EXAMEN PROBABILITÉS - 1SN

Lundi 4 janvier 2021 (10h-11h30)

Partiel sans document (Une feuille A4 recto-verso autorisée)

Exercice 1 : Changement de variables continues (10 points)

On considère un couple de variables aléatoires (X, Y) de densité

$$p(x,y) = \begin{cases} \frac{1}{2x} \operatorname{si}(x,y) \in \Delta \\ 0 \operatorname{sinon} \end{cases}$$

avec $\Delta = \{(x, y) \in \mathbb{R}^2 | 0 < y < \frac{1}{x}, 0 < y < x \}.$

- 1. Représenter graphiquement le support de la densité du couple (X,Y). En déduire les supports des densités des variables X et Y. Sans faire de calcul, indiquer si les variables aléatoires X et Y sont indépendantes ou non.
- 2. Déterminer les lois marginales de X et Y.
- 3. Montrer que les variables aléatoires $Z = \sqrt{XY}$ et $T = \sqrt{\frac{Y}{X}}$ sont indépendantes et de lois uniformes sur]0,1[.
- 4. Déterminer la moyenne et la variance de la variable aléatoire Y. Que pensez vous de la moyenne et de la variance de la variable aléatoire X ?

Exercice 2 : loi discrète normale (6 points)

En 2003, Dilip Roy introduit une nouvelle loi de probabilité discrète appelée loi discrète normale à valeurs dans $\mathbb{Z} = \{..., -1, 0, 1, ...\}$ et définie par les probabilités p_k définies par

$$p_k = \Phi\left(\frac{k+1-m}{\sigma}\right) - \Phi\left(\frac{k-m}{\sigma}\right), \quad k \in \mathbb{Z}$$

où m et $\sigma > 0$ sont deux paramètres dont la signification sera plus claire à la fin de l'exercice et Φ est la fonction de répartition de la loi normale centrée réduite définie par

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) du.$$

On utilisera la notation habituelle $X \sim d\mathcal{N}(m, \sigma)$ pour désigner une variable aléatoire X de loi discrète normale (de paramètres m et σ) telle que $P[X = k] = p_k$.

- 1. Représenter sur un graphique la densité de la loi normale $\mathcal{N}(m, \sigma^2)$ et hachurer le domaine dont l'aire correspond à $P[X=k]=p_k$.
- 2. Déterminer $\sum_{k=-K}^{K} p_k$ et en déduire que $\sum_{k=-\infty}^{\infty} p_k = 1$.
- 3. Montrer que si X suit une loi normale de moyenne m et de variance σ^2 , c'est-à-dire $X \sim \mathcal{N}(m,\sigma^2)$, alors pour tout réel t>0, $X_t=\operatorname{ent}\left(\frac{X}{t}\right)$ suit une loi normale discrète $d\mathcal{N}\left(\frac{m}{t},\frac{\sigma}{t}\right)$, où $\operatorname{ent}(a)$ est la partie entière de a, c'est-à-dire le plus grand entier $\in \mathbb{Z}$ tel que $\operatorname{ent}(a) \leq a < \operatorname{ent}(a)+1$.

4. Inversement, on considère une variable aléatoire X telle que $X_t = \text{ent}\left(\frac{X}{t}\right) \sim d\mathcal{N}\left(m_t, \sigma_t\right)$ pour tout t>0 et on cherche à montrer que X suit une loi normale. Montrer que la fonction de répartition de X_t notée F_t vérifie la relation

$$F_t(x) = P[X_t < x] = F_X(tx) = \Phi\left(\frac{x - m_t}{\sigma_t}\right) \quad \forall t > 0, \forall x \in \mathbb{Z}$$

où F_X est la fonction de répartition de X. En déduire $F_X(u), \forall u \in \mathbb{R}$ et que X suit une loi normale de moyenne $m=tm_t$ et de variance $\sigma^2=t^2\sigma_t^2$.

Exercice 3: Vecteurs Gaussiens (4 points)

On considère un vecteur de \mathbb{R}^n noté X de vecteur moyenne m et de matrice de covariance Σ symétrique définie positive et on désire démontrer la proposition suivante :

X est un vecteur gaussien de \mathbb{R}^n

si et seulement si $\forall m{u}=(u_1,...,u_n)^T\in\mathbb{R}^n,\,m{u}
eq 0, Y_{m{u}}=\sum_{j=1}^nu_jX_j$ est une variable aléatoire normale à une dimension

On rappelle que la fonction caractéristique d'un vecteur gaussien X vérifie

$$E\left[\exp(i\boldsymbol{u}^T\boldsymbol{X})\right] = \exp\left(i\boldsymbol{u}^T\boldsymbol{m} - \frac{1}{2}\boldsymbol{u}^T\boldsymbol{\Sigma}\boldsymbol{u}\right), \quad \forall \boldsymbol{u} \in \mathbb{R}^n.$$

- 1. Soit X un vecteur de \mathbb{R}^n de loi normale N_n (m, Σ) . Quelle est la loi de Y_u pour $u \neq 0$?
- 2. On considère un vecteur X de vecteur moyenne m et de matrice de covariance Σ et on suppose que $Y_u = \sum_{j=1}^n u_j X_j$ suit une loi normale à une dimension pour tout vecteur $u \neq 0$. Déterminer la fonction caractéristique de $\mathbf{X} = (X_1, ..., X_n)^T$ notée

$$\phi_{\mathbf{X}}(\mathbf{u}) = E\left[e^{i(u_1X_1 + \dots + u_nX_n)}\right]$$

pour $u = (u_1, ..., u_n)^T \in \mathbb{R}^n$ en fonction de celle de Y_u (qui est connue puisque par hypothèse Y_u suit une loi normale à une dimension). En déduire une expression de $\phi_X(u)$ en fonction de met de Σ . Quelle est la loi du vecteur X?

