- **Theorem.** Let $V \subset \mathfrak{F}(\mathbb{R}, \mathbb{R})$ be the subspace of the space of \mathbb{R} -valued functions on \mathbb{R} spanned by the
- ² functions $\sin(x)$ and $\cos(x)$. Let $f \in V$.
- Then $\forall a \in \mathbb{R} : g(x) = f(x+a) \in V$
- 4 Proof. Since $f \in V$, then $\exists (m, n \in \mathbb{R}) : m \sin(x) + n \cos(x)$.
- Therefore, $g(x) = f(x+a) = m\sin(x+a) + n\cos(x+a)$.
- 6 Suppose n = 0.
- Therefore, $g(x) = m\sin(x+a) = (m\cos(a))\sin(x) + (m\sin(a))\cos(x)$. Since $m\sin(a)$ and $m\cos(a)$ are in
- \mathbb{R} , then $g(x) \in V$.

12

- 9 Suppose now that $n \neq 0$.
- Let $\phi \in \mathbb{R}$ be such that $\cos(\phi) = \frac{m}{\sqrt{m^2 + n^2}}$ and $\sin(\phi) = \frac{n}{\sqrt{m^2 + n^2}}$. Since $\cos(\phi) < 1$, such ϕ exists.
- Thus, $g(x) = \sqrt{m^2 + n^2}(\sin(x+a)\cos(\phi) + \cos(x+a)\sin(\phi))$. Hence, $g(x) = \sqrt{m^2 + n^2}(\sin(x+(a+\phi)))$.
- But then $g(x) = (\sqrt{m^2 + n^2}\cos(a + \phi))\sin(x) + (\sqrt{m^2 + n^2}\sin(a + \phi))\cos(x) \in V$.
- Hence, $\forall a \in \mathbb{R} : g(x) \in V$, as required.