

新趨勢組:周庭立/余昀澄/李泓慶

Mentor: Kelvin

大綱

- 結論
- 前言
- 水資源簡介
 - 供給
 - 需求
- 水資源不足的主要原因
- 解決方式
 - 開源
 - 節流
- 結論

結論

• 台灣水資源確實有不足之疑慮,且未來會越來越明顯

• 台灣水資源問題主軸—用水過度、汙水問題、水庫淤積、漏水率

應「開源」與「節流」並進,我們認為管線漏水處理、水庫清淤 為目前較可行之方法

• 就成本上,未來幾年,省水器材製造商、管線提供廠商、水庫除 淤工程承包商,應較再生水回收廠、海水淡化更具有成長性

collaborator 3

前言

水資源危機為2015第一大風險

Top 5 Global Risks in terms of impact

水的供需均衡面臨嚴峻考驗

• 2030年,全球供水量會減少40%

• 2050年,人類水需求將上升55%

水資源不足亞洲較為嚴重

- 水資源不足區集中於西亞、南亞、北非
- 不足區常發生水資源衝突

水資源壓力圖

水資源衝突區

台灣也有缺水的風險

• 台灣為世界第18名缺水的國家

collaborator

8

水資源供給

名詞定義

• 1立方公尺=1000公升 =1公噸

- 北部: 北北基、桃園、宜蘭

- 中部:新竹、苗栗、中彰投

- 南部:嘉義、台南、高雄、屏東

- 東部: 花東

看天吃飯一台灣降雨量波動大且分佈不均

• 降雨量波動程度很大

- 降雨分佈不均
 - 豐水期與枯水期差距大

台灣留不住水資源

- 地理環境因素
 - 地形陡峭
 - 河川短且急

- 年降雨量1,130.05 (億立方公尺)
 - 高達85.24%無法利用

	億立方公尺
蒸發	232.56
入海水	730.66
年滲透量	50.5
其他	116.32

台灣水資源供給以地面水為主

• 降雨1130.5億立方公尺

• 七成來自地面水

	億立方公尺		
總供水量	167.78		
地面水	118.8		
地下水	48.91		
其他(海淡水)	0.08		

2013水源供給

collaborator

資料來源:2013年,水利署13

地面水現況一台灣水庫目前缺水問題嚴重

		蓄水率	目前蓄水	容積
	石門水庫	23.7%	4,759.5	× 20,986.5
北部	翡翠水庫	86.5%	29,030.7	√ 33,460.1
	寶山第二水庫	36.1%	1,137.0	3,147.2
	日月潭水庫	71.8%	9,425.6	13,218.1
中部	德基水庫	32.9%	4,942.0	14,876.0
	鯉魚潭水庫	28.6%	3,302.3	11,546.9
	曾文水庫	16.2%	7,652.0	√ 47,329.7
南部	南化水庫	19.4%	1,888.7	9,793.0
	烏山頭水庫	58.9%	4,708.0	7,982.0
	牡丹水庫	32.8%	865.8	2,678.6

單位:萬立方公尺

資料來源:水利署(至 2015/4/28)

collaborator

地面水使用一水庫在消耗性用水部份不多

- 年入水庫435.6 億立方公尺(降雨1130.5億立方公尺的38%)
- 消耗性用水80.36億立方公尺,以供給生活用水為主

collaborator

資料來源: 2013年,水庫營運狀況 15

水資源需求

農業用水為主要需求

• 消耗性用水以農業用水為大宗

2013水源需求(億立方公尺)			
總用水量	167.78		
農業用水	119.51		
生活用水	31.88		
工業用水	16.39		

農業用水灌溉用為主

• 農業一灌溉用水佔91%

• 當用水不足時,政府常透過休耕來節水

工業用水以化學產業為主

• 工業用水前四大產業: 化學、造紙、食品、紡織

台人生活用水較世界多,多集中於北部

• 台灣人均用水量較世界多出20L

世界 台灣 每人每日用水量 vs 每人每日用水量

250公升

271公升

•	102年用2	K量排名前五 -	-多為北部
		, · 	

每人每日用水量(L)				
臺北市	333			
新竹市	303			
新北市	292			
基隆市	286			
嘉義市	276			

→ 自行取水量
— 生活用水量

-*-自來水供應量

▲ 生活用(售)水量

小結

- 供給面
 - 降雨波動度大,且榮枯期水量差距很大(8成v.s.2成)
 - 台灣難留住水資源,降雨只有約14.76%可以留下利用
 - 主要供給源(水庫)目前缺水問題嚴重
- 需求面
 - 農業用水為主(70%)
 - 政府常透過休耕調整,非長遠之計
- 若該年供給很少,將會面對缺水問題
- 須設法使供給面變動所造成的影響最小化

