Prof. Leandro Chaves Rêgo

Departamento de Estatística e Matemática Aplicada - UFC

Fortaleza, 3 de novembro de 2021

Informação e conhecimento são as bases para obter probabilidades, independente do tipo de interpretação. Revisão desta base de informação ou conhecimento pode levar a revisão do valor da probabilidade. Em particular, conhecimento que determinado evento ocorreu pode influenciar na probabilidade dos demais eventos.

Interpretação Frequentista

Suponha que estejamos interessados em saber qual a probabilidade de um dado evento A, visto que sabe-se que um dado evento B ocorreu. Suponha que realizasse um experimento n vezes das quais o evento A (resp., $B \in A \cap B$) ocorre N_A (resp., $N_B > 0$ e $N_{A \cap B}$) vezes. Seja $r_A = N_A/n$ a frequência relativa do evento A nestas n realizações do experimento. A probabilidade condicional de A dado que sabe-se que B ocorreu segundo esta interpretação frequentista, sugere que ela deve ser igual ao limite das frequências relativas condicionais do evento A dado o evento B, isto é, ela deve ser o limite da razão $N_{A \cap B}/N_B$ quando n tende ao infinito. É fácil provar que esta razão é igual a $r_{A \cap B}/r_B$, que por sua vez segundo a interpretação frequentista de probabilidade é aproximadamente igual a $P(A \cap B)/P(B)$ para valores grandes de n.

Interpretação Subjetiva

Considerando-se uma interpretação mais subjetiva suponha que a incerteza de um agente é descrita por uma probabilidade P em (Ω, \mathcal{A}) e que o agente observa ou fica sabendo que o evento B ocorreu. Como o agente deve atualizar sua probabilidade $P(\cdot|B)$ de modo a incorporar esta nova informação? Claramente, se o agente acredita que B é verdadeiro, então parece razoável requerer que

$$P(B^c|B) = 0 (1)$$

Em relação aos eventos contidos em B, é razoável assumir que sua chance relativa permaneça inalterada se tudo que o agente descobriu foi que o evento B ocorreu, ou seja, se $A_1,A_2\subseteq B$ com $P(A_2)>0$, então

$$\frac{P(A_1)}{P(A_2)} = \frac{P(A_1|B)}{P(A_2|B)} \tag{2}$$

Interpretação Subjetiva

Segue que (1) e (2) determinam completamente $P(\cdot|B)$ se P(B) > 0.

Teorema

Se P(B>0) e $P(\cdot|B)$ é uma medida de probabilidade em Ω que satisfaz (1) e (2), então

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Prova: Como $P(\cdot|B)$ é uma medida de probabilidade e satisfaz $P(B^c|B) = 0$, nós temos que $P(B|B) = 1 - P(B^c|B) = 1$. Considerando $A_1 = A$ e $A_2 = B$ em (2), temos então $P(A|B) = \frac{P(A)}{P(B)}$ para $A \subseteq B$. Se A não é um subconjunto de B, temos que $A = (A \cap B) \cup (A \cap B^c)$. Como $(A \cap B)$ e $(A \cap B^c)$ são eventos disjuntos, temos $P(A|B) = P(A \cap B|B) + P(A \cap B^c|B)$. Como $A \cap B^c \subseteq B^c$ e $P(B^c|B) = 0$, temos que $P(A \cap B^c|B) = 0$. Como $A \cap B \subseteq B$, usando o caso anterior

$$P(A|B) = P(A \cap B|B) = \frac{P(A \cap B)}{P(B)}.$$

Deste modo as interpretações freqüentista e subjetivista de probabilidade justificam a seguinte definição.

Definição

Seja (Ω, \mathcal{A}, P) um espaço de probabilidade. Se $A, B \in \mathcal{A}$ e P(B) > 0 a probabilidade condicional de A dado B é definida por

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Axiomas

Vamos provar que para um evento fixo B que satisfaz P(B)>0, $P(\cdot|B)$ satisfaz os axiomas K1-K5 acima e realmente é uma medida de probabilidade. Para provar K2, note que para todo $A\in\mathcal{A}$, como $P(A\cap B)\geq 0$, nós temos

