LCD 显示驱动芯片 CH463

中文手册 版本: 1 http://wch.cn

1、概述

CH463 是 LCD 的显示驱动芯片。CH463 内置时钟振荡电路,支持 128 个点(16×8),48 个点(12×4)等 LCD 面板,同时还可以进行 35 键(基于 7×5 矩阵)的键盘扫描;CH463 通过 2 线串行接口与单片机等交换数据。

2、特点

2.1. 显示驱动

- 最大支持 16×8 的 LCD 面板, 16 个 SEG, 8 个 COM。
- 支持 1/4 duty, 1/3 bias 或 1/8 duty, 1/4 bias 等 LCD 规格。
- 支持帧频率调节。
- 内置偏压电路,外置 VLCD 引脚,用于调节 LCD 工作电压。
- 提供 64 级 PWM, 可用于 LCD 背光调节。

2.2. 键盘控制

- 内置 35 键键盘控制器,基于 7×5 矩阵键盘扫描。
- 内置按键状态输入的上拉电阻,内置去抖动电路。
- 键盘中断输出,低电平有效。
- 支持组合键。

2.3. 其它杂项

- 提供 GP10 通用输入输出扩展引脚(未用于键盘扫描矩阵的引脚)。
- 两线串行接口,兼容 I²C 总线,节约引脚。
- 提供蜂鸣器驱动输出,2种频率可选。
- 内置时钟振荡电路,不需要外部提供时钟或者外接振荡元器件,更抗干扰。
- 提供 LQFP44 无铅封装,兼容 RoHS。

3、封装

I	封装形式	宽度		引脚间距		封装说明	订货型号
Ī	LQFP44	10*10mm		0. 8mm	31.5mil	标准 LQFP44 脚贴片	CH463Q

4、引脚

引脚号	引脚名称	类型	引脚说明		
34	34 VCC 电源		工作电源输入		
37	GND	电源	公共接地端		
25	VLCD	电源	LCD 电源输入		
9∼24	SEG15 \sim SEG0	输出	LCD SEG 驱动端口		
26~33	26~33 COM7~COMO 输出		LCD COM 驱动端口		
4 0∼ 4 3, 1	KS4 \sim KS0	键盘输出	键盘扫描输出端口,GP10 引脚,		
2~8	KI6~KIO	键盘输入	键盘扫描输入端口,GPIO 引脚,内置上拉电阻		
35	SDA	开漏输出及输入	、 2 线串行接口的数据输入和输出,内置上拉电阻 2 线串行接口的数据时钟,内置上拉电阻		
36	SCL	输入			
44	44 INT 开漏输出		键盘中断输出,低电平有效,内置上拉电阻		
38 BZ 输出		输出	蜂鸣器驱动输出		
39	PWM	输出	PWM 输出,可用于 LCD 的背光驱动		

