ON GENERALIZED LEHMER SEQUENCES

BUI MINH PHONG (Budapest)*

1. Introduction

Let $G=G(G_0, G_1, A, B)=\{G_n\}_0^\infty$ be a second order linear recurrence defined by integer constants G_0, G_1, A, B and the recurrence

(1)
$$G_n = AG_{n-1} - BG_{n-2} \quad (n > 1),$$

where $AB\neq 0$, $D=A^2-4B\neq 0$ and $|G_0|+|G_1|\neq 0$. If $G_0=0$ and $G_1=1$, then we denote the sequence G(0,1,A,B) by R=R(A,B). The sequence R is called Lucas sequence and R_n is called a Lucas number.

In 1930 D. H. Lehmer [2] generalized some results of Lucas on the divisibility properties of Lucas numbers to the terms of the sequence $U=U(L,M)=\{U_n\}_0^\infty$ which is defined by integer constants $L,M,U_0=0,\ U_1=1$ and the recurrence

$$U_n = \begin{cases} LU_{n-1} - MU_{n-2} & \text{for } n \text{ odd} \\ U_{n-1} - MU_{n-2} & \text{for } n \text{ even,} \end{cases}$$

where $LM\neq 0$ and $K=L-4M\neq 0$. The sequence U is called a Lehmer sequence and U_n is a Lehmer number. It should be observed that Lucas numbers are also Lehmer numbers up to a multiplicative factor.

Here we shall define generalized Lehmer sequences. Let H_0 , H_1 , L and M be integers with the conditions $LM \neq 0$, $K=L-4M \neq 0$ and $|H_0|+|H_1|\neq 0$. A generalized Lehmer sequence is a sequence H_0 , H_1 , ..., H_n , ... of integers satisfying a relation

(2)
$$H_{n} = \begin{cases} LH_{n-1} - MH_{n-2} & \text{for } n \text{ odd} \\ H_{n-1} - MH_{n-2} & \text{for } n \text{ even.} \end{cases}$$

We shall denote it by $H=H(H_0, H_1, L, M)=\{H_n\}_{n=0}^{\infty}$, and so H(0, 1, L, M) is the Lehmer sequence U(L, M).

The purpose of this paper is to study the properties of the generalized Lehmer sequences $H(H_0, H_1, L, M)$. We show that the terms of sequences G are also terms of sequences H up to a multiplicative factor and we give and explicit form of H_n . We improve a result of P. Kiss [1] concerning the zero terms in the sequences G and H. Furthermore we give lower and upper bounds for the terms of the sequences H.

^{*} Research (partially) supported by Hungarian National Foundation for Scientific Research Grant No. 907.

2. Preliminary results

Throughout this paper we shall use the notation

$$\varepsilon(n) = \begin{cases} 1 & \text{for } n & \text{odd} \\ 0 & \text{for } n & \text{even.} \end{cases}$$

Using the function $\varepsilon(n)$, the relation (2) can be written in the form

(3)
$$H_n = L^{\varepsilon(n)} H_{n-1} - M H_{n-2} \quad \text{(for } n > 1\text{)}.$$

We prove some properties of the sequence $H(H_0, H_1, L, M)$.

PROPOSITION 1. If $H_0=G_0$, $H_1=AG_1$, $L=A^2$ and M=B, then

(4)
$$G_n(G_0, G_1, A, B) = A^{-\epsilon(n)} H_n(G_0, AG_1, A^2, B)$$
 for any $n \ge 0$.

PROOF. We shall prove (4) by induction on n. The statement is obvious for n=0 and n=1. If (4) is true for n-1 and n $(n\ge 1)$, then using (1) and (3), we have

$$G_{n+1} = AG_n - BG_{n-1} = A^{\varepsilon(n+1) + \varepsilon(n)} G_n - BA^{\varepsilon(n-1) - \varepsilon(n+1)} G_{n-1} =$$

$$=A^{-\varepsilon(n+1)}[A^{2\varepsilon(n+1)}H_n-BH_{n-1}]=A^{-\varepsilon(n+1)}[L^{\varepsilon(n+1)}H_n-MH_{n-1}]=A^{-\varepsilon(n+1)}H_{n+1},$$
 which proves the assertion.

