Cancer phylogenetics using single-cell RNA-seq data

Jiří Moravec¹, Rob Lanfear², David Spector³, Sarah Diermeier¹ and Alex Gavryushkin¹

Australian National University

J. M.

scRNA-seq is exciting!

Like scDNA-seq:

- guranteed single origin of DNA
- we can detect SNVs

But better!

- expression levels are commonly used
- expression levels are influenced by epigenetics
- we can detect CNVs

J. M. 2/2

Experiment design

J. M. 3/2

Data:

The expression levels for 43k genes varies greatly!

Sample	Cells	UMI	UMI/Cell	density	
TI	713	428k	600	0.66 %	
T2	2777	69k	25	0.052 %	
T3	810	652k	805	1 %	
CTC1	3108	129k	41	0.08 %	
CTC2	8275	28k	3	0.005 %	
total:	15683	1.3M	83	0.11 %	

Missing data are integral part of scRNAseq problem!

J. M. 4/2

Workflow

SNV:

Expression:

J. M. 5/2

scRNAseq

J. M. 6/2

Trees

- Expression and SNV
- Maximum Likelihood method using IQtree
- Progressive filtering to remove missing data
- filtered datasets: 20%, 50% and 90% data density
- running time for IQtree on the 20% expr: 6 hours

J. M. 7/2

Expression 20% density

J. M. 8/2

Expression 50% density

J. M. 9

Expression 90% density

J. M. 10

SNV 20% density

J. M. 11/21

SNV 20% density

J. M. 12

SNV 50% density

J. M. 13,

SNV 90% density

J. M. 14/

Conclusion

- Expression works well!
- SNV seems to fail.
- Statistical support for these trees is deceivingly high
- Bayesian analysis required, but datasets are too big or missing samples

New filtering approach

- Data reduced to 58 sequences:
 - 20 sequences for T1 and T3
 - 6 sequences for T2, CTC1 and CTC2
- dataset filtered to:
 - 10% density (full dataset)
 - 50%
 - 90%
- Bayesian analysis using BEAST

J. M. 16/2

SNV 10% data density tree from Bayesian analysis

J. M. 17/21

SNV 50% data density tree from Bayesian analysis

J. M. 18/2

SNV 90% data density tree from Bayesian analysis

J. M. 19/

Conclusion

- scRNA-seq does contain phylogenetic signal!
- decent phylogeny can be constructed from both expression and SNVs
- a lot of space for improvement: scRNA-seq callers and error models

J. M. 20/2

Acknowledgment

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT HĪKINA WHAKATUTUKI

HIKINA WHAKATUTUK

J. M. 21/2

Supplementary materials

J. M. 1/

Boxplot of expression counts

J. M. 2,

Log-normalization

J. M. 3/

Scaling: $\mu = 0$, $\sigma = 1$

J. M. 4

Normality test

Discretization

Problem: Divide expression into groups.

Possible solutions:

- Centering around:
 - 0
 - mean
 - modus
- Intervals:
 - symetric
 - quantiles
 - HDI

J. M. 9/14

Discretization

Problem: Divide expression into groups.

Possible solutions:

- Centering around:
 - 0
 - mean
 - modus
- Intervals:
 - symetric
 - quantiles
 - HDI

J. M. 10/1

Filtering data

- Calculate sums of columns and rows (colsum, rowsum)
- Find smallest colsum/rowsum
- Substract the least represented columns/rows from the rowsum/colsum
- Remove the columns/rows from the matrix

J. M. 11/14

Filtering data

- Calculate sums of columns and rows (colsum, rowsum)
- Find smallest colsum/rowsum
- Substract the least represented columns/rows from the rowsum/colsum
- Remove the columns/rows from the matrix

J. M. 12/14

Filtering data

- Calculate sums of columns and rows (colsum, rowsum)
- Find smallest colsum/rowsum
- Substract the least represented columns/rows from the rowsum/colsum
- Remove the columns/rows from the matrix

J. M. 13/14

Bootstrap and posterior scores:

		Matrix density 0.2 0.5 0.9		
Bootstrap	Expression SNV		77.36 70.99	
Posterior	SNV	53	54	24

Statistical significance:

- Bootstrap > 70
- Posterior > 95

J. M. 14/14