CERTIFICATION TEST REPORT

Manufacturer: Duncan Parking Technologies, Inc.

316 North Milwaukee Street, Suite 202 Milwaukee, Wisconsin 53202 USA

Applicant: Same as Above

Product Name: LNG

Product Description: LNG Main Board. Processing and RF communications boards

for authorized OEM equipment.

Model: LNG-L-A002

FCC ID: UIBLNGLA002

Testing Commenced: Sept. 1, 2017 **Testing Ended:** Oct. 26, 2017

Testing Commence: April 5, 2018 **Testing Ended:** April 23, 2018

Summary of Test Results: In Compliance, with Modifications

The EUT complies with the EMC requirements when manufactured identically as the unit tested in this report, including any required modifications and/or manufacturer's statement. Any changes to the design or build of this unit subsequent to this

testing may deem it non-compliant.

Standards:

• FCC Part 15 Subpart C, Section 15.247

• FCC Part 15.31(e)

ANSI C63.10:2013

051816

Report Number: F2LQ9793A-01E Page 1 of 49 Issue Date: Apr. 23, 2018

Applicant: Duncan Parking Technologies, Inc.
Model: LNG-L-A002

G2Balt

Evaluation Conducted by: Julius Chiller, EMC/Wireless Engineer

(also signing for Joe Knepper, EMC Proj. Eng.)

Report Reviewed by:

Ken Littell, Director of EMC & Wireless Operations

F2 Labs 26501 Ridge Road Damascus, MD 20872 Ph 301.253.4500 F2 Labs 16740 Peters Road Middlefield, OH 44062 Ph 440.632.5541 F2 Labs 8583 Zionsville Road Indianapolis, IN 46268 Ph 317.610.0611

This test report may be reproduced in full; partial reproduction only may be made with the written consent of F2 Labs. The results in this report apply only to the equipment tested.

Report Number: F2LQ9793A-01E Page 2 of 49 Issue Date: Apr. 23, 2018

TABLE OF CONTENTS

Section	Title	Page
		_
	MINISTRATIVE INFORMATION	4
2 SUI	MMARY OF TEST RESULTS/MODIFICATIONS	7
3 TAI	BLE OF MEASURED RESULTS	8
4 EN	GINEERING STATEMENT	9
5 EU ⁻	T INFORMATION AND DATA	10
6 LIS	T OF MEASUREMENT INSTRUMENTATION	11
7 FC	C Part 15.247(a)(2) – OCCUPIED BANDWIDTH	12
8 FC	C Part 15.247(b)(3) – CONDUCTED OUTPUT POWER	16
	C Part 15.247(d) - CONDUCTED SPURIOUS EMISSIONS	20
	C Part 15.247(d) – RADIATED SPURIOUS EMISSIONS	37
	C Part 15.247(e) – PEAK POWER SPECTRAL DENSITY (P	SD) 44
	OTOS/EXHIBITS	[′] 48

Applicant: Duncan Parking Technologies, Inc.

Model: LNG-L-A002

1 ADMINISTRATIVE INFORMATION

1.1 Measurement Location:

F2 Labs in Middlefield, Ohio. Site description and attenuation data are on file with the FCC's Sampling and Measurement Branch at the FCC Laboratory in Columbia, MD.

1.2 Measurement Procedure:

All measurements were performed according to the 2013 version of ANSI C63.10 and recommended FCC procedure of measurement of DTS operating under Section 15.247 and in KDB558074. A list of the measurement equipment can be found in Section 6.

051816

Report Number: F2LQ9793A-01E Page 4 of 49 Issue Date: Apr. 23, 2018

Applicant: Duncan Parking Technologies, Inc.

Model: LNG-L-A002

1.3 Uncertainty Budget:

The uncertainty in EMC measurements arises from several factors which affect the results, some associated with environmental conditions in the measurement room, the test equipment being used and the measurement techniques adopted.

The measurement uncertainty budgets detailed below are calculated from the test and calibration data, and are expressed with a 95% confidence factor using a coverage factor of k=2. The Uncertainty for a laboratory are referred to as *U*lab. For Radiated and Conducted Emissions, the Expanded Uncertainty is compared to the *U*cispr values to determine if a specific margin is required to deem compliance.

