✓ Congratulations! You passed!

Next Item

1/1 point

1.

Consider the following 2D dataset:

Which of the following figures correspond to possible values that PCA may return for $u^{(1)}$ (the first eigenvector / first principal component)? Check all that apply (you may have to check more than one figure).

Correct

The maximal variance is along the y = x line, so this option is correct.

Correct

Un-selected is correct

	Principal Component Analysis Quiz, 5 questions	5/5 points (100.00%)
~	1/1 point	
2. Which	of the following is a reasonable way to select the number of principal components k ?	
(Recal	Il that n is the dimensionality of the input data and m is the number of input examples.)	
	Choose k to be 99% of m (i.e., $k=0.99*m$, rounded to the nearest integer).	
	Use the elbow method.	
0	Choose $oldsymbol{k}$ to be the smallest value so that at least 99% of the variance is retained.	
	rect s is correct, as it maintains the structure of the data while maximally reducing its dimension.	
	Choose k to be the largest value so that at least 99% of the variance is retained	
~	1/1 point	
3. Suppo	ose someone tells you that they ran PCA in such a way that "95% of the variance was retained." What is an eq	uivalent statement to this?
0	$rac{rac{1}{m}\sum_{i=1}^{m} x^{(i)}-x_{ ext{approx}}^{(i)} ^2}{rac{1}{m}\sum_{i=1}^{m} x^{(i)} ^2}\leq 0.05$	
	rect s is the correct formula.	
	$rac{rac{1}{m}\sum_{i=1}^{m} x^{(i)} ^2}{rac{1}{m}\sum_{i=1}^{m} x^{(i)} ^2} \leq 0.95$	
	$\frac{1}{m} \sum_{i=1}^{m} x^{(i)} - x^{(i)} ^2$	
	$\frac{1}{m} \sum_{i=1}^{m} x^{(i)} ^2 = 0.00$	
	$rac{rac{1}{m}\sum_{i=1}^{m} x^{(i)}-x_{ ext{approx}}^{(i)} ^2}{rac{1}{m}\sum_{i=1}^{m} x^{(i)} ^2}\geq 0.95$	
~	1/1 point	
4.		
Which	n of the following statements are true? Check all that apply.	
	Even if all the input features are on very similar scales, we should still perform mean normalization (so tha mean) before running PCA.	t each feature has zero
Cor	rect ou do not perform mean normalization, PCA will rotate the data in a possibly undesired way.	

Given only $z^{(i)}$ and $U_{
m reduce}$, there is no way to reconstruct any reasonable approximation to $x^{(i)}$.

 $\label{pca} {\sf PCA}\ is\ susceptible\ to\ local\ optima;\ trying\ multiple\ random\ initializations\ may\ help.$

Un-selected is correct

Un-selected is correct Principal Component Analys Quiz, 5 questions	5/5 points (100.00%)		
Given input data $x\in\mathbb{R}^n$, it makes sense to run PCA on possible but not helpful, and $k>n$ does not make sen	y with values of k that satisfy $k \leq n$. (In particular, running it with $k=n$ is se.)		
Correct			
The reasoning given is correct: with $k=n$, there is no comp	ession, so PCA has no use.		
1/1 point			
5. Which of the following are recommended applications of PCA? S	Select all that apply.		
Data compression: Reduce the dimension of your input so that your supervised learning algorithm runs faster).	data $x^{\left(i ight)}$, which will be used in a supervised learning algorithm (i.e., use PCA		
Correct If your learning algorithm is too slow because the input dime	nsion is too high, then using PCA to speed it up is a reasonable choice.		
Data visualization: Reduce data to 2D (or 3D) so that it o	an be plotted.		
Correct This is a good use of PCA, as it can give you intuition about you	ur data that would otherwise be impossible to see.		
To get more features to feed into a learning algorithm.			
Un-selected is correct			
Clustering: To automatically group examples into coher	ent groups.		
OFFICECCU IS COTTECT			