MA

TD primitives et intégrales

Ex 1

Déterminer une primitive des fonctions suivantes sur l'intervalle considéré

1.
$$f(x) = (3x - 1)(3x^2 - 2x + 3)^3$$
, $I = R$

2.
$$f(x) = \frac{1-x^2}{(x^3-3x+1)^3}$$
, $I =]-\infty, -2[$

3.
$$f(x) = \frac{(x-1)}{\sqrt{x(x-2)}}$$
, $I =] - \infty$, 0 [

4.
$$f(x) = \frac{1}{x \ln(x^2)}$$
, $I =]1, + \infty[$

Ex 2

On considère la fonction $f(x) = \frac{1}{x(x+1)}$

1. Déterminer deux réels a et b tels que , pour tout $x \in [1, 2]$, on a :

$$f(x) = \frac{a}{x} + \frac{b}{x+1}$$

2. Déduire de la question précédente la valeur de l'intégrale $J = \int_{1}^{2} \frac{1}{x(x+1)} dx$

3. Calculer l'intégrale
$$I = \int_{1}^{2} \frac{ln(1+t)}{t^2} dt$$

Ex 3

En effectuant le changement de variables indiqué, calculer les intégrales suivantes :

1.
$$\int_{0}^{1} \frac{dt}{1+e^{t}}$$
 en posant $x = e^{t}$

2.
$$\int_{1}^{3} \frac{\sqrt{t}}{t+1} dt$$
 en posant $x = \sqrt{t}$

3.
$$\int_{-1}^{1} \sqrt{1-t^2}$$
 en posant $t = sin\theta$

Ex 4 (Quelques primitives à savoir calculer)

Déterminer une primitive des fonctions suivantes :

1.
$$f(x) = \frac{1}{x^2+4}$$

2.
$$f(x) = \frac{1}{x^2 + 4x + 5}$$

3.
$$f(x) = \frac{1}{1-x^2}$$

4.
$$f(x) = e^{x}(2x^{3} + 3x^{2} - x + 1)$$

$$5. f(x) = \sin^3 x$$

$$6. f(x) = \arctan x$$