ELSEVIER ELSEVIER

#### Contents lists available at ScienceDirect

### Neurocomputing

journal homepage: www.elsevier.com/locate/neucom



#### Gram-Schmidt process based incremental extreme learning machine



Yong-Ping Zhao<sup>a,\*</sup>, Zhi-Qiang Li<sup>a</sup>, Peng-Peng Xi<sup>a</sup>, Dong Liang<sup>b</sup>, Liguo Sun<sup>c</sup>, Ting-Hao Chen<sup>d</sup>

- <sup>a</sup> Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- <sup>b</sup> College of Physics and Electromechanics, Xiamen University, Xiamen 361005, China
- <sup>c</sup> School of Aeronautic Science and Engineering, Beihang University, Beijing 100091, China
- <sup>d</sup> Guangdong Maritime Safety Administration, Guangzhou 510260, China

#### ARTICLE INFO

# Article history: Received 16 June 2016 Revised 23 December 2016 Accepted 18 January 2017 Available online 27 January 2017

Communicated by Wang Gang

Keywords: Extreme learning machine Incremental learning QR decomposition Gram-Schmidt process

#### ABSTRACT

To compact the architecture of extreme learning machine (ELM), two incremental learning algorithms are proposed in this paper. The previous incremental learning algorithms for ELM recruit hidden nodes randomly, which is equivalent to implementing a random selection from a candidate set of infinite size. Hence, it is impossible to recruit *good* hidden nodes, and thus it usually requires more hidden nodes than traditional neural networks to achieve matched performance. To improve the quality of the hidden nodes recruited, an incremental learning algorithm for ELM is presented based on Gram–Schmidt process (GSI–ELM), which recruits the *best* hidden node from a random subset of fixed size via defining an evaluating criterion at each learning step. However, the "nesting effect" exists in the GSI–ELM, that is to say, the hidden nodes once recruited by GSI–ELM can not be later discarded. To treat this "nesting problem", the improved GSI–ELM (IGSI–ELM) is generated with an elimination mechanism. At each learning step IGSI–ELM eliminates the *worst* hidden node from the already-recruited group if it is not the newly-recruited one. Finally, to verify the efficacy and feasibility of the proposed algorithms, i.e. GSI–ELM and IGSI–ELM, in this paper, experiments on regression and classification benchmark data sets are investigated.

© 2017 Elsevier B.V. All rights reserved.

#### 1. Introduction

Extreme learning machine (ELM) [1,2] has been a popular and powerful tool for training single-hidden-layer feedforward networks (SLFNs) in the past few years. In ELM, input network weights and hidden biases are randomly generated while output weights are obtained as the result of a linear optimization problem which is usually calculated analytically using the Moore-Penrose generalized inverse. ELM proposes an alternative to the popular gradient descent-based algorithms like backpropagation [3], which are well-known for being slow. Compared to other machine learning algorithms, ELM shows advantages in computational cost, generalization performance, and implementation [2]. Hence, it has attracted a great deal of attention from the machine learning community and obtained a wide range of applications in classification and regression.

Since ELM was proposed, two topics are popular. One is to cope with the sequential learning issues using ELM. As known, ELM is originally designed for batch learning problems. However, for

real-world applications where new data arrive sequentially, ELM has to gather old and new data together to retrain a model from scratch so as to incorporate the new information. This is a very time-consuming process and impairs the most obvious characteristic of ELM, i.e., extremely fast learning speed. To efficiently and effectively deal with problems with sequential data, the sequential ELMs were investigated [4-6], which are able to learn data oneby-one or chunk-by-chunk with fixed or varying chunk length. To implement sequential ELMs smoothly, some meta-parameters need to be initialized, e.g., the number of hidden nodes. Due to the fact that ELM generates hidden layer randomly, it usually needs more hidden nodes than traditional neural networks to achieve comparable performance. It is found that some of the hidden nodes in such networks may play a very minor role in the network output and thus may eventually increase the network complexity. More importantly, large network size leads to longer running time in the testing phase of ELM, which may hamper its efficient deployment in some testing time sensitive scenarios. Thus, another topic on improving the compactness of ELM has attracted great interest. To solve this problem, two different strategies are usually pursued. The first refers to constructive algorithms [7-14], which begin with a small initial network and gradually recruit new hidden nodes until some stopping criterions are met.

<sup>\*</sup> Corresponding author.

E-mail addresses: y.p.zhao@163.com, y.p.zhao@nuaa.edu.cn (Y.-P. Zhao).

In contrast, the second strategy is called destructive algorithms, also known as pruning algorithms [15–19], in which a network with a larger than necessary size is initially trained, and then the redundant or less effective hidden nodes are gradually removed until the performance required deteriorates.

Belonging to the first strategy aforementioned, the incremental learning plays an important role in improving the compactness of ELM. Huang et al. firstly proposed an incremental extreme learning machine (HI-ELM) [7], which outperforms many popular incremental learning algorithms such as resource-allocating network (RAN) [20] and minimal RAN [21,22]. HI-ELM randomly generates the hidden nodes and analytically calculates the output weights of ELM. However, HI-ELM does not recalculate the output weights of all the existing nodes when a new node is recruited. When Barron's convex optimization learning method [23] is incorporated into HI-ELM, a convex incremental ELM (CI-ELM) was presented. Different from HI-ELM, CI-ELM recalculates the output weights of the existing hidden nodes after a new one is added, and CI-ELM can achieve faster convergence rate and more compact network architecture than HI-ELM while retaining the HI-ELM's simplicity and efficiency. Based on HI-ELM, an enhanced method for incremental ELM (EI-ELM)[9] was developed, in which at each learning step several hidden nodes are randomly generated and among them the hidden node resulting in the largest residual error decreasing will be added to the existing network and the output weight of the network will be calculated in a simple way as in HI-ELM. Subsequently, an error minimized incremental ELM (EMI-ELM) [10] was proposed, which adds random hidden nodes one by one or group by group (with varying group size) and updates the output weights incrementally. Recently, a computationally competitive incremental algorithm for ELM based on QR decomposition was proposed (QRI-ELM) [12]. Compared to EMI-ELM, QRI-ELM accelerates the training speed using Gram-Schmidt process and keeps the same generalization performance. Following the spirit of QRI-ELM, this paper further makes two main contributions as follows:

- (1) The Gram-Schmidt process based incremental ELM (GSI-ELM): QRI-ELM at each learning step randomly selects one hidden node. This process can be regarded as a hidden node recruited randomly from a candidate set of infinite size. Hence it is impossible to recruit the *best* hidden node at each learning step. In this paper GSI-ELM realizes the incremental learning based on the Gram-Schmidt process like QRI-ELM, but a probabilistic trick [24–26] is utilized, which considers a random subset of fixed size, say  $\kappa$ , and picks the best hidden node from this set according to some criterion at each learning step. There are two benefits of implementing this trick. One is that a better hidden node is recruited at each learning step instead of a random choice. Another is that the dilemma of recruiting the best hidden node from the candidate set of infinite size is sidestepped. In [24,25], they proved that this trick could suffice to obtain an estimate that is better than 95% of all other estimates with 1-0.05 probability if  $\kappa = 59 = \frac{\log(0.05)}{\log(0.95)}$
- (2) The improved GSI-ELM (IGSI-ELM): Evidently, GSI-ELM suffers from the so-called "nesting effect" [27]. It means that the hidden nodes once recruited by GSI-ELM cannot be later discarded. To treat this "nesting problem", IGSI-ELM is proposed. In IGSI-ELM, if one hidden node is recruited at one learning step, then all the existing hidden nodes will be reevaluated again according to some evaluation criterion and the worst hidden node is picked out. If the worst hidden node is not the newly-recruited one, it will be eliminated, which is equivalent to the worst hidden node replaced with the newly-recruited one. Otherwise, any hidden node is not eliminated. When this elimination mechanism occurs,

the number of hidden nodes keeps constant while the performance improving, which is especially suitable for the testing time sensitive scenarios. It is also consistent with the Occam's razor "plurality must never be posited without necessity" [28]. As thus, the "nesting problem" is treated to some degree.

To investigate the effectiveness and feasibility of the proposed GSI-ELM and IGSI-ELM, experiments on benchmark data sets including regression and classification are done. By means of comprehensive comparison, we show that GSI-ELM and IGSI-ELM outperform the other incremental learning algorithms in terms of the compactness of ELM.

The remainder of this paper is organized as follows. In Section 2, the traditional ELM is briefly introduced and its solution using QR decomposition is given. Section 3 depicts the QRI-ELM algorithm in detail. To improve the quality of the hidden nodes recruited in QRI-ELM, an evaluating criterion is defined to recruit the best hidden node from a random subset of fixed size, thus yielding GSI-ELM in Section 4. In Section 5, to overcome the "nesting effect" existing in GSI-ELM, IGSI-ELM is proposed, in which an elimination mechanism is introduced by defining some evaluation criterion. To test the effectiveness of the proposed algorithms in this paper, experiments on regression and classification benchmark data sets are carried out in Section 6. Finally, conclusions follow.

#### 2. ELM

Considering an SLFN with L hidden nodes and activation function  $h(\cdot)$ , its output of  $\mathbf{x} \in \mathbb{R}^n$  is governed by

$$f(\mathbf{x}) = \sum_{i=1}^{L} \boldsymbol{\theta}_i h(\mathbf{a}_i, b_i, \mathbf{x})$$
 (1)

where  $\mathbf{a}_i \in \mathbb{R}^n$  and  $b_i$  are the learning parameters of hidden nodes,  $\boldsymbol{\theta}_i$  is the weight connecting the ith hidden node to the output nodes. In ELM, the input weights  $\mathbf{a}_i$  and hidden biases  $b_i$  are randomly generated. Given a set of training data  $\{(\mathbf{x}_i, t_i)\}_{i=1}^N \in \mathbb{R}^n \times \mathbb{R}^m$ , ELM lets the network outputs equal the targets, so the following compact formulation is got:

$$H\Theta = T \tag{2}$$

where

$$\boldsymbol{H} = \begin{bmatrix} h(\boldsymbol{a}_{1}, b_{1}, \boldsymbol{x}_{1}) & \cdots & h(\boldsymbol{a}_{L}, b_{L}, \boldsymbol{x}_{1}) \\ \vdots & \ddots & \vdots \\ h(\boldsymbol{a}_{1}, b_{1}, \boldsymbol{x}_{N}) & \cdots & h(\boldsymbol{a}_{L}, b_{L}, \boldsymbol{x}_{N}) \end{bmatrix} = \begin{bmatrix} \boldsymbol{h}_{1}, \cdots, \boldsymbol{h}_{L} \end{bmatrix}$$
(3)

$$\mathbf{\Theta} = \begin{bmatrix} \boldsymbol{\theta}_1, \cdots, \boldsymbol{\theta}_L \end{bmatrix}^{\mathsf{T}} \tag{4}$$

and

$$\boldsymbol{T} = [\boldsymbol{t}_1, \cdots, \boldsymbol{t}_N]^{\top} \tag{5}$$

Here,  $\boldsymbol{H}$  is the so-called hidden nodes output matrix. Finding the solution of Eq. (5) in a least square sense is equivalent to solving the following optimal problem

$$\min_{\mathbf{\Theta}} \left\{ J = \| \mathbf{H}\mathbf{\Theta} - \mathbf{T} \|_F^2 \right\} \tag{6}$$

The minimal norm least square solution of (6) is

$$\hat{\mathbf{\Theta}} = \mathbf{H}^{\dagger} \mathbf{T} \tag{7}$$

where  $\mathbf{H}^{\dagger}$  is the Moore–Penrose generalized inverse of matrix  $\mathbf{H}$ . Different methods can be used to calculate Moore–Penrose generalized inverse of a matrix [29]: orthogonal projection method,

iterative method, and QR decomposition. The orthogonal projection method is used in two cases: i)  $\mathbf{H}^{\dagger} = (\mathbf{H}^{\top}\mathbf{H})^{-1}\mathbf{H}^{\top}$  when  $\mathbf{H}^{\top}\mathbf{H}$  is nonsingular; ii)  $\mathbf{H}^{\dagger} = \mathbf{H}^{\top}(\mathbf{H}\mathbf{H}^{\top})^{-1}$  when  $\mathbf{H}\mathbf{H}^{\top}$  is nonsingular. Generally, in real applications L < N, so the first case is commonly used. For the orthogonal projection method, the key step of finding  $\mathbf{H}^{\dagger}$  is to calculate  $(\mathbf{H}^{\top}\mathbf{H})^{-1}$  or  $(\mathbf{H}\mathbf{H}^{\top})^{-1}$ . From the numerically computational viewpoint, the reliability and stability of computing  $(\mathbf{H}^{\top}\mathbf{H})^{-1}$  or  $(\mathbf{H}\mathbf{H}^{\top})^{-1}$  is closely related to its condition number, defined as

$$\tau \left( \mathbf{H} \mathbf{H}^{\top} \right) = \tau \left( \mathbf{H}^{\top} \mathbf{H} \right) = \tau^{2} (\mathbf{H}) = \frac{\mu_{\text{max}}^{2}}{\mu_{\text{min}}^{2}} \tag{8}$$

where  $\tau(\cdot)$  represents the condition number of a matrix,  $\mu_{\rm max}$  and  $\mu_{\rm min}$  represent the maximum and minimum nonzero singular values of  ${\bf H}$ , respectively. Generally, the larger the condition number is, the less reliable the numerical result becomes. If the condition number of  ${\bf H}$  is large, say,  $\tau({\bf H})=10^{10}$ , then  ${\bf H}^{\rm T}{\bf H}$  or  ${\bf H}^{\rm T}{\bf H}$  will become ill-conditioned. In this situation, the orthogonal projection method may give a numerically inaccurate solution and even generate a wrong one. Hence, it is wise to sidestep the large condition number as much as possible during the process of calculating the matrix inverse. QR decomposition is a good choice of calculating  ${\bf H}^{\dagger}$ , given as

$$\mathbf{H}^{\dagger} = \mathbf{R}^{-1} \mathbf{Q}^{\top} \tag{9}$$

where

$$\mathbf{Q}\mathbf{R} = \mathbf{H} \tag{10}$$

Here,  $\mathbf{Q}$  is a matrix with orthogonal columns satisfying  $\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{I}$ ,  $\mathbf{R}$  is an upper triangular matrix. From (10), we know  $\tau(\mathbf{R}) = \tau(\mathbf{H})$ . If equation (10) has already been computed, then

$$\hat{\mathbf{\Theta}} = \mathbf{R}^{-1} \mathbf{O}^{\mathsf{T}} \mathbf{T} \tag{11}$$

There are several methods for QR decomposition [29], such as Gram–Schmidt process, Householder transformation, or Givens rotations. For batch learning problems, the aforementioned three methods are all competent. More importantly, Gram–Schmidt process shows advantage in solving incremental learning problems, and therefore QRI-ELM was developed [12].

