MEECTRONICS CONTRACTOR CONTRACTOR

ML7800 SERIES

3-TERMINAL POSITIVE VOLTAGE REGULATOR

The ML7800 series are 3-Terminal Positive Voltage Regulators. These regulators employ internal current-limiting, thermal-shutdown and safe-area compensation, making them essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current (Please refer to the "thermal design" portion of application note). They are intended as fixed voltage regulations in a wide range of applications including local (on-card) regulation for elimination of distributution problems associated with single point regulation. In addition to use as fixed voltage regulators, these devices can be used with external components to obtain adjustable output voltages and currents.

■ Package Outline

TO-220

OUT
 GND

3. IN

TO-220F

ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	Maximum Rating					
		ML7805 to ML7809	35				
Input Voltage	$V_{\rm IN}$	ML7812 to ML7820	35	V			
		ML7824	40				
Storage Temperature Range	Tstg	Tstg -40 to +125					
Operating Temperature	Operating Junction Temperature Tj -3			-30 to +150	$^{\circ}\mathbb{C}$		
Range	Operating Ambient Temperature Topr -30 to +75						
Power Dissipation	P _D $15(Tc \le 70^{\circ}C)$						

THERMAL RESISTANCE

Thormal Pagistance	Junction-to-Ambient Temperature	⊖ ја	60	°C/W
Thermal Resistance	Junction-to-Case	⊖ јс	5	C/ W

ELECTRICAL CHARACTERISTICS

 $(Tj=25^{\circ}C,C1=0.33 \mu F,Co=0.1 \mu F)$

Measurement is to be conducted in pulse testing.

PARAMETER	SYMBOL	TEST CONDITIONS					TYP.	MAX.	UNIT
ML7805A / ML7805FA									
Output Voltage	Vo	VIN=10V	Io=0.5A			4.8	5.0	5.2	V
Quiescent Current	IQ	Vin=10V	Io=0mA			-	4.2	8.0	mA
Load Regulation	Δ Vo Io	Vin=10V	Io=0.005A to	1.5A		-	15	100	mV
Line Regulation	Δ Vo Vin	V _{IN} =7 to 25V	Io=0.5A			-	3	100	mV
Ripple Rejection	RR	Vin=10V	Io=0.5A	ein=2Vp-p	f=120Hz	62	78	-	dB
Output Noise Voltage	V_{NO}	Vin=10V	BW=10Hz to	100KHz	Io=0.5A	-	40	-	μV
Average Temperature Cofficient of Output Voltage	Δ Vo / Δ T	V _{IN} =10V	Io=0.5A			-	-1.1	-	mV/°C

MICRO ELECTRONICS LTD.

美科有限公司

7/F, Enterprise Square Three, 39 Wang Chiu Road, Kowloon Bay, Kowloon, Hong Kong. TEL: (852) 23430181 FAX: (852) 23410321

HOMEPAGE: http://www.microelectr.com.hk

ELECTRICAL CHARACTERISTICS

(Tj=25°C ,C1=0.33 μ F,Co=0.1 μ F)

Measurement is to be conducted in pulse testing.

