AL-Hausarbeit Aufgabe X

Gruppe: 0395694, 678901, 234567

WiSe 24/25

Aufgabe 1

Hausaufgabe 2

Gegeben seien für $n, r, m \in \mathbb{N}$ mit $n \geq 1$ und $m \geq 2$ die Mengen $AL_{n,r,m}$ von Formeln, die wie in der Aufgabenstellung definiert sind. Insbesondere gilt:

- Jede Variable $X \in AVar$ ist eine Formel in $AL_{n,r,m}$.
- Ist $X \in AVar$, so ist auch $\neg X$ in $AL_{n,r,m}$.
- Für jede Zahl $k \in \{1, \dots, n\}$ und passende Formeln $\varphi_1, \dots, \varphi_k$ in $AL_{n,r,m}$ ist

$$r_m(\varphi_1,\ldots,\varphi_k)$$

eine Formel in $AL_{n,r,m}$.

Die Semantik des Junktors r_m ist so definiert, dass für eine Belegung β

$$[r_m(\varphi_1,\ldots,\varphi_k)]^{\beta}=1$$
 genau dann, wenn $\sum_{i=1}^k [\varphi_i]^{\beta}\equiv r\pmod{m}$.

Andernfalls ist der Wert 0. Variablen und negierte Variablen haben ihre klassische aussagenlogische Semantik.

Auf dieser Basis sind folgende Aufgaben zu bearbeiten:

(i) Äquivalente Formeln für $(Y \wedge Z)$ und für $r_5\langle Y, Z \rangle$

Wir wollen eine Formel $\psi \in AL_{6,1,5}$ angeben, die äquivalent zu $(Y \wedge Z)$ ist, sowie eine Formel $\psi \in AL$ angeben, die äquivalent zu $r_5\langle Y, Z\rangle \in AL_{6,1,5}$ ist. Äquivalente Formel zu $(Y \wedge Z)$ in $AL_{6,1,5}$:

In $AL_{6,1,5}$ bedeutet $r_5(...)$, dass der Wert 1 genau dann herauskommt, wenn die Summe der Wahrheitswerte der Argumente $\equiv 1 \pmod{5}$ ist. Wir möchten erreichen, dass unsere Formel nur dann 1 ist, wenn Y = 1 und Z = 1. Betrachten wir:

$$\psi := r_5 \langle Y, Z, \top, \top, \top, \top, \top \rangle.$$

Hier sind sechs Argumente: Y, Z und viermal \top . Die Wahrheitswerte summieren sich wie folgt:

- Y = Z = 1: Summe = 1 + 1 + 1 + 1 + 1 + 1 = 6. 6 mod 5 = 1. Also $\psi = 1$.
- Y = 0, Z = 0: Summe = 0 + 0 + 1 + 1 + 1 + 1 = 4. 4 mod $5 = 4 \neq 1$. $\psi = 0$.
- Genau ein von Y, Z ist 1: Summe ist 5, 5 mod $5 = 0 \neq 1$. $\psi = 0$.

Damit ist ψ genau dann 1, wenn Y=1 und Z=1. Also $\psi\equiv (Y\wedge Z)$. Äquivalente Formel zu $r_5\langle Y,Z\rangle$ in AL:

Die Formel $r_5\langle Y, Z\rangle$ gibt 1 genau dann, wenn $(Y+Z) \mod 5 = 1$. Für boolesche Y, Z ist $(Y, Z) \in \{0, 1\}^2$. Die Fälle:

- (0,0): Summe = 0, 0 mod 5 = 0.
- (1,0) oder (0,1): Summe = 1, 1 mod 5 = 1.
- (1,1): Summe = 2, 2 mod 5 = 2.

 $r_5\langle Y,Z\rangle=1$ genau dann, wenn genau eine der beiden Variablen wahr ist. Das ist die XOR-Operation:

$$r_5\langle Y, Z \rangle \equiv (Y \vee Z) \wedge \neg (Y \wedge Z).$$

(ii) Äquivalente Formeln $\chi_1 \in AL_{2,2,4}, \ \chi_2 \in AL_{5,0,3}$ und Begründung ihrer Äquivalenz

Wir geben Beispiele an, die in der einen Klasse, aber nicht in der anderen vorkommen.

Beispiel für $\chi_1 \in AL_{2,2,4} \setminus AL_{5,0,3}$:

$$\chi_1 := r_4 \langle X, Y \rangle$$
 mit $r = 2$.

Diese Formel ist 1 genau dann, wenn $(X + Y) \mod 4 = 2$. Für boolesche Werte ist das nur dann der Fall, wenn X = 1, Y = 1. Also:

$$\chi_1 \equiv (X \wedge Y).$$

Diese Formel ist offensichtlich rein aussagenlogisch, also auch ohne r_m -Operator darstellbar.

Beispiel für $\chi_2 \in AL_{5,0,3} \setminus AL_{2,2,4}$:

$$\chi_2 := r_3 \langle X, Y, Z \rangle$$
 mit $r = 0$.

 $\chi_2 = 1$ genau dann, wenn $(X + Y + Z) \mod 3 = 0$. Für boolesche X, Y, Z ist das der Fall bei (0,0,0) und (1,1,1). Also:

$$\chi_2 \equiv (\neg X \land \neg Y \land \neg Z) \lor (X \land Y \land Z).$$

Beide χ_1 und χ_2 sind also äquivalent zu aussagenlogischen Formeln, somit ist ihre semantische Äquivalenz zu rein aussagenlogischen Formeln gegeben.

(iii) Nicht jede Formel in AL ist äquivalent zu einer in $AL_{2.2.4}$

Um zu zeigen, dass es nicht für jede $\varphi \in AL$ eine äquivalente Formel in $AL_{2,2,4}$ gibt, betrachten wir etwa eine Formel mit r_5 . Die Modulo-5-Bedingungen sind nicht durch Modulo-4-Bedingungen simulierbar, da sie verschiedene arithmetische Eigenschaften haben. Insbesondere kann ein r_5 -Junktor (der Restklasse 5 verwendet) nicht in einen Ausdruck mit nur Modulo 4 übersetzt werden, ohne die Semantik zu verändern.

Diese Inkompatibilität unterschiedlicher Moduli zeigt, dass nicht jede beliebige Formel aus AL (die z.B. r_5 nutzt) durch Formeln in $AL_{2,2,4}$ (die nur Modulo 4 erlauben) ersetzt werden kann.

(iv) Beweis durch strukturelle Induktion, dass jede Formel in AL äquivalent zu einer in $AL_{5,0,3}$ ist

Wir verwenden strukturelle Induktion über den Aufbau von Formeln in AL: Induktionsanfang: Jede Variable X ist auch eine Formel in $AL_{5,0,3}$, da wir Variablen direkt übernehmen können.

Induktionsannahme: Seien $\varphi_1, \varphi_2 \in AL$ und es gebe bereits zu jeder eine äquivalente Formel $\psi_1, \psi_2 \in AL_{5,0,3}$.

Induktionsschritt: Für zusammengesetzte Formeln:

- $\neg \varphi_1$: Auch Negationen lassen sich in $AL_{5,0,3}$ darstellen, etwa durch r_3 -Operatoren oder direkt, da Negation auf Variablenebene definiert ist.
- $(\varphi_1 \wedge \varphi_2)$: Die Konjunktion lässt sich mit geeigneten r_3 -Konstruktionen nachbauen, da r_3 ein hinreichend mächtiger Junktor ist, um AND, OR, XOR und weitere Junktoren zu definieren.
- Allgemein gilt: Alle klassischen Junktoren lassen sich durch Kombinationen von r_3 mit geeigneten Konstanten (wie \top und \bot) darstellen. Zudem lassen sich beliebige r_m mit $m \neq 3$ durch komplexere r_3 -Konstruktionen simulieren, da man über geschickte Kodierungen alle gewünschten Muster erzeugen kann.

Da jeder Schritt der Konstruktion in AL auch in $AL_{5,0,3}$ nachvollzogen werden kann, folgt, dass jede Formel in AL äquivalent zu einer Formel in $AL_{5,0,3}$ ist.