Int. Cl. 2:

1 BUNDESREPUBLIK DEUTSCHLAND

(1)

1

(27)

0

Offenlegungsschrift **27 07 003**

Aktenzeichen:

P 27 07 003.7-13

F 02 M 53/04

Anmeldetag:

18. 2.77

Offenlegungstag:

1. 9.77

3 Unionspriorität:

Ø Ø Ø

20. 2.76 Frankreich 7604813

(3) Bezeichnung: Vorrichtung zur Vermeidung von Einspritzbrennstoffverlusten zum

Kühlungskreislauf der Einspritzdüsen eines Dieselmotors hin

0 Anmelder:

Societe d'Etudes de Machines Thermiques S.E.M.T.,

Saint-Denis (Frankreich)

3 Vertreter: Schaefer, H., Dipl.-Ing.; Schaefer, K., Dipl.-Phys.; Pat.-Anwälte,

2000 Hamburg

0 Erfinder: Bastenhof, Dirk, Eaubonne (Frankreich)

Prüfungsantrag gem. § 28b PatG ist gestellt

GREEN STORES

PATENTANWÄLTE

DIPL. ING. H. SCHAEFER DIPL. PHYS. K. SCHAEFER D-2 HAMBURG 70, ZIESENISS1 TELEFON (040)652 96 56 TELEGRAMMADRESSE: PATENT

DATUM: 16. 2. 1977
UNSER ZEICHEN: KSch/A
THR ZEICHEN:

PATENTANWALLE SCHAFFER G. HAMBIERG TO, ZIESENISSTRASSE 6

500 IET D'ETUDES DE MACHINES THERMIQUES S.E.M.T., (1), Quai de Seine, 93202 Saint-Denis, Frankreich

latentansprüche:

- Vorrichtung zur Vermeidung von Einspritzbrennstoffverlusten zum Kühlungskreislauf einer Einspritzdüse
 eines Dieselmotors hin im Bereich der geschliffenen
 Kontaktflächen dieser Dise, die durch einen Brennstoffzufuhrkanal, eine mittlere Bohrung zur Lagerung
 des Stössels und der Düsennadel und durch wenigstens
 zwei Kanäle jeweils zur Zuführung und zum Rückfluß
 des Kühlmediums durchsetzt ist, dadurch gekennzeichnet,
 daß in Höhe der geschliffenen Kontaktfläche (18) der
 Einspritzdüse Kanäle (21, 21°) zur Rückgewinnung der
 Verluste vorgesehen sind, die zwischen dem Brennstoffzufuhrkanal (12) und den Kühlkanälen (9, 10) ausgearbeitet sind und mit diesen nicht in Verbindung
 stehen.
- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß um jeden Kühlungskanal (9, 10) ein ringförmiger Kanal (21) ausgearbeitet ist, der einen Kanal zur Rück-

709835/0770

COMMERZBANK HAMBURG 22/58226 (BLZ 200 400 00) POSTSCHECKAMT HAMBURG 225058-208
ORIGINAL INSPECTED

gewinnung der Verluste bildet und mit dem Kühlungskanal nicht in Verbindung steht.

- 3. Vorrichtung nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß die Kanäle (21) mit dem Kanal zum Rückfluß der Brennstoffverluste (5, 7) der Düsennadel verbunden sind.
- 4. Vorrichtung nach einem der vorherigen Ansprüche,

 dadurch gekennzeichnet, daß die Kanäle (21) durch
 eine in der geschliffenen Kontaktfläche des Düsenkopfes (3) ausgearbeitete Nut gebildet sind.
- 5. Vorrichtung nach einem der Ansprüche 1 3, dadurch gekennzeichnet, daß die Kanäle (21) durch zwei in den geschliffenen Kontaktflächen des Düsenkopfes (3) und des Düsenkörpers (2) jeweils gegenüberliegend ausgearbeitete Nuten gebildet sind.
- 6. Vorrichtung nach einem der Ansprüche 1 3, dadurch gekennzeichnet, daß die Kanäle (21) durch eine Abschrägung an der Endstirnfläche von zur Verbindung

709835/0770

eines jeden Kühlungskanales zwischen dem Körper (2) und dem Kopf (3) der Düse vorgesehenen Hülsen (19) gebildet sind, die zum Beispiel in Bohrungen (5) des Düsenkopfes (3) eingebaut sind.

7. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß zwei Kanäle (21°) zur Rückgewinnung der Verluste beiderseits des Brennstoffzufuhrkanales (12) ausgearbeitet sind und jeweils über ein Ende mit dem Kanal (5, 7) zum Rückfluß der Verluste der Düsennadel verbunden sind.

PATENTANWÄLTE DIPL. ING. H. SCHAEFER

DIPL. PHYS. K. SCHAEFER

PATENTANWALTE SCHAEFER, D. / HAMBURG 70, ZIESENISSTRASSE 6

D-2 HAMBURG 70, ZIESENISSTR. 6 TELEFON (040)652 96 56 TELEGRAMMADRESSE: PATENTIWE

16. 2. 1977 UNSER ZEICHEN: KSch/A

IHR ZEICHEN:

SOCIETE D'ETUDES DE MACHINES THERMIQUES S.E.M.T., 2, Quai de Seine, 93202 Saint-Denis, Frankreich

Vorrichtung zur Vermeidung von Einspritzbrennstoffverlusten zum Kühlungskreislauf der Einspritzdüsen eines Dieselmotors hin.

Die vorliegende Erfindung betrifft eine Vorrichtung zur Behebung der Gefahr von Verlusten von Einspritzbrennstoff am Kühlungskreislauf der Einspritzdüsen eines Dieselmotors und insbesondere im Bereich der geschliffenen Kontaktflächen, welche die Abdichtung zwischen dem Körper und dem Kopf der Einspritzdüsen gewährleisten.

Eine Einspritzdüse herkömmlicher Art besteht aus einem Körper und einem Kopf, die von einer mittleren Bohrung zur Lagerung des Stössels und der Nadel der Düse, einem

709335/0770

٠, ڪند.

5

Brennstoffzufuhrkanal sowie, im Falle der gekühlten Düsen, von mindestens zwei Kanälen, die jeweils zur Zufuhr und zum Rückfluß des Kühlmediums dienen, durchsetzt sind. Da diese Kanäle durch die geschliffenen Flächen der Düse, d. h. durch den Kontaktbereich zwischen dem Körper und dem Kopf der Düse geführt sind, neigt der Einspritzbrennstoff, der einen verhältnismäßig hohen Druck aufweist, dazu, sich zwischen den geschliffenen Kontaktflächen der Düse zu verbreiten, wenn aus irgendeinem Grund diese Kontaktflächen nicht einwandfrei abgedichtet sind, wobei dann der Einspritzbrennstoff in drei Richtungen entweichen kann:

- Aus der Düse heraus, wobei diese Erscheinung keine sofortige Beschädigung hervorrufen kann aber doch vermieden werden soll.
- zu dem Inneren der Düse hin, insbesondere in die mittlere Bohrung, die den Rückfluß der Verluste der Nadel ermöglicht, was an sich vorteilhaft ist, und
- in Richtung der Kanäle des Kühlungskreislaufes der Düse, was absolut unerwünscht ist.

709:35/0770

Wenn Brennstoff mit der Kühlflüssigkeit, wie zum
Beispiel mit dem Wasser des Kühlungskreislaufes
vermischt wird, ist der gesamte Kühlungskreislauf, der allen Düsen des Motors gemeinsam ist,
verunreinigt, so daß durch den gestörten Umlauf
und die beschädigte Verbindung die Leitungswandungen
schlecht abgekühlt werden und man außerdem nur
schwierig feststellen kann, welche Düse undicht ist.

Die vorliegende Erfindung hat sich zum Ziel gesetzt, diese hauptsächlichen Nachteile, die insbesondere, wenn der Kühlungskreislauf allen Düsen und Auslaß-ventilen gemeinsam ist, schlimme Folgen haben können, zu vermeiden.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß in Höhe der geschliffenen Kontaktfläche der Einspritzdüse Kanäle zur Rückgewinnung der Verluste vorgesehen sind, die zwischen dem Brennstoffzufuhrkanal und den Kühlkanälen ausgearbeitet sind und mit diesen nicht in Verbindung stehen. Die vorliegende Erfindung schafft dadurch eine Ableitung der Brennstoffverluste, bevor

- 4 -

1 1 1 1 4 x

7

diese in die Kühlungskanäle einfließen, und verhindert auf diese Weise jede Verunreinigung des Kühlungskreis-laufes.

Weitere vorteilhaftere Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.

