Intégrales généralisées (ou impropres)

I. Définition

I.1.
$$I=[a,b[\ ,\ a\in\mathbb{R}\ b\in]a,+\infty[\ \cup\ \{+\infty\}$$

<u>définition</u>: $f:[a,b[\longrightarrow \mathbb{K} \text{ cpm sur } [a,b[$

On définit alors $F: [a, b] \longrightarrow \mathbb{K}$

$$x \longmapsto \int_{a}^{x} f(t)dt$$

L'intégrale généralisée de f est convergente si $\lim_{x\mapsto b^-}F(x)$ est finie , on note $\lim_{x\mapsto b^-}F(x)=\int_a^bf=\int_If$ Sinon l'intégrale généralisée de f diverge

<u>Remarques</u>: 1. L'existence de $\lim_{x \to b^-} F(x)$ ne dépend pas de a

2. Si b est fini et f cpm sur [a,b] alors $\lim_{x\mapsto b^-} F(x) = \int_a^b f(t)dt$, donc on retrouve la définition de l'intégrale sur un segment (intégrale faussement impropre)

I.2.
$$I=]a,b]$$
, $a \in]-\infty,b[\cup \{-\infty\}]$ $b \in \mathbb{R}$

<u>définition</u>: $f: [a, b] \longrightarrow \mathbb{K}$ cpm sur [a, b]

On définit alors $F:\]a,b] \longrightarrow \mathbb{K}$

$$x \longmapsto \int_{-\infty}^{b} f(t)dt$$

L'intégrale généralisée de f est convergente si $\lim_{x\mapsto a^+} F(x)$ est finie , on note $\lim_{x\mapsto a^+} F(x) = \int_a^b f = \int_I f$ Sinon l'intégrale généralisée de f diverge

$$\underline{\text{I.3. I=]}_{a,b[\ ,\ a\in\]-\infty,b[\ \cup\ \{-\infty\}\quad b\in\]a,+\infty[\ \cup\ \{+\infty\}]}$$

 $\underline{\textbf{d\'efinition:}}\ f:\]a,b[\ \longrightarrow\ \mathbb{K}\quad \text{cpm sur }]a,b[$

soit $c \in]a,b[$ l'intégrale généralisée de f est convergente si $\int_a^c f$ et $\int_c^b f$ sont convergentes Sinon l'intégrale généralisée de f diverge

Remarque: Si $a \in \mathbb{R}$ $\int_a^b f(t)dt$ converge $\iff \int_0^{b-a} f(x+a)dx$ converge

Si
$$b \in \mathbb{R}$$
 $\int_a^b f(t)dt$ converge $\iff \int_0^{b-a} f(b-x)dx$ converge

I.4. Exemples

a. Intégrales de Riemann:

$$\int_{1}^{+\infty} \frac{dt}{t^{\alpha}} \text{ est convergente } \iff \alpha > 1$$

Extension: si
$$b > a$$
, $\int_{b}^{+\infty} \frac{dt}{(t-a)^{\alpha}}$ est convergente $\iff \alpha > 1$

$$\int_0^1 \frac{dt}{t^{\alpha}} \text{ est convergente} \iff \alpha < 1$$

Extension: si
$$b>a$$
 , $\int_a^b \frac{dt}{(t-a)^{\alpha}}$ est convergente $\Longleftrightarrow \alpha < 1$

donc
$$\int_0^{+\infty} \frac{dt}{t^{\alpha}}$$
 est toujours divergente et $\int_a^{+\infty} \frac{dt}{(t-a)^{\alpha}}$ aussi

b. logarithme:

$$\int_0^1 \ln(t)dt$$
 est convergente

$$\int_{1}^{+\infty} \ln(t)dt$$
 est divergente donc $\int_{0}^{+\infty} \ln(t)dt$ est divergente

c. exponentielle:

$$\alpha \in \mathbb{R}^*$$
 $\int_0^{+\infty} e^{\alpha t} dt$ est convergente $\iff \alpha < 0$