Ulab

Measurement Range	Combined Uncertainly	Expanded Uncertainty
Radiated Emissions <1 GHz @ 3m	2.54	5.07dB
Radiated Emissions <1 GHz @ 10m	2.55	5.09dB
Radiated Emissions 1 GHz to 2.7 GHz	1.81	3.62dB
Radiated Emissions 2.7 GHz to 18 GHz	1.55	3.10dB
AC Power Line Conducted Emissions, 150kHz to 30 MHz	1.38	2.76dB
AC Power Line Conducted Emissions, 9kHz to 150kHz	1.66	3.32dB

*U*cispr

Measurement Range	Expanded Uncertainty
Radiated Emissions <1 GHz @ 3m	5.2dB
Radiated Emissions <1 GHz @ 10m	5.2dB
Radiated Emissions 1 GHz to 2.7 GHz	Under Consideration
Radiated Emissions 2.7 GHz to 18 GHz	Under Consideration
AC Power Line Conducted Emissions, 150kHz to 30 MHz	3.6dB
AC Power Line Conducted Emissions, 9kHz to 150kHz	4.0dB

If *U*lab is less than or equal to *U*cispr, then:

- compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit. If *U*lab is greater than *U*cispr in table 1, then:
- compliance is deemed to occur if no measured disturbance, increased by (*U*lab *U*cispr), exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance, increased by (*U*lab *U*cispr), exceeds the disturbance limit.

Measurement	Uncertainty
Radiated RF Immunity 80 MHz to 1 GHz	2.12dB
Conducted Common Mode RF Immunity, CDN 150kHz to 80 MHz	1.72dB
Conducted Common Mode RF Immunity, BCI 150kHz to 80 MHz	2.06dB
Harmonic Emissions	6.25%
Flicker	6.63%

Note: Only measurements listed in the tables above which relate to tests included in this Test Report are applicable.

Applicant: Duncan Parking Technologies, Inc. Model: LNG-L-A002

1.4 **Document History**

Document Number	Description	Issue Date	Approved By
F2LQ9793A-01E	First Issue	April 23, 2018	K. Littell

Page 6 of 49 Report Number: F2LQ9793A-01E Issue Date: Apr. 23, 2018 Applicant: Duncan Parking Technologies, Inc.

Model: LNG-L-A002

2 SUMMARY OF TEST RESULTS

Test Name	Standard(s)	Results
-6dB Occupied Bandwidth	CFR 47 Part 15.247(a)(2) / KDB558074	Complies
Conducted Output Power	CFR 47 Part 15.247(b)(3) / KDB558074	Complies
*Voltage Variations	CFR 47 Part 15.31(e)	Complies
Conducted Spurious Emissions	CFR 47 Part 15.247(d) / Part 15.207 / KDB558074	Complies
Radiated Spurious Emission with 1.5dBi Whip Antenna	CFR 47 Part 15.247(d) / Part 15.209 / KDB558074	Complies
Peak Power Spectral Density	CFR 47 Part 15.247(e) / KDB558074	Complies

*Note: Product was operated using fully charged Lithium Ion batteries supplied by the customer. Requirements of 15.31 were met.

Modifications Made to the Equipment

The following modifications were made to meet Band Edge requirements: Manufacturer supplied revised software image to lock out 902 MHz and 928 MHz. Unit's default frequency is 903 MHz.

Report Number: F2LQ9793A-01E Page 7 of 49 Issue Date: Apr. 23, 2018

Order Number: F2LQ9793A Applicant: Duncan Parking Technologies, Inc.
Model: LNG-L-A002

