Functional Analysis and PDE $\,$

October 28, 2015

Contents

1	Introduction	1
2	Structures	2
	2.1 Topological spaces	2

Chapter 1

Introduction

Functional Analysis is the analysis on infinite dimensional spaces. Applications of FA are in geometry and topology, probability theory, numerical analysis mathematical physics, and PDEs.

Example.

 $C^2(U)$, $U \subset \mathbb{R}^n$ is the set of functions which are 2 times differentiable and have a bounded derivative. U should be a bounded, open set. Consider $f \to 0$ on ∂U and

$$\Delta = \sum_{j=1}^{n} \left(\frac{\partial}{\partial u_j} \right)^2.$$

Fix $f \in C(U)$ and look for a solution $u \in C^2(U)$, s.t.

$$\Delta u = f, \quad u = \delta^{-1} f.$$

What is the inverse operator δ^{-1} in this case? That's what we need to study here.

Program of the lecture

- Structures: We need to define *Topologies, Metrics, Norms* and *Scalarproducts* on infinite-dimensional spaces
- We introduce Functional Spaces as infinite-dimensional vector spaces of functions
- We need to talk about *Linear Operators* to be able to talk about their inverse (see ??)

Chapter 2

Structures

We consider *convergence*. We have already seen

$$x_n \to x \quad \Leftrightarrow \quad \forall \varepsilon > 0 \exists n_0 \, \forall n > n_0 : x_n \in (x - \varepsilon, x + \varepsilon)$$

In order to do so, we need the definition of a neighbourhood (topology), distances (metric), the length of a vector (norm, Banach spaces), the length and angles (scalar product, Hilbert spaces).

All vector spaces we consider should base on $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$!

2.1 Topological spaces

Let X be a set, let 2^X the set of all possible subsets of X (including the empty set).

Definition 2.1 (Topology). A Topology \mathcal{T} on the set X is a family of subsets of X, that means

$$\mathcal{T} \subseteq 2^X$$
,

satisfying

T1 $\emptyset, X \in \mathcal{T}$

T2 Stability under finite intersection:

$$\forall A, B \in \mathcal{T} : A \cap B \in \mathcal{T}$$

T3 Stability under any possible union: Let \mathcal{I} be some set of indices (may not be countable). Then

$$\forall \{A_i\}_{i\in\mathcal{I}}\subseteq\mathcal{T}: \quad \bigcup_{i\in\mathcal{I}}A_i\in\mathcal{T}$$

Any subset $A \subset X$ is called an *open set*, if $A \in \mathcal{T}$. Else it is called a *closed set*.

 (X, \mathcal{T}) is called a topological space!

Remark 2.2. Note that

$$\left(\bigcup_{i\in\mathcal{I}}A_i\right)^c=\cap_{i\in\mathcal{I}}A_i^c$$

for all families of open sets $\{A_i\}_{i\in\mathcal{I}}$ and each index-set \mathcal{I} .

Definition 2.3 (Coarser / finer topologies). Let $\mathcal{T}_1, \mathcal{T}_2$ be two topologies on X with $\mathcal{T}_1 \subset \mathcal{T}_2$, then we say that

- \mathcal{T}_1 is coarser / weaker than \mathcal{T}_2
- \mathcal{T}_2 is finer /stronger tthan \mathcal{T}_1

Example.

a) $\mathcal{T} = 2^X$ is a topology on $X \Rightarrow 2^X$ is the storngest (finest) topology on X.

Also $\mathcal{T} = \{\emptyset, X\}$ is a topology on $X \Rightarrow$ any topology \mathcal{T}' needs to caontain \emptyset and X, so $\mathcal{T} \subset \mathcal{T}'$. This means that \mathcal{T} is the weakest / coarsest topology on X

b) On \mathbb{R} there is a standard topology \mathcal{T}_{st} :

$$V \in \mathcal{T}_{st}$$
 iff $\forall x \in V \exists \varepsilon > 0 : (x - \varepsilon, x + \varepsilon) \subset V$

c) relative topology: Let $A \subset X$, let \mathcal{T} be a topology on X. Then

$$\mathcal{T}_A\{A \cup V : V \in \mathcal{T}\}$$

d) Intersection of topologies: Let \mathcal{I} an index set (may be uncountable), let $(\mathcal{T}_i)_{i\in\mathcal{I}}$ be a family of topologies on X. Then we can define

$$\bigcap_{i\in\mathcal{I}}\mathcal{T}_i$$

and this is again a topology on X!

e) Product topology: Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) two topological spaces. Let

$$S = \{(V, X) | V \in T_X\} \cup \{(X, W) | W \in T_Y\}.$$

The product topology on $X \times Y$ is the coarsest (weakest) topology on $X \times Y$, that contains S. In particular it must contain all sets of the form $U \times V$ for $U \in \mathcal{T}_X, V \in \mathcal{T}_Y$.

Remark 2.4. If nothing else is said, we consider the standard topology \mathcal{T}_{st} on $\mathbb{R}!$

Definition 2.5 (Closure / boundary of a set). Let (X, \mathcal{T}) topological space, $A \in X$.

The *interior* of A, A° is the largest open set inside

$$A = \bigcup_{V \in \mathcal{T}, V \subseteq A} V$$
 (open).

The *closure* of A, \bar{A} is the smallest closed set containing

$$A = \bigcup_{V \text{ s.t. } V^c \in \mathcal{T}, V \supseteq A} V \text{ (closed)}.$$

The boundary of A is given by

$$\partial A = \bar{A} \setminus A^{\circ} = \bar{A} \cap \underbrace{(X \setminus A^{\circ})}_{(A^{c})^{c}}$$
 (closed).

Definition 2.6 (dense set / separable set). (X, \mathcal{T}) topological space in X. Then

- $A \subset X$ is called dense in X, if $\bar{A} = X$
- X is called *separable*, if there is a countable dense subset of X

Definition 2.7 (open neighbourhood). (X, \mathcal{T}) topological space, $x \in X$. A subset $V \subseteq X$ is called an open neighbourhood of x, if $V \in \mathcal{T}$ and $x \in V$.

Definition 2.8 (Convergence in topology). Let (\mathcal{T}, X) topological space. A sequence $(x_n)_{n\in\mathbb{N}}$, i.e. a map

$$x: \mathbb{N} \to X$$
$$n \to x_n,$$

emphconverges to $x^* \in X$, if

 $\forall V$ open neighbourhood of $x^*: \{n | x_n \in V^c\}$ is finite

(i.e. there is just a finite number of elements that's not contained in V). Then we say that x^* is a limit point for the sequence x_n .

Example.

- a) Let \mathcal{T} the standard topology on \mathbb{R} . Then the definition of converges equals the ε δ -Definition of convergence in Analysis 3.
- b) If $\mathcal{T} = 2^X$, then $x_n \to x^*$ iff x_n is constant up to a finite number of terms: As we have $\mathcal{T} = 2^X$ especially the set $V = \{x^*\}$ is open. This set gives us the result.
- c) If $\mathcal{T} = \{\emptyset, X\}$, then every sequence is convergent! Every point $x^* \in X$ is a limit point.

Definition 2.9 (Hausdorff space). Let (X, \mathcal{T}) topological space. It is called a *Hausdorff space*, if

$$\forall x, y \in X, x \neq y \,\exists U_x, U_y \in \mathcal{T} \text{ s.t. } x \in U_x, y \in U_y \text{ and } U_x \cap U_y = \emptyset.$$

Proposition 2.10 (Limits in Hausdorff spaces are unique)

If (X, \mathcal{T}) is a Hausdorff space, then every sequence has at most one limit, so either the sequence has no limit or it is unique!

PROOF. Proof can be done by contradiction.

Definition 2.11 (Connectedness). A topological space (X, \mathcal{T}) is *connected*, if we cannot write it as a union of 2 disjoint(!) (nonempty) open sets. So, if X is connected and $V \in \mathcal{T}$ is an open set, there is no $\emptyset \neq W \in \mathcal{T}$ with $V \cap W = \emptyset$ and $V \cup W = X$.

 $A \subseteq X$ is connected, if A is connected in \mathcal{T}_A .