

Compétition Kaggle "Spaceship Titanic"

kaggle

Sommaire

- 1. Contexte du Projet
- 2. Gestion de Projet
- 3. Données Utilisées
- 4. Présentation du dataset
- 5. Exploration des Données
- 6. Processus de Préparation des Données
- 7. Analyse des Données
- 8. Modélisation
- 9. Résultats et Discussion
- 10. Soumission Kaggle
- 11. Difficultés Rencontrées
- 12. Conclusion
- 13. Perspectives Futures
- 14. Questions et Réponses
- 15. Références

Contexte du Projet

01

DESCRIPTION DE L'UNIVERS FICTIF DU SPACESHIP TITANIC:

- Voyage vers TRAPPIST-1e
- Transport dimensionnel des passagers suite à un accident

02

OBJECTIF DE LA COMPÉTITION KAGGLE:

- Prédire le transport des passagers
- Analyse des données passagers

03

IMPORTANCE ET PERTINENCE DU PROJET:

- Application techniques Data
 Science
- Compétences en :
 - Exploration de données
 - Préparation des données
 - Modélisation

Gestion de projet

Organisation du Travail:

Répartition des tâches: Microsoft To Do

Documentation:

Lecture de cours, documentation d'outils utilisés

Données utilisées

PRÉSENTATION DU DATASET:

• Nombre d'entrées: Train : 8693 Test : 4277

• Nombre de colonnes: 14

	Passengerld	HomePlanet	CryoSleep	Cabin	Destination	Age	VIP	RoomService	FoodCourt	ShoppingMall	Spa	VRDeck	Name	Transported
0	0001_01	Europa	False	B/0/P	TRAPPIST-1e	39.0	False	0.0	0.0	0.0	0.0	0.0	Maham Ofracculy	False
1	0002_01	Earth	False	F/0/S	TRAPPIST-1e	24.0	False	109.0	9.0	25.0	549.0	44.0	Juanna Vines	True
2	0003_01	Europa	False	A/0/S	TRAPPIST-1e	58.0	True	43.0	3576.0	0.0	6715.0	49.0	Altark Susent	False
3	0003_02	Europa	False	A/0/S	TRAPPIST-1e	33.0	False	0.0	1283.0	371.0	3329.0	193.0	Solam Susent	False
4	0004_01	Earth	False	F/1/S	TRAPPIST-1e	16.0	False	303.0	70.0	151.0	565.0	2.0	Willy Santantines	True

Exploration des données

	Age	RoomService	FoodCourt
count	8514.000000	8512.000000	8510.000000
mean	28.827930	224.687617	458.077203
std	14.489021	666.717663	1611.489240
min	0.000000	0.000000	0.000000
25%	19.000000	0.000000	0.000000
50%	27.000000	0.000000	0.000000
75%	38.000000	47.000000	76.000000
max	79.000000	14327.000000	29813.000000

	ShoppingMall	Spa	VRDeck
count	8485.000000	8510.000000	8505.000000
mean	173.729169	311.138778	304.854791
std	604.696458	1136.705535	1145.717189
min	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000
50%	0.000000	0.000000	0.000000
75%	27.000000	59.000000	46.000000
max	23492.000000	22408.000000	24133.000000

