## **Aprendizagem Automática**

Exercícios (ficha 6)



## A. K-vizinhos mais próximos

Considere o seguinte conjunto de dados:

| Id | Atr1 | Atr2 | Atr3 | Valor |
|----|------|------|------|-------|
| 1  | 5.1  | 3.5  | 1.4  | 0.2   |
| 2  | 4.9  | 3    | 1.4  | 0.2   |
| 3  | 4.7  | 3.2  | 1.3  | 0.2   |
| 4  | 7    | 3.2  | 4.7  | 1.4   |
| 5  | 6.4  | 3.2  | 4.5  | 1.5   |
| 6  | 6.9  | 3.1  | 4.9  | 1.5   |
| 7  | 6.3  | 3.3  | 6    | 2.5   |
| 8  | 5.8  | 2.7  | 5.1  | 1.9   |
| 9  | 7.1  | 3    | 5.9  | 2.1   |
| 10 | 6.3  | 2.9  | 5.6  | 1.8   |

- 1. Calcule (à mão, ou usando uma folha de cálculo) a previsão do **Valor** para o exemplo {Atr1, Atr2, Atr3}= {5.0, 3.0, 4.0} usando o algoritmo dos K-vizinhos mais próximos com K=3 (média simples) e distância euclidiana.
- 2. Qual o valor previsto se a semelhança for calculada através distância de Manhattan, usando 3 vizinhos e uma média ponderada w=1/(d+0.001), onde d é a distância.

## B. Naïve de Bayes

Considere o seguinte conjunto de dados:

| Id | Atr1 | Atr2 | Atr3 | Atr4 | Classe     |
|----|------|------|------|------|------------|
| 1  | F    | V    | F    | F    | setosa     |
| 2  | F    | V    | F    | F    | setosa     |
| 3  | F    | V    | F    | F    | setosa     |
| 4  | V    | F    | F    | F    | versicolor |
| 5  | F    | F    | F    | F    | versicolor |
| 6  | F    | F    | F    | F    | versicolor |
| 7  | V    | F    | F    | V    | virginica  |
| 8  | V    | F    | V    | V    | virginica  |
| 9  | V    | V    | V    | V    | virginica  |

1. Calcule (à mão) a que classe pertence o exemplo {Atr1, Atr2, Atr3, Atr4}={F, F, V, F} se o conjunto for apresentado ao algoritmo NaiveBayes. Deverá usar o estimador simples ou um estimador "suavizado" como o estimador de Laplace?