Mapas polinomiais e domínios unimodulares

Wodson Mendson

Student algebraic geometry seminar - IMPA

18 de março de 2022

k = corpo algebricamente fechado de característica $p \geq 0$ (exemplo: $\mathbb{C}, \overline{\mathbb{F}}_p)$

 ${\bf k}[X_1,\dots,X_n]=$ anel de polinômios com coeficientes em k

k = corpo algebricamente fechado de característica $p \geq 0$ (exemplo: $\mathbb{C}, \overline{\mathbb{F}}_p$) $k[X_1, \dots, X_n] =$ anel de polinômios com coeficientes em k

Definição

 $\textit{Um mapa polinomial em } \mathbb{A}^n_k \textit{ \'e um mapa da forma}$

$$f = (F_1, \dots, F_n) \colon \mathbb{A}_k^n \longrightarrow \mathbb{A}_k^n$$
$$(x_1, \dots, x_n) \mapsto (F_1(x_1, \dots, x_n), \dots, F_n(x_1, \dots, x_n))$$

 $com F_i \in k[X_1, \ldots, X_n]$ para todo i.

k = corpo algebricamente fechado de característica $p \geq 0$ (exemplo: $\mathbb{C}, \overline{\mathbb{F}}_p$) $k[X_1, \dots, X_n] =$ anel de polinômios com coeficientes em k

Definição

 $\textit{Um mapa polinomial em } \mathbb{A}^n_k \textit{ \'e um mapa da forma}$

$$f = (F_1, \dots, F_n) \colon \mathbb{A}_k^n \longrightarrow \mathbb{A}_k^n$$
$$(x_1, \dots, x_n) \mapsto (F_1(x_1, \dots, x_n), \dots, F_n(x_1, \dots, x_n))$$

 $com F_i \in k[X_1, \ldots, X_n] para todo i.$

Dizemos que um mapa polinomial $f = (F_1, ..., F_n)$ é invertível se existir um mapa polinomial $g = (G_1, ..., G_n)$: $\mathbb{A}^n_k \to \mathbb{A}^n_k$ tal que

$$X_i = G_i(F_1, \dots, F_n)$$
 $Y_i = F_i(G_1, \dots, G_n)$ para todo i .

k = corpo algebricamente fechado de característica $p \geq 0$ (exemplo: $\mathbb{C}, \overline{\mathbb{F}}_p$) $k[X_1, \ldots, X_n] =$ anel de polinômios com coeficientes em k

Definição

 $\textit{Um mapa polinomial em \mathbb{A}^n_k \'e um mapa da forma}$

$$f = (F_1, \dots, F_n) \colon \mathbb{A}_k^n \longrightarrow \mathbb{A}_k^n$$
$$(x_1, \dots, x_n) \mapsto (F_1(x_1, \dots, x_n), \dots, F_n(x_1, \dots, x_n))$$

 $com F_i \in k[X_1, \ldots, X_n]$ para todo i.

Dizemos que um mapa polinomial $f = (F_1, ..., F_n)$ é invertível se existir um mapa polinomial $g = (G_1, ..., G_n) : \mathbb{A}^n_k \to \mathbb{A}^n_k$ tal que

$$X_i = G_i(F_1, \dots, F_n)$$
 $Y_i = F_i(G_1, \dots, G_n)$ para todo i .

Observação: Se existir G satisfazendo $X_i = G_i(F_1, \ldots, F_n)$ para todo i então automaticamente $Y_i = F_i(G_1, \ldots, G_n)$ para todo i.

Mapas lineares são casos particulares de mapas polinomiais onde F_1, \ldots, F_n são polinômios homogêneos de grau **um**. Para tais mapas existe um critério simples para invertibilidade.

Mapas lineares são casos particulares de mapas polinomiais onde F_1, \ldots, F_n são polinômios homogêneos de grau **um**. Para tais mapas existe um critério simples para invertibilidade.

Escreva $F_j(X_1,\ldots,X_n)=\sum_i a_{ij}X_i$ com $a_{ij}\in \mathbf{k}$ e defina $A=(a_{ij})$ a matriz associada.

Mapas lineares são casos particulares de mapas polinomiais onde F_1, \ldots, F_n são polinômios homogêneos de grau **um**. Para tais mapas existe um critério simples para invertibilidade.

Escreva $F_j(X_1, ..., X_n) = \sum_i a_{ij} X_i$ com $a_{ij} \in k$ e defina $A = (a_{ij})$ a matriz associada.

Então,

- $f = (F_1, \ldots, F_n)$ é invertível se e somente se $\det(A) \in \mathbf{k}^*$,
- $f = (F_1, \ldots, F_n)$ é injetivo se e somente se f é invertível.

Mapas lineares são casos particulares de mapas polinomiais onde F_1, \ldots, F_n são polinômios homogêneos de grau **um**. Para tais mapas existe um critério simples para invertibilidade.

Escreva $F_j(X_1, ..., X_n) = \sum_i a_{ij} X_i$ com $a_{ij} \in k$ e defina $A = (a_{ij})$ a matriz associada.

Então,

- $f = (F_1, \dots, F_n)$ é invertível se e somente se $\det(A) \in \mathbf{k}^*$,
- $f = (F_1, \dots, F_n)$ é injetivo se e somente se f é invertível.

Observe que A é a matriz Jacobiana associada a f:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n-1} & a_{1n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn-1} & a_{nn} \end{bmatrix} = J_F = \begin{bmatrix} \frac{\partial F_1}{\partial X_1} & \frac{\partial F_1}{\partial X_2} & \cdots & \frac{\partial F_1}{\partial X_{n-1}} & \frac{\partial F_1}{\partial X_n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \frac{\partial F_n}{\partial X_1} & \frac{\partial F_n}{\partial X_2} & \cdots & \frac{\partial F_n}{\partial X_{n-1}} & \frac{\partial F_n}{\partial X} \end{bmatrix}$$

Mapas polinomiais

Pode-se indagar se as observações anteriores se estendem em um contexto mais geral. Mais precisamente, seja $f \colon \mathbb{A}^n_k \longrightarrow \mathbb{A}^n_k$ um mapa que associa

$$(a_1,\ldots,a_n)\mapsto (F_1(a_1,\ldots,a_n),\ldots,F_n(a_1,\ldots,a_n))$$

com $F_i \in k[X_1, \dots, X_n]$ (sem restrição de grau). Denote por

$$J_F = \begin{bmatrix} \frac{\partial F_1}{\partial X_1} & \cdots & \ddots & \frac{\partial F_1}{\partial X_n} \\ & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ \frac{\partial F_n}{\partial X_1} & \ddots & \ddots & \frac{\partial F_n}{\partial X_n} \end{bmatrix}$$

a matriz jacobiana associada ao mapa f.

Mapas polinomiais

Pode-se indagar se as observações anteriores se estendem em um contexto mais geral. Mais precisamente, seja $f \colon \mathbb{A}^n_k \longrightarrow \mathbb{A}^n_k$ um mapa que associa

$$(a_1,\ldots,a_n)\mapsto (F_1(a_1,\ldots,a_n),\ldots,F_n(a_1,\ldots,a_n))$$

com $F_i \in k[X_1, \dots, X_n]$ (sem restrição de grau). Denote por

$$J_F = \begin{bmatrix} \frac{\partial F_1}{\partial X_1} & \cdots & \cdots & \frac{\partial F_1}{\partial X_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_n}{\partial X_1} & \cdots & \cdots & \frac{\partial F_n}{\partial X_n} \end{bmatrix}$$

a matriz jacobiana associada ao mapa f.

