Machine Learning
Clustering
Métodos de densidad: **DBSCAN**

Contenidos

- · Introducción
- Clustering
 - Introducción
 - · Métodos de partición
 - · Métodos de densidad
 - Métodos jerárquicos
 - · Métodos difusos
 - Evaluación

Métodos de densidad, DBSCAN, introducción

• DBSCAN es un método de clustering basado en densidad, donde dado un set de datos en el espacio, agrupa los datos que están cercanos entre ellos.

Métodos de densidad, DBSCAN, definiciones

- Densidad es el número de puntos dentro de un radio específico denominado Eps.
- Un punto central/core es aquel que tiene al menos MinPts puntos dentro de la esfera definida por Eps (se incluye el mismo).
- Un punto de borde tiene menos puntos que MinPts del EPS, pero está dentro de la esfera de un punto central.
- Un punto de ruido es todo aquel que no es punto central ni de borde.

Métodos de densidad, DBSCAN, aprendizaje

- Hay que definir eps y MinPts
- Se determinan los puntos centrales, borde, y ruido
- Elimina los puntos de ruido

Métodos de densidad, DBSCAN, aprendizaje

- Hay que definir eps y MinPts
- Se determinan los puntos centrales, borde, y ruido
- Elimina los puntos de ruido
- Aplicar el siguiente algoritmo de clustering:

labelCluster = 0

FOR todos los puntos centrales:

IF punto central no tiene label:

labelCluster = labelCluster + 1

Asignar el label actual al punto central

FOR todos los puntos dentro de la esfera definida por eps:

IF el punto no tiene label:

Asignar el label actual al punto central

¿Qué pasaría si utilizamos K-medias con K=6 para este tipo de datos?
 Como K-medias genera clusters circulares, no podría determinar los clusters en forma correcta.

Original Points

Métodos de densidad, DBSCAN, características

 El algoritmo es computacionalmente caro debido al cálculo de distancia entre todos los puntos.

· Fortalezas:

Resistente a datos atípicos Generar clusters de distintos tamaños y formas

· Debilidad:

Afectado por la densidad de los datos Datos con un número alto de dimensiones

Métodos de densidad, DBSCAN, selección de parámetros

- ¿Como seleccionar EPS y MinPts?
- Para datos con multiples dimensiones (dim), la regla básica es minPts ≥ dim+1
- La idea es que la distancia de los puntos dentro de un cluster a su kmo vecino, sean similares.
- Puntos atípicos tienen a su kmo vecino a una distancia mayor.
- Se calcula la distancia de cada apunto a su k^{mo} vecino, se ordenan de menor a mayor y se grafican, luego se selecciona el EPS cercano al crecimiento exponencial.