REMARKS. a) From Proposition 1 it follows that the sequences $H(H_0, H_1, L, M)$ are more general than the sequences $G(G_0, G_1, A, B)$.

b) In particular we have

(5)
$$R_n(A, B) = A^{-\varepsilon(n)} H_n(0, A, A^2, B) = A^{1-\varepsilon(n)} U_n(A^2, B).$$

PROPOSITION 2. If $U_n = U_n(L, M)$ and $H_n = H_n(H_0, H_1, L, M)$ then

(6)
$$H_{n} = H_{1} U_{n} - L^{\varepsilon(n)} M H_{0} U_{n-1}$$

for any $n \ge 0$ with the convention $MU_{-1} = -1$.

PROOF. From the definition of the sequences U and H, (6) is obvious for n=0 and n=1. Suppose that (6) is true for n-1 and n. Then by (3) using that $\varepsilon(n+1)=\varepsilon(n-1)$ we have

$$\begin{split} H_{n+1} &= L^{\varepsilon(n+1)} H_n - M H_{n-1} = L^{\varepsilon(n+1)} \left[H_1 \, U_n - L^{\varepsilon(n)} \, M H_0 \, U_{n-1} \right] - \\ &- M \left[H_1 \, U_{n-1} - L^{\varepsilon(n-1)} \, M H_0 \, U_{n-2} \right] = H_1 \left[L^{\varepsilon(n+1)} \, U_n - M U_{n-1} \right] - \\ &- L^{\varepsilon(n+1)} \, M H_0 \left[L^{\varepsilon(n)} \, U_{n-1} - M U_{n-2} \right] = H_1 \, U_{n+1} - L^{\varepsilon(n+1)} \, M H_0 \, U_n, \end{split}$$

which proves (6) by induction on n.

PROPOSITION 3. Let α and β be the roots of the equation $z^2 - \sqrt{L}z + M = 0$. If $a = H_1 - \sqrt{L}H_0\beta$ and $b = H_1 - \sqrt{L}H_0\alpha$, then we have

(7)
$$H_n(H_0, H_1, L, M) = (\sqrt{L})^{\varepsilon(n)} \frac{a\alpha^n - b\beta^n}{\alpha^2 - \beta^2}.$$

Proof. It is well-known that

(8)
$$U_n = U_n(L, M) = (\sqrt{L})^{\varepsilon(n)} \frac{\alpha^n - \beta^n}{\alpha^2 - \beta^2}$$

(see e.g. [7]). Since $\alpha + \beta = \sqrt{L}$ and $\alpha\beta = M$, using (6) and (8) we get

$$H_{n} = H_{1}U_{n} - L^{\varepsilon(n)} MH_{0}U_{n-1} =$$

$$= \frac{H_{1}(\sqrt{L})^{\varepsilon(n)}(\alpha^{n} - \beta^{n}) - L^{\varepsilon(n)} H_{0}(\alpha^{n} \beta - \alpha \beta^{n})(\sqrt{L})^{\varepsilon(n-1)}}{\alpha^{2} - \beta^{2}} =$$

$$= \frac{(\sqrt{L})^{\varepsilon(n)}}{\alpha^{2} - \beta^{2}} \left[(H_{1} - \sqrt{L}H_{0}\beta)\alpha^{n} - (H_{1} - \sqrt{L}H_{0}\alpha)\beta^{n} \right] =$$

$$= (\sqrt{L})^{\varepsilon(n)} \frac{a\alpha^{n} - b\beta^{n}}{\alpha^{2} - \beta^{2}},$$

where $a=H_1-\sqrt{L}H_0\beta$ and $b=H_1-\sqrt{L}H_0\alpha$.

REMARKS. a) From (4) and (7) we get the well-known formula

(9)
$$G_n(G_0, G_1, A, B) = \frac{c\delta^n - d\gamma^n}{\delta - \gamma},$$

where δ and γ are the roots of the equation $x^2 - Ax + B = 0$ and $c = G_1 - G_0 \gamma$, $d = G_1 - G_0 \delta$ (see e.g. [5]).

b) In what follows we say that the sequences $G(G_0, G_1, A, B)$ and

b) In what follows we say that the sequences $G(G_0, G_1, A, B)$ and $H(H_0, H_1, L, M)$ are non-degenerate if $cd\delta\gamma \neq 0$, δ/γ and $ab\alpha\beta \neq 0$, α/β are not roots of unity, respectively.

PROPOSITION 4. For any $n \ge 0$

(10)
$$H_n(H_0, H_1, L, M) = -i^{n+\epsilon(n)}H_n(-H_0, H_1, -L, -M),$$

where $i^2 = -1$.

