are generally only useful for differential equations of the form

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x)$$

This is known as an *autonomous* differential equation, because the right hand side is independent of t.

Examining this plot, we can see that the derivative of x will be positive for all values of $x>\frac{2}{3}$ while it will be negative for values less than $\frac{2}{3}$. We can also see that as x increases, the gradient of the function increases, as well as the inverse. Using this information, in combination with the constant solution learned from the intercet, and the fact that no solution may cross any other solution, we can plot the family of solutions to this differential equation.

We can see that for the initial condition of $x(0) = \frac{2}{3}$, the value will be constant, while for initial conditions greater than this value the equation diverges to infinity and for values less, it diverges to negative infinity.

It can be useful to examine if an equilibrium is stable. An equilibrium is *stable* if nearby solutions grow closer with increasing t, while it is unstable if solutions diverge, as they do in the above example. On a phase plot, a stable equilibrium will have a negative slope passing through it. On a phase plot, an unstable equilibrium has a positive slope through it, as in the example.

A semistable equilibrium occurs when one side of solutions approach the equilibrium. This occurs at a touching point in a phase plot.

Extending the Doomsday Model

To extend the Malthusian Doomsday model explored earlier, we can add a notion of "harvesting", the process of some quantity of the population being lost every unit time.

$$\frac{\mathrm{d}p}{\mathrm{d}t} = kp - h, \quad h > 0$$

This has little effect on the exponential curve; because the curve is exponential, we can subtract h without changing its behaviour in the long term.

Another alteration we could make would be to add a "competition" term, creating a logistic model. This added term accounts for competition for resources by adding a negative term dependent on the population size.

$$\frac{\mathrm{d}p}{\mathrm{d}t} = kp - \frac{k}{a}p^2 = kp\left(1 - \frac{p}{a}\right)$$

Here, a is the *carrying capacity*, the capacity for population in the environment. In the case that p>a, this yields a negative derivative i.e. a decreasing population, steadily approaching a. For example, a logistic model with k=1 and a=4 looks like

$$\frac{\mathrm{d}p}{\mathrm{d}t} = p\left(1 - \frac{p}{4}\right)$$

$$\Rightarrow p(t) \equiv 0, p(t) \equiv 4$$

We can immediately see two equilibrium solutions thanks to the factorised form. We know that other solutions may never cross these, therefore all other solutions must be strictly less than 0, between 0 and 4 or strictly greater than 4.

Drawing a phase plot, one finds that the derivative is positive for all values between 0 and 4, and negative for outside values. It is at a maximum at 2; this can all be derived from the parabolic shape of the derivative. This showcases the classic logistic behaviour of an exponential curve tapering off as the population nears capacity. For values above a, the population decays rapidly to a.

In this case, 0 is an unstable equilibrium while 4 is a stable equilibrium. The point of inflection of the plot is when the gradient is at a maximum, i.e. at p=2.

We can combine the logistic model with harvesting to produce a combined model.

$$\frac{\mathrm{d}p}{\mathrm{d}t} = kp\left(1 - \frac{p}{a}\right) - h$$

As an example we can take

$$\frac{\mathrm{d}p}{\mathrm{d}t} = p\left(1 - \frac{p}{4}\right) - \frac{3}{4}$$

Solving the quadratic we find equilibria of $p(t) \equiv 3, p(t) \equiv 1$.

Examining the phase plot we once again find that population will increase while between these equilibria, with the upper equilibrium being a stable equilibrium and the lower unstable. The main difference is the narrowed bounds; because of the harvesting term a starting population of 1 or less will die out and a population will never grow beyond 3.

While this phase plot analysis is useful, it is of course much more useful to actually solve the differential equation. We can take N(t)=1 to make this a seperable integral.

$$\frac{\mathrm{d}p}{\mathrm{d}t} = -\frac{1}{4}(p-3)(p-1)$$

$$\int \frac{1}{-\frac{1}{4}(p-3)(p-1)} \frac{\mathrm{d}p}{\mathrm{d}t} \, \mathrm{d}t = \int 1 \, \mathrm{d}t \Rightarrow \int \frac{4}{(p-3)(p-1)} \, \mathrm{d}p = \int 1 \, \mathrm{d}t$$

$$\frac{4}{(p-3)(p-1)} = \frac{A}{p-3} + \frac{B}{p-1} =$$

$$\frac{A(p-1)}{(p-3)(p-1)} + \frac{B(p-3)}{(p-3)(p-1)} = \frac{A(p-1) + B(p-3)}{(p-3)(p-1)} =$$

$$\frac{Ap - A + Bp - 3B}{(p-3)(p-1)} \Rightarrow -A - 3B = 4, \quad A + B = 0$$

$$A = -B \Rightarrow -A - 3B = 4 = B - 3B \Rightarrow B = 2 \Rightarrow A = -2 \Rightarrow$$

$$\int \frac{4}{(p-3)(p-1)} \, \mathrm{d}p = \int \frac{2}{(p-1)} - \frac{2}{(p-3)} \, \mathrm{d}p = \int 1 \, \mathrm{d}t \Rightarrow$$

$$2\log(|p-1|) - 2\log(|p-3|) = t + C$$

$$\log(|p-1|) - \log(|p-3|) = \frac{t}{2} + C$$

$$\log\left(\frac{|p-1|}{|p-3|}\right) = \frac{t}{2} + C \Rightarrow \frac{p-1}{p-3} = \pm e^{\frac{t}{2} + C} = \pm Ae^{\frac{t}{2}}$$

Mixing Problems

Differential equations can be used to consider the combination of liquids, for example considering a pollutant entering a pond. If x represents the total quantity of pollutant in the pool at time t, then we can take $C=\frac{x}{V}$ where C is the concentration of pollutant in the pool of volume V at time t. We have $\frac{\mathrm{d}x}{\mathrm{d}t}$ is equal rate of inflow minus rate of outflow.

inflow =
$$C_{\rm in} \times F_{\rm in}$$

Where $F_{\rm in}$ is the flow rate of liquid into the pool with pollutant at concentration $C_{\rm in}$ in that liquid.

outflow =
$$C \times F_{\text{out}} = \frac{x}{V} \times F_{\text{out}}$$

Here, because we have defined C in terms of x and V we can replace it. For values $V=1000 {\rm m}^3$, $x_0=100 {\rm g}$, $F_{\rm in}=F_{\rm out}=10 {\rm m}^3 {\rm min}^{-1}$, $C_{\rm in}=2 {\rm g~m}^{-3}$ we find

$$\frac{dx}{dt} = 2g \text{ m}^{-3} \times 10\text{m}^3\text{min}^{-1} - \frac{x}{1000\text{m}^3} \times 10\text{m}^3\text{min}^{-1}$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 20\mathrm{g}\,\,\mathrm{min}^{-1} - \frac{x}{100}\mathrm{min}$$

So if we say t is in terms of minutes and x in terms of grams we have

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 20 - \frac{x}{100}$$

Solving this, one finds

$$x(t) = 2000 + ce^{\frac{-t}{100}}$$

$$x(0) = 100 \Rightarrow c = -1900$$

To find the concentration at a given time, we can use $c(t) = \frac{x(t)}{V}$ to find

$$c(t) = 2 - \frac{19}{10}e^{\frac{-t}{100}}$$

As t increases, the right hand term approaches 0, so we can say that in the long term the concentration will be 2. We could describe this right hand term as a *transient term* and the left hand (constant) term as a *steady state term*.

