Mathematical Techniques in the Approximation Theory that are Rooted in Neural Networks - Hieber's Theorem

Suh, Ko, Huo

Georgia Tech

Summer of 2020

Outline

Preliminaries

- 1 Preliminaries
 - Mathematical Problem
 - A Neural Network Class to be considered
 - Assumption on Regression function
- 2 Theorem Statement
- 3 Key Ideas
 - Key Ideas for proof of Theorem
 - Local Taylor Approximation

- 4 First Step
- 5 Second Step
 - Involved Tools for approximating $P_{x_a}^{\beta} f(x)$
 - Lemma A.1.
 - Realization of $Mult_m(x, y)$
 - Realization of $Mult_m^r(x_1, \ldots, x_r)$
 - Realization of $Mon_{m,\gamma}^r(x_1,\ldots,x_r)$
 - Realization of $Hat^r(x_1, \ldots, x_r)$
- 6 Third Step.
 - Key Idea for the Third Step
 - Bound on $P_{x_{\ell}}^{\beta} f(x)$
 - Third Step: Substep 1.
 - Third Step: Substep 2.
 - Third Step: Substep 3.
 - Third Step: Substep 4.

Mathematical Problem

Given a function $f \in \mathcal{C}$ where \mathcal{C} is some class of functions, how many weights, nodes, and layers does one need to approximate f with certain accuracy in some predefined metric?

Theorem Statement

A Neural Network Class to be considered

We first introduce the formal mathematical representation of the FNN model as follows:

- The network architecture (L, \mathbf{p}) consists of a positive integer L called the number of hidden layers and a width vector $\mathbf{p} = (p_0, \dots, p_{l+1})$.
- σ denotes a ReLU activation function, where it is defined as $\sigma(x) = \max(x, 0)$.
- For $\mathbf{v} = (v_1, \dots, v_r) \in \mathbb{R}^r$, define a shifted activation function $\sigma_{\mathbf{v}} : \mathbb{R}^r \to \mathbb{R}^r$.

$$\sigma_{\mathbf{V}} \begin{pmatrix} y_1 \\ \vdots \\ y_r \end{pmatrix} = \begin{pmatrix} \sigma(y_1 - v_1) \\ \vdots \\ \sigma(y_r - v_r) \end{pmatrix}.$$

A Neural Network Class to be considered

A Neural Network Class to be considered

Neural network with network architecture (L, \mathbf{p}) is any function of form

$$f: \mathbb{R}^{P_0} \to \mathbb{R}^{P_{L+1}}, f(x) = W_L \sigma_{V_L} W_{L-1} \sigma_{V_{L-1}} \dots W_1 \sigma_{V_1} W_0 x,$$
 (1)

where W_i is a $p_{i+1} \times p_i$ weight matrix and $v_i \in \mathbb{R}^{p_i}$ is a shift vector.

Figure 1: Representation as a direct graph of a network with 2 hidden layers L=2 and width vector **p**= (4, 3, 3, 2).

A Neural Network Class to be considered

A Neural Network Class to be considered

All parameter values in the network are bounded by one:

$$\mathcal{F}(\textit{L}, \textbf{p}) := \big\{\textit{f} \text{ of the form (1)}: \max_{j=0,\dots,L} \|\textit{W}_j\|_{\infty} \vee |\textit{v}_j|_{\infty} \leq 1 \big\},$$

where $\|W_j\|_{\infty}$ denotes the maximum entry norm of W_j .

■ There are only a few non-zero/active network parameters:

$$\sum_{j=0}^{L} \|W_j\|_0 + |v_j|_0 \leq s.$$

where $||W_j||_0$ denotes the number of non-zero entries of W_j .

Combining all the imposed assumptions, we are going to consider a neural network class whose architecture is constructed as follows:

$$\mathcal{F}(L,\mathbf{p},\mathbf{s},F):=\bigg\{f(x)\in\mathcal{F}(L,\mathbf{p}):\sum_{i=0}^L\|W_j\|_0+|v_j|_0\leq \mathbf{s},\|f\|_\infty\leq F\bigg\}.$$

Assumption on Regression function

Assumption on Regression function

In this page, we introduce a multi-index notation which will be frequently used in following slides. For *r*-dimensional vectors, $a \in [0, 1]^r$, $x = (x_1, \ldots, x_r)$ and $\alpha = (\alpha_1, \ldots, \alpha_r)$.

$$X^{\alpha}:=X_1^{\alpha_1}\cdots X_r^{\alpha_r}.$$

$$|(x-a)^{\alpha}|:=\prod_{i=1}^{r}|x_i-a_i|^{\alpha_i}$$
.

$$|\boldsymbol{\alpha}| := |\alpha_1| + \cdots + |\alpha_r|.$$

$$\partial^{\alpha} f := \frac{\partial^{\alpha}}{\partial^{\alpha_1} \cdots \partial^{\alpha_r}} f.$$

Theorem Statement

Assumption on Regression function

Assumption on Regression function

- Hölder class with β -smoothness index is one of the most commonly studied function classes in literature.
- For $\beta = n + \sigma$ where $n \in \mathbb{N}_0$ and $\sigma \in (0, 1]$, a function has hölder smoothness index β if all partial derivatives up to order n exist and are bounded and the partial derivatives of order n are σ hölder.
- The ball of β -hölder functions with radius K is then defined as

$$C_r^{\beta}(D,K) = \begin{cases} f: D \subset \mathbb{R}^r \to \mathbb{R}: \sum_{\alpha: |\alpha| \le n} \|\partial^{\alpha} f\|_{\infty} + \\ \sum_{\alpha: |\alpha| = n} \sup_{\mathbf{x}, \mathbf{y} \in D} \frac{|\partial^{\alpha} f(\mathbf{x}) - \partial^{\alpha} f(\mathbf{y})|}{|\mathbf{x} - \mathbf{y}|_{\infty}^{\sigma}} \le K \end{cases}.$$

In Hieber (2020), $D = [0, 1]^r$. In Petersen and Voigtlaender (2018), $D = \begin{bmatrix} -\frac{1}{2}, \frac{1}{2} \end{bmatrix}^r$ where r is an input dimension.

