PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-168283

(43) Date of publication of application: 13.06.2003

(51)Int.CI.

G11B 27/034 G11B 20/10

G11B 20/10 G11B 20/12

G11B 27/00 H04N 5/91

(21)Application number : 2001-363588

(71)Applicant: SHARP CORP

(22)Date of filing:

29.11.2001

(72)Inventor: KIYAMA JIRO

IWANO HIROTOSHI

YAMAGUCHI TAKAYOSHI

(54) DATA EDITING METHOD AND DATA RECORDING MEDIUM

(57)Abstract:

PROBLEM TO BE SOLVED: To control reencoded data associated with a nondestructive editing by using a small number of files.

SOLUTION: A data editing method is proposed by which management information which controls a method of reproducing one or more of the first files which store data existing on a recording medium is recorded on the second file and data associated with the existing data are recorded. The associated data and management information are stored in the same file by using the data editing method. The associated data are defined as reencoded data included in the first file, or data reproduced in synchronism with the data included in the first file.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2003—168283

(P2003-168283A) (43)公開日 平成15年6月13日(2003.6.13)

(51) Int. Cl. 7	識別記号	FΙ	テーマコート'(参考		
G11B 27/034		G11B 20/10	G 5C053		
20/10		20/12	5D044		
20/12		27/00.	D 5D110		
27/00		27/02	K		
H04N 5/91		H04N 5/91	. И		
		審査請求	未請求 請求項の数5 OL (全19頁)		
(21)出願番号	特願2001-363588(P2001-363588)	(71)出願人	000005049		
			シャープ株式会社		
(22)出願日	平成13年11月29日(2001.11.29)	大阪府大阪市阿倍野区長池町22番22号			
		(72)発明者	木山 次郎		
			大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内		
		(72)発明者	岩野 裕利		
			大阪府大阪市阿倍野区長池町22番22号 シ		
			ャープ株式会社内		
		(74)代理人	100102277		
			弁理士 佐々木 晴康 (外2名)		
			最終頁に続く		

(54) 【発明の名称】データ編集方法およびデータ記録媒体

(57)【要約】

【課題】 少ないファイル数で非破壊編集に伴う再エンコードデータを管理する。

【解決手段】 記録媒体上の既存のデータを格納した1個以上の第1のファイルの再生方法を管理する管理情報を第2のファイルに記録し、前記既存データと関連付けられたデータを記録するデータ編集方法であって、前記関連付けられたデータと前記管理情報とを同一ファイルに格納する。なお、前記関連付けられたデータとは、第1のファイルに含まれるデータを再エンコードしたデータ、或いは、第1のファイルに含まれるデータと同期再生するデータである。

【特許請求の範囲】

【請求項1】 記録媒体上の既存のデータを格納した1個以上の第1のファイルの再生方法を管理する管理情報を第2のファイルに記録し、前記既存データと関連付けられたデータを記録するデータ編集方法であって、前記関連付けられたデータと前記管理情報とを同一ファイルに格納することを特徴とするデータ編集方法。

【請求項2】 記録媒体上の既存のデータを格納した1個以上の第1のファイルの再生方法を管理する管理情報を第2のファイルに記録し、前記既存データと関連付けられたデータを記録するデータ編集方法であって、前記関連付けられたデータと前記管理情報とを前記記録媒体上の近傍に配置することを特徴とするデータ編集方法。

【請求項3】 前記請求項1又は2に記載のデータ編集 方法において、

前記関連付けられたデータは、第1のファイルに含まれるデータを再エンコードしたデータであることを特徴とするデータ編集方法。

【請求項4】 前記請求項1又は2に記載のデータ編集 20 方法において、

前記関連付けられたデータは、第1のファイルに含まれるデータと同期再生するデータであることを特徴とするデータ編集方法。

【請求項5】 データを格納した1個以上の第1のファイルと、前記第1のファイルの再生方法を管理する管理情報を格納する第2のファイルと、前記第1のファイルと関連付けられたデータとが記録されたデータ記録媒体であって、

前記第2のファイル中には前記第1のファイルと関連付け 30 られたデータが格納されていることを特徴とするデータ 記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ハードディスク、 光ディスク等のランダムアクセス可能な記録媒体に対し て、映像データ、音声データを記録・編集するデータ編 集方法に関するものである。

[0002]

【従来の技術】ディスクメディアを用いたビデオのディジタル記録再生装置(以下、ビデオディスクレコーダと呼ぶ)が普及しつつある。テープメディアにはないディスクメディアにおける特徴機能として、非破壊編集機能あるいはノンリニア編集機能と呼ばれるものがある。この機能は、ディスク上に記録したAVストリームを移動あるいはコピーすることなく、AVストリームの任意の区間(シーン)を任意の順番で再生できる、というもので、AVストリームのどこからどこまでどういう順番で再生するかを示す情報(再生管理情報)を作り、その情報に従って再生することで実現される。

【0003】一般的に、ビデオディスクレコーダでのビデオの圧縮にはMPEG-2が用いられる。MPEG-2においては、複数のフレーム(一般的には15フレーム程度)でGOP(Group Of Pictures)が構成され、デコードはGOP単位に行われる。そのため、非破壊編集において、シーン再生開始フレームにGOPの途中のフレームが指定された場合、シーン再生開始フレームの含まれるGOPの先頭からデコードし、シーン再生開始フレーム直前のフレームまでのデコード結果は破棄するように制御する必要がある。

【0004】この場合、破棄されるフレームのデータもデコーダへ送り、デコードすることになるため、シーン再生開始フレーム付近では単位時間あたりのデコーダへのデータ転送量およびデコーダの処理量が他の個所より高くなり、処理が追いつかず再生に途切れが生じるおそれがある。また、指定されたシーン再生終了フレームがGOPの途中のフレームであった場合、シーン再生終了フレーム以降のデコードを打ち切るように制御する必要がある。つまり、フレーム単位に繋ぎ目が指定された非破壊編集結果を途切れなく再生しようとすると、複雑な制御が要求されることになる。

