Interpretable Vision-Language-Action Models via Skill Conditioning

Brandon Y. Yang* Yen-Ling Kuo*

*University of Virginia

{branyang, ylkuo}@virginia.edu

SCHOOL of ENGINEERING & APPLIED SCIENCE

Vision-Language-Action (VLA) Models

SkillVLA (Skill-driven Vision-Language-Action Model)

SkillVLA improves *long-horizon language-conditioned robotic policies* and VLA *interpretability* by **grounding** action outputs with synthesized *subgoal instructions* and a learned *skill library*.

Task Instruction: put eggplant in basket

Subgoal: *Move to the eggplant.*Skill: *move to*

Subgoal: *Move the eggplant to the basket.* Skill: *move to*

Subgoal: *Grab the eggplant.* Skill: *grasping*

Subgoal: *Drop the eggplant.*Skill: *release*

Skills are latent variables, meaning we don't have textual captions for them. The demo illustrates how incorporating skill enhances interpretability.

Skill Predictor and Vector Quantization

Skill Predictor:

- Receives language and observation as input
- Outputs a skill code
- Implemented as either Causal Transformer or MLP

Vector Quantization (VQ):

- Receives a skill code
- Outputs the closest *Codebook* entry from the *skill code*
- Codebook trained End-to-end

SkillVLA Training

- Load Pretrained weights from OpenVLA:
 - X Language Encoder
 - **T**Observation Encoder
 - XLLM Backbone
- Freeze:
 - **Language Encoder
 - Street Observation Encoder
- Train:
 - Skill Selector components
- Finetune:
 - 🔥 LoRA LLM Backbone

Preliminary Results

WidowX+Bridge Evaluation Setup	Policy	Put Spoon on Towel	
		Grasp Spoon	Success
SIMPLER Eval (Visual Matching) SIMPLER Eval (Visual Matching)	OpenVLA SkillVLA	0.041 0.270	0.000 0.030

Table 1: Performance comparison between OpenVLA and SkillVLA on the task of putting a spoon on a towel under the SIMPLER Eval (Visual Matching) setup. We report final success rate ("Success") as well as partial success rate ("Grasp Spoon").

Future work: **SkillVLA** + Diffusion Policy Head

Use Diffusion Policy *conditioned* on selected skill to generate action.

Pros: More clear that the predicted action is *grounded* on the selected skill.

Cons: Not trivial to implement, and need additional loss functions.