深層学習にふれてみよう

本教材を使用した際にはお手数ですが、下記アンケートフォームにご協力下さい。

https://forms.gle/cgej2DL5PvneRhCp8

統合教育機構 須藤 毅顕

深層学習を実践してみよう!!

基本的な全体の流れは前回の機械学習と同様

深層学習では、学習モデルにニューラルネットワークを用いる

深層学習の流れ

深層学習の流れ

ニューラルネットワークとは(軽く復習)

oが全てニューロン、繋がった線の数だけ数式(関数)が存在する。

使いたい変数の数を入力層のニューロンの数、出したい答えの数を出力層のニューロンの数にする

ニューラルネットワークとは(軽く復習)

oが全てニューロン、繋がった線の数だけ数式(関数)が存在する。

使いたい変数の数を入力層のニューロンの数、出したい答えの数を出力層のニューロンの数にする

アヤメのデータでの深層学習の実践

あやめのデータ

Iris Versicolor ブルーフラッグ

Iris Setosa ヒオウギアヤメ

変数4つ

がく片の長さ がく片の幅 花びらの長さ 花びらの幅

あやめのデータは100個、正解が2種類

まず演習の準備をしましょう

- 新規ファイル作成→iryoAIのディレクトリで"enshu4.py"
- ・作業場所をiryoAIに設定

4.txtの "1)アイリスデータを読み込む"の前半部分をコピーする

```
# 前半部分
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import rcParamsrc
Params['font.family'] ='sans-serif'
rcParams['font.sans-serif'] = ['Hiragino Maru Gothic Pro', 'Yu Gothic', 'Meirio']
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense
import osos.environ['KMP_DUPLICATE_LIB_OK']='True'
#後半部分
|iris_train2 = pd.read_csv('4-1.csv')
print(iris_train2)
|iris_train = pd.read_csv('4-1.csv').to_numpy()
print(iris_train)
|x_train = iris_train[ : , 0:4].astype('float')
|y_train = iris_train[:, 4:5].astype('int')
|iris_test = pd.read_csv('4-2.csv').to_numpy()
|x test = iris test[:, 0:4].astype('float')
y_test = iris_test[ : , 4:5].astype('int')
```

4.txtの"1)アイリスデータを読み込む"の前半部分

```
# 1)アイリスデータを読み込む
# 必要なライブラリのインポート
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import rcParams
rcParams['font.family'] ='sans-serif'
rcParams['font.sans-serif'] = ['Hiragino Maru Gothic Pro', 'Yu Gothic', 'Meirio']
```

#深層学習用のライブラリを取り込む from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers import Dense

以下のコード2行は本来必要ないが、anacondaでのOMP Abort エラーを防ぐために入れた import os os.environ['KMP_DUPLICATE_LIB_OK']='True'

tensorflowおよびkerasという深層学習ライブラリを使用

4.txtの "1)アイリスデータを読み込む"の後半部分をコピーする

```
# 前半部分
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import rcParamsrc
Params['font.family'] ='sans-serif'
rcParams['font.sans-serif'] = ['Hiragino Maru Gothic Pro', 'Yu Gothic', 'Meirio']
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense
import osos.environ['KMP_DUPLICATE_LIB_OK']='True'
#後半部分
|iris_train2 = pd.read_csv('4-1.csv')
print(iris_train2)
|iris_train = pd.read_csv('4-1.csv').to_numpy()
print(iris_train)
|x_train = iris_train[ : , 0:4].astype('float')|
|y_train = iris_train[:, 4:5].astype('int')
|iris_test = pd.read_csv('4-2.csv').to_numpy()
|x test = iris test[:, 0:4].astype('float')
y_test = iris_test[ : , 4:5].astype('int')
```

今回は学習用(4-1.csv)と検証用データ(4-2.csv)に分けて準備しています。順に読み込んで、特徴量(説明変数)と正解データ(目的変数)に分けます。

4-1.csv

4-2.csv

	А	В	С	D	Е	F
1	がく片の長さ	がく片の幅	花びらの長さ	花びらの幅	教師データー	アヤメの種類
2	5.1	3.5	1.4	0.2	0	ヒオウギアヤメ
3	4.9	3	1.4	0.2	0	ヒオウギアヤメ
4	4.7	3.2	1.3	0.2	0	ヒオウギアヤメ
5	4.6	3.1	1.5	0.2	0	ヒオウギアヤメ
6	5	3.6	1.4	0.2	0	ヒオウギアヤメ
7	5.4	3.9	1.7	0.4	0	ヒオウギアヤメ
8	4.6	3.4	1.4	0.3	0	ヒオウギアヤメ
9	5	3.4	1.5	0.2	0	ヒオウギアヤメ
10	4.4	2.9	1.4	0.2	0	ヒオウギアヤメ
11	4.9	3.1	1.5	0.1	0	ヒオウギアヤメ
12	5.4	3.7	1.5	0.2	0	ヒオウギアヤメ
13	4.8	3.4	1.6	0.2	0	ヒオウギアヤメ
14	4.8	3	1.4	0.1	0	ヒオウギアヤメ
15	4.3	3	1.1	0.1	0	ヒオウギアヤメ
16	5.8	4	1.2	0.2	0	ヒオウギアヤメ
17	5.7	4.4	1.5	0.4	0	ヒオウギアヤメ
18	5.4	3.9	1.3	0.4	0	ヒオウギアヤメ

1	Α	В	С	D	E	F
1	がく片の長さ	がく片の幅	花びらの長さ	花びらの幅	教師データー	アヤメの種類
2	5	3.5	1.3	0.3	0	ヒオウギアヤメ
3	4.5	2.3	1.3	0.3	0	ヒオウギアヤメ
4	4.4	3.2	1.3	0.2	0	ヒオウギアヤメ
5	5	3.5	1.6	0.6	0	ヒオウギアヤメ
6	5.1	3.8	1.9	0.4	0	ヒオウギアヤメ
7	4.8	3	1.4	0.3	0	ヒオウギアヤメ
8	5.1	3.8	1.6	0.2	0	ヒオウギアヤメ
9	4.6	3.2	1.4	0.2	0	ヒオウギアヤメ
10	5.3	3.7	1.5	0.2	0	ヒオウギアヤメ
11	5	3.3	1.4	0.2	0	ヒオウギアヤメ
12	5.5	2.6	4.4	1.2	1	ブルーフラッグ
13	6.1	3	4.6	1.4	1	ブルーフラッグ
14	5.8	2.6	4	1.2	1	ブルーフラッグ
15	5	2.3	3.3	1	1	ブルーフラッグ
16	5.6	2.7	4.2	1.3	1	ブルーフラッグ
4 -		_		4.0	a	

学習用データが80行、検証用データが20行 アヤメの種類をヒオウギアヤメが0、ブルーフラッグが1と数値化している

iris_train = pd.read_csv('4-1.csv').to_numpy()

pd.read_csv('csvファイル').to_numpy()

→pandasのデータフレームをnumpy配列に変換する

```
iris_train2 = pd.read_csv('4-1.csv')
print(iris_train2)
```

iris_train = pd.read_csv('4-1.csv').to_numpy()
print(iris_train)

