Data Science and Deep Learning (2024)

Lecture 3

Representation Learning

Stan Z. Li

Encoding and Decoding

Samples on low-dim but complex manifold in highdim data space

Features in lower-dim Euclidean embedding space

Key Problems in Representation Learning

- Q1(a). Representation Learning: How to encode observable data into a latent space (embedding)
- Q1(b). Generative Learning: How to decode a latent code into observable data
- Q2. Neural Networks: How to design a (parametric) neural network architecture to perform the desired (nonlinear) transformation
- Q3. Optimization: How to learn (find) optimal parameters for the neural network

Purposes of Representation Learning

- **1.Feature Learning**: To automatically discover the representations or features from raw data that are most useful for classification or other tasks.
- **2.Dimensionality Reduction**: To reduce the dimensionality of the data to improve computational efficiency, reduce noise, and facilitate data visualization.

3.....

1D Manifold in 3D Space

2D Manifold in 3D Space

The Best Representation:

Swiss Roll:

 $x=\phi\cos(\phi)$, $y=\phi\sin(\phi)$, $z=\psi$

 $1.5\pi \le \phi \le 4.5\pi$, $0 \le \psi \le 10$

Manifold: 2D rectangle generated by two latent variables φ , ψ

Linear Projection

- x --- high dimensional data (N*1 vector)
- y --- low dimensional feature (n*1 vector)
- P --- projection matrix (n*N matrix)
- $y = Px^T$
- P can be learned from training data,
 - e.g. Principal Component Analysis (PCA)

Linear Regression Fitting

Principal Component Analysis (PCA)

component axes that maximize the variance

Step 1: $x-\overline{x} \rightarrow x$

Step 2: $y = Px^{T} = f(x)$

Reconstruction by $x^T = P^{-1}y$?

Linear Discriminant Analysis (LDA)

maximizing the component axes for class-separation

Thanks