#### 3. QRI-ELM

In QRI-ELM, the hidden nodes are incrementally recruited one by one. Assume that k hidden nodes have already been recruited, then Eq. (10) becomes  $\mathbf{Q}_k \mathbf{R}_k = \mathbf{H}_k$ , where  $\mathbf{H}_k = [\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_k]$ ,  $\mathbf{Q}_k = [\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_k]$ , and

$$\mathbf{R}_{k} = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1k} \\ & r_{22} & \cdots & r_{2k} \\ & & \ddots & \vdots \\ & & & r_{kk} \end{bmatrix}$$

Further, we get

$$[\boldsymbol{h}_1, \boldsymbol{h}_2, \cdots, \boldsymbol{h}_k] = [\boldsymbol{q}_1, \boldsymbol{q}_2, \cdots, \boldsymbol{q}_k] \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1k} \\ & r_{22} & \cdots & r_{2k} \\ & & \ddots & \vdots \\ & & & r_{kk} \end{bmatrix}$$
(12)

Expanding (12) yields

$$\begin{cases}
\mathbf{h}_{1} = \mathbf{q}_{1}r_{11} & (a) \\
\mathbf{h}_{2} = \mathbf{q}_{1}r_{12} + \mathbf{q}_{2}r_{22} & (b) \\
\vdots \\
\mathbf{h}_{k} = \mathbf{q}_{1}r_{1k} + \mathbf{q}_{2}r_{2k} + \dots + \mathbf{q}_{k}r_{kk} & (c)
\end{cases}$$
(13)

Since  $\mathbf{Q}_{k}^{\top}\mathbf{Q}_{k} = \mathbf{I}$ , then

$$\mathbf{q}_i^{\mathsf{T}} \mathbf{q}_j = 1 \quad \text{for} \quad i = j \quad \text{and} \quad \mathbf{q}_i^{\mathsf{T}} \mathbf{q}_j = 0 \quad \text{for} \quad i \neq j$$
 (14)

From (13a), we have

$$\mathbf{h}_{1}^{\top}\mathbf{h}_{1} = r_{11}\mathbf{q}_{1}^{\top}\mathbf{q}_{1}r_{11} = r_{11}^{2} \Rightarrow \begin{cases} r_{11} = \sqrt{\mathbf{h}_{1}^{\top}\mathbf{h}_{1}} \\ \mathbf{q}_{1} = \mathbf{h}_{1}/r_{11} \end{cases}$$
(15)

For  $1 \leq i < k$ ,

$$\mathbf{q}_{i}^{\mathsf{T}}\mathbf{h}_{k} = \mathbf{q}_{i}^{\mathsf{T}}\mathbf{q}_{i}r_{ik} = r_{ik} \tag{16}$$

According to (13c), we denote

$$\tilde{\mathbf{h}}_{k} = \mathbf{q}_{k} r_{kk} = \mathbf{h}_{k} - \sum_{i=1}^{k-1} \mathbf{q}_{i} r_{ik}$$
(17)

so  $r_{kk} = \sqrt{\tilde{\pmb{h}}_k^{\top} \tilde{\pmb{h}}_k}$  and  $\pmb{q}_k = \tilde{\pmb{h}}_k / r_{kk}$ .

When the (k+1)th hidden node is recruited, we get  $\mathbf{H}_{k+1} = [\mathbf{H}_k, \mathbf{h}_{k+1}]$ . Accordingly, the QR decomposition of  $\mathbf{H}_{k+1}$  becomes

$$\mathbf{H}_{k+1} = \mathbf{Q}_{k+1} \mathbf{R}_{k+1} \tag{18}$$

where  $\mathbf{Q}_{k+1} = \begin{bmatrix} \mathbf{Q}_k, \mathbf{q}_{k+1} \end{bmatrix}$  and

$$\mathbf{R}_{k+1} = \begin{bmatrix} \mathbf{R}_{k} & \tilde{\mathbf{r}}_{k+1} \\ \mathbf{0} & r_{k+1,k+1} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1,k} & r_{1,k+1} \\ & r_{22} & \cdots & r_{2,k} & r_{2,k+1} \\ & & \ddots & \vdots & \vdots \\ & & & r_{kk} & r_{k,k+1} \\ & & & & r_{k+1,k+1} \end{bmatrix}$$
(19)

with  $\tilde{\mathbf{r}}_{k+1} = [r_{1,k+1}, r_{2,k+1}, \cdots, r_{k,k+1}]^{\top}$ . Together with (16), (17), (18), and (19), we have

$$\tilde{\mathbf{r}}_{k+1} = \mathbf{Q}_k^{\top} \mathbf{h}_{k+1} \tag{20}$$

$$\tilde{\boldsymbol{h}}_{k+1} = \boldsymbol{q}_{k+1} r_{k+1,k+1} = \boldsymbol{h}_{k+1} - \sum_{i=1}^{k} \boldsymbol{q}_{i} r_{i,k+1} = \boldsymbol{h}_{k+1} - \boldsymbol{Q}_{k} \tilde{\boldsymbol{r}}_{k+1}$$
 (21)

$$r_{k+1,k+1} = \sqrt{\tilde{\mathbf{h}}_{k+1}^{\top} \tilde{\mathbf{h}}_{k+1}} \tag{22}$$

$$\mathbf{q}_{k+1} = \tilde{\mathbf{h}}_{k+1} / r_{k+1,k+1} \tag{23}$$

Using the following matrix identity [29]

$$\begin{bmatrix} \mathbf{A} & \mathbf{D} \\ \mathbf{0} & \mathbf{B} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{A}^{-1} & -\mathbf{A}^{-1}\mathbf{D}\mathbf{B}^{-1} \\ \mathbf{0} & \mathbf{B}^{-1} \end{bmatrix}$$
 (24)

where A, B, and D are matrices of proper dimension, and A and B are invertible, hence

$$\mathbf{R}_{k+1}^{-1} = \begin{bmatrix} \mathbf{R}_k & \tilde{\mathbf{r}}_{k+1} \\ \mathbf{0} & r_{k+1,k+1} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{R}_k^{-1} & -\mathbf{R}_k^{-1} \tilde{\mathbf{r}}_{k+1} r_{k+1,k+1}^{-1} \\ \mathbf{0} & r_{k+1,k+1}^{-1} \end{bmatrix}$$
(25)

inally.

$$\hat{\mathbf{\Theta}}_{k+1} = \mathbf{H}_{k+1}^{\dagger} \mathbf{T} = \mathbf{R}_{k+1}^{-1} \mathbf{Q}_{k+1}^{\top} \mathbf{T} 
= \begin{bmatrix} \mathbf{R}_{k}^{-1} & -\mathbf{R}_{k}^{-1} \tilde{\mathbf{r}}_{k+1} r_{k+1,k+1}^{-1} \\ \mathbf{0} & r_{k+1,k+1}^{-1} \end{bmatrix} \begin{bmatrix} \mathbf{Q}_{k}^{\top} \\ \mathbf{q}_{k+1}^{\top} \end{bmatrix} \mathbf{T} 
= \begin{bmatrix} \hat{\mathbf{\Theta}}_{k} - \mathbf{R}_{k}^{-1} \tilde{\mathbf{r}}_{k+1} \hat{\boldsymbol{\theta}}_{k+1}^{\top} \\ \hat{\boldsymbol{\theta}}_{k+1}^{\top} \end{bmatrix} \tag{26}$$

where  $\hat{\boldsymbol{\theta}}_{k+1}^{\top} = \boldsymbol{q}_{k+1}^{\top} \boldsymbol{T}/r_{k+1,k+1}$ . Notice that  $\boldsymbol{R}_1^{-1} = 1/\sqrt{\boldsymbol{h}^{\top}\boldsymbol{h}}$  and  $\hat{\boldsymbol{\Theta}}_1 = \boldsymbol{R}_1^{-1}\boldsymbol{q}_1^{\top}\boldsymbol{T}$ , so both (25) and (26) can be computed incrementally with the increasing hidden nodes. When the output error is not more than the predefined level, i.e.,

$$\left\| \mathbf{H}_{k} \hat{\mathbf{\Theta}}_{k} - \mathbf{T} \right\|_{F}^{2} \leqslant \epsilon \tag{27}$$

where  $\epsilon > 0$  is the expected learning accuracy, QRI-ELM terminates. At each learning step, the total cost of (20)–(27) is O(kNm). Successive k such updates incur a computational cost of  $O(k^2Nm)$ . The memory requirement of QRI-ELM is O(kN).

#### 4. GSI-ELM

For QRI-ELM, it recruits every hidden node, which is equivalent to randomly selecting one from a candidate set of infinite size. This mechanism without evaluation will lead to those hidden nodes recruited, which play a very minor role in the network output and thus increase the network complexity, which is not suitable for the testing time sensitive scenarios. To improve the quality of the hidden nodes recruited by GSI-ELM, an evaluating criterion can be added. It is impossible to recruit the best hidden node from a candidate set of infinite size at each learning step. However, a probabilistic trick can be exploited, which is to consider only a random subset of fixed size and selects the best hidden node from this set rather than performing an exhaustive search over a set of infinite size. This is a feasible strategy proved by Smola and Schölkopf [24]. In order to obtain an estimate that is with probability 0.95 among the best 0.05 of all estimates, a random set of size  $\kappa = 59 = \left\lceil \frac{\log(0.05)}{\log(0.95)} \right\rceil$ will guarantee nearly as good performance as if we consider the whole set of hidden nodes.

#### 4.1. A probabilistic trick

Assuming that these matrices  $\mathbf{H}_k$ ,  $\mathbf{R}_k$ ,  $\mathbf{Q}_k$ , and  $\hat{\mathbf{\Theta}}_k$  have been obtained at the kth learning step, then an orthogonal projector [29] is defined as

$$\boldsymbol{P}_k = \boldsymbol{I} - \boldsymbol{Q}_k \boldsymbol{Q}_k^{\top} \tag{28}$$

with  $P_k^2 = P_k$  and  $P_k = P_k^{\top}$ . Actually,  $P_k$  is the orthogonal projector onto the null space of the  $H_k$ , because

$$\mathbf{P}_k = \mathbf{I} - \mathbf{H}_k (\mathbf{H}_k^{\top} \mathbf{H}_k)^{-1} \mathbf{H}_k^{\top} \tag{29}$$

Given that a random hidden nodes output matrix  $\mathbf{H}_{\mathbb{B}}$ , where  $\mathbb{B} = \{1, 2, \dots, \kappa\}$ , is generated at the (k+1)th learning step, then we can divide it as

$$\mathbf{H}_{\mathbb{B}} = \tilde{\mathbf{H}}_{\mathbb{B}} \oplus \tilde{\mathbf{H}}_{\mathbb{R}}^{\perp} \tag{30}$$

where  $\oplus$  represents the direct sum operator [29],

$$\tilde{\mathbf{H}}_{\mathbb{B}} = \mathbf{P}_{k} \mathbf{H}_{\mathbb{B}} \tag{31}$$

and

$$\tilde{\mathbf{H}}_{\mathbb{R}}^{\perp} = (\mathbf{I} - \mathbf{P}_k)\mathbf{H}_{\mathbb{B}} \tag{32}$$

Similarly, we get

$$T = \tilde{T}_k \oplus \tilde{T}_{\nu}^{\perp} \tag{33}$$

where

$$\tilde{\mathbf{T}}_k = \mathbf{P}_k \mathbf{T} \tag{34}$$

$$\tilde{\mathbf{T}}_{k}^{\perp} = (\mathbf{I} - \mathbf{P}_{k})\mathbf{T} \tag{35}$$

and

$$\mathbf{H}_{k} = \tilde{\mathbf{H}}_{k} \oplus \tilde{\mathbf{H}}_{k}^{\perp} \tag{36}$$

where

$$\tilde{\mathbf{H}}_k = \mathbf{P}_k \mathbf{H}_k \tag{37}$$

$$\tilde{\mathbf{H}}_{k}^{\perp} = (\mathbf{I} - \mathbf{P}_{k})\mathbf{H}_{k} \tag{38}$$

Since  $\tilde{H}_k = P_k H_k = (I - Q_k Q_k^{\top}) Q_k R_k = 0$ , hence  $\tilde{H}_k^{\perp} = H_k$ . From (33), we know that the target T is divided into two parts. The part  $\tilde{T}_k^{\perp}$  in (35) can be represented very well using  $\tilde{H}_k^{\perp}$  in (38), because

$$\tilde{\mathbf{T}}_{\nu}^{\perp} = \tilde{\mathbf{H}}_{\nu}^{\perp} \hat{\mathbf{\Theta}}_{k} \tag{39}$$

That is to say,

$$\tilde{\mathbf{T}}_{k}^{\perp} = \mathbf{H}_{k} \hat{\mathbf{\Theta}}_{k} \tag{40}$$

Eq. (40) signifies that another part  $\tilde{T}_k$  can not be represented with  $H_k$  at all. In other words,  $\tilde{T}_k$  is the residual matrix for the kth learning step. In order to reduce  $\tilde{T}_k$  further,  $\tilde{H}_{\mathbb{B}}$  can be utilized to express it, because they lie in the same space, viz. the null space of the  $H_k$ . Thus, an evaluating criterion is defined over  $\tilde{H}_{\mathbb{B}}$ 

$$\Delta_i = \frac{\left\|\tilde{\boldsymbol{h}}_i^\top \tilde{\boldsymbol{T}}_k\right\|_F^2}{\left\|\tilde{\boldsymbol{h}}_i\right\|_2} \tag{41}$$

where  $\tilde{\pmb{h}}_i \in \left\{\tilde{\pmb{h}}_1, \tilde{\pmb{h}}_2, \ldots, \tilde{\pmb{h}}_k\right\}$ , which are the corresponding columns of  $\tilde{\pmb{H}}_{\mathbb{B}}$ . The larger is the  $\Delta_i$ , the better the  $\tilde{\pmb{T}}_k$  is represented with  $\tilde{\pmb{h}}_i$ . That is,  $\tilde{\pmb{h}}_i$  can incur the larger reduction on  $\tilde{\pmb{T}}_k$ , which indicates that  $\tilde{\pmb{T}}_k$  can be represented using fewer hidden nodes and thus a more compact ELM is obtained. Hence, we can find the index of the hidden node to be recruited by

$$s = \arg\max_{i \in \mathbb{B}} \Delta_i \tag{42}$$

To obtain  $\Delta_i$ , we need to compute both (31) and (34), which incur the computational costs of  $O(N^2\kappa)$  and  $O(N^2m)$ , respectively. Moreover, the memory requirement is  $O(N^2)$ . To reduce the computational complexity of (41), we modify it as

$$\Delta_{i} = \frac{\left\|\tilde{\boldsymbol{h}}_{i}^{\top}\boldsymbol{T}\right\|_{F}^{2}}{\left\|\tilde{\boldsymbol{h}}_{i}\right\|_{2}} \tag{43}$$

