PCT

世界知的所有権機関 国際 事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C12N 15/52, C12Q 1/68, 1/02, G01N 33/53, 33/566, A61K 38/43

(11) 国際公開番号 A1 WO99/40202

(43) 国際公開日

1999年8月12日(12.08.99)

(21) 国際出願番号

PCT/JP99/00422

JP

(22) 国際出願日

1999年2月2日(02.02.99)

(30) 優先権データ

特願平10/26003 特願平10/309316 1998年2月6日(06.02.98) 1998年10月30日(30.10.98)

(71) 出願人(米国を除くすべての指定国について) 田辺製薬株式会社(TANABE SEIYAKU CO., LTD.)[JP/JP] 〒541-8505 大阪府大阪市中央区道修町3丁目2番10号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

杉田尚久(SUGITA, Takahisa)[JP/JP]

〒631-0006 奈良県奈良市西登美ヶ丘3丁目3番9号 Nara, (JP)

櫻井宏明(SAKURAI, Hiroaki)[JP/JP]

〒669-1322 兵庫県三田市すずかけ台4丁目6番地

3番館602号 Hyogo, (JP)

隂山法子(KAGEYAMA, Noriko)[JP/JP]

〒319-1225 茨城県日立市石名坂町1丁目19-4-301 Ibaraki, (JP)

長谷川浩(HASEGAWA, Ko)[JP/JP]

〒532-0036 大阪府大阪市淀川区三津屋中1丁目5番9号

Osaka, (JP)

(74) 代理人

弁理士 津国 暨(TSUKUNI, Hajime)

〒105-0001 東京都港区虎ノ門1丁目22番12号

SVAX TSピル Tokyo, (JP)

(81) 指定国 AL, AU, BA, BB, BG, BR, CA, CN, CU, CZ, EE, GD, GE, HR, HU, ID, IL, IN, IS, KR, LC, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, SL, TR, TT, UA, US, UZ, VN, YU, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAP!特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, MI., MR, NE, SN, TD, TG), ARIPO特许 (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), ユーラシア特許 (AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調査報告書

(54)Title: NF-kB ACTIVATION INHIBITORS TARGETING ON TAK1 AND METHOD FOR IDENTIFYING THE SAME

(54)発明の名称 TAK1を標的とするNF-κ B活性化抑制薬及びその同定方法

(57) Abstract

Nuclear factor kappa B (NF-kB) activation inhibitors focusing on a novel transfer molecule; preventives/remedies for autoimmune diseases, etc.; and novel methods for identifying or screening the same. A method for identifying or screening NF-kB activation inhibitors which involves the step of examining the effect of a test substance of modulating the function of TGF- β activated kinase 1 (TAK1); a method for identifying or screening remedies and/or preventives for autoimmune diseases or intractable diseases with inflammation which involves the step of examining the effect of a test substance of modulating the function of TAK1 in the NF-kB activation pathway; and novel NF-kB activation inhibitors, and remedies/preventives for autoimmune diseases, intractable diseases with inflammation, etc. which are screened or identified by the above methods.

本発明者らは、ヒトのTAK1cDNAの3つのアレル変異体(variant)を単離し、さらに、これらを用いた研究の中で、ヒトTAK1をTAB1と共に発現増強(over expression)させることにより、NF- κ Bの活性化が起こることを見出した。またTAK1は、TAB1と相互作用するとともに、IKK(I_κ Bキナーゼ)複合体と相互作用しその活性化に関与すること、さらに、キナーゼ活性を失った変異型のTAK1は、NF- κ B活性化を阻害することを見出した。

これらの知見から、TAK1が、 $NF-\kappa$ Bの活性化に至るシグナル伝達経路 $(NF-\kappa$ B活性化経路)の中の重要な伝達分子であり、TAK1の機能を抑制 する薬物は $NF-\kappa$ Bの活性化抑制薬となり得ることを見出し、本発明を完成するに至った。

発明の開示

10

15

30

すなわち、本発明は、TAK1($TGF-\beta$ アクチベーテッドキナーゼ1)の機能に対する被験物質の変調作用を検定する工程を含む、 $NF-\kappa$ B活性化抑制薬の同定方法又はスクリーニング方法である。

また、本発明は、NF-κB活性化経路におけるTAK1の機能に対する被験物質の変調作用を検定する工程を含む、自己免疫疾患又は炎症症状を呈する難治性疾患の治療薬及び/又は予防薬の同定方法又はスクリーニング方法である。

さらに、本発明は、前記方法によって選択又は同定された新規なNF- κ B 活 20 性化抑制薬、および、自己免疫疾患、炎症症状を呈する難治性疾患などの治療 薬・予防薬である。

図面の簡単な説明

第1図は、マウスTAK1 (mTAK1) 及び3種のヒトTAK1 (hTA 25 K1a、hTAK1b及びhTAK1c)のアミノ酸配列の比較を示す図;

第2図は、ヒトTAK1をTAB1とともに発現増強させた細胞のNF $-\kappa$ B活性化(ゲルシフトアッセイにおけるNF $-\kappa$ Bの核移行)を示す電気泳動の結果を示した図:

第3図は、ヒトTAK1をTAB1とともに発現増強させた細胞のNF $-\kappa$ B活性化(レポーターアッセイにおけるルシフェラーゼ活性)を示した図;

第4図は、変異型ヒトTΑΚ1を発現させた細胞におけるNF-κB活性化の抑制(ゲルシフトアッセイ(A)及びレポーターアッセイ(B)の結果)を示した図;

第5図は、ヒトTAK1を発現増強させた細胞から得たTAK1を含む免疫 35 沈降画分の免疫ブロッティングの結果(細胞内でのTAK1とTAB1の相互作

(57)要約

本発明は、新しい伝達分子に焦点をあてたニュークレアファクターカッパB (NF- κ B) 活性化抑制薬、自己免疫疾患などの治療薬・予防薬、及び、それらの新規な同定方法及びスクリーニング方法を提供するものであり、

 $TGF-\beta$ アクチベーテッドキナーゼ 1(TAK1)の機能に対する被験物質の変調作用を検定する工程を含む、 $NF-\kappa$ B活性化抑制薬の同定方法又はスクリーニング方法、 $NF-\kappa$ B活性化経路におけるTAK1の機能に対する被験物質の変調作用を検定する工程を含む、自己免疫疾患又は炎症症状を呈する難治性疾患の治療薬及U/又は予防薬の同定方法又はスクリーニング方法、並びに、前記方法によって選択又は同定された新規な $NF-\kappa$ B活性化抑制薬、および、自己免疫疾患、炎症症状を呈する難治性疾患などの治療薬・予防薬が提供される。

```
PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

AE 7ラブ音長国連邦
AL 7ルバニア
AT 7ルバニア
AT 7ルバニア
AT 7ルストリア
AT 7ルストリア
AT 7ルストリア
GA 7ポン
AZ 7ゼルバイジャン
BB 7ルバルドン
BB 8 バルバドス
GD 7クルグア
BB 8 バルバドス
GB 7カルシア
BB 8 バルバドス
GB 7カルシア
BB 8 バルボリア
BB 8 バルボリア
GB 7ルボリア
GB 7ルボリール
GB 7ルボリア
GB 7ルボリア
GB 7ルボリア
GB 7ルボリア
GB 7ルボリア
GB 7ルボリア
GB 7ルボリール
GB 7ルボリア
GB 7ルボリア
GB 7ルボリア
GB 7ルボリア
MB 7カリア
```

Ý .

1

明 細 書

TAK1を標的とするNF-κB活性化抑制薬及びその同定方法

5 技術分野

本発明は、NFールB(Nuclear Factor kappa B)活性化抑制薬、および自 己免疫疾患、炎症症状を呈する難治性疾患の治療薬・予防薬に関する。また、そ れらの新規なスクリーニング方法及び同定方法に関する。

10 背景技術

30

35

転写因子の一つとして知られるNF-κΒは、炎症や免疫応答に関与する種々 の遺伝子の転写調節において重要な役割を果たしている。通常、NF-κBは、 細胞質内では、制御タンパク質であるIκBと結合した不活性な複合体として存在 しているが、細胞に一定の刺激が与えられると、I κ B が修飾・分解を受け複合体 からはずれることにより活性化される。このように活性化されたΝΓ-κΒは、 15 核内へ移行し、ゲノムDNA上の種々の遺伝子の上流域(エンハンサー領域)に 存在する特異塩基配列(約10塩基からなるNF-κB結合配列)と結合して、遺 伝子の転写を活性化する。NF-κB結合配列は、免疫グロブリン遺伝子の他、 IL-1、腫瘍壊死因子などの炎症性サイトカイン、インターフェロン、細胞接 20 着因子などの遺伝子の上流域にも存在し、NF-κΒは、これら遺伝子の発現誘 導を介して、炎症や免疫応答に関っている。

NF-κBは、自己免疫疾患や炎症性疾患の病態形成にも関っており、NFκ Bの活性化抑制作用を有する薬物は、自己免疫疾患(慢性関節リウマチ、全身 性エリテマトーデス、全身性強皮症、ベーチェット病、結節性動脈周囲炎、潰瘍 性大腸炎、糸球体腎炎など)、炎症症状を呈する難治性疾患(変形性関節症、ア 25 テローム硬化症、乾癬、アトピー性皮膚炎など)、各種ウイルス性疾患、エンド トキシンショック、敗血症などの疾患の治療及び予防に効果を示すことが知られ ている。そして、これら疾患の治療・予防薬開発のために、新規なNFーκΒの 活性化抑制薬の探索研究が進められている(Koppら、Science、第265巻、第956 頁、1994年;Baeuerleら、Advances in Immunology 第65巻、第111~137頁、 1997年;特開平7-291859号;及び特開平9-227561号)。

従来のNFーκ Β活性化抑制薬の探索研究においては、薬物のスクリーニング 方法あるいは同定方法として、インビトロで細胞を刺激の存在下(もしくは非存 在下)、被験薬物の存在下もしくは非存在下に培養し、NF-κBの活性化を検 出する方法が一般に用いられている。

2

しかしながら、細胞が一定の刺激(シグナル)を受けてから、NF $-\kappa$ Bの活性化に至るまでのシグナル伝達経路には、プロテインキナーゼなどの各種伝達分子が関わる多くのステップの存在が考えられる。従って、より効率的な創薬研究のためには、主要な役割を果たす伝達分子を明らかにした上で、それらに焦点をしまった新しい薬物スクリーニング方法を確立することが望まれる。しかし、NF $-\kappa$ Bの活性化のメカニズムは、幾つかの伝達因子(TRAF2(TNF- α receptor associated factor 2)、MAPKKK(mitogen-activated protein kinase kinase kinase)の一つであるNIK(NF $-\kappa$ B-inducing kinase)、I κ Bキナーゼ(IKK)、ユビキチン共役酵素、26Sプロテオソームなど)が同定されるなど、少しずつ解明されつつあるものの(Nikolaiら、Nature、第385巻、第540-544頁;Maniatis、Science、第278巻、第818-819頁、1997年;Baeuerleら、Advances in Immunology 第65巻、第111-137頁、1997年)、いまだ不明な点が多く、より進んだメカニズムの解明と新しい伝達分子に焦点をあてたスクリーニング方法が望まれていた。

一方、 $TGF-\beta P クチベーテッドキナーゼ1$ (Transforming growth factor- β -activated kinase 1;「TAK1」とも称する)は、哺乳動物のMAPKKKの一つとして見出されたものである(Yamaguchiら、Science、第270巻、第2008~2011頁、1995年;特開平9-163990)。TAK1は、 $TGF-\beta$ (transforming growth factor- β)によって制御されるPAI-1プロモータを 16性化する。また、その命名の由来ともなっているように $TGF-\beta$ によって活性化を受けることから、 $TGF-\beta$ スーパーファミリーのメンバーによるシグナルの細胞内伝達経路において作用していると考えられてきた。

また、TAK1は、TAK1結合蛋白質 1(TAK1 binding protein 1;「TAB1」とも称する)と結合(相互作用)することにより活性な形となり、シグナル伝達経路においてMAPKKKとして機能することが知られている(Shibuyaら、Science、第272巻、第1179~1182頁、1996年)。しかしながら、TAK1と $NF-\kappa$ B活性化との関連については何ら知られていなかった。

本発明の目的は、新しい伝達分子に焦点をあてた $NF-\kappa$ B活性化抑制薬の同定方法およびスクリーニング方法を提供することにある。また、自己免疫疾患、炎症症状を呈する難治性疾患などの治療薬・予防薬の新規な同定方法およびスクリーニング方法を提供することにある。

さらに、前記方法によって得られる新規な $NF-\kappa$ B活性化抑制薬、および自己免疫疾患、炎症症状を呈する難治性疾患などの治療薬・予防薬を提供することにある。

25

30

10

用)を示した図;

第6図は、ヒトTAK1を発現増強させた細胞から得たTAK1を含む免疫 沈降画分のキナーゼアッセイの結果(TAK1による自己リン酸化TAB1のリ ン酸化)を示した図;

5 第7図は、ヒトTAK1を発現増強させた細胞から得たTAK1を含む免疫 沈降画分および細胞溶解液の免疫ブロッティングの結果(細胞内でのTAK1と IKKの相互作用)を示した図;

第8図は、ヒトTAK1を発現増強させた細胞から得たIKKを含む免疫沈 降画分のIKKキナーゼアッセイの結果(TAK1によるIKK複合体の活性

10 化)を示した図;及び

15

20

25

第9図は、NF $-\kappa$ B活性化経路におけるTAK1の機能を示した模式図 (図中、TRAF2はTNF $-\alpha$ リセプター・アソシエーテッド・ファクター2を、IKKはI κ Bキナーゼを、NIKはNF $-\kappa$ Bインデューシング・キナーゼを、NEMOはNF $-\kappa$ Bエッセンシャル・モデュレーターを、IKAPはIKKコンプレックス・アソシエーテッド・プロティンを、それぞれ表わす)である。

発明を実施するための最良の形態

本発明において用いるTAK1は、いずれの種由来のものであってもよく、例えばヒト、マウス、ラット、ウサギ、ブタ、イヌ、サル、モルモットなどの哺乳動物由来のものが挙げられる。これらのうち、ヒトの治療薬の研究開発に利用する上ではヒト由来のものを用いることが好ましい。

TAK1のcDNA配列およびアミノ酸配列はすでに報告されている (Genbank/EMBL データベース Accession No. D76446; Yamaguchiら、

Science、第270巻、第2008~2011頁、1995年)。また、後記配列表の配列番号 3、4及び5には、発明者らが新たに見出したヒトのTAK1cDNAの3つの アレル変異体(variant)のDNA配列及びそれらにコードされるTAK1のアミノ酸配列を示した。

前記の通り、発明者らが独自に見出した知見によれば、TAK1は、 $NF-\kappa$ B活性化経路において、主要な伝達分子として機能する。

30 TAK1は、細胞内でTAB1(TAK1結合蛋白質1)と相互作用(結合) することによって活性化され、プロテインキナーゼ活性(MAPKKK活性)を 示す活性型となるが、この相互作用により自己リン化とTAB1のリン酸化を生じる。また、TAK1はIKK複合体とも機能的に相互作用する。活性化された TAK1は、IKK複合体を活性化して、NF- κ B活性化経路における伝達分 子としての機能を発揮し、NF- κ B活性化を誘導すると考えられる。

差替え用紙 (規則26)

NF--κB活性化経路におけるTAK1の機能の模式図を第9図に示した。 本発明においては、上記のようなTAK1の機能(特にNF-κBの活性化経路における機能)に着目し、被験物質の作用(特に阻害又は抑制作用)を検定す

る。このような機能としては、より具体的には、例えば

- (1) TAK1とTAB1との相互作用(結合)、
- (2) TAK1のプロテインキナーゼ活性、
- (3) 細胞内のTAK1によるIKK複合体の活性化、
- (4) 細胞内のTAK1により誘導されるNF-kB活性化、 などが挙げられる。これらの機能に対する被験物質の作用を検定する方法を以下 に述べる。
- (1) TAK1とTAB1との相互作用(結合)に対する作用の検定 例えば、TAK1とTAB1との結合を直接検出する方法、共免疫沈降法(coimmunoprecipitation)法により検出する方法、あるいは、ツーハイブリッドシ

ステム(two-hybrid system)(米国特許第5,283,173号、およびProc.Natl.Acad. Sci. USA、第88巻、第9578~9582頁、1991年)などの方法を用いることができる。

TAK1とTAB1との結合を検出する際には、TAK1及びTAB1として はそれらの全体を用いてもよいが、少なくとも両者の結合に関与する領域を含む 部分ポリペプチドを用いてもよい。あるいは、それらに適当なタグ標職(グルタチオン-S-トランスフェラーゼ、6×His、プロテインA、β-ガラクトシダーゼ、マルトースーバインディングプロテイン、フラッグ抗原、Xpress 抗原、HA抗原、Myc抗原などの部分ポリペプチドなど)を付加した融合タン パク質を用いてもよい。

TAK1とTAB1との結合を直接検出する場合は、例えば、RIなどで標識したTAK1(もしくはTAB1)を用い、TAB1(もしくはTAK1)に必要に応じて適当なタグ標識を付加した融合タンパク質との結合を、被験物質の存在下で直接的に検出する。

25 共免疫沈降法(co-immunoprecipitation)法による場合は、例えば、TAK1、TAB1、もしくはこれらに付加したタグ標識を認識する抗体を検出に用いる。まず、TAK1及びTAB1を発現している細胞から細胞溶解液を調製し、一方の蛋白質を認識する抗体を用いて細胞溶解液中のその蛋白質を免疫沈降させる。免疫沈降させた画分中に含まれるもう一方の蛋白質の存在を、免疫プロッティングなどの方法により検出することにより、細胞内での両蛋白質の相互作用(結合)を検出できる。

また、ツーハイブリッドシステムは、レポーター遺伝子の発現をマーカーとする方法である(米国特許第5283173号、およびProc.Natl.Acad.Sci. USA、第88巻、第9578~9582頁、1991年)。

35 ツーハイブリッドシステムを利用する場合、具体的には、例えば、(i) 転写

25

因子の第一領域(DNA結合領域又は転写活性化領域)とTAK1からなる第一の融合蛋白質をコードする遺伝子、(ii)転写因子の第二領域(転写活性化領域又はDNA結合領域)とTAB1からなる第二の融合蛋白質をコードする遺伝子、及び(iii)転写因子のDNA結合領域が結合し得る応答配列およびその下流に連結されたレポーター遺伝子、を含む試験用細胞を用い、これを被験物質と共存させてインキュベートし、レポーター遺伝子の発現を指標として、TAK1とTAB1の結合に対する被験物質の作用を検定する。被験物質がTAK1とTAB1の結合を阻害する場合には、被験物質の存在によってレポーター活性の減少が認められる。

