Reti: Esercizi

Aymane Chabbaki

III semestre 2019/2020

Indice

1	Rou	ing: Link State (OSPF)	2
	1.1	Esercizio 1	2
	1.2	Esercizio 2	2
	1.3	Esercizio 3	3
	1.4	Esercizio 4	3
	1.5	Esercizio 5	4
	1.6	Esercizio 6	5
	1.7	Esercizio 7	6
	1.8	Esercizio 8	7
2	Rou	ing: Distance Vector	8
	2.1	Sercizio 1	8
	2.2	Esercizio 2	10
3	TCI		13
	3.1	Esercizio 1	13

1 Routing: Link State (OSPF)

1.1 Esercizio 1

Usando gli algoritmi propri di OSPF, ed assumendo che i costi siano già stati distribuiti, si calcoli la tabella di instradamento del nodo A.

	Step	N'	D(B)	D(D)	D(E)	D(C)
	0	A	6, A	1, A	∞	∞
A	1	A, D	3, D		2, D	∞
ĺ	2	A, D, E	3, D			7, E
	3	A, D, E, B				7, E

Destination	Cost	Next Hop
A	0	_
B	3	D
C	7	D
D	1	D
E	2	D

1.2 Esercizio 2

Usando gli algoritmi propri di OSPF, ed assumendo che i costi siano già stati distribuiti, si calcoli la tabella di instradamento del nodo A.

[Step	N'	D(B)	D(C)	D(D)	D(E)	D(F)
	0	A	5, A	3, A	7, A	∞	∞
$_{\mathbf{A}}$	1	A, C	5, A		6, C	11, C	∞
1	2	A, C, B			6, C	11, C	14, B
	3	A, C, B, D				10, C	14, B
	4	A, C, B, D, E					12, C

Destination	Cost	Next Hop
A	0	_
B	5	B
C	3	C
D	6	C
E	10	C
F	12	C

1.3 Esercizio 3

Usando gli algoritmi propri di OSPF, ed assumendo che i costi siano già stati distribuiti, si calcoli la tabella di instradamento del nodo A.

	Step	N'	D(B)	D(C)	D(D)	D(E)	D(F)
	0	A	2, A	1, A	5, A	∞	∞
\mathbf{A}	1	A, C	2, A		4, C	2, C	∞
7	2	A, C, E	2, A		3, E		4, E
	3	A, C, E, B			3, E		4, E
ĺ	4	A, C, E, B, D					4, E

Destination	Cost	Next Hop
A	0	_
B	2	B
C	1	C
D	3	C
$\mid E \mid$	2	C
F	4	C

1.4 Esercizio 4

Usando gli algoritmi propri di OSPF, ed assumendo che i costi siano già stati distribuiti, si calcoli la tabella di instradamento del nodo E.

	Step	N'	D(A)	D(B)	D(C)	D(D)
	0	E	∞	∞	3, E	1, E
\mathbf{E}	1	E, D	∞	∞	2, E	
	2	E, D, C	3, C	4, C		
	3	E, D, C, A		4, C		

Destination	Cost	Next Hop
A	3	D
B	4	D
C	2	D
D	1	D
\parallel E	0	_

1.5 Esercizio 5

Usando gli algoritmi propri di OSPF, ed assumendo che i costi siano già stati distribuiti, si calcoli la tabella di instradamento dei nodi B, D, F.

	Step	N'	D(A)	D(C)	D(D)	D(E)	D(F)
	0	B	1, B	3, B	∞	10, B	4, B
\mathbf{B}	1	B, A		3, B	5, A	10, B	4, B
	2	B, A, C			4, C	10, B	4, B
	3	B, A, C, D				8, D	4, B
	4	B, A, C, D, F				5, F	

Destination	Cost	Next Hop
A	1	A
B	0	-
C	3	C
D	4	C
E	5	F
F	4	F

	Step	N'	D(A)	D(B)	D(C)	D(E)	D(F)
	0	D	4, D	∞	1, D	4, D	∞
\mathbf{D}	1	D, C	4, D	4, C		4, D	∞
ו	2	D, C, A		4, C		4, D	∞
	3	D, C, A, B				4, D	8, B
	4	D, C, A, B, E					5, E

Destination	Cost	Next Hop
A	4	D
B	4	C
C	1	C
D	0	_
E	4	E
F	5	E

	Step	N'	D(A)	D(B)	D(C)	D(E)	D(F)
	0	F	∞	4, F	∞	∞	1, F
$_{\mathbf{F}}$	1	F, E	∞	4, F	∞	5, E	
•	2	F, E, B	5, B		7, B	5, E	
	3	F, E, B, A			7, B	5, E	
	4	F, E, B, A, D			6, D		

Destination	Cost	Next Hop
A	5	B
B	4	B
C	6	E
D	5	E
E	1	E
F	0	_

1.6 Esercizio 6

Usando gli algoritmi propri di OSPF, ed assumendo che i costi siano già stati distribuiti, si calcoli la tabella di instradamento dei nodi A, C, E.

	Step	N'	D(A)	D(C)	D(D)	D(E)	D(F)
	0	A	3, B	∞	∞	5, B	∞
В	1	B, A		∞	5, A	5, B	∞
	2	B, A, D		∞		5, B	6, D
	3	B, A, D, E		∞			6, D
ĺ	4	B, A, D, E, F		7, F			

Destination	Cost	Next Hop
A	3	B
B	0	_
C	7	A
D	5	A
E	5	B
F	6	A

	Step	N'	D(A)	D(B)	D(D)	D(E)	D(F)
	0	C	1, C	3, C	∞	2, C	∞
\mathbf{C}	1	C, A		2, A	3, A	2, C	∞
	2	C, A, B			3, A	2, C	∞
	3	C, A, B, E			3, A		3, E
	4	C, A, B, E					3, E

Destination	Cost	Next Hop
A	1	A
B	2	A
C	0	_
D	3	A
E	2	E
F	3	E

	Step	N'	D(A)	D(B)	D(C)	D(D)	D(F)
	0	E	∞	3, E	∞	∞	1, E
$_{\mathbf{E}}[$	1	E, F	∞	2, F	2, F	∞	
_	2	E, F, B	5, B		2, F	∞	
	3	E, F, B, C	3, C			∞	
	4	E, F, B, C, A				5, A	

Destination	Cost	Next Hop
A	3	F
B	2	F
C	2	F
D	5	F
E	0	_
F	1	F

	Step	N'	D(A)	D(B)	D(C)	D(D)	D(E)
	0	F	∞	1, F	1, F	∞	4, F
$_{\mathbf{F}}[$	1	F, B	4, B		1, F	∞	4, F
• [2	F, B, C	2, C			∞	3, C
[3	F, B, C, A				4, A	3, C
	4	F, B, C, A, E				4, A	

Destination	Cost	Next Hop
A	2	C
B	1	B
C	1	C
D	4	C
E	3	C
F	0	_

1.7 Esercizio 7

Usando gli algoritmi propri di OSPF, ed assumendo che i costi siano già stati distribuiti, si calcoli la tabella di instradamento dei nodi A, G.

[Step	N'	D(B)	D(C)	D(D)	D(E)	D(F)	D(G)	D(I)
	0	A	1, A	∞	3, A	∞	1, A	∞	∞
	1	A, B		3, B	3, A	3.5, B	1, A	∞	∞
\mathbf{A}	2	A, B, F		3, B	2, F	3.5, B		∞	∞
A [3	A, B, F, D		3, B		3.5, B		∞	∞
[4	A, B, F, D, C				3.5, B		5, C	4, C
[5	A, B, F, D, C, E						5, C	4, C
	6	A, B, F, D, C, E, I						5, C	

	Destination	Cost	Next Hop
	A	0	_
	B	1	B
	C	3	B
A:	D	$\begin{array}{c c} 3 \\ 2 \end{array}$	F
	E	3.5	B
	F	1	F
	G	5	B
	I	4	B

D(C) $D(D)$ $D(E)$ $D(F)$ $D(I)$
$2,G$ ∞ $3,G$ ∞ $2,G$
∞ 3, G ∞ 2, G
∞ 3, G ∞
∞ ∞
∞ ∞
8, A 6, A
7, F

1.8 Esercizio 8

Usando gli algoritmi propri di OSPF, ed assumendo che i costi siano già stati distribuiti, si calcoli la tabella di instradamento dei nodi A, B.

	Step	N'	D(B)	D(C)	D(D)	D(E)	D(F)	D(G)
	0	A	∞	∞	∞	4, A	1, A	3, A
	1	A, F	∞	∞	6, F	2, F		3, A
A	2	A, F, E	∞	∞	6, F			3, A
	3	A, F, E, G	4, G	∞	5, G			
	4	A, F, E, G, B		7, B	5, G			
	5	A, F, E, G, B, D		6, D				

	Destination	Cost	Next Hop
	A	0	_
	B	4	G
$_{\mathbf{A}}$:	C	6	G
л.	D	5	G
	E	2	F
	F	1	F
	G	3	G

Step	N'	D(B)	D(C)	D(D)	D(E)	D(F)	D(G)
0	B	2, B	3, B	∞	∞	∞	∞
1	B, A		3, B	∞	6, A	3, A	5, A
2	B, A, C			6, C	6, A	3, A	5, A
3	B, A, C, F			6, C	4, F		5, A
4	B, A, C, F, E			6, C			5, A
5	B, A, C, F, E, G			6, C			
	3 4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

	Destination	Cost	Next Hop
	A	2	A
	B	0	_
в:	C	3	C
٦.	D	6	C
	E	4	A
	F	3	A
	G	5	A
- 1			

2 Routing: Distance Vector

2.1 Esercizio 1

Usando l'algoritmo di routing di tipo Distance-vector, mostrare l'evoluzione delle tabelle di routing per ogni nodo, considerando che i DV vengono inoltrati dai router seguendo l'ordine: D, E, C, A, B.

Inizializzo le tabelle di routing di ogni nodo inserendo solo i nodi direttamente connessi (per semplicità includo tutte le destinazioni anche se sono ignote, queste avranno costo e NH vuoto).

	A			В			C			D			E		
Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	
A	0	-	A	7	A	A			A			A	1	A	
В	7	В	В	0	-	В	1	В	B			В	5	В	
$\mid C \mid$			C	1	$\mid C \mid$	C	0	-	$\mid C \mid$	2	C	$\mid C \mid$			
$\mid D \mid$			D			D	2	$\mid D \mid$	$\mid D \mid$	0	-	D	2	$\mid D \mid$	
E	1	E	E	5	$\mid E \mid$	E			E	2	E	E	0	-	

D manda il suo DV: $\{(C, 2), (E, 2)\}$ a $\{E, C\}$.

E e C appena ricevono il DV, controllano se possono raggiungere una destinazione (o scoprirne una nuova) con un costo minore rispetto a quello che già conoscono.

E per prima cosa controlla il percorso verso se stesso usando la regola dell'algoritmo:

$$DV_D[E].cost + c(E, D) < R_D[D].cost?$$

E sta controllando se 2 < 0, che è falso, dunque il percorso verso D non viene modificato.

E esegue la stessa procedura per C e visto che $2+2<\infty$, E scopre un percorso attraverso D per raggiungere C (prima non conosceva C).

C esegue lo stesso procedimento e viene a conoscenza del nodo E.

	A			В			C			D			E		
Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	
A	0	-	A	7	A	A			A			A	1	A	
В	7	В	В	0	-	В	1 1	В	В			В	5	В	
C			C	1	$\mid C \mid$	C	0	-	C	2	C	C	4	D	
D			D			D	2	D	D	0	_	D	2	D	
E	\parallel 1	E	E	5	$\mid E \mid$	E	4	D	E	2	E	E	0	-	

E manda il suo DV: $\{(A, 1), (B, 5), (4, D), (2, D)\}$ a $\{A, B, D\}$.