3 **TABLE OF MEASURED RESULTS**

Test	Low Channel 903 MHz	Mid Channel 915 MHz	High Channel 927 MHz
Conducted Output Power	31.6mW (15.0dBm)	36.224mW (15.59dBm)	29.31mW (14.67dBm)
Conducted Output Power Limit	1 Watt, (30dBm)	1 Watt, (30dBm)	1 Watt, (30dBm)
E.I.R.P. with 1.5dBi Integral Antenna	44.67mW (16.5dBm)	51.17mW (17.09dBm)	41.4mW (16.17dBm)
E.I.R.P. Limit	4 Watts, (36.02dBm)	4 Watts, (36.02dBm)	4 Watts, (36.02dBm)
Peak Power Spectral Density	-3.82dBm	2.62 dBm	-3.70dBm
Peak Power Spectral Density Limit	8 dBm	8 dBm	8 dBm
-6dB Occupied Bandwidth	0.716 MHz	0.6923 MHz	0.684 MHz
-6dB Occupied Bandwidth Limit	≥ 500KHz	≥ 500KHz	≥ 500KHz

Page 8 of 49 Report Number: F2LQ9793A-01E Issue Date: Apr. 23, 2018

Applicant: Duncan Parking Technologies, Inc.

Model: LNG-L-A002

4 ENGINEERING STATEMENT

This report has been prepared on behalf of Duncan Parking Technologies, Inc. to provide documentation for the testing described herein. This equipment has been tested and found to comply with Part 15.247 of the FCC Rules using ANSI C63.10:2013 and KDB558074 standards. The test results found in this test report relate only to the items tested.

Report Number: F2LQ9793A-01E Page 9 of 49 Issue Date: Apr. 23, 2018

Order Number: F2LQ9793A Applicant: Duncan Parking Technologies, Inc.

Model: LNG-L-A002

5 EUT INFORMATION AND DATA

5.1 Equipment Under Test:

Product: LNG

Model: LNG-L-A002

Serial No.: None Specified FCC ID: UIBLNGLA002

5.2 Trade Name:

Duncan Parking Technologies, Inc.

5.3 Power Supply:

N/A

5.4 Applicable Rules:

CFR 47, Part 15.247, subpart C

5.5 Equipment Category:

Radio Transmitter-DTS

5.6 Antenna:

1.5dBi Whip Antenna

5.7 Accessories:

N/A

5.8 Test Item Condition:

The equipment to be tested was received in good condition.

5.9 Testing Algorithm:

Testing Conducted Sept. 1, 2017 to Oct. 26, 2017: The EUT was set up in a normal testing manner, powered by batteries. EUT constantly transmitted at (915 MHz) mid channel. The highest emissions were recorded in the data tables.

Testing Conducted April 5, 2018: Unit was tested at full output power on Low and High frequencies of 903 MHz and 927 MHz. The highest emissions were recorded in the data tables.

051816

Report Number: F2LQ9793A-01E Page 10 of 49 Issue Date: Apr. 23, 2018

6 LIST OF MEASUREMENT INSTRUMENTATION

Testing Conducted Sept. 1, 2017 to Oct. 26, 2017

Equipment Type	Asset Number	Manufacturer	Model	Serial Number	Calibration Due Date
Shielded Chamber	CL166-E	AlbatrossProjects	B83117-DF435- T261	US140023	Nov. 14, 2017
Temp/Hum. Recorder	CL137	Extech	RH520	CH16992	June 21, 2018
Receiver	CL151	Rohde & Schwarz	ESU40	100319	Nov. 28, 2017
Antenna, Bilog	CL211	Sunol Sciences, Inc.	JB1	A021017	Mar. 2, 2018
Pre-Amplifier	CL153	Keysight Tech.	83006A	MY39500791	June 20, 2018
Amplifier w/Monopole & 18" Loop	CL163	A.H. Systems, Inc.	EHA-52B	100	May 2, 2018
Horn Antenna	CL098	Emco	3115	9809-5580	Dec. 28, 2018
Software:	Tile	e Version 3.4.B.3	3.3 Software Verified: Sept. 1, 2017, Oct. 26, 2017		
Software:	EMC	32, Version 8.53.0	Software Verified: Sept. 1, 2017, Oct. 26, 2017		

Testing Conducted Apr. 5, 2018

Equipment Type	Asset Number	Manufacturer	Model	Serial Number	Calibration Due Date
Shielded Chamber	CL166-E	AlbatrossProjects	B83117-DF435- T261	US140023	Jan. 9, 2019
Spectrum Analyzer	CL147	Agilent	E7402A	MY45101241	Nov. 16, 2018
Receiver	CL151	Rohde & Schwarz	ESU40	100319	Nov. 17, 2019
Antenna	CL175	Sunol	JB3	A030315	Oct. 11, 2019
Software:	EMC	32, Version 8.53.0	Software Verified: Apr. 5, 2018		2018

051816

Report Number: F2LQ9793A-01E Page 11 of 49 Issue Date: Apr. 23, 2018

Applicant: Duncan Parking Technologies, Inc.

