

Espaces vectoriels de dimension finie (ou non)

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile **** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1 **IT

E désigne l'espace vectoriel \mathbb{R}^4 (muni des opérations usuelles). On considère les vecteurs $e_1=(1,2,3,4)$, $e_2=(1,1,1,3)$, $e_3=(2,1,1,1)$, $e_4=(-1,0,-1,2)$ et $e_5=(2,3,0,1)$. Soient alors $F=\mathrm{Vect}(e_1,e_2,e_3)$ et $G=\mathrm{Vect}(e_4,e_5)$. Quelles sont les dimensions de F, G, $F\cap G$ et F+G?

Correction ▼ [005183]

Exercice 2 **IT

Soit \mathbb{K} un sous-corps de \mathbb{C} , E un \mathbb{K} -espace vectoriel de dimension finie $n \ge 2$. Soient H_1 et H_2 deux hyperplans de E. Déterminer $\dim_{\mathbb{K}}(H_1 \cap H_2)$. Interprétez le résultat quand n = 2 ou n = 3.

Correction ▼ [005184]

Exercice 3 **

Soit \mathbb{K} un sous-corps de \mathbb{C} et E un \mathbb{K} -espace vectoriel de dimension finie. Soient f et g deux endomorphismes de E vérifiant $E = \operatorname{Ker} f + \operatorname{Ker} g = \operatorname{Im} f + \operatorname{Im} g$. Montrer que ces sommes sont directes.

Correction ▼ [005185]

Exercice 4 ***I

Soit $E = \mathbb{R}_n[X]$, le \mathbb{R} -espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n (n entier naturel donné). Soit φ l'application définie par : $\forall P \in E$, $\varphi(P) = P(X+1) - P(X)$.

- 1. Vérifier que φ est un endomorphisme de E.
- 2. Déterminer $Ker\varphi$ et $Im\varphi$.

Correction ▼ [005186]

Exercice 5 **T

Soient $(e_i)_{1 \le i \le 4}$ la base canonique de \mathbb{R}^4 et f l'endomorphisme de \mathbb{R}^4 défini par : $f(e_1) = 2e_1 + e_3$, $f(e_2) = -e_2 + e_4$, $f(e_3) = e_1 + 2e_3$ et $f(e_4) = e_2 - e_4$. Déterminer Kerf et Imf.

Correction ▼ [005187]

Exercice 6 **

Soit $f:\mathbb{C}\to\mathbb{C}$ où a est un nombre complexe donné non nul. Montrer que f est un endomorphisme $z\mapsto z+a\bar{z}$

 $\text{du }\mathbb{R}\text{-espace vectoriel }\mathbb{C}\text{. }f\text{ est-il un endomorphisme du }\mathbb{C}\text{-espace vectoriel }\mathbb{C}\text{? Déterminer le noyau et l'image de }f\text{.}$

Correction ▼ [005188]

Exercice 7 **

Soit $f \in \mathcal{L}(\mathbb{R}^2)$. Pour $(x,y) \in \mathbb{R}^2$, on pose f((x,y)) = (x',y').

- 1. Rappeler l'écriture générale de (x', y') en fonction de (x, y).
- 2. Si on pose z = x + iy et z' = x' + iy' (où $i^2 = -1$), montrer que : $\exists (a,b) \in \mathbb{C}^2 / \forall z \in \mathbb{C}, z' = az + b\bar{z}$.
- 3. Réciproquement, montrer que l'expression ci-dessus définit un unique endomorphisme de \mathbb{R}^2 (en clair, l'expression complexe d'un endomorphisme de \mathbb{R}^2 est $z' = az + b\bar{z}$).

Correction ▼ [005189]

Exercice 8 **I

Soient \mathbb{K} un sous-corps de \mathbb{C} et E et F deux \mathbb{K} -espaces vectoriels de dimensions finies sur \mathbb{K} et u et v deux applications linéaires de E dans F. Montrer que : $|\operatorname{rg} u - \operatorname{rg} v| \le \operatorname{rg} (u + v) \le \operatorname{rg} u + \operatorname{rg} v$.

Correction ▼ [005190]

Exercice 9 ****

Soient \mathbb{K} un sous-corps de \mathbb{C} et E un \mathbb{K} -espace vectoriel de dimension finie n.

1. Montrer que, pour tout endomorphisme f de \mathbb{R}^2 , on a :

$$(\operatorname{Ker} f = \operatorname{Im} f) \Leftrightarrow (f^2 = 0 \text{ et } n = 2\operatorname{rg} f) \Leftrightarrow (f^2 = 0 \text{ et } \exists g \in \mathscr{L}(E)/f \circ g + g \circ f = Id_E).$$

2. On suppose $\operatorname{Ker} f = \operatorname{Im} f$. Montrer qu'il existe une base $(u_1, ..., u_p, v_1, ..., v_p)$ de E telle que :

$$\forall i \in \{1,...,p\}, \ f(u_i) = 0 \text{ et } f(v_i) = u_i.$$

Correction ▼ [005191]

Exercice 10 ***I Le théorème des noyaux itérés

Soient \mathbb{K} un sous-corps de \mathbb{C} , E un \mathbb{K} -espace vectoriel de dimension finie n et f un endomorphisme de E non injectif. Pour k entier naturel donné, on pose $N_k = \operatorname{Ker} f^k$ et $I_k = \operatorname{Im} f^k$ (avec la convention $f^0 = Id_E$).

