- SUBJECT INDEX
- ANALOG DEVICES PARTS INDEX

Subject Index

A	with MagAmps, 3.24-25
AA Alkaline Battery Discharge	multitone testing, diagram, 2.30
Characteristics, 10.14	AD6644, 14-bit ADC, 9.30-31
Absolute value amplifier, 3.29	AD7722, 16-bit ADC, 10.15
Active and Passive Electrical Wave Catalog,	AD7725:
2.42	16-bit sigma-delta ADC
AD185x, multibit sigma-delta DAC, 4.11	with on-chip PulseDSP filter, 6.2
AD260/AD261:	programmable digital filter, 9.40-42
digital isolators	block diagram, 9.41
key specifications, 10.38	Systolix PulseDSP, 9.41
schematic, 10.38	sigma-delta ADC, with Systolix PulseDSP
AD820, op amp, 3.8-9	processor, 3.19-20
AD1819B SoundPort, codec, for	AD7730, sigma-delta ADC, 10.15
audio/modem, 9.37-38	AD7731, sigma-delta ADC, 10.15
AD1836, mixed-signal IC, codec, 9.38-39	AD7853/7853L:
AD1852, sigma-delta audio DAC, 3.17	12-bit ADC, block diagram, 8.16
AD1853:	serial ADC interface, 8.17
dual 24-bit DAC, 4.12	AD7853L:
sigma-delta audio DAC, 3.17	serial clock, 8.15-17
AD1854, sigma-delta audio DAC, 3.17	output timing, 8.16
AD1877:	AD7854/AD7854L:
16-bit sigma-delta ADC	12-bit ADC
characteristics, 3.16	block diagram, 8.5
FIR filter characteristics, 3.17	interface diagram, 8.6-7
AD189x, sample rate converters, 6.35	key interface timing comparisons, 8.5-6
AD77xx, 24-bit sigma-delta ADC, low	AD7858/59:
frequency/high resolution, filters,	12-bit ADC, 3.8-9
3.17	SAR ADC, circuit, 3.8-9
AD77XX-Series Data Sheets, 3.33	AD7892, 12-bit SAR ADC, 10.15
AD773x, 24-bit ADC, with PGA, 1.5	AD9042:
AD977x, 14-bit TxDAC, 4.6	12-bit ADC, NPR, diagram, 2.32
AD983x, 10-bit DDS system, 4.16	12-bit wideband ADC, high SFDR,
AD985x, 14-bit TxDAC, 4.6 AD5322:	2.27-28
AD5322: 12-bit dual DAC	AD9201, 10-bit, dual-channel ADC, 8.22-23 AD9220:
block diagram, 8.18	12-bit ADC, SINAD and ENOB, diagram, 2.25
power-down feature, 8.17 serial interface, 8.18-19	12-bit CMOS ADC, latency or pipeline
AD5340:	delay, 3.27
12-bit parallel input DAC	AD9221, 12-bit CMOS ADC, latency or
block diagram, 8.10	pipeline delay, 3.27
interface diagram, 8.12	AD9223, 12-bit CMOS ADC, latency or
wait states, 8.11	pipeline delay, 3.27
AD6521, voiceband/baseband mixed-signal	AD9288-100, 8-bit dual ADC, functional
CODEC, 9.21-22	diagram, 3.32
AD6522, DSP-based baseband processor,	AD9410, 10-bit flash ADC, interpolation,
9.21-22	diagram, 3.23
AD6523, Zero-IF Transceiver, 9.23	AD9761, 10-bit, dual channel DAC, 8.22-23
AD6524, Multi-Band Synthesizer, 9.23	AD9772:
AD6600, diversity receiver ADC, 9.30	14-bit interpolating DAC, 9.31
AD6622, quad digital TSP, 9.30-31	14-bit oversampling interpolating
AD6624, quad digital RSP, 9.30-31	TxDAC, 4.9-10
AD6640:	block diagram, 4.10
12-hit ADC	14-bit TyDAC 46

diagram, 4.6	dynamic performance analysis,
SFDR, 2.39-40	diagram, 2.17
TxDAC 14-bit DAC, 9.30-31	errors, 2.15
AD9850, DDS/DAC synthesizer system,	quantization noise, diagram, 2.16
diagram, 4.16	input/output memory select, 8.2
AD73322:	low power/low voltage, design issues, 3.1
block diagram, 8.19-20	memory address bus, 8.2
simplified interface timing, 8.21	memory read, 8.2
AD73422, dspConverter, specifications, 8.22	memory select line, 8.2
AD20msp430:	non-ideal 3-bit, transfer function,
baseband processing chipset, 9.21-23	diagram, 2.13
components, 9.22-23	non-monotonic, 2.12
construction, 9.21	normalized signal to reference, 2.10
Adams, R.W., 3.33, 3.34	output, quantization, 2.7
Adaptive filter, 6.35-39	output enable/read, 8.2
basic concept, 6.35-36	oversampling ratio, 3.11
speech compression and synthesis, 6.36	pipelined, 3.1
ADC, 1.2	latency or pipeline delay, 3.25
1-bit, comparator, 3.11	timing, diagram, 3.7
3-bit unipolar, transfer characteristics,	practical
2.8-9	distortion and noise, 2.19-20
10-bit, theoretical NPR, 2.32	noise and distortion sources, 2.20
11-bit, theoretical NPR, 2.32	processor interrupt request line, 8.1-2
12-bit	program memory select, 8.2
pipelined architecture, diagram, 3.7	quantization error, 2.9-10
theoretical NPR, 2.32	quantization uncertainty, 2.9-10
24-bit, with PGAs, 1.5	quantized output, 2.9, 2.10
analog bandwidth, 2.25-26	ripple, 3.1
analog input, 2.10	sampling clock jitter, 2.33
bit-per-stage, 3.1	sampling frequency, versus antialiasing
boot memory select, 8.2	characteristics, 2.5
communications application, SFDR, 2.26	SAR, 3.3
conversion complete output, 8.1-2	external high frequency clock, 3.6
conversion process, 2.2	fundamental timing, 3.5
convert start, 8.1-2	resolutions, table, 3.5
data memory address, 8.4	typical timing, 3.5
data memory select, 8.2	sigma-delta, 3.1-2, 3.9-21
digital output, grounding, 10.22-24	circuitry, 3.9-10
DNL errors, 2.22	as oversampling converter, 2.6
DSP applications, 3.1-35	programmable digital filter, 9.40-42
high speed architectures, 3.2	VLSI technology, 3.9
sigma-delta, 3.2	see also Sigma-delta ADC
successive approximation, 3.1-9	sign-magnitude, use, 2.10
types, 3.1	single-tone sinewave FFT testing, 2.18
dynamic performance, quantification,	SNR decrease with input frequency, 2.33
2.21	static transfer functions, DC errors,
ENOB versus frequency, diagram, 2.26	2.7-14
equivalent input referred noise, 2.20-21	subranging, 3.1
excess DNL, and missing codes, 2.12-13	pipelined converter, 3.6
flash, 3.1	successive approximation, 3.1-9
high speed, pipelined, latency, 3.6, 3.8	basic, 3.3
ideal 12-bit	resolutions, table, 3.5
FFT, noise floor, 2.19	see also SAR ADC
SFDR sampling clock to input	thermal noise, 2.20-21
frequency ratio, 2.18	Address bus, DAC, 8.9
ideal, distortion and noise, 2.15-19	ADI DSP collaborative, 7.54
ideal N-bit	122201 001400140110, 1.01

