#### Math Formula Sheet

| Conversion Table              |                                      |                        |
|-------------------------------|--------------------------------------|------------------------|
| 12 in (inches) = 1 ft (foot)  | 1 in (inches)= 2.54 cm (centimeters) | 1 m (meter)= 3.28 ft   |
| 3 ft (feet) = 1 yd (yard)     | 1 ft (foot) = 0.305 m (meters)       | 1 m (meter)= 1.094 yd  |
| 5280 ft (feet) = 1 mi (miles) | 1 yd (yard) = 0.914 m (meters)       | 1 km = 0.621 mi (mile) |
|                               | 1 mi (mile) = 1.609 km (kilometers)  |                        |

$$\frac{\text{Metric Chart for Units of Length}}{\text{kilo} = 1000\text{m}} \quad \text{hecto} = 100\text{m} \quad \text{deka} = 10\text{m} \quad \text{meter} = \text{m} \quad \text{deci} = \frac{1}{10}m \quad \text{centi} = \frac{1}{100}m \quad \text{milli} = \frac{1}{1000}m$$



$$C = 2\pi r$$
 or  $C = \pi d$   $P = 2\alpha + 2b$   $A = \pi r^2$   $A = bh$ 

$$\frac{\%}{100} = \frac{part}{whole}$$
 and  $\%(as\ decimal) \cdot whole = part$ 

Percent of Increase or Decrease:  $\frac{n}{100} = \frac{difference}{original\ amount}$ 

**Simple Interest:** I = Prt and A = I + P

Compound Interest:  $A = P(1 + \frac{r}{n})^{nt}$  or  $A = Pe^{rt}$ 

**Slope formula:**  $m = \frac{y_2 - y_1}{x_2 - x_1}$  for line through the points  $(x_1, y_1)$  and  $(x_2, y_2)$ 

**Slope intercept form:** y = mx + b where slope is m and y-intercept is b

**Point-slope form:**  $y - y_1 = m(x - x_1)$  where  $(x_1, y_1)$  is a point on the line

#### Math Formula Sheet

# Factoring:

Perfect Square Trinomial:  $a^2 \pm 2ab + b^2 = (a \pm b)^2$ 

Difference of two squares:  $a^2 - b^2 = (a - b)(a + b)$ 

Sum of cubes:  $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ 

Difference of cubes:  $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ 

Distance formula:  $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$  Midpoint formula:  $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ 



### **Pythagorean Theorem:**

$$a^2 + b^2 = c^2$$

### **Quadratic Formula:**

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

and Radius 
$$r$$

$$(x-h)^2 + (y-k)^2 = r^2$$

**Circle:** Center (h, k) **Parabola:** Vertex (h, k)

$$y = a(x - h)^2 + k$$

Vertex of a quadratic

$$(h,k) = \left(-\frac{\dot{b}}{2a}, f\left(-\frac{b}{2a}\right)\right)$$

Cancellation Properties of Exponentials and Logarithms: For b > 0 and  $b \ne 1$ ,  $b^{\log_b x} = x$  and  $\log_b b^x = x$ 

**Logarithmic Function Definition:** For x > 0, b > 0, and  $b \ne 1$ 

 $y = log_b x$  if and only if  $x = b^y$ 

# Radians/Degrees conversion:

Degrees to Radians: Multiply by  $\frac{\pi}{180^{\circ}}$  Radians to Degrees: Multiply by  $\frac{180^{\circ}}{\pi}$ 

**Fundamental Identities:** 

$$tan\theta = \frac{sin\theta}{cos\theta}, \quad cot\theta = \frac{cos\theta}{sin\theta}, \quad cot\theta = \frac{1}{tan\theta}, \quad sec\theta = \frac{1}{cos\theta}, \quad csc\theta = \frac{1}{sin\theta}$$

**Cofunction Identities:** 

$$cos(90^{\circ} - \theta) = sin\theta$$
,  $tan(90^{\circ} - \theta) = cot\theta$ ,  $sec(90^{\circ} - \theta) = csc\theta$   
 $sin(90^{\circ} - \theta) = cos\theta$ ,  $cot(90^{\circ} - \theta) = tan\theta$ ,  $csc(90^{\circ} - \theta) = sec\theta$ 

**Law of Cosines** in any  $\wedge$  ABC,

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$b^2 = a^2 + c^2 - 2ac \cos B$$

$$c^2 = a^2 + b^2 - 2ab \cos C$$

**Law of Sines** in any  $\triangle ABC$ ,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$