Matlab DSP工作室

MATLAB教学——SVPWM篇(中)

第一扇区

$$\begin{cases} u_{\alpha} = \frac{T_1}{T_{pwm}} |\vec{U}_4| + \frac{T_2}{T_{pwm}} |\vec{U}_6| \cos \frac{\pi}{3} \\ u_{\beta} = \frac{T_2}{T_{pwm}} |\vec{U}_6| \sin \frac{\pi}{3} \end{cases}$$

得出:

$$\begin{cases} T_1 = \frac{\sqrt{3}T_{pwm}}{2U_{dc}} \left(\sqrt{3}u_\alpha - u_\beta\right) \\ T_2 = \frac{\sqrt{3}T_{pwm}}{U_{dc}} u_\beta \end{cases}$$

账号:一起学matlab建模 QQ交流群: 1059037032

第11扇区

0-2-6-7-6-2-0

右半部分不带负号

$$\begin{cases} u_{\alpha} = -\left(\frac{T_{1}}{T_{pwm}} \middle| \vec{U}_{2} \middle| \cdot 0.5 - \frac{T_{2}}{T_{pwm}} \middle| \vec{U}_{6} \middle| \cdot 0.5 \right) \\ u_{\beta} = \frac{T_{1}}{T_{pwm}} \middle| \vec{U}_{2} \middle| \sin \frac{\pi}{3} + \frac{T_{2}}{T_{pwm}} \middle| \vec{U}_{6} \middle| \sin \frac{\pi}{3} \end{cases}$$

$$\begin{cases} T_1 = \frac{\sqrt{3}T_{pwm}}{2U_{dc}} \left(-\sqrt{3}u_\alpha + u_\beta \right) \\ T_2 = \frac{\sqrt{3}T_{pwm}}{2U_{dc}} \left(\sqrt{3}u_\alpha + u_\beta \right) \end{cases}$$

第|||扇区

0-2-3-7-3-2-0

$$\begin{cases} u_{\alpha} = -\left(\frac{T_2}{T_{pwm}} \middle| \vec{U}_3 \middle| + \frac{T_1}{T_{pwm}} \middle| \vec{U}_2 \middle| \cos \frac{\pi}{3} \right) \\ u_{\beta} = \frac{T_1}{T_{pwm}} \middle| \vec{U}_2 \middle| \sin \frac{\pi}{3} \end{cases}$$

$$\begin{cases} T_1 = \frac{\sqrt{3}T_{pwm}}{U_{dc}} u_{\beta} \\ T_2 = -\frac{\sqrt{3}T_{pwm}}{2U_{dc}} \left(\sqrt{3}u_{\alpha} + u_{\beta}\right) \end{cases}$$

第IV扇区

0-1-3-7-3-1-0

$$\begin{cases} u_{\alpha} = -\left(\frac{T_2}{T_{pwm}} \middle| \vec{U}_3 \middle| + \frac{T_1}{T_{pwm}} \middle| \vec{U}_1 \middle| \cos \frac{\pi}{3} \right) \\ \vec{u}_1 \sin \frac{\pi}{3} \\ u_{\beta} = -\frac{T_1}{T_{pwm}} \middle| \vec{U}_1 \middle| \sin \frac{\pi}{3} \end{cases}$$

$$\begin{cases} T_1 = -\frac{\sqrt{3}T_{pwm}}{U_{dc}}u_{\beta} \\ T_2 = \frac{\sqrt{3}T_{pwm}}{2U_{dc}}\left(-\sqrt{3}u_{\alpha} + u_{\beta}\right) \end{cases}$$

第 V 扇区

0-1-5-7-5-1-0

$$\begin{cases} u_{\alpha} = -\left(\frac{T_{1}}{T_{pwm}} \middle| \vec{U}_{1} \middle| \cos \frac{\pi}{3} - \frac{T_{2}}{T_{pwm}} \middle| \vec{U}_{5} \middle| \cos \frac{\pi}{3} \right) \\ u_{\beta} = -\left(\frac{T_{1}}{T_{pwm}} \middle| \vec{U}_{1} \middle| \sin \frac{\pi}{3} + \frac{T_{2}}{T_{pwm}} \middle| \vec{U}_{5} \middle| \sin \frac{\pi}{3} \right) \end{cases}$$

$$\begin{cases} T_1 = -\frac{\sqrt{3}T_{pwm}}{2U_{dc}} \left(\sqrt{3}u_\alpha + u_\beta\right) \\ T_2 = -\frac{\sqrt{3}T_{pwm}}{2U_{dc}} \left(-\sqrt{3}u_\alpha + u_\beta\right) \end{cases}$$

第1月扇区

0-4-5-7-5-4-0

$$\int_{0}^{\infty} \vec{U}_{4} \qquad \begin{cases}
u_{\alpha} = \frac{T_{1}}{T_{pwm}} \left| \vec{U}_{4} \right| + \frac{T_{2}}{T_{pwm}} \left| \vec{U}_{5} \right| \cos \frac{\pi}{3} \\
u_{\beta} = -\left(\frac{T_{2}}{T_{pwm}} \left| \vec{U}_{5} \right| \sin \frac{\pi}{3}\right)
\end{cases}$$

$$\begin{cases} T_1 = \frac{\sqrt{3}T_{pwm}}{2U_{dc}} \left(\sqrt{3}u_\alpha + u_\beta\right) \\ T_2 = -\frac{\sqrt{3}T_{pwm}}{U_{dc}} u_\beta \end{cases}$$

第一扇区

$$\begin{cases}
T_1 = \frac{\sqrt{3}T_{pwm}}{2U_{dc}} \left(\sqrt{3}u_\alpha - u_\beta\right) \\
T_2 = \frac{\sqrt{3}T_{pwm}}{U_{dc}} u_\beta
\end{cases}$$

第 || 扇区

$$\begin{cases}
T_1 = \frac{\sqrt{3}T_{pwm}}{2U_{dc}} \left(-\sqrt{3}u_\alpha + u_\beta \right) \\
T_2 = \frac{\sqrt{3}T_{pwm}}{2U_{dc}} \left(\sqrt{3}u_\alpha + u_\beta \right) \\
T_3 = \frac{\sqrt{3}T_{pwm}}{2U_{dc}} \left(\sqrt{3}u_\alpha + u_\beta \right)
\end{cases}$$

第|||扇区

$$\begin{cases}
T_1 = \frac{\sqrt{3}T_{pwm}}{U_{dc}}u_{\beta} \\
T_2 = -\frac{\sqrt{3}T_{pwm}}{2U_{dc}}(\sqrt{3}u_{\alpha} + u_{\beta})
\end{cases}$$

第IV扇区

$$\begin{cases} T_1 = -\frac{\sqrt{3}T_{pwm}}{U_{dc}}u_{\beta} \\ T_2 = \frac{\sqrt{3}T_{pwm}}{2U_{dc}}\left(-\sqrt{3}u_{\alpha} + u_{\beta}\right) \end{cases}$$

第 > 扇区

$$\begin{cases} T_1 = -\frac{\sqrt{3}T_{pwm}}{2U_{dc}} \left(\sqrt{3}u_\alpha + u_\beta\right) \\ T_2 = -\frac{\sqrt{3}T_{pwm}}{2U_{dc}} \left(-\sqrt{3}u_\alpha + u_\beta\right) \end{cases}$$

第 > 局 区

$$\begin{cases} T_1 = \frac{\sqrt{3}T_{pwm}}{2U_{dc}} \left(\sqrt{3}u_\alpha + u_\beta\right) \\ T_2 = -\frac{\sqrt{3}T_{pwm}}{U_{dc}} u_\beta \end{cases}$$

扇区	I	п	ш	IV	V	VI
N	3	1	5	4	6	2
T_1	-Z	Z	X	-X	-Y	Y
T_2	X	Y	-Y	Z	-Z	-X

过调制处理

当 $T_1 + T_2 > T_{pwm}$, 需要进行如下的过调制处理

$$\begin{cases} T_{1} = \frac{T_{1}}{T_{1} + T_{2}} T_{pwm} \\ T_{2} = \frac{T_{2}}{T_{1} + T_{2}} T_{pwm} \end{cases}$$

Matlab DSP工作室 QQ:2772649908

扇区判断

当
$$u_{\beta} > 0$$
, 令A=1, 否则A=0;

当
$$\frac{\sqrt{3}}{2}u_{\alpha}-\frac{1}{2}u_{\beta}>0$$
, 令B=1,否则B=0;

当
$$-\frac{\sqrt{3}}{2}u_{\alpha}-\frac{1}{2}u_{\beta}>0$$
, 令C=1,否则C=0;

$$N = 4C + 2B + A$$

I	A=1	B=1	C=0	N=3
II	A=1	B=0	C=0	N=1
III	A=1	B=0	C=1	N=5
IV	A=0	B=0	C=1	N=4
V	A=0	B=1	C=1	N=6
VI	A=0	B=1	C=0	N=2

Matlab DSP工作室 QQ:2772649908 **PWMA PWMB PWMC** 000 100 110 111 111 110 第一扇区 0-4-6-7-6-4-0

切换点的时间计算

$$\begin{cases} T_a = (T_{pwm} - T_1 - T_2)/4 \\ T_b = T_a + T_1/2 \\ T_c = T_b + T_2/2 \end{cases}$$

各个扇区的切换点

扇区	I	п	ш	IV	V	VI
N	3	1	5	4	6	2
T _{cmp1}	Та	Tb	Тс	Тс	Tb	Та
T _{cmp2}	Tb	Та	Та	Tb	Тс	Тс
T _{cmp3}	Тс	Тс	Tb	Та	Та	Tb

MATLAB教学——SVPWM篇(下)

基本原理、 U_{dc} 与 $\frac{2}{3}U_{dc}$ 问题、调制度、七段式与五段式

$$\begin{cases} \vec{u}_1 = \frac{T_1}{T_{PWM}} \vec{U}_4 \\ \vec{u}_2 = \frac{T_2}{T_{PWM}} \vec{U}_6 \end{cases}$$

$$\frac{\vec{U}_{out}}{\sin \pi/3} = \frac{\vec{u}_1}{\sin(\pi/3 - \theta)} = \frac{\vec{u}_2}{\sin\theta}$$

$$\begin{cases}
T_1 = \sqrt{3} \frac{U_m}{U_{dc}} T_{pwm} \sin\left(\frac{\pi}{3} - \theta\right) \\
T_2 = \sqrt{3} \frac{U_m}{U_{dc}} T_{pwm} \sin\left(\theta\right) \\
T_0 = T_{pwm} - T_1 - T_2
\end{cases}$$

账号: 一起学matlab建模 QQ交流群: 1059037032