

时间序列方法+机器学习在股指预测中的应用

——基于LSTM-RF Regression方法

汇 报 人: 刘郅哲 (第11组)

专 业 : 工商管理类

学 号: 2020301052098

时 间: 2022-5-31

- 1 研究背景及目的
- 2 数据收集与预处理
- 3 数据描述性统计
- 4 模型构建
- 5 研究结论
- 6 优化展望

研究背景及目的

沪深300指数

沪深300指数

000300.SH, 399300.SZ 是中证指数有限公司编制的 用以反映沪深两市价格变动 总览的跨市场指数。

指数样本选自沪深两个证券市场,覆盖了大部分流通市值。成份股为市场中**市场代表性好**,流动性高,交易活跃的主流投资股票,能够反映市场主流投资的收益情况。

研究背景及目的

金融时间序列预测

时间序列方法

移动平均自回归模型 广义自回归条件异方差模型 指数平滑模型

深度学习方法

多层感知机

卷积神经网络

循环神经网络

注意力机制

组合方法

ARIMA+SVR

GARCH+SVR

研究背景及目的

经济理论基础及研究目的

Decomposition of multiplicative time series

时序分解

- ·神经网络处理时序趋势信息
- · 机器学习处理其他市场信息

研究应用

- ·量化交易 择时
- · 风险管理 异常值

数据收集与预处理

表 1: 变量表

W 1. X = W				
特征	变量名称			
开盘价	open			
收盘价	close			
日内最高价	high			
日内最低价	low			
当日涨跌幅	ret			
换手率	turnrate			
成交量	volume			
动态买卖气指标	ADTM			
均幅指标	ATR			
顺势指标	CCI			
异同移动平均	MACD			
动量指标	MTM			
变动率指标	ROC			
盈潮-S 指标	SOBV			
标准差(26 周期)	STD_26			
标准差(5周期)	STD_5			

数据来源

数据采集于Wind数据库与 Choice数据库,选取了常见 量价指标与衍生技术指标、 市场情绪指标的16个特征

样本数量

自2010-01-04至2022-5-17 共3003个交易日的样本

数据预处理

归一化

采用极值归一化 方法,将全部数 据映射入(-1,1)

张量化

将数据转化为张 量形式,方便传 进神经网络处理

窗口化

设置滑动输入窗口为30,输出窗口为1,符合神经网络的输入规范

批次化

对数据标记传入 批次,标记在新 的张量维度

数据收集与预处理

序列分割

数据集划分

在长序列上进行7:3的数据

划分,得到:

训练集为[2371, 2, 30]的张量

测试集为[570, 2, 30]的张量

有监督学习

序列分割后转化为有监督学 习问题

数据描述性统计

去	2.	变量	拙沫	此 4	公计	去
X	4:	又里	加亚	生之	クし レー	X

Variables	Min	Max	Mean	Median
open	-0.2386	1.0000	0.3540	0.4282
close	-0.2242	1.0000	0.3957	0.4708
high	-0.2303	1.0000	0.3631	0.4351
low	-0.2053	1.0000	0.4072	0.4851
ret	-0.8879	0.8646	0.1318	0.1380
volume	-0.7785	0.1854	-0.5455	-0.5771
turnrate	-0.9049	-0.0976	-0.7101	-0.7360
ADTM	-0.9768	0.9559	0.2235	0.2848
ATR	-0.9517	0.5744	-0.6919	-0.7400
CCI	-1.0000	0.8080	0.0725	0.0916
MACD	-0.4227	0.9582	0.1225	0.1163
MTM	-0.3076	0.9834	0.2463	0.2534
ROC	-0.6364	0.6266	-0.0410	-0.04074
SOBV	0.6398	1.0000	0.8497	0.8391
STD_26	-0.85681	-0.0237	-0.5389	-0.6154
STD_5	-0.9627	0.3265	-0.6695	-0.7192

偏度

中位数-均值间距离

趋势

上升趋势

近期表现

近期跌幅较大

循环神经网络 (RNN)

循环神经网络

处理序列数据的神经网络

隐状态

含有过去时间信息的状态

循环层

循环计算隐状态的网络层

长短期记忆神经网络 (LSTM)

