В.В. Капнельсон А.С. Ларионов

Отечественные приемно-усилительные лампы и их зарубежные аналоги

СПРАВОЧНИК

Б. В. Кацнельсон А. С. Ларионов

Отечественные приемно-усилительные лампы их зарубежные аналоги (СПРАВОЧНИК)

Третье издание, переработанное и дополненное ББК 32.851.1 K 30 УДК 621.385(03)

Рецензент Н. В. Пароль

Кацнельсон Б. В., Ларионов А. С.

K 30 Отечественные приемно-усилительные лампы и их зарубежные аналоги: Справочник. — 3-е изд., перераб. и доп. — М.: Энергоиздат, 1981. — 456 с., ил.

В пер.: 1 р. 80 к.

Приведены сведения по отечественным приемно-усилительным лампам, которые широко применяются в современной радиоаппаратуре (малошумящие, импульсные, лампы для цветных телевизоров, механотроны, лампы высокой надежности), а также зарубежным лампам аналогам отечественных. По сравнению с изданием 1974 г. в настоящее издание включены сведения по новым лампам, изъяты сведения по устаревшим лампам ограниченного применения.

Предназначен для специалистов, занимающихся разработкой и эксплуатацией радиоэлектронной аппаратуры, а также может быть полезен студентам вузов и техникумов при курсовом и дипломном проек-

тировании.

 $K \frac{30404-451}{051(01)-81} 190-81(9) 2402020000$ ББК 32.851.1 6Ф0.31

ПРЕДИСЛОВИЕ

Современные приборы электронной техники отличаются не только высоким качеством, повышенной надежностью и долговечностью, но и существенно улучшенными параметрами и характеристиками.

В настоящее время выпускаются весьма современные электровакуумные приборы разных классов, в их числе приемно-усилительные лампы, которые имеют массовое применение в измерительной, медицинской, бытовой радиоаппаратуре, в самых различных приемных и передающих устройствах. Так как такие устройства надежны и имеют высокие параметры, приемно-усилительные лампы еще долгое время будут чрезвычайно широко распространены, что подтверждается опытом многих стран. Это необходимо не только для обеспечения работоспособности ранее выпущенных промышленных и бытовых устройств, но и в связи с тем, что пока не обеспечены условия для полной замены ламп во многих типах аппаратуры.

Значительное расширение международного научно-технического сотрудничества, быстрое развитие экспорта и импорта электронной аппаратуры, международная кооперация в области телевидения определяют большой интерес со стороны широкого круга читателей к вопросам взаимозаменяемости отечественных и зарубежных ламп.

Третье издание справочника содержит сведения о 340 отечественных приемно-усилительных лампах, а также их зарубежных аналогах, выпускаемых в странах — членах СЭВ. Эти лампы имеют массовое применение, и сведения об их параметрах и свойствах необходимы не только специалистам, но и радиолюбителям, студентам, а также потребителям, пользующимся бытовой радиоаппаратурой, поскольку замена ламп в телевизорах, радиоприемниках и других радиоустройствах широкого применения может производиться и неспециалистами.

По сравнению с предыдущим изданием справочник значительно дополнен и переработан: введено свыше 90 новых типов приборов, в их числе лампы для цветных телевизоров, лампы повышенной надежности, ряд оригинальных приборов со специальными свойствами, в том числе электронные механотроны (лампы с подвижными электродами), а также некоторые распространенные зарубежные лампы. Наряду с этим в справочник внесены важные изменения и уточнения, связанные с улучшением параметров более 100 ламп.

Ввиду ограниченного объема в настоящее издание справочника не включены устаревшие типы ламп ограниченного применения, а справочные данные ряда других ламп даны в несколько сокращенном виде, без графических характеристик.

Для удобства пользования справочником вся номенклатура ламп условно разбита на разделы, объединяющие лампы по числу электродов (диоды, триоды, пентоды и т.д.), а внутри разделов группируются однотипные лампы, отличающиеся эксплуатационными свойствами, например 6П14П, 6П14П-В, 6П14П-ЕВ. Многие лампы, выпускаемые в разных странах, имеют одинаковые или очень близкие параметры и размеры, однотипное назначение и могут быть взаимозаменяемы в аппаратуре. Такие лампы обычно называют аналогами.

За рубежом, как и в нашей стране, иногда выпускаются различные модификации ламп одного типа, например лампы повышенной долговечности. Такие разновидности ламп аналогов, отличающиеся какими-либо специальными свойствами, в группы ламп справочника не включены; приводятся параметры только основной лампы.

Аналоги отечественных ламп указаны для их типового назначения. В некоторых видах аппаратуры в зависимости от режима применения и условий эксплуатации ламп для оценки условий взаимозаменяемости необходимо рассматривать более широкий круг дан-

ных, чем приведено в настоящем справочнике.

Наряду с полными аналогами, которые могут быть заменены без каких-либо изменений схемы и режимов или нарушения качества работы, есть также однотипные, близкие лампы, отличающиеся цоколевкой, конструктивным оформлением или некоторыми параметрами. Замена таких ламп требует переделок в аппаратуре, например перепайки контактов панелей, замены резисторов и т. п. Подобные лампы иногда называют «частичными аналогами». Наиболее распространенные типы таких зарубежных ламп, близких по параметрам, также включены в справочник.

Сведения об аналогах приведены по данным СЭВ, каталогам

фирм, зарубежным справочникам и другим материалам.

При составлении справочника были использованы действующие в СССР стандарты, общие технические требования к приемно-усилительным лампам, рекомендации по эксплуатации и другая техническая документация.

Для каждой лампы приведены следующие сведения:

типовое назначение;

габариты и масса;

основные электрические и другие параметры;

номинальный режим измерений параметров;

предельные эксплуатационные данные, в том числе устойчивость к внешним воздействиям.

Кроме того, для каждой группы ламп приведена схема соединения электродов со штырьками, а также типовые усредненные анодные и анодно-сеточные характеристики. Габаритные рисунки ламп приведены в конце книги.

Справочник не заменяет официальные документы (стандарты и аналогичные технические документы), устанавливающие требования

к лампам и определяющие их качество.

Предыдущее издание справочника вызвало определенный интерес со стороны радиолюбителей и специалистов. Авторы выражают благодарность читателям, приславшим свои предложения и замечания, большинство которых удалось учесть в настоящем издании.

Авторы также выражают благодарность доценту, канд. техн. наук Н. В. Паролю за ценные замечания и советы, сделанные при

рецензировании рукописи.

Все замечания и пожелания просим присылать по адресу: 113114, Москва, М-114, Шлюзовая наб., 10, Энергоиздат.

РАЗДЕЛ ПЕРВЫЙ ОБЩИЕ СВЕДЕНИЯ

1.1. СВОДНАЯ ТАБЛИЦА ЛАМП

Сводная таблица содержит все лампы, данные которых приведены в справочнике. Это позволяет нагляднее представить и оценить всю номенклатуру и найти нужную лампу. Лампы сгруппированы и расположены в таблице (и в справочнике) в соответствии с уста-

новленной в СССР системой обозначений ламп (см. § 1.2).

Чтобы облегчить поиски нужных ламп, некоторые группы ламп. имеющих однотипное назначение и общие конструктивные особенности, выделены в самостоятельные группы. Например, диоды представлены четырьмя группами (диоды для детектирования ВЧ и СВЧ колебаний, высокочастотные двойные диоды, демпферные диоды, специальные диоды); кенотроны, относящиеся к категории приемноусилительных ламп, — двумя группами и т. д.

Группировка и выделение некоторых типов ламп позволяют унифицировать комплекс параметров и данных, приводимых для этих ламп в пределах одного параграфа справочника. Благодаря этому удобнее сравнивать параметры однотипных ламп и при необходимо-

сти выбрать нужный тип лампы.

Кроме сводной таблицы ламп ниже приведена классификация отечественных ламп по их основному назначению. Поскольку многие лампы применяются в самых различных схемах и выполняют разнообразные функции, приведенная классификация учитывает лишь типовое назначение ламп. Поэтому классификация иногда имеет условный характер, и ее следует рассматривать только как вспомогательный материал для работы с данной книгой.

В сводной таблице наряду с отечественными лампами приведены взаимозаменяемые типы зарубежных ламп-аналогов, выпускаемых в странах — членах СЭВ. Параметры этих ламп даны в спра-

вочнике, а система обозначений расшифрована в § 1.2.

Включенные в справочник полные аналоги указаны в таблице в круглых скобках. Аналоги, имеющие некоторые отличия от отече-

ственных ламп, приведены в квадратных скобках.

В аппаратуре используются и такие зарубежные лампы, которые не имеют полных аналогов среди отечественных ламп. Некоторые широко распространенные типы этих зарубежных ламп также включены в справочник и указаны в левой части сводной таблицы. Поскольку иногда возникает необходимость замены таких ламп на отечественные, в таблице указаны возможные варианты полобной замены (отмечены знаком ~, а заменяющие лампы набраны курсивом). При этом следует учитывать, что для замены может потребоваться некоторая корректировка схемы, изменение режимов, перепайка панелей, резисторов и т. п., а параметры заменяющей лампы

могут оказаться неравноценными.

Кроме того, в сводной таблице указаны отдельные типы лампаналогов, выпускаемых в США и странах Западной Европы. В этнх странах не соблюдается единая система обозначений, некоторые фирмы выпускают взаимозаменяемые лампы под разными наименованиями. Поэтому в сводной таблице указано лишь ограниченное количество наиболее употребительных типов ламп-аналогов, выпускаемых основными западноевропейскими и американскими фирмами. Параметры этих ламп в справочнике не приведены. При необходимости их данные можно найти в специальной литературе.

КЛАССИФИКАЦИЯ ОТЕЧЕСТВЕННЫХ ЛАМП ПО ИХ ОСНОВНОМУ НАЗНАЧЕНИЮ

Усиление напряжения СВЧ

Триоды: 2С49Д, 6С17К-В, 6С48Д.

Генерирование колебаний СВЧ

Триоды: 2С49Д, 6С13Д, 6С17К-В, 6С21Д, 6С36К, 6С44Д, 6С50Д.

Детектирование напряжения СВЧ

Диоды: 6Д6А, 6Д6А-В, 6Д13Д, 6Д13Д-И, 6Д15Д, 6Д16Д, 6Д16Д-Р.

Усиление напряжения высокой частоты

Триоды: 6С1П, 6С2Б, 6С2Б-В, 6С2П, 6С3П, 6С3П-ЕВ, 6С3П-ДР, 6С4П, 6С4П-ЕВ, 6С4П-ДР, 6С15П, 6С15П-Е, 6С28Б, 6С28Б-В, 6С29Б, 6С29Б-В, 6С45П-Е, 6С51Н, 6С51Н-В, 6С52Н, 6С52Н-В, 6С53Н, 6С53Н-В, 6С63Н, 6С65Н, 6С66П.

Двойные триоды: 6Н3П, 6Н3П-Е, 6Н3П-И, 6Н3П-ДР, 6Н5П, 6Н14П, 6Н23П, 6Н23П-ЕВ, 6Н24П, 6Н27П

Тетроды: 6912H, 6912H-В, 6913H, 6914H.

Пентоды с короткой характеристикой: 1Ж17Б, 1Ж18Б, 1Ж24Б, 1Ж29Б, 1Ж36Б, 1Ж37Б, 1Ж42А, 2Ж48Б, 6Ж1Б, 6Ж1Б-В, 6Ж1Б-ВР, 6Ж1П, 6Ж1П-ЕР, 6Ж1П-ЕВ, 6Ж2П, 6Ж2П-ЕВ, 6Ж3П, 6Ж3П-Е, 6Ж4П, 6Ж4, 6Ж5П, 6Ж32Б, 6Ж33А, 6Ж33А-В, 6Ж40П, 6Ж45Б-В, 6Ж46Б-В, 13Ж41С, 13Ж47С.

Пентоды с удлиненной характеристикой: 1К2П, 1К12Б, 6К1Б, 6К1Б-В, 6К1П, 6К4П, 6К4П-ЕВ, 6К4П-ЕР, 6К6А, 6К6А-В,

6К8П, 6К14Б-В.

Триод-пентоды (пентодная часть): 6Ф1П, 6Ф12П, 9Ф8П.

Усиление колебаний высокой частоты в выходных каскадах Пентоды: 1П5Б, 1П22Б-В, 1П24Б-В, 1П33С, 2П5Б, 6П21С, 6П23П, 6Р2П, 13Ж41С.

Генерирование колебаний высокой частоты

Триоды: 6С6Б, 6С6Б-В, 6С34А, 6С34А-В, 6С35А, 6С35А-В, 6С51Н, 6С51Н-В, 6С52Н, 6С52Н-В, 6С53Н-В, 6С62Н, 6С63Н. Двойные триоды: 6Н3П, 6Н3П-Е, 6Н3П-И, 6Н15П, 6Н16Б, 6Н16Б-В, 6Н18Б, 6Н18Б-В.

Типы ламп, помещенные в справочнике, и их основные аналоги (приведены в скобках)	Некоторые западноевропей- ские и американские лампы-			
Colonial diagon (aparticle) b cooling)	ана Л. јри			
Диоды для детектирования В	I и СВЧ колебани й			
6Д6А, 6Д6А-В 6Д13Д, 6Д13Д-И				
6Д15Д	=			
6Д16Д, 6Д16Д-Р 6Д24Н	-			
Диоды двойнь				
6Х2П (ЕАА91, 6В32), 6Х2П-ЕВ	EB91, 6D2, 6AL5 6H6			
6X2П-И, 6X2П-ЕР 6X6C	6H6			
6X7Б, 6X7Б-В, 6X7Б-ВР	-			
Диоды демпфер				
6月1 4 月 6月9年日(12 28 9)	[6B3, EY81, 6AF3] [6AL3], 6V3A [EY500] [EY83]			
6Д2∘П [EY88] 6Д22С	[EY500]			
6Ц10П 6Ц19П	[EY83]			
•	(
Диоды специал	ьные			
2Д2 С 2Д3Б				
2Д7C	_			
2Д9С 4Д17П				
Кенотроны высоков	ВОЛЬТНЫ е			
1Ц7С (DY30)	1B3G T			
1Ц11П 1Ц20Б	1 =			
1Ц21П (DY86, DY87)	1S2			
2U,2C 3U,16 C	1S2 2X2(A) 3A3, 3B2, 3A3A GY501			
<u>вц</u> 18 п	-			
3U, 2C 5U,12 T	GY501			
Кенотроны маломощные				
5 <u>Ц</u> 3 <u>С</u>	5U4G, 5U4GB, 5AS4A 5Z4G, 5Z4			
5U4C 5U8C	5Z4G, 5Z4			
5Ú9C				
6Ц4П, 6Ц4П-ЕВ 6Ц5С (EZ35)	EX4, 6Z31], EZ90 6X5GT			
6Ц13Π				
	_			

Типы ламп, помещенные в справочнике, и их основные аналоги (приведены в скобках)

Некоторые западноевропейские и американские лампыаналоги

Триоды

	- 1	
2C3A		I —
2С49Д		
6С1П		9002
6C2B, 6C2B-B		
6С2П		6J4, EC98
6C2C		6J5GT
6C3B, 6C3B-B		
econ econ en econ un		
6СЗП, 6СЗП-ЕВ, 6СЗП-ДР		_
6С4П, 6С4П-ЕВ, 6С4П-ДР		—
6C6E, 6C6E-B		
6С7Б, 6С7Б-В		
6С13Д		
6С15П, 6С15П-Е		
6C17K-B		
6С19П, 6С19П-В, 6С19П-ВР		
6C20C		6BK4
6С21Д		
6C28B, 6C28B-B		
6C29B, 6C29B-B		
6C31B, 6C31B-EP		
6С32Б		
6C33C, 6C33C-B, 6C33C-BP		_
6C34A, 6C34A-B		
6C35A, 6C35A-B		
6C36K		
6С37Б		
6С40П		_
6C41C		
6С44Д		
6С45П-Е		
6C46Γ-B		
6С48Д		
6С50Д		_
6C51H, 6C51H-B		7586
6C52H, 6C52H-B		7895
6C53H, 6C53H-B		EC-1010
6C56II		
6С58П		
6C59II		
6C62H		
6C63H		
6C65H		
6C66П		-
000011		

Типы ламп, помещенные в справочнике, и их основные аналоги (приведены в скобках)

Некоторые западноевропейские и американские лампыаналоги

Двойные триоды

6НІП, 6НІП-ВИ, 6НІП-ЕВ 6Н2П (6СС41), 6Н2П-ЕВ, 6Н2П-ЕР 6Н3П (6СС42) 6Н3П-Е, 6НЕП-И, 6Н3П-ДР 6Н5П 6Н6П, 6Н6П-И 6Н7С 6Н8С 6Н9С 6Н13С 6Н14П (ЕСС84) 6Н15П (ЕСС91, 6СС31) 6Н16Б, 6Н16Б-В, 6Н16Б-И 6Н16Б -ВИ, 6Н16Б-ВР, 6Н16Г-ВИР 6Н17Б, 6Н17Б-В, 6Н17Б-ВР 6Н18Б, 6Н18Б-В 6Н21Б 6Н23П(ЕСС83), 6Н23П-ЕВ 6Н24П (ЕСС89) 6Н25Г, 6Н25Г-В 6Н26П 6Н27П (ЕСС86) 6Н28Б-В 6Н30П-ДР 6Н31П	2C51, 396A, 6385 5670 - 6N 7GT 6SN 7GT 6SL 7GT 6080, 7802 6CW7, 6L16 6J6A 6DJ8 6FC7 - 6GM8		
6Н32Б 6Н33Б			
Тетроды			
6Э5П, 6Э5П-И 6Э6П-Е, 6Э6П-ДР 6Э12Н, 6Э12Н-В 6Э13Н 6Э14Н 6Э15П			
Пентоды с короткой характеристикой			
1Ж17Б 1Ж18Б 1Ж24Б 1Ж29Б-В, 1Ж29Б-Р 1Ж36Б 1Ж37Б 1Ж42A 2Ж48Б 6Ж1Б, 6Ж1Б-В, 6Ж1Б-ВР 6Ж1П (EF95, 6F32)	 5702 6AK5		

Типы ламп, помещенные в справочнике, и их основные аналоги (приведены в скобках) Некоторые западноевропей ские и американские лампы аналоги

6Ж1П-ЕВ, 6Ж1П-ЕР	6AK5W, 5654
6Ж2Б, 6Ж2Б-В	1 — '
6Ж2П, 6Ж2П-ЕВ	6AS6, 5725
6Ж3П (ЕF96), 6Ж3П-Е	6AG5
6Ж4 (6F10), 6Ж4-В	6AC7
6Ж4П (EF94)	6AU6A, 7543
6Ж5Б, 6Ж5Б-В	l — ·
6Ж5П (6F36)	6AH6
6Ж9Г, 6Ж9Г-В	_
6Ж9П, 6Ж9П-Е (Е180F)	6688A
6Ж10Б, 6Ж10Б-В, 6Ж10Б-ВР	
6Ж10П, 6Ж10П-ЕР	
6Ж11П, 6Ж11П-Е	[E280F]
6Ж20П	-
6Ж21П	-
6Ж22П	 -
6Ж23П, 6Ж23П-Е	= = = = = = = = = = = = = = = = = = = =
6Ж32Б	—
6Ж32П (EF86)	6267
6Ж33А, 6Ж33А-В	
6Ж35Б, 6Ж35Б-В	
6Ж38П, 6Ж38П-ЕВ	_
6Ж39Г-В	-
6Ж40П (EF98)	6ET6
6Ж43П-E ₂ 6Ж43П - ДР	 6EJ7
6Ж44П	-
6Ж45Б-В	
6)K46B-B	-
6Ж49П-Д	-
6Ж50П	
6Ж51Π (EF184)	6EJ7
6Ж52П	 -
6Ж53П	
13Ж41C	Ē
13Ж47C	l
Пентоды с идлиненной	характеристикой

Пентоды	С	удлиненной	хар	актеристикои
1K2Π (1F34)			1	
1 K 12 B			1	
6K1B, 6K1B-B			1	
6К1П				9003
6K4П (EF93, 6F31)				6BA6
6К4П-ЕВ, 6К4П-ЕР				6BA6W, 5376
6K6A, 6K6A-B				
6K7				_
6K8П (EF97)				6ES6 6EH7
6K13Π (EF183)				6EH7
6K14B-B				-
6K 15B-B				
6K16B-B				_
01(100 0				•

Типы ламп, помещенные в оправочнике, и их основные аналоги (приведены в екобках)

Некоторые запидноевропейю ские и амерыканские лампыю аналоги

Пентоды и тетроды со вторич	ной эмиссией
6Β1Π, 6Β1Π-Β 6Β2Π 6Β3C	
Пентоды выходные и лучев	вые тетроды
1П5Б 1П22Б-В 1П24Б-В 1П33С 2П5Б 6П1П, 6П1П-ЕВ 6П3С, 6П3С-Е 6П6С 6П9 (6L10) 6П13С 6П14П (ЕL84), 6П14П-В, 6П14П-ЕВ, 6П14П-ЕР 6П15П, 6П15П-В, 6П15П-ЕВ, 6П15П-ЕР 6П15П-ЕР 6П12С 6П20С 6П20С 6П21С 6П23П 6П25Б, 6П25Б-В 6П27С (ЕL34) 6П30Б, 6П30Б-Р, 6П30Б-ЕР 6П31С (ЕL36) 6П33П (ЕL86) 6П35Г-В 6П36С (ЕL500), 6П36С-В 6П37Н-В 6П38С 6П38С 6П38С 6П38С 6П38С 6П38П 6П38С 6П38С 6П36С (ЕL500), 6П36С-В 6П31С-В	GAQ5, EL90] 6L6GB 6V6GT 6AG7 6BQ5, N709 6DY5, N329 6CB5 6CA7 6CM5 6CW5 6GB5 6GB5
Двойные тетроды и п	ентод ы
БР2П БР3С-1 БР4П БР5П	

Некоторые западноевропей-Типы ламп, помещенные в справочнике, и их ские и американские лампыосновные аналого приведены в скобках) аналоги Гептоды $1A2\Pi (1H34)$ 6BE6, 6K90 6A2[] (6H31) 6A3∏ 6A4Π 6A 11Γ-B Гептагриды 6Л1П 6Л2Г Диод-пентоды 152H (1AF34) Триод-пентоды 6BL8 6Ф1П (ECF80) 6BM8 6Ф3П (ECL82) 6DX8, 6DQ8 6Φ4Π (ECL84) 6Ф5П (ECL85) 6Φ12Π 9A8 9Ф8П (PCF80) 15Φ4Π (PCL84) 15DX8 16A8, 30PL12 16Φ3Π (PCL82) 18GV8 18Ф5П (PCL85) Триод-гептоды 6ИІП (ЕСН81), 6ИІП-В, 6ИІП-ЕВ 6AJ8, 6C12 6И4П Индикаторы настройки [DM70] 1E4A-B 6BR5 6E1Π (EM80) 6E2Π 6E3Π 6E5C Электрометрические лампы ЭM-4 3M-5 9M-6ЭM-7 3M-8 ЭM-9 3M-10

ЭМ-11 ЭМ-12 **12**

Типы ламп, помещенные в справочнике, и их основные аналоги (приведены в скобках)	Некоторые западноевропей- ские и американские лампы- аналоги
Механотроны	
6МДХ1Б	ı -
6МДХЗБ	 —
6МН1Б	
6МУХ6П	
6MX1B	l –
6MX1C	
6M X2Б	
6MX3C	
6MX4C	_
6MX5C	
6MX7C	_
Зарубежные лам	n h i
EABC80	6LD12, 6T8, 6AK8
EBF89	02272, 010, 01110
EC86 ~ 6С3П, 6С4П	6CM4
EC88 ~ 6C4∏	6DL4
EC92	I 6AB4
EC866	
E80CC ~ 6H1П, 6H3П	
ECC82 ~ 6H1II, 6H5∏	12AU7
ECC83 $\sim 6H2\Pi$	ECC803S, 6L13, 12AX7
ECC85 ~ 6H3П	6L12, 6AQ8
ECC189 ~ 6H23Π	6ES8
ECC802S $\sim 6H1\Pi$ -EB, 6H51	ECC82, 12AU7WA, 6067
ECC803S $\sim 6H2\Pi$ -EB	ECC83, 12AX7WA, 6057
ECC960 $\sim 6H3\Pi$, $6H15\Pi$	E90CC
ECC962	E92CC
ECF82 ~ 6Ф1П	608
ECF801	000
ECF802	
ECF803	
ECH84 ~ 6И3П	6JX8
ECH200 $\sim 6 H3\Pi$	1 33713
ECL86 $\sim 6\Phi 5\Pi$	6GW8
EF80 ~ 6Ж4П, 6Ж5П	EF800, 6BX6
EF89 ~ 6K4Π	Li coo, obito
EF184 ~ 6 Ж51Π	6EJ7, 6F30
EF800 ~ 6 Ж4П, 6 Ж5П	EF80
EF806\$	6267
EH90	020.
EL83 ~ 6Π15Π	6CK6, 6CN6
E84L (6Π14Π)	EL84
EL803\$ ~ 6Π15Π	EL83
EУ86 ~ 3Ц18П	6S2
ЕУ87 ~ 3∐18П	
PL36	l
NO CHIAN	l .

PL84 6Π14Π PL500~6Π36C **Тетроды: 6912H, 6912H-В, 6913H, 6914H.**

Пентоды: 1Ж29Б-В, 1Ж37Б, 1Ж42А, 2Ж48Б, 1П5Б, 1П22Б-В, 1П24Б-В, 2П5Б, 6П21С, 6П23П, 6П37Н-В.

Триод-пентоды (триодная часть): 6Ф1П, 9Ф8П.

Двойной тетрод 6Р2П.

Петектирование напряжения высокой и промежуточной частоты

Лвойные диоды: 6Х2П, 6Х2П-ЕВ, 6Х2П-И, 6Х2П-ЕР, 6Х6С, 6Х7Б, 6Х7Б-В. 6Х7Б-ВР.

Комбинированная лампа (диодная часть) 1Б2П.

Широкополосное усиление напряжения высокой частоты

оды: 6Ж1П, 6Ж1П-ЕВ, 6Ж5Б, 6Ж5В-В, 6Ж5П, 6Ж9Г, 6Ж9Г-В, 6Ж9П, 6Ж9П-Е, 6Ж10П, 6Ж11П, 6Ж11П-Е, 6Ж20П, 6Ж9Г. Пентоды: 6Ж21П, 6Ж22П, 6Ж23П, 6Ж23П-Е, 6Ж38П, 6Ж38П-ЕВ, 6Ж39Г-В, 6Ж43П-ДР, 6Ж43П-Е, 6Ж44П, 6Ж49П-Д, 6Ж50П, 6Ж51П, 6Ж52П, 6Ж53П, 6К13П, 6Э6П-Е, 6П38П.

Триоды: 6С45П-Е, 6С58П, 6С59П.

Широкополосное усиление в выходных каскадах

Тетроды: 695П, 696П-Е, 696П-ДР.

Пентоды: 6П9, 6П15П, 6П15П-ЕВ, 6П39С, 6Р4П.

Преобразование высокой частоты

Пентоды: 1Ж37Б, 1Ж42А, 6Ж2П, 6Ж2П-ЕВ, 6Ж10П, 6Ж10П-ЕР,

6Ж35Б, 6Ж35Б-В, 6Ж46Б-В, 6К8П. Гептоды: 1А2П, 6А2П, 6А3П, 6А4П, 6А11Г-В.

Триод-пентоды: 6Ф1П, 6Ф12П, 9Ф8П.

Триод-гептоды: 6И1П, 6И1П-В, 6И1П-ЕВ, 6И4П.

Усиление, генерирование и преобразование высокой частоты, формирование импульсов

Триоды: 6С36К, 6С37Б, 6С50Д.

Пвойные триоды: 6Н6П-И. 6Н23П, 6Н23П-В, 6Н26П.

Тетрод 6Э5П-И.

Пентоды: 6Ж2Б, 6Ж2Б-В, 6Ж10Б, 6Ж10Б-В, 6Ж35Б, 6Ж35В-В, 6Π34C.

Лампы со вторичной эмиссией: 6В1П, 6В1П-В, 6В2П, 6В3С.

Гептоды: 6АЗП, 6А4П. Гептагрид 6Л1П.

Усиление напряжения низкой частоты

Триоды: 6С2С, 6С3Б, 6С3Б-В, 6С6Б, 6С6Б-В, 6С7Б, 6С7Б-В, 6С31Б, 6C31B-P, 6C32B, 6C34A, 6C34A-B, 6C35A, 6C35A-B, 6C51H, 6C51H-B, 6C52H, 6C52H-B, 6C62H, 6C63H.

Двойные триоды: 6Н1П, 6Н1П-ЕВ, 6Н1П-ВИ, 6Н2П, 6Н2П-ЕВ, 6Н2П-ЕР, 6Н7С, 6Н8С, 6Н9С, 6Н15П, 6Н16Б, 6Н16Б-В, 6Н16Б-ВР, 6Н16Б-ВР, 6Н16Б-ВР, 6Н17Б-ВР, 6Н17Б-ВР, 6Н17Б-ВР, 6Н17Б-ВР, 6Н17Б-ВР, 6Н17Б-ВР, 6Н17Б-ВР, 6Н17Б-ВР, 6Н1 6Н18Б, 6Н18Б-В, 6Н21Б, 6Н28Б-В. Тетроды: 6Э12Н, 6Э12Н-В.

Пентоды: 6Ж32Б, 6Ж32П, 6Ж40П.

Диод-пентод (пентодная часть) 1Б2 Π . Триод-пентоды: 6 Φ 3 Π , 6 Φ 4 Π , 6 Φ 5 Π , 6 Φ 12 Π , 15 Φ 4 Π , 16 Φ 3 Π , 18 Φ 5 Π .

Усиление низкой частоты в выходных каскадах

Лвойные триоды: 6Н6П, 6Н6П-И.

Выходные пентоды и лучевые тетроды: 2П2П, 6П1П, 6П1П-ЕВ, 6П3С, 6П3С-Е, 6П6С, 6П14П, 6П14П-ЕВ, 6П18П, 6П25Б, 6П25Б-В, 6П27С, 6П30Б, 6П33П, 6П35Г-В, 6П37Н-В, 6Р3С-1.

Стабилизация напряжения питания

Диод 4Д17П. Триоды: 6С19П, 6С19П-В, 6С19П-ВР, 6С20С, 6С33С, 6С33С-В, 6С33С-ВР, 6С39С, 6С40П, 6С41С, 6С46Г-В, 6С56П. Двойной триод 6Н13С.

Выпрямление высокого напряжения

Одноанодные высоковольтные кенотроны: 1Ц7С, 1Ц11П, 1Ц20Б, 1Ц21П, 2Ц2С, 3Ц16С, 3Ц18П, 3Ц22С, 5Ц12П.

Выпрямление переменного напряжения

Кенотроны: 5Ц3С, 5Ц4С, 5Ц8С, 5Ц9С, 6Ц4П, 6Ц4П-ЕВ, 6Ц5С, 6Ц13П.

Демпфирование в каскадах строчной развертки Демпферные диоды: 6Д14П, 6Д20П, 6Д22С, 6Ц10П, 6Ц19П.

Выходные лампы строчной развертки

Лучевые тетроды: 6П13С, 6П20С, 6П31С, 6П36С-В, 6П37H-В, 6П41С, 6П42С, 6П44С, 6П45С.

Выходные лампы кадровой развертки

Выходные пентоды: 6П1П, 6П1П-ЕВ, 6П14П, 6П14П-ЕВ, 6П18П, 6П41С, 6П43П-Е.

Триод-пентоды (пентодная часть): 6ФЗП, 6Ф5П, 16ФЗП, 18Ф5П.

Индикация настройки

Индикаторы настройки: 1Е4А-В, 6Е1П, 6Е2П, 6Е3П, 6Е5С.

Для измерительных устройств

Электрометрические лампы: ЭМ-4, ЭМ-5, ЭМ-6, ЭМ-7, ЭМ-8, ЭМ-9, ЭМ-10, ЭМ-11, ЭМ-12.

Специальные диоды: 2Д2С, 2Д3Б, 2Д7С, 2Д9С. Механотроны: 6МДХ1Б, 6МДХ3Б, 6МН1Б,

Механотроны: 6МДХ1Б, 6МДХ3Б, 6МН1Б, 6МУХ6П, 6МХ1Б, 6МХ1С, 6МХ2Б, 6МХ3С, 6МХ4С, 6МХ5С, 6МХ7С

1.2. СИСТЕМЫ ОБОЗНАЧЕНИЙ ЛАМП

Система обозначений отечественных ламп. Обозначения приемно-усилительных ламп, выпускаемых в СССР, установлены ГОСТ 13393-76 и состоят обычно из четырех элементов.

Первый элемент — число, соответствующее напряжению

накала в вольтах (округленно).

Второй элемент — буква, обозначающая тип прибора:

Д — диоды, включая демпферные:

Х — двойные диоды;

Ц — маломощные кенотроны;

С — триоды;

Н — двойные триоды;

Э — тетроды;

П — выходные пентоды и лучевые тетроды;

- Ж высокочастотные пентоды с короткой характеристикой, в том числе с двойным управлением;
 - К высокочастотные пентоды с удлиненной характеристикой;

Р — двойные тетроды и двойные пентоды;

 Γ — диод-триоды;

Б — диод-пентоды;

Ф — триод-пентоды;

И — триод-гексоды; триод-гептоды, триод-октоды;

А — частотно-преобразовательные лампы и лампы с двумя управляющими сетками (кроме пентодов с двойным управлением);

В — лампы со вторичной эмиссией;

Л — лампы со сфокусированным лучом;

Е — электронно-лучевые индикаторы настройки.

Для электронных механотронов второй элемент обозначения составляется из трех букв: первая M — механотрон; вторая буква соответствует основному назначению прибора (в некоторых обозначениях механотронов, разработанных ранее, эта буква отсутствует); третья буква обозначает тип прибора в соответствии с перечнем, приведенным выше.

Третий элемент обозначения — число, соответствующее порядковому номеру данного типа лампы.

Четвертый элемент — буква, характеризующая конструктивное оформление лампы.

 П — в стеклянной оболочке, миниатюрные (пальчиковые), диаметром 19 и 22,5 мм;

А — в стеклянной оболочке, сверхминиатюрные, диаметром от 5 до 8 мм;

Б — в стеклянной оболочке, сверхминиатюрные, диаметром свыше 8 до 10,2 мм;

Г — в стеклянной оболочке, сверхминиатюрные, диаметром свыше 10,2 мм;

С — в стеклянной оболочке, с цоколем или без цоколя, диаметром более 22,5 мм;

 Н — в металлокерамической оболочке, миниатюрные и сверхминиатюрные;

К — в керамической оболочке;

Д — в металлостеклянной оболочке, с дисковыми впаями.

Лампы в металлической оболочке четвертого элемента обозначения не имеют.

Добавочный элемент. Қ стандартному обозначению лампы иногда добавляются (после дефиса) буквы, характеризующие специальные свойства ламп, например:

В — лампы повышенной надежности и механической прочности (6К15Б-В);

Е — лампы повышенной долговечности (5 тыс. ч и более);

Д — лампы особо долговечные;

И — лампы, предназначенные для работы в импульсном режиме (695П-И);

ЕВ — лампы повышенной надежности и долговечности.

Системы обозначений ламп, принятые в других странах. За рубежом применяются самые различные системы обозначений радиоламп, что объясняется отсутствием каких-либо международных стандартов или рекомендаций по рациональному обозначению ламп.

Европейская унифицированная система. Большинство европейских фирм, изготовляющих приемно-усилительные лампы, много лет применяют для своих изделий унифицированную систему обозначений. Согласно этой системе условное обозначение приемно-усилительной лампы состоит из двух или более букв, за которыми следует двузначное, трехзначное или четырехзначное число.

Первая буква характеризует значение напряжения накала (или значение тока накала ламп, разработанных специально для последовательного питания подогревателей):

D — напряжение накала до 1,4 В;
 E — напряжение накала 6,3 В;

G — напряжение накала 5 В;

Н — ток накала 150 мА;

P — ток накала 300 мA;

U — ток накала 100 мА;

Х — ток накала 600 мА.

Кроме указанных наиболее употребительных в настоящее время букв системой предусмотрены и ранее использовались буквы A (4 В), В (180 мА), С (200 мА), F (12,6 В), К (2 В), V (50 мА) и т. д.

Вторая и последующие буквы в обозначении определяют тип прибора:

А — диоды;

В — двойные диоды (с общим катодом);

С — триоды (кроме выходных);

D — выходные триоды;

Е — тетроды (кроме выходных); F — пентоды (кроме выходных);

L — выходные пентоды и тетроды;

Н — гексоды или гептоды (гексодного типа); К — октоды или гептоды (октодного типа);

М — электронно-световые индикаторы настройки;

Р — усилительные лампы со вторичной эмиссией;

Y — однополупериодные кенотроны;Z — двухполупериодные кенотроны.

Для обозначения комбинированных ламп используются необходимые сочетания этих букв, которые при этом располагаются в алфавитном порядке, например:

СС — двойные триоды (ЕСС88);

AF — диод-пентоды (1AF34);

АВС — двойной диод — диод-триод.

Двузначное или трехзначное число обозначает внешнее оформление лампы и порядковый номер данного типа, причем первая цифра обычно характеризует тип цоколя или ножки, например:

3 — лампы в стеклянном баллоне с октальным цоколем;

5 — лампы в стеклянной оболочке с ножкой типа «магновал»:

6 и 7 — стеклянные сверхминиатюрные лампы;

 8 — стеклянные миниатюрные с девятиштырьковой ножкой; 9 - стеклянные миниатюрные с семиштырьковой ножкой.

Кроме того, для обозначения девятиштырьковых миниатюрных ламп используются цифры от 180 до 189 (остальные цифры, а также цифра 5 ранее использовались для обозначения других, ныне устаревших видов конструктивного оформления ламп).

Лампы со специальными свойствами (с повышенной долговечностью или механической прочностью, с пониженным уровнем шумов, более жесткими допусками на электрические параметры и т. п.) выделяются чаще всего путем перестановки цифр и букв в обозначении, например Е88СС, Е180Г. Иногда с этой же целью к обычному условному обозначению добавляют букву S, например ECC802S.

Примеры условных обозначений ламп европейской системы:

ЕАА91 — двойной диод (с раздельными катодами) в миниатюрном стеклянном оформлении с семиштырьковой ножкой, с напряжением накала 6.3 В.

ЕАВС80 — двойной диод — диод-триод в стеклянном миниатюрном оформлении с девятиштырьковой ножкой, с напряжением накала 6,3 В.

EL86 — выходной пентод в стеклянном миниатюрном оформлении с девятиштырьковой ножкой, с напряжением накала 6,3 В.

Система обозначений Testa. Кроме широко распространенной европейской системы обозначений многие фирмы применяют также свои особые системы условных обозначений. Так, например; объединение народных предприятий Tesla (Чехословакия) применяет си-

стему условных обозначений радиоламп, состоящую из трех элементов.

Первый элемент — число, округленно соответствующее на-

пряжению накала в вольтах.

Второй элемент — буква или несколько букв, обозначающие тип прибора. Буквы и их группировка для обозначения сложных ламп полностью соответствуют европейской унифицированной системе.

Третий элемент обозначения — двузначное или трехзначное число. Первая цифра в двузначном числе или первые две цифры в трехзначном числе характеризуют конструктивное оформление лампы и тип цоколя или ножки, например:

1 — лампы в стеклянном баллоне с октальным цоколем;

3 — стеклянные миниатюрные лампы с семиштырьковой ножкой;

4 — стеклянные миниатюрные лампы с девятиштырьковой ножкой:

9 — стеклянные лампы с гибкими выводами.

Последняя цифра в третьем элементе обозначения ламп харак-

теризует порядковый номер лампы.

К обозначениям ламп, обладающих повышенной устойчивостью к механическим воздействиям, добавляется буква V; лампы повышенной долговечности обозначаются дополнительной буквой Z.

Следует заметить, что объединение Tesla одновременно выпускает также лампы и в соответствии с европейской системой обозначений.

Примеры условных обозначений ламп Tesla:

6Н31 — гептод в стеклянном миниатюрном оформлении с семи-

штырьковой ножкой, с напряжением накала 6,3 В.

6СС42 — двойной триод в стеклянном миниатюрном оформлении с девятиштырьковой ножкой, с напряжением накала 6,3 В.

Сравнительная таблица обозначений некоторых приемноусилительных ламп, выпускаемых в странах — членах СЭВ

Выпускаемые в СССР	Выпускаемые в других странах, участвующих в СЭВ	По унифицированной системе СЭВ		
Диоды,	Диоды, двойные диоды, кенотроны			
111111 112111 6Д2011 6Ц1011 6X211 6X211-E	— DY86 DY87 EY86 EY88 PY88 — EAA91	E7001 E7002 E7180 E7003 E7072 E7073 E7012 E7004 E7099		
	Трио∂ы			
— ———————————————————————————————————	EC86 EC88 EC92 — EC866	E7074 E7155 E7156 E7149 E7150 E7172		
	Двойные триоды			
6H1П 6H1П-E 6H2П-E 6H2П-E 6H3П 6H3П-E — 6H14П — 6H23П 6H23П-E — — — — — — — — — 6H23П-E		E7016 E7100 E7018 E7101 E7182 E7102 E7015 E7017 E7019 E7020 E7144 E7106 E7181 E7105 E7103 E7104 E7173 E7174 E7076		
Пентоды				
6Ж1П 6Ж1П-Е 6Ж2П-Е — 6Ж9П	EF95 E95F EF80	E7028 E7112 E7113 E7026 E7080		

		ii pooonneenae 1aon.		
Выпускаемые в СССР	Выпускаемые в других странах, участвующих в СЭВ	По унифицированной вистеме СЭВ		
6Ж9П-Е 6Ж23П-Е 6Ж32П — — — — 6К4П-Е 6К13П	E180F — EF86 EF89 E83F EF800 EF806S — EF183 EF184	E7109 E7152 E7027 E7078 E7111 E7110 E7108 E7116 E7160 E7161		
Выход	ные пентоды и лучевь	ие тетроды		
— 6П13С 6П14П 6П15П 6П18П 6П27С 6П31С 6П33П — 6П36С — — 6Э6П-Е	EL83	E7034 E7037 E7035 E7038 E7039 E7032 E7081 E7036 E7044 E7198 E7197 E7040 E7171 E7117 E7117 E7119 E71199		
	E81H	E7153		
Комбинированные лампы				
6И IП	ECH81 ECH84 ECH200 EABC80 EBF89 ECF82 ECF801 ECF802 ECF803 ECF80 ECL82 ECL84 ECL85 ECL86	E7052 E7166 E7188 E7048 E7050 E7051 E7185 E7186 E7187 E7086 E7053 E7088 E7167		

Унифицированная система обозначений СЭВ. Расширяющийся с каждым годом обмен товарами между социалистическими странами, участвующими в Совете Экономической Взаимопомощи, потребовал проведения совместной унификации приемно-усилительных ламп широкого применения, в том числе и унификации обозначений. С этой целью дополнительно к существующим обозначениям решено в рам-ках СЭВ ввести единую систему условных обозначений приемно-усилительных ламп.

Обозначение состоит из буквы Е и четырехзначного числа, начинающегося с цифры 7.

1.3. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

Сравнивая параметры и другие данные ламп-аналогов, установленные в стандартах и фирменных каталогах, необходимо учитывать возможные различия в терминологии, сложившейся в разных странах. Иначе это может привести к ошибкам при оценке взаимозаменяемости ламп. Чтобы избежать этого, ниже приведены краткие определения основных параметров и некоторых других использованных терминов.

Ряд определений дан в соответствии с официальным изданием MЭК — «Международным электротехническим словарем» (International Electrotechnical Vocabulary, 2^{nd} Edition, Croup 07, Electronics).

В справочнике в основном использованы термины, принятые в стандартах СССР. Лишь в отдельных случаях сделаны небольшие уточнения в наименованиях параметров и данных (это относится, в частности, к емкостям и некоторым предельным эксплуатационным далным).

Напряжение электрода (анода, сетки и т. д.) — разность потенциалов между электродом и катодом или определенной точкой катода прямого накала.

Запирающее напряжение сетки - напряжение сетки, уменьша-

ющее ток анода до заданного (очень малого) значения.

Напряжение отсечки электронного тока сетки — напряжение, которое необходимо приложить к сетке, чтобы электронный ток сетки при соединенных с катодом всех остальных электродах был равен заданному значению.

Ток накала — ток, потребляемый подогревателем.

Ток катода — ток, равный алгебранческой сумме токов всех других электродов и измеряемый в общей для всех этих электродов части внешней цепи.

Ток электронной эмиссии катода (ток эмиссии) — условная величина, соответствующая току катода лампы при специально заданных напряжениях на электродах.

Ток утечки — ток проводимости, протекающий между двумя или несколькими электродами по любому пути, но не через вакуумное

пространство между этими электродами.

Крутизна характеристики — величина, характеризуемая отношением изменения тока анода к соответствующему изменению напряжения управляющей сетки при неизменных напряжениях анода, других сеток и накала:

$$S = \frac{\partial I_{\mathbf{a}}}{\partial U_{\mathbf{a}}}$$
.

Для многоэлектродных ламп крутизна характеристики определяется как отношение приращения тока любого электрода к изменению напряжения любого другого электрода, например крутизна по третьей сетке

$$S_{cs} = \left| \frac{\partial I_a}{\partial U_{cs}} \right|.$$

Коэффициент усиления — отношение изменения напряжения анода к соответствующему изменению напряжения управляющей сетки при условии, что ток анода и напряжения на всех остальных электродах остаются неизменными:

$$\mu = \left| \frac{\partial U_{\mathbf{a}}}{\partial U_{\mathbf{c}}} \right|.$$

Внутреннее сопротивление — отношение изменения напряжения анода к соответствующему изменению тока анода при неизменных напряжениях на остальных электродах:

$$R_{l} = \frac{\partial U_{a}}{\partial I_{a}}.$$

Крутизна преобразования — отношение переменной составляющей тока анода промежуточной частоты к переменному напряжению сигнальной сетки при заданном переменном напряжении гетеродинной сетки:

$$S_{\rm np} = \frac{\Delta I_{\rm a.ff.q}}{\Delta U_{\rm curr}}.$$

Крутизна преобразования показывает, какую амплитуду тока промежуточной частоты в анодной цепи лампы создает напряжение сигнала амплитудой 1 В.

Выходная мощность — мощность, отдаваемая в нагрузку через выходной электрод лампы. Выходную мощность в режимах низкочастотного усиления определяют по значению мощности, выделяемой переменной составляющей тока анода на активной анодной нагрузке.

Коэффициент нелинейных искажений K_f — отношение выходной мощности, выделяемой на анодной нагрузке током гармоник, к выходной мощности, выделяемой на анодной нагрузке током основной частоты:

$$K_f = \frac{\sqrt{U_2^2 + U_3^2 + \dots}}{U_1}$$
,

где U_2 , U_3 — напряжения второй и третьей гармоник; U_1 — напряжение основной частоты (первая гармоника).

Колебательная мощность — наибольшая мощность, которую можно выделить в анодной цепи лампы в телеграфном режиме (режим С) при номинальном напряжении накала и максимальном напряжении анода. Колебательная мощность определяется как разность между подводимой мощностью постоянного тока и мощностью, рассеиваемой анодом.

Мощность, рассеиваемая электродом (анодом, сеткой и пр.), мощность, рассеиваемая электродом в виде тепла, образующегося в результате бомбардировки его электронами или ионами, а также в результате излучения тепла другими электродами.

Коэффициент широкополосности — отношение крутизны харак-

теристики к сумме входной и выходной емкостей лампы:

$$v = \frac{S}{C_{\rm BX} + C_{\rm BMX}} .$$

Эквивалентное сопротивление шумов лампы -- сопротивление резистора, на концах которого (при температуре 20° C) в результате

тепловых колебаний электронов возникает напряжение шума, которое, будучи приложено между управляющей сеткой и катодом идеальной бесшумной лампы, вызывает в ее анодной цепи такой же ток шума, какой создается в реальной лампе.

Ток шума реальной лампы-колебания выходного тока лампы, вызванные дробовым эффектом (флюктуациями тока эмиссии, обусловленными статистическим характером и атомистической природой электрического заряда, при неизменной

эмиттирующей поверхности). Входное сопротивление лампы $R_{\rm BX}$ в диапазоне частот 30-300 МГц - активная составляющая полного входного сопротивления, измеренная между выводом входного электрода и «землей» при условии, что на всех электродах лампы установ-

Рис. 1.1. Схема полного входного сопротивления лампы в диапазочастот 30--300 МГц.

лены определенные напряжения питания, а высокочастотные напряжения на всех электродах, кроме входного, на данной частоте пренебрежимо малы.

Входное сопротивление уменьшается с увеличением частоты, шунтируя входной контур (т. е. уменьшаются усиление и избира-

тельность контура).

Примечание. Полное входное сопротивление электронной лампы в диапазоне частот 30-300 МГц можно представить в виде параллельного соединения активного сопротивления $R_{\mathtt{nx}}$ и емкости $C_{\rm BX}$ (puc. 1.1):

$$\frac{1}{Z_{\text{BX}}} = \frac{1}{R_{\text{BX}}} + j\omega C_{\text{BX}},$$

где Z_{BX} — полное входное сопротивление; ω — угловая частота. Скважность — отношение длительности интервала вре между двумя соседними импульсами к длительности импульса.

Напряжение виброшумов — напряжение на нагрузке, включенной в цепь выходного электрода лампы, возникающее при вибрации лампы и обусловленное появлением переменной составляющей тока, вызванной изменениями междуэлектродных расстояний.

Наработка — продолжительность работы лампы; в справочнике обычно указана минимальная наработка, установленная стандарта-

ми или другими официальными документами.

Критерии наработки -- условно принятые параметры и их предельные значения, по которым производится оценка результатов испытаний на наработку.

Межэлектродные статические емкости¹. В ходная — емкость между входным электродом и теми электродами и деталями лампы, на которых в рабочем режиме лампы практически нет переменных потенциалов частоты, которую имеет переменное напряжение, приложенное к входному электроду при заземленном выходном электроде.

Выходная — емкость между выходным электродом и теми электродами и деталями лампы, на которых в рабочем режиме лампы практически нет переменных потенциалов той частоты, которую имеет переменное напряжение на выходном электроде лампы при заземленном входном электроде.

Проходная— емкость между входным и выходным электродами при всех остальных электродах и деталях лампы, соединенных вместе и заземленных.

Межэлектродные емкости для триодов, тетродов и пентодов. В ход ная— емкость между управляющей сеткой и остальными электродами и деталями лампы (кроме анода) при заземленном аноде.

Выходная — емкость между анодом и остальными электродами и деталями лампы (кроме управляющей сетки) при заземленной управляющей сетке.

Йроходная — емкость между управляющей сеткой и анодом; при этом все остальные электроды и детали лампы соединены вместе и заземлены.

Межэлектродные емкости для триодов, тетродов, пентодов в каскадах с заземленной сеткой.

Входная — емкость между катодом и остальными электродами и деталями лампы (кроме анода) при заземленном аноде.

Выходная — емкость между анодом и остальными электродами и деталями лампы (кроме катода) при заземленном катоде.

Проходная— емкость между катодом и анодом при заземленных остальных электродах и деталях лампы, соединенных вместе.

Межэлектродные емкости для гептодов-преобразователей. В ход ная— емкость между сигнальной сеткой и прочими электродами и деталями лампы.

Выходная — емкость между анодом и прочими электродами и деталями лампы.

Проходная— емкость между сигнальной сеткой и анодом; при этом все остальные электроды и детали лампы соединены вместе и заземлены.

Межэлектродные емкости гетеродина. Входная — емкость между гетеродинной сеткой и прочими электродами и деталями лампы (кроме анода гетеродина) при заземленном аноде гетеродина.

Выходная— емкость между анодом гетеродина и прочими электродами и деталями лампы (кроме гетеродинной сетки) при заземленной гетеродинной сетке.

Проходная— емкость между гетеродинной сеткой и анодом гетеродина; при этом все прочие электроды и детали лампы соединены вместе и заземлены.

Примечание. Во всех случаях под деталями лампы (кроме собственно электродов) понимаются подогреватель, экраны, свободные штырьки.

¹ Емкости между электродами лампы в холодном состоянии.

1.4. ВЗАИМОЗАМЕНЯЕМОСТЬ ОТЕЧЕСТВЕННЫХ ЛАМП И ЗАРУБЕЖНЫХ АНАЛОГОВ

Общие данные

Полная взаимозаменяемость радиоламп возможна в том случае, если в результате замены соблюдены заданные условия сопряжения дамп с аппаратурой, а выходные параметры и другие эксилуатационные показатели аппаратуры остаются в оптимальных пределах без каких-либо операций подгонки.

Иногда даже простое сравнение параметров и основного назначения ламп позволяет установить, что эти лампы являются аналогами; обычно это относится к лампам, у которых есть прототипы в других странах. При этом условия замены ламп определяются, вопервых, взаимозаменяемостью по присоединительным и габаритным размерам, а во-вторых, взаимозаменяемостью по параметрам и свойствам.

Но в большинстве случаев определение аналога, т. е. оценка возможности взаимозаменяемости ламп, представляет значительные трудности из-за исключительного разнообразия условий применения современных ламп, из-за различий в режимах и методах измерений, при которых справедливы заданные параметры.

Области применения и режимы использования ламп настолько разнообразны, что не могут быть полностью учтены. Поэтому в публикуемых стандартных данных ламп приводятся только типовые, главные характеристики и режимы, отвечающие основному назначению данной лампы. Между тем близость значений основных параметров еще не означает, что эти лампы являются полными аналогами для любых случаев применения.

