

Contents of Part 1

Chapter 0: Sets, Relations

Chapter 1: Counting problem

Chapter 2: Existence problem

Chapter 3: Enumeration problem

Chapter 4: Combinatorial optimization problem

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG =

PART 1

COMBINATORIAL THEORY

(Lý thuyết tổ hợp)

PART 2

GRAPH THEORY

(Lý thuyết đồ thị)

CONTENTS

- 1. Introduction to problem
- 2. Brute force
- 3. Branch and bound

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

1. Introduction to problem

1.1. General problem

- 1.2. Traveling salesman problem
- 1.3. Knapsack problem

State the combinatorial optimization problem

The combinatorial optimization problem in general could be stated as follows:

```
Find the min (or max) of function f(x) \to \min (max), with condition: x \in D, where D is a finite set.
```

Terminologies:

- f(x) objective function of problem,
- $x \in D$ a solution
- D set of solutions of problem.
- Set D is often described as a set of combinatorial configurations that satisfy given properties.
- Solution x*∈D having minimum (maximum) value of the objective function is called optimal solution, and the value f*=f(x*) is called optimzal value of the problem.

1.1. General problem

- In many practical application problems of combinatorics, each configuration is assigned to a value equal to the rating of the worth using of the configuration for a particular use purpose.
- Then it appears the problem: Among possible combination configurations, determine the one that the worth using is the best. Such kind of problems is called the combinatorial optimization problem.

1. Introduction to problem

1.1. General problem

1.2. Traveling salesman problem

1.3. Knapsack problem

Traveling Salesman Problem – TSP (Bài toán người du lịch)

- A salesman wants to travel n cities: 1, 2, 3, ..., n.
- Itinerary is a way of starting from a city, and going through all the remaining cities, each city exactly once, and then back to the starting city
- Given c_{ii} is the cost of going from city i to city j (i, j = 1, 2, ..., n),
- Find the itinerary with minimum total cost.

TÊN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG .

Traveling Salesman Problem - TSP

• Then, the TSP could be stated as the following combinatorial optimization problem:

$$\min \{ f(\pi) : \pi \in \Pi \}.$$

• One could see that the number of possible itineraries is n!, but there are only (n-1)! itineraries if the starting city is fixed.

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Traveling Salesman Problem – TSP

We have a 1-1 correspondence between a *itinerary*

$$T_{\pi(1)} \rightarrow T_{\pi(2)} \rightarrow \dots \rightarrow T_{\pi(n)} \rightarrow T_{\pi(1)}$$

and a permutation $\pi = (\pi(1), \pi(2), ..., \pi(n))$ of *n* natural numbers 1, 2,..., *n*.

Set the cost of itinerary:

$$f(\pi) = c_{\pi(1),\pi(2)} + \dots + c_{\pi(n-1),\pi(n)} + c_{\pi(n),\pi(1)}.$$

Denote

 Π - set of all permutations of *n* natural numbers 1, 2, ..., *n*.

WEN CONC NOUE THONG THE VIA TRIVEN THONG

1. Introduction to problem

- 1.1. General problem
- 1.2. Traveling salesman problem
- 1.3. Knapsack problem

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

1.3. Knapsack Problem

• Problem Definition

- Want to carry essential items in one bag
- Given a set of items, each has
 - An weight (i.e., 12kg)
 - A value (i.e., 4\$)

• Goal

- To determine the # of each item to include in a collection so that
 - The total weight is less than some given weight that the bag can carry
 - And the total value is as large as possible

WÊN CÔNG NGUẾ THÔNG TIN VÀ TRIVỀN THÔNG

0/1 Knapsack Problem

- Problem: John wishes to take *n* items on a trip
 - The weight of item i is w_i and items are all different (0/1 Knapsack Problem)
 - The items are to be carried in a knapsack whose weight capacity is c
 - When sum of item weights \leq c, all n items can be carried in the knapsack
 - When sum of item weights > c, some items must be left behind
- Which items should be taken/left?

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG .

1.3. Knapsack Problem

- Three Types:
 - 0/1 Knapsack Problem
 - restricts the number of each kind of item to zero or one
 - Bounded Knapsack Problem
 - · restricts the number of each item to a specific value
 - Unbounded Knapsack Problem
 - · places no bounds on the number of each item
- Complexity Analysis
 - The general knapsack problem is known to be NP-hard
 - No polynomial-time algorithm is known for this problem

/IỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

0/1 Knapsack Problem

- John assigns a profit p_i to item i
 - · All weights and profits are positive numbers
- John wants to select a subset of the *n* items to take
 - The weight of the subset should not exceed the capacity of the knapsack (constraint)
 - Cannot select a fraction of an item (constraint)
 - The profit of the subset is the sum of the profits of the selected items (optimization function)
 - The profit of the selected subset should be maximum (optimization criterion)
- Let $x_i = 1$ when item i is selected and $x_i = 0$ when item i is not selected
 - Because this is a 0/1 Knapsack Problem, you can choose the item or not choose it.