What does the equation look like if the inflow rate is instead $5m^3min^{-1}$? Inflow will now be

$$C_{\rm in} \times F_{\rm in} = 2 {\rm g \ m^{-3}} \times 5 {\rm m^3 min^{-1}} = 10 {\rm g \ min^{-1}}$$

We now have a changing rather than constant volume. The volume at time t can be expressed as

$$V(t) = 1000 + 5t - 10t = 1000 - 5t$$

Thus the outflow is given by

$$\frac{x}{V} \times F_{\text{out}} = \frac{x}{1000 - 5t} \times 10 = \frac{x}{100 - \frac{t}{5}}$$

And the overall equation is

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 10 - \frac{x}{100 - \frac{t}{5}}$$

If t>200, V<0 which doesn't make much sense, so we can restrict the domain. This is a linear equation, so it can be solved through the integrating factor method.

Second Order Ordinary Differential Equations

A second order differential equation is of the form

$$F\left(x, y, \frac{\mathrm{d}y}{\mathrm{d}x}, \frac{\mathrm{d}^2y}{\mathrm{d}x^2}\right) = 0$$

Generally a second order differential equation will have two arbritrary constants. Therefore, a second piece of information is necessary to solve an initial value problem. For example, $y(x_0) = y_0$ and $y'(x_0) = y_1$. By adding this second variable, we could instead have two values for y; if we have $y(a) = y_0$ and $y(b) = y_1$, we have a boundary value problem; two points through which the solution passes.

Linear Second Order

The general form of a linear second order ordinary differential equation is

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + P(x)\frac{\mathrm{d}y}{\mathrm{d}x} + Q(x)y = R(x)$$

If R(x) = 0, the equation is homogenous. If $R(x) \neq 0$ the equation is inhomogenous. The general solution to a homogenous equation of this form is

$$y(x) = c_1 y_1(x) + c_2 y_2(x)$$

Here, y_1 and y_2 are linearly independent solutions of the equation and c_2 and c_2 are arbritrary constants. The term "linearly independent" implies that

$$c_1y_1(x) + c_2y_2(x) = 0 \Rightarrow c_2 = c_2 = 0$$

Another way of stating this is that neither function is a non-zero constant multiple of the other function. For instance, while e^{2x} and xe^{2x} are linearly independent, x^2 and $2x^2$ are not.

The reason this works is that both solutions can be understood to exist in the same space of solutions to the equation, and as linear solutions, they can be added while still being a solution to the equation.

Homogenous Second Order Linear

Equations of this form look like

$$ay'' + by' + cy = 0$$

Where a,b,c are constants. To find y(x), we need to find two linearly independent solutions. Once we have these, we can use our theorem for the general solution.

The best way to start out this process is by considering exponential solutions. If we first try $y(x) = e^{\lambda x}$, we find

$$y' = \lambda e^{\lambda x}, \quad y'' = \lambda^2 e^{\lambda x}$$

Substituting into the equation, we find

$$a\lambda^{2}e^{\lambda x} + b\lambda e^{\lambda x} + ce^{\lambda x} = 0$$

$$\Rightarrow e^{\lambda x}(a\lambda^{2} + b\lambda + c) = 0$$

Because $e^{\lambda x} \neq 0$, we need the term in brackets (known as the *characteristic* equation of the differential equation) to equal 0 and thus be a solution. To find λ we can simply use the quadratic formula, which conveniently yields a positive and negative value; i.e. two linearly independent solutions.

$$\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

In the case that the discriminant, $b^2 - 4ac > 0$, this formula yields two distinct real values, each of which is a solution. Thus, the overall general solution is

$$y(x) = Ae^{\lambda_1 x} + Be^{\lambda_2 x}$$

Example

$$y'' + 7y' + 12y = 0$$

$$\Rightarrow a = 1, b = 7, c = 12$$

$$\Rightarrow \lambda = \frac{-7 \pm \sqrt{(-7)^2 - 4 \times 1 \times 12}}{2} = \frac{-7 \pm \sqrt{49 - 48}}{2} = \frac{-7 \pm 1}{2}$$

$$\Rightarrow \lambda = -4, \quad \lambda = -3$$

$$\Rightarrow y(x) = Ae^{-4x} + Be^{-3x}$$

Zero Discriminant

If $b^2 - 4ac = 0$, we will find a single real solution

$$\lambda = \frac{-b}{2a}$$

In this case, there is a second solution of $xe^{\lambda x}$ as the second solution (to be accepted as gospel; determined through "variation of parameters.").

$$y(x) = Ae^{\lambda x} + Bxe^{\lambda x}$$

The reason this works is that we end up with a solution looking like

$$xe^{\lambda x}(a\lambda^2 + b\lambda + c) + (2\lambda a + b)e^{\lambda x}$$

Which is a solution because we know that $2\lambda a + b = 0$.

