

Table of contents

Introduction and common information

ENTSO-E Net generation, exchanges and consumption 2011	4
Generation	
- Overview ENTSO-E in figures 2011 - Electricity system data of member TSOs' countries	10
- Net electricity generation and its structure	
- Other renewable generation including wind and solar power 2010 and 2011	
- Development of net electricity generation	14
Exchanges	
- Physical energy flows 2011 - Graphical overview	
- Physical energy flows 2011 - Detailed inside and outside flows between the countries	
- Development of physical exchanges on tie lines	
- Monthly electricity exchanges on tie lines	
- Balance of load flows at 03:00 a.m. and 11:00 a.m. on the 3 rd Wednesday of each month	20
Consumption	
- Highest and lowest hourly load value of each country 2011	
- Highest and lowest load on 3 rd Wednesday in 2011	23
Generating capacity	0.4
- Net generating capacity on 31 December 2010 and 2011	
- Inventory of thermal units ≥ 10 MW as of 31 December 2011	
- Inventory of hydro power units ≥ 1 MW as of 31 December 2011	20
Yearly values / operation and physical exchanges	
- Yearly values operation and physical exchanges per countries for the years 2006, 2010 and 2011	27
System information	
- Inventory of transmission network installations as of 31 December 2011	105
- Number of circuits < 220kV, 220 kV and over 220 kV on tie lines	
- Simplified diagram of the ENTSO-E tie lines of the synchronous area of ENTSO-E	
as of 31 December 20111	109
- Characteristics of the ENTSO-E tie lines as of 31 December 2011	
- Unavailability of international tie lines - yearly overview 2011	
Glossary of statistical terms	127

Introduction and common information

Background on the ENTSO-E Statistical Yearbook 2011

The statistical yearbook 2011 covers all 41 ENTSO-E members, across 34 countries. Its purpose is to bring a wide spectrum of retrospect figures on power systems of member transmission system operators (TSOs), among which generation, consumption, cross-border exchanges and network components.

This edition, on which the ENTSO-E data expert group has been working on consolidating the collection of statistical data from all member TSOs' countries, will help you to find data more easily as links have also been added and are available on www.entsoe.eu/resources/data-portal

Activities related to harmonization of data processes, data definitions and IT tools are still ongoing with in ENTSO-E working groups, which will lead to the creation of a central database gathering all the information previously available through former associations.

What is ENTSO-E?

ENTSO-E is the European Network of Transmission System Operators for Electricity. The association is representing 41 transmission System Operators (TSOs) across 34 countries.

With important tasks given by Regulation (EC) 714/2009, ENTSO-E's role is to enhance cooperation between TSOs across Europe in order to assist in the development of a pan-European electricity transmission network in line with European Union energy goals. Its specific aims are to:

- Ensure the secure reliable operation of the increasingly complex network;
- Facilitate cross-border network development and the integration of new renewable sources of energy;
- Enhance the creation of the Internal Electricity Market (IEM) through standardized market integration and transparency procedures

ENTSO-E is responsible for creating common tools (network codes), a Ten-Year Network Development plan, recommendations for the coordination of technical cooperation between, TSOs within the EU, and annual outlooks for summer and winter electricity generation.

Principles of data handling, Statistical Data Correspondents and Data Expert Group

Data Expert Group, Statistical Data Correspondents and the ENTSO-E Secretariat are in charge of statistical data in terms of methodological development, data processing and the production of various reports including this Statistical Yearbook.

Statistical data is regularly collected by Statistical Data Correspondents of member TSOs' countries. The data is stored in the ENTSO-E statistical database, which can be accessed directly through web based queries or via reports published on the website www.entsoe.eu

The figures indicated for various countries may differ from some other national statistics published because ENTSO-E statistics only describe that part of the electricity supply system, which concerns interconnected system operation.

Consequently, this data may not represent the entire interconnected system in some countries. A corresponding representativeness factor is provided wherever necessary.

ENTSO-E member companies

Country	Company	Abbreviation
AT	Austrian Power Grid AG	APG
	Vorarlberger Übertragungsnetz GmbH	VUEN
ВА	(until January 2012 VKW-Netz AG) Nezavisni operator sustava u Bosni i Hercegovini	NOS BiH
BE	Elia System Operator SA	Elia
BG	Electroenergien Sistemen Operator EAD	ESO
CH	swissgrid ag	swissgrid
CY	Cyprus Transmission System Operator	Cyprus TSO
CZ	CEPS a.s.	CEPS
DE	Amprion GmbH	Amprion
	TenneT TSO GmbH	Tennet DE
	TransnetBW GmbH	TransnetBW
	(until February 2012 EnBW Transportnetze AG) 50 Hertz Transmission GmbH	50 Hertz
DK	Energinet.dk Independent Public Enterprice	Energinet.dk IPC
EE	Elering AS	Elering AS
ES	Red Eléctrica de España S.A.	REE
FI	Fingrid Oyj	Fingrid
FR	Réseau de Transport d'Electricité	RTE
GB	National Grid Electricity Transmission plc	National Grid
	System Operator for Northern Ireland Ltd	SONI Ltd
	Scottish Hydro Electric Transmission Limited	SHETL
	Scottish Power Transmission plc	SP Transmission
GR	Independent Power Transmission Operator S.A.	IPTO SA
	(until January 2012 Helenic Transmission System Operator S.A.)	
HR	HEP-Operator prijenosnog sustava d.o.o.	HEP-OPS
HU	MAVIR Magyar Villamosenergia-ipari Átviteli Rends-	
	zerirányító Zártköruen Muködo Részvénytársaság	MAVIR ZRt.
IE	EirGrid plc	EirGrid
IS	Landsnet hf	Landsnet
IT	Terna - Rete Elettrica Nazionale SpA	Terna
LT	LITGRID AB	LITGRID AB
LU	Creos Luxembourg S.A.	Creos Luxembourg
LV	AS Augstsprieguma tÏkls	Augstsprieguma tlkls
ME	Crnogorski elektroprenosni sistem AD	CGESAD
MK NL	Macedonian Transmission System Operator AD TenneTTSO B.V.	MEPSO TenneT NL
NO	Statnett SF	Statnett
PL	PSE Operator S.A.	PSE Operator
PT	Rede Eléctrica Nacional, S.A.	REN
RO	C.N. Transelectrica S.A.	Transelectrica
RS	JP Elektromreža Srbije	EMS
SE	Affärsverket Svenska Kraftnät	Svenska Kraftnät
SI	Elektro Slovenija d.o.o.	ELES
SK	Slovenska elektrizacna prenosova sustava, a.s.	SEPS

Statistical Data Correspondents

The following Statistical Data Correspondents provided the data and can give additional information on the contents and interpretation of the statistics:

Country	Name	Company	E-Mail
AT	E.Reittinger-Hubmer	Austrian Power Grid	ernst.reittinger-hubmer@apg.at
BA	M.Džizic	NOS BiH	m.dzizic@nosbih.ba
BE	D.Couckuyt	Elia	Dries.Couckuyt@elia.be
BG	A.Georgiev	ESO	georgiev@ndc.bg
CH	R.Bissig	swissgrid ag	roland.bissig@swissgrid.ch
CY	G.Christofi	Cyprus TSO	gchristofi@dsm.org.cy
CZ	Z.Fucik	CEPS a.s.	fucik@ceps.cz
DE	B.Wegner	BDEW	bernd.wegner@bdew.de
DK	C.Rasch	Energinet.dk	chr@energinet.dk
EE	K.Ainsaar	Elering AS	karin.ainsaar@elering.ee
ES	V.Rodriguez Garcia	REE	vrodriguez@ree.es
FI	H.Maula	Fingrid Oyj	hannu.maula@fingrid.fi
FR	E.Pharabod	RTE	erik.pharabod@rte-france.com
GB	L.Chennells	National Grid	lisa.chennells@uk.ngrid.com
GR	A.Anagnostou	IPTO SA	aanagnostou@admie.gr
HR	V.Grujic	HEP-OPS	vlado.grujic@hep.hr
HU	L.Galambos	MAVIR ZRt.	galambos@mavir.hu
IE	P.Carroll	EirGrid plc	paul.carroll@eirgrid.com
IS	R.Stefánsson	Landsnet hf	ragnars@landsnet.is
IT	D.Camuffo	Terna S.p.A.	dionisio.camuffo@terna.it
LT	R.Platakiene	LITGRID AB	regina.platakiene@litgrid.eu
LU	D.Rendulic	Creos Luxembourg S.A.	daniel.rendulic@creos.net
LV	A.Eglitis	AS Augstsprieguma tÏkls	andrejs.eglitis@ast.lv
ME	D.Svrkota	CGESAD	dragomir.svrkota@tso-epcg.com
MK	I.Netkova	MEPSO	izabelan@mepso.com.mk
NI	H.Magorrian	SONI	helen.magorrian@soni.ltd.uk
NL	R.Kok	TenneT TSO B.V.	raymond.kok@tennet.eu
NO	L.Christiansen	Statnett SF	lasse.christiansen@statnett.no
PL	L.Jezynski	PSE Operator S.A.	lukasz.jezynski@pse-operator.pl
PT	J.Milheiro Batista	REN	milheiro.batista@ren.pt
RO	C.Radoi	CN Transelectrica S.A.	cristian.radoi@transelectrica.ro
RS	S.Vujnovic	JP EMS	stanko.vujnovic@ems.rs
SE	B.Falt	Svenska Kraftnät	birger.falt@svk.se
SI	D.Novakovic	ELES	dragan.novakovic@eles.si
SK	S.Dudasik	SEPS a.s.	stanislav.dudasik@sepsas.sk

- 1 ENTSO-E Net generation, exchanges and consumption 2011
- 2 Yearly values/operation and physical exchanges
- 3 System information
- 4 Glossary of statistical terms

ENTSO-E Net generation, exchanges and consumption 2011

Generation

Overview ENTSO-E in figures 2011 - Electricity system data of member TSOs' countries	10
Net electricity generation and its structure	12
Other renewable generation including wind and solar power 2010 and 2011	13
Development of net electricity generation	14
Exchanges	
Physical energy flows 2011 - Graphical overview	15
Physical energy flows 2011 - Detailed inside and outside flows between the countries	16
Development of physical exchanges on tie lines	17
Monthly electricity exchanges on tie lines	18
Balance of load flows at 03:00 a.m. and 11:00 a.m.on the 3 rd Wednesday of each month	20
Consumption	
Annual maximum load in each country 2011	22
Highest and lowest load in each country on 3rd Wednesday in 2011	23
Generation capacity	
Net generating capacity on 31 December 2010 and 2011	24
Inventory of thermal units ≥ 10 MW as of 31 December 2011	25
Inventory of hydro power units ≥ 1MW as of 31 December 2011	26

Overview ENTSO-E in figures 2011 - Electricity system data of member TSOs' countries

Countries		AT	ВА	BE ¹	BG	CH ²	CY	CZ	DE ³	DK	EE	
Net generation "All values are calculated to represe	nt 100% of 1	the nationa	l values"									
Nuclear power	GWh	0	0	45943	15172	25560	0	26709	101458	0	0	
Fossil fuels	GWh	23007	9404	28996	25889	2107	4833	48998	350456	21811	10271	
Hydro power	GWh	33663	4290	1410	3542	33795	0	2821	19853	19	33	
Other renewable net generation	GWh	0	0	9279	540	1419	115	2500	86123	11309	1085	
- of which wind	GWh	0	0	2307	540	60	115	384	44641	8938	364	
- of which solar	GWh	0	0	1493	0	0	0	2115	18341	0	0	
Non-identifiable	GWh	8730	0	0	0	0	0	0	0	0	0	
Total net generation	GWh	65400	13694	85628	45143	62881	4948	81028	557890 ⁴		11389	
Consumption "All values are calculated to represent												
Consumption	GWh	68567	12186	86536	33233	64439	4948	63040	544267	34458	7827	
Variation (compared with 2010)	%	0,4	3,8	-4,1	5,1	-0,02	-5,8	-1,1	-0,6	-3,4	-2,4	
Transmision network losses percentage consumption	%	0,-1	0,0	, 1	0,1	0,02	0,0	1,1	0,0	0,4	۷,۰۰	
Net generation capacity as of 31 December 2011 "All values are identical with the national values and their representativity"												
NGC Nuclear NGC Fossil fuels	MW	7425	1506	5926 8539	2080 6400	3278	973	3692 10938	12048 66967	7486	2283	
NGC Hydro power	MW	12919	1971	1420	3150	13723	0	2161	9209	10	4	
NGC Renewable ernergy sources	MW	1054	0	4142	770	508	102	2190	53532	3967	254	
- of which wind	MW	1017	0	1056	550	42	102	2190	28254	3950	184	
- of which solar	MW	0	0	1901	220	111	0	1971	22306	17	0	
NGC Other sources	MW	0	0	0	0	205	0	0	3263	44	0	
NGC Total	MW	21398	3477	20027	12400	18102	1075	18981	145019	11507	2541	
Representativity of the values	%	100	100	100	99	100	100	100	93	100	100	
Countries		PL ^{7,8}	B PT	RO	RS	SE	SI	SK	ENTS	D-E ⁹		
Net generation "All values are calculated to represent	nt 100% of t											
Nuclear power	GWh	0	0	10796	0	58023	5900	14379	885			
Fossil fuels	GWh	140894	24732	30099	32104	5359	4602	6331	1625			
Hydro power	GWh	2647	11825	14670	9162	65783	3362	4007	511			
Other renewable net generation	GWh	8069	11866	1403	0	17256	0	863	312			
- of which wind	GWh	2745	9002	1218	0	6070	0	0	175			
- of which solar		0	262	0	0	0	0	307		649		
Non-identifiable	GWh	0	0	0	0	0	0	968		145		
Total net generation	GWh	151610	48423	56968	41266	146421	13864	26548	3347	445		
Consumption "All values are calculated to represent	100% of the	national v	alues"									
Consumption	GWh	145720	50499	54916	40174	139222	12558	26780	3311	650		
Variation (compared with 2010)	%	1,5	-3,4	2,9	1,6	-5,6	2,5	0,5		1,9		
Transmision network losses percentage consumption	%									1,6		
Net generation capacity as of 31 December 2011 "All values are identical with the national values and		_										
NGC Nuclear	MW	0	0	1300	0	9363	696	1940	126			
NGC Fossil fuels	MW	30117	8779	8901	5478	4793	1282	2896	447			
NGC Hydro power	MW	2341	5392	6144	2888	16197	1063	2478	196			
NGC Renewable ernergy sources	MW	2209	4855	1030	0	6094	0	753	152			
- of which wind	MW	2059	4081	1006	0	2899	0	3		134		
- of which solar	MW	1	155	0	0	0	0	507		636		
NGC Other sources	MW	0	0	0	0	0	0	85		984		
NGC Total	MW	34667	19026	17375	8366	36447	3041	8152	928	311		
Representativity of the values	%	100	97	100	100	100	100	100				

Overview ENTSO-E in figures 2011 - Electricity system data of member TSOs' countries

ES	FI	FR	GB ⁵	GR	HR	HU	IE	IS	IT	LT	LU	LV	ME	MK	NI ⁶	NL	NO
55050	22266	421118	64550	0	0	14743	0	0	0	0	0	0	0	0	0	3919	0
121327	24167	51505	237151	42431	5161	16755	20417	8	218457	2752	2318	2885	1446	4858	6636	93002	4776
32173	12279	50267	7484	4254	4583	215	679	12743	47202	1049	1127	2870	1186	1469	7	0	121383
55594	10989	20059	19104	3379	217	1786	4359	4402	25758	620	216	183	0	0	1063	12104	1257
41661	482	12075	19104	2594	182	601	4359	0	9776	472	64	72	0	0	1005	5096	1257
9597	0	2415	0	441	0	0	0	0	10670	0	8	0	0	0	0	0	0
341	692	0	0	0	0	0	177	0	0	0	0	219	0	0	18	0	0
264485	70393	542950	328289	50064	9961	33499	25632	17153	291417	4421	3661	6157	2632	6327	7724	109025	127416
		0.2000	020200			00.00			201111			0.0.				.00020	
254990	84244	479242	329115	52915	17498	40142	26122	17153	334640	10362	6558	7264	4183	8986	9009	117837	122020
-2,2	-0,1	-6,7	-2,0	-1,2	-0,6	3,0	-3,4	2,8	1,3	0,8	-2,0	-0,7	3,3	7,3	-1,9	1,2	-6,4
7525	2676	63130	10397	0	0	1892	0	0	0	0	0	0	0	0	0	504	0
43659	8978	27789	61984	9614	1787	6860	6132	52	76287	2544	499	859	220	1157	2335	20137	1166
19081	3157	25405	3876	3223	2110	50	508	1860	21737	876	1134	1556	660	503	4	38	30164
26639	2254	10138	3355	1936	118	695	1615	661	20419	252	91	30	0	0	419	2439	450
20729	197	6639	3355	1363	118	325	1615	0	6918	202	41	30	0	0	405	2340	450
4916	0	2228	0	439	0	0	0	0	12773	0	40	0	0	0	0	51	0
0	44	0	45	0	0	0	242	0	0	0	16	21	0	0	7	1012	0
96904	17109	126462	79657	14773	4015	9497	8497	2573	118443	3672	1740	2466	880	1660	2765	24130	31780
100	100	100	90	100	100	100	100	100	100	100	100	100	100	100	100	100	100

- The reported figures are best estimates based on actual measurements and extrapolations.
- Calculations of net generation and consumption based on the ENTSO-E database differ from the official values from the Swiss Federal Office of Energy.
- The reported figures are best estimates based on actual inquiries, measurements and extrapolations.
- Electricity generation and consumption also comprise shares of generation from industry's own power stations and feed-in from private generators (total of 12 monthly values). The part of net electricity generation relevant to primary control power amounts to 527,581 TWh.
- Yearly values with the country code GB represents the sum of England, Scotland and Wales.
- Yearly values with the country code NI represents the data GB Northern Ireland.
- Operational data
- Other renewable includes energy from biomass co-firing in conventional thermal units.
- Calculated sum of the ENTSO-E member TSO's countries.

Net electricity generation¹ and its structure

Overview generation mix as sum of the ENTSO-E member TSOs' countries

	GWh
Other renewable generation (wind, solar, geothermal, waste, bio fuels)	312917
Hydro generation (storage, run of river, pumped storage)	511852
Thermal nuclear	885586
Non-identifiable generation	11145
Fossil fuels (lignite and hard coal, gas,oil, mixed fuels, peat)	1625944

Share of energy produced of each member TSOs' country 2011 in % (Based on the net generation values as of the table on page 10 and 11)

¹ All values are calculated to represent 100% of the national values.

Other renewable generation ¹ including wind and solar power 2010 and 2011

Renewable generation except hydro of which wind and of which solar as sum of the ENTSO-E member TSOs' countries1

	year	GWh
Total other renewable generation except hydro	2009 2010 2011	219566 252990 312917
- of which wind	2009 2010 2011	120489 141521 175184
- of which solar ²	2009 2010 2011	21539 45649

Monthly overview of the total other renewable generation except hydro with the share of wind and solar as sum of the ENTSO-E member TSOs' countries¹

month	other renew except hydro	of which wind	of which solar	-	ther renew except hydro	of which wind	of which solar
	2010 GWh	2010 GWh	2010 GWh		2011 GWh	2011 GWh	2011 GWh
January	21096	12408	597		24314	14674	1124
February	21374	13079	846		25193	15465	1845
March	23875	14366	1522		26762	14855	3340
April	19249	9655	2112		25719	13214	4560
May	20297	10594	2291		26305	13225	5257
June	17129	7913	2482		23199	10835	5310
July	18408	8558	3057		23155	12231	4592
August	19198	9329	2656		23384	10569	5753
September	19301	10284	2220		24548	12411	5205
October	24091	14566	1927		28290	16418	4256
November	24599	15484	1039		25450	15205	2578
December	24373	15286	790		36598	26082	1829
Sum 2010	252990	141521	21539	Sum 2011	312917	175184	45649

¹ All values are calculated to represent 100% of the national values.

² Data collection from year 2010 onwards.

Development of net electrity generation ¹

From year 2009 on calculated statististical data of ENTSO-E as sum of the member TSOs' countries. All yearly data from 1975 to 2008 are statistical data from the ENTSO-E Regional Group Continental Europe (former UCTE).

	Hydro power	Thermal nuclear	Fossil fuels	Other sources ²	Total
Year	TWh	TWh	TWh	TWh	TWh
1975	222,9	50,0	585,4		858,3
1976	191,2	69,5	669,1		929,8
1977	276,2	82,2	610,4		968,8
1978	266,1	97,4	659,9		1023,4
1979	275,4	110,6	691,3		1077,3
1980	263,4	133,9	712,1		1109,4
1981	256,4	191,0	678,4		1125,8
1982	258,0	211,2	665,5		1134,7
1983	255,9	258,8	653,3		1168,0
1984	257,0	348,5	617,3		1222,8
1985	255,2	426,3	597,3		1278,8
1986	253,3	464,4	593,6		1311,3
1987	264,9	483,0	607,7		1442,1
1988	282,9	514,6	597,0		1483,5
1989	216,2	551,6	669,2		1528,7
1990	222,8	558,5	690,6		1565,9
1991	246,2	579,6	701,7		1625,0
1992	240,2	591,2	689,5		1618,0
1993	251,2	616,9	664,9		1630,0
1994	278,8	606,1	674,7		1657,5
1995 ³	265,8	627,7	732,8		1740,2
1996	284,6	657,2	770,1		1841,4
1997	272,0	665,2	792,1		1861,3
1998 4	284,4	689,5	1057,7		2172,3
1999	292,5	707,0	1035,9		2128,7
2000	305,1	733,8	1093,4		2246,4
2001	331,6	744,4	1129,8		2291,0
2002	276,1	757,6	1187,6		2303,8
2003 5	307,4	787,4	1305,7		2484,6
2004	319,8	798,6	1386,3		2525,2
2005	292,4	792,6	1349,1	98,2	2540,4
2006	305,4	801,9	1354,3	115,8	2584,9
2007 ⁶	294,2	759,4	1402,3	143,3	2607,1
2008	306,5	774,8	1384,1	170,0	2643,8
2009 7	540,2	877,0	1595,1	223,8	3236,2
2010	584,3	896,0	1650,1	261,3	3403,6
2011	511,0	885,6	1618,8	314,1	3347,4

¹ Values of detailed generation are national values; total net generation data are calculated to represent 100% of the national values.

² Before 2005, the information on other renewable energy sources was collected in a different manner. Some countries added them to fossil fuels, some considered them as the part of not represented in the figures (through the factor "representativity").

³ As of September 1995 total German values

⁴ Including values of CZ, HU, PL, SK as of 1998

⁵ Including values of RO, BG as of 2003

⁶ Including values of DK_W as of June 2007

All yearly data from 1975 to 2008 are statistical data from the ENTSO-E Regional Group Continental Europe (former UCTE). From year 2009 on calculated statististical data of the ENTSO-E member TSOs' countries.

Physical energy flows 2011 - graphical overview in GWh

Sum of physical energy flows between ENTSO-E countries = 370786 GWh²

Total physical energy flows = 411934 GWh²

¹ Consolidated yearly values might differ from detailed flow data from the ENTSO-E database due to ex-post consolidation taking into account national statistical resources.

² Calculation based on the detailed physical energy flows in the table on page 16 without exchanges ME-AL

7356 87 5 14000 1886 9 14000 1886 9 14000 1886 9 14000 1886 9 1431 - 20 12301 - 20 12301 - 20 12301 - 20 12301 - 20 12301 - 20 1331 - 20 1431 - 20 1531	DE DK EE BS 5357	6												
19922	5357		GB GR HR	HU E	п п	LV ME ² MK	N N N	NO PL PT	RS RS	SE SI	SK AL³ BY³ I	MA³ MD³ RUీ	TR⁰ UA³	-k ™ ⊗
104				- 1630 -	1072					- 2381				•
19922			3539			- 1821 -			316					
104		- 2329			1320		- 7010						•	
10055			- 2823			2918			. 568 2621				- 0/00	
19923	2762	- 1834			25612								•	
15923 - 14000 1886 - 1622 - 15301 - 1566 - 1622 - 15301 - 1566 - 1622 - 15301 - 1567 - 1622 - 15301 - 1567 - 1622 - 15301 - 1567 - 1530 - 1500 - 1500 - 1530 - 1500 - 1500 - 1530 - 1500 - 1500 - 1530 - 1500 - 1500 - 1530 - 1500 - 1500 - 1530 - 1500 - 1500 - 1530 - 1500 - 1500 - 1530 - 1500	9408							- 45		- 799	91			
1622	- 2906 -	- 139			5779		- 9589	- 5138 -	. 9	- 628				
697 - 7118 - 12301 - 2 697 - 0 - 1622 - 0 - 1 10 - 1533 - 0 - 1 1533 - 0 - 1 1445 - 0 - 1 1466 - 0 - 1 1476 - 0 - 1 1477 - 0 - 1 1478 - 0 - 1 1479 - 0 - 1 1470	2022						2414	41	280	- 40			•	
697		1657 -				2633						969		
697 - 7118 - 12201 - 1		- 2462						- 6885			4	. 605		
697 - 7118 - 12301 - 1622 - 16	- 480	1						76	40/	. 70				
1622		9	6151					· ·	}					
697		1360					302 208							
697		3 '			1021	107					. 2124		0	
697				-					90	4500			, ,	
10			0480	2					909 016	200				· ÷
10 431			010						040 040					=
10						7	243 -							
407 - 1533		- 932	- 276							8				
402 - 1533						443					747	155	•	
402													•	
. 407	- 26 -				- 2734 -								•	
									493		- n.a		•	
462			- 1489						59					
4521			- 0	733									•	
. 2158		- 2	2494 -				1551							
	- 3600 -	131 -					- 3360		6209	•			•	
402	433								2	278 - 3054	54 - 0		0 -	
. 2158 . 0	3928												•	
. 2158 0		•							- 2410			- 0 -		124
			1176	3 268 -		- 1595 1144			. 15 -		- 315 -		•	
204 	. 5141	- 2636					6718	18 1514 -						•
			3120		4786								•	
				- 8120 -				- 26					•	2127
						- n.a			- 209					
					- 2916 -			. 0 -					•	
	14												•	
									. 529 -				•	
	1011 - 10	- 29/0			- 2436 -	934	- 2	- 21					•	
			- 2590											
								- 29						
UA-W ³				- 3772 -					. 1494	•	8/		•	

¹ Detailed harmonized values from the ENTSO-E statistical database.
² The information about the physical energy flows between ME and AL are not available.
³ In synchroneous operation with ENTSO-E countries (not ENTSO-E members):
Albania (AL), Belarus (BY), Morocco (MA), Republic of Moldavia (MD), Russia (RU), Republic of Turkey (TR), Ukraine (UA) and Ukraine West (UA-W)

Development of overall cross-border exchanges of ENTSO-E member TSOs' countries since 1975

- ¹ External exchanges of the Nordic countries are reliable since 1990
- ² Reliable Baltic data is available since 1995
- ³ There were no exchanges between Republic of Ireland and Northern Ireland before 1995
- ⁴ External exchanges include Albania, Belarus, Moldavia, Morocco, Russia, Turkey, Ukraine and Ukraine-West since 2009
- ⁵ Sum of all cross-border exchanges 2011 without exchange data between Montenegro and Albania

	Date	Day	Time	MW	Date	Day	Time	MW
	Date	Бау	Tillie	10100	Date	Бау	111116	10101
AT	19 December	Monday	06:00 p.m.	9701	16 June	Thursday	06:00 a.m.	3794
BA	31 December	Saturday	06:00 p.m.	2150	22 July	Friday	04:00 a.m.	872
BE	31 January	Monday	07:00 p.m.	14081	22 May	Sunday	06:00 a.m.	6336
BG	01February	Tuesday	08:00 p.m.	6897	25 April	Monday	05:00 a.m.	2660
CH ²	01 February	Tuesday	11:00 a.m.	8083	01 August	Monday	08:00 a.m.	2865
CY	16 February	Wednesday	08:00 p.m.	780	20 April	Wednesday	04:00 a.m.	343
CZ	01 February	Thursday	11:00 a.m.	10210	24 July	Sunday	06:00 a.m.	4315
DE	07 December	Wednesday	06:00 p.m.	83990	13 June	Monday	04:00 a.m.	35597
DK	05 January	Wednesday	06:00 p.m.	6231	24 July	Sunday	06:00 a.m.	2177
Œ	23 February	Wednesday	09:00 a.m.	1510	24 June	Friday	04:00 a.m.	446
ES	24 January	Monday	07:00 p.m.	43596	24 April	Sunday	07:00 a.m.	17989
FI	18 February	Friday	09:00 a.m.	14965	26 June	Sunday	09:00 a.m.	5219
FR	04 January	Tuesday	07:00 p.m.	91720	07 August	Sunday	07:00 a.m.	31268
GB	06 January	Thursday	07:00 p.m.	57875	07 August	Sunday	07:00 a.m.	20001
GR	20 July	Wednesday	01:00 p.m.	9868	01 May	Sunday	06:00 a.m.	3356
HR	25 January	Tuesday	07:00 p.m.	2970	25 April	Monday	04:00 a.m.	1185
HU	24 November	Thursday	05:00 p.m.	5931	31 July	Sunday	06:00 a.m.	2630
IE	13 December	Tuesday	07:00 p.m.	4610	08 October	Saturday	06:00 a.m.	1586
IS	30 November	Wednesday	07:00 p.m.	2138	07 October	Friday	05:00 a.m.	1346
IT	13 July	Wednesday	12:00 a.m.	53668	24 April	Sunday	07:00 a.m.	20582
LT	25 February	Friday	09:00 a.m.	1734	26 June	Sunday	05:00 a.m.	703
LU	21 December	Wednesday	06:00 p.m.	1188	28 March	Monday	01:00 a.m.	148
LV	23 February	Wednesday	09:00 a.m.	1239	17 October	Monday	05:00 a.m.	141
ME	30 October	Sunday	03:00 a.m.	746	23 May	Monday	06:00 a.m.	305
MK	31 December	Saturday	03:00 p.m.	1642	26 June	Sunday	06:00 a.m.	540
NI	10 January	Monday	07:00 p.m.	1744	10 July	Sunday	07:00 a.m.	538
NL	13 December	Tuesday	06:00 p.m.	18049	12 June	Sunday	07:00 a.m.	8167
NO	21 February	Monday	09:00 a.m.	22129	24 July	Sunday	06:00 a.m.	8665
PL	22 December	Thursday	06:00 p.m.	22755	25 April	Monday	06:00 a.m.	9476
PT	24 January	Monday	09:00 p.m.	9192	24 April	Sunday	06:00 a.m.	3310
RO	03 February	Thursday	07:00 a.m.	8724	24 April	Sunday	03:00 p.m.	4086
RS	02 February	Wednesday	07:00 g.m.	7341	03 July	Sunday	06:00 a.m.	2436
SE	23 February	Wednesday	07:00 p.m.	26015	23 July	Saturday	07:00 a.m.	9261
SI	02 March	Wednesday	08:00 p.m.	1949	02 May	Monday	05:00 a.m.	784
SK	02 February	Wednesday	06:00 p.m.	4290	31 July	Sunday	06:00 a.m.	2213
	OZ 1 Obradry	VVCanocacy	00.00 p.iii.	1200	O i duiy	Canady	00.00 4.111.	
ENTSC								
	01 February	Tuesday	07:00 p.m.	532599	31 July	Sunday	07:00 a.m.	234658

All values are calculated to represent 100% of the national values.
 Lowest and highest physical hourly vertical load value of the Swiss transmission grid.
 Calculated as sum of the ENTSO-E member TSO's hourly load values.

Highest load on 3rd Wednesday in each country¹ Lowest load on 3rd Wednesday in each country¹

Country	MW	Date	Time	MW	Date	Time
AT	9442	21 December	06:00 p.m.	4580	17 August	04:00 a.m.
BA	1997	21 December	06:00 p.m.	949	15 June	04:00 a.m.
BE ²	13881	19 January	07:00 p.m.	7198	20 July	04:00 a.m.
BG	6395	16 February	08:00 p.m.	2861	21 September	03:00 a.m.
CH	10161	21 December	06:00 p.m.	4991	20 July	04:00 a.m.
CY	780	16 February	08:00 p.m.	343	20 April	01:00 a.m.
CZ	9672	16 February	04:00 p.m.	5520	17 August	05:00 a.m.
DE	80593	16 November	06:00 p.m.	43617	17 August	04:00 a.m.
DK	5897	19 January	06:00 p.m.	2423	20 July	05:00 a.m.
EE	1495	16 February	09:00 a.m.	520	20 July	04:00 a.m.
ES	40073	16 February	08:00 p.m.	21873	16 November	04:00 a.m.
FI	14272	16 February	07:00 a.m.	6749	20 July	04:00 a.m.
FR	82450	19 January	07:00 p.m.	35416	17 August	05:00 a.m.
GB	56621	19 January	07.00 p.m.	24101	15 June	06:00 a.m.
GR	9868	20 July	01:00 p.m.	3979	18 May	04:00 a.m.
HR	2874	21 December	06:00 p.m.	1443	18 May	03:00 a.m.
HU	5705	16 November	06:00 p.m.	3066	16 March	04:00 a.m.
IE	4528	19 January	07:00 p.m.	1880	20 July	07:00 a.m.
IS	2101	21 December	07:00 p.m.	1730	20 July	03:00 a.m.
IT	51050	21 December	06:00 p.m.	25013	17 August	05:00 a.m.
LT	1688	21 December	05:00 p.m.	810	15 June	04:00 a.m.
LU	1188	21 December	06:00 p.m.	563	17 August	05:00 a.m.
LV	1226	16 February	09:00 a.m.	449	15 June	04:00 a.m.
ME	648	21 December	07:00 p.m.	323	18 May	05:00 a.m.
MK	1486	21 December	03:00 p.m.	624	15 June	04:00 a.m.
NI	1681	19 January	07:00 p.m.	556	20 July	07:00 a.m.
NL	17346	16 November	06:00 p.m.	9308	20 April	04:00 a.m.
NO	21512	16 February	09:00 a.m.	8942	20 July	05:00 a.m.
PL	22697	21 December	06:00 p.m.	12696	20 July	05:00 a.m.
PT	8575	16 February	09:00 p.m.	4182	17 August	08:00 a.m.
RO	8447	16 February	07:00 p.m.	4942	15 June	03:00 a.m.
RS	6803	16 February	07:00 p.m.	2612	15 June	05:00 a.m.
SE	24238	16 February	07:00 p.m.	10016	20 July	06:00 a.m.
SI	1893	16 February	12:00 a.m.	1080	17 August	03:00 a.m.
SK	4126	16 February	10:00 a.m.	2492	17 August	03:00 a.m.
ENTSO-E ³	518949	19 January	07:00 p.m.	267285	17 August	04.00 a.m.

¹ All values are calculated to represent 100% of the national values.

² The reported figures are best estimated based on actual measurements.

³ Calculated load values as sum of the ENTSO-E member TSOs´ countries.

	NGC	Nuclear	NGC Nuclear NGC Fossil fuels	sil fuels	NGC F	1ydro power		NGC Renewable of which wind	of whicl	h wind	of whic	of which solar	NGC Other	ther	NGC	NGC Sum	Represen	esen-
	_	MW	MW	*	_	ММ	2	MW	M	>	Σ	MW	resources MW	s e o	Σ	MW	tativity %	2
Country	2011	2010	2011	2010	2011	2010	2011	2010	2011	2010	2011	2010	2011	2010	2011	2010	2011	2010
AT	0	0	7425	7389	12919	12665	1054	1031	1017	1002	0	0	0	0	21398	21085	100	100
ВА	0	0	1506	1506	1971	1971	0	0	0	0	0	0	0	0	3477	3477	100	100
BE	5926	5945	8539	8998	1420	1421	4142	2659	1056	888	1901	99/	0	0	20027	18693	100	100
BG	2080	2000	6400	6451	3150	3108	770	513	220	488	220	52	0	0	12400	12072	66	66
СН	3278	3253	388	384	13723	13522	208	355	42	18	11	71	202	213	18101	17727	100	100
СY	0	0	973	1385	0	0	102	82	102	82	0	0	0	0	1075	1467	100	100
CZ	3692	3666	10938	10892	2161	2203	2190	2177	219	218	1971	1959	0	0	18981	18938	100	100
DE	12048	20300	29699	00869	9209	10700	53532	47400	28254	26600	22306 1	0099	3263	4500	145019	152200	93	100
DΚ	0	0	7486	8867	9	o	3967	3802	3950	3802	17	0	44	269	11507	13375	100	100
Ш	0	0	2283	2324	4	4	254	156	184	156	0	0	0	0	2541	2484	100	100
ES	7525	7525	43659	40841	19081	19051	26639	24641	20729	19821	4916	4104	0	0	96904	92058	100	100
Ш	2676	2646	8978	9004	3157	3133	2254	2254	197	197	0	0	44	44	17109	17081	100	100
FR	63130	63130	27789	27403	25405	25418	10138	7559	6639	5603	2228	762	0	0	126462	123510	100	100
СВ	10397	10608	61984	62535	3876	3887	3322	2630	3322	2630	0	0	45	45	79657	79705	06	89
GR	0	0	9614	9396	3223	3215	1936	1322	1363	1039	439	153	0	0	14773	13933	100	100
H	0	0	1787	1781	2110	2113	118	116	118	79	0	0	0	0	4015	4010	100	100
H	1892	1892	0989	6181	20	90	695	630	325	240	0	0	0	0	9497	8753	100	100
Ш	0	0	6132	6219	208	208	1615	1615	1615	1615	0	0	242	208	8497	8550	100	100
S	0	0	52	121	1860	1883	661	275	0	0	0	0	0	0	2573	2579	100	100
<u>_</u>	0	0	76287	74976	21737	21521	20419	9992	6918	5814	12773	3470	0	0	118443	106489	100	100
5	0	0	2544	2539	876	875	252	193	202	161	0	0	0	0	3672	3607	100	66
ΓΩ	0	0	499	209	1134	1128	91	92	41	43	40	27	16	0	1740	1732	100	100
۲۸	0	0	829	848	1556	1555	30	29	30	37	0	0	51	0	2466	2462	100	100
ME	0	0	220	210	099	099	0	0	0	0	0	0	0	0	880	870	100	100
Y E	0	0	1157	1157	203	503	0	0	0	0	0	0	0	0	1660	1660	100	100
NIN NIN	0	0	2335	2317	4	4	419	358	405	346	0	0	7	14	2765	2693	100	100
J N	204	480	20137	22005	38	37	2439	2943	2340	2273	51	89	1012	0	24130	25465	100	100
9	0	0	1166	1166	30164	30164	450	450	420	450	0	0	0	0	31780	31780	100	100
PL	0	0	30117	29612	2341	2331	2209	1366	2059	1274	-	0	0	0	34667	33309	100	100
PT	0	0	8779	8547	5392	4988	4855	4370	4081	3705	155	122	0	0	19026	17905	100	26
RO	1300	1300	8901	9166	6144	2809	1030	501	1006	479	0	0	0	0	17375	17054	100	100
æ	0	0	5478	5475	2888	2884	0	0	0	0	0	0	0	0	8366	8329	100	100
띯	9363	9151	4793	2032	16197	16200	6094	5315	2899	2163	0	0	0	0	36447	35701	100	100
S	969	969	1282	1282	1063	1063	0	0	0	0	0	0	0	0	3041	3041	100	100
SK	1940	1820	2896	2614	2478	2478	753	143	က	က	202	82	82	725	8152	7780	100	100
ENTSOE 2 126447 134412	126447	34412	447210	448105	197012	197339	152917 125302	25302	90149	81226	47636 28209	8209	4984	6446	928624	911604		

¹ Percentage as referred to the total values of a country (The total values of a country are defined as the synchronously interconnected system plus the areas directly connected via AC or DC to the mainland system.).
² Calculated sum of ENTSO-E member TSOs countries

				Foss	Fossil fuels power units	nnits				Nuclear	Nuclear power units
		10 MW <	≤ x < 200 MW	200 MW	< < 400 MW	≥ 400 MW	MW (L	Total	То	Total
Country	Reported year	Number	MM	Number	MM	Number	MW	Number	MW	Number	WW
AT	2008	62	3146	80	2735	0	0	70	5881	0	0
BA	2011	9	810	က	969	0	0	6	1506	0	0
BE	2011	89	3704	12	3595	ဇ	1232	83	8531	7	5926
BG	2011	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	2080
CH	2011	42	462	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	2	3278
c۲ً	2011	31	973	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0	0
CZ 2	2010	n.a.	10661	0	0	- ;	460	n.a.	11121	9	3692
DE :	2011	320	20600	29	20300	61	38600	448	79500	o (12100
Z I	2011	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0 (0 (
Щ.	2011	18	2219	ο ;	0 0 1	0 0	0	18	2219	0 0	0 1
2 -	2011	770	6009	0 7	15949	3/	20480	308	42498	0 5	7573
_ 0	2010	183	9300	200	5768	- 23	363 12686	121	0450	t α	63130
GB 3	2011	50.	2094	24	7550	0 kg	52340	167	61984	25	10397
GR	2011	2 8	2360	- 67	5566	} 4	1688	44	9614	i c	0
H.	2011	16	837	5 4	950	. 0	0	50	1787	0	0
위	2011	61	3212	41	2984	-	425	92	6621	4	1892
Ш	2011	23	1672	80	2324	4	2136	35	6132	0	0
<u>S</u>	2011	7	36	0	0	0	0	7	36	0	0
_ _	2011	1490	18909	106	31630	38	22706	1634	73245	0	0
LT 4	2011	4	1409	4	1200	0	0	18	2609	0	0
	2010	0	0	_	385	0	0	_	385	0	0
	2010	∞	540	_	291	0	0	o	831	0	0
ME.	2007	_	190	0	0	0	0	_	190	0	0
ΣZ	2010	Ν,	301	4 -	856	0 1	0 0	ပ္ (1157	0 0	0 0
	2011	7 (938	4 6	906	- 5	40Z	· · ·	2320) -	0 0
ı C	2010	. c		0 4 6	, e c	- 4 - 6	12220 n a	 	2 0	- c	500
L 5	2011	n a	13330	57	14111	ĸ	2676	n a	30117	0	0
PT	2010	49	1991	16	4888) 4	1707	69	8586	0	0
RO	2011	81	5520	1	3148	0	0	92	8998	2	1300
RS	2011	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
SE	2011	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	9363
<u>s</u>	2007	7	276	_	312	_	672	4	1260	_	969
SK	2011	4	2420	_	288	0	0	42	2708	4	1940
ENTSO-E ⁶		2938	118748	463	134627	298	171000	3522	422940	130	126494

¹ The difference from 2010 depends on the explosion of the Vasilikos Power Station and the introduction of small Temporary generating units. ² Fossil fuels >= 5MW

³ > 400 MW: Mothballed and commissioning units are excluded.

