Guía de Estudio Nº4 MATEMÁTICA III - Curso 2019 FCAI-UNCuyo

LEA e INTERPRETE

en Larson R ed.al, Obr.cit.

en Stewart, J, Obr.cit.

RECORDEMOS

La información que requiere una cantidad y también una dirección se presenta como vector.

El vector tiene magnitud o módulo y tiene una dirección. Se representa gráficamente como segmento y flecha.

En 3 dimensiones utilizamos los vectores base estándar: i, j y k (vectores unitarios ortogonales entre sí)

Operaciones: SUMA VECTORIAL y MULTIPLICACIÓN ESCALAR

$$P = (a_1, a_2, a_3)$$

$$\boldsymbol{a} = \vec{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \langle a_1, a_2, a_3 \rangle = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k} = \overrightarrow{OP}$$

$$\vec{u} = \cos\theta \ \hat{\imath} + \sin\theta \ \hat{\jmath} \qquad \rightarrow \qquad ||\vec{u}|| = 1$$

$$P = (x_0, y_0) \qquad Q = (x, y)$$

$$\overrightarrow{PQ} / / \overrightarrow{u} \rightarrow \overrightarrow{PQ} = t \overrightarrow{u}$$

$$\begin{bmatrix} x - x_0 \\ y - y_0 \end{bmatrix} = \begin{bmatrix} t \cos \theta \\ t \sin \theta \end{bmatrix}$$

$$(x_0, y_0) = \frac{1}{\cos \theta} = \frac{1}{\cos \theta}$$

$$\|\overrightarrow{PQ}\| = \|t\overrightarrow{u}\| = |t|\|\overrightarrow{u}\| = |t|$$

$$\Delta s = t$$

$$\Delta s \to 0 \quad \leftrightarrow \quad Q \to P \quad \leftrightarrow \quad t \to 0$$

$$D_{\vec{u}}f(x_0, y_0) = \lim_{\Delta s \to 0} \frac{f(Q) - f(P)}{\Delta s} = \lim_{t \to 0} \frac{f(x_0 + t\cos\theta, y_0 + t\sin\theta) - f(x_0, y_0)}{t}$$

Si el límite existe

2 DEFINICIÓN La **derivada direccional** de f en (x_0, y_0) en la dirección de un vector unitario $\mathbf{u} = \langle a, b \rangle$ es

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

si existe este límite

En general: $f: \mathbb{R}^n \to \mathbb{R}$

en Stewart, J, Obr.cit.

$$D_{\mathbf{u}}f(\mathbf{x_0}) = \lim_{h \to 0} \frac{f(\mathbf{x_0} + h\mathbf{u}) - f(\mathbf{x_0})}{h} = \frac{d}{dh}f(\mathbf{x_0} + h\mathbf{u})\Big|_{h=0}$$

Si el límite existe

https://proyectodescartes.org/miscelanea/materiales_didacticos/DerivadaDireccional-JS/index.html

$$x = x_0 + ha$$
$$y = y_0 + hb$$

COMPOSICIÓN DE FUNCIONES EN LA DERIVADA DIRECCIONAL

$$y = y_0 + hb$$

$$g(h) = f(x_0 + ha, y_0 + hb)$$
 $g'(0) = \lim_{h \to 0} \frac{g(h) - g(0)}{h}$

$$g'(0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h} = D_{u}f(x_0, y_0)$$

$$\frac{dg}{dh} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dh} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dh}$$

$$g'(h) = f_x(x(h), y(h))a + f_y(x(h), y(h))b$$

$$h = 0 \implies x = x_0 \land y = y_0$$

$$g'(0) = f_x(x_0, y_0).a + f_y(x_0, y_0).b = f_{\vec{u}}(x_0, y_0)$$

Si las derivadas parciales son continuas en un entorno de (x_0, y_0)

$$D_{\vec{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{t} = g'(0) = f_x(x_0, y_0)a + f_x(x_0, y_0)b$$

FORMULA DE CÁLCULO de la derivada direccional en un punto

$$D_{\vec{u}}f(x_0, y_0) = f_x(x_0, y_0)a + f_x(x_0, y_0)b = \nabla f(x_0, y_0).\vec{u}$$

VECTOR GRADIENTE

$$\nabla f(x_0, y_0) = f_x(x_0, y_0)\hat{\imath} + f_x(x_0, y_0)\hat{\jmath}$$

Harps, p. 984.

