In [35]: import warnings
import pandas as r
dt=r.read\_csv("/home/placemnet/YUVA/fiat500.csv")

In [36]: dt.describe()

Out[36]:

|       | ID          | engine_power | age_in_days | km            | previous_owners | lat         | lon         | price        |
|-------|-------------|--------------|-------------|---------------|-----------------|-------------|-------------|--------------|
| count | 1538.000000 | 1538.000000  | 1538.000000 | 1538.000000   | 1538.000000     | 1538.000000 | 1538.000000 | 1538.000000  |
| mean  | 769.500000  | 51.904421    | 1650.980494 | 53396.011704  | 1.123537        | 43.541361   | 11.563428   | 8576.003901  |
| std   | 444.126671  | 3.988023     | 1289.522278 | 40046.830723  | 0.416423        | 2.133518    | 2.328190    | 1939.958641  |
| min   | 1.000000    | 51.000000    | 366.000000  | 1232.000000   | 1.000000        | 36.855839   | 7.245400    | 2500.000000  |
| 25%   | 385.250000  | 51.000000    | 670.000000  | 20006.250000  | 1.000000        | 41.802990   | 9.505090    | 7122.500000  |
| 50%   | 769.500000  | 51.000000    | 1035.000000 | 39031.000000  | 1.000000        | 44.394096   | 11.869260   | 9000.000000  |
| 75%   | 1153.750000 | 51.000000    | 2616.000000 | 79667.750000  | 1.000000        | 45.467960   | 12.769040   | 10000.000000 |
| max   | 1538.000000 | 77.000000    | 4658.000000 | 235000.000000 | 4.000000        | 46.795612   | 18.365520   | 11100.000000 |

In [37]: d1=dt.drop(['lat','lon','ID'],axis=1)
 d1.describe()

## Out[37]:

|       | engine_power | age_in_days | km            | previous_owners | price        |
|-------|--------------|-------------|---------------|-----------------|--------------|
| count | 1538.000000  | 1538.000000 | 1538.000000   | 1538.000000     | 1538.000000  |
| mean  | 51.904421    | 1650.980494 | 53396.011704  | 1.123537        | 8576.003901  |
| std   | 3.988023     | 1289.522278 | 40046.830723  | 0.416423        | 1939.958641  |
| min   | 51.000000    | 366.000000  | 1232.000000   | 1.000000        | 2500.000000  |
| 25%   | 51.000000    | 670.000000  | 20006.250000  | 1.000000        | 7122.500000  |
| 50%   | 51.000000    | 1035.000000 | 39031.000000  | 1.000000        | 9000.000000  |
| 75%   | 51.000000    | 2616.000000 | 79667.750000  | 1.000000        | 10000.000000 |
| max   | 77.000000    | 4658.000000 | 235000.000000 | 4.000000        | 11100.000000 |
|       |              |             |               |                 |              |

In [38]: d1=r.get\_dummies(d1)
d1.describe()

## Out[38]:

|       | engine_power | age_in_days | km            | previous_owners | price        | model_lounge | model_pop   | model_sport |
|-------|--------------|-------------|---------------|-----------------|--------------|--------------|-------------|-------------|
| count | 1538.000000  | 1538.000000 | 1538.000000   | 1538.000000     | 1538.000000  | 1538.000000  | 1538.000000 | 1538.000000 |
| mean  | 51.904421    | 1650.980494 | 53396.011704  | 1.123537        | 8576.003901  | 0.711313     | 0.232770    | 0.055917    |
| std   | 3.988023     | 1289.522278 | 40046.830723  | 0.416423        | 1939.958641  | 0.453299     | 0.422734    | 0.229836    |
| min   | 51.000000    | 366.000000  | 1232.000000   | 1.000000        | 2500.000000  | 0.000000     | 0.000000    | 0.000000    |
| 25%   | 51.000000    | 670.000000  | 20006.250000  | 1.000000        | 7122.500000  | 0.000000     | 0.000000    | 0.000000    |
| 50%   | 51.000000    | 1035.000000 | 39031.000000  | 1.000000        | 9000.000000  | 1.000000     | 0.000000    | 0.000000    |
| 75%   | 51.000000    | 2616.000000 | 79667.750000  | 1.000000        | 10000.000000 | 1.000000     | 0.000000    | 0.000000    |
| max   | 77.000000    | 4658.000000 | 235000.000000 | 4.000000        | 11100.000000 | 1.000000     | 1.000000    | 1.000000    |

```
In [39]: d1.shape
Out[39]: (1538, 8)
In [40]: a=d1['price']
b=d1.drop('price',axis=1)
b
```

