Teil III

Entity-Relationship-Modell

Entity-Relationship-Modell

- Datenbankmodell
- Semantik von Datenbankmodellen
- 3 ER-Modell
- Weitere Konzepte im ER-Modell

Grundlagen von Datenbankmodellen

Ein Datenbankmodell ist ein System von Konzepten zur Beschreibung von Datenbanken. Es legt Syntax und Semantik von Datenbankbeschreibungen für ein Datenbanksystem fest.

Datenbankbeschreibungen = Datenbankschemata

Ein Datenbankmodell legt fest...

- statische Eigenschaften
 - Objekte
 - 2 Beziehungen

inklusive der Standard-Datentypen, die Daten über die Beziehungen und Objekte darstellen können,

- dynamische Eigenschaften wie
 - Operationen
 - Beziehungen zwischen Operationen,
- Integritätsbedingungen an
 - Objekte und deren Beziehungen
 - Operationen

Datenbankmodelle

- Klassische Datenbankmodelle sind speziell geeignet für
 - große Informationsmengen mit relativ starrer Struktur und
 - die Darstellung statischer Eigenschaften und Integritätsbedingungen (also die Bereiche 1(1), 1(2) und 3(1))
- Entwurfsmodelle: (E)ER-Modell, UML, ...
- Realisierungsmodelle: Relationenmodell, objektorientierte Modelle, . . .

Datenbanken versus Programmiersprachen

Datenbankkonzept	Typsystem einer Programmiersprache	
Datenbankmodell	Typsystem	
Relation, Attribut	int, struct	
Datenbankschema	Variablendeklaration	
relation WEIN = ()	<pre>var x:int, y:struct Wein</pre>	
Datenbank	Werte	
WEIN(4961, 'Chardonnay',)	42, 'Sauvignon'	

Michael Gertz Datenbanksysteme Sommersemester 2019

Abstraktionsstufen

Modelle	Daten	Algorithmen
abstrakt	Entity-Relationship-Modell	Struktogramme
konkret	Hierarchisches Modell	Pascal
	Netzwerkmodell	C, C++
	Relationenmodell	Java, C#

Datenbankmodelle im Überblick

Michael Gertz Datenbanksysteme Sommersemester 2019

Datenbankmodelle im Überblick /2

- HM: hierarchisches Modell, NWM: Netzwerkmodell, RM: Relationenmodell
- NF²: Modell der geschachtelten (Non-First-Normal-Form = NF²) Relationen, eNF²: erweitertes NF²-Modell
- ER: Entity-Relationship-Modell, SDM: semantische Datenmodelle
- OODM / C++: objektorientierte Datenmodelle auf Basis objektorientierter Programmiersprachen wie C++, OEM: objektorientierte Entwurfsmodelle (etwa UML), ORDM: objektrelationale Datenmodelle

Semantik von Datenbankmodellen

- nicht im Fokus dieser Vorlesung...
- Idee: Formalisiert werden zeitliche Entwicklungen von Datenbanken
 - ▶ Zustandsfolgen $\langle \sigma_0, \sigma_1, \sigma_2, ... \rangle$
 - jeder Zustand σ_i ist eine konkrete Datenbank
 - ► Folge entsteht durch Änderungen der Datenbank
- Unterscheidung zwischen möglichen Werten und aktuellen Werte
 - μ: mögliche Werte: welche Weine könnten existieren
 - σ: aktuelle Werte: welche Weine sind aktuell in diesem Zustand (Sigma für "State") gespeichert

Datenbankzustandsfolgen

Das ER-Modell

Entity: Objekt der realen oder der Vorstellungswelt, über das Informationen zu speichern sind, z.B. **Produkte** (Wein, Katalog), Winzer oder Kritiker; aber auch Informationen über Ereignisse, wie z.B. **Bestellungen**

Relationship: beschreibt eine Beziehung zwischen Entities, z.B. ein Kunde **bestellt** einen Wein oder ein Wein wird von einem Winzer **angeboten**

Attribut: repräsentiert eine Eigenschaft von Entities oder Beziehungen, z.B. **Name** eines Kunden, **Farbe** eines Weines oder **Datum** einer Bestellung

ER-Beispiel

Werte

- Werte: primitive Datenelemente, die direkt darstellbar sind
- Wertemengen sind beschrieben durch Datentypen, die neben einer Wertemenge auch die Grundoperationen auf diesen Werten charakterisieren
- ER-Modell: vorgegebene Standard-Datentypen, etwa die ganzen Zahlen int, die Zeichenketten string, Datumswerte date etc.
- jeder Datentyp stellt Wertebereich mit Operationen und Prädikaten dar