- 1. Montrer que : $\forall k \in \mathbb{N}$, $(N_k \subset N_{k+1} \text{ et } I_{k+1} \subset I_k)$.
- 2. (a) Montrer que : $(\forall k \in \mathbb{N}, (N_k = N_{k+1} \Rightarrow N_{k+1} = N_{k+2}).$
 - (b) Montrer que : $\exists p \in \mathbb{N} / \forall k \in \mathbb{N}, (k$
 - (c) Montrer que p < n.
- 3. Montrer que si k < p, $I_k = I_{k+1}$ et si $k \ge p$, $I_k = I_{k+1}$.
- 4. Montrer que $E = I_p \oplus N_p$ et que f induit un automorphisme de I_p .
- 5. Soit $d_k = \dim I_k$. Montrer que la suite $(d_k d_{k+1})_{k \in \mathbb{N}}$ est décroissante (en d'autres termes la suite des images itérées I_k décroît de moins en moins vite).

Correction ▼ [005192]

Exercice 11 ***I

Soient \mathbb{K} un sous-corps de \mathbb{C} et E un \mathbb{K} -espace vectoriel de dimension finie notée n. Soit u un endomorphisme de E. On dit que u est nilpotent si et seulement si $\exists k \in \mathbb{N}^* / u^k = 0$ et on appelle alors indice de nilpotence de u le plus petit de ces entiers k (par exemple, le seul endomorphisme u, nilpotent d'indice 1 est 0).

- 1. Soit u un endomorphisme nilpotent d'indice p. Montrer qu'il existe un vecteur x de E tel que la famille $(x, u(x), ..., u^{p-1}(x))$ soit libre.
- 2. Soit u un endomorphisme nilpotent. Montrer que $u^n = 0$.
- 3. On suppose dans cette question que *u* est nilpotent d'indice *n*. Déterminer rg*u*.

Correction ▼ [005193]

Exercice 12 ***I

Soient \mathbb{K} un sous-corps de \mathbb{C} , E un \mathbb{K} -espace vectoriel de dimension quelconque sur \mathbb{K} et f un endomorphisme de E vérifiant $f^2 - 5f + 6Id_E = 0$. Montrer que $E = \operatorname{Ker}(f - 2Id) \oplus \operatorname{Ker}(f - 3Id)$.

Correction ▼ [005194]

Correction de l'exercice 1 A

• e_4 et e_5 ne sont clairement pas colinéaires. Donc (e_4, e_5) est une famille libre et dim $G = \operatorname{rg}(e_4, e_5) = 2$. Ensuite, puisque e_1 et e_2 ne sont pas colinéaires, on a $2 \le \dim F \le 3$. Soit alors $(\lambda, \mu, \nu) \in \mathbb{R}^3$.

$$\lambda e_1 + \mu e_2 + \nu e_3 = 0 \Rightarrow \begin{cases} \lambda + \mu + 2\nu = 0 & (1) \\ 2\lambda + \mu + \nu = 0 & (2) \\ 3\lambda + \mu + \nu = 0 & (3) \\ 4\lambda + 3\mu + \nu = 0 & (4) \end{cases} \Rightarrow \begin{cases} \lambda = 0 ((3) - (2)) \\ \nu - \lambda = 0 ((1) - (2)) \\ \lambda + \mu + 2\nu = 0 (1) \end{cases} \Rightarrow \lambda = \mu = \nu = 0.$$

On a montré que : $\forall (\lambda, \mu, \nu) \in \mathbb{R}^3$, $(\lambda e_1 + \mu e_2 + \nu e_3 = 0 \Rightarrow \lambda = \mu = \nu = 0)$. (e_1, e_2, e_3) est donc libre et dim $F = \operatorname{rg}(e_1, e_2, e_3) = 3$. \bullet Comme $F \subset F + G$, dim $(F + G) \ge 3$ ou encore dim (F + G) = 3 ou 4. De plus :

$$\dim (F+G) = 3 \Leftrightarrow F = F + G \Leftrightarrow G \subset F \Leftrightarrow \{e_4, e_5\} \subset F.$$

On cherche alors $(\lambda, \mu, v) \in \mathbb{R}^3$ tel que $e_4 = \lambda e_1 + \mu e_2 + v e_3$ ce qui fournit le système :

$$\begin{cases} \lambda + \mu + 2\nu = -1 & (1) \\ 2\lambda + \mu + \nu = 0 & (2) \\ 3\lambda + \mu + \nu = -1 & (3) \\ 4\lambda + 3\mu + \nu = 2 & (4) \end{cases}$$

(3)-(2) fournit $\lambda=-1$ puis (1)-(2) fournit $\nu=-2$ puis (2) fournit $\mu=4$. Maintenant, (4) n'est pas vérifiée car $4\times(-1)+3\times 4-2=6\neq 2$. Le système proposé n'admet pas de solution et donc $e_4\notin \mathrm{Vect}(e_1,e_2,e_3)=F$. Par suite, dim (F+G)=4. Enfin,

$$\dim (F \cap G) = \dim F + \dim G - \dim (F + G) = 3 + 2 - 4 = 1.$$

$$\dim(F) = 3$$
, $\dim(G) = 2$, $\dim(F + G) = 4$ et $\dim(F \cap G) = 1$.

Correction de l'exercice 2 A

On a $H_1 \subset H_1 + H_2$ et donc dim $(H_1 + H_2) \ge n - 1$ ou encore dim $(H_1 + H_2) \in \{n - 1, n\}$. Donc

$$\dim (H_1 \cap H_2) = \dim H_1 + \dim H_2 - \dim (H_1 + H_2) = \begin{cases} (n-1) + (n-1) - (n-1) = n-1 \\ \text{ou} \\ (n-1) + (n-1) - n = n-2 \end{cases}$$

Maintenant, si dim $(H_1 + H_2) = n - 1 = \dim H_1 = \dim H_2$, alors $H_1 = H_1 + H_2 = H_2$ et donc en particulier, $H_1 = H_2$. Réciproquement, si $H_1 = H_2$ alors $H_1 + H_2 = H_1$ et dim $(H_1 + H_2) = n - 1$. En résumé, si H_1 et H_2 sont deux hyperplans distincts, dim $(H_1 \cap H_2) = n - 2$ et bien sûr, si $H_1 = H_2$, alors dim $(H_1 \cap H_2) = n - 1$. Si $H_1 = H_2$, alors dim $(H_1 \cap H_2) = n - 1$. Si $H_1 = H_2$, alors dim des droites vectorielles et l'intersection de deux droites vectorielles distinctes du plan vectoriel est de dimension 0, c'est-à-dire réduite au vecteur nul. Si $H_1 = H_2$ hyperplans sont des plans vectoriels et l'intersection de deux plans vectoriels distincts de l'espace de dimension 3 est une droite vectorielle.

Correction de l'exercice 3 A

On a

$$n = \dim E = \dim (\operatorname{Ker} f + \operatorname{Ker} g) = \dim (\operatorname{Ker} f) + \dim (\operatorname{Ker} g) - \dim (\operatorname{Ker} f \cap \operatorname{Ker} g),$$

mais aussi,

$$n = \dim (\operatorname{Im} f) + \dim (\operatorname{Im} g) - \dim (\operatorname{Im} f \cap \operatorname{Im} g) = 2n - \dim \operatorname{Ker} f - \dim (\operatorname{Ker} g) - \dim (\operatorname{Im} f \cap \operatorname{Im} g).$$

Par suite,

$$n + \dim (\operatorname{Ker} f \cap \operatorname{Ker} g) = \dim (\operatorname{Ker} f) + \dim \operatorname{Ker} g = n - \dim (\operatorname{Im} f \cap \operatorname{Im} g)$$

puis $n+\dim (\operatorname{Ker} f\cap \operatorname{Ker} g)=n-\dim (\operatorname{Im} f\cap \operatorname{Im} g)\Rightarrow \dim (\operatorname{Ker} f\cap \operatorname{Ker} g)+\dim (\operatorname{Im} f\cap \operatorname{Im} g)=0$ ou encore dim $(\operatorname{Ker} f\cap \operatorname{Ker} g)=\dim (\operatorname{Im} f\cap \operatorname{Im} g)=0$, et finalement, $\operatorname{Ker} f\cap \operatorname{Ker} g=\operatorname{Im} f\cap \operatorname{Im} g=\{0\}$. Ceci montre que les sommes proposées sont directes.

Correction de l'exercice 4 A

1. Si P est un polynôme de degré inférieur ou égal à n, alors P(X+1)-P(X) est encore un polynôme de degré inférieur ou égal à n. Par suite, φ est bien une application de E dans lui-même. Soient alors $(P,Q) \in E^2$ et $(\lambda,\mu) \in \mathbb{R}^2$.

$$\begin{split} \varphi(\lambda P + \mu Q) &= (\lambda P + \mu Q)(X+1) - (\lambda P + \mu Q)(X) = \lambda (P(X+1) - P(X)) + \mu (Q(X+1) - Q(X)) \\ &= \lambda \varphi(P) + \mu \varphi(Q). \end{split}$$

 φ est linéaire de E vers lui-même et donc un endomorphisme de E.

