

Terrorism is Happening: What Are the Consequences?

Jaeyeon Won

Project Description

Goal

- To find the model that best predicts the casualties of a terrorist attack

Importance

- Design effective strategies to deal with the consequences of terrorist incidents ahead of time

Project Description

- Machine Learning System
- Supervised multiple regression machine learning algorithm
- Performance Measures
- Root Mean Squared Error (RMSE)
- Mean Absolute Error (MAE)
- R-squared
- Standard Deviation

Project Description

Assumptions

- Complex relationship between the label and features (than a linear relationship)
- Independence of features
- Independence of errors with a normal distribution with a mean of 0.

Description of Data

Source of Data

- From the Global Terrorism Database (GTD)
- 135 attributes over 190,000 terrorism cases between 1970 and 2018

Description of Data

Data Cleaning

- Label: nkill + nwould = casualty
- Initial feature selection: 12 attributes that are deemed to be related to casualties (includes only categorical attributes)
- Rename the attributes & levels of categorical attributes
- Drop missing values

• General Terrorist Activity Trends

Total Number of Terrorist Cases

Total Number of Casualties

Histogram of Casualty

Original Histogram

Log Scale on Y-axis

• Categorical Attributes with Multiple Categories

- Significant decrease after top 7 countries

• Categorical Attributes with Multiple Categories

Significant decrease after top 6 nationalities

• Categorical Attributes with Multiple Categories

- Significant decrease after top 3 groups

Categorical Attributes with Multiple Categories

Significant decrease after top 5 target types

Correlation

- Levels with less frequencies grouped into 'Other' category based on the previous explorations
- Highest correlation was around 0.1
- Variables with a correlation greater than 0.1: *suicide, weaponType*

Preparation of Data

• Label

- Original *casualty* attribute with no transformation

• Features

- suicide and weaponType
- One-hot encoding

• Train Set and Test Set

- 80% training set, 20% testing set, random state of 42

Exploration of Different Models

- Cross-Validation
- 3 folds

	Polynomial Regression	Ridge Regression	Lasso Regression	Elastic Net	SVM Regression	Decision Tree Regressor
RMSE	53.4026	53.4013	53.5647	53.6604	53.8653	53.7124
MAE	6.3488	6.3488	6.3385	6.3386	4.9374	6.3619
R-Squared	0.0181	0.0181	0.0121	0.0086	0.0010	0.0067
Standard Deviation	8.4779	8.4287	5.8548	3.1146	2.3281	36.5305

Fine-Tuning the Model

Hyperparameter Tuning & Ensemble

		Hyperparan	Ensemble			
	Polynomial Regression with Degree 3	Polynomial Regression with Degree 5	Ridge Regression with Alpha 50	Ridge Regression with Alpha 100	Polynomial Regression Adaboost	Ridge Regression Adaboost
RMSE	53.4026	53.4026	53.3946	53.4174	85.0294	100.5837
MAE	6.3488	6.3488	6.3343	6.3267	25.1447	32.3648
R-Squared	0.0181	0.0181	0.0184	0.0176	-1.4893	-2.4834
Standard Deviation	8.4779	8.4779	7.0379	6.4328	81.6044	99.0716

Evaluation of Final System on the Test Set

• Ridge Regression with alpha = 50

RMSE	MAE	R-Squared	Standard Deviation
18.4634	6.1581	0.0046	7.2722

Presenting the Solution

- What worked & What did not
 - Exploration of Different Models
 - **Worked**: Polynomial Regression, Ridge Regression
 - **Not Worked**: Lasso Regression, Elastic Net, SVM Regression, Decision Tree Regressor
 - Fine-Tuning the Models
 - **Worked**: Hyperparameter Tuning on Ridge Regression
 - **Not Worked**: Hyperparameter Tuning on Polynomial Regression, Adaboost

Presenting the Solution

- Limitations of the system
 - Not much variance of the label is explained by the features
 - May not generalize to the overall data