Probabilités et Statistiques I

Anne Broise

31 janvier 2016

Première partie

Espaces de Probailité

Quelques notions de dénombrement

1 Cardinal d'un esnemble fini

 Ω un ensemble fini, $A \subset \Omega$.

Définition 1. La fonction indicatrice de A est la fonction notée 1_A , χ_A ou \mathbb{F}_A telle que :

$$1_A: \Omega \to \{0, 1\}$$

$$\omega \mapsto \begin{cases} 1, \omega \in A \\ 0, \omega \notin A \end{cases}$$

Proposition 1. Deux sous ensembles A et B de Ω ont le même cardinal s'il existe une bijection entre A et B.

$$\#A = \#B \iff \forall x \in A, \exists ! y \in B, \exists f \in B^A | f(x) = y$$

1.1 Propriété des fonctions indicatrices

Définition 2. Le complémentaire de A dans Ω est l'ensemble des points des points de Ω qui ne sont pas dans A.

$$A^C = ^C A = \Omega \backslash A = \{\omega \in \Omega, \omega \notin A\} = \{\omega \in \Omega | 1_A(\omega) = 0\}$$

Une partie et son complémentaire forment une partition de Ω .

Définition 3. On dit que $(A_i)_{i\in \mathbb{I}_1,k\mathbb{I}}\in \mathcal{P}(\Omega)^k$ est une partition de Ω si

$$\bigcup_{i=1}^{k} A_i = \Omega \ et \ \forall i \neq j, A_i \cap A_j = \emptyset$$

Définition 4. Il existe $n \in \mathbb{N}$ tel que A est en bijection avec [1, n]. Cet entier n est unique et on l'appelle le cardinal de A. Noté : #A.

Cela signifie qu'il est possible de numéroter les éléments de A par $\{a_1, \ldots, a_n\}$, et A est par exemple donné par :

$$k \in [1, n] \mapsto a_k \in A$$

Proposition 2. Le cardinal de A vaut :

$$\#A = \sum_{\omega \in \Omega} 1_A(\omega)$$

Cette somme est indépendante de la manière de numéroter l'ensemble.

Proposition 3. —

$$1_{A^C} = 1 - 1_A$$

- Si $A \cap B = \emptyset$, alors

$$1_{A \cup B} = 1_A + 1_B$$

— Plus généralement :

$$1_{A \cup B} = 1_A + 1_B - 1_{A \cap B}$$

 $1_{A \cap B} = 1_A \times 1_B$

 $1_{A\times B}(x,y) = 1_A(x) \times 1_B(y)$

Corollaire. —

$$\#A^C = \#\Omega - \#A$$

$$\#(A \cup B) = \#A + \#B - \#(A \cap B)$$

Démonstration. Soit $\omega \in \Omega$.

Si $\omega \in A$ alors $1_{A^C}(\omega) = 0$ et $1 - 1_{A^C}(\omega) = 1 = 1_A(\omega)$.

Si $\omega \notin A$, alors $\omega \in A^C$ et la démonstration est identique.

Les deux fonctions 1_A et $1-1_A$ sont donc égales sur Ω et on a égalité.

Trivialités. Á recopier qd le temps sera présent.

2 Cardinaux de quelques ensembles finis

L'ensemble des p-uples de [1, n]

$$\#([1,n]^p) = n^p$$

Globalement:

$$\#(A^p) = (\#A)^p$$

L'ensemble des parties de [1, n] Il est en bijection avec $\{0, 1\}^n$. En effet, on a pour chacun des le choix ou non de le considérer dans une partie. Un n-uplet de $\{0, 1\}^n$ correspond donc, à la partie où la i-ème coordonnée aura été prise si elle vaut 1, sinon laissée. C'est donc une bijection.

On a donc:

$$\#\mathcal{P}([1,n]) = 2^n$$

Ensemble des permutations de [1, n] Une permutation est une bijection σ de [1, n]:

$$\sigma: 1, n \to 1, n
i \mapsto \sigma(i)$$

$$\forall i \neq j, f(i) \neq f(j)$$

Très souvent on note une permutation par son image : $\begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$ ou $(\sigma(1) \sigma(2) \dots \sigma(n))$.

$$\mathfrak{S}_n = \{(x_1 \dots x_n), x_i \in [1, n], i \neq j \iff x_i \neq x_j\} \# \mathfrak{S}_n = n!$$