Scan-Chain Analysis and Tempus Tcl Command Document

1. Define the Clock

create_clock -name clk -period 5 [get_ports clk]

2. Scan Chains in the Netlist

(i) How many scan chains?

There are two primary scan chains:

• Chain 1: from f32_data_reg_0_ to f32_data_reg_10_ (scan out: test_so1).

٠.,

For Chain 1 scan input from port to first flip-flop

report_timing -from i_agg_su_count_a[31] -to f32_data_reg_0_

For Chain 1 scan output from the last flip-flop to the output port

report_timing -to test_so1 -unconstrained

...

Chain 2: from f32_data_reg_11_ through many cells (ending at o_spare_config_reg_31_) with additional intermediate "isolation" taps (scan_iso_or, scan_iso_or1, ..., scan_iso_or9).
In total, Chain2 provides ten additional tap outputs.

٠,,

For Chain 2 scan input

report_timing -from test_si1

For Chain 2 final scan output

report_timing -to o_spare_config[31] -unconstrained

Isolation tapouts reports

report_timing -to scan_iso_or -unconstrained report_timing -to scan_iso_or1 -unconstrained report_timing -to scan_iso_or2 -unconstrained report_timing -to scan_iso_or3 -unconstrained report_timing -to scan_iso_or4 -unconstrained report_timing -to scan_iso_or5 -unconstrained report_timing -to scan_iso_or5 -unconstrained report_timing -to scan_iso_or6 -unconstrained report_timing -to scan_iso_or7 -unconstrained report_timing -to scan_iso_or8 -unconstrained report_timing -to scan_iso_or8 -unconstrained report_timing -to scan_iso_or9 -unconstrained ...

(ii) List of scan chain input ports:

I_agg_su_count_a[31]

test_si1

- For Chain1: The scan data is shifted in from the bit i_agg_su_count_a[31].
- For Chain2: The scan input is determined by a multiplexer that selects between **f32_data_reg_12_.Q**, **test_si1**, using select line **raw_scan_en**.

(iii) List of scan chain output ports:

test_so1

o_spare_config[31]

- Chain1's serial output is test_so1.
- Chain2's final output is o_spare_config[31].
- Additionally, the chain is tapped at intermediate points to provide outputs: scan_iso_or, scan_iso_or1, scan_iso_or2, scan_iso_or3, scan_iso_or4, scan_iso_or5, scan_iso_or6, scan_iso_or7, scan_iso_or8, and scan_iso_or9.

3. Reset Path (for a flip-flop with reset)

(iv) Trace the reset pin:

Take for example the flip-flop instance **f32_mux_1_data_reg_29_**. Its reset pin (RN) is driven by a network that originates from the primary reset input **i_reset_**. In the netlist, i_reset_ is buffered and inverted (using BUFX8, INVX2, and INVX4 cells) ,which then drive the RN pin of scan-enabled flip-flop.

During scan mode, i_reset_ is held inactive (logic high for an active-low reset) so that the reset does not clear the scan chain.

Commands

• • • •

...

report_timing -from i_reset_ -to f32_mux_1_data_reg_29_/RN

Path:

Instance	Arc	Cell	Delay	Arrival Time	Required Time
- U13 U14	i_reset_ ^ A ^ -> Y v A v -> Y ^	INVX4	0.049	0.000 0.049 0.125	4.750 4.800 4.876
U17 f32_mux_1_data_reg_29_	A ^ -> Y ^			0.294 0.294	5.045 5.045