ADI modified Harvard architecture, in	on-chip peripherals, 7.14-23
microprocessor, 7.6-7	byte DMA port, 7.17
ADI SHARC floating point DSPs, 7.26-30	internal DMA, 7.17
ADMC300, motor controller, 9.34	SPORTs, 7.16
ADMC331, motor controller, 9.34	read-cycle, timing diagram, 8.3
ADMC401, motor controller, 9.34	serial ports
ADMCF326, motor controller, 9.34	block diagram, 8.13
ADMCF328:	features, 8.13
motor controller, 9.34	operation, 8.12-14
block diagram, 9.35	SPORTs, 7.16
ADP1148:	ADSP-218x:
synchronous buck regulator, 10.46-50	architecture, 7.15
circuit, 10.47-48	byte memory interface, 7.17
driving ADP3310	DSP, EZ-ICE, 7.49
circuit diagram, 10.49	implementation, multi-channel VOIP
waveforms, 10.50	server, diagram, 9.11
filtered output, 10.49	interface with CODEC, 8.20-22
output waveform, 10.47-48	internal direct-memory-access port, 7.16
ADP3310, linear LDO regulator, 10.47,	memory-mapped peripherals, 7.16
10.49-50	modified Harvard architecture, 7.16
ADPCM, adaptive pulse code modulation,	multiple core devices, 7.22
1.2	on-chip peripherals, memory interface,
ADSL, 9.11-16	7.15
advantages, 9.12-13	roadmap, 7.22
block diagram, 9.13	VisualDSP software, 7.52
data transmission capability, 9.15	ADSP-219x:
definition, 9.12	architecture, 7.19
installation advantages, 9.14	code compatibility with ADSP-218x, 7.19
modem, block diagram, 9.15	key specifications, 7.20
modems, three-channel approach, 9.13-14	roadmap, 7.23
ADSP-21ESP202, codec, embedded speech	VisualDSP software, 7.52
processing, 9.36-37	ADSP-2100, core in ADSP-218x
ADSP-21mod870:	architecture, 7.15
digital modem processor, 9.10	ADSP-2100 EZ-KIT Lite Reference Manual,
expanding central office capability, 9.9	7.55, 8.25
in voice-based RAS modem, 9.8-9	ADSP-2100 Family EZ Tools Manual, 7.55,
ADSP-21xx:	8.25
16-bit fixed point DSP core, 7.6-23	ADSP-2100 Family Users Manual, 3rd
arithmetic, signed fractional format,	Edition, 7.55, 8.25
7.23-24	ADSP-2106x:
assembly code for FIR filter, 1.8	characteristics, 7.28
buses, 7.10-11, 7.11	external ports, 7.29
computational units, 7.11-13	host interface, 7.29
core architecture	I/O processor, 7.29
diagram, 7.9	IEEE Standard P1149.1 Joint Test Action
summary, 7.10	Group standard, 7.30
data address generators and program	instruction set, 7.28
sequencer, 7.13-14	internal memory, 7.30
digital filter example, 7.7-10	multiprocessing systems, 7.29
DSP optimized, 7.9	on-chip DMA, 7.30
FIR filter assembly code, 7.8	SHARC processors, 7.26-27
fixed-point DSP, 7.7-8	Super Harvard Architecture, 7.26-28
FIR filter, 6.11-12	ADSP-2106x SHARC EZ-KIT Lite Manual,
assembly code, 6.13	7.55, 8.25
internal buses, 7.10-11	ADSP-2106x SHARC User's Manual, 2nd
internal buses, 7.10-11 internal peripherals, powerdown, 7.18	Edition, July 1996, 7.55, 8.25
memory-write cycle timing diagram, 8.7-8	ADSP-2116x:
memory-write cycle diffing diagram, 0.7-0	111701 -211UA.

32-bit DSP, second-generation, 7.31	Aliasing, 2.2-3
SIMD core architecture, 7.31-36	frequency domain, representation, 2.3
diagram, 7.31	All-pole lattice filter, parameters, from
SIMD DSP, 7.33	speech samples, 6.38-39
SIMD features, 7.32	Alternate framing mode, 8.14
ADSP-2189M:	Aluminum electrolytic capacitor, 10.40-41
69-tap FIR filter, design example, 6.22	Amplifier Applications Guide (1992), 2.43,
75 MIPS DSP	3.35
filter subroutine, 6.12	Amplitude shift keying, POTS, 9.2
throughput time, 6.28	Analog bandwidth, ADC, 2.25-26
75 MIPS processor, 6.20	Analog cellular basestation, 9.27-28
EZ-KIT Lite, 7.47	Analog Devices Inc., 16-bit DSP, roadmap,
fixed-point DSP, 6.1	7.22
key timing specifications, 8.9-10	Analog Devices' Motor Control Website, 9.44
parallel read timing, 8.4, 8.7	Analog filter:
parallel write interface, timing	frequency response, 6.4
specifications, 8.11	popular types, 6.24, 6.27-28
serial port, receive timing diagram,	requirements, 6.3
8.14-15	for oversampling, 4.10
system interface, full memory mode,	versus digital, 6.3
diagram, 8.24	Analog front end, 8.19-22
ADSP-21000 Family Application Handbook,	Analog receiver design, 9.26-27
5.25, 6.40	Analog return current, 10.16-17
ADSP-21060L SHARC, DSP output rise and	Analog signal:
fall times, 10.58	characteristics, 1.1-2
ADSP-21065L:	discrete time sampling, 2.2-7
connected to ADC and DAC, 8.22-23	diagram, 2.1
EZ-KIT Lite, 7.48	normalized ratio, 2.9
SHARC, DSP benchmarks, 7.34	quantization, 2.2
ADSP-21065L SHARC EZ-LAB User's	diagram, 2.1
Manual, 7.55, 8.25	sampling, aliasing, 2.3
ADSP-21065L SHARC User's Manual, Sept.	Analog superheterodyne receiver, 9.27
1, 1998, 7.55, 8.25	Andreas, D., 3.33
ADSP-21160:	ANSI/IEEE Standard 754-1985, floating
16-channel audio mixer, SIMD	point arithmetic, 7.24-25
architecture, 9.40	Anti-imaging filter, 6.2
32-bit SHARC, key features, 7.32	Antialiasing filter, 6.2
DSP, BGA package locations, 10.54-55	baseband sampling, oversampling, 2.5
integrated peripherals, 7.32	requirements, relaxing, 2.6
SIMD/multiple channels, DSP	specifications, 2.4-5
benchmarks, 7.34	Aperture delay, 2.33-35
SISD, DSP benchmarks, 7.34	Aperture jitter, 2.33-35, 10.25
ADSP-21160 SHARC DSP Hardware	Apex-ICE, 7.48-49
Reference, 7.55, 8.25	USB simulator, 7.49
ADSP-21160M, EZ-KIT Lite, 7.47	Application of Digital Signal Processing in
ADSP-TS001:	Motion Control Seminar (2000),
features, 7.40	9.44
TigerSHARC	Architecture:
16-bit fixed-point DSP, 5.18-19	computer
architecture, 7.36-44	ADI modified Harvard, 7.6
benchmarks, 7.44	Harvard, 7.6-7
diagram, 7.38	Von Neumann, 7.6
ADuM1100A, digital isolator, 10.36-37	Arithmetic logic unit:
Advanced mobile phone service see AMPS	in DSP, 7.4
Agilent HCPL-7720, 10.36	features, 7.11
Aiken, Howard, 7.7	Armstrong, Edwin H., Major, 9.27
Alfke, P., 10.14	

The ARRL Handbook for Radio Amateurs, 4.17	Block floating point, in FFT, 5.17 Boot memory select, ADC, 8.2
Asymmetric digital subscriber line see	Bordeaux, Ethan, 7.55, 10.1
ADSL	Boser, B., 3.33
Audio system, synthesized, 1.3	Boyd, I., 9.43
Auto-correlation, 1.3	Branch target buffer, 7.39, 7.41
Automotive/home theater, using 32-bit	Brannon, Brad, 9.43
SHARC, 9.39	Brokaw, Paul, 10.34
_	Bryant, James, 2.1, 3.1, 3.9, 4.1, 10.15,
В	10.34
Backplane ground plane, 10.18	Buck regulator, 10.46-50
Baines, Rupert, 9.43	Buffer register, 10.22-23
Baker, Bonnie, 10.34	Bus:
Ball grid array, 10.54	data memory address, 7.10
Band filter, 10.46	data memory data, 7.10
Bandpass filter:	data transfer, 7.10-11
design, 6.23-24	internal result, 7.10-13
from lowpass and highpass filters, 6.24	program memory address, 7.10
Bandpass sampling, 2.6-7	program memory data, 7.10
Bandpass sigma-delta ADC, undersampling,	Buss wire, 10.16
3.18	Butterfly, 5.11-12
Bandstop filter:	DIF FFT, 5.15
design, 6.23-24	DIT FFT, 5.12
equivalent impulse response, 6.23	Butterworth filter, 4.9, 6.24, 6.27-28
from lowpass and highpass filters, 6.24	characteristics, 2.5
Baseband data signal, POTS, 9.2	Byrne, Mike, 10.15
Baseband sampling:	
antialiasing filter, 2.4-6	\mathbf{C}
oversampling, 2.5	Cage jack, 10.16
Nyquist zone, 2.6	Calhoun, George, 9.43
Basestation, block diagram, 9.30	Capacitive coupling, doublet glitch, 2.37
Basis function, 5.3	Capacitor:
correlation, DFT, 5.4	equivalent circuit, pulse response, 10.43
BDC binary coding, data converters, 2.10	finite ESR, 10.42-43
Bennett, W.R., 2.42	parasitic elements, 10.43
Bessel filter, 6.24, 6.27-28	types, 10.40-42
Best straight line, 2.11-12	Card entry filter, 10.46
Best, R.E., 4.17	Carrier, 2.23
Bilinear transformation, 6.28	Cascaded biquads, 6.25
Binary ADC:	Cauer filter, 6.27-28
3-bit	CCD image processing, 1.5
diagram, 3.29	CDMA, digital telephone system, 9.17
input and residue waveforms, 3.29	Cellular phone:
single-stage, diagram, 3.28	basic system, diagram, 9.16
Binary coding, data converters, 2.10	frequency reuse, diagram, 9.16
Binary DAC, 5-bit, architectures, diagram,	Ceramic, capacitor, 10.40-42
4.4	
Bingham, John, 9.43	Charpentier, A., 3.33 Chebyshev filter, 1.6, 6.2-3, 6.24, 6.27-28
Bipolar converter, types, 2.10	Chestnut, Bill, 10.39
Biquad, in IIR filter, 6.25	Circular bufforing
Bit reversal:	Circular buffering:
for 8-point DFT, 5.14	DSP application, 7.5
algorithm, 5.11-14	DSP requirement, 7.5
Bit-per-stage ADC, 3.27-32	in FIR filter, 6.10
diagram, 3.27	FIR filter, 7.5
Blackman window function, 5.22-23	in FIR filter, output calculation, 6.11
Blackman, R.B., 2.43	FIR filter pseudocode, in DSP, 7.8

