Li and Lu have n integers, a_1, a_2, \ldots, a_n , that they want to divide fairly between the two of them. They decide that if Li gets integers with indices $I=\{i_1,i_2,\ldots,i_k\}$ (which implies that Lu gets integers with indices $J = \{1, \dots, n\} \setminus I$), then the measure of unfairness of this division is:

$$f(I) = \sum_{i \in I} \sum_{j \in J} |a_i - a_j|$$

Find the minimum measure of unfairness that can be obtained with some division of the set of integers where Li gets exactly \boldsymbol{k} integers.

Note $A \setminus B$ means <u>Set complement</u>

Input Format

The first line contains two space-separated integers denoting the respective values of \boldsymbol{n} (the number of integers Li and Lu have) and \boldsymbol{k} (the number of integers Li wants).

The second line contains n space-separated integers describing the respective values of a_1, a_2, \ldots, a_n .

Constraints

- $1 \le k < n \le 3000$ $1 \le a_i \le 10^9$

- For 15% of the test cases, $n \leq 20$. For 45% of the test cases, $n \leq 40$.

Output Format

Print a single integer denoting the minimum measure of unfairness of some division where Li gets kintegers.

Sample Input 0

4 2 4 3 1 2

Sample Output 0

Explanation 0

One possible solution for this input is $I = \{2, 4\}$; $J = \{1, 3\}$. $|a_2-a_1|+|a_2-a_3|+|a_4-a_1|+|a_4-a_3|=1+2+2+1=6$

Sample Input 1

4 1 3 3 3 1

Sample Output 1

Explanation 1

The following division of numbers is optimal for this input: $I = \{1\}$; $J = \{2, 3, 4\}$.