INTRODUÇÃO AO JAVA

Linguagem JAVA

 Lançada em 1995, por James Gosling da Sum Microsystem

- Linguagem Orientada a Objetos
- Deriva da linguagem C
- Não tem nada a ver com JavaScript
- É ao mesmo tempo um ambiente e uma linguagem de programação

Linguagem Java

Posição mais baixa (desde 2001): 2º Lugar em Março de 2015

May 2020	May 2019	Change	Programming Language	Ratings
1	2	^	С	17.07%
2	1	•	Java	16.28%
3	4	^	Python	9.12%
4	3	•	C++	6.13%
5	6	^	C#	4.29%
6	5	~	Visual Basic	4.18%
7	7		JavaScript	2.68%
8	9	^	PHP	2.49%
9	8	~	SQL	2.09%
10	21	*	R	1.85%

Fonte: https://tiobe.com/tiobe-index/

Porque usar Java?

- Java funciona em diferentes plataformas
- É uma das linguagens de programação mais populares do mundo
- É fácil de aprender e simples de usar
- É de código aberto e gratuito
- É seguro, rápido e poderoso
- Tem um enorme apoio da comunidade (dezenas de milhões de desenvolvedores)

Compilação

Em uma linguagem de programação como C e Pascal, temos a seguinte situação ao compilar um programa.

O código fonte é compilado para código de máquina específico de uma plataforma. Muitas vezes o código fonte é desenvolvido visando uma única plataforma. O executável (binário) resultante será executado pelo sistema operacional e, por esse motivo, deve saber conversar com o S.O em questão.

Temos um código executável para cada sistema operacional. É necessário compilar uma vez para Windows, outra para o Linux, e assim por diante...

Alguns programas utilizam, por exemplo, bibliotecas gráficas. Mas elas são diferentes no Windows, no Linux, o que levaria a necessidade de reprogramação do código para diferentes plataformas.

Compilação em Java

O código-fonte é escrito em arquivos **.java** e para serem compilados.

O **compilador** do Java verifica o código nas regras de sintaxe da linguagem e depois grava **bytecode** em arquivos .class.

Bytecode é um conjunto de instruções destinadas a executar em uma Java Virtual Machine (JVM).

Compilação em Java

- Se pegarmos o código fonte do JAVA e enviar direto para o computador, ele não vai entender. Assim, é necessário o programa compilador da linguagem, chamado de JavaC (Java Compiler).
- O compilador vai gerar um código em binário.
 Diferente das outras linguagens, não se trata de um código executável, mas de um bytecode.
- O bytecode vai ser interpretado somente pela JVM, gerando um código compreensível pelo computador. Só então, ele será executado.

Write Once, Run Everywhere

- WORA é a abreviação da expressão "Write Once, Run Anywhere" (Escreva uma Vez, Rode em Qualquer Lugar), recurso aplicável aos programas que possuem a capacidade de serem executados em qualquer sistema operacional ou máquina.
- A Sun Microsystem utiliza essa terminologia para a Linguagem Java e de acordo com esse conceito, o mesmo código deve ser executado em qualquer máquina e, portanto, o código-fonte precisa ser portátil.
- A linguagem Java permite executar o bytecode Java em qualquer computador, independentemente do sistema ou do hardware, usando a JVM (Java Virtual Machine). O bytecode gerado pelo compilador não é específico da plataforma e, portanto, através da JVM pode executar em uma ampla variedade de máquinas e sistemas.

Adaptado de: https://www.w3schools.in/java-questions-answers/write-once-run-anywhere-wora/

JRE (Java Runtime Environment)

Ambiente de Execução Java. Contém a Java Virtual Machine (JVM).

JDK (Java Development Kit)

Kit de Desenvolvimento
Java. Contém a Linguagem
propriamente dita (Java
Lang) e o compilador (JavaC).

Vamos Começar...