5、寄存器空间

本手册中的数据,以 B 结尾的为二进制数,以 H 结尾的为十六进制数,否则为十进制数,标注为 x 的位表示该位可以是任意值。

说明:保留位读取时忽略,写入时写0。

地址	读/写(R/W)	寄存器说明
00H∼0FH	R/W	LCD 的显示存储器,对应关系见 6. 1 节
40H	R/W	复位寄存器,Bit0 表示复位,写 1 执行复位操作,
4UH	N/ W	复位完成自动清零,其他位保留无定义
		功能设置寄存器:
		Bit0: 1, LCD 显示使能; 0, 关闭
41H	R/W	Bit1: 1,键盘扫描使能; 0,关闭
4111	R/ W	Bit2: 1, PWM 输出使能; 0, 关闭
		Bit3: 1, BZ 输出使能; 0, 关闭
		其他位保留无定义
		LCD 帧频率调整寄存器:
42H	R/W	LCD 帧频率=Fosc/2/2/(调整寄存器的值+1)/duty/(1 或 2),
		A-type 除以 2,B-type 除以 1
43H	R/W	键盘扫描频率调整寄存器(仅0到15有效):
4311	R/ W	扫描频率=Fosc/2/2/(调整寄存器的值+1)/8/5。
44H	R/W	LCD 配置寄存器,见 6.1 节
45H	R/W	PWM 配置寄存器,见 6.3 节
46H	R/W	BZ 配置寄存器,见 6. 3 节
47H	R	中断状态寄存器,Bit0 为 1 表示按键有变化,
47П	K	读取键值自动清零,其他位保留无定义
48H	R/W	KI 的 GPIO 使能: 1,使能 GPIO; 0,禁止 GPIO,见 6.3节
49H	R/W	KS 的 GPIO 使能: 1,使能 GPIO; 0,禁止 GPIO,见 6.3节
4AH	R/W	KI 的 GPIO 输出使能,见 6.3 节
4BH	R/W	KS 的 GP10 输出使能,见 6. 3 节
4CH	R/W	KI 的 GPIO 上拉使能,见 6.3 节
4DH	R/W	KS 的 GP10 上拉使能,见 6. 3 节
		KI 的输出寄存器和输入状态寄存器:
4EH	R/W	写入时为 KI 使能 GP10 时的输出状态,
4EN	R/W	读取时为 KI 引脚的当前状态,
		见 6.3 节
		KS 及 PWM, BZ 的输出寄存器和输入状态寄存器:
4FH	D/W	写入时为 KS 及(PWM, BZ) 使能 GP10 时的输出状态,
4F F	R/W	读取时为 KS 及 (PWM, BZ) 引脚的当前状态,
		见 6.3 节
		键值寄存器:
50H \sim 52H	R	00H:表示按键释放,
3011 33211	N	01H:表示按键出错,
		详细键值见 6.2 节

6、功能说明

6.1. LCD 显示驱动

CH463 内置 16×8 位数据存储,地址从 00H 到 0FH 的 16 个字节单元,分别与 SEG 和 COM 管脚所接的 LCD 点对应,对应关系如下:

编址	COM7	COM6	COM5	COM4	COM3	COM2	COM1	COMO
SEG0 (00H)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SEG1 (01H)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SEG2 (02H)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SEG3 (03H)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SEG4 (04H)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SEG5 (05H)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SEG6 (06H)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SEG7 (07H)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SEG8 (08H)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SEG9 (09H)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SEG10 (OAH)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SEG11 (OBH)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SEG12 (0CH)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SEG13 (ODH)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SEG14 (OEH)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SEG15 (OFH)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

地址 41H 的 Bit0 为 LCD 驱动使能位,该位置 1 时使能 LCD 显示,置 0 时关闭。

地址 42H 为 LCD 帧频率调整寄存器,LCD 帧频率=Fosc/2/2/(调整寄存器的值+1)/duty/(1 或 2), A-type 除以 2, B-type 除以 1。

地址 44H 为 LCD 配置寄存器, 其中 Bit3 和 Bit7 为保留值, Bit6 为输出波形的类型: 0 为 A-type, 1 为 B-type, 详细配置如下表:

Bit2	Bit1	Bit0	Duty
0	0	0	1/1 Duty
0	0	1	1/2 Duty
0	1	0	1/3 Duty
0	1	1	1/4 Duty
1	0	0	1/5 Duty
1	0	1	1/6 Duty
1	1	0	1/7 Duty
1	1	1	1/8 Duty

Bit5	Bit4	Bias
0	0	1/4 bias
0	1	保留,无定义
1	0	1/2 bias
1	1	1/3 bias

6.2. 键盘扫描

CH463 的扫描矩阵为 7×5, 如下图所示:

地址 41H 的 Bit1 为键盘扫描使能位,该位置 1 时使能键盘扫描,置 0 时关闭。

地址 43H 为键盘扫描频率调整寄存器 (仅 0 到 15 有效),扫描频率=Fosc/2/2/(调整寄存器的值 +1) /8/5。

在扫描的过程中,如果键盘有按键发生变化(按下或释放),地址 47H 的 Bit0 会被置 1,同时 INT 引脚会输出低电平,当用户读取键值后,地址 47H 的 Bit0 会自动清零,同时 INT 引脚也会输出高电平。支持任意两键组合和无键位冲突的 3 键组合。键值存放在地址 50H,51H,52H 当中。假如读取的键值是 01H,01H,01H,表示键盘出错,出错的原因可能是有多于 3 个按键同时处在按下状态或者按下的 3 个键出现键位冲突。键值的位置任意(地址 50H,51H,52H 当中任意一个),00H 表示按键释放,键值的大小与上图中的按键位置想对应(如 K36 被按下,则读到的键值为 36H)。

6.3. PWM 和 BZ 及 GPIO 扩展

KSO-KS4, KIO-KI6 可以单独指定作为普通 GPI0 引脚使用,作为 GPI0 使用时,相应的按键无效。 地址 48H 的 Bit0 到 Bit6 对应 KI0 到 KI6 的 GPI0 使能,如果为 1,则相应的 KI 引脚作为 GPI0 使用。地址 4AH 的 Bit0 到 Bit6 是 KI0 到 KI6 作为 GPI0 时的输出使能,为 1 时开启输出使能,输出 的值是地址 4EH 的 Bit0 到 Bit6 的值。当读取地址 4EH 时,读取的是 KI0 到 KI6 引脚的状态。地址 4CH 的 Bit0 到 Bit6 是 KI0 到 KI6 作为 GPI0 时的上拉使能,为 1 时使能上拉。

地址 49H 的 Bit0 到 Bit4 对应 KS0 到 KS4 的 GPI0 使能,如果为 1,则相应的 KS 引脚作为 GPI0 使用。地址 4BH 的 Bit0 到 Bit4 是 KS0 到 KS4 作为 GPI0 时的输出使能,为 1 时开启输出使能,输出的值是地址 4FH 的 Bit0 到 Bit4 的值。当读取地址 4FH 时,读取的是 KS0 到 KS4 引脚的状态,其中 Bit5,Bit6 为 PWM,BZ 引脚的状态。地址 4DH 的 Bit0 到 Bit4 是 KS0 到 KS4 作为 GPI0 时的上拉使能,为 1 时使能上拉。

地址 41H 的 Bit2 为 PWM 使能位,该位置 1 时使能 PWM 输出,置 0 时关闭。

地址 41H 的 Bit3 为 BZ 使能位,该位置 1 时使能 BZ 输出,置 0 时关闭。

当关闭相应的使能位时,PWM 和 BZ 也可以指定作为普通 GP10 使用。地址 4BH 的 Bit5,Bit6 是PWM,BZ 作为 GP10 时的输出使能,为 1 时开启输出使能,输出的值是地址 4FH 的 Bit5,Bit6 的值。 当读取地址 4FH 时,读取的 Bit5,Bit6 为 PWM,BZ 引脚的状态。地址 4DH 的 Bit5,Bit6 是 PWM,BZ 作为 GP10 时的上拉使能,为 1 时使能上拉。

地址 45H 为 PWM 配置寄存器 (仅 0 到 63 有效), 用于 PWM 的脉冲宽度设定。

配置值	PWM 的脉冲宽度设定		
00Н	恒为 0		
01H∼3EH	1/64~62/64		
3FH	恒为 1		

地址 46H 为 BZ 配置寄存器 (仅 Bit1, Bit0 有效), 用于 BZ 的频率设定。

配置值	BZ 的频率设定		
00Н	0FF		
01H	低频(4KHz,Fosc/32)		
02H, 03H	高频(8KHz,Fosc/16)		

6.4. 串行接口

CH463 的 2 线串行接口包含 3 个信号线: 串行数据时钟输入线 SCL、串行数据输入和输出线 SDA、以及可选的中断输出线 INT。其中,SCL 是带上拉的输入信号线,默认是高电平; SDA 是带上拉的准双向信号线,默认是高电平; INT 是带上拉的开漏输出信号线,默认是高电平。

SDA 用于串行数据输入和输出,高电平表示位数据 1,低电平表示位数据 0,串行数据输入的顺序是高位在前,低位在后。

SCL 用于提供串行时钟,CH463 在其上升沿后的高电平期间从 SDA 输入数据,在其下降沿后的低电平期间从 SDA 输出数据。

INT 用于键盘中断输出。

在 SCL 为高电平期间发生的 SDA 下降沿定义为串行接口的启动信号,在 SCL 为高电平期间发生的 SDA 上升沿定义为串行接口的停止信号。CH463 只在检测到启动信号后才接收并分析命令。所以在单片机 I/0 引脚资源紧张时,只要保持 SDA 引脚状态不变,SCL 引脚就可以与其它接口电路共用。

单片机与 CH463 通讯方式有两种,一种是写操作,用于输出数据,一种是读操作,用于输入数据。具体过程可以参考例子程序中的说明。

写操作包括:输出启动信号、输出字节 1、应答 1、输出字节 2、应答 2、(输出字节 n、应答 n)输出停止信号。其中,启动信号和停止信号如上所述,应答信号为 0,输出字节包含 8 个数据位,即一个字节数据。

读操作包括:输出启动信号、输出字节 1、应答 1、输入字节 2、应答 2、(输入字节 n、应答 n,最后一个应答不给,否则停止信号可能生成不了)输出停止信号。其中,启动信号和停止信号如上所述,应答信号为 0,输出字节和输入字节包含 8 个数据位,即一个字节数据。

上述中,输出的第一个字节为地址加命令(读或写),前 7 位为地址信号(高位在前),最后一位表示读还是写(1 表示读,0 表示写),字节 $2\sim n$ 为写入或读出的数据,每操作一个字节地址自动加 1,应答信号的方向与他前面的数据信号方向相反。

下图是一个写操作的实例,字节 1 为 01001000B,即 48H;字节 2 为 00000001B,即 01H。

7、参数

7.1. 绝对最大值

名称	参数说明	最小值	最大值	单位
TA	工作时的环境温度	-40	85	$^{\circ}\!\mathbb{C}$
TS	储存时的环境温度	-55	125	$^{\circ}\!\mathbb{C}$
VCC	电源电压(VCC 接电源,GND 接地)	-0. 5	5. 5	٧
V10	输入或者输出引脚上的电压	-0. 5	VCC+0. 5	V
VLCD	LCD 电压	1. 5	5	V

7.2. 电气参数 (测试条件: TA=25℃, VCC=5V)

名称	参数说明	最小值	典型值	最大值	单位
VCC	电源电压	3	5	5. 5	V
VLCD	LCD 电压	0	VCC	5	V
ICC	电源电流(LCD 使能,I/O 内部上拉)	100	200		uA
lslp5	5V 静态电流(LCD 关闭,I/O 内部上拉)		25	50	uA
lslp3	3. 3V 静态电流(LCD 关闭, I/O 内部上拉)		12	30	uA
VIL	低电平输入电压			0. 7	V
VIH	高电平输入电压	2. 0			٧
lox	LCD SEG 和 COM 驱动电流		100		uA
VOL	PWM、BZ、KI、KS 低电平输出电压(-2mA)			0. 5	٧
VOH	PWM、BZ、KI、KS 高电平输出电压(2mA)	VCC-0. 5			٧

7.3. 内部时序参数 (测试条件: TA=25℃, VCC=5V)

(注: 本表时序参数都是 Fosc 周期的倍数,内置时钟 Fosc 的频率可能受电源电压的影响)

名称	参数说明	最小值	典型值	最大值	单位
TPR	上电复位时间	3	10	50	mS
Fosc	振荡频率	50	128	250	KHz
Fpwm	PWM 频率		Fosc/2		KHz
TKS	键盘扫描按键响应时间	5	15	50	mS

7.4. 接口时序参数 (测试条件: TA=25℃, VCC=5V, 参考附图)

名称	参数说明	最小值	典型值	最大值	单位
TSSTA	SDA 下降沿启动信号的建立时间	200			nS
THSTA	SDA 下降沿启动信号的保持时间	200			nS
TSST0	SDA 上升沿停止信号的建立时间	200			nS
THST0	SDA 上升沿停止信号的保持时间	200			nS
TCLOW	SCL 时钟信号的低电平宽度	200			nS
TCHIG	SCL 时钟信号的高电平宽度	200			nS
TSDA	SDA 输入数据对 SCL 上升沿的建立时间	30			nS
THDA	SDA 输入数据对 SCL 上升沿的保持时间	10			nS
TAA	SDA 输出数据有效对 SCL 下降沿的延时	5	100		nS
TDH	SDA 输出数据无效对 SCL 下降沿的延时	5	100		nS
Rate	平均数据传输速率	0		2M	bps

