DARING研究背景与意义

Predicted Graph (Chain)	B	$^{\otimes}$	\bigcirc B	\bigcirc	\bigcirc B	B	\bigcirc B	B	$^{\odot}$	\bigcirc B	B	₿
	A C	A-C	A-C	A ©	A-C	A+C	A -©	A ©	A-C	A C	A C	A+©
Reconstruction Loss	6.00	6.97	6.17	6.17	6.96	6.33	6.16	6.80	6.33	7.00	5.65	7.00
Residuals Mutually Independent?	✓			✓				✓				
Predicted Graph (Fork)	B	B	B	B	B	B	B	B	B	B	B	<u>B</u>
	A C	A-C	A-C	A C	A-C	A+C	A-C	A C	A •©	A C	(A) (C)	A+C
Reconstruction Loss	1.67	2.17	1.83	1.67	2.17	1.83	1.83	2.00	1.83	2.33	1.78	2.33
Residuals Mutually Independent?								✓				
Predicted Graph (Collider)	B	B	B	B	B	B	B	B	B	B	B	B)
	A C	A-C	A-C	A C	A-C	A+C	A-C	A C	A-C	A C	A C	A+©
Reconstruction Loss	1.89	2.00	2.22	1.89	2.00	2.22	2.22	1.67	2.22	1.83	2.11	1.83
Residuals Mutually Independent?											✓	

口 数据生成机制:

传统可微CD学到 的loss最小的结果

ground truth

- 链式: $A = \epsilon_A(\sim \mathcal{N}(0,1)), B = A + \epsilon_B(\sim \mathcal{N}(0,4)), C = B/5 + \epsilon_C(\sim \mathcal{N}(0,1))$
- 叉式: $B = \epsilon_B(\sim \mathcal{U}(-2,2)), A = B/2 + \epsilon_A(\sim \mathcal{U}(-1,1)), C = B/2 + \epsilon_C(\sim \mathcal{U}(-1,1))$
- **对撞:** $A = \epsilon_A(\sim \mathcal{N}(0,1)), C = \epsilon_C(\sim \mathcal{N}(0,1)), B = A/3 + C/3 + \epsilon_B(\sim \mathcal{N}(0,1/9))$

传统可微因果发现过拟合噪声,导致残差之间存在依赖性,偏离真实因果图

[Liu F, Ma W, Zhang A, et al. Discovering Dynamic Causal Space for DAG Structure Learning[C]. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2023.]

DARING Pipeline

DARING增加残差独立性约束,通过对抗学习优化两套参数

[Liu F, Ma W, Zhang A, et al. Discovering Dynamic Causal Space for DAG Structure Learning[C]. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2023.]

DARING模型

口 残差独立性度量:

> 双变量独立性:

LEMMA 3.2 (DAUDIN [3]). X and Y are independent if and only if for all functions $h \in L_X^2$, $g \in L_Y^2$,

$$Cov[h(X), q(Y)] = 0, (6)$$

where

$$L_X^2 = \left\{ h(X) \mid \mathbb{E}\left[h(X)^2\right] < \infty \right\},\$$

$$L_Y^2 = \left\{ g(Y) \mid \mathbb{E}\left[g(Y)^2\right] < \infty \right\},$$
(7)

are square summable functions on X and Y.

> 多变量独立性:

THEOREM 3.3. Let $R = \{R_i\}_{i=1}^d$ be a set of random variables and $R_{-i} = \{R_1, ..., R_{i-1}, R_{i+1}, ..., R_d\}$. All variables of R are mutually independent if and only if $\forall h_i \in L_{R_{-i}}^2, \forall g_i \in L_{R_i}^2, i \in \{1, ..., d\}$,

$$Cov[h_i(R_{-i}), g_i(R_i)]| = 0.$$
 (8)

DARING定理证明

THEOREM. Let $R = \{R_i\}_{i=1}^d$ be a set of random variables and $R_{-i} = \{R_1, ..., R_{i-1}, R_{i+1}, ..., R_d\}$. All variables of R are mutually independent if and only if $\forall h_i \in L^2_{R_{-i}}$, $\forall g_i \in L^2_{R_i}$, $i \in \{1, ..., d\}$,

$$Cov[h_i(R_{-i}), g_i(R_i)]| = 0.$$
 (12)

Similar with Equation 7, $L_{R_{-i}}^2$ and $L_{R_i}^2$ are the spaces of square summable functions on R_{-i} and R_i respectively.

PROOF. On the basis of Lemma 3.1, $\forall i$, given the condition

$$Cov[h_i(R_{-i}) \cdot g_i(R_i)] = 0, \quad \forall h_i \in L^2_{R_{-i}}, g_i \in L^2_{R_i},$$

DARING定理证明

we have $R_i \perp R_{-i}$, i.e.,

$$P(R) = P(R_i) \cdot P(R_{-i}).$$

Integrate the above function over $R_1, ..., R_{i-1}$, we have

$$P(R_i, ..., R_d) = P(R_i) \cdot P(R_{i+1}, ..., R_d).$$

Hence,

$$P(R) = P(R_1)P(R_2, R_3, ..., R_d)$$

 $P(R) = P(R_1)P(R_2)P(R_3, ..., R_d)$
 $-...$

$$=\prod_{i=1}^d P(R_i).$$

As a result, *R* are mutually independent.

