Visual Search with a Trembling Hand

An Analysis of Odd Arm Identification in Restless Multi-armed Bandits

P. N. Karthik periyapatna@iisc.ac.in

Networks Seminar Presentation RBCCPS, IISc March 10, 2020

Motivation

A Visual Search Experiment

- A total of 8 drifting-dots moving images
- The angle of movement (drift) in the of the movies is different
- Goal: Identify the "odd" movie as quickly as possible

A Visual Search Experiment

- A total of 8 drifting-dots moving images
- The angle of movement (drift) in the of the movies is different
- Goal: Identify the "odd" movie as quickly as possible

What is the relation between

- (a) the time taken to identify the odd movie, and
- (b) the "closeness" of the odd and the non-odd movies?

Demystifying the Experiment

$$\{X_t^1: t=0,1,2,\ldots\}$$
 $\{X_t^2: t=0,1,2,\ldots\}$

$${X_t^2: t=0,1,2,\ldots}$$

$$\{X_t^3: t=0,1,2,\ldots\}$$

Time	Delay of movie 1	Delay of movie 2	Delay of movie 3
	LOS of movie 1	LOS of movie 2	LOS of movie 3
t = 3	$d_1(t) = 3$	$d_2(t)=2$	$d_3(t)=1$
	$i_1(t) = X_0^1$	$i_2(t) = X_1^2$	$i_3(t) = X_2^3$

$$\{X_t^1: t=0,1,2,\ldots\}$$
 $\{X_t^2: t=0,1,2,\ldots\}$

$${X_t^2: t=0,1,2,\ldots}$$

$${X_t^3: t=0,1,2,\ldots}$$

Time	Delay of movie 1	Delay of movie 2	Delay of movie 3
	LOS of movie 1	LOS of movie 2	LOS of movie 3
t = 3	$d_1(t) = 3$	$d_2(t) = 2$	$d_3(t) = 1$
	$i_1(t) = X_0^1$	$i_2(t) = X_1^2$	$i_3(t) = X_2^3$
t = 4	$d_1(t)=4$	$d_2(t) = 1$	$d_3(t) = 2$
	$i_1(t)=i_1(t-1)$	$i_2(t) = X_3^2$	$i_3(t)=i_3(t-1)$
4 F			

$$\{X_t^1: t=0,1,2,\ldots\}$$
 $\{X_t^2: t=0,1,2,\ldots\}$

$$[X_t^2: t=0,1,2,\ldots]$$

$${X_t^3: t=0,1,2,\ldots}$$

Time	Delay of movie 1	Delay of movie 2	Delay of movie 3
	LOS of movie 1	LOS of movie 2	LOS of movie 3
t = 3	$d_1(t) = 3$	$d_2(t) = 2$	$d_3(t) = 1$
	$i_1(t) = X_0^1$	$i_2(t) = X_1^2$	$i_3(t) = X_2^3$
t = 4	$d_1(t)=4$	$d_2(t) = 1$	$d_3(t) = 2$
	$i_1(t)=i_1(t-1)$	$i_2(t) = X_3^2$	$i_3(t)=i_3(t-1)$
t = 5	$d_1(t) = 1$	$d_2(t) = 2$	$d_3(t) = 3$
	$i_1(t) = X_5^1$	$i_2(t) = i_2(t-1)$	$i_3(t)=i_3(t-1)$
t = 6			

$$\{X_t^1: t=0,1,2,\ldots\}$$
 $\{X_t^2: t=0,1,2,\ldots\}$

$$\{X_t^2: t=0,1,2,\ldots\}$$

$${X_t^3: t=0,1,2,\ldots}$$

Time	Delay of movie 1	Delay of movie 2	Delay of movie 3
	LOS of movie 1	LOS of movie 2	LOS of movie 3
t = 3	$d_1(t) = 3$	$d_2(t)=2$	$d_3(t) = 1$
	$i_1(t) = X_0^1$	$i_2(t) = X_1^2$	$i_3(t) = X_2^3$
t = 4	$d_1(t)=4$	$d_2(t) = 1$	$d_3(t) = 2$
	$i_1(t)=i_1(t-1)$	$i_2(t) = X_3^2$	$i_3(t)=i_3(t-1)$
t = 5	$d_1(t)=1$	$d_2(t) = 2$	$d_3(t) = 3$
	$i_1(t) = X_5^1$	$i_2(t) = i_2(t-1)$	$i_3(t)=i_3(t-1)$
t = 6	$d_1(t) = 2$	$d_2(t) = 3$	$d_3(t) = 1$
	$i_1(t)=i_i(t-1)$	$i_2(t) = i_2(t-1)$	$i_3(t) = X_6^3$

$$\{X_t^1: t = 0, 1, 2, \ldots\}$$
 $\{X_t^2: t = 0, 1, 2, \ldots\}$

$$[X_t^2: t = 0, 1, 2, \ldots]$$

$${X_t^3: t=0,1,2,\ldots}$$

Time	Delay of movie 1	Delay of movie 2	Delay of movie 3
	LOS of movie 1	LOS of movie 2	LOS of movie 3
t = 3	$d_1(t) = 3$	$d_2(t)=2$	$d_3(t) = 1$
	$i_1(t) = X_0^1$	$i_2(t) = X_1^2$	$i_3(t) = X_2^3$
t = 4	$d_1(t)=4$	$d_2(t) = 1$	$d_3(t) = 2$
	$i_1(t)=i_1(t-1)$	$i_2(t) = X_3^2$	$i_3(t)=i_3(t-1)$
t = 5	$d_1(t) = 1$	$d_2(t) = 2$	$d_3(t) = 3$
	$i_1(t) = X_5^1$	$i_2(t) = i_2(t-1)$	$i_3(t)=i_3(t-1)$
t = 6	$d_1(t) = 2$	$d_2(t) = 3$	$d_3(t) = 1$
	$i_1(t)=i_i(t-1)$	$i_2(t) = i_2(t-1)$	$i_3(t) = X_6^3$
t = 7	$d_1(t) = 1$	$d_2(t)=4$	$d_3(t) = 2$
	$i_1(t) = X_7^1$	$i_2(t)=i_2(t-1)$	$i_3(t) = i_3(t-1)$