σ

带激活函数的 全连接层 \bigcirc

按元素运算符

复制 -

连结

长短期记忆神经网络

处理长序列训练中的梯度消

失、梯度爆炸问题

门控结构

输入门、输出门、遗忘门

记忆元

对过去记忆元信息进行处理

```
class LSTM(nn.Module):
   def init (self, input dim = 30, hidden layer dim = 100, output dim = 1):
       super(). init ()
       self.hidden layer dim = hidden layer dim
       self.lstm = nn.LSTM(input dim, hidden layer dim).cuda()
       self.linear = nn.Linear(hidden layer dim, output dim).cuda()
       self.hidden cell = self.init hidden()
   def init hidden(self):
       return(torch.zeros(1, 1, self.hidden layer dim).cuda(),
              torch.zeros(1, 1, self.hidden layer dim).cuda())
   def forward(self, input seq):
       lstm out, self.hidden cell = self.lstm(input seq.view(len(input seq), 1, -1),
                                               self.hidden cell)
       predictions = self.linear(lstm out.view(len(input seq), -1))
```

类的继承

pytorch库中,nn.lstm作为 衍生结构继承了nn.rnn特征

参数定义

输入长度、输出长度与设置 窗口长度相等,分别为30与1 GPU训练

网络模型训练

梯度裁剪

采用裁剪方法,防止在反向 传播过程中,随层数增加而 产生的梯度爆炸问题

动态学习率

在学习过程中,随训练步数的增加不断降低学习率,令训练初期模型收敛较快,后期趋于稳定

定义超参

该模型训练过程需要定义的超参为初始学习率lr,学习率衰减率gamma,总步数epochs

模型结果

预测问题

预测延后、不够精确 单一LSTM网络不能精确预测 股指序列

引入随机森林

随机森林回归(Random Forest Regression)

随机

随机取样本, 随机取特征

森林

生成多棵回归树,由投票加权得出最终预测

```
forestmodel <- randomForest(diff ~ ret + turnrate + ADTM + ATR + CCI + MACD + MTM + ROC
+ SOBV+ STD_26 + STD_5,
                        data_train,
                        ntree = 1000,
                        mtry = 3,
                        nodesize = 25)
for(i in 1:168){
 predictForest[i] <- predict(forestmodel, type = "response", newdata = data_test[i,])</pre>
 data_train <- bind_rows(data_train, data_test[i,])</pre>
 forestmodel <- randomForest(diff ~ ret + turnrate + ADTM + ATR + CCI + MACD + MTM +
ROC + SOBV + STD_26 + STD_5
                        data_train,
                        ntree = 1000,
                        mtry = 3,
                        nodesize = 25)
```

预测目标

LSTM模型未能解释的残差

超参定义

ntree = 1000,

nodesize = 25, mtry = 3

滚动建模

预测后将实际值纳入回训练 集, 迭代训练、预测

模型结果

表 3: 不同模型的均方误差表

Model	$MSE = \frac{\sum (y_i - \hat{y}_i)^2}{n}$
LSTM	0.00664
RF	0.16556
LSTM-RF	0.00129

随机森林独立预测

对趋势的解释效果较差

LSTM-RF

对残差序列拟合,将随机森林产生的拟合值与LSTM的预测值加总,得到新的预测

均方误差

LSTM-RF模型表现最佳

- 时间序列方法预测趋势+机器学习拟合特征的思路是正确的,模型效果也是有效的;
- 尽可能克服了 LSTM 的时滞弱点,在随机森林回归模型的加入下,整体鲁棒性较高;
- 较为精确的预测能够给指数产品的量化投资提供方向指引与研判;
- 在风险管理领域,能够识别较大程度的跌幅,有利于机构与个人避险。

- ·参数调优仍然需要探索,LSTM模型细节仍待优化,考虑后续引入同源的GRU模型或引入注意力机制(Transformer)进行预测对比;
- 鉴于神经网络的高度可调节性,可以添加多种非同质信息作为神经网络的输入,附加小波分解或主成分分析等数据预处理技术进行模型优化。

谢谢观看

自强, 弘毅, 求是, 拓新

汇报人: 刘郅哲

时 间: 2022-4-11