

# Winning Space Race with Data Science

Kush Neal Bansal 01/09/2024



### Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

### **Executive Summary**

- Using SpaceX data to determine cost of rockets
- Using Data analysis and Machine Learning to analyze and predict success factors for SpaceX launches and First Stage recovery
- Orbit, Launch Site, and Payload Mass are among the top variables that affect mission success and First Stage recovery
- Machine Learning models can predict success at 83% accuracy

### Introduction – So you want to go to space

#### The Set-Up

- Space travel is very expensive ~\$165M per launch
- SpaceX recover the first stage → brings down cost to \$65M
- Not 100% successful, but what if we could decrease the risk of failure?

#### The Problem

- What data can we pull from previous SpaceX launches to increase the probability of success?
- What factors can lead to failure? What algorithms can we use to predict success?



### Methodology

#### **Executive Summary**

- Data collection methodology:
  - Describe how data was collected
- Perform data wrangling
  - Describe how data was processed
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
  - How to build, tune, evaluate classification models

#### **Data Collection**

#### SpaceX REST API Calls

- Performed GET-Response requests to get various rocket data and flight outcomes
- Built functions to translate IDs to names of locations, boosters, etc.
- Normalized the data into a flat table and dealt with missing values
- Filtered for Falcon 9 launches

#### Web Scraping

- Performed GET response for Wikipedica page on Falcon 9 launches
- Parsed text with BeautifulSoup to extract columns from table headers
- Extracted data from table rows to build a Pandas DataFrame

### Data Collection – SpaceX API

#### **Data Received**

- Rocket Data
  - Booster Version
- Payload
  - Mass, Orbit
- Launchpad
  - Launch Site, Latitude, Longitude
- Cores
  - Outcomes, type of landing, flights with core, number of reuses, gridfins, legs, landing pad



### **Data Collection - Scraping**

#### **Data Received**

- Launch Site
- Payload
- Payload Mass
- Orbit
- Customer

- Launch Outcome
- Version Booster
- Booster Landing
- Date and Time



### **Data Wrangling**

## Created landing outcome label to track which launches landed successfully → determined success rate of 67%

| Landing Outcome | Meaning                 |
|-----------------|-------------------------|
| True ASDS       | Successful (drone ship) |
| False ASDS      | Failure (drone ship)    |
| True RTLS       | Successful (ground pad) |
| False RTLS      | Failure (ground pad)    |
| True Ocean      | Successful (ocean)      |
| False Ocean     | Failure (ocean)         |
| None None       | Failure to land         |
| None ASDS       | Failure to land         |

| Launch Sites | Names                     |
|--------------|---------------------------|
| CCAFS SLC 40 | Cape Canaveral Space      |
| KSC LC 39A   | Kennedy Space Center      |
| VAFB SLC 4E  | Vandenberg Air Force Base |

#### **EDA** with Data Visualization

- Charts built primarily generated correlation between:
  - Launch Site, Flight Number, Payload Mass, Orbit
- Additional charts show:
  - Success Rate over Time
  - Success Rate by Orbit

- Correlation Charts
  - How do two variables relate
  - Generates visible trends
- Success Rate Graphs
  - Visualize what has worked and what has not

### **EDA** with SQL

## SQL queries are more readable and understandable Can provide data analysis and summaries

#### **Query Summary**

- Unique Launch Sites
- Cape Canaveral records
- Payloads by NASA
- Booster F9 v1.1 Payload
- First successful ground pad landing
- Boosters with drone ship success

- Mission Outcome Statistics
- Boosters that carried Max payloads
- 2015 Drone Ship landing failures
- Ranked landing outcomes (6/4/2010 – 3/20/2017)

### Build an Interactive Map with Folium

#### Folium allows users to visualize geospatial data

#### Folium Elements

- Circles provides a circle of where the coordinates are
- Marker provides a pin with name of location
- MarkerCluster provides number of markers in one area if they are close together

### Build a Dashboard with Plotly Dash

#### Plotly Dash allows you to build shareable, interactive dashboards

- Dropdown menu to select all launch sites and drill down to specific launch site
- Pie Chart
  - All Landing Sites provides success rate of each landing site from total successes
  - Filtered landing site provides percent of success and failures at specific landing site
- Payload Mass vs Launch Outcome Correlation
  - Provides booster versions that are interactable
  - Provides Payload slider to adjust Payload Mass
  - Filters to specific landing site when dashboard is changed

