Eine Woche, ein Beispiel 5.11 genus of generalized Fermat curve

1. Find a basis of H^{P.9}(X) by harmonic forms. 2. Compute the geometric genus of curves

$$C_1 = \{y^n = x^m - 1\} \subseteq \mathbb{P}^2$$

Rmk: [2024.11.03] try to compute a special case in detail. In this document, more advanced methods are applied, so we don't need to blow up explicitly.

The reference also follows [2024.11.03].

Extra Ref:

Generalised Fermat equation: a survey of solved cases https://arxiv.org/abs/2412.11933

Connection between Fermat curve and hyperelliptic curve:

https://math.stackexchange.com/questions/3493593/transformation-which-takes-fermat-curve-xnyn-1-to-a-hyper elliptic-curve

1. Harmonic forms

- Affine plane curve
- Plane curve

Fernat curve

- Hyperelliptic curve generalized Fermat curve
- Ip"
- Hypersurface
- 2. Riemann Hurwitz
- 3. Milnor formula

1. Harmonic forms

Almost all the results in this section come from the answer here: https://mathoverflow.net/questions/324812/the-construction-of-a-basis-of-holomorphic-differential-1-forms-for-a-given-plan

Affine plane curve

Prop. Suppose
$$C = \{f(x,y) = 0\} \subseteq \mathbb{A}^2$$
 is a sm curve, then

$$\omega \triangleq \frac{dx}{f_{2}(x,y)} = -\frac{dy}{f_{1}(x,y)}$$

is a global generator of
$$H^{\circ}(C, \Omega')$$
.
i.e., $\forall \ \omega' \in H^{\circ}(C, \Omega')$, $\omega' = f \omega$ for some $f \in \mathcal{O}_{hol}(C)$.

Proof. Notice that
$$f_1(x,y) dx + f_2(x,y) dy = 0$$
.

When
$$f_i(x_0, y_0) \neq 0$$
,

$$y: C \longrightarrow A'$$
 is a local chart.
 $(x,y) \longmapsto y$

$$\Rightarrow \frac{dy}{f_i(x,y)} \text{ is a global generator near } (x_0,y_0).$$

$$\Rightarrow \frac{dy}{f_i(x,y)} \text{ is a global generator near } (x_0,y_0).$$

When
$$f_s(x_0, y_0) \neq 0$$
,

$$X: C \longrightarrow A'$$
 is a local chart, $(x,y) \longmapsto X$

$$\Rightarrow dx \text{ is a global generator near } (x_0, y_0).$$

$$\Rightarrow -\frac{dx}{f_2(x, y)} \text{ is a global generator near } (x_0, y_0).$$