ALGEBRA Y GEOMETRIA TRABAJO PRACTICO 2 MATRICES

1. Sea
$$A = \begin{bmatrix} 2 & -2 \\ 1 & 1 \\ -3 & 4 \end{bmatrix}$$

- a) Construir una matriz C de dos filas que sean combinación lineal de las filas de A según los escalares 2, -1 y 3 para la primer fila y 3, 0 y 2 para la segunda fila.
- b) Construir una matriz D de dos columnas que sean combinación lineal de las columnas de A según los escalares 5 y 3 para la primer columna y los escalares -1 y 1 para la segunda.
- 2. Sea la matriz $A = (\alpha_1, \alpha_2, \alpha_3)$, donde α_1 , α_2 y α_3 son las filas de A. Expresar como combinación lineal de las filas de A las siguientes matrices fila:

i)
$$2\alpha_1 + \alpha_3$$

ii)
$$\alpha_2 - \alpha_3$$

iii)
$$2\alpha$$

$$iv)$$
 α_3

3. Efectuar los siguientes productos:

a)
$$\begin{bmatrix} 1 & 2 & -3 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 4 & 5 & 6 \\ 1 & 0 & 2 & 1 \\ 3 & 4 & 1 & 0 \end{bmatrix}$$

$$b) \qquad \begin{bmatrix} 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}$$

c)
$$\begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & -2 & 3 \end{bmatrix}$$

$$d) \qquad \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} 2 & -6 \\ -1 & 3 \end{bmatrix}$$

- 4. Sean $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 \\ -1 & -2 \end{bmatrix}$ y $M = \begin{bmatrix} 2 & -6 \\ -1 & 3 \end{bmatrix}$. Verificar que AM = BM.

 Observar que no vale la ley de cancelación puesto que $A \neq B$.
- 5. Sean $B = (\beta_1, \beta_2)$ y $C = (\gamma_1, \gamma_2, \gamma_3)$, donde los β_i y γ_j son las filas de B y C respectivamente, con $\gamma_1 = 2\beta_1 + \beta_2$, $\gamma_2 = \beta_1 3\beta_2$ y $\gamma_3 = 5\beta_1$. Dar una matriz A tal que AB = C.

6. Expresar como producto de matrices:

a)
$$2\begin{bmatrix} 1\\2 \end{bmatrix} + 3\begin{bmatrix} 1\\5 \end{bmatrix} - 8\begin{bmatrix} 2\\-1 \end{bmatrix}$$

b) $1\begin{bmatrix} 1\\2 \end{bmatrix} - 3\begin{bmatrix} 2\\0 \end{bmatrix} - 3\begin{bmatrix} 2\\0 \end{bmatrix} + 4\begin{bmatrix} 2\\1 \end{bmatrix} - 1$

7. Dar las matrices elementales 3×3 correspondientes a cada una de las siguientes operaciones elementales de filas:

i)
$$e = L_{1.3}$$

$$ii) \qquad e = -3L_2$$

$$iii) \quad e = L_1 - L_2$$

8. Sea $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 2 & 1 \end{bmatrix}$. En cada caso, dar la matriz elemental E tal que EA = B.

$$a) \qquad B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ 0 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 2 & 1 \end{bmatrix}$$

$$c) \qquad B = \begin{bmatrix} 1 & 2 \\ 0 & 3 \\ 2 & 1 \end{bmatrix}$$

$$d) \qquad B = \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 1 \end{bmatrix}$$

9. Encontrar una matriz P tal que PA = R, donde R es la reducida por filas de A, en los siguientes casos:

$$i) \qquad A = \begin{bmatrix} 1 & 3 & -1 \\ 2 & 2 & 0 \end{bmatrix}$$

$$ii) \begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

10. En cada uno de los siguientes casos verificar si A es inversible y cuando lo sea hallar su inversa.

$$i) \qquad A = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$$

ii)
$$A = \begin{bmatrix} 5 & 8 \\ 1 & 2 \end{bmatrix}$$
iii)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$
iv)
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$
v)
$$A = \begin{bmatrix} 4 & 3 & 2 & 0 \\ 5 & 4 & 3 & 0 \\ -2 & -2 & -1 & 0 \\ 11 & 6 & 4 & 1 \end{bmatrix}$$

11. Encontrar una matriz
$$B$$
 tal que $AB = C$, cuando $A = \begin{bmatrix} 2 & 3 & -1 \\ 0 & 3 & 0 \\ 0 & 3 & -1 \end{bmatrix}$ y $C = \begin{bmatrix} 11 & 1 \\ 2 & 0 \\ 1 & 2 \end{bmatrix}$.

12. Dadas
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$
, $B^{-1} = \begin{bmatrix} 5 & 2 \\ 9 & 4 \end{bmatrix}$ y $C = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$, obtener $(ABC)^{-1}$.

13. Si
$$(A+B)^{-1} = \begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$$
 y $A-B = \begin{bmatrix} 5 & 8 \\ 3 & 5 \end{bmatrix}$, hallar $A+B$, $A y B$.

14. Dadas
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
 y $C = \begin{bmatrix} 3 & 1 \\ -1 & 0 \end{bmatrix}$, hallar una matriz B tal que $(A+B)C = B(A+C)$.

15. Sean A y B matrices de tres filas tales que:

$$a) \qquad A \xrightarrow{L_{1,2}} B$$

$$b) \qquad A \xrightarrow{3L_2} B$$

a)
$$A \xrightarrow{L_{1,2}} B$$

b) $A \xrightarrow{3L_2} B$
c) $A \xrightarrow{L_2+2L_1} B$

En cada caso expresar las filas de B como combinación lineal de las filas de A.

16. Sean A, B y C matrices de tres filas tales que: $A \xrightarrow{2L_3} B \xrightarrow{L_2-L_1} C$. Expresar las filas de A como combinación lineal de las filas de C.