### Predictive Analysis (Classification)

#### Classification Methods

- Logistic Regression similar to linear regression; used for discrete target field to create decision boundaries
- Support Vector Machines classifies by finding a separator
- Decision Trees map out possible decision paths and probabilities
- K-Nearest Neighbor classifies data points based on similarity to other data points
- Refinement with hyperparameters
  - GridSearchCV uses different combinations of hyperparameters to train and evaluate model
- Evaluation
  - Accuracy Score percent of labels that exactly match
  - Confusion Matrix matrix that shows what the model guessed correctly and incorrectly

Train-Test-Split: Split the data into training and testing data

Training – Train each model on the training data

Test – Test how well the model predicts the values

Evaluate – use statistical scores to determine accuracy and compare models



### Flight Number vs. Launch Site

Correlates flight number and launch site

Class represents landing success (1) and landing failure (0)

#### Conclusions

- Higher success rate the higher the flight number
- Cape Canaveral is the most popular launch site



### Payload vs. Launch Site

Correlates Payload Mass to Launch Site

#### Conclusions

- Cape Canaveral launches with at least 12,500kg payloads tend to succeed
- Vandenberg does not exceed 10,000kg payloads
- Vandenberg launches with 10,000kg payloads tend to succeed



### Success Rate vs. Orbit Type

| Orbit | Explanation            |
|-------|------------------------|
| ES-L1 | Lagrange Points        |
| GEO   | Geosynchronous Orbit   |
| GTO   | Geostationary Orbit    |
| HEO   | Highly Eliptical Orbit |
| ISS   | Space Station          |
| LEO   | Low Earth Orbit        |
| MEO   | Medium Earth Orbit     |
| РО    | Polar Orbit            |
| SO    | Solar Orbit            |
| SSO   | Sun-synchronous Orbit  |
| VLEO  | Very Low Earth Orbit   |



Average Success Rate by Orbit Type

### Flight Number vs. Orbit Type

Correlates flight number and orbit type
Conclusions

- Fewer failures as flight number increases
- VLEO are more popular



### Payload vs. Orbit Type

Correlation between payload mass and orbit type

#### **Conclusions**

- VLEO payloads are greater than 13,000kg
- GTO payloads are between 3,000 and 8,000kg
- SSO payloads are less than 6,000kg



### Launch Success Yearly Trend

Line chart of launch success over time

#### Conclusions

- Exponentially growing success
- Slight dip from 2017-2019 but could recover



### Common SQL Terminology

Query – a line of code that does something to a table

%sql – a command that allows user to execute SQL queries in Python

SELECT – picks columns from the data table

FROM – data table you are pulling from (in this case, SPACEXTABLE)

WHERE – filters data table

GROUP BY – group like rows by a specific column

ORDER BY – orders final table by a specific column (DESC or ASC)

#### All Launch Site Names

#### Query

%sql SELECT DISTINCT Launch\_Site

FROM SPACEXTABLE

#### **Explanation:**

Pulls names of launch sites from the SPACEXTABLE table

Distinct prevents any duplication

#### Launch\_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

### Launch Site Names Begin with 'CCA'

Query

%sql SELECT \*

FROM SPACEXTABLE

WHERE Launch\_Site LIKE "%CCA%

LIMIT 5

**Explanation** 

Pulls all rows (\*) from the SPACEXTABLE table

Filters data to find Launch\_Site rows that have CCA in them; % signs let text come before or after CCA

Limit statement decreases the results to just the first five rows

### **Total Payload Mass**

#### Query

%sql SELECT Booster\_Version, sum(PAYLOAD\_MASS\_\_KG\_)

FROM SPACEXTABLE

WHERE Customer = "NASA (CRS)"

**GROUP BY Booster\_Version** 

**ORDER BY 2** 

#### Explanation

Groups data by Booster\_Version and sums Payload column based on its Booster\_Version

Filters to NASA customers only

Orders by the summed column

| Booster_Version | sum(PAYLOAD_MASS_KG_) |
|-----------------|-----------------------|
| F9 v1.0 B0006   | 500                   |
| F9 v1.0 B0007   | 677                   |
| F9 v1.1 B1015   | 1898                  |
| F9 v1.1 B1018   | 1952                  |
| F9 B5 B1059.2   | 1977                  |
| F9 FT B1035.2   | 2205                  |
| F9 v1.1 B1010   | 2216                  |
| F9 FT B1025.1   | 2257                  |
| F9 B5 B1056.2   | 2268                  |
| F9 v1.1         | 2296                  |
| F9 v1.1 B1012   | 2395                  |
| F9 FT B1031.1   | 2490                  |
| F9 B5B1056.1    | 2495                  |
| F9 B5B1050      | 2500                  |
| F9 B4 B1039.2   | 2647                  |
| F9 B4 B1045.2   | 2697                  |
| F9 FT B1035.1   | 2708                  |
| F9 B5 B1058.4   | 2972                  |
| F9 FT B1021.1   | 3136                  |
| F9 B4 B1039.1   | 3310                  |
|                 |                       |