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \ge 0.$$

Para provar K3, note que $\Omega \cap B = B$, então

$$P(\Omega|B) = \frac{P(\Omega \cap B)}{P(B)} = \frac{P(B)}{P(B)} = 1.$$

Finalmente, para provar K5' (que implica K4), note que se A_1, A_2, \ldots são mutuamente exclusivos $A_1 \cap B, A_2 \cap B, \ldots$ também o são, então

$$P(\cup_{i}A_{i}|B) = \frac{P((\cup_{i}A_{i}) \cap B)}{P(B)} = \frac{P(\cup_{i}(A_{i} \cap B))}{P(B)}$$
$$= \frac{\sum_{i}P(A_{i} \cap B)}{P(B)} = \sum_{i}P(A_{i}|B).$$

Propriedades

A probabilidade condicional também satisfaz as seguintes propriedades:

- **1** P(B|B) = 1;
- $P(A|B) = P(A \cap B|B);$
- 3 se $A \supseteq B$, então P(A|B) = 1;
- $oldsymbol{5}$ Fazendo $C=\Omega$ na Propriedade 4 acima, temos que:

$$P(A \cap B) = P(A|B)P(B).$$

Utilizando indução matemática, pode-se facilmente provar que

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1)P(A_2|A_1)...P(A_n|A_1 \cap ... \cap A_{n-1}).$$

Exemplo

Suponha uma turma com 30 alunos dos quais 5 são mulheres e o restante homens. 4 alunos saem da sala de aula sucessivamente. Qual a probabilidade de que sejam 2 mulheres e 2 homens, nessa ordem?

Solução: Sejam os eventos:

$$M_1 = \{ \text{o primeiro a sair \'e mulher} \},$$
 $M_2 = \{ \text{o segundo a sair \'e mulher} \},$
 $H_3 = \{ \text{o terceiro a sair \'e homem} \},$
 $H_4 = \{ \text{o quarto a sair \'e homem} \}.$

Portanto, a probabilidade pedida é:

$$P(M_1 \cap M_2 \cap H_3 \cap H_4) = P(M_1)P(M_2|M_1) \dots P(H_4|M_1 \cap M_2 \cap H_3) = \frac{5}{30} \frac{4}{29} \frac{25}{28} \frac{24}{27} = \frac{100}{5481}.$$

Probabilidade Total

Um método de se obter uma probabilidade (incondicional) de uma probabilidade condicional é utilizando o Teorema da Probabilidade Total.

Teorema

Seja a seqüência de eventos B_1, B_2, \ldots uma partição de Ω , então para todo $A \in \mathcal{A}$

$$P(A) = \sum_{i: P(B_i) \neq 0} P(A|B_i) P(B_i)$$

Prova:

Como B_1, B_2, \ldots é uma partição de Ω , temos que

$$A = A \cap \Omega = A \cap (\cup_i B_i) = \cup_i (A \cap B_i).$$

Como os eventos B_i 's são mutuamente exclusivos, os eventos $(A \cap B_i)$'s também são mutuamente exclusivos. Então axioma K5' implica que

$$P(A) = P(\cup_i (A \cap B_i)) = \sum_i P(A \cap B_i)$$

$$= \sum_{i:P(B_i)\neq 0} P(A \cap B_i) = \sum_{i:P(B_i)\neq 0} P(A|B_i)P(B_i).$$

Probabilidade Total

Se nós interpretarmos a partição B_1, B_2, \ldots como possíveis causas e o evento A corresponda a um efeito particular associado a uma causa, $P(A|B_i)$ especifica a relação estocástica entre a causa B_i e o efeito A.

Exemplo

Seja $\{D,D^c\}$ uma partição do espaço amostral, onde o evento D significa que um dado indivíduo possui uma certa doença. Seja A o evento que determinado teste para o diagnóstico da doença deu positivo. Então, $P(A|D^c)$ descreve a probabilidade do exame dá positivo mesmo que o paciente esteja saudável, é a chamada probabilidade de $falso\ positivo$. $P(A^c|D)$ é a probabilidade do exame dá negativo mesmo que o paciente esteja doente, é a chamada probabilidade de $falso\ negativo$. Estas probabilidades determinam a qualidade do teste, quanto menores as probabilidades de falso negativo e falso positivo melhor a qualidade do teste. Caso as probabilidades P(D), P(A|D), $P(A|D^c)$ sejam conhecidas pode-se usando o Teorema da Probabilidade Total obter a probabilidade incondicional de determinado exame dar positivo P(A).

