МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО

ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Г.ШУХОВА» (БГТУ им. В.Г.Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №3

Дисциплина: Теория цифровых автоматов

по теме Синтез и анализ комбинационных схем с одним

выходом с учетом неопределенностей

Выполнил: ст. группы ВТ-32

Воскобойников

Проверил: Рязанов Ю. Д.

Цель работы: научиться строить эффективные по быстродействию и затратам оборудования комбинационные схемы с учетом неопределенностей.

Задание

- 1. Составить таблицу истинности заданной частично определенной булевой функции (см. варианты заданий в таблице 2). Булева функция здесь задана двумя условиями (условие 1 и условие 2), зависящими от значений аргументов. Если на наборе аргументов условие 2 истинно, то значение функции на этом наборе не определено. Если же на наборе аргументов условие 2 ложно, то значение функции на этом наборе равно значению условия 1 на этом наборе аргументов. В условии зна- чение аргумента отождествляется с двоичной цифрой, а последова-тельность аргументов с двоичным числом. Для составления таблицы истинности рекомендуется написать программу
- 2. Решить задачу минимизации частично определенной булевой функции в классе дизьюнктивных нормальных форм.
- 3. Написать программу, строящую таблицу истинности булевой функции, полученной при выполнении п.
- 2 Сравнить полученную таблицу с таблицей истинности исходной частично определенной булевой
- 4. Применить факторизационный метод синтеза многоярусной ком- бинационной схемы в базисе И-ИЛИ-НЕ с двухвходовыми элементами И и ИЛИ по полученной при выполнении п. 2 минимальной дизьюнктивной нормальной форме булевой функции.
- 5. Решить задачу минимизации частично определенной булевой функции в классе конъюнктивных нормальных форм.
- 6. Написать программу, строящую таблицу истинности булевой функции, полученной при выполнении п.
- 5 Сравнить полученную таб- лицу с таблицей истинности исходной частично определенной булевой
- 7. Применить факторизационный метод синтеза многоярусной комбинационной схемы в базисе И-ИЛИ-НЕ с двухвходовыми элементами И и ИЛИ по полученной при выполнении п. 5 минимальной конъюнктивной нормальной форме булевой функции.
- 8. Написать программы, моделирующие работу схем, полученных в пунктах 4 и 7, на всех входных наборах и строящие таблицу истинности каждой схемы. Сравнить полученные таблицы истинности с таблицей истинности исходной частично определенной функции.
- 9. Сравнить схемы, построенные в лабораторных работах №1 и №3 по Квайну и по быстродействию.

1. Составить таблицу истинности заданной частично определенной булевой функции (см. варианты заданий в таблице 2). Булева функция здесь задана двумя условиями (условие 1 и условие 2), зависящими от значений аргументов. Если на наборе аргументов условие 2 истинно, то значение функции на этом наборе не определено. Если же на наборе аргументов условие 2 ложно, то значение функции на этом наборе равно значению условия 1 на этом наборе аргументов. В условии значение аргумента отождествляется с двоичной цифрой, а последова-тельность аргументов — с двоичным числом. Для составления таблицы истинности рекомендуется написать программу

