Preprocessing

Year

- Dropped any rows with empty year value or out of range (year < 1921 or year > 2020).
- Replaced the **year** column with **yearsSinceCreation** column and replaced each value with (2020 value).
- The following code represents the previously explained operations:

```
# drop rows with invalid values or out of range (797 rows)

def cleanYear(songs):
    songs = songs.dropna(subset=['year'])

songs.loc[songs.year > 1921, 'year'] = 2020 - songs.year

songs = songs.rename(columns={'year': 'yearsSinceCreation'})

return songs
```

Removing rows with empty cells

- For each row with at least one empty cell we drop that row.
- It doesn't affect the data that much because the number of these rows is relatively small.
- The following code represents the previously explained operations:

```
56  def removeEmpty(songs):
57   for col in songs.columns:
58      songs = songs.dropna(subset=[col])
59   return songs
```

Dropping columns

- Dropping the "id" column because it shouldn't have any effect on the data.
- Dropping the "name" column because no strong effect exists.

- Dropping the "release_date" column because it has a lot of garbage data and it can be replaced with "yearsSinceCreation" column anyway.
- The following code represents the previously explained operations:

```
def dropCols(songs):
    songs = songs.drop(columns=['id', 'release_date'])
    songs = songs.drop(columns=['name', 'artists'])
    return songs
```

Removing song's duplicates

- If two or more songs have the same name and artists we consider them as one song and merge the other features.
- For each feature we take the average of their values.
- For binary features like "explicit" we round after taking the average.

■ The following code represents the previously explained operations:

```
# merging groups of songs with the same name and artists
32
     # taking mean values for the other columns
33
     def mergeDuplicates(songs):
34
35
         songs = songs.groupby(['artists', 'name'],
36
         as_index=False).agg({
              'valence':np.average,
37
              'yearsSinceCreation':np.average,
38
              'acoustioness':np.average,
39
40
             'danceability':np.average,
             'duration ms':np.average,
41
             'energy':np.average,
42
             'instrumentalness':np.average,
43
             'liveness':np.average,
44
             'loudness':np.average,
45
             'tempo':np.average,
46
             'speechiness':np.average,
47
              'explicit':np.average,
48
              'mode':np.average,
49
              'popularity':np.average
50
51
         songs.loc[:, 'explicit'] = round(songs.explicit)
52
53
54
         return songs
```

Reformatting the artists feature

- For each stringified artists list we unstringify it first.
- Using hashing we group each set of artists to one of 5 groups randomly with equal probability.
- We use one-hot-encoding on this categorical feature.
- We join the new 5 columns with the old data frame and remove the artists column.

■ The following code represents the previously explained operations:

```
15
     # drop rows with invalid values and destringify
16
     # the list of artists
     def cleanArtists(songs):
17
         print("clean artists")
18
19
         songs['artists'] =
20
         songs['artists'].apply(lambda x: x[1:-1].split(', ')
21
         if(type(x) == str and len(x)) else [])
         songs['artists'] =
22
         songs['artists'].apply(lambda x:
23
         list(map(lambda y: y[1:-1], x)) )
24
25
         encoder = ce.HashingEncoder(cols=['artists'],
26
         n_components=5, return_df=True, drop_invariant=True)
         df = encoder.fit_transform(songs['artists'],
27
28
         songs['popularity'])
29
         songs = df.join(songs)
         return songs
```

Features analysis

 Correlation between the features and the output

Correlation between top features

regression techniques

We used all features except id and name (and artists in some cases)

Regression with ridge

We examined it with multiple alphas [.01, .1 , 1 , 10] and polynomial degrees [1,2,3,4] , With the normalize flag to perform I2-norm

Results

```
merge duplicates songs (might take a while)
======= all selected features with degree 3 and alpha 0.01 =======
Co-efficients len: 1540
Co-efficients max: 36.517066899829864
Co-efficients min: -43.14532062823003
Intercept: 57.177
MSE: 99.645
MAE: 7.383
r2:0.784
execution time 9.45405125617981
```

```
======= all selected features except artists with degree 4 and anlpha 0.01 (current best fit) ======== Co-efficients len: 2380
Co-efficients max: 78.72859431061356
Co-efficients min: -334.60969731934983
Intercept: 53.567
MSE: 97.802
MAE: 7.246
r2:0.788
execution time 15.770998477935791
```

Regression with the top correlated features

First, we tried to get the top correlated features with the wanted output column and then we trained a linear regression model with them changing the alpha and the degree of the polynomial features

Results

```
======= top corr features with degree 3 and anlpha 0.01 ======== Co-efficients len : 35
Co-efficients max : 7.123153438405451
Co-efficients min : -8.101617640741996
Intercept :62.977
MSE :108.913
MAE :7.696
r2 :0.763
execution time  0.4050014019012451
```

Regression with the cross-validation

Training a model with all selected features with cross-validation with different Ks values and test with negative mean squared error and r2

Results

Training, validation, and testing

- Training: 70% of the dataset.
- Validation: k-fold validation where k=10.
- Testing: 30% of the dataset.

Conclusion

O The first intuition:

- We were assuming that the artists feature is the biggest factor by far.
- The release year is a respectful factor.
- Energy has more effect than accoustioness.

Conclusion After analyzing the data:

- Although artists are a big factor in songs popularity in real life, it doesn't help much to use them in this model, because there are too many artists and it's a categorical feature, so we have to group them into a small number of groups to use (one-hot-encoding) which doesn't produce the best results compared to higher degree regression with no artists feature.
- It turned out that the release year is the biggest factor we have, with absolute correlation of 87%.
- Accousticness comes in the second place with more effect than the energy and loudness.
- Any categorical feature with more than 2 values must be dealt with using methods like (one-hot-encoding).