Gültig ab 1. Juni 2007, bei Prüfungen alternativ wählbar ab 1. März 2007

 R_p ... paralleler Verlustwiderstand R_s ... serieller Verlustwiderstand

r ... Reflektionsfaktor

S... Stromdichte

S/N ... Signal-Rauschverhältnis in dB, auch als

SNR oder $\frac{S+N}{N}$ bezeichnet

s ... Stehwellenverhältnis oder Welligkeit

T... Periodendauer

 T_K ... Temperatur in Kelvin bezogen auf den absoluten Nullpunkt T_0 ($T_0 = 0$ K = -273,15°C; d.h. 20°C ≈ 293 K)

t ... Zeit

U... Spannung

U_{eff} ... *Effektivspannung*

 U_G ... Gesamtspannung

 U_P ... Primärspannung

 U_R ... effektive Rauschspannung an R

 U_s ... Sekundärspannung

 U_{SS} ... Spannung von Spitze zu Spitze

 U_1 , U_2 ... Teilspannungen

 \hat{U} ... Spitzenspannung

 \hat{U}_{mod} ... Amplitude der Modulationsspannung

 $\hat{U}_{\scriptscriptstyle T}$... Amplitude der HF-Trägerspannung

u ... Pegel der Spannung in dB...

ü... Übersetzungsverhältnis

VSWR ... Stehwellenverhältnis oder Welligkeit

v₁ ... Wechselstromverstärkung

v_U ... Wechselspannungsverstärkung

v_P ... Leistungsverstärkung für Wechselstrom

W ... Arbeit

 X_{C} kapazitiver Blindwiderstand

 X_L ... induktiver Blindwiderstand

Z... Wellenwiderstand

 Z_A ... Ausgangsscheinwiderstand

Z_E ... Eingangsscheinwiderstand

 Z_{F0} ... Feldwellenwiderstand des freien Raumes,

$$Z_{F0} = \sqrt{\frac{\mu_0}{\varepsilon_0}} = 120 \cdot \pi \cdot \Omega$$

Z_P ... Primärer Scheinwiderstand

Z_S... Sekundärer Scheinwiderstand

ΔI ... Stromänderung

ΔI_B ... Basisstromänderung

 ΔI_C ... Kollektorstromänderung

 ΔU ... Spannungsänderung

 $\Delta U_{\it CE}$... Kollektor-Emitter-Spannungsänderung

 $\Delta U_{\scriptscriptstyle BE}$... Basis-Emitter-Spannungsänderung

α ... Abstrahlwinkel der Antenne

 β ... Wechselstromverstärkung

 ε_0 ... elektrische Feldkonstante,

$$\varepsilon_0 = \frac{1}{\mu_0 \cdot c_0^2} = 0,885 \cdot 10^{-11} \frac{As}{Vm}$$

 ε_r ... relative Dielektrizitätszahl (siehe Tabelle 2)

n ... Wirkungsgrad

 $\eta_{\%}$... Wirkungsgrad in Prozent

λ ... Wellenlänge

 μ_0 ... magnetische Feldkonstante,

$$\mu_0 = \frac{4\pi}{10^7} \frac{Vs}{Am} = 1,2566 \cdot 10^{-6} \frac{H}{m}$$

 μ_r ... relative Permeabilität

 $\rho\dots$ spezifischer elektrischer Widerstand

(siehe Tabelle 1)

ω... Kreisfrequenz

Tabelle 1: Spezifischer elektrischer Widerstand ρ

Material	Kupfer	Aluminium	Eisen
ρ in $\frac{\Omega \cdot mm^2}{m}$ bei 20°C	0,0178	0,030	0,17

Tabelle 2: Relative Dielektrizitätszahl ε_r

1	Dielektrikum / Isolierstoff	Luft (trocken)	Voll-PE (Polyäthylen)	Schaum-PE	PTFE (Teflon)
	\mathcal{E}_r	1,00059	2,29	1,5	2,0