Chapitre 16

Dérivation

Table des matières

I :	Définition et premières propriétés	2
II	Théorème de Rolle et accroissements finis	5
III	Dérivées n-ièmes	8
IV	Fonctions à valeurs complexes	11

Première partie

Définition et premières propriétés

Dans ce paragraphe, f désigne une fonction définie sur un intervalle ouver non vide I à valeurs réelles.

Définition: Soit $a \in I$. On dit que f est <u>dérivable</u> en a si $\frac{f(x) - f(a)}{x - a}$ a une limite qui est finie quand $x \to a$.

Dans ce cas, cette limite est notée f'(a) et est appelée nombre dérivée de f en aOn dit que f est <u>dérivable sur I</u> si f est dérivable en tout $a \in I$.

L'application $I \longrightarrow \mathbb{R}$ $a \longmapsto f'(a)$ est la <u>dérivée de f</u> et est notée f'

Proposition:

f est dérivable en $a \iff f$ a un développement limité d'ordre 1 au voisinage de a

Proposition: Si f est dérivable en a alors f est continue en a.

Proposition: Soient f et g dérivables en a

- 1. f + g est dérivable en a et (f + g)'(a) = f'(a) + g'(a)2. $f \times g$ est dérivable en a et (fg)'(a) = f'(a)g(a) + f(a)g'(a)
- 3. Si $g(a) \neq 0$, alors $\frac{f}{g}$ est dérivable en a et

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{(g(a))^2}$$

Proposition: Soit f dérivable en a et g dérivable en f(a). Alors, $f \circ g$ est dérivable en a et

$$\left(g\circ f\right)'(a)=g'(f(a))f'(a)$$

Proposition: On suppose que f est bijective dérivable en a et $f'(a) \neq 0$.

3

Si f^{-1} est continue, alors f^{-1} est dérivable en f(a) et $\left(f^{-1}\right)'(f(a)) = \frac{1}{f'(a)}$

$$(f^{-1})'(f(a)) = \frac{1}{f'(a)}$$

Deuxième partie

Théorème de Rolle et accroissements finis

Théorème (Théorème de Rolle): Soit $f:[a,b]\to\mathbb{R}$ continue sur [a,b] et dérivable sur]a,b[. On suppose que f(a)=f(b). Alors,

Définition: On dit que f présente un <u>maximum local</u> en a s'il existe $\eta>0$ tel que

$$\forall x \in]a - \eta, a + \eta[, f(x) \le f(a)]$$

et un minimum local en a s'il existe $\eta > 0$ tel que

$$\forall x \in]a - \eta, a + \eta[, f(x) \geqslant f(a)]$$

Un extremum local est un minimum local ou un maximum local.

Proposition: Soit $a \in I$ tel que f(a) est un extremum local de f où f est dérivable en a. Alors, f'(a) = 0

Définition: Soit f dérivable et $a \in I$. On dit que a est un <u>point critique</u> de f si f'(a) = 0. On dit que f(a) est une <u>valeur critique</u>

Théorème (Théorème des accroissements finis): Soit $f:[a,b]\to\mathbb{R}$ continue sur [a,b] et dérivable sur]a,b[. Alors, il existe $c\in]a,b[$ tel que

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

II

Proposition: Soit $f: I \to \mathbb{R}$ dérivable avec I un intervalle non vide.

- 1. f est croissante sur $I \iff \forall x \in I, f'(x) \ge 0$

- 2. f est décroissante sur $I \iff \forall x \in I, f'(x) \leqslant 0$ 3. $\forall x \in I, f'(x) > 0 \implies f$ strictement croissante 4. $\forall x \in I, f'(x) < 0 \implies f$ strictement décroissante
- 5. f constante $\iff \forall x \in I, f'(x) = 0$

Théorème (Théorème de la limite de la dérivée): Soit $f: I \to \mathbb{R}$ continue (sur I), $a \in I$. On suppose f dérivable sur $I \setminus \{a\}$ et que $\lim_{x \to a} f'(x)$

existe.

Alors,

$$\frac{f(x) - f(a)}{x - a} \xrightarrow[\neq]{x \to a} x \xrightarrow[\neq]{\lim} a f'(a)$$

Proposition: Soit $f:I\to\mathbb{R}$ dérivable. On suppose qu'il existe $M\in\mathbb{R}$

$$\forall x \in I, |f'(x)| \leqslant M$$

Alors f est M-lipschitzienne sur I.

Troisième partie

Dérivées *n*-ièmes

Définition: On dit que f est une fois dérivable si f est dérivable. Dans ce cas, on note $f^{(1)}$ la fonction f'.

