Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa I

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba¹

2013

¹Uniwersytet im. Adama Mickiewicza, kalmar@amu.edu.pl

Wykład 9

Krzywizna Gaussa II

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

.

krzywizna średnia

rousumowani

definicji

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Odwzorowanie Weingartena

Krzywizna Gaussa oraz krzywizna średnia

Podsumowanie

Agitacja na rzecz zgodnośc definicji

Krzywizna Gaussa II

Odwzorowanie Weingartena Druga forma podstawowa Krzywizna Gaussa oraz krzywizna średnia Agitacja na rzecz zgodności definicji

odsumowanie

Agitacja na rzecz zgodnośc definicji

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$.

Dla każdego wektora $v \in T_p(M)$ pochodna kierunkowo

$$D\widehat{n}(v) \in T_pM$$

(rozważanej abstrakcyjnie jako 2-wymiarowa podprzestrzeń liniowa w \mathbb{R}^3).

Lemat

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$. Dla każdego wektora $v \in T_p(M)$ pochodna kierunkowa

$$D\widehat{n}(v) \in T_pM$$

(rozważanej abstrakcyjnie jako 2-wymiarowa podprzestrzeń liniowa w \mathbb{R}^3).

Podsumowanie

Agitacja na rzecz zgodności definicji

Dowód:

Wektor normalny $\widehat{n}(p)$ ma długość 1 w każdym punkcie, więc możemy zapisać $\langle \widehat{n}, \widehat{n} \rangle = 1$ wewnątrz x(U). Wtedy

$$0 = D\langle \widehat{n}, \widehat{n} \rangle(v) = \nabla_v \langle \widehat{n}, \widehat{n} \rangle = 2 \langle \nabla_v \widehat{n}, \widehat{n} \rangle = 2 \langle D \widehat{n}(v), \widehat{n} \rangle$$

więc $D \hat{n}(v)$ jest zawsze prostopadły do \hat{n} , zatem musi należeć do $T_p M$.

krzywizna Gaussa oraz krzywizna średnia

rousumowanie

Agitacja na rzecz zgodności definicji

Dowód:

Wektor normalny $\widehat{n}(p)$ ma długość 1 w każdym punkcie, więc możemy zapisać $\langle \widehat{n}, \widehat{n} \rangle = 1$ wewnątrz x(U).

Wtedy

$$0 = D\langle \widehat{n}, \widehat{n} \rangle(v) = \nabla_v \langle \widehat{n}, \widehat{n} \rangle = 2 \langle \nabla_v \widehat{n}, \widehat{n} \rangle = 2 \langle D \widehat{n}(v), \widehat{n} \rangle$$

więc $D \hat{n}(v)$ jest zawsze prostopadły do \hat{n} , zatem musi należeć do $T_p M$.

Podsumowanie

Agitacja na rzecz zgodności definicji

Dowód:

Wektor normalny $\widehat{n}(p)$ ma długość 1 w każdym punkcie, więc możemy zapisać $\langle \widehat{n}, \widehat{n} \rangle = 1$ wewnątrz x(U). Wtedy

$$0 = D\langle \widehat{\mathbf{n}}, \widehat{\mathbf{n}} \rangle(\mathbf{v}) = \nabla_{\mathbf{v}} \langle \widehat{\mathbf{n}}, \widehat{\mathbf{n}} \rangle = 2 \langle \nabla_{\mathbf{v}} \widehat{\mathbf{n}}, \widehat{\mathbf{n}} \rangle = 2 \langle D \, \widehat{\mathbf{n}}(\mathbf{v}), \widehat{\mathbf{n}} \rangle,$$

więc $D \hat{n}(v)$ jest zawsze prostopadły do \hat{n} , zatem musi należeć do $T_{p}M$.

rousumowanic

Agitacja na rzecz zgodności definicji

Dowód:

Wektor normalny $\widehat{n}(p)$ ma długość 1 w każdym punkcie, więc możemy zapisać $\langle \widehat{n}, \widehat{n} \rangle = 1$ wewnątrz x(U). Wtedy

$$0 = D\langle \widehat{n}, \widehat{n} \rangle(v) = \nabla_v \langle \widehat{n}, \widehat{n} \rangle = 2 \langle \nabla_v \widehat{n}, \widehat{n} \rangle = 2 \langle D \, \widehat{n}(v), \widehat{n} \rangle,$$

więc $D\hat{n}(v)$ jest zawsze prostopadły do \hat{n} , zatem musi należeć do T_pM .

Definicja

Przy powyższych oznaczeniach **odwzorowaniem Weingartena** w punkcie p nazywamy odwzorowanie $L: T_pM \to T_pM$ zadane przez

$$L(v) \stackrel{\text{def.}}{=} -D \widehat{n}(v) = -\nabla_v \widehat{n}.$$

Lemat

Odwozorowanie Weingartena L: $T_pM \rightarrow T_pM$ jest odwzorowaniem liniowym.

Dowód:

Lemat wynika z liniowości pochodnej kierunkowej (lemat ??).

