PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS

Laura Caetano Costa

Relatório 1

Belo Horizonte

1. Monte um ½ somador no logisim.

2. Verifique a tabela verdade.

A	В	Soma	CarryOut	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

3. Identifique através de um datasheet (use a web) os componentes que possuem as portas lógicas necessárias para a construção de um meio somador (portas XOR, AND e OR).

XOR - 74HC86

OR - 74HC32

AND - 74HC08

4. Procure os pinos de alimentação (VCC e GND) e os pinos de entrada e saída de cada porta lógica.

XOR

OR

7432 Quad 2—Input OR Gate

5. Acompanhe a aula para montar este circuito no Tinkercad.

Atenção: Identificar os pinos que representam as entradas (A e B), as saídas (Y) e a alimentação do componente (5V = VCC e 0V = GND) através do datasheet. Utilize as chaves para as entradas e os Leds para as saídas.

Pergunta 1: O que acontece se um dos terminais de entrada de uma porta lógica não estiver conectado em 0 ou 1 (eletricamente ele deverá estar flutuando, ou seja não conectado a nenhum nível lógico)

Assume-se o nível lógico 1.

6. Monte agora o $\frac{1}{2}$ somador realizado no logisim, no Tinkercad.

1+0

1+1

7. Usando outra porta do mesmo chip, monte outro $\frac{1}{2}$ somador e teste para verificar o funcionamento.

1+1

8. Una os 2 meio-somadores e construa um circuito somador completo de 1 bit.

9. Levantar a tabela verdade.

			ı	
a	b	С	х	у
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

10. Explicar agora o funcionamento de um somador de 4 bits. Apresentar esse somador no logisim.

O processo da soma ocorre bit a bit, começando pelo bit menos significativo até o bit mais significativo. O carry gerado pela adição de bits menos significativos é somado aos bits mais significativos subsequentes garantindo uma soma correta.

Perguntas:

2) Qual o problema de tempo associado a esse tipo de somador (pense no carry), considere o atraso médio de cada porta lógica de 10 ns.

O problema se consiste em ter que esperar a solução do carry do circuito anterior para calcular a segunda parte da soma

3) Qual o tempo necessário para a computação de uma soma e do vai um em um somador de 4 bits.

90 ns

4) O que seria necessário para um somador de 32 bits?

Seria necessário 32 somadores completos de 1 bit

5) Considerando esses tempos acima, calcule a frequência de operação de um somador de 32 bits.

Sendo o tempo de clock do somador de 32 bits: g(31) = 30 + 20*31 =650 ns A frequência é:

f = 1/t f = 1/650*10 -9

f =0,00153*10-9

f = 1,53 MHz

6) Você consegue propor alguma forma de tornar essa soma mais veloz?

Através da técnica carry lookahead

Calculadora de 4 bits