2. Soit $P \in E$. $P \in \text{Ker } \varphi \Leftrightarrow \forall x \in \mathbb{R}$, P(x+1) = P(x). Montrons alors que P est constant. Soit Q = P - P(0). Q est un polynôme de degré inférieur ou égal à n s'annulant en les entiers naturels 0, 1, 2, ... (car P(0) = P(1) = P(2) = ...) et a ainsi une infinité de racines deux à deux distinctes. Q est donc le polynôme nul ou encore $\forall x \in \mathbb{R}$, P(x) = P(0). Par suite, P est un polynôme constant. Réciproquement, les polynômes constants sont clairement dans $\text{Ker } \varphi$ et donc

Ker
$$\varphi = \{\text{polynômes constants}\} = \mathbb{R}_0[X].$$

Pour déterminer Im φ , on note tout d'abord que si P est un polynôme de degré inférieur ou égal à n, alors $\varphi(P) = P(X+1) - P(X)$ est un polynôme de degré inférieur ou égal à n-1. En effet, si $P = a_n X^n + \sum_{k=0}^{n-1} a_k X^k$ (avec a_n quelconque, éventuellement nul) alors

$$\varphi(P) = a_n((X+1)^n - X^n) + \text{termes de degré inférieur on égal à } n-1$$

$$= a_n(X^n - X^n) + \text{termes de degré inférieur on égal à } n-1$$

$$= \text{termes de degré inférieur on égal à } n-1.$$

Donc, Im $(\varphi) \subset \mathbb{R}_{n-1}[X]$. Mais d'après le théorème du rang,

$$\dim \operatorname{Im} (\varphi) = \dim \mathbb{R}_n[X] - \dim \operatorname{Ker} (\varphi) = (n+1) - 1 = n = \dim \mathbb{R}_{n-1}[X] < +\infty,$$

et donc Im $\varphi = \mathbb{R}_{n-1}[X]$. (On peut noter que le problème difficile « soit $Q \in \mathbb{R}_{n-1}[X]$. Existe-t-il $P \in \mathbb{R}_n[X]$ tel que P(X+1) - P(X) = Q? » a été résolu simplement par le théorème du rang.)

Correction de l'exercice 5

Soit $u = (x, y, z, t) = xe_1 + ye_2 + ze_3 + te_4 \in \mathbb{R}^4$. Alors,

$$f(u) = xf(e_1) + yf(e_2) + zf(e_3) + tf(e_4) = x(2e_1 + e_3) + y(-e_2 + e_4) + z(e_1 + 2e_3) + t(e_2 - e_4)$$

= $(2x + z)e_1 + (-y + t)e_2 + (x + 2z)e_3 + (y - t)e_4$.

Par suite.

$$u \in \operatorname{Ker} f \Leftrightarrow \begin{cases} 2x + z = 0 \\ -y + t = 0 \\ x + 2z = 0 \end{cases} \Leftrightarrow \begin{cases} x = z = 0 \\ y = t \end{cases}.$$

Donc, Ker $f = \{(0, y, 0, y), y \in \mathbb{R}\} = \text{Vect}((0, 1, 0, 1)).$

$$Ker f = Vect((0,1,0,1)).$$

Soit $u' = (x', y', z', t') \in \mathbb{R}^4$.

$$u' = (x', y', z', t') \in \text{Im } f \Leftrightarrow \exists (x, y, z, t) \in \mathbb{R}^4 / \begin{cases} 2x + z = x' \\ -y + t = y' \\ x + 2z = z' \\ y - t = t' \end{cases} \Leftrightarrow \exists (x, y, z, t) \in \mathbb{R}^4 / \begin{cases} x = \frac{1}{3}(2x' - z') \\ z = \frac{1}{3}(-x' + 2z') \\ t = y + y' \\ y' + t' = 0 \end{cases}$$

(si $y' \neq -t'$, le système ci-dessus, d'inconnues x, y, z et t, n'a pas de solution et si y' = -t', le système ci-dessus admet au moins une solution comme par exemple $(x,y,z,t) = \left(\frac{1}{3}(2x'-z'),0,\frac{1}{3}(-x'+2z'),y'\right)$. Donc, Im $f = \{(x,y,z,t) \in \mathbb{R}^4 \mid y+t=0\} = \{(x,y,z,-y)/(x,y,z) \in \mathbb{R}^3\} = \{xe_1 + y(e_2 - e_4) + ze_3, (x,y,z) \in \mathbb{R}^4\} = \text{Vect}(e_1,e_2 - e_4,e_3)$.

Im
$$f == \{(x, y, z, -y)/(x, y, z) \in \mathbb{R}^3\} = \text{Vect}(e_1, e_2 - e_4, e_3).$$

Autre solution pour la détermination de Im f. Im $f = \text{Vect}(f(e_1), f(e_2), f(e_3), f(e_4)) = \text{Vect}(2e_1 + e_3, -e_2 + e_4, e_1 + 2e_3, e_2 - e_4) = \text{Vect}(2e_1 + e_3, e_1 + 2e_3, e_2 - e_4)$. Mais d'autre part, d'après le théorème du rang, dim (Im f) = 4 - 1 = 3. Donc, $(2e_1 + e_3, e_1 + 2e_3, e_2 - e_4)$ est une base de Im f.