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG -

0/1 Knapsack Problem

- · A subset of items that John can carry with him can be represented by a binary vector of length $n: x = (x_1, x_2, ..., x_n)$, where $x_i = 1$ when item j is selected and $x_i = 0$ when item j is not selected, j = 1,...,n
- For each solution x, the profit of carried items is

$$f(x) = \sum_{j=1}^{n} c_{j}x_{j},$$
 The weight of carried items is

$$g(x) = \sum_{j=1}^{n} a_j x_j$$

CONTENTS

- 1. Introduction to problem
- 2. Brute force
- 3. Branch and bound

0/1 Knapsack Problem

0/1 Knapsack problem could be stated in the form of the following combinatorial optimization problem:

Among binary vectors of length n that satisfy the condition $g(x) \le b$, determine the vector x^* giving the maximum value of objective

$$\max \{ f(x) : x \in A^n, g(x) \le b \}.$$

$$A^n = \{(a_1, ..., a_n): a_i \in \{0, 1\}, i=1, 2, ..., n\}.$$

Method description

- One of the most obvious methods to solve the combinatorial optimization problem is: On the basis of the combinatorial enumeration algorithms, we go through each solution of the problem, and for each solution, we calculate its value of objective function; then compare values of objective functions of all solutions to find the optimal solution whose objective function is minimal (maximal).
- The approach based on such principles is called the brute

Example: 0/1 knapsack problem

• Consider 0/1 knapsack problem

$$\max\{f(x) = \sum_{j=1}^{n} v_j x_j : x \in D\},\$$

where
$$D = \{x = (x_1, x_2, ..., x_n) \in A^n : \sum_{j=1}^n w_j x_j \le b\}$$

- $\triangleright v_i$, w_i , b are positive integers, j=1,2,...,n.
- ➤ Need algorithm to enumerate all elements of set *D*

Comment

• Brute force is difficult to do even on the most morden super computer. Example to enumerate all

permutations on the machine with the calculation speed of 1 billions operations per second, and if to enumerate one permutation requires 100 operations, then we need 130767 seconds > 36 hours!

Backtracking: enumerate all possible solutions

- Construct set S_k :
 - $S_1 = \{0, t_1\}$, where $t_1 = 1$ if $b \ge w_1$; $t_1 = 0$, otherwise
 - Assume the current partial solution is $(x_1, ..., x_{k-1})$. Then:
 - · The remaining capacity of the bag is:

$$b_{k-1} = b - w_1 x_1 - \dots - w_{k-1} x_{k-1}$$

· The value of items already in the bag is:

$$f_{k-1} = v_1 x_1 + \dots + v_{k-1} x_{k-1}$$

Therefore: $S_k = \{0, t_k\}$, where $t_k=1$ if $b_{k-1} \ge w_k$; $t_k = 0$, otherwise

• Implement S_{k} ?

for
$$(y = 0; y++; y \le t_k)$$

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Comment

- Then, a problem arises that in the process of enumerating all solutions, we need to make use of the found information to eliminate solutions that are definitely not optimal.
- In the next section, we will look at such a search approach to solve the combinatorial optimization problems. In literature, it is called Branch and bound algorithm.

CONTENTS

- 1. Introduction to problem
- 2. Brute force
- 3. Branch and bound

WIÊN CÔNG NGUẾ THÔNG TIN VÀ TRIVỀN THÔNG

3.1. General diagram

- Branch and bound algorithm consists of 2 procedures:
 - Branching Procedure
 - · Bounding Procedure
- Branching procedure: The process of partitioning the set of solutions into subsets of size decreasing gradually until the subsets consists only one element.
- **Bounding procedure:** It is necessary to give an approach to calculate the bound for the value of the objective function on each subset A in the partition of the set of solutions.

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG 🕳

3. Branch and bound

3.1. General diagram

- 3.2. Example
 - 3.2.1. Traveling salesman problem
 - 3.2.2. Knapsack problem

Cut branch by using lower bound

- Assume we already have function g defined as above. We will use
 this function to reduce the amount of searching during the process
 to consider all possible solutions in the backtracking algorithm.
- In the process to enumerate solutions, assume we already obtain some solutions. Thus, denote x^* the solution with objective function is minimum among all solutions obtained so far, and denote $f^* = f(x^*)$
- We call
 - x^* is the current best solution (optimal solution),
 - f* is the current best value of objective function (optimal objective value).

