

## 第十六讲

## 范式及无损分解

## \* 本 游 主 要 目 标

学完本讲后, 你应该能够了解:

- 1. 第二范式、第三范式、BC范式的定义,以及 范式之间的包含关系:
- 2. 对于一个关系模式, 判断其最高属于第几范式, 并使用基本的模式分解方法, 将1NF分解为2NF, 将2NF分解为3NF;
- 3. 分解的无损连接性和保持函数依赖性的概念;
- 4. 使用规范化方法设计数据库的逻辑结构时, 并不是要使得到的数据库模式都达到最高范 式, 而是还需要平衡查询效率和更新代价<sub>2</sub>。



内

二. 多值依赖

容

三. 范式: 4NF

提

四. 无损分解

五. 规范化回顾

乡区

六. 其它设计考虑





范式:2NF、

3NF#BCNF



- 1. 范式(Normal Forms)
- 》 范式的定义: 关系数据库中符合某一级别的 关系模式的集合。所谓"第几范式", 是表示 关系的某一种级别, R为第几范式就可以写成 R ( xNF
- 各范式之间的联系有 5NF ⊂ 4NF ⊂ BCNF ⊂ 3NF ⊂ 2NF ⊂ 1NF
- 并不总是需要达到最高范式



#### 2. 实例

例,有一个关系模式S-L-C (S#, SD, SL, C#, G), 其中S#为学生的学号, SD为学生所在系, SL为学生的 住处,并且每个系的学生住在同一个地方, C#为课程 号, G为成绩。这里键为 (S#, C#)。

#### 函数依赖有:



3. 第一范式 (INF)

第一范式 (First Normal Form, 简写为 1NF)

——如果一张表不含有多值属性(有时称为重复字段)和内部结构(比如记录类型)的列。则称该表为第一范式

- → 关系模式S-L-C(S#, SD, SL, C#, G) ∈ 1NF
- → 关系模式S-L-C存在更新异常、插入异常和删除异常



#### 4. 第二范式 (2NF)

第二范式 (Second Normal Form, 简称2NF)
—— 若R∈ INF, 且每一个非主属性完全函数依赖于
键.则R ∈2NF。



- > 分析: 存在非主属性对键的部分函数依赖
- 多 结果: S-L-C∈1NF. 但S-L-C ← 2NF
- > 分解: 将S-L-C分解为: S-L(S#, SD, SL), 和S-C(S#, C#, G)



#### 第二范式 (2NF)





- ◆ 分析: S-C的键为 (S#, C#), S-L的键为S#, 不存 在非主属性对键的部分函数依赖。
- ◆ 结果: S-C ← 2NF ; S-L ← 2NF
- ◆ 问题: S-C和S-L中消除了1NF 中的某些更新异常,但 仍然存在更新异常

9



#### . 第二范式 (2NF)

在S-L (S#, SD, SL) 和S-C (S#, C#, G) 中

- ☆ 一个学生修很多课程
- ☆ 一个学生转系
- ☆ 插入一个尚未选课的学 生信息
- ☆ 一个学生只选修了一门课,但现在决定不选了

**/** 

- ☆ 一个系有很多学生,且 同系学生住在一个地方
- ☆ 一个学生转系
- ☆ 一个新系创建但新生尚 未注册
- ☆ 一个系所有学生毕业了

结论: 2NF可以消除一些1NF中存在的更新异常, 但不能彻底消除更新异常 X

X

X

X



#### 5. 第三范式 (3NF)

第三范式 (Third Normal Form, 简称3NF)
—— 若R∈2NF, 且每一个非主属性不传递函数依赖

于键,则R∈3NF。





- 》分析: S-C的键为  $(S^{\sharp}, C^{\sharp})$  ,不存在非主属性对键的传递函数 依赖。S-L的键为 $S^{\sharp}$  存在非主属性对键的传递函数依赖 $S^{\sharp} \rightarrow SL$ 。
- > 结果: S-C ∈ 3NF ; S-L ∉ 3NF
- → 分解: 将S-L分解为: S-D (S#, SD) 和 D-L (SD, SL)



5. 第三范式 (3NF)

S-D D-L  $SD \longrightarrow SL$ 

- ➢ 分析: S-D的键为S#, D-L的键为SD, 不存在非 主属性对键的传递函数依赖。
- ▶ 问题:

S-D和D-L中消除了前面的更新异常了吗?

3NF存在更新异常吗?



5. 第三范式 (3NF)

在S-D (S#, SD) 和 D-L (SD, SL) 中:

- ☆ 一个系有很多学生,且
  同系学生住在一个地方
- ☆ 一个学生转系
- ☆ 一个新系创建但新生尚 未注册
- ☆ 一个系所有学生毕业了

- /
- **/**



结论: 3NF可以消除一些2NF中存在的更新异

常,



6. Boyce-Codd 范式 (BCNF)

Boyce-Codd 范式 (Boyce-Codd Normal Form, 简称 BCNF) ———— R∈INF, 且每一个决定因素都包含键,则R∈BCNF。

在S-D (S#, SD) 和 D-L (SD, SL) 中:

S-D ∈ BCNF, D-L ∈ BCNF





6. Boyce-Codd 范式 (BCNF)

例 关系模式STJ(S, T, J)中, S表示学生, T表示教师, J表示课程。每一教师只教一门课。每门课有若干教师, 某一学生选定某门课, 就对应一个固定的教师。

由语义可以得到函数依赖

$$T \rightarrow J$$
; (S, J)  $\rightarrow T$ ; (S, T)  $\rightarrow J$  键为 (S, J), (S, T)

#### 分析:

- (1) 没有非主属性,所以,不存在非主属性对键的部分与传递依赖。因此。 $STJ \in 3NF$ 
  - (2) 在 $T \rightarrow J$ 中,决定因素 T 不包含键,因此, $STJ \notin BCNF$

结论:并非所有的3NF都是BCNF

## \*

## 范式: 2NF、3NF和BCNF

#### 小结:



- ◆ 分析: S-C的键为 (S#, C#), 决定因素包含键;
   S-D的键为S#, 决定因素包含键;
   D-L的键为SD. 决定因素包含键。
- ◆ 结果: S-C ∈ BCNF, S-D ∈ BCNF, D-L ∈ BCNF 因此, S-L-C分解成了三个BCNF: S-C (S#, C#, G), S-D (S#, SD), D-L (SD, SL)。



如果一个模式属于BCNF,在函数 依赖的范畴内, 彻底消除了更新 异常吗?

如果一个模式属于BCNF,在数据 依赖的范畴内, 彻底消除了更新 异常吗?

Yes



No

其它的数据 依赖也会产 生更新异常



## 多值浓赖





### 值

### 依

#### 赖

#### 实例

关系模式TEACHING: 学校某一门课由多个教员讲授, 他们使用相同的一套参考书。每个教员可以讲授多门课程, 每种参考书可以供多门课程使用。

| 课程C | 教员T | 参考书B  |
|-----|-----|-------|
| 物理  | 李勇  | 普通物理学 |
|     | 王军  | 光学原理  |
|     |     | 物理习题集 |
| 数学  | 李勇  | 数学分析  |
|     | 张平  | 微分方程  |
|     |     | 高等代数  |
| 计算数 | 张平  | 数学分析  |
| 学   | 周峰  |       |

有函数 依赖 NO



### 值

#### 依

### 赖

#### 实例

| 课程C | 教员T | 参考书B   |
|-----|-----|--------|
| 物理  | 李勇  | 普通物理学  |
| 物理  | 李勇  | 光学原理 ) |
| 物理  | 李勇  | 物理习题集  |
| 物理  | 王军  | 普通物理学  |
| 物理  | 王军  | 光学原理   |
| 物理  | 王军  | 物理习题集  |
| 数学  | 李勇  | 数学分析   |
| 数学  | 李勇  | 微分方程   |
| 数学  | 李勇  | 高等代数   |
| 数学  | 张平  | 数学分析   |
| 数学  | 张平  | 微分方程   |
| 数学  | 张平  | 高等代数   |
|     |     |        |

- ★ 冗余
- ★ 某一课程增加一名教员
  - -- 必须插入多个元组
- ★ 某一门课要去掉一本参考书
  - 一 必须删除多个元组

因为存在
多值依赖



#### 赖

#### 2. 多值依赖的定义

设R(U) 是属性集U上的一个关系模式。X, Y, Z 是 U 的子集, 并且 Z = U-X-Y。关系模式R(U) 中 多值依赖X- $\to Y$ 成立,当且仅当对R(U) 的任一关系r, 给定的一对 (x,z) 值,有一组Y的值,这组值仅仅决定于x值而与z值无关。





值

依

赖

2. 多值依赖的定义

例 在关系模式TEACHING (C, T, B) 中





### 值

#### 依

#### 赖

#### 多值依赖的性质

- > 对称性
- > 传递性
- > 多值依赖的有效性与属性集的范围有关
- $\Rightarrow$  若 $X \rightarrow Y$ ,  $\pi Z = \emptyset$ , 则称 $X \rightarrow Y$  为平凡的 多值依赖。