Example

$$y'' + 2y' + y = 0$$

$$\Rightarrow a = 1, b = 2, c = 1$$

$$\Rightarrow \lambda = \frac{-2\sqrt{(-2)^2 + 4 \times 1 \times 1}}{2} = \frac{-2}{2} = -1$$

$$\Rightarrow y(x) = Ae^{-x} + Bxe^{-x}$$

Negative Discriminant

Finally, we come to $b^2-4ac<0$. In this case, we will end up with two complex conjugate values of λ .

$$\lambda_1 = \alpha + i\beta, \quad \lambda_2 = \alpha - i\beta$$

This yields two complex linearly independent solutions

$$e^{(\alpha+i\beta)x}, e^{(\alpha-i\beta)x}$$

And a general solution of

$$y(x) = c_1 e^{(\alpha + i\beta)x} + c_2 e^{(\alpha - i\beta)x}$$

This can then be rewritten as

$$y(x) = c_1 e^{\alpha x} (\cos(\beta x) + i \sin(\beta x)) + c_2 e^{\alpha x} (\cos(\beta x) - i \sin(\beta x))$$
$$y(x) = (c_1 + c_2) e^{\alpha x} \cos(\beta x) + (c_1 i - c_2 i) e^{\alpha x} \sin(\beta x)$$

If we then take $A = c_1 + c_2$ and $B = (c_1 - c_2)i$, and assume that A and B are real, then we will find two real and linearly independent solutions of

$$e^{\alpha x}\cos(\beta x), \quad e^{\alpha x}\sin(\beta x)$$

 $y(x) = Ae^{\alpha x}\cos(\beta x) + Be^{\alpha x}\sin(\beta x)$

This only works as long as c_1 and c_2 are complex conjugates, because it relies on the identities $\bar{z} + z = 2\text{Re}(z)$ and $\bar{z} - z = 2\text{Im}(z)i$.

Example

$$y'' - 4y' + 13y = 0$$

$$\Rightarrow a = 1, b = -4, c = 13$$

$$\Rightarrow \lambda = \frac{4 \pm \sqrt{(-4)^2 - 4 \times 1 \times 13}}{2} = \frac{4 \pm \sqrt{16 - 52}}{2} = \frac{4 \pm 6i}{2}$$

$$\Rightarrow \lambda = 2 + 3i, \quad \lambda = 2 - 3i$$

$$\Rightarrow \alpha = 2, \quad \beta = 3$$

$$\Rightarrow y(x) = Ae^{2x}\cos(3x) + Be^{2x}\sin(3x)$$

Given the initial values of y(0) = 1 and y'(0) = 6 we can find

$$1 = Ae^{2\times 0}\cos(3\times 0) + Be^{2\times 0}\sin(3\times 0) = A$$

$$y' = A\frac{d}{dx}\left[e^{2x}\cos(3x)\right] + B\frac{d}{dx}\left[e^{2x}\sin(3x)\right]$$

$$= A(2e^{2x}\cos(3x) - 3\sin(3x)e^{2x}) + B(2e^{2x}\sin(3x) + 3\cos(3x)e^{2x})$$

$$y'(0) = 2e^{2\times 0}\cos(3\times 0) - 3\sin(3\times 0)e^{2\times 0} + B(2e^{2\times 0}\sin(3\times 0) + 3\cos(3\times 0)e^{2\times 0})$$

$$= 2 + B(3) = 6 \Rightarrow B = \frac{4}{3}$$

We can rewrite a solution of this form in terms of a single trigonometric function using the fact that it has an equivalent form to $e^{2x}(a\cos(\theta)+b\sin(\theta))$ as

$$\sqrt{a^2+b^2}\cos(\theta-\phi)$$

Where $\phi = \arctan\left(\frac{b}{a}\right)$. This can be useful for graphing or further manipulation.

Inhomogenous Second Order Linear

To solve these differential equations, we have a theorem

$$y'' + P(x)y' + Q(x)y = R(x)$$
$$\Rightarrow y(x) = y_H(x) + y_P(x)$$

Where $y_H(x) = c_1 y_1(x) + c_2 y_2(x)$ is the general solution of the homogenous differential equation, the left hand side, as examined previously, and $y_P(x)$ is a particular solution of the inhomogenous equation.

We know this works because $y_H(x)$ must solve the homogenous solution, while $y_P(x)$ must solve the inhomogenous situation.

The general form of these inhomogenous equations is

$$ay'' + by' + cy = R(x)$$

Examples

$$y'' + 2y' - 8y = 1 - 8x^2$$

We begin by finding the general solution of the homogenous equation.

$$y'' + 2y' - 8y = 0$$

$$\Rightarrow a = 1, b = 2, c = -8$$

$$\Rightarrow \lambda = \frac{-2 \pm \sqrt{2^2 - 4 \times 1 \times -8}}{2 \times 1} = \frac{-2 \pm 6}{2}$$

$$\Rightarrow \lambda = -4, \quad \lambda = 2$$
$$\Rightarrow y_H(x) = Ae^{-4x} + Be^{2x}$$

We then find a particular solution to the equation. Here, we are trying to find a $y_P(x)$ for which the left hand side will work out to a quadratic, such that it matches the right hand side. Thus, we can try a general quadratic solution.

$$y_P = ax^2 + bx + c$$

$$y'_P = 2ax + b$$

$$y''_P = 2a$$

$$2a + 2(2ax + b) - 8(ax^2 + bx + c) = 1 - 8x^2$$

$$2a + 2b - 8c + (4a - 8b)x - 8ax^2 = 1 - 8x^2$$

$$\Rightarrow 2a + 2b - 8c = 1, \quad 4a - 8b = 0, \quad 8a = 8$$

$$\Rightarrow a = 1 \Rightarrow b = \frac{1}{2} \Rightarrow c = \frac{1}{4}$$

$$y_P = x^2 + \frac{1}{2}x + \frac{1}{4}$$

$$\Rightarrow y(x) = Ae^{-4x} + Be^{2x} + x^2 + \frac{1}{2}x + \frac{1}{4}$$

In this question, we noticed that the right hand side was a quadratic, so after solving for the homogenous solution, we simply needed to find a fitting quadratic as our particular solution.

$$y'' + 2y' - 8y = e^{3x}$$

This is the same homogenous equation as before, so we have our y_H .

$$y_H(x) = Ae^{-4x} + Be^{2x}$$

Because we have an exponential on the left hand side, and we know that exponentials have exponential derivatives, so we want to try exponential y_P s.

Because the equation needs to look like e^{3x} , we need an exponential with 3x as the exponent.

$$y_P = \alpha e^{3x}$$

$$y_P' = 3\alpha e^{3x}$$

$$y_P'' = 9\alpha e^{3x}$$

$$9\alpha e^{3x} + 6\alpha e^{3x} - 8\alpha e^{3x} = 7\alpha e^{3x}$$

$$7\alpha e^{3x} = e^{3x} \Rightarrow \alpha = \frac{1}{7}$$

$$\Rightarrow y(x) = Ae^{-4x} + Be^{2x} + \frac{1}{7}e^{3x}$$

Here, we saw an exponential on the right hand side, so we knew an exponential was needed on the left. By using a constant α , we were able to find a particular solution which fit the equation.