Note:

$$g(a_1,..., a_k) \le \min\{f(x): x \in D(a_1, ..., a_k)\}$$
 (*)

The construction of g function depends on each specific combinatorial optimization problem. Usually we try to build it so that:

- Calculating the value of g must be simpler than solving the combinatorial optimization problem on the right side of (*).
- The value of $g(a_1, ..., a_k)$ must be close to the value of the right side of (*). Unfortunately, these two requirements are often contradictory in practice.


```
Branch and bound

void Branch(int k) {

//Construct xk from partial solution (x1, x2, ..., xk-1)

for akekx

if (akeSk)

{

    xk = ak;

    if (k == n) < Update Record>;
    else if (g(x1,..., xk) ≤ f*) Branch(k+1);

}

void BranchAndBound ( ) {

f* = +∞;

//if you know any solution x* then set f* = f(x*)

Branch(1);

if (f* < +∞)

    <f* is the optimal objective value, x* is optimal solution >

else < problem does not have any solutions >;

}

Light Construct xk from partial solution (x1, x2, ..., xk-1)

// if you know any solution x* then set f* = f(x*)

Branch(1);

if (f* < +∞)

    <f* is the optimal objective value, x* is optimal solution >

else < problem does not have any solutions >;

}
```

3. Branch and bound

- 3.1. General diagram
- 3.2. Example

3.2.1. Traveling salesman problem

3.2.2. Knapsack problem

Sir William Rowan Hamilton 1805 - 1865

Traveling Salesman Problem - TSP

- A salesman wants to travel n cities: 1, 2, 3, ..., n.
- Itinerary is a way of starting from a city, and going through all the remaining cities, each city exactly once, and then back to the starting city.
- Given c_{ij} is the cost of going from city i to city j (i, j = 1, 2, ..., n),
- Find the itinerary with minimum total cost.

VIÊN CÔNG NGHỆ THÔNG TIN VÀ TRIVỀN THÔNG

Lower bound function

• Denote

 $c_{min} = \min \{ c[i, j], i, j = 1, 2, ..., n, i \neq j \}$ the smallest cost between all pairs of cities.

We need to evaluate the lower bound for the partial solution $(1, u_2, ..., u_k)$ corresponding to the partial journey that has passed through k cities

$$1 \rightarrow u_2 \rightarrow \ldots \rightarrow u_{k-1} \rightarrow u_k$$

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

3.2.1. Traveling salesman problem

Fix the starting city as city 1, the TSP leads to the problem:

• Determine the minimum value of

$$f(1,x_2,...,x_n) = c[1,x_2] + c[x_2,x_3] + ... + c[x_{n-1},x_n] + c[x_n,1]$$
 where

 $(x_2, x_3, ..., x_n)$ is permutation of natural numbers 2, ..., n.

ỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Lower bound function

• The cost need to pay for this partial solution is

$$\sigma = c[1,u_2] + c[u_2, u_3] + ... + c[u_{k-1}, u_k].$$

• To develop it as the complete journey:

$$1 \to u_2 \to \dots \to u_{k-1} \to u_{k-1} \to u_{k+1} \to u_{k+2} \to \dots \to u_n \to 1$$

Cost: σ

Cost:
$$(n-k+1)c_{min}$$

We still need to go through n-k+1 segments, each segment with the cost at least c_{min} , thus the lower bound of the partial solution $(1, u_2, ..., u_k)$ can be calculated by the formula:

$$g(1, u_2, ..., u_k) = \sigma + (n-k+1) c_{min}$$

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THỐNG

Example

Give 5 cities {1, 2, 3, 4, 5}. Solve the TSP where the salesman starts from the city 1, and the cost matrix:

$$C = \begin{bmatrix} 0 & 3 & 14 & 18 & 15 \\ 3 & 0 & 4 & 22 & 20 \\ 17 & 9 & 0 & 16 & 4 \\ 9 & 20 & 7 & 0 & 18 \\ 9 & 15 & 11 & 5 & 0 \end{bmatrix}$$

Example

- We have $c_{min} = 3$. The process executing the algorithm is described by the solution search tree.
- Information written in each box is the following in order:
 - · elements of partial solution,
 - σ is the cost of partial solution,
 - *g* lower bound of partial solution.

Result

Terminate the algorithm, we obtain:

- Optimal solution (1, 2, 3, 5, 4, 1) correspond to the journey

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 4 \rightarrow 1,$$

- The minimum cost is 25.