证明:以上过程反向,能推出 $P(R)=P(R_i)P(R_{-i})$,即 $R_i\perp R_{-i}$,再由引理即可。

DARING模型

口 提出衡量独立性的统计量:

 h_i 和 g_i 可以通过NN拟合,但在数据有限情况下,参数空间巨大,容易过拟合。

为防止过拟合,令 $g_i(R_i) = R_i$,减少参数空间 为适应连续优化框架,用2-范数替换1-范数

$$\mathcal{L}_{\mathrm{M}}(R,\phi) = \sum_{i=1}^{d} \left\| \frac{\mathrm{Cov}[\mathrm{MLP}(R_{-i},\phi_{i}),R_{i}]}{\sqrt{\mathrm{Var}[\mathrm{MLP}(R_{-i},\phi_{i})]} \cdot \sqrt{\mathrm{Var}[R_{i}]}} \right\|_{2}^{2}$$

残差独立性统计量

DARING提出衡量残差独立性的统计量,优化可微因果发现学习过程

DARING模型

口 优化问题:

$$\min_{G,\theta} \max_{\phi} \mathcal{L}(\mathbf{X}, G, \theta) = \mathcal{L}_{\text{rec}}(G, \mathbf{X}, \theta) + \alpha \mathcal{L}_{\text{DAG}}(G)$$

生成器 判别器

+
$$\beta \mathcal{L}_{\text{sparse}}(G) + \gamma \mathcal{L}_{M}(X - f(X, \theta), \phi)$$

- ightharpoonup 重构项: $\mathcal{L}_{rec}(G, \mathbf{X}, \theta)$
- \triangleright 残差独立性约束: $\mathcal{L}_{\mathrm{M}}(X-f(X,\theta),\phi)$

$$\mathcal{L}_{\mathrm{M}}(R,\phi) = \sum_{i=1}^{d} \left\| \frac{\mathrm{Cov}[\mathrm{MLP}(R_{-i},\phi_{i}),R_{i}]}{\sqrt{\mathrm{Var}[\mathrm{MLP}(R_{-i},\phi_{i})]} \cdot \sqrt{\mathrm{Var}[R_{i}]}} \right\|_{2}^{2}$$

DAG约束:
$$\mathcal{L}_{DAG} = \alpha_t h(\mathcal{G}) + \frac{\mu_t}{2} |h(\mathcal{G})|^2$$

▶ 稀疏性约束: L1, L2正则化

通过对抗学习优化生成器和判别器参数

DARING算法

Algorithm 1 Causal Discovery with DARING

Input: $X = \left\{ \mathbf{x}^{(k)} \right\}_{k=1}^{n}$ i.i.d. sampled from P(X) and threshold Δ

Output: Causal graph G

Initial G, parameters of causality fitting model θ ($\theta_1, ..., \theta_d$) and

parameters of independence test model ϕ (ϕ_1 , ..., ϕ_d)

Pretrain G and θ to minimize $\mathcal{L}^{(0)}$ for τ_0 steps 为了更好地收敛,先预训练几个epoch

while not arriving maximal iteration or triggering termination conditions do

for t = 1 to τ_1 **do**

Fix G, θ and calculate $\mathcal{L}_{\mathrm{M}}(R,\phi)$ in Equation 10

Update ϕ to maximize $\mathcal{L}_{M}(R,\phi)$

end for

for t = 1 to τ_2 do

Fix ϕ and calculate total \mathcal{L} in Equation 11

Update G, θ to minimize \mathcal{L}

end for

end while

Prune the edges less than Δ of G

return: G

在给定DAG拟合模型下,学习Ø

$$\max_{\phi} \mathcal{L}_{M}(R, \phi) = \sum_{i=1}^{d} \left\| \frac{\text{Cov}[\text{MLP}(R_{-i}, \phi_{i}), R_{i}]}{\sqrt{\text{Var}[\text{MLP}(R_{-i}, \phi_{i})]} \cdot \sqrt{\text{Var}[R_{i}]}} \right\|_{2}^{2}$$

在给定Ø下,学习DAG拟合模型

$$\min_{G,\theta} \max_{\phi} \mathcal{L}(X, G, \theta) = \mathcal{L}_{rec}(G, X, \theta) + \alpha \mathcal{L}_{DAG}(G)$$

+
$$\beta \mathcal{L}_{\text{sparse}}(G) + \gamma \mathcal{L}_{\text{M}}(X - f(X, \theta), \phi)$$