FINANCIAL ECONOMECTRICS

Assignment - 1

To – Dr. Mandira Sarma

By - Mamina Panda

CITD (MA – Economics)

3rd - Semester

INTRODUCTION

In this assignment we will use Box – Jenkins method to forecast daily return of Google Limited Liability Company. I will use E-views for this task.

The Box Jenkin model assumes that the given time series is stationary so if our time series is not stationary then we have to make it stationary by taking 1st difference. So if our model is stationary then we will try to estimate ARMA model otherwise we will estimate AR(I)MA model.

Box and Jenkins introduced three steps method to select appropriate models for estimating and forecasting univariate models. Those three steps are:

- Identification
- Estimation
- Diagnostic

Data

I have taken the data of closing price of Google Limited Liability company from Yahoo Finance website from 3rd Jan 2011 to 30th Dec 2019, name of the stock exchange is GOOG. My total observations are 2264, and the variable which we are dealing with is return, to calculate the return following formula has been used

In (closing price(t)/closing price(t-1))

IDENTIFICATION

In this step we will check for the stationarity of our asset return

From the graph it looks like returns are stationary. But we will confirm our result from ACF and PACF model and Dickey fuller test.

PACF is showing significant spikes at various numbers, in ACF even though the spikes are not too high but still may of them are crossing the confidence interval. The PACF cuts off tell us about the AR term, while the ACF typically cuts off at the indicated number of MA. Since return series has stationary behaviour, hence d=0. To create the proper ARMA model, we must consider various combinations of all the lag terms.

Augmented Dickey fuller test

Null Hypothesis: LOG_RETURNS has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=26)

		t-Statistic	Prob.*
Augmented Dickey-Fr Test critical values:	uller test statistic 1% level 5% level 10% level	-47.03748 -3.962103 -3.411795 -3.127785	0.0000

^{*}MacKinnon (1996) one-sided p-values

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOG_RETURNS) Method: Least Squares Date: 10/04/23 Time: 11:50 Sample (adjusted): 1/04/2011 12/30/2019 Included observations: 2262 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG_RETURNS(-1) C @TREND("1/03/2011")	-0.989758 0.000553 8.75E-08	0.021042 0.000633 4.85E-07	-47.03748 0.873016 0.180476	0.0000 0.3827 0.8568
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.494803 0.494356 0.015056 0.512111 6283.092 1106.263 0.000000	Mean depend S.D. depend Akaike info d Schwarz cri Hannan-Qui Durbin-Wats	lent var riterion terion nn criter.	-5.18E-06 0.021174 -5.552690 -5.545098 -5.549920 1.999269

To solidify this result, we will run Augmented Dickey Fuller test. The test result is given on left side and we can see that the P- value is coming out to be zero which smaller than 0.05 so we will reject the null hypothesis which means our return series is stationary.

JARQUE-BERRA TEST

Ho: Returns are normally distributed.

Ha: Returns are not normally distributed

Since p value is less than 0.05 hence, we will reject the null hypothesis which means returns are not normally distributed.

ESTIMATION

Correlogram of return

				_		
	Correlogram of	LOC	RET	JRNS		
Date: 10/04/23 Tir Sample: 1/03/2011 Included observatio Autocorrelation	12/30/2019 ns: 2263		AC	PAC	Q-Stat	Prob
		3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	-0.020 -0.014 -0.007 -0.045 -0.004 -0.005 0.001 -0.021 -0.021 0.011 -0.009 -0.005 0.003 -0.005 0.003 -0.005 0.0012	-0.014 -0.007 -0.045 -0.003 0.005 -0.055 0.001 0.013 -0.047 -0.019 0.006 -0.012 -0.004 0.005 0.005 0.005 -0.018	6.3451 12.808 12.809 13.503 17.959 18.922 19.215 19.411 19.478 19.824 28.106 28.131 28.643 28.992	0.625 0.573 0.670 0.796 0.286 0.396 0.500 0.119 0.171 0.197 0.083 0.090 0.117 0.150 0.193 0.228 0.028 0.024 0.060 0.072 0.080 0.090

We will use correlogram to determine what are the possible models. With the autocorrelation part we are going to determine MA component and with Partial autocorrelation part we will determine AR component.

