

UCN4801A

BIMOS LATCH/DRIVERS

ADVANCE DATA

- HIGH-VOLTAGE, HIGH-CURRENT OUTPUTS
- OUTPUT TRANSIENT PROTECTION
- CMOS, PMOS, NMOS, TTL COMPATIBLE IN-PUTS
- INTERNAL PULL-DOWN RESISTORS
- LOW-POWER CMOS LATCHES

the simultaneous operation of all drivers at maximum rated current can only be accomplished by a reduction in duty cycle. Outputs may be paralleled for higher load current capability.

DIP-22 (Plastic)

ORDER CODE: UCN4801ADP

DESCRIPTION

The UCN4801A is a high-voltage, high-current latch/driver comprised of eight CMOS data latches, a bipolar Darlington transistor driver for each latch, and CMOS control circuitry for the common CLEAR, STROBE, and OUTPUT ENABLE functions. The bipolar/MOS combination provides an extremely low-power latch with maximum interface flexibility.

The CMOS inputs are compatible with standard CMOS, PMOS and NMOS circuits. TTL or DTL circuits may require the use of appropriate pull-up resistors. The bipolar outputs are suitable for use with relays, solenoids, stepping motors, LED or incandescent displays, and other high-power load.

The unit feature open-collector outputs and integral diodes for inductive load transient suppression. The output transistors are capable of sinking 500 mA and will sustain at least 50 V in the OFF state. Because of limitations on package power dissipation,

PIN CONNECTIONS (Top view)

- 1 Clear 2 - Strobe 3 - Input 1
- 4 Input 2 5 - Input 3
- 6 Input 4 7 - Input 5
- 8 Input 6 9 - Input 7 10 - Input 8
- 11 GND

- 22 Output enable
- 21 V_{CC}
- 20 Output 1 19 - Output 2
- 18 Output 3
- 17 Output 4
- 16 Output 5
- 15 Output 6 14 - Output 7
- 13 Output 7
- 12 Common

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vo	Output Voltage	50	V
Vcc	Supply Voltage	18	V
Vı	Input Voltage Range	- 0.3 to V _{CC} + 0.3	V
Ic	Continuous Collector Current	500	mA
P _{tot}	Power Dissipation*	2.0	W
Тор	Operating Ambient Temperature Range	- 20 to + 85	°C
T _{stg}	Storage Temperature	- 55 to + 125	°C

^{*} Derate at the rate of 20 m/°C above T_{amb} = + 25 °C

SCHEMATIC DIAGRAM

ELECTRICAL CHARACTERISTICS T_{amb} = + 25 °C, V_{CC} = 5 V (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
Io	Output Leakage Current (V _O = 50 V)				μА
	$T_{amb} = + 25 ^{\circ}C$	-	-	50	'
	$T_{amb} = +70$ °C	-		100	
V _{O(Sat)}	Collector-emitter Saturation Voltage				V
1	$I_{\rm O}$ = 100 mA	_	0.9	1.1	
	$I_{\rm O}$ = 200 mA		1.1	1.3	
	$I_{O} = 350 \text{ mA}, V_{CC} = 7 \text{ V}$	_	1.3	1.6	
V _{I(O)}	Input Voltage	_	_	1	V
V _{I(1)}	$V_{CC} = 15 \text{ V}$	13.5	-	-	
	$V_{CC} = 10 \text{ V}$	8.5	-	-	
	$V_{CC} = 5 \text{ V} - (\text{note 1})$	3.5	_	_	
RIN	Input Resistance				ΚΩ
	$V_{CC} = 15 \text{ V}$	50	200	-	
	$V_{CC} = 10 \text{ V}$	50	300	-	
	$V_{CC} = 5 \text{ V}$	50	600	-	
I _{CC(on)}	Supply Current - Outputs Open				mA
(each stage)	$V_{CC} = 15 \text{ V}$	-	1	2	
	$V_{CC} = 10 \text{ V}$	-	0.9	1.7	
	$V_{CC} = 5 \text{ V}$	_	0.7	1	
CC(off)	All Drivers off, All Inputs = 0 V		50	100	μA
I _R	Clamp Diode Leakage Current (V _R = 50 V)				μА
1	T _{amb} = + 25 °C	_	_	50	ļ .
	$T_{amb} = + 70 ^{\circ}C$	-	-	100	
V _F	Clamp Diode Forward Voltage I _F = 350 mA	_	1.7	2	V

Note: 1. Operation of these devices with standard TTL or DTL may require the use of appropriate pull-up resistors to insure the minimum logic "I".

TRUTH TABLE

			Output	OUTN	
IN _N	Strobe	Clear	Enable	t-1	t
0	1	0	0	Х	OFF
1	1	0	0	Х	ON
X	Х	1	Х	Х	OFF
Х	X	Х	1	Х	OFF
Х	0	0	0	ON	ON

X = irrelevant

t-1 = previous output state

t = present output state

Information present at an input is transferred to its latch when the STROBE is high. A high CLEAR input will set all latches to the output OFF condition regardless of the data or STROBE input levels. A high OUTPUT ENABLE will set all outputs to the OFF condition regardless of any other input conditions. When the OUTPUT ENABLE is low, the outputs depend on the state of their respective latches.

TIMING CONDITIONS

100 ns

100 ns

300 ns

500 ns

500 ns

300 ns

500 ns

A. Minimum data active time before strobe enabled (data set-up time)

B. Minimum data active time after strobe disabled (data hold time)

C. Minimum strobe pulse width

D. Typical time between strobe activation and output on to off transition

E. Typical time between strobe activation and output off to on transition

F. Minimum clear pulse width

G. Minimum data pulse width

100% Free DataSheet Search Sit

Free Download.

No Register.

Fast Search System.

www.AllDataSheet.com