【0005】このような問題を解決するための一方法が、特開2001-157145号公報に開示されている。以下、図29および図30を用いてその概要を説明する。ここでは、図29に示すように、ビデオストリームが格納されているファイル3001、3002があったとき、まず、ファイル3001をGOP3011中のフレーム3021まで再生し、次に、ファイル3002をGOP3012中のフレーム3022から再生する、という非破壊編集をすることを想定する。

【0006】このとき、従来技術では、GOP3011をデコードしフレーム3021までのフレーム列3031と、GOP3012をデコードしフレーム3022からのフレーム列3032とを接続し、フレーム列3033を作り、それをエンコードした結果をファイル3003に格納する。このエンコードのことを再エンコードと呼ぶ。それらの再生順や再生区間を管理するための情報を、図30に示すようにファイル3003に格納する。

【0007】再生は、ファイル3003に格納されている情報を基にせず、ファイル3001のGOP3011の直前までのデータ3041、次にファイル3003の全データ3042、最後にファイル3002のGOP3012の直後のデータ3043をデコーダに順に送るだけでよく、デコード結果を破棄したり、デコードの打ち切りのような複雑な制御は必要としない。なぜなら、デコーダに送られるビデオストリームには表示を行うフレームデータしか含まれないようにしているからである。

[0008]

【発明が解決しようとする課題】しかしながら、上述した従来技術においては、つなぎ目1箇所毎にファイルを 50 作成する必要がある。用いているファイルシステムにお いては、扱うことができるファイル数が限られている場 合があり、その場合、ユーザが作成できる非破壊編集結 果の数が少なくなる。

【0009】本発明は、上記課題を鑑みてなされたもの であり、非破壊編集時における再エンコード区間を少な いファイル数で管理することが可能なデータ編集方法を 提供することを目的とする。

[0010]

【課題を解決するための手段】本願の第1の発明は、記 録媒体上の既存のデータを格納した1個以上の第1のファ 10 によって誤り訂正され、再生用バッファ110に一旦蓄え イルの再生方法を管理する管理情報を第2のファイルに 記録し、前記既存データと関連付けられたデータを記録 するデータ編集方法であって、前記関連付けられたデー 夕と前記管理情報とを同一ファイルに格納することを特 徴とする。

【0011】本願の第2の発明は、記録媒体上の既存の データを格納した1個以上の第1のファイルの再生方法を 管理する管理情報を第2のファイルに記録し、前記既存 データと関連付けられたデータを記録するデータ編集方 法であって、前記関連付けられたデータと前記管理情報 20 とを前記記録媒体上の近傍に配置することを特徴とす

【0012】本願の第3の発明は、前記関連付けられた データが、第1のファイルに含まれるデータを再エンコ ードしたデータであることを特徴とする。

【0013】本願の第4の発明は、前記関連付けられた データは、第1のファイルに含まれるデータと同期再生 するデータであることを特徴とする。

【0014】本願の第5の発明は、データを格納した1 個以上の第1のファイルと、前記第1のファイルの再生方 法を管理する管理情報を格納する第2のファイルと、前 記第1のファイルと関連付けられたデータとが記録され たデータ記録媒体であって、前記第2のファイル中には 前記第1のファイルと関連付けられたデータが格納され ていることを特徴とする。

[0015]

【発明の実施の形態】以下、本発明の実施形態につい て、図面を参照しながら詳細に説明する。ここでの説明 は、本発明において共通に用いる構成、個々の実施形態 に固有の内容という順に行っていく。

【0016】<システム構成>図1は本発明において共 通に用いる、アフレコ可能なビデオディスクレコーダの 構成図である。この装置は、図1に示すように、バス10 0、ホストCPU101、RAM102、ROM103、ユーザインタフェ ース104、システムクロック105、光ディスク106、ピッ クアップ107、ECC(Error Correcting Coding)デコーダ1 08、ECCエンコーダ109、再生用バッファ110、記録/アフ レコ用バッファ111、デマルチプレクサ112、マルチプレ クサ113、多重化用バッファ114、オーディオデコーダ11 5、ビデオデコーダ116、オーディオエンコーダ117、ビ

デオエンコーダ118、および図示しないカメラ、マイ ク、スピーカ、ディスプレイ等で構成される。

【0017】ホストCPU101は、バス100を通じてデマル チプレクサ112、マルチプレクサ113、ピックアップ10 7、また図示していないが、オーディオデコーダ115、ビ デオデコーダ116、オーディオエンコーダ117、ビデオエ ンコーダ118との通信を行う。

【0018】再生時に、光ディスク106からピックアッ プ107を通じて読み出されたデータは、ECCデコーダ108 られる。デマルチプレクサ112はオーディオデコーダ11 5、ビデオデコーダ116からのデータ送信要求に従い、再 生用バッファ中のデータをその種別によって適当なデコ ーダに振り分ける。

【0019】一方、記録時に、オーディオエンコーダ11 7とビデオエンコーダ118によって圧縮符号化されたデー タは、多重化用バッファ114に一旦送られ、マルチプレ クサ113によってAV多重化され、記録/アフレコ用バッフ ァ111に送られる。記録/アフレコ用バッファ111中のデ ータは、ECCエンコーダ109によって誤り訂正符号を付加 され、ピックアップ107を通じて光ディスク106に記録さ れる。

【0020】オーディオデータの符号化方式にはMPEG-1 Layer-IIを、ビデオデータの符号化方式にはMPEG-2を それぞれ用いる。

【0021】光ディスク106は、外周から内周に向かっ て螺旋状に記録再生が行われる脱着可能な光ディスクと する。2048byteを1セクタとし、誤り訂正のため16セク 夕でECCブロックを構成する。ECCブロック中のデータを 30 書き換える場合、そのデータが含まれるECCプロック全 体を読み込み、誤り訂正を行って、対象のデータを書き 換え、再び誤り訂正符号を付加し、ECCプロックを構成 して、記録媒体に記録する必要がある。また、光ディス ク106は、記録効率を上げるためZCAV(ゾーン角速度一 定)を採用しており、記録領域は回転数の異なる複数の ゾーンで構成される。