⁴ 10 MW < x < 200 MW: Except for the generation of bio-power.

⁵ Units with the capacity <10MW are included too. No precise information about number of units with the capacity <50MW. ⁶ Calculated sum of fossil fuels except BG, DK, NO, RS and SE.

				- Inv	Inventory of hydro power units	dro power u	ınits				
		1 MW s	< 10 MW	10 MW < x	x < 50 MW	50 MW < x	< 100 MW	≥ 100 MW	MM	Total	tal
Country	Reported year	Number	MΜ	Number	MM	Number	ΜM	Number	MW	Number	MW
AT	2008	582	910	100	2496	19	1473	27	6918	728	11797
BA	2011	n.a.	n.a.	13	343	12	765	9	863	31	1971
BE	2011	17	59	7	194	0	0	9	1164	30	1417
BG 1	2011	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	3150
CH	2011	203	703	109	2804	43	2917	34	7530	389	13954
Ċ	2011	0	0	0	0	0	0	0	0	0	0
CZ	2010	n.a.	280	10	239	9	484	9	1100	n.a.	2103
DE ,	2000	234	868	78	1648	14	1026	15	4841	341	8413
_ - -	2011	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	10
EE	2011	0	0	0	0	0	0	0	0	0	0
ES	2011	520	1729	138	3135	43	2937	38	11055	739	18856
正	2010	94	351	65	2328	7	434	0	0	166	3113
FR	2011	550	1753	184	4462	38	2793	62	15955	834	24963
GB	2011	ო	23	26	287	6	727	12	2539	20	3876
GR	2011	96	174	2	84	2	120		2845	114	3223
HR	2011	12	52	23	605	9	453	80	978	49	2088
H	2011	10	47	0	0	0	0	0	0	10	47
Ш	2011	2	20	11	196	4	292	0	0	20	208
<u>S</u>	2011	7	50.9	15	484	7	652	9	069	43	1877
╘	2011	743	2329	237	5556	29	1964	42	11692	1051	21541
占	2011	4	œ	4	101	0	0	4	006	12	1009
LC C	2010	ო	20	-		_	_	~	1096	9	1128
<u>-</u>	2011	τ-	_	4	72	21	1455	0	0	26	1528
ME	2007	ო	∞	0	0	0	0	2	649	2	657
Σ¥	2010	12	15	ဇ	73	က	265	-	150	19	503
- Z	2011	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	4
٦	2011	က	12	2	56	n.a.	n.a.	n.a.	n.a.	2	38
o i	2011	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	30164
PL:	2011	75	153	21	504	2	293	∞	1256	109	2206
PT	2010	114	396	4	903	33	2199	œ	1395	159	4893
RO,	2011	193	696	102	2193	17	1175	တ	1670	321	2009
RS .	2011	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	2888
SE	2011	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	16197
S	2007	τ-	80	11	314	2	319	2	230	19	871
SK	2011	29	190	36	734	10	820	9	734	81	2478
ENTSO-E		3518³	11108 ³	1209 ³	30092 ³	338 ³	23564 ³	314 3	76250 ³	n.a.	193478 4
ď	Ī										

¹ Total hydro power units in MW as reported NGC hydro power as of 31 December 2011
² Additionally 134 MW in 865 Hydro power units with the capacity <1MW.
³ Calculated sum except BG, DK, NI, NO, RS and SE
⁴ Calculated sum with reported values of NGC hydro power as of 31 December 2011 from BG, DK, NI, NO, RS and SE

- 1 ENTSO-E Net generation, exchanges and consumption 2011
- 2 Yearly values/operation and physical exchanges
- 3 System information
- 4 Glossary of statistical terms

Yearly values operation and physical exchanges

Yearly values operation and physical exchanges per country for the years 2006, 2010 and 2011

Statistical database as of 31 August 2012

Page

Sum of ENTSO-E 1	31
Austria (AT)	34
Bosnia-Herzegovina (BA)	36
Bulgaria (BG)	38
Belgium ² (BE)	40
Switzerland (CH)	
Czech Republic (CZ)	44
Germany (DE)	46
Denmark (DK)	48
Estonia (EE)	50
Spain (ES)	52
Finland (FI)	54
France (FR)	56
Great Britain ³ (GB)	58
Greece (GR)	
Croatia (HR)	
Hungary (HU)	64
Ireland (IE)	66
Cyprus (CY)	
Iceland (IS)	
Italy (IT)	70
Lithuania (LT)	
Luxembourg (LU)	
Latvia (LV)	
Montenegro ⁴ (ME)	
FYROM 5 (MK)	
GB Northern Ireland ⁶ (NI)	
The Netherlands (NL)	
Norway (NO)	
Poland 7 (PL)	
Portugal (PT)	
Romania (RO)	
Serbia ⁴ (RS)	
Sweden (SE)	
Slovenia (SI)	98
Slovak Republic (SK)	100

¹ Yearly values operation are available from the year 2009 on. Exchanges with "Other" are inside and outside flows between the ENTSO-E member TSOs' countries and Albania (AL), Belarus (BY), Morocco (MA), Republic of Moldavia (MD), Russia (RU), Republic of Turkey (TR), Ukraine (UA) and Ukraine-West (UA-W). Detailed monthly information are available on the ENTSO-E website www.entsoe.eu/Resources/DataPortal.

² The reported figures are best estimates based on actual measurements and extrapolations.

³ Yearly values with the country code GB represents the sum of England, Scotland and Wales.

⁴ Yearly values before the year 2007 are data of the whole country Serbia&Montenegro (CS) and available on the ENTSO-E website www.entsoe.eu/Resources/DataPortal.

⁵ FYROM = Former Yugoslav Republic of Macedonia

⁶ Yearly values with the country code NI represents the data of the GB Northern Ireland.

⁷ Generation and load values are operational data.

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	n.a. 896053 885586
Fossil fuels net generation	GWh	Σ	2006 2010 2011	n.a. 1650129 1618830
Hydraulic net generation	GWh	Σ	2006 2010 2011	n.a. 584329 511029
Other renewable net generation	GWh	Σ	2006 2010 2011	n.a. 249443 302983
- of which wind	GWh	Σ	2006 2010 2011	n.a. 138298 165250
- of which solar	GWh	Σ	2006 2010 2011	n.a. 21539 45649
Non-identifiable net generation	GWh	Σ	2006 2010 2011	n.a. 11819 11145
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 ¹ 2011 ¹	n.a. 3403569 3347445
Sum of physical inside flows	GWh	Σ	2006 2010 2011	n.a. 372453 397956
Sum of physical outside flows	GWh	Σ	2006 2010 2011	n.a. 356422 384765
Total exchange balance	GWh	Σ	2006 2010 2011	n.a. 17000 8098
Consumption of pumps	GWh	Σ	2006 2010 2011	n.a. 44954 43225
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	n.a. 3375615 3311650
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 16.02.11	n.a. 398614 360976
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 19.01.11	n.a. 528684 496633
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 19.01.11	n.a. 555852 518954
Time of highest load on the 3 rd Wednesday		CET	15.12.10 19.01.11	n.a. 18:00 19:00

¹ Including deliveries from industry

					INSIDE	FLOW	S COUN	TRIES											
		Year	AT	ВА	BE	BG	СН	cz	DE	DK	EE	ES	FI	FR	GB	GR	HR	HU	IE
	AT	2006 2010 2011					7304 7915 7358	23 252 87	5842 6750 5357									465 1014 1630	
	ВА	2006 2010 2011															3647 4927 3539		
	BE	2006 2010 2011												1981 5402 2329					
	BG	2006 2010 2011														4468 3453 2823			
RIES	СН	2006 2010	82 53 104						2917 2581 2762					2156 5120		2020			
UNT	CZ	2011 2006 2010 2011	6139 6545 10055						12054 9400 9408					1834					
s co	DE	2006 2010 2011	14799 14705 15923				13694 14553 14000	647 564 1886	3400	3972 6471 2906				838 795 139					
LOW	DK	2006 2010 2011						1000	5855 2707 5055					100					
OUTSIDE FLOWS COUNTRIES	EE	2006 2010 2011							0000				7 1967 1657						
UTSI	ES	2006 2010 2011												1479 3512 2462					
0	FI	2006 2010 2011									7 246 480								
	FR	2006 2010 2011			10644 3048 7118		11322 9679 12301		16172 15126 20315			5910 1991 3993			10929 7136 6151				
	GB	2006 2010 2011												899 4109 1369					
	GR	2006 2010 2011				0 1 0													
	HR	2006 2010 2011		674 1109 1622														1 93 10	
	HU	2006 2010 2011	1062 641 697	1022													5561 3045 6169		
	IE	2006 2010 2011	551																
	IΤ	2006 2010 2011	3 2 10				422 493 431							726 1012 935		455 72 276			
	LT	2006 2010 2011																	
	LU	2006 2010 2011			2482 1847 1533				804 1361 1124										
	LV	2006 2010 2011									n.a. 38 26								
	ME	2006 2010 2011		628 407															
	MK	2006 2010 2011				0 0										1202 3857 1489			
	NI	2006 2010 2011													n.a. 0 0				n.a. 744 733
	NL	2006 2010 2011			5603 7392 4521				283 3072 3221						2494				
	NO	2006 2010 2011								1127 1458 3600			150 115 131						
	PL	2006 2010 2011						10181 5500 8253	722 167 433										
	PT	2006 2010 2011										3183 3190 3928							
	RO	2006 2010 2011				1138 1106 1445												1437 1252 867	
	RS	2006 2010 2011		2341 1319 2158		0 58 0											3005 1740 1176	53 544 268	
	SE	2006 2010 2011							1491 1007 2047	589 2656 5141			3676 2636 5936						
	SI	2006 2010 2011	1062 584 402														1036 2647 3120		
	SK	2006 2010 2011						612 366 228										8592 4934 8120	
	Other	2006 2010 2011				0 13 48					n.a. 1459 1011	27 33 14	15379 11636 10765			26 1141 2593		4851 2060 3772	
	Sum of inside flows	2006 2010 2011	23147 22530 27191	3015 3056 4187	18729 12287 13172	1138 1178 1493	32742 32640 34090	11463 6682 10454	46140 42171 49722	5688 10585 11647	n.a. 1743 1517	9120 5214 7935	15379 16354 18489	8079 19950 9068	n.a. 7136 8645	6151 8523 7181	13249 12359 14004	15399 9897 14667	n.a. 744 733

ІТ	LT	LU	LV	ME	MK	NI	NL	NO	PL	PT	RO	RS	SE	SI	SK	Other	Sum of outside flows
1415 1328 1072														833 2011 2381			15882 19270 17885
				1597 1821								1476 362 316					5123 6886 5676
		1697 1123 1320					5019 5318 7010										8697 11843 10659
					860 2953 2918						710 677 568	2837 1794 2621				0 401 3070	8875 9278 12000
23885 23176 25612									40						E057		29040 30930 30312
		5134					22336		42 136 45 2548				1944		5857 5498 7991		24092 21579 27499 65912
		5134 6159 5779					22336 8942 9589	2324	2548 5334 5138				2355 628 1743				65912 59878 55988 9922
			n.a.					4055 2414					0 2807			n.a.	11740 10276 n.a.
			2695 2633							8481 5667						285 696 1899	n.a. 4947 4986 11859
								84		6685			3767			3938 4509 0 0	11859 13117 13656 3858 5878
14891 11583								162 127					5470 4007			Ö	4614 69868 48563
14307						n.a. 2299											64185 n.a. 6408 3844
945 2299					12 8 107	1769	706									979 493	3844 1936 2801 3932
1701					107							31 14 96		6871 6480 4590		2124	7577 7696 6318
											29 146 340	1520 392 696		4590	0 56 5	13 426 111	8185 4706 8018
						n.a. 293 243					0.0						n.a. 293 243
														12 120 63			1618 1699 1715
			n.a. 234 443													n.a. 1951 902	n.a. 2185 1345
																	3286 3208 2657
	n.a. 3055 2734															n.a. 8 0	n.a. 3101 2760
												1450 493				305 n.a.	2383 n.a.
												0 0 59					1202 3857 1548
																	n.a. 744 733
								2347 1551					7667			0	5886 12811 11787
							1329 3360						3691 6509 1500 494		3374 1498	0 0	8944 6593 13600
													494 278		1498 3054	0 0 0	15777 7659 12018 3183
												3262				47	3183 3190 3928 5884 4707 4846
				511	2126 2309 1144						3 74 15	1968 2410				381 124 261 149	4707 4846 7789 6704 6671
				511 1595	1144			7178 7668	264 761 1514		15					315	13198
5389 7513								7668 6718	1514								14728 21356 7487 10744 8308
4786									4 83 26							1717 912	8308 10925 6295 10501
	n.a. 5122		n.a. 1044	225				215 209	1913 0		893 894	613 1047			94 290	2127	10501
46525 45899	5352 n.a. 8177	6831 7282	934 n.a. 3973	n.a. 2333	2998 5270	n.a. 2592	27355 15589	9801 14441	59 4771 6314	8481 5667	2023 1635 1791	9739 7027	16621 12010	7716 8611	9325 7342		
45899 47478	8177 8086	7282 7099	3973 4010	n.a.	5270 4169	2592 2012	15589 20665	11022	6314 6782	5667 6685	1791 2946	7027 6900	12010 14229	8611 7034	7342 11228		

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	0 0 0
Fossil fuels net generation	GWh	Σ	2006 2010 2011	22481 24638 23007
Hydraulic net generation	GWh	Σ	2006 2010 2011	34102 36496 33663
Other renewable net generation ¹	GWh	Σ	2006 2010 2011	n.a. n.a. n.a.
- of which wind ¹	GWh	Σ	2006 2010 2011	n.a. n.a. n.a.
- of which solar ¹	GWh	Σ	2006 2010 2011	n.a. n.a. n.a.
Non-identifiable net generation	GWh	Σ	2006 2010 2011	6407 9551 8730
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	62990 70685 65400
Sum of physical inside flows	GWh	Σ	2006 2010 2011	23147 22530 27191
Sum of physical outside flows	GWh	Σ	2006 2010 2011	15882 19270 17885
Total exchange balance	GWh	Σ	2006 2010 2011	6848 2203 8228
Consumption of pumps	GWh	Σ	2006 2010 2011	3338 4564 5061
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	66500 68324 68567
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 21.12.11	6638 7020 6413
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 21.12.11	8951 9217 9202
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 21.12.11	9222 9548 9442
Time of highest load on the 3 rd Wednesday		CET	20.12.06 15.12.10 21.12.11	18:00 18:00 18:00

 $^{^{\}mbox{\tiny 1}}$ Other renewable net generation is included in non-identifiable net generation.

Physical exchanges in interconnected operation 1

Sum_IF - Sum_OF	Balance	1497	1153	069	132	က	-227	-211	-180	838	1111	758	1701	7265	801	821	840	1202	-125	-/14	2/1-	-459 -288 -288	960	572	486	3260	634	944	1069	928	476	-16	430	477	747	226	1313	1748	9306
Sum_IF		2757	2355	2082	1590	1252	1414	1403	1223	1912	2273	1992	2894	23147	2448	2274	2333	2392	1458	1054	1503	1450	2019	2153	2293	22530	2475	2455	2544	2179	1829	1664	1924	1846	1939	2346	2782	3208	27191
SI→AT		222	158	128	12	9	25	73	99	82	112	46	139	1062	35	36	33	22	30	0	O	0 -	· (*)	72	303	584	169	27	82	33	9	13	က	7	18	18	7	15	402
IT→AT	(IF)	Ŋ	-	0	0	0	0	0	0	0	0	0	0	က	0	0	0	0	0 (> 0	> (N C	o C	0	0	7	0	0	0	0	-	0	0	0	∞	0	0	-	10
HU→AT	nside flows (I	196	138	123	106	112	62	12	181	28	39	9	53	1062	15	7	Ŋ	69	9 9	91	, D 2	- C	, G	149	205	641	158	54	75	29	113	103	4	1	7	4	23	36	269
DE→AT	Insi	1706	1531	1405	1050	638	836	868	843	1108	1449	1360	1912	14799	1663	1513	1675	1577	1000	L07	9003	ი ი ი	1178	1376	1467	14705	1589	1653	1644	1285	820	929	1037	1006	1012	1366	1685	1867	15923
CZ→AT		631	527	425	421	485	428	392	123	649	672	275	811	6139	735	718	620	069	367	323	929	202	767	555	315	6545	558	720	741	797	988	288	820	262	853	919	1066	1282	10055
CH→AT		0	0	-	-	11	0	28	20	12	-	2	က	85	0	0	0	-	- '	4 1	- 7	<u>-</u> «) (C	· -	က	53	-	-	Ø	2	က	-	20	23	41	0	-	4	104
Sum_ OF		1260	1202	1392	1458	1249	1641	1614	1403	1074	1162	1234	1193	15882	1647	1453	1493	1190	1583	1/68	0/07	1740	1723	1581	1807	19270	1841	1511	1475	1251	1353	1680	1494	1369	1192	1790	1469	1460	17885
Sum_ OF - AT→SI														_												_	28 1841												_
_	OF)	10	41	25	139	98	86	108	96	99	06	52	20	833	127	146	104	80	111	204	337	0/1	364	130	2	2011		111	111	127	274	220	344	185	163	242	327	249	2381 1
- AT → SI	ide flows (OF)	10	89 14	112 25	113 139	140 86	113 98	131 108	137 96	114 65	133 90	124 52	134 50	1415 833 1	106 127	102 146	119 104	112 80	125 111	119 204	127 337	104 233	91 364	118 130	112 5	1328 2011 1	28	78 111	102 111	82 127	93 274	109 220	108 344	1 185	68 163	112 242	118 327	104 249	1072 2381 1
AT→SI	Outside flows (OF)	2 75 10	3 89 14	11 112 25	43 113 139	25 140 86	, 49 113 98	37 131 108	26 137 96	51 114 65	, 47 133 90	125 124 52	134 50	465 1415 833 1	31 106 127	35 102 146	36 119 104	42 112 80	83 125 111	115 119 204	150 121 337	140 104 233	113 91 364	37 118 130	13 112 5	1014 1328 2011 1	97 28	53 78 111	. 41 102 111	48 82 127	93 274	7 67 109 220	221 108 344	. 228 1 185	321 68 163	178 112 242	191 118 327	186 104 249	, 1630 1072 2381 1
AT→SI AT→IT	S	2 75 10	3 89 14	11 112 25	548 43 113 139	622 25 140 86	687 49 113 98	823 37 131 108	26 137 96	358 51 114 65	277 47 133 90	322 125 124 52	188 46 134 50	5842 465 1415 833 1	510 31 106 127	419 35 102 146	415 36 119 104	249 42 112 80	596 83 125 111	804 115 119 204	344 201 127 337	617 140 104 233	539 113 91 364	562 37 118 130	793 13 112 5	6750 1014 1328 2011 1	28 97 28	442 53 78 111	447 41 102 111	386 48 82 127	549 68 93 274	647 67 109 220	382 221 108 344	514 228 1 185	358 321 68 163	509 178 112 242	113 191 118 327	222 186 104 249	5357 1630 1072 2381 1
AT→IT AT→HU AT→DE	S	0 419 2 75 10	4 405 3 89 14	7 541 11 112 25	2 548 43 113 139	2 622 25 140 86	0 687 49 113 98	4 823 37 131 108	3 652 26 137 96	0 358 51 114 65	0 277 47 133 90	1 322 125 124 52	0 188 46 134 50	23 5842 465 1415 833 1	12 510 31 106 127	4 419 35 102 146	5 415 36 119 104	4 249 42 112 80	54 596 83 125 111	40 804 115 119 204	75 75 107 107 200 20	27 702 108 93 170	1 539 113 91 364	10 562 37 118 130	67 793 13 112 5	252 6750 1014 1328 2011 1	788 28 97 28	0 442 53 78 111	3 447 41 102 111	12 386 48 82 127	12 549 68 93 274	20 647 67 109 220	9 382 221 108 344	5 514 228 1 185	7 358 321 68 163	4 509 178 112 242	0 113 191 118 327	0 222 186 104 249	87 5357 1630 1072 2381 1

'These physical energy flows were measured on the tie lines (\$110 KV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values / Operation".

Bosnia-Herzegovina

Yearly values / Operation

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	0 0 0
Fossil fuels net generation	GWh	Σ	2006 2010 2011	7452 7684 9404
Hydraulic net generation	GWh	Σ	2006 2010 2011	5857 7870 4290
Other renewable net generation ¹	GWh	Σ	2006 2010 2011	0 0 0
- of which wind ¹	GWh	Σ	2006 2010 2011	0 0 0
- of which solar '	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	13309 15554 13694
Sum of physical inside flows	GWh	Σ	2006 2010 2011	3015 3056 3780
Sum of physical outside flows	GWh	Σ	2006 2010 2011	5123 6886 3855
Total exchange balance	GWh	Σ	2006 2010 2011	-2200 -3827 -1487
Consumption of pumps	GWh	Σ	2006 2010 2011	0 2 21
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	11109 11725 12186
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.02.06 15.12.10 21.12.11	1162 1220 1205
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 21.12.11	1644 1812 1797
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 21.12.11	1826 2051 1997
Time of highest load on the 3 rd Wednesday		CET	20.12.06 15.12.10 21.12.11	18:00 18:00 18:00

Sum_IF - Sum_OF	Balance	-343	-196	-254	-344	-198	-51	-200	-168	-123	-123	-113	2	-2108	-583	-525	-593	-341	-510	761-	8 8	S C-	-138	-365	-678	-3830	-451	-184	-319	-29	-123	-116	-123	-28	18	-140	-	9	-1489
Sum_IF		168	203	144	151	259	329	255	261	246	310	305	384	3015	172	151	143	188	146	260	395	274 0.378	338	259	221	3056	237	285	293	389	345	284	286	354	414	569	470	561	4187
RS→BA	(IF)														59	24	32	64	55	114	747	213	197	92	45	1319	100	142	177	243	207	193	167	174	253	139	182	181	2158
ME→BA	Inside flows														46	44	20	22	52	68 68 68	333	2 %	9 4	78 4	86	628	61	43	42	29	74	46	59	o	10	18	ო	2	407
HR→BA	드	62	9/	64	64	51	65	22	41	46	28	23	69	674	26	23	61	29	69	79	300	121	66	88	78	1109	9/	100	74	79	64	45	06	171	151	112	285	375	1622
HR→CS		106	127	80	87	208	264	230	220	200	252	252	315	2341																									
Sum_ OF		511	399	398	495	457	380	455	429	369	433	418	379	5123	755	929	736	529	656	45/	309	380	476	624	899	9889	688	469	612	448	468	400	409	412	396	409	469	496	9299
BA→RS	(OF)														71	30	38	50	54	<u> </u>	<u> </u>	۰ 5	1 4	32	69	362	28	19	7		∞	Ξ	15	31	21	59	49	91	316
BA→ME	Outside flows ((258	181	178	61	47	//	155	139	29	70	132	1597	156	149	133	99	43	54	122	206	168	134	277	313	1821
BA→HR	Out	352	298	391	395	352	320	361	259	506	242	234	237	3647	426	465	520	448	528	3/3	707	000	400	522	869	4927	504	301	472	375	417	335	272	175	207	246	143	95	3539
		69		7	0	2	00	4	0	33	91	34	2	9,																									
BA→CS		15	101		10	7	U	O,	17	7	÷	₩	17	147																									

. These physical energy flows were measured on the cross-frontier transmission lines (≥110 kV). These values may differ from the official statistics and the total physical balance in the table "Monthly values / Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	44315 45729 45943
Fossil fuels net generation	GWh	Σ	2006 2010 2011	32567 36770 28996
Hydraulic net generation	GWh	Σ	2006 2010 2011	1613 1646 1410
Other renewable net generation	GWh	Σ	2006 2010 2011	3400 7286 9279
- of which wind	GWh	Σ	2006 2010 2011	359 1286 2307
- of which solar	GWh	Σ	2006 2010 2011	n.a. 556 1493
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 ¹ 2010 ¹ 2011 ¹	81895 91431 85628
Sum of physical inside flows	GWh	Σ	2006 2010 2011	18729 12395 13189
Sum of physical outside flows	GWh	Σ	2006 2010 2011	8697 11844 10652
Total exchange balance	GWh	Σ	2006 2010 2011	10157 551 2537
Consumption of pumps	GWh	Σ	2006 2010 2011	1690 1786 1629
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	90362 90196 86536
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.02.06 15.12.10 19.01.11	10350 11066 10174
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.02.06 15.12.10 19.01.11	12770 13390 13246
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 19.01.11	13385 14039 13881
Time of highest load on the 3 rd Wednesday		CET	20.12.06 15.12.10 19.01.11	18:00 19:00 19:00

Physical exchanges in interconnected operation 1

Sum_IF - Sum_OF	Balance	875	655	1147	1090	1040	704	603	629	808	655	1009	292	10032	206	-40	-120	-20	-314	117	-339	-533	-26	163	324	1076	444	812	735	298	177	-145	95	-249	-481	-168	182	318	442	2513
Sum_IF		1406	1375	1767	1652	1660	1659	1635	1654	1745	1368	1463	1345	18729	1218	206	920	751	843	1052	780	813	968	1320	1204	1583	12287	1361	1147	1419	1018	966	1291	1100	851	874	918	1045	1152	2/181
- NL→BE	flows (IF)	888	1118	1275	419	323	190	137	9	75	120	303	749	2603	947	029	623	456	286	326	246	183	392	1067	828	1068	7392	529	425	484	235	118	82	144	181	243	673	629	735	45Z1
LU→BE	Inside	222	130	227	201	223	239	226	192	202	186	508	226	2482	160	153	157	142	102	160	154	152	145	173	154	195	1847	169	157	166	155	154	171	144	4	0	36	186	181	1533
FR→BE _		296	127	265	1032	1114	1230	1272	1456	1468	1062	952	370	10644	111	84	140	153	155	266	380	478	329	8	222	320	3048	633	292	692	628	724	1035	812	959	631	209	220	236	811/
Sum_ OF		531	720	620	295	620	955	1032	975	937	713	454	278	8697	1012	947	1040	821	1157	935	1119	1346	922	1157	880	202	11843	549	412	621	841	1141	1199	1349	1332	1042	736	727	710	6590 L
– BE → NL	flows (OF)	64	59	27	412	443	771	801	860	230	521	222	79	2019	111	258	326	264	428	745	841	1168	571	200	282	124	5318	292	212	401	286	878	1011	1109	1110	804	240	187	180	ו טרט/
BE→LU	Outside 1	147	127	147	139	162	161	179	82	132	146	143	129	1697	96	88	104	108	133	73	100	25	103	108	66	29	1123	112	101	100	66	124	123	138	11	157	107	6/	69	1320
BE→FR		320	564	446	Ξ	15	23	52	30	15	46	89	370	1981	802	601	610	449	969	117	178	126	248	849	499	324	5402	145	66	120	156	139	65	102	11	81	389	461	461	2329
MM_YY		1.06	90'11	90'111	IV.06	V.06	VI.06	VII.06	VIII.06	90.XI	90.X	90.IX	XII.06	2006	1.10	11.10	111.10	IV.10	V.10	VI.10	VII.10	VIII.10	IX.10	X.10	XI.10	XII.10	2010	1.1	11.11	II.11	IV.11	V.11	VI.11	VII.11	VIII.11	× :	×.11	X.X.	XII.11	L LOZ

¹ These physical energy flows were measured on the tie lines (≥110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values / Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	18957 14181 15172
Fossil fuels net generation	GWh	Σ	2006 2010 2011	20480 21084 25889
Hydraulic net generation	GWh	Σ	2006 2010 2011	4497 5431 3542
Other renewable net generation	GWh	Σ	2006 2010 2011	0 331 540
- of which wind	GWh	Σ	2006 2010 2011	0 331 540
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	43934 41027 45143
Sum of physical inside flows	GWh	Σ	2006 2010 2011	1138 1178 1493
Sum of physical outside flows	GWh	Σ	2006 2010 2011	8875 9278 12000
Total exchange balance	GWh	Σ	2006 2010 2011	-7806 -8517 -10726
Consumption of pumps	GWh	Σ	2006 2010 2011	456 973 1184
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	35672 31537 33233
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.02.06 15.12.10 16.02.11	5004 4399 4407
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.02.06 20.01.10 16.02.11	6041 6076 5903
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 16.02.11	6340 6640 6395
Time of highest load on the 3 rd Wednesday		CET	20.12.06 15.12.10 16.02.11	20:00 19:00 20:00

Sum_IF - Sum_OF	Balance	-801	-812	-798	-719	-487	069-	-618	-725	-593	-482	666-	-613	-7737	-316	-494	-487	-386	-353	-916	-1141	-1031	-/38	-462	-8/3	-8100	-725	-804	-692	-877	-920	-915	-1213	-903	- 745	-831	606-	-10507	
Sum_IF		74	22	65	13	41	70	82	141	74	82	248	187	1138	180	98	83	06	92	N	53	115	134	239	8 7	1178	134	158	191	83	80	Ξ	20	7 00	171	181	153	1493	
_ TR→BG		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (O (O	<u> </u>	7 -	- 21	-	0	0	0	Ø	-	<u> </u>	4 0	o c	0 0	0	48	
RS→BG	(IF)														2	0	က	17	33	0	0 (o (0 0	> (>	28	0	0	0	0	0	0	0 0	> C	o c	0	0	0	
RO→BG	side flows	74	22	92	13	41	2	82	141	74	82	248	187	1138	175	82	8	73	62	0	g ;	115	134	N 23	६ ६	1106	133	158	191	83	28	9	20	8 8	17.	18	153	1445	
MK→BG	lns	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (> 0	0 0	> 0	> C	o o	0	0	0	0	0	0	0 0	> C	o c	0	0	0	
GR→BG		0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0 (o (o (o (> C	-	0	0	0	0	0	0	0 0	> <	0 0	0	0	0	
CS→BG		0	0	0	0	0	0	0	0	0	0	0	0	0																									
Sum_ OF		875	867	863	732	528	260	703	998	299	292	647	800	8875	496	280	220	476	448	918	1164	1146	872	10/	1969	9278	859	962	883	096	1000	926	1263	1087	916	1012	1062	12000	
BG → TR		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	<u> </u>	<u> </u>	0 0	502	401	191	223	197	204	219	121	419	700	1 000	255	255	3070	
BG→RS	s (OF)														87	124	71	37	24	148	226	233	1/4	193	220	1794	189	222	192	261	244	219	191	104 205	175	243	276	2621	
BG→RO	ide flows	32	40	20	99	22	82	84	102	151	56	7	0 !	210	12	27	22	52	118	167	6	7 2	5 5	7.7	3 2 2 3	677	16	4	10	23	155	108	2 9	9 7	7 +	22	15	268	
BG→MK	Outside	78	73	89	92	46	92	69	78	72	71	72	92	860	183	202	198	171	139	258	387	412	314	216	242 200	2953	233	253	244	245	219	224	281	057	190	267	278	2918	
BG→GR		427	422	423	370	202	403	392	406	344	318	320	411	4468	214	227	279	243	167	345	458	480	353	220	245	3453	230	250	240	227	163	224	302	202	186	225	238	2823	
BG→CS		338	332	302	231	225	183	158	280	100	152	223	313	2837																									
	П	90:1	90'11	90'11	V.06	V.06	90.17	90'11	90'11	90.X	90'X	WI.06	90'11	5006	1.10	01.1	1.10	V.10	V.10	1.10	9 9	01.1	0	01.7	0 0	2010	111	1.1	11	V.11	V.11	11	<u> </u>	 _		11	=	2011	

'These physical energy flows were measured on the tie lines (\geq 110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values / Operation".

Switzerland

Yearly values / Operation

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	26244 25205 25560
Fossil fuels net generation	GWh	Σ	2006 2010 2011	2282 2208 2107
Hydraulic net generation	GWh	Σ	2006 2010 2011	32558 37450 33795
Other renewable net generation	GWh	Σ	2006 2010 2011	1059 1389 1419
- of which wind	GWh	Σ	2006 2010 2011	6 24 60
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 ¹ 2010 ¹ 2011 ¹	62143 66252 62881
Sum of physical inside flows	GWh	Σ	2006 2010 2011	32742 32640 34090
Sum of physical outside flows	GWh	Σ	2006 2010 2011	29040 30930 30312
Total exchange balance	GWh	Σ	2006 2010 2011	3800 1951 4024
Consumption of pumps	GWh	Σ	2006 2010 2011	2720 2494 2466
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 ² 2010 ² 2011 ²	63223 65709 64439
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.03.06 15.12.10 21.12.11	7717 8381 7432
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 21.01.11	10049 10532 9910
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.02.06 15.12.10 21.01.11	10218 10835 10161
Time of highest load on the 3 rd Wednesday		CET	15.02.06 15.12.10 21.01.11	10:00 18:00 18:00

 $^{^{2}}$ Calculations based on the ENTSO-E database differ from the official values of the Swiss Federal Office of Energy.

Physical exchanges in interconnected operation 1

Sum_IF - Sum_OF	Balance	1709	1258	1220	353	-672	-172	-1174	124	-486	0	609	933	2010	886	888	1057	514	-565	-885	-1400	-356	186	139	619	627	1710	1011	1041	1272	342	-137	-104	-875	212	-523	17	614	806	3778
Sum_IF		3326	2966	3090	2725	1875	2303	1763	2220	2262	3019	3343	3850	7 17	3314	3274	3656	2931	1985	1785	1910	2040	2569	3009	3086	3081	32640	3602	3667	3663	2703	2114	2213	2070	2107	1775	2971	3477	3728	34090
IT→CH	(IF)	149	129	86	0	7	2	59	2	-	2	_	- 5	1 1	25	27	45	44	09	65	27	ത	17	16	27	104	493	40	18	92	46	33	85	21	36	52	13	4	Ξ	431
FR→CH	side flows	784	627	870	1151	096	642	525	1031	896	1192	1355	1217	77	745	840	1084	924	672	748	641	786	783	828	905	969	6296	1037	1068	1173	1113	980	867	947	842	883	983	1164	1244	12301
DE→CH	ln	1639	1523	1426	961	539	962	869	869	807	1207	1377	1857	2	1656	1660	1713	1260	639	486	781	795	1146	1520	1433	1464	14553	1640	1754	1627	948	744	647	672	793	265	1230	1579	1774	14000
AT→CH		754	687	969	613	374	694	511	489	486	615	610	775		861	747	814	703	614	486	461	450	623	615	724	817	7915	885	827	771	296	357	617	430	436	275	745	720	669	7358
Sum_ OF		1617	1708	1870	2372	2547	2475	2937	2096	2748	3019	2734	2917	000	2428	2386	2599	2417	2550	2670	3310	2396	2383	2870	2467	2454	30930	2591	2626	2391	2361	2251	2317	2945	1895	2298	2954	2863	2820	30312
CH → IT	(OF)	1058	1089	1412	2164	2062	2179	2118	1756	2230	2738	2472	2607	0 1	1686	1903	2185	2126	2003	1953	2503	1730	1784	2043	1817	1443	23176	2058	2328	2108	2053	1800	1897	2343	1527	1690	2686	2563	2559	25612
CH→FR	Outside flows	439	209	365	2	36	62	271	58	100	72	22	214	2 1	652	426	324	147	276	165	362	246	377	269	543	902	5120	461	242	153	15	56	74	28	115	216	129	167	158	1834
CH→DE	Outs	120	110	92	202	438	234	520	292	406	208	202	93		06	22	06	143	270	248	428	406	216	124	106	103	2581	71	22	128	288	422	345	504	230	351	137	132	66	2762
CH→AT		C	0	· -	-	11	0	28	20	12	-	2	ო გ	5 '	0	0	0	-	-	4	17	4	9	9	-	က	23	-	-	Ŋ	2	က	-	20	83	41	0	-	4	104
MM_YY		901	90:11	90:111	IV.06	V.06	VI.06	VII.06	VIII.06	90:XI	90.X	90:IX	XII.06	00 .	1.10	11.10	01:11	IV.10	V.10	VI.10	VII.10	VIII.10	IX.10	X.10	XI.10	XII.10	2010	11.	11.1	II.11	IV.11	V.11	VI.11	VII.11	VIII.11	X.11	X.11	X.1.	XII.11	2011

'These physical energy flows were measured on the tie lines (±110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values / Operation".

Czech Republic

Yearly values / Operation

GWh	Σ	2006 2010 2011	24499 26441 26709
GWh	Σ	2006 2010 2011	49972 48713 48998
GWh	Σ	2006 2010 2011	3244 3380 2821
GWh	Σ	2006 2010 2011	175 948 2500
GWh	Σ	2006 2010 2011	49 334 384
GWh	Σ	2006 2010 2011	n.a. 604 2115
GWh	Σ	2006 2010 2011	0 0 0
GWh	Σ	2006 ¹ 2010 ¹ 2011 ¹	77890 79482 81028
GWh	Σ	2006 2010 2011	11463 6682 10454
GWh	Σ	2006 2010 2011	24092 21579 27499
GWh	Σ	2006 2010 2011	-12632 -14949 -17044
GWh	Σ	2006 2010 2011	950 797 944
GWh	Σ	2006 2010 2011	64308 63736 63040
MW	max.	18.01.06 15.12.10 16.02.11	8353 7989 7524
MW	max.	18.01.06 15.12.10 16.02.11	9722 9944 9560
MW	max.	18.01.06 15.12.10 16.02.11	10095 10307 9672
	CET	18.01.06 15.12.10 16.02.11	17:00 17:00 16:00
	GWh GWh GWh GWh GWh GWh GWh GWh MWW	$\begin{array}{c cccc} GWh & \Sigma \\ GWh $	GWh Σ 2010 2011 GWh Σ 2006 GWh Σ 2010 2011 GWh

Sum_IF - Sum_OF	Balance	-761	-778	996-	- 480	-104/	1124	1290	-1149	-1076	-1067	-1281	-12629	-1521	-1338	-1596	-1442	-726	-910	-1680	886-	1260	1100	006-	-14897	-1540	-1270	-1432	-1379	-1553	-1246	-1038	-1290	1250	00/1	-1555	-17045	:
Sum_IF		1392	1209	1131	788	863	000 000	200	71.0	266	1179	1273	11463	298	889	549	491	489	376	501	449 004	0.47	0 00	641	6682	534	717	813	269	290	532	1107	921	800	- C	1584	10454	=
SK→CZ	(IF)	107	69	97	ည ဇ	80	4 c	0 C	† «	000	1 4	25	612	24	9	16	19	78	34	- 6	N C	9 1	- 2	149	366	73	19	49	32	56	21	ဖ (O 7		- <	> 0	220	<u>-</u>
PL→CZ	side flows	1174	1043	1025	831	/87	986	220	900 900	866	1043	1043	10181	521	643	511	451	360	260	442	322	410	220	406	5500	440	582	869	280	514	473	998	821	770	7 7 7	1000	8253	
DE→CZ	ln	111	63	N T	- ‹	0 0	O 7	– ц) [67	121	202	647	41	32	17	17	47	42	23	χ ί	1 ე	γ α	5 6	564	9	116	63	73	38	18	226	6 6	122	5 6	73 L	1886	
AT→CZ		0	4	~ 0	N	N C	> -	4 C	o C	0 0	· -	0	23	12	4	2	4	24	40	က (/ 7 0	. K	- 5	67	252	15	0	က	12	12	50	တ ၊	ე 1	~ <	† <	o c	24	;
Sum_ OF		2153	1987	2097	7871	1910	1/2/	1 267	1861	2068	2246	2554	24092	2119	2026	2145	1933	1215	1286	2181	1387	1/50	1703	1563	21579	2074	1987	2245	2076	2143	1778	2145	2211	2020	1970	20/2	27499	= : :
CZ→SK	s (OF)	495	445	371	787	316	317	408 707	457	627	743	794	2857	409	475	421	457	346	306	861	1 43 L	196	200	136	5498	197	442	466	434	451	430	879	984	0000	920	1101	7991	- : :
CZ→PL	side flow	0	0		- 0	∞ α	φ	5 5	<u> </u>	- 0	· —	0	45	4	7	4	က	9	52	∞ ;	4 6	8 ;	- - ư) 1	136	10	9	2	9	9	9	- (ကျ	N C	> <	> C	45	!
CZ→DE	Out	1027	1015	1300	1083	1101	4001	1080	255	692	927	949	12054	971	831	1100	783	484	632	889	200	7,00	27 K	1098	9400	1309	819	1033	839	800	754	415	429 6 1	710	200	60 C	9408	
CZ→AT		631	527	452	124	4 6 6 6	87,6	285	640	672	575	811	6139	735	718	620	069	367	323	624	282	446 767	7 7 7	315	6545	258	720	741	797	886	288	820	68.	823	9901	1000	10055	
MM_YY		1.06	11.06	90.111	00.VI	V.06	VI.06	VII.06	90 X	90:X	XI.06	XII.06	2006	1.10	II.10	111.10	N.10	V.10	VI.10	VII.10	VII.10	× ×	X X	X X	2010	111	11.11	11.11	IV.11	V.11	VI.11	VII.11	VIII.11	 ; >	< >	- - -	2011	-

'These physical energy flows were measured on the tie lines (±110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values / Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	158725 133373 101458
Fossil fuels net generation	GWh	Σ	2006 2010 2011	359126 344278 350456
Hydraulic net generation	GWh	Σ	2006 2010 2011	23997 21698 19853
Other renewable net generation	GWh	Σ	2006 2010 2011	45964 73801 86123
- of which wind	GWh	Σ	2006 2010 2011	32295 36665 44641
- of which solar	GWh	Σ	2006 2010 2011	n.a. 10874 18341
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 ¹ 2010 ¹ 2011 ¹	587812 573150 557890
Sum of physical inside flows	GWh	Σ	2006 2010 2011	46140 42171 49722
Sum of physical outside flows	GWh	Σ	2006 2010 2011	65912 59878 55988
Total exchange balance	GWh	Σ	2006 2010 2011	-19771 -17707 -6276
Consumption of pumps	GWh	Σ	2006 2010 2011	8963 8021 7347
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	559078 547422 544267
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 16.11.11	59000 65661 54573
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 19.01.11	78574 80694 78280
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.02.06 15.12.10 16.11.11	80750 83090 80593
Time of highest load on the 3 rd Wednesday		CET	15.02.06 15.12.10 16.11.11	19:00 18:00 18:00

Sum_IF - Sum_OF	alance	3429	3388	3494	1369	74	-459	277	493	-407	1817	2176	-4396	2//6	3564	3099	2438	2468	-738	1370	52.	-649	1600	1979	3526	707	2792	3223	2079	0 0 -	2237	1854	1028	982	621	996-	1258	2580	9929
5um_61	Ğ																									_													_
Sum_IF		3472	3165	3341	3300	4310	4174	4495	4574	3833	3807	3899	3170	40140	2711	2683	3619	2926	3285	4722	4190	3673	3369	3309	2937	42171	3741	2942	3780	4189	4979	5049	4778	4396	3877	3799	4122	4070	49722
SE→DE		233	272	131	74	112	9/	187	= :	20	21	146	178	2	-	0	-	35	230	520	200	41	97	79	S	1001	18	14	53	22	83	256	303	293	227	165	330	367	2047
PL→DE		6	7	13	94	44	212	102	133	77	30		0 8	77)	က	0	0	0	10	45	ი ჯ	19	-	16	49	167	71	14	72	27	121	11	4	16	22	9	က	0	433
NL→DE		0	0	0	0	-	ω	32	214	72	0	0	- 8	783	239	247	222	114	209	19	8 8	327	481	210	20	3072	Ξ	61	98	228	542	250	309	424	396	321	427	166	3221
LU→DE													67																										
FR→DE	vs (IF)				_					_		_	1077			_			_						_					_	٠.					_	_		
DK_E→DE	ide flov												205				_	_		_	- 0	1 —		_		12	_	_	_	_	CV 1	N	ζĄ	_	_	_	_	_	8
DK_W → DE	lus												412																										
DK→DE													•	•	205	115	47	232	411	240	474 168	178	368	257	62	707	26	123	140	457	241	519	540	474	540	524	374	726	355
CZ→DE		127	115	300	983	101	904	060	35	24	69	327	949				_									_	_	_		_	_			_			_		
CH→DE													93																										
AT→DE													188																										
		4	4	S	Ŋ	9	9	σ	9	ကျ	α	က	_ ($^{\circ}$	S	4										_	\sim	4	4							S	_	C/I	က
:				_	_					_		_		<u>د</u>			_		ιι) 	ω ι	-			_	_	9			_	_		_	-				_	_	2
Sum_OF			_		_	-				_	_		7566			-	_	_		-			_						_	_	01.		_	_			_	_	_
Sum_OF DE⇒SE		6901	6564	6835	5269	4236	4603	3918	4081	4240	5624	6075		71600	6275	5782	6057	5394	4023	3352	3732	4322	4969	5288	6463	59878	6533	6165	5859	4279	2742	3195	3750	3414	3256	4765	5380	0999	22988
		23 6901	25 6564	147 6835	258 5269	147 4236	241 4603	136 3918	339 4081	216 4240	186 5624	156 6075	7566	71860 9461	329 6275	374 5782	293 6057	85 5394	31 4023	61 3352	107 3730	254 4322	224 4969	206 5288	232 6463	2355 59878	191 6533	152 6165	126 5859	43 4279	13 2742	42 3195	11 3750	10 3414	0 3256	11 4765	8 2380	21 6650	628 55988
DE⇒SE		303 23 6901	279 25 6564	231 147 6835	56 258 5269	120 147 4236	11 241 4603	153 136 3918	78 339 4081	88 216 4240	287 186 5624	411 156 6075	531 70 7566	2048 1944 00912	548 329 6275	584 374 5782	622 293 6057	584 85 5394	360 31 4023	161 61 3352	055 139 4521 405 197 3739	254 254 4322	513 224 4969	466 206 5288	312 232 6463	5334 2355 59878	207 191 6533	399 152 6165	291 126 5859	319 43 4279	160 13 2742	219 42 3195	630 11 3750	413 10 3414	319 0 3256	636 11 4765	712 8 5380	833 21 6650	5138 628 55988
DE→SE DE→PL		2486 303 23 6901	2322 279 25 6564	2759 231 147 6835	2113 56 258 5269	2031 120 147 4236	1564 11 241 4603	1178 153 136 3918	929 78 339 4081	1115 88 216 4240	1478 287 186 5624	1986 411 156 6075	70 7566	72330 2348 1344 03912	643 548 329 6275	410 584 374 5782	362 622 293 6057	881 584 85 5394	1036 360 31 4023	920 161 61 3352	545 525 139 4221 576 405 157 3735	584 254 254 4322	330 513 224 4969	707 466 206 5288	1550 312 232 6463	8942 5334 2355 59878	1578 207 191 6533	1022 399 152 6165	989 291 126 5859	730 319 43 4279	279 160 13 2742	795 219 42 3195	688 630 11 3750	555 413 10 3414	588 319 0 3256	764 636 11 4765	594 712 8 5380	1007 833 21 6650	9589 5138 628 55988
DE→SE DE→PL DE→NL	ws (OF)	466 2486 303 23 6901	416 2322 279 25 6564	442 2759 231 147 6835	406 2113 56 258 5269	426 2031 120 147 4236	416 1564 11 241 4603	440 1178 153 136 3918	392 929 78 339 4081	422 1115 88 216 4240	447 1478 287 186 5624	434 1986 411 156 6075	2375 531 70 7566	5134 22336 2548 1944 65912	542 643 548 329 6275	486 410 584 374 5782	511 362 622 293 6057	518 881 584 85 5394	562 1036 360 31 4023	507 920 161 61 3352	482 843 323 139 4221 435 576 405 197 3739	470 584 254 254 4322	521 330 513 224 4969	546 707 466 206 5288	579 1550 312 232 6463	6159 8942 5334 2355 59878	567 1578 207 191 6533	540 1022 399 152 6165	566 989 291 126 5859	515 730 319 43 4279	440 279 160 13 2742	342 795 219 42 3195	413 688 630 11 3750	452 555 413 10 3414	471 588 319 0 3256	512 764 636 11 4765	482 594 712 8 5380	479 1007 833 21 6650	5779 9589 5138 628 55988
DE→SE DE→PL DE→NL DE→LU	itside flows (OF)	123 466 2486 303 23 6901	350 416 2322 279 25 6564	266 442 2759 231 147 6835	10 406 2113 56 258 5269	5 426 2031 120 147 4236	20 416 1564 11 241 4603	44 440 1178 153 136 3918	0 392 929 78 339 4081	4 422 1115 88 216 4240	0 447 1478 287 186 5624	0 434 1986 411 156 6075	16 427 2375 531 70 7566	838 5134 22330 2348 1944 63912	542 643 548 329 6275	486 410 584 374 5782	511 362 622 293 6057	518 881 584 85 5394	562 1036 360 31 4023	507 920 161 61 3352	482 843 323 139 4221 435 576 405 197 3739	470 584 254 254 4322	521 330 513 224 4969	546 707 466 206 5288	579 1550 312 232 6463	6159 8942 5334 2355 59878	567 1578 207 191 6533	540 1022 399 152 6165	566 989 291 126 5859	515 730 319 43 4279	440 279 160 13 2742	342 795 219 42 3195	413 688 630 11 3750	452 555 413 10 3414	471 588 319 0 3256	512 764 636 11 4765	482 594 712 8 5380	479 1007 833 21 6650	5779 9589 5138 628 55988
DE⇒SE DE⇒PL DE⇒NL DE⇒LU DE⇒FR	Outside flows (OF)	22 123 466 2486 303 23 6901	18 350 416 2322 279 25 6564	114 266 442 2759 231 147 6835	214 10 406 2113 56 258 5269	72 5 426 2031 120 147 4236	225 20 416 1564 11 241 4603	176 44 440 1178 153 136 3918	360 0 392 929 78 339 4081	233 4 422 1115 88 216 4240	236 0 447 1478 287 186 5624	161 0 434 1986 411 156 6075	427 2375 531 70 7566	1895 638 5134 22330 2548 1944 65912	542 643 548 329 6275	486 410 584 374 5782	511 362 622 293 6057	518 881 584 85 5394	562 1036 360 31 4023	507 920 161 61 3352	482 843 323 139 4221 435 576 405 197 3739	470 584 254 254 4322	521 330 513 224 4969	546 707 466 206 5288	579 1550 312 232 6463	6159 8942 5334 2355 59878	567 1578 207 191 6533	540 1022 399 152 6165	566 989 291 126 5859	515 730 319 43 4279	440 279 160 13 2742	342 795 219 42 3195	413 688 630 11 3750	452 555 413 10 3414	471 588 319 0 3256	512 764 636 11 4765	482 594 712 8 5380	479 1007 833 21 6650	5779 9589 5138 628 55988
DE→SE DE→PL DE→NL DE→LU DE→FR DE→DK_E	Outside flows (OF)	22 123 466 2486 303 23 6901	18 350 416 2322 279 25 6564	114 266 442 2759 231 147 6835	214 10 406 2113 56 258 5269	72 5 426 2031 120 147 4236	225 20 416 1564 11 241 4603	176 44 440 1178 153 136 3918	360 0 392 929 78 339 4081	233 4 422 1115 88 216 4240	236 0 447 1478 287 186 5624	161 0 434 1986 411 156 6075	64 16 427 2375 531 70 7566	71869 846 77320 7738 1844 60817	239 542 643 548 329 6275	57 486 410 584 374 5782	28 511 362 622 293 6057	7 518 881 584 85 5394	52 562 1036 360 31 4023	3 507 920 161 61 3352	0 462 943 323 139 4221 0 435 576 405 197 3739	6 470 584 254 4322	168 521 330 513 224 4969	99 546 707 466 206 5288	130 579 1550 312 232 6463	795 6159 8942 5334 2355 59878	27 567 1578 207 191 6533	18 540 1022 399 152 6165	15 566 989 291 126 5859	16 515 730 319 43 4279	0 440 279 160 13 2742	2 342 795 219 42 3195	1 413 688 630 11 3750	10 452 555 413 10 3414	8 471 588 319 0 3256	35 512 764 636 11 4765	3 482 594 712 8 5380	4 479 1007 833 21 6650	139 5779 9589 5138 628 55988
DE→SE DE→PL DE→NL DE→LU DE→FR DE→DK_E	Outside flows (OF)	22 22 123 466 2486 303 23 6901	7 18 350 416 2322 279 25 6564	43 114 266 442 2759 231 147 6835	200 214 10 406 2113 56 258 5269	258 72 5 426 2031 120 147 4236	265 225 20 416 1564 11 241 4603	194 176 44 440 1178 153 136 3918	437 360 0 392 929 78 339 4081	236 233 4 422 1115 88 216 4240	237 236 0 447 1478 287 186 5624	69 161 0 434 1986 411 156 6075	109 64 16 427 2375 531 70 7566	21860 4461 6240 62520 6262 1846 6281 707	614 239 542 643 548 329 6275	663 57 486 410 584 374 5782	836 28 511 362 622 293 6057	465 7 518 881 584 85 5394	296 52 562 1036 360 31 4023	471 3352	459 0 462 843 525 138 4221 583 0 435 576 405 197 3739	594 6 470 584 254 4322	423 168 521 330 513 224 4969	377 99 546 707 466 206 5288	710 130 579 1550 312 232 6463	6471 795 6159 8942 5334 2355 59878	728 27 567 1578 207 191 6533	511 18 540 1022 399 152 6165	538 15 566 989 291 126 5859	350 16 515 730 319 43 4279	248 0 440 279 160 13 2742	171 2 342 795 219 42 3195	72 1 413 688 630 11 3750	80 10 452 555 413 10 3414	45 8 471 588 319 0 3256	47 35 512 764 636 11 4765	26 3 482 594 712 8 5380	90 4 479 1007 833 21 6650	2906 139 5779 9589 5138 628 55988
$DE \rightarrow SE$ $DE \rightarrow PL$ $DE \rightarrow NL$ $DE \rightarrow LU$ $DE \rightarrow FR$ $DE \rightarrow DK_E$ $DE \rightarrow DK_W$ $DE \rightarrow DK$	Outside flows (OF)	111 22 22 123 466 2486 303 23 6901	93 7 18 350 416 2322 279 25 6564	2 43 114 266 442 2759 231 147 6835	1 200 214 10 406 2113 56 258 5269	0 258 72 5 426 2031 120 147 4236	0 265 225 20 416 1564 11 241 4603	1 194 176 44 440 1178 153 136 3918	5 437 360 0 392 929 78 339 4081	11 236 233 4 422 1115 88 216 4240	97 237 236 0 447 1478 287 186 5624	121 69 161 0 434 1986 411 156 6075	205 109 64 16 427 2375 531 70 7566	04/1 20/1 1895 636 5154 22350 2548 1944 65912	41 614 239 542 643 548 329 6275	35 663 57 486 410 584 374 5782	17 836 28 511 362 622 293 6057	17 465 7 518 881 584 85 5394	47 296 52 562 1036 360 31 4023	42 471 33 507 920 161 61 3352	33 439 0 402 343 323 139 4221 78 583 0 435 576 405 197 3732	45 594 6 470 584 254 4322	92 423 168 521 330 513 224 4969	78 377 99 546 707 466 206 5288	19 710 130 579 1550 312 232 6463	564 6471 795 6159 8942 5334 2355 59878	6 728 27 567 1578 207 191 6533	116 511 18 540 1022 399 152 6165	63 538 15 566 989 291 126 5859	73 350 16 515 730 319 43 4279	38 248 0 440 279 160 13 2742	18 171 2 342 795 219 42 3195	226 72 1 413 688 630 11 3750	95 80 10 452 555 413 10 3414	221 45 8 471 588 319 0 3256	164 47 35 512 764 636 11 4765	291 26 3 482 594 712 8 5380	575 90 4 479 1007 833 21 6650	1886 2906 139 5779 9589 5138 628 55988
DE \Rightarrow SE DE \Rightarrow PL DE \Rightarrow NL DE \Rightarrow LU DE \Rightarrow FR DE \Rightarrow DK_E DE \Rightarrow DK_W DE \Rightarrow DK	Outside flows (OF)	1639 111 22 22 123 466 2486 303 23 6901	1523 93 7 18 350 416 2322 279 25 6564	1426 2 43 114 266 442 2759 231 147 6835	961 1 200 214 10 406 2113 56 258 5269	539 0 258 72 5 426 2031 120 147 4236	962 0 265 225 20 416 1564 11 241 4603	698 1 194 176 44 440 1178 153 136 3918	698 5 437 360 0 392 929 78 339 4081	807 11 236 233 4 422 1115 88 216 4240	1207 97 237 236 0 447 1478 287 186 5624	1377 121 69 161 0 434 1986 411 156 6075	1857 205 109 64 16 427 2375 531 70 7566	13034 04/ 2017 1835 038 31.54 22330 2348 1944 03312	1656 41 614 239 542 643 548 329 6275	1660 35 663 57 486 410 584 374 5782	1713 17 836 28 511 362 622 293 6057	1260 17 465 7 518 881 584 85 5394	639 47 296 52 562 1036 360 31 4023	486 42 471 3 507 920 161 61 3352	705 78 583 0 405 945 353 139 4221	1146 45 594 6 470 584 254 254 4322	1520 92 423 168 521 330 513 224 4969	1433 78 377 99 546 707 466 206 5288	1464 19 710 130 579 1550 312 232 6463	14553 564 6471 795 6159 8942 5334 2355 59878	1640 6 728 27 567 1578 207 191 6533	1754 116 511 18 540 1022 399 152 6165	1627 63 538 15 566 989 291 126 5859	948 73 350 16 515 730 319 43 4279	744 38 248 0 440 279 160 13 2742	647 18 171 2 342 795 219 42 3195	672 226 72 1 413 688 630 11 3750	793 95 80 10 452 555 413 10 3414	592 221 45 8 471 588 319 0 3256	1230 164 47 35 512 764 636 11 4765	1579 291 26 3 482 594 712 8 5380	1774 575 90 4 479 1007 833 21 6650	14000 1886 2906 139 5779 9589 5138 628 55988
$DE \rightarrow SE$ $DE \rightarrow PL$ $DE \rightarrow NL$ $DE \rightarrow LU$ $DE \rightarrow FR$ $DE \rightarrow DK_E$ $DE \rightarrow DK_W$ $DE \rightarrow DK$ $DE \rightarrow CZ$ $DE \rightarrow CH$	Outside flows (OF)	1706 1639 111 22 22 123 466 2486 303 23 6901	1531 1523 93 7 18 350 416 2322 279 25 6564	1405 1426 2 43 114 266 442 2759 231 147 6835	1050 961 1 200 214 10 406 2113 56 258 5269	638 539 0 258 72 5 426 2031 120 147 4236	899 962 0 265 225 20 416 1564 11 241 4603	898 698 1 194 176 44 440 1178 153 136 3918	843 698 5 437 360 0 392 929 78 339 4081	1108 807 11 236 233 4 422 1115 88 216 4240	1449 1207 97 237 236 0 447 1478 287 186 5624	1360 1377 121 69 161 0 434 1986 411 156 6075	205 109 64 16 427 2375 531 70 7566	1829 13034 0547 13034 0582 1348 1348 1348 1348 1348 1348 1348	1663 1656 41 614 239 542 643 548 329 6275	1513 1660 35 663 57 486 410 584 374 5782	1675 1713 17 836 28 511 362 622 293 6057	1577 1260 17 465 7 518 881 584 85 5394	1000 639 47 296 52 562 1036 360 31 4023	701 486 42 471 3 507 920 161 61 3352	033 701 33 439 0 402 343 323 139 4221 733 705 78 583 0 435 576 405 197 3732	969 1146 45 594 6 470 584 254 254 4322	1178 1520 92 423 168 521 330 513 224 4969	1376 1433 78 377 99 546 707 466 206 5288	1467 1464 19 710 130 579 1550 312 232 6463	14705 14553 564 6471 795 6159 8942 5334 2355 59878	1589 1640 6 728 27 567 1578 207 191 6533	1653 1754 116 511 18 540 1022 399 152 6165	1644 1627 63 538 15 566 989 291 126 5859	1285 948 73 350 16 515 730 319 43 4279	820 744 38 248 0 440 279 160 13 2742	959 647 18 171 2 342 795 219 42 3195	1037 672 226 72 11 3750	1006 793 95 80 10 452 555 413 10 3414	1012 592 221 45 8 471 588 319 0 3256	1366 1230 164 47 35 512 764 636 11 4765	1685 1579 291 26 3 482 594 712 8 5380	1867 1774 575 90 4 479 1007 833 21 6650	15923 14000 1886 2906

'These physical energy flows were measured on the tie lines (±110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values / Operation".

Yearly values / Operation

			1	
Thermal nuclear net generation	GWh	Σ	2006 2010 2011	0 0 0
Fossil fuels net generation	GWh	Σ	2006 2010 2011	37198 26294 21811
Hydraulic net generation	GWh	Σ	2006 2010 2011	23 23 19
Other renewable net generation	GWh	Σ	2006 2010 2011	6107 10445 11309
- of which wind	GWh	Σ	2006 2010 2011	6107 7813 8938
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 ¹ 2010 ¹ 2011 ¹	43328 36762 33139
Sum of physical inside flows	GWh	Σ	2006 2010 2011	n.a. 10585 11647
Sum of physical outside flows	GWh	Σ	2006 2010 2011	n.a. 11740 10276
Total exchange balance	GWh	Σ	2006 2010 2011	-6936 -1122 1319
Consumption of pumps	GWh	Σ	2006 2010 2011	0 0 0
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	36392 35640 34458
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 16.02.11	n.a. 3653 3502
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 16.02.11	n.a. 5945 5610
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 19.01.11	n.a. 6312 5897
Time of highest load on the 3 rd Wednesday		CET	15.12.10 19.01.11	n.a. 18:00 18:00

Physical exchanges in interconnected operation 1

_																																						- 1
	Sum_IF - Sum_OF	Balance	-831	988-	-849	-197	-94	-61	-35	219	28.		-651	-4234	-522	-670	-627	-31/	163	069	689	99	-365	-385	-1155	-670	-895	-684	-124	242	547	8 00 00 00 00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	94-1 360	300 153	-135	1371	_
	Sum_IF		385	251	252	481	466	597	603	833	210	338	374	5688	747	714	845	625	1285	1363	1144	870	705	283	10585	765	538	297	894	/88	1118	1424	1405	990	939 905	218	11647	
	SE→DK														က	Ø		126	222	647	357	62	08	711	2656	31	19	49	388	337	774	821	000	207	303	478	5141	-
	SE→DK_W	(IF)	72	81	17	37	83	50	06	\	ກແ	30	75	589																								
	NO→DK	flows													130	49	α ;	χ Σ	117	277	204	214	184	8 6	1458	9	00	9	156	203	173	531	032	201	217	200	3600	
	NO→DK_W	Inside	269	145	78	8	23	87	143	ର ଟ	3 6	82	126	1127																								
	DE→DK														614	663	836	465	230 471	439	583	594	423	3/7	6471	728	511	538	320	248	171	2 6	8	5 6	7 %	3 G	2906	
	DE→DK_E		22	18	114	214	72	225	1/6	360	22.0	161	. 4	1895																								
	DE→DK_W		22	7	43	200	258	265	194	437	237	69	109	2077																								
	Sum_ OF		1216	1137	1101	829	260	658	638	614	903	936	1025	9922	1269	1384	1472	242	192	673	455	804	1070	968	11740	1435	1433	1281	1018	546	571	286	507	040	97.9	10001	10276	
	DK→SE														089	790	796	290	4 8	88	132	467	461	359 359	4978	739	775	222	257	115	88	9 4 6	/ N	0 4	ξ 5 α	3 5	2807	
	DK_W→SE	(OF)	7	29	158	105	107	164	8/	301	173	193	105	1743																								
	DK→NO	flows													384	479	629	420 720	243	163	155	159	241	352	4055	599	532	586	304	190	19	0 (0 0	0	. t	154	2414	
	DK_W → NO	Outside	84	20	179	261	203	180	138	254	240 236	196	303	2324																								
	DK→DE														205	115	47	232	240	424	168	178	368	727	2707	97	123	140	457	241	519	540	4/4	040	924 674	726	5055	
	DK_E→DE		291	297	179	89	24	98	166	13	2 N	171	205	1632																								
	DK_W→DE		770	723	585	244	226	228	247	9 6	244	376	412	4223																								.
	MM_YY		1.06	11.06	90'111	IV.06	V.06	VI.06	VII.06	VIII.06	X.06	XI.06	XII.06	2006	1.10	11.10	II.10	01.70	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VII.10	VIII.10	IX.10	X.10) 	2010	1.1	II.1	111	N.11	V.11	VI.11	VII.11	_ ; >	- × - ×	< ×	X	2011	

'These physical energy flows were measured on the tie lines (\geq 110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values /Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	n.a. 0 0
Fossil fuels net generation	GWh	Σ	2006 2010 2011	n.a. 10465 10271
Hydraulic net generation	GWh	Σ	2006 2010 2011	n.a. 27 33
Other renewable net generation	GWh	Σ	2006 2010 2011	n.a. 836 1085
- of which wind	GWh	Σ	2006 2010 2011	n.a. 276 364
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	n.a. 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	n.a. 11328 11389
Sum of physical inside flows	GWh	Σ	2006 2010 2011	n.a. 1743 1517
Sum of physical outside flows	GWh	Σ	2006 2010 2011	n.a. 4947 4986
Total exchange balance	GWh	Σ	2006 2010 2011	n.a. -3317 -3562
Consumption of pumps	GWh	Σ	2006 2010 2011	n.a. 0 0
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	n.a. 8011 7827
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.01.10 16.02.11	n.a. 1038 1098
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.01.10 16.02.11	n.a. 1445 1450
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.01.10 16.02.11	n.a. 1495 1495
Time of highest load on the 3 rd Wednesday		CET	20.01.10 16.02.11	n.a. 17:00 9:00

Physical exchanges in interconnected operation 1

Sum_IF - Sum_OF	Balance	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	g. d	i i	ਰਂ <i>ਕ</i>	n.a.	n.a.	n.a.	-180	-221	-279	-107	/67-	-328	-267	-257	-311	-307	-364	-3204	-358	-209	ر د د د د د د	- 250	-374	-313	-353	-261	-208	-370	-318	-2403
Sum_IF		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	. n.	. a.	n.a.	n.a.	n.a.	157	135	105	212	102	133	107	150	144	154	257	1743	113	145	001	145	66	141	52	149	217	82	00 1	1161
RU→EE	nside flows (IF)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	л. В. с	. n.		n.a.	n.a.	n.a.	149	134	92	196	/ 0	3 5	46	85	114	144	257	1459	113	145	000	144	9	51	26	59	48	48	32	
LV→EE	Inside	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.		 	בי ב קית	n.a.	n.a.	n.a.	∞	-	13	ب ئ	- c	> <	0	0	0	0	0 (æ	0	0 0	N 6	y c	0	0	0	7	0	0	၀ မ	07
FI→EE		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	л. Б. б.	 		_ ⊓.a.	n.a.	4	0	0	0	- 5	4 c	7 7	61	65	30	10	0	246	0	0 0	O 7		- ∞	06	26	118	169	34	88	400
Sum_OF		n.a.	n.a.	n.a.	n.a.	n.a.	п.а.	n.a.	 	. n	n.a.	n.a.	n.a.	337	356	384	319	600 640 640	7 + 0	374	407	455	461	621	4947	471	354	47.0 0.00	39.5	473	454	405	410	425	452	386	4300
EE → RU	Outside flows (OF)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	л. а. с	 		n.a.	n.a.	n.a.	∞	7	12	/ 0	တ္ မ	3 %	45	27	31	10	ω į	282	10	\ <u>`</u>	<u>1</u> @	- 6	45	29	88	125	86	109	46 6	060
EE→LV	Outside	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	л. а. с		בי ב קי מ	n.a.	n.a.	n.a.	116	126	126	6 1	101	337	284	314	323	251	345	2692	207	1/6	142	4 7	290	347	244	265	317	239	153	2033
EE→FI		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	л.а. с	 	ב ה מ	n.a.	n.a.	7	213	223	246	522	7/5	<u> </u>	8 4	99	101	200	268	1967	254	1/1	707 407	194	138	40	73	20	12	40 5	133	/601
MM_YY		1.06	90'11	90'111	1V.06	V.06	VI.06	VII.06	00.111.0	90.X 90.X	90:IX	90'IIX	2006	1.10	11.10	II.10	× × ×	0.5	7 10	VIII.10	IX.10	X.10	XI.10	XII.10	2010	<u>+</u>	= :		- <u>-</u> -	VI.11	VII.11	VIII.11	X.11	X.11	X ;	XII.11	7 1 102

These physical energy flows were measured on the tie lines (≥110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values /Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	57417 59310 55050
Fossil fuels net generation	GWh	Σ	2006 2010 2011	148906 114052 121327
Hydraulic net generation	GWh	Σ	2006 2010 2011	28884 44617 32173
Other renewable net generation	GWh	Σ	2006 2010 2011	26782 55057 55594
- of which wind	GWh	Σ	2006 2010 2011	22737 43357 41661
- of which solar	GWh	Σ	2006 2010 2011	n.a. 6718 9597
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 364 341
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	268007 273400 264485
Sum of physical inside flows	GWh	Σ	2006 2010 2011	9120 5214 7935
Sum of physical outside flows	GWh	Σ	2006 2010 2011	11859 13117 13656
Total exchange balance	GWh	Σ	2006 2010 2011	-3280 -8333 -6127
Consumption of pumps	GWh	Σ	2006 2010 2011	5262 4458 3368
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	259465 260609 254990
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 21.07.10 19.01.11	27472 25404 25119
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 16.02.11	40658 40073 39181
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 16.02.11	42744 41455 40073
Time of highest load on the 3 rd Wednesday		CET	20.12.06 15.12.10 16.02.11	19:00 20:00 20:00

Physical exchanges in interconnected operation 1

Sum_IF - Sum_OF	Balance	-308	-537	-749	29	156	-249	-357	91	-273	-209	-245	-118	-2/39	-258	-459	-525	-209	-524	-797	-975	-714	-928	-1269	-542	-203	-7903	-551	-295	-713	-1064	-216	-375	-456	-197	-528	-352	-550	-424	12 <i>1</i> 6-
Sum_IF		811	591	498	802	968	731	684	986	787	828	685	791	0218	741	406	461	323	398	368	320	538	366	218	416	629	5214	581	496	549	360	744	705	810	954	289	740	494	815	- CSB/
MA → ES	ows (IF)	9	7	က	4	0	-	က	0	0	2	_	2 1	/7	7	6	12	0	0	0	0	0	0	0	-	თ (33	က	_	2	0	0	0	0	0	0	0	9	α,	41
PT→ES	Inside flows	223	251	330	271	196	151	254	299	110	258	357	483	3183	617	320	358	287	291	122	100	80	87	2	232	596	3190	465	461	488	197	436	224	240	301	231	255	338	292	3928
FR→ES		285	338	165	527	200	579	427	289	229	595	327	306	0166	122	47	91	36	107	246	220	458	279	148	183	45.54	1991	113	34	26	163	308	481	570	653	456	485	150	521	3993
Sum_ OF		1119	1128	1247	743	740	086	1041	895	1060	1067	930	606	65811	666	865	986	1032	922	1165	1295	1252	1294	1487	958	862	13117	1132	791	1262	1424	096	1080	1266	1151	1215	1092	1044	1239	13030
ES → MA	Outside flows (OF	84	156	158	116	0	105	103	509	215	206	220	327	688	195	78	161	346	338	402	438	486	491	498	301	204	3938	596	284	321	411	409	406	499	521	434	329	268	301	4509
ES→PT	Outside	914	908	824	541	727	812	775	643	808	783	502	346	8481	336	416	382	323	345	534	671	691	603	689	456	218	2995	499	586	498	269	386	542	674	280	677	282	526	720	0080
ES→FR		121	166	265	98	13	63	163	43	37	78	208	236	14/9	468	371	440	363	239	229	186	75	200	300	201	440	3512	337	218	443	316	165	132	63	20	40	136	250	218	2462
MM_YY		1.06	90'11	90'111	1V.06	V.06	VI.06	VII.06	0.IIIV	90:XI	X.06	90.IX	XII.06	2006	1.10	11.10	111.10	IV.10	V.10	VI.10	VII.10	VIII.10	X.10	X.10	XI.10	XII.10	2010	1.1	1.1	= 1	N.11	V.11	VI.11	VII.11	VIII.11	X:11	X.11	X.11	XII.11	LLOZ

These physical energy flows were measured on the tie lines (≥110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values /Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	22000 21884 22266
Fossil fuels net generation	GWh	Σ	2006 2010 2011	33890 30961 24167
Hydraulic net generation	GWh	Σ	2006 2010 2011	11300 12765 12279
Other renewable net generation	GWh	Σ	2006 2010 2011	11400 10646 10989
- of which wind	GWh	Σ	2006 2010 2011	200 293 482
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 711 692
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 ¹ 2010 ¹ 2011 ¹	78590 76967 70393
Sum of physical inside flows	GWh	Σ	2006 2010 2011	11521 16354 18489
Sum of physical outside flows	GWh	Σ	2006 2010 2011	n.a. 5878 4614
Total exchange balance	GWh	Σ	2006 2010 2011	11521 10500 13851
Consumption of pumps	GWh	Σ	2006 2010 2011	0 0 0
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	90111 87467 84244
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 16.02.11	n.a. 11501 12617
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 16.02.11	n.a. 13591 13992
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 16.02.11	n.a. 13923 14272
Time of highest load on the 3 rd Wednesday		CET	15.12.10 16.02.11	n.a. 16:00 7:00

Physical exchanges in interconnected operation ¹

Sum_IF - Sum_OF	Balance	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	ก.ล.	n.a. 11521	1038	734	321	249	928	965	1248	1525	1003	812	896	655	10476	657	935	409	649	305	1229	1621	1865	1835	1269	1241	1263 13875	
Sum_IF		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a. 15379	1381	1312	1307	1167	1391	1290	1320	1629	1345	1345	1467	1400	16354	1394	1330	1309	1286	1333	1468	1724	7061	1981	1529	1609	1818	2
RU→FI	(IF)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	_ .a	.a.	a	11549	1065	932	1060	934	1019	926	494	066	1023	1029	1031	1053	11636	1050	936	1040	1018	1064	1034	57.1	/84	983	040	815	824 10765	2012
SE→FI	nside flows	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a	л. В.	n. n.	11.a. 3676	100	157	-	7	191	189	869	220	232	174	234	92	2636	88	222	2	55	63	263	1080	1044	972	848	671	020 2036	3
NO→FI	lns	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	⊓. a.	පු ්	ri .	150 150	က	0	0	0	ര	4	88	24	7	=	7	ო !	112	_	Ψ.	0	-	12	88 8	ဗ္ဗ ဇ	· O	တ ငှ	<u>n</u> (<u>ი</u>	- - -	5
EE→FI		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	<u>.</u> 4	213	223	246	222	172	121	06	45	99	101	200	268	1967	254	171	264	245	194	138	40	5/3	50 7 1	5	104	139	3
Sum_OF		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	⊓.a.	3858	343	218	986	918	433	325	72	104	342	533	499	745	5878	737	395	006	637	431	239	103	42	146	760	368	356 461 4	=
FI → RU	(OF)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a	л. В. б	. a.	.; o	0	0	0	0	0	0	0	0	0	0	0	0 (0	0	0 (0	0 0	O	0 (0 0	o (0 0) (0 0	o c	-
FI→SE	Outside flows (OF	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a	n.a.	a.	n.a. 3767	329	222	946	881	396	296	36	43	277	205	472	735	5470	722	373	865	617	427	231	<u></u>		5 33	- 6	334	300	2
FI→NO	Outs	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a	n.a.	a.	8. 8	14	21	40	36	5	2	2	0	0	-	17	9 9	162	15	55	32	<u>ი</u> ი	_ເ ນ (0 (Ο ι	ς ι	ഹ	0 (O	22 23	1
FI→EE		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	II.a. 7	0	0	0	-	24	54	31	61	92	30	10	0 ;	246	0	0 (0	- 1	- (∞ (ලි දි	9 5	9 7	60	& 8	33 480	3
MM_YY		1.06	90'11	90'111	90.VI	V.06	VI.06	VII.06	VIII.06	90.X	90.X	XI.06	200e	1.10	11.10	111.10	IV.10	V.10	VI.10	VII.10	VIII.10	X.10	X.10	XI.10	XII.10	2010	1.1	= :	≡ .11	Y.11	V.11	VI.11	VII.11	VIII.11	×××	- : - :	X.13	XII.11	-

These physical energy flows were measured on the tie lines (≥110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values /Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	428674 407877 421118
Fossil fuels net generation	GWh	Σ	2006 2010 2011	53952 59453 51505
Hydraulic net generation	GWh	Σ	2006 2010 2011	60927 67995 50267
Other renewable net generation	GWh	Σ	2006 2010 2011	5521 14984 20059
- of which wind	GWh	Σ	2006 2010 2011	2222 9603 12075
- of which solar	GWh	Σ	2006 2010 2011	n.a. 562 2415
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	549074 550309 542950
Sum of physical inside flows	GWh	Σ	2006 2010 2011	8079 19950 9068
Sum of physical outside flows	GWh	Σ	2006 2010 2011	69868 48563 64185
Total exchange balance	GWh	Σ	2006 2010 2011	-63272 -30520 -56873
Consumption of pumps	GWh	Σ	2006 2010 2011	7442 6497 6834
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	478360 513292 479242
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 16.02.11	65988 78377 62648
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 19.01.11	76392 93188 78514
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 19.01.11	80966 96710 82450
Time of highest load on the 3 rd Wednesday		CET	20.12.06 15.12.10 19.01.11	19:00 19:00 19:00

Sum_IF - Sum_OF	Balance	-2652	-788	-2414	-7091	-7086	-5800	-4816	-6961	-6870	-7197	-6345	-3769	-61789	266	-916	-1950	-2395	-1982	-5153	-4456	-5719	-3468	-400	-2124	-616	-28613	-3545	-3746	-4474	-4948	-5184	-5911	-6012	-5170	-4117	-3678	-3701	-4631	-55117
Sum_IF		1206	1883	1490	148	111	264	929	153	257	263	464	1184	8079	3076	2244	2180	1363	1404	563	819	547	1001	2724	1784	2245	19950	1329	914	931	265	534	335	330	379	525	882	1306	1006	8906
IT→FR		122	103	100	36	42	44	24	32	32	36	47	78	726	115	75	77	83	22	35	99	96	48	-	87	164	2101	138	94	88	29	21	22	26	86	81	24	61	104	935
GB→FR	(IF)	81	191	48	0	0	25	72	50	69	31	92	270	833	797	714	701	314	186	14	21	4	122	299	355	282	4109	221	243	112	27	153	7	0	7	35	139	364	61	1369
ES→FR	ide flows	121	166	265	98	13	63	163	43	37	78	208	236	1479	468	371	440	363	239	229	186	75	200	300	201	440	3512	337	218	443	316	165	132	93	20	104	136	250	218	2462
DE→FR	Insi	123	350	566	10	2	8	4	0	4	0	0	16	838	239	22	8	7	25	က	9	0	9	168	66	130	795	27	9	15	16	0	8	-	10	∞	32	က	4	139
CH→FR		439	209	365	2	36	62	271	58	100	72	22	214	2156	652	426	324	147	276	165	362	246	377	269	543	902	2120	461	242	153	15	56	74	78	115	216	129	167	158	1834
BE→FR		320	564	446	Ξ	15	23	52	30	15	46	89	370	1981	802	601	610	449	969	117	178	126	248	849	499	324	5402	145	66	120	156	139	65	102	111	81	389	461	461	2329
Sum_ OF		3858	2671	3904	7239	7197	6064	5472	7114	7127	7460	6089	4953	89869	2510	3160	4130	3758	3386	5716	5275	9929	4469	3124	3908	2861	48563	4874	4660	5405	5545	5718	6246	6342	5549	4642	4560	2005	5637	64185
FR → IT		694	694	1042	1614	1439	1366	1249	860	1395	1619	1546	1373	14891	811	1057	1171	1020	861	1230	1311	836	947	867	957	512	11583	1119	1206	1261	1339	1131	1094	1073	822	925	1485	1506	1313	14307
FR→GB	s (OF)	896	610	1126	1395	1318	089	741	962	639	941	939	610	10929	145	222	336	381	671	992	1033	1297	594	247	248	670	/136	736	512	495	483	343	268	999	909	355	249	313	825	6151
FR→ES	Outside flow	582	338	165	527	200	579	427	289	212	262	327	306	5910	122	47	91	36	107	246	220	428	279	148	183	75 5	1991	113	8	29	163	308	481	220	653	456	485	150	521	3993
FR→DE	Out	534	275	436	1520	1666	1567	1258	2118	1980	2051	1690	1077	16172	929	910	1308	1244	920	1934	1690	2408	1507	924	1096	609	15126	1236	1275	1648	1819	2232	2201	2274	1937	1392	1149	1654	1498	20315
FR→CH		784	627	870	1151	960	642	525	1031	896	1192	1355	1217	11322	745	840	1084	924	672	748	641	786	783	828	902	969	6/96	1037	1068	1173	1113	980	867	947	842	883	983	1164	1244	12301
FR→BE		296	127	265	1032	1114	1230	1272	1456	1468	1062	952	370	10644	11	84	140	153	155	999	380	478	329	80	222	320	3048	633	265	69/	628	724	1035	812	929	631	509	220	236	7118
MM_YY		1.06	90'11	90'111	1V.06	V.06	VI.06	VII.06	VIII.06	90.XI	90.X	90'IX	90'IIX	2006	1.10	11.10	III.10	IV.10	V.10	VI.10	VII.10	VIII.10	IX:10	X.10	X.10	XII.10	2010	1.11	1.1	II.1	IV.11	V.11	VI.11	VII.11	VIII.11	IX.11	X.11	X.11	XII.11	2011

'These physical energy flows were measured on the tie lines (±110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values / Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	n.a. 58203 64550
Fossil fuels net generation	GWh	Σ	2006 2010 2011	n.a. 254647 230036
Hydraulic net generation	GWh	Σ	2006 2010 2011	n.a. 5207 6661
Other renewable net generation	GWh	Σ	2006 2010 2011	n.a. 3327 9170
- of which wind	GWh	Σ	2006 2010 2011	n.a. 3327 9170
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	n.a. 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	n.a. 332569 328289
Sum of physical inside flows	GWh	Σ	2006 2010 2011	n.a. 7136 8645
Sum of physical outside flows	GWh	Σ	2006 2010 2011	n.a. 6408 3844
Total exchange balance	GWh	Σ	2006 2010 2011	n.a. 6185 4676
Consumption of pumps	GWh	Σ	2006 2010 2011	n.a. 3045 3850
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	n.a. 335709 329115
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 21.12.11	n.a. 37697 36061
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 19.01.11	n.a. 52261 50237
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 19.01.11	n.a. 59008 56621
Time of highest load on the 3 rd Wednesday		CET	15.12.10 19.01.11	n.a. 18:00 19:00

Physical exchanges in interconnected operation 1

Sum_IF - Sum_OF	Balance	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	c	. c	n.a.	-887	-710	-613	-123	262	968	857	10/3	338	- o	0 86	728	215	8	121	495	-46	569 888	0000	636 450	211	-149	1177	4801
Sum_IF		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	 		n.a.	145	222	336	381	671	992	1033	1297	594	747 074	040	7136	736	512	495	782	424	878	1000	592	446	434	1275	8645
NL→GB	nside flows (IF)																									0	0	0	299	בא י	310	100	237	197	2 5	450	2494
NI→GB	Inside	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.		; c	n.a.	0	0	0	0	0	0 (0 (0	> C	> C	o c	0	0	0	0	0 0	0	0 0	0 0	0 0	0 C	0 0	С	0
FR→GB		896	610	1126	1395	1318	089	741	962	639	94-	610	10929	145	222	336	381	671	992	1033	1297	594	747	948	7136	736	512	495	483	343	268	900	355	249	313	825	6151
Sum_ OF	(-	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.		. c	n.a.	1032	932	949	504	409	96	176	222 c	720	738	572	6408	521	478	374	287	4/0	309	100	142	22.0	583	86	3844
GB→NL	flows (OF																									0	0	0	78	6/	79	7 1	107	90	219	37	706
GB→NI	Outside flows	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	л. В. п.		; c	n.a.	235	218	248	190	223	85	155	550	134	5 5 6 7	060	2299	300	235	262	232	242	235	† C	60 -	0 0	0 0	С	1769
GB→FR		81	191	48	0	0	25	72	8 8	9 5	ა - ფ	270	889	797	714	701	314	186	4 [2,	4 6	22.2	288	S 80	4109	221	243	112	27	5GL	\ C	1 0	35	200	364	91	1369
MM_YY		1.06	11.06	90'111	IV.06	V.06	VI.06	VII.06	VIII.06	90:XI	V.06	XII.06	2006	1.10	11.10	111.10	IV.10	V.10	VI.10	VII.10	01.110) X X	7	X X	2010	111	11.11	≡.1	<u>\</u>	L :	VI.11		× ×	× 11	×	XII.11	2011

· These physical energy flows were measured on the tie lines (\geq 110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values / Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	0 0 0
Fossil fuels net generation	GWh	Σ	2006 2010 2011	42653 37920 42431
Hydraulic net generation	GWh	Σ	2006 2010 2011	6449 7457 4254
Other renewable net generation	GWh	Σ	2006 2010 2011	1293 2503 3379
- of which wind	GWh	Σ	2006 2010 2011	1199 2062 2594
- of which solar	GWh	Σ	2006 2010 2011	n.a. 133 441
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 ¹ 2010 ¹ 2011 ¹	50395 47880 50064
Sum of physical inside flows	GWh	Σ	2006 2010 2011	6151 8523 7181
Sum of physical outside flows	GWh	Σ	2006 2010 2011	1936 2801 3932
Total exchange balance	GWh	Σ	2006 2010 2011	4203 5708 3231
Consumption of pumps	GWh	Σ	2006 2010 2011	610 37 380
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	53988 53551 52915
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	19.07.06 21.07.10 20.07.11	5280 6230 6723
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	21.06.06 21.07.10 20.07.11	8370 9279 9322
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	21.06.06 16.06.10 20.07.11	8586 9732 9868
Time of highest load on the 3 rd Wednesday		CET	21.06.06 16.06.10 20.07.11	13:00 13:00 13:00

Physical exchanges in interconnected operation 1

Sum_IF - Sum_OF	Balance	192	304	226	310	190	454	202	514	376	599	419	426	4215	193	340	521	635	629	831	619	645	496	242	346	225	5722	231	330	215	271	77	381	483	397	196	193	205	270	3249
Sum_IF		487	480	540	504	342	517	287	591	472	466	551	614	6151	524	554	728	707	631	889	963	972	771	589	614	581	8523	581	648	647	295	469	632	753	727	461	476	601	624	181/
TR → GR															0	0	0	0	0	0	0	0	109	230	212	185	736	190	222	195	201	219	237	230	186	184	224	268	234	2590
AL→GR	flows (IF)	0	0	0	4	21	-	0	0	0	0	0	0	56	22	4	77	91	105	56	0	0	0	4	23	33	405	က	0	0	0	0	0	0	0	0	0	0	0 (m
MK→GR	Inside	26	28	117	127	119	109	181	110	80	79	101	65	1202	286	312	357	326	329	202	205	481	308	120	128	141	3857	153	173	212	134	82	123	208	232	4	62	23	43	1489
IT→GR		4	0	0	က	0	4	4	75	48	69	100	138	455	7	-	15	17	0	Ξ	က	Ξ	-	2	9	0	75	2	က	0	0	7	48	13	4	က	4	82	109	5/6
BG→GR		427	422	423	370	202	403	392	406	344	318	350	411	4468	214	227	279	243	167	345	458	480	353	220	245	222	3453	230	250	240	227	163	224	302	305	233	186	225	238	2823
Sum_ OF		295	176	314	194	152	63	82	77	96	167	132	188	1936	331	214	207	72	2	28	344	327	275	347	268	356	2801	350	318	432	291	392	251	270	330	265	283	396	354	3932
GR→TR															0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (- 0
GR→AL	flows (OF)	125	125	95	21	က	43	75	73	61	109	95	160	979	19	13	-	-	Ø	17	105	114	112	29	26	24	493	63	150	154	192	270	200	154	173	145	164	526	233	2124
GR→MK	Outside	-	-	0	0	0	-	0	0	-	∞	0	0 !	15	0	0	0	0	0	0	0	0	0	9	-	-	∞	0	0	0	က	19	က	0	0	16	0	32	8	70L
GR→IT		169	20	222	173	149	19	7	4	34	20	40	8 5	945	312	200	506	7	0	4	239	213	163	282	241	331	2299	287	168	278	96	103	48	116	157	4	110	135	66	1/01
GR→BG		0	0	0	0	0	0	0	0	0	0	0	0 (0	0	-	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0 (0
MM_YY		1.06	11.06	90'111	IV.06	V.06	VI.06	VII.06	VIII.06	90'XI	90.X	90.IX	XII.06	2006	1.10	11.10	111.10	IV.10	V.10	VI.10	VII.10	VIII.10	X.10	X.10	XI.10	XII.10	2010	111	1.11	11.11	IV.11	V.11	VI.11	VII.11	VIII.11	X.11	X.11	X 1.1	XII.11	2011

These physical energy flows were measured on the tie lines (≥110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values /Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	0 0 0
Fossil fuels net generation	GWh	Σ	2006 2010 2011	5264 4801 5161
Hydraulic net generation	GWh	Σ	2006 2010 2011	6082 8313 4583
Other renewable net generation	GWh	Σ	2006 2010 2011	24 135 217
- of which wind	GWh	Σ	2006 2010 2011	17 117 182
- of which solar	GWh	Σ	2006 2010 2011	n.a. 1 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 2 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 ¹ 2010 ¹ 2011 ¹	11370 13251 9961
Sum of physical inside flows	GWh	Σ	2006 2010 2011	13249 12359 14004
Sum of physical outside flows	GWh	Σ	2006 2010 2011	7577 7696 6318
Total exchange balance	GWh	Σ	2006 2010 2011	5619 4479 7710
Consumption of pumps	GWh	Σ	2006 2010 2011	179 136 173
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	16810 17594 17498
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.02.06 15.12.10 19.01.11	1664 1919 1698
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 21.12.11	2669 2814 2570
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 21.12.11	2817 3116 2874
Time of highest load on the 3 rd Wednesday		CET	20.12.06 15.12.10 21.12.11	18:00 19:00 18:00

Physical exchanges in interconnected operation 1

Sum_IF - Sum_OF	Balance	443	439	508	313	330	536	529	282	420 466	000	571	5672	349	308	249	213	318	420	909	159	513	210	045 100	4663	378	489	533	592	849	029	745	752	641	003	/54	029 288	
Sum_IF		1267	1222	1304	1185	991	1092	1047	993	839	000	1185	13249	1060	1069	1072	626	286	626	1054	944	9/6	1000	1090	12359	1071	1054	1177	1117	1279	1067	1149	1148	1111	1911	1323	14004	=
SI → HR		4 ;	0 9	19	\ - ·	103	181	139	602	25.	1 0	36	1036	190	145	200	179	260	306	357	415	322	0 0	000	2647	137	178	129	242	329	294	329	329	2/0	780	327	3130	- 23 - 2
RS→HR														145	146	149	174	153	170	159	9 6	200	2 2	9 6	1740	142	82	170	180	189	152	8	ဆ္က ဗ	9 5	40	хο т	1176	:
HU→HR	ws (IF)	551	549	510	404	330	3/1	365	, s	334 406	0 0	202	5561	299	313	203	138	46	06	331	342	9 9 9 9 9	220	114	3045	288	490	406	320	344	286	467	909	208	202 1	χ 240 240	909 4 90	2
CS→HR	Inside flo	350	365	384	S S	506	550	182	200	791	107	208	3005																									
BA→HR		352	298	391	393 010	352	320	361	229	206	750	237	3647	426	465	520	448	228	373	207	111	8 6	5 5	222	4927	504	301	472	375	417	332	272	1/5	207	240	54.	3530	3
Sum_OF		824	783	796	8/2	661	929	518	804	419	0,1	614	7577	711	761	823	726	699	519	448	313	463	100	088	9692	693	292	644	525	430	397	404	396	470	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	200	6318	=
HR→SI		762	707	724	667	602	484	493	307	3/3	7 0	545	6871	614	208	751	929	282	445	333	104	040	4 7 7 0	750	6480	611	464	268	444	366	352	313	220	918	382	222	787	200
HR→RS														0	0	Ξ	0	0	0	0 0	O 7	- c	0 0	0 0	14	0	-	0	0	0	0	- 1	Ω (⊃ -	4 r	Ω Q	000	3
HR→HU	flows (OF)	0	0 ·	- 0	O (0 0	0 (0 0	0 (> C	o c	0 0	-	0	0	0	-	15	17	0 0	י מי	- c	> 5	4 C	6 83	9	0	7	Ø	0	0	0	0 (0 0	0 (> C	9	2
HR→CS	Outside	0	0 1	\	n (1 00	` '	0 0	O	> C	0 0	0 0	31																									
HR→BA	J	62	9/	64	40 1	51	69	22	4 ,	94 40	0 0	0.00	674	26	23	61	29	69	22	115	902	[Z]	ກ ເ	0 0 0 V	1109	92	100	74	79	64	45	06	1/1	121	217	782	3/3 1699	730
MM_YY		1.06	11.06 11.06	11.06	00.7	90.7	VI.06	VII.06	00.111.0	90.X	7.06 VI 06	XII.06	2006	1.10	II.10	111.10	IV.10	V.10	VI.10	VII.10	VIII.10) ×	2 5	X X	2010	1.1	11.11	II. 1	IV.11	V.11	VI.11	VII.11	VIII.11		X >	Z :	201	

'These physical energy flows were measured on the tie lines (±110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values / Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	12653 14830 14743
Fossil fuels net generation	GWh	Σ	2006 2010 2011	18745 16503 16755
Hydraulic net generation	GWh	Σ	2006 2010 2011	181 181 215
Other renewable net generation	GWh	Σ	2006 2010 2011	1169 2267 1786
- of which wind	GWh	Σ	2006 2010 2011	41 503 601
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	673 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	33421 33781 33499
Sum of physical inside flows	GWh	Σ	2006 2010 2011	15399 9897 14667
Sum of physical outside flows	GWh	Σ	2006 2010 2011	8185 4706 8018
Total exchange balance	GWh	Σ	2006 2010 2011	7208 5195 6643
Consumption of pumps	GWh	Σ	2006 2010 2011	0 0 0
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	40629 38976 40142
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 16.02.11	4767 3969 3939
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 16.02.11	5871 5430 5514
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 16.11.11	6271 5937 5705
Time of highest load on the 3 rd Wednesday		CET	18.01.06 15.12.10 16.11.11	16:00 17:00 18:00

Ч
>
2
O

Hungary

Physical exchanges in interconnected operation 1

Sum_IF - Sum_OF	Balance	579	541	631	298	200	699	504	563	652	903	519	7214	166	173	259	552	909	715	885	552	482	474	173	154	5	318	200	642	739	551	942	287	743	742	338	267	6649
Sum_IF		1468	1342	1343	1195	1216	1192	954	1204	1173	140	1569	15399	680	652	638	788	774	876	1230	943	882	1126	702	603 2897		834	040	1038	1209	096	1487	1327	1383	1450	1456	1619	14667
UA-W→HU		498	447	426	380	413	347	181	344	470	1,47 1,07 1,07	445	4851	256	215	107	83	88	140	214	96	118	284	241	217	0 0	265	277	213	356	316	349	270	356	396	390	385	3772
SK→HU		813	739	669	615	604	020	286	969	554	00 A	1053	8592	353	373	447	217	339	393	602	239	447	228	280	86 493 4	5 6	365	516	573	576	435	867	799	652	853	698	1046	8120
RS→HU	flows (IF)													က	2	16	63	158	88	20	9	32	9	56	59 544	5	33	τ α	5 4	20	51	18	က	4	က	0	0	268
RO→HU	Inside f	155	152	204	145	164	135	137	138	g 5	200	3 %	1437	37	27	32	82	6	123	143	119	44	165	114	176	20.	137	5 6	448	129	6	32	27	20	20	9	CV ,	867
HR→HU		0	0	-	0	0	0	0	0	0 0	> <	0 0	· -	0	0	0	-	15	17	0	က	_	0	4	22 6	3 '	တ င	0	1 0	10	0	0	0	0	0	0	0	9
сѕ→ни		0	-	7	12	10	Ξ	13	0	4 0	o c	0 0	53																									
AT→HU		0	က	Ξ	43	25	49	37	56	51	15.	46	465	31	32	36	42	83	115	201	168	140	113	37	1014	2	28	3 5	- 4	89	29	221	228	321	178	191	186	1630
Sum_ OF		688	801	712	265	516	523	420	641	521	0/0	1050	8185	514	479	379	236	168	161	345	391	403	652	529	449	2	516	- 6	968	470	409	545	740	640	708	1118	1352	8018
HU→UA-W		0	0	0	0	7	က	4	0	0 0	o 0	4 C	13	44	42	8	=	48	47	0	= :	23	4	33	426	2 1	გ დ ი	- -		0 0	9	9	14	6	0	0	12	-
HU→SK		0	0	0	0	0	0	0	0	0 0	> <	0 0	0	0	0	0	0	0	0	0	0	0	0	က	52 26	3	4 C	o c	0 0	0	-	0	0	0	0	0	0	2
HU→RS	ows (OF)													123	98	61	9	0	2	-	15	တ	21	35	3 6 2	7 (22	5 4	5 5	1	ω	21	09	43	09	167	225	969
HU→RO	Outside flows (OF)	-	0	0	0	4	-	0	0	N Ţ	_ «	0 4	59	33	31	30	12	14	က	0	၈ ၊	2	0	4	3146	· ·		† rc	ט רכ	· -	ω	37	49	13	42	83	95	340
HU→HR		551	549	510	454	330	371	365	327	334	5 g	707	5561	599	313	203	138	46	06	331	342	336	522	308	114	2	7 288	904	200	344	286	467	909	268	265	845	984	6169
HU→CS		141	114	79	32	89	98	69	133	127	0.10	316	1520																									
HU→AT		196	138	123	106	112	62	12	181	28	၈ ဖ	0.00	1062	15	7	2	69	09	16	တ	4	27	65	149	205 641	5	158	2 1	2 0	113	103	4	Ξ	7	41	23	33	269
MM_YY		1.06	11.06	90'111	90.VI	V.06	VI.06	VII.06	VIII.06	90:X	7.00 X	XI.06	2006	1.10	II.10	III.10	IV.10	V.10	VI.10	VII.10	VIII.10	X.10	X.10	XI.10	XII.10	2 :	= =	= =		\ 111	VI.11	VII.11	VIII.11	X.11	X.11	XI.11	XII.11	2011

'These physical energy flows were measured on the tie lines (\geq 110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values /Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	n.a. 0 0
Fossil fuels net generation	GWh	Σ	2006 2010 2011	n.a. 23025 20417
Hydraulic net generation	GWh	Σ	2006 2010 2011	n.a. 726 679
Other renewable net generation	GWh	Σ	2006 2010 2011	n.a. 2820 4359
- of which wind	GWh	Σ	2006 2010 2011	n.a. 2820 4359
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	n.a. 248 177
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 ¹ 2011 ¹	n.a. 26819 25632
Sum of physical inside flows	GWh	Σ	2006 2010 2011	n.a. 744 733
Sum of physical outside flows	GWh	Σ	2006 2010 2011	n.a. 293 243
Total exchange balance	GWh	Σ	2006 2010 2011	n.a. 469 490
Consumption of pumps	GWh	Σ	2006 2010 2011	n.a. 287 0
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	n.a. 27001 26122
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.10 16.03.11	n.a. 2906 2876
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.10 19.01.11	n.a. 3960 3882
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.10 19.01.11	n.a. 4664 4528
Time of highest load on the 3 rd Wednesday		CET	20.12.10 19.01.11	n.a. 19:00 19:00

¹Including deliveries from industry

Physical exchanges in interconnected operation ¹

Sum_IF - Sum_OF	Balance	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	130	26	28	31	66	27	-17	37	-28	-14	-55	63 451	·	46.	9, 0	197	/31	100	29	36	4	-28	-45	-54 490	
Sum_IF	ws (IF)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	135	106	72	20	102	45	24	54	15	23	50	744	; i	7.7	0 0	38	108	103	70	54	24	10		733	•
NI→IE	Inside flows	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	135			20 0	102 0						78 0 20 0		Ęi	77	88	387	8 8	103	202	54	24	10	<u> </u>	733	•
Sum_ OF	flows (OF)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	2	o	41	19	ဇ	18	41	17	73	37	8 0	903) !	1/	o ;	_ ~	റെ		ဇ	18	20	38	8 1	243	:
IE → NI	Outside flows	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	2	o	4	19	က	18	4	17	73	37	æ c	003) !	\ 1	2 ∓	_ ~	ത	, က	3	18	20		8 [5/ 243	•
MM_YY		1.06	11.06	90'111	90·NI	V.06	VI.06	VII.06	VIII.06	0.X	X.06	90:IX	XII.06	2006	1.10	11.10	III.10	IV.10	V.10	VI.10	VII.10	VIII.10	X.10	X.10	X.10	2010	2 :	- -	= =	<u> </u>	>	VI.11	VII.11	VIII.11	IX.11	X. 2	L.X.	2011	

These physical energy flows were measured on the tie lines (≥110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values /Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	n.a. 0 0
Fossil fuels net generation	GWh	Σ	2006 2010 2011	n.a. 5202 4833
Hydraulic net generation	GWh	Σ	2006 2010 2011	n.a. 0 0
Other renewable net generation	GWh	Σ	2006 2010 2011	n.a. 33 115
- of which wind	GWh	Σ	2006 2010 2011	n.a. 33 115
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	n.a. 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	n.a. 5235 4948
Sum of physical inside flows	GWh	Σ	2006 2010 2011	n.a. 0 0
Sum of physical outside flows	GWh	Σ	2006 2010 2011	n.a. 0 0
Total exchange balance	GWh	Σ	2006 2010 2011	n.a. 0 0
Consumption of pumps	GWh	Σ	2006 2010 2011	n.a. 0 0
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	n.a. 5235 4948
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.		n.a. n.a. n.a.
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.		n.a. n.a. n.a.
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.08.11 16.02.11	n.a. 983 780
Time of highest load on the 3 rd Wednesday		CET	18.08.10 16.02.11	n.a. 14:00 20:00

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	0 0 0
Fossil fuels net generation	GWh	Σ	2006 2010 2011	0 12 8
Hydraulic net generation	GWh	Σ	2006 2010 2011	7044 12484 12743
Other renewable net generation	GWh	Σ	2006 2010 2011	2434 4183 4402
- of which wind	GWh	Σ	2006 2010 2011	0 0 0
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	4 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	9482 16679 17153
Sum of physical inside flows	GWh	Σ	2006 2010 2011	0 0 0
Sum of physical outside flows	GWh	Σ	2006 2010 2011	0 0 0
Total exchange balance	GWh	Σ	2006 2010 2011	0 0 0
Consumption of pumps	GWh	Σ	2006 2010 2011	0 0 0
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	9482 16679 17153
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.10 21.12.11	n.a. 1906 1929
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.10 19.01.11	n.a. 2086 2078
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.10 21.12.11	n.a. 2113 2101
Time of highest load on the 3 rd Wednesday		CET	20.12.10 21.12.11	n.a. 19:00 19:00

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	0 0 0
Fossil fuels net generation	GWh	Σ	2006 2010 2011	250685 220938 218457
Hydraulic net generation	GWh	Σ	2006 2010 2011	42450 53798 47202
Other renewable net generation	GWh	Σ	2006 2010 2011	8402 15970 25758
- of which wind	GWh	Σ	2006 2010 2011	3153 9047 9776
- of which solar	GWh	Σ	2006 2010 2011	n.a. 1875 10670
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	301537 290706 291417
Sum of physical inside flows	GWh	Σ	2006 2010 2011	46525 45899 47478
Sum of physical outside flows	GWh	Σ	2006 2010 2011	1618 1699 1715
Total exchange balance	GWh	Σ	2006 2010 2011	44907 44200 45763
Consumption of pumps	GWh	Σ	2006 2010 2011	8648 4451 2540
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	337796 330455 334640
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	19.07.06 15.12.10 20.07.11	33930 35755 32905
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	19.07.06 15.12.10 16.02.11	53165 53959 50005
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 21.12.11	53816 54927 51745
Time of highest load on the 3 rd Wednesday		CET	18.01.06 15.12.10 21.12.11	18:00 17:00 18:00

Physical exchanges in interconnected operation 1

Sum_IF - Sum_OF	Balance	2136	2165	3154	4726	4337	4144	3851	2936	3892	4844	4425	4297	44907	3452	3929	4399	3883	3567	3802	4472	2817	3452	3747	3888	2792	44200	3901	4093	4049	3940	3451	3349	3949	2611	2978	4761	4508	4173	45763
Sum_IF		2414	2399	3354	4765	4381	4197	3949	3046	3977	4955	4574	4514	46525	3642	4037	4543	4055	3686	3923	4574	2947	3524	3893	4013	3062	45899	4084	4210	4232	4057	3541	3538	4041	2754	3102	4837	4673	4409	47478
SI → IT		418	477	266	701	591	520	444	588	204	415	392	372	5389	727	775	862	726	269	280	394	72	526	610	880	664	7513	523	430	483	487	414	390	401	214	315	444	351	334	4786
GR→IT	ows (IF)	169	20	222	173	149	19	7	4	34	20	40	58	945	312	200	506	71	0	4	239	213	163	282	241	331	2299	287	168	278	96	103	48	116	157	104	110	135	66	1701
FR→IT	Inside fl	694	694	1042	1614	1439	1366	1249	860	1395	1619	1546	1373	14891	811	1057	1171	1020	861	1230	1311	839	947	867	957	512	11583	1119	1206	1261	1339	1131	1094	1073	855	925	1485	1506	1313	14307
CH→IT		1058	1089	1412	2164	2062	2179	2118	1756	2230	2738	2472	2607	23885	1686	1903	2185	2126	2003	1953	2503	1730	1784	2043	1817	1443	23176	2058	2328	2108	2053	1800	1897	2343	1527	1690	2686	2563	2559	25612
AT→IT		75	88	112	113	140	113	131	137	114	133	124	134	1415	106	102	119	112	125	119	127	60	104	91	118	112	1328	26	78	102	82	93	109	108	-	89	112	118	104	1072
Sum_ OF		278	234	200	39	44	53	86	110	82	111	149	217	1618	190	108	144	172	119	121	102	130	72	146	125	270	1699	183	117	183	117	06	189	92	143	124	92	165	236	1715
ıτ → sı		-	-	7	0	0	0	-	-	4	-	-	0	12	21	2	7	58	4	우	9	12	9	14	2	α !	120	0	α	က	4	က	4	N	17	7	2	2	Ξ	63
IT→GR	ows (0F)	4	0	0	က	0	4	14	75	48	69	100	138	455	2	-	15	17	0	Ξ	က	Ξ	-	2	9	0	72	2	က	0	0	7	48	13	4	က	4	82	109	276
IT→FR	Outside fl	122	103	100	36	42	4	54	32	35	38	47	78	726	115	75		83	22	32	99	96	8	Ξ	87	164	1012	138	94	88	29	21	22	26	88	8	54	61	104	935
IT→CH		149	129	86	0	2	2	59	2	-	2	-	-	422	52	27	45	44	09	65	27	0	17	16	27	104	493	40	18	95	46	33	82	21	36	22	13	14	=	431
IT→AT		Ø	-	0	0	0	0	0	0	0	0	0	0	က	0	0	0	0	0	0	0	Ŋ	0	0	0	0	7	0	0	0	0	-	0	0	0	ω	0	0	-	10
MM_YY		1.06	11.06	90'111	IV.06	V.06	VI.06	VII.06	VIII.06	90.XI	90.X	90'IX	90'IIX	2006	1.10	II.10	111.10	N.10	V.10	VI.10	VII.10	VIII.10	IX.10	X.10	XI.10	XII.10	2010	1.11	11.11	II.11	N.11	V.11	VI.11	VII.11	VIII.11	IX.11	X.11	XI.11	XII.11	2011

'These physical energy flows were measured on the tie lines (±110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values / Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	n.a. 0 0
Fossil fuels net generation	GWh	Σ	2006 2010 2011	n.a. 3216 2752
Hydraulic net generation	GWh	Σ	2006 2010 2011	n.a. 1196 1049
Other renewable net generation	GWh	Σ	2006 2010 2011	n.a. 295 620
- of which wind	GWh	Σ	2006 2010 2011	n.a. 193 472
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	n.a. 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 ¹ 2011 ¹	n.a. 5328 4421
Sum of physical inside flows	GWh	Σ	2006 2010 2011	n.a. 8177 8086
Sum of physical outside flows	GWh	Σ	2006 2010 2011	n.a. 2185 1345
Total exchange balance	GWh	Σ	2006 2010 2011	n.a. 5992 6737
Consumption of pumps	GWh	Σ	2006 2010 2011	n.a. 1043 796
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	n.a. 10276 10362
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 16.02.11	n.a. 1090 1038
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 21.12.11	n.a. 1728 1594
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 21.12.11	n.a. 1787 1688
Time of highest load on the 3 rd Wednesday		CET	15.12.10 21.12.11	n.a. 17:00 17:00

Sum_IF - Sum_OF	Balance	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	337	272	404	206	524	524	541	544	575	579	545	641	2882	280	510	518	547	656	538	287	297	505	8/9	625	200	6/41
Sum_IF		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	664	545	582	788	681	594	644	674	737	747	693	828	8177	665	296	601	722	743	678	693	069	630	724	729	615	9808
RU → LT	ws (IF)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	25	81	22	9	32	69	83	/8	28	36	45	3,	634	100	91	145	112	145	310	328	300	240	167	254	244	2436
BY→LT	Inside flows (IF	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	л.а.	n.a.	431	325	308	243	391	292	384	382	453	209	342	425	4488	256	223	213	9/	212	145	148	279	321	457	343	240	9162
LV→LT		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	181	139	217	539	255	230	177	214	226	202	309	366	3055	309	282	243	534	383	223	217	111	69	100	132	131	2734
Sum_ OF	(:	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	п.а.	327	273	178	282	157	20	103	130	162	168	148	187	2185	85	98	83	175	87	140	106	93	125	146	104	115	1345
LT→RU	flows (OF	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	⊓.a.	л.а.	n.a.	246	175	124	509	106	46	73	73	129	104	109	155	1549	40	36	12	16	4	0	0	N	15	22	N	2	- cc L
LT→BY	Outside	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	23	36	31	73	33	16	22	37	59	35	36	31	402	42	47	28	159	78	92	96	38	37	24	32	41	/4/
LT→LV		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	28	62	23	0	18	80	ω	50	4	59	က	- 50	234	က	က	10	0	ις i	45	10	23	£ 5	102	0	69	443
MM_YY		1.06	11.06	90'111	1V.06	V.06	VI.06	VII.06	VIII.06	90:XI	X.06	XI.06	XII.06	2002	1.10	11.10	111.10	IV.10	V.10	VI.10	VII.10	VIII.10	1X.10	X.10	X.10	XII.10	2010	1.1	= :	= .11	N.11	.11	VI.11	VII.11	VIII.11	X:1	X.11	X.1.	XII.11	LL02

These physical energy flows were measured on the tie lines (≥110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values /Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	0 0 0
Fossil fuels net generation	GWh	Σ	2006 2010 2011	3195 2879 2318
Hydraulic net generation	GWh	Σ	2006 2010 2011	892 1458 1127
Other renewable net generation	GWh	Σ	2006 2010 2011	122 178 216
- of which wind	GWh	Σ	2006 2010 2011	60 55 64
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 8
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	4209 4515 3661
Sum of physical inside flows	GWh	Σ	2006 2010 2011	6831 7282 7099
Sum of physical outside flows	GWh	Σ	2006 2010 2011	3286 3208 2657
Total exchange balance	GWh	Σ	2006 2010 2011	3546 4074 4407
Consumption of pumps	GWh	Σ	2006 2010 2011	1139 1899 1510
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	6616 6690 6558
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.03.06 19.01.10 16.02.11	792 779 816
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.10.06 19.01.10 21.12.11	936 1021 1078
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 21.12.11	972 1047 1188
Time of highest load on the 3 rd Wednesday		CET	18.01.06 15.12.10 21.12.11	19:00 19:00 18:00

Sum_IF - Sum_OF	Balance	322	352	298	277	289	266	326	225	287	335	305	263	3545	362	317	355	355	884	346	258	339	347	353	295	4074	370	345	303	361	500	360	470	549	482	295	277	4442
Sum_IF	s (IF)	613	543	589	545	588	277	619	477	554	593	277	556	6831	638	574	615	626	000	22.00	487	573	629	645	638	7282	629	641	000	564	100	465 551	563	628	619	561	548	6607
DE → LU	Inside flows	466	416	442	406	426	416	440	392	422	447	434	427	5134	545	486	511	518	202	482	435	470	521	246	226	6159	292	540	200	010	2 0	247 413	452	471	512	482	479	6776
BE→LU	ul	147	127	147	139	162	161	179	82	132	146	143	129	7691	96	88	104	108	133	0, 0	52	103	108	66	29	1123	112	101	001	99 124	1 00	28.5	11.	157	107	79	69	1320
Sum_ OF	/s (OF)	291	191	291	268	299	311	293	252	267	258	272	293	3286	276	257	260	271	25/	236	229	234	282	292	343	3208	309	296	363	0 / 0 0 03	7 7 7	191	- 66	79	137	266	271	/607
LU→DE	Outside flow	69	61	64	29	9/	72	29	09	65	72	64	67	804	116	104	103	129	227	. 6	77	83	109	138	148	1361	140	139	/61	2 4	? <	0 4	6.2	6/	101	80	00	1124
LU→BE	Out	222	130	227	201	223	239	226	192	202	186	208	226	2482	160	153	157	142	102	154	152	145	173	154	195	1847	169	157	100	154	1 2	144	- 4	0	36	186	181	1999
MM_YY		1.06	90'11	90'111	IV.06	V.06	VI.06	VII.06	VIII.06	90.XI	90.X	XI.06	XII.06	5006	1.10	11.10	9.1	N.10	0.5	VI 10	VIII.10	IX.10	X.10	XI.10	XII.10	2010	1.1	= =	[] \ []	- - -			V	X.11	X.11	XI.11	XII.1	7011

· These physical energy flows were measured on the tie lines (\geq 110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values / Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	n.a. 0 0
Fossil fuels net generation	GWh	Σ	2006 2010 2011	n.a. 2847 2885
Hydraulic net generation	GWh	Σ	2006 2010 2011	n.a. 3496 2870
Other renewable net generation	GWh	Σ	2006 2010 2011	n.a. 101 183
- of which wind	GWh	Σ	2006 2010 2011	n.a. 47 72
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	n.a. 0 219
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	n.a. 6444 6157
Sum of physical inside flows	GWh	Σ	2006 2010 2011	n.a. 3973 4010
Sum of physical outside flows	GWh	Σ	2006 2010 2011	n.a. 3101 2760
Total exchange balance	GWh	Σ	2006 2010 2011	n.a. 872 1107
Consumption of pumps	GWh	Σ	2006 2010 2011	n.a. 0 0
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	n.a. 7316 7264
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.01.10 16.02.11	n.a. 731 742
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.01.10 16.02.11	n.a. 1169 1130
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.01.10 16.02.11	n.a. 1257 1226
Time of highest load on the 3 rd Wednesday		CET	20.01.10 16.02.11	n.a. 17:00 9:00

Physical exchanges in interconnected operation ¹

Sum_IF - Sum_OF	Balance	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	21	96	-40	-417	-45	101	306	217	220	219	99	138	872	4-	-14	-13	-414	-103	222	272	264	342	340	219	139	1250
Sum_IF		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	213	236	194	138	211	331	483	431	446	421	365	504	3973	305	268	232	142	280	445	489	375	413	440	351	270	4010
RU→LV	ws (IF)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	39	48	45	48	42	91	138	127	128	69	11	158	1044	92	83	80	89	96	110	132	78	75	21	42	84	934
LT→LV	Inside flows	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	28	62	23	0	18	ω	ω	50	4	59	ო	-	234	က	ო	10	0	2	45	10	23	73	102	02	69	443
EE→LV		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	116	126	126	06	151	232	337	284	314	323	251	345	2692	207	176	142	74	179	290	347	244	265	317	239	153	2633
Sum_ OF	(n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	192	140	234	555	256	230	177	214	226	202	309	366	3101	309	282	245	556	383	223	217	111	71	100	132	131	2760
LV→RU	lows (OF	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	က	0	4	-	0	0	0	0	0	0	0	0	∞	0	0	0	0	0	0	0	0	0	0	0	0	0
LV → LT	Outside flows	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	181	139	217	539	255	230	177	214	226	202	309	366	3055	309	282	243	534	383	223	217	111	69	100	132	131	2734
LV→EE		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	∞	-	13	15	-	0	0	0	0	0	0	0	38	0	0	7	22	0	0	0	0	7	0	0	0	56
MM_YY		1.06	90'11	90'111	IV.06	V.06	90.IV	VII.06	VIII.06	1X.06	X.06	XI.06	XII.06	2006	1.10	11.10	111.10	IV.10	V.10	VI.10	VII.10	VIII.10	IX.10	X.10	XI.10	XII.10	2010	1.11	1.1	11.11	IV.11	V.11	VI.11	VII.11	VIII.11	X.1	X.11	X.11	XII.11	2011

'These physical energy flows were measured on the tie lines (±110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values / Operation".

Thermal nuclear net generation	GWh	Σ	2010 2011	0 0
Fossil fuels net generation	GWh	Σ	2010 2011	1267 1446
Hydraulic net generation	GWh	Σ	2010 2011	2738 1186
Other renewable net generation	GWh	Σ	2010 2011	0 0
- of which wind	GWh	Σ	2010 2011	0 0
- of which solar	GWh	Σ	2010 2011	0 0
Non-identifiable net generation	GWh	Σ	2010 2011	0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2010 2011	4005 2632
Sum of physical inside flows	GWh	Σ	2010 2011 ¹	2333 3416
Sum of physical outside flows	GWh	Σ	2010 2011 ¹	2383 900
Total exchange balance	GWh	Σ	2010 2011	39 1551
Consumption of pumps	GWh	Σ	2010 2011	0 0
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2010 2011	4044 4183
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.01.10 21.12.11	427 449
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	16.02.10 21.12.11	532 575
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.01.10 21.12.11	589 648
Time of highest load on the 3 rd Wednesday		CET	20.01.10 21.12.11	19:00 19:00

 $^{^{\}mbox{\tiny 1}}$ Sum of physical inside and outside flows without ME - AL

Physical exchanges in interconnected operation 1

Sum_IF - Sum_OF	Balance					-138	-41	8- 7- 7-	-148	-41	145 192	175	94	-20 -132	-50	0	00	0	0	0 0	0	0	0	0 0	n.a.
Sum_IF						260	193	193	86	124	247	245	219	164	2333	0	0 0	00	0	0 0	00	0	0	00	n.a.
AL → ME	Inside flows (IF)					0	Ο ι	ი ფ	9	37	0 0	0	62	84 C	225	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a
RS→ME	Inside fl					Ø	7 5	2 8	18	10	92 83 83	106	92	9 6	211	22	42 7 0	153	244	526	133	129	86	131	1595
BA→ME						258	181	178	74	77	155 210	139	62	132	1597	156	149	99	43	40.0	206	168	134	277	1821
Sum_ OF						398	234	171	246	165	102	20	125	302	2383	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
ME → AL	ows (OF)					51	24	20 01	61	-	8 8	0	o (οι σ	305	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a
ME→RS	Outside flows (OF					301	166	130	130	75	95 19	4	74	40 40 75	1450	151	6 6	9 4	9	7 7	- 2	19	36	30	493 493
ME→BA						46	44 0	57 57	22	88	33	26	42	8/8	628	61	φ ξ	79	74	46	g 6	10	9	n u	407
MM_YY		00: 00: 00: 00: 00: 00: 00: 00:	VI.06	VIII.06 IX.06	X:06 XI:06 XII:06 2006	1.10	0.10	N.10	V.10	VI.10	VII.10	IX.10	X.10	X X	2010	1.1	= =	N	V.11	VI.1	\ 	IX.11	×.1	X	2011

· These physical energy flows were measured on the tie lines (\geq 110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values / Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	0 0 0
Fossil fuels net generation	GWh	Σ	2006 2010 2011	4940 4282 4858
Hydraulic net generation	GWh	Σ	2006 2010 2011	1624 2316 1469
Other renewable net generation	GWh	Σ	2006 2010 2011	0 0 0
- of which wind	GWh	Σ	2006 2010 2011	0 0 0
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	6564 6598 6327
Sum of physical inside flows	GWh	Σ	2006 2010 2011	2998 5270 4169
Sum of physical outside flows	GWh	Σ	2006 2010 2011	1202 3857 1548
Total exchange balance	GWh	Σ	2006 2010 2011	1813 1730 2659
Consumption of pumps	GWh	Σ	2006 2010 2011	0 0 0
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	8377 8328 8986
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.02.06 15.12.10 19.01.11	1088 1087 1058
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 16.02.11	1415 1357 1254
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 21.12.11	1520 1535 1486
Time of highest load on the 3 rd Wednesday		CET	18.01.06 15.12.10 21.12.11	18:00 18:00 15:00

Physical exchanges in interconnected operation 1

Sum_IF - Sum_OF	Balance	226	224	161	109	125	135	99	134	168	82	162	201 1796	121	28	132	2 8	67-	-40 48	153	167	241	253	274	1413	282	213	172	122	137	175	230	171	283	199	326	311	2621
Sum_IF		282	282	278	236	244	244	247	244	248	164	263	266 2998	407	390	489	377	330	401 077	634	475	361	381	415	5270	435	386	384	256	247	300	438	404	336	262	362	329	4169
GR→RS	s (IF)													224	188	291	506	- 6	163	222	161	139	135	186	2309	202	133	140	∞	ത	73	157	174	99	63	09	29	1144
GR→MK	side flows	1	-	0	0	0	-	0	0	-	∞	0	o 2	0	0	0	0 0	> <	0 0	0	0	9	-	-	∞	0	0	0	က	19	က	0	0	16	თ	32	55	107
сѕ→мк	ll	203	208	210	171	198	151	178	166	175	82	191	190 2126																									
BG→MK		78	73	89	92	46	92	69	78	72	71	72	9 2 8 0	183	202	198	171	50 0 10 0	387	412	314	216	245	228	2953	233	253	244	245	219	224	281	230	254	190	267	278	2918
Sum_ OF		56	58	117	127	119	109	181	110	80	29	101	65 1202	286	312	357	356	33.9 10.1	502	481	308	120	128	141	3857	153	173	212	134	110	125	208	233	53	63	36	48	1548
MK→RS	's (OF)													0	0	0	0 0	o c	o c	0	0	0	0	0	0	0	0	0	0	22	8	0	-	12	-	13	2	29
MK→GR	side flow	26	28	117	127	119	109	181	110	80	79	101	65 1202	286	312	357	356	503	207	481	308	120	128	141	3857	153	173	212	134	82	123	508	232	4 (62	23	43	1489
MK→CS	Out	0	0	0	0	0	0	0	0	0	0	0	o o																									
MK→BG		0	0	0	0	0	0	0	0	0	0	0	o o	0	0	0	0 0	o c	o c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
MM_YY		1.06	11.06	90'111	1V.06	V.06	VI.06	VII.06	90'III/	90.XI	90.X	90'IX	XII.06 2006	1.10	II.10	III.10	∑.10 2.10	0.5	VI.10	VIII.10	IX.10	X.10	XI.10	XII.10	2010	1.11	11.11	11.11	IV.11	V.11	VI.11	VII.11	VIII.11	X:1	X.11	X.11	XII.11	2011

'These physical energy flows were measured on the tie lines (\geq 110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values / Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	n.a. 0 0
Fossil fuels net generation	GWh	Σ	2006 2010 2011	n.a. 6581 6636
Hydraulic net generation	GWh	Σ	2006 2010 2011	0 8 7
Other renewable net generation	GWh	Σ	2006 2010 2011	n.a. 724 1063
- of which wind	GWh	Σ	2006 2010 2011	n.a. 666 1005
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	n.a. 12 18
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	n.a. 7325 7724
Sum of physical inside flows	GWh	Σ	2006 2010 2011	n.a. 2592 2012
Sum of physical outside flows	GWh	Σ	2006 2010 2011	n.a. 744 733
Total exchange balance	GWh	Σ	2006 2010 2011	n.a. 1855 1285
Consumption of pumps	GWh	Σ	2006 2010 2011	n.a. 0 0
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	n.a. 9180 9009
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 19.01.11	n.a. 938 903
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 19.01.11	n.a. 1488 1457
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 19.01.11	n.a. 1684 1681
Time of highest load on the 3 rd Wednesday		CET	15.12.10 19.01.11	n.a. 19:00 19:00

Sum_IF - Sum_OF	Balance	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	105	121	190	159	124	22	172	183	192	153	187	207	1848	246	186	181	105	143	135	87	73	4-	78	45	z (6/2
Sum_IF	(IF)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	240	227	262	509	226	100	196	237	207	176	213	299	2592	317	251	273	235	251	238	157	127	20	38	84	/9	2012
IE→NI	nside flows	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	2	ဝ	14	19	က	18	41	17	73	37	48	တ	293	17	16	7	က	6	က	က	18	20	38	8 I	2,6	243
GB→NI	lns	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	235	218	248	190	223	82	155	220	134	139	165	290	2299	300	235	262	232	242	235	154	109	0	0	0	0 0	60/1
Sum_ OF	(OF)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	135	106	72	20	102	45	24	54	15	23	56	92	744	71	65	92	130	108	103	02	54	24	10	က	3 3	200
NI→IE	Outside flows	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	л.а.	n.a.	135	106	72	20	102	45	24	24	15	23	56	95	744	71	65	95	130	108	103	20	54	24	9	ကျ	ο 1	? ??
NI→GB	Out	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 (0	>
MM_YY		90:1	90'11	90'111	IV.06	V.06	VI.06	VII.06	VIII.06	1X.06	X.06	XI.06	90:IIX	2006	1.10	11.10	111.10	1V.10	V.10	VI.10	VII.10	VIII.10	IX:10	X.10	XI.10	XII.10	2010	1.11	11.1	II.11	IV.11	V.11	VI.11	VII.11	VIII.11	X.11	X.11	X ;	XII.11	1102

'These physical energy flows were measured on the tie lines (±110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values / Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	3269 3755 3919
Fossil fuels net generation	GWh	Σ	2006 2010 2011	84278 99539 93002
Hydraulic net generation	GWh	Σ	2006 2010 2011	100 0 0
Other renewable net generation	GWh	Σ	2006 2010 2011	7067 10391 12104
- of which wind	GWh	Σ	2006 2010 2011	2697 3995 5096
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 ¹ 2010 ¹ 2011 ¹	94714 113685 109025
Sum of physical inside flows	GWh	Σ	2006 2010 2011	27355 15589 20665
Sum of physical outside flows	GWh	Σ	2006 2010 2011	5886 12811 11787
Total exchange balance	GWh	Σ	2006 2010 2011	21465 2775 8812
Consumption of pumps	GWh	Σ	2006 2010 2011	0 0 0
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	116179 116460 117837
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 16.11.11	11582 10605 10183
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 21.12.11	17796 17219 16496
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 16.11.11	17855 18187 17346
Time of highest load on the 3 rd Wednesday		CET	20.12.06 15.12.10 16.11.11	10:00 18:00 18:00

¹Including deliveries from industry

Sum_IF - Sum_OF	Balance	1662	1233	1511	2106	2150	2137	1807	1569	1808	1877	1905	1704	71409	-559	-249	-490	519	209	1070	1413	1190	398	-978	-222	//1	0//7	829	362	399	475	491	1519	1458	1221	1053	409	305	327	88 /8
Sum_IF		2550	2351	2786	2525	2474	2335	1979	1789	1905	1999	2208	2454	66677	869	899	889	1147	1578	1818	1990	1904	1324	770	1114	91/1	6000	1899	1253	1413	1419	1232	2194	2313	2223	1929	1600	1492	1698	20665
NO→NL	(IF)														115	0	0	N	114	153	506	160	169	240	125	4 200	929	53	<u>ල</u>	1 33	7,5	0	321	490	202	430	200	492	474	3360
GB→NL	side flows																											0	0	0 (82 1	75	29	56	21	107	96	219	37	7.06
DE→NL	sul	2486	2322	2759	2113	2031	1564	1178	929	1115	1478	1986	2375	25330	643	410	362	881	1036	920	943	576	584	330	707	1550	7460	1578	1022	686	/30	279	795	889	555	588	764	594	1007	6866
BE→NL		64	29	27	412	443	771	801	860	290	521	222	62 5	6100	111	258	326	264	428	745	841	1168	571	200	282	124	9100	292	212	401	989	8/8	1011	1109	1110	804	240	187	180	0107
Sum_ OF		888	1118	1275	419	324	198	172	220	97	122	303	750	0000	1428	917	1178	628	1069	748	222	714	926	1748	1336	1542	107	1040	891	1014	944	741	675	855	1002	876	1191	1187	1371	11/8/
NL→NO	(OF)														242	0	0	28	274	231	193	240	207	200	298	404	7407	470	405	444	182	0	30	0	0	0	0	0	50	1551
NL→GB	side flows																											0	0	0	299	81	310	402	397	237	197	121	450	2494
NL→DE	Outs	0	0	0	0	-	80	35	214	22	7	0	- 6	202	239	247	255	114	209	191	138	291	327	481	210	ر در در	3012	Ξ:	61	98	228	542	250	306	424	396	321	427	166	3221
NL→BE		888	1118	1275	419	323	190	137	9	75	120	303	749	2003	947	670	623	456	286	326	246	183	392	1067	828	1008	7667	559	425	484	235	118	82	144	181	243	673	639	735	4521
MM_YY		90:1	90'II	90'111	1V.06	V.06	VI.06	VII.06	VIII.06	90.XI	90.X	90.IX	XII.06	2000	1.10	11.10	11.10	IV.10	V.10	VI.10	VII.10	VIII.10	X.10	X.10	X.10	XII.10	2010	<u> </u>	1.11	III.11	IV.11	V.11	VI.11	VII.11	VIII.11	X. 1	×.11	X.1.	XII.11	2011

· These physical energy flows were measured on the tie lines (\geq 110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values / Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	0 0 0
Fossil fuels net generation	GWh	Σ	2006 2010 2011	1123 5267 4776
Hydraulic net generation	GWh	Σ	2006 2010 2011	119919 117286 121383
Other renewable net generation	GWh	Σ	2006 2010 2011	673 892 1257
- of which wind	GWh	Σ	2006 2010 2011	673 808 1257
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 ¹ 2010 ¹ 2011 ¹	121715 123445 127416
Sum of physical inside flows	GWh	Σ	2006 2010 2011	n.a. 14441 11022
Sum of physical outside flows	GWh	Σ	2006 2010 2011	n.a. 6593 13600
Total exchange balance	GWh	Σ	2006 2010 2011	857 7537 -2986
Consumption of pumps	GWh	Σ	2006 2010 2011	540 1190 2410
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	122032 129792 122020
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 16.02.11	n.a. 17165 17235
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 16.02.11	n.a. 21350 21189
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 16.02.11	n.a. 21852 21512
Time of highest load on the 3 rd Wednesday		CET	15.12.10 16.02.11	n.a. 10:00 9:00

Physical exchanges in interconnected operation 1

	ا ـ ا																																						
Sum_IF - Sum_OF	Balance	n.a.	/ 60	198	545	1499	1756	1440	-87	345	-49	-554	611	829	7848	2319	1876	2168	1218	386	-961	-2252	-2050	-1361	-1615	-1900	-406	-2578											
Sum_IF		n.a.	1006	954	716	1604	2033	1765	830	910	733	752	1195	1341	14441	2378	1960	2233	1564	798	305	88	135	356	210	151	844	11022											
RU → NO		n.a.	2 3	50		- t	21	17	20	1	17	16	18	50	209	17	19	Ξ	17	20	59	18	17	14	Ξ	19	50	212											
SE→NO	(IF)	n.a.	0/1/	294	400	1075	1388	1269	449	504	350	294	510	414	200	1277	626	1157	1042	282	227	20	107	337	190	120	627	6718											
NL→NO	flows													!	242	o (220	274	231	193	240	207	200	298	404	2347	470	405	444	182	0	30	0	0	0	0	0	50	1551
FI→NO	Inside	n.a.	\$	4 5	7.	36	13	2	2	0	0	-	17	10	162	15	22	35	19	က	0	0	2	2	0	0	23	127											
DK→NO															384	9/6	929 420	337	243	163	155	159	241	352	493	4055	299	535	286	304	190	19	0	9	0	<u></u>	12	154	2414
DK_W→NO		84	20	179	261	203	180	138	254	240	236	196	303	52.24																									
	Ш													•																									
Sum_ OF		n.a.				n.a.				n.a.	n.a.	n.a.	n.a.	4460	756	3/2	105	277	325	917	292	782	1306	584	482	6593	59	84	65	346	412	1266	2340	2185	1717	1825	2051	1250	13600
Sum_ OF Sum_ OF NO-→RU		n.a.	n.a.		n.a.	_	n.a.	n.a.	n.a.			_	n.a.	14460	0 756	3/2	0 105	0 277	0 325	0 917	0 265	0 782	0 1306	0 584	0 482	0 6593	0 29	0 84	0 65	0 346	0 412	0 1266	0 2340	0 2185	0 1717	0 1825	0 2051	0 1250	0 13600
	(OF)	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a.	n.a.	n.a.	n.a.	-	0 0	0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1
NO → RU	de flows (OF)	n.a. n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a.	n.a.	n.a.	n.a. n.a.	0 /88/	208	323 0		30 0	51 0	0 968	177 0	378 0	871 0	368 0	400 0	3691 0	23 0	56 0	32 0	114 0	197 0	739 0	1286 0	1040 0	720 0	0 682	1034 0	479 0	6509 0 1
NO→RU NO→SE	Outside flows (OF)	n.a. n.a.	n.a. n.a. n.a.	n.a. n.a. n.a.	n.a. n.a. n.a.	n.a. n.a.	n.a. n.a. n.a.	n.a. n.a. n.a.	n.a. n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	0 /80/	115 508 0	0 323	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	114 30 0	153 51 0	206 396 0	160 177 0	169 378 0	240 871 0	125 368 0	45 400 0	1329 3691 0	29 23 0	19 56 0	23 32 0	75 114 0	0 197 0	321 739 0	490 1286 0	507 1040 0	430 720 0	500 789 0	492 1034 0	474 479 0	3360 6509 0 1
NO→RU NO→SE NO→NL	S	n.a. n.a.	n.a. n.a. n.a.	n.a. n.a. n.a.	n.a. n.a. n.a.	n.a. n.a.	n.a. n.a. n.a.	n.a. n.a. n.a.	n.a. n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a.	n.a. n.a. n.a.	0 /00/ 001	3 115 508 0	0 323 0	0 0 0 0	9 114 30 0	4 153 51 0	38 206 396 0	24 160 177 0	21 169 378 0	11 240 871 0	2 125 368 0	3 45 400 0	115 1329 3691 0	1 29 23 0	1 19 56 0	0 23 32 0	1 75 114 0	12 0 197 0	33 321 739 0	33 490 1286 0	6 507 1040 0	6 430 720 0	19 500 789 0	19 492 1034 0	0 474 479 0	131 3360 6509 0 1
NO→RU NO→SE NO→NL NO→FI	S	n.a. n.a. n.a.	0 /00/ 001	3 115 508 0	0 323 0	0 0 0 0	9 114 30 0	4 153 51 0	38 206 396 0	24 160 177 0	21 169 378 0	11 240 871 0	2 125 368 0	3 45 400 0	115 1329 3691 0	1 29 23 0	1 19 56 0	0 23 32 0	1 75 114 0	12 0 197 0	33 321 739 0	33 490 1286 0	6 507 1040 0	6 430 720 0	19 500 789 0	19 492 1034 0	0 474 479 0	131 3360 6509 0 1											

'These physical energy flows were measured on the tie lines (\geq 110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values /Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	0 0 0
Fossil fuels net generation	GWh	Σ	2006 2010 2011 ²	145736 140270 140894
Hydraulic net generation	GWh	Σ	2006 2010 2011	2794 3405 2647
Other renewable net generation	GWh	Σ	2006 2010 2011 ²	326 2108 8069
- of which wind	GWh	Σ	2006 2010 2011	234 1843 2745
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 ¹ 2010 ¹ 2011 ¹	148856 145783 151610
Sum of physical inside flows	GWh	Σ	2006 2010 2011	4771 6314 6779
Sum of physical outside flows	GWh	Σ	2006 2010 2011	15777 7659 12023
Total exchange balance	GWh	Σ	2006 2010 2011	-11001 -1355 -5244
Consumption of pumps	GWh	Σ	2006 2010 2011	1357 837 464
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	136498 143591 145720
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 16.02.11	15648 15742 15406
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 21.12.11	20419 21538 21031
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 21.12.11	22017 23081 22697
Time of highest load on the 3 rd Wednesday		CET	20.12.06 15.12.10 21.12.11	17:00 17:00 18:00

² Since 2011 other renewable has included energy from biomass co-firing in conventional thermal units, previously classified as fossil fuel generation category.

Physical exchanges in interconnected operation 1

Sum_IF - Sum_OF	Balance	-1317	-1166	-1260	-726	-779	-458	-549	096-	-887	-901	-816 -11006	-163	-333	-157	51	146	-93	09	29	-182	-284	-240	-217	-1345	-415	-420	-775	-398	-571	-287	-138	-401	-439	-464	-208	-420	-5230
Sum_IF		482	404	188	394	267	380	209	243	477	270	706	782	7 86	648	682	620	272	693	203	292	260	511	362	6314	231	420	302	415	282	397	883	626	486	209	606	1119	28/9
UA → PL		81	0 47	- 84	78	69	74	72	<u>8</u>	88	62	65 870	, ,	0 0	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	52	34	- 0 {	- AC
BY→PL	F)	86	90	83	98	83	88	45	73	102	96	97 1043		o C	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0 (0	>
SK→PL	de flows (I	0 0	o c	0	0	0	4	0	0	0	0	0 4	. 4	· c	· -	N	10	20	0	9	∞	0	- ;	33	83	13	0	-	က	က	9	0	0	0	0	0 (0 8	Ω7.
SE→PL	Insic	0 0	o c	0	102	96	51	N	0	0	0	13 264	 	3 0	2 2	83	232	99	160	28	2	99	g '	ا د	761	-	15	∞	87	113	166	252	210	165	8	163	286	1514
DE→PL		303	23.1	29	120	Ξ	153	78	88	287	411	531 2548	548	784	622	584	360	161	525	405	254	213	466	312	5334	207	399	291	319	160	219	630	413	319	989	712	833	5138
CZ→PL		0 0	> -		80	œ	10	12	-	0	-	0 6	i 4	- 0	1 4	က	18	22	∞	14	78	Ξ	. 27	4 5	136	10	9	2	9	9	9	-	က	α (0	0 (0 į	th
Sum_OF		1799	1574	1448	1120	1046	838	758	1203	1364	1471	1522	745	919	805	631	474	365	633	436	477	844	751	579	7659	646	840	1080	813	853	684	1021	1027	925	1173	1417	1539	II & LUZT
PL → UA		0 0	o c	0	0	0	0	0	0	0	0	o c) C	0 0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	<u>-</u>
PL→BY	(OF)	0 0	o c	0	0	0	0	0	0	0	0	o c	· c	o	0	0	0	0	0	0	0	0	0	0 (0	0	0	0	0	0	0	0	0	0	0	0 (0	>
PL→SK	Outside flows (361	307	281	250	199	159	19	310	405	315	386 3374	147	187	220	168	66	83	179	87	-	176	126	5 5	1498	9/	202	254	170	166	125	149	188	324	392	486	519	3054
PL→SE	Outsi	255	5 6 6 6	242	45	51	19	99	121	99	112	93	74	. 0	74	12	2	0	7	7	44	49	29	79	494	29	45	26	36	25	ത	0	0	0	0	^ :	- 2	2/2
PL→DE		0 1	- 4	9 6	44	212	102	133	77	30	-	0 222	. e	0 0	0	0	10	42	2	52	16	-	16	4 6 i	167	71	4	75	27	121	77	4	16	55	9	က	0 ;	433
PL→CZ		1174	1025	831	781	584	228	238	695	998	1043	1043 10181	521	643	511	451	360	260	442	322	416	618	550	406	2200	440	582	869	280	514	473	866	821	277	772	921	1009	8253
MM_YY		90:1	90:11	90: VI	V.06	VI.06	VII.06	VIII.06	90:XI	X.06	XI.06	2006	- 1		10	IV.10	V.10	VI.10	VII.10	VIII.10	IX.10	X.10	XI.10	XII.10	2010	1.11	1.1	≡ .11	IV.11	V.11	VI.11	VII.11	VIII.11	X.1.	×.11	X.X.	XII.11	7 1 102

'These physical energy flows were measured on the tie lines (\geq 110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values /Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	0 0 0
Fossil fuels net generation	GWh	Σ	2006 2010 2011	28423 22315 24732
Hydraulic net generation	GWh	Σ	2006 2010 2011	11198 16247 11825
Other renewable net generation	GWh	Σ	2006 2010 2011	4818 11530 11866
- of which wind	GWh	Σ	2006 2010 2011	2892 9023 9002
- of which solar	GWh	Σ	2006 2010 2011	n.a. 207 262
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 ¹ 2010 ¹ 2011 ¹	45968 50092 48423
Sum of physical inside flows	GWh	Σ	2006 2010 2011	8481 5667 6685
Sum of physical outside flows	GWh	Σ	2006 2010 2011	3183 3190 3928
Total exchange balance	GWh	Σ	2006 2010 2011	5441 2624 2813
Consumption of pumps	GWh	Σ	2006 2010 2011	704 510 737
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	50705 52206 50499
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 16.02.11	5511 5350 5430
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 17.02.10 16.02.11	7857 7849 7685
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 17.02.10 16.02.11	9048 8800 8575
Time of highest load on the 3 rd Wednesday		CET	20.12.06 17.02.10 16.02.11	20:00 21:00 21:00

Physical exchanges in interconnected operation 1

Sum_IF - Sum_OF	Balance	804	555	494	270	531	661	521	344	869	525	145	-137	5298	-281	99	27	36	54	412	571	611	516	619	224	-3/8	7/47/	34	-172	10	200	-20	318	11 0	278	† c	342	128	2757	: : : :
Sum_IF	flows (IF)	770	806	824	541	727	812	775	643	808	783	505	346	8481	336	416	385	323	345	534	671	691	603	689	456	218	/996	499	289	498	697	386	542	1 0	580	201	597 506	0,40	6685	
ES → PT	Inside fl	7	808	824	541	727	812	775	643	808	783	205	346	8481	336	416	385	323	345	534	671	691	603	689	456	218	/006	499	289	498	269	386	542 674	1 C	580	2 0 1	597 526	020	/20 6685	
Sum_ OF	flows (OF)	000	251	330	271	196	151	254	299	110	258	357	483	3183	617	320	358	287	291	122	100	80	87	2	232	969	3190	465	461	488	197	436	224	0 740	301	טיי	233 338	000	3928	
PT→ES	Outside flows	000	251	330	271	196	151	254	299	110	258	357	483	3183	617	350	358	287	291	122	100	08	87	2	232	296	3190	465	461	488	197	436	224	24.0	301	2 7	722 338	2000	3928	
MM_YY		901	90:1	90'11	IV.06	V.06	VI.06	VII.06	VIII.06	90.XI	90.X	90:IX	XII.06	2006	1.10	11.10	III.10	IV:10	V.10	VI.10	VII.10	VIII.10	X.10	01.X	X.10	XII.10	2010	1.1	= 1		N.11	V.11	VI.11	- 1	<u> </u>	- ; - ; - >	- - -	- +	201	

These physical energy flows were measured on the tie lines (≥110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values /Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	5204 10686 10796
Fossil fuels net generation	GWh	Σ	2006 2010 2011	34236 25284 30099
Hydraulic net generation	GWh	Σ	2006 2010 2011	17982 20174 14670
Other renewable net generation	GWh	Σ	2006 2010 2011	0 402 1403
- of which wind	GWh	Σ	2006 2010 2011	0 290 1218
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	57422 56546 56968
Sum of physical inside flows	GWh	Σ	2006 2010 2011	1635 1791 2946
Sum of physical outside flows	GWh	Σ	2006 2010 2011	5884 4707 4846
Total exchange balance	GWh	Σ	2006 2010 2011	-4252 -2919 -1899
Consumption of pumps	GWh	Σ	2006 2010 2011	154 265 153
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	53016 53362 54916
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 16.02.11	6226 5856 6043
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 16.02.11	7772 7662 7889
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 16.02.11	7974 8313 8447
Time of highest load on the 3 rd Wednesday		CET	20.12.06 15.12.10 16.02.11	18:00 18:00 19:00

Sum_IF - Sum_OF	Balance	-506	-200	-466	-306	-278	-243	-228	-305	-248	-279	-434	-456	-4249	-95	17	20	-25	o	-157	-3/5	-401	-544	-393	-515	-2916	-486	-366	-403	-385	-180	-105	- 5	λ- ξά <u>-</u>	. E	7	22	-1900
Sum_IF		105	88	119	94	106	145	191	147	193	121	154	171	1635	207	214	184	151	207	200	1 3	, w	8 4	104	103	1791	73	103	5	08	240	184 290	2000	250 250 250	381	469	493	2946
MD→RO		0	0	0	0	0	0	0	0	0	0	0	0	0	35	38	33	56	23	53	S 6	3 6	3 8	38	45	368	43	35	40	34	5 20	9 6	00 6	ς α	84	29	9/	229
UA-W→RO	(IF)	72	49	49	88	47	62	106	43	4	8	146	167	893	122	115	95	62	27	_ ′	တ မှ	<u> </u>	54	56	2	526	13	20	49	17	32	8 6	5 5	1 7 7	215	297	310	1494
RS→RO	de flows														2	က	7	56	25	0	o 0	0 C	0	0	0	74	0	0	0	-	0 0	O 7	- 5	<u> </u>	· -	0	0	15
HU→RO	Inside	-	0	0	0	4	-	0	0	N	=	9	4	59	33	31	30	12	4	ကျ	N C	ט ת	0 0	4	က	146	-	4	2	Ω.	. .	΄ α	ر د د	£ 5	4 5	83	92	340
CS→RO		0	0	0	0	0	0	-	7	0	0	0	0	က																								
BG→RO		32	40	20	99	22	82	84	02	21	56	7	0	9	12	27	22	52	<u>∞</u> !	37	χ <u>τ</u>	- -	- 2	36	53	22	16	4	9	က္က	5 52	φς	<u> </u>	2 4	75	22	15	89
									_	_				_				.,	- :	Ψ'	ی رو		, , ,			9	•				-	≓ '	- 1	•				2
Sum_OF																																						_
Sum_ OF RO→MD		611	289	282	400	384	388		452	441	400	288	627	5884	302	197	164	176	198	357	205	470 700	925	497	618	4707	0 229	469	202	465	420	788	206	330	320	470	418	4846
	JF)	0 611	0 289	0 585	0 400	0 384	0 388	0 419	0 452	0 441	0 400	0 288	0 627	0 5884	0 302	0 197	0 164	0 176	0 198	0 357	0 202	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 693	0 497	0 618	0 4707	0 559	0 469	200	0 465	0 420	0 733	7/2	330	0 350	0 470	0 418	0 4846
RO→MD	flows (OF)	0 611	0 289	0 585	0 400	0 384	0 388	0 419	0 452	0 441	0 400	0 288	0 627	0 5884	1 0 302	0 0 197	1 0 164	5 0 176	23 0 198	53 0 357	60 0 505	0 0 77	7 0 693	38 0 497	97 0 618	381 0 4707	49 0 559	6 0 469	14 0 507	34 0 465	12 0 420	0 0 0	4/2 0 0 0	222	0 0 320	0 0 470	0 0 418	124 0 4846
RO→MD RO→UA-W	Outside flows (OF)	0 0 611	1 0 589	1 0 585	9 0 400	0 0 384	2 0 388	0 0 419	11 0 452	22 0 441	1 0 400	0 0 288	0 0 627	47 0 5884	89 1 0 302	85 0 0 197	51 1 0 164	16 5 0 176	23 23 0 198	179 53 0 357	279 60 0 505	180 H	282 7 0 693	269 38 0 497	303 97 0 618	1968 381 0 4707	240 49 0 559	218 6 0 469	194 14 0 507	200 34 0 465	171 12 0 420	1/9 9 0 289	121 0 0 2/4	190	159 0 0 350	283 0 0 470	263 0 0 418	2410 124 0 4846
RO→MD RO→UA-W RO→RS	S	155 0 0 611	152 1 0 589	204 1 0 585	145 9 0 400	164 0 0 384	135 2 0 388	137 0 0 419	138 11 0 452	94 22 0 441	1 0 400	29 0 0 588	25 0 0 627	1437 47 0 5884	89 1 0 302	85 0 0 197	51 1 0 164	16 5 0 176	23 23 0 198	179 53 0 357	279 60 0 505	180 14 0 47 0 14 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	282 7 0 693	269 38 0 497	303 97 0 618	1968 381 0 4707	49 0 559	218 6 0 469	194 14 0 507	200 34 0 465	171 12 0 420	1/9 9 0 289	121 0 0 2/4	190	159 0 0 350	283 0 0 470	263 0 0 418	2410 124 0 4846
RO→MD RO→UA-W RO→RS RO→HU	S	382 155 0 0 611	381 152 1 0 589	315 204 1 0 585	233 145 9 0 400	179 164 0 0 384	181 135 2 0 388	197 137 0 0 419	162 138 11 0 452	251 94 22 0 441	255 59 1 400	311 29 0 0 588	415 25 0 0 627	3262 1437 47 0 5884	37 89 1 0 302	27 85 0 0 197	32 51 1 0 164	82 16 5 0 176	90 23 23 0 198	123 179 53 0 357	143 2/9 60 0 505	144 189 55 0 520	165 282 7 0 693	114 269 38 0 497	176 303 97 0 618	1252 1968 381 0 4707	137 240 49 0 559	87 218 6 0 469	108 194 14 0 507	148 200 34 0 465	159 171 12 0 420	1/8 6 0 5288 0 7 7 7 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22 192 0 0 2/4	57 190 0 0 339	20 159 0 0 350	6 283 0 0 470	2 263 0 0 418	867 2410 124 0 4846
RO→MD RO→UA-W RO→RS RO→HU RO→CS	S	74 382 155 0 0 611	55 381 152 1 0 589	65 315 204 1 0 585	13 233 145 9 0 400	41 179 164 0 0 384	70 181 135 2 0 388	85 197 137 0 0 419	141 162 138 11 0 452	74 251 94 22 0 441	85 255 59 1 0 400	248 311 29 0 0 588	187 415 25 0 0 627	1138 3262 1437 47 0 5884	175 37 89 1 0 302	85 27 85 0 0 197	80 32 51 1 0 164	73 82 16 5 0 176	62 90 23 23 0 198	2 123 179 53 0 357	23 143 279 60 0 505 145 146 203 41 0 479	134 144 180 55 0 150	239 165 282 7 0 693	76 114 269 38 0 497	42 176 303 97 0 618	1106 1252 1968 381 0 4707	240 49 0 559	158 87 218 6 0 469	191 108 194 14 0 507	83 148 200 34 0 465	78 159 171 12 0 420	887 0 6 6/1 16 01	4/2 0 0 281 25 00 1	90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	171 20 159 0 0 350	181 6 283 0 0 470	153 2 263 0 0 418	1445 867 2410 124 0 4846

'These physical energy flows were measured on the tie lines (\geq 110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values /Operation".

Thermal nuclear net generation	GWh	Σ	2010 2011	0 0
Fossil fuels net generation	GWh	Σ	2010 2011	28508 32104
Hydraulic net generation	GWh	Σ	2010 2011	12453 9162
Other renewable net generation	GWh	Σ	2010 2011	0 0
- of which wind	GWh	Σ	2010 2011	0 0
- of which solar	GWh	Σ	2010 2011	0 0
Non-identifiable net generation	GWh	Σ	2010 2011	0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2010 2011	40961 41266
Sum of physical inside flows	GWh	Σ	2010 2011	7027 6407
Sum of physical outside flows	GWh	Σ	2010 2011	6704 5076
Total exchange balance	GWh	Σ	2010 2011	-321 -227
Consumption of pumps	GWh	Σ	2010 2011	1115 865
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2010 2011	39525 40174
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 21.12.11	5161 4881
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 16.02.11	6491 6234
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 16.02.11	7034 6803
Time of highest load on the 3 rd Wednesday		CET	15.12.10 16.02.11	18:00 19:00

Sum_IF - Sum_OF	Balance	371	259	129	116	52	-78	-114	158	96	197	320	1950	808	180	65	-230	-227	-138	-218	-188	-232	123	305	490	323	277	199	-166	-178	-271	-294	-230	-135	-32	66	387	573	229
Sum_IF		1078	971	807	208	629	2/2	528	774	699	697	974	021	900	000	573	338	373	451	248	479	429	00	767	9/8	/02/	276	614	470	499	466	435	432	426	514	479	810	626	0069
AL→RS ²	11	28	43	97	100	94	28	10	53	28	32	43	- 213	- C	3 5	145	145	142	37	-	_	0	98	104	15/	1047	146	20	12	-	0	N	_	က	4	15	0	က	209
RO→RS ²	Ш	382	381	315	233	179	181	197	162	251	255	311	4-15		8 g	3 15	16	23	179	279	203	189	282	269	303	308	240	218	194	200	171	179	192	121	190	159	283	263	2410
MK→RS ²	(F)	0	0	0	0	0	0	0	0	0 (0	0 0	o c	,	o c	0 0	0	0	0	0	0	0	0	0 ())	>	0	0	0	0	22	N	0	-	12	-	13	2	29
ME→RS	flows													50	100	961	112	130	75	84	19	4	4 5	40 5	195 1	450	151	29	49	18	9	17	Ξ	7	19	36	30	26	493
HU→RS ²	Inside	141	114	79	35	89	98	69	133	127	139	213	310									_									_			_		_			
HR→RS ²													,																										
BG→RS ²		38	32	302	31	25	83	28	380	00	25	8 23	313 2837		5 6	71	37	24	48	56	333	74	93	526	10.5	4	89	22	92	191	44	19	91	84	25	75	43	9/3	21
BA→RS ²													1476 28																										
=	Ц		_		_	_			_	_	_	_ `	- 14	-											•	າ											_		ء
Sum_ OF		707	712	678	592	627	653	642	616	573	572	654	7780	7	5 5	20.5	568	009	289	992	299	661	277	462	488	6/04	499	415	929	229	737	729	662	261	546	380	423	406	6671
RS ² →AL		48	1	0	က	2	7	38	30	27	21	19	ე 2		o c	0 0	0	0	4	32	41	62	_ ′	0 0	0 9	949	0	<u>ი</u>	4	38	38	34	39	27	28	12	42	34	315
RS ² →RO		0	0	0	0	0	0	-	Ø	0	0	0 0	o ") ц	ס מ	o /-	56	25	0	0	∞	0	0	0 (° ;	44	0	0	0	-	0	0	-	12	0	-	0	0	15
RS ² →MK	(OF)	203	208	210	171	198	151	178	166	175	82	191	190	2 6	1 0	29.2	206	191	203	163	222	161	139	135	186	5308	202	133	140	œ	о	73	157	174	99	63	09	29	144
RS→ME	e flows												•	•												•											131		·
RS ² →HU	Outside	0	-	0	12	10	Ξ	13	0	4 (0	0 0	بر م	9 0	0 0	1 6	63	158	88	20	18	35	9 (26	25	244	33	4	48	54	20	21	18	က	4	က	0	0	268 1
RS ² →HR		350	365	384	319	206	220	182	198	167	214	192	3005	7 C	2 4	041	174	153	170	159	9/	98	133	160	189	/40	142	82	170	180	189	152	81	38	99	64	80	-	176
RS ²→BG													~ > c																										
RS ²→BA		90	27	80	87	808	64	30	50	00	252	225	315 2341	- 0	2 4	t 0.	64	22	4	47	60	<u> </u>	97	95	ჯ 1	n	00	42	77	43	20	93	29	74	53	39	82	81	58
-	H										_			_	_	_	_	_	_	_	_	_	_	_	_	_													_
MM_YY		0.1	0.1	0.11	O. ≥	0.	VI.0	VII.0	VIII.0	×	X.O	0.X	2006	3 -	=	==	≥.1	V.1	VI.1	VII.1	VIII.1	×	×	× ;	X 5	2	Ξ	=	<u>=</u>		V.1	N.1	VII.1	VIII.1	X.	×	X.1	X L.1	201

'These physical energy flows were measured on the tie lines (\geq 110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values / Operation". ² RS data year 2006 are inside and outside flows of CS.

