Titulo: Filtro anti-alias del conversor analógico-digital

version 0.2

15 de marzo de 2014

autor: Francisco Luis Zurita

1 Introducción

En este informe se presenta el filtro anti-alias a usar en cada canal de entrada de tensión analógica previo al conversor AD del proyecto de adquisición de señales de un banco de motores.

2 Especificaciones

La primera condición que fija el ADC es la frecuencia de muestreo de 250kSPS. Por lo tanto, la frecuencia máxima discernible sin aliasing se sitúa en 125kHz[?]. Se necesita entonces que la frecuencia máxima donde comienza de la banda de atenuación sea 125kHz.

La SNR ideal para un sistema de 16bits es SNR=6.02N+1.76dB=98.08dB.[?] Semejante atenuación necesita un filtro de alto orden, o mucha banda de transición con un filtro de bajo orden.

La frecuencia máxima que recibimos del banco esta especificada de no ser mayor a 5kHz.

3 Diseño

Se ubica la frecuencia de corte en 25kHz. De esta forma, dejamos pasar hasta por lo menos la quinta armónica de la frecuencia máxima de la señal. Como la frecuencia de corte es 25kHz y la frecuencia de la banda de atenuación es 125kHz, ambas frecuencias están a menos de una década de distancia. Como cada polo provoca una caída de 20dB/decada, se fija el orden del filtro en 8. Dado que se pretende una banda de paso plana, sin ripple, se elige un filtro tipo Butterworth.[?]

El filtro se implementará con topología Multiple Feedback (MFB) ya que tiene mejor respuesta en alta frecuencia que la topología Sallen-Key y es menos sensible a las variaciones de los componentes pasivos.[?]

Utilizando el eDesign Suite de ST,[?] diagramamos el circuito y determinamos los valores de los componentes pasivos a utilizar. Determinamos que

los resistores tengan 1% de tolerancia y los capacitores 5%.

El circuito resultante se muestra en la figura 1.

Figure 1: Esquematico

3.1 Componentes activos

Para elegir el amplificador operacional a utilizar, se usan dos criterios principales[?][?]

- El producto Ganancia-Ancho de Banda (GBWP)
- El Slew Rate

En la configuración MFB, el GBWP se calcula como $100(-A_c+1)f_c$ (con A_c la ganancia en lazo cerrado del MFB, en este caso, $A_c = -1$). Por lo tanto, $GBWP \ge 5MHz$.

$$SR \ge 2\pi V_{pp} f_c = 2\pi 20V 25kHz = 3.14V/\mu s$$

El TL074 cumple con estos requerimientos pues tiene GBWP = 5MHz y SR = 13. Se elige la versión TL074 en el encapsulado SOIC-14 que permite implementar el filtro completo con un solo integrado minimizando el área de la placa impresa.

4 Análisis de Ruido a Temperatura Ambiente[?]

Reconocemos tres regiones en el espectro del ruido que afecta a un filtro pasabajos:

- Ruido rosado o 1/f
- Ruido blanco
- Filtro pasabajos

La hoja de datos nos dice que la densidad de ruido de tensión total en V_{rms} es:

$$e_n = 4.5nV/\sqrt{Hz}$$

Y que la densidad de ruido de corriente es de: $i_n = 0.5 pA/\sqrt{Hz}$

Nuestro rango de operación es de 25kHz, entonces, el ruido a la salida se calcula como

$$e_o = e_n \sqrt{25kHz}G = 0.71uVrms$$

 $i_o = i_n \sqrt{kHz} R_{eq} = 1.58 uVrms$ (por etapa) Donde R_{eq} es la resistencia equivalente vista desde la entrada del operacional.

Finalmente calculamos el ruido incorporado por los resistores. Los resistores incorporan ruido térmico, $e_r = \sqrt{4kTR_{eq}f_c}$ donde k es la constante de Boltzmann y T = 300K.

Cada etapa incorpora: $\sqrt{4 \cdot 1.38^{-23}300K25kHz10k\Omega} = 2.04uVrms$

Calculamos el ruido rms para cada etapa:

$$(e_n)^2 = (0.71uV)^2 + (1.58uV)^2 + (2.04uV)^2 = 7.16uV^2$$

Finalmente calculamos al ruido a la salida

$$N = \sqrt{(e_1)^2 + (e_2)^2 + (e_3)^2 + (e_4)^2} = 14.32uVrms$$

Para tener el ruido N_{pp} a la salida, se lo puede estimar multiplicando el rms por 6.

$$N_{pp} = 85.92uV_{pp}$$

Como el rango de entrada es de 20V ($\pm 10V$) y la salida de 16 bits, la mitad del bit menos significativo tiene una amplitud de LSB/2 = 20V/(2*65536) = 152uV[?]. Como LSB/2 = 152uV, el ruido no tiene amplitud suficiente para taparlo.

5 Simulación y Medición

5.1 Esquemático del Filtro

Se presenta el esquemático del prototipo:

Figure 2: Esquemático del prototipo del filtro

Se reproduce el esquemático en el software LTSpice IV, donde se lo somete a simulación.

Figure 3: Esquemático de la simulación del filtro

El generador de funciones se modela como una fuente V_1 en serie con su resistencia interna. Los efectos de carga del conjunto punta-osciloscopio están modelados como la resistencia R_{14} en paralelo con una capacidad C_{11} a la entrada del filtro. El efecto de carga de la entrada del conversor a la salida del filtro se obtiene de la siguiente manera:

- 1) La hoja de datos indica una capacitancia de 10pF a la entrada del conversor. Esta representada en el esquemático como C_{12}
- 2) La hoja de datos no especifica un valor de resistencia sino una alta impedancia de entrada, por lo cual, despreciamos este parámetro en la simulación.