$$\{X_t^1: t=0,1,2,\ldots\}$$
 $\{X_t^2: t=0,1,2,\ldots\}$

$$X_t^2: t = 0, 1, 2, \ldots$$

$${X_t^3: t=0,1,2,\ldots}$$

Time	Delay of movie 1	Delay of movie 2	Delay of movie 3
	LOS of movie 1	LOS of movie 2	LOS of movie 3
t = 3	$d_1(t) = 3$	$d_2(t)=2$	$d_3(t) = 1$
	$i_1(t) = X_0^1$	$i_2(t) = X_1^2$	$i_3(t) = X_2^3$
t = 4	$d_1(t)=4$	$d_2(t) = 1$	$d_3(t) = 2$
	$i_1(t)=i_1(t-1)$	$i_2(t) = X_3^2$	$i_3(t)=i_3(t-1)$
t = 5	$d_1(t)=1$	$d_2(t) = 2$	$d_3(t) = 3$
	$i_1(t) = X_5^1$	$i_2(t)=i_2(t-1)$	$i_3(t)=i_3(t-1)$
t = 6	$d_1(t) = 2$	$d_2(t) = 3$	$d_3(t) = 1$
	$i_1(t)=i_i(t-1)$	$i_2(t) = i_2(t-1)$	$i_3(t) = X_6^3$
t = 7	$d_1(t)=1$	$d_2(t)=4$	$d_3(t) = 2$
	$i_1(t) = X_7^1$	$i_2(t)=i_2(t-1)$	$i_3(t) = i_3(t-1)$
t = 8	$d_1(t) = 2$	$d_2(t)=1$	$d_3(t) = 3$
	$i_1(t) = i_1(t-1)$	$i_2(t) = X_8^2$	$i_3(t) = i_3(t-1)$

$$\{X_t^1: t = 0, 1, 2, \ldots\}$$
 $\{X_t^2: t = 0, 1, 2, \ldots\}$

$$\{X_t^2: t=0,1,2,\ldots\}$$

$$\{X_t^3: t=0,1,2,\ldots\}$$

Time	Delay of movie 1	Delay of movie 2	Delay of movie 3
	LOS of movie 1	LOS of movie 2	LOS of movie 3
t = 3	$d_1(t) = 3$	$d_2(t) = 2$	$d_3(t) = 1$
	$i_1(t) = X_0^1$	$i_2(t) = X_1^2$	$i_3(t) = X_2^3$
t = 4	$d_1(t)=4$	$d_2(t) = 1$	$d_3(t) = 2$
	$i_1(t)=i_1(t-1)$	$i_2(t) = X_3^2$	$i_3(t)=i_3(t-1)$
t = 5	$d_1(t) = 1$	$d_2(t) = 2$	$d_3(t) = 3$
	$i_1(t) = X_5^1$	$i_2(t) = i_2(t-1)$	$i_3(t)=i_3(t-1)$
t = 6	$d_1(t) = 2$	$d_2(t) = 3$	$d_3(t) = 1$
	$i_1(t)=i_i(t-1)$	$i_2(t) = i_2(t-1)$	$i_3(t) = X_6^3$
t = 7	$d_1(t) = 1$	$d_2(t)=4$	$d_3(t) = 2$
	$i_1(t) = X_7^1$	$i_2(t)=i_2(t-1)$	$i_3(t)=i_3(t-1)$
t = 8	$d_1(t) = 2$	$d_2(t)=1$	$d_3(t) = 3$
	$i_1(t)=i_1(t-1)$	$i_2(t) = X_8^2$	$i_3(t)=i_3(t-1)$
t = 9	$d_1(t) = 3$	$d_2(t) = 1$	$d_3(t) = 4$
	$i_1(t)=i_1(t-1)$	$i_2(t) = X_9^2$	$i_3(t) = i_3(t-1)$
t - 10			

$$\{X_t^1: t=0,1,2,\ldots\}$$
 $\{X_t^2: t=0,1,2,\ldots\}$

$$[X_t^2: t=0,1,2,\ldots]$$

$$\{X_t^3: t=0,1,2,\ldots\}$$

	1	1	
Time	Delay of movie 1	Delay of movie 2	Delay of movie 3
	LOS of movie 1	LOS of movie 2	LOS of movie 3
t = 3	$d_1(t) = 3$	$d_2(t) = 2$	$d_3(t) = 1$
	$i_1(t) = X_0^1$	$i_2(t) = X_1^2$	$i_3(t) = X_2^3$
t = 4	$d_1(t)=4$	$d_2(t) = 1$	$d_3(t) = 2$
	$i_1(t)=i_1(t-1)$	$i_2(t) = X_3^2$	$i_3(t)=i_3(t-1)$
t = 5	$d_1(t)=1$	$d_2(t) = 2$	$d_3(t)=3$
	$i_1(t) = X_5^1$	$i_2(t) = i_2(t-1)$	$i_3(t)=i_3(t-1)$
t = 6	$d_1(t) = 2$	$d_2(t) = 3$	$d_3(t) = 1$
	$i_1(t)=i_i(t-1)$	$i_2(t) = i_2(t-1)$	$i_3(t) = X_6^3$
t = 7	$d_1(t) = 1$	$d_2(t)=4$	$d_3(t) = 2$
	$i_1(t) = X_7^1$	$i_2(t)=i_2(t-1)$	$i_3(t)=i_3(t-1)$
t = 8	$d_1(t) = 2$	$d_2(t)=1$	$d_3(t) = 3$
	$i_1(t)=i_1(t-1)$	$i_2(t) = X_8^2$	$i_3(t)=i_3(t-1)$
t=9	$d_1(t)=3$	$d_2(t) = 1$	$d_3(t) = 4$
	$i_1(t)=i_1(t-1)$	$i_2(t) = X_9^2$	$i_3(t)=i_3(t-1)$
t = 10	$d_1(t)=1$	$d_2(t) = 2$	$d_3(t) = 5$
	$i_1(t) = X_{10}^1$	$i_2(t)=i_2(t-1)$	$i_3(t)=i_3(t-1)$

Odd Arm Identification

Visual Search Experiment	Multi-armed Bandits
Movies	Arms
X_t^a : neuronal response to	X_t^a : observation from
movie a at time t	arm a at time t
Movie paused when not observed	Arms rested
Movie continues when not observed	Arms restless
Finding the odd movie	Finding the odd arm

Visual Search Experiment	Multi-armed Bandits
Movies	Arms
X_t^a : neuronal response to	X_t^a : observation from
movie a at time t	arm a at time t
Movie paused when not observed	Arms rested
Movie continues when not observed	Arms restless
Finding the odd movie	Finding the odd arm

Odd arm identification with Markov observations:

• K > 3 arms

Visual Search Experiment	Multi-armed Bandits
Movies	Arms
X_t^a : neuronal response to	X_t^a : observation from
movie a at time t	arm a at time t
Movie paused when not observed	Arms rested
Movie continues when not observed	Arms restless
Finding the odd movie	Finding the odd arm

- K > 3 arms

Visual Search Experiment	Multi-armed Bandits
Movies	Arms
X_t^a : neuronal response to	X_t^a : observation from
movie a at time t	arm a at time t
Movie paused when not observed	Arms rested
Movie continues when not observed	Arms restless
Finding the odd movie	Finding the odd arm

