INFORMATION THEORY & CODING

Differential Entropy

Dr. Rui Wang

Department of Electrical and Electronic Engineering Southern Univ. of Science and Technology (SUSTech)

Email: wang.r@sustech.edu.cn

December 20, 2022

Differential Entropy - 1

- Definitions
- AEP for Continuous Random Variables
- Relation of differential entropy to discrete entropy

From discrete to continuous variables

Differential Entropy

Definition

Let X be a random variable with cumulative distribution function (CDF). $F(x) = \Pr(X \le x)$. If F(x) is continuous, the random variable is $f(x) = \Pr(X \le x)$. continuous. Let f(x) = F'(X) when the derivative is defined. If $\int_{-\infty}^{+\infty} f(x) = 1$, f(x) is called the probability density function (pdf) for X. The set of x where f(x) > 0 is called the support set of the X.

Definition 代表 连续随机建筑。HUNI表表的适机建筑地的外。

The differential entropy h'(X) of a continuous random variable X with density f(x) is defined as

$$h(X) = -\int_{S} f(x) \log f(x) dx = h(f)$$

where S is the support set of the random variable.

Example: Uniform distribution

- $f(x) = \frac{1}{a}, x \in [0, a]$
- The differential entropy is:

$$h(X) = -\int_0^a \frac{1}{a} \log \frac{1}{a} dx = \log a \text{ bits}$$

• for a < 1, $h(X) = \log a < 0$, differential entropy can be negative! (unlike discrete entropy)

Example: Uniform distribution

- $f(x) = \frac{1}{a}, x \in [0, a]$
- The differential entropy is:

$$h(X) = -\int_0^a \frac{1}{a} \log \frac{1}{a} dx = \log a \text{ bits}$$

• for a < 1, $h(X) = \log a < 0$, differential entropy can be negative! (unlike discrete entropy)

Example: Normal distribution

- Differential entropy:

$$h(\phi) = rac{1}{2} \log 2\pi e \sigma^2$$
 bits

$$h(\phi) = -\int \phi \log \phi dx = -\int \phi(x) \left[-\frac{x^2}{2\sigma^2} \log e - \log \sqrt{2\pi\sigma^2} \right] dx$$
$$= \frac{\mathbb{E}(X^2)}{2\sigma^2} \log e + \frac{1}{2} \log 2\pi\sigma^2 = \frac{1}{2} \log e + \frac{1}{2} \log 2\pi\sigma^2$$
$$= \frac{1}{2} \log 2\pi e\sigma^2$$

INFORMATION THEORY & CODING

Normal distribution $\frac{1}{2}$ $\times \sqrt{\rho(x)} = \frac{1}{\sqrt{216^2}} e^{-\frac{x^2}{2}} \sim N(0.6^2)$ $h(x) = h(\phi) = -\int_{-\infty}^{\infty} \phi(x) \left[-\log \left[\frac{x^2}{216^2} - \frac{x^2}{26^2} \log e \right] dx$ $= \pm \log 2\pi 6^2 + \pm \log e = \pm \log (2\pi 6^2 e)$

Example: Normal distribution

- $X \sim \phi(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(\frac{-x^2}{2\sigma^2}), x \in \mathbb{R}$
- Differential entropy:

$$h(\phi) = \frac{1}{2} \log 2\pi e \sigma^2$$
 bits

Calculation: 依龙.

$$h(\phi) = -\int \phi \log \phi dx = -\int \phi(x) \left[-\frac{x^2}{2\sigma^2} \log e - \log \sqrt{2\pi\sigma^2} \right] dx$$
$$= \underbrace{\left[\mathbb{E}(X^2) \right]}_{2\sigma^2} \log e + \frac{1}{2} \log 2\pi\sigma^2 = \frac{1}{2} \log e + \frac{1}{2} \log 2\pi\sigma^2$$
$$= \frac{1}{2} \log 2\pi e\sigma^2$$

AEP for continuous random variables

• Discrete world: for a sequence of i.i.d. random variables

$$\frac{1}{n}\log p(X_1, X_2, \dots, X_n) \to H(X).$$

Continuous world: for a sequence of i.i.d. random variables

$$-rac{1}{n}\log f(X_1,X_2,\ldots,X_n)
ightarrow \mathbb{E}[-\log f(X)]=h(X)$$
 in probability

Proof follows from the weak law of large numbers

AEP for continuous random variables

• Discrete world: for a sequence of i.i.d. random variables

$$\frac{1}{n}\log p(X_1, X_2, \dots, X_n) \to H(X).$$

Continuous world: for a sequence of i.i.d. random variables

$$-rac{1}{n}\log f(X_1,X_2,\ldots,X_n)
ightarrow \mathbb{E}[-\log f(X)] = h(X)$$
 in probability

Proof follows from the weak law of large numbers.

• Discrete case: number of typical sequences

$$\left|A_{\epsilon}^{(n)}\right| \approx 2^{nH(X)}$$

$$Vol(A) = \int_A dx_1 dx_2 \dots dx_n, \ A \subset \mathbb{R}^n.$$

Definition

For $\epsilon>0$ and any n, we define the typical set $A^{(n)}_\epsilon$ with respect to f(x) as

For
$$\epsilon > 0$$
 and any n , we define the typical set $A_{\epsilon}^{(n)}$ with respect to $f(x)$ as follows:
$$A_{\epsilon}^{(n)} = \left\{ (x_1, x_2, \dots, x_n) \in \mathcal{S}^n : \left| -\frac{1}{n} \log f(x_1, x_2, \dots, x_n) - h(X) \right| \le \epsilon \right\}, \quad \text{where } s > 0 \text{ . Which is a positive of the proof of the p$$

$$\left|A_{\epsilon}^{(n)}\right| \approx 2^{n}$$

• Continuous case: The volume of the typical set

 $Vol(A_{\epsilon}^{(n)}) = \int_{A_{\epsilon}^{(n)}} 1 \cdot dx \cdot dx_2 - \cdot dx_n$

Typical set

 $\mathbf{X}_{1}, \mathbf{X}_{2} \cdots \mathbf{X}_{N}$ one i.i.d random variable

As = {(x1, x2, ... xa): |-hbgf(x1, x4, ... xa)-h(x) = }

 $-\frac{1}{h}\log f(x_1,x_2,...x_n) = -\frac{1}{h}\log f(x_1) = -\frac{1}{h} \leq \log f(x_1)$

when n>00, law of large number - hos (19f(xi) = - E[19f(x)] = - Jos [109f(x)] f(x) dx = h(x)

 $\int_{-1}^{1} = \int_{S} f(x_{11}, x_{2}, \dots x_{n}) dx_{1} dx_{2} \dots dx_{n} \geq \int_{A_{S}}^{1} f(x_{11}, x_{2}, \dots x_{n}) dx_{1} dx_{2} \dots dx_{n}$ $\int_{A_{C}}^{1} f(x_{11}, x_{2}, \dots x_{n}) dx_{1} dx_{2} \dots dx_{n} \geq \int_{A_{S}}^{1} f(x_{11}, x_{2}, \dots x_{n}) dx_{1} dx_{2} \dots dx_{n}$ $\int_{A_{C}}^{1} f(x_{11}, x_{2}, \dots x_{n}) dx_{1} dx_{2} \dots dx_{n} \geq \int_{A_{S}}^{1} f(x_{11}, x_{2}, \dots x_{n}) dx_{1} dx_{2} \dots dx_{n}$ $\int_{A_{C}}^{1} f(x_{11}, x_{2}, \dots x_{n}) dx_{1} dx_{2} \dots dx_{n} \geq \int_{A_{S}}^{1} f(x_{11}, x_{2}, \dots x_{n}) dx_{1} dx_{2} \dots dx_{n}$ $\int_{A_{C}}^{1} f(x_{11}, x_{2}, \dots x_{n}) dx_{1} dx_{2} \dots dx_{n}$ $\int_{A_{C}}^{1} f(x_{11}, x_{2}, \dots x_{n}) dx_{1} dx_{2} \dots dx_{n}$ $\int_{A_{C}}^{1} f(x_{11}, x_{2}, \dots x_{n}) dx_{1} dx_{2} \dots dx_{n}$ $\int_{A_{C}}^{1} f(x_{11}, x_{2}, \dots x_{n}) dx_{1} dx_{2} \dots dx_{n}$ $\int_{A_{C}}^{1} f(x_{11}, x_{2}, \dots x_{n}) dx_{1} dx_{2} \dots dx_{n}$ $\int_{A_{C}}^{1} f(x_{11}, x_{2}, \dots x_{n}) dx_{1} dx_{2} \dots dx_{n}$ $\int_{A_{C}}^{1} f(x_{11}, x_{2}, \dots x_{n}) dx_{1} dx_{2} \dots dx_{n} dx$

where $f(x_1, x_2, ..., x_n) = \prod_{i=1}^n f(x_i)$.

Theorem

The typical set $A_{\epsilon}^{(n)}$ has the following properties:

- 1. $\Pr(A_{\epsilon}^{(n)}) > 1 \epsilon$ for n sufficiently large.
- 2. $\operatorname{Vol}(A_{\epsilon}^{(n)}) \leq 2^{n(h(X)+\epsilon)}$ for all n.
- 3. $\operatorname{Vol}(A_{\epsilon}^{(n)}) \geq (1-\epsilon)2^{n(h(X)-\epsilon)}$ for n sufficiently large.

Proof.

Similar to the discrete case.

By definition, $-\frac{1}{n}\log f(X^n) = -\frac{1}{n}\sum \log f(X_i) \to h(X)$ in probability.

Theorem

The typical set $A_{\epsilon}^{(n)}$ has the following properties:

- 1. $\Pr(A_{\epsilon}^{(n)}) > 1 \epsilon$ for n sufficiently large.
- 2. $\operatorname{Vol}(A_{\epsilon}^{(n)}) \leq 2^{n(h(X)+\epsilon)}$ for all n.
- 3. $\operatorname{Vol}(A_{\epsilon}^{(n)}) \geq (1-\epsilon)2^{n(h(X)-\epsilon)}$ for n sufficiently large.

Proof. 1.

Similar to the discrete case.

By definition, $-\frac{1}{n}\log f(X^n) = -\frac{1}{n}\sum \log f(X_i) \to h(X)$ in probability.

Theorem

The typical set $A_{\epsilon}^{(n)}$ has the following properties:

2. $\operatorname{Vol}(A_{\epsilon}^{(n)}) < 2^{n(h(X)+\epsilon)}$ for all n.

Poof. 2.

$$1 = \int_{\mathcal{S}^n} f(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n$$

$$\geq \int_{A_{\epsilon}^{(n)}} f(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n$$

$$\geq \int_{A_{\epsilon}^{(n)}} 2^{-n(h(X)+\epsilon)} dx_1 dx_2 \dots dx_n = 2^{-n(h(X)+\epsilon)} \int_{A_{\epsilon}^{(n)}} dx_1 dx_2 \dots dx_n$$

$$= 2^{-n(h(X)+\epsilon)} \text{Vol}(A_{\epsilon}^{(n)}).$$

December 20, 2022

Theorem

The typical set $A_{\epsilon}^{(n)}$ has the following properties:

3. $Vol(A_{\epsilon}^{(n)}) \ge (1-\epsilon)2^{n(h(X)-\epsilon)}$ for n sufficiently large.

Proof. 3.

$$1 - \epsilon \le \int_{A_{\epsilon}^{(n)}} f(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n$$

$$\le \int_{A_{\epsilon}^{(n)}} 2^{-n(h(X) - \epsilon)} dx_1 dx_2 \dots dx_n$$

$$= 2^{-n(h(X) - \epsilon)} \int_{A_{\epsilon}^{(n)}} dx_1 dx_2 \dots dx_n$$

$$= 2^{-n(h(X) - \epsilon)} \text{Vol}(A_{\epsilon}^{(n)}).$$

An interpretation

- The volume of the smallest set that contains most of the probability is approximately $2^{nh(X)}$.
- For an n-dim volume, this means that each dim has length $(2^{nh(X)})^{\frac{1}{n}} = 2^{h(X)}.$

Mean value theorem (MVT)

If a function f is continuous on the closed interval [a,b], and differentiable on (a,b), then there exists a point $c\in(a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

- Consider a random variable X with pdf f(x). We divide the range of X into bins of length Δ .
- MVT: there exists a value $x_i \in (i\Delta, (i+1)\Delta)$ within each bin such that

• Define the quantized random variable as $X^{\Delta}=x_i$ if $i\Delta \leq X \leq (i+1)\Delta$ with pmf

$$p_i = \Pr[X^{\Delta} = x_i] = \int_{i\Delta}^{(i+1)\Delta} f(x) dx = f(x_i)\Delta.$$

ullet The entropy of X^Δ is

$$H(X^{\Delta}) = -\sum_{-\infty}^{+\infty} p_i \log p_i = -\sum_{i} \Delta f(x_i) \log f(x_i) - \log_i \Delta.$$

• If f(x) is is Riemann integrable, as $\Delta \to 0$,

$$H(X^{\Delta}) + \log \Delta \to h(f) = h(X)$$

• Define the quantized random variable as $X^{\Delta}=x_i$ if $i\Delta \leq X \leq (i+1)\Delta$ with pmf

$$p_i = \Pr[X^{\Delta} = x_i] = \int_{i\Delta}^{(i+1)\Delta} f(x) dx = f(x_i)\Delta.$$

 \bullet The entropy of X^Δ is

$$H(X^{\Delta}) = -\sum_{-\infty}^{+\infty} p_i \log p_i = -\sum_{i} \Delta f(x_i) \log f(x_i) - \log_i \Delta.$$

• If f(x) is is Riemann integrable, as $\Delta \to 0$,

$$H(X^{\Delta}) + \log \Delta \to h(f) = h(X)$$

• Define the quantized random variable as $X^{\Delta}=x_i$ if $i\Delta \leq X \leq (i+1)\Delta$ with pmf

$$p_i = \Pr[X^{\Delta} = x_i] = \int_{i\Delta}^{(i+1)\Delta} f(x) dx = f(x_i)\Delta.$$

• The entropy of X^{Δ} is

$$H(X^{\Delta}) = -\sum_{-\infty}^{+\infty} p_i \log p_i = -\sum_{i} \Delta f(x_i) \log f(x_i) - \log_i \Delta.$$

• If f(x) is is Riemann integrable, as $\Delta \to 0$,

$$H(X^{\Delta}) + \log \Delta \to h(f) = h(X)$$

