- 1. Omówić własnymi słowami semantyczną i syntaktyczną konsekwencję np. różnice między nimi.
- 1. W jakim celu konstruuje się drzewa decyzyjne?
- 1. Jak można zdefiniować sztuczną inteligencję i w jakim celu rozwijane są badania w tej dziedzinie?
- 1. Podać definicje związane z językiem logiki I rzędu tzw. językiem predykatów. Wyjaśnić, dlaczego $\exists x \ x \Rightarrow y$ jest sformułowane nieprawidłowo (za wyjaśnienie więcej punktów).
- 2. Korzystając z teorii Dempstera-Shafera obliczyć rozkład prawdopodobieństwa dla połączenia dwóch rozkładów:

$$\{m(\{x_1, x_2, x_3, x_4\}) = \frac{5}{8}, m(\{x_2, x_3\}) = \frac{1}{4}, m(\{x_1, x_4\}) = \frac{1}{8}\} \text{ i}$$

$$\{m(\{x_1, x_4\}) = \frac{1}{5}, m(\{x_2, x_3, x_4\}) = \frac{2}{5}, m(\{x_1, x_2, x_3, x_4\}) = \frac{2}{5}\} \text{ oraz wartości funkcji przekonania }$$

$$Bel \text{ i wyobrażalności } Pl \text{ dla finalnego trzeciego rozkladu.}$$

 Korzystając z teorii Dempstera-Shafera obliczyć rozkład prawdopodobieństwa dla połączenia dwóch rozkładów:

$$\{m(\{x_1, x_2, x_3, x_4\}) = \frac{5}{8}, m(\{x_2, x_3\}) = \frac{1}{4}, m(\{x_1, x_4\}) = \frac{1}{8}\} \text{ i}$$

$$\{m(\{x_1, x_4\}) = \frac{1}{5}, m(\{x_2, x_3, x_4\}) = \frac{2}{5}, m(\{x_1, x_2, x_3, x_4\}) = \frac{2}{5}\} \text{ oraz wartości funkcji przekonania}$$

$$Bel \text{ i wyobrażalności } Pl \text{ dla } \underline{\text{wszystkich trzech rozkładów.}}$$

PODOBNE

2. Korzystając z teorii Dempstera-Shafera obliczyć rozkład prawdopodobieństwa dla połączenia dwóch rozkładów:

$$\{m(\{x_1,x_2,x_3,x_4\}) = \frac{5}{8}, m(\{x_2,x_3\}) = \frac{1}{4}, m(\{x_1,x_3,x_4\}) = \frac{1}{8}\} \text{ i}$$

$$\{m(\{x_1,x_4\}) = \frac{1}{5}, m(\{x_2,x_3,x_4\}) = \frac{2}{5}, m(\{x_1,x_3,x_4\}) = \frac{2}{5}\} \text{ oraz wartości funkcji przekonania } Bel \text{ i wyobrażalności } Pl \text{ dla } \underline{\text{finalnego trzeciego rozkladu.}}$$

 Korzystając z teorii Dempstera-Shafera obliczyć rozkład prawdopodobieństwa dla połączenia dwóch rozkładów:

$$\{m(\{x_1,x_2,x_3,x_4\}) = \frac{5}{8}, m(\{x_2,x_3\}) = \frac{1}{4}, m(\{x_1,x_3,x_4\}) = \frac{1}{8}\} \text{ i}$$

$$\{m(\{x_1,x_4\}) = \frac{1}{5}, m(\{x_2,x_3,x_4\}) = \frac{2}{5}, m(\{x_1,x_3,x_4\}) = \frac{2}{5}\} \text{ oraz wartości funkcji przekonania } Bel \text{ i wyobrażalności } Pl \text{ dla } \underbrace{\text{wszystkich trzech rozkładów.}}$$

2. Korzystając z teorii Dempstera-Shafera obliczyć rozkład prawdopodobieństwa dla połączenia dwóch rozkładów:

$$\{m(\{x_1,x_2,x_3\}) = \frac{1}{3}, m(\{x_1,x_3,x_4\}) = \frac{1}{3}, m(\{x_1,x_2,x_4\}) = \frac{1}{3}\}$$
 i $\{m(\{x_3,x_4\}) = \frac{1}{2}, m(\{x_2,x_3\}) = \frac{1}{4}, m(\{x_2\}) = \frac{1}{4}\}$ oraz wartości funkcji przekonania Bel i wyobrażalności Pl dla finalnego trzeciego rozkładu.

2. Korzystając z teorii Dempstera-Shafera obliczyć rozkład prawdopodobieństwa dla połączenia dwóch rozkładów:

rozkładow:
$$\{m(\{x_1, x_5\}) = \frac{5}{8}, m(\{x_2, x_3\}) = \frac{1}{8}, m(\{x_1, x_2\}) = \frac{1}{4}\}\ i$$
 $\{m(\{x_1, x_2, x_4\}) = \frac{1}{5}, m(\{x_1, x_4\}) = \frac{2}{5}, m(\{x_2, x_4\}) = \frac{2}{5}\}\ oraz wartości funkcji przekonania Bel i wyobrażalności Pl dla wynikowego, trzeciego rozkładu.$

3. Z danej tablicy warunkowo-działaniowej podanej poniżej wypisać wszystkie relacje nierozróżnialności pomiędzy poszczególnymi x_i dla $i \in \{1..6\}$ np. $x_1 \underset{\{x\}}{\sim} x_3$ w formie tabeli trójkątnej. Wyznaczyć dla $\mathcal{P} = \{x,y\}^*, Z = \{z\}$ aproksymację dolną $\mathcal{P}\mathcal{Z}$ oraz aproksymację górną $\mathcal{P}\mathcal{Z}$ oraz wyprowadzić reguły pewne.

	Atrybuty warunkowe		Atrybut wy	działanio-
	X	у		Z
x_1	P	T		1
x_2	P	T		0
x_3	P	F		0
x_4	N	T		1
x_5	P	T		0
x_6	P	F		2

3. Z danej tablicy warunkowo-działaniowej podanej poniżej wypisać wszystkie relacje nierozróżnialności pomiędzy poszczególnymi x_i dla $i \in \{1..6\}$ np. $x_1 \in \mathbb{Z}$ x_3 w formie tabeli trójkątnej. Wyznaczyć dla $P = \{z\}^*$, $Z = \{y\}$ aproksymację dolną PZ oraz aproksymację górną PZ oraz wyprowadzić reguły pewne.

	Atrybuty warunkowe		Atrybut działanic wy
	x	у	Z
x_1	P	T	1
x_2	P	T	0
x_3	P	F	0
x_4	N	T	1
x_5	P	T	0
x_6	P	F	2

3. Z danej tablicy warunkowo-działaniowej podanej poniżej wypisać wszystkie relacje nierozróżnialności pomiędzy poszczególnymi x_i dla $i \in \{1..6\}$ np. $x_1 \underset{\{z\}}{\sim} x_3$ w formie tabeli trójkątnej. Wyznaczyć dla $\mathcal{P} = \{z\}, \ Z = \{x\}$ aproksymację dolną $\underline{P}\mathcal{Z}$ oraz aproksymację górną $\overline{P}\mathcal{Z}$ oraz wyprowadzić reguły pewne.

	Atrybuty warunkowe		Atrybut działanio- wy
	X	у	Z
x_1	N	F	1
x_2	P	F	0
x_3	P	T	1
x_4	N	F	2
x_5	P	. F	2
x_6	N	T	2

3. Z danej tablicy warunkowo-działaniowej podanej poniżej wyprowadzić bazę reguł o postaci (atrybut₁, wartość) \land (atrybut₂, wartość)=(atrybut działaniowy, wartość). Wypisać wszystkie relacje nierozróżnialności pomiędzy poszczególnymi x_i dla $i \in \{1..6\}$ np. $x_1 \xrightarrow[x]{x_3} x_3$ i podać wszystkie klasyfikacje określone przez relacje nierozróżnialności np. $\{x\}^* = \{\{x_1, x_2, x_3, x_5, x_6\}, \{x_4\}\}$. Następnie podać, które zbiory atrybutów są zależne od innych i wyznaczyć dla $\mathcal{Z} = \{x, y\}^*, P = \{z\}$ aproksymację dolną $\underline{P}\mathcal{Z}$ oraz aproksymację górną $\overline{P}\mathcal{Z}$ oraz wyprowadzić reguły pewne.

	Atrybuty warunkowe		Atrybut działanio- wy
	x	у	Z
x_1	P	T	2
x_2	. P	T	0
x_3	P	F	2
x_4	N	T	1
x_5	P	T	0
x_6	P	F	0

3. Z danej tablicy warunkowo-działaniowej podanej poniżej wypisać wszystkie relacje nierozróżnialności pomiędzy poszczególnymi x_i dla $i \in \{1..6\}$ np. x_1 $\overbrace{\{z\}}$ x_3 i podać wszystkie klasyfikacje określone przez relacje nierozróżnialności np. $\{z\}^* = \{\{x_1, x_3\}, \{x_4, x_5, x_6\}, \{x_2\}\}$. Następnie podać, które zbiory atrybutów są zależne od innych i wyznaczyć dla $\mathcal{P} = \{z\}, Z = \{x\}$ aproksymację dolną \underline{PZ} oraz aproksymację górną \overline{PZ} oraz wyprowadzić reguły pewne.

	Atrybuty warunkowe		Atrybut działanio- wy
	x	у	z
x_1	N	F	1
x_2	P	F	0
x_3	P	T	1
x_4	N	F	2
<i>x</i> ₅	P	F	2
x_6	N	T	2

4. Wyznaczyć metodą portali drzewo BSP dla mapy podanej poniżej, gdzie kwadraty są przeszkodami, obiektami.

- 5. Wyznaczyć drzewo kwadrantów dla mapy podanej w poprzednim zadaniu.
- 4. Wyznaczyć metodą portali drzewo BSP dla mapy podanej poniżej, gdzie kwadraty są przeszkodami, obiektami.

- 5. Wyznaczyć drzewo kwadrantów dla mapy podanej w poprzednim zadaniu.
- 4. Wyznaczyć metodą portali drzewo BSP dla mapy podanej poniżej, gdzie kwadraty są przeszkodami, obiektami.

- 5. Wyznaczyć drzewo kwadrantów dla mapy podanej w poprzednim zadaniu.
- 5. Wyznaczyć metodą portali drzewo BSP dla mapy podanej poniżej, gdzie kwadraty są przeszkodami, obiektami.

- 6. Wyznaczyć drzewo kwadrantów dla mapy podanej w poprzednim zadaniu.
- 4. Omówić metody reprezentacji wiedzy (w podpunktach, tabelach, grafach itp.).
- 6. Co to oznacza, że jeden kompleks jest bardziej szczegółowy od drugiego kompleksu?

- 6. Omówić systemy czasu rzeczywistego oraz ich budowę. Z jakich powodów są stosowane i gdzie? Jakie otrzymuje się korzyści?
 - 7. Za pomocą algorytmu sekwencyjnego pokrywania AQ uzyskać nieuporządkowany zbiór zdaniowych reguł ze zbioru treningowego podanego w tabeli poniżej. Opisać dokładnie kolejne kroki algorytmu. Atrybut wiek zdyskretyzować korzystając z jednego progu 40 lat. Atrybut ryzyko będzie kategorią.

