

Université Libre de Bruxelles

Synthèse

Électricité appliquées ELEC-H-3001

Auteur:

Nicolas Englebert

Professeur:
Jean-Claude Maun

Année 2015 - 2016

Appel à contribution

Synthèse OpenSource

Ce document est grandement inspiré de l'excellent cours donné par Jean-Claude Maun à l'EPB (École Polytechnique de Bruxelles), faculté de l'ULB (Université Libre de Bruxelles). Il est écrit par les auteurs susnommés avec l'aide de tous les autres étudiants et votre aide est la bienvenue! En effet, il y a toujours moyen de

l'améliorer surtout que si le cours change, la synthèse doit être changée en conséquence. On peut retrouver le code source à l'adresse suivante

https://github.com/nenglebert/Syntheses

Pour contribuer à cette synthèse, il vous suffira de créer un compte sur *Github.com*. De légères modifications (petites coquilles, orthographe, ...) peuvent directement être faites sur le site! Vous avez vu une petite faute? Si oui, la corriger de cette façon ne prendra que quelques secondes, une bonne raison de le faire!

Pour de plus longues modifications, il est intéressant de disposer des fichiers : il vous faudra pour cela installer LATEX, mais aussi git. Si cela pose problème, nous sommes évidemment ouverts à des contributeurs envoyant leur changement par mail ou n'importe quel autre moyen.

Le lien donné ci-dessus contient aussi le README contient de plus amples informations, vous êtes invités à le lire si vous voulez faire avancer ce projet!

Licence Creative Commons

Le contenu de ce document est sous la licence Creative Commons : Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). Celle-ci vous autorise à l'exploiter pleinement, compte- tenu de trois choses :

- 1. Attribution; si vous utilisez/modifiez ce document vous devez signaler le(s) nom(s) de(s) auteur(s).
- 2. Non Commercial; interdiction de tirer un profit commercial de l'œuvre sans autorisation de l'auteur
- 3. Share alike; partage de l'œuvre, avec obligation de rediffuser selon la même licence ou une licence similaire

Si vous voulez en savoir plus sur cette licence :

http://creativecommons.org/licenses/by-nc-sa/4.0/

Merci!

Chapitre 1

Le triphasé

1.1 Notations - Conventions

1.1.1 Conventions

La convention r'ecepteur sera celle utilisée : la puissance sera positive lorsqu'elle sera absorbée par la machine. Pour une source de tension v, c'est le contraire : le courant - défini par les charges positives -sera dans le sens de la flèche.

L'astérisque marque ainsi la borne d'entrée d'un dipôle ou un cercle plein.

Dernière convention : la flèche de tension désigne la borne à laquelle il faut appliquer une tension positive pour faire circuler un courant positif.

Figure 1.1

1.1.2 Notations

a = a(t) : valeur instantanée

 $\underline{a}(t)$: valeur instantanée complexe; vecteur tournant dont la projection sur un axe de

référence fournit la valeur instantanée d'une grandeur sinusoïdale de pulsation ω ;

 $a(t) = \Re(\underline{a}(t))$

 $\underline{A} = A \angle \alpha$: nombre complexe de module A et d'argument α .

 A_M : valeur de crête ou maximale dans le temps : $A_M = a\sqrt{2}$

 \overline{A} : vecteur spatial de module A

 ${\cal A}^M$: valeur maximale d'une grandeur variant dans l'espace

 i_{ab} : courant circulant de A vers B $(A \to B)$ $v_{ba} = v_a - v_b$: potentiel de A par rapport à B $(B \to A)$

1.2 Rappel de quelques notions relatives aux courants alternatifs

1.2.1 Représentation des fonctions sinusoïdale du temps

Un telle grandeur, de pulsation ω est représentée par :

$$v = V_M \cos(\omega t + \xi_v)$$
 où V_M est la valeur de crete
= $V\sqrt{2}\cos(\omega t + \xi_v)$ où V est la valeur efficace (1.1)

Ceci peut s'écrire

$$v = \Re(V\sqrt{2}\cos(\omega t + \xi_v) + jV\sqrt{2}\sin(\omega t + \xi_v))$$

= $\Re(V\sqrt{2}e^{j(\omega t + \xi_v)})$ (1.2)

La valeur instantannée complexe \overline{v} est définie par

$$\overline{v} = V\sqrt{2}e^{j(\omega t + \xi_V)}
= Ve^{j\xi_V}\sqrt{2}e^{j\omega t}$$
(1.3)

où le **phaseur** V est

$$V = Ve^{j\xi_V} \tag{1.4}$$

Dans le plan de Gauss \overline{V} a un module valant la valeur efficace de la grandeur et un argument valant ξ_V , c'est un vecteur FIXE. La valeur instantanée complexe \underline{v} a un module $V\sqrt{2}$ et est décalée de $V\sqrt{2}$ par rapport à \overline{V} : c'est un vecteur TOURNANT (à

FIGURE 1.2

 ω). On obtient la valeur instantanée en projetant la valeur instantanée complexe sur l'axe réel : $v = \Re(v)$.

Les déphasages entre grandeurs sont constants : on considère comme référence un courant \underline{I} et on définit l'argument de la tension par rapport à celui-ci à l'aide de l'**angle de charge** φ .

Figure 1.3

Si l'on applique la tension $\underline{V} = V \angle \xi_V$ à une impédance $\underline{Z} = R + jX = Z \angle \xi$, le courant vaut

$$\underline{I} = \frac{V}{Z} = \frac{V}{Z} \angle \xi_V - \xi \tag{1.5}$$

On remarque avec l'argument du courant qu'une impédance inductive $(X > 0, \xi < 0)$ déphase le courant en arrière par rapport à la tension et l'inverse pour une impédance capacitive.

1.2.2 Représentation de la puissance

Puissance active

Cherchons à calculer la puissance de A vers B au point X. Nous avons $v = V_M \cos(\omega t + \xi_V)$ et $i = I_M \cos(\omega t + \xi_I)$. La valeur instantanée de la puissance vaut :

$$p = v i$$

$$= V_M I_M \cos(\omega t + \xi_V) \cos(\omega t + \xi_I)$$

$$= \frac{V_M I_M}{2} (\cos(\xi_V - \xi_I) + \cos(2\omega t + \xi_V + \xi_I))$$

$$= \underbrace{VI \cos \varphi}_{1} + \underbrace{VI \cos(2\omega t + \xi_V + \xi_I)}_{2}$$
(1.6)

Cette expression contient deux termes :

- 1. La puissance active, c'est la valeur moyenne de p.
- 2. Un terme pouvant causer des vibrations indésirables.

La puissance utile est celle correspondant à un travail effectué :

$$P = VI\cos\varphi \tag{1.7}$$

Puissance apparente

Par définition

$$\underline{S} \equiv \underline{VI^*}
= VI \angle \xi_V - \xi_I
= VI \angle \varphi$$
(1.8)

Si la tension est constante, la puissance apparente est proportionnelle au courant.

FIGURE 1.4

Puissance réactive

Dans l'expression $P = VI \cos \varphi = \Re(\underline{S})$, on définit la **puissance réactive** :

$$Q = VI\sin\varphi = \Im(\underline{S}) \tag{1.9}$$

tel que $\underline{S} = P + jQ$.

Si P > 0, Q > 0 si $\varphi > 0$ c'est à dire que la charge est inductive.

Si P > 0, Q < 0 si $\varphi < 0$ c'est à dire que la charge est capacitive.

La puissance réactive ne correspond à aucun travail effectif et est une notion difficile à saisir. Retenons juste que sa circulation amène des pertes et des chutes de tension. Cette puissance n'apparaît que si la charge est réactive, c'est-à-dire peut stocker de l'énergie ¹.

^{1.} Voir 1.2-14 du syllabus pour une image intuitive

1.3 Caractéristiques d'un système polyphasé

1.3.1 Modes de couplage des circuits polyphasés

Figure 1.5

Soit m sources électrique indépendantes S_1, S_2, \ldots, S_m dont les tensions ont la même valeur efficace et sont déphasé de $2\pi/m$: système m-phasé équilibre d'ordre direct:

$$\underline{E_i} = E_1 \langle -(i-1)\frac{2\pi}{m} \tag{1.10}$$

CONVENTION : la phase 2 est située en arrière de la phase 1 et la phase 3 en arrière de la phase 2 (en arrière signifie "[...] dans le temps").

Ci-dessus, un schéma de principe pour un tel système. Chacun des enroulements d'induit est raccordé par deux fils, il faudrait donc 2m conducteurs. Il existe deux moyens d'économiser le métal conducteur :

a. Couplage en étoile avec fil neutre

L'idée est d'utiliser un conducteur de retour commun à tous les circuits en réunissant les extrémités. On appelle O, le fil neutre parcouru par la somme des courants débités par toutes les sources. Nécessitant m+1 fil de ligne, il s'agit du couplage étoilé avec fil neutre.

La **tension simple** (ou de **phase**) d'un conducteur est la différence de potentiel entre le conducteur et le neutre. Par exemple : $\underline{V}_1 = \underline{V}_1 - \underline{V}_0$. La **tension composée** (ou **entre**

Figure 1.6

phases) est la différence de potentiel entre deux conducteurs. Par exemple : $\underline{U}_{12} = \underline{V}_2 - \underline{V}_1$.

b. Couplage en étoile sans fil neutre

Si toutes les impédances sont identiques, le circuit est équilibre et la somme des courants de ligne est nulle : $\sum_{i=1}^{m} i_i = 0$. Comme le neutre n'est plus parcouru, on peut le supprimer. Le point N', neutre, possède le même potentiel que le point N par symétrie : N est un point neutre artificiel. Cette installation comporte m fils.

Spoil : si les charges sont déséquilibrée on peut conserver ce montage mais la tension de $N' \neq N$. Cherchons maintenant les relations liant tension et phase.

Soit $\underline{V}_1, \underline{V}_2$ les tensions mesurées entre neutre de phase consécutives 1 et 2. Par

FIGURE 1.7

symétries, elle sont égales en tension efficace mais déphasées de $2\pi/m$ radians. Si $\underline{V_1}$ est la référence :

$$\begin{array}{ll} \underline{V_1} &= V \angle 0 \\ \underline{V_2} &= V \angle -\frac{2\pi}{m} \end{array} \tag{1.11}$$

Le phaseur de la tension mesurée entre les phases 1 et 2 s'écrit

$$\underline{U}_{12} = \underline{V}_2 - \underline{V}_1 \tag{1.12}$$

On voit que ²

La puissance transportée par une ligne équilibrée vaudra alors

$$P = \Re(m\underline{V}_1 I_1^* = mV_1 I_1 \cos \varphi \tag{1.14}$$

Si le point neutre n'est pas accessible, la seule tension mesurable est U_{12} . En remplaçant dans P, la valeur V_1 tirée de U_{12} :

$$P = \frac{m}{2\sin\frac{\pi}{m}} U_{12} I_1 \cos\varphi \tag{1.15}$$

 $\textbf{Attention}: \varphi$ est le déphasage entre tension simple et courant et rien d'autre!

c. Couplage en polygone

On peut connecter la sortir de chacune des phases du générateur à l'entrée de la phase contiguë et de même pour le récepteur. La somme des f.e.m. alternatives équilibrées engendrée dans les phases du générateurs étant nulles, on peut les connecter pour former un **polygone fermé** (le courant ne circulera pas). On aura pour ça besoin de m conducteurs distincts.

Figure 1.8

Soit \underline{I}_{12} et \underline{I}_{23} les courants qui circulent dans deux phases consécutives du générateur et \underline{I}_2 , le courant traversant la ligne commune. Par Kirchoff :

$$\underline{I}_2 = \underline{I}_{12} - \underline{I}_{23} \tag{1.16}$$

Or \underline{I}_{12} et \underline{I}_{23} sont égaux en grandeur et entre eux se trouve un angle de $2\pi/m$. Par les relations vectorielles :

$$\underline{I}_2 = \underline{I}_{12} \sin \frac{\pi}{m} e^{-j\left(\frac{\pi}{m} - \frac{\pi}{2}\right)} \tag{1.17}$$

d. Puissance électrique transportée par une ligne

Cette puissance s'exprime par

$$P = \Re\left(m\underline{U}_{12}\underline{I}_{12}^* = mU_{12}I_{12}\cos\varphi = \frac{m}{2\sin\frac{\pi}{m}}U_{12}I_1\cos\varphi\right)$$
(1.18)

La puissance transmise est bien indépendante du mode de couplage du générateur / récepteur.

1.3.2 Cas particulier de couplage : le système triphasé

Les trois tensions seront égales, mais décalées de $2\pi/3$. On pourra les exprimer :

$$e_A = E\sqrt{2}\cos(\omega t + \xi_V)$$

$$e_B = E\sqrt{2}\cos(\omega t + \xi_V - \frac{2\pi}{3})$$

$$e_C = E\sqrt{2}\cos(\omega t + \xi_V + \frac{2\pi}{3})$$
(1.19)

Définissions l'opérateur de déphasage $\underline{\alpha} = \angle \frac{2\pi}{3} = -\frac{1}{2} + j\frac{\sqrt{3}}{2}$ tel que $\underline{E_B} = \underline{\alpha}^2 \underline{E_A}$ et $\underline{E_C} = \underline{\alpha}\underline{E_A}$. Des relations intéressantes sont reprises en (1.3-19). Notons juste que la somme des courants est bien nulle : $1 + \alpha + \alpha^2 = 0$.

Couplage en étoile

On peut relier A', B', C' en un point neutre N et A, B, C sont les sorties de l'alternateur raccordé aux fils de lignes. Les tensions sont égales aux f.e.m. engendrées et sont dès lors également un système triphasé équilibre. Pour les tensions composées, on les obtient par composition vectorielle :

Figure 1.9

$$\underline{U}_{BA} = \underline{V}_A - \underline{V}_B = \underline{V}_A (1 - \underline{\alpha}^2) = \underline{V}_A \sqrt{3} \angle \frac{\pi}{6}
\underline{U}_{CB} = \underline{V}_B - \underline{V}_C = \underline{V}_A (\underline{\alpha}^2 - \underline{\alpha}) = \underline{V}_A \sqrt{3} \angle - \frac{\pi}{2}
\underline{U}_{AC} = \underline{V}_C - \underline{V}_A = \underline{V}_A (\underline{\alpha} - 1) = \underline{V}_A \sqrt{3} \angle \frac{5\pi}{6}$$
(1.20)

 $\Longrightarrow U = V\sqrt{3}$. La puissance est donnée par $P = 3VI\cos\varphi$.

Couplage en triangle

La borne C' de la phase C est reliée à la borne A de la phase A de la ligne :

$$\underline{U}_{BA} = \underline{E}_{A}, \quad \underline{U}_{CB} = \underline{E}_{B}, \quad \underline{U}_{AC} = \underline{E}_{C}.$$
 (1.21)

Le centre de gravité du triangle des tensions peut représenter le potentiel d'un neutre fictif N pour définir un système de tension simple. Pour les résultats, voir page 1.23.

Figure 1.10

1.3.3 Influence des harmoniques dans les circuits polyphasés

Les tensions ne sont pas toujours sinusoïdale. On peut décomposer une courbe périodique par une somme de sinusoïde. Ici, les fonctions du temps présentent deux alternances identiques, c'est à dire que superposable par retournement :

$$f(t + \frac{T}{2}) = -f(t) \tag{1.22}$$

Une fonction qui satisfait ceci n'a que des coefficients de Fourier impair dans son développement. Intéressons-nous au cas du triphasé.

Soit la f.e.m. e_A sous la forme d'une série de Fourier :

$$e_A = \sum_{i=1}^{\infty} A_i \cos(i\omega t + \xi_i)$$
(1.23)

avec i impair. Les f.e.m. développées par les phases e_B et e_C s' obtiennent en remplaçant ωt par $\omega t - 2\pi/3$ et $\omega t + 2\pi/3$.

Cas du couplage triangle et étoile vu en cours? Passé ici.

1.3.4 Mesure de la puissance dans les circuits polyphasés

Méthode des m wattmètres - Circuit sans fil neutre

Soit un circuit polyphasé à m phases sans fil neutre disposé en étoile au neutre accessible. Pour mesurer la puissance, on introduit dans chaque ligne un wattmètre (connecté entre la phase et le neutre). La puissance totale est alors la somme des m mesures. Si le système est équilibre, tous les wattmètre indiqueront la même puissance. La puissance débitée vaut alors

$$p = \sum_{j=1}^{m} W_j = \sum_{j=1}^{m} (v_j - v_n) i_j = \sum_{j=1}^{m} v_j i_j - v_n \sum_{j=1}^{m} i_j$$
 (1.24)

Si le neutre n'est pas connecté, la somme des courants est nulle et le potentiel de N peut être remplacé par celui d'un point quelconque. Les indications de chaque wattmètre seront modifiés, mais pas leur somme.

Figure 1.11

Méthode des m-1 wattmètres

Comme on peut choisir N' quelconque, portons le retour des Wattmètre sur la $m^{\grave{e}me}$ phase. Le wattmètre m ne sert plus à rien car la tension à ses bornes est annulée : il ne faut plus que m-1 wattmètres.

1.3.5 Facteur de puissance

Il faut avant tout un équilibre des phases et dans ce cas, ce facteur n'est autre que $\cos\varphi$ de l'un des circuit :

$$P_A = V_A I_A \cos \varphi \tag{1.25}$$

La puissance totale débitée vaut alors $P = mP_A$. Quand les phases sont équilibrés, on peut toujours écrire

$$P = \sum_{1}^{m} V_j I_j \cos \varphi_j \tag{1.26}$$

Comme φ_j peut être différent dans chacune des phases : on ne peut plus définir un $\cos \varphi$ global mais un facteur de puissance :

$$FP = \frac{P}{S} = \frac{P}{\sqrt{P^2 + Q^2}} \tag{1.27}$$

Notons que $\tan \varphi = \frac{Q}{P}$.

1.3.6 Mesure de la puissance dans les circuits triphasés

a. Circuit triphasé étoile avec fil neutre

Soit un alternateur triphasé connecté en étoile avec un neutre N débitant sur un circuit triphasé étoile ou triangle. Quel que soit le déséquilibre, la puissance sera donné par la somme des valeurs des trois wattmètres. Le facteur de puissance est alors le rapport entre la puissance totale mesurée et la puissance apparente donnée par

Figure 1.12

b. Circuit triphasé sans fil neutre

Cette fois-ci on n'a pas de neutre. On peut utiliser la méthode des trois wattmètres : la borne d'entrée de chaque wattmètre est connecté à chacun des fils de lignes et toutes les bornes de sorties sont connectées ensembles de façon à former un point neutre artificiel N'. Si les wattmètres sont identiques, alors N' = N. Sinon, le potentiel de N' est quelconque mais la puissance totale est la somme de tous les wattmètres. Si le circuit est équilibré, une seule mesure est suffisante.

Figure 1.13

MÉTHODE DES DEUX WATTMÈTRES

On insère les wattmètres en A et B et leur sortie, commune en C.

Si le circuit est parfaitement équilibré d'ordre direct, la tension de la phase C retarde de $2\pi/3$ sur celle de B qui elle même retarde de $2\pi/3$ sur celle de A. On a alors

$$\frac{V_A}{V_B} = V \angle 0
\underline{V_B} = V \angle -\frac{2\pi}{3}
\underline{V_C} = V \angle \frac{2\pi}{3}
\underline{I_A} = I \angle -\varphi
\underline{I_B} = I \angle -\varphi - \frac{2\pi}{3}
\underline{I_C} = I \angle -\varphi + \frac{2\pi}{3}
\underline{U_{CA}} = \underline{V_A} - \underline{V_C} = V \sqrt{3} \angle -\frac{\pi}{6}
\underline{U_{CB}} = \underline{V_B} - \underline{V_C} = V \sqrt{3} \angle -\frac{\pi}{2}$$
(1.28)

Figure 1.14

Les indications des deux wattmètres vaudront alors forcément

$$W_{1} = \Re(\underline{U}_{CA}\underline{I}_{A}^{*}) = UI\cos(-\frac{\pi}{6} + \varphi)$$

$$W_{2} = \Re(\underline{U}_{CB}\underline{I}_{B}^{*}) = UI\cos(-\frac{\pi}{2} + \varphi + \frac{2\pi}{3})$$

$$= UI\cos(\frac{\pi}{6} + \varphi)$$

$$(1.29)$$

La puissance totale vaut évidemment

$$P = W_1 + W_2 = \sqrt{3}UI\cos\varphi \tag{1.30}$$

Chapitre 2

Les machines électriques -Généralités

2.1 Introduction

2.1.1 Classification des machines électriques

Tout se base sur l'interaction des courants électriques et des champs magnétiques. On classes ces bèbètes en trois catégories :

- 1. Les machines génératrices. Elles se basent sur l'induction d'un courant électrique dans un circuit conducteur par **déplacement relatif** de celui-ci et d'un champ magnétique. La dynamo et l'alternateur sont de ce type.
- 2. Les moteurs électriques. Ils sont basés sur l'obtention d'un effort mécanique sur un circuit traversé pour un courant extérieur (pouvant donner lieux à un champ magnétique). Nous pouvons parler ici du moteur à courant continu ou alternatif.
- 3. Les machines transformatrices. Leur rôle est de modifier la grandeur des courants et tensions alternatifs. Le transformateur est le grand classique.

