Notizen | math341

Jonas Wortmann

October 27, 2023

1 CONTENTS

Contents

1	Koı	mplexe Zahlen	2
	1.1	Komplexe Zahlen als Matrizen	2
	1.2	Polarkoordinaten	3
		1.2.1 Potenzen	3
		1.2.2 Beispiel	4
	1.3	Wurzeln	4
		1.3.1 Beispiel	4
		1.3.2 Wurzelfunktion	5
	1.4	Quadratische Gleichungen	5
	1.5	Fundamentalsatz der Algebra	5
2	Koı	mplexe Funktionen	6
	2.1	Stetigkeit	6
	2.2	Differenzierbarkeit	6
		2.2.1 Holomorph	7
	2.3	Differentiationsregeln	7
3	\mathbf{Rei}	hen	8
	3.1	Potenzreihen	8
		3.1.1 Produkt von Potenzreihen	9

1 Komplexe Zahlen

Die komplexen Zahlen sind alle Terme der Form $x + yi; x, y \in \mathbb{R}$. i ist die imaginäre Einheit, mit $i^2 = -1$. Die Menge der komplexen Zahlen ist $\mathbb{C} := \{x + yi : x, y \in \mathbb{R}\}$.

Die komplexen Zahlen können auch als eine Ebene aufgefasst werden, $x + yi \equiv \begin{pmatrix} x \\ y \end{pmatrix}$.

Die Gleichheit ist definiert als, $x + yi = a + bi \Leftrightarrow x = a \land y = b$.

Folgende Operationen sind definiert

$$-(x+yi) + (a+bi) := (x+a) + (y+b)i$$

$$-(x+yi)\cdot(a+bi) := xa + xbi + yai + ybi^2 = (xa - yb) + (xb + ya)i$$
.

Sei z=x+yi $\in \mathbb{C}$. Dann ist die **komplex konjugierte** Zahl $\overline{z}:=x-y$ i. Praktisch ist dann, $z\cdot \overline{z}=(x+y\mathrm{i})\cdot (x-y\mathrm{i})=x^2+y^2$. Zudem ist die **Norm** einer komplexen Zahl $||z||=\sqrt{z\cdot \overline{z}}=\sqrt{x^2+y^2}$.

Der **Kehrwert** einer komplexen Zahl $z = x + yi \neq 0 + 0i$ ist $\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{||z||^2} = \frac{1}{x^2 + y^2} (x - yi)$. Folgende Rechenregeln sind gültig

- Kommutativität: $z_1 + z_2 = z_2 + z_1$ und $z_1 \cdot z_2 = z_2 \cdot z_1$
- Assoziativität: $z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$ und $z_1 \cdot (z_2 \cdot z_3) = (z_1 \cdot z_2) \cdot z_3$
- Distributivität: $z_1(z_2+z_3)=z_1\cdot z_2+z_1\cdot z_3$
- Kehrwertregel: $\frac{1}{z_1 \cdot z_2} = \frac{1}{z_1} \cdot \frac{1}{z_2}$
- Konjugation: $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$ und $\overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}$

 $(\mathbb{C}, 0, 1, +, \cdot)$ ist ein Körper, der \mathbb{R} enthält.

1.1 Komplexe Zahlen als Matrizen

$$[(x+yi)(a+bi)]_{\mathbb{R}^2} = \begin{pmatrix} xa-yb\\xb+ya \end{pmatrix} = \begin{pmatrix} x&-y\\y&x \end{pmatrix} \begin{pmatrix} a\\b \end{pmatrix}.$$
 (1.1)

Eine komplexe Zahl kann also als Matrix dargestellt werden

$$[x+y\mathbf{i}]_{\mathbb{R}^{2\times 2}} := \begin{pmatrix} x & -y \\ y & x \end{pmatrix}. \tag{1.2}$$