I.5. Premières propriétés

1. linéarité :
$$f,g:I\longrightarrow \mathbb{K}$$
 cpm sur $I,\alpha\in \mathbb{K}$ avec $\int_I f$ et $\int_I g$ convergent,

alors
$$\int_I (\alpha f + g)$$
 converge et $\int_I (\alpha f + g) = \alpha \int_I f + \int_I g$

2. positivité:
$$f: I \longrightarrow \mathbb{R}_+$$
 cpm sur I avec $\int_I f$ convergente, alors $\int_I f \ge 0$

3. croissance:
$$f, g: I \longrightarrow \mathbb{R}$$
 cpm sur I vérifiant $f \leq g$ et $\int_I f$ et $\int_I g$ convergent, alors $\int_I f \leq \int_I g$

4. relation de Chasles:
$$f: I \longrightarrow \mathbb{K}$$
 cpm sur I avec $\int_I f$ convergente, $c \in [a, b[$ alors

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Remarque: $\int_a^b f(t)dt$ converge n'implique pas $\lim_{x \mapsto b^-} f(t) = 0$

et $\lim_{x \mapsto b^-} f(x) = 0$ n'implique pas $\int_a^b f$ converge

II. Intégrales généralisées de fonctions positives

 $f: I \longrightarrow \mathbb{R}_+ \text{ cpm sur } I$

II.1. Théorème fondamental

$$\underline{I=[a,b[: \text{si } x \in [a,b[\quad F(x) = \int_a^x f(t)dt]$$

alors $\int_a^b f$ converge $\iff F$ est majorée sur [a,b[

$$\underline{I=]a,b]:}$$
 si $x \in]a,b]$ $F(x) = \int_x^b f(t)dt$

alors $\int_a^b f$ converge $\iff F$ est majorée sur]a,b]

II.2. Comparaisons

théorème: $f,g:I\longrightarrow \mathbb{R}_+$ cpm sur I avec $0\leq f\leq g$

Si
$$\int_I g$$
 converge alors $\int_I f$ converge

Si
$$\int_I f$$
 diverge alors $\int_I g$ diverge

Les réciproques sont fausses

théorème: $f, g: [a, b[\longrightarrow \mathbb{R}_+ \text{ cpm sur } [a, b[$

On suppose f = O(g) en b (ou f = o(g) en b) alors

si
$$\int_a^b g$$
 converge alors $\int_a^b f$ converge

si
$$\int_a^b f$$
 diverge alors $\int_a^b g$ diverge

De même

 $\underline{ {\bf th\'{e}or\`{e}me}: f,g:]a,b] \longrightarrow \mathbb{R}_+ \ {\rm cpm \ sur} \ [a,b]$

On suppose f = O(g) en a (ou f = o(g) en a) alors

si
$$\int_a^b g$$
 converge alors $\int_a^b f$ converge

si
$$\int_a^b f$$
 diverge alors $\int_a^b g$ diverge

 $\underline{\textbf{Corollaire}: \textbf{r\`egle de Riemann}:} \ 1. \ f: [a, +\infty[\ \longrightarrow \mathbb{R}_+ \ \text{cpm sur} \ [a, +\infty[$

Si
$$\exists \ \alpha > 1$$
 $f = O\left(\frac{1}{x^{\alpha}}\right)$ en $+\infty$ (ou $\lim_{x \to +\infty} x^{\alpha} f(x) = 0$) alors $\int_{a}^{+\infty} f$ converge

Si
$$\exists \ \alpha \leq 1$$
 $\frac{1}{x^{\alpha}} = O(f)$ en $+\infty$ (ou $\lim_{x \to +\infty} x^{\alpha} f(x) = +\infty$) alors $\int_{a}^{+\infty} f$ diverge

2. $f: [0,a] \longrightarrow \mathbb{R}_+ \text{ cpm sur } [0,a]$

Si
$$\exists \ \alpha < 1 \quad f = O\left(\frac{1}{x^{\alpha}}\right) \text{ en } 0^+ \text{ (ou } \lim_{x \mapsto 0^+} x^{\alpha} f(x) = 0) \text{ alors } \int_0^a f \text{ converge} f(x) = 0$$