- O mapa f é invertível se e somente se $det(J_F) \in k^*$?
- Se f é injetivo então f é invertível?

Mapas polinomiais em $\mathbb{A}^{\mathbf{n}}_{\mathbf{k}}$ Invertibilidade de mapas polinomiais Alguns resultados conhecidos Mapas Keller e Conjectura do Jacobian

Na generalidade em questão podemos encontrar exemplos que respondam negativamente as questões acima.

Na generalidade em questão podemos encontrar exemplos que respondam negativamente as questões acima.

Exemplo

Se $k = \overline{\mathbb{F}}_p$ e $f = (X + X^p)$: $\mathbb{A}^1_k \longrightarrow \mathbb{A}^1_k$ então $\det J_F = 1$ mas f não é invertível. De fato, se g é a inversa então a igualdade $f \circ g = X$ implica que $p \deg(g) = 1$, o que é um absurdo.

Na generalidade em questão podemos encontrar exemplos que respondam negativamente as questões acima.

Exemplo

Se $k = \overline{\mathbb{F}}_p$ e $f = (X + X^p)$: $\mathbb{A}^1_k \longrightarrow \mathbb{A}^1_k$ então $\det J_F = 1$ mas f não é invertível. De fato, se g é a inversa então a igualdade $f \circ g = X$ implica que $p \deg(g) = 1$, o que é um absurdo.

Exemplo

Se $k = \overline{\mathbb{F}}_p$ e $f = (X_1^p, \dots, X_n^p) \colon \mathbb{A}_k^n \longrightarrow \mathbb{A}_k^n$ então f é uma bijeção mas não invertível.

Na generalidade em questão podemos encontrar exemplos que respondam negativamente as questões acima.

Exemplo

Se $k = \overline{\mathbb{F}}_p$ e $f = (X + X^p)$: $\mathbb{A}^1_k \longrightarrow \mathbb{A}^1_k$ então $\det J_F = 1$ mas f não é invertível. De fato, se g é a inversa então a igualdade $f \circ g = X$ implica que $p \deg(g) = 1$, o que é um absurdo.

Exemplo

Se $k = \overline{\mathbb{F}}_p$ e $f = (X_1^p, \dots, X_n^p) \colon \mathbb{A}_k^n \longrightarrow \mathbb{A}_k^n$ então f é uma bijeção mas não invertível.

Observação

Seja $f = (F_1, \ldots, F_n): \mathbb{A}^n_k \longrightarrow \mathbb{A}^n_k$ um mapa polinomial. Então f é invertível se e somente se $k[X_1, \ldots, X_n] = k[F_1, \ldots, F_n]$.

Alguns resultados conhecidos

k = algebricamente fechado de característica zero.

Teorema (Cynk-Rusek)

- ^a Sejam X uma variedade algébrica afim definida sobre k e $f: X \longrightarrow X$ um morfismo. Então, são equivalentes:
- f é injetivo,
- f é bijeção,
- f é um automorfismo.

^aCynk-Rusek - Injective endomorphisms of algebraic and analytic sets

Alguns resultados conhecidos

k = algebricamente fechado de característica zero.

Teorema (Cynk-Rusek)

- ^a Sejam X uma variedade algébrica afim definida sobre k e $f: X \longrightarrow X$ um morfismo. Então, são equivalentes:
- f é injetivo,
- f é bijeção,
- f é um automorfismo.

A implicação $(i) \Longrightarrow (ii)$ é conhecida como Teorema de Ax-Grothendieck e vale se k tem característica positiva.

 $^{{}^}a\mathrm{Cynk}\text{-Rusek}$ - Injective endomorphisms of algebraic and analytic sets

Ideia de prova: $(i) \Longrightarrow (ii)$

Seja $f\colon X\longrightarrow X$ um mapa polinomial injetivo (char(k) ≥ 0). Suponha por contradição que f é injetivo mas não bijetor.

Ideia de prova: $(i) \Longrightarrow (ii)$

Seja $f\colon X\longrightarrow X$ um mapa polinomial injetivo (**char**(k) ≥ 0). Suponha por contradição que f é injetivo mas não bijetor.

Passo 1: Formule as condições de não-sobrejetividade, injetividade e pertinência em termos de equações polinomiais.

Ideia de prova: $(i) \Longrightarrow (ii)$

Seja $f\colon X\longrightarrow X$ um mapa polinomial injetivo (char(k) ≥ 0). Suponha por contradição que f é injetivo mas não bijetor.

Passo 1: Formule as condições de não-sobrejetividade, injetividade e pertinência em termos de equações polinomiais.

Passo 2: Seja $\{\alpha_i\}_{i\in I}$ a coleção de todos os coeficientes que ocorrem nas equações do passo 1. Consideremos casos:

• char(k) = p > 0: Seja $R = \mathbb{F}_p[\{\alpha_i\}_{i \in I}]$ a \mathbb{F}_p -álgebra obtida por adjunção de todos os coeficientes $\{\alpha_i\}_{i \in I}$. Tome $\mathfrak{m} \in \mathbf{Spm}(R)$ um ideal maximal de R e note que pelo Nullstellensatz temos que R/\mathfrak{m} é uma extensão finita de \mathbb{F}_p . Em particular, é um corpo finito. Reduzindo as relações polinomiais obtidas acima, obtemos um mapa polinomial

$$f \otimes R/\mathfrak{m} \colon \overline{X}(R/\mathfrak{m}) \longrightarrow \overline{X}(R/\mathfrak{m})$$

que é injetivo mas não sobrejetivo o que é um absurdo já que $\#X(R/\mathfrak{m})<\infty.$

Mapas polinomiais em A^R Invertibilidade de mapas polinomiais **Algunts resultados conhecidos** Mapas Keller e Conjectura do Jacobian

• $\mathbf{char}(k) = 0$: Seja $R = \mathbb{Z}[\{\alpha_i\}]$ o subanel de k obtido por adjunção de todos os coeficientes $\{\alpha_i\}_{i \in I}$. Seja $\mathfrak{m} \in \mathbf{Spm}(R)$ um ideal maximal de R. Se R/\mathfrak{m} é um corpo finito podemos repetir o argumento acima e chegar a uma contradição.

Mapas polinomiais em $\mathbb{A}^{\mathrm{R}}_{\mathrm{K}}$ Invertibilidade de mapas polinomiais Alguns resultados conhecidos Mapas Keller e Conjectura do Jacobiano

• char(k) = 0: Seja $R = \mathbb{Z}[\{\alpha_i\}]$ o subanel de k obtido por adjunção de todos os coeficientes $\{\alpha_i\}_{i\in I}$. Seja $\mathfrak{m}\in \mathbf{Spm}(R)$ um ideal maximal de R. Se R/\mathfrak{m} é um corpo finito podemos repetir o argumento acima e chegar a uma contradição. Mas, esse é o caso:

Fato

Seja R uma \mathbb{Z} -álgebra de tipo finito e $\mathfrak{p} \in \mathbf{Spm}(R)$ um ideal maximal. Então, R/\mathfrak{m} é um corpo finito.

Mapas polinomiais Keller

Condição necessária para invertibilidade

Se $f = (F_1, \dots, F_n) \colon \mathbb{A}^n_k \longrightarrow \mathbb{A}^n_k$ é um mapa polinomial invertível então det $J_F \in k^*$.

