FUNCIONES ANALÍTICAS

Funciones Complejas Período 2022-II

Práctico 3

Ej. 1 Usando la definición de derivada, determinar dónde existe f'(z) y calcularla:

1.
$$f(z) = 3\Re e(z) + 4\Im m(z)i$$
, 5. $f(z) = |z|$,

5.
$$f(z) = |z|$$

6.
$$f(z) = \Re(z)^2$$
,

3.
$$f(z) = \bar{z}$$
,

7.
$$f(z) = z^2 \overline{z}$$
,

4.
$$f(z) = |z|^2$$
,

 $2. \ f(z) = \mathfrak{Im}(z),$

8.
$$f(z) = \frac{1}{z - 2 + 3i}$$

7.
$$f(z) = z^2 \overline{z}$$
,
8. $f(z) = \frac{1}{z - 2 + 3i}$,
10. $f(z) = \begin{cases} \frac{\overline{z^2}}{z}, & \text{si } z \neq 0 \\ 0, & \text{si } z = 0. \end{cases}$

9. $f(z) = \frac{z-1}{z^2+1}$.

Ej. 2 Sea $f: \mathbb{C} \to \mathbb{C}$ una función tal que f(0) = 0 y f'(0) = 1. Evaluar

$$1. \lim_{z \to 0} \frac{f(2z)}{z}$$

2.
$$\lim_{z \to 0} \frac{f(z^2)}{z}$$

3.
$$\lim_{z \to 0} \frac{f(z^2 - z)}{z}$$

2.
$$\lim_{z \to 0} \frac{f(z^2)}{z}$$
 3. $\lim_{z \to 0} \frac{f(z^2 - z)}{z}$ 4. $\lim_{z \to i} \frac{f(z^2 + 1)}{(z - i)}$

Ej. 3 Demostrar la regla de L'Hôpital: Si f y g son funciones analíticas en w_0 , $f(w_0) = g(w_0) = 0$ y $g'(w_0) \neq 0$, entonces

$$\lim_{z \to w_0} \frac{f(z)}{g(z)} = \frac{f'(w_0)}{g'(w_0)}.$$

Ej. 4 Resolver los siguientes límites usando la regla de L'Hôpital y sin usarla:

1.
$$\lim_{z \to 0} \frac{4z^2 + 9z}{5z^2 + 8z}$$

3.
$$\lim_{z \to i} \frac{z^2 - 2iz - 1}{z^4 + 2z^2 + 1}$$

5.
$$\lim_{z \to 2} \frac{z^2 + 3z - 10}{z^2 - z - 2}$$

1.
$$\lim_{z \to 0} \frac{4z^2 + 9z}{5z^2 + 8z}$$
 3. $\lim_{z \to i} \frac{z^2 - 2iz - 1}{z^4 + 2z^2 + 1}$ 2. $\lim_{z \to 2i} \frac{z^2 + 4}{2z^2 + (3 - 4i)z - 6i}$ 4. $\lim_{z \to i} \frac{z^{10} + 1}{z^6 + 1}$

4.
$$\lim_{z \to i} \frac{z^{10} + 1}{z^6 + 1}$$

6.
$$\lim_{z \to 2} \frac{z^2 - 2z}{z^2 - 4z + 4}$$

Ej. 5 (Opcional) Sea f una función analítica en un conjunto abierto U. Definir la nueva función $g:\widetilde{U}\subseteq$ $\mathbb{C} \to \mathbb{C}$ dada por $g(z) = \overline{f(\overline{z})}$ donde \widetilde{U} es el abierto $\{\overline{z} : z \in U\}$. Demostrar que g es una función analítica en \widetilde{U} y que $g'(z) = \overline{f'(\overline{z})}$ para todo $z \in \widetilde{U}$.

Ej. 6 Si z es un número complejo, $x = \Re \mathfrak{e}(z)$ e $y = \Im \mathfrak{m}(z)$, usar las ecuaciones de Cauchy-Riemann para calcular f'(z), en caso de que exista.

1.
$$f(z) = iz + 2$$
,

3.
$$f(z) = \sqrt{xy}$$

5.
$$f(z) = 2xy + i(x^2 + y^2)$$
,

1.
$$f(z) = iz + 2$$
,
2. $f(z) = e^{-x}e^{-iy}$,

3.
$$f(z) = \sqrt{xy}$$
 5. $f(z) = 2xy + i(x^2 + y^2)$,
4. $f(z) = \frac{x}{x^2 + y^2} + i\frac{y}{x^2 + y^2}$, 6. $f(z) = 1 - y^2 + i(2xy - y^2)$,

6.
$$f(z) = 1 - y^2 + i(2xy - y^2)$$

Ej. 7 Dar un ejemplo de una función polinomial en $x=\Re \mathfrak{e} z$ e $y=\Im \mathfrak{m} z$ que sea diferenciable en todo punto de la parábola $y=x^2$ pero no en el resto de los puntos del plano complejo.

