AMENDMENTS TO THE CLAIMS:

Please amend the claims as follows:

Claim 1. (Previously Presented) A method for treatment of urinary incontinence by administering compounds, having the formula:

or their salts, where:

 $A = R(COX)_t$ wherein t is an integer 0 or 1;

X = O, NH, NR_{1C} wherein R_{1C} is a linear or branched alkyl having from 1 to 10 C atoms;

R is chosen from the following groups:

Group I A), where t = 1,

where:

 R_{II5} is H, a linear C_1 - C_3 alkyl, or a branched C_1 - C_3 alkyl;

R_{II6} has the same structure as R_{II5},

 R_{II1} , R_{II2} and R_{II3} are each hydrogen, linear C_1 - C_6 alkyl, branched C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 , C_1 , or C_2 alkoxy, C_1 , C_2 alkoxy, C_1 , C_2 alkoxy, C_2 alkyl, C_3 - C_4 alkoxy, C_1 , C_2 alkyl, C_3 - C_4 alkoxy, C_1 , C_2 alkyl, C_3 - C_4 alkyl, C_3 - C_6 alkyl, C_3 - C_6

 R_{II4} has the same structure as R_{II1} or is bromine;

Group II A) chosen from the following:

where, when t = 1, R is

$$R_{1a} - C - K_{3a}$$

where R_{2a} and R_{3a} are H, a linear C_1 - C_{12} alkyl, a branched C_1 - C_{12} alkyl, or allyl, with the proviso that when one of the two is allyl the other is H;

$\ensuremath{\mathsf{R}_{\mathsf{1a}}}$ is chosen from the subgroup II Aa) consisting of

(VXXXX)

(VI)

(WITT

(IX)

141

and

wherein:

in the residue of formula (IV):

 \sqrt{R}_{III1} is H or SR_{III3} where R_{III3} contains from 1 to 4 linear or branched C atoms; and R_{III2} is H or hydroxy;

in the residue of formula (XXI):

 R_{xxio} is H, a linear alkyl having 1-6 carbon atoms, a branched alkyl having from 1 to 6 carbon atoms, a C_1 - C_6 alkoxy-carbonyl bound to a C_1 - C_6 carboxyalkyl, or a C_1 - C_6 alkanoyl, optionally substituted with halogen, benzyl or halobenzyl, benzoyl or halobenzoyl;

 R_{xxi} is H, halogen, hydroxy, CN, a C_1 - C_6 alkyl optionally containing OH groups, a C_1 - C_6 alkoxy, acetyl, benzyloxy, SR_{xxi2} where R_{xxi2} is a C_1 - C_6 alkyl; a perfluoroalkyl having a 1-3 C atoms, a C_1 - C_6 carboxyalkyl optionally containing OH groups, NO_2 , sulphamoyl, dialkyl sulphamoyl with the alkyl having from 1 to 6 C atoms, or difluoroalkylsulphonyl with the alkyl having from 1 to 3 C atoms;

 R_{xxil} is halogen, CN, a C_1 - C_6 alkyl optionally containing one or more OH groups, a C_1 - C_6 alkoxy, acetyl, acetamido, or benzyloxy,

SR_{III3} is as above defined, a perfluoroalkyl having from 1 to 3 C atoms, hydroxy, a carboxyalkyl having from 1 to 6 C atoms, hydroxy, a carboxyalkyl having from 1 to 6 C atoms, NO₂, amino, mono- or dialkylamino having from 1 to 6 C atoms, sulphamoyl, a

dialkyl sulphamoyl having from 1 to 6 C atoms, difluoroalkylsulphamoyl; or R_{xxi} together with R_{xxil} is an alkylene dioxy having from 1 to 6 C atoms;

In the residue of formula (XXXV):

Ar is phenyl, hydroxyphenyl optionally mono- or polysubstituted with halogen, an alkanoyl or alkoxy having from 1 to 6 C atoms, a trialalkyl having from 1-6 C atoms, cyclopentyl o-hexyl o-heptyl, thienyl, furyl, furyl containing OH, or pyridyl;

Subgroup II Ab) consisting of:

(XXXXI)

HIT

(XXXXII)

wherein:

when IIIa) contains -CH(CH₃)-COOH it is known as pranoprofen: α -methyl-5H-(1) benzopyran (2,3-b) pyridine-7-acetic acid;

when residue (XXX) contains -CH(CH₃) -COOH it is known as bermoprofen: dibenz (b,f) oxepin-2-acetic acid;

residue (XXXI) is known as CS-670: 2-(4-2(2-oxo-1-cyclohexylidenemethyl) phenyl) propionic acid, when the radical is -CH(CH₃) -COOH;

when residue (XXXII) contains group -CH2COOH it is known as pemedolac;

when residue (XXXIII) is saturated with -CH₂COOH it is known as pyrazolac: 4-(4-chlorophenyl)-1-(4-fluorophenyl) 3-pyrazolyl acid derivatives;

when residue (XXXVI) is saturated with -CH(CH₃)-COO- it is known as zaltoprofen;

when residue (XXXVII) is CH₂-COOH it derives from the known mofezolac: 3,4-di p-methoxyphenyl) isoxazol-5-acetic acid;

