h_da HOCHSCHULE DARMSTADT UNIVERSITY OF APPLIED SCIENCES

FACHBEREICH MATHEMATIK

 $\label{eq:Antje} \mbox{Antje Jahn}$ Nichtparametrische und nichtlineare Modelle $\mbox{Sommersemester 2019}$

Arbeitsblatt 1

 $\mathbf{A} \mathbf{1}$ Nehmen Sie an, dass für die Zufallsvariablen (X, Y) ein lineares Modell

$$Y = bX + \epsilon$$
 mit $b = 2, Var(\epsilon) = \sigma^2 = 4, \epsilon$ unabhängig von X

gilt. Ein aus einer Stichprobe entwickeltes Prognosemodell liegt etwas daneben und schätzt $E(Y|x) = \hat{b}x = 2.2 \cdot x$.

- a) Berechnen Sie den erwarteten quadratischen Prognosefehler $E((Y \hat{b}x)^2)$ dieses Prognosemodells im Punkt x = 1. Betrachten Sie dabei Y als Zufallsvariable und x und \hat{b} als feste Werte (Konstanten).
- b) Vergleichen Sie den Prognosefehler mit dem Fehler eines optimalen Prognosemodells $E(Y|x) = \hat{b}x = 2 \cdot x$. Begründen Sie, warum der Unterschied hier verhältnismäßig klein ausfällt.

Hinweis zu a): Addieren und subtrahieren Sie im quadratischen Term (links) den Erwartungswert E(Y), wenden Sie danach eine binomische Formel an und nutzen Sie aus, dass der verbleibende nicht-quadratische Term 0 ergibt.

- A 2 Überprüfen Sie in einer Simulationsstudie wie Bias und Varianz von Regressionskoeffizientenschätzern von der Variablenauswahl und damit der Modellkomplexität abhängen können:
 - i) Simulieren Sie für n=100 unabhängige Beobachtungen die Realisierungen von zwei jeweils standardnormalverteilten korrelierten Variablen (X_1, X_2) mit $Cor(X_1, X_2) = 0.8$ [mvtnorm]
 - ii) Simulieren Sie n=100 unabhängige Realisierungen von jeweils 48 standardnormalverteilten und unkorrelierten Variablen $(X_3, \dots X_{50})$
 - iii) Simulieren Sie n=100 unabhängige standardnormalverteilte Fehlerterme ϵ
 - iv) Generieren Sie eine Outcome-Variable, die entsprechend eines linearen Regressionsmodell von X_1 und X_2 abhängt:

$$Y = b_0 + b_1 \cdot X_1 + b_2 \cdot X_2 + \epsilon$$

Legen Sie dabei die Parameter b_0 , b_1 und b_2 selbst fest. Diese "wahren" Werte sollen später mit den Schätzwerten aus den verschiedenen linearen Regressionsmodellen verglichen werden.

- v) Schätzen Sie nun für die von Ihnen simulierten Daten, den Parameter b_1 aus verschiedenen linearen Regressionsmodellen:
 - Modell A: $lmA < -lm(Y \sim X_1)$
 - Modell B: $lmB < -lm(Y \sim X_1 + X_2)$
 - Modell C3: $lmC3 < -lm(Y \sim X_1 + X_2 + X_3)$
 - Modell C4: $lmC4 < -lm(Y \sim X_1 + X_2 + X_3 + X_4)$
 - Modell C5-C50 entsprechend
- vi) Speichern Sie die geschätzten Regressionskoeffizienten $\hat{b_1}$ aus den 50 verschiedenen statistischen Modellen ab.

Führen Sie Schritt i) bis vi) 1.000-mal durch. Speichern Sie dabei die insgesamt 50.000 geschätzten Regressionskoeffizienten (1.000 pro statistischem Modell) ab.

- a) Bestimmen Sie für jedes der 50 Modelle den Durchschnitt der Schätzwerte $\hat{b_1}$ (mean) und die Differenz zwischen Durchschnittswert und wahrem Wert b_1 (Bias).
- b) Bestimmen Sie für jedes Modell die empirische Varianz der Schätzwerte $\hat{b_1}$ (var).
- c) Plotten Sie Bias und Varianz von $\hat{b_1}$ gegen die Modellkomplexität (d.h. gegen die Anzahl an Variablen im Modell).
- d) Erklären Sie Ihr Ergebnis.