collaborator

水資源不足之主要原因

水資源不足之主要原因

- 不可抗力因素
 - 地形陡峭
 - 降雨時空分布不均
 - 氣候變遷
- 可改善的問題
 - 汙水問題
 - 用水過度
 - 水庫蓄水率(淤積)
 - 漏水率問題

collaborator

不可抗力之因素

地狹人稠人均可用水量少

• 地狹人稠

- 年平均降雨量2,467 公釐為世界的2.6倍
- 每人每年可分配雨量4,074立方公尺不及世界的五分之一
- 降雨流經水庫集水區 供應水庫水量僅24%

資料來源:經濟部水利署

降雨時空分布不均導致季節性缺水

- 降雨時空分布不均
 - 5到10月為豐水期;11到4月為枯水期
 - 豐水期佔整年雨量的7-9成
 - 豐水期每人每天約527.19公升 枯水期每人每天約131.8公升 算法如下:

4074*1000*0.8*0.1476*0.2/182.5=527.19 4074*1000*0.2*0.1476*0.2/182.5=131.8

氣候變遷導致乾溼週期縮短

- 氣候變遷
 - 豐枯交替頻繁又加劇
 - 降雨變強又日數減少
 - 未來季節性缺水狀況將會增加

可改善的問題

嚴重的汙水問題導致無水可用

- 汙水問題
 - 河川污染程度指數(RPI)
 - 西南部因氣候、工業廢水及畜牧造成汙染

輕度污染(2.0 < RPI≤3.0) 中度污染(3.1≤RPI≤6.0) 嚴重污染(RPI > 6.0)

可用水的汗水處理

2013年廢(汙)水產生量

• 汙水問題

- 整體污水處理率=(污水已納入處理之人口數/總人口數)
- =(用戶接管普及率)+(專用污水下水道普及率)+(建築物污水處理設施設置率)

汙水處理率

廢(汙)水處理比例

台灣人均用水量大

- 用水過度
 - 台灣人均用水量大於世界平均約20公升
 - 雙北與新竹用水量最高

台灣地區目前限水狀況

地形與氣候導致水庫淤積問題

- 因地形及氣候關係, 水庫易淤積
- 台灣人均庫容量低
- 以101年水庫生活用水比重0.421試算 生活用水儲備83*1,000*0.421/271=約129天

台灣水庫與集水區分布圖

水庫蓄水率低導致儲備量下降

- 水庫蓄水率
 - 水庫淤積率呈現遞增趨勢
 - 目前全國水庫淤積率平均值為29.5%
 - 水庫總蓄水量為28億5,667萬立方公尺
 - 假設淤積率減少1%去試算
 =2,856,670,000*1,000*0.01/23,000,000/271
 淤積量減少1%,將使台灣生活用水增加約4.6天儲備

漏水率表現差強人意有改善空間

- 漏水率問題
 - 台灣103年平均漏水率為18.04%
 - 雖高於全球平均,但仍落後先進國家
 - 依照目前漏水率,每年大約5億7613萬噸 約等於3座石門水庫的水量
 - 試算每人每天可用水量增加
 - =576,130,000*1,000/23,000,000/365
 - =約68.6公升

城	市	台灣	美國	大陸	南韓	日本	亞洲	全球
漏刀	K率	18.04%	14.20%	12.50%	7.00%	3.10%	22%	24.60%

小結

• 水資源匱乏原因,不可抗力因素實為重要

• 在缺水的趨勢之下,勢必得克服可改善的問題

于水問題、用水過度、水庫淤積、漏水率為解決水資源問題的主軸

collaborator 35

解決方式

解決方式

- 開源(拓展水源)
 - 海水淡化
 - 興建水庫
 - 提高水庫蓄水率(淤積)
- 結流(減少浪費)
 - 汙水回收
 - 家庭省水
 - 降低漏水率
- 新技術

解決方式-開源

海水淡化概況一比例不高,供給生活用水為主

- 共21座
 - 出水30,820立方公尺/每日
 - 每人約1.34公升(v.s.每人每日用水量271公升)

• 供給民生用水為主

海水淡化佔各類別			
民生	工業		
0.315%	0.074%		

廠數分佈				
澎湖縣	12			
連江縣	5			
金門縣	2			
屏東縣	2			

海水淡化-以馬公海淡廠為例

- 主流技術:逆滲透
- 建設費用:6.6億台幣
- 供水量:10,000噸/天
- 約供37,000人日常用水使用量/天
- 平均每噸水成本
 - 30(折舊+變動成本) 元/噸+5(配送費)元/噸=**35元/噸**
- 優點
 - 取之不竭
 - 不受天氣影響
- 缺點
 - 鹵水排放
 - 高耗電(四度電/一噸水)