Theorem Statement

Theorem 5 of Hieber 2020

For any function $f \in C_r^{\beta}([0,1]^r, K)$ and any integers $m \ge 1$ and $N \ge (\beta + 1)^r \lor (K + 1)e^r$, there exists a network

$$\tilde{f} \in \mathcal{F}(L, (r, 6(r + \lceil \beta \rceil)N, \dots, 6(r + \lceil \beta \rceil)N, 1), s, \infty)$$

with depth

$$L = 8 + (m+5)(1 + \lceil \log_2(r \vee \beta) \rceil)$$

and the number of parameters

$$s \le 141(r+\beta+1)^{3+r}N(m+6),$$

such that

$$\left\|\tilde{f} - f\right\|_{L^{\infty}[0,1]^r} \le (2K+1)(1+r^2+\beta^2)6^r N 2^{-m} + K3^{\beta} N^{-\frac{\beta}{r}}.$$

Key Ideas for proof of Theorem

Key ideas for approximating functions in $C_r^{\beta}(D, K)$ with Neural Network are mainly two folded:

- Local Taylor Approximation: We split the input space into small hyper-cubes and construct a network that approximates a local Taylor expansion on each of these hyper-cubes.
- Approximation of multiplication operator: We need to build networks that for given input (x, y) approximately compute the product xy.

Local Taylor Approximation?

Theorem Statement

- Discretize the input space $[0,1]^r$ with a set of points $D(M) := \{X_\ell = (\ell_j/M)_{j=1,2,\ldots,r}, \ell = (\ell_1,\ell_2,\ldots,\ell_r) \in \{0,1,2,\ldots,M\}^r\}$. The cardinality of this set is $(M+1)^r$.
- Think of Taylor expansion of f(x) at one of the grid points, $x_{\ell} \in D(M)$, with up to degree n, which can be written as

$$P_{x_{\ell}}^{\beta}f(x) := \sum_{\alpha: |\alpha| \leq n} (\partial^{\alpha}f)(x_{\ell}) \frac{(x-x_{\ell})^{\alpha}}{\alpha!}.$$

■ For an arbitrary input $x \in [0, 1]^r$, Local Taylor approximation of $f \in C_r^{\beta}([0, 1]^r, K)$ can be written as follows:

$$P^{\beta}f(x):=\sum_{x_{\ell}\in D(M)}P_{x_{\ell}}^{\beta}f(x)\prod_{j=1}^{r}\left(1-M|x_{j}-x_{j}^{\ell}|\right)_{+},$$

where $x = \{x_1, x_2, \dots, x_r\}.$

Local Taylor Approximation?

■ $\forall x \in [0,1]^r$, Local Taylor Approximation of f(x) is written as linear combination of 2^r terms of $P_{x_\ell}^\beta f(x)$, for which $x_\ell \in D(M)$ such that $\|x - x_\ell\|_\infty \le \frac{1}{M}$.

Figure 2: Visualization of intuition on Local Taylor Approximation when r = 2.

First Step

- Neural Network \tilde{f} is not directly used to approximate $f \in \mathcal{C}^{\beta}_r([0,1]^r,K)$, instead it is used to approximate the approximated f through local Taylor expansion, where we denote it as $P^{\beta}f(X)$.
- For $X \in [0,1]^r$, the closeness between functions is measured in a L^{∞} sense. Approximation error can be decomposed with the help of triangular inequality as follows:

$$\left\| \tilde{f} - f \right\|_{L^{\infty}[0,1]^r} \leq \underbrace{\left\| P^{\beta} f(X) - f(X) \right\|_{L^{\infty}[0,1]^r}}_{\textcircled{\tiny{1}}} + \underbrace{\left\| \tilde{f} - P^{\beta} f(X) \right\|_{L^{\infty}[0,1]^r}}_{\textcircled{\tiny{2}}}.$$

Controlling ② will be the main focus, whereas a term ① can be easily controlled trough the definition of Hölder class.

Control on 1

Preliminaries

Observe f(x) can be written as follows by Multivariate Taylor's Theorem: for any $\xi \in [0, 1]$ and any $a \in [0, 1]^r$,

$$f(x) = \sum_{\alpha: |\alpha| \le n-1} \partial^{\alpha} f(a) \frac{(x-a)^{\alpha}}{\alpha!} + \sum_{\alpha: |\alpha| = n} \partial^{\alpha} f(a+\xi(x-a)) \frac{(x-a)^{\alpha}}{\alpha!}.$$

