The Definite Integral

Section 5.2-5.3

Outline

- ▶ The Definite Integral
 - Definition
 - Properties
- ▶ The Fundamental Theorem of Calculus

Properties of the Definite Integral

- ▶ The Mean Value Theorem for Integrals:
- If f(x) is continuous on [a,b], then there is a number $c \in [a,b]$ such that

$$f(c) = \frac{1}{b-a} \int_a^b f(x) dx$$
 that is,
$$\int_a^b f(x) dx = f(c)(b-a)$$

Proof of the Mean Value Theorem for Integrals

- ▶ The Fundamental Theorem of Calculus gives the precise inverse relationship between the derivative and the integral.
- If f is a continuous function, consider the function $g(x) = \int_a^x f(t)dt$.

The Fundamental Theorem of Calculus, Part 1 If f is continuous on [a, b], then the function g defined by

$$g(x) = \int_{a}^{x} f(t) dt$$
 $a \le x \le b$

is continuous on [a, b] and differentiable on (a, b), and g'(x) = f(x).

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

Proof of the Fundamental Theorem of Calculus, Part 1.

Ex:
$$S(x) = \int_0^x S_{in}(\frac{\pi t^2}{2}) dt$$
 (Fresnel function). Find $S(x)$.

Ex:
$$f(x) = \int_{0}^{2} \int_{0}^{2} f(x) dx$$
 Find $f(x)$.

Ex:
$$f(x) = \int_{x}^{2} \int_{x}^{1} \int_{$$

Ex:
$$f(x) = \int_0^{\tan x} \sqrt{1+t^2} dt$$
. Find $f(x)$.

$$E_{x}: F_{(x)} = \int_{g(x)}^{h(x)} f(t) dt . F_{in} d F_{ix}$$

Ex:
$$f(x) = \int_{X^2}^{0} (\sqrt{x} + \sqrt{t}) g(t) dt$$
, where $g(t)$ is continuous.

Ex: Find
$$\lim_{x\to 0} \frac{\int_{\sin x}^{x} \int_{1-t^2} dt}{x^3}$$

$$Ex: f(x) = \int_{x}^{x} e^{-t^{2}} dt.$$

a) compute | im f(x).

x=>±00

b) compute f'(x). Find intervals of increase and intervals

of decreases.

of decreases.

c) compute f'(x). Discuss concavity of y = f(x).

The Fundamental Theorem of Calculus, Part 2 If f is continuous on [a, b], then

$$\int_a^b f(x) \, dx = F(b) - F(a)$$

where F is any antiderivative of f, that is, a function such that F' = f.

$$\int_{a}^{b} F'(x)dx = F(b) - F(a)$$

Proof of the Fundamental Theorem of Calculus, Part 2.

Ex: Find
$$\int_{0}^{\frac{\pi}{z}} \sin x \, dx$$

Ex: Find
$$\int_{1}^{3} e^{x} dx$$

Ex: Find
$$\int_{1}^{2} \frac{1}{x^{2}} dx$$

Ex:
$$g(x) = \int_0^x f(t) dt$$
, where $f(t) = \begin{cases} 1, \text{ for } t < 0 \\ t+1, \text{ for } 0 \le t < 2 \end{cases}$
Write $g(x)$ as a piecewised defined $\frac{1}{t}$, for $t \ge 2$
function.

The Fundamental Theorem of Calculus Suppose f is continuous on [a, b].

- **1.** If $g(x) = \int_{a}^{x} f(t) dt$, then g'(x) = f(x).
- **2.** $\int_a^b f(x) dx = F(b) F(a)$, where F is any antiderivative of f, that is, F' = f.

Review

- What is the Riemann sum of a function f(x) from a to b? What is the definite integral of a function f(x) from a to b? State the precise definition of the limit of the Riemann sum.
- Review the properties of definite integrals.
- State the Fundamental Theorem of Calculus.