LOGIKA I RACHUNEK ZDAŃ

ZDANIA PROSTE

Zdanie	Symbol
10 jest liczbą parzystą	p
7 jest liczbą pierwszą	q
13 lutego jest sobota	r

SPÓJNIKI ZDANIOWE

Zapis	Nazwa	Symbol
nieprawda, że	negacja	$\neg(\sim)$
lub	alternatywa	V
i	koniunkcja	\wedge
Jeżeli , to	implikacja	\Rightarrow
wtedy i tylko wtedy, gdy	równoważność	\Leftrightarrow

HIERARCHIA SPÓJNIKÓW

ZDANIA ZŁOŻONE

Zapis słowny Jeżeli 10 jest liczba parzystą to 13 lutego jest sobota

$$p \Rightarrow q$$
.

Jeżeli 10 jest liczba parzystą i 7 jest liczba pierwszą to 13 lutego jest sobota

$$(p \land q) \Rightarrow r.$$

ZDANIA (FORMUŁY) POPRAWNIE ZBUDOWANE

Spójniki zdaniowe (operatory, znaki działań) są jedno, jak np. \neg oraz dwuargumentowe, jak:

$$\land, \lor, \Leftrightarrow, \Rightarrow.$$

Oznacza to, że zdania poprawnie zbudowane to takie, w których spójniki operują na odpowiedniej liczbie argumentów (zdań).

Zdania niepoprawnie zbudowane:

$$p\neg p, p \Rightarrow \Rightarrow q, p \land \lor q.$$

TABLICE WARTOŚCI LOGICZNYCH DLA POSZCZEGÓLNYCH OPERATORÓW LOGICZNYCH

Negacja	
p	$\neg p$
0	1
1	0

	A 14 a a 4 a		
А	Alternatywa		
p	q	$p \lor q$	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Koniunkcja		
q	$p \wedge q$	
0	0	
1	0	
0	0	
1	1	

Implikacja		
p	q	$p \Rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

Równoważność		
p	q	$p \Leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

PRAWA LOGIKI (PRZEKSZTAŁCANIA FORMUŁ)

Prawa przemienności

$$p \land q \Leftrightarrow q \land p; \quad p \lor q \Leftrightarrow q \lor p$$

Prawa łączności

$$p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r; \quad p \vee (q \vee r) \Leftrightarrow (p \vee q) \vee r$$

Prawo rozdzielności mnożenia względem dodawania

$$(p \lor q) \land r \Leftrightarrow (p \land r) \lor (q \land r)$$

Prawo rozdzielności dodawania względem mnożenia

$$(p \land q) \lor r \Leftrightarrow (p \lor r) \land (q \lor r)$$

Prawa powtórzeń

$$p \land p \land p \land \cdots \land p \Leftrightarrow p; \quad p \lor p \lor p \lor \cdots \lor p \Leftrightarrow p$$

Prawa de Morgana

$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q; \quad \neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

PRZYKŁAD

$$((p \lor q) \land \neg p) \Leftrightarrow (\neg p \lor q); \quad (p \Rightarrow q) \Leftrightarrow (\neg p \lor q).$$

PRAWA (TAUTOLOGIE, SPRZECZNOŚCI)

Zdania złożone, które są zawsze prawdziwe, niezależnie od wartości logicznych zmiennych zdaniowych $p,\ q$ nazywamy tautologiami.

$$p \lor \neg p \equiv 1; \ ((p \Rightarrow p) \Rightarrow q) \Leftrightarrow q \equiv 1.$$

Zdaniem sprzecznym (sprzecznością) nazywamy zdanie złożone, które jest zawsze fałszywe.

$$p \land \neg p \equiv 0$$
: $\neg (p \lor \neg p) \equiv 0$.

PREDYKATY

Predykat umożliwia w skrótowy, symboliczny sposób zapisywać zdania wyrażające właściwości i/lub relacje o prawdziwości. Przykładowo zapis P(x) oznacza, że obiekt x spełnia właściwość P(.) np. tę, że x=3 co zapisujemy:

$$P(x) = [x = 3].$$

Predykaty jedno-argumentowe:

$$P(x) = [Q(x) \land U(x)], P(x) = [pije mleko], P(x) = [jest zielony].$$

Predykaty wielo-argumentowe:

$$P(x_1, x_2, \cdots, x_n)$$
.

PRZYKŁADY

$$P(x, y, z) = [x + y = z], P(x, y) = [x > y],$$

P(Janek, Zosia) = [Janek jest bratem Zosi],

$$P(V, x, y, z) = [V = xyz].$$

KWANTYFIKATORY

 $\forall x$ - dla każdego x

 $\exists x$ - istnieje x

 $\exists !x$ - istnieje jeden x

Pozwalają oddać charakter właściwości obiektu opisywanego predykatem P(x)

PRZYKŁAD

$$\forall x \in R[x+0=x], \quad \exists x \in N[x=x], \quad \neg \exists x \in N[x<0],$$

 $\exists x \in R[x < 0], \ \forall x \in \text{zbi\'or kot\'ow } [x \text{ pije mleko}],$

 $\forall x \in \text{zbi\'or szpak\'ow } [x \text{ jest ptakiem}],$

 $\forall x \in \text{zbi\'or dzieci } \exists y \in \text{zbi\'or rodzic\'ow } [x \text{ jest dzieckiem } y].$

PRAWA PRZEKSZTAŁCANIA

$$\neg [(\forall x P(x))] \Leftrightarrow \exists x [\neg P(x)]$$

$$\neg [(\exists y Q(y))] \Leftrightarrow \forall y [\neg Q(y)]$$

$$\neg (\exists x \forall y [y > x]) \Leftrightarrow (\forall x \exists y [y \leqslant x]).$$

REGUŁY WNIOSKOWANIA

Modus ponens $p \Rightarrow q$

Modus tollens $\neg p \Rightarrow \neg q$

Zasada rezolucji $(p \Rightarrow q \land q \Rightarrow r) \Rightarrow (p \Rightarrow r)$.