Важнейшая особенность электровакуумных приборов состоит в том, что их взаимозаменяемость зависит не только от самих ламп, но и от условий эксплуатации и режима применения, от того, рационально или нет разработана схема, правильно ли использованы в ней приборы. Если схема рассчитана не на оптимальные, а на предельные для лампы параметры, то условия взаимозаменяемости нарушаются, прибор быстро выходит из строя; при его замене выходные параметры схемы могут существенно измениться, а в некоторых случаях в результате замены она может оказаться вообще неработоспособной. Например, лампы 6Н1П, 6Н1П-ЕВ можно считать взаимозаменяемыми для бытовой радиоаппаратуры, но лампы 6Н1П нельзя применять в устройствах, рассчитанных на высокую механическую устойчивость.

Иногда новые лампы могут с успехом заменить ранее выпущенные в тех или иных конкретных схемах, хотя эти лампы совершенно не являются их аналогами. Например, демпферный диод 6Д20П, предназначенный для блоков строчной развертки телевизоров, можно использовать и в прежних моделях телевизоров вместо ламп 6Ц10П, 6Д14П, так как диод 6Д20П, хотя и отличается размерами, но имеет такую же цоколевку и улучшенные по сравнению с этими лампами параметры. В то же время обратная замена недопустима.

Взаимозаменяемость ламп-аналогов — значительно более широкое понятие, чем возможность односторонней замены в электронной

схеме лампы одного типа лампой другого типа. Поэтому в справочниках, каталогах и других источниках сведения об аналогах обычно даются в результате всестороннего сравнения и исследования.

Взаимозаменяемость по присоединительным и габаритным размерам

Размерная взаимозаменяемость определяется возможностью установки или замены ламп при соблюдении заданных условий сопряжения с аппаратурой (с панелями, ламподержателями, контактными колпачками, экранами и т. д.). При этом условия сопряжения непосредственно влияют на выходные параметры всего блока, особенно при климатических и механических воздействиях. Так, например, при недостаточной величине усилий разъема ламп с панелями возможны случаи потери электрического контакта, выпадения ламп из панелей; при вибрации могут возникнуть искрения, дополнительные шумы.

Для современных приемно-усилительных ламп используется в основном ограниченная номенклатура ножек и цоколей, однотипных

в различных странах.

Присоединительные размеры массовых ламп стандартизованы как у нас в стране, так и за рубежом настолько, что практически существует полная размерная взаимозаменяемость однотипных ламп.

Следует отметить, что вопросы размерной взаимозаменяемости ряд лет разрабатываются в рамках Международной электротехнической комиссии (МЭК), в работе которой участвует большинство стран, в том числе СССР. Рекомендации, выпускаемые МЭК, называются «публикациями», имеют характер международных стандартов и в основном соблюдаются всеми странами. В частности, присоединительные размеры электронных ламп установлены публикацией № 67 МЭК. В нашей стране эти размеры определены в ГОСТ 7842-71.

В некоторых случаях размеры, принятые в СССР, немного отличаются от установленных МЭК, что объясняется округлением размеров до значений, соответствующих нормальному ряду чисел. При сравнении размеров следует иметь в виду, что большинство размеров ламп в публикации № 67 МЭК установлено в соответствии с предложениями США и Англии, где до сих пор была принята дюймовая система мер. Поэтому размеры в миллиметрах, полученные путем формального пересчета размеров в дюймах, получаются дробными, искусственными, что совершенно неприемлемо для стран с метрической системой. За последние годы международной организацией по стандартизации (ИСО) приняты решения, обязывающие строить все международные стандарты только на метрической системе. Это решение распространяется и на документы МЭК.

Следует учитывать, что реальные условия сопряжения ламп с панелями и другими элементами аппаратуры позволяют осуществлять размерную взаимозаменяемость ламп при незначительном округлении номинальных размеров, так как это округление обычно перекрывается сравнительно большими допускаемыми отклонениями. Поэтому округление размеров практически не отражается на условиях замены ламп, изготовленных в разных странах. То же самое можно сказать и о габаритных размерах миниатюрных ламп, вы-

пускаемых в СССР и за рубежом.

Расположение штырьков ламп проверяется с помощью проходных комплексных калибров. При этом стандартизованы не только размеры, но и методика контроля с помощью калибров: при контроле лампа должна войти в калибр тах, чтобы торец лампы был прижат к лицевой поверхности калибра; при разъеме калибр определенной массы должен сойти со штырьков без дополнительного усилия.

Поскольку на условия вставления лампы в панель могут влиять непрямолинейность и взаимная непараллельность штырьков, а также их непараллельность оси баллона или цоколя, эти данные контролируются величной усилия разъема лампы с калибром. По ГОСТ 7842-71 усилие разъема ламп с калибром не должно превышать массы калибра. В этих условиях деформации штырьков строго ограничены, а возможность появления микросколов и трещин в стеклянных ножках из-за внутренних напряжений в стекле становится гораздоменьше, поскольку усилия, действующие на штырьки, резко снижаются.

Размерная взаимозаменяемость ламп зависит не только от размеров самих ламп, но и от сопрягающихся с ними элементов аппаратуры, в первую очередь от панелей. Качество сопряжения ламп с панелями характеризуется определенным усилием вставления, усилием разъема и переходным (контактным) сопротивлением между штырьком лампы и гнездом панели.

Максимальные усилия вставления устанавливаются исходя из механической прочности штырьков, стеклянной ножки лампы, цоколя и панели, а минимальные усилия обусловлены надежностью электрического контакта и требованиями механической прочности со-

пряжения «в сборе».

Нарушение свободного перемещения контактов панели после ее монтажа в аппаратуре приводит к увеличению усилий вставления и может нарушить условия размерной взаимозаменяемости. Возможность перемещения контактных гнезд в панели имеет важное значение для нормального сопряжения ламп с панелями. При монтаже панелей лепестки контактов крепятся к проводам, которые препятствуют их «плаванию». После монтажа контакт панели не может «установиться» по штырьку лампы; таким образом, усилия вставления ламп в панели возрастают.

Чтобы добиться надежности сопряжения ламп с панелями и гарантировать размерную взаимозаменяемость ламп, осуществляют

следующие меры:

Проверку сопрягаемых размеров панелей проводят комплексными калибрами, изготовленными в соответствии с присоединительными размерами ламп. Контроль сопрягаемых размеров панелей, а также проверка усилий вставления ламп в панели должны проводиться при предельно неблагоприятном положении контактных гнезд панелей.

2. Усилие разъема с панелями измеряют с помощью калибра, штырьки которого имеют диаметр, соответствующий минимальному диаметру цітырьков ламп. Контроль должен проводиться при сво-

бодном, незакрепленном положении гнезд панелей.

3. Кроме контроля усилий сопряжения с помощью комплексных калибров, имитирующих присоединительные размеры ламп, осуществляют проверку отдельных контактов панели с помощью калибров, позволяющих определить усилие удержания штырька отдельным контактом панели.

4. В ответственных случаях панели монтируются со вставленными в них монтажными приспособлениями, представляющими собой макет лампы. При этом контакт панели сохраняет среднее положение и возможность «свободного плавания» при последующем вставлении лампы в панель; тем самым достигаются допустимые значения усилий сопряжения.

Системы предельных эксплуатационных данных

В различных странах исторически сложился разный подход к значениям параметров, устанавливаемым в технической документации на лампы. В зависимости от этого смысл, заложенный в те или иные параметры, может быть весьма различен, даже если значения параметров формально одинаковы.

Существуют три основные системы предельных значений пара-

метров ламп.

Система абсолютно максимальных значений (Absolute maximum rating system). Абсолютно максимальные значения параметров — это предельные значения основных параметров режима эксплуатации и условий окружающей среды для любого электронного прибора данного типа, заданные в технической документации, которые нельзя превышать даже при самых тяжелых условиях эксплуатации.

Абсолютно максимальные значения параметров выбираются изготовителем ламп так, чтобы получить заданную работоспособность. В то же время изготовитель ламп не берет на себя ответственность за последствия возможных отклонений элементов аппаратуры, колебаний условий окружающей среды, а также за последствия изменений в условиях эксплуатации, вызванных отклонениями в характеристиках данной лампы или других ламп в аппаратуре.

При изготовлении и эксплуатации аппаратуры в начале и в течение всего срока службы не должно превышаться ни одно абсолютно максимальное значение, установленное для данного случая применения, даже при наихудших условиях эксплуатации, включая колебания питающих напряжений, разброс в элементах аппаратуры и условиях настройки (регулировки) аппаратуры, изменения в нагрузке и в уровне сигнала, отклонения условий окружающей среды, а также вариации в характеристиках данной лампы и других ламп в аппаратуре.

Система максимальных расчетных значений (Design-maximum rating system). Расчетные максимальные значения — это предельные значения параметров режима эксплуатации и условий окружающей среды для образцовой лампы данного типа, установленные в технической документации; они не должны превышаться даже при наихуд-

ших условиях эксплуатации.

При мечание. Образцовой называется лампа, которая имеет номинальные значения параметров, указанные для ламп данного типа. При определении образцовой лампы для какого-либо конкретного случая применения следует учитывать только те параметры, которые непосредственно относятся к этому случаю применения. При этом значения этих параметров выбираются изготовителем ламп так, чтобы последние были работоспособны в данном конкретном случае; кроме того, изготовитель ламп отвечает за изменения в условиях эксплуатации, вызванные отклонениями в характеристиках данной лампы.

Аппаратура должна создаваться так, чтобы в начале работы в в течение всего срока ее службы не было превышено ни одно максимальное расчетное значение, установленное для данного случая применения образцовой лампы, даже если она работает в самых тяжелых условиях эксплуатации (при колебаниях питающих напряжений, различиях в компонентах аппаратуры, вариациях характеристик других электронных ламп в данной аппаратуре, при регулировке и подстройке, колебаниях нагрузки и уровня сигнала и изменениях условий окружающей среды).

Система средних расчетных предельных значений (Designcentre rating system). Средние расчетные значения — это предельные значения параметров режима эксплуатации и условий окружающей среды для образцовой лампы данного типа, установленные в технической документации; они не должны превышаться при нор-

мальных условиях.

Эти величины выбираются изготовителем ламп так, чтобы лампа работала в средних условиях применения; изготовитель ламп несет ответственность за нормальные изменения в условиях эксплуатации, вызванные колебаниями питающих напряжений, различиями в компонентах аппаратуры, изменениями нагрузки и уровня сигнала, условий окружающей среды, а также отклонениями в характеристиках электронных ламп.

Аппаратура должна изготовляться так, чтобы ни в начале, ни в процессе работы не было превышено ни одно среднее расчетное значение, установленное для данного случая применения, если образцовая электронная лампа работает в аппаратуре при нормальном пи-

тающем напряжении.

В соответствии с системой средних расчетных значений за рубежом обычно указываются такие данные, как мощность, рассенваемая экранирующей сеткой, сопротивление утечки в цепи первой сетки (при автоматическом смещении), напряжения на аноде и на второй сетке холодной лампы при включении и др.

Указанные системы параметров узаконены публикацией МЭК № 134, т. е. закреплены международным соглашением. Они отличаются разной степенью ответственности изготовителя ламп, с одной стороны, и конструктора электронной схемы, изготовителя аппара-

туры, в которой применена лампа, — с другой стороны.

Системы по-разному понимаются и используются в разных странах, что необходимо учитывать при использовании данных зару-

бежных стандартов, каталогов фирм и т. д.

Некоторые особенности оценки взаимозаменяемости ламп-аналогов

Полная параметрическая взаимозаменяемость ламп обусловливается совокупностью многих условий: электрическими параметрами, предельными эксплуатационными значениями режимов и характеристик, устойчивостью к внешним воздействиям (вибрациям, ударам, климатическим воздействиям), надежностью. Нарушение хотя бы одного из условий может привести к потере взаимозаменяемости.

В ГОСТ и других технических документах, действующих в СССР и устанавливающих параметры, свойства и другие характеристики ламп, указываются обычно все данные ламп: электрические параметры и их допустимые отклонения; режимы их проверки; методы измерений; минимальная наработка; устойчивость к внешним воздействиям (механическим и климатическим); предельные эксплуатационные данные.

29

Все эти сведения помещены и в данном справочнике. Для новых ламп также указаны значения электрических параметров и допуски на них. Таким образом, отклонения значений отдельных экземпляров ламп от номинальных четко ограничены и не должны выходить за пределы допусков, что гарантирует условия взаимозаменяемости.

В зарубежных справочниках и каталогах обычно указываются только номинальные значения параметров и режимов, а допускаемые отклонения параметров не приводятся. В этих условиях значение предельных эксплуатационных данных повышается еще большинстве случаев предельные эксплуатационные данные зарубежных ламп указываются в системе «максимальных расчетных значений», т. е. они определены по образцовой лампе, между тем как предельные данные ламп, выпускаемых в СССР, чаще всего устанавливаются в системе, близкой к системе «абсолютных максимальных значений». Это следует иметь в виду при сравнении данных отечественных ламп и их аналогов; в ряде случаев именно этим объясняются некоторые расхождения в значениях предельных норм ламп-аналогов.

Наряду с различиями, указанными выше, имеются и другие значительные особенности в подходе к стандартизации характерис-

тик и свойств ламп, принятом в отдельных странах.

В процессе эксплуатации ламп их параметры постепенно изменяются, уходят от номинальных значений. Относительные изменения параметров определяют стабильность ламп. При этом параметры могут выйти за пределы допусков, установленных на новые лампы. Поэтому в стандартах СССР кроме допусков на параметры новых ламп устанавливаются также допустимые пределы изменения важнейших параметров в процессе испытаний на гарантийную наработку.

В зарубежных справочниках и каталогах обычно нет таких

сведений.

Незначительные изменения параметров ламп могут и не повлиять на условия взаимозаменяемости, тем более, что в радиоэлектронных устройствах всегда предусмотрены компенсирующие звенья, регулировка которых позволяет добиться оптимальных выходных параметров блока даже при значительных отклонениях входящих в блок элементов.

Для ламп, выпускаемых в СССР, всегда установлены нормы их механической и климатической устойчивости; нормы приводятся

в стандартах.

Механическая и климатическая устойчивость приемно-усилительных ламп установлена ГОСТ 7428-74 «Лампы усилительные, выпрямительные и генераторные мощностью, продолжительно рассеиваемой анодом, до 25 Вт для устройств широкого применения» или другой технической документацией. В то же время в опубликованных данных зарубежных ламп такие сведения обычно отсутствуют.

Лампы, выпускаемые в странах СЭВ, так же как и советские лампы, имеют модификации, отличающиеся повышенной механической устойчивостью и долговечностью, например E88CC, EC802S, EF806S. Но и для таких ламп часто не указаны конкретные требования по механической прочности или долговечности, отличающие их от обычных ламп.

В связи с отсутствием в справочниках и каталогах конкретных

норм по механической и климатической устойчивости большинства зарубежных ламп в настоящем справочнике это условие взаимозаменяемости при рассмотрении вопроса об аналогах не учитывалось; приводятся параметры только основной лампы-аналога. Однако следует учесть наличие таких вибропрочных и долговечных модификаций у зарубежных ламп и использовать их, когда решается вопрос о полной функциональной взаимозаменяемости ламп в аппаратуре.

рис. 1.2. Зависимость разброса параметров лампы 6Ж1Б от режима измерений a — при автоматическом смещении на 1-й сетке; δ — при фиксированном смещении на 1-й сетке.

Значения параметров ламп непосредственно зависят от метода и режима их измерения. Единство методов испытаний и их стандартизация имеют важнейшее значение, так как взаимозаменяемыми приборы могут быть лишь при их проверке в сравнимых, идентичных условиях. В связи с этим странами СЭВ унифицированы и согласованы многие методы испытаний приемно-усилительных радиоламп.

Однако некоторые методы измерений пока не унифицированы: кроме того, и при унифицированных методах значения параметров ламп зачастую указаны для разных режимов измерений. С этим необходимо считаться при сравнении соответствующих параметров. Так, например, значения параметров сильно зависят от того, проводятся ли измерения при фиксированном или при автоматическом смещении на первой сетке: при автоматическом смещении разброс параметров значительно меньше благодаря отрицательной обратной связи (рис. 1.2).

Иногда в зарубежных каталогах указываются очень узкие допуски на крутизну характеристики ламп. Это объясияется тем, что они установлены для схем с компенсационным смещением, что намного уменьшает фактический разброс значений крутизны. Если в таких схемах проводить измерения отечественных ламп, разброс их параметров окажется меньше, чем у зарубежных ламп-аналогов.

Среди данных зарубежных ламп часто отсутствуют некоторые параметры, которые обычно принято указывать для отечественных ламп, например недокальные параметры, эквивалентное сопротивление шумов и пр. При наличии таких данных оценка взаимозаменяемости могла бы быть более полной.

В ряде случаев отдельные электроды лампы соединены с несколькими штырьками. Например, у лампы 6Е1П анод кратера выведен параллельно на третий, восьмой и девятый штырьки, тогда как у лампы-аналога EM80 анод кратера выведен только на девятый штырек. В таких случах взаимозаменяемость может быть нарушена, если при монтаже ламповой панели свободные контактные лепестки панели использованы в качестве опорных, т. е. имеют электрическое соединение со схемой (для ламп 6Е1П и ЕМ80 это относится к третьему и восьмому лепесткам).

1.5. РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ ЛАМП

Общие указания

Качество приемно-усилительных ламп за последние годы значительно повысилось. Фактическая наработка увеличилась в несколько раз, допуски на многие параметры стали значительно жестче, введены более объективные методы и режимы контроля параметров. Однако надежность радиоэлектронной аппаратуры зависит не только от надежности и качества комплектующих изделий (в том числе и приемно-усилительных ламп), но и от режимов и условий эксплуатации ламп, установленных разработчиком аппаратуры при ее конструировании.

Соблюдение разработчиком аппаратуры приведенных ниже рекомендаций по применению ламп существенно повысит надежность

аппаратуры. При разработке аппаратуры необходимо:

учитывать изменения параметров ламп, происходящие в процессе эксплуатации, и разброс их в пределах, указанных в справочнике; эти причины не должны нарушать работоспособность аппаратуры;

не прибегать к подбору ламп для достижения необходимой ра-

ботоспособности аппаратуры;

учитывать, что средняя наработка приемно-усилительных лами в 3—10 раз превышает минимальную наработку;

применять лампы в облегченных режимах, не допускать исполь-

зование ламп в предельных режимах;

учитывать, что значения таких параметров, как ток накала, обратный ток первой сетки, входное сопротивление, эквивалентное сопротивление внутриламповых шумов, внутреннее сопротивление, в процессе длительной эксплуатации возрастают, а значения таких параметров, как крутизна характеристики, ток анода, ток второй сетки, напряжение отсечки электронного тока, выходная мощность, сопротивление изоляции между электродами, обычно уменьшаются.

В справочник не вошли некоторые данные, например напряжение низкочастотных шумов; сопротивление изоляции между электродами ламп в рабочем режиме; отношение тока анода к току экранирующей сетки в зоне «перегиба» анодной характеристики для тетродов (пентодов), связь между системами электродов в комбинированных лампах. Эти данные лишь в некоторых случаях могут определять работоспособность аппаратуры, в большинстве случаев их величина существенного значения не имеет.

Исходными данными для расчета схем и выбора ламп должны служить номинальные значения параметров с учетом их разброса и возможных изменений в процесе эксплуатации; усредненные анодно-сеточные, анодные и другие характеристики, а также специаль-

ные рекомендации по эксплуатации.

Чтобы в любых условиях эксплуатации аппаратура работала надежно, необходимо в соответствии с выбранным типом лампы соблюдать следующие условия: напряжение накала должно быть стабильным в пределах допусков;

рабочие напряжения не должны выходить за пределы норм; напряжение между катодом и подогревателем должно быть минимально возможным;

не должны превышаться допустимые мощности, рассеиваемые на электродах, ток катода, сопротивление в цепи первой сетки;

электрический режим лампы должен быть по возможности стабилизирован;

нельзя превышать допустимый диапазон температур и допустимые механические воздействия;

следует следить за надежной экранировкой от интенсивного воздействия магнитных и электрических полей.

Разработчик должен рассчитывать аппаратуру так, чтобы при наихудших условиях эксплуатации (колебания напряжения сети, минимальное и максимальное значения входного сигнала, крайние положения систем регулировки, разброс параметров деталей и узлов аппаратуры, наибольшие колебания температуры, воздействие механических нагрузок и т. п.) не превышалась ни одна из предельных эксплуатационных величин, указанных для ламп в справочнике и установленных технической документацией.

Наиболее опасно, когда при использовании ламп встречаются

следующие случаи:

максимальное напряжение накала при малом токоотборе с катода, и наоборот;

большая мощность, рассеиваемая на электродах, и высокоомное сопротивление в цепи первой сетки;

максимальная температура баллона при больших напряжениях на электродах и предельном токоотборе с катода;

максимальная мощность и температура баллона лампы при высокоомном сопротивлении в цепи первой сетки.

Чтобы избежать повреждения оболочки ламп, не следует исправлять погнутые штырьки бесцокольных ламп без специального приспособления (шаблона). При пайке гибких выводов ламп в сверхминиатюрном оформлении недопустимы их натяжение и резкие изгибы вывода на расстоянии менее 5 мм от стеклянной ножеми. Припайка гибких выводов к элементам аппаратуры должна производиться на расстоянии не менее 5—8 мм от ножки. Рекомендуется на гибкие выводы (вплотную к ножке) одевать диски из изоляционного материала толщиной 2—5 мм.

Влияние электрических режимов на работу ламп

Рассмотрим некоторые процессы, происходящие в лампе, и некоторые режимы, нарушающие ее нормальную работу при эксплуатации.

Напряжение накала существенно влияет на температуру катода и его эмиссионные свойства. Около 60% обнаруживаемых дефектов ламп является следствием отклонений температуры катода от номинальной.

Приближенная зависимость интенсивности отказов ламп от напряжения накала определяется выражением

$$\lambda' pprox \lambda_0 \left(rac{U_{
m E}'}{U_{
m H}}
ight)^{12}$$
 ,

где λ_0 — интенсивность отказов ламп при их эксплуатации с номинальным напряжением накала $U_{\rm H}$; λ' — интенсивность отказов ламп при их эксплуатации с напряжением $U'_{\rm H}$, отличным от номинального.

Повышенное напряжение накала особенно пагубно влияет на стабильность параметров и надежность ламп. Это опасно еще и тем, что ухудшается сопротивление изоляции из-за напыления проводящего слоя на изоляторы, увеличивается газовыделение из стекла и арматуры; возникают и другие дефекты, ухудшающие параметры ламп и приводящие к их отказам. При эксплуатации ламп в условиях повышенного напряжения накала резко изменяются такие параметры, как крутизна характеристики, уровень внутриламновых шумов и импульсный ток катода. Повышенное напряжение накала, кроме того, увеличивает вероятность перегорания вывода катода и обрыва подогревателя.

Понижение напряжения накала на 3—5% обычно благоприятно влияет на работу лампы, но это возможно только в случае стабилизированного напряжения накала. При дальнейшем уменьшении напряжения накала повышается интенсивность отравления катода остаточными газами, заметно падают значения основных параметров, крутизны характеристики, токов электродов и особенно им-

пульсного тока катода.

Указанные в справочнике допустимые отклонения напряжения накала от номинального установлены с учетом производственного разброса ламп по току накала и условий теплопередачи от подогревателя к катоду. Это отклонение является полным полем допусков на колебания напряжения сети, включая производственный разброс выходного напряжения накальных трансформаторов и падение напряжения в цепи накала.

Для повышения надежности и стабильности работы ламп рекомендуется стабилизировать напряжение накала в пределах $\pm 2\%$, так как надежность ламп зависит не только от среднего значения напряжения накала, но и от частоты и величины изменений напряжения. Особенно это важно для прямонакальных и импульсных

ламп.

При использовании ламп в дежурном режиме (отсутствие токоотбора с катода) рекомендуется поддерживать напряжение накала на уровне 60—70% номинального значения. Эксплуатация ламп без токоотбора с катода повышает вероятность отравления оксидного слоя, что приводит к снижению эмиссионной способности. Эти процессы тем интенсивнее, чем выше напряжение накала ламп. Запрещается осуществлять выключение аппаратуры только отключением накала ламп.

Йногда при конструировании аппаратуры встречается необходимость использования ламп при последовательном включении подогревателей. Зарубежные фирмы наряду с обычными лампами вырускают для этих целей специальные серии ламп на определенный ток накала, например серия Р—с током накала 300 мА, серия U—с током накала 100 мА. Такие лампы выпускаются и в нашей стране (9Ф8П, 15Ф4П и др.), их параметры приведены в справочнике. Но подавляющее большинство ламп, выпускаемых нашей промышленностью, предназначено для работы при параллельном включении подогревателей, поэтому лампы одного и того же типа могут иметь значительный (до 10%) разброс значений тока накала. Наличие разброса сопротивлений подогревателей в случае их последователь-

ного включения приводит к значительному разбросу напряжений

накала, а следовательно, и других параметров ламп.

Это особенно сказывается при колебаниях напряжения сети. Например, даже при номинальном напряжении сети разброс напряжений пакала при последовательном включении достигает 15%, а интенспвность отказов в процессе эксплуатации возрастает в 3—5 раз по сравнению с интенсивностью отказов в типовом режиме. Основными причинами отказов, как правило, в этом случае являются перегорание подогревателей и короткие замыкания между катодом и подогревателем. Поэтому последовательное включение подогревателей обычных ламп следует считать нецелесообразным.

В тех случаях, когда все же необходимо использовать последовательное включение подогревателей обычных ламп, их надо предварительно рассортировать по току накала на несколько групп с разбросом тока накала не более чем 2—3% в каждой группе (это, конечно, не относится к указанным выше лампам последовательного

накала).

Напряжение между катодом и подогревателем. При наличии напряжения между катодом и подогревателем напряженность электрического поля в зазоре между керном катода и алундовым покрытием подогревателя может достигать 8—10 кВ/см. что повышает вероятность пробоя изоляции. Пробивные напряжения при отрицательном потенциале подогревателя в 1,5-2 раза выше, чем при положительном потенциале подогревателя. Такое различие в пробивных напряжениях в значительной степени обусловлено характером контакта между алундом и керном катода. С подогревателем алунд спекается во время обжига, и контакт получается надежным, а с керном катода алунд соприкасается только в отдельных точках. При конструировании аппаратуры необходимо принимать меры к снижению напряжения между катодом и подогревателем. Если есть возможность выбора, то следует эксплуатировать лампы при отрицательном потенциале подогревателя. Рекомендуется подогреватели ламп, катоды которых находятся под напряжением, питать от отдельных обмоток трансформаторов или, где это возможно, подавать на подогреватель соответствующее напряжение, чтобы уменьшить разность потенциалов между катодом подогревателем.

Повышенное напряжение между катодом и подогревателем значительно снижает надежность ламп. При конструировании аппаратуры рекомендуется как мера предосторожности при напряжении между катодом и подогревателем более 50 В включать между катодом и подогревателем резистор сопротивлением 50—100 кОм, если это не нарушает нормальной работы каскада.

Под предельным напряжением между катодом и подогревателем, приводимым в справочных данных, подразумевается пиковое значение, которое не должно превышаться как при работе, так и при включении лампы.

Напряжения электродов ламп. При эксплуатации напряжения на электродах значительно отличаются от напряжений на электродах испытательных режимах, указанных в справочнике. Напряжения анода и экранирующей сетки ограничиваются, с одной стороны, предельным эксплуатационным напряжением, а с другой — предельной мощностью, рассеиваемой анодом и экранирующей сеткой. Предельные эксплуатационные значения на-

пряжений электродов, указанные в справочнике, — это обычно пиковые значения, измеренные относительно катода.

Примерная зависимость интенсивности отказов от повышенного напряжения анода по сравнению с номинальным выражается соотношением

$$\lambda = \lambda_0 \left(\frac{U_a'}{U_a} \right)^{1.7}$$

где λ — интенсивность отказов ламп при повышенном напряжении анода $U_{\bf a}'$; λ_0 — интенсивность отказов ламп при номинальном напряжении анода $U_{\bf a}$.

От напряжений на электродах зависит энергия электронов. При повышенных напряжениях на электродах часть электронов будет бомбардировать стекло и изоляторы, что приведет к возникновению вторичной эмиссии, электролизу стекла, газовыделению и другим дефектам, снижающим надежность работы лампы.

При конструировании аппаратуры необходимо учитывать сле-

дующие рекомендации:

напряжение анода и экранирующей сетки при включении ламп не должно превышать для миниатюрных (пальчиковых) ламп 350 В, если другие данные не оговорены в справочнике;

при запертой лампе напряжение анода и экранирующей сетки не должно превышать 450 В — для миниатюрных ламп и 250 В для сверхминиатюрных ламп, если иные нормы не указаны особо;

не рекомендуется использовать мощные пентоды и тетроды при напряжении экранирующей сетки, более чем на 10% превышающем напряжение анода, так как работа лампы становится нестабильной из-за вторичной эмиссии с анода на экранирующую сетку. При этом пиковое значение напряжения экранирующей сетки не должно превышать предельного значения, указанного в справочнике и в технической документации на лампу;

если не оговорено предельное значение отрицательного напряжения управляющей сетки, то оно должно быть не более 150 В для ламп с крутизной характеристики менее 10 мА/В и 100 В для ламп

с крутизной характеристики более 10 мА/В;

при питании анода переменным током необходимо учитывать возможность протекания тока через лампу в обратном направлении из-за возникновения термоэлектронной и вторичной эмиссии при отрицательном напряжении анода. В результате этого уменьшаются КПД и выходная мощность каскада, уменьшается средняя крутизна и снижается стабильность работы каскада. Чтобы избежать этих явлений, рекомендуется снижать мощность рассеивания на аноде не менее чем на 50%, а в цепи анода и экранирующей сетки включать вентили;

не допускается применение пентодов или тетродов с питанием экранирующей сетки переменным напряжением;

сопротивление резистора в цепи управляющей сетки следует

выбирать достаточно большим (0,5-2 МОм);

отрицательное напряжение второй управляющей сетки (для ламп с двойным управлением) не должно превышать значения, указанного для первой управляющей сетки, если оно не установлено особо;

для повышения надежности работы лампы рекомендуется эксплуатировать ее в режиме более легком, чме испытательный режим, указанный в справочнике, т. е. на анод и экранирующую сетку подавать напряжения на 15—20% меньше, чем испытательные.

Кроме того, следует помнить, что при работе ламп при повышенной температуре окружающей среды интенсивность всех физических процессов, обусловленных повышенным напряжением на электродах и снижающих надежность работы ламп, резко возрастает, поэтому необходимо соответственно снижать напряжения на электродах.

Мощности, рассеиваемые на электродах, влияют на температурный режим работы. При повышении мощности, рассеиваемой электродами, растет газоотделение деталей и баллона, повышается их температура, ухудшается работа катода. Мощности рассеивания не должны превышать предельных значений даже кратковременно.

Чтобы мощность, рассенваемая электродом лампы, не превышала предельного значения при возможных колебаниях напряжения источника питания, рекомендуется выбирать минимальное сопротивнение нагрузки $R_{\rm мин}$ в цепи электрода, исходя из следующего неравеиства:

$$R_{
m MHH} \leqslant rac{E_{
m MAKC}^2}{4P_{
m HOR}}$$
 ,

где $E_{\rm макс}$ — максимальное напряжение источника питания электрода, которое может возникнуть при эксплуатации; $P_{\rm доп}$ — предельная мощность рассеивания на электроде.

При триодном включении тетрода (пентода) необходимо обращать внимание на недопустимость перегрузки экранирующей сетки лампы, особенно для тех ламп, у которых предсльное напряжение экранирующей сетки меньше напряжения на аноде.

В тех случаях, когда не оговорена предельная мощность, рассенваемая управляющей сеткой, она не должна превышать 50 мВт для ламп с крутизной характеристики 15 мА/В и выше и 100 мВт

для ламп с меньшей крутизной характеристики.

При параллельном включении нескольких однотипных ламп необходимо учитывать, что из-за разброса параметров мощность, рассенваемая анодами параллельно включенных ламп, будет различной и отдельные лампы могут перегружаться и быстрее выходить из строя. Кроме того, увеличивается крутизна системы параллельно включенных ламп и соответственно увеличквается опасность возникновения паразитной генерации, что также приводит к повышению мощности, рассеиваемой анодами. Поэтому рекомендуется в этом случае рассеивать мощность на аноде каждой лампы меньше номинальной и включать в цепи анода и экранирующих сеток ламп резисторы сопротивлением 50—100 Ом для предотвращения генерации.

Сопротивление утечки в цепи управляющей сетки лампы. В справочнике указаны предельные значения этого сопротивления, рассчитанные в основном для режима испыта-

ния ламп на наработку.

Во время работы лампы на большом сопротивлении утечки обратный ток в цепи управляющей сетки вызывает падение напряжения, что вызывает увеличение тока анода из-за смещения рабочей точки. Увеличение тока анода повышает мощность, рассеиваемую электродами, и температуру внутренних элементов лампы, что, в

свою очередь, увеличивает обратный ток управляющей сетки. Этот процесс нестабилен, но может развиваться быстро и приводить к выходу из строя лампы. Большое сопротивление утечки сетки уменьшает стабильность работы лампы и ее надежность.

Обратный ток первой сетки состоит из трех основных компо-

нентов:

тока утечки, обусловленного различными напылениями, получающимися в процессе изготовления лампы и ее работы (напыление металла с керна и др.), а также хотя и незначительной, но имеющейся проводимостью изоляции (слюда, керамика);

ионного тока в цепи сетки, обусловленного наличием в лампе молекул газа, которые при столкновении с электронами ионизируются, а ионы притягиваются сеткой, имеющей отрицательный потенциал. Величина ионного тока зависит от напряжения сетки, плотности электронного потока, конструкции сетки, а также от степени вакуума в лампе;

термоэлектронного тока, возникающего при наличии на сетке веществ, способных эмиттировать электроны при ее нагревании.

Кроме обратных токов первой сетки, при напряжении сетки больше —1,5 В или положительном напряжении сетки в ее цепи возникает прямой ток, который приводит к увеличению уровня шума, снижению входного сопротивления и другим дефектам, ухудшающим качество работы схемы. Это также необходимо учитывать и выбирать по возможности низкоомные сопротивления утечки, а режим работы ламп (напряжение смещения) выбрать таким, чтобы исключить возможность возникновения прямого тока сетки.

Соответствие выбранного сопротивления утечки в цепи управляющей сетки (без учета нестабильности обратного тока) в каждом конкретном режиме использования необходимо проверять по

следующим основным признакам:

не превышает ли мощность, рассеиваемая электродами при обратного тока, значений, максимальном значении **Указанных** в справочнике и в технической документации;

не превышает ли ток катода при максимальном значении обратного тока первой сетки максимального значения, указанного в

справочнике и технической документации.

Стабилизация выходных параметров и мов работы. Рассчитывая схему, следует помнить, что лампы от экземпляра к экземпляру могут иметь разброс параметров в пределах допусков; кроме того, параметры изменяются в процессе эксплуатации. Поэтому необходимо принимать меры к стабилизации выходных параметров и режима работы. Одним из методов стабилизации режима работы лампы является введение отрицательной обратной связи по току путем подачи автоматического смещения на первую сетку посредством включения в катодную цепь резистора. Максимальное сопротивление резистора R_{κ} в этом случае рекомендуется выбирать, руководствуясь соотношением $= (7 \div 8)/S$.

Разброс параметров в случае применения автоматического смещения, как правило, почти в 2 раза меньше, чем при фиксированном смещении. В случае, если сопротивление автоматического смещения, выбранное с учетом стабилизации режима работы лампы, будет выше необходимого для данной рабочей точки, рекомендуется применять компенсационную схему, например, путем подачи на сетку небольшого положительного напряжения, которое компенсирует часть напряжения автоматического смещения, полученного из-за большого сопротивления R_{κ} . Гасящее сопротивление в цепи экранирующей сетки стабилизирует режим этой сетки, поэтому не рекомендуется питание экранирующей сетки подводить непосредственно от источника питания или от делителя напряжения.

Стабилизация параметров и режима работы лампы повышает

ее надежность и стабильность работы аппаратуры.

Климатические условия. Различные климатические условия эксплуатации по-разному влияют на надежность и качество работы ламп. Наиболее пагубно на работу лампы влияет повыше-

ние температуры окружающей среды.

В нормальных условиях окружающей среды температура баллона лампы обычно находится в пределах 80—150° С. При плохом теплоотводе температура среды, непосредственно окружающей лампу, может подняться до 150—200° С и привести к резкому снижению надежности работы лампы и ее быстрому выходу из строя. При таком увеличении температуры окружающей среды кроме увеличения температуры электродов повышается температура катода, что равносильно увеличению напряжения накала. К каким отрицательным последствиям это приводит, указано выше. Кроме того, при повышенной температуре окружающей среды увеличивается скорость протекания физических процессов в стекле баллона и ножи лампы — электролиз стекла, газовыделение и др. Анализ отказавших ламп, работавших при повышенной температуре окружающей среды, показывает, что около 30% ламп выходят из строя из-за повышенного газоотделения и отравления катода.

Имеющиеся данные свидетельствуют о том, что повышение температуры баллона на 15°C сверх обычной рабочей температуры уменьшает среднюю наработку на 25%, а перегрев на 80°С—на

75%, т. е. в 4 раза.

Для снижения температур баллона рекомендуется:

использовать специальные экраны, контактирующие со стеклянным баллоном лампы и отводящие тепло; следует применять также теплоотводящие упругие прокладки из тонкой металлической ленты, вставляя их в существующие экраны для передачи тепла от баллона на экран и на шасси;

уменьшать мощность, рассеиваемую электродами лампы;

учитывать взаимный нагрев ламп, рационально размещая их на шасси;

применять чернение наружных и внутренних поверхностей экранов для лучшего теплоотвода излучением;

использовать обдув ламп воздухом;

температуру лампы контролировать в наиболее горячем месте

(в большинстве случаев против середины анода).

Другие климатические факторы: пониженная температура, влажность, повышенное атмосферное давление — влияют на надежность работы ламп значительно меньше. Следует напомнить, однако, что при эксплуатации ламп при пониженном атмосферном давлении ухудшается теплообмен с окружающей средой, что может привести к повышению температуры баллона. Кроме того, несколько снижается пробивное напряжение между соседними электродами.

Влияние механических нагрузок при эксплуатации ламп. К механическим нагрузкам относятся вибрации с различной частотой и ускорением, удары и т. п. Эти воздействия вызывают в лампах изменения межэлектродных расстояний, а так-

же могут привести к механическому резонансу как отдельных витков сеток, так и группы витков, что вызывает появление на анодной нагрузке лампы переменного напряжения виброшумов. В некоторых случаях это напряжение может вызвать нарушение работы

схемы.

Напряжение виброшумов зависит от типа лампы, ее конструкции и технологии ее изготовления, от режима, в котором работает лампа, а также от направления и величины передаваемого лампе механического воздействия. Наиболее опасным является направление ускорения, перпендикулярное плоскости траверс сеток. Йоэтому при конструировании аппаратуры следует стараться располагать лампы так, чтобы ось лампы совпадала с наиболее вероятным направлением ускорения, воздействующего на лампу. Указанные в диапазоны частот вибраций определяют пределы, в справочнике которых лампы, как правило, не имеют резонансов (выбросов виброшумов). Максимальное значение напряжения виброшумов, указанное в справочнике, в лампах встречается очень редко; фактически оно в 3-7 раз меньше указанного. Только у специальных ламп, имеющих очень небольшое значение виброшумов, зона распределения их подходит близко к максимальному значению.

Некоторое снижение напряжения на аноде и экранирующей сетке приводит к уменьшению виброшумов. С ростом ускорения, со-

общаемого лампе, напряжение виброшумов увеличивается.

Для повышения надежности работы ламп в условиях вибрации необходимо применять амортизацию аппаратуры, для того чтобы на

лампу передавались как можно меньшие ускорения.

Соблюдение рекомендаций при конструировании аппаратуры основа надежной работы приемно-усилительных ламп в аппаратуре. Любое отклонение от указанных рекомендаций должно быть технически обосновано. Пренебрежение указанными рекомендациями снижает надежность работы аппаратуры, вызывая преждевременный выход из строя ламп.

О лампах повышенной надежности

Номенклатура отечественных ламп содержит улучшенные модификации некоторых типов ламп серий В, Е, Д и Р. Эти лампы отличаются повышенной надежностью и механической прочностью, что достигается специальной технологией и различными конструктивными особенностями. Для повышения устойчивости к механическим воздействиям и более точной сборки арматуры в этих лампах применяются двойные слюды; для надежного закрепления траверс в слюдяных изоляторах используются специальные пистоны. Применяются дополнительное крепление катода и других электродов, а также вибропрочные газопоглотители, не осыпающиеся при механических воздействиях. Такие лампы изготовляются наиболее квалифицированными работниками на специальных производственных участках с повышенной вакуумной гигиеной.

К лампам повышенной надежности предъявляются более жесткие требования, увеличен объем испытаний по сравнению с обычными лампами, ведется более тщательный контроль на всех стадиях технологического процесса. В результате этого лампы повышенной надежности могут работать в значительно более суровых условиях, чем обычные лампы, в том числе при значительных механических

воздействиях. Количество годных ламп при испытании на минимальную наработку составляет не менее 98, а для ламп серии Р не менее 99%. Кроме того, эти лампы отличаются более жестким и длительным режимом тренировки. Высоконадежные лампы серии Р отличаются большой стабильностью параметров в течение испытаний на минимальную наработку; в них применяются специальные низкотемпературные катоды, обеспечивающие незначительное испарение активного вещества, и другие конструктивные решения, обеспечивающие подавление технических процессов, приводящих к старению ламп.

В последние годы отечественная промышленность провела унификацию некоторых ламп серий В и Е, взамен которых выпускают-

ся лампы серии ЕВ.

В справочнике приведена также серия миниатюрных и сверхминиатюрных ламп в металлокерамическом оформлении 6С51Н-В, 6С65Н и др.). Лампы этой серии отличаются рядом принципиальных особенностей. Электроды их имеют цилиндрическую коаксиальную конструкцию и закрепляются консольно. Чтобы увеличить жесткость, нижняя часть электродов укреплена во фланцах, которые имеют форму усеченного конуса; каждый фланец прочно закреплен в керамической ножке с помощью трех металлических выводов. Консольная цилиндрическая конструкция позволяет полностью автоматизировать производство ламп; сборка и технологическая обработка арматуры производятся с использованием оправки, жестко фиксирующей взаимное расположение электродов. В результате достигается повышенная точность межэлектродных расстояний и снижается разброс параметров ламп, а также обеспечивается равномерный токоотбор с катода и уменьшение внутриламповых шумов. Эти лампы имеют меньшую на 15-20% мощность накала и могут эффективно работать при пониженных напряжениях анода и экранирующей сетки, в частности в схемах совместно с транзисторами.

Механотроны

Механотронные преобразователи механических сигналов в электрические (механотроны) представляют собой электронные лампы с подвижными электродами, перемещение которых приводит к изменению электрических параметров прибора. Это позволяет по приращению выходного параметра (например, тока анода) судить о величине входного (механического) сигнала.

В зависимости от системы передачи механического сигнала смещение электродов может происходить под действием сил, давлений или других факторов. Соответственно механотроны применяются для изменения линейных и угловых перемещений, давления,

ускорений, усилий и т. д.

Конструктивно механотроны выполняются в виде диодов или триодов с одним или двумя подвижными анодами (рис. 1.3). Катод, как правило, закреплен неподвижно. Чувствительным элементом во многих типах механотронов служит стержень (штырь), соединенный с анодами и укрепленный на гибкой мембране, которая является частью оболочки прибора. Чтобы предохранить мембрану от механических и тепловых повреждений при эксплуатации механотрона, мембрану закрепляют на металлическом фланце, который соединяется со стеклянным баллоном лампы.

При подаче механического сигнала на конец штыря аноды смещаются относительно катода, и в мостовой измерительной схеме возникает напряжение разбаланса, характеризующее величину сигнала. Благодаря использованию сдвоенной системы электродов повышается точность измерений, снижается влияние вакуума, нестарильности эмиссионных свойств катода и других факторов на параметры прибора.

Схема симметричного сдвоенного диода с двумя подвижными анодами (рис. 1.3) используется в приборах 6МХ1С, 6МХ3С, 6МХ4С, 6МХ5С, 6МДХЗБ и др. и обеспечивает высокую точность и стабиль-

Рис. 1.3. Схема элементов механотрона

ность измерений. В сверхминиатюрных механотронах 6МХ1Б, 6МХ2Б только один подвижный анод, а второй диод служит для эталонирования. Такие приборы более просты, однако имеют меньшую стабильность и точность.

В справочник включены наиболее распространенные механотроны, предназначенные для прецизионного измерения линейных перемещений (линейных размеров) и сил, углов поворота, избыточных давлений. По способу управления электронным током большинство механотронов относится к приборам с продольным управлением: аноды перемещаются вдоль линий электрического поля межэлектродного промежутка. Такая конструкция имеет высокую чувствительность и стабильность, отличается хорошей линейностью рабочей характеристики. Существуют также приборы с поперечным, лучевым, зондовым и дифференциальным управлением электронным потоком.

Преимуществами механотронов являются их чувствительность к входным сигналам, достаточно высокий уровень выходного сигнала, малое измерительное усилие, низкие питающие напряжения и др. Механотроны можно использовать в качестве датчиков автоматизированных систем управления технологическими процессами.

На базе механотронов разработаны механотронные преобразователи давления (манотроны), микрометры, угломеры, акселерометры, электронные термовесы и другие устройства, используемые в промышленности, медицине, в различных областях науки.

При эксплуатации механотронов следует руководствоваться

некоторыми общими правилами.

1. Крепление механотронов в металлостеклянном оформлении рекомендуется производить за узкую часть его фланца, на которую предварительно следует наклеить эпоксидной смолой жесткое металлическое кольцо. Целесообразно также закрепить цоколь механотрона (если имеется). Не рекомендуется крепление механотрона за стеклянную часть баллона. Запрещается крепление механотрона за место спая стеклянной и металлической частей оболочки. Нельзя также закреплять механотроны за штырь («на весу»).

Механотроны в стеклянном оформлении следует крепить за металлическое кольцо, которое необходимо предварительно наклеить на баллон.

2. Особое внимание необходимо обращать на правильность положения анодов по отношению к направлению механического сигнала. Механотроны со штырем надо ставить так, чтобы направление механического сигнала, подаваемого на конец штыря, было перпендикулярно плоскости анодов прибора. Должна быть предусмотрена амортизация прибора от вибраций и ударов.

Механотроны для измерения углов поворота (6МУХ6П) следует устанавливать так, чтобы плоскости боковых слюдяных пластин были параллельны воображаемой плоскости, в которой происходит

отклонение механотрона.

3. Следует экранировать прибор от прямых потоков теплого и холодного воздуха. Если требуется особо высокая точность измерения (лучше 1 мкм), то колебания температуры окружающей среды не должны превышать \pm 1° С.

 При особо точных измерениях нестабильность анодного напряжения не должна превышать 0,1%, а нестабильность напряже-

ния накала 1%.

5. При работе с механотроном рекомендуется симметричная мостовая измерительная схема, состоящая из двух сопротивлений, включенных в цепи анодов механотрона, источника питания анодов, включенного в одну из диагоналей моста, и выходного отсчетного прибора, включенного в другую диагональ моста.

6. Чтобы повысить линейность выходной характеристики мостовой измерительной схемы с механотроном, сопротивления нагрузок в цепях анодов должны превышать внутреннее сопротивле-

ние каждой половины прибора не менее чем в 3 раза.

1.6. ОБЩИЕ ПОЯСНЕНИЯ К СПРАВОЧНЫМ ДАННЫМ

1. Параметры лампы непосредственно зависят от режима и метода их измерений. Эту зависимость следует учитывать при сопоставлении параметров ламп-аналогов. Например, в ряде случаев в справочнике приводятся различные величины статических межэлектродных емкостей ламп-аналогов, что объясняется измерением в различных режимах (с экраном или без экрана).

Некоторые различия в основных параметрах могут объясняться различными способами подачи постоянного напряжения на управляющую сетку—с помощью автоматического или фиксированного смещения. Поэтому они не могут влиять на взаимозаменяемость

ламп в аппаратуре.

2. Номинальный режим измерений, приводимый в справочнике, относится только к основным статическим параметрам. Наряду с этим некоторые параметры измеряются в других режимах. Это относится к обратному току управляющей сетки, выходной мощности, напряжению виброшумов и т. д.

Режимы измерений параметров могут существенно отличаться от эксплуатационных режимов при использовании ламп в аппара-

туре; они, как правило, являются более жесткими.

3. Основные параметры и их допустимые отклонения указаны обычно для новых ламп. В процессе эксплуатации эти параметры могут измениться и даже выйти за пределы допусков. В подавляю-

щем большинстве радиоэлектронных схем незначительный уход параметров ламп за пределы допусков практически не влияет на ра-

боту аппаратуры.

4. Минимальная наработка для отечественных ламп указана в справочнике в соответствии со стандартами или другой официальной технической документацией. Это время, в течение которого проводятся испытания ламп для подтверждения их качества.

Необходимо подчеркнуть, что фактическая наработка многих приемно-усилительных ламп в аппаратуре широкого применения значительно превышает минимальную. Это во многом определяется режимом использования ламп в аппаратуре. Не следует смешивать наработку с гарантией, устанавливаемой для потребителя, которая

обычно равна 1-4 годам.

5. В процессе испытаний лампы могут либо полностью выйти из строя в результате перегорания нити накала, короткого замыкания между электродами и других повреждений, либо могут несколько изменить свои параметры. Чтобы оценить результаты испытаний ламп на наработку, устанавливаются так называемые критерии наработки — допустимые изменения важнейших параметров ламп в процессе испытаний (чаще всего изменения крутизны характеристики, тока анода или обратного тока сетки). По параметрамкритериям оценивают надежность ламп при испытаниях на заводензготовителе. В то же время часть ламп, не удовлетворяющих этим требованиям при испытаниях, может оказаться вполне пригодной для эксплуатации, так как во многих радиоэлектронных схемах незначительные изменения параметров ламп могут быть скомпенсированы соответствующими регулировками. Следовательно, нормы на критерии относятся только к испытаниям ламп на наработку, а не к лампам, работающим в аппаратуре.

6. Приведенная в справочнике минимальная наработка установлена, как правило, для испытаний ламп при нормальной температуре окружающей среды. Если лампа используется при повышенной температуре среды, долговечность значительно снижается.

7. Наибольшая температура баллона лампы во многих случаях указана также при нормальной температуре окружающей среды. Если температура среды повышена, температура баллона соответственно возрастает.

Наибольшая температура баллона, указанная в справочнике, не должна превышаться в самой горячей точке баллона лампы (в

большинстве случаев против середины анода).

8. Значения напряжения виброшумов, приведенные в таблицах, в основном указаны для испытания ламп на фиксированной частоте (50 Гц). При работе ламп в условиях вибрации во всем разрешенном диапазоне частот напряжение виброшумов может оказаться больше, чем на частоте 50 Гц.

Однако в подавляющем большинстве случаев лампы имеют уровень виброшумов, гораздо меньший, чем это установлено в технической документации и указано в справочнике. Напряжения виброшумов приведены в среднеквадратических (эффективных) значениях.

9. В ряде случаев данные параметров отнесены к запертой лампе. Это обычно означает, что ток через лампу в запертом состоянии не должен превышать 5—10 мкА.

10. В разделе «Предельные эксплуатационные данные» в большиистве случаев указаны наибольшие значения параметров и режимов. Напряжение накала обычно ограничено наименьшим и наибольшим значениями. В тех случаях, когда дается только наименьшее значение параметра, это отмечено знаком > (равно или

больше).

11. Характеристики отдельных экземпляров ламп могут отличаться от приведенных в настоящем справочнике в пределах, обусловленных допусками на параметры. Эти отклонения не влияют на взаимозаменяемость ламп в аппаратуре. В справочнике приведены усредненные характеристики для одной лампы из группы, но практически они могут быть отнесены к любой лампе, входящей в группу, в том числе и к лампе-аналогу. В это издание справочника не включены графические характеристики ряда ламп ограниченного применения. При необходимости эти данные можно найти в предыдущем издании книги.

12. Для двойных ламп (двойные триоды и т. п.) параметры и характеристики относятся к половине лампы, если иное не установлено в справочнике.

13. В справочнике и для отечественных, и для зарубежных дамп использованы термины, принятые в стандартах СССР.

