

Digitized by the Internet Archive in 2022 with funding from University of Toronto

Government

MAY - SEPTEMBER 1977

By
Richard E. Thomson
and
W. Stanford Huggett

INSTITUTE OF OCEAN SCIENCES Sidney, B.C.

For additional copies or further information please write to:

Department of Fisheries and Oceans
Institute of Ocean Sciences
P.O. Box 6000
Sidney, B.C. CANADA
V8L 4B2

CA1 EP321 -81820

Pacific Marine Science Report 81-20

WIND-DRIVEN INERTIAL OSCILLATIONS WITHIN QUEEN CHARLOTTE SOUND AND HECATE STRAIT, MAY-SEPTEMBER 1977

Ву

Richard E. Thomson and
W. Stanford Huggett

Institute of Ocean Sciences Sidney, B.C. 1981

TABLE OF CONTENTS

	Page					
ABSTRACT	iii					
1. INTRODUCTION	1					
2. DATA COLLECTION AND PROCESSING	4					
The region	4					
The data set	4					
Bandpass filtered data	7					
3. WIND AND CURRENT COMPONENTS	7					
4. SPECTRAL AMPLITUDES	24					
Major peaks	24					
Peak inertial frequencies	24					
Temporal variability	32					
Spatial distribution	40					
5. COMPLEX DEMODULATION	54					
6. SPECTRAL COHERENCES AND ADMITTANCES	6.7					
7. ELLIPSE ORIENTATION	74					
8. DOPPLER SHIFTED FREQUENCY	75					
9. DISCUSSION AND SUMMARY	82					
ACKNOWLDGEMENTS	88					
REFERENCES						
I TOT OF CARTIONS						

ABSTRACT

Inertial oscillations in current records collected from May to September, 1977, at ten mooring sites 20-300 km apart in the Queen Charlotte Sound-Hecate Strait region of northwestern British Columbia are analyzed. Near-surface oscillations were wind-driven, clockwise rotary and circularly polarized: near-bottom oscillations at depths of 155-330 m were clockwise rotary, less than 10% of near-surface amplitudes, highly elliptical and poorly correlated with surface winds. In the open southwest sector of the region. near-surface spectra possessed well-defined peaks centered roughly 3.5% above the local inertial frequency (f), whereas spectra for the semi-enclosed northern sector had broad peaks centered at f. The peak spectral frequency at the southeast corner of the mooring array was 6.5% below f and is linked to a Doppler shift by mean flow advection of comparatively high wavenumber inertial oscillations. Spectral amplitudes decreased eastward and northward over the sea in concert with decreases in intensity and degree of veering of traveling frontal-type winds. The latter appear to have been due in part to modification of the winds by the coastal topography. A particularly vigorous wind-generated surface "event" in mid-June was coherent to 99% confidence over a distance of 300 km, attained maximum speeds of approximately 75 cm s⁻¹ and persisted for more than 8 days at most locations and 11 days at a mooring at the edge of the continental shelf. (Typical durations for single wave groups were $0.2\frac{1}{2}$ days.) This event, together with a similar less energetic event in August, is linked to quasi-resonant forcing by frontal winds associated with sequences of regularly spaced, eastward traveling extratropical cyclones. Current ellipse orientations and the time lags for the onset of inertial oscillations for these events were consistent with the directions and propagation speeds of cyclonic winds over the coast. Estimated wavelengths ranged from 300-700 km over the main portion of the sea to 85-95 km in the southeast corner. Lastly, the start times of major wind-forced events coincided with sharp attenuation of salinity and temperature fluctuations recorded by the near-surface current meters and indicate a deepening of the wind mixed layer by inertial current-induced vertical shears.

1. INTRODUCTION

Current fluctuations of near-inertial frequencies are commonly observed features of the world's oceans. Although detectable at depth in the oceanic interior (Webster, 1968; Fu, 1980), these inertial wave motions are invariably strongest within the near-surface layer where they are primarily generated by mesoscale winds (e.g. Pollard, 1970; Gonella, 1971; Kundu, 1976) and geostrophic adjustment of mesoscale currents (e.g. Blumen, 1972; Tang, 1979). Wind-generated inertial oscillations, in particular, constitute one of the more energetic frequency bands within the upper ocean.

The principal characteristics of near-surface inertial motions in the open ocean are well documented (Kroll, 1975; Kundu, 1976; Pollard, 1980). Observations reveal highly intermittent, initially strong currents with typical maximum speeds of 10 to 20 cm s⁻¹ that undergo rapid attenuation within a few cycles. The horizontal velocity vector is nearly circularly polarized and rotates clockwise (looking downward) in the northern hemisphere. Rotation periods are usually a few percent less than the local inertial period. Phase propagation is vertically upward and is accompanied by a downward flux of kinetic energy, consistent with a near-surface generation mechanism. Coherence scales for upper layer motions vary from tens of metres in the vertical to tens of kilometres in the horizontal with a tendency for horizontal coherences to diminish rapidly with depth. Where the Brunt-Väisälä frequency, N(z), is a slowly varying function of depth, as beneath the surface pycnocline, the horizontal velocity components are roughly proportional to $N^{\frac{1}{2}}$, in agreement with the approximate WKB solutions to the linear inertial wave equations.

In this report, we present an analysis of near-surface and nearbottom inertial oscillations observed within the semi-enclosed coastal sea that separates the Queen Charlotte Islands from Vancouver Island and the mainland of British Columbia (Fig. 1). Current meter records are from ten mooring sites in both exposed and protected regions of the sea and span two deployment periods from May to September, 1977. A combination of harmonic analysis and bandpass filtering has been used to isolate motions within the inertial frequency band from the comparatively strong (\sim 25 cm s⁻¹) tidal currents within the region (e.g. Huggett et al, 1981). Because only single current meters were moored in the near-surface layer, the analysis concentrates primarily on the temporal and horizontal structures of the inertial wave fields. Many features of the inertial oscillations within the coastal sea resemble those obtained from previous oceanic observations. However, we also present findings which appear to be new to the literature. Particular attention is given near-surface inertial oscillations associated with two major summertime "events" which we show were highly coherent over hundreds of kilometres, attained maximum speeds in excess of 50 cm $\rm s^{-1}$, and persisted longer than a week at most moorings. Results further indicate that current oscillations of subinertial frequencies were a common feature of the coastal sea, and were especially prevalent at a single near-surface mooring in the southeast region of Queen Charlotte Sound. Although the primary purpose of this paper is to report the major characteristics of the inertial currents within the coastal sea, an attempt has been made to account for the observations on the basis of present theoretical concepts. The generation of inertial oscillations is shown to have considerable practical importance to the circulation and mixing processes within the region.

Figure 1. Map of the region showing locations of current meter moorings (prefixes Q, H, CS) and wind stations (triangles). Moorings CSO2 and CSO2 are within Caamaño Sound and HO2 within Browning Entrance. Dotted line is 100 fathom (183 m) contour. M - McInnes Island; B - Bonilla Island; S - Sandspit; E - Ethelda Bay.

The report is organized as follows. Section 2 describes the data set and processing methods. In Section 3, the major features of the inertial oscillations are discussed on the basis of the component plots of winds and bandpass filtered currents. Section 4 is devoted to the spatial and temporal variability of near-surface spectral amplitudes, derived from different lengths of data, while Section 5 presents complex demodulations of the inertial signals using two separate analytical techniques. Spectral coherences for the major inertial events are presented in Section 6 together with the corresponding signal admittances. The variability of current ellipses at inertial frequencies is discussed in Section 7 and in Section 8 we account for the anomalously low frequencies at mooring Q04. Section 9 provides a discussion and summary.

2. DATA COLLECTION AND PROCESSING

The region

Queen Charlotte Sound and Hecate Strait comprise a coastal sea with an area of approximately $45 \times 10^3 \ \mathrm{km^2}$, a maximum width normal to the outer coast of around $140 \ \mathrm{km}$ and an axial length of $400 \ \mathrm{km}$ (Fig. 1). Bathymetric charts of the seaway reveal a convoluted coastline of shoals and broken island groups bordering an inner continental shelf region cleaved by a series of re-entrant troughs. Within the southern portion of the sea, the troughs are separated by shallow ($\sim 100 \ \mathrm{m}$) banks; a major trough extends northward into Hecate Strait, another eastward into Queen Charlotte Strait.

The data set

The subsurface moorings spanned two deployment periods of approximately two months each from May to September, 1977 (Table 1). With the exception of the single-meter stations CSO1, CSO3 and HO2, two Aanderaa RCM 4 current meters were deployed at each location with one meter at less than 25 m depth and the other at a fixed height of 4-5 m above the bottom. (A mooring south of Cape St. James was lost and there was no redeployment at QO5). The instruments recorded instantaneous direction, temperature and conductivity together with average speed at a sampling interval of 15 min. At all but one location (HO1) the meters also recorded pressure or time, as obtained from an independent "time code generator" (marked "t" in the last column of Table 1).

Prior to analysis, the data were corrected for any timing errors, converted to speed and direction, plotted, then hand-edited to remove obvious 'spikes'. To facilitate use of available programs for determining the tidal current constituents, smoothed records of hourly values were generated by passing a weighted filter over the east-west and north-south velocity component records. Following filter compensation, the harmonic constituents were calculated along with inferred values for the K_2 and P_1 constituents (Godin, 1972). The tidal contribution to a given record could then be reconstructed, interpolated to 15 minute intervals and subtracted on a point-for-point basis from the original record. Finally, no corrections have been made for possible aliasing due to wave-induced rotor-pumping. Not only are summer wave heights relatively low, but the effect is typically confined to the high frequency end of the spectrum.

Locations of current meters for two deployment periods in 1977. Nominal depths are determined from wire-lengths and calibrated pressure gauges (mean tidal range \approx 3.5 m). V - velocity; T - temperature; C - conductivity; P - pressure; t - time-code generator. An 'x' means 100%data recovery; otherwise number gives percent data recovery. TABLE 1.

A. FIRST DEPLOYMENT PERIOD (May-July)

اب		×	×						×	
PARAMETERS MEASURED $\overline{\mathbf{L}}$	××	×	×	××	××	×	21 x	×		×
ERS ME	××	70 ×	××	××	××	×	21	×	××	
ARAMET	××	70 ×	× ×	××	××	×	21 x	×	××	×
P P	××	××	××	××	××	×	21 x	×	××	×
DURATION (DAYS)	588	58	63	59	59	57	57	57	58	58
START	17 May	17 May	18 May	22 May	19 May	20 May	20 May	20 May	21 May	21 May
DEPTH (m)	17	24 255	275	10	18	16	24 195	20	16 155	20
LONGITUDE deg. min.	129 17.6	129 01.6	130 01.0	130 17.5	129 30.0	129 53.8	129 37.0	129 19.0	130 46.2	130 31.5
LATITUDE deg. min.	50 58.5	51 19.3	51 22.0	52 20.5	52 21.0	52 52.7	52 55.0	. 52 54.0	53 28.9	53 41.3
STATION	003	ó04	500	000	800	CS01	CS02	CS03	H01	H02

TABLE 1. (Continued)

B. SECOND DEPLOYMENT PERIOD (July-September)

,									
Ð lt		×							
PARAMETERS MEASURED $\frac{T}{-} = \frac{C}{-}$	××	×	x 15	31 x	×	××	36	×	43
STERS N	××	××	×	31 x	×	××	36	× 60	43
PARAMI T	××	××	x 15	31 x	×	××	36	××	43
>	××	××	x 15	31 ×	×	××	36	××	43
DURATION (DAYS)	67	67	99	89 =	70	& & 9	29	899	68
START	15 July	14 July	17 July	17 July	16 July	16 July	16 July	18 July	18 July
DEPTH (m)	10	15	10	16 155	18	13	24	15	20
LONGITUDE deg. min.	129 16.9	129 02.0	130 19.5	129 29.6	129 54.3	129 37.0	129 19.0	130 45.7	129 31.5
LATITUDE deg. min.	50 58.9	51 18.9	52 20.2	52 20.9	52 52.9	52 55.0	52 54.0	53 28.8	53 41.2
STATION	600	004	000	800	CS01	CS02	CS03	H01	Н02

Oceanic wind measurements were obtained every 30 min from a moored anemometer at the entrance to Queen Charlotte Sound. Use has also been made of six-hourly weather maps and hourly wind records routinely collected at manned lighthouse stations around the perimeter of the region (Fig. 1).

Water property data were collected within the region in May, July and September. Observations consisted mainly of CTD profiles digitally sampled every 0.1 s and taken to within a few metres of the bottom. Niskin bottle observations were used to calibrate the CTD data (Thomson et al, 1981).

Bandpass filtered data

To effectively isolate the near-inertial currents, we first subtracted the calculated tidal current constituents from the edited records. The modified records were then processed forwards and backwards with a high order bandpass Butterworth filter (Thomson and Chow, 1980). Although the squared filter response (Fig. 2) has relatively high magnitude (~ 0.25) at the major tidal frequencies, removal of the harmonic constituents ensures minimal tidal contamination of energy variance in the inertial band. This is demonstrated in Table 2 where rotary spectra are compared at selected frequency bands for the above stages of processing. The filter amplitude exceeds 80% in the 0.049-0.068 cph range and 90% in the 0.052-0.064 cph range. Where the absolute values are required we have compensated for filter attenuation.

The "ringing" effect due to application of the filter to a finite length record is illustrated in Fig. 3. Here, the bandpass filter spreads the original inertial signal over two additional cycles (roughly 31 h) and results in an underestimation of the actual amplitude at the beginning and end of the input wave form: however, the phases of the input and output are identical. In reality, the wind-induced currents probably began less abruptly than in Fig. 3 so that amplitudes of actual and filtered records would be in closer agreement. Moreover, the long duration of the inertial signals during the major events is conducive to a good overall fit by the filtered amplitude.

To analyze the current data, we have applied a series of spectral and cross-spectral rotary-component analysis programs written by S. Yuen (personal communication) based on the work of Gonella (1972) and Mooers (1973).

3. WIND AND CURRENT COMPONENTS

The east-west (u) and north-south (v) velocity components of edited current records, the corresponding tide-removed bandpass filtered records, and the oceanic wind are plotted in Figs. 4a-d. As these plots illustrate, currents within the coastal sea consisted of intermittent bursts of inertial current activity superimposed upon predominant, semidiurnal tidal currents and a weaker, slowly varying mean flow. The inertial currents at exposed locations were relatively strong (> 5 cm s⁻¹) at near-surface depths but consistently weak at near-bottom depths (Figs. 4b, d); moderate amplitude near-surface oscillations were recorded within adjoining passages. A typical wave group in the surface layer persisted about three to four inertial periods before undergoing marked attenuation.

Figure 2. Zero-phase shift, band-pass filter formed using seventh order low-pass and eighth order high-pass Butterworth filters. Arrows indicate frequencies of major tidal constituents.

Figure 3. Response of band-pass filter (solid line) to truncated current record (dashed line). Inputs consist of 15-min sampled current components from which tidal constituents have been subtracted and for which amplitudes are set to zero after 4 and 2 inertial periods (cycles).

FIG. 3

10 degrees of freedom. First line in each row is clockwise spectrum, second line counterclockwise constituents have been removed based on harmonic analysis of entire record. Third row: for data spectrum. First row: spectra for edited-only data. Second row: for data record in which tidal Comparison of spectra $(cm^2s^{-2} cph^{-1})$ for Station (0.3 (17 m)) for three stages of data processing. Data cover a period of 42.7 days beginning 18 May 1977. Bandwidth is 0.005 cph and there are record in which tidal constituents were removed and resultant record bandpass filtered using combined 7th order low-pass Butterworth filter (-3db at 0.075 cph) and 8th order high-pass Butterworth filter (-3db at 0.045 cph). 2 TABLE

	080.0	96989	3579	294
	'	1178	1209 349	337
	0.070	9873	9909	5246
	0.065	16105 103	16107	12075
	090.0	3667	3678	3171
Y (CPH)	0.055	1961	1959	1698
FREQUENC	0.050	2089	2091	1504
	0.045	844	577 205	180
	0.040	539	204	∞.⊢ <u>,</u>
	0.035	696 230	744 223	00
		EDITED ONLY	TIDES-REMOVED	TIDES-REMOVED AND FILTERED

Figure 4. The next four figures present comparisons of oceanic winds and currents at Stations Q03 and Q05 for the first deployment period (May-July 1977). A/C: north-south and east-west components of observed near-surface and near-bottom currents. B/D: components of band-pass filtered currents, corresponding to A/C, with tidal constituents subtracted (no filter compensation). Arrows in A mark times of major June fronts. Oceanic convention is used for winds, so that winds are toward the directions shown.

Visual comparison of the wind and near-surface currents in Figs. 4b,d indicates that major inertial fluctuations with speeds in excess of approximately 10 cm s^{-1} were associated with times of moderate-to-strong (10 to 20 m $\rm s^{-1}$) southeast winds that accompanied eastward moving extratropical cyclones. For single inertial events, or for the first event of a sequence, the southeast winds usually veered to south or southwest winds after reaching peak speeds; observed clockwise rotation rates of 20 to 30° h⁻¹ in certain cases were especially favorable to the local generation of inertial currents (period 15.4 h). The series of four "storms" that produced the persistent inertial signals of mid-June had peak winds about 60-64 h apart. Because the latter corresponds to roughly four inertial periods, it appears that nearresonant wind forcing had occurred in which the decelerating current vector associated with one wind system was given a boost by the wind stress of the following system. The winds of successive storms also veered and reached peak speeds lasting several hours during which time they were aligned in the general direction of the existing inertial current. The second major event period (mid-August) coincided with successive storms roughly 32 h and 92 h Although the latter time corresponded to nearly six inertial periods, the currents generated by the second storm appear to have been sufficiently attenuated upon the arrival of the third wind system that they did not appreciably affect the resultant oscillation.

At times of significant inertial events, the near-surface velocity components (Figs. 4b,d) were of nearly equal magnitude with u lagging v by approximately 90° (c.f. Section 7). All filtered near-surface records from exposed regions showed similar circularly polarized, clockwise rotary behaviour. Consequently, only the u-component has been displayed in the aggregate plots for the region (Figs. 5a,b); records from the near-bottom meters possessed weak, highly elliptical oscillations in the inertial frequency band and are excluded. The inertial oscillations were clearly less energetic and of shorter duration during the second deployment period compared to the first while in both cases maximum current amplitudes tended to occur in the more exposed southwestern region and minimum amplitudes in the more protected northeastern region. In mid-June, near-surface inertial oscillations persisted more than a week at most stations and attained maximum filter-compensated speeds of ${\sim}50~{\rm cm~s^{-1}}$ at Q05 and 30-40 cm s⁻¹ at other exposed locations. Depending upon the response time to the wind, the actual speeds of the inertial oscillations at Station Q05 could, according to Fig. 3, have exceeded the compensated filtered value. More specifically, the tide-removed record at the onset of this event (Fig. 6) suggests a maximum current amplitude of 75 cm s^{-1} .

The clockwise-rotary nature of the inertial oscillations is consistent with a downward component of group velocity (Leaman and Sanford, 1975) and, therefore, surface wind-generation. Evidence for wind-generation also follows from the close correspondence between onset of the inertial oscillations and passage of eastward traveling extratropical cyclones. However, attempts to more precisely determine the onset times of inertial oscillations relative to the arrival of the generating wind at the single moored anemometer station were unsuccessful. Regardless of which set of current components were used (edited-only, tide-removed, or bandpass-filtered) it proved impossible to establish, on the basis of expanded plots of the currents, the beginning of an inertial oscillation to better than a few hours. Moreover, the wind current lags were more determinate at some

Figure 5. The next two figures present aggregate plots of east-west components of near-surface inertial currents for all moorings. Records are band-pass filtered (tidal constituents subtracted) with no filter compensation. Number following mooring name gives nominal depth in meters. Oceanic wind vectors are plotted every 3 hours. A. First deployment period. B. Second deployment period.

Figure 6. Hourly non-tidal currents at Station Q05
beginning 20:00 June 20, 1977. The tidal current
constituents, based on the full 63-day record
length, have been extracted from the two
components.

FIG. 6

locations than others so that even accurate intercomparisons among mooring locations were not possible. Lastly, the large spatial separations of the moorings together with the modification of winds by the land and the strong dependence of inertial currents on the local wind field indicates that an accurate comparison of winds and currents would only have been possible with detailed oceanic wind measurements. (In Section 6, relative current phases derived from an admittance analysis are compared with the estimated phase of the generating wind.)

4. SPECTRAL AMPLITUDES

Major peaks

Representative spectra for the coastal sea are presented in Figs. 7a-g. The major contribution to the kinetic energy variance was from the $\rm M_2$ semidiurnal tidal current followed, in the upper zone, by a contribution from inertial oscillations; comparatively little energy existed at the $\rm S_2$, $\rm K_1$ and $\rm O_1$ tidal frequencies. Low frequency energy was generally comparable in magnitude to that at diurnal frequencies but varied considerably with depth and location. There was little inertial energy at near-bottom current meters.

Significant inertial energy was prevalent in all spectra from near-surface moorings in the exposed portion of the region and was almost entirely associated with clockwise rotary currents.

Peak inertial frequencies

Previous investigations indicate that the peak spectral frequency $(\omega=\omega_p)$ of inertial oscillations typically exceeds the local inertial frequency, f, by 3-20% (e.g. Kundu, 1976). In the absence of a mean flow or horizontal density gradient, the group velocity becomes increasingly horizontal as $\omega \to f$, so that the above observation presumably results because inertial motions measured at subsurface depths in a stratified fluid must be those for which there has been a downward flux of wind-generated energy. An alternate explanation proposed by Anderson and Gill (1979) links the higher frequencies to southward wave propagation in the presence of a meridionally variable f. In either explanation, oscillations of subinertial frequency are discounted since the wave frequencies theoretically lie in the usual pass $f \leqslant \omega \leqslant N$.

To accurately determine the peak frequencies, we have computed the high resolution rotary spectra using a bandwidth of 0.002 cph (Fig. 8a-c). Based on the local inertial period and the spectra for locations that had significant near-surface inertial activity, three separate regions are distinguishable: the outer shelf region represented by Stations Q03 and Q05, characterized by large amplitude clockwise-rotary oscillations with sharply defined peak frequencies $\sim 3.5\%$ above f; the inner shelf represented by Q07, Q08, H01 and CS01, characterized by moderate amplitude clockwise oscillations with broad spectral maxima centered at f; and the southeastern shelf region near Q04 with moderate amplitudes and sharply defined peak frequencies $\sim 6.5\%$ below f. With the exception of Station Q04, typical peak frequencies were at 0.066 cph; at Q04 the largest peak was at 0.062 cph and

Figure 7. The next seven diagrams present representative rotary spectra for the first 1024 h of given record. Solid line - clockwise component; dashed line - counterclockwise component.

Nyquist frequency = 2 cph; bandwidth = 0.005 cph; degrees of freedom = 10. Only the first 100 bands have been plotted. Letters refer to the main diurnal (K₁) and main semi-diurnal (M₂) tidal current constituents and to the local Coriolis frequency (f). Vertical bar gives approximate 95% confidence interval.

FIG. 7D

FIG.7E

coincided with secondary maxima in the spectra for Stations Q03 (second deployment) and Q05 (first deployment).

Based on the limited spectral resolution of these results, the frequencies of large amplitude inertial waves were at most a few percentage above the local inertial frequency. The broad spectral peaks from surface moorings north of Cape St. James and the secondary peaks at 003 and 005 further suggest that motions of subinertial frequency were common throughout exposed regions of the sea. (Alternatively, the broad peaks could have resulted from shorter durations of inertial events.) At location Q04, the peak frequency was decidely subinertial. We discount the possibility that the latter oscillations were due to timing errors during the observational stage since the current meter generated a corroborative time-word by an independent clock. The bandwidths of the major peaks in Fig. 8 are about 0.008-0.010 cph. Because signal persistence equals the reciprocal of the bandwidth (Munk and Phillips, 1968), the characteristic duration of the inertial oscillations were approximately 4-5 days or about eight inertial periods. But these estimates are heavily weighted by the major events associated with successions of storms. For a given storm, the individual wave groups of Figs. 4 and 5 had durations closer to 2½ days, more in line with previous findings.

Maxima in the high resolution spectra of the anticlockwise rotating components were an order of magnitude less than for the clockwise component. Values were greatest at outermost moorings Q03, Q05 and Q07 and decreased toward the mainland coast: at none of the stations, however, are spectral peaks of the counterclockwise components significant to the 90% confidence level.

Temporal variability

Figures 9a,b present the temporal variability of clockwise rotary spectra within the inertial band based on 64-h record segments. Each segment length in this case approximates the duration of a single, wind-generated inertial event (c.f. Figs. 4 and 5). Consequently, a given spectral estimate that spans the time of a passing storm is representative of the mean kinetic energy in the wind-generated inertial motions for that particular event.

The plots reveal the intermittent nature of the inertial oscillations and the fact that times of significant activity were not necessarily coincident throughout the entire region. The amplitudes and durations of the widespread events of mid-June and mid-August decreased eastward and northward over the sea. For the mid-June event, durations of the large amplitude signals decreased from a maximum of \sim 11 days at Station Q05 to a minimum of 4 days at Q04 less than 75 km to the east. It appears that the winds of the second storm were in-phase with the inertial current at Station Q05, causing it to accelerate, but out-of-phase with the current at Q04 causing it to decelerate. At stations Q05, Q08, Q04 and H01, the strongest inertial currents were generated by the first storm; at Stations Q03, Q07 and CS01 the currents were strongest following the second storm.

Figure 8. The next three diagrams present the high resolution (clockwise) spectra for selected near-surface records; tidal constituents subtracted, unfiltered. Nyquist frequency = 2 cph; bandwidth = 0.002 cph; degrees of freedom = 4. Vertical bars denote local Coriolis frequency. A/B: First deployment period.

C: Second deployment period.

FIG.8B,C

Figure 9. The next two diagrams present the temporal variability of the clockwise rotary spectra at frequency 0.06 cph for the two deployment periods. Each data segment spans 64 hours with 32-hour overlaps between spectra estimates; time of estimate corresponds to mid-point of each segment.

FIG.9B

The largest oscillations for the mid-August event occurred at the more western Stations Q07 and Q03. In all instances there was a marked decrease in the spectra prior to the arrival of the third wind system a few days later. A noteworthy result is that the initial signal at CSO1 was of lower amplitude than that at the more protected mooring CSO2, 40 km to the east, whereas for the second storm, there was a substantial inertial oscillation at CSO1 and a negligible one at CSO2. The occurrence of larger oscillations at CSO2 and CSO1 appeared at other times during the second deployment period (Fig. 5b) and was possibly related to differences in the local winds, mean currents or vertical density structures.

Spatial distribution

Spatial distributions of the clockwise rotary spectra within the inertial band for two major event periods are presented in Figs. 10a,b. Analysis segments span 10.7 days (256 h) and for a given period have identical start times, roughly ½ day before the onset of the event. The above patterns closely resemble those based on shorter 64-h segments for the times of the major events and indicate that an inertial wave field generated by one storm generally reinforced that of the preceding storm in the sequence. Except for comparatively large values at Station CSO1, inertial current amplitudes diminished sharply toward the mainland coast. Because of the small depth span (7-24 m) of the near-surface meters in the open portion of the region, we assume that this eastward attenuation was due in part to horizontal differences in amplitudes of the surface-generated currents. Nevertheless, depth-dependent differences resulting from differences in depth of the nearsurface current meters would also have been an important effect. Results of Kundu (1976) and Pollard (1980) for instance showed marked amplitude attenuation within the upper 20 m. However, in those studies the surface layer was highly structured with peak N(z) at less than 15-20 m depth, which was not the case here. Oceanographic surveys within the region in July 1977, about one month after the mid-June event and near the time of the seasonal maximum surface heating, when the upper zone has greatest vertical structure, revealed a weakly stratified upper layer of 20-30 m depth (Fig. 11a,b). Deeper surface layer depths were observed in May and September. Presumably, therefore, the top current meters were simultaneously in, or close to the base of, an upper layer of near-uniform density during the June event. notion is supported by the small variations in salinity and temperature recorded by near-surface current meters around the time of the event (Fig. 12), by the absence of any consistent dependence of kinetic energy on depth (Fig. 13) and by high coherences between stations during the major events (c.f. Section 6). For such weakly stratified surface waters, we would expect inertial wave kinetic energies to have been roughly uniform with depth (e.g. Pollard, 1970) and differences in amplitude to have resulted mainly from horizontal variations in the wind stress and depth of the surface mixed layer.

During the mid-August event, the surface waters were considerably more structured. However, this was partly offset by the reduced span (10-18 m) of the near-surface current meters within the exposed sector of the region. With regard to Fig. 12, we note that the start times of major inertial events coincided with a sharp attenuation of salinity and temperature fluctuations in the upper layer. It seems that prior to an event, these fluctuations were large due to tidal advection of spatially structured surface waters whereas immediately after passage of a storm, smaller fluctuations

Figure 10. The next two diagrams present the horizontal distributions of clockwise rotary spectra at frequency 0.06 cph, based on 256-hour current velocity segments. Bandwidth = 0.02 cph.

A: Mid-June event. B: Mid-August event (weak near-bottom spectra not plotted).

Figure 11A. Depth of weakly stratified upper layer from 17--19 July as interpolated from a grid of 23 CTD stations covering Queen Charlotte Sound and Hecate Strait (see Thomson et al, 1981). Layer depth roughly corresponds to depth of maximum N(Z).

Figure 11B. Vertical profiles of density (σ_t) for five CTD locations (a-e) shown in Fig. 11A. Values have been averaged over 1 m and, except near the surface, plotted at 10 m intervals.

FIG. 11B

Figure 12. The following two figures show the near-surface salinity and temperature fluctuations at selected current meter locations before and during times of major inertial oscillation events. Horizontal bars denote times of strong inertial currents.

FIG. 12A

FIG. 12 B

Figure 13. Normalized mean kinetic energy (KE*) versus depth.

Numbers refer to near-surface kinetic energies

(spectrum x bandwidth) derived from spectra for

mid-June event (uncircled numbers) and mid-August

event (circled numbers). Frequency band 0.05-0.07

cph with 0.02 cph bandwidth. Numbers 3-8 refer

to Stations Q03-Q08; 1 = CS01; 1 = H01. Dashed

line is regression curve, KE* = -0.03883 Z +

1.1405, for values from table 1, Kundu (1976).

The best fit line to the estimates for the

outer locations (Q03, 04, 05) for the mid-June

event have approximately the same slope as the

dashed line.

FIG 13

ensued because of greater spatial homogeneity and/or deepening of the surface layer, possibly as a result of enhanced vertical mixing by inertial current induced vertical shears.

The spatial attenuations displayed in Fig. 10a were coincident with eastward weakening and decreased veering of the winds (Fig. 14). The diminished strength of the winds accompanied a general weakening of the cyclones and accompanying fronts at the coast while the reduced rotation of the wind vector was caused by topographic constraints of the mainland coast. As discussed in Section 9, the effect of the land on the orientation of the winds may have been largely responsible for the alteration of inertial current amplitudes within the sea.

5. COMPLEX DEMODULATION

Standard complex demodulation was applied to the bandpass filtered current records to show the amplitudes and phases of inertial current vectors as functions of time. (This of course has the effect of spreading the signal still further in the time domain.) Figure 15 presents representative values based on local inertial frequencies and record lengths of two inertial periods. Where the measured current vector lags the reference (inertial) current vector, the phase increases with time (rotation rates less than the local inertial frequency); where this vector leads the local reference vector, the phase decreases with time. Complex demodulation of the oceanic winds at near-inertial frequency is presented in Fig. 16.

A difficulty with the above type of presentation is that the difference between the observed frequency and the reference (inertial) frequency is not immediately obvious. Also, owing to inherent ambiguities, phases tend to be erratic especially at times of small amplitude currents. More importantly, the analysis assumes circularly polarized motions whereas they are usually somewhat elliptical (c.f. Section 7). Therefore, we have taken a second approach in which the observed times between three successive zero-crossings of the bandpass filtered record determines the frequency appropriate to each velocity component for a particular cycle. (The program searches for consecutive zero-crossings in the u component, then shifts forward $\frac{1}{4}$ period to search for the corresponding zero-crossings for the v component). The amplitude A = $(v_2u_1-v_1u_2)^{\frac{1}{2}}$, where $u=u_1\cos\theta+u_2\sin\theta$, $v=v_1\cos\theta+v_2\sin\theta'$; θ , θ' are the phases according to the zero-crossings. Fourier coefficients for v are based on the data segment with the same start time as the u component.

The amplitudes from either method are nearly identical, whereas the second more clearly shows the variation of frequency with time (Fig. 17a-c). Subinertial frequencies were common occurrences at most locations and were especially prevalent at Station Q04. Also, the onset of the major inertial events at Stations Q03, Q04, CS01 and Q08 were immediately preceded by subinertial oscillations whereas at Stations Q05 and Q07 frequencies were generally above f. In the former cases, the frequency of the current oscillations commonly increased from below to above the local inertial frequency following peak amplitude. The amplitudes in Fig. 17 reveal comparatively high background levels of inertial current activity within the coastal sea which, like the amplitudes during the major events, diminished toward the mainland coast.

Figure 14. Time lag and magnitude of frontal winds (rapid veering of southeast winds) for first major storm of the mid-June event based on single oceanic and six shore-based anemometer stations (triangles).

Lag (——) is in hours relative to 00h, June 21, 1977; wind speed (---) at time of wind veering is in ms⁻¹. Except for Sandspit and Cape St. James, the latter speeds closely corresponded to the maximum wind speed of the storm. Maximum wind speed at Sandspit was 13 m s⁻¹, at 1200 h; at Cape St. James, 20 m s⁻¹ at 0900 h.

Figure 15. Complex demodulation of near-surface inertial oscillations. Amplitudes and phases of band-pass filtered currents are determined from a least squares fit of a clockwise rotary vector at 15.38 h period to the observed velocity vector; each set of estimates uses two inertial periods (30.77 h) of data and steps one period forward for each subsequent calculation. Where the phase increases with time the inertial period is less than the local inertial period and vice versa.

Figure 16. Complex demodulation of oceanic wind record.

Analysis procedure is identical to that in Fig. 15 and is based on clockwise rotating wind vector of 15.38 h period. Note that only for mid-June event, starting around 21 June, does the phase remain relatively constant indicating a wind rotation rate comparable with the rotation rate of the inertial current vector.

Figure 17. The following three plots present results for a modified complex demodulation of near-surface inertial oscillations. Method assumes clockwise rotation of current vector and derives oscillation period from three consecutive zero-crossings of the band-pass filtered (tidal constituent-removed) current records. Frequencies for the north-south (N-S) and east-west (E-W) velocity components are compared in the plots to the local inertial frequency (~0.065 - 0.066 cph) represented by the horizontal axes. A and B are for the first deployment period, C for the second deployment period.

6. SPECTRAL COHERENCES AND ADMITTANCES

Horizontal and vertical coherences between clockwise rotary, bandpass filtered currents for the two major inertial event periods are presented in Table 3. Estimates are based on 256-h record segments and have a centre frequency of 0.06 cph (0.02 cph bandwidth) with 10 degrees of freedom.

During the mid-June event, near-surface inertial oscillations within the main region of the sea were coherent to 99% confidence, except for Station Q04 which was coherent with other locations to 95% confidence (Table 3a). Coherences for surface moorings in the coastal channels (CSO3, HO2) were below the 90% confidence level. In the vertical (Table 3b), only the most seaward stations (Q03, Q05) had significant coherences between top and bottom motions at the inertial frequency (> 95% confidence). However, these coherences are suspect due to the small amplitudes of the near-bottom oscillations. During the mid-August event, the inertial oscillations were horizontally coherent to the 95% level, excluding CSOl which was relatively uncorrelated with the neighbouring locations (Table 3a).

According to these results, near-surface inertial oscillations were highly correlated over almost the entire moored array, a longitudinal distance of over 300 km. These results support the contention by Pollard (1980) that "...the horizontal coherence scale may be significantly larger than the 'few tens of kilometres' repeatedly suggested in the literature...". The comparatively low coherences at Station Q04 during the mid-June event and at Station CS01 during the mid-August event seem to have resulted from local "detuning" of inertial oscillations at these locations by relatively strong (10-20 cm s $^{-1}$) mean currents. This question is considered in more detail in Section 8.

The relative phases and amplitudes (admittances) of near-surface inertial oscillations for the two widespread event periods are presented in Figs. 18a,b. Data segments again span 256 h with center frequency 0.06 cph and 0.02 cph bandwidth. Values are referred to the surface meter record at Station Q03; possible 360° ambiguities have been eliminated by visual comparison of phases with the bandpass filtered velocity components in Figs. 5a,b. (Phase and amplitude distributions derived for 64-h data segments resemble those in Figs. 18a,b and are not presented.)

In each figure, amplitudes attenuate toward the northeast and closely follow the pattern established by the spectral amplitudes (Section 4). Phases for the mid-June event (Fig. 18a) indicate that the wind-induced signal first began at Q03 and then had a delayed onset over the region in approximately a northeasterly direction. According to the phases of the southern triad of Stations (Q05-Q03-Q04), the signal at Q03 had an effective phase velocity toward 20°T with speed c = 5.1 km h⁻¹ (1.4 m s⁻¹) with wavelength λ = 85 km; according to the triad Q03-Q04-Q08, on the other hand, the signal at Q04 was toward 95°T at 5.7 km h⁻¹ with λ = 95 km. In the region of the central triads, H01-Q07-Q08 and CS1-Q07-Q08 , the signal advance was northeastward (45°T and 60°T, respectively) with respective speeds of 19.4 and 23.9 km h⁻¹ and wavelengths of 325 and 400 km. The weak inertial signals within the channels were delayed significantly relative to the exposed coastal locations; from CS01 to CS03 the delay was 6.7 h (c $\stackrel{\square}{}$ 5.3 km h⁻¹) and

ter	Н02	1	I	I	I	1	ı	ı	1	ı	\vdash
Horizontal coherence matrix for near-surface, clockwise inertial current component for center frequency of 0.06 cph, 0.02 cph bandwidth and 10 degrees of freedom. Values in lower left half of matrix are for the mid-June event (start: 20 June) those in upper right for the mid-August event. Confidence limits: 90% = 0.60; 95% = 0.67; 99% = 0.77.	H01	0.79	0.74	ı	0.55	ı	0.29	1	ı	Н	99.0
	CS03	Ī	ı	l	ı	I	i	ı	П	0.55	0.04
	CS02	0.72	0.83	ı	0.80	ı	09.0	Н	ŧ	I	ı
	CS01	0.51	0.73	ı	0.58	ı	러	ł	0.56	0.93	0.75
	908	I	ı	ı	t		0.94	1	0.64	0.90	0.57
	007	0.83	0.89	ı	H	0.93	0.98	ı	0.57	96.0	09.0
	005	I	I	H	0.94	0.94	96.0	1	0.56	0.90	0.55
	004	0.86	П	0.56	0.67	0.74	0.62	1	0.50	0.67	0.71
	003	1	0.64	0.95	0.98	0.94	0.98	ı	09.0	0.94	0.59
TABLE 3A.	STATION	603	400	905	407	800	CS01	CS02	CS03	H01	H02

TABLE 3B. Vertical coherences between top and bottom current meters for clockwise inertial current component; center frequency = 0.06 cph, bandwidth = 0.02 cph and degrees of freedom = 10. For mid-June event beginning June 20. Numbers below station are depths (m) to top, bottom current meters.

			STATION			
	Q03 17,160	Q04 24,255	Q05 7,275	Q07 10,330	Q08 18,155	H01 16,155
Coherence	0.69	0.26	0.79	0.56	0.52	0.36

Figure 18. The next two diagrams present plots of the amplitudes and phases of clockwise rotary, nearsurface inertial current oscillations relative to Station Q03 at frequency of 0.06 cph (bandwidth = 0.02 cph). Estimates are derived from the complex-valued "inner" admittance, $Z_{i3} = S_{i3}/S_{33}$, where S_{i3} is the cross spectrum between clockwise rotating components (at 0.06 cph) at stations i and 3, and S_{33} is the power spectrum of the clockwise component at station 3. Arrows denote direction of phase propagation derived using phases from triads of stations. Analyse span 256 h of data. A. Mid-June event, beginning 20 June. B. Mid-August event, beginning 21 August.

from H01 to H02, 8.9 h (c $^{\sim}$ 2.7 km h⁻¹). Results for the mid-August event are comparatively unreliable owing to missing or short current meter records (c.f. Table 1). Based on the triad Q07-Q03-Q04, the inertial signal again commenced first at the most southern mooring and advanced northeastward (20°T). However the estimates c $^{\sim}$ 110 km h⁻¹ and λ $^{\sim}$ 1.8 x 10³ km greatly exceed other estimates and are presumably incorrect. The northern triad (H01-Q07-CS01), also indicates a northeastward (20°T) advance at Station Q07 but with c = 29.3 km h⁻¹ (λ = 490 km), which are more consistent with the mid-June results. Use of the inertial oscillation at CS02 in place of CS01 yields propagation in the northwesterly direction (c = 40.0 km h⁻¹, λ = 670 km).

Comparison of the current phases derived by the admittance program (Fig. 18a) with the estimated arrival times of the storm front that initiated the mid-June event (Fig. 14) verifies that the inertial oscillations were transient responses to passage of traveling wind systems. The general northeastward phase lag of the wind - as interpolated from hourly shore based winds and the single anemometer mooring - corresponded reasonably well with a similar phase propagation of the inertial signal; the relatively long delay in rotation of the wind vector north of Vancouver Island could account for the short wavelength (85-95 km) determined for this region. Differences between the two time-lag diagrams could be due to the fact that current phases are based on 256-h record lengths whereas wind lags are associated only with the leading edge of the first storm of the mid-June sequence. Spatial differences in the orientation of the generating wind vector could also have produced non-temporal phase variations. In addition, winds at shore stations such as Cape Scott often differ from those offshore. A comparison of summer 1979 winds at Cape Scott and Sartine Island, a small offshore island 70 km to the west, indicates that the offshore winds are stronger and have greater variability (Falconer, 1981). Moreover winds from the southwest, south and east at Cape Scott are accompanied by south or southeast winds at Sartine Island. Conceivably, therefore, oceanic wind shifts that generated the inertial oscillations were not accurately reproduced by measured winds at Cape Scott.

7. ELLIPSE ORIENTATION

The phase velocity of linearized inertial-internal waves in a nondiffusive, stratified, rotating Boussinesq fluid with uniform horizontal mean flow U makes an angle,

$$\phi = \pm \tan^{-1} \left[\left(\frac{N^2 - \omega^2}{\omega^2 - f^2} \right)^{\frac{1}{2}} \right]$$

with the horizontal; $\omega^* = \omega - \cancel{k} \cdot \cancel{y}$ is the intrinsic wave frequency, \cancel{k} is the horizontal wavenumber and $f \leqslant \omega^* \leqslant N$. For purely inertial motions in zero mean flow, $\omega^* = f$ and $\phi = \pm 90^\circ$. For $\omega^* \neq f$, however, the motions will have a horizontal component of phase propagation whose approximate orientation can be derived from the asymptotic WKB solutions for the horizontal velocity components (Kundu, 1976). This analysis, based on the assumption that vertical variations in N(z) occur over scales large compared to the vertical wavelength, shows that phase propagation is aligned with the major axis of

the current ellipse and the ratio of major to minor axis is ω^*/f .

The rotary spectral programs used here calculate ellipse orientation for a specified frequency band based on positively and negatively polarized velocity components. (Although velocity components are specified in a north-east coordinate system, the ellipses are invariant to coordinate rotation.) Ellipse orientations for near-surface bandpass filtered currents are assumed to have components coastward from the open ocean and are calculated using two different data segment durations. The first, for successive 64-h data segments with 32-h overlaps, provide estimates of phase direction variability with time; for brevity only results for the mid-June event are presented (Figs. 19a-c). The second, based on 256-h segments, vield mean ellipse orientations for the integrated effects of sequences of storms. Values have been derived for the two major events and are presented in Table 4. Also included are the ratios of clockwise to anticlockwise spectra, the rotary coefficients (which are a measure of the ellipticity) and the frequency ratios ω/f (determined from the high resolution spectra of Section 4).

Ellipse orientations in Figs. 19a-c vary as much as $\pm 50^{\circ}$ during the major event periods. In part this temporal variability is due to computational ambiguities when current oscillations are very nearly circularly polarized (rotary coefficient $^{\sim}$ -1). Nonetheless, the values are consistent with eastward components of phase propagation over the sea. The most abrupt change in orientation occurred at Station Q04 where the inertial oscillations generated by the first major storm were directed to the southeast followed 4 days later by a reorientation to the northeast; the most constant orientation was at CS01 where phases were directed toward $\sim 30^{\circ}$ (60°T) at right angles to the adjacent coastline.

The time-averaged ellipse orientations for the mid-June event period (Table 4) indicate a general phase propagation toward the northeast quadrant (0-90°T) except at Stations H01 and H02 where propagation was to the southeast. During the mid-August event, phases were northeast to north over the central region of the sea and east to southeast in the southern region. Because the rotary coefficient, R, is the difference between the normalized clockwise and counterclockwise spectra, the number $R^{-\frac{1}{2}}$ should approximate the ratio of major to minor axis of a given ellipse. However, even if we allow for the limited frequency resolution (\pm 0.001 cph) of the peak frequency in Figs. 8a,b the correspondence between the last two columns in Table 4 is not good. Because the peak spectral frequencies are based on 1024-h data records (to obtain the needed resolution) they may not be compatible with the shorter 256-h records used to calculate R. Alternatively, the differences between ω/f and the ellipse axis ratio may be due to the non-applicability of WKB solutions to the near-surface layer.

8. DOPPLER SHIFTED FREQUENCY

As noted in Section 5, short duration oscillations of less than inertial frequency were sometimes present in near-surface records. However, at no location were such motions as prevalent as at Station Q04 where, in the case of the mid-June event for example, they persisted longer than a week.

Figure 19. Orientations of inertial current ellipses versus time. Values denote angle of major axis counterclockwise from east (mathematical convention) for frequency of 0.06 cph and bandwidth of 0.02 cph. Each estimate spans 64 h of data and there are 32-h overlaps of data segments. Time represents start of given 64 h segment.

TABLE 4. Properties of inertial current ellipses based on 256 h filtered record lengths. Center frequency

ne; bottom value kwise relative e circular m high	ω/f ±0.015	1.019	0.950	1.014	0.998	0.998	0.991	1.051	1.013	0.985
= 0.06 cph, bandwdth = 0.02 cph. Top value is for mid-June event beginning 20 June; bottom value for mid-August event beginning 19 August. Orientation of major ellipse axis clockwise relative to east; S = clockwise spectra, S + = counterclockwise spectra; R = -1 for clockwise circular rotation, R = 0 for rectilinear motion. Last column gives peak frequency, ω , from high resolution spectra of S divided by the local Coriolis frequency, f (see Table 5).	N	1.0040	1.095	1.045	1.010	1.020	1.014	1.143	1.194	1.796.
	ROTARY COEFFICIENT, R	-0.992	-0.834	-0.916	-0.980	-0.962	-0.972 -0.955	-0.766	-0.701	-0.310
	RATIO S /S.	238	11 35	23	09	52	70	, ∞	9.0	2
	ORIENTATION ° from east	39	87 2	1 I	52 87	22 -	34 79	16	-18 27	-30
	STATION	003	000	600	000	800	CS01	CS02	но1	Н02

From the previous section we find that,

$$\frac{N^2 - \omega^{*2}}{\omega^{*2} - f^2} = \tan^2 \phi = \frac{n^2}{k^2}$$
 (1)

where n and k are vertical and horizontal wavenumbers, respectively. Solving (1) for the intrinsic frequency, $\omega^* = \omega - \underbrace{k}_{\bullet} \underbrace{V}_{\bullet}$, and assuming a priori that N >> ω^* yields (see also White, 1972),

$$\omega = f[1 + (Nk/fn)^2]^{\frac{1}{2}} + k \cdot U .$$
 (2)

Based on CTD observations in May and July, N $\sim 10^{-2}$ - 10^{-3} s⁻¹ within the upper 25 m of Queen Charlotte Sound while from Pollard (1970) and Kundu (1976) $_{\pi}^{2\pi/n} \simeq 10$ -100 m. From Section 6 we find that the inertial oscillations at Q04 during the mid-June event had a wavenumber directed toward 95°T with magnitude k = $2\pi/\lambda \sim 6.61 \times 10^{-5} \text{ m}^{-1}$; directionality in this case is corroborated by the ellipse orientations described in Fig. 19a. Substituting these estimates into (2) together with the local value of the Coriolis parameter,

$$f = 1.1387 \times 10^{-4} \text{ s}^{-1}$$

= 0.06524 cph,

we find

$$Nk/fn \ll 1$$
.

As a consequence, (2) may be rewritten,

$$\omega = f + kU\cos V, \qquad (3)$$

where $^{\gamma}$ is the angle between the horizontal wavenumber and the mean velocity.

During the four days following onset of the mid-June event, the mean (lowpass filtered) velocity at Q04 was toward 326 \pm 16°T at about 23.3 \pm 2.3 cm s⁻¹ (Fig. 20), whereby (3) becomes, for our single estimate for k,

$$\omega = (1.0418 \pm 0.420) \times 10^{-4} \text{ s}^{-1}$$

= 0.0597 \pm 0.0024 cph.

The latter is in close agreement with the value

$$\omega = 0.0566 \pm 0.0025 \text{ cph}$$

determined from the demodulation analysis (e.g. Fig. 17a) for those times during this event when the speed exceeded 5 cm $\rm s^{-1}$.

Figure 20. Observed and low-pass filtered (mean) current components at Station Q04 before and during the June and August inertial events. Godin's (1972) tidal filter A_{24} . A_{24} . A_{25} with half-power point 0.015 cph has been applied; coordinate axes are positive toward 10° and 280° True. Ticks above horizontal axes denote times of mean flow calculations for section 8.

FIG 20

For the four days following the mid-August event, the mean velocity at Q04 was toward 352 \pm 43° at roughly 11.1 \pm 1.3 cm s⁻¹ which, for the previous value of k, yields

$$\omega = (1.1222 \pm 0.0500) \times 10^{-4} \text{ s}^{-1}$$

= 0.0643 ± 0.0029 cph.

This approximates the peak spectral frequency in Fig. 8b and closely resembles the value,

$$\omega = 0.0638 \pm 0.0015 \text{ cph},$$

derived from the demodulation analysis for the times of significant inertial amplitude. We therefore conclude that the anomalously low inertial frequencies at Q04 during the major event periods were due to a Doppler frequency shift of relatively high wavenumber, eastward propagating inertial waves by a persistent mean flow to the northwest. The persistent northward mean surface flow which characterized this region throughout the survey appears to represent a continuation of the seaward estuarine current that emanates from Queen Charlotte Strait in summer (Huggett et al, 1980).

The absence of persistent inertial oscillations of subinertial frequency at other moorings was probably due to longer wavelengths, weaker mean flows prior to the arrival of the wind events and/or propagation of means currents normal to the inertial waves. Moreover in certain locations (e.g. Q03), mean currents had a component in the direction of inertial wave propagation and would therefore give rise to a frequency slightly greater than f.

9. DISCUSSION AND SUMMARY

Intermittent near-surface currents of inertial frequency were common occurrences throughout the semi-enclosed sea off northwest British Columbia during the summer of 1977. Inertial oscillations also occurred within the seaward entrances of two large mainland channels and within 4-5 m of the bottom at depths of 155-330 m. The close correspondence between the onset of surface inertial currents and the passage of extratropical cyclones through or to the north of the region, confirms that winds, especially frontal winds, were the primary generation mechanism. Major inertial events, for example, were initiated by the arrival of $10-20 \text{ m s}^{-1}$ southeast winds that veered to the south or southwest and weakened following passage of the front (e.g. Figs. 5a,b). The largest amplitude and most widespread event of the observational period, the mid-June event, was generated by strong winds whose local veering rate of ~25°h⁻¹ during the first 12 h coincided with the veering rate of the inertial oscillations (period ∿15.4 h). These wind-generated events were not strictly "inertial" but, according to the phases of the complex demodulation (Section 5), varied as much as ±20% of the local inertial frequency (f ∿0.065 cph). At times of large amplitude oscillations, however, frequencies usually deviated less than half this amount.

Near-surface inertial oscillations within the exposed portions of the sea were clockwise-rotary and circular, consistent with a downward propagation of locally wind-generated inertial energy. Corresponding oscillations within Caamaño Sound and the seaward approach to Browning Entrance (Fig. 1) were also clockwise-rotary and coincident with major events at exposed locations. However, the motions were elliptical rather than circular (ellipticity > 1.50 versus < 1.10) which, together with the fact that major axes were parallel to the channel orientation, suggests that the side boundaries were a constraint on the rotating motions [radius of curvature $r = (u^2 + v^2)^{\frac{1}{2}}/f \approx 1 \text{ km}$ or that there had been leakage from adjacent frequency bands. Clockwise rotary, inertial frequency oscillations were also observed near the bottom at the more western moorings (Q03, Q05, Q07) but, as indicated in Figs. 4b,d, were highly elliptical (ellipticity > 1.15), less than 10% of the near-surface speeds, and not readily linked with wind events. This absence of significant or coherent inertial motions at the seafloor was presumably the result of frictional dissipation and dispersion due to spatial inhomogeneities in mean currents and density. According to Pollard (1980), for example, surface-generated inertial oscillations have downward group velocities of only $0.03 - 3 \text{ m day}^{-1}$ and therefore undergo marked vertical attenuation by dispersion and turbulent dissipation. Kundu's (1976) estimate of ~25 m day-1 for the vertical component of the group velocity would also have allowed for appreciable attenuation over the present depths. Moreover, any damped oscillations that did penetrate to the bottom were probably further subjected to boundary layer dissipation. Because of the low speeds of these deeper currents, we have concentrated mainly on observations from the near-surface current meters (depths < 25 m).

Except for Station Q04, peak high resolution spectra (bandwidth = 0.002 cph) for near-surface regions of significant inertial current activity were centered at 0.066 cph. The latter were approximately 3½% greater than the local inertial frequency at the outer moorings (QO3 and QO5) and equal to f at remaining locations. Peak spectra at Q04, on the other hand, were centred at 0.062 cph or about 6½% below f for both deployment periods. As shown in Section 8, the consistently subinertial frequencies at this location were likely due to a Doppler shift of comparatively short wavelength $(\sim 95 \text{ km})$ inertial oscillations propagating eastward in the presence of a northwest flowing mean current. The short wavelengths at QO4 appear to have resulted from a reduced transit speed for wind systems in southern Queen Charlotte Sound. Subinertial oscillations also occurred at other locations (e.g. Figs. 15 and 17) but, because of longer wavelengths and the nature of the local mean flows, did not persist as they did at QO4; Kundu (1976) also reported existence of short duration subinertial oscillations in records collected off the Oregon Coast but did not elaborate.