**Theorem 1.** Eq. (43) is equivalent to (41).

**Proof.** According to (34),

$$\tilde{\mathbf{h}}_{i}^{\top}\tilde{\mathbf{T}} = \tilde{\mathbf{h}}_{i}^{\top}\mathbf{P}_{k}\mathbf{T} = \tilde{\mathbf{h}}_{i}^{\top}[\mathbf{I} - (\mathbf{I} - \mathbf{P}_{k})]\mathbf{T} = \tilde{\mathbf{h}}_{i}^{\top}\mathbf{T} - \tilde{\mathbf{h}}_{i}^{\top}(\mathbf{I} - \mathbf{P}_{k})\mathbf{T}$$
(44)

Additionally.

$$\tilde{\boldsymbol{h}}_{i}^{\top}(\boldsymbol{I} - \boldsymbol{P}_{k})\boldsymbol{T} = \boldsymbol{h}_{i}^{\top}\boldsymbol{P}_{k}^{\top}(\boldsymbol{I} - \boldsymbol{P}_{k})\boldsymbol{T} \tag{45}$$

Plugging (28) into (45) yields

$$\boldsymbol{h}_{i}^{\top} \boldsymbol{P}_{\nu}^{\top} (\boldsymbol{I} - \boldsymbol{P}_{k}) \boldsymbol{T} = \boldsymbol{h}_{i}^{\top} (\boldsymbol{I} - \boldsymbol{Q}_{k} \boldsymbol{Q}_{\nu}^{\top}) \boldsymbol{Q}_{k} \boldsymbol{Q}_{\nu}^{\top} \boldsymbol{T} = \boldsymbol{0}$$

$$(46)$$

Thus  $\tilde{\boldsymbol{h}}_i^{\mathsf{T}} \tilde{\boldsymbol{T}}_k = \tilde{\boldsymbol{h}}_i^{\mathsf{T}} \boldsymbol{T}$ , our claim is finished.  $\square$ 

As thus, the cost of  $O(N^2m)$  vanishes when Eq. (43) is utilized to calculate  $\Delta_i$ . To cut down the computational complexity of calculating  $\tilde{\mathbf{H}}_{\mathbb{R}}$  in (31), it is expanded as

$$\tilde{\mathbf{H}}_{\mathbb{B}} = (\mathbf{I} - \mathbf{Q}_{k} \mathbf{Q}_{k}^{\top}) \mathbf{H}_{\mathbb{B}} = \mathbf{H}_{\mathbb{B}} - \mathbf{Q}_{k} \mathbf{Q}_{k}^{\top} \mathbf{H}_{\mathbb{B}}$$

$$(47)$$

If  $\mathbf{Q}_k^{\top} \mathbf{H}_{\mathbb{B}}$  in (47) is computed firstly rather than calculating  $\mathbf{Q}_k^{\top} \mathbf{Q}_k$ , the cost is reduced from  $O(\max\{N^2k, N^2\kappa\})$  to  $O(kN\kappa)$ . Meanwhile, the memory cost is dropped to  $O(\max\{Nk, N\kappa\})$ . That is, the matrix  $\mathbf{P}_k$  need not be calculated explicitly, and  $\tilde{\mathbf{h}}_i(i \in \mathbb{B})$  is given using (47). When  $\mathbf{h}_s$  is determined using (42), the updating strategy of QRI-ELM from (20) to (26) is employed to obtain  $\hat{\mathbf{\Theta}}_{k+1}$ . This procedure above is repeated until the stopping criterion is satisfied.

The stopping criterion of QRI-ELM can also be used to stop GSI-ELM. To curb the number of hidden nodes exactly, a positive integer  $k_{\rm max}$  can be set as the stopping criterion. When k reaches  $k_{\rm max}$ , GSI-ELM stops recruiting hidden nodes.

4.2. The flowchart of GSI-ELM

See Algorithm 1.

- 1. **input**: Input training data  $\{(\mathbf{x}_i, \mathbf{t}_i)\}_{i=1}^N$  and activation function  $h(\cdot)$ ; parameters  $\kappa$ ,  $\epsilon$  and  $k_{\text{max}}$ .
- 2. **output**:  $f_{\text{GSI-ELM}}(\mathbf{x}) = \sum_{i=1}^{k} \hat{\boldsymbol{\theta}}_{i} h(\boldsymbol{a}_{i}, b_{i}, \mathbf{x})$ .
- 3. initialize:
  - Randomly generate  $\mathbf{\textit{H}}_{\mathbb{B}} = [\mathbf{\textit{h}}_1, \mathbf{\textit{h}}_2, ..., \mathbf{\textit{h}}_{\kappa}]$ , where  $\mathbb{B} = \{1, 2, ..., \kappa\}$ ;
  - Calculate  $\Delta_i = \frac{\|\mathbf{h}_i^T T\|_F^2}{\|\mathbf{h}_i\|_2}, i \in \mathbb{B}; \quad \% \ O(Nm\kappa)$  Choose  $s = \arg\max_{i \in \mathbb{B}} \Delta_i;$

  - Calculate  $r_{11} = \sqrt{\boldsymbol{h}_s^{\top} \boldsymbol{h}_s}$ ; % O(N)
  - Let  $\mathbf{Q}_1 = \mathbf{h}_s/r_{11}$ ,  $\mathbf{R}_1^{-1} = 1/r_{11}$ ,  $\mathbf{H}_1 = \mathbf{h}_s$ ; % O(N)
  - Calculate  $\hat{\mathbf{\Theta}}_1 = \mathbf{Q}_1 \mathbf{T}/r_{11}; \quad \% \ O(Nm)$
  - Let  $\mathbf{A}_1 = \begin{bmatrix} \mathbf{a}_s^{\mathsf{T}}, b_s \end{bmatrix}^{\mathsf{T}}$ , where  $\mathbf{a}_s$  and  $b_s$  are random parameters of  $\mathbf{h}_s$ , and k = 1.
- **4.** while  $k < k_{\text{max}}$  and  $\left\| \mathbf{H}_k \hat{\mathbf{\Theta}}_k \mathbf{T} \right\|_{F}^2 > \epsilon$  do % O(Nmk)
- 5. Randomly generate  $\mathbf{H}_{\mathbb{B}} = [\mathbf{h}_1, \mathbf{h}_2, ..., \mathbf{h}_k];$
- Obtain  $\tilde{\mathbf{H}}_{\mathbb{B}}$  according to (47); %  $O(kN\kappa)$
- Obtain  $\Delta_i (i \in \mathbb{B})$  according to (47); %  $O(Nm\kappa)$ 7.
- Find  $\mathbf{h}_s$  and  $\tilde{\mathbf{h}}_s$  according to (47); 8.
- Calculate  $\tilde{\boldsymbol{r}}_{k+1} = \boldsymbol{Q}_k^{\top} \boldsymbol{h}_s$ ; % O(kN)
- Calculate  $r_{k+1,k+1} = \sqrt{\tilde{\mathbf{h}}_{s}^{\top} \tilde{\mathbf{h}}_{s}}$ ; % O(N)10.
- Calculate  $\mathbf{q}_{k+1} = \tilde{\mathbf{h}}_{s}/r_{k+1,k+1};$  % O(N)11.
- Obtain  $\mathbf{R}_{k+1}^{-1}$  according to (47); %  $O(k^2)$ 12.
- Obtain  $\hat{\boldsymbol{\Theta}}_{k+1} = \begin{bmatrix} \hat{\boldsymbol{\theta}}_1, \dots, \hat{\boldsymbol{\theta}}_{k+1} \end{bmatrix}^\top$  according to (47); %  $O(\max\{k^2, km\})$ 13.
- Let  $\mathbf{A}_{k+1} = [\mathbf{A}_k, [\mathbf{a}_s^\top, \mathbf{b}_s]^\top]$ , where  $\mathbf{a}_s$  and  $\mathbf{b}_s$  are random parameters of  $\mathbf{h}_s$ ;
- Let  $\mathbf{Q}_{k+1} = [\mathbf{Q}_k, \mathbf{q}_{k+1}], \mathbf{H}_{k+1} = [\mathbf{H}_k, \mathbf{h}_s], \text{ and } k \leftarrow k+1.$
- 16. end while
- 17. **Return**  $\hat{\boldsymbol{\Theta}}_k$  and  $\boldsymbol{A}_k$ .

#### 4.3. Computational complexity of GSI-ELM

In GSI-EIM, the computational complexity of each row is listed behind the symbol %. Generally, both k and  $\kappa$  are larger than m. When GSI-ELM recruits one hidden node, the computational cost is  $O(kN\kappa)$ . Adding up these costs till k hidden nodes are recruited, we have the computational cost of  $O(k^2N\kappa)$ . In addition, the memory cost of GSI-ELM is O(kN).

#### 5. IGSI-ELM

In GSI-ELM, once one hidden node is recruited, it will not be discarded later. That is, the "nesting effect" exists in GSI-ELM. To solve this problem, some elimination mechanism can be introduced into GSI-ELM. Firstly, some evaluation criterion is defined. Then, based on this evaluation criterion, we can judge whether the existing hidden nodes are good or not. Finally, if the so-called worst hidden node is not the newly-recruited hidden node, it will be eliminated. Otherwise, no hidden nodes will be eliminated. That is, even though one hidden node is already recruited, it may be discarded later if its quality is not good enough. Hence, it is very crucial to define an appropriate evaluation criterion for IGSI-ELM.

#### 5.1. The evaluation criterion

As known, ELM is equivalent to solving (6). Theoretically, if one hidden node is recruited, the objective value of (6) will decrease. Ideally, the objective value of (6) is dropped to zero, which, however, usually suffers from the overfitting phenomenon. Hence, we do not let the objective value of (6) equal zero. Intuitively, the more important the hidden node is, the larger reduction on the objective function it incurs.

Assume that at the (k+1)th learning step the hidden node  $h_s$ , viz.  $\mathbf{h}_{k+1}$ , has already been determined via (42). In this situation, equation (6) becomes as

$$\min_{\mathbf{\Theta}_{k+1}} \left\{ J_{k+1} = \| \mathbf{H}_{k+1} \mathbf{\Theta}_{k+1} - \mathbf{T} \|_F^2 \right\}$$
 (48)

If  $\mathbf{h}_i (i = 1, ..., k + 1)$  is eliminated from (48), it is denoted by

$$\min_{\mathbf{\Theta}_{k+1}^{(-i)}} \left\{ J_{k+1}^{(-i)} = \left\| \mathbf{H}_{k+1}^{(-i)} \mathbf{\Theta}_{k+1}^{(-i)} - \mathbf{T} \right\|_F^2 \right\} \tag{49}$$

Together with (48) and (49), an evaluation criterion over the ith hidden node is defined as

$$\delta_i = \hat{J}_{k+1}^{(-i)} - \hat{J}_{k+1}, \quad i \in \{1, \dots, k+1\}$$
 (50)

where  $\hat{J}_{k+1}^{(-i)}$  and  $\hat{J}_{k+1}$  represent the optimal objective values of (49) and (48), respectively. The larger the  $\delta_i$  is, the more important the ith hidden node is. To obtain  $\delta_i$ , if QR decomposition realized with Gram-Schmidt process is used to calculate  $\hat{\mathbf{\Theta}}_{k+1}^{(-i)}$  as (11), the complexity cost is  $O(Nk^2m)[30]$ , which amounts to implementing QRI-ELM one time. Hence, the total cost is up to  $O(Nk^3m)$  in order to compute  $\delta_i (i = 1, ..., k + 1)$ , meaning solving QRI-ELM k times, and this cost will become prohibitive as increasing k. Obviously, it is necessary to accelerate the computation of  $\delta_i$  (i = 1, ..., k + 1).

#### 5.2. An accelerating scheme of $\delta_i$

#### Theorem 2.

$$\delta_i = \frac{\left\|\hat{\boldsymbol{\theta}}_i\right\|_2^2}{\left\|\boldsymbol{p}_i\right\|_2^2}, \quad i = 1, \dots, k+1$$
(51)

holds, where  $\hat{\theta}_i^{\top}$  is the ith row vector of  $\hat{\Theta}_{k+1}$ ,  $\mathbf{p}_i$  is the ith column vector of  $\mathbf{R}_{k+1}^{-\top}$ .

