

Initial Analysis and Model Performance

Sanatan Das April 16, 2018

Contents

Initial Data Analysis	2
Load the Data	2
The Variables	
Problem Category (Regression)	
Predictors Data Types	
Data Visualization	3
Relationship between Ethnic Code and the Default Rate	3
Relationship between Program Length and the Default Rate	
Relationship between School Type and the Default Rate	
Relationship between Prate (Type of rate calculated for the institution.) and the Default Rate	
Relationship between Num (Number of Borrowers in Default) and the Default Rate	
Relationship between Denom (Number of Borrowers in Repay) and the Default Rate	
Model Performance (initial naive models)	13
Model evaluation on 'ProgLength' feature	13
Model evaluation on 'SchoolType' feature	
Model evaluation on 'Num' feature	
Model evaluation on 'Denom' feature	
Model evaluation on 'EthnicCode' feature	
Multiple Linear Regression Model	

Initial Data Analysis

Load the Data

```
# load the data set from excel file
default_rates <- read_excel("C:/view/opt/apps/git/compscix-415-1-assignments/data/peps3xx.xls")</pre>
```

The Variables

```
# take a look at the data
glimpse(default_rates)
## Observations: 22,965
## Variables: 20
## $ RecordId
                                                     <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ...
## $ OPEID
                                                     <chr> "001002", "001002", "001002", "001003", "001003", "...
## $ Name
                                                     <chr> "ALABAMA AGRICULTURAL & MECHANICAL UNIVERSITY", "AL...
                                                     <chr> "4900 MERIDIAN STREET", "4900 MERIDIAN STREET", "49...
## $ Address
## $ City
                                                     <chr> "NORMAL", "NORMAL", "MONTGOMERY", "MONTGO...
## $ State
                                                     <chr> "AL", 
## $ StateDesc <chr> "ALABAMA", "ALABAMAMA", "ALABAMAM
                                                     <chr> "35762", "35762", "35762", "36109", "36109", "36109...
## $ ZipCode
                                                     <chr> "1357", "1357", "1357", "3398", "3398", "3398", "60...
## $ ZipExt
## $ Year
                                                     <chr> "2014", "2013", "2012", "2014", "2013", "2012", "20...
                                                     <chr> "332", "300", "326", "192", "143", "143", "64", "57...
## $ Num
                                                     <chr> "1753", "1812", "1895", "1470", "1491", "1417", "79...
## $ Denom
                                                     <chr> "18.9", "16.5", "17.2", "13.0", "9.5", "10.0", "8.0...
## $ Drate
                                                     ## $ Prate
## $ EthnicCode <chr> "2", "2", "2", "5", "5", "5", "5",
                                                                                                                                                                                            "5", "5", "2", "...
                                                     ## $ CongDis
## $ Region
                                                     <chr> "05", "05", "05", "02", "02", "02", "06", "06", "06...
                                                     <chr> "04", "04", "04", "04", "04", "04", "04", "04", "04", "04", "04"...
## $ Avg
(Data Source: Federal Student Aid)
(Data Definition: Instructions for Using the Data Files)
```

Problem Category (Regression)

Our target variable is *default rate* or *drate* which is a numerical (double) variable. So our problem is categorically regression problem. We will create different kind of refression models to predict our data.

Predictors Data Types

```
# add factor to the 'char' columns
default_rates$Name <- as.factor(default_rates$Name)
default_rates$State <- as.factor(default_rates$State)
default_rates$ZipCode <- as.factor(default_rates$ZipCode)</pre>
```

```
default_rates$ProgLength <- as.factor(default_rates$ProgLength)
default_rates$SchoolType <- as.factor(default_rates$SchoolType)
default_rates$EthnicCode <- as.factor(default_rates$EthnicCode)
default_rates$Prate <- as.factor(default_rates$Prate)
default_rates$CongDis <- as.factor(default_rates$CongDis)
# convert the columns to 'double' data type
default_rates$Drate <- as.double(default_rates$Drate)
default_rates$Num <- as.double(default_rates$Num)
default_rates$Denom <- as.double(default_rates$Denom)</pre>
```

Data Visualization

Relationship between Ethnic Code and the Default Rate

```
# plot the relationship between Ethnic Code and the Default Rate (Bar Graph)
default_rates %>%
ggplot() +
  geom_bar(aes(x = EthnicCode, y = Drate), stat = 'identity') +
  labs(x="Ethnic Code", y="Default Rate") +
  theme_bw()
```


plot the relationship between Ethnic Code and the Default Rate (Box Plot) default_rates %>%

```
ggplot(aes(x = EthnicCode, y = Drate), group=EthnicCode) +
geom_boxplot() +
labs(x="Ethnic Code", y="Default Rate") +
theme_bw()
```