Near-surface inertial currents generated by a given storm usually persisted for 2-4 days (3-6 inertial periods) and had a typical duration of about $2\frac{1}{2}$ days. Inertial events that exceeded four days duration consisted of sequential wave groups generated by eastward traveling cyclones with peak winds spaced a few inertial cycles apart. The mid-June event, in which strong near-surface oscillations lasted more than 8 days at most exposed locations and 11 days at Q05, resulted from a sequence of four storms spaced at roughly 2.5 day intervals that followed similar tracks toward the coast (Fig. 21). In this case, quasi-resonant forcing occurred where the southeast winds

Figure 21. Six-hourly positions of low pressure centres and fronts associated with the four eastward traveling extratropical cyclones that generated the mid-June event in Queen Charlotte Sound - Hecate Strait. Start time for each sequence is in upper right corner; star denotes beginning of storm track sequence, and x's subsequent storm centres each 6 hours. (From Atmospheric Environment Service, Canada, surface analysis charts.)

leading each new storm were in-phase with the inertial current produced by the previous storm, with the exception in some locations of out-of-phase inertial currents generated by the fourth storm. The principal exception was at Station Q04 where inertial frequencies throughout the mid-June event were over 10% below f. Because of the alteration in frequency, the inertial current originating with the first storm was out-of-phase with the southeast winds of the second storm, and the oscillations subsequently damped. Similar results apply to the mid-August event.

Near-surface inertial currents for the mid-June and mid-August events were horizontally coherent to better than 95% confidence within the main portion of the sea, a longitudinal distance of more than 300 km (Table 3a). Such widely coherent inertial signals have not been previously reported and may have resulted from factors unique to the region. First, the structures of the wind fields generating the current did not change appreciably during advance over the sea and second the times between storms were such as to produce persistent motions with little disruption in phase or amplitude (except at Station QO4). This was also partly facilitated by passage of frontal regimes to the south of the mooring array (Fig. 21) thereby eliminating generation of secondary wave groups by the trailing arm of the frontal systems (e.g. Pollard, 1980). Moreover, inertial oscillations appeared to have been only marginally distorted by mean currents and inhomogeneities in water density. The exceptions were at CSO1, where the first storm of the mid-August event generated a relatively weak inertial current, and at Q04 where mean currents produced a Doppler frequency shift. Coherences between currents in exposed locations and Caamano Sound and Browning Entrance were below the 90% confidence limit and suggest that seaward flowing estuarine-type currents, density variations and boundary effects appreciably modified inertial oscillations within the channels.

The amplitudes of near-surface inertial currents generally decreased eastward and northward within the sea. For example, based on the high resolution spectra for the May-July deployment period, peak amplitudes varied from 11.0 cm s⁻¹ at Station Q05 to 3.5 cm s⁻¹ at Q08 and 2.4 cm s⁻¹ at H01 (Table 5); corresponding values for the July-September deployment varied from 4.0 cm s⁻¹ at Q03 to 1.8 cm s⁻¹ at H01. Analyses of the major event periods yielded similar results (e.g. Figs. 10a,b). According to the bandpass filtered data (Figs. 5a,b; 17a-c), the maximum inertial amplitude is estimated to be ~ 50 cm s⁻¹ and occurred at the outer mooring Q05 during the first few cycles of the mid-June event. However, when only the tidal harmonics are removed from this record (Fig. 6) the peak speed estimate is closer to 75 cm s⁻¹, although neither method can be expected to isolate the inertial current completely.

The delays in the start time of the near-surface inertial oscillations for the mid-June event approximately coincided with the estimated time for the leading winds of the first storm to traverse the sea (cf Figs. 14 and 18a). Over the main sectors of the sea, currents had horizontal phase speeds of 20-40 km h⁻¹ directed to the northeast whereas in the southeast sector of the mooring array phase speeds were around 5-6 km h⁻¹ and directed to the east. The respective wavelengths of 300-700 km and 85-95 km agree reasonably well with the relationship $\lambda = \text{S} \cdot \text{T}$, where S is the speed of the advancing wind field and T the inertial period, confirming that inertial currents were local transient responses to the winds.

First Peak inertial frequencies and amplitudes (peak spectra x bandwidth) $^{lac{1}{2}}$ for near-surface filtered currents based on high resolution spectra. Bandwidth = 0.002 cph, 4 degrees of freedom. number in each column is for first deployment period (May-July, 1977); bracketed value is second deployment period (July-September, 1977). Peak frequencies were less well-defined during second deployment period due to lower inertial energies. Station CS03 is omitted TABLE 5.

		Н02	990.0	0.5
		H01	0.068	2.4
		CS02	(0.070)	- (3 [)
		CS01	0.066	5.3
)		6008	0.066	3.5
	STATION	007	0.066	6.3
		905	0.066	11.0
		400	0.062	4.3
		003	0.066	6.6
			Peak frequency CPH	Peak amplitude cm s ⁻¹

The above results, combined with the observed attenuation of inertial signals toward the mainland coast, suggest that the topography of the land through modification of the winds strongly influenced the amplitudes of inertial oscillations. Not only were storm tracks altered near the coast but wind strengths diminished with dissipation of the landward moving frontal systems and winds near the eastern side were constrained to blow parallel to the coastline. The latter resulted in a west-to-east reduction in the degree of clockwise wind rotation and, in conjunction with diminished speeds, effectively reduced the wind's ability to generate inertial currents. Moreover, the apparent delay of the wind-forcing regime immediately north of Vancouver Island, which gave rise to the relatively small wavelengths at Q04, was presumably a topographic effect. Also in connection with wind-forcing, we note that the overall decrease from May to September in the amplitudes and frequencies of occurrence of inertial oscillations (Fig. 17) coincided with a reduction in the intensities and numbers of Pacific storms (Fig. 16). This suggests that it would be reasonable to expect considerably greater current amplitudes and durations in Queen Charlotte Sound and Hecate Strait during the winter as a result of enhanced storm activity in the northeast Pacific Ocean.

Finally, we have shown that the start times for major inertial events within the main region of the sea were accompanied by pronounced reductions in amplitude of the temperature and salinity fluctuations recorded by near-surface current meters. Qualitatively, this appears to reflect a deepening of the wind mixed layer from less than 7 m at Q05 to more than 24 m at Station Q04. In turn, the deepening probably was due to enhanced instability arising from vertical shears accompanying the vertically propagating inertial currents.

ACKNOWLEDGEMENTS

We wish to thank D. Ramsden for his considerable effort in analyzing much of the data, M. Woodward, A. Douglas and L. Kuwahara for assisting with the computations and B. Smith for aiding with the drafting. We gratefully acknowledge S. Yuen for use of his rotary-spectra programmes and the officers and crews of the CFAV *Endeavour* and CSS *Parizeau* for their cooperation during the field work. We also thank S. McKenzie for her excellent typing job and S. Thomson, W.R. Crawford and H. Freeland for expertly reviewing the manuscript.

REFERENCES

- Anderson, D.L.T. and A.E. Gill. 1979. Beta dispersion of inertial waves. J. Geophys. Res., 84, 1836-1842.
- Blumen, W. 1972. Geostrophic adjustment. Rev. Geophys. Space Phys., 10, 485-528.
- Falkner, D.A. 1981. The summer wind climate of an island off the coast of Vancouver Island, unpublished manuscript, Atmospheric Environment Service, 13 pp.
- Fu, L. 1980. Observations and models of inertial waves in the deep ocean. Ph.D. Thesis, Woods Hole Oceanographic Institution, WHO1-80-11, 202 pp.
- Godin, G. 1972. The Analysis of Tides. University of Toronto Press, 264 pp.
- Gonella, J. 1971. A local study of inertial oscillations in the upper layers of the ocean. Deep-Sea Res., 18, 775-788.
- . 1972. A rotary-component method for analysing meteorological and oceanographic vector time series. Deep-Sea Res., 19, 833-846.
- Huggett, W.S., R.E. Thomson, M.J. Woodward and A.N. Douglas. 1980.
 Johnstone Strait 1976, 1977, 1978. Data record of current
 observations Vol. VII, Institute of Ocean Sciences, Sidney, B.C.
 288 pp.
- Queen Charlotte Sound Hecate Strait, May-September 1977.

 Data record of current observations Vol. XVIII, Institute of Ocean Sciences, Sidney, B.C., 197 pp.
- Kroll, J. 1975. The propagation of wind-generated inertial oscillations from the surface into the deep ocean. J. Mar. Res., 33, 15-51.
- Kundu, P.K. 1976. An analysis of inertial oscillations observed near Oregon coast. J. Phys. Oceanogr., 6, 879-893.
- Leaman, K.D. and T.B. Sanford. 1975. Vertical energy propagation of inertial waves: a vector spectral analysis of velocity profiles.

 J. Geophys. Res., 80, 1975-1978.
- Mooers, C.N.K. 1973. A technique for the cross spectrum analysis of pairs of complex-valued time series, with emphasis on properties of polarized components and rotational invariants. Deep-Sea Res., 20, 1129-1141.
- Munk, W. and N. Phillips. 1968. Coherence and band structure of inertial motion in the sea. Rev. Geophys., 6, 447-471.

- Pollard, R.T. 1970. On the generation by winds of inertial waves in the ocean. Deep-Sea Res., 17, 795-812.
- . 1980. Properties of near-surface inertial oscillations.

 J. Phys. Oceanogr., 10, 385-398.
- Tang, C. 1979. Inertial waves in the Gulf of St. Lawrence. A study of geostrophic adjustment. Atmosphere-Ocean, 2, 135-156.
- Thomson, R.E. and K. Chow. 1980. Butterworth and Lanczos-window cosine digital filters: with application to data processing on the Univac 1106 computer. Pacific Marine Science Report 80-9, 60 pp.
- Thomson, R.E., W.S. Huggett and L.S.C. Kuwahara. 1981. Queen Charlotte Sound and Hecate Strait; Part 1 - Water property observations May, July, September 1977. Data record of current observations Vol. XVII, Institute of Ocean Sciences, Sidney, B.C., 195 pp.
- Sound and Hecate Strait; Part 2 Appendices of water property observations May, July, September 1977. Data record of current observations Vol. XVII, Institute of Ocean Sciences, Sidney, B.C., 109 pp.
- Webster, F. 1968. Observations of inertial-period motions in the deep sea. Rev. Geophys., 6, 473-490.
- White, W. 1972. Doppler shift in the frequency of inertial waves observed in moored spectra. Deep-Sea Res., 19, 595-600.

THE EFFECTS OF COPPER AND COPPER PLUS GLUCOSE ON AN ENCLOSED MARINE ECOSYSTEM

F.A. Whitney, C.L. Philpott, H. Seki and C.S. Wong

INSTITUTE OF OCEAN SCIENCES Sidney, B.C.

For additional copies or further information please write to:

Department of Fisheries and Oceans
Institute of Ocean Sciences

P.O. Box 6000

Sidney, B.C.

CANADA

V8L 4B2

THE EFFECTS OF COPPER AND COPPER PLUS GLUCOSE ON AN ENCLOSED MARINE ECOSYSTEM

by

F.A. Whitney, C.L. Philpott, H. Seki and C.S. Wong

Institute of Ocean Sciences
Sidney, B.C.
1981

TABLE OF CONTENTS

Introduction	page	2
Acknowledgements	10.	3
Methods		4
Results		6
Discussion		8
References		10
Tables		11
Figures		57

INTRODUCTION

Past experiments in Controlled Experimental Ecosystems (CEEs) have looked at the impact of copper (Menzel, 1977) or of carbohydrate (Parsons et al, 1980-1) individually on marine organisms. These perturbations invariably stress some component of the food chain, causing either species shifts or suppression of a trophic level. A more realistic contaminant influx may be simulated by adding a mixture of organics, metals and/or pesticides - a condition more representative of input from sewage outfalls.

An experiment was designed in which a metal and an organic would jointly impact an ecosystem. Copper $(8 \, \mu g \cdot L^{-1})$ and glucose $(4 \, mg \cdot L^{-1})$ were added to a CEE, while a control and a copper treated enclosure were employed to help resolve the effects of the contaminants. The three CEEs were sampled daily for 12 days, with particular emphasis being given to the uptake of organic substrates by microorganisms. Sampling was frequent enough to give good detail of the population dynamics of bacteria under the pollutant stresses.

The impact of the glucose and copper additions was clearly demonstrated in the phytoplankton-copepod-carnivorous jelly food chain.

ACKNOWLEDGEMENT

The reliable work of K. Perry and B. Emerson both in the field and in the lab enabled us to maintain a hectic twice daily sampling routine which allowed the detail that this study has provided.

METHODS

Three ½ scale CEEs, having a volume of 68 m³ (Menzel and Case, 1977), were launched on July 5, 1981. The percentages of water captured by the launch were: control (bag B) - 82%, Cu treated (bag C) - 97%, and Cu+DOC (bag D) - 90%. The bags were filled to capacity by pumping water from 18 m onto the surface of the three enclosures, simultaneously. Sampling began the day after the CEEs were filled, with 9AM and 3PM samples being taken daily for heterotrophic parameters. Most other observations were made daily, each morning. The contaminants were added after the first samples were taken on Day 1 (July 6, 1981).

Pump samples were taken with a peristaltic pump from 0-5 m, 5-10 m and 10-13 m intervals for chlorophyll \underline{a} , \underline{b} & \underline{c} , ${}^{14}\text{CO}_2$ uptake, phytoplankton, carbohydrate, copper, particulate organic carbon and nitrogen, and nutrients. Niskin bottle samples were taken at 1 and 12 m for bacterial analyses and at 1, 2.5, 7.5 and 12 m for O_2 . Sediments were removed from the bottom of each CEE and subsampled for POC/N. Salinity and temperature were measured with an Applied Microsystems CTD. Zooplankton tows were made three times each week from 13 to 0 m with a 30 cm diameter, 202 μ m mesh net.

Chlorophylls were measured by the procedure of Humphrey (1975). $^{\rm CO}_2$ uptake was measured by inoculating 125 mL bottles (2 light and 1 dark) with 2.5 μ Ci NaH 14 CO $_3$ and incubating in situ for 4 h, using a time zero inoculation as a blank. Samples were filtered onto Millipore HA filters and counted in Aquasol (NEN) using a Beckman LS 3133 liquid scintillation counter (Strickland and Parsons, 1972).

Phytoplankton samples were mixed from the three intervals and counted as a 0-13 m sample. The samples were Lugols preserved and counted on an inverted microscope. In Table 7, "other" diatoms refer to rare species, including Leptocylindrus danicus and Rhizosolenia sp.

Zooplankton were formalin preserved and identified usually to genus. POC/N samples were filtered onto pre-combusted glass fiber filters (Whatman GF/C), dried and combusted at 750° C in a Perkin-Elmer model 240 CHN analyzer.

Oxygen titrations were performed by the micro-Winkler procedure (Strickland and Parsons, 1972).

Nutrients were analyzed on a Technicon auto-analyzer, using modified Technicon procedures. Samples were not frozen immediately, but always within 3 h.

Procedures for microbial uptake rates, bacterial counts and ATP measurements are referenced in Seki et al (1975). Michaelis-Menten kinetics can be used to describe the uptake of organics by microorganisms as follows:

 $V_{t} = \frac{S_{n} \times V}{K_{t} + S_{n}}$

where V_t is the <u>in situ</u> uptake rate, V is the maximum rate of uptake, S_n is the concentration of the substrate and K_t is the substrate concentration at V_t . Turnover times (T_t) of the natural substrate concentration (S_n) is determined by adding small amounts of V_t labelled substrates and measuring the fraction (f) that is remineralized in the incubation period V_t , such that $V_t = V_t$. The use of turnover time alone as an indicator of bacterial activity is subject to the errors of changing bacterial biomass and V_t . However, the bacterial population changes only accentuate the trends observed in turnover times and is therefore a suitable parameter for comparing bacterial activity under the various conditions created in this study.

Total and dissolved copper were measured by the procedure of Danielsson et al (1978). Dissolved copper was analyzed as that which passed through a 0.4 μm filter.

Carbohydrate analyses were done by the method outlined in Strickland and Parsons (1972).

RESULTS

Sampling began the day after the CEEs were filled. Initially, the three enclosures were quite similar, having nitrate-nitrite levels of $5.5 \pm 0.4~\mu\text{M}$ and chlorophyll a concentrations of $4.0 \pm 0.6~\text{mg L}^{-1}$ from 0-13 m. Calanoid copepods numbered $10,400 \pm 560~\text{m}^{-3}$ on Day 1. Following the initial sampling, additions of ca 8 μg Cu L to the Cu bag and 8 μg Cu L and 4 μg glucose L to the Cu+DOC bag were made from 0-13 m. Sampling on Day 3 shows distinct decreases in primary production (Fig. 3), ciliates (Fig. 4), calanoid copepods (Fig. 5) and carnivorous jellies (Fig. 6) in both Cu treated containers, compared with the control.

The three bags continued to diverge with time. The control bag maintained a low phytoplankton biomass (Fig. 4) whilst producing substantial copepod and ciliate populations. Nutrient levels decreased gradually (Fig. 1). It appears that the grazing zooplankton effectively controlled the algae and also stimulated carnivore growth. Larvaceans, which have been shown to be bacteria grazers (King et al, 1980), bloomed in the control bag (Fig. 6).

The copper treated bag produced a centric diatom bloom (Table 7) which depleted the nitrate-nitrite supply by Day 9. Noctiluca sp. growth coincided with the diatom pulse in both Cu treated bags (Fig. 6). Photosynthetic nanoflagellates produced a bloom of 22,000 cells mL^{-1} in the Cu bag and 61,000 cells mL^{-1} in the Cu+DOC bag following the diatom growth.

The Cu+DOC container responded to the addition of glucose by producing a bacterial bloom which reached 48×10^6 cells mL⁻¹ at 12 m by Day 4. Nitrate-nitrite was rapidly utilized, as was the added glucose (Table 12). Bacteria numbers decreased to 10×10^6 cells mL⁻¹ the day after the carbohydrate level had reached background concentrations. The turnover times (T_t) of glutamic acid, glycollic acid and galactose increased for the 2 days following the copper spike, with the glucose addition accentuating this effect. For example, glutamic acid consistently had turnover times of between 100 and 400 h in the control. In the Cu+DOC stressed communities, glutamic acid turnover times fluctuated from over 1000 h shortly after the addition of Cu, to less than 20 h when the bacterial population had recovered.

Sedimented materials were removed daily from the bottom of each bag. Throughout the 12 day study, the control bag produced less sediment with higher C:N ratios than the Cu treated enclosures (Fig. 7). By Day 12, 19.7 and 18.5 g carbon had settled out of the Cu and the Cu+DOC bags, whereas the control produced only 8.1 g C (area of a CEE = 4.9 m^2).

DISCUSSION

The copper and copper plus glucose addtions established distinctly different populations in the enclosures. The control bag had a healthy population of copepods and ciliates which were able to limit algal growth. Throughout the study, nutrients were never limiting. Primary production per unit chlorophyll was continually higher in the control than in either Cu treated container. In response to the high secondary production of copepods (exceeding 11,000 m $^{-3}$), a steady increase in carnivorous zooplankton was observed.

The Cu additions had a fatal impact on the grazing zooplankton. In the Cu bag, this allowed centric diatoms to bloom, resulting in nitratenitrite depletion.

The addition of glucose in the third container stimulated bacterial growth, causing rapid nutrient depletion and a bacterial bloom on Day 4. Bacterial biomass accounted for 0.9 mg C·L⁻¹ (factors of Watson et al, 1977), which equals 60% of the carbon added as glucose. The removal of inorganic nitrogen sources must have limited diatom growth. Subsequently, a nanoflagellate bloom reached 61,000 cells·mL⁻¹, an order of magnitude higher than any commonly found in Saanich Inlet (Takahashi et al, 1977; Whitney and Takahashi, in prep.).

It is not obvious why nanoflagellates bloomed so strongly, but reduced grazing pressure must have permitted the high growth rates of 1.6 doublings d⁻¹ between Days 3 and 5 (growth rate, u, from Parsons et al, 1977). Lysis of bacterial cells could have provided nutrients for this bloom. The rapid growth rate of the bacterial population in the Cu+DOC bag (3.2 doublings d⁻¹) permitted the bacteria to out-compete phytoplankton for the nutrient supply.

In an experiment which studied the effects of pentachlorophenol on marine organisms (Whitney et al, 1980), changes in algal species and in primary production rates were the more obvious results of the pollutant stress. In that study, a 30% reduction in settled material was the result of the pollutant impact. The copper stress, however, produced a distinctly different effect in the ecosystem, with major changes being observed in secondary and tertiary production. The net effect was one of increased sedimentation caused by a lack of grazing.

Quantifying the effect of a pollutant is obviously not a simple matter. To make the judgement that one species is more desirable than another is too subjective. Physiological indicators of the health of an organism have value, but are difficult to translate into a concept of overall impact. The comparison between clean and polluted ecosystems must provide the desirable approach to assessment of pollutant impact. This approach suffers from being descriptive. Perhaps a comparison between the success of various trophic levels in treated and untreated systems is as bold a quantification as can be made. This type of comparison would lead to the suggestion that, at least in the simple ecosystem enclosed by a CEE, the effects of copper are more devastating at moderate levels than are the effects of pentachlorophenol at high levels. This is realized in the success of the herbivorous and carnivorous zooplankton under the stress of PCP, whereas these organisms failed to survive the impact of copper.

REFERENCES

- Danielsson, L-G., B. Magnusson and S. Westerlund. 1978. An improved metal extraction procedure for the determination of trace metals in sea water by atomic absorption spectrometry with electrothermal atomization. Anal. Chim. Acta, 98, 47-57.
- Humphrey, G.F.. 1975-76. The concentration of phytoplankton pigments in Australian waters. CSIRO Marine Biochemistry Unit, Annual Report.
- King, K.R., J.T. Hollibaugh and F. Azam. 1980. Predator-prey interactions between the larvacean <u>Oikopleura dioica</u> and bacterioplankton in enclosed water columns. Mar. Bio. 56, 49-57.
- Menzel, D.W. and J. Case. 1977. Concept and design: controlled ecosystem pollution experiment. Bull. Mar. Sci. 27(1), 1-7.
- Menzel, D.W. 1977. Summary of experimental results: controlled ecosystem pollution experiment. Bull. Mar. Sci. 27(1), 142-145.
- Parsons, T.R., M. Takahashi and B. Hargrave. 1977. Biological Oceanographic Processes, 2nd edition. Pergamon Press.
- Parsons, T.R., L.J. Albright, F. Whitney, C.S. Wong and P.J.Le B. Williams. 1980-1. The effect of glucose on the productivity of seawater: an experimental approach using controlled aquatic ecosystems. Mar. Env. Res. 4, 229-242.
- Seki, H., Y. Yamaguchi and S. Ichimura. 1975. Turnover rate of dissolved organic materials ia a coastal region of Japan at summer stagnation period of 1974. Arch. Hydrobiol. 75, 297-305.
- Strickland, J.D.H. and T.R. Parsons. 1972. A practical handbook of seawater analysis. Fish. Res. Bd. Canada, Bull. 167.
- Takahashi, M., D.L. Seibert and W.H. Thomas. 1977. Occasional blooms of phytoplankton during summer in Saanich Inlet, B.C., Canada. Deep Sea Res. 24, 775-780.
- Watson, S.W., T.J. Novitsky, H.L. Quinby and F.W. Valois. 1977. Determination of bacterial number and biomass in the marine environment. Appl. Env. Microbiol., 940-946.
- Whitney, F.A., K. Perry, C. Philpott, A. Ramey and C.S. Wong. 1981.

 Pentachlorophenol in a pelagic marine ecosystem: effects on the ecosystem.

 Pac. Mar. Sci. Rep. 81-3.
- Whitney, F.A. and M. Takahashi. A pre-spring bloom of nanoflagellates in Saanich Inlet, British Columbia. submitted to J. Plank. Res.

TABLES

- 1. Nutrients: a) Nitrate & Nitrite
 - b) Phosphate
 - c) Silicate
- 2. Oxygen
- 3. Temperature and salinity
- 4. Copper, dissolved and total
- 5. Chlorophyll a, b and c
- 6a. Primary Productivity (mg C m $^{-3}$ h $^{-1}$)
- b. Primary Productivity per unit Chlorophyll a
- 7. Phytoplankton
- 8. Zooplankton
- 9. Particulate Organic Carbon and Nitrogen
- 10. Sedimented Material
- 11. ATP
- 12. Carbohydrate, dissolved
- 13. Total Bacteria
- 14. Uptake Kinetics of Organic Substrates by Microorganisms, 24 pp.

TABLE la NITRATE & NITRITE (1.M.)

						DAY	X					
SAMPLE	Н	2	3	4	5	9	7	₩	6	10	11	12
B 0-5	3.8	3.0	2.4	1.3	H.3	0.5	0.0	0.3	0.2	0.0	0.1	0.0
5-10	6.9	4.7	3.9	3.2	2.6	1.8	1.7	1.2	L. L	1.1	0.8	0.7
10-13	7.7	7.0	8.9	6.2	5.7	5.5	6.4	6.4	3.5	8	2.7	2.2
	2.5	П.3	7.0	0.2	0.0	0.1	0.3	0.0	0.0	0.0	0.0	0.0
5-10	5.9	6.4	2.9	2.0	9.0	0.2	1.7	0.0	0.0	0.0	0.0	0.0
	7.9	7.6	7.0	8.9	5.2	4.1	1.7	9.0	0.1	0.0	0.0	0.0
D 0-5	2.4	1.9	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5-10	7.0	9.4	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0
10-13	9.2	7.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

TABLE 1b
PHOSPHATE (µM)

						DAY						
SAMPLE		2	~	4	25	9	7	₩	6	10		12
B 0-5	0.93	0,80	0.83	0.74	0.76	0.70	0.47	69.0	0.71	0.68	0.56	0.65
5-10	1.13	1.03	0.95	0.95	0.89	78.0	1.16	0.82	0.79	0.78	1.24	0.92
10-13	1.52	1.28	1.33	1.29	1.18	1.23	0.83	1.21	1.06	1.06	1.12	0.38
C 0-5	0.81	0.73	0.71	0.55	0.52	0.54	0.76	0,40	0.37	0.45	0.36	0.43
5-10	1.37	1.09	0.87	0.81	0.69	0.56	0.54	0.91	0.47	0.48	0.43	0.35
10-13	1.45	1.36	1.29	1,31	1.15	1.16	0.95	0.80	0.77	0.68	99.0	0.31
D 0-5	0.77	0.86	0.53	0.48	0.41	0.54	0.39	0.33	0.27	0.27	0.25	0.26
5-10	1.17	1.05	0,40	0.37	0.35	0.38	0.37	0.41	0.31	0.32	0.29	0.50
10-13	1.43	1.37	0.53	0.45	0.52	0.71	0.78	0.78	0.65	09.0	0.61	0.56

TABLE 1c SILICATE (µM)

					DAY						
	2	ω	4	2	9	7	₩	6	10	11	12
16.9	16.5	15.8	15.1	15.1	15.3	13.2	18.0	16.3	16.1	14.0	16.0
24.0	18.1	16.9	16.7	16.0	15.7	18.3	15.7	17.7	18.4	17.2	14.1
22.4	21.5	20.6	20.1	19.4	19.4	19.2	22.6	19.5	19.5	17.4	17.9
17.3	15.8	14.6	13.7	15.1	13.7	15.5	14.7	15.2	13.5	14.4	17.1
20°1	19.4	18.3	16.0	13.9	17.6	15.9	12.9	14.7	15.1	13.7	15.5
23.3	22.9	21.7	22.4	18.0	16.9	15.2	14.0	14.5	16.5	16.9	19.6
15.7	16.0	16.2	16.7	16.0	16.7	15.1	13.6	16.1	18.6	19.2	19.0
25.1	19.0	16.0	17.4	16.9	19.2	16.6	18,2	16.5	16.7	19.2	19.2
27.4	22.9	23.1	21.2	20.8	22.3	23.5	21.2	18.1	17.9	12.8	21.0

TABLE 2 OXYGEN (mL 0_2 ·L⁻¹)

						DAY						
AMPLE	Н	2	~	7	5	9	7	₩	6	10	11	12
1	7,008	6.957	6.936	7.282	7,112	7.547	7.908	7.682	7.654	7.983	7.650	7.487
200	7.020	6.971	766.9	7.263	7.489	7.562	7.974	7.728	7.634	7.948	7.791	7.648
7.5	6.756	6.711	6.818	879.9	006.9	6.933	7.020	006.9	6.894	7.136	7.134	7.212
12	6.231	6.237	6.237	6.240	6.189	6.093	970.9	6.073	6.144	6.205	6.174	6.221
	7.202	7,308	7.495	7.821	7.643	7.792	8.194	8.075	8.133	8.858	8.812	8.370
2.2	7.239	7.314	7.517	7.820	7,740	7.817	8,312	8.259	8:264	8.963	8.797	8.518
7-5	679°9	7799	7.261	7.294	7,791	7.962	7.997	7.925	7.685	7.901	8,161	8.133
12	6.124	6.270	6.321	6.403	6.457	6.605	6.740	968.99	982.9	6.836	6.858	6.928
0 1	7.136	7.136	7.027	7.113	074.9	6.747	796.9	7.355	7.642	8.156	8.129	7.853
2.5	7.132	7.143	7.067	7.090	6.818	6.734	7.024	7.519	7.676	8.197	8.197	7.967
7.5	6.594	6.744	6.805	6.447	6.403	6.164	6,138	6°576	6.123	6.579	7.091	6.884
12	6,168	6.273	5.634	5.196	4.751	4.549	4.334 4.323	4.323	4.343	4.340	4.389	4.607

TABLE 3
TEMPERATURE & SALINITY

		Ba	g B	Ba	g C	Ba,	g D
DAY	DEPTH (m)	t(°C)	s(°/00)	t(°C)	s(°/00)	t(°C)	s(°/00)
*1	1		28.4		28.3		28.3
	12		28.8		28.3		28.8
*3	1 12		28.5		28.5 28.7		28.4 28.8
4	0	15.8	28.6	16.2	28.1	15.9	28.2
	1 2.5	15.4	28.5	15.5	28.4	15.4	28.4
	2.5	14.9	28.5	15.0	28.5	15.2	28.4
	5 7.5	13.4	28.5	13.8	28.4	13.8	28.4
	10	12.8	28.4 28.5	12.9 12.3	28.5 28.6	13.0 12.3	28.2
	12	11.9	28.6	12.0	28.3	12.0	28.5 28.5
5	0	15.0	28.4	15.1	28.4	15.2	28.4
	1	14.8	28.5	14.9	28.4	14.8	28.4
	2.5	14.7	28.5	14.8	28.4	14.7	28.3
	5	14.2	28.4	14.1	28.4	14.0	28.4
	7.5 10	13.0 12.6	28.5 28.6	13.0	28.5	13.0	28.3
	12	12.4	28.6	12.7 12.5	28.6 28.6	12.6 12.4	28.6 28.5
6	0	15.0	28.4	15.1	28.4	15.2	28.3
	1	14.9	28.5	15.0	28.4	15.1	28.3
	1 2.5	14.8	28.5	14.9	28.4	15.0	28.3
	5	14.3	28.5	14.5	28.4	14.5	28.4
	7.5	13.5	28.4	13.4	28.4	13.4	28.3
	10 12	12.9	28.5	13.0	28.3	12.9	28.5
7	0	15.5	28.6 28.6	12.8 15.7	28.6	12.7 15.7	28.5 28.5
	i	15.2	28.5	15.3	28.5	15.3	28.4
	1 2.5	14.9	28.5	15.0	28.5	15.1	28.3
	5	14.6	28.5	14.6	28.5	14.6	28.4
	7.5	13.9	28.6	14.0	28.4	13.9	28.3
	10	13.1	28.5	13.4	28.5	13.2	28.5
8	12	12.9	28.5	12.9 15.5	28.6	12.9 15.6	28.6 28.2
	i	15.3	28.2	15.5	28.3	15.5	28.2
	2.5	15.2	28.2	15.3	28.3	15.3	28.2
	5	15.0	28.2	14.6	28.3	14.6	28.2
	7.5	13.8	28.4	13.8	28.4	13.8	28.3
	10	13.2	28.4	13.3	28.4	13.3	28.5
9	12	13.0	28.3	13.0 15.8	28.5	13.1 15.8	28.4
	1	15.7	28.5	15.7	28.4	15.7	28.3
	2.5	15.6	28.5	15.6	28.4	15.6	28.3
	5	15.6	28.4	15.4	28.4	15.5	28.4
	7.5	14.8	28.7	14.9	28.5	15.0	28.5
	10	13.7	28.5	13.8	28.5	14.0	28.4
	12	13.2	28.6	13.3	28.6	13.4	28.5

		Bag	В	Bag	C	Bag	D
DAY	DEPTH	t(°C)	s(⁰ /00)	t(°C)	s(⁰ /00)	t(°C)	s(°/00)
12	0 1 2.5 5 7.5 10 12 0 1 2.5 5 7.5	16.9 15.7 14.3 13.6 13.2 12.8 12.5 15.5 14.7 13.9 13.3 12.9 12.5	28.5 28.1 28.4 28.5 28.4 28.5 28.4 28.5 28.4 28.4 28.3 28.4 28.3 28.4	18.9 15.8 14.5 13.8 13.3 12.8 12.4 15.0 14.7 14.3 13.4 13.0 12.6 12.4	28.5 28.1 28.3 28.5 28.4 28.5 28.6 28.5 28.4 28.4 28.4 28.4	18.9 16.5 15.3 13.7 13.2 12.9 12.6 15.4 14.8 14.4 13.3 13.0 12.6 12.3	28.6 28.6 28.3 28.3 28.4 28.4 28.4 28.4 28.3 28.3 28.3 28.3 28.3

^{*} Salinities on Days 1 and 3 were analyzed on a Guildline Autosal.

COPPER ($\mu g \cdot L^{-1}$) TABLE 4

	T				 			
12	Q	6.2	5.8	6.3	0.9	6.1	5.6	
DAY	E-1	7.1	9.9	7.1	6.5	7.3	6.8	
DAY 10	D	5.2	5.2	4.8	4.3	4.7	4.6	
DAT	H	6.5	4.9	6.5	5.8	0.9	4.9	
₩	Q	5.9	0.9	5.1	5.2	5.3	5.1	
DAY	E-1	7.1	7.3	7.4	8,2	5.9	6.9	
DAY 5	А	7.8	7.3	7.9	7.4	7.4	6.5	
DAY	H	0.8	7.3	0.	7.5	7.7	7.0	
Y 3	D	7.9	₩ 1.	₩ 7	° 50	7.6	(7.5)	
DAY	T	8.4	4.8	8	0.6	7.9	7.3	
DAY 2	D	8.9	0 0	0.6	8.1	8,1	0 8	
DA	€-1	7.6	0 0	0.6	8.7	8.3	0°0	
	SAMPLE	c 0-5	5-10	10-13	D 0-5	5-10	10-13	

D= dissolved, after removing particulates > 0.4 μm T = total

TABLE 5

CHLOROPHYLL a, b & c (mg·m⁻³)

DAY / DEDTU		В			C			D	
DAY/ DEPTH				0	b	c	a	ъ	С
	a 	Ъ	С	a	U		a		
1/ ₀₋₅	2.82	2.04	0.99	4.26	3.37	1.47	3.18	2.54	0.93
5-10	3.16	2.40	0.90	4.53	3.66	1.66	4.15	3.39	1.36
10-13	4.26	3.37	1.39	5.01	4.07	1.73	5.45	4.50	2.00
2/ ₀₋₅	3.46	2.83	0.63	5.06	4.36	1.58	3.11	2.51	0.85
5-10	2.41	1.72	0.49	4.29	3.45	1.45	3.01	2.47	0.83
10-13	2.41	1.66	0.43	4.01	3.21	1.23	5.27	4.49	1.88
3/ 0-5	4.31	3.67	1.24	5.81	5.05	1.99	4.51	3.94	1.35
5-10	2.95	2.26	0.75	6.78	5.90	2.42	4.07	3.48	1.30
10-13	3.39	2.70	0.94	6.44	5.51	2.24	6.60	5.75	2.49
4/ 0-5 5-10 10-13	1.41 3.94 0.43	3.24 0.57	1.20 0.75	3.49 9.57 5.88	3.36 8.77 5.16	1.03 3.26 2.47	3.23 3.18 4.49	2.87 2.66 3.66	0.98 0.89 1.51
5/ 0-5	2.13	1.90	0.48	2.88	2.65	0.88	2.35	1.98	0.66
5-10	3.91	3.10	1.24	12.20	11.17	5.36	2.76	2.28	0.90
10-13	2.99	2.14	0.87	15.60	14.12	6.92	5.10	4.35	1.88
6/ 0-5	1.42	1.21	0.22	4.49	4.23	1.45	2.35	1.91	0.76
5-10	2.51	1.73	0.79	5.97	5.47	2.32	2.46	1.95	0.85
10-13	4.08	3.30	1.29	21.24	19.03	9.48	5.43	4.79	2.11
7/ 0-5	2.45	2.06	0.46	3.78	3.35	1.26	4.32	3.91	1.94
5-10	2.13	1.52	0.47	4.43	3.98	1.73	4.10	3.51	1.80
10-13	3.60	2.84	1.09	16.96	15.58	7.47	4.07	3.34	1.49
8/ 0-5	2.27	2.09	0.46	3.99	3.45	1.29	7.61	6.99	3.00
5-10	2.13	1.47		5.23	4.56	2.20	5.04	4.16	2.21
10-13	2.13	1.46		10.24	9.38	4.68	5.04	4.18	1.99
9/ 0-5	3.36	3.52	0.80	10.01 6.01 10.97	8.65	3.93	9.73	8.48	4.26
5-10	1.88	1.42	0.36		5.26	2.69	9.53	8.09	4.69
10-13	1.96	1.32	0.42		9.97	5.26	7.48	6.27	3.28
10/ 0-5	3.23	3.31	0.97	6.01	5.31	2.25	5.46	4.93	2.14
5-10	1.16	0.66	0.12	4.20	3.58	1.59	6.42	5.68	2.95
10-13	1.03	0.47	0.15	7.75	7.00	3.47	10.56	9.53	5.21

DAY/ DEPTH		В			С			D	
	a	Ъ	С	a	Ъ	С	a	ъ	С
0-5	2.39	2.34	0.48	2.36	1.86	0.63	3.89	3.38	1.50
5-10	1.60	1.17	0.29	2.90	2.35	0.92	3.75	3.24	1.57
10-13	0.85	0.39	0.12	5.54	4.83	2.27	12.65	11.33	6.50
12/ 0-5	2.96	3.09	0.68	1.33	0.91	0.30	2.08	1.54	0.66
5-10	2.12	1.63	0.57	1.85	1.33	0.45	2.39	1.79	0.88
10-13	1.10	0.57	0.13	3.79	3.22	1.38	9.84	8.77	5.05

TABLE 6a

PRIMARY PRODUCTIVITY (mg C·m⁻³·h⁻¹)

LIGHT AND DARK UPTAKE CO2

DAY / DEPTH	LIGHT	B DARK	LIGHT	C DARK	D LIGHT	DARK
1/ 0-5	3.33	16.40	20.34	16.71	14.82	6.36
5-10	14.05	13.22	8.20	12.91	14.99	16.44
10-13	4.26	5.06	0.14	13.56	10.26	4.00
3/ 0-5	11.43	22.88	4.85	31.46	3.35	24.33
5-10	1.23	21.91	3.37	20.66	0.77	14.98
10-13	0.41	23.12	*	29.02	*	14.89
5/ 0-5 5-10 10-13	9.01 6.13 1.86	Ī	9.73 11.89 3.55	0.57 0.64 0.13	5.96 2.21 1.12	-
8/ 0-5	11.13	1.35	7.65	1.77	18.81	0.59
5-10	2.24	1.18	2.63	1.55	3.36	0.98
10-13	2.27	0.63	0.59	1.74	1.38	0.42
10/ 0-5 5-10 10-13	15.71 3.49 0.76	0.04 0.65 0.34	8.73 4.46 2.51	0.58 0.26	9.99 6.23 1.09	0.04
12/ ₀₋₅	15.16	0.20	4.28	0.33	5.15	0.21
5-10	5.54	0.27	2.45	0.36	3.00	0.42
10-13	0.58	0.09	1.38	0.04	1.63	0.26

^{*} dark uptake greater than light uptake
- zero control greater than dark bottle

TABLE 6b

PRIMARY PRODUCTIVITY
mg C(mg chla)-1.m-3.h-1

DAY/ DEPTH	В	С	D
1/ 0-5	1.18	4.80	4.66
5-10	4.45	1.81	3.61
10-13	1.00	1.01	1.88
3/ 0-5	2.65	0.83	0.74
5-10	2.40	0.50	0.19
10-13	0.12	*	*
5/ 0-5	4.23	3.38	2.54
5-10	1.57	0.97	0.80
10-13	0.62	0.23	0.22
8/ 0-5	4.90	1.92	2.47
5-10	1.05	0.50	0.67
10-13	1.07	0.06	0.27
10/ 0-5	4.86	1.45	1.83
5-10	3.01	1.05	0.97
10-13	0.74	0.32	0.10
12/ ₀₋₅	5.10	3.22	2.48
5-10	2.61	1.32	1.26
10-13	0.53	0.36	0.17

*dark uptake greater than light uptake

		1																				
	12	D		1	7		2		7	7					7				2		26	40
	DAY	0		5	6	2			1	14					l				1		31	99
0-13m		B		ı	1				ı	l					1				1	4	0	21
-0	10	D		7	5				1	2			Į		2			7			19	43
	DAY 1	0		12	5	7	6		7	24			6		ł			1			69	59
		B		1	1		4		1	1			1		ı			1			4	98
	~l	D		28	12		2		ı	35	7		1		7		I	I			88	38
	DAY 8	O		19	19	7			6	79	17		28		1		7	4			170	24
mL^{-1}	-1	В		1	- 1				I	I	1		1		1		1	2			2	258
PHYTOPLANKTON (cells	اء	Q		104	14	2	7		6	73	ı		I		5		1	5	1	7	230	14
O) NO	DAY 5	O		78	74	37	09		ı	279	15		153		11		7	1	4	1	733	19
ANKT(B		1	0		6		1	14	6		1		7		ı	2	1	1	99	116
TOPL	3	D		173	31	7			6	118	1		12	1	2			7		14	277	19
PHY	DAY	O		196	43	19	6		5	137	14		14	1	2			I		12	452	19
	ΗI	B		163			7		ı	24	-1		26	14	2			1		ı	246	45
	.l	Ω		18	2	2	-		-	25	ı		ı	3	-		Н	4	1		59	17
	DAY 1	O		70	10) E	2		7	57	2		1	19	7		4	7	2		94 173	12
		B		23	I		∞		22	14	1		7	11	2		5	I	ı		94	7
LE 7			Chockockockockockockockockockockockockocko	/-151m	16-251m	26-35 um	single cells	Thalassiosira spp.	5-20µm	21-40µm	41-60µm	Skeletonema costatum	3-10µm	11-20µm	Biddulphia spp.	Coscinodiscus spp.	<50 µm	>50µm	Ditylum brightwellii	others (rare)	Total Centrics	Ciliates
TABLE			, t	OIIO			S	The				Ske			Bi	Co	•		Di	ot	To	Ci

	21	_		38				~	2			40		81	43	124			23300	400	161	(
	DAY 12	C		102			7	28		17	7	163		33	97	130			8610	654	436	1
		В		523		2	6	2		19		547		161	99	225			4910	200	0	C F L
0-13m		D		43			7	24				73		28	96	124			57500	3120	089	
	DAY 10	O		116			7	24		2		147		12	85	97			16800 5	1650	290	
	D	В		126								126		112	45	157			2530 1	410	0	0,00
		D	-	92		7	2	14		-		116	 	27	12	39	eller et djennyd <u>d</u> e		39700	4530	805	
-1)	DAY 8	U		220		17	19		2	5	7	263		12	24	36			17600 3	3440	1420	22500 75000
PHYTOPLANKTON (cells mL ⁻ 1)		В		79			2	2		7	38	109		72	72	144			1642 1	0	0	167.0
[(ce1		Q		80		17	26	7.				128	 	48	97	145			5701	245		507.6
NKTON	X 5	O		135			22	4			٨	167		37	19	56			9352	570		0000
TOPLA	DAY	В		55			5				10	59		32	81	113			902 9	145		10/17
РНҮ				62		0	2	5			6	08	 ************	22	22	44			483	180		663
	N 3	0		64		5	26	6			12	102		44	22	99			1160	220		1380
	DAY	В	2	71		5	7			2	6	97		19	92	111			1226	110		1336 1
		P	2	11		H	3	4	Н	Н		31 27	 	120 12	28	168 40			314 73	∞		20
	DAY 1	C		14		2	. 2	5			5				48					24		181 338 81
	11	m	9	22		2	7	2		2		39		121	91	212			181	0		181
TABLE 7 (cont.)			Asterionella	Nitzschia spp.	Naviculoid penn.	5-20µm	21-40µm	41-60µm	61-80 µm	mrl 08<	others	Total Pennates	Dinoflagellates	5-15µm	16-50µm	Total		Nanoflagellates	2-5µm	6-15µш	coccolithophores	Total

	_0	0	3	10	0	13		0	0	23	18		0		0	0		5	∞	2	3	0	178	86	12.3	165
	DAY 12 C	0	23	18	0	28		20	07	55	0		0		0	0		5	∞	ന	100	15	849	93	0.8	177
	B	1480	4240	120	04	040	125	340	7	5720	0		170	ຠ	93	45	m	80	20	20	140	220	2860	20	29.3	408
0-13m	D D			18	0	30		0	15	20	3		0		0	0		15	13	0	18	3	175	75	13.6	230
	DAY 10	10	28	33	n	13		43	68	148	m		0		0	10		80	15	ന	78	∞	478	98	10.3	220
	B	1400	1920	100	40	20	09	300	09	5100	0		113	x	55	80)	044	∞	40	120	100	1260	0	42.0	300
	D	18	20	45	0	33		20	38	10	38		0		0	m		5	15	20	07	18	243	360	17.9	240
(mrl	DAY 8	70	65	30	0	35		138	100	288	ထ		3		0	0		63	13	28	158	∞	418	298	28.8	847
>200µm)	(B)	049	1320	200	80	07	20	340	40	0989	40		85		73	00		800	13	120	160	120	1300	40	22.0	303
. B -3	Д	20	90	80	0	160	0	100	130	077	200		∞		0	m		80	30	50	04	20	270	1140	61.8	330
ZOOPLANKTON (numbers	DAY 5	120	100	70	0	0	10	260	190	1480	420		13		0	0		670	35	700	140	20	670	320	150	343
nu) N	m H	520	400	280	120	120	80	120	160	8800	009		40		53	0		2720	13	240	049	320	2360	280	25.0	685
ANKTO	О	100	100	140	20	80		360	09	0797	840		13		0	100		320	48	09	100	20	009	1040	107	363
ZOOPL	DAY 3	220	200	240	09	200		200		4	006		10		3	10		840	13	80	120	09	780	1140	58.0	760
	a ul	440	044	220	0	260	40	180	140	8760	800		55		∞	20		1200	28	120	180	180	880	740	9.4	423
	О	80	140	240	70	100		240	780	7300	3180		28		0	Ŋ		2560	80	09	140	09	780	880	8	400
	DAY 1	100	120	220	40	100		260	520	7080	2580		28		00	œ		2500	07	09	180	09	860	840	5,2	540
	B H	240	300	160	20	0		240	094	7120	2100		28		10	0		2100	40	100	180	180	610	260	7.6	283
TABLE 8		<u>copepods</u> Paracalanus	Pseudocalanus	Acartia	Tortanus	Centropages	Calanus	Corycaeus	Oithona	copepodites	nauplii	ctenophores	Pleurobrachia	Bolinopsis	Philadium	Aglantha Rathkea	Hybocodon	Oikopleura	Sagitta	Ostracods	Bivalve larvae	Snail larvae	Polychaetes	Cladocera	Noctiluca (x103)	others

PARTICULATE ORGANIC CARBON and NITROGEN

TABLE 9

						-	 			-	 		-		
	2	C:N	5.2	5.1	5.7		7.4	6.7	6.4		7.8	7,3	8.9		
	DAY 12	Z	80.3	43.4	29.5	54.4	43.8	38,5	49.3	43.0	44.8	43.6	67.5	9.64	
		O	419	223	167	285	324	259	315	297	350	320	456	363	
	이	C:N	5.8	5.3	5.2		6.5	6.4	6.0		 7.1	6.5	5.9		
	DAY 10	Z	9.49	50.5	33.4	52.0	9.99	48.5	9.49	59.2	70.5	55.7	71.5	65.0	
		C	377	268	173	288	432	309	386	374	503	362	421	430	
		C:N	5.4	5.4	5.3		6.3	0.9	5.7	,	 8.9	0.9	5.2		
	DAY 8	№	60.5	6.94	44.1	51.5	8.99	8.09	83.7	68,4	9.1.8	60.2	59.0	72.1	
		O	327	252	233	276	422	364	481	413	628	362	305	451	
(T		C:N	5.4	5.5	5.3		6.3	5.9	5.4		 5.9	5.9	5.4		
T SH)	DAY 5	N	50.5	45.9	39.1	46.1	50.3	6.69	71.1	62.6	63.2	69.1	95.7	72.9	
		O	276	254	208	252.	316	413	381	368	374	412	517	422	
		C:N	5.0	4.8	5.2		5.5	5.1	5.1		5.6	5.7	5.1		
	DAY 3	N	0.97	73.5	35.2	9°59	75.7	61.0	52.4	64.7	87.0	78.3	110	0.68	
		O	383	352	183	325	413	309	267	339	488	445	561	488	
		C:N	5.4	5,3	5.3		6.8	6.8	6.8		 5.6	5.5	4.9		
	DAY 1	Z	45.0	9.04	45.3	43.4	33,3	44.8	40.8	39.5	41.6	41.7	58.6	45.6	
		0	244	214	238	231	225	303	276	267	232	229	286	243	
			0-5m	5-10m	10-13m	0-13m	0-5m	5-10m	10-13m	0-13m	0-5m	5-10m	10-13m	0-13m 243	1
			2				Ö				Q				

TABLE 10		SEDIMENTED	MATERIAL			
	mgC d ⁻¹	mgN d ⁻¹	C:N	mg C (cumulat	ive)	
DAY 2 B	833	124	6.73	833	124	
C	1712	294	5.82	1712	294	
D	1926	321	6.00	1926	321	
DAY 3 B	1197	179	6.68	2030	303	
C	1681		-	3393	579*	
D	1836	292	6.30	3762	613	
			- 05	25.00	490	
DAY 4 B	1470	187	7.85	3500		
C	2892	479	6.04	6285	1058	
D	3972	645	6.16	7734	1258	
	655	0.1.2	7.18	4155	581	
DAY 5 B	655	91.2	6.58	7496	1242	
C	1211	184		9420	1514	
D	1686	256	6.58	9420	1314	
DAY 6 D	823	124	6.63	4978	705	
DAY 6 B	1717	277	6.20	9213	1519	
C	2447	409	5.99	11867	1923	
D	2447	407				
DAY 7 B	601	93.3	6.45	5579	799	
C	2349	418	5.61	11562	1937	
D	2095	324	6.47	13962	2247	
				6001	020	
DAY 8 B	812	121	6.72	6391	920	
C	2769	453	6.12	14331	2390	
D	1517	236	6.42	15479	2483	
	/ 71	77.7	6.06	6862	997	
DAY 9 B	471		6.05	15586	2597	
C	1255	207	6.49	16053	2571	
D	574	88.4	0.47	10033		
DAY 10 P	457	72.0	6.35	7319	1069	
DAY 10 B	1651	325	5.08	17237	2922	
C	388	67.1	5.79	16441	2639	
n	300	07.1	2 , 7 , 7			
DAY 11 B	317	48.8	6.49	7636	1118	
C	1185	206	5.75	18422	3128	
D	504	80.8	6.24	16945	2719	
				0.1.5	1100	
DAY 12 B	515	74.9	6.82	8147	1193	
C-1	1110	194	5.72	19704	3336	
C-2	1454	223	6.53			
D-1	724	117	6.18	17824	2937	
D-2	1034	149	6.94			

^{*}value estimated from C:N ratio.

