

Rob J Hyndman

Functional time series

with applications in demography

2. Automatic time series forecasting

Outline

- 1 Functional time series
- 2 Exponential smoothing
- 3 ARIMA modelling
- 4 Forecasting functional time series
- **5** References

Functional principal components

$$y_t(x_i) = s_t(x_i) + \sigma_t(x_i)\varepsilon_{t,i},$$

$$s_t(x) = \mu(x) + \sum_{k=1}^{T-1} \beta_{t,k} \, \phi_k(x)$$

- **I** Estimate smooth functions $s_t(x)$ using weighted penalized regression splines.
- **2** Compute $\mu(x)$ as $\bar{s}(x)$ across years.
- **3** Compute $\beta_{t,k}$ and $\phi_k(x)$ using functional principal components.
- **To** forecast $y_t(x_i)$, we need forecasts of $\{\beta_{t,k}\}$.

Functional principal components

Functional principal components

Outline

- 1 Functional time series
- **2** Exponential smoothing
- 3 ARIMA modelling
- 4 Forecasting functional time series
- **5** References

		S	Seasonal Component		
	Trend	N	Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_d	(Additive damped)	A _d ,N	A_d ,A	A_d ,M	
М	(Multiplicative)	M,N	M,A	M,M	
M_d	(Multiplicative damped)	M _d ,N	M_d ,A	M _d ,M	

		S	easonal Cor	nponent
	Trend	N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d ,A	A _d ,M
М	(Multiplicative)	M,N	M,A	M,M
M_d	(Multiplicative damped)	M _d ,N	M_d ,A	M _d ,M

N,N: Simple exponential smoothing

		S	Seasonal Component		
	Trend	N	Α	M	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_d	(Additive damped)	A _d ,N	A_d ,A	A _d ,M	
М	(Multiplicative)	M,N	M,A	M,M	
M_d	(Multiplicative damped)	M _d ,N	M_d ,A	M _d ,M	

N,N: Simple exponential smoothing

A,N: Holt's linear method

		S	Seasonal Component		
	Trend	N	Α	M	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_d	(Additive damped)	A _d ,N	A_d ,A	A _d ,M	
М	(Multiplicative)	M,N	M,A	M,M	
M_d	(Multiplicative damped)	M _d ,N	M_d ,A	M _d ,M	

N,N: Simple exponential smoothing

A,N: Holt's linear method

A_d,N: Additive damped trend method

		S	easonal Cor	nponent
	Trend	N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d ,A	A _d ,M
М	(Multiplicative)	M,N	M,A	M,M
M_d	(Multiplicative damped)	M _d ,N	M_d ,A	M _d ,M

N,N: Simple exponential smoothing

A,N: Holt's linear method

A_d,N: Additive damped trend method

M,N: Exponential trend method

		S	Seasonal Component		
	Trend	N	Α	M	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_d	(Additive damped)	A _d ,N	A_d ,A	A _d ,M	
М	(Multiplicative)	M,N	M,A	M,M	
M_{d}	(Multiplicative damped)	M _d ,N	M _d ,A	M _d ,M	

N,N: Simple exponential smoothing

A,N: Holt's linear method

A_d,N: Additive damped trend method

M,N: Exponential trend method

M_d,N: Multiplicative damped trend method

		S	Seasonal Component		
	Trend	N	Α	M	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_d	(Additive damped)	A _d ,N	A_d ,A	A _d ,M	
М	(Multiplicative)	M,N	M,A	M,M	
M_d	(Multiplicative damped)	M _d ,N	M_d ,A	M _d ,M	

N,N: Simple exponential smoothing

A,N: Holt's linear method

A_d,N: Additive damped trend method

M,N: Exponential trend method

M_d,N: Multiplicative damped trend method

A,A: Additive Holt-Winters' method

		S	easonal Cor	nponent
	Trend	N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d ,A	A _d ,M
М	(Multiplicative)	M,N	M,A	M,M
M_d	(Multiplicative damped)	M _d ,N	M_d ,A	M _d ,M

N,N: Simple exponential smoothing

A,N: Holt's linear method

A_d,N: Additive damped trend method

M,N: Exponential trend method

M_d,N: Multiplicative damped trend method

A,A: Additive Holt-Winters' method

A,M: Multiplicative Holt-Winters' method

		Seasonal Component		
	Trend	N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d , A	A _d ,M
M	(Multiplicative)	M,N	M,A	M,M
M_d	(Multiplicative damped)	M _d ,N	M_d ,A	M _d ,M

There are 15 separate exponential smoothing methods.

