regsensitivity: A Stata Package for Regression Sensitivity Analysis

Paul Diegert* Matthew A. Masten[†] Alexandre Poirier[‡]

August 2, 2022

Introduction

Omitted variables are one of the most important threats to the identification of causal effects. In linear models, the well known omitted variable bias formula shows how an omitted variable can bias the regression coefficient on the covariate of interest when that covariate is correlated with the omitted variable. Since is often implausible to assume that data has been collected on every relevant variable, applied research is often vulnerable to this bias. Nonetheless, omitted variable bias can be quantified under various alternative assumptions about the relationship between the omitted variable and the covariate of interest. Using these techniques, researchers can analyze how sensitive their results are to omitted variable bias.

Several methods of sensitivity analysis for linear models have been proposed in the literature. The regsensitivity package implements the methods proposed in Diegert, Masten, and Poirier (2022), Oster (2019), and Masten and Poirier (2022). In each of these papers, the authors define a set of sensitivity parameters which index relaxations of the assumption that the covariate of interest is uncorrelated with any unobserved variables. The parameter of interest is β_{long} , the coefficient on that covariate of interest in the infeasible regression that includes the unobserved variables. Using this framework, we can ask two questions:

- 1. What is the set of parameter estimates for β_{long} which are consistent with the relaxed assumptions? That is, what are bounds on the value of β_{long} under the alternate assumptions?
- 2. How much can we relax the exogeneity assumption before a hypothesis about β_{long} is overturned? This is called the *breakdown point*: the maximum relaxation of the baseline assumption before the hypothesis is overturned.

regsensitivity can be used to perform both of these sensitivity analyses using the sensitivity parameters defined in Diegert, Masten, and Poirier (2022), Oster (2019), and Masten and Poirier (2022).

Getting Started

We will illustrate how to use regsensitivity with data from Bazzi, Fiszbein, and Gebresilasse (2020), which is used in the empirical application in Diegert, Masten, and Poirier (2022). One of the datasets used in Bazzi, Fiszbein, and Gebresilasse (2020) is included with the package, and can be loaded using the sysuse command:

. sysuse bfg2020, clear

^{*}Department of Economics, Duke University, paul.diegert@duke.edu

[†]Department of Economics, Duke University, matt.masten@duke.edu

 $^{^{\}ddagger} Department \ of \ Economics, \ Georgetown \ Univervsity, \ alexandre.poirier@georgetown.edu$

The specification in column (7) of Table III in Bazzi, Fiszbein, and Gebresilasse (2020) and replicated in Diegert, Masten, and Poirier (2022) is as follows:

- . local y avgrep2000to2016
- . local x tye_tfe890_500kNI_100_16
- . local w1 log_area_2010 lat lon temp_mean rain_mean elev_mean d_coa d_riv d_lak ave_gyi
- . local w0 i.statea
- . local w `w1' `w0'
- . local SE cluster(km_grid_cel_code)
- . reg `y´ `x´ `w´, `SE´

(Std. err. adjusted for 380 clusters in km_grid_cel_code)

		Robust				
avgrep2000to2016	Coefficient	std. err.	t	P> t	[95% conf	. interval]
tye_tfe890_500kNI_100_16	2.054759	.3491648	5.88	0.000	1.368217	2.741302
log_area_2010	.2758775	.979906	0.28	0.778	-1.650856	2.202611
lat	2.26515	1.101151	2.06	0.040	.1000189	4.430281
lon	.0108189	.2913783	0.04	0.970	5621017	.5837395
temp_mean	1.62737	1.068132	1.52	0.128	4728361	3.727577
rain_mean	.0164826	.0046086	3.58	0.000	.007421	.0255442
elev_mean	.0154764	.0037786	4.10	0.000	.0080468	.022906
d_coa	9.83e-06	3.76e-06	2.62	0.009	2.45e-06	.0000172
d_riv	.0000307	9.91e-06	3.10	0.002	.0000112	.0000502
d_lak	3.05e-07	4.45e-06	0.07	0.945	-8.44e-06	9.05e-06
ave_gyi	-3.779807	10.81002	-0.35	0.727	-25.03493	17.47532
statea						
5	-4.213545	3.386398	-1.24	0.214	-10.87203	2.444936
8	-27.31682	6.246914	-4.37	0.000	-39.59977	-15.03387
12	4.627587	3.354655	1.38	0.169	-1.968479	11.2236
13	.5398875	2.643504	0.20	0.838	-4.657883	5.737658
17	-10.25822	3.787414	-2.71	0.007	-17.7052	-2.811248
18	-5.924452	3.497393	-1.69	0.091	-12.80118	.9522727
19	-18.02705	4.514016	-3.99	0.000	-26.9027	-9.151398
20	1.598741	4.633634	0.35	0.730	-7.512109	10.70959
21	504168	3.185907	-0.16	0.874	-6.768436	5.760
22	.8939823	3.276872	0.27	0.785	-5.549145	7.337109
26	-14.06314	4.40552	-3.19	0.002	-22.72546	-5.400816
27	-18.10308	4.821495	-3.75	0.000	-27.58331	-8.62285
28	-6.930918	3.675983	-1.89	0.060	-14.15879	.2969573
29	-4.170334	3.902039	-1.07	0.286	-11.84269	3.502024
31	-1.342615	4.73751	-0.28	0.777	-10.65771	7.97248
35	-40.78007	9.264248	-4.40	0.000	-58.99583	-22.56431
36	-9.821649	4.68884	-2.09	0.037	-19.04105	6022507
37	-13.53756	4.241671	-3.19	0.002	-21.87772	-5.197404
38	-11.98193	5.512474	-2.17	0.030	-22.82079	-1.143061
39	-6.190808	3.655508	-1.69	0.091	-13.37843	.9968088
40	13.60029	4.880539	2.79	0.006	4.003963	23.19661
42	-3.14623	4.426406	-0.71	0.478	-11.84962	5.55716
46	-11.84706	5.101547	-2.32	0.021	-21.87794	-1.81617
47	-3.541445	2.794141	-1.27	0.206	-9.035406	1.95251
48	12.82591	4.174157	3.07	0.002	4.618502	21.0333
51	8116892	4.047756	-0.20	0.841	-8.770561	7.147182
54	-3.243583	3.570236	-0.91	0.364	-10.26353	3.776369
55	-18.92918	4.503985	-4.20	0.000	-27.78511	-10.07325
56	-19.02288	9.729311	-1.96	0.051	-38.15307	.1073112

