目录

作不易,如有不对,请联系。 - 基础知识	3
1.LDO	
1.1 原理	3
1.2 参数	3
1.输入输出压差(Dropout Voltage)	3
2.线性调整率	3
3.负载调整率	3
4.电源抑制比(PSRR)	3
5.瞬态响应	3
6.静态电流 lq	4
7.噪声	4
8.输入电压	4
9.输出电压	4
10.效率	4
1.3 特性	4
1.输出自放电	4
2.软启动	4
3.EN 信号	
4.假负载的作用	4
5.反馈对地电阻	4
6.降噪电容	4
7.前馈电容	4
8.输入电容	5
9.输出电容	5
2.DC-DC	5
2.1 拓扑结构	5
2.1.1BUCK	5
2.1.2BOOST	5
2.1.3BUCK-BOOST	5
2.1.4 反激	5
2.1.5 正激	6
2.3 同步与非同步	6
2.4 隔离非隔离	6
2.5 工作模式	6
2.5.1CCM 连续导通模式	6
2.5.2DCM 非连续导通模式	6
2.5.3BCM 临界导通模式	6
2.6 调制模式	6
2.6.1 脉冲宽度调制 PWM	6
2.6.2 脉冲频率调制 PFM	7
3.脉冲跨周期调制 PSM (频率和脉宽都不变,脉冲时有时无) (定频定宽)	7

2.7 控制模式	7
2.7.1 电压控制模式	7
2.7.2 电流控制模式	7
2.8 特性	8
1.电源效率	8
2.欠压保护	8
3.缓(软)启动 soft-start	8
4.输出电压	8
5.自举电容	8
6.环路设计	8
7.BST	9
8.FBADJ	9
9.PGOOD	9
10.BOOT	9
11.纹波	9
12. 电流调整率	9
一、面试提问	10
问题汇总	10
问题答案	10
1. LDO 和 DCDC 区别、选型	
2. DC-DC、LDO 使用 PMOS 还是 NMOS	10
3. PWM、PFM 和 PSM 调制的特点	
4、BUCK 的拓扑结构与原理	
5、BOOST 的拓扑结构与原理	
6、Flyback 反激拓扑和原理	
7、BUCK-BOOST 拓扑结构和原理	13
8、电源闭环回路如何实现	
9、电源纹波产生、抑制方法、测量	13
10、哪些因素会导致开关电源效率降低,如何解决	14
11、环路稳定性	14
12、DC-DC 的器件选型(电感、电容、电阻)	14
13、LDO 效率计算	15
14、DC-DC 的同步和非同步优缺点	15
15、buck 电路中的续流二极管可以换成 mos 管吗	15
16、LDO PCB 布局布线	15
17、DC-DC 的 PCB 设计布局布线注意事项	15

一、基础知识

1.LDO

1.1 原理

通过运放调节 P-MOS 的输出。

低压差: 输出压降比较低, 输入 3.3V, 输出可达到 3.2V。

线性: LDO 的 MOS 管工作于饱和区(恒流区)

稳压器: 是用来给电源稳压。

LDO 有 MOS 管和三极管控制, 区别在于最小压差区不一样。

LDO 内部由 4 大部件构成, 分压取样电路、基准电压、误 差放大电路、晶体管调整电路。

$$V_{\text{OUT}} = V_{\text{REF}} \times \frac{R1}{R}$$

管),将 Vout 调整成设定值。这是一个负反馈调节回路。

1.2 参数

1.输入输出压差(Dropout Voltage)

压差一般都是很小, LDO 的输入电流几乎等于输出电流。压差越大, 效率越低, 能量损耗越大。 发热功率=电压差 * 电流。**负载电流很小,压差过大也可以使用 LDO。**

2.线性调整率

在负载一定的情况下, 当输入电压变化时, 引起对应输出电 压的变化量。也就是输出电压变化量和输入电压变化量之 比。线性调整率越小越好。线性调整率和负载调整率都受到 环路增益的影响,通常增益越大,二者性能越好;

$$\frac{\Delta V_{out}}{\Delta V_{in}} = \frac{V_{out@Vin_max} - V_{out@Vin_min}}{V_{in_max} - V_{in_min}}$$

3.负载调整率

在特定输入电压条件下,当负载电流变化时,引起的输出电 压的变化。这里的负载变化通常是从无负载到满负载。负载 调整率越小越好。负载调整率体现了通路元件的性能和稳压器 的闭环 DC 增益。闭环 DC 增益越高, 负载调整率越好。 说明 LDO 抑制负载干扰的能力越强。

$$\frac{\Delta V_{\text{out}}}{\Delta I_{\text{out}}} = \frac{V_{\text{out}} \ @ \ noload \ -V_{\text{out}} \ @ \ fullload}{0 - I_{\text{out}} \ @ \ fullload}$$