		Se	easonal Cor	nponent
	Trend	N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d ,A	A _d ,M
М	(Multiplicative)	M,N	M,A	M,M
M_d	(Multiplicative damped)	M _d ,N	M_d ,A	M_d , M

- There are 15 separate exponential smoothing methods.
- Each can have an additive or multiplicative error, giving 30 separate models.

		S	easonal Cor	nponent
	Trend	N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d , A	A_d ,M
М	(Multiplicative)	M,N	M,A	M,M
M_d	(Multiplicative damped)	M _d ,N	M_d ,A	M _d ,M

General notation ETS: ExponenTial Smoothing

		S	easonal Component		
	Trend	N	Α	M	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_d	(Additive damped)	A _d ,N	A_d , A	A _d ,M	
М	(Multiplicative)	M,N	M,A	M,M	
M_d	(Multiplicative damped)	M _d ,N	M_d ,A	M_d , M	

General notation ETS: ExponenTial Smoothing

		Seasonal Component		
Trend		N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d ,A	A _d ,M
М	(Multiplicative)	M,N	M,A	M,M
M_d	(Multiplicative damped)	M _d ,N	M_d ,A	M _d ,M

General notation E T S : **E**xponen**T**ial **S**moothing

Trend

Examples:

A,N,N: Simple exponential smoothing with additive errors

A,A,N: Holt's linear method with additive errors

		Seasonal Component		
Trend		N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d , A	A_d , M
М	(Multiplicative)	M,N	M,A	M,M
M_d	(Multiplicative damped)	M _d ,N	M_d ,A	M_d , M

General notation

E T S : **E**xponen**T**ial **S**moothing

Trend Seasonal

Examples:

A,N,N: Simple exponential smoothing with additive errors

A,A,N: Holt's linear method with additive errors

		Seasonal Component		
Trend		N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d ,A	A_d ,M
М	(Multiplicative)	M,N	M,A	M,M
M_d	(Multiplicative damped)	M _d ,N	M_d ,A	M_d , M

General notation ETS: ExponenTial Smoothing

Error Trend Seasonal

Examples:

A,N,N: Simple exponential smoothing with additive errors

A,A,N: Holt's linear method with additive errors

	Seasonal Component			mponent
Trend		N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d ,A	A_d ,M
М	(Multiplicative)	M,N	M,A	M,M
M_d	(Multiplicative damped)	M _d ,N	M_d ,A	M_d , M

General notation $\nearrow E \uparrow S$: **E**xponen**T**ial **S**moothing

Error Trend Seasonal

Examples:

A,N,N: Simple exponential smoothing with additive errors

A,A,N: Holt's linear method with additive errors

Innovations state space models

- → All ETS models can be written in innovations state space form.
- Additive and multiplicative versions give the same point forecasts but different prediction intervals.

General notation ETS: ExponenTial Smoothing

Error Trend Seasonal

Examples:

A,N,N: Simple exponential smoothing with additive errors

A,A,N: Holt's linear method with additive errors

SES with additive errors.

Forecast equation
Observation equation
State equation

$$\begin{aligned} \hat{y}_{t+h|t} &= \ell_t \\ y_t &= \ell_{t-1} + \varepsilon_t \\ \ell_t &= \ell_{t-1} + \alpha \varepsilon_t \end{aligned}$$

- Forecast errors: $\varepsilon_t = y_t \hat{y}_{t|t-1}$
- "innovations" or "single source of error" because same error process, ε_t .
- Observation equation: relationship between observations and states.
- State equation: evolution of the state through time.

SES with additive errors.

Forecast equation
Observation equation
State equation

$$\hat{y}_{t+h|t} = \ell_t$$

$$y_t = \ell_{t-1} + \varepsilon_t$$

$$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$$

- Forecast errors: $\varepsilon_t = y_t \hat{y}_{t|t-1}$
- "innovations" or "single source of error" because same error process, ε_t .
- Observation equation: relationship between observations and states.
- State equation: evolution of the state through time.

SES with additive errors.

Forecast equation
Observation equation
State equation

$$\hat{y}_{t+h|t} = \ell_t$$

$$y_t = \ell_{t-1} + \varepsilon_t$$

$$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$$

- Forecast errors: $\varepsilon_t = y_t \hat{y}_{t|t-1}$
- "innovations" or "single source of error" because same error process, ε_t .
- Observation equation: relationship between observations and states.
- State equation: evolution of the state through time.

SES with additive errors.