_cons -73.53523 57.84708 -1.27 0.204 -187.2766 40.20618

Without a subcommand regsensitivity performs two sensitivity analyses, one from Diegert, Masten, and Poirier (2022), and one from Oster (2019):

. regsensitivity `y´ `x´ `w´, compare(`w1´)

Regression Sensitivity Analysis, Bounds

Analysis	: DMP (2022)	Number of obs	=	2,036
		Beta(short)	=	1.925
Treatment	: tye_tfe890_500kNI_100_16	Beta(medium)	=	2.055
Outcome	: avgrep2000to2016	R2(short)	-	0.033
		R2(medium)	=	0.105
		Var(Y)	=	101.739
		Var(X)	-	0.901
		$Var(X_Residual)$	=	0.882
Hypothesis	: Beta > 0	Breakdown point	=	80.4%

Other Params : cbar = 1, rybar = +inf

rxbar	Beta	
0.000	[2.0548, 2.0548]	
0.100	[1.9042, 2.2053]	
0.201	[1.7488, 2.3607]	
0.301	[1.5830, 2.5266]	
0.402	[1.3991, 2.7104]	
0.502	[1.1855, 2.9240]	
0.602	[0.9216, 3.1879]	
0.703	[0.5647, 3.5448]	
0.803	[0.0018, 4.1077]	
0.904	[-1.2579, 5.3675]	
0.989	[-inf, +inf]	

Regression Sensitivity Analysis, Breakdown Frontier

Analysis : Oster (2019)

Treatment : tye_tfe890_500kNI_100_16

Outcome : avgrep2000to2016 Hypothesis : Beta != 0

R-squared(long)

0.137

2328.8%

1.000

170.4%

To explore the output, we will consider each sensitivity analysis separately.

Diegert, Masten, and Poirier (2022)

Diegert, Masten, and Poirier (2022) consider the model:

$$Y = \beta_{\text{long}} X + \gamma_0' W_0 + \gamma_1' W_1 + \gamma_2 W_2 + Y^{\perp X, W},$$

where (Y, X, W_0, W_1) are observed and W_2 is an omitted variable that is potentially correlated with (X, W_0, W_1) . Restrictions on the joint distribution of (Y, X, W_0, W_1, W_2) are governed by three scalar

We denote the coefficient on X by β_{long} because it is the regression coefficient in the infeasible "long" regression of Y on $(1, X, W_0, W_1, W_2)$. This helps distinguish it from β_{med} , the coefficient on X in the regression of Y on $(1, X, W_0, W_1)$, and from β_{short} , the coefficient on X in the regression of Y on $(1, X, W_0)$.

sensitivity parameters, $(\bar{r}_X, \bar{r}_Y, \bar{c})$. Given the joint distribution of the observed variables, (Y, X, W_0, W_1) , and the values of the sensitivity parameters, Diegert, Masten, and Poirier (2022) show how to compute the upper and lower bounds on the identified set for β_{long} , denoted by $\mathcal{B}_I(\bar{r}_X, \bar{r}_Y, \bar{c})$. The identified set is the set of values of β_{long} which are consistent with the distribution of observed data and the maintained assumptions. When $\bar{r}_X > 0$ and $\bar{r}_Y > 0$, β_{long} is not point identified, so we instead estimate these bounds. For more details about the definitions and interpretation of the sensitivity parameters, see Diegert, Masten, and Poirier (2022).

regsensitivity bounds can be used with the option dmp to calculate the upper and lower bounds of $\mathcal{B}_I(\bar{r}_X,\bar{r}_Y,\bar{c})$. The basic syntax for regsensitivity is similar to the regress command and its variants:

regsensitivity bounds depvar indepvar controls, options...,

where depvar is the dependent variable, Y, and indepvar controls are the independent variables, (X, W_0, W_1) . Unlike regress, the order of the independent variables matter in the call to regsensitivity. The first variable, indepvar, is X, the variable of interest for which the sensitivity analysis is conducted while controls are additional variables included in the model which are not of interest.

