Formulaire de réponse pour le test 2

Michel Yoeung Groupe 2

Question 1

- Calculer la probabilité de battre un record à l'épreuve m

Réponse :

La probabilité de battre un record à l'épreuve m vaut $\frac{1}{m}.$

Question 2

• Donner l'espérance de N pour n=27.

Réponse :

L'espérance de N pour n=27 vaut $\sum_{i=1}^{27} \frac{1}{i} \approx 3,89$ records battus.

Question 3

• Calculer $E[Y_n]$.

Réponse :

$$\mathrm{E}[Y_n] = \tfrac{n-1}{2}.$$

Question 4

• Calculer la valeur de la variance $Var[Y_3]$.

Réponse :

$$Var[Y_3] = \frac{1}{3}.$$

${\bf Question}~{\bf 5}$

• Calculer $Var[Y_n]$ pour tout $n \ge 2$.

Réponse :

$$Var[Y_n] = \frac{n+1}{12}.$$

Question 6

• Combien de tirages suffisent pour qu'avec une probabilité supérieure à 0.99, A_{n-1} soit proche de la valeur 1/2 à 10^{-2} près.

Réponse :

En résolvant l'équation $\frac{n+1}{12(n-1)^2}=0,99*10^{-4},$ on trouve $n\approx 842$ tirages.

Question 7

• Déterminer la valeur de c.

Réponse :

c = 10.

Question 8

• Déterminer la fonction de répartition de la variable Y. Donner sa valeur au point t=2/3.

Réponse :

La fonction de répartition de la variable Y est $F_Y(t) = t^5$.

Si
$$t = \frac{2}{3}$$
, $F_Y(t) = \frac{32}{243}$.

Question 9

• Ecrire un algorithme de simulation d'un couple de densité f(x,y).

Réponse :

On a
$$f_X^{Y=y}(x) = \frac{10x*1_{x < y}(x,y)}{y^3}$$
.

Soit
$$c = E[Nbrejets]$$
.

On commence par simuler Y puis X sachant Y=y :

Répéter

Répeter

\sim	•	-1	\mathbf{a}
Quest	tion	Τ	U

• On pose Z=XY. Déterminer la densité de la loi de la variable Z.

Réponse :