Multiobject tracking using deep learning and tracking by detection

Master thesis, academic course 2018-2019

Author: Alexandre Rodríguez Rendo

Tutor: José María Cañas Plaza

Index

1.	Introduction	3-4
2.	Goals	5
3.	State of the Art	6-10
4.	dl-objecttracker	11-14
5.	Experiments	15-23
6.	Conclusions	24-25

1. Introduction

- Multiple object tracking in Computer Vision
 - Open problem
 - Multiple applications

1. Introduction

- **Deep learning** in Computer Vision
 - Used in multiple areas surpassing in most cases the results from previous works
 - Also in multiple object tracking

2. Goals

- Build a multi-object tracking application
 - deep learning techniques
 - tracking by detection
 - idea: combine deep learning detections with classic tracking
- Features
 - robust and fast
 - o run in resource constrained HW on real-time
- Validate the solution on well-known datasets

- Algorithms' schemes for object tracking
 - Tracking by detection
 - Tracking, learning and detection
 - Siamese-based tracking
 - Tracking as regression
 - Tracking with RNN

• **Datasets** for **multiple** object tracking

MOT16

• **Datasets** for **multiple** object tracking

PETS

• Datasets for single object tracking

Need for Speed

- Object detection with neural networks
 - Faster R-CNN
 - SSD
 - YOLO
 - Mask R-CNN*

- Modular architecture
- python
- configurable
- multiple video sources
- GUI
- logging

How the buffer of frames is handled?

- Neural network module
 - supports some Keras and Tensorflow models (pretrained)
 - SSD MobileNetV2
 - Faster R-CNN InceptionV2
 - Mask R-CNN InceptionV2
 - SSD VGG
 - provides the object detections to feed the Tracker module

- Tracker module
 - supports some OpenCV and dlib trackers
 - OpenCV: KCF, BOOSTING, MIL, TLD, MEDIANFLOW, CSRT, MOSSE
 - dlib: CF
 - performs the tracking by detection in a buffer of frames
 - three operating regimes: slow, normal, fast
 - confidence measurement

5. Experiments

- Metrics (Pascal VOC 2010) → Object Detection Metrics tool
 - precision
 - recall
 - \circ AP
- Processing speed → dl-objecttracker
- Setup
 - hardware used: CPU (*i7-4510U @ 2.00 GHz x 4*)
 - dataset: MOT17Det (train set)

5. Experiments: neural network module

→ Various options available

	AP @ 0,5 (%)	FPS Net
SSD MobileNetV2	16,06	5,282
Faster R-CNN InceptionV2	31,03	1,026
Mask R-CNN InceptionV2	27,89	0,286
SSD VGG 512	23,76	0,339

Experiments on MOT17-09 sequence with 512x512 images

5. Experiments: neural network module

→ SSD VGG discarded

	AP @ 0,5 (%)	FPS Net
SSD MobileNetV2	17,13	7,372
Faster R-CNN InceptionV2	32,00	0,981
Mask R-CNN InceptionV2	34,23	0,272

Experiments on MOT17-09 sequence with 800x800 images

5. Experiments: neural network module

→ Final selection

AP @ 0,5 (%)	MOT17-09	MOT17-11	MOT17-05
Faster R-CNN InceptionV2	35,25	26,21	19,51
Mask R-CNN InceptionV2	31,74	26,44	12,98

Experiments on MOT17-09 with 1000x1000 images

5. Experiments: tracker module

→ Multiple tracker options

	AP @ 0,5 (%)	FPS Tracker
KCF	23,07	6,39
BOOSTING	13,06	4,78
MIL	15,29	2,21
TLD	8,38	2,22
MEDIANFLOW	32,13	12,01
CSRT	11,78	2,78
MOSSE	34,60	47,07
CF-dlib	27,99	9,51

Experiments on MOT17-09 with 1000x1000 images

5. Experiments: tracker module

→ Best three trackers

	AP @ 0,5 (%)	FPS Tracker
MEDIANFLOW	24,01	13,05
MOSSE	16,15	18,14
CF-dlib	23,97	9,51