Model: LNG-L-A002

7 FCC PART 15.247(a)(2) – OCCUPIED BANDWIDTH

7.1 Requirements:

The 6dB bandwidth shall be greater than 500 kHz.

Bandwidth measurements were made at the low (903 MHz), mid (915 MHz) and upper (927 MHz) frequencies with the resolution Bandwidth set at 100 kHz (video bandwidth set at 300 kHz). The bandwidth was measured using the analyzer's marker function.

Report Number: F2LQ9793A-01E Page 12 of 49 Issue Date: Apr. 23, 2018

Order Number: F2LQ9793A Applicant: Duncan Parking Technologies, Inc. Model: LNG-L-A002

Occupied Bandwidth Test Data 7.2

Test Date(s):	Sept. 1, 2017; Apr. 5, 2018	Test Engineer(s):	J. Knepper; J. Chiller
Ct an dandar	CFR 47 Part 15.247(a)(2);	Air Temperature:	22.2°C; 22.0°C
Standards:	KDB558074	Relative Humidity:	43%; 38%

Low Channel

Date: 5.APR.2018 15:56:38

Mid Channel

Date: 1.SEP.2017 15:00:17

Report Number: F2LQ9793A-01E Page 14 of 49 Issue Date: Apr. 23, 2018

High Channel

Date: 5.APR.2018 16:20:05

Applicant: Duncan Parking Technologies, Inc.

Model: LNG-L-A002

8 FCC PART 15.247(b)(3) – CONDUCTED OUTPUT POWER

The EUT antenna port was fitted with an SMA connector and directly connected to the input of the receiver. The peak power output was measured.

8.1 Requirements:

The peak power output shall be 1 watt (30 dBm) or less when using an antenna with a gain of less than 6dBi. For antennas having a gain of more than 6dBi, the limit is reduced by 1dB for every dB the antenna gain is over 6dBi.

051816

Report Number: F2LQ9793A-01E Page 16 of 49 Issue Date: Apr. 23, 2018

Order Number: F2LQ9793A Applicant: Duncan Parking Technologies, Inc. Model: LNG-L-A002

Conducted Output Power Test Data 8.2

Test Date(s):	Sept. 1, 2017; April 23, 2018	Test Engineer(s):	J. Knepper; J. Chiller
0(CFR 47 Part 15.247(b)(3);	Air Temperature:	22.2°C; 22.3°C
Standards:	KDB558074	Relative Humidity:	45%; 38%

Low Channel

Date: 23.APR.2018 15:13:21

Mid Channel

Date: 1.SEP.2017 15:01:06

Report Number: F2LQ9793A-01E Page 18 of 49 Issue Date: Apr. 23, 2018

High Channel

Date: 23.APR.2018 15:17:55

Applicant: Duncan Parking Technologies, Inc.

Model: LNG-L-A002

9 FCC Part 15.247(d) – CONDUCTED SPURIOUS EMISSIONS

The following tests were performed to demonstrate compliance.

RF Antenna Conducted Test

The EUT antenna port was fitted with an SMA connector and directly connected to the input of the spectrum analyzer.

9.1 Requirements:

All Spurious Emissions must be at least 20dB down from the highest emission level measured within the authorized band up through the tenth harmonic.

Spurious emissions measurements were made at the low, mid, and upper channels with the appropriate spectrum analyzer impulse bandwidth. Additionally, 20dB down points were measured for the low and high channels to verify band edge compliance.

051816

Report Number: F2LQ9793A-01E Page 20 of 49 Issue Date: Apr. 23, 2018

Order Number: F2LQ9793A Applicant: Duncan Parking Technologies, Inc.

