MÈTODES NUMÈRICS I

Grau de Matemàtiques. Curs 2017-18. Semestre de primavera

Pràctica 3: Interpolació polinomial

Exercici 1 Interpolació de Lagrange

a) Programeu una funció amb prototipus

que, donats els vectors x i y, que contenen $\{x_0, \ldots, x_n\}$ i $\{f(x_0), \ldots, f(x_n)\}$ respectivament, retorni un vector difer amb les diferències dividides

$$f[x_0], f[x_0, x_1], \dots, f[x_0, \dots, x_n],$$

en aquest ordre.

Verifiqueu aquesta funció per a diferents taules de diferències dividides.

b) Escriviu una funció amb prototipus

que, donats el vector x, que conté $\{x_0, \ldots, x_n\}$, i el vector difer, que conté les diferències dividides $\{f[x_0], f[x_0, x_1], \ldots, f[x_0, \ldots, x_n]\}$, avaluï el polinomi interpolador en el punt z, usant la regla de Horner.

Recordeu que en el mètode de Newton el polinomi interpolador ve donat per

$$p_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{n-1})$$
 amb $a_j = f[x_0, x_1, \dots, x_j], \ j = 0, \dots, n.$

Verifiqueu aquesta funció per a diferents valors de z.

- c) Programeu una funció main que llegeix n, el grau del polinomi interpolador, la llista dels punts d'interpolació $\{x_i, y_i\}, i = 0, \dots, n$ i z abscissa on avaluarem el polinomi, i escriu el valor del polinomi en z.
- d) Programeu una funció main que llegeix a,b els extrems de l'interval on treballem i n el grau del polinomi interpolador i calcula el polinomi interpolador d'una funció f en abscisses equidistants. Després calcularà una aproximació de l'error, mitjançant una malla de pas h en l'interval indicat.

Definiu una funció de prototipus **double** f (**double** x); que retorna el valor d'una funció f en el punt x.

Aplicacions

1 El punt d'ebullició de l'aigua varia amb la pressió atmosfèrica. Donada la següent taula de valors, estimeu el punt d'ebullició quan la pressió és 753 mm de mercuri.

Pressió (mm)	750	755	760	765
Punt Ebullició (°C)	99.630	99.815	100.00	100.184

- **2** Interpoleu la funció $f(x) = \sin(x) \cos(2x)$ en l'interval $[0, 2\pi]$ en abscisses equidistants per a diferents nombre de punts.
- 3 Interpoleu la funció $g(x) = \frac{1}{1+25x^2}$ en l'interval [-1,1] en m abscisses equidistants. Feu-lo per a m = 5, 10, 15, 20. Feu una malla de pas h en els intervals indicats per obtenir una aproximació de l'error.

Exercici 2 Interpolació d'Hermite

a) Programeu una funció amb prototipus

que, donats els vectors x, fx i derfx, que contenen els valors $\{x_0, \ldots, x_n\}$, $\{f(x_0), \ldots, f(x_n)\}$ i $\{f'(x_0), \ldots, f'(x_n)\}$ respectivament, retorni un vector differ amb les diferències dividides

$$f[x_0], f[x_0, x_0], f[x_0, x_0, x_1], \dots, f[x_0, x_0, \dots, x_n, x_n],$$

en aquest ordre.

Verifiqueu aquesta funció per a diferents taules de diferències dividides.

b) Escriviu una funció amb prototipus

que, donats el vector x, que conté $\{x_0, \ldots, x_n\}$, i el vector differ, que conté les diferències dividides $\{f[x_0], f[x_0, x_0], f[x_0, x_0, x_1], \ldots, f[x_0, x_0, \ldots, x_n, x_n]\}$, avaluï el polinomi interpolador d'Hermite en el punt z, usant la regla de Horner.

Recordeu que el polinomi interpolador d'Hermite es pot escriure com

$$p(x) = f[x_0] + f[x_0, x_0](x - x_0) + f[x_0, x_0, x_1](x - x_0)^2 + \dots + f[x_0, x_0, x_1, x_1, \dots, x_n, x_n](x - x_0)^2 + \dots (x - x_{n-1})^2 (x - x_n)$$

c) Feu funcions principals anàlogues a les de la interpolació de Lagrange.

Aplicacions

1 Calculeu el polinomi interpolador d'Hermite de la taula

x	у	y'
1	3	1
2	2	4

- **2** Interpoleu la funció $f(x) = \sin(x) \cos(2x)$ en l'interval $[0, 2\pi]$ en abscisses equidistants per a diferents nombre de punts.
- 3 Interpoleu la funció $g(x) = \frac{1}{1+25x^2}$ en l'interval [-1,1] en m abscisses equidistants per m = 5, 10, 15, 20.