Recommender Systems: Algorithms, Applications, and Evaluation*

^{*} Slides partly based on Jure Leskovec, Anand Raghuraman, and Jeff Ullman

Recommendation Systems: Example

Amazon recommendation engine

> View or edit your browsing history

Recommendation Systems: Example

LinkedIn recommendation engine

Recommendation Systems: Example

Customer X

- Buys Metallica CD
- Buys Megadeth CD

Customer Y

- Does search on Metallica
- Recommender system suggests Megadeth from data collected about customer X

Recommendation Systems: Overview

Types of Recommendations

- Editorial and hand curated
 - List of favorites
 - Lists of "essential" items

- Simple aggregates
 - ◆ Top 10, Most Popular, Recent Uploads

Amazon, Netflix, ...

Formal Model

- X = set of Customers
- S = set of Items

- Utility function $u: X \times S \rightarrow R$
 - ightharpoonup R = set of ratings
 - **R** is a totally ordered set
 - e.g., **0-5** stars, real number in **[0,1]**

Utility Matrix: Example

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Recommendations: Key Challenges

- Gathering "known" ratings for matrix
 - ◆ How to collect the data in the utility matrix?

- Extrapolate unknown ratings from the known ones
 - ▲ Mainly interested in ``high'' unknown ratings (we are not interested in knowing what you don't like)

- Evaluating prediction methods
 - ◆ How to measure success/performance of recommendation methods

Recommendations: Key Challenge #1

- Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix?

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

Implicit

▲ Learn ratings from user actions (e.g., purchase implies high rating)

Recommendations: Key Challenge #2

- Extrapolate unknown ratings from the known ones
 - Mainly interested in ``high'' unknown ratings

- Key problem: Utility matrix U is sparse
 - Most people have not rated most items
- Cold start
 - New items have no ratings
 - New users have no history

Recommendation Algorithms

Three main approaches for recommendations

Content-based Filtering

Collaborative Filtering

Latent Factor Models

Recommendation Algorithms

Three main approaches for recommendations

Content-based Filtering

Collaborative Filtering

Latent Factor Models

Content based Recommendations: Overview

 Key Idea: Recommend items to customer x similar to previous items rated highly by x

Movie recommendations

- Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Plan of Action

Item Profiles

For each item, create an item profile

- Profile is a set (vector) of features
 - **^ Movies:** author, title, actor, director,...
 - **^ Text:** Set of "important" words in document

- How to pick important features?
 - Usual heuristic from text mining is TF-IDF (Term frequency * Inverse Doc Frequency)

Aside: TF-IDF

 f_{ii} = frequency of term (feature) i in doc (item) j

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{ki}}$$

Note: we normalize TF to discount for "longer" documents

n_i = number of docs that mention term i
 N = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF-IDF score: $w_{ij} = TF_{ij} \times IDF_i$

Doc profile = set of words with highest TF-IDF
scores, together with their scores

User Profiles and Prediction

• User profile possibilities:

- Weighted average of rated item profiles
- ◆ Variation: weight by difference from average rating for item
- **^** ...

Prediction heuristic:

^ Given user profile x and item profile i, estimate

$$u(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i}) = \frac{x \cdot \mathbf{i}}{||\mathbf{x}|| \cdot ||\mathbf{i}||}$$

Content based Recommendations: Pros

- No need for data on other users
 - No cold-start or sparsity problems
- Able to recommend to users with unique tastes
- Able to recommend new & unpopular items
 - No first-rater problem
- Able to provide explanations
 - ◆ Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Content based Recommendations: Cons

Finding the appropriate features is hard

♠ E.g., images, movies, music (deep learning for automatically extract features)

Recommendations for new users

◆ How to build a user profile?