Correction de l'exercice 6

Soient $(z, z') \in \mathbb{C}^2$ et $(\lambda, \mu) \in \mathbb{R}^2$.

$$f(\lambda z + \mu z') = (\lambda z + \mu z') + a(\overline{\lambda z + \mu z'}) = \lambda (z + a\overline{z}) + \mu (z' + a\overline{z'}) = \lambda f(z) + \mu f(z').$$

f est donc \mathbb{R} -linéaire. On note que $f(ia)=i(a-|a|^2)$ et que $if(a)=i(a+|a|^2)$. Comme $a\neq 0$, on a $f(ia)\neq if(a)$. f n'est pas \mathbb{C} -linéaire. Soit $z\in\mathbb{C}\setminus\{0\}$. Posons $z=re^{i\theta}$ où $r\in\mathbb{R}_+^*$ et $\theta\in\mathbb{R}$.

$$z \in \text{Ker } f \Leftrightarrow z + a\overline{z} = 0 \Leftrightarrow e^{i\theta} + ae^{-i\theta} = 0 \Leftrightarrow e^{2i\theta} = -a.$$

1er cas. Si $|a| \neq 1$, alors, pour tout réel θ , $e^{2i\theta} \neq -a$. Dans ce cas, Ker $f = \{0\}$ et d'après le théorème du rang, Im $f = \mathbb{C}$. **2ème cas.** Si |a| = 1, posons $a = e^{i\alpha}$.

$$e^{2i\theta} = -a \Leftrightarrow e^{2i\theta} = e^{i(\alpha + \pi)} \Leftrightarrow 2\theta \in \alpha + \pi + 2\pi\mathbb{Z} \Leftrightarrow \theta \in \frac{\alpha + \pi}{2} + \pi\mathbb{Z}.$$

Dans ce cas, Ker $f = \text{Vect}(e^{i(\alpha+\pi)/2})$. D'après le théorème du rang, Im f est une droite vectorielle et pour déterminer Im f, il suffit d'en fournir un vecteur non nul, comme par exemple f(1) = 1 + a. Donc, si $a \neq -1$, Im f = Vect(1+a). Si a = -1, $\forall z \in \mathbb{C}$, $f(z) = z - \overline{z} = 2i\text{Im }(z)$ et Im $f = i\mathbb{R}$.

Correction de l'exercice 7

1. Pour $(x, y) \in \mathbb{R}^2$, posons f((x, y)) = (x', y').

$$f \in \mathscr{L}(\mathbb{R}^2) \Leftrightarrow \exists (\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4 / \ \forall (x, y) \in \mathbb{R}^2, \ \begin{cases} x' = \alpha x + \gamma y \\ y' = \beta x + \delta y \end{cases}.$$

2. Avec les notations précédentes,

$$z' = x' + iy' = (\alpha x + \gamma y) + i(\beta x + \delta y) = (\alpha \frac{z + \bar{z}}{2} + \gamma \frac{z - \bar{z}}{2i}) + i(\beta \frac{z + \bar{z}}{2} + \delta \frac{z - \bar{z}}{2i})$$
$$= \left(\frac{\alpha + \delta}{2} + i \frac{\beta - \gamma}{2}\right) z + \left(\frac{\alpha - \delta}{2} + i \frac{\beta + \gamma}{2}\right) \bar{z} = az + b\bar{z}$$

où
$$a = \frac{\alpha + \delta}{2} + i \frac{\beta - \gamma}{2}$$
 et $b = \frac{\alpha - \delta}{2} + i \frac{\beta + \gamma}{2}$.

3. Réciproquement, si $z'=az+b\bar{z}$, en posant $a=a_1+ia_2$ et $b=b_1+ib_2$ où $(a_1,a_2,b_1,b_2)\in\mathbb{R}^4$, on obtient :

$$x' + iy' = (a_1 + ia_2)(x + iy) + (b_1 + ib_2)(x - iy) = (a_1 + b_1)x + (-a_2 + b_2)y + i((a_2 + b_2)x + (a_1 - b_1)y)$$
 et donc,

$$\begin{cases} x' = (a_1 + b_1)x + (b_2 - a_2)y \\ y' = (a_2 + b_2)x + (a_1 - b_1)y \end{cases}.$$

Correction de l'exercice 8 A

Par définition, rg $(u+v) = \dim (\operatorname{Im} (u+v))$.

$$\operatorname{Im}(u+v) = \{u(x) + v(x), x \in E\} \subset \{u(x) + v(y), (x,y) \in E^2\} = \operatorname{Im} u + \operatorname{Im} v.$$

Donc,

$$rg(u+v) = \dim (\operatorname{Im} (u+v))$$

$$\leq \dim (\operatorname{Im} u + \operatorname{Im} v) = \dim (\operatorname{Im} u) + \dim (\operatorname{Im} v) - \dim (\operatorname{Im} u \cap \operatorname{Im} v)$$

$$\leq \dim (\operatorname{Im} u) + \dim (\operatorname{Im} v) = \operatorname{rg} u + \operatorname{rg} v.$$

On a montré que :

$$\forall (u,v) \in (\mathcal{L}(E,F))^2$$
, rg $(u+v) \leq$ rg $u+$ rg v .

Ensuite,

$$rg \ u = rg \ (u + v - v) \le rg \ (u + v) + rg \ (-v) = rg \ (u + v) + rg \ v,$$

(il est clair que Im (-v) = Im v) et donc rg $u - \text{rg } v \le \text{rg } (u + v)$. En échangeant les rôles de u et v, on a aussi rg v - rg u = rg (u + v) et finalement

$$\forall (u,v) \in (\mathscr{L}(E,F))^2, |\operatorname{rg} u - \operatorname{rg} v| \le \operatorname{rg} (u+v).$$

Correction de l'exercice 9 A

1. • (1) \Rightarrow (2). Si Ker f = Im f, alors pour tout élément x de E, f(x) est dans Im f = Ker f et donc f(f(x)) = 0. Par suite, $f^2 = 0$. De plus, d'après le théorème du rang, $n = \dim(\text{Ker } f) + \text{rg } f = 2 \text{ rg } f$ ce qui montre que n est nécessairement pair et que $\text{rg } f = \frac{n}{2}$. • (2) \Rightarrow (3). Si $f^2 = 0$ et n = 2 rg f ($\in 2\mathbb{N}$), cherchons un endomorphisme g de E tel que $f \circ g + g \circ f = Id_E$. Posons r = rg f et donc n = 2r, puis F = Ker f = Im f ($\dim F = r$).

Soit G un supplémentaire de F dans E (dim G = r). Soit $(e'_1, ..., e'_r)$ une base de G. Pour $i \in [1, r]$, on pose $e_i = f(e'_i)$. Montrons que la famille $(e_1, ..., e_r)$ est libre. Soit $(\lambda_1, ..., \lambda_r) \in \mathbb{R}^r$.

$$\sum_{i=1}^{r} \lambda_{i} e_{i} = 0 \Rightarrow f\left(\sum_{i=1}^{r} \lambda_{i} e'_{i}\right) = 0 \Rightarrow \sum_{i=1}^{r} \lambda_{i} e'_{i} \in \operatorname{Ker} f \cap G = \{0\} \Rightarrow \forall i \in \{1, ..., r\}, \ \lambda_{i} = 0,$$

car la famille $(e_i')_{1 \leq i \leq r}$ est libre. $(e_1,...,e_r)$ est une famille libre de $F = \operatorname{Im} f$ de cardinal r et donc une base de $F = \operatorname{Ker} f = \operatorname{Im} f$. Au passage, puisque $E = F \oplus G$, $(e_1,...,e_r,e_1',...,e_r')$ est une base de E. Soit alors g l'endomorphisme de E défini par les égalités : $\forall i \in \llbracket 1,r \rrbracket$, $g(e_i) = e_i'$ et $g(e_i') = e_i$ (g est entièrement déterminé par les images des vecteurs d'une base de E). Pour i élément de $\llbracket 1,r \rrbracket$, on a alors :

$$(f \circ g + g \circ f)(e_i) = f(e'_i) + g(0) = e_i + 0 = e_i,$$

et

$$(f \circ g + g \circ f)(e'_i) = f(e_i) + g(e_i) = 0 + e'_i = e'_i.$$

Ainsi, les endomorphismes $f \circ g + g \circ f$ et Id_E coïncident sur une base de E et donc $f \circ g + g \circ f = Id_E$. • (3) \Rightarrow (1). Supposons que $f^2 = 0$ et qu'il existe $g \in \mathcal{L}(E)$ tel que $f \circ g + g \circ f = Id_E$. Comme $f^2 = 0$, on a déjà Im $f \subset \text{Ker } f$. D'autre part, si x est un élément de Ker f, alors $x = f(g(x)) + g(f(x)) = f(g(x)) \in \text{Im } f$ et on a aussi $\text{Ker } f \subset \text{Im } f$. Finalement, Ker f = Im f.

2. L'existence d'une base $(e_1,...,e_p,e'_1,...,e'_p)$ de E vérifiant les conditions de l'énoncé a été établie au passage (avec $p = r = \operatorname{rg} f$).

Correction de l'exercice 10

1. Soient *k* un entier naturel et *x* un élément de *E*.

$$x \in N_k \Rightarrow f^k(x) = 0 \Rightarrow f(f^k(x)) = f(0) = 0 \Rightarrow f^{k+1}(x) = 0 \Rightarrow x \in N_{k+1}.$$

On a montré que : $\forall k \in \mathbb{N}, N_k \subset N_{k+1}$. Ensuite,

$$x \in I_{k+1} \Rightarrow \exists y \in E / x = f^{k+1}(y) \Rightarrow \exists z (= f(y)) \in E / x = f^k(z) \Rightarrow x \in I_k.$$

On a montré que : $\forall k \in \mathbb{N}, I_{k+1} \subset I_k$.

