ART

_ _ . _ . .

ALGORITHM ANALYSIS

FROM FOUNDATIONS TO PRACTICE

 $\Theta(\log n)$

^{Ω(n²)} Mahdi

LIVING FIRST EDITION

Ahlaly

ALGORITHMS • ABSTRACTION • ANALYSIS • ART

"From ancient counting stones to quantum algorithms every data structure tells the story of human ingenuity."

LIVING FIRST EDITION

Updated October 15, 2025

© 2025 Mahdi

CREATIVE COMMONS • OPEN SOURCE

LICENSE & DISTRIBUTION

THE ART OF ALGORITHMIC ANALYSIS: ALGORITHMIC COST ANALYSIS AND ASYMPTOTIC REASONING

A Living Architecture of Computing

The Art of Algorithmic Analysis is released under the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

FORMAL LICENSE TERMS

Copyright © 2025 Mahdi

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

License URL: https://creativecommons.org/licenses/by-sa/4.0/

You are free to:

- **Share** copy and redistribute the material in any medium or format for any purpose, even commercially.
- **Adapt** remix, transform, and build upon the material for any purpose, even commercially.

Under the following terms:

- Attribution You must give appropriate credit to Mahdi, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- **No additional restrictions** You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

DISTRIBUTION & SOURCE ACCESS

Repository: The complete source code (LaTeX, diagrams, examples) is available at: https://github.com/m-mdy-m/algorithms-data-structures/tree/main/books/books

Preferred Citation Format:

Mahdi. (2025). The Art of Algorithmic Analysis. Retrieved from

https://github.com/m-mdy-m/algorithms-data-structures/tree/main/books/books

Version Control: This is a living document. Check the repository for the most current version and revision history.

WARRANTIES & DISCLAIMERS

No Warranty: This work is provided "AS IS" without warranty of any kind, either expressed or implied, including but not limited to the implied warranties of merchantability and fitness for a particular purpose.

Limitation of Liability: In no event shall Mahdi be liable for any direct, indirect, incidental, special, exemplary, or consequential damages arising from the use of this work.

Educational Purpose: This work is intended for educational and research purposes. Practical implementation of algorithms and techniques should be thoroughly tested and validated for production use.

TECHNICAL SPECIFICATIONS

Typeset with: LATEX using Charter and Palatino font families

Graphics: TikZ and custom illustrations

Standards: Follows academic publishing conventions

Encoding: UTF-8 with full Unicode support

Format: Available in PDF, and LaTeX source formats

License last updated: October 15, 2025

For questions about licensing, contact: bitsgenix@gmail.com

Contents

Ti	tle P	age		į
C	onte	nts		iii
Α	ckno	wledg	mentsx	vii
	Pro	eface		1
1			and Scope of This Book	2
	1.1	•	This Book Covers	2
	1.2	What	This Book Does Not Cover	2
	1.3		Audience: Students, Researchers, and Practitioners	2
2	Wh	_	ecise Analysis" Matters — From Theory to Engineering	3
	2.1	-	ap Between Theoretical Complexity and Real-World Performance	3
	2.2	Case	Studies: When Big-O Isn't Enough	3
	2.3		ole of Constants, Lower-Order Terms, and Hardware	3
3	Mat	thema	tical and Algorithmic Prerequisites	4
_	3.1		ete Mathematics	5
	.	3.1.1	Sets, Functions, and Relations	5
		3.1.2	Combinatorics: Permutations, Combinations, and Binomial Coefficients .	5
		3.1.3	Graph Theory Basics	5
		3.1.4	Proof Techniques: Induction, Contradiction, and Contrapositive	5
	3.2	Eleme	entary Probability Theory	5
		3.2.1	Sample Spaces, Events, and Probability Measures	5
		3.2.2	Random Variables and Expectations	5
		3.2.3	Basic Distributions: Uniform, Bernoulli, Geometric, Binomial	5
		3.2.4	Linearity of Expectation	5
		3.2.5	Conditional Probability and Independence	5
		3.2.6	Variance and Standard Deviation	5
		3.2.7	Moment Generating Functions (Brief Introduction)	5
	3.3	Mathe	matical Analysis	5
		3.3.1	Limits, Continuity, and Asymptotic Behavior	5
		333	Sequences and Series	5

		3.3.3	Summations and Closed Forms	5
		3.3.4	Integration and Differentiation (Brief Review)	5
		3.3.5	Taylor Series and Asymptotic Expansions	5
		3.3.6	Stirling's Approximation	5
	3.4	Linear	Algebra (Brief Overview)	5
		3.4.1	Vectors, Matrices, and Linear Transformations	5
		3.4.2	Eigenvalues and Eigenvectors	5
		3.4.3	Applications to Markov Chains and Graph Algorithms	5
		3.4.4	Matrix Operations and Complexity	5
	3.5	Numbe	er Theory Essentials	5
		3.5.1	Divisibility and Modular Arithmetic	5
		3.5.2	Prime Numbers and Factorization	5
		3.5.3	Greatest Common Divisor and Euclidean Algorithm	5
		3.5.4	Applications to Cryptography and Hashing	5
4	Stru	ıcture	of the Book: Theorems, Proofs, Examples, and Exer-	
	cise	es		6
	4.1	How to	Read This Book	6
	4.2	Notatio	on and Conventions	6
	4.3	Types	of Exercises: Conceptual, Computational, and Proof-Based	6
	4.4	Using I	Examples Effectively	6
	4.5	The Ro	ole of Rigor vs. Intuition	6
5	Prir	nary R	References and Parallel Reading Guide	7
	5.1	Classic	c Textbooks (CLRS, Sedgewick, Kleinberg-Tardos)	7
	5.2	Resea	rch Papers and Monographs	7
	5.3	Online	Resources and Lecture Notes	7
	5.4	Recom	nmended Reading Order and Study Plans	7
Ш	Fo	ounda	ations of Algorithmic Analysis	8
6			on to Algorithm Analysis	9
U				
	6.1		s Algorithm Analysis?	9
		6.1.1	Correctness vs. Efficiency	9
		6.1.2	Resource Measures: Time, Space, Energy, I/O	9
		6.1.3	The Need for Mathematical Models	9

