

Automat

# Signali i sustavi

Profesor Branko Jeren

7. ožujka 2007.



2006/2007

#### Automati

varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama Deterministički i nedeterministički automati

### Opis sustava s varijablama stanja

 sustav transformira ulazne signale, iz skupa *UlazniSignali*, u izlazne signale, iz skupa *IzlazniSignali*, i definiran je funkcijom

 $F: UlazniSignali \rightarrow IzlazniSignali$ 

- uvodi se opis sustava s varijablama stanja koji se temelji na ideji da sustav u svom djelovanju prolazi kroz niz promjena stanja
- model s varijablama stanja opisuje sustav proceduralno, definirajući kako ulazni signal djeluje na promjene stanja sustava i kako se generira izlazni signal
- model s varijablama stanja je zato imperativni opis sustava



#### Automati

varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama Deterministički nedeterministički

### Konačni automati

- prvo se razmatra model s varijablama stanja za sustave s konačnim (i relativno malim) brojem stanja
- razmatraju se konačni automati
- konačni automati su sustavi čiji ulazni i izlazni signali predstavljaju tijek dogadjaja i oblika su

 $NizDogadjaja: Prirodni_0 \rightarrow Znakovi$ 

gdje su  $Prirodni_0 = \{0, 1, 2, \ldots\}$ , a Znakovi proizvoljan konačan skup

- neka je  $u \in UlazniSignali$  ulazni signal, tada se pojedini znak u signalu označava kao u(n) za  $n \in Prirodni_0$
- domena ovih signala definira redoslijed (ne nužno diskretno ili kontinuirano vrijeme)
- dakle, elementi domene samo definiraju da se neki dogadjaj dogodio prije nekog drugog (ne označavajući koliko je vremena proteklo između događaja)



Profesor Branko Jeren

#### Automati

varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama Deterministički nedeterministička automati

### Pretražnik

- definiramo sustav, nazovimo ga pretražnik, koji u nizu znakova koji čine neki tekst pronalazi pojavu niza znakova "FER"
- za vrijeme pretrage sustav se javlja s porukom "tražim" (skraćeno t), u slučaju nađenog niza porukom "pronašao"
   (p)
- ulazni niz znakova čine znakovi koji čine tekst koji se pretražuje
  - velika i mala slova
  - rečenični znakovi poput točke, zareza, upitnika
  - ostali znakovi za razmak, novi red, kraj teksta...
- neka je tekst koji pretražujemo:
   "Ferovim studentima FER je feral izvrsnosti."



2006/2007 Predavanje 6

#### Profesor Branko Jeren

#### Automati

stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama Deterministički pedeterministički

### Pretražnik model ulaz-izlaz

$$\underbrace{u = (u(0), u(1), u(2), \dots)}_{ U \in UlazniSignali} Pretraznik \underbrace{y = (y(0), y(1), y(2), \dots)}_{ y \in IzlazniSignali}$$

### Slika 1: Pretražnik

$$u \in UlazniSignali = [Prirodni_0 \rightarrow \{ASCII znakovi\}]$$
  
 $y \in IzlazniSignali = [Prirodni_0 \rightarrow \{t, p\}]$ 



2006/2007 Predavanje 6 Profesor

Profesor Branko Jeren

#### Automati

Opis sustava s varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama Deterministički nedeterministički

# Opis načina djelovanja Pretražnika

- sustav u svom djelovanju prolazi kroz niz promjena "unutarnjih" stanja
- riječima bi djelovanje sustava mogli opisati sljedećim nizom procedura
  - 1. sustav ispituje znak po znak i generira izlazni znak t tražim
  - pojavu znaka F "pamti", generira izlazni znak t, i nastavlja pretragu znak po znak i to tako da
    - a. ako je naredni znak F "ostaje" u istom stanju i generira izlazni znak t - tražim
    - b. za znakove  $\{R,ost\}$  vraća se na proceduru 1
    - c. ako je naredni znak E prelazi u proceduru 3
  - 3. sustav registrira i pamti da je pronađen niz *FE*, generira izlazni znak *t* i nastavlja procedurom 4
  - 4. ako je naredni ulazni znak *R* sustav prepoznaje traženi niz *FER* i generira izlazni znak *p* i vraća se na proceduru 1, inače,
  - 5. ako naredni ulazni znak nije bio R, generira izlazni znak t i vraća se na proceduru 1