Teorema de Bayes

Porém geralmente, o que se busca é saber que dado que o resultado de um exame deu positivo qual a probabilidade de que o indivíduo esteja doente. Pode-se obter esta probabilidade utilizando a famosa *fórmula de Bayes*:

$$P(D|A) = \frac{P(A \cap D)}{P(A \cap D) + P(A \cap D^c)} = \frac{P(A|D)P(D)}{P(A|D)P(D) + P(A|D^c)P(D^c)}.$$

Mais geralmente, quando temos uma partição B_1, B_2, \ldots , temos que a **fórmula** de Bayes é dada por:

$$P(B_i|A) = \frac{P(A \cap B_i)}{\sum_j P(A \cap B_j)} = \frac{P(A \cap B_i)}{\sum_{j:P(B_j)\neq 0} P(A \cap B_j)}$$
$$= \frac{P(A|B_i)P(B_i)}{\sum_{j:P(B_j)\neq 0} P(A|B_j)P(B_j)}.$$

Teorema de Bayes

- Os Bi podem descrever diferentes mensagens emitidas em um sistema de comunicações e A pode descrever uma mensagem recebida pelo sistema.
- $P(A|B_i)$ determina a probabilidade que a mensagem B_i seja emitida e a mensagem A seja recebida por este sistema. Essas probabilidades condicionais especificam o modelo do canal de comunicações.
- ullet Caso, as probabilidades $P(B_i)$'s de cada mensagem ser enviada e as probabilidades condicionais que descrevem o canal de comunicação sejam conhecidas pode-se usando o Teorema da Probabilidade Total obter a probabilidade incondicional que determinada mensagem A seja recebida.
- Porém geralmente, o que se busca é saber que dado uma certa mensagem foi recebida (efeito) A qual a probabilidade de cada uma das mensagens B_i terem sido as mensagens enviadas. Podem-se obter estas probabilidades utilizando a famosa fórmula de Bayes.
- As probabilidades $P(B_i)$ são usualmente chamadas de probabilidades a priori e as probabilidades condicionais $P(B_i|A)$ são chamadas de probabilidades a posteriori.

Exemplo

Considere uma imagem formada por $n \times m$ pixels com a k-ésima linha contendo $d_k (\leq m)$ pixels defeituosos. No primeiro estágio do experimento uma linha é escolhida ao acaso e nós não sabemos qual foi a escolha. Nós então examinamos um pixel selecionada ao acaso nesta linha e descobrimos que o pixel é defectivo (chamamos este evento de D). Qual a probabilidade de que este pixel defeituoso esteja na linha k? Seja R=k o evento que este pixel pertencia a k-ésima linha da imagem. A fórmula de Bayes nos permite determinar que dado que

$$P(R=k)=rac{1}{n}$$
 e $P(D|R=k)=rac{d_k}{m}$,

nós temos que

$$P(R = k|D) = \frac{\frac{1}{n} \frac{d_k}{m}}{\sum_{i=1}^{n} \frac{1}{n} \frac{d_i}{m}} = \frac{d_k}{\sum_{i=1}^{n} d_i}.$$

Então, mesmo que a linha tenha inicialmente sido escolhida ao acaso, dado o evento que encontramos ao acaso um pixel defectivo nesta linha, agora é mais provável que seja uma linha contendo um número grande de pixels defectivos d_k .

Exemplo

Um canal de comunicação binário envia um dentre dois tipos de sinais, denotados por 0 e 1. Devido ao ruído, um 0 transmitido é alguma vezes recebido como um 1 e um 1 transmitido é alguma vezes recebido como um 0. Para um dado canal, assuma uma probabilidade de 0.94 que um 0 transmitido seja corretamente recebido como um 0 e uma probabilidade de 0.91 que um 1 transmitido seja corretamente recebido como um 1. Adicionalmente, assuma uma probabilidade de 0.45 de se transmitir um 0. Se um sinal é enviado, determine,

- (a) A probabilidade de que um 1 seja recebido.
- (b) A probabilidade de que um 0 seja recebido.
- (c) A probabilidade de que um 1 foi transmitido, dado que um 1 foi recebido.
- (d) A probabilidade de que um 0 foi transmitido, dado que um zero foi recebido.
- (e) A probabilidade de um erro.

