Fundamentals of Solid State Physics

Electron Motion in a Magnetic Field

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Outline

- Cyclotron resonance 回旋共振
 - measure the effective mass m*

- Hall effect 霍尔效应
 - measure the carrier density n

Electrons in Electromagnetic Fields

Lorentz force

Lorentz force

$$\mathbf{F} = -e\mathbf{E} - e\mathbf{v} \times \mathbf{B}$$

$$\frac{dv_{x}}{dt} = -\frac{eB_{z}}{m^{*}}v_{x}$$

$$\frac{dv_{y}}{dt} = \frac{eB_{z}}{m^{*}}v_{x}$$

$$v_{z} = 0$$

When E = 0, $B = B_z$

$$\mathbf{F} = m^* \frac{d\mathbf{v}}{dt} = -e\mathbf{v} \times \mathbf{B}$$

$$\omega_c = \frac{eB_z}{m^*}$$

$$v_x = v_0 \cos(\omega_c t)$$

$$v_y = v_0 \sin(\omega_c t)$$

$$v_z = 0$$

cyclotron frequency

$$\omega_c = \frac{eB_z}{m^*}$$

electrons move in a circle

B - magnetic field (T) m^* - effective mass (kg) ω - angular frequency (rad/s) ν - frequency (Hz) ω = 2πνe = $1.6*10^{-19}$ C

absorption peaks of EM wave at cyclotron frequency

$$\omega_c = \frac{eB_z}{m^*}$$

so we can measure effective mass

Ashcroft & Mermin, p572

6

absorption peaks of EM wave at cyclotron frequency

$$\omega_c = \frac{eB_z}{m^*}$$

so we can measure effective mass

- A current flows through a conductor
- V_H is generated when applying B_z

- A current flows through a conductor
- V_H is generated when applying B_z

Lorentz Force at equilibrium

$$\left| eE_{y} = ev_{x}B_{z} \right|$$

$$j_x = nev_x$$

$$E_y = \frac{1}{ne} j_x B_z = R_H j_x B_z$$

R_H - Hall coefficient

By definition:

positive charge: $R_H > 0$ negative charge: $R_H < 0$

- A current flows through a conductor
- V_H is generated when applying B_z

$$E_y = \frac{1}{ne} j_x B_z = R_H j_x B_z$$

p-doping

$$R_H = \frac{1}{p_v e}$$

positive

n-doping

$$R_H = -\frac{1}{n_c e}$$

negative

- R_H only depends on the carrier density
 - semiconductors have much stronger Hall effects than metals

 $n(\text{metal}) \gg n(\text{semiconductor})$

 $R_H(\text{metal}) \ll R_H(\text{semiconductor})$

Examples

Metals	R _H (unit: 1/ne)
Li	-0.8
Na	-1.2
K	-1.1
Cu	-1.5
Ag	-1.3
Au	-1.5
Mg	+0.4
Al	+0.3

p-doping

$$R_{H} = \frac{1}{p_{v}e}$$

positive

n-doping

$$R_H = -\frac{1}{n_c e}$$

negative

Silicon	R _H (unit: m³/C)
Boron doped	6×10 ⁻⁴
$N_A = 10^{16} \text{ cm}^{-3}$	
Arsenic doped	-6×10 ⁻⁴
$N_D = 10^{16} \text{ cm}^{-3}$	

- Mg and Al have positive Hall coefficients
 - conduction is partially contributed by holes

Metals	R _H (unit: 1/ne)
Li	-0.8
Na	-1.2
K	-1.1
Cu	-1.5
Ag	-1.3
Au	-1.5
Mg	+0.4
Al	+0.3

Summary

- Cyclotron resonance 回旋共振
 - measure the effective mass m*

$$m^* = \frac{eB_z}{\omega_c}$$

- Hall effect 霍尔效应
 - measure the carrier density n

$$R_H = \frac{1}{p_v e}$$

$$R_H = -\frac{1}{n_c e}$$

Thank you for your attention