10 第一及び第二の融合蛋白質をコードする遺伝子は通常の遺伝子組換え技術を用いて、設計し構築することができる。

宿主細胞は、例えば、酵母細胞、昆虫細胞及び哺乳動物細胞などが挙げられる。 これらのうち、酵母細胞は培養が容易で迅速に実施できる上、外来遺伝子の導入 など遺伝子組換え技術を適用するのが容易である点で有利である。

15 転写因子は、宿主細胞内で機能するものであればよく、例えば、酵母のGAL 4 蛋白質(Keeganら、Science、第231巻、第699~704頁、1986年、Maら、Cell、 第48巻、第847~853頁、1987年)、GCN4蛋白質(Hopeら、Cell、第46巻、 第885~894頁、1986年)、ADR1蛋白質(Thukralら、Molecular and Cellular Biology、第9巻、第2360~2369頁、1989年)などが挙げられる。

応答配列は、転写因子に対応した応答配列を用いればよく、例えば、転写因子としてGAL4を用いる場合、応答配列としては、UASg(ガラクトース代謝遺伝子の上流域活性化部位: upstream activation site of galactose genes)と称されるGAL4特異的なDNA配列を用いることができる。

レポータ遺伝子も、特に限定されない。例えば、大腸菌由来のβーガラクトシダーゼ遺伝子(lacZ)、バクテリアトランスポゾン由来のクロラムフェニコールアセチルトランスフェラーゼ遺伝子(CAT)、ホタル由来のルシフェラーゼ遺伝子(Luc)など、安定でかつ活性の定量的測定が容易な酵素の遺伝子などを好適に用いることができる。

(2) TAK1のプロテインキナーゼ活性に対する作用の検定

30 例えば、基質蛋白質を含む溶液に、TAK1及びTAB1を含む溶液、及び、ATP(必要に応じてRIなどで標識したもの)を含む溶液を添加し、被験物質の存在下もしくは非存在下で酵素反応を行い、基質蛋白質へのリン酸の取込みなどを指標としてプロティンキナーゼ活性を測定し、被験物質の作用を検定する。

TAK1及びTAB1は、遺伝子組換え技術により適当な宿主細胞(酵母細胞、

35 昆虫細胞及び哺乳動物細胞など)で発現させたものなどを用いることができる。

また、TAK1のN末端領域がTAB1との結合に関与しており、N末端(N末端側22アミノ酸)が欠失したTAK1は、TAB1と結合しない場合にも活性型のシグナル伝達分子として作用することが知られている(Yamaguchiら、及びShibuyaら)ので、TAK1とTAB1の両者を用いる代わりに、N末端が欠失しTAB1非依存的に活性を示す活性変異型TAK1を用いてもよい。

5

10

基質蛋白質としては、TAK1自体、TAB1、もしくはそれらの部分ペプチドを用いることができる。また、IKK及びIKK複合体と機能的に相互作用する分子又はそれらの部分ペプチドもまた基質蛋白質として用いることができる。

この他、アフリカツメガエルのXMEK2 (SEK1) (Shibuyaら、Science、 第272巻、第1179~1182頁、1996年)、ヒトMKK3 (Derijardら、Science、 第267巻、第682~685頁、1995年)、ヒトMKK6 (MAPKK6)

(Raingeaudら、Molecular and Cellular Biology、第16巻、第1247~1255頁、1996年;Moriguchiら、Journal of Biological Chemistry、第271巻、第13675~13679頁、1996年)などのMAPKK(mitogen activated protein kinase

- kinase) やそれらの部分ペプチドを基質として用いることもできる。基質として MAPKKを用いる場合には、MAPKKの活性化 (MAPK (mitogenactivated protein kinase) に対するリン酸化活性の増大) を指標としてTAK1 のプロテインキナーゼ活性を測定することもできる。
- (3) 細胞内のTAK1によるIKK複合体活性化に対する作用の検定 例えば、TAK1(より詳細には活性型のTAK1)を発現増強(over expression)させた細胞を試験用細胞として用いる。このような試験用細胞とし ては、TAK1及びTAB1を共に発現増強した細胞が挙げられ、TAK1及び TAB1の発現用ベクターを適当な宿主細胞中に導入することにより得られる。 或いは、N末端が欠失しTAB1非依存的に活性を示す活性変異型TAK1を発 現増強させた細胞を用いてもよい。

前記試験用細胞を、例えば、被験物質の存在下又は非存在下に培養する。培養 後の細胞から、IKK複合体を含む画分を免疫沈降などにより取得し、これを用 いてIKKキナーゼ反応を行い、IKK複合体の活性化を測定して、被験物質の 作用を検定する。

30 (4) 細胞内のTAK1により誘導されるNF-κB活性化に対する作用の検 定

例えば、前記(3)と同様、活性型TAK1の発現増強細胞を試験用細胞として用い、これを被験物質の存在下又は非存在下に培養する。NFーκB活性化をゲルシフトアッセイなどにより検出して、被験物質の作用を検定する。

35 活性型TAK1の発現増強細胞は、コントロール細胞(ベクターのみを導入し

25

30

た細胞など)と比較するとシグナル伝達分子として働くTAK1の発現量が増加している。従って、TAK1に作用する被験薬物を選択したい場合の試験細胞として好適である。例えば、活性型TAK1を発現増強させた細胞及びコントロール細胞の両者において、被験物質の存在によりNFーκB活性化抑制作用が認められた場合には、該被験物質の作用点はTAK1にある可能性が高いと判断される。

前記(1)~(4)の方法において、試験に用いる細胞としては、ヒトなどの哺乳動物由来の細胞株を好適に使用でき、例えば、ヒトHeLa細胞、ヒトJurkat細胞、ヒトTHP-1細胞、サルCOS-7細胞、チャイニーズハムスターCHO細胞などが挙げられ、このうち、ヒトHeLa細胞、ヒトJurkat細胞、ヒトTHP-1細胞などが好ましい。

前記(1)~(4)の方法において、TAK1、TAB1、もしくはこれらの 融合蛋白質などを発現増強させる場合、既知の配列情報と通常の遺伝子組換え技 術を用いて行うことができる。

TAKlの配列情報は、前記の通りであり、TABlのcDNA配列およびアミノ酸配列もまた報告されている(Genbank/EMBL データベース Accession No. U49928; Shibuyaら、Science、第272巻、第1179~1182頁、1996年)。TABlは、いずれの種由来のものであってもよく、例えばヒト、マウス、ラット、ウサギ、ブタ、イヌ、サル、モルモットなどの哺乳動物由来のものが挙げられる。これらのうち、ヒトの治療薬の研究開発に利用する上ではヒト由来のものを用いることが好ましい。

TAK1、TAB1などのcDNAあるいは遺伝子は、既知のアミノ酸配列や 塩基配列の情報などをもとに設計し合成したプライマーやプローブを用い、通常 のPCR (Polymerase Chain Reaction) 法やRT-PCR法、あるいはDNA ライブラリからのスクリーニングにより単離することができる。これらを適当な ベクターに組み込んで発現用ベクターを構築できる。

ベクターとしては、適当なプロモーター(例えば、CMVプロモーター、SV40プロモーター、LTRプロモーター、TUVプロモーター、TUVプロモーター、TUV で含む動物細胞用のベクター(例えば、レトロウイルス系ベクター、TV のマウイルスベクター、TV の子ベクターなど)を使用できる。

前記(1)~(4)のような検定方法により、TAK1の機能に対する阻害作用や抑制作用が認められた被験物質については、さらに $NF-\kappa$ B活性化に対する抑制作用を確認すればよい。あるいは、自己免疫疾患又は炎症症状を呈する難治性疾患の既知の病態モデル(in vitro又はin vivo)において治療及U/Vは予

15

25

防効果を確認すればよい。

NF-κB活性化は、既知のゲルシフトアッセイ法(Sakuraiら、Journal of Neurochemistry 第59巻、第2067~2075頁、1992年; Sakuraiら、Biochimica Biophysica Acta、第1316巻、第132~138頁、1996年)、レポーターアッセイ法(Tanakaら、Journal of Veterinary Medical Science、第59巻、第575~579頁、1997年; EP-652290-A;特開平7-291859号;特開平9-227561号)などにより調べることができる。

自己免疫疾患又は炎症症状を呈する難治性疾患の既知の病態モデル(in vitro又はin vivo)としては、ヒトT細胞株(Jurkat細胞)を用いるPHA誘発IL-2産生モデル(Wacholtzら、Cell Immunology、第135巻、第285~298頁、1991年)、ヒトマクロファージ系細胞RAW264.7を用いるLPS+IFN-γ誘発iNOs産生モデル(Xieら、Science、第256巻、第225~228頁、1992年)及びヒトHeLa細胞を用いるTNF-α誘発IL-6産生モデルなどのin vitroモデル、ラットアジュバント関節炎モデル(Connorら、European Journal of Pharmacology、第273巻、第15~24頁、1995年)、トリニトロベンゼンスルホン酸誘発大腸炎モデル(Kissら、European Journal of Pharmacology、第336巻、第219~224頁、1997年)及びラット馬杉腎炎モデル(Sakuraiら、Biochimica Biophysica Acta、第1316巻、第132~138頁、1996年)などのin vivoモデルなどが挙げられる。

20 以下、実施例をもって本発明をさらに詳しく説明するが、これらの実施例は本 発明を制限するものではない。

なお、下記実施例において、各操作は特に明示がない限り、「モレキュラークローニング(Molecular Cloning)」(Sambrook, J., Fritsch, E.F.及びManiatis, T. 著、Cold Spring Harbor Laboratory Pressより1989年に発刊)に記載の方法により行うか、または、市販の試薬やキットを用いる場合には市販品の指示書に従って使用した。

実施例

実施例1 ヒトTAK1及びTAB1のcDNA単離

30 (1) ヒトTAK1のcDNA単離

ヒト子宮けい癌由来細胞株HeLa(ATCC CCL2)からポリ(A)RNAを調製した。これを鋳型とし、オリゴdTプライマーを用いて一本鎖cDNAを調製した。

前記で得られた一本鎖 c D N A を鋳型とし、P C R (polymerase chain reaction) 法により、ヒトTAK1の c D N A 断片を取得した。P C R に用いる

プライマーは、マウスTAK1のcDNA配列(Genbank/EMBL データベース Accession No. D76446; Yamaguchiら、Science、第270巻、第2008~2011頁、1995年)を参考にして設計し、DNA合成機で合成した。センスプライマーとしては、制限酵素切断のための認識部位を含む配列(10塩基)及びマウスTAK1cDNAの翻訳開始コドンとその下流の配列(20塩基)からなる30マーの合成プライマー(後記配列表の配列番号1)を用い、アンチセンスプライマーとしては、制限酵素切断のための認識部位を含む配列(10塩基)及びマウスTAK1cDNAの終止コドンとその上流の相補配列(20塩基)からなる30マーの合成プライマー(後記配列表の配列番号2)を用いた。

10 前記PCRで得られた産物(約1.7kbのcDNA断片の混合物)をプローブとし、ヒト肺cDNAライブラリー(Clontech社製)をスクリーニングすることにより、2種のヒトTAK1の全コーディング領域を含むcDNA(hTAK1a-cDNA及びhTAK1b-cDNA)を取得した。

また、前記と同様にして調製したHeLaのmRNAを鋳型とし、RT-PCR (Reverse transcript - polymerase chain reaction) 法により、別途、ヒトTAK1の全コーディング領域を含むcDNA(hTAK1c-cDNA)を得た。プライマーとしては、前記と同様の合成プライマーを用いた。

15

20

30

得られた3種のcDNAについて、ダイデオキシ法により、そのDNA配列を決定した。各cDNA(hTAK1a-cDNA、hTAK1b-cDNA及びhTAK1c-cDNA)について、そのコーディング領域を含む領域のDNA配列およびそれらにコードされるヒトTAK1(hTAK1a、hTAK1b及びhTAK1c)のアミノ酸配列を、後記配列表の配列番号3、配列番号4、及び配列番号5に示した。

h T A K 1 a 、 h T A K 1 b 及び h T A K 1 c の c D N A 配列は、マウスT A 25 K 1 の c D N A 配列と比較すると、コーディング領域における相同性は、各々 9 1. 7%、8 7. 6%及び8 6. 8%であった。

hTAK1aは、579アミノ酸残基からなる。マウスTAK1と比較すると4アミノ酸の置換が見られ、アミノ酸配列における相同性は99.3%であった。hTAK1bは、606アミノ酸残基からなり、hTAK1aと比較するとC末端側にスプライシング変異によって生じたと思われる27アミノ酸の挿入が見られる。また、hTAK1cは、567アミノ酸残基からなり、hTAK1aと比較すると、hTAK1cは、567アミノ酸の挿入があり、さらにその下流(C末端側)に39アミノ酸の欠失が見られた。

3種のヒトTAK 1 およびマウスTAK 1 のアミノ酸配列の比較を、第 1 図に 35 示した。

(2) ヒトTAB1のcDNA単離

20

30

35

WO 99/40202 PCT/JP99/00422

11

なお、特開平 9-1 6 3 9 9 0 号の配列番号 5 に記載されたヒトT細胞株Jurka t由来のTAK 1 は、hTAK 1 aのアミノ酸配列と比較すると、1 アミノ酸の置換(第 3 7 2 番目のArg→His)が見られ、アレル変異体と考えられる。

前項(1)と同様にしてHeLaから調製したポリ(A)RNAを鋳型とし、RT-PCRによりヒトTAB1のcDNAを得た。プライマーは、報告されているヒトTAB1のcDNA配列(Genbank/EMBL データベース Accession No. U49928; Shibuyaら、Science、第272巻、第1179~1182頁、1996年)を参考にして設計し、DNA合成機で合成した。センスプライマーとしては、制限酵素切断のための認識部位を含む配列(10塩基)及びTAB1cDNAの翻訳開始コドンとその下流の配列(20塩基)からなる30マーの合成プライマー(後記配列表の配列番号6)を用い、アンチセンスプライマーとしては、制限酵素切断のための認識部位を含む配列(10塩基)及びTAB1cDNAの終止コドンとその上流の相補配列(20塩基)からなる30マーの合成プライマー(後記配列表の配列番号7)を用いた。

得られた c DNA断片についてDNA配列を決定し、既知のヒトTAB1の全コーディング領域を含んでいることを確認した。

実施例2 TAK1の発現を増強させた細胞におけるNF-κB活性化の検出 (1) ヒトTAK1の発現を増強させた細胞の取得

前記実施例1の(1)において取得した3種のヒトTAK1cDNAを用い、そのコーディング領域を含む部分断片(hTAK1a-cDNAのEcoRI-NheI断片、hTAK1b-cDNAのEcoRI-NheI断片及びhTAK1c-cDNAのEcoRI-XbaI断片)の各々を、真核細胞発現用ベクタープラスミドpcDNA3.

25 1 (+) (Invitrogen社製) のEcoRI-XbaI切断部位に組込んで、TAK1発現用 組換えプラスミドを作製した。

また、前記実施例1の(2)にて取得したヒトTAB1cDNAを用い、そのコーディング領域を含む部分断片(HindIII-EcoRI断片)を、発現用ベクタープラスミドpcDNA3.1 (+)のHindIII-EcoRI切断部位に組込んで、TAB1発現用組換えプラスミドを作製した。

前記TAK1発現用組換えプラスミドを、TAB1発現用組換えプラスミドと共に、もしくは単独で、HeLa細胞にトランスフェクション(一過性トランスフェクション;transient transfection)した。この時、トランスフェクションは、トランスフェクション用カチオン性リポソーム(商品名:LipofectAMINE、Life Technologies社製)を用いて行った。

かくしてTAK1発現増強細胞もしくはTAK1-TAB1共発現増強細胞を得た。これら細胞の培養は、10%ウシ胎児血清、ペニシリン(100単位 \angle ml)及びストレプトマイシン(100 μ g \angle ml)を添加した高グルコース含有ダルベッコーイーグル培地(Gibco社製)中にて行った。

5 (2) ゲルシフトアッセイ

10

15

35

前項(1)で得られたTAK1発現増強細胞およびTAK1-TAB1共発現増強細胞を用い、文献(Sakuraiら、Journal of Neurochemistry 第59巻、第2067~2075頁、1992年;Sakuraiら、Biochim. Biophys. Acta、第1316巻、第132~138頁、1996年)記載の方法に準じて、以下のようにゲルシフトアッセイを行った。すなわち、トランスフェクションの後、細胞を培養し24時間後に細胞から核抽出液を調製した。

この核抽出液($5\mu g$)とR I 標識した検出用プローブとを結合緩衝液(20mM HEPES (pH7.9),0.3mM EDTA,0.2mM EGTA,80mM NaCl,10% グリセロール, $2\mu g/ml$ poly[dI-dC])中、室温で30%間結合反応させた後、反応液についてポリアクリルアミドゲル電気泳動を行った。ゲルを減圧乾燥させた後、オートラジオグラフィーにてプローブと結合したNF $-\kappa$ Bを検出した。また、コントロールとしては、構成的に発現している転写因子であるOct-1 (Octamer-1) (Verrijzer ら、Genes and Development、第 4 巻、第1964-1974頁、1990年)を検出した。

- 20 検出用プローブは、 32 Pで標識した二本鎖の合成DNAを用いた。NF $-\kappa$ B検出用プローブの配列としては、HIVのLTR(Long Terminal Repeat)に存在するNF $-\kappa$ B結合配列と同様のものを用いた。また、Oct-1検出用プローブの配列としては、コンセンサス配列AGCTAAATを含むオリゴヌクレオチドを用いた。
- inloのようにして、ゲルシフトアッセイによりNF-κBの核移行を指標としてNF-κB活性化を調べた結果、第2図に示した通り、ヒトTAK1(hTAK1a、hTAK1b又はhTAK1c)をTAB1とともに発現増強させた場合には、NF-κBの核への移行が見られ、NF-κBの活性化が認められた。このような結果は、ヒトTAK1として、hTAK1a、hTAK1b及びhTAK1cのいずれを用いた場合にも認められたが、特にhTAK1bにおいて、NF-κBの活性化が顕著であった。

一方、ヒトTAK1のみを発現増強させた細胞においては、 $NF-\kappa$ Bの活性化が認められなかった。また、コントロール蛋白質として検出したOct-1は、TAK1及び/又はTAB1の発現増強には影響を受けず、恒常的に発現が見られた。

15

20

25

35

このように、ヒトTAK1の作用の増強に伴って、NFーκBの活性化が観察されたことから、TAK1は、NFーκBの活性化に至るまでのシグナル伝達経路において、伝達分子として主要な働きをしていることがわかった。

(3) レポーターアッセイ (ルシフェラーゼアッセイ)

5 田中らの文献 (Tanakaら、Journal of Veterinary Medical Science、第59巻、 第575~579頁、1997年) 記載の方法に準じ、以下のようにしてレポーターアッセ イ (ルシフェラーゼアッセイ) を行った。

まず、 $NF - \kappa B$ 結合配列 (GGGGACTTTCC)を 4 個連結したオリゴヌクレオチドを ホタルルシフェラーゼ遺伝子 (Luc) の上流に組み込んで、レポータープラスミド (p(kB)4-Luc) を作製した。

次に、前項(1)記載の方法に準じ、TAK1発現用組換えプラスミドを、必要に応じてTAB1発現用組換えプラスミドと共に、HeLa細胞にトランスフェクション(一過性トランスフェクション;transient transfection)した。但、トランスフェクションに際しては、前記で得られたレポータープラスミド(p(kB)4-Luc)を共に用いた。

かくしてレポータープラスミド及びTAK1発現用組換えプラスミド(及びTAB1発現用組換えプラスミド)を含むトランスフェクタントを得た。得られたトランスフェクタントを48時間培養した後、細胞を溶解して調製した抽出液について、ルシフェラーゼ活性を測定した。ルシフェラーゼ活性は、ルシフェラーゼアッセイキット、ピッカジーン(商品名、東洋インキ社製)及び化学発光測定装置(商品名:MicroLumant LB96P、ベルトールドジャパン株式会社製)を用いて測定した。

その結果、第3図に示した通り、ヒトTAK1(hTAK1a、hTAK1b又はhTAK1c)のみを発現増強させた細胞においては、ベクターのみを含む細胞と比較してルシフェラーゼ活性の増加(すなわち、 $NF-\kappa$ Bの活性化)はほとんど認められなかった。しかし、ヒトTAK1をTAB1とともに発現増強させた細胞では、ベクターのみを含む細胞と比較して、ルシフェラーゼ活性の顕著な増加(すなわち、 $NF-\kappa$ Bの活性化)が認められた。

このように、前記のゲルシフトアッセイ法と同様、レポーターアッセイ法(ル 30 シフェラーゼアッセイ法)によっても、ヒトTAK1の作用の増強に伴って、N F-κBの活性化が観察され、TAK1が伝達分子として主要な働きをしている ことが確認された。

また、このようにTAK1発現増強細胞とコントロール細胞を用いるレポーターアッセイの系により、被験薬物のTAK1に対する作用とNFーκB活性化に対する作用を同時に検定することができると考えられる。

25

35

実施例3 ツーハイブリッドシステムを利用したTAK1とTAB1との結合 検出系

前記実施例1の(1)で得たヒトTAK1cDNAの翻訳領域を切り出し、これを、転写因子GAL4のDNA結合領域(GAL4の1から147番目のアミノ酸残基)をコードするDNAを含む発現ベクターpGBT9(Clontech社製、酵母two-hybridシステム用ベクター)のマルチクローニング部位に挿入する。これにより、GAL4のDNA結合領域とヒトTAK1との融合タンパク質を発現するためのプラスミドpGBT9-TAK1を得る。

前記実施例1の(2)で得たヒトTABcDNAの翻訳領域を切り出し、これを、GAL4の転写活性化領域(GAL4の768から881番目のアミノ酸残基)をコードするDNAを含む発現ベクターpGAD424(Clontech社製、酵母 two-hybridシステム用ベクター)のマルチクローニング部位に挿入する。これにより、GAL4の転写活性化部位とTAB1との融合蛋白質を発現するためのプラスミドpGAD424-TAB1を得る。

15 前記で得られる融合蛋白質発現プラスミドpGBT9-TAK1及びpGAD424-TAB1 を宿主酵母細胞株SFY526 (Clontech社製) に導入する。細胞株SFY526は、GA L1とlacZの融合遺伝子が染色体に組込まれており、GAL4遺伝子の欠損変異を有している細胞株である(Bartelら、Bio Techniques、第14巻、第920~924頁、1993年)。形質転換は、それぞれのプラスミドの選択マーカーであるトリプトファン及びロイシンを欠乏させた合成培地にて培養することにより選別を行って、両プラスミドが導入された形質転換株を得る。

前記で得られる酵母形質転換株を、液体培地で培養する。培養の際、培地中には、被験物質を添加(もしくは無添加)する。4~5時間培養後、酵母菌体を遠心分離により回収し、β-ガラクトシダーゼ活性を指標として、TAK1とTAB1の結合(相互作用)を検出する。

被験物質の添加によって、濃度依存的に β -ガラクトシダーゼ活性の減少が認められた場合には、その被験物質には、TAK1とTAB1の結合を阻害する作用を有すると考えられる。

30 実施例 4 TAK1のMAPKKK活性の検出系

ヒトTAK1(又はN末端(22アミノ酸)が欠失したヒトTAK1)を、以下のようにして昆虫細胞の系で発現させ精製する。すなわち、前記実施例1の(1)で得たヒトTAK1cDNAの翻訳領域を用い、タグペプチド(6×His又はグルタチオンーSートランスフェラーゼ)を付加するために設計した適切なDNA配列を含むバキュロウイルス発現ベクターpAcHLT又はpAcGH

10

15

20

15

LT(ファーミンジェン社製)のマルチクローニング部位に挿入し、ヒトTAK 1発現プラスミドを得る。得られたプラスミドを宿主昆虫細胞SF21に導入し 得られた形質転換細胞を培養して、タグペプチドが付加されたヒトTAK1(又 はN末端欠失ヒトTAK1)を発現させ、細胞抽出液から、付加したタグペプチ ドを利用するアフィニティークロマトグラフィーにより精製する。

また、前記と同様にして、ヒトTAB1を昆虫細胞の系で発現させ精製する。 また、ヒトMKK3及びヒトMKK6を、以下のようにして発現させ精製する。 まず、モリグチ(Moriguchi)らの方法(Journal of Biological Chemistry、第 271巻、第13675~13679頁、1996年)に準じ、ヒトMKK3に関する配列情報

(Genbank/EMBL データベース Accession No.L36719; Derijardら、Science、第267巻、第682~685頁、1995年)及びヒトMKK6に関する配列情報 (Genbank/EMBL データベース Accession No.U39656およびU39657; Raingeaudら、Molecular and Cellular Biology、第16巻、第1247~1255頁、

1996年)をもとにプライマーを設計し、これらを用いるPCR法により、ヒトM KK3及びヒトMKK6の全翻訳領域を含むcDNA、又はTAK1によってリン酸化されるアミノ酸残基近傍の配列を含むcDNAを取得する。これらcDN Aを用い、タグペプチド(6×His又はグルタチオンーSートランスフェラーゼ)を付加するために設計した適切なDNA配列を含む大腸菌発現ベクターpQ E-30(QIAGEN社製)又はpGEX-2T(ファルマシア社製)のマルチクローニング部位に挿入して、ヒトMKK3発現プラスミド及びヒトMKK6

発現プラスミドを得る。得られるプラスミドを宿主大腸菌(JM109株など)に導入し得られた形質転換細胞を培養して、タグペプチドが付加されたヒトMKK3及びヒトMKK6を各々発現させ、細胞抽出液から、付加したタグペプチドを利用するアフィニティークロマトグラフィーにより精製する。

前記で得られるヒトTAK1(又はN末端欠失ヒトTAK1)を必要に応じてヒトTAB1と組み合わせて酵素(MAPKKK)として用い、ヒトMKK3もしくはヒトMKK6を基質として用いて、被験物質の存在下又は非存在下で酵素反応を行う。基質蛋白質は予めプレート上に固相化して用い、反応は32Pまたは33P標識ATP100μMを含むトリス緩衝液(20mM Tris-HCl, pH7.5, 2mM EGTA, 10mM MgCl₂)中30℃にて行う。酵素反応後、プレートを洗浄した後シンチレーションカウンターにて32Pまたは33P標識ATPの取込みを測定してすることにより、酵素活性を測定し、被験物質による阻害の有無を判定する。

実施例 5 変異型 T A K 1 を発現させた細胞における N F - κ B 活性化の抑制 35 以下のようにして、キナーゼ活性を欠く変異型 T A K 1 (または野生型 T A K

- 1) を発現増強させた細胞を用い、NF-κB活性化の有無を検出した。
- (1) TAK1及びTAB1の発現ベクター構築とトランスフェクション

ベクタープラスミドpFLAG-CMV2は、フラッグ抗原のタグを付加した 蛋白質を哺乳動物細胞中で発現させるためのベクターである。ヒトTAK1(ヒトTAK1a)の全長cDNAを、pFLAG-CMV2(Kodak社製)の EcoRI-XbaI制限酵素切断部位に組み込むことにより、フラッグ付加された野生型TAK1(Flag-TAK1)の発現ベクターを得た。

また、変異導入用キット(商品名:QuickChange site-directed mutagenesis kit; Stratagene社製)を用い、前記Flag-TAK1発現ベクターのTAK1翻訳領域に変異導入して各種変異発現ベクターを取得し、塩基配列を決定した。かくしてフラッグ付加された変異型TAK1(Flag-TAK1K63W)の発現ベクターを得た。この発現ベクターにより発現される変異型TAK1は、野生型TAK1の63番目のリジン残基がトリプトファン残基に置換されており、TAK1のキナーゼ活性を失っていた。

15 前記のフラッグ付加された野生型又は変異型TAK1(Flag-TAK1又はFlag-TAK1K63W)の発現ベクターを、単独あるいはTAB1発現ベクターとともにHeLa細胞にトランスフェクションし、一過性に発現させた。また、コントロールとして、TAK1発現ベクターにかえてベクターのみを用いた。トランスフェクションは、リポフェクトアミン試薬(Life Technologies社 20 製)を用いて行い、TAB1の発現ベクターは前記実施例2(1)と同じものを用いた。

(2) ゲルシフトアッセイ

10

25

30

35

前記(1)で得た、フラッグ付加された変異型TAK1(又は野生型TAK 1)をTAB1とともに発現増強させた細胞を用い、実施例2(2)と同様にして、ゲルシフトアッセイを行った。

その結果、第4図の(A)に示した通り、ベクターのみ導入した細胞と比較して、野生型TAK1(Flag-TAK1)をTAB1とともに発現増強させた細胞において、 $NF-\kappa$ Bの核移行が増強され、 $NF-\kappa$ B活性化が認められた。しかし、キナーゼ活性を欠く変異型TAK1(Flag-TAK1K63W)の場合は、TAB1とともに発現させても $NF-\kappa$ Bの核移行は増強されなかった。(3)レポーターアッセイ(ルシフェラーゼアッセイ)

前記(1)で得た、変異型TAK1(Flag-TAK1K63W)の発現ベクターをHeLa細胞にトランスフェクションした。但、トランスフェクションに用いるFlag-TAK1K63W発現ベクターの量は、 0μ g、 0.03μ g及 0.1μ gの3種類とし、トータルのDNA量が同じ(0.1μ g)にな

25

30

るようベクタープラスミドで調整した。

また、トランスフェクションの際には、実施例 2 の(3)で得たレポータープラスミド($NF-\kappa$ B結合配列とホタルルシフェラーゼ遺伝子を含む p (k B) 4-L u c) を同時に加えてトランスフェクションした。

5 トランスフェクションの 24 時間後、培地中に $TNF-\alpha$ を最終 濃度 20ng /m 1 となるよう添加した(コントロールは $TNF-\alpha$ 無添加とした)。さらに、 5 時間 培養後、実施例 2 の(3)と同様にして、細胞を溶解し、ルシフェラーゼ 活性を測定した。

その結果を、第4図(B)に示した(図中、TAK1K63Wの無印、+、 ++は、各々Flag-TAK1K63W発現ベクターの添加量 $0\mu g$ 、 $0.03\mu g$ 及 \overline{U} 0. $1\mu g$ を各々表す。)。第4図(B)に示した通り、 $TNF-\alpha$ 刺激によって誘導されたルシフェラーゼ活性の増加($NF-\kappa$ Bの活性化)は、トランスフェクトに用いた変異型TAK1発現ベクターの用量に依存して抑制された。

15 この結果から、キナーゼ活性を欠く変異型TAK1は、細胞内で発現させることにより、 $NF-\kappa$ Bの活性化を抑制することがわかった。

このことは、前記(2)の結果と同様、NF $-\kappa$ B活性化経路においてTAK 1が主要な働きをする分子であることを裏付けるとともに、TAK1のキナーゼ活性やTAK1の活性化を阻害する薬物が、NF $-\kappa$ Bの活性化を抑制することを強く裏付けるものである。

実施例6 細胞内におけるTAK1とTAB1の相互作用

以下のようにして、TAK1をTAB1とともに発現増強させた細胞を用い、 免疫沈降法により細胞内におけるTAK1とTAB1の相互作用(結合)を検出 した。

(1) 細胞のトランスフェクション

まず、実施例5と同様にして、フラッグ付加された野生型TAK1 (Flag - TAK1) 又は変異型TAK1 (Flag - TAK1K63W) の発現ベクターを、単独もしくはTAB1発現ベクターとともに、HeLa細胞にトランスフェクションした。

(2) 免疫沈降および免疫ブロッティング

トランスフェクションの 2 4 時間後、細胞を回収し、以下のようにして細胞溶解液 (cell lysate) を調製した。すなわち、細胞を、細胞溶解緩衝液(25mM HEPES(pH7.7)、0.3M NaCl、1.5mM MgCl₂、0.2mM EDTA、0.1% Triton X-100、20mM βーglycerophosphate、0.1mM sodium orthovanadate、0.5mM

10

25

30

PMSF、1mM DTT、 10μ g/ml aprotinin、 10μ g/ml leupeptine)を用いて溶解した後、3倍に希釈し、10分間水冷した。遠心後、上清を分取し、これを細胞溶解液として以下の操作に用いた。

前記で得た細胞溶解液を、抗フラッグ抗体(M5、コダック社製)とともに 1. 5 時間氷冷インキュベートし、さらにプロテインG セファロース(Pharmacia社製)を添加し、4 $\mathbb C$ 、1. 5 時間緩やかに混合して、免疫複合体をプロテインG セファロースビーズに吸着させた。このビーズを遠心により回収した後、洗浄用緩衝液(20mM HEPES(pH7.7)、50mM NaCl、2.5mM MgCl₂、0.1mM EDTA、0.05% Triton X-100)で 5 回洗浄し、これを免疫沈降画分として以下の操作に用いた。

前記ビーズ(免疫沈降画分)をSDSーポリアクリルアミドゲル電気泳動に供した後、PVDF(polyvinylidene difluoride)膜に転写し、免疫ブロッティングを行って、免疫沈降画分中に存在するTAB1及びTAK1を検出した。TAK1及びTAB1を検出するための抗体としては、抗TAK1抗体(M-17)

15 (Santa Cruz Biotechnology社製)及び抗一TAB1抗体(N-19)(Santa Cruz Biotechnology社製)を各々用いた。

抗フラッグ免疫沈降画分の免疫プロッティングの結果を第5図に示した。上段は、抗TAB1抗体での検出結果、また下段は抗TAK1抗体での検出結果である。

20 第5図に示した通り、野生型TAK1(Flag-TAK1)を発現増強させた細胞の抗フラッグ免疫沈降画分中に、TAB1が共存していた。また、野生型にかえて変異型TAK1(Flag-TAK1K63W)を発現増強させた細胞においても同様に、免疫沈降画分中にTAB1が共存していた。

このように、TAB1はTAK1(野生型及び変異型)と共免疫沈降されたことから、TAK1とTAB1は細胞内で相互作用していることがわかる。

また、野生型TAK1とTAB1は、共発現させた場合に両者ともSDSーポリアクリルアミドゲル電気泳動での移動度がやや減少する傾向が見られたが、キナーゼ活性を有しない変異型TAK1の場合にはこのような移動度の減少は見られなかった。このような移動度の減少は、両蛋白質が、機能的な相互作用によりリン酸化を受けたことを反映していると考えられた。

(3)被験物質の作用の検定

前記(1)と同様にして、TAK1をTAB1とともに発現増強させた細胞を 得、これを被験物質の存在下又は非存在下に培養する。培養後の細胞について、 前記(2)と同様にして免疫沈降法によりTAK1とTAB1の相互作用(結 合)を検出する。被験物質の存在によって、TAK1とTAB1の共免疫沈降が 減少するかどうかを判定することにより、その被験物質のTAK1とTAB1の相互作用(結合)に対する被験物質の作用を検定する。

実施例7 TAK1による自己リン酸化とTAB1リン酸化

5 以下のようにして、TAK1をTAB1とともに発現増強させた細胞から免疫 沈降させたTAK1について、キナーゼアッセイを実施し、TAK1による自己 リン酸化とTAB1のリン酸化を検出した。

(1)細胞のトランスフェクション及び免疫沈降

まず、実施例5と同様にして、フラッグ付加された野生型TAK1 (Flag 10 - TAK1) 又は変異型TAK1 (Flag-TAK1K63W) の発現ベクターを、単独もしくはTAB1発現ベクターとともに、HeLa細胞にトランスフェクションした。トランスフェクション24時間後の細胞から、実施例6と同様にして細胞溶解液を調製し、抗フラッグ抗体による免疫沈降を行った。

(2) キナーゼアッセイ

25

15 前記で得た抗フラッグ免疫沈降画分を用い、以下のようにして、インビトロの キナーゼ反応を行った。

すなわち、免疫沈降画分を、 3 0 μ 1 のキナーゼ緩衝液(20mM HEPES(pH 7.6)、20mM MgCl₂、2mM DTT、20 μ MATP、20mM β -glycerophosphate、20 mM disodium p-nitrophenylphosphate、0.1mM sodium orthovanadate、

20 3μ Ci[γ-³²P]ATP) に加え、30℃、30分間インキュベートした。反応終了後、 反応液をSDSーポリアクリルアミドゲル電気泳動に供し、泳動後のゲルについ てオートラジオグラフィーを実施した。

その結果、第6図に示した通り、野生型TAK1(F1ag-TAK1)とTAB1の両者を発現増強させた細胞の抗フラッグ免疫沈降画分では、TAK1のリン酸化(自己リン酸化)及びTAB1のリン酸化が認められた。しかし、野生型TAK1のみを発現増強させた細胞の免疫沈降画分では、TAK1及びTAB1のいずれのリン酸化も認められなかった。また、キナーゼ活性を欠く変異型TAK1については、TAB1と共に発現増強させた場合でもリン酸化は認められなかった。

30 これらのことから、TAK1はTAB1と共存することにより活性化されて、 TAK1の自己リン酸化及びTAK1によるTAB1のリン酸化が起こると考えられた。

実施例8 細胞内におけるTAK1とIKKとの相互作用

35 以下のようにして、TAK1をIKKとともに発現増強させた細胞を用い、免

疫沈降法により細胞内におけるTAK1とIKKとの相互作用(結合)を検出した。

(1) 細胞のトランスフェクション

10

35

まず、ヒトIKK α およびヒトIKK β の各 c D N A を、ベクタープラスミド p c D N A 3. 1 (+) H i s B (Invitrogen社製) に組込むことによりIKK の発現ベクターを取得した。ヒトIKK α (Genbank/EMBL accession No.AF 012890; Cell、第90巻、第373~383頁、1997年)、およびヒトIKK β (Genbank/EMBL accession No.AF029684; Science、第278巻、第866~869頁、1997年)の c D N A は、ヒト単球由来細胞株 (T H P - 1) のm R N A から逆転写 P C R (Reverse transcriptase-polymerase chain reaction) により取得したものを用いた。

次に、実施例 5 と同様にして、フラッグ付加した野生型TAK1(Flag-TAK1)の発現ベクターを、単独又はTAB1発現ベクターとともにHeLa細胞にトランスフェクションした。この際、前記で得たIKK(XpressーIKKαまたはXpress-IKKβ)の発現ベクターも同時に添加(又は非添加)してトランスフェクションした。

20 (2) 免疫沈降及び免疫ブロッティング

トランスフェクションの24時間後の細胞から、実施例6と同様にして、細胞溶解液を調製、抗フラッグ抗体による免疫沈降を行った。免疫沈降画分及び細胞溶解液についてSDS-ポリアクリルアミド電気泳動を行った後、免疫ブロッティングを行って、IKK及びTAK1を検出した。

IKK (Xpress-IKK α及びβ) 及びTAK1を検出するための抗体 としては、抗Xpress抗体 (M-21) (Santa Cruz Biotechnology社製) 及び抗-TAK1抗体 (M-17) (Santa Cruz Biotechnology社製) を各々用 いた。

抗フラッグ免疫沈降画分の免疫ブロッティングの結果を第7図に示した。

30 上段は、抗フラッグ免疫沈降画分の抗Xpress抗体による検出結果、中段は、 細胞溶解液の抗Xpress抗体による検出結果、また下段は、抗フラッグ免疫 沈降画分の抗TAK1抗体による検出結果である。

第7図に示した通り、TAK1(Flag-TAK1)とIKK($Xpress-IKK\alpha$ 又は $Xpress-IKK\beta$)を発現増強させTAB1は発現増強させSABAなかった細胞では、抗フラッグ免疫沈降画分中にIKKが検出された。この

ようにIKK ($IKK \alpha 及 U\beta$) がTAK1 と共免疫沈降されたことから、TAK1 とIKK ($IKK \alpha 及 U\beta$) は細胞内で相互作用していることがわかった。しかし、TAK1、IKK とともにTAB1 も発現増強させた細胞では、抗フラッグ免疫沈降画分中にIKK は検出されなかった。このことから、TAK1 は、活性化されていない状態では細胞内でIKK と安定な結合を生じるが、TAB1 により活性化された状態では、細胞内でのIKK との結合との安定な結合が見られないと考えられた。

これらのことから、TAB1で活性化されたTAK1の存在によって、IKKの両サプユニット($IKK\alpha$ 及び β)は細胞内でリン酸化を受けるものと考えられた。すなわち、TAK1は、NIK(Regnier et al.,1997; Woronicz et al., 1997)と同様に、IKK(又はIKK複合体と機能的に相互作用する分子)をリン酸化して、IKKのキナーゼ活性を促進することにより、 $NF-\kappa$ B活性化を誘導すると考えられる。

20 実施例 9 TAK 1 による I K K 複合体の活性化

1.0

35

以下のようにして、TAK1をTAB1とともに発現増強させた細胞から免疫 沈降させたIKK複合体について、IkBを基質とするキナーゼ反応(IKKキ ナーゼアッセイ)を実施し、IKK複合体の活性化を検出した。

(1) 細胞のトランスフェクション及び免疫沈降

25 まず、実施例 5 と同様にして、フラッグ付加された野生型TAK1(Flag - TAK1)又は変異型TAK1(Flag-TAK1K63W)の発現ベクターを、単独もしくはTAB1発現ベクターとともに、HeLa細胞にトランスフェクションした。

トランスフェクションの 24 時間後の細胞から、実施例 6 と同様にして、細胞溶解液を調製し、免疫沈降を行った。但、免疫沈降に用いる抗体は、内在性 IK K複合体を免疫沈降させるためには抗 $IKK\alpha$ 抗体(H-744)(Santa Cruz Biotechnology社製)を用い、また外来性 IKKの免疫沈降のためには抗 Xpred pred p

s 抗体 (M-21) (Santa Cruz Biotechnology社製) を用いた。用いた抗 I K K α 抗体は、 I K K α と同様 I K K β も認識する。

(2) IKKキナーゼアッセイ

10

15

25

35

前記で得られた免疫沈降画分について、実施例7と同様にして、インビトロのキナーゼ反応を行った。但、基質として、組換え I κ B (2.5 μ g) を反応系に添加した。反応終了後、反応液をSDSーポリアクリルアミドゲル電気泳動に供し、泳動後のゲルについてオートラジオグラフィーを実施した。

反応基質とする組換え I_{κ} Bとしては、GST(グルタチオンーS-トランスフェラーゼ)のC 末端にヒト I_{κ} B α の第 1 から 5 4 番目までのアミノ酸残基からなる部分ポリペプチドを連結した融合ペプチド(以下、 $GST-I_{\kappa}$ B α 1-5 4)を用いた。

組換え $I \kappa B$ は、大腸菌宿主にG S T - $I \kappa B \alpha 1$ - 54 の発現ベクターを導入した形質転換株の培養物から調製した。<math>G S T - $I \kappa B \alpha 1$ - 54 $の発現ベクターは、ヒト <math>I \kappa B \alpha$ (Genbank/EMBL accession No.M69043; Cell、第65巻、第1281~1289頁、1991年)の c D N A のうち第 1 から 5 4 番目までのアミノ酸残基をコードする c D N A 部分を、ベクタープラスミド p G E X - 2 T (Pharmacia社製)の B α m H I - E c α R I 切断部位に挿入して作製した。

IKKキナーゼアッセイの結果を第8図に示した。(A)は、内在性IKK複合体(抗IKKα抗体による免疫沈降画分)のキナーゼアッセイの結果であり、

20 (B) は、外来性 I K K (抗 X p r e s s 抗体による免疫沈降画分) のキナーゼ アッセイの結果である。

第8図(A)に示した通り、フラッグ付加した野生型TAK1(Flag-TAK1)およびTAB1を共に発現増強させた場合、内在性IKK複合体のIKKキナーゼ活性は顕著に増加した。一方、キナーゼ活性を欠く変異型TAK1(Flag-TAK1K63W)はIKK活性を促進しなかった。

また、外来性 I K K を発現させた細胞においても、第 8 図(B)に示した通り、野生型 T A K 1を T A B 1と共に発現増強させた場合、外来性 I K K α 及び β の I K K キナーゼ活性が増大したが、変異型 T A K 1では T A B 1と共に発現増強させても I K K キナーゼ活性は増大しなかった。

30 これらの結果は、TAB1により活性化されたTAK1は、IKK α 及びIK K β を活性化することによりNF $-\kappa$ Bを活性化することを裏付ける。

(3)被験物質の作用の検定

前記と同様の系を用い、TAK1によるIKK複合体活性化に対する被験物質 の作用を検定することができる。すなわち、TAK1をTAB1とともに発現増 強した細胞を得、これを被験物質の存在下又は非存在下に培養する。培養後の細 胞について、前記と同様にしてIKK複合体画分を免疫沈降させ、免疫沈降画分のIKKキナーゼ活性を測定して、被験物質の存在によりIKKキナーゼ活性が 減少するかどうかを判定する。

5 産業上の利用可能性

10

WO 99/40202

本発明の方法は、新しい伝達分子に焦点をあてたNF- κ B活性化抑制薬の同 定方法およびスクリーニング方法となる。本発明によれば、TAK1に作用点を 有する、新しいタイプのNF- κ B活性化抑制薬を得ることができる。また、本 発明の方法は、自己免疫疾患、炎症症状を呈する難治性疾患などの疾患の治療薬 及び/又は予防薬の同定方法及びスクリーニング方法としても有用である。

本発明の方法により選択された薬物、あるいは同定された薬物は、作用点が明らかとなっているので、医薬品としての開発に有利である。

また、TAK1の機能を阻害又は抑制する作用を有する薬物は、新しいタイプのNF-κB活性化抑制薬となるほか、自己免疫疾患(慢性関節リウマチ、全身性エリテマトーデス、全身性強皮症、ベーチェット病、結節性動脈周囲炎、潰瘍性大腸炎、糸球体腎炎など)、炎症症状を呈する難治性疾患(変形性関節症、アテローム硬化症、乾癬、アトピー性皮膚炎など)、各種ウイルス性疾患、エンドトキシンショック、敗血症などの疾患の治療薬及び/又は予防薬となる。

請求の範囲

- TGF-βアクチベーテッドキナーゼ1 (TAK1) の機能に対する被験物質の変調作用を検定する工程を含む、ニュークレアファクターカッパB (NF κ B) 活性化抑制薬の同定方法又はスクリーニング方法。
 - 2. 被験物質の変調作用が、TAK1の機能を阻害又は抑制する作用である請求の範囲第1項記載の方法。
 - 3. TAK1の機能が、

30

- (1) TAK1とTAK1結合蛋白質1との相互作用、
- 10 (2) TAK1のプロテインキナーゼ活性、
 - (3) 細胞内のTAK1によるIκBキナーゼ(IKK) 複合体の活性化、及び
 - (4) 細胞内のTAK1により誘導されるNF-κB活性化
 - から選択されるものである、請求の範囲第2項記載の方法。
- 4. TAK1の機能が、TAK1のプロテインキナーゼ活性である請求の範囲 15 第2項記載の方法。
 - 5. TAK1の機能が、細胞内のTAK1によるIKK複合体の活性化である 請求の範囲第2項記載の方法。
 - 6. TAK1とTAK1結合蛋白質1とを発現増強させた試験用細胞を用い、 試験用細胞を被験物質と共存させる工程を含む請求の範囲第1項記載の方法。
- 20 7. NF-κ B活性化抑制薬が同時に自己免疫疾患又は炎症症状を呈する難治性疾患の治療薬及び/又は予防薬である、請求の範囲第1項~第6項のいずれか1項記載の方法。
 - 8. 請求の範囲第1項~第6項のいずれか1項記載の方法により、選択又は同定された、NF-κB活性化抑制薬。
- 25 9. TAK1の機能を変調させる薬物を主成分とするNF-κB活性化抑制薬。 10. NF-κB活性化経路におけるTAK1の機能に対する被験物質の変調 作用を検定する工程を含む、自己免疫疾患又は炎症症状を呈する難治性疾患の治 療薬及び/又は予防薬の同定方法又はスクリーニング方法。
 - 11. 請求の範囲第10項記載の方法により、選択又は同定された自己免疫疾患又は炎症症状を呈する難治性疾患の治療薬及び/又は予防薬。
 - 12. NF-κB活性化経路におけるTAK1の機能を阻害又は抑制する作用を有する薬物を主成分とする、自己免疫疾患又は炎症症状を呈する難治性疾患の治療薬及び/又は予防薬。

第1図

		11 T 1	
mTAK1	:	MSTASAASSSSSSASEMIEAPSQVLNFEEIDYKEIEVEEVVGRGAFGVVCKAKWRAKDV	60
hTAKla		MSTASAASSSSSSAGEMIEAPSQVLNFEEIDYKEIEVEEVVGRGAFGVVCKAKWRAKDVI	
hTAK1b	:	MSTASAASSSSSSAGEMIEAPSQVLNFEEIDYKEIEVEEVVGRGAFGVVCKAKWRAKDV.	60
	٠		60
hTAK1c	:	MSTASAASSSSSSAGEMIEAPSQVLNFEEIDYKEIEVEEVVGROAFGVVCKAKWRAKDV	60
		And designation of the state of	
mTAK1		AIKQIESESERKAFIVELRQLSRVNHPNIVKLYGACLNPVCLVMEYAEGGSLYNVLHGAE.	120
	•		120
hTAKla	:	aikqieseserkafivelrolsrvnhpnivklygaclnpvclvmbyaeggslynvlhgae:	120
hTAK1b	:	AIKQIESESERKAPIVELRQLSRVNHPNIVKLYGAČLNPVCLVMBYÄEGGSLYNVLHGAE	120
hTAKlc	:	aikqieseserkafivelrqlsrvnhpnivklygaclnpvclvmeyaeggslynvlhgae	120
		The second section of the second section is a second section of the second section of the second section is a second section of the second section is a second section of the second section of the second section is a second section of the second section of the second section is a second section of the second section of the second section is a second section of the s	
mTAK1		DE DYUMS & UNICHOLOGICA CONTROL VICTORIAN CONTROL VICTORIA CONTROL VICTORIAN CONTROL VICTORIAN CONTROL VICTORIA CONTROL VICTORIA CONTROL VICTORIA V	
	•	PLPYYTAAHAMSWCLQCSQGVAYLHSMQPKALIHRDLKPPNLLLVAGGTVLKICDFGTAC	180
hTAKla	•	PLPYYTAAHAMSWCLQCSQGVAYLHSMQPKALIHRDLKPPNLLLVAGGTVLKICDFGTAC:	180
hTAK1b	:	PLPYYTAAHAMSWCLQCSQGVAYLHSMQPKALIHRDLKPPNLLLVAGGTVLKICDFGTAC.	180
hTAK1c	:	PLPYYTAAHAMSWCLQCSQGVAYLHSMQPKALIHRDLKPPNLLLVAGGTVUKICDFGTAC	180
		manufacture of the Company of the Co	
mTAK1		DTOMMENDED A MAN DESIRE CONCERNO DESIRE DE LA CONCERNO DEL CONCERNO DE LA CONCERNO DE LA CONCERNO DEL CONCERNO DE LA CONCERNO	
hTAK1a	:	DIOTHMINNKGSAAWMAPEVFEGSNYSEKCDVFSWGIILWEVITRKPFDEIGGPAFRIM	240
	:	DIQTHMTNNKGSAAWMAPEVFEGSNYSEKCDVFSWGIILWEVITRRKPFDEIGGPAFRIM	240
htak1b	;	DIQTHMTNNKGSAAWMAPEVFEGSNYSEKCDVFSWGIILWEVITRKPFDEIGGPÄFRIM:	240
hTAK1c	:	DIQTHMTNNKGSAAWMAPEVFEGSNYSEKCDVFSWGIILWEVITRRKPFDEIGGPAFRIM.	240
		。2. Acaditation to a comparison and the contract of the contr	
mTAK1		And the second s	
	:	WAVHNGTRPPLIKNLPKPIESLMTRCWSKDPSQRPSMEEIVKIMTHLMRYFPGADEPLQY	300
hTAK1a	:	WAVINGTRPPLIKNLPKPIESLMTRCWSKDPSQRPSMEEIVKIMTHLMRYFPGADEPLQX.	300
hTAK1b	:	WAVHNGTRPPLIKNLPKPIESLMTRCWSKDPSQRPSMEEIVKIMTHLMRYFPGADEPLQY!	300
hTAK1c	:	WAVHINGTRPPLIKNUPKPIESLMTRCWSKDPSQRPSMEETVRIMTHLWRYFYGADEPLQY	300
		AN AN AND AND AND AND AND AND AND AND AN	
mTAK1		TO THE STATE OF TH	
		PCQYSDEGQSNSATSTGSFMDIASTNTSNKSDTNMEQVPATNDTIKRLESKLLKNQAKQQ;	360
hTAK1a		PCQYSDEGQSNSATSTGSFMDIASTNTSNKSDTNMEQVPATNDTIKRLESKULKNQAKQQ	360
hTAK1b	:	PCQYSDEGQSNSATSTGSFMDIASTNTSNKSDTNMEQVPATNDTIKKLESKLLKNQAKQQ	360
hTAK1c	:	PCQYSDEGQSNSATSTGSFMDIASTNTSNRSDTNMEQVPATNDTIKRLESKLLKNQAKOO:	360
		The state of the s	
mTAK1		SESGRLSLGASRGSSVESLPPTSEGKRMSADMSEIEARINATA	
	•		403
hTAKla	•	SESGRLSLGASRGSSVESLPPTSEGKRMSADMSEIEARIAATI	403
hTAK1b	:	SESGRESEGASRGSSVESEPPTSEGKRMSADMSEIEARIAATTAYSKPKRGHRKTASFGN:	420
hTAK1c	:	SESGRLSLGASRGSSVESLPPTSEGKRMSADMSEIEARIAATTAYSKPKRGHRKTASFON	420
		of the state of the first of the state of th	
mTAK1		GNGQPRRRSIQDLTVTGTEPGQVSSRSSSPSVRMITTSGPTSEKHARSHP	453
hTAK1a	:		
	٠.	GNOQPRRRSIQDLTVTGTEPGQV9SRSS9PSVRMITTSGPT8EKPTRSHP	453
hTAK1b	• .,	ILDVPEIVISGNGQPRRRSIQDLTVTGTEPGQVSSRSSSPSVRMITTSÖPTSERPTRSHP	480
hTAK1c	:	:ILDVPEIVISGNGQPRRRSIQDLTVTGTEPGQVSSRSSPSVRHITTSGPTSERPTRSHP:	480
		to the first of the second of	
mTAK1		WTPDDSTDTNGSDNSIPMAYLTLDHQLQPLAPCPNSKESMAVFEQHCKMAQEYMKVQTEI	513
hTAK1a	:		
	٠	wtpddstdtngsdnsipmayltldhqlqplapcpnskesmavfeqhckmaqeymkvqtei	513
hTAK1b	::	wtpddstdtngsdnsipmayltldhqlqplapcpnskesmavfeqhckmaqeymkvqtei"	540
hTAKlc	:	WTPDDSTDTNGSDNSIPMAYLTLDHQLQ	508
mTAK1	•	ALLLQRKQELVAELDQDEKDQQNTSRLVQEHKKLLDENKSUSTYYQQCKKQDEVIRSQQQ	573
hTAKla	:	ATT OF CONTROL OF THE PROPERTY	
	•	ALLLQRKQELVAELDQDEKDQQNTSRLVQEHKKLLDENKSLSTYYQQCKKQLEVIRSQQQ	573
hTAK1b	:	ALLLORKQELVAELDQDEKDQQNTSRLVQEHKKLLDENKSLSTYYQQCKKQLEVIRSQQQ	600
hTAKlc	:	QELVAELDQDEKDQQNTSRLVQEHKKLLDENKSLSTYYQQCKKQLEVIRSQQQ	561
		The state of the s	
mTAK1		KROGTS	579
hTAKla		KROGTS	
hTAK1b		KROGTS:	579
			606
hTAKlc	:	KRQGTS	567

PCT/JP99/00422

WO 99/40202

2/7

第2図

第3図

3/7 第4図(A)

第4図(B)

4/7

第5図

第6図

第7図

第8図(A)

第8図(B)

第9図

SEQUENCE LISTING

```
<110> TANABE SEIYAKU CO., LTD.
<110> SUGITA Takahisa
<110> SAKURAI Hiroaki
<110> KAGEYAMA Noriko
<110> HASEGAWA Ko
<120> NF-κB activation depressant targeting TAK1 and identifying method
thereof
<130> FP2293PCT
<150> JP26003/1998
<151> 6-FEB-1998
<150> JP309316/1998
<151> 30-OCT-1998
<160> 7
<170> Microsoft Word 97
<210> 1
<211> 30
<212> nucleic acid
<213> other nucleic acid (Synthesized primer)
<400> 1
GGCCAGATCT ATGTCGACAG CCTCCGCCGC
                                               30
<210> 2
<211> 30
<212> nucleic acid
<213> other nucleic acid (Synthesized primer)
<400> 2
GCGCAGATCT TCATGAAGTG CCTTGTCGTT
                                               30
<210> 3
<211> 2785
<212> nucleic acid
```

2/14

<213> cDNA to mRNA

-10	n> :	2													
<400> 3 GGACACGGCT GTGGCCGCTG CCTCTACCCC CGCCACGGAT CGCCGGGTAG TAGGACTGCG 6												G 60			
											162				
			GCC									TCT	TCG	GCC	207
			Ala												
1	50.	••••		5		••••			10	-	-			15	
	GAG	ATG	ATC		GCC	CCT	TCC	CAG		СТС	AAC	TTT	GAA		252
			Ile												
0.,	٠.۵			20					25					30	
ATC	GAC	TAC	AAG		ATC	GAG	GTG	GAA		GTT	GTT	GGA	AGA	GGA	297
			Lys												
	•	J	•	35					40			•		45	
GCC	TTT	GGA	GTT	GTT	TGC	AAA	GCT	AAG	TGG	AGA	GCA	AAA	GAT	GTT .	342
Ala	Phe	Gly	Val	Val	Cys	Lys	Ala	Lys	Trp	Arg	Ala	Lys	Asp	Val	
				50					55					60	
GCT	ATT	AAA	CAA	ATA	GAA	AGT	GAA	TCT	GAG	AGG	AAA	GCG	TTT	ATT	387
Ala	Ile	Lys	Gln	Ile	Glu	Ser	Glu	Ser	Glu	Arg	Lys	Ala	Phe	Ile	
				65					70					75	
GTA	GAG	CTT	CGG	CAG	TTA	TCC	CGT	GTG	AAC	CAT	CCT	AAT	ATT	GTA	432
Val	Glu	Leu	Arg	Gln	Leu	Ser	Arg	Val	Asn	His	Pro	Asn	Ile	Val	
				80					85					90	
AAG	CTT	TAT	GGA	GCC	TGC	TTG	AAT	CCA	GTG	TGT	CTT	GTG	ATG	GAA	477
Lys	Leu	Tyr	Gly	Ala	Cys	Leu	Asn	Pro	Val	Cys	Leu	Val	Met	Glu	
				95					100					105	
TAT	GCT	GAA	GGG	GGC	TCT	TTA	TAT	AAT	GTG	CTG	CAT	GGT	GCT	GAA	522
Tyr	Ala	Glu	Gly	Gly	Ser	Leu	Tyr	Asn	Val	Leu	His	Gly	Ala	Glu	
				110					115					120	
CCA	TTG	CCA	TAT	TAT	ACT	GCT	GCC	CAC	GCA	ATG	AGT	TGG	TGT	TTA	567
Pro	Leu	Pro	Tyr	Tyr	Thr	Ala	Ala	His	Ala	Met	Ser	Trp	Cys	Leu	
				125					130					135	
CAG	TGT	TCC	CAA	GGA	GTG	GCT	ŢAŢ	CTT	CAC	AGC	ATG	CAA	CCC	AAA	612
Gln	Cys	Ser	Gln	Gly	Val	Ala	Tyr	Leu	His	Ser	Met	Gln	Pro	Lys	

				140					145					150	
GCG	СТА	ATT	CAC	AGG	GAC	CTG	AAA	CCA	CCA	AAC	TTA	CTG	CTG	GTT	657
Ala	Leu	Ile	His	Arg	Asp	Leu	Lys	Pro	Pro	Asn	Leu	Leu	Leu	Val	
				155					160					165	
GCA	GGG	GGG	ACA	GTT	CTA	AAA	ATT	TGT	GAT	TTT	GGT	ACA	GCC	TGT	702
Ala	Gly	Gly	Thr	Val	Leu	Lys	Ile	Cys	Asp	Phe	Gly	Thr	Ala	Cys	
				170					175					180	
GAC	ATT	CAG	ACA	CAC	ATG	ACC	AAT	AAC	AAG	GGG	AGT	GCT	GCT	TGG	747
Asp	Ile	Gln	Thr	His	Met	Thr	Asn	Asn	Lys	Gly	Ser	Ala	Ala	Trp	
				185					190					195	
ATG	GCA	CCT	GAA	GTT	TTT	GAA	GGT	AGT	AAT	TAC	AGT	GAA	AAA	TGT	792
Met	Ala	Pro	Glu	Val	Phe	Glu	Gly	Ser	Asn	Tyr	Ser	Glu	Lys	Cys	
				200					205					210	
					GGT										837
Asp	Val	Phe	Ser	-	Gly	Ile	He	Leu		Glu	Val	Ile	Thr		
				215					220					225	
					GAG										882
Arg	Lys	Pro	Phe	_	Glu	He	Gly	Gly		Ala	Phe	Arg	He		
maa	0.00	000	0.10	230	000	4.0m	004	004	235	omo	400.4		4.400	240	0.07
					GGT										927
Trp	Ala	Val	HIS		Gly	inr	Arg	Pro		Leu	He	Lys	Asn		
CCT	A A C	CCC	4.TYT	245	ACC	CTC	ለጥር	۸CT	250	ጥርጥ	ጥርር	ጥርጥ	A A A	255 CAT	072
					AGC										972
FIO	Lys	110	He	260	Ser	Leu	Met	1111	265	Cys	пр	ser	Lys	270	
ССТ	ፐርር	CAC	CCC		TCA	ΔТС	CAC	САА		стс	ΔΔΔ	ΔΤΔ	ATG		1017
					Ser										101.
	oci	0111	g	275	001	IIIC C	u.u	o.u	280	, , ,	D) S	110		285	
CAC	TTG	ATG	CGG		TTT	CCA	GGA	GCA		GAG	CCA	ТТА	CAG		1062
					Phe										
			8	290			,		295					300	
CCT	TGT	CAG	TAT		GAT	GAA	GGA	CAG		AAC	TCT	GCC	ACC		1107
					Asp									_	
				305	-				310					315	

PCT/JP99/00422 WO 99/40202 4/14 ACA GGC TCA TTC ATG GAC ATT GCT TCT ACA AAT ACG AGT AAC AAA Thr Gly Ser Phe Met Asp Ile Ala Ser Thr Asn Thr Ser Asn Lys AGT GAC ACT AAT ATG GAG CAA GTT CCT GCC ACA AAT GAT ACT ATT Ser Asp Thr Asn Met Glu Gln Val Pro Ala Thr Asn Asp Thr Ile AAG CGC TTA GAA TCA AAA TTG TTG AAA AAT CAG GCA AAG CAA CAG Lys Arg Leu Glu Ser Lys Leu Leu Lys Asn Gln Ala Lys Gln Gln AGT GAA TCT GGA CGT TTA AGC TTG GGA GCC TCC CGT GGG AGC AGT Ser Glu Ser Gly Arg Leu Ser Leu Gly Ala Ser Arg Gly Ser Ser GTG GAG AGC TTG CCC CCA ACC TCT GAG GGC AAG AGG ATG AGT GCT Val Glu Ser Leu Pro Pro Thr Ser Glu Gly Lys Arg Met Ser Ala GAC ATG TCT GAA ATA GAA GCT AGG ATC GCC GCA ACC ACA GGC AAC Asp Met Ser Glu Ile Glu Ala Arg Ile Ala Ala Thr Thr Gly Asn

GGA CAG CCA AGA CGT AGA TCC ATC CAA GAC TTG ACT GTA ACT GGA Gly Gln Pro Arg Arg Arg Ser Ile Gln Asp Leu Thr Val Thr Gly ACA GAA CCT GGT CAG GTG AGC AGT AGG TCA TCC AGT CCC AGT GTC Thr Glu Pro Gly Gln Val Ser Ser Arg Ser Ser Ser Pro Ser Val AGA ATG ATT ACT ACC TCA GGA CCA ACC TCA GAA AAG CCA ACT CGA Arg Met Ile Thr Thr Ser Gly Pro Thr Ser Glu Lys Pro Thr Arg AGT CAT CCA TGG ACC CCT GAT GAT TCC ACA GAT ACC AAT GGA TCA Ser His Pro Trp Thr Pro Asp Asp Ser Thr Asp Thr Asn Gly Ser GAT AAC TCC ATC CCA ATG GCT TAT CTT ACA CTG GAT CAC CAA CTA Asp Asn Ser Ile Pro Met Ala Tyr Leu Thr Leu Asp His Gln Leu

Gin Pro Leu Ala Pro Cys Pro Asn Ser Lys Giu Ser Met Ala Val																
TTT GAA CAG CAT TGT AAA ATG GCA CAA GAA TAT ATG AAA GTT CAA Phe Glu Gln His Cys Lys Met Ala Gln Glu Tyr Met Lys Val Gln 500 505 510 ACA GAA ATT GCA TTG TTA TTA CAG AGA AGA CAA GAA CTA GTT GCA Thr Glu Ile Ala Leu Leu Leu Gln Arg Lys Gln Glu Leu Val Ala 515 520 525 GAA CTG GAC CAG GAT GAA AAG GAC CAG CAA AAT ACA TCT CGC CTG Glu Leu Asp Gln Asp Glu Lys Asp Gln Gln Asn Thr Ser Arg Leu 530 535 540 GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA ACC CTT TCT 183 Val Gln Glu His Lys Lys Leu Leu Asp Glu Asn Lys Ser Leu Ser 545 550 555 ACT TAC TAC CAG CAA TGC AAA AAA CAA CTA GAG GTC ATC AGA AGT Thr Tyr Tyr Gln Gln Cys Lys Lys Gln Leu Glu Val Ile Arg Ser 560 CAG CAG CAG AAA CGA AGC ACT TCA Gln Gln Gln Lys Arg Gln Gly Thr Ser 575 TGATTCTCTG GGACCGTTAC ATTTTGAAT ATGCAAAGAA AGACTTTTTT TTTAAGGAAA AGACTTTA TAATGAGCA TCAATGGTG TTACCTTTTT GGCGTGTTCT GAATGCCAAC ATTTTACTGT TTCATTGCAT AACATGGTAG CATCTGTAC TTGAATGAGC AGCACTTTCC AACTTCAACAGA ACAGGAGCTA TCAAGAACTA ATGCTAAGAC ACAGCGTC CATTTTTC AACTTCAAAA CAGAGGGGTA TCAAGACTA ATGCTAAGAC CAGCCTTCC CAAAACACT TTCATTGCAT TTCATTGCAT TTATTTTCCT TTTCTCATTGT TTTTTTTCTTTTC	CAG	CCT	CTA	GCA	CCG	TGC	CCA	AAC	TCC	AAA	GAA	TCT	ATG	GCA	GTG	1647
TTT GAA CAG CAT TGT AAA ATG GCA CAA GAA TAT ATG AAA GTT CAA Phe Glu Gln His Cys Lys Met Ala Gln Glu Tyr Met Lys Val Gln 500 505 510 ACA GAA ATT GCA TTG TTA TTA CAG AGA AAG CAA GAA CTA GTT GCA Thr Glu Ile Ala Leu Leu Leu Gln Arg Lys Gln Glu Leu Val Ala 515 520 525 GAA CTG GAC CAG GAT GAA AAG GAC CAG CAA AAT ACA TCT CGC CTG Glu Leu Asp Gln Asp Glu Lys Asp Gln Gln Asn Thr Ser Arg Leu 530 535 540 GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT Val Gln Glu His Lys Lys Leu Leu Asp Glu Asn Lys Ser Leu Ser 545 550 555 ACT TAC TAC CAG CAA TGC AAA AAA CAA CTA GAG GTC ATC AGA AGT Thr Tyr Tyr Gln Gln Cys Lys Lys Gln Leu Glu Val Ile Arg Ser 560 565 570 CAG CAG CAG CAG AAA CGA CAA GGC ACT TCA Gln Gln Lys Arg Gln Gly Thr Ser 575 579 TGATTCTCTG GGACCGTTAC ATTTTGAATA ATGCAAAGAA AGACTTTTTT TTTAAGGAAA AGACTTTAC TTCATTGCAT AACATGGTG TTACCTTTTT GGCGTGTTCT GAATGCCAAC ATTTTACTGT TTCATTGCAT AACATGGTG CATCTTGTCA TTGAATGAGC AGCACTTTCC AACTTCAAAA CAGAGGGGTA TCAACAGCA CATCTTGTGA CTGAATGAGC AGCACTTTCC AACTTCAAAA CAGAGGGGTA TCAACACGC TGCTATATGC AACAGGCTC CATTTTTCA ATTATTACTGT TTCATTGCAT AACATGGTG TTACTTTTGCA TTGAATGAGC AGCACTTTCC TATTACAGGT GGAACCTCAA GAATGACTT ATTATCCAA GTTAAGACA GGGTATTATA AATTAAGAC ATTTTTTCC CAAAAGATGG TATATACCAA GTTAAGACA GGGTATTATA AATTAAGAC ACTTCAACAGA ACAGGAGGGTA TCAAACTAGC TGCTATTGTGC AACAGCAC CATTTTTTC TATTAGAGGT GGAACCTCAA GAATGACTTT ATTCTTTTTTTTTT	Gln	Pro	Leu	Ala	Pro	Cys	Pro	Asn	Ser	Lys	Glu	Ser	Met	Ala	Val	
Phe Glu Gin His Cys Lys Met Ala Gin Giu Tyr Met Lys Val Gin 500 505 510 ACA GAA ATT GCA TTG TTA TTA CAG AGA AAG CAA GAA CTA GTT GCA 173 Thr Glu Ile Ala Leu Leu Leu Gin Arg Lys Gin Glu Leu Val Ala 515 520 525 GAA CTG GAC CAG GAT GAA AAG GAC CAG CAA AAT ACA TCT CGC CTG 174 Glu Leu Asp Gin Asp Glu Lys Asp Gin Gin Asn Thr Ser Arg Leu 530 535 540 GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT 183 GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT 183 GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT 183 GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT 183 GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT 183 GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT 183 GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAC ACT AGA AGT 183 GTA CAG CAG CAG CAG CAA TGC AAA AAA CAA CTA GAG GTC ATC AGA AGT 183 Thr Tyr Tyr Gin Gin Cys Lys Lys Gin Leu Giu Val Ile Arg Ser 560 565 570 CAG CAG CAG CAG AAA CGA CAA GGC ACT TCA 183 GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCATTTTT GGCGTTCTT GAATGCCAAC 203 GGCTATATT TGCTGCATTA AACATGGTAG CATCTGTGAC TTGAATGAG AGCATTTCC 213 AACTTCAAAA CAGATGCAGT TCAATGAGTG TTATTTCCT TTTTCTCATGG TGGACATACA 203 ATTTTACTGT TTCATTGCAT AACATGGTAG CATCTGTGC TTGAATGAG AGCACTTTCC 213 AACTTCAAAA CAGGAGGTA TCAAACTAGC TGCTATGTGC TTGAATGAG AGCACTTTTC 225 GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AACAGGGT CATTTTTTCA 225 GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AACAGGGT CATTTTTTCA 225 TATTAGAGGT GGAACCTCAA GAATGACTTT ATTCTTGTAT CTCATCGAA AATATTAATA 231 ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATATAA AATTTAATA 231 ATTTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATATAA AATTTAATA 231 ATTTTTTTTCC CAAAAGATGG TATATACCAA GTTATAGCGAT TTTTTTTTTAA AATTTTAATT 235 TGGGCAGCTG CTCTATTTAA TGAAAGACA CTTTAAGGGAT AGTTCCATC CGTAAAAATAT GTAAAGGTTA 245 GTGGCAGCTG CTCTATTTAA TGAAAGCAGA TTTTTTTTTT					485					490					495	
SOO SOS SOS SOO SOS SOS SOS SOS ACT GCA ACT GCA ACT GCA ACT GCA ATT GCA TTG TTA TTA CAG AGA AAG CAA GAA CTA GTT GCA TTG TTA TTA CAG AGA AAG CAA GAA CTA GTT GCA TTG TTA TTA CAG AGA AAG CAA GAA CTA GTT GCA TTG GU IIe Ala Leu Leu Leu Gin Arg Lys Gin Giu Leu Val Ala SOL GAA CTG GAC CAG GAT GAA AAG GAC CAG CAA AAT ACA TCT CGC CTG TTA GAA CTG GAC CAG GAT GAA AAG GAC CAG CAA AAT ACA TCT CGC CTG TTA GU Leu Asp Gin Asp Giu Lys Asp Gin Gin Asn Thr Ser Arg Leu SOL GAA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT TA GTA GAA AAC AAA AGC CTT TCT TA GTA GAA AAC AAA AGC CTT TCT TA GTA GAA AAC CTA GGA GTC ATC AGA AGT TAC TAC CAG CAA TGC AAA AAA CAA CTA GAG GTC ATC AGA AGT TAC TAC TAC CAG CAA TGC AAA AAA CAA CTA GAG GTC ATC AGA AGT TAC TAC TAC CAG CAA GGC ACT TCA GAC GTA CAG AGT TAC TAC TAC CAG CAG CAG AAG CGC ACT TCA GAC GTA CAG AGT TAC TAC TAC CAG CAG CAG AAG CGC ACT TCA TAC TAC CAG CAG CAG AAC CGA CAT TCA GAC GTA TTAC TAC TAC TAC CAG CAG CAG CAC TTCA GAC CAC TCA GAC CAG CAG AAC CGA CAG CAC TCA TAC CAG CAG CAG AAA CGA CAA GGC ACT TCA GAC CAG CAG CAG AAC CGA CAT TTAC TTAC	TTT	GAA	CAG	CAT	TGT	AAA	ATG	GCA	CAA	GAA	TAT	ATG	AAA	GTT	CAA	1692
ACA GAA ATT GCA TTG TTA TTA CAG AGA AAG CAA GAA CTA GTT GCA Thr Glu IIe Ala Leu Leu Leu Gln Arg Lys Gln Glu Leu Val Ala 515 520 525 GAA CTG GAC CAG GAT GAA AAG GAC CAG CAA AAT ACA TCT CGC CTG 178 Glu Leu Asp Gln Asp Glu Lys Asp Gln Gln Asn Thr Ser Arg Leu 530 535 540 GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT 187 Val Gln Glu His Lys Lys Leu Leu Asp Glu Asn Lys Ser Leu Ser 545 550 555 ACT TAC TAC CAG CAA TGC AAA AAA CAA CTA GAG GTC ATC AGA AGT Thr Tyr Tyr Gln Gln Cys Lys Lys Gln Leu Glu Val IIe Arg Ser 560 565 570 CAG CAG CAG AAA CGA CAA GGC ACT TCA Gln Gln Gln Lys Arg Gln Gly Thr Ser 575 TGATTCTCTG GGACCGTTAC ATTTTGAAAT ATGCAAAGAA AGACTTTTTT TTTAAGGAAA 195 GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGCCAAC 207 ACTTTACTGT TTCATTGCAT AACATGGTAG CATCTGTGAC TTGAATGAC AGCACTTTCC 213 AACTTCAAAA CAGAGAGGTA TCAAACTAGC TGCTAATGTCA AACAGGGCTC CATTTTTTCA 225 AACTTCAACAGA ACAGGAGCTA TCAAACTAGC TGCTAATGTCA AACAGGGTC CATTTTTTCA 237 ATTTTACTGT TTCATTGCAT AACATGGTAG CATCTAGGAC AGCACTTTCC 225 AACTTCAACAGA ACAGGAGCTA TCAAACTAGC TGCTAATGTCA AACAGGGTC CATTTTTTCA 237 ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGATATAA AATTTAATA 231 ATTTTTTTCC CAAAAGATGC TATATACCAA GTTAAAGACA GGGATATATA AATTTAATA 231 ATTTTTTTTCC CAAAAGATGC TATATACCAA GTTAAAGACA TTTTTTTTTAA TTTTTTTTTAAAGGGTT AAAAGTTTC 242 ATGCCAAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAAATAT GTAAAAGTTA 242 CTGGCAACCTG CTCTATTTAA TGAAACAAA TGGAACTCAT TTTTTTTTTAA GGAGTAAAAATTTTAATTTTTTTTT	Phe	Glu	Gln	His	Cys	Lys	Met	Ala	Gln	Glu	Tyr	Met	Lys	Val	Gln	
Thr Glu IIe Ala Leu Leu Leu Gln Arg Lys Gln Glu Leu Val Ala 515 520 525 GAA CTG GAC CAG GAT GAA AAG GAC CAG CAA AAT ACA TCT CGC CTG 178 Glu Leu Asp Gln Asp Glu Lys Asp Gln Gln Asn Thr Ser Arg Leu 530 535 540 GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT 188 Val Gln Glu His Lys Lys Leu Leu Asp Glu Asn Lys Ser Leu Ser 545 550 555 ACT TAC TAC CAG CAA TGC AAA AAA CAA CTA GAG GTC ATC AGA AGT 187 Thr Tyr Tyr Gln Gln Cys Lys Lys Gln Leu Glu Val IIe Arg Ser 560 565 570 CAG CAG CAG AAA CGA CAA GGC ACT TCA 610 Gln Gln Lys Arg Gln Gly Thr Ser 575 579 TGATTCTCTG GGACCGTTAC ATTTTGAAAT ATGCAAAGAA AGACTTTTT TTTAAGGAAA 198 GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGCCAAC ATTTTACTGT TTCATTGCAT AACATGGTAG CATCTGTGAC TTGAATGAGG AGCACTTTCC AACTTCAAAA CAGGAGGTA TCAAACTAGC TGCTATTGCA TGGAATGAGC AGCACTTTCC AACTTCAAAA CAGGAGGTA TCAAACTAGC TGCTATTGCA TGGAATGAC AGCACTTTCC AACTTCAAAA CAGGAGGTA TCAAACTAGC TGCTATTGTC AAACAGCGTC CATTTTTCA AACTTCAAAA CAGGAGGTA TCAAACTAGC TGCTATTGTC AAACAGCGTC CATTTTTTCA AACTTCAAAAA CAGGAGGTA TCAAACTAGC TGCTATTGTC AAACAGCGTC CATTTTTTCA ATTTTTTTCC CAAAAGATGG AATACCGAAC CTTTAAGGAA AGTTCCTCAA AATATTAATA 231 ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAAGAG 237 GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAAGGAT AGTTCCGTGT AAGGGCTTT 243 ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAAATAT GTAAAGGTAA 249 GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTTTTTTTT					500					505					510	
GAA CTG GAC CAG GAT GAA AAG GAC CAG CAA AAT ACA TCT CGC CTG Glu Leu Asp Gln Asp Glu Lys Asp Gln Gln Asn Thr Ser Arg Leu 530 535 GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT 187 GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT 187 GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT 187 Val Gln Glu His Lys Lys Leu Leu Asp Glu Asn Lys Ser Leu Ser 545 550 555 ACT TAC TAC CAG CAA TGC AAA AAA CAA CTA GAG GTC ATC AGA AGT Thr Tyr Tyr Gln Gln Cys Lys Lys Gln Leu Glu Val Ile Arg Ser 560 565 570 CAG CAG CAG AAA CGA CAA GGC ACT TCA Gln Gln Lys Arg Gln Gly Thr Ser 575 579 TGATTCTCTG GGACCGTTAC ATTTTGAAAT ATGCAAAGAA AGACTTTTT TTTAAGGAAA 198 GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGCCAAC 201 GGCTATATT TGCTGCATTT TTTTCATTGT TTATTTTCCT TTTCATGG TGGACATACA 202 ATTTTACTGT TTCATTGCAT AACATGGTAG CATCTGTGAC TTGAATGAGC AGCACTTTGC 213 AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA 219 GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATTGTC TAAACAGAC AGCACTTTCC 225 AACTTCAACAG ACAGGAGGTA TCAAACTAGC TGCTATTGTC TAACACTCCAA AATATTAATA 231 ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAAGAGT 237 GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAACGGAT AGTTCCTGTA AAGCGCTTC 243 ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA 249 GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTCTTTAGAC TAAAAATTTGA 245 CTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTTTTTAAC TAAAAATTTGA 245 CTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTTACCGGAT TTTTTTTAAC TAAAAATTTGA 245 CTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTTTTTTTT	ACA	GAA	ATT	GCA	TTG	TTA	TTA	CAG	AGA	AAG	CAA	GAA	CTA	GTT	GCA	1737
GAA CTG GAC CAG GAT GAA AAG GAC CAG CAA AAT ACA TCT CGC CTG Glu Leu Asp Gln Asp Glu Lys Asp Gln Gln Asn Thr Ser Arg Leu 530 535 540 GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT 182 Val Gln Glu His Lys Lys Leu Leu Asp Glu Asn Lys Ser Leu Ser 545 550 555 ACT TAC TAC CAG CAA TGC AAA AAA CAA CTA GAG GTC ATC AGA AGT 187 Thr Tyr Tyr Gln Gln Cys Lys Lys Gln Leu Glu Val Ile Arg Ser 560 565 570 CAG CAG CAG AAA CGA CAA GGC ACT TCA 6In Gln Gln Lys Arg Gln Gly Thr Ser 575 579 TGATTCTCTG GGACCGTTAC ATTTTGAAAT ATGCAAAGAA AGACTTTTTT TTTAAGGAAA 198 GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGCCAAC 201 GGCTATATT TGCTGCATTT TTTTCATTGT TTATTTTCCT TTTCTCATGG TGGACATACA 201 AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA 219 GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATTGTC AAACACGGTC CATTTTTTCA ATTTTAGAGGT GGAACCTCAA GAATGACTTT ATTCTTGTAT CTCATCTCAA AATATTAATA 231 ATTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT 237 GTTTGGTGATACA TCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA 249 GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTTTTTAATTC 261 TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTTAA GGAGTAAAGA TTTTTAATTC 261	Thr	Glu	Ile	Ala	Leu	Leu	Leu	Gln	Arg	Lys	Gln	Glu	Leu	Val	Ala	
Glu Leu Asp Glu Asp Glu Lys Asp Gln Gln Asn Thr Ser Arg Leu 530 535 540 GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT 187 Val Gln Glu His Lys Lys Leu Leu Asp Glu Asn Lys Ser Leu Ser 545 550 555 ACT TAC TAC CAG CAA TGC AAA AAA CAA CTA GAG GTC ATC AGA AGT Thr Tyr Tyr Gln Gln Cys Lys Lys Gln Leu Glu Val Ile Arg Ser 560 565 CAG CAG CAG AAA CGA CAA GGC ACT TCA Gln Gln Gln Lys Arg Gln Gly Thr Ser 575 TGATTCTCTG GGACCGTTAC ATTTTGAAAT ATGCAAAGAA AGACTTTTT TTTAAGGAAA GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGCCAAC ATTTTACTGT TTCATTGCAT AACATGGTAG CATCTGTGAC TTGAATGAGG AGCACTTTGC AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA ACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA ACTTTAGAGGT GGAACCTCAA GAATGACTTT ATTCTTGTAT CTCATTGTA TGCTATTTTCA ATTTTTTTCC CAAAAGAGG TACAAACTAGC TGCTATTGTA CTCATCTCAA AATATTAATA ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA CGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTTTTTTTAA GGAGTAAAGA TTTTTTAATTC 255 CTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTTTCCTGAT TTTTTTTTAA GGAGTAAAATTTGA 255 CTGGCAGCTG CTCTATTTAA TGAAACAAAA TGGAACTCAT TTTTTTTTTAA GGAGTAAAGA TTTTTTAATTC 261 CTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTTTCCATCT CTTTTTTTAATTC CTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTTAA GGAGTAAAGA TTTTTTAATTC CTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTTAA GGAGTAAAGA TTTTTTAATTC CTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTTT					515					520					525	
GAA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT 187 Val Gin Giu His Lys Lys Leu Leu Asp Giu Asn Lys Ser Leu Ser 545 550 555 ACT TAC TAC CAG CAA TGC AAA AAA CAA CTA GAG GTC ATC AGA AGT Thr Tyr Tyr Gin Gin Cys Lys Lys Gin Leu Giu Val Ile Arg Ser 560 565 CAG CAG CAG AAA CGA CAA GGC ACT TCA GIn Gin Gin Lys Arg Gin Gly Thr Ser 575 TGATTCTCTG GGACCGTTAC ATTTTGAAAT ATGCAAAGAA AGACTTTTT TTTAAGGAAA GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGCCAAC ATTTTACTGT TTCATTGCAT AACATGGTAG CATCTGTGAC TTGAATGAGC AGCACTTTGC AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATTGTC AAACAGCGTC CATTTTTCA ATTTTTTCC CAAAAGATG TACAACTAGC TGCTATTGTC TTCATCTCAA AATATTAATA ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAATA ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAAGAGT GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAAGGAT AGGCCTTTC CAAAGGCTTC CAATGGCTA TTTTTTCCCTTTTTTTTCATTCCTTTTTTTCATTCCTTTTTT	GAA	CTG	GAC	CAG	GAT	GAA	AAG	GAC	CAG	CAA	AAT	ACA	TCT	CGC	CTG	1782
GTA CAG GAA CAT AAA AAG CTT TTA GAT GAA AAC AAA AGC CTT TCT Val Gin Glu His Lys Lys Leu Leu Asp Glu Asn Lys Ser Leu Ser 545 ACT TAC TAC CAG CAA TGC AAA AAA CAA CTA GAG GTC ATC AGA AGT Thr Tyr Tyr Gln Gln Cys Lys Lys Gln Leu Glu Val Ile Arg Ser 560 565 CAG CAG CAG CAG AAA CGA CAA GGC ACT TCA Gln Gln Gln Lys Arg Gln Gly Thr Ser 575 TGATTCTCTG GGACCGTTAC ATTTTGAAAT ATGCAAAGAA AGACTTTTTT TTTAAGGAAA GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGCCAAC TGCCTATATT TGCTGCATTT TTTTCATTGT TTATTTTCCT TTTCTATGG TGGACATACA ATTTTACTGT TTCATTGCAT AACATGGTAG CATCTGTGAC TTGAATGAGC AGCACTTTGC AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTTTCA ATTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAATA ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAATA ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAGGGAT AGTTCCGTGT AAGGGCTTIC ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA CTGGCCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA CTGGCCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA CTGGCCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA CTGGCCAGCTG CTCTATTTAA TGAAAGCAGT TTTTTTTTTAA GGAGTAAAGA TTTTTTAATTC CTGTGGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTTAA GGAGTAAAGA TTTTTTAATTC CTGTGGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTTAA GGAGTAAAGA TTTTTTAATTC CTGTGGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTTAA GGAGTAAAGA TTTTTTAATTC CTGTGGATAACA TTGAACAAAA TGGAACTCAT TTTTTTTTTAA GGAGTAAAGA TTTTTTAATTC CTGTGGATAACA TTGAACAAAA TGGAACTCAT TTTTTTTTTT	Glu	Leu	Asp	Gln	Asp	Glu	Lys	Asp	Gln	Gln	Asn	Thr	Ser	Arg	Leu	
Val Gin Giu His Lys Lys Leu Leu Asp Giu Asn Lys Ser Leu Ser 545 550 555 ACT TAC TAC CAG CAA TGC AAA AAA CAA CTA GAG GTC ATC AGA AGT Thr Tyr Tyr Gin Gin Cys Lys Lys Gin Leu Giu Val Ile Arg Ser 560 565 570 CAG CAG CAG CAA ACGA CAA GGC ACT TCA Gin Gin Gin Lys Arg Gin Gly Thr Ser 575 579 TGATTCTCTG GGACCGTTAC ATTTTGAAAT ATGCAAAGAA AGACTTTTTT TTTAAGGAAA 195 GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGCCAAC 207 TGCCTATATT TGCTGCATTT TITTCATTGT TTATTTTCCT TTTCTATGG TGGACATACA 207 AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA 215 AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA 215 CCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AACACGCTC CATTTTTCA 225 TATTAGAGGT GGAACCTCAA GAATGACTT ATTCTTGTAT CTCATCTCAA AATATTAATA 231 ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT 237 GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAGGGAT AGTTCCGTGT AAGGGCTTIG 243 ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA 245 GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTCTTAGAC TAAAATTTGA 255 TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC 261 TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTTAA GGAGTAAAGA TTTTTTAATTC 261					530					535					540	
ACT TAC TAC CAG CAA TGC AAA AAA CAA CTA GAG GTC ATC AGA AGT Thr Tyr Tyr Gln Gln Cys Lys Lys Gln Leu Glu Val I le Arg Ser 560 565 570 CAG CAG CAG AAA CGA CAA GGC ACT TCA Gln Gln Gln Lys Arg Gln Gly Thr Ser 575 579 TGATTCTCTG GGACCGTTAC ATTTTGAAAT ATGCAAAGAA AGACTTTTT TTTAAGGAAA GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGCCAAC ATTTTACTGT TCATTGCAT AACATGGTAG CATCTGTGAC TTGAATGAGG AGCACTTTGC AACTTCAAAA CAGATGCAGT GAACTGTGG TGTATATGCA TGCTCATTGT GTGAAGGCTA GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTTTCA GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTTTCA GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTTTTCA GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTTTTCA GCATTGGTGGT ATATTACGA AATAACACA GTTAAAGACA GGGTATTATA AATTTAGAGT GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAGGGAT AGTTCCGTGT AAGGGCTTTG ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA CTGGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA CTGGCCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA CTGGCCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTTTTAATTC 255 TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC 261	GTA	CAG	GAA	CAT	AAA	AAG	CTT	TTA	GAT	GAA	AAC	AAA	AGC	CTT	TCT	1827
ACT TAC TAC CAG CAA TGC AAA AAA CAA CTA GAG GTC ATC AGA AGT Thr Tyr Tyr Gin Gin Cys Lys Lys Gin Leu Giu Val Ile Arg Ser 560 565 570 CAG CAG CAG AAA CGA CAA GGC ACT TCA Gin Gin Gin Lys Arg Gin Gly Thr Ser 575 579 TGATTCTCTG GGACCGTTAC ATTITGAAAT ATGCAAAGAA AGACTTTTT TTTAAGGAAA GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGCCAAC TGCCTATATT TGCTGCATTT TTTTCATTGT TTATTTTCCT TTTCTCATGG TGGACATACA ATTTTACTGT TTCATTGCAT AACATGGTAG CATCTGTGAC TTGAATGAGC AGCACTTTGC AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTTTCA TATTAGAGGT GGAACCTCAA GAATGACTTT ATTCTTGTAT CTCATCTCAA AATATTAATA ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAGGGAT AGTTCCGTGT AAGGGCTTTG ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAAATAT GTAAAGGTAA GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA CTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA CTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTTTTTTTAA GGAGTAAAGA TTTTTAATTC 255 TTGTGGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTTAA GGAGTAAAGA TTTTTTAATTC 261	Val	Gln	Glu	His	Lys	Lys	Leu	Leu	Asp	Glu	Asn	Lys	Ser	Leu	Ser	
The Tyr Tyr Gln Gln Cys Lys Lys Gln Leu Glu Val Ile Arg Ser 560 565 570 CAG CAG CAG AAA CGA CAA GGC ACT TCA 189 Gln Gln Gln Lys Arg Gln Gly The Ser 575 579 TGATTCTCTG GGACCGTTAC ATTTTGAAAT ATGCAAAGAA AGACTTTTT TTTAAGGAAA 199 GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGCCAAC 201 TGCCTATATT TGCTGCATTT TTTTCATTGT TTATTTTCCT TTTCTCATGG TGGACATACA 201 AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA 219 GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTTTTCA TATTTAGAGGT GGAACCTCAA GAATGACTTT ATTCTTGTAT CTCATCTAA AATATTAATA 231 ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT 243 ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA 249 GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA 255 TTGTGGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTTAATTC 261					545					550					555	
CAG CAG CAG AAA CGA CAA GGC ACT TCA CAG CAG CAG AAA CGA CAA GGC ACT TCA GIn Gin Gin Lys Arg Gin Gly Thr Ser 575 TGATTCTCTG GGACCGTTAC ATTTTGAAAT ATGCAAAGAA AGACTTTTTT TTTAAGGAAA GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGCCAAC ATTTTACTGT TTCATTGCAT AACATGGTAG CATCTGTGAC TTGAATGAGC AGCACTTTGC AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTTTCA ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT 237 ATTTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT 237 GATTGGTGGT ATATTACGGA AATACGGAAC CTTTTAGGGAT AGTTCCGTGT AAGGGCTTTG ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA 249 GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC 261 TTGTGGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTTAATTC 261	ACT	TAC	TAC	CAG	CAA	TGC	AAA	AAA	CAA	CTA	GAG	GTC	ATC	AGA	AGT	1872
CAG CAG CAG AAA CGA CAA GGC ACT TCA GIn Gin Gin Lys Arg Gin Gly Thr Ser 575 TGATTCTCTG GGACCGTTAC ATTTTGAAAT ATGCAAAGAA AGACTTTTTT TTTAAGGAAA 195 GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGCCAAC ATTTTACTGT TTCATTGCAT AACATGGTAG CATCTGTGAC TTGAATGAGC AGCACTTTGC AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTAATATGCA TGCTCATTGT GTGAAGGCTA GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATTGT GTGAAGGCTA CATTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAGGGAT AGTTCCGTGT AAGGGCTTTG ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA CTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA CTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTTCTTTTAA GGAGTAAAGA TTTTTAATTC 256 TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC 261	Thr	Tyr	Tyr	Gln	Gln	Cys	Lys	Lys	Gln	Leu	Glu	Val	Ile	Arg	Ser	
Gln Gln Gln Lys Arg Gln Gly Thr Ser 575 579 TGATTCTCTG GGACCGTTAC ATTTTGAAAT ATGCAAAGAA AGACTTTTT TTTAAGGAAA 195 GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGCCAAC 207 TGCCTATATT TGCTGCATTT TTTTCATTGT TTATTTTCCT TTTCTCATGG TGGACATACA 207 ATTTTACTGT TTCATTGCAT AACATGGTAG CATCTGTGAC TTGAATGAGC AGCACTTTGC 213 AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA 213 GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTTTTCA 225 TATTAGAGGT GGAACCTCAA GAATGACTTT ATTCTTGTAT CTCATCTCAA AATATTAATA 231 ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT 237 GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAGGGAT AGTTCCGTGT AAGGGCTTTG 243 ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA 249 GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA 255 TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC 261					560					565					570	
TGATTCTCTG GGACCGTTAC ATTTTGAAAT ATGCAAAGAA AGACTTTTTT TTTAAGGAAA 195 GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGCCAAC 201 TGCCTATATT TGCTGCATTT TTTTCATTGT TTATTTTCCT TTTCTCATGG TGGACATACA 201 ATTTTACTGT TTCATTGCAT AACATGGTAG CATCTGTGAC TTGAATGAGC AGCACTTTGC 213 AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA 215 GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTTTCA 225 TATTAGAGGT GGAACCTCAA GAATGACTTT ATTCTTGTAT CTCATCTCAA AATATTAATA 231 ATTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT 237 GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAGGGAT AGTTCCGTGT AAGGGCTTTG 243 ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA 249 GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA 255 TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC 261	CAG	CAG	CAG	AAA	CGA	CAA	GGC	ACT	TCA							1899
TGATTCTCTG GGACCGTTAC ATTTTGAAAT ATGCAAAGAA AGACTTTTTT TTTAAGGAAA 195 GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGCCAAC 201 TGCCTATATT TGCTGCATTT TTTTCATTGT TTATTTTCCT TTTCTCATGG TGGACATACA 201 ATTTTACTGT TTCATTGCAT AACATGGTAG CATCTGTGAC TTGAATGAGC AGCACTTTGC 213 AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA 215 GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTTTCA 225 TATTAGAGGT GGAACCTCAA GAATGACTTT ATTCTTGTAT CTCATCTCAA AATATTAATA 231 ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT 237 GATTGGTGGT ATATTACGGA AATACGGAAC CTTTTAGGGAT ACTTCCGTGT AAGGGCTTTG 243 ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA 249 GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA 255 TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC 261	Gln	Gln	Gln	Lys	Arg	Gln	Gly	Thr	Ser							
GGAAAACCTT ATAATGACGA TTCATGAGTG TTAGCTTTTT GGCGTGTTCT GAATGCCAAC 2017 TGCCTATATT TGCTGCATTT TTTTCATTGT TTATTTTCCT TTTCTCATGG TGGACATACA 2017 AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA 2119 GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTTTTCA 2219 TATTAGAGGT GGAACCTCAA GAATGACTTT ATTCTTGTAT CTCATCTCAA AATATTAATA 2319 ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT 2319 GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAGGGGAT AGTTCCGTGT AAGGGCTTTG 2439 ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA 2439 GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA 2551 TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC 2611					575				579							
TGCCTATATT TGCTGCATTT TTTTCATTGT TTATTTTCCT TTTCTCATGG TGGACATACA 207 ATTTTACTGT TTCATTGCAT AACATGGTAG CATCTGTGAC TTGAATGAGC AGCACTTTGC 213 AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA 219 GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTTTTCA 225 TATTAGAGGT GGAACCTCAA GAATGACTTT ATTCTTGTAT CTCATCTCAA AATATTAATA 231 ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT 237 GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAGGGGAT AGTTCCGTGT AAGGGCTTTG 243 ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA 249 GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA 256 TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC 261	TGAT	TCT(CTG (GGACC	CGTTA	AC AT	OTTT	TAAAT	` ATC	GCAA.	AGAA	AGAC	CTTT	TT ?	MTAAGGAAA	1959
ATTTTACTGT TTCATTGCAT AACATGGTAG CATCTGTGAC TTGAATGAGC AGCACTTTGC 213 AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA 213 GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTTTTCA 225 TATTAGAGGT GGAACCTCAA GAATGACTTT ATTCTTGTAT CTCATCTCAA AATATTAATA 231 ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT 237 GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAGGGAT AGTTCCGTGT AAGGGCTTTG 243 ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA 243 GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA 255 TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC 261	GGAA	AAC(CTT A	NAATA	rgac(GA TI	CATO	GAGTO	TTA	AGCTT	TTT	GGCC	GTGTT	CT (GAATGCCAAC	2019
AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA 219 GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTTTTCA 225 TATTAGAGGT GGAACCTCAA GAATGACTTT ATTCTTGTAT CTCATCTCAA AATATTAATA 231 ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT 237 GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAGGGAT ACTTCCGTGT AAGGGCTTTG 243 ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA 249 GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA 255 TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC 261	TGCC	TATA	ATT 1	rgctc	CAT	T T	TTCA	ATTGT	TTA	ATTT	CCT	TTTC	TCAT	rgg 1	rggacataca	2079
GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTTTCA 225 TATTAGAGGT GGAACCTCAA GAATGACTTT ATTCTTGTAT CTCATCTCAA AATATTAATA 231 ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT 237 GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAGGGAT AGTTCCGTGT AAGGGCTTTG 243 ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA 249 GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA 255 TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC 261	ATTI	TACT	rgt 1	TCAT	TGC	AT AA	ACATO	GTAC	CAT	rctg1	GAC	TTGA	ATGA	AGC A	AGCACTTTGC	2139
TATTAGAGGT GGAACCTCAA GAATGACTTT ATTCTTGTAT CTCATCTCAA AATATTAATA 231 ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT 237 GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAGGGAT AGTTCCGTGT AAGGGCTTTG 243 ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA 243 GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA 253 TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC 261	AACT	TCA	AAA (CAGAT	rgca(GT GA	ACTO	TGGC	TGT	[ATA]	CCA	TGCT	CATI	TT.	GTGAAGGCTA	2199
ATTTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT 237 GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAGGGAT AGTTCCGTGT AAGGGCTTTG 243 ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA 249 GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA 255 TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC 261	GCCT	`AAC	AGA A	ACAGO	GAGGT	OT AT	CAAAC	TAGO	TGC	CTATO	TGC	AAAC	CAGCO	TC (CATTTTTTCA	2259
GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAGGGAT AGTTCCGTGT AAGGGCTTTG 243 ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA 249 GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA 255 TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC 261	TATI	`AGA(GCT (GGAAC	CCTCA	AA GA	ATGA	CTTT	` ATI	CTTC	TAT	CTCA	TCTC	CAA A	ATATTAATA	2319
ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA 249 GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA 255 TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC 261	ATTI	TTT	rcc (CAAAA	AGAT(GG TA	TATA	CCAA	GTI	CAAAC	ACA	GGGT	CATTA	TA A	AATTTAGAGT	2379
GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA 255 TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC 261	GATT	GGT	GGT A	TATI	CACGO	SA AA	TACC	GAAC	CTI	TAGO	GAT	AGTI	CCGT	GT A	AAGGGCTTTG	2439
TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC 261	ATGC	CAGO	CAT (CTTC	GATO	CA GT	CACTO	AACT	CAC	STTCC	CATC	CGTA	LAAAI	TAT (GTAAAGGTAA	2499
	GTGG	CAGO	TG (CTCTA	ATTT/	A TO	SAAAG	CAGT	TTI	CACCO	GAT	TTTC	TTAC	AC 1	raaaatttga	2559
	TTGT	`GATA	ACA 7	TGAA	CAAA	AA TO	GAAC	TCAT	TTI	MM	TAA	GGAC	TAAA	GA 7	TTTTAATTC	2619
TGTGATTGTG TGTATGTGTG TTGAAACTGT AAAGCTTTTA TGACTCTAAT ATTAATCTCT 267	TGTG	ATTO	TG 1	TGTAT	GTGT	TT D	GAAA	CTGT	` AAA	AGCTT	TTA	TGAC	TCTA	AT A	ATTAATCTCT	2679
TAAATGAAAT TAAAAGGCAA AAGAACATGA TTGAGCTTAA ATGATCATTT CTTCCTGCAG 273	TAAA	TGAA	L TAL	`AAAA	AGGC A	A AA	GAAC	CATGA	TTC	GAGCT	TAA	ATGA	TCAT	TT (CTTCCTGCAG	2739

WO 99/40202	PCT/JP99/00422

TGA'	TTCT	TGG .	ATTG	TTTT(CT C	ATGT	ATTT(G AA	AAAA	AAAA	AAA	AAA			2785
<21	/ <0	1													
<21	1> 2	2866													
<21	2> ı	nucle	eic a	cid											
<21	3> 0	DN	A to	mR	NA										
<40	0> 4	1													
GGA	CACG	GCT (GTGG	CCGC	rg co	CTCTA	ACCC	CCG	CCAC	GGAT	CGC	CGGG	rag '	TAGGACTGCG	60
CGG	CTCC	AGG (CTGA	GGGT	CG G	rccg(GAGG(C GG(GTGG(GCGC	GGG	rctc.	ACC (CGGATTGTCC	120
			GTTC												162
ATG	TCT	ACA	GCC	TCT	GCC	GCC	TCC	TCC	TCC	TCC	TCG	TCT	TCG	GCC	207
Met	Ser	Thr	Ala	Ser	Ala	Ala	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ala	
1				5					10					15	
GGT	GAG	ATG	ATC	GAA	GCC	CCT	TCC	CAG	GTC	CTC	AAC	TTT	GAA	GAG	252
Gly	Glu	Met	Ile	Glu	Ala	Pro	Ser	Gln	Val	Leu	Asn	Phe	Glu	Glu	
				20					25					30	
ATC	GAC	TAC	AAG	GAG	ATC	GAG	GTG	GAA	GAG	GTT	GTT	GGA	AGA	GGA	297
Ile	Asp	Tyr	Lys	Glu	Ile	Glu	Val	Glu	Glu	Val	Val	Giy	Arg	Gly	
				35					40					45 ·	
GCC	TTT	GGA	GTT	GTT	TGC	AAA	GCT	AAG	TGG	AGA	GCA	AAA	GAT	GTT	342
Ala	Phe	Gly	Val	Val	Cys	Lys	Ala	Lys	Trp	Arg	Ala	Lys	Asp	Val	
				50					55				•	60	
GCT	ATT	AAA	CAA	ATA	GAA	AGT	GAA	TCT	GAG	AGG	AAA	GCG	TTT	ATT	387
Ala	Ile	Lys	Gln	Ile	Glu	Ser	Glu	Ser	Glu	Arg	Lys	Ala	Phe	Ile	
				65					70					75	
GTA	GAG	CTT	CGG	CAG	TTA	TCC	CGT	GTG	AAC	CAT	CCT	AAT	ATT	GTA	432
Val	Glu	Leu	Arg	Gln	Leu	Ser	Arg	Val	Asn	His	Pro	Asn	Ile	Val	
				80					85					90	
AAG	CTT	TAT	GGA	GCC	TGC	TTG	AAT	CCA	GTG	TGT	CTT	GTG	ATG	GAA	477
Lys	Leu	Tyr	Gly	Ala	Cys	Leu	Asn	Pro	Val	Cys	Leu	Val	Met	Glu	•
				95					100					105	
TAT	GCT	GAA	GGG	GGC	TCT	TTA	TAT	AAT	GTG	CTG	CAT	GGT	GCT	GAA	522
			Gly											•	
				110					115			-		120	

		-													
CCA	TTG	CCA	TAT	TAT	ACT	GCT	GCC	CAC	GCA	ATG	AGT	TGG	TGT	TTA	567
Pro	Leu	Pro	Tyr	Tyr	Thr	Ala	Ala	His	Ala	Met	Ser	Trp	Cys	Leu	
				125					130					135	
CAG	TGT	TCC	CAA	GGA	GTG	GCT	TAT	CTT	CAC	AGC	ATG	CAA	CCC	AAA	612
Pro	Leu	Pro	Tyr	Tyr	Thr	Ala	Ala	His	Ala	Met	Ser	Trp	Cys	Leu	
				140					145					150	
GCG	CTA	ATT	CAC	AGG	GAC	CTG	AAA	CCA	CCA	AAC	TTA	CTG	CTG	GTT	657
Ala	Leu	Ile	His	Arg	Asp	Leu	Lys	Pro	Pro	Asn	Leu	Leu	Leu	Val	
				155					160					165	
GCA	GGG	GGG	ACA	GTT	СТА	AAA	ATT	TGT	GAT	TTT	GGT	ACA	GCC	TGT	702
Ala	Gly	Gly	Thr	Val	Leu	Lys	Ile	Cys	Asp	Phe	Gly	Thr	Ala	Cys	
				170					175					180	
GAC	ATT	CAG	ACA	CAC	ATG	ACC	AAT	AAC	AAG	GGG	AGT	GCT	GCT	TGG	747
Asp	Ile	Gln	Thr	His	Met	Thr	Asn	Asn	Lys	Gly	Ser	Ala	Ala	Trp	
				185					190					195	
ATG	GCA	CCT	GAA	GTT	TTT	GAA	GGT	AGT	AAT	TAC	AGT	GAA	AAA	TGT	792
Met	Ala	Pro	Glu	Val	Phe	Glu	Gly	Ser	Asn	Tyr	Ser	Glu	Lys	Cys	
				200					205					210	
GAC	GTC	TTC	AGC	TGG	GGT	ATT	ATT	CTT	TGG	GAA	GTG	ATA	ACG	CGT	837
Asp	Val	Phe	Ser	Trp	Gly	Ile	Ile	Leu	Trp	Glu	Val	Ile	Thr	Arg	
				215					220					225	
CGG	AAA	CCC	TTT	GAT	GAG	ATT	GGT	GGC	CCA	GCT	TTC	CGA	ATC	ATG	882
Arg	Lys	Pro	Phe	Asp	Glu	Ile	Gly	Gly	Pro	Ala	Phe	Arg	Ile	Met	
				230					235					240	
TGG	GCT	GTT	CAT	AAT	GGT	ACT	CGA	CCA	CCA	CTG	ATA	AAA	AAT	TTA	927
Trp	Ala	Val	His	Asn	Gly	Thr	Arg	Pro	Pro	Leu	Ile	Lys	Asn	Leu	
				245					250					255	
CCT	AAG	CCC	ATT	GAG	AGC	CTG	ATG	ACT	CGT	TGT	TGG	TCT	AAA	GAT	972
Pro	Lys	Pro	Ile	Glu	Ser	Leu	Met	Thr	Arg	Cys	Trp	Ser	Lys	Asp	
				260					265					270	
CCT	TCC	CAG	CGC	CCT	TCA	ATG	GAG	GAA	ATT	GTG	AAA	ATA	ATG	ACT	1017
Pro	Ser	Gln	Arg	Pro	Ser	Met	Glu	Glu	Ile	Val	Lys	Ile	Met	Thr	
				275					280					285	

CAC	TTG	ATG	CGG	TAC	TTT	CCA	GGA	GCA	GAT	GAG	CCA	TTA	CAG	TAT	1062
His	Leu	Met	Arg	Tyr	Phe	Pro	Gly	Ala	Asp	Glu	Pro	Leu	Gln	Tyr	
				290					295					300	
CCT	TGT	CAG	TAT	TCA	GAT	GAA	GGA	CAG	AGC	AAC	TCT	GCC	ACC	AGT	1107
Pro	Cys	Gln	Tyr	Ser	Asp	Glu	Gly	Gln	Ser	Asn	Ser	Ala	Thr	Ser	
				305					310					315	
ACA	GGC	TCA	TTC	ATG	GAC	ATT	GCT	TCT	ACA	AAT	ACG	AGT	AAC	AAA	1152
Thr	Gly	Ser	Phe	Met	Asp	Ile	Ala	Ser	Thr	Asn	Thr	Ser	Asn	Lys	
				320					325					330	
AGT	GAC	ACT	AAT	ATG	GAG	CAA	GTT	CCT	GCC	ACA	AAT	GAT	ACT	ATT	1197
Ser	Asp	Thr	Asn	Met	Glu	Gln	Val	Pro	Ala	Thr	Asn	Asp	Thr	Ile	
				335					340					345	
AAG	CGC	TTA	GAA	TCA	AAA	TTG	TTG	AAA	AAT	CAG	GCA	AAG	CAA	CAG	1242
Lys	Arg	Leu	Glu	Ser	Lys	Leu	Leu	Lys	Asn	Gln	Ala	Lys	Gln	Gln	
				350					355					360	
AGT	GAA	TCT	GGA	CGT	TTA	AGC	TTG	GGA	GCC	TCC	CGT	GGG	AGC	AGT	1287
Ser	Glu	Ser	Gly	Arg	Leu	Ser	Leu	Gly	Ala	Ser	Arg	Gly	Ser	Ser	
				365					370					375	
GTG	GAG	AGC	TTG	CCC	CCA	ACC	TCT	GAG	GGC	AAG	AGG	ATG	AGT	GCT	1332
Val	Glu	Ser	Leu	Pro	Pro	Thr	Ser	Glu	Gly	Lys	Arg	Met	Ser	Ala	
				380					385					390	
GAC	ATG	TCT	GAA	ATA	GAA	GCT	AGG	ATC	GCC	GCA	ACC	ACA	GCC	TAT	1377
Asp	Met	Ser	Glu	Ile	Glu	Ala	Arg	Ile	Ala	Ala	Thr	Thr	Ala	Tyr	
				395					400					405	
TCC	AAG	CCT	AAA	CGG	GGC	CAC	CGT	AAA	ACT	GCT	TCA	TTT	GGC	AAC	1422
Ser	Lys	Pro	Lys	Arg	Gly	His	Arg	Lys	Thr	Ala	Ser	Phe	Gly	Asn	
				410					415					420	
			GTC												1467
Ile	Leu	Asp	Val		Glu	Ile	Val	He		Gly	Asn	Gly	Gln		
				425	.				430					435	
			TCC												1512
Arg	Arg	Arg	Ser		Gln	Asp	Leu	Thr		Thr	Gly	Thr	Glu		
				440					445					450	

								·	, T.						
GGT	CAG	GTG	AGC	AGT	AGG	TCA	TCC	AGT	CCC	AGT	GTC	AGA	ATG	ATT	1557
Gly	Gln	Val	Ser	Ser	Arg	Ser	Ser	Ser	Pro	Ser	Val	Arg	Met	Ile	
				455					460					465	
ACT	ACC	TCA	GGA	CCA	ACC	TCA	GAA	AAG	CCA	ACT	CGA	AGT	CAT	CCA	1602
Thr	Thr	Ser	Gly	Pro	Thr	Ser	Glu	Lys	Pro	Thr	Arg	Ser	His	Pro	
				470					475					480	
TGG	ACC	CCT	GAT	GAT	TCC	ACA	GAT	ACC	AAT	GGA	TCA	GAT	AAC	TCC	1647
Trp	Thr	Pro	Asp	Asp	Ser	Thr	Asp	Thr	Asn	Gly	Ser	Asp	Asn	Ser	
				485					490					495	
ATC	CCA	${\tt ATG}$	GCT	TAT	CTT	ACA	CTG	GAT	CAC	CAA	CTA	CAG	CCT	CTA	1692
Ile	Pro	Met	Ala	Tyr	Leu	Thr	Leu	Asp	His	Gln	Leu	Gln	Pro	Leu	
				500					505					510	
GCA	CCG	TGC	CCA	AAC	TCC	AAA	GAA	TCT	ATG	GCA	GTG	TTT	GAA	CAG	1737
Ala	Pro	Cys	Pro	Asn	Ser	Lys	Glu	Ser	Met	Ala	Val	Phe	Glu	Gln	
				515					520					525	
CAT	TGT	AAA	ATG	GCA	CAA	GAA	TAT	ATG	AAA	GTT	CAA	ACA	GAA	ATT	1782
His	Cys	Lys	Met	Ala	Gln	Glu	Tyr	Met	Lys	Val	Gln	Thr	Glu	Ile	
				530					535					540	
GCA	TTG	TTA	TTA	CAG	AGA	AAG	ĊAA	GAA	CTA	GTT	GCA	GAA	CTG	GAC	1827
Ala	Leu	Leu	Leu	Gln	Arg	Lys	Gln	Glu	Leu	Val	Ala	Glu	Leu	Asp	
				545					550					555	
CAG	GAT	GAA	AAG	GAC	CAG	CAA	AAT	ACA	TCT	CGC	CTG	GTA	CAG	GAA	1872
Gln	Asp	Glu	Lys	Asp	Gln	Gln	Asn	Thr	Ser	Arg	Leu	Val	Gln	Glu	
				560					565					570	
CAT	AAA	AAG	CTT	TTA	GAT	GAA	AAC	AAA	AGC	CTT	TCT	ACT	TAC	TAC	1917
His	Lys	Lys	Leu	Leu	Asp	Glu	Asn	Lys	Ser	Leu	Ser	Thr	Tyr	Tyr	
				575					580					585	
CAG	CAA	TGC	AAA	AAA	CAA	CTA	GAG	GTC	ATC	AGA	AGT	CAG	CAG	CAG	1962
Gln	Gln	Cys	Lys	Lys	Gln	Leu	Glu	Val	Ile	Arg	Ser	Gln	Gln	Gln	
				590					595					600	•
			GGC												1980
Lys	Arg	Gln	Gly												
					606			_							
														TTTAAGGAAA	2040
GGA/	LAACC	TT /	raat <i>i</i>	rgac(JA T	rcat(GAGT(; TT/	AGCT:	TTT	GGC(TGT:	ICT (GAATGCCAAC	2100

10/14	
TGCCTATATT TGCTGCATTT TTTTCATTGT TTATTTTCCT TTTCTCATGG TGGACATACA	2160
ATTTTACTGT TTCATTGCAT AACATGGTAG CATCTGTGAC TTGAATGAGC AGCACTTTGC	2220
AACTTCAAAA CAGATGCAGT GAACTGTGGC TGTATATGCA TGCTCATTGT GTGAAGGCTA	2280
GCCTAACAGA ACAGGAGGTA TCAAACTAGC TGCTATGTGC AAACAGCGTC CATTTTTTCA	2340
TATTAGAGGT GGAACCTCAA GAATGACTTT ATTCTTGTAT CTCATCTCAA AATATTAATA	2400
ATTTTTTCC CAAAAGATGG TATATACCAA GTTAAAGACA GGGTATTATA AATTTAGAGT	2460
GATTGGTGGT ATATTACGGA AATACGGAAC CTTTAGGGAT AGTTCCGTGT AAGGGCTTTG	2520
ATGCCAGCAT CCTTGGATCA GTACTGAACT CAGTTCCATC CGTAAAATAT GTAAAGGTAA	2580
GTGGCAGCTG CTCTATTTAA TGAAAGCAGT TTTACCGGAT TTTGTTAGAC TAAAATTTGA	2640
TTGTGATACA TTGAACAAAA TGGAACTCAT TTTTTTTTAA GGAGTAAAGA TTTTTAATTC	2700
TGTGATTGTG TGTATGTGTG TTGAAACTGT AAAGCTTTTA TGACTCTAAT ATTAATCTCT	2760
TAAATGAAAT TAAAAGGCAA AAGAACATGA TTGAGCTTAA ATGATCATTT CTTCCTGCAG	2820
TGATTCTTGG ATTGTTTTCT CATGTATTTG AAAAAAAAA AAAAAA	2866
<210> 5	
<211> 1704	
<212> nucleic acid	
<213> cDNA to mRNA	
<400> 5	45
ATG TCT ACA GCC TCT GCC GCC TCC TCC TCC TCC TCG TCT TCG GCC	45
Met Ser Thr Ala Ser Ala Ala Ser Ser Ser Ser Ser Ser Ser Ala	
1 5 10 15	00
GGT GAG ATG ATC GAA GCC CCT TCC CAG GTC CTC AAC TTT GAA GAG	90
Gly Glu Met Ile Glu Ala Pro Ser Gln Val Leu Asn Phe Glu Glu	
20 25 30	
ATC GAC TAC AAG GAG ATC GAG GTG GAA GAG GTT GTT GGA AGA GGA	135

ATC GAC TAC AAG GAG ATC GAG GTG GAA GAG GTT GTT GGA AGA GGA Ile Asp Tyr Lys Glu Ile Glu Val Glu Val Val Gly Arg Gly GCC TTT GGA GTT GTT TGC AAA GCT AAG TGG AGA GCA AAA GAT GTT Ala Phe Gly Val Val Cys Lys Ala Lys Trp Arg Ala Lys Asp Val GCT ATT AAA CAA ATA GAA AGT GAA TCT GAG AGG AAA GCG TTT ATT Ala Ile Lys Gln Ile Glu Ser Glu Ser Glu Arg Lys Ala Phe Ile

								1.	1/14						
GTA	GAG	CTT	CGG	CAG	TTA	TCC	CGT	GTG	AAC	CAT	CCT	AAT	ATT	GTA	270
Val	$\hbox{\rm Gl} u$	Leu	Arg	Gln	Leu	Ser	Arg	Val	Asn	His	Pro	Asn	Ile	Val	
				80					85					90	
AAG	CTT	TAT	GGA	GCC	TGC	TTG	AAT	CCA	GTG	TGT	CTT	GTG	ATG	GAA	315
Lys	Leu	Tyr	Gly	Ala	Cys	Leu	Asn	Pro	Val	Cys	Leu	Val	Met	Glu	
				95					100					105	
TAT	GCT	GAA	GGG	GGC	TCT	TTA	TAT	AAT	GTG	CTG	CAT	GGT	GCT	GAA	360
Tyr	Ala	Glu	Gly	Gly	Ser	Leu	Tyr	Asn	Val	Leu	His	Gly	Ala	Glu	
				110					115					120	
CCA	TTG	CCA	TAT	TAT	ACT	GCT	GCC	CAC	GCA	ATG	AGT	TGG	TGT	TTA	405
Pro	Leu	Pro	Tyr	Tyr	Thr	Ala	Ala	His	Ala	Met	Ser	Trp	Cys	Leu	
				125					130					135	
CAG	TGT	TCC	CAA	GGA	GTG	GCT	TAT	CTT	CAC	AGC	ATG	CAA	CCC	AAA	450
Gln	Cys	Ser	Gln	Gly	Val	Ala	Tyr	Leu	His	Ser	Met	Gln	Pro	Lys	
				140					145					150	
GCG	CTA	ATT	CAC	AGG	GAC	CTG	AAA	CCA	CCA	AAC	TTA	CTG	CTG	GTT	495
Ala	Leu	Ile	His	Arg	Asp	Leu	Lys	Pro	Pro	Asn	Leu	Leu	Leu	Val	
				155					160					165	
GCA	GGG	GGG	ACA	GTT	СТА	AAA	ATT	TGT	GAT	TTT	GGT	ACA	GCC	TGT	540
Ala	Gly	Gly	Thr	Val	Leu	Lys	Ile	Cys	Asp	Phe	Gly	Thr	Ala	Cys	
				170					175					180	
GAC	ATT	CAG	ACA	CAC	ATG	ACC	AAT	AAC	AAG	GGG	AGT	GCT	GCT	TGG	585
Asp	Ile	Gln	Thr	His	Met	Thr	Asn	Asn	Lys	Gly	Ser	Ala	Ala	Trp	
				185					190					195	
ATG	GCA	CCT	GAA	GTT	TTT	GAA	GGT	AGT	AAT	TAC	AGT	GAA	AAA	TGT	630
Met	Ala	Pro	Glu	Val	Phe	Glu	Gly	Ser	Asn	Tyr	Ser	Glu	Lys	Cys	
				200					205					210	
GAC	GTC	TTC	AGC	TGG	GGT	ATT	ATT	CTT	TGG	GAA	GTG	ATA	ACG	CGT	675
Asp	Val	Phe	Ser	Trp	Gly	Ile	Ile	Leu	Trp	Glu	Val	Ile	Thr	Arg	
				215					220					225	,
CGG	AAA	CCC	TTT	GAT	GAG	ATT	GGT	GGC	CCA	GCT	TTC	CGA	ATC	ATG	720
Arg	Lys	Pro	Phe	Asp	Glu	Ile	Gly	Gly	Pro	Ala	Phe	Arg	Ile	Met	
				230					235					240	

									2 / 1 1						
TGG	GCT	GTT	CAT	AAT	GGT	ACT	CGA	CCA	CCA	CTG	ATA	AAA	AAT	TTA	765
Trp	Ala	Val	His	Asn	Gly	Thr	Arg	Pro	Pro	Leu	Ile	Lys	Asn	Leu	
				245					250					255	
CCT	AAG	CCC	ATT	GAG	AGC	CTG	ATG	ACT	CGT	TGT	TGG	TCT	AAA	GAT	810
Pro	Lys	Pro	Ile	Glu	Ser	Leu	Met	Thr	Arg	Cys	Trp	Ser	Lys	Asp	
				260					265					270	
CCT	TCC	CAG	CGC	CCT	TCA	ATG	GAG	GAA	ATT	GTG	AAA	ATA	ATG	ACT	855
Pro	Ser	Gln	Arg	Pro	Ser	Met	Glu	Glu	Ile	Val	Lys	Ile	Met	Thr	
				275					280					285	
CAC	TTG	ATG	CGG	TAC	TTT	CCA	GGA	GCA	GAT	GAG	CCA	TTA	CAG	TAT	900
His	Leu	Met	Arg	Tyr	Phe	Pro	Gly	Ala	Asp	Glu	Pro	Leu	Gln	Tyr	
				290					295					300	
CCT	TGT	CAG	TAT	TCA	GAT	GAA	GGA	CAG	AGC	AAC	TCT	GCC	ACC	AGT	945
Pro	Cys	Gln	Tyr	Ser	Asp	Glu	Gly	Gln	Ser	Asn	Ser	Ala	Thr		
				305					310					315	
		TCA													990
Thr	Gly	Ser	Phe		Asp	Ile	Ala	Ser		Asn	Thr	Ser	Asn		
				320					325					330	
		ACT													1035
Ser	Asp	Thr	Asn		Glu	Gln	Val	Pro		Thr	Asn	Asp	Thr		
				335					340					345	
		TTA													1080
Lys	Arg	Leu	Glu		Lys	Leu	Leu	Lys		Gln	Ala	Lys	Gln		
				350			mm .a	201	355	m 00	com	000	400	360	1105
		TCT								_			_	_	1125
Ser	Glu	Ser	Gly		Leu	Ser	Leu	Gly		Ser	Arg	Gly	Ser		
omo	CAC	100	mm0	365	CCA	100	TO T	CAC	370	440	400	ATTO	A CT	375	1170
		AGC													1170
vai	GIU	Ser	Leu		Pro	ınr	ser	GIU		Lys	Arg	met	ser		
CAC	ልጥሮ	ጥርጥ	CAA	380	CAA	ር ር	۸۲۲	ለጥሮ	385	CCA	۸۵۵	ACA	ccc	390	1915
		TCT													1215
лsр	met	Ser	GIU		GIU	nia	ига	116		nia	m	ınr	nia		
				395					400					405	

								1	0/14						
TCC	AAG	CCT	AAA	CGG	GGC	CAC	CGT	AAA	ACT	GCT	. TCA	TTT	GGC	AAC	1260
Ser	Lys	Pro	Lys	Arg	Gly	His	Arg	Lys	Thr	Ala	Ser	Phe	Gly	Asn	
				410					415					420	
ATT	CTG	GAT	GTC	CCT	GAG	ATC	GTC	ATA	TCA	GGC	AAC	GGA	CAG	CCA	1305
Ile	Leu	Asp	Val	Pro	Glu	Ile	Val	Ile	Ser	Gly	Asn	Gly	Gln	Pro	
				425					430					435	
AGA	CGT	AGA	TCC	ATC	CAA	GAC	TTG	ACT	GTA	ACT	GGA	ACA	GAA	CCT	1350
Arg	Arg	Arg	Ser	Ile	Gln	Asp	Leu	Thr	Val	Thr	Gly	Thr	Glu	Pro	
				440					445					450	
GGT	CAG	GTG	AGC	AGT	AGG	TCA	TCC	AGT	CCC	AGT	GTC	AGA	ATG	ATT	1395
Gly	Gln	Val	Ser	Ser	Arg	Ser	Ser	Ser	Pro	Ser	Val	Arg	Met	Ile	
				455					460					465	
ACT	ACC	TCA	GGA	CCA	ACC	TCA	GAA	AAG	CCA	ACT	CGA	AGT	CAT	CCA	1440
Thr	Thr	Ser	Gly	Pro	Thr	Ser	Glu	Lys	Pro	Thr	Arg	Ser	His	Pro	
				470					475					480	
TGG	ACC	CCT	GAT	GAT	TCC	ACA	GAT	ACC	AAT	GGA	TCA	GAT	AAC	TCC	1485
Trp	Thr	Pro	Asp	Asp	Ser	Thr	Asp	Thr	Asn	Gly	Ser	Asp	Asn	Ser	
				485					490					495	
ATC	CCA	ATG	GCT	TAT	CTT	ACA	CTG	GAT	CAC	CAA	CTA	CAG	CAA	GAA	1530
Ile	Pro	Met	Ala	Tyr	Leu	Thr	Leu	Asp	His	Gln	Leu	Gln	Gln	Glu	
				500					505					510	
CTA	GTT	GCA	GAA	CTG	GAC	CAG	GAT	GAA	AAG	GAC	CAG	CAA	AAT	ACA	1575
Leu	Val	Ala	Glu	Leu	Asp	Gln	Asp	Glu	Lys	Asp	Gln	Gln	Asn	Thr	
				515					520					525	
TCT	CGC	CTG	GTA	CAG	GAA	CAT	AAA	AAG	CTT	TTA	GAT	GAA	AAC	AAA	1620
Ser	Arg	Leu	Val		Glu	His	Lys	Lys	Leu	Leu	Asp	Glu	Asn	Lys	
				530					535					540	
GGC									AAA						1665
Gly	Leu	Ser	Thr		Tyr	Gln	Gln	Cys	Lys	Lys	Gln	Leu	Glu		
				545					550					555	
									GGC			TGA			1704
He	Arg	Ser	Gln		Gln	Lys	Arg	Gln	Gly	Thr					
				560					565		567				

PCT/JP99/00422

14/14

<210> 6

<211> 30

<212> nucleic acid

<213> other nucleic acid (Synthesized primer)

<400> 6

TTCCAAGCTT ATGGCGGCGC AGAGGAGGAG

30

<210> 7

<211> 30

<212> nucleic acid

<213> other nucleic acid (Synthesized primer)

<400> 7

TCCGGAATTC CTACGGTGCT GTCACCACGC

30

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP99/00422

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁶ C12N15/52, C12Q1/68, C12Q1/02, G01N33/53, G01N33/566, A61K38/43				
According to International Patent Classification (IPC) or to both national classification and IPC				
	S SEARCHED			
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁶ Cl2N15/52, Cl2Q1/68, Cl2Q1/02, G01N33/53, G01N33/566, A61K38/43				
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched				
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) BIOSIS (DIALOG), WPI (DIALOG)				
C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.	
PX	Hiroaki et al., "TGF-β-Activa" NF- _k B-Inducing Kinase-Indeper BIOCHEMICAL AND BIOPHYSICAL R (1998) VOL. 243, No. 2, p.54	ndent Mechanism" ESEARCH COMMUNICATIONS 5-549	1-12	
	er documents are listed in the continuation of Box C.	See patent family annex.		
Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance "E" callier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family Date of mailing of the international search report		
21 A	actual completion of the international search pril, 1999 (21. 04. 99)	11 May, 1999 (11.		
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer		
Facsimile No.		Telephone No.		

5 975 P

電話番号 03-3581-1101 内線 3488

国際調査報告	国際出願番号 PCT/JP99/00422			
A. 発明の風する分野の分類(国際特許分類(IPC)) Int.Cl [®] C12N15/52,C12Q1/68,C12Q1/02,G01N33/53,G01N33/566, A61K38/43				
B. 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int.Cl [®] C12N15/52,C12Q1/68,C12Q1/02,G01N33/53,G01N33/566, A61K38/43				
最小限資料以外の資料で調査を行った分野に含まれるもの				
国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) BIOSIS(DIALOG), WPI (DIALOG)				
C. 関連すると認められる文献				
引用文献の カテゴリー* 引用文献名 及び一部の箇所が関連すると	関連する きは、その関連する箇所の表示			
PX Hiroaki et al. "TGF-β-Activated Inducing Kinase-Independent Mecha-SICAL RESEARCH COMMUNICATIONS (19	mism"BIOCHEMICAL AND BIOPHY			
C 欄の続きにも文献が列挙されている。	□ パテントファミリーに関する別紙を参照。			
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」ロ頭による開示、使用、展示等に言及する文献 「P」国際出願日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献			
国際調査を完了した日 21.04.99	国際調査報告の発送日 11.05.99			
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 4N 9637 新見 浩一 印/ 印/ 和 3488			