LA FONCTION « INVERSE » ET LES FONCTIONS HOMOGRAPHIQUES

1. LA FONCTION INVERSE

DÉFINITION

La fonction **inverse** est la fonction définie sur $]-\infty;0[\,\cup\,]0;+\infty[\,:x\mapsto\frac{1}{x}]$.

Sa courbe représentative est une **hyperbole**.

L'hyperbole représentant la fonction $x \mapsto \frac{1}{x}$

THÉORÈME

La courbe représentative de la fonction inverse est symétrique par rapport à l'origine du repère.

THÉORÈME

La fonction inverse est strictement décroissante sur $]-\infty;0[$ et sur $]0;+\infty[$.

Tableau de variation de la fonction "inverse"

EXEMPLE D'APPLICATION

On veut comparer les nombres $\frac{1}{\pi}$ et $\frac{1}{3}$.

On sait que $\pi > 3$

Comme les nombres 3 et π sont strictement positifs et que la fonction inverse est strictement décroissante sur]0; $+\infty$ [on en déduit que $\frac{1}{\pi} < \frac{1}{3}$

2. FONCTIONS HOMOGRAPHIQUES

DÉFINITION

Soient a, b, c, d quatre réels avec $c \neq 0$ et $ad - bc \neq 0$.

La fonction f définie sur $\mathbb{R} \setminus \left\{ -\frac{d}{c} \right\}$ par :

$$f(x) = \frac{ax+b}{cx+d}$$

s'appelle une fonction homographique.

La courbe représentative d'une fonction homographique est une hyperbole.

REMARQUES

- La valeur « interdite » $-\frac{d}{c}$ est celle qui annule le dénominateur.
- Si ad bc = 0, la fraction se simplifie et dans ce cas la fonction f est constante sur son ensemble de définition. Par exemple $f(x) = \frac{2x+1}{4x+2} = \frac{2x+1}{2\times(2x+1)} = \frac{1}{2} \operatorname{sur} \mathbb{R} \setminus \left\{ -\frac{1}{2} \right\}$

EXEMPLE

La fonction f telle que :

$$f(x) = \frac{3x+2}{x+1}$$

est définie pour $x + 1 \neq 0$ c'est à dire $x \neq -1$.

Son ensemble de définition est donc :

$$\mathcal{D}_f = \mathbb{R} \backslash \{-1\} (\text{ ou } \mathcal{D}_f =] - \infty; -1[\, \cup \,] -1; + \infty[)$$

Elle est strictement croissante sur chacun des intervalles $]-\infty;-1[$ et $]-1;+\infty[$ (pour cet exemple; ce n'est pas le cas pour toutes les fonctions homographiques!).

Tableau de variations de $f: x \mapsto \frac{3x+2}{x+1}$

Courbe représentative de $f: x \mapsto \frac{3x+2}{x+1}$