December 6, 2017

Anchu A. Lee

1. Let $Some_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) \text{ is not empty and } L(A) \text{ is not equal to } \Sigma^* \}$. Show that $Some_{DFA}$ is

Construct a Turing machine M to decide the $Some_{DFA}$ problem.

On input d that is a DFA:

- 1. Run $\langle d \rangle$ on a Turing machine T that decides \mathcal{E}_{DFA} , if T rejects then continue, if T accepts, then reject.
- 2. Construct a DFA d^C that is the compliment of d.
- 3. Run $\langle d^C \rangle$ on a turing machine T, if T rejects then accept d, if T accepts then reject d.

If d is not a DFA, then M rejects. If L(d) is empty, then M rejects. If the compliment of d is empty, meaning $L(d) = \Sigma^*$, then M rejects. Otherwise M accepts. All conditions are handled in M so $M = \text{Some}_{DFA}$.

2. Let $Alot_{RE} = \{ \langle A \rangle \mid A \text{ is a regular expression and } L(A) \text{ is infinite } \}$. Show that $Alot_{RE}$ is decidable.

Construct a Turing machine M to decide the Alot_{RE} problem.

On input r that is a RE:

- 1. Construct a DFA A that is equivalent to r.
- 2. For s that is the number of states in A, construct DFA B that accepts all strings over the alphabet in A that are at least length s.
- 3. Construct a DFA C so that $L(C) = L(A) \cap L(B)$.
- 4. Run $\langle C \rangle$ on a turing machine T that decides E_{DFA} .
- 5. If T accepts then reject r, if T rejects then accept r.

In order for a DFA to accept an infinite language, it must contain a loop. If a DFA contains a string with a length greater than the number of states, then it contains a loop and therefore accepts an infinite language. The Turing machine M checks if a RE accepts an infinite language by intersecting the language accepted by r to the language of strings with length greater than the number of states of the DFA for r. M accepts if the intersection is non-empty and rejects otherwise. Therefore $M = Alot_{RE}$.

3. Let Complimentary_{RE,DFA} = { $\langle A, B \rangle \mid A \text{ is a regular expression and } B \text{ is a DFA such that } L(A) \cup L(B) = \Sigma^* \text{ and}$ $L(A) \cap L(B) = \emptyset$. Show that Complimentary_{RE,DFA} is decidable.

Construct a Turing machine M to decide the Complimentary_{RE,DFA} problem.

On input r that is a RE and d that is a DFA:

- 1. Create a DFA A that is equivalent to r.
- 2. Construct a DFA B so that $L(B) = L(A) \cup L(d)$.
- 3. Cosntruct a DFA B^C that is the compliment of B.
- 4. Run $\langle B^C \rangle$ on a Turing machine T that decides E_{DFA} .
- 5. If T accepts, then continue, if T rejects then reject r, d.
- 6. Construct a DFA C so that $L(C) = L(A) \cap L(d)$.
- 7. Run $\langle C \rangle$ on turing machine T.
- 8. If T accepts, then accept r, d. Otherwise reject.

M rejects if $L(A) \cup L(B) \neq \Sigma^*$. M rejects if $L(A) \cap L(B) \neq \emptyset$. M only accepts if both conditions are met, therefore $M = \text{Complimentary}_{RE,DFA}$.

4. Let $ALL_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \Sigma^* \}$. Show that ALL_{DFA} is decidable.

Construct a Turing machine M to decide the ALL_{DFA} problem.

On input d that is a DFA:

- 1. Create a DFA d^C that is the compliment of d.
- 2. Run $\langle d^C \rangle$ on a Turing macine T that decides E_{DFA} .
- 3. If T rejects, then reject d. If T accepts, then accept d.

M only accepts if the language of the compliment of the input DFA is an empty language. For a DFA to equal Σ^* , it must accept all possible strings over the alphabet and therefore the compliment of such a DFA must be empty. This shows that $M = ALL_{DFA}$.

5. Let $N_{\varepsilon CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } G \text{ does not generate the empty string } \}$. Show that $N_{\varepsilon CFG}$ is decidable.

Construct a Turing machine M to decide the $N_{\varepsilon CFG}$ problem.

On input q that is a CFG:

- 1. Construct A that is a equivalent CFG to g except in Chomsky normal form.
- 2. If A contains the rule $S \to \epsilon$ reject, otherwise accept.

The CFG A can only generate the empty string if there exists a rule $S \to \epsilon$, so if A does not include the rule then $\epsilon \notin L(A)$. So $M = \mathcal{N}_{\varepsilon CFG}$.

6. Let X be the set $\{1, 2, 3, 4, 5\}$ and Y be the set $\{6, 7, 8, 9, 10\}$. We describe the functions $f: X \to Y$ and $g: X \to Y$ in the following tables. Answer each part and give a reason for each negative answer.

n	f(n)	n	ı	g(n)
1	6	1		10
2	7	2	,	9
3	6	3	}	8
4	7	4		7
5	6	5)	6

- (a) Is f onto?
- (b) Is f a correspondence?
- (c) Is q onto?
- (d) Is g a correspondence?
- 7. Let $U = \{ \langle A, B, C \rangle \mid A, B, C \text{ are DFA's and } |L(A)| = |L(B)| + |L(C)| \}$. Show that U is decidable.
- 8. Let $A = \{ \langle R \rangle \mid R \text{ is a regular expression describing a language containing at least one string } w \text{ that has } 111 \text{ as a substring (i.e., } w = x111y \text{ for some } x \text{ and } y) \}$. Show that A is decidable.
- 9. Let $E_{PDA} = \{ \langle P \rangle \mid P \text{ is a pushdown automata and } L(P) \text{ is empty } \}$. Show E_{PDA} is decidable.
- 10. A *useless state* in a pushdown automaton is never entered on any input string. Consider the problem of determining whether a pushdown automaton has any useless states. Formulate this problem as a language and show that it is decidable.