Algorithms and tools for Big Data Application - Foreground and background separation

Suhail Ahamed
Jianshu Zhang
Responsible Professor: Univ.-Prof. Dr. –Ing. Martin Haardt

Different approaches

- Classical statistical approach^[5]
 - ⇒ Frame differencing
 - → Median filter
 - ⇒ Mean filter
- □ Compressed sensing approach^[1-4]
 - ⇒ Usage of robust PCA (Principle Component Analysis) method

Classical statistical approach

- Frame Differencing
 - ⇒ The background for the current frame is assumed to be the previous frame
 - ⇒ The difference between the current frame and the previous frame is calculated
- Median/mean filtering
 - → Obtaining the temporal median/mean of the training sequence -> obtaining the background
 - → Compare each frame with this background to obtain this background
- Drawbacks
 - → Accuracy depends on object speed and frame rate
 - ⇒ Have relatively high memory requirements
 - ⇒ Global threshold (not a function of time)

Recursive Projected Compressive Sensing (ReProCS) Approach: Assumptions

- Assumption 1: Slowly changing low-dimensional subspace (background)
 - $||(\mathbf{I} \mathbf{P}_{(t-1)}\mathbf{P}'_{(t-1)})\mathbf{k}_t||_2 \ll \min(||\mathbf{I}_t||_2, ||\mathbf{s}_t||_2)$
- Assumption 2: Dense background
 - Changes in background are mainly global changes
 - Hence sparse vectors are recoverable from :

$$(I - P_{(t-1)}P'_{(t-1)})m_t = (I - P_{(t-1)}P'_{(t-1)})s_t$$

Assumption 3: Changes in s_t are small

 m_t - Measurement vector ($m_t = I_t + s_t$)

I_t - Low-dimensional background vector

s_t - sparse vector (foreground)

 P_t – orthonormal basis of low-dimensional subspace

Recursive Projected Compressive Sensing (ReProCS) Approach

- The video is treated to be composed of a slowly changing low-dimensional subspace and a sparse component
- \Box Calculate the projection matrix (P_0) of the training sequence (M_{train})

$$\hat{P}_0 = approx - basis(M_{train}, b\%)$$

- □ Perpendicular Projection: project the measurement vector (m_t) into the space orthogonal to range (p_t) to get the projected measurement vector
- Sparse Recovery: Multiplying the obtained orthogonal complement to the current frame (\mathbf{m}_t) will eliminate the background. Recover \mathbf{s}_t by solving :

$$\min_{\mathbf{x}} ||\mathbf{x}||_1 \text{ s.t. } ||\mathbf{y}_t - (\mathbf{I} - \mathbf{P}_{(t-1)} \mathbf{P}'_{(t-1)}) \mathbf{x}||_2 \le \xi$$

- ⇒ compressed sensing algorithm, e.g., basis pursuit, is used
- \blacksquare Recover I_t as : $I_t = m_t s_t$
- Subspace Update (update P_t): projection PCA is used to update the subspace every few frames[]

CPU time difference

□ Time to execute to training(1420 frames), as well as the real video (80 frames) for the lake sequence

Frame Differencing: 0.593 s

Median Filter: 341.790 s

Mean Filter: 8.877 s

ReProCS: 43.33 s

Simulation results: Simulated video sequence

0.8

NME(Normalized mean error)

- The classical statistical approaches fail to distinguish the foreground/background
- The compressed sensing based approach performs much better with negligible error

Median Filter ReProCS

Frame Differencing

Simulation results: Real video sequence

- 1755 training frames and 1209 frames in real video sequence
- All the methods except for frame differencing perform well when the person is wearing a black shirt (white background)
- The statistical approach fail to distinguish when the person is wearing a white shirt

Fig. 4: Curtain video sequence at $t = t_{train} + 74,477,1084,1029$ and its foreground(fg) and background(bg) result using frame differencing, mean filter, median filter and ReProCS algorithms

200 training frames and 52 frames in real video sequence

Fig. 2: Person video sequence at $t = t_{train} + 42, 45, 52$ and its foreground(fg) and background(bg) result using frame differencing, mean filter, median filter and ReProCS algorithms

Conclusion

- Compressed sensing based approach outperforms the classical statistical approach for the simulated data
- Median filter based background estimation required relatively a lot of memory and takes a lot of time
- The Frame differencing method yields poor results when either the object speed or the frame rate is low
- Since the global threshold is not a function of time in any of the statistical approaches, it is highly susceptible to global changes in the background
- Compressed sensing based approach performs better when there are more training

Future plans

- None of these methods use the temporal component of the video sequence
- Improve upon these methods methods by using the three dimensional nature of video sequences
- Replace the matrix based subspace estimation using the tensor based subspace estimation

References

- [1] Han Guo, Chenlu Qiu, Namrata Vaswani, "An Online Algorithm for Separating Sparse and Low-dimensional Signal Sequences from their Sum," IEEE Transactions Signal Processing, vol. 62, pp. 4284-4297, Jun. 2014
- [2] C. Qiu, N. Vaswani, B. Lois, and L. Hogben, "Recursive robust PCA or recursive sparse recovery in large but structured noise," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5954-5958, May 2013
- [3] J. Grosek and J. Nathan Kutz, "Dynamic Mode Decomposition for Real-Time Background/Foreground Separation in Video," IEEE Transactions on Pattern Analysis and Machine Intelligence, arXiv:1404.7592, Apr. 2014
- [4] Andrew E. Waters, Aswin C. Sankaranarayanan, Richard G. Baraniuk, "SpaRCS: Recovering Low-Rank and Sparse Matrices from Compressive Measurements," Neural Information Processing Systems (NIPS), Dec. 2011
- [5] Birgi Tamersoy, "Background Subtraction", Sep. 2009