興建水庫

- 成本
 - 20元(水源開發費)元+5元(處理費)+5元(配送費)/一噸=**30元/噸**
- 優點
 - 防洪
 - 發電
- 缺點
 - 環境破壞
 - 淤積問題
 - 海岸線侵蝕

興建水庫計畫

- 施工中
 - 湖山水庫及中庄調整池

- 已規劃待推動-5座
 - 天花湖水庫、打鹿坑攔河堰、大安大甲溪、高屏大湖、鳥嘴譚人工湖

- 規劃中或待規劃-2座
 - 雙溪水庫、士文水庫

新建之水庫能增加每日供水約8.26%

- 台灣水庫每日總供給量為2,201.6萬噸
- 新增之水庫,可以增加每日供水8.26%

		有效庫容	日增加供水
規劃中	雙溪水庫	1,700	12.6
	士文水庫	6,559	20
施工中	湖山水庫	5,347	43.2
	天花湖水庫	4,791	26
	中庄調整池	697	80
總計		19,094	181.08

單位: 萬立方公尺 萬噸

水庫淤積處理(以石門水庫為例)

- 傳統清淤方式-機械抽泥
- 目前的淤積速度350萬立方公尺/年
- 近幾年的方式-水力排沙
- 預防泥沙流入(上圖)
 - 繞庫排沙(防淤隧道)
 - 耗資110億,一年攔截135萬立方公尺泥沙
- 現有泥沙排出(下圖)
 - 排砂道
 - 僅有颱風狀況才能排砂
 - 耗資6億,年排沙量100萬立方公尺

解決方式-節流

汙水處理-汙水處理and再生水回收

汙水處理廠

- 處理程序
 - 一級處理→去除泥沙
 - 二級處理→去除有機物
 - 三級處理→去除重金屬
- 台灣汙水處理廠一天處理265萬噸汗水

汙水處理-汙水處理and再生水回收

再生水廠

- 再生水一天僅回收40.6萬噸 · 回收率只有15%
- 成本約25元/噸(20元處理費)+5元配送費)

降低漏水率

- 台灣自來水管線老舊破裂是漏水主因
- 台水計畫9年耗資645億汰換6,000公里老舊管線,到2022年,預計降低5.3% 漏水率,減少1.7億噸年漏水量(0.85座的石門水庫總容量)

降低漏水率

- 試算:借由汰換管線以節省一噸的淨水需要花費多少錢?
- 自來水管可使用40年
- 耗資645億汰換舊管線,2022往後的40年,每年都可減少1.7億噸的漏水量,等於一年花16.12億去購買原本會漏失1.7億噸的量,16.12億/1.7億噸=9.48元/噸
- 因此成本=14.48元/噸(9.48元+5元配送費)

家庭省水

- 全台每人每日平均生活用水量為273公升,每人家庭用水173公升,佔平均生活用水量63.36%
- 經濟部官員表示,108年後將強制販售省水馬桶、洗衣機、水龍頭及其 11種具有省水標章的器材。
- 經濟部表示,如換裝省水器材,每人家庭用水可降至158公升,節省5.4噸/年,可省下水費54元/年
- 效果有限

小結

透過我們以上的試算,各項處理方式得到每噸清水之成本 比較,如下圖:

管線漏水處理	水庫除淤	再生水回收	水庫興建	海水淡化
14.48元/噸	無法計算	25元/噸	30元/噸	35元/噸

目前採用管線漏水處理是最佳的做法,但仍須使用水庫清 淤之方式來增加運用水資源之效率

補充-新技術-大氣水(AquaSciences)

- 原理
 - 利用特殊技術捕捉空氣中水分
 - 消耗石油
- 產出
 - 每天可產生9620公升的淨水
- 成本
 - 未知
- 可能具有發展空間

化腐朽為神奇-糞便水介紹(Omniprocessor)

- 原理
 - 糞便→加熱煮沸(1000度)→驅動蒸氣引擎→發電→乾燥物與水分離
- 產出
 - 每日處理10萬人的糞便,製造86000公升淨水和250千瓦的電力
- 成本
 - 固定成本:150萬美元(約4650萬元台幣);變動成本:未知
- 原理簡單但存在疑慮
 - 重金屬
 - 病毒

結論

結論

• 台灣水資源確實有不足之疑慮,且未來會越來越明顯

• 台灣水資源問題主軸—用水過度、汙水問題、水庫淤積、漏水率

應「開源」與「節流」並進,我們認為管線漏水處理、水庫清淤 為目前較可行之方法

就成本上,未來幾年,省水器材製造商、管線提供廠商、水庫除 淤工程承包商,應較再生水回收廠、海水淡化更具有成長性