PROOF. We shall prove (10) by induction on n. Our statement is obvious for n=0 and n=1. If (10) is true for n-1 and n, then using (3) and $i^2=-1$, we have

$$H_{n+1}(H_0, H_1, L, M) = H_{n+1} = L^{\varepsilon(n+1)}H_n - MH_{n-1} =$$

$$= i^{2\varepsilon(n+1)}(-L)^{\varepsilon(n+1)}(-i^{n+\varepsilon(n)})H_n(-H_0, H_1, -L, -M) -$$

$$-M(-i^{n-1+\varepsilon(n-1)})H_{n-1}(-H_0, H_1, -L, -M) =$$

$$= -i^{n+1+\varepsilon(n+1)}[(-L)^{\varepsilon(n+1)}H_n(-H_0, H_1, -L, -M) -$$

$$-(-M)H_{n-1}(-H_0, H_1, -L, -M)] = -i^{(n+1)+\varepsilon(n+1)}H_{n+1}(-H_0, H_1, -L, -M),$$
which proves (10).

PROPOSITION 5. Let d=(L, M), L'=L/d and M'=M/d. Then

(11)
$$H_n(H_0, H_1, L, M) = (\sqrt{d})^{n+\varepsilon(n)-2} H_n(dH_0, H_1, L', M').$$

PROOF. If α and β are roots of $z^2 - \sqrt{L}z + M = 0$, then $\alpha_1 = \alpha/\sqrt{d}$ and $\beta_1 = \beta/\sqrt{d}$ are roots of $z^2 - \sqrt{L'}z + M' = 0$. Let

$$a = H_1 - \sqrt{L}H_0\beta$$
, $b = H_1 - \sqrt{L}H_0\alpha$,

and

$$a_1 = H_1 - \sqrt{L'}(dH_0)\beta_1, \quad b_1 = H_1 - \sqrt{L'}(dH_0)\alpha_1.$$

It can be easily seen that $a_1=a$, $b_1=b$. Thus by (7) we have

$$H_n(H_0,H_1,L,M)=\big(\sqrt[l]{L}\big)^{\varepsilon(n)}\frac{a\alpha^n-b\beta^n}{\alpha^2-\beta^2}=\big(\sqrt[l]{d}\big)^{\varepsilon(n)+n-2}\big(\sqrt[l]{L'}\big)^{\varepsilon(n)}\cdot\frac{a\alpha_1^n-b\beta_1^n}{\alpha_1^2-\beta_1^2}=$$

$$= (\sqrt{d})^{n+\varepsilon(n)-2} \cdot (\sqrt{L'})^{\varepsilon(n)} \cdot \frac{a_1 \alpha_1^n - b_1 \beta_1^n}{\alpha_1^2 - \beta_1^2} = (\sqrt{d})^{n+\varepsilon(n)-2} \cdot H_n(dH_0, H_1, L', M'),$$

which proves (11).

3. Zero terms in the sequences H

Some authors have studied the lower and upper bounds for the terms of non-degenerate sequences $G=G(G_0, G_1, A, B)$. Let γ and δ be the roots of the equation $x^2-Ax+B=0$. We can assume that $|\gamma| \ge |\delta|$. In [3] K. Mahler proved that if $D=A^2-4B<0$ and ε is a positive constant, then there is an effectively computable constant n_0 depending only on ε such that

$$|G_n| \ge |\gamma|^{(1-\varepsilon)n}$$
 for $n > n_0$.

From a result of T. N. Shorey and C. L. Stewart [6] it follows that

$$|G_n| \ge |\gamma|^{n-c_1 \log n}$$

for $n>c_2$, where c_1 , c_2 are positive numbers which are effectively computable in terms of G_0 , G_1 , A and B.

A similar result was obtained by M. Mignotte [4] for linear recurrences of higher order.

In [1] P. Kiss gave the explicit value of the constants proving that $G_n \neq 0$ for $n > n_1$, where

$$n_1 = \max \left[2^{510} (\log |8B|)^{25}, \frac{4}{\log 2} (\log |G_0| + \log 4 \sqrt{|D|}) \right],$$

furthermore if D<0 and $n>n_1$, then

$$\frac{|c|}{2\sqrt{|D|}}|\gamma|^n n^{-c_3} < |G_n| \leq \frac{2|c|}{\sqrt{|D|}}|\gamma|^n,$$

where $c=G_1-G_0\gamma$ and

$$c_3 = 2e \cdot 200^{40} \log |8B| \cdot (1 + \log \log |8B|) \cdot \log |16B| (G_0^2 + G_1^2).$$

We extend the results mentioned above to the sequences $H(H_0, H_1, L, M)$. We give necessary and sufficient conditions for sequences H which have zero terms, and give lower and upper bounds for the terms. These improve the reults of P. Kiss [1].