Forecast equation
Observation equation
State equation

$$\hat{y}_{t+h|t} = \ell_t$$

$$y_t = \ell_{t-1} + \varepsilon_t$$

$$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$$

- Forecast errors: $\varepsilon_t = y_t \hat{y}_{t|t-1}$
- "innovations" or "single source of error" because same error process, ε_t .
- Observation equation: relationship between observations and states.
- State equation: evolution of the state through time.

ETS(M,N,N)

SES with multiplicative errors.

Forecast equation
Observation equation
State equation

$$\hat{y}_{t+h|t} = \ell_t$$
 $y_t = \ell_{t-1}(1 + \varepsilon_t)$
 $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$

- Relative forecast errors: $\varepsilon_t = \frac{y_t y_{t|t-1}}{\circ}$
- Models with additive and multiplicative errors with the same parameters generate the same point forecasts but different prediction interval

ETS(M,N,N)

SES with multiplicative errors.

Forecast equation
Observation equation
State equation

$$\begin{aligned} \hat{y}_{t+h|t} &= \ell_t \\ y_t &= \ell_{t-1} (1 + \varepsilon_t) \\ \ell_t &= \ell_{t-1} (1 + \alpha \varepsilon_t) \end{aligned}$$

- Relative forecast errors: $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}}$
- Models with additive and multiplicative errors with the same parameters generate the same point forecasts but different prediction intervals.

ETS(M,N,N)

SES with multiplicative errors.

Forecast equation
Observation equation
State equation

$$\hat{y}_{t+h|t} = \ell_t$$
 $y_t = \ell_{t-1}(1 + \varepsilon_t)$
 $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$

- Relative forecast errors: $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}}$
- Models with additive and multiplicative errors with the same parameters generate the same point forecasts but different prediction intervals.

ETS(A,A,N)

Holt's linear method with additive errors.

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$
Observation equation $y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$
State equations $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$
 $b_t = b_{t-1} + \beta \varepsilon_t$

■ Forecast errors: $\varepsilon_t = y_t - \hat{y}_{t|t-1}$

ETS(A,A,A)

Holt-Winters additive method with additive errors.

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t-m+h_m^+}$$
 Observation equation $y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$ State equations $\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$ $b_t = b_{t-1} + \beta \varepsilon_t$ $s_t = s_{t-m} + \gamma \varepsilon_t$

- Forecast errors: $\varepsilon_t = y_t \hat{y}_{t|t-1}$
- $h_m^+ = |(h-1) \mod m| + 1.$

Additive error models

Trend		Seasonal	
Hend	N	A	M
		A	IVI
N	$y_t = \ell_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = \ell_{t-1} s_{t-m} + \varepsilon_t$
	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / \ell_{t-1}$
	$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$
Α	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t / s_{t-m}$
	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + b_{t-1})$
	$y_t = \ell_{t-1} + \phi b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + \phi b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} + \varepsilon_t$
A_d	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t / s_{t-m}$
	$b_t = \phi b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + \phi b_{t-1})$
	$y_t = \ell_{t-1}b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1}b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = \ell_{t-1} b_{t-1} s_{t-m} + \varepsilon_t$
M	$\ell_t = \ell_{t-1}b_{t-1} + \alpha\varepsilon_t$	$\ell_t = \ell_{t-1}b_{t-1} + \alpha\varepsilon_t$	$\ell_t = \ell_{t-1} b_{t-1} + \alpha \varepsilon_t / s_{t-m}$
	$b_t = b_{t-1} + \beta \varepsilon_t / \ell_{t-1}$	$b_t = b_{t-1} + \beta \varepsilon_t / \ell_{t-1}$	$b_t = b_{t-1} + \beta \varepsilon_t / (s_{t-m} \ell_{t-1})$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} b_{t-1})$
	$y_t = \ell_{t-1} b_{t-1}^{\phi} + \varepsilon_t$	$y_t = \ell_{t-1} b_{t-1}^{\phi} + s_{t-m} + \varepsilon_t$	$y_t = \ell_{t-1} b_{t-1}^{\phi} s_{t-m} + \varepsilon_t$
M_d	$\ell_t = \ell_{t-1} b_{t-1}^{\phi} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} b_{t-1}^{\phi} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} b_{t-1}^{\phi} + \alpha \varepsilon_t / s_{t-m}$
u	$b_t = b_{t-1}^{\phi} + \beta \varepsilon_t / \ell_{t-1}$	$b_t = b_{t-1}^{\phi} + \beta \varepsilon_t / \ell_{t-1}$	$b_t = b_{t-1}^{\phi} + \beta \varepsilon_t / (s_{t-m} \ell_{t-1})$
	$v_t - v_{t-1} + \rho \varepsilon_t / \varepsilon_{t-1}$		
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} b_{t-1}^{\varphi})$