### Average Payload Mass by F9 v1.1

#### Query

%sql SELECT AVG(PAYLOAD\_MASS\_\_KG\_)

FROM SPACEXTABLE

WHERE Booster\_Version LIKE "F9 v1.1%"

#### Explanation

Selects the average of the Payload from the table

Only averages data with Booster\_Version F9 v1.1

#### Result

AVG(PAYLOAD\_MASS\_\_KG\_)

2534,666666666665

### First Successful Ground Landing Date

Query

%sql SELECT min(Date)

FROM SPACEXTABLE

WHERE Landing\_Outcome LIKE "%ground pad%"

#### **Explanation**

Selects the earliest date from the table

Filters data to Landing\_Outcome having "ground pad" in the data

Result

min(Date)

2015-12-22

#### Successful Drone Ship Landing with Payload between 4000 and 6000

#### Query

%sql SELECT Booster\_Version FROM SPACEXTABLE WHERE (PAYLOAD\_MASS\_\_KG\_ > 4000 and PAYLOAD\_MASS\_\_KG\_ < 6000) and Landing\_Outcome LIKE '%drone ship%' and Landing\_Outcome LIKE 'Success%'

#### **Explanation**

Returns Booster\_Version from the table

Filters for Payload between 4,000kg and 6,000kg

Filters Landing Outcome to a success and drone ship

#### Result

#### Booster\_Version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

#### Total Number of Successful and Failure Mission Outcomes

#### Query

%sql SELECT Mission\_Outcome, count(Mission\_Outcome)

FROM SPACEXTABLE

**GROUP BY Mission\_Outcome** 

#### Explanation

Groups by possible mission outcomes

Selects number of mission outcome events

#### Result

| Mission_Outcome                  | ${\bf count(Mission\_Outcome)}$ |
|----------------------------------|---------------------------------|
| Failure (in flight)              | 1                               |
| Success                          | 98                              |
| Success                          | 1                               |
| Success (payload status unclear) | 1                               |

### **Boosters Carried Maximum Payload**

Result Query %sql SELECT distinct Booster\_Version FROM SPACEXTABLE WHERE PAYLOAD\_MASS\_\_KG\_ in ( SELECT MAX(PAYLOAD\_MASS\_\_KG\_) FROM SPACEXTABLE) Explanation Selects Booster\_Version without any repeats from table Uses sub-query to get highest maximum payload

Filters to only select boosters that have pulled maximum

payload

### Booster\_Version F9 B5 B1048.4 F9 B5 B1049.4 F9 B5 B1051.3 F9 B5 B1056.4 F9 B5 B1048.5 F9 B5 B1051.4 F9 B5 B1049.5 F9 B5 B1060.2 F9 B5 B1058.3 F9 B5 B1051.6 F9 B5 B1060.3

F9 B5 B1049.7

#### 2015 Launch Records

#### Query

%sql SELECT substr(Date,6,2) AS 'Month Name', Landing\_Outcome, Booster\_Version, Launch\_Site

#### FROM SPACEXTABLE

WHERE Landing\_Outcome = 'Failure (drone ship)' AND substr(Date,0,5)='2015'

#### **Explanation**

Filters to failed drone ship landing outcomes that occurred in 2015

Selects month it occurred, landing outcome, booster, and launch site

#### Result

| Month Name | Landing_Outcome      | Booster_Version | Launch_Site |
|------------|----------------------|-----------------|-------------|
| 01         | Failure (drone ship) | F9 v1.1 B1012   | CCAFS LC-40 |
| 04         | Failure (drone ship) | F9 v1.1 B1015   | CCAFS LC-40 |

#### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

#### Query Result

%sql SELECT Landing\_Outcome, COUNT(Landing\_Outcome)

FROM SPACEXTABLE

WHERE (Date > '2010-06-04' and Date < '2017-03-20')

**GROUP BY 1** 

**ORDER BY 2** 

#### Explanation

Filters table to fall in between 6/4/2010 - 3/20/2017

Ranks landing\_outcome from lowest to highest

Groups by landing\_outcome

| Landing_Outcome        | ${\tt COUNT(Landing\_Outcome)}$ |
|------------------------|---------------------------------|
| Failure (parachute)    | 1                               |
| Precluded (drone ship) | 1                               |
| Uncontrolled (ocean)   | 2                               |
| Controlled (ocean)     | 3                               |
| Success (ground pad)   | 3                               |
| Failure (drone ship)   | 5                               |
| Success (drone ship)   | 5                               |
| No attempt             | 10                              |
|                        |                                 |