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	64983 55626 58023
Fossil fuels net generation	GWh	Σ	2006 2010 2011	13168 7803 5359
Hydraulic net generation	GWh	Σ	2006 2010 2011	61176 66215 65783
Other renewable net generation	GWh	Σ	2006 2010 2011	987 15386 17256
- of which wind	GWh	Σ	2006 2010 2011	987 3479 6070
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 ¹ 2010 ¹ 2011 ¹	140314 145030 146421
Sum of physical inside flows	GWh	Σ	2006 2010 2011	n.a. 16988 14229
Sum of physical outside flows	GWh	Σ	2006 2010 2011	n.a. 14728 21356
Total exchange balance	GWh	Σ	2006 2010 2011	6052 2078 -7199
Consumption of pumps	GWh	Σ	2006 2010 2011	0 18 0
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	146366 147090 139222
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 16.02.11	n.a. 19868 19392
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 16.02.11	n.a. 25243 24031
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	15.12.10 16.02.11	n.a. 25807 24238
Time of highest load on the 3 rd Wednesday		CET	15.12.10 16.02.11	n.a. 18:00 19:00

Physical exchanges in interconnected operation 1

	اہا																																					
Sum_IF - Sum_OF	Balance	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a. 3423	n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.	-2718	318	149	386	-494	-317	-632	-1168	-1257	-1731	069-	-208	-1483	-7127
Sum_IF		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a. 16621	n.a.	n.a.	n.a.	n.a.	n.a.	. c	n.a.	n.a.	n.a.	n.a.	n.a.	12010	1734	1398	1634	1067	804	1054	1358	1090	753	937	1469	931	14229
PL → SE		255	199	529	242	45	21	19	89	121	99	112	93	74	88	74	12	v c) N	- 0	44	49	29	79	494	29	42	26	36	52	ത	N	N	0	0	7	Ξ	278
NO→SE	E)	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a. 7667	508	323	120	69	30	306	177	378	871	368	400	3691	23	26	35	114	197	739	1286	1040	720	789	1034	479	6209
FI→SE	e flows (I	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a. 3767	329	222	946	881	396	987	8 4	277	502	472	735	5470	722	373	865	617	427	231	13	Ξ	23	91	334	300	4007
DK→SE	Insid													089	790	96/	530	44 6	8 8 8	132	467	461	329	835	4978	739	775	222	257	115	33	46	27	∞	46	98	120	2807
DK_W→SE		71	29	158	105	107	164	87	301	212	173	193	105 1743																									
DE→SE		23	25	147	258	147	241	136	339	216	186	156	70 1944	329	374	293	82	3.1	130	127	254	224	206	232	355	191	152	126	43	13	42	Ξ	10	0	=	ω	51	628
													_												CA													- 1
=	Ш																																					_
Sum_ OF		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	424	559	751	1337	25/6	2441	1611	693	669	626	202	14728	1416	1249	1248	1561	1121	1686	2526	2347	2484	1627	1677	2414	21356
Sum_ OF Sum_ OF • SE→PL			_	_	_	_	_	_	_	_	_		13 n.a. 264 13198		_	_					_	_	_	_	_		_	_	_	_	_	_	_		_	_		_
	JF)	0	0	0	0	102	96	51	2	0	0	0		26	0	21	93	232	160	282	2	36	39	22	761	-	15	80	87	113	166	252	210	165	48	163	586	1514 2
SE → PL	e flows (OF)	n.a. 0	n.a. 0	n.a. 0	n.a. 0	n.a. 102	n.a. 96	n.a. 51	n.a. 2	n.a. 0	n.a. 0	n.a. 0	13	294 26	400 0	721 21	1075 93	1388 232	99 697	504 78	350 5	294 36	510 39	414 5	7668 761 1	1277 1	979 15	1157 8	1042 87	585 113	227 166	70 252	107 210	337 165	190 48	120 163	627 286	6718 1514 2
SE→PL SE→NO	Outside flows (OF)	n.a. 0	n.a. 0	n.a. 0	n.a. 0	n.a. 102	n.a. 96	n.a. 51	n.a. 2	n.a. 0	n.a. 0	n.a. 0	n.a. 13 7178 264 7	100 294 26	157 400 0	1 721 21	11 1075 93	191 1388 232	608 1269 60	570 504 78	235 350 5	174 294 36	234 510 39	76 414 5	2636 7668 761	89 1277 1	222 979 15	5 1157 8	22 1042 87	63 585 113	263 227 166	1080 70 252	1044 107 210	972 337 165	849 190 48	671 120 163	656 627 286	5936 6718 1514 2
SE→PL SE→NO SE→FI	ဖ	n.a. n.a. 0	n.a. n.a. 0	n.a. n.a. 0	n.a. n.a. 0	n.a. n.a. 102	n.a. n.a. 96	n.a. n.a. 51	n.a. n.a. 2	n.a. n.a. 0	n.a. n.a. 0	n.a. n.a. 0	n.a. 13 7178 264 7	3 100 294 26	157 400 0	1 721 21	11 1075 93	191 1388 232	608 1269 60	504 78	235 350 5	174 294 36	234 510 39	76 414 5	2636 7668 761	89 1277 1	222 979 15	5 1157 8	22 1042 87	63 585 113	263 227 166	1080 70 252	1044 107 210	972 337 165	849 190 48	671 120 163	656 627 286	5936 6718 1514 2
SE→PL SE→NO SE→FI SE→DK	ဖ	72 n.a. n.a. 0	81 n.a. n.a. 0	17 n.a. n.a. 0	37 n.a. n.a. 0	83 n.a. n.a. 102	20 n.a. n.a. 96	90 n.a. n.a. 51	7 n.a. n.a. 2	9 n.a. n.a. 0	68 n.a. n.a. 0	30 n.a. n.a. 0	75 n.a. n.a. 13 589 3676 7178 264 1	3 100 294 26	2 157 400 0	7 1 721 21	126 11 1075 93	535 191 1388 232	09 1203 00 00 00 00 00 00 00	357 570 504 78	62 235 350 5	98 174 294 36	117 234 510 39	5 76 414 5	2656 2636 7668 761	31 89 1277 1	19 222 979 15	49 5 1157 8	388 22 1042 87	337 63 585 113	774 263 227 166	821 1080 70 252	693 1044 107 210	783 972 337 165	375 849 190 48	393 671 120 163	478 656 627 286	5141 5936 6718 1514
SE→PL SE→NO SE→FI SE→DK SE→DK_W	ဖ	233 72 n.a. n.a. 0	272 81 n.a. n.a. 0	131 17 n.a. n.a. 0	74 37 n.a. n.a. 0	112 83 n.a. n.a. 102	76 20 n.a. n.a. 96	187 90 n.a. n.a. 51	11 7 n.a. n.a. 2	20 9 n.a. n.a. 0	51 68 n.a. n.a. 0	146 30 n.a. n.a. 0	n.a. n.a. 13 3676 7178 264	1 3 100 294 26	0 2 157 400 0	1 7 1 721 21	32 126 11 1075 93	230 535 191 1388 232	190 677 698 749 160	102 357 570 504 78	41 62 235 350 5	97 98 174 294 36	79 117 234 510 39	5 76 414 5	1007 2656 2636 7668 761 1	18 31 89 1277 1	14 19 222 979 15	29 49 5 1157 8	22 388 22 1042 87	23 337 63 585 113	256 774 263 227 166	303 821 1080 70 252	293 693 1044 107 210	227 783 972 337 165	165 375 849 190 48	330 393 671 120 163	367 478 656 627 286	2047 5141 5936 6718 1514

'These physical energy flows were measured on the tie lines (\geq 110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values /Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	5281 5377 5900
Fossil fuels net generation	GWh	Σ	2006 2010 2011	4727 4794 4602
Hydraulic net generation	GWh	Σ	2006 2010 2011	3121 4249 3362
Other renewable net generation	GWh	Σ	2006 2010 2011	0 0 0
- of which wind	GWh	Σ	2006 2010 2011	0 0 0
- of which solar	GWh	Σ	2006 2010 2011	n.a. 0 0
Non-identifiable net generation	GWh	Σ	2006 2010 2011	0 0 0
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	13129 14420 13864
Sum of physical inside flows	GWh	Σ	2006 2010 2011	7716 8611 7034
Sum of physical outside flows	GWh	Σ	2006 2010 2011	7487 10744 8308
Total exchange balance	GWh	Σ	2006 2010 2011	202 -2172 -1306
Consumption of pumps	GWh	Σ	2006 2010 2011	0 0 0
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	13331 12248 12558
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 16.02.11	1420 1349 1358
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 16.02.11	2045 1804 1837
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 19.01.11	2166 1919 1907
Time of highest load on the 3 rd Wednesday		CET	20.12.06 15.12.10 19.01.11	19:00 19:00 15:00

Sum_IF - Sum_OF	Balance	119	77	38	208	-12	-144	-54	06-	21	-18	65.	4 60 000	27	-190	76-	-233	-196	-287	-237	-/5	-207	-270	209	-260	062-	-2133	-190	-28	-12	-187	-106	121-	4 6	-132	-114	911-	-94	/0-	-12/4
Sum_IF		773	722	751	938	688	585	602	464	442	603	556	292	2 1	762	829	862	764	200	629	9/9	982	579	870	828	99/	1198	639	277	682	575	643	5/6	000	7 6	989	629	193 193	200	+50/
IT → SI	flows (IF	-	-	N	0	0	0	-	_	4	-	- (○ ?	1 ;	21	2	7	58	4	10	9 (7.5	တ	14	ഗ	N G	120	0	2	თ .	4 (თ .	4 0	νţ	1 _	\ [Ωı	Ω ;	- 6	20
HR→SI	Inside	762	707	724	799	602	484	493	367	373	512	503	040 6871	5	614	708	751	929	282	445	333	104	340	492	693	62/	6480	611	464	268	444	366	322	ა ი	0 7 7	818	382	229	787	4090
AT→SI -		10	4	25	139	98	86	108	96	92	06	25	00 88	9 !	127	146	104	80	111	204	337	0/1	233	364	130	2 2	L L D Z	28	111	111	127	274	220	440	007	163	242	327	946	1007
Sum_ OF	F)	654	645	713	730	200	726	929	554	421	621	719	000	101	952	926	1095	096	987	968	/51	493	849	661	1088	9501	10/44	829	635	694	762	749	769/	207	900	603	748	689	610	0000
SI → IT	flows (O	418	477	266	701	591	250	444	289	204	415	392	2/2	3	727	1/2	862	726	269	280	394	7.7	526	610	880	666	1,513	523	430	483	487	414	390	0 6	4 7	315	4 t	351	100	4/ 00 /
SI→HR	Outside	4	10	19	17	103	181	139	209	132	94	S (1036	2	190	145	200	179	260	306	357	415	322	8	136	3 83	7647	137	178	129	242	329	482	8 2 C	3 Z S	2/0	786	327	0/7	3120
SI→AT		222	158	128	12	9	25	73	26	82	112	946	1062	200	32	36	33	22	30	10	0 (۰ ک	- (က	72	303	584	169	27	85	33	9	<u>ي</u> د	ړ ن	_ ;	Σ,	1 9	\ .	ი (402
MM_YY		1.06	90'11	90'111	1V.06	V.06	VI.06	VII.06	VIII.06	90:XI	90.X	XI.06	2006	20 .	1.10	11.10	111.10	IV.10	V.10	VI.10	VII.10	VIII.10	X.10	X.10	XI.10	XII.10	0102	<u>+</u>	=======================================	II.11	N.11	V.11	[N.]	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u>-</u> : : :		L ;	ZII 2	

'These physical energy flows were measured on the tie lines (\geq 110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values /Operation".

Thermal nuclear net generation	GWh	Σ	2006 2010 2011	16631 13576 14379
Fossil fuels net generation	GWh	Σ	2006 2010 2011	5409 5620 6331
Hydraulic net generation	GWh	Σ	2006 2010 2011	4401 5523 4007
Other renewable net generation	GWh	Σ	2006 2010 2011	10 474 863
- of which wind	GWh	Σ	2006 2010 2011	3 7 0
- of which solar	GWh	Σ	2006 2010 2011	n.a. 9 307
Non-identifiable net generation	GWh	Σ	2006 2010 2011	2591 931 968
Total net generation, calculated to represent 100% of the national values	GWh	Σ	2006 ¹ 2010 ¹ 2011 ¹	29042 26124 26548
Sum of physical inside flows	GWh	Σ	2006 2010 2011	9325 7342 11228
Sum of physical outside flows	GWh	Σ	2006 2010 2011	10925 6295 10501
Total exchange balance	GWh	Σ	2006 2010 2011	-1602 1042 727
Consumption of pumps	GWh	Σ	2006 2010 2011	232 530 495
National electrical consumption, calculated to represent 100% of the national values	GWh	Σ	2006 2010 2011	27208 26636 26780
Consumption load 3:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 16.02.11	3573 3390 3144
Consumption load 11:00 a.m. on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	18.01.06 15.12.10 16.02.11	4194 4126 4115
Highest load on the 3 rd Wednesday, calculated to represent 100% of the national values	MW	max.	20.12.06 15.12.10 16.02.11	4316 4326 4126
Time of highest load on the 3 rd Wednesday		CET	20.12.06 15.12.10 16.02.11	17:00 17:00 10:00

¹Including deliveries from industry

Physical exchanges in interconnected operation 1

Sum_IF - Sum_OF	Balance	-285	-155	-240	-168	-198	-240	06-	-160	82	34	;	-1600	133	214	99	-37	28	-120	284	-102	91	500	189	1047	-123	-21	20	-46	-42	45	27	132 200	199	270	198	727
Sum_IF		860	835	683	574	574	522	594	628	772	1034	1063	93.25	578	672	649	632	457	378	1045	529	607	800	203	7342	352	929	731	620	989	578	1031	11/3	1327	1480	1627	11228
UA-W→SK	(IF)	4	2	Ŋ	9	∞	9	27	12	ro ı	ΩI	ဂ ဂ	94	22	10	∞	7	12	တ	2	Ξ	5	Σ (0 0 0 0	290	75	12	Ξ	16	19	22	ים מי	ა ი	1 4	4	7	178
PL→SK	side flows	361	385	307	281	250	199	159	10	310	402	315	386 3374	147	187	220	168	66	63	179	87	, ,	9/1	971	1498	92	202	254	170	166	125	24 c	100	395	486	519	3054
HU→SK	Insi	0	0	0	0	0	0	0	0	0 ()	> (o o	C	0	0	0	0	0	0	0	0 0	> 0	ب د	20	4	0	0	0	0	- (> C	> C) C	0	0	2
CZ→SK		495	445	371	287	316	317	408	297	457	627	743	794 5857	409	475	421	457	346	306	861	431	591	//9	388	5498	197	442	466	434	451	430	8/8	900 400 400	800	066	1101	7991
Sum_ OF		1145	066	923	742	772	762	684	788	687	1000	10/4	1358 10925	445	458	583	699	429	498	761	631	516	027	3/4	6295	475	229	681	999	678	533	1059	0.00 0.00	1128	1210	1429	10501
SK→UA-W	(OF)	225	182	127	64	88	63	22	28	127	212	220	1717	64	79	119	131	25	21	158	64	22	ი ი	ي ا	912	24	88	115	28	73	71	180	7444	274	341	383	2127
SK→PL	e flows (0	0	0	0	0	0	4	0	0 (o (> (⊃ 4	4	0	-	8	10	50	0	9	∞ (> ·	- 5	- 8	13	0	-	က	က	ဖ (> C	> C) C	· 0	0	56
SK→HU	Outsid	813	739	669	615	604	650	286	969	554	759	428	1053 8592	353	373	447	517	339	393	602	539	447	228	087	4934	365	269	516	573	576	435	467	/ AA	853	869	1046	8120
SK→CZ		107	69	97	63	8	49	33	8	တ (ર ;	4 (6 K3	24	9	16	19	88	8	-	22	1 0	` ;	y 5	366	73	19	49	35	58	2,	ه م	> -		. 0	0	228
MM_YY		1.06	11.06	90'111	10.06	V.06	VI.06	VII.06	VIII.06	1X.06	×.06	XI.06	2006 2006	110	11.10	111.10	IV.10	V.10	VI.10	VII.10	VIII.10	X.10	Y:10	X X	2010	111	11.11	11.11	IV.11		VI.11		 Z : - Z + -		X 11	XII.11	2011

· These physical energy flows were measured on the tie lines (\geq 110 kV). These values may differ from the official statistics and the total exchange balance in the table "Monthly values / Operation".

- 1 ENTSO-E Net generation, exchanges and consumption 2011
- 2 Yearly values/operation and physical exchanges
- 3 System information
- 4 Glossary of statistical terms

System information

Statistical database as of 31 August 2012

	Page
Inventory of transmission network installations as of 31 December 2011	106
Number of circuits < 220kV, 220 kV and over 220 kV on tie lines	107
Simplified diagram of tie lines of the ENTSO-E synchronous area as of 31 December 2011	109
Characteristics of the ENTSO-E tie lines as of 31 December 2011	110
Unavailability of international tie lines - yearly overview 2011	121

						Lenght	s of circu	its in km	1						
Country	< 220 kV	of which	n cable 20 kV DC	220 - 285 kV		h cable 285 kV DC	330 kV		ch cable 0 kV DC	380/400 kV		ch cable 00 kV	< 400 kV	of which	h cable 00 kV
AT		AC	DC	3676	5	DC		AC	DC DC	2838	55	DC		AC	DC
BA				1525	0					865	0				
BE				451	5					1335	0				
BG				2815	0					2327	0		85	0	
CH				4918	23					1788	8				
CY 1	1227	120		4010	20					1700					
CZ		.20		1909	0					3508	0				
DE				14472	39					20307	70				
DK				702	231					1508	371				
EE	3537	114		184	0		1540	0		1000	37.1				
ES	0007			17625	545		10.0			19622	55				
FI				2601	0					4331	0				
FR				26546	1019					21364	3				
GB				6126	522					11979	229				
GR				11484	267					4344	5				
HR				1210	0					1248	0				
HU				1433	0					2807	0		268	0	
IE				1862	129					439	0				
IS				851	0										
IT				10254	431					10327	466				
LT	5011	45					1672	0							
LU				259	18										
LV	3946	63		3940	67		1250	0							
ME 1				400	0					280	0				
MK				103	0					507	0				
NI	1282	85		828	4										
NL				670	9					2091	30				
NO				445	0					8355	442				
PL				7921	1					5352	0		114	0	
PT				3478	42					2236	0				
RO				4755	0					4867	0		159	0	
RS				2284	0					1713	0				
SE				4400	0					10708	8				
SI				328	0					508	0				
SK				758	0					1551	0				
ENTSO-E 2,3	15003	427	365	141214	3356	2142	4462	0	0	149105	1742	1207	626	0	1654

¹ Values as of 31 December 2010

 $^{^{\}rm 2}$ ENTSO-E calculated sum of the member TSOs $\rm ^{'}$ countries

³ ENTSO-E calculated sum of DC cable length is equal to 5368 km and includes NorNed Cable (580 km), BritNed (520 km), FR Suvereto - IT Lucciana (430 km), Kontek (170 km), Skagerrak 1 (438 km), Skagerrak 2 (438 km), Skagerrak 3 (219 km), Konti-Skan 1 (176 km), Konti-Skan 2 (149 km), IT Galatina - GR Arachtos (316 km), IFA (140 km), Moyle Interconnector (127 km), East-West Interconnector (260 km), Baltic Cable (269 km), SwePol (254 km), Fenno-Skan 1 (233 km), Fenno-Skan 2 (300 km), Estlink (105 km), ES Balearic System and ES Mainland (488 km).

Number of < 220 kV and ≥ 220 kV circuits on tie lines of all ENTSO-E member TSOs' countries and in synchronous operation with ENTSO-E countries:

Characteristics of the ENTSO-E tie lines as of 31 December 2011

[']	Limited by phase shifting transformer in weeden
[2]	Limited by phase shifting transformer in Meeden
[3]	DC submarine cable
[4]	Unit is MW instead of MVA
[5]	Transducer
[6]	Line property TransNetBW in Germany partielly on the same tower as line Asphard-Kühmoos or Sierentz-Laufenburg; Line owned and operated by EnBW in Germany
[7]	DC link with three connections
[8]	Transforming station of Lucciana in Corsica
[9]	DC link with three connections
[10]	Transforming station of Lucciana in Corsica
[11]	Partially on the same tower as the Laufenbourg-Engstlatt line (No. 105.1): Alb- Nord
[12]	On the same tower as line No. 81 Laufenburg-Sierentz 380 kVLeitung: Hotzenwald
[13]	From Kühmoos to Laufenbourg on the same tower; Leitung Eggberg
[14]	On the same tower as line Sierentz-Laufenburg
[15]	On CH side: The Trafo 20 in Laufenburg 200 MVA
[16]	Limited by switching devices in Austria
[17]	Disconnected till approx. 2010; afterwards line will be dismantled
[18]	Cable at Braunau
[19]	Cable at Braunau

			Connection b	etween:			Voltage of	the circuit	mission ca	ional trans- pacity of the on (thermal)*		rcuits	ers or by the substations of lines	
Circuit ID		From sul			to substa		Forecast	Present	Forecast	Present	at	Voltage	Transmission capacity	Voltag
ontier point.Line.Circuit)	Country	Name	Operated by	Country	Name	Operated by							1	
Nr.							kV	kV	MVA	MVA	MVA	kV	MVA	kV
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
11.1.1	DE	Diele	TenneT DE	NL	Meeden	TenneT NL		380		1382	1000 [1]			
11.1.2 13.1.1	DE DE	Diele Siersdorf	TenneT DE Amprion	NL NL	Meeden Maasbracht	TenneT NL TenneT NL		380 380		1382 1645	1000 [2]	+		
13.1.2	DE	Rommerskirchen	Amprion	NL NL	Maasbracht	TenneT NL		380		1698		+		
15.1.1	DE	Gronau	Amprion	NL	Hengelo	TenneT NL		380		1645				
15.1.2	DE	Gronau	Amprion	NL	Hengelo	TenneT NL		380		1645				
25.1.1	BE	Van Eyck	Elia	NL	Maasbracht	TenneT NL		380		1207				
25.1.2	BE	Van Eyck	Elia	NL	Maasbracht	TenneT NL		380		1270				
26.1.1 26.2.1	BE BE	Zandvliet Zandvliet	Elia Elia	NL NL	Geertruidenberg Borssele	TenneT NL TenneT NL		380 380		1476 1476	450			
27.1.1	NO	Feda	Statnett	NL	Eemshaven	TenneT NL		450		700 [3,4]	400	+		
28.1.1	GB	Isle of Grain	National Grid	NL	Maasvlakte	TenneT NL		450		500				
28.2.1	GB	Isle of Grain	National Grid	NL	Maasvlakte	TenneT NL		450		500				
41.1.1	BE	Aubange	Elia	LU	Belval	SOTEL		220		358				
41.1.2	BE	Aubange	Elia	LU	Belval	SOTEL		220		358	100	+		
41.2.1 41.3.1	BE BE	Aubange Aubange	Elia Elia	LU	Belval Belval	SOTEL SOTEL		150 150	1	157 157	100	+	+	
51.1.1	BE	Monceau	Elia	FR	Chooz	RTE		220	1	338	100	†		
51.2.1	BE	Avelgem	Elia	FR	Mastaing	RTE		380		1168				
51.2.2	BE	Avelgem	Elia	FR	Avelin	RTE		380		1303				
51.3.1	BE	Achène	Elia	FR	Lonny	RTE		380		1168				
52.1.1	BE	Aubange	Elia	FR	Moulaine	RTE		220		381				
52.2.1 71.1.1	BE DE	Aubange Ensdorf	Elia Amprion	FR FR	Mont St Martin	RTE RTE		220 380		381 1790		-		
71.1.2	DE	Ensdorf	Amprion	FR	Vigy	RTE		380		1790		+		
71.2.1	DE	Ensdorf	Amprion	FR	St-Avold	RTE		220		261				
72.1.1	DE	Eichstetten	TransnetBW	FR	Vogelgrün	RTE	380	220		338 [5]		220		
72.1.2	DE	Eichstetten	TransnetBW	FR	Muhlbach	RTE		380		1684				
81.1.1	CH	Bassecourt	swissgrid	FR	Sierentz	RTE		380		1172				
81.2.1 81.3.1	CH	Laufenburg Bassecourt	swissgrid swissgrid	FR FR	Sierentz Mambelin	RTE RTE		380 380		946 846		+		
82.1.1	CH	Verbois	swissgrid	FR	Bois-Tollot	RTE		380		1552		+		
82.1.2	CH	Chamoson	swissgrid	FR	Bois-Tollot	RTE		380		1552		1		
82.2.1	СН	Verbois	swissgrid	FR	Génissiat	RTE		220		237				
82.2.2	CH	Verbois	swissgrid	FR	Génissiat	RTE		220		237				
82.4.1	CH	Vallorcine	swissgrid	FR	Pressy	RTE		220		355				
82.5.1 82.6.1	CH	Riddes StTriphon	swissgrid swissgrid	FR FR	Cornier Cornier	RTE RTE		220 220		216 222		+		
83.1.1 [6]	CH/DE	Asphard	swissgrid/EnBW Tr.netze Strom	FR	Sierentz	RTE		380		1168				
91.1.1	FR	Albertville	RTE	IT	Rondissone	Tema		380		1244				
91.1.2	FR	Albertville	RTE	IT	Rondissone	Terna		380		1244				
92.1.1	FR	Trinite Victor	RTE	IT	Camporosso	Terna		220		319		ļ		
93.1.1	FR	Villarodin	RTE	IT	Venaus	Terna		380		1237			50	
94.1.1 [7] 94.1.2 [9]	FR FR	Lucciana Lucciana	EDF EDF	IT IT	Suvereto Suvereto	Terna Terna		220 [8] 220 [10]		300 300			50 50	
95.1.1	FR	Bonifacio	EDF	IT	Santa Teresa	Terna		150		53			30	
102.1.1 [11]	CH	Laufenburg	swissgrid	DE	Gurtweil	TransnetBW		220		442		220		
102.1.2	CH	Laufenburg	swissgrid	DE	Gurtweil	TransnetBW		220		457		220		
102.2.1 [12]	CH	Laufenburg	swissgrid	DE	Kühmoos	TransnetBW		220		410				
102.3.1 [13]	CH	Laufenburg	swissgrid	DE	Kühmoos	TransnetBW	380	220 380		430		+		
102.3.2 102.4.1	CH CH	Laufenburg Laufenburg	swissgrid swissgrid	DE DE	Kühmoos Kühmoos	TransnetBW TransnetBW		380	1	1527 1527	+	+	+	
102.4.2	CH	Laufenburg	swissgrid	DE	Kühmoos	Amprion		380		1607		1	1	
102.5.1	CH	Laufenburg	swissgrid	DE	Tiengen	Amprion		380		1122				
103.1.1	CH	Beznau	swissgrid	DE	Tiengen	Amprion		380		1158				
103.1.2	CH	Beznau	swissgrid	DE	Tiengen	Amprion	380	220		335	-	 		
104.1.1 [14] 105.1.1	CH	Asphard Laufenburg	swissgrid swissgrid	DE DE	Kühmoos Trossingen	TransnetBW TransnetBW		380 380	1	1263 1607		 	+	
105.1.1	CH	Laufenburg 220kV	swissgrid	DE	Laufenburg 110 kV	ED		110		200		+		
111.1.1	AT	Bürs	VIW	DE	Obermooweiler	TransnetBW		380		1369				
111.1.2	AT	Bürs	VIW	DE	Obermooweiler	TransnetBW		380		1369				
111.2.1	AT	Bürs	VIW	DE	Herbertingen	Amprion		220		389				
111.3.1	AT	Bürs	VIW	DE	Dellmensingen	Amprion		220		492	457 [16]	 		
111.4.1 111.4.2	AT AT	Rieden Hörbranz	Vorarlberg Netz	DE DE	Lindenberg Lindau	Vorarlberg Netz		110 110	1	84	+	+	1	
111.4.2	AT	Werben	Vorarlberg Netz Vorarlberg Netz	DE	Lindau	Vorarlberg Netz Vorarlberg Netz		110		162		+		
111.5.1	AT	Vorderwald	Vorarlberg Netz	DE	Weiler	Vorarlberg Netz		110	1	127		†	1	
112.1.1	AT	Feldkirch	Vorarlberg Netz	СН	Eschen	swissgrid		110		130				
115.1.1	AT	Braunau	Grenzkraftwerke AG	DE	Neuötting	E.ON Netz GmbH		110		90 [17]			82 [18]	
115.2.1	AT	Braunau	Grenzkraftwerke AG	DE	Stammham	E.ON Netz GmbH		110		102	1	 	82 [19]	
115.4.1	AT	Antiesenhofen	APG	DE	Egglfing	E.ON Netz GmbH	1	110	1	102	1	1	1	I

^{*}The conventional transmission capacity of tie lines is based upon parameters standardised within former UCTE for the calculation of the thermal load capability of each line. For arial lines these are: ambient temperature of + 35°C, wind velocity of 0,56 m/s at a right angle to the line as well as the voltage value stated in column 10 or 11. The conditions relevant to system operation in various countries at various time of the year can strongly differ from those above. Because the real allowable load capability of the line depends on many other factors, such as load flow distribution, upholding of voltage, real ambient conditions, limits of stability, n-1 security, etc., the conventional transmission capacity has no relevance from the point of view of system operation or economics but allows just a comparison of order of magnitude of the various lines. Adding together the conventional transmission capacity of several tie lines does not allow to infer on the real total transmission capability and leads to irrelevant results from the point of view of system operation.

[20]	Transducer at Ering
[21]	Transducer at Ering
[22]	Isolator in St. Peter
[23]	Isolator in St. Peter
[24]	Only temporary line; from December 2005 till summer 2006; afterwards disconnected till approx.2010
[25]	No international interconnector
[26]	CFT blocker at St. Peter
[27]	No international interconnector
[28]	CFT blocker at St. Peter
[29]	Switching device at Oberbrunn
[30]	Switching device at Oberbrunn
[31]	Possible to lay a second circuit⇒ Not yet managed by swissgrid, so no technical data available.
[32]	Limited by transformer in Enstedt
[33]	Limited by transformer in Kassø
[34]	Transducer at Kassø
[35]	Transducer at Kassø
[36]	DC submarine and underground cable
[37]	DC submarine and underground cable
[38]	DC submarine and underground cable
[39]	Under water cable
[40]	Under water cable
[41]	Under water cable
[42]	Generator line in radial operation - interconnected operation impossible; Installed at Vianden
[43]	Generator line in radial operation - interconnected operation impossible; Installed at Vianden
[44]	Generator line in radial operation - interconnected operation impossible; Installed at Vianden

	Connection between:							the circuit	mission ca	onal trans- pacity of the n (thermal)*	of circuits		of lines	
Circuit ID			ubstation		to substat		Forecast	Present	Forecast	Present	at	Voltage	Transmission capacity	Voltag
ntier point.Line.Circuit)	Country	Name	Operated by	Country	Name	Operated by								
Nr.							kV	kV	MVA	MVA	MVA	kV	MVA	kV
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
115.6.1	AT	St. Peter	APG	DE	Simbach	TenneT DE		220		301				
115.7.1	AT	St. Peter	APG	DE	Ering	E.ON Netz GmbH		110		152	137		114 [20]	
115.7.2	AT	St. Peter	APG	DE	Ering	E.ON Netz GmbH		110		152	137		114 [21]	
115.8.1	AT	St. Peter	APG	DE	Egglfing	E.ON Netz GmbH		110		105	1== 1001			
115.9.1	AT	St. Peter	APG	DE	Pirach	TenneT DE		220	1	518	457 [22]			
115.10.1 115.11.1	AT AT	St. Peter Ranna	APG EAGOÖ-Netz	DE DE	Pleinting Passau/Hauzenberg	TenneT DE E.ON Netz GmbH		220 110	 	449 90 [24]	457 [23]			
115.12.1	AT	Oberaudorf	ÖBK	DE	Rosenheim	E.ON Netz GmbH		110		93				
115.13.1	AT	Oberaudorf	ÖBK	DE	Kiefersfelden	E.ON Netz GmbH		110		102				
115.14.1	AT	Antiesenhofen	EAGOÖ-Netz	DE	Weidach	APG 1		110		130				
115.14.2	AT	Antiesenhofen	EAGOÖ-Netz	DE	Weidach	APG 1		110		130				
115.15.1	AT	Aigerding	APG / EAGOÖ-Netz	DE	Passau	Grenzkraftwerke AG		110		102				
115.16.1 [25]	AT	St. Peter	APG	DE	Schärding	ÖBK		220		301			229 [26]	
115.16.2 [27]	AT	St. Peter	APG	DE	Schärding	ÖBK		220		301			229 [28]	
115.17.1	AT	Kufstein	TIWAG-Netz	DE	Oberaudorf	Grenzkraftwerke AG		110		90				
115.17.2	AT AT	Ebbs	TIWAG-Netz	DE	Oberaudorf	Grenzkraftwerke AG		110 380		127 1316	-			
116.1.1 116.2.1	AT	Westtirol Westtirol	APG APG	DE DE	Leupolz Memmingen	Amprion Amprion	-	220		1316 762	+	-	+	
116.2.1	AT	Silz	APG	DE	Oberbrunn	TenneT DE		220		762	762 [29]	1	+	
117.1.2	AT	Silz	APG	DE	Oberbrunn	TenneT DE		220		793	762 [29]	1		
117.3.1	AT	Reutte	TIWAG-Netz	DE	Füssen	EW Reutte		110		127	. 02 [00]			
117.3.2	AT	Reutte	TIWAG-Netz	DE	Füssen	EW Reutte		110		127				
121.1.1	CH	All'Acqua	swissgrid	IT	Ponte	Terna		220		278				
121.2.1	CH	Gorduno	swissgrid	IT	Mese	Terna		220		278				
121.3.1	CH	Soazza	swissgrid	IT	Bulciago	Terna		380		1224				
121.4.1	CH	Lavorgo	swissgrid	IT	Musignano	Terna		380		1204				
122.1.1 [31]	CH	Campocologno	RE	IT	Poschiavino	Terna		150		103	42			
123.1.1	CH	Riddes	swissgrid	IT	Avise	Terna		220		309				
123.2.1	CH	Riddes	swissgrid	IT	Valpelline	Terna		220		309				
123.3.1 124.1.1	CH	Serra Robbia	swissgrid swissgrid	IT IT	Pallanzeno Gorlago	Terna		220 380		278 1330				
124.1.1	CH	Robbia	swissgrid	IT	San Fiorano	Tema Tema		380		1330	1			
125.1.1	CH	M endrisio	swissgrid	IT	Cagno	Tema		380		450		+	200	
132.1.1	AT	Lienz	APG	IT	Soverzene	Terna		220		257			200	
141.1.1	AT	M einingen	APG on behalf of VUEN	CH	Y-Meiningen	swissgrid		220		494				
141.2.1	AT	M einingen	APG on behalf of VUEN	CH	Winkeln	swissgrid		220		765				
142.1.1	AT	Westtirol	APG	CH	Pradella	swissgrid		380		1330				
142.2.1	AT	Westtirol	APG	CH	Pradella	swissgrid		380		1330				
151.1.1	ES	Hernani	REE	FR	Argia	RTE		380		1137				
151.2.1	ES	Irún	REE	FR	Errondenia	RTE		132		59				
151.3.1	ES	Arkale	REE	FR	Argia	RTE		220		339				
151.4.1	ES ES	Biescas Benós	REE REE	FR FR	Pragnères	RTE		220		183				
152.1.1 153.1.1	FS	Vich	REE	FR	Lac d'Oo	RTE RTE		110 380		76 1348				
161.1.1	DE	Flensburg	TenneT DE	DK	Ensted	Energinet.dk IPC		220		332	305 [32]	†		
161.2.1	DE	Flensburg	TenneT DE	DK	Kassø	Energinet.dk IPC		220		332	305 [33]			
161.3.1	DE	Audorf	TenneT DE	DK	Kassø	Energinet.dk IPC	İ	380		1078	658 [34]			
161.3.2	DE	Audorf	TenneT DE	DK	Kassø	Energinet.dk IPC		380		1078	658 [35]			
161.4.1	DE	Flensburg UW Nord	Stadtwerke Flensburg	DK	Ensted	Energinet.dk IPC		150		150				
162.1.1 [36]	DE	Bentwisch	50Hertz	DK	Bjæverskov	Energinet.dk IPC		400		600				
163.1.1 [37]	NO	Kristiansand	Statnett SF	DK	Tjele	Energinet.dk IPC		250		250				
163.1.2 [38]	NO	Kristiansand	Statnett SF	DK	Tjele	Energinet.dk IPC	ļ	250		250	-	1	1	
164.1.1 [39]	NO SE	Kristiansand	Statnett SF	DK	Tjele	Energinet.dk IPC		350 282		350 370	-			
165.1.1 [40] 166.1.1 [41]	SE	Lindome Lindome	Svenska Kraftnät Svenska Kraftnät	DK DK	Vester Hassing Vester Hassing	Energinet.dk IPC Energinet.dk IPC		282	1	370 360	+	1	+	
167.1.1	SE	Söderåsen	Svenska Kraftnät	DK	Gørløsegård	Energinet.dk IPC		400	1	830	+			
168.1.1	SE	Borrby	E.ON Elnät Sverige AB	DK	Bornholm	Energinet.dk IPC	i	60		51				
169.1.1	SE	Söderåsen	Svenska Kraftnät	DK	Hovegård	Energinet.dk IPC		400		830				
170.1.1	SE	Mörarp 1and 2	E.ON Elnät Sverige AB	DK	Teglstrupgård	Energinet.dk IPC		130		311				
171.1.1	AT	Bisamberg	APG	CZ	Sokolnice	CEPS		220		250				
171.2.1	AT	Bisamberg	APG	CZ	Sokolnice	CEPS		220		250				
172.1.1	AT	Dürnrohr	APG	CZ	Slavetice	CEPS		380		1559				
172.1.2	AT	Dürnrohr	APG	CZ	Slavetice	CEPS		380		1559				
181.1.1	AT	Obersielach	APG	SI	Podlog	ELES		220		320	-			
182.1.1	AT	Kainachtal	APG	SI	Maribor	ELES		380		1164			+	
182.2.1 191.1.1	AT DE	Kainachtal Niederstedem	APG Amprion	SI LU	Maribor Vianden	ELES SEO	-	380 220	-	1164 490	160 [40]	-	+	
191.1.1	DE	Niederstedem	Amprion	LU	Vianden	SEO		220	1	490	460 [42] 230		+	
191.2.1	DE	Bauler	Amprion	LU	Vianden	SEO		220		730	345 [43]			
191.2.2	DE	Bauler	Amprion	LU	Vianden	SEO		220		730	230 [44]			
		Bauler	Amprion	LU	Flebour	525		220		490	_00 [¬¬]			

^{*}The conventional transmission capacity of tie lines is based upon parameters standardised within former UCTE for the calculation of the thermal load capability of each line. For arial lines these are: ambient temperature of + 35°C, wind velocity of 0,56 m/s at a right angle to the line as well as the voltage value stated in column 10 or 11. The conditions relevant to system operation in various countries at various time of the year can strongly differ from those above. Because the real allowable load capability of the line depends on many other factors, such as load flow distribution, upholding of voltage, real ambient conditions, limits of stability, n-1 security, etc., the conventional transmission capacity has no relevance from the point of view of system operation or economics but allows just a comparison of order of magnitude of the various lines. Adding together the conventional transmission capacity of several tie lines does not allow to infer on the real total transmission capacity and leads to irrelevant results from the point of view of system operation.

Characteristics of the ENTSO-E tie lines as of 31 December 2011

[45]	The 400kV link between GR-IT is composed of an overhead line and a submarine cable
[46]	DC submarine cable
[47]	Unit is MW instead of MVA
[48]	DC submarine cable
[49]	Unit is MW instead of MVA
[50]	DC submarine cable
[51]	DC Submarine Cable - 250 MW instead 250 MVA
[52]	Due to Existing Constraints the following applies to the 275kV double circuit tie line (both 225.1.1AND 225.2.1): IE Louth to NI Tandragee = 380 M WNI Tandragee to IE Louth
[53]	Due to Existing Constraints the following applies to the 275kV double circuit tie line (both 225.1.1AND 225.2.1): IE Louth to NI Tandragee = 380 M WNI Tandragee to IE Louth
[54]	In May 2007 out of operation 150 kV line Bitola1-Amyndeo; from June 2007 the new 400 kV line Bitola2-Meliti in operation
[55]	Limited by the connected network
[56]	Nominal voltage in Croatia
[57]	Limited by the connected network
[58]	Nominal voltage in Croatia
[59]	Built for 750 kV
[60]	4500 M V A at 750 kV
[61]	Limited by the Albanian network
[62]	Capacity of current transformers at Bistrica
[63]	Disconnected in Serbia

			Connection	between:			Voltage of	the circuit	Convention mission cap	acity of the		by the transformer	s or by the substations of lines		
Circuit ID Frontier point.Line.Circuit)	Country	From su Name	ostation Operated by	Country	to substati	Operated by	Forecast	Present	connection Forecast	Present	at	Voltage	Transmission capacity	Voltage	
	Country	Name	Operated by	Country	Name	Operated by									
Nr. 1		3	4	5	6	7	kV 8	kV	M V A 10	MVA	M V A	kV	M V A 14	kV 15	
19 1.4 .1	2 DE	Bauler	Amprion	LU	Roost	Creos Luxembourg	0	9 220	Ю	11 490	12	13	14	15	
19 2 . 1. 1	DE	Trier	Amprion	LU	Heisdorf	Creos Luxembourg		220		490					
192.2.1	DE	Quint	Amprion	LU	Heisdorf	Creos Luxembourg		220		490	1				
2 0 1.1.1	IT	Redipuglia	Terna	SI	Divača	ELES		380		16 19			1200		
201.2.1	IT	Padriciano	Terna	SI	Divača	ELES		220		320					
205.1.1 [45]	IT	Galatina	Terna	GR	Arachthos	IPTO SA		380		500					
211.1.1	AT AT	Wien Süd-Ost Neusiedl	APG APG	HU	Györ Györ	MAVIR MAVIR		220 220		209 209					
212.1.1	AT	Sarasdorf	APG	HU	Györ	MAVIR		380		1514	1	+	 		
2 13 . 1. 1	AT	Wien Süd-Ost	APG	HU	Szombathely	MAVIR		380		1514					
2 2 1.1.1	FR	Mandarins	RTE	GB	Sellindge	National Grid		270 [46]		1000 [47]					
221.2.1	FR	M andarins	RTE	GB	Sellindge	National Grid		270 [48]		1000 [49]					
222.1.1	NI	Ballycronanmore	SONI Ltd	GB	Auchencrosh	National Grid		250 [50]		250					
222.2.1	NI	Ballycronanmore	SONI Ltd	GB	Auchencrosh	National Grid		250		250 [51]	ļ	-			
225.1.1 225.2.1	NI NI	Tandragee Tandragee	SONI Ltd SONI Ltd	IE IE	Louth Louth	EirGrid EirGrid		275 275		660 [52] 660 [53]	 	+	+		
231.1.1	ES	Las Conchas	REE	PT	Lindoso	REN		132		90		+			
232.1.1	ES	Aldeadávila	REE	PT	Pocinho	REN		220		374	<u> </u>	1			
232.2.1	ES	Aldeadávila	REE	PT	Pocinho	REN		220		374					
232.2.1	ES	Aldeadávila	REE	PT	Lagoaça	REN		400		1469					
232.3.1	ES	Saucelle	REE	PT	Pocinho	REN		220		346					
233.1.1	ES	Cedillo Cartelle	REE REE	PT	Falagueira	REN		380 380		1300 1330	 	1			
234.1.1	ES ES	Cartelle	REE	PT PT	Alto Lindoso Alto Lindoso	REN REN		380		1330		-			
235.1.1	ES	Brovales	REE	PT	Alqueva	REN		400		1280					
241.1.1	MK	Dubrovo	MEPSO	GR	Thessaloniki	IPTO SA		400		1300					
242.1.1 [54]	MK	Bitola	M EPSO	GR	M eliti	IPTO SA		400		1300					
251.1.1	HU	Lenti	MAVIR	HR	Nedeljanec	HEP-OPS		120		79	50 [55]	110 [56]			
251.2.1	HU	Siklos	MAVIR	HR	Donji Miholjac	HEP-OPS		110		114	50 [57]	110 [58]			
251.3.1	HU	Héviz	MAVIR	HR	Zerjavinec	HEP-OPS		400		1246					
251.3.2 252.1.1	HU	Héviz Pécs	MAVIR MAVIR	HR HR	Zerjavinec Ernestinovo	HEP-OPS HEP-OPS		400 400		1246 1246					
252.1.2	HU	Pécs	MAVIR	HR	Ernestinovo	HEP-OPS		400		1246					
261.1.1	RS	Djerdap 1	EMS	RO	Portile de Fier	Transelectrica		400		1135			1107		
262.1.1	RS	Kikinda	EMS	RO	Jimbolia	Transelectrica		110		65			57		
263.1.1	RS	Djerdap 2	EMS	RO	Ostrovu M are	Transelectrica		110		90					
264.1.1	RS	Sip	EMS	RO	Gura Văii	Transelectrica		110		87			19		
271.1.1 272.1.1	BG BG	Sofija Zapad Breznik	ESO	RS	Niš HE Vrla 1	EMS EMS		380 110		1309 97		-			
273.1.1	BG	Kula	ESO	RS	Zaječar	EMS		110		90					
275.1.1	RO	Isaccea	Transelectrica	BG	Varna	ESO	750	400 [59]		2168 [60]					
277.1.1	RO	Ţ ânţăreni	Transelectrica	BG	Kozlodui	ESO		400		1300		1000			
277.1.2	RO	Ţ ânţăreni	Transelectrica	BG	Kozlodui	ESO		400		1300		1000			
278.1.1	RO	Rahman	Transelectrica	BG	Dobrudja	ESO		400		1135			830		
280.1.1 281.1.1	AL	Tirana2 Vau i Dejës	OST KESH	ME	Podgorica 2	CGES AD CGES AD		380 220		1 <mark>264</mark> 276	ļ	-			
282.1.1	AL AL	Fierza	KESH	M E RS	Podgorica 2 Prizren	EMS		220		270					
291.1.1	AL	Elbassan	KESH	GR	Kardia	IPTO SA		400		1300	250 [61]				
292.1.1	AL	Bistrica	KESH	GR	Mourtos	IPTO SA		150		120	40 [62]	1	1		
293.1.1	TR	Babaeski	TEIAS	GR	Nea Santa	IPTO SA		400		2000					
301.1.1	BG	Blagoevgrad	ESO	GR	Thessaloniki	IPTO SA		400		1300	700				
321.1.1	CZ	Hradec Zapad	CEPS	DE	Etzenricht	TenneT DE		380		1386	 	+	-		
321.1.2 322.1.1	CZ CZ	Prestice Hradec Vychod	CEPS CEPS	DE DE	Etzenricht Röhrsdorf	TenneT DE 50 Hertz		380 380		1569 1386	-	+	+		
322.1.1	CZ	Hradec Vychod	CEPS	DE	Röhrsdorf	50 Hertz		380		1386	 	+	+		
331.1.1	HU	Sándorfalva	MAVIR	RS	Subotica 3	EMS		400		1295	1050	1			
332.1.1	HU	Szeged	MAVIR	RS	Subotica	EMS		110		79 [63]	62				
3 4 1.1.1	BG	Skakavica	ESO	MK	Kriva Palanka	MEPSO		110		123					
341.2.1	BG	Petric	ESO	MK	Sušica	MEPSO		110		123	ļ	 			
3 4 2 . 1 . 1 3 5 1 . 1 . 1	BG HB	Cervena Mogila Melina	ESO HEP -OPS	MK	Stip	M EPSO ELES		400 380		1309	 	+	+		
351.1.1	HR HR	Pehlin	HEP-OPS	SI	Divača Divača	ELES		220		1164 320	 	+	+		
351.3.1	HR	Buje	HEP -OPS	SI	Koper	ELES		110		76	 	+			
3 51.4.1	HR	M at ulji	HEP - OPS	SI	Ilirska Bistrica	ELES		110		53		1			
352.1.1	HR	Tumbri	HEP -OPS	SI	Krško	ELES		380		1164					
352.1.2	HR	Tumbri	HEP -OPS	SI	Krško	ELES		380		1164					
352.2.1	HR	Zerjavinec	HEP - OPS	SI	Cirkovce	ELES		220		297					
352.3.1 361.1.1	HR BA	Nedeljanec Mostar	HEP - OPS NOS BiH	SI	Formin Konjsko	ELES HEP-OPS		110 400		10 1 13 16	 	1			
	BA	Mostar	NOS BIH	HR	Zakučac	HEP-OPS		220		311	 	+	+		
361.2.1															

^{*}The conventional transmission capacity of cross-frontier tie-lines is based upon parameters standardised within former UCTE for the calculation of the thermal load capability of each line. For arial lines these are: ambient temperature of + 35°C, wind velocity of 0,56 m/s at a right angle to the line as well as the voltage value stated in column 10 or 11. The conditions relevant to system operation in various countries at various time of the year can strongly differ from those above. Because the real allowable load capability of the line depends on many other factors, such as load flow distribution, upholding of voltage, real ambient conditions, limits of stability, n-1 security, etc., the conventional transmission capacity has no relevance from the point of view of system operation or economics but allows just a comparison of order of magnitude of the various lines. Adding together the conventional transmission capacity of several tie-lines does not allow to infer on the real total transmission capability and leads to irrelevant results from the point of view of system operation.

Characteristics of the ENTSO-E tie lines as of 31 December 2011

[64] Line is destroyed, currently under construction [65] Line is destroyed, currently under construction [66] DC submarine cable [67] Monopol [68] Limited by the measuring transformer of current [69] Value for 30°C (no data for 35°C) [70] Value for 30°C (no data for 35°C) [71] Value for 30°C (no data for 35°C) [72] Limitation due to current transformer in Kudowa SS [73] Value for 30°C (no data for 35°C) [74] Limitation due to current part of combined current/voltage transformer in Pogwizdów SS [75] Value for 30°C (no data for 35°C) [76] Limitation due to current part of combined current/voltage transformer in Pogwizdów SS [77] Value for 30°C (no data for 35°C) [78] Limitation due to current transformer in Mnisztwo SS [79] Value for 30°C (no data for 35°C) [80] On Polish side 400 kV line (internal designation between 50Hertz and PSE Operator) [81] On Polish side 400 kV line (internal designation between 50Hertz and PSE Operator) [82] Value for 30°C (no data for 35°C) [83] Submarine cable [84] Submarine cable [85] Limited by current transformer at Krosno [86] Limited by current transformer at Krosno [87] Temporary out of operation [88] Limeted by HF attenuator at UA side [89] Radial operation [90] Temporary out of operation [91] Value for 30°C (no data for 35°C) [92] DC Submarine cable [93] Temporary out of operation [94] Value for 30°C (no data for 35°C) [95] Temporary out of operation [96] Value for 30°C (no data for 35°C)

			Connection	between:			Voltage of	the circuit	mission ca	onal trans- pacity of the n (thermal)*		by the transformer rcuits	s or by the substati	
Circuit ID	<u> </u>		bstation		to substat		Forecast	Present	Forecast	Present	at	Voltage	Transmission capacity	Voltage
Frontier point.Line.Circuit)	Country	Name	Operated by	Country	Name	Operated by				1				
Nr.							kV	kV	MVA	MVA	MVA	kV	MVA	kV
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
361.4.1		Buško Blato	NOS BiH	HR	Kraljevac	HEP-OPS		110		115				
361.5.1 361.6.1	BA BA	Buško Blato	NOS BiH	HR	Peruca	HEP-OPS HEP-OPS		110 110		90		-		
361.6.1	BA	Grude Kulen Vakuf	NOS BIH	HR HR	Imotski Gracac	HEP-OPS		110		72 120	101	+		
362.1.1	BA	Prijedor	NOS BIH	HR	Mraclin	HEP-OPS		220		297	101			
362.2.1	BA	Prijedor	NOS BiH	HR	Meduric	HEP-OPS		220		297				
363.1.1	BA	Trebinje	NOS BiH	HR	Dubrovnik	HEP-OPS		220		460				
363.2.1	BA	Trebinje	NOS BiH	HR	Dubrovnik	HEP-OPS		220		460				
363.3.1	BA	Capljina	NOS BiH	HR	Opuzen	HEP-OPS		110		84				
363.4.1 363.5.1	BA BA	Neum Neum	NOS BiH NOS BiH	HR HR	Opuzen Ston	HEP-OPS HEP-OPS		110 110		84 76		+		
363.6.1	BA	Trebinje	NOS BiH	HR	Komolac	HEP-OPS		110		84				
364.1.1	BA	Ugljevik	NOS BiH	HR	Ernestinovo	HEP-OPS		400		1264				
364.2.1	ВА	Gradacac	NOS BiH	HR	Đakovo	HEP-OPS		220		229				
364.3.1	BA	Tuzla	NOS BiH	HR	Đakovo	HEP-OPS		220		229				
364.4.1	BA	Bosanski Brod	NOS BIH	HR	Slavonski Brod 2	HEP-OPS		110		115				
364.5.1	BA	Orasje	NOS BiH	HR	Zupanja	HEP-OPS		110		76		+		
371.1.1 371.2.1	HR HR	Ernestinovo Nijemci	HEP-OPS HEP-OPS	RS RS	Sremska Mitrovica Šid	EMS EMS		400 110		1264 76		+		
371.2.1	HR	Nijemci Beli Manastir	HEP-OPS HEP-OPS	RS	Apatin	EMS		110		76		+		
381.1.1	BA	Trebinje	NOS BiH	ME	Podgorica 2	CGES AD		380		1264		 		
381.2.1	ВА	Trebinje	NOS BiH	ME	Perucica	CGES AD		220		276			<u> </u>	
381.3.1	BA	Trebinje	NOS BiH	ME	Herceg Novi	CGES AD		110		90				
381.4.1	BA	Bileca	NOS BiH	ME	Vilusi	CGES AD		110		84				
382.1.1	BA	Sarajevo 20	NOS BiH	ME	Piva	CGES AD		220		366				
382.2.1 383.1.1	BA	Goražde	NOS BiH NOS BiH	ME	Pljevlja 1	CGES AD EMS		110		90				
383.2.1	BA BA	Višegrad Bijeljina	NOS BIH	RS RS	Pozega Lešnica	EMS		220 110		311 123		+		
383.3.1	BA	Zvornik	NOS BiH	RS	HE Zvornik	EMS		110		123				
383.4.1	ВА	Višegrad	NOS BiH	RS	Zamrsten	EMS		110		90				
383.5.1	BA	Ugljevik	NOS BiH	RS	Sremska Mitrovica	EMS		380		1264				
384.1.1	ME	Ribarevine	CGES AD	RS	Pec 3	EMS		380		1264				
384.2.1	ME	Pljevlja 2	CGES AD	RS	Bajina Basta	EMS		220		350				
384.3.1 384.4.1	ME	Pljevlja 2	CGES AD CGES AD	RS RS	Pozega	EMS EMS		220 110		365 70				
391.1.1 [64]	M E MK	Pljevlja 1 Skopje 1	MEPSO	RS	Zamrsten Kosovo A	EMS		220		311		+		
391.2.1 [65]	MK	Skopje 1	MEPSO	RS	Kosovo A	EMS		220		311				
391.3.1	MK	Skopje 5	MEPSO	RS	Urosevac	EMS		380		1218				
401.1.1 [66,67]	DE	Herrenwyk	TenneT DE	SE	Kruseberg	Baltic Cable AB		400		600				
404.1.1	CZ	Nosovice	CEPS	SK	Varin	SEPS		400		1205				
410.1.1	CZ	Liskovec	CEPS	SK	Pov. Bystrica	SEPS		220		221				
420.1.1 424.1.1	CZ CZ	Sokolnice Sokolnice	CEPS CEPS	SK SK	Senica Krizovany	SEPS SEPS		220 400		213 1205		+		
430.1.1	CZ	Sokolnice	CEPS	SK	Stunava	SEPS		400		1363		+		
440.1.1	SK	V.Kapusany	SEPS	UA-W	Mukachevo	NPC Ukrenergo		400		1115	831 [68]			
443.1.1	CZ	Albrechtice	CEPS	PL	Dobrzen	PSE Operator S.A.		400		1088				
444.1.1	CZ	Nošovice	CEPS	PL	Wielopole	PSE Operator S.A.		400		1088				
450.1.1	CZ	Liskovec	CEPS	PL	Kopanina	PSE Operator S.A.		220		399				
460.1.1 470.1.1	CZ CZ	Liskovec Porící	CEPS CEZ Distribuce	PL PL	Bujaków Boguszów	PSE Operator S.A. Tauron Dystrybucja S.A.		220 110		399 78 [69]		1		
470.1.1	CZ	Porici	CEZ Distribuce CEZ Distribuce	PL PL	Boguszów	Tauron Dystrybucja S.A. Tauron Dystrybucja S.A.		110		78 [69] 78 [70]	1	+	+	
471.1.1	CZ	Náchod	CEZ Distribuce	PL	Kudowa	Tauron Dystrybucja S.A.		110	1	123 [71]	57 [72]	†	1	
472.1.1	CZ	Darkov	CEZ Distribuce	PL	Pogwizdów	Tauron Dystrybucja S.A.		110		123 [73]	114 [74]			
472.1.2		Darkov	CEZ Distribuce	PL	Pogwizdów	Tauron Dystrybucja S.A.		110		123 [75]	114 [76]	1		
473.1.1	CZ	Trinec	CEZ Distribuce	PL	Mnisztwo	Tauron Dystrybucja S.A.		110		123 [77]	114 [78]			
474.1.1	CZ	Trinec	CEZ Distribuce	PL	Mnisztwo/Ustro n	Tauron Dystrybucja S.A.		110		123 [79]		+		
501.1.1 501.1.2	DE DE	Vierraden Vierraden	50Hertz 50Hertz	PL PL	Krajnik Krajnik	PSE Operator S.A. PSE Operator S.A.		220 220		402 402		+	+	
502.1.1	DE	Hagenwerder	50Hertz	PL	Mikulowa	PSE Operator S.A.		380 [80]		1302				
502.1.2	DE	Hagenwerder	50Hertz	PL	Mikulowa	PSE Operator S.A.		380 [81]		1302		1	1	
503.1.1	DE	Neueibau	ENSO Netz GmbH	PL	Turów	Tauron Dystrybucja S.A.		110		39 [82]				
601.1.1 [83]	ES	Puerto de la Cruz	REE	MA	Melloussa 1	ONE		380		715				
601.1.2 [84]	ES	Puerto de la Cruz	REE	MA	Melloussa 2	ONE		380		715				
700.1.1	PL	Krosno Iskrzynia	PSE Operator S.A.	SK	Lemešany	SEPS		400		1252	831 [85]	+	1	
700.1.2 701.1.1 [87]	PL PL	Krosno Iskrzynia	PSE Operator S.A. PSE Operator S.A.	SK UA	Lemešany Khmolovitska NPP	SEPS NPC Ukrenergo		400 750	1	1 <mark>252</mark> 2676	831 [86]	1		
701.1.1 [87]	PL PL	Rzeszów Zamosc	PSE Operator S.A. PSE Operator S.A.	UA	Khmelnytska NPP Dobrotvir	NPC Ukrenergo NPC Ukrenergo		220	1	2676	2595 [88]	+	+	l
702.1.1 [89]	PL	Bialystok	PSE Operator S.A. PSE Operator S.A.	BY	Ros	Grodnoenergo		220		158 [91]				
704.1.1 [92]	PL	Slupsk	PSE Operator S.A.	SE	Stärnö	Svenska Kraftnät		442		600				
705.1.1 [93]	PL	Wólka Dobrynska	PGE Dystrybucja S.A.	BY	Brest	RUB Brestenergo		110		123 [94]				
705.1.2 [95]	PL	Wólka Dobrynska	PGE Dystrybucja S.A.	BY	Brest	RUB Brestenergo		110	1	123 [96]				

^{*}The conventional transmission capacity of tie lines is based upon parameters standardised within former UCTE for the calculation of the thermal load capability of each line. For arial lines these are: ambient temperature of + 35°C, wind velocity of 0,56 m/s at a right angle to the line as well as the voltage value stated in column 10 or 11. The conditions relevant to system operation in various countries at various time of the year can strongly differ from those above. Because the real allowable load capability of the line depends on many other factors, such as load flow distribution, upholding of voltage, real ambient conditions, limits of stability, n-1 security, etc., the conventional transmission capacity has no relevance from the point of view of system operation or economics but allows just a comparison of order of magnitude of the various lines. Adding together the conventional transmission capacity of several tie lines does not allow to infer on the real total transmission capacitity and leads to irrelevant results from the point of view of system operation.

[97]	Limited by the measuring transformer of current
[98]	Out of operation
[99]	Limited by HF attenuator at RO side
[100]	Passive island operation limit
[101]	Passive island operation limit
[102]	Passive island operation limit
[103]	Not in operation
[104]	DC submarine cable
[105]	Used only for import to Finland
[106]	Used only for import to Finland
[107]	Used only for import to Finland
[108]	Used only for import to Finland
[109]	Used only for import to Finland
[110]	DC submarine cable
[111]	Limited by the relay protection circuits
[112]	Limited by the relay protection circuits
[113]	Limited by the current transformers
[114]	limited by the relay protection circuits
[115]	Limited by the relay protection circuits
[116]	Limited by the relay protection circuits
[117]	Limited by the current transformers
[118]	Limited by the relay protection circuits

			Connection	n between:			Voltage of	the circuit	mission ca	onal trans- pacity of the n (thermal)*		by the transformer	s or by the substations of lines		
Circuit ID		From sub	station		to substati	on	Farcast	Drosset		1	at	Voltage	Transmission capacity	Voltage	
(Frontier point.Line.Circuit)	Country	Name	Operated by	Country	Name	Operated by	Forecast	Present	Forecast	Present			сараспу		
Nr.							kV	kV	MVA	MVA	MVA	kV	MVA	kV	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
710.1.1	HU	Györ	MAVIR	SK	Gabcikovo	SEPS		400		1330					
711.1.1	HU	Göd	MAVIR	SK	Levice	SEPS		400		1330	4.400				
720.1.1 721.1.1	HU	Albertirsa Sajószöged	MAVIR MAVIR	UA-W	Zahidno Ukrainska Mukachevo	NPC Ukrenergo NPC Ukrenergo		750 400		4010 1390	1400 693 [97]				
721.1.1	HU	Kisvárda	MAVIR	UA-W	Mukachevo	NPC Ukrenergo		220		209	305				
722.1.2	HU	Tiszalök	MAVIR	UA-W	Mukachevo	NPC Ukrenergo		220		209	305				
730.1.1	HU	Sándorfalva	MAVIR	RO	Arad	Transelectrica		400		1135	1109		1107		
731.1.1	HU	Békéscsaba	MAVIR	RO	Nadab	Transelectrica		400		1300	1385		440.7		
740.1.1 741.1.1 [98]	RO RO	Rosiori Isaccea	Transelectrica Transelectrica	UA-W UA	Mukachevo PivdennoUkrainska AES	NPC Ukrenergo NPC Ukrenergo		400 750	-	1135 4064	2100		110 7 2595 [99]		
750.1.1	RO	Stânca	Transelectrica	MD	Costesti	Moldenergo		110		119	2100		90 [100]		
751.1.1	RO	Husi	Transelectrica	MD	Cioara	Moldenergo		110		87			65 [101]		
752.1.1	RO	Tutora	Transelectrica	MD	Ungheni	Moldenergo		110		87			76 [102]		
753.1.1	RO	Issaccea	Transelectrica	MD	Vulcanesti	Moldenergo		400		1135			830		
760.1.1 [103]	3	Maritsa3	ESO	TR	Babaeski	TEIAS		400	ļ	1309					
761.1.1 770.1.1	BG NO	Maritsa3 Sildvik	ESO Statnett SF	TR SE	Hamitabat Tornehamm	TEIAS VE Eldistribution AB		400 130	 	1962 70	1	1	1	 	
771.1.1	NO	Ofoten	Statnett SF	SE	Ritsem	Svenska Kraftnät		400	 	880			1	 	
772.1.1	NO	Røssåga	Statnett SF	SE	Ajaure	Svenska Kraftnät		220		250					
773.1.1	NO	Nea	Statnett SF	SE	Järpströmmen	Svenska Kraftnät		400		500					
774.1.1	NO	Lutufallet	Statnett SF	SE	Höljes	Fortum Distribution		130	 		-		-	<u> </u>	
775.1.1 776.1.1	NO NO	Eidskog Hasle	Statnett SF	SE SE	Charlottenberg Borgvik	Fortum Distribution Svenska Kraftnät		130 400	 	1510	+	1	+	-	
777.1.1	NO	Halden	Statnett SF	SE	Skogssäter	Svenska Kraftnät		400		2000					
780.1.1	NO	Varangerbotn	Statnett SF	FI	Ivalo	Fingrid		220	†	100					
790.1.1	NO	Kirkenes	Statnett SF	RU	Boris Gleb	JSC FGC UES		154							
800.1.1	FI	Ossauskoski	Fingrid	SE	Kalix	Svenska Kraftnät		220							
801.1.1	FI	Petäjäskoski	Fingrid	SE	Letsi	Svenska Kraftnät		400							
802.1.1	FI FI	Keminmaa Raumo	Fingrid	SE SE	Svartbyn	Svenska Kraftnät Svenska Kraftnät		400		550					
803.1.1 [104] 804.1.1	FI	Tingsbacka (Aland)	Fingrid Kraftnät Åland AB	SE	Forsmark Senneby	VE Eldistribution AB		110	<u> </u>	80					
805.1.1	FI	Raumo	Fingrid	SE	Finnböle	Svenska Kraftnät		500		800					
810.1.1 [105]	FI	Yllikkälä	Fingrid	RU	Viborg	JSC FGC UES		400	i						
810.1.2 [106]	FI	Yllikkälä	Fingrid	RU	Viborg	JSC FGC UES		400							
811.1.1 [107]	FI	Kymi	Fingrid	RU	Viborg	JSC FGC UES		400							
812.1.1 [108]	FI	Nellimö	Inergia Oy	RU	Kaitakoski	JSC FGC UES		110		60					
813.1.1 [109] 820.1.1 [110]	FI FI	Imatra Espoo	Fortum Corporation Fingrid	RU EE	GES 10 Harku	JSC FGC UES Elering AS		110 150	-	100 350					
830.1.1	LV	TEC-1	Augstsprieguma tikls	EE	Sindi	Elering AS		330	+	1228					
831.1.1	LV	TEC-2	Augstsprieguma tïkls	EE	Sindi	Elering AS		330		1228					
832.1.1	LV	Valmiera	Augstsprieguma tikls	EE	Tsirguliina	Elering AS		330		350					
833.1.1	LV	Valmiera	Augstsprieguma tikls	EE	Tartu	Elering AS		330		350					
840.1.1	RU	Leningradskaja	JSC FGC UES	EE	Balti	Elering AS		330		590					
841.1.1	RU RU	Kingisepp Pskov	JSC FGC UES JSC FGC UES	EE EE	Eesti Taru	Elering AS		330 330	ļ	393 389					
842.1.1 845.1.1	RU	Velikoreckaya	JSC FGC UES	LV	Rezekne	Elering AS Augstsprieguma tikls		330	 	350	1			 	
850.1.1	LT	Šiauliai/Telšiai	LITGRID AB	LV	Jelgava (Viskali)	Augstsprieguma tikls		330	1	714	572 [111]		1	<u> </u>	
851.1.1	LT	Panevežys	LITGRID AB	LV	Aizkraukle	Augstsprieguma tikls		330		714	686 [112]				
852.1.1	LT	Klaip eda	LITGRID AB	LV	Grobina	Augstsprieguma tikls		330		714	572 [113]				
853.1.1	LT	IAE	LITGRID AB	LV	Liksna	Augstsprieguma tïkls		330		830					
854.1.1 855.1.1	LT	Paroveja Zarasai	LITGRID AB	LV	Nereta	Augstsprieguma tikls		110	 	75 86				 	
856.1.1 856.1.1	LT LT	IAE	LITGRID AB LITGRID AB	LV	Daugavpils Daugavpils	Augstsprieguma tikls Augstsprieguma tikls		110 110	 	102				 	
860.1.1	LT	IAE	LITGRID AB	BY	Polock	Belenergo		330	 	966	857 [114]			 	
861.1.1	LT	IAE	LITGRID AB	BY	Smorgon	Belenergo		330		830		<u> </u>		<u> </u>	
862.1.1	LT	IAE	LITGRID AB	BY	Minskaja TEC-5	Belenergo		330		1786	857 [115]				
863.1.1	LT	Vilnius	LITGRID AB	BY	Molodechno	Belenergo		330		714			+		
864.1.1	LT	Alytus	LITGRID AB	BY	Grodno	Belenergo		330	 	714	1	1		 	
865.1.1 866.1.1	LT LT	IAE IAE	LITGRID AB LITGRID AB	BY BY	Opsa Vidzi	Belenergo Belenergo		110 110	 	63 63	+	1		 	
867.1.1	LT	Didžiasalis	LITGRID AB	BY	Kaziani	Belenergo		110	 	44	29 [116]		+	 	
868.1.1	LT	Pabrad e	LITGRID AB	BY	Podolci	Belenergo		110	<u> </u>	44					
869.1.1	LT	Kalveliai	LITGRID AB	BY	Asmena	Belenergo		110		63	38 [117]				
870.1.1	LT	Šalcininkai	LITGRID AB	BY	Voronovo	Belenergo		110		86	46 [118]				
871.1.1	LT	Leipalingis	LITGRID AB	BY	Grodno	Belenergo		110		75					
880.1.1	LT	Bitenai	LITGRID AB	RU	Sovetsk	UES-SO-CDA		330 330	 	714 714	1		+	-	
881.1.1 882.1.1	LT LT	Bit enai Kruonio HAE	LITGRID AB LITGRID AB	RU RU	Sovetsk Sovetsk	UES-SO-CDA UES-SO-CDA		330	 	714 714	+	1	+	 	
883.1.1	LT	Kybartai	LITGRID AB	RU	Nesterovo	UES-SO-CDA		110	 	75				 	
000.111	+	Pagegiai	LITGRID AB	RU	Sovetsk	UES-SO-CDA		110	t	75		1		 	
884.1.1	LT	rayeyiai													

^{*}The conventional transmission capacity of tie lines is based upon parameters standardised within former UCTE for the calculation of the thermal load capability of each line. For arial lines these are: ambient temperature of + 35°C, wind velocity of 0,56 m/s at a right angle to the line as well as the voltage value stated in column 10 or 11. The conditions relevant to system operation in various countries at various time of the year can strongly differ from those above. Because the real allowable load capability of the line depends on many other factors, such as load flow distribution, upholding of voltage, real ambient conditions, limits of stability, n-1 security, etc., the conventional transmission capacity has no relevance from the point of view of system operation or economics but allows just a comparison of order of magnitude of the various lines. Adding together the conventional transmission capacity of several tie lines does not allow to infer on the real total transmission capacitity and leads to irrelevant results from the point of view of system operation.