Out[40]:

|      | engine_power | age_in_days | km     | previous_owners | model_lounge | model_pop | model_sport |
|------|--------------|-------------|--------|-----------------|--------------|-----------|-------------|
| 0    | 51           | 882         | 25000  | 1               | 1            | 0         | 0           |
| 1    | 51           | 1186        | 32500  | 1               | 0            | 1         | 0           |
| 2    | 74           | 4658        | 142228 | 1               | 0            | 0         | 1           |
| 3    | 51           | 2739        | 160000 | 1               | 1            | 0         | 0           |
| 4    | 73           | 3074        | 106880 | 1               | 0            | 1         | 0           |
|      |              |             |        |                 |              |           |             |
| 1533 | 51           | 3712        | 115280 | 1               | 0            | 0         | 1           |
| 1534 | 74           | 3835        | 112000 | 1               | 1            | 0         | 0           |
| 1535 | 51           | 2223        | 60457  | 1               | 0            | 1         | 0           |
| 1536 | 51           | 2557        | 80750  | 1               | 1            | 0         | 0           |
| 1537 | 51           | 1766        | 54276  | 1               | 0            | 1         | 0           |
|      |              |             |        |                 |              |           |             |

1538 rows × 7 columns

```
In [41]: a
Out[41]: 0
                   8900
                   8800
                   4200
          3
                   6000
                   5700
                   . . .
          1533
                   5200
          1534
                   4600
          1535
                   7500
          1536
                   5990
          1537
                   7900
          Name: price, Length: 1538, dtype: int64
In [42]: #pip install -U scikit-learn
In [43]: from sklearn.model selection import train test split
          a train,a test,b train,b test=train test split(a,b,test size=0.33,random state=42)
In [44]: b test.head()
Out[44]:
                engine_power age_in_days
                                          km previous_owners model_lounge model_pop model_sport
                                 3197 120000
            481
                                                                                          0
                        51
                                 2101 103000
            76
                        62
                                                                                          0
                                       32473
           1502
                        51
                                  670
                                                                                          0
           669
                        51
                                  913
                                       29000
                                                                                          0
                                                                                          0
           1409
                        51
                                  762
                                       18800
```