### **Launch Site Locations**

Map shows Launch Site locations

Launch sites are all coastal

Florida contains multiple launch sites



### Volume of Launches by Location

Most launches take place in Florida



### **Space Station Proximity**

- 78.5KM from Orlando
- 29.2KM from freeway
- On the coast
  - Water landings
  - Prevent civilian injuries





### Successful Launches by Launch Site

#### **SpaceX Launch Records Dashboard**



Total Successful Launches by Launch Site

Of the successful launches, 41.7% launch from Kennedy Space Center

### Kennedy Space Center Launch Success

#### **SpaceX Launch Records Dashboard**



The success and failure rate of all launches at Kennedy Space Center 76.9% of launches from Kennedy Space Center succeed

### Correlation between Payload and Success for All Sites



Provides success and failure values for all sites between a payload range

Provides which booster categories were attached to each launch

The FT Booster Category seems to have a high success rate

The graph can also filter by launch site



### **Classification Accuracy**

Accuracy Scores are similar across all four models

Models have been optimized by passing various parameters to produce best model

No test stands out as the best meaning any classification system can be used

Decision Tree accuracy fluctuates slightly and therefore should be eliminated



#### **Confusion Matrix**

The Confusion Matrix is similar across remaining three models

Models all correctly predict "Land" but do have some False Positives

This 83% Accuracy can be useful in deciding whether future launches are viable



#### **Conclusions**

- Payload, Orbit Type, and Launch Site play a huge role in determining mission success and Landing Outcome
- It is possible that Booster Version could play a greater role, but needs to be analyzed further
- Launch Sites are required to be on the coast with some distance from cities
- Several classification Machine Learning methods can be used to determine success and failure of missions, but are not 100% accurate



### Appendix A: GitHub Notebook Links

- Collecting Data: <a href="https://github.com/bleepbloop1213/AppliedDataScienceCapstone/blob/main/jupyter-labs-spacex-data-collection-api.ipynb">https://github.com/bleepbloop1213/AppliedDataScienceCapstone/blob/main/jupyter-labs-spacex-data-collection-api.ipynb</a>
- Webscraping: <a href="https://github.com/bleepbloop1213/AppliedDataScienceCapstone/blob/main/jupyter-labs-webscraping.ipynb">https://github.com/bleepbloop1213/AppliedDataScienceCapstone/blob/main/jupyter-labs-webscraping.ipynb</a>
- Data Wrangling: <a href="https://github.com/bleepbloop1213/AppliedDataScienceCapstone/blob/main/labs-jupyter-spacex-Data%20wrangling.ipynb">https://github.com/bleepbloop1213/AppliedDataScienceCapstone/blob/main/labs-jupyter-spacex-Data%20wrangling.ipynb</a>
- Exploratory Data Analysis (SQL): <a href="https://github.com/bleepbloop1213/AppliedDataScienceCapstone/blob/main/jupyter-labs-eda-sql-coursera-sqllite.ipynb">https://github.com/bleepbloop1213/AppliedDataScienceCapstone/blob/main/jupyter-labs-eda-sql-coursera-sqllite.ipynb</a>
- Exploratory Data Analysis (Visualization):
   <a href="https://github.com/bleepbloop1213/AppliedDataScienceCapstone/blob/main/jupyter-labs-eda-dataviz.ipynb.jupyterlite.ipynb">https://github.com/bleepbloop1213/AppliedDataScienceCapstone/blob/main/jupyter-labs-eda-dataviz.ipynb.jupyterlite.ipynb</a>
- Folium:
   https://github.com/bleepbloop1213/AppliedDataScienceCapstone/blob/main/lab\_jupyter\_launch\_site\_location.jupyterlite.ip\_ynb
- Dashly Dashboard: <a href="https://github.com/bleepbloop1213/AppliedDataScienceCapstone/blob/main/spacex\_dash\_app.py">https://github.com/bleepbloop1213/AppliedDataScienceCapstone/blob/main/spacex\_dash\_app.py</a>
- ML Predictions:
  <a href="https://github.com/bleepbloop1213/AppliedDataScienceCapstone/blob/main/SpaceX\_Machine\_Learning\_Prediction\_Part\_5\_iupyterlite.ipynb">https://github.com/bleepbloop1213/AppliedDataScienceCapstone/blob/main/SpaceX\_Machine\_Learning\_Prediction\_Part\_5\_iupyterlite.ipynb</a>