

ONLINE HACKATHON

Quantum code challenge

Innovative Quantum Algorithms for Smart Cities

22-25 OCTOBER 2024

THE EVENT IS ENDORSED BY

QDine - Merlin

Riccardo Romanello

Daniele Lizzio Bosco

Ilenia Bariviera

THE TASK

PROBLEM STATEMENT

- We were assigned a task which involved four different datasets:
 particulate matter, pollution, weather and unique attendance. The goal
 was to create a model that could find and notify anomalies.
- We focused on unique attendance. We wanted to understand the variation in the number of people in different areas of the city and how we could identify anomalies.
- As anomalies, we hypothesized to report possible variations in gatherings of people in cases of **over tourism** or **pandemic crisis** or other purposes.

SYNTHETIC DATA GENERATION

- To evaluate our solution, we generated three different type of synthetic data.
- We expect a good model to recognize all the artificial data as anomalous.

PROPOSED SOLUTION: Quantum Temporal Kernels

- Starting from the theoretical background from [1], we implemented a **Quantum Kernel with temporal dependency** able to compute similarity between time series.
- In particular, we used

$$C(x_t) = \operatorname{Emb}(x_t) \cdot U(t)$$

where $\mathrm{Emb}(x_t)$ is a **static mapping** and U introduces the **temporal** dependency.

ullet Finally, the kernel computes the **similarity** between two series $x^{(t)}$ and $y^{(t)}$ is given by

$$K(x^{(t)},y^{(t)}) = \sum_{t \in T} \langle C(x_t) | C(y_t)
angle$$

RESULTS

- We compared our results on a test set (non-anomalous data) and the synthetic ones.
- We compared our approach with four different classical kernel methods.

- Standard classical kernels:
 - Ill-suited for time series, but very fast
- Dynamic Time Warping:
 - Specialized for time series, but required hours
- Our method:
 - Tailored for time series, and quite fast

For further details see our GitHub repo. *

Training and testing datasets of 50 samples

	Accuracy					
	Non-Anomalous	Noise	Perlin	Synthetic		
Linear	82	2	6	60		
Poly	66	72	100	96		
RBF	78	4	10	66		

Training and testing datasets of 50 samples

	Accuracy				
	Non-Anomalous	Noise	Perlin	Synthetic	
Linear	82	2	6	60	
Poly	66	72	100	96	
RBF	78	4	10	66	
DTW	94	100	4	72	

Training and testing datasets of 50 samples

	Accuracy					
	Non-Anomalous	Noise	Perlin	Synthetic		
Linear	82	2	6	60		
Poly	66	72	100	96		
RBF	78	4	10	66		
DTW	94	100	4	72		
Merlin	80	76	80	92		

Thanks for your attention!

