Міністерство освіти і науки України

Харківський національний університет імені В.Н. Каразіна

Розрахунково-графічне завдання #2

Чисельне розв'язання крайових задач для звичайних диференціальних рівнянь

Виконав:

Захаров Дмитро Олегович

Група МП-41

Зміст

1	Пос	тановка задачі	2
2	Опис методів		3
	2.1	Метод Гальоркіна	3
	2.2	Метод найменших квадратів	4
3	Імплементація		5
	3.1	Підбір параметрів	5
	3.2	Код на Wolfram Mathematica	6

1 Постановка задачі

Знайти розв'язок диференціального рівняння другого порядку з заданими граничними умовами:

$$y'' + x^3y' - (2 + \ln^2(1+x))y = 3, \quad x \in (0,2)$$

Граничні умови:

$$-y'(0) + 3y(0) = 1, \quad y(2) = 2.$$

Розв'язок слід знайти з точністю $\varepsilon=10^{-3}$ та побудувати графік розв'язку. Знайти розв'язок потрібно за допомогою хоча б одного з проекційних методів (метод Гальоркіна, метод скінченних елементів, метод колокацій, метод найменших квадратів).

2 Опис методів

Нехай маємо рівняння другого порядку

$$\begin{cases} \mathcal{L}[y] = y'' + p(x)y' + q(x)y = f(x), & x \in (a,b), \\ e_0[y] := r_0 y(a) + m_0 y'(a) = \nu_0, \\ e_1[y] := r_1 y(b) + m_1 y'(b) = \nu_1, \end{cases}$$

Будемо шукати розв'язок у вигляді

$$\widehat{f}(x|\mathbf{c}) = \varphi_0(x) + \sum_{i=1}^n c_i \varphi_i(x),$$

де $\{\varphi_j\}_{j\in\{0,\dots,n\}}$ — лінійно незалежні базисні функції, причому $\varphi_0(x)$ має задовільняти початковим умовам, а решта функції задовільняють однорідним граничним умовам:

$$e_0[\varphi_0] = \nu_0, \quad e_1[\varphi_0] = \nu_1, \quad e_0[\varphi_j] = e_1[\varphi_j] = 0, \quad j \in \{1, \dots, n\}.$$

Наша задача — підібрати так набір коефіцієнтів $\mathbf{c} = (c_0, \dots, c_n) \in \mathbb{R}^{n+1}$, щоб зробити нев'язку $R(x|\mathbf{c})$ якомога меншою:

$$R(x|\mathbf{c}) = \mathcal{L}[\widehat{f}(x|\mathbf{c})] - f(x) = \mathcal{L}[\varphi_0(x)] + \sum_{i=1}^n c_i \left(\mathcal{L}[\varphi_i](x) - f(x)\right).$$

Далі, кожен з методів по суті задає критерій "малості" нев'язки $R(x|\boldsymbol{c})$. Розглянемо два з них, що будемо використовувати в нашій роботі.

2.1 Метод Гальоркіна

Головна ідея в тому, що якщо б ми могли гарантувати, що нев'язка R(x) є ортогональною до всіх базисних функцій $\{\varphi_j(x)\}_{j\in\{0,\dots,n\}}$, то тоді звідси б випливало, що $R\equiv 0$. Якщо б в нас був би нескінченний набір базисних функцій, то ми б могли задовольнити цю умову точно.

В нашому ж випадку, ми підбираємо так коефіцієнти, щоб це виконувалось для перших n базисних функцій:

$$\langle R(x|\boldsymbol{c}), \varphi_i(x) \rangle = \int_a^b R(x|\boldsymbol{c})\varphi_i(x)dx = 0, \quad i \in \{1, \dots, n\}.$$

Якщо розписати, то це зводиться до системи лінійних рівнянь:

$$\sum_{j=1}^{n} \alpha_{i,j} c_j = \beta_i, \quad \alpha_{i,j} = \int_a^b \varphi_i(x) \mathcal{L}[\varphi_j] dx, \quad \beta_i = \int_a^b \varphi_i(x) (f(x) - \mathcal{L}[\varphi_0]) dx.$$

