CE225 - Modelos Lineares Generalizados

Cesar Augusto Taconeli

11 de julho, 2018

Aula 12 - Regressão para dados binários - predição

Introdução

 Modelos de regressão para dados binários são bastante utilizados para predição, ou seja, classificar indivíduos conforme suas probabilidades estimadas.

- Alguns exemplos:
 - Predição (classificação) de clientes em bons ou maus pagadores;
 - Predição de e-mails em spams ou não spams;
 - Predição do resultado de um jogo de basquete (vitória do time mandante ou do time visitante);
 - Prognóstico de um paciente (cura ou não cura)...

Introdução

• É fortemente recomendável avaliar o poder preditivo do modelo ajustado com dados que não foram usados no ajuste.

 Ajustar o modelo e avaliar a qualidade preditiva usando os mesmos dados tende a produzir resultados excessivamente otimistas.

- Algumas possibilidades:
 - Separar aleatoriamente a amostra em duas partes (uma para ajuste, a outra para predição);
 - Usar validação cruzada (caso particular: leave one out).

Predição

• Sejam $\hat{\pi}_i$ as estimativas de $P(y_i = 1)$, i = 1, 2, ..., n.

- Considere uma regra do tipo:
 - Predizer $\hat{y}_i = 0$ se $\hat{\pi}_i \leq p_0$;
 - Predizer $\hat{y}_i = 1$ se $\hat{\pi}_i > p_0$,

para algum valor (ponto de corte) especificado p_0 e i = 1, 2, ..., n.

- É comum (mas não obrigatório) usar $p_0 = 0.5$, classificando pelo resultado com maior probabilidade.
- ullet Diferentes valores de p_0 conduzem a diferentes regras de predição.

Tabelas de classificação

 Dadas as predições e os valores realmente observados de y, podemos construir uma tabela de classificação.

Tabela 1: Tabela de classificação

	ŷ	
У	0	1
0	n ₀₀	n_{01}
1	n ₁₀	n_{11}

 Duas medidas úteis para sumarizar o poder preditivo de um modelo são a sensibilidade e a especificidade.

Sumarizando o poder preditivo

• A sensibilidade de um modelo (ou de uma regra de classificação) é definida por $P(\hat{y}=1|y=1)$;

• A **especificidade** de um modelo (ou de uma regra de classificação) é definida por $P(\hat{y} = 0|y = 0)$.

 Podemos estimar a sensibilidade e a especificidade com base nas frequências de uma tabela de classificação:

$$\widehat{Sens} = \frac{n_{11}}{n_{10} + n_{11}}; \quad \widehat{Esp} = \frac{n_{00}}{n_{00} + n_{01}}.$$
 (1)

Sumarizando o poder preditivo

Figura 1: Ilustração - predição para dados binários

Curva ROC

- Uma forma de analisar o poder preditivo associado a diferentes regras de decisão (valores de p_0) é por meio da **curva ROC**.
- A curva ROC permite avaliar conjuntamente a sensibilidade e a especificidade para diferentes valores de p_0 .
- Para valores $p_0 \approx 1$, temos sensibilidade próxima de zero e especificidade próxima de um;
- Para valores p₀ ≈ 0, temos sensibilidade próxima de um e especificidade próxima de zero;
- Em geral, busca-se p_0 tal que se tenha, conjuntamente, elevadas sensibilidade e especificidade;
- A área sob a curva ROC é uma medida de poder preditivo do modelo.

Curva ROC

Figura 2: Ilustração - Curva ROC