Multiplicative error models

Trend	Seasonal			
	N	Α	M	
N	$y_t = \ell_{t-1}(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = \ell_{t-1} s_{t-m} (1 + \varepsilon_t)$	
	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + \alpha(\ell_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$	
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$	
	$y_t = (\ell_{t-1} + b_{t-1})(1+\varepsilon_t)$	$y_t = (\ell_{t-1} + b_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + b_{t-1})s_{t-m}(1+\varepsilon_t)$	
A	$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$	
	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t$	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$	
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + b_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$	
	$y_t = (\ell_{t-1} + \phi b_{t-1})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + \phi b_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} (1 + \varepsilon_t)$	
A_d	$\ell_t = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t)$ $b_t = \phi b_{t-1} + \beta(\ell_{t-1} + \phi b_{t-1})\varepsilon_t$	$\ell_{t} = \ell_{t-1} + \phi b_{t-1} + \alpha (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_{t}$ $b_{t} = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_{t}$	$\ell_t = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t)$ $b_t = \phi b_{t-1} + \beta(\ell_{t-1} + \phi b_{t-1})\varepsilon_t$	
	$v_t = \varphi v_{t-1} + \rho(\epsilon_{t-1} + \varphi v_{t-1})\epsilon_t$	$s_{t} = \phi b_{t-1} + \beta (\epsilon_{t-1} + \phi b_{t-1} + s_{t-m}) \epsilon_{t}$ $s_{t} = s_{t-m} + \gamma (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \epsilon_{t}$	$s_t = \varphi v_{t-1} + \rho(\varepsilon_{t-1} + \varphi v_{t-1})\varepsilon_t$ $s_t = s_{t-m}(1 + \gamma \varepsilon_t)$	
	$y = \ell - h - (1 + \epsilon)$	$y_{t} = (\ell_{t-1}b_{t-1} + s_{t-m})(1 + \varepsilon_{t})$	$y_t = \ell_{t-1} b_{t-1} s_{t-m} (1 + \varepsilon_t)$	
М	$y_t = \ell_{t-1} b_{t-1} (1 + \varepsilon_t)$ $\ell_t = \ell_{t-1} b_{t-1} (1 + \alpha \varepsilon_t)$	$y_t - (\epsilon_{t-1}b_{t-1} + s_{t-m})(1 + \epsilon_t)$ $\ell_t = \ell_{t-1}b_{t-1} + \alpha(\ell_{t-1}b_{t-1} + s_{t-m})\epsilon_t$	$\ell_t = \ell_{t-1}b_{t-1}(1 + \alpha \varepsilon_t)$ $\ell_t = \ell_{t-1}b_{t-1}(1 + \alpha \varepsilon_t)$	
	$b_t = b_{t-1}(1 + \beta \varepsilon_t)$	$b_t = b_{t-1} + \beta(\ell_{t-1}b_{t-1} + s_{t-m})\varepsilon_t/\ell_{t-1}$	$b_t = b_{t-1}(1 + \beta \varepsilon_t)$	
	,	$s_t = s_{t-m} + \gamma (\ell_{t-1} b_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$	
	$y_t = \ell_{t-1} b_{t-1}^{\phi} (1 + \varepsilon_t)$	$y_t = (\ell_{t-1}b_{t-1}^{\phi} + s_{t-m})(1 + \varepsilon_t)$	$y_t = \ell_{t-1} b_{t-1}^{\phi} s_{t-m} (1 + \varepsilon_t)$	
M_d	$\ell_t = \ell_{t-1} b_{t-1}^{\phi} (1 + \alpha \varepsilon_t)$	$\ell_{t} = \ell_{t-1} b_{t-1}^{\phi} + \alpha (\ell_{t-1} b_{t-1}^{\phi} + s_{t-m}) \varepsilon_{t}$	$\ell_t = \ell_{t-1} b_{t-1}^{\phi} (1 + \alpha \varepsilon_t)$	
	$b_t = b_{t-1}^{\phi} (1 + \beta \varepsilon_t)$	$b_t = b_{t-1}^{\phi} + \beta(\ell_{t-1}b_{t-1}^{\phi} + s_{t-m})\varepsilon_t/\ell_{t-1}$	$b_t = b_{t-1}^{\phi} (1 + \beta \varepsilon_t)$	
		$s_t = s_{t-m} + \gamma (\ell_{t-1} b_{t-1}^{\phi} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$	

