	Topic: Date: Page No.:
	MATHS BY: AJAY MITTAL (9891067390)
	CHAPIER: SEQUENCE & SERIES
	- CLASS NO- 3 -
	Topic: G.P (aucstion)
Ows	+ Find the value of n' so that and + bn+1 may be
C 0-	the Geometric Mean between a & b. 91un an+1 + bn+1 - Jab = Ja Jb
Solv	$= \frac{a^n + b^n}{a^n + b^n}$
	$a^{n+1} + b^{n+1} = a^{1/2} b^{1/2}$
	$\frac{a^{n}+b^{n}}{a^{n}+b^{n}}$
	$= a^{n+1} + b^{n+1} - a^{1/2} \cdot b^{1/2} \cdot (a^n + b^n)$
	$= a^{n+1} + b^{n+1} = a^{n+2} \cdot b^{n/2} + a^{n/2} \cdot b^{n+2}$
	$\Rightarrow a^{n+1} - a^{n+2} \cdot b^{n} = a^{n+2} \cdot b^{n+2} - b^{n+1}$
	N+1 / 1/2 / 1/2
	$\Rightarrow a^{n+1} \left(a^{n/2} b^{n/2} \right) = b^{n+1} \left(a^{n/2} b^{n/2} \right)$
	N+1/2
	$\frac{a^{\prime\prime\prime2}-1}{\sqrt{a^{\prime\prime\prime}}}=1$
12	5"12 N+4
	$=\frac{3}{9}$
	-> (0) 17+1/2 (0)
	(3) (3)
	-1 + 1 = 0
	= 1/2 / Am
OM1:2	+ Ha, b, c, of all in G.p Place that
	(an+bn), (bn+cn), (cn+dn) au in G.p
	(CLASSTIME)

	Topic :
	525 (C(an No: 3) (2)
(VS	91cm. a, b, c,d au in GP
	UE and bear and and
	let $a=a$, $b=aa$, $c=aa^2$, $d=aa^3$
	Tip (27+17) (17 (27) (N (18) 24
	I'l (an+bn), (bn+cn), (cn+dr) au in ap
	$ie (b^n + c^n)^2 = (a^n + b^n) \cdot (c^n + d^n)$
	$\frac{dn}{dn}$ $\left(\frac{b^n+c^n}{b^n+c^n}\right)^{\frac{n}{2}}$
	$= (a^{n} + a^{n} + a^{n})^{2}$
	$= a^{2n} z^{2n} \left(1 + z^{n}\right)^{-1}$
	RN $(a^n+b^n)\cdot (c^n+d^n)$
	$=$ $(a^n + a^n x^n) \cdot (a^n x^{2n} + a^n x^{3n})$
	$= a^n (1+1^n) \cdot a^n x^n (1+1^n)$
	2n 2n/ 2
	$= \frac{a^{2n} \cdot 1^{2n} (1+x^{n})^{2}}{c((ay Lhs = Rhs))}$ $= \frac{(a^{n} + b^{n})}{(b^{n} + c^{n})} (c^{n} + d^{n}) au in Gp part$
	clay Lhs = Rhs
	: (an+1), (bn+1), (cn+dn) au in sp flored
OM ?	Such that $f(1)=3$ and $\frac{2}{x}=f(x)=120$. Sind try value of $x=1$
	Such that f(1)=3 and \(\frac{2}{2} f(x) = 120.
	and try value of n. x=1
Sa,	
	91m f(x+y) = f(x). f(y)
	f(i)=3
	= f(x)=120
X T	MEI PCIPELLE
	f(1) + f(2) + F(3) +
	CLASSTIME"

	Topic:
	Now f(2) = f(1+1) = f(1).f(1) = 3x3 = 9
	$f(3) = f(1+2) = f(1) \cdot f(2) = 3 \times 9 = 27$
	·- elyaha becomy
	3+9+27+ ntan = 120
	$\alpha \rho = 3, \gamma = 3, S_{\eta} = 120$
	$a(3^{n}-1) = 120$
	8-1
	$=3(3^{n}-1)=120$
	2
	$= 80$ $= 3^{9} - 1 = 240 = 80$
	3
	$-8 3^{\prime\prime} = 81$
	= 3 ⁿ =(3) ^y
	=> [n=4] An
OM)=	1 = y a & b au try look of x2-3x+p=0 and c, d au look of x2-12x+9=0 whey 9, b, c, d form a G.P plan that (2+p): (2-p)= 17:15
	c,d au lock of x -12x + 9=0 whey 9, b, c,d
	form a G.B plan that (2+p): (2-p)= 17:15
5012	
	(·) ath lown y x2-3x+6=0
	9+b=3
	ab = p
	(·) CZ d rom of x2-12x+2=0
	(1d = 12
	cd = 2
	(\cdot) $a_{2}b_{3}c_{1}c_{1}c_{2}$ $a_{3}b_{3}c_{1}c_{2}$
	$u-a=a$, $b=au$, $c=au^2$, $d=au^3$
7.1	(·) 9+P = 1+
	2-P IY

Topic:	(4)
tany. Ins 2+12	
L +	
$= \frac{cd + ab}{cd - ab}$	
-(a1)(a1) + (a)(a1)	
(a1)(a1)(a1) - (a)(a1)	
(al) (u) (u)	
= a285 + a2e	
$a^2 g^5 - a^2 2$	
$= a^{2} (8^{4} + 1)$	
a/(84-1)	
7 6 1 1 8 9 1 1	
2+b - 8+1 3-b - 84-1	
uchav = 3 & (+d=12)	
a + au = 3 & $au' + au' = 12$	•
$a + a_1 = 3$ & $a_1^2 + a_1^3 = 12$ $a(1+1) = 3$ & $a_1^2(1+1) = 12$ And then equate	
63/11/	
612 (1+A) -12	
$\frac{y(1)x^{2}}{2}$	
X = Y = (1 = 12)	
5+b (+1)41 - 16+1 17	
$\frac{7-b}{9-b} = \frac{12}{121} + \frac{1}{16-1} = \frac{12}{15}$	
:- (9+6): (8-b) = 17:15 Am	
	CLASSTIME"

	Topic:
ON.	Find the sum of the series up to n-turn
	8+88+888+ntam.
Solv	let 5n = 8 + 88 + 888 + ntan
-	Let 5n = 8 + 88 + 888 + nfan Sn= 8 (1+11+ 111+ nfan)
	= 8 [9+99+999 + nHn]
	$= \frac{8}{9} \left((10-1) + (10^2-1) + (10^3-1) + n \ln \frac{1}{9} \right)$
	$= 8 \left((10+10^2+10^3+nten) - (1+1+1+ntm) \right)$ $+ 6p : a=10, 8=10$
	$=\frac{8}{9}\left[10\left(10^{9}-1\right)-9\right]$
	7
	$5n = \frac{8}{61} \left[10^{n+1} - 10 - 9n \right] \Delta_{y}$
	81 10 -10 -9n Jong
Di 6	a find the sum to n tyme
WA-0	+ find fur sum to n termy 0.6 + 0.66 + 0.666 + n term.
201,	$\frac{hr}{sn} = \frac{0.6 + 0.66 + 0.666 + nh}{5n}$
	n = l
	= \(\left(0.9 + 0.99 + 0.999 + n \left\)
	= = = (1-0.1) + (101) + (1001) +nh
	= 3 ((1+1+1 nfn) - (0.1+0.01 + 0.001 +nk))
	= 2 (n - (1 + 1 + 1 + nh)]
	3 [10 102 103
	Kup: a=10; 18 8= 10<17
wind.	CLASSTIME'

	Topic:	(6)
	$\frac{1}{2}\left(n-a(1-s^n)\right)$	
	3 1-1	
	= 3 (n- 10 (1- 10n))	
	1-76	
	$=\frac{2}{3}\left(n-t_{0}\left(1-t_{0}\right)\right)$	
	To J	
	Sn = 2 (9n - 1 + fn) Am	
	27	
ON. 7	* The Sum of two numbers as 6 times	their
	geometric mean show that the num	bus au
	The Sum of two numbers as 6 times geometre (mean show that the num in the satio (3+252): (3-252)	
Sory	lir fue numbers au a & b	
	$\frac{91 \text{un}}{=} \frac{0}{4b} = 6\sqrt{9b}$	
	a+b=3	
	25 T	¥
NOT	They compared to	$\left(\begin{array}{c} N+D \\ N-D \end{array}\right)$
	=> a+b + 256b = 3+1	
	$a+b-2\sqrt{a}b \qquad 3-1$	
	$\frac{(\sqrt{9})^2 + (\sqrt{5})^2 + 2\sqrt{9}\sqrt{5}}{(\sqrt{9})^2 + (\sqrt{5})^2 - 2\sqrt{9}\sqrt{5}} = 2$	
	(sg)2+(s5)259s	
	- (Ja + 15)2 _ ~	
		CLASSTIME"

