Работа 4.5.1

Гелий-неоновый лазер

Работу выполнил Матренин Василий Б01-006

Цель работы: изучение основных принципов работы газового лазера и свойств лазерного излучения.

В работе используются: юстировочный лазер, гелий-неоновая трубка, компьютер со звуковой картой, модулятор (обтюратор), фотодиоды, зеркала, поляроид.

1 Теория

Усиление активного элемента в установившемся режиме за один проход:

$$G = \frac{1}{\sqrt{R_1 R_2} T^2} \tag{1}$$

Обычно достигается усиление в 1-3% за проход, то есть G = 1.01 - 1.03.

Ширина спектра генерации:

$$\Delta \nu = 2\nu \sqrt{\frac{2kT\ln 2}{mc^2}} \tag{2}$$

Получаем оценку для ширины спектра: $\Delta \nu \approx 1$ Гц.

2 Схема установки

Схема установки представлена на рисунке 1.

Рис 1. Схема установки

3 Ход работы

3.1 Коэффициент усиления лазера

Настроили установку для данного пункта. Сигнал с фотодиода (6) идет на канал (1). Сигнал с фотодиода (11) идет на канал (2). Произвели измерения напряжения при включенном и выключенном источнике тока.

Коэффициент к расчитывается по формуле:

$$k = \frac{\alpha_{\text{вкл}}}{\alpha_{\text{выкл}}},\tag{3}$$

где
$$\alpha_{ ext{вкл}} = \frac{U_{ ext{вкл}1}}{U_{ ext{вкл}2}}, \, \alpha_{ ext{выкл}} = \frac{U_{ ext{выкл}1}}{U_{ ext{выкл}2}}$$

Результаты измерений представлены в Таблице 1.

Таблица 1:

І, мА	$U_{\text{вкл}1}$	$U_{\text{вкл2}}$	$U_{\text{выкл}1}$	$U_{\text{выкл2}}$	$\alpha_{\scriptscriptstyle \mathrm{BKJI}}$	$\alpha_{\text{вкл}}$	k
20	35,5	31,3	37,1	33,8	1,135	1,098	1,033
38	39,8	36,0	39,1	36,0	1,106	1,087	1,018
46	39,7	33,9	30,2	28,3	1,171	1,066	1,098

3.2 Зависимость интенсивности от угла поворота поляроида

Закрепили в рейтере перед выходным зеркалом поляроид. Юстировочный лазер отключили. Измерили зависимость интенсивности излучения исследуемого лазера в зависимости от угла поворота поляроида. Результаты представлены в Таблице 2.

Таблица 2:

a	U, мВ	a	U, мВ	a	U, мВ	a	U, мВ
0	26,70	50	22,53	100	0,53	150	13,51
10	28,75	60	16,86	110	0,16	160	17,09
20	30,16	70	12,37	120	1,89	170	22,94
30	29,60	80	8,80	130	3,64	180	27,06
40	25,17	90	4,17	140	8,86		

Постоил график $U(\alpha)$. График предоставлен на рисунке 2.

 $Puc\ 2.\ Зависимость\ U(lpha)$

Из графика видно, что закон Малиса выполняется, так как $U(\alpha)$ является гармонической функцией с $T=\pi$

3.3 Наблюдение модовой структуры лазерного излучения

Получили различные режимы модовой структуры. См рисунки 3-6.

Рис 3. Одна мода

Рис 4. Две моды

Рис 5. Три моды

Рис 6. Много мод

4 Вывод

В ходе данной лабараторной работы был измерен коэффициент усиления лазера, значение которого по порядку совпало с теоретическим. Так же была подтверждена формула Малиса. И наблюдались изменения модовой структуры излучения в зависимости от отклонений зеркал лазера.