Travaux dirigés 4 - MAP201, thème équation différentielles

Les trois premiers exercices peuvent se faire sans ordinateur.

Exercice 1 - Étude de fonctions

Soit $c \in \mathbb{R}$ et f(x) = x(1-x) - c. Donner la liste des points d'équilibres de l'équation $\dot{x}(t) = f(x(t))$, et s'ils sont stables/instables. On différenciera 3 cas différents selon la valeur de c.

Exercice 2 - Étude de fonctions (II)

Soit $\mu \in \mathbb{R}$ et $f(x) = (x^2 - \mu)(\mu - x)$.

- 1) Calculer les points d'équilibres de f. On différenciera selon les valeurs de μ .
- 2) Donner le tableau de signe de f. On différenciera les cas $\mu \le 0$, $0 < \mu < 1$, $\mu = 1$, $\mu > 1$.
- 3) Dans chaque cas, dire de chaque point d'équilibre s'il est stable ou instable.

Exercice 3 - Points d'équilibres d'un système d'aimants

1) On considère une barres aimantée confinée dans le plan, libre de tourner autour d'un point comme illustré ci-dessous, entouré d'un aimant de position fixée, avec un pole S à droite, N à gauche.

On note x l'angle formé entre la barre aimantée et l'horizontale. On choisit le modèle suivant pour la description du mouvement :

$$\dot{x}(t) = -\sin(x(t))$$

Donner les points d'équilibres de ce système, et dire s'ils sont stables/instables.

2) On considère le même système avec cette fois deux barres aimantées qui tournent autour du même point de manière indépendantes :

On propose le modèle suivant pour la description du mouvement :

$$\begin{cases} \dot{x}(t) = K \sin(x(t) - y(t)) - \sin(x(t)) \\ \dot{y}(t) = K \sin(y(t) - x(t)) - \sin(y(t)) \end{cases}$$

où K > 0 est une constante. Après avoir commenté l'effet des différents termes du modèles (à quelles forces correspondent-ils?), on donnera une liste des points d'équilibres du système.

On pourra illustrer les différents cas en traçant le champs de vecteur associé dans le plan de phase.

A l'oeil, quels sont les points d'équilibres stables?

1

Exercice 4 - Pendule vibrant

On considère un pendule de longueur l=1, avec une intensité de pesanteur uniforme g=9.8. On suppose de plus que le point d'attache du pendule est soumis à un mouvement sinusoïde vertical : au temps t, celui-ci est en position $(0, a\cos(2\pi ft))$ où a>0 est l'amplitude du mouvement et f>0 est la fréquence du mouvement. Autrement dit, la vitesse du point d'attache à l'instant t est $2\pi fa|\sin(2\pi ft)|$, et on note donc

$$v = 2\pi f a$$

la vitesse maximale du point d'attache. On s'intéresse au régime où l'amplitude a est **petite** et la fréquence f est **grande**, en maintenant constant la vitesse maximale v du point d'attache. On obtient cela en fixant $a_{\epsilon} = \epsilon$ un petit paramètre, et $f_{\epsilon} = \frac{v}{2\pi a_{\epsilon}} = \frac{v}{2\pi \epsilon}$, et on note x_{ϵ} la solution associée.

On trouvera un exemple d'un tel pendule à cette adresse.

Un principe fondamental de la dynamique donne l'équation vérifiée par l'angle x(t):

$$\ddot{x}(t) + \frac{1}{l} \left(g + a(2\pi f)^2 \cos(2\pi f t) \right) \sin(x(t)) = 0.$$

- 1) Simuler et tracer le graphe $(t, x_{\epsilon}(t))_{0 \le t \le T_f}$ d'une solution $x_{\epsilon}(t)$, pour plusieurs conditions initiale prises entre -2π et 2π . On pourra prendre un temps final $T_f = 10$. On choisira v = 4 et $\epsilon = 0.1, 0.05, 0.01$. On prendra garde à ce que le nombre de pas soit suffisamment grand pour garantir que la solution est bien approchée.
- 2) Faire de même en fixant cette fois v = 8. Quelle est la différence notable entre les solutions? On pourra faire le lien avec le phénomène observé dans la vidéo.
- 3) Lorsque ϵ est pris très petit alors la solution $x_{\epsilon}(t)$ converge vers la solution $x_{\lim}(t)$ du problème autonome :

$$\ddot{x}_{\lim}(t) + \frac{1}{l} \left(g + \frac{v^2}{2} \cos\left(x_{\lim}(t)\right) \right) \sin(x_{\lim}(t)) = 0$$

Mettre en évidence cette convergence : on pourra fixer la condition initiale, le temps final, le paramètre v, et tracer le graphe de la distance

$$\max_{0 \le t \le T_f} |x_{1/n}(t) - x_{\lim}(t)|$$

selon n.

Attention, la dérivée $\dot{x}_{\epsilon}(t)$ ne tend pas vers la dérivée $\dot{x}_{\lim}(t)$!

On admet le théorème de stabilité suivant pour la conclusion :

On considère l'équation $\ddot{x}(t) + g(x(t)) = 0$ pour une fonction dérivable $g : \mathbb{R} \to \mathbb{R}$, et $x_e \in \mathbb{R}$. Si $g(x^e) = 0$, $g'(x^e) > 0$, alors $(x_e, 0)$ est un point d'équilibre stable. Si $g(x^e) = 0$, $g'(x^e) < 0$, alors $(x^e, 0)$ est un point d'équilibre instable.

4) En utilisant le théorème admis, donner les points d'équilibre de l'équation de x_{lim} . Le point d'équilibre associé à l'angle $\pm \pi$ est-il stable ou instable?

En déduire une justification de la vidéo.