Innovations state space models

Let
$$\mathbf{x}_t = (\ell_t, b_t, s_t, s_{t-1}, \dots, s_{t-m+1})$$
 and $\varepsilon_t \stackrel{\text{iid}}{\sim} \mathsf{N}(0, \sigma^2)$.

$$y_t = \underbrace{h(\mathbf{x}_{t-1})}_{\hat{y}_{t|t-1}} + \underbrace{k(\mathbf{x}_{t-1})\varepsilon_t}_{e_t}$$
 Observation equation

$\mathbf{x}_t = f(\mathbf{x}_{t-1}) + g(\mathbf{x}_{t-1})\varepsilon_t$ State equation

Additive errors:

$$k(\mathbf{x}_{t-1}) = 1.$$
 $y_t = \hat{y}_{t|t-1} + \varepsilon_t.$

Multiplicative errors:

$$k(\mathbf{x}_{t-1}) = \hat{y}_{t|t-1}.$$
 $y_t = \hat{y}_{t|t-1}(1 + \varepsilon_t).$ $\varepsilon_t = (y_t - \hat{y}_{t|t-1})/\hat{y}_{t|t-1}$ is relative error.

Some unstable models

- Some of the combinations of (Error, Trend, Seasonal) can lead to numerical difficulties; see equations with division by a state.
- These are: ETS(M,M,A), ETS(M,M_d,A), ETS(A,N,M), ETS(A,A,M), ETS(A,A_d,M), ETS(A,M,N), ETS(A,M,A), ETS(A,M,M), ETS(A,M_d,N), ETS(A,M_d,A), and ETS(A,M_d,M).

Some unstable models

- Some of the combinations of (Error, Trend, Seasonal) can lead to numerical difficulties; see equations with division by a state.
- These are: ETS(M,M,A), ETS(M,M_d,A), ETS(A,N,M), ETS(A,A,M), ETS(A,A_d,M), ETS(A,M,N), ETS(A,M,A), ETS(A,M,M), ETS(A,M_d,N), ETS(A,M_d,A), and ETS(A,M_d,M).

Exponential smoothing models

Additive Error		Seasonal Component		
	Trend	N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	A,N,N	A,N,A	<u> </u>
Α	(Additive)	A,A,N	A,A,A	<u>^,^,M_</u>
A_d	(Additive damped)	A,A _d ,N	A,A_d,A	<u> </u>
М	(Multiplicative)	<u> </u>	Λ.Μ.Λ.	<u> </u>
M_d	(Multiplicative damped)	<u> </u>	<u>^,M</u> _,A	<mark>△-M</mark> M

Multiplicative Error		Seasonal Component		
	Trend	N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	M,N,N	M,N,A	M,N,M
Α	(Additive)	M,A,N	M,A,A	M,A,M
A_d	(Additive damped)	M,A _d ,N	M,A_d,A	M,A _d ,M
М	(Multiplicative)	M,M,N	M_M_A	M,M,M
M_d	(Multiplicative damped)	M,M _d ,N	$M_{M_{G}}A$	M,M _d ,M

Estimation and model selection

Estimation

$$\begin{aligned} L^*(\boldsymbol{\theta}, \boldsymbol{x}_0) &= T \log \bigg(\sum_{t=1}^T \varepsilon_t^2 / k^2(\boldsymbol{x}_{t-1}) \bigg) + 2 \sum_{t=1}^T \log |k(\boldsymbol{x}_{t-1})| \\ &= -2 \log(\text{Likelihood}) + \text{constant} \end{aligned}$$

Minimize wrt $\theta = (\alpha, \beta, \gamma, \phi)$ and initial states $\mathbf{x}_0 = (\ell_0, b_0, s_0, s_{-1}, \dots, s_{-m+1})$.

Model selection

 Select amongst all models using AIC (or similar).

Estimation and model selection

Estimation

$$\begin{aligned} L^*(\boldsymbol{\theta}, \boldsymbol{x}_0) &= T \log \bigg(\sum_{t=1}^T \varepsilon_t^2 / k^2(\boldsymbol{x}_{t-1}) \bigg) + 2 \sum_{t=1}^T \log |k(\boldsymbol{x}_{t-1})| \\ &= -2 \log(\text{Likelihood}) + \text{constant} \end{aligned}$$

■ Minimize wrt $\theta = (\alpha, \beta, \gamma, \phi)$ and initial states $\mathbf{x}_0 = (\ell_0, b_0, s_0, s_{-1}, \dots, s_{-m+1})$.

Model selection

Select amongst all models using AIC (or similar).