TABLE 11

ATP(µg/l)

JULY 1981

D	AY	CONTROL	BAG	Cu E	AG	Cu+DOC	BAG
-		1 m	12 m	1 m	12 m	l m	12 m
1	am	1.5	0.68	0.95	0.83	2.3	0.66
1	pm	0.69	0.53	1.7	0.62	0.61	0.37
2	am	1.3	0.38	0.15	0.23	0.45	0.54
2	pm	0.25	0.84	0.63	3.1	0.35	0.26
3	am	2.4	0.23	0.37	1.0	2.1	0.13
3	pm	0.47	0.18	0.20	0.28	0.33	0.055
4	am	0.71	0.10	0.18	0.62	0.96	0.10
4	pm	2.2	4.9	4.2	2.1	2.2	2.6
5	am	0.27	1.1	2.6	2.5	1.5	1.5
5	pm	0.15	1.3	1.6	1.9	1.5	1.1
6	am	1.3	0.33	0.17	0.38	0.15	0.080
6	pm	2.4	0.37	0.15	0.080	0.16	0.50
7	am	0.63	0.13	0.15	1.6	0.41	0.41
7	pm	0.49	0.32	0.40	0.62	0.51	0.77
8	am	8.3	4.8	4.9	9.1	1.1	4.1
8	pm	2.6	2.6	3.2	3.0	0.86	0.69
9	am	1.0	0.81	1.2	1.0	0.92	0.18
9	pm	1.2	0.84	1.3	0.56	0.29	0.18
10	am	0.92	0.92	1.2	0.82	0.29	0.26
10	pm	0.26	0.18	0.81	0.33	0.62	0.080
11	am	2.3	0.59	0.49	0.43	0.31	0.18
11	pm	0.62	0.32	0.35	0.77	0.59	0.12
12	am	7.3	0.31	0.66	0.38	0.30	0.13
12	pm	3.2	1.3	0.51	1.4	0.91	0.63

TABLE 12

CARBOHYDRATES (mg/1) DISSOLVED

JULY 1981

DA	ΑY	CONTRO	L BAG	Cu B	AG	Cu+DOC	BAG
		0-5m	10-13m	0-5m	10-13m	0-5m	10-13m
1	am ·	0.18	0.19	0.38	0.23	0.23	0.27
	am	0.16	0.17	0.22	0.14	3.88	4.10
3	am	0.46	0.30	0.36	0.43	1.64	1.48
4	am	0.46	0.33	0.54	0.45	0.47	0.38
5	am	0.24	0.25	0.58	0.42	0.25	0.22
6	am	0.16	0.43	0.35	0.42	0.25	0.095
7	am	0.46	0.58	0.40	0.21	0.20	0.45
8	am	0.52	0.49	0.36	0.27	0.17	0.36
9	am	0.50	0.38	0.37	0.30	0.26	0.28
10	am	0.35	0.26	0.12	0.12	0.26	0.28
11	am	0.25	0.26	0.26	0.33	0.35	0.18
12	am	0.20	0.17	0.41	0.39	0.16	0.25

TABLE 13

TOTAL BACTERIA (/ml)

JULY 1981

DAY	CONTROL BAG	Cu BAG	Cu+ DOC BAG
	1 m 12 m	1 m 12 m	1 m 12 m
l am	1.5x10 ⁷ 6.3x10 ⁶	8.8x10 ⁶ 6.3x10 ⁶	1.3x10 ⁷ 6.3x10 ⁶
1 pm	1.0x10 ⁷ 5.0x10 ⁶	1.0x10 ⁶ 5.0x10 ⁶	7.5×10^6 5.0×10^6
2 am	1.3x10 ⁶ 7.5x10 ⁶	1.8x10 ⁶ 8.8x10 ⁶	1.9x10 ⁶ 1.9x106
2 pm	2.0x10 ⁷ 2.4x10 ⁷	1.1x10 ⁷ 1.6x10 ⁷	1.1x10 ⁷ 1.0x10 ⁷
3 am	1.1x10 ⁷ 1.9x10 ⁷	1.3x10 ⁷ 1.0x10 ⁷	2.1x10 ⁷ 1.8x10 ⁷
3 pm	2.1x10 ⁷ 2.0x10 ⁷	1.8x10 ⁷ 2.0x10 ⁷	2.3x10 ⁷ 3.4x10 ⁷
4 am	1.4x10 ⁷ 2.6x10 ⁷	1.5x10 ⁷ 1.4x10 ⁷	3.3x10 ⁷ 4.8x10 ⁷
4 pm	1.1x10 ⁷ 1.9x10 ⁷	2.6x10 ⁷ 1.5x10 ⁷	2.1x10 ⁷ 3.0x10 ⁷
5 am	1.4x10 ⁷ 2.5x10 ⁷	1.5x10 ⁷ 1.6x10 ⁷	1.4x10 ⁷ 1.0x10 ⁷
5 pm	1.4x10 ⁷ 1.8x10 ⁷	1.1x10 ⁷ 1.4x10 ⁷	1.9x10 ⁷ 8.8x10 ⁶
6 am	2.8x10 ⁷ 2.3x10 ⁷	2.1x10 ⁷ 2.4x10 ⁷	2.1x10 ⁷ 1.3x10 ⁷
6 pm	1.1x10 ⁷ 1.5x10 ⁷	1.6x10 ⁷ 1.4x10 ⁷	2.6x10 ⁷ 1.4x10 ⁷
7 am	1.8x10 ⁷ 2.4x10 ⁷	1.9x10 ⁷ 2.3x10 ⁷	2.0x10 ⁷ 1.9x10 ⁷
7 pm	1.8x10 ⁷ 1.0x10 ⁷	1.5×10^7 7.5×10^6	6.3×10^6 1.1×10^6
8 am	2.3×10^7 1.0×10^7	1.5×10^7 7.5×10^6	1.9x10 ⁷ 2.0x10 ⁷
8 pm	2.3x10 ⁷ 1.8x10 ⁷	1.0x10 ⁷ 1.5x10 ⁷	1.8x10 ⁷ 1.1x10 ⁷
9 am	7.5×10^6 3.8×10^6	7.5x10 ⁶ 8.8x10 ⁶	1.8x10 ⁷ 1.5x10 ⁷
9 pm	2.0x10 ⁷ 1.0x10 ⁷	1.1x10 ⁷ 1.0x10 ⁷	2.1x10 ⁷ 1.8x10 ⁷
10 am	1.9x10 ⁷ 8.8x10 ⁶	1.5x10 ⁷ 1.4x10 ⁷	7.5x10 ⁶ 8.8x10 ⁶
10 pm	1.8x10 ⁷ 1.1x10 ⁷	1.5x10 ⁷ 1.9x10 ⁷	2.8x10 ⁷ 1.8x10 ⁷
11 am	1.3x10 ⁷ 1.1x10 ⁷	1.0x10 ⁷ 7.5x10 ⁶	5.0x10 ⁶ 1.0x10 ⁷
11 pm	8.8x10 ⁶ 1.5x10 ⁷	1.4x10 ⁷ 2.3x10 ⁷	2.1x10 ⁷ 1.5x10 ⁷
12 am	1.1x10 ⁷ 1.4x10 ⁷	1.4x10 ⁷ 1.0x10 ⁷	7.5x10 ⁶ 8.8x10 ⁶
12 pm	1.0x10 ⁷ 1.1x10 ⁷	5.0x10 ⁶ 8.8x10 ⁶	7.5×10^6 1.0×10^7

gross assimilation(%) Mineralization 27 7.7 20 48 40 49 34 115 22 30 30 65 38 34 44 37 37 $(mg/m^3/hr)$ 0.27 0.0086 0.0026 0.14 0.0063 0.017 0.15 0.0066 0.0083 0.12 0.013 0.027 0.041 0.0022 0.0013 0.097 UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS Sn (mg/m³) 4.2 1.4 111 5.5 2.1 15 33 3.1 1.9 26 8.1 2.0 10 1.4 7.1 7.2 8.7 Tt (hr) 121 360 738 268 227 1514 72 222 417 73 1094 1054 34 105 405 134 965 663 (mg/m^3) 59 7.6 112 48 116 112 18 3.7 10 24 45 22 18 5.2 15 115 119 118 (mg/m³/hr) Im 0.49 0.021 0.016 0.18 0.070 0.25 0.017 0.024 0.33 0.041 0.53 0.050 0.037 0.11 0.020 DEPTH: Glycollic acid Glycollic acid Glycollic acid Glycollic acid Glycollic acid Glycollic acid Cu BAG AM: Glutamic acid Glutamic acid PM: Glutamic acid PM: Glutamic acid AM Glutamic acid AM: Glutamic acid Galactose Galactose Galactose Galactose Galactose Galactose Substrate Cu+DOC BAG TABLE 14 DAY: 1 CONTROL PM:

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	28 8.6 23 46 49 29	21 19 47 33 32 52	36 15 39 17 38 48
	Vt (mg/m ³ /hr)	0.15 0.0031 0.016 0.064 0.0036	0.066 0.0042 0.015 0.090 0.0029 0.0013	0.053 0.013 0.0056 0.013 0.0021
	Sn (mg/m ³)	21 0.9 4.8 21 1.3	. 5.0 1.1 2.0 1.5	2.5 2.9 2.3 2.3 6.0
	Tt (hr)	139 288 302 329 362 564	90 262 521 68 696 1144	47 221 408 159 1081 2360
	Kt + Sn (mg/m ³)	33 5.1 9.2 29 7.7	13 5.2 12 17 11	10 6.7 8.5 8.1 7.9
DEPTH: 12m	(mg/m³/hr)	0.24 0.018 0.030 0.088 0.021	0.14 0.020 0.023 0.25 0.016	0.21 0.030 0.021 0.051 0.0073
DAY: 1	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu BAG AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid FM: Glutamic acid Galactose Glycollic acid Galactose

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	27 29 40 66 53 51	56 38 27 34 45 49	56 33 39 66 55 44
	Vt (mg/m ³ /hr)	0.11 0.018 0.0033	0.016 0.0022 0.0029	0.062 0.0022 0.0073
	Sn (mg/m ³)	28 23 5.9	12 5.2 9.4	8.8 3.1 19
	Tt (hr)	256 1290 1782 118 448 816	746 2334 3254 230 2484 3695	142 1435 2612 311 2566 4227
	Kt + Sn (mg/m ³)	42 35 11	30 66 41	18 16 31
DEPTH: 1m	V (mg/m³/hr)	0.16 0.027 0.0062	0.040 0.028 0.013	0.13 0.011 0.012
DAY: 2	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu BAG AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	31 17 29 64 44 26	44 31 38 42 34 58	48 29 27 25 34 50
	Vt (mg/m³/hr)	0.025 0.0070 0.0032	0.044 0.0096 0.0013	0.0084 0.00088 0.0019
	Sn (mg/m ³)	10 11 8,4	7.3 10 2.8	2.3
	Tt (hr)	400 1571 2592 346 1454 1083	166 1042 2076 134 1909 2595	275 2499 3006 131 1240 715
	(mg/m^3)	22 21 15	12 28 22	7.9 8.1 23
DEPTH: 12m	V (mg/m³/hr)	0.055 0.013 0.0058	0.072 0.027 0.011	0.029 0.0032 0.0077
DAY: 2	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu BAG AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	46 31 41 53 45	44 48 25 63 33 45	46 43 31 50 53 62
	Vt (mg/m ³ /hr)	0.027 0.0068 0.0064	0.025 0.0012 0.0025	0.0042
	Sn (mg/m ³)	5.3 6.1 11	18 4.2 12	7.4 24 21
	Tt (hr)	193 893 1706 81 153 394	713 3572 4806 143 1713 662	1771 4834 2532 198 3117 1753
	Kt + Sn (mg/m ³)	21 19 33	42 44 27	121 41 37
DEPTH: 1m	V (mg/m³/hr)	0.11 0.021 0.019	0.059 0.012 0.0056	0.068 0.0085 0.015
DAY: 3	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose	Cu BAG AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	37 30 42 48 36 52	53 34 15 66 48 56	69 46 60 43 70 42
	Vt (mg/m ³ /hr)	0.013 0.0010 0.0037	0.13 0.0015 0.00078	0.026 0.0044 0.0022
	Sn (mg/m ³)	3.4 1.7 2.8	15 3.1 2.2	9.7 16 6.6
	Tt (hr)	260 1623 764 122 601 578	119 2063 2828 523 6083 656	370 3677 3054 1204 3600 3074
	Kt + Sn (mg/m ³)	33 23 12	37 28 24	41 39 19
DEPTH: 12m	V (mg/m ³ /hr)	0.13 0.014 0.016	0.31 0.014 0.0085	0.11 0.011 0.0062
DAY: 3	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose	Cu BAG AM: Glutamic acid Galactose Glycollic acid Galactose Galactose Glycollic acid Galactose	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

-				
	Mineralization gross assimilation(%)	53 48 66 79 55 89	51 36 46 26 18 61	40 40 75 62 44 73
	Vt (mg/m ³ /hr)	0.086 0.016 0.024	0.13 0.018 0.022	0.030 0.0020 0.026
	Sn (mg/m ³)	8,8 8,9 25	16 28 18	3.7 0.8 26
	Tt (hr)	102 562 1041 212 1178 3226	120 1576 826 161 640 499	123 406 1017 55 259 2446
	Kt + Sn (mg/m ³)	34 54 33	22 42 22	5.9 4.3 114
DEPTH: 1m	V (mg/m³/hr)	0.33 0.096 0.032	0.18 0.027 0.027	0.048 0.011 0.11
DAY: 4 D	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu BAG AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

DEPTH: 12m

1			
Mineralization gross assimilation(%)	56 62 67 41 19	44 25 62 80 8,8 8,8	75 33 53 82 66 95
Vt (mg/m³/hr)	0.023 0.017 0.023	0.17 0.0097 0.016	0.0086 0.00020 0.019
Sn (mg/m ³)	3.4	11 8.1 6.1	2.6 1.3 41
Tt (hr)	145 429 1152 254 679 1281	63 839 376 41 469 909	301 6394 2110 233 816 2156
Kt + Sn (mg/m ³)	72 63 48	15 34 22	20 69 143
V (mg/m³/hr)	0.50 0.15 0.042	0.24 0.041 0.059	0.066 0.011 0.068
Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose	Cu BAG AM: Glutamic acid Galactose Glycollic acid Galactose Galactose Glycollic acid Galactose Glycollic acid	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Glycollic acid

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	60 30 82 34 80 68	26 19 72 34 56 72	38 56 90 50 74 95
	Vt (mg/m³/hr)	0.0066	0.22 0.023 0.029	0.13 0.0035 0.010
	Sn (mg/m ³)	2.6 12 3.9	7.3	4.3 1.1 13
	Tt (hr)	392 238 2161 162 114 473	33 364 170 78 280 650	34 312 1261 29 142 987
	Kt + Sn (mg/m ³)	20 84 14	17 34 9.2	15 8,1 120
DEPTH: 1m	V (mg/m ³ /hr)	0.51 0.35 0.0065	0.52 0.093 0.054	0.026
DAY: 5	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu BAG AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	1			
	Mineralization gross assimilation(%)	52 44 83 33 69 93	50 19 85 49 63	54 69 76 74 74
	Vt (mg/m ³ /hr)	0.025 0.0054 0.0036	0.14 0.0056 0.0084	0.021 0.0029 0.0033
	Sn (mg/m ³)	12 9.4 3.8	7.7 6.5 4.3	3.9 11
	Tt (hr)	488 1726 1062 435 1385 830	55 1156 507 21 419 241	183 1205 3321 198 806 3224
	Kt + Sn (mg/m ³)	34 50 14	17 38 7.4	25 40 36
DEPTH: 12m	V (mg/m ³ /hr)	0.070 0.029 0.013	0.31 0.033 0.015	0.14 0.033 0.011
DAY: 5	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose	Cu BAG AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	64 73 88 59 47 84	50 62 80 16 46 75	37 67 87 37 22 95
	Vt (mg/m ³ /hr)	0.046 0.0072 0.0029	0.027 0.0067 0.0066	0.14 0.0093 0.025
	Sn (mg/m ³)	4.5 3.9 2.2	8.1 7.4 3.3	3.2 4.1 7.6
	Tt (hr)	93 541 767 197 461 924	301 1111 498 150 471 962	23 443 303 38 305 1389
	Kt + Sn (mg/m ³)	35 34 38	8.6 16 14	31 16 26
DEPTH: 1m	V (mg/m³/hr)	0.36 0.063 0.050	0.029 0.014 0.028	1.3 0.036 0.086
DAY: 6	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose	Cu BAG AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Glycollic acid

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	74 50 93 29 16 95	24 63 79 16 35 81	51 73 89 37 21 83
	Vt (mg/m ³ /hr)	0.10 0.013 0.016	0.098 0.0041 0.012	0.055 0.0088 0.051
	Sn (mg/m ³)	11 10 11	6.5 3.7	4,385
	Tt (hr)	107 799 693 155 1245	66 707 319 62 260 390	64 320 85 18 4 997 304
	$Kt + Sn$ (mg/m^3)	48 23 40	14 26 8.8	41 8.8 26
DEPTH: 12m	(mg/m ³ /hr)	0.45 0.029 0.058	0.21 0.037 0.028	0.64 0.028 0.31
DAY: 6	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid Galactose Glycollic acid Galactose Glycollic acid	Cu BAG AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid Galactose Galactose Galactose Glycollic acid

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	67 67 89 53 65 70	20 75 91 36 67 66	43 74 85 48 80 91
	Vt (mg/m ³ /hr)			
	Sn (mg/m ³)			
	It (hr)	273 464 856 118 325 707	157 217 217 801 330 997 322	189 460 2577 126 304 1100
	Kt + Sn (mg/m ³)			
DEPTH: 1m	V (mg/m³/hr)			
DAY: 7	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu BAG AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	45 70 90 48 51 68	21 53 83 38 47 70	46 64 93 47 52 75
	Vt (mg/m³/hr)			
	Sn (mg/m ³)			
	Tt (hr)	314 384 1404 207 567 1314	95 3116 682 159 541 194	230 550 1049 368 1665
	(mg/m^3)			
DEPTH: 12m	V (mg/m ³ /hr)			
DAY: 7	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu BAG AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	48 53 91 68 56 89	29 56 59 19 47 74	18 55 64 57 57 85
	Vt (mg/m ³ /hr)	0.051 0.0058 0.0036	0.0085 0.0038 0.0036	0.23 0.0023 0.0040
	Sn (mg/m ³)	8.7 7.5 4.2	3.4 7.1 1.3	19 6.7 11
	Tt (hr)	165 1295 1180 147 871 843	398 1872 363 145 705 346	84 2912 2770 75 2154 705
	Kt + Sn (mg/m ³)	26 23 26	7.5 36 4.2	45 29 110
DEPTH: 1m	V (mg/m³/hr)	0.16 0.018 0.022	0.019 0.019 0.012	0.54 0.010 0.040
DAY: 8	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu BAG AM: Glutamic acid Galactose Glycollic acid Galactose Glycollic acid Galactose Glycollic acid	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	43 48 59 41 57 84	45 52 85 44 61 83	52 47 71 54 63
	Vt (mg/m ³ /hr)	0.060 0.0078 0.0075	0.028 0.0060 0.018	0.033 0.00056 0.0016
	Sn (mg/m ³)	9.1 6.0 4.2	8.3 7.6	12 2.0 1.2
	Tt (hr)	151 773 560 113 1593 754	300 869 422 122 457 125	362 3591 750 400 2473 478
	Kt + Sn (mg/m ³)	12 17 18	17 25 32	37 34 33
DEPTH: 12m	V (mg/m ³ /hr)	0.079 0.022 0.032	0.057 0.029 0.076	0.10 0.0095 0.044
DAY: 8	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu BAG AM: Glutamic acid Galactose Glycollic acid Galactose Glycollic acid Galactose Glycollic acid	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid Galactose Glycollic acid Galactose Glycollic acid

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	42 62 62 57 22 54	40 45 61 47 44	45 62 60 59 72 28
	Vt (mg/m ³ /hr)			
	Sn (mg/m ³)			
	Tt (hr)	178 1189 485 142 1254 231	61 1009 775 46 1387 406	58 2765 769 52 4225 341
	$Kt + Sn$ (mg/m^3)			
DEPTH: 12m	V (mg/m ³ /hr)			
DAY: 9	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu BAG AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	54 57 74 40 60 43	24 66 7.7 34 43 7.9	58 57 66 49 68 57
	Vt (mg/m ³ /hr)			
	Sn (mg/m ³)			`
	Tt (hr)	161 2611 1051 163 863 1482	55 939 615 36 1075 196	468 3672 1028 310 2471 541
	(mg/m^3)			
DEPTH: 12m	V (mg/m³/hr)			
DAY: 9	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu BAG AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose Glycollic acid

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	42 52 55 71 70 60	38 50 68 33 55 73	17 67 52 65 50 81
	Vt (mg/m³/hr)	0.025 0.0035 0.00099	0.17 0.0019 0.0087	0.088 0.0020 0.0054
DEPTH: 1m	Sn (mg/m ³)	3.1 2.8 1.1	9.6	9.9 8.3 12
	Tt (hr)	126 801 1114 254 1310 1465	56 1261 585 218 4610 1116	113 4058 2220 202 4589 855
	Kt + Sn (mg/m ³)	21 18 16	46 24 18	24 29 84
	V (mg/m³/hr)	0.17 0.022 0.014	0.82 0.019 0.031	0.21 0.0071 0.038
DAY: 10 D	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose	Cu BAG AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Glycollic acid	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

DEPTH: 12m

+			
Mineralization gross assimilation(%)	56 67 77 58 65	40 61 75 40 46 80	57 48 87 50 57 79
Vt (mg/m ³ /hr)	0.046 0.0031 0.0067	0.28 0.0089 0.0064	0.038 0.0017 0.0031
Sn (mg/m ³)	7.2 4.1 5.8	2 5.0	6.3 1.3
Tt (hr)	157 1313 871 144 1709 792	32 617 409 66 4472 739	165 4702 424 159 3379 872
Kt + Sn (mg/m ³)	21 19 15	46 41 12	21 29 46
V (mg/m³/hr)	0.13 0.014 0.017	1.4 0.066 0.029	0.13 0.0062 0.11
Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu BAG AM: Glutamic acid Galactose Glycollic acid Galactose Galactose Glycollic acid	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid Galactose Glycollic acid Galactose Glycollic acid

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	38 61 61 51 70	44 65 65 40 35 65	46 66 59 51 52 42
	Vt (mg/m³/hr)			
	Sn (mg/m ³)			
	Tt (hr)	241 1398 1154 174 1064 429	376 3176 715 443 3593 1266	153 5689 1988 47 2240 1277
	Kt + Sn (mg/m ³)			
DEPTH: 1m	V (mg/m ³ /hr)			
DAY: 11	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose	Cu BAG AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose Glycollic acid

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	60 75 81 49 54 72	67 64 78 51 47 70	53 75 81 56 64 68
	Vt (mg/m ³ /hr)			
	Sn (mg/m ³)			
	Tt (hr)	198 333 915 146 1515 638	136 1782 764 182 475 251	101 3993 879 107 1680 737
	(mg/m^3)			
DEPTH: 12m	V (mg/m ³ /hr)			·
DAY: 11	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu BAG AM: Glutamic acid Galactose Glycollic acid FM: Glutamic acid Galactose Glycollic acid	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	49 13 66 50 18 53	39 45 81 38 19 55	24 49 67 50 25 75
	Vt (mg/m ³ /hr)	0.031 0.0036 0.0099	0.013 0.0020 0.0011	0.018 0.0030 0.0095
	Sn (mg/m ³)	4.4	1.6 3.8 0.9	2.6 6.5
٠	Tt (hr)	143 1187 425 166 583 727	123 1898 796 161 339 250	147 2166 1792 148 3040 1343
	Kt + Sn (mg/m ³)	13 13	20 15 18	15 28 51
DEPTH: 1m	V (mg/m³/hr)	0.091 0.013 0.031	0.16 0.0079 0.023	0.10 0.013 0.028
DAY: 12 I	Substrate	CONTROL AM: Glutamic acid galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu BAG AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu+boc BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose

UPTAKE KINETICS OF ORGANIC SUBSTRATES BY MICROORGANISMS

	Mineralization gross assimilation(%)	50 16 83 35 9.2 62	39 26 76 41 23 65	45 55 94 38 80
	Vt (mg/m ³ /hr) g	0.0081 0.010 0.0051	0.025 0.0025 0.018	0.032 0.0018 0.0045
	Sn (mg/m ³)	1.4	3.1 0.6 5.8	2°.3 4°.5
	Tt (hr)	172 455 649 333 942 1266	123 236 327 129 244 118	171 2950 1003 195 3451 1386
	(mg/m^3)	7.3 14 15	9,4 8,9 10	12 35 18
DEPTH: 12m	V (mg/m³/hr)	0.042 0.031 0.023	0.076 0.038 0.031	0.17 0.012 0.018
DAY: 12	Substrate	CONTROL AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid Galactose	Cu BAG AM: Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid	Cu+DOC BAG AM Glutamic acid Galactose Glycollic acid PM: Glutamic acid Galactose Glycollic acid

FIGURES

- 1. Nutrients
- 2. Chlorophyll a
- 3. Primary Productivity
- 4. Phytoplankton
- 5. Zooplankton, Calanoid Copepods
- 6. Zooplankton, Larvaceans, Noctiluca and Medusae & Ctenophores
- 7. Sediments
- 8. Removal of Nitrate-Nitrite, Carbohydrate and Oxygen from the Cu+DOC bag compared with Bacterial growth
- 9. Turnover rates of Organic Substrates in the Control bag at 1 and 12m.
- 10. Turnover rates of Organic Substrates in the Cu bag at 1 and 12m.
- 11. Turnover rates of Organic Substrates in the Cu+DOC bag at 1 and 12m.

Legend for Figures 1 to 7:

CONTROL (B)

Cu Bag (C) O---O

Legend for Figures 9 to 11:

Glutamic Acid

Glycollic Acid ●---●

Galactose ---

PRIMARY PRODUCTIVITY

ZOOPLANKTON (0-13 m)

SEDIMENTS

CAI EP 321 -81R22

Government Publications

TIDAL CURRENTS IN JOHNSTONE STRAIT

by

W. S. Huggett

and

M. J. Woodward

For additional copies or further information please write to:

Department of Fisheries and Oceans
Institute of Ocean Sciences
P.O. Box 6000
Sidney, B.C. CANADA
V8L 4B2

Pacific Marine Science Report 81-22

EP:3

TIDAL CURRENTS IN JOHNSTONE STRAIT

by

W.S. Huggett and M.J. Woodward

Institute of Ocean Sciences
Sidney, B.C.
1981

ABSTRACT

This report describes the tidal streams in the area of Johnstone Strait in British Columbia. Over a period of several years short-term current meter records were taken at 7 stations along the length of the Strait and at 2 stations in Queen Charlotte Strait. It was found that, although tidal streams at locations where observations had been made were predictable, interpolation between stations is difficult due to the complexity of the currents. Generally the tidal streams in Johnstone Strait are semi-diurnal, with the streams at depth stronger than the surface streams and the times of turns earlier. In the passes at the western end of the strait, times of slack water are best referenced to slack water times at Seymour Narrows.

Figure 1. Current meter positions.

Introduction

The purpose of this publication is to bring to the notice of ship and tug masters, fishermen and other seafarers, the vagaries of the tidal streams in Johnstone Strait. It is hoped that after reading this publication they will be able to make better use of the tidal streams in their work, and realize the difficulty of trying to present to the mariner predictions of times and speeds of the currents in Johnstone Strait and the adjoining passes.

These measurements in Johnstone Strait were taken in the years 1976, 1977 and 1978 to gain some knowledge of the propagation of the tidal wave and streams along the Strait, and to investigate the internal tide that is present in the area of Hickey Point. This latter investigation is a direct outcome from the data taken in 1973. Continuous current meter records were taken at seven stations along the length of the Strait and two in Queen Charlotte Strait, with continuous temperature and conductivity records also taken at most locations. During the course of these surveys ten oceanographic cruises were carried out with CTD (conductivity, temperature, depth) measurements taken at thirty stations stretching from south of Cape Mudge in the Strait of Georgia to Gordon and Goletas Channels in Queen Charlotte Strait. These measurements are necessary to determine the density structure of the water, to enable prediction of the baroclinic streams. At twenty of these stations dissolved oxygen, silicate, nitrate and phosphate samples were taken. Bottom grab samples were also taken along the Strait from Yorke Island west to Hanson Island. The above data is recorded in Data Record of Current Observations Volumes VII and VIII.

Observations

The tidal streams in Johnstone Strait are predominantly semidiurnal with a ratio of $\frac{K_1+0_1}{M_2+S_2}=0.22$ in contrast to the tidal components which

have a ratio of 0.58. The actual amplitudes of Mo and Kl at Station 3, for example, are 28.0 cm/sec and 6.5 cm/sec respectively. Owing to their strong semi-diurnal characteristic the tidal streams follow very closely that of the Mo tide. Actual comparisons of the surface currents between Station 3 (Johnstone Strait Central) and other stations (Fig. 2) show that the time of the maximum current is practically the same as that for the M₂ stream $(29.98^{\circ} = 1 \text{ hour})$, and the standard deviation of the comparisons is less than 25 minutes at all stations. The time of maximum surface streams (15 m depth) is delayed by 2h 36m from the outer Station QC2 off Masterman Island to Station 7 in Discovery Passage, and the bottom streams lag by 3h 10m (Fig. 3). Although the bottom streams lag the surface streams at both ends of the Strait, 52 min at Masterman Island and 18 min at Station 7, at Station 3 the bottom stream leads the surface stream by 16 min. Also at Station 3, the amplitudes of the diurnal and semi-diurnal constituents for the tidal streams at 225 metres depth are much larger than those of the surface streams, being a factor of 2.5 and 1.7 respectively higher (Fig. 4 & 6). These strong streams at depth are due to a baroclinic current generated by the tide at the sill just east of Station 3. The sill disturbs the equilibrium level of the uniform density surfaces to create temporary unbalanced horizontal density gradients and hence internal tidal motions (Thomson 1976, Thomson and Huggett 1980).

The times of slack water (on the surface and at the bottom) vary quite remarkably from station to station and from day to day because of (a) the large residual current present, and (b) the weather conditions. The winds in Johnstone Strait either advance or retard the surface current, which affects the times of slack water. A section across Johnstone Strait at Station 3 shows the distribution of the residual current (Fig. 8). At a mean depth of approximately 115 m there is no residual current; above this depth the current is outgoing and below this depth it is incoming. This general pattern is typical of tidal estuaries, and holds good for the remainder of Johnstone Strait as shown by Figure 9, except that the mean depth for no residual current is about 75 m when east of Kelsey Bay.

The surface current in Johnstone Strait between York Island and Alert Bay is quite straightforward with the turn to flood and maximum rates at Station 10 being 10 minutes earlier than Johnstone Strait Central, and with the turn to ebb occurring at the same time. This stretch is characterized by the two ebb currents per day having nearly the same amplitude of 75 cm/sec, and where, after the slack, the current quickly rises to 75% of the maximum current or better and maintains this speed for 31/2 hours or more. This relationship however, does not hold when the tides are predominantly diurnal, in which case a marked difference between the two ebb currents is evident (Fig. 10). The larger tidal range produces the larger tidal current, which varies anywhere between 20 and 40 cm/sec, and on the smaller tide range of the day the current varies between 5 and 15 cm/sec. The flood current following the lower low water (LLW) of the day is the larger of the two flood currents and is about twice that of the other flood current, and when the lower high water (LHW) is less than 3.8 m (12.5 ft) there will be no flood current.

The bottom currents along this stretch have, conversely, a large flood bias, but, unlike the surface where the ebb currents have the same speed for both daily currents, a large diurnal inequality exists with a maximum difference of 40 cm/sec. The larger flood currents (85-110 cm/sec) have a duration of $8\frac{1}{2}$ hours, but the smaller flood currents maintain their maximum speed for $2\frac{1}{2}$ hours to 3 hours. The larger ebb currents (50-70 cm/sec) have an average duration of 5 hours with the diurnal inequality only half (20 cm/sec) that of the flood currents.

In the passes at the western end of the Strait, the times of maximum current are the same, or nearly so, as Johnstone Strait Central, but the times of slack water differ considerably and are best referenced to slack water times at Seymour Narrows. In Blackney Passage and Broughton Strait where the surface currents are affected by the bottom currents, the times of slack water in these narrow, shallow passes are a compromise between the two slack waters. This results in the times of slack water on the turn to flood and ebb being respectively two hours earlier and one hour later than the surface slacks in Johnstone Strait. The slack waters at Blackney Passage are 30 minutes earlier than off Alert Bay, but 20 minutes later than Pulteney Point. In the area between Blinkhorn Light and Alert Bay there are strong tide rips present on the flood current. At the eastern end in Sunderland Channel the current is only half that of Johnstone Strait Central, and both slack waters and the maximum ebb occur 1 hour 40 min earlier, and the maximum flood I hour 10 min earlier than in Johnstone Strait. During the times of maximum flood and ebb there are strong tide rips or fronts

present in the channel between Kelsey Bay and Port Neville.

In Johnstone Strait east of Yorke Island the times of maximum flood and ebb currents on the surface occur about 20 minutes later than those to the west of Yorke Island, but the times of slack water differ widely. Again the ebb bias is very prominent, and both daily ebb currents have the same velocity of 120 cm/sec. This appears to be the maximum velocity attained in that part of the channel, and the current maintains this speed for 2^{1} -3 hours. When the range of the tide is less than 1 m, the maximum ebb velocity drops to about 70 cm/sec with some diurnal inequality in the two daily ebb currents. The flood currents, on the other hand, have a large diurnal inequality with the speed of the flood current following LLW being double that of the other flood current. The maximum floods have velocities up to 110 cm/sec, but when the range of the tide is less than 1 m, there is no flood current for that period. The maximum flood currents here and the maximum ebb currents west of Yorke Island are both dependent on the range of the tide as evidenced by the graphs in Figures 12-17. An appreciation of the current velocity to be expected from the range of the tide at Alert Bay can be had from these graphs.

The times of slack water are vastly different from those of Johnstone Strait Central, the turn to flood occurring 35 minutes earlier and the turn to ebb 90 minutes later. In Race Passage however the currents are the same as Johnstone Strait Central, but in Current Passage the turn to ebb occurs about 75 minutes earlier than the turn to ebb in Race Passage.

The bottom current along this part of the Strait east of Yorke Island also has a large flood bias with the flood current having a maximum speed of 120 cm/sec, but unlike the surface current, does vary with the tidal range. The maximum flood current also has two peaks roughly $2\frac{1}{2}$ hours apart with a 20-40 cm/sec drop in speed between the two peaks (Fig. 11). This phenomenon was not apparent at any of the other stations in Johnstone Strait. The difference between the two daily flood currents is 30 cm/sec at times, the duration of the flood current is around $8\frac{1}{2}$ hours and for at least half of the time the current is running at 80% or better of the maximum speed. The ebb current is generally less than 45 cm/sec, but when the tides are predominantly diurnal, rates up to 60 cm/sec are present. The duration of the ebb current is about 4 hours, with the diurnal inequality greater than that of the flood stream, attaining a difference of 50 cm/sec at times.

In Nodales Channel the bottom currents are more diurnal than at Station 9. The velocity of the bottom water entering and leaving Nodales Channel is only one-third of that at Station 9 (40 cm/sec as opposed to 120 cm/sec), and the times of maximum current vary anywhere from a half hour to five hours earlier. When the tidal range is large the current continues to flood (north going) on the bottom in Nodales Channel on the largest ebb of the day (a continuation of the ebb in Discovery Passage).

In Race and Current Passages, situated between Kelsey Bay and Station 9, the times of maximum flood and ebb are at the same time as those at Station 9, and the times of slack turn to flood are 15 minutes earlier than Station 9. The turn to ebb in Current Passage occurs 45 minutes earlier, and in Race Passage it occurs 30 minutes later than at Station 9. At the

north end of Discovery Passage the maximum flood occurs 10 min later and the maximum ebb 30 minutes later than at Station 9, with the times of slack water being very close to those of Seymour Narrows.

Looking at the Strait in cross-section in the vicinity of Station 3 over a 25 hour period during a time of average tide heights, large differences from one side to the other are evident on the surface in the speeds and time of the turn (Fig. 18). The flood current starts at depths around 200 m and builds up to speeds greater than 40 cm/sec while there is still an ebb current running on the surface. On the surface the flood current starts along the Vancouver Island shore at about the same time as it starts at depth, but takes over 2 hours to completely cover the Strait from one side to the other, with the current along the Vancouver Island shore far stronger than elsewhere across the Strait. However, as soon as the flood current covers the entire Strait, the speed drops off dramatically to about one-third of its maximum speed. In less than 2 hours after the flood current covers the entire surface, the ebb current is starting to run along the mainland shore, and within the hour the whole Strait on the surface is ebbing. The flood current still continues to run at depth for about 2 hours after the start of the ebb on the surface. At the time of maximum ebb, the current speed is the same across the Strait, then falls off quickly on the Vancouver Island shore prior to the start of the next flood current. ebb current runs the strongest on the surface with the speed decreasing with depth.

On a cross-section 5.5 km (3 miles) to the east of Station 3, the start of the flood current exhibits the same characteristics as it did further to the west, but the ebb current appears to start in the centre of the channel rather than along the mainland shore, and when running at its maximum is much stronger along the mainland shore. On a large flood as shown in Fig. 19, the flood current runs for 6 hours on the surface, longer at depth, and the change to ebb on the surface is much quicker, within the hour, than on the change to flood.

A longitudinal look at the Strait between Stations 12 and 17, and on the same day as the cross-section at Station 14 was plotted, shows that at Station 17 on the bottom the ebb current runs for a very short duration, something less than four hours (Fig. 20). A prominent feature is again the wedge of strong flood current between 200 and 150 metres depth that persists long after the ebb current is running on the surface, and even after it is ebbing on the bottom. Another feature is the magnitude of the flood current at Station 3 at 235 m depth where it is much greater than that at Station 12 or 14 at maximum flood.

Conclusions

Although the above features are regular in time, their complexity makes them difficult to describe and to present in one or two simple graphs. The tidal streams at any point can be predicted well, but their rapid change in behavior along the Strait, across the Strait, and with depth requires many reference and secondary stations in the tide tables, and defies simple explanations.

In 1982 current meter observations will be taken at Stubbs Island, east of Alert Bay, and from these observations it is hoped that better current predictions will result for the passes at the western end of Johnstone Strait.

Acknowledgements

We would like to thank the many people who helped in the collection and analysis of the data, and in particular, A. Douglas, F. Hermiston, R. Thomson, J. Love and C. de Jong. C. Dale, B. Watt and K. Holman are thanked for their assistance in the preparation of the diagrams, and S. McKenzie in the typing of the manuscript. We also gratefully acknowledge the help and cooperation given to us by the officers and crews of the CSS Parizeau, CSS Vector, CSS Richardson and the CFAV Endeavour.

References

- Huggett, W.S., J.F. Bath and A. Douglas. 1976. Data record of current observations Vol. XIX, Johnstone Strait, 1973, unpublished manuscript, Institute of Ocean Sciences, Patricia Bay, Sidney, B.C., 155 p.
- R.E. Thomson, M.J. Woodward and A.N. Douglas, 1980. Data record of current observations Vol. VII, Johnstone Strait, 1976, 1977, 1978, unpublished manuscript, Institute of Ocean Sciences, Sidney, B.C., 288 p.
- Thomson, R.E. 1976. Tidal currents and estuarine-type circulation in Johnstone Strait, British Columbia, J. Fish. Res. Board, Canada, 33(10), p. 2242-2264.
- supplemental data on the Vancouver Island side, J. Fish. Res. Board Canada, 34(5), p. 697-703.
- and W.S. Huggett. 1980. M₂ baroclinic tides in Johnstone Strait, British Columbia. J. Physical Ocean., p. 1509-1539.

Glossary of Terms

Baroclinic current: is that current induced by two layers of water of

different density having a sloping interface.

Barotropic current: is that current induced by a sloping sea surface.

cm/sec: 51.48 cm/sec = 1 knot

having a period of, occurring in, or related to a day. Diurnal:

the difference between the heights of two successive Diurnal inequality:

high or low tides, or the difference in the speed between two successive flood or ebb tidal streams.

Front: the vertical intersection of two masses of water of

different density; often visible on the surface as

tide lines or rips.

the principal lunar semi-diurnal constituent; that M2:

variation of the tide or current having 2 cycles per day and due to the gravitational attraction of the

moon.

K1: the principal diurnal constituent; that variation

of the tide or current having I cycle per day and due

to the combined gravitational attractions of the

sun and moon.

Residual current: non-tidal current due to causes other than tidal.

It is that part of the total current that is left

after the tidal component is removed.

Semi-diurnal: having a period of, occurring in, or related to

approximately half a day.

Tidal stream: a current due to tidal action.

Tidal stream + residual current = observed current.

Tidal wave: a long period wave associated with the tide-producing

forces of the moon and sun. Longest wave known in

the ocean.

	Turn to		Maximum Flood		Turn to		Maximum Ebb	
Bear Point (J9)	h -0	m 35	h +0	m 30	h +1	m 35	h +0	m 20
Camp Point	-0	20	+0	30	+2	05	+0	20
Current Passage	- 0	20	+0	30	+0	50	+0	20
Sunderland Channel (J16)	-1	40	- 1	10	-1	40	-1	40
Forward Bay (J10)	-0	10	-0	10	0	00	- 0	10
Masterman Island (Q02)	- 3	45	-1	55	0	00	-1	55
Browning Islands (Q01)	-2	25	-1	50	-1	05	-1	55
Blackney Passage	-1	10*	0	00	-1	10*	0	00
Alert Bay	-0	40*	0	00	-0	40*	0	00
Pulteney Point	-1	30*	0	00	-1	30*	-1	00

^{*} Time difference for "Turn to Flood" and "Turn to Ebb" to be applied to the predictions for Seymour Narrows.

Figure 2. Time differences between Johnstone Strait Central and secondary stations along Johnstone Strait for maximum currents and turns.

Diurnal and semi-diurnal times between Queen Charlotte Strait and Station 9, Johnstone Strait. Figure 3.

Figure 4. Semi-diurnal speeds of the tidal streams in cm/sec.

Figure 6. Diurnal speeds of the tidal streams in cm/sec.

K₁ Phases

Figure 8. Distribution of the residual current across the Strait at Station 3.

Figure 9. Distribution of the residual current along the Strait.

Figure 11. Plot of the surface and bottom currents at Station 9 with the tide (fine line) superimposed.

Plot of the surface and bottom currents at Station 3 with the tide (fine line) superimposed. Figure 10.

Station 3 Plot of maximum ebb current and the tidal range between lower high water and low water. Figure 12.

Station 3. Plot of maximum ebb current and the tidal range between lower high water and low water. Same as Figure 12. An indication of the current to be expected may be obtained from the above tidal range. See Figure 14.

Figure 18. Hourly cross sections at Station 3 showing progress of tidal streams through a tidal cycle, (pages 26-31).

The shaded portion denotes ebb currents.

The shaded part of the diagram indicates the ebb tidal stream (west going); the white area indicates the flood tidal stream (east going). The figures within the profile denote cm/sec (51.5 cm/sec equals 1 kn).

The shaded part of the diagram indicates the ebb tidal stream (west going); the white area indicates the flood tidal stream (east going). The figures within the profile denote cm/sec (51.5 cm/sec equals 1 kn).

The shaded part of the diagram indicates the ebb tidal stream (west going); the white area indicates the flood tidal stream (east going). The figures within the profile denote cm/sec (51.5 cm/sec equals 1 kn).

The shaded part of the diagram indicates the ebb tidal stream (west going); the white area indicates the flood tidal stream (east going). The figures within the profile denote cm/sec (51.5 cm/sec equals 1 kn).

The shaded part of the diagram indicates the ebb tidal stream (west going); the white area indicates the flood tidal stream (east going). The figures within the profile denote cm/sec (51.5 cm/sec equals 1 kn).

Figure 19. Hourly cross sections at Stations 13, 14 and 15. The shaded portion denotes ebb currents.

Figure 20. Hourly plots of the current in the centre of the strait between Stations 12 and 17, (pages 34-39)

A plot of the residual current in the centre of the strait between Station 12 and 17. Figure 21.

OBSERVATIONS OF SEAWATER TEMPERATURE AND SALINITY AT BRITISH COLUMBIA SHORE STATIONS 1979

JUN 1 3 1983

L.F. Giovando

by

INSTITUTE OF OCEAN SCIENCES Sidney, B.C.

For additional copies or further information please write to:

Department of Fisheries and Oceans

Institute of Ocean Sciences

P.O. Box 6000

Sidney, B.C. CANADA

V8L 4B2

Governr.
Publication

Pacific Marine Science Report 81-23

-41623 EP331

OBSERVATIONS OF SEAWATER TEMPERATURE AND SALINITY AT BRITISH COLUMBIA SHORE STATIONS

1979

by L.F. Giovando

Institute of Ocean Sciences
Sidney, B.C.
1981

Abstract

Surface (approximately 1-metre-depth) oceanic salinities and temperatures have been recorded once a day at several locations on the coast of British Columbia for varying lengths of time — from a few months to several decades. This publication presents the data obtained in 1979 from nineteen such shore stations. Fifteen of the sites are lightstations operated by the Ministry of Transport. The remaining ones are: The Pacific Biological Station at Departure Bay, the Pacific Environment Institute at West Vancouver, the Bamfield Marine Station at Bamfield, and the Atmospheric Environment Service's meteorological station at Cape St. James.

Temperatures were determined at all nineteen sites by means of mercury-in-glass thermometers. Salinities were obtained at only seventeen locations; they were determined at fourteen by hydrometer, at two by laboratory-model inductive (electrodeless) salinometer, and at one by either salinometer or refractometer.

The data obtained are presented in two forms. Firstly, tables provide, for each site, the monthly means and the associated standard deviations, as well as the maximum and minimum values recorded during each month; the annual means are also listed. Secondly, graphs indicate the behaviour, throughout the year, of the data after the higher-frequency oscillations (e.g., those associated with lunar tides) have been removed ("smoothed") by the use of a seven-day normally-weighted running mean.

Introduction

A program involving once-daily observations of sea-surface salinities and/or temperatures at numerous locations on the coast of British Columbia has been in effect since the early 1930's. Most of these sampling sites have been at lightstations operated by the Ministry of Transport (MOT) or its organizational predecessors. The number of sites reporting at any given time has varied throughout the course of the program; sampling has been discontinued (and in a few cases later resumed) at some places and commenced (not necessarily simultaneously) at others. All available data obtained from these shorestations prior to 1979 have been published (e.g. Hollister and Sandnes, 1972; Giovando, 1980 and 1981).

In 1979, nineteen such locations provided sea-surface data. Fifteen of these were MOT lightstations. The remaining four were: the Pacific Biological Station (of the Department of Fisheries and Environment (DFE)) at Departure Bay; the Pacific Environment Institute (PEI) - also of DFE - at West Vancouver (West Van); the Western Canadian Universities Marine Biological Station at Bamfield; and the meteorological station (of the Atmospheric Environment Service (AES) of DFE) at Cape St. James.

The stations in question are shown (underlined) in Figure 1. Table 1 lists them in northwest-to-southeast order, along the "outside coast" (Langara Island to Race Rocks) and along the Strait of Georgia (Cape Mudge to Active Pass); the general location of each station, as well as the names of the observers that obtained the data during 1979, are also given.

Observational Equipment and Procedures

Except at Bamfield, Cape Beale and Active Pass, each daily observation was made at daytime high tide. At Bamfield and Cape Beale, sampling was carried out one hour before the daytime high tide. At Active Pass, observations were done at daylight high-water slack. All sampling times were determined by reference to the Canadian Tide and Current Tables (Fisheries and Environment Canada, 1979). On occasion — because of weather conditions or of the press of the observer's primary duties — the schedule could not be strictly adhered to; however, results obtained within ± one hour of the desired time were recorded. For reasons of observer safety, sampling was never attempted in darkness at any station.

At Sheringham Point, the determination of salinity was reinstated on 1 January 1979; temperatures only had been recorded during the period 1 April 1970 through 31 December 1978. At West Vancouver, sampling for temperature only was commenced on 3 December 1979.

(a) Temperature

At all *nineteen* stations, water temperature was measured by means of a mercury-in-glass thermometer. At fifteen (all except Departure Bay, West Vancouver, Bamfield and Cape Beale), the thermometers used in 1979 recorded in degrees Fahrenheit ($^{\circ}$ F), as has been the case since the inception of sampling. The instruments cover the range -10°

to $145^{\circ}F$, and are graduated in 1° intervals. At the remaining four stations Celsius thermometers, of range -10° to 60° and of interval $0.5^{\circ}C$, were employed. The seawater temperature was estimated to within $\pm 0.1^{\circ}F$ or $\pm 0.1^{\circ}C$. (Before being sent to a station, each instrument is checked against a calibrated thermometer; the maximum error allowed is $\pm 0.4^{\circ}F$ or $\pm 0.2^{\circ}C$.)

Because of the near-total predominance of the Celsius scale that now prevails in marine affairs, all shorestation sea-surface temperature data obtained subsequent to 1977 have been published in $^{\circ}$ C. Therefore, for the fifteen stations still utilizing Fahrenheit thermometers in 1979, the original readings were converted to the corresponding Celsius values — rounded off to the first decimal place. The F thermometers presently in use will be replaced by $^{\circ}$ C ones (-25 to +55°, interval $^{\circ}$ C) as attrition demands.

At all stations except West Vancouver, Cape Beale and Bamfield, the thermometer is (partially) enclosed in a protective case of 2.5-cm (1-in) aluminum pipe; this case also provides a "well" around the bulb of the thermometer. The case is attached to the end of a pole (also of aluminum pipe) which can be as long as about 6 m (20 ft); the greater pole lengths are necessary at sites where observations are carried out from steep bluffs. The thermometer is lowered to a depth of 1 m, and left for about two minutes. It is then raised and the water temperature recorded. At a few of these stations, seawater is obtained by bucket during inclement weather. At West Vancouver and Cape Beale, a bucket is used for all oceanographic observations; at Bamfield a Van Dorn sampling bottle is used at all times. When bucket or bottle is used, the temperature recorded is that obtained by immersion of the thermometer in the water thus collected.

(b) Salinity

Salinities were determined at *seventeen* stations (all except Cape St. James and West Vancouver). At all sites (except Cape St. James¹) at which the pole assembly is usually utilized, a plastic or glass bottle - usually of about 710-cc (25-oz) capacity - is also attached to the assembly. The uncapped bottle will fill during immersion. At the same time that the temperature of the water is recorded, a sample is drawn from the bottle for use in the determination of salinity. For those sites where a bucket (e.g. Cape Beale) or a bottle (e.g. Bamfield) is used, the salinity sample is drawn from the bucket or bottle.

At all but three of these seventeen stations, the density of each sample was determined by hydrometer. (The salinity, in o/oo (parts per thousand), is then obtained from this value of density.) The hydrometers employed are similar to those used by the U.S. Coast and

¹ Measurement of salinity was discontinued at Cape St. James on 31 May 1971.

Geodetic Survey (USC&GS) at its tidal stations²; they actually measure the *specific gravity*³ of a seawater sample. Specific gravity is a ratio of two densities and is therefore a dimensionless quantity. If however, by definition, distilled water at a temperature $^{\circ}$ C (39.2°F) has a density ρ_m =1, then the specific gravity of a substance having a density ρ is ρ/ρ_m and will be numerically equal to the value of ρ .

The density (or specific gravity) of a seawater sample depends upon both the salinity (the quantity of dissolved material in the sample) and the temperature of the sample at the time the measurement is made. Densities determined by hydrometer without temperature control must therefore be reduced to some "standard" temperature for conversion to the corresponding salinities. The standard adopted for this program is 15°C (59°F), the same as that presently used by the USC&GS.

An expression of the general form Sp.~Gr.~Tp. (or Temp.) $15/4^{\circ}C$ is provided on every hydrometer utilized in this program. It incorporates both the basis of specific gravity (distilled water at $4^{\circ}C$ (39.2°F)) and the standard temperature ($15^{\circ}C$, or $59^{\circ}F$) employed.

Hydrometers are supplied to the stations in one or more of three ranges of specific gravity: 0.9960-1.0110, 1.0100-1.0210, and 1.0200-1.0310. The scales are divided into intervals of 0.0002, and the values are estimated to ± 0.0001 ; the instruments are read employing techniques described by the USC&GS (Adams, 1942). Each instrument has its calibration checked immediately before being sent to a station.

Salinities at the remaining three stations were determined in 1979 as follows. At Departure Bay, a laboratory inductive (electrodeless) salinometer — an Auto-Lab Model 601 Mark III — was employed. For samples from Bamfield and Cape Beale, a similar type of instrument — in this case a Kahlsico Model RSB-7 — was utilized for about the first half of the year. On both instruments, salinities were estimated to the nearest 0.001%. The accuracy of both these models is claimed to be $\pm 0.003\%$ with duplicate determinations.

It may be noted that "comparison" determinations involving several dozen samples collected at British Columbia shorestations have indicated that about 85% of the "hydrometer" salinity values were within $\pm 0.3^{\rm O}/{\rm oo}$ of the corresponding ones obtained by salinometer (Hollister, unpublished).

In about mid-year, the <u>Kahlsico</u> became inoperative. It was found impossible to effect repairs even by the year's end. Subsequent to the instrument's breakdown, samples were analyzed by means of an

²Since 1970, the USC&GS has been a component of the National Ocean Surveys of the National Oceanic and Atmospheric Administration (NOAA).

³It should be noted that the term "specific gravity" has recently been replaced, in scientific usage at least, by the term "relative density".

American Optical Corp. salinity refractometer having automatic temperature compensation. The accuracy of this instrument is believed to be about $\pm 0.8^{\circ}/\text{oo}$. Readings were estimated to the equivalent of about $\pm 0.4^{\circ}/\text{oo}$.

The time of each daily observation (usually), as well as the associated seawater temperature and hydrometer, salinometer or refractometer readings, were recorded on monthly field sheets. These sheets were forwarded to West Vancouver, where they underwent preliminary processing.

Preliminary Processing of the Data

The temperature data were scanned, and values were rejected if it was discovered that a faulty thermometer had been used, or if the value was obviously the result of a misreading or of any other error in technique. Observed hydrometer readings were reduced to densities at the standard temperature, 15°C (59°F), by means of tables prepared by the USC&GS (Zerbe and Taylor, 1953). The appropriate calibration correction was then applied to each such density value. These corrected values were in turn converted to salinities. A salinity value was rejected, again, only if it obviously had resulted from a misreading of hydrometer, salinometer or refractometer or from other procedural errors.

If observations were missing for one day or for two consecutive days, the resulting gap was filled by value(s) obtained by linear interpolation utilizing the two observations bounding the gap. No interpolation was undertaken in those cases for which readings had been missed for three or more consecutive days (whether by accident or by design). Interpolated values were used to provide continuity to graphical representation of the data (see next section).

The salinity values determined by inductive salinometer were reported, in "final" form, to two decimal places. Those obtained by hydrometer or by refractometer were reported to only one decimal place, because of the lesser accuracy of these instruments compared to that of the salinometer.

Machine Processing of the Data

The daily temperature and salinity data remaining after the preliminary procedures noted above were processed into final form by the Marine Environmental Data Services Branch (MEDS) of Ocean and Aquatic Sciences (OAS), DFE, in Ottawa. For each station, this computer processing involved the determination of the twelve monthly means for temperature and for salinity, as well as of the corresponding standard deviations. The annual means were also computed (Somers, 1965). All such means – except those associated with salinity for months during which a salinometer was utilized – were rounded to one decimal place, and the corresponding standard deviations were truncated at the second decimal place. The remaining means were rounded to two places, and the corresponding standard deviations were truncated at the third place. Data obtained by interpolation were not utilized in the computation of the means.

A form of smoothing was performed on the data to minimize the effect of any variability associated with frequencies large compared to the annual frequency (those associated with lunar tides, for example). For simplicity, the daily values of salinity and/or temperature at each sampling station were here considered to be equally spaced in time — with a sampling interval, therefore, of 24 hours. A seven-day, normally-weighted running mean (Holloway, 1958) was utilized to smooth the resulting series; this form of filtering is considered to result in an output free of such defects as "polarity reversals" or phase shifts. The running mean was computed, for the entire year, for both temperature and salinity. In order that these means for each station be as continuous as possible consistent with the data involved, daily values obtained by interpolation were utilized in the associated computations. However, when a period of greater than two consecutive days of missed data was encountered the computations were "interrupted".

Presentation of Data

The data from each station are presented in two forms:

- in ${}^{\circ}C$ and of salinity in parts per thousand $({}^{\circ}/oo)$ pages 17 to 93. The results are listed in the same station order as that given in Table 1. Three months' data are listed on each page. Also recorded for each month are the mean, the standard deviation (STD. DEV.), the number of observations (OBSVNS.) involved in the computations of these two quantities, and the MAXIMUM and MINIMUM values. The annual means (YRLY. MEANS) for temperature and salinity are included with the December output for each station. Each interpolated daily value is identified by an asterisk (*). "Missed" values with which no interpolation is associated are denoted by a * followed by a blank space. Invalid days, such as April 31, are indicated by a blank space alone. It should be noted that these designations differ from those that have been previously employed ("*0.0(0)" and "0.00", respectively). Both the latitude and the longitude of each station (in degrees, minutes and seconds) are noted on every page, immediately after the station designation. For ease in reference, the monthly- and annual-mean temperatures and salinities have been summarized. Temperatures in C are given in Table 2. In addition, the F equivalents of the values in Table 2 are provided in Table 3 - primarily for the convenience of those who, because of either choice or necessity, still employ the Fahrenheit scale. It may be noted that no equivalent given here differs by more than ±0.1°F from the corresponding value obtained from the "original" Fahrenheit data. Salinities are given in Table 4.
- (2) "Annual" graphs of the seven-day, normally-weighted running means for temperature and salinity pages 95 to 133.

 These graphs are copies of the computer-generated plots of the means. Any interruption due to missing data in the associated computations will result in a gap in the plotted output as well. Each graph for temperature is provided with scales in both "C and "F. It is to be noted that the Celsius scale is located on the left-hand side of each graph of temperature, rather than on the right as in previous data reports. Also, the Fahrenheit scale rather than the Celsius has been "offset" in the present series of graphs. These changes are intended to emphasize the present preeminence of the Celsius system.

Several features associated with the information presented should be noted:

- (a) Circumstances beyond the control of the sampling program have resulted in marked data shortfalls at some stations:
 - (i) At Bamfield, no oceanographic information whatever was obtained during October through December, and data collected throughout the remainder of the year were sparse (especially so in April and in July through September). In Tables 2, 3 and 4, those months for which 1 to 10 values of temperature or salinity were recorded have been "flagged" (+); it is hoped that this admittedly arbitrary distinction will emphasize the need for circumspection in the use of the information involved.
 - (ii) At Cape Mudge, no data were obtained during August or September.
 - (iii) At Departure Bay, observations have not since May 1974 been carried out on weekends (Saturdays and Sundays) or on statutory holidays. The maximum number of (non-interpolated) values available for determination of each monthly mean has therefore been permanently reduced from, approximately, thirty to twenty at this site.
- (b) At Cape Beale, daily salinity values were determined either by inductive salinometer or by refractometer during April, June and July. Therefore these values are given to either one or two places of decimals (page 4). However, the computations of the means and standard deviations for these months were carried out on the assumption that all individual values involved were characterized by two decimals places (a refractometer derived value of 32.1 being considered as 32.10, for example). Therefore, although by far the greater number of determinations in each of the three months involved were carried out by salinometer, at best the final decimal place of all calculated quantities should be treated with some discretion.
- (c) At Active Pass, the daily salinity values (and the associated running means) during June through August of each year are in general relatively low quite often <20 /oo. The salinity range utilized for the running-mean graph at Active Pass (page 133) has therefore been chosen to be 18 to 32° /oo, rather than the 20-to- 34° /oo range employed elsewhere. It is felt that the variability in the mean during the three-month period can thus be better displayed.
- (d) At Kains Island, a few salinities of 33°/00 or more were recorded during each of Jume, July and August of 1979. Such values have also been obtained in some previous years at B.C. shorestations (see e.g. Giovando, 1980). All physical-oceanographic studies so far conducted indicate that such values of salinity are extremely unlikely to occur in the nearshore surface waters of B.C. The observer at the station had previously been apprised of this fact, and therefore checked both equipment and procedures thoroughly during the "high-value"

periods. No obvious faults or errors were revealed; however, with due regard to the uncertainties associated with salinities determined by hydrometer, such values should be regarded with extreme caution pending a satisfactory explanation of their occurrences. These "high" salinities have been retained in the tabular output but have been "flagged" by a double asterisk (**), they have been utilized in the computations of the running means but not, arbitrarily, in those of the monthly means.

Brief mention may be made of some recent efforts at analysis (as opposed to "annual" tabulations) of the B.C. shorestation data obtained up to the end of 1976. A preliminary study (Webster and Farmer, 1976) examined data from three of the stations on the outer coast - Langara Island, Kains Island and Amphitrite Point. The primary purpose was the development of techniques for the presentation of important features of the data - such as long- and short-term variations at each station, and the possible relationships between the data from different stations. The techniques applied were simple annual and monthly averaging, and the relatively modern technique of spectral analysis. The same authors later extended these analytical techniques to a further fourteen stations (Webster and Farmer, 1977).

A third publication (Associated Engineering Services Ltd., 1977) deals with the general efficiency of the present shorestation sampling program, especially in the light of financial constraints involved. Sampling errors, especially those inherent in salinity determination by hydrometry, are exhaustively discussed. Central to the study was a questionnaire — forwarded to all present and potential users of the data — seeking to clarify such information as the time scales of interest and the required accuracy of the data. Responses to this questionnaire, and the sampling accuracies determined, were utilized to prepare several options (further versions of the sampling program). These options, each of different sampling intensities and/or instrumentation mixes, and cost, are presented for consideration by the users.

Acknowledgements

The sea-sampling program at British Columbia shore stations owes its success primarily to the dedication of the many observers who are taking, or have taken, part in the obtaining of data. These observers have maintained a remarkable continuity of effort, often in the face of extremely hazardous sea and weather conditions. The several vital contributions of MOT to the program are gratefully acknowledged; the provision of the voluntary services of the lightkeepers as observers, as well as the excellent assistance received from the District Managers and Staffs of the Marine Transportation Division in Victoria and Prince Rupert, and from its Radio Branch, which transmits the numerous messages involved in the program. The services of the meteorological staff at Cape St. James have been made available to the program through the kind permission of the Regional Director of the Pacific Region of AES. The observers at all stations except Bamfield, Cape Beale and Departure Bay receive payment from Ocean and Aquatic Sciences, DFE, for their work on behalf of the program. Observations at Bamfield are carried out by members of the support staff; the observer at Cape Beale is paid by Bamfield. Thanks are due to the former Director at Bamfield, Dr. J.E. McInerney, for permission to publish the Bamfield and Cape Beale data included in this

report, and to Miss Sabina Leader for her efforts in making these data available. The computations were carried out by the Data Processing and Analysis Section of MEDS, under the direction of Mr. J. Nasr.

References

- Adams, K.T. 1942. Hydrographic manual. Rev. ed. U.S. Coast and Geodetic Survey. Special Publication No. 143.
- Associated Engineering Services Ltd. 1977. Analysis of Lighthouse Oceanographic Data - Phase III. Contract Report Series 77-5. For: Institute of Ocean Sciences, Patricia Bay - Sidney, B.C.
- Fisheries and Environment Canada. 1979. Canadian Tide and Current Tables, Volumes 5 (Juan de Fuca and Georgia Straits) and 6 (Barkley Sound and Discovery Passage to Dixon Entrance). Fisheries and Marine Service, Ottawa.
- Giovando, L.F. 1980. Observations of Seawater Temperature and Salinity at British Columbia Shore Stations, 1978. Pacific Marine Science Report 80-10. Institute of Ocean Sciences, Sidney, B.C.
- Giovando, L.F. 1981. Observations of Seawater Temperature and Salinity at Cape Beale Lightstation and Bamfield Marine Station, 1969-1977.

 Pacific Marine Science Report 81-6. Institute of Ocean Sciences, Sidney, B.C.
- Hollister, H.J. and A.M. Sandnes. 1972. Sea surface temperature and salinities at shore stations on the British Columbia coast, 1914-1970. Pacific Marine Science Report 72-13. Environment Canada, Marine Sciences Directorate, Pacific Region, Victoria, B.C.
- Holloway, J.L., Jr. 1958. Smoothing and filtering of time series and space fields. In: Advances in Geophysics, Vol. 4. pp. 351-389.

 Academic Press Inc., New York.
- Somers, H. 1965. Program G20106, daily seawater observations. Memorandum 1220-2-4/April 30, 1965. Canadian Oceanographic Data Centre, Special Administrative Services Division, Ottawa.
- Webster, Ian and David M. Farmer. 1976. Analysis of Salinity and Temperature Records Taken at Three Lighthouses on the B.C. Coast. Pacific Marine Science Report 76-11. Institute of Ocean Sciences, Patricia Bay Victoria, B.C.
- Webster, I. and D.M. Farmer. 1977. Analysis of Lighthouse Station Temperature and Salinity Data Phase II. Pacific Marine Science Report 77-21. Institute of Ocean Sciences, Patricia Bay Sidney, B.C.
- Zerbe, W.B. and C.B. Taylor. 1953. Sea water temperature and density reduction tables. U.S. Coast and Geodetic Survey. Special Publication No. 298.

Figure 1. Location of B.C. shore stations (underlined) making daily oceanographic observations (1979) reported in this publication.

Table 1. B.C. shore stations providing the oceanographic data reported in this publication: general locations, and names of observers.

STATION	LOCATION	OBSERVER(S)
Outside Coast		
Langara Island	Dixon Entrance, south side	J.E. Redhead (Mrs.)
Bonilla Island	Hecate Strait, north	M. Slater D. Graham J. Beaudet
Cape St. James	Queen Charlotte Islands, south end	D. Veale D. Geiger R. Dobinson
McInnes Island	Milbanke Sound entrance, north side	K. Coldwell (Mrs.)
Egg Island	Smith Sound, southern entrance	K. Ashe (Mrs.) S.G. Westhaver R.E. Akerstrom
Pine Island	Queen Charlotte Strait, western entrance	K.E. Watson (Mrs.) S.E. Plumpton (Mrs.) L. Bablitz (Mrs.) S.A. Lee (Mrs.)
Kains Island	Quatsino Sound entrance, north side	L.C. Collins (Mrs.) R.W. Moe
Amphitrite Point	Barkley Sound, western entrance	M.V. Stewart (Mrs.)
Cape Beale	Barkley Sound, eastern entrance	A.D. Thomson
Bamfield	Barkley Sound, near eastern entrance	R. Miller (Miss)
Sheringham Point	Juan de Fuca Strait, northern shore	E. Bruton (Mrs.)
Race Rocks	Juan de Fuca Strait, eastern end	F.B. Anderson (Mrs.)

Table 1 continued

STATION	LOCATION	OBSERVER(S)
Strait of Georgia		
Cape Mudge	Strait of Georgia, northern entrance	R. Wilkie J. Collette J.A. Abram S. Terrill
Chrome Island	Strait of Georgia, off central western shore	F.M. Collette (Mrs.) K.E. Watson (Mrs.) C. Restall J. Etzkorn (Mrs.)
Sisters Island	Strait of Georgia, central	W. Milne D.J. McNeil R.W. Emrich R.J. Grunert
Departure Bay	Strait of Georgia, central western shore	A. Ballantyne (Mrs.)
Entrance Island	Strait of Georgia, off central western shore	E. Cehak (Mrs.)
West Vancouver	Strait of Georgia, central eastern shore	A. Lamb P. Edgell
Active Pass	Strait of Georgia, southwestern shore	J.E. Ruck

Table 2. Monthly- and annual-mean temperatures $(^{\circ}C)$ - 1979

ual	2 r r r r r r r r r r r r r r r r r r r	al lack
Annual	999988111111111111111111111111111111111	general
Dec	88.2 88.2 88.2 7.7 88.7 7.7 88.2 88.3 88.2 88.3 88	of
Nov	9.4 9.7 9.7 10.1 10.6 10.6 10.6 9.7 9.7 9.7 9.7 9.7	because
Oct	11.9 11.7 12.1 10.3 10.3 10.4 12.5 12.6 12.5 12.0 12.0 12.0	sentative
Sep		resent
Aug	12.6 12.2 14.3 13.3 13.1 10.1 14.0 14.0 12.6 11.1 10.8 17.0 17.7 17.7	cemperature ered unrepr
Jul		つ
Jun		lues or g consi
Мау	8.9 9.3 10.0 10.0 8.7 10.6 8.2 10.8 11.5 11.8 9.5 9.8 12.1 13.0 12.1 13.0	daily values ed, being cor
Apr		list
Mar		n l to n not l e year
Feb	44.7 4.7 5.6 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6	nifies months with nifies annual mean of data during the
Jan	5.4 5.9 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	s montl s annua ta dur
Station	Langara I. Bonilla I. Rollines I. Cape St. James Egg I. Fine I. Kains I. Amphitrite Pt. Cape Beale Bamfield Sheringham Pt. Cape Mudge Cape Mudge Cape Mudge Cape Mudge Cape Wudge Cape Wudge Cape Wudge Cape Wudge Cape Wudge Cape Wudge Chrome I. Chrome I. Departure Bay Chrome I. Chrome I. Chrome I. Sisters I. Chrome I. Chrom	+ Signifies months wi -++ Signifies annual me of data during t

Table 3. Monthly- and annual-mean temperatures (OF) - 1979

Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annua1
Langara I.	41.7	40.5		45.3	48.0	.2		54.7	56.5	53.4	6.87	45.7	48.6
Bonilla I.	41.7	41.0		45.7	48.7	. 2		54.0	54.9	53.1	49.5	46.8	48.7
McInnes I.	42.6	42.1		9.94	50.0	5.		57.7	57.4	53.8	48.7	4.94	9.67
Cape St. James	43.9	43.3	9.44	45.9	47.7	.3		55.9	52.9	51,3	50.2	48.6	48.9
Egg I.	42.8	45.4	9.44	47.1	51.1	7.		55.6	55.6	50.5	48.9	47.8	9.67
Pine I.	9.44	43.9	9.44	45.5	8.94	7.		50.2	51.3	50.7	49.5	48.0	47.8
Kains I.	44.2	43.7	45.9	47.8		Ξ.		57.6	58.8	54.5	50.7	49.1	51.1
Amphitrite Pt.	42.8	43.0	9.94	9.85		0		57.2	58.8	54.3	51.1	49.5	51.3
Cape Beale	43.3	43.5	8.94	49.1		.2		54.7	55.0	50.7	50.9	49.5	50.4
Bamfield	43.9	43.3	+47.7	+50.0	+56.5	+58.6	+61.2	+59.9	+62.8	ŀ	- 1	1	‡,
Sheringham Pt.	43.9	44.1	0.94	47.8				52.0	53.1	50.7	49.5	47.7	49.1
Race Rocks	43.9	44.4	45.7	47.1		0	1.0	51.4	50.9	49.8	48.4	47.5	48.4
Cape Mudge	8.44	45.5	45.9	47.1			56.3	1	1	51.8.	47.1	45.9	48.7
Sisters I.	44.1	44.4	46.2	48.4		6	62.4	65.1	59.0	54.1	48.6	9.9.4	52.9
Chrome I.	44.4	45.0	46.4	49.3		5	61.3		57.0	52.9	48.7	47.1	52.3
Departure Bay	44.1	43.3	46.4	49.5		-	62.1	63.9	59.0		48.2	45.9	52.7
Entrance I.	45.0	45.1	0.94	47.8		9	61.7	63.7	57.9	53.6	48.7	46.8	52.3
West Vancouver	1	ì	i	ı	i	4	ł	ı	1	- 1	1	46.4	‡,
Active Pass	43.2	44.2	46.2	48.7	52.5	57.2	59.7	59.7	56.8	52.9	48.2	6.94	51.4

Note: - Signifies no data obtained

Signifies months with 1 to 10 daily values of temperature recorded

Signifies annual mean not listed, being considered unrepresentative because of general lack of data during the year ŧ

Table 4. Monthly- and annual-mean salinities (0/00) - 1979

Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
		0	0			37 1	31	31.8	31.9	31.9	31.9	31.9	31.8
	31.6	J X	51.3	n (1.70	30.0	30 0	30.8	30.7	30.8	30.8	31.0
	31.1	31.2	31.1	<u> </u>		50.9	0000	0000	21.0	310	31 1	30 8	31,3
	31.7	32.1	31.4	\sim		30.9	30.8	31.0	01.0	0.10	7	2000	20.00
	31 9	31.8	31.3	30.9		27.7	29.5	30.0	31.2	31.7	31.8	31.0	7.00
	71.7	21 3	31 0	31.3		32.0	31.6	32.0	32.4	32.1	31.9	31.5	31./
	21.7	20.7	20.00	31.0		32.2	32.4	32.6	31.4	31.0	30.3	28.9	31.1
4	20.00	7.00	20.00	30.40		31.4	31.2	31.4	30.0	30.4	29.5	29.0	30.2
H L	21.0	20.07	20.0	31 41	30.5	31.73	31,46	31.3	30.8	31.2	31.0	29.1	30.82
	11.70	20.67	400 00	+27 68		+27 21	1	t	1	ł		1	‡,
	131.01	20.00	20.02	21.00		31 0	31 7	31.8	31.1	31.4		30.9	31.5
Sheringham Pt.	31.8	51.7	50.9	21.6		31.6	31.5	31.6	31.5	31.5		31.5	31.5
	31.4	21.7	9.TC	0.10		20.40	27.1	1	1	28.6		28.7	28.9
	7.67	1.67	2.62	0.00		25.7	5 76	76.4	26.5	28.0		28.6	27.9
Sisters I.	7.67	1.67	4.60	7.67		7 × ×	0 90	280	28.6	29.1		29.3	28.9
	767.	29.3	5.67	0.67		27. 68	5.07	24.97	25.92	27.18	27.88	25.06	26.76
*Departure Bay	29.43	00.12	20.02	20.07		7 7 7	9 76	6.46	26.5	27.4		28.0	27.2
Entrance I.	7.67	7.67	1.07	7.07		1 1 1 1	0	0 40	26 4	27 9		29.3	27.6
Active Pass	29.1	29.6	28.6	2		72.5	74.7	4.07	4.07	7.17			

Values were determined by inductive salinometer (*), or by either inductive salinometer or refractometer (**) Note:

- Signifies no data obtained

+ Signifies months with I to 10 daily values of salinity recorded

-++ Signifies annual mean not listed, being considered unrepresentative because of general lack of data during the year Tabulations of Daily Sea-surface

Temperature and Salinity

1979

TEMP: Temperature (°C)

SAL: Salinity (0/00)

LANGARA ISLAND 54 15 19 N 133 U3 30 W

	JANUARY	1		FEBRU	ARY	MARCH	1979
DATE	TEMP	SAL		TEMP	SAL	TEMP	SAL
1	5•7	31.2		5 • 8	32.0	4.8	31.9
ء ع	6 • 1	31.9	*	5.7	* 31.8	5 • 7	31 • 8
3	5.2	31.5		5.6	31.6	5 • 8	32.0
3	5.6	31.6		5 • 8	31.5	5•6	32.0
5	5.5	31.9		5 • 6	31.9	6.5	32.0
6	4.8	31.6		5 • 3	31.2	6.0	31 • 8
7	5 • 1	31.2		5.1	31 • 4	5•7	31.6
, ප්	4.6	31.9		4.9	31 • 8	5•3	31.9
9	4.9	32.0		4.7	31.9	6.5	32.0
10	5.2	31.8		4.6	31 • 8	6•3	32.0
11	5.2	31.5		5 , 0	32.0	6 • 4	31 • 8
12	5.6	31.2		4.6	31.9	6.5	31.9
13	5.0	31.6		4 • 4	35.0	6 • 9	31.9
1+	4.5	32.0		4.7	31.9	7 • 1	32.0
15	5.5	31.9		4.8	31.8	6 • 7	31 • 8
16	5.8	31.4		4.7	31 • 8	6 • 8	31.9
17	5.6	31.1		4.6	31.5	6 • 5	31.5
13	6.1	31.5		5 • 1	32.0	7.2	32 • 3
19	5.5	31.8		4.9	31.6	6•8	32 • 1
20	5.3	31.6		4.0	31.8	6.5	31.9
21	5.7	31.0		4.3	32.0	6.6	32.0
55	5.9	31.2		4.2	31.5	5•9	31.9
23	5.7	31.2		3 * 8	32•1	5•7	31 • 6
24	5.3	31.8		3.7	31.9	5•7	32 • 1
25	5.3	31.5		3.8	31.9	5•7	31.6
26	5.7	31.9		4.2	32 • 1	5•8	31.9
27	5.9	31.6		4.9	31 • 8	6.0	31.9
29	5.2	32.0		5 • 1	31 • 8	5•8	31.9
29	5.6	31 • 8		C) - M		6.5	31.9
30	5.7	32.0				6•7	32 • 3
31	5.5	35.0				6•6	32 • 1
31	2 # 3	340					
MEANS	5 • 4	31.6		4.7	31 • 8	6.5	31.9
BBSVNS.	31	31		27	27	31	31
MAXIMUM	6 • 1	32.0		5 • 8	32•1	7•2	32+3
MINIMUM	4.5	31.0		3.7	31.2	4 • 8	31 • 5
STD.DEV.	• 40	•31		•59	•55	•55	•18

LANGARA ISLAND 54 15 19 N 133 03 30 W

	APRIL		MAY		JUNE	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 32 42 52 62 7 82 9 30 31	6.9 6.7 6.6 6.6 6.1 7.0 7.1 7.3 7.3 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	32.0 31.8 32.0 31.9 32.0 32.1 31.9 31.5 31.8 31.9 31.8 31.9 31.6 31.9 31.6 31.9 31.6 31.9 31.9 31.6 31.9 31.9 31.9	8.1 7.9 8.4 9.0 8.1 9.0 8.1 9.0 8.1 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	31.9 31.9 31.9 31.9 32.1 31.9 32.1 31.9 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1	9.7 10.0 9.6 9.7 9.6 9.7 9.7 9.8 9.9 9.9 9.9 11.8 11.3 11.4 11.3 11.4	32·3 32·5 32·3 32·0 32·0 32·0 32·3 32·3 32·3 32·3
MEANS.	7•4 29	31•9 29	8•9 30	30	10•1 29	32•1 29
MAXIMUM MINIMUM	8•9 6•1	32•3 31•5	10•2 7•9	32•7 31•5	11 • 8 9 • 3	32·5 31·6
STD.DEV.	•76	•21	•61	• 25	•65	• 22

LANGARA ISLAND 54 15 19 N 133 03 30 W

	JULY		AUGUST		SEPTEM	BER 1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 23 24 24 26 27 28 29 30 31	10.8 10.4 10.0 11.3 11.1 10.3 11.5 10.5 11.9 12.7 13.8 13.4 13.4 13.4 13.4 14.7 12.7 12.7 12.7 12.7	30.7 31.0 30.7 31.4 30.7 31.1 31.0 31.4 30.4 30.7 31.5 31.8 31.1 31.1 31.1 31.1 31.1 31.1 31.1	13.1 14.0 13.9 13.4 13.5 13.7 * 12.8 11.8 12.9 12.1 12.8 12.8 12.8 12.8 12.8 12.8 12.8	31 · 8 31 · 8 31 · 8 31 · 8 31 · 8 31 · 8 31 · 9 31 · 9 31 · 9 31 · 9 31 · 9 31 · 9 31 · 8 31 · 9 31 · 9	10 · 1 · 8 8 4 4 4 4 6 2 5 5 5 3 8 2 4 4 3 4 2 1 4 3 • 4 4 1 3 • 4 4 1 3 • 4 4 1 3 • 4 2 1 4 3 • 4 2 1	31.9 32.1 31.6 32.4 32.3 31.9 32.0 32.0 32.0 32.0 32.3 31.9 31.0 32.0 31.8 31.6 31.8 31.6 31.8 31.6 31.9 31.9 31.0 32.0 31.9 31.0
MEANS 88SVNS+	12.2	31 • 1	12•6 29	31.8	13•6 29	31 • 9
MAXIMUM MINIMUM	14•1 10•0	32.0	14.0	32 • 4	15.5 10.0	32·4 31·0
STD.DEV.	1.27	• 40	•73	• 39	1.09	•32

LANGARA ISLAND 54 15 19 N 133 03 30 W

	OCTOBER		NOVEME	NOVEMBER		ER 1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 16 17 18 19 20 12 23 24	14.1 13.4 13.5 13.1 13.2 12.4 11.3 13.3 13.3 13.8 12.7 11.7 11.5 11.6 10.4 11.7	32.3 32.0 32.1 32.0 31.9 32.1 32.4 31.8 31.5 31.4 31.4 31.4 31.4 31.4 31.4 31.8 31.8 31.8 31.8 31.8	10.9.1.9.5.3.0.6.4.8.4.5.4.2.5.6.4.9.7.5.7.3.2.0.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	32.0 32.0 32.0 32.1 31.9 32.0 32.0 31.0 31.0 31.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 32	7.9 8.4 8.4 9.2 8.4 9.2 8.4 7.8 8.3 7.1 7.9 8.1 7.9 8.1 7.9 8.1 7.9 8.3 7.9	31.9 31.9 31.8 31.8 31.9 31.5 31.5 31.1 31.8 31.6 31.4 31.8 31.2 31.9 31.9 31.9 31.9 31.9 31.9
24 25 26 27 28 29 30 31 MEANS OBSVNS YRLY.MEANS	11.5 11.9 11.1 11.2 11.2 10.7 10.7 10.1	31.9 32.3 31.9 31.9 32.0 31.9 31.5 31.5	9.0 8.6 7.8 7.9 8.9 9.5 8.6	31.8 32.1 31.9 32.1 32.0 31.9 32.1	7 • 2 7 • 5 7 • 3 7 • 7 8 • 3 7 • 7 7 • 6 30 9 • 2 9 • 2	32.3 31.9 31.6 32.1 31.8 32.0 32.3 32.1 31.9 30 31.8 32.9
MINIMUM STD.DEV.	10.1	31 • 4	7• 8	30 • 8	3·7 1·11	31 • 2 • 30

BONILLA ISLAND 53 29 39 N 130 38 04 W

	JANUARY		FEBRUA	RY	MARCH	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 0 1 1 2 1 3 4 5 6 7 8 9 10 1 1 2 1 3 1 4 5 6 7 8 9 20 2 2 3 2 4 5 6 7 8 9 30	5 • 1	30.7 30.8 31.0 30.9 30.8 31.1 30.7 31.2 31.2 31.1 31.2 31.1	4 6 6 1 6 6 2 3 4 9 7 9 0 5 4 9 6 3 6 9 1 6 6 4 0 1 9 2 5 5 5 5 5 5 5 4 4 4 5 5 4 4 4 4 5 5 4 5 5 4 5	31.2 31.2 31.2 31.1 31.5 31.4 31.5 31.4 31.5 31.5 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6	\$ 66 0 1 9 0 4 4 2 0 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	30.8 31.0 31.0 31.1 30.8 31.1 31.0 31.2 31.1 31.1 31.1 31.1 31.2 31.2 31.2 31.2 31.2 31.2 31.2 31.2
MEANS OBSVNS.	5·6 5·4 29	31 • 4	5•0 28	31 • 2 28	7*6 6*3 28	31 • 1 28
MAXIMUM MINIMUM	6.0	31.5	6•1 3•5	31 • 5 30 • 8	7•6 5•1	31 • 4 30 • 8
STD.DEV.	•36	•23	•51	•20	•53	•14

BUNILLA ISLAND 53 29 39 N 130 38 04 W

	APRIL		MAY		JUNE	1979
DATE	TEMP	CAL	ም ድ አለምን	0.41	57 PT 64 PS	
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1	7.8	30.8	■ 9•2	* 31.3	9•9	31 • 1
5	7.3	31 • 1	9+3	31 • 4	10.5	31 • 1
3	7•2	31 • 1	8 • 1	31.2	9•9	31.0
4	7•3	30 • 8	7•9	31.0	9•6	31.0
5	6 • 4	30.7	8 • 2	30 • 8	9•9	30.7
6	6.1	30.6	8 • 1	31.0	10.6	31.0
7	6.3	30.7	8•4	31.2	11 • 1	31 • 0
8	6.7	31.2	8 • 3	31.0	10 • 4	31 • 1
9	7 • 1	30+8	8 • 4	31 • 4	10.6	30.6
10	7.7	31.0	8 • 8	31.0	10.6	31.0
11	7.5	30 • 8	9+1	31 • 4	11.5	30 • 8
12	6 • 8	31.0	10 • 4	31.0	11 • 8	30 • 8
13	7•7	30.8	10.1	31 • 4	12.7	31 • 1
14	* 7.8	31.0	10.0	31 • 1	11.6	30 • 8
15	* 7.8 7.3	* 31.0	10.4	31.2	11.6	30 • 6
16 17	7.2	31 • 1 31 • 1	9•1 9•9	31.2	11.2	30 • 8
	8.3	31 • 1		31 • 4	11.7	31 • 0
18 19	8•4	31.4	8 • 5 8 • 9	31.5	11.2	30 • 6
50	7 • 1	31.4	9•0	31 • 1 31 • 4	11 • O 11 • 1	31 • 0 30 • 8
21	7.2	31.5	9•3	31.2	11 • 4	31 • 1
55	7.8	31.0	9•4	31 • 1	11.1	31 • 1
23	7.8	31 • 1	9•6	31.0	11.1	30 • 7
24	7.3	31 • 1	9•4	30 • 7	12.2	31 • 0
25	7 • 8	31.0	* 9.5	* 30 • 8		* 31 • 0
26	8 • 4	31.0	9•6	31.0	12•3	31 • 0
27	8.8	31.4	11.2	31 • 1	12.2	31.0
28	* 9.2	* 31.2	9•8	31 • 2	12•3	31.0
29	9•6	31.0	9•9	31 • 1	10 • 7	30 • 4
30	9•2	31.2	9•6	31.0	11•9	30.7
31			10.0	30•6		
MEANS	7•6	31.0	9•3	31 • 1	11•2	30•9
8BSVNS.	28	28	29	29	29	29
		_ 0	<u> </u>			b. J
MAXIMUM	9•6	31.5	11.2	31 • 5	12 • 7	31 • 1
MINIMUM	6•1	30.6	7•9	30•6	9•6	30 • 4
STD.DEV.	•83	• 22	•82	•22	•81	•19

BONILLA ISLAND 53 29 39 N 130 38 04 W

	JULY		AUGUST		SEPTEMB	ER 1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 10 11 21 21 22 22 22 23 24 26 27 28 29 30 31 31 31 31 31 31 31 31 31 31 31 31 31	11.0 10.7 11.1 11.9 11.9 11.9 12.9 12.7 12.7 13.9 12.7 13.9 12.1 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.6 12.7 12.6 12.6 12.7 12.6 12.6 12.7 12.6 12.7 12.6 12.6 12.7 12.6	30.8 30.8 31.1 30.6 30.6 30.6 30.6 31.0 31.1 31.2 31.1 30.8 30.8 31.0 31.1 31.2 31.1 31.2 31.1 31.2 31.1 31.2 31.1 31.2 31.1	13.4 12.7 13.4 12.9 12.2 13.4 11.5 11.6 11.6 11.6 11.7 11.4 12.9 13.6 11.6	31·1 30·7 30·8 30·7 30·6 30·7 31·0 30·8 31·1 31·2 31·2 31·2 31·2 31·0 30·6 30·6 30·6 31·1 31·0 31·4 31·4 31·4 31·4 31·4 31·4 31·4 31·4	11.3 11.3 12.2 11.9 12.7 * 12.6 * 12.8 12.8 13.3	31.1 31.3 31.6 31.0 30.6 30.8 30.8 30.8 30.7 31.0 31.1 31.0 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30
MEANS OBSVNS.	12.0	30.9	12•2 31	30.9	12•7 25	30·8 25
MAXIMUM MINIMUM	13.9	31·2 30·4	13·9 10·6	31 • 4	14 • 4	31.6
STD . DEV .	•76	• 23	•84	• 27	•75	• 26

BONILLA ISLAND 53 29 39 N 130 38 04 W

	GCTGBER		NOVEM	BER	į	DECEMBER	
DATE	TEMP	SAL	TEMP	SAL	TI	EMP	SAL
1	12.5	31.0	10.2	30•4		9 • 4	30 • 8
2	12.7	31.2	* 10.3	* 30 * 5		8 • 4	31 • 1
3	12.6	30 • 4	10•4	30•7		8 • 4	31 • 4
4	12.7	30.7	10.5	30•7		8 • 4	30 * 8
5	12.4	30+8	10.6	30 • 6		8 • 9	30 • 4
6	12.3	31.2	10+3	30•4		8•6	31 • 1
7	12.4	31.0	10•1	30•6		8•6	30.6
8	12.3	30•8	10 • 1	30.8		8 • 4	30.8
9	12.5	31.0	10.1	31.0			31 • 1
10	12.6	30 • 8	9•9	31 • 0		8•3	31.0
11	12.7	30+4	10.1	30 • 8	# 3	8•3 *	31 • 0
12	12.6	30.7	9•9	31 • 1		8 • 3	31 • 1
13	12.2	30.8	9•6	31 • 1		8 • 1	30.8
14	11.7	30+8	9•7	30 • 4	*	7•7 *	30 • 8
15	11.6	30 • 8	9•9	30.7	•	7•3	30.8
16	11.7	30•8	9•9	30.5	(6 • 7	31.0
17	11.8	30•6	9•6	30•6	,	7 • 8	30.8
18	11.2	30 • 4	9•3	31 • 1		8 • 4	31 • 1
19	11.6	30.7	9•4	31 • 6		8 • 3	31 • 1
50	11.7	30.6	9 • 7	30•6		8 • 4	31 • 4
51	10.7	30•4	* 9•8	* 30.7	,	7•8	31.0
55	* 10.9	* 30 • 4	9•9	30•8		7•7	30 • 3
23	11 • 1	30 • 4	8 • 9	31.0		8•2	30.3
24	11.1	30.6	8•8	31 • 1		7•8	30 • 8
25	11.4	30+4	9•4	31.0	,	7 • 8	30.2
26	11.1	30.4	9•0	31.0		8 • 3	30 • 3
27	10.4	30.7	8•7	31 • 1	# (8•3 *	30 • 4
28	10.8	30+7	8•9	31 • 1		8 • 4	30.6
29	10.6	30+6	9+3	31 • 4	i	8•3	30.3
30	10.1	30.3	* 9*3	* 31 • 1		9•3	31 • 1
31	10.0	30•6				8•3	31 • 1
MEANS	11.7	30.7	9•7	30•8		8 • 2	30 • 8
OBSVNS.	30	30	27	27		28	28
YRLY. MEANS		• • • • • • • •	• • • • • • • • •			9•3	31.0
MAXIMUM	12.7	31.2	10.6	31.6		9 • 4	31 • 4
MINIMUM	10.0	30•3	8•7	30.5		6•7	30.5
STD.DEV.	•84	•24	•54	*32		•53	•34

	JANUARY		FEBRUA	RY	MARCH	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27 28 29 30 31 31 31 31 31 31 31 31 31 31 31 31 31	6.9 6.9 6.7 6.4 6.4 6.4 6.4 6.4 6.6 6.4 6.4		6.6	* * * * * * * * * * * * * * * * * * * *	7·1 7·1 7·2 7·3 6·9 7·2 7·2 7·3 7·3 7·2	
MEANS 0BSVNS•	6•6 30	0.0	6•3 27	0 • 0	7•0 31	0.0
MAXIMUM MINIMUM	7 • 4 6 • 1	0.0	6•6 5•7	0.0	7•4 6•3	0.0
STD.DEV.	•30	0.00	•24	0.00	•30	0.00

	APRIL		MAY		JUNE	197 9
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	7.4 7.2 7.5 7.3 7.4 7.6 7.6 7.6 7.5 7.5 7.7 7.7 7.7 7.7 7.7 7.7 7.9 7.8 8.1 8.1 8.2 8.3 8.3		3222124444476931067674914789326 88888888888999888889999	* * * * * * * * * * * * * * * * * * * *	8 8 8 8 8 8 9 9 9 9 9 8 5 6 6 4 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	* * * * * * * * * * * * * * * * * * * *
MEANS BBSVNS.	7•7 30	0.0	8 • 7 31	0 • 0	9•6 30	0 • 0
MAXIMUM MINIMUM	8•3 7•2	U • O	9•6 8•1	0 • 0	10•7 8•6	0.0
STD.DEV.	•34	0.00	•39	0.00	•62	0.00

	JULY		AUGUST		SEPTEMB	ER 1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
123456789011234567890123456789031	10.6 10.6 10.6 10.6 10.6 11.6 10.6 11.7 11.7 11.7 11.7 11.7 11.7 11.9 11.6 11.3 11.4 11.2 11.1 11.2 11.3 11.4 11.2 11.3 11.4 11.3 11.6 11.6 11.6 11.6 11.6 11.6 11.6	* * * * * * * * * * * * * * * * * * * *	12.7 12.7 12.7 12.6 6.7 12.0 8.9 12.0 8.9 12.0 8.9 12.0 8.0 12.0 8.0 12.0 8.0 12.0 8.0 12.0 8.0 12.0 8.0 12.0 8.0 12.0 8.0 12.0 8.0 12.0 8.0 14.0 8.0 14.0 8.0 14.0 8.0 14.0 8.0 14.0 8.0 14.0 8.0 14.0 8.0 14.0 8.0 14.0 8.0 14.0 8.0 14.0 8.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14		13.7 14.3 12.6 12.3 12.1 11.9 11.9 11.3 11.0 11.1 10.9 11.1 11.7 11.5 11.0 11.1 11.0 1	
MEANS OBSVNS.	11•3 31	0.0	13•3 31	0 • 0	11·6 30	0 • 0
MAXIMUM MINIMUM	12·8 10·1	0.0	14·9 11·7	0.0	14•3 10•9	0.0
STD.DEV.	•68	0.00	•85	0.00	•79	0.00

	#CT#BER		NOVEMBER		DECEMBER	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP S	SAL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	11.0 10.7 10.4 10.2 10.3 10.7 10.8 11.0 10.4 10.6 11.2 11.6 11.4 11.4 11.2 10.6 10.8		10.6 10.7 10.7 10.7 10.7 10.7 10.5 10.4 10.6 10.6 10.6 10.6 10.0 10.3 10.1 10.4 9.8 9.7 10.0 * 9.6 * 9.7 10.0 * 9.6 * 9.8 * 9.7 * * 9.8 *	*	**************************************	
MEANS OBSVNS.	10•7 29	0.0	10•1 27	0.0	9•2 30 9•4	0 • 0
YRLY.MEANS MAXIMUM MINIMUM	11.6	0.0	10+7 8+8	0.0	9•4 9•7 8•7	0.0
STD.DEV.	• 45	0•00	•58	0.00	•25	0.00

MCINNES ISLAND 52 15 48 N 128 43 10 W

	JANUARY		FEBRU	ARY	MARCH	19 7 9
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1	6.2	30.7	5+2	31.9	5•6	32 • 3
2	6.0	31.0	5.2	31.9	5 • 4	31.9
3	6.2	31.1	5 * 8	32.3	5 • 9	32.1
7 4	6.2	31.1	5.6	32.3	6.0	32.3
5	6.2	31.1	6 • 4	32.3	6•3	32.3
b	5.8	31.2	6 • 4	32.3	6.6	32.5
7	6.0	31.2	6.3	32.4	6 • 1	31 • 8
8	6.3	31.5	5.9	32.3	6.5	31 • 8
9	6.3	31.4	6.1	32 • 3	6 • 3	32.0
10	5.8	31.4	5.9	32.3	6•3	31 • 4
11	5.9	31.5	5.6	32.3	6.0	30.0
12	5.8	31.6	5*6	32 • 3	6 • 2	30.2
13	5.8	31.6	5 • 1	31.6	5•9	30 • 0
13	6.2	31.8	5.0	32 • 1	5•9	31.2
15	5.2	31.5	5.2	31.9	6•3	31.2
16	5.6	31.6	5.4	31.5	6.5	30.7
17	5.7	31.6	5+3	31.6	5•8	30.2
18	5.9	31.8	* 5.5	* 31.8	6 • 4	31 • 4
19	6 • 1	32.1	5•8	32.0	6•7	30 • 3
50	6.3	32.3	5.7	31.9	6•8	31 • 4
21	5.9	35.0	5.3	31.9	7.2	30.7
55	6 • C	35.3	5.2	31.9	7.2	31 • 1
23	6.4	32.5	5 • 1	31.9	6 • 9	31.6
24	6.2	32.3	5.0	31.6	7.0	31.5
25	5 • 7	32.3	5+3	32.0	6 • 8	31.2
26	6.3	35.3	5.3	32.0	7 • 1	31.6
27	6.1	32.3	5 • 9	32.3	6 • 7	31.6
28	5.4	31.6	5.6	32.3	6•6	31.6
29	5.6	32.0			6 • 7	31.6
30	5.6	32.0			6 • 8	31.9
31	5.6	35.3			6•6	31.9
MEANS	5.9	31.7	5 • 6	32•1	6•4	31+4
OBSVNS.	31	31	27	27	31	31
MAXIMUM	6.4	32.5	6 • 4	32•4	7.2	32.5
MINIMUM	5.2	30.7	5.0	31.5	5•4	30.0
STD.DEV.	•30	• 48	•44	• 27	• 47	•71

MCINNES ISLAND 52 15 48 N 128 43 10 W

	APRIL		MAY		JUNE	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	608755912122127107164448403297 6087559121227107164448403297	31.9 31.6 31.6 31.6 31.6 31.9 31.9 31.9 31.4 31.4 31.4 31.4 31.5	9.1 8.9 9.0 9.0 9.0 9.6 9.7 9.6 9.6 9.6 9.9 10.0 9.9 9.9 10.3 10.1 9.9 10.3 10.2 10.6 10.7 10.8 10.8 10.8 11.2	31.6 31.6 31.8 31.5 31.1 31.1 31.1 31.1 31.1 31.1 31.1	11 • 1 10 • 8 10 • 7 10 • 7 11 • 1 11 • 3 11 • 1 11 • 2 11 • 4 11 • 7 11 • 8 11 • 7 11 • 9 12 • 7 12 • 9	31.5 31.5 31.5 31.5 31.5 31.5 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6
MEANS BBSVNS+	8•1 30	31•3 30	10•0 31	31·6 31	11•4	30·9 30
MAXIMUM MINIMUM	9•9 6•6	31•9 30•7	11 • 2 8 • 9	32 • 1	12•7 10•7	31 · 8 29 · 5
STD.DEV.	1.00	• 38	•67	•28	•49	•56

MCINNES ISLAND 52 15 48 N 128 43 10 W

JULY			AUGUST		SEPTEMO	ER 1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 23 45 67 89 0 11 12 13 14 15 16 17 18 19 20 12 23 24 26 26 27 28 29 30 31	13.0 11.1 11.4 13.9 14.0 13.7 13.0 14.0 13.7 13.0 14.0 14.0 14.0 14.0 13.0 13.0 14.0 13.0	31.1 31.0 30.7 30.6 30.3 29.8 30.2 30.2 30.2 30.8 31.1 31.2	14.0 13.8 13.9 14.6 14.6 13.6 13.6 * * * * * * * * * * * * * * * * * * *	31.4 31.1 30.8 31.8 31.6 31.0 * * * * * * * * * * * * *	14.1 14.0 14.0 13.9 14.0 13.9 14.0 13.9 13.9 13.9	31.9 31.8 31.8 31.8 31.6 31.5 31.4 31.5 31.6 31.1 31.5 31.8 31.5 31.8 31.5 31.1 30.0 30.3 31.1 31.4 31.5
MEANS BBSVNS.	13.5 31	30·8 31	14.3	31.6	14.1	31.3
MAXIMUM MINIMUM	15·8 11·1	31·6 28·5	15•3 13•3	32.0	14•9 13•0	31 · 9 30 · 0
STD.DEV.	1.04	• 70	•68	• 33	•41	• 48

MCINNES ISLAND 52 15 48 N 126 43 10 W

	OCTOBER .		NONEWRE	ER	DECEMBE	R 1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2	13•7 13•0	32•3 31•5	10.2	30+3 30+3	8 • 4 8 • 0	31 • 2 31 • 0
3	13•1 13•3	30.0	10.2	30.3	8 • 6 8 • 4	31 • 4
5 6	13•1 13•1	30•4 30•6	9•8 9•8	30•6 30•8	8•4 8•2	30 • 7 30 • 3
7 8	12.9 12.9	30·8 31·1	10·0 9·8	30 · 8 31 · 1	8•4	30 • 7 30 • 8
10	12.9	31.1	10.0	31 • 1	8•3 8•2 8•2	31 • 2 31 • 2 31 • 2
11 12 13	13.0 12.9 12.8	31·2 31·2 31·4	9•6 9•9 9•8	31 • 8 31 • 6 31 • 6	7•9 7•6	31 • 0 31 • 0
14 15	12.6 12.2	30·4 30·2	9•9 9•9	31.6	7•2 6•9	31 • 1
16 17	12.0 11.3	30•7 31•1	9•7 9•5	31 · 2 31 · 5	6•8 7•0	30 • 0 30 • 0
18 19	11.4	30·6 31·2	8 • 8 9 • 3	31 • 4	7•7 7•8	30 • 2 30 • 4
51 50	11•1 11•2 11•3	31.0	9•6 9•9 9•4	31 • 5 31 • 9 31 • 8	7•7 .8•4 7•8	30 • 6 31 • 2 31 • 0
22 23 24	11.8 11.3	31•1 32•0 30•8	9•3 9•2	31 · 8 31 · 6	7 • 6 7 • 7	31 · 0 31 · 0
25 26	11 • 4	31 • 1	8 • 7 5 • 7	31 • 4	8•3 8•6	31 • 0 31 • 4
27 28	11.3 11.3	31.4	7•9 7•8	30 • 4	8 • 8 8 • 6	31 • 4
29 30 31	11.2 11.2 10.3	31•2 31•2 30•6	7 • 6 7 • 6	30.5	8 • 0 7 • 7 7 • 8	30 • 7 30 • 4 30 • 3
MEANS	12•1	31•0	9•3	31 • 1	8 • 0	30•8
OBSVNS. YRLY.MEANS	31	31	30	30 31•9	31 •••• 9•8 8•8	31 31 • 3 31 • 4
MAXIMUM MINIMUM	13.7	32·3 29·0	10•2 5•7	30.5	6•8	30.0
STD.DEV.	•91	•60	1.02	•60	•53	• 40

	JANUARY		FEBRUAR	FEBRUARY		1979	
UATE	TEMP	SAL	TEMP	SAL	TEMP	SAL	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 17 18 19 20 21 22 23 24 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	5 6 6 6 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6	2.0 31.0 3	5.6.6.1.2.2.9.1.8.8.1.6.3.6.7.2.2.1.0.8.1.4.9.8.1.6.3.6.7.2.2.1.0.8.1.4.9.8.1.7.2.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1	31.9 32.0 31.6 31.4 32.1 32.0 31.9 31.8 31.9 31.9 31.9 31.9 31.8 31.9 31.8 31.9 31.8 31.8 31.8 31.8	6 • 4 • 6 • 6 • 6 • 6 • 6 • 6 • 6 • 6 •	31.8 31.8 32.1 31.6 31.4 31.4 31.6 31.5 31.4 31.6 31.5 31.4 31.6 31.1 31.0 31.1 31.0 31.1 31.0 31.0 31.1 31.0	
29 30 31	5 • 7 5 • 7 5 • 6	31.8			* 7·8 7·8	* 31 · 0 31 · 1	
MEANS • OBSVNS •	6•0 30	31.9	5•8 28	31.8	7 • 0 30	31 • 3	
MAXIMUM MINIMUM	6 • 7 5 • 1	32.3	6.2	32·1 31·2	8 • 3 6 • 1	32·1 30·8	
STD.DEV.	•37	• 20	•45	• 52	•54	• 35	

	APKIL		MAY		JUNE	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1	7•3	31•1	9•4	31 • 4	13•6	27.4
5	7.5	31 • 1	9•5	31.2	12.7	27.4
3	7.2	30.8	10.1	30.0	12 • 9	24.2
4	7.4	31.1	9•9	30.5	* 11.5	* 26 • 8
5	* 7.3	* 30.7	9+3	31.0	10.0	29.5
6	7.2	30.3	9•3	31 • 1	11 • 2	30.0
7	6.9	30.8	9•2	31.2	10.9	29 • 1
ි සි	7•3	31.6	8 • 9	31.0	12•2	27.2
9	7.3	31 • 1	10.2	30 • 8	12.8	26.0
10	7.7	30.7	9.5	31.2	* 12•3	* 26.3
11	7.7	31.2	9.7	31.5	11.7	26.7
12	7.3	31.2	9•9	31 • 4	12•3	28.0
13	7.9	31.0	10.1	31 • 4	13.9	27.6
14	7.9	31.0	10.5	31 • 1	13•3	28 • 1
15	8 • 1	31.2	10.1	30.2	11•3	27.2
16	8.3	30.7	11 • 4	29•3	13•2	25 • 1
17	8.8	30.8	11.1	29•3	11 • 8	27.6
18	9.4	29•7	10.7	30.0	11 • 1	29.0
19	9.0	30.3	9•5	* 28.7	10•6	29.7
20	8.2	30.4	11.6	27•4	11.6	27 • 8
21	8 • 1	30 • 4	11.0	29•0	13.8	26.4
55	8 • 4	31.0	11.7	28 • 8	12.8	27.7
23	9•9	31.1	11.1	30.0	13•4	28 • 6
24	9•4	31 • 1	11.1	28•8	14.6	25.9
25	9•4	31.2	10.7	29•0	13•8	29•7
26	8.9	31.2	12.2	28.0	14.0	26 • 1
27	10.5	31 • 1	11.7	29.9	14 • 4	27 • 1
28	11.2	30.8	10.9	30.5	14.6	28 • 4
29	11.1	30.8	12.1	27 • 1	11•9	30 • 4
30	9.2	31.2	12.9	26 • 4	12.9	29.0
31		0.	12.9	27.4		
MEANS	8 • 4	30•9	10.6	29•8	12.6	27.7
8BSVNS.	29	29	31	30	28	28
MAXIMUM	11.2	31.6	12.9	31.5	14.6	30 • 4
MINIMUM	6.9	29.7	8 • 9	26•4	10.0	24.2
STD.DEV.	1.19	• 38	1.10	1 • 46	1.27	1.52

	July		AUGUST		SEPTEM	BER 1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 30 31 31 31 31 31 31 31 31 31 31 31 31 31	12.8 10.2 11.7 13.8 13.8 14.9 13.2 11.6 10.5 11.4 11.4 11.4 11.4 11.4 11.7 11.7 11.8 11.8 11.8 11.8 11.8 11.8	30.4 30.4 30.4 30.8 30.6 30.6 30.6 30.6 30.6 30.6 30.7 31.0	12.8 12.8 13.1 16.7 12.8 13.6 14.6 14.6 14.6 11.5 14.3 11.8 13.3 12.8 13.0 11.3 11.8	27.7 28.0 27.1 26.0 27.0 28.5 29.5 29.7 28.7 29.7 29.7 29.9 30.6 31.6	12.6 13.4 13.2 11.7 13.5 13.7 14.3 13.9 14.4 13.9 14.4 13.9 14.0 13.6 13.6 13.6 13.8 12.8 12.8 12.7	31.0 31.5 31.5 31.2 31.4 31.8 31.9 32.0 31.8 31.1 31.9 32.1 31.6 * 31.3 31.0 29.8 31.0 30.7 31.0 30.4 31.5 30.3 30.6 30.3 31.4 31.4 31.4 31.4
MEANS OBSVNS.	12.6	29•5 30	13·1 30	30 • 0	13•1	31 • 2 29
MAXIMUM MINIMUM	15•1 10•2	31.2	16.7	31·6 26·0	14 • 4 11 • 1	32·1 29·8
STD.DEV.	1.32	1 • 67	1.27	1.56	•92	• 56

	GCTOBER		NBAFA	BER	DECEMBER 197	
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1	10.7	30.7	9•7	32.0	9 • 4	31 • 8
2	10.3	31 • 1	9.7	31.6	9 • 4	32+0
3	10.4	31.6	9 • 9	31.6	9•4	32 • 1
4	10.8	28•4	9 • 9	31 • 8	9•6	31 • 9
5	10.8	30+3	10.0	31 • 8	9•6	31.9
6	10.4	31.5	9.9	31 • 8	9•4	31 • 9
7	10.7	31+1	* 9.8	* 31 • 8	9•4	32.0
8	10.9	30.8	9•7	31.9	9•4	31 • 8
ğ	10.8	30.7	9•8	31.9	9.0	32.0
10	10.9	30•3	9•3	31 • 8	8•9	31.9
11	10.9	30.5	9•3	31 • 8	8 • 9	31 • 6
12	10.8	29•1	9.0	31 • 8	8 • 8	31.5
13	10.6	31.2	9.2	31 • 8	8•9	31.5
14	10.3	31.4	9.4	31.6	8 • 1	30 * 8
15	10.2	30.6	* 9.4	* 31 • 7	* 8 • 1	* 31.0
16	10.4	31 • 2	9.4	31 • 9	8.5	31.2
17	10.2	30.8	9.4	32 • 1	8•9	31 • 1
18	9.8	31.5	9•1	32.0	8•9	31 • 4
19	9.9	31.5	9•0	31 • 6	9•1	31 • 2
50	9•7	31 • 4	9•5	31 • 5	8.9	31 • 8
21	9•7	31 • 4	9•4	32 • 1	8 • 8	32.0
55	10.0	31.4	9•5	31 • 9	8 • 6	31.9
23	10.2	32.1	9•4	35.0	8•3	31 • 8
24	10.0	31.8	9.4	32 • 3	8•6	31 • 8
25	10.1	32.4	9•3	31 • 8	8•7	31.6
26	10.3	32+3	8 • 9	31 • 8	8 • 4	31 • 8
27	10.1	32.0	8•6	31 • 8	8.5	31.5
28	10.0	31 • 6	9•1	32.0	8•5	31 • 1
59	10.0	31.8	8 • 9	31 • 8	8•3	31 • 1
30	9.8	31.6	9•1	31 • 9	8 • 1	31 • 2
31	9.8	31.9		31.43	8.5	31 • 4
31	7. 0	3147				4
MEANS	10.3	31.2	9•4	31 • 8	8 * 8	31 • 6
BBSVNS.	31	31	28	28	30	30
YRLY.MEANS					9•8	30.7
MAXIMUM	10.9	32.4	10.0	32•3	9•6	32.1
MINIMUM	9.7	28+4	8•6	31.5	8•1	30 • 8
STD.DEV.	•39	*87	+3 5	•18	•46	• 35

		JANUARY		FE	BRUARY		MARCH	1979
UAT	Ě	TEMP	SAL	TEM	P SA	L	TEMP	SAL
	1 2 3 4 5 6 7 × 9 0 1 1 2 3 4 5 6 7 × 9 0 1 1 2 3 4 5 6 7 × 9	6.8 7.1 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	81.556531.6531.6531.6531.6531.6531.6531.6	666666666666666666666666666666666666666	0 31 8 31 9 31 9 31 8 31 8 31 8 31 8 31 8 31 8 31 8 31 8	2 2 4 4 1 • 1 • 0 5 5 1 • 4 1 • 5 2 0 1 • 6 1 • 5 1 • 4 1 • 5 2 1 • 6 1 • 5 1 • 4 1 • 1 1	6.8 6.7 6.8 7.0 7.0 6.8 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	31.0 31.2 31.1 31.2 30.8 31.5 31.0 31.0 31.1 31.1 31.1 31.1 30.8 30.7 30.4 30.6 30.7 31.0 30.8 31.1 31.1 31.0 30.8 30.7 31.0 30.8 30.7 31.0 31.1
	30 31	6·9 7·2	31.5				7.0	31 • 1
IEANS		7.0 31	31.5		•6 3 28	1•3 28	7•0 31	31.0
MUMININI MUMININI		7·2 6·6	31.9			11 • 6	7 • 6 6 • 7	31.5 30.4
STD DEV.		•13	• 24		•50	•21	•21	•55