Entities

- Entities sind die in einer Datenbank zu repräsentierenden Informationseinheiten
- im Gegensatz zu Werten nicht direkt darstellbar, sondern nur über ihre Eigenschaften beobachtbar
- Entities sind eingeteilt in Entity-Typen, etwa $E_1, E_2 \dots$

Wein

Menge der aktuellen Entities:

$$\sigma(E_1) = \{e_1, e_2, \ldots, e_n\}$$

Attribute

- Attribute modellieren Eigenschaften von Entities oder auch Beziehungen
- alle Entities eines Entity-Typs haben dieselben Arten von Eigenschaften; Attribute werden somit für Entity-Typen deklariert

• textuelle Notation $E(A_1 : D_1, \ldots, A_m : D_m)$

Identifizierung durch Schlüssel

ullet Schlüsselattribute: Teilmenge der gesamten Attribute eines Entity-Typs $E(A_1,\ldots,A_m)$

$${S_1,\ldots,S_k}\subseteq {A_1,\ldots,A_m}$$

- in jedem Datenbankzustand identifizieren die aktuellen Werte der Schlüsselattribute eindeutig Instanzen des Entity-Typs E
- bei mehreren möglichen Schlüsselkandidaten: Auswahl eines Primärschlüssels
- Notation: markieren durch Unterstreichung:

$$E(S_1,\ldots,S_k,A_i,\ldots)$$

Michael Gertz Datenbanksysteme Sommersemester 2019

Beziehungstypen

- Beziehungen zwischen Entities werden zu Beziehungstypen zusammengefasst
- allgemein: beliebige Anzahl $n \ge 2$ von Entity-Typen kann an einem Beziehungstyp teilhaben
- zu jedem n-stelligen Beziehungstyp R gehören n Entity-Typen E_1, \ldots, E_n
- Ausprägung eines Beziehungstyps

$$\sigma(R) \subseteq \sigma(E_1) \times \sigma(E_2) \times \cdots \times \sigma(E_n)$$

Beziehungstypen /2

Notation

- textuelle Notation: $R(E_1, E_2, \dots, E_n)$
- wenn Entity-Typ mehrfach an einem Beziehungstyp beteiligt: Vergabe von Rollennamen möglich

verheiratet (Frau: Person, Mann: Person)

Beziehungsattribute

- Beziehungen können ebenfalls Attribute besitzen

• textuelle Notation: $R(E_1, \ldots, E_n; A_1, \ldots, A_k)$

Merkmale von Beziehungen

- Stelligkeit oder Grad:
 - Anzahl der beteiligten Entity-Typen
 - häufig: binär
 - ▶ Beispiel: Lieferant liefert Produkt
- Kardinalität oder Funktionalität:
 - Anzahl der eingehenden Instanzen eines Entity-Typs
 - ► Formen: 1:1, 1:n, m:n
 - stellt Integritätsbedingung dar
 - ▶ Beispiel: maximal 5 Produkte pro Bestellung

Zwei- vs. mehrstellige Beziehungen

Ausprägungen im Beispiel

Rekonstruktion der Ausprägungen

- \circ $g_1 k_1 w_1$
- $g_1 k_2 w_2$
- $g_2 k_2 w_1$
- aber auch: $g_1 k_2 w_1$

1:1-Beziehungen

- jedem Entity e_1 vom Entity-Typ E_1 ist maximal ein Entity e_2 aus E_2 zugeordnet und umgekehrt
- Beispiele: Prospekt beschreibt Produkt, Mann ist verheiratet mit Frau

1:N-Beziehungen

- jedem Entity e_1 vom Entity-Typ E_1 sind beliebig viele Entities E_2 zugeordnet, aber zu jedem Entity e_2 gibt es maximal ein e_1 aus E_1
- Beispiele: Lieferant liefert Produkt, Mutter hat Kinder

N:1-Beziehung

- invers zu 1:N, auch funktionale Beziehung
- zweistellige Beziehungen, die eine *Funktion* beschreiben: Jedem Entity eines Entity-Typs E_1 wird maximal ein Entity eines Entity-Typs E_2 zugeordnet.