	6.2	The R	AM Model of Computation	9
		6.2.1	Basic Operations and Unit-Cost Assumption	9
		6.2.2	Memory Access Model	9
		6.2.3	Limitations and Extensions of the RAM Model	9
	6.3	Measu	ring Algorithm Performance	9
		6.3.1	Input Size and Problem Instances	9
		6.3.2	Counting Basic Operations	9
		6.3.3	Exact vs. Asymptotic Analysis	9
	6.4	Overvi	ew of Complexity Classes	9
		6.4.1	P, NP, NP-Complete, and NP-Hard (Brief Introduction)	9
		6.4.2	Why We Focus on Polynomial-Time Algorithms	9
7	Asy	mptot	tic Notation	0
	7.1			1
		7.1.1		1
		7.1.2		1
	7.2	Bia-O		1
		7.2.1		1
		7.2.2		1
		7.2.3		1
		7.2.4		1
		7.2.5	Properties of Big-O	1
	7.3	Big-Or		1
		7.3.1		1
		7.3.2	Intuition: Lower Bounds	1
		7.3.3	Examples and Applications	1
		7.3.4	Relationship Between O and Ω	1
	7.4	Big-Th	eta Notation (Θ)	1
		7.4.1	Formal Definition	1
		7.4.2	Intuition: Tight Bounds	1
		7.4.3	When to Use Θ vs. O	1
		7.4.4	Examples of Tight Bounds	1
	7.5	Little-o	and Little-omega Notation (o,ω)	1
		7.5.1		1

		7.5.2	Strict Asymptotic Bounds
		7.5.3	Applications in Analysis
	7.6	Comm	on Misconceptions and Pitfalls
		7.6.1	Confusing O with Θ
		7.6.2	Ignoring Constants in Practice
		7.6.3	Misapplying Asymptotic Notation to Small Inputs
	7.7	Compa	aring Functions
		7.7.1	L'Hôpital's Rule for Limits
		7.7.2	Logarithmic vs. Polynomial vs. Exponential Growth
		7.7.3	Hierarchy of Common Complexity Classes
	7.8	Exerci	ses
8	Red	urren	ce Relations and Their Solutions 12
	8.1	Introdu	uction to Recurrence Relations
		8.1.1	What Are Recurrences?
		8.1.2	Why They Arise in Algorithm Analysis
		8.1.3	Examples from Divide-and-Conquer Algorithms
	8.2	The Su	ubstitution Method
		8.2.1	Guessing the Solution
		8.2.2	Proving by Induction
		8.2.3	Examples: Mergesort, Binary Search
		8.2.4	Strengthening the Inductive Hypothesis
	8.3	The Re	ecursion-Tree Method
		8.3.1	Visualizing the Recurrence
		8.3.2	Summing Over Levels
		8.3.3	Examples and Illustrations
		8.3.4	Limitations and When to Use
	8.4	The M	aster Theorem
		8.4.1	Statement of the Master Theorem (Standard Form)
		8.4.2	Three Cases and Their Intuition
		8.4.3	Proof Sketch (Via Recursion Trees)
		8.4.4	Examples: $T(n) = aT(n/b) + f(n)$
		8.4.5	Regularity Condition and Edge Cases
		8.4.6	Extended Master Theorem (Akra-Bazzi)

	8.5	The Al	kra-Bazzi Method	13
		8.5.1	Motivation: Unequal Subproblem Sizes	13
		8.5.2	Statement and Conditions	13
		8.5.3	Examples and Applications	13
		8.5.4	Proof Overview (Advanced)	13
	8.6	Linear	Recurrences with Constant Coefficients	13
		8.6.1	Homogeneous Linear Recurrences	13
		8.6.2	Characteristic Equations	13
		8.6.3	Solving Fibonacci-Type Recurrences	13
		8.6.4	Non-Homogeneous Recurrences and Particular Solutions	13
	8.7	Gener	ating Functions	13
		8.7.1	Introduction to Generating Functions	13
		8.7.2	Solving Recurrences with Generating Functions	13
		8.7.3	Examples: Catalan Numbers, Stirling Numbers	13
	8.8	Advan	ced Topics	13
		8.8.1	Full History Recurrences	13
		8.8.2	Recurrences with Variable Coefficients	13
		8.8.3	Probabilistic Recurrences (Preview)	13
	8.9	Exerci	ses	13
9	Bes	t-Cas	e, Worst-Case, and Average-Case Analysis	14
	9.1	Definir	ng Input Classes	15
		9.1.1	What Constitutes an "Input"?	15
		9.1.2	Problem Instances and Instance Distributions	15
	9.2	Best-C	Case Analysis	15
		9.2.1	Definition and Purpose	15
		9.2.2	Examples: Insertion Sort, Linear Search	15
		9.2.3	When Best-Case Matters (and When It Doesn't)	15
	9.3	Worst-	-Case Analysis	15
		9.3.1	Definition and Motivation	15
		9.3.2	Guarantees and Robustness	15
		9.3.3	Examples: Quicksort, Searching in Unsorted Arrays	15
		9.3.4	Lower Bounds and Optimality	15
	9.4	Averag	ge-Case Analysis	15

