Detection of gender bias in Hate Speech Classifier

Presented By:

Group 11
Archana Kumari - 1906011
Priyanshu Raj - 1906012
Garge Archana Atul - 1906124

Under Guidance Of : Dr Jyoti Prakash Singh

29 April, 2022

NIT Patna 1 / 24

Fairness And Bias

- Fairness: Absence of any prejudice or favoritism toward an individual or a group based on their inherent or acquired characteristics.
- Bias: When scientific or technological decisions are based on a narrow set of systemic, structural or social concept and norms, the resulting technology can privilege certain groups and harm others

NIT Patna 2 / 24

Objective

- Identification of gender bias in textual hate speech
- Preprocessing of data to metigate gender bias
- Improve fairness in data

NIT Patna 3 / 24

Problems We Are Addressing

- Gender bias in hate speech
- Pre-trained embeddings exaggerates bias

NIT Patna 4 / 24

Related works

Table 1: Some of the potential work

Authors	aim	Method Used	models
[Park et al., 2018] Park, Ji Ho and Shin, Jamin and Fung, Pascale	Reducing Gender	Debiased Word	CNN, GRU,
	Bias in Abusive	Embeddings	alpha-GRU
	Language Detection	(DE), Gender	
		Swap (GS), Bias	
		fine-tuning (FT)	
Bolukbasi et al., 2016 Bolukbasi, Tolga and Chang, Kai-Wei and Zou, James Y and Saligrama, Venkatesh and Kalai, Adam T	De-bias Gender	Gender Subspace,	Hard De-Biasing
	Stereotype in Word-	cosine similarity,	(neutralize and
	Embedding	w2vNEWS em-	equalize), Soft
		bedding	Bias Correction

NIT Patna 5 / 24

Our Approach

Data Gathering

- manual labeling of hate speech dataset in three classes
 - 0 for male
 - 1 for female
 - 2 for Neutral

Analysis using

- Machine Learning Algorithms
- Deep Learning Algorithms

NIT Patna 6 / 24

Dataset before labeling

	created_at	id	id_str	text	truncated	entities/hashtags/0/text	entities/hashtags/0/indices/0	entitie:
(Mon Mar 02 10:22:18 +0000 2015	5.72341E+17	5.723410e+17	Sassy? More like femme bots than killer blo	FALSE	mkr		
	Mon Mar 02 10:36:01 +0000 2015	5.72345E+17	5.723450e+17	I've had better looking shits than these two! 	FALSE	MKR2015		
2	Mon Mar 02 10:14:29 +0000 2015	5.72339E+17	5.723390e+17	The girls can cook for me anytime. Just not ho	FALSE	MKR		
:	Sun Mar 01 02:05:37 +0000 2015	5.71854E+17	5.718540e+17	The face of very ugly promo girls ! Faces like	FALSE	mkr		
4	Mon Mar 02 10:39:21 +0000 2015	5.72345E+17	5.723450e+17	@mykitchenrules Elegant and beautiful?Cheap an	FALSE	mkr		
	rows × 661 colu	mns						

Figure 1: Initial Dataset

NIT Patna 7 / 24

Dataset after labeling

	id	text	Garge Archana Atul	Archana Kumari	Priyanshu Raj	Final
0		Sassy? More like femme bots than killer blo		1.0		1.0
1	2	I've had better looking shits than these two!		1.0	2	1.0
2	3	The girls can cook for me anytime. Just not ho		1.0	2	1.0
3	4	The face of very ugly promo girls! Faces like		1.0		1.0
4	5	@mykitchenrules Elegant and beautiful?Cheap an		1.0		1.0

Figure 2: Final Dataset

NIT Patna 8 / 24

New Data-set

Table 2: The detailed of data samples for each of the classes.

Text Categories	No. of Text per class
Target to Male	83
Target to Female	1539
Not target any gender	1041
Total No. of Data	2663

NIT Patna 9 / 24

Reports of ML Algorithms

ML Algorithms	class	precision	recall	f1-score
SVM (linear)	0	0	0	0
	1	0.85	0.83	0.84
	2	0.73	0.80	0.76
SVM (poly)	0	0	0	0
	1	0.79	0.86	0.83
	2	0.74	0.70	0.72
SVM (rbf)	0	0	0	0
	1	0.83	0.80	0.83
	2	0.71	0.83	0.76
SVM (rbf)	0	0	0	0
	1	0.83	0.80	0.83
	2	0.71	0.83	0.76

NIT Patna 10 / 24

Reports of ML Algorithms

ML Algorithms	class	precision	recall	f1-score
Logistic Regression	0	0	0	0
	1	0.83	0.84	0.83
	2	0.73	0.77	0.75
Ada Boosting	0	0.20	0.09	0.13
	1	0.86	0.69	0.77
	2	0.63	0.83	0.72
XGB Boosting	0	0.67	0.09	0.16
	1	0.86	0.80	0.83
	2	0.71	0.83	0.76
Gradient Boosting	0	0.22	0.09	0.13
	1	0.86	0.80	0.83
	2	0.72	0.82	0.77

NIT Patna 11 / 24

Reports of Deep Learning Models

Models	class	precision	recall	f1-score
Simple RNN	0	0.07	0.06	0.06
	1	0.74	0.82	0.78
	2	0.66	0.57	0.61
GRU	0	0	0	0
	1	0.81	0.81	0.81
	2	0.68	0.74	0.71
CNN	0	0	0	0
	1	0.83	0.78	0.80
	2	0.67	0.78	0.72

NIT Patna 12 / 24

Definitions Of Fairness

- Statistical Parity
- Overall Accuracy Equality
- Conditional Procedure Accuracy

NIT Patna 13 / 24

Fairness Calculation for Deep learning Models

Models	Statistic Parity
Simple RNN	0.07
GRU	0.197
CNN	0.349

NIT Patna 14 / 24

Overall Accuracy for Deep Learning models

the proportion of cases misclassified difference

Models	Difference
Simple RNN	0.561
GRU	0.100
CNN	0.035

NIT Patna 15 / 24

Conditional Procedure Accuracy for Deep Learning models

in terms of True Positive Rate and False Positive Rate

Models	TP diff	FP diff
Simple RNN	0.972	0
GRU	0.828	0.649
CNN	0.794	0

NIT Patna 16 / 24

Method we used for debiasing

- modifying the actual vector-representations of words
- plotting words in dataset vector distance from 'male' and 'female' word
- minimising distance of words from 'male' and 'female' word

NIT Patna 17 / 24

Methodology

Figure 3: Workflow

NIT Patna 18 / 24

Plot of all words

Figure 4: all words plotted wrt. 'male' and 'female' word

NIT Patna 19 / 24

Plot of all words

Figure 5: after shifting all words on x equal to y axis

NIT Patna 20 / 24

Results After shifting

Models	class	precision	recall	f1-score
Simple RNN	0	0.08	0.06	0.07
	1	0.70	0.81	0.75
	2	0.64	0.50	0.56
GRU	0	0	0	0
	1	0.77	0.77	0.77
	2	0.65	0.70	0.67
CNN	0	0	0	0
	1	0.58	1	0.73
	2	0	0	0

NIT Patna 21 / 24

Future Scope

- Refinement of modification vector for better fairness score
- POS minimise the dependence of adjectives and verbs on subjects

NIT Patna 22 / 24

References

Advances in neural information processing systems, 29:4349–4357.

Dowle I II

Park, J. H., Shin, J., and Fung, P. (2018). Reducing gender bias in abusive language detection. arXiv preprint arXiv:1808.07231.

NIT Patna 23 / 24

Thank You

NIT Patna 24 / 24