MS121: IT Mathematics

FUNCTIONS

NEW FUNCTIONS FROM OLD FUNCTIONS

John Carroll School of Mathematical Sciences

Dublin City University

Even & Odd Functions

Outline

- Even & Odd Functions
- 2 Increasing & Decreasing Functions
- Transformation of Functions
- 4 Composite Functions
- 5 Inverse Functions

Outline

- Even & Odd Functions
- Increasing & Decreasing Functions
- Transformation of Functions
- Composite Functions
- Inverse Functions

Even & Odd Functions Properties & Examples

Even & Odd Functions

Functions (3/4)

Properties

• A function f is an even function of x if

$$f(-x)=f(x),$$

for every x in the function's domain.

• A function f is an odd function of x if

$$f(-x)=-f(x),$$

for every x in the function's domain.

Even & Odd Functions

Properties (Cont'd)

- The names even and odd come from powers of x.
- If y is an even power of x, e.g. $y = x^6$, then it is an even function as
- If y is an odd power of x, e.g. $y = x^7$, then it is an odd function as $(-x)^7 = -x^7$.
- Some functions are even, some are odd, and some are neither.

Even Functions

- If a function satisfies f(-x) = f(x) for every number x in its domain, then it is called an even function.
- For instance, the function $f(x) = x^2$ is even because

$$f(-x) = (-x)^2 = x^2 = f(x)$$

MS121: IT Mathematics

MS121: IT Mathematics

Even & Odd Functions Properties & Examples

Even & Odd Functions Properties & Examples

Even Functions

Functions (3/4)

Significance

- The geometric significance of an even function is that its graph is symmetric with respect to the y-axis.
- This means that if we have plotted the graph of f(x) for $x \ge 0$, we obtain the entire graph simply by reflecting this portion about the y-axis.

Odd Functions

- If f(x) satisfies f(-x) = -f(x)for every number x in its domain, then f(x) is called an odd function.
- For example, the function $f(x) = x^3$ is odd because

$$f(-x) = (-x)^3 = -x^3 = -f(x)$$

MS121: IT Mathematics

Functions (3/4)

MS121: IT Mathematics

Even & Odd Functions Properties & Examples

Increasing & Decreasing Functions

Odd Functions

Significance

- The graph of an odd function is symmetric about the origin.
- If we already have the graph of f(x) for x > 0, we can obtain the entire graph by rotating this portion through 180° about the origin.

Increasing & Decreasing Functions Graph Recognition

Increasing/Decreasing Functions

General Situation

Functions (3/4)

• If the graph of a function *climbs* or *rises*, as you move from left to right, then the function is increasing.

MS121: IT Mathematics

- If the graph of a function descends or falls, as you move from left to right, then the function is decreasing.
- We will look at the more formal definition during this Semester and see how to find the intervals over which a function is increasing and the intervals over which it is decreasing.

Outline

- Even & Odd Functions
- Increasing & Decreasing Functions
- Composite Functions

Increasing & Decreasing Functions Graph Recognition

Increasing & Decreasing Functions

Functions (3/4)

- The graph rises from A to B, falls from B to C, and rises again from to C to D.
- The function is said to be increasing on the interval [a, b], decreasing on [b, c], and increasing again on [c, d].
- Notice that if x_1 and x_2 and are any two numbers between a and b with $x_1 < x_2$, then $f(x_1) < f(x_2)$.
- We use this as the defining property of an increasing function.

Functions (3/4) MS121: IT Mathematics

MS121: IT Mathematics

Sample Increasing & Decreasing Functions

f(x)	Where Increasing	Where Decreasing
x^2	$[0,\infty)$	$(-\infty,0]$
<i>x</i> ³	$(-\infty,\infty)$	Nowhere
$\frac{1}{x}$	Nowhere	$(-\infty,0)\cup(0,\infty)$
$\frac{1}{x^2}$	$(-\infty,0)$	$(0,\infty)$
\sqrt{x}	$[0,\infty)$	Nowhere
$x^{2/3}$	$[0,\infty)$	$(-\infty,0]$

John Carroll

Transformation of Functions Vertical & Horizontal Shifts

MS121: IT Mathematics

Vertical & Horizontal Shifts

Functions (3/4)

Functions (3/4)

Outline

- Even & Odd Functions
- 2 Increasing & Decreasing Functions
- 3 Transformation of Functions
- 4 Composite Functions
- Inverse Functions

MS121: IT Mathematics Functions (3/4)

Vertical & Horizontal Shifts

Transformation of Functions Vertical & Horizontal Shifts

13 / 39

Transformation of Functions Vertical & Horizontal Shifts

Transformation of Functions Vertical & Horizontal Shifts

Shifting Graphs

Transformation of Functions Scaling a Graph

Scaling a Graph

Functions (3/4)

Shifting Graphs

```
Vertical shifts: y = f(x) + k shifts the graph of f
     up k units if k > 0;
     down |k| units if k < 0.
Horizontal shifts: y = f(x + h) shifts the graph of f
     left h units if h > 0:
     right |h| units if h < 0.
```

Functions (3/4) MS121: IT Mathematics

Transformation of Functions Scaling a Graph

Scaling a Graph

```
Vertically: y = kf(x), for k > 0,
     stretches the graph of f vertically by a factor of k if k > 1;
     compresses the graph of f vertically by a factor of k if k < 1;
Horizontally: y = f(kx), for k > 0,
     stretches the graph of f horizontally by a factor of k if k < 1;
     compresses the graph of f horizontally by a factor of k if k > 1;
```

Functions (3/4)

MS121: IT Mathematics

MS121: IT Mathematics

Reflections

y = -f(x) is a reflection of y = f(x) across the x-axis; y = f(-x) is a reflection of y = f(x) across the y-axis;

Transformation of Functions Combining Functions

Combining Functions

Functions (3/4)

In general, given any two functions f and g with domains D(f), D(g)respectively and constant c:

- (cf)(x) = c(f(x)) with domain D(f).
- (f+g)(x) = f(x) + g(x), domain $D(f) \cap D(g)$.
- \bullet (f-g)(x) = f(x) g(x), domain $D(f) \cap D(g)$.
- $(f \star g)(x) = f(x)g(x)$, domain $D(f) \cap D(g)$.
- $(f/g)(x) = \frac{f(x)}{g(x)}$ with domain $D(f) \cap D(g)$ less any points where g

Example: Transformation of Function \sqrt{x}

We sketch:

- $y = \sqrt{x} 2$ by shifting 2 units downward
- $y = \sqrt{x-2}$ by shifting 2 units to the right
- $y = -\sqrt{x}$ by reflecting about the x-axis
- $y = 2\sqrt{x}$ by stretching vertically by a factor of 2
- $y = \sqrt{-x}$ by reflecting about the y-axis

Composite Functions

Outline

- Even & Odd Functions
- 2 Increasing & Decreasing Functions
- Transformation of Functions
- Composite Functions
- Inverse Functions

Viewing a Function as a Composite

we first find $1 - x^2$ and then take the square root:

 $x \longrightarrow 1 - x^2 \longrightarrow 1 - x^2 \longrightarrow y = \sqrt{1 - x^2}$

So that y is the composite $f \circ g$ where

To evaluate the function

 $v = \sqrt{1 - x^2}$

Composite Functions

If f and g are functions, the *composite* function $f \circ g$ (f composed with g or f after g) is defined by

$$(f \circ g)(x) = f(g(x)).$$

The domain of $f \circ g$ consists of all x in the domain of g for which g(x) lies in the domain of f.

$$x \longrightarrow g \longrightarrow f \longrightarrow f(g(x))$$

Functions (3/4)

MS121: IT Mathematics

Composite Functions Examples

 $f(x) = \sqrt{x} \text{ and } g(x) = 1 - x^2$

Composition of Functions Example

The Functions

$$f(x) = 2x + 3$$
 and $g(x) = x^2$

Composition

We obtain

$$g \circ f(x) = g(2x+3) = (2x+3)^2 = 4x^2 + 12x + 9$$

while

$$f \circ g(x) = f(x^2) = 2x^2 + 3.$$

Note: In this example, $f \circ g(x) \neq g \circ f(x)$. This is also true in general as the composition of functions is not commutative.

Composition of Functions Example

The Functions

$$f(x) = x^2 + 1$$
 and $g(x) = \sqrt{x}$

Composition

We have

$$g \circ f(x) = g(x^2 + 1) = \sqrt{x^2 + 1}$$

while

$$f \circ g(x) = f(\sqrt{x}) = (\sqrt{x})^2 + 1 = |x| + 1$$

Note: For $f \circ g(x)$, the domain of f can only include points from the range of g.