		9.4.1	Definition: Expected Running Time	15
		9.4.2	Assumptions About Input Distributions	15
		9.4.3	Probabilistic Models: Uniform, Gaussian, etc	15
		9.4.4	Examples: Quicksort, Hashing, Skip Lists	15
	9.5	Probab	ilistic Analysis vs. Randomized Algorithms	15
		9.5.1	Distinction Between the Two Concepts	15
		9.5.2	Randomized Quicksort: Expected $O(n \log n)$	15
		9.5.3	Las Vegas vs. Monte Carlo Algorithms	15
	9.6	Smooth	ned Analysis	15
		9.6.1	Motivation: Beyond Worst-Case Pessimism	15
		9.6.2	Introduction to Smoothed Analysis	15
		9.6.3	Case Study: Simplex Algorithm	15
	9.7	Exercis	ses	15
10	Prol	oabilis	tic Analysis of Algorithms	16
	10.1	Founda	ations of Probabilistic Analysis	17
		10.1.1	Random Variables in Algorithm Analysis	17
		10.1.2	Indicator Random Variables	17
		10.1.3	Linearity of Expectation	17
	10.2	Expect	ed Running Time	17
		10.2.1	Formal Definition	17
		10.2.2	Computing Expectations via Indicator Variables	17
		10.2.3	Examples: Hiring Problem, Randomized Quicksort	17
	10.3	Probab	illistic Bounds	17
		10.3.1	Markov's Inequality	17
		10.3.2	Chebyshev's Inequality	17
		10.3.3	Chernoff Bounds	17
		10.3.4	Applications to Load Balancing and Hashing	17
	10.4	Randor	mized Algorithms	17
		10.4.1	Randomized Quicksort (Detailed Analysis)	17
		10.4.2	Randomized Selection (Quickselect)	17
		10.4.3	Hashing and Universal Hash Functions	17
		10.4.4	Bloom Filters and Probabilistic Data Structures	17
	10.5	Analysi	is of Randomized Data Structures	17

		10.5.1	Skip Lists	17
		10.5.2	Treaps	17
		10.5.3	Hash Tables with Chaining and Open Addressing	17
	10.6	High-P	robability Results	17
		10.6.1	What Does "With High Probability" Mean?	17
		10.6.2	Concentration Inequalities	17
		10.6.3	Union Bound and Probabilistic Method	17
	10.7	Exercis	ses	17
Ш	A	dvan	ced Analysis Techniques	18
11	Amo	ortized	d Analysis	19
	11.1	Introdu	ction to Amortized Analysis	20
		11.1.1	Motivation: Why Average Per-Operation Cost?	20
		11.1.2	Amortized vs. Average-Case Analysis	20
		11.1.3	When to Use Amortized Analysis	20
	11.2	Aggreg	gate Analysis	20
		11.2.1	Definition and Methodology	20
		11.2.2	Example: Dynamic Array (Vector) Resizing	20
		11.2.3	Example: Binary Counter Increment	20
		11.2.4	Example: Stack with Multipop	20
	11.3	The Ac	counting Method	20
		11.3.1	Conceptual Framework: Credits and Debits	20
		11.3.2	Defining Amortized Costs	20
		11.3.3	Example: Dynamic Array via Accounting	20
		11.3.4	Example: Splay Trees (Introduction)	20
		11.3.5	Ensuring Non-Negative Credit Balance	20
	11.4	The Po	otential Method	20
		11.4.1	Potential Functions: Definition and Intuition	20
		11.4.2	Relating Amortized Cost to Actual Cost	20
		11.4.3	Designing Good Potential Functions	20
		11.4.4	Example: Dynamic Array via Potential Method	20
		11.4.5	Example: Binary Counter via Potential Method	20
		11.4.6	Example: Fibonacci Heaps (Overview)	20
	11.5	Compa	aring the Three Methods	20

		11.5.1	Strengths and Weaknesses	20
		11.5.2	When to Choose Which Method	20
		11.5.3	Equivalence of Methods (Informal Discussion)	20
	11.6	Advand	ced Applications	20
		11.6.1	Splay Trees: Full Analysis	20
		11.6.2	Fibonacci Heaps	20
		11.6.3	Disjoint-Set Union (Union-Find)	20
	11.7	Exercis	ses	20
12	Spa	ce Co	mplexity Analysis	21
	12.1	Introdu	ction to Space Complexity	22
		12.1.1	Why Space Matters	22
		12.1.2	Types of Memory: Stack, Heap, Static	22
		12.1.3	In-Place vs. Out-of-Place Algorithms	22
	12.2	Measu	ring Space Usage	22
		12.2.1	Auxiliary Space vs. Total Space	22
		12.2.2	Recursive Call Stack Depth	22
		12.2.3	Implicit vs. Explicit Data Structures	22
	12.3	Examp	les of Space Complexity Analysis	22
		12.3.1	Iterative Algorithms: Loops and Arrays	22
		12.3.2	Recursive Algorithms: Mergesort, Quicksort	22
		12.3.3	Dynamic Programming: Memoization vs. Tabulation	22
		12.3.4	Graph Algorithms: BFS, DFS, Shortest Paths	22
	12.4	Space-	Time Tradeoffs	22
		12.4.1	Caching and Memoization	22
		12.4.2	Lookup Tables and Precomputation	22
		12.4.3	Compression and Succinct Data Structures	22
	12.5	Stream	ning and Online Algorithms	22
		12.5.1	Sublinear Space Algorithms	22
		12.5.2	Sketching and Sampling Techniques	22
		12.5.3	Examples: Distinct Elements, Heavy Hitters	22
	12.6	Space	Complexity Classes	22
		12.6.1	L, NL, PSPACE (Brief Overview)	22
		12.6.2	Savitch's Theorem	22

