

CLOUD COMPUTING FOR QUANTUM COMPUTER,

QUANTUM COMPUTER FOR CLOUD COMPUTING

QHack 2023 Open Hackathon Amazon Bracket Challenge Team Qloud

Table of Content

Introduction

Quantum computer and Cloud computing

- Cloud based quantum computing
 - Quantum processor through cloud
 - Many industry starts to develop system
 - Ex) Amazon Braket, Xanadu Quantum Cloud
 - Cloud computing helps quantum computing
- Is there a method for quantum computer to help cloud computing?
 - Maybe solving Important problem for cloud service
 - Which is hard to solve in classical computer

Introduction

Importance of Bin Packing Problem (BPP)

- Cloud service with the multi-server
 - Important to make operation costs down
 - Have to use energy efficiently
- Solving the Bin packing problem^[1]
 - jobs can be efficiently allocated to machines for cloud service
 - Bin packing problem is an Np-hard problem so it's difficult to solve classically
- Goal of this project
 - Solve bin packing problems using several quantum optimization algorithms for cloud computing
 - Compare results form algorithms

Introduction

Project Plan

- Solve BPP Problem
 - In classical way
 - Using Gourbi Optimizer
 - Quantum way
 - Quantum Approximate Optimization Algorithm
 - Quantum Alternating Operator Ansatz
 - Feedback-based Quantum Optimization
 - Compare Result
- Expected result
 - Classical algorithm will solve much faster because problem is very small
 - FALQON maybe efficient because no need of extra optimizer

Problem Discerption BPP

- Bin Packing Problem (BPP)
 - Optimization problem
 - Pack (n) items with different size (w) to finite number (u) of bins size C
- Mathematical formulation of BPP [2]

$$\min \sum_{i=1}^{u} y_i$$

$$subjet to \sum_{j=1}^{n} w_j x_{ij} < cy_i \ (i = 1 \dots u)$$

$$\sum_{i=1}^{u} x_{ij} = 1 \ (j = 1 \dots n)$$

$$x_{ij}, y_i \in \{0,1\}$$

Classical algorithm

- BPP is Binary Linear Programming (NP-Hard)
- Change Problem to Quadratic Unconstraint Binary Optimization
 - Change inequality constraint to equality constraint using extra variable
 - Add constraint to cost function with penalty term
- Using Gurobi optimizer [3]
 - Cutting plane
 - Branch and Bound
 - Branch and cut
- Performance
 - Fast solve for small size problem
 - Hard to solve in big size

Quantum Approximate Optimization Algorithm (QAOA)

- Quantum Algorithm for combinatorial optimization
 - Find state minimize $\langle \psi(\beta, \gamma) | H_C | \psi(\beta, \gamma) \rangle$
 - Make state in quantum circuit and optimize using classical algorithm
- Method (Ansatz) [4]
 - $|\psi(\beta,\gamma)\rangle = U_B(\beta_p)U_C(\gamma_p) \dots U_B(\beta_1)U_C(\gamma_1)|s\rangle$
 - $U_B(\beta_k) = e^{-i\beta_k H_B \Delta t}, U_C(\beta_p) = e^{-i\gamma H_C}$
 - H_B : Mixer Hamiltonian
 - H_C : Problem Hamiltonian express cost function
- Implementation to problem
 - Using problem as QUBO formulation
 - Change binary variable (0,1) to 1, -1 variable
 - Optimize parameter using classical ADAM optimizer

Quantum Alternating Operator Ansatz

- More general class of quantum state
 - Can dealing with optimization problem with constraints
- Method (Ansatz) [5]

$$- |\psi(\beta, \gamma)\rangle = U_B(\beta_p)U_C(\gamma_p) \dots U_B(\beta_1)U_C(\gamma_1)|s\rangle$$

- Almost same formula with QAOA
- Mixer makes state only in feasible subspace
- Initial state to single feasible solution (satisfy constraint)
- Impetration to problem
 - constraint ->mixer operator (Don't have to convert in QUBO)
 - Ex) for constraint $x_a + x_b = 1$
 - $|1\rangle\langle 0|_a \otimes |0\rangle\langle 1|_b + |0\rangle\langle 1|_a \otimes |1\rangle\langle 0|_b$
 - Because one of x_a or x_b have to be 1
 - Train Variable and see

Feedbackbased Quantum Optimization (FALQON)

