

Enrico Ribiani 5AUB

Macchina per foratura

Relazione n°3

Indice

1	Introduzione	2
	1.1 Soluzione da noi utilizzata	2
2	Funzionamento	2
	2.1 Diagramma funzionale	3
3	Componenti	3
	3.1 Preventivo	3
4	Allegati	4
	4.1 Norme di riferimento	4
	4.1.1 Tabella Input/Output	
	4.2 Programma PneumaticStudio	
	4.3 Disegno esplicaivo	4

1. Introduzione

In questa esercitazione laboratoriale è stata richiesta la gestione completa di una macchina automatica con il compito di forare e immagazzinare dei pezzi.

La macchina è di tipo pneumatico infatti il suo principio di funzionamento è basato su tre cilindri pneumatici a doppio effetto, il nostro incarico è quello di progettare e programmare il sistema di controllo e di potenza segliendo le valvole più idonee alla soluzione da noi utilizzata.

1.1 Soluzione da noi utilizzata

Per comandare i cilindri abbiamo scelto di utilizzare tre valvole 5/2 con azionamento elettrico in apertura e chiusura, poichè rappresentano la soluzione più efficente e semplice per azionare un cilindro a doppio effetto tramite un plc.

Abbiamo scelto di gestire il ciclo tramite un ple programmato con il linguaggio a contatti ladder, questa soluzione è stata simulata in laboratorio tramite il programma *PneumaticStudio*.

Figura 1: Valvola 5/2

2. Funzionamento

La macchina inizia a lavorare alla pressione del pulsante di start, dopodichè il cilindro **A** ossia quello incaricato di posionare e bloccare i pezzi sotto al trapano a colonna si estrae.

Una volta estrato completamente rimane in posizione e il cilindro **B** si estrae forando tramite il trapano attaccato a esso il pezzo, una volta estratto completamente il pezzo sarà forato e quindi si ritrarrà.

Con il cilindro B ritratto il cilindro A tornerà alla posizione iniziale in modo da consentire al cilindro C di spingere nel magazzino il pezzo forato.

Queste due ultime azioni avvengono contemporaneamente.

2.1 Diagramma funzionale

Fase	1	Z	3	4	5	
Moto	A +	B +	ß -	A-, C+	۲-	
Segnale	<u>bo</u> +(0	Q1	b1	bo	20,61]_,
A -						a
B ₋						b 1
C į						60

3. Componenti

È stato scelto il cilindro *DSBC* prodotto da Festo poichè rappresenta uno standard per i cilindri a doppio effetto, ne vengono prodotti di molte dimensioni (1-2800 mm), rispettano la norma ISO15552 e sono fornite di dichiarazione di conformità oltre che il marchio

Per controllare questo cilindro Festo consiglia la valvola universale *VUVS-LK20-B52-D-G18-1C1-S* presente con funzione 5/2 e azionamento elettrico con il controllo standardizzato a 24V. Semore tramite il configuratore Festo andiamo a scegliere i sensori di finecorsa *SMT-8M-A-PS-24V-E-2,5-OE* che rispettano lo standard EN 60947-5-2 funzionanti a 24V e quindi compatibili con lo standard infine il tubo *PEN-8X1,25-BL* con cui collegare cilindri e valvole.

Leggendo il datasheet i cilindri lavorano con una pressione minima di circa 1 bar e massima di circa 12 bar, abbiamo quindi bisogno di un compressore che eroghi minimo 3 bar non considerando le perdite della distribuzione quindi il compressore *F41045* adempie pienamente i requisiti minimi necessari.

Per la scelta del plc i parametri da rispettare sono i 24V come standard di funzionamento e la disposizione di almeno 7 ingressi e 10 uscite.

Il plc Schneider Electric *TM241CEC24T* risulta idoneo, ma visto che andremo a programmarlo tramite il linguaggio ladder si può utilizzare il plc Zelio logic *SR3B261BD*.

Tutti i prodotti presentano dichiarazione di conformità.

3.1 Preventivo

Codice prodotto	Dispositivo	Quantità	Prezzo	Totale
DSBC 2102632	cilindro	3	190	570
VUVS-LK20-B52-D-G18-1C1-S	valvola 5/2	3	70	210
F41045	compressore	1	900	900
SR3B261BD	plc	1	300	300
tubo	PEN-8X1,25-BL	1	40	40
				2020

4. Allegati

4.1 Norme di riferimento

ISO15552 - Normativa sui cilindri pneumatici

ISO8573 - Normativa sull'aria compressa e il filtraggio

CEI 3-34 - Nomenclatura

IEC 1131-3 - Normativa linguaggi PLC

IEC 947.4.1 - CEI EN 60947.41 - Apparecchiature in bassa tensione

4.1.1 Tabella Input/Output

Sigla Input	Componente	Ingresso
a0	FC A-	X
a1	FC A+	X
b0	FC B-	X
b1	FC B+	X
c0	FC C-	X
c1	FC C+	X
start	pulsante NO	X

Table 1: Tabella Input

Sigla Output	Componente	Uscita
A_dx	pos. A valvola 1	X
A_sx	pos. B valvola 1	X
B_dx	pos. A valvola 2	X
B_sx	pos. B valvola 2	X
C_dx	pos. A valvola 3	X
C_sx	pos. B valvola 3	X

Table 2: Tabella Output

4.2 Programma PneumaticStudio

4.3 Disegno esplicaivo