Sejam os eventos

$$\mathcal{T}_0 = \{ \text{um 0 \'e transmitido} \},$$
 $\mathcal{T}_1 = \{ \text{um 1 \'e transmitido} \},$
 $\mathcal{R}_0 = \{ \text{um 0 \'e recebido} \},$
 $\mathcal{R}_0 = \{ \text{um 1 \'e recebido} \}.$

Logo,

$$P(R_0 \mid T_0) = 0.94 \Rightarrow P(R_1 \mid T_0) = 0.06,$$

 $P(R_1 \mid T_1) = 0.91 \Rightarrow P(R_0 \mid T_1) = 0.09,$
 $P(T_0) = 0.45,$
 $P(T_1) = 0.55.$

(a)

$$R_1=(R_1\cap T_1)\cup (R_1\cap T_0),$$

ogo,

$$P(R_1) = P(R_1 \mid T_1)P(T_1) + P(R_1 \mid T_0)P(T_0) = 0.91 \times 0.55 + 0.06 \times 0.45$$

(b)
$$R_0 = (R_0 \cap T_0) \cup (R_0 \cap T_1),$$
 logo,
$$P(R_0) = P(R_0 \mid T_0)P(T_0) + P(R_0 \mid T_1)P(T_1) = 0.94 \times 0.45 + 0.09 \times 0.55$$
 ou,
$$P(R_0) = 1 - P(R_1) = 1 - 0.5275 = 0.4725.$$
 (c)
$$P(T_1 \cap R_2)$$

$$P(T_1 \mid R_1) = \frac{P(T_1 \cap R_1)}{P(R_1)}$$

$$= \frac{P(R_1 \mid T_1)P(T_1)}{P(R_1)}$$

$$= \frac{0.91 \times 0.55}{0.5275} = 0.9488.$$

(d)

$$P(T_0 \mid R_0) = \frac{P(T_0 \cap R_0)}{P(R_0)}$$

$$= \frac{P(R_0 \mid T_0)P(T_0)}{P(R_0)}$$

$$= \frac{0.94 \times 0.45}{0.4725} = 0.8952.$$

(e)

$$E = \{ acontece um erro \}.$$

Logo,

$$E = (T_1 \cap R_0) \cup (T_0 \cap R_1),$$

$$P(E) = P(R_0 \mid T_1)P(T_1) + P(R_1 \mid T_0)P(T_0) = 0.09 \times 0.55 + 0.06 \times 0.45$$

Exemplo

Uma urna contém 4 bolas brancas e 6 bolas pretas. Sacam-se, sucessivamente e sem reposição, duas bolas dessa urna. Determine a probabilidade da primeira bola ser branca sabendo que a segunda bola é branca.

Solução: Sejam B_1 e B_2 os eventos a primeira bola é branca e a segunda bola é branca, respectivamente. Queremos calcular $P(B_1|B_2)$. Utilizando a fórmula de Bayes, temos

$$P(B_1|B_2) = \frac{P(B_2|B_1)P(B_1)}{P(B_2|B_1)P(B_1) + P(B_2|B_1^c)P(B_1^c)}.$$

Mas $P(B_2|B_1) = \frac{3}{9}$, $P(B_2|B_1^c) = \frac{4}{9}$, $P(B_1) = \frac{4}{10}$ e $P(B_1^c) = \frac{6}{10}$. Logo,

$$P(B_1|B_2) = \frac{\frac{3}{9} \cdot \frac{4}{10}}{\frac{3}{9} \cdot \frac{4}{10} + \frac{4}{9} \cdot \frac{6}{10}} = \frac{\frac{2}{15}}{\frac{2}{5}} = \frac{1}{3}.$$

Exemplo

Se P(C|D) = 0, 4 e P(D|C) = 0, 5, que evento é mais provável C ou D? Solução:

Exemplo

Uma fábrica tem 3 máquinas que produzem o mesmo ítem. As máquinas A e B são responsáveis, cada uma, por 40% da produção. Quanto à qualidade, as máquinas A e B produzem 10% de ítens defeituosos cada uma, enquanto a máquina C apenas 2%. Um ítem é selecionado ao acaso da produção dessa fábrica.

- (a) Qual a probabilidade do ítem selecionado ser defeituoso?
- (b) Se o ítem selecionado for defeituoso, qual a probabilidade que tenha sido produzido pela máquina A?

Monty Hall foi um popular apresentador de programa de jogos em TV cujo jogo começava mostrando ao participante 3 portas fechadas d_1, d_2, d_3 , e atrás de apenas uma delas havia um prêmio valioso. O participante selecionava uma porta, por exemplo, d_1 , mas antes que a porta fosse aberta, Monty Hall, que sabia em que porta estava o prêmio, por exemplo, d_2 , abria a porta restante d_3 , que não continha o prêmio. O participante tinha então permissão para ficar com sua porta original, d_1 , ou escolher a outra porta fechada. A pergunta é se é melhor ficar com a porta original ou trocar de porta.

