Réseaux informatiques Introduction & Réseaux locaux Ethernet et Wi-Fi

IUT-2 Département Informatique

3 février 2025

Introduction aux réseaux informatiques

Réseaux locaux Ethernet

Wi-Fi

Introduction aux réseaux informatiques

Qu'est-ce qu'un réseau informatique?

Echanger des informations Modèle OSI

Réseaux locaux Ethernet

Wi-Fi

Réseau informatique?

Un réseau informatique

C'est:

- un ensemble d'équipements
- reliés entre eux pour **échanger**
- des informations

(source Wikipédia)

Un réseau informatique c'est

Des noeuds

Terminaux : PC, smartphone, aspirateur

Équipements d'interconnexion : commutateur, routeur, firewall, « box », Digital Subscriber Line Access Multiplexer (DSLAM), etc

Des liens

Connexion par **câble** (p. ex., paires torsadées) ou **fibre optique**. Connexion par **onde électromagnétique** (e.g. Wi-Fi).

Connexion réseau : exemple

Soit trois ordinateurs, on souhaite qu'ils partagent une imprimante. Comment connecter l'ensemble? Comment faire en sorte que tous soient reliés entre eux?

Différentes topologies de réseau informatique.

Un réseau informatique c'est

Des noeuds

Terminaux : PC, smartphone, aspirateur

Équipements d'interconnexion : commutateur, routeur, « box », DSLAM...

Des liens

Connexion par câble (paires torsadées) ou fibre optique Connexion radio (e.g. wifi)

Des propriétés

- Débit d'émission (De) = volume de données/temps (b/s)
- Temps de propagation (Tp) = distance / vitesse de propagation (m/s)
- Quality of Service (QoS) = qualité de service (délais de transmission, variation de la latence, taux de perte de paquets)
- ► Facilité d'utilisation : connectivité, mobilité.
- Sécurité : intégrité, confidentialité, disponibilité.

Des échanges!

Introduction aux réseaux informatiques

Qu'est-ce qu'un réseau informatique

Échanger des informations

Modèle OS

Propriétés des réseaux informatiques

Réseaux locaux Ethernet

Wi-Fi

Échanger des informations

- ► Identifier l'<u>émetteur</u> et le/les <u>récepteurs</u> : notion d'adresse des personnes, des applications, des machines. . .
- Réaliser des échanges de « bonne qualité » :
 - Fiabilité: gestion des erreurs de transmission, s'assurer que l'information est parvenue.
 - Adaptabilité : transmettre l'information selon la disponibilité des supports et des équipements.
 - Équité d'accès aux ressources : une communication ne doit pas monopoliser le canal de communication.
 - « parler » le même langage : standardisation du format des données échangées.
 - Avoir les mêmes règles de communication : le même protocole.

Protocole?

adapté de Ouest-France

Exemples de protocole de communication

- Radio : ROGER, OVER, NACK, SAY AGAIN
- Télégraphique : QRS (Send more slowly), QSL (I Acknowledge receipt)

Différence codage \neq Protocole Exemple de <u>codage</u> Morse (ce n'est **PAS** un protocole de communication)

Introduction aux réseaux informatiques

Qu'est-ce qu'un réseau informatique

Echanger des informations

Modèle OSI

Propriétés des réseaux informatiques

Réseaux locaux Ethernet

Wi-Fi

Le modèle OSI

Pour rendre la communication entre des ordinateurs possible, ce problème a été séparé en plusieurs sous-problèmes. Ce découpage a été normalisé sous le terme de modèle Open Systems Interconnection (OSI) par l'ISO (pour *International Organization for Standardization*).

- Chaque couche du modèle OSI correspond à un sous-problème
- Pour chaque couche nous avons plusieurs protocoles
- Chaque protocole est implanté dans les équipements à différents endroits (hardware, software)
- Les couches permettent la modularité, l'interopérabilité et l'isolement des problèmes

Le modèle TCP/IP est une instance de ce modèle OSI.