A scopre dell'esistenza dei nodi C e D (raggiungibili attraverso il nodo E) e aggiorna il suo percorso verso B attraverso il nodo E.

B viene a conoscenza del nodo D (raggiungibile attraverso il nodo E) e aggiorna il suo percorso verso A attraverso il nodo E.

D viene a conoscenza dei nodi A e B, raggiungibili attraverso il nodo E.

	A			В		C D E				D			E	
Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH
A	0	-	A	6	E	A			A	3	E	A	1	A
В	6	E	В	0	-	В	1	В	В	7	E	В	5	В
$\mid C \mid$	5	E	C	1	$\mid C \mid$	C	0	-	C	2	C	C	4	$\mid D \mid$
$\mid D \mid$	3	D	D	7	E	D	2	$\mid D \mid$	D	0	_	D	2	$\mid D \mid$
E	1	E	E	5	$\mid E \mid$	E	4	D	E	2	E	E	0	-

C manda il suo DV a $\{B, D\}$.

B aggiorna il suo percorso verso il nodo D attraverso il nodo C.

D aggiorna il suo percorso verso il nodo B attraverso il nodo C.

	A			В		C			D			E		
Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH
A	0	-	A	6	E	A			A	3	E	A	1	A
В	7	В	В	0	-	В	1	В	В	3	C	В	5	В
C	6	E	C	1	$\mid C \mid$	C	0	-	C	2	C	C	4	$\mid D \mid$
D	3	D	D	3	C	D	2	D	D	0	_	D	2	$\mid D \mid$
E	1	E	E	5	$\mid E \mid$	E	4	D	E	2	E	E	0	-

A manda il suo DV a $\{B, E\}$ (non si sono rotte migliori ne scoperta di nuovi nodi, nulla cambia).

	A			В			$^{\mathrm{C}}$			D		E		
Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH
A	0	-	A	6	E	A			A	3	E	A	1	A
В	7	В	В	0	-	В	1	В	B	3	C	В	5	В
$\mid C \mid$	6	E	C	1 1	$\mid C \mid$	C	0	-	$\mid C \mid$	2	C	$\mid C \mid$	4	$\mid D \mid$
$\mid D \mid$	3	D	D	3	$\mid C \mid$	D	2	$\mid D \mid$	$\mid D \mid$	0	-	D	2	$\mid D \mid$
E	1	E	E	5	E	E	4	D	E	2	E	E	0	_

B manda il suo DV a $\{A, E, C\}$.

C viene a conoscenza del nodo A, raggiungibile attraverso il nodo B.

Sono stati inviati il set completo di messaggi tra i router, ma non sono ancora arrivato alla convergenza, infatti esiste percorso da C ad A con costo minore rispetto a quello che ha nella sua tabella di routing.

	A			В			С			D			\mathbf{E}	
Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH
A	0	-	A	6	E	A	7	B	A	3	E	A	1	A
В	7	В	B	0	-	В	1	В	В	3	C	В	5	В
$\mid C \mid$	6	E	C	1 1	C	C	0	-	C	2	C	$\mid C \mid$	4	D
$\mid D \mid$	3	D	D	3	$\mid C \mid$	D	2	$\mid D \mid$	D	0	-	D	2	$\mid D \mid$
E	1	\mathbf{E}	E	5	E	E	4	$\mid D \mid$	E	2	\mathbf{E}	E	0	-

D manda il suo DV a $\{E, C\}$.

C aggiorna il suo percorso verso il nodo A attraverso il nodo E e così facendo ho raggiunto la convergenza.

	A			В			С			D			Е	
Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH
A	0	-	A	6	E	A	5	E	A	3	E	A	1	A
В	7	В	В	0	-	В	1	В	В	3	$\mid C \mid$	В	5	В
$\mid C \mid$	6	E	C	1	$\mid C \mid$	C	0	-	C	2	C	$\mid C \mid$	4	$\mid D \mid$
D	3	D	D	3	$\mid C \mid$	D	2	D	D	0	-	D	2	$\mid D \mid$
E	1	E	E	5	$\mid E \mid$	E	4	D	E	2	E	E	0	-

2.2 Esercizio 2

Usando l'algoritmo di routing di tipo Distance-vector, mostrare l'evoluzione delle tabelle di routing per ogni nodo, considerando che i DV vengono inoltrati dai router seguendo l'ordine: E, B, A, C, D.

Inizializzo le tabelle di routing di ogni nodo inserendo solo i nodi direttamente connessi (per semplicità includo tutte le destinazioni anche se sono ignote, queste avranno costo e NH vuoto).

		A			В			С			D			E	
Ī	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH
Ī	A	0	-	A	1	A	A			A	5	A	A	1	A
	В	1 1	В	В	0	-	В	4	В	В	1 1	В	В		
	$^{\rm C}$			C	4	$\mid C \mid$	C	0	-	C	1 1	C	$\mid C \mid$		
	D	5	D	D	1	$\mid D \mid$	D	1 1	D	$\mid D \mid$	0	-	D	2	$\mid D \mid$
	\mathbf{E}	1	E	E			E			E	2	E	E	0	-

E manda il suo DV: $\{(A, 1), (D, 2)\}$ a $\{D, A\}$.

De Ascoprono una nuova rotta per raggiungersi con costo inferiore, attraverso ${\cal E}.$

	A			В			С			D			\mathbf{E}	
Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH
A	0	-	A	1	A	A			A	3	E	A	1	A
В	1	В	В	0	-	В	4	В	В	1 1	В	В		
C			C	4	$\mid C \mid$	C	0	-	C	1 1	C	$\mid C \mid$		
$\mid D \mid$	3	E	$\mid D \mid$	1 1	$\mid D \mid$	D	1 1	$\mid D \mid$	$\mid D \mid$	0	-	D	2	$\mid D \mid$
E	1	E	E			E			E	2	E	E	0	_

Bmanda il suo DV: $\{(A,1),(C,4),(D,1)\}$ a $\{A,C,D\}.$

 $A \in D$ scoprono un nuovo percorso con costo inferiore attraverso D.

A viene a conoscenza del nodo C (e viceversa) attraverso il nodo B.

	A			В			С			D			E	
Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH
A	0	-	A	1	A	A	5	B	A	2	B	A	1	A
В	1	В	В	0	_	В	4	В	В	1 1	В	В		
$\mid C \mid$	5	B	C	4	$\mid C \mid$	C	0	-	C	1	C	C		
D	2	B	D	1	$\mid D \mid$	D	1	$\mid D \mid$	D	0	_	D	2	$\mid D \mid$
$\mid E \mid$	1	E	E			E			E	2	E	E	0	-

A manda il suo DV: $\{(B,1), (C,5), (D,2), (E,1)\}$ a $\{B,D,E\}$.

B viene a conoscenza del nodo E (e viceversa) e del nodo C (ma C ancora non sa che esiste B).

	A			В			С			D			E	
Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH
A	0	-	A	1	A	A	5	В	A	2	В	A	1	A
В	1	В	В	0	-	В	4	В	B	1 1	В	B	2	A
C	5	E	$\mid C \mid$	4	$\mid C \mid$	C	0	-	$\mid C \mid$	1 1	C	$\mid C \mid$	6	A
$\mid D \mid$	2	E	D	1	$\mid D \mid$	D	1	D	$\mid D \mid$	0	_	D	2	$\mid D \mid$
E	1	E	E	2	A	E			E	2	E	E	0	-

C manda il suo DV: $\{(A,5),(B,4),(D,1)\}$ a $\{B,D\}$.

Non ci sono modifiche, non ci sono percorsi migliori ne scoperte di nuovi nodi.

	A			В			С			D			Е	
Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH
A	0	-	A	1	A	A	5	В	A	2	В	A	1	A
В	$\parallel 1 \parallel$	В	В	0	-	В	4	В	В	1 1	В	В	2	A
C	\parallel 5	E	C	4	$\mid C \mid$	C	0	-	C	1 1	$\mid C \mid$	$\mid C \mid$	6	A
D	$\parallel 2 \parallel$	E	D	1	$\mid D \mid$	D	1	D	$\mid D \mid$	0	-	D	2	$\mid D \mid$
\mathbf{E}	\parallel 1	E	E	2	A	E			$\mid E \mid$	2	E	E	0	-

D manda il suo DV: $\{(A, 2), (B, 1), (C, 1), (E, 2)\}$ a $\{A, B, C, E\}$.

B scopre un percorso migliore verso C (e viceversa).

C scopre un percorso migliore verso A (ma non viceversa) e scopre anche il nodo E.

	A			В			С			D			Е	
Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH
A	0	-	A	1	A	A	3	D	A	2	В	A	1	A
В	1 1	В	В	0	-	В	2	D	В	1 1	В	В	2	A
C	5	E	C	2	D	C	0	-	C	1 1	C	C	3	D
D	2	E	D	1 1	$\mid D \mid$	D	1 1	D	$\mid D \mid$	0	_	D	2	D
E	1 1	E	E	2	A	E	3	D	E	2	E	E	0	-

E' stato inviato il set completo di messaggi tra i router, ma non abbiamo raggiunto la convergenza; il nodo A deve ancora scoprire il percorso migliore verso C.

E manda il suo DV: $\{(A,1),(B,2),(C,3),(D,2)\}$ a $\{A,D\}$. A scopre un nuovo percorso verso C con costo inferiore attraverso E.

	A			В			С			D			E	
Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH
A	0	-	A	1	A	A	3	D	A	2	В	A	1	A
В	\parallel 1	В	В	0	-	В	3	$\mid D \mid$	В	1 1	В	В	2	A
$\mid C \mid$	4	E	C	2	$\mid D \mid$	C	0	-	C	1 1	C	$\mid C \mid$	3	D
D	2	E	D	1	$\mid D \mid$	D	1 1	D	D	0	-	D	2	D
E	1	E	E	2	A	E	3	D	E	2	E	E	0	-

E' stato inviato il set completo di messaggi tra i router, ma non abbiamo raggiunto la convergenza; il nodo A deve ancora scoprire il percorso migliore verso C.

B manda il suo DV: $\{(A,1),(C,2),(D,1),(E,2)\}$ a $\{A,D\}$.

A finalmente scopre il percorso migliore verso C attraverso B, e così facendo raggiungiamo la convergenza.

	A			В			С			D			E	
Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH	Dst	Cost	NH
A	0	-	A	1	A	A	3	D	A	2	В	A	1	A
B	1	В	В	0	-	В	3	$\mid D \mid$	В	1 1	В	В	2	A
$\mid C \mid$	3	B	C	2	$\mid D \mid$	C	0	-	C	1 1	C	C	3	$\mid D \mid$
$\mid D \mid$	2	E	D	1	$\mid D \mid$	D	1	$\mid D \mid$	D	0	_	D	2	$\mid D \mid$
E	1	E	E	2	A	E	3	$\mid D \mid$	E	2	E	E	0	_

3 TCP

3.1 Esercizio 1

- Dimensione file $D = 71540\,Bytes$
- SSTHR = 4 segmenti
- RWND = 8 segmenti
- RTO = 1 s
- $T_p = 50 \ ms$
- $T_t = 0 \ s$
 - 1. Calcola il numero totale di segmenti da inviare (MTU = 1500 Byte):
 - MTU = 1500 Bytes
 - MSS = 1460 Bytes

$$-N = \frac{D}{MSS} = \frac{71540\,Bytes}{1460\,Bytes} = 49$$
 segmenti.

- 2. Calcolare il tempo necessario per trasmettere il file (ignorando i tempi per instaurare il collegamento tra i due host):
 - ciao
- 3. Calcolare il throughput T percepito dal livello applicativo:

$$-\ T = \frac{D}{T_r} = \frac{71540\,Bytes}{0.9\,s} = \frac{80\,kB}{s}$$