

New Beam Test Results of 3D Pixel Detectors Constructed With Poly-Crystalline CVD Diamond

29th International Symposium on Lepton Photon Interactions at High Energies, Toronto, ON, Canada

Michael Reichmann on behalf of the RD42 Collaboration

8 August 2019

Table of Contents

- Motivation
- 2 3D Diamond Detector
- Results
- Conclusion
- Outlook

Section 1

Motivation

- $\bullet \ \, \text{innermost tracking layers} \to \text{highest radiation damage} \,\, \mathcal{O}\left(\text{GHz/cm}^2\right)$
- \bullet current detectors is designed to survive ${\sim}12\,\text{month}$ in High-Luminosity LHC
- $\bullet \to R\&D$ for more radiation tolerant detector designs and/or materials

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2\right)$
- ullet current detectors is designed to survive ${\sim}12\,\mathrm{month}$ in High-Luminosity LHC
- → R&D for more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- properties
 - radiation tolerant
 - isolating material
 - ▶ high charge carrier mobility
 - ► smaller signal than in silicon with same thickness (large bandgap)
 - \blacktriangleright after $1\cdot 10^{16}\,\text{n/cm}^2$ the mean drift path in diamond larger than in silicon

M. Reichmann (FIHzürich)

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2
 ight)$
- ullet current detectors is designed to survive ${\sim}12\,\mathrm{month}$ in High-Luminosity LHC
- → R&D for more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- properties
 - radiation tolerant
 - isolating material
 - ▶ high charge carrier mobility
 - smaller signal than in silicon with same thickness (large bandgap)
 - $\,\blacktriangleright\,$ after $1\cdot 10^{16}\,\text{n}/\text{cm}^2$ the mean drift path in diamond larger than in silicon

Work of RD42:

- investigate signals and radiation tolerance in various detector designs:
 - ightharpoonup Pad Detectors ightarrow whole diamond as single cell readout
 - ▶ Pixel Detectors → diamond sensor on pixel readout chip
 - ▶ 3D Pixel Detectors → 3D diamond detector on pixel readout chip

- ullet innermost tracking layers o highest radiation damage $\mathcal{O}\left(\mathsf{GHz}/\mathsf{cm}^2
 ight)$
- \bullet current detectors is designed to survive ${\sim}12\,\text{month}$ in High-Luminosity LHC
- → R&D for more radiation tolerant detector designs and/or materials

Diamond as Detector Material:

- properties
 - radiation tolerant
 - isolating material
 - ▶ high charge carrier mobility
 - smaller signal than in silicon with same thickness (large bandgap)
 - $\blacktriangleright\,$ after $1\cdot 10^{16}\,\text{n/cm}^2$ the mean drift path in diamond larger than in silicon

Work of RD42:

- investigate signals and radiation tolerance in various detector designs:
 - ► Pad Detectors
 - ► Pixel Detectors
 - ▶ 3D Pixel Detectors → this talk

RD42 Collaboration

A Alexonoulos3 M Artuso20 F. Bachmair²⁴, L. Bäni²⁴, M. Bartosik³, J. Beacham¹³, H. Beck²³ V. Bellini², V. Belyaev¹², B. Bentele¹⁹, A. Bes²⁷, J-M. Brom⁷, M. Bruzzi⁴, G. Chiodini²⁶, D. Chren¹⁸, V. Cindro⁹, G. Claus⁷ J. Collot²⁷. J. Cumalat¹⁹. A. Dabrowski³. R. D'Alessandro⁴. D. Dauvergne²⁷, W. de Boer¹⁰, S. Dick¹³, C. Dorfer²⁴, M. Dünser³, G. Figen³⁰, V. Fremin⁶, G.T. Forcolin²². L Forneris¹⁵, L. Gallin-Martel²⁷, M.L. Gallin-Martel²⁷ K.K. Gan13, M. Gastal3, C. Giroletti17, M. Goffe7, J. Goldstein17 A. Golubey⁸, A. Gorišek⁹, E. Grigoriey⁸, J. Grosse-Knetter²³, A. Grummer²¹. B. Gui¹³. M. Guthoff³. B. Hiti⁹. D. Hits²⁴. M. Hoeferkamp²¹, T. Hofmann³, J. Hosselet⁷, J-Y. Hostachy²⁷, F. Hügging¹, C. Hutton¹⁷, J. Janssen¹, H. Kagan¹³, K. Kanxheri²⁸, G. Kasieczka²⁴, R. Kass¹³, M. Kis⁵, G. Kramberger⁹, S. Kuleshov⁸, A. Lacoste²⁷, S. Lagomarsino⁴, A. Lo Giudice15, I. López Paz22, E. Lukosi25, C. Maazouzi7, L Mandic9 A Marino19 C Mathieu7 M Menichelli28 M. Mikuž⁹. A. Morozzi²⁸. I. Moss²⁹. R. Mountain²⁰. A. Oh²². P. Olivero¹⁵, D. Passeri²⁸, H. Pernegger³, R. Perrino²⁶, M. Piccini²⁸, F. Picollo¹⁵, M. Pomorski¹¹, R. Potenza² A. Quadt²³, F. Rarbi²⁷, A. Re¹⁵, M. Reichmann²⁴, S. Roe³, D.A. Sanz Becerra24, M. Scaringella4, C.J. Schmidt5, E. Schioppa³, S. Schnetzer¹⁴, S. Sciortino⁴, A. Scorzoni²⁸ S. Seidel²¹, L. Servoli²⁸, D.S. Smith¹³, B. Sonko¹⁸, V. Sonko¹⁸ S. Spagnolo²⁶, S. Spanier²⁵, K. Stenson¹⁹, R. Stone¹⁴, B. Stugo30, C. Sutera2, M. Traeger5, W. Trischuk16, D. Tromson¹¹, M. Truccato¹⁵, C. Tuve², J. Velthuis¹⁷ S. Wagner¹⁹, R. Wallny²⁴, J.C. Wang²⁰, J. Weingarten²³, C. Weiss3, N. Wermes1, M. Yamouni27, M. Zalieckas30, M Zavrtanik⁹

