ANALIZA MATEMATYCZNA

LISTA ZADAŃ 14

23.01.2023

1. Zbadaj zbieżność podanych wzorami ciągów funkcyjnych, oraz zbieżność jednostajną na podanych zbiorach:

podanych zbiorach:

(a)
$$f_n(x) = \sqrt{x^4 + \frac{x^2}{n}}$$
, $(-\infty, \infty)$, (b) $f_n(x) = \sqrt[n]{1 + x^{2n}}$, $(-\infty, \infty)$,

(c) $f_n(x) = x^n - x^{2n}$, $[0, 1]$, (d) $f_n(x) = \sin\left(\frac{x}{n}\right)$, $[0, \pi]$,

(e) $f_n(x) = \sin^n(x)$, $(-\infty, \infty)$, (f) $f_n(x) = \frac{1}{1 + x + n}$, $[0, \infty)$,

(g) $f_n(x) = \frac{1}{1 + (x + n)^2}$, $(-\infty, \infty)$, (h) $f_n(x) = \frac{1}{nx}$, $(0, 1]$,

(i) $f_n(x) = \frac{nx}{1 + nx^2}$, $[-1, 1]$, (j) $f_n(x) = \frac{nx}{1 + n^2x^2}$, $[-1, 1]$,

(k) $f_n(x) = n \sin\left(\frac{x}{n}\right)$, $[-1, 1]$, (l) $f_n(x) = nx^{-nx^2}$, $[0, 1]$.

(b)
$$f_n(x) = \sqrt[n]{1 + x^{2n}}, (-\infty, \infty)$$

(c)
$$f_n(x) = x^n - x^{2n}$$
, $[0, 1]$,

(d)
$$f_n(x) = \sin\left(\frac{x}{n}\right)$$
, $[0, \pi]$,

(e)
$$f_n(x) = \sin^n(x), (-\infty, \infty),$$

(f)
$$f_n(x) = \frac{1}{1+x+n}$$
, $[0,\infty)$

(g)
$$f_n(x) = \frac{1}{1 + (x+n)^2}, (-\infty, \infty),$$

(h)
$$f_n(x) = \frac{1}{nx}$$
, $(0,1]$,

(i)
$$f_n(x) = \frac{nx}{1 + nx^2}$$
, $[-1, 1]$,

(j)
$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$
, $[-1, 1]$

(k)
$$f_n(x) = n \sin\left(\frac{x}{n}\right)$$
, $[-1, 1]$

(l)
$$f_n(x) = nx^{-nx^2}$$
, [0, 1].

2. Wyznacz zbiór, na którym zbieżny jest podany szereg funkcyjny, oraz sprawdź, czy zbieżność jest jednostajna:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} e^{-nx^2}$$
,

Express Jest Jednostajna:
(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} e^{-nx^2}$$
, (b) $\sum_{n=1}^{\infty} \frac{1}{2^n \sqrt{1 + nx}}$, (c) $\sum_{n=1}^{\infty} \frac{\cos(n \, x)}{10^n}$, (d) $\sum_{n=1}^{\infty} n \, e^{-nx}$, (e) $\sum_{n=1}^{\infty} \frac{1}{n! \, x^n}$, (f) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + x^2}}$, (g) $\sum_{n=1}^{\infty} \frac{3^n \, x^n}{n^2}$, (h) $\sum_{n=1}^{\infty} 2^n \, x^n$, (i) $\sum_{n=1}^{\infty} \frac{5^n \, x^n}{n}$, (j) $\sum_{n=1}^{\infty} n \left(\sqrt{x \, (1 - x)}\right)^n$, (k) $\sum_{n=1}^{\infty} \frac{1}{n^x}$, (l) $\sum_{n=1}^{\infty} \sin\left(\frac{x}{n^2}\right)$, (m) $\sum_{n=1}^{\infty} \frac{x}{x^2 + n^2}$, (n) $\sum_{n=1}^{\infty} \sin(nx)$.