	APRIL		MAY		JUNE	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1	7.0	30•8	8•2	31 • 6	9•2	31 • 8
2	7.2	31.0	8 • 1	31.6	9•5	31 • 8
3	6.8	31.2	8 • 1	32.9	8 • 8	32 • 1
4	7.0	31 • 1	7 • 8	32.5	8 • 9	32.0
5	7.0	30.7	7 • 5	32.8	8 • 8	31 • 4
6	6.8	31.2	7 • 8	31.9	8•8	31 • 9
7	6 • 8	31 • 0	8 • 1	31.6	8•9	32 • 4
8	6.8	31.0	8.2	31.6	8•9	31.9
9	7.0	31.0	8•2	31.5	9•0	32.0
10	7 • 1	31.0	8 • 1	31.6	9•1	31 • 9
11	7.0	31.0	8•4	31.6	8 • 9	31.2
12	* 7.2	* 31.0	8.2	31.5	8 • 8	31.9
13	7 • 4	31.0	8 • 2	31.5	9.0	32.0
14	7•7	31 • 4	8 • 5	31.5	8•9	32.0
15	7.9	31 • 1	8•2	31 • 4	8•8	32.0
16	7.9	31 • 4	8.2	31.9	8•8	32.8
17	7.5	31.2	8.2	31 • 6	9•0	32 • 3
18	7.3	31.5	8 • 4	31 • 8	8•6	32 • 4
19	7.6	31.0	8.2	31.5	8 • 8	31.9
50	7.6	31.0	7.9	31 • 8	9•1	31.9
21	7.0	31.9	8 • 1	31.5	9•8	32.7
55	7 • 1	31 • 4	* 8 • 1	* 31.5	9•1	32.0
23	7.5	31.2	8 • 2	31.5	9•1	31.5
24	7.8	31.2	8 • 2	31.9	9•2	31 • 8
25	7.7	31 • 1	8 • 1	31 • 8	9•2	32 • 1
26	8.2	31 • 4	8.2	31 • 8	8•9	31.9
27	9•1	32.0	8.2	32.5	9•5	32.3
28	8.9	32•3	8 • 7	32.5	9 • 9	32.0
29	8.9	32 • 1	8 • 8	32.5	9•7	31 • 6
30	8.2	31.8	8 * 9	* 32.6	8•9	31.5
31			9•0	32•7		
MEANS	7.5	31•3	8 • 2	31•9	9•1	32.0
0BSVNS.	29	29	30	29	30	30
MAXIMUM	9•1	32•3	9•0	32•9	9•9	32.8
MINIMUM	6.8	30.7	7.5	31 • 4	8•6	31.2
STD.DEV.	• 65	• 40	•31	• 46	•32	• 35

	JULY		AUGUST		SEPTEME	SER 1979
UATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 21 3 4 5 6 7 8 9 10 11 21 3 4 5 6 7 8 9 20 22 3 24 25 6 27 28 9 30 31	9.5 10.1 9.0 10.2 9.9 9.8 9.5 10.2 10.0 10.0 9.8 10.1 10.2 10.1 9.8 10.1 10.2 10.2 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	32.8 31.5 31.5 31.5 31.5 31.5 31.6	10·1 10·2 10·1 10·2 10·1 10·1 9·8 9·8 9·8 10·2 9·2 9·5 9·5 9·5 9·5 9·5 10·1 10·9 10·9 10·9 10·9 10·9 10·5	32.0 31.6 31.9 31.6 31.6 31.6 32.8 32.8 32.9 32.8 32.9 31.6	10.5 10.1 11.5 11.5 11.5 11.5 11.5 10.7 11.5 10.9 10.1 10.6 11.0 11.0 11.0 11.0 11.0 11.0	31 · 8 32 · 3 32 · 9 32 · 3 32 · 5 31 · 6 31 · 8 32 · 7 32 · 1 31 · 8 32 · 7 32 · 1 31 · 9 31 · 9 32 · 1 32 · 5 32 · 4 31 · 9 32 · 1 32 · 5 32 · 4 32 · 7 32 · 6 32 · 7 32 · 7
RSVNS.	9•9 31	31.6	10+1	32.0	10.7	32 • 4
1AXIMUM 1INIMUM	10.5	32.8	9.2	32·8 31·4	12·0 10·0	32·9 31·6
STD.DEV.	*37	•38	• 47	•38	•57	• 39

	OCTOBER		NOVEM	BER	DECEM	BER 1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	11.0 11.0 11.8 11.1 10.5 10.1 10.0 10.0 10.1 10.0 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8	32.8 32.7 31.9 32.0 32.5 32.5 32.5 32.4 31.4 31.4 31.4 31.4 31.4 31.4 31.4 31.8 31.8 31.8 31.8	10 • 9 • 1 9 • 9 • 9 • 9 • 9 • 9 • 9 • 9 • 9 • 9	31.8 31.8 31.9 31.6 31.6 31.6 31.9 32.0 31.5 32.1 32.0 31.4 31.9 31.4 31.9 31.6	99.00000000000000000000000000000000000	32.9 31.5 31.8 31.0 31.1 31.4 31.5 31.5 31.6 31.6 31.4 31.1 31.6 31.6 31.6 31.6 31.6 31.9
26 27 28 29 30 31	10.8 10.8	31.8 31.9 31.9 31.8 31.8	9 • 5 9 • 6 * 9 • 4 9 • 2	31.9 32.7 * 32.7 32.8	8 · 8 8 · 8 9 · 0 8 · 8 9 · 0	31.0 31.2 30.7 32.0 32.5
MEANS OBSVNS. YRLY.MEANS MAXIMUM MINIMUM	10.4 29 11.8 9.5	32·1· 29 32·8 31·4	9•7 27 10•4 8•0	31 • 9 27 	8 • 9 27 • • • • 8 • 8 9 • 8 8 • 2	31.5 27 31.7 32.9 30.7
STD.DEV.	•58	+44	•49	•32	•45	•51

KAINS ISLAND 50 26 39 N 128 U1 47 W

	JANUAR	Y	FLBRUAL	* Y	MARCH	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
12345678901123456789 11123456789 222222222222222222222222222222222222	7.1 6.0 7.6 6.0 7.6 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	30.6 31.8 31.8 31.8 31.9 31.9 31.9 31.9 31.9 31.9 31.9 31.9	6.47.9006.955.491357762331842376 6.47.9006.955.491357762331842376	31.2 32.0 31.6 31.5 31.4 31.6 31.9 31.8 31.1 29.1 31.1 29.8 31.1 31.1 31.0 30.7 28.1 29.5 29.5 29.5 29.9	6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	29.5 31.0 30.3 30.6 30.4 30.2 29.3 28.2 27.7 30.2 29.7 30.3 29.9 29.1 29.8 29.9 29.1 29.9 29.1 30.2 30.7 30.6 30.6 30.6 30.6
30	6.2	31.8		20.7	7 • 8 8 • 2 7 • 7	30 · 7 31 · 0 29 · 8
MEANS BBSVNS+	6.8	31 • 4	6•5 28	30•7 28	31	31
MAXIMUM MINIMUM	9•8 5•9	32•3 29•5	7 • 0 5 • 8	32·0 28·1	8 • 5 6 • 5	31 · 0 27 · 7
STD.DEV.	•65	•62	•31	•97	•54	•88

KAINS ISLAND 50 26 39 N 128 01 47 W

	APRIL		MAY		JUNE	1979
UATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	2 3 2 5 5 3 2 2 7 5 7 2 6 5 5 0 8 8 8 0 1 2 5 2 4 3 5 3 10 • 1 4 10 8 4 10 8 10 8 10 8 10 8 10 8 10	30.8 30.8 30.8 31.0 31.1 30.7 30.2 30.2 30.2 30.7 30.7 30.7 30.7 30.7 30.7 30.7 30.7	10.8 9.9 10.0 10.3 10.2 10.9 11.2 10.6 10.6 10.3 10.6 10.3 10.6 11.7 10.6 10.5 10.4 11.3 10.4 11.3 10.9 11.4 11.3 10.9 11.4	32.3 31.5 31.5 31.6		32.0 31.6 32.1 32.0 31.9 32.1 31.6 32.0 32.1 31.8 31.8 31.8 32.7 31.8 32.7 31.8 32.7 31.8 32.7 31.8 32.7 31.8 32.7 32.1
MEANS OBSVNS•	8•8 30	31•0 30	11•7 10•8 31	31·9 31·7 31	11•7 30	32.2
MAXIMUM MINIMUM	10•5 8•2	32•3 30•2	11•7 9•9	32·3 30·0	12•7 10•7	32·8 31·6
STD.DEV.	•62	•56	•49	• 49	•58	•33

KAINS ISLAND 50 26 39 N 128 U1 47 W

JULY			AUGUST		SEPTEMBER 1979		
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL	
1	12.2	32.5	13.3	32.5	16.1	32.5	
2	11.3	32.3	13.9 **	33 • 0	16 • 1	32.3	
3	12.1	32.5	12.3 **	33.0	15 • 7	32.0	
4	12.5	31.9	12.7	32.9	15 • 8	32.3	
5	13.2 **	33.0	12.4	32.5	15 • 4	31.2	
6	14.0	32.8	13.5	32.7	15.2	31 • 0	
7	14.1	32 • 8	13.7	32.8	15 • 1	31 • 1	
8	14.0	32.0	13.3	32.5	14 • 9	35.0	
9	13.9	32.8	12.8	32.8	15 • 7	31 • 4	
10	13.3	32.0	12.8	32 • 3	15 • 2	30.7	
11	13.7	31.9	13.1	32.5	15.6	30.5	
12	14.3	32.1	13.9	32.7	15.8	30.3	
13	14.6	32.3	13+1	32 • 8	15.5	30 • 8	
14	14.5	32.0	12.8	32.8	14 • 8	31.5	
15	15.1	31.9	13.1	32.5	14.7	31 • 2	
16	15.1	32.5	13.7	32.5	15.3	31 • 8	
17	16.0	32.7	14.2	32 • 8	15.5	31 • 9	
18	15.8	32.3	14+4	32 • 4	15•8	31 • 5	
19	12.8	32.5	15.2	32.4	16 • 1	31.2	
20	13.0	32.7	15.2	32.5	14.8	31 • 8	
21	12.7	32.7	15.6	32.5	15 • 4	31 • 8	
55	13.1	32.1	14.7	32 • 3	15.2	32.0	
23	13.4	32.0	15.0	32.1	14.5	31.9	
24	13.1	32.8	15.5	32•4	13.2	31 • 4	
25	12.9	32.8	16.4	32.7	13 • 1	31.5	
26	13.3	32.9	16.5	32.5	13.0	31 • 4	
27	12.8 **	33.0	15.3	32.7	13.5	30 • 6	
28	13.4 **	33.2	16 • 1	32.5	13 • 7	30 • 8	
29	12.2	32.4	16+3	32.8	13 • 7	31.0	
30		33.2	15.4	32 • 8	13 • 7	31.5	
31	12.8	32.9	15.6	32.7			
MEANS	13.5	32•4	14.2	32.6	14.9	31 • 4	
BBSVNS.	31	27	31	29	30	30	
MAXIMUM	16.0	32.9	16.4	32 • 9	16•1	32.5	
MINIMUM	11.3	31.9	12.3	32 • 1	13.0	30.2	
STD.DEV.	1 • 1 1	•35	1 • 29	•19	•95	•59	

KAINS ISLAND 50 26 39 N 128 U1 47 W

	UCTUBE	₹		NANFWR	ER	DECEMB	ER 19 7 9
DATE	TEMP	SAL		TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	13.7 13.9 13.4 14.0 14.1 13.4 14.2 13.6 13.6 13.6 13.6 13.9 12.9 12.9 12.9 12.9 11.6 11.6 11.6 11.6 11.6 11.6 11.6 11	30.8 31.5 31.4 30.7 31.0 31.4 31.2 31.1 31.6 31.5 31.4 31.5 31.5 31.6 31.5 31.7 30.8 31.7 30.8 31.1 31.8 31.0 31.8 31.0		10.8 10.9 10.9 10.8 11.1 10.8 11.1 10.6 10.4 10.3 11.0 10.3 11.0 10.6 10.9 10.2 11.1 10.8 10.9 10.5 9.9 10.2 8.6 9.2 8.7 9.3	30.0 30.4 30.2 30.0 30.6 30.7 30.7 30.8 31.0 31.1 30.8 31.1 31.2 30.8 31.1 31.2 30.8 31.0 31.2 30.8 31.0 30.8 31.0 30.8 31.0 30.8 31.0 30.8 31.0 30.8 31.0 30.8 30.8 31.0 30.8 30.8 31.0 30.8 30.8 31.0 30.8 31.0 30.8 31.0 30.8 31.0 30.8 31.0 30.8 31.0 30.8 31.0 30.8 31.0 30.8 31.0 30.8 31.0 30.8 31.0 30.8 31.0 30.8 31.0 30.8 31.0 30.8	99.00.00.00.00.00.00.00.00.00.00.00.00.0	39.427.4736099.723595044950206230.239.99.99.99.99.99.99.99.99.99.99.99.99.9
29 30 31	10.9 10.9 10.8	28•2 29•0 30•0		9•3 9•7 10•1	30.0	8 • 4 8 • 7 8 • 8	26.9 26.9 28.2
MEANS BUSVNS. YRLY.MEANS MAXIMUM MINIMUM	12.5 31 	31.0 31 31.8 28.2	• • • •	10 • 4 30 • • • • • • • • • • • • • • • • • • •	30·3 30 31·2 27·2	9.5 31 ••• 10.6 10.6 8.4	28.9 31 31.1 30.7 26.4
STD.DEV.	1.03	• 75		•68	• 96	•54	1•19

	JANUARY	1	FEBR	RUARY	MARCH 1979		
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 23 24 25 26 27 28 29 30 30 30 30 30 30 30 30 30 30 30 30 30	836366364146632478996763848648 55555556666666666666655555555555	30·3 30·7 30·7 30·8 31·0 31·1 31·8 31·5 31·5 31·7 30·8 31·1 31·2 31·4 31·2 31·0 31·1 31·2 31·0 31·0 31·1 31·2 31·0 31·1 31·2 31·0 31·1 31·2 31·0 31·1 31·2 31·0 31·1 31·2 31·0 31·1 31·2 31·0 31·1 31·2 31·0 31·1 31·2 31·1 31·2 31·1 31·2 31·1 31·2 31·1 31·2 31·1 31·1	5.7.7.9.1.2.7.7.6.3.4.3.1.9.0.1.2.4.4.1.6.4.8.1.4.8.8.7.4.8.8.9.7.4.8.8.9.8.9.8.8.9.8.8.9.8.9.8.9.9.8.9	30·8 31·0 30·8 30·9 28·4 31·1 26·6 30·6 30·1 29·7 27·8 22·8 27·7 27·7 27·7 27·8 27·4 27·4 27·4 27·4 26·1	6 • 7 6 • 7 7 • 9 8 • 1 7 • • 9 8 • • 1 7 • • 9 8 • • 6 8 • • 6 8 • • 6 8 • • 6 8 • • 6 8 • • 6 8 • • 6 8 • • 6 8 • • 6 8 • • 6 8 •	27.24.4 28.05.4 26.5.4 27.4.3 28.5.5 27.4.3 28.1.5 27.4.3 28.1.5 27.5.5 28.8.8 29.8.8 29.8.3 29.8.3 29.9.3 29.1.3 29.9.3 29.1.3 29.9.3 29.1.3 29.9.3 29.1.3 29.9.3	
MEANS 31	5.9	31•1	6•1	28•6	8 • 8	31 • 2	
8BSVNS.	31	31	25	25	31	31	
MAXIMUM MINIMUM	6.9	31·8 29·5	6•8 5•4	31.1	8 • 9 6 • 7	31·2 19·4	
STD.DEV.	•58	• 48	•3	9 1.61	•66	2.18	

	APRIL		MAY		JUNE	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	8.2 8.7 8.8 8.4 8.3 8.1 8.3 8.3 9.1 8.9 9.0 9.4 9.9 9.4 9.9 9.4 9.3 9.3 10.2	30.8 32.3 31.4 31.8 31.6 31.9 32.1 29.1 30.8 31.4 30.3 29.1 30.3 29.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 3	10.7 10.8 10.8 10.7 11.4 10.6 10.7 11.0 10.8 10.9 11.2 11.3 12.8 12.9 11.9 11.9 11.6 11.8 * 11.3	31.6 31.4 30.6 31.1 28.9 29.7 29.3 30.3 31.0 30.3 31.0 30.6 29.0 30.6 29.7 30.8 31.1 31.2 31.2 31.4 31.6 31.6	11.1 10.9 10.0 10.6 9.8 11.0 * 11.0 * 11.1 11.2 10.9 11.6 12.3 12.3 12.3 12.3 11.9 11.9 11.9 11.1 11.6 11.1 11.8 11.6	32.1 32.7 32.1 32.0 19.1 31.2 30.8 31.1 31.4 31.9 32.1 32.3 31.9 31.9 31.9 31.9 31.9 31.9 31.9 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1
25 26 27 28 29 30 31	10.4 10.8 11.5 10.8 11.4 10.6	30.4 30.8 30.8 31.6 32.8 31.9	11.9 11.8 11.9 12.2 12.1 12.0	31.6 31.9 31.6 31.4 31.1 31.4	13.6 12.9 11.7 11.5 11.7	31.5 31.1 32.4 32.1 32.1 31.9
MEANS OBSVNS.	30 9•5	30 • 4	11•5 30	30·9 30	11 • 6 29	31 • 4
MAXIMUM MINIMUM	11.5 8.1	32•8 23•0	12•9 10•6	31·9 28·9	13*6 9*8	32·7 19·1
STD.DEV.	1.04	1 • 77	•67	•83	•85	2.42

	JULY		AUGUST		SEPTEMBER 1979		
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	11.8 13.6 12.8 12.9 13.1 12.9 11.9 11.9 11.9 11.7 15.7 13.8 14.1 14.4 13.9 13.9 14.0	31.9 32.1 32.0 31.8 31.4 31.8 31.6 29.3 31.9 30.0 31.9 30.6 29.7 31.2 31.2 31.2 31.4 31.4 31.4 31.4 31.4 31.4	13.6 13.2 13.4 12.8 13.7 14.2 14.2 14.2 14.5 14.5 14.5 14.5 14.5 14.5 14.7	31.4 31.5 31.6 31.6 31.6 31.6 31.5 31.5 31.5 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6	14.5 13.5 13.9 13.9 14.6 15.8 15.8 15.8 15.7 15.7 15.6 15.7 15.6 15.7 15.6 15.8	30.7 30.3 31.1 28.4 28.6 29.3 29.1 30.6 30.8 28.4 29.5 29.5 29.5 29.5 29.9 29.8 30.2 30.4 31.1 31.1 31.1 31.0 30.8 31.0	
25 26 27 28 29 30 31	13.6 13.9 13.4 14.3 14.5 15.3	31.5 31.1 31.5 31.9 31.9 30.6 30.7	14.4 14.5 14.4 14.2 14.3 14.4 14.3	32·1 32·3 31·8 31·6 31·9 31·9	15 • 6 15 • 1 14 • 7 14 • 5 13 • 7 13 • 1	30.0 29.5 26.8 31.0 30.8 31.1	
OBSVNS.	31	31	31	31	30	30	
MAXIMUM MINIMUM	15•7 11•2	32·3 29·3	15•0 12•8	30.5	15 • 8 12 • 9	31 • 1 26 • 8	
STD.DEV.	• 95	•71	•55	•54	•99	1 • 04	

	OCTOBER		NOVEM	BER	DECEMB	ER 1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1	13.2	31•2	10.7	26 • 8	9*3	29•1
2	13•1	30 • 8	11.1	28 • 4	9 • 2	29•4
3	13.3	30 • 3	12.0	28•6	9•2	29 • 1
4	13.3	30 • 3	11+4	29.0	10.3	30 • 8
5	13.9	29•7	11.7	29.5	10.6	30.2
6	14.0	30 • 3	11+4	28.6	10.3	30.3
7	13.3	30.6	11+8	29•7	10 • 1	30.0
8	14+4	30.6	11.5	29 • 1	11 * 1	30.2
9	14.0	30.6	11.6	29 • 8	* 10.9	* 30.2
10	13.1	30.8	11.2	29.7	10 * 6	30.3
11	12.7	31.2	10.8	29.4	10 • 1	30.8
12	12.8	31 • 1	10.7	29•7	9•9	31.5
13	12.6	31.4	10+4	29 • 8	10.0	28 • 8
14	12.4	31.0	10.1	30.0	10 • 1	28.2
15	12.5	30 • 8	10.8	30.7	8 • 9	26.9
16	12.7	30.7	10.9	29•9	9•1	27 • 8
17	11.4	31.5	10.7	29.7	* 9•5	* 28.4
18	11.9	30.7	10.6	30.6	10.0	29.0
19	11.0	29•9	10.3	30 • 7	9 • 8	29 • 8
20	11.0	31 • 4	10.6	30.5	9•7	29.5
21	11.1	30.7	* 10.5	* 30.3	9 • 6	29.3
55	* 11.1	* 30.3	* 10 • 4	* 30.5	9.0	28 • 1
23		29.8	10.3	30•6	* 9•1	* 27.9
24	11.3	29.5	10.1	30.7	9+2	27 • 6
25	* 11.7	* 29.7	9 • 4	28•6	9+2	27.8
26	12.2	31.0	8 • 8	28•9	9•6	28.4
27	12.1	30.6	8•5	28.5	9•1	27.6
28	11.9	30.5	8•9	29.8	9.0	27 • 8
29	11.4	29•2	* 9*3	* 30.3	9•3	27 • 8
30	11.3	29•3	9•7	30 • 8	9•3	28 • 1
31	11.0	27.8) * /	30.4	9 • 2	27 • 8
31	11.0	€ / ₹0			ar " fam	
MEANS	12.4	30+4		29.5	9•7	29.0
6BSVNS.	29	29	27	27	28	28
YRLY . MEANS	• • • • • • • • •	• • • • • • • • •			•••• 10•7	30.5
MAXIMUM	14+4	31.5	12.0	30+8	11 • 1	31.5
MINIMUM	11.0	27.8	8 • 5	26 • 8	8 • 9	26.9
			4		, acc. 279	4 04
STD.DEV.	1 • 0 4	•80	•92	• 93	•58	1.21

CAPE BEALE 48 47 12 N 125 12 53 W

	HAUNAL	Y	FEBRU	ARY	MARCH	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25	6.4 6.4 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	* * * * * * * * * * * * * * * * * * *	* 5.9123512356666656779574076579 * * * * * * * * * * * * * * * * * * *	* 31.62 31.42 31.77 * 31.52 31.47 * 30.50 29.52 29.68 30.06 30.16 * 29.79 29.41 27.73 27.28 26.65 28.73 * 28.86 * 28.99 29.13 29.71 * 29.36 29.01	7.6 7.6 7.6 ** 7.7.8 8.8 8.8 8.8 9.0 ** ** **	29.89 29.59 29.70 * * 27.57 29.35 29.12 29.67 29.67 29.54 30.22 30.24 * 30.23 * 30.23 * 29.91 29.58 * * *
26 27 28 29 30 31	6.2 6.1 6.0 6.0 5.9 5.7	31.25 31.36 31.63 31.58 31.71 31.82		* *	8 • 2 7 • 9 * 8 • 3 * 8 • 7 9 • 1 9 • 6	30 • 73 31 • 04 * 30 • 96 * 30 • 87 30 • 78 31 • 24
MEANS BBSVNS+	6•3 2/	31·58 28	6.4	29•68 18	8•2 16	29•91 16
MAXIMUM MINIMUM	7 • 7	32•90 29•96	6•9 5•7	31•77 26•65	9•7 7•3	31·24 27·57
STU.DEV.	•53	•507	•36	1 • 477	•75	•881

CAPE BEALE 48 47 12 N 125 12 53 W

	APRIL		MAY		JUNE	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	* 9.4 * 9.6 * 9.3 * * 8.9 * 8.6 7.8 * 8.2 * 8.0 \$.6 8.6 * 9.2 9.7 9.7 * 10.0 * 10.5 9.1 9.5 9.5 9.5 10.0	31.41 31.48 30.92 31.39 31.47 31.56 31.54 31.40 31.66 31.61 32.1	10.5 * 11.0 11.5 9.8 * 10.5 10.5 10.5 11.9 11.9 12.6 12.9 13.9 * 12.6 13.9 * 12.6 13.9 * 11.0 10.6 11.0 11.	* 32·1 32·1 32·1 31·0 * 30·8 30·5 31·0 * 29·4 29·4 29·4 29·4 29·4 29·4 29·4 29·4	11 • 2 11 • 6 * * * 13 • 6 11 • 9	31.72 32.01 30.94 31.91 31.97 31.60
26 27 28 29 30 31	10.5 10.6 10.8 12.6 10.4	31.5 31.5 32.1 31.0 32.1	11.6 11.7 * 12.7 13.7 13.6 13.8	32 • 1 31 • 0 * 31 • 8 32 • 6 32 • 6 32 • 1	10 · 8 12 · 6 10 · 8 10 · 3 12 · 0	32.05 30.90 32.09 32.30 31.32
MEANS BbSVNS.	9•5 24	31.41	11•8 21	30•5 21	11 • 8 22	31 • 73 18
MAXIMUM MINIMUM	12•6 7•8	32•1 30•56	13•9 9•8	32•6 21•9	13·6 10·3	32·30 30·90
STD.DEV.	1.09	•384	1•23	2•34	•77	•399

CAPE BEALF 48 47 12 N 125 12 53 W

		JULY				AUGUS	Т		SEPTE	MBE	R 1979
DA	TE	TEMP	3	AL		TEMP		SAL	TEMP		SAL
	1 2 3 4 5 6 7 8 9 1 1 1 2 3 4 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	11.0 10.6 11.2 11.0 11.0 11.0 11.0 * 11.0 * 11.0 * 11.0 * 11.0 * 11.0 * 11.0 * 11.0 * 11.0	2011年 1111年 111年 1111年 111年 1111年 111年 1111年 111	31.03 32.14 32.25 32.20 32.20 32.20 32.00 32.00 31	* * *	14.8 12.8 12.9 12.5 13.3 12.7	*	29.4 31.5 32.1 31.0 30.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31	12.3 11.9 11.8 12.0 12.7 13.5 13.5 14.6 14.0 14.1 14.1 14.0 14.0 13.6	*	31.7 32.1 31.5 32.1 31.8 31.5 31.0 28.8 31.0 30.5 28.8 30.5 30.5 29.9 29.9 29.9
	17 18 19 20 21 22 23 24 20 26 27 28 29 30 31	13.0 16.0 14.6 13.0 2.0 11.6 * 11.7 11.8 12.0 * 12.4 * 12.9 13.3 13.0 14.0 * 14.4	**************************************	32 · 23 29 · 1 · 2 29 · 8 · 8 31 · 81 32 · 10 31 · 8 · 8 31 · 5 31 · 5	* * *	12.3 11.5 11.6 12.0 12.6 12.2 11.8 12.9 14.1 11.6 13.2 12.8	* *	31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5	12.0 12.6 13.1 13.1 12.5 12.0 11.9 11.6 11.0 11.4 11.4		31.0 31.0 31.0 30.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5
MEANS		12.1		31.46		12.6		31.3	12.8		30 • 8
BBSVNS.		55		55		13		19	28		28
MAXIMUM MINIMUM		16.2		32.23		14.8		32 • 1 29 • 4	14•6 10•6		32 • 1 28 • 8
STD.DEV	•	2.72		• 8 2 9		•80		•67	1.55		•86

CAPE BEALE 48 47 12 N 125 12 53 W

	оставы	IR .	NOVEW	BER	DECEMB	ER 1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1	10.6	31.0	11.6	31.0	10 • 4	29•9
5	10.2	31.0	11.8	31.0	10 • 1	29.9
3	9•1	31.0	11.8	30.5	10.5	30.5
4	10.1	31 • 0	11.8	30.5	10.2	29.9
5	10.0	31.5	11.9	31.0		* 30.2
6	10.0	31.5	11+6	31.0	10.6	30.5
7	10.0	31.5	11+4	31.0	10 • 4	29•4
8	10.0	31.5	10.7	31.0	9•6	30.5
9	10.0	31.5	10.6	31.0	9•5	28 • 8
10	10.0	31.5	11 * 3	31.0	9•3	29 • 4
11	9•6 9•6	31.5 31.5	10 • 1 * 10 • 4	31.5 * 31.5	*	*
12	10.6	31.5	10.7	31.5	# #	× ×
13 14	10.0	31.5	10.8	32.6	*	# #
15	10.2	32.1	10.9	32.6	9•6	30 • 5
16	10.0	31.5		* 32.1	8.6	28 • 3
17	10.2	31.5	11.3	31.5	9•6	28•3
18	10.0	31.5	10.7	31.5	9.5	28.8
19	10.0	31.5	10.7	31.5	9•4	28 • 8
ĝΰ	10.0	31.5	10 • 4	31.5	9•6	28+3
21	*	*	9 • 1	31.0	9•6	28•3
55	*	*	* 9.3	* 29.9	9.5	30 • 5
23	*	*	9•6	28•8	9 • 5	30.5
24	*	*	9 • 4	29•9	9•6	28 • 8
25	*	*	9.5	31 • 0	9•6	28 * 3
56	W W1	29 • 4	9•1	30.5	9•6	27.2
27	12.6	29•9	8 • 6	31.0	9 • 6	27 • 8
28	12.6	30.5	9•6	31.5	9•5	27.2
29	* 12.3	* 30.5	9 • 6	30.5	9.5	28 • 8
30	* 11.9	* 30.5	9•6	29•9	9•2	28 • 3
31	11.6	30.5			9•5	28 • 8
MET A N. CO	10.4	31.2	10.5	31.0	9 • 7	29.1
MEANS					26	26
##SVNS+ YRLY.MEANS+++	24	24	<i>ح</i> 7	27	10.2	30.82
MAXIMUM	12.6	32.1	11•9	32•6	10.6	30.5
MINIMUM	9.1	29.4	8*6	28•8	8•6	27 • 2
HINTHON	J * *	L 2 * "T	7,40		0	
STD.DEV.	•96	•60	•98	•76	• 4 4	1 • 04

BAMFIELD 48 50 05 N 125 U8 07 W

	JANUARY		FEBRUAR	RY	MARCH	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7	* 7.0 7.5 * * *	31.54 31.55	6 • 0	31 • 59 26 • 89 * * *	7 • 0 * * * * * * * *	26•08
8 9 10 11 12 13 14 15 16 17 18		31.64 31.49 31.45 31.53 31.65 31.76 31.72 31.71 31.78	6.0 6.0 6.0 5.0 5.0 5.5 6.0 5.0 6.0 6.5 7.0	30.62 31.41 31.40 25.24 27.60 * 28.15 28.69 29.84 27.79 25.74 26.03 24.42	* * * * * * * * * * * * * * * * * * *	27•72 25•43 28•49
20 21 22 23 24 25 26 27 28 29 30 31	** ** **		* * 7 • 0 6 • 0 7 • 5 8 • 0 * 8 • 0	** 27.74 27.36 28.76 27.94 * 26.35 24.75	10.0	28 • 18
MEANS 8BSVNS*	6.6	31•61 10	6•3 17	28·00 17	8• 7 6	26•99 6
MAXIMUM MINIMUM	9 • 0 5 • 5	31•78 31•42	8 • 0 5 • 0	31·59 24·42	10 • 0 7 • 0	28 • 49 25 • 43
STD.DEV.	1.00	•133	•90	2 • 362	•98	1.296

BAMFIELD 48 50 05 N 125 08 07 W

	APRIL		MAY		JUNE	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	* * * * * * * * * * * * * * * * * * *	29.77 29.77 24.86 27.76 29.73	13.0 * * * * * * * * * * * * *	27.93 * * * * * * 25.94 * 26.77 * 27.61 * 28.45 * 27.18 * 25.91 * 24.64 * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	30 • 16 28 • 65 27 • 14 23 • 44 27 • 01 25 • 64
MEANS BBSVNS.	10.0	27•68 7	13.6	27•06 . 8	14 • 8	27·21 6
MAXIMUM MINIMUM	. 11.5 8.5	29•77 24•86	15•5 12•6	28 • 45 24 • 64	16•2 12•5	30 • 16 23 • 44
STD.DEV.	1.18	1.919	•94	1.384	1•32	2.545

BAMFIELD 48 50 05 N 125 08 07 W

	JULY		AUGUST		SEPTEMBE	R 1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 12 11 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 30 31	16.5 16.7 * * * * * * * * * * * * * * * * * * *		* * * * * * * * * * * * * * * * * * *		17.0 ** 16.8 ** 17.5 ** ** ** ** ** ** ** ** ** ** ** ** **	
MEANS BBSVNS.	16.2	0.0	15•5 7	0 • 0	17•1 3	0 • 0
MAXIMUM MINIMUM	18•2 13•5	0.0	16•8 13•8	0.0	17*5 16*8	0.0
STD.DEV.	1.94	0.00	1 • 02	0.00	•36	0.00

BAMFIELD 48 50 05 N 125 08 07 W

	OCTOBER	2	NUVEMBER		DECEMBER	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP S	AL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23 24 25 27 28			* * * * * * * * * * * * * * * * * * *	DAL ***	1 E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
29 30 31	# 3 # 9	·	* *	* *	* *	
MEANS OBSVNS• YRLY•MEANS•••	0.0	0.0	0.0	0.0	0 • 0	0.0
MAXIMUM MINIMUM	0 • 0 0 • 0	U•0 U•0	0 • O	0 • 0 0 • 0		0.0
STD.DEV.	0.00	0.00	0.00	0.00	0.00	0.00

SHERINGHAM PUINT 48 22 40 N 123 55 10 W

	JANUARY		FEBRUARY		MARCH	197 9
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 6 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66.55.56.44.97.71.65.23.22.23.99.90.90.4 ************************************	32.0 31.0	6.6.7.6.7.9.9.8.8.8.9.9.8.6.7.6.7.7.8.3.5.3.4.6.7.9.2.0 * * * * * * * * * * * * * * * * * * *	31.6 31.8 31.9 31.9 31.2 32.4 31.5 31.5 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6	7.3 7.3 7.4 6.8 7.1 7.0 7.8 7.8 7.8 7.8 7.8 7.9 8.1 7.9 8.1 8.1 8.2 8.1 8.2 8.3 8.3	31.4 31.5 31.4 31.4 31.4 31.7 30.7 30.8 30.7 30.8 30.7 31.0 30.7 31.1 31.2 30.8 30.8 30.7 30.7 31.1 31.2 30.8 30.7 30.7 30.8 30.7 31.8 30.7 30.7 30.8 30.7 30.8 30.7 30.8 30.7 30.8 30.7 30.8 30.7 30.8 30.8 30.7 30.8 30.8 30.8 30.7 30.8 30.8 30.8 30.8 30.7 30.8 30.8 30.8 30.8 30.8 30.8 30.8 30.8
MEANS OBSVNS.	6•6 30	31•8 30	6•7	31 • 2	7•8 31	30.9
MAXIMUM MINIMUM	7•3 5•4	32.3	7 • 3 6 • 3	32.4	8•3 6•8	31 · 8 30 · 4
STD.DEV.	•59	• 2 +	• 24	• 56	•43	• 35

SHERINGHAM POINT 48 22 40 N 123 55 10 W

	APRIL		MAY		JUNE	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1	8.2	31• 8	9•3	31.9	10•9	31.9
2	8.3	31.6	9•3	31 • 8	10.7	31 • 6
3	8.2	31.9	9•3	31.9	10.6	31 • 8
4	8.0	31.4	9.2	31 • 8	10.6	31.5
5	8 • 4	31.6	9+3	31.8	10.7	31.9
6	8.4	31.6	9•3	31.6	10•6	31.9
7	8.9	31.5	9•6	32.1	10.6	32.0
į	8.9	31.5	9•4	31.8	10.9	32.0
9	5.6	31.4	9+3	31.9	10.7	31 • 9
10	8.7	31.6	9.8	32.0	10.7	32 • 1
11	8.9	31.1	10.8	31 • 4	10.8	32+0
12	9•3	31.6	10.7	32.0	10.7	32 • 3
13	9•0	31.4	10.6	32•3	10•7	32.0
14	8.9	31.4	10.6	32.5	10.0	32 • 1
15	8.9	31.5	10.7	32 • 4	10•4	32.0
16	9.0	31.6	10.8	32.3	10•4	31 • 5
17	8.3	31.4	10.7	32 • 1	10 • 4	31 • 2
18	8.6	31.5	10.9	32 • 1	10 • 4	31.5
	ö•4	31.9	9•9	32.7	10.6	32.3
19	* 8.4	* 32.0	10.0	32.5	10 • 4	31 • 4
20	8.3	32.1	10.0	32.5	10.5	31 • 8
21	8.8	32.0	10.1	32.7	10.6	32 • 1
55	9•4	31.9	10.7	31.5	10 • 8	32+3
23					10.9	31.9
24	9•0	31.8	10.6	32·0 31·4	10.9	31 • 8
25	9•3	31.9	11.5		10.8	31 • 8
26	9•2	31.9	11·1 11·0	32·0 31·8	10.8	31.8
27	9•2 9•3	31•8 31•8	11 • 1	32.1	10 • 9	31.9
28				31 • 8	10 • 8	31 • 8
29	9•2 9•3	31.8	10.4	31 • 8	10.6	31.9
30	3 • 3	31•8	10.7		10.0	37 4 2
31			16.7	31 • 6		
MEANS	ద∙ ర	31.7	10.5	32.0	10.6	31 • 9
	29	29	31	31	30	30
BBSVNS.	23	29	21	21	30	30
MAXIMUM	9•4	32+1	11.5	32.7	10•9	32+3
MINIMUM	8.0	31 • 1	9.2	31 • 4	10.0	31.2
11714711011	3.0	24.1	,,	3		
STD.DEV.	• 41	•83	•69	• 35	•20	• 26

SHERINGHAM POINT 48 22 40 M 123 55 10 W

	JULY		AUGUST	AUGUST		SEPTEMBER 1979	
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL	
1	10.3	32.0	11.6	31 • 6 31 • 6	11•2 11•1	31 • 6 31 • 5	
5	10.6	31.8	11.7	31.6	11.0	31.2	
3	10.9	31.5 31.8	11.4	31 • 4	11 • 1	31.5	
4	11.1 11.2	31.9	11+4	31 • 4	10.9	31.2	
5	10.8	31.2	11.3	31.5	11 • 4	31 • 6	
6 7	10.9	31.6	11.2	31 • 4	11 • 6	31 • 4	
8	10.9	31.4	11.3	31.5	11.6	31 • 4	
9	10.8	31.6	11.3	31 • 4	11.9	31 • 2	
10	10.8	31.2	11.3	31 • 4	11 • 9	31 • 6	
11	10.7	31 * 8	11 • 1	31 • 8	11 • 4	31 • 4	
12	10.9	35.0	10.9	35.0	12.0	30 • 8	
13	10.8	32.0	10.7	32 • 4	12•3	31.0	
14	10.8	32.0	10.48	32.4	12.0	30 • 8 30 • 7	
15	11.3	32.0	10.8	32.1	11•3 11•3	30 • 8	
16	11.5	31.6	10.7	32.1	11 • 4	30 • 8	
17	10.8	31.8	10.7	32.0	11.8	30 • 8	
18	11.2	31.5	10.7	32 • 1 32 • 1	11.9	30 • 8	
19	10.6	32.0	10•8 10•7	32 • 1	11.7	30 • 8	
50	11.2	31.8	10.9	31 • 6	11.8	31.0	
21	11.1	31.6	* 11.0	* 31.6	11.9	31 • 1	
55	11.1	31 • 1	11 • 1	31.5	12.2	31 • 0	
23	11.2	31.4	11.2	31.5	11.9	30 • 8	
24	11.2	31.6	11.1	31 • 8	12.1	31.0	
25	11.1	31.5	11.2	32•3	12.5	31 • 1	
26 27	11.3	31.8	11.1	32.0	12•1	30 • 8	
28	11.4	32.1	11.2	31 • 8	12.0	31.0	
29	11.6	31.8	11.1	31.6	11 • 9	30 • 8	
30	11.7	31.6	11.0	31 • 4	11.8	31.0	
31	11.7	30.7	11.3	31.5			
MEANS	11.1	31 • 7	11.1	31 • 8	11.7	31 • 1	
BBSVNS.	31	31	05	30	30	30	
MAXIMUM	12.2	32·1	11.7	32+4	12.5	31 • 6	
MINIMUM	10.3	30.7	10.7	31 • 4	10.9	30 • 7	
STD.DEV.	•39	•32	•29	•33	• 4 1	•29	

SHERINGHAM PUINT 48 22 40 N 123 55 10 W

	нстань	R	NOVEMB	ER	DECEMB	ER 1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1	11.8	31.0	10.8	31 • 2	9•2	31 • 2
2	11.2	31 • 1	10.6	31 • 4	9.0	31.6
3	11.3	31.0	10.2	31.6	8 • 8	31.5
4	11.2	31.0	9•8	31 • 9	8 • 7	31.6
3	11.2	30∙8	9•9	31.9	8 • 8	31.5
6	11 • 1	31 • 8	10.1	31 • 9	8 • 8	31.5
7	10.3	32+3	10.0	31.9	9 • 0	31 • 4
8	10.2	32.1	10.1	31 • 9	8•8	31.5
9	10.3	32.4	9•9	31+6	8 • 9	31.5
10	10.1	32.4	10.1	31.8	8•9	31 • 4
11	10.2	32.4	10 • 1	31 • 8	8 • 9	31 • 4
12	10.0	31 • 8	10.0	31 • 8	8 • 9	31 • 5
13	10.1	31.5	. 9•4	31 • 4	8 • 8	31 • 4
14	10.1	31.6	9.7	31 • 8	8•9	31.5
15	10.0	31 • 8	9•6	31.5	8•6	30 • 3
16	10.2	31 • 4	9•6	31 • 6	8•6	30 • 4
17	10.1	31.8	9 • 4	31.2	8•7	30 • 7
18	10.0	31 • 2	9•3	30 • 8	8•7	30 • 6
19	10.1	31.5	9•3.	31.0	8 • 6	30 • 4
50	10.0	31 • 1	9•4	30 • 8	8•6	30 • 6
21	10.0	31.2	9•3	30•8	8•6	30.3
28	9•9	31.1	9•3	31.0	8 • 6	30 • 6
23 '	10.1	31 • 1	9•2	30 • 8	8•6	30 • 4
24	10.1	31 • 1	9.2	30.8	8 • 6	30 • 3
25	10.0	31.2	9•3	30 • 8	8 • 6	30 • 4
26	10.7	31 • 4	9.2	31.0	8 • 6	30 • 4
27	10.7	31.2	9•3	30.7	8 • 6	31 • 5
28	10.7	31 • 4	9•2	30.7	8•6	30 • 6
29	10.7	31 • 1	9•3	31 • 4	8•6	30 • 3
30	10.4	31.2	9+3	30 • 8	8•6	30 • 0
31	10.4	31 • 1			8 • 7	29.9
MEANS	10.4	31+4	9•7	31•3	8 • 7	30.9
9P2AN2.	31	31	.30	30	31	31
YRLY.MEANS		• • • • • • • •		• • • • • • • •	••• 9•5	31.5
MAXIMUM	11.8	32+4	10.8	31 • 9	9•2	31.6
MINIMUM	9•9	30•8	9•2	30.7	8 • 6	29•9
STD.DEV.	•50	• 47	• 4 4	• 45	•16	*57

JANUARY		FEBRUAR	FEBRUARY MARCH		1979	
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
			, P	24.5	7 • 1	31 • 2
1	6 • 7	31 • 4	6.5	31.5	7 • 1	31.5
2	6.4	31.5	6+5	31 • 4	7 • 0	31.5
3	6.3	31.1	6.6	31.6		31.6
i	6.2	31.5	6.7	31.5	7 • 1 7 • 2	31 • 4
5	6.3	31.2	6.6	31.5	7 • 2	31 • 4
h	6.3	31 • 4	6 • 7	31.6		31 • 2
7	b • 3	31.1	6.8	31.5	7•1	31 • 4
8	6 • 4	31.5	6.9	31.5	7 • 2	31.5
9	6+4	31.1	7.0	31.6	7•2 7•2	31.2
10	6.6	31.5	6+9	31.6		31 • 0
11	6.7	31.5	6•9	31.6	7•2	
12	6+9	31.8	6.9	31.5	7 • 4	31 • 0
13	6 • 8	31.6	6.9	31.6	7 * 4	31 • 1
14	6.9	31.6	6.9	31.8	7•6	31 • 2
15	6.8	31.9	6 * 8	31 • 4	7•7	31 • 1
16	6 • 8	31.6	6•9	31.5	7 • 8	31 • 1
17	6.7	31.8	7 • 0	31.2	7•7	31.2
18	6 • 8	31.6	6•9	31.0	7•8	31.0
19	6.7	31.6	7 • 1	30.7	7 • 8	31.0
20	6 • 7	31.8	7 • 1	30 • 3	7 • 8	31 • 1
21	6.8	31.5	7 • 1	30.5	7 • 7	31.2
22	6.7	31.5	7•2	30.4	7•8	31.2
23	6.1	31.6	7.2	30 • 4	8 • 0	31.2
24	6.5	31 • 4	7 * 1	31.0	8•2	31.6
25	6+4	31.5	7 • 1	30.8	7•9	31 • 4
26	6.5	31.2	7.2	31 • 1	7 • 8	31 • 2
27	6.6	31 • 1	6.9	31 • 4	8 • 1	32.0
28	6.6	31.2	6.9	31.5	7•9	32 • 1
29	6 • 4	31.2			7•9	32 • 4
30	6.6	31.5			7•8	32 • 4
31	6•6	31.4			7•9	32 • 3
MEANS	6+6	31.4	6•9	31.2	7•6	31 • 4
BBSVNS.	31	31	48	28	31	31
MAXIMUM	6.9	31.9	7•2	31 • 8	8•2	32.4
MINIMUM	6.2	31.1	6+5	30.5	7.0	31.0
TITITION	0 * 2	Q 4 - 1				
STD.DEV.	• 20	*24	•20	• 46	•36	• 41

	APKIL		MAY		JUNE	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1	8•0	32.0	9•0	30•7	9•8	31 • 6
2	8 • 1	31.9	8.9	30 • 8	9 • 8	31 • 5
3	7•9	32.0	9•1	31 • 1	9•9	31.6
4	8 • 1	31 • 8	9+0	31 • 1	9.9	31 • 4
5	8 • 1	31.6	8.9	31.5	9•9	31 . 4
6	8.0	31.2	9•3	31.5	10.0	31 • 1
7	8 • 1	31.2	9•8	31 • 4	10.0	31 • 1
8	8 • 1	31.2	9•6	31.2	9 • 8	31 • 2
9	8.2	31.5	9•5	31.6	9•7	31 • 4
10	8.2	31.4	9•4	31.6	9•6	31 • 5
11	8 • 4	31.4	9•3	31 • 8	9•6	31 • 6
12	8+3	31.5	9.5	31.5	9•7	31 • 8
13	8 • 4	31.5	9•4	31 • 6	9 • 8	31 • 8
14	8•3	31.6	9•6	31.6	9•8	31 • 6
15	8•3	31.6	9•6	31.8	9•9	31.6
16	8 • 4	31.4	9•6	31.5	9•9	31 • 9
17	8•3	31.5	9•6	31.6	9•8	31.6
18	8•4	31.4	9•7	31.9	9•8	31 • 8
19	8 • 4	31.2	9•7	31.6	9•8	31.5
50	8•4	31.5	9•6	31.8	9 • 8	31.6
21	8 • 4	31.5	9•7	31.6	9 • 8	31 • 8
55	8 • 5	31.5	9 • 8	31.5	10.0	31.9
23	8 • 7	31.6	9•8	31.6	10.2	31 • 6
24	8 • 7	32.0	9•9	31.8	10 • 4	31 • 9
25	8 • 8	31.9	9•9	31 • 8	10.5	31.6
26	8 • 7	32.0	9•9	31.9	10 • 4	31 • 8
27	ದೆ • ठ	31.8	9 • 8	32.0	10.6	31.6
28	న∙ 8	31.9	9•6	32 • 1	10.7	31 • 5
29	8 • 8	31.8	9 • 7	31.6	10.6	31 • 8
30	8•9	31.8	9•8	31 • 6	10.7	31 • 6
31			9•8	31 • 8		
MEANS	8•4	31•6	9•5	31 • 6	10.0	31 • 6
BBSVNS.	30				30	
OBOVNO	30	30	31	31	30	30
MAXIMUM	3.9	32.0	9•9	32•1	10.7	31 • 9
MINIMUM	7•9	31.2	8•9	30•7	9•6	31 • 1
STD.DEV.	•28	•27	•30	• 32	*34	•21

JULY			AUGUST SEPTEMBER		IR 1979	
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 24 26 27	10.7 10.6 10.6 10.6 10.6 10.6 10.6 9.9 10.9 9.8 9.8 10.0 10.2 10.2 10.4 11.0 11.2 11.2 11.3 11.3 11.4 11.5 11.6 11.7	31.6 31.4 31.2 31.4 31.5 31.4 31.5 31.6 31.9 32.1 32.0 31.8 31.8 31.8 31.6 31.7 31.0 31.1 31.0 31.1	11.7 11.5 11.3 11.3 11.1 10.9 10.9 10.8 10.8 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.7 10.7 10.8 10.7	31.2 31.1 31.4 31.5 31.6 31.5 31.5 31.6 31.5 31.5 31.5 31.6 31.9 31.8 31.9 31.8 31.9 31.8 31.9 31.8	10.1 10.0 10.6 10.4 10.3 10.2 10.2 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.9 11.0 10.9 10.9 10.9	31.5 31.6 31.9 31.8 32.0 32.1 32.0 32.1 32.0 31.8 31.5 31.5 31.8 31.5 31.6 31.6 31.7 31.0 31.0 31.0
27 28 29 30 31	11.8 11.9 11.7 11.8 11.9	31.1 31.4 31.1 31.2 31.0	10.2 10.3 10.4 10.2	31.8 31.5 31.6 31.5 31.6	10·4 10·3 10·2	30.8 30.7 30.8
MEANS 0BSVNS+	10•9 31	31•5 31	10.8	31·6 31	10•5 30	31.5
MAXIMUM MINIMUM	11.9 9.8	32.4	11.7	32·0 31·1	11 • 0 10 • 0	32 • 1 30 • 7
STD.DEV.	•67	•38	*37	•22	•29	• 46

	#C16BER		NOVEMBL	NOVEMBER		R 1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1	9.9	31.5	9•6	31.8	8 • 6	31.5
2	10.6	31 * 4	9•6	31.6	8 • 7	31 • 6
3	10.6	31.6	9 • 4	31.5	8 • 7	31 • 8
4	10.7	31.9	9 • 6	31.5	8 • 7	31 • 6
5	10.6	31.9	9.5	31.6	8 • 6	31.9
6	10.6	31 • 8	9 • 4	31.6	8 • 6	31 • 9
7	10.5	31 • 8	9 • 4	31 • 8	8 • 7	31.8
8	10.5	32.0	9 • 4	31.9	8•7	31.6
9	10.4	32.0	9•2	31.5	8 • 8	31.9
10	10.3	31.6	9•1	31.5	8 • 7	31.8
11	10.3	31.8	9•1	31 • 4	8 • 6	32.0
12	10.3	31.5	9•0	31.6	8 • 6	31 • 6
13	10.2	31.8	9•0	31.5	8 • 4	31.5
14	10.2	31.4	8•9	31.2	8 • 5	31.5
15	10.1	31.5	8 • 9	31 • 1	8 • 6	31 • 4
16	10.1	31.4	8 • 9	31 • 4	8 • 6	31 • 4
17	10.8	31.1	9 • 0	31 • 8	8 • 6	31.2
18	10.5	31 • 1	9.0	31.2	8•6	31.0
19	10.1	31 * 4	9 • 1	31 • 4	8•7	31.2
20	9.7	31.5	. 8 • 9	31.5	8•6	31 • 5
21	9.3	31.0	9 • 3	31 • 4	8 • 7	31.5
55	9.5	31.0	8•9	31.2	8 • 7	31.6
23	8 • 7	31 • 1	8 • 9	31 • 1	8•6	31 • 6
24	7.9	30.8	8+9	31 • 4	8•7	31 • 8
25	8.3	31 • 1	8 • 8	31.2	8 * 6	31 • 5
26	8.5	31.2	8 • 8	31 • 4	8 • 6	31 • 4
27	8.9	31.0	8 • 8	31 • 1	8 • 6	31 • 4
28	9•2	31.2	8 • 7	31.5	8 • 6	31.2
29	9•4	31.5	8 • 7	31.2	8 • 4	31.0
30	9.6	31 • 4	8 • 6	31.5	8 • 5	30 * 8
31	9+8	31+8			8 • 4	31 • 0
MEANS	9•9	31.5	9•1	31 • 4	8 • 6	31.5
88SVNS.	31	31	30	30	31	31
YRLY. MEANS					••• 9•1	31.5
MAXIMUM	10.8	32.0	9 • 6	31.9	8•8	32.0
MINIMUM	7.9	30+8	8 • 6	31 • 1	8 • 4	30 • 8
STD.DEV.	•77	*33	•29	• 22	•10	• 30

	JANUAR	4	FEBRUA	NRY	MARCH	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2	* 5.7 5.6	* 28•9 29•0	7•4 7•5	29·4 29·5	7°1 * 7°2 *	28 • 4
ट. वे 4	6 • 7 6 • 3	29·0 29·1	6•9 * 7•2	29·3 * 29·4	7•4 * 7•5 * 7•6	29·3 29·4
5	7 • 1 7 • 2 6 • 9	29•1 29•0 29•0	7 • 5 * 7 • 8 8 • 1	29·5 * 29·4 29·3	7 • 8 7 • 9	29.3
7 8 9	7 • 1 * 7 • 4	29 • 0 * 29 • 4	* 8 • 2 8 • 3	* 29·3 29·4	7 • 8 - 8 • 1	29 • 4
10	7 • 8 7 • 9 7 • 9	29•8 29•4 29•3	* 8•3 8•2 7•3	* 29 · 4 29 · 4 29 · 3	8 • 6 * 8 • 5 * 8 • 4	29.5 29.5 29.4
12 13 14	7•9 7•6	29•3 29•4	* 6.7 6.0	* 29·1 28·8	8•7 8•1 7•3	29 • 4 29 • 4 29 • 4
15 16 17	4 • 9 6 • 3 * 6 • 7	29•1 29•0 * 29•1	* *	*	7•4 7•2	29·5 29·5
18 19	7.0	29.3	7 • 1 7 • 2	29·0 28·8	7•7 7•4 7•6	29 • 4 29 • 4 29 • 4
20 21 22	* 6.6 6.2 7.4	* 29·3 29·3 29·3	* *	*	7 • 9 8 • 1	29·3 29·4
23 24	* 7.5 7.6	* 29·3 29·4	7 • 4 * 7 • 5	28 • 9 * 28 • 7	8 • 6 8 • 8 8 • 3	29 • 5 29 • 4 29 • 4
25 26 27	* 7.7 * 7.8 7.9	* 29·4 * 29·4 29·4	* 7.6 7.7 7.9	* 28 • 6 28 • 4 28 • 9	7 • 8 7 • 3	29.3
28 29	7 • 6 6 • 9	29•4 29•3	7.6	28•6	7•3 7•2 6•9	29 • 3 29 • 4 29 • 3
30 31	7 • 4 7 • 1	29•4 29•4			6•7	29•3
MEANS BBSVNS+	7 • 1 24	29•2 24	7 • 5 15	29•1 15	7•7 28	29•3 28
MAXIMUM MINIMUM	7•9 4•9	29•8 29•0	8 • 3 6 • 0	29·5 28·4	8 • 8 6 • 7	29 • 5 28 • 4
STD.DEV.	• 76	•50	•57	• 35	•56	• 22

