

CPU AND ADDRESS DECODING LOGIC SCHEMATIC PAGE 1 of 10

Schematic	Board	
Grid Location	Location	Function
D7	16H	Interrupt priority encoder
C6	17D	CPU
C5,D5	20P,16E,20B	Address line buffers
B5	15B	Control line buffer
B5	16D,16B	Data line buffers
A 8	14H	Power on reset ckt
В7	15D	Power on reset remap of ROM
_	_	memory space to pick up stack
_	_	pointer and reset vector
B4	17J	DTACK delay circuit
B3	16W	DTACK combination circuit

This page contains the heart of the game system. The CPU implemented in this system is the MC68000 (17D). The CPU address lines are buffered by three (3) 74LS244s (20P,16E,20B), and then distributed throughout the main logic pcb. System address decoding is performed by two (2) 74LS138s (22J,19J), and these enable signals are used by each major system on the board to control the transfer of data. Data line buffering is the function of the two (2) 74LS245 (16B,16D). CPU control line buffering is performed by the 74LS244 (15B). Power on reset is accomplished by the NE555 (14H) and the 74LS164 (15D). CPU interrupts are applied to the processor through a priority encoder 74LS148 (16H). The circuitry of the 74LS164 (17J), 74LS30 (16W), and 74LS20 (18J) provide the necessary signals to accept DTACK responses from each major system on the board and to generate buss error conditions encountered by the CPU. JU3 is an expansion connector, which is not used in this implementation of the game system. This connector is for future expansion.

DMA AND SERIAL I/O SCHEMATIC PAGE 2 of 10

Schematic Grid Location	Board Location	Function
C7 D6 C6 B6 B6 C4 C4 C3	21D 20H 19D 19H 19B 11J (opt.) 12J (opt.) 1J (opt.) 14J (opt.)	DMA device Address line buffer for DMA Address line buffer for DMA Data line buffer for DMA Data line buffer for DMA Data line buffer for serial 2 channel serial driver TTL to RS232 driver RS232 to TTL driver

Memory to memory transfers are performed by the Direct Memory Access device MC68440 (21D). This DMA device is programmed by the CPU to move data from ROM to other parts of the system.

Designed for future applications, a two channel serial input and output device, the MC68681 (12J) is included in the system. The components required for this function were intentionally not installed into this pcb.

I/O SYSTEM SCHEMATIC PAGE 3 of 10

Schematic Grid Location	Board Location	Function
D7 C7	2J 3W	I/O address decoder I/O data line buffer
B7 B6	4 W	System status output driver Error code display
D5	4S	Analog to digital converter
C5	9Н	Interrupt driver for converter
C5	6S	3 channel timer
D3	2W	Video disk data line buffer
C3	6 M	Disk, control panel, Expander I/O
B3	4 M	Coin door and Audio I/O

The Address lines are decoded by the 74LS138 (2J), and device enables are generated to select each device on this page of the system diagram. The analog to digital converter ADC0808 (4S) converts the movement of the joystick to digital signals. The two inputs presently being used are pins 9 and 10 of connector J1. This device generates interrupts to the CPU through the 74LS74 (9H) when a conversion is complete. The video disk interface circuitry through connector J2, performs all command and communication with the video disk. Connector J3 connects the control panel and coin door to the system. These signals are conditioned by passive components and are applied to the two MC6821s (6M)(4M). The interface between the video expander and the main logic pcb is accomplished through the MC6821 (6M). This interface controls the operation of the expander. Expander enable is generated from pin 19 of the MC6821 while the other pins control the display start position of the expanded line. Several other signals are required to interface the expander pcb. These are timing and enable signals. Communication and control of the audio pcb is accomplished through connector J5.

ROM, RAM, AND CORE SCHEMATIC PAGE 4 of 10

Schema Grid L		Board Location	Function
C6 B6 D5,D4 C5,C4 D3 C3 C3 A5 A7	2A,3A,4. 2C,3C,40	12B 13D A,6A,7A,8A,9A,1 C,6C,7C,8C,9C,1 2E 3E 5E 7H 15J 6J	Data line buffer to ROM Data line buffer to ROM OA Program and Data ROM OC Program and Data ROM System RAM System RAM Electrical Erasable ROM ROM address decoder Write control to system RAM ROM data buss unable decoder

The system ROM and RAM are contained on this page of the system diagram. The address decoding for the selection of individual components are accomplished by the 74LS138 (7H). Selection jumpers JU7, JU6, and JU5 are used if 27512 Eproms are installed into the system.

