Project Report

O Created	@May 10, 2025 9:05 PM
	Data Mining

Energy Demand Analysis and Forecasting – Project Summary

Introduction

This project focuses on analyzing energy demand data using **clustering** and **forecasting techniques**. The implementation includes:

- Python scripts for preprocessing, EDA, clustering, and predictive modeling
- A web application for interactive visualization and analysis

Project Components

Component	Description	
Clustering Analysis (1.py)	Identifies patterns/segments in energy demand data	
Predictive Modeling (2.py)	Forecasts future energy demand using ML techniques	
Web Application (app.py)	Interactive interface for visualization and analysis	
Jupyter Notebook	Educational combo of clustering & forecasting (Notebook.ipynb)	

Data Description

Dataset: dataset_cleaned.csv

Key Features:

- demand: Energy consumption/demand (target)
- Weather features: precipintensity, precipProbability, temperature, apparentTemperature, etc.
- Time features: hour , day , month , day_of_week (either present or derived)

Methods

n 1. Data Preprocessing

- Time Indexing: Convert timestamps → datetime format
- Missing Values: Numeric → mean | Categorical → mode
- Feature Engineering:
 - Time-based: hour , day_of_week , month
 - Lag: demand_lag1 , demand_lag24 , demand_lag168
 - Rolling stats: mean, std over windows
 - Cyclical encoding: sine/cosine of time

6 2. Clustering Analysis

- Feature Selection: Weather variables
- Dimensionality Reduction: PCA
- Algorithms:
 - K-Means (with silhouette optimization)

Project Report

- DBSCAN
- Hierarchical Clustering

• Evaluation:

- Silhouette scores
- Cluster stability
- PCA & t-SNE visualizations

3. Predictive Modeling

Model Type	Models	
Baseline	Naive forecast (previous day's same hour)	
Linear Models	Linear Regression, Ridge Regression	
Tree-Based	Random Forest, Gradient Boosting, XGBoost	
Deep Learning	Custom PyTorch NN (batch norm, dropout)	
Time Series	ARIMA (1,1,1)	
Ensemble	Stacking of top 3 performing models	

4. Web Application (Flask)

Features:

- Parameter selection (city, date range, cluster count, model)
- Cluster visualization (PCA projections)
- Forecast comparison (actual vs predicted)
- Model metrics: MAE, RMSE, R², MAPE

Results ■

Clustering Analysis

- Optimal Clusters: Typically 3-5 clusters (silhouette-based)
- Cluster Types:
 - High demand / low temp → Winter heating
 - High demand / high temp → Summer cooling
 - Moderate demand → Neutral weather
- Feature Importance: temperature / apparentTemperature most impactful

Forecasting Results

Key Findings:

- Baseline: Naive forecast sets benchmark
- Best Models: XGBoost & Ensembles
- Good Models: Random Forest, Gradient Boosting, Neural Network
- Moderate Models: Linear models, ARIMA

Top Features:

- demand_lag24 (previous day's demand)
- demand_lag168 (previous week's demand)
- hour (especially cyclically encoded)
- temperature

Key Metrics

Metric	Improvement (vs Baseline)
MAE	15-30% improvement
RMSE	10-25% improvement
MAPE	5-15% (best models)

Discussion

PClustering Insights

- Segmentation: Clear patterns based on weather & time
- Usage: Helps in capacity planning, anomaly detection, demand driver analysis

Forecasting Tradeoffs

Model	Pros	Cons
XGBoost/Ensemble	Highest accuracy	Complex to deploy
Random Forest	Balanced performance & interpretability	Slower for large datasets
Linear Models	Simple & interpretable	Less accurate
ARIMA	Lightweight, needs less data	Least accurate of advanced models

Feature Engineering Impact:

- Lag features → capture history
- Cyclical encoding → represents time naturally
- Rolling stats → recent trends & volatility

Web App Benefits

- Accessibility: For non-technical users
- Interactivity: Explore different setups easily
- Visualization: Turns complex results into simple visuals

Conclusion

The project successfully combines clustering + forecasting for **comprehensive energy demand analysis**.

Key Takeaways:

- 1. V Feature engineering is crucial
- 2. V Ensemble methods give best accuracy
- 3. **✓** Combining clustering & forecasting → deeper insights
- 4. ✓ Interactive apps make results accessible

▼ **Tip:** In Notion, you can make sections collapsible (toggle lists) for a clean look and add icons/emoji to headings for better visual appeal!

Project Report 3