

Model Development Phase Template

Date	8 July 2024	
Team ID	739677	
Project Title	FetalAI: Using Machine Learning To Predict And Monitor Fetal Health	
Maximum Marks	4 Marks	

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

Random Forest:

Model Building

Random Forest

```
[ ] Rf_model = RandomForestClassifier()
   Rf_model.fit(x_train_smote, y_train_smote)
   Rf_model_pred = Rf_model.predict(x_test)
   print(accuracy_score(y_test, Rf_model_pred))
```

• 0.9435736677115988

Decision Tree:

Decision Tree

```
[ ] DT_model = DecisionTreeClassifier()
    DT_model.fit(x_train_smote, y_train_smote)
    DT_model_pred = DT_model.predict(x_test)
    print(accuracy_score(y_test, DT_model_pred))
### 0.9216300940438872
```

Logistic Regression:

Logistic Regression

```
[ ] LR_model = LogisticRegression()
    LR_model.fit(x_train_smote, y_train_smote)
    LR_model_pred = LR_model.predict(x_test)
    print(accuracy_score(y_test, LR_model_pred))

    0.8605015673981191
```

K- Nearest Neighbors:

✓ K-Nearest Neighbors

```
KNN_model = KNeighborsClassifier()
KNN_model.fit(x_train_smote, y_train_smote)
KNN_model_pred = KNN_model.predict(x_test)
print(accuracy_score(y_test, KNN_model_pred))
```

• 0.9153605015673981

Model Validation and Evaluation Report:

Model	Classification Report	Accura cy	Confusion Matrix
Random Forest	Model Building Random Forest Rf_model = RandomForestClassifier() Rf_model.fit(x_train_smote, y_train_smote) Rf_model.pred = Rf_model.predict(x_test) print(accuracy_score(y_test, Rf_model_pred)) 0.9435736677115988	94%	cm = confusion_matrix(y_test, Rf_model_pred) disp = ConfusionMatrixDisplay(confusion_matrix=cm) disp.plot() csklearn.metrics_plot.confusion_matrix.ConfusionMatrixDisplay at 0x7899dc8dd660> - 400 - 300 - 200 2 Predicted label
Decision Tree	<pre></pre>	92%	cm = confusion_matrix(y_test, DT_model_pred) disp = ConfusionMatrixDisplay(confusion_matrix=cm) disp.plot() csklearn.metricsplot.confusion_matrix.ConfusionMatrixDisplay at 0x7899dc8d -400 -300 200 100 1 2 Predicted label
Logistic Regressi on	<pre> ✓ Logistic Regression [] LR_model = LogisticRegression() LR_model.fit(x_train_smote, y_train_smote) LR_model_pred = LR_model.predict(x_test) print(accuracy_score(y_test, LR_model_pred)) 3 0.8605015673981191 </pre>	86%	confusion_matrix(y_test, IR_model_pred) disp = ConfusionMatrixOtsplay(confusion_matrixcon) disp.plot() csklearn.metricsplot.confusion_matrix.ConfusionMatrixOtsplay at 8x78994ceam820) - 400 - 350 - 300 - 250 - 200 - 150 - 100 - 50 0 1 2 Predicted label

