Attacchi Generici alle Funzioni Hash

Paolo D'Arco pdarco@unisa.it

Universitá di Salerno

Elementi di Crittografia

Contenuti

Attacchi generici a funzioni hash

Qual é il livello massimo di sicurezza che possiamo sperare di ottenere con una funzione hash?

Due attacchi sempre possibili

$$H: \{0,1\}^* \to \{0,1\}^{\ell}$$

- Valuta H su $2^{\ell} + 1$ input distinti \Rightarrow due output devono essere uguali
- Scegli q input distinti x₁,..., x_q, calcola y_i = H(x_i) per i = 1,..., q e controlla che due y_i siano uguali
 Se q > 2^ℓ, con prob. 1 una collisione viene trovata
 - Se $q > 2^{\ell}$, con prob. 1 una collisione viene trovata Quando q é piú piccolo, qual é la prob. di ottenere una collisione? L'analisi puó essere complicata

Approccio: idealizziamo H dicendo che é una funzione casuale, i.e., gli output sono uniformemente distribuiti in $\{0,1\}^\ell$

 $\downarrow \downarrow$

Il problema cosí diventa: "qual é la prob. che $\exists i,j$ tali che $y_i=y_j$, se scegliamo $y_1,\ldots,y_q\in\{0,1\}^\ell$ indipendentemente ed uniformemente a caso?"

⇓

É il problema del compleanno: q persone in stanza, y_i data compleanno

Sappiamo che se $q = \Theta(N^{\frac{1}{2}})$ e $y_1, \ldots, y_q \in \{1, \ldots, N\}$, \Rightarrow prob. $\approx \frac{1}{2}$

Nel nostro caso, la funzione hash ha un codominio di 2^ℓ stringhe

 \Rightarrow prendendo $q=\Theta(2^{rac{\ell}{2}}),$ la prob. di ottenere una collisione é $pprox rac{1}{2}.$

Assumendo che una valutazione di H richieda un'unità di tempo, per resistere ad attacchi di tempo al più T, la lunghezza dell'output deve essere almeno $2 \log T$ bit. Infatti:

$$2^{\frac{2 \log T}{2}} = 2^{\log T} = T.$$

Come possiamo trovare collisioni "significative"?

Alice, licenziata al lavoro, vuole trovare due lettere x ed x' tali che H(x) = H(x').

La lettera x motiva il licenziamento. La lettera x' é una lettera di raccomandazione.

Se l'approccio "Hash-and-Mac" viene usato per autenticare le lettere, Alice puó usare il tag della prima per autenticare la seconda!

L'attacco descritto prima richiede che x_1, \ldots, x_q siano soltanto *distinti* (non casuali).

Pertanto, Alice puó:

- produrre $q = \Theta(2^{\frac{\ell}{2}})$ messaggi del primo tipo (x)
- produrre $q = \Theta(2^{\frac{\ell}{2}})$ messaggi del secondo tipo (x')
- cercare collisioni tra i messaggi del primo gruppo e quelli del secondo

É un attacco simile a quello del compleanno.

Un'analisi simile mostra che l'attacco dá una collisione con prob. circa 1/2.

Nota che é facile scrivere messaggi equivalenti dei due tipi. Per esempio:

É duro/difficile/impegnativo/impossibile immaginare/credere di trovare/individuare/assumere un'altra persona/segretaria che possieda simili abilitá/conoscenze/caratteristiche di Alice.

Ogni combinazione di un termine per ogni attributo fornisce una lettera equivalente.

Nel nostro caso: $4 \cdot 2 \cdot 3 \cdot 2 \cdot 3 = 144$

Pertanto é facile generare 2⁶⁴ versioni dello stesso messaggio: basta disporre di 64 parole, ognuna con un sinonimo!

Osservazione: l'attacco del compleanno richiede una grossa quantitá di memoria

 $\Rightarrow \Theta(2^{\frac{\ell}{2}})$ valori da memorizzare.

Possiamo far meglio?

Tradeoff: piú computazione, meno memoria.