117 participants

¹ Universität Bonn, Bonn, Germany ² INFN/University of Catania, Catania, Italy 3 CERN, Geneva, Switzerland 4 INFN/University of Florence, Florence, Italy ⁵ GSI, Darmstadt, Germany 6 loffe Institute, St. Petersburg, Russia 7 IPHC, Strasbourg, France 8 ITEP, Moscow, Russia ⁹ Jožef Stefan Institute, Liubliana, Slovenia 10 Universität Karlsruhe, Karlsruhe, Germany ¹¹ CEA-LIST Technologies Avancees, Saclay, France 12 MEPHI Institute, Moscow, Russia ¹³ The Ohio State University, Columbus, OH, USA ¹⁴ Rutgers University, Piscataway, NJ, USA 15 University of Torino, Torino, Italy ¹⁶ University of Toronto, Toronto, ON, Canada ¹⁷ University of Bristol, Bristol, UK ¹⁸ Czech Technical University, Prague, Czech Republic 19 University of Colorado, Boulder, CO, USA ²⁰ Syracuse University, Syracuse, NY, USA ²¹ University of New Mexico, Albuquerque, NM, USA 22 University of Manchester, Manchester, UK ²³ Universität Göttingen, Göttingen, Germany ²⁴ ETH Zürich, Zürich, Switzerland ²⁵ University of Tennessee, Knoxville, TN, USA 26 INFN-Lecce, Lecce, Italy ²⁷ LPSC-Grenoble, Grenoble, France 28 INFN-Perugia, Perugia, Italy ²⁹ California State University, Sacramento, CA, USA 30 University of Bergen, Bergen, Norway

30 institutes

Section 2

3D Diamond Detector

M. Reichmann (FIHzürich)

Diamond as Particle Detector

(a) Detector Schematics

(b) $15\,\text{cm} \not ext{pCVD}$ Diamond Wafer

- detectors function as ionisation chambers
- metallisation on both sides
- poly-crystals produced in large wafers

Working Principle

- after large radiation fluence all detectors become trap limited
- 3D = bias and readout electrode inside detector material
- ullet same thickness D o same amount of induced charge o shorter drift distance L
- increase collected charge in detectors with limited mean drift path (Schubweg)
- introduce low field regions

Electric Field Simulation

- simulation with 30 V bias voltage and periodic boundary conditions
- \bullet electric field ${\sim}1\,V/\mu m$ over a large area in the cell
- low field region in between the electrodes

Laser drilling

- "drilling" columns using 800 nm fs-LASER (Oxford)
- convert diamond into resistive mixture of carbon phases (i.a. DLC, graphite, ...)

3D Detectors

- usage of Spatial Light Modulator (SLM) to correct for spherical aberration
- initial column yield $\sim 90\% \rightarrow \text{now} > 99.8\%$
- initial column diameter $6 \sim 10 \, \mu \text{m} \rightarrow \text{now } 2.6 \, \mu \text{m}$

Bump Bonding

(b) 5×1 bump pads

- connection to bias and readout with surface metallisation
- ganging of cells to match pixel pitch of readout-chip (ROC)
- \bullet small gap (\sim 15 μ m) to the surface

Bump Bonding

- (b) 3×2 bump pads
- connection to bias and readout with surface metallisation
- ganging of cells to match pixel pitch of readout-chip (ROC)
- \bullet small gap (\sim 15 μ m) to the surface

Progress in Diamond Detectors

3D Detectors - History in Diamonds:

- proved that 3D works in pCVD diamond
- ullet scale up the number of columns per detector: \mathcal{O} (100) o o (1000) (x40)
- reducing the cell size: $150 \, \mu m \times 150 \, \mu m \rightarrow 50 \, \mu m \times 50 \, \mu m \rightarrow 25 \, \mu m \times 25 \, \mu m$ (soon)

