Naïve bayes for more ind variables

$$\underline{P(Y|X)} = \frac{P(X|Y) * P(Y)}{P(X)}$$

$$P(Y|X_1, X_2, X_n) = \frac{P(X_1|Y) * P(X_2|Y) * P(X_3|Y) P(X_n|Y) * P(Y)}{P(X_1) * P(X_2) * P(X_3) P(X_n)}$$

$$P(N/X) = \frac{P(X|N) * P(N)}{P(X)}$$

$$I|X_1, X_2, X_n) = \frac{P(X_1|N) * P(X_2|N) * P(X_3|N) P(X_n|N) * P(N)}{P(X_1) * P(X_2) * P(X_3) P(X_n)}$$

Example

Person	(Yes/No)	Flu (Yes/No)	Fever (Yes/No)	Step-1: Prior Probability:			
1	Yes	No	Yes	P(fever = yes) = 7/10 P(fever = no) = 3/10			
2	No	Yes	Yes				
3	Yes	Yes	Yes	Step-2: Conditional Probability			
4	No	No	No				
5	Yes	No	Yes		Yes	No	
6	No	No	Yes	6 11	. /=	2/2	
7	Yes	No	Yes	Covid	4/7	2/3	
8	Yes	No	No	Flu	3/7	2/3	
9	No	Yes	Yes		(Sec. 4007)	10000000	
10	No	Yes	No				

P(NO|flu, Covid)= P(flu|NO)*P(covid|No)*P(NO)

Advantages of Naive Bayes Classifier

- The following are some of the benefits of the Naive Bayes classifier:
- It is simple and easy to implement
- It doesn't require as much training data
- It handles both continuous and discrete data
- It is highly scalable with the number of predictors and data points
- It is fast and can be used to make real-time predictions

Lab activity

- We load the Iris dataset from scikit-learn.
- Split the dataset into training and testing sets.
- Initialize a Gaussian Naive Bayes classifier (GaussianNB).
- Train the classifier using the training data.
- Make predictions on the testing data using the trained classifier.
- Evaluate the accuracy of the classifier by comparing the predicted labels with the actual labels from the testing set.

Iris dataset from scikit-learn

```
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score

# Load the Iris dataset
iris = load_iris()
```

Separating dep and ind variables and splitting data

```
X = iris.data
y = iris.target
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```

Initialize the Gaussian Naive Bayes classifier

```
nb_ # Initialize the Gaussian Naive Bayes classifier
nb_classifier = GaussianNB()
```

Train the classifier -training data.

```
nb_classifier.fit(X_train, y_train)
```

Make predictions -testing data using

Evaluation of model