Unit 5 Polymers I

Slide Color Codes

All Lectures

Section Only

Required

OK to Skip

Useful

Not
Examable

Plastic Recycle Numbers

Manufactured Polymers

Polyethylene terephthalate (PETE)

Silicones

Polyethylene (HDPE, LDPE)

Polypropylene (PP)

Polystyrene (PS)

Natural Polymers - Proteins

Alkyl chains specific to induvidual amino acids

$$H_2N$$
 OH

Amino acids are monomer building blocks for proteins

Natural Polymers

Cellulose

Glucose Monomer

RNA (DNA) Unique monomer sequencing

DNA Origami - structures from DNA

Due to specific pairing/interactions among DNA bases, nanoscale structures can be "programmed" using specialized computer software. Anyone can create DNA nanostructures that self-assemble in a wide variety of shapes, for applications in cell biology, photonics, quantum sensing and computing, and many other fields.

Building nano-sensors with DNA

Electric field increases between quantum dots, increasing emitted light signal, making detection and diagnosis possible with smart phones.

Nat. Commun. **2021**, *12*, 950

DOI: 10.1038/s41467-021-21238-9

Blueprint question

Kevlar

LDPE

HDPE

Nylon

http://toyworth.com/browse/action/figure/Star/Wars/89/1979/Accessories/Millennium/Falcon.html https://www.boiseweekly.com/CityDesk/archives/2015/03/24/video-north-idaho-pranksters-stretching-saran-wrap-across-highway https://www.acparadise.com/acp/display.php?c=71400 https://sites.google.com/site/carloswilson291126/kevlar http://www.jotun.com/ww/en/b2b/paintsandcoatings/chemical-plants/

Polymers – Learning objectives

- Draw and interpret line bond structures and condensed Lewis structures.
- Describe the growth of polymers through addition and condensation reactions and predict which of these processes is likely to be important for a given monomer.
- Predict the structure of the monomer involved in the formation of a given polymer.
- Identify the type and degree of polymerization and/or the by-products formed for a given polymer and/or monomer.
- Define the terms monomer, polymer, oligomer, molecular weight distribution, degree of polymerization, crosslinking and elastomers.
- Describe how polymer architecture, molecular weight, monomer type, and crosslinking affect polymer properties.

Condensed Lewis structure

- Bonds are implied by grouping (lines not shown).
- <u>Hydrogens are grouped</u> with the atoms they are bonded to.
- <u>Double or triple bonds</u> are <u>sometimes indicated</u> but often omitted in basic condensed forms.
- Lone pairs are usually not shown.

Shorthand notation for organic molecules

- Shorthand "line" notation for drawing organic molecules.
 - Covalent bonds are drawn as lines.
 - □ The <u>end of each line</u> indicates a <u>carbon</u> atom, unless otherwise specified.
 - □ <u>Each carbon</u> atom has enough <u>bonded H</u> atoms to give it a <u>formal charge of zero</u> (i.e. a complete octet).
 - Hydrogen atoms are only <u>shown</u> if they are bonded to an atom <u>other than carbon</u>.
 - □ Lone pairs can be <u>omitted</u>.

Condensed structures

Lewis structure

Condensed Lewis structure

Line-bond structure

Identify the total number of <u>hydrogen</u> atoms in this molecule:

- A) 4
- B) 5
- C) 6
- D) 7
- E) 8

Identify the total number of <u>hydrogen</u> atoms in this molecule:

- A) 4
- B) 5
- **C**) 6
 - D) 7
 - E) 8

Identify the number of pairs of <u>lone pairs</u> in this molecule:

- A) 0
- B) 2
- C) 4
- D) 5
- E) 6

Identify the number of pairs of <u>lone pairs</u> in this molecule:

- A) 0
- B) 2
- **/** C) 4
 - D) 5
 - E) 6

Identify the number of <u>carbon</u> atoms in this molecule:

- A) 12
- B) 13
- C) 14
- D) 15
- E) 16

Identify the number of <u>carbon</u> atoms in this molecule:

- A) 12
- B) 13
- C) 14
- **√**D) 15
 - E) 16

Mephedrone is a stimulant that can produce similar effects as cocaine. Starting from the shorthand notation of the deprotonated form of mephedrone below, <u>draw its complete Lewis</u> structure.

The molecules shown below can be used as monomers in a polymerization reaction. They can be drawn in the general form shown to the right. Complete the table below with the <u>identity of R1, R2, R3, and R4</u>. The first two rows are filled as an example.

