

ALPHABETS AND STRINGS

- An alphabet is any finite set of characters.
 - Examples: {0,1}, {a,b,c}, {0,1,#}, {a,....z,A,.....Z}
 - Typically represented by Σ .
- A string over an alphabet Σ is a finite sequence of characters from Σ .
 - Examples: $\Sigma = \{a, b, c\}$ some valid strings include
 - abc,
 - baba,
 - aaaabbbbccc.
- Empty string, denoted by \in , with length 0.
- Length, number of characters in string, denoted by |x|

LANGUAGE

- A Language is a set of strings.
- We say that L is a *language over* Σ if it is a set of strings formed from characters in Σ .
- Example: The language of palindromes over $\Sigma = \{a, b, c\}$ is the set $\{\varepsilon, a, b, c, aa, bb, cc, aaa, aba, aca, bab, ... \}$
- One special language is Σ^* , which is the set of all possible strings generated over the alphabet Σ^* .
- Formally we can say, L is a language over Σ iff $L \subseteq \Sigma^*$.
- Example: $\Sigma = \{a, b, c\}$ then $\Sigma^* = \{\epsilon, a, b, c, aa, ab, ac, ba, ..., aaaaaabbbaababa, ... \}.$

SUMMARY

- A finite automaton is a collection of states joined by transitions.
- Some state is designated as the start state.
- Some states are designated as accepting states.
- The automaton processes a string by beginning in the start state and following the indicated transitions.
- If the automaton ends in an accepting state, it *accepts* the input. Otherwise, the automaton *rejects* the input.

FORMAL DEFINITION OF FA

- •A finite automaton is a 5-tuple (Q, Σ , δ , q0, F), where
- $1.Q \rightarrow$ a finite set called the states,
- 2. $\Sigma \rightarrow$ a finite set called the alphabet,
- 3. $\delta \rightarrow Q \times \Sigma$, transition function,
- 4. $q0 \rightarrow$ the start/initial state, $q0 \in Q$
- 5. F \rightarrow the set of accept/final states, F \subseteq Q

FA EXAMPLE

- Let M: $(\{q0,q1,q2,q3\},\{a,b\},q0,q1,\delta)$ where transition is given by $\delta(q0,a)=q1$, $\delta(q1,a)=q3$, $\delta(q2,a)=q2$, $\delta(q3,a)=q2$; $\delta(q0,b)=q2$, $\delta(q1,b)=q0$, $\delta(q2,b)=q2$, $\delta(q3,b)=q2$.
 - Represent M by its state table
 - Represent M by its state diagram
 - Which of the following strings are accepted by M ababa, aabba.

DETERMINISTIC FINITE AUTOMATON(DFA)

- A DFA is a
 - Deterministic
 - Finite
 - Automaton
- •DFAs are the simplest type of automaton.
- It has very limited memory

INFORMAL DEFINITION OF DFA

- •A DFA is defined relative to some alphabet Σ .
- •For each state in the DFA, there must be exactly one transition defined for each symbol in the alphabet.
 - This is the "deterministic" part of DFA.
- There is a unique start state.
- There are zero or more accepting states.

IS THIS A DFA?

IS THIS A DFA?

FA EXAMPLE

- $\Sigma = \{ \langle RESET \rangle, 0, 1, 2 \}$. $\langle RESET \rangle$ is considered as a single symbol.
- Keeps count of the sum of the numeric input symbols it reads, modulo 3.
- When it reaches <RESET>, it resets the count to 0.
- This machine accepts if the sum is a multiple of 3.

FA EXAMPLE

Let w be the string

 $10\langle RESET \rangle 22\langle RESET \rangle 012$.

Then Machine accepts w according to the formal definition of computation because the sequence of states it enters when computing on w is

which satisfies the three conditions.

The language of M is

 $L(M) = \{w \mid \text{ the sum of the symbols in } w \text{ is } 0 \text{ modulo } 3, \text{except that } (\text{RESET}) \text{ resets the count to } 0\}.$

As M recognizes this language, it is a regular language.

HOW TO DESIGN FINITE AUTOMATON?

The alphabet is $\{0,1\}$ and that the language consists of all strings with an odd number of 1s. Construct a finite automaton E_1 to recognize this language.

HOW TO DESIGN FINITE AUTOMATON?

The alphabet is $\{0,1\}$ and that the language consists of all strings with an odd number of 1s. Construct a finite automaton E_1 to recognize this language.

In this instance, the possibilities would be

- 1. even so far, and
- 2. odd so far.

Things to do, remember the tuple, Start state $\rightarrow q_{even}$, because 0 is even Accepting state $\rightarrow q_{odd}$, because you want to accept when you have seen an odd number of 1s.

DESIGNING FINITE AUTOMATON EXAMPLE 2

Design a finite automaton E_2 to recognize the regular language of all strings that contain the string 001 as a substring.

Example: 0010, 1001, 001, and 111111110011111 are all in the language, but 11 and 0000 are not.

How would you recognize this language if you were pretending to be E_2 ?

- Skip all the 1's (because the substring is 001)
- When you see 0, its just first of 3 symbols in the pattern 001
 - Next symbol is $1 \rightarrow$ few 0's so go back to skipping 1's
 - Next symbol is $0 \rightarrow$ still second symbol in the pattern 001
- Just scan the input until you get 1.
- Once pattern/substring found, scan all the inputs until end.

- Possibilities
 - 1. haven't just seen any symbols of the pattern,
 - 2. have just seen a 0,
 - 3. have just seen 00, or
 - 4. have seen the entire pattern 001.
- Next step assign states q, q_0 , q_{00} , q_{001}
- Assigning transitions, for
 - $q \rightarrow skip/stay$ in the same state for all 1's but reading a 0 you move to q0 (next state).
 - $q0 \rightarrow$ reading a 1 you return to q but reading a 0 you move to q00 (next state).
 - $q00 \rightarrow$ reading a 1 you move to q001 but reading a 0 leaves you in q00.
 - Q001 \rightarrow reading a 0 or a 1 leaves you in q001.
- The start state is q, and the only accept state is q001.

EXAMPLES OF FINITE AUTOMATA

Construct DFA that accepts all the strings of only a's over the alphabet {a,b}

Construct DFA that accepts all the strings over the alphabet $\{0,1\}$ of length 2.

• Design an FA M with $L(M) = \{ w \in \{ 0,1 \}^* \mid w \text{ contains } 101 \text{ as a substring } \}.$

 $L = \{ w \in \{0, 1\}^* \mid w \text{ contains } 00 \text{ as a substring } \}$

• $L = \{ w \in \{ 0,1 \}^* \mid w \text{ doesn't contain either } 00 \text{ or } 11 \text{ as a substring } \}.$ $\int_{0}^{0} \int_{0}^{0} \int_{0}^{0} \int_{0}^{1} \int$

Flip Final States Now not accept those Strings

Example 6

For the following language over the alphabet $S = \{a, b\}$, give a DFA for it: "all strings that begin with b and end with a".

Example 7

Design a DFA that accepts the the language consisting of the set of those strings over {a, b} that do not contain the substring "aaa".

EXAMPLES TO TRY!

- {w | w begins with a 1 and ends with a 0}
 {w | w contains at least three 1s}

 - Design FA to accept the string that always ends with 00.
 - $\{w \mid w \text{ contains the substring } 0101 \text{ (i.e., } w = x0101y \text{ for some } x \text{ and } y)\}$
 - Let $\Sigma = \{a, b\}$. Define $A = \{w \in \Sigma^* \mid w \text{ ends in "bba"}\}$.
 - Let $\Sigma = \{a, b\}$. Define $A = \{w \in \Sigma^* \mid w \text{ begins with 'a' and ends with 'b'}\}.$
 - Draw a DFA that recognizes the language over the alphabet {0, 1} consisting of all those strings that contain an odd number of 1's.
 - Design a DFA which accepts strings with even number of 0's followed by single 1 over $\{0,1\}$.

{w | w begins with a 1 and ends with a 0}

{w | w contains at least three ls}

Design FA to accept the string that always ends with 00.

EXAMPLES TO TRY!

- Draw a DFA that recognizes the language over the alphabet {0, 1} consisting of all those strings that contain an odd number of 1's.
- Design a DFA which accepts strings with even number of 0's followed by single 1 over {0,1}.

NFAs

- An NFA is a
 - Nondeterministic
 - Finite
 - Automaton
- Conceptually like a DFA but equipped with the vast power of nondeterminism.
- Given the current state, there can be multiple next states
- The next state may be chosen at random or chosen in parallel
- Nondeterminism is a generalization of determinism, so every deterministic finite automaton is automatically a nondeterministic finite automaton.

(NON) DETERMINISM

- A model is deterministic if at every point in the computation, there is exactly one choice that can make.
- The machine accepts if that series of choices leads to an accepting state.
- A model is nondeterministic if the computing machine may have multiple decisions that it can make at one point.
- The machine accepts if any series of choices leads to an accepting state.

SIMPLE EXAMPLE OF NFA

NFA

- The machine below violates the rule of unique state.
 - State ql has one exiting arrow for 0, but it has two for 1;
 - q2 has one arrow for 0, but it has none for 1.
- In an NFA, a <u>state may have zero, one, or many exiting arrows for each alphabet symbol.</u>
- An NFA may have arrows labeled with members of the alphabet or ε . Zero, one, or many arrows may exit from each state with the label ε

HOW DOES AN NEA COMPUTE?

FORMAL DEFINITION

A nondeterministic finite automaton is a 5-tuple ($Q, \Sigma, \delta, q_0, F$), where

- 1. Q is a finite set of states,
- 2. Σ is a finite alphabet,
- 3. δ : Q x $\Sigma_{\epsilon} \rightarrow P(Q)$ is the transition function,
- $4. q_0 \in Q$ is the start state, and
- 5. $F \subseteq Q$ is the set of accept states.