	APRIL		MAY		JUNE	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
DATE	I E MIT	SAL	1 5 1 11	5 A L	1 60 1 11	
1	7.5	29 • 4	8.*5	29.7	9•9	29•8
2	*	*	9•2	30.0	11 • 8	28.9
3	*	*	9 • 1	29•7	15.0	28 • 1
4	*	*	9•3	29•7		* 28.7
5.	8 • 2	29.5	9•9	29.7	10.3	29.3
6	9.2	29.5	* 10.0	* 29.7	12.4	29.3
7	* 9.0	* 29 • 5	10.1	29.8	12.5	29.7
8	* 8.9	* 29.5	11.7	29.9	11.6	29 • 1
9	8.7	29.5	11.2	29.5	11.7	29.7
10	7 • 1	29.9	11.6	30.0	9 • 2	29.5
11	7 • 4	29.8	8 * 8	30.5	8•9	29.7
12	* 7.5	* 29 • 8	9•2	29•9	8 • 9	30 • 0
13	* 7.7	* 29 • 8	9•2	29.9	8 • 7	29 • 5
14	7 • 8	29•8	9•0	30.5	9•1	29.5
15	7.8	29•7	8 • 9	30 • 3	10.8	28 • 8 28 • 8
16	8 • 8	29•7	9•1	30•2	12•1	28 • 1
17	8 • 2	29.5		29•8	13•8 16•3	
18	8•2	29.7	10.2	29•4	and the same of th	26 • 7 25 • 8
19	8.5	29•4	10.6	29•8	16•2 * 15•5	* 26.3
50 .		29 • 5	10.1	29•7 29•9	14.7	26.9
21	9 • 8	29•7	10.6	* 30 • 1		* 27 • 1
55	9.2	29.7	* 11.1	30+3	14 • 4	27.3
53		29•5 29•5	11 • 6 11 • 4	30 • 0	12.6	27.8
24	a • 2 • . a	29•7	9•3	29.5	12.0	27.7
25	8•2 8•2	29•5	9 • 8	29•4	12 • 4	27.7
26	8.4	29.5	10.2	29•8	10.9	28.4
27	8 • 4	29.5	9.0	29.9	10.0	29.3
28 29	8.6	29•7	9•6	29.8	10+3	29.0
30	8.7	29•8	9•1	30.0	9 • 4	29.9
31	0.,	23+0	9•6	30.0		
21			, . .	3.0		
MEANS	8•4	29.6	9+8	29•9	11.7	28.7
BBSVNS.	23	23	29	29	27	27
MAXIMUM	9.8	29.9	11.7	30 • 3	16•3	30 • 0
MINIMUM	7 • 1	29•4	8 • 5	29•4	8•7	25 • 8
STD.DEV.	•66	• 1 4	•93	•24	2•17	1 • 11

	JULY	AUGUST	SEPTEMBER 1979
DATE	TEMP SAL	TEMP SAL	TEMP SAL
1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 12 22 23 24 26 26 27 28 29 20 31 20 31 31 31 31 31 31 31 31 31 31 31 31 31	9.6 12.9 16.9 11.9 * 13.5 * 15.2 * 15.3 * 15.4 * 15.5 * 15.5 * 14.8 13.6 12.9 14.8 13.6 12.9 14.8 13.6 12.9 14.8 13.6 12.9 14.8 13.6 12.9 14.0 12.8 * 26.1 12.8 * 27.7 26.1 26.1 27.7 28.0 28.4 28.1 28.5 11.9 12.8 * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	
MEANS OBSVNS.	13.5 27.1 20 20	0 • 0 0 • 0	0 • 0 0 • 0
MAXIMUM MINIMUM	16.9 28.5 9.6 25.9	0.0	0.0
STD.DEV.	1.66 .77	0.00 0.00	0.00 0.00

	OCTOBER		NOVEMBE	IR .	DECEMBE	IR 1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	* 12.8 12.8 12.2 13.6 11.4 11.1 11.1 11.1 11.1 11.1 11.1 11	29.1 28.1 28.8 29.0 28.6 29.3 28.6 29.3 28.6 27.8 28.0 27.8 27.7 29.4 29.4	10·1 9·7 7·9 8·4 7·9 7·2 7·6 7·7 9·1 9·1 9·2 9·9 8·5 9·7 * 8·6 8·1 8·8 8·7 *	0 1 5 1 4 6 2 5 5 0 5 6 1 4 3 2 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 · 4 · 5 · 7 · 6 · 4 · 8 · 1 · 7 · 6 · 8 · 1 · 7 · 6 · 7 · 7 · 8 · 2 · 7 · 8 · 2 · 7 · 8 · 8 · 1 · 7 · 8 · 8 · 1 · 7 · 8 · 6 · 9 · 9 · 8 · 6 · 9 · 9 · 8 · 6 · 9 · 9 · 8 · 6 · 9 · 9 · 9 · 8 · 6 · 9 · 9 · 9 · 8 · 6 · 9 · 9 · 9 · 8 · 6 · 9 · 9 · 9 · 9 · 9 · 9 · 9 · 9 · 9	28.4 28.4 28.4 28.4 28.8 28.8 28.8 28.8
25 26 27 28 29 30 31 MEANS BBSVNS YRLY.MEANS MAXIMUM MINIMUM	10.7 10.8 10.1 10.2 11.0 25	28 · 8 28 · 6 28 · 6 28 · 8 28 · 1 28 · 0 28 · 6 25 29 · 5 27 · 6		* 28.5 28.0 28.0 28.2 28.6 28.5 28.5 24 	8 • 1 8 • 2	* 28 · 8 * 28 · 6 28 · 4 28 · 5 * 28 · 6 28 · 7 21 28 · 9 29 · 3 27 · 8
STD.DEV.	1 • 1 1	•56	•85	•34	•56	• 39

CHROME ISLAND 49 28 20 N 124 40 57 W

	JANUARY	,	FEBRUARY		MARCH		1979	
() A m:	TEMP	SAL	TEMP	SAL	TE	MP	SAL	
DATE	15.71	075	, , , , ,					
1	6.9	23.4	6.6	29.4		• 9	29.5	
2	7.2	29.5	6 • 8	29 • 4		• 3	29.5	
્ કુ	6.9	29.5	7.0	29.4		• 5	29.9	
4	6.9	29.3	7 • 1	29.5		*6	29.8	
7)	n e &	c9·3	7.2	29.5		• 7	29 • 8	
6	6.9	29.3	7 • 3	29.3		•9	29 • 4	
7	6.8	69.3	7 • 3	29 • 4		•9	29.7	
, 6	7.0	29.4	7.2	29.4		•6	28 • 8	
3	6.8	29.3	7 • 8	29.4		• 8	26 • 4	
10	6.9	£9·3	7.5	29.5		* 4	28 • 8	
1 1	6.9	69.1	7 • 4	29 • 4		• 1	29.7	
12	6.9	c9 · 4	7•3	29.5		• 5	29.5	
1.3	6.9	29.1	7 • 4	29.5		•6	29.7	
14	6.8	c9 • 4	7 • 1	29 • 1		• 4	29.0	
15	6.8	69.4	7 • 3	29.3		• 1	29.7	
16	5 • ŏ	29.3	7.6	29.3		•8	29.7	
17	6.8	29.1	7•3	29.5		•5	29.5	
18	7.2	c9·3	7 • 4	29.5		• 8	29.5	
19	7.2	29.3	7 • 4	29.7		•3	29 • 1	
20	7.2	29.5	6.9	29.1		*8	29.0	
21	7 • 1	2.9.5	6•1	27.1		•9	28 • 1	
55	7.1	29.1	6 • 1	28.4		. • 4	28.9	
23	7.0	29.5	7 • 1	29.7		• 7	29.7	
24	7.4	29.5	7 • 0	29.5		• 0	29.5	
25	6.8	c9·5	7.2	29.7		• 1	29•3	
26	7.0	29.3	7 • 4	29.4		8 • 8	29.5	
27	7.0	c9 · 4	7•6	29.8		2.6	29.5	
28	5.7	29.5	7 • 5	29.7		3.5	29.0	
29	5 • 8	29.4				3 • 1	29 • 4	
3)	0.6	c9.4				3 • 3	29 • 4	
31	6.8	29.3			,	7•9	29 • 3	
A A A 7 A 7 A A 7 A 7 A A 7 A	5.9	29·4	7•2	29•3	8	3 • 0	29•3	
MEANS	31	31	28	28		31	31	
085VNS.	31	21		Spece hard				
MAXIMUM	7 • 4	29.5	7 • 8	29.8		3.5	29.9	
MINIMUM	6.6	29 • 1	6 • 1	27.1	(5•8	26 • 4	
STD.DEV.	•18	• 1 3	• 4 0	•51		•60	•66	

CHR8ME ISLAND 49 28 20 N 124 40 57 W

		APRIL		MAY		JUNE	1979
DA	TE	TEMP	SAL	TEMP	SAL	TEMP	SAL
	1	8•3	29+1	11.8	26.7	14 • 8	28 • 8
	2	8 • 4	29•3	12.8	29 • 8	16.5	29.0
	3	8 • 2	29•1	12.5	29.5	16.8	29.4
	4	9+3	29 • 4	11.3	30.0	14.9	28 • 6
	5	9•3	29+3	11.2	29.5	15.5	29•3
	6	9.5	29•4	9 • 8	30+3	15 • 1	29.0
	7	9•3	29•3	9•9	30•6	15.5	29.0
	8	9•2	29•8	11.0	30 • 7	15•8	29.0
	9	9 • 1	29.9	11.5	29.7	16•3	29.0
	10	9•1	29•8	11.1	29.5	16•2	29.1
	11	9.6	29•8	12.0	29.8	15.0	29.3
	12	8.0	30.0	11.0	29.9	13 • 4	29 • 4
	13	8 • 4	29.9	12.6	29 • 8	15•9	30.0
	14	8.5	29.9	12.6	30.0	13.5	29 • 1
	15	8.8	30.0	11.8	29.5	13.8	58*8
	16	8•1	29+8	11.0	29.5	13.8	28 • 9
	17	8.3	29•7	12.3	29•3	14.2	28.9
	18	8 • 4	29.5	12.0	28•6	14.6	29.0
	19	8.3	29.5	12.8	28.0	14.6	29.1
	20	9.0	30.0	12.5	29 • 1	14.7	
	21	9•7	29 • 4	14.0	29 • 9	15•3	28 • 5 27 • 7
	55	10.7	29 • 4	14.6	29•0	14.5	
	23.	10.8	29•7	12.2	29.5	13.0	28 • 8
	24	11.3	29.7	12.5	29•7	14.7	28.2
	25	11.4	29.7	13.7	29•3	17.0	26.9
	26	11.3	29.5	12.0	30.3	16 • 8	26.0
	27	12.3	29 • 1	10.4	30.3	17.0	25 • 4
	28	12.5	29.0	12.9	29.7	17.5	25.5
	29	12.0	29 • 4	12.5	29.8	17 • 8	
	30	10.6	29+8	12.8			25.9
	31	10.0	£2*0		29•3	14.0	27.6
	21			13.8	28•8		
MEANS		9•6	29•6	12.1	29•5	15•3	28 • 4
8BSVNS.		30	30	31	31	30	30
2001,10		34	30	3.	21	30	30
MAXIMUM		12.5	30.0	14.6	30+7	17•8	30.0
MINIMUM		8.0	29.0	9 * 8	26.7	13.0	25 • 4
				J + U	2047	10.0	L D # 7
STD.DEV.		1.36	•30	1 • 13	• 77	1•28	1.24

CHROME ISLAND 49 28 20 N 124 40 57 W

	and V		AUGUST		SEPTEME	BER 1979
	JULY		70000			
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1	14.0	27.6	16.2	28•2	15 • 4	29.0
1 2	14.1	28.0	16+8	27.7	13.8	28.9
	13.8	28.5	18+3	26.7	12 • 3	29 • 4
3	14.2	28•4	18.9	26.5	12.1	29 • 3
4 5	15.4	27.8	20.0	27.2	12.0	29 • 1
	16+3	26.9	18.4	27.2	12.8	29.0
6 7	15.0	27.6	18+2	27.2	13•1	29.0
	14.2	27.8	18.0	27.2	13.8	27 • 3
8 9	13.3	28.6	17.7	28 • 1	13 • 4	29.0
10	13.8	27.6	15.5	28 • 4	13•1	28•2
11	13.9	28.0	16.8	28•2	13.0	28 • 6
12	13.8	27 • 8	17.4	28.0	14.6	28.0
13	13.8	27.7	17.0	28.0	15 * 8	26.7
	14.2	27.4	16.0	28 • 2	15.7	27 • 3
14 15	15.8	26•1	16.3	28.5	13 • 8	28.5
16	17.2	23.9	15+2	28 • 8	14.2	28 • 4
17	17.8	24.7	16.5	28 • 4	15•1	28 • 8
18	19.0	24.6	15.2	28.6	16.0	27 • 1
19	19.5	24.8	15 • 4	28.5	15 • 9	27.8
50	50.5	25.0	18.3	27.7	16.0	29•9
21	20.0	24 • 8	17.0	28•0	14.9	28.0
55	18.7	25.6	17.3	28 • 4	14.6	29.7
53	18.5	26+4	16 • 1	28•9	15.2	27.7
24	19.2	26.3	17.0	28 • 1	15 • 2	28.0
25	17.4	26.9	17.2	28•2	15.5	27.6
26	16.6	27.3	17 * 8	28•2	11.9	29•3
27	18.5	26.8	18.2	28.0	13•4	28 • 4
58	18.0	27.3	13.2	29•3	13•3	29.9
29	17.0	27.8	17.8	28.1	11 • 7	29.4
30	17.2	27.7	17.3	28.9	10.3	29.9
31	15.2	28 • 1	16.0	28•5		
	4 (3)	4.7.8	17.0	28•1	13.9	28•6
MEANS	16.3	26.9		31	30	30
BSVNS.	31	31	31	3.		
MAXIMUM	20.2	28+6	20.0	29•3	16.0	29.9
	13.3	23.9	13.2	26.5	10.3	26.7
MINIMUM	25-5	(()				
STD.DEV.	2.21	1.32	1 • 3 4	•64	1.52	• 88

CHR8ME ISLAND 49 28 20 N 124 40 57 W

	901986	≟R	NUVEMBER		DFCEMB	ER 1979
UATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1	11.8	29.9	10.0	28•6	8 • 4	29.5
5	12.0	30.2	10.0	29•1	8•7	29.7
3	12.0	30∙3	10.0	28•6	8•6	29.5
4	12.3	28 • 9	10.2	28 • 8	8 • 7	29.4
5	12.6	28•8	10.2	29.9	8 • 5	29 • 4
6	12.8	28.5	10.0	28•6	8•4	29 • 1
7	13.0	28.4	9*8	28•6	8 • 5	29.1
a a	13.6	28•4	9•9	28•3	8•6	29 • 1
9	12.8	28 • 5	9•7	29.0	8 • 8	29.5
10	12.7	28 • 8	9•3	28 • 8	8 • 2	29 • 1
11	12.8	28•8	9 • 4	28•6	8 • 3	29.7
12	13.2	28 • 4	9+4	28 • 8	8 • 2	29 • 4
13	13.2	28•8	9•4	28•6	8 • 3	29+7
14	12.8	28 • 8	9 • 4	29 • 4	8 * 3	29 • 4
15	12.4	28 • 8	8 • 8	28.5	7 • 8	27 • 8
16	12.8	28 • 6	9 • 1	28•9	7•8	29.1
17	12.1	28 • 9	9•3	28•6	8 • 4	29 • 3
18	11.7	29 • 1	9•2	29•1	8•7	29.7
19	11.1	29.0	9•5	29•4	8•6	29 • 3
20	10.8	29.4	9•3	29•1	8 • 5	29 • 5
21	10.5	29•4	9•3	29•3	8 • 5	29.5
55	10.1	29.5	9 • 0	29.0	8 • 5	29 • 5
53	9.9	29 • 8	9•2	29.7	8 • 3	29.0
24	9•9	29.9	9•0	29.5	8•3	29.3
25	10.0	29•4	8 • 8	29 • 8	8 • 4	29 • 1
26	10.0	29.5	8 • 4	29•3	8•4	29 • 8
27	9.8	29.7	8•7	29•5	8 • 5	29.7
58	9.7	29.5	8•8	29.5	8 • 1	29.1
29	9.9	28.5	8 • 5	29•4	7 • 8	28.5
30	10.6	28 • 9	8•7	29.5	7•9	28 • 6
31	10.3	28•1			8 • 1	28 • 8
MEANS	11.6	29•1	9•3	29•1	8 • 4	29+3
OBSVNS.	31	31	30	30	31	31
YRLY.MEANS					••• 11•3	28.9
MAXIMUM	13.6	30•3	10.5	29.9	8•8	29 • 8
MINIMUM	9•7	28•1	8 • 4	28•3	7 • 8	27 • 8
STD.DEV.	1.29	•58	•51	• 44	•27	• 42

		JANUARY		FEBRUARY		MARCH	1979	
DA"	TE	TEMP	SAL	remp .	SAL	TEMP	SAL	
	1 2 3 4 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 10 11 2 3 14 5 6 7 8 9 20 2 3 4 5 6 7 8 9 3 5 6 7 8 9 3 5 6 7 8 9 3 5 6 7 8 9 3 5 6 7 8 9 3 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 9 7 8 9 7 8 9 7 8 9 7 8 9 9 7 8 9 9 7 8 9 9 7 8 9 9 9 9	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	29.7 29.7 29.7 29.7 29.7 29.7 29.7 29.7	6.6.4.8.8.9.9.1.1.0.2.1.2.7.2.2.0.8.9.7.8.7.7.7.7.7.7.7.6.6.9.9.9.9.9.9.9.9.9.9.9	29.9 29.9 29.8 30.0 29.9 29.8 29.8 29.8 29.8 29.8 29.8 29.8	6.8 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7	29.7 29.7 30.0 29.8 29.8 29.8 29.8 29.8 29.8 29.9 29.9	
	31	6.5	29.9			7•9	29 • 1	
BRRANS.		6•7 29	29·4 29	6•9 28	29•7	7•9 31	29 • 4	
MAXIMUM MINIMUM		8•1 5•9	29•9 29•0	7 • 5 6 • 4	30·0 29·4	9•2 6•7	30·0 27·2	
STD.DEV.		• 40	• 25	•20	•19	•75	• 70	

	APRIL		MAY		JUNE	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1	7•9	29+1	11.7	29•1	15•0	27•3
2	8•1	29•1	12.2	29•4	17•8	27.7
3	8 • 1	29 • 4	11.9	29+1	18•1	27.3
4	8 • 4	29.7	12.4	29.4	14 • 9	27.7
5	8•9	29 • 1	11 • 1	29 • 1	14.6	28 • 1
6	థ∙ర	29•7	10.7	29 • 8	13.6	28.2
7	8•7	29•7	10.5	30.0	12.4	27 . 4
8	9•4	29•1	9 • 8	30.0	13•2	28.5
9	9•1	29•8	9•9	29•9	14 • 1	28 • 6
10	9•2	29.8	10.9	27 • 4	14.6	28 • 8
11	8•2	29 • 4	10.8	26 • 8	14.6	28.0
12	8 • 1	29.9	11.3	28 • 0	14 • 1	28.9
13	7.9	29.9	12.0	28 • 8	14.6	24.8
14	7 • 8	30.0	13.0	29•3	15•7	22.4
15	7 • 8	29.9	11.9	30.0	14•9	24.7
16	7.9	30.5	12.6	29.5	15•2	25.0
17	7.9	30.3	15.6	29•1	15•2	24 * 0
18	8•2	30.2	12.7	29•4	15•1	55*5
19	8 • 6	29•3	11 * 2	29•7	15 • 1	55.5
50	8.9	29.5	13•3	29•1	16 • 4	19•6
21	. 9.2	29•3	15.3	27.2	16.7	20.5
22	10.0	29.1	14.7	28•2	16 • 4	21 • 6
23	10.2	29•1	15.0	27•4	15 • 1	24.2
24	9•4	29.0	14•4	28 • 4	15•6	24 • 4
25	10.0	29•3	16.1	27•4	16 • 1	24.6
26	10.8	29.4	13.6	28 • 4	16.8	22.5
27	10.8 11.1	29•3	11.4	29.0	17.2	24.0
28 29	11.6	29.0	13.3	28•4	17.2	25 • 0
	11.9	29•0	12.8	28•4	17.2	24.6
30 31	11.3	29.0	14.4	28 • 0	16•4	25 • 5
.51			14*6	28•1		
MEANS	9•1	29.5	12.5	28•8	15.5	25 • 3
BBSVNS.	30	30	31	31	30	30
25041401	30	30	31	2,1	30	30
MAXIMUM	11.9	30•3	16•1	30.0	18•1	28•9
MINIMUM	7.8	29.0	9+8	26•8	12•4	19.6
			7.0	Em Co + Co	Mar Front	200
STD.DEV.	1.20	• 41	1 • 6 4	• 91	1•36	2.66

		JULY		AUGUST		SEPTEME	BER 1979
	DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
	1	14.2	26•3	17.5	25 • 1 25 • 1	17•9 15•1	27·3 28·0
	5	15.6	23.0	18.1	25 • 9	14.2	27.4
	3	15.8	23.0	18 • 5 18 • 1	26+5	13.8	24.0
	4	16.1	20.1	18 * 5	26.7	14 • 8	25.5
	5	17.2 17.5	20.0	18 • 1	26 • 8	15.2	23 • 8
	6	16.8	22.5	18 • 3	26 • 8	15.7	22.5
	7	15.9	24.2	18.6	27.2	14.9	24.7
	ති ව	15.1	24.7	19.3	27+1	14.6	25.0
	9	15.9	62.6	18.9	26 • 8	14.3	25 • 8
	10 11	15.2	23.5	17.9	26.7	13.2	26.8
	12	14.9	23.3	17.6	27 • 4	14.7	26 • 1
	13	15.5	22.2	18•4	27.3	14•9	25.9
	14	15.9	20.5	19.0	27.2	17.7	25 • 5
	15	15.3	25 • 6	18 • 1	27 • 1	14.7	26 • 8
	10	16.6	25 • 1	18.0	26 • 7	14.9	27.2
	17	18.1	25.6	17.9	25.9	16.9	27 • 1
	18	19.1	24.7	18.0	24.0	17.3	27.3
	19	17.9	26.1	18•4	24.6	17.6	27 • 3
	20	18.8	25.9	19•4	25 • 4	16.2	27.2
	21	19.0	25.5	18 • 1	26 • 1	14.6	27.2
	25	16.8	26.7	18.6	26.0	15•4	27.2
	23	18.3	27.2	18.2	25.9	12.9	27.2
	24	17.9	26.3	18 * 8	26.0	14•3	27•3
	25	18.6	26.0	18.7	26 • 4	14 * 1	27.3
	26	18.1	26.8	19•7	26.7	14 • 4	27.6
	27	17.9	26.7	17 • 4	27.2	14.2	27 • 4
	28	17.5	26.5	17.9	26•9	13 • 9	27.7
	29	17.5	26.3	18.4	26.9	13•1	27 • 4
	30	18.1	25.9	19.3	26.9	13.9	27.7
	31	18 • 1	24.7	18.0	26.8		
M III A	INS	16.9	24.5	18•4	26+4	15 • 0	26.5
	SVNS+	31	31	31	31	30	30
000	VIVO	3.4	4.1	9.			
MAX	(IMUM	19+1	27.2	19.7	27 • 4	17•9	28.0
	NIMUM	14.2	50.0	±7•4	24.0	12•9	22.5
STE	D.DEV.	1.37	2.12	•50	• 84	1 • 35	1 • 35

	аставы	ER	NOVEMB	ER	DECEMB	ER 1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1	13.9	27•3	10.0	28•0	8 • 3	28 • 8
2	13.6	27.4	9•9	27.7	-8•2	28.6
3	13.6	27.4	10.1	27.7	8•3	28.5
4	13.3	27.8	9.9	28 • 0	8•3	28•6
5	13.6	27.6	10.1	27.7	8•3	28•9
6	14 • 1	27.4	9•8	28•1	8 • 5	28 • 6
7	13.9	27.3	9•6	27 • 8	8•5	28 • 6
8	13.9	27.2	9.7	28 • 1	8•6	28.9
9	13.3	27.2	9.7	28 • 1	8 * 3	28 • 6
10	13.2	27.6	9 • 4	27.7	8 * 5	28.9
11	13.5	27.4	9 • 4	28 • 4	8 * 1	28.9
12	13.6	27.4	9 • 4	28•2	7•9	28 • 8
13	13.5	27.4	9•3	28•2	8 • 1	28 • 8
14	13.0	27.8	9•1	28•4	7•9	28 • 9
15	13.3	28.0	9 • 1	28•4	8•2	28 • 8
16	13.1	27.8	9.2	28•1	7 • 6	29.0
17	12.8	28.0	9 • 5	28•1	9•1	28 • 8
18	12.4	28.5	9 • 1	28•2	8•2	29.0
19	11.9	28.5	9+2	28•4	8 • 4	59•3
50	12.1	28.5	9•1	28.5	8•2	29 • 3
21	11.0	29.0	8•9	28•8	8•2	28 • 8
55	10.7	28.9	9•2	28•6	7•4	29.0
53 ·	10.4	29.4	9•0	29•1	7.6	28 • 2
24	10.7	28 • 8	8•9	29.5	8 • 1	28•9
25	10.7	28 • 4	8 • 8	29.5	8 • 0	28 • 6
26	10.4	29.0	8•4	29•3	7 • 6	27 * 8
27	10.3	28•8	8 • 2	29•7	7 • 8	28 • 4
28	10.4	28•4	7 • 8	28•2	7 • 5	27 • 7
29	10.4	0.85	7 • 9	28•4	7.5	27 • 8
30	10.6	27.7	8•3	28•5	7•4	27 • 3
31	10.1	27.7			7•6	28 • 1
MEANS	12.3	28.0	9•2	28•4	8 • 1	28 * 6
0BSVNS.	31	31	30	30	31	31
YRLY.MEANS					• • • 11 • 6	27.9
MAXIMUM	14.1	29.4	10.1	29•7	9•1	29 • 3
MINIMUM	10.1	27.2	7 • 8	27.7	7 • 4	27 • 3
STD.DEV.	1.43	•64	•62	• 55	•41	• 46

DEPARTURE BAY 49 12 38 N 123 57 17 W

	JANUARY		FEBRUARY	MARCH	1979
DATE	TEMP 5	AL T	EMP SAL	TEMP	SAL
1 2	* * * *		5•4 29•28 5•4 29•66	6•0 5•9	26 • 21 26 • 86
3	7.1 2	9.53 *	6.0 * 29.72 6.6 * 29.79		26 • 36 25 • 86 25 • 36
5 6 7	* 7.1 * 2	9.59 9.57 9.54	7•2 29•86 6•9 29•35 7•1 29•76		27 · 35 29 · 35
6 9	6.9 2		6.9 28.44	8 • 0 8 • 5	28.78
10	6.3 2	9 • 0 + * * * * * *	* *		28 • 56 28 • 90 29 • 24
12 13	* 6.6 * 6	9 • 3 3 9 • 3 9 9 • 4 6	6.5 26.71 7.1 27.01 7.1 29.98	8 • 6 7 • 5	28.37
14 15 16	6.4	9.52	4 · 8 26 · 16 5 · 7 27 · 21	7 • 8 7 • 8	28.42
17 18	6+6 2	9•06 * 9•49 *	5.7 * 27.48 5.8 * 27.75		29 • 16 29 • 42 29 • 68
19 20	* 6.9 * 6	:9•53 :9•58 :9•64 *	5.9 28.02 6.1 27.88 5.8 * 28.10	8 • 0	27.50
21 22 23	6.9	9 • 69	5.5 28.32 5.9 27.82	8 • 7 9 • 5	27.07
24 25	7.5	29•04 * 29•86 * 29•48	6.4 * 27.70 6.9 * 27.57 7.4 27.44		26 • 58 26 • 59 26 • 59
26 27 28	* 6.5 * 6	29 • 47 29 • 45	6·4 24·36 5·9 24·49	9 • 5 8 • 5	28 • 97 28 • 86
3 0	6 • 4	29•43 29•64		8 • 1 8 • 1 * 8 • 1 *	28.95 29.13 29.09
MEANS		29•43	6•3 27•88	8•0	28 • 02
BBSVNS.	55	55	18 18	9•5	21
MAXIMUM MINIMUM		≥9•86 ≥8•47	7•4 29•98 4•8 24•36	5•9	25 • 36
STD.DEV.	• 40	•304	•77 1•703	•91	1.234

DEPARTURE BAY 49 12 38 N. 123 57 17 W

	APRIL	MAY	JUNE	1979
DATE	TEMP SAL	TEMP SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	* 8.2	11.8	* 16.0 * 16.2 16.4 14.6 15.7 16.5 16.0 * 15.7 * 15.3 15.0 15.1 14.7 14.7	24.55 * 24.39 * 24.22 24.05 28.05 29.12 26.38 26.74 * 26.91 * 27.09 27.26 26.86 24.50 26.00 27.23
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	* * * * * * * * * * * * * * * * * * *	12.8	* 14.3 14.5 14.5 14.6 16.0 15.3 * 15.5 * 15.8 16.1 17.0 18.0 17.0	* 25.32 26.17 26.50 26.56 * 23.44 * 20.31 17.18 17.86 18.11 21.53 23.53 *
MEANS OBSVNS.	9•7 28•69 17 17	13•0 26•35 21 21	5 15•6 21	24•68 20
MAXIMUM MINIMUM	12•0 29•41 8•3 27•90	15•3 28•94 11•0 24•28		29·12 17·18
STD.DEV.	1.34 .435	1 • 40 1 • 52	1.07	3 • 4 4 1

DEPARTURE BAY 49 12 38 N 123 57 17 W

	JULY		AUGUST		SEPTEME	BER 1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 23 45 67 69 10 11 12 13 14 15 16 17 18 19 10 11 21 22 23 24 26 27 28 29 31 31 31 31 31 31 31 31 31 31 31 31 31	* 16.1 14.9 16.9 15.3 12.0 13.8 * 15.0 * 16.2 17.4 20.3 * 19.6 18.7 * 18.6 18.5 17.8 17	27.63 24.83 24.83 24.23 25.92 25.93 26.85 26.85 27.93	* 18.8 * 18.9	25 • 84 26 • 34 27 • 66	* 13°2 13°7 12°0 13°9	* 28 · 38 28 · 93 24 · 91 * 28 · 69 24 · 91 * 21 25 · 61 25 · 61 25 · 61 26 · 25 · 61 26 · 26 · 26 · 26 · 26 · 26 · 26 ·
MEANS OBSVNS.	16.7	24·89 20	17•7 19	24•97 19	15 · 0 18	25•92 18
MAXIMUM MINIMUM	20·3 12·0	27•93 19•55	19.5	27·81 20·68	17 • 0 12 • 0	28·93 22·69
STD.DEV.	2.02	2.526	1 • 4 6	2.350	1 • 52	1 • 886

DEPARTURE BAY 49 12 38 N 123 57 17 W

	9CT8BER		NOVEM	BER	DECEM	BER 1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25	12.2 14.2 15.0 14.5 14.4 * * * * * * * * * * * * * * * * * * *	28.51 26.54 26.49 * * * * * * * * * * * * * * * * * * *	10 · 1 10 · 1 * 10 · 1 * 10 · 1 10 · 0 9 · 5 9 · 5 * * * * * * * * * * * * * * * * * * *	26.45 26.71 27.02 27.34 27.66 28.33 28.01 28.04 27.94 * * 27.88 27.95 27.95 27.96 * 28.27 27.96 * 28.37 27.96 * 28.37 27.96 * 28.37 27.96 * 28.37 27.96 * 28.37 27.96 * 28.37 27.96 * 28.37 27.96 * 28.37 27.96 * 28.37 27.97 27.99 28.37 2	* * 7 • 8 • 3 7 • 4 9 9 9 9 9 0 8 5 7 7 7 • 5 9 4 8 8 4 9 5 7 7 6 • 5 7 7 6 • 6 • 7 7 • 6 • 6 • 7	* 26.97 28.54 28.32 26.77 27.84 28.21 * 28.58 28.95 28.77 27.26 28.77 27.26 28.77 27.26 28.77 27.88 21.39 19.82 17.88 21.39 19.82 20.62 21.02 * 22.22
25 26 27 28 29 30 31	9.9 * 9.9 * 9.9 9.9 10.1 10.9	23.28 * 25.10 * 26.93 28.75 28.35 26.56	* 8 • 3 8 • 1 7 • 7 7 • 2	28 • 14 27 • 86 27 • 93 27 • 77	* 7.0 7.2 7.4 * 7.4 * 7.4	* 23.42 24.62 26.22 * 25.89 * 25.55 25.22
MEANS BBSVNS. YRLY.MEANS MAXIMUM MINIMUM	12.2 22 15.0 9.2	27*18 22 ******** 29*35 23*28	9.0 17 1 10.1 7.2	27.88 19 28.45 26.45	7•7 19 ••• 11•5 8•4 6•5	25 • 06 19 26 • 76 28 • 95 17 • 88
STD.DEV.	1.89	1•389	•8♂	•512	• 47	3 • 837

ENTRANCE ISLANU 49 12 34 N 123 48 27 W

	JANUARY		FEBRL	JAHY	MARCH	1979	
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL	
1	7 • 1	∠9•0	6.9	29•1	6 • 8	28.5	
ê	7.2	29.1	6.8	29.1	6.8	28.9	
<u> </u>	7.3	29.0	7 • 1	29.3	6•9	28.9	
	7.2	29.0	7.2	29 * 4	7 • 1	28.9	
Ö	7.2	29.1	7 * 4	29.4	7.2	28.5	
5	7.2	29.1	7.2	29 • 4	7.2	28 • 8	
7	7 · c	29.1	7 • 6	29.4	7.6	26.7	
· ·	7.2	29.0	7 • 4	29.4	7•7	27.2	
9	7 • 1	29.0	7.5	29.4	7 • 8	28.2	
10	7.0	29.0	7 • 6	29.5	7•9	26.8	
11	7.2	c9·1	7 • 6	28 • 9	7.6	28 • 4	
12	5.8	60.9	7.9	29.8	7 • 8	30.0	
13	6.9	29.0	7.9	29.7	8 • 4	26.5	
1 4	7.2	29.1	7.7	29.3	7 • 8	28.0	
15	0.9	29.6	7 • 4	29.7	7 • 7	28.9	
16	7.2	29.1	* 7.6	* 29.8	7.7	28.6	
17	7.2	29.1	7.9	29.9	7.6	29.0	
18	7.2	29.1	7.7	29.5	7 • 5	29.1	
19	7.2	29.0	7 • 1	28.2	7.6	29.1	
20	7.6	29.1	7 • 4	29.0	7.6	28.6	
21	7.7	29.4	7 • 1	29•3	8 • 2	26.9	
25	7.3	29.0	6.9	28 • 8	8 • 3	26.8	
23	7.2	29.3	6 • 4	28.2	8 • 9	27.1	
24	7.3	c9·4	7 • 1	29 • 1	9.0	26.8	
25	7.6	29.3	7.7	29.5	8 • 9	27.6	
26	7.3	29.4	7.5	28.5	8 • 6	28.2	
27	7.4	69.5	7 • 1	28 • 8	8 • 6	28 • 4	
28	7.1	29.1	6.9	29.1	8 • 2	28.5	
23	7.2	29.3			8 • 1	28 • 4	
30	5 • 8	29.3			7.9	28 • 1	
31	6.6	29.3			7•8	28•2	
MEANS	7.2	29.1	7•3	29.2	7*8	28 • 1	
85SVNS.	31	31	27	27	31	31	
MAXIMUM	7.7	29.5	7•9	29.9	9•0	30 • 0	
MINIMUM	6.6	28.9	6 • 4	28.2	6•8	26.5	
STD.DEV.	•23	• 1 6	•37	• 43	•59	•89	

ENTRANCE ISLAND 49 12 34 N 123 48 27 W

	APRIL		MAY		JUNE	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1	7•9	28•4	11 • 4	28•2	15•9	24.2
2	7.9	28.6	11.8	28 • 4	16.0	24.2
3	8 • 4	28 • 4	11.0	28•2	17.8	24.0
4	8 • 4	28 • 6	10.0	28.9	16.6	24.4
ō	9.1	28.2	8 • 8	29.0	14.8	28.2
6	8.6	28 • 6	9.0	29.0	14.0	27.2
7	8.6	28 • 8	9*6	29.0	14.3	26.3
8	8.4	28.9	8 • 9	29.1	14 • 1	26.1
9	8.3	28.9	9.2	28.9	1404	26.0
10	7.9	29.1	10.9	24.6	1404	27 • 1
11	7.8	29.0	10.3	26.7	1404	26.9
12	8.3	29.0	11.2	26.5	14 • 4	26.9
13	7.7	29.3	11.5	27.4	14 • 4	25.2
14	7.7	28.8	12.1	27.7	14 • 6	25.2
15	7.6	28.9	12.4	27.6	14.2	26.7
16	7.7	29.1	12.5	26.9	12 • 8	25.5
17	8 • 2	28.0	13.7	55.5	12.3	28 • 1
18	8.2	28.0	13.0	26 • 4	13.8	27 • 3
19	8.0	27.2	13.3	25.0	14.9	23.8
20	8 • 6	27.7	13.9	23.1	13.9	28.2
21	9.6	28.0	15.6	24.8	13.6	28.0
55	9.9	26.5	14.2	24.7	14.6	27.2
23	9.4	27 • 1	13.7	25.5	14.3	25 • 6
24	9.9	27.3	12.7	26.9	14.2	28 • 4
25	10.0	27.2	12.7	27.1	15.6	18.7
26	10.3	27.6	11.6	29.0	16.6	18 • 4
27	10.4	28 • 0	. 11.8	28 • 8	17.3	18.7
28	11.2	27.7	13•1	26.4	15.6	24.2
29	9.9	28 • 1	13.6	23 • 3	16 • 4	23.3
30	10.1	28.2	14•4	23.4	12.8	28.4
31			14 * 6	23•9		
MEANS	8.8	28.5	12.0	26•7	14•8	25 • 4
BBSVNS.	30	30	31	31	30	30
MAXIMUM	11.2	29•3	15.6	29•1	17•8	28 • 4
MINIMUM	7.6	26.5	8 • 8	55.5	12•3	18 • 4
STD.DEV.	1.01	•71	1 • 83	2.09	1•30	2.77

ENTRANCE ISLAND 49 12 34 N 123 48 27 W

	JULY		AUGUST		SEPTEMBER 1979		
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL	
1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 16 17 18 9 20 1 2 2 3 4 2 5 6 7 2 2 3 4 5 6 7 2 2 2 3 4 5 6 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	16.9 18.9 13.7 15.6 12.7 14.6 15.4 15.4 16.3 15.4 16.3 18.1 19.4 17.4 20.2 19.4 17.7	** 1731830197145238606301448245 ** 260197145238606301448245 260197145238606301448245 2601971465238606301448245 2601971465238606301448245 2601971465238606301448245	18.1 17.8 18.6 19.3 18.7 19.2 18.1 18.5 14.6 14.7 18.1 16.0 15.8 16.9 16.9 16.9 16.9 16.9 17.2 17.2	0840069699348514278556120497 20244453235644886765008672456	14.7 12.7 12.7 12.7 12.7 13.5 14.6 15.6 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4	28 · 4 · 5 · 6 · 5 · 4 · 4 · 8 · 7 · 5 · 1 · 8 · 5 · 5 · 4 · 5 · 9 · 0 · 1 · 7 · 4 · 5 · 9 · 0 · 1 · 7 · 4 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6	
28 29 30 31	15.8 16.3 10.0 16.3	26 • 8 26 • 4 24 • 7 25 • 4	15.8 18.5 17.8 15.2	26.7 21.6 25.0 28.9	12·8 11·8 11·7	28 • 4 28 • 5 28 • 5	
MEANS OBSVNS.	16.5	24•6 30	17•6 31	24.9	1 4• 4 29	26•5 29	
MAXIMUM MINIMUM	20.2	29·1 17·3	19.3	28·9 20·5	17•7 11•7	28·6 23·4	
STD.DEV.	2.02	2.71	1.52	2•43	1 • 61	1.66	

ENTRANCE ISLAND 49 12 34 N 123 48 27 W

	OCTOBER		NOVEMBE	ER	DECEMBE	R 1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2	12.2 13.4	28 • 8 27 • 8	10 • 4	26 • 8 26 • 5	9 • 0 8 • 6 8 • 6	28 • 8 28 • 4 28 • 4
3 4 5	14.6 14.6 14.2	25•5 26•4 27•3	10•2 10•4 10•9	26•5 27•2 27•6	8 • 4 8 • 5	28 • O 28 • 2
6 7	14.8	27•2 25•8	10.0 9.8 9.3	27 • 8 27 • 3 27 • 3	8 • 4 8 • 2 8 • 5	28 • 1 27 • 3 28 • 4
8 9 10	13•8 13•7 14•0	27•3 27•1 27•4	9•3 9•4	27•3 27•7	8 • 8 8 • 2	28 • 6 28 • 6
11 12	13•8 13•5 12•9	27•4 27•3 27•7	9•6 9•4 9•3	27•7 27•4 27•4	8 • 2 8 • 1 8 • 3	28 • 2 28 • 2 28 • 4
13 14 15	12•7 12•5	27•8 27•3	9•2 8•6	27•6 27•3	8 • 2 7 • 1 7 • 9	28 • 4 24 • 4 28 • 4
16 17 18	12.7 11.9 11.6	27•3 27•3 28•5	9•6 9•7 8•9	27•7 28•5 27•8	8 • 6 8 • 5	28 • 6 28 • 8
19 20	10.6 10.3	28 • 5 28 • 4 28 • 4	9•3 9•3 9•1	28•6 28•8 28•9	8•3 8•8 8•1	28 • 4 29 • 4 27 • 3
21 22 23	11.0 9.6 9.8	28•9 29•0	9+3 9+2	29•7 29•7	7•2 7•6 8•8	25 · 2 27 · 2 29 · 3
24 25 26	9•9 9•7 9•9	28•2 29•0 29•1	9•1 8•6 8•2	29•5 29•0 28•0	8•7 8•8	29·3 29·1
27 28	9•7 9•6 10•1	19•7 26•0 27•6	7•9 7•6 8•1	27•7 27•4 28•0	8 • 6 8 • 7 7 • 2	28 • 2 28 • 8 25 • 9
29 30 31	9.9	28•2 26•4	8 • 7	28•4	6•9 7•9	25 • 5 27 • 7
MEANS OBSVNS•	12.0	27•4 31	9•3 30	27•9 30	8•2 31	28 .0 31 27.2
YRLY.MEANS MAXIMUM MINIMUM	14.8 9.6	29•1	10.9	29•7 26•5	9.0 6.9	29 • 4 25 • 2
STD.DEV.	1•86	1 • 71	•77	•86	•55	1.01

WEST VANCOUVER 49 20 18 N 123 14 06 W

	JANUARY			FEBRUA	RY	MARCH		1979	
DATE	T	EMP	SAL	Ĭ	EMP	SAL	T	EMP	SAL
1 2 3 4 5 6 7 8 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*************************		***	****		* * * * * * * * * * * * * * * * * * * *	****	*************************	
MEANS Busins.		0.0	0.0		0.0	0 • 0		0 • 0	0 • 0
MAXIMUM MINIMUM		0.0	0.0		0.0	0 • 0		0 • 0	0.0
STD.UEV.		0.00	0.00		0.00	0.00		0.00	0.00

WEST VANCEUVER 49 20 18 N 123 14 06 W

	APRIL		MAY		JUNE	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	**	+ + +	* * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
MEANS OBSVNS.	0.0	0 • 0 0	0 • 0	0•0	0 • 0	0.0
MAXIMUM MINIMUM	0.0 0.0	0 • 0 0 • 0	0.0	0.0	0 • 0	0 • 0
STD.DEV.	0.00	0.00	C•UU	0.00	0.00	0.00

WEST VANCOUVER 49 20 18 N 123 14 06 W

	JULY		AUGUST		SEPTEMBER 1979		
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL	
1	* *	4	*	*	*		
2	* *	4	*	*	*		
3	* *	11	*	*	*		
4	* *	*	*	*	*		
5	*	*	*	*	*		
6	* *	*	•	*	*		
7	* *	*		*	*		
×	* *		-	*	*		
9	* *	4		*	*		
10	₩ ¥	4		*	× ×		
11	* *			*			
12	100 N			*	*		
14	* *			*	*		
15	* *			*	*		
16	* *		*	*	*		
17	* *		*	*	#		
18	* *	3	#	*	*		
19	* *		*	*	*		
20	18 ¥		# #	#	#		
21	* *	3	* *	#	*		
55	* *	•	#	*	*		
53	* *		÷ 44	*	#		
24	* *		*	*	*		
25	* *		*	*	*		
26	* *		*	*	*		
27	* *		f #	*	*		
28 29	* *		~	*	*		
30	# #		*	*	*		
31	* *		+ #				
6.7 ds							
MEANS	0.0	0.0	0.0	0.0	0.0	0.0	
8BSVNS.	C	0	O	Ç	0	0	
MAXIMUM	0.0	0.0	0.0	0.0	0.0	0.0	
MINIMUM	0.0	0.0	0.0	0.0	0.0	0.0	
STD.DEV.	0.00	0• 00	0.00	0.00	0.00	0.00	

WEST VANCOUVER 49 20 18 N 123 14 06 W

	OCTOBER	₹		NOVEME	BER	DECEN	BER	1979
DATE	TEMP	SAL	7	EMP	SAL	TEMP	S	AL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	* * * * * * * * * * * * * * * * * * * *		******		* * * * * * * * * * * * * * * * * * * *	* 8 · 1 8 · 9 8 · 6 8 · 6 8 · 8 8 · 7 8 · 9 7 · 9 7 · 9 7 · 9 7 · 7 8 · 8 8 · 9 7 · 9 7 · 9 7 · 9 7 · 9 8 · 9 7 · 9 8 · 9	*****	
MEANS OBSVNS.	0.0	0 • 0		0.0	0.0	8•0		0.0
YRLY.MEANS MAXIMUM MINIMUM	0.0	0.0		0.0	0 • 0 0 • 0	9•7 6•8		0.0
STD.DEV.	0.00	0.00		0.00	0.00	•64		0.00

ACTIVE PASS 48 52 26 N 123 17 23 W

	JANUAR	Y	FEBRUA	RY	MARCH	1979	
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL	
1 23 45 67 89 10 11 11 13 14 15 16 17 18 19 10 12 23 24 25 26 27 28	5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6	27.4361345478077758899.80 27.899.8899.8999.79049080 22222222222222222222222222222222222	5 • • 9 3 6 • 9 8 1 4 6 1 2 3 1 1 1 3 7 9 8 5 8 2 2 2 2 8 8 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7	29.4 29.5 39.5 39.9 29.9 29.3 30.3 30.3 30.3 30.3 30.3 30.3 30.3 3	6 · 9 6 · 8 7 · 1 7 · 8 7 · 9 7 · 9 7 · 9 8 · 1 7 · 9 8 · 1 7 · 9 8 · 8 8 · 9 8	29.9 30.3 29.8 30.3 30.2 27.4 27.6 23.8 27.7 30.7 27.8 27.2 29.8 30.0 29.9 29.7 26.7 27.7 28.0 28.4 28.6 29.4 *	
29 30 31	6 • 2 5 • 4 5 • 2	29·7 29·5 29·0			8 · 4 8 · 0 8 · 2	28 • 9 28 • 8 28 • 1	
MEANS BBSVNS.	30	29•1	6•8 28	29•6	7•9 30	28.6	
MAXIMUM MINIMUM	7·0 5·1	29·9 27·3	7•8 5•2	30·7 26·5	9•0 6•8	30 • 7 23 • 8	
STD.DEV.	•55	• 73	•64	• 95	•60	1.52	

ACTIVE PASS 48 52 26 N 123 17 23 W

	APRIL		MAY		JUNE	1979
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1	8•3	28+8	9•7	29•1	14.5	22.5
5	8.3	28.8	12.0	24.3	15+4	24.0
3	8 • 1	58.5	10.2	27.8	18.6	10.5
4	9.0	29.5	10.7	29.7		* 18.4
5	9•3	29•3	9 • 6	29.9	14+7	26 • 4
6	10.1	29.5	10.2	30.7	15.6	17.0
7	9 • 8	29 • 8	10.7	30 • 4	16.8	16.6
8	9•1	29.4	12.2	28.5	14.9	24.2
9	9•1	30.2	13.3	1701	14.9	23 • 8
10	9•2	29•3	11+3	26.0	14.9	24.4
11	9•3	27.4	10.3	28.5	11.7	30.4
12	8•2	29.5	10.1	29•3	12.9	29.4
13	8•6	31.0	10.3	29•8	15.5	28.2
14	8 • 8	30•4	9•7	30.7	11.7	30 • 4
15	8 • 4	28.0	9•9	29•1	12.2	28 • 4
16	8.2	28 • 8	10.7	28•4	12.0	29.1
17	8.1	28.6	10.6	28•1	12.5	29.1
18	7.9	28.6	10.6	28.0	13.1	29.7
19	8.7	29•1	12.8	13.5	12.7	27.7
20	9.6	29.5	12.9	25•1	12.6	29.4
21	9•7	29•4	12.7	28•2	12.7	29.8
55	10.1	26.3	12.9	27.7	12.3	30,4
23	10.2	29+8	12.6	29 • 1	11.9	30 • 3
24	10.2	29.9	11.7	29.5	17°6 17°3	14 • 1 19 • 7
25	10.5	28•4	12.1	29•8		19.1
26	10.2	30 • 4 28 • 5	12.3	30 • 0 29 • 1	18•6 13•3	58 • 8
27	10•7 10•3	29•8	11 • 1 12 • 5	23.5	13.3	28.5
28 29	10.1	30 • 4	12.6	24.7	12.7	28 • 4
30	9.9	29•9	12.1	25 • 1	12.5	29.9
31	747	EJ+3	13.9	21.0	** = 4.0	4.5 4.5
21			*3*2	C 4 V		
MEANS	9•3	29•2	11+4	27.2	14.0	25.5
BBSVNS.	30	30	31	31	29	29
MAXIMUM	10.7	31.0	13.9	30 • 7	18•6	30 • 4
MINIMUM	7•9	26•3	9•6	13.5	11 • 7	10.5
STD.DEV.	•85	•97	1.24	3 • 95	2•12	5.52

ACTIVE PASS 48 52 26 N 123 17 23 W

		JULY		AUGUST		SEPTEMB	ER 1979
U	ATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
	1 2 3 4 5 6 7 8 9 10 11 21 3 14 15 16 17 18 19 20 12 22 24 5 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	12.3 13.4.9 14.3 14.9 14.3 13.8 15.4 11.6 17.7 17.9 18.9 19.9 19.9 19.9 19.9 19.9 19.9 19	28·1 27·1 30·3 24·7 26·0 28·7 22·7 22·7 22·7 22·7 22·7 22·7 22·6 14·6 12·6	15.2 17.1 19.6 19.1 19.6 19.1 18.0 19.1 16.4 14.0 13.7 13.7 14.3 15.7 12.7	27.2 22.6 20.1 23.7 24.4 24.3 26.5 27.1 26.5 28.6 28.9 28.8 29.1 28.8 29.1 28.9 29.0 28.9 29.0	12.4 12.4 11.8 11.7 12.1 11.8 13.1 14.0 16.0 16.0 14.0 16.0 17.0 14.0 17.0	29.5 29.7 29.7 29.7 29.7 29.7 29.7 29.8 29.5 29.5 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1
MEANS BBSVNS :		15•4 31	24.9	15·4 31	25·9 31	13•8 29	26.4
MAXIMUM MINIMUM		20.8	30·3 12·6	19.6	29•7 18•2	17°7 11°1	30·0 20·1
STD.DEV	•	2.85	4 • 78	2•38	3•30	1.68	2.93

ACTIVE PASS 48 52 26 N 123 17 23 W

	OCTOBER		NOVEMBER		DECEMBER 1979	
DATE	TEMP	SAL	TEMP	SAL	TEMP	SAL
1	12.7	27•6	10.0	27.2	8•3	29.7
2	14 • 1	22.5	9 • 3	25.0	8 • 2	28.5
3	13.4	25.5	9 • 6	28•6	8 • 4	26 • 3
4	13.6	25+5	10 • 1	26.9	8 • 4	26.9
5	13.2	26+1	9•9	28 • 5	8•6	28.2
6	12.8	27 • 1	9•6	27.2	8•4	28 • 2
7	12.2	27.7	9•3	24.3	8 • 8	29 • 3
8	* 12.4	* 26.4	8 * 8	23 * 8	- 8•9	29.4
9	12.7	25.0	9 • 2	25 • 6	8•9	29.5
10	13.3	25+8	8 • 8	25 • 4		* 29.0
11	12.0	28 • 1	8 • 7	24.7	8 • 5	28 • 5
12	12.1	28.0	8 • 7	25 • 4	7 • 8	31 • 4
13	12.1	29•1	8 • 8	27.1	8 • 3	29 • 1
14	12.3	27+3	8•7	27.7	8 • 4	29.7
15	12.3	27 • 3.	8•7	26.8	7•7	29 • 4
16	12.5	27.6	8 • 7	26.4	6 • 9	29 • 1
17	12.8	27.2	8•6	27.7	8•8	29.9
18	10.7	29 • 8	8•3		8 • 6	29.8
19	11+1	30+3		29.7	8 • 8	30.0
20	10.5	29•3	9+4	29 • 3	9•0	31 • 1
21	10.4	29.5	9•1	29.9	8•6	30 • 3
55	10.1	30•4	9•3	30.7	7•7	29.8
23 -	10.1	30 • 4	9•4	30.5	7•9	29.9
24	10.1	30.3	9•4	29 • 8	8•3	31.0
25	10.1	29.7	8•6	29.5	8 • 4	30 • 4
26	10.2	31.0	8 • 4		8 • 5	30.7
27	9.8	30 • 4		28•4	8 • 1	30.2
28	9.9	30.5		28.0	7•9	29.3
29	10.0	29.5		29.5	8 • 2	30.0
30	10.1	25.5	8•8		7 * 1	24.7
31	9•9	23•1			8 • 2	28•9
MEANS	11.6	27•9	9•0	27•6	8 • 3	29•3
8BSVNS.	30	30	30	30	30	30
YRLY.MEANS						27.6
MAXIMUM	14.1	31.0	10 • 1	30 • 7	9•0	31 • 4
MINIMUM	9•8	22.5	7•8	23•8	6•9	24.7
STD.DEV.	1.38	2•26	•56	1.92	•50	1 • 41

Annual Graphs of the 7-day

Normally-Weighted Running Means

for Temperature and Salinity

1979

TEMP: Temperature (°C and °F)

SAL: Salinity (0/00)

OCEANOGRAPHIC OBSERVATIONS AT OCEAN STATION P

11 January 1980 - 25 June 1981 VOLUMES 106 TO 118

Institute of Ocean Sciences Sidney, B.C.

