22.6 Summary

The main concepts and results of this chapter are listed below:

- For any linear map $f: E \to E$ on a Euclidean space E, the maps $f^* \circ f$ and $f \circ f^*$ are self-adjoint and positive semidefinite.
- The *singular values* of a linear map.
- Positive semidefinite and positive definite self-adjoint maps.
- Relationships between Im f, Ker f, Im f^* , and Ker f^* .
- The singular value decomposition theorem for square matrices (Theorem 22.5).
- The SVD of matrix.
- The polar decomposition of a matrix.
- The Weyl inequalities.
- The singular value decomposition theorem for $m \times n$ matrices (Theorem 22.7).
- Ky Fan k-norms, Ky Fan p-k-norms, Schatten p-norms.

22.7 Problems

Problem 22.1. (1) Let A be a real $n \times n$ matrix and consider the $(2n) \times (2n)$ real symmetric matrix

$$S = \begin{pmatrix} 0 & A \\ A^{\top} & 0 \end{pmatrix}.$$

Suppose that A has rank r. If $A = V \Sigma U^{\top}$ is an SVD for A, with $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$ and $\sigma_1 \geq \cdots \geq \sigma_r > 0$, denoting the columns of U by u_k and the columns of V by v_k , prove that σ_k is an eigenvalue of S with corresponding eigenvector $\begin{pmatrix} v_k \\ u_k \end{pmatrix}$ for $k = 1, \ldots, n$, and that $-\sigma_k$ is an eigenvalue of S with corresponding eigenvector $\begin{pmatrix} v_k \\ -u_k \end{pmatrix}$ for $k = 1, \ldots, n$.

Hint. We have $Au_k = \sigma_k v_k$ for k = 1, ..., n. Show that $A^{\top} v_k = \sigma_k u_k$ for k = 1, ..., n.

- (2) Prove that the 2n eigenvectors of S in (1) are pairwise orthogonal. Check that if A has rank r, then S has rank 2r.
- (3) Now assume that A is a real $m \times n$ matrix and consider the $(m+n) \times (m+n)$ real symmetric matrix

$$S = \begin{pmatrix} 0 & A \\ A^{\top} & 0 \end{pmatrix}.$$