Modèle TCP/IP

Les couches du modèle TCP/IP

Couche	Sous-problème	Implanté dans	Protocole(s)
Application	Communication utilisateur/application	Logiciel	http, ftp, ssh
Transport	Assurer la communication entre deux processus	Système d'exploita- tion	TCP, UDP
Réseau	Trouver le chemin pour chaque paquet de données à envoyer entre deux machines de réseaux locaux différents	Système d'exploita- tion	IP
Liaison de données	Gérer l'accès au médium (câble, ondes)	Carte réseau	Ethernet, WiFi
Physique	Traduire l'information binaire en ondes électromagnétiques sur le lien physique	Carte réseau	Ethernet, WiFi

Hiérarchie, protocoles et encapsulation

- ► Architecture en niveaux de protocoles :
 - Niveau application, échange de messages (web, mail...).
 - Niveau transport : échange de datagrammes ou de segments (TCP, UDP)
 - Niveau réseau : acheminement de paquets entre réseaux (IP).
 - Niveaux liaison/physique : échange de trames (Ethernet, Wi-Fi).

► Calcul du Débit utile (Du) = quantité de données « utilisateur » transmise par seconde (b/s).

Adressage dans les réseaux

- Adresses de niveau application : identifiants utilisés dans les applications : adresse e-mail, URL, etc.
- Adresses du niveau transport : Numéros de port TCP ou UDP pour identifier les processus : port 80 (HTTP)
- Adresses du niveau réseau : adresses IP pour identifier les équipements d'un réseau, indépendamment de la localisation géographique :
 - ► IPv4 (sur 32 bits) : 194.62.123.43
 - IPv6 (sur 128 bits) :1fff:0000:0a88:85a3:0000:0000:ac1f:8001
- Adresses du niveau liaison/physique : adresses « physiques » (« HW addr », « MAC ») des cartes réseau des stations, des routeurs.
 - Exemple : adresses Ethernet MAC sur 48 bits notés en hexa : 00:C0:4F:26:E1:CF

Exemple de réseau informatique

Définitions

Commutateur (ou *switch*) [niveau 2 du modèle OSI] : équipement reliant des équipements (cartes réseau) entre eux

Réseau local ou Local Area Network (LAN) : ensemble de machines ayant chacune une carte réseau (=interface) connectées par des commutateurs et dont les adresses IP partagent une partie commune.

Routeur : équipement relié à plusieurs réseaux locaux et assurant l'interconnexion entre eux.

Réseau étendu ou Wide Area Network (WAN) : réseau couvrant une zone géographique de grande envergure (p.ex. Internet est un WAN).

Réseaux locaux

Technologies les plus utilisées :

- ► Ethernet : transmission câblée, norme IEEE 802.3
- ▶ Wi-Fi : transmission par onde électromagnétique, norme IEEE 802.11
- Bluetooth : onde également, mais sur plus faible distance que le Wifi. Norme IEEE 802.15.1 en 2002 et maintenant un standard géré par le consortium Bluetooth SIG
- ➤ Courant Porteur en Ligne (CPL) : transmission sur câble du réseau électrique, norme IEEE 1901

Introduction aux réseaux informatiques

Qu'est-ce qu'un réseau informatique à Échanger des informations Modèle OSI

Propriétés des réseaux informatiques

Réseaux locaux Ethernet

Wi-Fi

Propriétés des réseaux informatiques

Quelles sont les affirmations correctes?

- 1 Le réseau est fiable.
- 2 Le temps de latence est négligeable.
- 3 La bande passante est infinie.
- 4 Le réseau est sûr.
- **6** La topologie du réseau est stable (immuable).
- 6 Le réseau est administré de manière unifiée.
- 7 Le coût de transport est négligeable.
- 8 Le réseau est homogène.

Introduction aux réseaux informatiques

Réseaux locaux Ethernet

Normes Ethernet (IEEE 802.3)

Niveau physique : câblage, signaux, topologie Niveau liaison : format des trames Ethernet

Réseaux Ethernet – transmission

Ethernet commuté

Wi-Fi

Normes Ethernet et modèle OSI

Inventé dans les années 1970 par Bob Metcalfe et David Boggs (Xerox) Normalisation DIX (DEC Intel Xerox) en 1980 puis IEEE 802.3 en 1983

La norme IEEE 802 subdivise la couche liaison en deux :

- ▶ la sous-couche *Media Access Control (MAC)* IEEE 802.3 définit la méthode d'accès au support.
- ▶ la sous-couche *Logical Link Control (LLC)* IEEE 802.2 rend transparentes les différences entres les sous-couches inférieures.

Normes de la famille Ethernet

Exemple: 100BASE-T

- ▶ $100 = 100 \text{ Mb/s} \rightarrow \text{débit d'émission De}$
- ▶ BASE = bande de base \rightarrow codage des signaux
- ightharpoonup - \mathbf{T} = Twisted pair ightarrow support de transmission

De : 10 Mb/s, 100 Mb/s, 1 Gb/s (= 1000Mb/s), 2,5 Gb/s, 5 Gb/s, 10Gb/s et plus

Support de transmission :

- câble coaxial : 1000BASE-CX
- ▶ paires torsadées : 100BASE-T (cat 3 − cat 8.2), 2.5GBASE-T (cat 5e − cat 8.2)
- ▶ fibres optiques :100BASE-FX, 1000BASE-LX

Interopérabilité :

- format de trame commun
- règles de câblage compatibles.

Réseaux locaux Ethernet

Niveau physique : câblage, signaux, topologie

Câbles et prises RJ-45

Les câbles sont constitués de 4 paires torsadées.

100Base-T o **2** paires sont utilisées (une par sens de transmission).

1000Base-T $ightarrow \underline{4}$ paires sont nécessaires.

Exemple: Foiled Twisted Pairs (FTP)

Le blindage par écran d'aluminium et la torsion limitent la sensibilité aux

interférences.

(source https://fr.wikipedia.org/wiki/Paire_torsadee)

Connecteurs et prises type RJ-45 (Registered Jack) :

Réseau Ethernet 1xxxBase-T

Commutateur (ou *switch*) : nœud d'interconnexion qui redirige les trames en fonction du destinataire. Le temps de latence est le délai de transit dans le switch (ex : il est de $7,4\mu s$ dans les switchs HP2350 de l'IUT).

Câble : 4 paires torsadées de fil de cuivre. Transmission des signaux avec $Vp \approx 200000 km/s$. Longueur max = 100m pour que l'atténuation du signal ne génère pas d'erreur.

Carte Interface Réseau (CIR) (ou Network Interface Card (NIC)) : code et décode les trames en signaux, détecte les erreurs, assure la synchronisation.

Notion d'interface

\$ ip addr

- 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qlen 1000 link/loopback 00:00:00:00:00 brd 00:00:00:00:00 inet 127.0.0.1/8 scope host lo
- 2: wlpOs20f3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000 link/ether 48:51:c5:34:c7:fe brd ff:ff:ff:ff:ff inet 192.168.0.17/24 brd 192.168.0.255
- 3: eth0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qlen 1000 link/ether 52:54:00:2a:3d:3d brd ff:ff:ff:ff:ff inet 192.168.122.1/24 brd 192.168.122.255

Transmission sur un réseau Ethernet

- Les **trames** sont transformées en signaux électriques ou optiques.
- Transmission en full-duplex (dans les 2 sens en même temps).

- Les trames sont émises à la demande, avec un délai entre chacune appelé silence inter-trames.
 - Ce silence est nécessaire pour garantir la dissipation du signal écho produit par tout signal de trame. Sinon, cet écho agirait comme un bruit aléatoire sur le signal de la trame suivante... et générerait des erreurs.
 - La valeur du silence inter-trames est équivalente à la durée d'émission de 96 bits, c'est-à-dire égale à $\frac{96}{De}$, soit $0,96\mu s$ en 100Base-T et $0,096\mu s$ en 1000Base-T.

