Deep Learning for ENGINEER

JDLA が主催する E 資格の勉強用ノート。オプションについても学習するが優先度はやや低め。

目次

1.	数章	学的基礎	. 3
	1.1.	線形代数 (option)	. 3
	1.2.	確率・統計	. 3
	1.3.	情報理論	. 3
2.	機材	戒学習	. 4
	2.1.	機械学習の基礎	. 4
		2.1.1. パターン認識	. 4
		2.1.2. 機械学習の分類	. 4
		2.1.3. 線形回帰 (option)	. 4
		2.1.4. ロジスティック回帰 (option)	
		2.1.5. サポートベクターマシン (option)	. 4
		2.1.6. 決定木 (option)	. 4
		2.1.7. 次元削減 (option)	. 4
		2.1.8. クラスタリング (option)	. 4
		2.1.9. 機械学習の課題	. 4
		2.1.10. 検証集合	. 4
		2.1.11. 性能指標	. 4
3.	深層	鬙学習の基礎	. 5
	3.1.	順伝播型ネットワーク	. 5
		3.1.1. 多層パーセプトロン	. 5
		3.1.2. 出力層と損失関数	. 5
		3.1.3. 活性化関数	. 5
	3.2.	深層モデルのための最適化	. 5
		3.2.1. 基本的なアルゴリズム	. 5
		3.2.2. 誤差逆伝播法	. 5
		3.2.3. 適応的な学習率を持つアルゴリズム	. 5
		3.2.4. パラメータの初期化戦略	
	3.3.	深層モデルのための正則化	
		3.3.1. パラメータノルムペナルティ	. 5
		3.3.2. 確率的削除	. 5
		3.3.3. 陰的正則化	
	3.4.	畳み込みニューラルネットワーク	
		3.4.1. 畳み込みニューラルネットワーク	
	3.5.	リカレントニューラルネットワーク	
		3.5.1. リカレントニューラルネットワーク	. 5
		3.5.2. ゲート機構	. 5
		3.5.3. 系列変換	
	3.6.	Transformer	
		3.6.1. Transformer	
	3.7.	汎化性能の向上のためのテクニック	
		3.7.1. データ集合の拡張	
		3.7.2. 正則化	
		3.7.3. アンサンブル手法	
		3.7.4. ハイパーパラメータの最適化	. 5

4. 深/	 	. 6
4.1	. 画像認識	. 6
	4.1.1. ResNet	. 6
	4.1.2. WideResNet	. 6
4.2	. 物体検出	. 6
	4.2.1. Faster R-CNN, MaskR-CNN	
	4.2.2. YOLO, SSD	
	4.2.3. FCOS	
4.3	. セマンティックセグメンテーション	
	4.3.1. FCN, U-Net	
4.4	. 自然言語処理	
	4.4.1. WordEmbedding	
	4.4.2. BERT	
	4.4.3. GPT-n	
4.5	. 音声処理 (option)	
	4.5.1. サンプリング、短時間フーリエ変換、メル尺度	
	4.5.2. WaveNet	
	4.5.3. CTC	
4.6	. 生成モデル	
	4.6.1. 識別モデルと生成モデル	
	4.6.2. オートエンコーダ	
	4.6.3. GAN	
4.7	. 深層強化学習	
	4.7.1. 深層強化学習のモデル	
4.8	. 様々な学習方法	
	4.8.1. 転移学習	
	4.8.2. 半教師あり学習と自己教師あり学習	
	4.8.3. 能動学習 (option)	
	4.8.4. 距離学習	
	4.8.5. メタ学習 (option)	
4.9	. 深層学習の説明性	
	4.9.1. 判断根拠の可視化	
	4.9.2. モデルの近似	. 7
	発・運用環境	
5.1	. エッジコンピューティング	. 8
	5.1.1. モデルの軽量化	. 8
5.2	. 分散処理	. 8
	5.2.1. 並列分散処理	. 8
	5.2.2. 連合学習	. 8
5.3	. アクセラレータ	. 8
	5.3.1. デバイスによる高速化	
5.4	. 環境構築	. 8
	5.4.1. コンテナ型仮想化	. 8

