Model structure

MIPT

2022

Model selection

First level: select optimal parameters:

$$w = arg \max \frac{p(\mathfrak{D}|w)p(w|h)}{p(\mathfrak{D}|h)},$$

Second level: select model optimizing Evidence:

$$p(\mathfrak{D}|\mathsf{h}) = \int_{\mathsf{w}} p(\mathfrak{D}|\mathsf{w}) p(\mathsf{w}|\mathsf{h}) d\mathsf{w}.$$

Model selection scheme

Example

Prior

Definition

Prior for parameters w and structure Γ of the model f is a distrubution $p(W,\Gamma|h): \mathbb{W} \times \Gamma \times \mathbb{H} \to \mathbb{R}^+$, where \mathbb{W} is a parameter space, Γ is a structure space.

Definition

Hyperparameters $h \in \mathbb{H}$ of the models are the parameters of $p(w, \Gamma | h)$ (parameters of prior f).

Model f is assigned by the following values:

- \bullet Parameters $w \in \mathbb{W}$ set the superposition of submodels $f_{\nu}.$
- Structure parameters $\Gamma = \{\gamma^{j,k}\}_{(i,k)\in E} \in \Gamma$ set importance of each submodel f_v .
- \bullet Hyperparameters $h \in \mathbb{H}$ set prior distribution .
- Metaparameters $\lambda \in \Lambda$ set optimization function.

Example: Bayesian networks

Example: prediction of ranking functions

- вершины дерева пронумерованы;
 - первые два индекса номера вершин в ребре;
 - третий индекс выбранная элементарная функция на конце ребра.

Optimal Brain Damage

The problem of removing unrelevant parameters (pruning) is considered. **Idea:** Consider Taylor series for maximum point θ^* :

$$L(oldsymbol{ heta}^* + \Delta oldsymbol{ heta}) - L(oldsymbol{ heta}^*) = -rac{1}{2}oldsymbol{ heta}^\mathsf{T} \mathsf{H} oldsymbol{ heta} + o(||\Delta oldsymbol{ heta}||^3),$$

where H is Hessian of -L.

Diagonalize the Hessian:

$$L(oldsymbol{ heta}^* + \Deltaoldsymbol{ heta})
ightarrow \mathsf{max}$$

where

$$\theta_i^* + \Delta \theta_i = 0.$$

Relevance of parameter:

$$\frac{\theta_i^2}{2[\mathsf{H}^{-1}]_{i,i}}.$$

Learning both Weights and Connections for Efficient Neural Networks

Idea:

- Optimize model;
- 2 Remove parameters with minimal magnitude;
- 3 Repeat optimization.

Near-obvious facts that can be found in the article:

- \bullet L_2 is better for pruning than L_1 if we repeat optimization.
- It's better to re-optimize from the previous optimum than from random start.
- The parameter distribution becomse multimodal after pruning.

Deep Compression

Idea:

- Remove unrelevant parameters similar to previous approach.
- Clusterize parameters (K-means for each layer).
- Repeat optimization using centroids.
- 4 Encode parameter indices using Huffman coding scheme.

Result: reduce model size 40x, speedup x3.

Graves, 2011

$$MDL(f,\mathfrak{D}) = L(f) + L(\mathfrak{D}|f),$$

where f is a model, $\mathfrak D$ is a dataset, L is a description length in bits.

$$MDL(f, \mathfrak{D}) \sim L(f) + L(\mathbf{w}^*|f) + L(\mathfrak{D}|\mathbf{w}^*, f),$$

w* are optimal parameters.

$$L = \sum_{\mathbf{x}, \mathbf{y}} \log p(\mathbf{y}|\mathbf{x}, \hat{\mathbf{w}}) + \frac{1}{2} \left(\operatorname{tr}(\mathbf{A}_q) + \boldsymbol{\mu}_q^{\mathsf{T}} \mathbf{A}^{-1} \boldsymbol{\mu}_q - \ln |\mathbf{A}_q| \right).$$

