ADONIS BOYD

MIT APPLIED DATA

SCIENCE PROGRAM

2025

# LOAN DEFAULT PREDICTION USING MACHINE LEARNING

#### **EXECUTIVE SUMMARY**



Banks face losses from loan defaults.



 Goal: Predict loan default risk before approval.



 Business Impact: Reduce losses, automate credit screening, ensure fair lending.

#### PROBLEM & SOLUTION SUMMARY

### Data Science Objectives

• Predict if a customer will default (BAD = 1).

 Identify key drivers of default.

 Compare different models.  Recommend a model ready for deployment.

#### **BUSINESS GOALS**

# ImproveReducePreventImprove loan<br/>underwritingReduce manual<br/>workload.Prevent losses<br/>before they happen

#### DATA OVERVIEW

Dataset: 5,960 rows, 13 columns.

Target: BAD (I = default, 0 = repaid).

Features: Loan amount, credit history, employment, etc.

Challenge: Slight Class Imbalance + missing values in key columns like (YOJ), DEBTINC.

#### DATA CLEANING

- Missing values handled using median (numerical) and mode (categorical).
- Outliers capped using IQR method.
- Categorical variables one-hot encoded.



- Right-skewed, with most applicants requesting between 10,000 and 25,000.
- Very few applicants request amounts above 50,000 which may be considered outliers.

- Observation: People
   who are seeking Home
   Improvement typically
   have high default rates
   than those seeking
   Debt Consolidation.
- Defaulters tend to own properties with lower market value.





 Defaulters tend to own properties with low market value compared to nondefaulters.

#### EXPLORATORY DATA ANALYSIS

• Higher default rates in Home Improvement loans.

• Credit behavior (delinquencies, derogatory marks) linked to default.

- Long job tenure and credit history
- = lower risk.

| BAD     | 1.00  | -0.08 | -0.05 | -0.04 | -0.05 | 0.27  | 0.35  | -0.17 | 0.17  | -0.00 | 0.15  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| LOAN    | -0.08 | 1.00  | 0.22  | 0.33  | 0.10  | 0.01  | -0.03 | 0.09  | 0.05  | 0.07  | 0.07  |
| MORTDUE | -0.05 | 0.22  | 1.00  | 0.79  | -0.08 | -0.05 | 0.00  | 0.13  | 0.03  | 0.32  | 0.13  |
| VALUE   | -0.04 | 0.33  | 0.79  | 1.00  | 0.01  | -0.04 | -0.01 | 0.17  | -0.00 | 0.27  | 0.11  |
| YOJ     | -0.05 | 0.10  | -0.08 | 0.01  | 1.00  | -0.06 | 0.05  | 0.19  | -0.06 | 0.03  | -0.05 |
| DEROG   | 0.27  | 0.01  | -0.05 | -0.04 | -0.06 | 1.00  | 0.17  | -0.08 | 0.15  | 0.05  | 0.02  |
| DELINQ  | 0.35  | -0.03 | 0.00  | -0.01 | 0.05  | 0.17  | 1.00  | 0.03  | 0.06  | 0.16  | 0.05  |
| CLAGE   | -0.17 | 0.09  | 0.13  | 0.17  | 0.19  | -0.08 | 0.03  | 1.00  | -0.11 | 0.23  | -0.04 |



## CORRELATION HEATMAP INSIGHTS

- Strongest predictors of default:
- DELINQ, DEROG, NINQ, DEBTINC
   VALUE
- Loan size and home value have weak correlation with default.
- BAD is mostly strong correlated with credit behavior features (DELINQ, DEROG, NINQ, DEBTINC while LOAN & VALUE have weak correlations.
- The map suggest that credit behavior matters more than the size of a loan when predicting risk.

#### MODEL COMPARISON

- Logistic Regression: ~85% Accuracy, ROC-AUC ~0.77
- Decision Tree: ~86% Accuracy, ROC-AUC ~0.76
- Random Forest: 90% Accuracy, ROC-AUC 0.96 (Best Model)

#### COMPARISON

#### **DECISION TREE**

- Captures non-linear relationships
- Slighty prone to overfitting
- Recall improves (~61%), but not the best overall
- ROC-AUC: ~0.76
- Great for interpretability, not the strongest performer

#### LOGISTIC REGRESSION

- Simple and interpretable
- Struggles with complex patterns in the data
- Lower recall (~50%) for defaulters
- ROC-AUC: ~0.77 → baseline model

#### **RANDOM FOREST**

Delivered highest overall performance with 90% accuracy and 0.96 ROC-AUC.



#### FINAL MODEL – RANDOM FOREST

Tuned using cross-validation (GridSearchCV)

Optimized for best accuracy and recall

Chosen for its robust performance and reliability

Final ROC-AUC: 0.96 – strongest of all models

Tuned with 200 trees, full depth and fine-grained leaf splits

#### FINAL MODEL

- High accuracy and ROC-AUC
- Balanced precision and recall
- Robustness to overfitting
- Interpretability through feature importances
- It aligns well with the bank's goal of minimizing risk while maintaining fair and efficient loan decisions.



#### KEY BUSINESS INSIGHTS

• Behavioral credit history is more predictive than loan amount.

- Home Improvement loans carry higher risk.
- Random Forest can support smarter, fairer loan approvals.

#### RECOMMENDATIONS FOR IMPLEMENTATION



Deploy the Random Forest model in the loan approval system



Use it to flag high-risk applicants early.



Regularly monitor performance and retrain as needed



This model enables proactive loan risk management, reduces manual review, and supports scalable underwriting.

### THANK YOU