${\bf Teorie}$

Elektroenergetika 3

Petr Jílek

2024

Obsah

1	Zna	čení	2	
2 Konstanty			4	
3	Ene	ergie	5	
	3.1	Potenciální energie	5	
	3.2	Kinetická energie	5	
	3.3	Měrná tepelná kapacita	5	
	3.4	Výkon	5	
4	Sdílení tepla			
	4.1	Fourierova-Kirchhoffova rovnice	6	
	4.2	Fourieruv zákon	6	
5	Syn	netrizace	7	
6	Apl	ikace	8	

1 Značení

- t čas (s sekunda)
- l délka (m metr)
- h výška (m metr)
- d tloušťka / průměr (m metr)
- r poloměr (m metr)
- S plocha (m 2 metr čtvereční)
- V objem (m³ metr krychlový)
- m hmotnost (kg kilogram)
- ρ hustota (kg m⁻³ kilogram na metr krychlový)
- v rychlost (m s⁻¹ metr za sekundu)
- a zrychlení (m s⁻² metr za sekundu na druhou)
- \dot{V} objemový průtok (m³ s^1 metr krychlový za sekundu)
- E_p potenciální energie (J joule)
- E_k kinetická energie (J joule)
- Q tepelná energie (J joule)
- P výkon (W watt)
- T teplota (K kelvin / $^{\circ}$ C stupeň celsia)
- ΔT rozdíl teplot (K kelvin)
- \dot{q} měrný tepelný tok (W m⁻² watt)
- q měrná tepelná energie (J m $^{-2}$ joule na kilogram)
- \dot{Q} tepelný tok (W watt)
- c měrná tepelná kapacita (J kg⁻¹ K⁻¹ joule na kilogram na kelvin)
- λ tepelná vodivost (W m⁻¹ K⁻¹ watt na metr na kelvin)
- R_{ϑ} tepelný odpor (m² K W⁻¹ metr čtvereční kelvin na watt)
- $R_{\vartheta A}$ absolutní tepelný odpor (K W⁻¹ kelvin na watt)
- U_{ϑ} součinitel prostupu tepla (W m⁻² K⁻¹ watt na metr čtvereční na kelvin)

- $U_{\vartheta A}$ absolutní součinitel prostupu tepla (W K $^{-1}$ watt na kelvin)
- ρ_e měrný elektrický odpor (Ω m⁻¹ ohm na metr)
- γ měrná elektrická vodivost (m $^{-1}$ Ω^{-1} metr na ohm)
- J elektrická proudová hustota (A m $^{-2}$ ampér na metr čtvereční)
- E intenzita elektrického pole (V m $^{-1}$ volt na metr)
- U elektrické napětí (V volt)
- I elektrický proud (A ampér)
- R_e elektrický odpor (Ω ohm)

2 Konstanty

- gravitační zrychlení: $g=9,81~\mathrm{m~s^{-2}}$ metr za sekundu na druhou
- boltzmannova konstanta: $k_B=1,38\cdot 10^{-23}~\mathrm{J~K^{-1}}$ joule na kelvin

Mateiál	$\rho \; (\mathrm{kg} \; \mathrm{m}^{-3})$	$c \; (\mathrm{J \; kg^{-1} \; K^{-1}})$
Voda (H2O)	1 000	4 186
Ocel	7 750	450
Zlato	19 320	129

Tabulka 1: Hustota a měrná tepelná kapacita materiálů

3 Energie

3.1 Potenciální energie

Potenciální energie je energie, kterou má těleso v důsledku své polohy v gravitačním poli. Vztah pro výpočet potenciální energie je:

$$E_p = m \cdot g \cdot h,\tag{J}$$

kde:

 E_p – potenciální energie (J), m – hmotnost (kg), g – gravitační zrychlení (m s⁻²), h – výška (m).

3.2 Kinetická energie

Kinetická energie je energie, kterou má těleso v důsledku své rychlosti. Vztah pro výpočet kinetické energie je:

$$E_k = \frac{1}{2} \cdot m \cdot v^2, \tag{J}$$

kde:

 E_k – kinetická energie (J), m – hmotnost (kg), v – rychlost (m s⁻¹).

3.3 Měrná tepelná kapacita

Měrná tepelná kapacita je definována jako množství tepla, které je potřeba k ohřátí jednoho kilogramu látky o jeden stupeň Kelvina:

$$Q = m \cdot c \cdot \Delta T,\tag{J}$$

kde:

Q – tepelná energie (J), m – hmotnost (kg), c – měrná tepelná kapacita (J kg⁻¹ K⁻¹), ΔT – rozdíl teplot (K).

3.4 Výkon

Výkon je definován jako množství práce vykonané za jednotku času:

$$P = \frac{dW}{dt},\tag{W}$$

kde:

P - výkon (W), dW - infinitesimální práce (J),dt - infinitesimální čas (s).

Sdílení tepla

Fourierova-Kirchhoffova rovnice

Fourierova-Kirchhoffova rovnice je základní rovnicí pro popis toku tepla:

$$\rho \cdot c \cdot \left(\frac{\partial T}{\partial t} + \vec{v} \cdot \vec{\nabla} T \right) = \nabla \cdot \left(\lambda \cdot \vec{\nabla} T \right) + Q_v, \quad \text{(W m}^{-3}) \quad (5)$$

kde:

 ρ – hustota (kg m⁻³),

c – měrná tepelná kapacita (J kg⁻¹ K⁻¹),

T – teplota (K),

 $t - \check{\text{cas}}$ (s),

 \vec{v} - rychlost (m s⁻¹),

 $\vec{\nabla}T$ – gradient teploty (K m⁻¹),

 $\nabla \cdot$ – divergence (m⁻¹), λ – tepelná vodivost (W m⁻¹ K⁻¹), Q_v – objemový zdroj tepla (W m⁻³).

4.2 Fourieruv zákon

Fourieruv zákon je základní rovnicí pro popis toku tepla:

$$\vec{\dot{q}} = -\lambda \cdot \vec{\nabla} T,$$
 (W m⁻²) (6)

 \vec{q} – měrný tepelný tok (W m⁻²), λ – tepelná vodivost (W m⁻¹ K⁻¹),

 $\vec{\nabla}T$ – gradient teploty (K m⁻¹).

5 Symetrizace

6 Aplikace