So for $f \in \mathcal{C}^{\beta}_r([0,1]^r,K)$,

$$|f(x) - P_a^{\beta} f(x)| = \sum_{\alpha: |\alpha| = n} |\partial^{\alpha} f(a + \xi(x - a)) - \partial^{\alpha} f(a)| \frac{|(x - a)^{\alpha}|}{\alpha!}$$

$$\leq K|x - a|_{\infty}^{\beta}.$$

Control on 1

It is interesting to observe a following fact

$$\sum_{x_\ell \in D(M)} \prod_{j=1}^r \left(1-M|x_j-x_j^\ell|\right)_+ = \prod_{j=1}^r \sum_{\ell=1}^M \left(1-M\left|x_j-\frac{\ell}{M}\right|\right)_+ = 1.$$

By using this relation, we can see

$$\begin{aligned} & \left\| P^{\beta}(x) - f(x) \right\|_{L^{\infty}[0,1]^{r}} \\ &= \left| \sum_{x_{\ell} \in D(M)} \left(\underbrace{P^{\beta}_{x_{\ell}} f(x) - f(x)}_{\leq K|x - x_{\ell}|_{\infty}^{\beta}} \right) \prod_{j=1}^{r} \left(1 - M|x_{j} - x_{j}^{\ell}| \right)_{+} \right|_{\infty} \\ &< KM^{-\beta}. \end{aligned}$$

Second Step

Second Step

Preliminaries

In order to control the term ②, of course, we first need to build a Neural network which can approximate $P^{\beta}(X)$. This step is involved with several sub-steps:

- I For all $x_{\ell} \in D(M)$ and for an arbitrary input $x \in [0, 1]^r$, we need to build a Neural Network which can approximate $P_{x_{\ell}}^{\beta}(x)$. Constructed Neural Network has output in $\mathbb{R}^{(M+1)^r}$.
- 2 For all $x_{\ell} \in D(M)$ and for an arbitrary input $x \in [0,1]^r$, we need to build a Neural Network which can approximate $\prod_{j=1}^r \left(\frac{1}{M} |x_j x_j^{\ell}|\right)_+.$ Constructed Neural Network has output in $\mathbb{R}^{(M+1)^r}$ as well.

Involved Tools for approximating $P_{x_a}^{\beta} f(x)$

Through a r-dimensional Binomial theorem, we can write $P_{x_e}^{\beta}(x)$ as linear combination of monomials:

$$P_{x_\ell}^{eta}f(x):=\sum_{lpha:|lpha|\le n}(\partial^lpha f)(x_\ell)rac{(x-x_\ell)^lpha}{lpha!}=\sum_{\gamma:|\gamma|\le n}C_\gamma x^\gamma.$$

In order to construct a neural network which can approximate $P_{x_a}^{\beta}f(x)$ for a x_{ℓ} , we need following tools:

- Multiplication operator $Mult_m(x, y)$ which can approximate the product of two input data x, y.
- Product operator $Mult_m^r(x_1, \dots, x_r)$ which can approximate $\prod_{i=1}^r x_i$ for an input data $x \in [0, 1]^r$.
- **3** Monomial operator $Mon_{m,\gamma}^r(x_1,\ldots,x_r)$ which can approximate all monomials with up to degree $|\gamma| < n$.

Lemma A.1.

Preliminaries

Lemma A.1.

In order to construct a neural network which can compute the product of two input data, we first need to have a ReLU neural network which can approximate x(1-x) for an $x \in \mathbb{R}$.

(Lemma A.1.) Let
$$T^k : [0, 2^{2-2k}] \to [0, 2^k]$$
,

$$T^k(x) := T_+(x) - T_-^k(x) = (x/2)_+ - (x-2^{1-2k})_+,$$

and $R^k : [0,1] \to [0,2^{-2k}]$,

$$R^k(x) := T^k \circ T^{k-1} \circ, \ldots, T^1.$$

Then, for any positive integer *m*,

$$\left| x(1-x) - \sum_{k=1}^{m} R^{k}(x) \right| \leq 2^{-m}.$$

Detailed proof using induction can be found in the paper.

Visual Illustration of Lemma A.1.

Figure 3: Intuition behind Lemma A.1. can be easily captured by visualization. The Lemma can be proved rigorously via proof by induction on *m*.

Realization of $Mult_m(x, y)$

Theorem Statement

For given input x, y, we construct a network which returns approximately xy.

(**Lemma A.2.**) For any positive integer m, there exists a network $Mult_m \in \mathcal{F}(m+4,(2,6,6,\ldots,6,1))$, such that $Mult_m(x, y) \in [0, 1],$

$$|Mult_m(x, y) - xy| \le 2^{-m}, \quad \forall x, y \in [0, 1],$$

and
$$Mult_m(x,0) = Mult_m(0,y) = 0$$
.

Let g(x) = x(1-x) and use a following polarization identity:

$$xy = \underbrace{\left(g\left(\frac{x-y+1}{2}\right) + \frac{x+y}{2}\right)}_{\text{(1)}} - \underbrace{\left(g\left(\frac{x+y}{2}\right) + \frac{1}{4}\right)}_{\text{(2)}}$$

Our goal is to construct two neural networks which can approximate (1) and (2).

Realization of $Mult_m(x, y)$

We can show that there is a network N_m with m hidden layers and width vector $(3, 3, 3, \ldots, 3, 1)$ that computes the function $(T_+(u), T_-^1(u), h(u)) \rightarrow \sum_{k=1}^{m+1} R^k(u) + h(u)$.

Fig 2. The network $(T_{+}(u), T_{-}^{1}(u), h(u)) \mapsto \sum_{k=1}^{m+1} R^{k}(u) + h(u)$.

