Chap 1 : Ensembles et applications

I. Ensembles

Notion intuitive d'ensemble : un ensemble est défini par les éléments qui le constituent

Ensembles égaux ⇔ Exactement les mêmes éléments

E,F ensembles

 $E \subset F \Leftrightarrow$

 $\forall x \in E, x \in F$

Une partie (ou sous-ensemble) de E est un ensemble A inclus dans E

E ensemble $\mathfrak{P}(E)$ est l'ensemble constitué des parties de E

 $E = \{x, y\}$ $\mathcal{G}(E) = \{\emptyset, \{x\}, \{y\}, \{x, y\}\}\$ $x \in E \quad \{x\} \in \mathcal{P}(E)$

E ensemble $\forall A \in \mathcal{P}(E), A \subset A$

 $\forall (A,B,C) \in \mathcal{P}(E)^3$, $(A \subset B)$ et $(B \subset C) \Rightarrow (A \subset C)$

 $(A \subset B)$ et $(B \subset A) \Leftrightarrow (A = B)$

E ensemble, \mathcal{A} assertion de E

 $F = \{x \in E, A(x)\}\$ est l'unique partie de E constituée d'éléments tels que A est vraie

Le complémentaire de A dans E, noté $E \setminus A$, $C_E(A)$ ou A est : $E \setminus A = \{x \in E, non(x \in A)\}$ $A \subset E$ ensemble

A, B deux parties de E

L'union de A et B:

 $A \cup B = \{x \in E, (x \in A) \text{ OU } (x \in B)\}$

L'intersection de A et B: $A \cap B = \{x \in E, (x \in A) \text{ ET } (x \in B)\}$

 $A, B \in \mathcal{P}(E)$ $A \subset (A \cup B)$ $B \subset (A \cup B)$ $(A \cap B) \subset A \quad (A \cap B) \subset B$

 $\forall (A,B) \in \mathcal{G}(E)^2$

 $A \cup B = B \cup A$ $A \cap B = B \cap A$

 $\forall (A,B,C) \in \mathcal{G}(E)^3$ $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$

 $A \cup (B \cap C) = (A \cup B) \cup (A \cup C)$ $A \cap B \cup C = (A \cap B) \cup (A \cap C)$

 $E \setminus (A \cup B) = (E \setminus A) \cap (E \setminus B)$ $E \setminus (A \cap B) = (E \setminus A) \cup (E \setminus B)$

 $(A,B) \in \mathcal{P}(E)^2$ La différence symétrique $A \triangle B = \{x \in E, (x \in A \text{ ET } x \notin B) \text{ OU } (x \notin A \text{ ET } x \in B)\}$

 $=(A\cap (E\setminus B))\cup (B\cap (E\setminus A))$

Le couple $(x, y) = \{ \{x\}, \{x, y\} \}$ $x \in E, y \in F$

 $/! \setminus \{x, y\} = \{y, x\} \text{ MAIS } (x, y) \neq (y, x)$

Leproduit cartésien de E et F (ensembles) : $E \times F = \{(x, y), x \in E \text{ et } y \in F\}$

II. Applications

E et F 2 ens. Une relation \mathcal{R} entre E et F est la donnée d'une partie $\mathfrak{G} \subset E \times F$ (graphe de la relation \mathcal{R})

Pour tout $x \in E$, $y \in F$, $(x\mathcal{R}y) \Leftrightarrow (x, y) \in \mathcal{G}$

Une application de E vers F est une relation \mathcal{R} entre E et F telle que : $(\forall x \in E, \exists! y \in F, x\mathcal{R}y)$

f application de E vers F $\forall x \in E$, on note l'image de x par f: y = f(x), l'unique $y \in F$ tel que (xfy)

Le graphe de f est $\{(x, y) \in E \times F, y = f(x)\}$

 $\forall y \in F$, si y = f(x) avec $x \in E$, x est un antécédent de y par f

 $\mathfrak{F}(E,F)$ est l'ensemble des applications de E (espace de départ) vers F (espace d'arrivée)

f et g deux applications $f=g \Leftrightarrow \begin{cases} \text{même ensemble de départ } E \text{, même ensemble d'arrivée} \\ \forall x \in E, f(x) = g(x) \end{cases}$

 $E, F, G \text{ 3 ens. } f \in \mathfrak{F}(E, F), g \in \mathfrak{F}(F, G) \qquad \text{L'application composée } g \circ f \begin{cases} E \to G \\ x \mapsto g \circ f(x) = g(f(x)) \end{cases}$

