f, Anzahl der Wiederholungen des Schwingungszustands in einem festen Punkt pro Sekunde.

T, Zeit, nach der sich in einem festen Punkt der Schwingungszustand wiederholt.

 λ , Abstand zwischen zwei aufeinanderfolgenden Wellenfronten gleicher Phase.

 ω , analog zu Schwingungen definiert: $\omega=2\pi f$.

Periodizität im Deureu $12 - 2\pi$

Periodizität im Raum: $k\lambda = 2\pi$

tems, bei der Energie ohne Massentransport von einem Teilsystem auf andere Teilsysteme übertragen wird.

Longitudinalwellen in Flüssigkei-

Zeitlich und räumlich periodische

Zustandsänderung eines Sys-

Die Wellenfronten sind Ebenen senkrecht zur Ausbreitungsrichtung:

$$f(\vec{r},t) = A\cos\left(\omega t - \vec{k}\vec{r} + \phi\right)$$

ten: $\sqrt{K/\rho}$, in Gasen: $\sqrt{\kappa p/\rho}$, Torsionswellen in Stäben: $\sqrt{G/\rho}$, Transversalwellen auf einer Saite: $\sqrt{F/(A\rho)}$, Elektromagnetische Wellen im Vakuum: $\sqrt{\epsilon_0\mu_0}$, im Medium: $\sqrt{\epsilon_r\epsilon_0\mu_r\mu_0}$