

Circle Slice Flows and the Variational Determinant Estimator

Simon Passenheim

University of Amsterdam

20th of January, 2021

Contents

1. Introduction

2. Circle Slice Flows

3. The Variational Determinant Estimator

4. Conclusion

Introduction

Introduction

Motivation

Most work concerning Normalizing Flows (Rezende, Mohamed, 2015; Dinh et al., 2016; Kingma, Dhariwal, 2018) so far considered density estimation on Euclidean spaces.

Manifold hypothesis (Fefferman et al., 2016) states that real-world high dimensional data like images often lies on lower-dimensional manifold.

Figure: Data populating a one dimensional manifold embedded in \mathbb{R}^2 . Plot from Brehmer, Cranmer (2020).

Our Contributions

Circle Slice Flows

- Novel method to perform density estimation on \mathbb{S}^D which allows uniform prior on \mathbb{S}^D
- Circle Slices $(x_i, x_j) \in \mathbb{S}^D$ are transformed with univariate flows and sphere slices with rotations
- Benchmarked against Cylindrical flows by Rezende et al. (2020)

Variational Determinant Estimator

- Novel method based on stochastic estimator by Sohl-Dickstein (2020) which solely depends on matrix vector products
- A sample generator distribution is modeled with spherical flows, reducing the variance of the Monte Carlo estimator
- Work has been accepted at AABI workshop 2021

Background - Flows on Manifolds

Euclidean Change of Variables if we go from a *simple* space Z to a *complex* space X with $f\colon Z\to X$, then p on X

$$\log p(x) = \log \pi(z) - \log|\det J_f(z)|$$

Manifold Change of Variables Formula Let f be a flow between D-dim manifolds $\mathcal M$ and $\mathcal N$

$$f: \mathcal{M} \subset \mathbb{R}^m \to \mathcal{N} \subset \mathbb{R}^n$$

and π a distribution on \mathcal{M} , p distr. on \mathcal{N} , then

$$\log p(x) = \log \pi(z) - \log \sqrt{\det \left(J_f(z)E(z)\right)^{\top} J_f(z)E(z)}$$
 (1)

where E is the $m \times D$ matrix of tangent vectors at $T_z \mathcal{M}$.

Background - Moebius Flow

Moebius Flow (MF) is a diffeomorphism $h: r\mathbb{S}^D \to r\mathbb{S}^D$ and used by Wang, Gelfand (2013); Rezende et al. (2020) for $z \in \mathbb{R}^{D+1}$

$$h_{\omega}(z) = \frac{r^2 - \|\omega\|^2}{\|z - \omega\|^2} (z - \omega) - \omega \quad \text{with} \quad \|\omega\| < r$$

but can only use it to define flow on $r\mathbb{S}^1$.

Figure: Left: image of 50 unifrom samples, mid: Moebius Flow in angle space, right: implied density

Background - Interval Spline Flow

Interval Spline Flow (ISF) (Durkan et al., 2019) diffeomorphism on [a,b] via piecewise rational-quadratic functions on K bins

$$f(x) = \frac{a_{k2}x^2 + a_{k1}x + a_{k0}}{b_{k2}x^2 + b_{k1}x + b_{k0}}$$

Can be easily extended to Circular Spline Flows (CSF) on \mathbb{S}^1 as seen as $[0,2\pi]$.

(a) Interval Spline Flow

(b) Implied density

Figure: Neural Spline Flow with randomly initialized parameters.

Background - Cylindrical Flow

Unfolding the Sphere via $T_{s\to c}\colon \mathbb{S}^D\to \mathbb{S}^1\times [-1,1]^{D-1}$ and

$$T_{s \to c} : (x_{1:D+1}) \mapsto \left(\frac{x_{1:2}}{\sqrt{1 - \sum_{i=3}^{D+1} x_i^2}}, \dots, \frac{x_k}{\sqrt{1 - \sum_{i=k+1}^{D+1} x_i^2}}, \dots, x_{D+1}\right)$$

The circle \mathbb{S}^1 is transformed via MF or CSF and $[-1,1]^{D-1}$ with ISF.

