

Álgebra Abstracta y Codificación

Taller Preparcial #2

Estudiante: Javid Alsina

Nota: 5.07

1. [1 pt] Sea D un dominio de integridad y sean $a, b \in D$. Asuma que $a^n = b^n$ y $a^m = b^m$ para dos enteros positivos n y m primos entre sí. Demuestre que a = b.

(ono Des un dominio de integradad sabenos que es comotativo (on identidad y sin divisores de cero.

tenemos an = bn g an = bn para dos enteros positivos primos entre sí.

• GCD(n,n) = 1, m no as multiplesde n y viceversa

Si nym son primos entre si enturess

I x,y: Nx + MY = 1 (Bezó ots identity)

 $a^{n} = b^{n}$ $a^{n} = b^{n}$ $a^{n} - b^{n} = 0$

 $a^{n} - b^{n} = a^{n} - b^{n}$ $a^{n} - a^{n} = b^{n} - b^{n}$

Si NLM:

 $a^{m-n} - 1 = b^{m-n} - 1$ $a^{m-n} - 1 = b^{m-n} - 1$ $a^{m-n} = b^{m-n} - 1$ $(a^{m-n})^{x-y} = (b^{m-n})^{x-y}$

 $(a^{-nx-ny+ny} = b^{-nx-ny+ny}$ $(a^{-nx-ny}) a^{nx+ny} = (b^{-nx-ny}) b^{nx+ny}$

$$(a^{-nx-ny}) a^{nx+ny} = (b^{-nx-ny}) b^{nx+ny}$$

$$(a^{nx+ny})^{-1} a^{nx+ny} = (b^{nx+ny})^{-1} b^{nx+ny}$$

$$(a^{1})^{-1} a^{nx+ny} = (b^{1})^{-1} b^{nx+ny}$$

$$a^{-1} a^{nx+ny} = b^{-1} b^{nx+ny}$$

$$a^{nx} a^{ny} = a^{1} b^{ny} b^{ny}$$

$$a^{ny} a^{ny} = a^{1} b^{1}$$

$$b^{ny} b^{ny}$$

$$b^{nx} = a^{1} b^{1}$$

$$b^{nx} = a^{1} b^{1}$$

$$b^{nx} = a^{1} b^{1}$$

$$b^{nx} = a^{1} b^{1}$$

2. [1 pt] Sea A un PID y sea $a \in A$ con $a \neq 0$. Demuestre que $\langle a \rangle$ es un ideal maximal de A si y solo si a es irreducible.

Dalo APID digues < C> genera A
y adenées A es en doninio de Integridad.
En el crul Cualquier ideal es principal.

(=) Suporga que $\angle 9$ es un maximal de A. [veyo Si J es un ideal t.q. $\langle 9\rangle \subseteq J \subseteq A$ termos que $\angle 92 = J$ of J = A.

Asuru por Absordo entones ge 9 es reducible luego:

$$(9) = \{ \alpha \chi : \chi \in A \}$$

$$(2): (\alpha) \subseteq (b)$$

Sau α ; \in $< \alpha >$ este es de lu forma $\alpha \times :$, $\times : \in A$. Sea b; $\in < b >$ b; es de lu forma $\alpha \neq \times :$, $\times : \in A$.

¿ Cono Sigo? = C

Xb; e 26> f 9; e 29> t.q.

 $b_i = q_i$, $a_i = a \times i$, $\chi_i \in A$. $b = q \times i$, $\chi_i = q \times i$, $\chi_j \in A$.

b = aqx; .

luego (47(2b)

3. [2 pts]

- a) Sea p un número entero primo. Demuestre que o p sigue siendo primo en $\mathbb{Z}[i]$ o p es el producto de dos primos en los enteros de Gauss conjugados: $p = \pi \overline{\pi}$; [Sugerencia: $\pi \mid p \implies \overline{\pi} \mid p$.]
- b) Sea π un primo en los enteros de Gauss. Luego o ππ es un primo en Z o es el cuadrado de un primo en Z.
 [Sugerencia: una factorización en primos en Z es todavía una factorización en Z[i], no necesariamente en irreducibles.]

Observación: este ejercicio implica que los primos en $\mathbb{Z}[i]$ son los primos $p \in \mathbb{Z}$ que no se pueden escribir como suma de cuadrados o los elementos de la forma a+bi tales que a^2+b^2 sea un primo en \mathbb{Z} . Un teorema de teoría de los números dice que $p \in \mathbb{Z}$ es una suma de cuadrados si y solo si p=2 o $p\equiv 1 \pmod{4}$.

Sey p un número extero primo

Jesus Tour entero de gauss primo
(TT, Su nome es mujor que 1 y ro puede
descomponerse en un produto te dus gausianos
enteros, cujas nomes sean menoras que TT

Supory, gre TIP: 3T L.g. P=TT

Como p es entero co debe terar purte imaginaria luego

 $Asi: ad = bc = \frac{bc}{q} (1)$

b) Sea π un primo en los enteros de Gauss. Luego o $\pi\overline{\pi}$ es un primo en $\mathbb Z$ o es el cuadrado de un primo en $\mathbb Z$.

[Sugerencia: una factorización en primos en $\mathbb Z$ es todavía una factorización en $\mathbb Z[i]$, no necesariamente en irreducibles.]

$$TT = a^2 + b^2$$