$$y'' + 2y' - 8y = 85\cos(x)$$

Once again, this is the same y_H . To find a solution for the left hand side here, we have a slightly more complex process. Because \cos differentiates to $-\sin$, we use a general trigonometric equation of the form

$$y_P(x) = \alpha \cos(x) + \beta \sin(x)$$

$$y_P'(x) = -\alpha \sin(x) + \beta \cos(x)$$

$$y_P''(x) = -\alpha \cos(x) - \beta \sin(x)$$

$$(-\alpha \cos(x) - \beta \sin(x)) + 2(-\alpha \sin(x) + \beta \cos(x)) - 8(\alpha \cos(x) + \beta \sin(x))$$

$$2\beta \cos(x) - 9\alpha \cos(x) - 9\beta \sin(x) - 2\alpha \sin(x) = 85 \cos(x)$$

$$\Rightarrow 2\beta - 9\alpha = 85, \quad -9\beta - 2\alpha = 0$$

$$\Rightarrow \beta = \frac{-2}{9}\alpha \Rightarrow \frac{-4}{9}\alpha - 9\alpha = 85 \Rightarrow \frac{-85}{9}\alpha = 85 \Rightarrow \alpha = -9$$

$$\Rightarrow \beta = 2 \Rightarrow y_P(x) = -9\cos(x) + 2\sin(x)$$

$$\Rightarrow y(x) = Ae^{-4x} + Be^{2x} - 9\cos(x) + 2\sin(x)$$

For a trigonometric function, one must use a trigonometric function. Using unknown coefficients allows us to find out particular solution once again.

Superposition of Solutions

Thus far we have looked at how to solve three types of R(x) functions, we now look at "superimposing" these solutions to find a solution for a combination of R(x)s.

$$ay'' + by' + cy = \alpha R_1(x) + \beta R_2(x)$$
$$\Rightarrow y_P(x) = \alpha y_1(x) + \beta y_2(x)$$

Where $y_1(x)$ is an inhomogenous particular solution of the left side to $R_1(x)$ and $y_2(x)$ is the same for $R_2(x)$. Using the example from above:

$$y'' + 2y' - 8y = 3 - 24x^2 + 7e^{3x}$$

We have already found a $y_H(x)$ for this equation, in addition we have solved the following two R(x) functions:

$$R_1(x) = 1 - 8x^2 \Rightarrow y_P(x) = x^2 + \frac{1}{2}x + \frac{1}{4}$$

 $R_2(x) = e^{3x} \Rightarrow y_P(x) = \frac{1}{7}e^{3x}$

We can now *superimpose* these to find a solution to the new R(x).

$$R(x) = 3R_1(x) + 7R_2(x)$$

$$y_P(x) = 3(x^2 + \frac{x}{2} + \frac{1}{4}) + 7(\frac{1}{7}e^{3x})$$

$$y(x) = Ae^{-4x} + Be^{2x} + 3x^2 + \frac{3}{2}x + \frac{3}{4} + e^{3x}$$

We simply find the values of α and β , and multiply the y_P solutions assocaited with thesse to find the general solution to the new equation.

R(x) in the General Solution

In an equation like $y''-y=e^x$, a $y_P=\alpha e^x$ will result in a left hand side equal to 0, which e^x can never equal. Therefore we need another approach for this case. Therefore, we instead try $\alpha x e^x$

$$y_P = axe^x$$

$$y_P' = \alpha x^e + \alpha x e^x$$

$$y_P'' = 2\alpha e^x + \alpha x e^x$$

$$\Rightarrow 2\alpha e^x + \alpha x e^x - \alpha x e^x = \alpha e^x$$

$$\Rightarrow y_P = \frac{1}{2} x e^x$$

$$\Rightarrow y(x) = Ae^x + Be^{-x} + \frac{1}{2} x e^x$$

Despite the fact the right hand side was part of the homogenous solution, we are able to find a general solution. When there is only one solution to the homogenous solution, like in the case $y'' + 2y' + y = e^{-x}$, we instead try $y_P = ax^2e^{-x}$.

Finally, in the case that there is no real solution, we need to read for trigonometric functions. For example in $y''+49y=28\sin(7t)$, we have the general solution $A\cos(7t)+B\sin(7t)$, which is a no-go. Intead we try $y_P(t)=at\cos(7t)+bt\sin(7t)$, adding a t factor which cancels out as the equation gets solved.

Applications of Second Order Linear

A spring has a natural length which it wants to return to when stretched. In an ideal scenario, a stretched spring under a gravitational force will oscillate sinusoidally up and down. If we include damping due to effects like friction and air resistance, the sinusoidal motion will converge to 0. Systems like this can be effectively modelled using second order linear ordinary differential equations.

To consider these systems we take an object of mass $m \log$ attached to a spring hanging from a fixed support. The spring has natural length L m, and is stretched downward by s m due to the weight force W = m g of the mass.

Opposing the weight force is the restorative force of the spring T=-ks, given by Hooke's law.

At the state described, the equilibrium, the net force is 0.

$$W + T = 0 = mq - ks \Rightarrow mq = ks$$

To model the motion of the mass around the equilibrium, we can define a distance y(t), the distance of the mass from the equilibrium at time ts. Thus, we can rewrite T as -k(s+y). This is an opportune time to introduce damping forces as well, as $R=-\beta \dot{y}$ where \dot{y} means "the time derivative of y" i.e. y'. This is essentially stating that damping is proportional to velocity.

We also have Newton's second law F=ma, which can be equivalently expressed as $F=m\ddot{y}$. Applying this to the object, we find

$$m\ddot{y} = W + T + R = mg - k(s+y) - \beta \dot{y} = mg - ks - y - \beta \dot{y}$$
$$mg - ks = 0 \Rightarrow mg - ks - y - \beta \dot{y} = -y - \beta \dot{y}$$
$$\Rightarrow m\ddot{y} + \beta \dot{y} + ky = 0$$

Conveniently, this is a homogenous second order linear differential equation with constant coefficients. Thus to solve it, we can simply use the process explored above trying equations of the form $y(t) = e^{\lambda t}$.

$$\lambda = \frac{-\beta \pm \sqrt{\beta^2 - 4mk}}{2m}$$

Because we have related the coefficients to real world values, we can use the outcome of our equation to describe the real world situation.

- When $\beta=0$ we find $\lambda=\pm ib$. In this case, the system is undergoing simple harmonic motion of the form $y=A\cos(bt)+B\sin(bt)$.
- When $0<\beta<2\sqrt{mk}$ we find $\lambda=a\pm ib$, a situation where the spring is underdamped or shows weak damping. In this case, the motion will take the form $y=e^{at}(A\cos(bt)+B\sin(bt))$, with a<0. The spring will oscillate with decreasing amplitude, slowly returning to equilibrium.
- When $\beta=2\sqrt{mk}$ i.e. the discriminant is 0, we find $\lambda=a,a$ yielding $y=Ae^{at}+Bte^{at}$ a situation where the system undergoes critical damping and approaches equilibrium without oscillation.