	がく片の長さ	がく片の幅	<u>,</u> 花びらの長さ	花びらの幅	教師データー	アヤメの種類	
0	5.1	3.5 1	l.4 0.2	0 ヒオ	ナウギアヤメ		
1	4.9	3.0 1	L.4 0.2	0 ヒオ	†ウギアヤメ		
2	4.7	3.2 1	l.3 0.2	0 ヒオ	 ウギアヤメ		
3	4.6	3.1 1	l.5 0.2	0 ヒオ	 ウギアヤメ		
4	5.0	3.6	1.4 0.2	0 ヒオ	ナウギアヤメ		
75	6.0	3.4 4	1.5 1.6	・・・ 1 ブル	・・・ レーフラッグ		
76	6.7	3.1 4	1.7 1.5	1 ブハ	レーフラッグ		
77	6.3	2.3 4	1.4 1.3	1 ブハ	レーフラッグ		
78	5.6	3.0 4	1.1 1.3	1 ブハ	レーフラッグ		
79	5.5	2.5 4	1.0 1.3	1 ブル	レーフラッグ		
[80	[80 rows x 6 columns]						


```
[[5.1 3.5 1.4 0.2 0 'ヒオウギアヤメ']
[4.9 3.0 1.4 0.2 0 'ヒオウギアヤメ']
[4.7 3.2 1.3 0.2 0 'ヒオウギアヤメ']
[4.6 3.1 1.5 0.2 0 'ヒオウギアヤメ']
[5.0 3.6 1.4 0.2 0 'ヒオウギアヤメ']
[5.4 3.9 1.7 0.4 0 'ヒオウギアヤメ']
[4.6 3.4 1.4 0.3 0 'ヒオウギアヤメ']
[5.0 3.4 1.5 0.2 0 'ヒオウギアヤメ']
[4.4 2.9 1.4 0.2 0 'ヒオウギアヤメ']
[4.9 3.1 1.5 0.1 0 'ヒオウギアヤメ']
[5.4 3.7 1.5 0.2 0 'ヒオウギアヤメ']
[4.8 3.4 1.6 0.2 0 'ヒオウギアヤメ']
[4.8 3.4 1.6 0.2 0 'ヒオウギアヤメ']
```

numpy配列の2次元配列

```
iris train = pd.read csv('4-1.csv').to numpy()
```

```
pd.read csv('csvファイル').to numpy()
```

→pandasのデータフレームをnumpy配列に変換する

```
iris_train2 = pd.read_csv('4-1.csv')
print(iris_train2)
```

```
iris_train = pd.read_csv('4-1.csv').to_numpy()
print(iris_train)
```

iris_train2 DataFrame

(80, 6) Column names: がく片の長さ,がく片の幅,花びらの長さ,花びらの幅,教師データー,アヤメの種類。


```
x_train = iris_train[:, 0:4]
y_train = iris_train[:, 4:5]
```

特定の行、列を抜き出す

(numpy配列)[〇〇:〇〇, 〇〇:〇〇]

(numpy配列)[行の始まり:行の終わり(-1), 列の始まり:列の終わり(-1)]

1列目は0から数えるので、0:4は1列目から4列目になります。

":"だけで数字がない場合は全ての行もしくは列を意味します

例)

```
data =
                              0 [[1 2 3]
np.array([[1,2,3],[4,5,6],[7,8,9]])
                                             3 🗙 3の二次元配列を作成
                                [4 5 6]
print(data)
                                 [7 8 9]]
                                  0 1
                                          1 次元目(=行)も2次元目(=列)も"0:2"なので
                               0 [[1 2]
x = data[0:2,0:2]
                                           0番目から1番目の行と列を取り出す
                               1 [4 5]]
print(x)
                                             行が1番目から2番目まで、
                               1 [[5]
x2 = data[1:3,1:2]
                               2 [8]]
                                         列が1番目から1番目までを取り出す
print(x2)
                                 0 1 2
                                             行が1番目から1番目まで、
x3 = data[1:2,:]
                               1 [[4 5 6]]
                                              列は全ての列を取り出す
print(x3)
```

```
x_train = iris_train[:, 0:4]
y_train = iris_train[:, 4:5]
```

```
0 1 2 3 4 5
```

```
[[5.1 3.5 1.4 0.2 0 'ヒオウギアヤメ']
[4.9 3.0 1.4 0.2 0 'ヒオウギアヤメ']
[4.7 3.2 1.3 0.2 0 'ヒオウギアヤメ']
[4.6 3.1 1.5 0.2 0 'ヒオウギアヤメ']
[5.0 3.6 1.4 0.2 0 'ヒオウギアヤメ']
[5.4 3.9 1.7 0.4 0 'ヒオウギアヤメ']
[4.6 3.4 1.4 0.3 0 'ヒオウギアヤメ']
[5.0 3.4 1.5 0.2 0 'ヒオウギアヤメ']
[4.4 2.9 1.4 0.2 0 'ヒオウギアヤメ']
[4.9 3.1 1.5 0.1 0 'ヒオウギアヤメ']
[5.4 3.7 1.5 0.2 0 'ヒオウギアヤメ']
[4.8 3.4 1.6 0.2 0 'ヒオウギアヤメ']
[4.8 3.4 1.6 0.2 0 'ヒオウギアヤメ']
```

全ての行と1列目から4列目

[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5. 3.4 1.5 0.2]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5.4 3.7 1.5 0.1]
[5.4 3.7 1.5 0.2]
[4.8 3.4 1.6 0.2]
[4.8 3.4 1.6 0.2]

全ての行と5列目から5列目

iris_train(学習用の説明変数+目的変数)

x_train(学習用の説明変数)

y train(学習用の目的変数)

```
x_train = iris_train[:, 0:4].astype('float')
y_train = iris_train[:, 4:5].astype('int')
```

numpy配列.astype('型') →配列の型を指定する

.astype('float')は中身を小数、.astype('int')は中身を整数に指定する指示です

print(iris_train)

```
[[5.1 3.5 1.4 0.2 0 'ヒオウギアヤメ']
[4.9 3.0 1.4 0.2 0 'ヒオウギアヤメ']
[4.7 3.2 1.3 0.2 0 'ヒオウギアヤメ']
[4.6 3.1 1.5 0.2 0 'ヒオウギアヤメ']
[5.0 3.6 1.4 0.2 0 'ヒオウギアヤメ']
[5.4 3.9 1.7 0.4 0 'ヒオウギアヤメ']
[4.6 3.4 1.4 0.3 0 'ヒオウギアヤメ']
[5.0 3.4 1.5 0.2 0 'ヒオウギアヤメ']
[4.4 2.9 1.4 0.2 0 'ヒオウギアヤメ']
[4.9 3.1 1.5 0.1 0 'ヒオウギアヤメ']
[5.4 3.7 1.5 0.2 0 'ヒオウギアヤメ']
[4.8 3.4 1.6 0.2 0 'ヒオウギアヤメ']
[4.8 3.4 1.6 0.2 0 'ヒオウギアヤメ']
```

print(x_train)

```
[[5.1 3.5 1.4 0.2]

[4.9 3. 1.4 0.2]

[4.7 3.2 1.3 0.2]

[4.6 3.1 1.5 0.2]

[5. 3.6 1.4 0.2]

[5.4 3.9 1.7 0.4]

[4.6 3.4 1.4 0.3]

[5. 3.4 1.5 0.2]

[4.4 2.9 1.4 0.2]

[4.9 3.1 1.5 0.1]

[5.4 3.7 1.5 0.2]

[4.8 3.4 1.6 0.2]

[4.8 3.4 1.6 0.2]
```

データに小数も含まれている

print(y_train)

データは全て整数

```
x_train = iris_train[:, 0:4].astype('float')
y_train = iris_train[:, 4:5].astype('int')
```

astype()がない場合

i	ris_train	Array of object	(80, 6)	ndarray object of numpy module
X.	_train	Array of object	(80, 4)	ndarray object of numpy module
у.	_train	Array of object	(80, 1)	ndarray object of numpy module

astype()がある場合

加工したデータの確認

"2) 加工したデータの確認"を実行して中身を見てみよう

```
#2) 加工したデータの確認
print(iris_train)
print(x_train)
print(y_train)
print(iris_test)
print(x_test)
print(y_test)
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
```

全て2次元配列

```
In [7]: print(x_test)
                          In [8]: print(y_test)
[[5. 3.5 1.3 0.3]
                          [[0]
 [4.5 2.3 1.3 0.3]
                          [0]
                                                    In [9]: print(x_train.shape)
 [4.4 3.2 1.3 0.2]
 [5. 3.5 1.6 0.6]
                                                     (80, 4)
 [5.1 3.8 1.9 0.4]
 [4.8 3. 1.4 0.3]
 [5.1 3.8 1.6 0.2]
                                                    In [10]: print(y_train.shape)
 [4.6 3.2 1.4 0.2]
                                                    (80, 1)
 [5.3 3.7 1.5 0.2]
 [5. 3.3 1.4 0.2]
 [5.5 2.6 4.4 1.2]
                                                    In [11]: print(x_test.shape)
 [6.1 \ 3. \ 4.6 \ 1.4]
                                                     (20, 4)
 [5.8 2.6 4. 1.2]
   2.3 3.3 1. ]
                           [1]
[1]
[1]
 [5.6 2.7 4.2 1.3]
                                                    In [12]: print(y_test.shape)
 [5.7 3. 4.2 1.2]
                                                    (20, 1)
 [5.7 2.9 4.2 1.3]
 [6.2 2.9 4.3 1.3]
                           [1]
[1]]
 [5.1 2.5 3. 1.1]
 [5.7 2.8 4.1 1.3]]
                                                 学習用データは80行4列
                                                 検証用データは20行1列
```

