Module MA2341 (Frolov), Advanced Mechanics I Homework Sheet 10

Each set of homework questions is worth 100 marks

Problem 1. Any rotation matrix G belonging to the Lie group SO(3) can be written as the following product

$$G = \begin{pmatrix} \cos\psi & \sin\psi & 0 \\ -\sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\phi & \sin\phi & 0 \\ -\sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

where ϕ , θ and ψ are the Euler angles.

Introduce the following matrix

$$J = \frac{dG}{dt}G^{-1},$$

where G^{-1} is the inverse matrix.

- (a) Show that the matrix J belongs to the Lie algebra so(3), that is it is skew-symmetric: $J^T = -J$, where J^T is the transposed matrix.
- (b) Show that the components Ω_i of the angular velocity vector $\vec{\Omega}$ along the moving axes x_1, x_2, x_3 are expressed through the components J_{ij} as follows

$$\Omega_i = \frac{1}{2} \epsilon_{ijk} J_{jk} \,,$$

where ϵ_{ijk} is the skew-symmetric tensor.

Problem 2. Consider the Lagrangian of a heavy symmetric top whose lowest point is fixed (Lagrange's top)

$$L = \frac{1}{2}(I_1 + ml^2)(\dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta) + \frac{1}{2}I_3(\dot{\psi} + \dot{\phi}\cos \theta)^2 - mgl\cos \theta.$$

- (a) Which of the coordinates of the top are cyclic? Find the integrals of motion corresponding to the cyclic angles, and relate them to the angular momentum of the top.
- (b) Use the integrals of the motion to reduce the problem of the motion of the top to a onedimensional one.
- (c) Find the effective potential and the effective Lagrangian. Use Mathematica to plot the effective potential for $m=g=l=\tilde{I}_1=1$, and i) $M_z=12,~M_3=18$; ii) $M_z=1,~M_3=1/6$. Explain the plots.
- (d) Let the top rotate about the vertical axis. Explain why such a rotation is possible only for $M_z = M_3$.
- (e) Simplify the effective potential for $M_z=M_3$, and use Mathematica to plot the effective potential for $m=g=l=\tilde{I}_1=1$, and i) $M_z=M_3=3$; ii) $M_z=M_3=1/2$. Explain the plots.
- (f) Find the exact condition for the rotation about the vertical axis to be stable.
- (g) Find the frequency of small oscillations in the θ -direction if the top was shifted from the equilibrium position. What type of motion does the top undergo?

Problem 3. A symmetric top with a fixed centre of mass experiences a constant torque \vec{K} . Use the Euler angles to find the angular velocity of the top as a function of time. The initial angular momentum is proportional to \vec{K} : $\vec{M}(0) = \alpha \vec{K}$, where α is a constant.