Laimonas Beniušis studento nr. 1410102 Kompiuterių mokslas 1 1gr Naudota priemonė: GNU Octave Optimizavimo metodai užduotis 4

Optimizavimas su apribojimas

Tikslas: Surasti stačiakampio gretasienio formos dėžės matmenis, kad vienetiniam paviršiaus plotui jos tūris būtų maksimalus

Tikslo funkcija:

$$f(x,y,z) = xyz$$

Apribojimo funkcija

$$g(x,y,z) = 2(xy + xz + yz) - 1$$

Apsirašyti tikslo funkciją taip, kad optimizavimo užduotis būtų formuluojama: $min\ f(X),\ g_i(X) = 0,\ h_i(X) \le 0.$ X = (x,y,z)

Naujos funkcijos:

$$f(x,y,z) = -(xyz)$$
$$h(X) = -X$$

a = 1

b = 0

c = 2

Taškai:

 $X_0 = (0, 0, 0)$

 $X_1 = (1, 1, 1)$

 $X_m = (a/10, b/10, c/10) = (0.1, 0, 0.2)$

Papildomas taškas, kuris artimas taškui X_m ir kuriame galima optimizacija $X_b = (0.1, 0.09475, 0.2)$

Optimizavimo iš taškų rezultato palyginimo santrauka:

Taškas	Iteracijos	Funkcijos skaičiavimas	Galutinis taškas po optimizavimo	Optimizacijos baigimo sąlyga	Funkcijos įvertis
(0, 0, 0)				Nesėkminga	
(1, 1, 1)	6	7	(0.40825, 0.40825, 0.40825)	Žingsnis pasidarė per mažas	-0.068041
(0.1, 0, 0.2)				Nesėkminga	
(0.1, 0.09475, 0.2)	6	7	(0.40825, 0.40825, 0.40825)	Užsibaigė normaliai	-0.068041

Taškas $X_0 = (0, 0, 0)$ Optimizacija nesėkminga

Taškas $X_1 = (1, 1, 1)$

Iteracija	Funkcijos reikšmė	Taškas
1	-1	(1, 1, 1)
2	-0.1985	(0.58333, 0.58333, 0.58333)
3	-0.082043	(0.43452, 0.43452, 0.43452)
4	-0.068439	(0.40904, 0.40904, 0.40904)
5	-0.068042	(0.40825, 0.40825, 0.40825)
6	-0.068042	(0.40825, 0.40825, 0.40825)
7	-0.068041	(0.40825, 0.40825, 0.40825)

Optimizacija baigėsi nes žingnis pasidarė per mažas GNU octave INFO parametro reikšmė 104

Taškas $X_m = (0.1, 0, 0.2)$ Optimizacija nesėkminga

Taškas $X_b = (0.1, 0.09475, 0.2)$

Iteracija	Funkcijos reikšmė	Taškas
1	-0.001895	(0.1, 0.09475, 0.2)
2	-0.024167	(0.45918, 0.47750, 0.11022)
3	-0.062831	(0.41261, 0.41500, 0.36693)
4	-0.067956	(0.40831, 0.40835, 0.40758)
5	-0.068041	(0.40825, 0.40825, 0.40825)
6	-0.068041	(0.40825, 0.40825, 0.40825)
7	-0.068041	(0.40825, 0.40825, 0.40825)

Optimizacija baigėsi normaliai, visi aprobojimai tenkina duotas nelygybes GNU octave INFO parametro reikšmė 101

Funkcijų reikšmės taškuose

Sinories taskaose					
Taškas X	Funkcija	Reikšmė			
(0, 0, 0)	f(X)	0			
(0, 0, 0)	g(X)	(-1, -1, -1)			
(0, 0, 0)	h(X)	(0, 0, 0)			
(1, 1, 1)	f(X)	-1			
(1, 1, 1)	g(X)	(5, 5, 5)			
(1, 1, 1)	h(X)	(-1 ,-1, -1)			
(0.1, 0, 0.2)	f(X)	0			
(0.1, 0, 0.2)	g(X)	(-0.96, -0.96, -0.96)			
(0.1, 0, 0.2)	h(X)	(-0.1 ,0, -0.2)			
(0.1, 0.09475, 0.2)	f(X)	-0.001895			
(0.1, 0.09475, 0.2)	g(X)	(-0.90315 -0.90414 -0.88420)			
(0.1, 0.09475, 0.2)	h(X)	(-0.1, -0.09475, -0.2)			

```
Kodas
f.m:
function [r] = f(x)
      r = -x(1) * x(2) * x(3);
end
g.m:
function [r] = g(x)
  r = 2*(x*(1)*x(2) + x(1)*x(3) + x(2)*x(3))-1;
end
h.m:
function [r] = h(x)
  r = [x(1); x(2); x(3)];
end
main.m:
clear all;
x0 = [0,0,0];
x1 = [1,1,1];
xs = [0.1,0,0.2];
xb = [0.1, 0.09475, 0.2];
f(x0), g(x0), -h(x0)
f(x1), g(x1), -h(x1)
f(xs), g(xs), -h(xs)
f(xb), g(xb), -h(xb)
[X, OBJ, INFO, ITER, NF, LAMBDA] = sqp(x0, @f, @g, @h);
[X, OBJ, INFO, ITER, NF, LAMBDA] = sqp(x1, @f, @g, @h);
[X, OBJ, INFO, ITER, NF, LAMBDA] = sqp(xm, @f, @g, @h);
[X, OBJ, INFO, ITER, NF, LAMBDA] = sqp(xb, @f, @g, @h);
```