Mapas polinomiais em A^R Invertibilidade de mapas polinomiais Alguns resultados conhecidos Mapas Keller e Conjectura do Jacobia

Mapas polinomiais Keller

Condição necessária para invertibilidade

Se $f = (F_1, \dots, F_n) \colon \mathbb{A}^n_k \longrightarrow \mathbb{A}^n_k$ é um mapa polinomial invertível então det $J_F \in k^*$.

De fato, isso é se segue da regra da cadeia aplicada em $f \circ g = (X_1, \ldots, X_n)$ e do fato que as unidades de $k[X_1, \ldots, X_n]$ são as constantes não nulas.

Mapas polinomiais Keller

Condição necessária para invertibilidade

Se $f = (F_1, ..., F_n)$: $\mathbb{A}^n_k \longrightarrow \mathbb{A}^n_k$ é um mapa polinomial invertível então $\det J_F \in \mathbb{k}^*$.

De fato, isso é se segue da regra da cadeia aplicada em $f \circ g = (X_1, \dots, X_n)$ e do fato que as unidades de $k[X_1, \dots, X_n]$ são as constantes não nulas.

Definição

Seja $f = (F_1, ..., F_n) \colon \mathbb{A}^n_k \longrightarrow \mathbb{A}^n_k$ um mapa polinomial. Dizemos que $f \notin$ um mapa Keller se det $J_F \in k^*$.

Mapas polinomiais Keller

Condição necessária para invertibilidade

Se $f = (F_1, \dots, F_n) \colon \mathbb{A}^n_k \longrightarrow \mathbb{A}^n_k$ é um mapa polinomial invertível então det $J_F \in k^*$.

De fato, isso é se segue da regra da cadeia aplicada em $f \circ g = (X_1, \dots, X_n)$ e do fato que as unidades de $k[X_1, \dots, X_n]$ são as constantes não nulas.

Definição

Seja $f = (F_1, ..., F_n) \colon \mathbb{A}^n_k \longrightarrow \mathbb{A}^n_k$ um mapa polinomial. Dizemos que $f \notin$ um mapa Keller se det $J_F \in k^*$.

Exemplo

$$f = (X^2 + X + Y, X^2 + Y): \mathbb{A}^2_{\mathbb{C}} \longrightarrow \mathbb{A}^2_{\mathbb{C}} \text{ \'e Keller com det } J_f = 1.$$

Mapas polinomiais em \mathbb{A}^n_k Invertibilidade de mapas polinomiais Alguns resultados conhecidos Mapas Keller e Conjectura do Jacobiai

Bases de Gröbner: critério para invertibilidade

Seja k um corpo arbitrário e $f = (F_1, \ldots, F_n) \colon \mathbb{A}^n_k \longrightarrow \mathbb{A}^n_k$ um mapa polinomial com $F_1, \ldots, F_n \in \mathbb{k}[X_1, \ldots, X_n]$.

¹Van den Essen - A criterion to decide if a polynomial map is invertible and to compute the inverse

Mapas polinomiais em $\mathbb{A}^n_{\mathbf{k}}$ Invertibilidade de mapas polinomiais Alguns resultados conhecidos Mapas Keller e Conjectura do Jacobian

Bases de Gröbner: critério para invertibilidade

Seja k um corpo arbitrário e $f=(F_1,\ldots,F_n)\colon \mathbb{A}^n_k\longrightarrow \mathbb{A}^n_k$ um mapa polinomial com $F_1,\ldots,F_n\in \mathbf{k}[X_1,\ldots,X_n]$. Sejam Y_1,\ldots,Y_n novo sistema de variáveis e considere o ideal I

$$I = \langle Y_1 - F_1, \dots, Y_n - F_n \rangle \subset k[X_1, \dots, X_n, Y_1, \dots, Y_n].$$

 $^{^1\}mathrm{Van}$ den Essen - A criterion to decide if a polynomial map is invertible and to compute the inverse

Bases de Gröbner: critério para invertibilidade

Seja k um corpo arbitrário e $f = (F_1, \ldots, F_n) : \mathbb{A}^n_k \longrightarrow \mathbb{A}^n_k$ um mapa polinomial com $F_1, \ldots, F_n \in k[X_1, \ldots, X_n]$. Sejam Y_1, \ldots, Y_n novo sistema de variáveis e considere o ideal I

$$I = \langle Y_1 - F_1, \dots, Y_n - F_n \rangle \subset k[X_1, \dots, X_n, Y_1, \dots, Y_n].$$

Fixe a ordem monomial lexicográfica em $k[X_1, \ldots, X_n, Y_1, \ldots, Y_n]$ com $X_1 > X_2 > \cdots > X_n > Y_n > \cdots > Y_1^1$

 $^{^{1}}$ Van den Essen - A criterion to decide if a polynomial map is invertible and to compute the inverse

Bases de Gröbner: critério para invertibilidade

Seja k um corpo arbitrário e $f = (F_1, \ldots, F_n) \colon \mathbb{A}^n_k \longrightarrow \mathbb{A}^n_k$ um mapa polinomial com $F_1, \ldots, F_n \in \mathbb{k}[X_1, \ldots, X_n]$. Sejam Y_1, \ldots, Y_n novo sistema de variáveis e considere o ideal I

$$I = \langle Y_1 - F_1, \dots, Y_n - F_n \rangle \subset k[X_1, \dots, X_n, Y_1, \dots, Y_n].$$

Fixe a ordem monomial lexicográfica em k $[X_1,\ldots,X_n,Y_1,\ldots,Y_n]$ com $X_1>X_2>\cdots>X_n>Y_n>\cdots>Y_1^{-1}$.

Teorema (Van den Essen)

Seja B a base de Grobner reduzida para I. Então,

ullet f é invertível se e somente se

$$B = \{X_1 - G_1(Y_1, \dots, Y_n), \dots, X_n - G_n(Y_1, \dots, Y_n)\}.$$

• Se f é invertível então $g = (G_1, \ldots, G_n) \colon \mathbb{A}^n_k \longrightarrow \mathbb{A}^n_k$ é a inversa de f.

¹Van den Essen - A criterion to decide if a polynomial map is invertible and to compute the inverse

• ring
$$r = 0,(X(1),X(2),Y(2),Y(1)),lp;$$

• poly
$$F = X(1)^{**}2+X(1)+X(2)$$
; poly $G = X(1)^{**}2+X(2)$;

• ideal
$$I = Y(1)$$
-F, $Y(2)$ -G;

• ideal
$$J = std(I)$$
;

•
$$J[1] = X(2) + Y(2)^2 - 2 * Y(2) * Y(1) - Y(2) + Y(1)^2$$

•
$$J[2] = X(1) + Y(2) - Y(1)$$

Assim, a inversa do mapa polinomial

$$f = (X^2 + X + Y, X^2 + Y) \colon \mathbb{A}^2_{\mathbb{C}} \longrightarrow \mathbb{A}^2_{\mathbb{C}}$$

é

$$g = (X - Y, Y + 2XY - X^2 - Y^2) \colon \mathbb{A}^2_{\mathbb{C}} \longrightarrow \mathbb{A}^2_{\mathbb{C}}$$

Mapas polinomiais em \mathbb{A}^n_k Invertibilidade de mapas polinomiais Alguns resultados conhecidos Mapas Keller e Conjectura do Jacobia:

Ott-Heinrich Keller (1906-1990)

Em Ganze Cremona-Transformationen - 1939 formula²:

Problema de Keller

Sejam $F_1, \ldots, F_n \in \mathbb{Z}[X_1, \ldots, X_n]$ polinômios tal det $J_F = 1$. Segue que X_i pode ser escrito como polinômios em F_1, \ldots, F_n a coeficientes em \mathbb{Z} ?