By looking at the correlogram some of the possible models are possible models are:

ARMA (5,8) ARMA (8,5) ARMA (8,8) ARMA (8,11)

ARMA (5,11) ARMA (11,5)

Note: I have tried other possibilities also but I have added only 10 in the assignment for the sake of comparison.

Dependent Variable: LOG RETURNS

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 10/04/23 Time: 12:08 Sample: 1/03/2011 12/30/2019 Included observations: 2263

Convergence achieved after 10 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(5) MA(8) SIGMASQ	-0.043007 -0.050384 0.000226	0.018854 0.018903 2.55E-06	-2.281000 -2.665430 88.69158	0.0077
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.002517 0.001634 0.015035 0.510883 6289.070 1.974561	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000659 0.015047 -5.555520 -5.547931 -5.552751
Inverted AR Roots	.4331i 53	.43+.31i	16+.51i	1651i
Inverted MA Roots	.69 0069i	.49+.49i 49+.49i	.4949i 4949i	00+.69i 69

Dependent Variable: LOG_RETURNS

Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 10/04/23 Time: 12:16

Sample: 1/03/2011 12/30/2019 Included observations: 2263

Convergence achieved after 10 iterations
Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(5) MA(11) SIGMASQ	-0.042217 -0.043779 0.000226	0.018397 0.020550 2.54E-06	-2.294759 -2.130365 89.02702	0.0332
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.001767 0.000884 0.015041 0.511267 6288.220 1.975649	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000659 0.015047 -5.554768 -5.547179 -5.551999
Inverted AR Roots	.4331i 53	.43+.31i	16+.51i	1651i
Inverted MA Roots	.75 .3168i 49+.57i	.63+.41i 11+.74i 72+.21i	.6341i 1174i 7221i	.31+.68i 4957i

Dependent Variable: LOG_RETURNS

Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 10/04/23 Time: 09:19

Sample: 1/03/2011 12/30/2019 Included observations: 2263

Convergence achieved after 13 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(8) MA(5) SIGMASQ	-0.051336 -0.041416 0.000226	0.018632 0.018895 2.55E-06	-2.755241 -2.191868 88.58761	0.0059 0.0285 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.002505 0.001622 0.015035 0.510889 6289.057 1.974933	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000659 0.015047 -5.555507 -5.547919 -5.552738
Inverted AR Roots Inverted MA Roots	.6426i 26+.64i .53 4331i	.64+.26i 2664i .1650i		.2664i 64+.26i 43+.31i

Dependent Variable: LOG RETURNS

Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 10/04/23 Time: 12:17
Sample: 1/03/2011 12/30/2019

Included observations: 2263

Convergence achieved after 9 iterations

Coefficient covariance computed using outer product of gradients						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
AR(11) MA(5) SIGMASQ	-0.041851 -0.040851 0.000226	0.020543 0.018437 2.54E-06	-2.037258 -2.215676 88.99155	0.0268		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.001617 0.000733 0.015042 0.511344 6288.051 1.975666	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000659 0.015047 -5.554619 -5.547030 -5.551850		
Inverted AR Roots Inverted MA Roots	.72+.21i .11+.74i 63+.41i .53	.7221i .1174i 6341i .16+.50i	.49+.57i 31+.68i 75 .1650i	.4957i 3168i 4331i		
	43+.31i					

Dependent Variable: LOG_RETURNS Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 10/04/23 Time: 16:08 Sample: 1/03/2011 12/30/2019

Included observations: 2263

Convergence achieved after 26 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(5) MA(5)	-0.461396 0.420445	0.370890 0.378356	-1.244023 1.111240	
SIGMÀSQ	0.000226	2.56E-06	88.24512	0.0000
R-squared	0.000224	Mean deper	ndent var	0.000659
Adjusted R-squared	-0.000661	S.D. depend	0.015047	
S.E. of regression	0.015052	Akaike info	-5.553231	
Sum squared resid	0.512058	Schwarz cr	iterion	-5.545642
Log likelihood	6286.480	Hannan-Qu	inn criter.	-5.550462
Durbin-Watson stat	1.974313			
Inverted AR Roots	.6950i 86	.69+.50i	26+.81i	2681i
Inverted MA Roots	.6849i 84	.68+.49i	26+.80i	2680i