- K > 3 arms
- $\{X_t^a: t=0,1,2,\ldots\}$: Markov process of arm a
- ullet Finite state space ${\cal S}$

Visual Search Experiment	Multi-armed Bandits
Movies	Arms
X_t^a : neuronal response to	X_t^a : observation from
movie a at time t	arm a at time t
Movie paused when not observed	Arms rested
Movie continues when not observed	Arms restless
Finding the odd movie	Finding the odd arm

- K > 3 arms
- $\{X_t^a: t=0,1,2,\ldots\}$: Markov process of arm a
- ullet Finite state space ${\cal S}$
- TPM of one of the arms is P_1 (odd arm)
- TPM of rest of the arms is P_2 , where $P_2 \neq P_1$

Visual Search Experiment	Multi-armed Bandits
Movies	Arms
X_t^a : neuronal response to	X_t^a : observation from
movie a at time t	arm a at time t
Movie paused when not observed	Arms rested
Movie continues when not observed	Arms restless
Finding the odd movie	Finding the odd arm

- K > 3 arms
- $\{X_t^a: t=0,1,2,\ldots\}$: Markov process of arm a
- ullet Finite state space ${\mathcal S}$
- TPM of one of the arms is P_1 (odd arm)
- TPM of rest of the arms is P_2 , where $P_2 \neq P_1$
- P_1 and P_2 may be known or unknown

Active Sequential Hypothesis Testing

When P_1 and P_2 are known: K simple hypotheses

 \mathcal{H}_1 : arm 1 is the odd arm

 \mathcal{H}_2 : arm 2 is the odd arm

:

 \mathcal{H}_K : arm K is the odd arm

Active Sequential Hypothesis Testing

When P_1 and P_2 are known: K simple hypotheses

 \mathcal{H}_1 : arm 1 is the odd arm

 \mathcal{H}_2 : arm 2 is the odd arm

:

 \mathcal{H}_K : arm K is the odd arm

When neither P_1 nor P_2 is known: K composite hypotheses

$$\mathcal{H}_1: (1,\cdot,\cdot)$$

$$\mathcal{H}_2: (2,\cdot,\cdot)$$

:

$$\mathcal{H}_K: \left(K,\cdot,\cdot\right)$$

Notation : (odd arm, P_1, P_2)

The Big Picture

Odd Arm Identification in Restless Multi-armed Bandits ^a

^aP. N. Karthik and R. Sundaresan, "Detecting an Odd Restless Markov Arm with a Trembling Hand". Submitted to ISIT 2020.

- ullet Assume P_1 and P_2 are known $\left(P_2
 eq P_1
 ight)$
- Unknown: the odd arm

- Assume P_1 and P_2 are known $(P_2 \neq P_1)$
- Unknown: the odd arm

Two quantities of interest:

- (a) (Average) time taken to identify the odd arm
- (b) Probability of error

- Assume P_1 and P_2 are known $(P_2 \neq P_1)$
- Unknown: the odd arm

Two quantities of interest:

- (a) (Average) time taken to identify the odd arm
- (b) Probability of error

This talk:

- Fixed confidence setting
- Asymptotics as (b) \rightarrow 0

- Assume P_1 and P_2 are known $(P_2 \neq P_1)$
- Unknown: the odd arm

Two quantities of interest:

- (a) (Average) time taken to identify the odd arm
- (b) Probability of error

This talk:

- Fixed confidence setting
- Asymptotics as (b) \rightarrow 0

Main results:

- An asymptotic lower bound on (a)
- A sequence of strategies that achieve the lower bound asymptotically

Notations and Preliminaries

 A_t : arm selected at time t $X_t^{A_t}$: observation (Markov state) from arm A_t at time t

 A_t : arm selected at time t

 $X_t^{A_t}$: observation (Markov state) from arm A_t at time t

Policy π : is a mapping

$$(A_0, X_0^{A_0}, A_1, X_1^{A_1}, \dots, A_t, X_t^{A_t}) \mapsto A_{t+1}$$

 $\tau(\pi)$: stopping time of policy π

 $\theta(\pi)$: odd arm output by policy π

 A_t : arm selected at time t

 $X_t^{A_t}$: observation (Markov state) from arm A_t at time t

Policy π : is a mapping

$$(A_0, X_0^{A_0}, A_1, X_1^{A_1}, \dots, A_t, X_t^{A_t}) \mapsto A_{t+1}$$

 $\tau(\pi)$: stopping time of policy π

 $\theta(\pi)$: odd arm output by policy π

 $P_h(\cdot)$: probabilities computed when h is the odd arm

Given a probability of error $\epsilon > 0$, our interest is in

$$\Pi(\epsilon) = \{\pi : P_h(\theta(\pi) \neq h) \leq \epsilon \text{ for all } h\}$$

Given a probability of error $\epsilon>$ 0, our interest is in

$$\Pi(\epsilon) = \{\pi : P_h(\theta(\pi) \neq h) \le \epsilon \text{ for all } h\}$$

Given a probability of error $\epsilon > 0$, our interest is in

$$\Pi(\epsilon) = \{\pi : P_h(\theta(\pi) \neq h) \leq \epsilon \text{ for all } h\}$$

From prior works, we expect

$$\inf_{\pi \in \Pi(\epsilon)} \mathbb{E}_h[\tau(\pi)] = \Theta\left(\log \frac{1}{\epsilon}\right)$$

Given a probability of error $\epsilon>0$, our interest is in

$$\Pi(\epsilon) = \{\pi : P_h(\theta(\pi) \neq h) \leq \epsilon \text{ for all } h\}$$

From prior works, we expect

$$\inf_{\pi \in \Pi(\epsilon)} \mathbb{E}_h[\tau(\pi)] = \Theta\left(\log \frac{1}{\epsilon}\right)$$

Our objective: to characterise

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{\mathbb{E}_h[\tau(\pi)]}{\log(1/\epsilon)}$$

for the setting of restless Markov arms

The Notion of a Trembling Hand

 A_t : arm selected at time t $X_t^{A_t}$: observation (Markov state) from arm A_t at time t Policy π is a mapping

$$(A_0, X_0^{A_0}, A_1, X_1^{A_1}, \dots, A_t, X_t^{A_t}) \mapsto A_{t+1}$$

The Notion of a Trembling Hand

 A_t : arm selected at time t

 $X_t^{A_t}$: observation (Markov state) from arm A_t at time t Policy π is a mapping

$$(A_0, X_0^{A_0}, A_1, X_1^{A_1}, \dots, A_t, X_t^{A_t}) \mapsto A_{t+1}$$

Trembling hand:

Often, what you select is B_t , but what ends up getting selected is A_t , where

$$A_t = egin{cases} B_t, & ext{w.p. } 1 - \eta, \ ext{unif. randomly chosen arm}, & ext{w.p. } \eta \end{cases}$$

for some small $\eta > 0$

The Notion of a Trembling Hand

 A_t : arm selected at time t

 $X_t^{A_t}$: observation (Markov state) from arm A_t at time t Policy π is a mapping

$$(A_0, X_0^{A_0}, A_1, X_1^{A_1}, \dots, A_t, X_t^{A_t}) \mapsto A_{t+1}$$

Trembling hand:

Often, what you select is B_t , but what ends up getting selected is A_t , where

$$A_t = \begin{cases} B_t, & \text{w.p. } 1 - \eta, \\ \text{unif. randomly chosen arm}, & \text{w.p. } \eta \end{cases}$$

for some small $\eta > 0$

Updated policy π :

$$(B_0, A_0, X_0^{A_0}, B_1, A_1, X_1^{A_1}, \dots, B_t, A_t, X_t^{A_t}) \mapsto B_{t+1}$$

A New Notion of State

Time	Delay of movie 1	Delay of movie 2	Delay of movie 3
	LOS of movie 1	LOS of movie 2	LOS of movie 3
t = 3	$d_1(t) = 3$	$d_2(t) = 2$	$d_3(t) = 1$
	$i_1(t) = X_0^1$	$i_2(t) = X_1^2$	$i_3(t) = X_2^3$
t = 4	$d_1(t) = 4$	$d_2(t) = 1$	$d_3(t) = 2$
	$i_1(t) = i_1(t-1)$	$i_2(t) = X_3^2$	$i_3(t) = i_3(t-1)$
t = 5	$d_1(t) = 1$	$d_2(t) = 2$	$d_3(t) = 3$
	$i_1(t) = X_5^1$	$i_2(t) = i_2(t-1)$	$i_3(t) = i_3(t-1)$
t = 6	$d_1(t) = 2$	$d_2(t) = 3$	$d_3(t) = 1$
	$i_1(t) = i_i(t-1)$	$i_2(t) = i_2(t-1)$	$i_3(t) = X_6^3$
t = 7	$d_1(t) = 1$	$d_2(t) = 4$	$d_3(t) = 2$
	$i_1(t) = X_7^1$	$i_2(t) = i_2(t-1)$	$i_3(t) = i_3(t-1)$
t = 8	$d_1(t) = 2$	$d_2(t) = 1$	$d_3(t) = 3$
	$i_1(t) = i_1(t-1)$	$i_2(t) = X_8^2$	$i_3(t) = i_3(t-1)$
t = 9	$d_1(t) = 3$	$d_2(t) = 1$	$d_3(t) = 4$
	$i_1(t) = i_1(t-1)$	$i_2(t) = X_0^2$	$i_3(t) = i_3(t-1)$
t = 10	$d_1(t) = 1$	$d_2(t) = 2$	$d_3(t) = 5$
	$i_1(t) = X_{10}^1$	$i_2(t) = i_2(t-1)$	$i_3(t) = i_3(t-1)$

$$\underbrace{\underline{d}(t) = (d_1(t), \dots, d_K(t))}_{\text{arm delays}}, \qquad \underbrace{\underline{i}(t) = (i_1(t), \dots, i_K(t))}_{\text{last observed states of the arms}}$$

A New Notion of State

Time	Delay of movie 1	Delay of movie 2	Delay of movie 3
Time			
	LOS of movie 1	LOS of movie 2	LOS of movie 3
t = 3	$d_1(t) = 3$	$d_2(t) = 2$	$d_3(t) = 1$
	$i_1(t) = X_0^1$	$i_2(t) = X_1^2$	$i_3(t) = X_2^3$
t = 4	$d_1(t) = 4$	$d_2(t) = 1$	$d_3(t) = 2$
	$i_1(t) = i_1(t-1)$	$i_2(t) = X_3^2$	$i_3(t) = i_3(t-1)$
t = 5	$d_1(t) = 1$	$d_2(t) = 2$	$d_3(t) = 3$
	$i_1(t) = X_5^1$	$i_2(t) = i_2(t-1)$	$i_3(t) = i_3(t-1)$
t = 6	$d_1(t) = 2$	$d_2(t) = 3$	$d_3(t) = 1$
	$i_1(t) = i_i(t-1)$	$i_2(t) = i_2(t-1)$	$i_3(t) = X_6^3$
t = 7	$d_1(t) = 1$	$d_2(t) = 4$	$d_3(t) = 2$
	$i_1(t) = X_7^1$	$i_2(t) = i_2(t-1)$	$i_3(t) = i_3(t-1)$
t = 8	$d_1(t) = 2$	$d_2(t) = 1$	$d_3(t) = 3$
	$i_1(t) = i_1(t-1)$	$i_2(t) = X_8^2$	$i_3(t) = i_3(t-1)$
t = 9	$d_1(t) = 3$	$d_2(t) = 1$	$d_3(t) = 4$
	$i_1(t) = i_1(t-1)$	$i_2(t) = X_9^2$	$i_3(t) = i_3(t-1)$
t = 10	$d_1(t) = 1$	$d_2(t) = 2$	$d_3(t) = 5$
	$i_1(t) = X_{10}^1$	$i_2(t) = i_2(t-1)$	$i_3(t) = i_3(t-1)$

$$\underbrace{\underline{d}(t) = (d_1(t), \dots, d_K(t))}_{\text{arm delays}}, \qquad \underbrace{\underline{i}(t) = (i_1(t), \dots, i_K(t))}_{\text{last observed states of the arms}}$$

$$(B_0, A_0, X_0^{A_0}, B_1, A_1, X_1^{A_1}, \dots, B_t, A_t, X_t^{A_t}) \equiv \{B_s, \ (\underline{d}(s), \underline{i}(s)) : K \leq s \leq t\}$$

