Trường Đại học Khoa học Tự nhiên - Khoa Công nghệ Thông tin

BÁO CÁO KHÓA LUẬN TỐT NGHIỆP

PHÂN LỚP ĐA ĐỐI TƯỢNG DỰA TRÊN MÔ HÌNH HỌC SÂU

Giảng viên hướng dẫn: TS. Bùi Tiến Lên

Sinh viên thực hiện: Hồ Đăng Cao Đỗ Đức Duy

Giới Thiệu Bài Toán

Thực nghiệm và Đánh giá

Hướng Phát Triển

Vấn đề 1: Ảnh xuất hiện các đối tượng thừa, ngoài tập nhãn.

Vấn đề 2: Số lượng ảnh ở mỗi nhãn có sự chênh lệch lớn.

Vấn đề 3: Các nhãn có nghĩa thuộc cùng trường từ vựng.

coffee - espresso

bread - bread_white

coffee

espresso

- Nguồn gốc: từ cuộc thi Food Recognition Benchmark 2022.
- Mô tả: các bức ảnh về các món ăn trong bữa ăn hằng ngày.
- Số lượng ảnh:
 - Tập huấn luyện: 54392.
 - Tập đánh giá: 946.
- Số lượng nhãn: 323.

• Đề xuất sử dụng hai công trình Đơn nhãn dương và C-Tran.

• Thực hiện tiền xử lý, loại bỏ đối tượng ngoài tập nhãn trên ảnh.

Cải tiến, thay đổi kiến trúc của Đơn nhãn dương và C-Tran.
 Đồng thời kết hợp 2 mô hình.

11

Loại bỏ đối tượng nằm ngoài tập nhãn

Ảnh gốc

Xác định vùng cắt

Ånh sau khi cắt

^{Oy} Xác định từ các <mark>phân vùng</mark>. ^{Oy}Xác định từ các <mark>khung chứa</mark>. Vùng cắ

Vùng cắt được xác định

Dùng mô hình được huấn luyện sẵn

Chỉ cần ghi nhận 1 đối tượng có trong mỗi ảnh cho quá trình huấn luyện.

• vector nhãn của ảnh thứ n chỉ có 1 nhãn dương.

1	Ø	Ø	•••	Ø

• Hàm mất mát \mathcal{L}_{BCE}^+ đo độ lỗi giữa vector nhãn và vector dự đoán.

Hạn chế: Mô hình sẽ dự đoán tất cả các lớp là dương.

Giải pháp:

- Bổ sung nhãn âm.
- Phạt dự đoán nhiều nhãn dương.

Giả sử các nhãn không được quan sát là âm: $\mathcal{L}_{AN} \rightarrow \text{nhiễu nhãn làm}$ giảm độ chính xác.

• Thêm trọng số: \mathcal{L}_{WAN}

• Kết hợp làm mịn nhãn (LS) cho mỗi lớp : \mathcal{L}_{AN-LS}

Các hàm mất mát - Phạt dự đoán nhiều nhãn dương.

Điều chuẩn dương kì vọng: \mathcal{L}_{EPR} k số nhãn dương kỳ vọng $R_k \to \hat{k}$ số nhãn dương trung bình dự đoán

Ước lượng nhãn trực tuyến điều chuẩn: \mathcal{L}_{ROLE}

 \mathcal{L}_{BCE} extstyle extstyle

19

Chuyển vector nhãn z sang các giá trị xác suất. Nhãn không biết xem như nhãn âm.

1 0 0	. 0
-------	-----

Mục tiêu: $x_i = \sigma^{-1}(z_i)$

Áp dụng kĩ thuật làm mịn nhãn.

$$1-\epsilon$$
 $\left|\begin{array}{c|c} \epsilon \\ \overline{L-1} \end{array}\right|$ $\left|\begin{array}{c|c} \epsilon \\ \overline{L-1} \end{array}\right|$... $\left|\begin{array}{c|c} \epsilon \\ \overline{L-1} \end{array}\right|$

$$\sigma(x^+)$$
 $\sigma(x^-) \to x^+$ phụ thuộc x^- .

Huber:
$$\mathcal{L}_{HU}$$
 MSE MAE

Focal:
$$\mathcal{L}_{FO} = \mathcal{L}_{AN}$$
 α_i : nghịch đảo tần suất xuất hiện của nhãn thứ i $(1-f_{ni})^{\gamma}$: dự đoán càng sai thì phạt càng nặng.

Các kết quả tốt nhất với ResNet 50 giữa:

- Các tốc độ học $(10^{-3}, 10^{-4}, 10^{-5})$.
- Các kích thước lô (8, 16, 32).
- Trên tập dữ liệu gốc (chưa cắt).

Hàm mất	Chế độ huấn	Hàm kích	mAP tập		
mát	luyện	hoạt	kiểm tra		
FO	đầu cuối	sigmoid	0.7938		
ROLE	đầu cuối	$\operatorname{sigmoid}$	26.5441		
HU	đầu cuối	$_{ m sigmoid}$	32.6947		
AN-LS	đầu cuối	sigmoid	34.6173		
AN-LS	chuyển giao	$\operatorname{sigmoid}$	34.8327		
HU	chuyển giao	$\operatorname{softmax}$	1.5206		

Ở ngưỡng phân lớp 0.5

Số lượng	Các cặp (nhãn đúng, nhãn đoán)
4	(water, soft_drink_with_a_taste), (espresso, coffee)
3	(water, glucose_drink_50g), (espresso, ristretto_with_caffeine)
2	(water, water_with_lemon_juice), (bread_wholemeal, bread_whole_wheat), (mixed_salad_chopped_without_sauce, salad_leaf_salad_green), (coffee, white_coffee), (coffee, ristretto_with_caffeine)

Các nhóm dễ nhầm lẫn gồm nước, cà phê, bánh mì và salad.

