epidemiology measures

SURV686

Example from class:

Table: Data for Example 1 and 2

Smoker	Yes	No	Total
Yes	171	3,264	3,435
No	117	4,320	4,437
Total	288	7,584	7,872

Please calculate incidence among smokers, non-smokers, and the relative risk and odds ratio for smokers compared to non-smokers.

We enter the data as separate vectors to facilitate calculations.

```
library(tidyverse)
library(epiR)
a <- 171
b <- 3264
c <- 117
d <- 4320

# total
t <- sum(a, b, c, d)</pre>
```

Calculate incidence among smokers and non-smokers using;

$$I_{Exposed} = \frac{A}{A+B}$$

$$I_{Un-exposed} = \frac{C}{C+D}$$

ir_exp <- a / (a+b) ; ir_exp</pre>

[1] 0.04978166

ir_unexp <- c / (c+d) ; ir_unexp</pre>

- [1] 0.02636917
 - About 5% of smokers had a stroke, almost twice as many as the non-smokers.

Calculate relative risk:

$$RR = \frac{I_{Exposed}}{I_{Un-exposed}}$$

\$\$

\$\$

RR <- round(ir_exp / ir_unexp, 4)

- Smokers are 1.88 times more at risk of having a stroke compared to non-smokers.
- Calculate Odds Ratio

$$\hat{OR} = \frac{AD}{BC}$$

OR <- (a*d) / (b*c)

• Our odds ratio is close to our relative risk estimate.

Calculate Variances for OR and RR, to estimate 95% CI.

$$Var(\ln \hat{R}) = \frac{b}{a(a+b)} + \frac{d}{c(c+d)}$$

$$Var(\ln \hat{O}) = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$$

```
var_RR \leftarrow (b / (a*(a+b))) + (d / (c*(c+d))); var_RR
```

[1] 0.01387846

```
var_0R \leftarrow (1/a) + (1/b) + (1/c) + (1/d); var_0R
```

[1] 0.01493282

[1] "Printing 95% CI for relative risk . . . 1.8879 [1.4986, 2.3783]"

- [1] "Printing 95% CI for odds ratio. . . 1.8879 [1.5224, 2.4579]"
 - The intervals do not contains 1, so they are statistically significant and reject the Null hypothesis that the odds are equal across smokers and non-smokers.

Prospective study:

```
a <- 23
b <- 125
c <- 13
d <- 150
t <- sum(a, b, c, d)
# check attrition
attrition <- sum(a/t, b/t, c/t, d/t); attrition</pre>
```

[1] 1

Calculate relative risk, and odds ratio from formula from before.

$$\hat{R} = \frac{a(c+d)}{c(a+b)}$$

```
R_{a*(c+d)} / (c*(a+b)); R_{a*(c+d)}; R_{a*(c+d)}
```

[1] 1.948545

```
OR \leftarrow (a*d)/(b*c); OR
```

[1] 2.123077

• The odds ratio is slightly larger than the relative risk.

Calculate the attributed risk percent in the exposed group.

$$\hat{ARP}_{Exposed} \frac{\hat{R}-1}{\hat{R}}$$

```
ARP_exposed <- (R_hat - 1) / R_hat; ARP_exposed # fraction
```

[1] 0.4867965

- The amount of disease incidence is 49% which can be attributed to an exposure in a prospective study.
- This is also referred to ARP, attributable risk percent when converting to a percent.

The attributable risk (ratio) of the exposed is calculated as incidence of the exposed - incidence of the non-exposed.

```
ir_exp <- a / (a+b)
ir_unexp <- c / (c+d)
AR_exposed <- ir_exp - ir_unexp ; AR_exposed</pre>
```

[1] 0.0756508

To calculate 95% CI we would need to calculate the standard error as:

$$SE_{AR} = \sqrt{\frac{a+c}{N}(1-\frac{a+c}{N})(\frac{1}{a+b}+\frac{1}{c+d})}$$

```
SE_AR <- sqrt(
   ((a+c)/t)*(1-((a+c)/t )) * ( (1/(a+b)) + (1/(c+d)) )
)

(AR_exposed - 1.97*SE_AR) * 100 # lower</pre>
```

[1] 0.4089381

```
(AR_exposed + 1.97*SE_AR) * 100 # Upper
```

[1] 14.72122

When we use the epiR::epi.2by2()we can see these results under "Attrib prev in the exposed."

Calculate the attributable risk in the population

$$\hat{A}_{pop} = \frac{ad - bc}{(a+c)(c+d)}$$

```
# reduction in incidence in the population that would
# occur in the absence of the risk factor
A_hat_pop <- (a*d - b*c) / ((a+c)* (c+d)); A_hat_pop # fraction</pre>
```

[1] 0.3110089

- This is the reduction in incidence of 31% if the whole population were unexposed, comparing with actual exposure.
- This is known as PARP, population attributable risk when converting to percent.

Calculate the variance of the attributable risk in the population.

$$V(\ln(1-\hat{A}_{pop}) = \frac{b+\hat{A}_{pop}(a+d)}{tc}$$

[1] 0.04422571

In a retrospective study we use the OR instead of or relative risk, and calculate the attributable risk in the exposed group and population.

$$R_hat <- (a*d)/(b*c)$$
; R_hat

[1] 2.123077

[1] 0.5289855

For the population we change the denominator.

$$\hat{A}_{pop} = \frac{ad - bc}{d(a+c)}$$

[1] 0.337963

The variance is also computed differently

$$V(\ln(1-\hat{A}_{pop}) = \frac{a}{c(a+c)} + \frac{b}{d(b+d)}$$

```
V <- (a / (c * (a + c))) + (b / (d*(b+d))); V
```

[1] 0.0521756

We can now calculate 95% CI.

$$LCL = 1 - \exp{(\ln(1 - \hat{A}_{pop}) + 1.96\sqrt{V(\ln(1 - \hat{A}_{pop}))})}$$

$$UCL = 1 - \exp{(\ln(1 - \hat{A}_{pop}) - 1.96\sqrt{V(\ln(1 - \hat{A}_{pop}))})}$$

LCL <-
$$\frac{1}{1}$$
 - exp(A_{hat} pop + $\frac{1.96}{1.96}$ * sqrt(V)); LCL

[1] -1.193867

[1] 0.1039328

We can also use the r package epiR

```
# create table for later
bp <- matrix(c(a, b, c, d), ncol = 2, byrow = TRUE)
epi.2by2(bp, method="cross.sectional")</pre>
```

	Outcome +	Outcome -	Total	Prev risk *
Exposed +	23	125	148	15.54 (10.11 to 22.40)
Exposed -	13	150	163	7.98 (4.31 to 13.25)
Total	36	275	311	11.58 (8.24 to 15.66)

Point estimates and 95% CIs:

Prev risk ratio	1.95 (1.02, 3.71)
Prev odds ratio	2.12 (1.03, 4.36)
Attrib prev in the exposed *	7.57 (0.40, 14.73)
Attrib fraction in the exposed (%)	48.68 (2.41, 73.01)
Attrib prev in the population *	3.60 (-1.87, 9.07)
Attrib fraction in the population (%)	31.10 (-4.04, 54.37)

Uncorrected chi2 test that OR = 1: chi2(1) = 4.337 Pr>chi2 = 0.037 Fisher exact test that OR = 1: Pr>chi2 = 0.050

Wald confidence limits

CI: confidence interval

st Outcomes per 100 population units