Realization of $Mult_m(x, y)$

Realization of $Mult_m(x, y)$

- Note that all weight parameters' absolute values are bounded by 1 in network N_m .
- Set $u = \frac{x-y+1}{2}$, $h(u) = \frac{x+y}{2}$ and apply N_m to approximate ①. Set $u = \frac{x+y}{2}$, $h(u) = \frac{1}{4}$ and apply N_m to approximate 2.
- Concatenate two constructed networks in parallel, then we have a network with m+1 hidden layers and width vector $(2, 6, 6, \ldots, 6, 2)$ that computes:

$$(x,y) \to \left(\underbrace{\sum_{k=1}^{m+1} R^{(k)} \left(\frac{x-y+1}{2}\right) + \frac{x+y}{2}}_{=a}, \underbrace{\sum_{k=1}^{m+1} R^{(k)} \left(\frac{x+y}{2}\right) + \frac{1}{4}\right)}_{=b}$$

Realization of $Mult_m(x, y)$

To ensure the final output to be in [0, 1], we apply to the a, b the two hidden layer network

$$(a,b) \rightarrow (1-(1-(a-b))_+)_+ = (a-b)_+ \wedge 1.$$

Error bound for approximating *xy* can be derived as follows:

$$|Mult_{m}(x,y) - xy| \leq \left| \sum_{k=1}^{m+1} R^{(k)} \left(\frac{x-y+1}{2} \right) - g \left(\frac{x-y+1}{2} \right) \right| + \left| \sum_{k=1}^{m+1} R^{(k)} \left(\frac{x+y}{2} \right) - g \left(\frac{x+y}{2} \right) \right| \leq 2^{-m-1} + 2^{-m-1} = 2^{-m}.$$

Realization of $Mult_m^r(x_1, \ldots, x_r)$

Next goal is to construct a product operator which returns approximately $\prod_{i=1}^r x_i$ for $\mathbf{x} \in [0, 1]^r$.

(**Lemma A.3.**) For any positive integer m, there exists a network

$$\textit{Mult}_m^r \in \mathcal{F}((m+5)\lceil log_2r \rceil, (r, 6r, 6r, \dots, 6r, 1))$$

such that $Mult_m^r \in [0, 1]$ and

$$\left| Mult_m^r(X) - \prod_{i=1}^r x_i \right| \le r^2 2^{-m}, \quad \forall \mathbf{x} = (x_1, x_2, \dots, x_r) \in [0, 1]^r.$$

Moreover, $Mult_m^r(x) = 0$ if one of the components of x is zero.

Realization of $Mult_m^r(x_1, \ldots, x_r)$

Realization of $Mult_m^r(x_1,\ldots,x_r)$

11 For $q = \lceil log_2r \rceil$, construct a first hidden layer as follows:

$$(x_1,\ldots,x_r)\to (x_1,\ldots,x_r,\underbrace{1,\ldots,1}_{-2\alpha-r}).$$

- 2 Apply the network $Mult_m$ in Lemma A.2. to the pairs $(x_1, x_2), (x_3, x_4), \dots, (1, 1)$ in order to compute $(Mult_m(x_1, x_2), \dots, Mult_m(1, 1)) \in \mathbb{R}^{2^{q-1}}.$
- Repeat Step 2. until there is only one entry left.
- The resulting network is called $Mult_m^r$ and has q(m+5) hidden layers and all parameters bounded by one.

Error bound on $Mult_m^r(x_1,\ldots,x_r)$

For q = 1, the bound holds trivially by Lemma A.2. Assume that when q = k - 1, a following bound holds:

$$\left| Mult_m^r(X) - \prod_{i=1}^r x_i \right| \le 3^{k-2} 2^{-m}.$$

We set $a, b, c, d \in [0, 1]$ as follows:

- a : Output of network 1, $Mult_m^r(x)$, when q = k 1.
- b : Output of network 2, $Mult_m^r(x)$, when q = k 1.
- c: The true value of product network 1 should have.
- d: The true value of product network 2 should have.
- We want to check $|Mult_m(a, b) cd| \le 3^{k-1}2^{-m} \le r^22^{-m}$.

Error bound on $Mult_m^r(x_1, ..., x_r)$

We want to check
$$|\mathit{Mult}_m(a,b) - \mathit{cd}| \leq 3^{k-1}2^{-m} \leq r^22^{-m}$$
.

$$|Mult_m(a,b) - cd| = |Mult_m(a,b) - ab + ab - cd|$$
 $\leq |Mult_m(a,b) - ab| + |ab - cd|$
 $= 2^{-m} + |ab - bc + bc - cd|$
 $\leq 2^{-m} + |b| |a - c| + |c| |b - d|$
 $\leq 2^{-m} + 3^{k-2}2^{-m} + 3^{k-2}2^{-m}$
 $\leq 3^{k-1}2^{-m} \leq r^22^{-m},$

where in the last inequality, we use the fact k = q and $(q - 1) \log(3) < 2(q - 1) < 2 \log_2 r = \log_2 r^2$.

Theorem Statement

Realization of $Mon_{m}^{r}(x_1,\ldots,x_r)$

- Using the network operator $Mult_m^r$, we are now ready to construct a network which can approximate all monomials of input data $x \in [0, 1]^r$ with degree up to $|\alpha| < n$.
- 2 Here we use a multi-index notation and $C_{r,\gamma}$ denotes total number of monomials with degree up to $|\alpha| < n$.