Es gilt dann

$$[z_1 \cdot z_2]_{\mathbb{R}^2} = [z_1]_{\mathbb{R}^{2 \times 2}} \cdot [z_2]_{\mathbb{R}^2}$$
(1.3)

$$[z_1 + z_2]_{\mathbb{R}^2} = [z_1]_{\mathbb{R}^{2 \times 2}} + [z_2]_{\mathbb{R}^2}$$
(1.4)

$$\left[\frac{1}{z}\right]_{\mathbb{R}^{2\times 2}} = [z]_{\mathbb{R}^{2\times 2}}^{-1}.$$
 (1.5)

Also
$$\mathbb{C} \subseteq \mathbb{R}^{2\times 2}$$
, $\mathbb{C} \equiv \left\{ \begin{pmatrix} x & -y \\ y & x \end{pmatrix} \in \mathbb{R}^{2\times 2} : x, y \in \mathbb{R} \right\} = \operatorname{span} \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right) = \left\{ x \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + y \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} : x, y \in \mathbb{R} \right\}.$

Jede Matrix $\begin{pmatrix} x & -y \\ y & x \end{pmatrix}$ ist das Produkt einer Drehung $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ und einer Streckung $\begin{pmatrix} r & 0 \\ 0 & r \end{pmatrix}$.

Für jede komplexe Zahl z=x+yi $\in \mathbb{C}\setminus\{0\}$, gibt es eindeutige $r>0, \theta\in[0,2\pi)$: $z=r\left(\cos\theta+\sin\theta\mathrm{i}\right)$.

$$\text{Hier ist } r = \sqrt{x^2 + y^2} = ||z|| \text{ und } \theta = \arg\left(z\right) = \begin{cases} \arctan\frac{y}{x} & ; x > 0, y \ge 0 \\ \frac{\pi}{2} & ; x = 0 < y \\ \pi + \arctan\frac{y}{x} & ; x < 0 \\ \frac{3\pi}{2} & ; x = 0 > y \\ 2\pi + \arctan\frac{y}{x} & ; y < 0 < x \end{cases}$$

1.2 Polarkoordinaten

Die komplexen Zahlen können in Polarkoordinaten dargestellt werden

$$\mathbb{C} \ni z = re^{i\theta} \qquad e^{i\theta} = \cos\theta + \sin\theta i,$$
 (1.6)

mit r > 0 und $\theta \in [0, 2\pi)$. Die Eindeutigkeit von r lässt sich zeigen durch

$$||z|| = \sqrt{x^2 + y^2} = ||re^{i\theta}|| = ||r|| \underbrace{||e^{i\theta}||}_{=1} = r.$$
 (1.7)

Die Eindeutigkeit von θ lässt sich zeigen durch

$$e^{i\theta_1} = e^{i\theta_2} \Leftrightarrow \theta_2 - \theta_1 \in 2\pi \mathbb{Z}.$$
 (1.8)

Die Multiplikation ist definiert durch

$$z_1 \cdot z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}; \tag{1.9}$$

und der Kehrwert

$$\frac{1}{e^{i\theta}} = e^{i(-\theta)}. ag{1.10}$$

1.2.1 Potenzen

Wird eine komplexe Zahl potenziert, gilt

$$k \in \mathbb{Z} : z^k = r^k e^{(i\theta)^k} = r^k e^{i(k\theta)}. \tag{1.11}$$

1.2.2 Beispiel

$$(1+i)^{100}$$
. (1.12)

In Polarkoordinaten ist 1 + i,

$$r = \sqrt{1^2 + 1^2} = \sqrt{2}$$
 $\theta = \arg(1 + i) = \arctan(\frac{1}{1}) = \frac{\pi}{4}$ $1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$. (1.13)

Die Potenz ist dann

$$(1+i)^{100} = \sqrt{2}^{100} e^{i(100\frac{\pi}{4})}$$

$$= 2^{50} e^{i25\pi}$$

$$= 2^{50} e^{i\pi}$$

$$= -2^{50}.$$
(1.14)

