

MOHAMED MEJRI

Groupe LSFM
Département d'informatique et de génie logiciel
Université LAVAL
Québec, Canada

→ Introduction

- Cryptologie
- Cryptographie
- Stéganographie

Cryptographie classique

- Cryptographie monoalphabétique
 - → Chiffrement affine, chiffrement par substitution, le carré de Polybe
- Cryptographie polyalphabétique
 - → Chiffrement par permutation, chiffrement de Vigenere, chiffrement de Hill

→ Instruments de (dé)cryptage

Cryptologie

La cryptologie comprend :

- Cryptographie (crypto=secret, graphy=writing)
 - La cryptographie peut être vue comme la science de déguisement de l'information.
 - Un ensemble de techniques, de manipulation et de transformation de données dans le but de satisfaire certains buts sécuritaires.
 - Elle consiste à chiffrer ou crypter des messages en clair et de déchiffrer ou décrypter des messages codés en connaissant la clé.

Cryptanalyse: C'est l'art de décrypter des messages codés sans connaître la clé ("code breaking").

- Un système cryptographique ou cryptosystème est composé essentiellement d'un algorithme de cryptage (chiffrement) et d'un algorithme de décryptage (déchiffrement).
- \rightarrow Définition formelle : Un cryptosystème est un quintuple $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$

```
\mathcal{P} = \{ \text{messages clairs} \}
\mathcal{C} = \{ \text{messages chiffrés} \}
\mathcal{K} = \{ \text{clefs} \}
\mathcal{E} = \{ e_k : \mathcal{P} \to \mathcal{C} | k \in \mathcal{K} \}
\mathcal{D} = \{ d_k : \mathcal{C} \to \mathcal{P} | k \in \mathcal{K} \}
\forall k \in \mathcal{K}, \ \forall \ x \in \mathcal{P}, \ \exists \ k^{-1} \in \mathcal{K} \ | \ d_{k^{-1}}(e_k(x)) = x
```


⇒ Exemple :

$$\begin{cases}
\mathcal{P} = \mathcal{C} = \mathcal{K} = \{0, 1\}^n \\
e_k \in \mathcal{E} \Rightarrow e_k(m) = m \oplus k \\
d_k \in \mathcal{D} \Rightarrow d_k(m) = m \oplus k
\end{cases}
\Rightarrow
\begin{cases}
d_k(e_k(m)) = (m \oplus k) \oplus k \\
= m \oplus (k \oplus k) \\
= m
\end{cases}$$

- Motivations: La cryptographie est partout.
 - → Protéger la communication trafic : HTTPS, FTPS, SSH, etc.
 - trafic sur un réseau sans fil : WPA2, WEP, Bluetooth
 - trafic GSM: A5/1, 2
 - Protéger des données sur un disque dur : TrueCrypt, MD5, BitLocker Drive Encryption, Encrypting File System (EFS).
 - → Authentification: Kerberos, TLS/SSL, NTLM2, etc.
 - → Vote électronique
 - → Argent numérique
 - Navigation anonyme : TOR (The Onion Router)
 - Sécurité dans l'infonuagique (cloud) : chiffrement homomorphique $f(a \odot b) = f(a) \otimes f(b)$
 - → Etc.

→ Motivations :

- Confidentialité: comment coder des données de telle sorte qu'elles ne soient compréhensibles (accessibles) que par certaines personnes?
- Intégrité: comment coder des données de telle sorte que toute modification que s'y rapporte sera détectée?
- Authentification de message : comment coder des données de telle sorte qu'il serait possible de déterminer leurs origines ?
- Non répudiation, authentification des agents, anonymat, etc.
 - Elle donne des briques de base pour construire des systèmes sécuritaires.

Historique rapide:

Existe depuis l'invention de l'écriture (Égyptiens, Jules Cesare).

Jusqu'à 1970 inconnue en dehors des milieux militaires et diplomatiques.

→ Ordinateurs + Réseaux informatique ⇒ utilisation de la cryptographie dans le domaine civil ⇒ plus de recherche en cryptographie ⇒ des systèmes cryptographiques plus sécuritaires (RSA, DES, etc.)