By default, regsensitivity bounds calculates the bounds for a range of values of \bar{r}_X holding \bar{c} and \bar{r}_Y fixed. The defaults are to set $\bar{c} = 1$ and $\bar{r}_Y = +\infty$. To specify a different value of \bar{c} , use the cbar option. For example,

. regsensitivity bounds `y´ `x´ `w´, compare(`w1´) cbar(.1)

Regression Sensi	itivity Analysis, Bounds			
Analysis	: DMP (2022)	Number of obs	=	2,036
		Beta(short)	=	1.925
Treatment	: tye_tfe890_500kNI_100_16	Beta(medium)	-	2.055
Outcome	: avgrep2000to2016	R2(short)	-	0.033
		R2(medium)	-	0.105
		Var(Y)	-	101.739
		Var(X)	-	0.901
		$Var(X_Residual)$	-	0.882
Hypothesis Other Params	: Beta > 0 : cbar = .1, rybar = +inf	Breakdown point	=	119%

rxbar	Beta	
0.000	[2.05,	2.05]
0.415	[1.41,	2.70]
0.829	[0.70,	3.41]
1.244	[-0.10,	4.21]
1.658	[-1.03,	5.14]
2.073	[-2.15,	6.26]
2.488	[-3.56,	7.67]
2.902	[-5.51,	9.62]
3.317	[-8.64,	12.75]
3.731	[-15.85,	19.96]
4.063	[-inf,	+inf]

To plot the results, use the plot subcommand,

. ${\tt regsensitivity}$ plot

Notice that in the call to regsensitivity bounds, we also included an option compare(varlist). This specifies which of the variables in the controls are included in W_1 rather than W_0 . These are referred to as the comparison controls because they are the variables used to calibrate the sensitivity parameters, $(\bar{r}_X, \bar{r}_Y, \bar{c})$. For more details, see section 3.3 in Diegert, Masten, and Poirier (2022).

By including more variables in the comparison controls, the identified set will tend to be larger for a given value of the sensitivity parameters. For example, if the compare option is omitted, then all the control variables are included in W_1 :

•	regsensitivity	bounds	у	'x	`W´,	cbar(.1)
_					_	

Regression Sen	sitivity Analysis, Bounds			
Analysis	: DMP (2022)	Number of obs	=	2,036
		Beta(short)	=	1.708
Treatment	: tye_tfe890_500kNI_100_16	<pre>Beta(medium)</pre>	-	2.055
Outcome	: avgrep2000to2016	R2(short)	=	0.027
		R2(medium)	-	0.332
		Var(Y)	=	136.320
		Var(X)	-	1.257
		$Var(X_Residual)$	=	0.882
Hypothesis Other Params	: Beta > 0 : cbar = .1, rybar = +inf	Breakdown point	=	29.7%

rxbar	Beta	
0.000	[2.05,	2.05]
0.134	[1.15,	2.96]
0.269	[0.20,	3.90]
0.403	[-0.82,	4.93]
0.538	[-1.97,	6.08]
0.672	[-3.32,	7.42]
0.806	[-4.97,	9.08]
0.941	[-7.21,	11.32]
1.075	[-10.67,	14.78]
1.210	[-18.07,	22.17]

```
1.336 [ -inf, +inf ]
```

With all the controls included in W_1 , the identified set becomes \mathbb{R} at $\bar{r}_X = 1.336$, compared to $\bar{r}_X = 4.063$ when W_1 excludes the state fixed effects (statea). To directly compare the bounds under the two choices of W_1 , we can manually set the values of rxbar to be the same in each case. The output table from the last call to regsensitivity bounds are stored in e(idset_table). We can extract the values of rxbar from these and rerun the analysis with W_1 excluding state fixed effects as follows:

```
. forvalues i=1/11{
         local rxbar `rxbar´ `=e(idset_table)[`i´, 1]´
  2.
  3. }
. regsensitivity bounds `y´ `x´ `w´, compare(`w1´) cbar(.1) rxbar(`rxbar´)
Regression Sensitivity Analysis, Bounds
Analysis
                 : DMP (2022)
                                                                             2,036
                                                 Number of obs
                                                 Beta(short)
                                                                             1.925
Treatment
                 : tye_tfe890_500kNI_100_16
                                                 Beta(medium)
                                                                             2.055
Outcome
                  : avgrep2000to2016
                                                 R2(short)
                                                                             0.033
                                                 R2(medium)
                                                                             0.105
                                                 Var(Y)
                                                                           101.739
                                                 Var(X)
                                                                             0.901
                                                 Var(X_Residual)
                                                                             0.882
Hypothesis
                 : Beta > 0
                                                 Breakdown point
                                                                               119%
Other Params
                  : cbar = .1, rybar = +inf
 rxbar
                                    Beta
0.000
                                   [ 2.0548,
                                               2.0548]
0.134
                                   [ 1.8525,
                                               2.2570]
0.269
                                   [ 1.6444,
                                              2.4651 ]
0.403
                                   [ 1.4299,
                                               2.6796 1
0.538
                                   [ 1.2085,
                                               2.9010 ]
0.672
                                   [ 0.9794,
                                               3.1301 ]
0.806
                                   Γ 0.7420.
                                               3.3676 1
0.941
                                   Γ 0.4952.
                                               3.6143 ]
 1.075
                                   [ 0.2381,
                                               3.8714 ]
 1.210
                                   [-0.0304,
                                               4.1399]
                                   [-0.2937,
                                              4.4032 ]
1.336
```