	in pulse testing.								
PARAMETER	SYMBOL	TEST CONDITIONS					TYP.	MAX.	UNIT
ML7806A / ML7806FA									
Output Voltage	Vo	Vin=11V	Io=0.5A			5.75	6.0	6.25	V
Quiescent Current	IQ	Vin=11V	Io=0mA			-	4.3	8.0	mA
Load Regulation	Δ Vo Io	Vin=11V	Io=0.005A to	1.5A		-	15	120	mV
Line Regulation	Δ Vo Vin	$V_{IN}=8$ to $25V$		Io=0.5A		-	5	120	mV
Ripple Rejection	RR	Vin=11V	Io=0.5A	ein=2Vp-p	f=120Hz	59	75	-	dB
Output Noise Voltage	V_{NO}	Vin=11V	BW=10Hz to	100KHz	Io=0.5A	-	45	-	μV
Average Temperature Cofficient of Output Voltage	Δ Vo / Δ T	V _{IN} =11V	Io=5mA			-	-0.8	-	mV/°C
ML7808A / ML7808FA									
Output Voltage	Vo	V _{IN} =14V	Io=0.5A			7.7	8.0	8.3	V
Quiescent Current	I_Q	V _{IN} =14V	Io=0mA			-	4.3	8.0	mA
Load Regulation	Δ Vo Io	V _{IN} =14V	Io=0.005A to	1.5A		-	15	160	mV
Line Regulation	Δ Vo Vin	V _{IN} =10.5 to 25	SV.	Io=0.5A		-	6	160	mV
Ripple Rejection	RR	V _{IN} =14V	Io=0.5A	ein=2Vp-p	f=120Hz	55	72	-	dB
Output Noise Voltage	$V_{ m NO}$	V _{IN} =14V	BW=10Hz to	100KHz	Io=0.5A	-	52	-	μV
Average Temperature Cofficient of Output Voltage	Δ Vo / Δ T	V _{IN} =14V	Io=5mA			-	-0.8	-	mV/°C
ML7809A / ML7809FA									
Output Voltage	Vo	V _{IN} =15V	Io=0.5A			8.65	9.0	9.35	V
Quiescent Current	I_Q	Vin=15V	Io=0mA			-	4.3	8.0	mA
Load Regulation	Δ Vo Io	Vin=15V	Io=0.005A to	1.5A		-	15	180	mV
Line Regulation	Δ Vo Vin	V _{IN} =11.5 to 25	ïV	Io=0.5A		-	7	180	mV
Ripple Rejection	RR	Vin=15V	Io=0.5A	ein=2Vp-p	f=120Hz	55	70	-	dB
Output Noise Voltage	$V_{\rm NO}$	Vin=15V	BW=10Hz to	100KHz	Io=0.5A	-	60	-	μV
Average Temperature Cofficient of Output Voltage	Δ Vo / Δ T	V _{IN} =15V	Io=5mA			1	-1	-	mV/°C
ML7812A / ML7812FA									
Output Voltage	Vo	V _{IN} =19V	Io=0.5A			11.5	12.0	12.5	V
Quiescent Current	IQ	V _{IN} =19V	Io=0mA			-	4.3	8.0	mA
Load Regulation	Δ Vo Io	V _{IN} =19V	Io=0.005A to	1.5A		-	25	240	mV
Line Regulation	Δ Vo Vin	V _{IN} =14.5 to 30	V	Io=0.5A		-	10	240	mV
Ripple Rejection	RR	Vin=19V	Io=0.5A	ein=2Vp-p	f=120Hz	55	71	-	dB
Output Noise Voltage	V_{NO}	V _{IN} =19V	BW=10Hz to	100KHz	Io=0.5A	-	75	-	μV
Average Temperature Cofficient of Output Voltage	Δ Vo / Δ T	V _{IN} =19V	Io=5mA			-	-1	-	mV/°C

ELECTRICAL CHARACTERISTICS

(Tj=25°C,C1=0.33 μ F,Co=0.1 μ F)

Measurement is to be conducted in pulse testing.

PARAMETER	SYMBOL	TEST CONDITIONS				MIN.	TYP.	MAX.	UNIT
ML7815A / ML7815FA									
Output Voltage	Vo	Vin=23V	Io=0.5A			14.4	15.0	15.6	V
Quiescent Current	IQ	V _{IN} =23V	Io=0mA			-	4.3	8.0	mA
Load Regulation	∆ Vo Io	V _{IN} =23V	Io=0.005A to	1.5A		-	35	300	mV
Line Regulation	Δ Vo Vin	V _{IN} =17.5 to 30	V	Io=0.5A		-	12	300	mV
Ripple Rejection	RR	V _{IN} =23V	Io=0.5A	ein=2Vp-p	f=120Hz	54	70	-	dB
Output Noise Voltage	V_{NO}	V _{IN} =23V	BW=10Hz to	100KHz	Io=0.5A	-	90	-	μ V
Average Temperature	Δ Vo / Δ Τ	V _{IN} -23V	Io=5mA			_	-1	_	mV/°C
Cofficient of Output Voltage	Δ (0 / Δ1	V IN-25 V	10–3111/1				-1		mv/ C
ML7818A / ML7818FA									
Output Voltage	Vo	$V_{IN}=27V$	Io=0.5A			17.3	18.0	18.7	V
Quiescent Current	IQ	Vin=27V	Io=0mA			-	4.5	8.0	mA
Load Regulation	Δ Vo Io	Vin=27V	Io=0.005A to	1.5A		-	55	360	mV
Line Regulation	Δ Vo Vin	V _{IN} =21 to 33V		Io=0.5A		-	15	360	mV
Ripple Rejection	RR	V _{IN} =27V	Io=0.5A	ein=2Vp-p	f=120Hz	53	69	-	dB
Output Noise Voltage	V_{NO}	V _{IN} =27V	BW=10Hz to	100KHz	Io=0.5A	-	110	-	μV
Average Temperature	Δ Vo / Δ T	V _{IN} =27V	Io=5mA			_	-1	_	mV/°C
Cofficient of Output Voltage									
ML7820A / ML7820FA									
Output Voltage	Vo	V _{IN} =29V	Io=0.5A			19.2	20.0	20.8	V
Quiescent Current	I_Q	Vin=29V	Io=0mA			-	4.5	8.0	mA
Load Regulation	Δ Vo Io	Vin=29V	Io=0.005A to	1.5A		-	61	400	mV
Line Regulation	Δ Vo Vin	V _{IN} =23 to 35V		Io=0.5A		-	16	400	mV
Ripple Rejection	RR	Vin=29V	Io=0.5A	ein=2Vp-p	f=120Hz	51	66	-	dB
Output Noise Voltage	V_{NO}	V _{IN} =29V	BW=10Hz to	100KHz	Io=0.5A	-	150	-	$\mu \mathbf{V}$
Average Temperature Cofficient of Output Voltage	Δ Vo / Δ T	V _{IN} =29V	Io=5mA			-	-2.0	-	mV/°C
ML7824A / ML7824FA									
Output Voltage	Vo	Vin=33V	Io=0.5A			23.0	24.0	25.0	V
Quiescent Current	IQ	Vin=33V	Io=0mA			-	4.6	8.0	mA
Load Regulation	Δ Vo Io	Vin=33V	Io=0.005A to	1.5A		-	65	480	mV
Line Regulation	Δ Vo Vin	VIN=28 to 38V		Io=0.5A		-	18	480	mV
Ripple Rejection	RR	Vin=33V	Io=0.5A	ein=2Vp-p	f=120Hz	50	66	-	dB
Output Noise Voltage	Vno	Vin=33V	BW=10Hz to		Io=0.5A	-	170	-	μ V
Average Temperature Cofficient of Output Voltage	Δ Vo / Δ T	V _{IN} =33V	Io=5mA			-	-2.4	-	mV/°C

■ Power Dissipation vs. Ambient Temperature

■ Equivalent Circuit

■ Test Circuit

- Output Voltage, Line Regulation, Load Regulation, Quiescent Current, Average Temperature Coefficient of Output Voltage, Output Noise Voltage.
- 2. Ripple Rejection

■ Typical Characteristics

■ Typical Characteristics

ML7800 Series Short Circuit Output Current

ML7805 /24 Quiescent Current vs. Input Voltage

ML7805 /15 /24 Output Voltage

ML7805 /15 /24 Ripple Rejection vs. Frequency

■ Typical Characteristics

ML7805 Output Voltage vs. Temperature

1. Application Circuit

In the following explain only the positive regulator unless otherwise specified. However they can apply to the negative voltage regulator by easy change.

Positive/Negative Voltage Supply

Note: In the above positive and negative power supply application, D1 and D2 should be connected. If D1 and D2 are not connected, either of positive or negative power supply circuit may not turns on.

2. Note in Application Circuit

(1) If the higher voltage (above the rated value) or lower voltage (GND-0.5V) is supplied to the input terminals, the IC may be destroyed. To avoid such a case, a zener diode or other parts of the surge supressor should be connected as shown below.

(2) If the higher voltage than the input terminal is supplied to the output terminal, the IC may be destroyed. To avoid input terminal short to the GND or the stored voltage in the capacitor back to the output terminal, by the large value capacitor connecting to the output terminal application, the SBD should be required as shown below;

^{*} In case of negative voltage regulator, reverse the SBD and capacitor direction.

3. Thermal Design

(1) Heat Producting

There are two kinds of heat producting (PLOSS-1, PLOSS-2) in three terminal regulator and the sum of them is total heat producting of IC (PLOSS).

(1-1) PLOSS-1: heat producting by own operation

Input voltage (Vin) and quiescent current (IQ) produce the heat mentioned below equation.