X_1	x_2	X_3	X_{4}	X_5	$(x_4x_{5+} x_1x_2x_3)=0,5,8,10$	$(x_1x_2x_4)=1$	f
0	0	0	0	0	(00+000)=0,5,8,10	(000)=1	1
0	0	0	0	1	(01+000)=0,5,8,10	(000)=1	0
0	0	0	1	0	(10+000)_=0,5,8,10	(001)=1	-
0	0	0	1	1	(11+000)=0,5,8,10	(001)=1	_
0	0	1	0	0	(00+001)=0,5,8,10	(000)=1	0
0	0	1	0	1	(01+001)=0,5,8,10	(000)=1	0
0	0	1	1	0	(10+001)=0,5,8,10	(001)=1	-
0	0	1	1	1	(11+001)=0,5,8,10	(001)=1	-
0	1	0	0	0	(00+010)=0,5,8,10	(010)=1	0
0	1	0	0	1	(01+010)=0,5,8,10	(010)=1	0
0	1	0	1	0	(10+010)=0,5,8,10	(011)=1	0
0	1	0	1	1	(11+010)=0,5,8,10	(011)=1	1
0	1	1	0	0	(00+011)=0,5,8,10	(010)=1	0
0	1	1	0	1	(01+011)=0,5,8,10	(010)=1	0
0	1	1	1	0	(10+011)=0,5,8,10	(011)=1	1
0	1	1	1	1	(11+011)=0,5,8,10	(011)=1	0
1	0	0	0	0	(00+100)=0,5,8,10	(100)=1	0
1	0	0	0	1	(01+100)=0,5,8,10	(100)=1	1
1	0	0	1	0	(10+100)=0,5,8,10	(101)=1	0
1	0	0	1	1	(11+100)=0,5,8,10	(101)=1	0
1	0	1	0	0	(00+101)=0,5,8,10	(100)=1	1
1	0	1	0	1	(01+101)=0,5,8,10	(100)=1	0
1	0	1	1	0	(10+101)=0,5,8,10	(101)=1	0
1	0	1	1	1	(11+101)=0,5,8,10	(101)=1	1
1	1	0	0	0	(00+110)=0,5,8,10	(110)=1	0
1	1	0	0	1	(01+110)=0,5,8,10	(110)=1	0
1	1	0	1	0	(10+110)=0,5,8,10	(111)=1	1
1	1	0	1	1	(11+110)=0,5,8,10	(111)=1	0
1	1	1	0	0	(00+111)=0,5,8,10	(110)=1	0
1	1	1	0	1	(01+111)=0,5,8,10	(110)=1	1
1	1	1	1	0	(10+111)=0,5,8,10	(111)=1	0
1	1	1	1	1	(11+111)=0,5,8,10	(111)=1	1

2. Решить задачу минимизации частично определенной булевой функции в классе дизъюнктивных нормальных форм.

СДНФ:

V 11111					
00000+	00010+	00011+ 00110+ 10001 10100	00111+ 01011+ 01110+ 11010	10111+ 11101+	11111+
000-0	0001-+ 00-10+	00-11+ 0-011 0011-+ 0-110	-0111	1-111 111-1	
	00-1-				

	00000	10001	10100	01011	01110	11010	10111	11101	11111
10001		+							
10100			+						
11010						+			
000-0	+								
0-011				+					
0-110					+				
-0111							+		
1-111							+		+
111-1								+	+
00-1-									

- 3. Написать программу, строящую таблицу истинности булевой функции, полученной при выполнении п.
- 2 Сравнить полученную таблицу с таблицей истинности исходной частично определенной булевой

```
#include <iostream>
const int NotUsed = system("color F0");
int TableValue3(int *X)
    bool Value = X[1] \& \& X[2] \& \& X[3] \& \& X[5] | | !X[2] \& \& X[3] \& \& X[4] \& \& X[5] | |
!X[1] \& \& X[3] \& \& X[4] \& \& !X[5] | | !X[1] \& \& !X[3] \& \& X[4] \& \& X[5]
        X[1] \&\&!X[2] \&\&X[3] \&\&!X[4] \&\&!X[5] || X[1] \&\&!X[2] \&\&!X[3] \&\&!X[4] \&\&X[5];
    return Value;
}
int main(int argc, const char * argv[]) {
    int X[6];
    for (int i = 1; i < 6; i++)
        printf(" x%d|", i);
    printf(" F \n");
    for (X[1] = 0; X[1] < 2; X[1]++)
        for (X[2] = 0; X[2] < 2; X[2]++)
            for (X[3] = 0; X[3] < 2; X[3]++)
                 for (X[4] = 0; X[4] < 2; X[4]++)
                     for (X[5] = 0; X[5] < 2; X[5]++)
                         for (int i = 1; i < 6; i++)
```

```
printf(" %2d|", X[i]);
printf(" %2d ", TableValue6(X));

printf("\n");
}
return 0;
}
```