2.2 Метод найменших квадратів

Тут ми кажемо, що нев'язка $R(x|\mathbf{c})$ є малим числом в середньому, тобто $\int_a^b R^2(x|\mathbf{c})dx$ є достатньо малим. Формально:

$$\mathcal{I}(\boldsymbol{c}) = \int_a^b R^2(x|\boldsymbol{c})dx \to \min$$

Ця задача оптимізації розв'язується стандартно: беремо градієнт $\nabla_{c}\mathcal{I}(c)$ і прирівнюємо до нуля:

$$\nabla_{\mathbf{c}} \mathcal{I}(\mathbf{c}) = 2 \int_{a}^{b} R(x|\mathbf{c}) \nabla_{\mathbf{c}} R(x|\mathbf{c}) dx = \mathbf{0}_{n} \implies \int_{a}^{b} R(x|\mathbf{c}) \frac{\partial R(x|\mathbf{c})}{\partial c_{i}} dx = 0.$$

3 Імплементація

3.1 Підбір параметрів

В нашому випадку маємо підставити наступні значення та функції:

$$\mathcal{L}[y] = y'' + x^3y' - (2 + \ln^2(1+x))y, \quad f(x) \equiv 3, \quad a = 0, \quad b = 2,$$

Далі потрібно обрати базисні функції $\varphi_i(x)$, які задовольняють граничним умовам:

$$-\varphi_0'(0) + 3\varphi_0(0) = 1, \quad \varphi_0(2) = 2,$$

$$-\varphi_i'(0) + 3\varphi_i(0) = \varphi_i(2) = 0, \quad i \in \{1, \dots, n\}.$$

Функцією $\varphi_0(x)$ можна шукати як лінійну: $\varphi_0(x)=ax+b$. Нескладно перевірити, що підійде $\varphi_0(x)=\frac{5}{7}x+\frac{4}{7}$.

З функціями $\varphi_n(x), n \geq 1$ все складніше. Зокрема, з теорії диференціальних рівнянь, для такої умови можна взяти наступний ортогональний набір функцій:

$$\varphi_n(x) = \cos(\omega_n x) + \frac{3}{\omega_n} \sin(\omega_n x), \quad \tan(2\omega_n) = -\frac{\omega_n}{3}$$

Проте працювати з такими функціями не дуже зручно, тому спробуємо прибрати умову на ортогональність і візьмемо поліноміальний набір функцій:

$$\varphi_n(x) = (x-2)^n (a_n x + b_n)$$

Умова $\varphi_n(2)=0$ виконується автоматично, лише підберемо коефіцієнти a_n та b_n . Маємо отримати $-\varphi_n'(0)+3\varphi_n(0)=0$ або:

$$\left[-n(x-2)^{n-1}(a_nx+b_n) - a_n(x-2)^n + 3(x-2)^n(a_nx+b_n) \right]_{x=0} = 0$$

Це спрощується до умови $-nb_n+2a_n-6b_n=0$, звідки $a_n=\frac{n+6}{2}b_n$. Візьмемо $b_n:=2$ для зручності. Тоді:

$$\varphi_0(x) = \frac{5}{7}x + \frac{4}{7}, \quad \varphi_n(x) = (x-2)^n ((6+n)x + 2)$$

3.2 Код на Wolfram Mathematica

Код програми наведений на мові Wolfram Mathematica у файлі, що прикріплений далі.

Перегорніть на наступну сторінку \rightarrow

Section 2. Projective Methods

■ Section 2.1. Galerkin Method

Section 2.1.1. Solving the initial problem.

First, let us solve the initial problem

Section 2.1.2. Choosing the basis functions

Now, choose basis functions. Choosing the 0th basis function is trivial:

```
In[175]:=
        \phi 0[x_] = 5 x/7 + 4/7;
        (-\phi 0'[x] + 3\phi 0[x]) /. \{x \rightarrow 0\}(* \text{ Must be } 1 *)
         \phi 0[2] (* Must be 2 *)
Out[176]=
Out[177]=
         Next functions will be chosen as the system of linearly independent polynomial of the special form:
In[178]:=
        Clear[\phin, x, an, bn, n]
         \phi n[x] = (x - 2)^n (an x + bn);
        boundaryn[x] = -\phi n'[x] + 3\phi n[x]
         Solve[boundaryn[0] == 0, {an, bn}]
Out[180]=
         -an(-2+x)^n - n(-2+x)^{-1+n}(bn+anx) + 3(-2+x)^n(bn+anx)
        Solve: Equations may not give solutions for all "solve" variables.
Out[181]=
        \left\{\left\{bn \rightarrow \frac{2 \text{ an}}{6 + n}\right\}\right\}
        Thus, we are ready
        n = 5; (* Number of basis functions. For n>5 I reach the limit of Wolfram Cloud *)
         \phi 0[x] = 5 x/7 + 4/7;
        \phi = \text{Table}[(x-2)^k ((6+k)x+2), \{k, 1, n\}];
        Print["Basis Functions: ", \phi O[x], " and ", \phi]
        Basis Functions: \frac{4}{7} + \frac{5 \times 7}{7} and
          \{(-2+x)(2+7x), (-2+x)^2(2+8x), (-2+x)^3(2+9x), (-2+x)^4(2+10x), (-2+x)^5(2+11x)\}
        Verify that these basis functions satisfy boundary conditions as needed
In[206]:=
        Table [(-D[\phi[k], x] + 3\phi[k])/. \{x \rightarrow 0\}, \{k, 1, n\}] (* Must be all 0 *)
        Table[\phi[k]]/.\{x \rightarrow 2\}, \{k, 1, n\}] (* Must be all 0 as well *)
Out[206]=
        \{0, 0, 0, 0, 0\}
Out[207]=
        \{0, 0, 0, 0, 0, 0\}
         Setting the approximation:
```

```
In[228]:=
        Clear[c]
        coeffs = Array[Subscript[c, #] &, {n}];
        u[x_{]} = \phi 0[x] + Sum[coeffs[k] \times \phi[k], \{k, 1, n\}]
Out[230]=
         \frac{4}{7} + \frac{5 x}{7} + (-2 + x)(2 + 7 x)c_1 + (-2 + x)^2(2 + 8 x)c_2 +
          (-2 + x)^3 (2 + 9 x) c_3 + (-2 + x)^4 (2 + 10 x) c_4 + (-2 + x)^5 (2 + 11 x) c_5
        Section 2.1.3. Optimizing w.r.t. coefficients
In[232]:=
         L[y] = D[y[x], \{x, 2\}] + x^3 D[y[x], x] - (2 + Log[1 + x]^2) y[x];
         R[x_{]} = L[u] - 3;
        eqs = Table[Integrate[R[x] \times \phi[[k]], {x, 0.0, 2.0}] == 0, {k, 1, n}];
In[235]:=
         Print[eqs]
         \{67.9364 - 569.638 c_1 + 697.672 c_2 - 921.527 c_3 + 1311.69 c_4 - 1979.89 c_5 == 0,
          -80.3527 + 573.329 c_1 - 939.299 c_2 + 1487.47 c_3 - 2402.02 c_4 + 3978.31 c_5 == 0
          110.273 - 731.356 c_1 + 1399.7 c_2 - 2486.13 c_3 + 4369.65 c_4 - 7717.86 c_5 == 0
          -164.923 + 1053.25 c_1 - 2222.04 c_2 + 4267.69 c_3 - 7968.23 c_4 + 14756.3 c_5 == 0
          260.807 - 1628.81 c_1 + 3676.88 c_2 - 7473.44 c_3 + 14600.3 c_4 - 28041.7 c_5 == 0
In[237]:=
         optimalCoeffs = Solve[eqs, coeffs]
Out[237]=
        \{\{c_1 \rightarrow 0.0401299, c_2 \rightarrow -0.0516019, c_3 \rightarrow 0.0587259, c_4 \rightarrow 0.0514798, c_5 \rightarrow 0.0113561\}\}
In[243]:=
         optimalCoeffs = Table[optimalCoeffs[1][k][2]], {k, 1, n}]
Out[243]=
        \{0.0401299, -0.0516019, 0.0587259, 0.0514798, 0.0113561\}
In[244]:=
        uOptimal[x] = \phi 0[x] + Sum[optimalCoeffs[k] \times \phi[k], \{k, 1, n\}]
Out[244]=
         \frac{4}{7} + \frac{5 \times x}{7} + 0.0401299 (-2 + x) (2 + 7 x) - 0.0516019 (-2 + x)^2 (2 + 8 x) +
          0.0587259(-2+x)^{3}(2+9x)+0.0514798(-2+x)^{4}(2+10x)+0.0113561(-2+x)^{5}(2+11x)
```

```
In[246]:=
        Plot[\{\text{Evaluate}[y[x] /. s], \text{uOptimal}[x]\}, \{x, 0, 2\},
        PlotRange → All,
        PlotTheme → "Detailed",
        AxesLabel \rightarrow {"x", "y"},
        GridLines → Automatic,
        PlotStyle → {Blue, Directive[Dashed, Red]}
Out[246]=
        2.0
        1.5
                                                                                 InterpolatingFunction
                                                                                                                    Output: 9
                                                                                 uOptimal(x)
        0.5
        0.0
                                        1.0
```

Print absolute differences in the specified set of points:

Section 2.2. Least Squares Method

We simply change the system of equations for finding coefficients. The rest is the same.

```
In[304]:=
        eqs = Table[Integrate[R[x] \times D[R[x], coeffs[k]], {x, 0.0, 2.0}] == 0, {k, 1, n}];
        Print[eqs]
        \{-495.681 + 6912.42 c_1 - 3371.77 c_2 + 3773.29 c_3 - 5309.95 c_4 + 8429.41 c_5 == 0,
          466.082 - 3371.77 c_1 + 5498.65 c_2 - 8663.26 c_3 + 14891.7 c_4 - 26879.8 c_5 == 0
         -615.633 + 3773.29 c_1 - 8663.26 c_2 + 17601.5 c_3 - 35070.8 c_4 + 69560.3 c_5 == 0
         928.554 - 5309.95 c_1 + 14891.7 c_2 - 35070.8 c_3 + 76975.6 c_4 - 163204. c_5 == 0
         -1525.51 + 8429.41 c_1 - 26879.8 c_2 + 69560.3 c_3 - 163204. c_4 + 363413. c_5 == 0
In[306]:=
        optimalCoeffs = Solve[eqs, coeffs]
Out[306]=
        \{(c_1 \rightarrow 0.040226, c_2 \rightarrow -0.0523426, c_3 \rightarrow 0.0557251, c_4 \rightarrow 0.0486133, c_5 \rightarrow 0.0105585)\}
In[307]:=
        optimalCoeffs = Table[optimalCoeffs[1][[k][[2]], {k, 1, n}]
         uOptimal[x_] = \phi 0[x] + Sum[optimalCoeffs[k] \times \phi[k], \{k, 1, n\}] 
Out[307]=
        \{0.040226, -0.0523426, 0.0557251, 0.0486133, 0.0105585\}
Out[308]=
        \frac{4}{7} + \frac{5 \times x}{7} + 0.040226 (-2 + x) (2 + 7 x) - 0.0523426 (-2 + x)^2 (2 + 8 x) +
         0.0557251(-2+x)^{3}(2+9x)+0.0486133(-2+x)^{4}(2+10x)+0.0105585(-2+x)^{5}(2+11x)
In[309]:=
        Plot[\{Evaluate[y[x] /. s], uOptimal[x]\}, \{x, 0, 2\},
        PlotRange → All,
        PlotTheme → "Detailed",
        AxesLabel \rightarrow {"x", "y"},
        GridLines → Automatic,
        PlotStyle → {Blue, Directive[Dashed, Red]}
Out[309]=
        2.0
        1.5
                                                                                                                       Domain:
        1.0
                                                                                    InterpolatingFunction
```

uOptimal(x)

0.5

0.0

0.0

0.5

1.0

1.5

2.0