Overspecialization

- Never recommends items outside user's content profile
- People might have multiple interests
- Unable to exploit quality judgments of other users

Recommendation Algorithms

Three main approaches for recommendations

Content-based Filtering

Collaborative Filtering

Latent Factor Models

Collaborative Filtering: Overview

 Key Idea: Harnessing quality judgments of other users

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N

Finding "Similar" Users

$$r_{x} = [*, _, _, *, ***]$$
 $r_{y} = [*, _, **, **, _]$

- Let r_x be the vector of user x's ratings
- Jaccard similarity measure
 - ◆ Problem: Ignores the value of the rating
- Cosine similarity measure

$$ightharpoonup sim(\mathbf{x}, \mathbf{y}) = cos(\mathbf{r}_{\mathbf{x}}, \mathbf{r}_{\mathbf{y}}) = \frac{r_{x} \cdot r_{y}}{||r_{x}|| \cdot ||r_{y}||}$$

- ◆ Problem: Treats missing ratings as "negative"
- Pearson correlation coefficient

Finding "Similar" Users

• Let r_x be the vector of user x's ratings

$$r_x = [*, _, _, *, ***]$$

$$r_{v} = [*, _, **, **, _]$$

Jaccard similarity measure

 r_x , r_y as sets:

$$r_x = \{1, 4, 5\}$$

$$r_y = \{1, 3, 4\}$$

- ◆ Problem: Ignores the value of the rating
- Cosine similarity measure

 r_x , r_y as points:

$$r_x = \{1, 0, 0, 1, 3\}$$

$$r_y = \{1, 0, 2, 2, 0\}$$

Problem: Treats missing ratings as "negative"

Finding "Similar" Users

• Let r_x be the vector of user x's ratings

$$r_x = [*, _, _, *, ***]$$
 $r_y = [*, _, **, **, _]$

- Pearson correlation coefficient

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}}$$

r_x, r_y ... avg. rating of **x**, **y**

Similarity Metric: Examples

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Intuitively we want: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4
- Cosine similarity: 0.386 > 0.322
 - Considers missing ratings as "negative"
 - Solution: subtract the (row) mean

| HP1 | HP2 | HP3 | TW | SW1 | SW2 | SW3 | 0.092 > -0.559 | A |
$$\frac{2}{3}$$
 | $\frac{5}{3}$ | $\frac{-7}{3}$ | $\frac{5}{3}$ | $\frac{-7}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{-2}{3}$ | $\frac{1}{3}$ | $\frac{-2}{3}$ | $\frac{-7}{3}$ | $\frac{1}{3}$ | $\frac{-2}{3}$ | $\frac{1}{3}$ | $\frac{-2}{3}$ | $\frac{-2}{3}$ | $\frac{1}{3}$ | $\frac{-2}{3}$ | $\frac{2}{3}$ | $\frac{-2}{3}$ | $\frac{-2}{3}$ | $\frac{-2}{3}$ | $\frac{-2}{3}$ | $\frac{2}{3}$ | $\frac{-2}{3}$ | $\frac{-2}{3}$ | $\frac{-2}{3}$ | $\frac{-2}{3}$ | $\frac{2}{3}$ | $\frac{-2}{3}$ | $\frac{-2}{3}$ | $\frac{-2}{3}$ | $\frac{-2}{3}$ | $\frac{2$

 $\begin{bmatrix} -5/3 & 1/3 & 4/3 \\ 0 & & \end{bmatrix}$

26

sim(A, B) > sim(A, C)

From Similarity Measure to Predictions: User-User Collaborative Filtering

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item i of user x:

$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$

Other options?

Item-Item Collaborative Filtering

- For item i, find other similar items
- Estimate rating for item i based on ratings for similar items
- Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

```
s_{ij}... similarity of items i and j
r_{xj}...rating of user u on item j
N(i;x)... set of items rated by x similar to i
```

Item-Item Collaborative Filtering (|N|=2)

users

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3			5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

- unknown rating - rating between 1 to 5

Item-Item Collaborative Filtering (|N|=2)

users

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		?	5			5		4	
2			5	4			4			2	1	3
3	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
6	1		3		3			2			4	

- estimate rating of movie 1 by user 5

novies

Item-Item Collaborative Filtering (|N|=2)

users

	1	2	3	4	5	6	7	8	9	10	11	12	Sim(1,m)
1	1		3		?	5			5		4		1.00
2			5	4			4			2	1	3	-0.18
3	2	4		1	2		3		4	3	5		<u>0.41</u>
4		2	4		5			4			2		-0.10
5			4	3	4	2					2	5	-0.31
6	1		3		3			2			4		<u>0.59</u>

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

Here we use Pearson correlation as similarity:

- 1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]
- 2) Compute cosine similarities between rows

movies

Item-Item Collaborative Filtering (|N|=2)

users

	1	2	3	4	5	6	7	8	9	10	11	12	Sim(1,m)
1	1		3		?	5			5		4		1.00
2			5	4			4			2	1	3	-0.18
3	2	4		1	2		3		4	3	5		<u>0.41</u>
4		2	4		5			4			2		-0.10
5			4	3	4	2					2	5	-0.31
<u>6</u>	1		3		3			2			4		<u>0.59</u>

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

Item-Item Collaborative Filtering (|N|=2)

users

	1	2	3	4	5	6	7	8	9	10	11	12	Sim(1,m)
1	1		3		?	5			5		4		1.00
2			5	4			4			2	1	3	-0.18
3	2	4		1	2		3		4	3	5		<u>0.41</u>
4		2	4		5			4			2		-0.10
5			4	3	4	2					2	5	-0.31
<u>6</u>	1		3		3			2			4		<u>0.59</u>

Compute similarity weights:

$$s_{1,3}$$
=0.41, $s_{1,6}$ =0.59

Item-Item Collaborative Filtering (|N|=2)

users

	1	2	3	4	5	6	7	8	9	10	11	12	Sim(1,m)
1	1		3		2.6	5			5		4		1.00
2			5	4			4			2	1	3	-0.18
3	2	4		1	2		3		4	3	5		<u>0.41</u>
4		2	4		5			4			2		-0.10
5			4	3	4	2					2	5	-0.31
<u>6</u>	1		3		3			2			4		<u>0.59</u>

Predict by taking weighted average:

$$\mathbf{r}_{15} = (0.41^{*}2 + 0.59^{*}3) / (0.41 + 0.59) = 2.6$$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

Collaborative Filtering: Common Practice

- Define similarity s_{ij} of items i and j
- Select k nearest neighbors N(i; x)
 - ▲ Items most similar to i, that were rated by x
- Estimate rating r_{xi} as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$
baseline estimate for r_{xi}

$$b_{xi} = \mu + b_x + b_i$$

$$\mu = \text{overall mean movie rating}$$

$$b_x = \text{rating deviation of user } x$$

$$= (avg. rating of user x) - \mu$$

$$b_i = \text{rating deviation of movie } i$$

Item-Item vs. User-User

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.8	
Bob		0.5		0.3
Carol	0.9		1	0.8
David			1	0.4

- In practice, it has been observed that <u>item-item</u>
 often works better than user-user
- Why? Items are simpler, users have multiple tastes 36

Collaborative Filtering: Pros/Cons

- Works for any kind of item (+)
 - No feature selection needed

- Cold Start (-)
 - Need enough users in the system to find a match
- Sparsity (-)
 - The user/ratings matrix is sparse
 - Hard to find users that have rated the same items

Collaborative Filtering: Pros/Cons

First rater (-)

- Cannot recommend an item that has not been previously rated
- New items, Esoteric items

Popularity bias (-)

- Cannot recommend items to someone with unique taste
- Tends to recommend popular items

Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model

- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem

Recommendations: Key Challenges

- Gathering "known" ratings for matrix
 - ◆ How to collect the data in the utility matrix?

- Extrapolate unknown ratings from the known ones
 - ◆ Mainly interested in ``high'' unknown ratings (we are not interested in knowing what you don't like)

- Evaluating prediction methods
 - How to measure success/performance of recommendation methods

Evaluation

Evaluation

Evaluating Predictions

- Compare predictions with known ratings
- Root-mean-square error (RMSE)
 - $\Delta \sum_{xi} (r_{xi} r_{xi}^*)^2$ where r_{xi} is predicted, r_{xi}^* is the true rating of x on i
- Precision at top 10
 - ^ % of those in top 10
- Rank Correlation
 - Spearman's correlation between system's and user's complete rankings

Evaluating Predictions: 0/1 Approach

Coverage:

Number of items/users for which system can make predictions

• Precision:

Accuracy of predictions

Receiver operating characteristic (ROC)

Tradeoff curve between false positives and false negatives

Potential Issues with Error Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions

- In practice, we care only to predict high ratings
 - RMSE might penalize a method that does well for high ratings and badly for others