THEOREM 1. Let $H=H(H_0,H_1,L,M)$ be a non-degenerate generalized Lehmer sequence with (L,M)=1 and $(H_0,H_1)=h$. Then the following statements are equivalent:

(i)
$$H_n = 0$$
 $(n \ge 0)$

(ii)
$$H_0 = \varrho h U_n$$
, $H_1 = \varrho h L^{\varepsilon(n)} M U_{n-1}$,

(iii)
$$H_k = \varrho h L^{\varepsilon(n)\varepsilon(k)} M^k U_{n-k}$$
 for $k = 0, 1, ..., n$,

where
$$U_n = U_n(L, M)$$
, $MU_{-1} = -1$, and $\varrho = 1$ or $\varrho = -1$.

COROLLARY. Let $H=H(H_0, H_1, L, M)$ be a non-degenerate generalized Lehmer sequence with (L, M)=d. Then $H_n=0$ if and only if

$$(\sqrt{d})^{n+\varepsilon(n)}H_0=\pm(dH_0,H_1)U_n,$$

and

$$(\sqrt{d})^{n+\varepsilon(n)}H_1=\pm(dH_0,H_1)L^{\varepsilon(n)}MU_{n-1},$$

where $U_n = U_n(L, M)$.

THEOREM 2. Let $H=H(H_0, H_1, L, M)$ be a non-degenerate generalized Lehmer sequence with (L, M)=d.

If
$$LK>0$$
 then $H_n\neq 0$ for $n>\max [13, \min (|H_0|+1, |H_1|+2)]$.
If $LK<0$ then $H_n\neq 0$ for $n>\max (N_1, N_2)=N_0$, where

$$N_1 = \min(2^{67} \log |4M|, e^{398})$$

and

$$N_2 = \min \left[\frac{4}{\log 2} \log |dH_0|, \frac{4}{\log 2} \log |H_1| \right].$$

THEOREM 3. Let $H=H(H_0, H_1, L, M)$ be a non-degenerate generalized Lehmer sequence with condition LK<0. Then for

$$n > 2^{67} \log |4M| (H_0^2 + H_1^2)$$

we have

$$\frac{|a|}{2\sqrt{|LK|}} |\alpha|^n n^{-c_0} < |H_n| < \frac{2|a|}{\sqrt{|K|}} |\alpha|^n,$$

where

$$c_0 = 2^{80} \log |4M| \cdot \log \log |4M| \cdot \log |4M| (H_0^2 + H_1^2),$$

and α is any solution of $z^2 - \sqrt{L}z + M = 0$.

PROOF OF THEOREM 1. Let first $H_n=0$ for an integer $n \ge 0$. If n=0 or n=1 then (ii) follows easily. Suppose n>1. By (6) $H_n=0$ implies that

$$H_1 U_n = L^{\varepsilon(n)} M H_0 U_{n-1},$$

from which it follows

(12)
$$H_1' U_n = L^{\varepsilon(n)} M H_0' U_{n-1},$$

where $H'_0 = H_1/h$ and $H'_0 = H_0/h$. Since (L, M) = 1, it can be easily seen that $(U_n, L^{\epsilon(n)}) = 1$, $(U_n, M) = 1$ and $(U_n, U_{n-1}) = 1$. Thus by (12) we get

$$H_0 = \pm h \cdot U_n$$
 and $H_1 = \pm h \cdot L^{\varepsilon(n)} \cdot MU_{n-1}$,

which proves that (i) implies (ii).

Now we prove that (ii) implies (iii). Suppose

$$H_0 = h \cdot U_n$$
 and $H_1 = h \cdot L^{\varepsilon(n)} M U_{n-1}$.

Thus (iii) is true for k=0 and k=1. If (iii) is true for k-1 and k, where k < n, and $\varrho = 1$, then from (3) we have

$$\begin{split} H_{k+1} &= L^{\varepsilon(k+1)} H_k - M H_{k-1} = \\ &= L^{\varepsilon(k+1)} h L^{\varepsilon(n) \varepsilon(k)} M^k U_{n-k} - M h L^{\varepsilon(n) \varepsilon(k-1)} M^{k-1} U_{n-k+1} = \\ &= h L^{\varepsilon(n) \varepsilon(k+1)} M^k [L^{\varepsilon(n-k+1)} U_{n-k} - U_{n-k+1}] = h L^{\varepsilon(n) \varepsilon(k+1)} M^{k+1} U_{n-(k+1)}, \end{split}$$

since

$$\varepsilon(k+1) + \varepsilon(n)\varepsilon(k) - \varepsilon(n)\varepsilon(k+1) = \varepsilon(n-k+1)$$

and

$$\varepsilon(k+1) = \varepsilon(k-1).$$

This proves (iii) in the case $\varrho = 1$. If $\varrho = -1$, then we can similarly show that (ii) implies (iii).

Finally (i) follows clearly from (iii) with k=n.

PROOF OF THE COROLLARY. Let d=(L,M) and L'=L/d, M'=M/d. By (11) it can be easily seen that $H_n=H_n(H_0,H_1,L,M)=0$ if and only if $H_n(dH_0,H_1,L',M')=0$. From Theorem 1 we obtain that $H_n=0$ if and only if

(13)
$$dH_0 = \pm (dH_0, H_1) U_n(L', M')$$
 and $H_1 = \pm (dH_0, H_1) L^{\varepsilon(n)} M' U_{n-1}(L', M')$. Since

$$U_n(L, M) = (\sqrt{d})^{n+\varepsilon(n)-2} \cdot U_n(L', M'),$$

by (13) and its conclusion we have

$$(\sqrt{d})^{n+\varepsilon(n)}H_0=\pm(dH_0,H_1)U_n(L,M)$$

and

$$(\sqrt{d})^{n+\varepsilon(n)}H_1=\pm(dH_0,H_1)L^{\varepsilon(n)}MU_{n-1}(L,M),$$

which proves the corollary.

Before proving Theorem 2 we introduce some notations and recall some results due to M. Waldschmidt [8], M. Ward [9] and C. L. Stewart [7]. Denote

$$a_0x^N + ... + a_N = a_0 \prod_{i=1}^N (x - \alpha_i) \in \mathbb{Z}[x]$$

the minimal polynomial of an algebraic number $\alpha = \alpha_1$. Put

$$M(\alpha) = |a_0| \cdot \prod_{i=1}^N \max\{1, |\alpha_i|\}$$

and

$$h(\alpha) = \frac{1}{N} \log M(\alpha).$$

THEOREM A (M. Waldschmidt [8]). Let $\alpha_1, ..., \alpha_m$ be non-zero algebraic numbers, and let $\beta_0, \beta_1, ..., \beta_m$ be algebraic numbers. For $1 \le i \le m$ let $\log \alpha_i$ be any determination of the logarithm of α_i . Let D be a positive integer, and let $V_1, ..., V_m, W, E$ be positive real numbers, satisfying

$$D \ge [Q(\alpha_1, ..., \alpha_m, \beta_0, \beta_1, ..., \beta_m): Q],$$

$$V_i \ge \max\{h(\alpha_i), |\log \alpha_i|/D, 1/D\}, \quad 1 \le i \le m,$$

$$W \ge \max_{0 \le i \le m} \{h(\beta_i)\}, \quad V_1 \le ... \le V_m$$

and

1 <
$$E \leq \min \left[e^{DV_i}; \min_{1 \leq i \leq m} \left\{4DV_i/|\log \alpha_i|\right\}\right].$$

Finally define $V_i^+ = \max\{V_i, 1\}$ for i = m and i = m - 1, with $V_0^+ = 1$ in the case m = 1. If the number

$$\Lambda := \beta_0 + \beta_1 \log \alpha_1 + \ldots + \beta_m \log \alpha_m$$

does not vanish, then

$$|\Lambda| > \exp\left\{-c(m)D^{m+2}V_1...V_m(W + \log(EDV_m^+))(\log EDV_{m-1}^+)(\log E)^{-m-1}\right\}$$

where
$$c(1) \le 2^{35}$$
, $c(2) \le 2^{53}$, $c(3) \le 2^{71}$ and $c(m) \le 2^{8m+51} \cdot m^{2m}$ for $m > 3$.

