Centered Weight Normalization in Accelerating Training of Deep Neural Networks

Lei Huang, XiangLong Liu, Yang Liu, Bo Lang, Dacheng Tao#

State Key Lab of Software Development Environment, Beihang University, Beijing, China [#]UBTECH Sydney AI Centre, School of IT, FEIT, The University of Sydney, Australia {huanglei, xlliu, blonster, langbog}@nlsde.buaa.edu.cn, dacheng.tao@sydney.edu.au

1. Introduction

Optimization in Deep Model

Goal:
$$\theta^* = \arg\min_{\theta} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \in D}[\mathcal{L}(\mathbf{y}, f(\mathbf{x}; \theta))]$$

Update Iteratively:
$$\theta^{(t+1)} \leftarrow \theta^{(t)} - \alpha^{(t)} \nabla^{(t)}$$

Challenge: Non-convex, ill conditioning

Stochastic gradient descent

Gradient is averaged by the sampled examples

$$\frac{\partial \mathcal{L}}{\partial \theta} = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial \mathcal{L}(\mathbf{y}_i, f(\mathbf{x}_i; \theta))}{\partial \theta}$$

Estimate curvature or scale

Quadratic optimization: Newton, quasi-Newton, Natural Gradient

Normalize input/activation

Normalize explicitly: batch normalization

Normalize implicitly(constrain weights): weight normalization

2. Motivation

Initialization methods

Random, Xavier, MSRInit: Zero mean, stable-variance

Keep desired characters during training

Formulation

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \in D} [\mathcal{L}(\mathbf{y}, f(\mathbf{x}; \theta))]$$

$$s.t. \quad \mathbf{w}^T \mathbf{1} = 0 \text{ and } ||\mathbf{w}|| = 1$$

3. Method Solution by re-parameterization

Proxy parameter v:

$$\mathbf{w} = \frac{\mathbf{v} - \frac{1}{d}\mathbf{1}(\mathbf{1}^T\mathbf{v})}{\|\mathbf{v} - \frac{1}{d}\mathbf{1}(\mathbf{1}^T\mathbf{v})\|}$$

Adjustable scale: $z = g \mathbf{w}^T \mathbf{h} + b$

Beneficial Properties

- **Stabilize the distributions**
- Better Conditioning of Hessian $\frac{\partial L}{\partial v} \cdot \mathbf{1} = \mathbf{0}$

Proposition 1. Let $z = \mathbf{w}^T \mathbf{h}$, where $\mathbf{w}^T \mathbf{1} = 0$ and $\|\mathbf{w}\| = 0$

Assume h has Gaussian distribution with the mean:

Back-propagated Gradient

 $\frac{\partial \mathcal{L}}{\partial \mathbf{v}} = \frac{1}{\|\hat{\mathbf{v}}\|} \left[\frac{\partial \mathcal{L}}{\partial \mathbf{w}} - \left(\frac{\partial \mathcal{L}}{\partial \mathbf{w}} \mathbf{w} \right) \mathbf{w}^T - \frac{1}{d} \left(\frac{\partial \mathcal{L}}{\partial \mathbf{w}} \mathbf{1} \right) \mathbf{1}^T \right]$

4. Experiments

MLP; SVHN

20 40 updates (x100)

CNN architecture

BN-Inception

Cifar-10	Cifar-100
6.14 ±0.04	25.52 ±0.15
6.18 ±0.34	25.49 ±0.35
6.01 ± 0.16	24.45 ±0.54
	6.14 ±0.04 6.18 ±0.34

56 layers residual network

Cifar-100 Cifar-10 Plain 7.34 ± 0.52 29.38 ±0.14 29.85 ±0.66 7.58 ± 0.40 6.85 \pm 0.25 29.23 \pm 0.14 WCBN

BN-Inception, ImageNet 2012

Methods	Top-1 error	Top-5 error
plain	30.78	11.14
WN	28.64	9.7
CWN	26.1	8.35

Code: https://github.com/huangleiBuaa/CenteredWN