²Keller: **MacTutor**

Mapas polinomiais em \mathbb{A}^n_k Invertibilidade de mapas polinomiais Alguns resultados conhecidos Mapas Keller e Conjectura do Jacobia

Conjectura do Jacobiano

"It seems to me that it will be worthwhile to investigate this question , however even in the plane it seems to be very difficult "

Conjectura do Jacobiano

"It seems to me that it will be worthwhile to investigate this question , however even in the plane it seems to be very difficult " $\,$

Conjectura do Jacobiano

Sejam $n \in \mathbb{Z}_{>1}$ e $f = (F_1, \dots, F_n)$: $\mathbb{A}^n_{\mathbb{C}} \longrightarrow \mathbb{A}^n_{\mathbb{C}}$ um mapa polinomial Keller. Então, f é invertível.

Conjectura do Jacobiano

"It seems to me that it will be worthwhile to investigate this question , however even in the plane it seems to be very difficult "

Conjectura do Jacobiano

Sejam $n \in \mathbb{Z}_{>1}$ e $f = (F_1, \dots, F_n) \colon \mathbb{A}^n_{\mathbb{C}} \longrightarrow \mathbb{A}^n_{\mathbb{C}}$ um mapa polinomial Keller. Então, $f \in invertível$.

Lema

^a Seja $f = (F_1, \ldots, F_n) \colon \mathbb{A}^n_{\mathbb{C}} \longrightarrow \mathbb{A}^n_{\mathbb{C}}$ um mapa polinomial Keller definido sobre um domínio $R \subset \mathbb{C}$. Se f é invertível então a inversa está definida sobre R.

 $^a[\mathrm{Lemma}\ 1.1.8]\ \mathrm{Van}\ \mathrm{den}\ \mathrm{Essen}$ - Polynomial Automorphisms and the Jacobian Conjecture

Mapas polinomiais em \mathbb{A}_{k}^{H} Invertibilidade de mapas polinomiais Alguns resultados conhecidos Mapas Keller e Conjectura do Jacobiai

Teorema

A Conjectura do Jacobiano é equivalente ao Problema de Keller. Mais precisamente, se existir um contra-exemplo para a Conjectura do Jacobiano então existe um mapa polinomial Keller $f\colon \mathbb{A}^n_{\mathbb{C}} \longrightarrow \mathbb{A}^n_{\mathbb{C}}$ definido sobre \mathbb{Z} não invertível.

Teorema

A Conjectura do Jacobiano é equivalente ao Problema de Keller. Mais precisamente, se existir um contra-exemplo para a Conjectura do Jacobiano então existe um mapa polinomial Keller $f \colon \mathbb{A}^n_{\mathbb{C}} \longrightarrow \mathbb{A}^n_{\mathbb{C}}$ definido sobre \mathbb{Z} não invertível.

Dado um mapa polinomial $f = (F_1, \dots, F_n) \colon \mathbb{A}^n_k \longrightarrow \mathbb{A}^n_k$ definimos o grau inferior e superior pondo

$$\deg(f) = \min\{\deg(F_1), \dots, \deg(F_n)\},\$$

$$Deg(f) = \max\{deg(F_1), \dots, deg(F_n)\}.$$

Teorema

A Conjectura do Jacobiano é equivalente ao Problema de Keller. Mais precisamente, se existir um contra-exemplo para a Conjectura do Jacobiano então existe um mapa polinomial Keller $f \colon \mathbb{A}^n_{\mathbb{C}} \longrightarrow \mathbb{A}^n_{\mathbb{C}}$ definido sobre \mathbb{Z} não invertível.

Dado um mapa polinomial $f = (F_1, ..., F_n) : \mathbb{A}_k^n \longrightarrow \mathbb{A}_k^n$ definimos o grau inferior e superior pondo

$$\deg(f) = \min\{\deg(F_1), \dots, \deg(F_n)\},\$$

$$Deg(f) = \max\{deg(F_1), \dots, deg(F_n)\}.$$

Conjectura do Jacobiano:

- Deg(f) = 1: álgebra linear.
- Deg(f) = 2: um pouco mais fino, mas simples.

Grau dois

Proposição (Wang)

Seja $f = (F_1, ..., F_n): \mathbb{A}^n_{\mathbb{C}} \longrightarrow \mathbb{A}^n_{\mathbb{C}}$ um mapa polinomial Keller com Deg(f) = 2. Então, $f \in invertivel$.

Proposição (Wang)

Seja $f = (F_1, ..., F_n): \mathbb{A}^n_{\mathbb{C}} \longrightarrow \mathbb{A}^n_{\mathbb{C}}$ um mapa polinomial Keller com Deg(f) = 2. Então, $f \in invertivel$.

Argumento: Suponha que f não seja invertível. Pelo Teorema de Cynk-Rusek temos que f não é injetivo. Daí, podemos supor que f(0) = f(h) para algum $h \neq 0$. Defina c = 1/2 e escreva $f = f_1 + f_2$ decomposição homogênea. Note que

$$0 = f_1(h) + 2 \cdot c \cdot f_2(h) = \frac{\partial [Tf_1(h) + T^2f_2(h)]}{\partial T}|_{T=c} = \frac{\partial f(Th)}{\partial T}|_{T=c} = J_f(c \cdot h) \cdot h$$

o que constradiz a condição det $J_f \in \mathbb{C}^*$.

Mapas polinomiais em $\mathbb{A}^{\mathbb{N}}_{\mathbf{k}}$ Invertibilidade de mapas polinomiais Alguns resultados conhecidos Mapas Keller e Conjectura do Jacobiai

Redução ao grau três

O fato surpreendente é que para demonstrar a Conjectura do Jacobiano é suficiente considerar mapas polinomiais Keller de grau três 3

³Bass, Connell, Wright - The Jacobian Conjecture: Reduction of degree and Formal Expansion of the Inverse

Mapas polinomiais em $\mathbb{A}^{\mathbb{N}}_{\mathbf{k}}$ Invertibilidade de mapas polinomiais Alguns resultados conhecidos Mapas Keller e Conjectura do Jacobiai

Redução ao grau três

O fato surpreendente é que para demonstrar a Conjectura do Jacobiano é suficiente considerar mapas polinomiais Keller de grau três 3

Teorema

Se a Conjectura do Jacobiano é verdadeira para todos os mapas polinomiais $f = (F_1, \ldots, F_n) \colon \mathbb{A}^n_{\mathbb{C}} \longrightarrow \mathbb{A}^n_{\mathbb{C}} \text{ com Deg}(f) \leq 3 \text{ e } n \in \mathbb{Z}_{>1} \text{ então a}$ Conjectura do Jacobiano é verdadeira.

³Bass, Connell, Wright - The Jacobian Conjecture: Reduction of degree and Formal Expansion of the Inverse

Mapas polinomiais em \mathbb{A}^n_k Invertibilidade de mapas polinomiais Alguns resultados conhecidos Mapas Keller e Conjectura do Jacobiar

Redução ao grau três

O fato surpreendente é que para demonstrar a Conjectura do Jacobiano é suficiente considerar mapas polinomiais Keller de grau três 3

Teorema

Se a Conjectura do Jacobiano é verdadeira para todos os mapas polinomiais $f = (F_1, \ldots, F_n) \colon \mathbb{A}^n_{\mathbb{C}} \longrightarrow \mathbb{A}^n_{\mathbb{C}}$ com $\operatorname{Deg}(f) \leq 3$ e $n \in \mathbb{Z}_{>1}$ então a Conjectura do Jacobiano é verdadeira.

