Ejercicio 1. Escribe una función que pida números al usuario hasta recibir tres mayores que 10. Devuelve la media de esos tres. Comprueba su funcionamiento con un programa que utilice la función.

Ejercicio 2. Escribe una función que reciba un número n y devuelva $\sum_{k=1}^n k^2$ y $\frac{n(n+1)(2n+1)}{6}$. Comprueba que ambos valores son iguales con un programa que utilice la función.

Ejercicio 3. $\sum_{k=1}^{\infty} \frac{1}{k}$ es una serie divergente: la suma tiende a infinito. Compruébalo con una función que reciba un número y calcule cuántos términos de la serie hay que sumar para superar dicho número. Comprueba su funcionamiento con un programa que utilice la función. Por ejemplo, la salida para 5 debe ser: **Para superar el 5 es necesario sumar 83 términos de la serie.**

Ejercicio 4. Escribe una función que compruebe si un número dado es primo (únicamente divisible entre 1 y sí mismo) o no (True/False). Utilízala en un programa que muestre, para un número n dado, todos los números primos menores que n separados por comas.

Ejercicio 5. Escribe un programa que reciba un número n. Si el número no es mayor que 1 y menor que 100, el programa debe continuar pidiendo un número al usuario hasta que lo sea. Después, calcula y muestra su factorización en primos. Puedes utilizar la función del ejercicio anterior. Por ejemplo, para n = 90 la salida debe ser: **La factorización de 90 es 2*3^2*5**.