A New Notion of State

Delay of movie 1	Delay of movie 2	Delay of movie 3
LOS of movie 1	LOS of movie 2	LOS of movie 3
$d_1(t) = 3$	$d_2(t) = 2$	$d_3(t) = 1$
$i_1(t) = X_0^1$	$i_2(t) = X_1^2$	$i_3(t) = X_2^3$
$d_1(t) = 4$	$d_2(t) = 1$	$d_3(t) = 2$
$i_1(t) = i_1(t-1)$	$i_2(t) = X_3^2$	$i_3(t) = i_3(t-1)$
$d_1(t) = 1$	$d_2(t) = 2$	$d_3(t) = 3$
	$i_2(t) = i_2(t-1)$	$i_3(t) = i_3(t-1)$
$d_1(t) = 2$	$d_2(t) = 3$	$d_3(t) = 1$
$i_1(t) = i_i(t-1)$	$i_2(t) = i_2(t-1)$	$i_3(t) = X_6^3$
$d_1(t) = 1$	$d_2(t) = 4$	$d_3(t) = 2$
$i_1(t) = X_7^1$	$i_2(t) = i_2(t-1)$	$i_3(t) = i_3(t-1)$
$d_1(t) = 2$	$d_2(t) = 1$	$d_3(t) = 3$
$i_1(t) = i_1(t-1)$	$i_2(t) = X_8^2$	$i_3(t) = i_3(t-1)$
$d_1(t) = 3$	$d_2(t) = 1$	$d_3(t) = 4$
$i_1(t) = i_1(t-1)$	$i_2(t) = X_9^2$	$i_3(t) = i_3(t-1)$
$d_1(t) = 1$	$d_2(t) = 2$	$d_3(t) = 5$
$i_1(t) = X_{10}^1$	$i_2(t) = i_2(t-1)$	$i_3(t) = i_3(t-1)$
	LOS of movie 1 $\phi(t) = 3$ $\phi(t) = 3$ $\phi(t) = 3$ $\phi(t) = 3$ $\phi(t) = 4$ $\phi(t) = 4$ $\phi(t) = 4$ $\phi(t) = 2$ $\phi(t) = 2$ $\phi(t) = 2$ $\phi(t) = 2$ $\phi(t) = 2$ $\phi(t) = 2$ $\phi(t) = 3$ $\phi(t) = 1$ $\phi(t) = 1$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

$$\underbrace{\underline{d}(t) = (d_1(t), \dots, d_K(t))}_{\text{arm delays}}, \qquad \underbrace{\underline{i}(t) = (i_1(t), \dots, i_K(t))}_{\text{last observed states of the arms}}$$

$$(B_0, A_0, X_0^{A_0}, B_1, A_1, X_1^{A_1}, \dots, B_t, A_t, X_t^{A_t}) \equiv \{B_s, \ (\underline{d}(s), \underline{i}(s)) : K \leq s \leq t\}$$

A interplay of the various variables:

$$\{B_s,\;(\underline{d}(s),\underline{i}(s)):K\leq s\leq t-1\}\longrightarrow B_t\stackrel{\mathsf{TH}}{\longrightarrow}(A_t,\;X_t^{A_t})\longrightarrow (\underline{d}(t),\underline{i}(t))$$

A Controlled Markov Process

For all t,

$$P_h(\underline{d}(t+1),\underline{i}(t+1) \mid B_t, \{B_s, (\underline{d}(s),\underline{i}(s)) : K \le s \le t\})$$

$$= P_h(\underline{d}(t+1),\underline{i}(t+1) \mid B_t, (\underline{d}(t),\underline{i}(t)))$$

A Controlled Markov Process

For all t,

$$P_h(\underline{d}(t+1),\underline{i}(t+1) \mid B_t, \{B_s, (\underline{d}(s),\underline{i}(s)) : K \leq s \leq t\})$$

$$= P_h(\underline{d}(t+1),\underline{i}(t+1) \mid B_t, (\underline{d}(t),\underline{i}(t)))$$

We have a Markov decision problem with

State space	Set of all possible $(\underline{d},\underline{i})$ values
Action space	Set of arms
State at time t	$(\underline{d}(t),\underline{i}(t))$
Action at time t	B_t
Observation at time t	$(A_t, X_t^{A_t})$

A Controlled Markov Process

For all t,

$$P_h(\underline{d}(t+1),\underline{i}(t+1) \mid B_t, \{B_s, (\underline{d}(s),\underline{i}(s)) : K \le s \le t\})$$

$$= P_h(\underline{d}(t+1),\underline{i}(t+1) \mid B_t, (\underline{d}(t),\underline{i}(t)))$$

We have a Markov decision problem with

State space	Set of all possible $(\underline{d}, \underline{i})$ values
Action space	Set of arms
State at time t	$(\underline{d}(t),\underline{i}(t))$
Action at time t	B_t
Observation at time t	$(A_t, X_t^{A_t})$

Our objective: characterise

$$\lim_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \frac{\mathbb{E}_h[\tau(\pi)]}{\log(1/\epsilon)}$$

Recall: a policy π is a mapping

$$\{(\underline{d}(s),\underline{i}(s)):K\leq s\leq t\}\mapsto B_t$$

¹V. S. Borkar, "Control of markov chains with long-run average cost criterion," in Stochastic Differential Systems, Stochastic Control Theory and Applications. Springer, 1988, pp. 57–77.

Recall: a policy π is a mapping

$$\{(\underline{d}(s),\underline{i}(s)):K\leq s\leq t\}\mapsto B_t$$

Following terminology from Borkar¹, we say π is a **stationary** randomised strategy (SRS) if there exists $\lambda(\cdot \mid \cdot)$ such that for all t,

$$P(B_t = a \mid \{(\underline{d}(s), \underline{i}(s)) : K \leq s \leq t\}) = \lambda(a \mid \underline{d}(t), \underline{i}(t)).$$

¹V. S. Borkar, "Control of markov chains with long-run average cost criterion," in Stochastic Differential Systems, Stochastic Control Theory and Applications. Springer, 1988, pp. 57–77.

Recall: a policy π is a mapping

$$\{(\underline{d}(s),\underline{i}(s)):K\leq s\leq t\}\mapsto B_t$$

Following terminology from Borkar¹, we say π is a **stationary** randomised strategy (SRS) if there exists $\lambda(\cdot \mid \cdot)$ such that for all t,

$$P(B_t = a \mid \{(\underline{d}(s), \underline{i}(s)) : K \leq s \leq t\}) = \lambda(a \mid \underline{d}(t), \underline{i}(t)).$$

Note that

$$P(A_t = a \mid \{(\underline{d}(s), \underline{i}(s)) : K \leq s \leq t\}) = \frac{\eta}{K} + (1 - \eta) \lambda(a \mid \underline{d}(t), \underline{i}(t))$$

¹V. S. Borkar, "Control of markov chains with long-run average cost criterion," in Stochastic Differential Systems, Stochastic Control Theory and Applications. Springer, 1988, pp. 57–77.

Recall: a policy π is a mapping

$$\{(\underline{d}(s),\underline{i}(s)): K \leq s \leq t\} \mapsto B_t$$

Following terminology from Borkar¹, we say π is a **stationary** randomised strategy (SRS) if there exists $\lambda(\cdot \mid \cdot)$ such that for all t,

$$P(B_t = a \mid \{(\underline{d}(s), \underline{i}(s)) : K \leq s \leq t\}) = \lambda(a \mid \underline{d}(t), \underline{i}(t)).$$

Note that

$$P(A_t = a \mid \{(\underline{d}(s), \underline{i}(s)) : K \leq s \leq t\}) = \frac{\eta}{K} + (1 - \eta) \lambda(a \mid \underline{d}(t), \underline{i}(t))$$

Call such a SRS policy π^{λ}

¹V. S. Borkar, "Control of markov chains with long-run average cost criterion," in Stochastic Differential Systems, Stochastic Control Theory and Applications. Springer, 1988, pp. 57–77.

