## Booklet of Figures for STAD29/STA 1007 Midterm Exam

## List of Figures in this document by page:

## List of Figures

| 1  | Packages                                                          | 2  |  |  |  |
|----|-------------------------------------------------------------------|----|--|--|--|
| 2  | Leukemia remission data (some)                                    | 2  |  |  |  |
| 3  | Leukemia logistic regression 1                                    | 3  |  |  |  |
| 4  | Leukemia logistic regression 2                                    | 4  |  |  |  |
| 5  | Leukemia test                                                     | 4  |  |  |  |
| 6  | Leukemia predictions                                              | 5  |  |  |  |
| 7  | Mental health data (all)                                          | 6  |  |  |  |
| 8  | Possible models for mental health data                            |    |  |  |  |
| 9  | More output for mental health data                                |    |  |  |  |
| 10 | Another model for mental health data                              |    |  |  |  |
| 11 | Predictions for mental health data                                |    |  |  |  |
| 12 | Screenshot of spreadsheet with cancer data (some)                 |    |  |  |  |
| 13 | Creating a new column in cancer dataframe                         |    |  |  |  |
| 14 | Cox model for cancer data                                         |    |  |  |  |
| 15 | Plants data                                                       |    |  |  |  |
| 16 | MANOVA for plants data                                            |    |  |  |  |
| 17 | Discriminant analysis for plants data                             | 12 |  |  |  |
| 18 | Plot of discriminant scores for plants data. Treatments are shown |    |  |  |  |
|    | by shape (circle, triangle, square)                               | 13 |  |  |  |
| 19 | Growth of children data (some)                                    | 14 |  |  |  |
| 20 | Graph of mean distance by gender and age                          |    |  |  |  |
| 21 | Repeated measures analysis of children's growth data 16           |    |  |  |  |
| 22 | Estimated survival curves                                         | 17 |  |  |  |

```
library(MASS)
library(lubridate)
library(tidyverse)
library(broom)
library(survival)
library(survminer)
library(nnet)
library(car)
```

Figure 1: Packages

```
leuk
## # A tibble: 27 x 7
##
     remiss cell smear infil
                               li blast temp
##
      <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
         1 0.8
                 0.83 0.66
                              1.9 1.1
##
   1
                                         1
##
   2
          1 0.9
                  0.36 0.32
                              1.4 0.74
                                         0.99
##
   3
          0 0.8
                  0.88 0.7
                              0.8 0.18 0.98
## 4
                  0.87 0.87
          0 1
                              0.7 1.05
                                        0.99
          1 0.9
## 5
                  0.75 0.68
                              1.3 0.52
                                        0.98
   6
          0
            1
                  0.65 0.65
                              0.6 0.52
##
                                        0.98
   7
##
          1
            0.95 0.97
                       0.92
                              1
                                   1.23 0.99
  8
          0 0.95 0.87
                       0.83
                              1.9 1.35
                                        1.02
## 9
          0 1
                  0.45
                       0.45
                              0.8 0.32 1
          0 0.95 0.36 0.34
## 10
                              0.5 0
                                         1.04
## # ... with 17 more rows
```

Figure 2: Leukemia remission data (some)

```
leuk.1 <- glm(remiss ~ cell+smear+infil+li+blast+temp, family = "binomial", data = leuk)</pre>
summary(leuk.1)
##
## Call:
## glm(formula = remiss ~ cell + smear + infil + li + blast + temp,
     family = "binomial", data = leuk)
##
## Deviance Residuals:
##
      Min 1Q
                       Median
                                     3Q
                                             Max
## -1.95404 -0.66259 -0.02516 0.78184
                                         1.57465
##
## Coefficients:
       Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 64.25808 74.96480 0.857
                                            0.391
## cell
             30.83006 52.13520 0.591
                                             0.554
## smear
              24.68632 61.52601 0.401
                                            0.688
## infil
              -24.97447 65.28088 -0.383
                                             0.702
## li
                         2.65798 1.641
                4.36045
                                             0.101
## blast
               -0.01153
                          2.26634 -0.005
                                             0.996
                         77.75289 -1.288
## temp
             -100.17340
                                             0.198
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 34.372 on 26 degrees of freedom
## Residual deviance: 21.594 on 20 degrees of freedom
## AIC: 35.594
##
## Number of Fisher Scoring iterations: 8
```