Comparing each line of the table to the previous call where all the *controls* were included in W_1 , we can see that the bounds are much tigher for each value of \bar{r}_X .

To compare multiple values of \bar{c} , a numlist can be given in the cbar option. With multiple values of \bar{c} , the command will show a plot rather than displaying the results in the console.

```
. regsensitivity bounds `y´ `x´ `w´, compare(`w1´) cbar(0(.2)1)
```


By default, the plot will try to show where the identified set becomes \mathbb{R} for each value of \bar{c} . For this example, the plot is dominated visually by the identified set for $\bar{c}=0$. To see better where the identified set intersects with 0, we can rerun the analysis restricting the range of \bar{r}_X .

Breakdown Frontier

The output of regsensitivity bounds shows a breakdown point for a given hypothesis about the parameter β_{long} . For a hypothesis $\beta_{\text{long}} \in B \subseteq \mathbb{R}$, the breakdown point is the smallest value of the sensitivity parameter \bar{r}_X for which the hypothesis does not hold for every β value in the identified set. Formally,

$$\bar{r}_X^{\mathrm{bp}}(\bar{r}_Y, \bar{c}; B) = \inf\{\bar{r}_X \ge 0 : b \in \mathcal{B}_I(\bar{r}_X, \bar{r}_Y, \bar{c}) \text{ for some } b \in \mathbb{R} \setminus B\}.$$

regsensitivity can handle hypotheses of the form, $\beta_{\text{long}} \geq b$ for any value of b. The default hypothesis is that $\text{sign}(\beta_{\text{long}}) = \text{sign}(\beta_{\text{med}})$, where β_{med} is the coefficient on X in a regression of Y on $(1, X, W_0, W_1)$. In this case $\beta_{\text{med}} > 0$, so the default is to test the hypothesis that $\beta_{\text{long}} > 0$.

The output to regsensitivity bounds showed that with W_1 excluding state fixed effects, $\bar{r}_X^{\text{bp}}(.1, +\infty; (-\infty, 0]) = 1.195$. To see how this breakdown point varies with the choice of the sensitivity parameter \bar{c} , use the breakdown subcommand,

. regsensitivity breakdown `y´ `x´ `w´, compare(`w1´) cbar(0(.1)1)

	sitivity Analysis, Breakdown Fr			
Analysis	: DMP (2022)	Number of obs	=	2,036
		Beta(short)	=	1.925
Treatment	: tye_tfe890_500kNI_100_16	Beta(medium)	-	2.055
Outcome	: avgrep2000to2016	R2(short)	-	0.033
		R2(medium)	=	0.105
		Var(Y)	=	101.739
		Var(X)	=	0.901
Hypothesis	: Beta > 0	$Var(X_Residual)$	=	0.882
Other Params	: rybar = +inf			

cbar	rxbar(Breakdown)	
0.000	135.0%	
0.100	119.5%	
0.200	108.0%	
0.300	99.3 %	
0.400	92.7 %	
0.500	87.6 %	
0.600	83.9 %	
0.700	81.4 %	
0.800	80.4 %	
0.900	80.4 %	
1.000	80.4 %	

These results can also be plotted using the plot subcommand:

. regsensitivity plot

To test the hypothesis that $\beta_{\text{long}} > b$ for some other value, b, specify beta(b 1b) (lb for "lower bound"). The beta option can also accept a numlist to test a range of hypotheses. For example, the following tests the hypotheses that $\beta_{\text{long}} > b$ for a range of values of b:

. regsensitivity breakdown `y´ `x´ `w´, compare(`w1´) beta(-1(.2)1 lb)

Regression Sensitivity Analys	sis, Breakdown Frontier
-------------------------------	-------------------------

	•			
Analysis	: DMP (2022)	Number of obs	=	2,036
		Beta(short)	=	1.925
Treatment	: tye_tfe890_500kNI_100_16	Beta(medium)	=	2.055
Outcome	: avgrep2000to2016	R2(short)	=	0.033
		R2(medium)	=	0.105
		Var(Y)	=	101.739
		Var(X)	=	0.901
Hypothesis	: Beta > Beta(Hypothesis)	<pre>Var(X_Residual)</pre>	=	0.882
Other Params	: cbar = 1, rybar = +inf			

Beta(Hypothesis)	rxbar(Breakdown)	
-1.000	89.1 %	
-0.800	87.9 %	
-0.600	86.5 %	
-0.400	84.8 %	
-0.200	82.8 %	
0.000	80.4 %	
0.200	77.4 %	
0.400	73.8 %	
0.600	69.5 %	
0.800	64.1 %	
1.000	57.5 %	

We can also test a hypothesis of the form $\beta_{long} < b$, by specifying beta(b ub) (ub for "upper bound"). For example the following checks the hypothesis that $\beta_{long} < 4$:

. regsensitivity breakdown `y´ `x´ `w´, compare(`w1´) cbar(0(.1)1) beta(4 ub)

Regression Sensitivity Analysis, Breakdown Frontier Analysis : DMP (2022) Number of obs 2,036 Beta(short) 1.925 : tye_tfe890_500kNI_100_16 2.055 ${\tt Treatment}$ Beta(medium) : avgrep2000to2016 R2(short) 0.033 Outcome R2(medium) 0.105 Var(Y) 101.739 Var(X) 0.901 : Beta < 4 Hypothesis Var(X_Residual) 0.882 Other Params : rybar = +inf

cbar	rxbar(Breakdown)	
0.000	128.1%	
0.100	114.0%	
0.200	103.6%	
0.300	95.7 %	
0.400	89.6 %	
0.500	85.0 %	
0.600	81.7 %	
0.700	79.5 %	
0.800	78.8 %	
0.900	78.8 %	
1.000	78.8 %	

To see visually where the identified set intersects with 4 we can specify this alternative hypothesis in the regsensitivity bounds command. By including the option beta(4 ub) the resulting plot will include a horizontal line at 4:

- . regsensitivity bounds `y´ `x´ `w´, compare(`w1´) rxbar(0(.2)2) cbar(0(.1)1) beta(4, ub)
- . regsensitivity plot, nolegend yrange(0 6)

Summary statistics

The output of regsensitivity bounds and regsensitivity breakdown both include a table of summary statistics. These are as follows,

- Number of observations
- Beta(short): The coefficient on X in the regression of Y on (1, X)
- Beta(medium): The coefficient on X in the regression of Y on $(1, X, W_1)$
- R2(short): The R-squared from the regression of Y on (1, X)
- R2(medium): The R-squared from the regression of Y on $(1, X, W_1)$
- Var(Y): Variance of Y
- Var(X): Variance of X
- Var(X_Residual): Variance of $X^{\perp W_1}$, the residual from the regression of X on $(1, W_1)$.

Note: For all the summary statistics reported in this table, (Y, X, W_1) are shorthand for $(Y^{\perp W_0}, X^{\perp W_0}, W_1^{\perp W_0})$ where $Y^{\perp W_0}$ is the residual from the regression of Y on $(1, W_0)$ and likewise for $X^{\perp W_0}$ and $W_1^{\perp W_0}$.

Oster 2019

0.990

This paper uses a different set of sensitivity parameters than Diegert, Masten, and Poirier (2022). These parameters are denoted by δ and R_{long}^2 . Proposition 2 in Oster (2019) gives the identified set for β_{long} as a function of these two sensitivity parameters; also see Theorem 2 in Masten and Poirier (2022). This set can be calculated for a range of sensitivity parameter values.

. regsensitivity bounds `y´ `x´ `w´, compare(`w1´) oster

Regression Sensi	itivity Analysis, Bour	<u>nds</u>				
Analysis	: Oster (2019)		Number of	obs	=	2,036
•			Beta(shor	rt)	=	1.925
Treatment	: tye_tfe890_500kNI_	100_16	Beta(medi	ium)	=	2.055
Outcome	: avgrep2000to2016		R2(short))	=	0.033
			R2(medium	n)	=	0.105
			Var(Y)		=	101.739
			Var(X)		=	0.901
			Var(X_Res	sidual)	=	0.882
Hypothesis	: Beta != 0		Breakdown	n point	=	170%
Other Params	: R-squared(long) =	1				
Delta	Ве	eta				
-0.990	{	0.71,	٠,	. }		
-0.800	{	0.93,	٠,	. }		
-0.600	{	1.18,	.,	. }		
-0.400	{	1.45,	٠,	. }		
-0.200	{	1.74,	٠,	. }		
0.000	{	2.05,	٠,	. }		
0.200	{	2.40,	٠,	. }		
0.400	{	2.77,	.,	. }		
0.600	{	3.19,	.,	. }		
0.800	{	3.66,	٠,	. }		

The output also shows the explain away breakdown point, which is outside the default (-1, 1) range, so we'll expand the range of δ to include the breakdown point, and we'll generate a plot by including the plot option.

4.17 }

-50.04,

. regsensitivity bounds `y´ `x´ `w´, compare(`w1´) oster delta(-3(.3)3, eq) plot Regression Sensitivity Analysis, Bounds

{-570.85,

Analysis	: Oster (2019)	Number of obs	=	2,036
·		Beta(short)	=	1.925
Treatment	: tye_tfe890_500kNI_100_16	Beta(medium)	=	2.055
Outcome	: avgrep2000to2016	R2(short)	=	0.033
		R2(medium)	=	0.105
		Var(Y)	=	101.739
		Var(X)	=	0.901
		<pre>Var(X_Residual)</pre>	=	0.882
Hypothesis	: Beta != 0	Breakdown point	=	170%
Other Params	: R-squared(long) = 1			

Delta	Beta			
-3.000	{ -0.93,	٠,	. }	
-2.400	{ -0.54,	٠,	. }	
-1.800	{ -0.08,	٠,	. }	
-1.200	{ 0.48,	٠,	. }	
-0.600	{ 1.18,	٠,	. }	
0.000	{ 2.05,	٠,	. }	
0.600	{ 3.19,	٠,	. }	
1.200	{-25.71,	4.82,	51.71 }	
1.800	{-15.46,	8.57,	14.59 }	
2.400	{-12.15,	٠,	. }	
3.000	{-10.36,	.,	. }	

As discussed in Masten and Poirier (2022), the identified set includes arbitrarily small and large values of β_{long} around $\delta = 1$. In fact, there is an asymptote at exactly $\delta = 1$. We can expand the range of the y axis with the ywidth option to see this better. The regsensitivity plot command accepts additional twoway options, so we can also add a line at $\delta = 1$.

[.] regsensitivity plot, ywidth(500) xline(1)

On the other hand, to see that that the explain away breakdown point is in fact at -1.704, we can narrow the range of the y-axis

As discussed in Masten and Poirier (2022), researchers may be interested in the hypothesis that $\beta_{\text{long}} > 0$ rather than the hypothesis that $\beta_{\text{long}} \neq 0$. As in the analysis in Diegert, Masten, and Poirier (2022), we can also calculate the identified set for bounds on the absolute value of δ . That is, for a given $\bar{\delta} \geq 0$, we can

calculate the identified set of β_{long} such that $|\delta| < \bar{\delta}$. To do this, use bound in the delta option:

. regsensitivity bounds `y´ `x´ `w´, compare(`w1´) oster delta(0(.1).9.9991, bound) plot

Regression Ser	nsitivity Analysis, Bounds			
Analysis	: Oster (2019)	Number of obs	=	2,036
		Beta(short)	=	1.925
Treatment	: tye_tfe890_500kNI_100_16	Beta(medium)	=	2.055
Outcome	: avgrep2000to2016	R2(short)	-	0.033
		R2(medium)	=	0.105
		Var(Y)	-	101.739
		Var(X)	=	0.901
		<pre>Var(X_Residual)</pre>	=	0.882
Hypothesis	: Beta > 0	Breakdown point	-	96.5%

Other Params : R-squared(long) = 1

Delta	Beta	
0.000	[2,	2]
0.100	[2,	2]
0.200	[2,	2]
0.300	[2,	3]
0.400	[1,	3]
0.500	[1,	3]
0.600	[1,	3]
0.700	[1,	3]
0.800	[1,	4]
0.900	[1,	4]
0.999	[-6,125,	4]
1.000	[-inf,	+inf]

By default, the plot sets the range of the y-axis to avoid being visually dominated by the asymptote at $\delta = 1$. In this case, we don't see where the sign change breakdown point is or where the set goes to \mathbb{R} . To see where the breakdown point is, we will plot on a more narrow range for δ and expand the range of β . The previous call to regsensitivity bounds stored the exact breakdown point in e(breakdown); we will retrieve that

and add a vertical line at the breakdown point as well.

- . local breakdown = e(breakdown)
- . qui regsensitivity bounds `y´ `x´ `w´, compare(`w1´) oster delta(0.9(.001).99 .999 1, bound)
- . regsensitivity plot, yrange(-150 5) xline(`breakdown')

Plotted with this wider range for $\beta_{\rm long}$, we can see that there is a discrete jump at the estimated sign change breakdown point $\hat{\delta}^{\rm bp, sign}(R_{\rm long}^2) = 0.965$ and then the lower bound tends toward $-\infty$ as $\delta \to 1$.

As in Diegert, Masten, and Poirier (2022) we can also consider how breakdown points change when we change the other sensitivity parameter. The second sensitivity parameter in Oster (2019) is R_{long}^2 . To see how this affects the breakdown point use the **breakdown** subcommand with the **oster** option and pass a range of values for r21ong. To report the explain away breakdown point, use the **beta(0 eq)** option:

2,036 1.925 2.055 0.033

. regsensitivity breakdown `y´ `x´ `w´, compare(`w1´) oster r2long(0(.1)1) beta(0, eq)

Analysis	: Oster (2019)	Number of obs Beta(short)
Treatment	: tye_tfe890_500kNI_100_16	Beta(medium)
Outcome	: avgrep2000to2016	R2(short)

Regression Sensitivity Analysis, Breakdown Frontier

R-squared(long)	Delta(Breakdown)
0.105	+inf
0.200	1207.1%
0.300	685.6%
0.400	478.8%
0.500	367.8%
0.600	298.6%
0.700	251.3%

0.800	217.0%
0.900	190.9%
1.000	170.4%

To instead consider the sign change breakdown point, specify either beta(0 1b) (for lower bound) or beta(sign). This is the minimum value of $|\delta|$ such that β_{long} has the same sign as β_{med} for all $d < |\delta|$.

. regsensitivity breakdown `y´ `x´ `w´, compare(`w1´) oster r2long(0(.1)1) beta(sign)

Regression Sensi	itivity Analysis, Breakdown Fr	ontier		
Analysis	: Oster (2019)	Number of obs	=	2,036
		Beta(short)	=	1.925
Treatment	: tye_tfe890_500kNI_100_16	Beta(medium)	=	2.055
Outcome	: avgrep2000to2016	R2(short)	=	0.033
		R2(medium)	=	0.105
		Var(Y)	=	101.739
		Var(X)	=	0.901
Hypothesis	: Beta > 0	<pre>Var(X_Residual)</pre>	=	0.882

R-squared(long)	Delta(Breakdown)	
0.105	+inf	
0.200	97.3 %	
0.300	97.3 %	
0.400	97.2 %	
0.500	97.1 %	
0.600	97.0 %	
0.700	96.9 %	
0.800	96.8 %	
0.900	96.7 %	
1.000	96.5 %	

Masten and Poirier (2022) discuss the restriction that $|\beta_{\text{med}} - \beta_{\text{long}}| < M$ for some value of M. To impose this restriction, use the option maxovb with regsensitivity bounds:

. regsensitivity bounds `y´ `x´ `w´, compare(`w1´) oster delta(0(.1)1, bound) beta(sign) maxovb(3)

Regression Sensitivity Analysis, Bounds

Analysis	: Oster (2019)	Number of obs	=	2,036
		Beta(short)	=	1.925
Treatment	: tye_tfe890_500kNI_100_16	Beta(medium)	=	2.055
Outcome	: avgrep2000to2016	R2(short)	=	0.033
		R2(medium)	=	0.105
		Var(Y)	-	101.739
		Var(X)	=	0.901
		<pre>Var(X_Residual)</pre>	=	0.882
Hypothesis	: Beta > 0	Breakdown point	=	170%

Other Params : R-squared(long) = 1, max OVB = 3

Delta	Beta		
0.000	[2.0548,	2.0548]	
0.100	[1.8939,	2.2226]	
0.200	[1.7396,	2.3981]	
0.300	[1.5915,	2.5819]	
0.400	[1.4490,	2.7747]	
0.500	[1.3120,	2.9776]	
0.600	[1.1801,	3.1917]	
0.700	[1.0530,	3.4184]	
0.800	[0.9305,	3.6595]	
0.900	[0.8124,	3.9171]	

Although this is not always the case, in this example the maxovb restriction is strong enough to imply that the explain away and sign change breakdown points are the same. This is because the maxovb restriction rules out all the negative values of β_{long} near $\delta=1$. To see this, we plot the identified set with horizontal lines to show the magnitude bounds placed on β_{long} :

. regsensitivity bounds `y´ `x´ `w´, compare(`w1´) oster delta(-3(.3)3)

Regression Sen	sitivity Analysis, Bounds			
Analysis	: Oster (2019)	Number of obs	=	2,036
		Beta(short)	=	1.925
Treatment	: tye_tfe890_500kNI_100_16	Beta(medium)	=	2.055
Outcome	: avgrep2000to2016	R2(short)	=	0.033
		R2(medium)	=	0.105
		Var(Y)	=	101.739
		Var(X)	=	0.901
		<pre>Var(X_Residual)</pre>	=	0.882
Hypothesis Other Params	: Beta != 0 : R-squared(long) = 1	Breakdown point	=	170%

Delta	Beta		
-3.000	{ -0.93,	٠,	. }
-2.400	{ -0.54,	٠,	. }
-1.800	{ -0.08,	٠,	. }
-1.200	{ 0.48,	٠,	. }
-0.600	{ 1.18,	٠,	. }
0.000	{ 2.05,	٠,	. }
0.600	{ 3.19,	٠,	. }
1.200	{-25.71,	4.82,	51.71 }
1.800	{-15.46,	8.57,	14.59 }
2.400	{-12.15,	٠,	. }
3.000	{-10.36,	٠,	. }

. regsensitivity plot, yline(-1.05) yline(5.05) yrange(-20 5)

regsensitivity breakdown can also accept the maxovb option:

. regsensitivity breakdown `y´ `x´ `w´, compare(`w1´) oster beta(sign) r2long(0(.1)1) maxovb(22)

Regression Sensitivity Analysis, Breakdown Frontier

Analysis	: Oster (2019)	Number of obs	=	2,036
		Beta(short)	=	1.925
Treatment	: tye_tfe890_500kNI_100_16	Beta(medium)	=	2.055
Outcome	: avgrep2000to2016	R2(short)	=	0.033
		R2(medium)	=	0.105
		Var(Y)	=	101.739
		Var(X)	=	0.901
Hypothesis	: Beta > 0	<pre>Var(X_Residual)</pre>	=	0.882
Other Params	: Max OVB = 22			

R-squared(long)	Delta(Breakdown)	
0.105	+inf	
0.200	168.5%	
0.300	164.6%	
0.400	161.0%	
0.500	157.5%	
0.600	154.1%	
0.700	150.9%	
0.800	147.8%	
0.900	144.8%	
1.000	142.0%	