(**Lemma A.4.**) For $\gamma > 0$ and any positive integer m, there exists a network

$$Mon_{m,\gamma}^r \in \mathcal{F}(1+(m+5)\lceil \log_2(\gamma \vee 1)\rceil, \ (r,6\lceil \gamma \rceil C_{r,\gamma},\ldots,6\lceil \gamma \rceil C_{r,\gamma},C_{r,\gamma})),$$

such that $Mon_{m,\gamma}^r \in [0,1]^{C_{r,\gamma}}$ and

$$\left| Mon_{m,\gamma}^r(x) - (x^{\alpha})_{|\alpha| < \gamma} \right|_{\infty} \le r^2 2^{-m}, \quad \forall x \in [0,1]^r.$$

Realization of $Mon_{m,\gamma}^r(x_1,\ldots,x_r)$

- Let's say we want to build a network which can approximate following monomial with degree $|\alpha|: x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \dots x_r^{\alpha_r}$.
- A key idea for building such a network is to construct a first hidden layer with $|\alpha_1| x_1 s_2, \dots, |\alpha_r| x_r s$ and $2^{\lceil \log_2 |\alpha| \rceil} - |\alpha| 1s$.

Theorem Statement

Realization of $Hat^r(x_1, \ldots, x_r)$

(**Lemma B.2.**) For any positive integer M and m, there exists a network

$$Hat^r \in \mathcal{F}(2 + (m+5)\lceil \log_2 r \rceil, (r, 6r(M+1)^r, \dots, 6r(M+1)^r, (M+1)^r), s, 1)$$

with $s \le 49r^2(M+1)^r(1+(m+5)\lceil \log_2 r \rceil)$ such that $Hat^r \in [0,1]^{(M+1)^r}$ and for any $\mathbf{x}=(x_1,x_2,\ldots,x_r)\in [0,1]^r$,

$$\left| Hat^r(x) - \left(\prod_{j=1}^r \left(\frac{1}{M} - |x_j - x_j^{\ell}| \right)_+ \right)_{x_{\ell} \in D(M)} \right|_{\infty} \le r^2 2^{-m}.$$

For any $x_{\ell} \in D(M)$, the support of the function $x \to (Hat^r(x))_{x_{\ell}}$ is moreover contained in the support of the function $x \to \prod_{i=1}^r (1/M - |x_i - x_i^{\ell}|)_+$.

Theorem Statement

Preliminaries

Realization of $Hat^r(x_1, \ldots, x_r)$

- Main goal of this Lemma is to construct a neural network which can approximate $\prod_{j=1}^{r} (1/M |x_j x_j^{\ell}|)_+$ for all the points in the grid (i.e. $\forall x_{\ell} \in D(M)$) with high accuracy.
- **2** First, for each coordinate of x_j , we need to build a network layer which computes $(1/M |x_j \ell/M|)_+$ for all $\ell \in \{0, ..., M\}$.
- Second, choose one out of M+1 quantities for each coordinate index and apply $Mult_m^r$ operator for those r chosen values.

Realization of $Hat^r(x_1, \ldots, x_r)$

First two hidden layers of network Hat^r can be constructed as follows: Note that

$$(1/M - |x_j - \ell/M|)_+ = (1/M - (x_j - \ell/M)_+ - (\ell/M - x_j)_+)_+.$$

First hidden layer has 2r(M+1) nodes and 4r(M+1) non-zero weight parameters. Second hiddn layer has r(M+1) nodes and 3r(M+1) non-zero weight parameters.

Theorem Statement

Realization of $Hat^r(x_1, ..., x_r)$

- It remains to apply Mul_m operator to r chosen values in second hidden layer of Hat^r.
- 2 As there are $(M+1)^r$ of these networks, Mul_m^r , this requires $6r(M+1)^r$ units in each hidden layer and $42r^2(M+1)^r((m+5)\lceil \log_2 r \rceil + 1)$ non-zero parameters for the multiplication.
- 3 Note that the total number of non-zero parameters of the network in $\mathcal{F}(L,(p_1,\ldots,p_L))$ can be bounded by $\sum_{\ell=0}^L p_\ell p_{\ell+1} + \sum_{\ell=1}^L p_\ell$.
- 4 Then non-zero parameters of $Mult_m^r$ can be bounded as follows:

$$6r^{2} + 36r^{2}((m+5)\lceil \log_{2} r \rceil - 1) + 6r + 6r((m+5)\lceil \log_{2} r \rceil)$$

$$= 36r^{2}(m+5)\lceil \log_{2} r \rceil - 30r^{2} + 6r + 6r(m+5)\lceil \log_{2} r \rceil$$

$$\leq 42r^{2}((m+5)\lceil \log_{2} r \rceil + 1).$$

Theorem Statement

Realization of $Hat^r(x_1, ..., x_r)$

Combining all the information elaborated above, we can finally construct a network which can approximate $\prod_{j=1}^{r} (1/M - |x_j - x_j^{\ell}|)_+$ for all $x_{\ell} \in D(M)$, whose network architecture is as follows:

$$Hat^r \in \mathcal{F}(2 + (m+5)\lceil \log_2 r \rceil, (r, 6r(M+1)^r, \dots, 6r(M+1)^r, (M+1)^r), s, 1)$$

The number of non-zero parameters s can be controlled trivially as follows:

$$s \le 42r^2(M+1)^r((m+5)\lceil \log_2 r \rceil + 1) + 7r(M+1)$$

$$\le 49r^2(M+1)^r((m+5)\lceil \log_2 r \rceil + 1)$$

Third Step.