x1	x2	x3	x4	x5	F	f
0	0	0	0	0	1	1
0	0	0	0	11	0	0
0	0	0	1	0	1	-
0	0	0	1	1	1	-
0	0	11	0	0	0	0
0	0	11	0	11	0	0
0	0	1	1	0	1	-
0	0	11	11	1	1	-
0	11	0	0	0	0	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	11	0	11	11	1	1
0	11	11	0	0	0	0
0	1	1	0	1	0	0
0	1	1	1	0	1	1
0	11	11	11	1	0	0
1	0	0	0	0	0	0
1	0	0	0	1	1	1
11	0	0	1	0	0	0
1	0	0	11	1	0	0
1	0	1	0	0	1	1
1	0	1	0	1	0	0
1	0	11	11	0	0	0
1	0	1	11	1	1	1
1	1	0	0	0	0	0
1	11	0	0	11	0	0
1	11	0	11	0	1	1
1	1	0	1	1	0	0
1	1	11	0	0	0	0
11	11	11	0	1	1	1
1	1	1	1	0	0	0
1	1	1	1	1	1	1

частично определенная функция

4. Применить факторизационный метод синтеза многоярусной ком- бинационной схемы в базисе И-ИЛИ-НЕ с двухвходовыми элементами И и ИЛИ по полученной при выполнении п. 2 минимальной дизъюнктивной нормальной форме булевой функции.

		г —	1	T —	ı	_	1	_	1	_											
	\mathcal{X}_1	\mathcal{X}_1	x_2	x_2	x_3	x_3	x_4	X_4	x_5	x_5	z_1	z_2	<i>z</i> ₃	Z_4	<i>z</i> ₅	<i>z</i> ₆	Z ₇	<i>z</i> ₈	Z ₉	Z ₁₀	Z ₁₁
u_1	1*	0	1*	0	1*	0	0	0	1*	0	1	1	0	0	0	0	0	0	0	0	0
u_2	0	0	0	1*	1*	0	1*	0	1*	0	1	0	1	0	0	0	0	0	0	0	0
u_3	0	1*	0	0	1*	0	1*	0	0	1*	0	0	0	1	1	0	0	0	0	0	0
u_4	0	1*	0	0	0	1*	1*	0	1*	0	0	0	0	1	0	1	0	0	0	0	0
u_5	0	1*	0	1*	0	1*	0	0	0	1*	0	0	0	0	0	0	1	1	0	0	0
u_6	1*	0	1*	0	0	1*	1*	0	0	1*	0	1*	0	0	0	0	0	1	1	0	0
u_7	1*	0	0	1*	1*	0	0	1*	0	1*	0	0	0	0	1	0	0	0	0	1	0
u_8	1*	0	0	1*	0	1*	0	1*	1*	0	0	0	0	0	0	1	0	0	0	1	0
z_1	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
Z_2	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
z_3	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Z_4	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
z_5	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
z_6	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
<i>z</i> ₇	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<i>z</i> ₈	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Z9	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Z ₁₀	1*	0	0	1*	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Z_{11}	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	U	0	U

		211 1			1 0	0 (, ,	0 0	0 0	, 0	0 0	0 0	0 0	0 0		
	u_1	u_2	u_3	u_4	u_5	u_6	u_7	u_8	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
f	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
v_1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
v_2	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
v_3	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
v_4	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
v_5	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
v_6	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
v_7	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
v_8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

5. Решить задачу минимизации частично определенной булевой функции в классе конъюнктивных нормальных форм.

