Unit 2: Database Models

(Part 1)

Learning Objectives (1 of 2)

- In this chapter, you will learn:
 - About data modeling and why data models are important
 - About the basic data-modeling building blocks
 - What business rules are and how they influence database design

Learning Objectives (2 of 2)

- In this chapter, you will learn:
 - How the major data models evolved
 - About emerging alternative data models and the need they fulfill
 - How data models can be classified by their level of abstraction

Outline

- Data Models Building Blocks
- Business Rules
- Evolution of Data Models

Data Modeling and Data Models

- Data modeling: Iterative and progressive process of creating a specific data model for a determined problem domain
- Data models: Simple representations of complex real-world data structures
 - Useful for supporting a specific problem domain
- Model Abstraction of a real-world object or event

Importance of Data Models

- Are a communication tool
- Give an overall view of the database
- Organize data for various users
- Are an abstraction for the creation of good database

Data Model Basic Building Blocks

- Entity: Unique and distinct object used to collect and store data
 - Attribute: Characteristic of an entity
- Relationship: Describes an association among entities
 - One-to-many (1:M)
 - Many-to-many (M:N or M:M)
 - One-to-one (1:1)
- Constraint: Set of rules to ensure data integrity

Business Rules

Business Rules

- Brief, precise, and unambiguous description of a policy, procedure, or principle
- Enable defining the basic building blocks
- Describe main and distinguishing characteristics of the data

Sources of Business Rules

- Company managers
- Policy makers
- Department managers
- Written documentation
- Direct interviews with end users

Reasons for Identifying and Documenting Business Rules

- Help standardize company's view of data
- Communications tool between users and designers
- Allow designer to:
 - Understand the nature, role, scope of data, and business processes
 - Develop appropriate relationship participation rules and constraints
 - Create an accurate data model

Translating Business Rules into Data Model Components

- Nouns translate into entities
- Verbs translate into relationships among entities
- Relationships are bidirectional
- Questions to identify the relationship type
 - How many instances of B are related to one instance of A?
 - How many instances of A are related to one instance of B?

Exercise: Consider the Business Rule

"A customer may generate many invoices"

- How many entities? (nouns)
- How many relationships (verbs)

Exercise: Consider the Business Rule

"A customer may generate many invoices"

- Customer and invoice are objects of interest (Entities)
- There is a *generate* relationship

Exercise: Consider the Business Rules

"A customer may generate many invoices" an invoice is generated by only one customer."

- What is the relationship between both entities?
 - How many instances of B are related to one instance of A?
 - How many instances of A are related to one instance of B?

Exercise: What is the relationship?

 What is the relationship between a student and a course in a university environment?

- How many instances of B are related to one instance of A?
- How many instances of A are related to one instance of B?

Exercise: What is the relationship?

- What is the relationship between a student and a course in a university environment
 - How many instances of B are related to one instance of A?
 - How many instances of A are related to one instance of B?

- In how many classes can one student enroll? Answer: many classes.
- How many students can enroll in one class? Answer: many students.
- Therefore we have a many-to-many relationship.

Naming Conventions

- Entity names Required to:
 - Be descriptive of the objects in the business environment
 - Use terminology that is familiar to the users
- Attribute name Required to be descriptive of the data represented by the attribute
- Proper naming:
 - Facilitates communication between parties
 - Promotes self-documentation

Evolution of Data Models

Hierarchical and Network Models

Hierarchical Models

- Developed to manage large amounts of data for complex manufacturing projects
- Represented by an upside-down tree which contains segments (equivalent of a file system's record type)
- Depicts a set of one-to-many (1:M) relationships

Network Models

- Created to represent complex data relationships effectively
- Improved database performance and imposed a database standard
- Allows a record to have more than one parent
- Depicts both one-to-many (1:M) and many-to-many (M:N) relationships

A Network Data Model

A Hierarchical Data Model

Standard Database Concepts (1 of 2)

