

Level-Up Lungs: Identifying COVID-19 Infected Lungs Using Machine Learning

Sanjeevani Choudhery, Samantha Ray, Sournav Bhattacharya, Rohan Singh Wilkho, and Mounika Kunduru

Wrapper Method

• Accuracy: 0.98 with 79

GPU acceleration

Metric: Chi2

RFECV with SVC linear kernel

selected features using SVC

• Time : <1 minute total with

Is It COVID-19?

COVID-19 Patient X-Ray [1]

White dense residue in lungs makes X-ray "blurry".

Note: These are inferences made by computer science students, not medical professionals

Healthy Patient X-Ray [1]

Dark background comes through with **clear** lungs.

Motivation: Given lung X-rays and patient demographics (gender, location and age), we can predict with <u>95.6%</u> accuracy in 5-fold cross validation whether the patient has COVID-19.

Making it Black and White

Dense matter shows up as white in x-rays, i.e., bones, certain organs such as the heart, and abnormalities in the lungs.

Standard Computer Vision Features	Domain-Knowledge Features	
 Edge Detection: Canny, Hessian, Meijering, Laplace, Sobel (Horizontal and Vertical) Histogram of Gradients (HoG) Gabor Filter with various values for theta 	 Blob Counts Light/Dark Patch Counts Edge Detection Ratio Pixel Value Statistics (Mean, 1st and 3rd Quartile, Light/Dark Percentage) 	

Selecting the Best Features

I III WELLIOU	
• Metrics Tested: correlation with	
with the target variable,	
chi-squared, mutual information	
gain, and Fisher's criterion.	
• Accuracy · 960/2 with ~200	

Filter Method

- Accuracy: 86% with ~200 features based on Chi-Square
- Time: ~ 3 minutes to run each metrics with 5-Fold CV

5-Fold Cross Validation Accuracy

Best Performing Model: SVM

Feature Subset

Standard Computer Vision

Standard Computer Vision

Domain-Knowledge

Standard Computer Vision

Domain-Knowledge

Features

Demographic Features

Features

Features

Features

Features Only

Model	w/o Feature Selection	w/ Feature Selection
AdaBoost (n_estimators = 200)	0.744	0.816
Random Forest (n_estimators = 100)	0.736	0.776
SVM (kernel = linear)	0.820	0.956
Multilayer Perceptron (hidden layer size = 200)	0.824	0.948

w/o Feature

Selection

0.708

0.688

0.820

w/ Feature

Selection

0.800

0.828

0.956

Important Feature

Categories Selected

- HoG
- Canny
- Gabor
- Hessian
- Laplace
- Sobel
- Blob Count -Difference of Gaussian
- Pixel Value Percentages
- Light/Dark Patch Counts
- Location

****************************** t 0.85 은 0.80 -Ö 0.75 ·

0.70 등 0.65 0.60 -Number of features selected

Processing Pipeline

Original Image **Cropped and Resized** to 200x200

Preprocessing: Dilate, Erode, and Sharpen

These preprocessing steps standardize the inputs and make important features clearer

A. Canny

D. HoG

E. Laplace

References

[1] Chandra, T. B., Verma, K., Singh, B. K., Jain, D., & Netam, S. S. (2021). Coronavirus disease (COVID-19) detection in Chest X-Ray images using majority voting based classifier ensemble. Expert systems with applications, 165, 113909. https://doi.org/10.1016/j.eswa.2020.113909

[2] Parekh, M., Donuru, A., Balasubramanya, R., & Kapur, S. (2020). Review of the Chest CT Differential Diagnosis of Ground-Glass Opacities in the COVID Era. Radiology, 297(3), E289–E302. https://doi.org/10.1148/radiol.2020202504

[3] Mayo Clinic. Chest X-ray. Last accessed Nov. 21, 2020. Available: https://www.mayoclinic.org/tests-procedures/chest-x-rays/multimedia/chest-x-ray/img-20 006961