Catorceava sesión Análisis Convexos - CM3E2

Jonathan Munguia¹

¹Facultad de Ciencias Universidad Nacional de Ingeniería

27 de mayo de 2021

1/25

Outline

- Funciones Asintóticas
 - Funciones Asintóticas

cernald proversa no vacio

Sea $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ convexa sci propia. Entonces $F = \operatorname{epi}(f)$ es convexo cerrado no vacío y por lo tanto F_{∞} es un cono convexo cerrado. Observe que

- Para todo $(x, \lambda) \in \operatorname{epi}(f)$, y $t \ge 0$, $(x, \lambda) + t(0, 1) \in \operatorname{epi}(f)$, luego $(0, 1) \in F_{\infty}$ (Use el Teorema 2 de la Novena sesión).
- 2) $(d,\lambda) \in F_{\infty}, \ \mu > \lambda \Rightarrow (d,\mu) \in F_{\infty}$
- 3) Por (2), se deduce que F_{∞} es el epígrafo de cierta función, que denotaremos f_{∞} y llamaremos función asintótica (o función de recesión) de f. Como F_{∞} es convexo, entonces f_{∞} es convexa. Además se tiene

 $f_{\infty}(\underline{d}) =$

 $f_{\infty}(\underline{d}) = \inf \{ \lambda : (d, \lambda) \in F_{\infty} \}.$

CAN Expif = f(x) EX < 2+t (x, x+t) Expif

Proposición 1

Sean $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ convexa, sci, propia y $a \in dom(f)$ y $d \in \mathbb{R}^n$. Entonces:

$$f_{\infty}(d) = \sup_{k>0} \frac{f(a+kd) - f(a)}{k}$$

$$= \lim_{k \to +\infty} \frac{f(a+kd) - f(a)}{k}$$

$$= \lim_{k \to +\infty} \frac{f(a+kd) - f(a)}{k}$$

$$= \lim_{k \to +\infty} \frac{f(a+kd)}{k}$$

Demostración

Ver Proposición 3.2.1 de [1] y Proposición 2.16 de [2].

Para todo $\alpha \in \overline{\mathbb{R}}$, se cumple la siguiente cadena de equivalencias (incluso si $f_{\infty}(d) = +\infty$):

$$\alpha \geq \sup_{k>0} \underbrace{\frac{f(a+kd)-f(a)}{k}} \Leftrightarrow \forall k > 0, \underbrace{f(a+kd)} \leq f(a) + k\alpha$$

$$\Leftrightarrow \forall k > 0, (a+kd, f(a)+k\alpha) \in \operatorname{epi}(f)$$

$$\Leftrightarrow \forall k > 0, (a, f(a)) + k(0, \alpha) \in \operatorname{epi}(f)$$

$$\Leftrightarrow (d, \alpha) \in [\operatorname{epi}(f)]_{\infty}(a, f(a))$$

$$\Leftrightarrow \forall (x, \mu) \in \operatorname{epi}(f), (d, \alpha) \in [\operatorname{epi}(f)]_{\infty}(x, \mu)$$

$$\Leftrightarrow (d, \alpha) \in [\operatorname{epi}(f)]_{\infty} = F_{\infty} = \operatorname{epi}(h_{\infty})$$

$$\Leftrightarrow f_{\infty}(d) \leq \alpha$$

esto muestra que $f_{\infty}(d) = \sup_{k>0} \frac{f(a+kd) - f(a)}{k}.$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 ♀

cont...