4.电源抑制比(PSRR)

用来反应对不同频率的输入电源纹波的抑制能力。输入纹波与输出 纹波的比值的对数关系。在特定频段,PSRR 越大越好,输出信号 $PSRR(dB) = 20 \log \frac{V_{\text{nipple (in)}}}{V_{\text{circle (out)}}}$ **用来反应对不同频率的输入电源纹波的抑制能力**。输入纹波与输出 受到电源的影响越小。如果用在低噪声场合,一定要选择高 PSRR

$$PSRR(dB) = 20 \log \frac{V_{\text{ripple (in)}}}{V_{\text{ripple (out)}}}$$

(80dB 以上) 的 LDO, 建议在 80dB 以上。

提高开关管的开关频率。开关频率越高,纹波越小,但也会提高开关管的开关损耗,造成效率下降。 LC 滤波器对纹波的抑制作用比较明显。

在低频处主要受到输入电压基准和开环增益的影响,中频处主要受到开环增益的影响,高频处主要 受到输出电容大小的影响。

5.瞬态响应

表示负载电流突变时引起的输出电压的最大变化, Cb (前馈电容) 的作用是提高负载瞬态响应

能力。要想实现最佳瞬态响应,闭环回路带宽必须尽可能高,同时还要确保有足够相位余量,以保持稳定性。电容太大,电压跌落小,响应慢;电容太小,电压跌落大,响应快。

6.静态电流 lq

静态电流是外部负载电流为 0 时, LDO 内部电路供电所需的电流, 也称接地电流。通常保持尽可能低的水平。

一般 LDO 芯片的静态电流大小与其他性能成反关系,如低噪声,高电源电压抑制比,静态电流大。 7.噪声

噪声指 LDO 自身产生的噪声信号,主要来自于输入基准电压、以及内部电路的噪声和热噪声,其中 贡献最大的通常是误差放大器和电阻反馈网络。只有高精度,低噪声电路上需要关注这个参数。 减少噪声:一是减小基准电路本身的输出噪声,二是采用 RC 低通滤波来有效减小其传递到 LDO 的噪声。减小 LDO 的环路带宽也能够一定程度上优化噪声,但它会影响到 LDO 电路的瞬态响应。

8.输入电压

输入端可以输入的电压范围(注意输入电压需要降额80%考虑)。

9.输出电压

输出端的输出电压值,不要选有 ADJ 功能的,这样节省器件,降低干扰。

10.效率

11.热性能

热阻 (RθJA)呈现了 LDO 采用特定封装时的散热效率。RθJA 值越大,表示此封装的散热效率越低,而值越小,表示器件散热效率越高。封装尺寸越小,RθJA 值通常越大。

1.3 特性

1.输出自放电

LDO 关闭后, 负载电容上仍然后电量。在下次输出时, 会因为电量, 产生一个快速的 Voltage Spike, 对后级电路有破坏性。带自放电功能 LDO 能在 LDO 关闭输出后, 泄放输出电容上的电量。

2 软 启动

带软启动的 LDO 可以有效的控制电流,使输出较平缓的上升。软启动有助于减小启动时的浪涌电流和提供上电顺序,在 SS 和地引脚之间连接一个小的陶瓷电容。

3 FNI 信号

EN 信号也要有一定的电流才能驱动,上拉电阻不要太大,100K 以内基本没问题。Start-up 时间是 IC 固定的,如果想要延时启动,在 EN 上接一个大一些的电容到地,构成一个简单的 RC 电路。

4.假负载的作用

有的 LDO 芯片有最低负载电流的要求。如果低于最低负载电流,可能会出现系统不稳定的情况。

5.反馈对地电阻

保证最小对地泄放电流通路,维持最小对地电流。

6.降噪电容

基准电压 pin 接个电容到地。可用于过滤内部电压基准产生的噪声 (通常用 0.1uF 电容) 形成 RC 滤波, 还可以让 LDO 上电变缓。减小上电时的浪涌冲击。

7.前馈电容

前馈补偿电容通常影响到环路的带宽,所以也是主要影响中频带出 psrr 的性能。增加相位裕度改善

负载瞬态响应。输出将减少振铃并更快稳定。

8.输入电容

输入电容的主要作用是对调整器的输入进行滤波, 另外输入电容也可以抵消输 入线较长时引入的寄 生电感效应, 防止电路产生自激振荡。一般取 22uF 左右。

9.输出电容

电压调整器的许多性能都受输出电容的影响。其中电容值以及 ESR 对电路频率响应的影响是最主 要的。一般取 22uF 左右。小电容提供消除高频噪声作用,一般选用 0.1uF。