**Proof.** Based on (48), we can obtain the following optimization problem:

$$\min_{\mathbf{\Theta}_{k+1}^{(i)}} \left\{ J_{k+1}^{(i)} = \left\| \mathbf{H}_{k+1} \mathbf{\Theta}_{k+1}^{(i)} - \mathbf{T} \right\|_{F}^{2} + \left\| \mathbf{\lambda}^{\top} \mathbf{\Theta}_{k+1}^{(i)} \right\|_{F}^{2} \right\}$$
 (52)

where all the entries of  $\lambda \in \Re^{(k+1)}$  are equal to zeros except  $\lambda_i = \lambda$ ,  $\lambda > 0$ . From (52), notice that

$$\hat{J}_{k+1}^{(-i)} = \lim_{\lambda \to \infty} \hat{J}_{k+1}^{(i)} \tag{53}$$

where  $\hat{J}_{k+1}^{\prime(i)}$  represents the optimal objective value of (52). Hence, Eq. (50) becomes

$$\delta_{i} = \lim_{\lambda \to \infty} \hat{J}_{k+1}^{\prime(i)} - \hat{J}_{k+1}, \quad i \in \{1, \dots, k+1\}$$
 (54)

On one side, according to (11), substituting  $\hat{\Theta}_{k+1} = \mathbf{R}_{k+1}^{-1} \mathbf{Q}_{k+1}^{\top} \mathbf{T}$  into (48) gets

$$\widehat{J}_{k+1} = \operatorname{tr}(\boldsymbol{T}^{\top}\boldsymbol{T} - \boldsymbol{T}^{\top}\boldsymbol{Q}_{k+1}\boldsymbol{Q}_{k+1}^{\top}\boldsymbol{T})$$
(55)

where tr( · ) represents the matrix trace. On the other side, letting  $\frac{dJ_{k+1}^{\prime(i)}}{d\Theta_{k+1}^{\prime(i)}} = 0$  generates

$$\widehat{\boldsymbol{\Theta}}_{k+1}^{\prime(i)} = \left(\boldsymbol{H}_{k+1}^{\top} \boldsymbol{H}_{k+1} + \lambda \lambda^{\top}\right)^{-1} \boldsymbol{H}_{k+1}^{\top} \boldsymbol{T}$$
(56)

Plugging (56) into (52) yields

$$\widehat{\boldsymbol{J}}_{k+1}^{\prime(i)} = \operatorname{tr}\left(\boldsymbol{T}^{\top}\boldsymbol{T} - \boldsymbol{T}^{\top}\boldsymbol{H}_{k+1}\left(\boldsymbol{H}_{k+1}^{\top}\boldsymbol{H}_{k+1} + \lambda \lambda^{\top}\right)^{-1}\boldsymbol{H}_{k+1}^{\top}\boldsymbol{T}\right)$$
(57)

With Sherman-Morrison formula [29]

$$(\mathbf{A} + \mathbf{a}\mathbf{b})^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{a}\mathbf{b}^{\mathsf{T}}\mathbf{A}^{-1}}{1 + \mathbf{b}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{a}}$$
 (58)

where  $\boldsymbol{A}$  is an inventible matrix,  $\boldsymbol{a}$  and  $\boldsymbol{b}$  are column vectors with proper dimension, thus

Eq. (59) is substituted into (57), so

$$\hat{J}_{k+1}^{\prime(i)} = \text{tr}\left(\boldsymbol{T}^{\top}\boldsymbol{T} - \boldsymbol{T}^{\top}\boldsymbol{H}_{k+1}(\boldsymbol{H}_{k+1}^{\top}\boldsymbol{H}_{k+1})^{-1}\boldsymbol{H}_{k+1}^{\top}\boldsymbol{T}\right) + \text{tr}\left(\frac{\boldsymbol{T}^{\top}\boldsymbol{H}_{k+1}(\boldsymbol{H}_{k+1}^{\top}\boldsymbol{H}_{k+1})^{-1}\boldsymbol{\lambda}\boldsymbol{\lambda}^{\top}(\boldsymbol{H}_{k+1}^{\top}\boldsymbol{H}_{k+1})^{-1}\boldsymbol{H}_{k+1}^{\top}\boldsymbol{T}}{1 + \boldsymbol{\lambda}^{\top}(\boldsymbol{H}_{k+1}^{\top}\boldsymbol{H}_{k+1})^{-1}\boldsymbol{\lambda}}\right)$$
(60)

**Table 1**Description of data sets.

| Data sets         | #Training | #Testing | #Inputs | #Outputs | #Classes |
|-------------------|-----------|----------|---------|----------|----------|
| Concrete slump    | 57        | 46       | 7       | 3        | -        |
| Energy efficiency | 422       | 346      | 8       | 2        | _        |
| Music             | 582       | 477      | 68      | 2        | _        |
| Sml2010           | 2275      | 1862     | 16      | 2        | _        |
| Parkinsons        | 3231      | 2644     | 18      | 2        | -        |
| Concrete          | 553       | 452      | 8       | 1        | -        |
| Airfoil           | 827       | 676      | 5       | 1        | -        |
| Winequality white | 2179      | 1782     | 11      | 1        | -        |
| Abalone           | 2297      | 1880     | 8       | 1        | -        |
| Cpu_small         | 4506      | 3686     | 12      | 1        | -        |
| Kinematics        | 4506      | 3686     | 8       | 1        | -        |
| Delta_ailerons    | 3921      | 3208     | 5       | 1        | -        |
| Delta_elevators   | 5234      | 4283     | 6       | 1        | -        |
| Iris              | 81        | 64       | 4       | _        | 3        |
| Ionosphere        | 193       | 157      | 33      | _        | 2        |
| Balance           | 344       | 281      | 4       | -        | 3        |
| Vehicle           | 465       | 381      | 18      | -        | 4        |
| Hill_valley       | 667       | 545      | 100     | -        | 2        |
| Yeast             | 698       | 571      | 9       | _        | 4        |
| Banknote          | 741       | 607      | 4       | _        | 2        |
| Car               | 950       | 778      | 6       | -        | 4        |
| Statlog           | 1147      | 939      | 18      | _        | 7        |
| Waveform          | 2750      | 2250     | 40      | -        | 3        |
| Waveform2         | 2750      | 2250     | 40      | -        | 2        |
| Landsat           | 3539      | 2896     | 36      | -        | 6        |
| Mushroom          | 3843      | 3145     | 20      | -        | 2        |
|                   |           |          |         |          |          |

*Notes*: #Training represents the number of training data, #Testing represents the number of testing data, #Inputs represents the number of input attributes, #Outputs represents the number of output targets (regression applications), #Classes represents the number of classes (classification applications).

Due to  $\mathbf{H}_{k+1} = \mathbf{Q}_{k+1}\mathbf{R}_{k+1}$  and  $\hat{\mathbf{\Theta}}_{k+1} = \mathbf{R}_{k+1}^{-1}\mathbf{Q}_{k+1}^{\top}\mathbf{T}$ , Eq. (60) is simplified as

$$\hat{J}_{k+1}^{\prime(i)} = \operatorname{tr}\left(\boldsymbol{T}^{\top}\boldsymbol{T} - \boldsymbol{T}^{\top}\boldsymbol{Q}_{k+1}\boldsymbol{Q}_{k+1}^{\top}\boldsymbol{T}\right) + \operatorname{tr}\left(\frac{\hat{\boldsymbol{\Theta}}_{k+1}^{\top}\boldsymbol{\lambda}\boldsymbol{\lambda}^{\top}\hat{\boldsymbol{\Theta}}_{k+1}}{1 + \boldsymbol{\lambda}^{\top}\boldsymbol{R}_{k+1}^{-1}\boldsymbol{R}^{-\top}\boldsymbol{\lambda}}\right)$$
(61)

Together with (54), (55), and (61), we get

$$\delta_{i} = \lim_{\lambda \to \infty} \operatorname{tr} \left( \frac{\hat{\boldsymbol{\Theta}}_{k+1}^{\top} \boldsymbol{\lambda} \boldsymbol{\lambda}^{\top} \hat{\boldsymbol{\Theta}}_{k+1}}{1 + \boldsymbol{\lambda}^{\top} \boldsymbol{R}_{k+1}^{-1} \boldsymbol{R}^{-\top} \boldsymbol{\lambda}} \right) = \lim_{\lambda \to \infty} \frac{\lambda^{2} \left\| \hat{\boldsymbol{\theta}}_{i} \right\|_{2}^{2}}{1 + \lambda^{2} \left\| \boldsymbol{p}_{i} \right\|_{2}^{2}} = \frac{\left\| \hat{\boldsymbol{\theta}}_{i} \right\|_{2}^{2}}{\left\| \boldsymbol{p}_{i} \right\|_{2}^{2}}$$

$$(62)$$

Now, this proof is finished.  $\Box$ 

At the (k+1)th learning step,  $\hat{\Theta}_{k+1}$  and  $R_{k+1}^{-1}$  have already been computed, so  $\delta_i (i=1,\ldots,k+1)$  can be easily got using (51) at a cost of  $O(k^2)$ . Compared with the computational cost, viz.  $O(Nk^3m)$ , of  $\delta_i$  using (50) directly, this drop is very obvious. Additionally,  $\delta_i \geq 0$  usually holds from (62). Since the evaluation criterion  $\delta_i$  is got, in the following the elimination mechanism will be introduced.

#### 5.3. The elimination mechanism

According to (51), one  $\delta_i$  is defined for every hidden node at the (k+1)th learning step, so we can rank these hidden nodes recruited based on their importance. The larger the  $\delta_i$  is, the more important its corresponding hidden node is. From this rank, the hidden node, represented by  $\mathbf{h}_{i_{\min}}(1\leqslant r_{\min}\leqslant k+1)$ , holding the least  $\delta_{i_{\min}}$  is found. Then, two cases are encountered:

(i)  $r_{\min} = k + 1$ 

For this case, the newly-recruited hidden node is the least important one. That is to say, the previously-recruited hidden nodes are *good* enough. The objective value of (6) can be reduced further via retaining the (k+1)th hidden node.



Fig. 1. Comparisons of the RMSE in terms of #HN for different algorithms on regression applications.

## (ii) $r_{\min} \neq k+1$ This case means that the (k+1)th hidden node is better than the $r_{\min}$ th one. In this situation, we can eliminate the $r_{\min}$ th hidden node, which is equivalent to replacing $\boldsymbol{h}_{r_{\min}}$ with $\boldsymbol{h}_{k+1}$ . Due to $\hat{\boldsymbol{J}}_{k+1}^{(-(k+1))} > \hat{\boldsymbol{J}}_{k+1}^{(-r_{\min})}$ , the objective value

 $\hat{J}$  continues decreasing. This behavior keeps the number of hidden nodes constant and meanwhile decreases the objective value, which obeys the principle of Occam's razor "plurality must never be posited with necessity" [28] and improves the ELM performance. After eliminating the  $i_{\min}$ th



Fig. 1. Continued

hidden node, we need update  $\mathbf{R}^{-1}$ ,  $\mathbf{Q}$ ,  $\mathbf{H}$ , and  $\hat{\mathbf{\Theta}}$ . If  $r_{\min} \neq 1$ , the partial strategy can be utilized. That is, let

$$\mathbf{R}_{r_{\min}-1}^{-1} \leftarrow \mathbf{R}_{k+1}^{-1} (1 \sim r_{\min} - 1, 1 \sim r_{\min} - 1)$$
 (63)

$$\mathbf{Q}_{r_{\min}-1} \leftarrow \mathbf{Q}_{k+1}(\cdot, 1 \sim r_{\min} - 1) \tag{64}$$

$$\mathbf{H}_{r_{\min}-1} \leftarrow \mathbf{H}_{k+1}(\cdot, 1 \sim r_{\min} - 1) \tag{65}$$

and

$$\hat{\boldsymbol{\Theta}}_{r_{\min}-1} = \boldsymbol{R}_{r_{\min}-1}^{-1} \boldsymbol{Q}_{r_{\min}-1}^{\top} \boldsymbol{T}$$
 (66)

where  $1 \sim r_{\min} - 1$  denotes columns or rows from 1 to  $r_{\min} - 1$ , denotes all the columns or rows. From (63), (64), and (65), we know that  $\mathbf{Q}_{r_{\min}-1}\mathbf{R}_{r_{\min}-1} = \mathbf{H}_{r_{\min}-1}$  satisfies the QR decomposition, where  $\mathbf{Q}_{r_{\min}-1}^{\mathsf{T}}\mathbf{Q}_{r_{\min}-1} = \mathbf{I}$  and  $\mathbf{R}_{r_{\min}-1}$  is an upper triangular matrix. Based on  $\mathbf{R}_{r_{\min}-1}^{\mathsf{T}}$ ,  $\mathbf{Q}_{r_{\min}-1}$ , and  $\hat{\mathbf{\Theta}}_{r_{\min}-1}$ , when the columns of  $\mathbf{H}_{k+1}$  from  $r_{\min}+1 \sim k+1$  are sequentially recruited, the matrices  $\mathbf{R}_{k}^{\mathsf{T}}$ ,  $\mathbf{Q}_{k}$ , and  $\hat{\mathbf{\Theta}}_{k}$  can be obtained using the incremental updating strategy from

(20) to (26). This partial strategy can avoid implementing the QR decomposition from scratch, which drops the computational cost. Otherwise, we have to perform a full QR decomposition from the beginning to obtain  $\mathbf{R}_k^{-1}$ ,  $\mathbf{Q}_k$ , and  $\hat{\mathbf{\Theta}}_k$  for the case  $r_{\min} = 1$ . Finally, let

$$\mathbf{H}_k \leftarrow \mathbf{H}_{k+1}(\cdot, -r_{\min}) \tag{67}$$

where  $-r_{\min}$  represents the  $r_{\min}$ th column or row eliminated.

When this elimination mechanism is finished, the procedure starts to recruit next hidden node or terminates.

#### 5.4. The flowchart of IGSI-ELM

See Algorithm 2.

#### 5.5. Computational complexity of IGSI-ELM

Compared with GSI-ELM, IGSI-ELM requires an additional cost, viz.  $O(k^2(N-r_{\min}))$ , of the elimination mechanism. If the elimination mechanism is implemented l times on average for one hidden

#### Algorithm 2 IGSI-ELM.

```
1: input: Input training data \{(\mathbf{x}_i, \mathbf{t}_i)\}_{i=1}^N and activation function h(\cdot); parameters \kappa, \epsilon and k_{max}
  2: output: f_{\text{IGSI-ELM}}(\mathbf{x}) = \sum_{i=1}^{k} \hat{\boldsymbol{\theta}}_{i} h(\boldsymbol{a}_{i}, b_{i}, \mathbf{x}).
  3: initialize:
           • Randomly generate \mathbf{\textit{H}}_{\mathbb{B}} = [\mathbf{\textit{h}}_1, \mathbf{\textit{h}}_2, ..., \mathbf{\textit{h}}_{\kappa}], where \mathbb{B} = \{1, 2, ..., \kappa\};
          • Calculate \Delta_i = \frac{\|\mathbf{h}_i^{\mathsf{T}} T\|_F^2}{\|\mathbf{h}_i\|_2}, i \in \mathbb{B}; \quad \% \ O(Nm\kappa)
• Choose s = \arg\max_{i \in \mathbb{B}} \Delta_i;
           • Calculate r_{11} = \sqrt{\boldsymbol{h}_s^{\top} \boldsymbol{h}_s}; % O(N)
           • Let \mathbf{Q}_1 = \mathbf{h}_s/r_{11}, \mathbf{R}_1^{-1} = 1/r_{11}, \mathbf{H}_1 = \mathbf{h}_s; % O(N)
           • Calculate \hat{\mathbf{\Theta}}_1 = \mathbf{Q}_1 \mathbf{T}/r_{11}; \quad \% \ O(Nm)
           • Let \mathbf{A}_1 = \begin{bmatrix} \mathbf{a}_s^{\mathsf{T}}, b_s \end{bmatrix}^{\mathsf{T}}, where \mathbf{a}_s and b_s are random parameters of \mathbf{h}_s, and k = 1.
  4: while k < k_{max} and \left\| \mathbf{H}_k \hat{\mathbf{\Theta}}_k - \mathbf{T} \right\|_{E}^2 > \epsilon do % O(Nmk)
             Randomly generate \mathbf{H}_{\mathbb{B}} = [\mathbf{h}_1, \mathbf{h}_2, ..., \mathbf{h}_k];
  5:
            Obtain \tilde{\mathbf{H}}_{\mathbb{B}} according to (67); % O(kN\kappa)
  7:
            Obtain \Delta_i (i \in \mathbb{B}) according to (67); % O(Nm\kappa)
            Find \mathbf{h}_s and \tilde{\mathbf{h}}_s according to (67);
  8:
            Calculate \tilde{\boldsymbol{r}}_{k+1} = \boldsymbol{Q}_k^{\top} \boldsymbol{h}_s; % O(kN)
  9:
            Calculate r_{k+1,k+1} = \sqrt{\tilde{\mathbf{h}}_{s}^{\top} \tilde{\mathbf{h}}_{s}}; % O(N)
10:
            Calculate \mathbf{q}_{k+1} = \tilde{\mathbf{h}}_s/r_{k+1,k+1}; \quad \% \ \mathrm{O}(N)
11:
            Obtain \mathbf{R}_{k+1}^{-1} according to (67); % O(k^2)
12:
            Obtain \hat{\boldsymbol{\Theta}}_{k+1} = \left[\hat{\boldsymbol{\theta}}_1, \dots, \hat{\boldsymbol{\theta}}_{k+1}\right]^{\top} according to (67); % O(\max\{k^2, km\})
13:
            Let \mathbf{A}_{k+1} = [\mathbf{A}_k, [\mathbf{a}_s^\top, \mathbf{b}_s]^\top], where \mathbf{a}_s and \mathbf{b}_s are random parameters of \mathbf{h}_s;
14:
            Let \mathbf{Q}_{k+1} = [\mathbf{Q}_k, \mathbf{q}_{k+1}], and \mathbf{H}_{k+1} = [\mathbf{H}_k, \mathbf{h}_s];
15:
            Calculate \delta_i (i = 1, ..., k + 1) according to (67); % O(k)
16:
17:
             Find out \boldsymbol{h}_{i_{\min}} corresponding to \delta_{i_{\min}};
            if i_{\min} \neq k+1
18:
19:
                if i_{\min} \neq 1
                    Obtain \mathbf{R}_{r_{\min}-1}^{-1}, \mathbf{Q}_{r_{\min}-1}, and \hat{\mathbf{\Theta}}_{r_{\min}-1} from (67), (67), and (67), respectively;
20:
                     Obtain \mathbf{R}_k^{-1}, \mathbf{Q}_k, and \hat{\mathbf{\Theta}}_k using the incremental updating strategy from (67) to (67); % O(k^2(N-r_{\min}))
21:
22:
                     Obtain \mathbf{R}_k^{-1}, \mathbf{Q}_k, and \hat{\mathbf{\Theta}}_k with a full QR decomposition from scratch; % O(k^2N)
23:
24:
                Let \mathbf{H}_k \leftarrow \mathbf{H}_{k+1}(\cdot, -r_{\min}), and \mathbf{A}_k \leftarrow \mathbf{A}_{k+1}(\cdot, -r_{\min});
25:
26:
27:
                Let k \leftarrow k + 1;
28:
            end if
29: end while
30: Return \hat{\Theta}_k and A_k.
```

node recruited, then this additional cost is  $O(k^3 l(N-r_{\min}))$  after recruiting k hidden nodes. Generally, IGSI-ELM usually needs fewer hidden nodes than GSI-ELM when they reach nearly the same generalization performance. That is, the additional cost required is usually less than  $O(k^3 l(N-r_{\min}))$ . The memory requirement of IGSI-ELM is the same as that of GSI-ELM, viz. O(Nk).

#### 6. Experiments

In this section, we provide experiments conducted in order to illustrate the effectiveness and feasibility of the proposed GSI-ELM and IGSI-ELM via comparison with the algorithms aforementioned, viz. HI-ELM, CI-ELM, EI-ELM, EMI-ELM, and QRI-ELM. All experiments have been carried out on a personal desktop with Intel®Core<sup>TM</sup> i7-6600U CPU 2.60 GHz processor, 8.00 GB memory, and Windows 10 operating system in MATLAB2016a environment. In this paper, twenty-six benchmark data sets listed in Table 1 are utilized to perform experiments, which consist of thirteen regression applications (Concrete slump, Energy efficiency, Music, Sml2010, Parkinsons, Concrete, Airfoil, Winequality white, Abalone, Cpu\_small, Kinematics, Delta\_ailerons, and Delta\_elevators) and thirteen classification applications including Iris, Ionosphere, Balance, Vehicle, Hill\_valley, Yeast, Banknote, Car, Statlog, Waveform, Waveform2, Landsat, and Mushroom. Thereinto, Cpu\_small, Kinematics, Delta\_ailerons, and Delta\_elevators are available from the

**Table 2** Performance comparison on regression applications.

| Data sets          | Algorithms         | L                       | RMSE                                                   | Training time (s)                                           | Testing time (s)                                              |
|--------------------|--------------------|-------------------------|--------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|
| Concrete slump     | ELM                | 10                      | $2.187e-01 \pm 1.430e-02$                              | $\underline{\textbf{0.000}\pm\textbf{0.000}}$               | $0.000\pm0.000$                                               |
|                    | GSI-ELM            | <u>3</u>                | $2.167e-01 \pm 1.184e-02$                              | $0.002 \pm 0.001$                                           | $0.000\pm0.000$                                               |
|                    | IGSI-ELM           | <u>3</u>                | $2.150e-01 \pm 1.682e-02$                              | $0.003 \pm 0.002$                                           | $0.000 \pm 0.000$                                             |
|                    | HI-ELM             | 10                      | $2.894e-01 \pm 2.684e-02$                              | $0.001 \pm 0.000$                                           | $0.000 \pm 0.000$                                             |
|                    | CI-ELM             | 10                      | $2.487e-01 \pm 2.395e-02$                              | $0.001 \pm 0.000$                                           | $0.000 \pm 0.000$                                             |
|                    | EI-ELM             | 10                      | $2.235e-01 \pm 1.029e-02$                              | $0.008 \pm 0.002$                                           | $0.000 \pm 0.000$                                             |
|                    | EMI-ELM<br>QRI-ELM | 7<br>7                  | $2.158e-01 \pm 1.025e-02$<br>$2.158e-01 \pm 1.025e-02$ | $0.001 \pm 0.000$<br>$0.001 \pm 0.000$                      | $0.000 \pm 0.000$<br>$0.000 \pm 0.000$                        |
| Energy efficiency  | ELM                | 140                     | 5.815e-02 ± 3.806e-03                                  | $0.005 \pm 0.001$                                           | 0.001 ± 0.000                                                 |
| Litergy efficiency | GSI-ELM            | 50                      | $5.716e-02 \pm 3.219e-03$                              | $0.039 \pm 0.001$                                           | $0.000 \pm 0.000$                                             |
|                    | IGSI-ELM           | 38                      | $5.664e-02 \pm 5.776e-03$                              | $0.111 \pm 0.011$                                           | $0.000 \pm 0.000$                                             |
|                    | HI-ELM             | 140                     | $9.196e-02 \pm 7.208e-03$                              | $0.007\pm0.000$                                             | $0.001\pm0.000$                                               |
|                    | CI-ELM             | 140                     | $8.762e-02 \pm 3.219e-03$                              | $0.010\pm0.001$                                             | $0.001\pm0.000$                                               |
|                    | EI-ELM             | 140                     | $8.195e-02 \pm 1.591e-03$                              | $0.159 \pm 0.003$                                           | $0.001 \pm 0.000$                                             |
|                    | EMI-ELM            | 137                     | $5.804e-02 \pm 4.254e-03$                              | $0.517 \pm 0.006$                                           | $0.001 \pm 0.000$                                             |
|                    | QRI-ELM            | 137                     | $5.804e-02 \pm 4.254e-03$                              | $0.027 \pm 0.001$                                           | $0.001 \pm 0.000$                                             |
| Music              | ELM                | 60                      | $1.941e-01 \pm 2.852e-03$                              | $0.003 \pm 0.001$                                           | $0.001 \pm 0.000$                                             |
|                    | GSI-ELM            | 8                       | $1.934e-01 \pm 2.815e-03$                              | $0.013 \pm 0.001$                                           | $0.000 \pm 0.000$                                             |
|                    | IGSI-ELM           | 8                       | $1.936e-01 \pm 2.230e-03$                              | $0.021 \pm 0.003$                                           | $0.000 \pm 0.000$<br>$0.001 \pm 0.000$                        |
|                    | HI-ELM<br>CI-ELM   | 60<br>60                | $2.569e-01 \pm 5.647e-02$<br>$1.946e-01 \pm 2.146e-03$ | $0.008 \pm 0.001$<br>$0.009 \pm 0.000$                      | $0.001 \pm 0.000$<br>$0.001 \pm 0.000$                        |
|                    | EI-ELM             | 15                      | $1.941e-01 \pm 3.904e-03$                              | $0.003 \pm 0.000$<br>$0.028 \pm 0.001$                      | $0.000 \pm 0.000$                                             |
|                    | EMI-ELM            | 28                      | $1.942e-01 \pm 2.820e-03$                              | $0.171 \pm 0.002$                                           | $0.000 \pm 0.000$                                             |
|                    | QRI-ELM            | 28                      | $1.942e-01 \pm 2.820e-03$                              | $0.006 \pm 0.000$                                           | $0.000 \pm 0.000$                                             |
| Sml2010            | ELM                | 60                      | 6.906e-02 ± 6.264e-03                                  | $0.009 \pm 0.001$                                           | $0.004 \pm 0.001$                                             |
|                    | GSI-ELM            | 20                      | $6.895e-02 \pm 2.395e-03$                              | $0.083 \pm 0.002$                                           | $0.001 \pm 0.000$                                             |
|                    | IGSI-ELM           | 17                      | $6.848e-02 \pm 7.899e-03$                              | $0.157 \pm 0.026$                                           | $0.001 \pm 0.000$                                             |
|                    | HI-ELM             | 60                      | $1.774e-01 \pm 3.148e-02$                              | $0.011 \pm 0.001$                                           | $0.003 \pm 0.000$                                             |
|                    | CI-ELM             | 60                      | $1.267e{-01}\pm2.803e{-02}$                            | $0.014\pm0.001$                                             | $0.003\pm0.000$                                               |
|                    | EI-ELM             | 60                      | $9.249e-02 \pm 1.360e-02$                              | $0.260 \pm 0.001$                                           | $0.003 \pm 0.000$                                             |
|                    | EMI-ELM            | 58                      | $6.864e-02 \pm 6.628e-03$                              | $4.946 \pm 0.013$                                           | $0.003 \pm 0.000$                                             |
|                    | QRI-ELM            | 58                      | $6.864e-02 \pm 6.628e-03$                              | $0.024 \pm 0.001$                                           | $0.003 \pm 0.000$                                             |
| Parkinsons         | ELM                | 150                     | $1.872e-01 \pm 7.203e-03$                              | $0.030 \pm 0.001$                                           | $0.012 \pm 0.001$                                             |
|                    | GSI-ELM            | 40                      | $1.871e-01 \pm 1.959e-03$                              | $0.249 \pm 0.004$                                           | $0.003 \pm 0.000$                                             |
|                    | IGSI-ELM           | <u><b>30</b></u><br>150 | $1.868e-01 \pm 1.863e-03$                              | $0.571 \pm 0.053$                                           | $0.002 \pm 0.000$                                             |
|                    | HI-ELM<br>CI-ELM   | 150                     | $2.238e-01 \pm 4.842e-03$<br>$2.165e-01 \pm 1.084e-03$ | $\frac{\textbf{0.028} \pm \textbf{0.001}}{0.041 \pm 0.001}$ | $\begin{array}{c} 0.012\pm0.000 \\ 0.012\pm0.000 \end{array}$ |
|                    | EI-ELM             | 150                     | $2.114e-01 \pm 3.803e-04$                              | $1.034 \pm 0.010$                                           | $0.012 \pm 0.000$                                             |
|                    | EMI-ELM            | 150                     | $1.872e-01 \pm 7.203e-03$                              | $31.749 \pm 0.269$                                          | $0.012 \pm 0.000$                                             |
|                    | QRI-ELM            | 150                     | $1.872e{-01}\pm7.203e{-03}$                            | $0.336\pm0.002$                                             | $0.012\pm0.001$                                               |
| Concrete           | ELM                | 20                      | 1.392e-01 ± 1.716e-02                                  | $0.001 \pm 0.000$                                           | $0.000 \pm 0.000$                                             |
|                    | GSI-ELM            | <u>4</u>                | $1.381e-01 \pm 1.100e-02$                              | $0.005 \pm 0.001$                                           | $0.000\pm0.000$                                               |
|                    | IGSI-ELM           | <u>4</u>                | $1.350e{-01} \pm 9.892e{-03}$                          | $0.007\pm0.003$                                             | $0.000\pm0.000$                                               |
|                    | HI-ELM             | 20                      | $2.619e-01 \pm 6.009e-02$                              | $\underline{\textbf{0.001}\pm\textbf{0.000}}$               | $0.000 \pm 0.000$                                             |
|                    | CI-ELM             | 20                      | $1.646e-01 \pm 1.948e-02$                              | $0.002 \pm 0.000$                                           | $0.000 \pm 0.000$                                             |
|                    | EI-ELM             | 15                      | $1.389e-01 \pm 5.640e-03$                              | $0.021 \pm 0.001$                                           | $0.000 \pm 0.000$                                             |
|                    | EMI-ELM<br>QRI-ELM | 20<br>20                | $1.392e-01 \pm 1.716e-02$<br>$1.392e-01 \pm 1.716e-02$ | $0.106 \pm 0.001$<br>$0.002 \pm 0.000$                      | $0.000 \pm 0.000$<br>$0.000 \pm 0.000$                        |
| A1C. 11            |                    |                         |                                                        |                                                             |                                                               |
| Airfoil            | ELM<br>GSI-ELM     | 110<br>63               | $8.914e-02 \pm 4.255e-03$<br>$8.915e-02 \pm 1.887e-03$ | $\frac{0.006 \pm 0.001}{0.079 \pm 0.005}$                   | $\begin{array}{c} 0.002\pm0.000 \\ 0.001\pm0.000 \end{array}$ |
|                    | IGSI-ELM           | 40                      | $8.850e-02 \pm 1.413e-03$                              | $0.079 \pm 0.003$<br>$0.192 \pm 0.023$                      | $0.001 \pm 0.000$<br>$0.001 \pm 0.000$                        |
|                    | HI-ELM             | 110                     | $1.453e-01 \pm 1.533e-02$                              | $0.006 \pm 0.001$                                           | $0.001 \pm 0.000$<br>$0.002 \pm 0.000$                        |
|                    | CI-ELM             | 110                     | $1.245e-01 \pm 1.631e-03$                              | $0.008 \pm 0.001$                                           | $0.002 \pm 0.000$                                             |
|                    | EI-ELM             | 110                     | $1.189e-01 \pm 6.577e-04$                              | $0.150 \pm 0.005$                                           | $0.001 \pm 0.000$                                             |
|                    | EMI-ELM            | 93                      | $8.913e-02 \pm 2.849e-03$                              | $1.265\pm0.005$                                             | $0.001\pm0.000$                                               |
|                    | QRI-ELM            | 93                      | $8.913e{-02}\pm2.850e{-03}$                            | $0.022\pm0.001$                                             | $0.001\pm0.000$                                               |
| Winequality white  | ELM                | 50                      | $1.229e-01 \pm 5.149e-04$                              | $\textbf{0.006}\pm\textbf{0.001}$                           | $0.003\pm0.001$                                               |
|                    | GSI-ELM            | 16                      | $1.229e-01 \pm 5.175e-04$                              | $0.046 \pm 0.003$                                           | $0.001\pm0.000$                                               |
|                    | IGSI-ELM           | <u>13</u>               | $1.227e{-01} \pm 8.735e{-04}$                          | $0.080\pm0.010$                                             | $0.001\pm0.000$                                               |
|                    | HI-ELM             | 50                      | $1.451e-01 \pm 8.055e-03$                              | $0.007 \pm 0.000$                                           | $0.002 \pm 0.000$                                             |
|                    | CI-ELM             | 50                      | $1.276e-01 \pm 1.454e-03$                              | $0.009 \pm 0.001$                                           | $0.002 \pm 0.000$                                             |
|                    | EI-ELM             | 50                      | $1.259e-01 \pm 5.406e-04$                              | $0.151 \pm 0.005$                                           | $0.002 \pm 0.000$                                             |
|                    | EMI-ELM<br>QRI-ELM | 40<br>40                | $1.229e-01 \pm 5.692e-04$<br>$1.229e-01 \pm 5.692e-04$ | $3.154 \pm 0.007$<br>$0.015 \pm 0.001$                      | $\begin{array}{c} 0.002\pm0.000 \\ 0.002\pm0.000 \end{array}$ |
| Abalona            |                    |                         |                                                        |                                                             |                                                               |
| Abalone            | ELM<br>GSI-ELM     | 30<br>9                 | $7.824e-02 \pm 1.249e-03$<br>$7.827e-02 \pm 6.384e-04$ | $\frac{\textbf{0.004} \pm \textbf{0.000}}{0.040 \pm 0.002}$ | $\begin{array}{c} 0.002\pm0.001 \\ 0.000\pm0.000 \end{array}$ |
|                    | IGSI-ELM           | <u>8</u>                | $7.824e-02 \pm 0.364e-04$<br>$7.824e-02 \pm 7.812e-04$ | $0.052 \pm 0.010$                                           | $0.000 \pm 0.000$                                             |
|                    | HI-ELM             | 30                      | $1.003e-01 \pm 6.933e-03$                              | $0.004 \pm 0.000$                                           | $0.001 \pm 0.000$                                             |
|                    |                    |                         |                                                        |                                                             |                                                               |

(continued on next page)

Table 2 (continued)

| Data sets                       | Algorithms | L         | RMSE                          | Training time (s)                 | Testing time (s   |
|---------------------------------|------------|-----------|-------------------------------|-----------------------------------|-------------------|
|                                 | EI-ELM     | 30        | 8.696e-02 ± 1.776e-03         | 0.109 ± 0.002                     | 0.001 ± 0.000     |
|                                 | EMI-ELM    | 26        | $7.828e-02 \pm 1.227e-03$     | $2.181 \pm 0.006$                 | $0.001 \pm 0.000$ |
|                                 | QRI-ELM    | 26        | $7.828e-02 \pm 1.227e-03$     | $0.008\pm0.002$                   | $0.001 \pm 0.000$ |
| Cpu_small                       | ELM        | 200       | $3.382e{-02} \pm 8.900e{-04}$ | $0.082\pm0.002$                   | $0.016\pm0.001$   |
|                                 | GSI-ELM    | 53        | $3.383e-02 \pm 4.442e-04$     | $0.476 \pm 0.006$                 | $0.005 \pm 0.000$ |
|                                 | IGSI-ELM   | <u>37</u> | $3.372e-02 \pm 4.171e-04$     | $1.072 \pm 0.106$                 | $0.004 \pm 0.000$ |
|                                 | HI-ELM     | 200       | $1.194e-01 \pm 7.156e-03$     | $0.038 \pm 0.002$                 | $0.016 \pm 0.001$ |
|                                 | CI-ELM     | 200       | $1.145e-01 \pm 3.163e-03$     | $0.048\pm0.001$                   | $0.016 \pm 0.001$ |
|                                 | EI-ELM     | 200       | $8.293e-02 \pm 1.362e-03$     | $1.561 \pm 0.013$                 | $0.016 \pm 0.001$ |
|                                 | EMI-ELM    | 180       | $3.389e-02 \pm 1.170e-03$     | $73.982 \pm 0.537$                | $0.016 \pm 0.001$ |
|                                 | QRI-ELM    | 180       | $3.389e-02 \pm 1.170e-03$     | $0.728\pm0.062$                   | $0.015 \pm 0.001$ |
| Kinematics                      | ELM        | 200       | $9.513e-02 \pm 2.508e-03$     | $0.078\pm0.003$                   | $0.017\pm0.001$   |
|                                 | GSI-ELM    | 54        | $9.519e-02 \pm 2.354e-03$     | $0.489\pm0.005$                   | $0.004 \pm 0.000$ |
|                                 | IGSI-ELM   | <u>34</u> | $9.473e-02 \pm 1.715e-03$     | $1.052 \pm 0.121$                 | $0.003 \pm 0.000$ |
|                                 | HI-ELM     | 200       | $1.430e-01 \pm 3.046e-03$     | $0.035 \pm 0.001$                 | $0.017\pm0.001$   |
| I                               | CI-ELM     | 200       | $1.395e-01 \pm 1.166e-03$     | $0.045\pm0.002$                   | $0.016 \pm 0.001$ |
|                                 | EI-ELM     | 200       | $1.327e-01 \pm 1.060e-03$     | $1.571 \pm 0.009$                 | $0.015\pm0.002$   |
|                                 | EMI-ELM    | 200       | $9.513e-02 \pm 2.508e-03$     | $86.685\pm0.145$                  | $0.016\pm0.002$   |
|                                 | QRI-ELM    | 200       | $9.513e-02 \pm 2.508e-03$     | $0.859\pm0.003$                   | $0.016\pm0.002$   |
| Delta_ailerons                  | ELM        | 70        | $3.802e-02 \pm 9.332e-05$     | $0.016\pm0.001$                   | $0.007\pm0.001$   |
|                                 | GSI-ELM    | 26        | $3.808e-02 \pm 1.324e-04$     | $0.174 \pm 0.004$                 | $0.002\pm0.000$   |
| HI-EI<br>CI-EI<br>EI-EI<br>EMI- | IGSI-ELM   | <u>21</u> | $3.804e-02 \pm 9.398e-05$     | $0.373\pm0.051$                   | $0.001\pm0.000$   |
|                                 | HI-ELM     | 70        | $6.903e-02 \pm 1.490e-02$     | $\textbf{0.011}\pm\textbf{0.001}$ | $0.006 \pm 0.000$ |
|                                 | CI-ELM     | 70        | $4.021e-02 \pm 8.805e-04$     | $0.015 \pm 0.002$                 | $0.006 \pm 0.000$ |
|                                 | EI-ELM     | 70        | $3.932e-02 \pm 2.208e-04$     | $0.442\pm0.004$                   | $0.005\pm0.001$   |
|                                 | EMI-ELM    | 45        | $3.806e-02 \pm 1.491e-04$     | $11.280 \pm 0.024$                | $0.005\pm0.001$   |
|                                 | QRI-ELM    | 45        | $3.806e-02 \pm 1.491e-04$     | $0.036\pm0.002$                   | $0.004 \pm 0.000$ |
| Delta_elevators                 | ELM        | 100       | 5.333e-02 ± 1.037e-04         | $0.029\pm0.001$                   | $0.012\pm0.001$   |
|                                 | GSI-ELM    | 34        | $5.339e-02 \pm 1.053e-04$     | $0.329\pm0.004$                   | $0.003 \pm 0.000$ |
|                                 | IGSI-ELM   | <u>20</u> | $5.336e-02 \pm 7.767e-05$     | $0.468\pm0.049$                   | $0.002\pm0.000$   |
|                                 | HI-ELM     | 100       | $7.880e-02 \pm 8.276e-03$     | $0.018 \pm 0.001$                 | $0.012\pm0.000$   |
|                                 | CI-ELM     | 100       | $5.403e-02 \pm 3.401e-04$     | $0.024 \pm 0.001$                 | $0.011\pm0.000$   |
|                                 | EI-ELM     | 100       | $5.402e-02 \pm 2.373e-04$     | $0.843\pm0.004$                   | $0.011 \pm 0.000$ |
|                                 | EMI-ELM    | 80        | 5.338e-02 ± 1.331e-04         | $38.018 \pm 0.185$                | $0.010 \pm 0.000$ |
|                                 | QRI-ELM    | 80        | 5.338e-02 ± 1.331e-04         | $0.154 \pm 0.003$                 | $0.010 \pm 0.000$ |

data collection<sup>1</sup>. The rest are obtained from the well-known UCI machine learning repository<sup>2</sup>. For each data set, it is divided into two subsets, viz. the training set (about 55%) and the testing set (about 45%), whose details are described in Table 1, and its inputs (attributes) have been normalized into the range [-1, 1].

In regression applications, their outputs (targets) have been normalized into [0, 1], and one performance index, i.e., the rooted mean squared errors (RMSE), is defined as

$$RMSE = \sqrt{\frac{\sum_{i}^{\text{#Testing}} \|\hat{\mathbf{T}}_{i} - \mathbf{T}_{i}\|_{F}^{2}}{\text{#Testing} \times m}}$$
(68)

where  $\hat{T}_i$  denotes the prediction of the desired  $T_i$ , #Testing is the total number of the testing data. A smaller RMSE usually means a better generalization performance for an algorithm.

On the contrary, the higher prediction accuracy (Acc) indicates a superior algorithm with respect to the generalization performance for classification applications. m-class classifiers have m output nodes. If the original class label is p, the expected output

vector of the m output nodes is  $\mathbf{t}_i = [-1, \dots, -1, 1, -1, \dots, -1]^T$ . In this case, only the pth entry of  $\mathbf{t}_i$  is one, while the rest entries are set to -1.

In this paper, the sigmoidal  $h(\boldsymbol{a}, b, \boldsymbol{x}) = 1/(1 + \exp(\boldsymbol{a}^{\top}\boldsymbol{x} + b))$  is chosen as activation function for all the algorithms, where the input weight  $\boldsymbol{a}$  and bias b are randomly chosen from the range [-1, 1]. For the traditional ELM, the number of hidden nodes L is

decided from the set  $\{10, 20, \dots, 200\}$  using cross validation technique [31]. To obtain the robust statistical results, all experiments are averaged over thirty different random runs.

#### 6.1. Regression applications

The experimental results are demonstrated in Fig. 1. In each panel, the dash line generated by the traditional ELM is chosen as the benchmark line. The RMSEs decrease with increasing the number of hidden nodes (#HN). At first the RMSE lines drop fast and gradually change slowly. HI-ELM is the first incremental learning algorithm. Its convergence rate is the lowest. The main reason is that HI-ELM fixes the output weights of all the existing nodes when a new node is recruited. Hence, CI-ELM improves the convergence rate of HI-ELM via recomputing the output weights of the existing hidden nodes using a convex optimization during the process of recruiting hidden nodes. EI-ELM is an enhanced version of HI-ELM, in which the hidden node incurring the largest residual error decrease is recruited from a candidate set. In our experiments, the size of the candidate set for EI-ELM is the same as that for GSI-ELM and IGSI-ELM, say,  $\kappa = 59$ . Compared with HI-ELM and CI-ELM, EI-ELM achieves the fastest convergence rate. However, HI-ELM, CI-ELM, and EI-ELM do not touch the dash line when they need the same #HN as the traditional ELM.

The lines of both EMI-ELM and QRI-ELM are overlapped. Compared with HI-ELM, CI-ELM, and EI-ELM, QRI-ELM/EMI-ELM usually needs less #HN when reaching the dash line. That is to say, QRI-ELM/EMI-ELM owns the priority in terms of #HN. However, QRI-ELM/EMI-ELM loses this advantage over GSI-ELM and IGSI-ELM. The line of IGSI-ELM is usually lower than that of GSI-ELM, which

<sup>&</sup>lt;sup>1</sup> http://www.dcc.fc.up.pt/%7Eltorgo/Regression/DataSets.html.

<sup>&</sup>lt;sup>2</sup> http://archive.ics.uci.edu/ml/.



Fig. 2. Comparisons of the Acc in terms of #HN for different algorithms on classification applications.

signifies that IGSI-ELM is superior to GSI-ELM with respect to #HN under the same generalization performance. The main reason is due to the fact that IGSI-ELM adopts the elimination mechanism. As thus, the "nesting effect" can be overcome to a certain degree.

The experimental results are elaborated on in Table 2. From this table, these algorithms are terminated when they touch the dash line or they recruit the same #HN as the traditional ELM. In general, among HI-ELM, CI-ELM, and EI-ELM, the generalization performance of HI-ELM is worst, but EI-ELM owns the best gen-



Fig. 2. Continued

eralization performance. However, from the point of the training time, EI-ELM requires the longest while HI-ELM needs the shortest.

EMI-ELM and QRI-ELM usually need the less #HN when they obtain nearly the same generalization performance as the traditional ELM. Although EMI-ELM and QRI-ELM have the same RMSE vs. #HN, QRI-ELM obviously reduces the training time in comparison with EMI-ELM. As for this point, it is also proved by Ye and Qin [12]. When an evaluating criterion is introduced into QRI-ELM, the quality of the hidden nodes recruited is improved. Hence, GSI-ELM requires fewer hidden nodes than QRI-ELM under nearly the same level of the generalization performance, which results in those phenomena generated that GSI-ELM maybe needs less training time than QRI-ELM even though there is an extra evaluating criterion in GSI-ELM. Because of the elimination mechanism, IGSI-ELM works better than GSI-ELM in terms of #HN. That is, IGSI-ELM commonly needs fewer hidden nodes than GSI-ELM under nearly the same generalization performance, which means that the elimination mechanism is effective. Meanwhile, the "nesting effect" existing in GSI-ELM is mitigated. However, this elimination mechanism simultaneously brings extra training time to IGSI-ELM,

thus leading to IGSI-ELM needing more training time than GSI-ELM. All in all, IGSI-ELM is the winner among all the competitors with respect to #SN. The fewest hidden nodes indicate the least testing time, because the testing time is directly proportional to #HN, which is especially suitable for the testing time sensitive scenarios.