Types de cryptosystèmes :

- Systèmes à usage restreint : les algorithmes de chiffrement et de déchiffrement sont secrets. La sécurité repose sur leur confidentialité.
- Systèmes à usage général : la confidentialité ne repose pas sur l'algorithme, mais sur une clé. Tout le monde peut utiliser le même système.
- Caractérisation : trois dimentions indépendantes
 - Types d'opérations : substitution, permutation (transposition), etc.
 - Types de clés : symétrique (1 clé), asymétrique (2 clés)
 - Modes d'opérations : par bloc ou à la volée (stream cipher)

Stéganographie

- Définition: Ensemble de techniques qui consistent à cacher l'existence même d'un message.
- Remarque: Généralement, le message à transmettre est caché à l'intérieur d'un texte beaucoup plus grand.
- Exemples historiques: Encre invisible, la première lettre de chaque mot, le premier mot de chaque phrase, etc.
- Exemples plus récents : On cache un message dans une image graphique en modifiant le dernier bit de la couleur de chaque pixel.

Stéganographie

Quelques outils

- → Image Hide: cacher du texte dans une image
- Stealth files: cacher des fichiers exécutables dans des fichiers Word, Excel, PDF, etc.
- Hermetic Stego: permet de crypter des fichiers, de les éclater en morceaux et de les cacher dans plusieurs fichiers BMP
- Snow.exe: cache un message dans un fichier texte en ajoutant des espaces à la fin de ligne
- Steghide: permet de crypter et de cacher des fichiers dans une variété de formats: JPEG, BPM, WAV, AU
- SpamMimic: Le site web comme www.spammimic.com: on lui donne un texte à cacher et il génère un message qui cache le texte donné

- Introduction
 - Cryptologie
 - Cryptographie
 - Stéganographie

- Cryptographie monoalphabétique
 - Chiffrement affine, chiffrement par substitution, le carré de Polybe
- Cryptographie polyalphabétique
 - → Chiffrement par permutation, chiffrement de Vigenere, chiffrement de Hill
- Instruments de (dé)cryptage

- Des techniques très simples à comprendre.
- On n'a pas besoin d'ordinateurs pour les utiliser.
- → Ils ne sont pas sécuritaires.
- Pourquoi les étudier ?
 - Découvrir les origines de leurs faiblesses pour les éviter lors de la conception d'autres systèmes.
 - Profiter de leurs avantages lors de la conception de nouveaux cryptosystèmes.

- Plusieurs types de systèmes cryptographiques classiques :
 - Monoalphabétique : Pour une clé donnée, une lettre du texte clair est toujours mappée à une même lettre du texte chiffré indépendamment de sa position dans le texte.
 - Polyalphabétique: Pour une clé donnée, une lettre du texte clair peut être mappée à plusieurs lettre du texte chiffré dépendamment de sa position dans le texte.
 - Etc.

Un peu de la théorie de nombres

- $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$
- \rightarrow a mod n est le reste de la division de a sur n.
- $(a+b) \bmod n = [(a \bmod n) + (b \bmod n)] \bmod n.$
- $(a*b) \bmod n = [(a \bmod n)*(b \bmod n)] \bmod n.$
- $a \equiv b \mod n \Leftrightarrow a \mod n = b \mod n.$

Chiffrement affine :

$$\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$$

$$\mathcal{K} = \{(a, b) \in \mathbb{Z}_{26} \times \mathbb{Z}_{26} \mid pgcd(a, 26) = 1\}$$

Pour tout $k = (a, b) \in \mathcal{K}$ et $x, y \in \mathbb{Z}_{26}$, on a :

$$e_k(x) = ax + b \mod 26$$

et

$$d_k(y) = a^{-1}(y - b) \bmod 26$$

Chiffrement affine (suite):

 \rightarrow Remarque: $a = 1 \Rightarrow$ chiffrement par décalage (code de César a=1 et b=3).

 \rightarrow Exemple: k = (1,5)

A	В	С	D	Е	F	G	Н	Ι	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	О	P	Q	R	S	Т	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

e_k (CRYPTOGRAPHIE)

 $= e_k(\mathbf{C})e_k(\mathbf{R}) e_k(\mathbf{Y})e_k(\mathbf{P})e_k(\mathbf{T}) e_k(\mathbf{O})e_k(\mathbf{G})e_k(\mathbf{R}) e_k(\mathbf{A})e_k(\mathbf{P})e_k(\mathbf{H}) e_k(\mathbf{I}) e_k(\mathbf{E})$

= H W D U Y T L W F U M N J

Chiffrement par substitution :

$$\mathcal{P} = \mathcal{C} = \mathbb{Z}_{26}$$

 $\mathcal{K} = \{\pi \mid \pi \text{ est une permutation des élements } 0, 1, \dots, 25\}$

Pour tout $\pi \in \mathcal{K}$ et $x, y \in \mathbb{Z}_{26}$, on a :

$$e_{\pi}(x) = \pi(x)$$

et

$$d_k(y) = \pi^{-1}(y)$$

Chiffrement par substitution (suite):