Conducted Spurious Emissions Test Data 9.2

Test Date(s):	Sept. 1, 2017; Apr. 5, 2018	Test Engineer(s):	J. Knepper; J. Chiller
Standards:	CFR 47 Part 15.247(d) / Part 15.207	Air Iamparatura:	22.3°C; 22.1°C
	KDB558074	Relative Humidity:	45%; 40%

Low Channel

Report Number: F2LQ9793A-01E Page 21 of 49 Issue Date: Apr. 23, 2018

Date: 1.SEP.2017 14:38:26

Date: 1.SEP.2017 14:38:48

Date: 1.SEP.2017 14:39:45

Report Number: F2LQ9793A-01E Page 24 of 49 Issue Date: Apr. 23, 2018

Date: 1.SEP.2017 15:10:35

Report Number: F2LQ9793A-01E Page 25 of 49 Issue Date: Apr. 23, 2018

Mid Channel

Date: 1.SEP.2017 15:07:19

Report Number: F2LQ9793A-01E Page 26 of 49 Issue Date: Apr. 23, 2018

Date: 1.SEP.2017 15:08:31

Date: 1.SEP.2017 15:09:41

Report Number: F2LQ9793A-01E Page 28 of 49 Issue Date: Apr. 23, 2018

Date: 1.SEP.2017 15:10:02

Order Number: F2LQ9793A

Report Number: F2LQ9793A-01E Page 29 of 49 Issue Date: Apr. 23, 2018

Date: 1.SEP.2017 15:10:35

Report Number: F2LQ9793A-01E Page 30 of 49 Issue Date: Apr. 23, 2018

High Channel

Date: 1.SEP.2017 15:24:40

Report Number: F2LQ9793A-01E Page 32 of 49 Issue Date: Apr. 23, 2018

Date: 1.SEP.2017 15:25:02

Date: 1.SEP.2017 15:25:20

Date: 1.SEP.2017 15:25:44

Report Number: F2LQ9793A-01E Page 35 of 49 Issue Date: Apr. 23, 2018

Date: 1.SEP.2017 15:26:11

Applicant: Duncan Parking Technologies, Inc.

Model: LNG-L-A002

10 RADIATED SPURIOUS EMISSION

The EUT antenna port was fitted with its 1.5dBi gain Whip antenna. Radiated emissions were measured in a Semi-Anechoic Chamber. All emissions generated that fall in the restricted bands per FCC Part 15.205 were examined.

10.1 Requirements:

All emissions that fall in the restricted bands defined in FCC Part 15.205 shall not exceed the maximum field strength listed in FCC Part 15.209(a).

051816

Report Number: F2LQ9793A-01E Page 37 of 49 Issue Date: Apr. 23, 2018

Applicant: Duncan Parking Technologies, Inc.

Model: LNG-L-A002

10.2 Radiated Spurious Emission Test Data

Test Date(s):	Sept. 6-Oct. 26, 2017; Apr. 5, 2018	Test Engineer(s):	J. Knepper; J. Chiller
01	CFR 47 Part 15.247(d);	Air Temperature:	20.3°C; 22.1°C
Standards:	Part 15.209 / KDB558074	Relative Humidity:	50%; 39%

The equipment was fully exercised with all cabling attached to the EUT and was positioned 3 meters from the antenna in a Semi-Anechoic chamber and positioned for maximum emissions. While the equipment was energized, the receiving antenna was scanned from 1.0 meter to 4.0 meters in both vertical and horizontal polarities while the turntable was adjusted 360 degrees and the EUT was tested in all three orthogonal positions to determine the maximum field strength. The tables of measured results can be found below.

Some of the frequencies did not change with the EUT on or off. At those frequencies, the test distance was shortened to 1 meter and still no emissions from the EUT were visible or over the ambient or limit.

