DeMorgan's Theorem

DeMorgan's 1st Theorem

The complement of a product of variables is equal to the sum of the complemented variables.

$$\overline{AB} = \overline{A} + \overline{B}$$

Applying DeMorgan's first theorem to gates:

Inputs		Output	
Α	В	ĀB	$\overline{A} + \overline{B}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

DeMorgan's Theorem

DeMorgan's 2nd Theorem

The complement of a sum of variables is equal to the product of the complemented variables.

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

Applying DeMorgan's second theorem to gates:

Inputs		Output	
Α	В	$\overline{A+B}$	ĀB
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

DeMorgan's Theorem

Apply DeMorgan's theorem to remove the overbar covering both terms from the expression $X = \overline{C} + D$.

To apply DeMorgan's theorem to the expression, you can break the overbar covering both terms and change the sign between the terms. This results in $X = \overline{C} \cdot \overline{D}$. Deleting the double bar gives $X = C \cdot D$.

SECTION 4-3 CHECKUP Homework

1. Apply DeMorgan's theorems to the following expressions:

(a)
$$\overline{ABC} + (\overline{\overline{D} + E})$$

(b)
$$\overline{(A+B)C}$$

(a)
$$\overline{ABC} + (\overline{\overline{D} + E})$$
 (b) $\overline{(A + B)C}$ (c) $\overline{A + B + C} + \overline{\overline{D}E}$

Boolean Analysis of Logic Circuits

Combinational logic circuits can be analyzed by writing the expression for each gate and combining the expressions according to the rules for Boolean algebra.

Example Solution

Apply Boolean algebra to derive the expression for *X*.

Write the expression for each gate:

Applying DeMorgan's theorem and the distribution law:

Boolean Analysis of Logic Circuits

Combinational logic circuits can be analyzed by writing the expression for each gate and combining the expressions according to the rules for Boolean algebra.

Example Solution

Apply Boolean algebra to derive the expression for X.

Write the expression for each gate:

Applying DeMorgan's theorem and the distribution law:

$$X = C (\overline{A} \overline{B}) + D = \overline{A} \overline{B} C + D$$

EXAMPLE 4-9

Using Boolean algebra techniques, simplify this expression:

$$AB + A(B + C) + B(B + C)$$

EXAMPLE 4-9

Using Boolean algebra techniques, simplify this expression:

$$AB + A(B + C) + B(B + C)$$

$$AB + AB + AC + BB + BC$$

$$AB + AB + AC + B + BC$$

$$AB + AC + B + BC = AB + AC + B = B + AC$$