Monomer	$R_{_1}$	R_2	R_3	$R_{_4}$
	Н	Н	Н	Н
	$\mathrm{CH}_{_3}$	Н	CH_3	Н

$$R_1$$
 $C = C$
 R_2
 R_3
 R_4

Monomer	$R_{_1}$	R_{2}	R_3	$R_{_4}$
CI	CI	H	Η	Н
C	Η	π	Ι	CN
	Н	CH ₃	Н	C(H)(CH ₃)C ₆ H ₅

Functional groups

- Moieties in a molecule that have characteristic properties such as reactivity.
- An "R" substituent denotes a part of a molecule that is not relevant to the reactivity being discussed.

Linkages

Polymers

 A polymer is a macromolecule constructed by a <u>sequential stringing</u> together of smaller molecules called monomers.

- We'll discuss two types of polymers:
 - Condensation polymers
 - Addition polymers

Repeating units: musical analogy

Shorthand notation for polymers

 Another shorthand notation for polystyrene, where <u>n</u> is the number of <u>monomers</u> that make up polystyrene. The <u>end groups (R) are generally not</u> <u>shown</u>.

Degree of polymerization

 The degree of polymerization (DP) is the number of repeat units in a polymer chain. For example:

Structure	DP	
Dimer	2	
Trimer	3	
Tetramer	4	
Pentamer	5	
Oligomer	Small (typically 10s)	
Polymer	Large (hundreds to millions)	

What is the degree of polymerization for the given molecule?

- a) 1
- b) 2
- c) 3
- d) 4
- e) 5

What is the degree of polymerization for the given molecule?

What is the degree of polymerization for the given molecule?

- **√**b) 2
 - c) 3
 - d) 4
 - e) 5

Condensation Polymers – Amide linkage

- Two monomers join together to form a polymer and a small molecule byproduct (water or hydrochloric acid).
- Condensation monomers have two reactive sites.
- An amide linkage is formed when <u>carboxylic acids</u> OR an <u>acid chloride</u> react with <u>amines</u>.
- The amide linkage repeats along backbone of polymer.

Condensation Polymers – Ester linkage

- An ester linkage is formed when <u>carboxylic acid</u> OR an <u>acid chloride</u> reacts with <u>alcohols</u>.
- The ester linkage repeats along the backbone of the polymer.

carboxylic acid + alcohol

$$CI + HO \longrightarrow OH \longrightarrow HO \longrightarrow OH \longrightarrow HO \longrightarrow OH \longrightarrow HO$$
 $CI \longrightarrow HO \longrightarrow OH \longrightarrow CI \longrightarrow OH \longrightarrow HCI$

acid chloride + alcohol

Ester

Summary of condensation polymer reactivity

Reactant 1	Reactant 2	Polymer linkage	Small molecule
Carboxylic acid	Amine	Amide	Water
Acid chloride	Amine	Amide	HCI
Carboxylic acid	Alcohol	Ester	Water
Acid chloride	Alcohol	Ester	HCI

Clicker

Which cannot be a monomer for a condensation polymerization reaction?

Condensation polymer growth

Terephthalic Acid + Ethylene glycol

Linkage: Ester bond (-CO-O-)

OH

Condensation polymer growth

Polyethylene Terephthalate (PETE)

Draw the structure of the **trimer** and of a polymer resulting from the condensation of the monomer below.

Draw the structure of the **trimer** and of a polymer resulting from the condensation of the monomer below.

Amide Linkages

Worksheet Question #3 (Clicker)

Draw the structure of the **trimer** and of a polymer resulting from the condensation of the monomer below. Name the linkage.

What kind of linkage will be formed?

- a) Ester
- b) Amide

Nylon is a polymer that can be prepared by the reaction of sebacoyl chloride and 1,6-diaminohexane.

1,6-diaminohexane

Sebacoyl chloride

(a) A mixture of <u>sebacoyl chloride in</u>
 <u>hexanes</u> and <u>1,6-diaminohexane in water</u>
 forms a <u>biphasic</u> mixture (a mixture with
 two layers). Provide possible reasons for
 this explanation.

$$H_2N$$
 NH_2

CI

1,6-diaminohexane

Sebacoyl chloride

highly soluble in water (hydrogen bonds)

insoluble in water

(b) Draw the product(s) of the reaction between sebacoyl chloride and 1,6-diaminohexane. Where does the reaction take place? Explain.

(b) Draw the product(s) of the reaction between sebacoyl chloride and 1,6-diaminohexane. Where does the reaction take place? Explain.

- a) Bottom layer
- b) Top layer
- c) At the interface

Polymer, 47, 11, 17, 2006, 3961-3966