ZHEJIANG UNIVERSITY - UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

ECE 310 DIGITAL SIGNAL PROCESSING

Homework 8

Prof. Zhi-Pei Liang

Due: April 9, 2021

- 1. Assume x[n] is a finite-duration sequence of length 40, and y[n] is obtained by zero-padding x[n] to length 64. That is, y[n] = x[n], for $n = 0, 1, \ldots, 39$, and y[n] = 0, $n = 40, 41, \ldots, 63$. Let $\{X[m]\}_{m=0}^{39}$ and $\{Y[m]\}_{m=0}^{63}$ be the DFT of $\{x[n]\}_{n=0}^{39}$ and $\{y[n]\}_{n=0}^{63}$, respectively. Determine all the correct relationships and **justify your answers**.
 - (a) X[0] = Y[0]
 - (b) X[5] = Y[8]
 - (c) X[10] = Y[16]
 - (d) X[12] = Y[18]
 - (e) X[39] = Y[63]
- 2. Given that the DFT of $\{2,0,6,4\}$ is $\{X_0,X_1,X_2,X_3\}$, determine the DFT of $\{2,1,0,3\}$ and express the result in terms of X_0,X_1,X_2,X_3 .

Hint: relate the two sequences using transformations we discussed in class (scaling, time reversal, conjugation, circular shift, ...) and use the corresponding properties of the DFT.

- 3. a) Find the inverse DFT of the sequence $X[m] = \left\{1, e^{-j\frac{3\pi}{4}}, 0, e^{j\frac{3\pi}{4}}\right\}$ where the first entry of X[m] corresponds to m = 0.
 - b) Without explicitly computing the inverse DFT sum, find the inverse DFT of the sequence $Y[m] = \left\{1, e^{-j\frac{\pi}{4}}, 0, e^{j\frac{\pi}{4}}\right\}$ where the first entry of Y[m] corresponds to m = 0, using your answer to part (a).
- 4. You are given two sequences x[n] = [1, 2, 3, 4, 5, 6] and y[n] = [4, 5, 6, 1, 2, 3]. It is known that $Y[m] = X[m]e^{-j\frac{2\pi}{6}mn_0}$. Find two values of n_0 consistent with this information.
- 5. Let X[m] be the 8-point DFT of the sequence x[n] = [1, -1, 2, 3, -3, 0, 0, 0]. Let y[n] be a finite length sequence whose DFT Y[m] is related to X[m] as $Y[m] = X[m]e^{-j\frac{2\pi}{6}mn_0}$, where $n_0 = 3$. Determine the sequence y[n].
- 6. Let X[m] be the 6-point DFT of x[n] = [1, 2, 3, 4, 5, 6]. Determine the sequence y[n] whose DFT $Y[m] = X[<-m>_6]$.
- 7. Let X[m] denote the 80-point DFT of x[n], $0 \le n \le 79$. The sequence y[n] is obtained by zero-padding x[n] to length 128. Determine m_0 such that $Y[8] = X[m_0]$.

- 8. Let X[m], $(0 \le m \le 20)$ and $X_d(\omega)$ respectively be the 21-point DFT and DTFT of a real-valued sequence $\{x_n\}_{n=0}^7$ that is zero-padded to length 21. Determine all the **correct** relationships and justify your answer.
 - (a) $X[19] = X_d(-\frac{4\pi}{21}).$
 - (b) $X[2] = X_d^*(-\frac{4\pi}{21})$
 - (c) $X[12] = X_d(-\frac{4\pi}{21})$
 - (d) $X[4] = X_d^*(-\frac{4\pi}{21})$

P1.
$$Xa(w) = Ya(w)$$

 $Xm = Xa(w)|_{w = \frac{1}{N}m} = Xa(\frac{2\pi}{40}m)$
 $Ym = Ya(w)|_{w = \frac{1}{N}m} = Xa(\frac{2\pi}{64}m)$
Let $Xm_1 = Ym_2$
 $= \frac{1}{40}m_1 = \frac{2\pi}{64}m_2$
 $= \frac{1}{10}m_1 = \frac{40}{64} = \frac{5}{8}m_2$
 $= \frac{1}{10}X_5k = Y_8k$, where $k < 8$
a) $X[0] = Y[0] : True$
b) $X[5] = Y[8] : True$
c) $X[0] = Y[16] : True$
d) $X[12] = Y[18] : False$
e) $X[39] = Y[64] : False$
P2. $\{2,0,6,4\} \xrightarrow{DFI} \{X_0,X_1,X_2,X_8\}$

P2.
$$\{2,0,6,4\} \stackrel{DFI}{\longleftrightarrow} \{X_0,X_1,X_2,X_8\}$$

$$\{X_n\}_{n=0}^{4}$$
Let $\{g_n\}_{n=0}^{4} = \{1,1,0,3\}$

$$= \{\frac{X_{2n-1}}{2},\frac{4}{2}\}_{n=0}^{4}$$

:. Inverse DFT:
$$\{x(n)\} = \{\frac{1}{4}, 0, 0, 0\}$$

 $Y(m) = \{1, e^{-j\frac{\pi}{4}}, 0, e^{j\frac{\pi}{4}}\}$
 $= \{\frac{1}{4}, 0, 0, 0\}$ according to part a.
4. $Y(m) = X(m)e^{-j\frac{\pi}{4}mn_0}, N = 6$
 $y(n) = 0$
 $= \{x_{2n+3}\}_{n=0}^{5}$
 $= \{x_{2n-4}\}_{n=0}^{5}$

yn = [-3,0,0,0,1,-1,2,3|

6.
$$Y[m] = X[L-m]_{i}^{2}, N=6$$

$$= X[L-m]_{i}^{2} e^{\frac{2\pi}{N}-M-N_{0}}, n_{0}=0$$

$$= X[L-m]_{i}^{2} e^{\frac{2\pi}{N}-M-N_{0}}, n_{0}=0$$

$$= X[L-m]_{i}^{2} e^{\frac{2\pi}{N}-M-N_{0}}$$

$$= X[L-m]_{i}^{2} e^{\frac{2\pi}{N}-M-N_{0}}$$

$$= X[L-m]_{i}^{2} n=0$$

$$\therefore y[n] = [6, 5, 4, 3, 1, 1]$$
7. $Y_{m} = \sum_{n=0}^{12} y_{n} e^{\frac{2\pi}{N}-M} mn$

$$X_{m} = \sum_{n=0}^{12} y_{n} e^{\frac{2\pi}{N}-M} mn$$

$$X_{m} = \sum_{n=0}^{12} x_{n} e^{\frac{2\pi}{N}-M} mn$$

$$\Rightarrow x_{n} = \sum_{n=0}^{$$