University of Cambridge

MATHEMATICS TRIPOS

Part III

Ramsey Theory

Example Sheet I

November 15, 2019

Solutions by
JOSHUA SNYDER

Introduction

These are written solutions to Ramsey TheoryExample Sheet I. Solutions are written based on those seen in examples classes and may contain errors from the author.

Questions

Question (Question 1). How many combinatorial lines are there in $[m]^n$

1st Solution. Each coordinate can take a fixed value in $\{1,..,m\}$ or it can be an active coordinate. Thus for each coordinate there are m+1 choices, so there are $(m+1)^n$ active coordinates.

2nd Solution. Let f(m,n)=/# of combinatorial lines, then:

$$f(m,n) = \sum_{i=\# \text{active coordinates}} {n \choose i} 1^i m^{n-i} = (m+1)^n$$

Remark. As well as being a shorter proof, the first is a better way to think of combinatorial lines in $[m]^n$.

Question (Question 2). Show that HJ(2,k)=k for all k

Idea. Two things to show, $HJ(2,k) \le k$ and HJ(2,k) > k-1. One direction is a proof, the other is a bad colouring.

Solution.

 $\underline{H(2,k)>k-1}$ (Bad Colouring): Colour x by the number of ones in $\{0,1\}^{k-1}$ then cannot have any combinatorial line since no adjacent x,y are the same colour.

 $\underline{HJ(2,k) \leq k \text{ (Proof):}}$ If we can find k+1 things, any two of which form a combinatorial line, then we are done. Consider the set

$$\{(0,0,...,0),(0,0,...,1),(0,0,...,1,1),(0,...,1,1,1),(1,1,...,1)\}$$

Any two of these form a combinatorial line.

Question (Question 3). Let A be an infinite subset of the plane, with no three points collinear. Prove that A contains a set of 2019 points forming a convex 2019-gon.

Solution 1. 2-colour $A^{(4)}$ by colouring a 4-set CONVEX if the points form a convex 4-gon. Else colour them NON-CONVEX.

Ramsey's theorem for r-sets implies that there exists an infinite monochromatic subset of $A^{(4)}$. Suppose this is NON-CONVEX, then it must be of the following form:

Adding a 5th point anywhere leads to a convex 4-gon, this can be shown rigorously by splitting the triangle into six regions. Thus there is an infinite CONVEX subset of $A^{(4)}$. Then we are done since we can take any 2019 points and they must form a convex 2019-gon (Suppose not, then there exists a NON-CONVEX 4-gon by triangulating any 2019 points in our set)

Solution 2. WLOG assume A is countable. Rotate the points in A such that no two lie on the same vertical line. This is possible since there are uncountably many rotations and only countably many points. Now the points in A represent a function and we can colour the 3-sets of A HAPPY if they form a smile and UNHAPPY if they form a frown. Then we are done by Ramsey for 3-sets. \square

Remark. If we were using the finite versions of Ramsey for r-sets and wanted to find a smaller bound on the minimum n such that we can make this work, the second proof would give a lower bound since it requires one less induction to prove Ramsey for 3-sets vs Ramsey for 4-sets.

Question (Question 4). Let c be a 2-colouring of the finite subsets of \mathbb{N} . Must there exist an infinite $M \subset \mathbb{N}$ such that, for each r, the colouring c is constant on $M^{(r)}$?

Idea. We want to find a bad colour. Lets ensure one by one that $1 \notin M$, $2 \notin M$,...

Solution. We ensure that $1 \notin M$ by letting:

$$c(i) = \begin{cases} RED & i = 1 \\ BLUE & i \neq 1 \end{cases}$$

Now we ensure $2 \notin M$ by letting:

$$c(ij) = \begin{cases} RED & 2 \in \{i,j\} \\ BLUE & otherwise \end{cases}$$

We continue this by colouring the r-sets $X \in \mathbb{N}^{(r)}$:

$$c(X) = \begin{cases} RED & r \in X \\ BLUE & otherwise \end{cases}$$

Now suppose there is an infinite monochromatic set M with the desired property, then M cannot be RED else it is just $\{1\}$ which is not infinite, thus M must be BLUE. Then since r-set in $M^{(r)}$ contains r, M must be empty. Contradiction.

Question (Question 5). Prove that $\{0,1\}^{\mathbb{N}}$ (with the product topology) is compact.

Solution. Need to review this, I am unsure of the proof or really what the question is asking. $\hfill\Box$

Question (Question 6). By mirroring the proof of van der Waerden's theorem for arithmetic progressions of length 3, show that whenever \mathbb{N}^2 is finitely coloured there exist a,b,r such that the set $\{(a,b),(a+r,b),(a,b+r)\}$ is monochromatic. Deduce by a product argument that whenever \mathbb{N}^2 is 2-coloured there exist a,b,r such that the square $\{(a,b),(a+r,b),(a,b+r),(a+r,b+r)\}$ is monochromatic. Give an explicit n such that whenever $[n]^2$ is 2-coloured there exists a monochromatic square.

Solution. \Box

Question (Question 7). Show that for every m there is an n with the following property: whenever n^2 is 2-coloured there exists a monochromatic set M of size at least m satisfying $|M| > \min M$.

Idea. Use a compactness argument to get a contradiction.

Solution. Suppose not. Then by compactness we get a 2-colouring of the naturals with no M s.t $|M| > \min M$. However by Infinite Ramsey there is an infinite monochromatic set, say N. Pick a point in this monochromatic set say m, then pick the next m points in N and let these form the set M. However then $|M| > \min M$.

- **Remark.** The exact same argument provides a proof that $\forall m, k, r \exists n$ such that when $[m]^{(r)}$ is k-coloured there is a monochromatic M with $|M| > \min M$
 - Compactness arguments like these are a very useful tool.
 - As an aside, this is an interesting example of a sentence that is true in Peano Arithmetic (PA) but is not provable in PA. This is the Paris-Harrington theorem.

Question (Question 8). Let A be a subset of \mathbb{N} such that, whenever A is finitely coloured, there is a monochromatic arithmetic progression of length m. Must A contain an arithmetic progression of length m+1?

Idea. We want a rich enough A such that whenever we k colour A there exists a monochromatic AP of length 3 yet A has no AP of length 4.

Solution. Don't understand this proof, need to go through it. \Box

Question (Question 9). Let \mathbb{N} be finitely coloured. Must there exist arbitrarily long monochromatic arithmetic progressions having the same common difference?

Idea. Seems like too much to ask for. Can we find a really weird colouring that doesn't work for any integer periodic difference?

Solution. Colour \mathbb{N} as follows:

$$c(n) = \begin{cases} RED & \frac{x}{\sqrt{2}} \mod 1 > \frac{1}{2} \\ BLUE & otherwise \end{cases}$$

Then since $\sqrt{2}$ is irrational there is no periodic nature in the integers, so this colouring suffices. Is there a way to make this more rigorous?

Remark. • Nothing special about $\sqrt{2}$ here, anything irrational would have done fine e.g π .

• Could have also found other colouring, like ones involving colouring based on the number of ones. For an example of this, see the Thue-Morse sequence (This is a good example of a sequence that ruins a lot of properties and such examples are useful to know).

Question (Question 10 +). Let A be an uncountable set and let $A^{(2)}$ be 2-coloured. Must there exist an uncountable monochromatic set in A?

Question (Question 11 +). Let c be a colouring of \mathbb{N} using (possibly) infinitely many colours. Prove that, for every m, there is an arithmetic progression of length m on which c is either constant or injective.