□

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Odwzorowanie Weingartena

Druga torma podstawowa

krzywizna średnia

rousumowanie

definicji

$$L(v) \stackrel{\text{def.}}{=} -D \widehat{n}(v) = -\nabla_v \widehat{n}.$$

Lemat

Odwozorowanie Weingartena L: $T_pM \rightarrow T_pM$ jest odwzorowaniem liniowym.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Odwzorowanie Weingartena

Przy powyższych oznaczeniach **odwzorowaniem Weingartena** w punkcie p nazywamy odwzorowanie $L: T_pM \to T_pM$ zadane przez

$$L(v) \stackrel{\text{def.}}{=} -D \widehat{n}(v) = -\nabla_v \widehat{n}.$$

Lemat

Odwozorowanie Weingartena L: $T_pM \rightarrow T_pM$ jest odwzorowaniem liniowym.

Dowód:

Lemat wynika z liniowości pochodnej kierunkowej (lemat ??).

Opracowanie: Marek Kaluba

Odwzorowanie Weingartena

Uwaga

Chociaż do definicji odwzorowania Weingartena używamy lokalnego układu współrzędnych, jednak przy innym wyborze $x: U \to M$, odwzorowanie L może się różnić tylko o znak \pm .

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Odwzorowanie Weingartena

v . . .

krzywizna średnia

definicji

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$.

Druga forma podstawowa w punkcie p to odwzorowanie dwuliniowe $II_p: T_pM \times T_pM \to \mathbb{R}$ indukowane przez odwzorowanie Weingartena L, tj. zadane wzorem

$$\Pi_p(v, w) = \langle L(v), w \rangle,$$

dla wszystkich v, w z przestrzeni stycznej T_pM .

Uwaga

Tak jak odwzorowanie Weingartena, druga forma podstawowa jest zdefiniowana z dokładnością do znaku.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Odwzorowanie Weingartena

Druga forma podstawowa

krzywizna średnia

Podsumowanie

Agitacja na rzecz zgodności definicji

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$. **Druga forma podstawowa** w punkcie p to odwzorowanie dwuliniowe $II_p: T_pM \times T_pM \to \mathbb{R}$ indukowane przez odwzorowanie Weingartena L, tj. zadane wzorem

$$\Pi_p(v, w) = \langle L(v), w \rangle,$$

dla wszystkich v, w z przestrzeni stycznej T_pM .

Uwaga

Tak jak odwzorowanie Weingartena, druga forma podstawowa jest zdefiniowana z dokładnością do znaku.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Odwzorowanie Weingartena

Druga forma podstawowa

krzywizna średnia

definicji

$$\Pi_p(v, w) = \langle L(v), w \rangle,$$

dla wszystkich v, w z przestrzeni stycznej T_pM .

odwzorowanie Weingartena L, tj. zadane wzorem

Uwaga

Tak jak odwzorowanie Weingartena, druga forma podstawowa jest zdefiniowana z dokładnością do znaku.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Odwzorowanie Weingartena

Druga forma podstawowa

krzywizna średnia

definicji

$$\Pi_p(v, w) = \langle L(v), w \rangle,$$

dla wszystkich v, w z przestrzeni stycznej T_pM .

Uwaga

Tak jak odwzorowanie Weingartena, druga forma podstawowa jest zdefiniowana z dokładnością do znaku.

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Uwaga (Oznaczenie)

Macierze odwzorowania Weingartena i drugiej formy podstawowej (w standardowej bazie przestrzeni stycznej x_1, x_2) oznaczamy odpowiednio przez

$$(L_{ij}) = \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix}$$
 $(l_{ij}) = \begin{bmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{bmatrix}$

Wniosek

Na podstawie powtórki z algebry liniowej II, mamy

$$(l_{ij}) = (L_{ij})^t(g_{ij}),$$

więc korzystając z własności odwrotności i transpozycji otrzymujemy

$$(L_{ij}) = (g_{ij})^{-1} (l_{ij})^t.$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Odwzorowanie Weingartena

Druga forma podstawowa

krzywizna Gaussa oraz krzywizna średnia

1 ousumowanie

definicji

Macierze odwzorowania Weingartena i drugiej formy

- podstawowej (w standardowej bazie przestrzeni stycznej x_1, x_2) oznaczamy odpowiednio przez
 - $(L_{ij}) = \begin{vmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{vmatrix}$
- $(l_{ij}) = \left| \begin{array}{cc} l_{11} & l_{12} \\ l_{21} & l_{22} \end{array} \right|$

Wniosek

Na podstawie powtórki z algebry liniowej II, mamy

$$(l_{ij}) = (L_{ij})^t(g_{ij}),$$

więc korzystając z własności odwrotności i transpozycji otrzymujemy

$$(L_{ij}) = (g_{ij})^{-1} (l_{ij})^t.$$

Lemat

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$.

1. (Równania Weingartena) Dla i = 1, 2 zachodzi

$$n_i = -L_{1i} x_1 - L_{2i} x_2.$$

2. Dla indeksów i, j = 1, 2, współczynniki macierzy drugiej formy podstawowej są równe

$$l_{ij} = -\langle n_i, x_j \rangle = \langle n, x_{ij} \rangle$$

gdzie x_{ij} jest oznaczeniem drugiej pochodnej cząstkowej (względem zmienych i-tej i j-tej).

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Odwzorowanie Weingartena

Druga forma podstawowa

Krzywizna Gaussa oraz krzywizna średnia

rousumowanie

definicji

Druga forma podstawowa

krzywizna Gaussa oraz krzywizna średnia

rousumowanie

Agitacja na rzecz zgodności definicji

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$.