Recall: a policy π is a mapping

$$\{(\underline{d}(s),\underline{i}(s)):K\leq s\leq t\}\mapsto B_t$$

Following terminology from Borkar¹, we say π is a **stationary** randomised strategy (SRS) if there exists $\lambda(\cdot \mid \cdot)$ such that for all t,

$$P(B_t = a \mid \{(\underline{d}(s), \underline{i}(s)) : K \leq s \leq t\}) = \lambda(a \mid \underline{d}(t), \underline{i}(t)).$$

Note that

$$P(A_t = a \mid \{(\underline{d}(s), \underline{i}(s)) : K \leq s \leq t\}) = \frac{\eta}{K} + (1 - \eta) \lambda(a \mid \underline{d}(t), \underline{i}(t))$$

Call such a SRS policy π^{λ}

 $\Pi_{SRS} = \text{set of all SRS policies}$

¹V. S. Borkar, "Control of markov chains with long-run average cost criterion," in Stochastic Differential Systems, Stochastic Control Theory and Applications. Springer, 1988, pp. 57–77.

SRS Policies + Trembling Hand = Ergodicity

A Key Ergodicity Property

Under any $\pi^{\lambda} \in \Pi_{SRS}$, the CMP $\{(\underline{d}(s),\underline{i}(s)) : K \leq s \leq t\}$ is a Markov process. Further, if the trembling hand parameter $\eta > 0$, then this Markov process is ergodic.

A unique stationary distribution, call it μ^{λ} , therefore exists under π^{λ}

SRS Policies + Trembling Hand = Ergodicity

A Key Ergodicity Property

Under any $\pi^{\lambda} \in \Pi_{SRS}$, the CMP $\{(\underline{d}(s), \underline{i}(s)) : K \leq s \leq t\}$ is a Markov process. Further, if the trembling hand parameter $\eta > 0$, then this Markov process is ergodic.

A unique stationary distribution, call it μ^{λ} , therefore exists under π^{λ}

Ergodic state action occupancy measure:

$$u^{\lambda}(\underline{d},\underline{i},\mathtt{a}) = \mu^{\lambda}(\underline{d},\underline{i}) \, \left(\frac{\eta}{K} + (1-\eta) \, \lambda(\mathtt{a} \mid \underline{d},\underline{i}) \right)$$

Fix odd arm h (\mathcal{H}_h is the true hypothesis)

 P_1 : TPM of arm h

 P_2 : TPM of arm $h' \neq h$

Fix odd arm h (\mathcal{H}_h is the true hypothesis)

 P_1 : TPM of arm h

 P_2 : TPM of arm $h' \neq h$

Let

$$P_h^a = \text{TPM of arm } a \text{ under hypothesis } \mathcal{H}_h$$

For any integer $d \ge 1$,

$$(P_h^a)^d = d$$
th power of TPM P_h^a

Lower Bound: Restless Markov Arms

$$\liminf_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \tfrac{E_h[\tau(\pi)]}{\log(1/\epsilon)} \geq \tfrac{1}{R^*(P_1,P_2)},$$

where

$$R^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{h' \neq h} \sum_{(\underline{d}, \underline{i})} \sum_{a=1}^{K} \nu^{\lambda}(\underline{d}, \underline{i}, a) D((P_h^a)^{d_a}(\cdot | i_a) || (P_{h'}^a)^{d_a}(\cdot | i_a))$$

Lower Bound: Restless Markov Arms

$$\liminf_{\epsilon \downarrow 0} \inf_{\pi \in \Pi(\epsilon)} \tfrac{E_h[\tau(\pi)]}{\log(1/\epsilon)} \geq \tfrac{1}{R^*(P_1,P_2)},$$

where

$$R^*(P_1, P_2) = \sup_{\pi^{\lambda} \in \Pi_{SRS}} \min_{h' \neq h} \sum_{(\underline{d}, \underline{i})} \sum_{a=1}^{K} \nu^{\lambda}(\underline{d}, \underline{i}, a) D((P_h^a)^{d_a}(\cdot | i_a) \| (P_{h'}^a)^{d_a}(\cdot | i_a))$$

Remarks:

- $R^*(P_1, P_2)$ does not depend on h, the location of odd arm
- $R^*(P_1, P_2)$: metric for closeness between odd and the non-odd movies
- Computability of $R^*(P_1, P_2)$: Q-learning or other such algorithms

Achievability

Preliminaries

- $R^*(P_1, P_2)$ has a sup in it
- It is not clear if this sup is achievable by some SRS policy

Preliminaries

- $R^*(P_1, P_2)$ has a sup in it
- It is not clear if this sup is achievable by some SRS policy
- However, the sup may be approached arbitrarily closely:

$$\forall \ \delta > 0, \ \exists \ \lambda_{h,\delta}(\cdot \mid \cdot) \ \text{s.t.}$$

$$\min_{h'\neq h} \sum_{(\underline{d},\underline{i})} \sum_{a=1}^K \nu^{\lambda_{h,\delta}}(\underline{d},\underline{i},a) \ D((P_h^a)^{d_a}(\cdot|i_a)\|(P_{h'}^a)^{d_a}(\cdot|i_a)) > \frac{R^*(P_1,P_2)}{1+\delta}$$

Policy $\pi^*(L, \delta)$

Achievability

 \bullet Input: Two parameters L>1 and $\delta>0$

Policy $\pi^*(L, \delta)$

Achievability

- Input: Two parameters L>1 and $\delta>0$
- Select arm 1 at time t=0, arm 2 at time t=1 and so on until arm K at time t=K-1

Policy $\pi^*(L, \delta)$

Achievability

- Input: Two parameters L>1 and $\delta>0$
- Select arm 1 at time t=0, arm 2 at time t=1 and so on until arm K at time t=K-1
- For all t > K:
 - Maintain guess of odd arm:

$$\hat{\theta}(n) \in \arg\max_{h} \ \underbrace{\min_{h' \neq h} \ \log \frac{P_{h}(B_{0}, A_{0}, X_{0}^{A_{0}}, \dots, B_{n}, A_{n}, X_{n}^{A_{n}})}{P_{h'}(B_{0}, A_{0}, X_{0}^{A_{0}}, \dots, B_{n}, A_{n}, X_{n}^{A_{n}})}}_{M_{h}(n)}$$