3. Conclure.

LOIS DE PROBABILITÉ DISCRÈTES m : moyenne σ^2 : variance **F. C. :** fonction caractéristique $p_k = P\left[X = k\right]$ $p_{1,...,m} = P\left[X_1 = k_1,...,X_m = k_m\right]$

LOI	D 1 1997		2	F.C
LOI	Probabilités	m	σ^2	F. C.
Uniforme	$p_k = \frac{1}{n}$ $k \in \{1,, n\}$	$\frac{n+1}{2}$	$\frac{n^2-1}{12}$	$\frac{e^{it}\left(1-e^{itn}\right)}{n\left(1-e^{it}\right)}$
Bernoulli	$p_1 = P[X = 1] = p$ $p_0 = P[X = 0] = q$ $p \in [0, 1]$ $q = 1 - p$	p	pq	$pe^{it} + q$
Binomiale $B(n,p)$	$p_k = C_n^k p^k q^{n-k}$ $p \in [0,1] q = 1 - p$ $k \in \{0, 1,, n\}$	np	npq	$(pe^{it}+q)^n$
Binomiale négative	$p_k = C_{n+k-1}^{n-1} p^n q^k$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}$	$n\frac{q}{p}$	$nrac{q}{p^2}$	$\left(\frac{p}{1 - qe^{it}}\right)^n$
Multinomiale	$p_{1,,m} = \frac{n!}{k_1!k_m!} p_1^{k_1} p_m^{k_m}$ $p_j \in [0,1] q_j = 1 - p_j$ $k_j \in \{0,1,,n\}$ $\sum_{j=1}^m k_j = n \sum_{j=1}^m p_j = 1$	np_j	Variance : np_jq_j Covariance : $-np_jp_k$	$\left(\sum_{j=1}^{m} p_j e^{it}\right)^n$
Poisson $P\left(\lambda\right)$	$p_k = e^{-\lambda} \frac{\lambda^k}{k!}$ $\lambda > 0 k \in \mathbb{N}$	λ	λ	$\exp\left[\lambda\left(e^{it}-1\right)\right]$
Géométrique	$p_k = pq^{k-1}$ $p \in [0,1] q = 1 - p$ $k \in \mathbb{N}^*$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{pe^{it}}{1 - qe^{it}}$

LOIS DE PROBABILITÉ CONTINUES $m: moyenne \qquad \sigma^2: variance \qquad F. C.: fonction caractéristique$

LOI	Densité de probabilité	m	σ^2	F. C.
Uniforme	$f(x) = \frac{1}{b-a}$ $x \in]a, b[$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
Gamma $\mathcal{G}\left(u, heta ight)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\theta x} x^{\nu - 1}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\text{avec } \Gamma(n + 1) = n! \ \forall n \in \mathbb{N}$	$rac{ u}{ heta}$	$rac{ u}{ heta^2}$	$\frac{1}{\left(1-i\frac{t}{\theta}\right)^{\nu}}$
Inverse gamma $\mathcal{IG}(u, heta)$	$f(x) = \frac{\theta^{\nu}}{\Gamma(\nu)} e^{-\frac{\theta}{x}} \frac{1}{x^{\nu+1}}$ $\theta > 0, \ \nu > 0$ $x \ge 0$ $\text{avec } \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{\theta}{\nu-1}$ si $\nu>1$	$\frac{\theta^2}{(\nu-1)^2(\nu-2)} \text{ si } \nu > 2$	(*)
Première loi de Laplace	$f(x) = \frac{1}{2}e^{- x }, x \in \mathbb{R}$	0	2	$\frac{1}{1+t^2}$
Normale univariée $\mathcal{N}\left(m,\sigma^2 ight)$	$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}, x \in \mathbb{R}$	m	σ^2	$e^{imt-rac{\sigma^2t^2}{2}}$
Normale multivariée $\mathcal{N}_{p}\left(oldsymbol{m},oldsymbol{\Sigma} ight)$	$f(x) = K \exp\left[-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{m})^T \Sigma^{-1} (\boldsymbol{x} - \boldsymbol{m})\right]$ $K = \frac{1}{\sqrt{(2\pi)^p \det(\Sigma)}}$ $x \in \mathbb{R}^p$	m	Σ	$e^{ioldsymbol{u}^Toldsymbol{m}-rac{1}{2}oldsymbol{u}^Toldsymbol{\Sigma}oldsymbol{u}}$
Khi $_2$ $\chi^2_{ u}$ $\Gamma\left(\frac{1}{2},\frac{ u}{2}\right)$	$f(x) = ke^{-\frac{x}{2}}x^{\frac{\nu}{2}-1}$ $k = \frac{1}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}$ $\nu \in \mathbb{N}^*, \ x \ge 0$	ν	2ν	$\frac{1}{(1-2it)^{\frac{\nu}{2}}}$
Cauchy $c_{\lambda,lpha}$	$f(x) = \frac{1}{\pi \lambda \left(1 + \left(\frac{x - \alpha}{\lambda}\right)^2\right)}$ $\lambda > 0, \ \alpha \in \mathbb{R}$	(-)	(-)	$e^{i\alpha t - \lambda t }$
Beta $B(a,b)$	$f(x) = kx^{a-1} (1-x)^{b-1}$ $k = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}$ $a > 0, \ b > 0$ $x \in]0,1[$ $\operatorname{avec} \Gamma(n+1) = n! \ \forall n \in \mathbb{N}$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$	(*)