2. (a) Soit k un entier naturel. Supposons que $N_k = N_{k+1}$.

On a déjà $N_{k+1} \subset N_{k+2}$. Montrons que $N_{k+2} \subset N_{k+1}$.

Soit x un élément de E.

$$x \in N_{k+2} \Rightarrow f^{k+2}(x) = 0 \Rightarrow f^{k+1}(f(x)) = 0 \Rightarrow f(x) \in N_{k+1} = N_k \Rightarrow f^k(f(x)) = 0$$
$$\Rightarrow f^{k+1}(x) = 0 \Rightarrow x \in N_{k+1}.$$

(b) On a $\{0\} = N_0 \subset N_1 \subset N_2$... Supposons que chacune de ces inclusions soient strictes. Alors, $0 = \dim N_0 < \dim N_1 < \dim N_2$... Donc $\dim N_1 \ge 1$, $\dim N_2 \ge 2$ et par une récurrence facile, $\forall k \in \mathbb{N}$, $\dim N_k \ge k$. En particulier, $\dim N_{n+1} \ge n+1 > n = \dim E$, ce qui est impossible. Donc, il existe k entier naturel tel que $N_k = N_{k+1}$.

Soit p le plus petit de ces entiers k (l'existence de p est démontrée proprement de la façon suivante : si $K = \in \{k \in \mathbb{N} / N_k = N_{k+1}\}$, K est une partie non vide de \mathbb{N} et admet donc un plus petit élément). On note que puisque f est non injectif, $\{0\} = N_0 \subset N_1$ et donc $p \in \mathbb{N}^*$. Par définition de p, pour k < p, $N_k \subset N_{k+1}$ et, d'après le a) et puisque $N_p = N_{p+1}$, on montre par récurrence que pour

k = p, on a $N_k = \stackrel{\neq}{N_p}$.

- (c) $0 < \dim N_1 < ... < \dim N_p$ montre que pour $k \le p$, on a dim $N_k = k$ et en particulier $p \le \dim N_p = n$.
- 3. Puisque $N_k \subset N_{k+1}$, $I_{k+1} \subset I_k$ et que dim $E < +\infty$, on a :

$$N_k = N_{k+1} \Leftrightarrow \dim N_k = \dim N_{k+1} \Leftrightarrow n - \operatorname{rg}(f^k) = n - \operatorname{rg}(f^{k+1}) \Leftrightarrow \dim(I_k) = \dim(I_{k+1}) \Leftrightarrow I_k = I_{k+1}.$$

Donc, pour k < p, $I_k \subset I_{k+1}$ et pour k = p, $I_k = I_{k+1}$.

4. Soit $x \in I_p \cap N_p$. Alors, $f^p(x) = 0$ et $\exists y \in E / x = f^p(y)$. D'où, $f^{2p}(y) = 0$ et $y \in N_{2p} = N_p$ (puisque $2p \ge p$) et donc $x = f^p(y) = 0$. On a montré que $I_p \cap N_p = \{0\}$. Maintenant, le théorème du rang montre que $E = \dim(I_p) + \dim(N_p)$ et donc $E = I_p \oplus N_p$.

Posons $f_{/I_p}=f'$. f' est déjà un endomorphisme de I_p car $f'(I_p)=f(I_p)=I_{p+1}=I_p$.

Soit alors $x \in I_p$. $\exists y \in E / x = f^p(y)$.

$$x \in \text{Ker } f' \Rightarrow f'(x) = 0 \Rightarrow f(f^p(y)) = 0 \Rightarrow y \in N_{p+1} = N_p x = f_p(y) = 0.$$

Donc Ker $f' = \{0\}$ et donc, puisque dim $I_p < +\infty$, $f' \in \mathscr{GL}(I_p)$.

5. Soient k un entier naturel et g_k la restriction de f à I_k .

D'après le théorème du rang, $d_k = \dim(I_k) = \dim(\operatorname{Ker} g_k) + \dim(\operatorname{Im} g_k)$. Maintenant, $\operatorname{Im} g_k = g_k(I_k) = f(I_k) = I_{k+1}$ et donc dim $(\operatorname{Im} g_k) = d_{k+1}$. D'autre part, $\operatorname{Ker} g_k = \operatorname{Ker} f/I_k = \operatorname{Ker} f \cap I_k$.

Ainsi, pour tout entier naturel k, $d_k - d_{k+1} = \dim (\operatorname{Ker} f \cap I_k)$. Puisque la suite $(I_k)_{k \in \mathbb{N}}$ est décroissante pour l'inclusion, la suite d'entiers naturels $(\dim (\operatorname{Ker} f \cap I_k))_{k \in \mathbb{N}} = (d_k - d_{k+1})_{k \in \mathbb{N}}$ est décroissante.