• In the final case of $\beta>2\sqrt{mk}$ we have two real routes, $\lambda=a,b$ and find a solution of $y=Ae^{at}+Be^{bt}$, resulting in a slow approach to the equilibrium position.

Example

A $\frac{40}{49} \mathrm{kg}$ mass stretches a spring hanging from a fixed support by $0.2 \mathrm{m}$. The mass is released from the equilibrium position with a downward velocity of $3 \mathrm{ms}^{-1}$. Find the position y below equilibrium at a time t for the damping constant β equal to each of 0, $\frac{160}{49}$.

$$m = \frac{40}{49}, s = 0.2, y(0) = 0, \dot{y}(0) = 3$$

$$mg = ks \Rightarrow k = \frac{mg}{s} = \frac{\frac{40}{49} \times 9.8}{0.2} = 40$$

$$\Rightarrow \frac{40}{49} \ddot{y} + \beta \dot{y} + 40y = 0$$

To clean this up a little, we can multiply by $\frac{49}{40}$.

$$\ddot{y} + \frac{40}{49}\beta\dot{y} + 49y = 0$$

$$\beta = 0 \Rightarrow \ddot{y} + 49y = 0$$

We will try solutions of the form $e^{\lambda t}$

$$y = e^{\lambda t} \Rightarrow \dot{y} = \lambda e^{\lambda t} \Rightarrow \ddot{y} = \lambda^2 e^{\lambda t}$$

$$\lambda^2 e^{\lambda t} + 49 e^{\lambda t} = 0 \Rightarrow e^{\lambda t} (\lambda^2 + 49) = 0$$

$$e^{\lambda t} > 0 \Rightarrow \lambda^2 + 49 = 0 \Rightarrow \lambda = \pm 7i$$

$$\Rightarrow y = A\cos(7t) + B\sin(7t)$$

$$\Rightarrow \dot{y} = -7A\sin(7t) + 7B\cos(7t)$$

$$y(0) = 0 \Rightarrow 0 = A\cos(0) + B\sin(0) \Rightarrow A = 0$$

$$\dot{y}(0) = 3 \Rightarrow 7B\cos(0) = 3 \Rightarrow B = \frac{3}{7}$$

$$y(t) = \frac{3}{7}\sin(7t)$$

Now for the next value of β

$$\beta = \frac{160}{49} \Rightarrow \ddot{y} + 4\dot{y} + 49y = 0$$

$$\lambda^2 e^{\lambda t} + 4\lambda e^{\lambda t} + 49e^{\lambda t} = 0 = e^{\lambda t}(\lambda^2 + 4\lambda + 49) = 0$$

We can solve this quadratic with the quadratic formula.

$$\lambda = \frac{-4 \pm \sqrt{4^2 - 4 \times 1 \times 49}}{2} = -2 \pm \frac{\sqrt{-180}}{2} = -2 \pm 3\sqrt{5}i$$

$$\Rightarrow y(t) = Ae^{-2t}\cos(3\sqrt{5}t) + Be^{-2t}\sin(3\sqrt{5}t)$$

$$\Rightarrow \dot{y} = -2Ae^{-2t}\cos(3\sqrt{5}t) - 3\sqrt{5}Ae^{-2t}\sin(3\sqrt{5}t)$$

$$-2Be^{-2t}\sin(3\sqrt{5}t) + 3\sqrt{5}Be^{-2t}\cos(3\sqrt{5}t)$$

$$\Rightarrow A = 0, B = \frac{1}{\sqrt{5}}$$

This is a system with weak damping or underdamping.

Downward External Force

What happens if we apply an external force f, dependent on t to the spring-mass system? We now have another force on the spring, making the total force on the object

$$m\ddot{y} = W + T + R + f(t) = mg - k(s+y) - \beta \dot{y} + f(t)$$
$$m\ddot{y} + \beta \dot{y} + ky = f(t)$$

We now have an inhomogenous equation rather than a homogenous one.

Example

We can consider a system similar to that of the above example, with an external force applied.

$$f(t) = \frac{160}{7}\sin(7t)$$

$$\frac{40}{49}\ddot{y} + \beta\dot{y} + 40y = \frac{160}{7}\sin(t) \Rightarrow \ddot{y} + \frac{49}{40}\beta\dot{y} + 49y = 28\sin(t)$$

$$y(0) = 0, \quad \dot{y}(0) = 3$$

We will use a value $\beta = \frac{80}{7}$, which corresponds to critical damping, and yields a general solution of the homogenous equation of

$$y(t) = (A + Bt)e^{-7t}$$

We then find a particular solution by finding solutions of the form $y_p = \alpha \cos(7t) + \beta \sin(7t)$ which yields

$$y_p(t) = -\frac{2}{7}\cos(7t)$$

Solving this we find

$$A = \frac{2}{7}, \quad B = 5$$

$$\Rightarrow y(t) = \left(\frac{2}{7} + 5t\right)e^{-7t} - \frac{2}{7}\cos(7t)$$

In this, we have the left term as transient; due to the negative exponential it rapidly approaches 0, while the right hand term is a steady state term, which defines most of the motion of the system in the long term. From this we can deduce that the external force is more significant than the force due to gravity and the spring in the long term.

In the case were the particular solution has a factor of t, we have a situation where the system is undergoing resonance.

RLC Series Circuits

An RLC series ciruit is a ciruit with 4 components connected in series. These are a resistor, an inductor, a battery and a capacitor. The analogue to

displacement in this example is q, the charge on the capacitor. The analogue to velocity is I, the current. The resistor has resistance of $R\Omega$, the inductor has inductance L Henrys, the capacitor has capacitance $C\mathrm{F}$ and the battery has voltage $V\mathrm{V}$.

The voltage drops across the components are given by

$$IR = R \frac{\mathrm{d}q}{\mathrm{d}t}$$

$$L \frac{\mathrm{d}I}{\mathrm{d}t} = L \frac{\mathrm{d}^2q}{\mathrm{d}t^2}$$

$$\frac{q}{G}$$

We thus have a differential equation for the charge on the capacitor of

$$L\frac{\mathrm{d}^2q}{\mathrm{d}t^2} + R\frac{\mathrm{d}q}{\mathrm{d}t} + \frac{q}{C} = V$$

Using Kirchoff's Voltage Law. This can be solved in essentially the same way as a spring problem.

Example

Let us consider a capacitance of $C=\frac{1}{30}$ a resistance of R=10 an inductance of $L=\frac{5}{3}$ and a voltage of V=300.

