SOWTIONS TO PROBLEM SET !

- ① $F'(x) = 4x^3 12x^2 + 8x$ find critical values X^* where $F'(x^*) = 0$. $4x^3 12x^2 + 8x = 0 \Rightarrow Factor$: $4x(x^2 3x + 2) = 0$ or 4x(x 2)(x 1) = 0The 3 critical values are therefore $X^* = 0, 2, 1$ $F''(x) = 12x^2 24x + 8$ $F''(0) = 8 > 0 \Rightarrow minimum$ $F''(2) = 12(2^2) 24(2) + 8 = 8 > 0 \Rightarrow minimum$ $F''(1) = -4 < 0 \Rightarrow |ocal maximum|$
- (2) a) $F_1 = 2\chi_2^3$ $f_2 = 6\chi_1\chi_2^2$ $f_{11} = 0$ $f_{22} = 12\chi_1\chi_2$ $F_{12} = 6\chi_2^2$ $f_{21} = 6\chi_2^2$ $f_{12} = f_{21} \Rightarrow \text{Young's Him} holds$.
 - b) $f_1 = 14 + 2x_2 2x_1$, $f_2 = 2x_1 4x_2$ $f_{11} = -2$ $f_{22} = -4$ $f_{12} = 2$ $f_{21} = 2$ $f_{12} = f_{21} \Rightarrow \text{Young's th}^m \text{ holds}$
 - C) F₁ = -4+2×1-×2 F₂ = -6-×, +4×2 F₁ = 2 F₂₂ = 4 F₁₂ = -1 F₂₁ = -1 F₁₂ = F₂₁ ⇒ Young's th^m holds
 - d) $f_1 = \ln x_2$ $f_2 = \frac{x_1}{x_2}$ $f_{11} = 0$ $f_{22} = \frac{-x_1}{x_2}$ $f_{12} = \frac{1}{x_2}$ $f_{21} = \frac{1}{x_2}$ $f_{21} = \frac{1}{x_2}$ $f_{22} = f_{21} \Rightarrow \text{Youngs th}^{\text{m}} \text{ holds}$
 - e) $f_1 = \chi_1 e^{(\chi_1 + \chi_2^2)} + e^{(\chi_1 + \chi_2^2)} = (1 + \chi_1) (e^{(\chi_1 + \chi_2^2)})$ $f_2 = 2 \chi_2 \chi_1 e^{(\chi_1 + \chi_2^2)}$ $f_{11} = (1 + \chi_1) (e^{(\chi_1 + \chi_2^2)}) + e^{(\chi_1 + \chi_2^2)}$ $= (2 + \chi_1) (e^{(\chi_1 + \chi_2^2)})$ $f_{22} = 4 \chi_1 \chi_2^2 e^{(\chi_1 + \chi_2^2)} + e^{(\chi_1 + \chi_2^2)} \cdot 2 \chi_1$

$$f_{12} = \chi_1 e^{(\chi_1 + \chi_2^2)} = \chi_2 e^{(\chi_1 + \chi_2^2)} = (1 + \chi_1) 2 \chi_2 e^{(\chi_1 + \chi_2^2)}$$

$$f_{21} = 2 \chi_2 (\chi_1 e^{(\chi_1 + \chi_2^2)} + e^{(\chi_1 + \chi_2^2)}) = (1 + \chi_1) 2 \chi_2 e^{(\chi_1 + \chi_2^2)}$$

$$f_{12} = f_{21} \Rightarrow \text{ Yangs th}^{\text{m}} \text{ holds}$$

- (3) $f_1 = 14 + 2x_2 2x_1$, $f_2 = 2x_1 4x_2$ $f_1 = f_2 = 0$ at critical X_i^* : $f_2 = 0 \Rightarrow 2x_1 4x_2 = 0 \Rightarrow 2x_1 = 4x_2$ sub sub in for $2x_1$ in f_1 set equal to zero: $14 + 2x_2 (4x_2) = 0$ $\Rightarrow 14 2x_2 = 0 \Rightarrow x_2^* = 7$ and since $2x_1 = 4x_2 \Rightarrow x_1 = 2x_2$ $x_1^* = 14$ from 2b, we have $f_{11} = -2 < 0$ and $f_{22} = -4 < 0$ Now check $f_{11}f_{22} f_{12}^*$: $(-2)(-4) 2^* = 8 4 > 0$ Since $f_{11} < 0$ for $f_{21} < 0$ and $f_{11}f_{22} f_{12}^* > 0$ at x_1^* , $x_2^* \Rightarrow 10$ local maximum (in fact since these conditions hald everywhere, we have a global maximum)
- - (3) dy = $f_1 dx_1 + f_2 dx_2$ $f_1 = 16x_1 x_2^2 6x_1^2 x_2^3$ $f_2 = 16x_1^2 x_2 - 6x_1^3 x_2^2$ So the total differential is: $(16x_1 x_2^2 - 6x_1^2 x_2^2) dx_1 + (16x_1^2 x_2 - 6x_1^3 x_2^2) dx_2 = dy$

b)
$$\Delta y \approx (16(1)(1) - 6(1^2)(1^3)) \frac{1}{2} + (16(17(1) - 6(1^3)(1^2))(.2)$$

 $\Rightarrow \Delta y \approx 10(\frac{1}{2}) + 10(.2) = 7$
For actual change my: $F(1,1) = 6$ (50 actua)
 $F(1.5, 1.2) \approx 14.25$ $\Delta y = 8.25$

- (a) Given g(x,y)=0, using the implicit function theorem we know that $\frac{dy}{dx}=\frac{-9x}{g_y}$ Here, $g_X=a_X-3y$ and $g_y=-3x+3y^2$ So, $\frac{g_X/g_Y}{(-3x+3y^2)}=\frac{-(2x-3y)}{(-3x+3y^2)}$ and at (x=4,y=3) we have $\frac{dy}{dx}=\frac{-[2(4)-3(3)]}{[-3(4)+3(9)]}=\frac{1}{15}$
 - (7) a) $\frac{\partial f}{\partial x} = -2x + 2a = 0 \Rightarrow x^* = a$ b) $y^* = -a^2 + 2a^2 + 4a^2$; $\frac{\partial y^*}{\partial a} = -2a + 4a + 4 = 2a + 4$ c) Using the envelope theorem: $\frac{\partial y^*}{\partial a} = \frac{\partial f}{\partial a}|_{x=x^*} = 2x + 4|_{x=x^*=a} = 2a + 4$
 - d) If $a=\frac{1}{2}$, then $\frac{dy^*}{da}=2(\frac{1}{2})+4=5$ So, if a were to increase by .2 then we have $\frac{dy^*}{da}=\frac{dy^*}{da}$ da, approximated by $\frac{dy^*}{da}=\frac{dy^*}{da}$ sa, or $\frac{dy^*}{da}=\frac{da}=\frac{dy^*}{da}=\frac{dy^*}{da}=\frac{dy^*}{da}=\frac{dy^*}{da}=\frac{dy^*}{da}=\frac$
 - e) From part b, we have $y_{\pm}^* a^2 + 2a^2 + 4a$ 50 When $a = \pm$, $y^* = -(\pm)^2 + 2(\pm^2) + 4(\pm) = 2.25$ And when $a = \frac{3}{10}$, $y^* = -(\pm)^2 + 2(\pm)^2 + 4(\pm) = 3.29$ So actual change is 1.04