Vamos agora utilizar a fórmula de Bayes para analisar este problema. Seja G uma porta escolhida aleatoriamente para conter o prêmio; Y a porta que o participante escolhe primeiro; e M a porta que Monty Hall abre. O participante não tem nenhum conhecimento a priori sobre a localização do prêmio, ou seja ele considera todas as portas equiprováveis, e isto pode ser modelado por:

$$P(G=d_i|Y=d_j)=\frac{1}{3};$$

todas as portas têm a mesma probabilidade de conter o prêmio não importa qual porta o participante escolhe.

Se o participante escolher uma porta que não contém o prêmio, Monty Hall necessariamente terá de abrir a porta que não contém o prêmio, isto pode ser modelado por:

$$P(M = d_{i_1}|Y = d_{i_2}, G = d_{i_3}) = 1,$$

onde $i_1, i_2, i_3 \in \{1, 2, 3\}$ e são distintos.

Se o participante escolher corretamente, por exemplo, $Y=G=d_{i_2}$, então assumimos que Monty Hall escolhe aleatoriamente entre as outras duas outras portas:

$$P(M=d_{i_1}|Y=G=d_{i_2})=rac{1}{2}, \; \mathsf{para} \; d_{i_1}
eq d_{i_2}.$$

Para determinar se o participante deve trocar de porta, devemos calcular

$$P(G = d_1|Y = d_2, M = d_3)$$

$$= \frac{P(G = d_1, Y = d_2, M = d_3)}{P(Y = d_2, M = d_3)}$$

$$= \frac{P(M = d_3|G = d_1, Y = d_2)P(G = d_1|Y = d_2)}{P(M = d_3|Y = d_2)}$$

$$\times \frac{P(Y = d_2)}{P(Y = d_2)}$$

$$= \frac{1/3}{P(M = d_3|Y = d_2)}$$

Para determinar o valor de $P(M=d_3|Y=d_2)$ utilizamos o Teorema da Probabilidade Total e a definição de probabilidade condicional:

$$P(M = d_3|Y = d_2) = \frac{P(Y = d_2, M = d_3)}{P(Y = d_2)}$$

$$= \frac{P(Y = d_2, M = d_3, G = d_1)}{P(Y = d_2)} + \frac{P(Y = d_2, M = d_3, G = d_2)}{P(Y = d_2)}$$

$$+ \frac{P(Y = d_2, M = d_3, G = d_3)}{P(Y = d_2)}$$

$$= \frac{P(Y = d_2)}{P(Y = d_2)} \times [P(M = d_3|Y = d_2, G = d_1)P(G = d_1|Y = d_2)$$

$$+P(M = d_3|Y = d_2, G = d_2)P(G = d_2|Y = d_2)$$

$$+P(M = d_3|Y = d_2, G = d_3)P(G = d_3|Y = d_2)]$$

$$= 1 \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{1}{3} + 0 = \frac{1}{2}.$$

Logo, $P(G = d_1 | Y = d_2, M = d_3) = \frac{2}{3}$, e o participante deve trocar de porta de sua escolha original d_2 para d_1 !

Exemplo

Seja D o evento que um indivíduo selecionado ao acaso de uma população tem uma doença particular, D^c seu complemento. A probabilidade que um indivíduo selecionado ao acaso nesta população tenha determinada doença é p_d . Existe um teste para diagnóstico desta doença que sempre acusa presença da doença quando o indivíduo tem a doença. Contudo, quando o indivíduo não tem a doença, o teste reporta falsamente que o indivíduo tem a doença com probabilidade p_t . Seja TP o evento que o teste reporta positivamente que o indivíduo tem a doença. Formalmente, temos:

$$P(D) = p_d, P(TP|D) = 1, P(TP|D^c) = p_t.$$

Um indivíduo deve estar interessado em saber a probabilidade P(D|TP) que ele tenha a doença dado que o teste deu positivo. Se, por exemplo, a doença for rara e $p_d = 0,001$, e o teste reportar falsamente com probabilidade pequena $p_t = 0,05$, veremos que apesar desta pequena probabilidade do teste da um resultado errado, a probabilidade do indivíduo ter a doença é pequena. Pela fórmula de Bayes

$$P(D|TP) = \frac{P(TP|D)P(D)}{P(TP|D)P(D) + P(TP|D^c)P(D^c)} = \frac{p_d}{p_d + p_t(1 - p_d)} = 0,02.$$