Clelland, Ian, 10.56	chip select, 8.9
Clock distribution:	conversion process, 2.2
end-of-line termination, diagram, 10.62	current output, diagram, 4.2
source terminated transmission lines,	in direct digital synthesis, 4.9
diagram, 10.63	distortion, specification, 2.38
Cluster multiprocessing, 7.34	DNL errors, 2.22
SHARC family, 7.36	double-buffered, latches, 4.7
CMOS IC, secondary I/O ring, diagram, 10.9	DSP applications, 4.1-17
CMOS IC output driver, configuration,	dynamic performance, 2.35-41
10.3-4	high-speed, 4.9
Code division multiple access see CDMA	interpolating, 4.9-10
Code transition noise, and DNL, effects,	interrupt request, 8.9
2.14	ladder networks, 4.1
Codec, 1.5, 8.1	logic, 4.7-8
interfacing, 8.19-22	low distortion, architectures, 4.3-7
sampling rate, 8.20	memory select, 8.9
voiceband/audio applications, 9.36-40	midscale glitch, diagram, 2.37
CODEC and DSP, in voiceband and audio,	monotonicity, 2.12
9.36-40	non-ideal 3-bit, transfer function,
COder/DECoder, 8.1	diagram, 2.13
Coding, types, 2.10	non-monotonic, and DNL, 2.12
Coleman, Brendan, 2.43	output, quantization, 2.7
Colotti, James J., 2.43	reconstruction, output, 2.41
Comfort noise insertion, 9.20	segmented voltage, diagram, 4.3
Communications, external port, versus link	settling time, applications, 2.38
port, 7.35	sigma-delta, 4.11-12
Computational unit:	1-bit, in CD players, 4.9
arithmetic logic, 7.11	sin(x)/x frequency rolloff, 2.41
multiplier-accumulator, 7.11-12	static transfer functions, DC errors,
shifter, 7.11-12	2.7-14
Computer, general purpose, Von Neumann	structures, 4.1-3
architecture, 7.6	transitions, with glitch, 2.36
Computing applications:	voltage output, Kelvin divider, 4.1
CISC, 7.2	write, 8.9
data manipulation, 7.1	Damping resistor:
mathematical calculation, 7.1	EMI/RFI minimization, 10.60
RISC, 7.2-3	series, for SHARC DSP interconnections,
tabular summary, 7.1	10.60
Concentrator, 9.7	DashDSP, motor controllers, 9.34-35
Connelly, J.A., 10.34	Data address generator:
Convert start, ADC, 8.1-2	features, 7.13
Convolution, 1.3	mode status register, 7.13
loop, 6.12	Data converter:
Convolving, filter responses, 6.23	analog bandwidth specification, 2.26
Cooley, J.W., 5.10, 5.25	applications, 2.8
Cosier, G., 9.43	DC errors, 2.10, 2.10-11
Coussens, P.J.M., 9.43	DC performance, 2.15
Crystal Oscillators, 10.34	gain error, diagram, 2.11
- ,	integral and differential non-linearity
D	distortion effects, 2.22-23
DAC, 1.2	offset error, diagram, 2.11
3-bit switched capacitor, diagram, 3.4	sampling and reconstruction systems, 2.8
3-bit unipolar, transfer characteristics,	Data manipulation, by computer, 7.1
2.8-9	Data memory address, ADC, 8.4
address bus, 8.9	Data memory address bus, 7.10
binary weighted, 4.1	Data memory buffer, circular, 7.5
in CD player, use of interpolation, 6.33	Data memory data bus. 7.10
THE COLD DIA VEL. MEE OF THE CLOUDANIUM, U.O.O.	Dava Incinui y data Dub. 1.10

Data memory select, ADC, 8.2	sampled time domain signal, 5.3
Data reduction algorithms, in signal	versus FFT, 5.11
processing, 1.2	DIF:
Data sampling, 2.1-44	butterfly, 5.13-14
block diagram, 2.1	decimation-in-frequency, 5.13-14
distortion and noise, 2.15-19	Differential non-linearity:
FFT, 2.1-2	DNL, 2.12
quantization error, 3.10	from encoding process, 2.22
quantization noise, 3.10	DIGI-KEY, 10.56
real-time system, 2.1	Digital cellular basestation, 9.28-31
Data scrambling, in sigma-delta DAC, 4.11	Digital cellular basestations, advantages,
Data-flow multiprocessing, 7.34	9.28
Dattorro, J., 3.33	Digital cellular telephone, 9.16-20
DC error, types, 2.10	GSM system, 9.18-20
DDS, 4.12-16	Digital communications services see DCS
basic architecture, 4.13	Digital correction, for subranging ADC, 3.24
code-dependent glitches, 2.38	Digital filter, 6.1-39
DAC, 4.3	coefficient values, 6.1
distortion, contributors, 2.39	design procedure, 6.1
problems, 4.13	diagram, 6.2
system, flexible, diagram, 4.14	filter coefficient modification, 6.35
tuning equation, 4.15	frequency response, 6.4
Dead time, DAC settling time, 2.35	general equation, 6.25-26
Decimation, 3.10, 3.11	lattice, 6.5
multirate filter, diagram, 6.31	moving average, 6.5-10
Decimation-in-frequency, DIF, 5.13-14	programming ease in ADSP-21xx, 7.7-8
Decimation-in-time, DIT, 5.11	real-time, 6.1, 6.3
Decoupling, localized, diagram, 10.52	processing requirements, 6.4
Decoupling points, diagram, 10.24	requirements, 6.3
Deglitching, 3.25	types, 6.5
Del Signore, B.P., 3.33	versus analog, 6.3
Delta phase register, 4.14	Digital filtering, 3.10
Designing for EMC (Workshop Notes), 10.65	Digital FIR filter, 1.6
DFT, 5.1-8	Digital isolation:
8-point, 5.9, 5.12	by LED/photodiode optocouplers, 10.36
using DIT, 5.12-13	by LED/phototransistor optocouplers,
applications, 5.2	10.35
basis functions, 5.3	Digital isolation technique, 10.35-38
butterfly operation, 5.11-12	Digital isolator, 10.36-38
characteristics, 5.4	Digital mobile radio, standards, 9.18
complex, 5.5	Digital receiver, characteristics, 9.27-28
equations, 5.6	Digital return current, 10.16-17
from real, 5.7	Digital signal, characteristics, 1.1-2
input/output, 5.6 real/imaginary values, 5.7	Digital Signal Processing Applications
•	Using the ADSP-2100 Family, 5.25,
equations, real versus imaginary, 5.8	6.40, 9.43
expansion, 5.9-10	Digital signal processor see DSP Digital system, with ADC, quantization
FIR filter, 6.15 fundamental analysis equation, 5.3	noise, 2.31
	Digital telephone system, CDMA and
inverse, 5.5 output spectrum, 5.3	TDMA, 9.17
real, 5.5	Digital transmission, using adaptive
·	equalization, 6.37
input/output, 5.6 real versus imaginary	Direct data scrambling, in sigma-delta
equations, 5.7-8	DAC, 4.11-12
output conversion, 5.8	Direct digital synthesis see DDS
relationship, 5.7-8	Direct digital synthesis see DDS Direct form 1 biquad filter, diagram, 6.26
relationship, 5.7-6	Direction in a piquau inter, diagram, 0.20

Direct IF to digital conversion, 2.6-7	interfacing I/O ports, analog front ends,
Direct memory access, DSP controller, 8.22	and CODECS, 19-22
Direct-memory-access see DMA	internal phase-locked loops, grounding,
Discontinuous transmission, 9.18-19, 9.20	10.29-30
Discrete Fourier transform see DFT	kernel, 7.1-2
Discrete time Fourier series, 5.1	optimization, 7.6
Discrete time sampling, 2.2	output rise and fall times, diagram, 10.58
analog signal, 2.2-7	parallel interfacing, 8.1-12
Distortion, DAC performance, 2.35-41	block diagram, 8.8
Distortion and noise, practical ADCs,	reading data from memory-mapped
2.19-20	peripheral ADCs, 8.1-7
DIT:	to external ADC, block diagram, 8.2
decimation-in-time, 5.11	writing data to memory-mapped DACs,
FFT, algorithm, 5.11, 5.13	8.7-12
Dither signal, 2.18	practical example, 1.5-8
DMA, internal, in ADSP-21xx, 7.17 DNL:	requirements, 7.3-6
ADC and DAc errors, 2.22	circular buffering, 7.5 dual operand fetch, 7.4-5
converter error, definition, 2.12	extended precision, 7.4
differential non-linearity, 2.12	fast arithmetic, 7.4
Doernberg, Joey, 2.43	summary, 7.6
Double precision, 64-bit, floating point	zero overhead looping, 7.5-6
arithmetic, 7.25	sampled data, block diagram, 2.1
Double-buffered DAC:	serial interfacing, 8.12-19
advantages, 4.7-8	serial ADC, 8.14-19
diagram, 4.8	serial DAC, 8.17-19
latches, 4.7	system interface, 8.23-24
Doublet glitch, 2.37	using VLSI, 1.4
DSP, 1.2, 7.1-3	voiceband/audio applications, 9.36-40
16-bit, fixed-point family, history, 7.20-22	DSP Designer's Reference (DSP Solutions),
32-bit, second-generation, 7.31	7.55, 8.25
ADSP-21xx, characteristics, 1.6-8	DSP Navigators: Interactive Tutorials about
analog versus digital, 1.4-5	Analog Devices' DSP
options, diagram, 1.5	Architectures, 7.55
applications, 9.1-44	DSP Navigators: Interactive Tutorials about
summary, 9.42	Analog Device's DSP
arithmetic	Architectures, 8.25
fixed-point versus floating point,	Dual operand fetch:
7.23-26	DSP application, 7.4-5
fixed-point versus floating-point,	DSP requirement, 7.4-5
7.23-26	Duracell MN1500 "AA" alkaline battery,
characteristics, 7.2	discharge characteristics, 10.2
code, compilation, 7.45	Dynamic performance analysis, ideal N-bit
and computer applications, 7.1	ADC, 2.17
core voltage, 10.2	Dynamic range compression, 1.4
development tools, 7.46	
dot-product, 7.2	${f E}$
efficiency, 7.18	Echo, voiceband telephone connection, 9.2
evaluation and development tools,	Eckbauer, F., 3.33
7.45-54	EDN's Designer's Guide to Electromagnetic
VisualDSP and VisualDSP++, 7.51-54	Compatibility, 10.65
fundamental mathematical operation, 7.3	Edson, J.O., 2.42, 3.34
grounding, 10.29-30	Effective aperture delay time, 2.34
hardware, 7.1-55	diagram, 2.35
high density, localized decoupling,	Effective number of bits see ENOB
10.53-55	Eichhoff Electronics, Inc., 10.57
interfacing, 8.1-25	Electrolytic capacitor:

characteristics, 10.40-41	FIR filter, 6.15
impedance versus frequency, diagram,	first Nyquist zone aliases, 2.4
10.44	floating point DSP, 5.18
Elliptic filter, 6.24, 6.27-28	frame-based systems, 5.18
characteristics, 2.5	hardware implementation and
Embedded speech processing, 9.36-37	benchmarks, 5.17-18
EMC Design Workshop Notes, 10.56	noise floor determination, 5.19
End point, 2.11-12	processing gain, 2.18-19, 5.20
Engelhardt, E., 3.33	processor, 5.17
ENOB, 2.21, 2.24-25, 3.10	radix-2, 5.16
ADC, effective resolution, 3.10	radix-2 complex, hardware benchmark
definition, 3.10	comparisons, 5.18
Equiripple FIR filter design, program	radix-4, DIT butterfly, 5.16-17
inputs, 6.19-20	real-time
Equivalent input referred noise, thermal	considerations, 5.20
noise, 2.20-21	DSP requirements, 5.18-20
Error voltage, 10.17	processing, 5.19
Euler's equation, 5.3	sinewave
Extended precision:	integral number of cycles, 5.21
DSP application, 7.4	nonintegral number of cycles, 5.22
DSP requirement, 7.4	spectral leakage and windowing, 5.21-24
floating point arithmetic, 7.25	twiddle factors, 5.9-10
External clock jitter, 10.25	versus DFT, 5.11
External port, versus link port, in	Film capacitor, 10.40-42
communications, 7.35	Filter:
EZ-ICE, in-circuit simulator, 7.48	analog, for oversampling, 4.10
EZ-KIT Lite, 7.45-46, 7.53	analog versus digital, 6.2-4
EZ-LAB, evaluation board, 7.45	frequency response comparison, 1.7
	antialiasing, specifications, 2.4-5
F	band, 10.46
Fair-Rite, 10.44-46	bandpass, design, 6.23-24
Fair10.Rite Linear Ferrites Catalog, 10.56	bandstop, design, 6.23-24
Fairchild 74VCX164245, 16-bit low voltage	baseband antialiasing, 2.4-6
dual logic	Butterworth, characteristics, 2.5
translators/transceivers, 10.10-13	capacitor, types, 10.40
Faraday shield, 10.22	Chebyshev, 1.6
Fast arithmetic:	corner frequency, 2.4
DSP application, arithmetic logic unit, 7.4	design, and FFT, 5.1
DSP requirement, 7.4	digital, diagram, 1.6
Fast Fourier transform see FFT	digital FIR, 1.6
Fast logic, and analog circuits, 10.59	elliptic, characteristics, 2.5
FDMA:	FIR versus IIR, comparisons, 6.30
frequency division multiple access, 1.2	high frequency, 10.51
telephone system, 1.2	high-frequency, ferrites, 10.45
FDMA communications link, NPR testing,	highpass, design, 6.23-24
2.30	impulse convolving, 6.23
Ferguson, P. Jr., 3.34	lowpass, analog versus digital, in
Ferguson, P.F. Jr., 3.33	sampled data system, 1.5-6
Ferrite, 10.44	power supply, 10.39-57
beads, 10.16, 10.20, 10.29, 10.30	rolloff, sharpness, 6.9
impedance, 10.45-46	switching supply, summary, 10.51
suitable for high-frequency filters, 10.45	transfer function, 3.13
FFT, 2.1, 5.1-25, 5.9-17	Filtering, 1.3, 1.4
8-point DIF, 5.15	FilterWizard, compiler, 9.41
8-point DIT algorithm, 5.13	Finite amplitude resolution due to
and DFT, 5.10	quantization, 2.2
DIF, 5.13-14	Finite impulse response see FIR

FIR filter, 6.5-30	Fourier series, 5.1
4-tap, output calculation, via circular	FIR filter design, windowing, 6.17
buffer, 6.11	Fourier transform, 5.1, 6.15
arbitrary frequency response, design,	and time domain signal, 5.2
6.17-18	Fourier, Jean Baptiste Joseph, 5.1
CAD design programs, 6.18-19	FPBW, full power bandwidth, 2.26
characteristics, 6.14	Framing mode, 8.14
circular buffering, 6.10-13	Freeman, D.K., 9.43
in circular buffering, 7.5	Frequency division multiple access, FDMA
circular buffering, fixed boundary RAM,	1.2
6.10	Frequency domain, versus time domain,
coefficients, 6.15	6.13, 6.15
compared with IIR filter, 6.30	Frequency sampling method, FIR filter
computational efficiency increase, 6.32	design, 6.17-18
design	Frequency synthesis, using PLLs and
Fourier series method, with	oscillators, diagram, 4.12
windowing, 6.17	Fu, Dennis, 9.43
frequency sampling method, 6.17-18	Full memory mode, 8.23
fundamental concepts, 6.13	Full power bandwidth, FPBW, 2.26
Parks-McClellan program, 6.18-22	Full-duplex hands-free car kit, diagram,
programming ease in ADSP-21xx, 7.7-8	9.36
windowed-sinc method, 6.16	Fully decoded DAC:
designing, 6.13-24	5-bit, diagram, 4.4
implementation, circular buffering,	diagram, 4.2
6.10-13	C
impulse response, and coefficients, 6.14	G
Momentum Data Systems design	Gain error, 2.10
frequency response, 6.21	Galand, C., 9.43
impulse response, 6.22	Ganesan, A., 3.33, 3.34
step response, 6.21	Gardner, F.M., 4.17
N-tap, general form, 6.9-10 output decimation, 6.32	Gaussian noise, 2.20-21, 2.30 Gaussian-filtered minimum-shift keying,
program outputs, 6.20	9.26
pseudocode, 6.12, 7.7-8	Geerling, Greg, 7.1
simplified diagram, 6.10	General DSP Training and Workshops,
transfer function	7.55, 8.25
frequency domain, 6.15	General purpose aluminum electrolytic
time domain, 6.15	capacitor, 10.40-41
versus IIR filter, 6.30	Gerber files, 10.33
First-order sigma-delta ADC, 3.12	Ghausi, M.S., 2.44
Fisher, J., 3.33	Gibbs effect, 5.1
Fixed-point:	Glitch:
16-bit, fractional format, 7.24	code-dependent, effects, 2.38
DSP arithmetic, 7.23-26	DAC performance, 2.35-41
versus floating point, DSP arithmetic,	definition, 2.36
7.23-26	energy, 2.37
Flash ADC:	and harmonic distortion and SFDR,
10-bit, diagram, 3.23	prediction, 2.39
limited to 8-bits, 3.22	impulse area, 2.37
parallel ADCs, 3.21	Global System for Mobile Communication
diagram, 3.22	see GSM
problems, 3.21	Glue logic, 8.1
Flash converter, 3.21-23	Gold, B., 5.25, 6.40
Floating-point:	Gold, Bernard, 2.44
DSP arithmetic, 7.23-26	Gosser, Roy, 2.42, 3.34
versus fixed point arithmetic, 7.26	Graham, M., 10.14
Folding converter, 3.29	Graham, Martin, 10.34, 10.65

Grame, Jerald, 10.34	Heise, B., 3.33
Gray bit, 3.30	Hellwig, K., 9.43
Gray code binary coding, data converters,	Henning, H.H., 2.42, 3.34
2.10	Higgins, Richard J., 1.9, 2.44, 5.25, 6.40,
Gray, A.H., Jr., 6.40	7.55, 8.25
Gray, G.A., 2.42	High definition television, HDTV, 1.2
Ground loop, 10.20, 10.35	High density DSP:
Ground plane, 10.30	localized decoupling
decoupling high frequency current, 10.15	diagram, 10.53
impedance, 10.20	using BGA packages, 10.54
low-impedance return path, 10.15-16	High Speed Design Techniques (1996), 3.35
printed circuit board, 10.17-18	High speed logic, 10.58-65
Ground screen, 10.19	High-level language support, architectural
Grounded-input histogram, 2.20-21	features, 7.42
Grounding:	High-speed interfacing, 8.22-23
DSP, internal phase-locked loops,	Highpass filter:
diagram, 10.30	design, 6.23-24
mixed signal devices, in multicard	using lowpass FIR, 6.23
system, 10.27-29	Hilton, Howard E., 2.44
mixed signal systems, 10.15-34	Hodges, David A., 2.43
mixed-signal ICs, 10.15	Hofmann, R., 9.43
multiple ground pins, 10.32	Honig, Michael L., 6.40
philosophy, summary, 10.31	Horvath, Johannes, 10.1
points, diagram, 10.24	Host memory mode, 8.23
separate analog and digital grounds,	HP Journal, 2.43-44
10.19-20	HP Product Note, 2.43
single-card versus multicard, concepts,	
10.26-27	I
Groupe Speciale Mobile see GSM	IC, low-voltage mixed signal, 10.2
GSM, block diagram, 9.18-19	IEEE Trial-Use Standard for Digitizing
GSM handset:	Waveform Recorders, 2.44
components, 9.21-26	IF sampling, 2.6-7
using SoftFone baseband processor, and	IIR biquad filter:
Othello radio, 9.21-26	basic, 6.25
	simplified notations, 6.27
H	IIR elliptic filter, 6.30
Hageman, Steve, 10.56	IIR filter, 6.24-27
Half-flash ADC, 3.23	analog counterparts, 6.24
Hamming window function, 5.22-23	CAD design, using Fletcher-Powell
Hanning window function, 5.22-23	algorithm, 6.28
Hard limiter, 2.29	characteristics, 6.25
Hardware design, techniques, 10.1-65	compared with FIR filter, 6.30
Harmonic distortion, 2.23-24	design techniques, 6.27-29, 6.29
DAC, 2.38	direct form implementation, 6.26
definition, 2.23	feedback, 6.5
products, location, diagram, 2.23	IIR filter, 6.24-27
Harmonic sampling, 2.6-7	implementation, 6.25
Harmonic undersampling, 2.7	throughput considerations, 6.29
Harrington, M.B., 9.44	versus FIR filter, 6.30
Harris, Fredrick J., 2.43, 5.25, 6.40	IMD:
Harris, Steven, 3.34	measurement, 2.28
Harvard architecture:	second- and third-order, diagram, 2.29
in DSP, 7.5	two tone intermodulation distortion,
in microprocessor, 7.6-7	2.28-30
Hauser, Max W., 3.34	Impulse invariant transformation, 6.28
Haykin, S., 6.40	IMT-2000 protocol, 7.36
HDTV, high definition television, 1.2	In-circuit simulator, 7.48

Indirect field-oriented control, 9.32	Kester, Walt, 1.1, 2.1, 2.43, 3.1, 3.35, 4.1,
Induction motor:	5.1, 6.1, 7.1, 8.1, 9.1,
control, 9.32-35	10.1, 10.15, 10.34-35, 10.39
block diagram, 9.33	Kettle, P., 9.44
Infinite impulse response see IIR	King, Dan, 7.1, 8.1
Information, in signal, 1.2	Koch, R., 3.33
Input filtering, 1.5	, ,
Input noise rejection, 1.5	L
Input/output memory select, ADC, 8.2	Lagrange, Joseph Louis, 5.1
Instruction register, data address	Laker, K.R., 2.44
generator, 7.14	Lane, Chuck, 2.42, 3.34
Integral linearity error, measurement,	Laplace transform, 6.15
2.11-12	conversion to z-transform, 6.28
Integral sample-and-hold, 2.19	Laplace, Pierre Simon de, 5.1
Interface:	Latency, 3.25
2.5V/3.3V, diagram, 10.13	Lattice filter, 6.5
3.3V/2.5V, 10.10-13	Leaded ferrite bead, 10.44
diagram, 10.11-12	Least significant bit:
Interfacing, high-speed, 8.22-23	definition, 2.7
9. 9 1 .	
Interference, components, 10.39	quantization, chart, 2.8
Intermodulation distortion, DAC, 2.38	size, 2.8
Internal aperture jitter, 10.25	Least-mean-square algorithm, for filter
Internal result bus, 7.10-13	coefficients, 6.36
Interpolation:	Lee, Hae-Seung, 2.43
frequency domain effects, 6.33-34	Lee, Wai Laing, 3.33
implementation example, 6.33-34	Lee, W.L., 3.33
multirate filter, 6.32-33	Levine, Noam, 7.1
Interrupt request, DAC, 8.9	Linear Design Seminar (1995), 2.42, 3.33,
Intranet, 9.7	3.34
I.Q. convention, 7.24	Linear integrity error, 2.11
IRQ, 8.1	Linear predictive coding see LPC
	Linear settling time, DAC settling time,
J	2.35
Jantzi, S.A., 3.33	Linearity errors, 2.10
JEDEC, 10.14	Link descriptor file see LDF
specification, for packaging, 7.20	Link port, versus external port, in
standards bureau, 10.5	communications, 7.35
Jitter:	Link port multiprocessing, 7.34
aperture, 10.25	LMS, least-mean-square, 6.36
effects, 2.33	Logarithmic pulse code modulation, 9.19
external clock, 10.25	Logic:
internal apeture, 10.25	CMOS IC output driver, configuration,
sampling clock, 10.25	10.3-4
Johnson noise, 2.8	high speed, 10.58-65
Johnson, H., 10.14	Logic translating transceiver:
Johnson, Howard W., 10.34, 10.65	diagram, 10.11
Joint Electron Device Engineering Council	voltage compliance, 10.11
see JEDEC	Long term prediction see LTP
Jung, Walt, 10.39, 10.56	Low voltage interface, 10.1-14
	Low Voltage Logic Alliance, standards, 10.5
K	Low voltage logic level, standards, 10.4-5
Kelvin divider, 4.1	Low voltage mixed-signal IC, 10.2
disadvantages, 4.1-2	Low-pass filter, LPF, 3.11
ladder network, 4.3	Lowpass filter, design of other filters, 6.23
Kelvin-Varley divider, string DAC, 4.3	LPC, 6.36-37
Kerr, Richard J., 4.17	in all-pole lattice filter, 6.38-39
,	model of speech production, 6.37

