7/4/2003

PROBLEMA 1 (40%) – En el circuito de la figura:

Datos: $R_2 = 5 \text{ k}\Omega$, $R_1 = R_3 = R_4 = 1 \text{ k}\Omega$, $I_b = 6 \text{ nA}$, $I_{os} = 1 \text{ nA}$, CMRR= 20 dB, $a_o = 1000$.

- a) Encontrar la ganancia del circuito suponiendo que el ampl. operacional es ideal.
- b) Considerando la ganancia en lazo abierto del ampl. operacional (a₀) y los errores en la entrada (I_b,I_{os},CMRR), encontrar la tensión de salida del circuito (v_o). Que error relativo se comete en la ganancia del circuito respecto el apartado anterior?

PROBLEMA 2 (60%) – En el circuito de la figura:

Datos:
$$R_1 = R_2 = 10 \text{ k}\Omega$$
, $C_1 = 1 \text{ }\mu\text{F}$, $C_2 = 5 \text{ }\mu\text{F}$
 $a_1(s) = \frac{a_o \omega_1 \omega_2 \omega_3}{(s + \omega_1)(s + \omega_2)(s + \omega_3)}$; $\omega_1 = 0.1 \text{ rad/s}$, $\omega_2 = 10^3 \text{ rad/s}$, $\omega_3 = 10^5 \text{ rad/s}$

- a) Dibujar el diagrama de flujo y encontrar la expresión de la ganancia de lazo T(s).
- b) Dibujar aproximadamente el lugar geométrico de las raíces de T(s) y encontrar los valores de ao que hacen estable el circuito.
- c) Dibujar el diagrama de Bode de T(s) y encontrar el valor de ao para conseguir un margen de fase de 45°.
- d) Encontrar la expresión de la función de transferencia en lazo cerrado del circuito.