Alimentation

Sans Interruption

Mathieu Despont - 10.3.2021

Black out!

System Average Interruption Duration Index

System Average Interruption Duration Index Durée annuelle moyenne d'interruption par consommateur final approvisionné en Suisse

19 minutes en 2019

~ 50% de planifié... et 50% de panne

Les systèmes informatiques et télécom sont devenus indispensables

Une panne et c'est toute une production qui peut s'arrêter

Plusieurs jours à remettre en place un système réseau et informatique.

44% des pertes de données à cause de défaillances matérielles. Source: PWC

La solution....

ASI → Alimentation Sans Interruption

UPS → Uninterruptible Power Supply

ASSC → Alimentation Statique Sans Coupure

Onduleur → du nom d'un des composants

Alimentation Sans Interruption

Permet de tenir ~15 à 30 min

Le temps de tenir les petites coupures

Le temps de sauvegarder et éteindre proprement des machines

MAIS l'ASI n'est pas qu'une batterie de secours !!!!

L'énergie électrique est distribuée sous forme de courant alternatif

DC

AC

La sinusoïde théorique est souvent perturbée

7 perturbations normalisées

- 1.Transitoires
- 2.Interruptions
- 3. Creux / Sous-tension
- 4. Bosse / Surtension
- 5. Distorsion de la sinusoïdale
- 6. Fluctuations de tension
- 7. Variations de fréquence

Norme IEEE 1159- 1995, « IEEE Recommended Practice for Monitoring Electrical Power Quality ».

Les transitoires

Les plus dommageables!

Transitoires impulsifs

- parfois 5 nano secondes
- < 50 ns

- Parasurtenseur
- 40% à 55% humidité dans datacenter

Oscillants

- Enclenchement et déclenchement de moteur
- Version électrique du bélier hydraulique

- détecteur passage par 0
- condensateurs et/ou bobine

Interruptions

Perte totale d'alimentation

- instantanée → 0,5 à 30 cycles
- momentanée → 30 cycles à 2s
- Temporaire → 2s à 2 min
- Maintenue → 2 min < = coupure

- Onduleur ou génératrice pour y remédier

3 Creux de tension - Sous-tension

- 0,5 cycles à 1 min
- commutation d'une charge avec des gros courants de démarrage

- diminution de la tension à long terme
- problème pour alimentation non linéaire
 - → comme celles des ordinateurs

- source d'énergie additionnelle
- Onduleur

- Peut aussi être le signe d'une défectuosité de l'alimentation de l'appareil

4 Bosse de tension - Sur-tension

- augmentation sur 0.5 cycle à 1min
- scintillement des lumières
- dégradation des contacts
- dommages aux semi-conducteurs

- conditionneur de puissance
- onduleurs
- transformateur férrorésonnant

Vérifier les log des onduleurs pour détecter la source du phénomènes avant d'avoir des dégâts.

- une bosse de longue durée
- Visible en basse saison dans des régions saisonnières
- Équivalent hydraulique du doigt au bout du tuyau pour augmenter la pression

- conditionneur de puissance
- onduleurs
- transformateur férrorésonnant

À à la surchauffe d'appareil, surtout si entassés. (Rack non ventilé)

Distorsion de la sinusoïdale

5 types!

- 1.Décalage continu
- 2. Harmoniques
- 3.Inter-harmoniques
- 4. Encoches
- 5.Bruit

Distorsion de la sinusoïdale

Décalage continu

Harmoniques

- Harmonique du 50Hz.. 100Hz.. 150Hz..
- Du aux alimentations à découpage
- Courant de retour sur le neutre

- mettre une nouvelle alim qui corrige le facteur de puissance.

Redresseur défectueux → on le change

Distorsion de la sinusoïdale

Inter-harmoniques

- forme d'onde imposée par des contrôleurs de gros moteurs. (Laminoire, cimenterie, mine..)

Encoches

- Comme une impulsion transitoire, mais périodique! → donc il y a une source!
- Variateur de lumière, de vitesse, soudure à arc

- Filtre
- Onduleur
- Conditionnements de puissance

- Filtre
- Onduleur
- Éloigner la source de la perturbation

5

Distorsion de la sinusoïdale

Bruit

- Un signal étranger qui se superpose
- → émetteur radio, soudure à arc, alimentation à découpage, etc...
- Arrive si mauvaise mise à terre
- les câbles de télécom.
- → surtout si on utilise les mêmes gaines techniques
- → si un câble passe près d'une lampe fluorescente

- Onduleur
- Mise à terre
- Blindage

Fluctuations de tension

Variation minime de tension

- variation de tension de 95% à 105% à faible fréquence ~25Hz
- Généralement du aux fours à arc

- Onduleur ou conditionneur de puissance

7

Variation de fréquence

Très rare

- Survient quand un générateur de secours n'arrive pas à suivre.
- N'affecte pas les systèmes informatiques
- Affecte surtout les moteurs

- mieux régler la source de de courant.

Types d'Alimentation Sans Interruption

3 principaux

- Standby / offline → En attente passive
- Line interactive → En interaction avec le réseau
- Double conversion / on-line → à double conversion
- + 2...
- Standby-ferro
- Delta conversion on-line

Classification des UPS

3 principaux

- Standby → VFD
- Line interactive → VI
- Double conversion → VFI

V → Voltage

F → **F**requency

D → **D**ependant

I → Independant

Défini la relation entre la sortie et l'entrée

VFD → Voltage et Fréquence de sortie sont Dépendants du signal d'entrée

VI → Voltage est Indépendant de la tension d'entrée (implicitement il est Dépendant de la Fréquence)

VFI → Voltage et Fréquence sont Indépendant du signal d'entrée.

Selon la norme: UPS standard EN62040

Stand-by

VFD

- Simple, efficace, bon marché → pour les postes clients
- Commutateur de transfert → bascule l'équipement sur la batterie (bascule en 10ms)
- Parasurtenseur + filtre → limite les surtensions et parasites.
- Inutilisable au dessus de 2kVA
- Pas découplé du réseau, donc VFD

Line Interactive

- Pour les serveurs et équipement réseau. Le plus courant en PME.
- Convertisseur toujours à la sortie de l'onduleur
- La batterie charge, → ça régule la tension → idéal si faible tension
- En cas de coupure le commutateur se déclenche et la batterie alimente la sortie de l'onduleur
- AVR Automatic Voltage Regulator → un régulateur de tension qui limite l'usage de l'accu.
- Utilisable entre 0.5 et 5kVA

Online double conversion

VFI

- Un classique pour les installations > 10kVA (inutilisable en dessous de 5kVA)
- Presque un *Stand by...* sauf que tout passe toujours par la batterie.
- L'alim charge toujours la batterie → qui alimente le circuit
- → forte usure des composants, rendement moyen.
- Il y a un bypass en cas de besoin. Par exemple changer la batterie!
- Aucun délais de commutation vu que toujours branché à la batterie !

Résumé des types d'UPS

	Plages de tensions de fonctionnement (kVA)	Régulation de la tension	Coût par VA	Rende- ment	onduleur opérationnel en permanence
standby	0-0.5	Faible	Low	Très élevé	Non
line interactive	0.5-5	Dépend de la conception	Medium	Très élevé	Dépend de la conception
standby- ferro	3-15	Élevée	High	Faible - Moyen	Non
on-line double conversion	5-5000	Élevée	Medium	Faible - Moyen	Oui
on-line delta conversion	5-5000	Élevée	Medium	Élevé	Oui

Avantages et inconvénients

	Produits commercial- isés	Avantages	Inconvé- nients	Conseils d'APC
standby	APC Back-UPS Tripp-Lite Internet Office	Coût intéressant, haut rendement, compact	Utilise les batteries en cas de baisses de tension. Inutilisable au dessus de 2 kVA	Meilleur prixl pour les micro- ordinateurs personnels
line interactive	APC Smart-UPS Powerware 5125	Excellente fiabilité, haut rendement, bonne régulation de la tension	Inutilisable au dessus de 5 kVA	Type d'onduleur le plus populaire du fait de sa fiabilité, idéal pour les serveurs en rack et / ou distribués et / ou pour les environnements les plus rudes
standby ferro	Pas de produit APC dans cette technologie	Excellente régulation de la tension, très bonne fiabilité	Rendement faible, peu stable quand on l'associe à certaines charges et certains groupes électrogènes	Applications limitées en raison de son mauvais rendement et des problèmes d'instabilité. De plus, la conception en ligne N+1 offre une fiabilité bien supérieure
on-line double conversion	APC Symmetra Liebert NX	Excellente régulation de la tension, déploie- ment très simple en parallèle	Rendement faible, onéreux en dessous de 5 kVA	Bien adapté aux conceptions N+1
on-line delta conversion	APC Symmetra Megawatt	Excellente régulation de la tension, très bon rendement	Inutilisable en dessous de 5 kVA	Le rendement élevé réduit le coût de cycle de vie substantiel des grandes installations

Dimensionnement d'un UPS

Quel type de puissance?

Puissance apparente → S = UI

Puissance active \rightarrow P = UI cos ϕ

 \rightarrow Q = UI sin Φ Puissance réactive

Facteur de puissance → COS φ

Marge de sécurité \rightarrow COS ϕ = 0.6

Depuis 1996 tous les ordinateurs ont des alimentations à correction de facteur de puissance: $\cos \phi = 1$

550VA

500kVA

Puissance apparente [Volt-Ampères] → permet de dimensionner les câbles et fusibles Puissance active [Watts] → puissance dissipée en chaleur et se voit sur la facture

 $\cos \theta = -$