2.DC-DC

DC-DC 转换器的意思是直流变(到)直流(不同直流电源值的转换),是一种在直流电路中将一个 电压值的电能变为另一个电压值的电能的装置。

DC-DC 转换器一般由控制芯片, 电感线圈, 二极管, 三极管, 电容器构成。

2.1 拓扑结构

2.1.1BUCK

开关管闭合时, 能量一部分储存在电感 L 中, -输出;

开关管断开时, L 通过二极管为输出端提供能量。

$$V_{OIIT} = V_{IN} \cdot D$$

 $V_{OUT} = V_{IN} \cdot D$ D 为 PWM 波的占空比

2.1.2BOOST

当开关管导通的时候、输入的电压对电感充电。 当开关管关断时, 电感有感应电压, 输入的能量和电感能 量一起向输出提供能量,此时二极管导通,因此这时候输 出的电压肯定就比输入的电压高,从而实现升压。

$$V_{OUT} = V_{IN} \cdot \frac{1}{1 - D}$$

2.1.3BUCK-BOOST

开关管导通, 二极管 D 反向截止, 电感器储能。 开关管断开, 电感存储的能量通过二极管传给输出端。

$$V_{OUT} = V_{IN} \cdot \frac{D}{1-D}$$
 当 D=0.5 时,Vo=Vin:
当 D<0.5 时,Vo0.5 时,Vo>Vin。

2.1.4 反激

当功率开关管 S **导通时**, 电压将加在变压器 T 的初级绕 组 N1 上,并将能量储存在初级绕组中,初级绕组同名端上 为正电压, 次级绕组的同名端和初级绕组相反, 因此次级绕 组输出的电压极性会使得整流二极管 D 截止, 滤波电容 C 向负载供电;

当功率开关管 S 关断时,初级绕组 N1 会产生反向的电动势,次级绕组 N2 上的电压极性也会发 生相应的改变,从而使输出端整流二极管 D 得到正向偏置而导通,初级绕组里的能量将传递至次

级、对负载端供电。

- 1.输出可以为正或为负,由线圈和二极管的极性决定。
- 2.输出电压可以大于或小于输入电压,由匝数比决定。
- 3.增加次级绕组和电路可以得到多个输出。

2.1.5 正激

当开关管开启,储能电感储能并同时给输出端供能, 当开关管关断时,储能电感通过续流二极管续流来给 输出端供能,以此来得到稳定的输出电压。

2.3 同步与非同步

同步是采用通态电阻极低的专用功率 MOSFET,来取代整流二极管以降低整流损耗。

- ①MOSFES 在导通之后的压降比较低的,效率较高。二极管效率低。
- ②Mos 管需要驱动电路的, 需要额外的控制电路,成本比较高。

2.4 隔离非隔离

隔离式变换器在输入和输出之间没有电流回路,原副边不同地。

变压器通过磁场将能量从初级耦合至次级。高可靠性、防雷、耐高压等。

2.5 工作模式

2.5.1CCM 连续导通模式

在每个开关周期内,电感电流从不降到 0,在功率开关在闭合的情况下,线圈中依然有电流流过。通过变化占空比 D,可以控制输出电压。

2.5.2DCM 非连续导通模式

在每个开关周期内,电感的磁通量总会回到 0,即电感电流总会回到 0,在功率开关闭合的情况下, 线圈中的电感电流已经为 0。

2.5.3BCM 临界导通模式

作为一种特殊的介于 CCM 和 DCM 之间的运行模式,依靠控制电路对电感电流进行监控,当检测到电流为 0,功率开关管将立即闭合,控制电路总是在电感中电流恰好减小到 0 的时候发出激励脉冲使功率开关管导通。如果电感峰值电流高,而截止波形的斜坡比较平,则开关周期将会延长,因此运行临界导通模式下的系统是变频的。

CCM 与 DCM 比较:

- (1) 工作于 DCM 模式, **能降低功耗的**, DCM 模式的转换效率更高些, 属于能量完全转换; **输出电流的纹波比 CCM 大**; 在电感电流为 0 的时候, 会产生振荡现象;
- (4) 工作于 CCM 模式,输出电压与负载电流无关,当工作于 DCM 模式,输出电压受负载影响,为了控制电压恒定,占空比必须随着负载电流的变化而变化。

如何从 CCM 切换到 DCM

(1) 降低负载电流 (2) 降低电感值 L。

2.6 调制模式

2.6.1 脉冲宽度调制 PWM

频率不变,不断调整脉冲宽度

原理:是一种固定开关周期,变化 **Ton** 来改变占空比的调制方式。当输出电压发生变化时,通过环路的控制,便会使驱动信号的占空比发生改变,从而维持输出电压的恒定。

优点: 控制电路简单,输出纹波电压小,频率特性好,线性度高,并且在重负载的情况下有比较高的效率。

缺点: 随着负载变轻, 其效率也下降。

2.6.2 脉冲频率调制 PFM

脉冲宽度不变, 调整频率

原理:驱动信号的脉冲宽度保持恒定,但脉冲出现的频率发生改变,即所谓的定宽调频。当输出电压发生变化时,通过环路的调整,而使脉冲出现的频率发生改变,从而实现对电路的控制与调整。

优点: 在轻负载的情况下, 效率很高, 并且频率特性也十分好。

缺点: 在重负载的情况下, 其效率会明显低于 PWM 方式。

3.脉冲跨周期调制 PSM (频率和脉宽都不变,脉冲时有时无)(定频定宽)

原理: 其驱动信号的频率与宽度都保持恒定,只是,当负载为最重的情况时,驱动信号满频工作,当负载变轻时,驱动信号就会跳过一些开关周期,开关功率管一直保持为关断的状态。当负载发生变化时,通过改变跨周期出现的次数,来实现对系统的调整与控制。

优点:相比于 PWM 方式,在轻负载的情况下,PSM 要有更高的效率,并且其开关损耗与系统的输出功率成正比,与负载的变化情况关系不大。

缺点:输出电压有着比较大的纹波电压。

总结

PWM 控制型效率高并具有良好的输出电压纹波和噪声;

PFM 控制型尤其小负载时具有耗电小的优点;

PWM/PFM 转换型小负载时实行 PFM 控制,且在重负载时自动转换到 PWM 控制。

2.7 控制模式

2.7.1 电压控制模式

反馈电压 VFB 对输出电压进行采样,基准电压源提供高精度的参考电压 Vref。VFB 和 Vref 的差模信号输入误差放大器进行放大,再输入 PWM 比较器与三角波信号 VRAM 进行比较,最后得到方波信号,控制开关管的导通状态、稳定输出电压。

优点 (1)PWM 三角波幅值较大,脉冲宽度调节时具有较好的抗噪声裕量; (2)占空比调节不受限制; (3)对输出负载的变化有较好的响应调节;

缺点: (1) **瞬态响应较差。**对输入电压与负载电流的变化动态响应比较慢。 (2) 在环路补偿需要将主极点低频衰减,或者增加零点进行补偿。

2.7.2 电流控制模式

反馈电压 VFB 对输出电压进行采样, 基准电压源提供高 精度的参考电压 Vref, VFB 和 Vref 的差模信号输入误差 放大器进行放大。通过采样电路得到电感电流。当系统 工作在连续导通模式下,且占空比接近或超过50%时, 会出现次谐波不稳定,需要加入斜坡补偿。斜坡补偿信 号与电感电流斜坡信号叠加后输入 PWM 比较器, 保证 系统稳定运行。

电流控制 PWM 的优点:

- (1) 暂态闭环响应较快, 对输入电压的变化和输出负载的变化的瞬态响应均快;
- (2) 瞬时峰值电流限流功能;
- (3) 输出电压的调整可与电压模式控制的输入电压前馈技术相媲美。

缺点:(1)占空比大于 50%的开环不稳定性,存在难以校正的峰值电流与平均电流的误差;

(2) 容易发生次谐波振荡。

2.8 特性

1.电源效率

$$\eta = \frac{P_{out}}{P_{out} + P_d}$$
 Pout: 输出功率 Pa: 电平转换芯片损耗功率

2.欠压保护

EN 脚除了使能外, 还有欠压保护功能。例如输入 12V、输出 3.3V、设计要求输入达到 8V 才启动, 下电至 7V 才断电。就可以用 Ren1、Ren2 公式计算电阻值。VSTART 表示输入电压提升到 VSTART 后芯片才会输出电压。VSTOP 表示输入电压降低到 VEN 时,芯片就会停止输出电压。

3.缓(软)启动 soft-start

芯片的 SS 脚起到缓启动的功能。就是给 SS 脚接的电容充电,给内部参考电压。

作用: 1.延迟单板电源的上电时间。2. 减小上电的冲击电流。

作用: 1. 延迟单极电源的工电时间。2. 减小工电的冲击电流。 $C_{SS}(nF) \times V_{ref}(V)$ 注意: 电容设置过大会造成电源启动过缓,太小会出现电源启 $T_{SS}(ms) = \frac{C_{SS}(nF) \times V_{ref}(V)}{I_{-r}(uA)}$ 动不起来的情况。 一般上电时间为 1-10ms。

4.输出电压

两个采样电阻分压,使中间电压正好为参考电压。可以用三个电阻进行调节,方便后续调整。电阻 精度要用 1%的。

5.自举电容

在 BS 和 SW 之间的 0.01uf 的电容,用来给上管供电。**自举电容存在的能量应** 能满足整个 M2 关闭时提供的能量以及为下一次启动提供能量。如果内部 2 个开关管都是 NMOS 管, 那么是需要自举电容的。但是有的 BUCK 芯片上管 是 PMOS 管,不需要产生比 Vin 还高。

6.环路设计

COMP 管脚。相位补偿引脚,用于连接补偿网络以提高系统稳定性。(改变相位裕量与增益裕量) 设计指标:

剪切频率: 有的文档上叫穿越频率,是指环路增益为 0dB 时对应的频率。剪切频率越高,响应速度 越快,但更容易引起环路不稳定或振荡;剪切频率过低则环路瞬态响应不够,可能导致输出电压异 常。设计为开关频率的 1/10~1/20。瞬态响应不足的系统往往其剪切频率低于 10KHz。

相位裕量——当环路增益为 0 时,对应的信号相位与 180°的差值;

增益裕量——当信号相位为0时,对应的负增益量;

表征开关电源的稳定度,如相位裕量或(和)增益裕量不够,则可能因温度、PCB 布局布线以及器

件个体等影响,使系统进入不稳定或振荡的状态。一般应使相位裕量≥45°增益裕量≤-10dB。

7.BST

Boost 电压引脚,连接至输出端的 Boost 电容器。

8.FBADJ

调节引脚,用于设置输出电压。

9.PGOOD

电源状态指示引脚,用于检测输出电压是否在规定范围内。

10.BOOT

启动引脚,用于启动芯片。

11.纹波

原因: 由于开关管 S 的通断过程导致电源产生波动

12. 电流调整率

输出电流不同时测量模块的输出电压变化状态。

13.输出电容

1. 对输出电压纹波的影响 2. 负载瞬变后对输出电压的影响

14.续流二极管

肖特基

15.电感

感值高 - 纹波电流小。感值低 - 纹波电流大

16.开关频率

开关频率高了优点是: 相同的输出电容纹波更小, 动态响应更好。缺点是开关损耗更高, 开关噪声的能量更高。

开关频率低了优点是: 开关损耗更低, 开关噪声的能量更低。 缺点是相同的输出电容纹波更大, 动态响应更差。

一、面试提问

问题汇总

- 1.LDO 和 DCDC 区别与选型
- 2. DC-DC、LDO 使用 PMOS 还是 NMOS
- 3. PWM、PFM 和 PSM 调制的特点
- 4、BUCK 的拓扑结构与原理过程、关键器件作用、电感电容选型计算
- 5、BOOST 的拓扑结构与原理、电感电容选型计算
- 6、Flyback 反激拓扑和原理
- 7、BUCK-BOOST 拓扑结构和原理
- 7、电源闭环回路如何实现
- 8、电源纹波产生、抑制方法、测量
- 9、哪些因素会导致开关电源效率降低,如何解决
- 10、环路稳定性
- 11、DC-DC 的器件选型(电感、电容、电阻)
- 12、LDO 效率计算
- 13、电源的滤波大电容配合小电容
- 14、DC-DC 的同步和非同步优缺点
- 15、buck 电路中的续流二极管可以换成 mos 管吗
- 16、LDO PCB 布局布线
- 17、DC-DC 的 PCB 设计布局布线注意事项

问题答案

1. LDO 和 DCDC 区别、选型

LDO	DC-DC
1、外围器件少,电路简单, 成本低	1、外围器件多,电路复杂,成本高;
2、负载响应快, 输出纹波小 ;	2、负载响应慢,输出纹波大;
3、效率低,输入输出压差不能太大;	3、效率高,输入电压范围宽泛;
4、只能降压;	4、支持降压和升压;输出电流高,功率大;
5、噪声小,静态电流小,最高 5A;	5、开关噪声大,一般后接 LDO。
6、分为可调和固定型;	6、 一般都是可调型,通过 FB 反馈电阻调节;

LDO (线性稳压电源): 输出电压纹波小; 输入与输出压差大, 效率低, 只能降压。

DC-DC (开关稳压电源): 输出电压纹波大; 输入与输出压差小, 效率高, 升降压都可以。

2. DC-DC、LDO 使用 PMOS 还是 NMOS

LDO 一般用 PMOS: 由于 LDO 效率比较低,一般不会走大电流。NMOS 开启电压(0.7V),NPN 开启电压(0.7V)比较高,PMOS 可以获得更小的压差,所以饱和压降小的 LDO,都是 PMOS/PNP 结构。针对某些大电流低压差需求的场合,需要使用 NMOS LDO。

