Stacking Layers of a GNN

Stacking GNN Layers

(3) Layer connectivity

How to connect GNN layers into a GNN?

- Stack layers sequentially
- Ways of adding skip connections

Stacking GNN Layers

- How to construct a Graph Neural Network?
 - The standard way: Stack GNN layers sequentially
 - Input: Initial raw node feature \mathbf{x}_{v}
 - lacktriangle Output: Node embeddings $\mathbf{h}_{v}^{(L)}$ after L GNN layers

The Over-smoothing Problem

- The Issue of stacking many GNN layers
 - GNN suffers from the over-smoothing problem
- The over-smoothing problem: all the node embeddings converge to the same value
 - This is bad because we want to use node embeddings to differentiate nodes
- Why does the over-smoothing problem happen?

Receptive Field of a GNN

- Receptive field: the set of nodes that determine the embedding of a node of interest
 - In a K-layer GNN, each node has a receptive field of K-hop neighborhood

Receptive Field of a GNN

- Receptive field overlap for two nodes
 - The shared neighbors quickly grows when we increase the number of hops (num of GNN layers)

1-hop neighbor overlap Only 1 node

2-hop neighbor overlap About 20 nodes

3-hop neighbor overlap Almost all the nodes!

Receptive Field & Over-smoothing

- We can explain over-smoothing via the notion of receptive field
 - We knew the embedding of a node is determined by its receptive field
 - If two nodes have highly-overlapped receptive fields, then their embeddings are highly similar
 - Stack many GNN layers → nodes will have highly-overlapped receptive fields → node embeddings will be highly similar → suffer from the oversmoothing problem
- Next: how do we overcome over-smoothing problem?

Design GNN Layer Connectivity

- What do we learn from the over-smoothing problem?
- Lesson 1: Be cautious when adding GNN layers
 - Unlike neural networks in other domains (CNN for image classification), adding more GNN layers do not always help
 - Step 1: Analyze the necessary receptive field to solve your problem. E.g., by computing the diameter of the graph
 - Step 2: Set number of GNN layers L to be a bit more than the receptive field we like. Do not set L to be unnecessarily large!
- Question: How to enhance the expressive power of a GNN, if the number of GNN layers is small?

Expressive Power for Shallow GNNs

- How to make a shallow GNN more expressive?
- Solution 1: Increase the expressive power within each GNN layer
 - In our previous examples, each transformation or aggregation function only include one linear layer
 - We can make aggregation / transformation become a deep neural network!

If needed, each box could include a 3-layer MLP

Expressive Power for Shallow GNNs

- How to make a shallow GNN more expressive?
- Solution 2: Add layers that do not pass messages
 - A GNN does not necessarily only contain GNN layers
 - E.g., we can add MLP layers (applied to each node) before and after GNN layers, as pre-process layers and post-process layers

Pre-processing layers: Important when encoding node features is necessary.

E.g., when nodes represent images/text

Post-processing layers: Important when reasoning / transformation over node embeddings are needed E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

Design GNN Layer Connectivity

- What if my problem still requires many GNN layers?
- Lesson 2: Add skip connections in GNNs
 - Observation from over-smoothing: Node embeddings in earlier GNN layers can sometimes better differentiate nodes
 - Solution: We can increase the impact of earlier layers on the final node embeddings, by adding shortcuts in GNN

Idea of skip connections:

Before adding shortcuts:

$$F(\mathbf{x})$$

After adding shortcuts:

$$F(\mathbf{x}) + \mathbf{x}$$

Idea of Skip Connections

- Why do skip connections work?
 - Intuition: Skip connections create a mixture of models
 - N skip connections $\rightarrow 2^N$ possible paths
 - Each path could have up to N modules
 - We automatically get a mixture of shallow GNNs and deep GNNs

All the possible paths:

$$2 * 2 * 2 = 2^3 = 8$$

Path 1: include this module

(a) Conventional 3-block residual network

(b) Unraveled view of (a)

Example: GCN with Skip Connections

A standard GCN layer

$$\mathbf{h}_{v}^{(l)} = \sigma\left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|}\right)$$

This is our F(x)

A GCN layer with skip connection

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} + \mathbf{h}_{v}^{(l-1)} \right)$$

$$F(\mathbf{x}) + \mathbf{x}$$

Other Options of Skip Connections

- Other options: Directly skip to the last layer
 - The final layer directly
 aggregates from the all the
 node embeddings in the
 previous layers