Policy $\pi^*(L, \delta)$

Achievability¹

- Input: Two parameters L>1 and $\delta>0$
- Select arm 1 at time t=0, arm 2 at time t=1 and so on until arm K at time t=K-1
- For all t > K:
 - Maintain guess of odd arm:

$$\hat{\theta}(n) \in \arg\max_{h} \ \underbrace{\min_{h' \neq h} \ \log \frac{P_{h}(B_{0}, A_{0}, X_{0}^{A_{0}}, \dots, B_{n}, A_{n}, X_{n}^{A_{n}})}{P_{h'}(B_{0}, A_{0}, X_{0}^{A_{0}}, \dots, B_{n}, A_{n}, X_{n}^{A_{n}})}}_{M_{h}(n)}$$

• If $M_{\hat{\theta}(n)}(n) \geq \log((K-1)L)$, stop and declare $\hat{\theta}(n)$ is the odd arm

Policy $\pi^*(L, \delta)$

Achievability

- Input: Two parameters L>1 and $\delta>0$
- Select arm 1 at time t=0, arm 2 at time t=1 and so on until arm K at time t=K-1
- For all t > K:
 - Maintain guess of odd arm:

$$\hat{\theta}(n) \in \arg\max_{h} \ \underbrace{\min_{h' \neq h} \ \log \frac{P_{h}(B_{0}, A_{0}, X_{0}^{A_{0}}, \dots, B_{n}, A_{n}, X_{n}^{A_{n}})}{P_{h'}(B_{0}, A_{0}, X_{0}^{A_{0}}, \dots, B_{n}, A_{n}, X_{n}^{A_{n}})}}_{M_{h}(n)}$$

- If $M_{\hat{\theta}(n)}(n) \geq \log((K-1)L)$, stop and declare $\hat{\theta}(n)$ is the odd arm
- If $M_{\hat{\theta}(n)}(n) < \log((K-1)L)$, select next arm according to the distribution $\lambda_{\hat{\theta}(n),\delta}(\cdot | \cdot)$

Achievability: Results

- Policy $\pi^*(L, \delta)$ stops in finite time w.p. 1
- If $L=1/\epsilon$, then $\pi^*(L,\delta)\in\Pi(\epsilon)$ for all $\delta>0$ (desired error probability)
- Upper bound: for $\pi = \pi^*(L, \delta)$,

$$\limsup_{L \to \infty} \ \frac{E_h[\tau(\pi)]}{\log L} \le \frac{1+\delta}{R^*(P_1, P_2)}$$

Achievability: Results

- Policy $\pi^*(L, \delta)$ stops in finite time w.p. 1
- If $L=1/\epsilon$, then $\pi^*(L,\delta)\in\Pi(\epsilon)$ for all $\delta>0$ (desired error probability)
- Upper bound: for $\pi = \pi^*(L, \delta)$,

$$\limsup_{L \to \infty} \frac{E_h[\tau(\pi)]}{\log L} \le \frac{1+\delta}{R^*(P_1, P_2)}$$

• Stitch together the solutions for various $\delta > 0$:

$$\limsup_{\delta \downarrow 0} \ \limsup_{L \to \infty} \ \frac{E_h[\tau(\pi)]}{\log L} \leq \frac{1}{R^*(P_1, P_2)}$$

Main Result

Main Result

Main Result

For the problem of odd arm identification with restless Markov arms in which h is the odd arm, P_1 is the TPM of arm h and P_2 is the common TPM of all arms other than h, where $P_2 \neq P_1$,

$$\lim_{\epsilon \downarrow 0} \quad \inf_{\pi \in \Pi(\epsilon)} \quad \frac{\mathbb{E}_h[\tau(\pi)]}{\log \frac{1}{\epsilon}} = \frac{1}{R^*(P_1, P_2)}.$$

The analysis crucially relies on $\eta > 0$.

The Case $\eta=0$

 \bullet Let $\Pi_{\rm SRS}^{\eta}$ be the set of all SRS policies with $\eta\text{-trembling}$ hand, i.e.,

$$\Pi_{\mathsf{SRS}}^{\eta} = \left\{ \frac{\eta}{\mathcal{K}} + (1 - \eta) \ \lambda(\cdot \mid \cdot) \right\}_{\lambda}$$

 \bullet Let $\Pi_{\rm SRS}^{\eta}$ be the set of all SRS policies with $\eta\text{-trembling}$ hand, i.e.,

$$\Pi_{\mathsf{SRS}}^{\eta} = \left\{ rac{\eta}{\mathcal{K}} + (1 - \eta) \; \lambda(\cdot \mid \cdot)
ight\}_{\lambda}$$

A Key Monotonicity Property

If
$$0<\eta'<\eta\leq 1$$
, then $\Pi_{\mathsf{SRS}}^{\eta}\subseteq \Pi_{\mathsf{SRS}}^{\eta'}.$

 \bullet Let $\Pi_{\rm SRS}^{\eta}$ be the set of all SRS policies with $\eta\text{-trembling hand, i.e.,}$

$$\Pi_{\mathsf{SRS}}^{\eta} = \left\{ rac{\eta}{\mathcal{K}} + (1 - \eta) \; \lambda(\cdot \mid \cdot)
ight\}_{\lambda}$$

A Key Monotonicity Property

If $0<\eta'<\eta\leq 1$, then $\Pi_{\mathsf{SRS}}^{\eta}\subseteq \Pi_{\mathsf{SRS}}^{\eta'}.$

ullet Relabel $R^*(P_1,P_2)$ from before as $R^*_\eta(P_1,P_2)$

• Let $\Pi_{\mathsf{SRS}}^{\eta}$ be the set of all SRS policies with $\eta\text{-trembling hand, i.e.,}$

$$\Pi_{\mathsf{SRS}}^{\eta} = \left\{ rac{\eta}{\mathcal{K}} + (1 - \eta) \; \lambda(\cdot \mid \cdot)
ight\}_{\lambda}$$

A Key Monotonicity Property

If $0<\eta'<\eta\leq 1$, then $\Pi^{\eta}_{\mathsf{SRS}}\subseteq\Pi^{\eta'}_{\mathsf{SRS}}.$

- ullet Relabel $R^*(P_1,P_2)$ from before as $R^*_{\eta}(P_1,P_2)$
- From the above monotonicity, it follows that $R_{\eta}^*(P_1,P_2)$ is non-decreasing in η

Gap or No Gap

Define

$$\Pi^0_{\mathsf{SRS}} = \Pi^{\eta=0}_{\mathsf{SRS}}, \qquad \qquad R^*_0(P_1, P_2) = R^*_{\eta=0}(P_1, P_2)$$

We then have

$$\lim_{\eta \downarrow 0} R_{\eta}^*(P_1, P_2) \le R_0^*(P_1, P_2)$$

Is the above inequality an equality? (right continuity at $\eta=0$)

Gap or No Gap

Define

$$\Pi^{0}_{\mathsf{SRS}} = \Pi^{\eta=0}_{\mathsf{SRS}}, \qquad R_{0}^{*}(P_{1}, P_{2}) = R_{\eta=0}^{*}(P_{1}, P_{2})$$

We then have

$$\lim_{\eta \downarrow 0} R_{\eta}^{*}(P_{1}, P_{2}) \leq R_{0}^{*}(P_{1}, P_{2})$$

Is the above inequality an equality? (right continuity at $\eta = 0$)

• Prior works = above inequality is an equality (Envelope theorem)

• $\nu_1=$ law of odd arm iid process, $\nu_2=$ law of each of the non-odd iid processes

- $\nu_1=$ law of odd arm iid process, $\nu_2=$ law of each of the non-odd iid processes
- Then, for all $i, j \in \mathcal{S}$ and $d \ge 1$,

$$(P_h^a)^d(j|i) = \nu_h^a(j)$$

- $\nu_1 =$ law of odd arm iid process, $\nu_2 =$ law of each of the non-odd iid processes
- Then, for all $i, j \in \mathcal{S}$ and $d \ge 1$,

$$(P_h^a)^d(j|i) = \nu_h^a(j)$$

$$\begin{split} &R_{\eta}^*(P_1,P_2) \\ &= \sup_{\pi^{\lambda} \in \Pi_{\text{SRS}}^{\eta}} \min_{h' \neq h} \sum_{a=1}^{K} \sum_{(\underline{d},\underline{i})} \mu^{\lambda}(\underline{d},\underline{i}) \left[\frac{\eta}{K} + (1-\eta) \lambda(a|\underline{d},\underline{i}) \right] D(\nu_h^a \| \nu_{h'}^a) \\ &= \sup_{\lambda \in \mathcal{P}(\mathcal{A})} \min_{h' \neq h} \underbrace{\frac{\eta}{K} \sum_{a=1}^{K} D(\nu_h^a \| \nu_{h'}^a) + (1-\eta) \sum_{a=1}^{K} \lambda(a) D(\nu_h^a \| \nu_{h'}^a)}_{\text{absolutely continuous for all } \eta \in [0,1] \end{split}$$

- $\nu_1 =$ law of odd arm iid process, $\nu_2 =$ law of each of the non-odd iid processes
- Then, for all $i, j \in \mathcal{S}$ and $d \ge 1$,

$$(P_h^a)^d(j|i) = \nu_h^a(j)$$

$$\begin{split} &R_{\eta}^{*}(P_{1}, P_{2}) \\ &= \sup_{\pi^{\lambda} \in \Pi_{SRS}^{\eta}} \min_{h' \neq h} \sum_{a=1}^{K} \sum_{\underline{(d,\underline{i})}} \mu^{\lambda}(\underline{d},\underline{i}) \left[\frac{\eta}{K} + (1-\eta) \lambda(a|\underline{d},\underline{i}) \right] D(\nu_{h}^{a} \| \nu_{h'}^{a}) \\ &= \sup_{\lambda \in \mathcal{P}(\mathcal{A})} \min_{h' \neq h} \underbrace{\frac{\eta}{K} \sum_{a=1}^{K} D(\nu_{h}^{a} \| \nu_{h'}^{a}) + (1-\eta) \sum_{a=1}^{K} \lambda(a) D(\nu_{h}^{a} \| \nu_{h'}^{a})}_{a} \end{split}$$

• Using Envelope theorem, $R_{\eta}^*(P_1, P_2)$ is absolutely continuous for all $\eta \in [0, 1]$

absolutely continuous for all $\eta \in [0,1]$

Lower Bound: Rested Markov Arms

ullet Delay of all arms $\equiv 1$ for all t

Lower Bound: Rested Markov Arms

• Delay of all arms $\equiv 1$ for all t

$$\begin{split} R_{\eta}^*(P_1, P_2) \\ &= \sup_{\pi^{\lambda} \in \Pi_{SRS}^{\eta}} \min_{h' \neq h} \sum_{a=1}^{K} \sum_{\underline{i}} \mu^{\lambda^{\eta}}(\underline{i}) \left[\frac{\eta}{K} + (1 - \eta) \lambda(a|\underline{i}) \right] D(P_h^a(\cdot|i_a) \| P_{h'}^a(\cdot|i_a)) \\ &= \sup_{\pi^{\lambda} \in \Pi_{SRS}^{\eta}} \min_{h' \neq h} \left\{ \frac{\eta}{K} \sum_{a=1}^{K} \sum_{\underline{i}} \mu^{\lambda}(\underline{i}) D(P_h^a(\cdot|i_a) \| P_{h'}^a(\cdot|i_a)) \\ &+ (1 - \eta) \sum_{a=1}^{K} \sum_{\underline{i}} \mu^{\lambda}(\underline{i}) \lambda(a \mid \underline{i}) D(P_h^a(\cdot|i_a) \| P_{h'}^a(\cdot|i_a)) \right\} \\ &= \sup_{\lambda \in \mathcal{P}(\mathcal{A})} \min_{h' \neq h} \left\{ \frac{\eta}{K} \sum_{a=1}^{K} D(P_h^a(\cdot|\cdot) \| P_{h'}^a(\cdot|\cdot) | \mu_h^a) \\ &+ (1 - \eta) \sum_{a=1}^{K} \lambda(a) D(P_h^a(\cdot|\cdot) \| P_{h'}^a(\cdot|\cdot) | \mu_h^a) \right\} \end{split}$$

 A first known asymptotic lower bound for the setting of restless Markov arms

- A first known asymptotic lower bound for the setting of restless Markov arms
- A sequence of policies that come arbitrarily close to the lower bound asymptotically

- A first known asymptotic lower bound for the setting of restless Markov arms
- A sequence of policies that come arbitrarily close to the lower bound asymptotically
- Lower bound generalises the results of prior works

- A first known asymptotic lower bound for the setting of restless Markov arms
- A sequence of policies that come arbitrarily close to the lower bound asymptotically
- Lower bound generalises the results of prior works
- Trembling hand crucial for analysis

- A first known asymptotic lower bound for the setting of restless Markov arms
- A sequence of policies that come arbitrarily close to the lower bound asymptotically
- Lower bound generalises the results of prior works
- Trembling hand crucial for analysis

Some future directions:

Without trembling hand, does Envelope theorem hold?

- A first known asymptotic lower bound for the setting of restless Markov arms
- A sequence of policies that come arbitrarily close to the lower bound asymptotically
- Lower bound generalises the results of prior works
- Trembling hand crucial for analysis

Some future directions:

- Without trembling hand, does Envelope theorem hold?
- The case when P_1 and P_2 are not known

- A first known asymptotic lower bound for the setting of restless Markov arms
- A sequence of policies that come arbitrarily close to the lower bound asymptotically
- Lower bound generalises the results of prior works
- Trembling hand crucial for analysis

Some future directions:

- Without trembling hand, does Envelope theorem hold?
- The case when P_1 and P_2 are not known