Relationship between Program Length and the Default Rate

```
# plot the relationship between Program Length and the Default Rate (Bar Graph)
default_rates %>%
ggplot() +
   geom_bar(aes(x = ProgLength, y = Drate), stat = 'identity') +
   labs(x="Program Length", y="Default Rate") +
   theme_bw()
```



```
# plot the relationship between Prog Length and the Default Rate (Box Plot)
default_rates %>%
ggplot(aes(x = ProgLength, y = Drate), group=ProgLength) +
    geom_boxplot() +
    labs(x="Program Length", y="Default Rate") +
    theme_bw()
```


Relationship between School Type and the Default Rate

```
# plot the relationship between School Type and the Default Rate (Bar Graph)
default_rates %>%
ggplot() +
   geom_bar(aes(x = SchoolType, y = Drate), stat = 'identity') +
   labs(x="School Type", y="Default Rate") +
   theme_bw()
```



```
# plot the relationship between School Type and the Default Rate (Box Plot)
default_rates %>%
ggplot(aes(x = SchoolType, y = Drate), group=SchoolType) +
   geom_boxplot() +
   labs(x="School Type", y="Default Rate") +
   theme_bw()
```


Relationship between Prate (Type of rate calculated for the institution.) and the Default Rate

```
# plot the relationship between Prate (Type of rate was calculated for the institution)
# and the Default Rate (Bar Graph)
default_rates %>%
ggplot() +
    geom_bar(aes(x = Prate, y = Drate), stat = 'identity') +
    labs(x="Type of rate was calculated for the institution", y="Default Rate") +
    theme_bw()
```



```
# plot the relationship between Prate (Type of rate was calculated for the institution)
# and the Default Rate (Box Plot)
default_rates %>%
ggplot(aes(x = Prate, y = Drate), group=Prate) +
   geom_boxplot() +
   labs(x="Type of rate was calculated for the institution", y="Default Rate") +
   theme_bw()
```


Relationship between Num (Number of Borrowers in Default) and the Default Rate

```
# plot the relationship between Num (Number of Borrowers in Default)
# and the Default Rate
ggplot(default_rates, aes(x = Num, y = Drate)) +
  geom_point(color = "blue") +
  geom_smooth(method = "lm", se = FALSE, color = "red") +
  labs(x="Number of Borrowers in Default", y="Default Rate") +
  theme_bw()
```


Relationship between Denom (Number of Borrowers in Repay) and the Default Rate

```
# plot the relationship between Denom (Number of Borrowers in Repay)
# and the Default Rate
ggplot(default_rates, aes(x = Denom, y = Drate)) +
  geom_point(color = "blue") +
  geom_smooth(method = "lm", se = FALSE, color = "red") +
  labs(x="Number of Borrowers in Repay", y="Default Rate") +
  theme_bw()
```


Model Performance (initial naive models)

Model evaluation on 'ProgLength' feature

Model evaluation on 'SchoolType' feature

```
# Linear model on 'SchoolType' feature
lm_5 <- lm(Drate ~ SchoolType, data = default_rates)
glance(lm_5)

## r.squared adj.r.squared sigma statistic p.value df logLik AIC
## 1 0.1726394    0.1724592 6.38662 958.1381    0 6 -75164.74 150343.5
## BIC deviance df.residual
## 1 150399.8 936472.6    22959</pre>
```

Model evaluation on 'Num' feature

```
# Linear model on 'Num' feature
lm_6 <- lm(Drate ~ Num, data = default_rates)
tidy(lm_6)

## term estimate std.error statistic p.value
## 1 (Intercept) 8.851168401 4.689508e-02 188.7441 0.000000e+00
## 2 Num 0.001885717 9.048456e-05 20.8402 1.434798e-95</pre>
```

Model evaluation on 'Denom' feature

```
# Linear model on 'Denom' feature
lm_7 <- lm(Drate ~ Denom, data = default_rates)
tidy(lm_7)

## term estimate std.error statistic p.value
## 1 (Intercept) 9.009393e+00 4.823076e-02 186.797640 0.000000000
## 2 Denom 3.823208e-05 1.214074e-05 3.149074 0.001639986</pre>
```

Model evaluation on 'EthnicCode' feature

```
# Linear model on 'EthnicCode' feature
lm_9 <- lm(Drate ~ EthnicCode, data = default_rates)
glance(lm_9)</pre>
```

```
## r.squared adj.r.squared sigma statistic p.value df logLik
## 1 0.03850229     0.03833478 6.884752     229.853 7.804687e-194 5 -76890.01
## AIC     BIC deviance df.residual
## 1 153792 153840.3 1088300     22960
```

Multiple Linear Regression Model

```
# Final model using all features
lm_10 <- lm(Drate ~ ProgLength + SchoolType + Num + Denom + Prate + EthnicCode, data = default_rates)
glance(lm_10)

## r.squared adj.r.squared sigma statistic p.value df logLik AIC
## 1 0.405219     0.4045448 5.417525 601.0559     0 27 -71374.98 142806
## BIC deviance df.residual
## 1 143031.1 673220.5     22938</pre>
```