 $E, F, G, H \text{ 4 ens. } f \in \mathcal{F}(E, F), g \in \mathcal{F}(F, G), h \in \mathcal{F}(G, H)$ $h \circ (g \circ f) = (h \circ g) \circ f$

E ensemble, l'application identité $Id_E \begin{cases} E \to E \\ x \mapsto x \end{cases}$

 $E ext{ et } F ext{ deux ens.} \qquad \forall f \in \mathfrak{F}(E,F), \ f \circ Id_E = f \qquad Id_F \circ f = f$

Soient E et F deux ensembles, $f \in \mathcal{F}(E,F)$. On a équivalence entre :

- (i) $\forall (x, y) \in E^2$ $f(x) = f(y) \Rightarrow x = y$
- (ii) Pour tout $y \in F$, il existe au plus un $x \in E$ tel que f(x) = y
- (iii) Pour tout $y \in F$, l'équation y = f(x) admet au plus une solution
- (iv) Pour tout $(x, y) \in E^2$, $x \neq y \Rightarrow f(x) \neq f(y)$

On dit alors que f est injective / une injection de E dans F

La composée de deux fonctions injectives est injective

Si $g \circ f$ est injective, alors f est injective

Preuves: $1 \rightarrow$ remonter les fonctions $2 \rightarrow$ composer par g, et remonter directement à x (unique)

Soit $f \in \mathcal{F}(E,F)$. On a équivalence entre :

- (i) Pour tout $y \in F$, il existe au moins un $x \in E$ tel que y = f(x)
- (ii) Pour tout $y \in F$, l'équation y = f(x) a au moins une solution dans E

On dit alors que f est surjective / une surjection de E dans F

La composée de deux fonctions surjectives est surjective

Si $g \circ f$ est surjective, alors g est surjective

 $f \in \mathfrak{F}(E,F), A \subset E$ La restriction de f à A est l'application : $f_{\setminus A} \begin{cases} A \to F \\ x \mapsto f(x) \end{cases}$

 $E_0 \text{ tel que } E \subset E_0 \qquad \text{Le prolongement de } f \text{ à } E_0 \text{ est une application } \tilde{f} \in \mathfrak{F}(E_0,F) \text{ tel que } \tilde{f}_{\backslash E} = f$

La restriction conserve l'injectivité mais pas la surjectivité : $G \subset E, f$ inj $\Rightarrow f_{\setminus G}$ inj f surj $\not x f_{\setminus G}$ surjectivité mais pas l'injectivité

Une application bijective de E dans F est surjective et injective de E dans F :

Chaque élément de E a une seule image dans F. Chaque élément de F a un seul antécédent dans E.

La composée de deux fonctions bijective est bijective.

Si $g \circ f$ est bijective, alors f est injective et g est surjective.

Inverse à gauche

 $\Leftrightarrow g \circ f = Id_{F}$

 $\Leftrightarrow f$ injective

Inverse à droite $\Leftrightarrow f \circ h = Id_{E}$

$$\Leftrightarrow f \circ h = Id_F$$

 $\Leftrightarrow f$ surjective

Inverse

 $\Leftrightarrow g \circ f = f \circ h = Id_E$

 $g = h = f^{-1}$ unique $\Leftrightarrow f$ bijective

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

Preuve : $(g \circ f) \circ (f^{-1} \circ g^{-1}) = Id_{E}$

$$f(A) = \{f(x), x \in A\}$$
 $f^{-1}(B) = \{x \in E, f(x) \in B\}$

/!\ Concerne des PARTIES de E /!\

 $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$

$$f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$$

$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$$

$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$$
 $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$

 $f(f^{-1}(B)) \subset B$

$$f^{-1}(f(A)) \supset A$$

$$\forall (A,B) \in \mathcal{P}(E) \times \mathcal{P}(F)$$
: $f(f^{-1}(B)) = B \Leftrightarrow f \text{ surjective}$

$$f^{-1}(f(A)) = A \Leftrightarrow f$$
 injective

Preuve : aller → singletons

Aller 2
$$\rightarrow$$
 y dans f(E)...

