Take-Home Practice on Machine Learning (Non-Graded)

Quiz 3 (Machine learning)

- What to know conceptually
 - Basics of supervised classification, classification vs. regression, underfitting vs. overfitting, linear separability, etc
 - Logistic regression
 - Support vector machine
 - Random forest
 - Bias and variance
 - Bootstrap
 - Fairness in assessing machine learning methods
- What to know in detail (i.e., problem solving)
 - Linear regression
 - Naïve Bayes classifiers
 - Decision trees
 - Cross validation
 - Confusion matrix, precision, recall
 - RSq. (coefficient of determination)
 - ROC curves and AUC
- Materials for Quiz 3
 - Slides are your primary source of information
 - o In-class activities are an excellent source for additional practice
 - o Take-home practice and solutions to check your understanding
 - The posted reading is optional
 - There are excellent on-line resources. But these sometimes go beyond what we have covered, so only use them if you needed added explanations. Here are some examples:
 - <u>Understanding AUC-ROC Curves</u>
 - A Tutorial on Fairness in Machine Learning
 - Logistic regression
 - Bias and variance tradeoff
 - and so on

1. Given the following dataset:

X	Y
1	0.5
2	1
4	2
0	0

a. Fit a linear regression model to the above dataset:

b. Calculate the R-squared value for the model you computed in (a):

2. Assuming you're using a Decision Tree to classify data from the below dataset, where A, B, and C are features and the Class is a Yes or No.

Α	В	С	Class
F	Т	F	Yes
F	F	Т	No
F	Т	F	Yes
Т	Т	Т	No
F	Т	Т	No

2a. What would the root node be?

2b. Assume you chose node B as the root (this may or may not be the correct answer), what would be the next node to split?

3. Given the below dataset, where P, Q, and R are features and the Class is a Yes or No. Use Naïve Bayes to classify a new datapoint X with features:

< P = False, Q = True, R = False > as a Yes or No.

Р	Q	R	Class
F	Т	F	Yes
F	F	Т	No
F	Т	Т	Yes
Т	Т	F	No
F	Т	Т	No

4. A fourth feature S was added to the dataset from problem 3, the new dataset is shown below. This feature is numeric. What is $p(S = 7 \mid Yes)$? What about $p(S = 4.5 \mid No)$?

Р	Q	R	S	Class
F	Т	F	7	Yes
F	F	Т	4	No
F	Т	Т	3	Yes
Т	Т	F	9	No
F	Т	Т	11	No

- 5. Consider the following observations from an email classifier that marks emails as Spam or Non-Spam:
 - Altogether, the classifier predicted Spam or Non-Spam for 100 emails.
 - The model correctly classified 95 emails: 85 were correctly classified as

Non-Spam, and 10 of them were correctly classified as Spam.

- 5 emails, which were actually Spam, were predicted as Non-Spam.
- 0 Non-Spam emails were predicted as Spam.

Answer 1	the	follow	ing	questions	based	on	the	above	data:
I LIID W CI	uic .		1115	questions	ousea	OH	uic	abbre	autu.

a) Construct a confusion matrix for this classifier:

b) What is the precision and recall of this classifier?

c) What is the accuracy of this classifier? Is using accuracy alone sufficient for determining if this is a good classifier? Justify your reasoning.

6. Cross-validation item

You have a data set of 120 people with 60 juniors and 60 senior students. You are asked to train a decision tree on the data using three-fold cross-validation. Sketch out the training and testing sets.

7. Consider the following values of specificity and sensitivity computed at three decision thresholds, 5, 7, and 9 for a classifier whose output ranges from 1 to 100%.

Threshold	Sensitivity	Specificity
5	.56	.99
7	.78	.81
9	.91	.42

Plot the ROC curve based on the data above.

Based on the ROC curve you generated, is the AUROC: (a) at chance; (b) slightly above chance; (c) considerably above chance; (d) almost perfect.