GPT

- GPT models: all very large Transformer language models, left-to-right language models, trained on raw text
- GPT1: came out before BERT, we'll skip it
- ► GPT2 was trained on 40GB of text:

	Parameters	Layers	d_{model}
	117M	12	768
approximate size of BER	T345M	24	1024
	762M	36	1280
GPT-2	2 1542M	48	1600

- ▶ GPT-2 was by far the largest model trained when it came out in March 2019
- Could generate several fluent and coherent sentences back-to-back,
 which was not seen in smaller models or LSTMs

GPT-3

- Released in mid-2020
- ▶ 175B parameter model: 96 layers, 96 heads, 12k-dim vectors

Total Compute Used During Training

In-context Learning

- ► GPT-3 proposes an alternative to fine-tuning: **in-context learning.** Just uses the off-the-shelf model, no gradient updates.
- Key concept: an LM should be able to continue an observed pattern

```
Translate English to French: 

sea otter => loutre de mer 

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 

prompt
```

 This procedure depends heavily on the examples you pick as well as the prompt ("Translate English to French")

Brown et al. (2020)

In-context Learning

```
Translate English to French: task description
sea otter => loutre de mer
                                    examples
peppermint => menthe poivrée
plush girafe => girafe peluche
cheese =>
                                prompt
```

In-context Learning

GPT-3: Results

	SuperGLUE Average	E BoolQ Accuracy	CB y Accurac	CB y F1	COPA Accuracy	RTE Accuracy
Fine-tuned SOTA	89.0	91.0	96.9	93.9	94.8	92.5
Fine-tuned BERT-Large	69.0	77.4	83.6	75.7	70.6	71.7
GPT-3 Few-Shot	71.8	76.4	75.6	52.0	92.0	69.0
	77.C	TT700)	N. A. IVIDO	D C DD	D C DD
	WiC	WSC	MultiRC	MultiRC	ReCoRD	ReCoRD
	Accuracy	Accuracy	Accuracy	F1a	Accuracy	F1
Fine-tuned SOTA	76.1	93.8	62.3	88.2	92.5	93.3
Fine-tuned BERT-Large	69.6	64.6	24.1	70.0	71.3	72.0
GPT-3 Few-Shot	49.4	80.1	30.5	75.4	90.2	91.1

- Comparison to fine-tuned state-of-the-art models, fine-tuned BERT-Large Note that these models train on much more data, GPT-3 is "few-shot" and only uses in-context learning
- Sometimes very impressive, (MultiRC, ReCoRD), sometimes very bad
- Results on other datasets are equally mixed but still strong for a few-shot model!

Other Models

- GPT-3 represents a fundamental paradigm shift in model capabilities
- Other strong large language models (LLMs) that are widely used:
 LLaMA, PaLM (Google), OPT, BLOOM, Pythia (all open except PaLM)
- Modern models like ChatGPT, GPT-4 use additional reinforcement learning from human feedback or instruction tuning. We will come to these later in the course; they are basically souped-up fine-tuning techniques