Proof of Lemma 9

Let (S,T) be a cut of G. Then

$$f(S,T) = f(S,V) - f(S,S) = f(s,V) + \underbrace{f(S-s,V)}_{=0, \text{ Def 16a) flow cons}} = f(s,V) = |f|.$$

Proof of Corollary 4

Let f be any flow, let (S,T) be any cut. Then

$$|f| \underset{\text{L9}}{=} f(S,T) = \sum_{u \in S} \sum_{v \in T} \underbrace{f(u,v)}_{\leq c(u,v)} \underset{\text{cap constr}}{\leq} \sum_{u \in S} \sum_{v \in T} c(u,v) = c(S,T)$$

Proof of Theorem 12

We show $a) \Rightarrow b) \Rightarrow c) \Rightarrow a)$,,a) $\Rightarrow b$)"

Suppose t.t.c. that f is maximum flow, but G_f has augmenting path P. Then, by corollary $3, f + f_P$, with

$$f_P(u,v) = \begin{cases} c_f(P), & \text{if } (u,v) \in P \\ -c_f(P), & \text{if } (v,u) \in P \\ 0, \text{ otherwise} \end{cases}$$

is a flow in G with $|f + f_P| > |f|$. Contradiction!

 $,,b) \Rightarrow c$ "

Let f be such that G_f does not contain any augmenting path. Define

$$S := \{ v \in V | s \underset{G_f}{\leadsto} v \}, \qquad T := V - S$$

Then $s \in S, t \in T$ and $S \cup T = V, S \cap T = \emptyset$, so (S, T) is a cut.

For each $(u, v) \in S \times T$ we have f(u, v) = c(u, v) because $c_f(u, v) = c(u, v) - f(u, v) = 0$

$$s \rightarrow u \not\rightarrow v \stackrel{T}{t}$$

By Lemma 9 |f| = f(S, T) = c(S, T).

 $,c) \Rightarrow a)$ "

By corollary $4 |f| \le c(S, T)$ for all cuts (S, T) in G.

So |f| = c(S, T) implies that f is maximum.

Proof of corollary 5

FordFulkerson starts with an admissible flow $f \equiv 0$.

As long as an augmenting path P exists in G_f we have that the function adds a flow f_P to f, resulting in an admissible flow $f + f_P$, with $|f + f_P| > |f|$. (Cor 3)

After the while-loop G_f does not contain an augmenting path and therefore f is maximum (Theorem 12). In each iteration of the while-loop the value of |f| is increased by at least 1 (c is integral!). The computation of an augmenting path can be done in $\mathcal{O}(|E|)$. \rightsquigarrow Total $\mathcal{O}(|E| \cdot |f|)$.

Proof of Note 10

a) Let $u \in V$, $P = (u = u_0, u_1, u_2, \dots, u_k = t)$ be a shortest path from u to t in G_f . Then $\delta_{G_f}(u, t) = k$ and

$$d(u_k) = 0 = \delta_{G_f}(u_k, t)$$

$$d(u_{k-1}) \le d(u_k) + 1 = 1$$

$$d(u_{k-2}) \le d(u_{k-1}) + 1 \le 2$$

$$\vdots$$

$$d(u) = d(u_0) \le d(u_1) + 1 \le k = \delta_{G_f}(u, t)$$

- b) By a) $\delta_{G_f}(s,t) \geq d(s) \geq |V|$, and thus no simple path from s to t in G_f exists.
- c) Let P be a admissible path in G_f from s to t. Then P is an augmenting path $(c_f(u,v)>0!)$). Since d(u)=d(v)+1 $\forall (u,v)\in P$ we have that d(s)= number of edges of P. Since $d(s)\leq \delta_{G_f}(s,t)$, P must be a shortest path.