1:1-Beziehung

M:N-Beziehungen

- keine Restriktionen
- Beispiel: Bestellung umfasst Produkte

[min,max]-Notation

- schränkt die möglichen Teilnahmen von Instanzen der beteiligten Entity-Typen an der Beziehung ein, indem ein minimaler und ein maximaler Wert vorgegeben wird
- Notation f
 ür Kardinalit
 ätsangaben an einem Beziehungstyp

$$R(E_1,\ldots,E_i[min_i,max_i],\ldots,E_n)$$

- Kardinalitätsbedingung: $min_i \leq |\{r \mid r \in R \land r.E_i = e_i\}| \leq max_i$
- Spezielle Wertangabe für max_i ist * ($\hat{=}$ beliebig)

Michael Gertz Datenbanksysteme Sommersemester 2019

Kardinalitätsangaben

- [0,*] legt keine Einschränkung fest (default)
- $R(E_1[0,1],E_2)$ entspricht einer (partiellen) funktionalen Beziehung $R:E_1\to E_2$, da jede Instanz aus E_1 maximal einer Instanz aus E_2 zugeordnet ist
- totale funktionale Beziehung wird durch $R(E_1[1,1], E_2)$ modelliert

Kardinalitätsangaben: Beispiele

partielle funktionale Beziehung

```
lagert_in(Produkt[0,1],Fach[0,3])
```

"Jedes Produkt ist im Lager in einem Fach abgelegt, allerdings wird ausverkauften bzw. gegenwärtig nicht lieferbaren Produkte kein Fach zugeordnet. Pro Fach können maximal drei Produkte gelagert werden."

totale funktionale Beziehung

```
liefert (Lieferant[0,*], Produkt[1,1])
```

"Jedes Produkt wird durch genau einen Lieferant geliefert, aber ein Lieferant kann durchaus mehrere Produkte liefern."

Michael Gertz Datenbanksysteme Sommersemester 2019

Alternative Kardinalitätsangabe

Michael Gertz Datenbanksysteme Sommersemester 2019 3–32

Abhängige Entity-Typen

• abhängiger Entity-Typ: Identifikation über funktionale Beziehung

• Abhängige Entities im ER-Modell: Funktionale Beziehung als Schlüssel

Abhängige Entity-Typen /2

Mögliche Ausprägung für abhängige Entities

Die IST-Beziehung

- Spezialisierungs-/Generalisierungsbeziehung oder auch IST-Beziehung (engl. is-a relationship)
- textuelle Notation: E₁ IST E₂.
- IST-Beziehung entspricht semantisch einer injektiven funktionalen Beziehung

Eigenschaften der IST-Beziehung

- Jeder Schaumwein-Instanz ist genau eine Wein-Instanz zugeordnet
 Schaumwein-Instanzen werden durch die funktionale IST-Beziehung identifiziert
- Nicht jeder Wein ist zugleich ein Schaumwein
- Attribute des Entity-Typs Wein treffen auch auf Schaumweine zu: "vererbte" Attribute

```
Schaumwein (Name, Farbe, Herstellung)

von Wein
```

 nicht nur die Attributdeklarationen vererben sich, sondern auch jeweils die aktuellen Werte für eine Instanz

Ausprägung für IST-Beziehung

Kardinalitätsangaben: IST

- für Beziehung E_1 IST E_2 gilt immer: IST $(E_1[1,1],E_2[0,1])$
- Jede Instanz von E_1 nimmt genau einmal an der IST-Beziehung teil, während Instanzen des Obertyps E_2 nicht teilnehmen müssen
- Aspekte wie Attributvererbung werden hiervon nicht erfasst

Optionalität von Attributen

Konzepte im Überblick

Begriff	Informale Bedeutung
Entity	zu repräsentierende Informationseinheit
Entity-Typ	Gruppierung von Entitys mit gleichen Eigenschaften
Beziehungstyp	Gruppierung von Beziehungen zwischen Entitys
Attribut	datenwertige Eigenschaft eines Entitys oder einer Bezie-
	hung
Schlüssel	identifizierende Eigenschaft von Entitys
Kardinalitäten	Einschränkung von Beziehungstypen bezüglich der mehr-
	fachen Teilnahme von Entitys an der Beziehung
Stelligkeit	Anzahl der an einem Beziehungstyp beteiligten Entity-
	Typen
funktionale Beziehung	Beziehungstyp mit Funktionseigenschaft
abhängige Entitys	Entitys, die nur abhängig von anderen Entitys existieren
	können
IST-Beziehung	Spezialisierung von Entity-Typen
Optionalität	Attribute oder funktionale Beziehungen als partielle Funk-
	tionen

Zusammenfassung

- Datenbankmodell, Datenbankschema, Datenbank(instanz)
- Entity-Relationship-Modell
- Weitere Konzepte im ER-Modell