ASEN 3128 - Assignment 1

Seth Hill Gregory Kondor Connor Ott

Group 14 - Station 7b February 19, 2018 University of Colorado - Boulder

Problem 1

The following gains for the quad copter feedback were determined for a damping factor, ζ , of 0.8 and a time constant, τ , of 0.1 seconds. The method for this is shown in Figure 1.

- 1. $K_{L1} = 0.00136 [N \cdot /(rad/s)]$
- 2. $K_{L2} = 0.0106 [N \cdot / (rad)]$
- 3. $K_{M1} = 0.0018 [N \cdot / (rad/s)]$
- 4. $K_{M2} = 0.0144 [N \cdot /(rad)]$
- 5. $K_{N1} = 0.0012 [N \cdot / (rad/s)]$

These gains were then implemented as follows:

- 1. $L_c = -k_{L1} \cdot p K_{L2} \cdot \phi$
- $2. \ M_c = -k_{M1} \cdot q K_{M2} \cdot \theta$
- $3. N_c = -k_{N1} \cdot r$

$$T = \frac{1}{Z_{i}} = 3 \quad W_{n} = \frac{1}{Z_{i}} = 12.5 \text{ rad/s}$$

$$\frac{k_{1}}{I_{x}} = W_{n}^{2} \Rightarrow k_{2} = 0.006 \quad N \text{ rad/s}$$

$$\frac{k_{1}}{I_{x}} = 23 \text{ W}_{n} = 0.0036 \quad N \text{ rad/s}$$

$$\frac{k_{1}}{I_{x}} = 0.0036 \quad P \text{ rad/s}$$

$$\frac{k_{1}}{I_{x}} = 0.00$$

Figure 1: Work for determining gain values.

Problem 2-3

5 degree Bank Deviation

Figure 2: Body coordinate angular velocity as a function of time.

Figure 3: Body coordinate velocity as a function of time.

5 degree Elevation Deviation

Figure 4: Body coordinate angular velocity as a function of time.

Figure 5: Body coordinate velocity as a function of time.

0.1 Rad/s Roll Deviation

Figure 6: Body coordinate angular velocity as a function of time.

Figure 7: Body coordinate velocity as a function of time.

0.1 Rad/s Pitch Deviation

Figure 8: Body coordinate angular velocity as a function of time.

Figure 9: Body coordinate velocity as a function of time.

Problem 4

Figure 10: Actual Quad Copter Data

Figure 11: Simulated data

MATLAB Code