СКНФ:

$$(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee x_{5}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee x_{4} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee x_{4} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3} \vee \overline{x_{4}} \vee x_{5}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee x_{3} \vee \overline{x_{4}} \vee x_{5}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}} \vee \overline{x_{5}}) \wedge (\overline{x_{1}} \vee \overline{x_{2}} \vee$$

0	1	2	3	4	5
-	00001+	00011+	00111+	01111+	
	00010+	00101+	01101+	11011+	
	00100+	00110+	10011+	11110+	
	01000+	01001+	10101+	-	
	10000+	01010+	10110+		
		01100+	11001+		
		10010+	11100+		
		11000+			
	000-1+	00-11+	0-111+		
	0001-+	-0011+	1-011		
	00-01+	001-1+	1-110		
	0-001+	0-101+	110-1		
	00-10+	-0101	111-0		
	0-010	0011-+			
	-0010+	-0110+			
	001-0+	01-01+			
	0-100+	-1001+			
	0100-+	1010-			
	010-0	10-10+			
	01-00+	0110-+			
	-1000+	-1100+			
	100-0	1001-+			
	1-000	1100-+			
		11-00			
	001	0-1-1			
	00-1-				
	-001-				
	001				
	-0-10				
	001				
	0-10-				
	-100-				
	01-0-				
	-1-00				

	00001	00100	01000	10000	00101	01001	01010	01100	10010	11000	01101	10011	10101	10110	11001	11100	01111	11011	11110
0-010							+												
010.0																			
010-0			+				+												
100-0				+					+										
1-000				+						+									
-0101													+						
1010-													+						
11-00										+						+			+
1-011												+						+	
1-110														+					+
110-1															+				
111-0																+			+
00—1	+				+			+			+								
00-1-																			
-001-									+			+							
	+				+	+					+								
-0-10					+				+										
001		+			+	+													
0-10-		+						+											
-100-			+																
01-0-		+	+					+											
-1-00			+					+		+									
0-1-1					+						+						+		

Минимальная КНФ:

$$(\overline{x_1} \vee \overline{x_3} \vee x_4 \vee \overline{x_5}) \wedge (x_1 \vee \overline{x_2} \vee \overline{x_3} \vee \overline{x_5}) \wedge (\overline{x_2} \vee x_3 \vee \overline{x_4} \vee x_5) \wedge (x_1 \vee \overline{x_3} \vee x_4 \vee \overline{x_5}) \wedge (x_1 \vee x_2 \vee \overline{x_3} \vee x_5) \wedge (x_1 \vee x_2 \vee x_3 \vee \overline{x_5}) \wedge (x_1 \vee \overline{x_4} \vee \overline{x_5}) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee \overline{x_4} \vee \overline{x_5}) \wedge (\overline{x_1} \vee x_3 \vee x_5) \wedge (\overline{x_1} \vee x_5) \wedge (\overline{x_2} \vee x_5) \wedge (\overline{x_2} \vee x_5) \wedge (\overline{x_3} \vee x_5) \wedge$$

6. Написать программу, строящую таблицу истинности булевой функции, полученной при выполнении п.

```
5 Сравнить полученную таб- лицу с таблицей истинности исходной частично определенной булевой
```

```
#include <iostream>
const int NotUsed = system("color F0");
int TableValue6(int *X)
{
    bool Value =
    (!X[1]||!X[3]||X[4]||!X[5])&&(X[1]||!X[2]||!X[3]||!X[5])&&(!X[2]||X[3]||!X[4]||X[5])&&(X[1]||!X[3]||X[4]||X[5])&&(X[1]||X[3]||X[4]||X[5])&&(X[1]||X[3]||X[4]||X[5])&&(X[1]||X[2]||X[3]||X[4]||X[5])&&(!X[1]||X[2]||X[3]||X[5])&&(!X[1]||X[2]||X[3]||X[5]);
return Value;
}
int main(int argc, const char * argv[]) {
    int X[6];
```