Correction de l'exercice 11 ▲

1. Soit $p(\in \mathbb{N}^*)$ l'indice de nilpotence de u.

Par définition, $u^{p-1} \neq 0$ et plus généralement, pour $1 \leq k \leq p-1$, $u^k \neq 0$ car si $u^k = 0$ alors $u^{p-1} = u^k \circ u^{p-1-k} = 0$ ce qui n'est pas.

Puisque $u^{p-1} \neq 0$, il existe au moins un vecteur x non nul tel que $u^{p-1}(x) \neq 0$.

Montrons que la famille $(u^k(x))_{0 \le k \le p-1}$ est libre.

Soit $(\lambda_k)_{0 \le k \le p-1} \in \mathbb{K}^p$ tel que $\sum_{k=0}^{p-1} \lambda_k u^k(x) = 0$. Supposons qu'au moins un des coefficients λ_k ne soit pas nul. Soit $i = \text{Min } \{k \in \{0, ..., p-1\} / \lambda_k \ne 0\}$.

$$\sum_{k=0}^{p-1} \lambda_k u^k(x) = 0 \Rightarrow \sum_{k=i}^{p-1} \lambda_k u^k(x) = 0 \Rightarrow u^{p-1-i} (\sum_{k=i}^{p-1} \lambda_k u^k(x)) = 0 \Rightarrow \sum_{k=i}^{p-1} \lambda_k u^{p-1-i+k}(x) = 0$$

$$\Rightarrow \lambda_i u^{p-1}(x) = 0 \quad (\text{car pour } k \ge i+1, \ p-1-i+k \ge p \text{ et donc } u^{p-1-i+k} = 0)$$

$$\Rightarrow \lambda_i = 0 \quad (\text{car } u^{p-1}(x) \ne 0)$$

ce qui contredit la définition de i.

Donc tous les coefficients λ_k sont nuls et on a montré que la famille $(u^k(x))_{0 \le k \le p-1}$ est libre.

- 2. Le cardinal d'une famille libre est inférieur ou égal à la dimension de l'espace et donc $p \le n$. Par suite, $u^n = u^p \circ u^{n-p} = 0$.
- 3. On applique l'exerice 10.

Puisque $u^{n-1} \neq 0$, on a $N_{n-1} \subset N_n$. Par suite (d'après l'exercice 12, 2), c)), les inclusions $N_0 \subset N_1 \subset ... \subset N_n = E$ sont toutes strictes et donc

$$0 < \dim N_1 < \dim N_2 ... < \dim N_n = n.$$

Pour $k \in \{0,...,n\}$, notons d_k est la dimension de N_k . Pour $k \in \{0,...,n-1\}$, on a $d_{k+1} \ge d_k$ et une récurrence facile montre que, pour $k \in \{0,...,n\}$, on a $d_k \ge k$.

Mais si de plus, pour un certain indice i élément de $\{1,...,n-1\}$, on a $d_i = \dim N_i > i$, alors, par une récurrence facile, pour $i \le k \le n$, on a $d_k > k$ et en particulier $d_n > n$ ce qui n'est pas. Donc,

$$\forall k \in \{0,...,n\}, \dim(N_k) = k,$$

ou encore, d'après le théorème du rang,

 $\forall k \in \{0,...,n\}$, rg $(u^k) = n - k$, et en particulier rg (u) = n - 1.

Correction de l'exercice 12 ▲

Soit $x \in E$.

$$x \in \text{Ker } (f-2Id) \cap \text{Ker } (f-3Id) \Rightarrow f(x) = 2x \text{ et } f(x) = 3x \Rightarrow 3x - 2x = f(x) - f(x) = 0 \Rightarrow x = 0.$$

Donc, Ker $(f - 2Id) \cap \text{Ker } (f - 3Id) = \{0\}$ (même si $f^2 - 5f + 6Id \neq 0$).

Soit $x \in E$. On cherche y et z tels que $y \in \text{Ker } (f-2Id), z \in \text{Ker } (f-3Id)$ et x = y + z.

Si y et z existent, y et z sont solution du système $\begin{cases} y+z=x \\ 2y+3z=f(x) \end{cases}$ et donc $\begin{cases} y=3x-f(x) \\ z=f(x)-2x \end{cases}$ Réciproquement . Soient $x \in E$ puis y=3x-f(x) et z=f(x)-2x.

On a bien y + z = x puis

$$f(y) = 3f(x) - f^{2}(x) = 3f(x) - (5f(x) - 6x) \quad (\operatorname{car} f^{2} = 5f - 6Id)$$
$$= 6x - 2f(x) = 2(3x - f(x)) = 2y$$

et $y \in \text{Ker } (f - 2Id)$. De même,

$$f(z) = f^{2}(x) - 2f(x) = (5f(x) - 6x) - 2f(x) = 3(f(x) - 2x) = 3z,$$

et $z \in \text{Ker } (f - 3Id)$. On a montré que E = Ker (f - 2Id) + Ker (f - 3d), et finalement que

$$E = \text{Ker} (f - 2Id) \oplus \text{Ker} (f - 3d).$$