Equivariant Spaces

Meng Guo

August 14, 2019

1 G-spaces and G-CW complexes

The main objects in equivariant homology theory and homotopy theory are G-spaces which are spaces equipped with an action by a topological group G. In details, here is the definition.

Definition 1.1. A *G*-space is a topological space *X* with continuous actions $G \times X \to X$ such that ex = x and g(g'x) = (gg')x.

Definition 1.2. A *G*-map $f: X \to Y$ is an continuous map f such that f(gx) = gf(x) (We call maps satisfying this by equivariant maps).

They togeother form the category of G-spaces, Top_G . If we take all spaces to be compactly generated and weak Hausdorff, we have a G-homeomorphism

$$Map(X \times Y, Z) \equiv Map(X, Map(Y, Z))$$

Definition 1.3. A *G*-CW complex X is the union of sub *G*-spaces X^n such that X^0 is a disjoint union of orbits G/H and X^{n+1} is obtained from X^n by attaching *G*-cells $G/H \times D^{n+1}$ along the attaching *G*-maps $G/H \times S^n \to X^n$.

Remark: Compare the pushout diagrams of non-equivariant CW complex and of equivariant CW complex. To give a sense that G/H plays the role of points in nonequivariant case.

The attaching map $G/h \times S^n \to X^n$ is determined by its restriction $S^n \to (X^n)^H$.

In equivariant theory orbits, G/H play the role of points.

Example 1.4. Use the examples of S^1 with reflection action of $\mathbb{Z}/2$ and S^1 with antipodal action of $\mathbb{Z}/2$. Maybe $\mathbb{C}P^n$ by conjugation. Insert pictures.

2 Geometric fixed points and orbits

For $H \subset G$, we write the set of fixed points of H by $X^H = \{x | hx = x \text{ for } h \in H\} = \operatorname{Hom}_G(G/H, X)$ and Weyl group $W_G H = N_G H/H = \operatorname{Hom}_G(G/H, G/H)$. We denote the orbit space by $X_G = X/G$.

Consider the functor $F: \operatorname{Top} \to \operatorname{Top}_G$, which sends a space Y to its underlying space with trivial G-action. F has both left and right adjoints, which are geometric fixed points and orbits. In particular,

$$\operatorname{\mathsf{Hom}}_{\mathcal{G}}(Y,X)\cong \operatorname{\mathit{Hom}}(Y,X^{\mathcal{G}})$$

$$\operatorname{\mathsf{Hom}}_G(X,Y) \cong \operatorname{\mathsf{Hom}}(X_G,Y)$$

In general, if we have a map of groups $G \to K$, it induces a functor $f^* : \operatorname{Top}_K \to \operatorname{Top}_G$. f^* has both right adjoint $f_!(X) = K \times_G X$ and left adjoint $f_*(X) = \operatorname{Hom}_G(K,X)$. If we take K = *, it gives the above adjuntions.

Geometric fixed points and orbits are also limits and colimits. Let BG be the category with one object and G for morphisms. We can naively regard Top_G as the functor category $F(BG,\operatorname{Top})$. A map $f:G\to K$ induces a functor $F:BG\to BK$ and a functor $f^*:\operatorname{Top}_K\to\operatorname{Top}_G$, $f_!$ is the left Kan extension along F and f_* is the right Kan extension along F.

$$\begin{array}{ccc}
BG & \longrightarrow & \text{Top} & BG & \longrightarrow & \text{Top} \\
\downarrow_F & & \downarrow_{f_*} & & \downarrow_{f_*} \\
BK & & BK
\end{array}$$

The diagrams do not commute. There are natural transformation $id \Rightarrow f^*f_!$ and $f^*f_* \Rightarrow id$. In particular, if we take K = *, left and right Kan extensions of a functor X along F to the trivial category give the colimits and limits of X, we have

$$X^G = \lim_{R \to X} X$$

$$X_G = \operatorname{colim}_{BG} X$$
.

3 Homotopy homotopy fixed points and orbits

Now we define homotopy fixed points to be $\operatorname{Map}_G(EG,X):=X^{hG}$ and homotopy orbits to be $EG\times_GX:=X_{hG}$.

Recall from last section, a map $f:G\to K$ induces a map $f^*:\operatorname{Top}_K\to\operatorname{Top}_G$. Qe consider homootpy right Kan extension functor, the right derived functor Rf_* of the right Kan extension f_* . The idea of derived functor here is choosing a fibrant replacement functor $Q:\operatorname{Top}_G=\operatorname{Fun}(BG,\operatorname{Top})\to\operatorname{Top}_G$ and setting $Rf_*=f_*\circ Q$. Taking K=*, it defines the homotopy limits:

$$\text{holim}_{BG}X = X^{hG}$$
.

By the properties of right derived functors, there is a natural map from a functor to its right derived functor. We get a natural map from limits to homotopy limits and in particular.

$$X^G \to X^{hG}$$
.

If we do the entire process for left homotopy derived functors Lf_i , the left derived functor of left Kan extension f_i , we have

$$hocolim X = X_{hG}$$
.

and we have a map

$$X_{hG} \rightarrow X/G$$
.

As one expects,

$$\pi_0 \operatorname{Hom}_G(Y, X) \cong \pi_0 \operatorname{Hom}(Y, X^{hG})$$

 $\pi_0 \operatorname{Hom}_G(X, Y) \cong \pi_0 \operatorname{Hom}(X_{hG}, Y)$

4 Homotopies

Definition 4.1. For a topological *G*-space X, $H \subset G$ a closed subgroup of G, its nth H-equivariant homotopy groups are

$$\pi_n^H(X) = \operatorname{Hom}_G(G/H_+ \wedge S^n, X) = \pi_n(X^H).$$

Definition 4.2. A G-map $f: X \to Y$ is weak homotopy equivalence if $f^H: X^h \to Y^H$ is a weak equivalence for all $H \subset G$.

Recall that in non-equivariant case, a map $f: Y \to Z$ is an n-equivalence if $\pi_p(f)$ is a bijection for q < n and a surjection for q = n (for any choice of basepoint). Now we give a analogous definition for equivariant case.

Definition 4.3. Let ν be a function from conjugacy classes of subgroups of G to the integers ≥ 1 . We say that a map $e: Y \to Z$ is a ν -equivalence if $e^H: Y^H \to Z^H$ is a $\nu(H)$ -equivalence for all H.

Theorem 4.4 (Homotopy extension and lifting property). Let A be a subcomplex of a G-CW complex X of dimension ν and let e; $Y \to Z$ be a ν -equivalence. Suppose given maps $g: A \to Y$, $h: A \times I \to Z$, and $f: X \to Z$ such that $eg = hi_i$ and $fi = hi_0$ in the following diagram: then there exists maps \tilde{g} and \tilde{h} that make the diagram commutes.

Proof. We construct \tilde{g} and \tilde{h} on $A \cup X^n$ by induction on n. Passing from the n-skeleton to the (n+1)-skeleton, we may work one cell of X not in A at a time. By considering attaching mas, we quickly reduce the proof to the case when $(X,A) = (G/H \times D^{n+1}, G/H \times S^n)$ and this reduces to the nonequivariant case of (D^{n+1}, S^n)

Theorem 4.5 (Whitehead Theorem). Let $e: Y \to Z$ be a ν -equivalence and X be a G-CW complex. Then $e_*: \operatorname{Hom}_G(X,Y) \to \operatorname{Hom}_G(X,Z)$ is a bijection if X has dimension less than ν and a surjection if X has dimension ν .

Proof. Apply Theorem 4.4 to (X, \emptyset) for the surjectivity and to $(Z \times I, X \times \partial I)$ for the injectivity.

Corollary 4.6. If $e: Y \to Z$ is a ν -equivalence between G-CW complexes of dimension less than ν , then e is a G-homotopy equivalence.

References

[EHCT] J. P. May. Equivariant Homotopy and Cohomology Theory.