CERTIFICATE OF CALIBRATION

ISSUED BY UL VS LTD

DATE OF ISSUE: 29/Nov/2017

CERTIFICATE NUMBER: 11903932JD01C

5248

UL VS LTD PAVILION A ASHWOOD PARK, ASHWOOD WAY BASINGSTOKE, HAMPSHIRE RG23 8BG, UK

TEL: +44 (0) 1256 312000 FAX: +44 (0) 1256 312001

Email: LST.UK.Calibration@ul.com

(UL)

Page 1 of 10

APPROVED SIGNATORY

M. Marca

Naseer Mirza

Customer:

UL VS Inc 47173 Benicia Street Fremont, CA 94538, USA

Equipment Details:

Description:

Dipole Validation Kit

Date of Receipt:

20/Nov/2017

Manufacturer:

Speag

Type/Model Number:

D900V2

Serial Number:

108

Calibration Date:

22/Nov/2017

Calibrated By:

Chanthu Thevarajah

Laboratory Engineer

Signature:

All Calibration have been conducted in the closed laboratory facility: Lab Temperature (22 \pm 3) $^{\circ}$ C and humidity < 70%

This certificate is issued in accordance with the laboratory accreditation requirements of the United Kingdom Accreditation Service. It provides traceability of measurement to the SI system of units and/or to units of measurement realised at the National Physical Laboratory or other recognised national metrology institutes. This certificate may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

Use of the UKAS mark demonstrates that compliance with the requirements of BS/EN/ISO/IEC 17025 has been independently assessed.

CERTIFICATE NUMBER: 11903932JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 2 of 10

The calibration methods and procedures used were as detailed in:

- 1. **IEC 62209-1:2005**: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)
- 2. **IEC 62209-2:2010:** Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)
- 3. **IEEE 1528: 2013: IEEE** Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques
- 4. FCC KDB Publication Number: "KDB865664 D01 SAR Measurement 100 MHz to 6 GHz"
- 5. SPEAG DASY4/ DASY5 System Handbook

The measuring equipment used to perform the calibration, documented in this certificate has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

UL No.	Instrument	Manufacturer	Type No.	Serial No.	Date Last Calibrated	Cal. Interval (Months)
A2546	Data Acquisition Electronics	SPEAG	DAE4	1435	10 Feb 2017	12
A2545	Probe	SPEAG	ES3DV4	3395	04 May 2017	12
A2588	Dipole	SPEAG	D900V2	1d168	21 Sep 2017	12
PRE0151451	Power Monitoring Kit	Art-Fi	ART 100850-01	0001	Cal as part of System	12
M1855	Power Sensor	Rhode & Schwarz	NRP-Z51	103246	08 Nov 2017	12
M1015	Network Analyser	Agilent Technologies	8753ES	US39172406	10 Oct 2017	12
PRE0151154	Network Analyser	Rhode & Schwarz	ZND8	100151	22 Nov 2016	24
PRE0151877	Calibration Kit	Rhode & Schwarz	Z135	102947-Bt	02 Dec 2016	12
M1838	Signal Generator	Rhode & Schwarz	SME06	831377/005	30 Mars 2017	12

CERTIFICATE NUMBER: 11903932JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 3 of 10

SAR System Specification

Robot System Positioner:	Stäubli Unimation Corp. Robot Model: TX60L		
Robot Serial Number:	F14/5T5ZA1/A/01		
DASY Version:	DASY 52 (v52.8.8.1258)		
Phantom: Flat section of SAM Twin Phantom			
Distance Dipole Centre:	15 mm (with spacer)		
Frequency:	900 MHz		

Dielectric Property Measurements – Head Simulating Liquid (HSL)

Simulant Liquid	Frequency	Room	Temp	Liqui	d Temp	Parameters	Target Value	Measured	Uncertainty
	(MHz)	Start	End	Start	End			Value	(%)
			00.500	04.000	εr	41.50	41.56	± 5%	
Head	900	21.0 °C	21.0 ℃	20.5°C	21.0°C	σ	0.97	0.97	± 5%

SAR Results – Head Simulating Liquid (HSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
	SAR averaged over 1g	2.69 W/Kg	10.70 W/Kg	± 17.57%
Head	SAR averaged over 10g	1.73 W/Kg	6.88 W/Kg	± 17.32%

Antenna Parameters – Head Simulating Liquid (HSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
Head	Impedance	50.666 Ω 4.46 jΩ	$\pm 0.28 \Omega \pm 0.044 j\Omega$
	Return Loss	27.83	± 2.03 dB

CERTIFICATE NUMBER: 11903932JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 4 of 10

