Package 'GR2MSemiDistr'

May 22, 2020

Type Package											
itle A package for hydrological modelling with a semidistribute GR2M model version											
Version 2.0.4											
Author Harold Llauca <hllauca@senamhi.gob.pe></hllauca@senamhi.gob.pe>											
Maintainer Harold Llauca <hllauca@senamhi.gob.pe></hllauca@senamhi.gob.pe>											
Description This package run a semidistributed GR2M version applying a Weighted Flow Accumula tion algorithm using TauDEM	<u> </u> -										
License HLL-16											
Encoding UTF-8											
Depends R (>= 3.6),											
Imports airGR, foreach, hydroGOF, ncdf4, raster, rgdal, rgeos, rtop, tictoc, ProgGUIinR, lubridate, FME											
LazyData true											
RoxygenNote 7.1.0											
R topics documented:											
Optim_GR2MSemiDistr Routing_GR2MSemiDistr Run_GR2MSemiDistr Uncertainty_GR2MSemiDistr	1 2 3 4 5										
Create_Forcing_Inputs Prepare forcing data (Dates, Precip, PotEvap, Qobs) for each sub-basin.	_										

Description

Prepare forcing data (Dates, Precip, PotEvap, Qobs) for each subbasin.

Usage

```
Create_Forcing_Inputs(Shapefile, Database, Precip, PotEvap, Qobs = NULL,
  DateIni, DateEnd, Resolution = 0.01, Factor = 1, Positions = NULL,
  Members = NULL, Horiz = NULL)
```

Arguments

Shapefile	Subbasin shapefile.
Database	Directory where netCDF files of precipitation and evapotranspiration are located.
Precip	Precipitation filename (.nc).
PotEvap	Evapotranspiration filename (.nc).
Qobs	Observed streamflow filename (data in m3/s). NULL as default.
DateIni	Initial date 'mm/yyyy' for export data.
DateEnd	Final date 'mm/yyyy' for export data.
Resolution	Resolution to resample rasters and extract areal mean values for each subbasin. 0.01 as default.
Factor	Factor between 1 and 1.2 to buffer subbasins and extract data. 1 as default
Positions	Cell numbers to extract data faster for each subbasin. NULL as default
Members	Number of ensemble members. NULL as default.
Horiz	Number of months for forcastting. NULL as default.

Value

Export and save a text file with forcing data inputs (Dates, Precip, Evap, Qobs).

 ${\tt Optim_GR2MSemiDistr} \qquad {\tt Model\ parameter\ optimization\ with\ SCE-UA\ algorithm}.$

Description

Model parameter optimization with SCE-UA algorithm.

Usage

```
Optim_GR2MSemiDistr(Parameters, Parameters.Min, Parameters.Max,
   Max.Functions = 10000, Optimization = "NSE", Location, Shapefile,
   Input = "Inputs_Basins.txt", WarmIni, RunIni, RunEnd, IdBasin,
   Remove = FALSE, No.Optim = NULL, IniState = NULL)
```

Arguments

Parameters GR2M (X1 and X2) model parameters and a multiplying factor to adjust monthly

P and PET values.

Parameters.Min Minimum GR2M (X1, X2, fprecip and fpet) model parameters values. Parameters.Max Maximum GR2M (X1, X2, fprecip and fpet) model parameters values.

Max.Functions Maximum number of functions used in the optimization loop. 10000 as default.

Optimization Mono-objective evaluation criteria for GR2M (NSE, InNSE, KGE, RMSE, R,

PBIAS).

Location Directory where 'Inputs' folder is located.

Shapefile Subbasin shapefile.

Input Forcing data texfile (Dates, Precip, PotEvap, Qobs). 'Inputs_Basins.txt' as de-

fault.

WarmIni Initial date (in 'mm/yyyy' format) of the warm-up period.

RunIni Initial date (in 'mm/yyyy' format) of the model simulation period.

RunEnd Final date (in 'mm/yyyy' format) of the model simulation period.

IdBasin ID for the outlet subbasin (from shapefile attribute table).

Remove Logical value to remove streamflows of the outlet subbasin (IdBasin). FALSE

as default.

No.Optim Calibration regions not to be optimized.

IniState Initial GR2M states variables. NULL as default.

Value

Best GR2M model parameters.

Routing_GR2MSemiDistr Routing simulated monthly streamflows for each subbasin.

Description

Routing simulated monthly streamflows for each subbasin.