Olá, Mundo!


```
Classe Pública "OlaMundo"
public class OlaMundo {
                             Método Principal
  public static void main(String[] args) {
    System.out.println("Olá Mundo!");
           Comando para Imprimir na
              Tela (Saída de Dados)
```


Saída de Dados

Comandos para imprimir dados na tela:

> System.out.println("Digite seu nome: ");

Depois de imprimir uma informação na tela, o método println cria uma nova linha abaixo da atual e então posiciona o cursor na nova linha. Ou seja: o comando é executado e o cursor vai para a linha de baixo para a próxima execução.

System.out.print("Digite seu nome: ");

Depois de imprimir uma informação na tela, diferentemente do método println, o método print não cria uma nova linha abaixo da atual, deixando o cursor na mesma linha onde informação foi impressa. Ou seja: o comando é executado e o cursor permanece na mesma linha para a próxima execução.

Saída de Dados

> System.out.printf("Sua Nota é %.2f \n", nota);

Printf significa print formatado. %f corresponde a variável nota. Para exibir 2 casas decimais na exibição da nota, coloca-se %.2f e modifica-se o número após o ponto para mais ou menos casas decimais.

System.out.printf("A Nota de %s é %.2f \n", nome, nota); Assim como no exemplo anterior, %s corresponde a uma string. Os nomes das variáveis, após as aspas, devem ser na ordem de exibição.

System.out.format("Sua Nota é %.2f \n", nota);

Tambem é possível utilizar format com o mesmo resultado do System.out.printf ou System.out.printf.

Concatenação

Ato de unir strings pelo operador +, mas não o confunda com o operador de adição que utiliza o mesmo símbolo.

```
String palavra1 = "Professor";
String palavra2 = "Leandro";
System.out.println(palavra1 + palavra2);

Professor Leandro
Saída

String nome = "Rafael"

System.out.print("Meu nome é" + nome);

Meu nome é Rafael
Saída

double media = 7.5
```

System.out.print("Sua média: " + media);

Centro Paula Souza

Sua média é 7.5

Saída

Camel Case

- Denominação para a prática de escrever palavras compostas ou frases, onde cada palavra é iniciada com maiúsculas e unidas sem espaços.
- É um padrão largamente utilizado em diversas linguagens de programação, como Java.
- O Java tambem é **Case Sensitive**, fazendo diferenciação entre letras maiúsculas e minúsculas.

Ex: Palavra 長子 palavra

Camel Case

Primeira letra de todas as palavras em maiúsculo:

Classe ou Interface

Ex: MinhaClasse / Classe / ClasseJava

Primeira letra em minúsculo e as demais palavras com a primeira letra em maiúsculo: Atributo / Variável / Método.

Ex: meuAtributo

Ex: minhaVariavel

Se for uma única palavra, tudo fica em minúsculo.

Ex: metodo Ex: atributo

Camel Case

Somente letras minúsculas: Nome de um pacote. Por convenção os pacotes devem ser escritos no formato do endereço de um site ao contrário.

Ex: br.com.primeiroprograma

Ex: br.com.alunocurso_informatica

Todas as letras em maiúsculo: Nome de uma CONSTANTE

Ex: CONSTANTE

Ex: VALOR DE PI

Operadores Aritiméticos

Operador		Exer	nplo
+	Adição	5 + 2	n1 + n2
-	Subtração	3 - 1	n1 – n2
*	Multiplicação	4 * 9	n2 * n1
/	Divisão	8/2	n1 / n2
%	Resto da Divisão (Módulo)	8 % 2	n1 % n2

Operadores de Incremento e Decremento

Operador		Exemp	olo
++	Incremento	a = a + 1	a++
	Decremento	b = b - 1	b

Operadores de Atribuição

Operador		Exemplo	
+=	Somar e Atribuir	a = a + b	a += b
-=	Subtrair e Atribuir	a = a - b	a -= b
*=	Multiplicar e Atribuir	a = a * b	a *= b
/=	Dividir e Atribuir	a = a / b	a /= b
%=	Resto e Atribuir	a = a % b	a %= b

