Schiefe Ebene

1. Vorname, Nachname:

Philipp Bleimund

2. Vorname, Nachname:

Simon Krampe

Messdaten und Unsicherheiten

Messdaten aus Datei laden:

Datei auswählen Keine Datei ausgewählt

1. Messungen zur Haftreibung

Tragen Sie hier Ihren gemessenen Winkel $lpha_{
m max}$ ein.

	Winkel $lpha$ in ${}^{f o}$				
Messung	Blockseite 1	Blockseite 2	Blockseite 3		
1	41,3	9,4	24,6		
2	37,5	9,8	24,0		
3	38,5	11,6	22,1		
4	38,6	10,6	22,6		
5	38,8	9,1	21,0		

2. Messungen zur Gleitreibung

2.1 Zurückgelegte Strecke des Körpers

Geben Sie die zurückgelegte Strecke \boldsymbol{l} des Körpers in mm an:

l = |527| mm.

Geben Sie die angenommene Unsicherheit Δl für die Längenmessung in mm an:

 $\Delta l = \pm 1$ mm.

2.2 Eingestellter Winkel

Geben Sie die eingestellten Winkel α sowie die Unsicherheit $\Delta \alpha$ an:

Klotzseite 1	Klotzseite 2	Klotzseite 3	Messunsicherheit
$lpha_1$ in $^{f o}$	$lpha_2$ in ullet	$lpha_3$ in $^{f o}$	$\Delta lpha$ in $^{f o}$
45,8	17,3	32,0	0,9

2.3 Gemessene Zeit $t_{ m mess}$

Tragen Sie hier die 10 gestoppten Messzeiten $t_{\rm mess}$ pro Klotzseite ein.

		Zeit t _{mess} in s	
Messung	Blockseite 1	Blockseite 2	Blockseite 3
1	0,4738	0,7895	0,5476
2	0,4724	0,8148	0,5624
3	0,4887	0,7677	0,5615
4	0,5018	0,8516	0,5697

1. Bestimmung des Haftreibungskoeffizienten μ_{HR}

1.1 Statistische Auswertung des Winkels

- a) Tragen Sie hier den Mittelwert $\overline{\alpha}_{\max}$ aus Ihren fünf Einzelmesssungen ein.
- b) Tragen Sie die Standardabweichung der Stichprobe $\sigma_{\text{n-1}}$ und die Standardabweichung des Mittelwertes $\sigma_{\bar{\alpha}}$ ein.

Verwenden Sie eine Rechengenauigkeit von jeweils sechs Nachkommastellen.

	Blockseite 1	Blockseite 2	Blockseite 3
	38,94	10,10	22,86
$\overline{\alpha}_{max}$ r	richtig	richtig	richtig
	1,411737	1,009950	1,451895
σ _{n-1} r	richtig	richtig	richtig
	0,631348	0,451663	0,649307
$\sigma_{ar{lpha}}$ r	richtig	richtig	richtig

1.2 Berechnung des Haftreibungskoeffizienten μ_{HR} und Größtfehlers

c) Tragen Sie hier die berechnete Haftreibung sowie den Größtfehler ein. Verwenden Sie eine Rechengenauigkeit von jeweils sechs Nachkommastellen.

	Blockseite 1	Blockseite 2	Blockseite 3
	0,808052	0,178127	0,421594
μ_{HR}	richtig	richtig	richtig
	0,018214	0,008133	0,013347
$\Delta \mu_{HR}$	richtig	richtig	richtig

1.3 Angabe des Endergebnisses

Geben Sie Ihr **signifikant gerundetes** Endergebnis für μ_{HR} mit Angabe der Unsicherheit an.

Blockseite	$\mu_{HR} =$	μ HR	±	$oldsymbol{\Delta} \mu_{oldsymbol{HR}}$	
1	μ_{HR} =	0,808	±	0,019	richtig
2	μ_{HR} =	0,178	±	0,009	richtig
3	μ_{HR} =	0,422	±	0,014	richtig

2. Bestimmung des Gleitreibungskoeffizienten μ_{GR}

2.1 Statistische Auswertung der gemessenen Zeit

a) Tragen Sie den Mittelwert $\overline{t}_{\mathsf{mess}}$,

b) die Standardabweichung σ_{n-1} , sowie die Standardabweichung des Mittelwertes $\sigma_{\overline{t}}$ ein.

Verwenden Sie eine Rechengenauigkeit von jeweils sechs Nachkommastellen.

	Blockseite 1	Blockseite 2	Blockseite 3
\overline{t}_{mess}	0,48573 richtig	0,813020 richtig	0,545010 richtig
	nentig		
σ_{n-1}	0,009620 richtig	0,026040 richtig	0,019323 richtig
	0,003042	0,008235	0,0061111
$\sigma_{\overline{t}}$	richtig	richtig	richtig

2.2 Berechnung des Gleitreibungskoeffizienten μ_{GR} und Größtfehlers

- c) Tragen Sie je Blockseite Ihren berechneten Gleitreibungskoeffizienten μ_{GR}
- d) und den Größtfehler $\Delta\mu_{\mathrm{GR}}$ (mit sechs Nachkommastellen) ein.

Verwenden Sie eine Rechengenauigkeit von jeweils sechs Nachkommastellen.

	Blockseite 1	Blockseite 2	Blockseite 3
	0,375123	0,141220	0,198347
μ_{GR}	richtig	richtig	richtig
	0,031189	0,020171	0,028028
$\Delta \mu_{GR}$	richtig	richtig	richtig

2.3 Angabe des Endergebnisses

Geben Sie Ihr **signifikant gerundetes** Endergebnis für μ_{GR} mit Angabe der Unsicherheit an.

Blockseite	$\mu_{GR} =$	μ GR	±	$\Delta \mu_{ extsf{GR}}$	
1	μ_{GR} =	0,38	±	0,04	richtig
2	μ_{GR} =	0,141	±	0,021	richtig
3	μ_{GR} =	0,198	±	0,029	