Cops and Robber Pebbling on Graphs

Nancy E. Clarke Acadia University

Joint with: Joshua Forkin and Glenn Hurlbert

Rules of Graph Pebbling

- A configuration C of pebbles on a graph G is a function from the vertices of G to the non-negative integers.
- Its size equals $|C| = \sum_{v \in G} C(v)$.
- For adjacent vertices u and v with $C(u) \geq 2$, a pebbling step from u to v removes two pebbles from u and adds one pebble to v, while, when $C(u) \geq 1$, a free step from u to v removes one pebble from u and adds one pebble to v.
- In the context of moving pebbles, we use the word move to mean move via pebbling steps.

Rules of Graph Pebbling

The pebbling number of a graph G, denoted $\pi(G)$, is the minimum number m so that, from <u>any</u> configuration of size m, one can move a pebble to any specified target vertex.

The optimal pebbling number of a graph G, denoted $\pi^*(G)$, is the minimum number m so that, from <u>some</u> configuration of size m, one can move a pebble to any specified target vertex.

We note that in the definitions of the pebbling number and the optimal pebbling number, free moves are not allowed.

Rules of the Cops and Robber Game

- two opposing sides, k > 0 cops and a single robber
- both sides play with perfect information
- cops begin the game by each choosing a vertex to occupy then robber chooses a vertex
- opposing sides move alternately, where a move for the cop side consists of any positive number of them making a free step and a move for the robber consists of making a free step or not
- cops win if at least one of them occupies the same vertex as the robber after a finite number of moves, i.e. they capture the robber

The copnumber of a graph G, denoted c(G), is the minimum number of cops that suffice to guarantee a win on G.

Rules of Cops and Robber Pebbling

The cop pebbling number $\pi^{c}(G)$ is defined as the minimum number m so that, from <u>some</u> configuration of m cops, it is possible to capture any robber via pebbling steps.

Note: $\pi^{c}(G) \leq n(G)$.

We call an instance of a graph G, configuration (of cops) C, and robber vertex R a game, and say that the cops win the game if they can capture the robber; else the robber wins.

Note that, since we lose a cop with each pebbling step, the cops must catch the robber within at most $|\mathcal{C}|-1$ turns to win the game.

Theorem For any graph G, $\pi^{c}(G) \geq c(G)$, with equality if and only if $G = K_1$.

Theorem For any graph G, $\pi^{c}(G) \geq c(G)$, with equality if and only if $G = K_1$.

Theorem For any graph G, $\pi^{c}(G) \geq \pi^{*}(G)$. Equality holds if G is a tree or cycle.

Theorem For any graph G, $\pi^{c}(G) \geq c(G)$, with equality if and only if $G = K_1$.

Theorem For any graph G, $\pi^{c}(G) \geq \pi^{*}(G)$. Equality holds if G is a tree or cycle.

Theorem If G is a graph with $\delta = \delta(G) \ge 27$, and with $gir(G) \ge 4t + 1$ and $n(G) \le \delta^{2t+1}$ for some $t \ge 3$, then $c(G) > \pi^*(G)$.

Theorem For any graph G, $\pi^{c}(G) \geq c(G)$, with equality if and only if $G = K_1$.

Theorem For any graph G, $\pi^{c}(G) \geq \pi^{*}(G)$. Equality holds if G is a tree or cycle.

Theorem If G is a graph with $\delta = \delta(G) \ge 27$, and with $gir(G) \ge 4t + 1$ and $n(G) \le \delta^{2t+1}$ for some $t \ge 3$, then $c(G) > \pi^*(G)$.

Theorem For all d there exists a graph G such that gir(G) = 5, $\pi^*(G) \le 4$ and $c(G) \ge d$.

Theorem Let G be a graph, S a subset of its vertices, and define S' = V - N[S]. Then $\pi^{c}(G) \leq 2|S| + |S'|$. In particular, $\pi^{c}(G) \leq 2\gamma(G)$.

Theorem Let G be a graph, S a subset of its vertices, and define S' = V - N[S]. Then $\pi^{c}(G) \leq 2|S| + |S'|$. In particular, $\pi^{c}(G) \leq 2\gamma(G)$.

Corollary Every graph G satisfies $\pi^{c}(G) \leq n - \Delta(G) + 1$. In particular, if $n(G) \leq 2$ then $\pi^{c}(G) = n$, if $n(G) \geq 3$ then $\pi^{c}(G) \leq n - 1$, and if $n(G) \geq 6$ then $\pi^{c}(G) \leq n - 2$.

Theorem Let G be a graph, S a subset of its vertices, and define S' = V - N[S]. Then $\pi^{c}(G) \leq 2|S| + |S'|$. In particular, $\pi^{c}(G) \leq 2\gamma(G)$.

Corollary Every graph G satisfies $\pi^{c}(G) \leq n - \Delta(G) + 1$. In particular, if $n(G) \leq 2$ then $\pi^{c}(G) = n$, if $n(G) \geq 3$ then $\pi^{c}(G) \leq n - 1$, and if $n(G) \geq 6$ then $\pi^{c}(G) \leq n - 2$.

Theorem Every graph G satisfies $\pi^{c}(G) \leq \gamma_{R}(G)$.

Theorem Let G be a graph, S a subset of its vertices, and define S' = V - N[S]. Then $\pi^{c}(G) \leq 2|S| + |S'|$. In particular, $\pi^{c}(G) \leq 2\gamma(G)$.

Corollary Every graph G satisfies $\pi^{c}(G) \leq n - \Delta(G) + 1$. In particular, if $n(G) \leq 2$ then $\pi^{c}(G) = n$, if $n(G) \geq 3$ then $\pi^{c}(G) \leq n - 1$, and if $n(G) \geq 6$ then $\pi^{c}(G) \leq n - 2$.

Theorem Every graph G satisfies $\pi^{c}(G) \leq \gamma_{R}(G)$.

Theorem Let H be an induced subgraph of a graph G. Then, for any s, if $\pi^{c}(H) \leq n(H) - s$ then $\pi^{c}(G) \leq n(G) - s$.

Theorem Let G be a graph, S a subset of its vertices, and define S' = V - N[S]. Then $\pi^{c}(G) \leq 2|S| + |S'|$. In particular, $\pi^{c}(G) \leq 2\gamma(G)$.

Corollary Every graph G satisfies $\pi^{c}(G) \leq n - \Delta(G) + 1$. In particular, if $n(G) \leq 2$ then $\pi^{c}(G) = n$, if $n(G) \geq 3$ then $\pi^{c}(G) \leq n - 1$, and if $n(G) \geq 6$ then $\pi^{c}(G) \leq n - 2$.

Theorem Every graph G satisfies $\pi^{c}(G) \leq \gamma_{R}(G)$.

Theorem Let H be an induced subgraph of a graph G. Then, for any s, if $\pi^{c}(H) \leq n(H) - s$ then $\pi^{c}(G) \leq n(G) - s$.

Corollary For all $s \ge 2$ there is an N = N(s) such that every graph G with $n = n(G) \ge N$ has $\pi^c(G) \le n - s$.

Theorem Let H be an induced subgraph of a graph G. Then $\ddot{\mathrm{I}}^{\mathrm{c}}(G) \geq \ddot{\mathrm{I}}^{\mathrm{c}}(H)$.

Theorem Let H be an induced subgraph of a graph G. Then $\ddot{\mathrm{I}}^{\mathrm{c}}(G) \geq \ddot{\mathrm{I}}^{\mathrm{c}}(H)$.

Corollary For all $s \ge 2$ there is an N = N(s) such that every graph G with $n = n(G) \ge N$ has $\ddot{I}^c(G) \ge s$.

Theorem Let H be an induced subgraph of a graph G. Then $\ddot{\mathrm{I}}^{\mathrm{c}}(G) \geq \ddot{\mathrm{I}}^{\mathrm{c}}(H)$.

Corollary For all $s \ge 2$ there is an N = N(s) such that every graph G with $n = n(G) \ge N$ has $\ddot{\Gamma}^c(G) \ge s$.

Theorem (Capture) If G is a copwin graph with capt(G) = t, then $\pi^{c}(G) \le 2^{t}$. More generally, if c(G) = k and capt_k(G) = t then $\pi^{c}(G) \le k2^{t}$.

Theorem Let H be an induced subgraph of a graph G. Then $\ddot{\mathrm{I}}^{\mathrm{c}}(G) \geq \ddot{\mathrm{I}}^{\mathrm{c}}(H)$.

Corollary For all $s \ge 2$ there is an N = N(s) such that every graph G with $n = n(G) \ge N$ has $\ddot{\Gamma}^c(G) \ge s$.

Theorem (Capture) If G is a copwin graph with capt(G) = t, then $\pi^{c}(G) \le 2^{t}$. More generally, if c(G) = k and $\operatorname{capt}_{k}(G) = t$ then $\pi^{c}(G) \le k2^{t}$.

Corollary If G is a chordal graph with radius r, then $\pi^{c}(G) \leq 2^{r}$.

Theorem (Treebound) If T is an n-vertex tree, then $\pi^{c}(T) \leq \lceil \frac{2n}{3} \rceil$.

Theorem (Treebound) If T is an n-vertex tree, then $\pi^{c}(T) \leq \lceil \frac{2n}{3} \rceil$.

Example For integers k and d, the spider S = S(k,d) has c(S) = 1 and capt(S) = d, with n = kd + 1. Thus our capture time result (Theorem:Capture) yields $\pi^c(S) \leq 2^d$, while our tree result (Theorem:Treebound) yields $\pi^c(S) \leq \lceil (2kd+2)/3 \rceil$. Hence one bound is stronger than the other depending on how k compares, roughly, to $3 \cdot 2^{d-1}/d$.

Theorem (Treebound) If T is an n-vertex tree, then $\pi^{c}(T) \leq \lceil \frac{2n}{3} \rceil$.

Example For integers k and d, the spider S = S(k,d) has c(S) = 1 and capt(S) = d, with n = kd + 1. Thus our capture time result (Theorem:Capture) yields $\pi^c(S) \leq 2^d$, while our tree result (Theorem:Treebound) yields $\pi^c(S) \leq \lceil (2kd+2)/3 \rceil$. Hence one bound is stronger than the other depending on how k compares, roughly, to $3 \cdot 2^{d-1}/d$.

Example For integers $k, t \geq 1$, let T be the complete k-ary tree of depth t. Then $n(T) = \sum_{i=0}^t k^i = (k^{t+1}-1)/(k-1)$. Thus Theorem:Capture is stronger than Theorem:Treebound for $k \geq 3$ and for k = 2 with $t \geq 2$, while Theorem:Treebound is stronger than Theorem:Capture when k = 1 and $t \geq 5$ (because capt $(P_t) = \lceil t/2 \rceil$).

Theorem For any positive integer d, if G is a graph with $gir(G) \ge 4d - 1$, then $\pi^{c}(G) \le 2^{d} \gamma_{d}(G)$.

Theorem For any positive integer d, if G is a graph with $gir(G) \ge 4d - 1$, then $\pi^{c}(G) \le 2^{d} \gamma_{d}(G)$.

Example For $1 \le i \le 3$, define the tree T_i to be the complete binary tree of depth d-1, rooted at vertex v_i , and define the tree T to be the union of the three T_i with an additional root vertex adjacent to each v_i . Then $\gamma_d(T) = d$, and $n = 3(2^d - 1) + 1$.

Corollary If G is a graph with at least two vertices and a dominating vertex then $\pi^{c}(G) = 2$.

Corollary If G is a graph with at least two vertices and a dominating vertex then $\pi^{c}(G) = 2$.

Corollary Almost all copwin graphs G have $\pi^{c}(G) = 2$.

Corollary If *G* is a graph with at least two vertices and a dominating vertex then $\pi^{c}(G) = 2$.

Corollary Almost all copwin graphs G have $\pi^{c}(G) = 2$.

Theorem For all $n \ge 1$ we have $\pi^{c}(P_n) = \pi^{c}(C_n) = \lceil \frac{2n}{3} \rceil$.

Corollary If G is a graph with at least two vertices and a dominating vertex then $\pi^{c}(G) = 2$.

Corollary Almost all copwin graphs G have $\pi^{c}(G) = 2$.

Theorem For all $n \ge 1$ we have $\pi^{\mathsf{c}}(P_n) = \pi^{\mathsf{c}}(C_n) = \lceil \frac{2n}{3} \rceil$.

Theorem If T is a tree with rad(T) = 2 and diam(T) = 4 then $\pi^{c}(T) = 4$.

Corollary If G is a graph with at least two vertices and a dominating vertex then $\pi^{c}(G) = 2$.

Corollary Almost all copwin graphs G have $\pi^{c}(G) = 2$.

Theorem For all $n \ge 1$ we have $\pi^{\mathsf{c}}(P_n) = \pi^{\mathsf{c}}(C_n) = \lceil \frac{2n}{3} \rceil$.

Theorem If T is a tree with rad(T) = 2 and diam(T) = 4 then $\pi^{c}(T) = 4$.

Corollary If T is a complete k-ary tree of depth 2 with $k \geq 3$, then $\pi^{\rm c}(T) = 4$.

Theorem For all $m \ge 1$ we have $\pi^{\mathsf{c}}(P_2 \square P_m) = m + 1$.

Theorem For all $m \ge 1$ we have $\pi^{\mathsf{c}}(P_2 \square P_m) = m + 1$.

Theorem (CopGrids) For all $16 \le k \le m$ we have $\frac{5092}{28593}km + O(k+m) \le \pi^{c}(P_{k}\square P_{m}) \le 2\left\lfloor\frac{(k+2)(m+2)}{5}\right\rfloor - 8$. The lower bound also holds for all $1 \le k \le m$.

Theorem For all $m \ge 1$ we have $\pi^{\mathsf{c}}(P_2 \square P_m) = m + 1$.

Theorem (CopGrids) For all $16 \le k \le m$ we have $\frac{5092}{28593}km + O(k+m) \le \pi^{c}(P_{k}\square P_{m}) \le 2\left\lfloor\frac{(k+2)(m+2)}{5}\right\rfloor - 8$. The lower bound also holds for all $1 \le k \le m$.

Theorem $\left(\frac{4}{3}\right)^d \le \pi^{c}(Q^d) \le \frac{2^{d+1}}{d+1} + o(d)$.

Theorem For all $m \ge 1$ we have $\pi^{\mathsf{c}}(P_2 \square P_m) = m + 1$.

Theorem (CopGrids) For all $16 \le k \le m$ we have $\frac{5092}{28593}km + O(k+m) \le \pi^{c}(P_{k}\square P_{m}) \le 2\left\lfloor\frac{(k+2)(m+2)}{5}\right\rfloor - 8$. The lower bound also holds for all $1 \le k \le m$.

Theorem $\left(\frac{4}{3}\right)^d \le \pi^{c}(Q^d) \le \frac{2^{d+1}}{d+1} + o(d)$.

Theorem For every graph G we have $\pi^{c}(G \square K_{t}) \leq t\pi^{c}(G)$.

A famous conjecture of Graham postulates that every pair of graphs G and H satisfy $\pi(G \square H) \leq \pi(G)\pi(H)$. This relationship was shown by Shiue to hold for optimal pebbling.

Theorem (Shiue) Every pair of graphs G and H satisfy $\pi^*(G \square H) \le \pi^*(G)\pi^*(H)$.

One might ask whether or not the analogous relationship holds between $\pi^{c}(G \square H)$ and $\pi^{c}(G)\pi^{c}(H)$.

A famous conjecture of Graham postulates that every pair of graphs G and H satisfy $\pi(G \square H) \leq \pi(G)\pi(H)$. This relationship was shown by Shiue to hold for optimal pebbling.

Theorem (Shiue) Every pair of graphs G and H satisfy $\pi^*(G \square H) \leq \pi^*(G)\pi^*(H)$.

One might ask whether or not the analogous relationship holds between $\pi^{c}(G \square H)$ and $\pi^{c}(G)\pi^{c}(H)$.

Theorem There exist graphs G and H such that $\pi^{c}(G \square H) > \pi^{c}(G)\pi^{c}(H)$.

Cartesian Products of Wheels

Theorem Let $n \geq 4$ and let $G = W_n \square W_n$. Then $\pi^c(G) \leq 14$ and if $n \geq 67$ then $\pi^c(G) = 14$.

Corollary For $n \ge 67$ we have $\pi^{\mathsf{c}}(W_n \square W_n) = \frac{7}{2}\pi^{\mathsf{c}}(W_n)\pi^{\mathsf{c}}(W_n)$.

Open Questions

Can the bounds .178 $\approx \frac{5092}{28593} \leq \lim_{k,m\to\infty} \pi^{\rm c}(P_k\Box P_m)/km \leq$.4 from Theorem:CopGrids be improved?

Is there an infinite family of graphs $\mathcal G$ for which $\pi^{\rm c}(G\square H) \leq \pi^{\rm c}(G)\pi^{\rm c}(H)$ for all $G,H\in\mathcal G$?

Is there some constant $a \ge 7/2$ such that $\pi^{\rm c}(G \square H) \le a\pi^{\rm c}(G)\pi^{\rm c}(H)$ for all G and H?

Are there constant upper bounds on $\pi^{c}(G)$ when G is planar or outerplanar? If $k = \pi^{c}(G)$ then is $capt_{k}(G)$ linear?

Is there a similar, narrow range of values of $\pi^{c}(G)$ over all diameter two graphs G?

Meyniel's Conjecture

Finally, Meyniel conjectured in 1985 that every graph G on n vertices satisfies $c(G) = O(\sqrt{n})$.

Some evidence in support of this (Bollobás, Kun, Leader): for $G \in \mathcal{G}_{n,p}$, when $0 < \epsilon < 1$ and $p > 2(1+\epsilon)\log(n)/n$, we have $c(G) < \frac{10^3}{\epsilon^3} n^{\frac{1}{2}\log(n)}$ almost surely. (In fact, they also show that when $p \gg 1/n$ we have $c(G) > \frac{1}{(pn)^2} n^{\frac{1}{2}\left(\frac{\log\log(pn)-9}{\log\log(pn)}\right)}$ almost surely.)

Conjecture Every graph G on n vertices satisfies $\pi^{c}(G) \leq 2n/3 + o(n)$; i.e. $\ddot{I}^{c}(G) \geq n/3 - o(n)$.

Thanks

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada

Canada