Group IIIA), where t = 1,

1 Reval

wherein:

at least one of R_{lvd} and R_{lvd1} is H and the other a linear or branched C_1 - C_6 alkyl, or difluoroalkyl with the alkyl having from 1-6 C atoms, or R_{lvd} and R_{lvd} jointly form a methylene group;

 R_{IV} has the following structure:

, or
$$R_{iv-iii}$$

(皿)

Alt

where:

in the residue of formula (II):

R_{IV-II} is selected from the group consisting of an alkyl having from 1 to 6 C atoms, a cycloalkyl having from 3 to 7 C atoms, an alkoxymethyl having from 1 to 7 C atoms, a trifluoroalkyl having from 1 to 3 C atoms, vinyl, ethynyl, halogen, an alkoxy having from 1 to 6 C atoms, a difluroalkoxy with the alkyl having from 1 to 7 C atoms, an alkoxymethyloxy having from 1 to 7 C atoms, an alkylthiomethyloxy with the alkyl having from 1 to 7 C atoms, an alkylmethylthio with the alkyl having from 1 to 7 C atoms, cyano, difluoromethylthio, a substituted phenyl-, and phenylalkyl with the alkyl having from 1 to 8 C atoms;

 $R_{\text{IV-III}}$ is a C_2 - C_5 alkyl, a C_2 or C_3 alkyloxy, allyloxy, phenoxy, phenylthio, a cycloalkyl having from 5 to 7 C atoms, optionally substituted at position 1 by a C_1 - C_2 alkyl; Group IV A)

where A = RCOO, t = 1,

Group V A) chosen from the following:

Subgroup V Aa) residues chosen from the following, where t = 1

(V Aal)

(V Aa3)

(V Aa4)

subgroup V Ab), residue, where t = 1:

subgroup V Ac), residue, where t = 0 and R is as follows:

(V Acl)

HI

(V Ac3)

(V Ac4)

subgroup V Ad) residues, where t = 1 and R is as follows:

(m)

(V Adl)

(▼ Ad2)

subgroup Ae) residues, where t = 1 and R is as follows:

Alant

(V Ae3)

(V Ae4)

(V Ae5)

(▼ Ae6)

wherein:

in compounds (V Ac1) Rvac1 attached to the oxygen atom in position 2 of the benzene ring of the N - (4-nitro-phenyl)methansulphonamide can be phenyl or cyclohexane, when Rvac1 is phenyl the residue is that of nimesulfide;

in compounds (V Ac2) the residue of 3-formylamino-7-methylsulfonylamino-6-phenoxy-4H-1-bezopyran-4-one has been shown;

in compounds (V Ac3) the atom X₄ that links the radical 2,4-difluorothiophenyl to

position 6 of the indanone ring of the residue 5-methanesulfonamido-1-indanone can be sulfur or oxygen;

X₁ in formula A-X₁-NO₂ is a bivalent connecting bridge chosen from the following:

- YO

where Y is a linear or branched C₁-C₂₀ alkylene, or an optionally substituted cycloalkylene having from 5 to 7 carbon atoms;

where n₃ is an integer from 0 to 3;

where nf is an integer from 1 to 6;

where R_{1f} = H or CH_3 and nf is an integer from 1 to 6.

Claim 2. (Currently Amended) The method according to Claim 1, in which R is chosen from groups IV A), and V A) and II A).

Claim 3. (Withdrawn) A compound having the following formula:

Claim 4. (Withdrawn) A method for treating urinary incontinence comprising administering to a patient in need thereof a therapeutically effective amount of the compound of claim 3 or a pharmaceutically acceptable salt thereof.

Claim 5. (Cancelled)

Claim 6. (Withdrawn) Use of the following compounds, or their compositions, for the preparation of medicaments for the following therapeutical applications:

treatment of respiratory disease: bronchitis, in particular asthma: groups from I A) to V

A) in Claim 1;

gynaecological and obstetrical disease including early delivery, pre-eclampsia and dysmenorrhoea: groups from I A) to V A) in Claim 1 and group VI A) as defined below; vascular disease including re-stenosis: groups from I A) to V A) in Claim 1 and group VI A);

gastrointestinal tumours: groups from I A) to V A) in Claim 1 and group VA A); the compounds in group VI A) have the general formula

 $A-X_1-NO_2$,

of Claim 1, where t = 1, include the following:

OCOR₃

$$(R_2)_{nl} (R_1)_{nl}$$
(Ib)

where:

 R_1 is group OCOR₃; where R_3 is methyl, ethyl or a linear or branched C_3 - C_5 alkyl, or the residue of a single-ring heterocycle having 5 or 6 atoms which can be aromatic, partially or totally hydrogenated, containing one or more heteratoms independently chosen from Q_1 N and S; R_2 is hydrogen, hydroxy, halogen, a linear or whenever possible branched alkyl having from 1 to 4 C atoms, a linear or whenever possible branched alcoxyl having from 1 to 4 C atoms; a linear or whenever possible branched perfluoroalkyl having from 1 to 4 C atoms, for example trifluoromethyl, nitro, amino, mono- or di (C_{1-4}) alkylamino; R_1 and R_2 jointly are the dioxymethylene group, with the proviso that when X = NH, then X_1 is ethylene and $X_2 = H$; X_1 cannot be OCOR3 at position 2 when X_3 is methyl; nl being an integer from 0 to 1;

preferably in Ia), X is equal to O or NH, R₁ is acetoxy, preferably at position 3 or 4, most preferably in the ortho position to CO. X₁ is ethylene or (CH₂CH₂O)₂, R₂ is hydrogen or halogen, most preferred are the following A X₁ NO₂ compounds: 3-acetoxy-N-(2-nitroxy-ethyl)-benzamide, 4-acetoxy-N-(2-nitroxyethyl)-benzamide, 3-acetoxy-N-(5-nitroxypenthyl)-benzamide, N-2-nitroxy-ethyl)-benzamide, 2-acetoxy-N-(5-nitroxypenthyl)-benzamide, N-2-nitroxy-ethyl)-2-propionoxybenzamide, 2-acetoxy-2-nitroxy-ethylbenzoate, 2-acetoxy-N-(cis-2-nitroxycyclohexyl)-benzamide, 2-acetoxy-4-chloro-N-(2-nitroxyethyl)-benzamide, N-(2-nitroxycyclohexyl)-benzamide, N-(2-nitroxycycyclohexyl)-benzamide, N-(2-nitroxycycycloh

nitroxyethyl)-2-((4-thiazolindinyl)carbonyloxy)-benzamide hydrochloride, 2-nicotinoyloxy-N-(2-nitroxyethyl)-benzamide, 2-acetoxy-5-nitroxypenthylbenzoate;

preferably in Ib) $R_3 = CH_3$, Ni = 0;

X is equal to O, X_1 is ethylene; in this case Ib) is the residue of acetylsalicylsalicylcacid.

Claim 7. (Previously Presented – now claim 9)

Claim 8. (Previously Presented – now claim 10)

Claim 9. (Previously Presented - formerly claim 7) A compound having the following formula:

. .

Claim 10. (Currently Amended - formerly claim 8) A method for treating urinary incontinence comprising administering to a patient in need thereof a therapeutically effective amount of the compound of <u>claim 9</u> elaim 7 or a pharmaceutically acceptable salt thereof.

Claim 11.

Chaim 11. (Withdrawn) The method of claim 1, wherein in formula (Iaa) R_{II1}, R_{II2} and

are H;

 R_{II3} is chlorine and R_{II3} is in the ortho position to NH;

R_{II5} and R_{II6} are H;

X equals O; and

 X_2 is $(CH_2 - CH_2 - O)_2$.

Claim 12. (Withdrawn) The method of Claim 11, wherein in formula $A = R(COX)_t R$ is chosen from Group IA X = O.

Claim 13. (Withdrawn) The method of claim 1, wherein:

R_{2a} and R_{3a} are H; and

Alkyl has 1 to 4 C atoms.

Claim 14. (Withdrawn)

The method of claim 1, wherein:

R_{III1} and R_{III2} are H;

R_{3a} is H;

R_{2a} is methyl; and

X equals O.

Claim 15. (Withdrawn)

The method of claim 1, wherein:

 R_{xxio} , R_{xxi} and R_{xxi1} are H;

the connecting bridge is at position 2;

R_{xxi1} is chlorine in the para position to nitrogen;

R_{2a} is methyl; and

X is O.

Claim 16. (Withdrawn)

The method of claim 1, wherein:

Ar is phenyl;

R_{3a} is H;

R_{2a} is methyl; and

X is O.

Claim 17. (Withdrawn) The m

The method of claim 1, wherein:

R_{IV-II}, is CH₃O, R_{Ivd}, is H, and

R_{Ivd1} is CH₃.

, 46 .

Claim 18. (Withdrawn) The method of claim 17, wherein X is equal to O.

Claim 19. (Withdrawn) The method of claim 1, wherein:

R_{IV-III} is

 R_{IVd} = H, R_{IVd1} is CH_3 , X = NH, and X_1 is equal to $(CH_2)_4$ or $(CH_2 CH_2 O)_2$.

Claim 20. (Withdrawn) The method of claim 19, wherein X = O.

Claim 21. (Canceled)

Claim 22. (Cancelled)

Claim 23. (Cancelled)

Claim 24. (Cancelled)

Claim 25. (Cancelled)

Claim 26. (New) A method for treating urinary incontinence comprising administering to a patient in need thereof a therapeutically effective amount of the compound flurbiprofen 4-(nitrooxy)butyl ester having the following formula: