Blood cell type classification problem

Data used:

https://www.kaggle.com/paultimothymooney/blood-cells/home

Data description:

12500 images obtained through augmentation of 410 original images of blood cells. There are four types of cells: Eosinophil, Lymphocyte, Monocyte, and Neutrophil

Motivation:

Automation of methods of blood cell type detection for medical applications.

Preprocessing

classes

average background subtracted from each image

Raw samples per class(imbalanced)

Augmented samples per class

CNN Architecture

There is a BatchNormalization layer after each Conv2D layer. There is a 40% Dropout layer after each MaxPooling2D layer.

Training over 20 epochs

Training on CPU with ~6 minutes per epoch.

Classification reports for Training/Validation

Training set

Classification Report recall f1-score precision support EOSINOPHIL 0.95 0.99 0.97 2254 LYMPHOCYTE 0.99 1.00 1.00 2223 MONOCYTE 1.00 1.00 1.00 2235 NEUTROPHIL 0.99 0.94 0.97 2249 micro avg 0.98 0.98 0.98 8961 0.98 0.98 macro avg 0.98 8961 weighted avg 0.98 0.98 0.98 8961

Validation set

Classificatio				
	precision	recall	f1-score	support
EOSINOPHIL	0.95	0.99	0.97	243
LYMPHOCYTE	1.00	1.00	1.00	260
MONOCYTE	0.98	1.00	0.99	243
NEUTROPHIL	0.99	0.93	0.96	250
micro avg	0.98	0.98	0.98	996
macro avg	0.98	0.98	0.98	996
weighted avg	0.98	0.98	0.98	996

Ignore high scores for validation set. Original images were initially augmented. There is a lot of overlap between training and validation sets

Classification report for Test set

Classification Report							
	precision	recall	f1-score	support			
EOSINOPHIL	0.84	0.77	0.80	623			
LYMPHOCYTE	0.98	0.99	0.98	620			
MONOCYTE	0.98	0.87	0.92	620			
NEUTROPHIL	0.73	0.86	0.79	624			
micro avg	0.87	0.87	0.87	2487			
macro avg	0.88	0.87	0.87	2487			
weighted avg	0.88	0.87	0.87	2487			

- Accuracy: 87%
- Some EOSIONOPHILS and MONOCYTES are incorrectly predicted as NEUTROPHILS. Due to imbalance of the raw set (200N, 80E, 20L, 30M) there is a bias towards the majority (N) class.
- LYMPHOCYTES are almost perfectly predicted due to being very different from other 3 classes. Their cell lacks any distingushing structure, its just an isotropic blob.
- We need more images of E and M