Automati Opis sustava s

varijablama stanja Dijagram prijelaza stanj

Opis automata skupovima i funkcijama Deterministički nedeterminističk automati

### Opis sustava s varijablama stanja 1

- prepoznajemo kako prethodni opis predstavlja imperativni opis sustava
- iz opisa je vidljivo kako stanje sustava "predstavlja", sažimlje, povijest sustava i u određivanju odziva sustava potrebno je poznavati samo
  - aktulno stanje
  - aktualni ulazni znak
- ovaj način opisa sustava, neovisno radi li se o opisu dijela sklopovlja ili pak opisu dijela računalnog programa, omogućava bolju analizu od drugih neformalnih opisa



2006/2007

#### Automati Opis sustava s

#### varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama

funkcijama

Deterministički i
nedeterministički
automati

## Opis sustava s varijablama stanja 2

- općenito automat (sustav) možemo opisati, uz pomoć njegovih stanja, sljedećim postupkom
- 1 razmatra se ulazni znak u(n)
- 2 sustav generira izlazni znak y(n), uračunavajući znak u(n) i aktualno stanje x(n)
- $oxed{3}$  na temelju znaka u(n) i aktualno stanja x(n) sustav izračunava novo stanje x(n+1)
- 4 sustav se vraća na točku 1. postupka i uzima u razmatranje znak u(n+1)
- akcija u točki 3. postupka naziva se prijelaz stanja, ažuriranje ili engleski update



Profesor Branko Jeren

Automa

Opis sustava s varijablama stanja

prijelaza stanja Opis automata skupovima i funkcijama Deterministički Pretražnik model s varijablama stanja

 djelovanje sustava Pretraznik preciznije se može opisati tablicom koja prikazuje prijelaz iz jednog u drugo stanje u ovisnosti o mogućim ulaznim znakovima

|    | F       | Ε       | R       | ost     |
|----|---------|---------|---------|---------|
| ST | (F,t)   | (ST, t) | (ST, t) | (ST, t) |
| F  | (F,t)   | (FE, t) | (ST, t) | (ST,t)  |
| FE | (ST, t) | (ST, t) | (ST, p) | (ST, t) |

- gdje su F, E, R, te  $ost = [\{ASCII\} \setminus \{F, E, R\}]$  ulazni znakovi
- znakovi t i p su izlazni znakovi
- ST predstavlja stanje STart iz kojeg sustav počinje pretrage, F je stanje u koje sustav dolazi nakon pronalaska znaka F i FE je stanje u koje sustav prelazi po pronalasku niza ulaznih znakova FF
- par, npr., (FE, t) predstavlja naredno stanje i aktūalni izlaz



Profesor Branko Jeren

Automat

Opis sustava s varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama

### 2006/2007 Predavanje 6

# Sustavi s konačnim brojem stanja

- sustav ima konačan skup mogućih stanja
- primjer pretražnika je primjer sustava s konačnim brojem stanja
- diskretni sustavi s konačnim brojem stanja nazivaju se i konačni automati
- u literaturi na engleskom jeziku češći je termin: Finite State Machines (FSM)
- sustavi s konačnim brojem stanja (ne prevelikim), i s konačnim, i ne prevelikim, ulaznim i izlaznim alfabetom (konačnim brojem vrijednosti) pregledno se prikazuju s tablicama prijelaza stanja (već pokazano)
- konačni automati pregledno se prikazuju i dijagramima prijelaza stanja



sustavi školska godina 2006/2007 Predavanje 6

Profesor Branko Jeren

Automat

varijablama stanja Dijagram

prijelaza stanja Opis automata skupovima i

funkcijama
Deterministič
nedeterminist
automati

# Dijagram prijelaza stanja 1

 kako bi se kreirao dijagram prijelaza stanja automata, kraće, dijagram stanja, prvo se ucrtaju krugovi koji predstavljaju moguća stanja