Các nhãn tương ____ Anh hưởng đến độ tin cậy về kết quả của mô hình.

water

soft_drink_with_a_taste

glucose_drink_50g

water_with_lemon_juice

→ Ở mức con người cũng khó có thể phân biệt được các bức ảnh cùng nhóm.

Ưu điểm: làm tốt trong vấn đề trích xuất và nhận diện các đặc trưng ảnh với số lượng nhãn cần đánh thấp.

Hạn chế: các vấn đề về ý nghĩa nhãn làm ảnh hưởng lớn đến kết quả phân lớp.

Giải pháp: cần một mô hình có thể học được mối liên hệ giữa các nhãn.

 \rightarrow C-Tran.

Khai thác sự phụ thuộc giữa các đặc trưng và nhãn trong hình ảnh.

• Che nhãn hình ảnh trong quá trình huấn luyện.

1. Nhúng đặc trưng Z

Các vector $z_i \in Z = \mathbb{R}^d$, đại diện cho các vùng được ánh xạ từ các mảng không gian gốc của ảnh thông qua mạng trích xuất đặc trưng.

2. Nhúng nhãn L

 $L = \{l_1, l_2, \dots, l_l\}, l_i \in \mathbb{R}^d$, đại diện cho các nhãn lcó thể có trong tập dữ liệu.

$$\tilde{l}_i = l_i + s_i$$

$$s_i = n$$

$$\cdots egin{array}{c} s_i = p \end{array}$$

 $s_i \in \{u, n, p\}$: không xác định (u), âm (n), dương (p).

$$egin{array}{c|c} l_1 & + & s_1 = u \end{array}$$

$$oldsymbol{l}_2$$
 + $oldsymbol{s}_2=n$

$$oldsymbol{l_3}$$
 + $oldsymbol{s_3}=u$

$$oldsymbol{l_l}$$
 + $oldsymbol{s_l} = u$

4. Mô hình hóa sự tương tác giữa đặc trưng và nhãn bằng Transformer Encoder

- $H = \{z_1, ..., z_{h \times w}, \tilde{l}_1, ..., \tilde{l}_l\}$ là đầu vào của Transformer Encoder.
- Đầu ra là $H' = \{l'_1, ..., l'_l\}$

5. Quá trình suy luận để phân loại nhãn

6. Hàm mất mát

*L*_{BCE}: Binary Cross Entropy

Mạng chuyển tiếp độc lập FFN_i cho l_i' gồm 1 lớp tuyến tính. Sau đó, dùng hàm **sigmoid** để tính giá trị xác suất cho các nhãn l_i' .

Các mạng mới tối ưu về mặt số lượng tham số.

Loại bỏ thông tin trạng thái nhãn.

$$oxed{l_1}$$
 + $oxed{s_1=u}$

$$l_1$$

$$oldsymbol{l}_2$$
 + $oldsymbol{s}_2=n$

$$l_2$$

$$l_3$$
 + $s_3 = u$ \longrightarrow l_3

.

 l_l

Thay đổi số lượng lớp Encoder.

	Mạng trích xuất đặc trưng	Hàm kích hoạt	Số lớp En- coder	Che nhãn huấn luyện	Lượng nhãn biết trước	Trạng thái	Kết quả kiểm tra
	ResNet 101	$_{ m sigmoid}$	3	có	0	tổng	91.3
Mô hình gốc -	ResNet 101	softmax	3	có	0	tổng	90.1
(~42.5M)	ResNet 101	sigmoid	3	có	243	tổng	91.3
	EfficientNet B0	sigmoid	3	có	0	tổng	91.3
	MobileNet V2	sigmoid	3	có	0	tổng	91.3
Má bìob đã vuất	MobileNet V2	sigmoid	3	có	243	tổng	91.3
Mô hình đề xuất	MobileNet V2	sigmoid	3	có	0	tích	90.6
(~2.5M-4.3M)	MobileNet V2	$\operatorname{softmax}$	3	có	0	tổng	89.8
	MobileNet V2	$\operatorname{sigmoid}$	4	có	0	tổng	91.3
	MobileNet V2	$\operatorname{sigmoid}$	2	không	0	tổng	91.3
	MobileNet V2	sigmoid	2	có	0	tổng	91.3

Kết quả kiểm tra là độ chính xác mAP.

8/15/2024

Cắt vùng dư thừa trong ảnh, nâng cao chất lượng phân loại.

Cải tiến các mô hình và thu được kết quả tốt với kích thước nhỏ.

8/15/2024 40

Tối ưu vấn đề ngữ nghĩa nhãn ở Đơn nhãn dương.

Thử nghiệm mô hình kết hợp.

8/15/2024 41

43

XIN CẢM ƠN QUÝ THẦY CÔ ĐÃ LẮNG NGHE