Databases

Lecture 6

Functional Dependencies, Normal Forms Relational Algebra Functional Dependencies, Normal Forms

- a dependency (simple, multi-valued) in a relation can be eliminated via decompositions (the original relation is decomposed into a collection of new relations)
- nevertheless, there are relations without such dependencies that can still contain redundant information, which can be a source of errors in the database

->

Example 13. Consider the relation FaPrCo [FacultyMember, Program, Course], storing the programs and courses for different faculty members; this relation has no functional dependencies; its key is {FacultyMember, Program, Course}

consider the following data in the relation:

Fa	Pr	Со
F1	P1	C2
F1	P2	C1
F2	P1	C1
F1	P1	C1

- some associations appear in multiple records (redundant data):
 - faculty member F1 is teaching in program P1
 - faculty member F1 is teaching course C1
 - course C1 is taught in program P1

Fa	Pr	Со
F1	P1	C2
F1	P2	C1
F2	P1	C1
F1	P1	C1

- if some values in the relation are changed, e.g., "F1 will teach course C3 instead of course C1", several updates should be carried out, without knowing in how many records
- the same is true for the following changes: "in P1, course C3 should replace course C1", "F1 is switching from program P1 to P3"

- the previous relation cannot be decomposed into 2 relations (via projection), because new data would be introduced through the join
- this claim can be justified by considering the three possible projections on two attributes:

FaPr	Fa	Pr
	F1	P1
	F1	P2
	F2	P1

FaCo	Fa	Со
	F1	C2
	F1	C1
	F2	C1

PrCo	Pr	Со
	P1	C2
	P2	C1
	P1	C1

• when evaluating FaPr * PrCo, the following data is obtained:

R' = FaPr * PrCo	Fa	Pr	Со
	F1	P1	C2
	F1	P1	C1
	F1	P2	C1
	F2	P1	C2
	F2	P1	C1

- this result set contains an extra tuple, which didn't exist in the original relation
- this is also true for the other join combinations: FaPr * FaCo and PrCo * FaCo

- when evaluating R'*FaCo (i.e., FaPr*PrCo*FaCo), the original relation FaPrCo is obtained
- conclusion: FaPrCo cannot be decomposed into 2 projections, but it can be decomposed into 3 projections, i.e., FaPrCo is *3-decomposable*:

```
FaPrCo = FaPr * PrCo * FaCo, or FaPrCo= * (FaPr, PrCo, FaCo)
```

- this conclusion (FaPrCo is 3-decomposable) is true for the data in the relation
- the 3-decomposability can be specified as a restriction that must be met by all the legal instances of the relation:
- * if $(F1, P1) \in FaPr$ and $(F1, C1) \in FaCo$ and $(P1, C1) \in PrCo$ then $(F1, P1, C1) \in FaPrCo$
- this restriction can be expressed on FaPrCo:
- * if (F1, P1, C2) \in FaPrCo and (F1, P2, C1) \in FaPrCo and (F2, P1, C1) \in FaPrCo then (F1, P1, C1) \in FaPrCo

consider the following data in the relation

Fa	Pr	Со
F1	P1	C2
F1	P2	C1

• if the previous restriction is specified, then, if (F2, P1, C1) is added to the relation, (F1, P1, C1) must be also added:

Fa	Pr	Со
F1	P1	C2
F1	P2	C1
F2	P1	C1
F1	P1	C1

• if (F1, P1, C1) is removed from the relation, other data must be removed as well, at least (F2, P1, C1), for the restriction to be satisfied

Definition. Let R[A] be a relation and $R_i[\alpha_i]$, i=1,...,m, the projections of R on α_i . R satisfies the join dependency * $\{\alpha_1,...,\alpha_m\}$ if R = R_1 * ... * R_m .

- FaPrCo has a join dependency because FaPrCo = FaPr * PrCo * FaCo
- JD * $\{\alpha_1,...,\alpha_m\}$ is trivial if at least one of α_i is the set of all attributes in R.
- JD * $\{\alpha_1,...,\alpha_m\}$ is implied by the candidate keys if each α_i is a superkey in R.

Definition. Relation R is in 5NF if every non-trivial JD is implied by the candidate keys in R.

- R[A] a relation
- F a set of functional dependencies
- α a subset of attributes

- problems
- I. compute the closure of F: F⁺
- II. compute the closure of a set of attributes under a set of functional dependencies, e.g., the closure of α under F: α^+
- III. compute the minimal cover for a set of dependencies

- R[A] a relation
- F a set of functional dependencies
- problems
- I. compute the closure of F: F⁺
- the set F⁺ contains all the functional dependencies implied by F
- F implies a functional dependency f if f holds on every relation that satisfies F
- the following 3 rules can be repeatedly applied to compute F⁺ (Armstrong's axioms):
 - α , β , $\gamma \subset A$
 - 1. reflexivity: if $\beta \subseteq \alpha$, then $\alpha \to \beta$
 - 2. augmentation: if $\alpha \to \beta$, then $\alpha \gamma \to \beta \gamma$
 - 3. transitivity: if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- these rules are complete (they compute the closure) and sound (no erroneous functional dependencies can be derived)

- R[A] a relation
- F a set of functional dependencies
- problems
- I. compute the closure of F: F⁺
- the following rules can be derived from Armstrong's axioms:
- 4. union: if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$

$$\alpha \to \beta => \alpha\alpha \to \alpha\beta$$
 augmentation
$$\Rightarrow \gamma => \alpha\beta \to \beta\gamma$$

$$\alpha \to \gamma => \alpha\beta \to \beta\gamma$$
 augmentation

5. decomposition: if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$

$$\alpha \to \beta \gamma$$

 $\beta \gamma \to \beta$ (reflexivity)

