#### HOW TO DESIGN AN HONEST RATING SYSTEM

Sergey I. Nikolenko<sup>1,2</sup>

Al Rush 2017 Dnipro, February 18, 2017

<sup>1</sup>Laboratory for Internet Studies, NRU Higher School of Economics, St. Petersburg

<sup>2</sup>Steklov Institute of Mathematics at St. Petersburg

#### Random facts:

February 18, 1268: forces of the Livonian Order defeated by Dovmont of Pskov in the Battle of Rakvere February 18, 1930: Ellie Farm Ollie became the first cow to fly and be milked inside an aircraft February 18, 1943: Joseph Gebbels delivers his *Sportpalast* speech

February 18, 1954: the first Church of Scientology was established in Los Angeles

## BAYESIAN RATING SYSTEMS

#### MY PERSONAL MOTIVATION

• «What? Where? When?»: a team game of answering questions. Sometimes it looks like this...



#### MY PERSONAL MOTIVATION

· ...but usually it looks like this:



#### MY PERSONAL MOTIVATION

- Teams of  $\leq 6$  players answer questions.
- Whoever gets the most correct answers wins.
- My motivation was to create a rating system that would predict tournament results by team rosters.
- · Characteristic features that make the problem hard:
  - it's a hobby: players have no contracts, teams do not have permanent rosters, playing for many teams is common;
  - hence, we cannot just make a rating list of the teams, we need to go deeper, to individual players;
  - · but we do not know how players do, only team results;
  - relatively few questions per tournament (36, 45, 60), hence multiway ties;
  - · undersized teams are common.

#### INTRODUCTION

- In probabilistic rating models, Bayesian inference aims to find a linear ordering on a certain set given noisy comparisons of relatively small subsets of this set.
- Useful whenever there is no way to compare a large number of entities directly, but only partial (noisy) comparisons are available.
- We will stick to the metaphor of matches and players.
- Elo rating system: first probabilistic rating model.



#### INTRODUCTION

- Bradley–Terry models: assume that each player has a "true" rating  $\gamma_i$ , and the win probability is proportional to this rating:  $\gamma_1$  wins over  $\gamma_2$  with probability  $\frac{\gamma_1}{\gamma_1+\gamma_2}$ .
- · Inference: fit this model to the data from matches played.
- Several extensions, but large matches are hard for Bradley–Terry models
- The model that looked right to us for «What? Where? When» was TrueSkill.

#### TRUESKILL FACTOR GRAPH



#### **TRUESKILL**

- TrueSkill was initially developed in MS Research for Xbox Live gaming servers [Graepel, Minka, Herbrich, 2007].
- Given results of team competitions, learn the ratings of players of these teams.
- Direct application matchmaking: find interesting opponents for a player or team.
- [Graepel et al., 2010]: AdPredictor. Predicts CTRs of advertisements based on a set of features: the features are a team, and the team wins whenever a user clicks the ad.
- Basic idea: construct a probabilistic graphical model for a tournament.

#### TRUESKILL

- There is no evidence per se, it is incorporated in the structure of the graph, we just have to marginalize by message passing.
- The marginalization problem is complicated by the step functions at the bottom; solved with Expectation Propagation [Minka, 2001]:
  - approximate messages from  $\mathbb{I}(d_i>\epsilon)$  and  $\mathbb{I}(|d_i|\leq\epsilon)$  to  $d_i$  with normal distributions;
  - repeat message passing on the bottom layer of the graph until convergence.

#### EXAMPLE: A MATCH OF FOUR PLAYERS



#### TRUESKILL PROBLEMS AND SOLUTIONS

- TrueSkill looked perfect for «What? Where? When».
- But it didn't really work due to the following properties of the «What? Where? When» dataset.
  - 1. Teams vary in size (max 6 players, but often incomplete):
    - · undersized teams stand a very good chance against a full one,
    - so adding player performances to get the team performance does not work.
  - 2. Large multiway ties are common; 30–40 different places (35-50 questions) in a tournament with a thousand teams:
    - this is deadly for TrueSkill: consider four teams with performances  $p_1, \dots, p_4$ , 1 has won, and 2–4 drew behind it;
    - · then the factor graph tells us that

$$t_2 < t_1 - \epsilon, \quad |t_2 - t_3| \leq \epsilon, \quad |t_3 - t_4| \leq \epsilon.$$

 $\cdot$   $t_3$  may actually nearly equal  $t_1$ , and  $t_4$  may exceed  $t_1!$ 

#### CHANGES IN THE FACTOR GRAPH

- For the multiway tie problem, we add another layer in the factor graph, namely the layer of place performances  $l_i$ .
- Each team performs in the  $\epsilon$ -neighborhood of its place performance, and place performances relate to each other with strict inequalities like  $l_2 < l_1 2\epsilon$ .
- Then it's inference as usual, no slowdown in convergence.



#### **EXPERIMENTAL RESULTS**



Average AUC over a sliding window of 50 tournaments.

# MORE DETAILED DATA LEADS TO A SIMPLER MODEL

#### **CHANGES**

- Several years ago, «What? Where? When?» tournament database started collecting question-wise data.
- That is, we now know which specific questions a team has answered; previously we only had standings in a tournament.
- So when I got back to the problem of «What? Where? When?» ratings, I found the problem greatly simplified.

#### **CHANGES**

- · Sample relevant application:
  - consider a test suite with many questions that tests something (e.g., IQ or a specific);
  - · participants answer a random subset of questions;
  - we need to rate participants but questions are different, so the complexity level cannot be perfectly balanced.
- «What? Where? When?» is just like that, but participants are working on the test in teams.

#### BASELINE: LOGISTIC REGRESSION

- · Baseline model logistic regression; we model:
  - each player i with his or her skill  $s_i$ ,
  - $\cdot$  each question q with its complexity score  $c_q$ ,
  - $\cdot$  add the global average  $\mu$ ,
  - · and train the logistic model

$$p(x_{tq} \mid s_i, c_q) \sim \sigma(\mu + s_i + c_q)$$

for each player  $i\in t$  of a participating team  $t\in\mathcal{T}^{(d)}$  and each question  $q\in Q^{(d)}$ , where  $\sigma(x)=1/(1+e^x)$  is the logistic sigmoid, and  $x_{tq}$  denotes whether team t answered question q correctly.

#### MODEL WITH LATENT VARIABLES

- The logistic model basically assumes that each player successfully answered every question that the team had answered.
- But in fact we do not know which player or players have answered.
- We only can assume that if the team has failed then no one from this team has done it.
- This situation is similar in spirit to presence-only data models found in, e.g., ecology [Ward et al., 2009; Royle et al., 2012].

#### MODEL WITH LATENT VARIABLES

- · Hence, a model with latent variables.
- For each player-question pair, we add a latent variable  $z_{iq}$  which means «player i has answered question q».
- For these variables, we have the following constraints:
  - if  $x_{tq} = 0$  then  $z_{iq} = 0$  for every player  $i \in t$ ;
  - if  $x_{tq}=1$  then  $z_{iq}=1$  for at least one player  $i\in t$ .

#### MODEL WITH LATENT VARIABLES

Model parameters are still skill and complexity of the tasks:

$$p(z_{iq} \mid s_i, c_q) \sim \sigma(\mu + s_i + c_q).$$

- · Training with EM:
  - $\cdot$  E-step: fix all  $s_i$  and  $c_q$ , compute expected values of latent variables  $z_{iq}$  as

$$\mathbb{E}\left[z_{iq}\right] = \begin{cases} 0 & \text{if } x_{tq} = 0, \\ p(z_{iq} = 1 \mid \exists j \in t \ z_{jq} = 1) = \frac{\sigma(\mu + s_i + c_q)}{1 - \prod_{j \in t} \left(1 - \sigma(\mu + s_j + c_q)\right)}, & \text{if } x_{tq} = 1; \end{cases}$$

· M-step: fix  $\mathbb{E}\left[z_{iq}\right]$  and train the logistic model

$$\mathbb{E}\left[z_{iq}\right] \sim \sigma(\mu + s_i + c_q).$$

#### **RESULTS**

· And, sure enough, it works fine.



#### **IMPLEMENTATION**

| Рейтинг                                                    | ЧГК   | игроки кома   |            |               | Рейтинг-лист и   | гроков    |         |           |  |  |  |  |  |
|------------------------------------------------------------|-------|---------------|------------|---------------|------------------|-----------|---------|-----------|--|--|--|--|--|
| РЕЙТИНГ-ЛИСТ ИГРОКОВ НА ЯНВАРЬ 201S                        |       |               |            |               |                  |           |         |           |  |  |  |  |  |
| Показывать по 100 ▼ записей Введите id или начало фамилии: |       |               |            |               |                  |           |         |           |  |  |  |  |  |
| Место 🛊                                                    | id \$ | Фамилия 💠     | ф кмИ      | Отчество 💠    | Команда (        | Сыграно 🛊 | Взято 💠 | Рейтинг 🔻 |  |  |  |  |  |
| 1                                                          | 27177 | Ромашова      | Вероника   | Михайловна    | лки              | 5278      | 3784    | 545.753   |  |  |  |  |  |
| 2                                                          | 3083  | Белявский     | Дмитрий    | Михайлович    | лки              | 4831      | 3396    | 543.520   |  |  |  |  |  |
| 3                                                          | 27403 | Руссо         | Максим     | Михайлович    | ЛКИ              | 7180      | 5205    | 534.540   |  |  |  |  |  |
| 4                                                          | 4270  | Брутер        | Александра | Владимировна  | лки              | 8244      | 5974    | 533.405   |  |  |  |  |  |
| 5                                                          | 18332 | Либер         | Александр  | Витальевич    | Рабочее название | 8658      | 6210    | 532.921   |  |  |  |  |  |
| 6                                                          | 1585  | Архангельская | Юлия       | Сергеевна     | Ксеп             | 7542      | 5286    | 531.866   |  |  |  |  |  |
| 7                                                          | 24384 | Пашковский    | Евгений    | Александрович | ЛКИ              | 7552      | 5374    | 531.327   |  |  |  |  |  |
| 8                                                          | 8333  | Губанов       | Антон      | Александрович | Команда Губанова | 4475      | 3153    | 530.871   |  |  |  |  |  |
| 9                                                          | 16332 | Крапиль       | Николай    | Валерьевич    | Ксеп             | 6927      | 4899    | 530.559   |  |  |  |  |  |
| 10                                                         | 21487 | Моносов       | Борис      | Яковлевич     | Команла Губанова | 5115      | 3645    | 530.175   |  |  |  |  |  |

#### IMPLEMENTATION

Рейтинг ЧГК игроки команды турниры вопросы

Александр Друзь vs. Максим Поташев

**Друзь** Александр Абрамович





Поташев Максим Оскарович Ссылка на сайт рейтинга МАК

ИСТОРИЯ РЕЙТИНГА

история турниров

| история рейтингов |            |                  |               |       |           |           |  |  |  |  |  |  |  |
|-------------------|------------|------------------|---------------|-------|-----------|-----------|--|--|--|--|--|--|--|
| Рейтинг 💠         | Команда    | ф <b>Место</b> ф | Дата          | Место | Команда ф | Рейтинг 💠 |  |  |  |  |  |  |  |
| 450.138           | Транссфера | 303              | Январь 2015   | 31    | Афина     | 514.643   |  |  |  |  |  |  |  |
| 446.669           | Транссфера | 336              | Декабрь 2014  | 29    | Афина     | 514.697   |  |  |  |  |  |  |  |
| 442.559           | Транссфера | 348              | Ноябрь 2014   | 25    | Афина     | 513.155   |  |  |  |  |  |  |  |
| 437.999           | Транссфера | 400              | Октябрь 2014  | 25    | Афина     | 512.083   |  |  |  |  |  |  |  |
| 445.791           | Транссфера | 306              | Сентябрь 2014 | 23    | Афина     | 515.737   |  |  |  |  |  |  |  |
| 441.473           | Транссфера | 372              | Август 2014   | 23    | Афина     | 516.513   |  |  |  |  |  |  |  |
| 446.730           | Транссфера | 284              | Июль 2014     | 22    | Афина     | 516.755   |  |  |  |  |  |  |  |
| 448.598           | Транссфера | 322              | Июнь 2014     | 24    | Афина     | 516.603   |  |  |  |  |  |  |  |

### Thank you for your attention!

#### Final takeaway points:

- Try to collect new data!
   The new model is much simpler than TrueSkill but still works better because we have more detailed data available.
- Don't be afraid to work on your passions!
   If you are excited about the problem, you will make better progress, and «real» applications will find you.