ALGEBRA Chapter 9

2th
Session

DESIGUALDADES

¿QUIÉN INVENTÓ LOS SÍMBOLOS DE LAS DESIGUALDADES >; < ?

Los símbolos < y > se introdujeron por primera vez por el matemático inglés Thomas Harriot (1560-1621) en su obra Artis Analyticae Praxis publicada en Londres en 1631. Se comenta que Harriot fue inspirado por un símbolo que había visto en el brazo de un nativo americano (ver Figura) para "inventar" los símbolos de las desigualdades.

Thomas Harriot

HELIC(

Es

HELICO THEORY

Meanue los signos de desigualdades (>; < ; - ; \le ; \le)

Ley de tricotomía

Para dos números reales a y b solo se cumple una de las siguientes proposiciones:

$$a < b$$
; $a = b$; $a > b$

Propiedades

1)
$$Si \quad a > b \quad y \quad b > c$$

2)
$$Si \quad a > b \quad y \quad m \in \mathbb{R}^+$$

$$a+m>b+m$$

$$a-m>b-m$$

3) Si
$$a > b$$
 y $m > 0$

$$a \cdot m > b \cdot m$$

$$\frac{a}{m} > \frac{b}{m}$$

Intervalos

Definición:

Es un subconjunto de los números reales, generalmente comprendido entre 2 valores extremos.

Ejemplo:

$$A = \{x \in \mathbb{R} / 2 \le x < 12 \}$$

$$B = \{x \in \mathbb{R} / -5 \le x \le 6\}$$

Clasificación

- Cerrado [a; b]
 Abierto (a; b)
 Semicerrado (a; b)

II. NO ACOTADOS

HELICO | THEORY *I. Intervalo acotado*

INTERVALOS	Desigualdad	Notación de Intervalos	Representación Gráfica
1 Cerrado	$a \le x \le b$	$x \in [a;b]$	$-\infty$ a b $+\infty$
2 Abierto	a < x < b	$x \in \langle a; b \rangle$	$-\infty$ a b $+\infty$
3 Semiabierto	$a \le x < b$	$x \in [a;b\rangle$	$-\infty$ a b $+\infty$
	$a < x \le b$	$x \in \langle a; b]$	$-\infty$ a b $+\infty$
ALGEBRA			

HELICO | THEORY II. Intervalo no acotado

Desigualdad	Notación de Intervalos	Representación Gráfica	
$x \leq b$	$x \in \langle -\infty; b]$	$b \rightarrow \infty$	
<i>x</i> < <i>b</i>	$x \in \langle -\infty; b \rangle$	$b \rightarrow \infty$	
$x \ge b$	$x \in [b; \infty)$	$-\infty$ b $+\infty$	
x > b	$x \in \langle b; \infty \rangle$	$-\infty$ b $+\infty$	

HELICO PRACTICE

RESOLUCIÓN

Rpta

 $A \cap B = \langle 7; 10 \rangle$

Sabiendo que $M = [5; 10] y N = \langle 7; 12 \rangle$. Halle $M \cup N$

RESOLUCIÓN

Rpta
$$M \cup N = [5; 12)$$

Si A = [-2; 5] y B = [2; 6]. Halle A - B

RESOLUCIÓN

Rpta
$$A - B = [-2; 2)$$

Si $x \in [1; 4]$, indique el intervalo al cual pertenece 3x - 2

RESOLUCIÓN

Rpta [1; 10]

Sabiendo que $x \in [5; 10]$, halle el intervalo al cual pertenece $\frac{2x}{5} + 3$

RESOLUCIÓN

$$5 \le x \le 10$$

$$\times 2$$

$$10 \le 2x \le 20$$

$$2 \le \frac{2x}{5} \le 4$$

$$5 \le \frac{2x}{5} + 3 \le 7$$

Rpta [5; 7]

Si se sabe que $x \in \langle 1; 4 \rangle$, indique el máximo valor entero al cual pertenece $\frac{2x-3}{5}$, siendo esta la edad de Victoria. ¿Cuál es esa edad?

Si $x \in [3; 8]$, halle el intervalo al cual pertenece -x + 8

<u>RESOLUCIÓN</u>

Rpta [0; 5]

Si $(2x + 3) \in \langle 5; 13 \rangle$, halle el intervalo al cual pertenece -x + 1

RESOLUCIÓN

Rpta $\therefore \langle -4; 0 \rangle$