

200

FIG. 2

FIG.3

χ = arbitrary number of chips in training sequence set by system standard.

$h_1'(0) + 0$	$0 - h_2'(0)$	$-h_1'(0) + 0$	$0 - h_2'(0)$	$0 \dots$
$h_1'(1) + h_2'(0)$	$h_1'(0) - h_2'(1)$	$-h_1'(1) + h_2'(0)$	$-h_1'(0) - h_2'(1)$	$0 \dots$
$h_1'(0) + 0$	$0 - h_2'(0)$	$h_1'(0) - 0$	$0 + h_2'(0)$	$0 \dots$
$h_1'(1) + h_2'(0)$	$h_1'(0) - h_2'(1)$	$h_1'(1) - h_2'(0)$	$h_1'(0) + h_2'(1)$	$0 \dots$
$h_1'(2) + h_2'(1)$	$h_1'(1) - h_2'(2)$	$-h_1'(2) + h_2'(1)$	$-h_1'(1) - h_2'(2)$	$0 \dots$
$h_1'(3) + h_2'(2)$	$h_1'(2) - h_2'(3)$	$-h_1'(3) + h_2'(2)$	$-h_1'(2) - h_2'(3)$	$0 \dots$
$h_1'(2) + h_2'(1)$	$h_1'(1) - h_2'(2)$	$h_1'(2) - h_2'(1)$	$h_1'(1) + h_2'(2)$	$0 \dots$
$h_1'(3) + h_2'(2)$	$h_1'(2) - h_2'(3)$	$h_1'(3) - h_2'(2)$	$h_1'(2) + h_2'(3)$	$0 \dots$
$h_1'(4) + h_2'(3)$	$h_1'(3) - h_2'(4)$	$-h_1'(4) + h_2'(3)$	$-h_1'(3) - h_2'(4)$	$0 \dots$
$h_1'(5) + h_2'(4)$	$h_1'(4) - h_2'(5)$	$-h_1'(5) + h_2'(4)$	$-h_1'(4) - h_2'(5)$	$0 \dots$
$h_1'(4) + h_2'(3)$	$h_1'(3) - h_2'(4)$	$h_1'(4) - h_2'(3)$	$h_1'(3) + h_2'(4)$	$0 \dots$
$h_1'(5) + h_2'(4)$	$h_1'(4) - h_2'(5)$	$h_1'(5) - h_2'(4)$	$h_1'(4) + h_2'(5)$	$0 \dots$
....

Fig. 5 Layout of channel impulse responses in \tilde{C}

6/6

600

FIG. 6