Ideia: Aumentar a dimensão e usar mapas elementares para reduzir o grau.

³Bass, Connell, Wright - The Jacobian Conjecture: Reduction of degree and Formal Expansion of the Inverse

Redução ao grau três

O fato surpreendente é que para demonstrar a Conjectura do Jacobiano é suficiente considerar mapas polinomiais Keller de grau três 3

Teorema

Se a Conjectura do Jacobiano é verdadeira para todos os mapas polinomiais $f = (F_1, \ldots, F_n) \colon \mathbb{A}^n_{\mathbb{C}} \longrightarrow \mathbb{A}^n_{\mathbb{C}}$ com $\operatorname{Deg}(f) \leq 3$ e $n \in \mathbb{Z}_{>1}$ então a Conjectura do Jacobiano é verdadeira.

Ideia: Aumentar a dimensão e usar mapas elementares para reduzir o grau.

Mapas elementares: Mapas polinomiais $e = (E_1, \dots, E_n) \colon \mathbb{A}^n_{\mathbb{C}} \longrightarrow \mathbb{A}^n_{\mathbb{C}}$ tal que existe $1 \leq i \leq n$ com

$$E_i = X_i + A_i(X_1, \dots, \tilde{X}_i, \dots, X_n)$$
 e $E_j = X_j$ $(j \neq i)$

para algum $A_i \in k[X_1, \dots, \tilde{X}_i, \dots, X_n]$.

³Bass, Connell, Wright - The Jacobian Conjecture: Reduction of degree and Formal Expansion of the Inverse

Redução ao grau três

Extensão de mapas: Dados $l \in \mathbb{Z}_{>0}$ a l-extensão de um mapa polinomial $f = (F_1, \dots, F_n) \colon \mathbb{A}^n_{\mathbb{C}} \longrightarrow \mathbb{A}^n_{\mathbb{C}}$ é o mapa polinomial $f^{[l]}$ em $\mathbb{A}^{n+l}_{\mathbb{C}}$ que associa $(\alpha_1, \alpha_2) \in \mathbb{A}^n_{\mathbb{C}} \times \mathbb{A}^l_{\mathbb{C}}$ em $(f(\alpha_2), \alpha_2)$.

Lema

Seja $f = (F_1, ..., F_n) \colon \mathbb{A}^n_{\mathbb{C}} \longrightarrow \mathbb{A}^n_{\mathbb{C}}$ um mapa polinomial. Então, existem $l \in \mathbb{Z}_{\geq 0}$ e mapas elementares $e_1, e_2 \colon \mathbb{A}^{n+l}_{\mathbb{C}} \longrightarrow \mathbb{A}^{n+l}_{\mathbb{C}}$ tais que

$$e_1 \circ f^{[l]} \circ e_2$$

tem grau no máximo três.

Redução ao grau três

Extensão de mapas: Dados $l \in \mathbb{Z}_{>0}$ a l-extensão de um mapa polinomial $f = (F_1, \dots, F_n) \colon \mathbb{A}^n_{\mathbb{C}} \longrightarrow \mathbb{A}^n_{\mathbb{C}}$ é o mapa polinomial $f^{[l]}$ em $\mathbb{A}^{n+l}_{\mathbb{C}}$ que associa $(\alpha_1, \alpha_2) \in \mathbb{A}^n_{\mathbb{C}} \times \mathbb{A}^l_{\mathbb{C}}$ em $(f(\alpha_2), \alpha_2)$.

Lema

Seja $f = (F_1, ..., F_n) \colon \mathbb{A}^n_{\mathbb{C}} \longrightarrow \mathbb{A}^n_{\mathbb{C}}$ um mapa polinomial. Então, existem $l \in \mathbb{Z}_{\geq 0}$ e mapas elementares $e_1, e_2 \colon \mathbb{A}^{n+l}_{\mathbb{C}} \longrightarrow \mathbb{A}^{n+l}_{\mathbb{C}}$ tais que

$$e_1 \circ f^{[l]} \circ e_2$$

tem grau no máximo três.

Idéia de Argumento: Suponha que exista monômio M de grau pelo menos quatro em F_1 . Então, podemos escrever M=PQ com $\deg(P)=2$. Considere os mapas elementares:

$$e_1 = (X_1, \dots, X_n, Y_1 + P, Y_2 + Q)$$
 $e_2 = (X_1 - Y_1Y_2, X_2, \dots, X_n, Y_1, Y_2).$

Considerando $e_1 \circ f^{[2]} \circ e_2$ resulta um mapa polinomial com controle do grau, mais variáveis e tal que M não ocorre em $f^{[2]}$.

Domínios unimodulares

 $(R, \mathfrak{m}, k) =$ um domínio local com ideal maximal \mathfrak{m} , corpo resíduo $k = R/\mathfrak{m}$ e com corpo de frações K.

Dado um mapa polinomial $f=(F_1,\ldots,F_n)\colon \mathbb{A}^n_{\overline{K}}\longrightarrow \mathbb{A}^n_{\overline{K}}$ dizemos que f está definido sobre R se $F_1,\ldots,F_n\in R[X_1,\ldots,X_n]$.

Domínios unimodulares

 $(R, \mathfrak{m}, k) =$ um domínio local com ideal maximal \mathfrak{m} , corpo resíduo $k = R/\mathfrak{m}$ e com corpo de frações K.

Dado um mapa polinomial $f = (F_1, \dots, F_n) \colon \mathbb{A}^n_{\overline{K}} \longrightarrow \mathbb{A}^n_{\overline{K}}$ dizemos que f está definido sobre R se $F_1, \dots, F_n \in R[X_1, \dots, X_n]$.

Definição

 $Dizemos\ que\ R\ \'e\ um\ dom\'inio\ unimodular\ se\ satisfaz\ a\ seguinte\ propriedade.$

• Para qualquer mapa polinomial Keller $f = (F_1, \ldots, F_n) \colon \mathbb{A}^n_{\overline{K}} \longrightarrow \mathbb{A}^n_{\overline{K}}$ $(n \ge 1)$ definido sobre R o mapa polinomial induzido por passagem ao quociente

$$f \otimes \mathbf{k} \colon \mathbf{k}^n \longrightarrow \mathbf{k}^n$$

é não nulo.

$\operatorname{Exemplos}$

Proposição

Seja (R, \mathfrak{m}, k) um domínio local e suponha que k é infinito. Então, R é um domínio unimodular.

Exemplos

Proposição

Seja (R, \mathfrak{m}, k) um domínio local e suponha que k é infinito. Então, R é um domínio unimodular.

Demonstração.

De fato, seja $f: \mathbb{A}^n_K \longrightarrow \mathbb{A}^n_K (n \ge 1)$ um mapa polinomial Keller tal que $(f \otimes \mathbf{k})(x_1, \dots, x_n) = 0$ para todo $(x_1, \dots, x_n) \in \mathbf{k}^n$. Então, como k é infinito temos que $f \otimes \mathbf{k} \equiv 0$ e daí segue que todos os coeficientes de f estão no ideal maximal \mathfrak{m} , o que contradiz a condição de Keller.

Exemplos

Proposição

Seja (R, \mathfrak{m}, k) um domínio local e suponha que k é infinito. Então, R é um domínio unimodular.

Demonstração.

