微分方程测验

一,	客观题.	(毎题5分	分,	共60分
1,	下列给定的	的方程中,	不是	微分方

程的是()

A.
$$xy' = 2y$$

A.
$$xy' = 2y$$
 B. $x^2 + y^2 = C^2$ C. $y'' + y = 0$ D. $y'' + y^2 = 0$

C.
$$y'' + y = 0$$

D.
$$y'' + y^2 = 0$$

2、微分方程 $y' - y \cot x = 0$ 的通解为 ()

A.
$$y = C\cos x$$
 B. $y = C\sin x$ C. $y = C\tan x$ D. $y = C\csc x$

B.
$$v = C \sin x$$

C.
$$v = C \tan x$$

D.
$$v = C \csc x$$

3、下列微分方程是线性方程的是()

A.
$$\frac{dy}{dx} = \frac{y}{x}$$

A.
$$\frac{dy}{dx} = \frac{y}{x}$$
 B. $y' + y = y^2 \cos x$ C. $y' = y^3 + \sin x$ D. $y'^2 + 6y' = 1$

$$C. \quad y' = y^3 + \sin x$$

D.
$$y'^2 + 6y' = 1$$

4、以下函数组线性无关的是()

A.
$$e^{x}$$
. e^{x+1}

B.
$$x^2, 3x^2$$

A.
$$e^{x}, e^{x+1}$$
 B. $x^{2}, 3x^{2}$ C. $\sin^{2} x, \sin x$ D. $\ln x, \ln x^{2}$

D.
$$\ln x, \ln x^2$$

5、设线性无关的函数 y_1, y_2 与 y_3 都是二阶线性非齐次方程 y'' + P(x)y' + Q(x)y = f(x)

的解, C_1, C_2 为任意常数,则方程的通解为()

A.
$$C_1 y_1 + C_2 y_2 + y_3$$

B.
$$C_1 y_1 + C_2 y_2 + (C_1 + C_2) y_3$$

C.
$$C_1 y_1 + C_2 y_2 - (1 + C_1 + C_2) y_3$$

C.
$$C_1 y_1 + C_2 y_2 - (1 + C_1 + C_2) y_3$$
 D. $C_1 y_1 + C_2 y_2 + (1 - C_1 - C_2) y_3$

6、设常数 p,q满足 $p^2-4q=0, p\neq 0$,则微分方程 y''+py'+qy=0 的通解为 ()

$$A. \quad v = Ce^{-\frac{p}{2}x}$$

$$B. \quad y = Cxe^{-\frac{p}{2}x}$$

A.
$$y = Ce^{-\frac{p}{2}x}$$
 B. $y = Cxe^{-\frac{p}{2}x}$ C. $y = (C_1 + C_2x)e^{-\frac{p}{2}x}$ D. $y = C_1 + C_2x$

D.
$$y = C_1 + C_2 x$$

8、以函数 $y = e^x (C_1 \sin x + C_2 \cos x)$ (C_1, C_2 为任意常数) 为通解的二阶常系数线性齐次

9、 $y'' + py' + qy = P_m(x)e^{\lambda x}$ 的一个特解可设为 $y^* = x^kQ_m(x)e^{\lambda x}$,假设 λ 不是特征方程的

根,则k= .

10、微分方程 y'' - 2y' - 3y = 3x + 5 的一个特解为 .

11、方程 $y'' = e^{3x} + \sin x$ 的通解为

12、二阶常系数齐次线性方程的一个特解为 $y = xe^{2x}$,则此微分方程为______

二、计算题. (共40分)

1、(10 分) 求微分方程
$$\frac{dy}{dx} = x^2 \tan y$$
 的通解

2、(10 分) 求微分方程
$$\frac{dy}{dx} = \frac{y}{2x - y^2}$$
 的通解.

3、(10 分) 求微分方程
$$y'' - y' - 6y = 0$$
, 满足初始条件 $y(0) = 2$, $y'(0) = 1$ 的特解.

4、(10分) 求微分方程
$$y'' + 2y' + y = (x^2 - 1)e^{-x}$$
 的通解.