加工したデータの確認

名前 🔺	型	サイズ	值
iris_test	Array of object	(20, 6)	ndarray object of numpy module
iris_train	Array of object	(80, 6)	ndarray object of numpy module
x_test	Array of float64	(20, 4)	[[5. 3.5 1.3 0.3] [4.5 2.3 1.3 0.3]
x_train	Array of float64	(80, 4)	[[5.1 3.5 1.4 0.2] [4.9 3. 1.4 0.2]
y_test	Array of int32	(20, 1)	[[0] [0]
y_train	Array of int32	(80, 1)	[[0] [0]

x_train - NumPy オブジェクト配列

	0	1	2	3	
o	5.1	3.5	1.4	0.2	
1	4.9	3	1.4	0.2	
2	4.7	3.2	1.3	0.2	
3	4.6	3.1	1.5	0.2	
4	5	3.6	1.4	0.2	

y_train - NumPy オブジェクト配列

今回作成する学習モデル

今回はシンプルなネットワークにするため、出力層は1つにしてます。 (2値分類の場合、最後に出る値を確率pが出ると自動的にもう1つの確率は1-pになります。)

ニューラルネットワークを作成していく

モデル名 = Sequential()

ニューラルネットワークを作るモデルも沢山ある中で、 今回はKeras(ケラス)のSequentialモデルを使用します

```
dl_model = Sequential()
dl_model.add(Dense(4, activation='relu', input_shape=(4,)))
dl_model.add(Dense(4, activation='relu'))
dl_model.add(Dense(4, activation='relu'))
dl_model.add(Dense(1, activation='sigmoid'))
dl_model.compile(loss='binary_crossentropy', optimizer='Adam', metrics=["accuracy"])
dl_model.summary()
```

今回はモデル名を"dl_model"とする

モデル名.add()で層の追加を行う

Denseは全ての入力が全てのニューロンと結合している状態(=全結合層という)


```
dl_model = Sequential()
dl_model.add(Dense(4, activation='relu', input_shape=(4,)))
dl_model.add(Dense(4, activation='relu'))
dl_model.add(Dense(4, activation='relu'))
dl_model.add(Dense(1, activation='sigmoid'))
dl_model.compile(loss='binary_crossentropy', optimizer='Adam', metrics=["accuracy"])
dl_model.summary()
```

model.add(Dense(出力の変数の数, activation='活性化関数', input_shape=(入力の変数の数,)))

入力の変数4つ、出力の変数4つ 活性化関数はReLUを選択(全結合層)

(入力の4つの変数は、がく片の長さと幅、花びらの長さと幅)

```
dl_model = Sequential()
dl_model.add(Dense(4, activation='relu', input_shape=(4,)))
dl_model.add(Dense(4, activation='relu'))
dl_model.add(Dense(4, activation='relu'))
dl_model.add(Dense(1, activation='sigmoid'))
dl_model.compile(loss='binary_crossentropy', optimizer='Adam', metrics=["accuracy"])
dl_model.summary()
```


model.add()でさらに層の追加

2回目以降はinput_shapeは不要 入力の変数はそのまま(4つ)、出力の変数4つ ReLUという(活性化)関数を選択

```
dl_model = Sequential()
dl_model.add(Dense(4, activation='relu', input_shape=(4,)))
dl_model.add(Dense(4, activation='relu'))
dl_model.add(Dense(4, activation='relu'))
dl_model.add(Dense(1, activation='sigmoid'))
dl_model.compile(loss='binary_crossentropy', optimizer='Adam', metrics=["accuracy"])
dl_model.summary()
```