We shall use a result of C. L. Stewart [7] on a linear form in two logarithms. Let α be an algebraic number of height at most $A \ (\ge 4)$ and degree d; further let b_1 and b_2 denote integers with absolute values at most $B \ (\ge 4)$. Set

$$\Lambda = b_1 \log (-1) + b_2 \log \alpha,$$

where the logarithms are assumed to take their principal values.

THEOREM B (C. L. Stewart [7]). If $\Lambda \neq 0$ then $|\Lambda| > \exp(-C \log A \log B)$, where $C = 2^{435} \cdot (3d)^{49}$.

Finally, we recall a result due to M. Ward [9] on primitive prime divisors of Lehmer numbers. Recall that a primitive prime divisors of the Lehmer number $U_n(L, M)$ is a prime dividing U_n but it does not divide $LKU_3...U_{n-1}$, where K=L-4M.

THEOREM C (M. Ward [9]). Let U(L, M) be a non-degenerate Lehmer sequence with conditions L>0 and K>0. Then $U_n(L, M)$ has a primitive prime divisor for n>12. Every primitive prime divisor of $U_n(L, M)$ is of the form $nx\pm 1$.

Now we prove the following result.

LEMMA. Let U(L, M) be a non-degenerate Lehmer sequence with conditions L>0 and K<0. Then $M \ge 2$ and

(14)
$$|U_n(L,M)| > M^{n/4}$$
 for

$$n > \min(2^{67} \log 4M, e^{398}) = :N_1.$$

PROOF. Since L>0 and U(L, M) is a non-degenerate Lehmer sequence, we have

$$\langle L, M \rangle \neq \langle 1, 1 \rangle, \langle 2, 1 \rangle, \langle 3, 1 \rangle, \langle 4, 1 \rangle.$$

Thus if K=L-4M<0 then $M\geq 2$.

Let α and β be the roots of $z^2 - \sqrt{L}z + M = 0$. By our conditions we obtain

$$|\alpha| = |\beta| = \sqrt{M}.$$

By (8) we have

$$|U_n| = |U_n(L, M)| = \left| (\sqrt{L})^{\varepsilon(n)} \frac{\alpha^n - \beta^n}{\alpha^2 - \beta^2} \right| \ge \frac{|\alpha|^n}{\sqrt{L|K|}} \left| 1 - \left(\frac{\beta}{\alpha}\right)^n \right| \ge \frac{|\alpha|}{2\sqrt{L|K|}} \left| t \log(-1) - n \log\frac{\beta}{\alpha} \right|$$

where log denotes the principal value of the logarithm function and $|t| \le 2n$, because $\left|1 - \left(\frac{\beta}{\alpha}\right)^n\right|$ is the length of a chord of the unit circle which is greater than the half of the smaller circular arc. Set

Since β/α is not a root of unity, we have $\Lambda \neq 0$.

First we prove that (14) holds if $n>2^{67}\log 4M$. We apply Theorem A to (17). In this case m=2, $W=\log 2n$; $\alpha_1=-1$, $M(\alpha_1)=1$, $h(\alpha_1)=0$; $\alpha_2=\beta/\alpha$, $M(\alpha_2)=M$. The algebraic number $\alpha_2=\beta/\alpha$ is a root of the equation

$$Mx^2 - (L - 2M)x + M = 0$$

so $h(\alpha_2) = \frac{1}{2} \log M$. From these

$$D=2$$
, $V_1=V_1^+=\frac{\pi}{2}$, $V_2=V_2^+=\log 4M$, $E=4$

follow. By Theorem A we have

$$|A| > \exp\left\{-c(2) \cdot 2^4 \frac{\pi}{2} \log 4M \left(\log 2n + \log (8 \log 4M)\right) \cdot \log 4\pi \cdot (\log 4)^{-3}\right\} >$$

$$> \exp\left\{-9 \cdot 2^{56} \cdot \log M \left(\log 2n + \log (8 \log 4M)\right)\right\},$$

and so if $n>4 \log 4M$ then

(18)
$$|A| > \exp \left\{ -9 \cdot 2^{57} \cdot \log M \cdot \log 2n \right\} = M^{-9 \cdot 2^{57} \cdot \log 2n}.$$

On the other hand it follows from 0 < L < 4M that

$$|K| \le |L-2M| + 2M \le 2M + 2M = 4M$$

and so

(19)
$$\frac{1}{2\sqrt{L|K|}} > \frac{1}{2\sqrt{4M\cdot 4M}} = \frac{1}{8M} \ge M^{-4}.$$

By (15), (16), (18) and (19) we get

$$|U_n| > M^{n/2 - 9 \cdot 2^{37} \cdot \log 2n - 4}$$

for $n>4 \log 4M$; furthermore a short calculation shows that

(21)
$$\frac{n}{2} - 9 \cdot 2^{57} \log 2n - 4 > \frac{n}{4}$$

if $n > 2^{68}$.