Por otro lado, si $0 < k < \lambda$, entonces $a + kd = \left(1 - \frac{k}{\lambda}\right)a + \frac{k}{\lambda}(a + \lambda d)$. Luego, por la convexidad de f se tiene:

$$f(a+kd) \le \left(1-rac{k}{\lambda}
ight)f(a) + rac{k}{\lambda}f(a+\lambda d),$$

lo cual, reordenando da lugar a

$$\frac{f(a+kd)-f(a)}{k} \leq \frac{f(a+\lambda d)-f(a)}{\lambda},$$

es decir, la función $k \to \frac{f(a+kd)-f(a)}{h}$ es creciente. Por lo tanto,

$$\sup_{k>0} \frac{f(a+kd)-f(a)}{k} = \lim_{k\to +\infty} \frac{f(a+kd)-f(a)}{k}$$

Munguia (FC-UNI)

En las hipótesis de la Proposición 1 (f convexa, sci, propia), $f_{\infty}(d) > -\infty$ para todo $d \in \mathbb{R}^n$ por lo tanto, f_{∞} también es propia.

Proposición 2

Sea $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ convexa, sci y propia. Se cumple:

$$f_{\infty}(0)=0$$
 y $f_{\infty}(kd)=kf_{\infty}(d)$ para todo $d\in\mathbb{R}^n$ y $k>0$.

Munguia (FC-UNI)

Catorceava sesiór

Demostración

La primera igualdad es consecuencia directa de la Proposición 1, usando d=0. Para la segunda igualdad se tiene:

$$\begin{split} f_{\infty}(kd) &= \sup_{t>0} \frac{f(a+tkd)-f(a)}{t} \\ &= \sup_{t>0} k \frac{f(a+tkd)-f(a)}{tk} \\ &= k \sup_{s>0} \frac{f(a+sd)-f(a)}{s} \\ &= k f_{\infty}(d). \end{split}$$

8 / 24

- 1) Sea $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = e^x$. Entonces
- $f_{\infty}(d) = \begin{cases} 0 & \text{si } d \leq 0 \\ +\infty & \text{en otro caso} \end{cases}$ $2) \text{ Sea } f: \mathbb{R}^n \to \mathbb{R} \text{ definida por } f(x) = \frac{1}{2} \langle x, Ax \rangle \langle b, x \rangle \text{ con } A$
 - simétrica semidefinida positiva. Entonces:

$$f_{\infty}(d) = \left\{ egin{array}{ll} -\langle b,d
angle & ext{si } Ad = 0 \ +\infty & ext{en otro caso.} \end{array}
ight.$$

3) Sea $f: \mathbb{R}^n \to \mathbb{R}$ definida por f(x) = ||x||. Entonces:

$$f_{\infty}(d) = \|d\|$$
 para todo $d \in \mathbb{R}^n$.

Ejemplo 1

Teorema 1

Sea f convexa sci g propia. Entonces $S_0(f_\infty)=(S_\lambda(f))_\infty$ para todo $\lambda\in\mathbb{R}$ tal que $S_{\lambda}(f) \neq \emptyset$. exe X

Demostración.

Sea $\underline{a} \in S_{\lambda}(f)$. Se cumple la siguiente cadena de equivalencias:

$$d \in S_0(f_\infty) \Leftrightarrow (d,0) \in \operatorname{epi}(f_\infty)$$

$$\Leftrightarrow (d,0) \in \operatorname{epi}(f)_\infty$$

$$\Leftrightarrow (d,0) \in \operatorname{epi}(f)_\infty(a,\lambda)$$

$$\Leftrightarrow \forall k > 0, (a+kd,\lambda) \in \operatorname{epi}(f)$$

$$\Leftrightarrow \forall k > 0, \underline{a}+kd \in S_\lambda(f)$$

$$\Leftrightarrow d \in (S_\lambda(f))_\infty.$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Definición 1

Una función $f: \mathbb{R}^n \to \overline{R}$ es **ínfimo compacto** (inf-compacto) si para todo $\lambda \in \mathbb{R}$, el conjunto $S_{\lambda}(f)$ es compacto.

Se deduce de la definición que inf-compacto implica semicontinuidad inferior. La propiedad fundamental de las funciones inf-compactos es la siguiente:

Proposición 3

Asuma f inf-compacto y sean $m = \inf_{x \in \mathbb{R}^n} f(x)$ y $S = \{x \in \mathbb{R}^n : m = f(x)\}$. Si $m < \infty$, entonces S es compacto no vacío.

$$S = f^{-1}(m) \qquad f^{-1}(J-\omega_{1}\lambda_{1}) \qquad + \lambda > m$$

$$\lambda > m \qquad \leq \lambda \neq \lambda \qquad = f^{-1}(J-\omega_{1}\lambda_{1}) \qquad + \lambda > m$$

$$= f^{-1}(J-\omega_{1}\lambda_{1}) \qquad = f^{-1}(J-\omega_{1}\lambda_{1}) \qquad + \lambda > m$$

$$= f^{-1}(J-\omega_{1}\lambda_{1}) \qquad = f^{-1}(J-\omega_{1}\lambda_{1}) \qquad + \lambda > m$$

Demostración.

Note que

$$S = \bigcap_{\lambda > m} S_{\lambda}(f) = \bigcap_{i=1}^{\infty} S_{\lambda_i}(f),$$

donde $\lambda_1 > \lambda_2 > \cdots$, con $\lambda \to m$. Se deduce que S es compacto no vacío por ser una intesección de compactos no vacíos encajados.

Munguia (FC-UNI)

Proposición 4

Sea f convexa sci propia. Entonces:

- a) f es inf-compacto si y solo si $S_0(f_\infty) = \{0\}$,
- b) f es inf-compacto si y solo si existe $\lambda \in \mathbb{R}$ tal que $S_{\lambda}(f)$ es compacto no vacío.

~

Demostración

Solton = (> 1) or Line of 5 ht/+ \$

Por el Teorema 1, $S_0(f_\infty)=(S_\lambda(f))_\infty$ para todos aquellos λ tales que $S_\lambda(f)$ es no vacío (al menos uno de tales λ existe porque f es propia). Si $S_\lambda(f)$ es vacío, entonces es obviamente compacto, luego se dan las siguientes equivalencias:

$$f \text{ es inf-compacto} \Leftrightarrow \forall \lambda \in \mathbb{R}, S_{\lambda}(f) \text{ es compacto} \\ \Leftrightarrow \forall \lambda \in \mathbb{R} \text{ con } S_{\lambda}(f) \neq \emptyset, S_{\lambda}(f) \text{ es compacto} \\ \Leftrightarrow \forall \lambda \in \mathbb{R} \text{ con } S_{\lambda}(f) \neq \emptyset, (S_{\lambda}(f)) \text{ es acotado} \\ \Leftrightarrow \forall \lambda \in \mathbb{R} \text{ con } S_{\lambda}(f) \neq \emptyset, (S_{\lambda}(f))_{\infty} = \{0\} \\ \Leftrightarrow S_{0}(f_{\infty}) = \{0\} \\ \Leftrightarrow \exists \lambda \in \mathbb{R} : S_{\lambda}(f) \neq \emptyset.$$

Las equivalencias de color rojo demuestran la proposición.

propling Convexo conside => Consider Co

La siguiente proposición es una caracterización de la inf-compacidad para funciones no necesariamente convexas.

Proposición 5

Sea $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ sci. Entonces f es inf-compacto si y solo si para toda sucesión (x_k) en \mathbb{R}^n , con $||x_k|| \to +\infty$, implica $f(x_k) \to +\infty$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Demostración.

Como f es sci, entonces $S_{\lambda}(f)$ es cerrado para todo λ .

Si f no es inf-compacto entonces existe λ tal que $S_{\lambda}(f)$ no es acotado, luego, existe una sucesión (x_k) en \mathbb{R}^n con $\|x_k\| \to +\infty$ tal que $f(x_k) \le \lambda$ para todo k.

Recíprocamente, si existe una sucesión (x_k) en \mathbb{R}^n tal que $||x_k|| \to +\infty$ con $(f(x_k))$ acotada entonces $S_{\lambda}(f)$ no es acotado para cierto λ . Luego, f no es inf-compacto.

Proposición 6

SCI

Sean $f,g: \mathbb{R}^n \to \overline{\mathbb{R}}$, con f inf-compacto g sci acotada inferiormente (es decir, existe $\beta > -\infty$ tal que $g(x) \geq \beta$ para todo $x \in \mathbb{R}^n$). Entonces f+g es inf-compacto.