STATISTIQUES ET INFORMATIONS

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8693 entries, 0 to 8692
Data columns (total 14 columns):
                 Non-Null Count Dtype
    Column
                 _____
    PassengerId 8693 non-null object
    HomePlanet
                                object
                 8492 non-null
                                object
    CryoSleep
                 8476 non-null
    Cabin
                 8494 non-null
                                object
    Destination 8511 non-null object
                 8514 non-null float64
    Age
    VIP
                                object
                 8490 non-null
    RoomService 8512 non-null
                                float64
   FoodCourt
                 8510 non-null
                                float64
    ShoppingMall 8485 non-null
                                float64
10 Spa
                 8510 non-null
                                float64
11 VRDeck
                 8505 non-null
                                float64
                 8493 non-null
                                object
12
   Name
13 Transported 8693 non-null
                                bool
dtypes: bool(1), float64(6), object(7)
memory usage: 891.5+ KB
```

DISTRIBUTION: VARIABLES NUMÉRIQUES

Distribution: Transported

PROCESSUS PRÉPARATION DES DONNÉES

Séparation de Cabin en Deck, Cabin_num, Side.

Remplacement des valeurs manquantes

- Cabin_num : la valeur la plus courante
- Age: la médiane
- Variables de dépenses : zéro
- Colonnes catégorielles : le mode

X	X	Υ	Z
	1	0	1
<u>'</u>	1	1	0
Z	0	0	0

Encodage des variables catégorielles

ANALYSE DES DONNÉES

MATRICE DE CORRÉLATION

- CRYOSLEEP ET TRANSPORTED
 : CORRÉLATION MODÉRÉE
 POSITIVE (0.46)
- VIP ET AUTRES DÉPENSES : FAIBLES CORRÉLATIONS NÉGATIVES

DISTRIBUTION DES DÉPENSES EN FONCTION DU STATUT VIP

MODÉLISATION

CHOIX DES MODÈLES:

Régression Logistique:

- Modèle de classification binaire
- Prédit des probabilités
- Interprétabilité

Forêt Aléatoire (Random Forest): Corrige le surapprentissage

Robustes aux valeurs aberrantes

Support Vector Machine (SVM)

RBF:
Maximisation de la marge

Relations non-linéaires

RÉSULTATS ET DISCUSSION

MÉTRIQ	UES	Regre Iogisti		Random	Forest	SVM	
		Valeurs observées		Valeurs observées		Valeurs observées	
Matrice de	Valeurs	676	185	730	131	684	177
confusion	prédites	209	669	221	657	184	694
Taux de bonne classification		0,773		0,798		0,792	
Rappel(Ser	nsibilité)	0,762		0,748		0,790	
Specif	ité	0,785		0,848		0,794	

COURBE ROCETAUC

• Régression logistique: 0.862

• Random Forest: 0.877

• SVM: 0.878

SOUMISSION KAGGLE

- Prétraitement des Données de Test
- Utilisation du modèle SVM
- Création du fichier de soumission au format requis par Kaggle.
- Résultats :

JGelo

881

DIFFICULTÉS RENCONTRÉES

- Évaluation des modèles
 - Implémentation des formules
 - Compréhension des résultats obtenues
- Planification et organisation
 - Surestimation du temps mise à disposition
 - Manque d'intensité de travail
- Adaptation et flexibilité
 - Ajustement des méthodes de cours

CONCLUSION

Exploration et Préparation des Données

Implémentation et évaluation de plusieurs modèles

Évaluation des Performances

Soumission Kaggle

PERSPECTIVES FUTURES

Amélioration des Modèles

Analyse des Erreurs

Création de Nouvelles Caractéristiques Développement Professionnel

MERCI POUR VOTRE ATTENTION!

QUESTIONS ET RÉPONSES

RÉFÉRENCES

- Kaggle. Kaggle: Your machine learning and data science community. https://www.kaggle.com, 2010.
- M. Servajean S. Lèbre, A. Sallaberry. Rentrée m1 miashs septembre 2023, 2023.
- Ryan Holbrook Addison Howard, Ashley Chow. Spaceship titanic, 2022.
- C. Trottier and M. Amico. Régression logistique et modèles log-linéaires, 2024. Cours de Master MIASHS.
- Sophie Lèbre Marine Demangeot. Classification supervisée et non supervisée. Application d'éléments du cours.
- Project Jupyter. Jupyter notebook, 2014.
- Microsoft Corporation. Microsoft to do, 2017.
- Gusthema. Spaceship titanic with tfdf, 2023.
- Wikipedia contributors. Pearson correlation coefficient.
- Maximilien Servajean. Random forest tp, 2023.
- Wes McKinney. Pandas.
- Travis E. Oliphant. Numpy.
- David Cournapeau. Scikit-learn.
- Michael Droettboom John Hunter. Matplotlib.
- Michael Waskom. Seaborn.
- eliot robot Gusthema. spaceship-titanic-with-tfdf.ipynb, 2022.
- Gwenaël Richomme Catherine Trottier Sandra Bringay, Sophie Lèbre. Introduction à la science des données. Application d'éléments du cours.
- Pierre Lafaye De Micheaux. Analyse de données multidimensionnelles. Application d'éléments du cours.
- Forum : Kaggle competition spaceship titanic. Forum de discussion.
- Stackoverflow. Pour l'explication d'erreurs, debugging, et propositions de solutions de code .