Estimation and model selection

Estimation

$$\begin{aligned} L^*(\boldsymbol{\theta}, \boldsymbol{x}_0) &= T \log \bigg(\sum_{t=1}^T \varepsilon_t^2 / k^2(\boldsymbol{x}_{t-1}) \bigg) + 2 \sum_{t=1}^T \log |k(\boldsymbol{x}_{t-1})| \\ &= -2 \log(\text{Likelihood}) + \text{constant} \end{aligned}$$

■ Minimize wrt $\theta = (\alpha, \beta, \gamma, \phi)$ and initial states $\mathbf{x}_0 = (\ell_0, b_0, s_0, s_{-1}, \dots, s_{-m+1})$.

Model selection

Select amongst all models using AIC (or similar).

From Hyndman et al. (IJF, 2002):

- Apply each model that is appropriate to the data. Optimize parameters and initial values using MLE (or some other criterion).
- Select best method using AIC:

$$AIC = -2 \log(Likelihood) + 2p$$

- where p = # parameters.
- Produce forecasts using best method.
- Obtain prediction intervals using underlying state space model.

From Hyndman et al. (IJF, 2002):

- Apply each model that is appropriate to the data. Optimize parameters and initial values using MLE (or some other criterion).
- Select best method using AIC:

$$AIC = -2 \log(Likelihood) + 2p$$

where p = # parameters.

- Produce forecasts using best method.
- Obtain prediction intervals using underlying state space model.

From Hyndman et al. (IJF, 2002):

- Apply each model that is appropriate to the data. Optimize parameters and initial values using MLE (or some other criterion).
- Select best method using AIC:

$$AIC = -2 \log(Likelihood) + 2p$$

- where p = # parameters.
- Produce forecasts using best method.
- Obtain prediction intervals using underlying state space model.

From Hyndman et al. (IJF, 2002):

- Apply each model that is appropriate to the data. Optimize parameters and initial values using MLE (or some other criterion).
- Select best method using AIC:

$$AIC = -2 \log(Likelihood) + 2p$$

- where p = # parameters.
- Produce forecasts using best method.
- Obtain prediction intervals using underlying state space model.

From Hyndman et al. (IJF, 2002):

- Apply each model that is appropriate to the data. Optimize parameters and initial values using MLE (or some other criterion).
- Select best method using AIC:

$$AIC = -2 \log(Likelihood) + 2p$$

- where p = # parameters.
- Produce forecasts using best method.
- Obtain prediction intervals using underlying state space model.

Method performed very well in M3 competition.

- Point forecasts obtained by iterating equations for t = T + 1, ..., T + h, setting $\varepsilon_t = 0$ for t > T.
- Not the same as $E(y_{t+h}|y_1,...,y_t)$ unless trend and seasonality are both additive.
- Point forecasts for ETS(A,x,y) are identical to ETS(M,x,y) if the parameters are the same.
- Prediction intervals will differ between models with additive and multiplicative methods.
- Exact PI available for many models.
- Otherwise, simulate future sample paths, conditional on last estimate of states, and obtain PI from percentiles of simulated paths

- Point forecasts obtained by iterating equations for t = T + 1, ..., T + h, setting $\varepsilon_t = 0$ for t > T.
- Not the same as $E(y_{t+h}|y_1,...,y_t)$ unless trend and seasonality are both additive.
- Point forecasts for ETS(A,x,y) are identical to ETS(M,x,y) if the parameters are the same.
- Prediction intervals will differ between models with additive and multiplicative methods.
- Exact PI available for many models.
- Otherwise, simulate future sample paths, conditional on last estimate of states, and obtain PI from percentiles of simulated paths.

- Point forecasts obtained by iterating equations for t = T + 1, ..., T + h, setting $\varepsilon_t = 0$ for t > T.
- Not the same as $E(y_{t+h}|y_1,...,y_t)$ unless trend and seasonality are both additive.
- Point forecasts for ETS(A,x,y) are identical to ETS(M,x,y) if the parameters are the same.
- Prediction intervals will differ between models with additive and multiplicative methods.
- Exact PI available for many models.
- Otherwise, simulate future sample paths, conditional on last estimate of states, and obtain PI from percentiles of simulated paths

- Point forecasts obtained by iterating equations for t = T + 1, ..., T + h, setting $\varepsilon_t = 0$ for t > T.
- Not the same as $E(y_{t+h}|y_1,...,y_t)$ unless trend and seasonality are both additive.
- Point forecasts for ETS(A,x,y) are identical to ETS(M,x,y) if the parameters are the same.
- Prediction intervals will differ between models with additive and multiplicative methods.
- Exact PI available for many models.
- Otherwise, simulate future sample paths, conditional on last estimate of states, and obtain PI from percentiles of simulated paths.

- Point forecasts obtained by iterating equations for t = T + 1, ..., T + h, setting $\varepsilon_t = 0$ for t > T.
- Not the same as $E(y_{t+h}|y_1,...,y_t)$ unless trend and seasonality are both additive.
- Point forecasts for ETS(A,x,y) are identical to ETS(M,x,y) if the parameters are the same.
- Prediction intervals will differ between models with additive and multiplicative methods.
- Exact PI available for many models.
- Otherwise, simulate future sample paths, conditional on last estimate of states, and obtain PI from percentiles of simulated paths.

- Point forecasts obtained by iterating equations for t = T + 1, ..., T + h, setting $\varepsilon_t = 0$ for t > T.
- Not the same as $E(y_{t+h}|y_1,...,y_t)$ unless trend and seasonality are both additive.
- Point forecasts for ETS(A,x,y) are identical to ETS(M,x,y) if the parameters are the same.
- Prediction intervals will differ between models with additive and multiplicative methods.
- Exact PI available for many models.
- Otherwise, simulate future sample paths, conditional on last estimate of states, and obtain PI from percentiles of simulated paths.

Exponential smoothing

Exponential smoothing

Exponential smoothing

```
> fit
ETS (M, Md, M)
  Smoothing parameters:
    alpha = 0.3318
    beta = 4e-04
    qamma = 1e-04
    phi = 0.9695
  Initial states:
    l = 0.4003
    b = 1.0233
    s = 0.8575 \ 0.8183 \ 0.7559 \ 0.7627 \ 0.6873 \ 1.2884
        1.3456 1.1867 1.1653 1.1033 1.0398 0.9893
  sigma: 0.0651
       AIC AICc
                             BIC
-121.97999 -118.68967 -65.57195
```

Outline

- 1 Functional time series
- 2 Exponential smoothing
- 3 ARIMA modelling
- 4 Forecasting functional time series
- **5** References

ARIMA modelling

Conventional ARIMA forecasting

- calculate forecasts from the best fitting ARIMA model
- Not necessarily the best forecasting ARIMA model.
- Model identification subjective and complex.

ARIMA modelling

Conventional ARIMA forecasting

- calculate forecasts from the best fitting ARIMA model
- Not necessarily the best forecasting ARIMA model.
- Model identification subjective and complex.

ARIMA modelling

Conventional ARIMA forecasting

- calculate forecasts from the best fitting ARIMA model
- Not necessarily the best forecasting ARIMA model.
- Model identification subjective and complex.

Non-seasonal ARIMA model

$$egin{aligned} y_t &\sim \mathsf{ARIMA}(p,d,q) \ y_t' &= (1-B)^d y_t \ y_t' &= c + \sum_{j=1}^p \phi_j y_{t-j}' + arepsilon_t - \sum_{j=1}^q heta_j arepsilon_{t-j} \end{aligned}$$

p AR parameters: $\phi = (\phi_1, \dots, \phi_p)$ q MA parameters: $\theta = (\theta_1, \dots, \theta_q)$ d is the differencing order

$$\phi(B)(1-B)^d y_t = c + \theta(B)\varepsilon_t$$

Need to select appropriate orders p, q, d, and whether to include c.

A non-seasonal ARIMA process

$$\phi(B)(1-B)^d y_t = c + \theta(B)\varepsilon_t$$

Need to select appropriate orders p, q, d, and whether to include c.

A non-seasonal ARIMA process

$$\phi(B)(1-B)^d y_t = c + \theta(B)\varepsilon_t$$

Need to select appropriate orders p, q, d, and whether to include c.

Hyndman & Khandakar (JSS, 2008) algorithm:

- Select no. differences d via KPSS unit root test.
- Select p, q, c by minimising AIC.
- Use stepwise search to traverse model space, starting with a simple model and considering nearby variants.

AIC
$$c=-2\log(L)+2(p+q+k+1)\left(\frac{\tau}{\tau-p-q-k-2}\right)$$
. where L is the maximised likelihood fitted to the *differenced* data, $k=1$ if $c\neq 0$ and $k=0$ otherwise.

- **Step 1:** Select current model (with smallest AIC) from:
 - ARIMA(2, d, 2)
 - ARIMA(0, d, 0)
 - ARIMA(1 d 0)
 - ARIMA(1, a, 0)
 - ARIMA(0, d, 1)
- **Step 2:** Consider variations of current model:
 - ullet vary one of p,q, from current model by ± 1
 - p,q both vary from current model by ± 1
 - Include/exclude *c* from current model

Model with lowest AIC becomes current model.

