VLSI Devices Lecture 23

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
Department of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology (GIST)

Coverage

- Two YouTube lectures reserved for advanced topics
 - -L14: Substrate bias, channel mobility
 - -L15: 3.2.1
 - -L16: 3.2.1 (Continued)
 - -L17: Velocity saturation (3.2.2)
 - -L18: Channel length modulation and so on (3.2.3, 3.2.4, 3.2.5)
 - -L19: MOSFET scaling
 - L20: MOSFET scaling (Continued)
 - -L21: Quantum effect (4.2.4)
 - -L22: Double-gate MOSFETs (10.3)
- → L23: FinFETs
 - -L24: CFETs

Basic assumptions

- High-resolution lithographic techniques (Minimum L)
- Technological advancement in ion implantation (Shallow junction)

An architect and a construction worker (Image generated by ChatGPT)

Constant-field scaling (Dennard scaling)

Keep short-channel effects under control,

By scaling down the vertical dimensions along with the horizontal

dimensions.

- Decrease the applied voltage.

- Increase the substrate doping concentration.

Gate n^+ source t_{ox} W_D p-substrate, doping N_a

Original device

Doping κN_a

R. H. Dennard (Inventor of DRAM)

MOSFET constant-electric-field scaling (Taur, Fig. 4.1)

Rules for constant-field scaling (1)

- Scaling assumption ($\kappa > 1$)
 - Device dimensions (t_{ox} , L, W, and x_i): $1/\kappa$
 - Doping concentration (N_a and N_d): κ
 - -Voltage (V): $1/\kappa$
- Maximum drain depletion width

$$W_D = \sqrt{\frac{2\epsilon_{si}(\phi_{bi} + V_{dd})}{qN_a}} \rightarrow \sqrt{\frac{2\epsilon_{si}\left(\phi_{bi} + \frac{1}{\kappa}V_{dd}\right)}{q\kappa N_a}} \quad \text{Taur, Eq. (4.1)}$$

$$\approx \frac{1}{\kappa} \sqrt{\frac{2\epsilon_{si}(\phi_{bi} + V_{dd})}{qN_a}} = \frac{1}{\kappa} W_D$$

GIST Lecture

5

Rules for constant-field scaling (2)

- Capacitances
 - They scale down by κ .
- Charge per device ($\sim C \times V$)
 - It scaled down by κ^2 .
- Drain current
 - -The original one

$$I_{d} = \mu_{n} C_{ox} \frac{W}{L} \left[(V_{gs} - V_{t}) V_{ds} - \frac{1}{2} V_{ds}^{2} \right]$$

$$\mu_{n} \kappa C_{ox} \frac{\frac{1}{\kappa} W}{\frac{1}{\kappa} L} \left[\left(\frac{1}{\kappa} V_{gs} - V_{t,scaled} \right) \frac{1}{\kappa} V_{ds} - \frac{1}{2} \frac{1}{\kappa^{2}} V_{ds}^{2} \right] \approx \frac{1}{\kappa} I_{d}$$
GIST Lecture

6

Effect of scaling on circuit parameters

- Important colcusion of constant-field scaling:
 - Once the device dimensions and the power-supply voltage are scaled down, the circuit speeds up by the same factor.

– Moreover, power dissipation per circuit, which is proportional to VI, is reduced by κ^2 .

Chronicles

- Intel and TSMC. IEDM and VLSI papers
 - 130nm: 2000 (Intel, IEDM)
 - 90nm: 2003 (Intel, IEDM)
 - 65nm: 2004 (Intel, IEDM)
 - 45nm: 2007 (Intel, IEDM)
 - 32nm: 2008 (Intel, IEDM)
 - 22nm: 2012 (Intel, VLSI)
- 16nm: 2013 (TSMC, IEDM), 14nm: 2014 (Intel, IEDM)
 - 10nm: 2016 (TSMC, IEDM)
 - 7nm: 2016 (TSMC, IEDM)
 - 5nm: 2019 (TSMC, IEDM)
 - 3nm: 2022 (TSMC, IEDM)
 - 2nm: 2024 (TSMC, IEDM)

Prehistoric(?) MOSFET

- 130-nm MOSFET
 - Major issue: Cu interconnection (Previously, AI)
 - -Operation voltage: 1.3 V
 - -Oxide thickness: 1.5 nm
 - Poly-silicon gate

SUMMARY OF TRANSISTOR CHARACTERISTICS

Parameter		180 nm	This Work
		Generation [1]	
V_{DD}	[V]	1.5	1.3
L_{GATE}	[nm]	130	70
T _{OX}	[nm]	2.0	1.5
I _{OFF}	$[nA/\mu m]$	3	10
$I_{DSAT}(n)$	[mA/µm]	1.04	1.02
$I_{DSAT}(p)$	[mA/µm]	0.46	0.5
Low Vt IOFF	$[nA/\mu m]$	-	100
Low Vt IDSAT(1	•	-	1.17
Low Vt $I_{DSAT}(p)$ [mA/ μ m]		-	0.6
GIST Lecture	•		

Running out of steam

- In the early 2000s. Why?
 - Due to leakage limitations!
 - -The SiO₂ gate oxide had scaled to \sim 1.2 nm at the 90 nm generation.
 - → The gate oxide leakage was increasing exponentially and had become a noticeable percentage of total chip power.
 - Deceasing supply voltage → decreasing threshold voltage → everhigher subthreshold leakage current
- Increasing transistor leakage
 - Was against the market preferences.
 - -The 1980s and 1990s were the era of the home PC.
 - -The 2000s was the "mobile" era.

90-nm node

- Oxide thickness: 1.2nm (\times 0.8 scaling, not \times 0.7)
 - -SiGe was selectively deposited in PMOS source-drain regions to provide compressive channel strain.
 - A tensile SiN cap layer was deposited over NMOS transistors to provide tensile channel strain.

90nm uniaxial strained silicon transistors

Impact of stress engineering

- Mobility enhancement
 - For electrons, tensile strain. For holes, compressive strain

Mobility characteristics under <110> uniaxial strain (K. Uchida, IEDM 2004)

"High-k + metal" gate

- We need to scale the "effective" oxide thickness.
 - Keeping the physical thickness & increasing the oxide capacitance
- Poly depletion effect is now removed.

65nm 45nm (high-k metal gate)

Performance

- Drive current improvement
 - -Strain engineering
 - High-k + metal gate

and leakage options

FinFET

- FinFET
 - Following its shape
 - Initially proposed as a SOI FinFET
 - Later, a bulk FinFET

Fins (Google images)

Planar transistor structure (left) and FinFET structure (right)

SEM image

- FinFET
 - Improved electrostatic control of the channel region

32nm planar transistors (left) and 22nm FinFETs (right)

Performance

- Steeper sub-threshold slope
 - $\times 10$ off-state leakage reduction

Quantum effect

- Potential well formed by
 - -The oxide barrier
 - The silicon conduction band
- Subbands
 - -Quantized levels
 - Solutions of the Schrödinger equation
- ullet Nearly zero n at the interface

Energy levels of inversion-layer electrons (Taur, Fig. 4.18) 18

Electron profile

- Classical vs. quantum-mechanical
 - Maximum n at the interface
- Quantum mechanical effects
 - -At high fields, V_t becomes higher.
 - Effective gate oxide thickness is larger.

Classical and quantum-mechanical electron density (Taur, Fig. 4.19)5

Poisson-Schrödinger solver

- General way to calculate the subband structure
 - It requires numerical analysis...
 - Interested? Watch my YouTube videos. (They are recorded in Korean.)

Schrödinger-Poisson solver – 1. Potential energy

Sung-Min Hong (smhong@gist.ac.kr)

Triangular potential approximation

- Parabolic potential profile
 - However, it is further approximated as a linear potential. →
 Triangular potential well
 - Then, the Schrödinger equation reads

$$\left[-\frac{\hbar^2}{2m_{xx}} \frac{d^2}{dx^2} + q\mathcal{E}_s x \right] \psi(x) = E\psi(x)$$

Its solution

Airy function

$$Ai(x) = \frac{1}{\pi} \int_0^{\infty} \cos\left(\frac{t^3}{3} + xt\right) dt \int_{-0.2}^{0.2} dt$$

- Its seond derivative is

$$\frac{d^2}{dx^2}Ai(x) = -\frac{1}{\pi} \int_0^\infty t^2 \cos\left(\frac{t^3}{3} + xt\right) dt$$

- -Note that $\frac{d}{dt}\sin\left(\frac{t^3}{3} + xt\right) = (t^2 + x)\cos\left(\frac{t^3}{3} + xt\right)$.
- -Therefore,

$$-xAi(x) + \frac{d^2}{dx^2}Ai(x) = -\frac{1}{\pi} \int_0^{\infty} \frac{d}{dt} \sin\left(\frac{t^3}{3} + xt\right) dt = 0$$

Simple manipulation

$$\frac{2m_{\chi\chi}}{\hbar^2}q\mathcal{E}_s$$

The Schrödinger equation is written as

$$\left[\frac{d^2}{dx^2} - \frac{2m_{xx}}{\hbar^2}(q\mathcal{E}_S x - E)\right]\psi = \left[\frac{d^2}{dx^2} - \alpha^3\left(x - \frac{1}{q\mathcal{E}_S}E\right)\right]\psi = 0$$

– With a new variable, $\xi=\alpha\left(x-\frac{1}{q\varepsilon_s}E\right)$, it becomes $\left[\frac{d^2}{d\xi^2}-\xi\right]\psi=0$

$$\left[\frac{d^2}{d\xi^2} - \xi\right] \psi = 0$$

- -The solution is $\psi(x) \sim Ai(\xi) = Ai\left(\alpha\left(x \frac{1}{q\mathcal{E}_s}E\right)\right)$.
- -At x = 0, the wavefunction must vanish:

$$-\alpha \frac{1}{q \mathcal{E}_{S}} E_{j} = a_{j}$$
GIST Lecture

Zeros of the Airy function

$$a_0 \approx -2.3381$$
 $a_1 \approx -4.0879$

Eigenenergy

- Zeros are well approximated as $a_j \approx -\left[\frac{3\pi}{2}\left(j+\frac{3}{4}\right)\right]^{2/3}$.
 - -Then, the eigenenergy becomes

$$E_{j} = \frac{q\mathcal{E}_{s}}{\alpha} \left[\frac{3\pi}{2} \left(j + \frac{3}{4} \right) \right]^{2/3} = \left[\frac{3hq\mathcal{E}_{s}}{4\sqrt{2m_{\chi\chi}}} \left(j + \frac{3}{4} \right) \right]^{2/3}$$
 Taur, Eq. (4.46)

–There are two different $m_{\chi\chi}$ values: 0.91 m_0 (degeneracy of 2) and 0.19 m_0 (degeneracy of 4)

Thank you!