Please check the examination details below before entering your candidate information					
Candidate surname	Oth	ner names			
Pearson Edexcel International GCSE	Centre Number Candidate Nui				
Friday 10 Jai	nuary 202	20			
Morning (Time: 2 hours)	Paper Refer	ence 4PM1/01R			
Further Pure Mathematics Paper 1R					
Calculators may be used.		Total Marks			

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

Turn over ▶

International GCSE in Further Pure Mathematics Formulae sheet

Mensuration

Surface area of sphere = $4\pi r^2$

Curved surface area of cone = $\pi r \times \text{slant height}$

Volume of sphere = $\frac{4}{3}\pi r^3$

Series

Arithmetic series

Sum to *n* terms, $S_n = \frac{n}{2} [2a + (n-1)d]$

Geometric series

Sum to *n* terms,
$$S_n = \frac{a(1-r^n)}{(1-r)}$$

Sum to infinity,
$$S_{\infty} = \frac{a}{1-r} |r| < 1$$

Binomial series

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-r+1)}{r!}x^r + \dots$$
 for $|x| < 1, n \in \mathbb{Q}$

Calculus

Quotient rule (differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{f}(x)}{\mathrm{g}(x)} \right) = \frac{\mathrm{f}'(x)\mathrm{g}(x) - \mathrm{f}(x)\mathrm{g}'(x)}{\left[\mathrm{g}(x)\right]^2}$$

Trigonometry

Cosine rule

In triangle ABC: $a^2 = b^2 + c^2 - 2bc \cos A$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Logarithms

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Answer all ELEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 Given that $\frac{a+\sqrt{3}}{2-\sqrt{3}} = 11 + b\sqrt{3}$ where a and b are integers,

find the value of a and the value of b.

(4)

(Total for Question 1 is 4 marks)

2	$f(x) = 7 + 4x - x^2$	
	(a) Write $f(x)$ in the form $a - b(x + c)^2$ where a, b and c are integers to be found.	(3)
	(b) Hence, or otherwise, find	(3)
	(i) the maximum value of $f(x)$	
	(i) the value of x for which this maximum occurs.	
	(ii) the value of x for which this maximum occurs.	(2)
••••		
••••		
••••		

3 Given that $y = e^{2x}(x^2 + 1)$

(3)

The straight line l is the tangent to the curve with equation $y = e^{2x}(x^2 + 1)$ at the point on the curve where x = 0

(b) Find an equation for l in the form y = mx + c

(3)

4	$f(x) = 2x^3 + ax^2 + bx + 18$ where a and b are constants			
	When $f'(x)$ is divided by $(x - 2)$ the remainder is 5			
	Given that $(x - 2)$ is a factor of $f(x)$			
	(a) find the value of a and the value of b .			
		(6)		
	(b) Express $f(x)$ as a product of linear factors.	(3)		
	(c) Hence use algebra to solve the equation $f(x) = 0$			
		(2)		

(a) Show that $\log_4 32 = \frac{5}{2}$

(b) Hence, or otherwise, find the exact solutions of the equation

$$\log_2 x - \log_4 32 + \frac{1}{4} \log_x 16 = 0$$

	Question 5 continued
REA	
HIS AREA	
XXXX	
DO NOT WRITE IN	
V TO	
DO	
ZEA	
IIS AI	
WRITE IN THIS AREA	
RITE	
W TO	
N OO	
4	
SARE	
MARK	
DO NOT WRITE IN THIS AREA	
O NC	
	(Total for Question 5 is 9 marks)

6 (a) Complete the table of values for

$$y = x - \frac{3}{x^2}$$

giving your answers to one decimal place where appropriate.

