1. Beta estimation by Crq package

Table 1: Crq package : $t_0 = 0$

		1.1	0 0	
censor	$beta_0$	SE of beta_0	${ m beta}_1$	SE of beta_1
0	1.611204	0.069286	1.605551	0.102066
10	1.613472	0.067236	1.600155	0.101868
20	1.600550	0.073477	1.610729	0.106157
30	1.604918	0.072416	1.614171	0.103720

Table 2: Crq package : $t_0 = 1$

censor	beta_0	SE of beta_0	beta_1	SE of beta_1
0	1.401979	0.082498	1.772611	0.110300
10	1.412809	0.088962	1.768523	0.113574
20	1.408794	0.084244	1.771025	0.115108
30	1.409451	0.090475	1.772157	0.121175

Table 3: Crq package : $t_0=2$

censor	$beta_0$	SE of beta_0	$beta_1$	SE of beta_1	
0	1.220197	0.100844	1.916535	0.131537	
10	1.223901	0.103832	1.913887	0.136830	
20	1.223415	0.098392	1.910457	0.127445	
30	1.223709	0.106087	1.912082	0.143056	

Table 4: Crq package : $t_0 = 3$

	Table 1. Crq package: $t_0 = 0$					
censor	$beta_0$	SE of beta_0	${ m beta}_{-}1$	SE of beta_1		
0	1.044561	0.114657	2.041242	0.138994		
10	1.042645	0.110887	2.060300	0.133208		
20	1.032777	0.119468	2.075598	0.143947		
30	1.039232	0.115524	2.063067	0.151358		

2. Beta estimation by Induced smoothing

Table 5: Induced smoothing : $t_0 = 0$

censor	beta_0	SE of beta_0	beta_1	SE of beta_1
0	1.610849	0.068160	1.603134	0.099974
10	1.612397	0.066194	1.598132	0.099299
20	1.598857	0.072542	1.604127	0.104108
30	1.603644	0.071677	1.573104	0.103837

Table 6: Induced smoothing : $t_0 = 0$

censor	${ m beta}_0$	SE of beta_0	${ m beta}_{-}1$	SE of $beta_1$
0	1.401021	0.082129	1.770269	0.107094
10	1.411590	0.086866	1.765850	0.110388
20	1.407933	0.084081	1.764181	0.114049
30	1.406896	0.089848	1.730130	0.123416

Table 7: Induced smoothing : $t_0=2$

			0 0	
censor	beta_0	SE of beta_0	$beta_1$	SE of beta_1
0	1.219216	0.099720	1.914239	0.129730
10	1.223240	0.102680	1.910413	0.135436
20	1.221756	0.097136	1.904177	0.125972
30	1.222240	0.105368	1.869214	0.146776

Table 8: Induced smoothing : $t_0 = 3$

censor	$beta_0$	SE of beta_0	beta_1	SE of beta_1
0	1.043106	0.114226	2.039181	0.137320
10	1.040544	0.108479	2.058143	0.130071
20	1.030567	0.117948	2.069021	0.139584
30	1.038793	0.114263	2.020303	0.152555

3. Variance estimation (β_0) (True,MB,ISMB,Crq)

Table 9: Standard error of β_0 at $t_0 = 0$

			, ,	
censor	true	MB	ISMB	Crq
0	0.068160	0.072396	0.114983	0.072831
10	0.066194	0.072078	0.114972	0.072267
20	0.072542	0.072034	0.117501	0.071485
30	0.071677	0.074246	0.120230	0.069926

Table 10: Standard error of β_0 at $t_0=1$

censor	true	MB	ISMB	Crq
0	0.082129	0.086298	0.134707	0.082186
10	0.086866	0.086086	0.138458	0.084882
20	0.084081	0.087165	0.139960	0.086724
30	0.089848	0.089992	0.146355	0.085309

Table 11: Standard error of β_0 at $t_0 = 2$

censor	true	MB	ISMB	Crq
0	0.099720	0.102475	0.162469	0.100031
10	0.102680	0.101439	0.161132	0.099194
20	0.097136	0.103274	0.163412	0.097173
30	0.105368	0.103021	0.167608	0.102346

Table 12: Standard error of β_0 at $t_0 = 3$

censor	true	MB	ISMB	Crq
0	0.114226	0.115407	0.181624	0.112256
10	0.108479	0.117438	0.183432	0.110784
20	0.117948	0.119693	0.194139	0.112134
30	0.114263	0.120776	0.195415	0.114661

4. Variance estimation (β_1) (True,MB,ISMB,Crq)

Table 13: Standard error of β_1 at $t_0 = 0$

			, + ,	9
censor	true	MB	ISMB	Crq
0	0.099974	0.100727	0.159076	0.110020
10	0.099299	0.103537	0.170257	0.112988
20	0.104108	0.107851	0.188423	0.110117
30	0.103837	0.120141	0.230988	0.114882

Table 14: Standard error of β_1 at $t_0=1$

censor	true	MB	ISMB	Crq
0	0.107094	0.113243	0.177833	0.118441
10	0.110388	0.115284	0.188198	0.120540
20	0.114049	0.121063	0.209338	0.126421
30	0.123416	0.133899	0.258087	0.126160

Table 15: Standard error of β_1 at $t_0 = 2$

censor	true	MB	ISMB	Crq
0	0.129730	0.127644	0.201213	0.133427
10	0.135436	0.129347	0.209567	0.132298
20	0.125972	0.136178	0.229949	0.133038
30	0.146776	0.145734	0.277886	0.141282

Table 16: Standard error of β_1 at $t_0 = 3$

censor	true	MB	ISMB	Crq
0	0.137320	0.140248	0.220874	0.144003
10	0.130071	0.143206	0.228305	0.142897
20	0.139584	0.149959	0.256560	0.147874
30	0.152555	0.159658	0.295626	0.151205

5. Coverage of parameter

Table 17: Coverage of β_0 30% 0% 10% 20% 0.988 t0=0 0.990 0.992 0.996 0.9800.9720.9940.988 t0=1t0=20.9800.9880.9880.990 $t0=3 \quad 0.968$ 0.9760.9860.988

Table 18: Coverage of β_1				
	0%	10%	20%	30%
t0=0	0.996	0.992	0.994	0.998
t0=1	0.988	0.996	0.996	0.998
t0=2	0.988	0.988	1.000	0.996
t0 = 3	0.984	0.994	1.000	0.994