Key Idea for the Third Step

Key Idea for the Third Step

Now we are ready to construct a neural network, \tilde{f} , which can approximate Local Taylor Approximated f(x) defined as:

$$\sum_{x_\ell \in D(M)} P_{x_\ell}^\beta f(x) \prod_{j=1}^r \left(1 - M|x_j - x_j^\ell|\right)_+$$

For all points in the grid $x_{\ell} \in D(M)$, we know how to construct neural networks which approximate :

$$P_{x_\ell}^{\beta}f(x)$$
 and $\prod_{j=1}^r \left(1/M - |x_j - x_j^{\ell}|\right)_+$

through $\mathit{Mon}^r_{m,\gamma}$ and Hat^r , respectively. However, in order to realize an inner-product of outputs from these two networks through a fully-connected neural network with ReLU activation function, we need one more trick.

Key Idea for the Third Step

Imagine we have a neural network, $\Phi_1 \in [-1,1]$, which can approximate $\sin(x)$ function and another neural network, $\Phi_2 \in [-1,1]$, which approximates $\cos(x)$ function. We want to have a neural network approximating $\sin(x) + \cos(x)$ through Φ_1 and Φ_2 . For the construction of network, we apply ReLU activation function. We need to construct a network in a following way:

Bound on $P_{x_{\ell}}^{\beta}f(x)$

By using the aforementioned idea, we need to scale and shift $P_{x_{\ell}}^{\beta}f(x)$ so that the modified value is in [0, 1]. In order to do this, we first need to obtain the maximum of $P_{x_{\ell}}^{\beta}f(x)$. Recall $P_{x_{\ell}}^{\beta}f(x)$ is defined as:

$$P_{x_{\ell}}^{\beta}f(x) := \sum_{\alpha: |\alpha| \leq n} (\partial^{\alpha}f)(x_{\ell}) \frac{(x - x_{\ell})^{\alpha}}{\alpha!}$$

By *r*-dimensional binomial theorem, we can rewrite $(x - x_{\ell})^{\alpha}$ as

$$(x-x_{\ell})^{\alpha} = \sum_{\gamma \leq \alpha} {\alpha \choose \gamma} (-x_{\ell})^{\alpha-\gamma} x^{\gamma}, \quad \forall x \in [0,1]^r, \alpha \in \mathbb{N}_0^r.$$

Here for vectors $\gamma, \alpha \in \mathbb{N}_0^r$, $\gamma \leq \alpha$ means that

$$\gamma_1 \leq \alpha_1, \ldots, \gamma_r \leq \alpha_r$$
.

Bound on $P_{x_{\ell}}^{\beta}f(x)$

Then we can write $P_{x_e}^{\beta} f(x)$ as follows:

$$P_{x_{\ell}}^{\beta}f(x) = \sum_{\alpha: |\alpha| \le n} \frac{(\partial^{\alpha}f)(x_{\ell})}{\alpha!} \sum_{\gamma \le \alpha} {\alpha \choose \gamma} (-x_{\ell})^{\alpha-\gamma} x^{\gamma}$$

$$= \sum_{\gamma: |\gamma| \le n} \left[\sum_{\gamma \le \alpha \& |\alpha| \le n} \frac{(\partial^{\alpha}f)(x_{\ell})}{\alpha!} {\alpha \choose \gamma} (-x_{\ell})^{\alpha-\gamma} \right] x^{\gamma}.$$

$$= C_{\gamma}$$

The absolute value of C_{γ} can be controlled by using facts $x_{\ell} \in [0, 1]^r$, $f \in \mathcal{C}^{\beta}_r([0, 1]^r, K)$ and $(\alpha - \gamma)! \geq 1$: For fixed $\gamma \in \mathbb{N}^r_0$

$$|C_{\gamma}| \leq \sum_{\gamma \leq \alpha \& |\alpha| \leq n} \frac{|(\partial^{\alpha} f)(x_{\ell})|}{(\alpha - \gamma)! \gamma!} |(-x_{\ell})^{\alpha - \gamma}| \leq \frac{K}{\gamma!}.$$

Here, we omit the dependency of x_{ℓ} when writing C_{γ} for simplicity.

Bound on $P_{x_{\ell}}^{\beta}f(x)$

Bound on P_{x}^{β} , f(x)

Finally, we can bound $P_{x_{\ell}}^{\beta}f(x), \forall x \in [0, 1]^r$ as follows:

$$egin{aligned} P^eta_{x_\ell}f(x) &= \sum_{\gamma:|\gamma| \leq n} C_\gamma x^\gamma \leq \sum_{\gamma:|\gamma| \leq n} |C_\gamma| \ &\leq \sum_{\gamma \geq 0} |C_\gamma| \leq \sum_{\gamma \geq 0} rac{K}{\gamma!} \ &= K \prod_{j=1}^r \sum_{\gamma_j \geq 0} rac{1}{\gamma_j!} = K e^r. \end{aligned}$$

Third Step: Substep 1.

Let $B = \lceil 2Ke^r \rceil$. Then we are ready to construct a network, Q_1 , which can approximate $\frac{P_{\chi_{\ell}}^{\beta}f(x)}{B} + \frac{1}{2} \in [0,1]^{(M+1)^r}$. We can simply add one hidden layer to the network $Mon_{m,\beta}^r$ as follows:

Note that all the absolute values of weight and bias parameters used for output layer are bounded by 1, since $\frac{1}{B}|C_{\gamma,x_{\ell}}| \leq 1$ for all $\gamma : |\gamma| \leq n$, $x_{\ell} \in D(M)$. We use $L^* := (m+5)\lceil \log_2(\beta \vee r) \rceil$.