De fato, seja $f: \mathbb{A}^n_K \longrightarrow \mathbb{A}^n_K (n \ge 1)$ um mapa polinomial Keller tal que $(f \otimes \mathbf{k})(x_1, \dots, x_n) = 0$ para todo $(x_1, \dots, x_n) \in \mathbf{k}^n$. Então, como k é infinito temos que $f \otimes \mathbf{k} \equiv 0$ e daí segue que todos os coeficientes de f estão no ideal maximal \mathfrak{m} , o que contradiz a condição de Keller.

Exemplo

O dominio local $(\mathbb{F}_p[[T]], T\mathbb{F}_p[[T]], \mathbb{F}_p)$ não é unimodular. De fato, considere o mapa $f = (X_1 - X_1^p, \dots, X_n - X_n^p) \colon \mathbb{A}^n_{\overline{\mathbb{F}_p}((T))} \longrightarrow \mathbb{A}^n_{\overline{\mathbb{F}_p}((T))}$.

Unimodularidade

$\mathbf{char}(R)$	$\mathbf{char}(\mathbf{k})$	k	unimodular
0	p	infinito	$_{ m sim}$
0	p	finito	????
0	0	infinito	sim
p	p	finito	não
p	p	infinito	$_{ m sim}$

Unimodularidade

$\mathbf{char}(R)$	char(k)	k	unimodular
0	p	infinito	$_{ m sim}$
0	p	finito	????
0	0	infinito	sim
p	p	finito	não
p	p	infinito	sim

Conjectura Unimodular (Essen-Lipton)

^a Qualquer domínio local de caracaterística zero é unimodular.

^aVan den Essen, Lipton - A p-adic approach to the Jacobian Conjecture

$jacobiano \Longrightarrow unimodular$

Proposição

Suponha que a Conjectura do Jacobiano seja verdadeira. Então, qualquer domínio local de característica zero é unimodular.

$jacobiano \Longrightarrow unimodular$

Proposição

Suponha que a Conjectura do Jacobiano seja verdadeira. Então, qualquer domínio local de característica zero é unimodular.

Demonstração.

Sejam (R, \mathfrak{m}, k) um domínio local de caracaterística zero com corpo de frações K e $f = (F_1, \ldots, F_n) \colon \mathbb{A}^n_{\overline{K}} \longrightarrow \mathbb{A}^n_{\overline{K}}$ um mapa polinomial Keller. Como a Conjectura do Jacobiano é verdadeira, existe a inversa $g = (G_1, \ldots, G_n)$ de f. Agora, reduzindo módulo \mathfrak{m} as identidades $g \circ f = X$ e $f \circ g = Y$ vemos que $f \mod \mathfrak{m}$ é uma bijeção.

Domínios d-unimodulares

Definição

Sejam (R, \mathfrak{m}, k) um domínio local e $d \in \mathbb{Z}_{>0}$. Dizemos que R é d-unimodular se satisfaz a seguinte condição:

• Para qualquer mapa polinomial Keller $f = (F_1, ..., F_n) \colon \mathbb{A}^n_K \longrightarrow \mathbb{A}^n_K$ $(n \ge 1)$ definido sobre R **com** $\deg(f) \le d$ é tal que o mapa polinomial induzido por passagem ao quociente

$$f \otimes \mathbf{k} \colon \mathbf{k}^n \longrightarrow \mathbf{k}^n$$

é não nulo.

Domínios d-unimodulares

Definição

Sejam (R, \mathfrak{m}, k) um domínio local e $d \in \mathbb{Z}_{>0}$. Dizemos que R é d-unimodular se satisfaz a seguinte condição:

• Para qualquer mapa polinomial Keller $f = (F_1, ..., F_n) \colon \mathbb{A}^n_K \longrightarrow \mathbb{A}^n_K$ $(n \ge 1)$ definido sobre R **com** $\deg(f) \le d$ é tal que o mapa polinomial induzido por passagem ao quociente

$$f \otimes \mathbf{k} \colon \mathbf{k}^n \longrightarrow \mathbf{k}^n$$

é não nulo.

Lembrar:

$$\deg(f) = \min\{\deg(F_1)\dots,\deg(F_n)\}\$$

\mathbb{F}_q -pontos em hipersuperfícies

Desigualdade de Ore

^a Seja $F \in \mathbb{F}_q[X_1, \dots, X_n]$ um polinômio não nulo de grau $d \geq 1$ e seja $X = \mathcal{Z}(F) \subset \mathbb{A}^n_{\mathbb{F}_q}$ a variedade afim correspondente. Então, vale

$$\#X(\mathbb{F}_q) < \deg(F)q^{n-1}.$$

^aGhorpade - A Note on Nullstellensatz over Finite Fields — R. Lidl and H. Niederreiter Finite Fields

\mathbb{F}_q -pontos em hipersuperfícies

Desigualdade de Ore

^a Seja $F \in \mathbb{F}_q[X_1, \dots, X_n]$ um polinômio não nulo de grau $d \ge 1$ e seja $X = \mathcal{Z}(F) \subset \mathbb{A}^n_{\mathbb{F}_q}$ a variedade afim correspondente. Então, vale

$$\#X(\mathbb{F}_q) < \deg(F)q^{n-1}.$$

^aGhorpade - A Note on Nullstellensatz over Finite Fields — R. Lidl and H. Niederreiter Finite Fields

Argumento: Se n=1 ou $d=\deg(f)=1$ então o resultado é claro. Procedemos por indução no par (n,d). Suponha n,d>1 e que o resultado é verdadeiro para polinômios com no máximo n-variáveis e de grau menor do que d e para polinômios com no máximo n-1 variáveis e de grau no máximo d. Devemos mostrar que vale para o par (n,d). Seja $F \in \mathbb{F}_a[X_1,\ldots,X_n]$ um polinômio de grau d.

Consideremos os casos:

Consideremos os casos:

● $X_1 - c$ divide F para algum $c \in \mathbb{F}_q$: podemos escrever $F = (X_1 - c)G$ para $G \in \mathbb{F}_q[X_1, \dots, X_n]$ de grau menor que d. Assim, pela hipótese de indução temos que o número de soluções de F = 0 sobre \mathbb{F}_q é no máximo

$$q^{n-1} + (d-1)q^{n-1} = dq^{n-1}$$

Consideremos os casos:

● $X_1 - c$ divide F para algum $c \in \mathbb{F}_q$: podemos escrever $F = (X_1 - c)G$ para $G \in \mathbb{F}_q[X_1, \dots, X_n]$ de grau menor que d. Assim, pela hipótese de indução temos que o número de soluções de F = 0 sobre \mathbb{F}_q é no máximo

$$q^{n-1} + (d-1)q^{n-1} = dq^{n-1}$$

● $X_1 - c$ não divide F seja qual for $c \in \mathbb{F}_q$: para todo $c \in \mathbb{F}_q$ temos o polinômio $F(c, X_2, \ldots, X_n) \in \mathbb{F}_q[X_2, \ldots, X_n]$ em n-1 variáveis. Pela hipótese de indução sabemos que fixado $c \in \mathbb{F}_q$ temos no máximo dq^{n-2} soluções em \mathbb{F}_q . Daí, resulta que o número de soluções de F = 0 é no máximo

$$q \cdot dq^{n-2} = dq^{n-1}$$

Proposição

Seja (R, \mathfrak{m}, k) um domínio local com k finito de cardinalidade q. Então, R é q-1-unimodular.

Proposição

Seja (R, \mathfrak{m}, k) um domínio local com k finito de cardinalidade q. Então, R é q-1-unimodular.

