System Architecture

LPCNOD for RF Communications

Dimension: 16 x 11 mm or 6.25 x 4.50 inch

ARMSVR for RF communications

http://www.friendlyarm.net/

FriendlyARM

TX1SVR for RF communications

https://developer.nvidia.com/e mbedded/buy/jetson-tx2

http://elinux.org/Jetson/TX1 SPI

NVIDIA Maxwell ™, 256 CUDA cores

Quad ARM® A57/2 MB L2

video 4K x 2K 30 Hz Encode (HEVC) 4K x 2K 60 Hz Decode (10-Bit Support)

> 4 GB 64 bit LPDDR4 25.6 GB/s

2x DSI, 1x eDP 1.4 / DP 1.2 / HDMI

Up to 6 Cameras (2 Lane) CSI2 D-PHY 1.1 (1.5 Gbps/Lane)

Gen 2 | 1x4 + 1x1

16 GB eMMC, SDIO, SATA

UART, SPI, I2C, I2S, GPI0s

TX1SVR Architecture Overview

TX1SVR Pinout (1)

NVIDIA Jetson TX1 J21 Header Pinout

	3.3 VDC Power	0	2	5.0 VDC Power		GPIO_EXP_P17_3V3 From GPIO Expander (P17)	15	16	AO_DMIC_IN_DAT_LVL Unused
	I2C_GP_DAT General I2C #0 Data 3.3.V	3) (4	5.0 VDC Power		3.3 VDC Power	17	18	GPIO16_MDM_WAKE_AP Modem Wake AP GPIO
	I2C_GP_CLK General I2C #0 Data 3.3.V	5	6	GND		SPI_MOSI SPI #1 Master Out/Slave In	19	20	GND
	AUDIO_MCLK Audio Master Clock (1.8/3.3.V)	7	8	UARTO_TX UART #0 Transmit		SPI1_MISO SPI #1 Master In/Slave Out	21	22	GPIO_EXP_P16_3V3 From GPIO Epander (P16)
	GND	9 (10	UARTO_RX UART #0 Receive		SPI_CLK SPI #1 Shift Clock	23	24	SPI1_CS0# SPI #1 Chip Select #0
	UARTO_RTS# UART #0 Request to	11)	12	I2S0_SCLK Audio I2S #0 Clock		GND	25	26	SPI1_CS1# SPI #1 Chip Select #1
gpio38	GPIO_PE6 Audio Code Interrupt	13	14	GND		I2C_GP1_DAT General I2C #1 Data (3.3V)	27	28	I2C_GP1_CLK General I2C #1 Clock (3.3V)
Harry Li, Ph.D. SJSU CMPE 245					gpio219	GPIO19_AUD_RST Audio Reset (1.8/3.3V)	29	30	GND

TX1SVR Pinout (2)

NVIDIA Jetson TX1 J21 Header Pinout

http://www.jetsonhacks.com/2015/12/29/gpio-interfacing-nvidia-jetson-tx1/

Sysfs GPIO	Pin	Jetson Signal Name	PUPD
gpio36	Pin 32	AO_DMIC_IN_CLK	PULL_DOWN
gpio37	Pin 16	AO_DMIC_IN_DAT	PULL_DOWN
gpio38	Pin 13	GPIO20/AUD_INT	PULL_DOWN
gpio63	Pin 33	GPIO11_AP_WAKE_BT	PULL_DOWN
gpio184	Pin 18	GPIO16_MDM_WAKE_AP	PULL_DOWN
gpio186	Pin 31	GPIO9_MOTION_INT	PULL_UP
gpio187	Pin 37	GPIO8_ALS_PROX_INT	PULL_DOWN
gpio219	Pin 29	GPIO19_AUD_RST	PULL_UP

Sysfs GPIO is the name of the virtual file that can be used to access the GPIO port. The file is accessed in the '/sys/class/gpio' directory. Signals on the header can be configured to run at 3.3V or 1.8V by shorting the appropriate pins on the J24 header. For this example, 3.3V is selected, which is the standard configuration. Signals on the J21 header can be configured with a resistor as a PULL_DOWN, PULL_UP, or NORMAL circuit. The standard configuration is noted in the table. The resistance value is $4K\Omega$.

TX1SVR Input/Output Testing

http://www.jetsonhacks.com/2015/12/29/gpio-interfacing-nvidia-jetson-tx1/

TX1SVR GPIO Driver

https://github.com/jetsonhacks/jetsonTX1GPIO

From gpio.h, see the GPIO pin selection

TK1SVR Expansion Connectors

GPIO Interfacing – NVIDIA Jetson TX1

http://www.jetsonhacks.com/ 2015/12/29/gpio-interfacingnvidia-jetson-tx1/

http://elinux.org/Jetson/GPIO#GPIO_on_Jetson_TK1

Disable by default

Port +	sysfs filename +	Physical pin +
GPIO_PU0	gpio160	Pin 40 on J3A2
GPIO_PU1	gpio161	Pin 43 on J3A2
GPIO_PU2	gpio162	Pin 46 on J3A2
GPIO_PU3	gpio163	Pin 49 on J3A2
GPIO_PU4	gpio164	Pin 52 on J3A2
GPIO_PU5	gpio165	Pin 55 on J3A2
GPIO_PU6	gpio166	Pin 58 on J3A2
GPIO_PH1	gpio57	Pin 50 on J3A1

http://www.jetsonhacks.com/2015/09/17/gpio-nvidia-jetson-tk1/

Harry Li, Ph.D. SJSU CMPE 245

RF Module Design

J2 connects to node N_j for ANT1 landline based testing ANT2 J2: **Optional Input RJ45** RF Rx **Testing Circuit Optional** J1: RF Tx **Output Testing RJ45** 12345678 Circuit J1 connects to LPCNOD or **RJ45 Pinout** ARMSVR or TX2SVR T-568A Note: 1. identify the data pin from the TX or RX module, and link it to the properly configured GPIO pins 1. White Green 5. White Blue of the microprocessor 2. Green 6. Orange 3. White Orange 7. White Brown 4. Blue 8. Brown