

DATA MINING

Assoc. Prof. Dr. Salha Alzahrani

College of Computers and Information Technology
Taif University
Saudi Arabia

s.zahrani@tu.edu.sa

Classification | Classification using Decision Trees

Recap of Previous Lecture

Content of This Lecture

Summary & Checklist

Recap of Lecture 5

- Trees
- Decision Rules and Decision Trees
- Decision Trees: The Golf Example
- How to construct a Decision Tree?
- Functions of Decision Trees
- Decision Trees: The degrees Dataset
- The TDIDT Algorithm
- The TDIDT Algorithm: Adequacy Condition

Recap of Previous Lecture

Content of This Lecture

Summary & Checklist

Content of Lecture 6

- Rule Post-pruning
- Exercise: Rule Post-pruning
- Inducing Modular Rules for Classification: The Prism Algorithm
- The Prism Algorithm: The lens24 Example
- Handout (5): Using the Prism Algorithm for Rules Induction from the lens24 dataset.
- Summary & Checklist.

- Generating classification rules via the intermediate form of a decision tree is a widely used technique.
- The Rule Post-pruning method begins by converting a decision tree to an equivalent set of rules and then examines the rules with the aim of simplifying them without any loss of predictive accuracy.
- Each branch of the tree corresponds to a classification rule and so the rules equivalent to the decision tree can be extracted from it branch by branch.

Figure 10.1 Decision Tree for the degrees Dataset

IF SoftEng = A AND Project = B AND

ARIN = A AND CSA = A THEN Class = FIRST

IF SoftEng = A AND Project = A THEN Class = FIRST

IF SoftEng = A AND Project = B AND ARIN = A AND

CSA = B THEN Class = SECOND

IF SoftEng = A AND Project = B AND ARIN = B THEN

Class = SECOND

IF SoftEng = B THEN Class = SECOND

- We examine each of the rules to consider whether removing each of its terms increases or reduces its predictive accuracy.
- Thus, for the first rule

$$IF SoftEng = A AND Project = B AND$$

 $ARIN = A AND CSA = A THEN Class = FIRST$

- we consider the four terms
 - 'SoftEng = A', 'Project = B', 'ARIN= A' and 'CSA = A'.
- We need some way of estimating whether removing each of these terms singly would increase or decrease the accuracy of the resulting rule set.

Step 1: Remove the term that gives the **largest increase** in the predictive accuracy, say 'Project = B'.

Step 2: Consider the removal of each of the other terms.

Step 3: The processing of a rule ends when removing any of the terms would reduce (or leave unchanged) the predictive accuracy.

Classification | Exercise: Rule Post-pruning

Exercise: Perform the rule post-pruning on the following classification rules:

$$IF SoftEng = A AND Project = B AND ARIN = A AND CSA = B THEN Class = SECOND$$

IF SoftEng = A AND Project = B AND ARIN = B THENClass = SECOND

Classification Inducing Modular Rules for Classification: The Prism Algorithm

- The aim is to induce modular classification rules directly from the training set. The algorithm assumes that all the attributes are categorical.
- Alternatively, the algorithm can be extended to deal with continuous attributes in much the same way as was described for TDIDT (define a split value, use < and ≥)
- The algorithm generates the rules concluding each of the possible classes in turn. Each rule is generated term by term, with each term of the form 'attribute = value'.
- The attribute/value pair added at each step is chosen to maximise the probability of the target 'outcome class'.

Classification | Inducing Modular Rules for Classification: The Prism

Algorithm

For each classification (class = i) in turn and starting with the complete training set each time:

- 1. Calculate the probability that class = i for each attribute/value pair.
- 2. Select the pair with the largest probability and create a subset of the training set comprising all the instances with the selected attribute/value combination (for all classifications).
- 3. Repeat 1 and 2 for this subset until a subset is reached that contains only instances of class i. The induced rule is then the conjunction of all the attribute/value pairs selected.
- 4. Remove all instances covered by this rule from the training set.

Repeat 1-4 until all instances of class i have been removed

Figure 10.5 The Basic Prism Algorithm

Classification | The Prism Algorithm: The lens24 Example

Show how to generate the classification rules from this dataset using the Prism Algorithm?

age	$\operatorname{spec} Rx$	astig	tears	class
1	1	1	1	3
1	1	1	2	2
1	1	2	1	3
1	1	2	2	1
1	2	1	1	3
1	2	1	2	2
1	2	2	1	3
1	2	2	2	1
2	1	1	1	3
2	1	1	2	2
2	1	2	1	3
2	1	2	2	1

2	2	1	1	3
2	2	1	2	2
2	2	2	1	3
2	2	2	2	3
3	1	1	1	3
3	1	1	2	3
3	1	2	1	3
3	1	2	2	1
3	2	1	1	3
3	2	1	2	2
3	2	2	1	3
3	2	2	2	3

Figure 10.6 The lens24 Training Set

Classification | The Prism Algorithm: The lens24 Example

First Rule

- The probability of class = 1 occurring for each attribute/value pair over the whole training set (24 instances).
- The maximum probability is when *astig* = 2 or *tears* = 2.
- Choose astig = 2 arbitrarily.
- Incomplete rule induced so far:

Attribute/value pair	Frequency	Total frequency	Probability
	for class $= 1$	(out of 24	
		instances)	
age = 1	2	8	0.25
age = 2	1	8	0.125
age = 3	1	8	0.125
specRx = 1	3	12	0.25
specRx = 2	1	12	0.083
astig = 1	0	12	0
astig = 2	4	12	0.33
tears = 1	0	12	0
tears = 2	4	12	0.33

Figure 10.7 First Rule: Probability of Attribute/value Pairs (Version 1)

IF astig = 2 THEN class = 1

age	$\operatorname{spec} Rx$	astig	tears	class
1	1	2	1	3
1	1	2	2	1
1	2	2	1	3
1	2	2	2	1
2	1	2	1	3
2	1	2	2	1
2	2	2	1	3
2	2	2	2	3
3	1	2	1	3
3	1	2	2	1
3	2	2	1	3
3	2	2	2	3

Figure 10.8 First Rule: Subset of Training Set Covered by Incomplete Rule (Version 1)

First Rule

- The probability of each attribute/value pair (not involving attribute *astig*) occurring for this subset.
- The maximum probability is when tears = 2.
- Incomplete rule induced so far:

Attribute/value pair	Frequency	Total frequency	Probability
	for class $= 1$	(out of 12	
		instances)	
age = 1	2	4	0.5
age = 2	1	4	0.25
age = 3	1	4	0.25
specRx = 1	3	6	0.5
specRx = 2	1	6	0.17
tears = 1	0	6	0
tears = 2	4	6	0.67

Figure 10.9 First Rule: Probability of Attribute/value Pairs (Version 2)

IF astig = 2 and tears = 2 THEN class = 1

age	$\operatorname{spec} Rx$	astig	tears	class
1	1	2	2	1
1	2	2	2	1
2	1	2	2	1
2	2	2	2	3
3	1	2	2	1
3	2	2	2	3

Figure 10.10 First Rule: Subset of Training Set Covered by Incomplete Rule (Version 2)

First Rule

- The probability of each attribute/value pair (not involving attributes astig or *tears*) occurring for this subset.
- The maximum probability is when *age* = 1 or specRx = 1.
- Choose (arbitrarily) *age* = 1.
- Incomplete rule induced so far:

Attribute/value pair	Frequency	Total frequency	Probability
	for $class = 1$	(out of 6	
		instances)	
age = 1	2	2	1.0
age = 2	1	2	0.5
age = 3	1	2	0.5
specRx = 1	3	3	1.0
specRx = 2	1	3	0.33

Figure 10.11 First Rule: Probability of Attribute/value Pairs (Version 3)

IF astig = 2 and tears = 2 and age = 1 THEN class = 1

age	$\operatorname{spec} Rx$	astig	tears	class
1	1	2	2	1
1	2	2	2	1

Figure 10.12 First Rule: Subset of Training Set Covered by Incomplete Rule (Version 3)

- This subset contains only instances of class 1.
- The final induced rule is therefore:

First Rule

IF astig = 2 and tears = 2 and age = 1 THEN class = 1

Removing the two instances covered by the first rule from the training set gives a new training set with 22 instances.

age	specRx	astig	tears	class
1	1	1	1	3
1	1	1	2	2
1	1	2	1	3
1	2	1	1	3
1	2	1	2	2
1	2	2	1	3
2	1	1	1	3
2	1	1	2	2
2	1	2	1	3
2	1	2	2	1
2	2	1	1	3
2	2	1	2	2
2	2	2	1	3
2	2	2	2	3
3	1	1	1	3
3	1	1	2	3
3	1	2	1	3
3	1	2	2	1
3	2	1	1	3
3	2	1	2	2
3	2	2	1	3
3	2	2	2	3

Figure 10.13 The lens24 Training Set (Reduced)

Second Rule

- The table of frequencies is now as given in for attribute/value pairs corresponding to class = 1.
- The maximum probability is achieved by *astig* = 2 and tears = 2.
- Choose astig = 2 arbitrarily.
- Incomplete rule induced so far:

Attribute/value pair	Frequency	Total frequency	Probability
	for $class = 1$	(out of 22	
		instances)	
age = 1	0	6	0
age = 2	1	8	0.125
age = 3	1	8	0.125
specRx = 1	2	11	0.18
specRx = 2	0	11	0
astig = 1	0	12	0
astig = 2	2	10	0.2
tears = 1	0	12	0
tears = 2	2	10	0.2

Figure 10.14 Second Rule: Probability of Attribute/value Pairs (Version 1)

IF astig=2 THEN class = 1

age	$\operatorname{spec} Rx$	astig	tears	class
1	1	2	1	3
1	2	2	1	3
2	1	2	1	3
2	1	2	2	1
2	2	2	1	3
2	2	2	2	3
3	1	2	1	3
3	1	2	2	1
3	2	2	1	3
3	2	2	2	3

Figure 10.15 Second Rule: Subset of Training Set Covered by Incomplete Rule (Version 1)

Second Rule

- The maximum probability is for tears= 2
- Incomplete rule induced so far:

Attribute/value pair	Frequency	Total frequency	Probability
	for class $= 1$	(out of 10	
		instances)	
age = 1	0	2	0
age = 2	1	4	0.25
age = 3	1	4	0.25
specRx = 1	0	5	0
specRx = 2	2	5	0.4
tears = 1	0	6	0
tears = 2	2	4	0.5

Figure 10.16 Second Rule: Probability of Attribute/value Pairs (Version 2)

IF astig = 2 and tears = 2 then class = 1

age	specRx	astig	tears	class
2	1	2	2	1
2	2	2	2	3
3	1	2	2	1
3	2	2	2	3

Figure 10.17 Second Rule: Subset of Training Set Covered by Incomplete Rule (Version 2)

Second Rule

The maximum probability is achieved by specRx = 1.

Incomplete rule induced so far:

Attribute/value pair	Frequency	Total Frequency	Probability
	for $class = 1$	(out of 4	
		instances)	
age = 1	0	0	_
age = 2	1	2	0.5
age = 3	1	2	0.5
specRx = 1	2	2	1.0
specRx = 2	0	2	0

Figure 10.18 Second Rule: Probability of Attribute/value Pairs (Version 3)

IF astig = 2 and tears = 2 and specRx = 1 THEN class = 1

age	$\operatorname{spec} Rx$	astig	tears	class
2	1	2	2	1
3	1	2	2	1

Figure 10.19 Second Rule: Subset of Training Set Covered by Incomplete Rule (Version 3)

This subset contains only instances of class 1. So the final induced rule is:

Second Rule

IF astig = 2 and tears = 2 and specRx = 1 THEN class = 1

- Removing the two instances covered by this rule from the current version of the training set (which has 22 instances) gives a training set of 20 instances from which all instances of class 1 have now been removed. So the Prism algorithm terminates (for class= 1).
- The final pair of rules induced by Prism for class 1 are:
 - IF astig = 2 and tears = 2 and age = 1 THEN class = 1
 - IF astig = 2 and tears = 2 and specRx = 1 THEN class = 1
- The algorithm will now go on to generate rules for the remaining classifications.
- It produces 3 rules for class 2 and 4 for class 3.

Classification | Handout (5): Using the Prism Algorithm for Rules

Induction from the *lens24* dataset

Recap of Previous Lecture

Content of This Lecture

Summary & Checklist

Summary & Checklist

- Rule Post-pruning
- Exercise: Rule Post-pruning
- Inducing Modular Rules for Classification: The Prism Algorithm
- The Prism Algorithm: The lens24 Example
- Handout (5): Using the Prism Algorithm for Rules Induction from the lens24 dataset.

Next Lecture... Association Rule Mining (Part I)

- Be ready!
- Download & print the lecture notes before your class.

Thank You!