Usage

```
Routing_GR2MSemiDistr(Location, Model, Shapefile, Dem, AcumIni, AcumEnd,
   Save = FALSE, Update = FALSE, Positions = NULL, all = FALSE)
```

Arguments

Location Directory where 'Inputs' folder is located.

Model Model results from Run_GR2MSemiDistr.

Shapefile Subbasin shapefile.

Dem Raster DEM.

AcumIni Initial date 'mm/yyyy' for accumulation.

AcumEnd Final date 'mm/yyyy' for accumulation.

Save	Logical value to save raster results for each time-step. FALSE as default.
Update	Logical value to update a previous accumulation csv file. FALSE as default.
Positions	Cell numbers to extract data faster for each subbasin. NULL as default.

all Conditional to consider all the period of model from GR2MSemiDistr. FALSE

as default

Value

Export and save an accumulation csv file.

 $Run_{GR2MSemiDistr} \qquad \textit{Run the GR2M model for each subbasins}.$

Description

Run the GR2M model for each subbasins.

Usage

```
Run_GR2MSemiDistr(Parameters, Location, Shapefile,
   Input = "Inputs_Basins.txt", WarmIni = NULL, RunIni, RunEnd,
   IdBasin = NULL, Remove = FALSE, Plot = FALSE, IniState = NULL,
   Regional = FALSE, Update = FALSE, Save = TRUE)
```

Arguments

Parameters	GR2M model parameters (X1 and X2) and multiplying factors for P and PET.
Location	Directory where 'Inputs' folder is located.
Shapefile	Subbasin shapefile.
Input	Forcing data texfile (Dates, Precip, PotEvap, Qobs). 'Inputs_Basins.txt' as default.
WarmIni	Initial date (in 'mm/yyyy' format) of the warm-up period.
RunIni	Initial date (in 'mm/yyyy' format) of the model simulation period.
RunEnd	Final date (in 'mm/yyyy' format) of the model simulation period.
IdBasin	ID for the outlet subbasin (from shapefile attribute table).
Remove	Logical value to remove streamflows of the outlet subbasin (IdBasin). FALSE as default.
Plot	Logical value to plot observed and simulated streamflow timeseries. FALSE as default.
IniState	Initial GR2M states variables. NULL as default.
Regional	Logical value to simulate in a regional mode (more than one outlet). FALSE as default.
Update	Logical value to update a previous production and qsubbasin '.csv' files. FALSE as default.

Logical valute to export simulation results as '.Rda'. TRUE as default.

Value

Save

GR2M model outputs for each subbasin.

Uncertainty_GR2MSemiDistr

Uncertainty analysis of GR2M model parameters with the MCMC algorithm.

Description

Uncertainty analysis of GR2M model parameters with the MCMC algorithm.

Usage

```
Uncertainty_GR2MSemiDistr(Parameters, Parameters.Min, Parameters.Max,
Niter = 1000, Location, Shapefile, Input = "Inputs_Basins.txt",
WarmIni, RunIni, RunEnd, IdBasin, Remove = FALSE, IniState = NULL)
```

Arguments

Parameters	GR2M (2	X1 and X2)	model	parameters and	l a multip	lving	factor to ad	iust monthly

P and PET values.

Parameters.Min Minimum GR2M (X1, X2, fprecip and fpet) model parameters values. Parameters.Max Maximum GR2M (X1, X2, fprecip and fpet) model parameters values.

Niter Number of iterations. 1000 as default.

Location Directory where 'Inputs' folder is located.

Shapefile Subbasin shapefile.

Input Forcing data texfile (Dates, Precip, PotEvap, Qobs). 'Inputs_Basins.txt' as de-

fault.

WarmIni Initial date (in 'mm/yyyy' format) of the warm-up period.

RunIni Initial date (in 'mm/yyyy' format) of the model simulation period.

RunEnd Final date (in 'mm/yyyy' format) of the model simulation period.

IdBasin ID for the outlet subbasin (from shapefile attribute table).

Remove Logical value to remove streamflows of the outlet subbasin (IdBasin). FALSE

as default.

IniState Initial GR2M states variables. NULL as default.

Value

Parameter and streamflow uncertanty bounds.

Index

```
Create_Forcing_Inputs, 1
Optim_GR2MSemiDistr, 2
Routing_GR2MSemiDistr, 3
Run_GR2MSemiDistr, 4
Uncertainty_GR2MSemiDistr, 5
```