Figure: Cylindrical flow acting on \mathbb{S}^2 autoregressively. Plot is taken from Rezende et al. (2020).

University of Amsterdam

A Slice of Pie

Sphere Slice Each subset

$$(x_{i_1},\ldots,x_{i_n})\subset\mathbb{S}^D$$
 lies on $r\mathbb{S}^{n-1}$ with

$$r^2 = 1 - \sum_{k \neq i_1, i_2, \dots, i_n} x_k^2$$

Circle Slice

In particular, $(x_i,x_j)\subset\mathbb{S}^D$ defines a one dimensional circle $r\mathbb{S}^1$ on the sphere.

Angle Identification

Each pair (x_i, x_j) can be bijectively identified with an angle $\theta \in [0, 2\pi)$ via

$$\theta = \arctan 2(x_i, x_i) \mod 2\pi$$

Figure: Dashed lines represent circle slices for varying x_3 .

Architecture

UNIVERSITY OF AMSTERDAM

Split of the data can be interpreted as slicing of \mathbb{S}^D into two subspheres $r\mathbb{S}^{d-1}\times r'\mathbb{S}^k$.

Rotations purpose is two-fold.

Circle Slices are transformed with MF or CSF by considering independent pairs of Cartesian coordinates.

Figure: Architecture of *Circle Slice Flows*

Global Rotation acts as learnable permutation of the data and inspired by 1×1 convolution of Kingma, Dhariwal (2018).

Conditional Rotation additionally acts as arbitrary phase translation.

Orthogonal Transformation Strictly speaking our rotations are orthogonal transformations $R \in \mathrm{O}(D)$ with $|\det J_R| = 1$.

Householder Reflections Orthogonal matrix $R \in \mathrm{O}(D)$ can be expressed as composition of up to D Householder reflections

$$R_i = I - 2 \frac{u_i u_i^{\top}}{\|u_i\|^2}$$
 with $u_i \in \mathbb{R}^D$

Circle Slice Identification and Transformation

Circle Slice Identification

$$T: r_1 \mathbb{S}^1 \times r_2 \mathbb{S}^1 \times \ldots \times r_{d/2} \mathbb{S}^1 \to [0, 2\pi)^{d/2}$$

 $T: (x_1, x_2), (x_3, x_4), \ldots, (x_{d-1}, x_d) \mapsto (\theta_1, \ldots, \theta_{d/2})$

Circle Slice Transformation with either Moebius or Circular Spline flow and parameters $\{\psi_i\}_i$

$$f: (\theta_1, \dots, \theta_{d/2}) \mapsto (f(\theta_1|\psi_1), \dots, f(\theta_{d/2}|\psi_{d/2}))$$

Jacobian of T and T^{-1} cancel out each other since radii are left invariant under MF and CSF and update rule via Equation 1

$$\log \sqrt{\det G_T} = \sum_i \log r_i$$

Experiment 1: Density Estimation

Toy Density Consider mixture of Power Spherical Distributions (De Cao, Aziz, 2020). Fast sampling procedure.

Figure: Synthetic target density on \mathbb{S}^2 . Parameters can be found on git.

Experiment 1: Architecture

Architecture:

Rezende et al. (2020) used only a low number of dims. Therefore, we chose powers of 2 and D=3.

Training Parameters

- In total 8k iterations
- Batch 256
- AdamW optimizer
- GTX 1080 Ti 11GB RAM

Dim	N_C	N_B	N_F	$h_{\sf dim}$ MLP
3	8	8	3	128
32	8	12	3	128
64	8	12	4	128
128	8	12	5	128

Table: Model parameters, both for Circle Slice and Cylindrical flows.

Ŭ University of Amsterdam

Circle Slice Moebius

Cylindrical Spline

Circle Slice Spline

Cylindrical Moebius

Experiment 1: Results

0.35

0.30

(a) KL in dimension D=3

(b) KL in dimension D=32

(c) KL in dimension D=64

(d) KL in dimension D = 128

Experiment 2: Numerical Instabilities

Unit Norm often appears naturally in high dimensional data Dryden, others (2005). For example, in shape and curve analysis a data set might be recorded at arbitrary scales and only the general shape of the data points is the object of interest.