Exemple:

$$\pi = [0 \mapsto 20, 1 \mapsto 13, 2 \mapsto 21, 3 \mapsto 0, 4 \mapsto 1, 5 \mapsto 2, 6 \mapsto 3, 7 \mapsto 4, 8 \mapsto 5,$$

$$9 \mapsto 6, 10 \mapsto 7, 11 \mapsto 8, 12 \mapsto 9, 13 \mapsto 10, 14 \mapsto 11, 15 \mapsto 12, 16 \mapsto 14,$$

$$17 \mapsto 15, 18 \mapsto 16, 19 \mapsto 17, 20 \mapsto 18, 21 \mapsto 19, 22 \mapsto 22,$$

$$23 \mapsto 23, 24 \mapsto 24, 25 \mapsto 25]$$

A	В	С	D	Е	F	G	Н	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	О	P	Q	R	S	T	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

$$e_k(ABC)=e_k(A)e_k(B)$$
 $e_k(C)=UNV$

Le carré de Polybe :

- → Principe :
 - C'est un système basé sur un carré de 25 cases.
 - Une clé est arrangement de lettres dans le tableau.
 - $-k_1$ =abcdefghijklmnopqrstuvxyz
 - $-k_2$ =maclebdfghijklnopqrstuvxyz

	1	2	3	4	5
1	a	b	c	d	e
2	f	g	h	i	j
3	k	1	m	n	0
4	p	q	r	S	t
5	u	v	X	у	Z

200	1	2	3	4	5
1	m	a	С	1	e
2	b	d	f	g	h
3	i	j	k	n	О
4	p	q	r	S	t
5	u	v	X	y	z

- La lettre W sera supprimé du texte clair ou remplacée par une autre (V).
- Chaque lettre est remplacée (cryptée) par deux chiffres (celui de sa ligne, celui de sa colonne): e=15, v=52, o=35, ...

Le carré de Polybe (Suite) :

 \rightarrow Exemple: M=On attaque demain

M	0	n	a	t	t	a	q	u	e	d	e	m	a	i	n
$e_{k_1}(M)$	35	34	11	45	45	11	42	51	15	14	15	33	11	24	34

M	0	n	a	t	t	a	q	u	e	d	e	m	a	i	n
$e_{k_2}(M)$	35	34	12	51	51	12	42	51	15	22	15	11	12	31	34

	1	2	3	4	5
1	a	b	С	d	e
2	f	gg	h	i	j
3	k	1	m	n	O
4	p	q	r	s	t
5	u	v	X	y	Z

	1	2	3	4	5
1	m	a	c	1	e
2	b	d	f	gg	h
3	i	j	k	n	О
4	p	q	r	S	t
5	u	v	X	y	z

Remarque: On peut agrandir ce carré (36 cases par exemple) afin de pouvoir ajouter les chiffres ou de tenir compte des langages qui manipulent plus de caractères

Cryptographie Polyalphabétique

Chiffrement par permutation (appelé aussi chiffrement par transposition):

Soit n un entier strictement positif.

$$\mathcal{P} = \mathcal{C} = (\mathbb{Z}_{26})^n$$

 $\mathcal{K} = \{\pi \mid \pi \text{ est une permutation des élements } 1, \dots, n\}$

Pour tout $\pi \in \mathcal{K}$ et $x = x_1 \dots x_n, \ y = y_1 \dots y_n \in \mathbb{Z}_{26}^n$, on a:

$$e_{\pi}(x_1 \dots x_n) = x_{\pi(1)} \dots x_{\pi(n)}$$

et

$$d_k(y_1 \dots y_n) = y_{\pi^{-1}(1)} \dots y_{\pi^{-1}(n)}$$

Cryptographie polyalphabétique

Chiffrement par permutation (suite) :

ightharpoonup Remarque: Si le message a une taille supérieure à n alors on fait son découpage.

• Exemple: Soient n = 6 et $\pi = 3, 5, 1, 6, 4, 2$, i.e., $\pi(1) = 3, \pi(2) = 5, ...$

 $e_{\pi}(\text{CRYPTOGRAPHY}) = ?$

C=1,R=2,Y=3,P=4,T=5,O=6

G=1,R=2,A=3,P=4,H=5,Y=6

 e_{π} (CRYPTOGRAPHY)=YTCOPRAHGYPR

Cryptographie polyalphabétique

- Chiffrement par permutation (suite):
 - **Exercice**: Crypter le message suivant :

Attaque demain à l'aube

Sachant que:

$$-n=3$$

$$-\pi = 3, 1, 2$$

Cryptographie Polyalphabétique

Chiffrement de Vigenere : Amélioration du code de CÉSAR !

