## MS-C2105 - Introduction to Optimization Lecture 10

Fabricio Oliveira (with modifications by Harri Hakula)

Systems Analysis Laboratory
Department of Mathematics and Systems Analysis

Aalto University School of Science

March 22, 2022

### Outline of this lecture

Optimality conditions for constrained problems

Karush-Kuhn-Tucker (KKT) conditions

Reading: Taha: Chapter 20; Winston: Chapter 11

Fabricio Oliveira 2/2

In the presence of constraints, first-order conditions for unconstrained problems might never be achieved.

For example, consider the problem

min. 
$$\{f(x): g(x) \le 0\}$$
.

- Notice that  $\nabla f(x) = 0$  does not belong to the feasible region.
- In this case, the optimal on the frontier, but is not a vertex.



To consider a more general setting, we rely on an alternative framework for stating optimality conditions.

- ► The key underlying concept is to represent constraint violations by means of penalties in the objective function.
- Coordinates feasibility and optimality simultaneously.
- Lagrangian duality provides the theoretical support for this approach.

Consider an equality constrained problem of the form:

min. 
$$z = f(x)$$
  
s.t.:  $h_i(x) = 0, i = 1, ..., l$ .

with  $f: \mathbb{R}^n \to \mathbb{R}$  and  $h: \mathbb{R}^n \to \mathbb{R}^l$ , all differentiable.

We associate with each constraint a (Lagrangian) multiplier  $\mu \in \mathbb{R}^l$ , and define the Lagrangian function

$$L(x, \mu) = f(x) + \sum_{i=1}^{l} \mu_i h_i(x)$$

and then proceed to optimise the Lagrangian function  $L(x, \mu)$ .

- Notice that the problem becomes "unconstrained".
- $ightharpoonup h_i(x)$  is a measure of infeasibility.

First-order (unconstrained) optimality conditions require that:

$$\frac{\partial L(x,\mu)}{\partial x} = 0 \Rightarrow \nabla f(x) + \sum_{i=1}^{l} \mu_i \nabla h_i(x) = 0$$
$$\frac{\partial L(x,\mu)}{\partial \mu_i} = 0 \Rightarrow h_i(x) = 0, i = 1,\dots, l.$$

### Theorem 1 (Necessary condition - equality const. problems)

Let P be min.  $\{f(x):h(x)=0\}$  with differentiable  $f:\mathbb{R}^n\to\mathbb{R}$  and  $h:\mathbb{R}^n\to\mathbb{R}^l$ . If  $\overline{x}$  is optimal for P, then  $(\overline{x},\overline{\mu})$  satisfies

$$\frac{\partial L(x,\mu)}{\partial x} = 0 \Rightarrow \nabla f(x) + \sum_{i=1}^{l} \mu_i \nabla h_i(x) = 0$$
 (1)

$$\frac{\partial L(x,\mu)}{\partial \mu} = 0 \Rightarrow h(x) = 0. \tag{2}$$

#### Proof.

Take any feasible point  $x^0$ . Since (1) and (2) are optimality conditions for  $L(x,\mu)$ , for any  $\mu^0$  we have

$$L(\overline{x}, \overline{\mu}) \le L(x^0, \mu^0)$$
  
$$f(\overline{x}) + \overline{\mu}^\top h(\overline{x}) \le f(x^0) + \mu^{0\top} h(x^0)$$
  
$$f(\overline{x}) \le f(x^0). \quad \Box$$

Remark: these are necessary conditions for local optimality.

For these to become sufficient conditions for global optimality, we need stronger assumptions on f and g.

#### Theorem 2

Consider the problem  $P: \min. \{f(x): h(x)=0\}$  with  $f: \mathbb{R}^n \to \mathbb{R}$  convex and  $h: \mathbb{R}^n \to \mathbb{R}^l$  affine. Then,  $\overline{x}$  is optimal for P if and only if  $(\overline{x}, \overline{\mu})$  satisfies

$$\frac{\partial L(x,\mu)}{\partial x} = 0 \Rightarrow \nabla f(x) + \sum_{i=1}^{l} \mu_i \nabla h_i(x) = 0$$
$$\frac{\partial L(x,\mu)}{\partial \mu} = 0 \Rightarrow h(x) = 0.$$