2.1.2 Intérêt des moteurs électriques

Ceux-ci ont pas mal d'avantages sur les moteurs thermiques : moins polluants, bruyants, démarrent seuls, facilité d'emploi, régularité du couple utile, possibilité de l'inversion du sens de rotation, fort couple vitesse à faible vitesse et même à l'arrêt, ...Le dernier point est très important car cela les affranchis, par exemple, de boîte à vitesses. En effet, les moteurs thermiques ne disposent pas de cette jouissante propriété et possèdent tout un dispositif mécanique à engrenages, dissipant de l'énergie.

2.1.3 Le moteur asynchrone

C'est le moteur le plus utilisé. Il fonctionne directement en tension alternative. Celle-ci génère un courant circulant dans le stator constituant la seule source externe de champ magnétique, le rotor n'a pas à être relié à une source d'énergie. Cependant, il existe des courants rotorique mais ceux-ci sont **induits**: on parle parfois de **moteur d'induction**. Ce moteur équipe la quasi totalité des machines-outils classique (tours, fraiseuses, ...)

2.1.4 Le moteur synchrone

Afin de les utiliser, il faut d'abord les faire "roter" à leur vitesse nominale avant de les couplé au réseau, nécessitant un moteur auxiliaire. La seule différence avec le moteur asynchrone se situe dans la conception du rotor. Ce-dernier est constitué d'aimants (ou alimenté en courant continu). Après le démarrage, le moteur tourne en synchronisme avec le champ tournant. Ces moteurs ne dépendent donc que du réseau qui les alimente et sont ainsi utilisés lorsqu'une rotation uniforme est primordiale. ¹

2.1.5 Les moteurs à courant continu

Ils sont les champions dans les très faibles puissances (jouets, essuie-glaces...). Leur atout majeur est de posséder une remarquable capacité de variation de vitesse. Ils jouent un rôle important dans la traction électrique, utilisé en tant que moteurs "série".

2.1.6 Les autres types de machines électriques

LES MOTEURS UNIVERSELS

On les trouve dans les robots ménager, ventilateurs, ...C'est le moteur de la vie domestique. Leur vitesse chute rapidement lorsqu'un couple trop important leur est demandé.

LES MOTEURS PAS À PAS

Utilisés dans les dispositifs à positionnement précis et ont l'avantage d'être très simple à la conception.

2.1.7 Associations moteurs - électronique

Les moteurs à faible puissance, ou les synchrones auto-pilotés pour les fortes sont souvent associés à des équipement électroniques.

2.2 Méthodes d'étude des machines électriques

2.2.1 Généralités

Pour étudier les machines, deux méthodes s'offrent à nous :

- 1. La méthode de Kirchhoff. On écrit les équations des circuits, la conservation et l'énergie et on déduit le reste. Le dispositif décrit par les équations se présente comme une boite noire s'incluant dans une chaîne de régulation. C'est l'optique de l' automaticien.
- 2. La méthode de Maxwell. On part des grandeurs physiques et on calcule le reste. C'est l'optique du constructeur.

Si l'on se base sur le critère de l'utilité pratique, en Belgique, il est plus intéressant de choisir la méthode de Kirchhoff. D'un point de vue formation, cette méthode est également plus "simple" (car systématique). La préférence va ainsi pour Kirchhoff, mais n'oublions pas pour autant la seconde!

^{1.} Différence à plus expliciter plz

2.2.2 Choix du phénomène physique exploité

On peut concevoir des moteurs capacitifs (loi de Coulomb) ou inductif (Laplace). Quasi tous les moteurs sont de type inductif car la densité d'énergie potentielle magnétique $(1/2B^2/\mu_0)$ est 10,000 fois supérieure à la densité d'énergie potentielle électrique $(1/2\epsilon_0 E^2)$.

Le dispositif magnétique le plus simple est l'électro-aimant dont la force est donné par $f_{em} = \frac{1}{2}i^2\frac{dL(x)}{dx}$.

2.3 Rappel des lois de l'électromagnétisme

2.3.1 Loi de la force magnétomotrice (f.m.m.)

Elle intervient dans le calcul des ampère-tours nécessaire pour magnétiqer un circuit magnétique. Sous sa forme locale

$$rot \vec{H} = \vec{J_t} \tag{2.1}$$

où \vec{H} est le champ magnétique local et $\vec{J_t}$ la densité de courant. On peut également exprimer cette loi

$$\mathcal{F} = \oint \vec{H} \cdot d\vec{l} = \sum i \tag{2.2}$$

où \mathcal{F} est la force électromotrice le long d'un contour fermé embrassant un faisceau de conducteurs parcourus par des courants i.

2.3.2 Loi de Maxwell

Elle exprime la force électromotrice induite dans un circuit. Sous sa forme locale

$$rot \vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{2.3}$$

Sous sa forme intégrale

$$e = ri = \oint \vec{E}.\vec{dl} = -\frac{d\Phi}{dt} \tag{2.4}$$

La f.e.m. induite e fait alors circuler un courant i. Un accroissement du flux fait ainsi circuler un courant négatif². Si le circuit est fixe et l'induction variable on parle de f.e.m. **induite**. Si le circuit est mobile, on dira **engendrée**. Dans ce dernier cas, on écrit alors la loi sous la forme

$$de = -[\vec{B} \times \vec{v}] \cdot \vec{dl}$$
 (2.5)

où \vec{v} est la vitesse relative par rapport à un champ d'induction \vec{B} d'un élément de longueur \vec{dl} du circuit électrique considéré.

EXEMPLE. Soit un conducteur linéaire de longueur l se déplaçant à vitesse constante \vec{v} dans un champ d'induction \vec{B} . Celle loi devient

$$e = -[\vec{B} \times \vec{v}] \cdot \vec{l} \tag{2.6}$$

Si le déplacement se fait normalement à son axe et à la direction du champ (en valeur absolue) : e = Blv.

2.3.3 Loi de Laplace

Elle donne l'expression de la force sur un conducteur parcouru par un courant plongé dans un champ d'induction \vec{B} .

^{2.} Trigonométrique

2.4 Principes de fonctionnement des machines électriques

2.4.1 Éléments constitutifs des machines électriques

Quasi toutes contiennent un élément fixe dénommé **stator** et un organe mobile, le **rotor**, séparés par un entrefer. L'**inducteur** est l'organe destiner à créer le flux magnétique, ou par des aimants permanents ou par des courants électriques.

2.4.2 Machines hétéropolaires

Principes de fonctionnement

Hétéropolaire signifie que \vec{B} n'a pas le même signe partout dans l'entrefer. Considérons le dispositif suivant, constitué d'un stator métallique portant un circuit inducteur de N_S spires parcourues par un courant continu i_s et un rotor lisse composé de la spire 11' constituée de deux conducteurs diamétralement opposés. Les bornes 1 et 1' sont connectées à de disques conducteurs.

MÉTHODE DES CHAMPS

Considérons $i_r=0$. On suppose le fer parfait, de perméabilité infinie impliquant que tous les ampère-tours se concentrent dans l'entrefer³. En considérant un contour fermé traversant l'entrefer

$$N_S i_S = 2H\delta(\beta) \tag{2.7}$$

où $\delta(\beta)$ est la largeur de l'entrefer. On a donc

$$B(\beta) = \mu_0 H = \mu_0 \frac{N_S I_S}{2\delta(\beta)} \tag{2.8}$$

Si le rotor tourne à vitesse Ω_r constante, il apparaît une f.e.m. aux bornes du conducteur valant

$$e_1 = Blv = B(\beta)lR\Omega_r \tag{2.9}$$

où R est le rayon du rotor. Comme $e_{1'}=-e_1$, on a

$$e_r = e_1 - e_{1'} = 2lRB(\beta)\Omega_r \tag{2.10}$$

On retrouvera cette relation pour tous les types de machines : la f.e.m. engendrée est \propto flux*vitesse : $e_r = c^{te}B(\Omega_r t)$ où $e_r(t)$ est une fonction périodique qui reproduit dans le temps la répartition spatiale de l'induction.

