Теория параллелилзма

Отчёт Оптимизированные библиотеки

Гольцев Никита Сергеевич, 21932

04.2023

1. Цели работы

Реализовать решение уравнение теплопроводности (пятиточечный шаблон) в двумерной области на равномерных сетках. Перенести программу на GPU используя директивы OpenACC. Произвести профилирование программы и оптимизацию кода. Сравнить время работы на CPU и GPU. Реализовать работу с cuBLAS и сравнить её с OpenACC.

2. Компилятор

pgc++

По началу я так же использовал рдсс, но потом переписал код с Си на С++

3. Использование проффилировщика

nsys (NVIDIA Nsight Systems)

4. Замер времени работы

Замер проводился при помощи chrone c++ и при помощи nvprof.

Время выполнения

1. Ha CPU onecore

	Время выполнения	Точность	Количество операций
128*128	0.1	9.8e-6	31028
256*256	1.8	9.8e-7	37299
512*512	23	9.8e-7	119934
1024*1024	-	-	-

2. Ha CPU multicore

	Время выполнения	Точность	Количество операций
128*128	0.4	9.8e-6	31028
256*256	3.6	9.8e-7	37299
512*512	20	9.8e-7	119934
1024*1024	149	9.8e-7	367897

3. На GPU (после оптимизации)

	Время выполнения	Точность	Количество операций
128*128	0.3	9.5e-7	31028
256*256	0.5	9.8e-7	37299
512*512	5.8	9.8e-7	119934
1024*1024		9.8e-7	367897

4. Сравнение результатов после оптимизации кода

5. Этапы оптимизации на GPU

- 1. Расспаралеливание циклов
- 2. Добавление функций для swap и модуля
- 3. Подсчёт ошибки на каждую итерацию отдельно
- 4. Добавить распаралеливание циклов при инициализации

6. Оптимизаци с OpenACC и cuBLAS

GPU c OpenACC

Размер сетки	Время выполнения	Точность	Кол-во итераций
128*128	232 мс	9.9998-e7	31081
256*256	840 мс	9.9998-e7	37913
512*512	4067 мс	9.9998-e7	120657
1024*1024	46658 мс	1.373-e6	367890

GPU c cuBLAS

Размер сетки	Время выполнения	Точность	Кол-во итераций
128*128	629 мс	9.9998-e7	31081
256*256	917 мс	9.9998-e7	37913
512*512	2349 мс	9.9998-e7	120657
1024*1024	25999 мс	1.373-e6	367890

Диограмма, наглядно показывающая разницу между OpenACC и cuBLAS

7. Вывод

Из сравнения OpenACC и cuBLAS можно зделать вывод, что cuBLAS даёт значительный прирост на любом размере сеток.