Thus we have voltage drops across the resistor, capacitor and inductor of

$$IR = 10I$$
, $\frac{q}{C} = 30q$, $L\frac{\mathrm{d}i}{\mathrm{d}t} = \frac{5}{3}\frac{\mathrm{d}i}{\mathrm{d}t}$

Yielding an equation of

$$\frac{5}{3}\frac{\mathrm{d}i}{\mathrm{d}t} + 10i + 30q = 300 \Rightarrow \frac{5}{3}\frac{\mathrm{d}^2q}{\mathrm{d}t^2} + 10\frac{\mathrm{d}q}{\mathrm{d}t} + 30q = 300$$
$$\Rightarrow \frac{\mathrm{d}^2q}{\mathrm{d}t^2} + 6\frac{\mathrm{d}q}{\mathrm{d}t} + 18q = 180$$

Functions of Two Variables

A function of two variables defines a mapping of two real numbers to a single real number, i.e.

$$z = f(x, y)$$

For functions of two variables, the domain can be thought of as a subset of the real plane \mathbb{R}^2 , while the range is \mathbb{R} .

To plot a function of two inputs we need a three dimensional plot to plot the inputs x and y and the output z.

$$\left\{ (x, y, z) \in \mathbb{R}^3 : (x, y) \in D \text{ and } z = f(x, y) \right\}$$

For a continuous function, this graph will be a surface lying directly above or below the area mapped by the domain. The right-hand coordinate system used in this subject dictates that the xy plane will be on the flat plane surface with x pointing out of the page and the z axis pointing vertically upward from this plane.

Equation of a Plane

The Cartesian equation for a plane in \mathbb{R}^3 is

$$ax + by + cz = d$$

Where a,b,c,d are real constants. The vector n=(a,b,c) is at a normal to the plane. This equation comes from the fact that if (a,b,c) is perpendicular to the plane then (a,b,c) must be perpendicular to all vectors internal to the plane. So if we take (x_0,y_0,z_0) as the point at which the normal vector intersects the plane, all internal vectors to the plane must satisfy

$$(a, b, c) \cdot (x - x_0, y - y_0, x - z_0) = 0$$

$$\Rightarrow a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$\Rightarrow ax + by + cz = ax_0 + by_0 + cz_0 = d$$

So this essentially uses the properties of the normal vector to define the rest of the plane.

To sketch a line in two dimensions, we would find two points (probably the x and y intercepts) and draw a line between them. Likewise to sketch a plane, we find three points, often the intercepts and plot them. For example for f(x,y)=2-4x-3y we can find x-intercept of $\frac{1}{2},0,0$, y-intercept $0,\frac{2}{3},0$ and z-intercept 0,0,2 yielding something like

Level Curves

A curve on a surface defined by z=f(x,y) where z is constant is a contour; this can be thought of like a contour line on a map, a region of constant altitude. A level curve is a region of the xy plane which represents a projection of a contour of a function.

To sketch a function of two variables we first draw the three axes. We could then draw cross sections and level curves. We can then label intercepts and other key points.

For example, for the function $z=\sqrt{1-x^2-y^2}$ we can find its level curves by taking z=c.

 $\Rightarrow c = \sqrt{1 - x^2 - y^2}$

Because the right hand side is a square root, we know $c \ge 0$.

$$c^{2} = 1 - x^{2} - y^{2} \Rightarrow x^{2} + y^{2} = 1 - c^{2}$$
$$1 - c^{2} \ge 0 \Rightarrow c^{2} \le 1 \Rightarrow |c| \le 1$$
$$\Rightarrow 0 < c < 1$$

Here we can see that the level curves of this function are a variety of circles of radii between 0 and 1 with centre (0,0).

We can also tell that the two cross sections (x-z) and z-y will be hemispheres. Knowing thanks to our level curves that as z gets larger the radius will grow smaller, and that z is never negative we can tell that this is a hemisphere of radius 1.

In similar functions one might find that the cross-sections look like parabolas, indicating something like parabolic bowl or absolute value functions, indicating a cone. If x or y has a coefficient, the level curves will be elliptical rather than circular.

Limits of Two Variable Functions

If $f: \mathbb{R}^2 \to \mathbb{R}$ we say that f has a limit L as x, y approaches x_0, y_0 .

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

If when (x,y) approaches (x_0,y_0) along any path in the domain f(x,y) grows arbitrarily close to L. This is in contrast to a single variable limit, where it can only approach from left or right rather than from any direction. All of the usual conditions and laws around limits apply.

Thus a two variable function is continuous at $(x, y) = (x_0, y_0)$ if

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

Example

$$\lim_{(x,y)\to(2,1)}\log(1+2x^2+3y^2)$$

log is continuous, so we can bring the limit inside.

$$\log \left(\lim_{(x,y)\to(2,1)} 1 + 2x^2 + 3y^2 \right)$$

$$= \log(12)$$

First Order Partial Derivatives

For a function $f:\mathbb{R}^2 \to \mathbb{R}$ the first order partial derivatives are defined as the limits

$$f_x = \frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$
$$f_y = \frac{\partial f}{\partial y} = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

Here f_x measures the rate of change of f with respect to x when y is held constant, while f_y does the inverse.

Example

$$f(x,y) = 3x^3y^2 + 3xy^4$$
$$\frac{\partial f}{\partial x} = 9x^2y^2 + 3y^4$$
$$\frac{\partial f}{\partial y} = 6x^3y + 12xy^3$$

Tangent Planes and Differentiability

A single variable function exists if the fundamental limit exists for that function at the point of differentiation. This is essentially equivalent to requiring that a tangent line must exist on the function at the point of differentiation. This tangent line has the function y = f(a) + f'(a)(x - a) for a function differentiated at x = a.

To extend this to two variable functions we can introduce the notion of a tangent plane. This essentially asks that each of the partial derivatives at the point exists and is continuous near the point of differentiation.

$$z - z_0 = \frac{\partial f}{\partial x}\Big|_{(x_0, y_0)} (x - x_0)$$

Is the equation for a line with gradient $f_x(x_0, y_0)$. The y variant is similar and combining them we find

$$z - z_0 = \frac{\partial f}{\partial x}\Big|_{(x_0, y_0)} (x - x_0) + \frac{\partial f}{\partial y}\Big|_{(x_0, y_0)} (y - y_0)$$

Where the vertical bar notation indicates that these derivatives are calculated at (x_0, y_0) . This is a specification of the general form of a plane passing through the point (x_0, y_0, z_0)

$$z - z_0 = \alpha(x - x_0) + \beta(y - y_0)$$

Example

Find the equation of the tangent plane to the surface $z=f(x,y)=2x^2+y^2$ at the point (1,1,3).

$$(x_0, y_0, z_0) = (1, 1, 3)$$

$$\frac{\partial f}{\partial x} = 4x, \quad \frac{\partial f}{\partial y} = 2y \Rightarrow \frac{\partial f}{\partial x}\Big|_{(x_0, y_0)} = 4, \quad \frac{\partial f}{\partial y}\Big|_{(x_0, y_0)} = 2$$
$$z - 3 = 4(x - 1) + 2(y - 1) \Rightarrow z = 4x + 2y - 3$$

The tangent plane is simply found by calculating the two partial derivatives, calculating their values at the point and finding the resultant plane.