(c)
$$\sum_{n=1}^{\infty} \frac{\cos(n x)}{10^n}$$

(d)
$$\sum_{n=1}^{\infty} n e^{-nx},$$

(e)
$$\sum_{n=1}^{\infty} \frac{1}{n! \, x^n},$$

$$(f) \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + x^2}}$$

$$(g) \quad \sum_{n=1}^{\infty} \frac{3^n x^n}{n^2}$$

$$\text{(h)} \quad \sum_{n=1}^{\infty} 2^n \, x^n,$$

(i)
$$\sum_{n=1}^{\infty} \frac{5^n x^n}{n},$$

(j)
$$\sum_{n=1}^{\infty} n \left(\sqrt{x (1-x)} \right)^n$$

$$(k) \quad \sum_{n=1}^{\infty} \frac{1}{n^x},$$

(l)
$$\sum_{n=1}^{\infty} \sin\left(\frac{x}{n^2}\right)$$

$$(m) \quad \sum_{n=1}^{\infty} \frac{x}{x^2 + n^2}$$

(n)
$$\sum_{n=1}^{\infty} \sin(nx).$$

3. Udowodnij, że następujące szeregi funkcyjne są jednostajnie zbieżne na całej prostej

(a)
$$\sum_{n=0}^{\infty} \frac{\sin(nx)}{n!}$$

(a)
$$\sum_{n=0}^{\infty} \frac{\sin(nx)}{n!}$$
, (b) $\sum_{n=1}^{\infty} \frac{\cos(nx)}{10^n}$, (c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + n^2}$.

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{x^2 + n^2}$$

4. Udowodnij, że szereg funkcyjny $\sum_{n=1}^{\infty} \frac{1}{2^n \sqrt{1+nx}}$ jest zbieżny jednostajnie na zbiorze $[0,\infty)$.

5. Udowodnij, że szereg funkcyjny $\sum_{n=1}^{\infty}\frac{\log(1+nx)}{n\,x^n}$ jest zbieżny punktowo, ale nie jednostajnie na zbiorze $(1, \infty)$, oraz że jest zbieżny jednostajnie na zbiorze $[2, \infty)$.

6. Znajdź pochodną f' oraz całkę nieoznaczoną $\int f(x) dx$ następujących funkcji:

(a)
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^n$$
, (b) $f(x) = \sum_{n=0}^{\infty} \frac{1}{n^2+1} x^n$, (c) $f(x) = \sum_{n=1}^{\infty} (n+1) x^n$, (d) $f(x) = \sum_{n=1}^{\infty} x^n$.

(b)
$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n^2 + 1} x^n$$

(c)
$$f(x) = \sum_{n=0}^{\infty} (n+1) x^n$$

(d)
$$f(x) = \sum_{n=1}^{\infty} x^n$$

7. "Zwiń" następujące szeregi potęgowe, to znaczy znajdź wzór na sumę, i określ dziedzinę tak powstałej funkcji:

(a)
$$\sum_{n=0}^{\infty} x^{2n},$$

(b)
$$\sum_{n=1}^{\infty} n x^{2n}$$

(c)
$$\sum_{n=1}^{\infty} n^2 x^{2n}$$
,

(d)
$$\sum_{n=1}^{\infty} (-1)^n n x^n,$$

(e)
$$\sum_{n=1}^{\infty} n(n+1) x^n$$

(a)
$$\sum_{n=0}^{\infty} x^{2n}$$
, (b) $\sum_{n=1}^{\infty} n x^{2n}$, (c) $\sum_{n=1}^{\infty} n^2 x^{2n}$, (d) $\sum_{n=1}^{\infty} (-1)^n n x^n$, (e) $\sum_{n=1}^{\infty} n (n+1) x^n$, (f) $\sum_{n=1}^{\infty} n (n+1) (n+2) x^n$.