	12.7	Exercis	ses	22
13	Cac	he-Aw	vare and I/O Complexity	23
	13.1	Introdu	ction to the Memory Hierarchy	24
		13.1.1	Registers, Cache (L1, L2, L3), RAM, Disk	24
		13.1.2	Latency and Bandwidth Characteristics	24
		13.1.3	Why Algorithm Design Must Consider Memory	24
	13.2	The Ex	ternal Memory Model (I/O Model)	24
		13.2.1	Parameters: N (data size), M (memory size), B (block size)	24
		13.2.2	I/O Complexity: Counting Block Transfers	24
		13.2.3	Comparison with RAM Model	24
	13.3	I/O-Effi	cient Algorithms	24
		13.3.1	Scanning and Sorting	24
		13.3.2	Matrix Operations	24
		13.3.3	Graph Algorithms	24
	13.4	Cache-	Oblivious Algorithms	24
		13.4.1	Motivation: Optimal Without Knowing M and B	24
		13.4.2	Cache-Oblivious Sorting (Funnelsort)	24
		13.4.3	Cache-Oblivious Matrix Multiplication	24
		13.4.4	Cache-Oblivious B-Trees (van Emde Boas Layout)	24
	13.5	Cache-	-Aware Analysis	24
		13.5.1	Modeling Cache Behavior	24
		13.5.2	Locality of Reference: Temporal and Spatial	24
		13.5.3	Blocking and Tiling Techniques	24
	13.6	Real-W	Vorld Considerations	24
		13.6.1	Multi-Level Caches	24
		13.6.2	Cache Replacement Policies (LRU, LFU, etc.)	24
		13.6.3	Prefetching and Speculative Execution	24
		13.6.4	False Sharing and Cache Line Effects	24
	13.7	Case S	Studies	24
		13.7.1	Database Query Processing	24
		13.7.2	External Memory Sorting in Practice	24
		13.7.3	Scientific Computing and Large-Scale Simulations	24
	13.8	Exercis	ses	24

14	Cac	he-Aw	are Scheduling and Analysis for Multicores	25
	14.1	Introdu	ction to Multicore and Parallel Computing	26
		14.1.1	Shared vs. Distributed Memory	26
		14.1.2	Parallel Models: PRAM, Fork-Join, Work-Stealing	26
		14.1.3	Performance Metrics: Work, Span, Parallelism	26
	14.2	Cache	Coherence and Consistency	26
		14.2.1	MESI and MOESI Protocols	26
		14.2.2	False Sharing in Multicore Systems	26
		14.2.3	Impact on Algorithm Design	26
	14.3	Cache-	Aware Parallel Algorithms	26
		14.3.1	Parallel Sorting with Cache Awareness	26
		14.3.2	Parallel Matrix Multiplication (Strassen, Coppersmith-Winograd)	26
		14.3.3	Load Balancing and Task Granularity	26
	14.4	Real-T	me and Embedded Systems	26
		14.4.1	WCET Analysis in Cache-Aware Contexts	26
		14.4.2	Predictability vs. Average-Case Performance	26
		14.4.3	Cache Partitioning and Locking	26
	14.5	Schedu	uling Strategies	26
		14.5.1	Static vs. Dynamic Scheduling	26
		14.5.2	Work-Stealing Algorithms	26
		14.5.3	Affinity Scheduling for Cache Locality	26
	14.6	Analys	is Techniques	26
		14.6.1	DAG-Based Analysis (Cilk Model)	26
		14.6.2	Brent's Theorem and Greedy Scheduling	26
		14.6.3	Cache Miss Analysis in Parallel Programs	26
	14.7	Case S	Studies from Research	26
		14.7.1	ECRTS 2007: Cache-Aware Real-Time Scheduling	26
		14.7.2	Cache-Aware Scheduling for Multicores (Embedded Systems)	26
		14.7.3	VLDB 2019: Concurrent Hash Tables and Cache Performance	26
	14.8	Exercis	es	26
V	· 1	OWA!	Bounds and Optimality	27
_			•	
15			unds for Comparison-Based Algorithms	
	15.1	Decisio	on Trees	29

