PROBLEM SET 1

TKT4150 Biomechanics

Main topics: Eulerian and Lagrangian coordinate systems. Extensive and intensive properties. Reynolds' transport theorem. Cauchy's theorem. Cauchy equilibrium equations.

(1) Eulerian vs. Lagrangian coordinate systems

In continuum mechanics, a coordinate system has to be defined. Two main alternatives exist: Eulerian and Lagrangian.

- a) Explain the difference between the two coordinate systems, and provide a simple drawing to support it.
- b) Based on the different coordinate systems, we get different kinds of derivatives. Show how you can use the chain rule to establish the *material derivative*.

(2) Reynolds' transport theorem

The fundamental principles in mechanics; mass, momentum and energy conservation, are all valid for particle mechanics. In cases where it is inconvenient or impossible to track particles in a system, a different approach is sought. The equations representing these principles can be transformed to be valid for a predefined bounded volume; a control volume. This is done using the Reynolds' transport theorem.

- a) Explain the differences between an extensive and an intensive property.
- b) Derive Reynolds' transport theorem.
- c) Use Reynolds' transport theorem to establish the control volume version of the mass conservation equation.
- d) Consider Figure 1. Apply Reynolds' transport theorem applied to momentum to determine the pressure drop from A_1 to A_2 . Show your control volume. You may neglect viscous effects along the wall of the pipe.

Figure 1: Fluid flows through a narrow pipe with area A_1 at velocity v_1 into a larger pipe with area A_2 with a velocity v_2 shortly after the junction.

(3) Velocity field

 $A\ velocity\ field\ is\ given\ by$

$$v_1 = \frac{-\alpha x_1}{t_0 - t}, \quad v_2 = \frac{\alpha x_2}{t_0 - t}, \quad v_3 = 0$$
 (1)

where α and t_0 are constants.

- a) Show that the flow is volume preserving, or *isochoric*.
- b) Determine the local acceleration, the convective acceleration and the particle acceleration $\dot{\mathbf{v}}.$