Département de Mathématiques

Faculté des Sciences

Université Badji Mokhtar-Annaba

Master 1: -Probabilités et Statistique -Actuariat

Série $N^{\circ}2$

Soit $(B_t)_{t\geq 0}$ un mouvement brownien réel standard défini sur un espace probabilisé $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, P)$

Exercice 1:

Soient $s, t \in \mathbb{R}$

- 1) Calculer $\mathbb{E}(B_t B_s)$.
- 2) On suppose s < t. Donner la loi de $B_t + B_s$ et celle du couple (B_t, B_s) .

Exercice 2:

Soit X processus intégrable, adapté, à accroissements indépendants par rapport au passé et tel que $\mathbb{E}(X_t - X_s) = 0$ pour tous $s, t \geq 0$.

Montrer que X est une martingale.

Exercice 3:

Soit $\alpha \in \overline{S}$. Montrer que le processus M défini par $M_t = \int_0^t \alpha_s dB_s$ est une martingale.

Exercice 4:

Soit $\alpha \in \overline{S}$. Montrer que le processus M défini par

$$M_t = \left(\int_0^t \alpha_s dB_s\right)^2 - \int_0^t \alpha_s^2 ds$$

est adapté et intégrable.

Exercice5:

Montrer que

$$T := \inf \{ s \ge 0 : |B_s| > 1 \}$$

est un temps d'arrêt.

Exercice 6:

Montrer que que la représentation d'une semi-martingale est unique à une égalité presque surement prés.

Solutions des exercices

Exercice 1:

1) Si $s \leq t$, alors

$$\mathbb{E}(B_t B_s) = \mathbb{E}(\mathbb{E}(B_t B_s \mid \mathcal{F}_s))$$

$$= \mathbb{E}(B_s \mathbb{E}(B_t \mid \mathcal{F}_s)) \text{ car } B_s \text{ est } \mathcal{F}_s - \text{mesurable}$$

$$= \mathbb{E}(B_s^2) \text{ car } (B_t)_{t \geq 0} \text{ est une martingale}$$

$$= s \text{ car } B_s \rightsquigarrow \mathcal{N}(0, s)$$

d'où

$$\mathbb{E}\left(B_t B_s\right) = s \wedge t$$

2) Comme $B_t - B_s \rightsquigarrow \mathcal{N}(0, s)$ et comme $B_t - B_s$ et B_s sont indépendantes, alors

$$B_t + B_s = (B_t - B_s) + 2B_s \rightsquigarrow \mathcal{N}(0, (t - s) + 4s) = \mathcal{N}(0, t + 3s)$$

Pour tous α, β réels la variable aléatoire

$$\alpha B_t + \beta B_s = \alpha \left(B_t - B_s \right) + \left(\alpha + \beta \right) B_s \rightsquigarrow \mathcal{N} \left(0, \alpha^2 \left(t - s \right) + \left(\alpha + \beta \right)^2 s \right)$$

Le couple (B_t, B_s) est donc gaussien. De plus

$$\mathbb{E}(B_t) = \mathbb{E}(B_s) = 0 \text{ et } cov(B_t, B_s) = \mathbb{E}(B_t B_t) = s$$

Il résulte que

$$(B_t, B_s) \rightsquigarrow \mathcal{N}\left((0,0), \begin{pmatrix} t & s \\ s & s \end{pmatrix}\right)$$

Exercice 2:

Il suffit de montrer que $\mathbb{E}(X_t - X_s \mid \mathcal{F}_s) = 0$ pour tous $s \leq t$.

Comme X est à accroissements indépendants par rapport au passé, alors la variable aléatoire $X_t - X_s$ est indépendante de \mathcal{F}_s , d'où

$$\mathbb{E}\left(X_{t} - X_{s} \mid \mathcal{F}_{s}\right) = \mathbb{E}\left(X_{t} - X_{s}\right) = 0$$

Exercice 3:

Cas où $\alpha \in S$.

M est adapté. En effet, on a

$$M_t = \sum_{k} \alpha_{t_k \wedge t} \left(B_{t_{k+1} \wedge t} - B_{t_k \wedge t} \right)$$

Comme $\mathcal{F}_{t_k \wedge t} \subset \mathcal{F}_{t_{k+1} \wedge t} \subset \mathcal{F}_t$ et comme (B_t) et α sont adaptés, alors chacune des variables aléatoires $\alpha_{t_k \wedge t}, B_{t_{k+1} \wedge t}$ et $B_{t_k \wedge t}$ est \mathcal{F}_t —mesurable. Il résulte que M_t est \mathcal{F}_t —mesurable, comme étant la somme de produit de différences de variables aléatoires mesurables. M est donc adapté.

Comme
$$\mathbb{E}\left(M_t^2\right) = \mathbb{E}\left(\int_0^t \alpha_s^2 ds\right)$$
 alors $\mathbb{E}\left(|M_t|\right) \leq \mathbb{E}\left(M_t^2\right) < \infty$.
On a,
$$M_{t+h} - M_t = \sum_l \alpha_{\widehat{t}_k} \left(B_{\widehat{t}_{k+1}} - B_{\widehat{t}_k}\right)$$

où (\widehat{t}_k) est la subdivision de l'intervalle [t, t+h] formée à l'aide de t, t+h et des k qui appartiennent à [t, t+h], d'où

$$\mathbb{E}\left(M_{t+h} - M_t \mid \mathcal{F}_t\right) = \sum_{k} \mathbb{E}\left(\alpha_{\widehat{t}_k} \left(B_{\widehat{t}_{k+1}} - B_{\widehat{t}_k}\right) \mid \mathcal{F}_t\right)$$