Exemplo

Sabemos que os eventos $\{B_1, B_2, B_3\}$ são disjuntos par a par e que sua união é igual ao espaço amostral. Estes eventos tem as seguintes probabilidades $P(B_1) = 0, 2$ e $P(B_2) = 0, 3$. Existe um outro evento A que sabemos que $P(A|B_1) = 0, 3$; $P(A|B_2) = 0, 4$; e $P(A|B_3) = 0, 1$. Calcule:

- (a) P(A)
- (b) $P(B_2|A)$

Exemplo

Suponha que todos os bytes tenham a mesma probabilidade. Seja W o número de 1's em um byte. Considere os seguintes eventos:

 $A = \{O \text{ primeiro e o segundo bit são iguais a 1, e} \}$

$$B = \{W \text{ \'e um n\'umero \'impar.}\}$$

Calcule:

- (a) P(A)
- (b) P(B)
- (c) P(B|A)
- (d) P(A|B)

Solução:

$$P(A) = \frac{||A||}{||\Omega||} = \frac{2^6}{2^8} = \frac{1}{4}.$$

$$P(B) = \frac{||B||}{||\Omega||} = \frac{\binom{8}{1} + \binom{8}{3} + \binom{8}{5} + \binom{8}{7}}{2^8} = \frac{1}{2}.$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)},$$
onde $P(A \cap B) = \frac{||A \cap B||}{\Omega} = \frac{\binom{6}{1} + \binom{6}{3} + \binom{6}{5}}{2^8} = \frac{1}{8}.$ Portanto,
$$P(B|A) = \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{2}.$$

$$P(A|B) = \frac{P(A \cap B)}{B} = \frac{\frac{1}{8}}{\frac{1}{2}} = \frac{1}{4}.$$

Exemplo

Se jogarmos dois dados um após o outro e observamos o evento que a soma dos dois dados é igual a 9, então qual a probabilidade do primeiro dado ter dado resultado 4?

Exemplo

Em um teste de múltipla escolha, a probabilidade do aluno saber a resposta da questão é p. Havendo m escolhas, se ele sabe a resposta ele responde corretamente com probabilidade 1; se não sabe ele responde corretamente com probabilidade $\frac{1}{m}$.

- (a) Qual a probabilidade que a pergunta foi respondida corretamente?
- (b) Qual a probabilidade que o aluno sabia a resposta dado que a pergunta foi respondida corretamente?

Solução: Para a parte (a), usamos o Teorema da Probabilidade Total:

$$P(A) = P(A|B)P(B) + P(A|B^{c})P(B^{c}) = 1 \cdot p + \frac{1}{m}(1-p).$$

Para a parte (b), usamos a fórmula de Bayes

$$P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|B^c)P(B^c)} = \frac{1 \cdot p}{1 \cdot p + \frac{1}{m}(1-p)}$$

Independência

- O que exatamente significa que dois eventos são independentes?
- Intuitivamente, isto significa que eles não têm nada haver um com o outro, eles são totalmente não relacionados; a ocorrência de um não tem nenhuma influência sobre o outro. Por exemplo, suponha que duas diferentes moedas são lançadas. A maioria das pessoas viria os resultados desses lançamentos como independentes.
- Portanto, a intuição por trás da frase "o evento A é independente do evento B" é que nosso conhecimento sobre a tendência para A ocorrer dado que sabemos que B ocorreu não é alterada quando ficamos sabendo que B ocorreu.
- Então, usando probabilidades condicionais podemos formalizar esta intuição da seguinte forma, A é independente de B se P(A|B) = P(A). Mas usando a definição de probabilidade condicional, chega-se a seguinte conclusão A é independente de B se $P(A \cap B) = P(A)P(B)$. Como esta última expressão é definida inclusive para o caso de P(B) = 0, ela é a expressão adotada como a definição de independência entre eventos.

Definição

O evento A é independente do evento B se $P(A \cap B) = P(A)P(B)$.

Indepedência

Note que esta definição de independência implica que independência é um conceito simétrico em teoria da probabilidade, isto é, A é independente de B se e somente se B é independente de A. Note que esta definição também implica que eventos A e B são independentes se P(A)=0 ou P(B)=0, o que pode gerar algumas conclusões não intuitivas se de fato P(A)=0 ou P(B)=0. Por exemplo, se P(A)=0, então A é independente dele mesmo, porém A certamente não é não relacionado consigo mesmo. Similarmente, é fácil provar que se P(A)=1, A é independente dele mesmo. O seguinte teorema prova que estes são os únicos casos em que um evento é independente dele mesmo.