Ej. 8 Mostrar que ni xy(x-y) ni xy(x-2y) pueden ser la parte real de una función analítica

Ej. 9 Sea f(x+iy)=u(x,y)+iv(x,y) una función definida en un dominio $D\subset\mathbb{C}$ tal que $0\not\in D$. Introduciendo coordenadas polares (r, θ) en D, se tiene las nuevas funciones

$$U(r,\theta) := u(r\cos(\theta), r\sin(\theta)), \quad V(r,\theta) := v(r\cos(\theta), r\sin(\theta)),$$

de manera que $f(re^{i\theta}) = U(r,\theta) + iV(r,\theta)$.

- 1. Usar la regla de la cadena para mostrar que las derivadas parciales de u y v existen y son continuas en $z \in D$ si y sólo si lo mismo sucede para U y V.
- 2. Probar que u y v satisfacen las ecuaciones de Cauchy-Riemann en D si y sólo si U y V satisfacen las ecuaciones de Cauchy-Riemann polares en D:

$$U_r = \frac{1}{r}V_\theta$$
 y $\frac{1}{r}U_\theta = -V_r$.

3. Mostrar que si se cumplen las condiciones anteriores, entonces para $z=re^{i\theta}\in D$, se tiene

$$f'(z) = e^{-i\theta} (U_r(r,\theta) + iV_r(r,\theta))$$
$$= \frac{1}{r} e^{-i\theta} (V_{\theta}(r,\theta) - iU_{\theta}(r,\theta)).$$

Ej. 10 Verificar que las siguientes son funciones armónicas en sus dominios y hallar una armónica conjugada cuando sea posible:

1.
$$u(x,y) = 2x(1-y)$$
,

3.
$$u(x,y) = \operatorname{senh}(x)\operatorname{sen}(y)$$
,

5.
$$u(x,y) = x^3 - 3xy^2$$

1.
$$u(x,y) = 2x(1-y)$$
, 3. $u(x,y) = \operatorname{senh}(x)$
2. $u(x,y) = 2x - x^3 + 3xy^2$, 4. $u(x,y) = \frac{y}{x^2 + y^2}$,

4.
$$u(x,y) = \frac{y}{x^2 + y^2}$$
,

6.
$$u(x,y) = \operatorname{Arg}(z)$$
.

Ej. 11 Sean $f,g:D\subseteq\mathbb{C}\to\mathbb{C}$ dos funciones analíticas en un dominio D tales que f'(z)=g'(z) para todo $z\in D$. Mostrar que f y g difieren por una constante.

Ej. 12 Sea f una función analítica en un dominio $D \subseteq \mathbb{C}$ tal que f' es constante. Probar que f es una función lineal; es decir, f(z) = az + b para todo $z \in D$, donde a y b son constantes. ¿Puede generalizar este resultado considerando que f sea n veces diferenciable y la n-ésima derivada constante?

Ej. 13 (Opcional) Sea $f:U\subseteq\mathbb{C}\to\mathbb{C}$, con f=u+iv, una función analítica en un abierto U y asuma que f es de clase $\mathcal{C}^2(U)$; esto es, las derivadas parciales de u y v de orden 1 y 2 existen y son continuas. Verificar que:

- 1. Ambas funciones u y v son funciones armónicas.
- 2. La función $f':U\subseteq\mathbb{C}\to\mathbb{C}$ también es analítca.

Mas adelante se demostrara que f analítica en U implica que f es de clase $\mathcal{C}^{\infty}(U)$.

Ej. 14 Sea f una función analítica en un dominio $D \subseteq \mathbb{C}$. Probar que cualquiera de las condiciones siguientes implica que f es constante en D.

- 1. $f(z) \in \mathbb{R}$ para todo $z \in D$,
- 2. Re(f(z)) = c para todo $z \in D$, con $c \in \mathbb{R}$,
- 3. |f(z)| = cte para todo $z \in D$.
- 4. $\mathfrak{Im} f(z) = (\mathfrak{Re} f(z))^2$ para todo $z \in D$.
- 5. Arg(z) = cte para todo $z \in D$ donde $f(z) \neq 0$,

Ej. 15 (Opcional) Sea $\gamma:(a,b)\subseteq\mathbb{R}\to\mathbb{C}$, $\gamma(t)=x(t)+iy(t)$, una curva regular; es decir, $\gamma'(t)=x'(t)+iy'(t)\neq 0$. Recordar que se definen respectivamente la velocidad y la aceleración de la curva γ como las funciones $\mathbf{v},\mathbf{a}:(a,b)\subseteq\mathbb{R}\to\mathbb{C}$ definidas por $\mathbf{v}(t)=\gamma'(t)$ y $\mathbf{a}'(t)=\gamma''(t)$. Recordar también que la función de curvatura de γ , $\kappa:(a,b)\subseteq\mathbb{R}\to\mathbb{R}$, se define como $\kappa(t)=||\mathbf{a}^{\perp}(t)||/||\mathbf{v}(t)||^2$, donde $\mathbf{a}^{\perp}(t)=\mathbf{a}(t)-\operatorname{Proy}_{\mathbf{v}(t)}(\mathbf{a}(t))$; identificando a $\mathbf{v}(t)$ y $\mathbf{a}(t)$ como vectores del espacio euclidiano ($\mathbb{R}^2,\langle\cdot,\cdot\rangle$).

Mostrar que:

1. La curvatura de una circunferencia de radio R es constante e igual a 1/R. Y reciprocamente, si γ es una curva en el plano complejo de curvatura constante 1/R entonces la trayectoria de γ está contenida en una circunferencia de radio R

[Hint: Para la vuelta, un candidato para el centro de la circunferencia es $\gamma(t) + \frac{1}{\kappa^2 ||\mathbf{v}(t)||^2} \mathbf{a}^{\perp}(t)$.]

- 2. El producto interno $\langle (a,b),(c,d) \rangle$ es igual a $\mathfrak{Re}((a+ib)\overline{(c+id)})$ y $\det((a,b),(c,d))$ es igual $-\mathfrak{Im}((a+ib)\overline{(c+id)})$, para todo par de puntos (a,b) y (c,d) de \mathbb{R}^2 .
- 3. Si $w \in \mathbb{C}$ es no nulo, entonces w e iw es una base ortogonal de \mathbb{C} visto como \mathbb{R} espacio vectorial con el producto interno $\langle w, z \rangle = \Re \mathfrak{e}(w\overline{z})$.
- 4. La norma de un número complejo w con respecto a este producto interno coincide con su módulo, es decir $\langle w,w\rangle=||w||^2=|w|^2$, y en consecuencia ||w.v||=||w||||v||. Además, $\langle w.z,w.v\rangle$ es igual a $|w|^2\langle z,v\rangle$, para todo v,w y z en $\mathbb C$.
- 5. La función de curvatura κ es dada por $\kappa(t) = |\langle \mathbf{a}(t), i\mathbf{v}(t)\rangle|/|\mathbf{v}(t)|^3 = |\det(\mathbf{v}(t), \mathbf{a}(t))|/|\mathbf{v}(t)|^3$. Se define la función de curvatura signada de γ , denotada κ_s , por $\kappa_s(t) = \langle \mathbf{a}(t), i\mathbf{v}(t)\rangle/|\mathbf{v}(t)|^3$. Se sigue que $|\kappa_s| = \kappa$.
- 6. Si $f:U\subseteq\mathbb{C}\to\mathbb{C}$ es una función 2 veces diferenciable y tal que $f'(z)\neq 0$ para todo $z\in U$ y si $\gamma:(a,b)\subseteq\mathbb{R}\to\mathbb{C}$ es una curva regular cuya trayectoria está contenida en U entonces $\beta=f\circ\gamma$ es una curva regular y la función de curvatura signada de β está dada por

$$\frac{1}{|f'(\gamma(t))|} \left(\mathfrak{Im} \left(\frac{f''(\gamma(t))}{f'(\gamma(t))} . T(t) \right) + \kappa_s(t) \right)$$

Donde T(t) es el número complejo de módulo 1 dado por $\gamma'(t)/||\gamma'(t)||$.

- 7. Sea w un punto arbitrario de plano complejo y sea γ una circunferencia de radio R con centro en w, con $R \neq |w|$. Usar GeoGebra para visualizar la curva β dada por la imagen de γ bajo la transformación de Möbius $f: \mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$ definida por f(z) = 1/z y calcular su curvatura usando la fórmula anterior. ¿Qué puede decir cuando R = |w|?
- 8. Demostrar que la curva β del punto anterior es una circunferencia con centro en $\overline{w}/(|w|^2 R^2)$ y radio $R/||w|^2 R^2|$.