Third Step: Substep 1.

Note that $\frac{1}{2}$ can be added by putting $\frac{1}{B}C_{\gamma,x_{\ell}}+\frac{1}{2}$ weight on monomial $x^0=1$ for each $\gamma:|\gamma|\leq n$ and $x_{\ell}\in D(M)$.

Through these constructions, it is obvious that Q_1 has a following network structure:

$$Q_1 \in \mathcal{F}\big(2+L^*, (r, 6\lceil\beta\rceil C_{r,\beta}, \ldots, 6\lceil\beta\rceil C_{r,\beta}, C_{r,\beta}, (M+1)^r)\big),$$

such that $Q_1 \in [0, 1]^{(M+1)^r}$.

Third Step: Substep 1.

Third Step: Substep 1.

The approximation error in a L^{∞} sense of the network Q_1 for any $x \in [0,1]^r$ can be calculated trivially as : For any integer $m \ge 1$,

$$\begin{split} \left|Q_1(x) - \left(\frac{P_{x_\ell}^\beta f(x)}{B} + \frac{1}{2}\right)_{x_\ell \in D(M)}\right|_\infty &\leq \frac{1}{B} \sum_{\gamma: |\gamma| \leq n} |C_\gamma| \beta^2 2^{-m} \\ &\leq \frac{Ke^r}{B} \beta^2 2^{-m} \leq \beta^2 2^{-m}. \end{split}$$

Total number of non-zero parameters can be bounded as:

$$6r(\beta+1)C_{r,\beta}+42(\beta+1)^2C_{r,\beta}^2(1+L^*)+C_{r,\beta}(M+1)^r$$
.

Third Step: Substep 2.

Third Step: Substep 2.

Consider now a parallel network (Q_1 , Hat^r):

- Observe that $C_{r,\beta} \le (\beta+1)^r \le N$ by the definition of $C_{r,\beta}$ and the assumptions on N in the statement of Theorem 5.
- **2** The parallelized network (Q_1, Hat^r) has a following architecture:

$$(Q_1, Hat^r) \in \mathcal{F}(2 + (m+5)\lceil \log_2(r \vee \beta) \rceil,$$
$$(r, 6(r+\lceil \beta \rceil)N, \dots, 6(r+\lceil \beta \rceil)N, 2(M+1)^r))$$

3 Note that all network parameters are bounded by 1.

Third Step: Substep 2.

The total number of network parameter of (Q_1, Hat^r) can be bounded as follows: We set M to be the largest integer such that $(M+1)^r \le N$.

$$\begin{split} &6r(\beta+1)C_{r,\beta}+42(\beta+1)^2C_{r,\beta}^2(L^*+1)+C_{r,\beta}(M+1)^r+49r^2(M+1)^r(L^*+1)\\ &\leq 6r(\beta+1)C_{r,\beta}N(1+L^*)+42(\beta+1)^2C_{r,\beta}N(1+L^*)+C_{r,\beta}N(1+L^*)+49\\ &\leq 49(\beta^2+2\beta+1+r\beta+r+r^2+1)C_{r,\beta}N(1+L^*)\\ &\leq 49(\beta+r+1)^2C_{r,\beta}N(1+L^*)\\ &\leq 49(\beta+r+1)^{2+r}N(1+L^*) \end{split}$$

where in the last inequality, we use the fact:

 $< 98(\beta + r + 1)^{3+r}N(m+5)$

$$1 + (m+5)\lceil \log_2(\beta \vee r) \rceil \le (m+5)(1+\lceil \log_2(\beta \vee r) \rceil)$$

$$\le 2(m+5)(\beta \vee r)$$

$$\le 2(m+5)(\beta+r+1).$$

Third Step: Substep 3.

- Next, we pair the x_{ℓ} th entry of Q_1 and Hat^r and apply to each of the $(M+1)^r$ pairs the $Mult_m$ network described in Lemma.A.2.
- In the last layer, we add up all entries.
- \blacksquare Finally, we have a network Q_2 which can approximate

$$\sum_{\mathsf{x}_\ell \in D(M)} \left(\frac{P_{\mathsf{x}_\ell}^\beta f(\mathsf{x})}{B} + \frac{1}{2} \right) \prod_{j=1}^r \left(\frac{1}{M} - |\mathsf{x}_j - \mathsf{x}_j^\ell| \right)_+.$$

The network's architecture is as follows:

$$Q_2 \in \mathcal{F}(3 + (m+5)(1 + \lceil \log_2(r \vee \beta) \rceil),$$

$$(r, 6(r + \lceil \beta \rceil)N, \dots, 6(r + \lceil \beta \rceil)N, 1)).$$

Third Step: Substep 3.

Note that the required number of parameters for $Mult_m$ is at most :

$$6+12+36(m+3)+6(m+4) \le 42(m+5)$$

We need $(M+1)^r$ Mult_ms serially and $(M+1)^r$ parameters for adding up entries in the last hidden layer. This means that at least

$$42(m+5)(M+1)^r + (M+1)^r \le 43(m+5)N$$

non-zero parameters are required for the steps 1. and 2. in the previous slide. By combining the bound we obtained for the number of non-zero parameters for (Q_1, Hat^r) network, the s for Q_2 is bounded by:

141
$$(r+\beta+1)^{3+r}N(m+5)$$
.