Inverse Functions

Composition of Functions Example

The Functions

$$f(x) = x^2$$
 and $g(x) = \sqrt{x}$

Composition

We obtain

$$g \circ f(x) = g\left(x^2\right) = \sqrt{x^2} = |x|$$

and

$$f \circ g(x) = f\left(\sqrt{x}\right) = \left(\sqrt{x}\right)^2 = |x|$$

Although $f \circ g(x)$ and $g \circ f(x)$ appear to be identical functions, their natural domains and ranges could be different. $g \circ f$ has natural domain $(-\infty, \infty)$ and range $[0, \infty)$ whereas $f \circ g$ has natural domain $[0, \infty)$ and range $[0,\infty)$.

MS121: IT Mathematics

MS121: IT Mathematics

Inverse Functions Definition

Inverse Functions Definition

Inverting Functions

Context

The functions $f(x) = x^3$ and $g(x) = x^{\frac{1}{3}}$ "cancel each other out" in the sense that

 $f \circ g(x) = f\left(x^{\frac{1}{3}}\right) = \left(x^{\frac{1}{3}}\right)^3 = x$

and

$$g \circ f(x) = g(x^3) = (x^3)^{\frac{1}{3}} = x$$

i.e. $f \circ g$ and $g \circ f$ leave x unchanged — each behave as the identity function. We say that the functions f and g are the inverses of each other.

Outline

- Even & Odd Functions
- 2 Increasing & Decreasing Functions
- Transformation of Functions
- Composite Functions
- Inverse Functions

Inverting Functions

Inverting Functions

Definition: Inverse of a Function

f is said to be an invertible function, with inverse f^{-1} , if the function f^{-1} exists and obeys the following property:

$$f^{-1}\circ f(x)=x$$

for all x in the domain of f.

- Note that f^{-1} does not mean $\frac{1}{f}$ but is simply notation to mean "the inverse function".
- Note also that the inverse f^{-1} must itself be a function, i.e. it must produce unique values.

MS121: IT Mathematics

MS121: IT Mathematics

John Carroll

Inverse Functions Examples

Finding the Inverse of f(x)

Function & Inverse

$$y = \frac{x+1}{x-2}$$

$$x = \frac{2y+1}{y-1}$$

Answer (Cont'd)

Since
$$y = f(x)$$
 then $x = f^{-1}(y)$ and so $f^{-1}(y) = \frac{2y+1}{y-1}$. For

convenience, we can replace y by x (because it is conventional to express a function in terms of x not y) and write

$$f^{-1}(x) = \frac{2x+1}{x-1}$$

Note that the inverse function has domain $R \setminus \{1\}$.

Finding the Inverse of f(x)

The Function

Where it exists, find $f^{-1}(x)$ where $f(x) = \frac{x+1}{x-2}$.

Answer

We begin by writing $y = \frac{x+1}{x-2}$, from which we see that y is given explicitly in terms of x. To invert the function, we need to write x explicitly in terms of y. Cross-multiply and transpose as follows:

$$y(x-2) = x+1$$

$$\Rightarrow xy - 2y = x+1$$

$$\Rightarrow xy - x = 2y+1$$

$$\Rightarrow x(y-1) = 2y+1 \Rightarrow x = \frac{2y+1}{y-1}$$

Inverse Functions Examples

Finding the Inverse of f(x)

The Function

 $f(x) = (x-4)^2$ on the domain $[4, \infty)$.

Answer

We write

$$y = (x-4)^{2}$$

$$\Rightarrow +\sqrt{y} = x-4 \qquad (+\sqrt{\text{since } x} \ge 4)$$

$$\Rightarrow x = 4+\sqrt{y}$$

$$\Rightarrow f^{-1}(x) = 4+\sqrt{x}$$

Note that f^{-1} has natural domain $[0,\infty)$ and range $[4,\infty)$ (which is the domain of f).

Inverse Functions Examples

The Inverse Function: Conclusion (1/3)

Inverse Functions Examples

The Inverse Function: Conclusion (3/3)

Inverse Functions Examples

The Inverse Function: Conclusion (2/3)

Functions (3/4) MS121: IT Mathematics John Carroll 38 / 39