Passing a range of values of maxovb to regsensitivity, these are displayed in the main table,

. regsensitivity breakdown `y´ `x´ `w´, compare(`w1´) oster beta(sign) maxovb(2(10)100)

Regression Sensitivity Analysis, Breakdown Frontier

Analysis	: Oster (2019)	Number of obs	=	2,036
		Beta(short)	=	1.925
Treatment	: tye_tfe890_500kNI_100_16	Beta(medium)	=	2.055
Outcome	: avgrep2000to2016	R2(short)	=	0.033
		R2(medium)	=	0.105
		Var(Y)	=	101.739
		Var(X)	=	0.901
Hypothesis	: Beta > 0	<pre>Var(X_Residual)</pre>	=	0.882
Other Params	: R-squared(long) = 1			

OVB(Max)	Delta(Breakdown)	
2.000	+inf	
12.000	170.4%	
22.000	142.0%	
32.000	111.7%	
42.000	102.5%	
52.000	99.0 %	
62.000	97.5 %	
72.000	96.9 %	
82.000	96.6 %	
92.000	96.5 %	

Currently maxovb is only implemented for Oster (2019).

Finally, it is sometimes convenient to state the parameters maxovb and r2long in relative terms. When the relative suboption is specified in the r2long option, the values are relative to $R_{\rm med}^2$. For example, the input r2long(1.3, relative) is interpreted as $R_{\rm long}^2 = 1.3 R_{\rm med}^2$. Oster (2019) suggests using this as a rule of thumb.

. regsensitivity bounds `y´ `x´ `w´, compare(`w1´) oster delta(-3(.3)3, eq) r2long(1.3, relative)

Regression Sensitivity Analysis, Bounds

Analysis	: Oster (2019)	Number of obs	=	2,036
		Beta(short)	=	1.925
Treatment	: tye_tfe890_500kNI_100_16	Beta(medium)	=	2.055
Outcome	: avgrep2000to2016	R2(short)	=	0.033
		R2(medium)	=	0.105
		Var(Y)	=	101.739
		Var(X)	=	0.901
		$Var(X_Residual)$	=	0.882
Hypothesis	: Beta != 0	Breakdown point	=	2329%

Other Params : R-squared(long) = .137

Delta	Beta		
-3.000	{ 1.88,	.,	. }
-2.400	{ 1.92,	٠,	. }
-1.800	{ 1.95,	٠,	. }
-1.200	{ 1.99,	٠,	. }
-0.600	{ 2.02,	٠,	. }
0.000	{ 2.05,	٠,	. }
0.600	{ 2.09,	٠,	. }
1.200	{-31.12,	2.12,	59.83 }
1.800	{-19.06,	2.16,	24.61 }
2.400	{-15.36,	2.20,	17.57 }
3.000	{-13.37,	2.23,	14.22 }

When the relative suboption is specified in the maxovb option, the input is interpreted relative to $|\beta_{\text{med}}|$. For example, the input maxovb(2, relative) is interpreted as $M = 2|\beta_{\text{med}}|$.

. regsensitivity bounds `y´ `x´ `w´, compare(`w1´) oster beta(sign) maxovb(2, relative)

Regression Sensitivity Analysis, Bounds

Analysis	: Oster (2019)	Number of obs	=	2,036
		Beta(short)	=	1.925
Treatment	: tye_tfe890_500kNI_100_16	Beta(medium)	=	2.055
Outcome	: avgrep2000to2016	R2(short)	=	0.033
		R2(medium)	=	0.105
		Var(Y)	=	101.739
		Var(X)	=	0.901
		$Var(X_Residual)$	=	0.882
Hypothesis	: Beta > 0	Breakdown point	=	170%
O+1 D	. D			

Other Params : R-squared(long) = 1, max OVB = 4.11

Delta	Beta		
0.000	[2.0548,	2.0548]	
0.100	[1.8939,	2.2226]	
0.200	[1.7396,	2.3981]	
0.300	[1.5915,	2.5819]	
0.400	[1.4490,	2.7747]	
0.500	[1.3120,	2.9776]	
0.600	[1.1801,	3.1917]	
0.700	[1.0530,	3.4184]	
0.800	[0.9305,	3.6595]	
0.900	[0.8124,	3.9171]	

References

- Bazzi, Samuel, Martin Fiszbein, and Mesay Gebresilasse. 2020. "Frontier Culture: The Roots and Persistence of Rugged Individualism in the United States." *Econometrica* 88 (6): 2329–68.
- Diegert, Paul, Matthew A. Masten, and Alexandre Poirier. 2022. "Assessing Omitted Variable Bias When the Controls Are Endogenous." arXiv Preprint.
- Masten, Matthew A., and Alexandre Poirier. 2022. "The Effect of Omitted Variables on the Sign of Regression Coefficients." arXiv Preprint.
- Oster, Emily. 2019. "Unobservable Selection and Coefficient Stability: Theory and Evidence." *Journal of Business & Economic Statistics* 37 (2): 187–204.