		15.1.1	Modeling Algorithms as Decision Trees	29
		15.1.2	Height of Decision Trees and Worst-Case Complexity	29
	15.2	Sorting	Lower Bound	29
		15.2.1	Information-Theoretic Argument	29
		15.2.2	$\Omega(n\log n)$ Lower Bound for Comparison Sorting	29
		15.2.3	Implications and Optimal Algorithms	29
	15.3	Selection	on and Searching Lower Bounds	29
		15.3.1	Finding the Minimum: $\Omega(n)$	29
		15.3.2	Finding Median: Adversary Arguments	29
		15.3.3	Searching in Sorted Arrays: $\Omega(\log n)$	29
	15.4	Advers	ary Arguments	29
		15.4.1	General Framework	29
		15.4.2	Examples: Merging, Element Uniqueness	29
	15.5	Exercis	ses	29
16	Alge	ebraic	and Non-Comparison Lower Bounds 3	30
	16.1	Algebra	aic Decision Trees	30
		16.1.1	Extending Beyond Comparisons	30
		16.1.2	Element Distinctness Lower Bound	30
	16.2	Commi	unication Complexity	30
		16.2.1	Models and Definitions	30
		16.2.2	Applications to Data Structures	30
	16.3	Cell-Pr	obe Model	30
		16.3.1	Lower Bounds for Data Structures	30
		16.3.2	Dynamic vs. Static Data Structures	30
	16.4	Exercis	ses	30
V	Sr	ecial	lized Topics and Applications	1
•	•		•	
1 /		-	, ,	32
	17.1			33
		17.1.1		33
		17.1.2		33
				33
	17.2	Greedy	Algorithms	33

		17.2.1	Correctness via Exchange Arguments	33
		17.2.2	Matroid Theory (Brief Introduction)	33
		17.2.3	Examples: Huffman Coding, Kruskal's MST	33
	17.3	Dynam	ic Programming	33
		17.3.1	Optimal Substructure and Overlapping Subproblems	33
		17.3.2	Memoization vs. Tabulation	33
		17.3.3	Time and Space Complexity Analysis	33
		17.3.4	Examples: Knapsack, Edit Distance, Matrix Chain Multiplication	33
	17.4	Backtra	acking and Branch-and-Bound	33
		17.4.1	Pruning the Search Space	33
		17.4.2	Worst-Case Exponential, Average-Case Better	33
		17.4.3	Examples: N-Queens, Traveling Salesman	33
	17.5	Exercis	es	33
18	Onli	ne Alç	gorithms and Competitive Analysis	34
	18.1	Introdu	ction to Online Algorithms	34
		18.1.1	Online vs. Offline Problems	34
		18.1.2	Competitive Ratio	34
	18.2	Examp	les of Online Problems	34
		18.2.1	Paging and Caching (LRU, FIFO, LFU)	34
		18.2.2	Load Balancing	34
		18.2.3	Online Scheduling	34
	18.3	Compe	titive Analysis Techniques	34
		18.3.1	Deterministic vs. Randomized Algorithms	34
		18.3.2	Lower Bounds via Adversary Arguments	34
	18.4	Exercis	ses	34
19	App	roxim	ation Algorithms	35
			ction to Approximation	35
		19.1.1	NP-Hardness and Intractability	35
		19.1.2	Approximation Ratios	35
	19.2	Examp	les of Approximation Algorithms	35
		19.2.1	Vertex Cover (2-Approximation)	35
		19.2.2	Set Cover (Greedy, $\log n$ -Approximation)	35
		19.2.3	Traveling Salesman Problem (Metric TSP)	35

	19.3	.3 Analysis Techniques			
		19.3.1	Bounding Optimal Solutions	5	
		19.3.2	Linear Programming Relaxations	5	
	19.4	Exercis	es 3	5	
20	Para	ametei	rized Complexity 3	6	
	20.1	Introdu	ction to Parameterized Algorithms	6	
		20.1.1	Fixed-Parameter Tractability (FPT)	6	
		20.1.2	Kernelization	6	
	20.2	Examp	les and Analysis	6	
		20.2.1	Vertex Cover Parameterized by Solution Size	6	
		20.2.2	Treewidth and Graph Algorithms	6	
	20.3	W-Hier	archy and Hardness	6	
		20.3.1	W[1], W[2], and Beyond	6	
	20.4	Exercis	es	6	
VI	Р	ractio	cal Considerations and Case Studies 37	7	
21			ory to Practice	8	
			Constants and Lower-Order Terms		
		21.1.1		88	
		21.1.2		88	
	21.2	Algorith	nm Engineering	8	
		21.2.1		88	
		21.2.2	Tuning for Specific Hardware	8	
		21.2.3	Libraries and Implementations (STL, Boost, etc.)	8	
	21.3	Paralle	and Distributed Algorithm Analysis	8	
		21.3.1	Scalability and Speedup	8	
		21.3.2	Amdahl's Law and Gustafson's Law	8	
	21.4	Energy	Efficiency	8	
		21.4.1	Energy as a Resource	8	
		21.4.2	Green Computing and Mobile Devices	8	
	21.5	Exercis	es	8	
22	Cas	e Stuc	lies	9	
	22.1	Sorting	Algorithms in Practice	9	

		22.1.1	Timsort, Introsort, Radix Sort	39
		22.1.2	Comparison of Theoretical vs. Empirical Performance	39
	22.2 Graph Algorithms in Large-Scale Systems			39
		22.2.1	Web Graphs and PageRank	39
		22.2.2	Social Network Analysis	39
	22.3	Machin	e Learning and Data Science	39
		22.3.1	Complexity of Training Algorithms	39
		22.3.2	SGD, AdaGrad, Adam: Time and Space Analysis	39
	22.4	Databa	se Systems	39
		22.4.1	Query Optimization	39
		22.4.2	Indexing Structures (B-Trees, LSM-Trees)	39
	22.5	Exercis	ses	39
Α	Mat	hemat	ical Background	10
	A.1	Summa	ation Formulas	40
	A.2	Logarit	hms and Exponentials	40
	A.3	Recurre	ence Relations (Quick Reference)	40
	A.4	Probab	oility Distributions	40
	A.5	Matrix	Operations	40
В	Pse	udoco	de Conventions	11
	B.1	Notatio	n and Style	41
	B.2	Commo	on Data Structures	41
С	Solu	utions	to Selected Exercises	12
			of Terms	13
		-		. o 14
F			3 1 7	15
	F.1	Founda	ational Texts	45
	F.2	Resear	rch Papers by Topic	45
	F.3	Online	Courses and Resources	45

Acknowledgments

I would like to express my gratitude to everyone who supported me during the creation of this book. Special thanks to the open-source community for their invaluable resources and to all those who reviewed early drafts and provided feedback.