Slika 2: Dijagram stanja-stanja



2006/2007

Automat

#### varijablama stanja Diiagram

#### Dijagram prijelaza stanja Opis automata

skupovima i funkcijama Deterministič

Deterministički i nedeterminističk automati

# Dijagram prijelaza stanja 2

 za svaku kombinaciju ulaza i stanja ucrtava se strelica (lûk) od trenutnog stanja u naredno stanje



Slika 3: Dijagram stanja-prijelaz stanja

|   | F     | Ε       | R       | ost     |
|---|-------|---------|---------|---------|
| F | (F,t) | (FE, t) | (ST, t) | (ST, t) |



Profesor Branko Jeren

#### Automat

0 :----

#### Stanja Dijagram

### prijelaza stanja

Opis autom

funkcijama

Deterministički i nedeterministički automati

# Dijagram stanja za Pretraznik 1



Slika 4: Dijagram stanja za Pretraznik



Profesor Branko Jeren

#### Automa

stanja Dijagram prijelaza stanja Opis automata skupovima i

opis automata skupovima i funkcijama Deterministički nedeterministič automati

# Dijagram stanja za Pretraznik 2



Slika 5: Dijagram stanja upotpunjen tablicom stanja, ulaza i izlaza

| Stanje |                        |  |
|--------|------------------------|--|
| ST     | pretraga do znaka F    |  |
| F      | pronađen znak <i>F</i> |  |
| FΕ     | pronađen niz <i>FE</i> |  |

| Ulazi |                         |  |
|-------|-------------------------|--|
| F     | ulazni znak je <i>F</i> |  |
| Ε     | ulazni znak je <i>E</i> |  |
| R     | ulazni znak je <i>R</i> |  |
| ost   | svi osim $\{F, E, R\}$  |  |

| Izlazi |                          |  |
|--------|--------------------------|--|
| t      | izlazni znak je t        |  |
| р      | izlazni znak je <i>p</i> |  |



#### Profesor Branko Jeren

#### Automat

varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama Deterministički

Deterministički i nedeterministički automati

# Opis automata skupovima i funkcijama 1

- prikaz konačnih automata pomoću dijagrama stanja ili tabele prijelaza stanja je komplementaran
- opis automata skupovima i funkcijama je neophodan u realizaciji automata sklopovljem ili programski
- pokazano je da je u opisu automata potrebno definirati skup stanja, početno stanje, skupove ulaznih i izlaznih znakova, te funkciju prijelaza između stanja
- automati se stoga definiraju uređenom petorkom



Profesor Branko Jeren

Automat

varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama Deterministički nedeterministič

# Opis automata skupovima i funkcijama 2

• automat se definira uređenom petorkom

Automat = (Stanja, Ulazi, Izlazi, FunkcijaPrijelaza, pocetnoStanje)

pri čemu su Stanja - skup mogućih vrijednosti stanja Ulazi - ulazni skup znakova ili ulazni alfabet Izlazi - izlazni skup znakova ili izlazni alfabet  $pocetnoStanje \in Stanja$  - početno stanje FunkcijaPrijelaza:  $Stanja \times Ulazi \rightarrow Stanja \times Izlazi$ 

 funkcija prijelaza, za aktualno stanje i ulazni znak, definira naredno stanje i izlazni znak



#### Automa

Dijagram prijelaza stanja Opis automata skupovima i funkcijama Deterministički

# Opis automata skupovima i funkcijama 3

- Ulazi i Izlazi su skupovi mogućih ulaznih odnosno izlaznih znakova
- skup *UlazniSignali* čine svi beskonačni nizovi ulaznih znakova

$$UlazniSignali = [Prirodni_0 \rightarrow Ulazi]$$

- pojedini znak u signalu  $u \in UlazniSignali$  označuje se kao  $u(n), \forall n \in Prirodni_0$ , pri čemu n nužno ne predstavlja trenutak u vremenu već korak (poziciju) u nizu
- cijeli ulazni signal je niz

$$(u(0), u(1), u(2), \ldots, u(n), \ldots)$$

skup *IzlazniSignali* čine svi beskonačni nizovi izlaznih znakova

$$IzlazniSignali = [Prirodni_0 \rightarrow Izlazi]$$



školska godina 2006/2007 Predavanje 6

#### Profesor Branko Jeren

#### Automat

Dijagram prijelaza stanja Opis automata skupovima i funkcijama Deterministički

Deterministički i nedeterminističk automati

# Opis automata skupovima i funkcijama 4

automat opisan petorkom

Automat = (Stanja, Ulazi, Izlazi, FunkcijaPrijelaza, pocetnoStanje)

definira funkciju

$$F: UlazniSignali \rightarrow IzlazniSignali$$

dakle

$$\forall u \in UlazniSignali \Rightarrow y = F(u)$$

 ali i definira postupak za izračunavanje ove funkcije za određeni ulazni signal



2006/2007

#### Automat

stanja
Dijagram
prijelaza stanja
Opis automata
skupovima i
funkcijama
Deterministički i
nedeterministički

# Opis automata skupovima i funkcijama 5

• niz stanja u pojedinim koracima, odziv stanja, (x(0), x(1), x(2), ...) i izlazni signal y se konstruiraju, korak po korak, kako slijedi:

$$x(0) = pocetnoStanje$$
  
 $(x(n+1), y(n)) = FunkcijaPrijelaza(x(n), u(n))$ 

• svaki gornji izračun x(n) odnosno  $y(n)^1$  naziva se odziv stanja, odnosno odziv sustava

<sup>&</sup>lt;sup>1</sup>ovdje se razmatraju tzv. Mealyevi automati za koje je karakteristično da izlazni znak ovisi o ulaznom znaku i znaku stanja. Definiraju se i Mooreovi automati kod kojih je izlaz samo funkcija trenutnog stanja



Profesor Branko Jeren

#### Automa

varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama Deterministički

## Opis automata skupovima i funkcijama 6

- u opisu diskretnih sustava uobičajeno se FunkcijaPrijelaza razlaže na dvije funkcije, funkciju narednog stanja, narednoStanje, te izlaznu funkciju, izlaz,
- za

$$narednoStanje : Stanja \times Ulazi \rightarrow Stanja$$
  
 $izlaz : Stanja \times Ulazi \rightarrow Izlazi$   
 $x(0) = pocetnoStanje$ 

definiramo jednadžbu stanja

$$x(n+1) = narednoStanje(x(n), u(n))$$

odnosno izlaznu jednadžbu

$$y(n) = izlaz(x(n), u(n))$$



2006/2007

#### Automa

varijablama stanja Dijagram prijelaza stanj

Opis automata skupovima i funkcijama

nedeterministički automati

## Opis automata skupovima i funkcijama 7

zaključno možemo pisati

$$\forall x(n) \in Stanja \land \forall u(n) \in Ulazi$$

$$(x(n+1), y(n)) = FunkcijaPrijelaza(x(n), u(n)) =$$
  
=  $(narednoStanje(x(n), u(n)), izlaz(x(n), u(n)))$ 



sustavi školska godina 2006/2007 Predavanje 6

Profesor Branko Jeren

#### Automat

varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama Deterministički nedeterministički

### Još o definiciji konačnih automata 1

- razmatramo reaktivne automate za koje je odziv "reakcija" na pobudu iz vana
- definira se specijalni, "ne čini ništa", ulazni znak koji nazivamo odsutan (absent)
- ovaj je znak uvijek mogući ulaz i mogući izlaz, pa je

$$odsutan \in Ulazi, \qquad odsutan \in Izlazi$$

- kada je u(n) = odsutan
  - tada se stanje ne mijenja, pa je x(n+1) = x(n)
  - tada je izlaz također odsutan, tj. y(n) = odsutan



Profesor Branko Jeren

#### Automat

varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama Deterministički nedeterministički