	Topic:
	$\frac{1}{\sqrt{6}-\sqrt{6}} = \pm \sqrt{2}$
	gain (CED)
	$= \frac{2\sqrt{9}}{2\sqrt{5}} - \frac{1}{\sqrt{5}} \left(\sqrt{5} - 1 \right)$
	Muaij bohnsidus $\frac{g}{2} = \frac{2+1+2\sqrt{2}}{2+1-2\sqrt{2}}$
	: a:b = (3+21/2): (3-21/2) An
0 M-8	a one b seepectively, and if P is the floduct of n terms, pron that $p^2 = (ab)^n$
500	$\frac{9149}{an = b}$
	$\Rightarrow q_1^{n-1} = b$ $\Rightarrow s^{n-1} = b$
	$P = a \cdot a_1 \cdot a_2 \cdot \dots \cdot a_n $
	$P = a^{n} x^{1+2+3(n-1)} \qquad \begin{cases} 1+2+3+\cdots n = n(n+1) \\ (+n-1)^{2} - \cdots + (n-1)^{2} - \cdots + (n-1)^{$
	CLASSTIME'

	Topic:
	794-44 p2.Rn
	$= \left[a^{n} \cdot \binom{n(n-1)}{2}\right]^{-1} \cdot \left[1/8^{n-1}\right] \cdot 2$
	Ja (1-1) An
	$\left(2n n(n-1)\right)$, $\left(2n 12n n\right)$
	= 9.1
	$= \frac{n}{a} \frac{n^2 - x + x - y}{x^2 - x^2 - y}$
	$=\frac{n}{q} \frac{n^2-x+x-y^2}{1-1}$
	$=a^n \cdot \left(\frac{n-1}{n-1}\right)^n$
	$= \left(\frac{q \cdot \left(\frac{q^{n}-1}{1-1}\right)}{1-1}\right)^{n}$
	$=5^{\prime\prime}$
	= Ry prod
•	
A TOTAL OF THE PARTY OF THE PAR	

CLASSTIME"

	Topic:
	- Sequence 2 sayes -
ONL	Many Kenny of My GP 3, 3, 3, 3,
	an needed to give the sum 3069 ? Ans n=10
ON12	The Scenny first three terms y a GP is 13 and Wheir product is -10- Find the
	T2 common satio and the terms
	Ans 1=-3, -4 tem 4, -1, 3 & 3, -1, 4
	Mint Use Selection y turn q, a, ar
QW 3	+ find tu sum y squence 7,77,777,ntermy
	* Find tu sum y sequence 7,77,777, 777,ntermy Am sn= 7 [10n+1 _ 10-9n]
Q44 4 -	Insert thru numbus between 1 and 256,
	so that the Sesulting septience as a GP
	ANS 4, 16, 64
On. 5	au 10 and 8 lespectrely. Find the numbers
046	find four numbers forming a G-P en which the third term is grater than the first term by 9, and try second term as greater than the
	and try second term is grater than the
	ym tym by 18.
	ANS 3, -6, 12, -24
QM. 7	y 9,5,c,d aurn GP show that
	(92+b2+c2)(B+c2+d1) = (96+b(+cd))
	(CLASSTIME)

Topic:
$(\omega \cdot s, s)$
ON8 Tothe 4th, 10th 2 16th term of a Cop are N, y and Z lepichely 8how that N, Y, Z are in 60
My ond Z repectively show man
and their peduct is I. Find the
Common satro and tru terry
AM 2,1,5 (01) 5,1,2
On 10 to The sumy thru ferm in 60p is 56.
If we subtract 1, 7, 21 From they numbers
en that order we obtain on A-P.
Find for numbers
ANS 8, 16, 32
DALLIS The Robert AM and CoM of her bosibar
On 11 The satisf A.M and GM of two positive
nambus a ond b is m=n.
Snav frat a=b = (m+ \square-n^2): (m-\square-n^2)
MINT US (20 (compondendo) & dividendo
(two times)
$0^{1/2}$ $\frac{7}{6}$ $\frac{a+bx}{a-bx} = \frac{b+cx}{b-cx} = \frac{c+dx}{c-dx}$, then
Snow that a,b,c 2d au in GP
Him - Consider eyeally one by one
2 han do cress mentpy
(CLASSTIME)