						f
x1	x2	x3	x4	x5	F	
0	0	0	0	0	1	1
0	0	0	0	11	0	0
0	0	0	1	0	0	-
0	0	0	1	11	0	-
0	0	1	0	0	0	0
0	0	1	0	11	0	0
0	0	1	1	0	0	-
0	0	1	1	1	0	-
0	1	0	0	0	0	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	0	1	11	1	1
0	11	1	0	0	0	0
0	1	1	0	1	0	0
0	1	1	1	0	1	1
0	1	1	1	11	0	0
1	0	0	0	0	0	0
1	0	0	0	1	1	1
11	0	0	1	0	0	0
11	0	0	1	1	0	0
1	0	1	0	0	1	1
1	0	1	0	1	0	0
11	0	1	1	0	0	0
1	0	1	1	1	1	1
1	1	0	0	0	0	0
11	11	0	0	1	0	0
1	1	0	1	0	1	1
1	1	0	1	1	0	0
1	11	1	0	0	0	0
1	11	1	0	1	1	1
1	1	1	1	0	0	0
1	1	1	1	1	1	1

частично определенная функция

7. Применить факторизационный метод синтеза многоярусной комбинационной схемы в базисе И-ИЛИ-НЕ с двухвходовыми элементами И и ИЛИ по полученной при выполнении п. 5 минимальной конъюнктивной нормальной форме булевой функции.

	<i>x</i> ₁	$\frac{-}{x_1}$	x_2	$\overline{x_2}$	x_3	$\overline{x_3}$	x_4	$\overline{x_4}$	<i>X</i> ₅		z_1	z_2	z_3	z_4	z_5	<i>z</i> ₆	<i>z</i> ₇	z_8	Z_9	Z ₁₀	Z ₁₁	Z ₁₂
u_1	0	1*	0	0	0	1*	1*	0	0	1*	1	1	0	0	0	0	0	0	0	0	0	0
u_2	1*	0	0	1*	0	1*	0	0	0	1*	0	0	1	1	0	0	0	0	0	0	0	0
u_3	0	0	0	1*	1*	0	0	1*	1*	0	0	0	0	0	1	1	0	0	0	0	0	0
u_4	1*	0	0	0	0	1*	1*	0	1*	0	1	0	0	0	0	0	1	0	0	0	0	0
u_5	1*	0	0	0	1*		1*	0	0	1*	0	0	1	0	0	0	0	1	0	0	0	0
u_6	1*	0	1*	0	0	1*	0	0	1*	0	0	0	0	0	0	0	1	0	1	0	0	0
u_7	1*	0	1*	0	1*	0	0	0	0	1*	0	0	0	0	0	0	0	0	0	1	1	0
u_8	0	1	0	0	0	0	0	1*	1*	0	0	0	0	0	0	1	0	0	0	0	0	0
u_9	0	1	0	1*	1*	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
<i>u</i> ₁₀	0	0	1*	0	0	0	0	1	0	1*	0	0	0	0	0	0	0	0	0	1	0	0
u_{11}	0	1*	0	0	1*	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1
z_1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
z_2	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
z_3	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
z_4	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
<i>z</i> ₅	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Z ₆	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
z_7	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
<i>z</i> ₈	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
z_9	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Z_{10}	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
z_{11}	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
z_{12}	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	u	u_2	u_3	u_4	u_5	u_6	u_7	u_8	u_9	u_{10}	u_{11}	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9	v_1	v_{11}
f	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
v_1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
v_2	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
v_3	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
v_4	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
v_5	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
v_6	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
v_7	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
v_8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
v_9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
v_{10}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
v_{11}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

8. Написать программы, моделирующие работу схем, полученных в пунктах 4 и 7, на всех входных наборах и строящие таблицу истинности каждой схемы. Сравнить полученные таблицы истинности с таблицей истинности исходной частично определенной функции.