El <u>arpa</u>, el instrumento que da nombre al símbolo nabla. El símbolo fue usado por primera vez por William Rowan Hamilton, pero de forma lateral: ⊲

https://es.wikipedia.org/wiki/Nabla

GRADIENTE Definición y Representación gráfica

Definición de gradiente de una función de dos variables

Sea z = f(x, y) una función de x y y tal que f_x y f_y existen. Entonces el **gradiente de** f, denotado por $\nabla f(x, y)$, es el vector

$$\nabla f(x, y) = f_x(x, y)\mathbf{i} + f_y(x, y)\mathbf{j}.$$

GRADIENTE y sus propiedades

El gradiente de f es un vector en el plano xy que apunta en dirección del máximo incremento sobre la superficie dada por z = f(x, y)

Figura 13.50 en Larson R ed.al, Obr.cit.

TEOREMA 13.11 Propiedades del gradiente

Sea f diferenciable en el punto (x, y).

- 1. Si $\nabla f(x, y) = \mathbf{0}$, entonces $D_{\mathbf{u}} f(x, y) = 0$ para todo \mathbf{u} .
- 2. La dirección de *máximo* incremento de f está dada por $\nabla f(x, y)$. El valor máximo de $D_{\mathbf{u}} f(x, y)$ es $\|\nabla f(x, y)\|$.
- 3. La dirección de *mínimo* incremento de f está dada por $-\nabla f(x, y)$. El valor mínimo de $D_{\mathbf{u}} f(x, y)$ es $-\|\nabla f(x, y)\|$.

en Larson R ed.al, Obr.cit.

TEOREMA: Suponga que f es una función diferenciable de dos variables. El valor máximo de la derivada direccional $D_{\vec{u}}f(x,y)$ es $\|\nabla f(x,y)\|$ y se presenta cuando tiene la misma dirección (y sentido) que el vector \vec{u}

$$D_{\vec{u}}f(x,y) = \nabla f(x,y).\vec{u} = ||\nabla f(x,y)|| ||\vec{u}|| \cos \alpha$$
$$\alpha = 0 \to \cos \alpha = 1$$
$$D_{\vec{u}}f(x,y)_{MAX} = ||\nabla f(x,y)||$$

¿Cuándo es mínima la derivada direccional?, explique ¿Cuándo es nula? explique

Calcula la derivada direccional de f en el punto (1,2) en la dirección indicada

Calcule el gradiente y la máxima derivada direccional

DEFINICIÓN La derivada direccional de f en (x_0, y_0, z_0) en la dirección de un vector unitario $\mathbf{u} = \langle a, b, c \rangle$ es

$$D_{\mathbf{u}}f(x_0, y_0, z_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb, z_0 + hc) - f(x_0, y_0, z_0)}{h}$$

si existe este límite.

en Stewart, J, Obr.cit.

$$D_{\mathbf{u}}f(\mathbf{x}_0) = \lim_{h \to 0} \frac{f(\mathbf{x}_0 + h\mathbf{u}) - f(\mathbf{x}_0)}{h}$$
en Stewart, J. Obr.cit.

$$\nabla f = \langle f_x, f_y, f_z \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$
en Stewart, J. Obr.cit.

$$D_{\mathbf{u}}f(x, y, z) = \nabla f(x, y, z) \cdot \mathbf{u}$$
en Stewart, J. Obr.cit.

LEA e INTERPRETE EN OTRA DIRECCIÓN

				Hu	medad r	elativa (%)			
	TH	50	55	60	65	70	75	80	85	90
Temperatura real (°F)	90	96	98	100	103	106	109	112	115	119
	92	100	103	105	108	112	115	119	123	128
	94	104	107	111	114	118	122	127	132	137
	96	109	113	116	121	125	130	135	141	146
	98	114	118	123	127	133	138	144	150	157
	100	119	124	129	135	141	147	154	161	168

LA DERIVADA DIRECCIONAL : (de dos variables) notación

$$f_{\vec{u}}(x,y) = f_{\vec{v}}(x,y) = f_{P'Q'}(x,y) = z_{\vec{u}}(x,y) = D_{\vec{u}}f(x,y)$$

LEA Y RELACIONE CON LA $D_{\vec{u}}f(x_o, y_o)$

2 REGLA DE LA CADENA (CASO I) Suponga que z = f(x, y) es una función de x y y diferenciable, donde x = g(t) y y = h(t) son funciones de t diferenciables. Entonces z es una función de t diferenciable y

$$\frac{dz}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

Fin de la presentación ...

... gracias por su seguimiento

... gracias por su participación