Idea dell'attacco (basata sull'alg. di Floyd per trovare cicli).

Si consideri la sequenza x_i definita da

$$x_i = H(x_{i-1})$$

con x_0 valore iniziale.

Se é ciclica, esistono interi j>0 e k>0 tali che $x_{j+k}=x_j$ e, quindi, per tutti gli interi $i\geq j$ ed $n\geq 1$ risulta

$$x_{i+nk} = x_i$$
.

L'ultima vale naturalmente anche per i = nk \Rightarrow $x_{nk+nk} = x_{2nk} = x_{nk}$ $\Rightarrow \exists$ un intero i tale che $x_i = x_{2i}$

D'altra parte, l'esistenza di un tale intero implica che la sequenza é ciclica.

Pertanto, per individuare cicli in $\{x_i\}$ é sufficiente controllare per ogni intero positivo i se $x_i = x_{2i}$.

Come procediamo? Scegliamo x_0 a caso e calcoliamo

$$x_1 = H(x_0)$$
 $x_2 = H(H(x_0))$
 $x_2 = H(x_1)$ $x_4 = H(H(x_2))$
... $x_i = H(x_{i-1})$ $x_{2i} = H(H(x_{2(i-1)}))$

Quando $x_i = x_{2i}$ sappiamo che \exists un minimo j tra 0 ed i tale che $x_j = x_{j+i}$ e, quindi, (x_{j-1}, x_{j+i-1}) é una collisione per H.

Come lo troviamo? Ripetiamo al piú i volte un calcolo.

Poniamo all'inizio $y = x_0$; $z = x_i$.

Calcoliamo H(y) e H(z).

Se H(y) = H(z), allora (y, z) é una collisione; altrimenti, aggiorniamo y = H(y) e z = H(z) e ripetiamo il calcolo.

Quanto costa? Consideriamo la sequenza x_0, x_1, x_2, \ldots

Se modelliamo H come una funzione casuale, risulta per ogni y,

$$H(x) = y$$
 con probabilitá $1/2^{\ell}$.

(i valori sono cioé distribuiti indipendentemente ed uniformemente fino a quando la ripetizione non si presenta)

Pertanto ci aspettiamo che una ripetizione occorra con probabilità maggiore di 1/2 durante la generazione dei primi $q = \Theta(2^{\frac{\ell}{2}})$ termini della sequenza.

Se esiste una ripetizione nei primi q termini, l'algoritmo impiega al piú q passi per trovarla.

Sono stati messi a punto diversi attacchi che esibiscono un tradeoff tempo/spazio per **invertire** funzioni hash.

Si faccia riferimento al libro di testo per descrizione ed analisi.

E come trovare collisioni per messaggi significativi?

Con questo attacco Adv non ha piú controllo sugli x_i . Procediamo come segue:

- ullet Alice scrive ciascun messaggio in modo tale che ci siano $\ell-1$ parole intercambiabili
- definisce una funzione uno-a-uno $g:\{0,1\}^\ell \to \{0,1\}^*$ dove l' ℓ -esimo bit seleziona il tipo (0 o 1) del messaggio e l'i-esimo bit la parola intercambiabile.

Per esempio:

- 0: Bob é un buon/volenteroso e onesto/fidato lavoratore/dipendente
- 1: Bob é un fastidioso/problematico e saccente/irritante lavoratore/dipendente

g(0000) = Bob 'e un buon e onesto lavoratore

g(0001) = Bob é un buon e onesto dipendente

g(1010) = Bob é un fastidioso e irritante lavoratore

. . .

Definiamo ora $f:\{0,1\}^\ell o \{0,1\}^\ell$ come

$$f(x) = H(g(x)).$$

Alice puó trovare collisioni in f usando l'attacco del compleanno con poco spazio precedentemente descritto.

Risulta: x, x' collisione per $f \Rightarrow g(x)$ e g(x') collidono rispetto ad H

Se x e x' sono una collisione causale, con prob. 1/2 i loro bit "di tipo" sono diversi e l'attacco riesce. Altrimenti, si riprova ripetendo l'attacco dall'inizio.