#### **Example:**

max. 
$$z = -2x_1^2 - x_2^2 + x_1x_2 + 8x_1 + 3x_2 : 3x_1 + x_2 = 10.$$

The Lagrangian function is given by:

$$L(x_1, x_2, \mu) = -2x_1^2 - x_2^2 + x_1x_2 + 8x_1 + 3x_2 + \mu(3x_1 + x_2 - 10)$$

Optimality conditions are:

$$\begin{split} &\partial \frac{L(x_1, x_2, \mu)}{\partial x_1} = -4x_1 + x_2 + 8 + 3\mu = 0 \\ &\partial \frac{L(x_1, x_2, \mu)}{\partial x_2} = -2x_2 + x_1 + 3 + \mu = 0 \\ &\partial \frac{L(x_1, x_2, \mu)}{\partial \mu} = 3x_1 + x_2 - 10 = 0 \end{split}$$

Solving this system, we obtain  $\overline{x}=(2.46,2.60)$  and  $\overline{\mu}=-0.25.$ 

Since z is concave and constraints are affine, optimality conditions are necessary and sufficient for global optimality.



### Geometry of optimality conditions

The condition  $\nabla f(x) = -\sum_{i=1}^m \mu_i \nabla h_i(x)$  can be interpret as a "force equilibrium".



### Optimality for constrained problems - inequalities

We now consider the most general case:

$$(P): \mbox{min. } z=f(x)$$
 
$$\mbox{s.t.: } g_i(x) \leq 0, \ i=1,\ldots,m$$

For now, we assume the following:

 $g_i(x)$ 's satisfy regularity conditions (constraint qualification); we assume that  $\nabla g_i(x)$ 's are linearly independent (LICQ).

The Karush-Kuhn-Tucker conditions represent the necessary conditions for optimality in the inequality-constrained case.

Can be derived similarly to the equality case, using the Lagrangian function

$$L(x,\lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x).$$

 $\lambda_i \geq 0$  and  $\lambda_i g_i(x) = 0$  are imposed for i = 1, ..., m since penalties are only needed for g(x) > 0.

### The KKT conditions

### Theorem 3 (Necessary condition - inequality const. problems)

Let P be min.  $\{f(x):g(x)\leq 0\}$  with differentiable  $f:\mathbb{R}^n\to\mathbb{R}$  and  $g:\mathbb{R}^n\to\mathbb{R}^m$ . If  $\overline{x}$  is optimal for P, then  $(\overline{x},\overline{\lambda})$  satisfies

$$\nabla f(\overline{x}) + \sum_{i=1}^{m} \overline{\lambda}_i \nabla g_i(\overline{x}) = 0$$

$$g(\overline{x}) \le 0$$

$$\overline{\lambda}_i g_i(\overline{x}) = 0, \ i = 1, \dots, m$$

$$\overline{\lambda}_i \ge 0, \ i = 1, \dots, m.$$

#### Remarks:

- There is a strong connection between KKT conditions and Lagrangian duality.
- In particular,  $\overline{\lambda}$  are the optimal values of the dual variables, as seen in the LP case.

### The KKT conditions

#### **Example:**

min. 
$$_x \{(x_1-3)^2+(x_2-3)^2: -x_1+x_2 \le 4; \ 2x_1+3x_2 \le 11\}$$

The Lagrangian function is given by: 
$$L(x_1,x_2,\lambda_1,\lambda_2)=(x_1-3)^2+(x_2-3)^2+\lambda_1(-x_1+x_2-4)+\lambda_2(2x_1+3x_2-11)$$

#### KKT conditions are:

$$\begin{bmatrix} 2x_1 - 6 \\ 2x_2 - 6 \end{bmatrix} + \lambda_1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \lambda_2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} = 0$$

$$x_1 + x_2 - 2 \le 0$$

$$2x_1 + 3x_2 - 11 \le 0$$

$$\lambda_1(x_1 + x_2 - 2) = 0$$

$$\lambda_2(2x_1 + 3x_2 - 11) = 0$$

$$\lambda_1, \lambda_2 \ge 0$$

### The KKT conditions

In theory, KKT conditions can be solved analytically.

For example, for two constraints, complementarity conditions  $\lambda_i g_i(x) = 0, i = 1, \dots, m$  imply that one of the following holds:

- 1. both  $\lambda_1=0$  and  $\lambda_2=0$ ; thus  $g_1(x)<0$  and  $g_2(x)<0$ ;
- 2.  $\lambda_1 > 0$  and  $\lambda_2 = 0$ ; thus  $g_1(x) = 0$  and  $g_2(x) < 0$ ;
- 3.  $\lambda_1 = 0$  and  $\lambda_2 > 0$ ; thus  $g_1(x) < 0$  and  $g_2(x) = 0$ ;
- 4. both  $\lambda_1 > 0$  and  $\lambda_2 > 0$ ; thus  $g_1(x) = 0$  and  $g_2(x) = 0$ ;

One might need to test all cases to find solutions satisfying the KKT conditions, unless sufficiency can be established.

In the previous example:  $\lambda_1=0, \lambda_2>0$  leads to a (unique optimal) solution satisfying KKT conditions:

$$(\overline{x}_1, \overline{x}_2, \overline{\lambda}_1, \overline{\lambda}_2) = (2.38, 2.07, 0, 0.61)$$

### Geometry of optimality conditions II

Similarly to the equality case, the "force equilibrium" also holds, but only for active constraints ( $\lambda_i = 0$  for  $g_i(x) < 0$ ).



### The complete KKT conditions

For the sake of completeness, we state the KKT conditions for general problems.

### Theorem 4 (KKT general conditions)

Let P be min.  $\{f(x):g(x)\leq 0, h(x)=0\}$  with differentiable  $f:\mathbb{R}^n\to\mathbb{R}$ ,  $g:\mathbb{R}^n\to\mathbb{R}^m$  and  $h:\mathbb{R}^n\to\mathbb{R}^l$ . If  $\overline{x}$  is optimal for P, then  $(\overline{x},\overline{\lambda},\overline{\mu})$  satisfies

$$\nabla f(\overline{x}) + \sum_{i=1}^{m} \overline{\lambda}_{i} \nabla g_{i}(\overline{x}) + \sum_{i=1}^{l} \overline{\mu}_{i} \nabla h_{i}(\overline{x}) = 0$$

$$g_{i}(\overline{x}) \leq 0, \quad i = 1, \dots, m$$

$$h_{i}(\overline{x}) = 0, \quad i = 1, \dots, l$$

$$\overline{\lambda}_{i} g_{i}(\overline{x}) = 0, \quad i = 1, \dots, m$$

$$\overline{\lambda}_{i} > 0, \quad i = 1, \dots, m.$$

# Sufficiency of optimality conditions

If Slater's constraint qualification (CQ) holds, the KKT conditions become necessaru and sufficient for global optimality. Slater's CQ conditions are

- 1. f convex (concave for max.) function
- 2. g convex functions with strict interior (i.e. , exists x such that g(x) < 0)
- 3. h affine functions.

### Theorem 5 (Necessary and sufficient optimality conditions)

Consider the problem  $P: \min. \{f(x): g(x) \leq 0, h(x) = 0\}$  with  $f: \mathbb{R}^n \to \mathbb{R}, \ g: \mathbb{R}^n \to \mathbb{R}^m$  and  $h: \mathbb{R}^n \to \mathbb{R}^l$  such that Slater's CQ are met. Then  $\overline{x}$  is globally optimal for P if and only if  $(\overline{x}, \overline{\lambda})$  satisfies the KKT conditions.

### The complete KKT conditions

### Example:

min. 
$$z = (x_1 - 1)^2 + (x_2 - 2)^2$$
  
s.t.:  $-x_1 + x_2 = 1$   
 $x_1 + x_2 \le 2$ 

KKT conditions are:

$$\begin{bmatrix} 2(x_1 - 1) \\ 2(x_2 - 2) \end{bmatrix} + \mu \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$-x_1 + x_2 - 1 = 0$$
$$x_1 + x_2 - 2 \le 0$$
$$\lambda(x_1 + x_2 - 2) = 0$$
$$\lambda \ge 0$$

- 1. For  $\lambda = 0$ : x = (1, 2), which violates g(x) < 0, and  $\mu = 0$ .
- 2. For  $\lambda > 0$ :  $\overline{x} = (0.5, 1.5)$ ,  $\overline{\mu} = 0$ , and  $\overline{\lambda} = 1$ .

As Slater's CQ hold, KKT conditions are also sufficient for global optimality. Thus,  $\overline{x}=(0.5,1.5)$  is a global optimum.