Schema

 Conceptual organization of the entire database as viewed by the database administrator

Subschema

 Portion of the database seen by the application programs that produce the desired information from the data within the database

Standard Database Concepts (2 of 2)

- Data manipulation language (DML)
 - Environment in which data can be managed and is used to work with the data in the database
- Schema data definition language (DDL)
 - Enables the database administrator to define the schema components

The Relational Model

- Based on a relation
 - Relation or table: Matrix composed of intersecting tuple and attribute
 - Tuple: Rows
 - Attribute: Columns
- Describes a precise set of data manipulation constructs

The Relational Model - 2

- Tables store collection of related entities
- Tables are related to each other through the sharing of a common attribute
- Relational diagram
 - Representation of entities, attributes, and relationships

FIGURE 2.1 LINKING RELATIONAL TABLES

Table name: AGENT (first six attributes)

Database name: Ch02_Insu	reCo
--------------------------	------

AGENT_CODE	AGENT_LNAME	AGENT_FNAME	AGENT_INITIAL	AGENT_AREACODE	AGENT_PHONE
501	Alby	Alex	В	713	228-1249
502	Hahn	Leah	F	615	882-1244
503	Okon	John	T	615	123-5589

Link through AGENT_CODE

Table name: CUSTOMER

CUS_CODE	CUS_LNAME	CUS_FNAME	CUS_INTIAL	CUS_AREACODE	CUS_PHONE	CUS_INSURE_TYPE	CUS_INSURE_AMT	CUS_RENEW_DATE	AGENT_CODE
10010	Ramas	Alfred	А	615	844-2573	T1	100.00	05-Apr-2016	502
10011	Dunne	Leona	K	713	894-1238	T1	250.00	16-Jun-2016	501
10012	Smith	Kathy	W	615	894-2285	S2	150.00	29-Jan-2017	502
10013	Olowski	Paul	F	615	894-2180	S1	300.00	14-Oct-2016	502
10014	Orlando	Myron		615	222-1672	T1	100.00	28-Dec-2017	501
10015	O'Brian	Amy	В	713	442-3381	T2	850.00	22-Sep-2016	503
10016	Brown	James	G	615	297-1228	51	120.00	25-Mar-2017	502
10017	Williams	George		615	290-2556	S1	250.00	17-Jul-2016	503
10018	Farriss	Anne	G	713	382-7185	T2	100.00	03-Dec-2016	501
10019	Smith	Olette	K	615	297-3809	S2	500.00	14-Mar-2017	503

The relational model provides a minimum level of controlled redundancy to eliminate most of the redundancies commonly found in file systems.

Figure 2.2 - A Relational Diagram

Relational Database Management System (RDBMS)

- Performs basic functions provided by the hierarchical and network DBMS systems
- Makes the relational data model easier to understand and implement
- Hides the complexities of the relational model from the user

SQL-Based Relational Database Application

- End-user interface
 - Allows end user to interact with the data
- Collection of tables stored in the database
 - Each table is independent from another
 - Rows in different tables are related based on common values in common attributes
- SQL engine
 - Executes all queries

The Entity Relationship Model

- Graphical representation of entities and their relationships in a database structure
- Entity relationship diagram (ERD)
 - Uses graphic representations to model database components
- Entity instance or entity occurrence
 - Rows in the relational table
- Connectivity: Term used to label the relationship types

Figure 2.3 - The ER Model Notations

The Object-Oriented Data Model (OODM) or Semantic Data Model

- Object-oriented database management system (OODBMS)
 - Based on OODM
- Object: Contains data and their relationships with operations that are performed on it
 - Basic building block for autonomous structures
 - Abstraction of real-world entity
- Attributes Describe the properties of an object

The Object-Oriented Data Model (OODM)

- Class: Collection of similar objects with shared structure and behavior organized in a class hierarchy
 - Class hierarchy: Resembles an upside-down tree in which each class has only one parent
- Inheritance: Object inherits methods and attributes of parent class
- Unified Modeling Language (UML)
 - Describes sets of diagrams and symbols to graphically model a system

Figure 2.4 - A Comparison of OO, UML and ER Models

Object/Relational and XML

- Extended relational data model (ERDM)
 - Supports OO features and complex data representation
 - Object/Relational Database Management System (O/R DBMS)
 - Based on ERDM, focuses on better data management
- Extensible Markup Language (XML)
 - Manages unstructured data for efficient and effective exchange of all data types

Big Data

- Aims to:
 - Find new and better ways to manage large amounts of web and sensor-generated data
 - Provide high performance and scalability at a reasonable cost
- Characteristics
 - Volume
 - Velocity
 - Variety

Big Data Challenges

- Volume does not allow the usage of conventional structures
- Expensive
- OLAP tools proved inconsistent dealing with unstructured data

Big Data New Technologies

- Hadoop
 - Hadoop Distributed File System (HDFS)
 - MapReduce
- NoSQL

NoSQL Databases

- Not based on the relational model
- Support distributed database architectures
- Provide high scalability, high availability, and fault tolerance
- Support large amounts of sparse data
- Geared toward performance rather than transaction consistency
- Store data in key-value stores

Figure 2.5 - A Simple Key-Value Representation (1 of 2)

Trucks-R-Us

Figure 2.5 - A Simple Key-Value Representation (2 of 2)

- In the relational model:
 - Each row represents one entity instance.
 - Each column represents one attribute of the entity.
 - The values in a column are of the same data type.
- In the key-value model:
 - Each row represents one attribute/value of one entity instance.
 - The "key" column could represent any entity's attribute.
 - The values in the "value" column could be of any data type and therefore it is generally assigned a long string data type.

Figure 2.6 - The Evolution of Data Models

Hierarchical Model

Advantages

- Promotes data sharing
- Parent/child relationship promotes conceptual simplicity and data integrity
- Database security is provided and enforced by DBMS
- Efficient with 1:M relationships

- Requires knowledge of physical data storage characteristics
- Navigational system requires knowledge of hierarchical path
- Changes in structure require changes in all application programs
- Implementation limitations
- No data definition
- Lack of standards

Network Model

Advantages

- Conceptual simplicity
- Handles more relationship types
- Data access is flexible
- Data owner/member relationship promotes data integrity
- Conformance to standards
- Includes data definition language (DDL) and data manipulation language (DML)

- System complexity limits efficiency
- Navigational system yields complex implementation, application development, and management
- Structural changes require changes in all application programs

Relational Model

Advantages

- Structural independence is promoted using independent tables
- Tabular view improves conceptual simplicity
- Ad hoc query capability is based on SQL
- Isolates the end user from physicallevel details
- Improves implementation and management simplicity

- Requires substantial hardware and system software overhead
- Conceptual simplicity gives untrained people the tools to use a good system poorly
- May promote information problems

Entity Relationship Model

Advantages

- Visual modeling yields conceptual simplicity
- Visual representation makes it an effective communication tool
- Is integrated with the dominant relational model

- Limited constraint representation
- Limited relationship representation
- No data manipulation language
- Loss of information content occurs when attributes are removed from entities to avoid crowded displays

Object-Oriented Model

Advantages

- Semantic content is added
- Visual representation includes semantic content
- Inheritance promotes data integrity

- Slow development of standards caused vendors to supply their own enhancements
 - Compromised widely accepted standard
- Complex navigational system
- Learning curve is steep
- High system overhead slows transactions

NoSQL

Advantages

- High scalability, availability, and fault tolerance are provided
- Uses low-cost commodity hardware
- Supports Big Data
- Key-value model improves storage efficiency

- Complex programming is required
- There is no relationship support
- There is no transaction integrity support
- In terms of data consistency, it provides an eventually consistent model

