

Matematik A

Studentereksamen

Fredag den 9. december 2011 kl. 9.00 - 14.00

Opgavesættet er delt i to dele.

Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven med hjælpemidler består af opgave 7-14 med i alt 19 spørgsmål.

De 25 spørgsmål indgår med lige vægt i bedømmelsen.

Bedømmelsen af det skriftlige eksamenssæt

I bedømmelsen af besvarelsen af de enkelte spørgsmål og i helhedsindtrykket vil der blive lagt vægt på, om eksaminandens tankegang fremgår klart af besvarelsen. Dette vurderes blandt andet ud fra kravene beskrevet i de følgende fem kategorier:

1. TEKST

Besvarelsen skal indeholde en forbindende tekst fra start til slut, der giver en klar præsentation af, hvad den enkelte opgave og de enkelte delspørgsmål går ud på.

2. NOTATION OG LAYOUT

Der kræves en hensigtsmæssig opstilling af besvarelsen i overensstemmelse med god matematisk skik, herunder en redegørelse for den matematiske notation, der indføres og anvendes, og som ikke kan henføres til standardviden.

3. REDEGØRELSE OG DOKUMENTATION

Besvarelsen skal indeholde en redegørelse for den anvendte fremgangsmåde og dokumentation i form af et passende antal mellemregninger og/eller en matematisk forklaring på brugen af de forskellige faciliteter, som et værktøjsprogram tilbyder.

4. FIGURER

I besvarelsen skal der indgå en hensigtsmæssig brug af figurer og illustrationer, og der skal være en tydelig sammenhæng mellem tekst og figurer.

5. KONKLUSION

Besvarelsen skal indeholde en afrunding af de forskellige spørgsmål med præcise konklusioner, præsenteret i et klart sprog og/eller med brug af almindelig matematisk notation.

Delprøven uden hjælpemidler

- **Opgave 1** Reducér udtrykket $(a-b)^2 + 2a(a+b) b^2$.
- **Opgave 2** I et koordinatsystem er to vektorer givet ved

$$\vec{a} = \begin{pmatrix} 2 \\ t \end{pmatrix} \text{ og } \vec{b} = \begin{pmatrix} -3 \\ 4 \end{pmatrix},$$

hvor *t* er et tal.

Bestem t, så vektorerne \vec{a} og \vec{b} er ortogonale.

Opgave 3 I et koordinatsystem i rummet er en kugle givet ved ligningen

$$x^{2}-2x+y^{2}+6y+z^{2}+2z+2=0.$$

Bestem kuglens radius og koordinatsættet til dens centrum.

Opgave 4 Funktionen $f(x) = b \cdot a^x$ opfylder, at f(3) = 1 og f(6) = 8.

Bestem tallene a og b.

Opgave 5 En parabel er givet ved ligningen

$$y = x^2 - 2x - 8$$
.

Bestem koordinatsættet til parablens skæringspunkter med førsteaksen.

Opgave 6

I et hushjørne er der en indhegning til kaniner.
Indhegningen består af et kvadratisk tag og to rektangulære

sider. Højden betegnes med h, og sidelængden i kvadratet betegnes med x (se figur).

Det oplyses, at rumfanget af indhegningen er 9 m³.

Bestem højden h udtrykt ved x. Bestem det samlede areal af de to rektangulære sider og det kvadratiske tag udtrykt ved x.

Stx matematik A december 2011 side 2 af 6

Delprøven med hjælpemidler

Opgave 7

I trekanten ABC er |AC| = 10, |AB| = 7 og $\angle A = 30^{\circ}$.

a) Bestem |BC|.

På siden AC placeres punktet D, således at |BD| = |BC|.

b) Bestem arealet af trekant ABD.

Opgave 8 Ved genoptræning af en patient efter en korsbåndsoperation i knæet anvendes en maskine, som bøjer patientens knæ. I tabellen ses sammenhørende værdier af den vinkel, som knæet bøjes med, og den kraftpåvirkning, der registreres i det nye korsbånd.