DC-DC 一般用 NMOS: 主要原因是 PMOS 的 Rds(on)比较大, 意味着 DC-DC 的损耗大, 效率低。 所以一般 PMOS 的导通电压比 NMOS 的导通电压高一些。

3. PWM、PFM 和 PSM 调制的特点

原理、优缺点见前文。

应用:

PWM: 开关电源中最为广泛的一种控制方式,它的特点是噪音低、满负载时效率高且能工作在连续导电模式。

PFM: 通常被应用于 DC-DC 转换 器 来提高轻负载效率

PSM: 在功率集成电路(PIC, Power Integrated Circuit)中广泛采用 PSM 模式,克服 PWM 轻负载情况下变换效率较低、 PFM 频谱分布随机的缺点。

4、BUCK 的拓扑结构与原理

拓扑

关键器件

开关管 S: 导通和关断电流;

电感 L: 将电能转换成磁能储存起来, 也能将磁能转换为电能再次释放。

电容 C: 具有充放电功能, 电容器两端电压高于外部电路电压时放电, 反之充电。电容充放电不会发生正负极的反向。

续流二极管 D: 具有单向导电性, 电流只能单向流过。二极管 D 形成了续流回路。

过程

开关管闭合时,能量一部分储存在电感 L 中,一部分供给输出;

开关管断开时, L 通过二极管为输出端提供能量。

$$V_{OUT} = V_{IN} \cdot D$$
 D 为 PWM 波的占空比

公式推导

同步 BUCK 为例

开通时间:
$$T_{on} = \frac{V_o}{V_i} * \frac{1}{f}$$
 关断时间: $T_{off} = (1 - \frac{V_o}{V_i}) * \frac{1}{f}$ 占空比: $D = \frac{T_{on}}{T} = \frac{V_o}{V_i}$

电感平均电流:
$$I_L = I_O$$
 电感纹波电流: $\Delta I_L = \frac{V_o}{f*L}*(1-\frac{V_o}{V_i})$

电感峰值电流:
$$I_{LP} = I_L + \frac{\Delta I_L}{2} = I_o + \frac{V_o}{2*f*L}*\left(1 - \frac{V_o}{V_c}\right)$$

电感:

电感取值范围:
$$L = \frac{V_o}{f*(0.2 \sim 0.4)*I_o}*\left(1 - \frac{V_o}{V_i}\right)$$

输入电容:

输入使用陶瓷电容滤波:
$$C_i \ge \frac{I_o}{\Delta V_i * f} * \frac{V_o}{V_i} * \left(1 - \frac{V_o}{V_i}\right)$$

输入使用电解电容滤波:
$$ESR \leq \frac{\Delta V_i}{I_o + \frac{V_o}{2^*f^*L}^*\left(1 - \frac{V_o}{V_i}\right)}$$

输出电容:

输出使用陶瓷电容滤波:
$$C_o \ge \frac{V_o}{8*f^2*\Delta V_o*L}*\left(1-\frac{V_o}{V_i}\right)$$

输出使用电解电容滤波:
$$ESR \leq \frac{\Delta V_o * f * L * V_i}{V_o * (V_i - V_o)}$$

5、BOOST 的拓扑结构与原理

拓扑

过程

当开关管导通的时候,输入的电压对电感充电。

当开关管关断时, 电感有感应电压, 输入的能量和电感能量一起向输出提供能量, 此时二极管导通, 因此这时候输出的电压肯定就比输入的电压高, 从而实现升压。

$$V_{OUT} = V_{IN} \cdot \frac{1}{1 - D}$$

公式推导

以同步 BOOST 为例

开通时间:
$$T_{on} = (1 - \frac{V_i}{V_o}) * \frac{1}{f}$$
 关断时间: $T_{off} = \frac{V_i}{V_o} * \frac{1}{f}$

占空比:
$$D = \frac{T_{on}}{T} = 1 - \frac{V_i}{V_o}$$
 电感平均电流: $I_L = \frac{V_o}{V_i} * I_O$

电感纹波电流:
$$\Delta I_L = \frac{V_i}{f*L} * (1 - \frac{V_i}{V_0})$$

电感峰值电流:
$$I_{LP} = I_L + \frac{\Delta I_L}{2} = \frac{V_o}{V_i} * I_o + \frac{V_i}{2 * f * L} * \left(1 - \frac{V_i}{V_o}\right)$$