$$= \sum_{k} \mathbb{E}\left(\alpha_{\widehat{t}_k} \left(B_{\widehat{t}_{k+1}} - B_{\widehat{t}_k}\right) \mid \mathcal{F}_t\right)$$

$$= \sum_{k} \mathbb{E}\left(\mathbb{E}\left(\alpha_{\widehat{t}_k} \left(B_{\widehat{t}_{k+1}} - B_{\widehat{t}_k}\right) \mid \mathcal{F}_{\widehat{t}_k}\right) \mid \mathcal{F}_t\right)$$

$$= \sum_{k} \mathbb{E}\left(\alpha_{\widehat{t}_k} \mathbb{E}\left(B_{\widehat{t}_{k+1}} - B_{\widehat{t}_k} \mid \mathcal{F}_{\widehat{t}_k}\right) \mid \mathcal{F}_t\right) \text{ car } \alpha \text{ est adapté}$$

$$= 0 \text{ car } \mathbb{E}\left(B_{\widehat{t}_{k+1}} - B_{\widehat{t}_k} \mid \mathcal{F}_{\widehat{t}_k}\right) = 0 \left((B_t) \text{ est une martingale}\right)$$

M est doc une martingale.

Cas où $\alpha \in \overline{S}$

Soit (α_n) une suite de S qui converge vers α dans $L^2\left(\Omega\times[0,t]\right)$. On pose $M^n_t=\int\limits_0^t\alpha^n_sdB_s$. On sait, par définition de l'intégrale stochastique, que la suite de variables aléatoires (M^n_t) converge dans $L^2\left(\Omega\right)$ vers M_t . Il résulte alors que M est adapté et appartient à $L^2\left(\Omega\right)$ donc intégrable.

il suffit de montrer que la suite de variables aléatoires $\left(\mathbb{E}\left(M_{t+h}^{n}\mid\mathcal{F}_{t}\right)\right)$ converge vers $\mathbb{E}\left(M_{t+h}\mid\mathcal{F}_{t}\right)$ dans $L^{2}\left(\Omega\right)$ grâce à l'unicité de la limite.

On a

$$0 \leq \mathbb{E}\left(\left(\mathbb{E}\left(M_{t+h}^{n} \mid \mathcal{F}_{t}\right) - \mathbb{E}\left(M_{t+h} \mid \mathcal{F}_{t}\right)\right)^{2}\right)$$

$$= \mathbb{E}\left(\mathbb{E}\left(M_{t+h}^{n} - M_{t+h} \mid \mathcal{F}_{t}\right)^{2}\right)$$

$$= \left|\left|\mathbb{E}\left(M_{t+h}^{n} - M_{t+h} \mid \mathcal{F}_{t}\right)\right|\right|_{2}^{2}$$

$$\leq \left|\left|M_{t+h}^{n} - M_{t+h}\right|\right|_{2}^{2}$$

car l'espérance conditionnelle contracte la norme.

Ainsi
$$\lim_{n\to\infty} \mathbb{E}\left(\left(\mathbb{E}\left(M_{t+h}^n \mid \mathcal{F}_t\right) - \mathbb{E}\left(M_{t+h} \mid \mathcal{F}_t\right)\right)^2\right) = 0$$
, d'où l'affirmation. M

est donc une martingale.

Exercice 4:

Comme le processus $\begin{pmatrix} t \\ 0 \\ 0 \end{pmatrix}$ est une martingale, alors la variable aléatoire $\left(\int_{0}^{t} \alpha_{s} dB_{s}\right)^{2}$ est \mathcal{F}_{t} -mesurable et comme

$$\int_{0}^{t} \alpha_{s}^{2} ds = \sum_{k} \alpha_{t_{k} \wedge t}^{2} \left(t_{k+1} \wedge t - t_{k} \wedge t \right)$$

est aussi \mathcal{F}_t -mesurable pour tout $t \geq 0$. On en déduit que la variable aléatoire M_t est \mathcal{F}_t -mesurable pour tout $t \geq 0$, qui signifie que le processus M est adapté.

Comme

$$|M_t| \le \left(\int_0^t \alpha_s dB_s\right)^2 + \int_0^t \alpha_s^2 ds,$$

alors

$$\mathbb{E}\left(|M_t|\right) \leq \mathbb{E}\left(\int\limits_0^t \alpha_s dB_s\right)^2 + \mathbb{E}\left(\int\limits_0^t \alpha_s^2 ds\right) = 2\mathbb{E}\left(\int\limits_0^t \alpha_s^2 ds\right) < \infty$$

qui signifie que le processus M est intégrable.

Exercice 5:

On a pour tout $t \geq 0$, à cause de la densité de \mathbb{Q} dans \mathbb{R} ,

$$\{T > t\} = \bigcap_{s \le t} \{|B_s| \le 1\} = \bigcap_{\substack{s \le t \ s \in \mathbb{Q}}} \{|B_s| \le 1\}.$$

Or chacun des ensembles $\{|B_s| \leq 1\} = B_s^{-1}([-1,1]) \in \mathcal{F}_t$ et comme la tribu \mathcal{F}_t est stable par rapport à l'intersection dénombrable, alors l'événement $\{T > t\}$ appartient à \mathcal{F}_t , d'où T est un temps d'arrêt.

Exercice 6:

Soient

$$X_t = X_0 + M_t + V_t$$

= $X_0 + M'_t + V'_t$,

deux représentations de la semi-martingale X, où M et M'sont des martingales et V et V' sont des processus à variations finies. Alors on a par différence $M_t - M'_t = V'_t - V_t$.

Comme M-M' est une martingale et V'-V est un processus à variations finies, alors $M_t-M_t'=V_t'-V_t=0$ p.s.pour tout ≥ 0 , doù

$$M_t = M_t'$$
 et $V_t' = V_t$ p.s.pour tout ≥ 0 .