Vinkel (grader)	20	40	60	80
Kraftpåvirkning (N)	0,035	0,063	0,085	0,10

I en model antages det, at kraftpåvirkningen i korsbåndet som funktion af vinklen er af typen

$$f(x) = b \cdot x^a, \quad 0 \le x \le 90,$$

hvor f(x) betegner kraftpåvirkningen (målt i N) ved vinklen x (målt i grader).

- a) Bestem $a \circ g b$.
- b) Bestem kraftpåvirkningen i korsbåndet, når knæet bøjes med en vinkel på 45°.
- c) Bestem hvor meget kraftpåvirkningen øges, når vinklen øges med 30%.

Kilde: memagazine.asme.org

Opgave 9

På figuren ses en model af et ottekantet skur indtegnet i et koordinatsystem. Koordinatsættene til nogle af tagets hjørner er angivet på figuren.

a) Bestem en ligning for den plan α , der indeholder tagfladen ABT.

Det oplyses, at tagfladen BCT ligger i planen β med ligningen

$$12x + 28y + 35z = 18200$$
.

- b) Bestem afstanden fra O(0,0,0) til planen β .
- c) Bestem vinklen mellem tagfladerne ABT og BCT.

Opgave 10 En funktion f er givet ved

$$f(x) = x^2 - 50 \ln x , \quad x > 0.$$

- a) Bestem en ligning for tangenten til grafen for f i punktet P(3, f(3)).
- b) Bestem monotoniforholdene for f.

Det oplyses, at der netop er én værdi af x_0 , således at linjen med ligningen $y = f'(x_0) \cdot x$ er en tangent til grafen for f.

c) Bestem denne værdi af x_0 .

Opgave 11 Fra et rør løber forurenet vand ned i en tønde med vand. Med C(t) betegnes koncentrationen (målt i ppm) af det forurenende stof i tønden til tidspunktet t (målt i minutter). I en model antages det, at C(t) er en løsning til differentialligningen

$$\frac{dC}{dt} = 0.4 - 0.02 \cdot C.$$

Det oplyses, at C(0) = 0.

- a) Bestem en forskrift for C(t).
- b) Skitsér grafen for C(t), og bestem det tidspunkt, hvor koncentrationen af det forurenende stof i tønden er 10 ppm.
- c) Bestem C'(15), og giv en fortolkning af dette tal.
- Opgave 12 En funktion f er bestemt ved

$$f(x) = 3x + \frac{1}{x}, \quad x > 0.$$

Grafen for f og linjen med ligningen y = 4 afgrænser i første kvadrant en punktmængde M, der har et areal.

- a) Bestem arealet af M.
- b) Bestem rumfanget af det omdrejningslegeme, der fremkommer, når M drejes 360° om førsteaksen.

Opgave 13 I St. Louis, Missouri, står Eero Saarinen's "The Gateway Arch" (se foto), som blev bygget i perioden 1963-65.

Foto: wikimedia.org(David K. Staub)

I en model, hvor alle enheder er målt i meter, følger buen den positive del af grafen for funktionen

$$f(x) = 211,4885 - 10,4801 \cdot (e^{0,0329x} + e^{-0,0329x})$$
.

a) Bestem buens bredde ved jordoverfladen.

Det oplyses, at buelængden af grafen for en differentiabel funktion f i et interval [a;b] kan bestemmes ved

$$l = \int_{a}^{b} \sqrt{f'(x)^2 + 1} \ dx$$
.

b) Bestem buens længde.

Kilde: Gateway to Mathematics Equations of the St. Louis Arch, Paul Calter, Nexus Network Journal, Springer, 2006.

- **Opgave 14** Grafen for en funktion f går gennem punktet P(0,3). Funktionen f har den egenskab, at i ethvert punkt (x, f(x)) på grafen er tangentens hældningskoefficient proportional med f(x). Proportionalitetskonstanten er 0,17.
 - a) Bestem hældningskofficienten for tangenten til grafen for f i punktet P, og opstil en differentialligning, der har f som løsning.