Thus by (20) and (21)

$$|U_n| > M^{n/4}$$

for $n > 2^{67} \log 4M$.

Now we prove that (14) holds if $n > e^{398}$. We apply Theorem B to (17). It is easily seen that in our case A = 2M and B = 2n, furthermore d = 2. From Theorem B we get

(23)
$$|A| = \left| t \log'(-1) - n \log \frac{\beta}{\alpha} \right| > \exp\left(-2^{484} \cdot 3^{49} \cdot \log 2M \cdot \log 2n \right) \ge$$

$$\ge \exp\left(-2^{485} \cdot 3^{49} \cdot \log M \cdot \log 2n \right) = M^{-2^{485} \cdot 3^{49} \cdot \log 2n}.$$

Thus by (15), (16), (19) and (23) we obtain

$$|U_n| > M^{n/2-2^{485}\cdot 3^{49}\log 2n-4}$$

and so

$$|U_n| > M^{n/4}$$

if $n > e^{398}$.

By (22) and (24)

$$|U_n| > M^{n/4}$$
 if $n > \min(2^{67} \log 4M, e^{398}) = N_1$,

which proves the Lemma.

PROOF OF THEOREM 2. Let $H_n = H_n(H_0, H_1, L, M) = 0$. By Proposition 4 we can assume without any essential loss of generality that L > 0.

First we assume that K>0. By Theorem C and the Corollary of Theorem 1, if n>13 then U_n has a primitive divisor of the form $nx\pm 1$ which divides H_0 ; and U_{n-1} has a primitive divisor of the form $(n-1)y\pm 1$ dividing H_1 . Thus

$$n \leq |H_0|+1$$
 and $n \leq |H_1|+2$,

from which

$$n \leq \min(|H_0|+1, |H_1|+2) =: N_3$$

follows. This implies that $H_n \neq 0$ if $n > \max(13, N_3)$.

Now let K<0. If (L,M)=1, then by Theorem 1 we have

$$H_0 = \pm (H_0, H_1) U_n$$
 and $H_1 = \pm (H_0, H_1) L^{\epsilon(n)} M U_{n-1}$.

If $n \ge N_1$, then by the Lemma

$$|H_0| \ge |U_n| > M^{n/4} \ge 2^{n/4}$$

and

$$|H_1| \ge |MU_{n-1}| > M \cdot M^{(n-1)/4} > 2^{n/4}$$

which imply

$$n < \min\left(\frac{4}{\log 2}\log|H_0|, \frac{4}{\log 2}\log|H_1|\right) := N_4.$$

Thus $H_n \neq 0$ if $n \ge \max(N_1, N_4)$.

Finally let K<0 and (L, M)=d. By Proposition 5 it follows that

$$H_n(H_0, H_1, L, M) = 0$$
 if and only if $H_n(dH_0, H_1, L/d, M/d) = 0$.

But we have proved that if $H_n(dH_0, H_1, L/d, M/d) = 0$ and $n > N_1$, then

$$n < \min\left(\frac{4}{\log 2}\log|dH_0|, \frac{4}{\log 2}\log|H_1|\right) = :N_2.$$

Thus $H_n(H_0, H_1, L, M) \neq 0$ if $n > \max(N_1, N_2) =: N_0$.

PROOF OF THEOREM 3. As in the proof of Theorem 2 we can assume without any essential loss of generality that L>0.

Let K<0 and $n>N_0$ (N_0 is defined in Theorem 2) and so $|H_n|>0$. The numbers $a=H_1-\sqrt{L}H_0\beta$, $b=H_1-\sqrt{L}H_0\alpha$ are complex conjugates therefore — as in the proof of the Lemma — for some integer t

(25)
$$|H_n| = \left| (\sqrt{L})^{\epsilon(n)} \frac{a\alpha^n - b\beta^n}{\alpha^2 - \beta^2} \right| \ge \frac{|a| |\alpha|^n}{\sqrt{|LK|}} \left| 1 - \frac{b}{a} \left(\frac{\beta}{\alpha} \right)^n \right| \ge \frac{|a| |\alpha|^n}{2\sqrt{|LK|}} \left| t \log (-1) - n \log \frac{\beta}{\alpha} - \log \frac{b}{a} \right|,$$

where the logarithms take their principal values and $t \le 2n+2$.