Pour $n \in \mathbb{N}_*$, on dit que f est <u>dérivable</u> n fois si f est dérivable n-1 fois et $f^{(n-1)}$ est dérivable une fois. Dans ce cas, $f^{(n)} = (f^{(n-1)})'$.

Remarque (Convention):

$$f^{(0)} = f$$

Définition: f est de <u>classe</u> \mathscr{C}^n si f est dérivables n fois et $f^{(n)}$ est conti-

Proposition: Soit f dérivable n fois et $k \leq n$. Alors f est dérivables k fois et $f^{(n)} = \left(f^{(k)}\right)^{(n-k)}$

Proposition: Soit f et g deux fonctions dérivables n fois en a. Alors, f+g est dérivable n fois en a et

$$(f+g)^{(n)}(a) = f^{(n)}(a) + g^{(n)}(a)$$

 $(f+g)^{(n)}\,(a)=f^{(n)}(a)+g^{(n)}(a)$ Si f et g sont de classe $\mathscr C^n$, alors, f+g est de classe $\mathscr C^n$

Proposition (Leibniz): Soient f et g dérivables n fois en a. Alors, $f \times g$

$$(*): \qquad (f\times g)^{(n)}(a)=\sum_{k=0}^n\binom{n}{k}f^{(n)}(a)g^{(n-k)}(a)$$
 Si f et g sont de classe $\mathscr C^n$ alors $f\times g$ est de classe $\mathscr C^n$.

Proposition: Soient f et g dérivables n fois (resp. de classe \mathscr{C}^n). On suppose $g(a)\neq 0$. Alors, $\frac{f}{g}$ est dérivables n fois (resp. \mathscr{C}^n) en a.

Proposition: Soit f dérivable n fois en a et g dérivable n fois en f(a) (resp. f et g de classe \mathscr{C}^n). Alors, $g \circ f$ est dérivable n fois en a (resp. de classe \mathscr{C}^n).

Définition: On dit que f est de classe \mathscr{C}^{∞} si f est de classe \mathscr{C}^n pour tout $n \in \mathbb{N}$, i.e. f est dérivable une infinité de fois.

Proposition (formule de Taylor avec reste intégral): Soit $f: I \to \mathbb{R}$ de

classe
$$\mathscr{C}^{n+1}$$
 et $a \in I$. Alors
$$(*) \qquad \forall x \in I, f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \int_a^x f^{(n+1)}(t) \frac{(x-t)^n}{n!} dt$$

Proposition (Inégalité de Taylor-Lagrange): Soit $f:I\to\mathbb{R}$ de classe \mathscr{C}^{n+1} et $M\in\mathbb{R}$ tel que

$$\forall x \in I, \left| f^{(n+1)}(x) \right| \leqslant M$$

Alors, pour tout $a \in I$,

ur tout
$$a \in I$$
,
$$\forall x \in I, \left| f(x) - \sum_{k=0}^{n} \frac{(x-a)^k}{k!} f^{(k)}(a) \right| \leq M \frac{|x-a|^{n+1}}{(n+1)!}$$

10

Quatrième partie Fonctions à valeurs complexes

 $\begin{array}{ll} \textbf{D\'efinition:} & \text{Soient } f:I\to\mathbb{C},\, (I \text{ intervalle de } \mathbb{R}) \text{ et } a\in I.\\ f \text{ est } \underline{\text{d\'erivable en } a} \text{ si } \lim_{\substack{x\longrightarrow\\ \neq}} a\frac{f(x)-f(a)}{x-a}\in\mathbb{C} \end{array}$

Proposition:

$$f$$
 est dérivable en $a\iff \mathfrak{Re}(f)$ et $\mathfrak{Im}(f)$ sont dérivables en a Dans ce cas, $f'(a)=\mathfrak{Re}(f)'(a)+i\mathfrak{Im}(f)'(a)$

Proposition: La somme, le produit, de fonctions dérivables sont dérivables; le quotient également si le dénominateur ne s'annule pas.

Proposition: idem avec les dérivées n-ièmes

Remarque (Attention \triangle):

Le théorème de Rolle n'est plus vraie.

$$f: \mathbb{R} \longrightarrow \mathbb{C}$$
$$t \longmapsto e^{it}$$

$$f(0)=f(2\pi)=1$$
 f est continue sur $[0,2\pi]$ et dérivable sur $]0,2\pi[$ $\forall t,f'(t)=ie^{it}\neq 0$

Proposition: La formule de Taylor avec reste intégral et l'inégalité de Taylor-Lagrange sont aussi vrais dans $\mathbb C$. \square