

Department of Computer Engineering Academic Term II: 23-24

Class: B.E (Computer), Sem – VI Subject Name: Artificial Intelligence

Student Name: Roll No:

Practical No:	6
Title:	Implementation of AO* algorithm
Date of Performance:	11-03-2024
Date of Submission:	18-03-2024

Rubrics for Evaluation:

Sr. No	Performance Indicator	Excellent	Good	Below Average	Marks
1	On time Completion & Submission (01)	01 (On Time)	NA	00 (Not on Time)	
2	Logic/Algorithm Complexity analysis (03)	03(Correct	02(Partial)	01 (Tried)	
3	Coding Standards (03): Comments/indention/Naming conventions Test Cases /Output	03(All used)	02 (Partial)	01 (rarely followed)	
4	Post Lab Assignment (03)	03(done well)	2 (Partially Correct)	1(submitte d)	
Total					

Signature of the Teacher:

Experiment No: 6

Title: Implementation of AO* algorithm

Objective: To study AO* algorithm and implement it in an efficient manner

Theory:

AO* Algorithm basically based on problem decomposition (Breakdown problem into small pieces). Basically, we will calculate the **cost function** here (F(n) = G(n) + H(n))

H: heuristic/ estimated value of the nodes. and **G:** actual cost or edge value (here unit value). Here we have taken the edges value 1, meaning we have to focus solely on the heuristic value.

Step-1: Create an initial graph with a single node (start node).

Step-2: Transverse the graph following the current path, accumulating node that has not yet been expanded or solved.

Step-3: Select any of these nodes and explore it. If it has no successors then call this value-FUTILITY else calculate f'(n) for each of the successors.

Step-4: If f'(n)=0, then mark the node as SOLVED.

Step-5: Change the value of f'(n) for the newly created node to reflect its successors by backpropagation.

Step-6: Whenever possible use the most promising routes, if a node is marked as SOLVED then mark the parent node as SOLVED.

Step-7: If the starting node is SOLVED or value is greater than **FUTILITY** then stop else repeat from Step-2.

OUTPUT:

Post Lab Assignment:

- 1. What is the difference between A* and AO* algorithm?
- 2. Why AO* algorithm only works when heuristic values are underestimated?

		CONCEICAO RODRIGUES COLLEGE OF ENGINEERING		
9526	TE COMPS A AI	Exp6		
Lostlab :				
O What is	the difference between P* o	od PO* algorithm?		
Dopret	A* algorithm	AO* algorithm		
	Grananteed optimal solution	Not guaranteed optimal solut		
Harristic quality	Requires admissible heuristic	Works with underestimated heurist		
Solution quality	Always provides optimal solution	May not provide optimal		
Esuplatation	Efficient guided search	Iterative refinament of		
	9	estimates		
Performance	More efficient with admissible	Better in grenerics with		
		underestimated heuristics		
D Why A	10* algorithm only works who	en heuristic values are		
underestima	ated?			
O Improper	Heuristic Handling: AO* m	by coverage to sub optimal		
solutions	if heuristic values are over	Cestimated		
D Convergen	re Issues: Overestimated heu	ristics binder A0*s		
	refinement process, leading			
	Condition Viablian: Overestime			
	* from terminating early, re			
exploration	00.			
Inefficier	t Exploration: AO* might 1	voste resources exploring		
	- Llas season	space with over estimated		

houristics. @ Performance Degradation: A0*: s performance suffers with overestimated heuristics resulting in longer convergence times and sub-optimal solutions.