Introduction aux réseaux informatiques

Réseaux locaux Ethernet

Normes Ethernet (IEEE 802.3)

Niveau physique : câblage, signaux, topologie

Niveau liaison : format des trames Ethernet

Réseaux Ethernet – transmission

Ethernet commuté

Wi-Fi Glossaire55

Adressage Ethernet

- Chaque CIR est identifiée par une adresse MAC unique (mondialement!) allouée par le fabricant de la carte CIR.
 - Rq: une station a autant d'adresses MAC que de cartes CIR.
 - ► Trouver votre adresse MAC → commande ip addr.
- Adressage MAC :
 - longueur : 6 octets.
 - notation par groupes de 2 chiffres hexa séparés par « : »
 - exemple : 00:0B:DB:DF:6F:35
 - les 3 premiers octets identifient le fabricant (ex : Dell_77:58:c2).
- La CIR d'une station émet et reçoit des trames :
 - > soit en mode Unicast : 1 émetteur vers 1 destinataire.
 - soit en mode Broadcast (diffusion) : 1 vers toutes les stations.
- Adresse de diffusion pour accéder à toutes les machines du réseau :

Format des trames Ethernet

Préambule	Adresse MAC destination	Adresse MAC source	Type trame / longueur	Informations	FCS
8 octets	6 octets	6 octets	2 oct.	entre 46 et 1500 octets	4 octets

- ▶ **Préambule** : (AA AA AA AA AA AA AA AB)₁₆ pour permettre au récepteur de se synchroniser. Rappel : $A_{16} = 1010_2$, $B_{16} = 1011_2$
- ► Adresses Destination et Source : adresses MAC aussi appelées HardWare Address (HWAddr).
- ► Type trame :
- $\leq 1500_{10}$: taille de la trame
- $\geq 1536_{10}$: identifiant du protocole du niveau hiérarchique supérieur (IP=080016, ARP=080616, ...).
 - ▶ Information : contient les données du niveau supérieur :
 - ► Taille minimale : 46 octets (compatibilité avec les « hub »).
 - ► Taille maximale : 1500 octets. (pour assurer un taux d'erreur suffisamment faible).
 - Frame Check Sequence (FCS): 32 bits de détection d'erreur.

Exemple de trame

0: 0800 2087 b044 0800 1108 c063 0800 4500 16: 0048 49ba 0000 1e06 698d c137 33f6 c137 32: 3304 1770 96d4 397f 84c2 bf3a 21fd 5018 48: 111c 99bc 0000 0e00 313f 02c0 0011 0000 64: 3ec1 0000 0011 0000 0002 2828 a7b0 8029

80: eafc 8158 9070 +FCS

Adresse MAC destination: 0800 2087 b044

Adresse MAC source: 0800 1108 c063

Type trame = 0800: la trame contient un paquet IP.

rq : le préambule et le code de détection d'erreur FCS ne sont pas affichés.

Réseaux locaux Ethernet

Réseaux Ethernet - transmission

CSMA/CD

Carrier Sense Multiple Access with Collision Detection (CSMA/CD) pour accès multiple avec écoute de porteuse et détection de collision est la technique de contrôle d'accès au support physique des réseaux Ethernet (802.3).

écoute

Chaque station écoute en permanence si le bus est occupé.

Émission

Si le support est libre la station A peut émettre sa trame.

La station destinatrice saura que la trame lui est destinée grâce à l'adresse MAC de destination contenue dans la trame

Collision

L'écoute permet également de détecter les collisions.

Détection de collision

Chaque station peut détecter une collision

Brouillage

La station ayant détectée une collision émet un signal de brouillage pour avertir toutes les stations

Réémission

Brouillage

La station ayant détectée une collision émet un signal de brouillage pour avertir toutes les stations

Réémission

Introduction aux réseaux informatiques

Réseaux locaux Ethernet

Normes Ethernet (IEEE 802.3)

Niveau physique : câblage, signaux, topologie Niveau liaison : format des trames Ethernet

Réseaux Ethernet – transmission

Ethernet commuté

Wi-Fi

Glossaire55

L'Ethernet moderne = l'Ethernet commuté

Ethernet initial en bus (câble coaxial)

Organisation *physique*: **bus**Organisation *logique*: **bus**→ un seul domaine de collisions

Ethernet moderne avec commutateur

Organisation *physique* : **étoile**Organisation *logique* : **bus** (le switch est transparent pour les stations)

- ightarrow domaines de collisions isolés
- \rightarrow comment le commutateur fait-il pour savoir à qui transmettre ?

Table de commutation

Table de commutation

indique, pour chaque adresse Ethernet (pour chaque CIR connectée au switch), le numéro de port associé.

Algorithme de commutation

Pour chaque trame Ethernet arrivant au switch

- $\mathbf{0}$ Osource \rightarrow mise à jour de la table
- \mathbf{Q} @dest \rightarrow utilise la table pour rediriger la trame vers le bon port.

Si l'@dest n'est pas dans la table (ou si c'est l'@diffusion), la trame es envoyée vers tous les ports, sauf le port d'arrivée de la trame.

Exemple de table de commutation

Table de COM2			
Adresse destination	Port associé		
08:00:11:08:AA:63	1		
08:00:11:AB:85:36	3		
08:00:11:3B:C0:44	2		
09:00:C1:52:31:71	4		
A1:00:22:08:C0:9E	2		
08:00:11:09:D1:77	5		

Les informations dans les tables de commutation ont une durée de viellimitée (de quelques minutes).

ntroduction aux réseaux informatiques

Réseaux locaux Ethernet

Wi-Fi

Technologies sans fil
Principes de la transmission Wi-Fi
Transmission et accès au support
Glossaire55

Technologies sans fil

La transmission sans fil utilise comme support des ondes électromagnétiques modulées. On différencie les réseaux sans fil par :

- Leur type : Internet, téléphonique cellulaire.
- ► Leur distance de transmission : très courte (BlueTooth), local (Wi-Fi), réseau d'accès (WiMax, LTE), téléphonie mobile (2G à 5G), lien grande distance (liaisons hertziennes).
- Les données transportées : données et/ou voix.

Les normes Wi-Fi

- ▶ Wi-Fi (*WIreless Fidelity*) : label de certification défini sur des tests d'interopérabilité pour les équipements 802.11.
- Organisation : Wi-Fi Alliance (créée par 6 fabricants en 1999 ...aujourd'hui plusieurs centaines d'entreprises).

Génération	Année	Débit	Bandes de fréquences
802.11 – WIFI 0	1997	1 à 2 Mb/s	5 Ghz
802.11b – WIFI 1	1999	1 à 11 Mb/s	2,4 Ghz
802.11a – WIFI 2	1999	6 à 54 Mb/s	5 Ghz
802.11g - WIFI 3	2003	6 à 54 Mb/s	2,4 Ghz
802.11n - WIFI 4	2008	72 à 600 Mb/s	2,4 et 5 Ghz
802.11ac – WIFI 5	2014	400 à 7000 Mb/s	5 Ghz
802.11ax - WIFI 6	2021	600 to 10000 Mb/s	1 et 7,1 GHz ou 2,4 et !
802.11be – WIFI 7	2024(?)		

ntroduction aux réseaux informatiques

Réseaux locaux Ethernet

Wi-Fi

Technologies sans fil
Principes de la transmission Wi-Fi
Transmission et accès au support
Glossaire55

Principes de la transmission Wi-Fi

Principe:

- transmission d'une onde électromagnétique
- de haute fréquence (2 à 5 Ghz)
- → à courte/moyenne portée (10 à 100 mètres)
- à faible puissance (30 mW)

Propriétés

- ▶ Affaiblissement du signal très important avec la distance.
- ► Taux d'erreur plus important qu'en transmission filaire.
- Pas de diffusion fiable.

Modes de fonctionnement d'un réseau Wi-Fi

Nécessite :

- Des stations avec des CIR à la norme 802.11 permettant de se connecter à un réseau sans fil.
- Des points d'accès (Access Point (AP)) ou bornes sans fil (ou encore hotspot) permettant de connecter des stations ayant des CIR wifi au réseau filaire.

Il existe deux modes principaux de fonctionnement

- ▶ Infrastructure : toutes les communications passent par des APs
- **ad-hoc**: communication directe entre machines (sans AP)

WLAN, Wifi et couverture

- ➤ Zone de couverture
 autour d'un point
 d'accès : espace
 accessible depuis/vers le
 point d'accès.