5.2 Valores de los componentes pasivos

Resistores			
Valor	Tolerancia	Cantidad	Referencia
$10k\Omega$	1%	8	$R_{1,,8}$
Capacitores			
Valor	Tolerancia	Cantidad	Referencia
82pF	5%	1	C_8
240pF	5%	1	C_6
390pF	5%	1	C_5
470pF	5%	1	C_3
1nF	5%	1	C_2
1.2nF	5%	1	C_1
1.8nF	5%	1	C_4
4.7nF	5%	1	C_7
$0.1~\mu F$	5%	2	$C_{9,10}$

NOTA: Algunos valores de capacidad del diseño por eDesign Suite no se consiguen en el mercado local. Para la implementación se usa el valor comercial más cercano.

5.3 Banco de Medición

Banco de Medición:

Figure 4: Banco de medición

- Fuente de Tensión Fair FR-305A 0 30V
- Fuente de Tensión Zurich DF1730SB5A 0-30V
- Osciloscopio Fluke 192B 60MHz, 500MS/s Sensibilidad 2mV - 100V/div Rango de la base de tiempos: 10 ns - 2 min/div
- Punta Fluke VP200 10:1 200MHz, 1.000 V CAT II/600 V CAT III (EN61010-1)
- Generador de Funciones Hing Chang Sweep 9205 Frecuencia: 0.02Hz a 2MHz 7 rangos Precisión: $\pm 5\%$ (20KHz), $\pm 8\%$ (2MHz)

Rise-time del conjunto generador-punta-osciloscopio: 56.8ns.

5.4 Imágenes

¡Reservado para foto;

5.5 Respuesta en frecuencia

Se realizó un barrido de frecuencias discretas con una señal de entrada senoidal de 10V pico, y alimentación de $\pm 15V$. A continuación mostramos los resultados medidos y superpuestos a los valores simulados. Luego de los

50kHzel valor de la amplitud era muy bajo para poder seguir realizando mediciones.

Frec.(Hz)	Amplitud(V)	Fase(grados)	Frec.(Hz)	Amplitud(V)	Fase(grados)
1	10	0	4k	10	-47.52
2	10	0	5k	10	-61.2
3	10	0	6k	10	-75.6
4	10	0	7k	10	-88.2
5	10	0	8k	10	-100.8
6	10	0	9k	10	-113.4
7	10	0	10k	10.2	-126
8	10	0	11k	10.4	-134.64
9	10	0	12k	10.4	-146.88
10	10	0	13k	10.6	-163.8
20	10	0	14k	10.6	178.56
30	10	0	15k	10.8	165.6
40	10	0	16k	10.8	146.88
50	10	0	17k	11	133.56
60	10	0	18k	11	113.76
70	10	0	19k	10.8	93.24
80	10	0	20k	10.4	-72
90	10	0	21k	9.8	-52.92
100	10	0	22k	8.8	31.32
200	10	0	23k	7.6	12.24
300	10	0	24k	6.4	-25.92
400	10	-7.2	25k	5.2	-31.5
500	10	-7.2	26k	4	-56.16
600	10	-0.864	27k	3.6	-54.43
700	10	-1	28k	2.4	-88.7
800	10	-1.15	29k	2	-79.34
900	10	-12.96	30k	1.6	-95.04
1k	10	-11.52	40k	0.2	-167.04
2k	10	-24.48	50k	0.04	-169.2
3k	10	-38.88			•

Figure 5: Respuesta en amplitud. Simulación (azul) y medición (rojo)

Figure 6: Respuesta en fase. Simulación (azul) y medición (rojo)

5.6 Respuesta al escalón

Se fija como entrada un pulso largo de -10V a 10V y se mide el rise-time (tiempo transcurrido entre el 10% y el 90% de la transición de estado bajo a estado alto de la señal) a la salida del filtro. En la simulación se definió el rise-time de la fuente como el valor de rise-time medido del conjunto generador-punta-osciloscopio. Se muestran los resultados comparando con la simulación.

Figure 7: Respuesta al escalon. Simulación (rojo) y medición (azul)

Rise-time de la simulación: $20.64 \mu s$. Rise-time de la medición: $20 \mu s$.

5.7 Imágenes

¡Reservado para foto¿

References

- [1] Ron Mancini Texas Instruments, Op Amps for Everyone. Application Report SLOD006B, Agosto 2002.
- [2] Martin Mason Electronic Design, *The ABCs Of ADCs*, Septiembre 2009.
- [3] MT-001: Taking the Mystery out of the Infamous Formula, "SNR=6.02N + 1.76dB," and Why You Should Care, 2009, Walt Kester Analog Devices.
- [4] Bonnie Baker Microchip Technology, Anti-Aliasing, Analog Filters for Data Acquisition Systems, AN699, 1999.
- [5] Jim Karki Texas Instruments, Active Low-Pass Filter Design. Application Report SLOA049B, Septiembre 2002.
- [6] http://www.st.com/edesignsuite. Ultima visita: 18/03/14.
- [7] Bonnie C. Baker Microchip Technology, Select the Right Operational Amplifier for your Filtering Circuits, 2003.
- [8] G. Hall, "Rules" of low noise amplifier, Noviembre 2001.
- [9] Art Kay Texas Instruments, Op-Amp Noise Calculation and Measurement, 2005.