Si
$$\exists \alpha \geq 1$$
 $\frac{1}{x^{\alpha}} = O(f)$ en 0^+ (ou $\lim_{x \to 0^+} x^{\alpha} f(x) = +\infty$) alors $\int_0^a f$ diverge

théorème : règle des équivalents : 1. $f,g:[a,b[\longrightarrow \mathbb{R}_+ \text{ cpm sur } [a,b[\text{ avec } f\sim_b g]$

alors
$$\int_a^b g$$
 et $\int_a^b f$ sont de même nature

2. $f, g : [a, b] \longrightarrow \mathbb{R}_+ \text{ cpm sur } [a, b] \text{ avec } f \sim_a g$

alors
$$\int_{a}^{b} g \operatorname{et} \int_{a}^{b} f$$
 sont de même nature

III. Calculs

III.1. Intégration par parties

<u>théorème</u>: $f,g:I\longrightarrow \mathbb{K}$ cpm sur I avec $\lim_{x\mapsto a^+}(fg)(x)=l$ et $\lim_{x\mapsto b^-}(fg)(x)=l'$

alors $\int_a^b f'g$ et $\int_a^b fg'$ sont de même nature et en cas de convergence

$$\operatorname{et} \int_{a}^{b} f'g = [fg]_{a}^{b} - \int_{a}^{b} fg'$$

III.2. Changement de variables

et de classe c^1 sur J

alors $\int_I \varphi'(u)(f \circ \varphi)(u) du$ et $\int_I f(t) dt$ sont de même nature et en cas de convergence

$$\int_{I} \varphi'(u)(fo\varphi)(u)du = \int_{I} f(t)dt$$

si φ est strictement décroissante de J sur I alors $\int_J \varphi'(u)(f \circ \varphi)(u) du$ et $\int_I f(t) dt$ sont de même nature et en cas de convergence

$$-\int_{I} \varphi'(u)(fo\varphi)(u)du = \int_{I} f(t)dt$$

IV. Intégrales absolument convergentes

I = [a, b[,]a, b] ou]a, b[

<u>définition:</u> $f:I\longrightarrow \mathbb{K}$ cpm sur I

On dit que f a une intégrale absolument convergente si $\int_a^b |f|$ converge

On écrit $\int_a^b f$ converge absolument

<u>théorème</u> : $f: I \longrightarrow \mathbb{K}$ cpm

Si
$$\int_a^b |f|$$
 converge alors $\int_a^b f$ converge — et dans ce cas $\left|\int_a^b f\right| \le \int_a^b |f|$

la réciproque est fausse

Si
$$\int_a^b f$$
 converge et $\int_a^b |f|$ diverge, on dit que $\int_a^b f$ est semi-convergente

exemple d'intégrale semi-convergente :
$$\int_0^{+\infty} \frac{\sin(x)}{x} dx$$

Fonctions intégrables

I. Intégrabilité

I.1. Définition

I=[a, b[,]a, b] ou]a, b[

<u>définition</u>: $f: I \longrightarrow \mathbb{K}$ cpm sur I

f est intégrable sur I si $\int_a^b |f|$ converge (ou si $\int_a^b f$ converge absolument)

Remarques: 1. $f: I \longrightarrow \mathbb{R}_+$ cpm alors f est intégrable sur $I \Longleftrightarrow \int_a^b f$ converge

2. $\int_0^{+\infty} \frac{\sin(x)}{x} dx$ converge mais $x \mapsto \frac{\sin(x)}{x}$ n'est pas intégrable sur \mathbb{R}_+^*

I.2. Propriétés

 $f,g:I\longrightarrow \mathbb{K} \text{ cpm sur } I$

théorème: si $0 \le |f| \le |g|$ alors

si $\int_a^b |g|$ converge alors $\int_a^b |f|$ converge , ie l'intégrabilité de g entraı̂ne l'intégrabilité de f

si $\int_a^b |f|$ diverge alors $\int_a^b |g|$ diverge , ie la non-intégrabilité de f entraı̂ne la non-intégrabilité de g

théorème: si I = [a, b[et f = O(g) en b^-

on a de même l'intégrabilité de g entraı̂ne l'intégrabilité de f et la non-intégrabilité de f entraı̂ne la non-intégrabilité de g

de même si I=]a,b] et f=O(g) en a^+

théorème: si I = [a, b[et $|f(x)| \sim_b |g(x)|$

on a l'intégrabilité de g équivaut à l'intégrabilité de f

de même si I=]a,b] et $|f(x)|\sim_a |g(x)|$

<u>théorème</u>: $f:I\longrightarrow \mathbb{K}$ continue sur I, alors $\int_I |f|=0 \Longleftrightarrow f=\tilde{0}$