Notons que pour éviter les problèmes de glissements, on peut échanger les emplacement de l'inducteur et de l'induit avec un structure à pôles lisses ou saillants.

MÉTHODE DES CIRCUITS

Vu en cours?

Spire non diamétrale

Si 1' est décalé de θ_1 par rapport à 1" d'une spire diamétrale, la connexion d'extrémité est plus courte (bien) mais la tension à ses bornes est plus faible (bof).

^{3.} En effet, $H_{fer}=B/\mu$ où $\mu=\infty.$ On peut donc négliger le champ dans le fer.

Enroulement

D'un point de vue économique, il est préférable de considérer plusieurs spires. Soit 22', une spire décalée de θ_1 par rapport à 11'; le phaseur à ses bornes est lui aussi déphasé de θ_1 :

$$E_{2'2} = E_{1'1}e^{j\theta_1} (2.11)$$

Attention! On peut mettre ces deux spires en série, mais pas en parallèle ⁴.

On peut ajouter m spires sur un arc θ_m du rotor. Néanmoins, il n'est pas économique de dépasser $\theta_m = \pi/3$, l'accroissement de tension étant faible. Pour $\theta_m = \pi/3$, le rotor peut accueillir trois enroulements indépendants aux bornes desquels on peut obtenir une f.e.m. d'amplitudes égale, mais décalée de $2\pi/3$: c'est le système **triphasé équilibré**. Une telle machine a la particularité de posséder l'induit sur le stator. Il s'agit d'une machine synchrone à rotor lisse à une paire de pôles (non-étudié ici).

Au premier chapitre, nous avons vu comment connecter les enroulements pour garantir une distribution économique de l'énergie. Si des impédances égales sont branchées sur les enroulements, le système est triphasé équilibré : un moteur synchrone connecté à ce réseau entraînera une vitesse constante.

Machine à courant continu

Les extrémité de la spire sont connectées à un secteur conducteur tournant, isolé du précédent. Sur ces secteurs appelés lames de collecteur reposent deux balais fixes diamétralement opposés. La commutation est le passage d'un valai d'un secteur à un autre. En bref, si un conducteur en forme de spire, parcouru par un courant, est placé dans un champ magnétique, il est soumis à des forces de Laplace. Ces forces créent un couple de rotation qui fait tourner la spire sur son axe. Quand la spire a fait un demi tour, il faut inverser la polarité pour inverser le sens des forces et continuer le mouvement. ce sera le rôle du collecteur.

Machine à plusieurs paire de pôles

Simple généralisation : la période d'induction n'est plus de 2π mais de $2\pi/p$.

2.5 Composants des machines électriques

Pour canaliser le champ magnétique on utilise du fer : on forme un circuit magnétique, généralement en cuivre. Pour séparer les composants, un isolant est utilisé. Comme ça chauffe, il sera nécessaire de refroidir toute machine électrique.

2.5.1 Circuit magnétique

Son rôle est de conduire le flux qui devra agir sur les courants circulant dans le circuit électrique placé au milieu de l'entrefer. Ce circuit est constitué d'un solide de forte perméabilité magnétique forçant ⁵ le trajet des lignes de champs d'où le nom *circuit magnétique* par analogie à l'électrique.

MATÉRIAUX UTILISÉS

L'acier, la fonte, le fer, ...Le plus important et ce peu importe le matériau est la loi qui lie

^{4.} Pq?

^{5.} Une partie parvient tout de même à s'échapper : le flux de dispersion magnétique.

l'induction au champ magnétique. Ce n'est pas quelque chose de linéaire : la perméabilité d'un matériau varie en fonction du champ qui lui est appliqué. Pour représenter ça, on regarde les courbes de magnétisation.

2.5.2 Circuit électrique

RAPPEL. L'inducteur est chargé de créer le flux utile et l'induit les f.e.m. ⁶

Disposition des enroulements

Inducteur

Il peut être situé au rotor. On utilise des aimants permanents pour les petites puissances.

Induit

Les conducteurs sont généralement isolés entre eux. On utilise souvent un bobinage.

Groupement des conducteurs

L'association des conducteurs d'une machine est le **bobinage**.

Conducteurs. On peut utiliser un conducteur (massif ou creux) pour véhiculer un courant I.

Spire. Constituée de deux conducteurs

Bobine. Lorsqu'il y a plusieurs conducteurs par encoche.

Phase. Un groupe de bobines associées en série ou en parallèle.

Pertes joules dans les conducteurs

Étudions la densité de courant dans un conducteur d'encoche. Les courants circulants engendrent des pertes $(P_J = RI^2 \text{ où } R = \rho l/S \text{ en continu})$. Si le conducteur est massif, en continu, la densité de courant J = I/S est constante. Démontrons par l'absurde que ce n'est pas le cas en alternatif.

Soit un conducteur massif dans une encoche et supposons J = cste:

$$H(x)d + 0 = \int_{0}^{x} Jedx$$

$$\Leftrightarrow H(x) = \frac{Je}{d}x$$
(2.12)

où H varie linéairement avec x. Le flux embrassé par le circuit constitué par cette partie du conducteur et le retour à l'infini vaut, par unité de longueur :

$$\frac{\Delta\phi(x)}{\Delta l} = \operatorname{cste} - \int_0^x B(x) dx$$

$$= \operatorname{cste} - \mu_0 \int_0^x H(x) dx$$

$$= \operatorname{cste} - \frac{\mu_0 Je}{d} \frac{x^2}{2}$$
(2.13)

La chute de tension inductive par unité de longueur du conducteur dépend de la position du filet de courant (et de la fréquence) : il n'est pas correct de supposer J = cste : la densité de

^{6.} Wiki : L'inducteur est un organe électrotechnique, généralement un électroaimant, ayant comme fonction d'induire un champ électromagnétique dans un induit servant à chauffer toutes sortes de conducteurs comme des métaux de toutes sortes.

flux est plus importante à la "surface".

La fréquence augmente également les pertes (résistance plus importante). On peut utiliser des barre de Roebel obligeant le courant à passer à la surface et en profondeur de l'encoche pour contrer au maximum cet effet.

2.5.3 Isolation des machines

Loi de Montsinger - Vieillissement des isolants

La température déteriore la qualité de l'isolant. Une loi expérimentale décrit cet effet

$$t = ab^{-\theta} (2.14)$$

où t est la durée de vie, a,b des constantes pour un isolant donné et θ la température. On peut l'écrire :

$$\log t = \log a - \theta \log b \tag{2.15}$$

où log t est une fonction linéaire de θ . Ainsi, élever la température de 6 à 10° réduit la durée de vie de moitié!

