Simulador de Algoritmos de Planificación y Sincronización

CC3064 – Sistemas Operativos

Docente: Juan Luis García

Universidad del Valle de Guatemala

Brandon Javier Reyes Morales 22992

Link repositorio:

https://github.com/BrandonReyes0609/proyecto2-SO.git

Descripción General

Este proyecto permite simular visualmente:

Algoritmos de calendarización de procesos.

Mecanismos de sincronización por semáforos y mutex.

Los usuarios pueden cargar archivos .txt con datos de entrada y observar gráficamente el comportamiento de los procesos y recursos a lo largo del tiempo (por ciclos), incluyendo estados dinámicos (WAITING / ACCESSED) y métricas como tiempo promedio de espera y turnaround Definición de Proyecto

¿Cómo se usa el proyecto?

- 1. Requisitos Previos
 - Tener instalado Python 3.x
 - Instalar Streamlit con pip install streamlit
 - Instalar dependencias adicionales si el proyecto las requiere (como matplotlib, pandas)
- 2. Ejecución del Simulador

Desde la terminal, navegar al directorio raíz del proyecto y ejecutar:

- 3. Interacción con la App
 - Seleccionar tipo de simulación: Calendarización o Sincronización.
 - Cargar archivos necesarios (dependiendo del modo):
 - o procesos_sync_var.txt
 - o recursos_sync_var.txt
 - o acciones mutex var.txt o acciones semaforo var.txt
 - Seleccionar algoritmo de planificación o modo de sincronización.
 - Ejecutar simulación y observar resultados.

Archivos necesarios para cada modo

Modo Calendarización:

Archivo .txt con formato:

<PID>, <BT>, <AT>, <PRIORIDAD>

Ejemplo: P1, 8, 0, 1

Se requiere para los algoritmos:

- FIFO
- SJF
- SRT
- Round Robin (configurar quantum)
- Priority

Modo Sincronización:

• Procesos: procesos_sync_var.txt

PID, BT, AT, Priority

• Recursos: recursos sync var.txt

R1, 1

- Acciones:
 - o acciones_mutex_var.txt para modo Mutex
 - o acciones_semaforo_var.txt para modo Semáforo

PID, ACCIÓN, RECURSO, CICLO

Ejemplo: P1, READ, R1, 0

Algoritmos de Calendarización Implementados

Algoritmo	Descripción	Métricas observadas
FIFO	Orden de Hegada	Tiempo promedio de espera y turnaround
SJF	ilProceso con menor Biirst Time	Tiempo de espera óptimo (no preventivo)
SRT	Variante preventiva de SJF	Mejora tiempo de respuesta para procesos

Algoritmo	Descripción	Métricas observadas
Round Robin	CPU compartida con quantum fijo	Justo para entornos interactivos
Priority		Puede causar starvation sin prioridad aging

Mecanismos de Sincronización

Mutex

- Permite exclusión mutua de recursos críticos.
- Visualiza el estado del recurso por ciclo.
- Puede generar espera activa si no se libera el recurso.

Semáforo

- Usa contadores para controlar acceso múltiple o secuencial.
- Acciones como WAIT, SIGNAL, READ, WRITE se representan visualmente.

Discusión de Resultados

- Los algoritmos como SRT muestran el mejor rendimiento en cuanto a tiempo de espera y turnaround promedio en cargas mixtas.
- FIFO y Priority dan resultados similares cuando los tiempos de llegada y prioridades son homogéneos.
- Round Robin penaliza el turnaround cuando el quantum es pequeño comparado con los BT.
- En sincronización:
 - o Semáforos logran mejor control de acceso escalonado.
 - Mutex es más estricto, y puede causar starvation si un proceso de alta prioridad no libera un recurso compartido.
- Las simulaciones muestran animaciones por ciclo, lo cual facilita la comprensión visual de conflictos como esperas activas o recursos compartidos.

Archivo / Carpeta	Descripción
app.py	Archivo principal de la app Streamlit
simulador/	Módulos de calendarización, sincronización, Gantt
procesos_sync_var.txt	Lista de procesos con AT, BT y prioridad

Archivo / Carpeta	Descripción
recursos_sync_var.txt	Recursos y su contador
acciones_mutex_var.txt	Acciones de sincronización con Mutex
acciones_semaforo_var.txt	Acciones de sincronización con Semáforo

Bibliografía

- Silberschatz, A., Galvin, P. B., & Gagne, G. (2018). Operating System Concepts. Wiley.
- Stallings, W. (2018). Operating Systems: Internals and Design Principles. Pearson.
- Tanenbaum, A. S., & Bos, H. (2015). Modern Operating Systems. Pearson.
- García Zarceño, J. L. (2025). *Temas de Sistemas Operativos*. Universidad del Valle de Guatemala.