Efficient Separability of Regular Languages by Subsequences and Suffixes

Wojciech Czerwiński

Tomáš Masopust

Wim Martens

S separates K and L

S separates K and L

K and L are separable by family F if some S from F separates them

Given: nondeterministic automata for languages K and L

Given: nondeterministic automata for languages K and L

Question: are K and L separable by Piecewise Testable Languages (PTL)?

Given: nondeterministic automata for languages K and L

Question: are K and L separable by Piecewise Testable Languages (PTL)?

piece language

Given: nondeterministic automata for languages K and L

Question: are K and L separable by Piecewise Testable Languages (PTL)?

piece language

$$\Sigma^* a_1 \Sigma^* a_2 \Sigma^* ... \Sigma^* a_n \Sigma^*$$

Given: nondeterministic automata for languages K and L

Question: are K and L separable by Piecewise Testable Languages (PTL)?

piece language

$$\Sigma^* a_1 \Sigma^* a_2 \Sigma^* ... \Sigma^* a_n \Sigma^*$$

piecewise testable language

Given: nondeterministic automata for languages K and L

Question: are K and L separable by Piecewise Testable Languages (PTL)?

piece language

$$\Sigma^* a_1 \Sigma^* a_2 \Sigma^* ... \Sigma^* a_n \Sigma^*$$

piecewise testable language

bool. comb. of pieces

Simon 1975, piecewise testable = j-trivial

- Simon 1975, piecewise testable = j-trivial
- Stern 1985, deciding if a language is piecewise testable is in PTIME

- Simon 1975, piecewise testable = j-trivial
- Stern 1985, deciding if a language is piecewise testable is in PTIME
- Almeida, Zeitoun 1997, exponential algorithm for separability by PTL

Theorem:

Separability of Regular Languages by Piecewise Testable Languages can be decided in PTIME

Theorem:

Separability of Regular Languages by Piecewise Testable Languages can be decided in PTIME

obtained independently by Place, van Rooijen, Zeitoun MFCS `13

Theorem:

Separability of Regular Languages by Piecewise Testable Languages can be decided in PTIME

For any two word languages K and L the following conditions are equivalent:

For any two word languages K and L the following conditions are equivalent:

I) K and L are separable by piecewise testable languages

For any two word languages K and L the following conditions are equivalent:

- I) K and L are separable by piecewise testable languages
- 2) there is no infinite zigzag between K and L

abcd ≤ dbabacbcdb

For any two word languages K and L the following conditions are equivalent:

- I) K and L are separable by piecewise testable languages
- 2) there is no infinite zigzag between K and L

- I) K and L are separable by piecewise testable languages
- 2) there is no infinite zigzag between K and L
- 3) K and L are layered separable by pieces

- I) K and L are separable by piecewise testable languages
- 2) there is no infinite zigzag between K and L
- 3) K and L are layered separable by pieces

$$\Sigma^* a_1 \Sigma^* a_2 \Sigma^* ... \Sigma^* a_n \Sigma^*$$

- I) K and L are separable by piecewise testable languages
- 2) there is no infinite zigzag between K and L
- 3) K and L are layered separable by pieces

Layered separability

Layered separability

Layered separability

Layered separability S2

Layered separability S₂ S₃

Layered separability S₂ S₃

Layered separability S₂ S₃ **S**₅

- I) K and L are separable by piecewise testable languages
- 2) there is no infinite zigzag between K and L
- 3) K and L are layered separable by pieces

quasi order ≤ on X is a WQO

quasi order ≤ on X is a WQO

if

quasi order ≤ on X is a WQO

if

for any infinite sequence $x_1, x_2, ...$ elements of X

quasi order ≤ on X is a WQO

if

for any infinite sequence $x_1, x_2, ...$ elements of X there exists $x_i \le x_i$ for some i < j

quasi order ≤ on X is a WQO

if

for any infinite sequence

 $X_1, X_2, ...$

elements of X

there exists $x_i \leq x_j$ for some $i \leq j$

subsequence order is a WQO (Higman's Lemma)

- I) K and L are separable by piecewise testable languages
- 2) there is no infinite zigzag between K and L
- 3) K and L are layered separable by pieces

- I) K and L are separable by piecewise testable languages
- 2) there is no infinite zigzag between K and L
- 3) K and L are layered separable by pieces

- I) K and L are separable by bool. comb. of ≤-closed languages
- 2) there is no infinite ≤-zigzag between K and L
- 3) K and L are layered separable by ≤-closed lang.

For any two word languages K and L the following conditions are equivalent:

- I) K and L are separable by bool. comb. of ≤-closed languages
- 2) there is no infinite ≤-zigzag between K and L
- 3) K and L are layered separable by ≤-closed lang.

for any well quasi order ≤

For two regular languages K and L the following are equivalent:

I) there is an infinite zigzag between K and L

- I) there is an infinite zigzag between K and L
- 2) in both automata of K and L the following pattern occurs:

- I) there is an infinite zigzag between K and L
- 2) in both automata of K and L the following pattern occurs:

- I) there is an infinite zigzag between K and L
- 2) in both automata of K and L the following pattern occurs:

pieces		

	single	
pieces		

	single	unions	
pieces			

	single	unions	boolean combinations
pieces			

	single	unions	boolean combinations
pieces			PTIME

	single	unions	boolean combinations
pieces		PTIME	PTIME

	single	unions	boolean combinations
pieces	NP-comp.	PTIME	PTIME

	single	unions	boolean combinations
pieces	NP-comp.	PTIME	PTIME
suffixes			

	single	unions	boolean combinations
pieces	NP-comp.	PTIME	PTIME
suffixes			

	single	unions	boolean combinations
pieces	NP-comp.	PTIME	PTIME
suffixes			

	single	unions	boolean combinations
pieces	NP-comp.	PTIME	PTIME
suffixes	PTIME	PTIME	PTIME

Further research

Further research

computing the separator (not deciding existence)

Further research

- computing the separator (not deciding existence)
- solving a problem efficiently for other classes

Thank you!