Modelación de propagación de epidemias

Eduardo Cepeda, PhD

Alianza Francesa, Cuenca

Jueves 6 de Enero 2022

Datos interesantes de la pandemia

- Propagación inicial exponencial
- Por qué es pandemia y no epidemia?
- Actos no farmacéuticos
- Vacunas / tratamientos
- Modelo SIR*
- Qué enfermedades han sido modelizadas
- Olas de contagios

 Kermack, W; McKendrick, A (1991). "Contributions to the mathematical theory of epidemics – I". Bulletin of Mathematical Biology. 53 (1–2): 33–55.

Susceptible – Infectado – Recuperado

p probabilidad de infección (50%)

Media de infecciones (por individuo por unidad de tiempo)

$$\beta = b \times p$$

Media de infecciones

(por individuo por unidad de tiempo)

$$\beta = b \times p$$

$$\frac{dS_t}{dt} = -\beta \times I_t \times \frac{S_t}{N}$$

(por individuo por unidad de tiempo)

γ

* γ = recuperación de la enfermedad (%) / duración enfermedad (días). $\gamma = \frac{100\%}{5 \text{ días}} = 20\%$. (No hay decesos).

Tasa de recuperación (20%)

(por individuo por unidad de tiempo)

7

$$\frac{dR_t}{dt} = \gamma \times I_t$$

$$\frac{dS_t}{dt} = -\beta \left(I_t \times \frac{S_t}{N} \right)$$

$$\frac{dS_t}{dt} = -\beta \left(I_t \times \frac{S_t}{N} \right) \qquad \frac{dI_t}{dt} = \beta \left(I_t \times \frac{S_t}{N} \right) - \gamma \times I_t$$

$$\frac{dR_t}{dt} = \gamma \times I_t$$

$$S_t = S_{t-1} - \beta \left(I_t \times \frac{S_{t-1}}{N} \right)$$

$$S_t = S_{t-1} - \beta \left(I_t \times \frac{S_{t-1}}{N} \right) \qquad I_t = I_{t-1} + \beta \left(I_{t+1} \times \frac{S_{t-1}}{N} \right) - \gamma \times I_{t-1}$$

$$R_t = R_{t-1} + \gamma \times I_{t-1}$$

$$\frac{dS_t}{dt} = -\beta \left(I_t \times \frac{S_t}{N} \right)$$

$$\frac{dS_t}{dt} = -\beta \left(I_t \times \frac{S_t}{N} \right) \qquad \frac{dI_t}{dt} = \beta \left(I_t \times \frac{S_t}{N} \right) - \gamma \times I_t$$

$$\frac{dR_t}{dt} = \gamma \times I_t$$

$$S_t = S_{t-1} - \beta \left(I_{t-1} \times \frac{S_{t-1}}{N} \right)$$

$$S_t = S_{t-1} - \beta \left(I_{t-1} \times \frac{S_{t-1}}{N} \right)$$
 $I_t = I_{t-1} + \beta \left(I_{t-1} \times \frac{S_{t-1}}{N} \right) - \gamma \times I_{t-1}$

$$R_t = R_{t-1} + \gamma \times I_{t-1}$$

SIR: Ilustración

$$S_t = S_{t-1} - \beta \left(I_{t-1} \times \frac{S_{t-1}}{N} \right)$$

$$I_t = I_{t-1} + \beta \left(I_{t-1} \times \frac{S_{t-1}}{N} \right) - \gamma \times I_{t-1}$$

$$R_t = R_{t-1} + \gamma \times I_{t-1}$$

Evolución de compartimentos

Porcentaje de la Población

Parámetros				
días	15			
b	5			
р	10%			
Ν	1 Mio			
Recuperación	100%			

SVIRD

SIRVID

Susceptible – Vacunados – Infectado – Recuperado – Decesos

SIRVID

Susceptible – Vacunados – Infectado – Recuperado – Decesos

SVIRD: Ilustración

Porcentaje de la Población

Parámetros						
Duración media de la enfermedad	15					
Tasa diaria de interacción	5					
Tasa diaria de vacunación	3%					
Protección vacuna (% de P de contagio	90.00%					
N	1,000,000					
S0	98.50%					
V0	0.50%					
10	0.75%					
IV0	0.25%					
	No Vacunados	Vacunados				
Tasa de recuperación	90.00%	99.00%				
Mortalidad	10.00%	1.00%				
Probabilidad de contagio	10.00%	1.00%				
beta	0.5	0.05				
gamma	0.060	0.066				
mu	0.007	0.001				

	No Vacunados	Vacunados	Total	Total (%)
Pob Vacunada	0	335 284	335 284	33.5%
Contagios	662 213	154 490	816 703	81.7%
Recuperaciones	595 990	152 933	748 923	74.9%
Decesos	66 221	1 544	67 765	6.8%
No Afectados	2 501	180 794	183 296	
Max Nb Infectados	380 074	53 412	433 486	
Max Nb Contagios diarios	53 809	5 927	59 736	
Max Nb Recuperaciones diarias	22 804	3 525	26 329	
Max Nb Decesos diarios	2 533	35	2 569	

SVIRD: Contagiosidad vs Porcentaje de Vacunas

Nro. Contactos (b) = 5, Tasa Vacunación (v) = 3%, Eficacia Vacuna = 90%

SVIRD: Efecto de Vacunas sobre Decesos

Nro. Contactos (b) = 5, Tasa Vacunación (v) = 3%, Eficacia Vacuna = 90%

Alta Contagiosidad - Probabilidad de Contagio (p) = 15%

SVIRD: Eficacia de Vacunas

Nro. Contactos (b) = 5, Tasa Vacunación (v) = 3%, Porcentaje Inicial de vacunados = 80%

Alta Contagiosidad - Probabilidad de Contagio (p) = 15%

Mortalidad Vacuna fija!

Referencias

Modelo SIR

Kermack, W; McKendrick, A (1991). "Contributions to the mathematical theory of epidemics – I". Bulletin of Mathematical Biology. 53 (1–2): 33–55.

Modelo estacional

G Nakamura, B Grammaticos, M Badoual. "Vaccination strategies for a seasonal epidemic: a simple SIR model". 2021. Hal.

Modelo similar al SIRVID (adición de asintomáticos + calibración con ML)

M. Angeli, G. Neofotistos, M. Mattheakis and E. Kaxiras. Modeling the effect of the vaccination campaign on the Covid-19 pandemic. 2021, arXiv.

Ineficiencia del modelo

Moein, S., Nickaeen, N., Roointan, A. et al. Inefficiency of SIR models in forecasting COVID-19 epidemic: a case study of Isfahan. Sci Rep 11, 4725 (2021).

Modelos de emergencia de variantes resistentes

Rella, et al. SARS-CoV-2 transmission, vaccination rate and the fate of resistant strains. 2021, MedRxiv.

Bongiorno C., Cagnol J. Modeling the emergence of vaccine-resistant variants with Gaussian convolution COVID-19: Could the wrong strategy ruin vaccine efficiency? . 2021, MedRxiv.

Grenfell, B. T. et al. Unifying the Epidemiological and Evolutionary Dynamics of Pathogens. Science 303, 327–332 (2004).

Críticas

Críticas

twitter

Situación en Francia: Casos

Nombre moyen de nouveaux cas confirmés quotidiens

Source : data.gouv.fr ♂

Tests positifs chez les personnes vaccinées et non vaccinées (s)

Source : data.gouv.fr ♂

O France entière

Mise à jour : 18/12/2021

Nombre de tests positifs chez les personnes non vaccinées

1126.89

2 14.29 % en 7j

Nombre de tests positifs chez les personnes vaccinées

344.91

2 12.11 % en 7

Nombre de tests positifs chez les personnes non vaccinées

Nombre de tests positifs chez les personnes vaccinées

Situación en Francia: Hospitalizaciones

Nombre moyen de nouvelles hospitalisations quotidiennes

Source : data.gouv.fr ♂

Nombre moyen de nouvelles entrées en soins critiques quotidiennes

Source : data.gouv.fr ♂

Situación en Francia: UCI

Nombre d'entrées en soins critiques chez les personnes vaccinées et non vaccinées 💿

Source : data.gouv.fr ♂

Localisation

O France entière

Mise à jour : 18/12/2021

Nombre d'entrées en soin critiques chez les personnes non vaccinées

182.07

2 1.61 % en 7j

Nombre d'entrées en soins critiques chez les personnes vaccinées

10.70

2 -15.46 % en 7j

- Nombre d'entrées en soins critiques chez les personnes non vaccinées
- Nombre d'entrées en soins critiques chez les personnes vaccinées

Situación en Francia: UCI

Proportion de patients atteints de la COVID-19 actuellement en réanimation, en soins intensifs, ou en unité de surveillance continue rapportée au nombre total de lits en capacité initiale.

Source : data.gouv.fr ₫

% d'occupation