 $P_{LOSS-1} = Vin X I_Q$

(W)

(1-2) PLOSS-2: heat producing by output current and the input-output differential voltage.

Internal power transistor produces the hest mentioned following equation.

$$P_{LOSS-2} = (Vin-Vout) x Iout$$

Therefore, the total heat producing PLOSS is:

$$\begin{split} P_{LOSS} &= P_{LOSS\text{--}1} + P_{LOSS\text{--}2} \\ &= Vin \; X \; I_Q + (Vin\text{--}Vout) \; X \; Iout \end{split} \tag{W} \label{eq:ploss}$$

(2) Thermal Resistance

(2-1) Definition of Thermal Resistance : θ

Thermal resistance (θ) is a degree of heat radiation mentioned following equation.

$$= (T1 - T2)/P (^{\circ}C / W) \qquad \text{Heat Producing Quantity} \qquad \qquad : P (W)$$

$$\text{Ambient Temperature or case temperature} \qquad \qquad : T2 (^{\circ}C)$$

$$\text{Heat Source Temperature} \qquad \qquad : T1 (^{\circ}C)$$

(2-2) Thermal resistance of TO-220

There are two kinds of thermal resistance of TO-220. One is " θ jc" for the application with the heat sink, the other is " θ ja" for the application without the heat sink.

 θ jc: thermal resistance between IC chip (junction point) and the package back side contacting with the heat sink.

heta ja : thermal resistance between IC chip (junction point) and ambience.

(3) Heat Radiation Balance

The heat produced in the IC is radiated to ambience through the package and the heat sink.

The quantity of the heat radiation depends on the heat source temperature, ambient temperature and the thermal resistance of the package.

(3-1) TO-220 with heat sink

Heat radiation balance model of the TO-220 with heat sink is shown as below.

Where θ jc: thermal resistance between IC chip (junction point) and the

package backside connecting to the heatsink.

 θ js: thermal resistance between IC chip (junction point) and the

package surface.

 θ CH: thermal resistance between package backside and the heat sink

including the condidtion of insulator, silicon grease and

tighten torque.

 θ HS: thermal resistance of the heat sink

If the js is large enough compare with other thermal resistance, the js can be neglected and the heat radiation model can be mentioned as below.

The relation between temperature and heat radiation quantity is shown below.

Tj=Ploss X (
$$\theta$$
 jc+ θ ch + θ hs) + Ta

(°C)

(4) Thermal Design

The heat radiation balance model of the TO-220 with the heat sink is shown as follows.

Heat radiation balance

$$T_{j} = P_{LOSS} X (\theta_{jc} + \theta_{CH} + \theta_{HS}) + T_{a}$$
(°C) (4-1)

$$P_{LOSS} = Vin X I_Q + (Vin-Vout) X Iout$$
 (W) (4-2)

Substituting "Eq.(4-2) into "Eq.(4-1)" obtains

$$Tj = [Vin X I_Q + (Vin-Vout) X Iout] X (\theta j_C + \theta c_H + \theta H_S) + Ta$$
(°C) (4-3)

In Eq.(4-3)

Vin, Iout, θ ch, θ hs, Ta depand on using condition.

Tj, Iq, Vout, θ jc depend on IC depend on IC specification.

When θ ch, IQ and Tj are assumed the following values,

Eq.(4-3) becomes Eq.(4-4).

 θ CH=0.3 to 0.4 (°C/W) Insert the mica paper (0.1t) and thermal conduction silicon grease between the IC and heat sink and tighten them with the bolt by 4Kg*cm-min.

 $I_Q = 5$ to 6mA (max.)

 $Tj = 125^{\circ}C$ (max.)

$$T_{ij}(max) = 125 = [5 \text{ X Vin} + (Vin-Vout) \text{ X Iout}] \text{ X } (5+0.3+\theta_{HS}) + Ta$$
 (°C) (4-4)

When fix the Vout, Tj depends on the Vin, Iout, θ Hs and Ta.

It means;

Lower Vin and / or Iout are required to linit the temperature rise.

Smaller θ Hs is required for the effective heat reduce (i.e. using the large heat sink).

In the thermal design, when fix the Vin, Iout and Ta, selectthe heat sink which θ Hs is smaller that the result of Eq.(4-4).

For more detail, please refer the heat resistance value mentioned in the specification of the heat sink supplier.