1. (Równania Weingartena) Dla i = 1, 2 zachodzi

$$n_i = -L_{1i}x_1 - L_{2i}x_2.$$

2. Dla indeksów i, j = 1, 2, współczynniki macierzy drugiej formy podstawowej są równe

$$l_{ij} = -\langle n_i, x_j \rangle = \langle n, x_{ij} \rangle$$

gdzie x_{ij} jest oznaczeniem drugiej pochodnej cząstkowej (względem zmienych i-tej i j-tej).

rousumowanie

Agitacja na rzecz zgodności definicji

Lemat

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$.

1. (Równania Weingartena) Dla i = 1, 2 zachodzi

$$n_i = -L_{1i}x_1 - L_{2i}x_2.$$

2. Dla indeksów i, j = 1, 2, współczynniki macierzy drugiej formy podstawowej są równe

$$l_{ij} = -\langle n_i, x_j \rangle = \langle n, x_{ij} \rangle$$
,

gdzie x_{ij} jest oznaczeniem drugiej pochodnej cząstkowej (względem zmienych i-tej i j-tej).

$$n_i = \frac{\partial (\widehat{n} \circ x)}{\partial u_i} = \nabla_{x_i} \widehat{n} = -L(x_i) = -L_{1i} x_1 - L_{2i} x_2,$$

$$l_{ij} = \Pi(x_i, x_j) = \langle L(x_i), x_j \rangle \stackrel{*}{=} -\langle \nabla_{x_i} n, x_j \rangle = -\langle n_i, x_j \rangle,$$

$$0 = \frac{\partial \langle n, x_j \rangle}{\partial u_i} = \langle n_i, x_j \rangle + \langle n, x_{ij} \rangle$$

Różniczkowa Opracowanie: Marek Kaluba

Flementarna Geometria

(1.) Mamy następujący ciąg równości:

$$n_i = \frac{\partial(\widehat{n} \circ x)}{\partial u_i} = \nabla_{x_i} \widehat{n} = -L(x_i) = -L_{1i} x_1 - L_{2i} x_2,$$

gdzie $x = x(u_1, u_2)$ (u_i są zmiennymi lokalnego układu współrzędnych x).

$$l_{ij} = \Pi(x_i, x_j) = \langle L(x_i), x_j \rangle \stackrel{*}{=} -\langle \nabla_{x_i} n, x_j \rangle = -\langle n_i, x_j \rangle,$$

$$0 = \frac{\partial \langle n, x_j \rangle}{\partial u_i} = \langle n_i, x_j \rangle + \langle n, x_{ij} \rangle,$$

Różniczkowa

Opracowanie: Marek Kaluba

$$n_i = \frac{\partial(\widehat{n} \circ x)}{\partial u_i} = \nabla_{x_i} \widehat{n} = -L(x_i) = -L_{1i} x_1 - L_{2i} x_2,$$

gdzie $x = x(u_1, u_2)$ (u_i są zmiennymi lokalnego układu współrzędnych x).

(2.) Mamy

$$l_{ij} = \Pi(x_i, x_j) = \langle L(x_i), x_j \rangle \stackrel{*}{=} - \langle \nabla_{x_i} n, x_j \rangle = - \langle n_i, x_j \rangle,$$

co dowodzi pierwszej równości w punkcie 2 (równość * wynika z dowodu pierwszej części). Aby udowodnić

$$0 = \frac{\partial \langle n, x_j \rangle}{\partial u_i} = \langle n_i, x_j \rangle + \langle n, x_{ij} \rangle,$$

4 D > 4 P > 4 E > 4 E > 9 Q P

Flementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

$$n_i = \frac{\partial(\widehat{n} \circ x)}{\partial u_i} = \nabla_{x_i} \widehat{n} = -L(x_i) = -L_{1i} x_1 - L_{2i} x_2,$$

gdzie $x = x(u_1, u_2)$ (u_i są zmiennymi lokalnego układu współrzędnych x).

(2.) Mamy

$$l_{ij} = \mathrm{II}(x_i, x_j) = \langle L(x_i), x_j \rangle \stackrel{*}{=} - \langle \nabla_{x_i} n, x_j \rangle = - \langle n_i, x_j \rangle,$$

co dowodzi pierwszej równości w punkcie 2 (równość * wynika z dowodu pierwszej części). Aby udowodnić druga równość, skorzystamy z tego, że $\langle n, x_i \rangle = 0$. Mamy

$$0 = \frac{\partial \langle n, x_j \rangle}{\partial u_i} = \langle n_i, x_j \rangle + \langle n, x_{ij} \rangle$$

4 D > 4 B > 4 B > 4 B > 4 D > 4 D >

Flementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Agitacia na rzecz zgodnośc

(1.) Mamy następujący ciąg równości:

$$n_i = \frac{\partial(\widehat{n} \circ x)}{\partial u_i} = \nabla_{x_i} \widehat{n} = -L(x_i) = -L_{1i} x_1 - L_{2i} x_2,$$

gdzie $x = x(u_1, u_2)$ (u_i są zmiennymi lokalnego układu współrzędnych x).