## **Linear RegreSsioN**

```
In [45]: from sklearn.linear_model import LinearRegression
    reg = LinearRegression()  #creating object of linear regression
    reg.fit(b_train,a_train) #training and fitting LR object using training data

Out[45]:    v LinearRegression
    LinearRegression()
```

```
In [46]:
         apred=reg.predict(b test)
         apred
Out[46]: array([ 5867.6503378 ,
                                   7133.70142341,
                                                                    9723.28874535,
                                                   9866.35776216,
                                   9654.07582608,
                                                   9673.14563045, 10118.70728123,
                 10039.59101162,
                  9903.85952664,
                                   9351.55828437, 10434.34963575,
                                                                    7732.26255693,
                                                   9662.90103518, 10373.20344286,
                  7698.67240131,
                                   6565.95240435,
                  9599.94844451,
                                   7699.34400418,
                                                   4941.33017994, 10455.2719478 ,
                                                                    9952.37340054,
                 10370.51555682,
                                 10391.60424404,
                                                   7529.06622456,
                  7006.13845729,
                                   9000.1780961 ,
                                                   4798.36770637,
                                                                    6953.10376491,
                  7810.39767825,
                                   9623.80497535,
                                                   7333.52158317,
                                                                    5229.18705519,
                  5398.21541073,
                                   5157.65652129,
                                                   8948.63632836,
                                                                    5666.62365159,
                  9822.1231461 ,
                                   8258.46551788,
                                                   6279.2040404 ,
                                                                    8457.38443276,
                  9773.86444066,
                                   6767.04074749,
                                                   9182.99904787, 10210.05195479,
                  8694.90545226, 10328.43369248,
                                                   9069.05761443,
                                                                    8866.7826029 ,
                  7058.39787506,
                                   9073.33877162,
                                                   9412.68162121, 10293.69451263,
                                   6748.5794244 ,
                                                   9785.95841801,
                                                                    9354.09969973,
                 10072.49011135,
                  9507.9444386 ,
                                 10443.01608254,
                                                   9795.31884316,
                                                                    7197.84932877,
                 10108.31707235.
                                   7009.6597206 ,
                                                   9853.90699412,
                                                                    7146.87414965,
                  6417.69133992,
                                   9996.97382441,
                                                   9781.18795953,
                                                                    8515.83255277,
                  8456.30006203,
                                   6499.76668237,
                                                   7768.57829985,
                                                                    6832.86406122,
                                                                    8562.56562053,
                  8347.96113362, 10439.02404036,
                                                   7356.43463051,
                  9820.78555199, 10035.83571539,
                                                   7370.77198022,
                                                                    9411.45894006,
                 10352.85155564,
                                   8045.21588007, 10446.80664758,
                                                                    3736.20118868,
                 10348.63930496, 10435.96627494,
                                                   6167.80169017, 10390.11317804,
                                   9116.4755691 , 10484.52829
                                                                    9335.69889855,
                  6527.69471073,
                  6709.57413543,
                                   3390.72353093, 10106.33753331,
                                                                    9792.46732008,
                                                   9044.38667681,
                                                                    9868.09959448,
                  6239.49568346,
                                   4996.26346266,
                  5484.13199252,
                                   5698.5954821 , 10086.86206874,
                                                                    8115.81693479,
                 10392.37800936,
                                   6835.6573351 ,
                                                   6657.61744836,
                                                                    5738.50576764,
                  8896.80120764,
                                   9952.37340054, 10390.28377419,
                                                                    9419.10788866,
                  9082.56591129,
                                 10122.82465116, 10410.00504522,
                                                                   10151.77663915,
                  9714.85367238,
                                   9291.92963633, 10346.99073888,
                                                                    5384.22311343,
                  9772.85146492,
                                   6069.77107828,
                                                   9023.26394782, 10220.56195956,