Third Step: Substep 3.

By triangular inequality, we can get the approximation error bound for Q_2 :

$$\left| Q_2 - \sum_{x_{\ell} \in D(M)} \left(\frac{P_{x_{\ell}}^{\beta} f(x)}{B} + \frac{1}{2} \right) \prod_{j=1}^{r} \left(\frac{1}{M} - |x_j - x_j^{\ell}| \right)_{+} \right|$$

$$\leq \sum_{x_{\ell} \in D(M): ||x - x_{\ell}||_{\infty} \leq 1/M} (1 + r^2 + \beta^2) 2^{-m}$$

$$\leq (1 + r^2 + \beta^2) 2^{r - m}.$$

In the last inequality, we use the fact for any $x \in [0,1]^r$, there are 2^r points in the grid D(M) whose L^{∞} distance between an input data x is within 1/M.

Third Step: Substep 4.

Theorem Statement

Finally, we need a network operator which can perform re-scaling and re-shifting as follows:

$$\begin{split} \sum_{x_{\ell} \in D(M)} \left(\frac{P_{x_{\ell}}^{\beta} f(x)}{B} + \frac{1}{2} \right) \prod_{j=1}^{r} \left(\frac{1}{M} - |x_{j} - x_{j}^{\ell}| \right)_{+} \\ \rightarrow \sum_{x_{\ell} \in D(M)} P_{x_{\ell}}^{\beta} f(x) \prod_{j=1}^{r} \left(1 - M|x_{j} - x_{j}^{\ell}| \right)_{+} \end{split}$$

Note that

$$\sum_{x_{\ell} \in D(M)} \left(\frac{P_{x_{\ell}}^{\beta} f(x)}{B} + \frac{1}{2} \right) \prod_{j=1}^{r} \left(\frac{1}{M} - |x_{j} - x_{j}^{\ell}| \right)_{+}$$

$$= \underbrace{\frac{1}{BM^{r}} \sum_{x_{\ell} \in D(M)} P_{x_{\ell}}^{\beta} f(x) \prod_{j=1}^{r} \left(1 - M|x_{j} - x_{j}^{\ell}| \right)_{+} + \frac{1}{2M^{r}}}_{:=a}.$$

Third Step: Substep 4.

We need a network operator with ReLU activation function computing $a \rightarrow BM^r(a-1/2M^r)$.

The network $x \to BM^r x$ is in the class $\mathcal{F}(3, (1, M^r, 1, B, 1))$ with shift vectors v_j are all equal to zero and weight matrices W_j having all entries equal to one.

Network $a oup BM^r(a-1/2M^r)$ computes in the first hidden layer $(a-1/2M^r)_+$ and $(1/2M^r-a)_+$ and then applies the network $x oup BM^r x$ to both units. In the output layer the second value is subtracted from the first one.

Third Step: Substep 4.

It is trivial to check network $a \to BM^r(a-1/2M^r)$ has at most 12N+6 non-zero parameters.

- For the network $x \to BM^r x$, we need $2M^r + 2\lceil 2Ke^r \rceil$ parameters. Because of the assumption $N \ge (K+1)e^r$, at most 6N parameters are required.
- We need two $x \to BM^r x$ networks and extra 6 parameters for the network $a \to BM^r (a-1/2M^r)$.

Third Step: Substep 4.

Third Step: Substep 4.

Apply the network $a \to BM^r(a-1/2M^r)$ to the output of Q_2 , then there exists a network Q_3 in

$$Q_3 \in \mathcal{F}(8 + (m+5)(1 + \lceil \log_2(r \vee \beta) \rceil),$$
$$(r, 6(r + \lceil \beta \rceil)N, \dots, 6(r + \lceil \beta \rceil)N, 1)),$$

such that, for all $x \in [0, 1]^r$,

$$\begin{split} & \left| Q_3 - \sum_{x_{\ell} \in D(M)} P_{x_{\ell}}^{\beta} f(x) \prod_{j=1}^{r} \left(1 - M |x_j - x_j^{\ell}| \right)_{+} \right| \\ & \leq \lceil 2Ke^r \rceil M^r (1 + r^2 + \beta^2) 2^{r-m} \\ & \leq (2K + 1)(2e)^r M^r (1 + r^2 + \beta^2) 2^{-m} \\ & \leq (2K + 1)(1 + r^2 + \beta^2) 6^r N 2^{-m}. \end{split}$$

Third Step: Substep 4.

The number of non-zero parameters of Q_3 is bounded by

$$141(r+\beta+1)^{3+r}N(m+5)+(12N+6)\leq 141(r+\beta+1)^{3+r}N(m+6).$$

We are ready to obtain an approximation error bound:

$$\begin{split} \left\| \tilde{f} - f \right\|_{L^{\infty}[0,1]^r} &\leq \left\| P^{\beta} f(X) - f(X) \right\|_{L^{\infty}[0,1]^r} + \left\| \tilde{f} - P^{\beta} f(X) \right\|_{L^{\infty}[0,1]^r} \\ &\leq K M^{-\beta} + (2K+1)(1+r^2+\beta^2)6^r N 2^{-m} \\ &\leq 3^{\beta} N^{-\frac{\beta}{r}} + (2K+1)(1+r^2+\beta^2)6^r N 2^{-m}. \end{split}$$

where in the last inequality, we use

$$(M+1)^r \le N \le (M+2)^r \le (3M)^r$$
.

We finally conclude the proof.