BACKGROUND VIDEO GENERATOR SCHEMATIC PAGE 5 of 10

C6 12Z Video Controller Device D5 14X Video RAM Counter D4 12R Video RAM decoder C5,C4,C3,C2 11W,10W,13W,12W Video RAM C4 14S Video data line buffer C3 14W Video data line buffer B6 15X External sync buffer A5 11R Horz line resync counter	Schematic Grid Location	Board Location	Function
A5 12R Resync decoder	D5 D4 C5,C4,C3,C2 1 C4 C3 B6 A5	14X 12R 1W,10W,13W,12W 14S 14W 15X 11R	Video RAM Counter Video RAM decoder Video RAM Video data line buffer Video data line buffer External sync buffer Horz line resync counter

The background digital video is comprised of the TMS32061 (12Z). This device controls the video display and dynamic memory PD41264s (11W,10W,13W,12W). External synchronization is accomplished through the circuitry of the 74LS374 (15X).

CLOCK AND MICROCODE SCHEMATIC PAGE 6 of 10

Schematic Grid Location	Board Location	Function
D7 D6 C6 C7,C6 C4 C3 C3	9L (opt.) 11M,11M,10J 10J,10L,10L external pcb 12M 13L 14M,13M 14R	Internal clock generator Divide by 3 ckt Divide by 2 and divide by 2 Resync logic to disk pcb Microcode jump select Microcode program counter Microcode program PROM Microcode control driver

The generation of the various clocks required for the system are accomplished through the circuitry of 11M, 10J, and 10L. The input clock to this circuitry can be internally generated or externally generated - as it is with a disk player. The control of the dynamic digital moving objects is through the microcode sequencer, composed of 11L,12M,13L,14M,13M,12L, and 14R. This sequencer controls the addressing and enabling of data transfers of the circuitry, on page 7.

HIGH SPEED OBJECTS SCHEMATIC PAGE 7 of 10

Schematic	Board	
Grid Location	on Location	Function
C8 D7 C7 C7	22M 13R 21R	R/W control to object RAM CPU address controlled driver CPU address controlled driver
B7	15M 20M	Next object address counter Object address pointer req
B7	205	Object address pointer req
D6,C6,B6 A6 A6 B5 D6,C6,B6 D5,C5,B5 D5,C5,B5	18S,18M,19M,19S 21S 21W,20W 22S 16S,17S,16M,17M 15K,17L,19L,21L 16L,18L,20L,22L	Object list and data RAMs Vert line counter for active Adder for active line select Active Object this line cont Object data line buffers Object image data buffers Object image shift reg
D4 C4	18W,20S 22X	Object Horz position reg
B4	22X 22X	Odd line serial image buffer Even line serial image buffer
D3	172,182,192	Object odd line horz position
C3 D2	17Y,18Y,19Y 20Z	Object even line horz position Object odd line RAM
B2	20Y	Object even line RAM
C2	21Y	Active line output multiplexer
B2 A2	20J 16Z	Odd and even line control
A3	21Z	Object load and shift control Odd even line control flip flop

The RAMs 6264(18S,18M,19M,19S) are the central point of the digital moving object system. The CPU and/or DMA device can access this RAM to read, write, and modify the data. The RAM is logically set up into different parts, which are: 1. Moving object display list 2. Moving object display data. The moving object display list defines the x/y location for the object and a pointer to the address within the RAM where the definition of the object is found. The microcode sequencer on page 6, controls the operation and tranfers of data within this page. The overall sequence of operation is as follows:

- 1. The display list is scanned sequentially by counter 15M. If, by a comparison of the current diplay line and the y position of the object (21S,21W,20W) it is found that the object should be visible (22S), then the line number of the object that is to be displayed, is stored in 20S. At the same time, the base address of the object is stored in 20M. Therefore, at this point in the sequence it has been determined that an object should be displayed, and its address is stored in registers.
- 2. The line number to be displayed of the object is added to the base address of the object, which forms an address to the RAM from where the data is to be retrieved. Data is retrieved in four 8 bit bytes which are the first, or left side, of the 16X16 object and are stored in registers 15K,17L,19L, and 21L.