                  9238.89392583,
                                   9931.47195375,
                                                   8321.42715662,
                                                                    8377.80491069,
                  7528.53327408,
                                 10552.64805598, 10465.02437243, 10110.68940664,
                 10238.17869436,
                                   6841.77264488,
                                                   9625.64505547, 10412.59988875,
                  9653.06224923,
                                   7948.63618724,
                                                   9704.82523573,
                                                                    7971.05970955,
                 10399.51752022,
                                   9176.43567301,
                                                   5803.03205787.
                                                                    6698.19524313,
                  8257.83550573, 10452.95284574,
                                                   9948.66454584,
                                                                    9789.65062843,
```

```
7568.91955482,
                                 6804.97705225,
                                                  8065.01292384,
10582.50828537,
                                                  9582.13932508,
10310.29143419,
                 8836.34894739,
                                 8390.05091229,
9745.34784981, 10045.45021387, 10294.09872915,
                                                  7145.15315349,
                                                  9387.9203723 ,
9727.85493167,
                 6281.78952194,
                                 7901.36245623,
 5039.55649797,
                 9351.49777725,
                                 9980.70844784, 10094.79341516,
6359.24321991,
                 9856.10227211,
                                 9099.07023804,
                                                  5234.05388382,
 5534.45288323,
                 4495.02309231, 10199.78432943, 10024.87037067,
 5465.58034188,
                 8520.72057674,
                                 7034.71038647, 10054.65061446,
10191.12067767,
                 6008.34860428,
                                 9748.18097947.
                                                  9669.4333196
9145.3756075 ,
                                                  9825.02990067,
                 9175.66562699, 10087.86753845,
                 5083.8487301 ,
7340.29803785,
                                 9441.50914802, 10243.05490667,
 5556.42300245, 10676.01945733,
                                 6126.99295838,
                                                  9845.16661356,
9850.77978959,
                                 6552.05146566,
                                                  9938.82104889,
                 7840.83596305.
8327.79232274,
                 9119.62204137,
                                 6111.83787367, 10410.00504522,
6360.97695249,
                 8601.59209793.
                                 8377.80258216,
                                                  9803.81343895,
8285.09831762, 10091.75635129, 10003.86694939, 10028.60283146,
10354.61956534,
                 8552.21002673,
                                 6726.65446676, 9381.22662706,
6520.9999373 , 10352.85155564,
                                 9063.7534579 , 10456.89121831,
                 9952.37340054,
9127.72470241,
                                 8376.6975881 ,
                                                  9220.36267675,
10036.24981328,
                 8418.65456209,
                                 4717.7579531 , 10076.86950203,
10017.8490121 , 10590.33289679, 10161.75393066,
                                                  4927.49556508,
7276.18410037,
                 9678.26477249,
                                 9764.65653403,
                                                  5643.53722047,
10062.84554534,
                 5163.04602382,
                                 8307.60791348,
                                                  7441.80993846,
 7868.82460983,
                 9725.36143983.
                                 8669.20982667, 10447.15719448,
                 9718.32989102,
                                                  7430.65975056,
7124.58453563,
                                 8059.66615638,
                                                  9102.40298437,
10425.57075395, 10364.18738085,
                                 5433.2724385 ,
9629.06913727, 10532.3506032, 10129.42684118,
                                                  9149.48843328,
6158.13422239, 9721.03634157, 10419.02236947,
                                                  8838.50241314,
 8182.78836676, 10012.21373766,
                                 9468.92324529,
                                                  9904.31954667,
10475.66003551, 10475.0702782 ,
                                                  8115.22501265,
                                 9609.27020577.
                                                  8274.3579289 ,
10439.02404036, 10363.81936482,
                                 8720.0683498 ,
6889.7195761 , 10191.45963957,
                                 4819.0674709 ,
                                                  8814.11814085,
 5737.62378403, 10051.06593609,
                                 8840.87520652, 10054.31165256,
 9686.269121
             , 10463.56977746, 10133.15815395,
                                                  9762.80613855,
 9793.03056946,
                6796.69068198,
                                 9599.3262671 ,
                                                 8488.31539047,
6705.66818403, 10307.58651641, 10045.18332239, 10120.36242166,
 5836.93199112,
                 8772.49782933,
                                 9680.77538859, 5719.87463854,
                 9680.77538859, 4334.81943405, 10015.00600846,
8398.59735084,
 9850.72458719,
                 7864.73798641, 10072.71245374, 10552.64805598,
10253.47474908,
                 6861.80736606,
                                 6484.22649656, 10374.62123623,
8426.37409382,
                 5447.47569851, 9914.20077691, 4687.39013431,
```

```
5431.00822998,
 7885.32100747,
                                  9911.86294348, 10390.16991322,
                                                 4257.54640953,
 9680.84745901,
                 8844.57815539,
                                  7764.08471024,