【0022】 <ファイルシステム>光ディスク106上の 各種情報を管理するためにファイルシステムを用いる。 ファイルシステムには、パーソナルコンピュータ (PC) 40 との相互運用を考慮してUDF (Universal Disk Format) を使用する。ファイルシステム上では、各種管理情報や AVストリームはファイルとして扱われる。

【0023】ユーザエリアは、2048byteの論理ブロック (セクタと一対一対応)で管理される。各ファイルは、 整数個のエクステント(連続した論理ブロック)で構成 され、エクステント単位で分散して記録しても良い。空 き領域は、Space Bitmapを用いて論理ブロック単位で管 理される。

【0024】<ファイルフォーマット>AVストリーム管 50 理のためのフォーマットとして、QuickTimeファイルフ

オーマットを用いる。QuickTimeファイルフォーマットとは、Apple社が開発したマルチメディアデータ管理用フォーマットであり、PCの世界で広く用いられている。【0025】QuickTimeファイルフォーマットは、ビデオデータやオーディオデータ等(これらを総称してメディアデータとも呼ぶ)と管理情報とで構成される。両者を合わせてここでは、QuickTimeムービー(略してムービー)と呼ぶ。両者は同じファイル中に存在しても、別

【0026】同じファイル中に存在する場合は、図2 (a) に示すような構成をとる。各種情報はatomという共通の構造に格納される。管理情報はMovie atomという構造に格納され、AVストリームはMovie data atomという構造に格納される。尚、Movieatom中の管理情報には、メディアデータ中の任意の時間に対応するAVデータのファイル中での相対位置を導くためのテーブルや、メディアデータの属性情報や、後述する外部参照情報等が含まれている。

々のファイルに存在しても良い。

【0027】一方、管理情報とメディアデータを別々のファイルに格納した場合は、図2 (b) に示すような構成をとる。管理情報はMovie atomという構造に格納されるが、AVストリームはatomには格納される必要はない。このとき、Movie atomはAVストリームを格納したファイルを「外部参照」している、という。

【0028】外部参照は、図2(c)に示すように、複数のAVストリームファイルに対して行うことが可能であり、この仕組みにより、AVストリーム自体を物理的に移動することなく、見かけ上編集を行ったように見せる、いわゆる「ノンリニア編集」「非破壊編集」が可能になる。

【0029】それでは、図3乃至図12を用いて、Quic kTimeの管理情報のフォーマットについて説明する。まず、共通の情報格納フォーマットであるatomについて説明する。atomの先頭には、そのatomのサイズであるAtom size、そのatomの種別情報であるTypeが必ず存在する。Typeは4文字で区別され、例えばMovie atomでは'moov'、Movie data atomでは'mdat'となっている。

【0030】各atomは別のatomを含むことができる。すなわち、atom間には階層構造がある。Movie atomの構成を図3に示す。Movie header atomは、そのMovie atomが管理するムーピーの全体的な属性を管理する。Trackatomは、そのムービーに含まれるビデオやオーディオ等のトラックに関する情報を格納する。User data atomは、独自に定義可能なatomである。

【0031】Track atomの構成を図4に示す。Track he ader atomは、そのトラックの全体的な属性を管理する。Edit atomは、メディアデータのどの区間を、ムービーのどのタイミングで再生するかを管理する。Track reference atomは、別のトラックとの関係を管理する。Media atomは、実際のビデオやオーディオといったデー

夕を管理する。

【0032】Track header atomの構成を図5に示す。ここでは、後での説明に必要なもののみについて説明する。flagsは属性を示すフラグの集合である。代表的なものとして、Track enabledフラグがあり、このフラグが1であれば、そのトラックは再生され、0であれば再生されない。layerはそのトラックの空間的な優先度を表しており、画像を表示するトラックが複数あれば、layerの値が小さいトラックほど画像が前面に表示される。

6

【0033】Media atomの構成を図6に示す。Media he ader atomは、そのMedia atomの管理するメディアデータに関する全体的な属性等を管理する。Handler refere nceatomは、メディアデータをどのデコーダでデコードするかを示す情報を格納する。Media information atomは、ビデオやオーディオ等メディア固有の属性情報を管理する。

【0034】Media information atomの構成を図7に示す。Media information header atomは、ビデオやオーディオ等メディア固有の属性情報を管理する。Handler 20 reference atomは、Media atomの項で説明した通りである。Data information atomは、そのQuickTimeムービーが参照するメディアデータを含むファイルの名前を管理するatomであるData reference atomを含む。Sample table atomは、データのサイズや再生時間等を管理している。

【0035】次に、Sample table atomについて説明するが、その前に、QuickTimeにおけるデータの管理方法について、図8を用いて説明する。QuickTimeでは、データの最小単位(例えばビデオフレーム)をサンプルと30呼ぶ。個々のトラック毎に、サンプルには再生時間順に1から番号(サンプル番号)がついている。

【0036】また、QuickTimeフォーマットでは、個々のサンプルの再生時間長およびデータサイズを管理している。また、同一トラックに属するサンプルが再生時間順にファイル中で連続的に配置された領域をチャンクと呼ぶ。チャンクにも再生時間順に、1から番号がついている。

【0037】さらに、QuickTimeフォーマットでは、個々のチャンクのファイル先頭からのアドレスおよび個々40のチャンクが含むサンプル数を管理している。これらの情報に基づき、任意の時間に対応するサンプルの位置を求めることが可能となっている。

【0038】Sample table atomの構成を図9に示す。Sample description atomは、個々のチャンクのデータフォーマット(Data format)やサンプルが格納されているファイルのチャンクの Index等を管理する。Time-to-sample atomは、個々のサンプルの再生時間を管理する。

reference atomは、別のトラックとの関係を管理する。 【0039】Sync sample atomは、個々のサンプルのう Media atomは、実際のビデオやオーディオといったデー 50 ち、デコード開始可能なサンプルを管理する。Sample-t o-chunk atomは、個々のチャンクに含まれるサンプル数を管理する。Sample size atomは、個々のサンプルのサイズを管理する。Chunk offset atomは、個々のチャンクのファイル先頭からのアドレスを管理する。