Исходный код:

```
bool FuncDNF(bool *x)
{
    bool z1 = x[2] && x[4],
             z2 = x[0] \&\& x[1],
             z3 = !x[1] \&\& x[3],
             z4 = !x[0] \&\& x[3],
             z5 = x[2] \&\& !x[4],
             z6 = !x[2] \&\& x[4],
             z7 = !x[0] \&\& !x[1],
             z8 = !x[2] \&\& !x[4],
             z9 = x[3] \&\& z2,
             z11 = x[0] \&\& !x[1],
             z10 = !x[3] && z11;
    bool u1 = z1 && z2,
             u2 = z1 \&\& z3,
             u3 = z4 \&\& z5,
             u4 = z4 \&\& z6,
             u5 = z7 \&\& z8,
             u6 = z8 \&\& z9,
             u7 = z5 \&\& z10,
             u8 = z6 \&\& z10;
```

```
bool y1 = u1 | | u2,
             y2 = u3 | | u4,
             y3 = u5 || u6,
             y4 = u7 | | u8,
             y5 = y1 | | y2,
             y6 = y3 | | y4;
   return y5|| y6;
bool FuncKNF(bool *x)
    bool z1 = !x[2] | | x[3],
             z2 = !x[0] | | !x[4],
             z3 = x[0] | | x[4],
             z4 = !x[1] | | !x[2],
             z5 = !x[1] | | x[2],
             z6 = !x[3] | | x[4],
             z7 = x[0] | | x[4],
    z8 = x[2] | | x[3],
    z9 = x[1] | | x[2],
    z10 = x[1] | | x[4],
    z11 = x[0] | | x[2],
    z12 = !x[0] | | x[2];
    bool u1 = z1 | | z2,
             u2 = z3 \mid \mid z4,
             u3 = z5 || z6,
             u4 = z1 | | z7,
             u5 = z3 \mid \mid z8,
             u6 = z7 | | z9,
             u7 = z10 \mid \mid z11,
             u8 = !x[0] | | z6,
             u9 = !x[0] | | z5,
             u10 = !x[3] | | z10,
             u11 = x[4] | | z12;
    bool y1 = u1 && u2,
             y2 = u3 \&\& u4,
             y3 = u5 \&\& u6,
             y4 = u7 \&\& u8,
             y5 = u9 \&\& u10,
             y6 = u11 \&\& y1,
             y7 = y2 \&\& y3,
             y8 = y4 \&\& y5,
             y9 = y6 \&\& y7;
    return y8 && y9;
}
```

x1	x2	x3	x4	x5	f(DI	NF) f(KNF)
0	0	0	0	0	1	1
0	0	0	0	1	0	0
0	0	0	1	0	1	0
0	0	0	1	1	1	0
0	0	1	0	0	0	0
0	0	11	0	1	0	0
0	0	1	1	0	1	0
0	0	1	1	11	1	0
0	1	0	0	0	0	0
0	1	0	0	1	0	0
0	1	0	1	0	0	0
0	1	0	1	1	1	1
0	1	1	0	0	0	0
0	1	1	0	1	0	0
0	1	1	1	0	1	1
0	11	1	11	11	0	0
1	0	0	0	0	0	0
1	0	0	0	1	1	1
11	0	0	1	0	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	1
1	0	1	0	1	0	0
1	0	1	1	0	0	0
1	0	1	1	1	1	1
1	1	0	0	0	0	0
1	1	0	0	1	0	0
1	1	0	1	0	1	1
1	1	0	1	1	0	0
1	1	1	0	0	0	0
1	1	1	0	1	1	1
1	1	1	1	0	0	0
1	1	1	1	1	1	1

9. Сравнить схемы, построенные в лабораторных работах №1 и №3 по Квайну и по быстродействию.

	Лаб 1		Лаб 3	
	Сложность по Квайну	Сложность по быстродействию	Сложность по Квайну	Сложность по быстродействию
ДНФ:	63	7	57	6
КНФ:	129	8	71	6