Trait simulation

Huwenbo Shi

August 8, 2016

1 Types of simulations

1.1 GWAS simulation

1.1.1 Single quantitative trait simulation

- Users specify
 - 1. Genotype matrix
 - 2. Effect size vector for SNPs
 - 3. Desired heritability
 - 4. Desired missing rate
- Model: $y = X\beta + \epsilon$
- y: trait values for n individuals
- X: the $n \times p$ genotype matrix, provided by the user (allelic? standardized?)
- β : the p-vector of effect sizes, provided by the user
- ϵ : the *n*-vector of environmental effect, drawn by the program such that the desired amount of heritability is achieved.

1.1.2 Single case-control trait simulation

- Users specify
 - 1. Genotype matrix
 - 2. Effect size vector for SNPs
 - 3. Desired heritability
 - 4. Prevalence of the cases
 - 5. Desired number of cases and controls
- Simulation procedure
 - 1. First, simulate liability based on $y = X\beta + \epsilon$
 - 2. Then, select liability threshold based on prevalence
 - 3. Finall, draw cases and controls according to the specified numbers

1.2 Two correlated traits

- Users specify
 - 1. Genotype matrix
 - 2. SNP effect size vectors for 2 traits

- 3. Desired heritability for 2 traits
- 4. Desired missing rate for 2 traits (or prevalence and number of cases and controls for case-control traits)
- 5. Desired phenotypic correlations between the two traits
- Model: $y_1 = X\beta + \epsilon$, $y_2 = X\gamma + \delta$
- Simulation procedure
 - 1. First, simulate the genetic component $X\beta$ and $X\gamma$
 - 2. Compute $Var[X\beta]$, $Var[X\gamma]$, and $Cov[X\beta, X\gamma]$
 - 3. Find σ_{ϵ}^2 , σ_{δ}^2 , and $\sigma_{\epsilon\delta}$ and draw ϵ and δ , from bivariate normal (parameterized by σ_{ϵ}^2 , σ_{δ}^2 , and $\sigma_{\epsilon\delta}$), such that the desired amount of heritability and phenotypic correlation are achieved.
 - 4. Dichotomize liability for case-control traits

1.3 Variance component simulation

1.3.1 Two variance components (σ_q^2, σ_e^2)

- Users specify
 - 1. Heritability of the trait (σ_q^2)
 - 2. Genotype matrix
 - 3. Missing rate
 - 4. Mean effect
- Model $y = \mu + Xu + \epsilon$
- y: n-vector of trait values
- X: Standardized $n \times p$ genotype matrix
- \boldsymbol{u} : p-vector of SNP effect $(\boldsymbol{u} \sim N(0, \sigma_q^2/p))$
- μ : mean effect (can be a function of genotypes, i.e. $\mu_i = \tilde{\mu}_i + X_{ik}$?)
- Simulate from $N\left(\boldsymbol{\mu}, \sigma_g^2 \boldsymbol{X} \boldsymbol{X}^{\mathsf{T}} / n + \sigma_e^2 \boldsymbol{I}\right)$

1.3.2 Mutiple variance components $(\sigma_g^2, \sigma_i^2, \sigma_e^2)$

- Users specify
 - 1. σ_q^2 , and all σ_i^2
 - 2. Genotype matrix
 - 3. All other design matrices for each variance component
 - 4. Missing rate
 - 5. Mean effect
- Model $\boldsymbol{y} = \boldsymbol{\mu} + \boldsymbol{X}\boldsymbol{u} + \sum_i \boldsymbol{W}_i \boldsymbol{v}_i + \boldsymbol{\epsilon}$
- X: standardized $n \times p$ genotype matrix
- ullet $oldsymbol{W}_i$: design matrices for each variance component

1.4 General multiple correlated traits and multiple variance components simulation

• Users specify

- 1. Mean effects μ_i for m traits
- 2. Genotype matrix X
- 3. Design matrices for each variance component \boldsymbol{W}_i
- 4. Heritability: σ_{gj}^2 (heritability of trait j)
- 5. Other variance components: σ_{ij}^2
- 6. Genetic covariances: σ_{gjk} for the pair of traits \boldsymbol{y}_i and \boldsymbol{y}_l
- 7. Random noise covariances: σ_{ejk} for the pair of traits \boldsymbol{y}_i and \boldsymbol{y}_l
- 8. Other covariances: σ_{ijk} for the pair of traits \boldsymbol{y}_j and \boldsymbol{y}_l
- Simulate from the model

$$N\left(\left[\begin{array}{c}\boldsymbol{\mu}_{i}\\ \vdots\\ \boldsymbol{\mu}_{m}\end{array}\right],\boldsymbol{C}_{g}\otimes\frac{\boldsymbol{X}\boldsymbol{X}^{\intercal}}{n}+\sum_{i}\boldsymbol{C}_{i}\otimes\frac{\boldsymbol{W}_{i}\boldsymbol{W}_{i}^{\intercal}}{n}+\boldsymbol{C}_{e}\otimes\boldsymbol{I}\right),\text{ where }\boldsymbol{C}_{*}=\left[\begin{array}{ccc}\sigma_{*1}^{2}&\cdots&\sigma_{*1m}\\ \vdots&\ddots&\vdots\\\sigma_{*m1}&\cdots&\sigma_{*m}^{2}\end{array}\right]$$