Figure 3: Leukemia logistic regression 1

```
leuk.2 <- glm(remiss ~ li, family = "binomial", data = leuk)</pre>
summary(leuk.2)
##
## Call:
## glm(formula = remiss ~ li, family = "binomial", data = leuk)
## Deviance Residuals:
   Min 1Q Median
## -1.9448 -0.6465 -0.4947
                            0.6571
                                      1.6971
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.777 1.379 -2.740 0.00615 **
                2.897
                           1.187 2.441 0.01464 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 34.372 on 26 degrees of freedom
## Residual deviance: 26.073 on 25 degrees of freedom
## AIC: 30.073
##
## Number of Fisher Scoring iterations: 4
```

Figure 4: Leukemia logistic regression 2

Figure 5: Leukemia test

Figure 6: Leukemia predictions

```
subject impairment ses life_events
1 Well high 1
2 Well high 9
3 Well high 4
4 Well high 3
5 Well low 2
6 Well high 0
7 Well low 1
8 Well high 3
9 Well high 3
10 Well high 7
11 Well low 1
12 Well low 2
13 Mild high 5
14 Mild low 6
15 Mild high 3
16 Mild low 1
17 Mild high 8
18 Mild high 2
19 Mild low 5
20 Mild high 5
21 Mild high 9
22 Mild low 3
23 Mild high 3
24 Mild high 1
25 Moderate low 0
26 Moderate high 4
27 Moderate low 3
28 Moderate low 9
29 Moderate high 6
30 Moderate low 4
31 Moderate low 3
32 Impaired high 8
33 Impaired high 2
34 Impaired high 7
35 Impaired low 5
36 Impaired low 4
37 Impaired low 4
38 Impaired high 8
39 Impaired low 8
40 Impaired low 9
```

Figure 7: Mental health data (all)

```
mh.1 <- multinom(impairment ~ ses + life_events, data = mh)
mh.2 <- polr(fct_inorder(impairment) ~ ses + life_events, data = mh)
mh.3 <- polr(impairment ~ ses + life_events, data = mh)</pre>
```

Figure 8: Possible models for mental health data

Figure 9: More output for mental health data

```
mh.4 <- update(mh.2, .~. - ses)
drop1(mh.4, test = "Chisq")

## Single term deletions
##

## Model:
## fct_inorder(impairment) ~ life_events
##

Df AIC LRT Pr(>Chi)
## <none> 110.53
## life_events 1 115.04 6.515 0.0107 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 10: Another model for mental health data

Figure 11: Predictions for mental health data

|    | A             | В    | С    |
|----|---------------|------|------|
| 1  | treatment     | died | time |
| 2  | linoleic_acid | no   | 1    |
| 3  | linoleic_acid | no   | 5    |
| 4  | linoleic_acid | yes  | 6    |
| 5  | linoleic_acid | yes  | 6    |
| 6  | linoleic_acid | no   | 9    |
| 7  | linoleic_acid | yes  | 10   |
| 8  | linoleic_acid | yes  | 10   |
| 9  | linoleic_acid | no   | 10   |
| 10 | linoleic_acid | yes  | 12   |
| 11 | linoleic_acid | yes  | 12   |
| 12 | linoleic_acid | yes  | 12   |
| 13 | linoleic_acid | yes  | 12   |
| 14 | linoleic_acid | no   | 12   |
| 15 | linoleic_acid | no   | 13   |
| 16 | linoleic_acid | no   | 15   |
| 17 | linoleic_acid | no   | 16   |
| 18 | linoleic_acid | no   | 20   |
| 19 | linoleic_acid | yes  | 24   |
| 20 | linoleic_acid | no   | 24   |
| 21 | linoleic_acid | no   | 27   |
| 22 | linoleic_acid | yes  | 32   |
| 23 | linoleic_acid | no   | 34   |
| 24 | linoleic_acid | no   | 36   |
| 25 | linoleic_acid | no   | 36   |
| 26 | linoleic_acid | no   | 44   |
| 27 | control       | no   | 3    |
| 28 | control       | yes  | 6    |

Figure 12: Screenshot of spreadsheet with cancer data (some)

```
cancer %>% mutate(y = Surv(time, died == "yes")) -> cancer
```

Figure 13: Creating a new column in cancer dataframe

```
cancer.1 <- coxph(y ~ treatment, data = cancer)</pre>
summary(cancer.1)
## Call:
## coxph(formula = y ~ treatment, data = cancer)
##
##
  n= 49, number of events= 22
##
##
                       coef exp(coef) se(coef) z Pr(>|z|)
##
##
                     exp(coef) exp(-coef) lower .95 upper .95
## treatmentlinoleic_acid 0.7798 1.282 0.3355 1.812
##
## Concordance= 0.527 (se = 0.062 )
## Likelihood ratio test= 0.34 on 1 df, p=0.6
## Wald test = 0.33 on 1 df, p=0.6
## Score (logrank) test = 0.34 on 1 df, p=0.6
drop1(cancer.1, test = "Chisq")
## Single term deletions
## Model:
## y ~ treatment
## Df AIC
                     LRT Pr(>Chi)
## <none> 143.93
## treatment 1 142.26 0.33579 0.5623
```

Figure 14: Cox model for cancer data