3. Branch and bound

- 3.1. General diagram
- 3.2. Example
 - 3.2.1. Traveling salesman problem

3.2.2. Knapsack problem

Sir William Rowan Hamilton 1805 - 1865

3.2.2. Knap sack problem

- We have the variable
 - x_i number items type j loaded in the bag, j=1,2,...,n
- Mathematical model of problem: Find

$$f^* = \max \left\{ f(x) = \sum_{j=1}^n p_j x_j : \sum_{j=1}^n w_j x_j \le c, x_j \in Z_+, \ j = 1, 2, ..., n \right\}$$

where Z_+ is the set of nonnegative integers

Knapsack problem with integer variables

• Denote *D* the set of solutions to the problem:

$$D = \{x = (x_1, ..., x_n) : \sum_{j=1}^{n} p_j x_j \le c, x_j \in Z_+, j = 1, 2, ..., n\}$$

3.2.2. Knap sack problem

- There are *n* types of items.
- Item type j has
 - weight w_i and
 - profit p_i (j = 1, 2, ..., n).
- We need to select subsets of these items to put it into the bag of capacity c such that the total profit obtained from items loaded in the bag is maximum.

Construct upper bound

• Assume we index the item in the order such that the following inequality is satisfied:

$$v_1/w_1 \ge v_2/w_2 \ge \ldots \ge v_n/w_n$$
.

- (it means items are ordered in descending order of profit per one unit of weight)
- To construct the upper bound function, we consider the following Knapsack continuous variables (KPC): Find

$$g^* = \max \{ f(x) = \sum_{j=1}^n p_j x_j : \sum_{j=1}^n w_j x_j \le c \{ x_j \ge 0, j = 1, 2, ..., n \}$$

Construct upper bound function

Proposition. The optimal solution to the KPC is vecto $(x^* = x_1^*, x_{2r}^*, x_n^*)$ where elements are determined by the formula:

$$x_1^* = c/w_1, x_2^* = x_3^* = \dots = x_n^* = 0$$

and the optimal value is $g^* = v_1 b / w_1$.

Proof. Consider $x = (x_1, ..., x_n)$ as a solution to the KPC. Then

$$p_j \le (p_1/w_1) w_j, j = 1, 2, ..., n$$

as $x_j \ge 0$, we have

$$p_j x_j \le (p_1/w_1) w_j x_j, j = 1, 2, ..., n$$

Therefore

$$p_{j}x_{j} \leq \sum_{j=1}^{n} (p_{1} / w_{1})w_{j}x_{j}$$

$$= (p_{1} / w_{1})\sum_{j=1}^{n} w_{j}x_{j}$$

$$\leq (p_{1} / w_{1})\sum_{j=1}^{n} w_{j}x_{j}$$

Proposition is proved.

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Calculate the upper bound

- Note: When continuing build the (k+1)th element of solution, candidates for x_{k+1} are $0, 1, ..., [c_k/w_{k+1}]$
- Using the result of the proposition, when selecting value for x_{k+1} , we browse candidates for x_{k+1} in the descending order: $[c_k/w_{k+1}], [c_k/w_{k+1}]-1,...,1, 0$

Calculate the upper bound

Now we have the k-level partial solution: $(u_1, u_2, ..., u_k)$, then the profit of items currently loaded in the bag is

$$\sigma_k = p_1 u_1 + p_2 u_2 + \ldots + p_k u_k$$

and the remaining capacity of the bag is

$$c_k = c - (w_1u_1 + w_2u_2 + \ldots + w_ku_k)$$

We have: $\max\{f(x): x \in D, x_j = u_j, j = 1, 2, ..., k\}$

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG -

$$\begin{split} &= \max \quad \{ \sigma_k + \sum_{j=k+1}^n p_j x_j : \sum_{j=k+1}^n w_j x_j \leq c_k, \ x_j \in Z_+, j = k+1, k+2, ..., n \} \\ &\leq \sigma_k + \max \quad \{ \sum_{j=k+1}^n p_j x_j : \sum_{j=k+1}^n w_j x_j \leq c_k, \ x_j \geq 0, j = k+1, k+2, ..., n \} \\ &= \sigma_k + p_{k+1} c_k / w_{k+1} \end{split}$$

Thus, we can calculate the upper bound for the partial solution $(u_1, u_2, ..., u_k)$ <u>by</u> formula $g(u_1, u_2,..., u_k) = \sigma_k + p_{k+1} c_k / w_{k+1}$

Example

 Solve the knap sack problem using the branch and bound algorithm:

$$f(x) = 10 x_1 + 5 x_2 + 3 x_3 + 6 x_4 \rightarrow \max,$$

$$5 x_1 + 3 x_2 + 2 x_3 + 4 x_4 \le 8,$$

$$x_i \in Z_+, j = 1, 2, 3, 4.$$

· Note that in this example, all four items are already sorted in descending order of profit on an unit weight

$$\frac{10}{5} = 2 > \frac{5}{3} \approx 1,66 > \frac{3}{2} = 1,5 = \frac{6}{4}$$

SOCT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG .

Example

- The process executing the algorithm is described by the solution search tree.
- Information written in each box is the following in order:
 - · elements of partial solution,
 - σ is the cost of partial solution (profit of items currently loaded in the bag),
 - w : remaining capacity of the bag,
 - g : upper bound of partial solution.