In den Zeichnungen ist die Erfindung beispielsweise und schematisch dargestellt. Es zeigen:

- Fig. 1 eine Teilansicht einer Düse im Längsschnitt,
- Fig. 2 eine vergrößerte Ansicht der Figur 1 im Bereich der geschliffenen Kontaktflächen der Düse,
- Fig. 3 einen Schnitt gemäß Linie III-III in Figur 2 gemäß einer ersten Ausführungsform der Erfindung,
- Fig. 4 einen Schnitt gemäß Linie III-III in Figur 2 gemäß einer zweiten Ausführungsform der Erfindung,

- Fig. 5 eine Teilansicht der Figur 2 zur Erläuterung einer ersten Ausführungsart der Ausführungsform, bei welcher gemäß dem Ausführungsbeispiel der Fig. 3 ein Rückgewinnungskanal um
 jeden Kühlkanal vorgesehen ist, und
- Fig. 6 eine Teilansicht im Längsschnitt einer zweiten Ausführungsart des Rückgewinnungskanals, der gemäß der Ausführungsform der Fig. 3 um jeden Kühlkanal vorgesehen ist.

In Fig. 1 ist eine Düse bekannter Art mit einem Kühlungskreislauf, die zum Beispiel in den Dieselmotoren eingesetzt ist, teilweise dargestellt.

Die Düse 1 besteht aus einem Körper 2 und einem Kopf 3, der mit dem Zylinderkopf 4 des Motors fest verbunden ist. In dem Kopf 3 bzw. in dem Körper 2 der Düse sind eine erste mittlere Bohrung 5 zur Lagerung des Stößels 6 der Düse bzw. eine zweite mittlere Bohrung 7 zur Führung der Düsennadel 8 ausgearbeitet, wobei diese beiden Bohrungen 5 und 7 zueinander fluchtend angeordnet sind.

9

Der Kühlungskreislauf der Düse 1 umfaßt wenigstens einen Kanal 9 zur Zufuhr sowie einen Kanal 10 zum Rückfluß des Kühlmediums, wobei die Kanäle jeweils durch den Kopf 3 und den Körper 2 der Düse hindurch geführt sind und in Höhe des Düsenkörpers 2 über eine ringförmige Kammer 11 in Verbindung stehen. Der Kopf 3 und der Körper 2 der Düse sind außerdem von einer Brennstoffzufuhrleitung 12 (Figur 3) durchsetzt, welche ihrerseits zu einer ringförmigen Mut 13 führt, die das Ende 14 der in dem Düsenkörper 2 angeordneten Wadel 8 umschließt. Der in die ringförmige Nut 8 gelangende Brennstoff kann entsprechend der Bewegung der Nadel 8 zu einem in Verlängerung der Bohrung 7 des Körpers 2 vorgesehenen Kanal 15 fließen und durch Zersträubungsbohrungen 16 in die nicht dargestellte Verbrennungskammer münden.

Der Körper 2 und der Kopf 3, die im allgemeinen zylinderförmig sind, werden über eine Mutter 17, die um den Körper
2 und den Kopf 3 im Bereich ihrer Verbindungsstelle 18,
welche durch die geschliffenen gegenüberliegenden Kontaktflächen derselben begrenzt ist, geschraubt wird, gegenein-

709335/0770

- 1-

K

ander in Berührung gehalten. Diese geschliffenen Flächen dienen dazu, zwischen dem Körper 2 und dem Kopf 3 der Düse 1 einen einwandfreien abgedichteten Kontakt zu gewährleisten.

Aus Figur 2, die einen Teil der Düse 1 in Höhe der Verbindungsstelle 18 der geschliffenen Flächen des Düsenkörpers 2 und des Düsenkopfes 3 darstellt, ist zu ersehen, daß in Höhe des Kopfes 3 und im Bereich der Verbindungsstelle 18 jeweils Hülsen 19 um die Kühlkanäle 9 und 10 sowie eine Hülse 20 um die in dem Düsenkopf 3 ausgearbeitete Bohrung 5 vorgehsehen sind. Diese Hülsen 19, 20, die in Bohrungen des Düsenkopfes 3 eingebaut sind, münden in Höhe der Verbeindungsstelle 18 und verbessern die Abdichtung im Bereich der Kühlkanäle 9 und 10 und des durch die Bohrungen 7 und 5 begrenzten Kankales zum Rückfluß der Verluste.

Bei dem dargestellten Ausführungsbeispiel ist um jeden
Kühlungskanal 9, 10 in Höhe der Verbindungsstelle 18
des Düsenkopfes 3 und des Düsenkörpers 2 ein ringförmiger
Kanal 21 vorgesehen, der als Rückgewinnungskanal dient
und durch die Abschrägung der Endstirnflächen der Rülsen 19

- 8' -

M

in Höhe der Verbindungsstelle 18 hergestellt wird.

Jeder Ringkanal 21 steht über einen in dem Düsenkopf 3 ausgearbeiteten radialen Kanal 22 mit dem

Kanal 5, 7 zur Rüchgewinnung der Brennstoffverluste
der Düse 1 in Verbindung.

Die Fig. 5 zeigt eine andere Ausführungsart der Ringkanäle 21, welche in diesem Fall ebenfalls in dem Kopf 3 der Düse 1 jedoch außerhalb der Hülsen 19 ausgearbeitet sind.

Wenn keine zwischengeschalteten Hülsen im Bereich der Kühlkanäle zwischen dem Düsenkopf 3 und dem Düsenkörper 2 vorgesehen sind, werden, wie Fig. 6 zeigt, die Ringkanäle bzw. Nuten 21 in dem Kopf 3 der Düse ausgearbeitet. Sie können aber auch in dem Körper 2 oder teilweise in dem Kopf 3 und in dem Körper 2, auf jeden Fall aber im Bereich der genannten Verbindungszone 18 vorgesehen sein.

In Figur 4 ist eine zweite Ausführungsart für die Rückgewinnungskanäle im Bereich der Verbindungszone 18 zwischen dem Körper und dem Kopf der Düse dargestellt. In diesem Fall sind zwei radial gerichtete Kanäle 21° vorgesehen, - 8 -

12

die beiderseits der Brennstoffzufuhrleitung 12
angeordnet sind und mit letzterer nicht in Verbindung stehen, wobei jedoch jeder Kanal 21' mit
dem Kanal 5, 6 zum Rückfluß der Brennstoffverluste der Düse 1 verbunden ist. Diese radial gerichteten
Rückgewinnungskanäle reichen im wesentlichen bis
zum Umfang der Verbindungszone 18 zwischen dem
Körper 2 und dem Kopf 3 der Düse.

Wenn im Bereich der durch die geschliffenen Kontaktflächen des Düsenkörpers 2 und des Düsenkopfes 3 begrenzten Verbindungszone 18 ausgehend von der Brennstoffzufuhrleitung 12 Brennstoffverluste hervorgerufen werden, verbreitet sich der Brennstoff gemäß
den Pfeilen C in Figuren 3 und 4 in alle Richtungen.
Aus diesem Grund fließt der verlorengehende Brennstoff unmittelbar nach außen zum Rückflußkanal 5, 7
hin ab und zwar über die ringförmigen Kanäle 21, die
die Kühlungskanäle 9 und 10 (Pig. 3) umgeben, bzw. über
die radial gerichteten, die Brennstoffzufuhrleitung 12
umgebenden Kanäle 21'. Sobald der Brennstoff in die Rückgewinnungskanäle gelangt, fließt er entweder über die
radial gerichteten Kanäle 22 (Pig. 3) oder unmittelbar
durch die Kanäle 21' (Pig. 4) zu dem Kanal zur Rückge-

708135/0770

- 10 -

13

winnung der Verluste zurück.

Im Bereich der Verbindungszone 18 zwischen dem Düsenkörper und dem Düsenkopf können die Brennstoffverluste auf diese Weise nicht in die Kühlungskanäle 9 und 10 gelangen, wo sie den Kühlungskreislauf verunreinigen würden.

Wenn der Kühlungskreislauf den Einspritzdüsen und den Auspuffventilen gemeinsam ist, ist auf diese Weise eine Verunreinigung der Kühlflüssigkeit im Bereich der Einspritzdüsen sicher verhindert, so daß die Ventile einwandfrei abgekühlt werden.

Mit einer derartigen Vorrichtung kann man außerdem am Rückflußkanal schnell feststellen, welche Einspritzdüse undicht ist, während mit den bekannten Verfahren und Vorrichtungen diese Möglichkeit nicht gegeben ist, da dort zum größten Teil die Verluste zu dem allen Einspritzdüsen gemeinsamen Kühlungskreislauf hin gerichtet sind und aus diesem Grund nicht untersucht werden können.

27 07 003 F 02 M 53/04 18. Februar 1977 1. September 1977

708:35/0770