【0040】Edit atomは、図10に示すように、1個のEdit list atomを含む。Edit listatomはNumber of ent riesで指定される個数分の、Track duration、Media ti me、Media rateの値の組(エントリ)を持つ。各エントリは、トラック上で連続的に再生される区間に対応し、そのトラック上での再生時間順に並んでいる。

【0041】Track durationはそのエントリが管理する区間のトラック上での再生時間、Media timeはそのエントリが管理する区間の先頭に対応するメディアデータ上での位置、Media rateはそのエントリが管理する区間の再生スピードを表す。尚、Media timeが-1の場合は、そのエントリのTrack duration分、そのトラックでのサンプルの再生を停止する。この区間のことをempty editと呼ぶ。

【0042】図11にEdit listの使用例を示す。ここでは、Edit list atomの内容が図11 (a) に示す内容であり、さらにサンプルの構成が図11 (b) であったとする。尚、ここではi番目のエントリのTrack durationをD(i)、Media timeをT(i)、Media rateをR(i)とする。このとき、実際のサンプルの再生は、図11 (c)に示す順に行われる。このことについて簡単に説明する。

【0043】まず、エントリ#1はTrack durationが1300 0、Media timeが20000、Media rateが1であるため、そ のトラックの先頭から13000の区間はサンプル中の時刻2 0000から33000の区間を再生する。次に、エントリ#2はT 30 rack durationが5000、Mediatimeが-1であるため、トラ ック中の時刻13000から18000の区間、何も再生を行わな

【0044】最後に、エントリ#3はTrack durationが10000、Media timeが0、Media rateが1であるため、トラック中の時刻18000から28000の区間において、サンプル中の時刻0から10000の区間を再生する。

【0045】図12にUser data atomの構成を示す。このatomには、QuickTimeフォーマットで定義されてない独自の情報を任意個数格納することができる。1個の独自情報は1個のエントリで管理され、1個のエントリはSizeとTypeとUser dataで構成される。Sizeはそのエントリ自体のサイズを表し、Typeは独自情報をそれぞれ区別するための識別情報、User dataは実際のデータを表す。

【0046】 <AVストリームの形態>まず、本実施例におけるAVストリームの構成について、図13及び図14を用いて説明する。AVストリームは整数個のRecord Unit(RU)で構成される。RUはディスク上で連続的に記録する単位である。RUの長さは、AVストリームを構成する

RUをどのようにディスク上に配置してもシームレス再生 (再生中に画像や音声が途切れないで再生できること) やリアルタイムアフレコ (アフレコ対象のビデオをシームレス再生しながらオーディオを記録すること) が保証 されるように設定される。この設定方法については後述 オス

【0047】また、RU境界がECCプロック境界と一致するようにストリームを構成する。RUのこれらの性質によって、AVストリームをディスクに記録した後も、シームレス再生を保証したまま、ディスク上でRU単位の配置を容易に変更することができる。

【0048】RUは、整数個のVideo Unit (VU) で構成される。VUは単独再生可能な単位であり、そのことから再生の際のエントリ・ポイントとなりうる。

【0049】VU構成を図14に示す。VUは、1秒程度の ビデオデータを格納した整数個のGOP(グループ・オブ ・ピクチャ)と、それらと同じ時間に再生されるメイン オーディオデータを格納した整数個のAAU(オーディオ ・アクセス・ユニット)とから構成される。

【0050】尚、GOPは、MPEG-2ビデオ規格における画像圧縮の単位であり、複数のビデオフレーム(典型的には15フレーム程度)で構成される。AAUはMPEG-1 Layer-II規格における音声圧縮の単位で、1152点の音波形サンプル点により構成される。サンプリング周波数が48kHzの場合、AAUあたりの再生時間は0.024秒となる。VU中では、AV同期再生のために必要となる遅延を小さくするため、AAU、GOPの順に配置する。

【0051】また、VU単位で独立再生を可能とするために、VU中のビデオデータの先頭にはSequence Header (SH)を置く。VUの再生時間は、VUに含まれるビデオフレーム数にビデオフレーム周期をかけたものと定義する。さらに、VUを整数個組み合わせてRUを構成する場合、RUの始終端をECCブロック境界に合わせるため、VUの末尾を0で埋める。

【0052】 <AVストリーム管理方法>AVストリームの管理方法は、前述のQuickTimeファイルフォーマットをベースにしている。図15にAVストリーム管理形態を示す。ビデオトラックは、各ビデオフレームをIサンプル(ビデオサンプル)、VU中のビデオの塊を1チャンク(ビデオチャンク)として管理する。メインオーディオトラックは、AAUを1サンプル(オーディオサンプル)、VU中のオーディオの塊を1チャンク(オーディオチャンク)として管理する。

【0053】〈RU単位決定方法〉次に、RU単位決定方法 について説明する。この決定方法では、基準となるデバイス(リファレンス・デバイス・モデル)を想定し、その 上でシームレス再生が破綻しないように連続記録単位を 決める。

t(RU)で構成される。RUはディスク上で連続的に記録 【0054】それではまず、リファレンス・デバイス・ する単位である。RUの長さは、AVストリームを構成する 50 モデルについて、図16を用いて説明する。リファレン

ス・デバイス・モデルは1個のピックアップとそれにつ ながるECCエンコーダ・デコーダ501、トラックバッファ 502、デマルチプレクサ503、アフレコ用バッファ504、 オーディオエンコーダ509、ビデオバッファ505、オーデ ィオバッファ506、ビデオデコーダ507、オーディオデコ ーダ508とによって構成される。

