Diszkrét matematika 2 - Minta ZH2

2015 tavasz

Polinomok

- 1. (Többszörös gyökök) Keressük meg a következő polinom többszörös gyökeit: $f = x^5 5x^3 + 5x + 2 \in \mathbb{C}[x]$. Megoldás: Polinomok Alapjai Példatár (Láng Zsuzsa honlapján) 2.5-18 feladat.
- 2. (Testbővítések) Legyen $f = x^3 2x^2 + 2 \in \mathbb{Z}_3[x]$, és végezzük el a következő műveleteket $\mathbb{Z}_3[x]/(f)$ -ben: x^{-1} és $x^{-3} \cdot (x^8 + 2x^2)$. Igaz-e hogy $\mathbb{Z}_3[x]/(f)$ test?

Megoldás: $\mathbb{Z}_3[x]/(f)$ elemei a $\mathbb{Z}_3[x]$ maradékosztályok mod f, azaz olyan polinomok, hogy az együtthatókat mod 3 kell venni, így $f=x^3+x^2+2$. Tehát $x^3+x^2+2\equiv 0\pmod f$, ezért $x^3\equiv 2x^2+1\pmod f$. Tudjuk, hogy minden $\mathbb{Z}_3[x]/(f)$ -beli osztály reprezentálható egy legfeljebb másodfokú polinommal, így x inverze is, azaz tegyük fel hogy $x^{-1}=Ax^2+Bx+C$ és oldjuk meg a következő kongruenciát A,B és C-re:

$$x \cdot x^{-1} = x \cdot (Ax^2 + Bx + C) \equiv 1 \pmod{f}$$
$$Ax^3 + Bx^2 + Cx \equiv 1 \pmod{f}$$
$$A(2x^2 + 1) + Bx^2 + Cx \equiv 1 \pmod{f}$$
$$(2A + B)x^2 + Cx + A \equiv 1 \pmod{f}$$

Innen A = 1, C = 0 és B = 1 mivel 2A + B = 0, és így $x^{-1} = x^2 + x$.

Vegyük észre, hogy $x^{-3} \cdot (x^8 + 2x^2) = x^5 + 2x^{-1}$ és így:

$$x^{-3} \cdot (x^{8} + 2x^{2}) = (2x^{2} + 1) \cdot x^{2} + 2 \cdot (x^{2} + x)$$

$$= 2x^{4} + x^{2} - x^{2} - x$$

$$= 4x^{3} + 2x - x$$

$$= x^{3} + x$$

$$= 2x^{2} + x + 1$$

- 3. (Polinomok \mathbb{Z} és \mathbb{Q} felett)
 - (a) Keressük meg az $f = x^3 6x^2 + 15x 14$ polinom racionális gyökeit.
 - (b) Az $f = 20x^4 + 26x^3 + 65x^2 + 91$ polinomot bontsuk fel irreducibilis polinomok szorzatára \mathbb{Z} és \mathbb{Q} fölött.

Megoldás: Polinomok Alapjai Példatár. (Láng Zsuzsa honlapján) 2.6-24 és 2.6-32 feladat.

4. (Lagrange interpoláció, titokmegosztás): Mi a konstans tagja a legfeljebb negyedfokú $f \in \mathbb{Z}_{13}[x]$ polinomnak, ha $\hat{f}(1) = 2$, $\hat{f}(2) = 3$, $\hat{f}(3) = 5$, és $\hat{f}(4) = 7$?

Megoldás:

• $l_1 = \frac{x-2}{1-2} \cdot \frac{x-3}{1-3} \cdot \frac{x-4}{1-4} = 2x^3 + 8x^2 + 4$

- $l_2 = \frac{x-1}{2-1} \cdot \frac{x-3}{2-3} \cdot \frac{x-4}{2-4} = 7x^3 + 9x^2 + 3x + 7$
- $l_3 = \frac{x-1}{3-1} \cdot \frac{x-2}{3-2} \cdot \frac{x-4}{3-4} = 6x^3 + 10x^2 + 6x + 4$
- $l_4 = \frac{x-1}{4} \cdot \frac{x-2}{4} \cdot \frac{x-3}{4} = 11x^3 + 12x^2 + 4x + 12$

Végül $f = 2 \cdot l_1 + 3 \cdot l_2 + 5 \cdot l_3 + 7 \cdot l_4 = 2x^3 + 9x^2 + 2x + 3$, azaz f konstans tagja 3.

Megjegyzés: az "osztás" itt moduláris inverzzel való szorzást jelent.

Kódolás

- 5. (Huffmann kód) A gyakorlaton megoldott feladat, valahogy úgy hangzott, hogy adott a következő relatív gyakoriságok 0.34, 0.18, 0.17, 0.16, 0.15. Konstruáljuk a megfelelő bináris Huffmann kódot és hasonlítsuk az átlagos szóhosszt az entrópiával.
- 6. (Lineáris kód):
 - (a) Határozzuk meg egy a

$$G = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \in \mathbb{Z}_2$$

generátor mátrixhoz tartozó hibaellenőrző H mátrixot. Hány elemű a kód? Mi a kód távolsága, hibajelző és hibajavító képessége? Mi a 110 üzenet kódja? Mire fogjuk dekódolni a 1011100 kódszót?

Megoldás: Megengedett műveletek

- Sorcserék, melynek inverzét utólag végre kell hajtani ${\cal H}$ oszlopain.
- Oszlopműveletek.

Először végezzük el a (432) sorcserét (4. sort a 3. helyére, 3. a 2. helyére és 2. a 4. helyére).

$$G_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Az így kapott mátrix már $G_1 = \begin{pmatrix} \mathbb{I} \\ P \end{pmatrix}$ alakú, innen kiolvasható a hibaellenőrző $H_1 = \begin{pmatrix} -P \mathbb{I} \end{pmatrix}$ mátrix (egyenlőre permutált oszlopokkal).

$$H_1 = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Majd végrehajtva H_1 oszlopain az G-n végrehajtott oszlopcsere inverzét, vagyis a $(2\,3\,4)$ permutációt, megkapjuk a G-hez tartozó

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Ha sorerével nem oldható meg a G ilyen előállítása, akkor oszlop műveletek is megengedettek, ld következő feladat. A kód az 8 elemű, ugyan is k=3 (az üzenetek hossza), n=7 (az kódszavak hossza), q=2 (az ábécé elemszáma), és a kódszavak száma mindig $q^k=2^3=8$.

A kód távolság H oszlopaiból olvasható ki. H első három oszlopa független (a maradék 4 oszlop egységmátrixot alkot, így azok is függetlenek), de mondjuk az 1. a 3. az 5. oszlop összege már nulla, így ezek összefüggnek, azaz van három összefüggő oszlop, de kevesebb nincs így d=3. Ebből közvetlenül adódik, hogy a kód pontosan d-1=2 hibajelző és pontosan $\lfloor (d-1)/2 \rfloor = 1$ hiba javító.

Az u=110 üzenet kódja Gu=1010101. A v=1011100 üzenetet le kell ellenőrizni, ha Hv=0 akkor az üzenet első, harmadik és negyedik bitje (ebben a sorrendben) adja vissza az üzenetet. Viszont s=Hv=1011 ami nem nulla. Ebben az esetben szindróma dekódolást alkalmazhatunk, azaz az s=1011 a H mátrix 3. oszlopával egyezik meg, így a 3. bit sérült, azaz 1011100 helyett az 1001100 üzenet lett elküldve, melyből kiolvasva az első, harmadik és negyedik bitet megkapjuk az eredeti 101 üzenetet!

(b) Határozzuk meg a

$$G = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

generátor mátrixhoz tartozó hibaellenőrző ${\cal H}$ mátrixot.

Megoldás: Hasonlóan mint az előző feladatnál végezzük el először a $(1\,3\,2\,4)$ permutációt G sorain:

$$G_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Majd adjuk a második oszlophoz az elsőt.

$$G_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Innen

$$H_2 = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

A sor permutációk (4231) inverzét alkalmazva az oszlopokra kapjuk, hogy

$$H_1 = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Mivel a G_2 ellőállításához alkalmazott oszlop transzformáció miatt G_1 és G_2 által generált altér megegyezik, ezért $H_1 = H$ egy ellenőrző mátrixa G-nek.

Megjegyzés: most d=2 ugyanis H 3. és 7. megegyezik, így összegük 0, azaz összefüggőek.