### Još o definiciji konačnih automata 2

- više je razloga za uvođenjem ulaznog znaka odsutan
- u složenim strukturama automata kada postoji više vanjskih ulaza
  - ulazi predstavljaju niz događaja i oni uglavnom nisu istodobni
  - da bi automat djelovao na pojavu ulaznog znaka na jednom od ulaza (a ne na drugima) potrebno je na drugim ulazima primjeniti ulazni znak odsutan
- znak odsutan je potreban i u slučaju hibridnih sustava koji kombiniraju vremenske signale (kontinuirane ili diskretne) oblika w : Vrijeme → Domena te nizove događaja koji moraju dijeliti istu domenu pa se oni moraju prikazati funkcijama oblika u : Vrijeme → Znakovi (a ne u : Prirodni<sub>0</sub> → Znakovi)
  - kako se događaji obično ne pojavljuju u svakom trenutku vremena potrebno je uvesti znak odsutan



sustavi školska godina 2006/2007 Predavanje 6

Profesor Branko Jeren

#### Automat

opis sustava s varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama Deterministički nedeterministički

### Još o definiciji konačnih automata 3

- uvidom u jednadžbe, dijagrame stanja ili tabele stanja zaključujemo:
  - svaki prijelaz stanja i izlaz ovise samo o trenutnom stanju i trenutnom ulazu
  - prethodni ulazni znakovi utječu na prijelaz stanja i izlaz samo u onoj mjeri u kojoj određuju trenutno stanje
  - prijelaz će biti određen za svaku moguću kombinaciju ulaza i trenutnih stanja
  - ako prijelaz nije prikazan za pojedini ulaz, pretpostavlja se da je prijelaz u isto stanje i da je izlaz odsutan
  - ako više od jednog ulaznog znaka vodi na isti prijelaz i izlaz, znak prijelaza "{ulaz}/izlaz" može sadržavati oznaku skupa ulaznih znakova



Profesor Branko Jeren

#### Automa

varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama

Deterministički i nedeterministički automati

### Ponašanje automata 1

ponašanje se automata

$$F: UlazniSignali \rightarrow IzlazniSignali,$$

gdje su

$$UlazniSignali = [Prirodni_0 \rightarrow Ulazi]$$
  
 $IzlazniSignali = [Prirodni_0 \rightarrow Izlazi],$ 

definira kao par (u, y), gdje je u ulazni niz, a y = F(u) izlazni niz, dakle:

Ponašanja = 
$$\{(u, y) \in UlazniSignali \times IzlazniSignali | y je mogući izlazni niz za ulaz u\}$$



2006/2007

Automat

Opis sustava s varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama

Deterministički i nedeterministički automati

### Ponašanja automata 2

- za determinističke automate postoji samo jedan izlazni niz y za svaki ulazni niz u
- skup Ponašanja automata je tada graf funkcije F, tj. svaki element domene [Prirodni<sub>0</sub> → Ulazi] se preslikava u jedan element u [Prirodni<sub>0</sub> → Izlazi]
- za nedeterminističke automate za jedan ulazni niz iz  $[Prirodni_0 \rightarrow Ulazi]$  postoji više mogućih izlaznih nizova u  $[Prirodni_0 \rightarrow Izlazi]$
- Ponašanja automata tada nije graf funkcije već relacija



2006/2007

#### Automat

Opis sustava s varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama

Deterministički i nedeterministički automati

### Deterministički i nedeterministički automati

- automati za koje postoji točno jedan mogući prijelaz za svaku kombinaciju trenutnog stanja i ulaza nazivaju se deterministički automati
- nedeterministički automat može imati više od jednog mogućeg prijelaza za svaku kombinaciju trenutnog stanja i ulaza



Slika 6: Nedeterministički automat

- kada je stanje x(n) = b i ako je u(n) = 0, naredno stanje, x(n+1), može biti ili a ili b
- izlaz y(n) može biti ili 0 ili 1

model ne kazuje kako je izbor prijelaza načinjen



#### Automa

Opis sustava s varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama

Deterministički i nedeterministički automati

# Definicija nedeterminističkog automata

nedeterministički automati se prikazuju petorkom
 (Stanja, Ulazi, Izlazi, mogucaFunkcijaPrijelaza, pocetnoStanje)

- razlika je u definiciji prijelazne funkcije koja je ovdje nazvana mogucaFunkcijaPrijelaza, a koja se definira kako slijedi
- za dani ulaz u(n) i trenutno stanje x(n) mogucaFunkcijaPrijelaza generira skup mogućih narednih stanja x(n+1) i izlaza y(n)

mogucaFunkcijaPrijelaza: Stanja imes Ulazi o P(Stanja imes Izlazi)

