Cuadro Comparativo de Bases de Datos

Característica	Relacionales (SQL) - Ej: PostgreSQL, Oracle, SQL Server	No Relacionales (NoSQL) - Ej: MongoDB, Cassandra, Redis
Modelo de Datos	Basado en álgebra relacional (tablas, filas, columnas). Requiere un Esquema Estricto (Schema-on-Write).	Basado en modelos variados (Documentos, Key-Value, Grafo, etc.). Esquema Flexible (Schema-on-Read).
Propiedades Transaccionales	Adherencia estricta a ACID (Atomicidad, Consistencia, Aislamiento, Durabilidad). Garantiza la integridad referencial.	Adherencia al modelo BASE (Basically Available, Soft-State, Eventually Consistent). Se prioriza la disponibilidad y la tolerancia a fallos.
Escalabilidad	Predominantemente Escalabilidad Vertical (aumentar recursos a un servidor). La partición (Sharding) es compleja y manual.	Escalabilidad Horizontal (distribución en clústeres de commodity hardware). Ideal para grandes volúmenes de tráfico y Big Data.
Normalización	Alto grado de normalización para reducir la redundancia y mejorar la integridad de los datos. Consultas con <i>JOINs</i> complejos.	Generalmente desnormalizado para optimizar la velocidad de lectura, agrupando la información en documentos (reducción de JOINs).

Caso de Uso Empresarial	Sistemas OLTP (Online Transaction Processing): banca, contabilidad, inventarios y cualquier sistema donde la precisión y la coherencia inmediata sean críticas.	Sistemas OLAP (Online Analytical Processing), CMS, Catálogos de Producto, IoT, y Plataformas de Alto Tráfico con datos semiestructurados.
Fortalezas	Consistencia inmutable, manejo robusto de transacciones complejas. Comunidad y herramientas maduras.	Flexibilidad de desarrollo (adaptación a cambios rápidos), alto rendimiento para lecturas/escrituras masivas, alta disponibilidad.
Debilidades	Escalabilidad costosa y compleja. El cambio de esquema es lento. Manejo ineficiente de datos no estructurados.	Consistencia eventual. Mayor complejidad en la gestión de transacciones distribuidas y falta de un lenguaje de consulta universal.