Demonstração.

Seja $f = (F_1, \ldots, F_n)$: $\mathbb{A}^n_{\overline{K}} \longrightarrow \mathbb{A}^n_{\overline{K}}$ um mapa polinomial Keller e suponha que $\deg(F_1) < q$. Por redução módulo \mathfrak{m} de F_1 obtemos a hipersuperfície $X = \mathcal{Z}(\overline{F}_1)$ em \mathbb{A}^n_k e pela Desigualdade de Ore resulta que $f \otimes k$ não se anula em k^n já que

$$\#X(\mathbb{F}_p) < \deg(\overline{F}_1)q^{n-1} < q^n.$$

Proposição

Seja (R, \mathfrak{m}, k) um domínio local com k finito de cardinalidade q. Então, R é q-1-unimodular.

Demonstração.

Seja $f = (F_1, \ldots, F_n)$: $\mathbb{A}^n_{\overline{K}} \longrightarrow \mathbb{A}^n_{\overline{K}}$ um mapa polinomial Keller e suponha que $\deg(F_1) < q$. Por redução módulo \mathfrak{m} de F_1 obtemos a hipersuperfície $X = \mathcal{Z}(\overline{F}_1)$ em \mathbb{A}^n_k e pela Desigualdade de Ore resulta que $f \otimes k$ não se anula em k^n já que

$$\#X(\mathbb{F}_p) < \deg(\overline{F}_1)q^{n-1} < q^n.$$

Nota: Esse é o melhor resultado para $(\mathbb{F}_p[[T]], T\mathbb{F}_p[[T]], \mathbb{F}_p)$.

Proposição

Sejam (R, \mathfrak{m}, k) um anel de valoração completo com corpo de frações K e $f = (F_1, \ldots, F_n) \colon \mathbb{A}^n_{\overline{K}} \longrightarrow \mathbb{A}^n_{\overline{K}}$ um mapa polinomial Keller definido sobre R. Se \mathcal{O} é uma R-álgebra denote por $X(\mathcal{O})$ o conjunto de \mathcal{O} -pontos do esquema $X = \operatorname{Spec}(R[X_1, \ldots, X_n]/\langle F_1, \ldots, F_n \rangle)$. Então, existe uma bijeção:

$$X(R) \cong X(k)$$

Proposição

Sejam (R, \mathfrak{m}, k) um anel de valoração completo com corpo de frações K e $f = (F_1, \ldots, F_n) \colon \mathbb{A}^n_{\overline{K}} \longrightarrow \mathbb{A}^n_{\overline{K}}$ um mapa polinomial Keller definido sobre R. Se \mathcal{O} é uma R-álgebra denote por $X(\mathcal{O})$ o conjunto de \mathcal{O} -pontos do esquema $X = \operatorname{Spec}(R[X_1, \ldots, X_n]/\langle F_1, \ldots, F_n \rangle)$. Então, existe uma bijeção:

$$X(R) \cong X(\mathbf{k})$$

Argumento: Como f é um mapa Keller temos que ord $(\det J_f(\alpha)) = 0$ para qualquer $\alpha \in R^n$. A bijeção é dada explicitamente do seguinte modo: Para cada $\alpha \in R^n$ obtemos $\varphi(\alpha) \in \mathbf{k}^n$ o k-ponto obtido por redução módulo \mathfrak{m} . O Lema de Hensel⁴ garante que a aplicação $\varphi \colon X(R) \longrightarrow X(\mathbf{k})$ é uma bijeção.

⁴Marvin J. Greenberg - Lectures on forms in many variables

Teorema

A Conjectura do Jacobiano é verdadeira se e somente se o anel dos inteiros p-ádicos, \mathbb{Z}_p , é unimodular para uma infinidade de primos p.

 $^{^5\}mathbb{Z}_p$ = anel dos inteiros p-adicos = completamento de \mathbb{Z} sobre o ideal maximal $\langle p \rangle$

Teorema

A Conjectura do Jacobiano é verdadeira se e somente se o anel dos inteiros p-ádicos, \mathbb{Z}_p , é unimodular para uma infinidade de primos p.

Nota: Não é conhecido exemplos de primos p tais que \mathbb{Z}_p é unimodular. Por exemplo, p = 2 é unimodular?⁵

 $^{{}^5\}mathbb{Z}_p$ = anel dos inteiros p-adicos = completamento de \mathbb{Z} sobre o ideal maximal $\langle p \rangle$

Teorema

A Conjectura do Jacobiano é verdadeira se e somente se o anel dos inteiros p-ádicos, \mathbb{Z}_p , é unimodular para uma infinidade de primos p.

Nota: Não é conhecido exemplos de primos p tais que \mathbb{Z}_p é unimodular. Por exemplo, p = 2 é unimodular?⁵

Observação

Pela observações anteriores temos que a Conjectura do Jacobiano é equivalente ao seguinte: para uma infinidade de primos p temos que

• Para qualquer $n \in \mathbb{Z}_{\geq 2}$ e polinômios $F_1, \ldots, F_n \in \mathbb{Z}_p[X_1, \ldots, X_n]$ com $\det J_F = 1 \ temos \ que$

$$\#X(\mathbb{Z}_p) < p^n$$

onde
$$X = \operatorname{Spec}(\mathbb{Z}_p[X_1, \dots, X_n]/\langle F_1, \dots, F_n \rangle).$$

Hoje

Teorema (Essen-Lipton)

A Conjectura do Jacobiano é verdadeira se e somente se o anel dos inteiros p-ádicos, \mathbb{Z}_p , é unimodular para quase todos os primos p.

Teorema (Essen-Lipton)

A Conjectura do Jacobiano é verdadeira se e somente se o anel dos inteiros p-ádicos, \mathbb{Z}_p , é unimodular para quase todos os primos p.

Fato

^a Seja R um domínio de ideais principais com corpo de frações K. Seja $f = (F_1, \ldots, F_n) \colon \mathbb{A}^n_{\overline{K}} \longrightarrow \mathbb{A}^n_{\overline{K}}$ um mapa polinomial Keller definido sobre R e suponha que f não seja injetivo sobre R. Então, para todo $m \in \mathbb{Z}_{>1}$ existe um mapa Keller $g_m \colon \mathbb{A}^n_{\overline{K}} \longrightarrow \mathbb{A}^n_{\overline{K}}$ definido sobre R com $\#g_m^{-1}(\alpha) \ge m$ para algum $\alpha \in R^n$.

^a[Theorem 4.5.5] Crachiola, Essen, Kuroda - Polynomial Automorphisms and the Jacobian Conjecture: New Results from the Beginning of the 21st Century

Passo 1: Por resultados anteriores sabemos que para provar a Conjectura do Jacobiano é suficiente considerar mapas polinomiais Keller definidos sobre \mathbb{Z} . Suponha que \mathbb{Z}_p seja um domínio unimodular para quase todo primo p.

 $^{^6[{\}rm Theorem~10.3.1}]$ Van den Essen - Polynomial Automorphisms and the Jacobian Conjecture

Passo 1: Por resultados anteriores sabemos que para provar a Conjectura do Jacobiano é suficiente considerar mapas polinomiais Keller definidos sobre \mathbb{Z} . Suponha que \mathbb{Z}_p seja um domínio unimodular para quase todo primo p.

