FYS3500 - Problem set 11

Topic: β decay, γ decay

Make sure you have read the relevant chapters in the book and compendium before starting the exercises.

Concepts of the week

Explain these concepts: β -decay, double β -decay, neutrinoless double β -decay, γ -decay, multipoles, Weisskopf units

Problem 1 The basics of β -decay

- a) Figure ?? shows the electron spectra measured on β -particles from decay of 210 Bi. What does this spectra tell about the nature of β -decay? How and what can we learn about the existence of neutrinos from this spectrum?
- b) In what nuclei do we find double-beta decay (what would be prominent examples)? Argue eg. with the β -decay mass parabolas. Draw the Feynman diagram for double beta decay in the standard picture.
- c) There are many experiments that look for physics beyond the standard model. If neutrinos were their own anti-particles (so-called Majorana particles), how would the Feynman diagram for this process look like?

Figure 1: Electron spectra from β -decay of ²¹⁰Bi.

Problem 2 γ decay

When we describe nuclear γ ray resonances, we usually give the energy E_{γ} of an emitted photon is the difference E_0 between the initial excited state with energy E_1 and the final state with energy E_2 , $E_{\gamma} = E_0 = E_1 - E_2$. This is not exact for free atoms or molecules, as it neglects the recoil energy of the nucleus.

a) Suppose that the nucleus was at rest before γ ray emission and find an expression for the exact γ ray energy. Calculate E_{γ} for ⁴⁸Ca when $E_0=1$ MeV. Can we neglect the recoil effect?

- b) 60 Co is one of the most important γ ray calibration sources. By β -decay it feeds excited levels in 60 Ni. The E=1332.514 keV level (with direct decay with $E_{\gamma}=1332.501$ to the ground state) has a half-life $t_{1/2}$ below 1ps ($<10^{-12}$ s). Compare the width of the state to E_{γ} and E_{0} . When one 60 Ni nucleus emits an the 1332.501 keV γ ray, can another 60 Ni nucleus absorb it directly? (Remember to convert half-life to lifetime)
- c) (For the extra interested) Read up on the Mössbauer effect

Problem 3 γ -decay and Weisskopf units

a) For the following transitions between levels, give all permitted γ -ray multipoles and indicate which multipole might be the most intense in the emitted radiation.

I)
$$\frac{9^{-}}{2} \rightarrow \frac{7^{+}}{2}$$
 II) $\frac{1}{2}^{-} \rightarrow \frac{7}{2}^{-}$ III) $1^{-} \rightarrow 2^{+}$ IV) $0^{+} \rightarrow 0^{+}$ V) $3^{+} \rightarrow 3^{+}$

- b) A nucleus has the following sequence of states beginning with the ground state: $\frac{3}{2}^-$, $\frac{7}{2}^-$, $\frac{5}{2}^+$, $\frac{1}{2}^-$ and $\frac{3}{2}^-$ Draw a level scheme showing the intense γ transitions likely to be emitted and indicate their multipole assignment. Which of the transition would you expect to be have the smallest chance to happen?
- c) How are Weisskopf estimates calculated? If the experimentally determined transition rate deviates from the Weisskopf estimate, what does this indicate?
- d) What do we mean with an isomeric state? (Also called: meta-stable)