Title	FID4042
Release	Revision 2.0
Document Number	TD-12-001

APPROVALS

Title	Name	Date	Signature
Engineering Manager	B.Petolas		
Technical Director	A Mosher		
Quality	D Steel		
Senior Software Developer	John Nassar		

REVISION HISTORY

Rev	Description of Changes	Author of Change	Effective Date (mm/dd/yyyy)
1.0	Initial release	A.M.	01/12/2012
2.0	Data name changes. Changes to Min and Max values.	J.N	02/10/2012

Title	FID4042
Release	Revision 2.0
Document	TD-12-001
Number	

PURPOSE

To specify and document the transmitted data format used by NOVA software.

Housekeeping Data Packet Format

This packet will contain a complete diagnostic of the float behaviour during the past cycle.

Data Name	Description	Units	Min	Max	Start byte	Bit Length	Decoding Equation
MSG_ID	Packet Identity, 1 = Housekeeping	1	1	1	1	8	y = x
NB_BYTES	Number of bytes in message		63	63	2	16	y = x
EDT	Time in the day when the float ended it descent to parking	hour	0	23.9	4	8	y = 0.1 * x
FST	Time in the day when the float first activated the valve during its descent	hour	0	23.9	5	8	y = 0.1 * x
DDST	Time in the day when the float started its descent to profile depth	hour	0	23.9	6	8	y = 0.1 * x
DDET	Time in the day when the float achieved its profile depth	hour	0	23.9	7	8	y = 0.1 * x
SAT	Time in the day when the float started it s ascending profile	hour	0	23.9	8	8	y = 0.1 * x
EAT	Time in the day when the float ended it s ascending profile	hour	0	23.9	9	8	y = 0.1 * x
NVS	Number of valve activations at surface		0	255	10	8	y = x
NVDPA	Number of valve activations during the descent to parking		0	255	11	8	y = x
NPDPA	Number of pump activations during the descent to parking		0	255	12	8	y = x
NVDPR	Number of valve activations during the descent to profile		0	255	13	8	y = x
NPDPR	Number of pump activations during the descent to profile		0	255	14	8	y = x
NPAS	Number of pump activations during the ascent to surface	1	0	255	15	8	y = x
NDCPA	Number of depth corrections during parking	1	0	255	16	8	y = x
NEPAZ	Number of entries in parking zone		0	255	17	8	y = x
FSPD	First stabilization pressure during descent	bar	0	250	18	8	y = x

Title	FID4042
Release	Revision 2.0
Document	TD-12-001
Number	

				1	ı		
MAPPA	Maximum pressure recorded during parking	bar	0	250	19	8	y = x
MIPPA	Minimum pressure recorded during parking	bar	0	250	20	8	y = x
MAP	Maximum pressure recorded during the cycle	bar	0	250	21	8	y = x
NPD	Number of CTD points in descent profile		0	560	22	16	y = x
NMD	Number of messages in descent profile		0	20	24	8	y = x
NPA	Number of CTD points in ascent profile		0	560	25	16	y = x
NMA	Number of messages in ascent profile		0	20	27	8	y = x
NPPA	Number of CTD points in parking		0	280	28	16	y = x
NMPA	Number of messages in parking		0	6	30	8	y = x
NMPS	Number of messages in pressure		0	3	31	8	y = x
PO	CTD Pressure Offset	dBar	-51.2	51.1	32	16	y=0.1*x-3276.8
IV	Internal vacuum	mBar	306	1150	34	16	y = x
GDS	Grounding detection at surface		0	1	36	8	y = x
GDD	Grounding detection during descent		0	1	37	8	y = x
CN	Cycle Number		0	255	38	8	y = x
BV	Battery Voltage	Volts	0	20.0	39	8	y =0.1* x
NPRCTD	Number of Power Resets CTD		0	255	40	8	y = x
NFACTD	Number of Failed Acquisitions CTD		0	255	41	8	y = x
NPRI	Number of Power Resets iridium		0	255	42	8	y = x
NIPQ	Number of Incoming Iridium Packets Received during previous session		0	255	43	8	y = x
NPRG	Number of Power Resets GPS		0	255	44	8	y = x
GPSLAT	GPS Latitude	degrees	-90	90	45	32	y=1E-7*x-214.7483648
GPSLONG	GPS Longitude	degrees	-180	180	49	32	y=1E-7*x-214.7483648
DLF	Day of month of last GPS fix	day	1	31	53	8	y=x
TLF	Time of Last GPS Fix	hour	0	23.9	54	8	y = 0.1*x
EA	Emergency Ascent Flag		0	1	55	8	y = x
WTO	Watchdog Timeout Flag		0	1	56	8	y = x
NPPM	Number of Hydraulic Records		0	255	57	8	y = x
		hour	0	23.9	58	8	y = 0.1*x
		day	1	31	59	8	y = x
DTSC	Date and time at the start of the cycle	month	1	12	60	8	y = x
		Year	0	255	61	8	y = x+2000

Title	FID4042
Release	Revision 2.0
Document	TD-12-001
Number	

TTFF	Time to First Fix	seconds	0	510	62	8	y=2*x
SBDT	Time needed to transmit last housekeeping message	seconds	0	510	63	8	y=2*x

Notes:

- 1. The METOCEAN product has applied all sensor calibration factors before encoding the data.
- 2. The above table shows the decoding algorithm that can be used to decode buoy transmissions directly to engineering units