Teorema

A é independente dele mesmo se e somente se P(A)=0 ou P(A)=1.

Prova:

$$P(A \cap A) = P(A) = P(A)P(A) \Leftrightarrow P(A) = 0 \text{ ou } P(A) = 1.$$

Propriedade

Intuitivamente, se A é independente de B o fato que B não ocorreu, ou seja que B^c ocorreu, não deve alterar a probabilidade de A. Portanto, é de se esperar que se A e B são independentes, então A e B^c também são. O seguinte teorema prova que esta intuição é verdadeira.

Teorema

Se A e B são eventos independentes, A e B^c (resp., A^c e B, A^c e B^c) também o são

Prova: Note que

$$A = A \cap \Omega = A \cap (B \cup B^{c}) = (A \cap B) \cup (A \cap B^{c}).$$

Então, como $A \cap B$ e $A \cap B^c$ são mutuamente exclusivos, axioma K4 implica que

$$P(A) = P(A \cap B) + P(A \cap B^{c}).$$

Como A e B são independentes, nós temos

$$P(A) = P(A)P(B) + P(A \cap B^{c}).$$

Rearrajando os termos e utilizando o fato que $P(B^c) = 1 - P(B)$, temos $P(A \cap B^c) = P(A)P(B^c)$, como queríamos demonstrar \blacksquare

Independência entre Vários Eventos

O conceito de independência também se aplica a uma coleção arbitrária de eventos $\{A_i\}_{i\in\mathcal{I}}$, onde \mathcal{I} é um conjunto de índices. Neste caso, têm-se duas definições.

Definição

Uma coleção de eventos $\{A_i\}_{i\in\mathcal{I}}$ é independente par a par se para todo $i\neq j\in I,\ A_i$ e A_j são eventos independentes.

Definição

Uma seqüência finita de eventos $A_1, A_2, \ldots, A_n, n \geq 1$, é mutuamente independente se para todo $I \subseteq \{1, \ldots, n\}$,

$$P(\cap_{i\in I}A_i)=\prod_{i\in I}P(A_i)$$

E uma coleção de eventos $\{A_i\}_{i\in\mathcal{I}}$ é mutuamente independente se para todo $J\subseteq\mathcal{I}$ finito, $\{A_i\}_{i\in\mathcal{I}}$ é mutuamente independente.

Considere os seguintes exemplos que ilustram o conceito de independência.

Exemplo

Se $\Omega = \{1, 2, 3, 4\}$ e $P(\{w\}) = 1/4$, então $A = \{1, 2\}$, $B = \{1, 3\}$, e $C = \{2, 3\}$ são eventos independentes par a par. Pode-se verificar isto pelo fato que

$$P(A \cap B) = P(\{1\}) = \frac{1}{4} = \frac{1}{2} \frac{1}{2} = P(A)P(B).$$

Similarmente, pode-se provar o mesmo resultado para os outros pares. Contudo, a probabilidade

$$P(A \cap B \cap C) = P(\emptyset) = 0 \neq P(A)P(B)P(C) = \frac{1}{8}.$$

Então, A, B, e C não são mutuamente independentes.

Exemplo

Um sistema automático de alarme contra incêndio utiliza três células sensíveis ao calor, que agem, independentemente, uma da outra. Cada célula entra em funcionamento com probabilidade 0.8 quando a temperatura atinge $60^{\circ}C$. Se pelo menos uma das células entrar em funcionamento, o alarme soa. Calcule a probabilidade do alarme soar.

Solução: Sejam

$$C_i = \{\mathsf{c\'elula}\ i \ \mathsf{entra}\ \mathsf{em}\ \mathsf{funcionamento},\ i = 1, \cdots, 3.\}$$

Logo,

$$P(C_1 \cup C_2 \cup C_3) = 1 - P(\overline{C_1 \cup C_2 \cup C_3}) = 1 - P(\overline{C_1})P(\overline{C_2})P(\overline{C_3}) = 1 - 0.2^3 = 0.992.$$

Exemplo

Se $\Omega = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 2, 4\}$, e $B = \{2, 3, 5\}$, então construa uma medida de probabilidade em Ω tal que A e B sejam independentes.