1.3 Wurzeln

Löse die Gleichung $z^k=\alpha\in\mathbb{C}, k\in\mathbb{N},$ mit $z=re^{\mathrm{i}\theta}$ und $\alpha=se^{\mathrm{i}\beta}.$ Der erste Teil der Lösung ist

$$r^{k} = s = ||\alpha|| \Leftrightarrow r = \sqrt[k]{||\alpha||} \ge 0. \tag{1.15}$$

Es muss also gelten

$$e^{ik\theta} = e^{i\beta} \Leftrightarrow k\theta - \beta \in 2\pi\mathbb{Z}.$$
 (1.16)

Diese Gleichung hat k Lösungen

$$\theta_1 = \frac{\beta}{k}, \theta_2 = \frac{\beta}{k} + \frac{1}{k} 2\pi, \theta_3 = \frac{\beta}{k} + \frac{2}{k} 2\pi, \dots, \theta_k = \frac{\beta}{k} + \frac{k-1}{k} 2\pi.$$
 (1.17)

1.3.1 Beispiel

Löse die Gleichung $z^4=r^4e^{\mathrm{i}4\theta}=1.$ $1=1e^{\mathrm{i}0},$ also ist s=1 und $\beta=0.$

$$r = \sqrt[4]{1} = 1$$

$$\theta_1 = \frac{0}{4} = 0$$

$$\theta_2 = \frac{0}{4} + \frac{1}{4}2\pi = \frac{\pi}{2}$$

$$\theta_3 = \frac{0}{4} + \frac{2}{4}2\pi = \pi$$

$$\theta_4 = \frac{0}{4} + \frac{3}{4}2\pi = \frac{3\pi}{2}.$$

Also
$$z = e^{i0}, e^{i\frac{\pi}{2}}, e^{i\pi}, e^{i\frac{3\pi}{2}}.$$

1.3.2 Wurzelfunktion

Die k-te Wurzelfunktion ist definiert als

$$\sqrt[k]{z} = \sqrt[k]{re^{i\theta}} = \sqrt[k]{r}e^{i\frac{\theta}{k}},\tag{1.18}$$

für $\theta \in [0, 2\pi)$. Dann ist $\sqrt[k]{z}$ eine Lösung der Gleichung $\alpha^k = z$.

Die Wurzelfunktion $\sqrt{\cdot}:\mathbb{C}\to\mathbb{C}$ ist nicht stetig, da

$$\sqrt{1} = \sqrt{1}e^{i0} = \sqrt{1}e^{i\frac{0}{2}} = 1 \tag{1.19}$$

$$\lim_{\varepsilon \to 0} \sqrt{e^{i(2\pi - \varepsilon)}} = \lim_{\varepsilon \to 0} e^{i\pi - \frac{\varepsilon}{2}} = e^{i\pi} = -1. \tag{1.20}$$

1.4 Quadratische Gleichungen

Löse die Gleichung $z^2 + pz + q = 0; p, q \in \mathbb{C}$. Mit quadratischer Ergänzung

$$z^{2} + pz + q = z^{2} + pz + \frac{1}{4}p^{2} + q - \frac{1}{4}p^{2}$$
(1.21)

$$= \left(z + \frac{p}{2}\right)^2 + \left(q - \frac{1}{4}p^2\right). \tag{1.22}$$

Daraus folgt

$$\left(z + \frac{p_2}{2}\right)^2 = \frac{1}{4}p^2 - q \tag{1.23}$$

$$z = -\frac{p}{2} \pm \sqrt{\frac{1}{4}p^2 - q} \tag{1.24}$$

$$z = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}.\tag{1.25}$$

Diese Gleichung ist die komplexe Wurzel, sie hat also immer mindestens zwei Lösung.