- 3. The right side of the object is now addressed by adding a logic 1 to the previous address (20M,20S). This data is now stored in registers 15K,17L,19L, and 21L as in the previous step, but the data that was stored in these registers is transferred to the serial shift registers 16L,18L,20L, and 22L.
- 4. The object data is converted from parallel to serial and is applied to either the odd or even line buffer RAM (20Z or 20Y). This odd and even line buffer allows one line to be written to, while the other line is read from, resulting in a high speed buffer system. The address, the data is written into, is derived from the horizontal position registors 17Z,18Z,19Z and 17Y,18Y,19Y. Once the first eight pixels of four bits each is shifted into the RAM, the next or right side data, is transferred to the shift registers and the operation continues.
- 5. When the shift is complete for the right side data, the microcode accesses the RAM for the next entry in the display list. If an entry is not to be displayed, that entry is skipped and the operation continues to the next entry.

VIDEO LOOKUP AND OUTPUT SCHEMATIC PAGE 8 of 10

Schematic		
Grid Location	Location	Function
5 .7		112 malt marray for midea out
D7_	~ -	+12 volt power for video out
B7	9J	Lookup table access control
C5	8S	Serial Video combiner buffer
C5	8L	Lookup R/W control multiplexer
B5	10R	Lookup address buffer
C5,B5	7M,8M,9M,10M	Lookup table RAM
D4	8Z,8X	Digital video input from disk
C 4	9Ј	Digital video enable
C4,D4	7S,7R	Internal digital video buffer
B4,A4	7R,9R	Lookup table data line buffer
B3,C3	5x,6x,7x	Digital video level converter
D2	Q2,Q1	Red digital to analog driver
C2	Q4,Q3	Green digital to analog driver
B2	Q6,Q5	Blue digital to analog driver
B2	Q7	D to A bias and blanking
A 2	3 X	Sync output Polarity

This page contains the VIDEO LOOKUP TABLE AND VIDEO OUTPUT DRIVERS. High speed moving object data is combined with background video data to form an 8 bit address to the lookup table (8S). The data at this address is the color information that should be displayed on the crt. The color information (in the form of 5 bits for each color: red, blue, and green) is placed in the lookup table by the CPU through address buffer (10R) and data buffers (7R) and (9R). Control of this data read and write operation is performed by (8L). Connector J8 is the external digital video input which accepts the output from the video expander pcb. This digital input is enabled by bit 15 of the lookup table through (9J) being a logic "0". The video output stages are a form of digital to analog converter which converts a weighted current amount, depending on the position of the active bit, into a voltage. This voltage swing is from approximately .8 volts to 3.5 volts.

VIDEO EXPANDER SCHEMATIC PAGE 9 of 10

Schematic Grid Location		Function
C7 B7 A7 D6 B6 A6 A5 A4 D4 B4 D3 B3	A3,D3 A4,D4 B9 B8,B7,B6 C8,C7,C6 D9 D8 D9 B5,B4,B3,B2 C5,C4,C3,C2 A6,D6 A5,D5	Digital video buffer odd line Digital video buffer even line External sync enable Odd line address counter Even line address counter Odd or even line flip flop Line reset and start control Output clock generation Odd video line RAM Even video line RAM Odd line output buffer Even line output buffer
A3 B1	D7 -	Odd even RAM R/W control External resync pcb

The Expander functions to store a line of video which has been converted to digital by the analog to digital converter, on page 10. This digital data is in a form of 5 bits per color (5 for each red, green and blue) for a total of 15 bits of data. This data is applied to an odd and even line buffer RAM system (B5,B4,B3,B2 and C5,C4,C3,C2) through buffer registers (A3,D3 and A4,D4). The data is stored sequentially by counters (B8,B7,B6 and C8,C7,C6) in the buffer RAMs at a 12mhz rate. At the start of each display line data stored in the buffer RAM during the previous line is available to be displayed during the current line. The address of the start location in the buffer RAM originates from the main logic pcb and is used to define the start position of the expanded line. When the data is read from the buffer RAM, it is read at a 6mhz rate which appears on the screen display as a normal line of data, only shifted in the left or right direction.