Abbreviations used of TSO operators

AT	Austria	APG VUEN	Austria Power Grid AG Vorarlberger Übertragungsnetz GmbH (until January 2012 VKW-Netz GmbH)
ВА	Bosnia - Herzegovina	NOS BiH	Nezavisni operator sustava u Bosni i Hercegovini
BE	Belgium	Elia	Elia System Operator SA
BG	Bulgaria	ESO	Electroenergien Sistemen Operator EAD
СН	Switzerland	swissgrid	swissgrid ag
CZ	Czech Republic	CEPS	CEPS a.s.
DE	Germany	Amprion TransnetBW	Amprion GmbH TransnetBW (until February 2012 EnBW Transportnetze AG)
		TenneT DE 50Hertz	TenneT TSO GmbH 50Hertz Transmission GmbH
DK	Denmark	Energinet.dk IPC	Energinet.dk Independent Public Enterprice
EE	Estonia	Elering AS	Elering AS
ES	Spain	REE	Red Eléctrica de España S.A.
FI	Finland	Fingrid	Fingrid Oyj
FR	France	RTE	Réseau de Transport d'Electricité
GB	United Kingdom	National Grid SONI Ltd	National Grid Electricity Transmission plc System Operator for Northern Ireland Ltd (The connections operated by SONI Ltd are described with the country code NI.)
		SHETL SP Transmission	Scottish Hydro Electric Transmission Limited Scottish Power Transmission plc
GR	Greece	IPTO SA	Independent Power Transmission Operator S.A. (until January 2012 Hellenic Transmission System Operator S.A.)
HR	Croatia	HEP-OPS	HEP-Operator prijenosnog sustava d.o.o.
HU	Hungary	MAVIR	MAVIR Magyar Villamosenergia-ipari Átviteli Rends- Átviteli Rendszerirányító zerirányító Zártköruen Muködo Részvénytársaság
IE	Ireland	EirGrid	EirGrid plc
П	Italy	Terna	Terna - Rete Elettrica Nazionale SpA
LT	Lithuania	LITGRID AB	LITGRID AB
LU	Luxembourg	Creos Luxembourg	Creos Luxembourg S.A.
LV	Latvia	Augstsprieguma tïkls	AS Augstsprieguma tïkls
ME	Montenegro	CGESAD	Crnogorski elektroprenosni sistem AD

MK	FYROM	MEPSO	Macedonian Transmission System Operator AD
NL	The Netherlands	TenneT NL	TenneT TSO B.V.
NO	Norway	Statnett	Statnett SF
PL	Poland	PSE Operator	PSE Operator S.A.
PT	Portugal	REN	Rede Eléctrica Nacional, S.A.
RO	Romania	Transelectrica	C.N. Transelectrica S.A.
RS	Serbia	EMS	JP Elektromreža Srbije
SE	Sweden	Svenska Kraftnät	Affärsverket Svenska Kraftnät
SI	Slovenia	ELES	Elektro Slovenija d.o.o.
SK	Slovak Republic	SEPS	Slovenska elektrizacna prenosova sustava, a.s.
ΔΙ	Δlhania	KESH	Albanian Electroenergetic Corporation
AL	Albania	KESH	Albanian Electroenergetic Corporation
ВҮ	Belarus	Belenergo	Belenergo
			· ·
ВҮ	Belarus	Belenergo	Belenergo
BY MA	Belarus Morocco	Belenergo	Belenergo Office National de l'Electricité
BY MA MD	Belarus Morocco Republic of Moldavia	Belenergo ONE Moldenergo	Belenergo Office National de l'Electricité Moldenergo
BY MA MD RU	Belarus Morocco Republic of Moldavia Russia	Belenergo ONE Moldenergo JSC FGC UES	Belenergo Office National de l'Electricité Moldenergo Federal Grid Company

Circuit ID	From substation	To substation	Voltage [kV]	Thermal conventional transmission capacity	Major Reason	Time whole year [min]	January [min]	February [min]	March [min]	April [min]	May [min]	June [min]	July [min]	August [min]	September [min]	October [min]	November [min]	December [min]
11.1.1	DE - Diele (TenneT DE)	NL - Meeden (TenneT NL)	380	1382	R10	6493			6493	'								
11.1.2	DE - Diele (TenneT DE)	NL - Meeden (TenneT NL)	380	1382	R1	1266			1266	'	['							
13.1.1	DE - Siersdorf (Amprion)	NL - Maasbracht (TenneT NL)	380	1645	R1	606					[606						
13.1.2	DE - Rommerskirchen (Amprion)	NL - Maasbracht (TenneT NL)	380	1698	R9	5193		607			640	3946						
25.1.1	BE - Van Eyck (Elia)	NL - Maasbracht (TenneT NL)	380	1207	R1	19										19		
25.1.2	BE - Van Eyck (Elia)	NL - Maasbracht (TenneT NL)	380	1270	R1,R2	6928								6369			457	102
26.1.1	BE - Zandvliet (Elia)	NL - Geertruidenberg (TenneT NL)	380	1476	R1,R2	20560			<u> </u>	20560								
26.2.1	BE - Zandvliet (Elia)	NL - Borssele (TenneT NL)	380	1476	R1,R2	20738				20738	<u> </u>						<u> </u>	
27.1.1	NL - Eemshaven (TenneT NL)	NO - Feda (Statnett SF)	450	700	R2,R6	60855				17655	43200							'
28.1.1	GB - Isle of Grain (National Grid)	NL - Maasvlakte (TenneT NL)	450	500	R6	13500					13500							'
41.1.1	BE - Aubange (Elia)	LU - Belval (SOTEL)	220	358	R1,R2	22486					 '			3889	18597		——	
41.1.2	BE - Aubange (Elia)	LU - Belval (SOTEL)	220	358	R1	16363					 '			16003	360		—	
41.2.1	BE - Aubange (Elia)	LU - Belval (SOTEL)	150	157	R1	1548				 '	 '			1548				
51.1.1	BE - Monceau (Elia)	FR - Chooz (RTE)	220	338	R1	10924	_			 '	 '				6183	4741		
51.2.1	BE - Avelgem (Elia)	FR - Mastaing (RTE)	380	1168	R1	6616	7		├		 '		6314			39	256	
51.2.2	BE - Avelgem (Elia)	FR - Avelin (RTE)	380	1303	R1,R7	14972					<u> </u>	-	-		11	14893	68	4
51.3.1	BE - Achene (Elia)	FR - Lonny (RTE)	380	1168	R1	5813	8			5114	644		-	 	645	46	040	<u></u> '
52.1.1	BE - Aubange (Elia)	FR - Moutaine (RTE)	220	395	R1	1414	540			+	644		-		12		218	4
52.2.1 71.1.1	BE - Aubange (Elia) DE - Ensdorf (Amprion)	FR - Mont St Martin (RTE)	220 380	395 1790	R1 R1	6318 12405	-	-		 	6318		1	-	10405		\vdash	+
71.1.1 71.1.2	DE - Ensdorf (Amprion) DE - Ensdorf (Amprion)	FR - Vigy (RTE) FR - Vigy (RTE)	380	1790 1790	R1 R1	12405 14100	-	+	—	+	 '	 	2151		12405 11949	-	\vdash	+
71.1.2	DE - Ensdorf (Amprion)	FR - St-Avold (RTE)	220	261	R1,R2,R9	108093		550	559		 '	35603	44640	7018	11343	16282	3441	
72.1.1	DE - Eilsdoff (Amphorf) DE - Eichstetten (TransnetBW)	FR - Vogelgrün (RTE)	220	338	R2	514		330	359	\vdash		33003	44040	7010		10202	514	
72.1.2	DE - Eichstetten (TransnetBW)	FR - Muhlbach (RTE)	380	1684	R1	16608				16113		.		+			495	
81.1.1	CH - Bassecourt (swissgrid)	FR - Sierentz (RTE)	380	1172	R1.R9	18076				10110	2517	14043	807			15	694	
81.2.1	CH - Laufenburg (swissgrid)	FR - Sierentz (RTE)	380	1330	R1,R9	6013		4		 	2017	271	007	3561		2177	004	+
81.3.1	CH - Bassecourt (swissgrid)	FR - Mambelin (RTE)	380	1330	R1,R9	46732				7431	35284				358	1114	2545	
82.1.1	CH - Verbois (swissgrid)	FR - Bois-Tollot (RTE)	380	1552	R1	6403				14						6389		
82.1.2	CH - Chamoson (swissgrid)	FR - Bois-Tollot (RTE)	380	1552	R1,R9	60301			25409	29789	3320	1775				8		†
82.2.1	CH - Verbois (swissgrid)	FR - Génissiat (RTE)	220	237	R1	11											11	'
82.2.2	CH - Verbois (swissgrid)	FR - Génissiat (RTE)	220	237	R1	5				7	[ĺ					5	
82.5.1	CH - Riddes (swissgrid)	FR - Cornier (RTE)	220	216	R1	8302					1365			6442			495	
82.6.1	CH - StTriphon (swissgrid)	FR - Cornier (RTE)	220	222	R1,R8	11261					3	6489		4769				
83.1.1	DE - Asphard (swissgrid/EnBW Tr.Netze Strom)	FR - Sierentz (RTE)	380	1168	R1	6085	4812				<u> </u>		1273				<u> </u>	
91.1.1	FR - Albertville (RTE)	IT - Rondissone (Terna)	380	1244	R1	6274					6274							
91.1.2	FR - Albertville (RTE)	IT - Rondissone (Terna)	380	1244	R1	6125				 /	6125							
92.1.1	FR - Trinite Victor (RTE)	IT - Camporosso (Terna)	220	319	R1	28838				 '	 '		10000	2010	6774	19859	2205	4
93.1.1	FR - Villarodin (RTE)	IT - Venaus (Terna)	380	1237	R1	19672			└	 /	 '		16062	3610			₩	
102.2.1	CH - Laufenburg (swissgrid)	DE - Kühmoos (TransnetBW)	220	410	R1,R9	15794				 	 '	0110	749	13988	1057		—	
102.3.1	CH - Laufenburg (swissgrid)	DE - Kühmoos (TransnetBW)	220	430	R1,R9	17916 6624					├ ───'	2110	768	13985	1053	2140	F72	445
102.3.2	CH - Laufenburg (swissgrid) CH - Laufenburg (swissgrid)	DE - Kühmoos (TransnetBW) DE - Kühmoos (TransnetBW)	380 380	1527 1527	R1,R9 R1	2750		62		 	 '	-	3457 570		_	2149 2118	573	445
102.4.1	CH - Laufenburg (swissgrid) CH - Laufenburg (swissgrid)	DE - Kühmoos (Amprion)	380	1607	R1,R3,R9	65811		142			3226	12971	32347	14007	1065	2053		+
102.5.1	CH - Laufenburg (swissgrid)	DE - Kullinous (Amprion) DE - Tiengen (Amprion)	380	1122	R1	2209		161			3220	12971	32347	14007	2048	2003	-	+
103.1.2	CH - Beznau (swissgrid)	DE - Tiengen (Amprion)	220	335	R1	322		101	322	\vdash		 	 	-	2040		\vdash	+
104.1.1	CH - Asphard (swissgrid)	DE - Kühmoos (TransnetBW)	380	1263	R1,R2	6379	6357			\vdash	\vdash	 	†	 	 	22		+
105.1.1	CH - Laufenburg (swissgrid)	DE - Trossingen (TransnetBW)	380	1386	R1,R9	2458						t	274		2184			
107.1.1	CH - Laufenburg 220 kV (swissgrid)	DE - Laufenburg 110 kV (ED)	110	200	R1	2559		1	35			514			2010			
111.2.1	AT - Bürs (VIW)	DE - Herbertingen (Amprion)	220	389	R1,R2,R9	13510	101	1100			659	4467	560	1679	183	3616	557	588
111.3.1	AT - Bürs (VIW)	DE - Dellmensingen (Amprion)	220	492	R1,R9	7870						6314	1172	88				296
115.5.1	AT - St. Peter (APG)	DE - Altheim (TenneT DE)	220	301	R1,R2	3369						1387	1232		380			370
115.6.1	AT - St. Peter (APG)	DE - Simbach (TenneT DE)	220	301	R1	1779						404			1062			313
115.9.1	AT - St. Peter (APG)	DE - Pirach (TenneT DE)	220	518	R1	28882			5594	5645	6246	3222	6198		1007		970	
115.10.1	AT - St. Peter (APG)	DE - Pleinting (TenneT DE)	220	449	R1	7249					1420	494	4910		229		196	
116.1.1	AT - Westtirol (APG)	DE - Leupolz (Amprion)	380	1316	R1	356									356			
116.2.1	AT - Westtirol (APG)	DE - Memmingen (Amprion)	220	762	R1,R2	6987					6143				<u> </u>	431	413	
117.1.1	AT - Silz (APG)	DE - Oberbrunn (TenneT DE)	220	793	R1,R9	831					146	329	356			ļ	——	<u> </u>
117.1.2	AT - Silz (APG)	DE - Oberbrunn (TenneT DE)	220	793	R1	1118		!	349	4/	255			L		ļ	↓	514
121.2.1	CH - Gorduno (swissgrid)	IT - Mese (Terna)	220	278	R1	6281				6281	 '			L		ļ		 '
121.3.1	CH - Soazza (swissgrid)	IT - Bulciago (Terna)	380	1224	R1	-6		-	-6	4	 '	-			10.111		—	+'
121.4.1	CH - Lavorgo (swissgrid)	IT - Musignano (Terna)	380	1204	R1	23251	-	200		 	4500		-	3822	19429	0410		+'
123.1.1	CH - Riddes (swissgrid)	IT - Avise (Terna)	220	309	R1,R9	11271		266		├ ──-'	4593		1	-	 	6412		
123.2.1	CH - Riddes (swissgrid) CH - Serra (swissgrid)	IT - Valpelline (Terna) IT - Pallanzeno (Terna)	220	309	R1,R9	10282 6378		-		 '	3858			-	6270	6424	←	+
		ii - Fallanzeno (Tema)		278	R1	03/8			4	, ,					6378			,
123.3.1 124.1.1	CH - Robbia (swissgrid)	IT - Gorlago (Terna)	380	1330	R1,R2,R9	19808				3155	 		1	16328			 	325

Reasons: R1 - Maintenance, R2 - Repair, R3 - New construction, R7 - Outside impacts (animals, trees, fire, avalance,...),

R4 - Overload (also calculated),

R8 - Very exceptional conditions (weather, natural disaster,...),

R5 - False operation, R6 - Failure in protection device or other element,

R9 - Other reasons, R10 - Unknown reasons

Circuit ID	From substation	To substation	Voltage [kV]	Thermal conventional transmission capacity	Major Reason	Time whole year [min]	January [min]	February [min]	March [min]	April [min]	May [min]	June [min]	July [min]	August [min]	September [min]	October [min]	November [min]	December [min]
124.1.2	CH - Robbia (swissgrid)	IT - San Fiorano (Terna)	380	1330	R1,R2,R8	18853	2154		371					16328				
141.1.1	AT - Meiningen (Vorarlberg Netz)	CH - Y-Meiningen (swissgrid)	220	494	R1	38189					27406				10783			
141.2.1	AT - Meiningen (Vorarlberg Netz)	CH - Winkeln (swissgrid)	220	765	R1,R9	41039			171		30863			2063	6084		1858	4
142.1.1	AT - Westtirol (APG)	CH - Pradella (swissgrid)	380	1330	R1,R2,R9	12226			-	<u> </u>	0.400		<u> </u>	9443	2001	782		—
142.2.1 151.1.1	AT - Westtirol (APG) ES - Hernani (REE)	CH - Pradella (swissgrid) FR - Argia (RTE)	380 380	1330 1137	R1 R1	3433 19279	-	-		-	3433			+	-		19279	
151.2.1	ES - Irún (REE)	FR - Errondenia (RTE)	132	1137	R1,R2	6304		1	6304		1			+	1		19219	
151.3.1	ES - Arkale (REE)	FR - Argia (RTE)	220	339	R1	4871		1	0004	4871		1		1	1		1	
151.4.1	ES - Biescas (REE)	FR - Pragnères (RTE)	220	183	R1,R6	445				368			77					1
152.1.1	ES - Benós (REE)	FR - Lac d'Oo (RTE)	110		R9	583			1								583	
153.1.1	ES - Vich (REE)	FR - Baixas (RTE)	380	1348	R2,R9	43566	10977	31170	523								896	
161.1.1	DE - Flensburg (TenneT DE)	DK - Ensted (Energinet.dk IPC)	220	332	R1,R9,R10	34746		232					5113				29401	
161.2.1	DE - Flensburg (TenneT DE)	DK - Kassø (Energinet.dk IPC)	220	332	R9,R10	16159				5191							10968	
161.3.1	DE - Audorf (TenneT DE)	DK - Kassø (Energinet.dk IPC)	380	1078	R1,R2,R3	42475		228					21550		20697			
161.3.2	DE - Audorf (TenneT DE)	DK - Kassø (Energinet.dk IPC)	380	1078	R9,R10	20690	531	Ļ				ļ			16803			3356
171.1.1	AT - Bisamberg (APG)	CZ - Sokolnice (CEPS)	220	250	R1,R9	9641	477		5930		-		-	3711				405
171.2.1 172.1.1	AT - Bisamberg (APG) AT - Dürnrohr (APG)	CZ - Sokolnice (CEPS) CZ - Slavetice (CEPS)	220 380	250 1559	R1,R9 R1	9931 419	477	-	5871	419			 	3458				125
172.1.1	AT - Durnronr (APG) AT - Dürnrohr (APG)	CZ - Slavetice (CEPS) CZ - Slavetice (CEPS)	380	1559	R1,R9	1141	-	1	611	419	-	-	 	+	1		530	
181.1.1	AT - Obersielach (APG)	SI - Podlog (ELES)	220	320	R10	7	 	1	011		 	1	7		1		330	
191.3.1	DE - Bauler (Amprion)	LU - Flebour (Creos Luxembourg)	220	490	R1	632	 	1	632		1				1			\vdash
192.1.1	DE - Trier (Amprion)	LU - Heisdorf (Creos Luxembourg)	220	490	R1,R9	600		1	516		84		t e		İ			†
192.2.1	DE - Quint (Amprion)	LU - Heisdorf (Creos Luxembourg)	220	490	R1	1644				1644								1
201.1.1	IT - Redipuglia (Terna)	SI - Divaca (ELES)	380	1619	R6,R8	87			ĺ	81		1	6					
201.2.1	IT - Padriciano (Terna)	SI - Divaca (ELES)	220	320	R6	127				127								
205.1.1	IT - Galatina (Terna)	GR - Arachthos (IPTO SA)	380	500	R1,R6,R9,R10	100798	601	5024	6718	15630	12421	17060			20602	22692	50	
221.1.1	GB - Sellindge (National Grid)	FR - Mandarins (RTE)	270	1000	R1,R2,R3	329049		9203	30180	43200	44637	43197	44640	44640	43200	21255	3872	1025
221.2.1	GB - Sellindge (National Grid)	FR - Mandarins (RTE)	270	1000	R1,R3,R6	61314	30580	4863	671	55	913	578		888	3798	16974	1086	908
222.1.1	GB - Auchencrosh (National Grid)	NI - Ballycronanmore (SONI Ltd)	250	250	R1,R2,R10	231979					50		43140	44640	43200	15330	42479	43140
222.2.1	GB - Auchencrosh (National Grid) IE - Louth (EirGrid)	NI - Ballycronanmore (SONI Ltd)	250 275	250 660	R2,R10 R4	141713 124				124	62			10611		44700	43200	43140
231.1.1	ES - Las Conchas (REE)	NI - Tandragee (SONI Ltd) PT - Lindoso (REN)	132	90	R4 R3	14459	-	-	-	124	14459			+	-		 	+
232.2.1	ES - Aldeadávila (REE)	PT - Lagoaça (REN)	400	1469	R1	296		1			14459				296			
232.3.1	ES - Saucelle (REE)	PT - Pocinho (REN)	220	346	R1	59661		246	3006	22291		1		34118	200			
233.1.1	ES - Cedillo (REE)	PT - Falagueira (REN)	380	1300	R1,R9	2917							2605	293	19			
234.1.1	ES - Cartelle (REE)	PT - Alto Lindoso (REN)	380	1330	R1,R2	4397		283					4114					i
234.1.2	ES - Cartelle (REE)	PT - Alto Lindoso (REN)	380	1330	R1	4491							4491					
235.1.1	ES - Brovales (REE)	PT - Alqueva (REN)	400	1280	R1	3314							3314					
241.1.1	MK - Dubrovo (MEPSO)	GR - Thessaloniki (IPTO SA)	400	1300	R1,R6	8665				374	949	6962	380					<u> </u>
242.1.1	MK - Bitola (MEPSO)	GR - Meliti (IPTO SA)	400	1300	R1,R2	3206					1123		331		1752			_
261.1.1	RS - Djerdap 1 (EMS)	RO - Portile de Fier (Transelectrica)	400	1135	R1,R2	2568				10			403	2165	2010			
271.1.1	BG - Sofija Zapad (ESO)	RS - Nis (EMS)	380	1309	R1,R2,R10	3041			55	40			007	33	2913			
275.1.1 277.1.1	RO - Isaccea (Transelectrica) RO - Tântareni (Transelectrica)	BG - Varna (ESO) BG - Kozlodui (ESO)	400	2168 1300	R1 R1	1164 6958	 	+	 	 	2381	4024	987		177	553		
277.1.2	RO - Tantareni (Transelectrica)	BG - Kozlodui (ESO)	400	1300	R1	7676	-	1	†		2381	3739	304		1	1252		\vdash
278.1.1	RO - Rahman (Transelectrica)	BG - Dobrudja (ESO)	400	1135	R1	107365	1	324	33358	11087	38		16325		17028	28676		529
282.1.1	AL - Fierza (KESH)	RS - Prizren (EMS)		270	R1,R9	5257						4768					489	
291.1.1	AL - Elbassan (KESH)	GR - Kardia (IPTO SA)		1300	R1	7664									7664			
292.1.1	AL - Bistrica (KESH)	GR - Mourtos (IPTO SA)		120	R2	360										360		
293.1.1	GR - Nea Santa (IPTO SA)	TR - Babaeski (TEIAS)	400	2000	R1,R2,R4,R6,R10	8042	414		ļ		3645	244	620	67	2985	11	56	
301.1.1	BG - Blagoevgrad (ESO)	GR - Thessaloniki (IPTO SA)	400	1300	R1,R6,R10	6379	ļ				5815		20		ļ	535		9
321.1.1	CZ - Hradec Zapad (CEPS)	DE - Etzenricht (TenneT DE)	400	1386	R1	6420	<u> </u>	-	-	 	6420	0000		+	-	007	611	
321.1.2	CZ - Prestice (CEPS)	DE - Etzenricht (TenneT DE)	400	1491	R1	5496	-	500		-	2322	2238	6050			625	311	—
322.1.1 322.1.2	CZ - Hradec Vychod (CEPS) CZ - Hradec Vychod (CEPS)	DE - Röhrsdorf (50Hertz) DE - Röhrsdorf (50Hertz)	400	1386 1386	R1,R9 R2,R9	7445 4292	1011	589 1400		-			6856 1881		1			
331.1.1	HU - Sandorfalva (MAVIR)	RS - Subotica (EMS)	400	1295	R2,R9 R1,R9	2276	1011	1400	2072		1	+	1001	204	 		 	-
351.1.1	HR - Melina (HEP-OPS)	SI - Divaca (ELES)	400	1164	R6,R9	100	 	 	7		1		 	93				\vdash
351.2.1	HR - Pehlin (HEP-OPS)	SI - Divaca (ELES)	220	320	R8	14	 	1				2			12		1	\vdash
352.1.2	HR - Tumbri (HEP-OPS)	SI - Krško (ELES)	400	1164	R9	66	1	1	66					1			1	\vdash
371.1.1	HR - Ernestinovo (HEP-OPS)	RS - Sremska Mitrovica (EMS)	400	1264	R1	2522								1562	960			
381.1.1	BA - Trebinje (NOS BiH)	ME - Podgorica 2 (CGES AD)	380	1264	R8	24953										24953		
383.1.1	BA - Visegrad (NOS BiH)	RS - Vardiste (EMS)	220	311	R2,R3	4277	-	-			200	935	2593			592	157	4
000 - 1	BA - Sremska Mitrovica (NOS BiH)	RS - Sremska Mitrovica (EMS)	380	1264	R1,R10	2376	1			1	2339		1	37		I	1	
383.5.1 384.1.1	RS - Pec 3 (EMS)	ME - Ribarevine (CGES AD)	400	1264	R1,R2,R10	1442			85		1121			17				219

Reasons: R1 - Maintenance, R2 - Repair, R3 - New construction, R7 - Outside impacts (animals, trees, fire, avalance,...),

R4 - Overload (also calculated),

R8 - Very exceptional conditions (weather, natural disaster,...),

R9 - Other reasons,

R5 - False operation, R6 - Failure in protection device or other element, R10 - Unknown reasons

Circuit ID	From substation	To substation	Voltage [kV]	Thermal conventional transmission capacity	Major Reason	Time whole year [min]	January [min]	February [min]	M arch [min]	April [min]	M ay [min]	June [min]	July [min]	August [min]	September [min]	October [min]	November [min]	December [min]
384.3.1	RS-Pozega (EMS)	M E - Pljevlja 2 (CGES AD)	220	365	R1	6071						6071				1		T
391.1.1	MK - Skopje 1 (MEPSO)	RS - Kosovo A (EMS)	220	311	R9	525600	44640	40320	44580	43200	44640	43200	44640	44640	43200	44700	43200	44640
391.2.1	MK - Skopje 1 (MEPSO)	RS - Kosovo A (EMS)	220	311	R9	524160	44640	40320	44580	43200	44640	43200	43200	44640	43200	44700	43200	44640
391.3.1	MK-Skopje5(MEPSO)	RS - Urosevac (EMS)	380	12 18	R2,R3	1302									178	1124		
401.1.1	DE - Herrenwyk (TenneT DE)	SE - Kruseberg (Baltic Cable AB)	400	600	R1,R4,R6,R10	34377	17	9		29034			232				5085	
404.1.1	CZ - Nosovice (CEPS)	SK - Varin (SEPS)	400	1205	R1,R9	8951						8070				602	279	
4 10 . 1. 1	CZ - Liskovec (CEPS)	SK - Pov. Bystrica (SEPS)	220	221	R1,R2,R9	10289				6293		163						3833
420.1.1	CZ - Sokolnice (CEPS)	SK - Senica (SEPS)	220	213	R1,R2	11067		4736					6331					
424.1.1	CZ - Sokolnice (CEPS)	SK - Krizovany (SEPS)	400	1205	R1	13 12 0							9121		3999			
430.1.1	CZ - Sokolnice (CEPS)	SK - Stupava (SEPS)	400	1363	R1,R5	6562					6533		29					
440.1.1	UA-W - Mukachevo (NPC Ukrenergo)	SK - V.Kapusany (SEPS)	400	1115	R1,R2,R6,R9	178 13			6170		402		6455		4782		4	
443.1.1	CZ - Albrechtice (CEPS)	PL - Dobrzeń (PSE Operator S.A.)	400	1088	R1,R2,R9	21157		460				431			20266			
444.1.1	CZ - Nosovice (CEPS)	PL - Wielopole (PSE Operator S.A.)	400	1088	R1,R6	17698								20	17678			
450.1.1	CZ - Liskovec (CEPS)	PL - Kopanina (PSE Operator S.A.)	220	399	R1	5102			4828						274			
460.1.1	CZ - Liskovec (CEPS)	PL - Bujaków (PSE Operator S.A.)	220	399	R1,R9	5106			454	497			1848	2307				
50 1.1.1	DE - Vierraden (50 Hertz)	PL - Krajnik (PSE Operator S.A.)	220	402	R1,R2,R8,R9	8236		154	2055		1466	438	1105	2312				706
501.1.2	DE - Vierraden (50 Hertz)	PL - Krajnik (PSE Operator S.A.)	220	402	R1,R2,R8	4803			1725		1804			25	389		860	
502.1.1	DE - Hagenwerder (50 Hertz)	PL - Mikułowa (PSE Operator S.A.)	380	1302	R1	2046				2046								
502.1.2	DE - Hagenwerder (50 Hertz)	PL - Mikułowa (PSE Operator S.A.)	380	1302	R1	1458				1458								
6 0 1.1.1	ES - Puerto de la Cruz (REE)	M A - M elloussa 1 (ONE)	380		R1,R2,R6	76804			97	552	23 176	43200	9779					
700.1.1	PL - Krosno Iskrzynia (PSE Operator S.A.)	SK - Lemešany (SEPS)	400	1252	R1,R2,R6	44104		2232					22508	19238			126	
700.1.2	PL - Krosno Iskrzynia (PSE Operator S.A.)	SK - Lemešany (SEPS)	400	1252	R1,R2	45550		3339					22498	19363			350	
704.1.1	PL - Słupsk (PSE Operator S.A.)	SE - Stärnö (Svenska Kraftnät)	450	600	R1,R2	26609	480									26129		
710.1.1	HU - Gyoer (M A V IR)	SK - Gabcikovo (SEPS)	400	1330	R1,R2	20157									19405	83	482	187
711.1.1	HU - Göd (MAVIR)	SK - Levice (SEPS)	400	1330	R2,R7,R8	7066			5658	1103			271					34
720.1.1	HU - Albertirsa (MAVIR)	UA-W - Zahidno Ukrainska (NPC Ukrenergo)	750	4010	R1,R6	81232	231	12020	10932	34250	11055			10755	1989			
721.1.1	HU - Sajószöged (MAVIR)	UA-W - Mukachevo (NPC Ukrenergo)	400	1390	R1	15908					7771					6281		1856
722.1.1	HU - Kisvárda (M A V IR)	UA-W - Mukachevo (NPC Ukrenergo)	220	209	R1	23983								1282		17529	5172	
722.1.2	HU - Tiszalök (M A V IR)	UA-W - Mukachevo (NPC Ukrenergo)	220	209	R1	13272					6337		588	6347				
730.1.1	HU - Sandorfalva (MAVIR)	RO - Arad (Transelectrica)	400	1135	R1,R9	2329			706	106				10			1507	4
73 1.1.1	HU - Békéscsaba (MAVIR)	RO - Nadab (Transelectrica)	400	1300	R1	8875			866	17		0500	40.04		7992	0.400		+
740.1.1 800.1.1	RO - Rosiori (Transelectrica) FI - Ossausko ski (Fingrid Oyj)	UA-W - Mukachevo (NPC Ukrenergo) SE - Kalix (Svenska Kraftnät)	400 220	1135	R1 R9	18031 12			5395	927		6562	1981			3166		12
803.1.1	FI - Raumo (Fingrid Oyj)	SE - Forsmark (Svenska Kraftnät)	400	550	R1,R3,R6,R10	31647		441		13231	3772	239		8790	1300		1234	2640
805.1.1	FI - Raumo (Fingrid Oyj.)	SE - Finnböle (Svenska Kraftnät)	500	800	R1,R2	2640		7-71		10201	0112	200		0700	1000		1204	2640
8 10 . 1. 1	FI - Yllikkälä (Fingrid Oyj)	RU - Viborg (JSC FGC UES)	400	000	R1	32640		1					30060	2580				20.0
8 10 . 1.2	FI - Yllikkälä (Fingrid Oyj)	RU - Viborg (JSC FGC UES)	400		R6	78							78					1
8 11. 1. 1	FI - Kymi (Fingrid Oyj)	RU - Viborg (JSC FGC UES)	400		R1	32640							30060	2580				
8 13 . 1. 1	FI - Imatra (Fortum Oyj)	RU - GES 10 (JSC FGC UES)	110		R8	403					403							
820.1.1	FI - Espoo (Fingrid Oyj)	EE - Harku (Elering AS)	150		R1,R6,R9,R10	17563	2096	10676			2601	304	501		1080			305
850.1.1	LT - Šiauliai/Telšiai (LITGRID AB)	LV - Jelgava (Viskali) (AS Augstsprieguma tïkls)	330	714	R1	10739			5070						4915	754		
851.1.1	LT - Panevėžys (LITGRID AB)	LV - Aizkraukle (AS Augstsprieguma tikls)	330	714	R2,R3	49526	44707			18 10 2	30225		431		768	0.040		+
8 52 .1.1 8 53 .1.1	LT - Klaipėda (LITGRID AB) LT - IAE (LITGRID AB)	LV - Grobina (AS Augstsprieguma tïkls) LV - Liksna (AS Augstsprieguma tïkls)	330 330	714 830	R1,R2 R1.R2	22755 15230	14737	1048	10813					3369		8018		+
854.1.1	LT - Parovėja (LITGRID AB)	LV - Liksha (AS Augstsprieguma tikls) LV - Nereta (AS Augstsprieguma tikls)	110	75	R 1,R2	3409	<u> </u>	586	10010		2156			3309	667		+	+
8 55.1.1	LT - Zarasai (LITGRID AB)	LV - Daugavpils (AS Augstsprieguma tikls)	110	86	R1,R7	319	 	212		1	107			 	307		1	+
856.1.1	LT - IAE (LITGRID AB)	LV - Daugavpils (AS Augstsprieguma tikls)	110	102	R1,R9	6579	i	755	5384						1	440		
860.1.1	LT - IAE (LITGRID AB)	BY - Polock (Belenergo)	330	966	R1	26289	4945	9465		6424		3399	2056		<u> </u>			
8 6 1.1.1	LT - IAE (LITGRID AB)	BY - Smorgon (Belenergo)	330	830	R1	23242			4882		6481		6180	952			4747	
862.1.1	LT - IAE (LITGRID AB)	BY - Minskaja TEC-5 (Belenergo)	330	1786	R1,R3,R9	250371	6384			29530	44640	43200	44640	44640	31140			6197
863.1.1	LT - Vilnius (LITGRID AB)	BY - Molodechno (Belenergo)	330	714	R1,R9	12981					6195				3445		2340	1001
864.1.1	LT - Alytus (LITGRID AB)	BY - Grodno (Belenergo)	330	714	R1	5331			2282	1081	06.77			1968				
865.1.1	LT - IAE (LITGRID AB)	BY - Opsa (Belenergo)	110	63	R1,R3	10634	<u> </u>	0077	1000		6060			044			4574	0011
866.1.1 867.1.1	LT - IAE (LITGRID AB) LT - Didžasalis (LITGRID AB)	BY - Vidzi (Belenergo) BY - Kaziani (Belenergo)	110	63 44	R2,R3 R1	17041	 	3377	1898	2507	7544	267		241			740	3241
868.1.1	LT - Pabradé (LITGRID AB)	BY - Raziarii (Belenergo)	110 110	44	R3	6 175 72 13 6	44640	25453		3587	2043	367		 	 		+	+
869.1.1	LT - Kalveliai (LITGRID AB)	BY - Asmena (Belenergo)	110	63	R2	16645	74040	20100			2070		643	712		15290		+
870.1.1	LT - Šalčininkai (LITGRID AB)	BY - Voronovo (Belenergo)	110	86	R1	33080	 	1	 	1		465	5941	, 12		26674		+
871.1.1	LT - Leipalingis (LITGRID AB)	BY - Grodno (Belenergo)	110	75	R1,R2	8412	İ	1		1	1	4466			1	1852	2094	
880.1.1	LT - Bitènai (LITGRID AB)	RU - Sovetsk (UES-SO-CDA)	330	714	R1,R3,R7	4 13 70	1685	185					27985	11515				
8 8 1.1.1	LT - Bitėnai (LITGRID AB)	RU - Sovetsk (UES-SO-CDA)	330	714	R1,R3	97516				18095	44640	32920			1861			
882.1.1	LT - Kruonio HAE (LITGRID AB)	RU - Sovetsk (UES-SO-CDA)	330	714	R1,R9	14377										8285	6092	4
	LT - Kybartai (LITGRID AB)	RU - Nesterovo (UES-SO-CDA)	110	75	R1,R9	8563			2857			1118				4588		
883.1.1 884.1.1	LT - Pagégiai (LITGRID AB)	RU - Sovetsk (UES-SO-CDA)	110	75	R1	6045		1			6045			1				

Reasons: R1 - Maintenance, R2 - Repair, R3 - New construction, R7 - Outside impacts (animals, trees, fire, avalance,...),

R4 - Overload (also calculated),

R8 - Very exceptional conditions (weather, natural disaster,...),

R5 - False operation, R9 - Other reasons,

R6 - Failure in protection device or other element,

R10 - Unknown reasons

- 1 ENTSO-E Net generation, exchanges and consumption 2011
- 2 Yearly values/operation and physical exchanges
- 3 System information
- 4 Glossary of statistical terms

The Glossary of statistical terms contains all terms used in this Statistical Yearbook. The corresponding explanations are available on the ENTSO-E internet site www.entsoe.eu under "Resources / Data Portal / Statistical Glossary".

Term	Definition
Alternating Current (AC)	An electric current that reverses its direction at regularly intervals.
Circuit Length	The circuit length of an electrical line or cable is the actual length of each of its conductors or the mean of the lengths of the conductors, if there is any appreciable difference in their lengths.
Classification of Power Units	According to the category of Primary Energy and fuel used for electricity generation, the ENTSO-E statistics considers the following classification in its publications: • Hydro • Nuclear • Fossil fuels • Other Renewable (of which wind, solar) • Not clearly identifiable
Consumption	See Load and relations to consumption in the following document: https://www.entsoe.eu/fileadmin/user_upload/_library/publications/ce/Load_and_Consumption_Data.pdf
Consumption of Pumps	The electrical energy absorbed by the motor pumps in raising the water into the upper reservoir for the generation of electrical energy. It should include the electrical energy consumed by the auxiliary equipment and transformer losses during pumping. See also Pumped Storage.
Control Area	It is a coherent part of the ENTSO-E interconnected system (usually coinciding with the territory of a company, a country or a geographical area, physically demarcated by the position of points for measurement of the interchanged power and energy to the remaining interconnected network), operated by a single TSO, with physical loads and controllable generation units connected within the Control Area. A Control Area may be a coherent part of a control block that has its own subordinate control in the hierarchy of secondary control (see also the Glossary in the Operation Handbook).
Conventional Transmission Capacity	A theoretical value based on parameters standardized within ENTSO-E (Continental Europe) for calculation of the thermal load capacity of each tie line. These are:ambient temperature of $+35^{\circ}$ C, wind velocity of 0,56 m/s at a right angle to the line, as well as the voltage of the line.
Cross Frontier Line	See Tie Line.

Term	Definition
Direct Current (DC)	Direct current or DC electricity is the continuous movement of electrons from an area of negative (-) charges to an area of positive (+) charges through a conducting material.
Electricity Balance (Electricity Supply Situation)	Computes the consumption of electricity from the supply side (not metered in final consumer). In the ENTSO-E, it is presented as the sum of Net Production (split by Classification of Power Units) minus the Consumption of Pumps plus Exchange Balance. Due to fact that consumption is computed from the supply side, the electricity balance includes the distribution and Transmission Losses.
Energy Not Supplied (ENS)	An estimation of the energy not supplied to final customers due to incidents in the transmission network.
Equivalent Time of Interruption	The duration of an interruption in minutes multiplied by the energy not supplied divided by the consumption for the last 12 months. This value allows a direct comparison of interruptions that occurred during a year.
Exchange Balance	The difference between the inside and outside physical flows on each interconnection line of a country.
Hydro	Electricity derived from the potential and kinetic energy content of water. It can be classified as: Storage Hydro, Run of River, Pure Pumped Storage and Mixed Pumped Storage.
Load	Load on a power system is referred to as the hourly average active power absorbed by all installations connected to the transmission network or to the distribution network. The load is the value at a given moment of the electrical power supplied or absorbed at any point of a system as determined by an instantaneous measurement or by the integration of power during a given period of time. Load can refer to a consumer, an appliance, a group of consumers or appliances or a network. Load is the power consumed by the network including (+) the network losses but excluding (-) the consumption for pumped storage and excluding (-) the consumption of generating auxiliaries. For the power balance, the load of each country, also called reference load, is represented at 11 a.m. on the 3rd Wednesday of each month without regard to the export power. Concerning the calculation method for the 24 load values, the countries use the average values of the 10, 15 or 60 minutes load preceding the hour.
Net Generating Capacity	 Net Generating Capacity (NGC) of a power station is the maximum electrical net active power it can produce continuously throughout a long period of operation in normal conditions, where: "net" means the difference between, on the one hand, the gross generating capacity of the alternator(s) and, on the other hand, the auxiliary equipments' load and the losses in the main transformers of the power station; for thermal plants "normal conditions" means average external conditions (weather, climate) and full availability of fuels; for hydro and wind units, "normal conditions" refer to the usual maximum availability of primary energies, i.e. optimum water or wind conditions. Net Generating Capacity of a country is the sum of the individual Net Generating Capacity of all power stations connected to either the transmission grid or to the distribution grid.

of all power stations connected to either the transmission grid or to the distribution grid.

Term	Definition
Net Generation (Net Production)	It is the Gross Generation less the electrical energy absorbed by Generating Auxiliaries and the losses in the main generator transformers.
Network Reliability	Reliability is a general term encompassing all the measures of the ability of the system, generally given as numerical indices, to deliver electricity to all points of utilization within acceptable standards and in the amounts desired. Network reliability (comprising generation and transmission facilities) can be described by two basic and functional attributes: Adequacy and Security.
Not Clearly Identifiable Sources	Not Clearly Identifiable Sources comprise Power Plants or Power Units, which, according to Sources the primary energy used, cannot be categorized.
Nuclear	Electricity generated by the use of thermal energy released from the fission of nuclear fuel in a reactor.
Other Renewable Energy Sources	In the ENTSO-E statistics, this category comprises all Renewable Energy Sources except total Hydro production.
Peak Load	The maximum hourly demand during a period of time: day, month or year. (Maximum Load)
Physical Energy Flow	It represents the real movements of energy between neighboring countries metered in cross-border Tie Lines in both directions, in the system and out of the system.
Physical Inside Flows	See Physical Energy Flow.
Physical Outside Flows	s See Physical Energy Flow.
Power Produced in Parallel Operation	It is the sum of the net electrical power produced in power stations participating in synchronous operation. It takes into account the spinning reserve, but excludes units injecting into systems, which are coupled to the interconnected network only by an AC / DC-link, and those, which cannot be operated with 50 Hz. Remark: Since January 2007, these data are no longer collected and published.
Protection Device	Equipment applied to electric power systems to detect abnormal and intolerable conditions and to initiate corrective actions to ensure continuity of electric service, to limit injury to people and to limit damage to equipment. These devices include lightning arresters, surge protectors, fuses and relays with associated circuit breakers, reclosers and so forth.
Reference Points	The dates and times for which power data are collected. Reference points are characteristic enough of the entire period studied to limit the data to be collected to the data at the reference points.

Term	Definition
Renewable Energy Sources (Renewables)	It means renewable non-fossil energy sources (wind, solar, geothermal, wave, tidal, hydropower, biomass, landfill gas, sewage treatment plant gas and biogases).
Representativity (National Representativity Index)	This is a specific ENTSO-E term, which generally means that certain values might not cover the whole country. It is expressed as a percentage. There might be differences between the approaches of the ENTSO-E statistics and System Adequacy reports.
Scheduled (Program, Declared)Inside Flows	The program Outside Flows (respectively Inside Flows) of electricity in one member state on the basis of an underlying contractual arrangement to the effect that the simultaneous corresponding take-up (program Inside Flows (respectively Outside Flows)) of electricity will take place in another Member State or a third country.
Substation	Facility equipment that steps up or steps down the voltage in utility power lines. Voltage is stepped up where power is sent through long distance transmission lines, and stepped down where the power is to enter local distribution lines. They can be classified as normal outside substation, armoured substation and underground substation.
Thermal Conventional (Fossil Fuels)	Electricity generated by an electric power plant using mainly coal, petroleum (derivates) or gas as its primary source of energy. In ENTSO-E statistics, we use the term "Fossil fuels" for the production of electricity with a thermal process that is not generated using Nuclear or Renewable Energy Sources.
Tie Line	A transmission line connecting two countries.
Transit	An energy flow that occurs in a country, which is neither the source nor the sink of the energy flow. The energy flow arrives in the grid over one border and leaves the country over one or more borders
Transmission Losses	The difference between the fed-in (generation) and the delivery energy to distributors. Ownneeds for the operation of the grid are included.
Transmission System Operator (TSO)	A company that is responsible for operating, maintaining and developing the transmission system for a control area and its interconnections.
Vertical Load	The total amount of power flows out of the transmission network into distribution and large customer networks.

Publisher: Secretariat of ENTSO-E

Avenue de Cortenbergh 100, B-1000 Brussels

Internet: www.entsoe.eu

Executive Editor: Secretariat of ENTSO-E

Managing Editor: Edda Asmus

Production Editor: Vattenfall Europe Information Services

Printed by: Oswald und Martin Werbeagentur

Berlin

Photo: Energinet.dk

May not be reproduced without prior permission of ENTSO-E

Contact

ENTSO-E AISBL

Avenue de Cortenbergh 100 1000 Brussels Belgium

Tel +32 2 741 09 50 Fax +32 2 741 09 51

info@entsoe.eu www.entsoe.eu

