2	3	4	5	\sum
/10	/7	/15	/11*	/32

Gruppe **G**

Aufgabe 2 (Punkte: /10)

(a)

(b)

Sei $\mathfrak A$ eine τ -Struktur, sodass jedes Element elementar definierbar ist. Sei außerdem π ein beliebiger Automorphismus von $\mathfrak A$ und $a \in A$ beliebig. Aus der elementaren Definierbarkeit von a folgt, dass eine Formel $\varphi_a(x)$ existiert, sodass $\mathfrak A \models \varphi_a(a)$ und $\mathfrak A \not\models \varphi_a(b)$ für alle $b \in A$ mit $b \neq a$. Da π als Automorphismus auch insbesondere ein Isomorphismus ist, gilt mit dem Isomorphielemma, dass $\mathfrak A \models \varphi_a(x)$ gdw. $\mathfrak A \models \varphi_a(\pi(x))$. Nun muss aber $\pi(a) = a$ sein, da sonst das Isomorphielemma verletzt wäre. ($\mathfrak A \models \varphi_a(a)$, aber $\mathfrak A \not\models \varphi_a(\pi(a))$, falls $\pi(a) \neq a$.)

Da a beliebig gewählt war, gilt für alle $a \in A$, dass $\pi(a) = a$ und somit $\pi = 1_{\mathfrak{A}}$, obwohl auch π beliebig gewählt war. Es folgt also, dass nur $1_{\mathfrak{A}}$ ein Automorphismus von \mathfrak{A} ist, also ist \mathfrak{A} starr.

(c)
Eine unendliche Struktur mit dieser Eigenschaft ist zum Beispiel durch (N, 0, 1, +) gegeben, da jedes Element elementar definierbar ist. (Sogar termdefinierbar durch 1 + ... + 1 für Zahlen größer als 1., 0 und 1 bereits in der Signatur.)

Aufgabe 3 (Punkte: /7)

- (a)
- (b)
- (c)

Aufgabe 4 (Punkte: /15)

- (a)
- (b)
- (c)
- (d)

Mathematische Logik
Übung 8
17 Juni 2017

346532, Daniel Boschmann 348776, Anton Beliankou 356092, Daniel Schleiz

(e)

(f)

Aufgabe 5 (Punkte: /11*)

- (a)
- (b)
- (c)