Operadores Relacionais

Operador		Exemplo	
<	Maior que	5 > 3	true
>	Menor que	4 < 7	true
>=	Maior ou Igual a	2 >= 3	false
<=	Menor ou Igual a	3 <= 1	false
==	Igual	3 == 2	false
!=	Diferente	2 != 1	true

Operadores Lógicos

Operador		Exemplo	
&&	E	(5 > 3) && (4 > 2)	true
11	OU	(4 >= 6) (5 <= 2)	false
!	NÃO	!true	false

X	Υ	X && Y
V	V	V
V	F	F
F	V	F
F	F	F

X	Υ	X Y
V	V	V
V	F	V
F	V	V
F	F	F

X	! X
V	F
F	V

Entrada de Dados

Em Java, para recebermos dados do teclado, é utilizada a classe Scanner.

```
É necessário importar a
import java.util.Scanner;
                                                            classe java.util.scanner. Em
public class EntradaDados {
                                                              geral a própria IDE faz a
                                                            importação (ou lembra que
  public static void main(String[] args) {
                                                                 ela deve ser feita).
    Scanner teclado = new Scanner(System.in);
                                                            Ao usar a classe Scanner,
                                                          estamos utilizando um conceito
    System.out.print("Digite um Nome: ");
                                                              de Orientação a Objeto e
    String nome = teclado.nextLine();
                                                           criando um instância da classe.
                                                               Uma vez importada, é
    System.out.print("Digite uma Nota: ");
                                                          necessário criar um objeto para
    float nota = teclado.nextFloat();
                                                           ativar a classe. Aqui, o objeto
                                                            recebeu o nome de teclado.
```

Métodos para Ler Valores


```
import java.util.Scanner;
                                           nextLine(): método para ler strings
public class EntradaDados {
                                           String nome = teclado.nextLine();
  public static void main(String[] args) {
                                           nextInt(): método para ler
   Scanner teclado = new Scanner(System.in);
                                           números inteiros (int)
    System.out.print("Digite um Nome: ");
                                           int nota = teclado.nextInt();
    String nome = teclado.nextLine();
    System.out.print("Digite uma Nota: ");
    int rm = teclado.nextInt();
                                           nextFloat(): método para ler
                                           números reais (float)
    System.out.print("Digite uma Nota: ");
                                           float nota = teclado.nextFloat();
    float nota = teclado.nextFloat();
```


Comentários em Java

// Comentário de Uma Linha na Linguagem Java

```
/* Comentário de* Multiplas Linhas* na Linguagem Java*/
```

```
Comentário JavaDoc
@author Rafael
@version 1.0
@since 2019-07-25
```


Referências Bibliográficas

https://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=010150040706&id=010150040706#.XTm-6-hKjIU

http://www.inf.ufsc.br/~edla.ramos/projeto/geoplano/java.html

https://www.ibm.com/developerworks/br/java/tutorials/j-introtoiava1/index.html

<u>introtojava1/index.html</u>

https://www.caelum.com.br/apostila-java-orientacao-objetos/o-que-e-java/#onde-usar-e-os-objetivos-do-java

https://www.devmedia.com.br/java-operadores-de-atribuicao-aritmeticos-relacionais-e-logicos/38289

https://www.caelum.com.br/apostila-java-orientacao-objetos/variaveis-primitivas-e-controle-de-fluxo/#casting-e-promoo

http://www.bosontreinamentos.com.br/java/metodos-printf-print-e-println-curso-de-programacao-em-java/

http://www.bosontreinamentos.com.br/java/como-concatenar-strings-em-java/

https://www.cursoemvideo.com

Material desenvolvido pelo Prof. Rafael da Silva Polato

rafael.polato@etec.sp.gov.br