2.5.4 Refroidissement

Agents de refroidissement

Le plus courant est d'utiliser l'air, un ventilateur. Des ventilations intérieures ou extérieure (enceinte close) pour un atmosphère fort pollués existent également. L'hydrogène peut également refroidir en le faisant circuler dans les conducteurs. Les diélectriques liquides sont également une option.

2.6 Grandeurs caractéristiques des machines électriques

2.6.1 Grandeurs nominales

Une grandeur physique est dite *nominale* lorsque l'appareil peut fonctionner indéfiniment à celle-ci sans subir d'usure (avec un coefficient de sécurité).

La puissance nominale est plus subtile, il faut savoir de quoi on parle :

- C'est la puissance électrique développable (en kW) à ses bornes si on parle d'une génératrice à courant continu.
- Pour un alternateur, c'est la puissance électrique apparente développable (en kVA)
- Pour un moteur, cil s'agit de la puissance mécanique disponible (en kW)

2.6.2 Rendements des machines

Par définition, on défini le rendement

$$\eta = \frac{P_u}{P_a} \tag{2.16}$$

où P_u est la puis sance utile à la sortie et P_a la puis sance absorbée. On peut écrire cette formule

$$\eta = \frac{P_u}{P_a} = \frac{P_a - p}{P_a} = \frac{P_u}{P_u + p} \tag{2.17}$$

où p est la perte. Celles-ci ont un terme fixe et un terme variable avec la puissance apparente S. On utilisera la dernière égalité, plus précise ⁷. Les pertes peuvent être mécaniques, due aux

^{7.} Pour les machines génératrices, P_a est mécanique et P_u électrique. C'est l'inverse pour une machine motrice

fer, ...

Pour le cuivre, les pertes sont variable en fonction de $I: P_{p,Cu}=3RI^2$. Comme la tension est supposée constante : $P_{p,Cu}=kV^2I^2=kS^2$. Les pertes totales s'expriment ainsi de la forme $p=a+bS^2$ et, par exemple, on peut écrire l'expression du rendement : ⁸

$$\eta = \frac{P_a - p}{P_a} = \frac{S\cos\varphi - a - bS^2}{S\cos\varphi}$$
 (2.18)

La valeur maximale du rendement est donnée par

$$\frac{d\eta}{dS} = 0 \qquad \Leftrightarrow \qquad S = \sqrt{\frac{a}{b}} \tag{2.19}$$

La forme de la courbe rendement souhaitée dépend de ce que l'on veut faire.

Pour mesurer le rendement, il est plus intéressant de mesurer les pertes que de mesurer la puissance électrique et mécanique. On peut le faire en mesurant l'échauffement ou en mesurer chaque perte une à une, par essai.

2.6.3 Caractéristiques des machines tournantes

A lire

GÉNÉRATRICE

A lire

Chapitre 3

Inductances et transformateurs

3.1 Tensions appliquées et induites

Si un circuit circulaire fermé est traversé par un flux variant, une f.e.m. induite se créera dans le même sens que le courant i qu'elle génère : $e=-\frac{d\phi}{dt}$. Par la convention récepteur, la tension qui équilibre cette force doit avoir un sens opposé au courant. On a donc

$$v = Ri - e$$

$$= Ri + \frac{d\phi}{dt}$$
(3.1)

On considérera que e est définie dans le même sens que v (on la voit comme une tension appliquée).

3.2 Le transformateur idéal

Soit l'illustration ci-dessus avec N_1 et N_2 spires à gauche et à droite. Supposons que la résistivité du fer soit nulle : tout le flux va passer dans le fer et le flux perçu par les deux bobines sera identique. On définit alors le **flux totalisé** Ψ :

$$\Psi = N\phi \tag{3.2}$$

où ϕ est le flux d'une spire. La loi de Maxwell devient $v=\frac{d\Psi}{dt}=N\frac{d\phi}{dt}$. Comme le flux est le même dans les deux enroulements

$$\frac{\Psi_1}{\Psi_2} = \frac{N_1}{N_2}, \qquad \frac{v_1}{v_2} = \frac{N_1}{N_2} = \mu.$$
 (3.3)

où μ est le rapport théorique des tensions. La loi des f.m.m donne

$$N_1 i_1 + N_2 i_2 = \underbrace{\oint_{l} \vec{H} \cdot d\vec{l}}_{=0 \Leftrightarrow \mu_{Fe} = \infty}$$

$$(3.4)$$

On sait que $\mu_0 \ll \mu_{Fe}$. Poussons le bouchon un peu plus loin : $\mu_{Fe} = \infty$. Imposer v_1 au montage donne un champ d'induction fini, mais un champ magnétique tendant vers 0 : dans un fer parfait, il faut une très petite force magnétomotrice $(\sum i)$ pour faire circuler un flux. On a alors

$$\frac{i_1}{i_2} = -\frac{N_2}{N_1} = -\frac{1}{\mu} \tag{3.5}$$

Ceci décrit le transformateur idéal.

3.3 Inductances

3.3.1 Inductances monophasées dans l'air

Cas d'une seule spire

La flux passant à travers une spire est donné par $\phi=LI$ où L est l'inductance du circuit. Exemple : calcul de L. Si la spire est constituée de deux conducteurs infini de rayon a, distant de d, véhiculant un courant i, le flux s'écrit

$$\phi = \frac{\mu_0}{2\pi} \int_a^{d-a} \left(\frac{1}{x} + \frac{1}{d-x} \right) i \, dx = \frac{\mu_0}{\pi} \ln \frac{d-a}{a} i$$
 (3.6)

L'inductance par unité de longueur vaut alors

$$l = \frac{\mu_0}{\pi} \ln \frac{d - a}{a} \approx \frac{\mu_0}{\pi} \ln \frac{d}{a}$$
 (3.7)

Cas de plusieurs spires - Notions de flux totalisé

La généralisation à N spires est immédiate : $\Psi = N\phi$ où ϕ est le flux d'une seule spire. Maxwell se généralise de la même façon :

$$v = \frac{d\Psi}{dt} = N \frac{d\phi}{dt} \tag{3.8}$$

Le milieu restant linéaire $\Psi = Li$. Grâce aux notions du circuit magnétique et à la relation des Ampère-tours, on peut écrire $Ni = \Re \phi$ où \Re est la **réluctance** du circuit d'induction. La valeur de l' inductance se calcule alors

$$L = \frac{\Psi}{i} = N\frac{\phi}{u} = \frac{N^2}{\Re} = N^2 \mathcal{P} \tag{3.9}$$

où \mathcal{P} est la perméance du circuit.

Attention cependant : si les spires ne sont pas confondues la relation $\Psi = N\phi$ n'est **plus** valable! En effet, le flux ne sera pas le même pour chaque spire : on appelle flux de dispersion le flux non-commun. Bonne nouvelle : on est encore dans une phase linéaire : $\Psi = Li$ reste valable.

3.3.2 Inductances monophasées à noyau magnétique

Flux et inductance

Soit circuit magnétique fermé de longueur l et de section constante S, constitué de N spires. On suppose que le flux reste entièrement canalisé dans le fer 1 de sorte que $\Psi = N\phi$ reste valable. Le souci vient de l'imperfectibilité du fer : le relation entre Ψ et i n'est plus linéaire : $\Psi = N\phi = BNS$ et i = Hl/N. Cette dernière relation est obtenue par la courbe d'hystérèse magnétique qui n'est ni linéaire, ni univoque.

Appliquons une tension sinusoïdale $v=V_M\cos\omega t=V\sqrt{2}\cos\omega t$ à l'enroulement. Le flux résultat sera sinusoïdal car $v=d\psi/dt$. En première approximation, notre tension vaut (toujours vrai :)

$$v = Ri + \frac{d\Psi}{dt} \tag{3.10}$$

^{1.} Très bonne approximation

Si la résistance est non-nulle, il faut résoudre un système à deux inconnues (dont une équation est donnée par le cycle d'hystérèse, Oh joie), la présence de i compliquant l'ED. Par contre, si R=0:

$$\phi = \frac{\Psi}{N} = \frac{1}{N} \int_0^t v \, dt + \text{cste}$$
 (3.11)

ce qui vaut $^2 \phi = \frac{V_M}{N\omega} \cos{(\omega t - \frac{\pi}{2})}$. Le phaseur $\underline{\phi}$ est déphasé de $-\frac{\pi}{2}$ par rapport à \underline{V} . Comme $V_M = N\omega\phi_M$:

$$\phi_M: \frac{\sqrt{2}}{2\pi f N} V \tag{3.12}$$

Si la tension appliquée est sinusoïdale, la tension et donc l'induction le sera également, mais le courant absorbé par la bobine ne l'est pas.

Courant absorbé

Sur le schéma ci-contre 4 , i_m est le courant obtenu en ne considérant que la courbe d'aimantation moyenne auquel il faut ajouter i_{pH} , le courant de pertes hystérétiques pour donner le courant total i.

Pertes hystérétiques et par courants de Foucault

Si on place i_{pH} sur un phrase, on va remarquer que sa courbe est en phase sur celle de la tension : on va pouvoir le modéliser par une résistance.

Schéma équivalent

Le courant absorbé par la bobine est composé d'un courant magnétisant I_m et un courant de pertes par hystérèse et par Foucault I_p . On a vu que les pertes $\propto V^2$ et qu'elles peuvent être représentées par une résistance R_p de sort que

$$\underline{V} = R_p I_p \tag{3.13}$$

Le courant magnétisant n'est pas sinusoïdal mais on peut définir un courant magnétisant sinusoïdal équivalent déphasé de $\pi/2$ sur la tension et dont la valeur efficace vaut

$$I_m = \sqrt{I_v^2 - I_p^2} (3.14)$$

où $I_V = \sqrt{I_1^2 + I_3^2 + I_5^2 + \dots}$. Dans cette expression, I_j est la valeur efficace de l'harmonique j du courant. Il est en effet habituel de définir un courant sinusoïdal équivalent de même valeur efficace que le courant $i: I_V = I$.

Pour le fun, on peut définir une réactance de magnétisation $X_m : \underline{V} = jX_m\underline{I}_m$, réactance qui dépend de l'état de magnétisation du circuit. Ces constatations nous donnent le schéma équivalent suivant :

Photoooo

^{2.} Q : supposez qu'on ai une bobine comme ça et que l'on met 12V. Si le courant est alternatif c'est un courant alternatif. Représentez le ? Si on met du ctn, on détruit la bobine (ça fume, savoir expliqué).

^{3. ??}

^{4.} Ajouter des explications

3.3.3 Inductance à circuit magnétique à entrefer

La réluctance d'un tube de flux d'air d'1mm est équivalent à la réluctance d'un tube de flux de 5000mm d'épaisseur dans le fer : l' inductance est essentiellement déterminée par l'entrefer : on peut le voir comme un blindage magnétique.

3.3.4 Phénomènes transitoire de mise sous tension d'une bobine de fer

Si on applique brusquement en t=0 la tension $v=V\sqrt{2}\cos(\omega t+\xi_V)$ aux bornes d'une bobine idéale, le flux vaut ⁵ (si l'on néglige le rémanent)

$$\phi = \int_0^t \frac{V\sqrt{2}}{N} \cos(\omega t + \xi_V) dt$$

= $\frac{V\sqrt{2}}{\omega N} \left[\cos(\omega t + \xi_V - \frac{\pi}{2} - \cos(\xi_V - \frac{\pi}{2})\right]$ (3.15)

En tenant compte des résistances/pertes, le flux rejoint progressivement sa valeur de régime sinusoïdal, de même pour le courant. Si l'enclenchement se fait quand la tension est maximale $(\xi_V = 0$ -, le flux est directement en régime

$$\phi = \frac{V\sqrt{2}}{\omega N}\cos\left(\omega t - \frac{\pi}{2}\right) \tag{3.16}$$

Mais si on enclenche quand la tension est nulle $(xi_v = -\frac{\pi}{2})$:

$$\phi = \frac{V\sqrt{2}}{\omega N} [1 - \cos \omega t] \tag{3.17}$$

ce qui montre que le flux atteint deux fois la valeur de régime : le fer peut se saturer.

3.4 Transformateurs monophasés

3.4.1 Bobines à spires confondues, couplées dans l'air

Introduction

Soit deux bobines de N_1 et N_2 spires. Le point • marque la borne d'entrée afin d'avoir une mutuelle positive. Comme le système est linéaire

$$\Psi_1 = L_1 i_1 + M i_2
\Psi_2 = M i_1 + L_2 i_2$$
(3.18)

En utilisant notre fameuse formule toujours vraie

$$v_1 = R_1 i_1 + \frac{d\Psi_1}{dt} = R_1 i_1 + L_1 \frac{di_1}{dt} + M \frac{di_2}{dt}$$

$$v_Z = R_2 i_2 + \frac{d\Psi_2}{dt} = R_2 i_2 + M \frac{di_1}{dt} + L_2 \frac{di_2}{dt}$$
(3.19)

Ou encore

$$v_1 = R_1 i_1 + (L_1 - M) \frac{di_1}{dt} + M \frac{d(i_1 + i_2)}{dt}$$

$$v_1 = R_2 i_2 + (L_2 - M) \frac{di_2}{dt} + M \frac{d(i_1 + i_2)}{dt}$$
(3.20)

Cette équation peut directement être déduit du schéma suivant. Hélas, on n'utilisera pas ce schéma car il peut conduire à des L < 0.

^{5.} Par intégration de $v = N \frac{d\phi}{dt}$.

Coefficients de couplage et de dispersion

Si i_1 (et $i_2 = 0$) parcoure la bobine 1, le flux se décompose en deux :

- 1. $\phi_{21}|_{i_2=0}$ est créée par 1 et coupée par 2
- 2. $\phi_{d1}|_{i_2=0}$ est créé par 1, mais ne coupe par 2 : c'est le flux de dispersion

Par définition, le coefficient de couplage k_1 est la fraction de flux créer par une bobine qui atteint une autre :

$$k_1 = \frac{\phi_{21}|_{i_2=0}}{\phi_1|_{i_2=0}} \tag{3.21}$$

où k < 1 sauf si les bobines sont confondues (k = 1).

Reprenons nos équations fétiches:

$$\Psi_1|_{i_2=0} = N_1\phi_1|_{i_2=0} = L_1i_1
\Psi_2|_{i_2=0} = N_2\phi_{21}|_{i_2=0} = N_2k_1\phi_1|_{i_2=0} = Mi_1$$
(3.22)

En effectuant le rapport

$$M = \frac{N_2}{N_1} k_1 L_1$$
 ou $k_1 = \frac{N_1}{N_2} \frac{M}{L_1}$ (3.23)

Si $i_1=0$, un raisonnement nous permet à partir de

$$k_2 = \frac{(\phi_{12})_{i_1=0}}{(\phi_2)_{i_1=0}} \tag{3.24}$$

d'obtenir

$$M = \frac{N_1}{N_2} k_2 L_2$$
 ou $k_1 = \frac{N_2}{N_1} \frac{M}{L_2}$ (3.25)

Par définition, le couplage des deux bobines vaut

$$k = \sqrt{k_1 k_2} = \frac{M}{\sqrt{L_1 L_2}} \tag{3.26}$$

Dans l'air, k < 0.5. Par contre dans le fer $k \approx 0.998$.

Le coefficient de Blondel est le rapport entre le flux de dispersion et le flux total

$$\sigma_1 = \frac{(\phi_{dl})_{i_2=0}}{(\phi_1)_{i_2=0}} = 1 - k_1 \tag{3.27}$$

Couplage parfait

Comme on l'a dit : $k_1 = k_2 \Rightarrow \phi_1 = \phi_2$. On est dans le cas du transformateur parfait (voir plus haut)

Schéma équivalent

Si $k_1 > \frac{N_1}{N_2} \to M > L$ et une inductance négative serait introduite : pas top, il va falloir procéder autrement. Remarquons que le flux coupé par 1 est la somme des flux qu'il crée lui même et d'une fraction du flux créé par 2 :

$$\Psi_1 = N_1(\phi_1)_{i_2=0} + N_1(\phi_{12})_{i_1=0} \tag{3.28}$$

On peut décomposer $(\phi_1)_{i_2=0}$ en un flux de dispersion et un flux coupé par l'enroulement 2. Le flux commun est le flux coupé par les deux enroulements :

$$\phi_C = (\phi_{21})_{i_2=0} + (\phi_{12})_{i_1=0} \tag{3.29}$$

On peut alors réécrire Ψ_1 :

$$\Psi_1 = N_1(\phi_{dl})_{i_2=0} + N_1 \phi_C \tag{3.30}$$

Reprenons la première équation de la section : $\Psi_1 = L_1 i_1 + M i_2$ et décomposons le premier terme du second membre en ⁶

- Flux de dispersion : $N_1(\phi_{dl})_{i_2=0} = (1-k_1)L_1i_i$.
- Flux commun: $N_1(\phi_{21})_{i_2=0} = k_1 L_1 i_1$.

Cette relation devient ainsi (après quelques transformations)

$$\Psi_{1} = (1 - k_{1})L_{1}i_{1} + (k_{1}L_{1}i_{1} + Mi_{2})
= N_{1}(\phi_{dl})_{i_{2}=0} + N_{1}\phi_{C}
= (L_{1} - \mu M)i_{1} + \mu M\left(i_{1} + \frac{i_{2}}{\mu}\right)$$
(3.31)

On peut faire le même raisonnement pour l'enroulement 2, et un peu cheaté mathématiquement pour obtenir

$$\mu \Psi_2 = \mu^2 \left(L_2 - \frac{M}{\mu} \right) \frac{i_2}{\mu} + \mu M \left(i_1 + \frac{i_2}{\mu} \right)$$
 (3.32)

Les deux dernières relations obtenues nous permettent de construire le schéma équivalent suivant ou D est un opérateur dérivatif.

Le flux Ψ_2 et la tension v_2 secondaire sont ramené au primaire par multiplication de μ , alors que le courant doit être divisé par μ . On ramène les impédances au primaire par multiplication de μ^2 . Si l'on tient compte des résistances des enroulement, on obtient le schéma complet, où

- $L_{dl} = L_1 \mu M$ inductance de dispersion du primaire
- $L_{d2} = L_2 \frac{M}{\mu}$ inductance de dispersion du secondaire
- $L'_{d2} = \mu^2 L_{d2}$ inductance de dispersion ramenée au primaire
- μM inductance de magnétisation vue du primaire

Toutes ces grandeurs peuvent être ramenée au secondaire en multipliant les courants par μ , les tensions par $1/\mu$ et les impédances par $1/\mu^2$.

Applications du schéma équivalent

Avec lui, on peut calculer le comportement statique et dynamique du transformateur avec R et L. Le rapport de transformation à vide, par exemple, vaut ⁷

$$\left(\frac{v_1}{v_2}\right)_{i_2=0} = \mu \frac{R_1 + L_1 D}{\mu M D} \tag{3.33}$$

La page 3.23 détaille la recherche de la courbe de réponse en fréquence d'un transformateur (important).

3.4.2 Transformateurs à bobines couplées dans l'air

Le système étant linéaire, on peut écrire

$$\Psi_1 = L_1 i_1 + M i_2
\Psi_2 = M i_1 + L_2 i_2$$
(3.34)

mais $\Psi_1 = N_1 \phi_1$ n'est plus valable car les flux coupés par chaque spire d'un enroulement sont différent, on devra utiliser les coefficients de couplages mesurés ou calculés.

^{6.} $N_1 \phi = \Psi$.

^{7. ??}

3.4.3 Transformateurs à noyau magnétique - A COMPLÉTER

Transformateur sans dispersion

Par hypothèse, tout le flux passe dans le fer. On retrouve les relations bien connues

$$\frac{\Psi_1}{\Psi_2} = \frac{N_1}{N_2}$$
 et $\frac{v_1}{v_2} = \frac{N_1}{N_2} = \mu$ (3.35)

Par la loi des f.m.m.

$$N_1 i_1 + N_2 i_2 = \oint_l \vec{H} \cdot d\vec{l} \tag{3.36}$$

où l est une ligne d'induction du fer. Le flux étant imposé par la tension, il est le même qu'à vide $(i_2 = 0) : \vec{H}$ est le même qu'à vide : $\oint_l H dl = N_1 i_v$ où i_v est le courant consommé au primaire, à secondaire ouvert lorsque la tension appliquée (v_m) est la même qu'en charge : $v_1 = v_2'$. Comme nous avons la relation

$$i_1 + \frac{i_2}{\mu} = i_v \tag{3.37}$$

il faut nécessairement introduire une bobine consommant i_v sous la tension v_m . Attention, partie incomplète.

Transformateurs à spires concentrées

Dans ce cas on peut définir un flux commun ϕ_c et des flux de dispersions phi_{d1}, phi_{d2} . Comme ceux-ci sont très faible, on considère que le flux total est le flux commun. Le schéma reste valable si l'on pose $v_m = D\Psi_C = N_1 D\phi_C$. Partie non-suivie en cours - A compléter.

Transformateurs réels

Dans le cas \mathbb{R} , les spires ne sont plus concentrée mais supposer que $\phi_c = \phi_{Fe}$ reste valable de sorte que l'on puisse utiliser nos schémas équivalents.

Applications

Notes prises en cours : "On connaît les valeurs numériques, on a calculé en labo. Graphiquement, si je veux calculer V1 je pars de la tension μ V2, je dois rajouter la chute de tension du premier bras : $\mu^2 R2 I2 + chute$ de tension dans LD2. Je calcule I_v , je l'ajoute à -I'2, je calcule ... Petit calcul de phaseur pour avoir ce qui se passe d'un coté à partir de l'autre.

Évidemment incomplet...

Fin du chapitre vue?