		Circle Slice Flows		
Dim	NaN in \mathbb{S}^1	Heights outside $[-1,1]^{D-1}$	$(z_1,z_2)\in\mathbb{S}^1$ outside $[-1,1]^2$	Num. Instability
64	6	15	3k	0
128	14	33	6k	0
256	41	85	12k	0
512	105	196	24k	0

Table: Occurrences of numerical instabilities when unfolding $\mathbb{S}^D \to \mathbb{S}^1 \times [-1,1]^{D-1}$ for 50k uniform samples. Numbers are rounded to full thousands in the last column.

Original Determinant Estimator

Original Estimator by Sohl-Dickstein (2020). Let $A \in \mathbb{R}^{D \times D}$ be non-singular matrix:

$$|A|^{-1} = \mathbb{E}_{s \sim \mathcal{U}(\mathbb{S}^{D-1})} [||As||^{-D}]$$

VDE Introduction of variational distribution $q: \mathbb{S}^{D-1} \to \mathbb{R}^+$ acts as variance reducer:

$$|A|^{-1} = \mathbb{E}_{s \sim q(s)} \left[\frac{\mathcal{U}(s)}{q(s)} ||As||^{-D} \right]$$

Zero Variance Variational Distribution According to Owen (2013) optimal variational distribution:

$$q^*(s) \propto ||As||^{-D}$$

Objective

Our Contribution Model variational distribution q(s) by Cylindrical flow $f\colon \mathbb{S}^{D-1}\to \mathbb{S}^{D-1}$ (Rezende et al., 2020) or our own Circle Slice Flows.

Objective Plugging in change of variables formula and modeling the flow as from *simple* space to *complex* space $f\colon Z\to X$ yields

$$\overline{\mathrm{KL}}(q(s); \mathcal{U}(s) || As ||^{-D}) =$$

$$\mathbb{E}_{s_0 \sim \mathcal{U}(s)} \left[-\log |\det J_f(s_0)| + n\log || Af(s_0)|| \right]$$

Upper Bound Property

$$\log|A| = -\log \mathbb{E}_{s \sim q(s)} \left[\frac{\mathcal{U}(s)}{q(s)} ||As||^{-D} \right]$$

$$\leq -\mathbb{E}_{s \sim q(s)} \left[\log \frac{\mathcal{U}(s)}{q(s)} ||As||^{-D} \right] = \overline{\text{KL}}(q(s); \mathcal{U}(s) ||As||^{-D})$$

Example in D=3

Matrix A rounded to one decimal:

$$A = \begin{bmatrix} -0.7 & 0.7 & -0.5 \\ 0.9 & 1.1 & 0.1 \\ -1.3 & -0.2 & 1.0 \end{bmatrix}$$

- (e) Optimized variational distribution (f) Optimal variational distribution q(s) on \mathbb{S}^2 .
 - $a^*(s) = ||As||^{-3}/Z \text{ on } \mathbb{S}^2.$

Figure: Learned variational distribution modeled by a Cylindrical flow and optimal distribution.

Experiment 1: Five Random Dense Matrices

Architecture Cylindrical flow (Rezende et al., 2020) on $\mathbb{S}^1 \times [-1,1]^{D-1}$. Moebius flow for circle part \mathbb{S}^1 and Interval Spline flow for interval $[-1,1]^{D-1}$.

N_C	N_B	N_F	$h_{\sf dim}$ MLP
12	16	8	64

Table: Model parameters

Dense Matrices Five 10×10 unit Gaussian sampled matrices and can be found on git.

Metric Relative mean absolute difference (RMD)

RMD =
$$\frac{1}{5} \sum_{i=1}^{5} \left| \frac{\widehat{|A_i|} - |A_i|}{|A_i|} \right|$$

Experiment 2: Convolutational Layer Matrix

Architecture and Parameters Identical except 40k iterations.

Matrix of Conv. Operator Structured, equivalent 16×16 matrix W of convolutional operator with a 3×3 filter w applied to an 4×4 image x. Can be found on git.

