IN THE CLAIMS:

1. (Original) A material for organic electroluminescence devices which comprises a compound represented by following general formula (1):

$$R_{8}$$
 R_{7} R_{1} $X_{8}=X_{7}$ $X_{6}-R_{6}$ X_{5} X_{3} X_{4} X_{8} X_{9} X_{8}

wherein X_1 to X_8 each represent carbon atom or nitrogen atom, and at least one of X_1 to X_8 represents nitrogen atom; when any of X_1 to X_8 represent carbon atom, R_1 to R_8 connected to X_1 to X_8 representing carbon atom, respectively, each represent a substituent bonded to the carbon atom; adjacent substituents represented by R_1 to R_8 may form a ring; when any of X_1 to X_8 represent nitrogen atom, R_1 to R_8 connected to X_1 to X_8 representing nitrogen atom, respectively, each represent a noncovalent electron pair; and R_9 represents a substituent.

2. (Original) A material for organic electroluminescence devices according to Claim 1, wherein R_1 to R_9 each represent -L or -L-Y, wherein

L represents hydrogen atom, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, a substituted or unsubstituted heterocyclic group having 2 to 40 carbon atoms, a substituted or unsubstituted linear or branched alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 6 to 40 carbon atoms, a substituted or unsubstituted amino group having 2 to 40 carbon atoms, a substituted or unsubstituted linear or branched alkoxyl group having 1 to 40 carbon atoms, a halogen atom, nitro group, a substituted

or unsubstituted arylene group having 6 to 40 carbon atoms, a substituted or unsubstituted divalent heterocyclic group having 2 to 40 carbon atoms, a linear or branched substituted or unsubstituted alkylene group having 1 to 20 carbon atoms or a substituted or unsubstituted cycloalkylene group having 6 to 40 carbon atoms; and

Y represents hydrogen atom, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, a substituted or unsubstituted heterocyclic group having 2 to 40 carbon atoms, a substituted or unsubstituted linear or branched alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 6 to 40 carbon atoms, a substituted or unsubstituted amino group having 2 to 40 carbon atoms, a substituted or unsubstituted linear or branched alkoxyl group having 1 to 40 carbon atoms, a halogen atom or nitro group.

- 3. (Original) A material for organic electroluminescence devices according to Claim 1, wherein one to three among X_1 to X_8 each represent nitrogen atom, and the others each represent carbon atom.
- 4. (Original) A material for organic electroluminescence devices according to Claim 1, wherein at least one of X_3 and X_6 among X_1 to X_8 represents nitrogen atom, and the others each represent carbon atom.
- 5. (Original) A material for organic electroluminescence devices according to Claim 1, wherein at least one of R_1 to R_8 represents β -carbolinyl group.
- 6. (Original) A material for organic electroluminescence devices according to Claim 2, wherein at least one of L and Y represents β-carbolinyl group.
- 7. (Original) A material for organic electroluminescence devices according to Claim 1, wherein an energy gap of a triplet state is 2.5 to 3.3 eV.

- 8. (Original) A material for organic electroluminescence devices according to Claim 1, wherein an energy gap of a singlet state is 2.8 to 3.8 eV.
- 9. (Original) An organic electroluminescence device comprising a cathode, an anode and an organic thin film layer which is sandwiched between the cathode and the anode and comprises at least one layer, wherein at least one layer in the organic thin film layer contains a material for organic electroluminescence devices described in Claim 1.
- 10. (Original) An organic electroluminescence device comprising a cathode, an anode and an organic thin film layer which is sandwiched between the cathode and the anode and comprises at least one layer, wherein a light emitting layer contains a material for organic electroluminescence devices described in Claim 1.
- 11. (Original) An organic electroluminescence device comprising a cathode, an anode and an organic thin film layer which is sandwiched between the cathode and the anode and comprises at least one layer, wherein at least one of an electron transporting layer and an electron injecting layer contains a material for organic electroluminescence devices described in Claim 1.
- 12. (Original) An organic electroluminescence device comprising a cathode, an anode and an organic thin film layer which is sandwiched between the cathode and the anode and comprises at least one layer, wherein at least one of a hole transporting layer and a hole injecting layer contains a material for organic electroluminescence devices described in Claim 1.
- 13. (Currently amended) An organic electroluminescence device according to Claim 9 any one of Claims 9 to 12, wherein the material for organic electroluminescence devices is an organic host material.

- 14. (Currently amended) An organic electroluminescence device according to <u>Claim 9</u> any one of <u>Claims 9 to 12</u>, which comprises an inorganic compound layer sandwiched between at least one of the electrodes and the organic thin film layer.
- 15. (Currently amended) An organic electroluminescence device according to <u>Claim 9</u> any one of <u>Claims 9 to 12</u>, wherein the organic thin film layer contains a phosphorescent emissive compound.
- 16. (Currently amended) An organic electroluminescence device according to Claim 9 any one of Claims 9 to 12, which emits bluish light.