电感取值范围:
$$L = \frac{V_i}{(0.2 \sim 0.4) * f * I_o} * \left(1 - \frac{V_i}{V_o}\right) * \frac{V_i}{V_o}$$

输入平均电流:
$$I_i = I_L = \frac{V_o}{V_i} * I_o$$

电容容量纹波:
$$U_q = \frac{V_i}{8*f^2*L*C_i}*\left(1-\frac{V_i}{V_o}\right)$$
 ESR 纹波: $U_{\rm esr} = \frac{V_i}{f*L}*\left(1-\frac{V_i}{V_o}\right)*ESR$

输入电容总纹波:
$$\Delta V_i = U_q + U_{esr}$$

$$\Delta V_i = \frac{V_i}{f*L}*\left(1 - \frac{V_i}{V_o}\right)*\left(ESR + \frac{1}{8*f*C_i}\right)$$

输入使用陶瓷电容滤波:
$$C_i \ge \frac{V_i}{8*f^2*L*\Delta V_i}*\left(1-\frac{V_i}{V_o}\right)$$

输入使用电解电容滤波:
$$ESR \leq \frac{\Delta V_i * f * L}{V_i} * \frac{V_o}{V_o - V_i}$$

陶瓷电容滤波:
$$C_o \ge \frac{I_o}{f * \Delta V_o} * \left(1 - \frac{V_i}{V_o}\right)$$

电解电容滤波:
$$ESR \le \frac{\Delta V_o}{\frac{V_o}{V_i} * I_o + \frac{V_i}{2 * f * L} * \left(1 - \frac{V_i}{V_o}\right)}$$

6、Flyback 反激拓扑和原理

拓扑

过程

当功率开关管 S 导通时,电压将加在变压器 T 的初级绕组 N1 上,并将能量储存在初级绕组中,初级绕组同名端上为正电压,次级绕组的同名端和初级绕组相反,因此次级绕组输出的电压极性会使得整流二极管 D 截止,滤波电容 C 向负载供电;

当功率开关管 S 关断时,初级绕组 N1 会产生反向的电动势,次级绕组 N2 上的电压极性也会发生相应的改变,从而使输出端整流二极管 D 得到正向偏置而导通,初级绕组里的能量将传递至次级,对负载端供电。

7、BUCK-BOOST 拓扑结构和原理

拓扑

过程

开关管导通, 二极管 D 反向截止, 电感器储能。

开关管断开,电感存储的能量通过二极管传给输出端。

$$V_{OUT} = V_{IN} \cdot \frac{D}{1-D}$$
 当 D=0.5 时, Vo=Vin: 当 D<0.5 时, Vo0.5 时, Vo>Vin.

8、电源闭环回路如何实现

当输入电压或者负载变化时,DC-DC 的 VOUT 是缓慢变化的,这个变化量通过反馈 FB 检测(R1/R2 分压), 输入到误差放大器的反向端,与正向端的参考电压进行比较,误差放大器形成一个输出变化量,这个变化量输入到 PWM 调制器的一端,与斜率补偿形成重新校准的占空比,来控制控制 G 极驱动器输出 VOUT,实现了系统自动调节,这就是闭环调节原理。

9、电源纹波产生、抑制方法、测量

原因:由于开关管 S 的通断过程导致电源产生波动,其频率等于开关管 S 的开关频率。

电源抑制比 (PSRR):

$$PSRR(dB) = 20 \log \frac{V_{ripple (in)}}{V_{ripple (out)}}$$

用来反应对不同频率的输入电源纹波的抑制能力。输入纹波与输出纹波的比值的对数关系。在特定 频段, PSRR 越大越好, 输出信号受到电源的影响越小。

提高开关管的开关频率。开关频率越高, 纹波越小, 但也会提高开关管的开关损耗, 造成效率下降。 **抑制纹波方法:**

- ① 提高开关管的开关频率。开关频率越高、纹波越小。
- ② 加大电感和输出电容滤波(选择低 ESR)。
- ③ 二级滤波(即再加一级 LC 滤波器)。
- 4 接 LDO 滤波

测量:

探头尽量用 X1 档位、通道耦合方式用交流耦合、开带宽限制 20M 低通、用接地弹 簧针使接地线尽量短。

10、哪些因素会导致开关电源效率降低,如何解决

导通电阻:开关管的导通电阻会导致功率损耗,因此选择低导通电阻的开关管可以提高效率。

开关频率: 开关频率越高, 开关管的开关损耗就越小, 但是高频率也会带来其他问题, 如 EMI 等, 因此需要在效率和其他因素之间进行权衡。

磁元件损耗:开关电源中的磁元件(如变压器、电感器)也会有损耗,因此选择低损耗的材料和结构可以提高效率。

电容损耗:电容器的损耗也会影响开关电源的效率,因此选择低损耗的电容器可以提高效率。

11、环路稳定性

评价指标: 衡量开关电源稳定性的指标是相位裕度和增益裕度。同时穿越频率, 也应作为一个参考指标。

- (1) 相位裕度是指: 增益降到 OdB 时所对应的相位。
- (2) 增益裕度是指: 相位为 Odeg 时所对应的增益大小(实际是衰减)。
- (3) 穿越频率是指: 增益为 OdB 时所对应的频率值。

12、DC-DC 的器件选型(电感、电容、电阻)

电感选择:在合理范围内,电感感值越大纹波越小,流过电感的电流要小于电感的饱和电流。【饱和电流:流过电感的电流导致感值降为70%时,此时的电流为饱和电流。】 不同输出电压的要求感量不同;注意温升和饱和电流要满足余量要求,通常选择合适的电感值 L,使 ΔIL 占输出电流的 30% to 50%。电感值过大会使输出电压纹波减小,输出更为平滑。

输入电容:要满足耐压和输入纹波的要求。一般耐压要求 1.5~2 倍以上输入电压。注意瓷片电容的实际容量会随直流电压的偏置影响而减少。

输出电容: 要满足耐压和输出纹波的要求。一般耐压要求 1.5~2 倍。

芯片的开关频率: 频率高的好处:输出纹波小、动态响应速度提高; 频率高的坏处: EMI 变差、开关损耗增加;建议开关频率 500k-1500k

反馈电阻和 EN 分压电阻: 要求按规格书取值, 精度 1%。

软启动的设置:根据电压启动需要的次序设置几个电源模块的 SS 的电容。产生需要的上电次序。

13、LDO 效率计算

LDO 自身消耗的功率约等于压差*电流,因此,相同负载电流下,压差 数率 = $\frac{Vo \times Io}{(Io + Iq) \times Vin} \times 100\%$ 数大,LDO 功耗越高,所以压差低一些,有利于提高效率。输入电流 等于输出电流加上静态功耗。**当 LDO 处在轻载时,IQ 就非常重要,IQ 越小,效率就越高。**

13、电源的滤波大电容配合小电容

220uF 电解电容配合 0.1uF 贴片电容。电解电容和钽电容的谐振频率比较低,对低频噪声的滤波效果比较好; 贴片电容谐振频率比较高, 对高频噪声的滤波效果比较好。对于电源电路, 由于整个 PCB 板上的噪声都加到了它的上面,包括了低频噪声和高频噪声。要对电源噪声实现比较好的滤波效果, 滤波电路必须在较宽的频率范围内对噪声呈现低阻抗, 单独用一种电容是达不到这种效果的, 必须采取大的电解电容(或钽电容)并联贴片小电容的方式。

14、DC-DC 的同步和非同步优缺点

非同步:

优缺点: ①稳定性高。②效率低, 二极管压降高消耗功率大。

同步

优缺点: ①效率较高、导通电阻低。②稳定性不足、MOS 管需要驱动电路。

15、buck 电路中的续流二极管可以换成 mos 管吗

BUCK 中的续流二极管是一种提供一个续流回路的器件,它可以使电感中的电流不会突变,从而保持输出电压的稳定。续流二极管通常是肖特基二极管,因为它们具有低导通电阻和反向恢复时间短的特性,可以减少功率损耗和开关损耗。

MOS 管是一种可控器件,它可以用来代替续流二极管,形成同步 buck 电路。同步 buck 电路的优势是可以进一步降低导通损耗和开关损耗,提高变换器的效率。 MOS 管的缺点是价格相对较高,而且需要额外的驱动电路和控制逻辑。

16、LDO PCB 布局布线

- 1、 电容按先大后小顺序就近摆放
- 2、 输入/输出布线路径宽度、 换层过孔数量须满足电源电流大小;
- 3、 输入/输出的 GND 尽量汇接在一起, 保持完整的回流

17、DC-DC 的 PCB 设计布局布线注意事项

- ① DC-DC 的功率管脚应大面积铺铜皮较少电源的温升
- ② 反馈线不能绕着电感 L 走
- ③开关电源芯片及其电感下面尽量不要布其他信号线、
- ④ 二极管续流回路尽可能短
- ⑤布局要紧凑,输入输出主干道采用"一"字型或者"L"型布局方式
- ⑥ 输入电容就近放在芯片的输入 Vin 和功率的 PGND, 减少寄生电感的存在。