【0055】本モデルにおけるシームレス再生は、VUの デコード開始時にトラックバッファ502上に少なくとも1 個VUが存在すれば保証されるものとする。オーディオフ レームデータのECCエンコーダ501へのデータの入力速度 10 およびECCデコーダ501からデータの出力速度はRsとす

【0056】また、アクセスによる読み出し、記録の停 止する最大期間をTaとする。さらに、短いアクセス(100 トラック程度)に要する時間をTkとする。なお、これら 期間には、シーク時間、回転待ち時間、アクセス後に最 初にディスクから読み出したデータがECCから出力され るまでの時間が含まれる。本実施例では、Rs=20Mbps、T a=1秒、Tk=0.2秒とする。

いて再生を行った場合、次のような条件を満たせば、ト ラックバッファ502のアンダーフローがないことが保証 できる。

【0058】条件を示す前にまず、記号の定義を行う。 AVストリームを構成するi番目の連続領域をC#iとし、C# i中に含まれる再生時間をTc(i)とする。Tc(i)はC#i中に 先頭が含まれているVUの再生時間の合計とする。また、 C#iからC#i+lへのアクセス時間をTaとする。

【0059】また、再生時間Tc(i)分のVU読み出し時間 をTr(i)とする。このとき、トラックバッファ502をアン ダーフローさせない条件とは、分断ジャンプを含めた最 大読み出し時間をTr(i)としたとき、任意のC#iにおい て、

Tc(i)≥Tr(i)+Ta···<式1> が成立することである。

【0060】なぜなら、この式は、シームレス再生の十 分条件である、

[0061]

【数1】

$$\sum_{i} Tc(i) \geq \sum_{i} (Tr(i) + Ta)$$

【0062】を満たす十分条件であるためである。

【0063】 <式1>中のTr(i)に、Tr(i)=Tc(i)×(Rv+R a)/Rsを代入して、Tc(i)で解くとシームレス再生を保証 可能なTc(i)の条件

Tc(i) ≥ (Ta×Rs)/(Rs-Rv-Ra)···<式2> が得られる。

【0064】つまり、各連続領域に先頭の含まれるVUの 合計が上式を満たすようにすれば、シームレス再生を保 証可能である。このとき、各連続領域には合計の再生時 50 間が上式を満たす完全なVU群を含むように制限しても良 .41

【0065】自動分割ムーピーファイルでも〈式2〉を 満たす必要がある。ただし、先頭の自動分割ムービーの 最初のRUおよび末尾の自動分割ムービーの最後のRUはく 式2>を満たさなくてもよい。なぜなら、先頭は記録媒 体からのデータ読み出し開始より再生開始を遅らせるこ とにより吸収でき、末尾については次に続くデータがな いため、連続再生を気にする必要が無いからである。こ のように先頭と末尾において条件を緩めることにより、 短い空き領域を有効利用できる。

【0066】<インデックス・ファイル>ディスク内に 含まれるQuickTimeムービーや静止画データ等を含む各 種コンテンツ(以後、AVファイルと呼ぶ)を管理するた め、AV Indexファイルという特別のQuickTimeムービー ファイルをディスク内に1個置く。

【0067】図17に、AV Indexファイルの構成を示 す。AV Indexファイルは通常のQuickTimeムーピーファ イルと同様、管理情報であるMovie atom1791とデータ自 【0057】前記リファレンス・デバイス・モデルにお 20 体のMovie data atom1792で構成される。AV Indexファ イルは、複数のエントリを管理し、ディスク内の各AVフ ァイルはそれぞれ1個のエントリで管理される。さら に、各AVファイルをまとめるための入れ物(以後フォル ダと呼ぶ) 等もそれぞれ!個のエントリで管理する。

> 【0068】Movie atom1791は、各エントリの属性情報 を管理するためのProperty track1793、各エントリのタ イトル文字列データを管理するためのTitle track179 4、各エントリのサムネイル画像データを管理するため のThumbnail track1795、各エントリの代表オーディオ 30 データを管理するためのIntro music track1796の計4種 類のトラックで構成される。

> 【0069】各エントリに関する属性情報は、それぞれ の1792~1795のトラックのサンプルとして管理される。 例えばAVファイル1740に関する属性情報はProperty tra ck1793上のサンプル1701、タイトル文字列データはTitl e track1794上のサンプル1711、サムネイル画像データ はThumbnail track1795上のサンプル1721、代表オーデ ィオデータはIntro music track1796上のサンプル1731 で管理する。サンプル間の対応付けは、各サンプルの再 40 生開始時間に基づき行う。すなわち、トラック間で同一 時刻に位置するサンプルが同一エントリに対応している と判断する。

【0070】Movie data atom1793は、各AVファイルに 関する属性情報や、タイトル文字列データ、サムネイル 画像データ、代表オーディオデータを格納する。属性情 報は図18に示す構成を取る。各フィールドについて説 明する。versionは、ファイルフォーマットのバージョ ンを示す。pe-flagsは各種フラグをまとめたものであ り、詳細は後述する。

【0071】parent-entry-numberは、属性情報に対応

(7)

するエントリが属するフォルダに対応するエントリのen try-numberを格納、entry-numberは、属性情報に対応するエントリのentry-numberを格納する。この2個の情報で、ファイルとフォルダの包含関係を表す。set-depend ent-flagsおよびuser-private-flagsについては、説明を省略する。

【0072】creation-timeおよびmodification-timeは この属性情報に対応するエントリが作成された日時、修 正された日時を表す。durationはこの属性情報に対応す るエントリの再生時間を表す。binary-file-identifier 10 は、この管理情報に対応するエントリがファイルに対応 していた場合、そのファイルのパス名を固定長にエンコ ーディングしたもので、詳細についての説明は省略する。

【0073】referred-counterはこの属性情報に対応するエントリが管理するファイルが他のファイルから参照されている回数を格納する。referring file listは、実際に参照しているファイルのパス名のリストを格納する。URL file identifierは、管理するファイルが上記のbinary-file-identifierにエンコードできない場合に 20 URL (Unified Resource Locator) 形式で、ファイルのパスを格納する。

【0074】〈第1の実施形態〉本発明の第1の実施形態について、非破壊編集を行う場合の処理について図19から図26を用いて説明する。ここでは、図19に示すように、AVストリームが格納されているQuickTimeファイル2001、2002があったとき、まず、ファイル2001をW2011中のGOP列2051中のフレーム2021まで再生し、次に、ファイル2002をVU2012中のGOP列2052中のフレーム2022から再生する、というGOPの途中で繋ぐ非破壊編集を30することを想定する。なお、Movie atom2041、2042はそれぞれ、ファイル2001、2002を再生するための管理情報である。

【0075】以下では、まずAVストリームに関する処理 について説明し、次に管理情報に関する処理について説 明する。

【0076】
【10076】
【2非破壊編集処理:AVストリームに関する
処理>非破壊編集時のAVストリームに関する処理につい
「次図20を用いて説明する。前述のVU2011からGOP列2
② ク、オーラの51、VU2012からGOP列2052を抜き出し、ビデオデコーダの
【40 構築する。
【16でそれぞれビデオフレーム列2031、2032にデコード
【0084
① りを順に関する

【0077】次に、デコードされたビデオフレーム列2031中のビデオフレーム2021までの部分ビデオフレーム列2033からビデオエンコーダ116でエンコード(再エンコード)し、GOP列2053を作成し、部分ビデオフレーム列2033に時間的に対応する部分AAU列2071と結合することでVU2013を作成する。

【0078】同時に、デコードされたビデオフレーム列際に2032中のビデオフレーム2022以降の部分ビデオフレーム50 る。

列2034に関してはビデオエンコーダ116でエンコード (再エンコード)し、GOP列2054を作成し、部分ビデオ フレーム列2034に時間的に対応する部分AAU列2072と結 合することでVU2014を作成する。すなわち2個のVUを作 成する。

【0079】このとき、2個のVUではなく1個のVUにまとめることも考えられるが、以下に説明する理由により、2個のVUで構成することにする。1個のVUにまとめる場合の手順を図21に示す。部分ビデオフレーム列2033と2034を結合し、ビデオフレーム列2035を作成し、それをエンコードした結果のGOP列2055と、部分AAU列2071と2072を繋げた結果であるAAU列2075を結合することでVU2015を作成する。

【0080】この場合の問題点として、つなぎ目において、オーディオ、ビデオのいずれかに時間的隙間が発生する。なぜなら、図22に示すように、ビデオフレーム周期2081とAAU周期2082が整数倍の関係になっていないため、部分ビデオフレーム列2083と部分ビデオフレーム列2084を時間的隙間無く再生しようとすると、部分AAU列2071と2072のつなぎ目において隙間2083ができることになる。

【0081】2個のVUの場合でもこの隙間2083はできるが、1個のVUの場合、VUの途中に隙間2083が発生するため、VU単位に移動を行う場合を考えた場合、処理が複雑化する可能性がある。そのため2個のVUで構成することにする。

【0082】<非破壊編集処理:管理情報に関する処理 >非破壊編集時の管理情報に関する処理について、図2 3を用いて説明する。まず、ファイル2001のMovie atom 2041からVU2011直前までのVU列に関する情報を取得す る。同様に、ファイル2002のMovie atom2042 のSample table atomから、VU2012直後より後のVU列に関する情報 を取得する。

【0083】次に、新規に作成した前述のVU2013とVU20 14に関して、Sample table作成に必要な情報、具体的にはビデオチャンク、オーディオチャンクのデータサイズおよび再生時間等を取得する。それらの情報を元に非破壊編集結果に関するSample table atomをビデオトラック、オーディオトラックそれぞれについてRAM102上で再構築する。

【0084】次に、前記Sample table atom中のサンプルを順に隙間無く再生するようにEdit list atomを構成する。ただし、VU2013とVU2014のつなぎ目に関しては、VU2014以降が正しくAV同期再生可能なように、前述のようにオーディオトラックに関して、無再生区間を挿入する必要がある。これらの情報を基に、非破壊編集結果に関するMovie atom2043を作成し、VU2013およびVU2014と共にファイル2003にまとめる。ファイル2003を記録する際には、記録媒体上で連続的に配置されるように記録す

【0085】このように非破壊編集に伴い再エンコードしたデータと非破壊編集結果に関する管理情報を1個のファイルにまとめることによって、次のようなメリットが生じる。まず、ファイル数の増加が抑えられる点である。ファイルシステムによっては管理可能なファイル数の上限が存在するため、そのようなファイルシステムにおいてはファイル数が少なくて済むということは、より多数のコンテンツを記録できることを意味する。なお、本実施形態ではファイル2003を記録する際、連続的に記録しているが、連続的でなくてもファイル数増加抑制の効果があることは言うまでもない。

13

【0086】なお、本実施形態では、つなぎ目を含むVU (VU2011とVU2012)のみを抜き出して1個のファイル2003にまとめたが、非破壊編集結果がシームレス再生可能なよう、ファイル2003中のAVデータが前述の<式2>を満たすようにつなぎ目を含むVU以外のVUも抜き出すことも考えられる。

【0087】図24を用いて説明する。VU2011はRU2101に含まれ、VU2012はRU2102に含まれるとする。このとき、RU2101に含まれるVU2011直前のVU列2103と再エンコードしたVU2013とVU2014とRU2102に含まれるVU2012より後のVU列2112の合計の再生時間が〈式2〉を満たすのであれば、ファイル2003にVU列2103、VU2013、VU2014、VU列2112を記録媒体上で連続に格納する。仮に〈式2〉に満たないのであれば、RU2101の直前のRUであるRU2103もコピーする。このことにより、ファイル2003が〈式2〉を満たし、非破壊編集結果に関してもシームレス再生を保証することが可能になる。

【0088】 〈再生時の処理〉非破壊編集結果ファイル2003の再生が指示された場合、まず、Movie atom2043を光ディスク106からRAM102上に読み出す。読み出したMovie atomの情報に基づき、再生順に、VU列2091、VU2013、VU2014、VU列2092の順(図25中の(1)~(5)の順)に光ディスク106から再生用バッファ110に読み出してい

【0089】再生用バッファ110に読み出されたAVデータは、Movie atomの情報に基づき、デマルチプレクサ112によって、オーディオデータとビデオデータに分けられ、それぞれオーディオデコーダ115、ビデオデコーダ16に送られる。オーディオデコーダ115、ビデオデコーダ116はMovie atomの情報に基づくホストCPU101からの制御により、同期を取って再生を行う。

【0090】このとき、図26の(1)~(5)に示す順番で読み出しを行う、すなわち、VU2013、VU2014、VU列2091、VU列2092の順に行うことも考えられる。VU2013およびVU2014は実際にはVU列2091の後に再生されるため、VU列2091の再生が終わるまで再生用パッファ110にVU2013およびVU2014から読み出したデータを保持しておき、VU列2091の再生が終了すると同時に、再生を行う。

【0091】このようにすることで、再生順に読み出し 50 12とオーディオデータ2322を記録する際、連続的に記録

た場合と比較して、シーク回数が1回減るため、シークに伴うモーターの消費電力が削減できる。非破壊編集結果の管理情報と再エンコードデータをディスク上で物理的に連続的に記録しておくことで、上述の効果を実現可能である。なお、非破壊編集結果の管理情報と再エンコードデータは連続してなくとも近傍に配置されていれば同様の効果を実現可能なのは言うまでもない。

14

【0092】〈第2の実施形態〉本実施形態では、オリジナルデータファイルに影響を与えず、部分的な区間に10 エフェクトをかける処理について、図27を用いて説明する。ここでは、オリジナルデータがファイル2201に格納されており、区間2221に対してエフェクト(例えばモザイク)をかけることを想定する。

【0093】このとき、区間2221を含むRU列2232中のGO P列をデコードし、生成された非圧縮ビデオフレームデータに対し、指定区間に対しエフェクトを施し、エフェクト結果に対してエンコードを行い、RU列2234を再構成する。RU列2234はMovie atom2212と共に1個のファイル2 202に格納する。

20 【0094】Movie atom2212には、RU列2231、RU列223 4、RU列2233の順に再生するように管理情報を格納す る。なおRU列2234は記録媒体上で連続的に配置されるよ う記録する。

【0095】以上の構成により、上述した第1の実施形態と同様、ファイルを1個増やすのみでオリジナルデータファイルに影響を与えることなく、しかもオリジナルデータをすべてコピーすることなく部分的な区間に対しエフェクトをかけることが可能となる。また、ファイル2202に格納するデータはRUを考慮しているため、エフェクト結果もシームレス再生を保証することが可能である。なお、本実施形態ではRU列2234を記録する際、連続的に記録しているが、連続的でなくてもファイル数増加抑制の効果があることは言うまでもない。

【0096】〈第3の実施形態〉本実施形態では、オリジナルデータに影響を与えず、オーディオアフターレコーディング(アフレコ)を行う処理について、図28を用いて説明する。ここでは、オリジナルデータ2321がファイル2301に格納されており、任意の区間に対してアフレコを行うことを想定する。

【0097】このとき、アフレコ時に入力されたオーディオデータ2322をファイル2302に、Movie atom2312と共に格納する。Movie atom2312には、オリジナルデータ2321とオーディオデータ2322を同期再生するように管理情報を格納する。Movie atom2312とオーディオデータ2322は記録媒体上で連続的に配置されるように記録する。

【0098】以上の構成により、上述した第1の実施形態と同様、ファイルを1個増やすのみでオリジナルデータに影響を与えることなく、アフレコデータを管理することが可能となる。なお、本実施形態ではMovie atom23

しているが、連続的でなくてもファイル数増加抑制の効 果があることは言うまでもない。

【0099】また、Movie atom2312とオーディオデータ 2322は記録媒体上で連続的に配置されていることによ り、Movie atom2312とオーディオデータ2322をシークす ることなく連続的に読み込むことができるため、ユーザ からの再生指示から実際に再生が開始されるまでの間、 時間を要することなく、さらに再生中にオーディオデー タ2322へのシークを行うことなく、オーディオデータ23 22とオリジナルデータ2321との同期再生が可能となる。 [0100]

【発明の効果】以上説明したように、本発明によれば、 非破壊編集時に再エンコードしたデータを非破壊編集結 果の管理情報と同じファイルに格納することで、オリジ ナルデータファイルを書きかえず、しかもファイル数の 増加を1個のみに抑えることが可能となる。

【0101】また、本発明によれば、非破壊編集時に再 エンコードしたデータを非破壊開編集結果の管理情報と 記録媒体上で近傍に記録することで、再生時のアクセス を減少することが可能になる。

【図面の簡単な説明】

【図1】本発明の実施形態における概略構成を示すプロ ック図である。

【図2】QuickTimeファイルフォーマットにおける管理 情報とAVストリームとの関係を示す説明図である。

【図3】QuickTimeファイルフォーマットにおけるMovie atomの概要を示す説明図である。

【図4】QuickTimeファイルフォーマットにおけるTrack atomの概要を示す説明図である。

【図5】QuickTimeファイルフォーマットにおけるTrack 30 明図である。 header atomの構成を示す説明図である。

【図6】QuickTimeファイルフォーマットにおけるMedia atomの構成を示す説明図である。

【図7】QuickTimeファイルフォーマットにおけるMedia information atomの構成を示す説明図である。

【図8】Sample table atomによるデータ管理の例を示 す説明図である。

【図9】QuickTimeファイルフォーマットにおけるSampl e table atomの構成を示す説明図である。

【図10】QuickTimeファイルフォーマットにおけるEdi 40 t atomの構成を示す説明図である。

【図11】Edit atomによる再生範囲指定の例を示す説 明図である。

【図12】QuickTimeファイルフォーマットにおけるUse r data atomの構成を示す説明図である。

【図13】本発明におけるAVストリームの構成を示す説 明図である。

【図14】本発明におけるVUの構造を示す説明図であ

【図15】本発明におけるAVストリーム管理形態を示す 50 116 ビデオデコーダ

説明図である。

【図16】本発明におけるリファレンス・デバイス・モ デルを示す説明図である。

【図17】本発明におけるAV Indexの構成を示す説明図 である。

【図18】本発明におけるAV Index中の属性情報の構成 を示す説明図である。

【図19】本発明の第1の実施形態における、非破壊編 集の条件を示す説明図である。

【図20】本発明の第1の実施形態における、第1の再 10 エンコード方法を示す説明図である。

【図21】本発明の第1の実施形態における、第2の再 エンコード方法を示す説明図である。

【図22】本発明の第1の実施形態における、つなぎ目 のオーディオ・ビデオ間の時間的不整合を示す説明図で

【図23】本発明の第1の実施形態における、非破壊編 集結果の第1の管理方法を示す説明図である。

【図24】本発明の第1の実施形態における、非破壊編 20 集結果の第2の管理方法を示す説明図である。

【図25】本発明の第1の実施形態における、再生処理 時の第1の読み出し順を示す説明図である。

【図26】本発明の第1の実施形態における、再生処理 時の第2の読み出し順を示す説明図である。

【図27】本発明の第2の実施形態における、非破壊編 集結果の管理方法を示す説明図である。

【図28】本発明の第3の実施形態における、アフレコ 結果の管理方法を示す説明図である。

【図29】従来技術における再エンコード方法を示す説

【図30】従来技術における非破壊編集結果の管理方法 を示す説明図である。

【符号の説明】

100 バス

101 ホストCPU

102 RAM

103 ROM

104 ユーザインタフェース

105 システムクロック

106 光ディスク

107 ピックアップ

108 ECCデコーダ

109 ECCエンコーダ

110 再生用パッファ

111 記録/アフレコ用パッファ

112 デマルチプレクサ

113 マルチプレクサ

114 多重化用パッファ

115 オーディオデコーダ

118 ビデオエンコーダ

```
[図1]
                                                                                            【図5】
                                                                                Track header atom {
                                                                システム
             水ストCPU101
                           RAM102
                                        ROM103
                                                  インタフェース104
                                                                                          Atom size
                                                                クロック105
                                                                                          Type(='tkhd')
                                                                          - パス100
                                                                                          Version
                                                                                          Flags
                                                             <del>7</del>⊐-$115
                                                                                          Creation time
               ECC#⊃
                            其生用パッファ
                                                                                          Modification time
                  108
                                                                                          Track ID
                                                             <del>デコーダ</del>116
 ピックアップ107
                                                                                          Reserved
                                                                                         Duration
                                                             エンコーダ117
                           記録/アフレコ用
                                           マルチブレクリ
              ECCエンコーダ
                                                                                          Reserved
   光ディスク
                  109
                           パッファリリ
                                                              ビデオ
                                                                                          Layer
                                                             CV3-5118
                                          多重化用パッファ
                                                                                         Alternate group
                                             114
                                                                                         Volume
                                                                                         Reserved
                                                                                         Matrix structure
                                                                                         Track width
                                                                                         Track height
                 【図3】
                                                      [図4]
                                                                                }
Movie atom {
                                         Track atom {
         Atom size
                                                  Atom size
         Type(='moov')
                                                  Type(='trak')
         Movie header atom
                                                  Track header atom
         Track atom (video track)
                                                  Edit atom
         Track atom (main audio track)
                                                  Track reference atom
                                                  Media atom
         User data atom
                                                  User data atom
}
                                                          :
                                        }
             【図6】
                                                               【図7】
Media atom {
                                 Media information atom {
         Atom size
                                          Atom size
         Type(='mdia')
                                          Type(='minf')
         Media header atom
                                          {Video or Sound or Base} media information header atom
         Handler reference atom
                                          Handler reference atom
         Media information atom
                                          Data information atom
         User data atom
                                          Sample table atom
}
                                               【図10】
                                                                                 【図12】
              【図8】
                                  Edit atom {
                                                                      User data atom {
                                           Atom size
Sample table atom {
                                                                               Atom size
                                           Type(='edts')
Edit list atom
                                                                               Type(='udta')
         Atom size
                                                                               for (i=0;i<N; i++){
         Type(='stbl')
         Sample description atom }
                                                                                       Atom size
                                                                                        Type
         Time-to-sample atom
                                                                                       User data
         Sync sample atom
                                  Edit list atom {
         Sample-to-chunk atom
                                                                               }
                                           Atom size
                                                                     }
         Sample size atom
                                           Type(='elst')
         Chunk offset atom
                                           Versions
}
                                           Flags
                                           Number of entries (=N)
                                           for (i = 0; i < N; i++){}
                                                    Track duration
                                                    Media time
```

Media rate

}

}

【図11】

 Entry Number
 Track duretion D(i)
 Media time T(i)
 Media rate R(i)

 #1
 13000
 20000
 1

 #2
 5000
 -1
 1

 #3
 10000
 0
 1

【図14】

AAU: Audio Access Unit SH: Sequence Header

【図16】

【図19】

【図15】

Video Unit (VU)								
						<u>-</u>		
AAU	••	AAU	SH	GOP	••	GOP		
Sample	••	Sample						
Main Audio Chunk			Video Chunk					

AAU: Audio Access Unit GOP: Group Of Pictures SH: Sequence Header

【図17】

2033 2034 2081 2082 2081

【図28】

フロントページの続き

(72)発明者 山口 孝好 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 F ターム(参考) 5C053 FA14 FA23 GA11 GB15 GB37 5D044 AB07 BC04 CC06 DE32 DE48 GK12 GM21 HL16 5D110 AA14 AA29 BB01 BB20 CA05 CA06 CA31 CB08 CC06 CF21 DA12 DB03 DC05 DC16 DE01