STATISTICAL LEARNING - MODERN INFERENCE Data Analysis

1 Prediction intervals

This exercise provides two data sets:

- 1. Low-dimensional dataset
- 2. High-dimensional dataset

For each dataset, it is provided both a training set (x_i, y_i) , i = 1, ..., n and a test set x_i^* , i = 1, ..., m. The goal is to provide a prediction interval $[l_i^*, u_i^*]$ for each (unknown) y_i^* of the test set.

Your predictions will be evaluated on both

1. Coverage

$$C = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\{y_i^* \in [l_i^*, u_i^*]\}$$

The target coverage is 90%. The closer to 90%, the better.

2. Average length

$$L = \frac{1}{m} \sum_{i=1}^{m} (u_i^* - l_i^*)$$

the shorter, the better.

2 Variable selection

This exercise provides two data sets:

- 1. Low-dimensional dataset
- 2. High-dimensional dataset

The goal is to select the "relevant" predictors for each dataset. Data were generated as

$$y = X\beta^0 + \varepsilon$$

with $S_0 = \{j : \beta_j^0 \neq 0\}$ and $N_0 = \{j : \beta_j^0 = 0\}$. Your selection \hat{S} will be evaluated on both true positive rate and false discovery rate:

TPR =
$$\frac{|S_0 \cap \hat{S}|}{|S_0|}$$
, FDR = $\frac{|N_0 \cap \hat{S}|}{|\hat{S}|}$