# 范式:4NF



4NF的定义

关系模式 $R(U) \in INF$ ,如果对于每个非平凡多值 核 赖  $X \rightarrow \rightarrow Y$  (  $X \not\subset Y$  ) . X 都 含 有 键 . 则 称 R (U)  $\in 4NF_0$ 

#### > 定理

如果一个关系模式是4NF,则必为BCNF。

例 在关系模式TEACHING (C, T, B) 中, 存在非 平凡的多值依赖  $C \longrightarrow T$  和  $C \longrightarrow B$ , 键为 (C, T, B), 而C不是键, 因此, TEACHING ∉ 4NF。

将TEACHING分解为T1 (C. T)和T2 (C. B). 只 存在平凡的多值依赖  $C \rightarrow \rightarrow T$  和  $C \rightarrow \rightarrow B$ , 因此  $T1 \in \overline{4NF}$ ,  $T2 \in 4NF$ 



## 无损分解





### 损

分

解

》模式分解的属性等价性 —— 如果关系模式R(A)被分解 为关系模式 $R_1(A_1),R_2(A_2),...,\ R_n(A_n),$ 且

$$A = A_1 \cup A_2 \cup \ldots \cup A_n$$

则该分解是属性等价的分解

》模式分解的无损连接性 —— 如果关系模式R(A)被分解 为关系模式 $R_1(A_1), R_2(A_2), ..., R_n(A_n),$ 且

$$R= R_1 \bowtie R_2 \bowtie \ldots \bowtie R_n$$

则该分解是无损连接的分解





 $a_2$ 

结论: 满足属性等价且有冗余属性的分解 不一定具有无损连接性

 $b_1$ 

 $a_2$ 



## 规范化回顾





#### 规

さ化

回

厄顶

#### 1. 规范化过程

规范化过程是通过对关系模式的分解来实现的。





范

14

回

厄顶

#### 2. 模式分解

关系模式是五元组R (U, D, dom, F)。

#### 模式的分解包括三个方面:

- (1) 属性的分解
- (2) 函数依赖的分解
- (3) 关系的分解

#### 分解后产生的模式应与原模式等价:

- (1) 分解后子模式的属性集与原模式属性集相同
- (2) 保持函数依赖
- (3) 无损连接性



#### 见 范

化

回

厄贝

#### 3. 实例

有一个关系模式R (A, B, C), 存在函数依赖F= $\{A\rightarrow B, B\rightarrow C\}$ , 下面的几个分解中,哪一个最好?

$$\rho_1 = \{R_1 \ (A), R_2 \ (B), R_3 \ (C)\}$$
 $\rho_2 = \{R_4 \ (A, B), R_5 \ (A, C)\}$ 
 $\rho_3 = \{R_4 \ (A, B), R_6 \ (B, C)\}$ 
 $\rho_4 = \{R_5 \ (A, C), R_6 \ (B, C)\}$ 



#### 规

化

厄顶

#### 3. 实例

$$\rho_1 = \{R_1 \ (A) \ , R_2 \ (B) \ , R_3 \ (C) \}$$
 $\rho_2 = \{R_4 \ (A, B) \ , R_5 \ (A, C) \}$ 
 $\rho_3 = \{R_4 \ (A, B) \ , R_6 \ (B, C) \}$ 
 $\rho_4 = \{R_5 \ (A, C) \ , R_6 \ (B, C) \}$ 

| 分解      | 属性等价      | 保持无损连接性 | 保持函数依赖性 |
|---------|-----------|---------|---------|
| $ ho_1$ | $\sqrt{}$ | ×       | ×       |
| $ ho_2$ | $\sqrt{}$ |         | ×       |
| $ ho_3$ | $\sqrt{}$ |         |         |
| $ ho_4$ | $\sqrt{}$ | ×       | X       |



## 其它设计考虑





### 其 它 设 计 考 虑

- 》进行反规范化设计后, 需要采取措施, 处理可能出现的更新异常

## \* 本 游 主 要 目 标

学完本讲后。你应该能够了解:

- 1. 第二范式、第三范式、BC范式的定义,以及 范式之间的包含关系;
- 2. 对于一个关系模式, 判断其最高属于第几范式, 并使用基本的模式分解方法, 将1NF分解为2NF, 将2NF分解为3NF;
- 3. 分解的无损连接性和保持函数依赖性的概 念:
- 4. 使用规范化方法设计数据库的逻辑结构时, 并不是要使得到的数据库模式都达到最高范 式, 而是还需要平衡查询效率和更新代价。



#### **问**题讨论

1. 实际上,进行规范化的目的是为了避免更新 异常和提高更新代价;而有时规范化产生的 高范式会降低有些查询的代价。这种说法对 吗?你在设计数据库模式时,会采取什么方 法?

