```
In [1]: import polars as pl
In [3]: import requests
        import pandas as pd
        # Define the parameters
        params = {
            "latitude": 43.7001, # Toronto
            "longitude": -79.4163,
            "start date": "2000-02-02",
            "end_date": "2025-05-03",
            "hourly": ["temperature_2m", "apparent_temperature", "precipitation",
                       "wind_speed_10m", "snow_depth", "sunshine_duration",
                       "direct_radiation", "wind_gusts_10m"],
            "timezone": "America/New_York"
        }
        # API endpoint
        url = "https://archive-api.open-meteo.com/v1/archive"
        # Request data
        response = requests.get(url, params=params)
        # Convert to JSON
        data = response.json()
        # Convert hourly data into a DataFrame
        df = pd.DataFrame(data["hourly"])
        # Save to CSV
        df.to_csv("toronto_weather.csv", index=False)
        print(" Dataset saved as toronto weather.csv")
       Dataset saved as toronto_weather.csv
In [5]: df=pl.read_csv("toronto_weather.csv")
        print(df.shape)
        print(df.columns)
       (221352, 9)
       ['time', 'temperature_2m', 'apparent_temperature', 'precipitation', 'wind_speed_1
       Om', 'snow_depth', 'sunshine_duration', 'direct_radiation', 'wind_gusts_10m']
In [6]: print(df.head(5))
```

shape: (5, 9)

Shape. (5)	<i>- ,</i>							
					T		Γ	T
time		temperat	una	annanent tem	precipitatio	!	snow denth	611
nshine_du					precipicatio	i	; snow_depth	; Su
	UII	2m		perature	n			l ra
· .	atio	١ .	10m		1 "	ı	I	,
str	461	 !					f64	
- 1		'			1	•	,	'
1 '		f64		f64	f64		 	f6
4	f64	' 	f64		'		•	'
<u> </u>		<u> </u>		·	 	 	<u> </u>	
<u>_</u>		-						
2000-02-0				-15.0	0.0		0.06	0.
	0.0	.	40.0					
0:00			. !					İ
	İ	ı	Ι,		1		ı	
2000-02-0		٠ .		-15.6	0.0		0.06	0.
	0.0	į	39.2		I	1	ı	
1:00	1		, ;		1			
1 2000 02 0	1	! 00	ı ı	1.6.4	! 0 0	!	0.06	! ^
2000-02-0	0.0		39 . 6	-16.4	0.0		0.06	0.
2:00	0.0	 	39.0	 -	1	!	<u> </u>	!
2.00	-	i	ı i		i	i	i	i
2000-02-0	і 2ТА	-10 5	' ;	-17.2	0.0		0.06	0.
· .	0.0	٠ .	40.3	1/12	1 0.0		1 0.00	,
3:00	0.0	<u>'</u>	.0.5	'			!	!
	-	l	Ι,		1	•	l	'
2000-02-0	2T0 [']	-11.2	' !	-17.9	0.0		0.06	0.
	0.0	٠ .	39.6		'		•	
4:00				,			 	
L		L			L	L	L	Ь

BASIC EDA TECHNIQUES WITH POLARS

```
In [9]: #Handling missing data
print("Null values per column")
print(df.null_count())
```

Null values per column shape: (1, 9)

			T			I
time	temperature_2	apparent_temp	precipitation		snow_depth	sunshin
e_dura	direct_radiat	wind_gusts_1				
	m	erature				tion
ion	0m					
u32			u32		u32	
	u32	u32			 	u32
u32	u32					
		<u> </u>	†	 	 	I I
		! 0	! 0	!	! 0	! 0
0	0	0	0		0	į 0
0	0		I	1	Ī	ı
		l I		-	L	

```
In [15]:
          df clean=df.drop nulls()
In [18]: q1 = df.select(pl.col("wind_gusts_10m").quantile(0.25)).item()
          q3 = df.select(pl.col("wind_gusts_10m").quantile(0.75)).item()
          iqr = q3 - q1
          lower_bound = q1 - 1.5 * iqr
          upper_bound = q3 + 1.5 * iqr
In [20]: #Filter the outliers
          df_iqr_filtered=df.filter((pl.col("wind_gusts_10m")>=lower_bound) & (pl.col("wind_gusts_10m")>=lower_bound)
          print("Before cleaning:")
          print(df.select("wind_gusts_10m").describe())
        Before cleaning:
```

shape: (9, 2)

statistic	wind_gusts_10m f64
count null_count mean std min 25% 50% 75% max	221352.0 0.0 27.587008 12.689799 1.1 18.0 25.9 35.3 119.9
I	

```
In [21]: print("\nAfter Cleaning:")
         print(df_iqr_filtered.select("wind_gusts_10m").describe())
```

After Cleaning: shape: (9, 2)

```
statistic
             wind_gusts_10m
             f64
str
             218320.0
count
null_count
             0.0
mean
             27.022483
             11.809316
std
min
            1.1
25%
             18.0
50%
             25.6
75%
             34.9
             61.2
max
```

```
In [33]: #Filtering rows by condition
         cold_df=df.filter(pl.col("temperature_2m")<-15)</pre>
         print(f"Number of freezing hours:{cold_df.height}")
         print(cold_df.select(["temperature_2m", "apparent_temperature", "wind_gusts_10m"
```

Number of freezing hours:2361 shape: (10, 3)

temperature_2m	apparent_temperature	wind_gusts_10m
f64	f64	f64
-17.0	-22.1	14.0
-15.2	-20.3	15.8
-15.8	-21.0	15.5
-16.4	-21.7	15.1
-17.0	-22.3	15.8
-17.6	-22.6	15.5
-17.4	-22.1	14.8
-15.8	-21.3	21.2
-15.1	-20.2	19.4

```
In [32]: #Selecting specific columns
subset_df=df.select([
          "temperature_2m",
          "precipitation",
          "wind_gusts_10m"])
print(subset_df.head(5))
```

shape: (5, 3)

temperature_2m	precipitation	wind_gusts_10m
f64	f64	f64
-8.6	0.0	40.0
-9.1	0.0	39.2
-9.8	0.0	39.6
-10.5	0.0	40.3
-11.2	0.0	39.6

```
import polars as pl
df=pl.read_csv("toronto_weather.csv")

result = (
    df
    .with_columns((pl.col("temperature_2m") - pl.col("apparent_temperature")).al
    .filter(pl.col("feels_like_diff") > 0)
    .sort("feels_like_diff", descending=True)
    .select(["temperature_2m", "apparent_temperature", "feels_like_diff"])
)
print(result)
```

shape: (179_481, 3)

temperature_2m	apparent_temperature	feels_like_diff
f64	f64	f64
-13.6	-24.6	11.0
-13.7	-24.6	10.9
-14.0	-24.7	10.7
0.1	-10.4	10.5
-12.9	-23.4	10.5
21.7	21.6	0.1
19.2	19.1	0.1
19.2	19.1	0.1
17.7	17.6	0.1
19.2	19.1	0.1

In [4]: print(df.schema)

Schema({'time': String, 'temperature_2m': Float64, 'apparent_temperature': Float64, 'precipitation': Float64, 'wind_speed_10m': Float64, 'snow_depth': Float64, 's unshine_duration': Float64, 'direct_radiation': Float64, 'wind_gusts_10m': Float64})

```
In [8]:
    daily_summary = (
        df.select([
            pl.col("temperature_2m").mean().alias("avg_temp"),
            pl.col("precipitation").sum().alias("total_precip"),
            pl.col("sunshine_duration").sum().alias("total_sunshine")
        ])
    )
    print(daily_summary)
```

shape: (1, 3)

avg_temp	total_precip	total_sunshine
f64	 f64	 f64
8.514634	20922.5	2.7245e8

shape: (5, 10)

snape. (5)	10)						
			T	I	Γ		Т
•		emperature_ usts_¦ roll	apparent_tem	precipitati		sunshine_du	¦ di
	21	– .	perature	on		ration	at
ion	10m	_tem	A 1	'		'	
str	.						
-				l -		1 -	
	f(f64	f64	İ	f64	f6
4	† f64	f64	<u></u>	L		L	
	ļ	-		I			Т
2000-02-0	о 2010 -8	8.6	-15.0	0.0		0.0	0.
0	40.0	null		•		•	
0:00	ا						
	. i		1	1		ı	
2000-02-0		9.1 ¦ null	-15.6	0.0		0.0	0.
1:00	39.2	null	· 	!	!		!
1.00	, '	1	i	i	i	İ	i
2000-02-0	02Т0 ['] ¦ -!	9.8	-16.4	0.0		0.0	0.
0	39.6	-9.1	.66667	•		•	
2:00	ا						
			1	1		ı	
2000-02-0			-17.2	0.0		0.0	0.
3:00	40.3	-9.8) 	<u> </u>	!		!
1 3.00	, i	1	i	i	i	i	i
2000-02-0	02T0 ¦ -:	11.2	-17.9	0.0		0.0	0.
0	39.6	-10.	5	•		•	
4:00	ا	_					
	١,		1	ı		ı	
				I			

In [11]: df_percent_change=df.with_columns((pl.col("wind_gusts_10m")-pl.col("wind_gusts_1
print(df_percent_change.head(5))

```
shape: (5, 10)
```

```
| temperature_ | apparent_tem | precipitati | ... | sunshine_du | di
time
rect_radi | wind_gusts_ | wind_gusts_ |
                                                                ration
                2m
                              perature
ion
           10m
                         pct_change
 str
                f64
                               f64
                                              f64
                                                              f64
                                                                             f6
           f64
                         f64
                               -15.0
 2000-02-02T0 -8.6
                                            0.0
                                                            ... 0.0
                                                                             0.
          40.0
                        null
 0:00
 2000-02-02T0 -9.1
                               -15.6
                                              0.0
                                                            ... 0.0
                                                                             0.
         39.2
                         -1.8
 1:00
 2000-02-02T0 | -9.8
                               -16.4
                                              0.0
                                                              0.0
         39.6
                        -0.6
 2:00
 2000-02-02T0 | -10.5
                                                                             0.
                               -17.2
                                              0.0
         40.3
                         -0.3
 3:00
 2000-02-02T0 -11.2
                               -17.9
                                              0.0
                                                                             0.
         39.6
                         -1.7
 4:00
```

```
In [13]: #Ranking
    top_radiation = (
        df.sort("direct_radiation", descending=True)
        .with_columns(
            pl.col("direct_radiation").rank(method="dense", descending=True).alias
        )
        .select(["time", "direct_radiation", "radiation_rank"])
        .head(10)  # top 10 records
    )
    print(top_radiation)
```

shape: (10, 3)

```
direct_radiation
time
                                     radiation_rank
---
                  ---
                                     ---
str
                                     u32
                  f64
2006-06-10T14:00
                  909.0
                                     1
                                     2
2006-06-10T13:00
                  895.0
2015-06-07T14:00
                                     2
                  895.0
2014-06-19T14:00
                  890.0
                                     3
2009-05-17T14:00 | 889.0
                                     4
2015-06-06T14:00  887.0
                                     5
2009-06-05T14:00
                                     6
                  884.0
2004-05-30T14:00
                                     7
                  882.0
2013-05-25T14:00
                                     7
                  882.0
                                     8
2003-05-21T14:00
                  881.0
```

```
shape: (5, 10)
```

```
time
             rect_radi | wind_gusts_ | weather_typ |
              2m
                         perature
                                                      ration
         10m
ion
                     е
 str
              f64
                          f64
                                       f64
                                                     f64
                                                                  f6
         f64
                     str
 2000-02-02T0 | -8.6
                          -15.0
                                                   ... 0.0
                                      0.0
                                                                  0.
        40.0
                    Snowy
 0:00
 2000-02-02T0
             -9.1
                          -15.6
                                       0.0
                                                   ... 0.0
                                                                  0.
        39.2
                    Snowy
 1:00
 2000-02-02T0 | -9.8
                          -16.4
                                       0.0
                                                     0.0
        39.6
                    Snowy
 2:00
 2000-02-02T0 | -10.5
                                       0.0
                                                                  0.
                          -17.2
        40.3
                    Snowy
 3:00
 2000-02-02T0 | -11.2
                          -17.9
                                       0.0
                                                                  0.
        39.6
                     Snowy
 4:00
```

```
In [4]: import polars as pl
        df=pl.read_csv("toronto_weather.csv")
        # Extract hour from time
        df_with_hour = df.with_columns(
            pl.col("time").str.strptime(pl.Datetime, "%Y-%m-%dT%H:%M").dt.hour().alias("
        # Pivot-style aggregation: average of each hour across all days
        hourly_avg = (
            df_with_hour
            .group_by("hour")
            .agg([
                pl.col("temperature_2m").mean().alias("avg_temp"),
                pl.col("apparent_temperature").mean().alias("avg_feels_like"),
                pl.col("precipitation").mean().alias("avg_precip"),
                pl.col("direct_radiation").mean().alias("avg_radiation")
            .sort("hour")
        print(hourly_avg)
        import matplotlib.pyplot as plt
```

```
# (using the hourly_avg DataFrame we built earlier)
plt.figure(figsize=(10, 6))

plt.plot(hourly_avg["hour"], hourly_avg["avg_temp"], label="Avg Temp (°C)")
plt.plot(hourly_avg["hour"], hourly_avg["avg_feels_like"], label="Avg Feels Like
plt.plot(hourly_avg["hour"], hourly_avg["avg_precip"], label="Avg Precipitation
plt.plot(hourly_avg["hour"], hourly_avg["avg_radiation"], label="Avg Radiation (
plt.title("Hourly Weather Averages (2000-2025)")
plt.xlabel("Hour of Day")
plt.ylabel("Values")
plt.legend()
plt.grid(True)
plt.show()
```

shape: (24, 5)

hour	avg_temp	avg_feels_like	avg_precip	avg_radiation
	f64	f64	f64	f64
0	7.409335 7.110983 6.855741 6.642361 6.431042 9.968654 9.271788 8.647392 8.160794 7.757747	4.622693 4.314507 4.053497 3.831378 3.619983 7.212577 6.581958 5.910051 5.404001 4.98764	0.090621 0.087759 0.088485 0.087184 0.08893 0.090881 0.089515 0.086707 0.087976	0.0 0.0 0.0 0.0 0.0 62.446384 20.165564 2.209693 0.0


```
In [22]: #Lazy Evaluation
lazy_df = (
```

```
pl.scan_csv("toronto_weather.csv") # File not loaded yet
    .filter(pl.col("temperature_2m") > 25)
    .select(["time","temperature_2m"])
)
```

In [23]: result = lazy_df.collect() # Runs everything, returns a real DataFrame
print(result)

shape: (7_878, 2)

time	temperature_2m
str	f64
2000-05-06T15:00 2000-06-10T12:00 2000-06-10T13:00 2000-06-10T14:00 2000-06-10T15:00 2024-08-31T16:00 2024-08-31T17:00 2024-09-01T13:00 2024-09-01T14:00 2024-09-01T15:00	25.1 25.3 26.1 26.7 27.4 26.5 25.5 25.1 25.5

In []: