ML Challenge 2025 — Smart Product Pricing (Team Apex)

Submission Date: 13/10/2025

Name	GitHub	LinkedIn	Department @ IIT Patna
S Akash	@Akasxh	LinkedIn	EEE
Anirudh D Bhat	@RudhaTR	LinkedIn	CSE
Akash S	@akash1764591	LinkedIn	EEE
Ammar Ahmad	@ammarrahmad	$\operatorname{LinkedIn}$	AI & DS

1 Executive Summary

We tackle product price prediction from semi-structured catalog text as a text regression problem. After building a hybrid data preparation pipeline (Regex for fast parsing + a targeted small LLM for imputation), we fine-tune **DeBERTa-v3-large** with a lightweight regression head.

- Codes and Drive and Github
- Best validation SMAPE: 42.22% on a 7,500-sample hold-out split
- Other metrics: MAE: \$9.44, R²: 0.29
- Training size: 67,499 samples; epochs: 10

Key insight: **pragmatic feature engineering**—extracting value/unit/name via Regex and using an LLM *only where needed*—yields cleaner inputs at a fraction of the compute of fully LLM-driven structuring.

2 Problem & Data

2.1 Task

Predict a continuous **price** from a textual **catalog_content** field (semi-structured lines with optional bullets). Images were available but largely redundant with text for this challenge.

2.2 Dataset Fields

• serial_id, price (target), image_link, catalog_content (primary feature)

2.3 EDA Highlights

- Right-skewed target → apply log1p(price) during training
- Semi-structured text with pattern:
 - 1. Item name / short description
 - 2. Numeric value/quantity (e.g., 12, 16.9)
 - 3. Unit (e.g., oz, count)
 - 4. Longer description / bullets (optional)
- Image information mostly duplicated in text \rightarrow **text-only** approach favored

3 Methodology

3.1 Data Preparation (Hybrid Regex + Targeted LLM)

- 1. Regex extraction of item name, value, unit, plus remaining text as description.
- 2. Targeted LLM imputation for rows where Regex fails.
- 3. Sensible defaults for residual nulls (e.g., unit="count", description="no description").

Category: [category] [SEP] description: [description] [SEP] Amount: [value] [uni

4. Structured prompt string fed to the model:

5. Apply log1p transform to price for training; use expm1 for inference.

3.2 Model Architecture

- Backbone: microsoft/deberta-v3-large
- Head: MLP regression head on CLS/pooled representation
- Loss: Huber

3.3 Training Setup (Key Hyperparameters)

- Max sequence length: 160
- Dropout: 0.2
- Encoder LR: 2e-5; Head LR: 1e-3
- Batch size: 16
- Epochs: 10

Figure 1: Data preparation and model pipeline (replace with your image).

4 Results

SMAPE is the primary metric:

$$SMAPE = \frac{1}{n} \sum \frac{|predicted - actual|}{(|actual| + |predicted|)/2}$$

4.1 Final Hold-out (7,500 samples)

• SMAPE: 42.22%

• MAE: \$9.44

• R^2 : 0.29

4.2 Selected Experiment Snapshots (Ablations)

A) Head depth/epochs vs. performance:

Epochs	MLP Head (dims)	MAE (\$)	\mathbb{R}^2	SMAPE (%)
5	$512 \rightarrow 256$	9.53	0.28	42.69
5	$768 \rightarrow 384$	9.63	0.29	42.86
7	$512 \rightarrow 256$	9.50	0.28	42.68
10	$512{\rightarrow}256$	9.44	0.29	$\boldsymbol{42.22}$

B) Model family comparisons (same pipeline):

Approach	Validation SMAPE (%)		
DeBERTa-v3-large + head (final)	42.22		
DeBERTa-v3-base + head	43.59		
DistilBERT + head (baseline)	45.00		
Sentence Embeddings + Neural Net	49.00		
Sentence Embeddings $+$ XGBoost	52.00		
BERT Encodings + XGBoost	50.00		
LLM SFT (phi-3-mini-instruct, 1 epoch)	$48.00 \; (slow)$		
IFT (Qwen-7B / phi-3-mini-instruct)	Abandoned (compute)		

5 Discussion & Lessons

- Data ; Model Size (alone): Regex—LLM hybrid delivered cleaner inputs without full LLM structuring.
- Target transformation matters: log1p stabilized optimization for heavy-tailed prices.
- Vision deprioritized intentionally: text captured most variance; images not critical under compute constraints.

6 Reproducibility (High-Level)

- 1. Prepare data: parse name/value/unit/description, apply LLM fills, compute log1p(price).
- 2. Train: fine-tune microsoft/deberta-v3-large with Huber loss.
- 3. Evaluate: compute SMAPE/MAE/R² on hold-out.
- 4. Infer: predict on new catalog_content, inverse-transform with expm1.

Code & Scripts: Google Drive

7 Appendix

7.1 Additional Experiment Notes (excerpts)

- Epoch 7/7: Train Huber Loss $\approx 0.0470 \rightarrow$ Test SMAPE 42.68% (MAE \$9.50, R² 0.28)
- Epoch 10/10: Train Huber Loss 0.0276 \rightarrow Best Test SMAPE 42.22% (MAE \$9.44, R² 0.29)

7.2 Potential Next Steps

- Lightweight category detection and "premium" heuristics to de-skew residuals
- Targeted vision augmentation only when Regex+LLM confidence is low

- Quantization / LoRA for faster ablations on larger backbones
- Calibrated price intervals (e.g., conformal) for actionable uncertainty

Contact: See team table for GitHub / LinkedIn profiles.