SCHEMATY WNIOSKOWANIA

Wnioskowanie naturalne (zasada modus ponens)

$$p \Rightarrow q$$

Jeżeli p jest prawdą, to q jest zawsze prawdą.

PRZYKŁAD

p – dzisiaj jest niedziela

q – mam wolny dzień

r – jadę na ryby

Jeżeli prawdą jest $p \Rightarrow q$ oraz jeżeli prawdą jest, że $q \Rightarrow r$, zatem oznacza to fakt, że jadę na ryby.

Sprowadzanie do sprzeczności (Zasada rezolucji)

$$(p \Rightarrow q \land q \Rightarrow r) \Rightarrow (p \Rightarrow r)$$

$$p \Rightarrow q \Leftrightarrow \neg p \lor q$$

$$(\neg p \lor q) \land (\neg q \lor r) \Leftrightarrow (\neg p \lor r) \Leftrightarrow (p \Rightarrow r)$$

$$(p \Rightarrow r) \Rightarrow (p \Rightarrow r) \Leftrightarrow 1; \quad a \Rightarrow a \Leftrightarrow \neg a \lor a \Leftrightarrow 1$$

SPOSOBY DOWODZENIA

Twierdzenia Pitagorasa.

Przyjmując następujące predykaty:

 $P(x) = \left[\right. x$ jest trójkątem prostokątnym o przeciw
prostokątnej Ci przyprostokątnych A
iB]

 $Q(x) = [\text{w trójkącie } x \text{ zachodzi: } A^2 = B^2 + C^2],$

rozważać możemy prawdziwość twierdzenia

$$\forall x P(x) \Rightarrow Q(x).$$

Wobec tego dowód twierdzenia sprowadza się do wykazania prawdziwości zdania typu implikacja:

$$P \Rightarrow Q$$
.

 $(P\Rightarrow Q$ jest prawdą wówczas, gdy Pi Qsą prawdziwe, bądź gdy Pjest fałszem)

Matematyka Dyskretna – Wykład 3

Matematyka Dyskretna – Wykład 3

Dowód wprost:

Zakładając, że P jest prawdą, należy wykazać prawdę Q

Dowody nie wprost (przez kontrapozycję):

 $\neg Q \Rightarrow \neg P$ jest równoważne $P \Rightarrow Q,$ należy zatem przyjmując za prawdę $\neg Q,$ wykazać prawdę $\neg P.$

PRZYKŁAD

Udowodnić, że jeśli liczba n^2 jest parzysta, to n jest też liczbą parzystą

 $P(n) = [n^2 \text{ jest liczbą parzystą}],$

Q(n) = [n jest liczbą parzystą]

 $([n^2 \text{ jest liczbą parzystą}] \Rightarrow ([n \text{ jest liczbą parzystą}]) \Leftrightarrow (\neg [n \text{ jest liczbą parzystą}] \Rightarrow ([n^2 \text{ jest liczbą parzystą}])$

Ponadto

 $(\neg [n \text{ jest liczbą parzystą}] \Rightarrow n = 2k+1 \Rightarrow n^2 = 4k^2+4k+1 \Rightarrow \neg [n^2 \text{ jest liczbą parzystą}]$

Dowód przez sprowadzenie do sprzeczności:

Zakładając, że wykazanie iż $\neg Q \Rightarrow P$ prowadzi do sprzeczności, należy:

przyjmując fałszywość Qwykazać prawdziwość P,a tym samym przyjąć iż prawdą jest Q.

Należy pamiętać, że $P \Rightarrow Q$ jest prawdziwa m.in. gdy Q jest prawdziwe i P fałszywe.

Dowód indukcyjny:

Należy wykazać, że właściwość predykatu P(n) jest spełniona dla wszystkich liczb naturalnych począwszy od pewnego k, czyli $n \ge k$, $k, n \in N$.

Zasada indukcji matematycznej

Jeżeli istnieje taka liczba naturalna n_0 , że:

 $1^{o} P(n_0)$ jest zdaniem prawdziwym

 2° dla dowolnej liczby naturalnej $k \geqslant n_0$ jest prawdziwa implikacja

$$P(k) \Rightarrow P(k+1),$$

5

to P(n) jest zdaniem prawdziwym $\forall n \geq n_0$.

PRZYKŁAD

Wykaż, że
$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
.

Dowód indukcyjny:

$$1^{o}$$
 $n = 1$, wówczas $1 = \frac{1(1+1)}{2}$

$$2^o \ n=k,$$
wówczas $1+2+3+\ldots+k=\frac{k(k+1)}{2}$ (założenie indukcyjne),

to dla
$$n = k + 1$$

$$1+2+3+\ldots+k+(k+1)=\frac{(k+1)(k+2)}{2}$$
 (teza indukcyjna),

stąd

$$\frac{k(k+1)}{2} + (k+1) = \frac{(k+1)(k+2)}{2}$$

 ${\rm cnd.}$