Pacific Marine Science Report 81-24 (Part 1) - 5 (R24

OCEANOGRAPHIC OBSERVATIONS AT OCEAN STATION P 11 January 1980 - 25 June 1981 VOLUMES 106 TO 118

Institute of Ocean Sciences
Sidney, B.C.
1981

TABLE OF CONTENTS

ABSTRACT	r						-	-	-	***	-	1
INTRODUC	CTION					-	•••	***	-	-		-1-2
VOLUME I	NUMBER	AND CRUIS	SE SCHEI	OULE-			-	-	MARG	-	-	3
CHART SI	HOWING	LINE P ST	TATION F	POSIT	IONS	-	-	****		-	west -	4
PROGRAM	OF OB	SERVATION	CRUISE	I.D.	80-001-		-	******	***			-5-8
11	11	11	11	11	80-002-				-	-	-	9-12
11	11	11	11	11	80-003-	-		-	-	-	-1	3-16
11	11	11	11	н	80-004-		-	-		-	-1	7-21
11	н	11	11	11	80-005-	-	-	-	-	-	-2	3-26
11	11	11	11	11	80-006-	-	****	***	-		-2	7-30
11	11	11	11	н	80-007-	-	-	Name .	-		-3	1-34
11	11	11	11	11	80-008-	_	***	****	***	_	-3	5-38
11	11	11	11	11	80-009-	_	-	-	-	-	-3	9-42
11	11	11	11	11	81-001-		~	-	400	_	-4	3-46
11	11	11	11	11	81-002-	-		-	-	_	-4	7-51
11	11	11	11	11	81-003-	•••	-	-			-5	3-56
11	11	11	11	11	81-004-		***	ma			5	7-60

For additional copies or further information please write to:

Department of Fisheries and Oceans
Institute of Ocean Sciences
P.O. Box 6000
Sidney, B.C. CANADA

V8L 4B2

ABSTRACT

Physical, chemical and biological oceanographic observations are made from the weathership at Ocean Weather Station Papa, and between Esquimalt and Station Papa, on a routine continuing basis. Physical oceanographic observations only, taken during January 1980 through June 1981 are shown, including surface observations and profiles obtained with bottle casts and conductivity-temperature-pressure instruments.

INTRODUCTION

Canadian operation of Ocean Weather Station P (Latitude 50°00'N, Longitude 145°00'W) was inaugurated in December 1950. The station is occupied primarily to make meteorological observations of the surface and upper air and to provide an air-sea rescue service. The station is manned by two vessels operated by the Marine Services Branch of the Ministry of Transport. They are the CCGS Vancouver and the CCGS Quadra. Each ship remains on station for a period of six weeks, and is then relieved by the alternate ship, thus maintaining a continuous watch.

Bathythermograph observations have been made at Station P since July 1952. A program of more extensive oceanographic observations commenced in August 1956. This was extended in April 1959 by the addition of a series of oceanographic stations along the route to and from Station P and Swiftsure Bank. These stations are known as Line P stations. The number of stations on Line P has been increased twice and now consists of twelve stations (Fig. 1). Bathythermograph observations and surface salinity sample collections. in addition to being made on Line P oceanographic stations, are also made at odd meridians at 40°, i.e. 139°40'W, 141°40;W, etc. These stations are known as Line P BT stations. Data prior to 1968 has been indexed by Collins et al. (1969).

All physical oceanographic data have been stored by the Marine Environ-mental Data Services Branch (MEDS), Department of Fisheries and Oceans, 240 Sparks Street, 7th Floor West, Ottawa, Ontario, Canada, KIA 0E6. Requests for these data should be directed to MEDS.

Biological and productivity data are published in the Manuscript Report series of the Department of Fisheries and Oceans (DFO), Pacific Biological Station, Nanaimo, British Columbia, Canada. Requests for these data should be directed to DFO.

Marine geochemical data are for the Ocean Chemistry Division, Department of Fisheries and Oceans, Institute of Ocean Sciences, P.O. Box 6000, Sidney, B.C., Canada, V8L 4B2.

This is the last volume of an oceanographic data report series comprised of data collected at Station P and Line P. The first of the series started in 1956.

All previously issued data reports, up to and incuding volume 105 (cruise 79-009 from 30 November 1979 to 17 January 1980) were entirely in printed form.

(continued)

INTRODUCTION (Continued)

Since that time 13 additional cruises were made until the termination of the weatherships on 25 June 1981.

Due to the rising cost of printing, the last 13 volumes covering the time from 11 January 1980 to 25 June 1981 (volume 106 to 118) have been incorporated into one volume and produced "cover to cover" in microfiche (found in pockets at the back of this volume).

For easy reference, only a summary and the log of hydrographic and STD observations are printed and form a part of this volume.

It is hoped that in the future a report consisting of errata notes indicating possible errors in previously printed data reports will be issued.

VOLUME NUMBER AND CRUISE SCHEDULE

VOLUME	CRUISE I.D.	SHIP			DAT	TE		OBSERVER
106	80-001	(CCGS) QUADRA	11	Jan	-	28 Feb	'80	R. Bellegay (IOS) R. Conway (OSU)
107	80-002	VANCOUVER	22	Feb	***	10 Apr	180	M. Sherlock (OSU)
108	80-003	QUADRA	04	Apr	-	22 May	7 '80	B. Minkley (IOS) H. Batchelder (OSU)
109	80-004	VANCOUVER	16	May		03 JUI	. ' 80	R. Conway (OSU)
110	80-005	QUADRA	27	Jun	***	14 Aug	; ' 80	B. Canning (IOS) M. Sherlock (OSU)
111	80-006	VANCOUVER	08	Aug	-	25 Seg	80	H. Batchelder (OSU)
112	80-007	QUADRA	19	Sep	-	06 Nov	7 '80	H. Ashton (contract) R. Conway (OSU)
113	80-008	VANCOUVER	31	Oct	-	18 Dec	180	R. Bigham (IOS) M. Sherlock (OSU)
114	80-009	QUADRA	12	Dec'	80 -	22 Jar	n '81	H. Ashton (contract) H. Batchelder (OSU)
115	81-001	VANCOUVER	16	Jan	-	26 Feb	81	R. Conway (OSU)
116	81-002	QUADRA	20	Feb	-	02 Apr	· '81	G. Jewsbury (contract) M. Sherlock (OSU)
117	81-003	VANCOUVER	27	Mar	-	14 May	y '81	Ships crew
118	81-004	QUADRA	08	May	-	25 Jur	n '81	H. Ashton (contract)

⁽IOS) Institute of Ocean Sciences.

⁽OSU) Oregon State University.

Chart showing Line P station positions.

PROGRAM OF OBSERVATION FROM CCGS QUADRA, 11 January - 28 February 1980 (P-80-1)(MEDS Ref. No. 15-80-001)

En route to Station P (Line P)

A STD profile was taken at Line P Station 12.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT stations 1, 2, 3, 4, 6-1/2, 7, 7-1/2, 9 and 9-1/2.

On Station P

The oceanographic program was carried out as follows:

Physical Oceanography:

1) Two hydrocasts to 4200 metres for temperature, salinity and oxygen.
Two hydrocasts to 1500 metres for temperature, salinity and oxygen.
One hydrocast to 1200 metres for temperature, salinity and oxygen.
One hydrocast to 1500 metres for temperature and POC (Particulate and Organic Carbon)

One hydrocast to 500 metres for temperature, salinity and tritium.

- 2) Sixty STD profiles were taken at Station P. Fifteen STD profiles were taken at MILE GRID positions. Eight STD profiles were taken off station.
- 3) Daily salinity samples were taken from the seawater loop at 0000 hours, GMT.
- 4) The regular 3-hourly BT observations were deleted during this cruise.

 The temperature profiles only of all STD's taken at Station P were digitized and transmitted according to the IGOSS format.

Marine Geochemistry

Samples for air CO₂, PCO₂, POC, alkalinity, nutrients and tritium obtained during this cruise are for the Ocean Chemistry Division and are not included in this data report.

Biological Oceanography

Samples from 150 metre vertical plankton hauls (Station P) and nutrients (Line P) obtained during this cruise are for the Pacific Biological Station and are not included in this data report.

En Route from Station P (Line P)

STD profiles were taken at Line P stations 12, 7, 6, 3, 2 and 1.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS

001	Consec #	Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast	(m)	Comments
002	001	12	14/01/80	1800	300			Line P
003	002				300			
005 E4 19/01/80 2020 300 Temp only MILE grid 006 C1 19/01/80 2140 300 Temp only MILE grid 007 W4 19/01/80 2325 300 Temp only W1 19/01/80 2325 300 Temp only P 20/01/80 0055 300 009 P 20/01/80 0215 300 011 P 20/01/80 1720 300 011 P 20/01/80 1835 1300 011 P 20/01/80 2340 300 011 P 21/01/80 2355 300 014 P 22/01/80 2335 300 014 P 22/01/80 2330 300 016 P 23/01/80 2335 300 019 25/01/80 2335 300 019 25/01/80 1720 1425 50°00N 147°18W 020 25/01/80 1720 1425 50°05N 147°23W 021 26/01/80 1735 300 49°58N 147°21W 022 26/01/80 1735 300 49°58N 147°21W 022 26/01/80 1725 1425 425 426 426 426 426 426 426 426 426 426 426	003	P		1730	300			}
006	004	E3	19/01/80	1850	300			Temp only
007 W4 19/01/80 2325 300 Temp only 008 W3 20/01/80 0055 300 009 P 20/01/80 0215 300 010 P 20/01/80 1720 300 011 P 20/01/80 1835 1300 012 P 21/01/80 2355 300 013 P 21/01/80 2355 300 014 P 22/01/80 1730 1400 015 P 22/01/80 2330 300 016 P 23/01/80 2335 300 019 019 25/01/80 2335 300 019 019 25/01/80 2335 300 500 019 25/01/80 2335 300 500 019 25/01/80 2335 300 500 019 25/01/80 2335 300 500 019 25/01/80 2335 300 500 019 25/01/80 2335 300 500 019 25/01/80 2335 300 500 019 25/01/80 2335 300 500 019 25/01/80 2335 300 500 019 25/01/80 2335 300 500 0147*18W 020 25/01/80 2335 300 49*570 147*23W 021 26/01/80 2340 300 49*570 147*23W 021 26/01/80 2340 300 49*570 147*24W 024 27/01/80 2340 300 49*570 147*24W 024 27/01/80 2340 300 49*570 147*24W 024 27/01/80 2340 300 49*570 147*24W 025 28/01/80 1715 300 48*58N 147*24W 025 28/01/80 1715 300 48*58N 147*04W 025 28/01/80 1725 1425 028 P 29/01/80 1735 300 00 48*58N 145*46W 026 P 29/01/80 2330 300 00 7, \$3,02 00 00 00 00 00 00 00 00 00 00 00 00 0	005	E4	19/01/80	2020	300			Temp only MILE
008 W3 20/01/80 0055 300 300 1 1 009 P 20/01/80 0215 300 000 1 010 P 20/01/80 1720 300 011 P 20/01/80 2340 300 000 012 P 21/01/80 2355 300 000 014 P 22/01/80 2330 300 000 014 P 22/01/80 2330 300 000 016 P 22/01/80 2330 300 000 016 P 23/01/80 1725 1425 000 000 017 P 23/01/80 1725 1425 000 000 147*18W 000 000 000 147*18W 000 000 25/01/80 1720 1425 000 000 147*18W 000 000 147*18W 000 000 147*18W 000 000 000 147*23W 000 000 000 000 000 000 00	006	C1	19/01/80	2140	300			Temp only grid
009 F 20/01/80 0215 300 300 1 1 010 P 20/01/80 1720 300 0 <t< td=""><td></td><td>W4</td><td>19/01/80</td><td>2325</td><td>300</td><td></td><td></td><td>Temp only }</td></t<>		W4	19/01/80	2325	300			Temp only }
010 P 20/01/80 1720 300 011 P 20/01/80 2340 300 012 P 21/01/80 1835 1300 013 P 21/01/80 2355 300 014 P 22/01/80 2330 300 016 P 22/01/80 2330 300 016 P 23/01/80 2335 300 018 P 23/01/80 2335 300 019 25/01/80 2335 300 50°00N 147°18w 020 25/01/80 2335 300 50°05N 147°23w 021 26/01/80 2355 300 50°05N 147°23w 022 26/01/80 1725 1425 49°55N 147°21w 023 27/01/80 1725 1425 49°55N 147°24w 024 27/01/80 2340 300 49°55N 147°24w 025 28/01/80 1		W3	20/01/80	0055	300			}
011		P	20/01/80					}
012								
013								
014								
015								
016								
017								
018					1425			
019						4200		T,S,02
020		P						
021								
022								
023								
024								
025								
026 P 29/01/80 0108 300 027 P 29/01/80 1725 1425 028 P 20/01/80 1200 T,S,02 029 P 29/01/80 2330 300 030 P 30/01/80 1735 300 031 P 30/01/80 2345 300 032 P 31/01/80 2330 300 033 P 31/01/80 2330 300 034 P 01/02/80 1730 300 035 P 01/02/80 1720 1425 037 E3 02/02/80 1938 300 038 E4 02/02/80 2120 300 040 W4 03/02/80 0215 300 041 W3 03/02/80 0237 300 044 P 03/02/80 0350 300 044 P 03/02/80 1720 300 044 P 03/02/80 2335 300								
027 P 29/01/80 1725 1425 028 P 20/01/80 1200 T,S,02 029 P 29/01/80 2330 300 030 P 30/01/80 1735 300 031 P 30/01/80 2345 300 032 P 31/01/80 1720 300 033 P 31/01/80 2330 300 034 P 01/02/80 2330 300 035 P 01/02/80 2330 300 036 P 02/02/80 1720 1425 037 E3 02/02/80 1938 300 038 E4 02/02/80 2315 300 040 W4 03/02/80 2315 300 041 W3 03/02/80 0237 300 042 P 03/02/80 0350 300 044 P 03/02/80 1720 1425 046 P 05/02/80 2335 300 <td< td=""><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>48 58N 145 46W</td></td<>		_						48 58N 145 46W
028 P 20/01/80 1200 T,S,02 029 P 29/01/80 2330 300 030 P 30/01/80 1735 300 031 P 30/01/80 2345 300 032 P 31/01/80 2330 300 033 P 31/01/80 2330 300 034 P 01/02/80 2330 300 035 P 01/02/80 2330 300 036 P 02/02/80 1720 1425 037 E3 02/02/80 1938 300 038 E4 02/02/80 2120 300 040 W4 03/02/80 2315 300 041 W3 03/02/80 0237 300 042 P 03/02/80 0350 300 044 P 03/02/80 2335 300 044 P 03/02/80 1720 1425 046 P 05/02/80 1720 1425 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
029				1/25	1425	1200		т с о.
030				2220	200	1200		1,5,02
031								
032								
033								
034								
035								
036								
037 E3 02/02/80 1938 300 038 E4 02/02/80 2120 300 039 C1 02/02/80 2315 300 040 W4 03/02/80 0110 300 041 W3 03/02/80 0237 300 042 P 03/02/80 1720 300 044 P 03/02/80 2335 300 045 P 05/02/80 1720 1425 046 P 05/02/80 1920 1500 T,S.02 047 P 05/02/80 2330 300 048 P 06/02/80 2332 300 049 P 06/02/80 2332 300 050 P 07/02/80 1720 1425								}
038								
039								MILE
040 W4 03/02/80 0110 300								4
041 W3 03/02/80 0237 300								}
042 P 03/02/80 0350 300 } 043 P 03/02/80 1720 300 044 P 03/02/80 2335 300 045 P 05/02/80 1720 1425 046 P 05/02/80 1920 1500 T,S.02 047 P 05/02/80 2330 300 048 P 06/02/80 1750 1425 049 P 06/02/80 2332 300 050 P 07/02/80 1720 1425								
043 P 03/02/80 1720 300 044 P 03/02/80 2335 300 045 P 05/02/80 1720 1425 046 P 05/02/80 1920 1500 T,S.02 047 P 05/02/80 2330 300 048 P 06/02/80 1750 1425 049 P 06/02/80 2332 300 050 P 07/02/80 1720 1425								
044 P 03/02/80 2335 300 045 P 05/02/80 1720 1425 046 P 05/02/80 1920 1500 T,S.02 047 P 05/02/80 2330 300 048 P 06/02/80 1750 1425 049 P 06/02/80 2332 300 050 P 07/02/80 1720 1425								,
045 P 05/02/80 1720 1425 046 P 05/02/80 1920 1500 T,S.02 047 P 05/02/80 2330 300 048 P 06/02/80 1750 1425 049 P 06/02/80 2332 300 050 P 07/02/80 1720 1425								
046 P 05/02/80 1920 1500 T,S.02 047 P 05/02/80 2330 300 048 P 06/02/80 1750 1425 049 P 06/02/80 2332 300 050 P 07/02/80 1720 1425								
047 P 05/02/80 2330 300 048 P 06/02/80 1750 1425 049 P 06/02/80 2332 300 050 P 07/02/80 1720 1425						1500		T,S.02
048 P 06/02/80 1750 1425 049 P 06/02/80 2332 300 050 P 07/02/80 1720 1425					300			
049 P 06/02/80 2332 300 050 P 07/02/80 1720 1425					1425			
	049		06/02/80	2332	300			
051 P 07/02/80 2334 300	050	P	07/02/80	1720	1425			
	051	P	07/02/80	2334	300			

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS (continued)

Consec #	Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast	(m) Comments
052	Р	08/02/80	1720	1325		
053	P	08/02/80	2330	300		
054	P	11/02/80	1725	300		
055	P	11/02/80	2335	300		
056	P	12/02/80	1720	1425		
057	P	12/02/80	2330	300		
058	P	13/02/80	1725	1425		
059	P	13/02/80	2027		4200	T,S.02
060	P	13/02/80	2335	300		
061	P	14/02/80	1730	1425		
062	P	14/02/80	2336	300		
063	P	15/02/80	1730	1425		
064	P	15/02/80	1835		500	T.S. Tritium
065	P	16/02/80	0045	300		
066	P	16/02/80	1730	1425		
067	P	16/02/80	1812		1500	T, POC
068	P	17/02/80	0015	300		
069	P	17/02/80	1720	1425		
070	P	17/02/80	2348	300		
071	P	18/02/80	1720	1425		
072	P	18/02/80	1855		1500	T,S,02
073	P	19/02/80	1725	1425		}
074	E3	19/02/80	1900	300		}
075	E4	19/02/80	2010	300		}
076	C1	19/02/80	2145	300		MILE
077	W4	19/02/80	2330	300		grid
078	W3	20/02/80	0050	300		
079	P	20.02.80	0215	300		}
080	P	20/02/80	1710	1425		
081	P	20/02/80	2333	300		
082	P	21/02/80	1725	1425		
083	P	21/02/80	2323	300		
084	P	23/02/80	1730	1425		,
085	12	24/02/80	1715	1425		
086	7	26/02/80	0635	1425		
087	6	26/02/80	1315	1200		Line P
088	3	27/02/80	1938	1300		
089	2	27/02/80	0535	100		
090	1	27/02/80	0715	100		}

PROGRAM OF OBSERVATION FROM CCGS VANCOUVER, 22 February - 10 April 1980 (F-80-2) (MEDS Ref. No. 15-80-002)

En route to Station P (Line P)

STD profiles were taken at Line P stations 1 to 7 and 10.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 8-1/2, 9, 9-1/2, 10-1/2 and 11.

On Station P

The oceanographic program was carried out as follows:

Physical Oceanography:

- 1) Six hydrocasts to 1200 metres for temperature and salinity
- 2) Seventy-three STD profiles were taken at Station P. Fifteen STD profiles were taken at MILE GRID positions.
- 3) Daily salinity samples were taken from the seawater loop at 0000 hours, GMT.
- 4) The regular 3-hourly BT observations were deleted during this cruise.

 The temperature profiles only of all STD's taken at Station P were digitized and transmitted according to the IGOSS format.

Marine Geochemistry

Samples for air CO₂, PCO₂, POC, alkalinity, nutrients and tritium obtained during this cruise are for the Ocean Chemistry Division and are not included in this data report.

Biological Oceanography

Samples from 150 metre vertical plankton hauls (Station P) and nutrients (Line P) obtained during this cruise are for the Pacific Biological Station and are not included in this data report.

En Route from Station P (Line P)

STD profiles were taken at Line P station 12.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 1, 2, 9-1/2, 10, 10-1/2, 11 and 11-1/2.

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS

Consec #	Stations	Date (Z)	Time	(Z)	STD	(m)	Hydrocast	(m)	Comments
001	1	22/02/	80	1645		11	0			1
002	2	23/02/		0230		11				1
003	3	23/02/		0430		120				1
004	4	23/02/		1820		120				
005	5	23/02/		1145		120				Line P
006	6	23/02/		1820		120				1
007	7	24/02/		0100		120				1
008	10	24/02/		1940		120				1
009	P	25/02/		1900		120				,
* 010	P	25/02/	80	1915		30	0			}
011	W3	25/02/	80	2040		30	0			1
012	W4	25/02/	80	2220		30	0			MILE
013	C1	26/02/		0015		30	0			grid
014	E4	26/02/		0220		′ 30	0			}
015	E3	26/02/		0430		30				}
016	P	26/02/		1730		120	0			
017	P	26/02/		1830				1200		T,S,
018	P	26/02/		2325		30				
019	P	27/02/		1720		120				
020	P	28/02/		0000		30				
021	P	28/02/		1730		120				
022	P	28/02/		2345		30				
023	P	29/02/		1745		120				
* 024	P	01/03/		0000		12				
* 025	P	01/03/		1600		17				
026	P	02/03/		0000		120				
027	P	02/03/		1700		120				
028	P	03/03/		0000		30				
029	P	03/03/		1700		120				
030	P P	04/03/		1700		120	U	1200		m a
032	P	05/03/		2136 0000		30	0	1200		T.S.
033	P	05/03/		1700		120				
034	P	06/03/		0000		30				
035	P	06/03/		1700		120				
036	P	07/03/		0000		30				
037	P	07/03/		1700		120				
038	P	08/03/		0000		30				
039	P	08/03/		1700		120				
040	P	09/03/		0000		30				
041	P	09/03/		1700		120				
042	P	10/03/		0000		30				
043	P	10/03/		1620		30				
044	P	11/03/		0000		30				
045	P	11/03/		1700		120				
046	P	12/03/		0000		30				
047	P	12/03/	80	1730		120	0			
048	Р	12/03/	80	1845				1200		T,S,
049	Р	13/03/	80	0000		30	0			
050	Р	13/03/		1730		120	0			
051	Р	14/03/	80	0000		30	0			

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS (continued)

Consec #	Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast	(m) Comments
052	P	14/03/80	1800	1200		
053	P	15/03/80	0000	300		
054	P	15/03/80	1600	1350		
055	P	15/03/80	1620	300		}
056	E3	15/03/80	1815	300		}
057	E4	15/03/80	2030	300		}
058	Cl	15/03/80	2230	300		MILE
059	W4	16/03/80	0100	300		grid
060	W3	16/03/80	0230	300		}
061	P	16/03/80	1700	1200		
062	P	17/03/80	1700	1200		
063	P	18/03/80	0000	300		
064	P	18/03/80	1700	1200		
065	P	18/03/80	1820		1200	T,S,
066	P	19/03/80	0000	300		
067	P	20/03/80	1700	1200		
068	P	21/03/80	0000	300		
069	P	21/03/80	1930	1200		
070	P	22/03/80	0000	300		
071	P	22/03/80	1700	1200		
072	P	23/03/80	0000	300		
073	P	23/03/80	1700	1200		
074	P	24/03/80	0000	300		
075	P	25/03/80	0000	1200		
076	P	25/03/80	1700	1200		
077	P	25/03/80	1808		1200	T,S,(200-1200 m)
078	P	26/03/80	0000	300		2,0,00000000000000000000000000000000000
079	P	26/03/80	1700	1200		
077	P	26/03/80	1857		175	(0 to 175 m)
080	P	27/03/80	1800	300		, , , , , , , , , , , , , , , , , , , ,
081	P	28/03/80	0000	1200		
082	P	28/03/80	1830	1200		
083	P	29/03/80	0000	300		
084	P	30/03/80	0000	1200		
085	P	30/03/80	1700	1200		
086	P	31/03/80	0000	300		
087	P	31/03/80	1700	1200		
088	P	01/04/80	1700	1200		}
089	E3	01/04/80	1930	300		
090	E4	01/04/80	2130	300		
091	Cl	01/04/80	2330	300		MILE
092	W4	02/04/80	0130	300		grid
093	W3	02/04/80	0330	300		
094	P	02/04/80	1700	1200		J
095	P	02/04/80	1925	1200	1200	T,S,
096	P	03/04/80	0000	300	1200	., .,
097	P	03/04/80	1700	1200		
	P	04/04/80	0000	300		
098						

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS (continued)

Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast	(m) Comments
P	05/04/80	0000	300		
P	05/04/80	1700	1200		
P	06/04/80	0000	300		
12	06/04/80	2300	1200		Line P
	P P P	P 05/04/80 P 05/04/80 P 06/04/80	P 05/04/80 0000 P 05/04/80 1700 P 06/04/80 0000	P 05/04/80 0000 300 P 05/04/80 1700 1200 P 06/04/80 0000 300	P 05/04/80 1700 1200 P 06/04/80 0000 300

PROGRAM OF OBSERVATION FROM CCGS QUADRA, 4 April - 22 May, 1980 (P-80-3) (MEDS Ref. No. 15-80-003)

En route to Station P (Line P)

STD profiles were taken at Line P station 5.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 5-1/2, 6, 6-1/2, 7-1/2, 9, 9-1/2 and 12.

On Station P

The oceanographic program was carried out as follows:

Physical Oceanography:

- 1) Two hydrocasts to 4200 metres for temperature, salinity and oxygen. Four hydrocasts to 1500 metres for temperature, salinity and oxygen. Four hydrocasts to 1500 metres for temperature, P.O.C. (Particulate Organic Carbon and Chlorophyll -a).
- 2) Sixty-eight STD profiles were taken at Station P. Fifteen STD profiles were taken at MILE GRID positions.
- 3) Daily salinity samples were taken from the seawater loop at 0000 hours, GMT.
- 4) The regular 3-hourly BT observations were deleted during this cruise. The temperature profiles only of all STD's taken at Station P were digitized and transmitted according to the IGOSS format.

Marine Geochemistry
Samples for air CO₂, PCO₂, POC, alkalinity, nutrients and tritium obtained during this cruise are for the Ocean Chemistry Division and are not included in this data report.

Biological Oceanography
Samples from 150 metre vertical plankton hauls (Station P) and nutrients
(Line P) obtained during this cruise are for the Pacific Biological
Station and are not included in this data report.

En Route from Station P (Line P)

STD profiles were taken at Line P station 12 to 2. At stations 5 and 1 a hydrocast at each station was made for temperature and salinity.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 5, 6-1/2, 7-1/2, 8-1/2, 10-1/2, 11-1/2

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS

001	Consec #	Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast (m) Comments
002 P 08/04/80 2331 300 003 P 09/04/80 2331 300 004 P 09/04/80 2330 300 005 P 10/04/80 1715 1400 006 P 10/04/80 1817 1500 T, POC, Chl a 007 P 11/04/80 0000 300 008 P 11/04/80 1721 1400 009 P 11/04/80 2333 300 010 P 12/04/80 1920 300 011 E3 12/04/80 1920 300 012 E4 12/04/80 2336 300 014 W4 13/04/80 0100 300 015 W3 13/04/80 0305 300 016 P 13/04/80 336 300 017 P 13/04/80 1730 1400 017 P 13/04/80 1853 1500 T,S,02 020 P 14/04/80 1721 1400 021 P 15/04/80 1721 1400 021 P 15/04/80 1721 1400 022 P 15/04/80 1721 1400 021 P 16/04/80 1721 1400 022 P 15/04/80 2336 300 023 P 16/04/80 1731 1400 024 P 16/04/80 1815 025 P 16/04/80 1728 1400 024 P 16/04/80 1728 1400 025 P 17/04/80 2333 300 026 P 17/04/80 2333 300 030 P 20/04/80 1738 1400 027 P 17/04/80 2313 300 038 P 21/04/80 1738 1400 039 P 22/04/80 1738 1400 030 P 22/04/80 130 1500 1500 031 P 20/04/80 1728 1400 033 P 21/04/80 1738 1400 034 P 21/04/80 1738 1400 035 P 22/04/80 2330 300 037 P 22/04/80 2330 300 038 P 22/04/80 1720 1500 031 P 20/04/80	001	5	05/04/80	1439	1400		Line P
004			08/04/80	2331	300		
005	003	P	09/04/80				
006	004						
007	005				1400		
008 P 11/04/80 1721 1400 009 P 11/04/80 2333 300 010 P 11/04/80 2333 300 011 E3 12/04/80 1920 300 013 C1 12/04/80 2336 300 014 W4 13/04/80 0230 300 015 W3 13/04/80 0345 300 016 P 13/04/80 1853 300 017 P 13/04/80 1853 100 018 P 13/04/80 1853 100 019 P 13/04/80 1853 100 020 P 14/04/80 1721 1400 021 P 15/04/80 1721 1400 022 P 15/04/80 1721 1400 022 P 16/04/80 2333 300 024 P 16/04/80 2333 300 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1500</td> <td>T, POC, Chl a</td>						1500	T, POC, Chl a
009							
010							
011 E3 12/04/80 1920 300							ı
012 E4 12/04/80 2050 300							{
013							
014 W4 13/04/80 0100 300							MILE
015 W3 13/04/80 0230 300 016 P 13/04/80 0345 300 017 P 13/04/80 1730 1400 018 P 13/04/80 1853 1500 T,S,02 020 P 14/04/80 1721 1400 021 P 15/04/80 1721 1400 021 P 15/04/80 1721 1400 021 P 15/04/80 1721 1400 022 P 16/04/80 1815 4200 (T,S,02, Alk.,C13. 025 P 16/04/80 1815 4200 (T,S,02, Alk.,C13. 025 P 16/04/80 1815 4200 (T,S,02, Alk.,C13. 026 P 17/04/80 2330 300 028 P 18/04/80 1717 1400 027 P 17/04/80 2330 300 028 P 18/04/80 1718 1400 029 P 18/04/80 1718 1400 029 P 18/04/80 1718 1400 029 P 18/04/80 2333 300 030 P 20/04/80 1720 1500 031 P 20/04/80 1826 1500 032 P 20/04/80 1826 1500 033 P 21/04/80 2333 300 033 P 21/04/80 2333 300 033 P 21/04/80 2333 300 033 P 21/04/80 2335 300 033 P 21/04/80 1719 1400 034 P 21/04/80 1719 1400 034 P 21/04/80 1719 1400 036 P 22/04/80 1713 1400 036 P 22/04/80 1713 1400 037 P 24/04/80 1713 1400 038 P 24/04/80 1713 1400 039 P 25/04/80 1713 1400 038 P 25/04/80 1713 1400 040 P 25/04/80 1810 1500 T, POC, ch1 a 039 P 24/04/80 1810 1500 T, POC, ch1 a 039 P 24/04/80 1810 1500 T, POC, ch1 a 039 P 25/04/80 1734 1400 040 P 25/04/80 1925 300 040 P 25/04/80 1925 300 040 P 25/04/80 2326 300 040 045 W4 26/04/80 1925 1400 047 P 26/04/80 2317 300 048 P 27/04/80 2317 300 048 P 27/04/80 1854 1900 047 P 26/04/80 2317 300 048 P 27/04/80 1854 1900 049 P 27/04/80 2327 300 040 040 P 27/04/80 2327 300 040 0							4
016							}
017							1
018							,
019						1500	T,S,02
020					300		
021				1721	1400		
023			15/04/80	1721	1400		
024	022	P	15/04/80				
025	023	P			1400		
026						4200	
027 P 17/04/80 2330 300 028 P 18/04/80 1718 1400 029 P 18/04/80 2333 300 030 P 20/04/80 1720 1500 031 P 20/04/80 1826 1500 032 P 20/04/80 1719 1400 034 P 21/04/80 2325 300 035 P 22/04/80 1719 1400 036 P 22/04/80 1719 1400 037 P 24/04/80 1723 1400 038 P 24/04/80 1810 1500 T, POC, chl a 039 P 24/04/80 1810 1500 T, POC, chl a 039 P 24/04/80 1734 1400 040 P 25/04/80 1927 300 041 P 25/04/80 1927 300 042 E3 25/04/80 2326 300 044 C1 26/04/80 2326 300 045 W4 26/04/80 1925 1400 046 W3 26/04/80 1925 1400 047 P 26/04/80 1749 1400 049 P 27/04/80 1854 1500 T, S,O2 049 P 27/04/80 1815 1749 1400 049 P 27/04/80 1854 1500 T,S,O2							(nutrients
028							
029							
030							
031							
032 P 20/04/80 2330 300 033 P 21/04/80 1719 1400 034 P 21/04/80 2325 300 035 P 22/04/80 1719 1400 036 P 22/04/80 2330 300 037 P 24/04/80 1723 1400 038 P 24/04/80 1810 1500 T, POC, chl a 039 P 24/04/80 1734 1400 041 P 25/04/80 1927 300 042 E3 25/04/80 2052 300 044 C1 26/04/80 0125 300 045 W4 26/04/80 0125 300 045 W4 26/04/80 1925 1400 047 P 26/04/80 1925 1400 047 P 26/04/80 1925 1400 048 P 27/04/80 1749 1400 049 P 27/04/80 1854 1500 T,S,02					1,000	1500	т 5 02
033					300	1500	1,0,02
034 P 21/04/80 2325 300 035 P 22/04/80 1719 1400 036 P 22/04/80 2330 300 037 P 24/04/80 1810 1500 T, POC, chl a 038 P 24/04/80 1810 1500 T, POC, chl a 039 P 24/04/80 1734 1400 041 P 25/04/80 1927 300 042 E3 25/04/80 2052 300 044 C1 26/04/80 2326 300 044 C1 26/04/80 0125 300 045 W4 26/04/80 1925 1400 047 P 26/04/80 1925 1400 047 P 26/04/80 2317 300 048 P 27/04/80 1749 1400 049 P 27/04/80 1854 1500 T,S,02							
035							
036 P							
037							
038					1400		
039		P	24/04/80	1810		1500	T, POC, chl a
041 P 25/04/80 1927 300 042 E3 25/04/80 2052 300 043 E4 25/04/80 2326 300 044 C1 26/04/80 0125 300 045 W4 26/04/80 0307 300 046 W3 26/04/80 1925 1400 047 P 26/04/80 2317 300 048 P 27/04/80 1749 1400 049 P 27/04/80 1854 1500 T,S,O2 050 P 27/04/80 2327 300		Р	24/04/80	2330			3
042 E3 25/04/80 2052 300	040	P	25/04/80				
043 E4 25/04/80 2326 300	041	P					
044 C1 26/04/80 0125 300 } 045 W4 26/04/80 0307 300 046 W3 26/04/80 1925 1400 047 P 26/04/80 2317 300 048 P 27/04/80 1749 1400 049 P 27/04/80 1854 1500 T,S,02 050 P 27/04/80 2327 300							4
045 W4 26/04/80 0307 300 } 046 W3 26/04/80 1925 1400 047 P 26/04/80 2317 300 048 P 27/04/80 1749 1400 049 P 27/04/80 1854 1500 T,S,O ₂ 050 P 27/04/80 2327 300							grid
046 W3 26/04/80 1925 1400 047 P 26/04/80 2317 300 048 P 27/04/80 1749 1400 049 P 27/04/80 1854 1500 T,S,O ₂ 050 P 27/04/80 2327 300							{
047 P 26/04/80 2317 300 048 P 27/04/80 1749 1400 049 P 27/04/80 1854 1500 T,S,O ₂ 050 P 27/04/80 2327 300							l
048 P 27/04/80 1749 1400 049 P 27/04/80 1854 1500 T,S,O ₂ 050 P 27/04/80 2327 300							
049 P 27/04/80 1854 1500 T,S,O ₂ 050 P 27/04/80 2327 300							
050 P 27/04/80 2327 300					1400	1500	T.S.02
050			* * * * * * * * * * * * * * * * * * * *		300	1500	-,-,-,
	051	r P			1400		

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS (continued)

Consec #	Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast (m)	Comments
052	P	28/04/80	2327	300		
053	P	29/04/80	1725	1400		
054	P	29/04/80	2335	300		
055	P	30/04/80	1722	1400		
056	3	30/04/80	2324	300		
057	4	01/05/80	1724	1400		
058	i	01/05/80	1805		1500	T, POC, Chl a
059	4	01/05/80	2325	300		
060	3	02/05/80	1718	1400		
061	P	02/05/80	2326	300		
062	P	03/05/80	1744	300		
063	P	04/05/80	1716	1400		
064	P	04/05/80	2323	300		
065	Р	05/05/80	1721	1400		
066	P	05/05/80	2139		1500	T,S,02
067	P	05/05/80	2216	300		, , -
068	P	06/05/80	1718	1400		
069	P	06/05/80	2330	300		
070	P	07/05/80	1721	1400		
071	P	07/05/80	2327	300		
072	Р	08/05/80	1725	1200		
073	P	08/05/80	2315	300		
074	P	09/05/80	1723	1400		
075	P	09/05/80	1912		1500	T, POC, Chl a
076	Р	09/05/80	2324	300		
077	Р	10/05/80	1715	1400		
078	P	10/05/80	2322	300		
079	P	11/05/80	1718	1400		
080	P	11/05/80	1832		4200	T,S,02
081	P	11/05/80	2327	300		
082	P	12/05/80	1728	1400		
083	P	12/05/80	2321	300		
084	P	13/05/80	1720	1400		
085	P	13/05/80	2328	300		,
086	P	14/05/80		1400		
087	E3	14/05/80	1921	300		
088	E4	14/05/80	2052	300		
089	Cl	14/05/80	2218	300		MILE
090	W4	14/05/80	2352	300		grid
091	W3	15/05/80	0116	300		
092	P	15/05/80	0235	300		}
093	P	15/05/80	1725	1400		
094	P	17/05/80	1720	1400		1
095	12	18/05/80	1717	1400		
096	11	19/05/80	0405	1400		
097	10	19/05/80	0953	1400		
098	9	19/05/80	1533	1400		
099	8	19/05/80	2118	1400		Time D
100	7	20/05/80	0254	1400		line P

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS

Conse	c # Stati	ions Date (Z)) Time ((Z) STD (m)	Hydrocast	(m)	Comments
101	ϵ		0837	1400			}
102	5	20/05/80	0 1438	1400			}
103	5	20/05/80	0 1540		1500	T,S,	}
104	. 4	20/05/80	0 1853	1400			Line P
105	3	3 20/05/80	2206	1200			}
* 106	2	21/05/80	0 0145	100	1	not d	igitized
107	1	21/05/80	0404		100	Γ,S,	}

PROGRAM OF OBSERVATION FROM CCGS VANCOUVER, 16 May - 3 July 1980 (P-80-4) (MEDS Ref. No. 15-80-004)

En route to Station P (Line P)

STD profiles were taken at Line P stations 1 to 7, 9 and 12.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 5-1/2, 6-1/2, 8-1/2, and 11-1/2.

On Station P

The oceanographic program was carried out as follows:

Physical Oceanography:

- 1) Seven hydrocasts to 1200 metres for temperature, salinity and oxygen. One hydrocasts to 1500 metres for temperature, salinity and oxygen.
- 2) Eighty four STD profiles were taken at Station P. Fifteen STD profiles were taken at MILE GRID positions.
- 3) Daily salinity samples were taken from the seawater loop at 0000 hours, GMT.
- 4) The regular 3-hourly BT observations were deleted during this cruise.

 The temperature profiles only of all STD's taken at Station P were digitized and transmitted according to the IGOSS format.

Marine Geochemistry
Samples for air CO₂, PCO₂, POC, alkalinity, nutrients and tritium obtained during this cruise are for the Ocean Chemistry Division and are not included in this data report.

Biological Oceanography
Samples from 150 metre vertical plankton hauls (Station P) and nutrients
(Line P) obtained during this cruise are for the Pacific Biological
Station and are not included in this data report.

En Route from Station P (Line P)

STD profiles were taken at Line P stations 1 to 6.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 10, 10-1/2, 11 and 12.

Consec	# Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast	(m) Comments
001	1	17/05/80	0120	115		}
002	2	17/05/80	0372	110		
003	3	17/05/80	0515	1200		
004	4	17/05/80	0835	1200		
005	5	17/05/80	1210	1200		Line P
006	6	17/05/80	1852	1200		
007	7	18/05/80	0118	1200		1
008	7-1/2	18/05/80	0731	1200		1
009	9	18/05/80	1352	1200		1
010	12	19/05/80	0845	1200		
011	P	19/05/80	1745	1270		,
012	P	20/05/80	0010	300		
013	P	20/05/80	1710	1200		
014	P	20/05/80	1925		1200	T,S,02
015	P	21/05/80	0000	300		
016	P	21/05/80	1725	1200		
017	P	22/05/80	0000	300		
018	P	22/05/80	1600	1200		,
019	P	22/05/80	1610	300		1
020	E3	22/05/80	1820	300		1
021	E4	22/05/80	2030	300		
022	C1	22/05/80	2230	300		MILE
023	W4	23/05/80	0030	300		grid
024	W3	23/05/80	0235	300		}
025	P	23/05/80	1710	1200	1000	m 0 0
026 027	P P	23/05/80 23/05/80	2100 2220	300	1200	T,S,02
028	P	24/05/80	1715	1200		
029	P	24/05/80	2350	300		
030	P	25/05/80	1710	1200		
031	P	26/05/80	0000	300		
032	P	26/05/80	1725	1200		
033	P	27/05/80	0005	300		
034	P	27/05/80	1713	1200		
035	P	27/05/80	1815		1200	T,S,02
036	P	28/05/80	0001	300		-,~,~2
037	P	28/05/80	1705	1200		
038	P	29/05/80	0005	300		
039	P	29/05/80	1715	1200		
040	P	29/05/80	2357	300		
041	P	30/05/80	1715	1200		
042	P	30/05/80	2350	300		
043	P	31/05/80	1715	1200		
044	P	31/05/80	2355	300		
045	P	01/06/80	1715	1200		
046	P	01/06/80	2353	300		
047	P	02/06/80	1725	1200		
048	P	02/06/80	2353	300		
049	P	03/06/80	1710	1200	1000	m c 0
050	Р	03/06/80	1825		1200	T,S,0 ₂

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS (continued)

LOG OF HIL	MOGRATHIC	AND DID OF	JOHN VIII IO	(COII C	. I II d C d /		
Consec #	Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast	(m) Comments	s
051	P	04/06/80	0002	300			
052	P	04/06/80	1710	1200			
053	P	04/06/80	2355	300			
054	P	05/06/80	1708	1200			
055	P	05/06/80	2350	300			
056	P	06/06/80	1547	1200		}	
057	E3	06/06/80	1815	300		}	
058	E4	06/06/80	2047	300		MILE	
059	Cl	06/06/80	2135	300		grid	
060	W4	06/06/80	2333	300		}	
061	W3	07/06/80	0210	300		1	
062	P	07/06/80	1712	1200		,	
063	P	07/06/80	2201	300			
064	P	08/06/80	1723	1200			
065	P	08/06/80	2347	300			
066	P	09/06/80	1720	1200			
067	P	09/06/80	2351	300			
068	P	10/06/80	1718	1200			
069	P	10/06/80	2351	300			
070	P	11/06/80	1714	1200			
071	P	11/06/80	1800		1500	T,S,02	
072	P	11/06/80	2355	300		, , _	
073	P	12/06/80	1720	1200			
074	P	12/06/80	2351	300			
075	P	13/06/80	1717	1200			
076	P	13/06/80	2348	300			
077	P	14/06/80	1715	1200			
078	P	14/06/80	2150		1200	T,S,02	
079	P	14/06/80	2210	300			
080	P	15/06/80	1715	1200			
081	P	15/06/80		300			
082	P	16/06/80	1710	1200			
083	P	16/06/80	1816		1200	T,S,O_2	
084	P	16/06/80	2350	300			
085	P	17/06/80	1715	1200			
086	P	17/06/80	2353	300			
087	P	18/06/80	1709	1200			
088	P	18/06/80	2348	300			
089	P	19/06/80	1711	1200			
090	P	20/06/80	0001	300			
091	P	20/06/80	1710	1200			
092	P	20/06/80	2217	300			
093	P	21/06/80	1733	1200			
094	P	21/06/80		300			
095	P	22/06/80		1200			
096	P	22/06/80		300			
097	P	23/06/80		1200			
098	P	23/06/80			1200	T,S,02	
099	Р	23/06/80		300			
100	P	24/06/80		1200			
101	P	24/06/80	2351	300			

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS (continued)

Consec #	Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast	(m)	Comments
102	P	25/06/80	1712	1200			
103	P	25/06/80	2356	300			
104	P	26/06/80	1711	1200			}
105	E3	26/06/80	1923	300			}
106	E4	26/06/80	2132	300			}
107	C1	26/06/80	2357	300			MILE
108	W4	27/06/80	0207	300			grid
109	W3	27/06/80	0425	300			}
110	P	27/06/80	1709	1200			
111	P	27/06/80		300			
112	P	28/06/80	1710	1200			
113	P	28/06/80	2347	300			
114	P	29/06/80	1709	1200			
115	P	30/06/80	0004	300			
116	P	30/06/80	1714	1200			
117	P	30/06/80		300			,
118	6	02/07/80	1548	1200			}
119	5	02/07/80	2205	1200			}
120	4	03/07/80	0130	1200			Line P
121	3	03/07/80	0432	1200			}
122	2	03/07/80	0645	100			
123	1	03/07/80	0835	100			}

PROGRAM OF OBSERVATION FROM CCGS QUADRA, 27 June - 14 August 1980 (P-80-5) (MEDS Ref. No. 15-80-005)

STD profiles were taken at Line P station 12.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 1, 2, 4, 5-1/2, 6, 7, 7-1/2, 8-1/2 and 11-1/2.

On Station P

The oceanographic program was carried out as follows:

Physical Oceanography:

- 1) Two hydrocasts to 4200 metres for temperature, salinity and oxygen. Four hydrocasts to 1500 metres for temperature, salinity and oxygen.
- 2) Seventy eight STD profiles were taken at Station P. Fifteen STD profiles were taken at MILE GRID positions.
- Daily salinity samples were taken from the seawater loop at 0000 hours, GMT.
- 4) The regular 3-hourly BT observations were deleted during this cruise.

 The temperature profiles only of all STD's taken at Station P were digitized and transmitted according to the IGOSS format.

Marine Geochemistry

Samples for air CO₂, PCO₂, POC, alkalinity, nutrients and tritium obtained during this cruise are for the Ocean Chemistry Division and are not included in this data report.

Biological Oceanography

Samples from 150 metre vertical plankton hauls (Station P) and nutrients (Line P) obtained during this cruise are for the Pacific Biological Station and are not included in this data report.

En Route from Station P (Line P)

STD profiles were taken at Line P stations 12, 5, 4, 3 and 2. At stations 12 and 15 a hydrocast was also made for temperature and salinity.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 1 and 5-1/2.

Consec #	Stations	Date (Z)	Time	(Z)	STD	(m)	Hydrocast	(m)	Comments
001	12	01/07/80	2125		142	2.5			Line P
002	P	02/07/80	1720		142				
003	P	03/07/80	0150		30				
004	P	03/07/80	1725		142				
005	P	03/07/80	1829				1500		T,S.02
006	P	03/07/80	2320		30	0			,
007	P	04/07/80	1730		142	25			
008	P	04/07/80	2320		30	0			
009	P	05/07/80	1720		142	.5			}
010	E3	05/07/80	1930		30	0			}
011	E4	05/07/80	2055		30	0			MILE
012	C1	05/07/80	2215		30	0			}grid
013	W4	05/07/80	2335		30	0			}
014	W3	06/07/80	0055		30	0			}
015	P	06/07/80	0212		30	0			}
016	P	06/07/80	1730		142				
017	P	06/07/80	2330		30				
018	P	07/07/80	1720		142				
019	P	07/07/80	2320		30				
020	P	08/07/80	1720		142	.5			
021	P	08/07/80	1825				4200		T,S,02
022	P	08/07/80	2320		30				
023	P	09/07/80	1745		142				
024	P	09/07/80	2320		30				
025	P	10/07/80	1720		142				
026	P	10/07/80	2323		30				
027	P	11/07/80	1720		142				
028	P	11/07/80	2320		30				
029	P	12/07/80	1715		30				
030	P	12/07/80	2320		30				
031	P	13/07/80	1720		142				
032	P	13/07/80	2320		30				
033 034	P P	14/07/80 14/07/80	1720		142	.5	1500		m 0 0
034	P		1803 2315		30		1500		T,S.0 ₂
036	P	14/07/80 15/07/80			142				
030	P	15/07/80	1535 2320		30				
037	P	16/07/80	1715		142				
039	P	16/07/80	2320		30				
040	P	17/07/80	1722		142				
041	P	17/07/80	2315		30				
042	P	18/07/80	1713		30				
043	P	18/07/80	2320		30				
044	P	19/07/80	1715		142				1
045	E3	19/07/80	1925		30				1
046	E4	19/07/80	2045		30				MILE
047	Cl	19/07/80	2210		30				grid
048	W4	19/07/80	2332		30				
049	W3	20/07/80	0100		30				1
050	P	20/07/80	0207		30				}
051	P	20/07/80	1720		142				J
		30,01,00	_,_0		_ , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS (continued)

Consec #	Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast	(m) Comments
052	P	20/07/80	2310	300		
053	P	21/07/80	1713	1425		
054	P	21/07/80	1757		1500	T,S,02
055	P	21/07/80	2312	300		, , –
056	P	22/07/80	1715	1425		
057	P	22/07/80	2315	300		
058	P	23/07/80	1730	1425		
059	P	23/07/80	2325	300		
	P	24/07/80		1425		
060		24/07/80	2325	300		
061	P					
062	P	25/07/80	1710	1425		
063	P	25/07/80	2315	300		
064	P	26/07/80		1425		
065	P	26/07/80		60		
066	P	27/07/80		1425		
067	P	27/07/80		300		
068	P	28/07/80	1810	1425		
069	P	28/07/80	2325	300		
070	P	29/07/80	1720	1425		
071	P	29/07/80	1807		4200	T,S,02
072	P	29/07/80		300		
073	P	30/07/80		300		
074	P	30/07/80		300		
075	p	31/07/80		1425		
076	P	31/07/80		300		
077	P	01/08/80		1425		}
078	E3	01/08/80		300		1
079	E4	01/08/80		300		{
080	C1	01/08/80		300		MILE
081	W4	01/08/80		300		grid
082	w4 W3	02/08/80		300		16114
		02/08/80		300		{
083	P					J
084	P	02/08/80		1425		
085	P	02/08/80		300		
086	P	03/08/80		1425		
087	3	03/08/80		300		
088	4	04/08/80		1425	1500	m a 0
089	1	04/08/80			1500	T,S.02
090	4	04/08/80		300		
091	3	05/08/80		1425		
092	P	05/08/80		300		
093	P	06/08/80	1715	1425		
094	P	06/08/80	2320	300		
095	P	07/08/80	1715	1425		
096	P	07/08/80	1215	300		
097	P	08/08/80		300		
098	P	08/08/80		300		
099	P	09/08/80		1425		
100	P	09/08/80		300		
101	12	10/08/80		1425		
101	.I. 60	10,00,00	1,23	2 (2)		

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS (continued)

Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast (n) Comments
1.0	10/00/00	1000		1500	1
12				1500	
5	12/08/80	1440	1425		
5	12/08/80	1537		1500	LINE P
4	12/08/80	1842	1425		}
3	12/08/80	2155	1200		}
2	13/08/80	0100	100		}
	12 5 5 4 3	12 10/08/80 5 12/08/80 5 12/08/80 4 12/08/80 3 12/08/80	12 10/08/80 1802 5 12/08/80 1440 5 12/08/80 1537 4 12/08/80 1842 3 12/08/80 2155	12 10/08/80 1802 5 12/08/80 1440 1425 5 12/08/80 1537 4 12/08/80 1842 1425 3 12/08/80 2155 1200	5 12/08/80 1440 1425 5 12/08/80 1537 1500 4 12/08/80 1842 1425 3 12/08/80 2155 1200

PROGRAM OF OBSERVATION FROM CCGS VANCOUVER, 8 August - 25 September 1980 (P-80-6) (MEDS Ref. No. 15-80-006).

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 10, 11 and 12.

On Station P

The oceanographic program was carried out as follows:

Physical Oceanography:

- 1) Five hydrocasts to 1200 metres for temperature, salinity and oxygen. Three hydrocasts to 300 metres for temperature and salinity.
- 2) Seventy two STD profiles were taken at Station P. Ten STD profiles were taken at MILE GRID positions.
- 3) Daily salinity samples were taken from the seawater loop at 0000 hours, GMT.
- 4) The regular 3-hourly BT observations were deleted during this cruise.

 The temperature profiles only of all STD's taken at Station P were digitized and transmitted according to the IGOSS format.

Marine Geochemistry

Samples for air CO₂, PCO₂, POC, alkalinity, nutrients and tritium obtained during this cruise are for the Ocean Chemistry Division and are not included in this data report.

Biological Oceanography
Samples from 150 metre vertical plankton hauls (Station P) and nutrients
(Line P) obtained during this cruise are for the Pacific Biological
Station and are not included in this data report.

En Route from Station P (Line P)

STD profiles were taken at Line P stations 1 to 12.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 5-1/2, 6-1/2, 7-1/2, 8-1/2, 9-1/2, 10-1/2, 11-1/2 and 12-1/2.