Report Number: F2LQ9793A-01E Page 38 of 49 Issue Date: Apr. 23, 2018

Order Number: F2LQ9793A Applicant: Duncan Parking Technologies, Inc.
Model: LNG-L-A002

Measurements

Low Channel - MaxPeak

Frequency (MHz)	Antenna Polarization	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1804.000000	V	59.7	-5.2	54.50	74.0	-19.5
1804.000000	Н	64.7	-5.2	59.50	74.0	-14.5
2706.000000	V	43.4	-4.4	39.00	74.0	-35.0
2706.000000	Н	39.1	-4.4	34.70	74.0	-39.3
2706.000000	Н	38.3	-4.4	33.90	74.0	-40.1
3608.000000	V	49.0	-4.2	44.80	74.0	-29.2
3608.000000	Н	56.4	-4.2	52.20	74.0	-21.8

Low Channel - Average

Frequency (MHz)	Antenna Polarization	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1804.000000	V	45.5	-5.2	40.30	54.0	-13.7
1804.000000	Н	50.6	-5.2	45.40	54.0	-8.6
2706.000000	V	29.0	-4.4	24.60	54.0	-29.4
2706.000000	Н	25.3	-4.4	20.90	54.0	-33.1
2706.000000	Н	25.3	-4.4	20.90	54.0	-33.1
3608.000000	V	32.9	-4.2	28.70	54.0	-25.3
3608.000000	Н	39.1	-4.2	34.90	54.0	-19.1

Low Channel - QuasiPeak

	Frequency (MHz)	Antenna Polarization	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
I	902.000000	V	19.5	11.5	31.0	40.0	-9.0
ĺ	902.000000	Н	19.5	11.5	31.0	40.0	-9.0
ĺ	928.000000	Н	23.9	11.9	35.8	40.0	-4.2
ı	928.000000	V	24.1	11.9	36.0	40.0	-4.0

Page 39 of 49 Report Number: F2LQ9793A-01E Issue Date: Apr. 23, 2018

Band Edge, Low Channel, Vertical

Band Edge, Low Channel, Horizontal

Report Number: F2LQ9793A-01E Page 40 of 49 Issue Date: Apr. 23, 2018

Mid Channel - MaxPeak

Frequency (MHz)	Antenna Polarization	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1826.000000	Н	58.8	-5.0	53.80	74.0	-20.2
1826.000000	V	55.5	-5.0	50.50	74.0	-23.5
2739.000000	Н	38.0	-4.4	33.60	74.0	-40.4
2739.000000	V	41.7	-4.4	37.30	74.0	-36.7
3652.000000	Н	54.3	-3.6	50.70	74.0	-23.3
3652.000000	V	48.4	-3.6	44.80	74.0	-29.2

Mid Channel - Average

Frequency (MHz)	Antenna Polarization	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1826.000000	Н	44.6	-5.0	39.60	54.0	-14.4
1826.000000	V	41.6	-5.0	36.60	54.0	-17.4
2739.000000	Н	25.1	-4.4	20.70	54.0	-33.3
2739.000000	V	27.5	-4.4	23.10	54.0	-30.9
3652.000000	Н	37.3	-3.6	33.70	54.0	-20.3
3652.000000	V	32.5	-3.6	28.90	54.0	-25.1

Mid Channel - QuasiPeak

Frequency (MHz)	Antenna Polarization	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
37.520000	Н	-3.1	27.8	24.70	40.0	-15.3
37.520000	V	-3.1	27.8	24.70	40.0	-15.3
38.240000	Н	-3.1	27.2	24.10	40.0	-15.9
38.240000	V	-3.1	27.2	24.10	40.0	-15.9
410.000000	Н	-3.0	31.0	28.00	46.0	-18.0
410.000000	V	-2.9	31.0	28.10	46.0	-17.9
612.360000	V	-2.3	34.7	32.40	46.0	-13.6
612.360000	Н	-2.5	34.7	32.20	46.0	-13.8
614.000000	Н	-2.3	34.8	32.50	46.0	-13.5
614.000000	V	-2.4	34.8	32.40	46.0	-13.6
960.000000	V	-2.1	40.2	38.10	54.0	-15.9
960.000000	Н	-2.2	40.2	38.00	46.0	-8.0

