Pooling in Convolutional Neural Networks

A comprehensive guide to the relationship between **stride** (S) and **window size** (F) in both **Max** and **Average** pooling, their definitions, effects on the network, use-cases, and pitfalls of choosing S too low or too high.

1. Definitions

Pooling Window (F)

The spatial footprint (height × width) over which we aggregate activations.

- Common choices: 2×2, 3×3, 5×5.
- Stride (S)

The step size by which the pooling window moves across the feature map.

- When S = F, windows tile exactly.
- When S < F, windows **overlap**.
- When S > F, windows leave **gaps**.
- Max Pooling

$$y_{i,j} = \max_{(u,v) \in \mathcal{W}_{i,j}} x_{u,v}$$

Picks the maximum activation in each window $\mathcal{W}_{i,j}$.

Average Pooling

$$y_{i,j} = rac{1}{|\mathcal{W}_{i,j}|} \sum_{(u,v) \in \mathcal{W}_{i,j}} x_{u,v}$$

Computes the mean of all activations in each window.

2. Relationship Between S and F

2.1. Exact Tiling: S = F

- Coverage: Each pixel belongs to exactly one window.
- Output size:

$$H_{ ext{out}} = \left\lfloor rac{H_{ ext{in}} - F}{F}
ight
floor + 1, \quad W_{ ext{out}} = \left\lfloor rac{W_{ ext{in}} - F}{F}
ight
floor + 1$$

• Typical choice: Ensures predictable downsampling by factor F.

2.2. Overlapping Windows: S < F

- Windows share F-S rows/columns with neighbors.
- Output size shrinks slowly:

$$H_{
m out} = rac{H_{
m in} - F}{S} + 1$$

- Effect:
 - Smoother features (redundant coverage).
 - High compute & memory (many overlapping windows).

2.3. Gaps Between Windows: S > F

- Windows jump past S-F rows/columns, leaving blind spots.
- Output size shrinks faster:

$$H_{
m out} = \left\lfloor rac{H_{
m in} - F}{S}
ight
floor + 1$$

- Effect:
 - Information loss (pixels never pooled).

3. Effects on Max vs. Average Pooling

Aspect	Max Pooling	Average Pooling
Overlapping ($S < F$)	Highly redundant maxima; very smooth activations	Extra low-pass blur; over-smoothed maps
Tiling ($S=F$)	One strongest activation per block	Clean, anti-aliased downsampling
Gaps ($S>F$)	May drop "hot" pixels entirely → sparse output	Biased means; severe aliasing
Translation Invariance	Good when tiled; redundant when overlapped	Good smoothing when overlapped; risk of bias

4. Use-Cases & Recommendations

Scenario	Recommended Pooling	Notes
Standard image classification	2×2 window, $S=2$ (Max-pool)	Efficient down-sampling, preserves strong features
Anti-checkerboard in generators	3×3 window, $S=2$ (Avg- or Max-pool)	Mild overlap for smoother feature maps
Very deep nets needing context	3×3 window, $S=1$ (Avg-pool)	Overlap slows downsampling, grows receptive field gradually
Extreme spatial reduction	2×2 window, $S=4$ (Max- or Avg-pool)	Aggressive tiling with gaps, but risks lost info

5. Pitfalls of Low Stride (S < F)

1. Compute & Memory Blow-Up

• $\approx H \cdot W$ windows per layer instead of $\approx (H/S) \cdot (W/S)$.

2. Slow Spatial Reduction

• Feature maps remain large \rightarrow slower deeper layers.

3. Gradient Congestion

Many overlapping windows back-propagate through the same pixels → unstable updates.

4. Border & Padding Issues

Asymmetric truncation at edges if not padded perfectly.

6. Pitfalls of High Stride (S > F)

1. Information Loss

Pixels in gaps are never pooled — risks missing critical features.

2. Aliasing & Checkerboarding

Under-sampling can introduce artifacts, especially in generative contexts.

3. Uncontrolled Receptive-Field Jumps

Neurons skip context; might miss mid-scale patterns.

7. Impact on Model Behavior

- Receptive Field Growth:
 - Slow when S < F; fast (but coarse) when S > F.
- Translation Invariance:
 - Best at S = F; redundant when overlapped; poor when gapped.

- Resource Utilization:
 - **CPU/GPU:** More tasks with S < F; fewer—but riskier—tasks with S > F.
- Training Stability:
 - Overlap can "over-smooth" gradients; gaps can omit gradients altogether.

8. Conclusion

For most CNN classification tasks, the rule of thumb is:

Stride = Window size (S = F)

→ perfect tiling, full coverage, predictable down-sampling.

Use S < F (overlap) or S > F (gaps) **only when** you have a **specific architectural goal** (e.g., smoothing in generative nets, extreme down-sampling, or gradual receptive-field growth). Outside those niche cases, sticking with S = F minimizes computational waste, memory bloat, and ensures consistent feature-map coverage.