```
plants
## # A tibble: 15 x 4
     Treatment Height Width Weight
               <dbl> <dbl> <dbl>
##
      <chr>
## 1 A
                 15.8
                         3.9
                               29.4
## 2 A
                 15.1
                         3.8
                               29.9
   3 A
                               30.2
##
                 14.8
                         4.1
## 4 A
                 14.4
                         4.7
                               30.1
## 5 A
                  15.1
                         3.7
                               30.9
## 6 B
                               31.2
                  15.7
                         4.8
## 7 B
                  15.9
                         4.3
                               31.4
## 8 B
                  15.4
                         4.5
                               31.8
## 9 B
                  16.7
                         5.4
                               32.4
## 10 B
                  16.9
                         5.8
                               32.6
## 11 C
                  16.5
                         5.4
                               33.2
## 12 C
                  16.9
                         5.8
                               33.4
## 13 C
                  17.1
                         6.4
                               33.1
## 14 C
                               32.9
                  17.3
                         4.2
## 15 C
                  17.5
                         6.7
                               33.1
```

Figure 15: Plants data

Figure 16: MANOVA for plants data

```
plants.2 <- lda(Treatment ~ Weight + Width + Height, data = plants)</pre>
plants.2
## lda(Treatment ~ Weight + Width + Height, data = plants)
## Prior probabilities of groups:
## A B
## 0.3333333 0.3333333 0.3333333
##
## Group means:
## Weight Width Height
## A 30.10 4.04 15.04
## B 31.88 4.96 16.12
## C 33.14 5.70 17.06
##
## Coefficients of linear discriminants:
##
                LD1
                          LD2
## Weight 1.79365123 -1.3000104
## Width -0.09653954 0.3631087
## Height 0.75212731 1.6673815
##
## Proportion of trace:
## LD1 LD2
## 0.999 0.001
```

Figure 17: Discriminant analysis for plants data



Figure 18: Plot of discriminant scores for plants data. Treatments are shown by shape (circle, triangle, square).

```
growth
## # A tibble: 27 x 6
##
       sub sex d08
                         d10
                               d12
                                     d14
##
      <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
##
   1
         1 F
                  21
                        20
                              21.5 23
   2
         2 F
                  21
                        21.5 24
##
                                    25.5
##
   3
         3 F
                  20.5 24
                              24.5
                                   26
         4 F
                  23.5 24.5 25
##
                                    26.5
##
   5
          5 F
                  21.5 23
                              22.5 23.5
                        21
##
   6
         6 F
                  20
                               21
                                    22.5
##
   7
         7 F
                  21.5 22.5 23
                                    25
                        23
## 8
         8 F
                  23
                              23.5 24
## 9
         9 F
                        21
                              22
                  20
                                    21.5
## 10
        10 F
                  16.5 19
                              19
                                    19.5
## # ... with 17 more rows
```

Figure 19: Growth of children data (some)

```
growth %>%
  pivot_longer(starts_with("d"), names_to = "age", values_to = "distance") %>%
  group_by(age, sex) %>%
  summarize(mean_distance = mean(distance)) %>%
  ggplot(aes(x = age, y = mean_distance, linetype = sex, group = sex)) +
  geom_point() + geom_line()
```



Figure 20: Graph of mean distance by gender and age

```
y <- with(growth, cbind(d08, d10, d12, d14))
ages <- colnames(y)</pre>
ages.df <- data.frame(ages = factor(ages))</pre>
growth.1 <- lm(y~sex, data = growth)</pre>
growth.2 <- Manova(growth.1, idata = ages.df, idesign = ~ages)</pre>
growth.2
## Type II Repeated Measures MANOVA Tests: Pillai test statistic
            Df test stat approx F num Df den Df Pr(>F)
## (Intercept) 1 0.99360 3882.7
                                       1 25 < 2.2e-16 ***
                                     1 25 0.01043 *
3 23 6.673e-09 ***
## sex 1 0.23479
                              7.7
## ages
             1 0.82602
                              36.4
             1 0.28936
                              3.1
                                      3 23 0.04561 *
## sex:ages
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Figure 21: Repeated measures analysis of children's growth data



Figure 22: Estimated survival curves