Report Number: F2LQ9793A-01E Page 41 of 49 Issue Date: Apr. 23, 2018

High Channel – MaxPeak

Frequency (MHz)	Antenna Polarization	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1856.000000	V	52.5	-4.5	48.00	74.0	-26.0
1856.000000	Н	61.7	-4.5	57.20	74.0	-16.8
2784.000000	V	39.8	-4.2	35.60	74.0	-38.4
2784.000000	Н	42.1	-4.2	37.90	74.0	-36.1
3712.000000	Н	54.5	-3.6	50.90	74.0	-23.1
3712.000000	V	44.4	-3.6	40.80	74.0	-33.2

High Channel - Average

Frequency (MHz)	Antenna Polarization	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1856.000000	V	38.3	-4.5	33.80	54.0	-20.2
1856.000000	Н	47.5	-4.5	43.00	54.0	-11.0
2784.000000	V	26.2	-4.2	22.00	54.0	-32.0
2784.000000	Н	27.7	-4.2	23.50	54.0	-30.5
3712.000000	Н	37.7	-3.6	34.10	54.0	-19.9
3712.000000	V	29.9	-3.6	26.30	54.0	-27.7

High Channel - QuasiPeak

Frequency (MHz)	Antenna Polarization	Reading (dBµV)	Cable Loss & Antenna Factor (dB)	Emission (dBµV/m)	Limit (dBµV/m)	Margin (dB)
37.520000	V	-3.0	27.8	24.80	40.0	-15.2
37.520000	Н	-3.0	27.8	24.80	40.0	-15.2
38.240000	V	-3.1	27.2	24.10	40.0	-15.9
38.240000	Н	-3.1	27.2	24.10	40.0	-15.9
608.280000	V	-2.3	34.6	32.30	46.0	-13.7
608.280000	Н	-2.3	34.6	32.30	46.0	-13.7
614.000000	V	-2.2	34.8	32.60	46.0	-13.4
614.000000	Н	-2.2	34.8	32.60	46.0	-13.4
960.000000	V	-2.1	40.2	38.10	54.0	-15.9
960.000000	Н	-2.3	40.2	37.90	46.0	-8.1

Report Number: F2LQ9793A-01E Page 42 of 49 Issue Date: Apr. 23, 2018

Band Edge, High Channel, Vertical

Band Edge, High Channel, Horizontal

Applicant: Duncan Parking Technologies, Inc.

Model: LNG-L-A002

11 FCC PART 15.247(e) – PEAK POWER SPECTRAL DENSITY (PSD)

Peak power spectral density measurements were performed.

11.1 Requirements:

The peak power spectral density shall not exceed +8dBm in any 3 kHz band during any time interval of continuous transmission.

Power spectral density measurements were performed at a resolution bandwidth of 3 kHz (video bandwidth set at 10 KHz). The peak spectral densities were measured at the low, mid, and upper channels.

Report Number: F2LQ9793A-01E Page 44 of 49 Issue Date: Apr. 23, 2018

Order Number: F2LQ9793A Applicant: Duncan Parking Technologies, Inc.

11.2 Peak Power Spectral Density Test Data

Test Date(s):	Sept. 1, 2017; Apr. 5, 2018	Test Engineer(s):	J. Knepper; J. Chiller
Standards:	CFR 47 Part 15.247(e);	Air Temperature:	22.4°C; 22.4°C
Stanuarus.	KDB558074	Relative Humidity:	45%; 38%

Date: 5.APR.2018 16:36:48

051816

Mid Channel

Date: 1.SEP.2017 15:20:22

Report Number: F2LQ9793A-01E Page 46 of 49 Issue Date: Apr. 23, 2018

High Channel

Date: 5.APR.2018 16:34:13

12

PHOTOGRAPHS/EXHIBITS – PRODUCT PHOTOS, TEST SETUPS

Testing Conducted Sept. 1, 2017 to Oct. 26, 2017

Radiated Spurious Emission

Conducted Output Power, Peak Power Spectral Density, Occupied Bandwidth, and Conducted Spurious Emissions

Order Number: F2LQ9793A App

Testing Conducted Apr. 6, 2018

Radiated Spurious Emission

Conducted Output Power, Peak Power Spectral Density, Occupied Bandwidth, and Conducted Spurious Emissions