Part I

Preface

Purpose and Scope of This Book

- 1.1 What This Book Covers
- 1.2 What This Book Does Not Cover
- 1.3 Target Audience: Students, Researchers, and Practitioners

Why "Precise Analysis" Matters — From Theory to Engineering

- 2.1 The Gap Between Theoretical Complexity and Real-World Performance
- 2.2 Case Studies: When Big-O Isn't Enough
- 2.3 The Role of Constants, Lower-Order Terms, and Hardware

Mathematical and Algorithmic Prerequisites

- 3.1 Discrete Mathematics
- 3.1.1 Sets, Functions, and Relations
- 3.1.2 Combinatorics: Permutations, Combinations, and Binomial Coefficients
- 3.1.3 Graph Theory Basics
- 3.1.4 Proof Techniques: Induction, Contradiction, and Contrapositive
- 3.2 Elementary Probability Theory
- 3.2.1 Sample Spaces, Events, and Probability Measures
- 3.2.2 Random Variables and Expectations
- 3.2.3 Basic Distributions: Uniform, Bernoulli, Geometric, Binomial
- 3.2.4 Linearity of Expectation
- 3.2.5 Conditional Probability and Independence
- 3.2.6 Variance and Standard Deviation
- 3.2.7 Moment Generating Functions (Brief Introduction)
- 3:3:00-20 Mathematical Analysis

Structure of the Book: Theorems, Proofs, Examples, and Exercises

- 4.1 How to Read This Book
- 4.2 Notation and Conventions
- 4.3 Types of Exercises: Conceptual, Computational, and Proof-Based
- 4.4 Using Examples Effectively
- 4.5 The Role of Rigor vs. Intuition

Primary References and Parallel Reading Guide

- 5.1 Classic Textbooks (CLRS, Sedgewick, Kleinberg-Tardos)
- 5.2 Research Papers and Monographs
- 5.3 Online Resources and Lecture Notes
- 5.4 Recommended Reading Order and Study Plans

Part II

Foundations of Algorithmic Analysis

Introduction to Algorithm Analysis

6.1	What Is Algorithm Analysis?
6.1.1	Correctness vs. Efficiency
6.1.2	Resource Measures: Time, Space, Energy, I/O
6.1.3	The Need for Mathematical Models
6.2	The RAM Model of Computation
6.2.1	Basic Operations and Unit-Cost Assumption
6.2.2	Memory Access Model
6.2.3	Limitations and Extensions of the RAM Model
6.3	Measuring Algorithm Performance
6.3.1	Input Size and Problem Instances
6.3.2	Counting Basic Operations
6.3.3	Exact vs. Asymptotic Analysis
6.4	Overview of Complexity Classes
6.4.1	P, NP, NP-Complete, and NP-Hard (Brief Introduction)
6.4.2	Why We Focus on Polynomial-Time Algorithms

Asymptotic Notation

7.1	The Need	for Asym	ptotic Analysis

- 7.1.1 Why Exact Counts Are Often Impractical
- 7.1.2 Growth Rates and Scalability
- 7.2 Big-O Notation (O)
- 7.2.1 Formal Definition
- 7.2.2 Intuition: Upper Bounds
- 7.2.3 Common Functions and Their Growth Rates
- 7.2.4 Examples and Non-Examples
- 7.2.5 Properties of Big-O

Transitivity

Addition and Multiplication Rules

Reflexivity and Asymmetry

7.3 Big-Omega Notation (Ω)

- 7.3.1 Formal Definition
- 7.3.2 Intuition: Lower Bounds
- 7.3.3 Examples and Applications
- 7.3.4 Relationship Between O and Ω

7.4 Big-Theta Notation (⊕)

Recurrence Relations and Their Solutions

8.1 Introduction to Recurrence Relation

- 8.1.1 What Are Recurrences?
- 8.1.2 Why They Arise in Algorithm Analysis
- 8.1.3 Examples from Divide-and-Conquer Algorithms

8.2 The Substitution Method

- 8.2.1 Guessing the Solution
- 8.2.2 Proving by Induction
- 8.2.3 Examples: Mergesort, Binary Search
- 8.2.4 Strengthening the Inductive Hypothesis

8.3 The Recursion-Tree Method

- 8.3.1 Visualizing the Recurrence
- 8.3.2 Summing Over Levels
- 8.3.3 Examples and Illustrations
- 8.3.4 Limitations and When to Use

8.4 The Master Theorem

8.4.1 Statement of the Master Theorem (Standard Form)

Best-Case, Worst-Case, and Average-Case Analysis

9.1	Defining	Input	Classes
-----	-----------------	-------	---------

- 9.1.1 What Constitutes an "Input"?
- 9.1.2 Problem Instances and Instance Distributions
- 9.2 Best-Case Analysis
- 9.2.1 Definition and Purpose
- 9.2.2 Examples: Insertion Sort, Linear Search
- 9.2.3 When Best-Case Matters (and When It Doesn't)
- 9.3 Worst-Case Analysis
- 9.3.1 Definition and Motivation
- 9.3.2 Guarantees and Robustness
- 9.3.3 Examples: Quicksort, Searching in Unsorted Arrays
- 9.3.4 Lower Bounds and Optimality
- 9.4 Average-Case Analysis
- 9.4.1 Definition: Expected Running Time
- 9.4.2 Assumptions About Input Distributions
- 9.4.3 Probabilistic Models: Uniform, Gaussian, etc.
- 7.4.5 I Tobabilistic Widacis. Offitolini, Gaussian, etc.