入力の変数はそのまま(4つ)、出力の変数4つ ReLUという(活性化)関数を選択

```
dl_model = Sequential()
dl_model.add(Dense(4, activation='relu', input_shape=(4,)))
dl_model.add(Dense(4, activation='relu'))
dl_model.add(Dense(4, activation='relu'))
dl_model.add(Dense(1, activation='sigmoid'))
dl_model.compile(loss='binary_crossentropy', optimizer='Adam', metrics=["accuracy"])
dl_model.summary()
```


dl_model.compile(loss='binary_crossentropy', optimizer='Adam', metrics=["accuracy"])

dl_model.summary()

model.compile()で、学習時の評価方法の選択をする

loss = "損失関数", optimizer ='最適化関数', metrics=["評価指標"]

dl model.add(Dense(4, activation='relu', input shape=(4,)))

今回は2クラス分類なのでbinary_crossentropyを選択 評価指標は正解率を示すaccuracyを選択

dl model.add(Dense(4, activation='relu'))

dl model.add(Dense(4, activation='relu'))

dl_model.add(Dense(1, activation='sigmoid'))

dl model = Sequential()

dl_model.summary()

この誤差を0に近づけるように、 誤差逆伝播を行い各パラメーターを調整

(今回はAdamという最適化アルゴリズムを使用)

dl_model.summary()は、 作成した学習モデルを要約する

```
Model: "sequential"
Layer (type)
                              Output Shape
                                                          Param #
dense (Dense)
                              (None, 4)
                                                          20
dense_1 (Dense)
                               (None, 4)
                                                          20
dense_2 (Dense)
                               (None, 4)
                                                          20
dense_3 (Dense)
                               (None, 1)
Total params: 65
Trainable params: 65
Non-trainable params: 0
```

```
dl_model = Sequential()
dl_model.add(Dense(4, activation='relu', input_shape=(4,)))
dl_model.add(Dense(4, activation='relu'))
dl_model.add(Dense(4, activation='relu'))
dl_model.add(Dense(1, activation='sigmoid'))
dl_model.compile(loss='binary_crossentropy', optimizer='Adam', metrics=["accuracy"])
dl_model.summary()
```

"3)神経回路の作成をコピーして実行してみよう

```
# 3)神経回路の作成
dl_model = Sequential()
dl_model.add(Dense(4, activation='relu', input_shape=(4,)))
dl_model.add(Dense(4, activation='relu'))
dl_model.add(Dense(4, activation='relu'))
dl_model.add(Dense(1, activation='sigmoid'))
dl_model.compile(loss='binary_crossentropy', optimizer='Adam', metrics=["accuracy"])
dl_model.summary()
```

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 4)	20
dense_1 (Dense)	(None, 4)	20
dense_2 (Dense)	(None, 4)	20
dense_3 (Dense)	(None, 1)	5

Total params: 65

Trainable params: 65
Non-trainable params: 0

4) 学習用データでの学習

history = dl_model.fit(x_train, y_train, epochs=300)

historyに学習過程を記録する。300回学習させる

epochs

1エポックは1試行のことで、学習用データを1通り使って1エポックと数えるここでは300回学習させている。

4) 学習用データでの学習

history = dl_model.fit(x_train, y_train, epochs=300)

historyに学習過程を記録する。300回学習させる

epochs

1エポックは1試行のことで、学習用データを1通り使って1エポックと数えるここでは300回学習させている。

```
Epoch 290/300
- 0s 69us/sample - loss: 0.0228 - accuracy: 1.0000
Epoch 291/300
Epoch 292/300
Epoch 293/300
        - 0s 76us/sample - loss: 0.0219 - accuracy: 1.0000
80/80 [===========]
Epoch 294/300
Epoch 295/300
Epoch 296/300
Epoch 297/300
Epoch 298/300
Epoch 299/300
Epoch 300/300
```

実行するとコンソール画面に学習過程が出力される loss: 学習用データの誤差、0に近いほどよい acc: 学習用データの正解率、1に近いほどよい

5) テスト用データでの検証

```
score = dl_model.evaluate(x_test, y_test)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
```

```
(変数名) = dl_model.evaluate(x_test, y_test) →誤差と正解率が算出される
```

