

Polars Cheat Sheet

General

Install	Ø
pip install polars	
Import	
import polars as pl	

Creating/reading DataFrames

Read parquet	Ø
<pre>df = pl.read_parquet("path.parquet",</pre>	"column:

Expressions

```
Polars expressions can be performed in sequence. This improves readability of code.

df \
    .filter(pl.col("nrs") < 4) \
    .groupby("groups") \
    .agg(
    pl \
        .all() \
        .sum()
```

Subset Observations - rows


```
Filter: Extract rows that meet logical criteria.

df.filter(pl.col("random") > 0.5)
df.filter(
    (pl.col("groups") == "B")
    & (pl.col("random") > 0.5)
)
```

Sample	Ø
<pre># Randomly select fraction of rows. df.sample(frac=0.5)</pre>	
<pre># Randomly select n rows. df.sample(n=2)</pre>	

Select first and last rows # Select first n rows df.head(n=2) # Select last n rows.

Subset Variables - columns

df.tail(n=2)

Select multiple columns with specific names

df.select(["nrs", "names"])

Select columns whose name matches regex

df.select(pl.col("^n.*\$"))

Subsets - rows and columns


```
Select rows 2-4

df[2:4, :]

Select columns in positions 1 and 3 (first column is 0)

df[:, [1, 3]]

Select rows meeting logical condition, and only the specific columns
```

df[df["random"] > 0.5, ["names", "groups"]]

Reshaping Data – Change layout, sorting, renaming

Append columns of DataFrames
pl.concat([df, df3], how="horizontal")

Gather columns into rows

df.melt(
 id_vars="nrs",
 value_vars=["names", "groups"]
)

df.pivot(values="nrs", index="groups",

columns="names")

Summarize Data

Count number of rows with each unique value of variable

df["groups"].value_counts()

of rows in DataFrame

len(df)
or
df.height

Tuple of # of rows, # of columns in DataFrame df.shape

of distinct values in a column
df["groups"].n_unique()

Basic descriptive and statistics for each column df.describe()

```
Aggregation functions
df.select(
      # Sum values
      pl.sum("random").alias("sum"),
      # Minimum value
      pl.min("random").alias("min"),
      # Maximum value
      pl.max("random").alias("max"),
      pl.col("random").max().alias("other_max")
      # Standard deviation
      pl.std("random").alias("std dev"),
      # Variance
      pl.var("random").alias("variance"),
      pl.median("random").alias("median"),
      pl.mean("random").alias("mean"),
      # Quantile
      pl.quantile("random", 0.75) \
        .alias("quantile 0.75"),
      pl.col("random").quantile(0.75) \
        .alias("other_quantile_0.75"),
      # First value
      pl.first("random").alias("first"),
```

Group Data

Group by values in column named "col", returning a GroupBy object

df.groupby("groups")

All of the aggregation functions from above can be applied to a group as well

```
df.groupby(by="groups").agg(
      pl.sum("random").alias("sum"),
      # Minimum value
      pl.min("random").alias("min"),
      # Maximum value
      pl.max("random").alias("max"),
      pl.col("random").max().alias("other max")
      # Standard deviation
      pl.std("random").alias("std_dev"),
      pl.var("random").alias("variance"),
      pl.median("random").alias("median"),
      # Mean
      pl.mean("random").alias("mean"),
      pl.quantile("random", 0.75) \
        .alias("quantile_0.75"),
      pl.col("random").quantile(0.75) \
        .alias("other_quantile_0.75"),
      # First value
      pl.first("random").alias("first"),
```

Additional GroupBy functions

Handling Missing Data

Drop rows with any column having a null value df.drop_nulls()

Replace null values with given value df.fill_null(42)

Replace null values using forward strategy df.fill null(strategy="forward")

Other fill strategies are "backward", "min", "max", "mean", "zero" and "one"

Replace floating point NaN values with given value

Make New Columns

df.fill_nan(42)

Add a new columns to the DataFrame

Rolling Functions

The following rolling functions are available df.select(Ε # Rolling maximum value pl.col("random") \ .rolling max(window size=2) \ .alias("rolling max"), # Rolling mean value pl.col("random") \ .rolling mean(window size=2) \ .alias("rolling mean"), # Rolling median value pl.col("random") \ .rolling median(window_size=2, min_periods=2) \ .alias("rolling_median"), # Rolling minimum value pl.col("random") \ .rolling_min(window_size=2) \ .alias("rolling_min"), # Rolling standard deviation pl.col("random") \ .rolling_std(window_size=2) \ .alias("rolling_std"), # Rolling sum values pl.col("random") \ .rolling_sum(window_size=2) \ .alias("rolling_sum"), # Rolling variance pl.col("random") \ .rolling_var(window_size=2) \ .alias("rolling_var"), # Rolling quantile pl.col("random") \ .rolling_quantile(quantile=0.75, window_size=2, min_periods=2 .alias("rolling_quantile"), # Rolling skew pl.col("random") \ .rolling_skew(window_size=2) \ .alias("rolling_skew"), # Rolling custom function pl.col("random") \ .rolling_apply(function=np.nanstd, window_size=2) .alias("rolling_apply"),

Window Functions

Combine Data Sets

Outer Join

Retains each row, even if no other matching row exists.

df.join(df4, on="nrs", how="outer")

Anti Join

Contains all rows from df that do not have a match in df4.

df.join(df4, on="nrs", how="anti")