II. Normes

II.1. Norme de la convergence en moyenne

On note $\mathcal{I}(I,\mathbb{K}){=}\{f:\,I\longrightarrow\mathbb{K}\text{ cpm sur }I\text{ et intégrable sur }I\;\}$

théorème : $\mathcal{I}(I,\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{F}(I,\mathbb{K})$

On note $\mathcal{L}^1(I,\mathbb{K}) = \{f : I \longrightarrow \mathbb{K} \text{ continue sur } I \text{ et intégrable sur } I \}$. On a de même

théorème : $\mathcal{L}^1(I,\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{F}(I,\mathbb{K})$

Si
$$f \in \mathcal{L}^1(I,\mathbb{K})$$
 on pose $N_1(f) = \int_I |f|$

 N_1 est une norme sur $\mathcal{L}^1(I,\mathbb{K})$, appelée norme de la convergence en moyenne

II.2. Norme de la convergence en moyenne quadratique

On note $\mathcal{I}_2(I,\mathbb{K}) = \{f: I \longrightarrow \mathbb{K} \text{ cpm sur } I \text{ et } f^2 \text{ intégrable sur } I \}$

théorème : $\mathcal{I}_2(I,\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{F}(I,\mathbb{K})$

On note $\mathcal{L}^2(I,\mathbb{K}) = \{f: I \longrightarrow \mathbb{K} \text{ continue sur } I \text{ et } f^2 \text{ intégrable sur } I \}$. On a de même

théorème : $\mathcal{L}^2(I,\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{F}(I,\mathbb{K})$

théorème : $(f,g) \in \mathcal{I}_2(I,\mathbb{K})^2$ alors $fg \in \mathcal{I}(I,\mathbb{K})$

 $(f,g)\in\mathcal{L}^2(I,\mathbb{K})^2$ alors $fg\in\mathcal{L}^1(I,\mathbb{K})$

Produit scalaire sur $\mathcal{L}^2(I,\mathbb{R})$:

On pose
$$<$$
 , $>$: $\mathcal{L}^2(I,\mathbb{R})^2 \longrightarrow \mathbb{R}$
 $(f,g) \longmapsto \int_I fg$

< , > est un produit scalaire sur $\mathcal{L}^2(I,\mathbb{K})$

donc $||f||_2 = \sqrt{\langle f, f \rangle} = \sqrt{\int_I f^2}$ est une norme sur $\mathcal{L}^2(I, \mathbb{K})$, appelée norme de la convergence en moyenne quadratique

L'inégalité de Cauchy-Schwarz donne $\left|\int_I fg\right| \leq \|f\|_2 \|g\|_2$

III. Théorèmes

III.1. Théorème de convergence dominée

théorème : (admis) Soit $(f_n)_n$ une suite de fonctions cpm $f_n:I\longrightarrow \mathbb{K}$

avec la suite $(f_n)_n$ converge simplement vers $f, f: I \longrightarrow \mathbb{K}$ cpm et il existe $\varphi: I \longrightarrow \mathbb{R}_+$ cpm sur I et intégrable sur I telle que

$$\forall n \in \mathbb{N} \quad \forall x \in I \qquad |f_n(x)| \le \varphi(x)$$

alors
$$(f_n)_n$$
 et f sont intégrables sur I et $\lim_{n \to +\infty} \int_I f_n = \int_I \lim_{n \to +\infty} f_n = \int_I f$

III.2. Théorème d'intégration terme à terme

<u>théorème</u>: (admis) Soit $(f_n)_n$ une suite de fonctions cpm $f_n:I\longrightarrow \mathbb{K}$ et f_n intégrable sur I avec la série $\sum f_n$ converge simplement vers $f,f:I\longrightarrow \mathbb{K}$ cpm et $\sum \int_I |f_n|$ converge

alors f est intégrable sur I et $\int_I f = \int_I \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} \int_I f_n$

IV. Intégrales dépendant d'un paramètre

$$F(x) = \int_{I} f(t, x) dt$$

 $\mathcal{D}_F = \{x ; t \longrightarrow f(t, x) \text{ cpm et intégrable sur } I \}$

IV.1. Continuité

théorème : I, J intervalles de \mathbb{R}

$$f: I \times J \longrightarrow \mathbb{K}$$
 vérifiant $(t,x) \longmapsto f(t,x)$

 $\forall t \in I \quad x \longmapsto f(t,x) \text{ continue sur } J$

 $\forall x \in I \quad t \longmapsto f(t,x) \text{ cpm (et intégrable) sur } I$

et $\exists \varphi : I \longrightarrow \mathbb{R}_+$ cpm et intégrable sur I telle que $\forall (t,x) \in I \times J \mid |f(t,x)| \leq \varphi(t)$

alors F est continue sur J

Extension: I, J intervalles de \mathbb{R}

$$f: I \times J \longrightarrow \mathbb{K}$$
 vérifiant $(t, x) \longmapsto f(t, x)$

 $\forall t \in I \quad x \longmapsto f(t,x) \text{ continue sur } J$

 $\forall x \in I \quad t \longmapsto f(t,x)$ cpm (et intégrable) sur I

et pour tout segment [a,b] de J, $\exists \varphi: I \longrightarrow \mathbb{R}_+$ cpm et intégrable sur I telle que

$$\forall (t, x) \in I \times [a, b] \quad |f(t, x)| \le \varphi(t)$$

alors F est continue sur J

IV.2. Limite

Théorème de convergence dominée à paramètre continu :

 $I, J \text{ intervalles de } \mathbb{R}, a \in \bar{J}$

$$f: I \times J \longrightarrow \mathbb{K}$$
 vérifiant $(t, x) \longmapsto f(t, x)$

$$\forall t \in I \quad \lim_{x \mapsto a} f(t, x) = l(t)$$

$$\forall x \in I \quad t \longmapsto f(t,x) \text{ et } t \longmapsto l(t) \text{ cpm sur } I$$

$$\exists \; \varphi : \, I \longrightarrow \mathbb{R}_+ \text{ cpm et intégrable sur } I \text{ telle que } \quad \forall \; (t,x) \in I \times J \quad |f(t,x)| \leq \varphi(t)$$

alors l est intégrable sur I et $\lim_{x\mapsto a} F(x) = \int_I l(t)dt$

IV.3. Dérivabilité

théorème de Leibniz : I, J intervalles de \mathbb{R}

$$f:I imes J\longrightarrow \mathbb{K}$$
 vérifiant $\dfrac{\partial f}{\partial x}$ existe sur $I imes J$ $(t,x)\longmapsto f(t,x)$

$$\forall t \in I \quad x \longmapsto f(t,x) \text{ et } x \longmapsto \frac{\partial f}{\partial x}(t,x) \text{ sont continues sur } J$$

$$\forall x \in I \quad t \longmapsto f(t,x) \text{ et } t \longmapsto \frac{\partial f}{\partial x}(t,x) \text{ sont cpm et intégrables sur } I$$

et
$$\exists \varphi_1: I \longrightarrow \mathbb{R}_+$$
 cpm et intégrable sur I telle que $\forall (t,x) \in I \times J \quad \left| \frac{\partial f}{\partial x}(t,x) \right| \leq \varphi_1(t)$

alors
$$F$$
 est de classe c^1 sur J et $\forall x \in J$ $F'(x) = \int_I \frac{\partial f}{\partial x}(t,x)dt$