 $\alpha \to \beta \gamma$ => $\alpha \to \beta$ (reflexivity) => $\alpha \to \beta$ ($\alpha \to \gamma$ can similarly be shown to hold)

- R[A] a relation
- F a set of functional dependencies
- problems
- I. compute the closure of F: F⁺
- the following rules can be derived from Armstrong's axioms:
- 6. pseudo transitivity: if $\alpha \to \beta$ and $\beta \gamma \to \delta$, then $\alpha \gamma \to \delta$

6. pseudo transitivity: if
$$\alpha \to \beta$$
 and $\beta \gamma \to \alpha \to \beta \Rightarrow \alpha \gamma \to \beta \gamma$ => $\alpha \gamma \to \delta$ transitivity

• α , β , γ , $\delta \subset A$

- R[A] a relation
- F a set of functional dependencies
- α a subset of attributes
- problems
- II. compute the closure of a set of attributes under a set of functional dependencies
- determine the closure of α under F, denoted by α^+
- α^+ the set of attributes that are functionally dependent on attributes in α (under F)

- R[A] a relation
- F a set of functional dependencies
- α a subset of attributes
- problems
- II. compute the closure of a set of attributes under a set of functional dependencies
- algorithm:

```
closure := \alpha;
repeat until there is no change
for every functional dependency \beta \to \gamma in F
if \beta \subseteq closure
then closure := closure \bigcup \gamma;
```

- R[A] a relation
- F a set of functional dependencies
- problems

III. compute the minimal cover for a set of dependencies

Definition: F, G - two sets of functional dependencies; F and G are equivalent (notation $F \equiv G$) if $F^+ = G^+$.

- R[A] a relation
- F a set of functional dependencies
- problems

III. compute the minimal cover for a set of dependencies

Definition: F - set of functional dependencies; a minimal cover for F is a set F_M of functional dependencies such that:

- 1. $F_M \equiv F$
- 2. the right side of every dependency in F_M has a single attribute;
- 3. the left side of every dependency in F_M is irreducible (i.e., no attribute can be removed from the determinant of a dependency in F_M without changing F_M 's closure);
- 4. no dependency f in F_M is redundant (no dependency can be discarded without changing F_M 's closure).

- see lecture problems
 - ullet R a relation, F a set of functional dependencies, f a functional dependency
 - show that f is in F⁺
 - R a relation, F a set of functional dependencies, α a subset of the attributes of R
 - compute α^+
 - R a relation, F a set of functional dependencies
 - compute F_M minimal cover for F

Relational Algebra

- query languages in the relational model
 - relational algebra and calculus formal query languages with a significant influence on SQL
 - relational algebra
 - queries are specified in an operational manner
 - relational calculus
 - queries describe the desired answer, without specifying how it will be computed (declarative)
 - not expected to be Turing complete
 - not intended for complex calculations
 - provide smooth, efficient access to large datasets
 - allow optimizations

- relational algebra
 - used by DBMSs to represent query execution plans
 - a relational algebra query:
 - is built using a collection of operators
 - describes a step-by-step procedure for computing the result set
 - is evaluated on the input relations' instances
 - produces an instance of the output relation
 - every operation returns a relation, hence operators can be composed;
 the algebra is closed
 - operating on sets of tuples; extension duplicates are not eliminated

Conditions

- conditions that can be used in several algebraic operators
- similar to the SELECT filter conditions
- 1. attribute_name relational_operator value
- value attribute name, expression
- 2. attribute_name IS [NOT] IN single_column_relation
- a relation with one column can be considered a set
- the condition tests whether a value belongs to a set
- 3. $relation \{IS [NOT] | IN | = | <> \} relation$
- the relations in the condition should be union-compatible

Conditions

4. (condition)
NOT condition
condition₁ AND condition₂
condition₁ OR condition₂,

where condition, condition₁, condition₂ are conditions of type 1-4.

Operators in the Algebra

- equivalent SELECT statements can be specified for the relational algebra expressions
- selection
 - unary operator
 - notation: $\sigma_C(R)$
 - resulting relation:
 - schema: R's schema
 - tuples: records in R that meet condition C
 - equivalent SELECT statement
 - SELECT * FROM R WHERE C

- projection
 - unary operator
 - notation: $\Pi_{\alpha}(R)$
 - resulting relation:
 - schema: attributes in α
 - tuples: every record in R is projected on α
 - α can be extended to a set of expressions, specifying the columns of the relation being computed
 - equivalent SELECT statement
 - SELECT α FROM R

References

- [Ta13] ȚÂMBULEA, L., Curs Baze de date, Facultatea de Matematică și Informatică, UBB, 2013-2014
- [Ra00] RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems (2nd Edition), McGraw-Hill, 2000
- [Da03] DATE, C.J., An Introduction to Database Systems (8th Edition), Addison-Wesley, 2003
- [Ga08] GARCIA-MOLINA, H., ULLMAN, J., WIDOM, J., Database Systems: The Complete Book, Prentice Hall Press, 2008
- [Ra07] RAMAKRISHNAN, R., GEHRKE, J., Database Management Systems, McGraw-Hill, 2007, http://pages.cs.wisc.edu/~dbbook/openAccess/thirdEdition/slides/slides3ed.html
- [UI11] ULLMAN, J., WIDOM, J., A First Course in Database Systems, http://infolab.stanford.edu/~ullman/fcdb.html