Experiments on MOT17-05 with 1000x1000 images

5. Experiments: tracker module

→ Confidence influence

	AP tracker on @ 0,5 (%)	AP tracker off @ 0,5 (%)
MEDIANFLOW	36,09	32,35
MOSSE	18,60	10,33
CF-dlib	23,74	30,06

Confidence influence on tracking performance on MOT17-05

5. Experiments: final solution

- Neural network
 - Faster R-CNN InceptionV2
 - input size 400x400
 - confidence threshold 0,5
- Tracker
 - MedianFlow
 - using tracker confidence

5. Experiments: final results

${ m dl_objecttracker}$	AP @ 0,5 (%)	FPS Net	FPS Tracker
MOT17-02	11,59	0,93	31,4
MOT17-04	17,25	0,869	23,96
MOT17-05	36,53	0,98	37,28
MOT17-09	43,53	0,95	35,83
MOT17-10	23,26	0,943	36,18
MOT17-11	35,74	0,96	41,56
MOT17-13	14,04	0,941	42,01

MOT17Det train set

6. Conclusions

- 1. Region-based object detection neural networks obtain the best accuracy
- 2. MedianFlow seems to be the best tracker available in OpenCV
- 3. Confidence is useful to discard bad tracking performance in OpenCV, not occurs the same in dlib
- 4. Image input size is key when working in limited hardware
- 5. Final solution performs best on lowly crowded sequences

6. Conclusions: future works

- 1. Train neural network models on MOT datasets
- 2. Use dlib multiprocessing in tracking
- 3. Obtain the best configuration in a different way
- 4. Improve the metrics calculation \rightarrow IDs \rightarrow MOTA, MOTP, ...
- 5. Test the application in other non-GPU devices and with GPU acceleration
- 6. Try weights quantization techniques

Thank you for your attention

Annex: links

- ★ MOT17Det results https://motchallenge.net/results/MOT17Det/
- ★ MOT CVPR 2019 tracking results https://motchallenge.net/results/CVPR 2019 Tracking Challenge/
- ★ Object Detection Metrics
 https://github.com/rafaelpadilla/Object-Detection-Metrics
- ★ MedianFlow paper https://ieeexplore.ieee.org/abstract/document/5596017
- ★ Demo results https://www.youtube.com/watch?v=LyN2aeIFFHI

Annex: dataset description

Sequence	FPS	Resolution	Length	Boxes	Density	Description
MOT17-02	30	1920x1080	600 (00:20)	18581	31.0	People walking around a large square
MOT17-04	30	1920x1080	1050 (00:35)	47557	45.3	Pedestrian street at night, elevated viewpoint
MOT17-05	14	640x480	837 (01:00)	6917	8.3	Street scene from a moving platform
MOT17-09	30	1920x1080	525 (00:18)	5325	10.1	A pedestrian street scene filmed from a low angle
MOT17-10	30	1920x1080	654 (00:22)	12839	19.6	A pedestrian scene filmed at night by a moving camera
MOT17-11	30	1920x1080	900 (00:30)	9436	10.5	Forward moving camera in a busy shopping mall
MOT17-13	25	1920x1080	750 (00:30)	11642	15.5	Filmed from a bus on a busy intersection
Total			5316 (215 s)	112297	21.1	

Annex: dataset ground truth

ID	Label in MOT gt	Label in our gt
1	Pedestrian	Person
2	Person on vehicle	Car
3	Car	Car
4	Bicycle	Bicycle
5	Motorbike	Motorbike
6	Non motorized vehicle	Bicycle
7	Static person	Person
8	Distractor	-
9	Occluder	a
10	Occluder on the ground	2
11	Occluder full	-
12	Reflection	-

Annex: image size

MEDIANFLOW	AP @ 0,5 (%)	FPS Tracker
200 x 200	33,31	114,74
$300 \mathrm{x} 300$	39,26	64,57
400x400	43,31	41,21
500x500	40,25	31,49
600x600	34,92	27,36
700x700	40,30	20,58
800x800	37,80	16,58

Image input size experiments on MOT17-09