Figure: Illustration of the equivalent matrix W associated to a convolutional operator with a 3×3 filter w applied to an 3×3 image x. Plot from Hoogeboom et al. (2019).

Metric RMD and absolute det estimates.

Results

Dense Matrices

Nr. of samples	10^{2}	10^2 10^3		10^{5}
VDE det. (ours)	$\textbf{3.4}\pm2.1~\%$	$\textbf{1.7}\pm\textbf{0.6}\%$	$\textbf{1.6}\pm1.3\%$	$\textbf{0.3}\pm\textbf{0.3}\%$
MC det.	$533\pm660~\%$	$348\pm262~\%$	104 \pm 30 %	$59\pm43~\%$

Table: Results of dense matrix experiment in terms of RMD.

Structured Matrix

Nr. of samples	10^{2}	10^{3}	10^{4}	10^{5}	true determinant
VDE det. (ours) MC det.	7.62 481.09		7.64 39.08	7.70 13.21	7.71
VDE Rel. diff of det. (ours) MC Rel. diff of det.		0.05 % 865 %			0 %

Table: Results of structured matrix experiment in terms of RMD and absolute estimates.

Conclusion

Takeaways

- Circle Slice Flows are on par in two out four density estimation experiments
- Still, Cylindrical Flows problematic in high dimensions
- Numerical instabilities solved by clamping and manually replacing NaNs with straight-trough gradients

Future Work

- Transform radius of circle slices by obeying boundary condition that overall radius remains constant
- Compose circle slice transformation with single phase translation

Takeaways

- The VDE yields accurate determinant estimates with low sample sizes
- Relies only on matrix-vector products
- We considered offline setting where variational distribution needs to be optimized first

Future Work

- Train VDE in parallel in an online setting to enable estimation of Jacobian determinant of unconstrained Normalizing Flows
- Could do this within single objective

References I

- Brehmer Johann, Cranmer Kyle. Flows for simultaneous manifold learning and density estimation // arXiv preprint arXiv:2003.13913. 2020.
- De Cao Nicola, Aziz Wilker. The Power Spherical distribution // arXiv preprint arXiv:2006.04437. 2020.
- Dinh Laurent, Sohl-Dickstein Jascha, Bengio Samy. Density estimation using real nvp // arXiv preprint arXiv:1605.08803. 2016.
- Dryden Ian L, others . Statistical analysis on high-dimensional spheres and shape spaces // The Annals of Statistics. 2005. 33, 4. 1643–1665.
- Durkan Conor, Bekasov Artur, Murray Iain, Papamakarios George. Neural spline flows // Advances in Neural Information Processing Systems. 2019. 7511–7522.

- Fefferman Charles, Mitter Sanjoy, Narayanan Hariharan. Testing the manifold hypothesis // Journal of the American Mathematical Society. 2016. 29, 4. 983–1049.
- Hoogeboom Emiel, Berg Rianne van den, Welling Max. Emerging convolutions for generative normalizing flows // arXiv preprint arXiv:1901.11137. 2019.
- Kingma Durk P, Dhariwal Prafulla. Glow: Generative flow with invertible 1x1 convolutions // Advances in neural information processing systems. 2018. 10215–10224.
- Owen Art B. Monte Carlo Theory // Methods and Examples. 2013. 665.
- Rezende Danilo Jimenez, Mohamed Shakir. Variational inference with normalizing flows // arXiv preprint arXiv:1505.05770. 2015.

Rezende Danilo Jimenez, Papamakarios George, Racanière Sébastien, Albergo Michael S, Kanwar Gurtej, Shanahan Phiala E, Cranmer Kyle. Normalizing flows on tori and spheres // arXiv preprint arXiv:2002.02428. 2020.

Sohl-Dickstein Jascha. Two equalities expressing the determinant of a matrix in terms of expectations over matrix-vector products // arXiv preprint arXiv:2005.06553. 2020.

Wang Fangpo, Gelfand Alan E. Directional data analysis under the general projected normal distribution // Statistical methodology. 2013. 10, 1. 113–127.