speech companding system, 6.38	Mixed signal processing, 1.4
speech processing system, 9.19	Mixed-signal device:
speech system, digital filters, 6.38	grounding, 10.26-27
LPF:	diagram, 10.27
analog, in sigma-delta ADC, 3.13	Mixed-signal IC:
low-pass filter, 3.11	grounding, multiple printed circuit
LQFP, new package designation, 7.20	boards, 10.28-29
Lucey, D.J., 9.44	high digital currents, grounding, 10.28-29
LVTTL, logic level, 10.4	low digital current, grounding and
Lyne, Niall, 9.44	decoupling, 10.21-22
	low digital currents, grounding, 10.27-28
M	Mobile telephone service, superheterodyne
McClellan, J.H., 6.40	receiver, diagram, 9.27
MagAmp, 3.29	Mode status register, data address
3-bit folding ADC	generator, 7.13
block diagram, 3.31	Modem:
functional equivalent circuit, 3.30	full-duplex, 9.1
input and residue waveforms, 3.31	half-duplex, 9.1
Magnitude amplifier, 3.29	high performance, telephone service,
Magnitude-amplifier architecture,	9.1-7
MagAmp, 3.24	high speed, 1.2
Mahoney, Matthew, 2.44	RAS, 9.7-10
Main lobe spreading, 5.22	standards, chart, 9.3
Manolakis, Dimitris G., 5.25, 6.40	V.90 analog
Markel, J.D., 6.40	block diagram, 9.4
Marsh, Dick, 10.56	details, 9.6
Matched z-transform, 6.28	V.90 analog versus V.34, diagram, 9.7
MathCad 4.0 software package, 2.44	Momentum Data Systems, QED1000
Mathematical calculation, by computer, 7.1	program, for FIR filter design, 6.18
Matsuya, Y., 3.33, 3.34	Momentum Data Systems, Inc., 6.40
Maximally flat filter, 6.27	Montrose, Mark, 10.34, 10.65
Mayo, J.S., 2.42, 3.34	MOPS, 7.18
Meehan, Pat, 2.43	Moreland, Carl, 2.42, 3.34
Memory address bus, ADC, 8.2	Morley, Nick, 9.43
Memory read, ADC, 8.2	Morris, Jesse, 7.1
Memory select:	Morrison, Ralph, 10.34
ADC, 8.2	Motchenbacher, C.D., 10.34
DAC, 8.9	Motherboard, grounding, 10.18-19
Messerschmitt, David G., 6.40	Motor control, 9.32-35
Microcontroller, 7.1-3	fully integrated, DashDSP, 9.35
characteristics, 7.2	Motor Control Products, Application Notes,
MicroConverter, precision analog circuitry,	and Tools, 9.44
1.3	Moving average filter, 6.5-10
Microprocessor, 7.1-3	calculating output, 6.7
architectures, comparison, 7.6	diagram, 6.6
characteristics, 7.2	frequency response, 6.8
Million operations per second see MOPS	noise, 6.6-8
Millions of instructions per second see MIPS	step function response, 6.6-7
miniBGA package, 7.20-21	MSP, 1.4
Minimum 4-term Blackman-Harris window	•
	Multi-channel high frequency
function, 5.22-23 MIPS 72-718	communication system, NPR, 2.31
MIPS, 7.2, 7.18	Multi-channel VOIP server, 9.10-11
Missing codes:	Multi-tone SFDR, measurement, 2.29
in ADC, 2.12-13	Multicard mixed-signal system, grounding,
defining, 2.14	10.18-19 Multileven commission commission and 10.49
Mitola, Joe, 9.43	Multilayer ceramic chip caps, 10.42
Mixed Signal Design Seminar (1991), 3.33	Multiplier-accumulator unit, features, 7.12

Multiplying DACs, 4.3 Multipoint ground, diagram, 10.19	radio receiver advantages, 9.24
Multiprocessing, using SHARCs, 7.34-36	block diagram, 9.24-25
Multirate filter, 6.31-35	compactness, advantages, 9.26
decimation, 6.31	superhomodyne architecture, 9.23-24
interpolation, 6.31	Ott, Henry, 10.34, 10.56
Murden, Frank, 2.42, 3.34	Output enable/read, ADC, 8.2
Murray, Aengus, 9.44	Output ripple, reduction, 10.50
	Oversampling, 3.10
N	and baseband antialiasing filter, 2.5
Narrowband, 9.27	definition, 2.16-17
Network:	ratio, 3.11
LAN, 1.2	,
local area, 1.2	P
Nicholas, Henry T. III, 4.17	Parallel ADC, diagram, 3.22
NMOS FET, bus switches, interfacing,	Parallel peripheral device:
10.6-8	read interface, key requirements, 8.3
Noise:	write interface, key requirements, 8.9
and grounding, 10.22	Parasitic capacitance, 10.43
power supply, 10.39-57	Parasitic inductance, 10.22
Noise power ratio see NPR	Parks-McClellan program:
Noise shaping, using analog filter, 3.13	equiripple FIR filter design, program
Non-ideal ADC, 3-bit, transfer function,	inputs, 6.19-20
diagram, 2.13	FIR filter, 6.28
=	•
Non-ideal DAC, 3-bit, transfer function,	design, 6.18-22
diagram, 2.13	Parks, T.W., 6.40
Normal framing mode, 8.14	Parzefall, F., 3.33
NPR, 2.30-32	Passband ripple, 6.2
measurement, diagram, 2.31	in filter, 1.6
NPR, 2.30-32	Pattavina, Jeffrey S., 10.34
theoretical, for various ADCs, 2.32	Peak glitch area, 2.37
Numerically controlled oscillator, 4.13	Peak spurious spectral content, ADC, 2.26
block diagram, 4.14	Pentium-Series, 7.2
Nyquist band, 3.10	Pericom Semiconductor Corporation, 10.14
Nyquist bandwidth, 2.15, 2.17	Permanent magnet synchronous machine,
aliasing, 2.4	9.33
definition, 2.4	PGA, programmable gain amplifier, 1.5
Nyquist criteria, 2.2	Phase accumulator, 4.14
Nyquist frequency, 2.41, 9.5	Phase jitter, 2.33
Nyquist zone, 2.4, 2.26-27	Phase-locked loop, PLL, 4.12
baseband sampling, 2.6	Phase-Locked Loop Design Fundamentals,
spurious frequency component, 2.4	4.17
	PIC, 7.2
0	Picocell, 9.30
Offset binary coding, data converters, 2.10	Pin socket, 10.16
Offset error, 2.10	Pipeline delay, 3.25
1's complement binary coding, data	Pipelined ADC, 3.23-27
converters, 2.10	12-bit CMOS ADC, block diagram, 3.26
Oppenheim, A.V., 5.25, 6.40	error correction, 3.25-26
Optocoupler, 10.35	Pipelined subranging ADC, 12-bit, digital
Optoisolator, 10.35	error correction, block diagram,
OS-CON Aluminum Electrolytic Capacitor	3.25
93/94 Technical Book, 10.56	Plain Old Telephone Service see POTS
OS-CON electrolytic capacitor, 10.40-41,	PMOS transistor current switch, diagram,
10.43	4.7
Othello:	Point of presence see POP
radio, chipset, 9.21	Polyester, capacitor, 10.40-41

POP, 9.8	effects on ideal ADC, 2.15
POTS:	size of LSB, chart, 2.8
block diagram, 9.2	Quantization error, 2.9-10
hybrid curcuit, 9.1	signal, 2.15
Power inverter, 9.32	Quantization noise:
Power plane, 10.15-17	in digital system with ADC, 2.31
Power supply:	for ideal N-bit ADC, diagram, 2.16
filtering, 10.39-57	shaping, 3.10
localized high frequency	in sigma-delta ADC, 3.14
filter, 10.51-53	spectrum, diagram, 2.16
construction guidelines, 10.52-53	Quantization uncertainty, 2.9-10
noise reduction, 10.39-57	QuickSwitch, in bidirectional interface,
pins, decoupling, 10.16	10.6-8
separate for analog and digital circuits,	
10.23	R
PowerPC, 7.2	Rabiner, Lawrence, 2.44
Practical Analog Design Techniques (1995),	Rabiner, L.R., 5.25, 6.40, 6.41
2.42, 3.34	RAMDAC, 1.3
Practical Design Techniques for Power and	Ramierez, Robert W., 2.43
Thermal Management, 10.57	Ramirez, R.W., 5.25
Practical Design Techniques for Sensor	RAS:
Signal Conditioning, 1.9	equipment, 9.10
Printed circuit board:	modem, 9.7-10
double-sided versus multilayer, 10.17-18	as Internet gateway, diagram, 9.8
ground plane, 10.17	on-switch based, 9.9
impedance, calculation, 10.59	RAS/VOIP servers, 9.10
mixed-signal system, layout guidelines,	Receive data register, 8.14
10.31-33	Receive frame sync, 8.14
"motherboard", grounding, 10.18-19	Receive shift register, 8.14
trace termination, 10.58	Reconstruction, definition, 2.14
Proakis, John G., 5.25, 6.40	Reconstruction filter, 6.2
Processing gain:	Recovery time, DAC settling time, 2.35
definition, 2.16-17	Recursive filter, 6.24
FFT, 2.18-19	Recursive-least-squares algorithm, for filter
Processor interrupt request line, ADC, 8.1-2	coefficients, 6.36
Program memory address bus, 7.10	Reference frame theory, 9.33
Program memory data bus, 7.10	Regular pulse excitation see RPE
Program memory select, ADC, 8.2	Reidy, John, 2.43
Program sequencer:	Remez exchange algorithm, 6.18-19
data address generator, 7.14	Remote access server see RAS
features, 7.14	Remote network access, 9.7
Programmable gain amplifier, PGA, 1.5	Rempfer, William C., 10.34
Prom splitter, 7.45	Ripple, passband, in filter, 1.6
Pseudocode, FIR filter, using DSP with	Ripple ADC, 3.27-32
circular buffering, 7.8	diagram, 3.27
Pulse code modulation, 9.3	RISC, and DSP, 7.3
_	RLS, recursive-least-squares, 6.36
Q	Roche, P.J., 9.44
QEDesign, 9.41	Rolloff:
filter package, 3.20	sharpness, 6.9
QS3384 Data Sheet, 10.14	sidelobe, 5.22
QS3384 QuickSwitch, 10.7-8	Root-sum-square, RSS, 2.24
transient response, diagram, 10.8	Rorabaugh, C. Britton, 5.25, 6.40, 7.55, 8.25
Quadrature amplitude modulation, 9.26	Rosso, M., 9.43
diagram, 9.5	Ruscak, Steve, 2.42
POTS, 9.3	
Quantization:	

\mathbf{S}	diagram, 2.27
Sample rate converter, using interpolator	sampling clock to input frequency ratio,
and decimator, 6.35	for ideal 12-bit ADC, 2.18
Sample-and-hold see SHA	SHA, 2.19-20
Sampled data system, definition, 2.14	and aperture jitter, 2.33
Sampling:	SHARC:
above first Nyquist zone, 2.7	32-bit, key features, 7.32
bandpass, 2.6-7	architecture, 7.27
harmonic, 2.6-7	coding, 7.33
IF, 2.6-7	decoupling, 10.53
rate versus bandwidth, 2.7	DSP
Sampling clock, 10.24-26	evaluation device, 7.48-49
ground planes, diagram, 10.26	floating and fixed point arithmetic,
jitter, effect on SNR, 10.25	7.25
Sampling rate, increased, 1.5	DSP benchmarks, 7.34
Samueli, Henry, 4.17	family roadmap, 7.33
SAR, 3.2	FFT butterfly processing, 7.26
SAR ADC, 3.3	floating point DSP, 7.26-30
external high frequency clock, 3.6	floating-point DSP, 7.26-30
fundamental timing, 3.5	key features, 7.27
resolutions, table, 3.5	multi-function instruction, 7.33
switched capacitor, 3.8	multiprocessing, 7.34-36
with switched capacitor DAC, 3.3	multiprocessor communication, examples,
typical timing, 3.6	7.35
Sauerwald, Mark, 10.34	program sequencer, 7.26
Scannell, J.R., 9.44	VisualDSP++ software, 7.52
Schafer, R.W., 5.25, 6.40, 6.41	SHARC DSP:
Schmid, Hermann, 2.42, 3.34	32-bit floating point, 9.38-39
Schmitt trigger, 10.38	bi-directional transmission, source
Schottky diode, 10.7, 10.20, 10.29, 10.30	termination, diagram, 10.63
Segmentation, in thermometer DAC, 4.5	Sheingold, Dan, 2.44
Segmented DAC, 4.2-3	Sheingold, Daniel H., 1.9, 3.34
10-bit, diagram, 4.5	Shifter unit, features, 7.12
Segmented voltage DAC, segmented	Shunt resistance, 10.43
voltage, 4.3	Sidelobe, 5.22
Sensor:	Sigma-delta ADC:
as analog device, 1.4	bandpass filters, 3.18-19
in industrial data acquisition and control	characteristics, table, 3.10
systems, 1.3	first-order, diagram, 3.12
uses, 1.1-2	fixed internal digital filter, 3.19
Serial ADC, 3.27-32	and missing codes, 2.14
diagram, 3.27	multi-bit
to DSP interface, 8.14-17	diagram, 3.18
Serial clock, 8.14	flash ADC with DAC, 3.17-18
Serial DAC, to DSP interface, 8.17-19	noise shaping, 3.12-13
Serial ports, in ADSP-21xx, 7.16	order versus oversampling, 3.14-15
Serial-Gray, ADC architecture, 3.29	oversampling, 3.20
Settling time:	converter, 2.6
DAC performance, 2.35-41	programmable digital filter, 9.40-42
diagram, 2.36	quantization noise shaping, 3.14
periods, 2.35	second-order, block diagram, 3.15
SFDR, 2.17, 2.21, 2.26-28, 2.35-41	settling time, and digital filter, 3.16
ADC, definition, 2.26	SNR, 3.20
DAC	summary, 3.21
distortion, 2.38	Sigma-delta audio DAC, 3.17
performance, 2.35-41	Sigma-delta DAC, 4.11-12
test setup, 2.40	architecture, diagrams, 4.11

high resolution, oversampling, 4.11 Sign-magnitude bipolar converter, 2.10	Snelgrove, M., 3.33 SNR, 2.15, 2.21, 2.24-25
Signal:	decrease with input frequency in ADC,
amplitude, 1.2	2.33
analog, 1.1	definition, 2.15
bandwidth	degradation, from external clock jitter,
aliasing, 2.2	10.25
Nyquist criteria, 2.2	due to aperture and sampling clock jitter,
characteristics, table, 1.1	diagram, 2.34
conditioning, 1.1	SNR-without-harmonics, calculation, 2.25
analog signal processor, 1.4	Sodini, C.G., 3.33
sensors, 1.1-2	SoftCell:
successive approximation ADCs, 3.2	chipset
continuous aperiodic, 5.1	block diagram, 9.30
continuous periodic, 5.1	for digital phone receivers, 9.29
sinusoidal waves, 5.1	SoftFone, baseband processor, chipset, 9.21
definition, 1.1, 1.2	Software development environment, 7.51
digital, 1.1-2	Software simulator, for debugging, 7.45
frequency, 1.2	Southcott, C.B., 9.43
processing	Spectral inversion, in filter design, 6.23
frequency compression, 1.2	Spectral leakage:
information extraction, 1.2	FFT, 5.21
methods, 1.4-5	windowing, 5.23
mixed, 1.4	Spectral reversal, in filter design, 6.23
real-time, comparison chart, 1.8	Speech:
reasons, 1.3	compression, adaptive filter use, 6.36
real-world	encoder/decoder, 9.18-19
generation, 1.3	processing, standards, 9.18-19
origins, 1.1-2	synthesis, adaptive filter use, 6.36
processing, 1.2-3	synthesized, 1.3
units of measurement, 1.1-2	SPORT:
recovery, 1.3	in ADSP-21xx, 7.16
sampled aperiodic, 5.1	transfer rate, 8.20
sampled periodic, 5.1	Spurious free dynamic range see SFDR
spectral content, 1.2	SSBW, small signal bandwidth, 2.25
timing, 1.2	Stacked-film capacitor, 10.40, 10.42
units of measurement, table, 1.1	Star ground, 10.16, 10.19, 10.26
Signal-to-noise ratio see SNR	Static branch prediction logic, 7.39
Signal-to-noise-and-distortion ratio, SINAD,	Static superscalar, 7.39
2.21, 2.24-25	Stearns, S.D., 6.40
Signed fractional format, DSP arithmetic,	Stopband ripple, 6.2
7.23	String DAC:
Signed integer format, DSP arithmetic, 7.23	diagram, 4.2
Silence descriptor, 9.20	disadvantages, 4.1-2
SINAD, 2.21, 2.24-25	Kelvin divider, 4.1
conversion to ENOB, equation, 2.25	Subranging ADC, 3.23-27
Singer, Larry, 2.42	8-bit, diagram, 3.24
Single precision, floating point arithmetic,	12-bit, digitally corrected, block diagram,
standard, 7.25	3.25
single-instruction, multiple data see SIMD	digital correction, 3.24
Single-instruction, single-data see SISD	Successive approximation ADC, 3.1-9
Sinusoidal wave, continuous periodic signal,	basic, 3.3
5.1	Successive approximation register see SAR
SISD, older DSP architecture, 7.31	SUMMIT-ICE, PCI emulator, 7.50
Sluyter, R.J., 9.43	Super Harvard Architecture, for 32-bit DSP,
Small signal bandwidth, 2.25	7.27-28
Smith Steven W 5 25 6 40 7 55 8 25	Superheterodyne architecture 9 23-24

Superhomodyne architecture:	DSP, 9.30-31
diagram, 9.24-25	key features, 7.40
operation, 9.25-26	multiprocessing implementation, sample
Supply voltage reduction, 10.1	configuration, 7.42-43
Surface mount ferrite bead, 10.44	peak computation rates, 7.41
Swanson, E.J., 3.33	roadmap, 7.43
Switching capacitor, characteristics,	Time division multiple access see TDMA
10.40-41	Time domain, versus frequency domain,
Switching regulator, 10.46-51	6.13, 6.15
filtering, experiment, 10.46-50	Time sampling, analog signal, 2.2-7
noise, reduction tools, 10.40	Total harmonic distortion see THD
Switching supply, filter, summary, 10.51	Total harmonic distortion plus noise see
Switching time, DAC settling time, 2.35	THD+N
System Applications Guide (1993), 2.43,	TQFP package designation, new
3.33, 3.35	designations, 7.20
Systolix FilterExpress, 9.41	Transmission line:
Systolix PulseDSP, 9.41	controlled impedance microstrip,
filter core, 6.2	termination, 10.61
processor, 3.19-20	termination at both ends, 10.64
processor, e.ie ac	Transmit data register, 8.14
Т	Transmit shift register, 8.14
T-Carrier system, 1.2	TREK-ICE, Ethernet emulator, 7.50
Tantalum electrolytic capacitor, 10.40-41	TTL, logic level, 10.4
Tantalum Electrolytic Capacitor, 10.40-41 Tantalum Electrolytic Capacitor SPICE	Tukey, J.W., 2.43, 5.10, 5.25
Models, 10.57	Twiddle factors, 5.9-10
Tantalum Electrolytic and Ceramic	Two tone intermodulation distortion, IMD,
Capacitor Families, 10.56	2.28-30
Tant, M.J., 2.42	2's complement binary coding, data
TDMA, 1.2	converters, 2.10
Telephone, FDMA, 1.2	Type 1 Chebyshev filter, 6.27-28
Tesla, Nikola, 9.32	Type 2 Chebyshev filter, 6.27
THD+N, 2.23-24	Type 5MC Metallized Polycarbonate
definition, 2.24	Capacitor, 10.56
THD, 2.21, 2.23-24	Type 5250 and 6000-101K chokes, 10.56
definition, 2.24	Type EXCEL leaded ferrite bead EMI filter,
Thermal noise, equivalent input referred	and type EXC L leadless
noise, 2.20-21	ferrite ead, 10.56
Thermometer code, 3.21	Type HFQ Aluminum Electrolytic Capaciton
Thermometer DAC:	and type V Stacked Polyester
5-bit, diagram, 4.4	Film Capacitor, 10.56
diagram, 4.2	Film Capacitor, 10.50
disadvantage, 4.5	U
segmentation, 4.5	Undersampling, 2.6-7
Thevenin impedance, 10.61	diagram, 2.6
Thompson filter, 6.27-28	harmonic sampling, 2.7
TigerSHARC:	Nyquist zone, 2.6
ADSP-TS001 static superscalar DSP,	Unipolar converter, 2.9-10
7.36-44	Unsigned fractional format, DSP
architecture, 7.38	arithmetic, 7.23
branch target buffer, 7.39, 7.41	Unsigned integer format, DSP arithmetic,
	7.23
features, 7.39	
flexibility, 7.36	Using the ADSP-2100 Family, 7.55, 8.25
key features, 7.37	V
multiprocessor key elements, 7.36-37	
static branch prediction logic, 7.39	Vary, P., 9.43
static superscalar, 7.39 development tools, 7.53	VCX device, 10.9 74VCX164245 Data Sheet, 10.14
uevelopment tools. 7.55	14 V U A 104440 Data Offeet, 10.14

Vector control, 9.32-33 internally created, 10.8-10 Very Large Scale Integration, VLSI, 1.4 Voltage-controlled-oscillator, 4.12 Very long instruction word, in SHARC Von Neumann architecture, 7.6 architecture, 7.37 Video raster scan display system, 1.3 W Virtual-IF transmitter, in AD6523, 9.23 Waldhauer, F.D., 2.42, 3.29, 3.34 VisualDSP++, DSP development software, Waurin, Ken, 7.1 Weaver, Lindsay A., 4.17 7.51 VisualDSP: Weeks, Pat, 2.43 DSP development software, 7.51 Welland, D.R., 3.33 test drive, 7.53 Wepman, Jeffery, 9.43 Viterbi algorithm, 9.6 Wideband, 9.27 Widrow, B., 6.40 Viterbi decoder, 9.5 Voice activity detector, 9.20 Window function, 5.22-23, 5.23, 6.16 Voice over the Internet protocol, 7.42 characteristics, 5.24 Voice-over-Internet-provider see VOIP frequency responses, 5.24 Voltage: Windowed-sinc method: identification pin, 10.1 FIR filter design, 6.16 low, interfaces, 10.1-14 responses, diagrams, 6.16 supply, reduction, 10.1 Witte, Robert A., 2.43 Wooley, Bruce, 3.33 Voltage compliance, 10.5-6 definition, 10.6 Worst harmonic, 2.23-24 internally created, 10.8-10 Write, DAC, 8.9 considerations, 10.9-10 Voltage tolerance, 10.5-6 definition, 10.5-6 xDSL protocol, 7.36

Analog Devices Parts Index

AD260/AD261, 10.36-38	AD6600, 9.30
AD820, 3.8-9	AD6622, 9.30-31
AD974, 3.5	AD6624, 9.30-31
AD2S80A, 9.33-34	AD6640, 2.29-30, 3.24-25
AD2S82A, 9.33-34	AD6644, 9.30-31
AD2S83A, 9.33-34	AD7472, 3.5
AD2S90A, 9.33-34	AD77xx, 3.17
AD185x, 4.11	AD773x, 1.5
AD189x, 6.35	AD977x, 4.6
AD1819B, 1.5, 9.37-38	AD983x, 4.16
AD1836, 9.38-39	AD984x, 1.5
AD1852, 3.17	AD985x, 4.6
AD1853, 3.17, 4.12	AD7660, 3.5
AD1854, 3.17	AD7664, 3.5
AD1877, 3.16-17	AD7722, 10.15
AD1890, 6.35	AD7725, 3.19, 6.2, 9.40-42
AD1891, 6.35	AD7730, 10.15
AD1892, 6.35	AD7731, 10.15
AD1893, 6.35	AD7853/7853L, 8.15-18
AD1896, 6.35	AD7853L, 8.15-17
AD5322, 8.17-19	AD7854/AD7854L, 8.4-7
AD5340, 8.10-12	AD7856/67, 3.5
AD6521, 9.21-22	AD7858/59, 3.5, 3.8-9
AD6522, 9.21-22	AD7861, 9.33
AD6523, 9.22-23, 9.25	AD7862, 9.33
AD6524, 9.22-23, 9.25	AD7863, 9.33

AD7864, 9.33 14, 9.5, 9.8, 9.33, 10.9 AD7865, 9.33 ADSP-210x, 7.21 AD7887/88, 3.5 ADSP-216x, 7.21 AD7891, 3.5 ADSP-217x, 7.18, 9.34-35 AD7892, 10.15 ADSP-218x, 7.7, 7.11, 7.15, 7.18, 7.22, 7.49, AD9042, 2.27, 2.31-32 7.51-53, 8.20-22, 9.5, AD9201, 8.22-23 9.8, 9.10-11, 9.22, 9.36-38 AD9220, 2.24-25, 3.26 ADSP-218xL/M, 10.1 AD9221, 3.26 ADSP-219x, 7.7, 7.11, 7.19-21, 7.23, 7.51-53, AD9223, 3.26 9.35AD9288-100, 3.32 ADSP-2100, 7.9, 7.15 AD9410, 3.23 ADSP-2105, 7.16 AD9761, 8.22-23 ADSP-2106x, 7.26-30 AD9772, 2.39, 4.6, 4.9-10, 9.30-31 ADSP-2111, 7.21 AD9814, 1.5 ADSP-2116x, 7.31-36 AD9815, 1.5 ADSP-2181/3, 7.21 AD9850, 4.15-16 ADSP-2183, 9.15 AD73311, 8.1 ADSP-2184/L, 7.21 AD73322, 1.5, 8.1, 8.19-22, 9.36 ADSP-2185/L/M, 7.21 ADSP-2185L/86L, 8.21-22 AD73422, 8.21-22 AD74222-80, 8.21-22 ADSP-2186/L, 7.21 ADSP-2187L/M, 7.21 AD20msp430, 9.21-23 AD20msp910, 9.12, 9.15 ADSP-2188M, 7.20, 7.21, 9.10-11 AD20msp918, 9.15 ADSP-2189M, 5.18, 6.1, 6.12, 6.20, 6.22, ADMC200/ADMC201, 9.33 6.28, 7.21, 7.47, 8.2-7, 8.9-ADMC300, 9.34 12, 8.14-15, 8.23-24 ADSP-21000, 7.26-27 ADMC326, 9.34 ADMC328, 9.34 ADSP-21060, 7.29-30, 7.33 ADMC331, 9.34 ADSP-21060L, 10.58 ADSP-21061, 7.29-30, 7.33 ADMC401, 9.34 ADMCF5xx, 9.35 ADSP-21062, 7.29-30, 7.33 ADMCF326, 9.34 ADSP-21065, 7.29-30, 7.33 ADSP-21065L, 7.27, 7.34, 7.48, 8.22-23, ADMCF328, 9.34 ADP1148, 10.46 9.38-39 ADP3310, 10.47, 10.49-50 ADSP-21160, 5.18, 7.27, 7.31-32, 7.34, 7.36, ADP33xx, 9.22 9.39-40, 10.29-31, 10.54-55 ADP34xx, 9.22 ADSP-21160M, 7.33, 7.47 ADSP-21ESP202, 9.36-37 ADSP-21161N, 7.33 ADSP-21mod870, 9.8-10 ADSP-TS001 TigerSHARC, 5.18-19, ADSP-21mod970, 9.10 7.36-44, 9.30-31 ADSP-21mod980, 9.10 ADuM1100A, 10.36-37 ADSP-21modxxx, 9.9 ADuM1100B, 10.36-37 ADSP-21msp5x, 7.21 EZ-ICE, 7.48 ADSP-21xx, 1.6-8, 6.11-13, 6.28, 7.2, 7.4, EZ-KIT Lite, 7.45-48 7.6-24, 8.1-3, 8.7-8, 8.12-EZ-LAB, 7.45