- Quantum Optimization algorithm using Quantum way optimization method
 - Don't need extra classical optimizer
- Method [6]

$$- |\psi(\beta)\rangle_k = U_B(\beta_k)U_C \dots U_B(\beta_1)U_C |+\rangle$$

$$-U_B(\beta_k)=e^{-i\beta_kH_B\Delta t},U_C=e^{-iH_C\Delta t}$$

- Recursively calculating β_1 to β_l
 - $\beta_{k+1} = -\langle \psi_k | i[H_B, H_C] | \psi_k \rangle$
- Implementation to problem
 - Convert problem to QUBO formulation
 - Repeat iteration to find optimal solution

Toy model

Problem

- 2 bin with size 3 each
- Work a (size 1) + work b (size 2)

Index formulation

- 10 bit to express whole problem
- 0,1 bit -> if each bin(1st and 2nd) are used
- 2,3 bit -> if each work (1st and 2nd) are in 1st bin
- 4,5 bit -> if each work (1st and 2nd) are in 2nd bin
- 6,7,8,9 -> extra variable for inequality constraint

Optimal solution

- Work a and b into first or second bit (using 1 bin)
 - [1011000000] : All work in 1st bin
 - [0100110000] : All work in 2nd bin

Classical Result

- Simulation method
 - Use python for problem generation
 - Calculate using personal computer
 - Use Gurobi (gurobipy) for classical optimizer
- Gurobi result
 - [1,0,1,1,0,0,0,0,0] (optimal solution)
 - 0.01621 second
 - Get optimal solution directly in very small amount of time

How to Compare Quantum Algorithms

- If using bigger depth or iteration, performance of optimization will also increase
 - QAOA : time = depth X Iteration
 - Assuming no time needed for classical optimization
 - Falcon : time = depth(depth+1)/2
 - Assuming time for unitary is same for all algorithm
- Hard to compare
 - Different optimization method
 - Classical for QAOA vs Quantum for FALQON
 - Same # of variable is X
- Select Parameter
 - QAOA : depth 10, Iteration 500 -> 5000
 - FALCON : depth 100 -> 5000

Quantum Result

- Simulation Method
 - Use python for problem generation
 - Pennylane for circuit implementation
 - Use personal computer to train (same as classical)
 - To compare time of algorithms
 - Verify solution using Amazon Web Services SV1
 - Not using real hardware because comparing performance of algorithm is goal of this project
- QAOA result
 - [0100110000] (Optimal1 and max prob): 0.0172
 - [1011000000] (Optimal2): 0.0159
 - Find optimal state with high probability
 - Time : 467 sec

Quantum Result

QAO Ansatz Result

- [0110010101] (Max prob): 0.02647
- [0100110000] (Optimal1): 0.01145
- [1011000000] (Optimal2): 0.00776
- Fail to find solution
- Time for training : 430 sec

FALQON Result

- [00000000] (Max prob): 0.0148
- [0100110000] (Optimal1): 0.01375
- [1011000000] (Optimal2): 0.01375
- Optimal1 + Optimal2 > Max
- Get optimal state for high probability
- Time: 128.5 sec

Conclusion

Discussion

- Comparison of Quantum Algorithm
 - Time need in classical simulator
 - QAOA > QAO Ansatz > FALCON
 - Performance
 - QAOA (find solution) > FALQON > QAO Ansatz
 - For small size Bpp problem, using QAOA is better than others
- Comparison of Classical and quantum
 - Classical algorithm find solution much faster
 - Classical algorithm is accurate (can find optimal solution)
- Reason of low performance in Quantum algorithm
 - Stop iteration to fast because of fair comparison
 - Need to tune Hyperparameter

Conclusion

Future work

- Try solving bigger problem
 - For toy problem, classical algorithm was better
 - Compare performance and find scalability
 - Maybe beneficial for quantum
- Try different quantum algorithms
 - Other Extensions of QAOAs
 - Durr Hoyer algorithm (Quadratic speed up)
- Try to solve more realistic problem
 - For cloud computing, Bin Packing with Chance Constraints(BPCC) is more realistic^[9]
 - Solve harder version of BPP using quantum

Reference

- 1. Cloud computing: Nursen Aydin et al, "Multi-objective temporal bin packing problem: An application in cloud computing
- 2. Bin-packing problem: Martello, "Bin-packing Problem"
- 3. Gurobi algorithm : <u>Advanced Gurobi Algorithms</u>
- 4. QAOA: Edward Farhi et al, "A Quantum Approximate Optimization Algorithm"
- 5. QAOA: Sturat Hadfield et al, "From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz",
- 6. FALQON: Alicia B. Magann et al, "Feedback-based quantum optimization"
- 7. QAOA code: <u>Intro to QAOA PennyLane documentation</u>
- 8. FALQON code: Feedback-Based Quantum Optimization (FALQON) PennyLane documentation
- 9. Future Problem : Maxime C. Cohern et al, "Overcommitment in Cloud Services: Bin Packing with Chance Constraints"