#### 6.2. Classification applications

Similar to regression applications, the prediction accuracy of the traditional ELM is chosen as the benchmark line (the dash line), as shown in Fig. 2. To facilitate comparison, when the prediction accuracy of the other algorithms arrives at the benchmark line or they require the same #HN as the traditional ELM, we terminate them.

From Fig. 2, it is observed that the prediction accuracy of HI-ELM and CI-ELM always do not reach the dash line when they recruit the same #HN as the traditional ELM. EI-ELM sometimes can touch the benchmark line, with only three out of thirteen. Among them, EI-ELM converges fastest.

**Table 3** Performance comparison on classification applications

| Algorithms         | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Acc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Training time (s)                             | Testing time (s                        |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------|
| ELM                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9515 ± 0.0163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.002 \pm 0.000$                             | $0.000 \pm 0.000$                      |
| GSI-ELM            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.9561 \pm 0.0106$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               | $0.000 \pm 0.000$                      |
| IGSI-ELM           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.9561 \pm 0.0185$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.005\pm0.001$                               | $0.000 \pm 0.000$                      |
| HI-ELM             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.7864\pm0.0652$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                               | $0.000 \pm 0.000$                      |
| CI-ELM             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.7318 \pm 0.1347$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.002 \pm 0.000$                             | $0.000 \pm 0.000$                      |
| EI-ELM             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.8424\pm0.0182$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.018\pm0.002$                               | $0.000 \pm 0.000$                      |
| EMI-ELM            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.9515 \pm 0.0163$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               | $0.000 \pm 0.000$                      |
| QRI-ELM            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.9515\pm0.0163$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.002\pm0.000$                               | $0.000\pm0.000$                        |
| ELM                | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.9306\pm0.0196$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\textbf{0.002}\pm\textbf{0.000}$             | $0.000 \pm 0.000$                      |
| GSI-ELM            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.9382\pm0.0178$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.005\pm0.001$                               | $0.000\pm0.000$                        |
| IGSI-ELM           | <u>6</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.9318\pm0.0148$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.009\pm0.002$                               | $0.000\pm0.000$                        |
| HI-ELM             | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.7707\pm0.0856$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.002 \pm 0.000$                             | $0.000 \pm 0.000$                      |
| CI-ELM             | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.7771\pm0.0849$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.003 \pm 0.000$                             | $0.000 \pm 0.000$                      |
| EI-ELM             | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.9350 \pm 0.0110$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.014 \pm 0.001$                             | $0.000 \pm 0.000$                      |
| EMI-ELM            | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.9306 \pm 0.0220$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.018 \pm 0.001$                             | $0.000 \pm 0.000$                      |
| QRI-ELM            | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.9306\pm0.0220$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.005\pm0.001$                               | $0.000 \pm 0.000$                      |
| ELM                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.9110\pm0.0053$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\underline{\textbf{0.002}\pm\textbf{0.000}}$ | $0.000\pm0.000$                        |
| GSI-ELM            | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.9110 \pm 0.0042$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.012 \pm 0.001$                             | $0.000 \pm 0.000$                      |
| IGSI-ELM           | <u>12</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $0.9128\pm0.0029$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.020\pm0.004$                               | $0.000\pm0.000$                        |
| HI-ELM             | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.8633\pm0.0162$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\underline{\textbf{0.002}\pm\textbf{0.000}}$ | $0.000\pm0.000$                        |
| CI-ELM             | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.8448\pm0.0306$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.005 \pm 0.001$                             | $0.000\pm0.000$                        |
| EI-ELM             | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.8833\pm0.0076$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.056\pm0.002$                               | $0.000\pm0.000$                        |
| EMI-ELM            | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.9110\pm0.0039$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.051\pm0.003$                               | $0.000 \pm 0.000$                      |
| QRI-ELM            | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.9110\pm0.0039$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.007\pm0.001$                               | $0.000 \pm 0.000$                      |
| ELM                | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.8000\pm0.0130$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\underline{\textbf{0.003}\pm\textbf{0.001}}$ | $0.001\pm0.000$                        |
| GSI-ELM            | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.8010\pm0.0109$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.031 \pm 0.002$                             | $0.000 \pm 0.000$                      |
| IGSI-ELM           | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.8071 \pm 0.0227$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.067 \pm 0.007$                             | $0.000 \pm 0.000$                      |
| HI-ELM             | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.005\pm0.001$                               | $0.001 \pm 0.000$                      |
|                    | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.009 \pm 0.001$                             | $0.001 \pm 0.000$                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.001 \pm 0.000$                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.001 \pm 0.000$                      |
| QRI-ELM            | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.8000\pm0.0130$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.015\pm0.000$                               | $0.001\pm0.000$                        |
| ELM                | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.6754 \pm 0.0176$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.013 \pm 0.001$                             | $0.003 \pm 0.000$                      |
| GSI-ELM            | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.6754 \pm 0.0087$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.061 \pm 0.001$                             | $0.001 \pm 0.000$                      |
| IGSI-ELM           | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.6758 \pm 0.0121$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.121\pm0.014$                               | $0.001 \pm 0.000$                      |
| HI-ELM             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.003 \pm 0.000$                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.003 \pm 0.000$                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.003 \pm 0.000$                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.003 \pm 0.000$                      |
| QRI-ELM            | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.6761\pm0.0133$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.066\pm0.001$                               | $0.003\pm0.000$                        |
| ELM                | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.6303 \pm 0.0037$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.002 \pm 0.000$                             | 0.001 ± 0.000                          |
| GSI-ELM            | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.6301 \pm 0.0057$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.020 \pm 0.001$                             | $0.000 \pm 0.000$                      |
|                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.000 \pm 0.000$                      |
|                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.001 \pm 0.000$                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.001 \pm 0.000$                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.001 \pm 0.000$                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.001 \pm 0.000$<br>$0.001 \pm 0.000$ |
| QRI-ELM            | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.6303 \pm 0.0037$<br>$0.6303 \pm 0.0037$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.007 \pm 0.003$                             | $0.001 \pm 0.000$                      |
| ELM                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9998 ± 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.003 \pm 0.000$                             | 0.001 ± 0.000                          |
|                    | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.9993 \pm 0.0015$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.036 \pm 0.002$                             | $0.000 \pm 0.000$                      |
| IGSI-ELM           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.000 \pm 0.000$                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.001 \pm 0.000$                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.001 \pm 0.000$<br>$0.001 \pm 0.000$ |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.001 \pm 0.000$<br>$0.001 \pm 0.000$ |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.001 \pm 0.000$<br>$0.001 \pm 0.000$ |
| EMI-ELM<br>QRI-ELM | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.9990 \pm 0.0017$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.000 \pm 0.003$<br>$0.007 \pm 0.001$        | $0.001 \pm 0.000$ $0.001 \pm 0.000$    |
| ELM                | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7180 + 0.0441                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.003 + 0.001                                 | 0.001 ± 0.000                          |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.000 \pm 0.000$                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.000 \pm 0.000$                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.000 \pm 0.000$<br>$0.001 \pm 0.000$ |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.001 \pm 0.000$<br>$0.001 \pm 0.000$ |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.001 \pm 0.000$<br>$0.001 \pm 0.000$ |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.001 \pm 0.000$<br>$0.001 \pm 0.000$ |
| EMI-ELM<br>QRI-ELM | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0.7180 \pm 0.0441$<br>$0.7180 \pm 0.0441$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $0.982 \pm 0.014$<br>$0.013 \pm 0.000$        | $0.001 \pm 0.000$ $0.001 \pm 0.000$    |
| ELM                | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.9509 \pm 0.0046$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.013 ± 0.001                                 | 0.005 ± 0.000                          |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.003 \pm 0.000$<br>$0.002 \pm 0.000$ |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.002 \pm 0.000$<br>$0.002 \pm 0.000$ |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               | $0.002 \pm 0.000$<br>$0.005 \pm 0.000$ |
| CI-ELM             | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.6024 \pm 0.0418$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.017 \pm 0.001$<br>$0.034 \pm 0.001$        | $0.005 \pm 0.000$<br>$0.005 \pm 0.000$ |
| CI-ELIVI           | 1/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.0024 \pm 0.0418$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $0.034 \pm 0.001$                             | $0.000 \pm 0.000$                      |
|                    | ELM GSI-ELM HI-ELM CI-ELM EI-ELM EMI-ELM GSI-ELM HI-ELM GSI-ELM HI-ELM CI-ELM EI-ELM EMI-ELM GSI-ELM HI-ELM GSI-ELM IGSI-ELM IGSI-ELM IGSI-ELM HI-ELM CI-ELM EI-ELM EMI-ELM GSI-ELM EI-ELM GSI-ELM HI-ELM GSI-ELM HI-ELM GSI-ELM HI-ELM GSI-ELM HI-ELM GSI-ELM HI-ELM CI-ELM EMI-ELM EMI-ELM GSI-ELM HI-ELM GSI-ELM HI-ELM CI-ELM EMI-ELM GSI-ELM HI-ELM GSI-ELM HI-ELM CI-ELM EI-ELM EMI-ELM GSI-ELM HI-ELM CI-ELM EI-ELM EI-ELM EI-ELM EI-ELM GSI-ELM HI-ELM CI-ELM EI-ELM EI-ELM EI-ELM GSI-ELM HI-ELM CI-ELM EI-ELM EI | ELM 20 GSI-ELM 5 IGSI-ELM 6 HI-ELM 20 CI-ELM 20 EI-ELM 20 EMI-ELM 20 QRI-ELM 20 QRI-ELM 40 GSI-ELM 7 IGSI-ELM 40 CI-ELM 40 CI-ELM 38 QRI-ELM 38 ELM 50 GSI-ELM 15 IGSI-ELM 15 IGSI-ELM 49 QRI-ELM 90 CI-ELM 90 CI-ELM 90 CI-ELM 90 ELM 90 GSI-ELM 17 IGSI-ELM 90 ELM 90 CI-ELM 90 ELM 90 CI-ELM 90 ELM 9 | ELM                                           | ELM                                    |

(continued on next page)

Table 3 (continued)

| Data sets                            | Algorithms | L         | Acc                 | Training time (s)                             | Testing time (s   |
|--------------------------------------|------------|-----------|---------------------|-----------------------------------------------|-------------------|
|                                      | EI-ELM     | 170       | $0.7925\pm0.0082$   | $0.550 \pm 0.005$                             | $0.005\pm0.000$   |
|                                      | EMI-ELM    | 154       | $0.9510\pm0.0042$   | $4.347\pm0.015$                               | $0.004\pm0.000$   |
|                                      | QRI-ELM    | 154       | $0.9510\pm0.0042$   | $0.095\pm0.001$                               | $0.004 \pm 0.000$ |
| Waveform                             | ELM        | 190       | $0.8500\pm0.0038$   | $\underline{\textbf{0.036}\pm\textbf{0.003}}$ | $0.011\pm0.000$   |
|                                      | GSI-ELM    | 40        | $0.8505\pm0.0043$   | $0.222\pm0.004$                               | $0.003\pm0.000$   |
|                                      | IGSI-ELM   | <u>33</u> | $0.8512\pm0.0072$   | $0.493\pm0.054$                               | $0.003 \pm 0.000$ |
|                                      | HI-ELM     | 190       | $0.8217 \pm 0.0136$ | $0.046 \pm 0.001$                             | $0.011 \pm 0.000$ |
|                                      | CI-ELM     | 190       | $0.7887 \pm 0.0163$ | $0.058 \pm 0.002$                             | $0.011 \pm 0.001$ |
|                                      | EI-ELM     | 86        | $0.8500 \pm 0.0035$ | $0.557\pm0.008$                               | $0.006 \pm 0.000$ |
|                                      | EMI-ELM    | 182       | $0.8500 \pm 0.0063$ | $28.958 \pm 0.106$                            | $0.010\pm0.001$   |
|                                      | QRI-ELM    | 182       | $0.8500\pm0.0063$   | $0.437\pm0.002$                               | $0.010\pm0.001$   |
| Waveform2                            | ELM        | 200       | $0.7791\pm0.0046$   | $0.060\pm0.027$                               | $0.012\pm0.000$   |
|                                      | GSI-ELM    | 21        | $0.7795\pm0.0030$   | $0.116 \pm 0.003$                             | $0.002\pm0.000$   |
|                                      | IGSI-ELM   | <u>20</u> | $0.7806 \pm 0.0070$ | $0.265\pm0.033$                               | $0.002\pm0.000$   |
| CI<br>EI<br>EN                       | HI-ELM     | 200       | $0.7684\pm0.0056$   | $\textbf{0.047}\pm\textbf{0.003}$             | $0.012\pm0.000$   |
|                                      | CI-ELM     | 200       | $0.7625\pm0.0083$   | $0.056 \pm 0.002$                             | $0.012\pm0.000$   |
|                                      | EI-ELM     | 173       | $0.7800 \pm 0.0035$ | $0.985\pm0.005$                               | $0.010 \pm 0.000$ |
|                                      | EMI-ELM    | 115       | $0.7792 \pm 0.0094$ | $16.146 \pm 0.051$                            | $0.008 \pm 0.000$ |
|                                      | QRI-ELM    | 115       | $0.7792\pm0.0094$   | $0.175\pm0.003$                               | $0.008\pm0.000$   |
| Landsat                              | ELM        | 200       | $0.8704\pm0.0021$   | $\textbf{0.053}\pm\textbf{0.002}$             | $0.015\pm0.000$   |
|                                      | GSI-ELM    | 112       | $0.8706 \pm 0.0033$ | $0.960 \pm 0.005$                             | $0.007 \pm 0.000$ |
| HI-ELM<br>CI-ELM<br>EI-ELM<br>EMI-EL | IGSI-ELM   | 89        | $0.8704\pm0.0027$   | $5.208 \pm 0.624$                             | $0.007 \pm 0.000$ |
|                                      | HI-ELM     | 200       | $0.7663 \pm 0.0143$ | $0.125\pm0.002$                               | $0.015\pm0.000$   |
|                                      | CI-ELM     | 200       | $0.5838 \pm 0.0771$ | $0.168 \pm 0.002$                             | $0.015\pm0.000$   |
|                                      | EI-ELM     | 200       | $0.8185 \pm 0.0019$ | $2.040 \pm 0.011$                             | $0.015 \pm 0.000$ |
|                                      | EMI-ELM    | 170       | $0.8703 \pm 0.0018$ | $43.104 \pm 0.135$                            | $0.012 \pm 0.000$ |
|                                      | QRI-ELM    | 170       | $0.8703\pm0.0018$   | $0.542\pm0.003$                               | $0.012\pm0.000$   |
|                                      | ELM        | 200       | $0.9994 \pm 0.0007$ | $0.070\pm0.007$                               | $0.016 \pm 0.001$ |
|                                      | GSI-ELM    | 70        | $0.9990\pm0.0008$   | $0.587\pm0.012$                               | $0.007\pm0.000$   |
|                                      | IGSI-ELM   | <u>47</u> | $0.9990 \pm 0.0011$ | $1.290 \pm 0.149$                             | $0.005\pm0.000$   |
|                                      | HI-ELM     | 200       | $0.9314\pm0.0159$   | $\textbf{0.046}\pm\textbf{0.002}$             | $0.016\pm0.001$   |
|                                      | CI-ELM     | 200       | $0.9142\pm0.0107$   | $0.061 \pm 0.001$                             | $0.016 \pm 0.001$ |
|                                      | EI-ELM     | 200       | $0.9893 \pm 0.0025$ | $1.679 \pm 0.009$                             | $0.016 \pm 0.001$ |
|                                      | EMI-ELM    | 174       | $0.9990 \pm 0.0011$ | $53.814 \pm 0.146$                            | $0.012 \pm 0.001$ |
|                                      | QRI-ELM    | 174       | $0.9990 \pm 0.0011$ | $0.565 \pm 0.002$                             | $0.012 \pm 0.001$ |

EMI-ELM and QRI-ELM own the same prediction accuracy under the same #HN except the *Hill\_valley* case. In the case of *Hill\_valley*, the generalization performance of EMI-ELM deteriorates because of the round off errors, which demonstrates that QRI-ELM is more stable than EMI-ELM.