Х	0.5	1	1.5	2	3	4	5	6
у	-11.5			1.3	2.7			5.9

(2)

(b) On the grid opposite, draw the graph of
$$y = x - \frac{3}{x^2}$$
 for $0.5 \le x \le 6$

(2)

(c) By drawing a suitable straight line on the grid, obtain estimates, to one decimal place, of each of the two roots of the equation

$$2x^3 - 6x^2 + 3 = 0$$

in the interval $0.5 \leqslant x \leqslant 6$

Question 6 continued	

(Total for Question 6 is 9 marks)

An arithmetic series P has first term a, common difference d and nth term u_n Given that $u_5 = 4x + 6$ and that $u_8 = 7x + 3$ (a) (i) show that d = x - 1(ii) find the value of a (4)Given further that $u_9 = 42$ (b) find the value of x (2)The sum of the first n terms of P is S_n (c) Find the value of *n* for which $S_{(n+1)} = 12u_n + 18$ **(5)**

Question 7 continued		

Question 7 continued	

DO NOT WRITE IN THIS AREA

8	A particle <i>P</i> moves along the positive <i>x</i> -axis. At time <i>t</i> seconds ($t \ge 0$) the velocity, v m/s, of <i>P</i> is given by $v = 3 + 5t - 2t^2$					
	At time t seconds, P is at the point with coordinates $(x, 0)$. Given that at time $t = 0$, P is at the point with coordinates $(5, 0)$, find the maximum value of x , justifying that this is a maximum value.					
		(8)				
•••••						
•••••						

Question 8 co	ntinued			

Question 8 continued	

9	9 The line l_1 with equation $y + 2x - 4 = 0$ passes through the point <i>P</i> with coordinates						
	(a, 6) and the point Q with coordinates $(3, b)$.						
	(a) Find the value of a and the value of b.						
	The line l_2 passes through point P and is perpendicular to l_1						
	The point R, with coordinates (e, f) lies on l_2 such that $PR = 6\sqrt{5}$						
	(b) Find the two possible pairs of values of e and f .	(8)					
	Given that $e < 0$,						
	(c) find the area of triangle PQR .	(3)					
	The points P , Q and R lie on a circle C .						
	(d) Find the coordinates of the centre of C .	(2)					

Question 9 continue	ed		

Question 9 continued

	Question 9 continued
REA	
HIS AREA	
WRIT	
DO NOT WRITE IN	
DO	
REA	
WRITE IN THIS AREA	
WRIT	
NOT	
00	
REA	
HISA	
Z	
WRIT	
DO NOT WRITE IN THIS AREA	
0	
	(Total for Question 9 is 15 marks)
	(2000 101 Question > 10 10 marks)

10

Figure 1

Figure 1 shows quadrilateral OABC with

$$\overrightarrow{OA} = 2\mathbf{a} - \mathbf{b}$$
 $\overrightarrow{OB} = 3\mathbf{a} + \mathbf{b}$ $\overrightarrow{BC} = -\mathbf{a} + 3\mathbf{b}$

(a) Find \overrightarrow{AB} as a simplified expression in terms of **a** and **b**.

(2)

(b) Prove that \overrightarrow{OC} is parallel to \overrightarrow{AB}

(2)

The diagonals, OB and AC, intersect at the point X.

(c) Using a vector method find the ratio AX:XC

(7)

Question 10 continued		

Question 10 continued

11

Figure 2

Figure 2 shows part of the curve C with equation $y = \sqrt{x-2}$ Figure 2 also shows the straight line l with equation y = b for x > 0 where b > 0

Given that C and l intersect at the point P with coordinates (a, b), where 2 < a < 16

(a) show that
$$b^2 = a - 2$$

(2)

The finite region R bounded by C, the straight line with equation x = 16 and l, shown shaded in Figure 2, is rotated through 360° about the x-axis to form a solid S.

Given that the volume of the solid formed is 50π

(b) use algebraic integration to	find the value of	f a and the value of b .
----------------------------------	-------------------	------------------------------

Question 11 continued		

Question 11 continued	
	•

•	Question 11 continued

Question 11 continued				
	(Total for Question 11 is 11 marks)			
	TOTAL FOR PAPER IS 100 MARKS			