Local Projections and DiD

Christoph Hedtrich

Wednesday $10^{\rm th}$ May, 2023

When does Local Projection make sense in a panel?

- Jordà (2005) huge success in macro
 - Goal: estimate impulse response functions in a single time-series
 - Approach: estimate a sequence of OLS regressions of y_{t+h} on shock and controls in t for $h=0,1,\dots,H$
- DiD literature highlights issues with
 - Staggered Treatments
 - Heterogeneous Treatment Effects
 - Dynamic Treatment Effects
 - \rightarrow see Paul GP course
- If DiD has all these issues, then LP must have them too!

De Chaisemartin and d'Haultfoeuille (2022)

- highlights issues with panel local projections
 - applied in complicated DiD treatment settings (continuous treatment intensity, staggered treatment, dynamic effects)
 - "contamination by future"
 - sign-reversal, even with positive treatment effects in every cell estimates may turn negative
 - \rightarrow generalize event-study design
- General takeaway: TWFE+LP \rightarrow misspecified regression when there is variation in treatment timing

Dube, Girardi, Jorda, and Taylor (2023) Slides

- Goal: estimate treatment effects in a panel with typical DiD issues
- Solution: select observations appropriately/control for previous treatments
- LP is just OLS, so this is super fast compared to other suggested estimators

Which issues from DiD literature carry over to LP setting with shocks?

- Staggered Treatment \rightarrow What happens with trend in treatment intensity?
- Heterogeneous Treatment Effects → Bias even with mean zero shocks?
- Dynamic Treatment Effects

IRF in panel with TWFE +LP

$$y_{it} = \alpha_i + \phi_t + \beta_{0,i} s_{it} + \rho_i y_{it-1} + \varepsilon_{it},$$

- where
 - groups $i = 1, \dots, I$
 - time periods $t = 1, \dots, T$
 - outcome of interest y_{it}
 - shock s_{it} (continuous shock)
 - group specific intercept α_i and trend g_{it}
 - time specific intercept $\phi_{
 m t}$
 - $\varepsilon_{it} \sim N(0, \sigma^2)$ i.i.d.
- Treatment Effects/IRF:

$$\beta_h = \beta_{0,i} \rho_i^{h-1} \quad \forall h \ge 0$$

IRF in panel with TWFE +LP

- Simulate with
 - 1. group specific shock mean $s_{it} \sim N(\mu_i, \sigma_s^2)$
 - 2. time specific shock mean $s_{it} \sim N(\mu_t, \sigma_s^2)$
 - 3. Heterogeneous treatment effects $\beta_{0,i}$
 - 4. trend in shock mean $\mu_{i,t} = \mu_i + \gamma_i t$
- Monte Carlo Version 1 (large T, small I):
 - 10000 repetitions
 - I = 2 groups
 - T = 100 time periods
 - common AR process $\rho_{\rm i}=\rho$
- Monte Carlo Version 2 (smallish T, medium I):
 - 10000 repetitions
 - I = 30 groups
 - T = 10 time periods
 - common AR process $\rho_{\rm i}=
 ho$

Case 1: Group specific shock mean T = 100, I = 2

$$\mathrm{E}[s|i] \neq \mathrm{E}[s|i']$$

Figure: IRF Case 1

No problem with group specific shock mean (as expected)

Case 1: Group specific shock mean and T = 10, I = 30

Figure: IRF Case 1

Nickel Bias! (AR process...)

Case 2: Time specific shock mean (common across groups)

$$E[s|t] = E[s|t, i] = gt$$

Figure: IRF Case 2

No problem with time specific shock mean (as expected)

Case 3: Does TWFE+LP estimate "average treatment effect" with heterogeneous treatment effects?

$$\beta_{0,i} \neq \beta_{0,i'}$$

Figure: IRF Case 3

No problem with heterogeneous treatment effects by itself

Case 4 a): Trend in treament intensity by group

- TWFE-DiD had issues with staggered treatment \rightarrow trend in treatment intensity by group

$$E[s|t,i] = g_i t$$

 \rightarrow IRF is biased for h > 0

Figure: IRF Case 4 a

Case 4 b): Trend in treament intensity by group + Heterogeneous Treatment Effects

- TWFE-DiD had issues with staggered treatment + heterogeneous treatment effects
- Analogue: trend in treatment intensity by group + heterogeneous treatment effects

Figure: IRF Case 4 b

Case 4 b): Trend in treament intensity by group + Heterogeneous Treatment Effects (ctd.)

- Add a group specific trend:

$$y_{it} = \alpha_i + \phi_t + \beta_{0,i} s_{it} + \rho_i y_{it-1} + g_i t + \varepsilon_{it},$$

Figure: IRF Case 4 b with linear trend by group

Local Projection in Panel

See git@github.com:chrished/localprojection_panel.git for simulation code

- 1 Case with few treatment times, see Dube et al. (2023) and literature in Paul GP course
- 2 Continuous shocks in (almost) every period:
 - group specific trend in treament intensity \rightarrow Biased estimates for h > 0 (similar to staggered treatment)
 - heterogeneous treatment effects \rightarrow Biased estimates $\forall h$
 - → Need to control for group specific trends!
- What is the correct way? De Chaisemartin and d'Haultfoeuille (2022)?
- Is it okay to simply "de-trend" shocks?
- Other issues that would bias estimates?
- Inference? (small sample estimates of α_i and ϕ_t , serial correlation, ...)

References I

- De Chaisemartin, C. and X. d'Haultfoeuille (2022): "Difference-in-differences estimators of intertemporal treatment effects," Tech. rep., National Bureau of Economic Research.
- Dube, A., D. Girardi, O. Jorda, and A. M. Taylor (2023): "A local projections approach to difference-in-differences event studies," Tech. rep., National Bureau of Economic Research.
- Jordà, Ò. (2005): "Estimation and inference of impulse responses by local projections," American economic review, 95, 161–182.