Demostración.

 $f+g \leq \lambda = f \leq \lambda - g \leq \lambda - p$

Para cada $\lambda \in \mathbb{R}$, $S_{\lambda}(f+g) \subset S_{\lambda-\beta}(f)$, luego $S_{\lambda}(f+g)$ es acotado. Dicho conjunto también es cerrado pues f+g es sci.

=> Saifty) es compacto => ft g es inf-compata

Teorema 2

Sea $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ convexa sci propia. Si f es fuertemente convexa entonces f es inf-compacto.

$$f_{\text{odd}} = \sup_{t>0} \frac{t(x+td)-t(x)}{t}, \quad f_{(x)}=g_{(x)}+\underbrace{x}_{1}x-\overline{y}_{1}^{2}$$
Demostración

Sea α el coeficiente de fuerte convexidad de f y $\overline{x} \in \text{dom}(f)$. La función $g: \overline{\mathbb{R}^n} \to \overline{\mathbb{R}}$ definida por $g(x) = f(x) - \frac{\alpha}{2} \|x - \overline{x}\|^2$ es convexa, sci y propia. Para $0 \neq d \in \mathbb{R}^n$, se tiene:

$$f_{\infty}(d) = \sup_{t>0} g(\overline{x} + td) - g(\overline{x}) + \frac{\alpha t}{2} \|d\|^2$$

y por la convexidad de g,

$$\begin{cases} \frac{1}{2} & \frac{1}{2} \xrightarrow{d} \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \xrightarrow{d} \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{cases} \geq \frac{g(\overline{x} + d) - g(\overline{x})}{1}$$

para todo $t\geq 1$. Se deduce que $f_\infty(d)=+\infty$. Así, como pues $f_\infty(0)=0$, $S_0(f_\infty)=\{0\}$ y por lo tanto f es inf-compacto.

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Munguia (FC-UNI)

Teorema 3

Sea $f: \mathbb{R}^n \to \mathbb{R}$ differenciable tal que $-\infty < m = \inf f(x)$. Para $\epsilon > 0$, sea x_ϵ tal que $f(x_\epsilon) \le m + \epsilon$. Entonces existe \overline{x} tal que $\|\overline{x} - x_\epsilon\| \le \sqrt{\epsilon}$, $\|\nabla f(\overline{x})\| \le 2\sqrt{\epsilon}$ y $f(\overline{x}) \le m + \epsilon$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

22 / 24

Demostración.

Consideremos $g(x) = f(x) + \frac{\alpha}{2} ||x - x_{\epsilon}||^2$, con $\alpha > 0$. Como f es sci y la

función $x o rac{lpha}{2} \|x - x_{\epsilon}\|^2$ es inf-compacto, entonces g es inf-compacto y por lo tanto existe \overline{x} tal que $g(\overline{x}) \leq g(x)$ para todo x. Se sigue que $\nabla f(\overline{x}) + \alpha(\overline{x} - x_{\epsilon}) = \nabla g(\overline{x}) = 0$ y en consecuencia $\|\nabla f(\overline{x})\| = \alpha \|\overline{x} - x_{\epsilon}\|$. Por otro lado,

$$m + \left(\frac{\alpha}{2} \|\overline{x} - x_{\varepsilon}\|^{2} \right) + \left(\frac{\alpha}{2} \|\overline{x} - x_{\varepsilon}\|^{2} \right) = g(\overline{x}) \leq g(x_{\varepsilon}) = f(x_{\varepsilon}) \leq m + \epsilon.$$

Se deduce por lo tanto que

$$\|\overline{x} - x_{\epsilon}\|^2 \leq \frac{2\epsilon}{\alpha}, \qquad f(\overline{x}) \leq m + \epsilon.$$

Considerar $\alpha = 2$.

4 D > 4 A > 4 B > 4 B >

Munguia (FC-UNI)

Diciembre 20

FIN