Theorem Proofs for Chapter 3

3.1.3 Bolzano-Weierstrass Theorem A subset of a metric space is compact iff it is sequentially compact.

Proof We begin with two lemmas.

Lemma 1 A compact set $A \subset M$ is closed.

Proof We will show that $M \setminus A$ is open. Let $x \in M \setminus A$ and consider the following collection of open sets: $U_n = \{y \mid d(y,x) > 1/n\}$. Since every $y \in M$ with $y \neq x$ has d(y,x) > 0, y lies in some U_n . Thus, the U_n cover A, and so there must be a finite subcover. One of these has a largest index, say, U_N . If $\varepsilon = 1/N$, then, by construction, $D(x, 1/N) \subset M \setminus A$, and so $M \setminus A$ is open.

Lemma 2 If M is a compact metric space and $B \subset M$ is closed, then B is compact.

Proof Let $\{U_i\}$ be an open covering of B and let $V = M \setminus B$, so that V is open. Thus $\{U_i, V\}$ is an open cover of M. Therefore, M has a finite cover, say, $\{U_1, \ldots, U_N, V\}$. Then $\{U_1, \ldots, U_N\}$ is a finite open cover of B.

Proof of 3.1.3 Let A be compact. Assume there exists a sequence $x_k \in A$ that has no convergent subsequences. In particular, this means that x_k has infinitely many distinct points, say, y_1, y_2, \ldots Since there are no convergent subsequences, there is some neighborhood U_k of y_k containing no other y_i . This is because if every neighborhood of y_k contained another y_j , we could, by choosing the neighborhoods $D(y_k, 1/m)$, $m = 1, 2, \ldots$, select a subsequence converging to y_k . We claim that the set $\{y_1, y_2, \ldots\}$ is closed. Indeed, it has no accumulation points, by the assumption that there are no convergent subsequences. Applying Lemma 2 to $\{y_1, y_2, \ldots\}$ as a subset of A, we find that $\{y_1, y_2, \ldots\}$ is compact. But $\{U_k\}$ is an open cover that has no finite subcover, a contradiction. Thus x_k has a convergent subsequence. The limit lies in A, since A is closed, by Lemma 1.

Conversely, assume that A is sequentially compact. To prove that A is compact, let $\{U_i\}$ be an open cover of A. We need to prove that this has a finite subcover. To show this, we proceed in several steps.

Lemma 3 There is an r > 0 such that for each $y \in A$, $D(y,r) \subset U_i$ for some U_i . The number r is called a Lebesgue number for the covering. The infimum of all such r is called the Lebesgue number for the covering.

Proof If not, then for every integer n, there is some y_n such that $D(y_n, 1/n)$ is not contained in any U_i . By hypothesis, y_n has a convergent subsequence, say, $z_n \to z \in A$. Since the U_i cover A, $z \in U_{i_0}$ for some U_{i_0} . Choose $\varepsilon > 0$ such that $D(z, \varepsilon) \subset U_{i_0}$, which is possible since U_{i_0} is open. Choose N large enough so that $d(z_N, z) < \varepsilon/2$ and $1/N < \varepsilon/2$. Then $D(z_N, 1/N) \subset U_{i_0}$, a contradiction.

Lemma 4 A is totally bounded (see Definition 3.1.4).

Proof If A is not totally bounded, then for some $\varepsilon > 0$ we cannot cover A with finitely many disks. Choose $y_1 \in A$ and $y_2 \in A \setminus D(y_1, \varepsilon)$. By assumption, we can repeat; choose $y_n \in A \setminus [D(y_1, \varepsilon) \cup \cdots \cup D(y_{n-1}, \varepsilon)]$. This is a sequence with $d(y_n, y_m) \ge \varepsilon$ for all n and m, and so y_n has no convergent subsequence, a contradiction to the assumption that A is sequentially compact.

To complete our proof, let r be as in Lemma 3. By Lemma 4 we can write $A \subset D(y_1, r) \cup \cdots \cup D(y_n, r)$ for finitely many y_j . By Lemma 3, $D(y_j, r) \subset U_i$, $j = 1, \ldots, n$, for some index i_j . Then U_{i_1}, \ldots, U_{i_n} cover A.

3.1.5 Theorem A metric space is compact iff it is complete and totally bounded.

Proof First assume that M is compact. By 3.1.3, it is sequentially compact. Thus, if x_k is a Cauchy sequence, it has a convergent subsequence, and so, as in 1.4.7, the whole sequence converges. Thus M is complete. It is also totally bounded, by Lemma 4.

Conversely, assume that M is complete and totally bounded. By 3.1.3, it is enough to show that M is sequentially compact. Let y_k be a sequence in M. We can assume that the y_k are all distinct, for if y_k has infinitely many repetitions, there is a trivially convergent subsequence, and if there are finite repetitions we may delete them. Given an integer N, cover M with finitely many balls, $D(x_{L_1}, 1/N), \ldots, D(x_{L_N}, 1/N)$. An infinite number of the y_k lie in one of these balls. Start with N = 1. Write $M = D(x_{L_1}, 1) \cup \cdots \cup D(x_{L_N}, 1)$, and so we can select a subsequence of y_k lying entirely in one of these balls. Repeat for N = 2, getting a further subsequence lying in a fixed ball of radius 1/2, and so on. Now

choose the "diagonal" subsequence, the first member from the first sequence, the second from the second, and so on. This sequence is Cauchy and since M is complete, it converges.

3.2.1 Heine-Borel Theorem A set $A \subset \mathbb{R}^n$ is compact iff it is closed and bounded.

Proof We have already proved that compact sets are closed and bounded. We must now show that a set $A \subset \mathbb{R}^n$ is compact if it is closed and bounded. We will give two proofs of this.

First Proof This proof is based on the Bolzano-Weierstrass theorem and the fact that any bounded sequence in \mathbb{R} has a convergent subsequence, proved in 1.4.3. In fact, we shall prove that a closed and bounded set A is sequentially compact. Let $x_k = (x_k^1, x_k^2, \dots, x_k^n) \in \mathbb{R}^n$ be a sequence. Since A is bounded, x_k^1 has a convergent subsequence, say $x_{f_1(k)}^2$. Then $x_{f_1(k)}^2$ has a convergent subsequence, say $x_{f_2(k)}^2$. Continuing, we get a further subsequence $x_{f_n(k)} = (x_{f_n(k)}^1, \dots, x_{f_n(k)}^n)$, all of whose components converge. Thus $x_{f_n(k)}$ converges in \mathbb{R}^n . The limit lies in A since A is closed. Thus A is sequentially compact, and so is compact.

Second Proof This proof uses the definition of compactness in terms of open covers directly. We begin with a special case:

Lemma 1 Closed intervals [a,b] in \mathbb{R} are compact.

Proof Let $\mathcal{U} = \{U_i\}$ be an open covering of [a, b]. Define

 $C = \{x \in [a, b] \mid \text{ the set } [a, x] \text{ can be covered by a finite collection of the } U_i\}.$

We want to show that C = [a, b]. To this end, let $c = \sup(C)$. The sup exists because $C \neq \emptyset$ (since $a \in C$) and C is bounded above by b. Since $a \in C$ and b is an upper bound for C, $c \in [a, b]$, by definition of $\sup(C)$. Suppose $c \in U_{i_0}$; such a U_{i_0} exists, since the U_i 's cover [a, b]. Since U_{i_0} is open, there is an $\varepsilon > 0$ such that $|c - \varepsilon, c + \varepsilon| \subset U_{i_0}$. Since $c = \sup(C)$, there exists an $c \in C$ such that $c - \varepsilon < c$ (see Proposition 1.3.2). Because $c \in C$, [a, c] has a finite subcover, say, [a, c], [a, c], then $[a, c + \varepsilon/2]$ also has the finite subcover [a, c], we would get a member of [c] larger than [c], since [c] has a finite subcover. The latter cannot happen, since [c] such that [c] has a finite subcover.

Note. Why does this proof fail for]a,b], [a,b[or $[a,\infty[$?

Lemma 2 If $A \subset \mathbb{R}^n$ is compact and $x_0 \in \mathbb{R}^m$, then $A \times \{x_0\} \subset \mathbb{R}^n \times \mathbb{R}^m$ is compact.

Proof Let \mathcal{U} be an open cover of $A \times \{x_0\}$, and

$$V = \{V \mid V = \{y \mid (y, x_0) \in U\}, \text{ for some } U \in \mathcal{U}\}.$$

Then $\mathcal V$ is an open cover of A in $\mathbb R^n$, and hence $\mathcal V$ has a finite subcover of A, say, $\mathcal V'=\{V_1,\ldots,V_k\}$. Each $V_i\in\mathcal V'$ corresponds to a $U_i\in\mathcal U$, and $\mathcal U'=\{U_1,\ldots,U_k\}$ is then a finite subcover in $\mathbb R^n\times\mathbb R^m$ of $A\times\{x_0\}$.

The next step is an induction argument.

Lemma 3 If $[-R,R]^{n-1} \subset \mathbb{R}^{n-1}$ is compact, then $[-R,R]^n \subset \mathbb{R}^n$ is compact, where $[-R,R]^n = [-R,R] \times \cdots \times [-R,R]$, n times.

Proof Suppose that $[-R,R]^{n-1}$ is compact and that \mathcal{U} is an open cover of $[-R,R]^n$. Define

$$[-R,R]^n$$
. Define $S = \{x \in [-R,R] \mid [-R,R]^{n-1} \times [-R,x] \subset \mathbb{R}^n \text{ has a finite subcover in } \mathcal{U}\}.$

Now $-R \in S$, since $[-R,R]^{n-1}$ is compact, by hypothesis, and so, by Lemma 2, $[-R,R]^{n-1} \times \{-R\}$ has a finite subcover in \mathcal{U} . Since S is bounded above by R, it has a supremum, say, x_0 . We will show that $x_0 = R$, which will prove the lemma

lemma. Let $\mathcal{U}' \subset \mathcal{U}$ be a finite subcover of $[-R,R]^{n-1} \times \{x_0\}$. For each point $(y,x_0) \in [-R,R]^{n-1} \times \{x_0\}$, there exists $\varepsilon_y > 0$ such that $D((y,x_0),\sqrt{2}\varepsilon_y)$ is covered by \mathcal{U}' . Because

$$V_{y} = D(y, \varepsilon_{y}) \times]x_{0} - \varepsilon_{y}, x_{0} + \varepsilon_{y}[\subset D((y, x_{0}), \sqrt{2}\varepsilon_{y}),$$

it is covered by \mathcal{U}' . Consider the open cover $\mathcal{V} = \{V_y \mid y \in [-R,R]^{n-1}\}$ of $[-R,R]^{n-1} \times \{x_0\}$. By Lemma 2, \mathcal{V} has a finite subcover of $[-R,R]^{n-1} \times \{x_0\}$, say $\{V_{y_1},\ldots,V_{y_N}\}$. Let $\varepsilon = \inf\{\varepsilon_{y_1},\ldots,\varepsilon_{y_N}\}$. Then

$$[-R,R]^{n-1}\times]x_0-\varepsilon,x_0+\varepsilon[\subset \bigcup_{i=1}^\infty V_{y_i},$$

and so $[-R,R]^{n-1} \times]x_0 - \varepsilon, x_0 + \varepsilon[$ is covered by \mathcal{U}' .

With this ε , there exists $x \in S$ such that $x_0 - \varepsilon < x \le x_0$. Since $x \in S$, there exists a finite subcover $\mathcal{U}'' \subset \mathcal{U}$ which covers $[-R,R]^{n-1} \times [-R,x]$, and $\mathcal{U}' \cup \mathcal{U}''$ is a finite cover of $[-R,R]^{n-1} \times [-R,x_0+\varepsilon[$. Thus $x_0 \in S$. Suppose $x_0 < R$; then choose δ such that $x_0 + \delta < R$ and $x_0 + \delta < x_0 + \varepsilon$. Thus $[-R,R]^{n-1} \times [-R,x_0+\delta]$ is covered by $\mathcal{U}' \cup \mathcal{U}''$, and $x_0 + \delta \in S$, a contradiction, and therefore $x_0 = R$.

To conclude the proof of the Heine-Borel theorem, let $A \subset \mathbb{R}^n$ be closed and bounded. Since it is bounded, there is an R > 0 such that $A \subset [-R, R]^n$. Lemmas 1 and 3 show that $[-R, R]^n$ is compact. Lemma 2 in the proof of 3.1.3 shows that A is compact, since it is a closed subspace of the compact set $[-R, R]^n$.

3.3.1 Nested Set Property Let F_k be a sequence of compact nonempty sets in a metric space M such that $F_{k+1} \subset F_k$ for all $k = 1, 2, \ldots$ Then there is at least one point in $\bigcap_{i=1}^{\infty} F_k$.

Proof In the compact set $A = F_1$, the sets F_1, F_2, \ldots have the finite intersection property, since the intersection of any finite collection equals the F_k with the highest index. By Example 3.1.9,

$$F_1 \bigcap \left(\bigcap_{k=1}^{\infty} F_k\right) = \bigcap_{k=1}^{\infty} \{F_k\} \neq \emptyset. \quad \blacksquare$$

3.5.2 Theorem Path-connected sets are connected.

We begin by first proving a special case of the theorem.

Lemma The interval [a,b] is connected.

Proof Suppose the interval were not connected. Then there would be two open sets U and V with $U \cap [a,b] \neq \emptyset$ and $V \cap [a,b] \neq \emptyset$, $[a,b] \cap U \cap V = \emptyset$, and $[a,b] \subset U \cup V$. Further, suppose that $b \in V$. Let $c = \sup(U \cap [a,b])$, which exists, since $U \cap [a,b]$ is nonempty and is bounded above. The set $U \cap [a,b]$ is closed, since its complement is $V \cup (\mathbb{R} \setminus [a,b])$, which is open. Thus $c \in U \cap [a,b]$ (see Exercise 8, Chapter 2). Now $c \neq b$, since $c \notin V$ and $b \in V$. We claim that any neighborhood of c intersects $V \cap [a,b]$. To see this, note that $c \neq b$ and no