Passo 2: Seja $f = (F_1, \dots, F_n) \colon \mathbb{A}^n_{\overline{\mathbb{Q}}} \longrightarrow \mathbb{A}^n_{\overline{\mathbb{Q}}}$ um mapa polinomial Keller definido sobre \mathbb{Z} que não é invertível. Então, sabemos que f não é injetivo e assim existem $\alpha_1, \alpha_2 \in \mathbb{A}^n_{\overline{\mathbb{Q}}}$ distintos tais que $f(\alpha_1) = f(\alpha_2)$. Seja $R = \mathbb{Z}[\alpha_1, \alpha_2]$ a \mathbb{Z} -álgebra obtida por ajunção.

 $^{^6[{\}rm Theorem}\ 10.3.1]$ Van den Essen - Polynomial Automorphisms and the Jacobian Conjecture

Passo 1: Por resultados anteriores sabemos que para provar a Conjectura do Jacobiano é suficiente considerar mapas polinomiais Keller definidos sobre \mathbb{Z} . Suponha que \mathbb{Z}_p seja um domínio unimodular para quase todo primo p.

Passo 2: Seja $f=(F_1,\ldots,F_n)\colon \mathbb{A}^n_{\overline{\mathbb{Q}}} \longrightarrow \mathbb{A}^n_{\overline{\mathbb{Q}}}$ um mapa polinomial Keller definido sobre \mathbb{Z} que não é invertível. Então, sabemos que f não é injetivo e assim existem $\alpha_1,\alpha_2\in \mathbb{A}^n_{\overline{\mathbb{Q}}}$ distintos tais que $f(\alpha_1)=f(\alpha_2)$. Seja $R=\mathbb{Z}[\alpha_1,\alpha_2]$ a \mathbb{Z} -álgebra obtida por ajunção.

Passo 3: Pelo Lema da Imersão⁶ garantimos que R se injeta em \mathbb{Z}_p para uma infinidade de primos p. Escolha p tal que \mathbb{Z}_p é unimodular. Assim, podemos encarar f como um mapa polinomial Keller definido sobre \mathbb{Z}_p que não é injetivo.

Passo 1: Por resultados anteriores sabemos que para provar a Conjectura do Jacobiano é suficiente considerar mapas polinomiais Keller definidos sobre \mathbb{Z} . Suponha que \mathbb{Z}_p seja um domínio unimodular para quase todo primo p.

Passo 2: Seja $f=(F_1,\ldots,F_n)\colon \mathbb{A}^n_{\overline{\mathbb{Q}}} \longrightarrow \mathbb{A}^n_{\overline{\mathbb{Q}}}$ um mapa polinomial Keller definido sobre \mathbb{Z} que não é invertível. Então, sabemos que f não é injetivo e assim existem $\alpha_1,\alpha_2\in \mathbb{A}^n_{\overline{\mathbb{Q}}}$ distintos tais que $f(\alpha_1)=f(\alpha_2)$. Seja $R=\mathbb{Z}[\alpha_1,\alpha_2]$ a \mathbb{Z} -álgebra obtida por ajunção.

Passo 3: Pelo Lema da Imersão⁶ garantimos que R se injeta em \mathbb{Z}_p para uma infinidade de primos p. Escolha p tal que \mathbb{Z}_p é unimodular. Assim, podemos encarar f como um mapa polinomial Keller definido sobre \mathbb{Z}_p que não é injetivo.

Passo 4: O fato anterior implica que existe um mapa Keller g definido sobre \mathbb{Z}_p tendo uma fibra com $p^n + 1$ elementos. Mas, isso é uma contradição já que o Lema de Hensel implica que toda fibra tem no máximo p^n elementos.

 $^{^6[{\}rm Theorem}\ 10.3.1]$ Van den Essen - Polynomial Automorphisms and the Jacobian Conjecture

Um domínio R é dito **Keller** se

• Para qualquer $n \ge 1$ e polinômios $F_1, \ldots, F_n \in R[X_1, \ldots, X_n]$ satisfazendo det $J_F = 1$ temos que o R-módulo

$$R[X_1,\ldots,X_n]/\langle F_1,\ldots,F_n\rangle$$

é finitamente gerado.

Um domínio R é dito **Keller** se

• Para qualquer $n \ge 1$ e polinômios $F_1, \ldots, F_n \in R[X_1, \ldots, X_n]$ satisfazendo det $J_F = 1$ temos que o R-módulo

$$R[X_1,\ldots,X_n]/\langle F_1,\ldots,F_n\rangle$$

é finitamente gerado.

Proposição

 $Qualquer\ corpo\ algebricamente\ fechado\ k\ \acute{e}\ Keller.$

Um domínio R é dito **Keller** se

• Para qualquer $n \ge 1$ e polinômios $F_1, \ldots, F_n \in R[X_1, \ldots, X_n]$ satisfazendo det $J_F = 1$ temos que o R-módulo

$$R[X_1,\ldots,X_n]/\langle F_1,\ldots,F_n\rangle$$

é finitamente gerado.

Proposição

Qualquer corpo algebricamente fechado k é Keller.

Argumento: Sejam $F_1, \ldots, F_n \in \mathbf{k}[X_1, \ldots, X_n]$ polinômios satisfazendo a condição det $J_F = 1$. Seja $A = \mathbf{k}[X_1, \ldots, X_n]/\langle F_1, \ldots, F_n \rangle$. Pela teoria da dimensão de anéis locais sabemos que para qualquer ideal maximal $\mathfrak{m} \in \mathbf{Spm}(R)$ vale dim $A_{\mathfrak{m}} \leq \dim_{\mathbf{k}} T_{\mathfrak{m}}$ onde $T_{\mathfrak{m}} = \mathbf{Hom}_{\mathbf{k}}(\mathfrak{m}/\mathfrak{m}^2, \mathbf{k})$. Pelo critério do Jacobiano temos

$$\dim_{\mathbf{k}} T_{\mathfrak{m}} = n - \mathbf{rank}(J_F \otimes \mathbf{k}(\mathfrak{m})) = n - n = 0.$$

Assim, concluímos que dim $R_{\mathfrak{m}}=0$. Em particular, dim R=0 de modo que R é uma k-álgebra artiniana. Daí, dim $_k R < \infty$.

Problema

Seja (R, \mathfrak{m}, k) um anel de valoração discreta de característica zero com k finito. O domínio R é Keller?

Problema

Seja (R, \mathfrak{m}, k) um anel de valoração discreta de característica zero com k finito. O domínio R é Keller?

Exemplo

O domínio local $(R, \mathfrak{m}, k) = (\mathbb{F}_p[[T]], T\mathbb{F}_p[[T]], \mathbb{F}_p)$ não é Keller. De fato, tome $F = TX^p - X$. Então o quociente $R/\langle F \rangle$ não é finitamente gerado como R-módulo, já que \overline{X} não é inteiro sobre $\mathbb{F}_p[[T]]$.

Aplicações:

Problema

Seja (R, \mathfrak{m}, k) um anel de valoração discreta de característica zero com k finito. O domínio R é Keller?

Exemplo

O domínio local $(R, \mathfrak{m}, k) = (\mathbb{F}_p[[T]], T\mathbb{F}_p[[T]], \mathbb{F}_p)$ não é Keller. De fato, tome $F = TX^p - X$. Então o quociente $R/\langle F \rangle$ não é finitamente gerado como R-módulo, já que \overline{X} não é inteiro sobre $\mathbb{F}_p[[T]]$.

Aplicações:

Teorema

Suponha que a resposta para o problema acima é SIM. Se \mathbb{Z}_p é unimodular para algum primo p então a Conjectura do Jacobiano é verdadeira.

Obrigado:-)