A TO D CONVERTER EXPANDER SCHEMATIC PAGE 10 of 10

Schematic Grid Location	Board Location	Function
D7,C7 B7	Q4,Q3,Q2 Q1	RGB analog video input buffers Analog voltage range control RGB analog to digital converters
D6,C6 C4	A1,B1,C1 A2,D2	Expander bypass buffers

The input through P9 is from the NTSC to RGB converter pcb. This input is an analog voltage for the three colors: red, green, and blue. Each analog color voltage is converted to digital data by separate analog to digital converters (A1,B1,C1). The output of these converters form a 15 bit word that is made up of 5 bits of color for each red, green, and blue. This data word is then applied to the odd/even line buffers or directly to the output of the expander. The adjustment of R2 allows the dynamic range of the analog to digital converter to be set. This adjustment interacts with the contrast control on the NTSC converter board.

DIGITAL AUDIO SCHEMATIC PAGE 1 of 2

Schematic Board	
Grid Location Location Function	
D7 J1 Audio system CPU	
C7 N2 Power on reset circuit	
A7 N1 Audio board command input	buff
A6 Y1 Audio system status reg	
A5 Z2 Low speed clock generator	
D6 L1 DMA device	
B6 M5 DMA grant and control	
B5 P4 Address decode 1 of 4 cha	nnels
D5 1H,3L Address line buffers	
C5 3J Data line buffer	
D4 B5 DMA or CPU to ROM control	
D3 C5 Bank address control RAM	
D3 D5 ROM enable decoding	
D3 E2 CPU address decoding	
D4 A5 CPU ROM or RAM decoding	C
C3 ROM and RAM data buss buf D2 F1,E1,D1,B1,F2,E2,D2,B2 Digital Audio data	
	ROMS
D1 A1 Audio CPU program ROM D1 A2 Audio CPU system RAM	
B4,A4 U1,V1,W1,X1 Clock rate and volume con	+ral
B4,A4 U2,V2,W2,X2 Channel clock rate genera	
A3 Y2,Y4 Channel clock rate buffer	
B3 U4, V4, W4, X4 Channel reload control	5
B2 R4,T4 Channel reload flag flip	flop
B2 P1,R1,S1,T1 Channel data buffer	- + 0 [
B1 P2,R2,S2,T2 Channel parallel to seria	1

The heart of the digital audio system is a MC6809 central processing unit (J1) and the MC6844 DMA device (L1). The program data is stored in the ROM located at (A1), and the digital audio data is stored in ROMs at locations F1, E1, D1, B1, F2, E2, D2, and B2. This stored data is accessed by the DMA device, and then transferred to one of the four audio channels. Control of the DMA device is performed by the CPU, which sets up addresses and count data.

Each audio channel has a controllable clock rate for the conversion of parallel data to serial data. This clock rate determines the rate at which data is applied to the delta demodulator devices, located on page 2 of the audio logic diagram.

ANALOG AUDIO SCHEMATIC PAGE 2 of 2

Schematic Grid Location	Board Location	Function
D6,C6,B6 D5,C5,B5 D4,C4,B4 D3,C3 D2,C2 D2,C2 A4 B2	Y5,T5,Y6,T6 W5,W6 L6,L7,N7,N6 K7,K6 (Opt.) E6 Q7,Q8,Q9,Q10 E6 VR1,VR2	Serial digital to analog Channel low pass filters Channel volume control External volume control Power amplifier drivers Power amplifier output drivers External audio input buffers Audio power regulators

The conversion from serial digital data to analog data is accomplished by the MC3418 devices (Y5,T5,Y6,T6). Then the analog data is sent through a low pass filter circuit, MC3403s (W5,W6) to remove conversion noise. The amplitude of the analog signals are then controlled by the electronic attenuators CA3080 (L6,L7,N7,N6). External left and right audio from the video disk player is applied through amplifier buffers MC3403s (E6). This audio is combined with the digital generated audio output of the CA3080 and both are applied to the dual audio power amplifiers. The dual audio power amplifiers are made up of the MC3403 (E6) amplifier driver and transistors (Q7,Q8,Q9,Q10).

