STAT 578 - Advanced Bayesian Modeling - Fall 2018

Assignment 2

- 1. Consider the two different hyperprior formulations for the binomial hierarchical model of Lesson 3.2: Hierarchical Modeling Fundamentals. This exercise shows how different they are.
 - (a) The first prior formulation was

$$\theta_j \mid \alpha, \beta \sim \text{Beta}(\alpha, \beta)$$

 $\alpha, \beta \sim \text{iid Expon}(0.001)$

- (i) [2 pts] Simulate 1000 pairs (α, β) from the hyperprior, and produce a scatterplot of β versus α .
- (ii) [2 pts] Typical values could be $\alpha = \beta = 700$. For these values, plot the (conditional prior) density of θ_j .
- (b) The second prior formulation was

$$\theta_j \mid \alpha, \beta \sim \text{Beta}(\alpha, \beta)$$

$$\alpha = \phi_1/\phi_2^2 \quad \beta = (1 - \phi_1)/\phi_2^2$$

$$\phi_1 \sim \text{U}(0, 1) \quad \phi_2 \sim \text{U}(0, 1000)$$

- (i) [2 pts] Simulate 1000 pairs (α, β) from the hyperprior, and produce a scatterplot of β versus α .
- (ii) [2 pts] Typical values could be $\alpha = \beta = 0.000002$. For these values, plot the (conditional prior) density of θ_i .
- 2. Twelve separate case-control studies were run to investigate the potential link between presence of a certain genetic trait (the Pl^{A2} polymorphism of the glycoprotein IIIa subunit of the fibrinogen receptor) and risk of heart attack. For the j^{th} study, an estimated log-odds ratio, $\hat{\psi}_j$, and its (estimated) standard error, σ_j , were computed:

j	$\hat{\psi}_j$	σ_{j}	<u>j</u>	$\hat{\psi}_j$	σ_{j}	\underline{j}	$\hat{\psi}_j$	
1	1.055	0.373	5	1.068	0.471	9	0.507	(
2	-0.097	0.116	6	-0.025	0.120	10	0.000	(
3	0.626	0.229	7	-0.117	0.220	11	0.385	\mathbf{C}
4	0.017	0.117	8	-0.381	0.239	12	0.405	(

Consider this Bayesian hierarchical model:

$$\hat{\psi}_j \mid \psi_j \sim \text{ indep. N}(\psi_j, \sigma_j^2) \qquad j = 1, ..., 12$$

$$\psi_j \mid \psi_0, \sigma_0^2 \sim \text{ iid N}(\psi_0, \sigma_0^2) \qquad j = 1, ..., 12$$

$$\psi_0 \sim \text{N}(0, 1000^2)$$

$$\sigma_0 \sim \text{U}(0, 1000)$$

with ψ_0 and σ_0 independent, and the values σ_j^2 , $j=1,\ldots,12$, regarded as fixed and known.

¹From Burr, et al. (2003), Statistics in Medicine, 22: 1741–1760.

- (a) [2 pts] Specify *improper* densities that the proper hyperpriors given above appear to be approximating. (Which parameters are the hyperparameters?)
- (b) [5 pts] Draw a directed acyclic graph (DAG) appropriate for this model. (Use the notation introduced in lecture, including "plates.") You may draw it neatly by hand or use software.
- (c) [5 pts] Using the template asgn2template.bug provided on the course website, form a JAGS model statement (corresponding to your graph). Also, set up any R (rjags) statements appropriate for creating a JAGS model. [Remember: JAGS "dnorm" uses precisions, not variances!]
- (d) [5 pts] Run at least 10,000 iterations of burn-in, then 100,000 iterations to use for inference. For both ψ_0 and σ_0^2 (not σ_0), produce a posterior numerical summary and also graphical estimates of the posterior densities. Explicitly give the approximations of the posterior expected values, posterior standard deviations, and 95% central posterior intervals. (Just showing R output is not enough!)
- (e) Suppose a new case-control study is to be performed, and assume that its log-odds standard error (new σ) will be 0.2. (Assume the ψ for the new study is exchangeable with those for the previous studies.)
 - (i) [2 pts] Re-draw your DAG, adding new nodes to represent the new $\hat{\psi}$ and ψ . Correspondingly modify your JAGS model to answer the following parts. (Show the modified JAGS and R code and output that you used.)
 - (ii) [3 pts] Estimate the posterior mean and posterior standard deviation, and form a 95% central posterior predictive interval for the estimated log-odds ratio that the new study will obtain. (Remember, this new estimated log-odds ratio will be a new value of $\hat{\psi}$, not of ψ .)
 - (iii) [2 pts] Estimate the posterior predictive probability that the new estimated log-odds ratio will be at least twice its standard error, i.e., at least two standard errors (2σ) greater than zero. (This is roughly the probability that the study will find a statistically significant result, and in the positive direction.) Suggestion: Add an indicator variable to your JAGS model one that equals 1 when the event occurs, and 0 otherwise. (What is its mean?)

Total: 32 pts