Solução: Seja p_i a probabilidade do elemento $i \in \Omega$. Então, para que A e B sejam independentes devemos ter:

$$P(A \cap B) = p_2 = P(A)P(B) = (p_1 + p_2 + p_4)(p_2 + p_3 + p_5).$$

Por exemplo, podemos escolher $p_1=p_2=p_3=p_6=\frac{1}{4}$ e $p_4=p_5=0$. Deste modo temos, $P(A\cap B)=\frac{1}{4}$ e $P(A)=P(B)=\frac{1}{2}$.

Exemplo

Certo experimento consiste em lançar um dado equilibrado duas vezes, independentemente. Dado que os dois números sejam diferentes, qual é a probabilidade condicional de

- (a) pelo menos um dos números ser 6,
- (b) a soma dos números ser 8?

Solução: Para parte (a), note que existem 30 resultados possíveis para os lançamentos do dado de modo que o mesmo número não se repita, dos quais 10 o número 6 ocorre. Portanto, esta probabilidade é igual a 1/3. Para parte (b), note que existem 4 resultados possíveis que somam 8 dado que os números são diferentes, logo esta probabilidade é igual a 4/30.

Exemplo

O evento F de um determinado sistema falhar ocorre se os eventos A_1 ou A_2 ocorrerem, mas o evento A_3 não ocorrer. Se A_1, A_2, A_3 são mutumente independetes e $P(A_1) = 0, 4, P(A_2) = 0, 35, e P(A_3) = 0, 1,$ então calcule P(F).

Solução:

O evento F é igual ao evento $(A_1 \cup A_2) \cap A_3^c$. Logo sua probabilidade é igual a:

$$\begin{split} P(F) &= P((A_1 \cup A_2) \cap A_3^c) = P(A_1 \cup A_2) P(A_3^c) \\ &= (P(A_1) + P(A_2) - P(A_1) P(A_2)) (1 - P(A_3)) \\ &= (0, 4 + 0, 35 - 0, 4 \cdot 0, 35) (0, 9) = 0, 549. \end{split}$$

Exemplo

Assuma que A_1, \ldots, A_n são eventos mutuamente independentes e que $P(A_i) = p_i$. Nós calculamos as probabilidades dos seguintes eventos:

• O evento A é o evento que todos estes eventos ocorrem, então

$$P(A) = P(\cap_{i=1}^{n} A_i) = \prod_{i=1}^{n} P(A_i) = \prod_{i=1}^{n} p_i$$

 \bullet O evento B é o evento que nenhum desses eventos ocorre, então

$$P(B) = P(\bigcap_{i=1}^{n} A_i^c) = \prod_{i=1}^{n} P(A_i^c) = \prod_{i=1}^{n} (1 - p_i)$$

 \bullet O evento C é o evento que pelo menos um desses eventos ocorre, então $C=B^c$

$$P(C) = P(B^c) = 1 - P(B) = 1 - \prod_{i=1}^{n} (1 - p_i)$$

Exemplo

João e José disputam um jogo com uma moeda equilibrada. Cada jogador lança a moeda duas vezes e vence o jogo aquele que primeiro obtiver dois resultados iguais. João começa jogando e se não vencer passa a moeda para José e continuam alternando jogadas. Qual a probabilidade de João vencer o Jogo?

Solução:

Seja A_k o evento dois resultados iguais são obtidos na k-ésima tentativa. Note que $P(A_k)=\frac{1}{2}$. Seja B_k o evento João ganha na sua k-ésima jogada. Então,

$$B_1 = A_1; \ B_2 = A_1^c \cap A_2^c \cap A_3; \ B_3 = A_1^c \cap A_2^c \cap A_3^c \cap A_4^c \cap A_5,$$

em geral,

$$B_k = A_1^c \cap A_2^c \cap \cdots \cap A_{2k-2}^c \cap A_{2k-1}.$$

Portanto,

$$P(B_k) = P(A_1^c \cap A_2^c \cap \cdots \cap A_{2k-2}^c \cap A_{2k-1})$$

$$= P(A_1^c)P(A_2^c) \cdots P(A_{2k-2}^c)P(A_{2k-1})$$

$$= (\frac{1}{2})^{2k-1},$$

onde a penúltima igualdade se deve ao fato dos lançamentos serem independentes. Logo,

$$P(\text{João vencer}) = P(\bigcup_{k=1}^{\infty} B_k)$$

$$= \sum_{k=1}^{\infty} P(B_k) = \sum_{k=1}^{\infty} (\frac{1}{2})^{2k-1}$$

$$= \frac{2}{2}$$