1. 数学的基礎

- 1.1. 線形代数 (option)
- 1.2. 確率・統計
- 1.3. 情報理論

2. 機械学習

2.1. 機械学習の基礎

- 2.1.1. パターン認識
- 2.1.2. 機械学習の分類
- 2.1.3. 線形回帰 (option)
- 2.1.4. **ロジスティック回帰 (option)**
- 2.1.5. サポートベクターマシン (option)
- 2.1.6. **決定木** (option)
- 2.1.7. 次元削減 (option)
- 2.1.8. クラスタリング (option)
- 2.1.9. 機械学習の課題
- 2.1.10. 検証集合
- 2.1.11. 性能指標

3. 深層学習の基礎

- 3.1. 順伝播型ネットワーク
- 3.1.1. 多層パーセプトロン
- 3.1.2. 出力層と損失関数
- 3.1.3. 活性化関数
- 3.2. 深層モデルのための最適化
- 3.2.1. 基本的なアルゴリズム
- 3.2.2. 誤差逆伝播法
- 3.2.3. 適応的な学習率を持つアルゴリズム
- 3.2.4. パラメータの初期化戦略
- 3.3. 深層モデルのための正則化
- 3.3.1. パラメータノルムペナルティ
- 3.3.2. 確率的削除
- 3.3.3. 陰的正則化
- 3.4. 畳み込みニューラルネットワーク
- 3.4.1. 畳み込みニューラルネットワーク
- 3.5. リカレントニューラルネットワーク
- 3.5.1. リカレントニューラルネットワーク
- 3.5.2. ゲート機構
- 3.5.3. 系列変換
- 3.6. Transformer
- 3.6.1. Transformer
- 3.7. 汎化性能の向上のためのテクニック
- 3.7.1. データ集合の拡張
- 3.7.2. 正則化
- 3.7.3. アンサンブル手法
- 3.7.4. ハイパーパラメータの最適化

4. 深層学習の応用

4.1. 画像認識

- 4.1.1. ResNet
- 4.1.2. WideResNet

4.2. 物体検出

- 4.2.1. Faster R-CNN, MaskR-CNN
- 4.2.2. YOLO, SSD
- 4.2.3. FCOS

4.3. セマンティックセグメンテーション

- 4.3.1. FCN, U-Net
- 4.4. 自然言語処理
- 4.4.1. WordEmbedding
- 4.4.2. BERT
- 4.4.3. GPT-n
- 4.5. **音声処理** (option)
- 4.5.1. サンプリング、短時間フーリエ変換、メル尺度
- 4.5.2. WaveNet
- 4.5.3. CTC
- 4.6. 生成モデル
- 4.6.1. 識別モデルと生成モデル
- 4.6.2. オートエンコーダ
- 4.6.3. GAN
- 4.7. 深層強化学習
- 4.7.1. 深層強化学習のモデル
- 4.8. 様々な学習方法
- 4.8.1. 転移学習
- 4.8.2. 半教師あり学習と自己教師あり学習
- 4.8.3. 能動学習 (option)
- 4.8.4. 距離学習
- 4.8.5. メタ学習 (option)
- 4.9. 深層学習の説明性
- 4.9.1. 判断根拠の可視化

4.9.2. モデルの近似

5. 開発・運用環境

- 5.1. エッジコンピューティング
- 5.1.1. モデルの軽量化
- 5.2. 分散処理
- 5.2.1. 並列分散処理
- 5.2.2. 連合学習
- 5.3. アクセラレータ
- 5.3.1. デバイスによる高速化
- 5.4. 環境構築
- 5.4.1. コンテナ型仮想化