 ➤ Réseau Ethernet
- Possibilité d'utiliser des répéteurs pour étendre la couverture.

Toutes les transmissions passent par le point d'accès et forment ainsi un réseau local sans fil ou Wireless Local Area Network (WLAN)

L'AP est identifié via :

- ▶ Basic Service Set IDentifier (BSSID) : @MAC du point d'accès AP.
- Extended Service Set IDentifier (ESSID) (ou SSID): nom du réseau sous la forme d'une chaîne d'au plus 32 octets (p.ex. 'wifi-campus 22 octets)

Association d'une station à un AP

Pour qu'une station intègre le WLAN et puisse communiquer avec les autres machines du réseau, celle-ci passera par les étapes suivantes :

- 1 La station entrant dans le réseau émet une trame **probe request** avec le ESSID avec lequel elle est configurée.
- 2 Lorsqu'un AP reçoit une telle requête, il compare le ESSID reçu avec le sien. Si concordance, il répond avec des infos (charge du AP, débit offert...).
- 3 La station peut alors choisir de s'associer avec l'AP lui offrant le meilleur débit (si plusieurs disponibles).

Remarque : chaque AP émet régulièrement (0,1 s) une trame balise (beacon) avec son BSSID et son ESSID (+ info de débit).

Introduction aux réseaux informatiques

Réseaux locaux Ethernet

Wi-Fi

Technologies sans fil Principes de la transmission Wi-Fi

Transmission et accès au support Glossaire55

Accès au support

Partage du support (appelé canal) par compétition :

- 1 Écoute avant d'émettre, émission si le canal est libre.
- Si deux stations détectent en même temps que le canal est libre, deux trames seront émises et il y aura collision de signal.

Filaire \neq du wifi \rightarrow pas possible de détecter les collisions sur le support. Le récepteur envoie donc un **acquittement** pour chaque trame reçue.

Un protocole d'évitement de collision Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) est utilisé : CSMA/C $\underline{A} \neq$ CSMA/C \underline{D} .

- envoi d'acquittements de trame.
- Attente de durée aléatoire appelée « back-off » avant toute tentative d'émission.
- ► Pré-réservation du canal (optionnelle) : trames spécifiques RTS/CTS.

Étapes de l'émission d'une trame

- 1 Écoute jusqu'à ce que le canal soit libre.
- 2 Attente DIFS (délai fixe) et back-off (délai aléatoire).
- 3 Émission de la trame d'information (ou de gestion).
- À la fin du dernier bit émis, attente d'un délai SIFS (plus court que DIFS).
- 6 Réception de l'acquittement au bout du délai SIFS : si l'acquittement n'arrive pas, la station détecte qu'il y a eu collision.

Cas de multiples demandes d'émission

Hypothèse : A et B veulent émettre en même temps, le back-off de A est d'une durée plus courte que B

Glossaire I

ANFR Agence Nationale des FRéquences. 44 **AP** Access Point. 48

BSSID Basic Service Set IDentifier. 49

CIR Carte Interface Réseau. 28, 32 CPL Courant Porteur en Ligne. 20 CSMA/CA Carrier Sense Multiple Access with Collision Avoidance. 52 CSMA/CD Carrier Sense Multiple Access with Collision Detection. 36

De Débit d'émission. 7, 25 DSLAM Digital Subscriber Line Access Multiplexer. 5, 7 Du Débit utile. 16

ESSID Extended Service Set IDentifier. 49

FCS Frame Check Sequence. 33

HWAddr HardWare Address. 33

LAN Local Area Network. 19 LLC Logical Link Control. 24

MAC Media Access Control. 24, 32, 33

NIC Network Interface Card. 28

OSI Open Systems Interconnection. 13

QoS Quality of Service. 7

Tp Temps de propagation. 7

WAN Wide Area Network. 19 WLAN Wireless Local Area Network. 49

Références I

Roy, D., Nourry, P. et France, O. (2020).

Sécurité du réseau fixe d'un opérateur : focus sur les dénis de service. Dans *Symposium sur la sécurité des technologies de l'information et des communications*, Rennes.

