Esercizio 2) ** Rispondere alle domande:

- 1. Calcolare, al variare di $\alpha \in \mathbb{R}$ il valore del limite $\lim_{x\to +\infty} \sin^{\alpha} \left(\frac{1}{\sqrt{x}}\right)$;
- 2. Calcolare, al variare di $\alpha \in \mathbb{R}$ il valore del limite $\lim_{x\to +\infty} \frac{\log(x^2+4)}{1/x-\alpha}$;
- 3. Calcolare, al variare di $\alpha \in \mathbb{R}$ il valore del limite $\lim_{x\to +\infty} \frac{x^2-5x}{x+1}(e-\alpha^{\sin x})$;
- 4. Determinare le costanti a e b tali che

$$\lim_{x \to +\infty} \left(\frac{x^2 + 2}{x - 1} + ax + b \right) = 2.$$

Soluzione. 1. La funzione $\sin\left(\frac{1}{\sqrt{x}}\right)$ ha come limite 0^+ , a seconda di α si possono poi distinguere tre casi: se $\alpha<0$ allora $f\to +\infty$, se $\alpha>0$ allora $f\to 0^+$, se $\alpha=1$ allora $f\to 1$; 2. Il limite può essere scritto come $\frac{+\infty}{0-\alpha}=(-\sin\alpha)\infty$. L'unico caso particolare è se $\alpha=0$, dove allora $f\to +\infty$; 3. Il primo fattore tende chiaramente a $+\infty$, per il secondo serve una considerazione un po' più qualitativa/numerica. Consideriamo prima il caso $\alpha>1$. Vediamo che, poichè il sin è limitato, vale la disuguaglianza $\alpha\geq\alpha^{\sin x}$, pertanto finché $1<\alpha< e$ il fattore è positivo per ogni valore di x. Se invece $\alpha\geq e$ allora l'equazione $e=\alpha^{\sin x}$ ha sempre soluzione, dunque il fattore può annullarsi per qualche x, che equivale a dire che il fattore considerato può diventare nullo o addirittura negativo per alcuni valori di x. Per quanto riguarda invece il caso $0<\alpha<1$, si può notare come possa essere riportato in realtà al caso precedente tramite uno spostamento di x di π : in parole povere, possiamo scrivere $\alpha^{\sin x}=\frac{1}{\beta^{\sin x}}=\beta^{-\sin x}=\beta^{\sin(x+\pi)}$ con ora $\beta>1$. Dunque il fattore è sempre positivo se $\beta< e\leftrightarrow \frac{1}{e}<\alpha<1$, sarà invece oscillante nel caso in cui $0<\alpha\leq \frac{1}{e}$. Sinotticamente, concludendo:

4.
$$a = -1$$
, $b = 2$.