Examples: Quicksort, Hashing, Skip Lists

Probabilistic Analysis of Algorithms

10.1	Foundations of Probabilistic Analysis	
10.1.1	Random Variables in Algorithm Analysis	
10.1.2	Indicator Random Variables	
10.1.3	Linearity of Expectation	
10.2	Expected Running Time	
10.2.1	Formal Definition	
10.2.2	Computing Expectations via Indicator Variables	
10.2.3	Examples: Hiring Problem, Randomized Quicksort	
10.3	Probabilistic Bounds	
10.3.1	Markov's Inequality	
10.3.2	Chebyshev's Inequality	
10.3.3	Chernoff Bounds	
10.3.4	Applications to Load Balancing and Hashing	
10.4	Randomized Algorithms	
10.4.1	Randomized Quicksort (Detailed Analysis)	
10.4.2	Randomized Selection (Quickselect)	
1.0 :4:3:0	Hashing and Universal Hash Functions	17 45

10.4.4 Bloom Filters and Probabilistic Data Structures

Part III Advanced Analysis Techniques

Amortized Analysis

11.1	Introduction to Amortized Analysis
11.1.1	Motivation: Why Average Per-Operation Cost?
11.1.2	Amortized vs. Average-Case Analysis
11.1.3	When to Use Amortized Analysis
11.2	Aggregate Analysis
11.2.1	Definition and Methodology
11.2.2	Example: Dynamic Array (Vector) Resizing
11.2.3	Example: Binary Counter Increment
11.2.4	Example: Stack with Multipop
11.3	The Accounting Method
11.3.1	Conceptual Framework: Credits and Debits
11.3.2	Defining Amortized Costs
11.3.3	Example: Dynamic Array via Accounting
11.3.4	Example: Splay Trees (Introduction)
11.3.5	Ensuring Non-Negative Credit Balance
11.4	The Potential Method

12.5

Space Complexity Analysis

12.1	Introduction to Space Complexity
12.1.1	Why Space Matters
12.1.2	Types of Memory: Stack, Heap, Static
12.1.3	In-Place vs. Out-of-Place Algorithms
12.2	Measuring Space Usage
12.2.1	Auxiliary Space vs. Total Space
12.2.2	Recursive Call Stack Depth
12.2.3	Implicit vs. Explicit Data Structures
12.3	Examples of Space Complexity Analysis
12.3.1	Iterative Algorithms: Loops and Arrays
12.3.2	Recursive Algorithms: Mergesort, Quicksort
12.3.3	Dynamic Programming: Memoization vs. Tabulation
12.3.4	Graph Algorithms: BFS, DFS, Shortest Paths
12.4	Space-Time Tradeoffs
12.4.1	Caching and Memoization
12.4.2	Lookup Tables and Precomputation
FrsPEdAn 3202	Compression and Succinct Data Structures

22|45

Cache-Aware and I/O Complexity

13.1	Introduction to the Memory Hierarchy
13.1.1	Registers, Cache (L1, L2, L3), RAM, Disk
13.1.2	Latency and Bandwidth Characteristics
13.1.3	Why Algorithm Design Must Consider Memory
13.2	The External Memory Model (I/O Model)
13.2.1	Parameters: N (data size), M (memory size), B (block size)
13.2.2	I/O Complexity: Counting Block Transfers
13.2.3	Comparison with RAM Model
13.3	I/O-Efficient Algorithms
13.3.1	Scanning and Sorting
Externa	l Merge Sort

13.3.2 Matrix Operations

I/O Complexity: $O((N/B)\log_{M/B}(N/B))$

Matrix Transposition

Matrix Multiplication

13.3.3 Graph Algorithms

I/O-Efficient BFS and DFS

Minimum Spanning Tree

24|45

Cache-Aware Scheduling and Analysis for Multicores

Introduction to Multicore and Parallel Computing
Shared vs. Distributed Memory
Parallel Models: PRAM, Fork-Join, Work-Stealing
Performance Metrics: Work, Span, Parallelism
Cache Coherence and Consistency
MESI and MOESI Protocols
False Sharing in Multicore Systems
Impact on Algorithm Design
Cache-Aware Parallel Algorithms
Parallel Sorting with Cache Awareness
Parallel Matrix Multiplication (Strassen, Coppersmith-Winograd)

14.4.1 WCET Analysis in Cache-Aware Contexts

Real-Time and Embedded Systems

14.3.3 Load Balancing and Task Granularity

Part IV Lower Bounds and Optimality

15.5 Exercises

Lower Bounds for Comparison-Based Algorithms

15.1	Decision Trees
15.1.1	Modeling Algorithms as Decision Trees
15.1.2	Height of Decision Trees and Worst-Case Complexity
15.2	Sorting Lower Bound
15.2.1	Information-Theoretic Argument
15.2.2	$\Omega(n \log n)$ Lower Bound for Comparison Sorting
15.2.3	Implications and Optimal Algorithms
15.3	Selection and Searching Lower Bounds
	Selection and Searching Lower Bounds Finding the Minimum: $\Omega(n)$
15.3.1	
15.3.1 15.3.2	Finding the Minimum: $\Omega(n)$
15.3.1 15.3.2 15.3.3	Finding the Minimum: $\Omega(n)$ Finding Median: Adversary Arguments
15.3.1 15.3.2 15.3.3 15.4	Finding the Minimum: $\Omega(n)$ Finding Median: Adversary Arguments Searching in Sorted Arrays: $\Omega(\log n)$

First Edition • 2025

Algebraic and Non-Comparison Lower Bounds

16.1	Algebraic Decision Trees
16.1.1	Extending Beyond Comparisons
16.1.2	Element Distinctness Lower Bound
16.2	Communication Complexity
16.2.1	Models and Definitions
16.2.2	Applications to Data Structures
16.3	Cell-Probe Model
16.3.1	Lower Bounds for Data Structures
16.3.2	Dynamic vs. Static Data Structures
16.4	Exercises

Part V

Specialized Topics and Applications

Analysis of Specific Algorithm Paradigms

17.1	Divide-and-Conquer Algorithms
17.1.1	General Framework and Recurrence Relations
17.1.2	Examples: Mergesort, Quicksort, Strassen's Algorithm
17.1.3	Optimality and Lower Bounds
17.2	Greedy Algorithms
17.2.1	Correctness via Exchange Arguments
17.2.2	Matroid Theory (Brief Introduction)
17.2.3	Examples: Huffman Coding, Kruskal's MST
17.3	Dynamic Programming
17.3.1	Optimal Substructure and Overlapping Subproblems
17.3.2	Memoization vs. Tabulation
17.3.3	Time and Space Complexity Analysis

Examples: Knapsack, Edit Distance, Matrix Chain Multipli-

cation

17.3.4

Online Algorithms and Competitive Analysis

18.1	Introduction to Online Algorithms
18.1.1	Online vs. Offline Problems
18.1.2	Competitive Ratio
18.2	Examples of Online Problems
18.2.1	Paging and Caching (LRU, FIFO, LFU)
18.2.2	Load Balancing
18.2.3	Online Scheduling
18.3	Competitive Analysis Techniques
18.3.1	Deterministic vs. Randomized Algorithms
18.3.2	Lower Bounds via Adversary Arguments
18.4	Exercises

Approximation Algorithms

19.1	Introduction to Approximation
19.1.1	NP-Hardness and Intractability
19.1.2	Approximation Ratios
19.2	Examples of Approximation Algorithms
19.2.1	Vertex Cover (2-Approximation)
19.2.2	Set Cover (Greedy, $\log n$ -Approximation)
19.2.3	Traveling Salesman Problem (Metric TSP)
19.3	Analysis Techniques
19.3.1	Bounding Optimal Solutions
19.3.2	Linear Programming Relaxations
19.4	Exercises

Parameterized Complexity

20.1	Introduction to Parameterized Algorithms
20.1.1	Fixed-Parameter Tractability (FPT)
20.1.2	Kernelization
20.2	Examples and Analysis
20.2.1	Vertex Cover Parameterized by Solution Size
20.2.2	Treewidth and Graph Algorithms
20.3	W-Hierarchy and Hardness
20.3.1	W[1], W[2], and Beyond
20.4	Exercises

Part VI

Practical Considerations and Case Studies

From Theory to Practice

21.1	Hidden Constants and Lower-Order Terms
21.1.1	When $O(n \log n)$ Beats $O(n)$ in Practice
21.1.2	Empirical Performance Measurements
21.2	Algorithm Engineering
21.2.1	Profiling and Benchmarking
21.2.2	Tuning for Specific Hardware
21.2.3	Libraries and Implementations (STL, Boost, etc.)
21.3	Parallel and Distributed Algorithm Analysis
	Parallel and Distributed Algorithm Analysis Scalability and Speedup
21.3.1	
21.3.1 21.3.2	Scalability and Speedup
21.3.1 21.3.2 21.4	Scalability and Speedup Amdahl's Law and Gustafson's Law
21.3.1 21.3.2 21.4 21.4.1	Scalability and Speedup Amdahl's Law and Gustafson's Law Energy Efficiency

Case Studies

22.1	Sorting Algorithms in Practice
22.1.1	Timsort, Introsort, Radix Sort
22.1.2	Comparison of Theoretical vs. Empirical Performance
22.2	Graph Algorithms in Large-Scale Systems
22.2.1	Web Graphs and PageRank
22.2.2	Social Network Analysis
22.3	Machine Learning and Data Science
22.3.1	Complexity of Training Algorithms
22.3.2	SGD, AdaGrad, Adam: Time and Space Analysis
22.4	Database Systems
22.4.1	Query Optimization
22.4.2	Indexing Structures (B-Trees, LSM-Trees)
22.5	Exercises

Appendix A

Mathematical Background

- A.1 Summation Formulas
- A.2 Logarithms and Exponentials
- A.3 Recurrence Relations (Quick Reference)
- A.4 Probability Distributions
- A.5 Matrix Operations

Appendix B

Pseudocode Conventions

- **B.1** Notation and Style
- **B.2** Common Data Structures

Appendix C

Solutions to Selected Exercises

Appendix D

Glossary of Terms

Appendix E Index of Algorithms

Appendix F

Annotated Bibliography

- F.1 Foundational Texts
- F.2 Research Papers by Topic
- F.3 Online Courses and Resources