\boldsymbol{x}	wiek	samochód	ryzyko
1	18	maluch	duże
2	55	maluch	małe
3	60	maluch	małe
4	66	minivan	duże
5	35	minivan	małe
6	25	minivan	małe
7	45	minivan	duże

7. Za pomocą algorytmu sekwencyjnego pokrywania AQ uzyskać nieuporządkowany zbiór zdaniowych reguł ze zbioru treningowego podanego w tabeli poniżej. Opisać dokładnie kolejne kroki algorytmu. Atrybut wiek zdyskretyzować korzystając z jednego progu 40 lat. Atrybut ryzyko będzie kategorią.

x	wiek	samochód	ryzyko
1	50	sportowy	duże
2	66	minivan	duże
3	18	sportowy	duże
4	35	minivan	małe
5	70	sportowy	duże
6	25	minivan	małe
7	38	sportowy	duże
8	18	minivan	małe

7. Za pomocą algorytmu sekwencyjnego pokrywania AQ uzyskać <u>uporządkowany</u> zbiór zdaniowych reguł ze zbioru treningowego podanego w tabeli poniżej. Opisać dokładnie kolejne kroki algorytmu. Atrybut wiek zdyskretyzować korzystając z jednego progu 40 lat. Atrybut ryzyko będzie kategorią.

x	wiek	samochód	ryzyko
1	50	sportowy	duże
2	66	minivan	duże
3	18	sportowy	duże
4	35	minivan	małe
5	70	sportowy	duże
6	25	minivan	małe
7	38	sportowy	duże
8	18	minivan	małe

7. Ze zbioru treningowego podanego w tabeli poniżej wykreować metodą zstępującej konstrukcji drzewo decyzyjne (jak najmniej rozbudowane - minimalizacja entropii). Atrybut wiek zdyskretyzować korzystając z jednego progu 40 lat. Atrybut ryzyko będzie kategorią.

x	wiek	samochód	ryzyko
1	18	maluch	duże
2	55	maluch	małe
3	60	maluch	małe
4	66	minivan	duże
5	35	minivan	małe
6	25	minivan	małe
7	45	minivan	duże

7. Za pomocą algorytmu sekwencyjnego pokrywania CN2 uzyskać nieuporządkowany zbiór zdaniowych reguł ze zbioru treningowego podanego w tabeli poniżej. Opisać dokładnie kolejne kroki algorytmu. Atrybut wiek zdyskretyzować korzystając z jednego progu 40 lat. Atrybut ryzyko będzie kategorią. Dla ułatwienia założyć, że wszystkie kompleksy są istotne statystycznie oraz że kompleks warunkujący z reguły zdaniowej musi pokrywać przykłady tylko z jedną etykietą - jedną wartością kategorii.

x	wiek	samochód	ryzyko
1	18	maluch	duże
2	55	maluch	małe
3	60	maluch	małe
4	66	minivan	duże
5	35	minivan	małe
6	25	minivan	małe
7	45	minivan	duże

ROZWIĄZANIA:

Zadanie typu 7: wszystkie opcje: isozeror.pdf

Zadanie typu 6 i 1 (no i to 4 jedno): isoteoria.pdf chociaż głównie to ISO_Opracowane_Pytanka.doc (brak 1, 12, 21, 22, 23, 35, 36)

Zadanie typu 4 i 5: nie ma u niego, teoretycznie zrobione w: katalogi zalacznik1 i zalacznik2

Zadanie typu 3: ISO - zadanie4.pdf + isokolor.pdf (tylko co to jest ta tabela trojkatna?) – na wszelki podpierac się zadanie4.pdf, ale glownie patrzec na isokolor.pdf, bo to drugie jest od prowadzacego, a pierwsze od kogostam

Zadanie typu 2: ISO - zadanie3.pdf + isokolor.pdf – uwagi jak wyzej

ADD-ON: isokolor.pdf zawiera także dodatkowe zadanie z rozwiązaniem. Bardziej rozbudowane rozw tego zadania jest w ISO - zadanie5.pdf. Niemniej, zadanie to nie występowało na zadnej z zerowek w zeszłym roku

Pozostałe pytania teoretyczne pokrywają się mniej lub bardziej z podanym przez niego spisem z odpowiedziami w ISO_Opracowane_Pytanka.doc