Co	nsec #	Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast	(m) Comments
	001	P	11/08/80	1720	1200		}
	002	W3	11/08/80	1910	300		1
	003	W4	11/08/80	2107	300		}
	004	Cl	11/08/80	2310	300		MILE
	005	E4	12/08/80	0048	300		}grid
	006	E3	12/08/80	0315	300		}
	007	P	12/08/80	1724	1300		
	800	P	12/08/80	2245	300		
	009	P	13/08/80	1730	1200		
	010	P	13/08/80	1835		1200	T,S,0 ₂
	011	P	13/08/80	2310	300		
	012	P	14/08/80	1715	1200		
	013	P	14/08/80	1803		300	T,S, Chl <u>a</u>
	014	P	14/08/80	2310	300		
	015	P	15/08/80	1725	1200		
	016	P	15/08/80	2308	300		
	017	P	16/08/80	1715	1200		
	018	P	15/08/80	2308	300		
	019	P	17/08/80	1715	1200 300		
	020	P P	17/08/80 18/08/80	2310 1710	1200		
	021 022	P	18/08/80	1757	1200	1200	T,S,02
	023	P	18/08/80	2315	300	1200	1,5,02
	024	P	19/08/80	1715	1200		
	025	P	19/08/80	2310	300		
	026	P	20/08/80	1710	1200		
	027	P	20/08/80	2310	300		
	028	P	20/08/80	2320	300		
*	029	P	21/08/80	1710	1200		Temperature only
	030	P	21/08/80	2315	300		
	031	P	22/08/80	1725	1200		
	032	P	22/08/80	2305	300		
	033	P	23/08/80	1710	1200		
	034	P	23/08/80	2310	300		
	035	P	24/08/80	1715	1200		
	036	Р	24/08/80	1815		1200	T,S,02
	037	P	24/08/80	2310	300		
	038	P	25/08/80	1740	1200		
	039	P	25/08/80	2305	300		
*	040	P	26/08/80	1710	1200		to 300 m wrong, sal.
	041	P	26/08/80	1801		300	Т,
	042	P	26/08/80	2310	300		4 (50
*	043	P	27/08/80		1200		sal. to 650 m only
	044	P	27/08/80	2310	300		1 1070 1
*	045	P	28/08/80	1725	1200		sal, to 1070 m only
*	046	P	28/08/80	2310	300		Temperature only.
*	047	P	29/08/80		1200 300		sal. to 650 m only
*	048 049	P	29/08/80 30/08/80	2310 1720	1200		sal. to 650 m only
*		P			300		Jai. Co ojo ili oliiy
	050	P	30/08/80	2308	300		

	HYDROGRAPHIC					() ()	
Consec					Hydrocast	,	
* 051	P	31/08/80	1725	1200		sal. to 7	00 m only
052	E3	31/08/80	1908	300			
053	E4	31/08/80	2050	300		MILE	
054	C1	31/08/80	2244	300		grid	
055	W4	01/09/80	0035	300		}	
056	W3	01/09/80	0220	300		* 0	F0 1
* 057	P	01/09/80	1717	1200			50 m only
058	P	01/09/80	1825	000	1200	T,S,02	
059	P	01/09/80	2310	300			
060	P	02/09/80	1720	1200			
061	P	02/09/80	2310	300		1 . (00 1
* 062	P	03/09/80	1710	1200	000		00 m only
063	P	03/09/80	1756	200	300	T, Chl <u>a</u>	
064	P	03/09/80	2310	300		1 . 0	00 1
* 065	P	04/09/80	1710	1200		sal. to 9	80 m only
066	P	04/09/80	2310	300			
067	P	05/09/80	1720	1200			
068	P	05/09/80	2315	300			
069	P	06/09/80	1720	1200			
070	P	06/09/80	2310	300			
071	P	07/09/80	1725	1200			
072	P	07/09/80	2315	300			
073	P	08/09/80	1715	1200	1200	m c 0.	
074	P P	08/09/80	1800 2310	300	1200	T,S,02	
075		08/09/80					
076	P P	09/09/80 09/09/80	1720 2310	1200 300			
077	P	10/09/80	1715	1200			
078	P	10/09/80	2315	300			
079 080	P	11/09/80	1715	1200			
081	P	11/09/80	2312	300			
* 082	P	12/09/80	1720	1200		cal to 4	50 m only
083	P	12/09/80	2310	300		3a1, to 4	30 m only
084	P	13/09/80	1720	1200			
085	P	13/09/80	2315	300			
* 086	P	14/09/80	1720	1200		sal to 5	90 m only
087	P	14/09/80	2310	300		541, 60 3	, , , , , , , , , , , , , , , , , , ,
088	P	20/09/80	1715	1200			
089	P	20/09/80		1200	1200	T,S.02	
090	P	20/09/80	2312	300	1200	1,0.02	
091	12	21/09/80		1200		}	
092	11	22/09/80	0350	1200			
093	10	22/09/80		1200			
094	9	22/09/80		1200			
095	8	22/09/80		1200		Line P	
096	7	23/09/80		1200		poor sal.	trace
097	6	23/09/80		1200			
098	5	23/09/80		1200			
099	4	23/09/80		1200			
100	3	24/09/80		1200			
101	2	24/09/80		100			
102	1	24/09/80		100			
102	-	, 0 , 7 0 0				J	

PROGRAM OF OBSERVATION FROM CCGS QUADRA, 19 September - 6 November 1980 (P-80-7) (MEDS Ref. No. 15-80-007)

STD profiles were taken at Line P station 1, 2, 3, 8, 9, 11 and 12.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 4, 5, 5-1/2, 6, 6-1/2, 7, 7-1/2, 8-1/2, 9-1/2, 10 and 10-1/2.

On Station P

The oceanographic program was carried out as follows:

Physical Oceanography:

- 1) Two hydrocasts to 4200 metres for temperature, salinity and oxygen. Four hydrocasts to 1500 metres for temperature, salinity and oxygen. Seven hydrocasts to 300 metres for temperature and salinity. Four hydrocasts to 300 metres for temperature, salinity, P.O.C. (Particulate Organic Carbon) and Chlorophyll a.
- 2) Twenty STD profiles were taken at Station P. Five STD profiles were taken at MILE GRID positions.
- 3) Daily salinity samples were taken from the seawater loop at 0000 hours, GMT.
- The regular 3-hourly BT observations were deleted during this cruise.

 The temperature profiles only of all STD's taken at Station P were digitized and transmitted according to the IGOSS format.

Marine Geochemistry

Samples for air CO₂, PCO₂, POC, alkalinity, nutrients and tritium obtained during this cruise are for the Ocean Chemistry Division and are not included in this data report.

Biological Oceanography
Samples from 150 metre vertical plankton hauls (Station P) and nutrients
(Line P) obtained during this cruise are for the Pacific Biological
Station and are not included in this data report.

En Route from Station P (Line P)

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at all BT positions.

LOG OF	F HYDROGRAPHIC	AND STD O	BSERVATIO	ONS			
Consec	# Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast	(m)	Comments
001	1	20/09/80	0210	100			}
002	2	20/09/80	0350	100			1
003	3	20/09/80	0621	1200			1
004	8	21/09/80	0738	1350			LINE P
005	9	22/09/80	1407	300			1
006	11	22/09/80	0158	1250			1
007	12	22/09/80	0836	1200			1
008	P	22/09/80	1723	1350			
009	P	22/09/80	1833		4200		T,S,02
010	P	22/09/80	2317	300			
011	P	23/09/80	1714	1200			
012	P	23/09/80	2327	300			
013	P	24/09/80	1716	1200			
* 014	P	24/09/80	1829		1500		(Depths 0, 300, 1500
015	E3	24/09/80	1955	300			} (only.
016	E4	24/09/80	2129	300			1
017	Cl .	24/09/80	2350	300			}
018	W4	25/09/80	0023	300			MILE
019	W3	25/09/80	0130	300			}grid
020	P	25/09/80	0240	300			}
021	P	26/09/80	1755	1400			
**021	P	26/09/80	1905		300		T, POC, Chl a
022	P	26/09/80	2323	300			_
023	P	27/09/80	1818	1400			
024	P	28/09/80	2323	300			
025	P	29/09/80	1724	1350			
026	P	29/09/80	1853		4200		T,S.0 ₂
027	P	29/09/80	2322	300			
028	P	30/09/80	1722	1350			
029	P	30/09/80	2311	300			
030	Р	01/10/80	1720	1350			
031	P	01/10/80	2314	300			
032	P	02/10/80	1814	1200			
033	P	03/10/80	1719	1400			
034	P	08/10/80		1200			
035	P	08/10/80		300			
036	P	09/10/80		1300	1500		m a 0
037	P	09/10/80			1500		T,S,02
038	P	16/10/80			300		T,S, POC, Chl a
039	P	16/10/80			1500		T,S,02
040	P	20/10/80			1500		T,S,0 ₂
041	P	22/10/80			300		T,S, POC, Chl a
042	P	23/10/80			300 300		T,S. T,S.
043 044	P P	24/10/80 25/10/80			300		
044	P	26/10/80			300		T,S. T,S.
045	P	27/10/80			1500		T,S,0 ₂
046	P	28/10/80			300		T,S.
047	P	29/10/80			300		T,S.
049	P	31/10/80	1730		300		T,S, POC, Chl a
050	p	01/11/80			300		T,S.
	digitized **			ive numbe			1,00
1106	argitized	duplicate	Consecut	LVC Humbe			

PROGRAM OF OBSERVATION FROM CCGS VANCOUVER, 31 October - 18 December 1980 (P-80-8) (MEDS Ref. No. 15-80-008).

A STD profile was taken at Line P Station 6.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 1, 2, 3, 4, 5, 5-1/2, 6-1/2, 8-1/2, 9, 10-1/2, and 11-1/2.

On Station P

The oceanographic program was carried out as follows:

Physical Oceanography:

- 1) One hydrocasts to 4200 metres for temperature and salinity.
 Four hydrocasts to 1200 metres for temperature, salinity and oxygen.
 One hydrocast to 1000 metres for temperature and salinity.
 One hydrocast to 250 metres for temperature, salinity, oxygen and chlorophyll a.
- 2) Fifty four STD profiles were taken at Station P. Twenty seven STD profiles were taken at MILE GRID positions. Two STD profiles were taken off station.
- 3) Daily salinity samples were taken from the seawater loop at 0000 hours, GMT.
- 4) The regular 3-hourly BT observations were deleted during this cruise.

 The temperature profiles only of all STD's taken at Station P were digitized and transmitted according to the IGOSS format.

Marine Geochemistry
Samples for air CO₂, PCO₂, POC, alkalinity, nutrients and tritium obtained during this cruise are for the Ocean Chemistry Division and are not included in this data report.

Biological Oceanography
Samples from 150 metre vertical plankton hauls (Station P) and nutrients
(Line P) obtained during this cruise are for the Pacific Biological
Station and are not included in this data report.

En Route from Station P (Line P)

STD profiles were taken at Line P stations 1 to 8 and 12. At station 1 a hydrocast was also made for temperature and salinity.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

Consec #	Stations	Date (Z)	Time (2	Z) STD (m)	Hydrocast	(m) Comments
001	6	01/11/80	2135	1200		Line P
002	P	04/11/80	1715	1200		}
003	E3	04/11/80	1835	300		
004	C1	04/11/80	2004	300		
005	E4	04/11/80	2133	300		MILE
006	E101	04/11/80	2243	300		grid
007	S8	05/11/80	0022	300		10
008	S7	05/11/80	0145	300		
009	W101	05/11/80	0307	300		
010	W4	05/11/80	0424	300		
011	w3	05/11/80	0545	300		
012	P	05/11/80	1707	1200		1
013	P	05/11/80	2313	300		
014	P	06/11/80	1850	1200		
015	P	07/11/80	0100	300		
016	P	07/11/80	1720	1200		
017	P	08/11/80	0030	300		
018	P	08/11/80	1725	1200		
019	P	08/11/80	1833	1200	1200	T,S.
020	P	08/11/80	2330	300	1200	1,0.
021	P	09/11/80	1710	1200		
022	P	09/11/80	2225	300		
023	P	10/11/80	1712	1200		
024	P	10/11/80	2255	300		
025	P	11/11/80	1707	1400		
026	P	11/11/80	1805	1400	1000	T,S.
027	P	11/11/80	2245	300	1000	1,0.
028	P	12/11/80	1750	1200		
029	P	13/11/80	0010	300		
030	P	13/11/80	1705	1200		
031	P	14/11/80	0000	300		
032	P	14/11/80	1712	1200		
033	P	15/11/80	0000	300		
034	P	15/11/80	1705	1300		
035	P	15/11/80		1300	250	T,S,02, Chl <u>a</u>
036	P	15/11/80	2120	300	250	$\frac{1}{\alpha}$
037	P	16/11/80	1705	1200		
038	P	16/11/80	1817	1200	1200	T,S,02
039	P	17/11/80	0003	300	1200	1,0,02
040	P	17/11/80	1755	900		
041	P	18/11/80	0005	300		
042	P	18/11/80	1705	1200		
043	P	18/11/80	2123	300		
044	P	19/11/80	1359	300		}
045	E3	19/11/80	1515	300		
046	Cl	19/11/80	1635	300		MILE
047	E4	19/11/80	1745	300		grid
048	E101	19/11/80	1908	300		}
049	\$8	20/11/80	0010	300		
050	S7	20/11/80	0140	300		
050	37	20/11/00	0140	300		1

051 052 053 054 055 056	W101 W4 W3	20/11/80 20/11/80	0300	300			1
053 054 055 056		20/11/80		300			Ì
054 055 056	W3	20/11/00	0417	300			MILE
055 056		21/11/80	0525	300			grid
056	P	21/11/80	1715	1200			
056	P	21/11/80	2308	300			
	P	22/11/80	1707	1200			
057	P	22/11/80	2135	300			
058	P	23/11/80	1930	1200			
059	P	23/11/80	1704	1200			
060	P	24/11/80	2225	300			
061	P	24/11/80	1745	1200			
	ff Stn.		1725	1200			50°22N 143°37W
	ff Stn.		1850		1200		r,s,0 ₂
064	P	26/11/80	2312	300	2200	·	2,5,02
065	P	26/11/80	0208	320			
066	P	27/11/80	1700	1200			
067	P		1922	1200	1200		r,s.0 ₂
068	P	28/11/80	2230	300	1200		1,5.02
069	P	28/12/80	1710	1200			
070	P	29/12/80	2142	240			
071	P	29/12/80	1710	1200			
072	P	29/12/80	2230	300			
073	P	30/12/80	1735	1200			
074	P	30/12/80	0000	300			
075	P	31/12/80	1705				
076		31/12/80		1200	4.200		T. C
	P		2145	200	4200		r,s
077	P	01/12/80	2300	300			50°05N 142°19.5W
	ff Stn.		2230	300		-	00 00N 142 19.0W
079	P	01/12/80	1717	1200	1200		m
080	P	01/12/80	1848	200	1200		r,s,0 ₂
081	P	01/12/80	2317	300			1
082	P	02/12/80	1400	1200			
083	W3	02/12/80	1551	300			
084	Cl	02/12/80	1752	300			MILE
085	W4	02/12/80	1918	300			grid
086	W101	03/12/80	2115	300			
087	S7	03/12/80	2255	300			
088	S8	04/12/80	0046	300			
089	E101	04/12/80	0215	300			
090	E4	04/12/80	0340	300			
091	E3	05/12/80	0517	300			}
092	P	05/12/80	2325	1200			
093	12	06/12/80	2045	1200			
094	8	06/12/80	2202	300			
095	7	07/12/80	0411	1200			
096	6	07/12/80	1037	1200			
097	5	08/12/80	1657	1200			
098	4	08/12/80	2042	1200			LINE P
099	3	09/12/80	0055	1100			
100	2	09/12/80	0408	100			
101	1	10/12/80	0640	120			
102	1	10/12/80	0654		125	T,S	

PROGRAM OF OBSERVATION FROM CCGS QUADRA, 12 December 1980 - 22 January 1981(P-80-9) (MEDS Ref. No. 15-80-009)

STD profiles were taken at Line P station 1 to 7 and 10. At stations 6 and 10 a hydrocast was also made for temperature and salinity.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 5-1/2, 6-1/2, 7-1/2, 8-1/2, 9, 9-1/2, 10-1/2, 11 and 12.

On Station P

The oceanographic program was carried out as follows:

Physical Oceanography:

- 1) Two hydrocasts to 4200 metres for temperature, salinity and oxygen.
 Three hydrocasts to 1500 metres for temperature, salinity and oxygen.
- 2) Fifty one STD profiles were taken at Station P. Fiteen STD profiles were taken at MILE GRID positions.
- 3) Daily salinity samples were taken from the seawater loop at 0000 hours, GMT.
- The regular 3-hourly BT observations were deleted during this cruise.

 The temperature profiles only of all STD's taken at Station P were digitized and transmitted according to the IGOSS format.

Marine Geochemistry Samples for air CO_2 , PCO_2 , PCO_2 , PCO_2 , alkalinity, nutrients and tritium obtained during this cruise are for the Ocean Chemistry Division and are not included in this data report.

Biological Oceanography
Samples from 150 metre vertical plankton hauls (Station P) and nutrients
(Line P) obtained during this cruise are for the Pacific Biological
Station and are not included in this data report.

En Route from Station P (Line P)

STD profiles were taken at Line P stations 12, 7, 6, 3, 2 and 1.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at all BT positions 1, 2, 3, 4, 5, 5-1/2, 6, 6-1/2, 8-1/2, 9-1/2, 10-1/2 and 12-1/2.

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS

LOG OF 1	TIDRUGRAPHIC	AND SID O	DSEKVALL	UNS			
Consec	# Stations	Date (Z)	Time (Z) STD (m)	Hydrocast	(m)	Comments
001	1	13/12/80	0004	100			}
002	2	13/12/80	0129	90			1
003	3	13/12/80	0338	1200			
004	4	13/12/80	0642	1200			}
005	5	13/12/80	1003	1200			
006	6	13/12/80	1643	1200			LINE P
007	6	13/12/80	1755		1000	T,S	
800	7	14/12/80	0009	1200		- , - ,	
009	10	14/12/80	1758	1200			
010	10	14/12/80	1909		1200	T,S	
011	P	16/12/80	1718	300			ł
012	E3	16/12/80	1833	300			
013	E4	16/12/80	2001	300			}
014	C1	16/12/80	2133	300			MILE
015	W4	16/12/80	2331	300			grid
016	W3	17/12/80	0114	300			}
017	P	17/12/80	0301	300			}
018	P	17/12/80	1749	300			
019	P	18/12/80	1722	1200			
020	P	18/12/80	2336	1200			
021	P	19/12/80	0050	1000	1500	1	r,s,0 ₂
022	P	19/12/80	1717	1200			
023	P	19/12/80	2312	1200			
024	P	21/12/80	1753	1200			
025	P	21/12/80	2315	1200			
026	P	22/12/80	1720	1200			
027 028	P P	23/12/80	1721	300			
029	P	23/12/80 24/12/80	2314 1714	1200			
030	P	24/12/80	2317	1200 1250			
030	P	25/12/80	0023	1230	4200	-	r c 0-
031	P	25/12/80	1716	1200	4200	1	r,s,0 ₂
033	P	26/12/80	1715	1200			
034	P	26/12/80	2313	1200			
035	P	27/12/80	1720	1200			
036	P	27/12/80	2317	1210			
037	P	28/12/80	1712	1200			
038	P	28/12/80	2313	1200			
039	P	29/12/80	1715	1200]	
040	E3	29/12/80	1908	300			
041	E4	29/12/80	2035	300			MILE
042	Cl	29/12/80	2209	300			grid
043	W4	29/12/80	2334	1200			
044	W3	30/12/80	0110	300			
045	P	30/12/80	0227	300			
046	P	30/12/80	1719	300		,	
047	P	31/12/80	1833	1200			
048	P	01/01/81	0010	1200			
049	P	01/01/81	1716	1200			
050	P	01/01/81	1824		4200	7	r,S,02

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS (continued)

Consec #	Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast	(m) Comments
051	P	01/01/81	2314	1200		
052	P	02/01/81	1720	1200		
053	P	02/01/81	2314	1160		
054	P	04/01/81	1717	1200		
055	P	05/01/81	1723	1200		
056	P	05/01/81	2312	1200		
057	P	07/01/81	1724	1210		
058	P	07/01/81	2320	1200		1
059	P	08/01/81	1715	420		
060	E3	08/01/81	1914	300		
061	E4	08/01/81	2033	300		
062	C1	08/01/81	2147	300		MILE
063	W4	09/01/81	0044	620		grid
064	W3	09/01/81	0216	300		
065	P	09/01/81	0325	300 1200		1
066	P	09/01/81	1722	1200	1500	m c 0.
067	P P	09/01/81	1833 2326	1200	1500	T,S.02
068	P	09/01/81 10/01/81	1727	1200		
069 070	P	10/01/81	2316	1210		
070	P	11/01/81	1718	1200		
072	P	11/01/81	2312	1200		
073	P	13/01/81	1718	1200		
074	P	13/01/81	2312	1200		
075	P	15/01/81	1714	1200		
076	P	15/01/81	1837		1500	T,S,02
077	P	15/01/81	2318	1200		, , _
078	P	16/01/81	2317	1200		
079	P	17/01/81	1720	1200		
080	P	17/01/81	2314	1200		
081	12	18/01/81	1737	1200		}
082	12	18/01/81	1853	1200		}
083	11	19/01/81	0337	1110		
084	10	19/01/81	0920	1200		LINE P
085	9	19/01/81	1548	1200		
086		19/01/81		1200		
087	7	20/01/81	0430	1200		}

PROGRAM OF OBSERVATION FROM CCGS VANCOUVER, 16 January - 26 February 1981 (P-81-1) (MEDS Ref. No. 15-81-001).

STD profiles were taken at Line P station 1, 2, 3, 4, 7, 8, 9, 10, 11 and 12.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 5, 5-1/2, 6, 9-1/2, 10-1/2, 11-1/2, and 12-1/2.

On Station P

The oceanographic program was carried out as follows:

Physical Oceanography:

- 1) Five hydrocasts to 1200 metres for temperature, salinity and oxygen.
- Sixty one STD profiles were taken at Station P.
 Twelve STD profiles were taken at MILE GRID positions.
- 3) Daily salinity samples were taken from the seawater loop at 0000 hours, GMT.
- 4) The regular 3-hourly BT observations were deleted during this cruise.

 The temperature profiles only of all STD's taken at Station P were digitized and transmitted according to the IGOSS format.

Marine Geochemistry

Samples for air CO₂, PCO₂, POC, alkalinity, nutrients and tritium obtained during this cruise are for the Ocean Chemistry Division and are not included in this data report.

Biological Oceanography

Samples from 150 metre vertical plankton hauls (Station P) and nutrients (Line P) obtained during this cruise are for the Pacific Biological Station and are not included in this data report.

En Route from Station P (Line P)

STD profiles were taken at Line P stations 12-1/2, 5, 3, 2 and 1.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 4, 5-1/2 and 7.

Consec #	Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast	(m)	Comments
001	1	16/01/81	2319	120			1
002	2	17/01/81	0047	105			
003	3	17/01/81	0247	1200			
004	4	17/01/81	0558	1200			LINE P
005	7	17/01/81	2017	1200			1
006	8	18/01/81	0227	1200			1
007	9	18/01/81	0843	1200			}
008	10	18/01/81	1549	1200			1
009	11	18/01/81	2230	1200			}
010	12	19/01/81	0618	1200			1
011	P	19/01/81	1708	1200			
012	P	19/01/81	2311	300			
013	P	19/01/81	2356		1200		
014	P	23/01/81	1709	1200			
015	P	23/01/81	2308	300			
016	P	24/01/81	2309	300			
017	P	25/01/81	1814	1200			
018	P	25/01/81	2036	300			
019	P	25/01/81	2246	300			1
020	P	26/01/81	0121	300			
021	W4	26/01/81	0337	300			MILE
022	W3	26/01/81	0507	300			grid
023	P	26/01/81	1707	1200	1000		}
024	P	26/01/81	2153	200	1200		
025 026	P P	26/01/81	2225	300			
027	P	27/01/81	1715	1200			
028	P	27/01/81 28/01/81	2241 1826	300			
029	P	28/01/81	2215	1200 300			
030	P	29/01/81	1813	1200			
031	P	29/01/81	2310	300			
032	P	30/01/81	1920	1200			
033	P	30/01/81	2315	300			
034	P	31/01/81	1807	1200			
035	P	01/02/81	0105	300			
036	P	01/02/81	1708	1200			
037	P	02/02/81	1710	1200			
038	P	02/02/81	1831		1200		
039	Р	03/02/81	0015	300			
040	P	03/02/81	1540	1200			}
041	E3	03/02/81	1855	300			1
042	E4	03/02/81	2155	300			MILE
043	C1	04/02/81	0020	300			grid
044	W4	04/02/81	0155	300			
045	W3	04/02/81	0403	300			}
046	P	04/02/81	1726	1200			
047	P	04/02/81	2320	300			
048	P	05/02/81	1901	1200			
049	Р	05/02/81	2330	300			

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS (continued)

Consec #	Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast	(m)	Comments
050	P	06/02/81	1735	1200			
051	P	06/02/81	2312	300			
052	P	07/02/81	1730	1200			
053	P	07/02/81	2005	300			
054	P	08/02/81	1703	1200			
055	P	08/02/81	2313	300			
056	P	09/02/81	1715	1200			
057	P	09/02/81	2315	300	1000		
058	P	10/02/81	1630	1000	1200		
059	P	10/02/81	1645	1200			
060	P	11/02/81	0023	300			
061	P	11/02/81	1710	1200			
062	P	11/02/81	2310	300			
063	P	12/02/81	1705	1200			
064	P	12/02/81	2310	300			1
065	P	13/02/81	1400	1200			
066	E3	13/02/81	1625	300			
067	E4	13/02/81	1850	300			MILE
068	C1	13/02/81	2045	300			grid
069	W4	13/02/81	2343	300			1
070	W3	14/02/81	0110	300			*
071	P	14/02/81	1712	1200			
072	P	14/02/81	2309	300			
073	P	15/02/81	1706	1200	1000		
074	P	15/02/81	1800	200	1200		
075	P	15/02/81	2332	300			
076	P	16/02/81	1740	1200			
077	P	17/02/81	1723	1200			
078	P	17/02/81	2310	300			
079	P	18/02/81	1705	1200			
080	P	18/02/81	2314	300			
081	P	19/02/81	1708	1200			
082	P	21/02/81	1723	1200			1
083	P	21/02/81	2314	300			
084	12-1/2		1719	1200			
085	5	25/02/81	0030	1200			T THE D
086	3	25/02/81	1712	1200			LINE P
087	2	25/02/81	0931	100			
088	1	25/02/81	1100	100			•

PROGRAM OF OBSERVATION FROM CCGS QUADRA, 20 February - 2 April 1981 (P-81-2)(MEDS Ref. No. 15-81-002)

A STD profile was taken at Line P station 8.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 1 to 6, 7, 7-1/2, 8, 9-1/2, 11-1/2, 12 and 12-1/2.

On Station P

The oceanographic program was carried out as follows:

Physical Oceanography:

- 1) Two hydrocasts to 4200 metres for temperature, salinity and oxygen.
 Three hydrocasts to 1500 metres for temperature, salinity and oxygen.
- 2) Ninety three STD profiles were taken at Station P. Fifteen STD profiles were taken at MILE GRID positions.
- 3) Daily salinity samples were taken from the seawater loop at 0000 hours, GMT.
- 4) The regular 3-hourly BT observations were deleted during this cruise.

 The temperature profiles only of all STD's taken at Station P were digitized and transmitted according to the IGOSS format.

Marine Geochemistry

Samples for air CO₂, PCO₂, POC, alkalinity, nutrients and tritium obtained during this cruise are for the Ocean Chemistry Division and are not included in this data report.

Biological Oceanography

Samples from 150 metre vertical plankton hauls (Station P) and nutrients (Line P) obtained during this cruise are for the Pacific Biological Station and are not included in this data report.

En Route from Station P (Line P)

STD profiles were taken at Line P stations 12 and 8 to 1. At each of stations 5 and 3 a hydrocast was also made for temperature and salinity.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 5-1/2, 7-1/2, 8-1/2, 9-1/2, 10, 10-1/2, 11 and 11-1/2.

Consec #	Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast	(m) Comments
001	8	16/02/81	2236	300		LINE P
002	Р	17/02/81	1723	1200		
003	P	17/02/81	2006	2.200	1500	
004	P	17/02/81	2314	310	1300	
005	P	17/02/81	1721	1390		1
006	E3	18/02/81	1915	310		
007	E4	18/02/81	2035	310		MILE
008	C1	18/02/81	2150	320		grid
009	W4	18/02/81	2330	310		grid
010	W3	19/02/81	0040	310		
011	P	19/02/81	0204	330		
012	P	19/02/81	1719	1360		
013	P	19/02/81	2327	1370		
014	P	23/02/81	1725	1380		
015	P	23/02/81	2310	1400		
016	P	24/02/81	1720	1380		
017	P	25/02/81	2338	300		
018	P	25/03/81	1712	1380		
019	P	25/03/81	2333	1400		
020	P	26/03/81	1724	1370		
021	P	26/03/81	2105	1370	4200	
022	P	26/03/81	2343	1380	4200	
023	P	26/03/81	1716	1370		
024	P	26/03/81	0049	1200		
025	P	26/03/81	1757	310		
026	P	27/03/81	1850	300		
027	P	27/03/81	1949	300		
028	P	28/03/81	2050	300		
029	P	28/03/81	2149	300		
030	P	29/03/81	2235	300		
031	P	29/03/81	0047	300		
032	P	30/03/81	0147	300		
033	P	30/03/81	0254	300		
034	Р	31/03/81	1725	1340		
035	Р	01/03/81	2320	1380		
036	P	01/03/81	1714	1390		
037	P	02/03/81	2137	300		
038	P	02/03/81	2229	300		
039	P	03/03/81	2329	300		
040	P	03/03/81	0030	300		
041	P	03/03/81	0138	300		
042	P	03/03/81	0231	300		
043	P	04/03/81	0328	300		
044	P	04/03/81	0419	300		
045	P	04/03/81	1717	1380		
046	P	04/03/81	1933	300		
047	P	04/03/81	2150	320		
048	P	05/03/81	2330	300		
049	P	05/03/81	0135	300		
050	P	09/03/81	0332	310		

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS (continued)

Consec #	Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast (m) Comments
051	P	09/03/81	0421	300		
052	P	09/03/81	1719	1330		
053	P	10/03/81	1930	300		
054	P	10/03/81	2142	300		
055	P	10/03/81	2330	300		
056	P	11/03/81	1714	1280		
057	E3	11/03/81	1901	310		
058	E4	11/03/81	2036	300		MILE
059	C1	11/03/81	2158	300		grid
060	W4	11/03/81	2327	300		1
061	W3	12/03/81	0052	310		}
062	P	12/03/81	0203	310		Î
063	P	12/03/81	1743	1200		
064	P	12/03/81	1929	300		
065	P	12/03/81	2133	300		
066	P	12/03/81	2324	250		
067	P	13/03/81	1723	1400		
068	P	13/03/81	2316	1380		
069	P	14/03/81	1726	1400		
070	P	14/03/81	2318	1300		
071	P	15/03/81	0035		1500	
072	P	15/03/81	1718	1380		
073	P	15/03/81	2309	300		
074	P	16/03/81	2305	1320		
075	P	18/03/81	1723	1410		
076	P	18/03/81	2238		4200	
077	P	19/03/81	0015	1350		
078	P	19/03/81	1711	1370		
079	P	19/03/81	2313	1370		
080	P	20/03/81	1721	1390		
081	P	20/03/81	2310	1210		
082	P	21/03/81	1715	1380		
083	P	21/03/81	2305	1330		
084	P	22/03/81	1714	1400		
085	P	22/03/81	2311	1340		
086	P	23/03/81	1716	1400		
087	P	23/03/81	1845		1500	
088	Р	23/03/81	1937	300		
089	P	23/03/81	2030	300		
090	P	23/03/81	2134	310		
091	P	23/03/81	2230	310		
092	P	23/03/81	2331	320		
093	P	24/03/81		320		
094	P	24/03/81		320		
095	P	24/03/81		320		
096	P	24/03/81	0329	320		
097	P	24/03/81		320		
098	P	24/03/81		1400		
099	P	24/03/81		320		
100	P	25/03/81	1721	1370		

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS (continued)

Consec #	Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast	(m)	Comments
101	E3	25/03/81	1849	320			ļ
102	E4	25/03/81	2005	320			1
103	C1	25/03/81	2140	310			MILE
104	W4	25/03/81	2327	320			grid
105	W3	26/03/81	0046	320			1
106	4	26/03/81	0205	320			
107	1	26/03/81	1721	1370			
108	4	26/03/81	2314	1350			
109	3	27/03/81	1715	1210			
110	P	27/03/81	2310	1360			
111	P	28/03/81	1727	1380			
112	P	28/03/81	2321	1370			
113	12	29/03/81	1712	1370			}
114	8	30/03/81	1945	1360			}
115	7	31/03/81	0158	600			·
116	6	31/03/81	0813	1210			LINE P
117	5	31/03/81	1421	1210			
118	5	31/03/81	1517		1500		}
119	4	31/03/81	1947	1210			}
120	3	31/03/81	2318	1210			
121	3	01/04/81	0020		1000		ł
122	2	01/04/81	0245	95			
123	1	01/04/81	0423	95			

PROGRAM OF OBSERVATION FROM CCGS VANCOUVER, 27 March - 14 May 1981 (P-81-3)(MEDS Ref. No. 15-81-003).

En route to Station P (Line P)

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

On Station P

The oceanographic program was carried out as follows:

Physical Oceanography:

- 1) STD profiles were taken at Station P. STD profiles were taken at MILE GRID positions.
- 3) Daily salinity samples were taken from the seawater loop at 0000 hours, GMT.
- 4) The regular 3-hourly BT observations were deleted during this cruise.

 The temperature profiles only of all STD's taken at Station P were digitized and transmitted according to the IGOSS format.

Marine Geochemistry

Samples for air CO, PCO, POC, alkalinity, nutrients and tritium obtained during this cruise are for the Ocean Chemistry Division and are not included in this data report.

Biological Oceanography

Samples from 150 metre vertical plankton hauls (Station P) and nutrients (Line P) obtained during this cruise are for the Pacific Biological Station and are not included in this data report.

En Route from Station P (Line P)

A STD profile was taken at Line P Station 12.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

A XBT was taken at BT position 5.

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS

001	Consec #	Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast	(m)	Comments
002	001	P	01/04/81	0130	300			
003	002		01/04/81					
004 P 02/04/81 1725 1200 005 E3 02/04/81 1295 300 006 E4 02/04/81 2125 300 007 C1 02/04/81 2340 300 008 W4 03/04/81 0330 300 010 P 03/04/81 1730 1200 011 P 03/04/81 1720 1200 011 P 03/04/81 2320 300 012 P 04/04/81 2335 300 014 P 05/04/81 1720 1050 015 P 05/04/81 1730 900 016 P 06/04/81 1730 900 017 P 06/04/81 2315 300 016 P 06/04/81 1730 900 017 P 08/04/81 2315 300 018 P 07/04/81 1720 900 019 P 08/04/81 1720 900 019 P 07/04/81 1720 900 019 P 08/04/81 1725 900 020 P 08/04/81 1725 900 021 P 08/04/81 2315 300 022 P 10/04/81 2315 300 022 P 10/04/81 2315 300 023 P 09/04/81 1725 900 024 P 10/04/81 1725 900 025 P 11/04/81 2315 300 026 P 11/04/81 2315 300 027 P 11/04/81 2315 300 030 P 13/04/81 1720 900 031 P 09/04/81 1725 900 032 P 12/04/81 2315 300 034 P 15/04/81 1720 1000 037 P 11/04/81 2345 300 038 P 11/04/81 2320 300 039 P 12/04/81 2300 300 030 P 13/04/81 1720 1000 031 P 13/04/81 1720 1000 032 P 14/04/81 2315 300 033 P 15/04/81 1720 700 031 P 13/04/81 2315 300 032 P 16/04/81 2315 300 033 P 13/04/81 1720 700 033 P 16/04/81 2315 300 034 P 15/04/81 1715 900 037 P 16/04/81 2315 300 038 P 17/04/81 2315 300 039 P 12/04/81 2307 300 030 P 13/04/81 2315 300 031 P 13/04/81 2315 300 032 P 14/04/81 2315 300 033 P 15/04/81 1715 900 033 P 15/04/81 1715 900 034 P 15/04/81 2315 300 035 P 15/04/81 2315 300 036 P 16/04/81 2315 300 037 P 16/04/81 2315 300 038 P 17/04/81 2315 300 039 P 17/04/81 2315 300 030 P 13/04/81 2307 300 034 P 15/04/81 2315 300 035 P 15/04/81 2315 300 036 P 16/04/81 2315 300 037 P 16/04/81 2315 300 038 P 17/04/81 2315 300 039 P 17/04/81 2315 300 039 P 17/04/81 2315 300 039 P 17/04/81 2315 300 030 P 18/04/81 2315 300 034 P 15/04/81 2315 300 035 P 15/04/81 2315 300 036 P 16/04/81 2315 300 037 P 16/04/81 2315 300 038 P 17/04/81 2315 300 039 P 17/04/81 2315 300 030 P 13/04/81 2315 300 040 P 18/04/81 2315	003	Р						
005 E3 02/04/81 1925 300 006 E4 02/04/81 2125 300 007 C1 02/04/81 2125 300 008 W4 03/04/81 0140 300 009 W3 03/04/81 1730 1200 0110 P 03/04/81 2320 300 0112 P 04/04/81 2335 300 012 P 04/04/81 1720 1200 013 P 04/04/81 1730 1200 015 P 05/04/81 1730 1050 016 P 06/04/81 1730 900 017 P 06/04/81 2315 300 016 P 06/04/81 1730 900 017 P 06/04/81 2315 300 018 P 07/04/81 2315 300 019 P 07/04/81 2315 300 010 P 08/04/81 1720 1050 015 P 05/04/81 1720 1050 016 P 06/04/81 1730 900 017 P 06/04/81 2315 300 018 P 07/04/81 2300 300 020 P 08/04/81 1720 900 019 P 07/04/81 2300 300 020 P 08/04/81 1715 900 021 P 08/04/81 1715 900 022 P 09/04/81 1715 900 023 P 09/04/81 1715 900 024 P 10/04/81 2315 300 026 P 11/04/81 2315 300 026 P 11/04/81 2315 300 027 P 11/04/81 2315 300 030 P 13/04/81 1720 1000 030 P 13/04/81 1725 900 031 P 13/04/81 2315 300 032 P 14/04/81 1725 900 033 P 15/04/81 1720 1000 030 P 13/04/81 2300 300 031 P 13/04/81 2300 300 032 P 14/04/81 1720 1000 033 P 15/04/81 2315 300 034 P 15/04/81 2315 300 035 P 15/04/81 2315 300 036 P 16/04/81 2315 300 037 P 16/04/81 2315 300 039 P 17/04/81 2315 300 030 P 13/04/81 2300 300 030 P 13/04/81 2300 300 030 P 13/04/81 1720 700 031 P 13/04/81 2315 300 034 P 15/04/81 1715 900 037 P 16/04/81 2315 300 039 P 14/04/81 1830 900 030 P 18/04/81 2315 300 040 P 18/04/81 2315 300 040 P 18/04/81 1715 900 037 P 16/04/81 2315 300 040 P 18/04/81 1715 900 037 P 16/04/81 2315 300 040 P 18/04/81 1712 800 041 P 18/04/81 1712 800 042 P 19/04/81 2315 300 044 P 20/04/81 1745 300 045 E3 20/04/81 1745 300 046 E4 20/04/81 1745 300 047 C1 21/04/81 0300 300	004	P						}
006 E4 02/04/81 2125 300	005	E3						1
007								1
008 W4 03/04/81 0140 300	007	C1						MILE
009 W3 03/04/81 0330 300 }	008	W4						<
011	009	W3	03/04/81					1
012	010	P	03/04/81	1730	1200			
013	011	P	03/04/81	2320	300			
014	012	P	04/04/81	1720	1200			
015	013	P	04/04/81	2335	300			
016	014	P	05/04/81	1720	1050			
017		P		2315	300			
018								
019								
020								
021								
022								
023								
024								
025 P 10/04/81 2315 300 026 P 11/04/81 1725 900 027 P 11/04/81 2345 300 028 P 12/04/81 1720 1000 029 P 12/04/81 2320 300 030 P 13/04/81 1720 700 031 P 13/04/81 2330 300 032 P 14/04/81 1830 900 033 P 14/04/81 2315 300 034 P 15/04/81 1715 900 035 P 15/04/81 2307 300 036 P 16/04/81 2315 300 037 P 16/04/81 1740 900 037 P 16/04/81 2315 300 040 P 18/04/81 2315 300 041 P 18/04/81 2314 300 042 P 19/04/81 2325 300 043								
026 P 11/04/81 1725 900 027 P 11/04/81 2345 300 028 P 12/04/81 1720 1000 029 P 12/04/81 2320 300 030 P 13/04/81 2330 300 031 P 13/04/81 2330 300 032 P 14/04/81 1830 900 033 P 15/04/81 2315 300 034 P 15/04/81 1715 900 035 P 15/04/81 1740 900 037 P 16/04/81 2315 300 038 P 17/04/81 2315 300 040 P 18/04/81 1712 800 041 P 18/04/81 2314 300 042 P 19/04/81 2325 300 043 P 20/04/81 1745 300 044 P 20/04/81 1940 300 045								
027								
028 P 12/04/81 1720 1000 029 P 12/04/81 2320 300 030 P 13/04/81 1720 700 031 P 13/04/81 2330 300 032 P 14/04/81 1830 900 033 P 14/04/81 2315 300 034 P 15/04/81 2307 300 035 P 15/04/81 2307 300 036 P 16/04/81 2315 300 037 P 16/04/81 2315 300 038 P 17/04/81 2315 300 039 P 17/04/81 2315 300 040 P 18/04/81 2314 300 041 P 18/04/81 2314 300 042 P 19/04/81 2325 300 043 P 20/04/81 1745 300 044 P 20/04/81 1940 300 044								
029 P 12/04/81 2320 300 030 P 13/04/81 1720 700 031 P 13/04/81 2330 300 032 P 14/04/81 1830 900 033 P 14/04/81 2315 300 034 P 15/04/81 2307 300 035 P 15/04/81 2307 300 036 P 16/04/81 2315 300 037 P 16/04/81 1725 800 039 P 17/04/81 2315 300 040 P 18/04/81 1712 800 041 P 18/04/81 2314 300 042 P 19/04/81 2325 300 043 P 20/04/81 1745 300 044 P 20/04/81 1745 300 045 E3 20/04/81 1940 300 046 E4 20/04/81 2200 300 046 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
030								
031								
032 P 14/04/81 1830 900 033 P 14/04/81 2315 300 034 P 15/04/81 1715 900 035 P 15/04/81 2307 300 036 P 16/04/81 2315 300 037 P 16/04/81 2315 300 038 P 17/04/81 1725 800 039 P 17/04/81 2315 300 040 P 18/04/81 2315 300 041 P 18/04/81 2314 300 042 P 19/04/81 2325 300 043 P 20/04/81 1730 900 044 P 20/04/81 1745 300 045 E3 20/04/81 1745 300 046 E4 20/04/81 2200 300 046 E4 20/04/81 2200 300 047 C1 21/04/81 0015 300 048 W4 21/04/81 0300 300								
033								
034 P 15/04/81 1715 900 035 P 15/04/81 2307 300 036 P 16/04/81 1740 900 037 P 16/04/81 2315 300 038 P 17/04/81 1725 800 039 P 17/04/81 2315 300 040 P 18/04/81 1712 800 041 P 18/04/81 2314 300 042 P 19/04/81 2325 300 043 P 20/04/81 2325 300 044 P 20/04/81 1730 900 044 P 20/04/81 1745 300 045 E3 20/04/81 1940 300 046 E4 20/04/81 2200 300 047 C1 21/04/81 0015 300 048 W4 21/04/81 0300 300			* *					
035								
036 P 16/04/81 1740 900 037 P 16/04/81 2315 300 038 P 17/04/81 1725 800 039 P 17/04/81 2315 300 040 P 18/04/81 1712 800 041 P 18/04/81 2314 300 042 P 19/04/81 2325 300 043 P 20/04/81 1730 900 044 P 20/04/81 1745 300 045 E3 20/04/81 1940 300 046 E4 20/04/81 2200 300 047 C1 21/04/81 0015 300 048 W4 21/04/81 0300 300								
037 P 16/04/81 2315 300 038 P 17/04/81 1725 800 039 P 17/04/81 2315 300 040 P 18/04/81 1712 800 041 P 18/04/81 2314 300 042 P 19/04/81 2325 300 043 P 20/04/81 1730 900 044 P 20/04/81 1745 300 045 E3 20/04/81 1940 300 046 E4 20/04/81 2200 300 MILE 047 C1 21/04/81 0015 300 048 W4 21/04/81 0300 300								
038								
039 P 17/04/81 2315 300 040 P 18/04/81 1712 800 041 P 18/04/81 2314 300 042 P 19/04/81 2325 300 043 P 20/04/81 1730 900 044 P 20/04/81 1745 300 045 E3 20/04/81 1940 300 046 E4 20/04/81 2200 300 047 C1 21/04/81 0015 300 048 W4 21/04/81 0300 300								
040 P 18/04/81 1712 800 041 P 18/04/81 2314 300 042 P 19/04/81 2325 300 043 P 20/04/81 1730 900 044 P 20/04/81 1745 300 045 E3 20/04/81 1940 300 046 E4 20/04/81 2200 300 047 C1 21/04/81 0015 300 048 W4 21/04/81 0300 300								
041 P 18/04/81 2314 300 042 P 19/04/81 2325 300 043 P 20/04/81 1730 900 044 P 20/04/81 1745 300 045 E3 20/04/81 1940 300 046 E4 20/04/81 2200 300 047 C1 21/04/81 0015 300 048 W4 21/04/81 0300 300								
042 P 19/04/81 2325 300 043 P 20/04/81 1730 900 044 P 20/04/81 1745 300 045 E3 20/04/81 1940 300 046 E4 20/04/81 2200 300 MILE 047 C1 21/04/81 0015 300 grid 048 W4 21/04/81 0300 300								
043 P 20/04/81 1730 900 044 P 20/04/81 1745 300 045 E3 20/04/81 1940 300 046 E4 20/04/81 2200 300 047 C1 21/04/81 0015 300 048 W4 21/04/81 0300 300	042	Р						
044 P 20/04/81 1745 300 300 300 300 300 300 300 300 MILE 300 300 MILE 300								
045 E3 20/04/81 1940 300 046 E4 20/04/81 2200 300 047 C1 21/04/81 0015 300 048 W4 21/04/81 0300 300								}
047 C1 21/04/81 0015 300 grid 048 W4 21/04/81 0300 300								}
048 W4 21/04/81 0300 300	046	E4	20/04/81	2200	300			MILE
4		C1	21/04/81	0015	300			grid
049 W3 21/04/81 0450 300 }								}
	049	W3	21/04/81	0450	300			}

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS (continued)

				4			
Consec #	Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast	(m) C	omments
050	P	21/04/81	1723	900			
051	P	21/04/81	2312	300			
052	P	22/04/81	1720	900			
053	P	22/04/81	2325	300			
054	P	23/04/81	1720	900			
055	P	23/04/81	2315	300			
056	P	24/04/81	1717	1000			
057	P	24/04/81	2332	300			
058	P	25/04/81	1720	900			
059	P	25/04/81	2315	300			
060	P	26/04/81	1730	1000			
061	P	26/04/81	2315	300			
062	P	27/04/81	1712	1000			
063	P	27/04/81	2307	300			
064	P	28/04/81	1735	900			
065	P	28/04/81	2315	300			
066	P	29/04/81	1720	900			
067	P	01/05/81	1720	900			
068	P	01/05/81	2305	300			
069	P	02/05/81	1720	900			
070	Р	02/05/81	2320	300			
071	Р	03/05/81	1715	900			
072	P	03/05/81	2312	300		١	
073	P	04/05/81	1715	900			
074	E3	04/05/81	1930	300			
075	E4	04/05/81	2122	300		4	IILE
076	C1	04/05/81	2310	300		∤g	rid
077	W4	05/05/81	0050	300		<u> </u>	
078	W3	05/05/81	0240	300		}	
079	P	05/05/81		900			
080	P	05/05/81		300			
081	P	06/05/81		900			
082	P	06/05/81		300			
083	P	07/05/81	1737	850			
084	P	07/05/81		300			
085	P	08/05/81		850			
086	P	09/05/81		300			
087	P	09/05/81		1000 300			
088	P P	09/05/81		900			
089 090	P P	10/05/81 10/05/81		300			
090	12	11/05/81		900			
091	12	11/05/81		300			
092		11/00/01	2317	300			

PROGRAM OF OBSERVATION FROM CCGS QUADRA, 8 May - 25 June 1981 (P-81-4) (MEDS Ref. No. 15-81-004)

En route to Station P (Line P)

STD profiles were taken at Line P stations.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 1 to 5, 7, 8, 8-1/2, 9, 10, 11 and 11-1/2.

On Station P

The oceanographic program was carried out as follows:

Physical Oceanography:

- 1) Two hydrocasts to 4200 metres for temperature, salinity and oxygen.
 Three hydrocasts to 1500 metres for temperature, slainity and oxygen.
- 2) Ninety three STD profiles were taken at Station P. Fifteen STD profiles were taken at MILE GRID positions.
- 3) Daily salinity samples were taken from the seawater loop at 0000 hours, GMT.
- 4) The regular 3-hourly BT observations were deleted during this cruise.

 The temperature profiles only of all STD's taken at Station P were digitized and transmitted according to the IGOSS format.

Marine Geochemistry

Samples for air CO₂, PCO₂, POC, alkalinity, nutrients and tritium obtained during this cruise are for the Ocean Chemistry Division and are not included in this data report.

Biological Oceanography

Samples from 150 metre vertical plankton hauls (Station P) and nutrients (Line P) obtained during this cruise are for the Pacific Biological Station and are not included in this data report.

En Route from Station P (Line P)

STD profiles were taken at Line P stations 12. 11, 9, 8 and 5. At each of stations 12 and 5 a hydrocast was also made for temperature and salinity.

Surface salinity and nutrient samples were taken from the seawater loop or bucket.

The surface temperature recorder (engine intake) and thermosalinograph (seawater loop) were run continuously.

XBT's were taken at BT positions 1 to 6, 7, 7-1/2, 8-1/2, 9-1/2, 10 and 11-1/2.

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS

	a	D . (E)	m: (2)		77 1	()	0
Consec #	Stations	Date (2)	Time (Z)	STD (m)	Hydrocast	(m)	Comments
001	12	12/05/81	2348	1200			Line P
002	P	13/05/81	0808	1200			
003	P	13/05/81	2318	1200			1
004	P	14/05/81	1549	1200			1
+ 005	E3	14/05/81	1716	300			
006	E4	14/05/81	2015	300			
007	C1	14/05/81	2208	300			MILE
008	W4	14/05/81	2346	1200			grid
009	W3	15/05/81	0146 1722	300 300			{
010	P	15/05/81 15/05/81	2311	300			1
011	P P	16/05/81	1546	1200			
012 013	P	16/05/81	1753	1200	4200		
013	P	16/05/81	2314	1200	7200		
015	P	17/05/81	1722	1200			
016	P	17/05/81	2315	1200			
017	P	18/05/81	1545	1200			
018	P	19/05/81	0315	1200			
019	P	19/05/81	1721	1200			
020	P	19/05/81	2316	1200			
021	P	20/05/81	1717	1200			
022	P	20/05/81	2312	1200			
023	P	21/05/81	1714	1200			
024	P	21/05/81	1855		1500		
025	P	21/05/81	2316	1200			
026	P	22/05/81	1718	300			
027	P	23/05/81	1723	1200			
028	P	23/05/81	2314	1200			
029	P	24/05/81	1720	1200			
030	P	24/05/81	2316	1200			
031	P	25/05/81	1714	1200			
032	P	25/05/81		1200			
033	P	26/05/81		1200	4200		
034	P	26/05/81	1825	1200	4200		
035	P	26/05/81		1200			
036 037	P P	27/05/81 27/05/81		1200 1200			
037	P	28/05/81		1200			
039	P	28/05/81		1200			
040	P	29/05/81		1200			
041	P	29/05/81		1200			
042	P	30/05/81		1200			}
043	E3	30/05/81		300			1
044	E4	30/05/81		1200			MILE
045	C1	31/05/81		300			grid
046	W4	31/05/81		300			
047	W3	31/05/81		300			
048	P	31/05/81		1200			}
049	P	31/05/81		1200			
050	P	01/06/81	1716	1200			

LOG OF HYDROGRAPHIC AND STD OBSERVATIONS (continued)

Consec #	Stations	Date (Z)	Time (Z)	STD (m)	Hydrocast (m) Comments
051	P	01/06/81	2319	1200		
052	P	02/06/81	1825	1200		
053	P	02/06/81	2316	1200		
054	P	03/06/81	1718	1200		
055	P	03/06/81	1850		1500	
056	P	03/06/81	2316	1200		
057	P	04/06/81	1724	1200		
058	P	04/06/81	2335	1200		
059	Р	05/06/81	1712	1200		
060	P	05/06/81	2314	1200		
061	P	06/06/81	1717	1200		
062	P	06/06/81	2309	1200		
063	P	07/06/81	1711	1200		
064	Р	07/06/81	2315	1200		
065	P	08/06/81	1715	1200		
066	P	08/06/81	2314	1200		
067	P	09/06/81	1714	1200		
068	P	09/06/81	1855		1500	
069	P	09/06/81	2313	1200		
070	P	10/06/81	1712	1200		
071	P	10/06/81	2323	1200		
072	P	11/06/81	1713	1200		
073	P	11/06/81	2315	1200		
074	P	12/06/81	1739	1200	300	
075	Р	13/06/81	1714	300		
076	P	15/06/81	1714	300		
077	Р	16/06/81	0518	300		
078	P	16/06/81	1713	1200		1
079	E3	16/06/81	1921	300		
080	E4	16/06/81	2048	300		MILE
081	C1	16/06/81	2234	300		grid
082	W4	17/06/81	0014	1200		10-11
083	W4	17/06/81	0257		1500	
084	W3	17/06/81	0404	300		
085	P	17/06/81	1722	300		}
086	P	18/06/81	0046	300		,
087	P	18/06/81	1714	1200		
088	Р	18/06/81	1846		1500	
089	P	18/06/81	2314	1200		
090	P	19/06/81	1714	1200		
091	P	20/06/81	0040	1200		
092	P	20/06/81	1721	1200		
093	P	20/06/81	2355	1200		
094	12	21/06/81	2002		1200	}
095	12	21/06/81	2133	1200		
096	11	22/06/81	0520	1200		Line P
097	9	22/06/81	1738	1200		1
098	8	23/06/81	0005	1200		
099	5	23/06/81	1936		1200	1
				* no	ot digitized	

^{*} not digitized. + salinity data not available.

