Листок 4

Тема 4(1.4). Квадратичные вычеты

Упражнения и задачи

- 1. Докажите, что существует бесконечно много простых $p\equiv 1$ (4) и $p\equiv 3$ (4).
- 2. Докажите, что $\left\lceil \frac{p-1}{4} \right\rceil$ четно $\Leftrightarrow p=8k\pm 1.$
- 3. Докажите свойства символа Якоби:

•
$$a \equiv b \ (P) \Rightarrow \left(\frac{a}{P}\right) = \left(\frac{b}{P}\right);$$

$$\bullet \ \left(\frac{ab}{P}\right) = \left(\frac{a}{P}\right) \left(\frac{b}{P}\right);$$

$$\bullet \ \left(\frac{a}{PQ}\right) = \left(\frac{a}{P}\right)\left(\frac{a}{Q}\right).$$

- 4. Пусть α иррациональное число. Докажите, что последовательность $(\{n\alpha\})_{n=1}^{\infty}$ равномерно распределена mod 1.
- 5. Пусть p простое, (a, p) = 1. Докажите, что число решений сравнения $ax^2 + bx + c \equiv 0 \pmod{p}$ равно $1 + \left(\frac{b^2 4ac}{p}\right)$.
- 6. Докажите, что если (a,p)=1 то $\sum_{x \bmod p} \left(\frac{ax+b}{p}\right)=0$.
- 7. Используя замену переменных, докажите, что число решений сравнения $x^2-y^2\equiv a\pmod p$ равно p-1, если (a,p)=1, и 2p-1, если p|a. Выразите число решений этого сравнения через сумму с символом Лежандра. Используя эти выражения, найдите значение для суммы $\sum_{y \bmod p} \left(\frac{y^2+a}{p}\right)$.
- 8. Докажите, что если (a,p)=1 то $\sum_{x \bmod p} \left(\frac{x(x+a)}{p}\right)=-1.$
- 9. Пусть $r_1, \ldots, r_{(p-1)/2}$ квадратичные вычеты в промежутке [1; p]. Докажите, что их произведение $\equiv 1$ (p), если $p \equiv 3$ (4), и $\equiv -1$ (p), если $p \equiv 1$ (4).
- 10. Пусть $p \equiv 1$ (4) простое, (a,p) = 1, $S(a) = \sum_{x \bmod p} \left(\frac{x(x^2+a)}{p}\right)$. Докажите, что
 - $S(a) \equiv 0 \ (2);$
 - $S(at^2) = \left(\frac{t}{p}\right)S(a);$
 - если r, n такие, что $\left(\frac{r}{p}\right) = 1$, $\left(\frac{n}{p}\right) = -1$, то $p = \left(\frac{1}{2}S(r)\right)^2 + \left(\frac{1}{2}S(n)\right)^2$.
- 11. Пусть $f(x) \in \mathbb{Z}[x]$. Будем говорить, что простое p делит f(x), если $\exists n \in \mathbb{Z}$ такое, что p|f(n). Опишите простые делители многочленов x^2+1 и x^2-2 . Докажите, что если p делит x^4-x^2+1 , то $p\equiv 1$ (12).
- 12. Пусть D > 0 нечетное и свободное от квадратов. Докажите, что $\exists b \in \mathbb{Z}, (b, D) = 1$ такое, что $\left(\frac{b}{D}\right) = -1$. Докажите также, что $\sum' \left(\frac{a}{D}\right) = 0$, где суммирование берется по приведенной системе вычетов mod D.

1

13. Пусть p — нечетное простое. Докажите, что

$$\left(\frac{2}{p}\right) = \prod_{j=1}^{(p-1)/2} 2\cos\left(\frac{2\pi j}{p}\right),\,$$

а также, что если p > 3 то

$$\left(\frac{3}{p}\right) = \prod_{j=1}^{(p-1)/2} \left(3 - 4\sin^2\left(\frac{2\pi j}{p}\right)\right).$$

SageMath

- Исследуйте основные функции SageMath связанные с вычислением квадратичных вычетов и символов Лежандра и Якоби:
 - Квадратичные вычеты: quadratic_residues();
 - Символы: kronecker(), jacobi().
- \bullet Пусть r(p) наименьший квадратичный вычет $\operatorname{mod} p, \ n(p)$ наименьший квадратичный невычет $\operatorname{mod} p, d(p)$ — максимальное расстояние между соседними квадратичными невычетами $\operatorname{mod} p$. Постройте частотные таблицы для r(p), n(p), d(p). Что можно заметить?

(Согласно гипотезам Виноградова, $\forall \varepsilon > 0$ $\frac{d(p)}{p^{\varepsilon}} \to 0$, $\frac{n(p)}{p^{\varepsilon}} \to 0$, $\frac{r(p)}{p^{\varepsilon}} \to 0$ при $p \to \infty$.)

- Проведите численные эксперименты относительно равномерного распределения последовательностей, которые упоминались в лекции:
 - $-(\{n\alpha\})_{n=1}^{\infty}, \alpha$ иррациональное;

 - $(\{p\alpha\})_{p=1}^{\infty}$, α иррациональное, p пробегает все простые; $(\{\frac{x_p}{p}\})_{p=1}^{\infty}$, x_p решение сравнения $x^2 \equiv a$ (p), p пробегает все простые.

Темы для самостоятельного изучения

- \bullet Когда простое q является квадратичным вычетом по модулю простого p? (Приложение квадратичного закона взаимности, [IR, §5.2, теорема 2]).
- Существует бесконечно много простых таких, что $\left(\frac{a}{p}\right) = -1$, где a целое, отличное от квадрата. ([IR, §5.2, теорема 3]).
- Критерий разрешимости сравнения $x^2 \equiv a \ (m)$ для произвольного m. ([IR, §5.1, предложение 5.1.1], [Вин, §V.4]).