Prune parameters w_i using relative PDF:

$$\lambda = \frac{q(0)}{q(\boldsymbol{\mu}_{i,q})} = \exp(-\frac{\mu_i^2}{2\sigma_i^2}).$$

Model generation: example

Adams et al., 2010:

- The problem is to generate Deep belief networks
- ullet The structure $oldsymbol{\Gamma}$ is a sequence of adjacent matrices for each layer
- \bullet Generate structure using Monte-Carlo with Indian Buffet prior with parameters α , β
- Hyperparameter interpretation: width and sparsity of each layer

Structure selection example

All these models can be represented as $f(x, w) = \sigma\left(\left(w^2\right)^T \sigma\left(\left(w^1\right)^T x\right)\right)$ with similar shape of w^1 : $\dim(w^1) = 3 \times 3$.

Structure selection: one-layer network

The model f is defined by the **structure** $\Gamma = [\gamma^{0,1}, \gamma^{1,2}].$

$$\begin{aligned} \text{Model: } f(x) &= \textbf{softmax} \left((w_0^{1,2})^\mathsf{T} f_1(x) \right), \quad f(x) : \mathbb{R}^n \to [0,1]^{|\mathbb{Y}|}, \quad x \in \mathbb{R}^n. \\ f_1(x) &= \gamma_0^{0,1} g_0^{0,1}(x) + \gamma_1^{0,1} g_1^{0,1}(x), \end{aligned}$$

where $w = [w_0^{0,1}, w_1^{0,1}, w_0^{1,2}]^\mathsf{T}$ — parameter matrices, $\{g_{0,1}^0, g_{0,1}^1, g_{1,2}^0\}$ — generalized-linear functions, alternatives of layers of the network.

$$\begin{split} \gamma_0^{0,1} g_0^{0,1}(x) &= \gamma_0^{0,1} \boldsymbol{\sigma} \left((w_0^{0,1})^\mathsf{T} x \right) \\ f_0(x) &= x & \gamma_0^{1,2} g_0^{1,2}(x) &= \gamma_0^{1,2} \text{softmax} \left((w_0^{1,2})^\mathsf{T} x \right) \\ \gamma_1^{0,1} g_1^{0,1}(x) &= \gamma_1^{0,1} \boldsymbol{\sigma} \left((w_1^{0,1})^\mathsf{T} x \right) \end{split}$$

Neural architecture search example

Structure selection: neural architecture search space

The model f is defined by the **structure** $\Gamma = [\gamma^{0,1}, \gamma^{1,2}].$

$$\begin{split} \text{Model: } f(x) &= \textbf{softmax} \left((w_0^{1,2})^\mathsf{T} f_1(x) \right), \quad f(x) : \mathbb{R}^n \to [0,1]^{|\mathbb{Y}|}, \quad x \in \mathbb{R}^n. \\ f_1(x) &= \gamma_0^{0,1} g_0^{0,1}(x) + \gamma_1^{0,1} g_1^{0,1}(x), \end{split}$$

where $w = [w_0^{0,1}, w_0^{1,2}]^T$ — parameter matrices, $g_{0,1}^0$ is a convolution, $g_{0,1}^1$ is a pooling operation, $g_{1,2}^0$ is a generalized-linear function.

$$\begin{split} \gamma_0^{0,1} g_0^{0,1}(x) &= \gamma_0^{0,1} \textbf{Conv}(x, w_0^{0,1}) \\ f_0(x) &= x & \gamma_0^{1,2} g_0^{1,2}(x) &= \gamma_0^{1,2} \textbf{softmax} \left((w_0^{1,2})^T x \right) \\ \gamma_1^{0,1} g_1^{0,1}(x) &= \gamma_1^{0,1} \textbf{MaxPool}(x) \end{split}$$

Deep learning model structure as a graph

Define:

- ① acyclic graph (V, E);
- ② for each edge $(j, k) \in E$: a vector primitive differentiable functions $g^{j,k} = [g_0^{j,k}, \dots, g_{K^{j},k}^{j,k}]$ with length of $K^{j,k}$;
- 3 for each vertex $v \in V$: a differentiable aggregation function agg_v .
- 4 a function $f = f_{|V|-1}$:

$$\mathsf{f}_{v}(\mathsf{w},\mathsf{x}) = \mathsf{agg}_{v}\left(\{\langle \boldsymbol{\gamma}^{j,k},\mathsf{g}^{j,k}\rangle \circ \mathsf{f}_{j}(\mathsf{x})| j \in \mathsf{Adj}(v_{k})\}\right), v \in \{1,\ldots,|V|-1\}, \quad \mathsf{f}_{0}(\mathsf{x}) = \mathsf{x} \tag{1}$$

that is a function from \mathbb{X} into a set of labels \mathbb{Y} for any value of $\gamma^{j,k} \in [0,1]^{K^{j,k}}$.

Definition

A parametric set of models \mathfrak{F} is a graph (V, E) with a set of primitive functions $\{\mathbf{g}^{j,k}, (j,k) \in E\}$ and aggregation functions $\{\mathbf{agg}_v, v \in V\}$.

Statement

A function $f \in \mathfrak{F}$ is a model for each $\gamma^{j,k} \in [0,1]^{\kappa^{j,k}}$.

Structure restrictions

An example of restrictions for structure parameter γ , $|\gamma| = 3$.

Cube vertices

Simplex vertices

Cube interior

Simplex interior

Prior distribution for the model structure

Every point in a simplex defines a model.

Gumbel-Softmax distribution: $\Gamma \sim GS(s, \lambda_{temp})$

 $\lambda_{ exttt{temp}} = 5.0$

$$\lambda_{ extsf{temp}} o 0$$

 $\lambda_{ exttt{temp}} = 0.995$

Dirichlet distribution: $\Gamma \sim \text{Dir}(s, \lambda_{\text{temp}})$

$$\lambda_{\mathsf{temp}} = 0.995$$

$$\lambda_{ exttt{temp}} = 5.0$$

Invertible Gaussian reparametrization

$$p(w) = \overline{softmax}(\alpha), \quad \alpha \sim \mathcal{N},$$

(there should be a ϵ in the denominator for invertibility of the function)

- Reparameterization works well
- $\bullet \ \mathit{KL}(\mathsf{w}_1|\mathsf{w}_2) = \mathit{KL}(\alpha_1|\alpha_2)$
- Poor interpretation

Neural Architecture Search: problem statement

w are model parameters. **r** is a structure.

$$\Gamma^* = \arg \max Q(w^*, \Gamma),$$
 $w^* = \arg \max L(w, \Gamma).$

Neural Architecture Search with Reinforcement Learning

The structure is selected using controllet. The optimization of model parameters is conducted in a loop of structure selection.

DARTS

The model is a multigraph, where edges $[g^e]$ correspond to submodels, vertices $f_v(x)$ are the results of submodels:

$$f_{\nu} = \langle \gamma, softmax([g^{e}(x)]) \rangle.$$

DARTS

Optimization:

$$\mathbf{\Gamma}^* = \arg \max Q(\mathbf{w}^*, \mathbf{\Gamma}),$$

$$\mathbf{w}^* = \arg \max L(\mathbf{w}, \mathbf{\Gamma}).$$

The optimization is done using greedy gradient-like optimization:

$$\nabla_{\Gamma} Q(\mathsf{w}', \Gamma) = \lambda_L \nabla_{\Gamma, \mathsf{w}} L(\mathsf{w}, \Gamma) \nabla_{\mathsf{w}} Q(\Gamma, \mathsf{w}').$$

Exhaustive search

Exhaustive search can be done using regularization:

$$\lambda_1 \mathsf{KL}(\mathbf{\Gamma}|\mathbf{\Gamma}_1) + \lambda_2 \mathsf{KL}(\mathbf{\Gamma}|\mathbf{\Gamma}_2) + \dots$$

 $\lambda_{struct} = [0; 0; 0].$

$$\lambda_{struct} = [1; 0; 0].$$

$$\lambda_{\text{struct}} = [1; 1; 0].$$

Performance criteria for structure selection

- Number of parameters
- Number of vertives
- Number of edges
- Complexity of subfunctions

FBNet

$$\min_{\mathbf{\Gamma}} \min_{\mathbf{w}} L \cdot \lambda_1 \log \mathsf{LAT}(\mathbf{\Gamma}),$$

where LAT is a function of hardware latency of the operations for target hardware.

FBNet

Model	#Parameters	#FLOPs	Latency on iPhone X	Latency on Samsung S8	Top-1 acc (%)
FBNet-iPhoneX	4.47M	322M	19.84 ms (target)	23.33 ms	73.20
FBNet-S8	4.43M	293M	27.53 ms	22.12 ms (target)	73.27

Table 5. FBNets searched for different devices.

NAS with complexity control

Our proposal

To use a mapping $\gamma(\lambda)$ instead of constant structural parameters $\gamma(\lambda)$, where λ is a regularization term for the loss function:

$$\mathsf{E}_{\lambda}\left(\log p(\mathsf{y}|\mathsf{X},\mathsf{w},\mathbf{\Gamma}(\lambda)) + \lambda \sum_{(i,j)} \langle \mathsf{softmax}\left(oldsymbol{\gamma(\lambda)}^{(i,j)}\right), \mathsf{n}(\mathsf{g}^{(i,j)})
angle
ight),$$

where $n(g^{(i,j)})$ is a vector of amount of parameters for all the basic functions g.

Example: CIFAR-10

$$\mathsf{E}_{\lambda}\left(\log p(\mathsf{y}|\mathsf{X},\mathsf{w},\mathbf{\Gamma}(\lambda)) + \lambda \sum_{(i,j)} \langle \mathsf{softmax}\left(\gamma(\lambda)^{(i,j)}\right), \mathsf{n}(\mathsf{g}^{(i,j)}) \rangle\right).$$

Reference

- Bishop C. M., Nasrabadi N. M. Pattern recognition and machine learning. New York: springer, 2006. T. 4. № 4. C. 738.
- Mansinghka V. et al. Structured priors for structure learning //arXiv preprint arXiv:1206.6852. 2012.
- Варфоломеева А. А. Методы структурного обучения в задаче обобщения структур прогностических моделей, магистерская диссертация.
- LeCun Y., Denker J., Solla S. Optimal brain damage //Advances in neural information processing systems. 1989. T. 2.
- Han S. et al. Learning both weights and connections for efficient neural network //Advances in neural information processing systems. –
 2015. T. 28
- Potapczynski A., Loaiza-Ganem G., Cunningham J. P. Invertible gaussian reparameterization: Revisiting the gumbel-softmax //arXiv preprint arXiv:1912.09588. 2019.
- Graves A. Practical variational inference for neural networks //Advances in neural information processing systems. 2011. T. 24.
- Han S., Mao H., Dally W. J. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding //arXiv preprint arXiv:1510.00149. - 2015.
- Adams R. P., Wallach H., Ghahramani Z. Learning the structure of deep sparse graphical models //Proceedings of the thirteenth
 international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2010. C. 1-8.
- Jang E., Gu S., Poole B. Categorical reparameterization with gumbel-softmax //arXiv preprint arXiv:1611.01144. 2016.
- Zoph B., Le Q. V. Neural architecture search with reinforcement learning //arXiv preprint arXiv:1611.01578. 2016.
- 🌑 Бахтеев О. Ю. 2020. Байесовский выбор субоптимальной структуры модели глубокого обучения. Диссертация.
- Liu H., Simonyan K., Yang Y. Darts: Differentiable architecture search //arXiv preprint arXiv:1806.09055. 2018.
- Yakovlev K. D. et al. Neural Architecture Search with Structure Complexity Control //International Conference on Analysis of Images, Social Networks and Texts. - Springer, Cham, 2022. - C. 207-219.
- Wu B. et al. Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. – 2019. – C. 10734-10742.