Dielectric Property Measurements – Body Simulating Liquid (MSL)

Simulant Liquid	Frequency	Room	Temp	Liquid	d Temp	Parameters	Target Value	Measured Value	Uncertainty (%)
	(MHz)	Start	End	Start	End				
	000	04.000	04.0.00	04.000	04.000	εr	55.00	54.24	± 5%
Body	900	21.0 °C	21.0 °C	21.0°C	21.0°C	σ	1.05	1.02	± 5%

SAR Results - Body Simulating Liquid (MSL)

Simulant Liquid	SAR Measured	250 mW input Power	Normalised to 1.00 W	Uncertainty (%)
	SAR averaged over 1g	2.73 W/Kg	10.86 W/Kg	± 18.06%
Body	SAR averaged over 10g	1.80 W/Kg	7.16 W/Kg	± 17.44%

Antenna Parameters – Body Simulating Liquid (MSL)

Simulant Liquid	Parameter	Measured Level	Uncertainty (%)
	Impedance	53.72 Ω 8.72 jΩ	± 0.28 Ω ± 0.044 jΩ
Body	Return Loss	21.25	± 2.03 dB

CERTIFICATE NUMBER: 11903932JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 5 of 10

DASY Validation Scan for Head Stimulating Liquid (HSL)

Communication System: UID 0, CW (0); Frequency: 900 MHz; Duty Cycle: 1:1

Medium: 750,835,900,1800,1900 MHz HSL Medium parameters used: f = 900 MHz; $\sigma = 0.967$ S/m; $\epsilon_r = 41.565$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN3995; ConvF(10.1, 10.1, 10.1); Calibrated: 04/05/2017;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1435; Calibrated: 10/02/2017
- Phantom: SAM (30deg probe tilt) with CRP v5.0; Type: QD000P40CD; Serial: TP:xxxx
- ; SEMCAD X Version 14.6.10 (7372)

Configuration/d=15mm, Pin=250mW 2 2/Area Scan (81x161x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 3.17 W/kg

Configuration/d=15mm, Pin=250mW 2 2/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.39 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 4.11 W/kg

SAR(1 g) = 2.69 W/kg; SAR(10 g) = 1.73 W/kg

Maximum value of SAR (measured) = 3.15 W/kg

CERTIFICATE NUMBER: 11903932JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 6 of 10

Impedance Measurement Plot for Head Stimulating Liquid (HSL)

CERTIFICATE NUMBER: 11903932JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 7 of 10

Return Loss Measurement Plot for Head Stimulating Liquid (HSL)

CERTIFICATE NUMBER: 11903932JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 8 of 10

DASY Validation Scan for Body Stimulating Liquid (MSL)

Communication System: UID 0, CW (0); Frequency: 900 MHz; Duty Cycle: 1:1

Medium: MSL(750,835,900,1800,1900,5G) Medium parameters used: f = 900 MHz; $\sigma = 1.018$ S/m; $\epsilon_r = 54.24$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3995; ConvF(9.81, 9.81, 9.81); Calibrated: 04/05/2017;

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1435; Calibrated: 10/02/2017

- Phantom: SAM (20deg probe tilt) with CRP v4.0; Type: QD000P40CC; Serial: TP:xxxx

-; SEMCAD X Version 14.6.10 (7372)

SAR/d=15mm, Pin=250 mW, dist=10.0mm (ET-Probe)/Area Scan (81x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 3.21 W/kg

SAR/d=15mm, Pin=250 mW, dist=10.0mm (ET-Probe)/Zoom Scan (5x5x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.69 V/m; Power Drift = -0.77 dB

Peak SAR (extrapolated) = 4.04 W/kg

SAR(1 g) = 2.73 W/kg; SAR(10 g) = 1.8 W/kgMaximum value of SAR (measured) = 2.94 W/kg

CERTIFICATE NUMBER: 11903932JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 9 of 10

Impedance Measurement Plot for Body Stimulating Liquid (MSL)

CERTIFICATE NUMBER: 11903932JD01C

UKAS Accredited Calibration Laboratory No. 5248

Page 10 of 10

Return Loss Measurement Plot for Body Stimulating Liquid (MSL)

Calibration Certificate Label:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903932JD01C

Instrument ID: 108

Calibration Date: 22/Nov/2017

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903932JD01C

Instrument ID: 108

Calibration Date: 22/Nov/2017

Calibration Due Date:

UL VS LTD - Tel: +44 (0) 1256312000

Certificate Number: 11903932JD01C

Instrument ID: 108

Calibration Date: 22/Nov/2017

Calibration Due Date: