Renewal Reward Process

Let
$$R_n$$
 be reward at time of n^{th} renewal with $\{(x_n, R_n)\}$ i.i.d. random vectors

Let $R(t) = \sum_{n=1}^{N(t)} R_n$

Lim $\frac{R(t)}{t} = \lim_{t \to \infty} \left(\frac{\sum_{i=1}^{N(t)} R_i}{N(t)} \right) = \frac{E[R_i]}{E[X_i]}$

Lim $\frac{E[R(t)]}{t} = \frac{E[R_i]}{E[X_i]}$
 $\frac{E[R_i]}{E[X_i]}$

Mar 2-7:56 AM

Untitled.notebook March 02, 2020

Mar 2-8:10 AM

P(
$$u = t$$
) = $\varphi(t)$

Lim P($u = t + s \mid u > t$) = $\varphi'(t)$

= $\lim_{s \to 0^+} \frac{\varphi(t + s) - \varphi(t)}{s} = \frac{1}{1 - \varphi(t)} \lim_{s \to 0^+} \frac{\varphi(t + s) - \varphi(t)}{s}$

For a continuous d.f. $\varphi(\cdot)$

its hazard rate is defined to be

$$h(t) = \frac{\varphi'(t)}{1 - \varphi(t)} \text{ for all } t \geq 0.$$
if $h(\cdot)$ is increasing, φ is said to have

an IFR.

The most common d.f. used to describe failures is the Weibill distribution $F(t) = 1 - e^{-\left(\frac{t}{\beta}\right)} \quad \text{for } t \ge 0$ where d is the shape parameter. $E[T] = \beta \left[\left(1 + \frac{1}{\alpha}\right) \right]$ $E[T^2] = \beta^2 \left[\left(1 + \frac{1}{\alpha}\right) \right]$ $SCV = \frac{\sigma^2}{\mu^2} = \frac{E[T^2] - E[T]^2}{E[T]^2} = \frac{E(T^2)}{E[T]^2} - 1$ $SCV + 1 = \frac{E[T^2]}{E[T]^2} = \frac{\beta^2 \left[\left(1 + \frac{1}{\alpha}\right)^2 \right]}{\beta^2 \left[\left(1 + \frac{1}{\alpha}\right)^2 \right]} \Rightarrow \beta = \frac{E[T]}{\left[\left(1 + \frac{1}{\alpha}\right)^2 \right]}$ $\therefore \quad SCV + 1 = \frac{\Gamma(1 + \frac{1}{\alpha})}{\Gamma(1 + \frac{1}{\alpha})^2} \Rightarrow \beta = \frac{E[T]}{\Gamma(1 + \frac{1}{\alpha})}$

Mar 2-8:23 AM

Age replacement policy. (Given
$$\Upsilon$$
Let $C_r \rightarrow coit$ to replace

Let $C_r \rightarrow add$: tional cost if fails

$$\lim_{t \rightarrow \infty} \frac{E[R(t)]}{t} = \frac{E[R,]}{E[X,]}$$

$$E[X,] = C_r + C_r \varphi(\Upsilon)$$

$$E[X,] = \int_{\Gamma} [1 - \varphi(t)] dt$$

Untitled.notebook March 02, 2020

$$T \rightarrow F$$
 $F^{-1}(u) = T$

Where U is $U = U$
 $F^{-1}(RAND())$
 $M(t) = \frac{t}{M}$

Mar 2-8:51 AM