Repeat Step 2 until no lower AIC can be found.

AIC
$$c=-2\log(L)+2(p+q+k+1)\left(\frac{\tau}{\tau-p-q-k-2}\right)$$
. where L is the maximised likelihood fitted to the *differenced* data, $k=1$ if $c\neq 0$ and $k=0$ otherwise.

- **Step 1:** Select current model (with smallest AIC) from:
 - ARIMA(2, d, 2)
 - ARIMA(0, d, 0)
 - ARIMA(1, d, 0)
 - ARIMA(0, d, 1)
- **Step 2:** Consider variations of current model:
 - vary one of p, q, from current model by ± 1
 - ullet p,q both vary from current model by ± 1
 - Include/exclude *c* from current model

Model with lowest AIC becomes current model.

Repeat Step 2 until no lower AIC can be found.

AIC
$$c=-2\log(L)+2(p+q+k+1)\left(\frac{T}{T-p-q-k-2}\right)$$
. where L is the maximised likelihood fitted to the *differenced* data, $k=1$ if $c\neq 0$ and $k=0$ otherwise.

- **Step 1:** Select current model (with smallest AIC) from:
 - ARIMA(2, d, 2)
 - ARIMA(0, d, 0)
 - ARIMA(1, d, 0)
 - ARIMA(0, d, 1)
- **Step 2:** Consider variations of current model:
 - ullet vary one of p,q, from current model by ± 1
 - p,q both vary from current model by ± 1
 - Include/exclude *c* from current model

Model with lowest AIC becomes current model.

AIC
$$c=-2\log(L)+2(p+q+k+1)\left(\frac{T}{T-p-q-k-2}\right)$$
. where L is the maximised likelihood fitted to the differenced data, $k=1$ if $c\neq 0$ and $k=0$ otherwise.

- **Step 1:** Select current model (with smallest AIC) from:
 - ARIMA(2, d, 2)
 - ARIMA(0, d, 0)
 - ARIMA(1, d, 0)
 - ARIMA(0, d, 1)
- **Step 2:** Consider variations of current model:
 - ullet vary one of p,q, from current model by ± 1
 - p,q both vary from current model by ± 1
 - Include/exclude *c* from current model

Model with lowest AIC becomes current model.

Repeat Step 2 until no lower AIC can be found.

A seasonal ARIMA process

$$\Phi(B^m)\phi(B)(1-B)^d(1-B^m)^Dy_t=c+\Theta(B^m)\theta(B)\varepsilon_t$$

Need to select appropriate orders p, q, d, P, Q, D, and whether to include c.

Hyndman & Khandakar (JSS, 2008) algorithm:

- Select no. differences d via KPSS unit root test.
- Select D using OCSB unit root test.
- Select p, q, P, Q, c by minimising AIC.
- Use stepwise search to traverse model space, starting with a simple model and considering nearby variants.

Automatic seasonal ARIMA

Auto ARIMA

Auto ARIMA

```
> fit
Series: h02
ARIMA(3,1,3)(0,1,1)[12]
Coefficients:
        ar1
           ar2 ar3 ma1 ma2
                                            ma3
     -0.3648 -0.0636 0.3568 -0.4850 0.0479 -0.353
s.e. 0.2198 0.3293 0.1268 0.2227 0.2755
                                           0.212
       sma1
     -0.5931
s.e. 0.0651
```

sigma^2 estimated as 0.002706: log likelihood=290.25

ATC=-564.5 ATCc=-563.71 BTC=-538.48

Outline

- 1 Functional time series
- 2 Exponential smoothing
- 3 ARIMA modelling
- 4 Forecasting functional time series
- **5** References

Outline

- 1 Functional time series
- 2 Exponential smoothing
- 3 ARIMA modelling
- 4 Forecasting functional time series
- **5** References

Selected references

Hyndman, Koehler, Snyder, Grose (2002). "A state space framework for automatic forecasting using exponential smoothing methods". *International Journal of Forecasting* **18**(3), 439–454

Hyndman, Koehler, Ord, Snyder (2008). Forecasting with exponential smoothing: the state space approach. Berlin: Springer-Verlag.

www.exponentialsmoothing.net

Hyndman, Khandakar (2008). "Automatic time series forecasting: the forecast package for R"... *Journal of Statistical Software* **26**(3), 1–22.

Hyndman (2014). forecast: Forecasting functions for time series and linear models.

cran.r-project.org/package=forecast