 $P(Stanja \times Izlazi)$  je partitivni skup od ( $Stanja \times Izlazi$ ), dakle, skup svih podskupova od spomenutog skupa



Profesor Branko Jeren

#### Automa

varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama

Deterministički i nedeterministički automati

### Nedeterministički automati 1



Slika 7: Nedeterministički automat

$$Stanja = \{a, b\}$$
  
 $Ulazi = \{0, 1, odsutan\}$   
 $Izlazi = \{0, 1, odsutan\}$   
 $pocetnoStanje = a$ 

$$(x(n+1), y(n)) = mogucaFunkcijaPrijelaza(x(n), u(n))$$

|          | u(n)=0            | u(n) = 1 |
|----------|-------------------|----------|
| x(n) = a | (a, 0)            | (b, 1)   |
| x(n) = b | $\{(b,1),(a,0)\}$ | (b, 1)   |



#### Automat

Opis sustava s varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i

Deterministički i nedeterministički automati

### Nedeterministički automati 2



Slika 8: Nedeterministički automat

- za dani nedeterministički automat i zadani ulazni niz znakova prikazani su neki mogući nizovi stanja i izlaznih znakova
- prvi ishod

```
ulazni niz (0,1,0,1,0,1,...)
stanja (a,a,b,a,b,a,b,...)
izlazni niz (0,1,0,1,0,1,...)
```



Profesor Branko Jeren

#### Automat

Opis sustava s varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama

Deterministički i nedeterministički automati

### Nedeterministički automati 3



Slika 9: Nedeterministički automat

drugi ishod

ulazni niz 
$$(0,1,0,1,0,1,...)$$
  
stanja  $(a,a,b,b,b,a,b,...)$   
izlazni niz  $(0,1,1,1,0,1,...)$ 



Profesor Branko Jeren

#### Automat

varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama

Deterministički i nedeterministički automati

### Nedeterministički automati 4



Slika 10: Nedeterministički automat

• treći ishod

ulazni niz 
$$(0,1,0,1,0,1,...)$$
  
stanja  $(a,a,b,b,b,b,b,...)$   
izlazni niz  $(0,1,1,1,1,1,...)$ 



Profesor Branko Jeren

#### Automat

Opis sustava s varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i

Deterministički i nedeterministički automati

### Nedeterministički automati 5



Slika 11: Nedeterministički automat

četvrti ishod

ulazni niz 
$$(0,1,0,1,0,1,...)$$
  
stanja  $(a,a,b,a,b,b,b,...)$   
izlazni niz  $(0,1,0,1,1,1,...)$ 



#### Automat

varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama

Deterministički i nedeterministički automati

# Deterministički i nedeterministički automati-primjer

- nedeterministički se automati, često koriste pri simuliranju automata složene strukture s automatom jednostavnije strukture
- razmotrimo ovdje primjer automata koji se koristi u samoposlužnim praonicama automobila
- ubacivanjem kovanica, minimalno 2 kune, električni ventil propušta vodu na prskalice
- dotok vode na prskalicu traje dok ne istekne uplaćeni iznos vremena pranja
- automat prima kovanice 1, 2 i 5 kuna
- uplaćeni iznos vidljiv je na display-u automata i iskazan je u minutama (jedna minuta pranja odgovara jednoj kuni)
- dodatnim ubacivanjem kovanica, prije isteka vremena pranja (zatvaranja ventila dotoka vode), proporcionalno se produžuje vrijeme pranja



školska godina 2006/2007 Predavanje 6

Profesor Branko Jeren

#### Automat

Opis sustava s varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i

Deterministički i nedeterministički automati

### Primjer automata u praonici automobila 1

- četiri ulazna znaka {1}, {2}, {5} i {*ot*}
  - {1} ubacivanje kovanice u vrijednosti 1 HRK što odgovara jednoj minuti dotoka vode u prskalicu
  - {2} ubacivanje kovanice u vrijednosti 2 HRK što odgovara dvije minute dotoka vode u prskalicu
  - {5} ubacivanje kovanice u vrijednosti 5 HRK što odgovara pet minuta dotoka vode u prskalicu
  - ullet  $\{ot\}$  otkucaj—protek jedne minute rada automata
- display pokazuje preostalo vrijeme prije prestanka dotoka vode u prskalicu



