HD-EDUCATION

MAST20004 Probability

Week 7 Summary 2

Jiacheng Min / Mint minjm@student.unimelb.edu.au

Summary of Assignment 2

Pdf, Expectation and Variance

• convert Paf to Calf:
$$F(x) = \int_{-\infty}^{x} f(x) dx$$

Expectation / Higher Moments

1
$$E(x^n) = \int_{-\infty}^{\infty} x^n f(x) dx$$

NOTE:
$$\begin{cases} x > 0 \\ p(x > 0) = 1 \end{cases}$$

· Variance

$$V(x) = E(x) - E(x)^{2}$$

Normal Distribution Stock Model

Transform to
$$Z \sim N(0,1)$$
 Find $[00 E(e^{x})]$

Transform to $Z \sim N(0,1)$ $\frac{X-2}{1} = Z \Rightarrow X = \overline{Z}+2$
 $[00 \overline{E}(e^{\overline{Z}+2})] = [00 \overline{E}(e^{\overline{Z}} \cdot e^{2})] = [00 e^{z} \overline{E}(e^{z})]$
 $\overline{E}(e^{z}) = \int_{-\infty}^{\infty} e^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z^{2}-2\overline{Z}+1)-1}) dz = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z^{2}-1)^{2}+1} dz$
 $= e^{\frac{1}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z^{2}-2\overline{Z}+1)-1} dz = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z^{2}-1)^{2}+1} dz$
 $= e^{\frac{1}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z^{2}-2\overline{Z}+1)-1} dz = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z^{2}-1)^{2}+1} dz$
 $= e^{\frac{1}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z^{2}-1)^{2}} dz$
 $= e^{\frac{1}{2}} \int_{$

Answer

Jiacheng Min HD Education 2020/9/16