- 1. Sort the purmutation
- 2. Bus dilemma
- Smallest xor XOR PHME
- - Jaxinum positivity.

## Q. Smallest xor

Gaven A&B. Find X





1. Take the serbit from test side.

If SHII some bit one 14t

=> take the unset bits from the right side.



A = 0 0 0 0 1 0 0 
$$\times$$
 = 63  $\times$  for (i=30; i=0; i--)  $\times$  If (imbit is set in A 44 970)  $\times$  Set imbit in your answer for (i=0; i<31; i+t)

If ( ith bit is unso in A ff 970)

Set jim bit in your answer

Telum ans

Q. Maximum positivity

Gruch Arr. Romm maximum size subcomay

containing all non-negotive numbers.

Curred

for ( i=0; i<n; i+t)

(2)

It ( avr ci) ≥ 0 ) curret

cu c curred

If ( curr == ars)

Conding point = i

Starbing point = i-ans+1

return subarray



## Q Bus dilemma















max positive 
$$+ x \le B$$

$$x \le B - \max positive$$

Q Given Array.



(nood value of 
$$= 14+14=28$$

(2,5)

(2,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)

(3,5)



Prime from 1 to 185)

$$A \times 10^{5}$$

$$P_{1} \times P_{2} \rightarrow 10^{0}$$

$$P_{1} \times P_{2} \rightarrow 10^{0}$$

$$P_{1} \times P_{2} \rightarrow 10^{0}$$

$$P_{2} \times P_{3} \rightarrow 10^{0}$$

$$P_{3} \times P_{2} \rightarrow 10^{0}$$

$$P_{3} \times P_{2} \rightarrow 10^{0}$$

$$P_{4} \times P_{2} \rightarrow 10^{0}$$

$$P_{3} \times P_{2} \rightarrow 10^{0}$$

$$P_{4} \times P_{2} \rightarrow 10^{0}$$

$$P_{5} \times P_{2} \rightarrow 10^{0}$$

$$P_{6} \times P_{2} \rightarrow 10^{0}$$

$$P_{7} \times P_{2} \rightarrow 10^{0}$$

greator ( JN )

O. Permytation is given. You can swap Game color only.

Find max no of color needed,

$$A = [1, 4, 2, 3]$$
 $[1, 2, 4]$ 
 $[1, 2, 3, 4]$ 

$$A = \begin{bmatrix} 1, 5, 2, 4, 3 \end{bmatrix}$$

$$\begin{bmatrix} 1, 2, 5, 4, 3 \end{bmatrix}$$

$$\begin{bmatrix} 1, 2, 3, 4, 5 \end{bmatrix}$$

$$Ar = \begin{bmatrix} 2 & 3 & 4 & 5 & 6 & 7 & 9 & 9 & 10 \\ 6 & 5 & 4 & 3 & 9 & 7 & 8 & 10 & 2 \end{bmatrix}$$

ansiy

ans: no of cycles.





A can't have 2 prime Jactors in zangc 10 to 10 9 210

100 more than I prime factor >10 2 × 2×5×5

アルイングメ ー