 9882.76503303, 10341.35258769,
                                  5736.4484335 , 10179.87154436,
                 7997.3181334 ,
                                                  9894.57834738,
 9501.423448
                                  5532.33458288,
10437.97459358,
                 6381.35845844,
                                  9591.23555726,
                                                  9574.27908517,
10322.30715736,
                 9501.22785499,
                                  9789.955758
                                                  9593.26549752,
 6775.82788536,
                 7915.34831306, 10389.98590521, 10351.58343315,
 7381.32686464,
                 9966.53983093, 10430.87188433, 10554.43156462,
10285.85574963, 10035.88086558,
                                  9526.63034431,
                                                  7742.78157141,
 9297.64938364, 10051.42272678, 10004.81256571,
                                                  9985.84167026,
 9374.6573594 ,
                 9561.57499854,
                                  9754.94184269,
                                                  9819.85893758,
 8780.31447831,
                 6255.99008069,
                                  6281.53627686,
                                                  8190.88781577,
                                  6850.70237466,
                                                  5511.29438169,
 8588.91394592,
                 6566.97963218,
                                  7775.93862032,
                                                  9875.05509733,
 8119.97866315,
                 9847.74830838,
10121.29366536,
                 5791.92464084,
                                  9835.42728501, 10043.91426822,
                 4527.22080416, 10609.02444098,
                                                  3808.29240951,
 8027.28015259,
 9952.37340054, 10511.20945172,
                                 5746.34019592,
                                                  5486.40214756,
                 6788.47519216,
10395.91036208,
                                 8953.20120295, 10442.24187982,
                                  8528.35753837,
                                                  7960.77147517,
 9455.6934072 ,
                 9976.26574762,
10400.05054235,
                 5359.97362399,
                                  9899.4913613 , 10203.35814213,
                 9507.16596227,
10303.33499967,
                                  9151.43928526,
                                                  9805.06469343,
 5661.99787503,
                 4904.40690461,
                                 4742.8827765 ,
                                                  9663.32864144,
 6102.95247322,
                 9870.62050425, 10066.06916341,
                                                  5001.24291171,
 8029.35471733,
                 9773.79143856,
                                  5962.75261232, 10401.02638592,
 5511.44251977,
                 9627.19072277, 10106.26833963, 10199.67798189,
 9458.07047019,
                 4890.1778697 ,
                                  5833.90060934,
                                                  7022.25799652,
10011.26407146, 10402.02002918,
                                 9945.08219601,
                                                  7770.52280413,
 8840.08397206,
                 9916.27565791, 10287.45603992,
                                                  9964.3213269 ,
 8403.51255128,
                 9345.81907605,
                                  8521.46225147,
                                                  9743.68712672,
                 9779.16293972,
 9791.34520178,
                                 6753.27416058,
                                                  7354.16762745,
 8760.24542762,
                 9923.66596418,
                                  9812.92276721, 10466.90125415,
 8163.46726237,
                 6659.46839415,
                                 9987.65677522, 8866.7826029,
 9952.37340054, 10187.72427693, 10231.39378767, 10091.11325493,
 9365.98570732, 10009.10088406,
                                  9141.00566394, 10099.11667176,
 7803.77049829,
                 6009.84398185,
                                 8800.33824151, 10237.60733785,
 5609.98366311, 10097.61555355, 9684.99946572, 7644.67379732,
 9276.37891542,
                 7371.5492091 , 10287.98873148, 10067.26428381,
10552.64805598,
                 9966.72383894, 10068.46126756, 6232.53552963,
10584.55044373,
                 9965.98687522, 10529.44404458, 9602.67646085,
 9665.77720284,
                 6186.06948587, 8073.87436253, 10345.58323918,
 6344.74803956,
                 7361.62678204, 10058.57116223, 6792.219309 ,
```

```
7897.72464823,
                                 5261.45936067, 4540.24137423,
                                                                8709.36468047,
                 6882.0117409 ,
                                 7406.73353952,
                                                6795.61189392,
                                                                 7047.27998963,
                 9945.33400083, 8856.93910595, 9378.02074127, 10389.561154 ,
                10092.46332921, 10381.52000388, 9723.92466625, 5996.3331428,
                 9786.14866981, 7708.49649098, 5583.48163469, 4932.92788329,
                 9856.66053994,
                                 9236.22981005, 10092.64052142, 6256.43516278,
                 8592.63841379, 10341.5365957,
                                                 5177.96595576, 10032.66513491,
                 6701 53677606
                                 0006 227500
                                                 QQQ1 517A1Q51
                                                                10271 1/25521211
In [47]: from sklearn.metrics import r2 score
         r2 score(a test,apred)
                                   #to check the efficiency
Out[47]: 0.8415526986865394
In [48]: from sklearn.metrics import mean squared error
                                                          #calculating MSE
         mean squared error(apred,a test)
Out[48]: 581887.727391353
In [49]: print(mean squared error(apred,a test)**(1/2))
         762.8156575420782
        results=r.DataFrame(columns=['Price','Predicted'])
         results['Price']=a test
         results['Predicted']=apred
         results.head()
         results=results.reset index()
         results['Id']=results.index
```