#### Automa

Opis sustava s varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i

Deterministički i nedeterministički automati

# Primjer automata u praonici automobila 2

- kada se pojavi ulazni znak {1}, vrijeme dotoka vode uveća se za 1 minutu
- kada se pojavi ulazni znak {2}, vrijeme dotoka vode uveća se za 2 minute
- kada se pojavi ulazni znak {5}, vrijeme dotoka vode uveća se za 5 minuta
- kada se pojavi ulazni znak {ot}, otkucaj, vrijeme se umanjuje za 1 minutu (do minimuma od 0 minuta)
- kada preostalo vrijeme postane jednako 0, automat zaustavlja dotok vode nt
- automat otvara dotok vode za minimalno uplaćene dvije kune
- iskustvo sugerira da je za detaljno pranje automobila dovoljno 20 minuta, pa je automat tako projektiran



#### Automat

varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i

Deterministički i nedeterministički automati

## Primjer automata u praonici automobila 3

 definiramo konačni automat samoposlužne praonice automobila

```
\begin{aligned} \textit{Stanja} &= \{0, 1, 2, 3, \dots, 20\} \\ \textit{Ulazi} &= \{1, 2, 5, ot, odsutan\} \\ \textit{Izlazi} &= \{nt, 1, 2, 3, \dots, 20, odsutan\} \\ \textit{pocetnoStanje} &= 0 \\ \textit{FunkcijaPrijelaza} : \textit{Stanja} \times \textit{Ulazi} \rightarrow \textit{Stanja} \times \textit{Izlazi} \end{aligned}
```



#### Automa

varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i

Deterministički i nedeterministički automati

# Primjer automata u praonici automobila 4

$$\forall x(n) \in Stanja, \forall u(n) \in Ulazi$$
  
FunkcijaPrijelaza $(x(n), u(n)) =$ 

$$= \begin{cases} (0, nt) & u(n) = ot \land (x(n) = 0 \lor x(n) = 1) \\ (1, nt) & u(n) = (x(n) = 0 \land u(n) = 1) \\ ((x(n) - 1), (x(n) - 1)) & u(n) = ot \land x(n) > 1 \\ ((x(n) + 1), (x(n) + 1)) & u(n) = 1 \\ ((x(n) + 2), (x(n) + 2)) & u(n) = 2 \\ ((x(n) + 5), (x(n) + 5)) & u(n) = 5 \\ (x(n), odsutan) & u(n) = odsutan \end{cases}$$



Slika 12: Dijagram prijelaza stanja automata u praonici automobila



Profesor Branko Jeren

#### Automa

opis sustava s varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i funkcijama

Deterministički i nedeterministički automati

# Primjer automata u praonici automobila 5

- definiramo ovaj konačni automat sa stajališta vlasnika praonice
- za njega je nezanimljiv podatak o preostalom vremenu, jer njega zanima samo ima li korisnik dotok vode u uplaćenom vremenu
- sukladno tom pristupu redefiniramo model na način da su sada *Izlazi*

$$Izlazi = \{nt, t, odsutan\}$$

gdje je *t* znak koji označuje dotok vode, a *nt* označuje da nema dotoka vode



2006/2007

#### Automat

varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i

Deterministički i nedeterministički automati

# Primjer automata u praonici automobila 6



Slika 13: Redefinirani dijagram prijelaza stanja automata u praonici automobila

definirajmo nedeterministički model gornjeg automata





#### Automat

varijablama stanja Dijagram prijelaza stanja Opis automata skupovima i

Deterministički i nedeterministički automati

# Primjer automata u praonici automobila 7

- evidentno je da deterministički model automata sadrži više detalja
- nedeterministički model može generirati bilo koji izlazni niz koji generira deterministički model za bilo koji ulazni niz
- no nedeterministički model može generirati i izlazne nizove koje deterministički model ne može generirati

ulazni niz 
$$(5, ot, ot, ot, ot, ot, \dots)$$
 stanja  $(razna, razna, 1, 0, 0, \dots)$  izlazni niz  $(t, t, nt, nt, nt, \dots)$ 