(2.) Mamy

$$l_{ij} = \Pi(x_i, x_j) = \langle L(x_i), x_j \rangle \stackrel{*}{=} - \langle \nabla_{x_i} n, x_j \rangle = - \langle n_i, x_j \rangle,$$

co dowodzi pierwszej równości w punkcie 2 (równość * wynika z dowodu pierwszej części). Aby udowodnić drugą równość, skorzystamy z tego, że $\langle n, x_i \rangle = 0$. Mamy

$$0 = \frac{\partial \langle n, x_j \rangle}{\partial u_i} = \langle n_i, x_j \rangle + \langle n, x_{ij} \rangle,$$

skąd natychmiast wynika druga równość.

Lemat

- Druga forma podstawowa II jest symetryczna.
- Macierz (L_{ij}) odwzorowania Weingartena L jest symetryczna w każdej bazie ortonormalnej

Dowód:

Symetryczność macierzy (l_{ij}) wynika z równości $l_{ij} = \langle n, x_{ij} \rangle$ oraz $x_{12} = x_{21}$.

Druga teza wynika wtedy z powiązań macierzy symetrycznej z symetrycznością odwzorowania przez nią indukowanego (lemat ?? cytowany podczas powtórki z algebry liniowej II).

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Odwzorowanie Weingartena

Druga forma podstawowa

Krzywizna Gaussa oraz krzywizna średnia

rousumowanie

Agitacja na rzecz zgodności definicji

- ► Macierz (L_{ij}) odwzorowania Weingartena L jest
- Dowód ·

Symetryczność macierzy (l_{ij}) wynika z równości $l_{ij} = \langle n, x_{ij} \rangle$ oraz $x_{12} = x_{21}$.

Druga teza wynika wtedy z powiązań macierzy symetrycznej z symetrycznością odwzorowania przez nią indukowanego (lemat ?? cytowany podczas powtórki z algebry liniowej II).

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Odwzorowanie Weingartena

Druga forma podstawowa

krzywizna średnia

rodsumowanie

Agitacja na rzecz zgodności definicji

- Druga forma podstawowa II jest symetryczna.
- ► Macierz (Lii) odwzorowania Weingartena L jest symetryczna w każdej bazie ortonormalnej.

Dowód:

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

- Druga forma podstawowa II jest symetryczna.
- ► Macierz (Lii) odwzorowania Weingartena L jest symetryczna w każdej bazie ortonormalnej.

Dowód:

Symetryczność macierzy (l_{ii}) wynika z równości $l_{ii} = \langle n, x_{ii} \rangle$ oraz $x_{12} = x_{21}$.

Flementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

► Macierz (Lii) odwzorowania Weingartena L jest symetryczna w każdej bazie ortonormalnej.

Dowód:

Symetryczność macierzy (l_{ii}) wynika z równości $l_{ii} = \langle n, x_{ii} \rangle$ oraz $x_{12} = x_{21}$.

Druga teza wynika wtedy z powiązań macierzy symetrycznej z symetrycznością odwzorowania przez nią indukowanego (lemat ?? cytowany podczas powtórki z algebry liniowej II). □ **Flementarna** Geometria Różniczkowa

Opracowanie: Marek Kaluba

Uwaga

Wiedząc, że macierz (l_{ij}) jest symetryczna, możemy przepisać uzyskaną wcześniej równość do prostszej

$$(L_{ij}) = (g_{ij})^{-1}(l_{ij})$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Odwzorowanie Weingartena

Druga forma podstawowa

krzywizna średnia

Agitacja na rzecz zgodności definicji

Podsumowanie

Agitacja na rzecz zgodności definicji

Uwaga

Z powyższych rozważań wcale nie wynika, że macierz odwzorowania Weingartena (L_{ij}) jest symetryczna. Jeśli baza przestrzeni stycznej $\{x_1, x_2\}$ nie będzie ortonormalna w punkcie p, wtedy najczęściej $L_{ij}(p)$ nie będzie macierzą symetryczną. (ogólniej: nie możemy wtedy zastosować do niej lematu ??).

Uwaga

Wiedząc, że macierz (l_{ij}) jest symetryczna, możemy przepisać uzyskaną wcześniej równość do prostszej

$$(L_{ij}) = (g_{ij})^{-1}(l_{ij}).$$

Macierz odwzorowania liniowego zależy od wyboru bazy przestrzeni, jednak wyznacznik i ślad tego odwzorowania są od bazy niezależne.

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech L będzie oznaczało odwzorowanie Weingartena. Zdefiniujmy dwie funkcje skalarne $K:M \to \mathbb{R}$, $H:M \to \mathbb{R}$ nastepująco

$$K(p) = \det L(p)$$
 $H(p) = \frac{1}{2} \operatorname{tr} L(p)$

Nazywamy je odpowiednio **krzywizną Gaussa** i **krzywizną średnią**.

1 oddaniowan

Agitacja na rzecz zgodności definicji

Macierz odwzorowania liniowego zależy od wyboru bazy przestrzeni, jednak wyznacznik i ślad tego odwzorowania są od bazy niezależne.

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech L będzie oznaczało odwzorowanie Weingartena. Zdefiniujmy dwie funkcje skalarne $K:M \to \mathbb{R}$, $H:M \to \mathbb{R}$ nastepująco

$$K(p) = \det L(p)$$
 $H(p) = \frac{1}{2} \operatorname{tr} L(p)$

Nazywamy je odpowiednio **krzywizną Gaussa** i **krzywizną średnią**.

Macierz odwzorowania liniowego zależy od wyboru bazy przestrzeni, jednak wyznacznik i ślad tego odwzorowania są od bazy niezależne.