誤差 → (変数名)[0]、正解率 → (変数名)[1]

print("Test loss:", score[0])
Test loss: 0.009264961816370487

print("Test accuracy:", score[1])
Test accuracy: 1.0

誤差0.9%、正解率100%という結果

結果の可視化

"6) 学習過程をグラフ表示する"を実行しよう

```
|# Loss(正解との誤差)をloss_valuesに入れる
|loss_values = history.history['loss']
# 正確度をaccに入れる
acc = history.history['accuracy']
# 1からepoch数までのリストを作る
epochlist = range(1, len(loss_values) +1)
|# Loss(正解との誤差)のグラフを作る
|# 'bo'は青点
plt.plot(epochlist, loss_values, 'bo', label='Training loss')
# 正確率のグラフを作る
|# 'b'は青い線
|plt.plot(epochlist, acc, 'b', label='Training accuracy')
|plt.title('学習回数と正確度')
|plt.ylabel('青線は正解率、青点は誤差')
|plt.xlabel('学習回数(epoch数)')
|plt.legend()
plt.show()
```


学習する度に正解率が上がって誤差が下がっていることが分かる

結果の可視化(補足)

"6) 学習過程をグラフ表示する"を実行しよう

```
|# Loss(正解との誤差)をloss valuesに入れる
|loss_values = history.history['loss']
# 正確度をaccに入れる
acc = history.history['accuracy']
# 1からepoch数までのリストを作る
epochlist = range(1, len(loss_values) +1)
|# Loss(正解との誤差)のグラフを作る
# 'bo'は青点
plt.plot(epochlist, loss values, 'bo', label='Training loss')
# 正確率のグラフを作る
# 'b'は青い線
plt.plot(epochlist, acc, 'b', label='Training accuracy')
|plt.title('学習回数と正確度')
|plt.ylabel('青線は正解率、青点は誤差')
|plt.xlabel('学習回数(epoch数)')
plt.legend()
plt.show()
```

```
history = model.fit(x_train, y_train, epochs=300)
```

kerasのfit()は各エポック毎の正解率、誤差を保存出来る history.history["accuracy"]が正解率のリスト history.history[["loss"]が誤差のリスト

```
loss_values = history.history['loss']
acc = history.history['accuracy']

epochlist = range(1, len(loss_values) +1)

→range(1, 301):1から300までの範囲を指定

plt.plot(epochlist, loss_values, 'bo', label='Training loss')

→X軸が1から300(学習回数)、Y軸が各回の誤差で直線で結ぶ
```

自分たちで実践してみよう

1層目から3層目のニューロンを1つ増やして、学習の回数を500回にして実践してみよう

自分たちで実践してみよう

このサマリーと学習過程が表示されていれば正しく実行出来ています。

```
Epoch 480/500
Epoch 481/500
Epoch 482/500
Epoch 483/500
Epoch 484/500
- 0s 1ms/step - loss: 0.0014 - accuracy: 1.0000
Epoch 485/500
Epoch 486/500
Epoch 488/500
Epoch 489/500
Epoch 490/500
Epoch 491/500
Epoch 492/500
Epoch 493/500
Epoch 494/500
Epoch 495/500
Epoch 496/500
Epoch 497/500
Epoch 498/500
Epoch 499/500
Epoch 500/500
WARNING:tensorflow:5 out of the last 5 calls to <function Model.make_test_function.<locals>.test_function
at 0x7fb95879dcb0> triggered tf.function retracing. Tracing is expensive and the excessive number of
tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different
shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of
the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that
can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/
function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more
details.
Test loss: 0.003523191437125206
Test accuracy: 1.0
```


課題

・中間層の2層目をニューロン6個、3層目をニューロン3個にして実行しなさい (モデル名).summary()の出力結果と図を提出して下さい。 (エポック数300)

• (余力がある人は)

上のモデルを使って新たなアヤメのデータでブルーフラッグである確率を算出しなさい

No.	がく片の長さ	がく片の幅	花びらの長さ	花びらの幅
1	5.3	2.4	4.8	1.5
2	4.4	2.5	1.8	0.4

ヒント: import numpy as np

(変数) = model.predict((調べたいNumpy配列))

print(変数) = [[(1つ目の確率)]、[(2つ目の確率)],[...],[...],...]

課題の提出方法