GSI-ELM boosts the prediction accuracy by improving the quality of the hidden nodes recruited compared with QRI-ELM/EMI-ELM, which shows that the evaluating criterion defined in this paper is effective and the probabilistic trick utilized is feasible. Though adding the elimination mechanism, IGSI-ELM enhances the generalization performance further, which means that IGSI-ELM needs fewer hidden nodes than GSI-ELM under nearly the same generalization performance.

Table 3 showcases the detailed experimental results on classification applications. When keeping the same number of hidden nodes as the traditional ELM, EI-ELM owns the best generalization performance among HI-ELM, CI-ELM, and EI-ELM, but HI-ELM performs best with respect to the training time. Although EMI-ELM and QRI-ELM have the same Acc, EMI-ELM is inferior to QRI-ELM in terms of the training time. In contrast with QRI-ELM, GSI-ELM reduces #HN obviously and retains the comparative training time under nearly the same generalization performance. IGSI-ELM outperforms GSI-ELM in #HN but loses the advantage in the training time by exploiting the elimination mechanism. In a word, those above conclusions obtained on classification applications are nearly consistent with those on regression applications.

#### 7. Conclusions

In recent years, extreme learning machine has become a popular topic in the machine learning community. Different from the traditional SLFNs, ELM chooses the input weights and the hidden layer biases randomly, which maybe produces the negative effect that the negligible hidden nodes, which play a very minor role in the network output, may be recruited. As a result, its architecture is not compact, which is not suitable for the testing time sensitive scenarios. To obtain a more compact architecture, the incremental learning algorithms are developed. Hence, two incremental learning algorithms, viz. GSI-ELM and IGSI-ELM, are proposed based on QRI-ELM in this paper. In QRI-ELM, the hidden nodes are incrementally recruited, which is equivalent to randomly selecting a hidden node from a candidate set of infinite size at each learning step. That is to say, the problem of recruiting the negligible hidden nodes to construct the hidden layer of ELM still exists. It is impossible to recruit the best hidden node from the candidate set of infinite size. To improve the quality of the hidden nodes recruited in QRI-ELM, an evaluating criterion is defined firstly, and then a probabilistic trick is utilized to recruit a best hidden node from a random subset of fixed size at each learning step. This feasible strategy assists GSI-ELM in gaining better performance with respect to #HN. However, the "nesting effect" exists in GSI-ELM. To treat this "nesting problem", an elimination mechanism is added to GSI-ELM. To implement this elimination mechanism, an evaluation criterion  $\delta_i$  is defined on the existing hidden nodes

firstly. Then, an accelerating scheme of  $\delta_i$  is presented to cut down the computational complexity. Due to the addition of the elimination mechanism, IGSI-ELM overcomes the "nesting effect" to a certain degree, thus yielding better performance in #HN, but requiring longer training time. Through comparing with the other incremental learning algorithms, the proposed GSI-ELM and IGSI-ELM in this paper are experimentally favored.

#### Acknowledgments

This research was partially supported by the Fundamental Research Funds for the Central Universities under Grant no. NJ20160021, and the National Natural Science Foundation of China under Grand no. 11502008.

#### References

- [1] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the IEEE International Conference on Neural Networks, vol. 2, 2004, pp. 985-990. Budapest, Hungary, [Online]. Available: http://dx.doi.org/10.1109/IJCNN.2004.1380068
- G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and applications, Neurocomputing 70 (1-3) (2006) 489-501. [Online]. Available: http://dx.doi.org/10.1016/j.neucom.2005.12.126
- [3] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by backpropagating errors, Nature 323 (6088) (1986) 533-536, doi:10.1038/323533a0.
- [4] N.-Y. Liang, G.-B. Huang, P. Saratchandran, N. Sundararajan, A fast and accurate online sequential learning algorithm for feedforward networks, IEEE Trans. Neural Netw. 17 (6) (2006) 1411-1423. [Online]. Available: http://dx.doi.org/10. 1109/TNN.2006.880583
- [5] H.T. Huynh, Y. Won, Regularized online sequential learning algorithm for single-hidden layer feedforward neural networks, Pattern Recognit. Lett. 32 (14) (2011) 1930–1935. [Online]. Available: http://dx.doi.org/10.1016/j.patrec. 2011.07.016
- [6] Z. Shao, M.J. Er, An online sequential learning algorithm for regularized extreme learning machine, Neurocomputing 173 (2016) 778-788. [Online]. Available: http://dx.doi.org/10.1016/j.neucom.2015.08.029
- G.-B. Huang, L. Chen, C.-K. Siew, Universal approximation using incremental constructive feedforward networks with random hidden nodes, IEEE Trans. Neural Netw. 17 (4) (2006) 879-892. [Online]. Available: http://dx.doi.org/10. 1109/TNN.2006.875977
- [8] G.-B. Huang, L. Chen, Convex incremental extreme learning machine, Neurocomputing 70 (16-18) (2007) 3056-3062. [Online]. Available: http://dx.doi.org/ 10.1016/i.neucom.2007.02.009
- [9] G.-B. Huang, L. Chen, Enhanced random search based incremental extreme learning machine, Neurocomputing 71 (16-18) (2008) 3460-3468. [Online]. Available: http://dx.doi.org/10.1016/j.neucom.2007.10.008
- [10] G. Feng, G.-B. Huang, Q. Lin, R. Gay, Error minimized extreme learning machine with growth of hidden nodes and incremental learning, IEEE Trans. Neural Netw. 20 (8) (2009) 1352-1357. [Online]. Available: http://dx.doi.org/10.1109/ TNN.2009.2024147
- [11] R. Zhang, Y. Lan, G.-B. Huang, Z.-B. Xu, Universal approximation of extreme learning machine with adaptive growth of hidden nodes, IEEE Trans. Neural Netw. Learn. Syst. 23 (2) (2012) 365-371. [Online]. Available: http://dx.doi.org/ 10.1109/TNNLS.2011.2178124
- [12] Y. Ye, Y. Qin, Qr factorization based incremental extreme learning machine with growth of hidden nodes, Pattern Recognit. Lett. 65 (2015) 177-183. [Online]. Available: http://dx.doi.org/10.1016/j.patrec.2015.07.031
- [13] Y.-P. Zhao, K.-K. Wang, Y.-B. Li, Parsimonious regularized extreme learning machine based on orthogonal transformation, Neurocomputing 156 (2015) 280-296. [Online]. Available: http://dx.doi.org/10.1016/j.neucom.2014.12.046
- [14] Y.-P. Zhao, R. Huerta, Improvements on parsimonious extreme learning machine using recursive orthogonal least squares, Neurocomputing 191 (2016) 82-94. http://dx.doi.org/10.1016/j.neucom.2016.01.005. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925231216000527
- [15] H.-I. Rong, Y.-S. Ong, A.-H. Tan, Z. Zhu, A fast pruned-extreme learning machine for classification problem, Neurocomputing 72 (1-3) (2008) 359-366. [Online]. Available: http://dx.doi.org/10.1016/j.neucom.2008.01.005
- [16] Y. Miche, A. Sorjamaa, P. Bas, O. Simula, C. Jutten, A. Lendasse, Op-elm: Optimally pruned extreme learning machine, IEEE Transactions on Neural Networks 21 (1) (2010) 158-162. [Online]. Available: http://dx.doi.org/10.1109/ TNN.2009.2036259
- [17] A. Castano, F. Fernandez-Navarro, C. Hervas-Martinez, Pca-elm: A robust and pruned extreme learning machine approach based on principal component analysis, Neural Process. Lett. 37 (3) (2013) 377–392. [Online]. Available: http: /dx.doi.org/10.1007/s11063-012-9253-x
- [18] Y.-P. Zhao, B. Li, Y.-B. Li, An accelerating scheme for destructive parsimonious extreme learning machine, Neurocomputing 167 (2015) 671-687. [Online]. Available: http://dx.doi.org/10.1016/j.neucom.2015.04.002
- A.S. Alencar, A.R. Rocha Neto, J.P.P. Gomes, A new pruning method for extreme learning machines via genetic algorithms, Applied Soft Computing vol. 44 (2016) 101-107. [Online]. Available: http://dx.doi.org/10.1016/j.asoc.2016.03.019

- [20] J. Platt, A resource-allocating network for function interpolation, Neural Comput. 3 (2) (1991) 213–225. [21] V. Kadirkamanathan, M. Niranjan, A function estimation approach to sequen-
- tial learning with neural networks, Neural Comput. 5 (6) (1993), 954-954
- [22] Y. Lu, N. Sundararajan, P. Saratchandran, Sequential learning scheme for function approximation using minimal radial basis function neural networks, Neural Comput. 9 (2) (1997). 461-461
- [23] A.R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inf. Theory 39 (3) (1993) 930-945.
- [24] A. Smola, B. Schölkopf, Sparse greedy matrix approximation for machine learning, in: Proceedings of the International Conference on Machine Learning, 2000.
- [25] B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines, Reg-
- ularization, Optimization, and Beyond, MIT Press, 2002. [26] Y.-P. Zhao, Parsimonious kernel extreme learning machine in primal via cholesky factorization, Neural Netw. 80 (2016) 95-109. http://dx.doi.org/10. 1016/j.neunet.2016.04.009. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S0893608016300399
- [27] P. Pudil, J. Novovicová, J. Kittler, Floating search methods in feature selection, Pattern Recognit. Lett. 15 (11) (1994) 1119-1125. http://dx.doi.org/10.1016/ 0167-8655(94)90127-9.
- [28] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, (second ed.), Wiley-Interscience, 2000.
- [29] X. Zhang, Matrix Analysis and Applications, Tsinghua university press, 2004.
- [30] G.H. Golub, C.F. Van Loan, Matrix Computations, Johns Hopkins University Press. 1996
- [31] Y. Zhao, K. Wang, Fast cross validation for regularized extreme learning machine, J. Syst. Eng. Electr. 25 (5) (2014) 895-900. [Online]. Available: http: //dx.doi.org/10.1109/JSEE.2014.000103



Yong-Ping Zhao received his B.E. degree in the thermal energy and power engineering field from Nanjing University of Aeronautics and Astronautics, Nanjing, China, in July 2004. Since then, he had been pursuing the M.S. and Ph.D. degrees at Nanjing University of Aeronautics and Astronautics. In December 2009, He received Ph.D. degree, and won the award of the Nominated for the National Excellent Doctoral Dissertation Award of China in 2013. Currently, he is a professor and with the college of energy and power engineering, Nanjing University of Aeronautics and Astronautics. His research interests include aircraft engine modeling, control and fault diagnostics, machine learning and pattern recognition.



Zhi-Oiang Li was born in 1993. He received the B.S. degree from the Jiangnan University in 2016. And he is currently pursuing the M.S degree form Nanjing University of Aeronautics and Astronautics (UNAA). His main research interests include feature selection of areo-engine evolutionary computation, and support vector machine.



Peng-Peng Xi was born in liangxi. China, in 1994. He received the B.S. degrees from the Nanjing University of Aeronautics and Astronautics, in 2016. He is currently pursuing the M.S. degree from Naniing University of Aeronautics and Astronautics. His research interest is aircraft engine modeling, control and fault diagnostics.



Dong Liang received the B.S. degree in measurement and control engineering from Nanchang Hangkong University, Nanchang, China, in 2005. After seven years of graduate study, he received the M.S. degree in aircraft engineering and the Ph.D. degree in measuring and testing technologies and instruments from Nanjing University of Aeronautics and Astronautics, Nanjing, China. He is an Assistant Professor at Department of Aeronautics, College of Physics and Electromechanics, Xiamen University, China, His research interests include distributed sensor network, compressive sensing and pattern recognition in aircraft structural health monitoring.



**Liguo Sun** received his B.Sc. and M.Sc. degrees from Nanjing University of Aeronautics and Astronautics (China) in 2008 and 2010. On October 30th of 2014, he received his Ph.D. degree from the Control and Simulation Group, Faculty of Aerospace Engineering, TU Delft. Since June of 2015, he has been an associate professor at the Flight Dynamics and Flight Safety group at the School of Aeronautic Science and Engineering, Beihang University. His current research interests include nonlinear system identification, machine learning, multivariate spline theory, fault-tolerant (nonlinear) flight control, aircraft safeflight-envelope prediction, propulsion control.



**Ting-Hao Chen** received his B.S. degree in thermal energy and power engineering field from Civil Aviation Flight University of China, Guanghan, China, in 2007. He received M.S. degree in Aero-engine fault diagnosis field from Nanjing University of Aeronautics and Astronautics, Nanjing, China, in 2010. His research interests include Aero-engine fault diagnosis, machine learning, etc.