Extension: I, J intervalles de \mathbb{R}

$$f: I \times J \longrightarrow \mathbb{K}$$
 vérifiant $\frac{\partial f}{\partial x}$ existe sur $I \times J$ $(t,x) \longmapsto f(t,x)$

$$\forall \ t \in I \quad x \longmapsto f(t,x) \text{ et } x \longmapsto \frac{\partial f}{\partial x}(t,x) \text{ sont continues sur } J$$

$$\forall x \in I \quad t \longmapsto f(t,x)$$
 et $t \longmapsto \frac{\partial f}{\partial x}(t,x)$ sont cpm et intégrables sur I

et pour tout segment [a,b] de J , $\exists~\varphi_1:~I\longrightarrow \mathbb{R}_+$ cpm et intégrable sur I telle que

$$\forall (t,x) \in I \times [a,b] \quad \left| \frac{\partial f}{\partial x}(t,x) \right| \leq \varphi_1(t)$$

alors F est de classe c^1 sur J et $\forall x \in J$ $F'(x) = \int_I \frac{\partial f}{\partial x}(t,x)dt$

<u>Généralisation</u> : I, J intervalles de \mathbb{R}

$$f: I \times J \longrightarrow \mathbb{K}$$
 vérifiant $\frac{\partial f}{\partial x}$, $\frac{\partial^2 f}{\partial x^2}$, ..., $\frac{\partial^p f}{\partial x^p}$ existent sur $I \times J$ $(t,x) \longmapsto f(t,x)$

$$\forall t \in I \quad x \longmapsto f(t,x) \ , \ x \longmapsto \frac{\partial f}{\partial x}(t,x) \ , \ x \longmapsto \frac{\partial^2 f}{\partial x^2}(t,x) \ , ..., \ x \longmapsto \frac{\partial^p f}{\partial x^p}(t,x) \ \text{sont continues sur } J$$

 $\forall \ x \in I \quad t \longmapsto f(t,x) \ , \ t \longmapsto \frac{\partial f}{\partial x}(t,x) \ , \ t \longmapsto \frac{\partial^2 f}{\partial x^2}(t,x) \ , ..., \ t \longmapsto \frac{\partial^p f}{\partial x^p}(t,x) \ \text{sont cpm et intégrables sur } I$ et $\exists \ \varphi_p : I \longrightarrow \mathbb{R}_+$ cpm et intégrable sur I telle que $\forall \ (t,x) \in I \times J \quad \left| \frac{\partial^p f}{\partial x^p}(t,x) \right| \leq \varphi_p(t)$ alors F est de classe c^p sur J et $\forall \ x \in J \quad \forall \ k \in \{1,...,p\} \quad F^{(k)}(x) = \int_I \frac{\partial^k f}{\partial x^k}(t,x) dt$

Extension: I, J intervalles de \mathbb{R}

$$f:I\times J\longrightarrow \mathbb{K}$$
 vérifiant $\frac{\partial f}{\partial x}$, $\frac{\partial^2 f}{\partial x^2}$, .., $\frac{\partial^p f}{\partial x^p}$ existent sur $I\times J$ $(t,x)\longmapsto f(t,x)$

$$\forall \ t \in I \quad x \longmapsto f(t,x) \ , \ x \longmapsto \frac{\partial f}{\partial x}(t,x) \ , \ x \longmapsto \frac{\partial^2 f}{\partial x^2}(t,x) \ , ..., \ x \longmapsto \frac{\partial^p f}{\partial x^p}(t,x) \ \text{sont continues sur } J$$

$$\forall \ x \in I \quad t \longmapsto f(t,x) \ , \ t \longmapsto \frac{\partial f}{\partial x}(t,x) \ , \ t \longmapsto \frac{\partial^2 f}{\partial x^2}(t,x) \ , ..., \ t \longmapsto \frac{\partial^p f}{\partial x^p}(t,x) \ \text{sont cpm et intégrables sur } I$$
 et pour tout segment $[a,b]$ de J , $\exists \ \varphi_p : I \longrightarrow \mathbb{R}_+$ cpm et intégrable sur I telle que
$$\forall \ (t,x) \in I \times [a,b] \quad \left| \frac{\partial^p f}{\partial x^p}(t,x) \right| \leq \varphi_p(t)$$

alors F est de classe c^p sur J et $\forall x \in J \quad \forall k \in \{1, ..., p\}$ $F^{(k)}(x) = \int_I \frac{\partial^k f}{\partial x^k}(t, x) dt$

Remarque : F est de classe c^{∞} si F est de classe c^p pour tout $p \in \mathbb{N}$