

BS(Artificial Intelligence) Fall-2024

Artificial Intelligence

Course Title: Artificial Intelligence

Course Code: CSC205 Credit Hours: (2+1)

Course Instructor: Abdul Haseeb Shaikh

Electronic mail: ahaseeb.faculty@aror.edu.pk

Description:

Dive into the fundamentals of Artificial Intelligence in this comprehensive course designed for BS(AI) students. Explore key concepts such as machine learning, neural networks, natural language processing, and Generative AI. Through hands-on projects and real-world case studies, you'll gain practical experience in designing and implementing AI systems. This course emphasizes both theoretical understanding and practical application, preparing you for advanced studies and careers in the rapidly evolving field of AI.

Aims and Objectives:

- To gain an understanding of the core concepts in Artificial Intelligence.
- To understand and Implement Machine Learning Models
- To understand Deep Learning and Implement DL Models
- To gain the basic understanding of Natural Language Processing
- To explore the field of Generative AI and its applications

Assessment:

S. No	Assessment Activities	Percentage	Total Activities
1.	Sessional: Quizzes/ Assignments (Quizzes & Assignments)	30%	5
2.	Mid Term Exam	30%	1
3.	Final Exam	40%	1

Course Learning Outcomes (CLOs):

No.	Course Learning Outcome	Domain	Level	Assessment Tool
C1	Master core AI and ML Concepts	С	2	Class Participation, Quizzes, Mid Exams., Assignments
C2	Develop and apply Deep	С	3	Class Activity, Quiz,
	Learning Models			Assignments
СЗ	Implement and Evaluate Generative AI Techniques	С	3	Worksheets, Project

Domains:

C=Cognitive, A=Affective, P=Psychomotor

Levels:

Cognitive = {1: Remembering, 2: Understanding, 3: Applying, 4: Analyzing, 5:

Evaluating,

5: Creating)

Affective = {1: Receiving, 2: Responding, 3: Valuing, 4: Organizing, 5:

Characterizing}

Psychomotor= {1: Imitation, 2: Manipulation, 3: Precision, 4: Articulation, 5:

Naturalization}

Course Outlines:

Weeks	LEC#	SUBTOPICS •	REFERENCE
No:	Lec: 01	Introduction:	Chapter#01/ Lecture Slides
Week No: 01	Lec: 02	Introduction:	Chapter#01/ Lecture Slides
Week No: 02	Lec :03	Intelligent Agents:	Chapter#02/ Lecture Slides
Wee 0	Lec: 04	 Intelligent Agents: The Nature of Environments The Structure of Agents 	Chapter#02/ Lecture Slides
Week No: 03	Lec: 05	Knowledge Representation and Reasoning: o Introduction o Propositional Logic o First Order Logic o FL vs PL	Chapter#07, Chapter#08/Lecture Slides
We	Lec: 06	Inference in FL: Forward Chaining Backward Chaining Forward vs Backward Chaining	Chapter#09/ Lecture Slides
Week No: 04	Lec: 07	Fuzzy Logic: o Introduction to fuzzy logic o Characteristics of fuzzy logic o Membership function in fuzzy logic	Lecture Slides

	Lec: 08	Learning from Examples:	Chapter#18/ Lecture Slides
Week No:05	Lec: 09	Classification using Decision Tree: O Philosophy of Decision Tree	Chapter#18/Lecture Slides
Week	Lec: 10	Classification using Decision Tree: o Decision Tree Algorithms	Chapter#18/Lecture Slides
Week No:06	Lec: 11	Performance Metrics in Classification:	Chapter#18/Lecture Slides
Week	Lec: 12	Classification Using Support Vector Machine: O SVM Algorithm	Chapter#18/Lecture Slides
No:07	Lec: 13	Classification Using Support Vector Machine: Linear vs Non-Linear SVMKernel Trick in SVMSolving Problems	Chapter#18/Lecture Slides
Week No	Nec: 14	Classification Using KNN Algorithm: O Philosophy of KNN Algorithm O How to choose value of K? O Solving Problems using KNN Algorithm	Chapter#18/Lecture Slides
Week No: 08	Lec: 15	Regression: o Philosophy of Regression o Linear Regression	Chapter#04
Weel	Lec: 16	Regression: o Multivariate Regression	Chapter#04

MID TERM EXAMINTATION

			,
Week No: 10	Lec: 17	Clustering: O K means Clustering Algorithm	Lecture Slides/Teacher Handouts
Week	Lec: 18	Natural Language Processing: o Introduction o Regex for NLP	Lecture Slides/Teacher Handouts
lo: 11	Lec: 19	Natural Language Processing Three Category of Techniques for NLP NLP Pipeline	Lecture Slides/Teacher Handouts
Week No: 11	Lec: 20	Natural Language Processing:	Lecture Slides/Teacher Handouts
Week No: 11	Lec: 21	Natural Language Processing:	Lecture Slides/Teacher Handouts
Weel	Lec: 22	TF-IDFN-Grams	Lecture Slides/Teacher Handouts
Week No: 12	Lec: 23	Deep Learning: O How deep learning is different from Machine Learning? O Introduction to Artificial Neural Network O Forward Propagation vs	Lecture Slides/Teacher Handouts
Wed	Lec: 24	 Forward Propagation vs Backward Propagation Types of Activation Function 	Lecture Slides/Teacher Handouts
Wee k No:1	Lec: 25	Deep Learning: o Introduction to CNN o CNN Architecture	Lecture Slides/Teacher Handouts

	Lec: 26	 Digit Classification using CNN 	Lecture Slides/Teacher Handouts
0: 14	Lec: 27	RNN and Its types: o LSTM o GRU	Lecture Slides/Teacher Handouts
Week No: 14	Lec: 28	Moving to the world of Transformers: Transformer Architecture	Lecture Slides/Teacher Handouts
No:15	Lec: 29	Generative AI	Lecture Slides/Teacher Handouts
Week	Meek No.15	Generative Al	Lecture Slides/Teacher Handouts
Week No: 16	Lec: 31,32	Vertex Al	Lecture Slides/Teacher Handouts

Text Book:

 Artificial Intelligence A Modren Approach, Third Edition, Stuart J. Russell and Peter Norvig