I, *E* ensembles non vides

Une famille d'éléments de E indexée par I est une application :

$$s \begin{cases} F \to E \\ i \mapsto s(i) = s_i \in E \end{cases}$$

On note $s = (s_i)_{i \in I}$, et $E^I = \{\text{familles d'éléments de } E \text{ indexées par } I\}$

 E_0 ensemble et I ensemble non vide. On considère $(A_i)_{i \in I}$ avec pour tout $i \in I$, $A_i \in \mathcal{P}(E_0)$

On note :
$$\bigcup_{i \in I} A_i = \{x \in E_0, \exists i \in I, x \in A_i\}$$

$$\bigcap_{i \in I} A_i = \{x \in E_0, \forall i \in I, x \in A_i\}$$

III. LCI

Lois de Composition Interne : Application de $E \times E$ dans $E : \begin{cases} E \times E \to E \\ (x, y) \mapsto x * y \end{cases}$

Associativité:

$$\forall (x, y, z) \in E^3, (x * y) * z = x * (z * y)$$

Elément neutre $e: \forall x \in E, x^*e = e^*x = x$ (unique s'il existe)

$$\forall x \in F$$

$$v * a - a * v - v$$

Inverse $z de x \in E$: x * z = z * x = e (unique s'il existe)

$$x * z = z * x = e$$

Distributivité de * sur \oplus : $\forall (x, y, z) \in E^3$ $x*(y \oplus z) = (x*y) \oplus (x*z)$

Groupe: (E, *): * associative, admet un élément neutre, admet un inverse pour tout $x \in E$

$$S(E) = \{ f \in \mathcal{F}(E, E) \text{ bijective} \}$$

 $(\mathcal{S}(E), \circ)$ est un groupe

IV. Relation d'ordre et d'équivalence

 \mathfrak{R} est une relation sur E (entre E et E)

Réflexivité:

$$\forall x, \quad x\Re x$$

Symétrie:

$$\forall (x, y), x \Re y \Leftrightarrow y \Re x$$

Transitivité:

$$\forall (x, y), x\Re y \text{ et } y\Re z \Rightarrow x\Re z$$

Antisymétrie :

 $\forall (x, y), x \Re y \text{ et } y \Re x \Rightarrow x = y$

Relation d'équivalence : Réflexive, transitive, symétrique $(=,\equiv)$ Relation d'ordre : Réflexive, transitive, antisymétrique (\leq,\subset)

Partition: Parties non vides, disjointes, dont l'union donne l'ensemble entier

Classe d'équivalence : $x = [x] = \{y \in E, x \Re y\}$

Famille des classes d'équivalence → partition de E

Preuve: Non vide, l'union forme E (Réflexivité $\rightarrow x \in x$)

L'intersection est vide : si inter pas vide, alors égalité (Transitivité, symétrie, double inclusion)

Une famille de représentants est la donnée d'un élément par classe d'équivalence

Ordre total (\leq): $\forall (x, y) \in E^2$, on a $(x\Re y)OU(y\Re x)$ (càd x et y sont toujours en relation

Sinon, l'ordre est dit partiel : <)

Majorant M: $\forall x \in A, x \mathcal{R}M$ (penser à \leq)

Minorant m : $\forall x \in A, m\Re x$

Si $\exists M \in A$ majorant de $A, M = \max(A)$ est le plus grand élément de A (unique s'il existe)

Si $\exists m \in A \text{ minorant de } A, m = \min(A) \text{ est plus petit élément de A (unique s'il existe)}$

 $x \in E$ est borne supérieure de $A \subset E$ pour \Re relation d'ordre sur E

s'il est le plus petit élément de l'ensemble des majorants de A: $x = \sup(A) = \min\{\text{majorants de } A\}$

 $x \in E$ est borne inférieure de $A \subset E$ pour \Re relation d'ordre sur E

s'il est le plus grand élément de l'ensemble des minorants de $A: x = \inf(A) = \max\{\min \text{ or ants de } A\}$

S'il existe $M = \max(A)$, alors $M = \sup(A)$ S'il existe $m = \min(A)$, alors $m = \inf(A)$

Caractérisation du sup/inf pour un ORDRE TOTAL : E ensemble muni d'un ordre total \leq

On notera : $\forall (x, y) \in E^2$, $(x < y) \Leftrightarrow (x \le y)$ ET $(x \ne y)$

 $A \in E, M \in E.$ On a : $M = \sup(A) \Leftrightarrow \begin{cases} M \text{ majorant de } A \\ \forall z \in E, \ (z < M) \Rightarrow (\exists x \in A, z < x) \end{cases}$

(pour un ordre total, on peut toujours trouver un élément de $A \neq z$ entre $z \in A$ et sa borne sup)