Linear Approximations

With single variable functions we can approximate the behaviour of a function over a small area using the tangent line to the function at that point.

$$f(a + \Delta x) \approx f(a) + f'(a)(\Delta x)$$

For two variable functions, we can use the tangent plane function as our linear approximation. If we take $\Delta x = x - x_0$ and likewise for the other variables we can find

$$\Delta f \approx \frac{\partial f}{\partial x}\Big|_{(x_0, y_0)} \Delta x + \frac{\partial f}{\partial y}\Big|_{(x_0, y_0)} \Delta y$$

Example

 $z=f(x,y)=x^2+3xy-y^2.$ If x changes from 2 to 2.05 and y from 3 to 2.96, estimate the change in z.

$$z_0 = f(2,3) \Rightarrow (x_0, y_0, z_0) = (2,3,9)$$

$$\frac{\partial f}{\partial x} = 2x + 3y, \quad \frac{\partial f}{\partial y} = 3x - 2y \Rightarrow \frac{\partial f}{\partial x}\Big|_{(x_0, y_0)} = 13, \quad \frac{\partial f}{\partial y}\Big|_{(x_0, y_0)} = 0$$

$$\Delta f \approx 13 \times 0.05 + 0 \times -0.04 = 0.65$$

Second Order Partial Derivatives

For a given function $f:\mathbb{R}^2 \to \mathbb{R}$ there are four possible second partial derivatives.

$$f_{xx} = (f_x)_x = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}$$

$$f_{yy} = (f_y)_x = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2}$$

$$f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x}$$

$$f_{yx} = (f_y)_x = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}$$

While f_{xy} and f_{yx} are not necessarily equal, we have a theorem which states that $f_{xy} = f_{yx}$ when both exist and are continuous.

Example

$$\frac{\partial^2}{\partial x^2} \left[x \sin(x+2y) \right]$$
$$f_x = \sin(x+2y) + x \cos(x+2y)$$
$$f_{xx} = \cos(x+2y) + \cos(x+2y) - x \sin(x+2y)$$

Two Variable Chain Rule

For a function z = f(x, y) with x = g(t) and y = h(t) where x and y are differentiable functions, then z = f(g(t), h(t)) is a function of t and we have

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial z}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial z}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t}$$

i.e. because x and y are solely dependent on t and z is a composition of these two, z is solely dependent on y. The rate of change of z is given by the change in x plus the change in y.

Example

$$z = x^2 - y^2, \quad x = \sin(t), \quad y = \cos(t)$$

$$\frac{\mathrm{d}z}{\mathrm{d}t} \left(\frac{\pi}{6}\right) = ?$$

$$\frac{\mathrm{d}z}{\mathrm{d}t} = \frac{\partial z}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial z}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t}$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \cos(t), \quad \frac{\mathrm{d}y}{\mathrm{d}t} = -\sin(t)$$

$$\frac{\partial z}{\partial x} = 2x, \quad \frac{\partial z}{\partial y} = -2y$$

$$\frac{\mathrm{d}z}{\mathrm{d}t} = 2x\cos(t) + 2y\sin(t) = 2\sin(t)\cos(t) + 2\cos(t)\sin(t) = 4\sin(t)\cos(t)$$

$$\frac{\mathrm{d}z}{\mathrm{d}t} \left(\frac{\pi}{6}\right) = 4\sin\left(\frac{\pi}{6}\right)\cos\left(\frac{\pi}{6}\right) = 4 \times \frac{1}{2} \times \frac{\sqrt{3}}{2} = \sqrt{3}$$

In the case that z=f(x,y) and x=g(s,t),y=h(s,t) then z is a function of both s and t, with partial derivatives given by

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s}, \quad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t}$$

So the change is z with respect to s is given by the sum of changes in x and y with respect to s multiplied by the change in z with respect to these functions.

Directional Derivatives

Thus far we have looked at partial derivatives in the x and y directions, but as we are now in three-dimensional space, we can consider a derivative in any direction. To do this we take a unit vector \hat{u} and then derfine the directional derivative of f to be

$$D_{\hat{u}}f\Big|_{P_0}$$

Where D signifies that this is a directional derivative of f at the point P. With this definition of $P_0=(x_0,y_0)$ and $\hat{u}=(u_1,u_2)$ we can define parametric equations for x and y at a "time" t

$$x = x_0 + tu_1, \quad y = y_0 + tu_2$$

We can then find $D_{\hat{u}}f\Big|_{P_0}$ as the rate of change of f travelling along the line at time t=0.

$$\frac{\mathrm{d}}{\mathrm{d}t} f(x_0 + tu_1, y_0 + tu_2)(0)$$

$$= f_x(x_0, y_0) x'(0) + f_y(x_0, y_0) y'(0)$$

$$= f_x(x_0, y_0) u_1 + f_y(x_0, y_0) u_2$$

Rearranging this into a dot product it can be expressed as

$$D_{\hat{u}}f\Big|_{P_0} = \left(\frac{\partial f}{\partial x}\Big|_{P_0}, \frac{\partial f}{\partial y}\Big|_{P_0}\right) \cdot (u_1, u_2)$$

The partial derivative in this expression has a special name; the gradient vector of f, sometimes known as $\operatorname{grad} f$. The notation for this is ∇f .

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

Using this notation we can express the directional derivative at P_0 as

$$D_{\hat{u}}f\Big|_{P_0} = \nabla f\Big|_{P_0} \cdot \hat{u}$$

Example

Find the directional derivative of $f(x,y)=xe^y$ at (2,0) pointing towards $\left(\frac{1}{2},2\right)$.

To start, we need to find our direction vector \hat{u} .

$$\left(\frac{1}{2}, 2\right) - (2, 0) = \left(-\frac{3}{2}, 2\right) = u$$

$$||u|| = \sqrt{\left(-\frac{3}{2}\right)^2 + 2^2} = \sqrt{\frac{25}{4}} = \frac{5}{2}$$

$$\hat{u} = \left(-\frac{3}{5}, \frac{4}{5}\right)$$

$$\frac{\partial f}{\partial x} = e^y, \quad \frac{\partial f}{\partial y} = xe^y$$

$$\Rightarrow D_{\left(-\frac{3}{5}, \frac{4}{5}\right)} f = -\frac{3}{5}e^y + \frac{4}{5}xe^y$$

$$D_{\left(-\frac{3}{5}, \frac{4}{5}\right)} f\Big|_{(2,0)} = -\frac{3}{5}e^0 + \frac{4}{5}2e^0 = 1$$

Properties of Dierctional Derivatives

A consequence of the definition of these directional derivatives is that

$$D_{\hat{i}}f = \frac{\partial f}{\partial x}, \quad D_{\hat{j}} = \frac{\partial f}{\partial y}$$

i.e. the directional derivative in the x direction is simply the partial derivative with respect to x, with the same true of y. Some formulas related to the directional derivative are

$$D_{\hat{u}}f = \nabla f \cdot \hat{u} = ||\nabla f|| ||\hat{u}|| \cos(\theta) = ||\nabla f|| \cos(\theta)$$

i.e. the directional derivative in direction \hat{u} of f is given by the length of ∇f (the vector gradient of f) multiplied by the cosine of the angle between ∇f and \hat{u} .

This tells us that the directional derivative is at a maximum when $\cos(\theta)=1$, which occurs when $\theta=0$ or when the direction is parallel to the gradient vector. f decreases most rapidly when the two are anti-parallel. When the two are perpendicular the directional derivative is 0 and this defines a level curve of the surface.

Thus moving perpendicular to a level curve implies increasing or decreasing the function most rapidly.

Stationary Points

For a function of two variables, a stationary point is one for which

$$\nabla f = 0$$

i.e. both partial derivatives are 0. This occurs at points where the tangent plane is flat. Just like in single input functions, we have local minima and local maxima. However by adding another variable which introduce saddle points, where the function increases with respect to one variable and decreases with respect to the other as you move away from the stationary point.

A critical point is a point that is either a stationary point or a point where one of the partial derivatives does not exist, such as the point of a cone.

Second Derivative Test

For single variable functions, a positive second derivative implies upward concavity or convex, a negative second derivative implies downward concavity, and a 0 second derivative tells us little. For two variable functions there are four possible second derivatives, so we use the Hessian function instead.

$$H(x,y) = f_{xx}f_{yy} - (f_{xy})^2$$

We use this function for a point where $\nabla f(x_0, y_0) = 0$. Depending on the value of $H(x_0, y_0)$ we can make some statements about the behaviour of the function

- If $H(x_0, y_0) > 0$ and $f_{xx}(x_0, y_0) > 0$, the point is a local maximum, because for the function to be positive the first term must be positive and if both f_{xx} and H are positive then f_{yy} must be positive.
- If $H(x_0, y_0) > 0$ and $f_{xx}(x_0, y_0) < 0$, the point is a local minimum, because for the function to be positive both f_{xx} and f_{yy} must be negative.
- If $H(x_0, y_0) < 0$ the point is a saddle point, as one of f_{xx} or f_{yy} are mathematically guaranteed to be positive while the other is negative.
- If $H(x_0, y_0) = 0$ the test is inconclusive.

Partial Integration

Just as we can take a derivative of a two-variable function with respect to one input, we can take an integral of aa function of two variables with respect to one input.

$$\int f(x,y) dx$$
 and $\int f(x,y) dy$

The partial integral should undo the partial derivative.

Example

$$\int (3x^2y + 12y^2x^3) dx$$
$$= x^3y + 3y^2x^4 + c(y)$$

We are able to simply use the power rule while treating y as a constant to solve this. The key difference here is that the constant of integration c is a function of y. This is because all y terms from f will have been lost through integration $\mathrm{d}x$.

Example

$$\int_0^1 (3x^2y + 12y^2x^3) \, dy$$

$$= \left[\frac{3x^2y^2}{2} + 4y^3x^3 \right]_{y=0}^{y=1} = \left(\frac{3x^2 \times 1^2}{2} + 4 \times 1^3 \times x^3 \right) - (0) = \frac{3x^2}{2} + 4x^3$$

Because we are treating x as a constant, we end up with a function of x as our definite integral.

Double Integrals

For a single variable function, the first definite integral describes the signed area inside the bounds of integration. Moving up to two variable functions, the

double integral can describe the volume in an area.

$$\iint_D f(x,y) \, dA = \iint_D f(x,y) \, dx \, dy$$

This will calculate the volume under the surface described by f that lies above the domain D in the xy plane. It will return signed volume, so if the surface dips below 0 that volume will be negative.

As a counterpart to the sums of arbritrarily thin rectangles in 2 dimensions, we can consider the sums of arbritrarily thin rods in 3 dimensions.

$$\lim_{\Delta x \to 0} \lim_{\Delta y \to 0} \sum_{i=1}^{n} \left[f(x, y) \Delta x \Delta y \right]_{i}$$

In calculus 2, we only integrate over rectangular regions. We describe these regions as $[a,b] \times [c,d]$ which describes the set of points

$$R = \{(x, y) | x \in [a, b], y \in [c, d] \}$$

We use Fubini's theorem to calculate these integrals. For a function $f: \mathbb{R}^2 \to \mathbb{R}$ which is continuous on the rectangular domain $R = [a, b] \times [c, d]$. Then we have

$$\iint_R f(x,y) \, \mathrm{d}A = \int_c^d \int_a^b f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_a^b \int_c^d f(x,y) \, \mathrm{d}y \, \mathrm{d}x$$

So the expression can be equivalently integrated in either order.

Example

$$\iint_{\mathbb{R}} (x^2 + y^2) \, dx \, dy, \quad R = [-1, 1] \times [0, 1]$$

Because $x^2 + y^2$, as a polynomial, is continuous, we can use Fubini's theorem.

$$\int_0^1 \int_{-1}^1 (x^2 + y^2) \, dx \, dy = \int_0^1 \left[\frac{x^3}{3} + y^2 x \right]_{x=-1}^{x=1} \, dy$$

$$= \int_0^1 \left(\frac{1}{3} + y^2 \right) - \left(-\frac{1}{3} - y^2 \right) \, dy = \int_0^1 \left(\frac{2}{3} + 2y^2 \right) \, dy$$

$$= \left[\frac{2}{3} y + \frac{2y^3}{3} \right]_0^1 = \frac{4}{3}$$