Soit $n \in \mathbb{Z}_{26}$.

$$\mathcal{P} = \mathcal{C} = \mathcal{K} = (\mathbb{Z}_{26})^n$$

Pour tout $k = (k_1, \ldots, k_n) \in \mathcal{K}$ et $x = x_1 \ldots x_n, \ y = y_1 \ldots y_n \in \mathbb{Z}_{26}^n$, on a :

$$e_k(x_1 \dots x_n) = (x_1 + k_1 \mod 26) \dots (x_n + k_n \mod 26)$$

et

$$d_k(y_1 \dots y_n) = (y_1 - k_1 \mod 26) \dots (y_n - k_n \mod 26)$$

Cryptographie polyalphabétique

- ← Chiffrement de Vigenere (suite):
 - **Exercice**: Crypter le message suivant :

chiffrement de vigenere

Sachant que:

$$-n = 9$$

$$-k = (1, 0, 2, 4, 7, 11, 8, 4, 17)$$

Cryptographie polyalphabétique

- même chose que Vigenère.
- sauf que la clé doit toujours avoir la même longueur que le texte clair (pas de découpage).
- Remarque : si la clé n'est utilisée qu'une seule fois, on l'appelle dans ce cas "one-time pad".
- **Exercice**: Crypter le message suivant :

Masque Jetable

Sachant que : k = (23, 2, 0, 0, 19, 4, 11, 15, 17, 21, 6, 25, 2)

Cryptographie Polyalphabétique

Chiffrement de Hill :

Soit *n* un entier strictement positif.

$$\mathcal{P} = \mathcal{C} = (\mathbb{Z}_{26})^n$$

 $\mathcal{K} = \{ \text{matrices de dimension } n \times n \text{ inversibles dans } \mathbb{Z}_{26} \}$

Pour tout $k = \in \mathcal{K}$ et $x = x_1 \dots x_n, \ y = y_1 \dots y_n \in \mathbb{Z}_{26}^n$, on a:

$$\begin{cases}
e_k(x_1 \dots x_n) &= (x_1 \dots x_n)k \\
et & ou \\
d_k(y_1 \dots y_n) &= (y_1 \dots y_n)k^{-1}
\end{cases} \quad ou \quad (2) \begin{cases}
e_k(x_1 \dots x_n) &= k(x_1 \dots x_n)^t \\
et \\
d_k(y_1 \dots y_n) &= k^{-1}(y_1 \dots y_n)^t
\end{cases}$$

Remarque : En absence d'indications explicites, on suppose qu'on utilise le système (1).

Cryptographie Polyalphabétique

Chiffrement de Hill (suite) :

► Exemple:
$$m = DBUDTA$$
, $k = \begin{pmatrix} 18 & 17 \\ 17 & 18 \end{pmatrix}$: $e_k(m) = c_1c_2c_3c_4c_5c_6$ avec $\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 18 & 17 \\ 17 & 18 \end{pmatrix} * \begin{pmatrix} 3(D) \\ 1(B) \end{pmatrix} mod \ 26 = \begin{pmatrix} 19(T) \\ 17(R) \end{pmatrix}$
 $\begin{pmatrix} c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 18 & 17 \\ 17 & 18 \end{pmatrix} * \begin{pmatrix} 20(U) \\ 3(D) \end{pmatrix} mod \ 26 = \begin{pmatrix} 21(V) \\ 4(E) \end{pmatrix}$
 $\begin{pmatrix} c_5 \\ c_6 \end{pmatrix} = \begin{pmatrix} 18 & 17 \\ 17 & 18 \end{pmatrix} * \begin{pmatrix} 19(U) \\ 0(D) \end{pmatrix} mod \ 26 = \begin{pmatrix} 4(E) \\ 11(L) \end{pmatrix}$

- Introduction
 - Cryptologie
 - Cryptographie
 - Stéganographie
- Cryptographie classique
 - Cryptographie monoalphabétique
 - Chiffrement affine, chiffrement par substitution, le carré de Polybe
 - Cryptographie polyalphabétique
 - → Chiffrement par permutation, chiffrement de Vigenere, chiffrement de Hill
- → Instruments de (dé)cryptage

Instruments de (dé)cryptage

Instruments de (dé)cryptage

Instruments de (dé)cryptage

Principe de fonctionnement.