Dependent Variable: LOG_RETURNS Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 10/04/23 Time: 12:26 Sample: 1/03/2011 12/30/2019 Included observations: 2263

Convergence achieved after 8 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(8) MA(11) SIGMASQ	-0.052576 -0.046086 0.000226	0.018579 0.020598 2.55E-06	-2.829864 -2.237452 88.59815	0.0047 0.0254 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.002758 0.001876 0.015033 0.510759 6289.336 1.974066	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000659 0.015047 -5.555755 -5.548166 -5.552986
Inverted AR Roots Inverted MA Roots	.6426i 26+.64i .76 .3169i 50+.57i	.64+.26i 2664i .64+.41i 11+.75i 73+.21i	.6441i	.2664i 6426i .31+.69i 5057i

Dependent Variable: LOG_RETURNS Method: ARMA Maximum Likelihood (OPG - BHHH)
Date: 10/04/23 Time: 15:56
Sample: 1/03/2011 12/30/2019

Included observations: 2263 Convergence achieved after 10 iterations

Coefficient covariance computed using outer product of gradients

Coefficient	Std. Error	t-Statistic	Prob.
-0.042217 -0.043779 0.000226	0.018397 0.020550 2.54E-06	-2.130365	0.0332
0.001767 0.000884 0.015041 0.511267 6288.220 1.975649	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000659 0.015047 -5.554768 -5.547179 -5.551999
.4331i - 53	.43+.31i	16+.51i	1651i
.75 .3168i 49+.57i	.63+.41i 11+.74i 72+.21i	.6341i 1174i 7221i	.31+.68i 4957i
	-0.042217 -0.043779 0.000226 0.001767 0.000884 0.015041 0.511267 6288.220 1.975649 -4331i 53 .75 .3168i	-0.042217	-0.042217 0.018397 -2.294759 -0.043779 0.020550 -2.130365 0.000226 2.54E-06 89.02702 0.001767 Mean dependent var 0.015041 Akaike info criterion 0.511267 Schwarz criterion 6288.220 Hannan-Quinn criter. 4331i .43+.31i16+.51i53 .75 .63+.41i .6341i .3168i11+.74i1174i

Dependent Variable: LOG_RETURNS Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 10/04/23 Time: 09:19

Sample: 1/03/2011 12/30/2019 Included observations: 2263

Convergence achieved after 12 iterations Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(8) MA(8) SIGMASQ	-0.346181 0.296071 0.000226	0.312407 0.318648 2.57E-06	-1.108108 0.929147 88.13679	0.2679 0.3529 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000953 0.000069 0.015047 0.511684 6287.300 1.976124	Mean deper S.D. depend Akaike info d Schwarz ch Hannan-Qu	dent var criterion iterion	0.000659 0.015047 -5.553955 -5.546366 -5.551186
Inverted AR Roots Inverted MA Roots	.81+.34i 3481i .7933i 33+.79i	.8134i 34+.81i .79+.33i 3379i	.33+.79i	.3481i 81+.34i .3379i 79+.33i

Dependent Variable: LOG_RETURNS

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 10/04/23 Time: 12:28 Sample: 1/03/2011 12/30/2019 Included observations: 2263 Convergence achieved after 8 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(11) MA(8) SIGMASQ	-0.043851 -0.051492 0.000226	0.020576 0.018802 2.55E-06	-2.131214 -2.738675 88.62991	0.0332 0.0062 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.002596 0.001713 0.015035 0.510843 6289.153 1.973780	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000659 0.015047 -5.555593 -5.548004 -5.552824
Inverted AR Roots Inverted MA Roots	.72+.21i .11+.74i 63+.41i .69 0069i	.7221i .1174i 6341i .49+.49i 49+.49i	.49+.57i 31+.68i 75 .4949i 4949i	.4957i 3168i 00+.69i 69

Dependent Variable: LOG_RETURNS Method: ARMA Maximum Likelihood (OPG - BHHH) Date: 10/04/23 Time: 16:13 Sample: 1/03/2011 12/30/2019 Included observations: 2263 Convergence achieved after 9 iterations

Coefficient covariance computed using outer product of gradients

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(11) MA(5) SIGMASQ	-0.041851 -0.040851 0.000226	0.020543 0.018437 2.54E-06	-2.037258 -2.215676 88.99155	0.0417 0.0268 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.001617 0.000733 0.015042 0.511344 6288.051 1.975666	Mean depe S.D. depen Akaike info Schwarz ci Hannan-Qu	0.000659 0.015047 -5.554619 -5.547030 -5.551850	
Inverted AR Roots Inverted MA Roots	.72+.21i .11+.74i 63+.41i .53 43+.31i	.7221i .1174i 6341i .16+.50i	75	.4957i 3168i 4331i

To be able chose for which ARMA model will work we will look at the P value of the AR and MA for the significance (for it to be significant it should be less than 0.05), we will look at the adjusted R square (Higher the better) and we will also look at the Akaike info criterion, Schwarz criterion and Hannan-Quinn criteria (smaller all of these three will be better will be our model). By comparing all these things in the above analysis best model could be ARMA (8,11), which has highest adjusted R square, AR and MA are significant and values of Akaike, Schwarz and Hannan are smaller.

DIAGNOSTIC AND FORECASTING

We have our potential candidate ARMA (8,11)

Requirement for a stable univariate process:

- 1. Residual of the model are white noise (Ljung Box Q test)
- 2. Check if the estimated ARMA process is (covariance) stationary: AR roots should lie inside the unit circle.
- 3. Check if the estimated ARMA process is invertible: all MA roots should lie inside the unit circle.

Let's check whether the residual is white noise

Correlogram of Residuals							
Date: 10/04/23 Time: 12:41 Sample: 1/03/2011 12/30/2019 Q-statistic probabilities adjusted for 2 ARMA terms							,
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	
# # # # # # # #	# # # # # # # # # #	3 4 5 6 7 8 9 10 11	-0.019 -0.019 -0.009 -0.045 -0.004 0.007 -0.002 0.003 0.017 -0.001 -0.021	-0.019 -0.009 -0.046 -0.004 0.005 -0.004 0.002 0.015 -0.002 -0.020	6.8177 6.8395 7.4777 7.4819 8.4822	0.083 0.152 0.235 0.338 0.446 0.486 0.587 0.582	
# # # # # # #	() () () () () ()	15 16 17 18	-0.013 -0.005 0.006 0.060	-0.004 0.006 0.058 0.002	8.9989 9.0624 9.1533 17.425	0.768 0.821 0.294 0.358	

We can clearly see from the correlogram that none of spike in ACF and PACF is crossing the confidence interval hence residuals are indeed a white noise. The residuals' ACF and PACF lags, all fall within the 95% confidence interval, making them all statistically Insignificant.

LOG RETURNS: Inverse Roots of AR/MA Polynomial(s)

It is evident from the diagram that both AR roots and MA roots are lying within unit circle, it means ARMA process is stationary and invertible. And this implies that all the three conditions are satisfied for stable univariate process.

FORECAST

We forecasted the returns using ARMA (8,11) and compared them to the actual return. So, we have forecasted from 2nd Jan 2020 to 8th Jan 2020. The plot of the forecasted vs actual values is shown below

Comparison of actual and predicted value

Date	Actual Value	Predicted value	Mean	
			Absolute	
			percentage	
			error	
02-01-2020	0.023104	0.00046607	0.9798	
03-01-2020	-0.00492	0.0000822	0.98329	
06-01-2020	0.024358	0.0000446	0.9981	
07-01-2020	0.00785	-0.000449	0.9428	
08-01-2020	0.010984	0.000335	0.9695	

We have calculated the mean absolute error percentage to calculate the see the accuracy of our forecasted value, closer the value is to zero, the better our forecast is and we can see that mean absolute percentage error is pretty high which means and is very close to one which means our forecasted values does not have much accuracy. Now there can be several other factors which are affecting the returns which are not taken into account. Also there can be external shock, which was not predictable. In my case that external shock could be Covid 19.