Achievements

- reducing the diameter of the columns: $6 \sim 10 \, \mu \text{m} \rightarrow 2.6 \, \mu \text{m} \rightarrow 1 \sim 2 \, \mu \text{m}$ (soon)
- \rightarrow increasing column yield: \sim 90 % \rightarrow >99.8 %
- recently tested first irradiated 50 μ m \times 50 μ m 3D detector (3.5 \cdot 10¹⁵ n/cm²)

3D Pixel Detectors:

- visible improvements with each step reducing the cell size
- all worked as expected (to first order)

Section 3

Results

Detectors

(a) B5

(b) B6

	B5	B6
readout chip (ROC)	FE-I4B	PSI46digv2.1respin
pixel pitch	$250\mu m imes 50\mu m$	$150\mu m imes 100\mu m$
3D cell size	$50\mu\mathrm{m} imes50\mu\mathrm{m}$	$50\mu m imes 50\mu m$
ganging	5 × 1	3 × 2
size	4.90 mm × 4.94 mm	$4.85\mathrm{mm} imes 4.90\mathrm{mm}$
thickness	510 μm	500 μm
$50 \text{pixels} \times 50 \text{pixels}$	53 × 67	67 × 53
3D columns	7223	7223
column diameter	2.6 µm	2.6 µm
active area	$3.2\mathrm{mm} imes 3.5\mathrm{mm}$	$3.45\mathrm{mm} imes 3.19\mathrm{mm}$
bump bonding	tin silver (IFAE)	indium (Princeton)

II6-B5 - Efficiencies @ CERN

(a) Efficiency map, low threshold.

(b) Efficiency vs. bias voltage.

- ullet spatial resolution of $\sim 3 \, \mu m$
- \bullet threshold of the chip: ${\sim}1000\,e$
- efficiency in red fiducial area 98.2 %
- inefficiencies most likely due to processing issues

Time Over Threshold

Figure: Time over threshold distribution.

- looks very similar to silicon distribution
- ullet 5 tot pprox 11 000 e
- \bullet mean of the ToT distribution: 6.7 $\rightarrow \sim\!\!14\,500\,e$
- about 80 % the induced charge was collected

II6-B6 - Efficiencies @ PSI

RD42 Preliminary

(b) Efficiency vs. voltage.

- spatial resolution of $\mathcal{O}(100 \, \mu \text{m})$
- ullet magenta area o bump bonding problems, green area o void in the diamond
- ullet efficiency in blue box: 99.2 % (ullet 0.4 % due to columns)
- already fully efficient at 30 V
- ROC stopped working after this beam test

Efficiencies @ CERN

(a) Efficiency at threshold of \sim 3500 e.

(b) Efficiency vs. bias voltage.

- high resolution measurement at CERN
- find non-working/non-connected cells
- sensor twice re-bump-bonded with the same indium (no reprocessing)
 - ▶ no removal of old bumps, no change of surface metallisation
- same efficiency: 99.2 %

B6 (3 × 2 Ganging)

Pulse Height @ CERN

Figure: Pulse height distribution.

- ullet threshold of the chip: $\sim 3700\,\mathrm{e}$
- ullet mean from MC of Langau fit: $\sim\!14\,500\,\mathrm{e}$
- \bullet pulse height very similar to 5×1 result at CERN
- distribution below threshold not understood (maybe data transmission issues)

Section 4

Conclusion

M. Reichmann (ETH zürich)

Conclusion

- strongly improved fabrication of 3D diamonds
 - ▶ 40 × more cells
 - smaller cell size down to $50 \, \mu m \times 50 \, \mu m$
 - ► thinner columns down to 2 μm
- 3D Detectors work well in pCVD diamond
- general reasons for inefficiencies:
 - ▶ no charge created in the volume of the electrodes (0.4 % for shown devices)
 - ► region with low electric field
 - missing/broken columns
- \bullet (99.2 \pm 0.3) % efficiency in 3 \times 2 ganged device
- \bullet (98.2 \pm 0.2) % efficiency in 5 imes 1 ganged device
 - most likely due to different processing
- ullet consistent mean charge measurements for all devices: $\sim\!14\,500\,\mathrm{e}$ @ CERN SPS
- 3D has largest charge collection of all pCVD diamond detectors
 - work towards quantifying the charge collection in both non- and irradiated devices

Section 5

Outlook

Outlook

- \bullet analyse $3.5 \cdot 10^{15} \, n/cm^2$ irradiated $50 \, \mu m \times 50 \, \mu m$ detectors
- \bullet test both 50 μ m imes 50 μ m and 25 μ m imes 25 μ m pixel detectors
- \bullet reduce column diameter to $1\sim 2\,\mu m$
- ullet build pixel device on newest RD53 chip (50 μ m imes 50 μ m pixel pitch)
- \bullet continue scale up by 10 \times