1.5 Fundamentalsatz der Algebra

Der fundamentalsatz der Algebra besagt, dass jedes k-Polynom

$$P(z) = \sum_{j=0}^{k} \alpha_j z^j, \alpha_k \neq 0$$
(1.26)

insgesamt k Nullstellen hat, also

$$\exists z_1, \dots, z_k \in \mathbb{C} \Rightarrow P(z) = \alpha_k \prod_{j=1}^k (z - z_j).$$
 (1.27)

2 Komplexe Funktionen

Eine Folge $(z_k)_{k\in\mathbb{N}}\subseteq\mathbb{C}$ konvergiert gegen einen Grenzwert, wenn

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} \, \forall n \ge N : |z_k - z| \le \varepsilon. \tag{2.1}$$

Sei $f: U \to \mathbb{C}, U \subseteq \mathbb{C}$. Für ein $z \in U$

$$\lim_{h \to z} f(h) = \alpha \in \mathbb{C} \text{ existiert }, \tag{2.2}$$

falls \forall Folgen $(h_k)_{k\in\mathbb{N}}\subseteq U$ mit $h_k\neq z, \lim_{k\to\infty}h=z$, gilt, dass $\lim_{k\to\infty}f\left(h_k\right)=\alpha$.

2.1 Stetigkeit

Sei $f:U\to\mathbb{C},U\subseteq\mathbb{C}.$ f heißt stetig in $z\in\mathbb{C},$ falls

$$\lim_{h \to z} f(h) = f(z). \tag{2.3}$$

2.2 Differenzierbarkeit

Sei $U \subseteq \mathbb{C}$ offen und $f: U \to \mathbb{C}$. f heißt komplex differenzierbar in $z \in U$, falls

$$\lim_{h \to 0} \frac{f(z+h) - f(z)}{h} =: f'(z) \text{ existiert}.$$
 (2.4)

Sei $f(z) = \alpha_j z^j$ ein Polynom von Grad $k \in \mathbb{N}$, mit $\alpha_0, \dots, \alpha_k \in \mathbb{C}, \alpha_k \neq 0$. Dann ist

$$f'(z) = j\alpha_i z^{j-1}. (2.5)$$

 $f: \mathbb{R}^n \to \mathbb{R}^m$ ist total differenzierbar in $\overrightarrow{x} \in \mathbb{R}^n$ mit $Df \in \text{Lin } (\mathbb{R}^n, \mathbb{R}^m) = \mathbb{R}^{m \times n}$, falls

$$\lim_{\overrightarrow{h} \to \overrightarrow{0} \in \mathbb{R}^n} \frac{f\left(\overrightarrow{x} + \overrightarrow{h}\right) - f\left(\overrightarrow{x}\right) - Df_{(x)}\overrightarrow{h}}{||\overrightarrow{h}||} = \overrightarrow{0} \in \mathbb{R}^m \text{ existiert }.$$
 (2.6)

Sei $U \subseteq \mathbb{C}$ offen und $f: U \to \mathbb{C}$. Dann gilt, dass f'(z) in z = x + iy existiert, genau dann wenn

$$Df \begin{pmatrix} x \\ y \end{pmatrix}$$
 existiert und $Df \begin{pmatrix} x \\ y \end{pmatrix} = [f'(z)]_{\mathbb{R}^{2\times 2}}$. (2.7)

Falls f'(z) = a + ib, dann ist $Df\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$. F ist genau dann differenzierbar, wenn $\partial_1 F_1 = \partial_2 F_2$ und $\partial_1 F_2 = \partial_2 F_1$.

2.2.1 Holomorph

Sei $U \subseteq \mathbb{C}$ offen. $f: U \to \mathbb{C}$ heißt **holomorph** auf U wenn $f'(z) \in \mathbb{C} \, \forall z \in U$ existiert und in jedem Punkt auf U stetig komplex differenzierbar ist.

2.3 Differentiationsregeln

Sei $f: U \to \mathbb{C}$ in z komplex differenzierbar, dann ist f in z stetig. Sei $U \subseteq \mathbb{C}$ offen, $f: U \to \mathbb{C}$ holomorph.

i)
$$(\alpha f)'(z) = \alpha f'(z), \alpha \in \mathbb{C}$$

ii)
$$(f_1 + f_2)'(z) = f_1'(z) + f_2'(z)$$

iii)
$$(f_1f_2)'(z) = f'_1(z) f_2(z) + f_1(z) f'_2(z)$$

iv)
$$\left(\frac{f_1}{f_2}\right)'(z) = \frac{f_1'(z)f_2(z) - f_1(z)f_2'(z)}{f_2^2(z)}, f_2(z) \neq 0$$

Sei
$$f:U\to V\subseteq\mathbb{C}$$
 offen, $g:V\to\mathbb{C}$

v)
$$(g \circ f)'(z) = g'(f(z)) f'(z)$$

3 Reihen

Sei $(z_k)_{k\in\mathbb{N}}\subseteq\mathbb{C}$ eine Folge. Die Reihe

$$\sum_{k=0}^{\infty} z_k \tag{3.1}$$

konvergiert, falls die Partialsummen

$$S_n := \sum_{k=0}^n z_k \tag{3.2}$$

in \mathbb{C} gegen ein $z \in \mathbb{C}$ konvergieren. Die Reihe konvergiert absolut, falls

$$\sum_{k=0}^{n} |z_k| \tag{3.3}$$

konvergiert. Die Reihe divergiert, wenn sie nicht konvergiert.

Jede Cauchy-Folge konvergiert in \mathbb{C} . \mathbb{C} ist also **metrisch vollständig**.

3.1 Potenzreihen

Sei $(\alpha_k)_{k\in\mathbb{N}}$ eine komplexe Folge. Man definiert die **Potenzreihe** mit Koeffizienten α_k als

$$f(z) := \sum_{k=0}^{\infty} \alpha_k z^k. \tag{3.4}$$

Man definiert

$$R := \frac{1}{\lim_{k \to \infty} \sup \sqrt[k]{|\alpha_k|}} \in [0, +\infty], \tag{3.5}$$

mit $o^{-1} := +\infty$ und $\infty^{-1} := 0$. Dann

- i) $\sum_{k=0}^{\infty} \alpha_k |z|^k$ konvergiert absolut für |z| < R.
- ii) $\sum_{k=0}^{\infty} \alpha_k z^k$ divergiert für |z| > R.

Sei f(z) eine Potenzreihe $f(z) := \sum_{k=0}^{\infty} \alpha_k z^k$ mit Konvergenzradius $R \in [0, \infty]$. Man definiert $g(Z) := \sum_{k=1}^{\infty} k \alpha_k z^{k-1}$, dann hat g den Konvergenzradius R und f'(z) = g(z), falls |z| < R. f ist auf $\{z \in \mathbb{C} : |z| < R\}$ unendlich oft differenzierbar und

$$f^{(n)} := \sum_{k=n}^{\infty} \frac{k!}{(k-n)!} \alpha_k z^{k-n}$$
(3.6)

mit Konvergenzradius R. Die Stammfunktion ist dann

$$F(z) := \sum_{k=0}^{\infty} \frac{\alpha_k}{k+1} z^{k+1} + c \qquad c \in \mathbb{C}.$$

$$(3.7)$$

3 REIHEN 3.1 Potenzreihen

3.1.1 Produkt von Potenzreihen

Seien zwei Potenzreihen $f\left(z\right):=\sum_{k=0}^{\infty}\alpha_{k}z^{k}$ und $g\left(z\right):=\sum_{j=0}^{\infty}\beta_{j}z^{j}.$ Das Produkt ist

$$f(z) g(z) = (\alpha_0 + \alpha_1 z + \ldots) (\beta_0 + \beta_1 z + \ldots)$$
 (3.8)

$$= \alpha_0 \beta_0 + (\alpha_0 \beta_1 + \alpha_1 \beta_0) z + (\alpha_0 \beta_2 + \alpha_1 \beta_1 + \alpha_2 \beta_0) z^2 + \dots$$
 (3.9)

Die Konvergenzradien der Porenzreihen seien R und $R' \in [0, \infty]$. Man definiert $h(z) := \sum_{n=0}^{\infty} (\sum_{k=0}^{\infty} \alpha_k \beta_{n-k}) z^n$. Dann hat h einen Konvergenzradius von mindesten $R'' \ge \min(R, R')$ und f(z) g(z) = h(z) für $|z| < \min(R, R')$.