Definicja

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech L będzie oznaczało odwzorowanie Weingartena. Zdefiniujmy dwie funkcje skalarne $K:M \to \mathbb{R}$, $H:M \to \mathbb{R}$ nastepująco

$$K(p) = \det L(p)$$
 $H(p) = \frac{1}{2} \operatorname{tr} L(p).$

Nazywamy je odpowiednio **krzywizną Gaussa** i **krzywizną średnią**.

Krzywizna Gaussa i krzywizna średnia nie zależą od wyboru macierzy reprezentującej odwzorowanie Weingartena, tj. nie zależą od wyboru bazy przestrzeni stycznej T_pM .

Dowód:

Dowód wynika z odpowiedniego przedstawienia wyznacznika i śladu:

$$\det L(p) = k_1 k_2, \operatorname{tr} L(p) = k_1 + k_2$$

cytowanego w powtórce z algebry liniowej II (Lemat ??).

Krzywizna Gaussa i krzywizna średnia nie zależą od wyboru macierzy reprezentującej odwzorowanie Weingartena, tj. nie zależą od wyboru bazy przestrzeni stycznej T_pM .

Dowód:

Dowód wynika z odpowiedniego przedstawienia wyznacznika i śladu:

$$\det L(p) = k_1 k_2, \operatorname{tr} L(p) = k_1 + k_2.$$

cytowanego w powtórce z algebry liniowej II (Lemat ??).

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$.

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}, \quad oraz \qquad H(p) = \frac{g_{11}l_{22} - 2g_{12}l_{12} + g_{22}l_{11}}{2\det(g_{ij})}$$

Dowód

Przypomnijmy, że $(L_{ij}) = (g_{ij})^{-1}(l_{ij})$. Mamy zatem

$$K(p) = \det(L_{ij}) = \det((g_{ij})^{-1}(l_{ij})) = \frac{\det(l_{ij})}{\det(g_{ii})}$$

Podobnie

$$H(p) = \frac{1}{2} \operatorname{tr}(L_{ij}) = \frac{1}{2 \det(g_{ij})} \operatorname{tr} \left(\begin{bmatrix} g_{22} & -g_{21} \\ -g_{12} & g_{11} \end{bmatrix} \begin{bmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{bmatrix} \right)$$
$$= \frac{1}{2 \det(g_{ij})} \begin{bmatrix} g_{22}l_{11} - g_{21}l_{12} & * \\ * & -g_{12}l_{21} + g_{11}l_{22} \end{bmatrix}$$

Elementarna Geometria Różniczkowa Opracowanie:

Marek Kaluba

Odwzorowanie Weingartena

Krzywizna Gaussa oraz krzywizna średnia

Podsumowanie

definicji

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$.

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}, \quad oraz \qquad H(p) = \frac{g_{11}l_{22} - 2g_{12}l_{12} + g_{22}l_{11}}{2\det(g_{ij})}$$

Dowód

Przypomnijmy, że $(L_{ij}) = (g_{ij})^{-1}(l_{ij})$. Mamy zater

$$K(p) = \det(L_{ij}) = \det((g_{ij})^{-1}(l_{ij})) = \frac{\det(l_{ij})}{\det(g_{ii})}$$

Podobnie

$$H(p) = \frac{1}{2} \operatorname{tr}(L_{ij}) = \frac{1}{2 \det(g_{ij})} \operatorname{tr} \left(\begin{bmatrix} g_{22} & -g_{21} \\ -g_{12} & g_{11} \end{bmatrix} \begin{bmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{bmatrix} \right)$$
$$= \frac{1}{2 \det(g_{ij})} \begin{bmatrix} g_{22}l_{11} - g_{21}l_{12} & * \\ * & -g_{12}l_{21} + g_{11}l_{22} \end{bmatrix}$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Odwzorowanie Weingartena

Krzywizna Gaussa oraz krzywizna średnia

Podsumo

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}, \quad oraz \qquad H(p) = \frac{g_{11}l_{22} - 2g_{12}l_{12} + g_{22}l_{11}}{2\det(g_{ij})}$$

Dowód:

Przypomnijmy, że $(L_{ij}) = (g_{ij})^{-1}(l_{ij})$. Mamy zatem

$$K(p) = \det(L_{ij}) = \det((g_{ij})^{-1}(l_{ij})) = \frac{\det(l_{ij})}{\det(g_{ij})}.$$

$$H(p) = \frac{1}{2} \operatorname{tr}(L_{ij}) = \frac{1}{2 \det(g_{ij})} \operatorname{tr} \left(\begin{bmatrix} g_{22} & -g_{21} \\ -g_{12} & g_{11} \end{bmatrix} \begin{bmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{bmatrix} \right)$$
$$= \frac{1}{2 \det(g_{ij})} \begin{bmatrix} g_{22}l_{11} - g_{21}l_{12} & * \\ * & -g_{12}l_{21} + g_{11}l_{22} \end{bmatrix}$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa oraz krzywizna średnia

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}, \quad oraz \qquad H(p) = \frac{g_{11}l_{22} - 2g_{12}l_{12} + g_{22}l_{11}}{2\det(g_{ij})}$$

Dowód:

Przypomnijmy, że $(L_{ii}) = (g_{ii})^{-1}(l_{ii})$. Mamy zatem

$$K(p) = \det(L_{ij}) = \det((g_{ij})^{-1}(l_{ij})) = \frac{\det(l_{ij})}{\det(g_{ii})}.$$

Podobnie

$$H(p) = \frac{1}{2} \operatorname{tr}(L_{ij}) = \frac{1}{2 \det(g_{ij})} \operatorname{tr} \left(\begin{bmatrix} g_{22} & -g_{21} \\ -g_{12} & g_{11} \end{bmatrix} \begin{bmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{bmatrix} \right) =$$

$$= \frac{1}{2 \det(g_{ij})} \begin{bmatrix} g_{22}l_{11} - g_{21}l_{12} & * \\ * & -g_{12}l_{21} + g_{11}l_{22} \end{bmatrix}$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa oraz krzywizna średnia

Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką, oraz niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in x(U)$.

$$K(p) = \frac{\det(l_{ij})}{\det(g_{ij})}, \quad oraz \qquad H(p) = \frac{g_{11}l_{22} - 2g_{12}l_{12} + g_{22}l_{11}}{2\det(g_{ij})}$$

Dowód:

Przypomnijmy, że $(L_{ij}) = (g_{ij})^{-1}(l_{ij})$. Mamy zatem

$$K(p) = \det(L_{ij}) = \det((g_{ij})^{-1}(l_{ij})) = \frac{\det(l_{ij})}{\det(g_{ii})}.$$

Podobnie

$$H(p) = \frac{1}{2} \operatorname{tr}(L_{ij}) = \frac{1}{2 \det(g_{ij})} \operatorname{tr} \left(\begin{bmatrix} g_{22} & -g_{21} \\ -g_{12} & g_{11} \end{bmatrix} \begin{bmatrix} l_{11} & l_{12} \\ l_{21} & l_{22} \end{bmatrix} \right) =$$

$$= \frac{1}{2 \det(g_{ij})} \begin{bmatrix} g_{22}l_{11} - g_{21}l_{12} & * \\ * & -g_{12}l_{21} + g_{11}l_{22} \end{bmatrix}$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Odwzorowanie Weingartena

Krzywizna Gaussa oraz krzywizna średnia

Podsumov

Podsumowanie

Agitacja na rzecz zgodności definicji

Aby obliczyć krzywizny (średnią i Gaussa) powierzchni potrzebujemy następujące wielkości:

$$g_{11} = \langle x_1, x_1 \rangle, \qquad g_{12} = g_{21} = \langle x_1, x_2 \rangle, \qquad g_{22} = \langle x_2, x_2 \rangle,$$

$$n = \frac{x_1 \times x_2}{\|x_1 \times x_2\|} = \frac{x_1 \times x_2}{\sqrt{\det(g_{ij})}},$$

$$l_{11} = \langle n_1, x_1 \rangle, \qquad l_{12} = l_{21} = \langle n_2, x_1 \rangle, \qquad l_{22} = \langle n_2, x_2 \rangle,$$

$$K(p) = rac{\det(l_{ij})}{\det(g_{ij})}, \qquad H(p) = rac{g_{11}l_{22} - 2g_{12}l_{12} + g_{22}l_{11}}{2\det(g_{ij})}.$$

Agitacja na rzecz zgodności definicji

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$. Oznaczmy przez $\overline{p} = x^{-1}(p)$.

Przypomnijmy orginalną definicję Gaussa krzywizny i zastąpmy pola przez odpowiednie całki:

$$K_{\mathfrak{G}}(p) = \lim_{T \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \frac{\iint_{x^{-1}(V)} |\langle n_{1} \times n_{2}, n \rangle| ds dt}{\iint_{x^{-1}(V)} |\langle x_{1} \times x_{2}, n \rangle| ds dt} = \frac{\iint_{x^{-1}(V)} |\langle n_{1} \times n_{2}, n \rangle| ds dt}{\iint_{x^{-1}(V)} \sqrt{|\det(g_{ij})|} ds dt}$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Odwzorowanie Weingartena

Krzywizna Gaussa oraz

krzywizna średnia

Podsumowanie

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$. Oznaczmy przez $\overline{p} = x^{-1}(p)$.

Przypomnijmy orginalną definicję Gaussa krzywizny i zastąpmy pola przez odpowiednie całki:

$$K_{\mathfrak{G}}(p) = \lim_{T \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \frac{\iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt}{\iint_{x^{-1}(V)} |\langle x_1 \times x_2, n \rangle| ds dt} = \frac{\iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt}{\iint_{x^{-1}(V)} \sqrt{|\det(g_{ij})|} ds dt}$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Odwzorowanie Weingartena

Krzywizna Gaussa oraz

krzywizna średnia

Ousumowanie

Elementarna Geometria

Różniczkowa

Krzywizna Gaussa oraz krzywizna średnia

Podsumowan

Agitacja na rzecz zgodności definicji

Niech $M \subset \mathbb{R}^3$ będzie gładką powierzchnią i niech $x: U \to M$ będzie lokalnym układem współrzędnych wokół $p \in M$. Oznaczmy przez $\overline{p} = x^{-1}(p)$.

Przypomnijmy orginalną definicję Gaussa krzywizny i zastąpmy pola przez odpowiednie całki:

$$K_{\mathfrak{F}}(p) = \lim_{T \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \frac{\iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt}{\iint_{x^{-1}(V)} |\langle x_1 \times x_2, n \rangle| ds dt} = \frac{\iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt}{\iint_{x^{-1}(V)} \sqrt{|\det(g_{ij})|} ds dt}.$$

Krzywizna Gaussa oraz krzywizna średnia

rousumowanie

Agitacja na rzecz zgodności definicji

Teraz użyjemy twierdzenia o wartości średniej które mówi, że dla każdego takiego zbioru V muszą istnieć takie punkty a_V , $b_V \in x^{-1}(V)$, że cała całka wyraża się jako wartość funkcji podcałkowej w tych punktach:

$$\iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt = |\langle n_1(a_V) \times n_2(a_V), n(a_V) \rangle| A(x^{-1}(V))$$

$$\iint_{x^{-1}(V)} \sqrt{|\det(g_{ij})|} ds dt = \sqrt{|\det(g_{ij}(b_V))|} A(x^{-1}(V)).$$

Krzywizna Gaussa oraz krzywizna średnia

Podsumowanie

Agitacja na rzecz zgodności definicji

Teraz użyjemy twierdzenia o wartości średniej które mówi, że dla każdego takiego zbioru V muszą istnieć takie punkty a_V , $b_V \in x^{-1}(V)$, że cała całka wyraża się jako wartość funkcji podcałkowej w tych punktach:

$$\iint_{x^{-1}(V)} |\langle n_1 \times n_2, n \rangle| ds dt = |\langle n_1(a_V) \times n_2(a_V), n(a_V) \rangle| A(x^{-1}(V)),$$

$$\iint_{x^{-1}(V)} \sqrt{|\det(g_{ij})|} ds dt = \sqrt{|\det(g_{ij}(b_V))|} A(x^{-1}(V)).$$

$$\lim_{\lambda \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \lim_{V \to \{p\}} \frac{|\langle n_1(a_V) \times n_2(a_V), n(a_V) \rangle | A(x^{-1}(V))}{\sqrt{|\det(g_{ij}(b_V))|} | A(x^{-1}(V))} = \frac{|\langle n_1(\overline{p}) \times n_2(\overline{p}), n(\overline{p}) \rangle|}{\sqrt{|\det(g_{ij}(\overline{p}))|}}.$$

Z równań Weingartena na pochodne wektora normalnego $(n_i = -L_{1i}x_1 - L_{2i}x_2)$ otrzymujemy

$$n_1 \times n_2 = \left(-(L_{11}x_1 + L_{21}x_2) \right) \times \left(-(L_{21}x_1 + L_{22}x_2) \right) =$$

= $(x_1 \times x_2)(L_{11}L_{22} - L_{21}L_{22}) = K(p)(x_1 \times x_2)$

(jest to krzywizna K(p) zdefiniowana jako $det(L_{ii})$)

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Odwzorowanie Weingartena

Krzywizna Gaussa oraz krzywizna średnia

Podsumowani

$$\lim_{V \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \lim_{V \to \{p\}} \frac{|\langle n_1(a_V) \times n_2(a_V), n(a_V) \rangle | A(x^{-1}(V))}{\sqrt{|\det(g_{ij}(\overline{b}_V))|} | A(x^{-1}(V))} = \frac{|\langle n_1(\overline{p}) \times n_2(\overline{p}), n(\overline{p}) \rangle|}{\sqrt{|\det(g_{ij}(\overline{p}))|}}.$$

Z równań Weingartena na pochodne wektora normalnego $(n_i = -L_{1i}x_1 - L_{2i}x_2)$ otrzymujemy

$$n_1 \times n_2 = \left(-(L_{11}x_1 + L_{21}x_2) \right) \times \left(-(L_{21}x_1 + L_{22}x_2) \right) =$$

= $(x_1 \times x_2)(L_{11}L_{22} - L_{21}L_{22}) = K(p)(x_1 \times x_2)$

(jest to krzywizna K(p) zdefiniowana jako $det(L_{ij})$)

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Odwzorowanie Weingartena

Krzywizna Gaussa oraz

Podsumowani

$$\begin{split} \lim_{V \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} &= \lim_{V \to \{p\}} \frac{|\langle n_1(a_V) \times n_2(a_V), n(a_V) \rangle | A(x^{-1}(V))}{\sqrt{|\det(g_{ij}(b_V))|} | A(x^{-1}(V))} = \\ &= \frac{|\langle n_1(\overline{p}) \times n_2(\overline{p}), n(\overline{p}) \rangle|}{\sqrt{|\det(g_{ii}(\overline{p}))|}}. \end{split}$$

Z równań Weingartena na pochodne wektora normalnego $(n_i = -L_{1i}x_1 - L_{2i}x_2)$ otrzymujemy

$$n_1 \times n_2 = (-(L_{11}x_1 + L_{21}x_2)) \times (-(L_{21}x_1 + L_{22}x_2)) =$$

= $(x_1 \times x_2)(L_{11}L_{22} - L_{21}L_{22}) = K(p)(x_1 \times x_2)$

(jest to krzywizna K(p) zdefiniowana jako $det(L_{ij})$).

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Odwzorowanie Weingartena

Krzywizna Gaussa oraz

Podsumowan

$$\langle \mathbf{n}_{1}(\overline{p}) \times \mathbf{n}_{2}(\overline{p}), \mathbf{n}(\overline{p}) \rangle = \pm K(p) \left\langle x_{1}(\overline{p}) \times x_{2}(\overline{p}), \frac{x_{1}(\overline{p}) \times x_{2}(\overline{p})}{\sqrt{\det(g_{ij}(\overline{p}))}} \right\rangle =$$

$$= \frac{\pm K(p)}{\sqrt{\det(g_{ij}(\overline{p}))}} ||x_{1} \times x_{2}||^{2} = \pm K(p) \sqrt{\det(g_{ij}(\overline{p}))},$$

$$K_{\mathfrak{S}}(p) = \lim_{V \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \frac{\pm K(p)\sqrt{\det(g_{ij}(\overline{p}))}}{\sqrt{\det(g_{ij}(\overline{p}))}} = \pm K(p)$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

Druga forma nodstawowa

Krzywizna Gaussa oraz krzywizna średnia

Podsumowanie

$$\langle n_{1}(\overline{p}) \times n_{2}(\overline{p}), n(\overline{p}) \rangle = \pm K(p) \left\langle x_{1}(\overline{p}) \times x_{2}(\overline{p}), \frac{x_{1}(\overline{p}) \times x_{2}(\overline{p})}{\sqrt{\det(g_{ij}(\overline{p}))}} \right\rangle =$$

$$= \frac{\pm K(p)}{\sqrt{\det(g_{ij}(\overline{p}))}} ||x_{1} \times x_{2}||^{2} = \pm K(p) \sqrt{\det(g_{ij}(\overline{p}))},$$

$$K_{\mathfrak{G}}(p) = \lim_{V \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \frac{\pm K(p)\sqrt{\det(g_{ij}(\overline{p}))}}{\sqrt{\det(g_{ij}(\overline{p}))}} = \pm K(p).$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

D..... f-----

Krzywizna Gaussa oraz krzywizna średnia

rousumowanie

$$\langle n_1(\overline{p}) \times n_2(\overline{p}), n(\overline{p}) \rangle = \pm K(p) \left\langle x_1(\overline{p}) \times x_2(\overline{p}), \frac{x_1(\overline{p}) \times x_2(\overline{p})}{\sqrt{\det(g_{ij}(\overline{p}))}} \right\rangle =$$

$$= \frac{\pm K(p)}{\sqrt{\det(g_{ij}(\overline{p}))}} ||x_1 \times x_2||^2 = \pm K(p) \sqrt{\det(g_{ij}(\overline{p}))},$$

$$K_{\mathfrak{G}}(p) = \lim_{V \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \frac{\pm K(p) \sqrt{\det(g_{ij}(\overline{p}))}}{\sqrt{\det(g_{ij}(\overline{p}))}} = \pm K(p).$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

D..... 6-----

Krzywizna Gaussa oraz krzywizna średnia

Podsumowanie

$$\begin{split} \langle n_1(\overline{p}) \times n_2(\overline{p}), n(\overline{p}) \rangle &= \pm K(p) \left\langle x_1(\overline{p}) \times x_2(\overline{p}), \frac{x_1(\overline{p}) \times x_2(\overline{p})}{\sqrt{\det(g_{ij}(\overline{p}))}} \right\rangle = \\ &= \frac{\pm K(p)}{\sqrt{\det(g_{ij}(\overline{p})))}} \|x_1 \times x_2\|^2 = \pm K(p) \sqrt{\det(g_{ij}(\overline{p}))}, \end{split}$$

$$K_{\mathfrak{G}}(p) = \lim_{V \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \frac{\pm K(p) \sqrt{\det(g_{ij}(\overline{p}))}}{\sqrt{\det(g_{ij}(\overline{p}))}} = \pm K(p).$$

Elementarna Geometria Różniczkowa

Opracowanie: Marek Kaluba

Krzywizna Gaussa II

D. / L.

Krzywizna Gaussa oraz krzywizna średnia

Podsumowanie

Krzywizna Gaussa oraz krzywizna średnia

Podsumowanie

Agitacja na rzecz zgodności definicji

Podstawiając wyliczony iloczyn wektorowy oraz korzystając z definicji wektora normalnego mamy

$$\begin{split} \langle \textit{n}_{1}(\overline{\textit{p}}) \times \textit{n}_{2}(\overline{\textit{p}}), \textit{n}(\overline{\textit{p}}) \rangle &= \pm \textit{K}(\textit{p}) \left\langle \textit{x}_{1}(\overline{\textit{p}}) \times \textit{x}_{2}(\overline{\textit{p}}), \frac{\textit{x}_{1}(\overline{\textit{p}}) \times \textit{x}_{2}(\overline{\textit{p}})}{\sqrt{\det(g_{ij}(\overline{\textit{p}}))}} \right\rangle &= \\ &= \frac{\pm \textit{K}(\textit{p})}{\sqrt{\det(g_{ij}(\overline{\textit{p}})))}} ||\textit{x}_{1} \times \textit{x}_{2}||^{2} = \pm \textit{K}(\textit{p}) \sqrt{\det(g_{ij}(\overline{\textit{p}}))}, \end{split}$$

zatem ostatecznie

$$K_{\mathfrak{G}}(p) = \lim_{V \to \{p\}} \frac{A(\widehat{n}(V))}{A(V)} = \frac{\pm K(p)\sqrt{\det(g_{ij}(\overline{p}))}}{\sqrt{\det(g_{ij}(\overline{p}))}} = \pm K(p).$$