In [51]: results['Difference']=results.apply(lambda row:row.Price-row.Predicted,axis=1)
results

## Out[51]:

|     | index | Price | Predicted    | ld  | Difference   |
|-----|-------|-------|--------------|-----|--------------|
| 0   | 481   | 7900  | 5867.650338  | 0   | 2032.349662  |
| 1   | 76    | 7900  | 7133.701423  | 1   | 766.298577   |
| 2   | 1502  | 9400  | 9866.357762  | 2   | -466.357762  |
| 3   | 669   | 8500  | 9723.288745  | 3   | -1223.288745 |
| 4   | 1409  | 9700  | 10039.591012 | 4   | -339.591012  |
|     |       |       |              |     |              |
| 503 | 291   | 10900 | 10032.665135 | 503 | 867.334865   |
| 504 | 596   | 5699  | 6281.536277  | 504 | -582.536277  |
| 505 | 1489  | 9500  | 9986.327508  | 505 | -486.327508  |
| 506 | 1436  | 6990  | 8381.517020  | 506 | -1391.517020 |
| 507 | 575   | 10900 | 10371.142553 | 507 | 528.857447   |

508 rows × 5 columns

```
In [52]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='Id',y='Price',data=results.head(50))
sns.lineplot(x='Id',y='Predicted',data=results.head(50))
plt.plot()
```

## Out[52]: []



# **Ridge Regression**

```
In [53]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import Ridge
                                                             #Ridge regression
         import warnings
         warnings.filterwarnings("ignore")
In [54]: alpha = [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20,30]
         ridge = Ridge()
         parameters = {'alpha': alpha}
         ridge regressor = GridSearchCV(ridge, parameters)
         ridge regressor.fit(b train, a train)
Out[54]:
                                             GridSearchCV
          GridSearchCV(estimator=Ridge(),
                       param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                              5, 10, 20, 30]})
                                         ▼ estimator: Ridge
                                         Ridge()
                                               ▼ Ridge
                                              Ridge()
In [55]: ridge regressor.best params
Out[55]: {'alpha': 30}
In [56]: ridge=Ridge(alpha=30)
         ridge.fit(b train,a train)
         a pred ridge=ridge.predict(b test)
In [57]: from sklearn.metrics import mean squared error
         Ridge error=mean squared error(a pred ridge,a test)
         Ridge error
Out[57]: 579521.7970897449
```

#### Out[59]:

|   | index         | Actual | Predicted    | ld |
|---|---------------|--------|--------------|----|
| ( | <b>)</b> 481  | 7900   | 5869.741155  | 0  |
| - | <b>1</b> 76   | 7900   | 7149.563327  | 1  |
| 2 | <b>2</b> 1502 | 9400   | 9862.785355  | 2  |
| ; | <b>3</b> 669  | 8500   | 9719.283532  | 3  |
| _ | <b>1</b> 1409 | 9700   | 10035.895686 | 4  |

```
In [60]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='Id',y='Actual',data=results.head(50))
sns.lineplot(x='Id',y='Predicted',data=results.head(50))
plt.plot()
```

#### Out[60]: []



## **Elastic Regression**

```
In [61]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import ElasticNet
         import warnings
         warnings.filterwarnings("ignore")
         elastic = ElasticNet()
         parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
         elastic regressor = GridSearchCV(elastic, parameters)
         elastic regressor.fit(b train, a train)
Out[61]:
                                             GridSearchCV
          GridSearchCV(estimator=ElasticNet(),
                       param grid={'alpha': [1e-15, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                              5, 10, 201})
                                       ▼ estimator: ElasticNet
                                       ElasticNet()
                                            ▼ ElasticNet
                                            ElasticNet()
In [62]: elastic regressor.best params
Out[62]: {'alpha': 0.01}
In [63]: elastic=ElasticNet(alpha=.01)
         elastic.fit(b train,a train)
         a pred elastic=elastic.predict(b test)
In [64]: from sklearn.metrics import r2 score
                                                 #to check the efficiency
         r2 score(a test,a pred elastic)
Out[64]: 0.841688021120299
```

```
In [65]: from sklearn.metrics import mean_squared_error
Elastic_error=mean_squared_error(a_pred_elastic,a_test)
Elastic_error

Out[65]: 581390.7642825295

In [66]: results=r.DataFrame(columns=['Actual','Predicted']) #to compare the actual and pedicted price
results['Actual']=a_test
results['Predicted']=a_pred_elastic
results=results.reset_index()
results['Id']=results.index
results.head()
```

#### Out[66]:

|   |   | index | Actual | Predicted    | ld |
|---|---|-------|--------|--------------|----|
| - | 0 | 481   | 7900   | 5867.742075  | 0  |
|   | 1 | 76    | 7900   | 7136.527402  | 1  |
|   | 2 | 1502  | 9400   | 9865.726723  | 2  |
|   | 3 | 669   | 8500   | 9722.573593  | 3  |
|   | 4 | 1409  | 9700   | 10038.936496 | 4  |

```
In [67]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='Id',y='Actual',data=results.head(50))
sns.lineplot(x='Id',y='Predicted',data=results.head(50))
plt.plot()
```

## Out[67]: []



In [ ]: