$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + + \beta_n X_n + \varepsilon$$

LET'S PARSE THIS

$$Y \neq \beta_0 + \beta_1 X_1 + \beta_2 X_2 + + \beta_n X_n + \varepsilon$$

Y CAN BE EXPLAINED BY

$$Y \neq \beta_0 + \beta_1 X_1 + \beta_2 X_2 + + \beta_n X_n + \varepsilon$$

Y CAN BE EXPLAINED BY

A BASE VALUE

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_n X_n + \epsilon$$

Y CAN BE EXPLAINED BY
A BASE VALUE

A LINEAR COMBINATION OF THE INDEPENDENT VARIABLES

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + + \beta_n X_n + \epsilon$$

Y CAN BE EXPLAINED BY
A BASE VALUE
A LINEAR COMBINATION OF
THE INDEPENDENT VARIABLES

SOME RANDOM VARIATION THAT IS SUBJECT TO CHANCE

$$Y = (\beta_0) + (\beta_1)X_1 + (\beta_2)X_2 + + (\beta_n)X_n + \varepsilon$$

THE OBJECTIVE OF LINEAR REGRESSION IS TO FIND THE PARAMETERS

Y CAN BE EXPLAINED BY
A BASE VALUE
A LINEAR COMBINATION OF
THE INDEPENDENT VARIABLES
SOME RANDOM VARIATION
THAT IS SUBJECT TO CHANCE

$$Y = (\beta_0) + (\beta_1)X_1 + (\beta_2)X_2 + + (\beta_n)X_n + \varepsilon$$

THE OBJECTIVE OF LINEAR REGRESSION IS TO FIND THE PARAMETERS

Y CAN BE EXPLAINED BY
A BASE VALUE
A LINEAR COMBINATION OF
THE INDEPENDENT VARIABLES
SOME RANDOM VARIATION
THAT IS SUBJECT TO CHANCE

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + + \beta_n X_n + \varepsilon$$

VISUALLY REGRESSION CAN BE SEEN AS CURVE FITTING

Y CAN BE EXPLAINED BY
A BASE VALUE
A LINEAR COMBINATION OF
THE INDEPENDENT VARIABLES
SOME RANDOM VARIATION
THAT IS SUBJECT TO CHANCE

HERE IS SOME PAST PATA FOR X AND Y

LINEAR REGRESSION FINDS THE LINE THAT IS THE BEST FIT

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$

INTERCEPT OF THE LINE

$$Y = \beta_0 + (\beta_1)X_1 + \varepsilon$$

SLOPÉ OF THE LINE

$$Y = (\beta_0 + \beta_1 X_1) + \varepsilon$$

THE PREDICTED VALUE OF Y USING THE LINE

$$Y = \hat{V} + \varepsilon$$

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$

$$Y = \hat{V} + \varepsilon$$

EKROK (DISTANCE BETWEEN THE ACTUAL POINT AND THE LINE)

$$Y = \beta_0 + \beta_1 X_1 + \epsilon$$

$$Y = \hat{V} + \epsilon$$

ERROR THESE ARE ALSO CALLED RESIDUALS

$$Y = \beta_0 + \beta_1 X_1 + \epsilon$$

$$Y = \hat{V} + \epsilon$$

IRESIDUALS) ERROR

THE LEFT OVER PARTS OF Y THAT ARE NOT EXPLAINED BY X1

HOW DO WE FIND THE "BEST FIT" LINE?

HOW DO WE FIND THE "BEST FIT" LINE?

FIND THE LINE THAT MINIMIZES THE DISTANCES BETWEEN THE POINTS AND THE LINE

HOW DO WE FIND THE "BEST FIT" LINE?

FIND THE LINE THAT MINIMIZES THE DISTANCES BETWEEN THE POINTS AND THE LINE

HOW DO WE FIND THE "BEST FIT" LINE?

FIND THE LINE THAT MINIMIZES THE ERRORS

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$

$$Y = \hat{V} + \varepsilon$$

HOW DO WE FIND THE "BEST FIT" LINE?

FIND THE LINE THAT MINIMIZES THE ERRORS

HOW DO WE FIND THE "BEST FIT" LINE?

FIND THE LINE THAT MINIMIZES THE ERRORS

THIS IS PONE USING THE ORDINARY LEAST SQUARES METHOD

THIS IS PONE USING THE ORDINARY LEAST SQUARES METHOD

OLS MINIMIZES THE SUM OF SQUARES OF THE ERRORS

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$

$$Y = \hat{Y} + \varepsilon$$

ORDINARY LEAST SQUARES METHOD

R-SQUARED IS A MEASURE OF HOW WELL THE LINE FITS THE PAST DATA

ORPINARY LEAST SQUARES METHOD

R-SQUARED

TELLS US HOW MUCH OF THE VARIATION IN Y IS EXPLAINED BY THE INDEPENDENT VARIABLES

ORPINARY LEAST SQUARES METHOD

R-SQUARED

$$R^{2} = \frac{SSR}{SST} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

SUM OF SQUARES OF TOTAL PEVIATION FROM MEAN

VARIATION IN Y

ORPINARY LEAST SQUARES METHOD

R-SQUARED

$$R^{2} = \frac{SSR}{SST} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (\hat{y}_{i} - \bar{y})^{2}}$$

SUM OF SQUARES OF REGRESSION

VARIATION IN Y EXPLAINED BY Ŷ