Theorem A can be applied to

$$0 \neq \Lambda = t \log(-1) - n \log \frac{\beta}{\alpha} - \log \frac{b}{\alpha}.$$

In this case m=3, $W=2\log n$, $\alpha_1=-1$, $\alpha_2=\beta/\alpha$, $\alpha_3=b/a$, D=2 since a/b is a root of $ux^2-vx+u=0$, where

$$u = H_1^2 - LH_0H_1 + LMH_0^2$$
, $v = 2H_1^2 - 2LH_0H_1 + L^2H_0^2 + 2LMH_0^2$.

Using these, $V_1=\pi/2$, $V_2=V_2^+=\log 4M$, $V_3=V_3^+=2\log 4M(H_0^2+H_1^2)$ and E=4 follow. Thus for $n>N_0$ we have

$$|\Lambda| > \exp\left\{-c_4 \log 4M \cdot \log (8 \log 4M) \cdot \log \left(4M(H_0^2 + H_1^2)\right) \times \left(2 \log n + \log 16 \log 4M(H_0^2 + H_1^2)\right)\right\},\,$$

where

$$c_4 = 0.86 \cdot 2^{76} > c(3)2^5 \cdot \frac{\pi}{2} \cdot 2 \cdot (\log 4)^{-4}.$$

Since $\log (8 \log 4M) < 4 \log \log 4M$, we have

(26)
$$|A| > \exp \left\{ -4c_4 \log 4M \log \log 4M \log 4M (H_0^2 + H_1^2) (2 \log n + \log n) \right\} = n^{-12c_4 \log 4M \cdot \log \log 4M \cdot \log 4M (H_0^2 + H_1^2)}$$

if $n > 2^{67} \cdot \log 4M(H_0^2 + H_1^2) (\ge N_0)$. Thus, by (25) and (26), we get

$$|H_n| > \frac{|a| \cdot |\alpha|^n}{2\sqrt{|LK|}} \cdot n^{-c_0}$$

for $n > 2^{56} \cdot \log 4M(H_0^2 + H_1^2)$, where

$$\begin{split} c_0 &= 2^{80} \log 4M \cdot \log \log 4M \cdot \log 4M (H_0^2 + H_1^2) > \\ &> 12 c_4 \log 4M \cdot \log \log 4M \cdot \log 4M (H_0^2 + H_1^2), \end{split}$$

which proves the first inequality of Theorem 3. The second inequality is obvious by the explicit form of H_n .

References

- [1] P. Kiss, Zero terms in second order linear recurrences, Math. Seminar Notes (Kobe Univ.), 7 (1979), 145—152.
- [2] D. H. Lehmer, An extended theory of Lucas' functions, Ann. Math., 31 (1930), 419-448.
- [3] K. Mahler, A remark on recursive sequences, Jour. Math. Sci., 1 (1966), 12-17.
- [4] M. Mignotte, A note on linear recursive sequences, Jour. Austral. Math. Soc., 20 (1975), 242—244.
- [5] I. Niven and H. S. Zuckerman, An introduction to the theory of numbers, J. Wiley (New York, 1960).
- [6] T. N. Shorey and C. L. Stewart, On the Diophantine equations $ax^{2t} + bx^ty + cy^2 = d$ and pure powers in recurrence sequences, *Math. Scand.*, 52 (1983), 24—36.
- [7] C. L. Stewart, Primitive divisors of Lucas and Lehmer numbers, Transcendence theory: Advances and Applications, Proceedings of the Conference (Cambridge, 1976), London—New York—San Francisco, 1977.
- York—San Francisco, 1977.
 [8] M. Waldschmidt, A lower bound for linear forms in logarithms, *Acta Arith.*, 37 (1979), 257—283
- [9] M. Ward, The intrinsic divisors of Lehmer numbers, Ann. of Math., 2 (62) (1955), 230-236.

(Received September 8, 1987)

EÖTVÖS LORÁND UNIVERSITY COMPUTER CENTER BOGDÁNFY U. 10/B 1117 BUDAPEST, HUNGARY