Условные обозначения, принятые в справочнике

```
U_{\rm H} — напряжение накала
       U_{\mathbf{a}} — напряжение анода
     U_{a.\, д} — напряжение анода диода
  U_{\mathtt{a.uct}} — напряжение источника питания анода
  U_{\rm а.имп} — напряжение анода в импульсе
    U_{a. \mathrm{Kp}} — напряжение анода кратера (в индикаторах
              стройки)
   U_{
m a.nep} — переменное напряжение анода
     U_{
m ofp} — обратное напряжение анода
       U_{\rm C} — напряжение сетки
      U_{\mathtt{BX}} — напряжение входное
  U_{\mathtt{C.UMB}} — напряжение сетки в импульсе
      U_{{\bf c}{\bf 1}} — напряжение 1-й сетки
  U_{	exttt{c1HMH}} — напряжение 1-й сетки в импульсе
      U_{\rm C2} — напряжение 2-й сетки
      U_{C3} — напряжение 3-й сетки
      U_{\text{C4}} — напряжение 4-й сетки
     U_{\mathtt{C.K}} — напряжение катодной сетки
  U_{\mathtt{C.yup}} — напряжение управляющей сетки
     U_{\mathrm{c.o}} — напряжение экранирующей сетки
       U_{\mathfrak{d}} — напряжение экрана
       U_{\pi} — напряжение динода
      U_{\mathtt{A}\mathtt{1}} — напряжение 1-го динода
      U_{\rm д2} — напряжение 2-го динода
    U_{\rm yck} — напряжение ускорителя
   U_{
m yck1} — напряжение 1-го ускорителя
   U_{	exttt{yck2}} — напряжение 2-го ускорителя
    U_{\mathrm{K.\,II}} — напряжение между катодом и подогревателем
U_{	ext{R-II.HM-II}} — напряжение между катодом и подогревателем
              импульсе
      U_{\mathbf{\Phi}} — напряжение фокусирующего электрода
  U_{\mathtt{B}\mathbf{h}\,\mathbf{n}\mathsf{p}} — выпрямленное напряжение
```

```
U_{	au 	extbf{n}} — напряжение вторичной обмотки трансформатора
         U_{\rm BIII} — напряжение виброшумов
            I<sub>н</sub> — ток накала
            I_{\mathbf{a}} — ток анода
       I_{\text{а.имп}} — ток анода в импульсе
        I_{\text{выпр}} — выпрямленный ток
       I_{\rm д.\,umn} — ток динода в импульсе
       I<sub>примп</sub> — ток 2-го динода в импульсе
        I_{\rm VCK2} — ток 2-го ускорителя
          S_{f np} — крутизна преобразования
           S_{\Gamma} — крутизна гетеродина
           Ra — сопротивление в цепи анода
           R<sub>н</sub> — сопротивление в цепи катода для подачи автома-
                 тического смещения
           R_{\rm H} — сопротивление нагрузки
          R_{c1} — сопротивление в цепи 1-й сетки
          R_{{\tt C2}} — сопротивление в цепи 2-й сетки
            C — емкость нагрузки
          C_{c1} — емкость в цепи 1-й сетки
           C_{\Phi} — емкость фильтра
             f — частота следования импульсов
             т -- длительность импульса
             Q — скважность
             λ — длина волны
                      Обозначения электродов
            к -- катод
           кр -- катод гептода
           к<sub>п</sub> — катод пентода
           кт --- катод триода
       к(-п) - катод (минус нити накала прямонакальных ламп)
       k(+n) — катод (плюс нити накала прямонакальных ламп)
            п - подогреватель катода
            А — верхний вывод анода
            K — верхний вывод катода
            а - анод
           а<sub>б</sub> — анод большой
           ам — анод малый
            аг — анод гептода
           ап — анод пентода
           ат - анод триода
           ап — анод диода
        а<sub>подв</sub> — анод подвижный
         анеп — анод неподвижный
            а<sub>к</sub> — анод кратера
             с -- сетка
с1, с2 и т. д. — сетка первая, сетка вторая и т. д.
       с<sub>10ткл</sub> — сетка первая отклоняющая
            с<sub>к</sub> — сетка катодная
         с<sub>упр</sub> — сетка управляющая
            с<sub>ә</sub> — сетка экранирующая
            ск — сетка кратера в электронно-световых индикаторах
```

 c_{ii} — сетка индикаторная c_{ii} — сетка пентода

ст — сетка триода

ср — сетка гептода

са — светящийся экран

э — экран

эк — экран катода

эа — экран анода

м — модулятор

 y_1, y_2 — ускорители первый, второй

фэ — фокусирующий электрод

д — динод

дф — дефлектор

оэ — отклоняющий электрод

лэ — лучеобразующий экран

лп — лучеобразующие пластины б — баллон (металлический)

В двойных лампах (кроме двойных триодов) первая система электродов обозначена одним штрихом (a', c', к'), вторая система—двумя штрихами (a", c", к").

РАЗДЕЛ ВТОРОЙ

СПРАВОЧНЫЕ ДАННЫЕ ДВУХЭЛЕКТРОДНЫХ ЛАМП — ДИОДОВ И КЕНОТРОНОВ

2.1. ДИОДЫ ДЛЯ ДЕТЕКТИРОВАНИЯ ВЧ И СВЧ КОЛЕБАНИЙ

6Д6А, 6Д6А-В

Диоды высоковольтные для детектирования и выпрямления ВЧ и СВЧ колебаний. Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 2Б). Macca 2,5 г.

Основные параметры

при $U_{\rm H}$ =6,3 В, $U_{\rm a, \pi ep}$ =165 В, $R_{\rm H}$ =22 кОм, C=8 мкФ

Ток накала	≪20 мкА
анод — катод	$(3+0.7) \pi \Phi$
катод — подогреватель	<5πΦ
Наработка	≽ 1500 ч
Критерий оценки:	
	> 7 1
выпрямленный ток	≥/MA

^{*} Для лампы 6Д6А более 200 МОм.

Напряжение накала Обратное напряжение Напряжение между катодом и подогревателем Выпрямленный ток (среднее значение) Ток анода в импульсе Мощность, рассеиваемая анодом Температура баллона лампы	5,7— 450 B 165 B 10 mA 70 mA 0,2 B 170 °C	i L T
Устойчивость к внешним воздействиям:	6Д6А	6Д6А-В
ускорение при вибрации g		10 5—600 150 500 100 От —60 до +200

Анодная характеристика.

Начальная аподная характеристика.

6Д13Д, 6Д13Д-И

Диоды сверхвысокочастотные для детектирования и выпрямления в схемах электронных вольтметров и других радиотехнических устройствах в сантиметровом диапазоне; лампа 6Д13Д-И используется в импульсных режимах.

Оформление — в металлостеклянной оболочке, сверхминиатюрное (рис. 1Д). Масса 4 г.

Основные параметры

при *U*_н=6,3 В

Ток накала, м A	6Д13Д 210±30	6Д13Д-И 210±30
=3 M(OM) MKA	≪0,45	<0,45
Выпрямленный ток (при $U_{a.\text{пер}}=150$ В, $R_a=700$ кОм, $C=8$ мкФ), мкА Ток анода в импульсе (при $U_{a.\text{ммn}}=300$ В),	≥200	
мА	<0,05	$\geqslant 550$ $\leqslant 0,05$
Ток утечки между катодом и подогревателем, мкА	<20 <700 ≥0,3	<20 —
— = 10 кОм), мВ	≤ 1 $\leq 7,5$	$ \stackrel{\leqslant 1}{\leqslant 7,5} $
анод — катод	≤1 ≤4 ≥2000	≤ 1 ≤ 4 ≥ 100
выпрямленный ток, мкА ток анода в импульсе, мА	≥150 —	≥ ≥ 4 00
Предельные эксплуатационные д	цанные	
Напряжение накала	· · · · · · · · · · · · · · · · · · ·	5,7—7 B 450 B 150 B 1 BT
Устойчивость к внешним воздействиям:		
ускорение при вибрации в диапазоне 5—2000 Гц		10 g 150 g 500 g* 150 g** От —60 до +100°С

^{*} Только для 6Д13Д. ** 100g для лампы 6Д13Д-И.

6Д15Д

Диод сверхвысокочастотный для детектирования импульсных колебаний в двухсантиметровом диапазоне волн.

Оформление - в металлостеклянной оболочке, с дисковыми выводами (рис. 5Д). Масса 12 г.

Основные параметры

при $U_{\rm H} = 6,3$ В

Ток накала	
Ток анода (при $U_a = 3$ В) (8 ± 4) мА	
Напряжение отсечки тока анода (отрицательное) . «1,5 В	
Выходное напряжение в импульсе * >70 В	
То же при $U_{\rm H}$ =5,7 В	
Выходное напряжение в импульсе ** , ≥10 В	
Емкость между анодом и катодом , (1,2 \pm 0,3) пФ)
Наработка	
Критерии оценки:	
выходное напряжение в импульсе * ≥55 В	
выходное напряжение в импульсе ** ≥ 8 В	

• При падающей мощности в импульсе 500 Вт, $R_{\rm H} = 400$ Ом, $f \leqslant 9600$ МГп,

 τ =1 мкс. ** При падающей мощности в импульсе 5 Вт, $R_{
m H}$ =10 кОм, f ≪9600 МГц, $\tau = 1$ MKC.

Предельные эксплуатационные данные

- Ladaman and a second a second and a second a second and
Напряжение накала
Обратное напряжение
Ток анода в импульсе 0,75 А
Мощность, рассеиваемая анодом 0,5 Вт
Падающая высокочастотная мощность в импульсе. 500 Вт
Длительность импульса
Рабочая частота
Температура баллона лампы
Устойчивость к внешним воздействиям:
ускорение при вибрации в диапазоне частот
$200-600$ Γ_{H}
ускорение при многократных ударах 75 g
ускорение постоянное 50 g
интервал рабочих температур окружающей
среды От —60
до +100° С

6Д16Д, 6Д16Д-Р

Диоды сверхвысокочастотные для детектирования импульсных сигналов СВЧ. Оформление — в металлостеклянной оболочке, сверхминиатюрное (рис. 1Д). Масса 3,5 г.

Основные параметры

при $U_{\rm H} = 6,3$ В

	6Д16Д	6Д16Д-Р
Ток накала, мА	240 ± 40	260 ± 40
Начальный ток анода (при U_a =0 и R_a = =3 MOм), мк Λ	$\leq 0,5$	
Ток катода в импульсе (при $U_a = 00$ В, $t = 2$ мкс, $f = 50$ кГц), мА	≥600	≥ 600
Ток утечки между катодом и подогревате-	≤20	
Обратный ток катода (при $U_a = -300$ В), мкА	≪0,1	≪0,1
Выпрямленный ток (при $U_a = 80$ В, $R_n = 3.5$ кОм), мА	≥ 8 ≤ 300	≥8 ≪300
Внутреннее сопротивление, Ом	<1,5	<1,5
Межэлектродные емкости, пФ:		
анод — катод	<2 <6 ≥500	<2 <6 ≥2000
Критерий оценки: ток катода в импульсе, мА	≥ 400	≥ 400

Предельные эксплуатационные данные

Напряжение накала	5,7-7B(6-
•	—6,6 В для
	6Д16Д-Р)
Обратное напряжение	450 B
Напряжение между катодом и подогревателем	100 B
Ток катода в импульсе	2 A
Мощность, рассеиваемая анодом	1 Вт
Рабочая частота	3 000 МГц
Импульсная мощность, подводимая к аноду (при	
$f = 2000 \text{ M}\Gamma \mu$, $\tau = 1 \text{ MKC}$, $Q = 1670$)	2 кВт
Температура баллона лампы (в области анодного	
спая)	170°C

Устойчивость к внешним воздействиям:

ускорение при вибрации в диапазоне частот 5	
2000 Γμ	15 g
ускорение при многократных ударах	$150 \ \ddot{g}$
ускорение при одиночных ударах	$500 \ \bar{g}$
ускорение постоянное	100 g
интервал рабочих температур окружающей сре-	_
ды	От60

6Д24Н

Высокочастотный диод для прецизионного детектирования ВЧ и СВЧ напряжения измерительных входных детекторах и коаксиальных переходах ламповых вольтметров. Оформление — в металлокерамической лочке, с жесткими выводами (рис. 6Н). Масса 2,5 г.

Основные параметры

eo n

TO 11

при $U_{\rm H} = 6.3$ В	
Ток накала	<pre><5 cm - 230±50 mB <1 mB</pre>
анод — катод	
Предельные эксплуатационные данные	~ LL - 70
Напряжение накала	
ускорение при многократных ударах	150 g

рабочих температур

ускорение при одиночных ударах .

ускорение постоянное . .

интервал

среды .

500 g

От -60

до +85° C

100g

окружающей

2.2. ДИОДЫ ДВОЙНЫЕ

6X2П, 6X2П-ЕВ, 6X2П-И, 6X2П-ЕР. Аналоги EAA91, 6B32

Диоды двойные для детектирования высокочастотных колебаний в схемах амплитудных и частотных детекторов, а также для работы в качестве маломощных кенотронов.

Оформление — в стеклянной оболочке, миниатюрное (для ламп 6Х2П, 6Х2П-ЕВ, 6Х2П-ЕР — рис. 1П, для 6Х2П-И — рис. 3П). Macca 12 г (для 6Х2П, 6Х2П-И 15 г).

Основные параметры при $U_{\rm H} = 6,3$ В

Наименование	6Х2П	6Х2П-ЕВ	6Х2П-ЕР	6Х2П-И	(EAA91, 6B32)
Ток накала, мА	300 ± 25	300±25	300±15	300±25	300
=40 кOм), мкA	€20	≪20	≪20	≪20	≪30
Разность начальных токов анодов, мкА Выпрямленный ток (при U тр =150 B, U $R \cdot \Pi$ = =120 B, R $_{\rm H}$ =10 кОм,	≪ 8	<8	≪8	≪ 6	_
C=8 мкФ), мА Ток эмиссии катода (при	≥18,5	≥17	≥17	≥17	≽17
$U_{\rm a}$ =10 B), мA Ток утечки между като-	≥32	≥35		≥35	_
дом и подогревателем, мкА	€20	≪10	-	_	
Межэлектродные емко- сти, пФ: между анодом и катодом, соединен- ным с подогревателем и экраном между катодом и анодом, соединенным с подогревателем и	$3,4^{+1,4}_{-1,5}$	3,6±1,2	3,6±1,2	3,4 ^{+1,4}	3,2
экраном между анодами	3,8±1,8 ≪0,04	$\begin{array}{c c} 4^{+1,6}_{-1,7} \\ \leqslant 0.03 \end{array}$	$4^{+1,6}_{-1,7} \\ \leq 0,03$	3,8±1,8 < 0,03	3,6 ≼ 0,05
катод-подогрева- тель	<u></u> \$\leq 4 \$\leq 5000	≼3,8 ≽5000	≼3,8 ≽5000	≼3 ≽500	-
выпрямленный ток, мА	≥17,5	≥16	≥16	≥16	_

Наименование	6Х2П	6Х2П-ЕВ	6Х2П-ЕР	6Х2П-И	(EAA91, 6B32
Напряжение накала, В .	5,7-6,9	5,7—7	6-6,6	5,7—7	5,7-6,9
Обратное напряжение, В	450	450	500 j	450	420
Напряжение между ка- тодом и подогревате- лем, В:					
при положительном потенциале подогре- вателя	0	200	90	150	150
потенциале подогре- вателя	350	350	350	100	330
Ток анода (амплитудное значение), мА	90	90	90	90	90
Выпрямленный ток, мА.	20	18	18	20	18
Собственная резонанс- ная частота, МГц	_	>650	_	> 650	
Защитное сопротивление в цепи анода каждого диода, Ом	_	>130	-	>130	>200
Температура баллона лампы, °С	_	120	85		150
Устойчивость к внешним воздействиям:					
ускорение при вибра- ции, g	2,5	6	6	2,5	
в диапазоне частот, Гц	50	5600	5600	50	_
ускорение при много- кратным ударах g .	12	150	150	-	
ускорение при оди- ночных ударах g	-	500	500	-	-
ускорение постоянное д	-	100	100	100	_
интервал рабочих температур окружающей среды, °С	От —60 до +70	От —60 до +120	От —60 до +85	От -60 до +70	

Анодная характеристика.

Характеристики выпрямленного напряжения в зависимости от выпрямленного тока.

6X6C

Диод двойной для детектирования и маломощного выпрямления.

Оформление — в стеклянной оболочке с октальным цоколем (рис. ЗЦ). Масса 40 г.

Основные параметры

при $U_{\rm H} = 6,3$ В

Ток накала	(300 ± 25) мА $3-24$ мкА
$=11$ кОм, $C=8$ мк Φ)	≥16 mA
То же при $U_{\rm H} = 5.7$ В	≽13 мА
Ток утечки между катодом и подогревателем	<5 мкA
Межэлектродные емкости:	
катод — 1-й анод	$(3,25\pm1,25) \ \pi\Phi$
катод — 2-й анод	(4 ± 1) пФ
между анодами	≪0,1 пФ
Наработка	≥2000 ч
Критерий оценки:	
выпрямленный ток	≥ 14 mA

Напряжение накала	
Обратное напряжение	465 B
Напряжение между катодом и подогревателем .	450 B
Ток анода:	
	8,8 мА
амплитудное значение	50 мА
Интервал рабочих температур окружающей среды	От —60
	до +70° С

6X75, 6X75-B, 6X75-BP

Основные параметры

при $U_{\rm H} = 6,3$ В

Ток накала	(300±30) мA ≪20 мкA
$=22 \text{ kOm}, C=8 \text{ mk}\Phi)$	≥ 8 MA
Ток эмиссии (при $U_a=10~\mathrm{B})$	≥35 mA ≪15 mkA
Сопротивление изоляции между анодом и катодом	≥ 100 МОм
Напряжение виброшумов (при U_a =60 В, R_a =10 кОм)	≪30 мВ
Межэлектродные емкости:	
анод — катод	≤ 5,8 π Φ
катод — подогреватель	
между анодами	≪0,3 пФ
Наработка:	
для 6Х7Б	≽750 ч
для 6Х7Б-В	≽ 500 प
для 6X7Б-BР	≥ 2000 ч
Критерий оценки:	
выпрямленный ток	≽7 мА

6X7Б, 6X7Б-В	6Х7Б-ВР
Напряжение накала, В	9 6—6,6 450
Напряжение между катодом и подогревателем, В	10 70 0,2
Температура баллона лампы, °C: при нормальной температуре окружающей среды	100
Устойчивость к внешним воздействиям: ускорение при вибрации g 10 ускорение при многократных ударах (для 6X7Б-В, 6X7Б-ВР) g 150 ускорение при одиночных ударах g 500 ускорение постоянное g	20 150 500 100
интервал рабочих температур окружающей среды. °C	От —60 00 до +100

2.3. ДИОДЫ ДЕМПФЕРНЫЕ

6Д14П

Диод демпферный для работы в блоках строчной развертки телевизионных приемников.

Оформление — в стеклянной оболочке, миниатюрное (рис. 24П). Масса 20 г.

Основные параметры

при $U_{\rm H} = 6,3$ В

Ток накала	$(1,125\pm0,125)$	1
Ток анода (при $U_a = 20$ В)	≥175 MA	
Выпрямленный ток (при $U_{\text{обр}} = 5.5 \text{ кВ}$, $U_{\text{к.п.имп}} = 5.5 \text{ кВ}$, $f = 16 \pm 4 \text{ к} \Gamma$ ц, $\tau = 12 \pm 4 \text{ мкc}$).		
= $\hat{5}$,5 kB, $f = 16 \pm 4$ k Γ II, $\tau = 12 \pm 4$ MKC)	150 мА	
Ток утечки между катодом и подогревателем:		
при $U_{\text{к.п}} = -750 \text{ B} \dots \dots \dots$	≪50 мкА	
при $U_{\text{к.п}} = +100 \text{ B}$	≪200 мкА	
Внутреннее сопротивление	≪90 Ом	
Наработка	≽1000 ч	
Критерий оценки:	4.45	
ток анода	≥140 mA	

Напряжение накала	5,7—6,9 В 5,6 кВ
Напряжение между катодом и подогревателем:	
при отрицательном потенциале подогревателя то же в импульсе	600 мА 4,5 Вт ≽12 кГц 230° С

6Д20П. Аналог Ey 88

Диод демпферный для работы в блоках строчной развертки телевизионных приемников. Оформление — в стеклянной оболочке, минатюрное (рис. 26П). Масса 25 г.

Основные параметры при $U_n = 6,3$ В, $U_a = 30$ В

	6Д20П	EY88
Ток накала, A	$1,8\pm0,15 \\ \geqslant 250$	1,45
Ток анода в импульсе, мА: при $U_{\rm a. MMI} = 50$ В	≥750 ≥600	_
± 4) к Γ и, $\tau = 15$ мкс	230 ± 50 90 ± 10	240 —
Ток утечки между катодом и подогревателем, мкА:		
при $U_{\text{к.п}} = -750 \text{ B}$	≤50 ≤2 00	_
Межэлектродные емкости, пФ:		
анод — катод	$8,5\pm1,5$ $< 3,2$ > 2000	9 2 —
Критерий оценки: ток анода (при $U_{\rm H}{=}5.7$ В), мА	≥ 100 ≥ 500	_

6Д20П	EY88
Напряжение накала, В	5,7 <u>-</u> 6,9
Напряжение между катодом и подогревателем:	
при положительном потенциале подогревателя, В	-
ля, В	-
подогревателя, кВ	6,6 220 550 5 180
Интервал рабочих температур окружающей среды, °C	_

6Д22С

Диод демпферный для работы в блоках строчной развертки телевизионных приемников. Оформление — в стеклянной оболочке (рис. 16C). Масса 45 г.

Основные параметры $u_{ m H}=6,3~{ m B}$	
Ток накала	(1,9±0,15) A ≥1 A
Межэлектродные емкости: катод — анод	(12±1,5) πΦ ≪5 πΦ ≽1500 ч
Критерий оценки: ток авода в импульсе	≥0,8 A
Предельные эксплуатационные данные Напряжение накала	5,7 - 6,9 В 6 кВ
Напряжение между катодом и подогревателем: при положительном потенциале подогревателя при отрицательном потенциале подогревателя то же в импульсе	100 В 900 В 6,5 кВ

Выпрямленный ток (среднее значение)	300 мА
Ток анода в импульсе	1 A
Мощность, рассеиваемая анодом	8 Вт
Частота строчной развертки	≥12 кГц
Температура баллона лампы	210° C
Интервал рабочих температур окружающей среды	$O_{\rm T} = 60$
•	до +70° C

6Ц10П

Напряжение накала . .

Диод демпферный для работы в блоках строчной развертки телевизионных приемников. Оформление — в стеклянной оболочке, миниатюрное (рис. 24П). Масса 25 г.

Основные параметры

при $U_{\rm H} = 6.3$	B, <i>U</i>	$l_a = 20 B$
-----------------------	-------------	--------------

Ток накала	$(1,05\pm0,15)$ A $\geqslant 150$ MA
Выпрямленный ток (при $U_{06p} = 4,5$ кВ, $U_{\text{к.п.имп}} = 4,5$ кВ, $f = 16$ кГц, $\tau = 12$ мкс)	120 мА 300 мА
Ток утечки между катодом и подогревателем (при $U_{\text{к.п}} = -750$ В)	≪100 мкА 100 Ом
Внутреннее сопротивление	4,5 пФ ≽1500 ч
Критерий оценки: ток анода	≽120 мА

Предельные эксплуатационные данные

Обратное напряжение в импульсе	•	•	4,5 kB
Напряжение между катодом и подогревателем:			
при отрицательном потенциале подогревателя			750 B
то же в импульсе			4,5 kB
Выпрямленный ток (среднее значение)			120 mA
Ток анода в импульсе	•	٠	450 MA
Частота строчной развертки	•	•	≥12 KI LL
Температура баллона ламиы	٠	•	100 C

.5,7-6,9 B

6Ц19П

Диод демпферный для работы в блоках строчной развертки телевизоров. Оформление — в стеклянной оболочке, миниатюрное (рис. 24П). Масса 20 г.

Основные параметры

при	$U_{\rm H} = 6.3$	В,	$U_a = 20$	В
-----	-------------------	----	------------	---

Ток накала	$(1,1\pm0,1)$ A >175 MA (80 ± 10) MA
Ток в импульсе	(400±20) мА
Ток утечки между катодом и подогревателем:	
при $U_{\text{к.п}} = -750 \text{ B} \dots \dots \dots$ при $U_{\text{к.п}} = +100 \text{ B} \dots \dots \dots$ Внутреннее сопротивление $\dots \dots \dots$	≤50 мкА <70 мкА 100 Ом
Межэлектродные емкости:	
анод — катод	≪8 пФ ≪3,5 пФ ≽1000 ч
Критерий оценки:	
ток анода	≽140 мА
Предельные эксплуатационные данные	
Напряжение накала	5,7—6,9 B 4,5 κB
Напряжение между катодом и подогревателем:	
при положительном потенциале подогревателя при отрицательном потенциале подогревателя то же в импульсе	100 В 750 В 4,5 кВ 120 мА 450 мА 230° С От —60 до +230° С

2.4. ДИОДЫ СПЕЦИАЛЬНЫЕ

2Д2С

Диод шумовой прямонакальный для генерирования шумов в измерительных устройствах СВЧ диапазона.

Оформление — в стеклянной оболочке, коаксиальное (рис. 5C). Масса 30 г.

Основные параметры												
при $U_{\rm H}\!=\!1,\!2\!\div\!1,\!6$ В (подбирается), $U_{\rm a}\!=\!125$ В												
Напряжение накала (при I_a =40 мA)	$(1,4\pm0,2)$ B $(1,45\pm0,15)$ A <10 MKA <0,08 MA/B <10% $(0,57\pm0,23)$ nQ											
Емкость между анодом и катодом	(0,57±0,25) //q. ≥500 q											
Критерии оценки: изменение напряжения накала по сравнению с первоначальным значением	<±30% <±10%											
Предельные эксплуатационные данны	e											
Напряжение накала	, 200 B , 40 mA , 0,1 mA/B , 5 Br											

2Д3Б

Диод шумовой прямонакальный для работы в измерителях радиопомех.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 1Б). Масса 3 г.

Основные параметры при $U_{\rm H} = 2.2$ В. $U_{\rm a} = 150$ В

при $U_{\rm H} = 2,2$ В, $U_{\rm a} = 150$ В
Ток накала
Критерий оценки: ток анода
Предельные эксплуатационные данные
Напряжение накала <2,3 В
Устойчивость к внешним воздействиям: ускорение при вибрации с частотой 50 Γ ц 1,5 g интервал рабочих температур окружающей среды . От -60 до $+70^\circ$ C
^д 2Д7С
Днод шумовой прямонакальный для работы в измерителях шума приемных устройств в дециметровом диапазоне волн. Оформление — в стеклянной оболочке (рис. 1С). Масса 15 г.
Основные параметры при $U_a = 300$ В, $I_a = 3$ мА, U_π подбирается
Ток накала (при $U_{\rm H}{=}1,4$ В)
Предельные эксплуатационные данные
Напряжение накала 1.7 В Напряжение анода 250—400 В Ток накала 2,3 А Ток анода 5,5 мА Мощность, рассеиваемая анодом 6 Вт

Устойчивость к внешним воздействиям:

ускорение интервал	е при ви рабочих	ібрации температ	ур окружающей	cpe.	2,5g
· •	•	-		•	От —50 до +50° С

2Д9С

Диод высокостабильный для работы в радиотехнических устройствах в режиме насыщения. Оформление — в стеклянной оболочке (рис. 4Ц). Масса 50 г.

Основные параметры при $U_{\rm B}$ ≤ 3,7 В, $U_{\rm A}$ ≤ 500 В

Ток накала	1 мА
Сопротивление анод — катод	> 50 MOM
Критерий оценки:	≥000 4
относительная крутизна эмиссионной характери- стики	≥5%

4Д17П

Диод прямонакальный для работы в качестве чувствительного элемента в схемах стабилизаторов напряжения переменного тока. Оформление — в стеклянной оболочке, миниатюрное (рис. 17П). Масса 18 г.

Основные параметры при $U_{\rm B} = 4$ В, $U_{\rm A} = 60$ В

Ток	накала		 	 	 		$(1,75\pm0,15)$ A
Ток	анода		 	 	 		≽7 мA
							<0,03 мA/B
	гизна ха 20 · 4 1						≥10 mA/B
=	$3.9 \div 4.1$	D)	 	 	 	•	≥ IU MA/D

5—586

Нарабо	тка:													
при	$U_{\rm n}=4$ B													≥500 q
при	$U_{\rm H} = 3.5$	В												≥ 2000 ¹
npı	$U_{\rm B}=3$ B	•	•	٠	•	•	•		٠	٠	٠	٠	•	≥3000
Критер	ий оценки:													
ток	анола .							_						≥7 MA

ч

до +85°C

	преде	:VIDE	DIC	>n(.1171	yaı	ац	1101	inb	ic	да.	11111	ис		
Напряжение	накала														≪4 B
Напряжение	анода								٠					•	200 B
Ток анола.															16 MA
Мощность, р	ассеива	ема	я а	HOL	lOM	٠	•	*	٠	٠	•	٠	٠	•	I BI
Температура	баллон	a J	там	ПЫ	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	150° C
У стойчивость	к внеш	ним	во	зде	йст	вия	ım:								
ускорени	е при в	นดีก	anı	I LE	В	пи	នាន	130	HP	u:	act	OΤ	5-		

2.5. КЕНОТРОНЫ ВЫСОКОВОЛЬТНЫЕ

1Ц7С. Аналог ру 30

Кенотрон высоковольтный для выпрямления высокочастотных импульсов, преимущественно в развертывающих устройствах.

Оформление — в стеклянной оболочке, с октальным цоколем (рис. 10Ц). Масса 10 г.

Основные параметры при $U_{\rm H} = 1.25 \, {\rm B}$

	1Ц7С	DY30
Ток накала, мА	200 ± 20	200
Ток анода (при $U_a = 100$ В), мА	$\geqslant 4$	
Выпрямленный ток (при $U_{\text{обр}}{=}30$ кВ, $R_{\text{п}}{=}$ = 5 МОм, $C{=}10$ мкФ, $f{=}250$ кГп), мА Емкость между анодом и катодом, пФ	2 1,35±0,45 ≥800	2 1,5 —
Критерии оценки:		
ток анода (при $U_{\rm a}\!=\!100$ В), м ${ m A}$ выпрямленный ток (при $U_{ m ofp}\!=\!30$ к ${ m B}$), м ${ m A}$.	$\geqslant 3,2$	2

• • • • • • • • • • • • • • • • • • • •	
Напряжение накала	1,1—1,4 B 30 κB 2 мA 17 мA 300 κΓц ΟΤ —60 μο +70°C
1Ц11П Кенотрон высоковольтный для преобразования импульсного напряжения обратного хода строчной развертки в постоянное напряжение в телевизионных приемниках. Оформление — в стеклянной оболочке, миниатюрное (рис. 7П). Масса 15 г.	S 1,3,4,7
Основные повоматры	
Основные параметры при <i>U</i> ₂ =12 В <i>U</i> ₂ =100 В	
при $U_{\rm H}{=}1,2$ В, $U_{\rm a}{=}100$ В	(200±30) мA ≥4 мA
при $U_{\rm m} = 1.2$ В, $U_{\rm a} = 100$ В	
при $U_{\rm H}{=}1,2$ В, $U_{\rm a}{=}100$ В Ток накала	≥4 мА 300 мкА 0,8 пФ
при $U_{\rm H}{=}1,2$ В, $U_{\rm a}{=}100$ В Ток накала	≥4 MA 300 MKA 0,8 πΦ ≥1500 ч
при $U_{\rm H}{=}1,2$ В, $U_{\rm a}{=}100$ В Ток накала	≥4 MA 300 MKA 0,8 πΦ ≥1500 ч

Устойчивость к внешним воздействиям:

ускорение интервал									2,5 g
ды	•			•				•	От —60 ло. ±70° С

1Ц20Б

Кенотрон высоковольтный для преобразования импульсного напряжения обратного хода строчной развертки в постоянное напряжение в телевизионных приемниках.

Оформление — в стеклянной оболочке, сверхми-

ниатюрное (рис. 29Б). Масса 5 г.

Основные параметры при $U_{\rm H}=1~{\rm B}$

Ток накала	(250 ± 30) MA ≥ 3,5 MA ≥ 150 MKA ≥ 135 MKA 0,8 пФ ≥ 1500 ч
Предельные эксплуатационные данные	
Напряжение накала	. 10 κB . 300 мкA . ≥ 12 κΓц

1Ц21П. Аналоги DY 86, DY 87

Кенотрон высоковольтный для преобразования импульсного напряжения обратного хода строчной развертки в постоянное напряжение в телевизионных приемниках.

Оформление — в стеклянной оболочке, миниатюр-

ное (рис. 25П). Масса 22 г.

Основные параметры при $U_{\rm H} = 1.4$ В, $U_{\rm B} = 100$ В

	1Ц21П	DY86. DY87
Ток накала, мА	690 ± 40	530
Ток анода, мА	≥8	12
То же при $U_{\rm H} = 1,1$ В	$\geqslant 6,5$	_
Выпрямленный ток (при $U_{\text{выпр}} = 18$ кВ, $U_{\text{обр}} =$		
=25 kB, $f=16$ kΓμ), MkA	600	150
Емкость между анодом и катодом, пФ	≪3	1,7
Наработка, ч	≥ 2000	_

Предельные эксплуатационные дан	ные	
	1Ц21П	DY86, DY87
Напряжение накала, В:		
Обратное напряжение, кВ Выпрямленное напряжение, кВ. Выпрямленый ток (среднее значение), мкА. Ток анода в импульсе, мА. Частота строчной развертки, кГц. Температура баллона ламны, °С. Интервал рабочих температур окружающей среды, °С.	1,2—1,6 1,3—1,5 25 18 600 40 ≥ 12 120 Or —60 πo +70	1,2—1,6 1,3—1,5 27 22 800 40 ≥ 12 150
2Ц2С		A
Кенотрон высоковольтный для выпрямления переменного напряжения. Оформление — в стеклянной оболочке, с октальным цоколем (рис. 15Ц), Масса. 55 г.	κ,	7 2
Основные параметры при $U_{\text{\tiny H}} = 2,5$ В		
Ток накала		:0,2) А :17,5) мА
=0,5 МОм, C=0,06 мкФ)	≥7,3 ≥1500	
Критерии оценки: ток анода	$\geqslant 20$ M $\geqslant 5$, 4	
Предельные эксплуатационные данн	ые	
Напряжение накала	. 2,25- . 4,5 #	−2,75 B ⟨B
Обратное напряжение	12,5 к 7,5 мА 45 мА От —4 до +7	5

3Ц16С

Кенотрон высоковольтный для преобразования импульсного напряжения обратного хода строчной развертки в постоянное напряжение в цветных телевизионных приемниках.

Оформление — в стеклянной оболочке, с октальным цоколем (рис. 10Ц). Масса 50 г.

Основные параметры при $U_{\rm H} = 3.15 \, {\rm B}$

Ток накала	(210±20) мА
Ток анода: при U_a =120 В	≥4,5 mA <80 mA 1,1 mA 1,5±0,4 πΦ ≥750 ч
Критерий оценки: ток анода (при $U_{\mathfrak{a}} = 120$ В)	≥3,6 мА
_	
Предельные эксплуатационные данные	
Предельные эксплуатационные данные Напряжение накала	2,85— 3,45 B

3Ц18П

Кенотрон высоковольтный для преобразования импульсного напряжения обратного хода строчной развертки в постоянное напряжение в телевизионных приемниках.

Оформление — в стеклянной оболочке, миниатюрное (рис. 8П). Масса 15 г.

Основные параметры при $U_{\rm H} = 3.15$ В, $U_{\rm a} = 100$ В

Ток	накала																$(210\pm20) \text{ MA}$
Ток	анода																≥8 мА
Вып	рямленнь	Йlc	TC	K	(nt	И	U_{c}	бъ	= 2.	5	кB,	f:	= 1	6	кΓі	ī)	1,5 мА

Внутреннее сопротивление
Предельные эксплуатационные данные
Напряжение накала
Обратное напряжение
3Ц22С
Кенотрон высоковольтный для преобразования импульсного напряжения обратного хода строчной развертки в постоянное напряжение в телевизионных приемниках. Оформление — в стеклянной оболочке (рис. 14С). Масса 40 г.
Основные параметры при $U_{\rm B}\!=\!3,\!15$ В, $U_{\rm a}\!=\!100$ В
Ток накала
Предельные эксплуатационные данные
Напряжение накала
Обратное напряжение

5Ц12П

Кенотрон высоковольтный для выпрямления переменного напряжения в схемах высоковольтных выпрямителей.

Оформление — в стеклянной оболочке, миниатюрное (рис. 24П). Macca 25 г.

Основные параметры при $U_{\rm H} = 5$ В, $U_{\rm a} = 40$ В

Ток накала	(870±70) MA ≥ 50 MA ≥ 50 MA ≥ 500 Ч
Критерий оценки: выпрямленный ток	≽45 мА
Предельные эксплуатационные данные	
Напряжение накала	4,5—5,5 B 5 κB 50 мA 350 мA

2.6. КЕНОТРОНЫ МАЛОМОЩНЫЕ

5Ц3С

Интервал рабочих температур окружающей среды .

Мощность, рассеиваемая анодом .

Температура баллона лампы . .

Кенотрон двуханодный для выпрямления переменного напряжения в блоках питания. Оформление — в стеклянной оболочке, с октальным цоколем (рис. 14Ц), Масса 72 г.

5 Bт

200 °C

От —60 до +70 °C

Основные параметры при $U_{\rm H}\!=\!5~{\rm B}$

	накала									$(3\pm 0, 3)A$
Ток	анода (1	при	$U_a = 75$	B)						≥ 225 mA

Выпрямленный ток (при $U_a = 500$ В, $R_n = 2$ кОм, $G_n = 4$ мк Φ)	C= · ·	≥230 mA ≥500 q ≥200 mA
Предельные эксплуатационные данные		
Напряжение накала	17 25 7 5 On	5-5,5 B 00 B 0 MA 0 MA 1-60 +70 °C
5Ц4С		4 6
Кенотрон двуханодный для выпрямления переменного напряжения в блоках питания. Оформление — в стеклянной оболочке, с октальным цоколем (рис. 13Ц). Масса 55 г.		κ, n
Основные параметры		
при $U_{\rm H}{=}5~{\rm B}$ Ток накала	•	(2±0,2)A ≥300 mA
При $U_{\rm H} = 5~{\rm B}$ Ток накала	· - ·	≥300 mA ≥122 mA
при $U_{\rm H}{=}5~{\rm B}$ Ток накала	· · ·	≥300 mA
при $U_{\rm H}{=}5~{\rm B}$ Ток накала		≥300 MA ≥122 MA ≥100 MA
При $U_{\rm H}{=}5~{\rm B}$ Ток накала . Ток анода (при $U_{\rm a}{=}50~{\rm B}$)		≥300 MA ≥122 MA ≥100 MA
при $U_{\rm H}=5$ В Ток накала		≥ 300 mA ≥ 122 mA ≥ 100 mA ≥ 2000 q
Предельные эксплуатационные данные		⇒ 300 mA ⇒ 122 mA ⇒ 100 mA ⇒ 2000 q ⇒ 105 mA
Предельные эксплуатационные данные Напряжение накала		⇒ 300 MA ⇒ 122 MA ⇒ 100 MA ⇒ 2000 G ⇒ 105 MA 4,5 -5,5 B
Предельные эксплуатационные данные		⇒ 300 MA ⇒ 122 MA ⇒ 100 MA ⇒ 2000 G ⇒ 105 MA
при $U_{\rm H}=5$ В Ток накала Ток анода (при $U_{\rm a}=50$ В) Выпрямленный ток (при $U_{\rm a}=500$ В, $R_{\rm H}=4.7$ кОм, $C_{\rm h}=4$ мкФ) То же при $U_{\rm H}=4.5$ В Наработка Критерий оценки: выпрямленный ток Предельные эксплуатационные данные Напряжение накала Обратное напряжение Выпрямленный ток (среднее значение)		⇒ 300 MA ⇒ 122 MA ⇒ 100 MA ⇒ 2000 q ⇒ 105 MA 4,5 1,35 RB 62 MA

Ток накала

5Ц8С

Кенотрон двуханодный для выпрямления переменного напряжения.

Оформление — в стеклянной оболочке, бесцокольное (рис. 9C). Масса 110 г.

 (5 ± 0.75) A

до+70 °C

Основные параметры

при $U_{\rm H} = 5$ В

Ток анода (при $U_a = 75$ В)	100 мА
	:00 мА 000 ч
Критерий оценки: выпрямленный ток	60 мА
Предельные эксплуатационные данные	
Напряжение накала	4,5 5,5 B
Обратное напряжение	1,7 KB 420 MA 1,2 MA 30 BT 200 °C
Устойчивость к внешним воздействиям: ускорение при вибрации с частотой 50 Гц ускорение при многократных ударах интервал рабочих температур окружающей среды.	2,5 g 12 g Or -60

5Ц9С

Кенотрон двуханодный для выпрямления переменного напряжения.

Оформление — в стеклянной оболочке, бесцокольное (рис. 8С). Масса 95 г.

Основные параметры

при $U_{\rm H} = 5~{\rm B}$

Ток накала	$(3\pm0,3)$ A ≥ 180 MA ≥ 190 MA ≥ 1000 9
Критерий оценки:	
выпрямленный ток	≽150 мА
Предельные эксплуатационные данные	
	4,5-5,5 B
Напряжение накала	1,7 кВ
Напряжение накала	1,7 кВ 205 мА
Напряжение накала	1,7 кВ 205 мА 600 мА
Напряжение накала	1,7 кВ 205 мА

6Ц4П, 6Ц4П-ЕВ

Кенотроны двуханодные для выпрямления переменного напряжения.

менного наприжения. Оформление — в стеклянной оболочке, миниатюрное (рис. 411). Масса 15 г.

Основные параметры

при $U_{\rm H} = 6,3$ В

	6Ц4П	6Ц4П-ЕВ
Ток накала, м A	600±60 ≥ 150	450±45 ≥ 150
Выпрямленный ток (при $U_a = 350$ В, $R_H =$	≥ 75	≥ 72
=5,2 кОм, $C=8$ мкФ), мА	≥13	≥12
лем, мкА	≪6 0	€60
Наработка, ч	≥ 1500	≥ 5000
Критерий оценки:		
выпрямленный ток, мА	≥ 75	≥68

	6Ц4П	6Ц4П-ЕВ
Напряжение накала, В	5,7—6,9 1000	6-6,6 900
Напряжение между катодом и подогревателем, В:		
при положительном потенциале подо- гревателя при отрицательном потенциале подо-	100	100
гревателя	400	400
Выпрямленный ток, мА	7 5	75
Ток анода (амплитудное значение)	300	250
Температура баллона лампы, °С	160	150
Устойчивость к внешним воздействиям:		
ускорение при вибрации g	2,5	10
в диапазоне частот, Гц	50	5600
ускорение при многократных ударах д	35	150
ускорение при одиночных ударах g .	_	500
ускорение постоянное д		100
интервал рабочих температур окружа-		100
ющей среды, °С	От60	От —60
ющен среды, С	TO 1 70	
	до +7 0	до +70

Характеристики выпрямленного напряжения в вависимости от выпрямленного тока.

6Ц5С. Аналог Е235

Кенотрон двуханодный для выпрямления переменного напряжения.

Оформление — в стеклянной оболочке, с октальным цоколем (рис. 1Ц). Масса 40 г.

Основные параметры

Основные параметры		
при $U_{\rm H} = 6,3$ В	6LI5C	EZ35
Ток накала, мА	600±60 70* ≥1000	600 70**
Критерий оценки:		
выпрямленный ток, мА	≥60*	_
* При $U_{\rm a}$ = 400 B, $R_{\rm H}$ = 5,7 кОм, C = 8 мкФ. ** При $U_{\rm a}$ = 325 B, C = 6 мкФ.		
Предельные эксплуатационные	данные	
	∘Ц5С	E Z35
Напряжение накала, В	5,7 -7 1100	5,7—6,9 —
Напряжение между катодом и подогревате- лем, В:		
при положительном потенциале подогревателя	0	0
при отрицательном потенциале подо-	450	050
гревателя	450 75	350 70
Температура баллона лампы, °С	120	
Интервал рабочих температур окружающей среды, °C	От —60 до +70	-
	40 110	
6Ц13П		<i>A</i>
Voucement		$\langle \top \rangle$
Кенотрон одноанодный для выпрямления п менного напряжения.	ep e-	()
Оформление — в стеклянной оболочке, миниат ное (рис. 24П). Масса 25 г.	тор-	K, 11 11 11 11 11 11 11 11 11 11 11 11 11
0 сновные параметры при $U_n = 6,3{ m B}$		
Ток накала		(950
Ток анода (при $U_a = 20~{ m B}$)	 кОм.	±150) мА ≥70 мА
C=4 мкФ)		≥ 120 мА ≥ 108 мА
Наработка		≽500 ч
Критерий оценки:		- 100 -
выпрямленный ток		≥ 108 mA

Напряжение накала	5,7
•	-6,9 B
Обратное напряжение	1600 B
	120 mA
Ток анода (амплитудное значение)	900 мА
Мощность, рассеиваемая анодом	8 B _T
Температура баллона лампы	200 °C
Интервал рабочих температур окружающей среды	От60
	ло +70°C

РАЗДЕЛ ТРЕТИЙ

СПРАВОЧНЫЕ ДАННЫЕ ТРЕХЭЛЕКТРОДНЫХ ЛАМП — ТРИОДОВ И ДВОЙНЫХ ТРИОДОВ

з.1. ТРИОДЫ

2C3A

Триод для работы в генераторах радиозондовых передатчиков разового действия на частотах до 230 МГц, поднимаемых на шарах до высоты 25-30 км.

Оформление - в стеклянной оболочке, сверхминиатюрное (рис. 35Б). Масса 2,1 г.

Основные параметры

при $U_{\rm H} = 2.4$ В, $U_{\rm a} = 65$ В, $U_{\rm c} = -2$ В

Ток накала	122^{+13}_{-12} mA (10,5± ±2.5) mA
Обратный ток сетки	$\leq 0.5 \text{ MKA}$ $\leq 0.5 \text{ MKA}$ $2.7^{+0.8}_{-0.9} \text{MA/B}$
Коэффициент усиления	7,5±1,5 ≪0,5 мА
Сопротивление изоляции:	
сетка — анод	≥25 МОм ≥25 МОм
Межэлектродные емкости:	
входная	$1,6_{-0,2}^{+0,2}$ n Φ
выходная	(3,1± ±0,45) πΦ
проходная	$3^{+0}_{-0.7}$ $^{3}_{10}$ Φ
Наработка	≥10 q
Критерий оценки:	
крутизна характеристики при $U_{\mathtt{H}}{=}2$ В	≥1,5 mA/B

Напряжение н	акала .												$2-2,8\mathrm{B}$
Напряжение а	нола .									٠			10 B
Мощность, рас	сеиваем	ая а	нод	OM	•	٠	٠	•	٠	•	٠	٠	1,8 BT
Устойчивость к	внешни	м во	здей	ств	вия	м:							
ускорение	при виб	браці	ии										5 g
интервал р	абочих т	гемпо	ерат	yр	ОK	ру	жа	юц	16h	cţ	е д	Ы	От —60
-													до +70°C

2С49Д

Триод для усиления и генерирования колебаний в дециметровом диапазоне волн.

2-2.8 B

Оформление - в металлостеклянной оболочке, сверхминиатюрное (рис. 2Д). Масса 8,5 г.

Основные параметры	
при $U_{\rm H}{=}2,4$ В, $U_{\rm a}{=}250$ В, $U_{\rm c}{=}{-}1$ В Ток накала	(480±40) MA (21±7) MA ≤0,3 MKA
Ток утечки между катодом и подогревателем	$\geq 6 \text{ MA/B}$ 65 ± 10
в режиме непрерывного генерирования в импульсе, в режиме сеточной модуляции (при $f=200$ МГц, $U_a=700$ В, $U_c=-40$ В,	≥ 2 Bτ ≥ 55 Bτ
$\tau=1$ мкс, $Q=250$)	
Межэлектродные емкости: входная	$(2,85\pm0,45)$ $\pi\Phi$
выходная	<0,1 πΦ (1,65±0,35) πΦ 2,4—5 πΦ ≥500 ч
Критери й оценки: колебательная мощность	
Предельные эксплуатационные данн	ње
Напряжение накала	. 2,15—2,7 B
в режиме непрерывного генерирования в импульсном режиме в Напряжение сетки отрицательное в Напряжение между катодом и подогревателем .	. 700 B . 40 B

Ток катола: среднее значение в импульсе Мощность, рассеиваемая анодом с раднатором Мощность, рассеиваемая сеткой Температура баллона лампы (в области анодного спая)	50 MA 800 MA 4 Br 0,8 Br 170 °C
Устойчивость к внешним воздействиям: ускорение при вибрации в диапазоне частот 5—200 Гц	10 g 150 g 500 g 100 g
среды	От —60 до +170 °C

6С1П

Триод для усиления напряжения высокой частоты.

Оформление — в стеклянной оболочке, миниатюрное (рис. 1П). Масса 12 г.

Основные параметры

при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!250$ В, $U_{\rm c}\!=\!-7$ В

Ток накала	50 mkA 20 mA 1 mkA 20 mkA ,35±0,55) mA/B 1,6±3,2) kOm
Межэлектродные емкости:	
входная (1 выходная (1 проходная (1 Наработка > Критерий оценки >	$+,35\pm0,35$) $\pi\Phi$
к питерии опенки:	

крутизна характеристики $\geqslant 1,46$ мА/В

81

Напряжение	накала											5,7—6,9 B
Напряжение	анода .											275 B
Напряжение	между к	ато	дом	И	под	OL	рев	зат	еле	M ²		90 B
Мощность, р	ассеиваем	ая	ано.	дом			٠,					1,8 B1
Интервал ра	бочих тем	mer	arv	o d	кDV	жа	ЮП	ıei	i c	pe.	и	От60
				-	- F 3			_,		F		#0 ±70 °C

Анодные характеристики.

Анодно-сеточные характеристики.

6С2Б, 6С2Б-В

Триоды для усиления напряжения высокой частоты в схемах с заземленной сеткой.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 12Б). Масса 4,5 г.

Основные параметры

при $U_{\rm II} = 6,3$ В, $U_{\rm a} = 150$ В, $R_{\rm K} = 100$ Ом

Ток накала	(250±25) м A
Ток анода	$(11,5\pm 4)$ MA
То же в начале характеристики (при $U_c = -15 \text{ B}$)	≪20 мкA
Обратный ток сетки (при $U_c = -1.5$ В)	<0,2 mkA
Ток утечки между катодом и подогревателем	≪2∪ мкA
Крутизна характеристики	$(11,5\pm2,5)$ MA/B
То же при $U_{\rm H} = 5.7~{\rm B}$.	≥7 MA/B
To me upu on on a	· · · · · · · · · · · · · · · · · · ·

	:12 900 Ом 20 мВ
входная (7,5 выходная (4,5 проходная ≤0 катод — подогреватель ≤8 Наработка ≥50 Критерий оценки:	5±1,5) пФ 5±1,5) пФ ,25 пФ пФ)0 ч
	,2 мкА ,8 мА/В 5%
Предельные эксплуатационные данные	
Напряжение накала	5,7—6,9 B 250 B 300 B 50 B 165 B 40 MA 2,5 Br 1 MOM
при нормальной температуре окружающей среды . при температуре окружающей среды 200° С Устойчивость к внешним воздействиям:	170 °C 250 °C
ускорение при вибрации в диапазоне частот 5—2000 Гц	до +200 °C
$MA I_{\alpha}$ $6C25-B$ $0 I_{\alpha}$ $0 I_{\alpha}$	Ia MA

Анодные характеристики.

Анодно-сеточные характеристи-

6С2П

Триод для усиления напряжения высокой частоты.

Оформление — в стеклянной оболочке, миниатюрное (рис. 2П). Масса 15 г.

Основные параметры

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 150$ В, $R_{\rm K} = 100$ Ом
Ток накала
Межэлектродные емкости:
входная
RPYTHONA NAPARICPHETINA
Предельные эксплуатационные данные
Напряжение накала

Анодные характеристики.

Анодно-сеточные характери-

6C2C

Триод для усиления напряжения низкой частоть Оформление — в стеклянной оболочке, с октальным цоколем (рис. 3Ц). Масса 40 г.

крутизна характеристики . . .

Основные параметры

при
$$U_{\rm H}$$
=6,3 B, $U_{\rm a}$ =250 B, $U_{\rm c}$ =-8 B

Ток накала
Крутизна характеристики:
при $U_{\rm H}=6,3$ В
Критерий оценки:

. . . $\geqslant 1,55 \text{ MA/B}$

Напряжение	накала														5,7-6,9 B
Напряжение	анода														330 B
Напряжение	сетки.														0 B
Напряжение	между	ка	ТОД	ОМ	И	П	οд	orp	ева	ате	ле	M			100 B
Ток катода		,										,			20 мА
Мощность, р	ассеива	ема	Я	ан	одс	M									2,75 Вт
Интервал ра	бочих т	еми	iep	ату	/p	OK	py:	жа	ЮЦ	цей	c	pe,	Ы		От —60
												-			до +70°C

6С3Б, 6С3Б-В

Триоды для усиления напряжения низкой частоты. Оформление - в стеклянной оболочке, сверхминиатюрное (рис. 5Б). Масса 3,5 г.

Основные параметры

для 6С3Б при $U_{\rm H}=6.3$ В, $U_{\rm a}=270$ В, $R_{\rm K}=1500$ Ом; для 6С3Б-В при $U_{\rm H}$ =6,3 В, $U_{\rm a}$ =250 В, $R_{\rm K}$ =1360 Ом

Ток накала	1
Межэлектродные емкости:	
входная	
катод — подогреватель	
Критерии оценки: обратный ток сетки*	

Для лампы 6С3Б-В.

	6 C 3B	6 C ∴B - B
Напряжение накала, В		5,7—6,9 300 350 50
Напряжение между катодом и подогревателем, В	100 12 2;5 170	100 12 2,5 170
ускорение при вибрации в диапазоне частот 50—600 Гц g то же в диапазоне частот 5—600 Гц g ускорение при многократных ударах g ускорение при одиночных ударах g	10 — — — 100 От —60 до +90	— 10 150 500 100 От —60 до +200

Анодные характеристики.

Анодио-сеточные характери-

6СЗП, 6СЗП-ЕВ, 6СЗП-ДР

Триоды для усиления напряжения высокой частоты в схемах с заземленным катодом во входных и широкополосных усилителях.

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 15 г.

Основные параметры

при $U_{\rm B}$ = 6,3 B, $U_{\rm a}$ = 150 B, $R_{\rm K}$ = 100 Ом							
Наименование	6C3∐	6С3П-ЕВ	6С3П-ДР				
Ток накала, мА	300±30 16±5	300±25 15±4	280±25 15±4				
стики (при $U_0 = -6.5$ В), мкА	- ≪0,3	<10 <0,3	<10 <0,05				
и подогревателем, мкА	<2 0						
Крутизна характеристики, ${}_{M}{}^{A}/{}^{B}$	$19,5\pm5,5$ ≥ 12	19,5±4,5 —	19,5±2,5 —				
Коэффициент усиления Входное сопротивление,	50 ± 15	50 ± 15	50 ± 15				
кОм	5	5	5				
ние шумов, кОм	<0,2	$\leq 0,2$	\leqslant 0,2				
Напряжение виброшумов (при $R_a = 0.5$ кОм), мВ .	≪60	≪60					
Межэлектродные емкости, пФ:							
входная	6,4±1 1,55±0,2 ≤2,2 ≤7 ≥1500	$6,9\pm 1$ $1,65\pm 0,2$ $<2,2$ <7 > 10000	$6,9\pm1$ $1,7\pm1,2$ $1,8+0,4$ <7 $> 10 000$				
Критерии оценки:							
обратный ток сетки, мкА крутизна характеристи-	≪1	≪2	≪2				
ки, мА/В	≥11	≥ 12	≥12				
ние крутизны, %	≪±35	<±4 0	≼ ±40				
Предельные экс	сплуатационні	ые данные					
	CHI	6С3П-ЕВ	6С3П-ДР				
Напряжение накала, В Напряжение анода, В То же при запертой лампе Напряжение сетки отрица-	5,7-7 160 330	5,7—6,6 150 150	5,7—6,6 150 330				
тельное, В	100	50	100				
при положительном по- тенциале подогревателя при отрицательном по-	100	0	100				
тенциале подогревателя Ток катода, мА	160 35	160 20	160 20				

Мощность, рассеиваемая			
анодом, Вт	3	3	3
Сопротивление в цепи сет-			
ки, МОм	i	0,5	0,5
Температура баллона лам- пы, °С	135	90	150
Устойчивость к внешним			
воздействиям:			
ускорение при вибра-			
ции д	2,5	10	10
в диапазоне частот,			
Γμ	50	5—600	5600
ускорение при много-	0.5		
кратных ударах g	35	150	150
ускорение при одиноч-			
ных ударах g		500	500
ускорение постоянное		100	
g	-	100	100
интервал рабочих тем-			
ператур окружающей	0 00		_
среды, °С	От —60	От —60	От —60
	до +70	до +125	$\pi_0 + 12$

Анодно-сеточные характеристики.

6С4П, 6С4П-ЕВ, 6С4П-ДР

Триоды для усиления напряжения высокой частоты в схемах с заземленной сеткой во входных и широкополосных усилителях.

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 15 г.

Основные параметры при $U_{\rm H}\!=\!6,3\,$ В, $U_{\rm a}\!=\!150\,$ В, $R_{\rm K}\!=\!100\,$ Ом

	6C4II	6С4П-ЕВ	6С4П-ДР
Ток накала, мА	. 300±30 . 16±5	300±25 15±4	280±25 15±4
(при $U_c = -6.5$ В), мкА	. - . ≼0,3	≤ 10 $\leq 0,3$	<10 <0,05
догревателем, мкА . Крутизна характеристики, мА/В То же при U_{π} =5,7 В Коэффициент усиления	$0.8 \le 20$ 19,5±5,5 $0.8 \ge 12$	 19,5±4,5 ≥13 50±15	- 19,5±4,5 - 50±15
Входное сопротивление, кОм . Эквивалентное сопротивление шумов, кОм	. 5 . ≪0,2	•	5 ≤0,2
$R_a = 0.5 \text{ kOm}$), MB	. ≤60	≪60	≪60
выходная	. 11,3±1,7 . 3,6±0,6 . <0,17 . <7 . ≥1500	$11,7\pm1,7$ $3,6\pm0,6$ <0,19 <7 >10000	$11,7\pm1,7$ $3,6\pm0,6$ $0,16\pm0,04$ <7 >10000
Критерии оценки:			
обратный ток сетки, мкА. крутизна характеристики	. ≼1	≤ 2	<1,5
мА/В	, . ≥11	≥ 12	≥12
относительное изменение крутизны, $\%$		≼ ±40	<±35
Предельные экспл	уатационнь	іе данные	
-	6C4II	6С4П-ЕВ	6С4П-ДР
Напряжение накала, В	5,7—7 160 330	5,7—6,6 150	5,7 - 6,6 150 330
Отрицательное напряжение сетки В	. 100	50	100
Напряжение между катодом и по догревателем, В:			
при положительном потенциале подогревателя при отрицательном потенциа	. 100	0	100
ле подогревателя	. 160 . 35	160 20	160 20
Вт	. 3 . 1	3 0,5 90	3 0,5 150

Устойчивость к внешним воздействиям:

ускорение при вибрации g . в диапазоне частот, Γ ц	2,5 50	10 5—600	10 5—600
ускорение при многократных ударах <i>g</i>	35	150	150
pax g		500	500
ускорение постоянное g интервал рабочих температур		100	100
окружающей среды, °С	От —60 до +70	От —60 до +125	От −60 до +125

Анодные характеристики.

Анодно-сеточные характеристики,

6С6Б, 6С6Б-В

Триоды для усиления напряжения низкой частоты, генерирования колебаний высокой частоты в диапазоне до 500 МГц, а также для работы в импульсных режимах в релаксационных схемах.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 3Б). Масса 3,5 г.

Основные параметры

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 120$ В, $R_{\rm H} = 220$ Ом

	€C6B	6C6B-B
Ток накала, мА	200 ± 20	200 ± 20
Ток анода, мА	$9 \pm 2,7$	9 ± 2.5
Обратный ток сетки, мкА	≤ 0.2	≤ 0.2

		Продолжение
Крутизна характеристики, мА/В	$5^{+1,3}_{-1}$	$5,2^{+1,3}_{-1}$
To we при $U_{\rm H}=5.7~{\rm B}$	$\geqslant 3.2$	$\geqslant 3,4$
Коэффициент усиления	$25 + 7 \\ -5$	25 ± 5
Входное сопротивление (при $f = -50 \text{ MFu}$) кОм	≥ 12	8—16
Напряжение виброшумов (при $R_a = 2$ кОм), мВ	≪100	≪100
Межэлектродные емкости, пФ:	2 2 1 0 65	0.010.65
	$3,3\pm0,65$ $3,5\pm0,9$ <1,42 3,8-7	3,3±0,65 3,5±0,9 ≤1,42 ≤7
Наработка, ч	≥ 500	≥ 5000
обратный ток сетки, мкА крутизна характеристики, мА/В	≤ 1 $\geqslant 3,2$	<1 ≥3,4
относительное изменение крутизны,		$< \frac{+30}{-40}$
%		10
-		
Предельные эксплуатацион	ные данные 6С6Б	6C6B-B
Напряжение накала, В	5,7—6,9 250 350	5,7—6,9 250 350 50
Напряжение между катодом и подогревателем, В	150 14 0,8 1,4 	150 14 0,8 1,4 0,1 500
Температура баллона лампы, °C:		
при нормальной температуре окружающей среды	170	170
ды 200° С		250
Устойчивость к внешним воздействиям:	10	
ускорение при вибрации g в диапазоне частот, Гц	. 10 10—300	10 5—60 0
pax g		150
ускорение при одиночных ударах g ускорение постоянное g	 25	500 100
интервал рабочих температур окружающей среды, °С	От —70 до +90	От —60 до +200

Анодные характеристики.

Анодно-сеточные характеристики.

6С7Б, 6С7Б-В

Триоды для усиления напряжения низкой частоты.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 3Б). Масса 3,5 г.

Основные параметры при $U_B = 6.3$ В, $U_a = 250$ В, $R_B = 400$ Ом

"P" 0 1 0,0 2, 0 2 200 2,	71N 100 OM	
	6 C 7B	6C7 B - B
Ток накала, мА	200 ± 20 $4,5\pm1,3$ $<0,2$	200 ± 20 $4,5\pm1,3$ $<0,2$
Ток утечки между катодом и подогревателем, мк A . Крутизна характеристики, м A/B		<20 4,2±0,9 $>2,8$ $70+15$
Напряжение виброшумов (при $R_a = 2 \text{ кОм}$), мВ	< 150	≤175
Межэлектродные емкости, пФ:		
входная	3,3±0,9 3,4±0,9 ≤1 3,8-7 ≥1500	3,3±0,9 3,4±0,9 ≤1 ≤7 ≥1500
Критерии оценки:		
обратный ток сетки, мкА	<1 ≥2,65	≤ 1 $\geq 2,85$ $\leq +30$ ≤ -40
		30

Предельные	эксплуатационные	данные
------------	------------------	--------

	6C7B	6C7B-B
Напряжение накала, В	5,7—6,9 300 350 50	5,7—6,9 300 350 50
Напряжение между катодом и подогревателем, В	150 7 1,45 1	150 7 1,45 1 170*
Устойчивость к внешним воздействиям: ускорение при вибрации g в диапазоне частот, Γ ц	10 10—300 10 25	10 5—600 150 500 100
ющей среды, °С	От —60 до +90	От 60 до +200

^{*} Для лампы 6С7Б-В при температуре окружающей среды 200°С допускается предельная температура баллона 250°С.

6С13Д

Триод для генерирования СВЧ колебаний в схемах самовозбуждения с общей сеткой. Оформление — в металлостеклянной оболочке, с дисковыми выводами (рис. 6Д). Масса 20 г.

	Oci	новные	парам	етры		
TIDIA	$U_{-}=6.3$	R 11.	=300 I	R "R:	= 200	OM

Ток накала .							•						(775 ± 75) MA
Ток анода .													$(21,5\pm8,5)$ MA
Обратный ток	сет	ки											≪1 мкА
Крутизна хара													$(5,2\pm1,2) \text{ mA/B}$
Коэффициент у													35 ± 15
Колебательная													
Напряжение в	ибро	шу	MOI	3 (пр	и.	R_a :	=1	0 1	кÔ	м)		≪100 мВ
Межэлектродн	-				-								
входная.													$(2,7\pm0,4)$ пФ
выходная													≪0,03 пФ
проходная													1,3—1,6 пФ
Наработка .													≽400 ч
V numanus avar													
Критерий оцен													- 00 - D
колебатель	ная	MOI	ЩН	ост	ъ*	٠.							≽80 мВт

^{*} При $I_a = 30$ мА, $R_c = 5$ кОм, $f = 3500 \div 3600$ МГц.

Напряжение накала	6-6,6 B
Напряжение анода .	350 B
ТОК КАТОДА	35 мА
Мощность, рассеиваемая анодом,	9 B _T
Мощность, рассеиваемая сеткой	0,1 Br
Температура баллона лампы	1 5 0 °C
Интервал рабочих гемператур скружающей среды	От —60
	ло +70 °С

6С15П, 6С15П-Е

Триоды для усиления напряжения высокой частоты.

Оформление — в стеклянной оболочке, минатюрное (рис. 11П). Масса 20 г.

Основные параметры при $U_{\rm B}\!=\!6,3\,$ В, $U_{\rm a}\!=\!150\,$ В, $R_{\rm K}\!=\!30\,$ Ом

• • • • • • • • • • • • • • • • • • • •		
	6C15TI	6C15 ∏-B
Ток накала, мА	440 ± 40 40 ± 12	440±30 40±12
То же в начале характеристики (при $U_c =$		10112
=-15 B), MKA	≪10	<10
Обратный гок сетки, мкА	≪0,3	≤ 0.3
Ток утечки между катодом и подогревате.		
лем, мкА	≪30	≪30
Крутизна характеристики, мА/В	45±11	45 ± 11
То же при $U_{\rm H} = 5.7~{\rm B}$	≥ 25	≥25
Коэффициент усиления	52 ± 16	52 ± 16
Отрицательное напряжение отсечки электронного тока сетки, В	≪1	-1
Входное сопротивление (при $f=60$ МГи),		≼ 1
кОм	3,5	3,5
Эквивалентное сопротивление шумов, кОм	0,1	0,1
Напряжение виброшумов (при $R_a =$	•	-,-
=0,5 кОм), мВ	≤100	<100
Межэлектродные емкости, пФ:		
входная	11 ± 2	11 ± 2
выходная	$1,8\pm0,3$	$1,8\pm0,3$
проходная	4-5	4 -5
катод — подогреватель	6,8-9,5	6,8-9,5
сетка — подогреватель	<0,13	<0,13
Наработка, ч	≥ 1000	≥3000
Критерии оценки:		
обратный ток сетки, мкА	$\leq 1,5$	≤ 1.5
крутизна характеристики, мА/В	<i>≥</i> 2 7	$\geqslant 27$

	6C15∏	6C15∏-E
Напряжение накала, В	5,7—7 150	6—6,6 150
Напряжение между катодом и подогревателем, В	100 52 7,8 0,15 210	100 52 7,8 0,15 210
Устойчивость к внешним воздействиям: ускорение при вибрации g в диапазоне частот, Γ ц ускорение при многократных ударах g ускорение при одиночных ударах g	2,5 10—150 35 —	3 20—600 — 300 100
интервал рабочих температур окружающей среды, °C	От —60 до +70	От —60 до +70

6C17K-B

Триод для усиления напряжения и генерирования колебаний в диапазоне СВЧ.

Оформление — в металлокерамической оболочке, миниатюрное (рис. 1K). Масса 5 г.

200 B Ог 0 до -30В

Основные параметры

Octobring inhance Land								
при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 175$ В, $I_{\rm a} = 10$ мА, $U_{\rm c} = -(0.2 \div 1.3)$ В								
Ток накала								
Коэффициент усиления								
Коэффициент шума (при $f=3000$ МГц) <16.5 дБ Напряжение виброшумов (при $R_a=2$ кОм) <30 мВ								
Выходная мощность (при $\lambda = 10$ см) $\geqslant 100$ мВт								
То же при $U_{\rm H} = 5,7$ В								
входная								
проходная								
Наработка								
выходная мощность								
Предельные эксплуатационные данные								
Напряжение накала								
Напряжение анода								

Напряжение сетки

	$n \cap A \cap$	AMMARIA
41	$\rho \sigma \sigma \sigma$	лжени е

Ток ка Ток се														11 mA 3,5 mA
														2 B _T
Мощно														
Мощно														0,1 B _T
Сопрот	гивлен	ие в	в цег	пи а	нода	a.			٠	•	٠	•		2 кОм
Темпер	атура	ιοδο	лочк	и.										2 00 ℃
Высоко														
	жиме													0,2 Br
Устойч	ивост	ьк	внец	ІНИМ	воз	дей	ств:	иян	M:					,
VC	корені	ие пр	ои в	ибра	ции	в д	иаі	123	он	e	ча	сто	T	
	- 20 0 I													10 g
vei	корені	ие пт	и м	ного	крат	ных	٧Д	ap	ax					150 g
	корені													500 g
	терва.													•
		. p-				• •	• •						Oτ	-60 до $+100$ °C

6С19П, 6С19П-В, 6С19П-ВР

Триоды для работы в качестве регулирующей лампы в электронных стабилизаторах напряжения.

Оформление — в стеклянной оболочке, миниатюрное (для 6С19П, 6С19П-В — рис. 16П, для 6С19П-ВР — рис. 18П). Масса 25 г.

7-586

97

Основные	параметры	O. 11 5	. D
при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 110$	$B, R_{R} = 130$	OM , $U_c = -I$	В
	6C19II	6C19∏-B	€C19Π-BP
Ток накала, А	$1 \pm 0, 1$	1 ± 0.07	1 ± 0.07
Ток анода, мА	95 ± 15	95 ± 15	95 ± 15
То же при $U_{\rm H} = 5,7$ В, мА		≥60	
Обратный ток сетки, мкА	≪3	≪3	≪ 1
Ток утечки:			
между анодом и всеми			
остальными электродами,	0=	~=	
мкА	≤25	≤25	-
между сеткой и всеми			
остальными электродами,	-00	-00	
мкА	≪20	≤20	_
между катодом и подо-	~ EO	-E0	
гревателем, мкА	≪50	≤50	
Крутизна характеристики,	7.5 ± 1.5	$7,5\pm1,5$	$8,3\pm1,5$
MA/B	7,011,0	7,5±1,5 ≥5	0,0±1,0
Внутреннее сопротивление, Ом	$\frac{-}{400 \pm 100}$	420 ± 100	350±100
Напряжение виброшумов (при	100100	4201L 100	000 T 100
$R_a=2$ kO _M), MB	≤ 500	≪200	≪120
Межэлектродные емкости, пФ:	~0 00	~2 00	412 0
входная	6,5	5.75 ± 2.25	6.3 ± 1.9
выходная	$2,5\pm1,5$	2.5 ± 1.5	$2,5\pm1,5$
проходная	8	≤10	≪10
Наработка, ч	≥2000	≥ 1000	≥ 2000
-			

Критерии оценки:		***/	ooonmentue		
изменение тока анода, % . обратный ток сетки, мкА .	≤20 ≤5	<20 <4	_		
Предельные экспл	данные				
	6С1аЦ	€С19П-В	6С19П-ВР		
Напряжение накала, В Напряжение анода, В То же при включении лампы . Напряжение сетки отрицатель-	5,7—6,9 350 500	5,7—6,9 350 500	6—6,6 350 500		
ное, В	1,5—200	1,5—200	1.5—200		
подогревателем, В	250 140	250 140	250 140		
дом, Вт: при $U_a \leqslant 200$ В при $U_a > 200$ В	11 7	11 7	<u>11</u>		
МОм	0,5	0,5	0,1		
°С внешним воз-	250	250	200		
действиям: ускорение при вибрации <i>g</i> в диапазоне частот, Гц	2,5 50	10 20—300	10 5—600		
ускорение при многократ- ных ударах g	12	150	150		
ускорение при одиночных ударах g		300 100	300 100		
тур окружающей среды, °С	От —60 до +70	От —60 до +250	От —60 до +250		

Анодно-сеточные характеристи-

Расчетные предельные значения тока анода и мощности, рассеиваемой анодом, при параллельной работе ламп

<u>.</u>			С	опротивление в цепи катода каждой лампы, Ом											
тель ламп	0	50	100	130	150	200	250	0	50	100	130	150	200	250	
Число параллельно работающих ламп								Мощность, рассенваемая анодом каждой лампы, Вт							
1 2 3 4 5	110 82 73 68 65	110 89 83 79 77	110 94 88 86 86 84	110 96 91 88 87	110 97 92 90 89	110 99 95 93 91	110 100 97 95 94	11 8,2 7,3 6,8 6,5	11 8,9 8,3 7,9 7,7	11 9,4 8,8 8,6 8,6	11 9,6 9,1 8,8 8,7	11 9,7 9,2 9,0 8,9	11 9,9 9,5 9,3 9,1	11 10 9,7 9,5 9,4	

6C20C

Триод высоковольтный для работы в стабилизаторах напряжения схем питания анода цветных кинескопов.

Оформление — в стеклянной оболочке, с октальным цоколем (рис. 12Ц). Масса 80 г.

Основные параметры при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!25$ кВ, $I_{\rm a}\!=\!1$ мА, $U_{\rm c}$ от -6 до -12 В

Ток накала	(200±20) мA ≪1,5 мкA
между сеткой и всеми электродами	≪20 мкА
между катодом и подогревателем	≪50 мкА
Крутизна характеристики (при $I_a = 1$ мA)	$(0.25\pm0.1) \text{ mA/B}$
Коэффициент усиления	2500
Межэлектродные емкости:	
входная	2,5 пФ
выходная	0,7 ηΦ
проходная	≼0,1 пФ
Наработка	≽750 ч
Критерий оценки:	
крутизна характеристики	$> 0.19 \text{ m}\Delta/\text{R}$

Напряжение накала	5,7—6,9 B
Напряжение анода	25 кВ
То же при включении лампы	40 кВ
Напряжение сетки отрицательное	250 B
Напряжение между катодом и подогревателем	225 B
Ток анода	1.5 mA
Мощность, рассенваемая анодом	25 Вт
	0,5 МОм
Сопротивление в цепи сетки	200 °C
Температура баллона лампы	200 C
Устойчивость к внешним воздействиям:	
ускорение при вибрации с частотой 50 Гц	2,5g
ускорение при многократных ударах	12 g
интервал рабочих температур окружающей среды	От —60 до
1 OF TO	+70 °C

6С21Д

Генератор фиксированной частоты для генерирования колебаний высокой частоты. Оформление — в металлостеклянной оболочке, в колебательном контуре (рис. 7Д). Масса 35 г. BB — вывод высокой частоты; T — подстроечный конденсатор; Π — подогреватель; A — анод; C — сетка; K — катод.

Основные параметры

при $U_{\rm n} = 6.3$ В, $U_{\rm a} = 110$ В, $I_{\rm a} = 30$ мА

Ток накала	150—185 мA ≥ 300 мВт ≥ 200 мВт (1782±3) МГц ≥ 250 ч
Критерий оценки: выходная мощность	≽210 мВт
Предельные эксплуатационные данны	ые
Напряжение пакала	200 B
Устойчивость к внешним воздействиям: ускорение при вибрации с частотой 50 Гц интервал рабочих температур окружающей сред	

6С28Б, 6С28Б-В

Триоды для усиления напряжения высокой ча-_ стоты.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 15Б). Масса 5 г.

Основные параметры

ti oo b ti oo b b	
при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!90$ В, $R_{\rm K}\!=\!82$ Ом	(210 + 20) - *
Ток накала	(310±30) мА (11±5) мА
$=$ 0,1 гмОм) . Ток утечки между катодом и подогревателем . Крутизна характеристики . То же при $U_{\rm H}{=}5.7~{\rm B}$	$\leq 0.5 \text{ MKA}$ $\leq 20 \text{ MKA}$ $(17\pm5) \text{ MA/B}$ $\geq 9 \text{ MA/B}$ 40^{+15}_{-10}
Эквивалентное сопротивление шумов Входное сопротивление (при $f=50~{\rm M\Gamma u}$)	200 Ом 10 кОм ≪60 мВ
Межэлектродные емкости:	
входная	6±2 пФ (3,1±1,1) пФ ≪3 пФ ≪7 пФ ≫500 ч
Критерии оценки:	
обратный ток сетки	$\leqslant 2$ MKA $\geqslant 9$ MA/B $\leqslant 35\%$
Предельные эксплуатационные данные	
Напряжение накала Напряжение анода То же при запертой лампе Напряжение сетки отрицательное Напряжение между катодом и подогревателем:	
при положительном потенциале подогревателя . при отрицательном потенциале пологревателя	. 150 B
Ток катода	. 1,3 Br . 0,1 MOM
Температура баллона лампы:	
при нормальной температуре окружающей среды при температуре окружающей среды 200° С	. 170 °C . 250 °C

Устойчивость и	к вне	шним	БОЗД	ейст	виям:							
ускорение	при	вибр	рации	В	диана	азон	e	час	TOT	5-		• •
Ž000 Гц.				٠.								10 g
ускорение	при	MHOI	ократ	пых	удар	ax				٠	•	150 g
ускоренне	при	один	Юнир	х уд	царах					•	•	500 g
ускорение	пост	ннко	oe .							٠	•	100 g
интервал	paőoi	HX T	емпер	атур	окр:	ужа	ЮП	IGU	cpe	ДЫ		От — 3.) до
	_											+200 °C

Анодные характеристики.

Анодно-сеточные характери-

6С29Б, 6С29Б-В

Триоды для усиления напряжения высокой частоты в схемах с заземленной сеткой. Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 15Б). Масса 5 г.

Основные параметры при $U_{n} = 6.3$ В $U_{n} = 90$ В $R_{n} = 82$ Ом

$_{\rm HPH}$ $O_{\rm H} = 0.5$ B, $O_{\rm A} = 50$ B, $N_{\rm R} = 62$ OM	
Ток накала	(310±30) мА
Ток анода	(11±5) mA
Обратный ток сетки (при $U_{\rm c} = -1.3$ В и $R_{\rm c} =$	
=0,1 MO _M)	≪0,5 мкА
Ток утечки между катодом и подогревателем	≪20 мкА
Крутизна характеристики	$(17\pm5) \text{ mA/B}$
To же при $U_{\rm H} = 5.7$ В	>>9 мÁ/В
Коэффициент усиления	40^{+15}_{-10}
Напряжение виброшумов (при $R_a = 0.5$ кОм)	≪60 мВ
Межэлектродные емкости:	
входная	$9.6^{+2.4} \text{ n}\Phi$

выходная	Продолжение (4±1,4) пФ <0,35 пФ <7 пФ ≥500 ч <2 мкА ≥9 мА/В <35%
-	5 7 C O D
Напряжение накала Напряжение анода То же при запертой лампе Напряжение сетки отрицательное Напряжение между катодом и подогревателем: при положительном потенциале подогревателя при отрицательном потенциале подогревателя Ток катода Мощность, рассеиваемая анодом Сопротивление в цепи сетки Температура баллена лампы: при нормальной температуре окружающей среды при температуре окружающей среды 200° С Устойчивость к внешним воздействиям: ускорение при вибрации в диапазоне частот 5—2000 Гц	5,7-6,9 B 120 B 250 B 50 B 100 B 150 B 35 MA 1,3 BT 0,1 MOM 170° C 250° C
ускорение при многократных ударах	150 g 500 g 100 g От-60 до+200° С
стоты. Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 20Б). Масса 4,5 г.	r r r r r r r r r r
Основные параметры при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!50$ В, $U_{\rm c}\!=\!0$	6C31B-P, 6C31B-EP
Ток накала, мА	220 ± 22 40 ± 10
$U_a = 150 \text{ B}, U_c = -15 \text{ B}, \text{ MA} < 2$	≤ 2
Обратный ток сетки (при $U_c = -1$ В), мкА	<0,2 103
	100

Ток утечки между катодом и подогре-	Продолжени е
вателем, мкА ≪20	
Крутизна характеристики, м A/B 18^{+6}_{-5}	18^{+6}_{-5}
Крутизна характеристики при U _н =5,7 В, мА/В	 17±5
Напряжение виброшумов (при Ra=	17.1.0
=2 кОм), мВ	≤ 15
Межэлектродные емкости, $\pi\Phi$: 8 ходная 4.1±0.9	$4,1\pm 1$
выходная	≤ 1.5
проходная	$3,8^{+1}_{-0,8}$
катод — подогреватель, пФ ≤8	≪8
Наработка, ч ≥2000	≥ 5000
Критерии оценки: обратный ток сетки, мкА ≤ 1	≤ 5
обратный ток сетки, мкА $\leqslant 1$ крутизна характеристики, мА/В $\geqslant 10,5$	$\geqslant 10,5$
opy to the company of	
Предельные эксплуатационные данные	
предельные эксплуатационные данные 6С31Б	6C31B-P.
0C91B	6C31B-EP
Напряжение накала, В 5,7-7	6 - 6, 6
Напряжение анода, В	100
То же при мощности, рассеиваемой анодом, менее 1.25 Вт. 180	180
менее 1,25 Вт	350
Напряжение между катодом и подогрева-	
телем, В	200 60
Ток катода, мА	$\frac{60}{2,5}$
Сопротивление в цепи сетки, МОм 1	ī
Температура баллона лампы, °С 220	220
MA Ia 60316-P 60316-P	$I_a MA$
70 $U_{H} = 6.38$ $V_{H} = 6.38$	70-
$U_H = 6.3B$	\$60
60	\$ 1 S
50	
	SIV
40 1	177407
30	30
20	20-
10	10
U_{α} U_{c}	// / / /
n 1n 20 30 40 50 60 70 8 B -8 -6 -	-4 -2 0 2

Анодно-сеточные характеристики.

Анодные характеристики.

Устойчивость к внешним воздействиям: ускорение при вибрации в диапазоне		Продолжени в
частот $5-2000$ Гц g	15	20
ускорение при многократных ударах д	150	150
ускорение при одиночных ударах д	500	500
ускорение постоянное g	100	100
шей среды, °С	От—60 ло—125	От—60 ло—125

6C325

Триод для усиления напряжения низкой частоты.

Оформление -- в стеклянной оболочке, сверхминнатюрное (рис. 18Б). Масса 3,8 г.

Основные параметры

при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!200$ В, $R_{\rm K}\!=\!285$ Ом

Ток накала	(165 ± 20) mA $(3,5\pm1,3)$ mA <0,1 mkA <20 mkA
при $U_{\rm H}\!=\!6.3~{\rm B}$ при $U_{\rm H}\!=\!5.7~{\rm B}$	$(3,5\pm1,3) \text{ MA/B}$ $\geqslant 1,7 \text{ MA/B}$ 0.01-0,1MA/B 100 ± 20
стоте вибрации 50 Гц)	≪1 мВ
входная	(2,8±0,7) пФ (0,65±0,35) пФ ≤1,2 пФ ≤6 пФ ≥2000 ч
обратный ток сетки (при $U_{\rm c}\!=\!-1$ В) крутизна характеристики	$\leq 1 \text{ MKA}$ $\geq 1,7 \text{ MA/B}$

Предельные эксплуатационные данные

		-		
Напряжение накала.				. 5,7-7 B
Напряжение анода .				250 B
то же при запертой л	амие .			300 В
Напряжение между ка	тодом и	подогрева	телем	160 B
Ток катода				10 мА
Мощность, рассеиваем	ая аноле	ОМ		1.5 Br

Сопротивление в цепи сетки	2 МОм 220° С
ускорение при вибрации в диапазоне частот 5—	
2000 Гц	15 g
ускорение при многократных ударах	150 g
ускорение при одиночных ударах	500 g
ускорение постоянное	100 g
интервал рабочих температур окружающей среды	От−60 до+125 °С

Анодные характеристики.

Анодно-сеточные характеристики.

6C33C, 6C33C-B, 6C33C-BP

Триоды для работы в качестве регулирующей лампы в электронных стабилизаторах напряжения.

Оформление — в стеклянной оболочке (рис. 11C). Macca 200 г.

Основные параметры

при $U_{\rm H} = 12,6$	В*	(6,3	B**	$U_{\rm a} = 120$) B, $R_R = 35$	Ом
				6C33C	6C33C-B	6C33C-BP
Ток накала, A: при $U_{\rm H}\!=\!12,\!6$ В при $U_{\rm H}\!=\!6,\!3$ В . Ток анода, мА Обратный ток сетки,	: :		. 6	3,2±0,4 5,6±0,6 640±90 ≤5		3,2±0,4 6,4±0,8 540±90 ≤5

			Продолжени в
	6C33C	6C33C-B	6C33C-BP
Ток утечки, мкА:			
между анодом и остальны- ми электродами между сеткой и остальны-	≪30	€30	
ми электродами	≤20	≤20	12
между катодом и подогревателем	≤ 150	≤ 150	
мА/В	39±11	40 ± 10	39 ± 11
То же при $U_{\rm H}$ =11,3 В Внутреннее сопротивление, Ом	≥24 ≤130	≥ 24 80—120	<u>-</u> ≤ 130
Напряжение виброшумов (при $R_a=2$ кОм), мВ	≤500	≤500	≤500
Межэлектродные емкости, пФ: входная	30±7 10.5±1	30±7 10,5±1	30±7
проходная	31±7	31 ± 7	$10,5\pm 1$ 31 ± 7
между катодом и подогревателем	≤70 ≥1000	<60 ≥750	≤70 ≥2000
Критерии оценки:			
обратный ток сетки, мкА ток анода, мА	≤15 ≥340 ≤30	≤15 ≥340 ≤30	≤15 ≥340 —

^{*} При последовательном включении подогревателей. ** При параллельном включении подогревателей.

Напряжение накала:	
при последовательном включении подогревате-	
лей	11,3—13,9 B
при параллельном включении подогревателей.	
Напряжение анода:	-,,,-
при рассеиваемой мощности свыше 30 Вт	250 B
при рассеиваемой мощности не более 30 Вт	450 B
при включении лампы	600 B
Напряжение сетки отрицательное	
Напряжение между катодом и подогревателем	300 B
Ток анода:	, 4, 6
при работе одного катола	350 мА
при работе одного катода	600 мА
Мощность, рассеиваемая анодом:	0.00 m. 2
при работе одного катода	45 Вт
при работе двух катодов	60 BT
Сопротивление в цепи сетки	0.2 МОм
Температура баллона лампы:	0,2 MOM
	260° C
при нормальной температуре окружающей среды	300° C
при температуре окружающей среды 100° C	300° C

Устойчивость к внешним воздействиям: ускорение при вибрации <i>д</i> в диапазоне частот, Гц.	6C33C	6C33C-B	6C33C-BP
	4	6	5
	10—250	10—300	5—600
ускорение при многократных ударах g	35	150	40
ускорение при одиночных		500	500
ударах g		100	100
интервал рабочих температур окружающей среды, °C	От —60	От —60	От —10
	до +100	до +100	ло +55

Предельные значения тока анода и мощности, рассеиваемой анодом, при параллельной работе ламп

або- ламп	Сопротивление в цепи катода каждой лампы, Ом													
** O	0	10	20	30	40	50	70	0	10	20	30	40	50	70
Число п лельно ₁ тающих	Ток анода каждой лампы, мА							Мощность, ра сенваемая анодом каждой лампы, Вт						
1 2 3 4 5 6 8 10 12	600 425 364 338 320 308 294 285 280	600 473 428 410 396 388 377 371 366	600 499 464 448 439 432 424 418 416	600 517 487 475 468 461 454 450 448	600 529 504 495 486 482 476 472 471	600 539 518 511 502 498 94 90 487	600 552 535 528 523 521 516 512 511	60 42,5 36,4 33,3 32,1 30,9 29,4 28,6 28,0	60 47,2 42,8 40,8 39,6 38,7 37,7 37,0 36,6	60 50,0 46,5 45,0 44,0 43,3 42,5 42,0 41,6	60 51.7 48,7 47,6 46,7 46,2 45,5 45,1 44,8	60 53.0 50.5 49.5 48.8 48.3 47.8 47.4 47.1	60 53,9 51,8 50,8 50,2 49,8 49,4 49,0 48,8	60 55,0 53,4 52,8 51,9 51,5 51,5

6C34A, 6C34A-B

Триоды для усиления напряжения низкой частоты и генерирования колебаний высокой частоты.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 7Б). Масса 2,5 г.

Основные параметры

при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!100$ В, $R_{\rm K}\!=\!120$ Ом

Ток накала	$(8,5\pm2,5) \text{ MA}$ < 0,2 MKA < 20 MKA $(4,6\pm1,2) \text{ MA/B}$ $\ge 2,8 \text{ MA/B}$
То же при $U_{\rm H}\!=\!5,7$ В	25 ± 5

Межэлектродные емкости: входная (2±0,6) пФ
входная
Критерии оценки:
обратный ток сетки
Предельные эксплуатационные данные
Напряжение накала
ускорение при вибрации в диапазоне частот 10— 2000 Гц

Анодные характеристики.

Анодно-сеточные харак-

6C35A, 6C35A-B

Триоды для усиления напряжения низкой частоты и генерирования колебаний высокой частоты.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 7Б). Масса 2,5 г.

Основные параметры $\text{при } U_{\rm H}\!=\!6.3 \; \text{B}, \; U_{\rm a}\!=\!200 \; \text{B}, \; R_{\rm K}\!=\!380 \; \text{Om}$

Ток накала	:		< 20 MRA
входная выходная			$(2 \pm 0.8) \Pi \Phi$ $(2.4 \pm 0.9) \Pi \Phi$ $\leq 1.7 \Pi \Phi$
проходная			
обратный ток сетки	:	• • • •	$\leqslant 1 \text{ MKA}$ $\geqslant 2.5 \text{ MA/B}$ $\leqslant \frac{+30}{-40} \%$
Предельные эксплуатационные	да	нны	e
Предельные эксплуатационные Напряжение накала Напряжение анода То же при запертой лампе Напряжение сетки отрицательное Напряжение между катодом и подогревателенток катола		 	5,7—6,9 B 300 B 350 B 30 B 150 B
Напряжение накала			5,7—6,9 B 300 B 350 B 30 B
Напряжение накала	и		5,7-6,9 B 300 B 350 B 30 B 150 B 7 MA 0,9 BT 1 MOM

От —60 до +200° С

Анодные характеристики.

Анодно-сеточные характеристики.

6C36K

Триод для усиления и генерирования СВЧ колебаний в схемах с общей сеткой в автогенераторах при непрерывной и импульсной генерации и в умножителях частоты в диапазоне частот 8300—10 300 МГц.

Оформление — в металлокерамической оболочке (рис. 2K). Масса 10 г.

при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!250$ В, $I_{\rm a}\!=\!10$ мА, $U_{\rm c}\!=\!-$	-(0,2÷1,5) B
Ток накала	$(320\pm30) \text{ MA}$ $\leqslant 2 \text{ MKA}$ $12\4 \text{ MA/B}$ $\geqslant 15 \text{ MBT}$ $\geqslant 10 \text{ MBT}$ $\leqslant 50 \text{ MB}$
Межэлектродные емкости:	
сетка — анод	$(2\pm0,4)$ пФ $(3\pm0,6)$ пФ < 0,02 пФ
Наработка	≽ 100 ч
Критерий оценки:	
выходная мощность	≥ 12 мВт

Напряжение накала:	
в непрерывном режиме	6-6,6B
в импульсном режиме	6,9-7,6B
Напряжение анода	300 B
Напряжение сетки отрицательное	30 B
Ток анода	10 мА
Ток сетки	1 MA
Мощность, рассеиваемая анодом	3 Bτ
Мощность, рассеиваемая сеткой	0,1 BT
Высокочастотная мощность, подводимая к сетке	
Сопротивление в цепи анода	2 кОм
Длительность импульса	2 мкс 1000
	200° G
Температура баллона лампы	200 G
Устойчивость к внешним воздействиям;	
ускорение при вибрации в диапазоне частот	
5—600 Гц	10 g
ускорение при многократных ударах	150 g
ускорение при одиночных ударах	500 g
ускорение постоянное	100 g
интервал рабочих температур окружающей	0- 60
среды	От −60 до +100° С

6С37Б

Триод для усиления и генерирования импульсного напряжения. Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 13Б). Масса 5 г.

• •	
при $U_{\rm H} = 6.3$ В, $U_{\rm A} = 80$ В, $R_{\rm K} = 43$ С	Эм
Ток накала	(440±35) мА (40±10) мА ≪ 0,3 мкА
Ток эмиссии в импульсе (при $U_{a,umn} = 150 \text{ B}$,	
$U_{c.BM\Pi} = 150 \text{ B})$	$\geqslant 2.5 \mathrm{A}$
Ток утечки между катодом и подогревателем	≼ 30 мкА
Крутизна характеристики	12-16,5 mA/B
То же при $U_{\rm H} = 5.7$ В	> 11 mA/B
Коэффициент усиления	13 ± 3
Напряжение сетки отрицательное, запирающее .	≤ 12 B
Эквивалентное сопротивление шумов	250 Ом
Напряжение виброшумов (при $\tilde{R}_n = 0.5$ кОм)	< 150 mB

Межэлектродные емкости:	,
входная	$(6\pm1,2)$ πΦ $(4,7\pm0,9)$ πΦ $(3,9\pm0,7)$ πΦ < 10 πΦ
Наработка	≥ 500 ч
Topin odenku.	
обратный ток сетки (при $U_{ m c}\!=\!-2$ В) крутизна характеристики	$\leq 1 \text{ MKA}$ $\geq 9 \text{ MA/B}$
Предельные эксплуатационные данные	e
Напряжение накала . Напряжение анода в статическом режиме и режиме у ления импульсов отрицательной полярности . Напряжение источника питания анода в режиме б кинг-генератора и усилителя импульсов положите ной полярности (при остаточном $U_a \leqslant 150$ В) Напряжение между катодом и подогревателем) Ток катода:	5,7—7 В си- 120 В ло- ль- 300 В 150 В
среднее значение	
при автоматическом смещении при фиксированном смещении	i —
600 Гц	. 10g . 75g . 300g
6С40П	A

ひしせひほ

Триод для стабилизации высокого напряжения в схемах питания анода электронно-лучевых трубок.

Оформление — в стеклянной оболочке, миниатюрное (рис. 24П). Масса 19 г.

при	$U_{\rm H}=6,3$	3 B,	U_{a}	= 20	кE	3, <i>L</i>	/ c =	=	(10),5	÷1	7,5	5)	B. $I_a = 300 \text{ MKA}$
Ток на	кала .													170±15 мА
Обрать	ный ток	сетн	и.											≤ 0.5 MK \

Продолжение

Ток утечки:	
между сеткой и всеми электродами между катодом и подогревателем	. ≤50 MKA . (0,2±0,08) MA/B . 1400±600
Напряжение сетки отрицательное, запирающее	. 30 B
Межэлектродные емкости:	
входная	. 2,5 πΦ . 0,5 πΦ . ≪0,05 πΦ . ≫1500 ч
Критерий оценки:	
крутизна характеристики	. $\geqslant 0$, 1 mA/B $\leqslant 2$ mkA
Предельные эксплуатационные да	анные
Напряжение накала	5,7—6,9 В 20 кВ 30 кВ
Напряжение сетки отрицательное:	
предельные значения запирающее Напряжение между катодом и подогревателем Ток анода	<30 В 225 В 500 мкА 6 Вт 200 °C

Анодно-сеточные характеристики.

6C41C

Триод для работы в качестве регулирующей лампы в электронных стабилизаторах напряжения. Оформление — в стеклянной оболочке, бесцокольное (рис. 7С). Масса 100 г.

при $U_{\rm H}{=}6,3$ В, $U_{\rm a}{=}90$ В, $R_{\rm K}$ Ток накала	$\begin{array}{cccc} . & . & . & . & . & . & . & . & . & . $
Межэлектродные емкости: входная	(15±5) ΠΦ < 45 πΦ ≥ 1250 ч ≥ 150 мА
Предельные эксплуатационны Напряжение накала	5,7—6,9 B

^{*} При работе лампы в качестве регулирующей в схемах электронных стабилизаторов напряжения сопротивление в цепи сетки, являющееся одновременно нагрузкой в цепи анода управляющей лампы, не должно превышать 1,5 МОм.

Предельные значения тока анода и мощности, рассенваемой анодом, при параллельной работе ламп

Число	Ì	Con	ротивлен	ие в цег	пи катод	а каждо	й лампы	, Ом	
парал- лельно	0	10	20	30	40	50	60	70	80
работаю- щих ламп Ток анода каждой лампы, мА						мА		•	
1 2 3 4 5 6 7 8	300 210 180 164 156 150 145 142 140	300 225 200 187 181 175 173 169 167	300 235 214 204 197 192 189 187	300 243 225 215 210 206 203 201 200	300 250 234 225 220 217 215 212 211	300 255 240 233 228 226 223 222 220	300 259 246 239 234 232 230 229 228	300 262 250 243 240 237 236 234 233	300 265 254 248 248 245 241 240 239
10	138	165	184	198	210	220	227	232	238

Продолжение

Число		Сопротивление в цепи катода каждой лампы, Ом										
парал- лельно	0	10	20	30	40	50	60	70	80			
работаю- щих ламп		Мощность, рассеиваемая анодом каждой лампы, Вт										
1 2 3 4 5 6 7 8 9	25 17,5 15 13,7 13 12,5 12,1 11,8 11,6 11,5	25 18,5 16,7 15,6 15 14,6 14,2 14,1 13,9 13,3	25 19,5 17,8 17 16,4 16 15,8 15,6 15,5	25 20,3 18,7 17,9 17,4 17,1 16,9 16,8 16,6	25 20,8 19,4 18,8 18,3 18,1 17,9 17,7 17,6 17,5	25 21,2 20 19,4 19 18,8 18,6 18,5 18,4 18,3	25 21,6 20,5 19,9 19,6 19,3 19,2 19,1 19	25 21,8 20,8 20,3 20 19,7 19,6 19,5 19,4 19,3	25 22,1 21,2 20,7 20,4 20,2 20,1 20 19,9 19,8			

6С44Д

Триод для генерирования и усиления колебаний в дециметровом диапазоне волн. Оформление — в металлостеклянной оболочке (рис. 4Д). Масса 10 г.

Основные параметры	
при $U_{\rm H}=6,3$ В, $U_{\rm a}=250$ В, $U_{\rm c}=-4$ В Ток накала	Вт
Напряжение виброшумов (при $R_a = 2$ кОм) \leqslant 30 Межэлектродные емкости: входная) мВ 5±0,35) пФ
выходная <0,	1 пФ 5±0,25) пФ 5 пФ
Критерий оценки: колебательная мощность ≥ 3,	5 Вт
Предельные эксплуатационные данные	J DI
Напряжение накала	35 B
Ток катода: среднее значение в импульсе* Ток сетки Мощность, рассеиваемая анодом ** Частота генерирования Температура баллона в области анодного спая.	80 MA 3 A 30 MA 8 Bτ 3000 MΓ _H 185 °C
Устойчивость к внешним воздействиям: ускорение при вибрации в диапазоне частот 10— 2000 Гц	15 g 150 g 500 g 150 g От —60 до +185 °С
6C45П-F	α

6C4511-E

Триод для усиления напряжения высокой частоты в широкополосных усилителях. Оформление — в стеклянной оболочке, миниатюрное (рис. 11П). Масса 20 г.

^{*} При $U_a = 100$ В, f = 50 Гц, $\tau = 10$ мкс. ** С радиатором.

при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!150$ В, $R_{\rm K}\!=\!30$ Ом Ток накала	·
Межэлектродные емкости: $\begin{array}{cccccccccccccccccccccccccccccccccccc$	a.
Предельные эксплуатационные данные Напряжение накала	
Устойчивость к внешним воздействиям: ускорение при вибрации в диапазоне частот 5— 600 Гц	C

Аподные характеристики.

Анодно-сеточные характеристики.

6С46Г-В

Триод для работы в качестве регулирующей лампы в электронных стабилизаторах напряжения.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 17Б). Масса 7 г.

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 42$ В, $U_{\rm c} = -1$	В
Ток накала	(500±50) MA
Ток анода	(60 ± 15) MA
Обратный ток сетки	≪0,4 мкА
Ток утечки между катодом и подогревателем	≪40 мкА
Крутизна характеристики	20^{+10}_{-5} мA/B
То же при $U_{\rm H} = 5.7$ В	≥ 12 mA/B
Коэффициент усиления	7±2
Напряжение виброшумов (при $R_a = 0.5$ кОм)	≼75 мВ
Межэлектродные емкости:	
входная	6,5 пФ
выходная	2,2 пФ
проходная	<7,5 πΦ
катод — подогреватель	≪14 пФ
Наработка	> 500 ч
Критерии оценки:	
обратный ток сетки	≪2 мкА
ток анода	≽35 мА
изменение тока анода	<35%

Напряжение накала	5,7—7 B 250 B 330 B 75 B 150 B 100 MA 4,5 Br 0,25 MOM
Температура баллона лампы: при нормальной температуре окружающей среды при температуре окружающей среды 200° С Устойчивость к внешним воздействиям:	170 °C 220 °C
ускорение при вибрации в диапазоне частот 10—2000 Гц	10 g 150 g 500 g 100 g От —60 до +200 °C

Предельные значения тока анода и мощности, рассеиваемой анодом, при параллельной работе ламп

рал- 1або- ламп		Co	против	ление	в цепі	и като	да ка	ждой	ламп	ы, Ом		
	0	60	120	180	240	300	0	60	120	180	240	300
Число па лельно р тающих	Ток анода каждой ламны, мА					Мощность, расссенваемая анодом каждой лампы, Вт						
1 2 3 4 5	60 53 52 51 48	60 53 52 51 48	60 53 52 51 49	60 55 53 52 50	60 55 53 52 50	60 55 53 52 50	3,6 3,2 3,1 3 2,9	3,6 3,2 3,1 3 2,9	3,6 3,2 3,1 3 2,9	3,6 3,3 3,2 3,1 3	3,6 3,3 3,2 3,1 3	3,6 3,3 3,2 3,1

6С48Д

Триод для усиления напряжения в дециметровом диапазоне волн.

Оформление — в металлостеклянной оболочке

(рис. 2Д). Масса 9 г.

основные параметры	
при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 50$ В, $U_{\rm c} = 0$	
Ток накала	5-25 мА 5-20 мА 5-8 мА 6,5 мкА 2,5 мкА 3,5 мА/В 3 мА/В 5-50 18 дБ 8 дБ 30 мВ
Межэлектродные емкости:	
выходная	(3 пФ (0,05 пФ (2,1 пФ (500 ч
коэффициент усиления динамический	1,5 мА/В 15 дБ 11 дБ
Предельные эксплуатационные данные	
Напряжение накала Напряжение анода Напряжение между катодом и подогревателем Ток катода Мощность, рассеиваемая анодом Мощность, рассеиваемая сеткой Температура баллона лампы в области анодного спая Устойчивость к внешним воздействиям:	5,7—7 B 150 B 50 B 10 MA 3 BT 0,15 BT 170 °C
ускорение при вибрации в диапазоне частот 5—2000 Гц	10 g 150 g 500 g 100 g От — 60 до +125°C
6С50Д	+125 °C A

Триод для работы в качестве автогенератора с сеточной и анодной модуляцией в дециметровом диапазоне волн.

Оформление — в металлостеклянной оболочке (рис. 3Д). Масса 10 г.

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 250$ В, $U_{\rm c} = -4$ В	
Ток накала	(360 ± 40) mA (25 ± 9) mA $< 0,3$ mkA < 25 mkA $< 3,5$ mA/B $< 36,5\pm8,5$
	≥500 Вт <50 мВ
входная	(4±0,5) πΦ <0,12 πΦ 1,2-2,3 πΦ <7 πΦ ≥ 500 q
	≽350 Вт
Предельные эксплуатационные данные	
Bunoguan moduloss b hamywood	5,7—7 B 1500 B 2000 B 200 B 75 B 3 A 8 Br 0,5 Br 185° C

6C51H, 6C51H-B

Триоды для усиления напряжения и генерирования колебаний.

Оформление — в металлокерамической оболочке, сверхминиатюрное (рис. 1H). Масса 3 г.

Основные параметры при $U_{\rm H} = 6.3$ В. $U_{\rm A} = 80$ В. $R_{\rm K} = 130$ О

при $U_{\rm H}$ =6,3 B, $U_{\rm a}$ =80 B, $R_{\rm i}$	$\kappa = 130 \text{ Om}$	
	€C51H	6C51H-B
Ток накала, мА	130 ± 20 $9,5\pm2,8$	130 ± 20 $10\pm2,5$
—— / В), мкА	<u>≤</u> 50	≤50 ≤0,1
Ток утечки между катодом и подогревателем, мк Λ		
Коэффициент усиления	32 ± 12	$30 \frac{+15}{-10}$
Входное сопротивление (при $f = 60 \text{ M}\Gamma\text{u}$), кОм	≥7	—10 ≥7
Эквивалентное сопротивление шумов, кОм Напряжение виброшумов (при $R_a = 2$ кОм).		€0,4
мВ	≪40	≪40
М ежэлектродные емкости, пФ:		
входная	$4,2\pm1,3$ $1,8\pm0,6$ $\leq 2,5$ $1,4\pm0,4$	$4,35\pm0,95$ $2,2\pm0,6$ $1,9\pm0,7$ $1,4\pm0,4$
Наработка, ч	≥5000	≥5000
Критерии оценки:		
обратный ток сетки, мкА крутизна характеристики, мА/В	 ≥5,5	$\leq 1,5$ ≥ 7
изменение крутизны характеристики, %		
Предельные эксплуатационны	е даниые	
Напряжение накала	5,7— 120 B 330 B 55 B	7 B
телем	100 B 15 MA 1,2 B: 0,2 B	r r
Сопротивление в цепи сетки	1 MO _M 250 °C	
Устойчивость к внешним воздействиям:	6C51H	6C51H-B
ускорение при вибрации g в диапазоне частот, Гц	2,5 10—150 35 —	20 5—5000 150 1000 150
жающей среды, °С		От —60 до +200

Анодно-сеточные характеристи-

6C52H, 6C52H-B

Триоды для усиления напряжения и генерирования колебаний.

Оформление — в металлокерамической оболочке, сверхминиатюрное (рис. 1H). Масса 3 г.

Основные параметры

при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!120$ В, $R_{\rm K}\!=\!130$ Ом

	6C52H	6C52H-B
Ток накала, мА	130 ± 20	130±20
Ток анода, мА	$8 \pm 2, 5$	$8 \pm 2,5$
То же в начале характеристики (при $U_c =$		•
=7 B), MKA	≪50	≪50
Обратный ток сетки, мкА	$\leq 0,1$	$\leq 0,1$
Ток утечки между катодом и подогревателем,	•	·
мкА	≪20	≤20
Крутизна характеристики, мА/В	≥7	10 ± 2.5
To же при $U_{\rm H} = 5.7 \; {\rm B}$		$\geqslant 6.5$
Коэффициент усиления	64 ± 20	60 ± 15
Входное сопротивление (при $f = 60 \text{МГц}$), кОм	≥6	≥6
Эквивалентное сопротивление шумов, кОм	_	≤ 0.4
Напряжение виброшумов (при $R_a = 2$ кОм), мВ	≪40	≪40
, , , , , , , , , , , , , , , , , , ,		

Межэлектродные емкости, пФ:	Продолжени е
входная	$\begin{array}{cccc} 4,2\pm1,3 & 4,35\pm0,95 \\ 1,9\pm0,6 & 2,1\pm0,7 \\ <1,3 & 1\pm0,3 \\ 1,4\pm0,4 & 1,4\pm0,4 \\ > 5000 & >5000 \end{array}$
обратный ток сетки, мкА	— ≪1,5 ≥5 ≥6,5 — ≪35
Предельные эксплуатационные	данные
Напряжение накала Напряжение анода То же при запертой лампе Напряжение сетки отрицательное Напряжение между катодом и подогревателем Ток катода Мощность, рассенваемая анодом Мощность, рассенваемая сеткой Сопротивление в цепи сетки Температура баллона лампы	5,7—7 B 120 B 330 B 55 B 100 B 15 MA 1,2 BT 0,2 BT 1 MOM 250 °C
в диапазоне частот, Гц	- 1000
14 60524-8 11 12	\$\frac{100211-10}{14} \times \frac{11}{14}

Анодно-сеточные характери-стики.

6C53H, 6C53H-B

Триоды для усиления напряжения высокой частоты и генерирования колебаний в дециметровом диапазоне волн в схемах с общей сеткой.

Оформление — в металлокерамической оболочке, сверхминиатюрное (рис. 3Н). Масса

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 120$ В, $R_{\rm H}$	=68 Ом	
	6C53H	6C53H · B
Ток накала, мА	130±30 9±3	$130\pm 20 \\ 9\pm 2,5$
То же в начале характеристики (при $U_c = -5$ В), мкА	$ \leqslant 50 $ $ \leqslant 0,1 $	≤50 ≤0,1
лем, мкА	<20 ≥8,5 	
Входное сопротивление (при $f=60$ МГц), кОм	≥ 10 —	≥10 <0,5
мВ	≪40	≪40
Межэлектродные емкости, пФ:		
входная	$4,2\pm 1,3$ $1,5\pm 0,5$ <0,07 $2,5\pm 0,7$ >5000	$6,75\pm0,75$ $1,5\pm0,5$ <0,05 $2,5\pm0,5$ >2000
Критерии оценки:		
обратный ток сетки, мкА крутизна характеристики, мА/В	$\frac{-}{\geqslant 6,5}$	≤ 1.5 ≥ 8
изменение крутизны характеристики, %	_	$< \frac{+30}{-35}$
Предельные эксплуатационны	е данные	
Напряжение накала	. 1201 . 3301 . 551 . 1001 . 15 M. . 1,21 . 0,21	B B B A A 3r 3r
- conneparite a consiste a consis		-

Устойчивость к внешним воздействиям:

	6C53H	6 C 53H-B
ускорение при вибрации д	2,5	20
в диапазоне частот, Гц	10-150	55000
ускорение при многократных ударах g .	35	150
ускорение при одиночных ударах д	****	1000
ускорение постоянное д		150
интервал рабочих температур окружаю-		
шей среды, °С	От -60 до +125	От -60 до $+200$

Анодные характеристики.

Анодно-сеточные характери-

6С56П

Трнод для работы в качестве регулирующей лампы в электронных стабилизаторах напряжения.

Оформление — в стеклянной оболочке, миниатюрное (рис. 19П). Масса 25 г.

	при	U	'E=	6,3	В,	U	/ _{a=}	= 1	10	В,	U	_c ==		7	В,	Rĸ	— (130 Ом
Ток	накала																	$(1\pm0,07)$ A
1 OK	анода																	(95 + 15) MA
Kov	атный то Гизна ха	OK IDS	сет Вкте	KH DHC	Тин	ги	•	•	٠	٠	•	٠	•	•	٠	•	•	≪3 MKA (85±13) MΔ/B

11 podomicina
Напряжение сетки отрицательное, запирающее $<250\mathrm{B}$ Внутреннее сопротивление
входная 2,5—9 пФ выходная 1,5—8,5 пФ проходная ≪ 17 пФ Наработка > 500 ч Критерии оценки: ≪ 4 мкА изменение тока анода ≪ 20 %
Предельные эксплуатационные данные Напряжение накала
Напряжение анода:
при мощности, рассеиваемой анодом, до 7 Вт
ускорение при вибрации в диапазоне частот 5— 2500 Гц

Предельные средние значения тока анода и мощности, рассеиваемой анодом, при параллельной работе ламп

ламп ламп			Co	прот	ивлен	ие в	цепи	катод	а каж	дой л	тампы	, Ом		
	0	50	100	130	150	200	250	0	50	100	130	150	200	250
число в лельно тающих	To	ж ано	да к	аж до	й лам	(пы, 1	мА	Mo	ощ нос к	ть, ра аждоі	оссеив Нами	аемая пы, В	анод Т	ом
1 2 3 4 5	110 82 73 68 65	110 89 83 79 77	110 94 88 86 86 84	110 96 91 88 87	110 97 92 90 89	110 99 95 93 91	110 100 97 95 94	11 8,2 7,3 6,8 6,5	8,3 7,9	8,8	9,1	9,2	9,5 9,3	

Анодные характеристики.

Анодно-сеточные характеристи-

6C58∏

Триод высокочастотный для широкополосного усиления в схемах с заземленным катодом. Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 15 г.

Основные параметры при $U_{\rm B}\!=\!6,\!3$ В, $U_{\rm a}\!=\!150$ В, $R_{\rm K}\!=\!51$ Ом

Крутизна характеристики	<0,3 MKA <20 MKA 36 MA/B* 64±18 2,6 KOM
• • • • • • • • • • • • • • • • • • • •	$(7,5\pm1,5) \pi \Phi$
выходная	$(1,15\pm0,25) \text{n}\Phi$
проходная	≪2πΦ
катод — подогреватель	<7 пФ
Наработка	≽ 1500 વ
Критерии оценки:	
крутизна характеристики	≥21 мА/В ≪1мкА

^{*} Не менее 26 мА/В.

Hanp Hanp Hanp In	яжение ке при яжение яжение при пол при отр	ано запе сеті жеме межоп жощате	да ртой ки от кду гельн ельно	. лаг гриц кат юм	мпе цате. одог пот поте	льн м и енц	ое и г иа	10Д ле	torj no	• рев одо	атогре	еле ева	те. тел			.5,7—7 B .160 B .330 B .50 B
Tok 1	катода	сред	ний			•				•		•				45 mA
мощ	ность, ј	paccei	ваем	иая	анод	цом	:									
a	осолют	гная	пред	елы	ная і	*	•	٠	•	•	•	•	•	•	٠	.5,7 Br
~ c	редняя	расч	етна	я ₹ .			•	٠	•	•	٠	٠		٠	•	.4 Br
Сопр	отивлеі	не в	цеп	и се	тки	**		•	•							.150 кОм
Инте	рвал р	абочи	х те	мпе	рату	уp	OK	py:	жа	ЮП	ιей	cj	ред	Ы	•	.От —60 до+70°C

^{*} См. с. 28 справочника.

^{**} Определяется по формуле $R_{\rm C} = (50 + 1800 R_{\rm K})$ кОм.

Анодные характеристики.

Анодно-сеточные характеристи-

6С59П

Триод высокочастотный для широкополосного усиления в схемах с заземленной сеткой.

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 15 г.

при $U_{\rm H}$ =6,3 В, $U_{\rm a}$ =150 В, $R_{\rm K}$ =51 Ом

Ток накала	. (300±25) мA
Ток анола	.(2/±11) MA
To we B Hayane Xadakteductuku (IIDU $U_c = -0.0$ D)	. < 20 MKA
Обратный ток сетки (при $U_c = -2$ В)	.≪0,3 MKA
Ток утечки между катодом и подогревателем	.≪20 мкА
Крутизна характеристики	.36мА/В*
Коэффициент усиления	.02±18
Эквивалентное сопротивление шумов	.110 OM
Напряжение виброшумов (при $R_a = 0.5$ кОм)	. ≪100 мВ
Межэлектролные емкости:	
входная кандоха	$.(12,3\pm1.8) \text{ n}\Phi$
проходная	. 0,0 114
	. ~
Наработка	.≥1500 q
Критерии долговечности:	
крутизна характеристики	
обратный ток сетки	· ≤ 1mkA

^{*} Не менее 26 мА/В.

Предельные эксплуатационные данные

Напряжение накала	.5,77 B
Напряжение анода	.160 B
То же при запертой лампе	.330 B
Напряжение сетки отрицательное	.50 B
Напряжение между катодом и подогревателем:	
при положительном потенциале подогревателя.	.100 B
	.160 B
Ток анода средний	.45 мА
Мощность, рассеиваемая анодом:	
	.5,7 Br
средняя расчетная *	.4 Br
Сопротивление в цепи сетки **	
Интервал рабочих температур окружающей среды .	.Or —60
	до +70°C

^{*} См. с. 28 справочника.

^{**} Определяется по формуле $R_{\rm C} = (50 + 1800 R_{\rm K})$ кОм.

Анодные характеристики.

Анодно-сеточные характери-

6C62H

Триод для усиления слабых сигналов. Оформление — в металлокерамической оболочке, сверхминиатюрное (рис. 2H). Масса 3 г.

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 120$ В
Ток накала
Крутизна характеристики
Коэффициент усиления динамический (при $U_{a.n.c.} = -200$ В $P_{a.n.c.} = -200$ В $P_$
= 200 B, R_a = 220 KOM, R_c = 1 MOM, f = 1000 $\Gamma_{\rm H}$, $U_{\rm BX}$ = $5 \div 10$ MB)
Напряжение низкочастотных шумов (при $U_{\rm c}=$
$=-0.4 \text{ B}, R_a=1.5 \text{ KOM})$
Напряжение виброшумов (при $R_{\rm a}{=}2$ кОм) ${<}$ 50 мВ Межэлектродные емкости:
входная
выходная
проходная
Критерий оценки:
коэффициент усиления динамический ≥70

Напряжение накала		.5,7-7 B
Напряжение анода		.200 D
То же при запертой лампе		.330 B
Напряжение сетки отрицательное	٠	, co B
Напряжение между катодом и подогревателем .		.100 B
Ток катода	٠	.15 MA
Мощность, рассенваемая анодом	٠	.1,4 DT
Мощность, рассенваемая сеткой	٠	10 MOM
Сопротивление в цени сетки	•	250°C
Интервал рабочих температур окружающей среды	•	.От —60
rintepaut pass in temopalije supjinatemen spen	•	до +125°C

Анодные характеристики.

Анодно-сеточные характеристики.

6C63H

Триод низковольтный, экономичный, для работы в универсальной радиоаппаратуре. Оформление — в металлокерамической оболочке, сверхминиатюрное (рис. 1H). Масса 3 г.

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 27$ В, $R_{\rm K} = 130$ Ом

Ток накала
Крутизна характеристики 8 $^{+2}_{-1,5}$ мА/В
Коэффициент усиления
проходная
Нараоотка
Предельные эксплуатационные данные
Напряжение накала .5,7-7 В Напряжение анода .100 В То же при запертой лампе .300 В
Напряжение между катодом и подогревателем

6C65H

Триод для работы в универсальной радиоаппаратуре. Оформление — в металлокерамиче-

Оформление — в металлокерамической оболочке, сверхминиатюрное (рис. 7H). Масса 5 г.

при $U_{\rm H} = 6.3$ В, $U_{\rm A} = 150$ В и $R_{\rm H} = 39$ Ом

Ток накала	
Ток анода	
Ток анода при. Uc=2,5 В	
Обратный ток сетки (при $U_c = -1.5$ В и $R_c =$	
=0,5 MOM)	
Кругизна характеристики	
Входное сопротивление	
Эквивалентное сопротивление внутриламповых шу-	
MOB	M
Напряжение виброшумов (при $R_a=2$ кОм) <80 мВ	
Межэлектродные емкости:	
входная	
выходная	
проходная	
Критерии оценки: обратный ток сетки	
крутизна характеристики ≥9.6 мА/В	
ablanga valantchuctuur t i i i i i i t toolo male	
Предельные эксплуатационные данные	
Напряжение накала	
Напряжение анода	
То же при запертой лампе	
Ток катода	
Мощность, рассеиваемая анодом	
Мощность, рассеиваемая сеткой	
Сопротивление в цепи сетки	
Температура баллона	
Устойчивость к внешним воздействиям;	
ускорение при вибрации в диапазоне частот 5—	
2500 Гц	
ускорение при многократных ударах	
ускорение при одиночных ударах	
ускорение постоянное	
интервал рабочих температур окружающей среды .От —60 по +200°G	

Анодно-сеточные характери-

Анодные характеристики.

6С66П

Триод для работы в оконечных каскадах усилителей сигналов в диапазоне частот от 0 до 20 МГц в схемах стабилизации.

Оформление — в стеклянной оболочке, миниатюрное (рис. 22П). Масса 25 г.

при $U_{\rm H}$ =6,3 В, $U_{\rm a}$ =150 В, $R_{\rm K}$ =120 Ом
Ток накала
Ток анода в динамическом режиме (при $U_a = 260$ B,
$U_c = 0$ и $R_a = 0.8$ кОм)
Обратный ток сетки
Ток утечки катод — подогреватель при $U_{\text{к. n}} = 200 \text{ B}$ < 20 мкА Крутизна характеристики
Коэффициент усиления
Межэлектродные емкости:
входная
выходная
проходная
Наработка
ток анода
крутизна характеристики

Напряжение накала	.5,7-7,0 B
напряжение анода	.200 D
то же при запертои лампе.	.000 B
Напряжение сетки отрицательное	.100 B
Напряжение между катодом и подогревателем	•
	,500 B
Ток катода	. 3 00 м A
Мощность, рассеиваемая анодом:	00 D -
при кратковременной работе (менее 2 ч)	.22 BT
при длительной работе	, 10 DT
Сопротивление в цепи сетки	.0,1 MOM
Температура оаллона лампы	.500 6
Устойчивость к внешним воздействиям:	90 a
ускорение в диапазоне частот 5-2000 Гц	.150 g
Jenspenne upu massanpun Janpan	.500 g
ускорение при одиночных ударах	
интервал рабочих температур окружающей среды	От - 60
интерван рассчих температур окружающей средш	до +125°G

3.2. ТРИОДЫ ДВОЙНЫЕ

6Н1П, 6Н1П-ВИ, 6Н1П-ЕВ

Триоды двойные для усиления напряжения низкой частоты.

Оформление — в стеклянной оболочке, миниатюрные (рис. 10П). Macca 15 г.

Основные параметры при $U_{\rm H}\!=\!6,3\,$ В, $U_a\!=\!250\,$ В, $R_{\rm K}\!=\!600\,$ Ом

Наименование	6Н1П	6Н1П-ВИ	6Н1 П-ЕВ
Ток накала, мА	1	600±50 7,5±1,5	600±50 7,5±1,5
То же в начале характеристики (при $U_c\!=\!-15$ В), мкА . Обратный ток сетки, мкА	<u>-</u> ≼1	<10 <0,5	<10 <0,2

Наименование	6Н1П	6Н1П-ВИ	6Н1П-ЕВ
Ток утечки между катодом и подогревателем, мкА	≼ 15	<15	≪12
Ток эмиссии катода в импульсе (при $U_{a.\text{км}\pi} = 150$ В, $\tau = 1 \div 2$ мкс, $f = 50$ Гц), A		≥2	-
Крутизна характеристики, м A/B	4,5±1	4,45±0,65	$4,5_{-0,5}^{+0,9}$.
То же при $U_{\rm H} = 5.7~{\rm B}$ Коэффициент усиления	 35±7	≥3,2 35±7	≥3,65* 35±7
Сопротивление изоляции анода, МОм	_	≥500	≥ 500
Сопротивление изоляции сетки, МОм	-	≥500	≥500
Напряжение виброшумов (при- $R_a = 2$ кОм), мВ	≤100	≪ 80	≤ 50
Межэлектродные емкости, $\pi\Phi$: входная	3,1±1,1	3,3±0,9	3,05±0,55
выходная 1-го триода	1,6±0,5	$1,75_{-0.35}^{+0.7}$	$1,75 \pm 0.7 \\ \pm 0.35$
выходная 2-го триода	1,7±0,5	$1,95 \pm 0,35 $	$1,75_{-0,35}^{+0,7}$
проходная	$1,85\pm2,2$	€2,6	€2,6
между анодами триод ов .	≪0,2	0,07-0,2	0,07-0,2
катод — подогреватель	_	\leqslant 5,6	≪5,6
Наработка, ч	≥3000	≥3000	≥5000
Критерни оценки: обратный ток сетки, мкА		≪ 1,5	≪1,5
крутизна характеристики, мА/В	≥3	_	≥3,4
изменение крутиз ны ха - рактеристики, %			≤30
ток эмиссии катода в имприльсе, А	_	≥1,6	_

^{*} При U_H=6 В.

Наименование	6Н1П	6Н1П-ВИ	6Н1П•ЕВ
Напряжение накала, В	5,7—7 300 470	5,7 — 7 300 470	6—6,6 250
Напряжение между катодом и подогревателем, В: при положительном потенциале подогревателя	100 250 25 2,2 1 180	120 250 25 2,2 2 180	120 250 25 25 2,2 0,5 145
Устойчивость к внешним воздействиям: ускорение при вибрации g. в диапазоне частот, Гц ускорение при многократных ударах g ускорение при одиночных ударах g ускорение постоянное g интервал рабочих температур окружающей среды, °C	2,5 — 12 — — От —60 до +70	6 5—600 150 500 100 От —60 до +90	6 5—600 150 500 100 От —60 до +90

Анодные характеристики.

Анодно-сеточные характеристи-

6H2П, 6H2П-EB, 6H2П-EP, Аналог 6CC41

Триоды двойные для усиления напряжения низкой частоты.

Оформление — в стеклянной оболочке, миниатюрное, (рис. 10П). Масса 15 г.

Основные параметры при $U_{\rm H}\!=\!6,3$ В, $U_{\rm G}\!=\!-1,5$ В

Наименование	6Н2П	6Н2П-ЕВ	6Н2∏-ЕР	6CC41
Ток накала, мА	340±35 1,8±0,5	340±25 2,3±0,9	300±25 2,1±0,8	300 2,3
То же в начале характеристики (при $U_{\rm C} = -5.5$ В), мкА		≤ 10 < 0.1	€ 10	≪20
Обратный ток сетки, мкА Ток утечки между катодом и подогревателем, мкА	< 0,5	<0,1 <15	≪0,1	_
Крутизна характеристики, мА/В	2,25±0,45	2,1 ^{+0,55}	2,3+0.7	2
То же при U _н =5,7 В	> 1,5	>1.4	-	_
Коэффициент усиления	97,5±17,5 —	100±15 € 2,4	100±15 ≪2,4	100
Напряжение отсечки электронного тока сетки (отрицательное), В .	_	≪1,2	≪ 1,2	_
Напряжение виброшумов (при $R_a = 10$ кОм), мВ	≪150	€100	< 50	_
Межэлектродные емкости, пф: входная выходная 1-го триода выходная 2-го триода проходная между анодами триодов катод — подогреватель	$\begin{bmatrix} 2,25\pm0,45\\ 2,3\pm0,5\\ 2,5\pm0,6\\ 0,7-0,8\\ <0,15 \end{bmatrix}$	2,35±0,35 2,5±0,5 2,5±0,5 0,55—0,8 <0,15	2,35±0,35 2,5±0,5 2,5±0,5 0,55—0,8 <0,15	1,75 1 1 2,2 <0,05
Наработка, ч	>5000	≥5000	>5000	
Критерий оценки:		-0.0	**0.0	
обратный ток сетки, мкА крутизна характеристики, мА/В измерение крутизны характери-	≪1,5	≤0,2 ≥1,4	\$0.3 \$1.4	=
стики, %	_	€38	€38	-

Наименование	6Н2П	6Н2П∙ЕВ	6Н2П-ЕР	6CC48
Напряжение накала, В	5,7-7,0	6-6,6	6-6,6	5,7— 6,9
Напряжение анода, В	30 0	30 0	3 0 0	300
То же при запертой лампе		500	50 0	500
Напряжение между катодом и подогревателем, В:				
при положительном по- тенциале подогревателя .	100	100	100	100
при отрицательном по- тенциале подогревателя .	100	100	100	100
Ток катода, мА	10	10	10	10
Мощность, рассеиваемая ано- дом каждого триода, Вт	1	0,8	1	1
Сопротивление в цепи сетки, МОм	0,5		2	2
Температура баллона лампы, °C	110	95	130	150
Устойчивость к внешним воз- действиям:				
ускорение при вибрации д	2, 5	6	10	_
в диапазоне частот, Гц	_	5-2000	5-600	
ускорение при многократных ударах g	35	150	150	
ускорение при одиночных ударах g		500	500	_
ускорение постоянное g .	-	100	100	_
интервал рабочих температур окружающей среды, °C	От —60 до +7 0	От —60 до +85	От —60 до +85	

Анодные характеристики.

Анодно-сеточные характеристики.

6Н3П, 6Н3П-И, 6Н3П-Е, 6Н3П-ДР. Аналог 6СС42

Триоды двойные для усиления напряжения и генерирования колебаний высокой частоты.

Оформление — в стеклянной оболочке, миниатюрное (рис. 11П). Macca 15 г.

при $U_{\rm B} = 6,3$ В, $U_a = 150$ В, $U_c = -2$ В (для 6Н3П-Е, 6Н3П-ДР), $R_{\rm B} = 240$ Ом (для 6Н3П, 6Н3П-И, 6СС42)

Наименование	6Н3П	6Н3П-И	6Н3П-Е	6НЗП-ДР	6CC42
Ток накала, мА	350±35 8,75±2,75	350±30 8,5±3,5	350±30 8,75±3,25	300±25 8,75±3,25	350 8
То же в начале характеристики (при $U_{\rm C} = -10$ В), мкА	≪4 0	≪ 40	≪40	≤4 0	≪ 80

6H3II	6Н3П-И	6Н3П•Е	6нзп-др	6CC42
⋖ 0,1	≪0,1	≤ 0,1	<0,1	_
-	≥ 0,8			-
4,86	5,9 ^{+1,9}	5,9 +1 ,9 -1,8	5,9 +1 ,9 -1,8	5,5
>4	_	≥3.8*	-	-
36±8	33±7	34+8 -6	35 <u>+</u> 7	35
0,8-1,5	-	4 1,5	≪ 1,5	_
14	_	-	_	_
19	_		-	_
0,7	-	-	_	_
< 100	≪ 15	≪ 100	≪ 15	_
2,8	2,4 + 0,75 -0,55	2,4 + 0,75 -0,65	2,4+0,75 -0,55	_
1,4	1,3+0,3	1,3 + 0,3 -0,4	1,3+0,3	_
≼ 1,6	∠ 1,6	≼ 1,6	≪1,6	
≼ 0,15	< 0,13	<0,13	< 0,13	-
≥1500	≥50 0	≥5000	≥10 000	-
_	-	≼ 0,3	≪ 0,3	-
> 3,9	≥ 3	≥ 3,6	≥ 3,6	-
-	_	≪4 0	≼4 0	-
-	≥0,6	-	 	_
	4,8—6 >4 36±8 0,8—1,5 14 19 0,7 <100 2,8 1,4 <1,6 <0,15 >1500 —		40,1 <0,1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{*} При U_H =6 В.

Наименование	6 н зп	6Н3П-И	6Н3П-Е	6Н3П-ДР	6CC42
Напряжение накала, В Напряжение анода, В То же при запертой лампе	5,7 <u>—</u> 6,9 300	5,7—6,9 300 470	6 <u>-6</u> ,6 160	6-6,6 300 500	5,7—6,9 300 550
Напряжение между катодом и подогревателем, В при положительном готенциале подогревателя при отрицательном потенциале подогревателя	100 100	160 250	100 150	100 150	100
Ток катода, мА	_	18	12	20	18
Мощность, рассенваемая анодом каждого триода, Вт	1,5	1,6	1,8	1,6	1,5
Мощность, рассеиваемая сеткой, Вт	-	0,1	_	_	-
Сопротивление в цепи сет-	_	1	1	1	1
Температура баллона лам-	120	150	120	150	150
пы, °С			120	100	100
воздействиям: ускорение при вибра- ции д	2,5 —	6 10—600	10 20—600	10 5—2000	=
ускорение при многократ- ных ударах g	35	_	150	150	
ускорение при одиночных ударах д	_	_	500	500	_
ускорение постоянное <i>g</i> интервал рабочих темпе-	-		100	100	-
ратур окружающей среды. °C	От —60 до +70	От —60 до +90	От 60 до +85	От —60 до +85	
MA Ι _α 20		6НЗП-	E 6H3/	7-E	8 I M. 20
18	1	$U_H = 6,3B$	UH=6,3	38	IN I
9.4				1 002	
16 3 1		† - - -			16
14 8	- / }-	+	$\dashv \vdash \vdash$	2508	14
12	/	4			12
10	/ /			3	10
	' <i> </i>	3		$\Pi\Pi\Pi$	7 70
8 1/1		1	7	 	8
6		/ /	$\dashv \vdash \vdash$	 	6
4		56		////	4
2	$\mathcal{X}\mathcal{Y}$	1			1 2
		T 0	a c		0
0 20 40 60 80 100 12	0 140 160	180 200 220	78 B -8 -6	6-4-2	0 2
Анодные характе	ристики.		Анодно	-сеточные теристики.	харак-

6Н5П

Триод двойной для усиления напряжения высокой частоты в схемах мгновенной APV.

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 15 г.

Основные параметры

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 220$ В, $R_{\rm K} = 600$ Ом

Ток анода 2-го триода в диодном режиме \gg 2,5 м Обратный ток сетки 1-го триода	:1,75) mA MA A KA MA/B
Напряжение виброшумов (при $R_{\rm a}{=}2$ кОм) <50 мI Межэлектродные емкости:	
входная	пΦ
выходная 1-го триода	- π Φ
выходная 2-го триода	пΦ
проходная	Ф Ф ч кА кА/В
Предельные эксплуатационные данные	
Напряжение накала	B B A B M

Анодные характеристики.

Анодно-сеточные характери-

6Н6П, 6Н6П-И

Триоды двойные для усиления мощности низкой частоты и для работы в импульсном режиме.

Оформление — в стеклянной оболочке, миниатюрное (рис. 16П). Масса 20 г.

Основные параметры

при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!120$ В, $U_{\rm c}\!=\!-2$ В (для 6Н6П), $R_{\rm m}\!=\!68$ Ом (для 6Н6П-И)

	- 121	-		6 H 6 I	1 6Н6П-И
Ток накала, мА.				. 750±	
Ток анода, мА .				. 30±	10 30 <u>+8</u>
То же в начале хар Обратный ток сетн	рактери ки, мкА	стики,	мкА	$.\leqslant 100$ $.\leqslant 0,5$	≤ 100 ≤ 1
Ток эмиссии кат $U_{\text{а.имп}} = U_{\text{с.имп}} = 50 \Gamma_{\text{ц}}$), A	ода в 150 В,	импу $\tau = 1 \div$	льсе (п 2 мкс,	ри f=	≥4,7
Ток утечки между лем, мкА	катодо	мипо	одогрева	те-	
Крутизна характер	истики,	мА/В		. 11±2	,9 $11^{+2}_{-2},^{6}_{9}$
То же при $U_{\rm H} = 5.7$ Коэффициент усил	ения 20±	
Напряжение виб =0,5 кОм), мВ	рошум	DB (1	при К	a= . ≪10	0 ≤100

Межэлектродные емкости, пФ:					
входная				$4,4\pm0,7$	$4,4\pm0,7$
выходная 1-го триода				$1,65\pm0,25$	$1,65\pm0,25$
выходная 2-го триода					1.8 ± 0.3
проходная				$\leq 3,5$	≪3,5
между анодами триодов				$\leq 0,1$	≪0,1
катод — подогреватель		•		≪ 8	≪8
Наработка, ч				≥3000	≥500
Критерии оценки:					
обратный ток сетки, мкА				$\leq 1,0$	
крутизна характеристики, мА/В				≥6,5	
ток эмиссии катода в импульсе,	В		•	_	≥3,5

	бН6∏	6Н6П-И
Напряжение накала, В	5,7 —7	5,7 —7
Напряжение анода, В	300	300
То же при запертой лампе, В	450	450
Напряжение сетки отрицательное, В	_	100
Напряжение между катодом и подогревателем, В:		.00
при положительном потенциале подогревателя	200	150
при отрицательном потенциале подогревателя	200	200
Ток катода каждого триода, мА	45	
Мощность, рассеиваемая анодом каждого трио-	.0	
да, Вт	4,8	4
Мощность, рассеиваемая сеткой каждого трио-	1,0	•
да, Вт		0,3
Сопротивление в цепи сетки, МОм	1	1
Скважность		≥500
Температура баллона лампы, °С	225	200
Устойчивость к внешним воздействиям:	223	200
ускорение при вибрации д	2,5	6
в диапазоне частот, Гц		10-600
ускорение при многократных ударах д	12	120
ускорение при одиночных ударах g		500
ускорение постоянное g		10 <i>0</i>
интервал рабочих температур окружающей		
	От —60	От —60
	до +85	до + 85

10°x

Анодные характеристики.

Анодно-сеточные характеристи-

6H7C

Триод двойной для усиления напряжения низкой частоты.

Оформление — в стеклянной оболочке, с октальным цоколем (рис. 2Ц). Масса 50 г.

Основные параметры

при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!300$ В, $U_{\rm c}\!=\!-6$ В

Ток накала							.(810±50) мА
Ток анода *							$(6,75\pm2,25)$ MA
Tо же при $U_c=0$							$(17,5\pm5,5)$ мА
Обратный ток сетки							.≼3 мкА
Крутизна характеристики *			•				$3.4_{-0.7}^{+0.6}$ mA/B
Коэффициент усиления * .					•		.35
Внутреннее сопротивление *							
Выходная мощность **							
Т о же при $U_{\rm B} = 5,7$ В	٠	٠	•	٠			.≽3,2 Вт

Сопротивление изоляции:	
между катодом и подогревателем	.≽3,33 МОм
между сеткой и остальными электродами .	.≽20 МОм
между анодом и остальными электродами.	.≽20 МОм
Наработка	, ≥ 7 50 ч
Критерии оценки:	
выходная мощность **	,≽3,3 Br

^{*} При параллельно соединенных триодах.

Напряжение на					
Напряжение ан	юда	 	 	٠	.30 0 B
Напряжение ме					
Мощность, расс					
Интервал рабоч					
	•	 	 	-	до +70°C

6H8C

Триод двойной для усиления напряжения низкой частоты и работы в релаксационных схемах.

Оформление — в стеклянной оболочке, с октальным цоколем (рис. 3Ц). Масса 50 г.

Основные параметры

при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!250$ В, $U_{\rm c}\!=\!-8$ В

Ток накала	(600 ± 50) MA								
Ток анода	$(9\pm 3, 5)$ мА								
Обратный ток сетки	$\leq 2 \text{ MKA}$								
Ток утечки между катодом и подогревателем	≪50 мкА								
Крутизна характеристики	$(3\pm 1) \text{ mA/B}$								
Коэффициент усиления	$21,5 \pm 3,5$								
Межэлектродные емкости:	(3±1) ¤Ф								
входная	(3±1) пФ								
выходная	0,,,								
проходная	(4,4±1,4) пФ								
Наработка ,	≥ 2000								
Критерии оценки:									
крутизна характеристики	$\gg 1.55 \text{ MA/B}$								
обратный ток сетки	≪IU MKA								

^{**} При переменном напряжении сетки 35 В и $R_a = 2.5$ кОм.

Напряжение	накала												5,7—6,9 B
Напряжение	анода												330 B
Напряжение													100 B
Ток катода								٠.					20 мА
Мощность, р	ассеивае	ма	я а	нод	цом	ка	жд	oro	тр	ио	да		2,75 Br
Сопротивлен	ие в цег	ПП	cer	ки	ка	ждо	ОГО	Tp:	иод	ιa			0,5 МОм
Интервал ра													От —60
•			-		•								ло $+70$ °C

6H9C

Триод двойной для усиления напряжения низкой частоты.

Оформление — в стеклянной оболочке, с октальным цоколем (рис. 3Ц). Масса 34 г.

до +70°G

Основные параметры при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!250$ В, $U_{\rm c}\!=\!-\!2$ В

Ток накала										
Напряжение виброшумов (при $R_a = 2$ кОм)										
Межэлектродные емкости:										
входная										
выходная										
проходная										
Критерии оценки:										
обратный ток сетки										
Предельные эксплуатационные данные										
Напряжение накала										

6H13C

Триод двойной для работы в качестве регулирующей лампы в электронных стаби-лизаторах напряжения.

Оформление — в стеклянной оболочке, с октальным цоколем (рис. 14Ц). Масса 90 r.

Основные параметры

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 90$ В, $U_{\rm c} = -30$ В

Ток утечки Крутизна з То же при Внутреннее	ме кар U 1	жд акт = { опро	тки у к ери 5,7 оти	ат (ст) В вле	ОД ИКИ •	ом i	и	по	до	rpe	ва	• гел	ем	:	•	•	$\begin{array}{l} (2,5\pm0,25) \text{ A} \\ (80\pm32) \text{ MA} \\ \geqslant 38 \text{ MA} \\ \leqslant 2 \text{ MKA} \\ \leqslant 100 \text{ MKA} \\ (5,5\pm1,6) \text{ MA/B} \\ \geqslant 2,8 \text{ MA/B} \\ \leqslant 460 \text{ OM} \end{array}$
Межэлектро входная выходн проході Наработка Критерии об ток анс кругизн	я . ая ная цен	: ки:	:	:	:		•	•	•	•		•	•		•	•	8 пФ 3 пФ 10 пФ ≥ 1500 ч ≥ 30 мА ≥ 2,8 мА/В

Предельные эксплуатационные данные	
Напряжение накала	5,7—6,9 B 250 B 500 B 300 B 130 MA 13 BT 1 MOM
щей в схемах электронных стабилизаторов компенсационного типа	3 МОм От —60 ло +70 °C

Предельные средние значения тока анода и мощности, рассеиваемой анодом, при параллельной работе ламп

2 ×		Сопротивление в цепи катода каждой лампы, Ом							,			
0 50 100 150 200 25				250	0	50	100	150	200	250		
Число параллельно работающих ламп	Ток анода каждой лампы, мА						Мощность, рассеиваемая анодом каждой лампы, Вт					
1 2 4 6 10 Более 10	130 93 74 68 64 56	130 101 87 82 78 72	130 106 95 90 87 82	130 109 100 96 94 89	130 112 104 101 98 94	130 114 107 104 101 99	13 9,3 7,4 6,8 6,4 5,6	8,7 8,2 7,8	9′ 8,7	10,9 10 9,6 9,4	10,4 10,1 9,8	10, 4 $10, 1$

6Н14П. Аналог ЕСС84

Триод двойной для усиления напряжения высокой частоты в каскодных схемах (блоки ПТК телевизоров и другие устройства).

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 15 г.

Основные параметры

при $U_{\rm n}\!=\!6,\!3$ В, $U_{\rm a}\!=\!90$ В, $U_{\rm c}\!=\!-1,\!5$ В (для ECC84), $R_{\rm R}\!=\!125$ Ом (для 6Н14П)

6Н14П	ECC84
Ток накала, мА	340
Ток анода, мА	12
То же в начале характеристики (при $U_c = -10 \text{ B}$),	
мкА	200
Обратный ток сетки, мк A	
Ток утечки между катодом и подогревателем, мкА ≤20	
Крутизна характеристики, м A/B	6
То же при $U_{\rm H} = 5.7$ В	
Коэффициент усиления	24
Входное сопротивление 2-го триода (при $f=$	
= $20 \text{ M}\Gamma\text{u}$, $\kappa\text{O}_{\text{M}}$	4
Эквивалентное сопротивление шумов, кОм 0,6	
Напряжение виброшумов (при $R_a = 2$ кОм), мВ . < 100	_

межэлектродиме емкости, пф	٠.								
входная 1-го триода выходная 1-го триода проходная 1-го триода входная 2-го триода выходная 2-го триода проходная 2-го триода проходная 2-го триода между анодами триодов Наработка, ч		•	•	•	•	•	•	.2,8±0,5 .≤0,25 .2,55±0,55 .1,15±0,25 .≤1,8 .0,025— -0,05 .≥1500	$0,45 \le 1,4$
Предельные эн	кспл	nya	таі	TNC	нн	ые	Д		
								6H14 II	ECC84
Напряжение накала, В Напряжение анода, В:	•	•		•	•	•	•	5,7—6,9	5,7-6,9
в режиме измерений при запертой лампе при включении лампы .				•				300 470	180 550
Напряжение сетки отрицател	ьно	e,	В					30	_

Напряжение между катодом и подогревате-

при отрицательном потенциале подогрева-

Сопротивление в цепи сетки, МОм

Температура баллона лампы, °С

лем, В:

Mежэлектролные емкости, п Φ :

 Для 1-го триода. Наибольшее напряжение и Мощность, рассенваемая двумя анодами, не 	

90

180

1,5

150

От —60 до +70

1

100

180*

22

2** 0,5

150

Анодные характеристики.

Анодно-сеточные карактеристики,

6Н15П. Аналоги ECC91. 6CC31

Триод двойной для усиления напряжения низкой частоты и генерирования колебаний высокой частоты.

Оформление — в стеклянной оболочке, ми-ниатюрное (рис. 2П). Macca 12 г.

Основные параметры

при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!100$ В, $U_{\rm c}\!=\!-0,\!85$ В (для ECC91, 6CC31), $R_{\rm K}\!=\!50$ Ом (для 6H15П)

9П18	5П ECC91, 6CC31
	±30 450
Ток анода, мА 9±3	
То же в начале характеристики, мкА < 78	5
Обратный ток сетки, мкА	_
Ток утечки между катодом и подогревате-	
лем, мкА) -
Напряжение сетки запирающее, отрицатель-	
ное, В	
	$\pm 1,6$ 5,3
То же при $U_{\rm H} = 5.5$ В	
Коэффициент усиления	:10 38

Выходная мощность (при $U_a = 150$ В, $I_a =$	
=33 MA, $R_{\rm r} = 2$ KOM, $f = 250$ MFH), Bt . > 0.7	
Сопротивление изоляции анода, МОм ≥ 10	
Сопротивление изоляции сетки, МОм ≥ 10	
Напряжение виброшумов (при $R_a = 2 \text{ кОм}$),	
MB	
Межэлектродные емкости, пФ:	
входная каждого триода 2,2±0,8	2,2
выходная 1-го триода $0,45\pm0,2$	0,55
выходная 2-го триода $0,4\pm0,15$	0,55
проходная каждого триода 1,5±0,3	1,6
катод — подогреватель 6,6 \pm 2,1	
Наработка, ч	
•	
Критерии оценки:	
обратный ток сетки, мкА ≤5	_
крутизна характеристнки, мА/В ≥3,45	_

	6Н15П	ECC91, 6CC31
Напряжение накала, В	5,7 —7 330	5,7-6,9 300
Напряжение между катодом и подогревателем, В	100	100
триода, Вт	1,6 0,1	1,5 0,5
Температура баллона лампы, °С	120	
Интервал рабочих температур окружающей среды, °C	От <u>60</u> д _{о +70}	_

Анодно сеточные характеристи-KИ.

6Н16Б, 6Н16Б-В, 6Н16Б-ВИ, 6Н16Б-ВР, 6Н16Б-И, 6Н16Г-ВИР

Триоды двойные для усиления напряжения низкой частоты, генерирования колебаний высокой частоты и для работы в релаксационных схемах.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 9Б, для 6Н16Г-ВИР — рис. 14Б, для 6Н16Б-ВР — рис. 20Б). Масса 4,5 г (для 6Н16Г-ВИР 5,5 г).

Основные параметры

при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!100$ В, $R_{\rm R}\!=\!325$ Ом (240 Ом — для 6Н16Б-ВР, 100 Ом — для 6Н16Г-ВИР)

	6Н16Б, 6Н16Б-В, 6Н16Б-ВИ, 6Н16Б-И	6Н16Б•ВР	6Н 16Г -ВИР
Ток анода, мА	400±40 6,3±1,9	370±40 6,3±1,9	400±40 6,3±1,9
Разность токов анода триодов лампы, мА		_ ≪0;2	_ ≪0,2
Ток утечки между катодом и подогревателем, мкА	€20	_	
$_{\rm B}$ импульсе (при $U_{\rm A. MMI} = U_{\rm C. MMI} = 200$ В)*, А Крутизна характеристики,	$\geqslant 1,2$	_	-
мА/В	$5\pm 1,25$	$5\pm 1,25$	5±1,25
То же при $U_{\rm B} = 5.7$ В, мА/В . Коэффициент усиления			$\frac{-}{25\pm5}$
Входное сопротивление (при $f=50 \text{ М}\Gamma\text{ц}$), кОм	32	32	
Напряжение виброшумов (при $R_a=2$ кОм), мВ	≤ 75	≤ 50	< 75

M ежэлектродные емкости, $n\Phi$: входная	$2,7\pm0,7$ $2,7\pm0,6$ $1,5\pm0,5$ <0,15 <7 >2000	$2,7\pm0,7$ $2,2\pm0,5$ $1,5\pm0,5$ <0,15 - > 2000
Критерии оценки:		
обратный ток сетки, мкА . <1,5 крутизна характеристики,		-
мЛ/В.,		_
теристики, %		_
выходное напряжение в импульсе, В —		≥22,5

^{*} Для ламп 6Н16Б-И, 6Н16Б-ВИ.

6Н16Б, 6Н16Б-В, 6Н16Б-ВИ, 6Н16Б-И	6H16B-BP	6Н16Г-ВИР
5,7—6,9 200 350	6—6,6 200 350	6—6,6 200 350
50	50	50
150 14 0,4	120 20 —	120 20 0,4
0,9	0,9	1,2
0,1		_
l	1	1
170	170	115
250	200	150
450	350	
	6H16 B · B, 6H16B · Bi, 6H16B · H 5,7—6,9 200 350 50 150 14 0,4 0,9 0,1 1	6H16B-B, 6H16B-BP 6H16B-BP 6H16B-BP, 6H16B-B, 6H16B-BP,

до +100

Устойчивость к внешним воздействиям:

ускорение при вибрации в
диапазоне частот 20—
2000 Гц д
ускорение при многократ-
ных ударах g
ускорение при одиночных
ударах g
ускорение постоянное д .
интервал рабочих темпе-
ратур окружающей среды,
°C

10	20	20
150	150	150
500 100	500 100	500 100
От —60	От —60	От -60

до +100

до +200

MA Ia 22			БН	165-B	
20			U_H	=6,3B	
18		 - - 			Ш
16		_			$\vdash \vdash$
14 -1	10		 		Н
12	///>	12			H
8		72	14/6		
6			1//	18/2	88
4	///		//	//	2
2 //		$\times\!$		//	U_{α}

Анодные характеристики.

140

180 200 B

Анодно-сеточные характеристи-

6H17Б, 6H17Б-В, 6H17Б-ВР

Триоды двойные для усиления напряжения низкой частоты. Оформление — в стеклянной оболочке, сверхминнатюрное (рис. 9Б, для лампы 6H17Б-ВР — рис. 20Б). Масса 4,5 г.

Основные параметры

при $U_{\rm H}\!=\!6.3$ В, $U_{\rm e}\!=\!200$ В, $R_{\rm K}\!=\!325$ Ом (300 Ом — для 61	1175·BP)
6Н17 Б. 6Н17 Б- В	6H17E•BP
Ток накала, мА	370 ± 40 3,3 ±1
Обратный ток сетки, мкА	$\leq 0,2$
мкА	— 4±1
То же при $U_{\rm B}$ =5,7 В, мА/В ≥2,3	_
Коэффициент усиления	70 ± 16
мВ	≤50
Межэлектродные емкости, пФ:	
входная	$2,9\pm0,8$ $2,7\pm0,5$
проходная	$1,6\pm0.5$
между анодами триодов 0,45 \pm 0,15 катод — подогреватель	$\leq 0, 15$
Наработка, ч	≥ 2000
Критерии оценки:	
обратный ток сетки, мкА	-
	_
изменение крутизны характеристики *, $\% < \frac{+30}{40}$	_

^{*} Для лампы 6Н17Б-В.

	6Н17Б. 6Н17Б-В	6H17E-BP
Напряжение анода, В	5,7—6,9 250 350 50	6—6,6 250 350 50
Напряжение между катодом и подогревателем, В	150 10 0,9	120 10 0,9
Температура баллона лампы, °C: при нормальной температуре окружающей среды	170 250	170 200

Устойчивость к внешним воздействиям:

ускорение при вибрации g	10—600 150* 500	20 20—2000 150 500 100
интервал рабочих температур окружающей среды, °С		От —60 до +100

^{*} Для лампы 6Н17Б-В.

Анодно-сеточные характеристи-

6Н18Б, 6Н18Б-В

Триоды двойные для усиления напряжения низкой частоты, генерирования колебаний высокой частоты и для работы в накопительных схемах.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 9Б). Масса 4 г.

Основные параметры	
при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!100$ В, $R_{\rm K}\!=\!325$ Ом	
Ток накала	
$U_{\rm 8.HMH} = U_{\rm C.HMH} = 200~{ m B})$	
Крутизна характеристики	3
Коэффициент усиления	
Межэлектродные емкости:	
входная	
выходная	Þ
Критерии оценки:	
обратный ток сетки	
изменение крутизны характеристики $< \frac{+25}{-30}\%$	
Предельные эксплуатационные данные	
Напряжение накала 5,7—6,9 В Напряжение анода 200 В То же при запертой лампе 350 В Напряжение сетки отрицательное 50 В Напряжение между катодом и подогревателем 150 В	
Ток катода	
Мощность, рассеиваемая сеткой каждого триода	
Температура баллона лампы:	
при номинальной температуре окружающей среды	
более 2 ч)	
Устойчивость к внешним воздействиям:	
ускорение при вибрации в диапазоне частот 5— 2000 Ги	

ускорение при многократных ударах . . ускорение при одиночных ударах . . . интервал рабочих температур окружающей сре-

10 g 150 g 500 g 100 g

От −60 до +200°С

Анодные характеристики

Анодно-сеточные характеристики.

6Н21Б

Триод двойной для усиления напряжения низкой частоты. стеклянной оболочке, Оформление — в 20Б). Macca сверхминиатюрное (рис. 4,5 r.

Основные параметры

при	$U_{\rm ff} = 6.3$	B,	$U_a = 200$	В,	R_{κ} =330	Ом
						13

Ток накала	
Ток анода	
Ток анода	
Обратный ток сетки	
Ток утечки между катодом и подогревателем ≪20 мкА	
$K_{\rm DVT}$ изна характеристики (3,8 \pm 1,2) мА/В	š
To же при $U_{\rm H}$ =5,7 B \geqslant 2 мA/B	
Коэффициент усиления	
Напряжение виброшумов (при R_a =2 кОм) ≪15 мВ	
Межэлектродные емкости:	
входная	
олодиал	
выходная	
проходная	

	Продолжен ив
между анодами триодов	≼0,045 пФ ≼13 пФ >2000 ч
- 1	» 2 000 ,
Критерии оценки:	
обратный ток сетки	≪1 мкА
крутизна характеристики	≥ 2 мА/В
Предельные эксплуатационные данные	;
Напряжение накала	200 B 10 MA 1 BT 2 MOM
ускорение при вибрации в диапазоне частот	<u>5</u>
2000 Гц	
ускорение при многократных ударах	
ускорение при одиночных ударах	
ускорение постоянное	100 g
интервал рабочих температур окружающей сред	ы . От — 60
иптервал рассчих температур окружающей сред-	до + 125° C

Анодные характеристики.

Анодно-сеточные характеристи-ки,

6Н23П, 6Н23П-ЕВ. Аналог ЕСС88

Триоды двойные для широкополосного усиления напряжения высокой частоты, маломощного усиления и генерирования импульсов.

Оформление - в стеклянной оболочке, миниатюрное (рис. 11П). Масса 16 г.

Основные параметры

для 6Н23П при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!100$ В, $U_{\rm c}\!=\!9$ В, $R_{\rm K}\!=\!680$ Ом; для 6Н23П-ЕВ при $U_{\rm a}\!=\!6,3$ В, $U_{\rm a}\!=\!90$ В, $R_{\rm K}\!=\!82$ Ом; для ECC88 при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!90$ В, $U_{\rm c}\!=\!-1,3$ В

	. ,	- 1, - 0 - 10	_
	6H23II	6Н23П-ЕВ	ECC88
Ток накала, мА	310±25 15±5	310 ± 25 15 ± 5	335 15
ки (при $U_c = -8$ В), мА Обратный ток сетки, мкА Ток утечки между катодом и	$ \leqslant 0, 1 $ $ \leqslant 0, 2 $		
подогревателем, мкА	≤ 15	≪ 15	_
Крутизна характеристики, мА/В	$10-12,7 \\ \ge 8,5$	$12,5\pm 2,5 \\ \geqslant 8$	12,5
Коэффициент усиления	34 ± 9	$32,5^{+7,5}_{-8,5}$	33
Входное сопротивление (при $f=200~{\rm M}\Gamma{\rm n}$), Ом Эквивалентное сопротивление	500		
шумов, Ом	300		
Напряжение виброшумов (при $R_a = 2$ кОм), мВ	≪ 150	€75	_
Межэлектродные емкости, пФ:			
входная	$3,6^{+0,9}_{-0,85}$	$3,6\pm0,9$	3,3
выходная 1-го триода	$2,1_{-0,3}^{+0,35}$	$2^{+0,45}_{-0,4}$	1,8
выходная 2-го триода	$1,95 \pm 0,3$	$2^{+0,45}_{-0,4}$	1,8
проходная	$1,55 \pm 0,3$	$1,5\pm0,3$	1,4
между анодом и катодом каждого триода между анодами триодов .			$0,18 \\ 0,045$
между сетками триодов . Наработка, ч	≥ 5000	≥ 5000	 .
Критерии оценки:	- 1	~ O	
обратный ток сетки, мкА крутизна характеристики,	≪ I	≪2	-
$_{ m MA/B}$	$\geqslant 7,5$	$\geqslant 7,5$	

	€ H 23∏	€H23Π-EB	ECC88
Напряжение накала, В	5,7—7 300 470	6—6,6 300 470	5,7—6,9 130 550*
То же при запертой лампе в им-	1000	1000	_
Напряжение сетки в импульсе отрицательное, В	200	220	
Напряжение между катодом и подогревателем, В: при положительном потенциа-			
ле подогревателя	200	150	50
ле подогревателя	200	150	150
среднее значение	20	20	25
в импульсе	200	200	
Мощность, рассеиваемая анодом каждого триода, Вт.	1,8	2	1,8
Мощность, рассеиваемая сеткой каждого триода, Вт	0,03	0,03	0,03
Сопротивление в цепи сетки, МОм Температура баллона лампы, °С Устойчивость к внешним воздей-	1 120	120	170
ствиям: ускорение при вибрации g в диапазоне частот, Гц	2,5 50	5—600	
ускорение при многократных y дарах g	35	150	_
ускорение при одиночных y дарах g		500	
ускорение постоянное д		100	_
интервал рабочих температур окружающей среды, °С . , .	OT-60	От—60 ло + 125	_

^{*} При включении лампы.

Анодные характеристики.

Анодно-сеточные характеристи-

6Н24П. Аналог ЕСС89

Триод дьойной для усиления напряжения высокой частоты в каскодных схемах (в ПТК телевизоров и другой аппаратуре).

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Macca 15 r.

Основные параметры

при $U_{\rm n}\!=\!6,\!3$ В, $U_{\rm a}\!=\!90$ В, $U_{\rm c}\!=\!9$ В, $R_{\rm K}\!=\!680$ Ом (для 6Н24П), $U_{\rm c}\!=\!-1,\!2$ В (для ЕСС89)

	6H24∏	ECC89
Ток накала, мА	310^{+25}_{-35}	360
Ток анода, мА	15 ± 5	15
То же в начале характеристики (при	0.1	
$U_{\rm c}\!=\!-8$ В)	$\leq 0, 1$	_
Крутизна характеристики, мА/В	$ \leqslant 0, 2 $ 12,5 $\pm 2, 5$	12,3
To же при $U_{\rm H}$ =5,7 В	$\geqslant 8,5$	12,3
Коэффициент усиления	34 ± 9	36
Сопротивление изоляции между ка-		00
тодом и подогревателем, МОм	≥ 10	_
Входное сопротивление 1-го триода	•	
(при $f = 200$ МГц), кОм	0,7	
Эквивалентное сопротивление шу-	•••	
мов, Ом	300	
Напряжение виброшумов (при $R_a =$	150	
=0,5 кОм), мВ	≤ 150	_
Межэлектродные емкости, пФ:	0.0.0.0	
входная 1-го триода	$3,9\pm0,9$	3,8
выходная 1-го триода проходная 1-го триода	2 ± 0.4	2,5
входная 2-го триода	$1,3\pm0,15$ $6,3\pm1,3$	1,9
выходная 2-го триода	$3,2\pm0,55$	6,3 4,5
проходная 2-го триода	$0,25\pm0,1$	0,2
между анодами триодов	0,035	0,015
Наработка, ч	≥ 3000	
Критерии оценки:		
обратный ток сетки, мкА	≪1	
крутизна характеристики, мА/В	$\geqslant 7,5$	_

	6H24T1	ECC89
Напряжение накала, В	5,7—7 300 470	5,7—6,9 130 550*
вателем, В: при положительном потенциале по- догревателя	150	50
при отрицательном потенциале по- догревателя при включении холодной лампы	150 200	200
Ток катода, мА	20 1,8	18 1,8
Мощность, рассеиваемая сеткой каждо- го триода, Вт	0,03	i
Устойчивость к внешним воздействиям: ускорение при вибрации в диапазо- не частот 10—150 Гц g	2,5	_
ускорение при многократных уда-	12	_
интервал рабочих температур окружающей среды, °C	От — 60 до + 70	

^{*} При включении холодной лампы.

Анодные характеристики.

Анодно-сеточные характеристики.

6Н25Г, 6Н25Г-В

Триоды двойные с двойным управлением для усиления токов низкой частоты, генерирования токов высокой частоты в блоках цифровых ЭВМ.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 16Б). Масса 7 г.

Основные параметры

при $U_{\rm H} = 6.3$ В, $U_{\rm A} = 75$ В, $R_{\rm K} = 100$ Ом

Ток накала	$(380 \pm 40) \text{ MA}$
Ток анода	`(11±5) [′] мА
Обратный ток сетки	
	$(2,25\pm0,75)$ mA/B
Коэффициент усиления каждого триода **	18±6
Напряжение виброшумов (при $R_{\rm A} = 2$ кОм).	≪100 мВ
Межэлектродные емкости:	
1-я сетка — катод	(1,1±0,3) пФ
1-я сетка — анод	≼0,7 пФ
2-я сетка — катод	$(0,75\pm0,25)$ $\pi\Phi$
2-я сетка — анод	<2,5 nΦ
анод — катод	$(0,09\pm0,03)$ $\pi\Phi$
между анодами триодов	≪0,05 πΦ
1-я сетка — 2-я сетка каждого триода	(1,8±0,45) πΦ
катод — подогреватель	≪6 пФ
Наработка	≥ 500 ч
Критерии оценки:	
крутизна характеристики каждого триода*	≥1,2 mA/B
обратный ток сетки	≪3 мкА
изменение крутизны характеристики	$\leq \pm 25\%$

^{*} Для каждой сетки в отдельности.

Напряжение	накала													5,7-6,9 B
Напряжение	анода											,		200 B
То же при за	апертой	лан	ипе								,			3 00 B
Напряжение	сетки о	три	цате	льн	oe									50 B
Напряжение														
Ток катода		,											,	30 мА
Мощность, ра	ассеивае	мая	ано	одом	ΙK	ажд	отор	ΤÇ	ио	да		,		1,2 Br
Мощность, ра	ассеивае	мая	ce1	кой	K	ажд	ого	тp	ио,	да				0,1 Вт
Сопротивлени	е в цеп	и с	етки		,	. ,		•						0,5 MOm

^{**} При параллельном соединении сеток.

Температура баллона лампы:	
при нормальной температуре окружающей среды .	170°C
при температуре окружающей среды 200° С (в те-	
чение не более 2 ч)	250° C
устойчивость к внешним воздействиям:	
ускорение при вибрации в диапазоне частот 5-	
2000 Гц	10 g
ускорение при многократных ударах	$150 \ g$
ускорение при одиночных ударах	500 g
ускорение постоянное	$100 \ g$
интервал рабочих температур окружающей среды.	От — 60
Image from the state of the sta	$10 + 200^{\circ} \text{C}$

Анодные характеристики.

Анодно-сеточные характеристики.

6Н26П

Триод двойной для работы в импульсных режимах.

Оформление — в стеклянной оболочке, миниатюрное (рис. 16П). Macca 18 г.

Основные параметры

при измерениях в статическом режиме $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!150$ В, $R_{\rm k}\!=\!100$ Ом; при измерениях в импульсном режиме $U_{\rm H}\!=\!6,3$ В, $U_{\rm c}\!=\!-12$ В, $U_{\rm c.nmn}\!=\!24$ В, $R_{\rm a}\!=\!0,75$ кОм, $\tau\!=\!0,3\!\div\!0,4$ мкс, $f\!=\!10$ кГц

Ток накала	(600±50) мА
	(14 + 9 = 1 4
в статическом режиме	(14 ± 3.5) MA
в начале характеристики	$\leq 1 \text{ MA}$
в импульсе	≥ 150 мА
Ток сетки в импульсе	≪75 мА
Обратный ток сетки	<2 мкA
Крутизна характеристики	7,5-9,5 mA/B
То же при $U_{\rm H} = 5.7 \; {\rm B}$	≽7 мА/В
Коэффициент усиления	48 ± 10
Сопротивление изоляции между като-	
дом и подогревателем	≥5 МОм
Внутреннее сопротивление	5 кОм
Входное сопротивление (при $f = 60 \text{ M}\Gamma$ ц)	5 кОм
Эквивалентное сопротивление шумов .	300 Ом
Напряжение виброшумов (при R_a =	300 OM
-0.5 mOy	- CO D
= 0,5 kO _M)	≪60 мВ
Межэлектродные емкости:	(4 , 0 0) *
входная выходная	(4±0,9) πΦ
выходная	$(2,5\pm0,5)$ πΦ
проходная	` ≪2,3 πΦ
между анодами триодов	<0,23 пΦ
Наработка	≽5000 ч
Критерии оценки:	
ток анода в импульсе	≽120 мА
крутизна характеристики.	≥6 мA/B
	> 0 mm, 5
Предельные эксплуатационные да	анные
Напряжение накала	5,7—7 B
То же в импульсном режиме	6-6,6 B
Напряжение анода:	,
в типовом режиме	250 B
при запертой лампе	350 B
в импульсе при запертой лампе	300 D
$(\tau - 100 \text{ Mgs})$	750 B
(τ≤100 мкс)	100 B
Напряжение сетки (отрицательное) в	000 D
импульсе (т≤100 мкс)	2 00 B
Напряжение между катодом и подогре-	400 5
вателем	100 B
Ток катода:	
среднее значение	30 мА
в импульсе	75 0 мА
Мощность, рассеиваемая анодом каждо-	
го трнода	2,6 Вт
Мощность, рассеиваемая сеткой каждо-	-,
го триода	0,3 Вт
Сопротивление в цепи сетки	0,1 МОм
п	U. I MIUM
Длительность импульса	10 мкс

170

Устойчивость к внешним воздействиям:	
ускорение при вибрации в диапазо-	
не частот 20—600 Гц	6 g
ускорение при многократных ударах	120 g
ускорение при одиночных ударах .	500 g
ускорение постоянное	100 g
интервал рабочих температур окру-	
жающей среды	От — 60
•	до + 125° С

Примечание. Использование лампы при фиксированном смещении не рекомендуется.

6Н27П. Аналог ЕСС86

Трнод двойной для усиления и преобразования напряжения в диапазоне УКВ с низковольтным питанием анода.

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 16 г.

Основные параметры при $U_{\rm B}\!=\!6,3\,$ В, $U_{\rm a}\!=\!12,6\,$ В, $R_{\rm c}\!=\!100\,$ кОм

Ток накала, м A	$6H27\Pi$ 330 ± 25 $2,5\pm0,85$	ECC86 330 2,5
=-1,8 В), мкА	<100 ≪0,1 4,9 15±4	 4,6 14
=2 кОм), мВ	≪30	-
входная . выходная 1-го триода . выходная 2-го триода . проходная . между анодами триодов . между сетками триодов . между анодом 1-го и сеткой 2-го трио-	3 ± 0.6 2 ± 0.4 1.8 ± 0.3 1.3 ± 0.3 <0.05 <0.005	3 1,8 1,8 1,3 0,65 0,005
да	≤ 0.05 ≥ 1500	_
Критерий оценки: крутизна характеристики, мА/В	≥3	_

6 Н27П	ECC86
5,5—7	5,7-6,9
30	30
30	30
20	20
0,6	0,6
1	
80	_
От —60	
до +70	
֡	5,5—7 30 30 20 0,6 1 80 Or —60

6H2711 UH= 6.38 B-2.5 -1.5-1-0.5

Анодные характеристики.

Анодно-сеточные характеристики.

6Н28Б-В

Триод двойной для усиления напряжения низкой частоты и генерирования. Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 19Б). Масса 5 r.

Основные параметры при $U_{\rm H}=6.3$ В, $U_{\rm a}=50$ В, $U_{\rm c}=-1$ В

Ток накал	a.									(247±22) MA
Ток анода							,	,		(7±3) мА
Разность з										

	Продолжени е
Обратный ток сетки	≪0,1 мкА
Ток утечки между катодом и подогревателем	≪20 мкА
Крутизна характеристики	$(6,75\pm2,25)$ MA/B
То же при $U_{\rm H} = 5.7~{ m B}$	≥3,6 мА/В
Коэффициент усиления	22 ±6
Напряжение виброшумов (при $R_a = 5$ кОм)	<25 MB
Межэлектродные емкости:	
входная	$(3,3\pm0,7)$ n Φ
выходная	$2,2^{+0,6}_{-0,5}$ пФ
проходная	<2 пФ
между анодами триодов	<0,1 nΦ
Наработка	≽2000 ч
Критерии оценки:	
обратный ток сетки	≪1 MKA
крутизна характеристики	≥3,6 MA/B +35 ₀
изменение крутизны характеристики	$<\frac{+35}{-40}\%$
Предельные эксплуатационные данные	
Напряжение накала	5,7—6.9 B
Напряжение анода	150 B 300 B
Напряжение сетки отрицательное	150 B
Напряжение между катодом и подогревателем	150 B
Ток катода	10 мА 0,9 Вт
Мощность, рассеиваемая сеткой каждого триода.	0,1 Br
Сопротивление в цепи сетки	2 МОм
Температура баллона лампы:	
при нормальной температуре окружающей среды	125°C
при температуре окружающей среды 200°С (не более 50 ч)	240°C
Устойчивость к внешним воздействиям:	
ускорение при вибрации в диапазоне частот 5—	
2000 Гц	15 g 150 g
ускорение при одиночных ударах	500 g
ускорение постоянное	100 g
интервал рабочих температур окружающей среды.	От —70
дм	до +200°C

От —70 до +200°С

Анодные карактеристики.

Анодно-сеточные характеристики

6Н30П-ДР

Триод двойной для работы в импульсных режимах в различной радиотехнической аппаратуре.

Оформление — в стеклянной оболочке, минитюрное (рис. 16П). Масса 20 г.

Основные параметры

при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!80$ В и $R_{\rm K}\!=\!56$ Ом

Ток накала				825 ⁺⁷⁵ ₋₁₀₀ MA
Ток анода каждого				(40±10) MA
Ток анода каждого				2-3 A
T ок анода (при $U_{ m c}$	=-12 B			≪30 мкА
Обратный ток сетк	и			≪1 мкA
Крутизна характери				(18±5) мА/В
Коэффициент усилен	ния каждо	ого триода.		15 ± 3
Напряжение виброц				25—50 мВ
Межэлектродиые емі	кости:		•	
входная				$(6,3\pm0,9)$ п Φ
выходная				$(2,4\pm0,5) \ \Pi\Phi$
проходная				$6,0-7,1 \text{ n}\Phi$
между анодами				<0,2 nΦ

Продолжение

като,	д — по	до	гре	В	те	ль					•					$8,8^{+2,7}_{-1,8}$ n
Наработн	ka.						٠	•	•	•	•	•	•	ŧ	•	> 10 000 ч
Критерий	і оценк	и:														
TOK	анода	В	И!	ИΠ	ул:	ьсе									٠	≥1,7 A

Напряжение накала	6,0—6,6 B 250 B 1050 B							
Напряжение сетки в импульсе отрицательное (при тимп ≤ 100 мкс)	50 В 400 В 6 А 100 мА 4 Вт 0,4 Вт 300 кОм							
Устойчивость к внешним воздействиям: ускорение при вибрации в диапазоне частот 5— 2000 Гц	150 g 500 g							
ускорение постоянное	100 g							

Анодные характеристики.

Анодно-сеточные характеристи-

Импульсные анодные характеристики.

6Н31П

Триод двойной для усиления напряжения высокой частоты (до 250 МГц) в каскодных схемах АРУ переключателей телевизионных каналов.

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 16 г.

5,7—7 B

300 B

Основные параметры

при $U_{\rm H}$ = 6,3 В, $U_{\rm A}$ = 90 В, $R_{\rm K}$ = 91 Ом

Ток накала .					ŧ							310^{+25}_{-35} MA
Ток анода .											•	17±4 мА
Обратный ток	сетки	1.				•						$\leqslant 0,2$ mkA
Крутизна хара	ктери	стик	и.		•			٠		•	•	$(12,5\pm3)$ mA/B
Коэ ффициент	усилен	ИЯ										31 ± 11
Напряжение в												<150 MB
Наработка .			•		•	•	•	•	٠	•	•	≽ 1500 ч
Критерии оцени	ки:											
обратный	ток с	етки								•		≪1,0 мкА
крутизна э	каракт	ерис	тик	и.	•	•	•	•		٠	•	≥7,5 mA/B
	Преде	льна	ie a	ксп	луа	та	иис	ЭНН	ые	Д	анн	ыe

Напряжение накала .

Напряжение анода

Π	родолж ение
Напряжение анода при запертой лампе	550 B
То же в импульсе	1000 B
Напряжение сетки отрицательное	50 B
Напряжение сетки в импульсе (отрицательное)	200 B
Напряжение между катодом и подогревателем	150 B
Ток катода (среднее значение)	22 mA
Ток катода в импульсе	200 мА
Мощность, рассеиваемая анодом	2 Вт
Сопротивление в цепи сетки	1 МОм
Температура баллона	120°C
Устойчивость к внешним воздействиям:	
ускорение при вибрации в диапазоне частот 10-	
600 Гц	2,5 g
ускорение при многократных ударах	35 g
интервал рабочих температур	Or -60
	до +70 °C

6Н32Б

12-586

Триод двойной для работы во входных балансных каскадах усилителей постоянного тока.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 19Б). Масса 5 г.

177

Основные параметры

при $U_{\rm H} = 6.3$ В, $U_{\rm A} = 100$) В и $R_{\rm K} = 2,7$ кОм
Ток накала	(410±40) мА
Обратный ток сетки	≪6 MKA
Крутизна характеристики	
B	мА/В
Разность крутизны (при $I_a = 0.9$ мА)	
Коэффициент усиления	24^{+11}_{-7}
Напряжение виброшумов	
Межэлектродные емкости:	
входная	$\cdot \cdot \cdot \cdot \cdot (2,1\pm 0,6) \pi \Phi$
выходная	$2,6^{+1,0}_{-0,9}$ пФ
проходная	≤2 nΦ
Наработка	≥500 ч
Критерии оценки:	
обратный ток сетки	≤90 мкА
крутизна характеристики	

Напряжение накала	5,7 B
Устойчивость к внешним воздействиям:	
ускорение при вибрации в диапазоне частот 5—	
2000 Гн	
ускорение при многократных ударах 150 g	
Accoperate ubu muotoubarrasar 1992 a	
ускорение при одиночных ударах 500 g	
ускорение при одиночных ударах 500 g ускорение постоянное	20
ускорение при одиночных ударах 500 g	60

6Н33Б

Триод двойной для усиления напряжения низкой частоты.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 19Б). Масса 4,5 г.

1500 Ou

Основные параметры

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 100$ В и $R_{\rm K} = 1500$	OM
Ток накала	(395 ± 35) MA $(0,9\pm0,25)$ MA
=0,5 МОм)	<0,2 MKA (2±0,5) MA/B
Крутизна характеристики	70±17,5 ≪10 MB
Межэлектродные емкости:	100
входная	$2,7^{+0,8}_{-0,7}$ $\pi\Phi$
выходная	$1,6^{igoplus_{-0,4}^{+0,3}}$ $\pi\Phi$
проходная	≼1,4 πΦ ≽500 ч
Критерии оценки:	
обратный ток сетки	$\leq 1,0$ MKA $\geq 1,2$ MA/B

Напряжение накала											5,77,0 B
Напряжение анода											200 B
Напряжение анода											350 B
Напряжение сетки отрицательн	ioe			٠			٠				50 B
Напряжение между катодом и	пол	тог	per	зат	еле	eM.		,			200 B
Ток катода								٠			6 мА
Мощность, рассеиваемая анод	ОМ								٠		1 Вт
Сопротивление в цепи сетки.		•							٠	,	2 МОм
Мощность, рассеиваемая анод Сопротивление в цепи сетки . Температура баллона	•		•	•		•	•	•	•	5	220°C
устойчивость к внешним воздей											
ускорение при вибрации в	ДИ	апа	азс	не	48	act	ОТ	10	00-	_	
2000 Гц											15 g
ускорение при многократных	уд	apa	3 X				٠				150 p
ускорение при одиночных	уда	apa	ιX								$500 \ \widetilde{g}$
ускорение постоянное			•		•			•		,	$100 \ g$
иптервал рабочих темпера	тур)					•		٠	•	$O_T = 60$
•											до +125°C

Анодные характеристики.

Анодно-сеточные характеристики.

РАЗДЕЛ ЧЕТВЕРТЫЙ СПРАВОЧНЫЕ ДАННЫЕ МНОГОЭЛЕКТРОДНЫХ ЛАМП

4.1. ЧЕТЫРЕХЭЛЕКТРОДНЫЕ ЛАМПЫ — ТЕТРОДЫ

695П, 695П-И

Тетроды для усиления напряжения высокой частоты в выходных каскадах широкополосных усилителей и в импульсных схемах (6Э5П-И).

Оформление — в стеклянной оболочке, миниатюрное (для лампы 695П — рис. 16П, для лампы 695П-И — рис. 10П). Масса 20 г.

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 150$ В, $U_{\rm c}_2 = 150$	B, $R_{\rm K} = 30$	Ом
	69517	6Э5П-И
Ток накала, мА	600±40 43±10	700±40 ≥35
=—12 В), мкА	<10 <14	— ≪18
Обратный ток 1-й сетки (при U_{c_1} = -2.5 В), мкА	<0, 5	≪ 3
Ток эмиссии катода в импульсе (при U_8 = 150 В, τ = 1÷2 мкс, f = 50 Гг), A То же при U_8 = 5,7 В, A		≥6 ≥3
Ток утечки между катодом и подогревателем, мкА	≤25	≪30
Напряжение отсечки тока анода (отрицательное), В	≤ 15	≪ 12
Напряжение отсечки электронного тока 1-й сетки (отрицательное), В	$\leq 1,1$ 30,5±6,5 ≥ 18	$\leq 1,5$ ≥ 24 ≥ 20 14
Внутреннее сопротивление, кОм	U	1.4

	Пр	одолжени е
9 квивалентное сопротивление шумов, кОм Длительность импульсов (при $U_{ m H}{=}5,7$ В),	0,35	0,35
MKC	-	$\leq 0,1$
Длительность фронта импульса (при $U_{\rm H} = 5.7$ В), нс		€30
Длительность спада импульса (при $U_{\rm H} = 5.7~{ m B}$), нс	_	≪40
Коэффициент широкополосности, мА/(ВХ хпФ)	1,5	1,5
Напряжение виброшумов (при $R_a = 0.5 \text{ кOm}$), мВ	≪120	€120
Межэлектродные емкости, пФ:	47.0	4
входная	15 ± 2 $2,55\pm0,3$ $<0,065$ $<13,5$ >500	15 ± 2 $2,5\pm 0,3$ $\leqslant 0,075$ $\leqslant 13,5$ $\geqslant 500$
	> 000	2000
Критерии оценки: обратный ток 1-й сетки, мк A	<1,5 ≥18 <25 	
Предельные эксплуатационные	данные	
Напряжение накала, В	. 470	5,7—7 250 470 250 470 100
Напряжение между катодом и подогревато лем, В:	9-	
при положительном потенциале подогревателя	. 100	100
теля Ток катода, мА	. 150 . 100 . — . 8,3 . 2,3	150 100 9 — 2
кой, Вт	. —	3 0,5 —
Устойчивость к внешним воздействиям:		
ускорение при вибрации g в диапазоне частот, Гц	. 10 5—600	10 10—600

ускорение при многократных ударах g .	7 5	
ускорение при многократных ударах g .	500	
ускорение постоянное д	100	100
интервал рабочих температур окружаю-		
щей среды, °С	От60	От —60
	до+85	до +90

Анодные характеристики.

Анодно-сеточные характеристики.

696П-Е, 696П-ДР

Тетроды с высокой крутизной для усиления напряжения высокой частоты в выходных каскадах широкополосных усилителей.

Оформление — в стеклянной оболочке, миниатюрное (рис. 13П). Macca 18 г.

Основные параметры

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 150$ В, $U_{\rm c2} = 150$ В, $R_{\rm K} = 30$ Ом

	6Э6П-Е	6Э6П-ДР
Ток накала, мА		520 ± 35
Ток анода, мА		44 ± 11
Ток 2-й сетки, мА		10 ± 4
Обратный ток 1-й сетки, мкА.	≤0,3	€0,3
Ток утечки между катодом и	подогрева-	•
телем, мкА	≤25	_

	Пр	одолжени в
Крутизна характеристики, мА/В	$29,5\pm7,5$	$30,5\pm6,5$
То же при $U_{\rm H} = 5.7$ В, мА/В Внутреннее сопротивление, кОм	≥18 15	15
Напряжение 1-й сетки отрицательное, за- пирающее, В	≤ 15	
Напряжение отсечки электронного тока 1-й	10	
сетки (отрицательное), В	≤ 1	≤ 1 0,25
Входное сопротивление (при $f = 60 \text{М} \Gamma \mu$),	•	
$\kappa O M$	2	2
=0,5 kOm), mB	€150	€150
Межэлектродные емкости, пФ:		
входная	15 ± 2 5.9 ± 0.8	15 ± 2 5,9 $\pm 0,8$
проходная	0,05—	0,05—
катод — подогреватель	$0,075 \le 13,5$	$0,075 \le 13,5$
Наработка, ч	≥10,000	≥10 000
Критерии оценки:		
обратный ток 1-й сетки, мкА к крутизна характеристики, мА/В	<2 ≥18	≤ 2

	6Э6П-Е	696П-ДР
Напряжение накала, В	6-6,6 150 285 150 285 100	6-6,6 150 285 150 285 100
при отрицательном потенциале подогревателя, В	100 70 8,25 0,5 250	100 70 8,3 2,1* 250
Устойчивость к внешним воздействиям: ускорение при вибрации на частоте 50 Гц g ускорение при многократных ударах g интервал рабочих температур окружающей среды, °C	2,5 35 От-60 до+70	3 75 От -60 до +85

^{*} Мощность, рассенваемая 2-й сеткой.

Анодные характеристики.

Анодно-сеточные характеристики,

6912H, 6912H-B

Тетроды для усиления напряжения и мощности высокой частоты.

Оформление — в металлокерамической оболочке (рис. 4H). Масса 4 г.

при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!120$ В, $U_{\rm c}_{\rm 2}\!=\!50$ В, $R_{\rm H}\!=\!68$ Ом

	6 Э 12H	€Э12Н-В
Ток накала, мА	140 ± 15	140 ± 15
Ток анода, мА	10 ± 3	$9,5\pm 2,5$
To же в начале характеристики при U_{c1} =	- 50	-50
=-6 B, мкA	≤ 50	≤ 50
Ток 2-й сетки, мА	≪ 3,6	≤ 3.6
Крутизна характеристики, мА/В	$9,5{\pm}2,5$	$^{11}^{+2}_{-2.5}$
Обратный ток 1-й сетки при $U_{c_1} = -1,6$ В,		-,-
$R_{c_1} = 0.5$ kOm, MkA	-	$\leq 0,1$
Эквивалентное сопротивление шумов на ча-		
стоте 30 МГц, кОм	≪1	
Напряжение виброшумов (при $R_a = 2$ кOм,	~-	
частоте вибрации 50 Гц и ускорении		
2,5 g), мВ	≪40	
	×	

	,	
Напряжение виброшумов при вибрации с ускорением 15 g , мВ:	·	
на частоте 50 Гц:		
для 80% ламп	_	≪30 ≪50
на частотах 5—2500 Гц:		
для 80% ламп	_	≤130 ≤250
на частотах 2500—5000 Ги:		~20 0
для 80% ламп	_	≤250 400
		€400
Межэлектродные емкости, пФ:	_	
выходная	7±1	7±!
проходная	1,5±0,4 ≪0,017	$1,5\pm0,4$ $\leq 0,015$
катод — подогреватель	$1,4\pm0,4$	$1,4\pm0.4$
Наработка, ч	≥ 5000	-,
Наработка при температуре окружающей среды 200°C, ч		
при нормальной температуре, ч	_	≥ 500
Критерии оценки:		≥1000
кругизна характеристики, мА/В		_
обратный ток 1-й сетки, мкА	≽5 —	$\geqslant 7 \leqslant 1,5$
Предельные эксплуатационные	данные	
•	6912H	6Э12H-B
Напряжение накала, В	5,7—7	5,7-7
Напряжение анода, В	250	250
То же при запертой лампе, В	330	330
Напряжение 2-й сетки, В		110
То же при запертой лампе, В		330
Напряжение 1-й сетки (отрицательное), В Мощность, рассеиваемая анодом, Вт	55 2,2	55
Мощность, рассеиваемая 2-й сеткой, Вт	0,2	$\begin{array}{c} 2,2\\0,2 \end{array}$
Мощность, рассеиваемая 1-й сеткой. Вт	0,2	$0,2 \\ 0,2$
Ток катода, мА	2 Ó	20
Напряжение между катодом и подогрева-		
телем, В.	1	100
Сопротивление в цепи 1-й сетки, МОм	250	1 250
Устойчивость к внешним воздействиям:		
ускорение при многократных ударах д	35	150
ускорение при одиночных ударах g.	_	1000
интервал рабочих температур окружаю- щей среды, °С	От60	От —60
щей среды, С	до +125	до +200

Анодно-сеточные характеристики.

6913H

Тетрод для усиления и генерирования напряжения в устройствах с низким напряжением питания.

Оформление — в металлокерамической оболочке (рис. 4H). Масса 4 г.

при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!27$ В, $U_{\rm c}\!=\!27$ В, R) <u> —</u> 6	38 Ow
Ток накала		(140±20) мА
Ток анода		(7±3) мА
Ток анода		≪ 50 мкА
Ток 2-й сетки		⊘ 3,0 MA
Крутизна характеристики		(8,5±3) мА/В
Напряжение виброшумов (Ra = 2 кОм при вибрат	ции	
с частотой 50 Гц и ускорением 2,5 g)		≪ 50 мВ
Межэлектродные емкости:		
входная		(7±1) nΦ
выходная		(1.9 ± 0.6) n Φ
проходная		≤ 0,025 πΦ
Наработка		≥ 5000 q
Критерий оценки:		
крутизна характеристики		≥4 MA/B

Напряжение накала	5,7—7 B
Напряжение анода	200 B
То же при запертой лампе	300 B
Напряжение 2-й сетки	70 B
Напряжение 1-й сетки (отрицательное)	55 B
Мощность, рассеиваемая анодом	2 Вт
Мощность, рассеиваемая 2-й сеткой	0.2 Вт
Мощность, рассеиваемая 1-й сеткой	0.01 Br
Ток катода	15 мА
Напряжение между катодом и подогревателем	100 B
Сопротивление в цепи 1-й сетки	1 МОм
Температура баллона	200°C
Интервал рабочих температур окружающей среды.	От —60
I will ambiguare above t	до +125°C
	A0 120 O

Анодные характеристики.

Анодно-сеточные характеристики.

6314H

1етрод для усиления и генерирования напряжения в устройствах с низким напряжением питания.

Оформление — в металлокерамической оболочке (рис. 4H), Масса 4 г.

при $U_{\rm B} = 6.3$ В, $U_{\rm a} = 27$ В, $U_{\rm C2} = 27$ В, $R_{\rm K} =$	=68 Ом
Ток накала	(130±10) MA (7±3) MA ≪3,6 MA (8,5±3) MA/B ≪50 MB
Межэлектродные емкости: входная	(7±1) πΦ (1,9±0,6) πΦ ≪0,025 πΦ >5000 ч
Критерий оценки: крутизна характеристики	
Напряжение накала То же при запертой лампе Напряжение 2-й сетки Напряжение 1-й сетки (отрицательное) Мощность, рассеиваемая анодом Мощность, рассеиваемая 2-й сеткой Мощность, рассеиваемая 1-й сеткой Ток катода Напряжение между катодом и подогревателем Сопротивление в цепи 1-й сетки	5,7—7 B 200 B 300 B 70 B 55 B 2 BT 0,2 BT 0,01 BT 15 MA 100 B

Анодные характеристики.

Анодно-сеточные характеристики.

6915N

Тетрод высоковольтный для работы в качестве регулирующего элемента в электронных высоковольтных стабилизаторах напряжения.

Оформление — в стеклянной оболочке, миниатюрное (рис. 27П). Масса 30 г.

Ток 2-й сетки	5±125) MA 00 MkA MkA -5±1,15) B 0 B ±0,5) MA/B
выходная	±0,5) пФ 05 пФ 00 ч
крутизна характеристики $\geqslant 0$,	мкА 7 мА/В
Предельные эксплуатационные данные	
Напряжение накала	5,7—7 B 5 κB 10 κB 60 B 20 B 150 B 10 мA 10 Bτ 0,15 Bτ 0,1 MOM
при $U_{c2}{<}40$ В при $U_{c2}{>}40$ В	≥ 5 кОм ≥ 10 кОм
ускорение при многократных ударах	40°g 100°g От —45 до 70°C

4.2. ПЯТИЭЛЕКТРОДНЫЕ ЛАМПЫ — ПЕНТОДЫ С КОРОТКОЙ АНОДНО-СЕТОЧНОЙ ХАРАКТЕРИСТИКОЙ

1Ж17Б

Пентод прямонакальный для усиления напряжения высокой и промежуточной частоты.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 24Б). Масса 4 г.

при $U_{\rm H} = 1,2$ В, $U_{\rm a} = 6$	30 B,	U_{c_2}	= 40	В, И	$\mathcal{I}_{c_1} = 0 B$
Ток накала					≪0,3 MA
Обратный ток 1-й сетки (при U = 0,5 МОм)	: : f=60	MΓ	; ; `L	: : :: !c1=	≪0,5 MKA (1,5±0,5) MA/B ≥0,85 MA/B
=-1 В)	 шумов		• •	: :	≥80 кОм ≤7 кОм ≤50 мВ
Межэлектродные емкости:					
входная			:		(2,4±0,4) πΦ ≪0,01 πΦ
Критерии оценки:					
обратный ток 1-й сетки крутизна характеристики . то же при $U_{\pi} \! = \! 0.95$ В			•	: :	<1 MKA $>0,85$ MA/B $>0,6$ MA/B
Предельные эксп.	луата	цион	ные	дан	ные
Напряжение накала			•		1,08—1,32 B (0,95—1,4)*
Напряжение анода Напряжение 2-й сетки					90 B 60 B
Ток катода			·		5 mA
Мощность, рассенваемая анодом					0,5 Вт
Мощность, рассеиваемая 2-й сет	кой.				0,18 Вт
Сопротивление в цепи 1-й сетки	i				1 МОм
Температура баллона лампы .			•		85 °C

Устойчивость	K	внешним	воздействиям:

ускорение при вибрации в диапазоне частот	
5—600 Гц	6 g 150 g
ускорение при многократных ударах	
ускорение при одиночных ударах	500 g 100 g
интервал рабочих температур окружающей	100 g
среды	От —60
	до +85 ℃

^{*} Значения в скобках — при питании лами от источников с циклическим разрядом.

1Ж18Б

Пентод прямонакальный для усиления напряжения высокой и промежуточной частоты. Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 24Б). Масса 4 г.

при $U_{\rm H} = 1.2$ В, $U_{\rm a} = 60$ В, $U_{\rm c2} = 45$ В, $U_{\rm c1} = 0$ В
Ток накала
=0,5 MOm)
Крутизна характеристики $(1,15\pm0.45)$ мА/В
То же при $U_{\rm H}$ = 0,95 В
Входное сопротивление (при $f=60$ МГц, $U_{c1}=$
=-1 B) ≥ 100 кOм
Эквивалентное сопротивление шумов «7 кОм
Напряжение виброшумов (при $R_a = 2$ кОм), дей-
ствующее
Межэлектродные емкости:
входная
выходная . , , , , , , , , , (2,4 \pm 0,4) п Φ
проходная
Наработка
Критерии оценки:
обратный ток 1-й сетки ≪1 мкA
крутизна характеристики ≥ 0.55 мА/В

Напряжение	накала		•	•	•		٠	•	•	•	•		•	1,08 (0,95)- -1,32(1,4)* B
Напряжение	анода													′90 B′
Напряжение	2-й сет	ки.												60 B
Ток катода .			•			•					٠	•		2,5 мА
Сопротивлен	ие в це	пи 1	-й	сеті	КИ					•	٠	•	•	1 МОм
Температура	баллон	на л	амп	ы							•	•	•	85 °C
Устойчивость к внешним воздействиям:														
ускорени	е в диа	пазо	не	час	TOT	r	<u>5</u> —	60	0 I	Ц				6 g
ускорени	е при м	НОГО	кра	THE	ΙX	yд	цар	ax					•	150 g
ускорени	е при с	дин	ЭЧН	ЫХ	уд	ap	aх						٠	$500 \ \widetilde{g}$
постоянн														100 g
интервал	рабочи	их т€	емпе	epar	гур	(кр	уж	сак	ЭЩ	ей	ср	e-	
ды														От60
														до +85 ℃

^{*} Значения в скобках — при питании ламп от источников с циклическим разрядом.

1Ж24Б

Пентод прямонакальный, экономичный для усиления напряжения высокой и промежуточной частоты.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 24Б). Масса 4 г.

при $U_{\rm H} = 1.2$ В, $U_{\rm a} = 60$ В, $U_{\rm c2} = 45$ В, $U_{\rm c1} = 0$ В
Ток накала
=0,5 МОм)
Входное сопротивление (при $f = 60 \text{МГц})$ $\geqslant 100 \text{кОм}$ Напряжение виброшумов (при $R_a = 10 \text{кОм})$ $\leqslant 50 \text{мB}$
Межэлектродные емкости:
входная
проходная

Критерии оценки: обратный ток 1-й сетки	$\lesssim 0.1 \text{ MKA}$ $\geqslant 0.48 \text{ MA/B}$
Предельные эксплуатационные данн	ые
Напряжение накала	1,05—1,32 B (0,95—1,4)*
Напряжение анода	120 B
Напряжение 2-й сетки	90 B
Тов катода,	1,6 мА
Мощность, рассеиваемая анодом	0,12 Вт
Сопротивление в цепи 1-й сетки	2,2 MOm
Температура баллона ламиы	105 °C
⊱стойчивость к внешним воздействиям:	
ускорение при вибрации в днапазоне частот	
5-600 Fg	10g
ускорение при многократных ударах	$150\overline{g}$
ускорение при одиночных ударах	500g
постеянное ускорение	100g
интервал рабочих температур окружающей	9
среды	От60
Christian	πο + 105 °C

^{*} Значения в скобках — при питании от источников с циклическим разрядом.

1Ж29Б**-В**, 1Ж29Б**-**Р

Пентод высокочастотный для усиления и генерирования колебаний высокой частоты.

Оформление — в стеклянной оболочке, сверхминнатюрное (рис. 25Б). Масса 4,5 г.

Основные параметры

при последовательном включении подогревателя $U_{\rm H}$ = 2,4 B, при параллельном 1,2 B, $U_{\rm a}$ = 60 B, $U_{\rm c2}$ = 45 B, $U_{\rm c1}$ = 0 B 1ж29Б-В 1ж29Б-Р

Ток накала, мА:	
при параллельном включении 62 ± 6	60±6
при последовательном включении 31±3	30 ± 3
Ток анода, мА 5,3±1,7	$5,3\pm1,7$
Ток 2-й сетки, мА	$\leq 0,5$

193

Устойчивость к внешним воздействиям:	
ускорение при вибрации в диапазоне частот 5-	
600 Гц	
ускорение при многократных ударах	. 150g
ускорение при одиночных ударах	. 500g
интервал рабочих температур окружающей среды	. От —60
	до +125 °C

110 °C

Анодно-сеточные характеристики.

Анодные характеристики.

1Ж36Б

13*

Пентод высокочастотный, ударопрочный для усиления напряжений высокой частоты. Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 8Б). Масса 4 г.

195

Основные параметры												
при $U_{\rm H}$ =1,35 B, $U_{\rm a}$ =150 B, $U_{\rm c2}$ =45 B, $U_{\rm c1}$ =—1 В												
Ток накала												
Ток анода												
Ток 2-й сетки												
Крутизна характеристики ($2\pm0,5$) мА/В												
Входное сопротивление на частоте 60 МГц > 35 кОм												
Эквивалентное сопротивление впутриламповых шу-												
мов												
Напряжение виброшумов (при $R_a = 2$ кOм, вибра-												
ции с частотой 50 Гц и ускорением 10 g) \leqslant 50 мВ												
Межэлектродные емкости:												
входная												
выходная												
проходная												
Критерии оценки:												
крутизна характеристики ≥1,2 мА/В												

Напряжение накала	1,12—1,5 B											
Напряжение анода	200 B											
Напряжение 2-й сетки	60 B											
Мощность, рассеиваемая анодом	1,5 Br											
Ток катода	$\tilde{7}_{\mathrm{MA}}$											
Сопротивление в цепи 1-й сетки	1 МОм											
Температура баллона	130 °C											
Устойчивость к внешним воздействиям:												
ускорение при вибрации в диапазоне частот 5-												
600 Гц	10g											
ускорение при одиночных ударах	3 000 g											
интервал рабочих температур окружающей сре-	•											
ды.	От60											
	ло +85 °C											

1Ж37Б

Пентод прямонакальный, универсальный (с двумя управляющими сетками) для усиления, генерирования и преобразования напряжений высокой частоты.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 20Б). Масса 4 г.

	при	$U_{\rm r}$	₁ ==]	,2	В,	ι	/a =	= 45	5 B	, 1	$U_{\mathbf{c}}$	2=	45	В,	ι	c1	 ($U_{c1} = 0 \text{ B}$
Ток	нака	ала																(59±7) MA
Ток	анод	ца																$(2,55\pm0,85)$ MA
Ток	2-й	сет	ки									i				٠		$\leq 0,5$ mÅ
Обр	атны	йт	OK	1-	Й(ет	КИ	(п	ри	U	c į	=-	-2	В,	C	еть	И	
1'	и 1	″ c	оед	ин	ень	ı l	пар	ал	лел	ΙЬН	ю)							$\leqslant 0$, 1 MK ${ m A}$

Основные параметры

Крутизна характеристики:

по сетке 1 (сетки 1' и 1" с	oe,	динены	парал-	
лельно)				$(1,25\pm0,4)$ mA/B
по каждой сетке 1' и 1".				$0.63 \frac{+0.23}{-0.26}$ MA/B
при напряжении накала 1,05	В	(сетки	1′ и 1″	
соединены параллельно) .				0.65 mA/B

Крутизна преобразования:

по	сетке	1	(cet	ки	1'	И	1'	" (coe	ди	нен	ы	па	ра.	1-	
лел	ьно) .		•											•		$0.3_{-0.1}^{+0.5}$ mA/B
по	сетке	1'														$0.18 \frac{+0.12}{-0.06}$ mA/B
																0 18+0,12 WA/B

	Продолженив									
Напряжение виброшумов (при $R_8 = 5$ кОм)	≪60 мВ									
Эквивалентное сопротивление шумов (при $f = 30 \text{ МГц}$). Входное сопротивление (при $f = 60 \text{ МГц}$). Межэлектродные емкости:	<7 кОм ≥50 кОм									
•										
входная емкость; по сетке <i>l'</i>	(2,25±0,35) пФ (2,25±0,35) пФ 2,7 ^{+0,5} пФ									
	-0,7									
проходная емкость; по сетке 1'	< 0,008 пФ <0,008 пФ <0,31 пФ									
Наработка	≥ 5000 ч									
Критерии оценки: обратный ток 1-й сетки (сетки I' и I'' соединены паравлельно)	<0.5 MKA >0.65 MA/E >0.45 MA/B									
Предельные эксплуатационные данные										
Напряжение накала	, 1,08—1,32 B (0,95—1,4)*									
Напряжение анода	. 100 B . 60 B . 4,5 MA . 1 MOM									

ускорение при одиночных ударах . .

Устойчивость к внешним воздействиям:

10g 150g

500g 100g От —60

до +125 ℃

^{*} Значения при питании от источников с циклическим разрядом.

Анодно-сеточная характеристика по 1-й сетке (сетки C_1' и C_1'' соединены).

Анодно-сеточная характеристика по сетке C_{1}' .

Анодные характеристики.

1XK42A

Пентод прямонакальный (с двумя управляющими сетками) для усиления, генерирования и преобразования напряжений высокой частоты в различных радиотехнических устройствах экономичного питания,

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 22Б). Масса 3 г.

															hы			_
	П	ри <i>U</i>	J _H =	= 1,2	B	, <i>l</i>	$J_{\mathbf{a}}$	=6	В	, l	J_{c_2}	=6	5 E	3,	U'_{c1}	=	0	B, $U''_{c1} = 0$ B
Ток	на	кала	а.															$(15\pm1,5)$ MA
Ток	aı	юда																$0,55 \begin{array}{c} +0,35 \\ -0.23 \end{array}$ MA
Ток	2-1	й се	тки								•							$\leq 0,25$ mA
Кру		на х	•		•													
	ΠO	сет	∢e .	1 (сет	ки	1'	и	1	″ (coe	ли	нен	ы	па	na.	л-	
	лел	ьно)		i'	•	•	•				•	•		•		•	•	$0.45_{-0.12}$ MA/B > 0.16 MA/B
	по	сети	кe	$I^{\prime\prime}$	•		•	•	•	•						٠		≥0,16 MA/B
	при	U_{1}	₇ = (0,95	E	3												≥0,25 mA/B
Kpy	тиз	нап	peo	бра	301	ван	ия	:										
	по	сети	(e	1′	•	•		•		•			•	•	•	•	•	≥ 36 MKA/B
	по	сети	se	1	•	•	•	•	•	•	•	•	•	•	٠	•	•	≥36 мкА/В

Продолжение

Входное сопротивление (при $f=60\ M\Gamma$ и) > 60 кОм Эквивалентное сопротивление шумов (при $f=$ = 30 $M\Gamma$ и)									
Межэлектродные емкости:									
входная									
Критерии оценки: крутизна характеристики (сетки 1' единены вместе)									
Предельные эксплуатационные данные									
Напряжение накала	20 B 12 B 1,3 MA								

Устойчивость к внешним воздействиям:

ускорение при вибрации в диапазоне частот	
10—2500 Гц	10g
ускорение при многократных ударах	150g
ускорение при одиночных ударах	
ускорение постоянное	100
интервал рабочих температур	
milepaux passimi remieracje v v v v v	ло +125 °C
	до +125 °C

Анодные характеристики.

Анодно-сеточные жарактеристи-

2Ж48Б

Пентод высокочастотный для усиления п генерирования напряжения высокой частоты.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 32Б). Масса

Основные параметры при $U_{\rm H}$ =2,4 В, $U_{\rm a}$ =80 В, $U_{\rm c_2}$ =80 В, $U_{\rm c_1}$ =-0,5 В
Ток накала
Ток анода
-1 νΛ
ток 2-и сетки
Входное сопротивление на частоте 60 МГц 30 кОм
Эквивалентное сопротивление внутриламповых шу- мов на частоте 30 МГц
Мов на частоте зо ит и
Межэлектродные емкости:
входная
выходная
проходная
Наработка:
при температуре окружающей среды $125^{\circ}\mathrm{C}$ $\geqslant 500\mathrm{q}$ при пормальной температуре $\geqslant 1000\mathrm{q}$
Критерии оценки:
крутизна характеристики
=120 B, U_{c1} =-2 B, R_{c1} =0.5 MOM) ≤ 1.0 MKA
Предельные эксплуатационные данные
Напряжение накала
Напряжение анода
То же при запертой лампе 200 В Напряжение 2-й сетки 80 В
Мощность, рассеиваемая анодом
Мощность, рассеиваемая анодом 0,6 Вт Мощность, рассеиваемая 2-й ссткой 0,6 Вт
Ток катода
Напряжение между катодом и подогревателем
Сопротивление в цепи 1-й сетки

Устойчивость	K	внешним	воздействиям:
--------------	---	---------	---------------

ускорение при вибрации на частотах	х 5—2000 Гц	15g
ускорение при многократных ударах	· · · · · ·	150g
ускорение при одиночных ударах.		1000g
иштервал рабочих температур окруж	кающей сре-	
ды		От —60
		до +125 °C

6Ж1Б, 6Ж1Б-В, 6Ж1Б-ВР

Пентоды для усиления напряжения высокой частоты.
Оформление — в стек-

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 4Б — для 6Ж1Б,

(рис. 4Б — для 6Ж1Б, 6Ж1Б-В, рис. 36Б для 6Ж1Б-ВР). Масса 4,5 г.

при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!120$ В, $U_{\rm c2}\!=\!120$ В,	$U_{c_3}=0$ B, R	s = 200 Om
6Ж1Б	6Ж1Б-В	ЧВ-ВР
Ток накала, мА 200±20	200 ± 20	185 ± 20
Ток анода, мА 8±3	$7,5\pm 2,5$	$7,5\pm 2,5$
То же в начале характеристи-		
ки (при $U_{c1} = -10$ В), мкА —	≪50	≪50
Ток 2-й сетки, мА ≪4	$\leqslant 3.5$	$\ll 4$
Обратный ток сетки, мкА <0,2	$\stackrel{\circ}{\leqslant} 0, 1$	≤ 4 $\leq 0,1$
Ток утечки между катодом и	~~,.	Q = , -
подогревателем, мкА ≪30	≤20	_
Крутизна характеристики,	~20	
Λ /D Λ Арактеристики,	$5,0\pm1,2$	$5 \pm 1,2$
MA/B		OME 1,2
То же при U_{π} =5,7 В ≥2,8	$\geqslant 3,2$	
Эквивалентное сопротивление		
шумов, кОм ≪4	$\leq 2,5$	$\leq 2,5$
Входное сопротивление (при		
$f=50$ МГц), кОм $\geqslant 8$	≥8	
Напряжение виброшумов (при		
$R_a = 10 \text{ kOm}, \text{ MB} < 270$	≪180	≪ 180
Межэлектродные емкости, пФ:		
входная 4,8±1,2	4.8 ± 0.85	4.8 ± 0.85
выходная	3.8 ± 0.95	$3,5\pm0,9$
проходная <0,04	≪0,03	≪0,03
катод — подогреватель 3—7	<0,00 <7	₹ 7
Наработка, ч ≥ 500	≥ 2000	≥5000
110haootya, 4 · · · · · > 900	≈ 2 000	JU00

Критерии долг	овечн	ости	:			
обратный мкА	ток 	1-й 	сетки, 		≪0,5	
крутизна мА/В .	. :			≥2,8	≥3,0	_
изменение теристики,	• •		•		$\leq \frac{+30}{-40}$	_

Напряжение накала, В Напряжение анода, В То же при запертой лампе, В Напряжение 2-й сетки, В То же при запертой лампе, В	6Ж1Б 5,7—6,9 150 — 125	6Ж1Б-В 5,7—6,9 150 250 125 250	6Ж1Б-ВР 6—6,6 150 250 125 250
Напряжение 1-й сетки (отрицательное), В	_	5 0	
Напряжение между катодом и подогревателем, В	100 14	150 14	120 20
Мощность, рассеиваемая анодом, Вт	1,2	1,2	1,2
Мощность, рассенваемая 2-й сеткой, Вт	0,4	0,4	
Сопротивление в цепи 1-й сет- ки, МОм	1	1	1
Температура баллона, °C:			
при нормальной темпера- туре окружающей среды . при температуре окружаю- щей среды 200°С (для	_	170	130
6Ж1Б-ВР — при 125° С). Устойчивость к внешним воз-	-	250	200
действиям:			
ускорение при вибрации в диапазоне частот 5—600 Гц g		10	20
на фиксированной частоте 50 Гц g	2,5	15	-
ускорение при многократ- ных ударах g	35	150	150
ускорение при одиночных ударах g	Ξ	500 100	500 100
ратур окружающей среды, °C	От —60 до +70	От —60 до +200	От —60 до +125

 $6 \times 15 - 8$ $U_H = 6,38$ $U_G = 1208$ $U_{C2} = 1208$ $U_{C3} = 1208$ $U_{C4} = 1208$ $U_{C4} = 1208$ $U_{C5} = 1208$ $U_{C4} = 1208$ $U_{C5} = 1208$ U_{C5

Анодные характеристики.

Анодно-сеточная характеристи-

6Ж1П, 6Ж1П-ЕВ, 6Ж1П-ЕР. Аналоги ЕF95, 6F32

Пентоды для усиления напряжения высокой частоты в телевизионной и радиоприемной аппаратуре.

Оформление — в стеклянной оболочке, миниатюрное (рис. 1П). Масса 15 г.

Основные параметры

при $U_{\rm H}\!=\!6,3$ В, $U_a\!=\!120$ В, $U_{\rm c}{}_2\!=\!120$ В, $R_{\rm K}\!=\!200$ Ом

Наименование	6Ж1П	6Ж1П-ЕВ	6Ж1П-ЕР	EF95, 6F32
Ток накала, мА	$\begin{array}{c} 170 \pm 17 \\ 7,35 \pm 2,35 \\ < 100 \\ < 3,2 \\ < 0,2 \\ < 0,2 \\ < 3,4 \\ 25 \\ _13 \end{array}$	$ \begin{array}{c cccc} & 172 \pm 12 \\ & 7,35 \pm 2,35 \\ & < 50 \\ & < 3 \\ & < 0,1 \\ & < 15 \\ & < 16 \pm 1,25 \\ & < 3,4 \\ & > 12 \end{array} $	$ \begin{array}{c} 185 \pm 10 \\ 7,75 \pm 2,25 \end{array} $ $ <20 \\ <3 \\ <0,1 $ $ -5,5 \pm 1,3 $ $ >10 $	175 7,5 - ≪3,5 ≪0,1 - 5,2 - ⇒25

Наименование	6米1口	6Ж1П-ЕВ	43-П1Ж	EF95, 6F32
Внутрениее сопротивление, МОм Эквивалентное сопротивление шу-	0,3+0,8	0,3+0,8	0,3+0,7	0,25
мов, кОм	1,8 ^{+1,9} ≪200	≥3,5 60+90	≥ 2 ≥60	≥2 -
Межэлектродные емкости, пФ: входная	$\begin{array}{c c} 4,25\pm0,35 \\ 2,35\pm0,25 \\ < 0,02 \\ < < 4,6 \end{array}$	$\begin{array}{c c} 4,1\pm0.6 \\ 2,35\pm0,45 \\ <0,035 \\ <4,6 \end{array}$	4,4±0,6 2,6±0,4 <0,04 <5	4,5 2,8 ≪0,028
Наработка, ч Критерии оценки: обратный ток 1-й сетки, мкА Крутизна характеристики, мА/В	≥2000 =- ≥3,4	≥5000 <0,3 ≥3,4	≥5000 ≤0,5 ≥3,6	=

Наименование	6 Ж 1П	8З-П1Ж	6Ж1П-ЕР	EF95, 6F32
Напряжение накала, В	5,7—6,9 200 225 150	6—6,6 120 — 120	6—6,6 120 — 120	5,7—5,9 200 320 150
циале подогревателя при положительном потенциале подогревателя Ток катода, мА	120 120 20 0,55	120 90 13 0,4	120 90 13,5 0,4 1,2	100 18 0,5
ки, МОм	1 130	90	1 80	1 150
ускорение при вибрации в диапазоне частот 5—600 Гц д ускорение при вибрации на частоте 50 Гц д ускорение при многократных ударах д ускорение при одиночных ударах д ускорение постоянное д интервал рабочих температур окружающей среды, °С	2,5 35 — От —60 до +70	10 6 150 500 100 От —60 до +70	6 150 500 100 Οτ60 до +-70	-

Анодные характеристики.

Анодно-сеточная характеристика,

6Ж2Б, 6Ж2Б-В

Пентоды с двойным управлением для работы в схемах, формирующих импульсы. Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 4Б). Масса 3,5 г.

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 175$ В, $U_{\rm c}{}_2 = 120$ В, U	$c_3 = 0$ B, $R_{\rm H} =$	200 O _M
	6Ж2Б	6Ж2Б-В
Тек накала, мА		200 ± 20 5,5 ± 2
То же в начале характеристики $U_{c1} = -15$ В, мкА		≤ 30_
=15 В, мкА	$\stackrel{\leqslant 6}{\leqslant}_{0,2}$	≪30 ≪5,5 ≪0,15
Ток утечки между катодом и подогревате- лем, мкА	€30	€20
мА/В	$3,2^{+1,6}_{-0,9}$	3,75±0,95
То же, при $U_{\rm H} = 5,7~{\rm B}$	≥2	≥2,3
=10 кОм), мВ	_	≪ 180

Межэлектродные емкости, пФ:	
входная 4,9±	
выходная 4±1,	
проходная	$ 4 \leq 0.03$
катод — подогреватель 4,05 ⁻¹	
Наработка, ч	≥ 2000
Критерии оценки:	-0.5
обратный ток 1-й сетки, мкА — крутизиа характеристики 1-й сетки,	$\leq 0,5$
MA/B ≥ 2	$\geqslant 2.3$
	_+30
изменение крутизны характеристики, % —	-40

Напряжение накала, В		62K2B	6Ж2Б- В
То же при запертой лампе, В	Напряжение накала, В	5,7-6,9	5,7-6,9
То же при запертой лампе, В	Напряжение анода, В	150	150
То же при запертой лампе, В		250	25 0
Напряжение 1-й сетки (отрицательное), В — 50 Напряжение между катодом и подогревателем, В	Напряжение 2-й сетки, В	125	125
Напряжение между катодом и подогревателем, В			250
телем, В	Напряжение 1-й сетки (отрицательное), В		50
Ток катода, мЛ	Напряжение между катодом и подогревателем. В	100	150
Мощность, рассеиваемая анодом, Вт 0,9 0,9 Мощность, рассеиваемая 2-й сеткой, Вт 0,5 0,5 Сопротивление в цепи 1-й сетки, МОм 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		14	14
Мощность, рассеиваемая 2-й сеткой, Вт 0,5 0,5 Сопротивление в цепи 1-й сетки, МОм 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0,9	0,9
Сопротивление в цепи 1-й сетки, МОм		0,5	0,5
при нормальной температуре окружающей среды	Сопротивление в цепи 1-й сетки, МОм	1	1
щей среды	Температура баллона, °С:		
200° С	щей среды		170
ускорение при вибрации в диапазоне частот $10-300$ Гц g	200° C		250
частот 10—300 Гц g			
50 Гц g	частот 10—300 Гц д	10	10
ускорение при многократных ударах g 35 150 ускорение при одиночных ударах g — 500 25 100 интервал рабочих температур окружающей среды, °C От —60 От —60	50 Tu g		
ускорение постоянное g	ускорение при многократных ударах g	35	
интервал рабочих температур окружающей среды, °С От —60 От —60		25	
ющей среды, °С От —60 От —60	интервал рабочих температур окружа-	20	100
Mo 110 Mo 1200	ющей среды, °С	От —60 до +70	От —60 до +200

Анодно-сеточные характеристики по 1-й сетке.

Анодно-сеточные характеристики по 3-й сетке.

Анодные характеристики.

6Ж2П, 6Ж2П-ЕВ

Пентоды высокочастотные для усиления напряжения высокой частоты. Оформление — в стеклянной оболочке, миниатюрное (рис. 1П). Масса 15 г.

прн $U_{\rm H} = 6.3$ В, $U_{\rm a} = 120$ В, $U_{\rm c} = 120$ В, $U_{\rm c$	$V_{c3} = 0$ B, $R_{\rm K} =$	=200 Ом
	6Ж2П	6Ж2П-ЕВ
Ток накала, мА	170^{+15}_{-20}	170±10
Ток анода:		
в режиме измерений, м A	6±2	6 ± 2
=-15 В), мкА		≤50 ≤40 ≤5 ≤0,1
лем, мкА	€20	≤15
Крутизна характеристики, мА/В: по 1-й сетке	$4,5\pm0,95$ $\geqslant 2,7$ $\geqslant 0,5$	$4,5\pm0,95$ $\geqslant 2,7$ $\geqslant 0,5$
сетки (отрицательное), В	$0.6^{+0.9}$ 130^{+220}_{-35}	≤1,5
Внутреннее сопротивление, кОм	35	$160 \frac{+150}{-80}$
Напряжение виброшумов (при $R_a = 10 \text{ кOм}$), мВ	≪180	≪150
Межэлектродные емкости, пФ:		
входная выходная проходная катод — подогреватель между 1-й и 2-й сетками Наработка, ч	$4,1\pm0,6$ $2,35\pm0,45$ $<0,0035$ $<4,6$ $<1,9$ >2000	$4,1\pm0,6$ $2,5\pm0,5$ $<0,0035$ $<4,6$ >5000
крутизна характеристики по 1-й сетке,		
	$\geqslant 2.7$ $\leqslant 0.3$	$\geqslant 2.7 \leqslant 0.3$

·	6Ж2П	6Ж2П-Е В
Напряжение накала, В	5 ,7 — 7	6-6,6
Напряжение анода, В	2 00	120
То же при запертой лампе, В	2 25	_
Напряжение 2-й сетки, В	150	120
То же при запертой лампе, В	225	
Напряжение между катодом и подогревателем, В:		
при ноложительном потенциале подогревателя	120	90
при отрицательном потенциале подогревателя	120	120
Ток катода, мА	20	
Мощность, рассеиваемая анодом, Вт	1	0,9
Мондность, рассепваемая 2-й сеткой, Вт	0,65	0,6
Сопротивление в цепи 1-й сетки, МОм	1	1
Температура баллона лампы, °С	125	90
Устойчивость к внешним воздействиям:		
ускорение при вибрации в диапазоне		
частот 5-600 Гц д	6	10
ускорение при многократных ударах д		150
ускорение при одиночных ударах g		500
постоянное ускорение д	-	100
интервал рабочих температур окружа-		
ющей среды, °С	$O_{1} - 60$	Or60
	до +70	до + 12

Анодно-сеточная характеристика по 1-й сетке

Анодно-сеточная характеристика по 3-й сетке.

6Ж3П, 6Ж3П-Е. Аналог EF96

Лучевые тетроды для усиления напряжения высокой частоты. Оформление — в стеклянной оболочке,

Оформление — в стеклянной оболочко миниатюрное (рис. 3П). Масса 12 г.

	е параметры		
при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 250$	B, $U_{c2} = 150$	B, $R_{\rm K} = 200$	Ом
	6Ж3П	6Ж3П-Е	EF96
Ток накала, мА	$300\pm25 \\ 7\pm2$	$300\pm20 \\ 7\pm1,8$	300 7
ки (при U_{c_1} =-9 В), мкА. Ток 2-й сетки, мА Обратный ток 1-й сетки (при	≪30 2±0,7	≤ 30 $2\pm 0,7$	2
$\dot{U}_{c_1} = -2$ B), MKA	≪ 1	≪1	-
Ток утечки между катодом и подогревателем, мкА	≪20	_	20
Крутизна характеристики, мА/В	5±1	5±1	5
Внутреннее сопротивление, МОм	0,8	0,8	0,8
Напряжение виброшумов (при $R_a=2$ кОм), мВ	€250	≪100	_
Межэлектродные емкости, пФ: входная	$6,2\pm1,2$ $1,5\pm0,4$ $\leq 0,5$ ≥ 3000	$6,2\pm1,2$ $3,5\pm0,65$ $\leqslant 0,018$ $\geqslant 5000$	6,5 1,8 ≤0,003
крутизна характеристики, мА/В	≥3,25	≥3,25	_

Напряжение накала, В Напряжение анода, В	6ж3П 5,7—7 330	6ж3п-Е 6—6,6 330	EF96 6,9 330
То же при включении холод- ной лампы, В Напряжение 2-й сетки, В	165	165	550 165
то же при включении холод-			550
Напряжение между катодом и подогревателем, В	100	100	100
Мощность, рассеиваемая ано -	2,5	2,5	2
Мощность, рассеиваемая 2-й сеткой, Вт	0,55	0,55	0,5
Сопротивление в цепи 1-й сет-	0,1	0,1	0,1
Устойчивость к внешним воз- действиям:			
ускорение при вибрации с частотой 50 Гц д	2,5	6	_
ускорение при многократ- ных ударах g интервал рабочих темпе-	35	75	
ратур окружающей среды, °С	От —60 до +100	От —60 до +85	

14*

Анодно-сеточная характеристи-

211

6Ж4, 6Ж4-В. Аналог 6F10

Пентоды для усиления напряжения высокой и промежуточной частоты.

Оформление — в металлической оболочке, с октальным цоколем (рис. 1M). Масса 43 г.

Основные парам при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!300$ В, $U_{\rm c2}\!=\!150$	B, $U_{08}=0$ B, R_{1}	
	6Ж4-В 4 5 0±25 2,25 10,25±2,25	450 10,25
То же в начале характеристнки (при $U_{c1}{=}{-}6$ В), мкА . \leqslant 900 Ток 2-й сетки, мА 2,2 \pm 1 Обратный ток 3-й сетки (при		2,2
$U_{c_3} = -2$ B), MKA ≤ 6	≪6	~~
Ток утечки между катодом и подогревателем, мкА ≪20 Крутизна характеристики,	€20	-
мА/В 9 ± 2 То же при $U_{\rm H}=5,7$ В $\geqslant 5,5$ Межэлектродные емкости, пФ:	9 ± 2 $\geqslant 5,5$	9
входная 8,5±1,5 выходная	Ε 1. Δ	11 5
проходная \leqslant 0,015 Наработка, ч \geqslant 2 000 Критерии оценки: крутизна характеристики,	≤ 0.015 ≥ 2000	≤0,015 -
мÃ/В ≥ 5,8 обратный ток 3-й сетки (при U _{e3} =-2 В), мкА . —	≥5,8 ≪ 6	
Предельные эксплуатацио		(F10
Напряжение накала, В	7-6,9 5,7-6,9 330	6F10 5,7—6,9 310 165
гревателем, В		100 3,3
B_{T}	45 0,4 5	0,45
Сопротивление в цепи 1-й сетки при автоматическом смещении, МОм . 0, Интервал рабочих температур окру-	ī 	0,5
жающей среды, °С От	—6 0 От — 60 до + 90	_

6Ж4П. Аналог EF94

Пентод для усилення напряжения высокой частоты.

Оформление — в стеклянной оболочке, минатюрное (рис. 4П). Масса 13 г.

при $U_{\rm B}$ =6,3 В, $U_{\rm a}$ =250 В, $U_{\rm e2}$ =15	0 B, $R_8 = 68$	Ом
	62K4IT	EF94
Ток накала, мА	300 ± 30	300
Ток анода, мА	$11\pm3,3$	10,8
То же в начале характеристики (при U_{c1} = $=$ -5 B). мA	≪l	
=5 В), мА	$4,5 \pm 1,7$	4,3
Обратный ток 1-й сетки (при $U_{c1}=-2$ В),	≪0,5	≤ 0,5
мкА Ток утечки между катодом и подогревате-	• /	₩0,0
лем, мкА	≤ 20 _	≤ 20
Крутизна характеристики, мА/В	4,8-7 > 3,7	5,2
Внутрениее сопротивление, МОм	$\geqslant 0.2$	1
Напряжение виброшумов (при $R_0 = -$	-000	
=10 кОм), мВ	€200	_
Межэлектродные емкосты, пФ:	-1-0-0	
входная	$6,3_{-0.8}^{-1-0.3}$	6
выходная	$\begin{array}{c} 6,3 \begin{array}{c} +0.9 \\ -0.8 \\ 6.3 \begin{array}{c} +0.9 \\ -0.8 \end{array} \end{array}$	4,9
проходная	≪0,0035	$\leq 0,0035$
	≥5000	
Критерии оценки:	-0	
обратный ток 1-й сетки, мкА крутизна характеристики, мА/В	$\geqslant 3.8$	
	<i>y</i> 0, 0	
Предельные эксплуатационные	е данные	
	6)K4!1	EF94
Напряжение накала, В	5,7-6,9	5,7-6,9
Напряжение анода, В	300	300
То же при запертой лампе, В	150	550 300
То же при запертой лампе, В		550 550
Напряжение между катодом и подогрева-		
телем, В	90	90

Продолжение

Ток катода, мА	20	20
Мощность, рассеиваемая анодом, Вт	3,5	3
Мощность, рассеиваемая 2-й сеткой, Вт.	0,9	0,65
Сопротивление в цепи 1-й сетки, МОм	0.5	0,5
Интервал рабочих температур окружаю-	•	•
щей среды, °С	От60	
	$\pi_0 + 70$	

Анодные характеристики.

Анодно-сеточные характеристи-

6Ж5Б, 6Ж5Б-В

Пентоды для усиления напряжения высокой частоты.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 6Б). Масса 4,5 г.

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 120$ В, $U_{\rm c2} = 120$	120 B, $R_{\rm K} = 100$ Om		
•	6Ж5Б	6Ж5Б-В	
Ток накала, мА	250 ± 25	250 ± 25	
Ток анода, мА	16±6	$15 \frac{+7}{-5}$	
То же в начале характеристики (при $U_{c1} = -10$ В), мкА	- ₄ +2	≤150 ₄+2	
Ток 2-й сетки, мА	€0,3	≤ 0,2	
лем, мкА	≪ 20	≤ 20	
Крутизна характеристики, мА/В	10±2,5	$10^{+2,5}_{-2,4}$	
То же при $U_{\rm H}$ = 5,7 B, мА/В	≥6,3	≥6,5	
	1	0,5 1+0,5	
Входное сопротивление (при $f=50$ м Γ ц), к O м	7	7_3	
Напряжение виброшумов (при $R_a = 2 \text{ кОм}$), мВ	270	27 0	
Межэлектродные емкости, пФ:	117	117	
входная	7+1,7	7+1,7	
выходная	4 ⁺¹ ≤0,05	4^{+1} ≤ 0.05	
проходная	<7 ≥500	≪7 ≥2000	
Критерии оценки: обратный ток 1-й сетки, мкА	≤ 1	≪l	
крутизна характеристики, мА/В	$\geqslant 6,5$	$\geqslant 6,5$	
Предельные эксплуатационные данные			
	6Ж5Б	6Ж5Б-В	
Напряжение накала, В	5,7—6,9 150 250 150 250 50	5,7—6,9 150 300 150 300 50	
Напряжение между катодом и подогревателем, В:			
при положительном потенциале подогревателя	100	150	
при отрицательном потенциале подогревателя	150	150	
Ток катода, мА	28	28	
Мощность, рассеиваемая анодом, Вт	2,4	2,6	

		Продолжени е
Мощность, рассеиваемая 2-й сеткой, Вт.	0,8	0,8
Сопротивление в цепи 1-й сетки, МОм	1	1
Температура баллона лампы, °C: при нормальной температуре окру-		
при нормальной температуре окружающей среды	170	170
при температуре окружающей среды		272
200° С		250
ускорение при вибрации	10 ~	10 ~
в диапазоне частот. Ги	$\frac{10g}{2}$	$\frac{10}{2}$
в дианазоне частог, и ц	От 10	От 5
	до 600	до 600
ускорение при многократных ударах .	10 g	150 <i>g</i>
ускорение при одиночных ударах		$500\bar{g}$
ускорение постоянное	100g	100%
интервал рабочих температур окружаю-	6	
щей среды, °С	От60	От —60
	до +90	до +200

Анодные характеристики.

Анодно-сеточная характеристика.

6Ж5П. Аналог 6F36

Пентод для усиления напряжения высокой частоты.

Оформление — в стеклянной оболочке, миниатюрное (рис. 3П). Масса 12 г.

Основные параметры		
при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 300$ В, $U_{\rm c2} = 120$	B, $R_{K} = 160$	Ом
	62K5 []	6 F 3 6
Ток накала, мА	450±25	450
Ток анода, мА	$10\pm 2,8$	10, 25
То же в начале характеристики (при $U_{c1} = -7$ В), мкА	≪900	600
Ток 2-й сетки, мА	≤ 2.8	2,2
Крутизна характеристики, мА/В	9 ± 2	9
Внутреннее сопротивление шумов, кОм	350	1 00 0
Напряжение виброшумов (при $R_a = 2 \text{кОм}$), мА	€200	_
Межэлектродные емкости, пФ:		
входная	$8,4\pm 2,4$	11
выходная	$2,15\pm0,45$ $\leq 0,03$	3,7 5 ≤0,03
Наработка, ч	≥ 2000	
Критерий оценки:		
крутизна характеристики, мА/В	\geqslant 5,6	
Предельные эксплуатационные	е данные	
	6Ж5П	6F36
Напряжение накала, В	5,7-6,9	5,7 — 6 ,9
Напряжение анода, В	300	300
Напряжение 2-й сетки, В	150	150
Напряжение между катодом и подогрева-		
телем, В	100	100
Ток катода, мА	20	25
Мошность, расссиваемая анодом, Вт	3,6	3,3
Мощность, рассеиваемая 2-й сеткой, Вт	0,5	0,45
Сопротивление в цепи 1-й сетки, МОм:		
при автоматическом смещении	1	0,5
при фиксированном смещении	0,5	0,25
Температура баллона лампы, °С	160	150
Интервал рабочих температур окружающей		
среды, °С	От —60 до +7 0	

Анодные характеристики.

Анодно-сеточные характери-

6Ж9Г, 6Ж9Г-В

Пентоды с высокой крутизной характеристики для усиления напряжения высокой частоты в широкополосных усилителях.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 14Б). Масса 6 г.

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 120$ В, $U_{\rm c2} = 120$	В,	$R_{\rm H}$ =82 O _M
Ток накала		(310±30) мА (15±5) мА
Ток 2-й сетки	•	≤5,5 MA ≤0,05 MKA
Ток утечки между катодом и подогревателем Крутизна характеристики		
То же при $U_{\rm H} = 5.7$ В		. $> 10,5 MA/B$
Эквивалентное сопротивление шумов Входное сопротивление (при $f=50~{\rm MFu}$) Напряжение виброшумов (при $R_a=0.7~{\rm kOm}$)		5 кОм

	прооблисние
Межэлектродные емкости:	
входная	$^{7,5}_{-2,35}^{+2,5}$ $^{\pi\Phi}_{-2,35}$
выходная	$3,44\pm1,05$) n Φ
проходная	$\leqslant 0,055 \mathrm{n} \Phi$
, , , , , , , , , , , , , , , , , , ,	≼7 пФ ≽500ч
Наработка	2000 4
обратный ток 1-й сетки	≤ 2 мкА
крутизна характеристики	≥9 мA/B
Thomas was avenue and and a second	
Предельные эксплуатационные данные	
Напряжение накала	5,7—6,9 B
Напряжение анода	150 B
То же при запертой лампе	250 B
Напряжение 2-й сетки	125 B
То же при запертой лампе	250 B
Напряжение 1-й сетки (отрицательное)	50 B
Напряжение между катодом и подогревателем:	
при положительном потенциале подогревателя.	100 B
при отрицательном потенциале подогревателя.	150 B
Ток катода	35 мА
Мощность, рассеиваемая анодом	2,4 Вт
Мощность, рассеиваемая 2-й сеткой	0,7 Вт
Сопротивление в цепи 1-й сетки	1 МОм
Температура баллона лампы:	
при нормальной температуре окружающей сре-	
	170 °C
ды при температуре окружающей среды 200° С	300 °C
Устойчивость к внешним воздействиям:	
ускорение при вибрации в диапазоне частот 5-	
2000 Гц	10 g 150 g
ускорение при одиночных ударах	500 g
ускорение постоянное	100 g
интервал рабочих температур окружающей сре- ды . ,	От -60 до
	+200 °C

Анодные характеристики.

Анодно-сеточная характеристи-

6Ж9П, 6Ж9П-Е. Аналог E180 F

Пентоды с высокой крутизной характеристики для широкополосного усиления напряжения высокой частоты во входных каскадах радиоэлектронных устройств.

Оформление — в стеклянной оболочке, миниатюрное (рис. 9П). Масса 15 г.

Основные параметры

при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!150$ В, $U_{\rm c\,2}\!=\!150$ В (для E180F 180 В), $U_{\rm c\,1}\!=\!0$ В, $R_{\rm K}\!=\!80$ Ом (для E180F 100 Ом)

	6Ж9П	6Ж9П-Е	E180F
Ток накала, мА	300 ± 30	300^{+20}_{-25}	300
Ток анода, мА	15 ± 4	15±4	11,5
То же в начале характеристи- ки (при U_{c1} =-8 В), мкА.	≪10	€10	
Ток 2-й сетки, мА	\leqslant 4,5	$2,4^{+0,6}_{-0,8}$	2,9
Обратный ток 1-й сетки (при $U_{\text{cl}} = -2$ В), мкА Ток утечки между катодом и	≪0,3	≪ 0,2	0,5
подогревателем, мкА	€20	€15	_
Крутизна характеристики, мА/В	17,5±3,5	17,5±3,5	15,9

до 600

до 600

^{*} При включении лампы.

ускорение	при м	иногок	ратных	ударах	۲.	75 g	150 g	_
ускорение	при о	одиноч	ных уд	apax .			500 g	
ускорение	посто	янное				_	100g	_
интервал	рабоч	их те	мперат	ур окр	уу∙		0- 00	
жающей с	реды,	°C.			J.C	T 6U	OT 00	_
					Д	o +150	до +100	

Анодные характеристики.

Анодно-сеточные характеристи-

6Ж10Б, 6Ж10Б-В, 6Ж10Б-ВР

Пентоды с двойным управлением для усиления и преобразования высокочастотных колебаний.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 6Б — для 6Ж10Б, 6Ж10Б-ВР). Масса 4,5 г.

Основные параметры

при $U_{\rm B}$ =6,3 B, $U_{\rm A}$ =120 B, U	c2=120 B, L	$l_{cs}=0$ B, $R_{\rm H}$	=100 Ом
	6Ж10Б	6Ж10Б-В	6Ж10Б•ВР
Ток накала, мА	250 ± 25	220 ± 25	300 ± 30
ток анода, мА	10,5±3,5	$10,5\pm3,5$	
То же в начале характеристи-	-100	-100	-100
ки (при $U_{c3} = -15$ В), мкА T_{OK} 2-й сетки, мА	≤100 7,5±1,5	≤100 7,5±1,5	≤100 7—10
Обратный ток 1-й сетки, мкА	≪0,4	≤ 0.4	
Ток утечки между катодом и		` '	
подогревателем, мкА	€20	€20	_
Крутизна характеристики,			
MA/B:		1.0	
по 1-й сетке	$5^{+2}_{-1,4}$	$5^{+2}_{-1,4}$	$6,5\pm 2,1$
по 1-й сетке при $U_{\rm H} = 5.7 {\rm B}$	$\geqslant 3,1$	$\geqslant 3,1$	_
по 3-й сетке при U_{cs} =		~ ·,·	
=-3 B	1,5 -0,7	1,5 -0,7	1,5 -0,7
по 3-й сетке при U_{c1} =	_		•
$=$ —2 В и U_{c3} = 20 В	$\leq 0,025$	$\leq 0,025$	$\leq 0,1$
Напряжение виброшумов (при $R_a = 2$ кОм), мВ	≪270	≪270	€270
Межэлектродные емкости, пФ:	4210	210	210
Memorita podubie carocia, n.v.		-1-1-6	8+1,3
входная	$6,5^{+1,6}_{-2,4}$	$6,5^{+1,6}_{-2,4}$	8_2,0
выходная	$4,5\pm 1$	$4,5\pm 1$	$4,2\pm 1$
проходная	≤ 0.05	$\leq 0,05$	$\leq 0,06$
катод — подогреватель. Наработка, ч	≤ 7 ≥ 500	≤ 7 ≥500	€ 7 ≥2000
Критерии оценки:	> 000	2000	>2 00 0
обратный ток 1-й сетки.			
мкА	≪l	≪ 1	
крутизна характеристики			
по 1-й сетке, мА/В	≥3,1	≥3,1	
Протовично околи	oronuonnii i	MAUNILIA	
Предельные экспл	у атационны с 6Ж10		3 6Ж10Б-В Р
71			
Напряжение накала, В	15/		0 6 - 6,6 150
То же при запертой лампе, В			300
Напряжение 2-й сетки, В	150	150	150
То же при запертой лампе, В.	250	300	300
Напряжение 1-й сетки отрицат		50	50
ное, В	•	J.O	00
гревателем, В:	~~~		
при отрицательном потенц		486	
подогревателя		150	120

100

150

при положительном потенциале

подогревателя . .

120

		Про	должени е
Ток катода, мА	$\substack{28 \\ 2,17}$	28 2,1	30 2,1
Мощность, рассенваемая 2-й сеткой, Вт	1,5	1,3	1,5
Сопротивление в цепи 1-й сетки, МОм	1	1	1
при нормальной температуре окружающей среды при температуре окружающей	170	170	180
среды 200° С (для 6Ж10Б-ВР при 100° С)	. Angeles	2 50	225
HM:	10	10	20
ускорение при вибрации g в диапазоне частот, Γ ц	От 10 до 600	Or 5 до 600	От 20 до 2000
ускорение при многократных ударах g	10	150	150
ускорение при одиночных ударах g	100	500 100	500 100
интервал рабочих температур окружающей среды, °С	От —60 до +90	От60 до +-200	От —60 до +100

Анодные характеристики.

Анодно-сеточная характеристика.

Анодно-сеточные характеристики по 3-й сетке

6Ж10П, 6Ж10П-ЕР

15 - 586

Пентоды для усиления напряжения высокой частоты в широкополосных усилителях и преобразователях частоты. Оформление — в стеклянной оболочке, миниатюрное (рис. 911). Масса 15 г.

225

при $U_{\rm H}=6.3$ В, $U_{\rm a}=200$ В, $U_{\rm c2}=100$ В, $U_{\rm c3}=0$ В, $R_{\rm K}=$	80 Ом
6)K10II	6Ж10П-ЕР
Ток накала, мА	280 ± 25
Ток анода. MA 6,5 ± 2 ,5	$6,5\pm2,5$
Ток 2-й сетки, мА 6,5±2,5	3,8-5,5
Обратный ток 1-й сетки, мкА	\leqslant 0,3
Ток утечки между катодом и подогревате-	
Крутизна характеристики, мА/В:	$9,5\pm2,5$
по 1-й сетке при $U_{\rm H}$ =5,7 В >6	
по 3-й сетке	$2,5^{+1,5}_{-1,0}$
Внутреннее сопротивление, МОм 0,1 Запирающее отрицательное напряжение 1-й	0,1
сетки, В	$\underset{0,9}{\leqslant}5$
	0,9
Напряжение виброшумов (при R_a = $=$ 700 Ом), мВ	≪ 70

		,
Межэлектродные емкости, пФ: входная	8,5±1,5	8,5±1,0
выходная	4,3±0,7	$4,1^{+0,7}_{-0,5}$
проходная	≪0,025 ≪7 ≽5000	≪0,02 ≪7 ≥5000
Критерии оценки: обратный ток 1-й сетки, мкА	≪1,5	€2
крутизна характеристики по 1-й сетке, мА/В	≥5	≥5,6
Предельные эксплуатационные	панные	
предельные эксплуатационные	6ж10П	6Ж 10П-ЕР
	•	
Напряжение накала, В	5,7—7	6 —6,6
Напряжение анода, В	250	250
То же при запертой лампе, В	285	300
Напряжение 2-й сетки, В	120	120
То же при запертой лампе, В	285	300
Напряжение 1-й сетки отрицательное, В .	100	100
Напряжение между катодом и подогрева- телем, В:		
при положительном потенциале подо- гревателя	100	100
гревателя	150	150
Ток катода, мА	35	35
Мощность, рассеиваемая анодом, Вт	3	3
Мощность, рассеиваемая 2-й сеткой, Вт	0,75	0,75
Сопротивление в цепи 1-й сетки, МОм	1	1
Температура баллона лампы, °С	150	160
Устойчивость к внешним воздействиям:		
ускорение при вибрации g	2,5 35	6 75
щей среды, °С	От-60 До+100	От —60 До + 150

До+100

Дo +150

Анодные характеристики.

Анодно-сеточные характеристики по 1-й сетке.

Анодно-сеточная характеристика по 3-й сетке.

6Ж11П, 6Ж11П-Е

Пентоды для усиления напряжений высокой и промежуточной частоты. Оформление — в стеклянной оболочке, миниатюрное (рис. 11П), Macca 17 г.

при $U_{\rm H}$ =6,3 B, $U_{\rm a}$ =150 B, $U_{\rm c2}$ =150 B, $U_{\rm c2}$	0 B R	50 Ov
при он = 0,5 В, он = 100 В, оед = 100 В, о		
	6Ж11П	6ЖПП-Е
Ток накала, мА	440±40	440 ± 30
Ток анода, мА	$25\pm7,5$	$25 \pm 7,5$
То же в начале характеристики (при U_{c1} =	-10	× 10
=—12 В), мкА	$ \leqslant 10 $ $ \leqslant 7,5 $	≤10 ≤7,5
Обратный ток і-й сетки, мкА	<0.3	0.05 - 0.25
Ток утечки между катодом и подогревате-	₹0,0	0,00-0,20
лем. мкА	≤30	≪30
лем, мкА	28 ± 7	28 ± 7
То же при $U_{\rm H} = 5,7 {\rm B}$	$\geqslant 16,5$	$\geq 16,5$
Внутреннее сопротивление, кОм	36	_
Коэффициент широкополосности, мА/(ВХ		
$\mathbf{x}_{\mathbf{\Pi}}\mathbf{v}_{\mathbf{I}}$	1,6	1,6
Эквивалентное сопротивление, кОм	0,24	0,24
Входное сопротивление (при $f = 60 \text{ M}\Gamma \mu$), кОм	1,5	1,5
Напряжение виброшумов (при $R_0 =$	1,0	1,0
Напряжение виброшумов (при $R_a = 700$ Ом), мВ	≪100	≤100
Межэлектродные емкости, пФ:	*	2.2.2
	$13,5\pm 2$	$13,5\pm 2$
входная	3.45 ± 0.5	$2,45\pm0,5$
проходная	$\leq 0,1$	$\leq 0,1$
катод — подогреватель	≪10	$6,2^{+3,8}$
Наработка, ч	≥1000	≥ 5000
Критерии оценки:		
обратный ток 1-й сетки, мкА	$\leq 1,5$ $\geq 16,8$	$\leq 1,5$
крутизна характеристики, мА/В	≥16,8	≥16,8
Предельные эксплуатационные	данные	
•	6Ж11П	6Ж11П-Е
Напряжение накала, В	5,7-7	6-6,6
Напряжение анода, В	150	150
То же при запертой лампе		300
Напряжение 2-й сетки. В	. 150	150
То же при запертой лампе	. —	300
Напряжение 1-й сетки отрицательное, В	—	100
Напряжение между катодом и подогревател	ем .В 100	100
при отрицательном потенциале подогревателя Ток катода, мА	, Б 100	40
Мощность, рассенваемая анодом, Вт	4,9	4,9
Мощность, рассенваемая 2-й сеткой, Вт	1,15	1,15
Сопротивление в цепи 1-й сетки, МОм	. 0,3	0,3
Температура баллона лампы, °С	. 185	185
Устойчивость к внешним воздействиям:		
вибрация в диапазоне частот, Гц	. От 20	
	до 600	до 600
с ускорением g	. 3	6
ускорение при многократных ударах д	. —	75

Продолжение

Jonopount up a oguno mem Janpan g	00 500 00 100
интервал рабочих температур окружающей	00 0 00
среды, °С	—60 От —60 ⊢85 до +85

Анодные характеристики.

Анодно-сеточные характери-

6Ж20П

Пентод (с катодной сеткой) для предварительного усиления напряжения высокой частоты в широкополосных усилителях и в ключевых схемах (схемах совпадения). УЗ Я Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 20 г.

П	ри $U_{\rm H} =$	6,3	В,	$U_{\rm a}$	= 15	60	В,	$U_{\mathfrak{c}}$: e =	= 15	50	В,	U	ск≖	= 6	В,	$R_{\rm K}$ =70 Ом
Ток	накала																(450 ± 40) MA
Ток	анода										٠						$(16\pm 4,5)$ мА
Ток	экранир	ую	щей	i ce	гки												< 6 мА
Обр	атный т	ок	упр	авл	яю	цеі	й	сет	ки								≪0,3 мкА
Ток	катодно	ой (сетк	и.				•									35^{+13}_{-10} мА

Ток утечки между катодом и подогревателем
входная (9±1) пФ выходная (2,65±0,3) пФ проходная <0,05 пФ
Напряжение накала

6Ж21П

Пентод (с катодной сеткой) для предварительного усиления напряжения высокой частоты в широкополосных усилителях, а также для работы в ключевых схемах.

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 15 г.

Основные параметры

при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!150$ В, $U_{\rm cs}\!=\!150$ В, $U_{\rm cg}\!=\!12,\!6$ В, $U_{\rm c,ynp}\!=\!-1,\!1$ В

						(0F0 + F0) *
Ток накала						(350±50) MA
Ток анода						$(15,5\pm6,5)$ mA
Ток экранирующей сетки					•	(6±1) мА
Обратный ток управляющей						\leqslant 0,5 мк ${ m A}$
Ток катодной сетки						(38±10) мА
Ток утечки между катодом и	подо	огрев	ател	ем.		≪20 мкА
Крутизна характеристики		· .				$(15,5\pm6,5) \text{ mA/B}$
То же при $U_{\rm H} = 5,7$ В						`≥8 MA/B
Напряжение управляющей се	тки з	апир	ающ	ee, o	T-	, , , , , , ,
рицательное						≪15 B
Коэффициент широкополосно	сти.				Ĭ	$1.9 \text{ MA}/(B \cdot \pi \Phi)$
Внутреннее сопротивление .			•		•	60 кОм
Эквивалентное сопротивление						1,2 кОм
Входное сопротивление (при						0,3 кОм
Напряжение виброшумов (пр						0,5 kOM ≤70 mB
тапряжение виорошумов (пр	n Na	/ 00	, ON	1) .	•	< 70 MB
Межэлектродные емкости:						
входная						$(5,8\pm0,4)$ n Φ
выходная						$(1,9\pm0,25)$ $\pi\Phi$
						<0.042 πΦ
проходная						
Hapaootka, 4			•		•	≥1500 ч
Критерий оценки:						
крутизна характеристики						≥7,5 mA/B

Предельные эксплуатационные данные

Напряжение накала	5,7—7 B 200 B 14 B
Напряжение экранирующей сетки	200 B
рицательном потенциале подогревателя	100 В 2,5 Вт
Мощность, рассеиваемая анодом	0,75 Br
Мощность, рассенваемая катодной сеткой Сопротивление в цепи управляющей сетки	0,5 Вт 0,5 МОм
Температура баллона лампы	155 °С От —60
	до +70℃

6Ж22П

Пентод (с катодной сеткой) для предварительного усиления напряжения высокой частоты в широкополосных усилителях и для работы в ключевых схемах (схемах совпадения).

Оформление — в стеклянной оболочке, миниатюрное (рис. 13П). Масса 20 г.

при	$U_{\scriptscriptstyle \rm H}\!=\!6,3$	В,	Основные параметры $U_a = 150 \text{ B}, U_{ca} = 150 \text{ B}, U_{ca} = 150 \text{ B}, U_{c,yup} = -1,2 \text{ B}$	$U_{cK} = 12.6$	В,
			$U_{c,ynp} = -1,z$ D		

Ос.упр — 1,2 В	
Ток накала	(500 ± 50) MA (30 ± 12) MA $7,5^{+1,5}$ MA <1 M¢A 66+14 MA <30 M¢A (23 ± 8) MA/B >12 MA/B 6,5 κOM <-15B 0,5 κOM 0,3 κOM 2,6 MA/(B·πΦ) <100 MB
Межэлектродные емкости:	(9,3±0,7) пФ
выходная	$(2,55\pm0,25) \text{n}\Phi$ $\leq 0,06 \text{n}\Phi$
проходная	≥1500 ч
крутизна характеристики	≥12,8 mA/B

Предельные эксплуатационные данные

Напряжение накала	5,7—7 B
Напряжение анода	200 B
Напряжение катодной сетки	14 B
Напряжение экранирующей сетки	200 B
Напряжение между катодом и подогревателем при	
отрицательном потенциале подогревателя	100 B
Мощность, рассеиваемая анодом	5 Вт
Мощность, рассеиваемая экранирующей сеткой	1,2 Вт
Мощность, рассеиваемая катодной сеткой	0,9 Br
Сопротивление в цепи катодной сетки	0,15 МОм
Температура баллона лампы	180 °C
Интервал рабочих температур окружающей среды.	От60 до
	+70 °C

6Ж23П, 6Ж23П-Е

Пентоды для усиления напряжений высокой частоты в широкополосных усилителях с разделением сигналов на выходе.

Оформление — в стеклянной оболочке, миниатюрное (рис. 11П). Macca 17 г.

Основные параметры

при $U_{\rm H}\!=\!6.3$ В, $U_{\rm A}\!=\!150$ В, $U_{\rm C2}\!=\!150$ В, $U_{\rm C3}\!=\!0$ В, $R_{\rm H}\!=\!50$ Ом

Ток накала, мА	6Ж23П 440±40	6ж23П- В 440±3 0
каждого	14 ± 6 27 ± 8 $<0,01$ $6+2.5$ $<0,3$	14 ± 6 27 ± 8 $\leqslant 0,01$ $6+2$ $0,07-0,3$
каждого анода	36	15±5 30±7,5 >8 36 0,24 1,5 ≪100
Межэлектродные емкости, пФ: входная		$13,5\pm 2$ $3\pm 0,45$ $0,075$ $\leqslant 10$ $\leqslant 0,15$ $\geqslant 3000$ $\leqslant 1,5$

Предельные эксплуатационные данные

	6Ж23П, 6Ж23П-Е
Напряжение накала	5,7—7* B 150 B 150 B 100 B 40 MA 2,5 Bt 1,15 Bt 0,3 MOM 185 °C
ускорение при вибрации в диапазоне частот 20—600 Гц	3 g 6 g 300 g 100 g OT -60
	до +120 ℃

^{*} Для 6Ж23П-Е 6-6,6 В.

Анодные характеристики.

Анодно-сеточные характери-

6Ж32Б

Пентод для усиления напряжения высокой и низкой частоты.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 18Б). Масса 4 г.

Основные параметры

при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!120$ В, $U_{\rm c2}\!=\!120$ В, $R_{\rm K}\!=\!200$ Ом

mp. 011 0,0 2, 0 a 120 2, 120 2, 111 2,	30 OM
Ток накала	(165±20) мА (6±2) мА
Ток 2-й сетки	$1,4^{+0}_{-1},0$ MA
Обратный ток 1-й сетки (при U_{c1} =—1,5 В) Ток утечки между катодом и подогревателем	\leq 0,1 MKA \leq 20 MKA (6±2) MA/B \geq 3,4 MA/B \leq 8,5 B 1,6+0,9 KOM 22—12 KOM \leq 15 MB
Межэлектродные емкости:	(10 m2
входная	(5,4±1,4) пФ (2,3±0,5) пФ ≤0,06 пФ ≤6 пФ ≥2000 ч
Критерии оценки:	
обратный ток 1-й сетки	≪1 MKA ≥3,4 MA/B

Предельные эксплуатационные данные

Напряжение накала	١.											5,7—7 B
Напряжение анода												250 B
То же при заперто:	йл	амп	е.							_		300 B
Напряжение 2-й сет	гки											150 B
Напряжение между	кат	одо	M	и по	до	гре	ваз	гел	ем			150 B

Сопротивление в цепи 1-й сетки	
Устойчивость к внешним воздействиям:	
ускорение в диапазоне частот 5—2000 Гц 15 g ускорение при многократных ударах 150 g ускорение при одиночных ударах 500 g	
ускорение при одиночных ударах	0.0

Анодные характеристики.

Анодно-сеточные характеристи-

6Ж32П. Аналог ЕГ 86

Пентоды малошумящие для работы в первых каскадах звукозаписывающей и звужовоспроизводящей аппаратуры. Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 15 г.

Основные параметры

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 250$ В, $U_{\rm c3} = 0$ В, $U_{\rm c2} = 140$ В, $U_{\rm c1} = -2$ В

6)Ж32 П	EF86
Ток накала, мА	$^{200}_{3}_{\leq 0,6}$
Ток утечки между 1-й сеткой и остальными электродами, мкА	_
тродами	$\frac{-}{2}$
Напряжение гудения (фон переменного тока), мкВ	
Межэлектродные емкости, пФ:	
входная 4 выходная 5,5 проходная ≪0,05 Наработка, ч >3000	$5,5 \le 0,05$
Критерий оценки:	
крутизна характеристики, мА/В ≥1	_

Предельные эксплуатационные данные

												ÉF86
Напряжение Напряжение Напряжение Напряжение	анода, Е 2-й сетки	, B .	:	:	. :	:	•	•	•	•.	٠	5,7—6,9 300 200
при поло	жительно цательном мА ассеиваем ассеиваем ассеиваем ае в цепи	м поте поте ая ан ая 2- 1-й (генци • нци • одо й со сетк	иал іале м, І етко	е под под Зт. Эй, Н	одо огр Зт	rpe ee:	ва ⁻ ате	геля	я		50 100 6 1 0,2 3 От —60 до +70°C

6Ж32П.

Аподные характеристики.

Анодно-сеточные характеристи-

6Ж33А, 6Ж33А-В

Пентоды для усиления напряжения высокой частоты.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 7Б). Масса 2.5 г.

Основные параметры

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 120$ В, $U_{\rm c2} = 100$ В, $R_{\rm K} = 120$ Ом

Ток накала	(127±13) мА (7,5±2,5) мА ≪50 мкА
Ток 2-й сетки	€4 м A
Обратный ток 1-й сетки (при $U_{c_1} = -1.3$ В) Ток утечки между катодом и подогревателем	≪0,1 мкА ≪20 мкА
Крутизна характеристики	$(\hat{4}, 5\pm 1, 2) \text{ MA/B}$
То же при $U_{\rm H} = 5,7$ В	≥2,8 ≥9 кОм
Напряжение виброшумов (при $R_a = 10 \text{ кOm}$)	≪150 мВ
Эквивалентное сопротивление шумов (при $f = 30 \text{ M}\Gamma \text{u}$)	2,8+2,2 кОм

ение

Продолжение
Межэлектродные емкости: $(3,6\pm0,8)$ пФ выходная
обратный ток 1-й сетки
Предельные эксплуатационные данные
Напряжение накала
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Анодные характеристики.

239

Анодно-сеточные характеристики.

6Ж35Б, 6Ж35Б-В

Пентоды с двойным управлением для усиления, преобразования высокой частоты, а также для использования в схемах формирования импульсов.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 4Б). Масса 3,5 г.

Основные параметры
при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!120$ В, $U_{\rm c_2}\!=\!110$ В, $U_{\rm c_1}\!=\!-2$ В, $U_{\rm c_3}\!=\!0$ В
Ток накала
Крутизна характеристики:
по 1-й сетке при $U_{\rm H}\!=\!6,3$ В
Межэлектродные емкости: (4,4±0,8) пФ входная (3,5±0,9) пФ проходная ≤0,03 пФ катод — подогреватель ≤5 пФ Наработка, ч ≥500 ч
Критерии оценки: обратный ток 1-й сетки
Предельные эксплуатационные данные
Напряжение накала 5,7—6,9 В Напряжение анода 150 В То же при запертой лампе 250 В Напряжение 2-й сетки 125 В То же при запертой лампе 250 В Отрицательное напряжение: 50 В 1-й сетки 50 В 3-й сетки 50 В Напряжение между катодом и подогревателем 150 В
Ток катода

Продолжение

рассеиваемая 2-й сеткой	0,7 Вт
рассеиваемая 1-й сеткой	0,1 Вт
рассеиваемая 3-й сеткой	0,1 Вт
	1_МОм
Температура баллона лампы	170 °C
Устойчивость к внешним воздействиям:	
ускорение при вибрации на частоте 5-2000 Гц	10 g
ускорение при многократных ударах	150 g
ускорение при одиночных ударах	100 g
интервал рабочих температур окружающей среды .	От —60
	до +200 °C

Анодные характеристики.

Анодно-сеточные характеристики по 1-й сетке.

Анодно-сеточные характеристики по 3-й сетке,

6Ж38П, 6Ж38П-ЕВ

Пентоды для усиления напряжения высокой частоты в широкополосных усилителях на частотах до 300 МГц.

Оформление — в стеклянной оболочке, миниатюрное (рис. 2П). Масса 15 г.

Основные параметры	
при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 150$ В, $U_{\rm c2} = 100$ В, $U_{\rm c3} = 0$, $R_{\rm K} =$	82 Ом
6Ж38П	6Ж38∏-EB
Ток накала, мА	190 ± 20
Ток анода, мА	$12 \pm 3,5$
То же в начале характеристики (при U_{01} =	
=-8 B) мкA	€30
= —8 В), мкА	1,8+1,7
Обратный ток 1-й сетки, мкА ≪0,2	$\leq 0,15$
Ток утечки между катодом и подогревате-	-10
лем, мкА	≤ 10
Крутизна характеристики, мА/В 10,6-2,6	$10,6\pm 3$
То же при $U_{\rm H}$ =5,7 В, мА/В ≥0,5	\geqslant 6,5
Напряжение виброшумов (при R_a = 2 кОм), мВ ≪ 150	-100
мВ	€100
Межэлектродные емкости, пФ:	
входная 5,8	$5,2\pm1,1$
выходная	$3,3\pm0,9$
проходная	≤ 0.02
проходная	≥ 5000
Критерии оценки:	
обратный ток 1-й сетки, мкА ≪0,5	≪ 1
крутизна характеристики, мА/В ≥6,5	$\geqslant 6,2$
Предельные эксплуатационные данные	
- · · · · · · · · · · · · · · · · · · ·	CWOOT ED
6Ж38П	6Ж38П-ЕВ
Напряжение накала, В	6 - 6, 6
Напряжение анода, В	165
Напряжение 2-й сетки. В	135
**************************************	100
То же при запертой лампе, В 400 Напряжение между катодом и подогревате-	
лем, В	120
Ток катода, мА	20
Мощность, рассеиваемая анодом, Вт 3	$\frac{1}{2}$,3
Мощность, рассеиваемая 2-й сеткой, Вт 0,5	0,35
Сопротивление в цепи 1-й сетки, МОм 1	1
Температура баллона лампы, °С 120	150
* **	

Устойчивость к внешним воздействиям:

вибрация с ускорением 6 д в диапазоне	
частот, Гц 50	5600
ускорение при многократных ударах д . —	150
ускорение при одиночных ударах g —	500
ускорение постоянное д	100
интервал рабочих температур окружаю-	
щей среды, °С От —60	От60
до +70	до + 12 5

Анодные характеристики.

Анодно-сеточная харак-

6Ж39Г-В

Пентод для усиления напряжения высокой частоты в широкополосных усилителях. Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 16Б). Масса 7 г.

Основные параметры
при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!100$ В, $U_{\rm c2}\!=\!100$ В, $R_{\rm K}\!=\!40$ Ом
Ток накала
Межэлектродные емкости:
входная
Критерии оценки:
обратный ток 1-й сетки
Предельные эксплуатационные данные
Напряжение накала
Напряжение анода 200 В То же при запертой лампе 250 В Напряжение 2-й сетки 125 В То же при запертой лампе 250 В Напряжение 1-й сетки отрицательное 50 В Напряжение между катодом и подогревателем 150 В Ток катода 60 мА Мощность, рассеиваемая анодом 3,3 Вт Мощность, рассеиваемая 2-й сеткой 1 Вт Мощность, рассеиваемая 1-й сеткой 0,2 Вт Сопротивление в цепи 1-й сетки 0,3 МОм
Температура баллона лампы:
при нормальной температуре окружающей среды . 170 °C при температуре окружающей среды 200° C 250 °C
Устойчивость к внешним воздействиям:
ускорение при вибрации в диапазоне частот 10— 2000 Гц

Аподные характеристики.

6Ж40П. Аналог EF98

Пентод для усиления напряжения высокой и низкой частоты в радиоэлектронных устройствах с низковольтным питанием анодно-экранных цепей.

Оформление — в стеклянной оболочке, миниатюрное (рис. 2П). Масса 12 г.

при $U_{\rm H}$ =6,3 В, $U_{\rm a}$ =12,6 В, $U_{\rm c2}$ =6,3 В, $U_{\rm c3}$ =	$=6,3$ B, $R_{\rm R}=$	10 МОм
	6Ж40П	E F93
Ток накала, мА	300 ± 25	300
Ток анода, мА	1,85±	1,85
m /- 11	$\pm 0,55$	
То же в начале характеристики (при $U_{c1} = -3$ В), мкА	≤150	
Ток 2-й сетки, мА	0,5+0,15	0,55
Обратный ток 1-й сетки (при $U_{c1} = -2$ В), мкА	≪ 0,1	-
Крутизна характеристики, мА/В		2
Внутреннее сопротивление, кОм		200 4.3
коэффициент усиления по 2-и сетке	4,U	∓, ∪

Межэлектродные емкости, пФ:

входна	я													$6,7\pm1,2$	6,7
выході	ная		٠											$4,1\pm0,8$	4
проход	цная	я.								•				$\leq 0,025$	$\leq 0,015$
между	1-	йІ	и 2	-й	ce	TKC	Й					,		$3\pm0,6$	
Наработка	, ч									•	•	•		$\gg 1500$	
Критерий с	оцеі	іки	1:												
крутиз	на	хa	pai	ктє	ери	сти	ки,	N	ıA	B				$\geqslant 1,4$	

Предельные эксплуатационные данные

6Ж40П	EF98
Напряжение накала, В 5,7—7	5,7-6,9
Напряжение анода, В	30
Напряжение 2-й сетки, В	30
Напряжение 3-й сетки, В	30
Напряжение между катодом и подогревателем, В 30	30
Ток катода, мА	15
Мощность, рассеиваемая анодом, Вт 0.5	0,5
Мощность, рассеиваемая 2-й сеткой, Вт 0.5	0,5
Сопротивление в цепи 1-й сетки, МОм	22
Сопротивление в цепи 3-й сетки, МОм 0,1	$\bar{0.1}$
Интервал рабочих температур окружающей сре-	-,-
ды, °С От —60	_
ло +70	

6Ж43П-Е, 6Ж43П-ДР

Пентоды для усиления напряжения высокой частоты в широкополосных усилителях преимущественно с разделением сигналов на выходе.

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 17 г.

при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm A}\!=\!$	150 B, Uc2	2 = 150	В, Ис	$_{3}=0$	B, $R_{\rm K}$ =50 Om
Ток накала					(440±30) мА
Ток анода:					
каждого отдельно . суммарный (с обоих	 анодов)				(14,5±6,5) мА 29±9 мА

,	11 роволжени е
суммарный в начале характеристики (при $U_{c_1} = -12$ В)	$\leqslant 10 \text{ MKA} 6,5+2,5 \text{ MA} \leqslant 0,3 \text{ MKA} \leqslant 30 \text{ MKA}$
Крутизна характеристики:	
по каждому аноду	$\begin{array}{l} (14.5\pm4.5) \text{ MA/B} \\ > 8 \text{ MA/B} \\ (29\pm8) \text{ MA/B} \\ 36 \text{ KOM} \\ \leqslant 0.5 \text{ B} \\ 1.75 \text{ MA/(B} \cdot \pi\Phi) \\ 0.24 \text{ KOM} \\ 2.5 \text{ KOM} \\ \leqslant 100 \text{ MB} \end{array}$
Межэлектродные емкости:	
входная	(13,5±2) пФ (3,3±0,5) пФ 0,035+0,04 пФ ≪10 пФ ≪0,15 пФ >10 000 ч
Критерии оценки:	
обратный ток 1-й сетки	≪1,5 мкА
крутизна характеристики по каждому аноду	$\gg 8 \text{ MA/B}$
Предельные эксплуатационные данны	1e
Напряжение накала	300 B 150 B 300 B 70 B 100 B 46 MA 3,1 Br 1,35 Br
Температура баллона лампы: при нормальной температуре окружающей сред при температуре окружающей среды 85° С Устойчивость к внешним воздействиям:	цы . 180 °С 200 °С
ускорение при вибрации в диапазоне частот 600 Гц	6 g . 75 g . 500 g . 100 g

Анодно-сеточные характеристики.

Анодные характеристики.

6Ж44П

Пентод с катодной сеткой для усиления напряжения в широкополосных усилителях промежуточной частоты, в счетно-управляющих и других радиоэлектронных устройствах.

Оформление — в стеклянной оболочке, миниатюрное (рис. 16П). Масса 15 г.

· · · · · · · · · · · · · · · · · · ·	
при $U_{\rm H}\!=\!6,3$ В, $U_{\rm ПИТ}\!=\!150$ В, $U_{\rm CK}\!=\!18$ В, $R_{\rm K}\!=\!22$ Ом, $R_{\rm A}$	$_{\text{A}} = 680 \text{ Om}$
	550±40) мА
Ток анода	25 _ 5 мА
	≨11 мА
	≨48 м А
Ток эмиссии катода	≽120 мА
Обратный ток управляющей сетки (при $U_{\mathfrak{c},\mathrm{ynp}}=$	
$=$ 2 B, $U_{\text{CR}} = 16$ B)	≨1 мк А
Крутизна характеристики:	
	25±6) мА/В
при $U_{\rm H}{=}5.7$ В	≽17 мА/В
при $U_{\pi\pi} = -15$ В	≥2,5 мА/В
	кОм
Diodinoe comportablemae (upit 1 = 10 1/11 kg)	110111
Межэлектродные емкости:	
	8±1,5) пФ
выходная	$3,6\pm0,9$) π Ф
проходная	<0.006 пФ

^{*} Параметры измеряются при триодном включении лампы.

6Ж45Б-В

Пентод для усиления напряжения высокой частоты.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 19В). Масса 5 г.

при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!50$ В, $U_{\rm c2}\!=\!50$ В, $U_{\rm c1}$	=-1 B
Ток накала	(125 ± 10) мА
Ток анода	$(5,5\pm 2)$ MA
Ток 2-й сетки	≪1,5 м А
Обратный ток 1-й сетки (при $U_{c_1} = -1,5$ В)	≪ 0,1 мкА
Ток утечки между катодом и подогревателем	≪2 0 мкА
Крутизна характеристики	$(5,4\pm1,4)$ мА/В
То же при $U_{\rm H} = 5.7$ В	≥3,2 мА/В
Входное сопротивление (при $f = 60 \text{ M}\Gamma\text{ц}$)	≥10 кОм
Эквивалентное сопротивление шумов (при $f=$	
=30 MΓ _{II})	≥1,5 кОм
Напряжение виброшумов (при $R_{\rm A} = 10$ кОм)	≥1,5 кОм ≥25 кОм

	Г родолжени е
выходная	±0,9) пФ 1±0,3) пФ ,05 пФ 000 ч
Критерий оценки:	
крутизна характеристики ≥3	,2 мА/В
Предельные эксплуатационные данные	
Напряжение накала	5,7—6,9B 150 B 300 B 150 B 150 B 150 B 10 MA 0,5 BT 0,3 BT 1 MOM
Температура баллона лампы:	
при нормальной температуре окружающей среды . при температуре окружающей среды 200° C	90 °C 230 °C
Устойчивость к внешним воздействиям:	
ускорение при вибрации в диапазоне частот 5—2000 Гц	15 <i>g</i> 500 <i>g</i> От —70 до +200 °C
MA Ia 6 # 456-8 6 # 456-8	I _C MA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
12	8
10	5

20 40 60 80 100 120

Анодно-сеточные характеристики.

6Ж46Б-В

Пентод для усиления и преобразования напряжения высокой частоты. Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 19Б). Масса 5 г.

Основные параметры

при	$U_{\rm H}=6,3$	В,	$U_a = 50$	В,	$U_{c_2}=50$	В,	$U_{c_1} = -$	1	В
-----	-----------------	----	------------	----	--------------	----	---------------	---	---

Ток накала	(125±10) MA (5,5±2) MA 1,8 ^{±1} , ¹ ₁ MA ≪0,1 MKA							
Ток утечки между катодом и подогревателем	≪ 20 мкА							
Крутизна характеристики:								
по 1-й сетке	$(4,5\pm1,5) \text{ MA/B}$ $\geqslant 2,4 \text{ MA/B}$ $(1,1\pm0,7) \text{ MA/B}$ $\geqslant 10 \text{ KOM}$ $\leqslant 25 \text{ MB}$							
Межэлектродные емкости:								
входная	$(6, 1\pm 0, 9) \pi\Phi$ $(2, 1\pm 0, 3) \pi\Phi$ $(2, 05) \pi\Phi$ $\geq 2000 \Psi$							
Aparepan odenan.								
крутизна характеристики	$\geqslant 2,4$ mA/B							

Предельные эксплуатационные данные

Напряжение накала	5,7—6,9 B
Напряжение анода	150 B
То же при запертой лампе	300 B
Напряжение 2-й сетки	150 B
Напряжение 1-й сетки отрицательное	150 B
Напряжение 3-й сетки отрицательное	150 B
Напряжение между катодом и подогревателем	150 B
Ток катода	10 мД
Мощность, рассеиваемая анодом	0,5Вт

Продолжение

Мощность, рассенваемая 2-й сеткой	0,3 Вт 1 МОм
Температура баллона лампы:	
при нормальной температуре окружающей среды.	90 °C
при температуре окружающей среды 200° С	230 °C
Устойчивость к внешним воздействиям:	
ускорение при вибрации в диапазоне 5—2000 Гц.	15 g
ускорение при многократных ударах	150 g
ускорение при одиночных ударах	500 g
ускорение постоянное	$100 \ g$
интервал рабочих температур окружающей среды.	От 70
	πο +200 °C

Анодные характеристики.

Анодно-сеточные характеристики по 1-й сетке.

Анодно-сеточные характеристики по 3-й сетке.

6Ж49П-Д

Пентод для усиления напряжения высокой частоты в широкополосных усилителях.

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 15 г.

Основные параметры

при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!150$ В, $U_{\rm c2}\!=\!150$ В, $U_{\rm c3}\!=\!0$ В, $R_{\rm K}\!=\!80$ Ом

Ток накала	300^{+25}_{-45} мА (15 \pm 4) мА \leqslant 10 мкА 2,45+0,55 мА \leqslant 15 мкА \leqslant 15 мкА (17,5 \pm 3,5) мА/В \geqslant 12 мА/В 100 кОм 1,1 В 1,5 мА/(В·пФ) 0,35 кОм \leqslant 70 мВ
входная	(7,8±1,2) пФ (2,7±0,4) пФ ≪0,03 пФ 4,5+2 пФ >10 000 ч

Предельные эксплуатационные данные

Напряжение накала	6-6,6 B
Напряжение анода	150 B
То же при запертси лампе	300 B
Напряжение 2-й сетки	150 B
То же при запертой лампе	300 B
Напряжение 1-й сетки отрицательное	100 B
Напряжение между катодом и подогревателем при от-	
рицательном потенциале подогревателя	100 B
Ток катода	22,5 мА

Мощность, рассеиваемая анодом . Мощность, рассеиваемая 2-й сеткой Сопротивление в цепи 1-й сетки . Температура баллона лампы	: :	•						2,85 Вт 0,52 Вт 0,5 МОм 160 °С
Устойчивость к внешним воздействия ускорение при вибрации на част ускорение при многократных уд ускорение при одиночных удара ускорение постоянное	оте 2 арах ах .	:	•	:	:	•	•	6 g 75 g 500 g 100 g От —60 ло +85°С

Анодные характеристики.

Анодно-сеточные характери-

6Ж50П

Пентод высокочастотный для усиления напряжения высокой частоты во входных каскадах широкополосных усилителей.

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П), Macca 15 г.

при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!150$ В, $U_{\rm c2}\!=\!150$ В, $U_{\rm c3}\!=\!0$ В, $R_{\rm H}$	=430 Ом
Ток анода	300±25) MA 25±10) MA 20 MKA 5±1) MA 0,3 MKA 0 KOM ,3 KOM 30 OM \$100 MB 8 MOM 35±10) MA/B
Межэлектродные емкости:	
выходная (2 проходная	11±1) пФ 2,8±0,5) пФ €0,06 пФ 7 пФ 1500 ч €20 мА/В €1,5 мкА
Предельные эксплуатационные данные	
Напряжение накала	5,7-7 B
Напряжение анода	200 B
То же при запертой лампе	350 B
Напряжение 2-й сетки	160 B
То же при запертой лампе	350 B
Мощность, рассеиваемая анодом	5,3 Br
Мощность, рассеиваемая 2-й сеткой	0,9 Br
Ток катода	45 мА
Напряжение между катодом и подогревателем:	10 1111
	10 1111
при положительном потенциале подогревателя при отрицательном потенциале подогревателя	100 B 160 B

6Ж51П

Пентод высокочастотный для усиления напряжения промежуточной частоты в широкополосных усилителях.

Оформление — в стеклянной оболочке, миниатюрное (рис. 12П). Масса 18 г.

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 200$ В, $U_{\rm c2} = 200$ В, $U_{\rm c3} = 0$ В	$R_{\rm H} = 200 \text{Om}$
Ток накала	(300 ± 25) mA $(8,5\pm2,7)$ mA
To же в начале характеристики (при U_{c1} =	
=-8,5 B)	≪10 мкА
Ток 2-й сетки	3,5+1.5 MA
Обратный ток 1-й сетки	≪0,5 mkA
Крутизна характеристики	$15,5\pm4$ mA/B
Входное сопротивление (при $f=40$ МГц)	7 кОм
Эквивалентное сопротивление внутриламповых	
шумов	450 Ом
Межэлектродные емкости:	
входная	$(11,5\pm2,3) \ \Pi\Phi$
выходная	$3,3^{+0.5}_{-0.7}$ пФ
проходная	≪0,006 пФ

Наработка	Продолжение ≥3000 ч
Критерии оценки:	
крутизна карактеристики	≥9,2 mA/B ≤2 mkA
Предельные эксплуатационные данны	е
Напряжение накала	
при положительном потенциале подогревателя при отрицательном потенциале подогревателя Интервал температур окружающей среды	150 B

Анодные карактеристики.

Анодно-сеточные характеристи-

6Ж52П

Пентод широкополосный малошумящий для усиления в широкополосных усилителях. Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 15 г.

при $U_{\rm B}\!=\!6,3$ В, $U_{\rm a}\!=\!100$ В, $U_{\rm c2}\!=\!150$ В, $R_{\rm K}$	=24 Om
Ток накала	(330±40) MA (42±11) MA ≪8 MA
=0,5 МОм)	≪0,2 мкА 55±10 мА/В
шумов (при $f=30~{\rm MFu})$	
входная	$(13,5\pm3,5)$ n Φ $1,8^{+0,7}_{-0,2}$ n Φ $\leq 0,05$ n Φ ≥ 1000 q
Парасотка Критерии оценки: крутизна характеристики обратный ток 1-й сетки	≥36 mA/B ≤2 mkA
Предельные эксплуатационные данны	e
Напряжение накала Напряжение анода То же при запертой лампе Напряжение 2-й сетки Ток катода Напряжение между катодом и подогревателем Мощность, рассеиваемая анодом Мощность, рассеиваемая 2-й сеткой Сопротивление в цепи 1-й сетки Температура баллона Интервал температур окружающей среды	60 MA 200 B 7,5 BT 1,2 BT 0,5 MOM 250 °C

Анодные характеристики.

Анодно-сеточные характеристики.

6Ж53П

Пентод высокочастотный, широкополосный для усиления напряжения в широкополосных усилителях.

Оформление — в стеклянной оболочке, миниатюрное (рис. 1П). Масса 11 г.

Основные параметры

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 150$ В, $U_{\rm c2} = 150$ В, $R_{\rm H} = 68$ Ом

Ток накала	$\begin{array}{l} (160\pm25) \text{ MA} \\ (13\pm4) \text{ MA} \\ \leqslant 2,2 \text{ MA} \\ \leqslant 0,2 \text{ MK} \\ (17\pm2) \text{ MA}/B \\ \leqslant 100 \text{ MB} \end{array}$
Межэлектродные емкости:	
входная	$(6,6\pm1,5)$ пФ $1,7^{+0,5}_{-0,4}$ пФ $\leqslant 0,02$ пФ $\geqslant 3000$ ч
Критерии оценки:	
крутизна характеристики	≥ 12 M A/B ≪1 MKA

Предельные эксплуатационные данные

Напряжение накала	5,7—7 B
Напряжение анода	300 B
То же при запертой лампе	400 B
Напряжение 2-й сетки	250 B
Ток катода	24 мА
Мощность, рассеиваемая сеткой	0,4 Br
Мощность, рассеиваемая анодом	3.5 B _T
Напряжение между катодом и подогревателем	100 B
Температура баллона	200 °C
Интервал температур окружающей среды	OT -60
- Thirty bar i control of the contro	до +70°С

Анодные характеристики

Анодно-сеточные характеристи-

2 мкА

 (4.1 ± 0.7) mA/B

500 кÓм

13XK41C

Пентод для усиления напряжения высокой частоты в усилителях для подводной аппаратуры дальнего высокочастотного телефонирования по кабелям.

Оформление — в стеклянной оболочке, с гибкими выводами (рис. 4C). Масса 50 г.

Основные параметры

при $U_{\rm H} = (13.3 \pm 0.9)$ В, $U_{\rm a} = 80$ В, $U_{\rm c}{}_2 = 80$ В, $R_{\rm K} = 800$ Ом

Ток накала	295_{-5}^{+4} мА
Гок анода	$2^{+0.3}_{-0.2}$ mA
Ток 2-й сетки	(0.5 ± 0.2) MA
ток катода в импульсе	≥2,5 MA
Обратный ток 1-й сетки	≪0,02 mkA
Ток утечки:	
между анодом и всеми электродами (при $U_{\mathtt{a}}$ =	-0.1
=200 B)	€2 MKA
между катодом и подогревателем	€10 MKA
между 1-й сеткой и катодом	≪I MKA

между 1-й сеткой и всеми электродами .

Крутизна характеристики .

Впутреннее сопротивление .

	Продолженив
$_{\rm Hanps}$ жение виброшумов (при $R_{a} = 10$ кОм)	≪ 200 мВ
межэлектродные емкости:	
выходная	(11±1,2) πΦ (3±0,7) πΦ ≪0,04 πΦ >100 000 ч
Критерии оценки:	
обратный ток 1-й сетки	≪0,5 mk A ≪30 %
Предельные эксплуатационные данные Ток накала	290—299 мА 100 В 100 В
Напряжение между катодом и подогревателем при положительном потенциале подогревателя	110 B 3,2 mA 0,5 MOm 50 °C
Устойчивость к внешним воздействиям:	
ускорение при вибрации в диапазоне частот 5—50 Гцто же в диапазоне частот 50—300 Гцодиночные удары с ускорениемускорение постоянноеинтервал температур окружающей среды (при транспортировке и хранении)	10 g 1,5 g 300 g 100 g От —60 до +70 °C

13Ж47C

Пентод для работы в подводных усилите-лях аппаратуры дальнего высокочастот-ного телефонирования по кабелям. Оформление — в стеклянной оболочке (рис. 4C). Масса 50 г.

при $U_{\rm H}$ = (13,3±0,9) B, $U_{\rm a}$ =80 B, $U_{\rm c2}$ =80 B,	$R_{\rm R} = 312$ Om
Ток накала	295 MA 5 ± 0.8 MA $\leqslant 1.5$ MA $\leqslant 0.05$ MKA (6.7 ± 1.1) MA/B > 450 KOM $\leqslant 2$ KOM
Межэлектродные емкости:	
входная	(11,6±1,2) πΦ (3±0,07) πΦ ≪0,04 πΦ >45 000 ч
$f=6 \text{ K}\Gamma\text{L}$):	
обратный ток сетки	≪0,5 mkA ≪30 %
Предельные эксплуатационные данны	1e
Ток накала	. 7,5 мА и . 110 В . 0,5 МОм
Устойчивость к внешним воздействиям:	
ускорение при вибрации в диапазоне частот 5—50 Гц	. 10 g . 1,5 g . 300 g

4.3. ПЯТИЭЛЕКТРОДНЫЕ ЛАМПЫ — ПЕНТОДЫ С УДЛИНЕННОЙ АНОДНО-СЕТОЧНОЙ ХАРАКТЕРИСТИКОЙ

1K2П. Аналог 1F34

Напряжение накала, В . .

То же при занертой лампе, В .

Напряжение анода, В . . . То же при запертой лампе .

Напряжение 2-й сетки, В .

Пентод прямого накала для усиления напряжения высокой частоты в радиоэлектронной аппаратуре.

Оформление — в стеклянной оболочке, миниатюрное (рис. 2П). Масса 10 г.

Основные параметры

при $U_{\rm e}=1.2$ В, $U_{\rm a}=60$ В (для 1F34—90 В), $U_{\rm c2}=45$ В, $_{\rm 1K2\Pi}$	$U_{c_1} = 0$ B			
Ток накала, мА	30 1,8 0,65			
MKA	-			
Қрутизна характеристики, мА/В:				
при $U_{\rm H} = 1,2$ В 0,45—0,7 при $U_{\rm H} = 0,95$ В $>0,32$ при $U_{\rm cl} = -8$ В $>0,002$ при $U_{\rm cl} = -10$ В	0,7 - 0,01 0,8			
Межэлектродные емкости, пФ:				
входная . ,	4,2 7,5 ≪0,012			
Критерий оценки:				
крутизна характеристики, мА/В ≥0,32	-			
Предельные эксплуатационные данные				

1F34 0,9—

 $\frac{-1.4}{90}$

150

67,5 150

1K2∏

90

75

0.9 - 1.4

Напряжение источника питания анода и 2-й сет-	
ки, В	_
Ток катода, мА	5,5
Мощность, рассеиваемая анодом, Вт 0.3	0.3
Мощность, рассеиваемая 2-й сеткой. Вт —	0.1
Сопротивление в цепи 1-й сетки, МОм	3
Интервал рабочих температур окружающей сре-	_
ды От —45	
до +70°С	

Анодные характеристики.

Анодно-сеточные характеристики.

1K12B

Пентод прямого накала для усиления напряжения высокой и промежуточной частоты в схемах с автоматической регулировкой усиления.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 24Б). Масса

4 r.

при $U_{\rm H} = 1.2$ В, $U_{\rm a} = 60$ В, $U_{\rm c}_2 = 40$ В, $U_{\rm c}_1 = 0$ В
Ток накала
Крутизна характеристики:
при $U_{\rm H} = 1.2 \ {\rm B}$

			и россижение
при $U_{c_1} = -6$ В			(0.065 ± 0.025) MA/B
Напряжение виброшумов (при Ra=	=10 кОм)		≪80 мВ
Входное сопротивление (при $f = 60$			≥30 кОм
Эквивалентное сопротивление шум			
00 1471)	`. `.	•	≼ 9 МОм
Межэлектродные емкости:			
входная			$(3,7\pm0,4) \ \Pi\Phi$
выходная			$2,7_{-0.2}^{+0.4}$ $\pi\Phi$
проходная			≥2000 u
Hapaooika		• •	#2000 q
Критерий оценки:			
крутизна характеристики . ,		, .	$\geqslant 0.6 \text{ mA/B}$
Предельные эксплуа	T211110111111		LIA.
предельные оксинуа	тационных	дани	DIC .
Напряжение накала			0,95-1,4 B
Напряжение анода			120 B
Папряжение 2-й сетки			90 B
Ток катода			5 мА
Мощность, рассеиваемая анодом .			0,6 Вт
Мощность, рассенваемая 2-й сеткой			0,1 Вт
Сопротивление в цепи 1-й сетки .			1 МОм

6К1Б, 6К1Б-В

Пентоды для усиления напряжения промежуточной частоты в схемах с автоматической регулировкой усиления.

Сопротивление в цепи 1-й сетки . . . Устойчивость к внешним воздействиям:

ускорение при вибрации в диапазоне частот

интервал рабочих температур окружающей

Ž0—1000 Гц.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 4Б). Масса 3,5 г.

10 g

150 g 500 g

100 g От —60 до

+120 °C

Продолжение

основные параметры		
при $U_{\rm H}$ =6,3 В, $U_{\rm a}$ =120 В, $U_{\rm c2}$ =120 В	$R_{\rm R} = 200 \text{ O}$	M
	кіб 200±20	6К1Б-В 200±20
Ток анода, мА	3±3	8±3
),1—0,9 ≤4	$0,1-0,7 \le 4$
Обратный ток 1-й сетки (при $U_{c_1} = -2$ В),	•	•
мкА	≼ 0,1	€0,1
лем, мкА		≤ 20
	,6—6, 6 ≥3	3,6—6, 5 ≥3
Эквивалентное сопротивление шумов, кОм 1	•	4
Входное сопротивление (при $f = 50 \text{ МГц}$), кОм	≥8	10-25
Напряжение виброшумов (при $R_a =$		
•	≤ 200	€100
Межэлектродные емкости, пФ:	. 1.1.9	
входная		$4,8\pm0,9$
выходная		3,8±1,0
катод — подогреватель		≪0,03 ≪7
Наработка, ч		≥2000
Критерии оценки:		
		≤ 0.5
Предельные эксплуатационные да	анные	
		6K16-B
Напряжение накала, В		5,7-6,9
То же при запертой лампе. В		150 250
Напряжение 2-й сетки, В	125	125
Отрицательное напряжение 1-й сетки. В		250 50
Ток катода, мА	15	15
		1,2 $0,4$
Напряжение между катодом и подогревате-		
	_	150 1
		170
Устойчивость к внешним воздействиям:		
ускорение при вибрации в диапазоне ча- стот g:		
для 6К1Б от 20 до 50 Гц для 6К1Б-В от 5 до 600 Гц	10	10

ускорение при многократных ударах g . 150	150
ускорение при одиночных ударах д 500	500
ускорение постоянное д	100
интервал рабочих температур окружаю-	
щей среды, °С От —60	
до +90	до $+200$

Анодные характеристики.

Анодно-сеточные характеристики.

6K1Π

Пентод для усиления напряжения высокой и промежуточной частоты.

Оформление - в стеклянной оболочке, миниатюрное (рис. 1П). Масса 12 г.

_	
при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!250$ В, $U_{\rm c2}\!=\!100$ В, $U_{\rm c}$	$_{1} = -3 B$
Ток накала	(150±10) MA
Ток анода	$(0,00\pm 2,20)$ MA
Ток 2-й сетки	$(2,7\pm1,3)$ MA
Обратный ток 1-й сетки	≪1 mkA
Ток эмиссии катода	≥20 mA
Ток утечки между катодом и подогревателем .	≪ 20 мкА
Крутизна характеристики:	
при $U_{\text{m}}\!=\!6,3$ В	$1,85\pm0,55 \text{ mA/B}$

при $U_{\rm H} = 5.7$ В	KOM
входная (3,4±) выходная (3±0 проходная ≪0,0 Наработка >500	:0,7) пФ ,9) пФ l пФ
Критерий оценки: крутизна карактеристики	мА/В
Напряжение накала	5,7-6,9 B 275 B 110 B 3 B 90 B 1,8 Br 0,33 Br
ускорение при вибрации с частотой 50 Гц	6 g От —60 до +70°C

6К1П

 $U_H = 6.3B$ $-U_{\alpha} = 250B$ $U_{C2} = 100B$

MA

6К4П, 6К4П-ЕВ, 6К4П-ЕР. Аналоги ЕГ-93, 6Г31

Пентоды с удлиненной характеристикой для усиления напряжений промежуточной и высокой частоты в схемах с автоматической регулировкой усиления.

Оформление — в стеклянной оболочке, миниатюрное (рис. 4П). Масса 13 г.

Основные параметры

при $U_B = 6.3$ В, $U_A = 250$ В, $U_{C2} = 100$ В, $R_H = 68$ Ом

Наименование	6К4П	6Қ4П-ЕВ	6К4П•ЕР	EF93, 6F31
Ток накала, мА	300±30 10±3 ≪5,5	300±25 10±3 ≤5,5	270±15 10±3 <5,5	300 11 4,2
Обратный ток 1-й сетки (при $U_{01} = -2$ В), мкА. Ток утечки между катодом	≪1	≪0,3	< 0,3	
и подогревателем, мкА. Крутизна характеристики,	<20	<20		
мА/В: при $U_{\rm H}$ =6,3 В при $U_{\rm H}$ =5,7 В	$4,4\pm0,9 \\ \geqslant 2,8$	4,4±0,9 ≥3	4,4±0,9	4,4
в начале характеристи- ки (при $U_{c1} = -20$ В)	0,04	0,64	0,1	0,04
Внутреннее сопротивление, МОм	0,85	0,45	0,45	1,5
Входное сопротивление (при $f=60$ МГц), кОм .	_	5	≥3,5	
Напряжение виброшумов (при R _a =10 кОм), мВ .	≪400	<180	≤180	
Межэлектродные емкости, пФ:				
выходная	$ \begin{array}{c} 6\\ 6,3\\ <0,0045\\ 5,5\\ >5000 \end{array} $	$6,4\pm0,8$ $6,7\pm1,1$ <0,0035 5,5 >5000	$6,4\pm0,8$ $6,7\pm1,1$ <0,0035 10 >2000	5,5 5 — —
Критерии оценки:				
обратный ток 1-й сет- ки, мкА	_	≪1		
крутизна характеристи- ки, мА/В	≥2,8	≥2,8	_	_

Предельные эксплуатационные данные

	J			
Наименование	6Қ4П	6К4П-ЕВ	6Қ4П-ЕР	EF93, 6F31
Напряжение накала, В	5,7-6,9	5,7—7	6-6,6	5,7-7
Напряжение анода, В	300	300	300	3 00
То же при запертой лампе, В		340	_	-
Напряжение 2-й сетки, В	125	125	125	125
То же при запертой лампе, В	_	340	_	_
Напряжение между катодом и подогревателем, B	90	90	90	150
Ток катода, мА	20	20	20	2 9
Мощность, рассеиваемая анодом, B_T	3	3	3	3
Мощность, рассеиваемая 2-й сеткой, Вт	0,6	0,6	0,6	0,6
Сопротивление в цепи 1-й сетки, кОм	500	500	500	500
Температура баллона лампы, °C		140	140	150
Устойчивость к внешним воз- действиям:				
вибрация с ускорением на частоте 50 Гц g	2,5			_
вибрация с ускорением в диапазоне частот 5— 600 Гц g		6	6	
ускорение при многократ- ных ударах g	12	150	150	_
ускорение при одиночных ударах g		150	500	
ускорение постоянное g .	_	100	100	_
интервал рабочих темпера- тур окружающей среды, °C	От —60 до +70	Or —60 до +90	От —60 до +85	_
070			•	

Анодные характеристики.

Анодно-сеточные характеристи-

6K6A, 6K6A-B

Пентоды для усиления напряжения высокой частоты.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 7Б). Масса 2,5 г.

Основные параметры			
при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 120$ В, $U_{\rm c2} = 100$ В, $U_{\rm c3} = 0$	B, $R_{\rm K} = 120 \text{OM}$		
Ток накала	(127±13) мА (7,5±2,5) мА ≪4 мА ≪0,1 мкА		
Ток утечки между катодом и подогревателем	₹ 20 мкА		
Крутизна характеристики: при $U_B = 6.3$ В	$(4,5\pm1,2) \text{ MA/B}$ > 2,8 MA/B $0.04^{+0.06}_{-0.03} \text{ MA/B}$ > 9 KOM 2.8 KOM		
Эквивалентное сопротивление шумов	€150 MB		
входная	$(3,6\pm1,2)$ $\pi\Phi$		
выходная,	$3,3^{+0,8}_{-1,2}$ пФ ≤ 0.03 пФ		
проходная	QU, UO ΠΨ		

катод — подогреватель	одолжение 1Ф) ч 5 мкА 6 мА/В
Предельные эксплуатационные данные	
Напряжение накала	5,7—6,9 B 150 B 250 B 125 B 150 B 50 B 150 B 150 B 15 MA 1,3 Br 0,4 Br 1 MOM
Температура баллона лампы: при нормальной температуре окружающей среды . при температуре окружающей среды 200° С Устойчивость к внешним воздействиям:	170 °C 250 °C
ускорение при вибрации в диапазоне частот 20—2000 Гц	10 g 150 g 500 g 100 g От —60 до +200 °C

Анодно-сеточная характеристика.

Анодно-сеточная характеристика (начальный участок).

6K7

Пентод высокочастотный для усиления напряжения высокой частоты. Оформление — в металлической оболочке (рис. 3M). Масса 44 г.

Основные параметры

при $U_{\rm H} = 6.3$ B, $U_{\rm a} = 250$ B, $U_{\rm c2} = 100$ B, $U_{\rm c3} = -3$ B

Ток накала	(15,5±14,5) MKA/B 1 MOM ≥20 MOM
То же 1-й сетки	≥20 МОм
Напряжение виброшумов (при $R_a = 10 \text{ кОм}$)	≪200 мВ
Межэлектродные емкости:	•
входная	$(6,6\pm0,9)$ n Φ
выходная	$(9,75\pm2,25) \text{ n}\Phi$
проходная	<0,005 πΦ
Наработка	≽2000 ч
Критерии оценки:	
обратный ток 1-й сетки	\leqslant 2 мк A
крутизна характеристики	≽0,95 мA/B

273

Предельные эксплуатационные данные

Напряжение накала	5,7—7 B
Напряжение анода	330 B
Напряжение 2-й сетки	140 B
Мощность, рассеиваемая анодом	3 Вт
Мощность, рассенваемая 2-й сеткой	0,4 Вт
Напряжение между катодом и подогревателем	100 B
Интервал рабочих температур окружающей среды	От —60
- · · · · · · · · · · · · · · · · · · ·	до +70° С

6K8П. Аналог EF97

Пентод для усиления напряжений высокой и промежуточной частоты и для работы в схемах радиоэлектронных устройств с низковольтным питанием анодно-экранных цепей.

Оформление — в стеклянной оболочке, миниатюрное (рис. 2П). Масса 12 г.

при $U_{\rm B}\!=\!6,3$ В, $U_{\rm a}\!=\!12,6$ В, $U_{\rm c_2}\!=\!$	6,3	В, І	J _{c3} :	=0 В, <i>R</i> _к =	10 MOm EF97
Ток накала, м A				$300\pm25 \\ 2,5\pm0,25$	300 2,5
=-5 B), MKA					
Ток 2-й сетки, мА	•		•	0,9 0.1	0,9
Обратный ток 1-й сетки, мкА Крутизна характеристики, мА/В .		: :	·	1,85_0,45	1,8
Внутреннее сопротивление, кОм	•			70	100
Напряжение 1-й сетки, снижающее характеристики, В:	кр	утиз	ну		
в 10 раз	•			-3,5	-3,3
в 20 раз	•	•• •	•	-5,4	 5
входная			•	$6,7\pm2,2$	6,5
выходная					4
проходная					
					$\leq 0,015$
между 1-й и 2-й сетками		• .		$3\pm 0,6$	≪0,01 5 3
		• .		$3\pm 0,6$	

Предельные эксплуатационные данные

	6Қ8П	EF97
Напряжение накала, В	5,5-7,0	5,7-6,9
Напряжение анода. В	30	30
Напряжение 2-й сетки, В	30	30
Напряжение 3-й сетки, В	30	30
Напряжение между катодом и подогревате-		
лем, В	30	30
Ток катода, мА	15	15
Мощность, рассенваемая анодом, Вт	0,5	0,5
Мощность, рассеиваемая 2-й сеткой, Вт		0,5
Сопротивление в цепи 1-й сетки, МОм	22	22
Сопротивление в цепи 3-й сетки, МОм	5	5
Устойчивость к внешним воздействиям:		
ускорение при вибрации на частоте 50 Гц д	3	
интервал рабочих температур окружаю-		
щей среды	От60	-
•	до +70° C	

6K13П. Аналог EF183

Пентод для усиления напряжения высокой частоты в схемах с автоматической регулировкой усиления.

Оформление — в стеклянной оболочке, миниатюрное (рис. 12П). Масса 18 г.

Основные параметры

при $U_{\rm m}\!=\!6.3$ В, $U_{\rm a}\!=\!200$ В, $U_{\rm c_2}\!=\!90$ В ($U_{\rm c_1}\!=\!-\!2$ В для EF183), $R_{\rm K}\!=\!120$ Ом

	6Қ13П	EF183
Ток накала, мА	300±25 12±3	300 12
То же в начале характеристики (при U_{c1} =		-9.7
=-9,5 B), MA		$\leqslant 2,7$
Ток 2-й сетки, мА	4,5 ^{+1,3}	4,5
Обратный ток 1-й сетки, мкА	$\leq 0,5$	
Ток утечки между катодом и подогревате-		
лем, мкА	≤15	
Крутизна характеристики, мА/В	12,5 _{_3}	12,5
То же при $U_{\rm H} = 5.7$ В, мА/В	≽8	_
Внутреннее сопротивление, кОм	500	500
Входное сопротивление (при $f = 40 \text{ M}\Gamma\text{u}$),		
кОм	7,5	10

.....

Межэлектродные емкости, пФ:	
входная	9
выходная	$^{3}_{\leq 0,0055}$
Критерии оценки:	
обратный ток 1-й сетки, мкА ≪2 крутизна характеристики, мА/В ≫7,5	_
Предельные эксплуатационные данные	
6K13II	EF183
Напряжение накала, В	5,7—7 550 250 550 50
Напряжение между катодом и подогревате- лем, В:	
при положительном потенциале подогревателя	150
теля	150 20 2,5 0,65

Анодно-сеточные характеристики. Анодно-сеточная характеристика.

6К14Б-В

Пентод для усиления напряжения высокой и промежуточной частоты в схемах с автоматической регулировкой усиления.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 19Б). Масса 5 г.

Основные параметры при $U_{\rm m} = 6.3$ В, $U_{\rm a} = 50$ В, $U_{\rm c_2} = 50$ В, $U_{\rm c_1} = -1$ В				
Ток накала	127_{-12}^{+13} mA			
Ток анода	$\begin{array}{l} (5,5\pm2) \text{ MA} \\ 10-200 \text{ MKA} \\ < 0,1 \text{ MKA} \\ < 20 \text{ MKA} \\ 3,5-6,5 \text{ MA/B} \\ \geqslant 2,8 \text{ MA/B} \\ \geqslant 10 \text{ KOM} \\ < 1,5 \text{ KOM} \\ < 25 \text{ MB} \end{array}$			
Межэлектродные емкости:				
входная	(6, 1±0,9) пФ (2, 1±0,3) пФ <0,05 пФ ≥2000 ч			
Критерии оценки: обратный ток 1-й сетки	<0,5 MKA >2,8 MA/B			

Предельные эксплуатационные данные

Напряжение накала	5,7-6,9 B 150 B 200 B 150 B 300 B 150 B 150 B 150 B 10 MA 0,5 BT 0,3 BT 1 MOM
Температура баллона лампы: при нормальной температуре окружающей среды при температуре окружающей среды 200° С	90 °C 230 °C
Устойчивость к внешним воздействиям: ускорение при вибрации в диапазоне частот 5— 2000 Гц	15 g 150 g 500 g 100 g От —70 до +200 °C

Анодные характеристики.

Анодно-сеточные характеристики.

6К15Б-В

Пентод с экспоненциальной анодно-сеточной характеристикой для работы в качестве функционального преобразователя для потенцирования в различных радиотехнических устройствах.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 37Б). Масса 5 г.

при $U_{\rm B} = 6.3$ В, $U_{\rm a} = 100$ В, $U_{\rm c2} = 100$ В,	$U_{\mathbf{c}}$	3=(0,	$U_{c1} = -1$ B
Ток накала	•	:		440±40 мА ≪2,5 мА ≪1 мкА
Ток анода				5^{+3}_{-2} мА
Крутизна характеристики	0 1	оку	y	(6±2) дБ/В ≥30 дБ
Напряжение виброшумов	•	:		≪ 100 mB
Межэлектродные емкости:				
входная				6,5±1,5) πΦ
выходная	•	•	•	$(4,5\pm 1) \pi \Phi$
проходная	٠	٠	•	<0,15 πΦ
катод — подогреватель	•	•	•	≪8,5 πΦ
Наработка	•	•	•	≽500 ч
Критерии оценки:				
обратный ток 1-й сетки				\leqslant 2 мк A
ток анода				\geqslant 2,4 mA
раствор характеристики по току анода.				≥25 дБ
крутизна характеристики		•	•	≥3 дБ/В
Предельные эксплуатационные	да	ннь	че	
Напряжение накала				5,7—6,9 B
Напряжение анода				120 B
То же при запертой лампе				250 B
Напряжение 2-й сетки				120 B
То же при запертой лампе				250 B
Напряжение 1-й сетки отрицательное				100 B
Напряжение между катодом и подогревателем				150 B
Ток катода			•	15 мА

Продолжение
Мощность, рассеиваемая анодом 12 Вт
Мощность, рассеиваемая 2-й сеткой 0,4 Вт
Сопротивление в цепи 1-й сетки 0,5 МОм
Температура баллона
Устойчивость к внешним воздействиям:
ускорение в диапазоне частот 5—2000 Γ ц 10 g
ускорение при многократных ударах 150 g
ускорение при одиночных ударах 500 g
ускорение постоянное 100 g
интервал рабочих температур окружающей среды 0 т -60 до $+100^{\circ}$ С

Анодно-сеточные характеристи-

Анодно-сеточная характеристика.

6К16Б-В

Пентод с квадратичной анодно-сеточной характеристикой для работы в качестве функционального преобразователя (возведение в квадрат) в различных радиотехнических устройствах.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 37Б). Масса 5 г.

при $U_{\rm B}$ =6,3 В, $U_{\rm a}$ =100 В, $U_{\rm c2}$ =100 В, $U_{\rm c1}$ =-	-4 B
Ток накала	(400±40) мА (11±4) мА
«Раствор» анодно-сеточной характеристики (при функциональной точности ±1 мA)	≥ 10 B ≤ 5 mA ≤ 1 mkA ≤ 200 mB
Межэлектродные емкости:	6,3 ^{+1,2} _{-1,3} пФ
выходная	(4,5±1) nΦ <0,1 nΦ <8,5 nΦ ≥500 ч
обратный ток 1-й сетки	\leqslant 2 MKA \geqslant 5,5 MA \geqslant 8 B
Предельные эксплуатационные данные	
Напряжение накала	5,7—6,9 B
Напряжение анода	120 B
То же при запертой лампе	250 B
Напряжение 2-й сетки	120 B
То же при запертой лампе	250 B
Напряжение 1-й сетки отрицательное	100 B
Напряжение между катодом и подогревателем	150 B
Ток катода	30 мА
Мощность, рассеиваемая анодом	1,2 Вт
Мощность, рассеиваемая 2-й сеткой	0,4 Вт
Сопротивление в цепи 1-й сетки	0,5 МОм
Температура баллона	150° C
Устойчивость к внешним воздействиям:	
ускорение при вибрации в диапазоне частот 5—2000 Гц	10 g 150 g 500 g 100 g От —60 до +150° С

Анодно-сеточные характеристики.

Анодно-сеточная характеристика.

4.4. ТЕТРОДЫ И ПЕНТОДЫ СО ВТОРИЧНОЙ ЭМИССИЕЙ

6В1П, 6В1П-В

Пентоды со вторичной эмиссией для усиления импульсных сигналов.

Оформление — в стеклянной оболочке, миниатюрное (рис. 16П). Macca 19 г.

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 25$	60 F	B, <i>L</i>	/c2=	=250	В,	U_{π} =	=150 B, R _E =	=200 Ом
•							6В1П	6 B 1 I 1- B
Ток накала, мА							400 ± 30	400 ± 30
Ток анода, мА:								26±8
в режиме измерений	•		•	•	•		20±0 > 500	≥500 ≥500
в импульсе *	•		٠	•	•		// J 000	≥400
при $U_{\rm H} = 5.7 \; {\rm B}$	•		٠	• •	•	٠.		#100
Ток динода, мА:							20-1-5	21 ± 6
обратный	•		•	•	•		> 200	≥300
в импульсе	٠		•	•	•		<i>≥</i> 3000	<i>≫</i> 000

	17 pc	долже ние
Обратный ток 1-й сетки, мкА	$ \leq 3,5$ $\leq 0,5$ 28 ± 6 ≥ 18 21 ± 5 ≥ 14	≥ 250 ≤ 3,5 ≤ 0,5 28±6 — 21±5
Отрицательное напряжение отсечки тока анода, В	≤9 ≤200	$\begin{array}{l} \leqslant 9 \\ \leqslant 200 \end{array}$
входная	$9,4^{+0,8}_{-0,4}$	$9,4^{+0.8}_{-0.4}$
выходная анода	$\begin{array}{l} 4,8\pm0,6 \\ 6,2\pm0,7 \\ <0,008 \\ <0,028 \\ 2,4 \\ <8,5 \\ >500 \end{array}$	$\begin{array}{c} 4,8 \pm 0,6 \\ 6,2 \pm 0,7 \\ < 0,008 \\ < 0,033 \\ 2,4 \\ < 8,5 \\ > 500 \end{array}$
Критерни оценки: ток анода в импульсе *, мА	≥400 —	≥ 400 ≤ 150
* При $U_{\rm a}$ =550 B, $U_{\rm C2}$ =500 B, $U_{\rm H}$ =120 B, $U_{\rm H}$ =120 B, $U_{\rm HMB}$ =2 мкс, f =8 кГц, $R_{\rm a}$ =0.1 кОм.	c1 =15 B,	$U_{EX} = 30$ B ₁
Предельные эксплуатационные д		(m. m. m.
Напряжение накала, В	5,7—7 550 500 200	6ВІП-В 5,7— 7 550 500 200
лем, В: при положительном потенциале подогревателя	160	160
теля	250 4,5 0,8 0,8 0,1 — 50	250 4,5 0,8 0,8 0,1 0,5 50
частот Γ ц	50 35 —	20—600 150 300 100

интервал рабочих температур окружающей среды, °C От -60 до +70 до +70

Анодные характеристики.

Анодно-сеточные характеристики,

Анодно-динодные характеристики.

Импульсные (сплошные) и (пунктирные)

анодно-сеточные динодно-сеточные карактеристики.

6В2П

Тетрод для усиления импульсных сигналов.

Оформление — в стеклянной оболочке, миниатюрное (рис. 13П). Масса 17 г.

при $U_{\rm H} = 6.3$ B, $U_{\rm a} = 600$ B, $U_{\rm g} = 300$ B, $U_{\rm c_2} = 300$ B, $U_{\rm c_1 = -25}$ B, $U_{\rm c_1 = 100} = 25$ B				
Ток накала				
Ток анода:				
в импульсе				
Ток динода:				
в импульсе (обратный)				
Крутизна характеристики тока динода в импульсе				
Межэлектродные емкости:				
входная (26±6) пФ выходная анода (15±5) пФ выходная динода (14±0,5) пФ проходная анода $< 0,2$ пФ проходная динода $< 0,2$ пФ анод — динод 10 пФ катод — подогреватель < 20 пФ Наработка в импульсном режиме > 500 ч				
Критерий оценки:				
ток анода в импульсе				
Предельные эксплуатационные данные				
Напряжение накала 6,0—6,6 В Напряжение анода 600 В Напряжение динода 300 В Напряжение 2-й сетки 300 В Напряжение 1-й сетки в импульсе 20 В Напряжение между катодом и подогревателем 100 В				

								Продолжение
Мощность, рассеиваемая анодом . Мощность, рассеиваемая динодом . Мощность, рассеиваемая 2-й сеткой Мощность, рассеиваемая 1-й сеткой Скважность	•				•	:	•	3 BT 2 BT 1 BT 0,1 BT 300
Температура баллона лампы			,	:	:		:	200
Устойчивость к внешним воздействи ускорение при вибрации в диапа: $300~\Gamma \text{ц}$	301	не						6 g
интервал рабочих температур среды)	0	кру	Ж	аю			От —60 до +85 °C

Импульсные анодно-сеточная (сплошная) и динодно-сеточная (пунктирная) характеристики.

6B3C

Тетрод для усиления импульсных сигналов.

Оформление — в стеклянной оболочке, бесцокольное (рис, 3C). Масса 25 г.

при $U_{\pi}=6,3$ В, $U_{a}=700$ В, $U_{\pi 1}=120$ В, $U_{\pi 2}=350$ В, $U_{e1}=-25$ В, $U_{e}=100$ В, $U_{c1 \text{MM}}=25$ В	$U_{c2} = 400 \text{ B},$
Ток накала	(850±50) MA
Ток анода:	
в импульсе в импульсе при $U_{n} = 6$ В	$\begin{array}{c} 2 - 0.5 & A \\ \geqslant 1.2 & A \end{array}$
Ток 2-го динода в импульсе (образный)	I,5 _{0.5} A
To же при $U_{\rm B}=6$ B	≥0,8 A
Кругизна характеристики тока анода в импульсе . Кругизна характеристики тока 2-го динода в им-	300_100 MA/B
пульсе	200_80 MA/B
Отрицательное напряжение отсечки тока анода	<25 B <200 mB
Напряжение виброшумов (при $R_a = 0.5$ кОм)	≈ 200 MD
Межэлектродные емкости:	15-1-2
входная	15 <u>+</u> 2 πΦ
выходная анода	14 _ 2 пФ
выходная 2-го динода	10±2 nΦ
проходная анода	<0,2 пΦ <0,08 пΦ
проходная 2-го динода	≪9 nΦ
катод — подогреватель	<13 nΦ
Наработка в импульсном режиме	≽ 500 ч
Критерий оценки:	. 0.0.1
ток анода в импульсе	≥0,9 A
Предельные эксплуатационные данные	
Напряжение накала	66,6 B 700 B
Напряжение анода	120 B
Напряжение 2-го динода	350 B
Напряжение 2-й сетки	400 B +4 B
Напряжение между катодом и подогревателем.	100 B
Мощность, рассеиваемая анодом	5 Вт
Мощность, рассеиваемая 2-м динодом	2 Вт 1,5 Вт
Мощность, рассеиваемая 1-й сеткой	0,1 Вт
Скважность	
	200
Температура баллона лампы	200 200 °C
Устойчивость к внешним воздействиям:	200 200 °C
Устойчивость к внешним воздействиям: ускорение при вибрации в диапазоне частот 20—	200 °C
Устойчивость к внешним воздействиям: ускорение при вибрации в диапазоне частот 20— 600 Гп	200 °C 6 g 60 g
Устойчивость к внешним воздействиям: ускорение при вибрации в диапазоне частот 20— 600 Гф	200 °C 6 g 60 g 300 g
Устойчивость к внешним воздействиям: ускорение при вибрации в диапазоне частот 20— 600 Гф	200 °C 6 g 60 g
Устойчивость к внешним воздействиям: ускорение при вибрации в диапазоне частот 20— 600 Гф	200 °C 6 g 60 g 300 g

Импульсные анодно-сеточные (сплошные) и динодносеточные (пунктирные) характеристики.

4.5. ПЕНТОДЫ ВЫХОДНЫЕ И ЛУЧЕВЫЕ ТЕТРОДЫ

1П5Б

Пентод для усиления и генерирования колебаний высокой частоты.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 28Б). Масса 5 г.

при $U_{\rm H} = 1.2$ В, $U_{\rm a} = 90$ В, $U_{\rm c2} = 90$ В, $U_{\rm c}$	=-4,5 B
Ток накала	(120 ± 20) MA
Ток анода	(12±5) мA
Ток 2-й сетки	≪1 мА
Обратный ток 1-й сетки	≪0,1 мкА
Крутизна характеристики	$(1,9\pm0,6) \text{ MA/B}$
То же при $U_{\rm H} = 0.95$ В	≥1
Входное сопротивление (при $f = 60 \text{ M}\Gamma\text{ц}$)	≥60 кОм
Эквивалентное сопротивление внутриламповых	
шумов (при $f = 30^{\circ} M \Gamma \mu$)	≪12 кОм
Межэлектродные емкости:	•
входиая	$(3.9 \pm 0.4) \pi\Phi$
выходная .	

Предельные эксплуатационные данные
Напряжение накала
1П22Б-В Пентод для усиления и генерирования колебаний высокой частоты. Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 28Б). Масса
5,2 г. $ \frac{\kappa(-n)}{2 \cdot 1 \cdot 6} \frac{\kappa(-n)}{\kappa(+n)} $ Основные параметры при $U_{\rm B}=1,2$ В, $U_{\rm a}=90$ В, $U_{\rm c_2}=90$ В, $U_{\rm c_1}=-4,5$ В Ток накала
Ток анода

Основные параметры								
	при ($J_{\rm H}=1,2$	2 B, <i>U</i> a	=90 B,	$U_{c2}=90$	B, $U_{c1}=$	-4,5 B	
Ток ан	юда .						$(13,5\pm4,5)$ MA	
Крутиз	на хар	актери	стики			• • •	$2,9^{+0.8}_{-0.6}$ mA/B	
То же	при <i>U</i> в	=0,95 этивлеі	В ние (по	и f=60	мігіі) :		≽1,8 мА/В ≽60 кОм	
Эквива шумо	лентное ов на ч	е соп	ротивл 30 МІ	ение в	нутрилаг	иповых	≪12 кОм	
прот	ивлении	2 kO	м при 1	вибраци	50 Гц) и е уско	рением	<130 mB	

Межэлектродные емкости:	Продолжени е
входная выходная проходная Наработка	(6,9±0,7) пФ (4,7±0,6) пФ ≪0,019 пФ
критерии оценки:	≽2000 ч
крутизна характеристики	$\geqslant 1.7 \text{ mA/B}$ $\geqslant 1.1 \text{ mA/B}$
Предельные эксплуатационные данные	
Напряжение накала Напряжение анода Напряжение 2-й сетки Мощность, рассенваемая анодом Мощность, рассеиваемая сеткой Ток катода Сопротивление в цепи 1-й сетки Температура баллона Устойчивость к внешним воздействиям: ускорение при вибрации в диапазоне частот 5—	0,95—1,4 B 250 B 150 B 2,5 Br 0,2 Br
2500 Гц	500 g

1П24Б-В

Пентод для усиления и генерирования колебаний высокой частоты.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 28Б). Масса 5,5 г.

при $U_{\rm m} = 1.2$ В, $U_{\rm a} = 150$ В, $U_{\rm c}_{\rm 2} = 125$ В, $U_{\rm c}_{\rm 1} = 1.0$	=-14 B
Ток накала	(190±20) MA
Ток анода Ток 2-й сетки	(18±6) мА ≪1,5 мА
Крутизна характеристики	$< 0,1 \text{ MKA} $ 2,8 $\pm 0,7 \text{ MA/B}$
То же (при $U_{\rm H} = 0.95$ В). Входное сопротивление (при $f = 60$ МГп)	≥1,7 мA/B ≥50 кОм
Уквивалентное сопротивление внутриламповых	
шумов (при $f=30$ МГц)	≪5 кОм
=45 MFu)	≥1,5 Br

Можалектролина амкости:
Межэлектродные емкости:
входная
выходная ,
проходная
катод — анод
Наработка ≥2000 ч
Критерий оценки:
крутизна характеристики ≥1,7 мА/В
_
Предельные эксплуатационные данны е
Напряжение накала
Напряжение анода
Напряжение 2-й сетки 200 В
Ток катода
Мощность, рассеиваемая анодом 4 Вт
Мощность, рассеиваемая 2-й сеткой
Сопротивление в цепи 1-й сетки
Температура баллона лампы
Устой чивость к внешним воздействиям:
ускорение при вибрации в диапазоне частот 5—
ускорение при многократных ударах 150 g
ускорение при одиночных ударах 500 g
ускорение постоянное
интервал рабочих температур окружающей среды От -60 до
+125 °C
4H00C

1П33С

Тетрод двойной лучевой для усиления на-пряжения высокой частоты. Оформление — в стеклянной оболочке, бес-цокольное (рис. 18C). Масса 100 г.

при $U_{\rm H}\!=\!1,6$ В, $U_{\rm a}\!=\!300$ В, $U_{\rm c1}\!=\!-10,5$ В, $U_{\rm c2}\!=\!$	=250 B
Ток накала	(1,8±0,3) A (40±15) мА
Обратный гок сетки каждого тетрода (при $R_c = 0.1$ МОм)	$\ll 0.5 \text{ MA} \ \ll 14 \text{ MA}$
Крутизна характеристики каждого тетрода (при I _a = 55 мA)	(5±0,8) мА/В
Выходная мощность *	≥15 B _T ≥8

Напряжение ции с уско Межэлектрод	рен	ие	M	6 &	у и	Ча	CT	OT€	9 5	0 1	Гц)) .			a- •	≼200 мВ
вхолная										•	٠.					$(6,9\pm0,7)$ nd
выхолная	, i .	•												Ċ	:	(3,1±0,6) п₫
проходна	я.	. '									·		Ċ			≼0,035 пФ
Наработка	•			:	÷							•				≽ 500 प

^{*} В двухтактной схеме с общим катодом в режиме усиления при сопротивлении нагрузки 75 Ом на частоте 400 МГц.

Предельные эксплуатационные данные

Напряжение накала	1,44—1,76 B
Напряжение анода	600 B
Напряжение 2-й сетки	270 B
Мощность, рассеиваемая анодом каждого тетрода.	18 B _T
Мощность, рассеиваемая 2-й сеткой	5 BT
Мощность, рассеиваемая 1-й сеткой каждого тетрода	0.5 Вт
Ток катода (суммарный)	
Сопротивление в цепи 1-й сетки	
Температура баллона лампы	260 °C
Устойчивость к внешним воздействиям:	200 0
	C ==
ускорение в диапазоне частот 5—600 Гц	6 g
ускорение при многократных ударах	75 g
ускорение при одиночных ударах	500 g
интервал рабочих температур окружающей среды	От —60 до
mitoham bass im termsharily subjumination of the	+85 °C

2П5Б

Пентод для усиления напряжения и генерирования колебаний высокой частоты.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 28Б). Масса 5 г.

Основные параметры

при $U_{\rm H} = 1,2$ В, $U_{\rm a} = 90$ В, $U_{\rm c\,2} = 90$ В, $U_{\rm c\,1} = -4,5$ В

Ток накала при параллельном включении нити .	(185 ± 25) mA
	$(18,5\pm6,5)$ mA
Ток 2-й сетки	≪1,5 мА
Обратный ток 1-й сетки (при $R_{c1} = 1$ МОм)	
Крутизна характеристики	$(3,3\pm0,9) \text{ MA/B}$
$\hat{U}_{n} = 0,95 \text{ B} \dots$	≽ 1,9 мА/В

Входное сопротивление (при $f=60$ МГц) Эквивалентное сопротивление внутриламповых	≽60 кОм
шумов (при $f=30$ МГц)	<12 кОм
Напряжение виброшумов (при Ra=2 кОм)	≪ 130 мВ
Межэлектродные емкости:	
входная	$(7,1\pm0,6)$ n Φ
выходная	$(4,75\pm0,75) \text{ n}\Phi$
проходная	≪0,019 пФ
Наработка	≥ 2 0 00 g
Критерии оценки:	
обратный ток 1-й сетки	<1 MKA
крутизна характеристики	<1,9 MA/B
то же при $U_{\rm H} = 0.95$ В	≥1,3 mA/B

Предельные эксплуатационные данные

Напряжение накала	1,08—1,32 B
Напряжение анода	180 B
Напряжение 2-й сетки	150 B
Ток анода	25 мА
Мощность, рассеиваемая анодом	2,3 Br
Мощность, рассенваемая 2-й сеткой	0,12 Вт
Сопротивление в цепи 1-й сетки	
Температура баллона лампы	140 °C
Устойчивость к внешним воздействиям:	
ускорение при вибрации в диапазоне частот 5-	
600 Гц	10 g
ускорение при многократных ударах	150°g
	500 g
ускорение при одиночных ударах	100 g
ускорение постоянное	
интервал рабочих температур окружающей среды	От —60 до
	+140 °C

6П1П, 6П1П-ЕВ

Пентоды для работы в выходных каскадах низкой частоты радиоэлектронной аппаратуры.

Оформление — в стеклянной оболочке, миниатюрное (рис. 16П). Масса 20 г.

при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!250$ В, $U_{\rm c}_{\rm 2}\!=\!250$ В, $U_{\rm c}_{\rm 1}\!=\!-$	-12,5 B
6ПІП	6П1П- ЕВ
Ток накала, мА	490±40 44±11 ≥80 ≪7
=5 кОм, мА	<12 $<0,5$ $4,9\pm1,1$ $>3,8$ 3 $42,5\pm22,5$ <14
=5 кОм), мВ	<200 7,5±1,7 5±1 ≪0,7 10,5 -7500
Наработка, ч	≥7500 ≤2 ≥3
Предельные эксплуатационные данные	
Напряжение накала, В	6ПП-ЕВ 6—6,6 250 250
телем: при положительном потенциале подо- гревателя, В	90
при отрицательном потенциале подогревателя, В	100 70 12 1,3 500 220
ускорение при выбрации 5—600 Гц g	6

Анодные характеристики.

6П3С, 6П3С-Е

Тетроды для работы в выходных каскадах усилителей низкой частоты радиоэлектронной аппаратуры.

Оформление — в стеклянной оболочке, с октальным цоколем (рис. 6Ц). Масса 70 г.

при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!250$ В, $U_{\rm c2}\!=\!250$ В	$U_{c_1} = -14$	В
	6П3 С	673C-E
Ток накала, мА	0±90	880 ± 40
Ток анода, мА	±18	73 ± 13
То же в начале характеристики, иА «	14	≪10
Ток 2-й сетки, мА		<6 • ~ ~ ~
Обратный ток 1-й сетки, мкА , ≪		$\leq 0,5$
Ток катода, мА		
Выходная мощность, Вт		$\geqslant 5.8$
To же при $U_{\rm H}=5,7$ B, Bт \geqslant	4	$\geqslant 5$
Крутизна характеристики, мА/В 6 =	±0,8	6 ± 0.8
Коэффициент нелинейных искажений, % . 11		≪ 15
Внутреннее сопротивление, кОм 25	20	≤ 65
Сопротивление изоляции 1-й сетки, МОм . >	20	≥ 100
Сопротивление изоляции анода, МОм >	20	≥100
Сопротивление изоляции между катодом и		- 1
подогревателем, МОм	1	≥4

Межэлектродные емкости, пФ:		
входная	11±2	11
	$8,2^{+1.5}_{-1.4}$	6,7
	•	•
	<1	≤1
катод — подогреватель	<u>~</u> ≥1000	11
	≥1000	≥5000
Критерии оценки: выходная мощность, Вт	≥ 4	$\geqslant 4.5$
	₹ 10	€ 2
oopainish for 1-h celkn, MRA	~	~~
Предельные эксплуатационные	г данные	
	6 11 3 C	6П3С-Е
Напряжение накала, В	5,7-7,0	6.0-6.6
Напряжение анода, В	375	250
Напряжение 2-й сетки, В	300	250
Напряжение между катодом и подогрева-	000	200
телем. В:		
при отрицательном потенциале подогре-		
вателя	100	200
при положительном потенциале подо-		
гревателя	100	90
Ток катода, мА		90
Мощность, рассеиваемая анодом, Вт	20	20,5
Мощность, рассеиваемая 2-й сеткой, Вт	2,75	2,0
Сопротивление в цепи 1-й сетки, кОм	500	150
Температура баллона лампы, °С	210	180
Устойчивость к внешним воздействиям:		
ускорение при вибрации в диапазоне		_
частот 5—300 Гц д		3
ускорение при вибрации на частоте		
50 Гц g	15	10
ускорение при многократных ударах g		12
ускорение при одиночных ударах g		100 100
ускорение постоянное д		100
интервал рабочих температур окружающей среды, °С	От —60	От —60
ющей среды, С	ло +70	до +160
	до 7-10	до тио

6П6С

Тетрод для работы в выходных каскадах усилителей низкой частоты радиоэлектронной аппаратуры.

ронной аппаратуры. Оформление — в стеклянной оболочке, с октальным цоколем (рис. 2Ц). Масса 38 г.

Основные параметры

при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!250$ В, $U_{\rm c2}\!=\!250$ В, $U_{\rm c1}$	=-12,5 B
Ток накала	(475±40) MA
Ток анода	(46±±13)mA
Обратный ток 1-й сетки	≪2 MKÁ
Ток 2-й сетки	<7,5 mA
Крутизна характеристики	$(4.1 \pm 1.1) \text{ VA/B}$
Выходная мощность при $R_a = 5$ кОм	> 3 6 Br
То же при $U_{\rm H} = 5.7$ В	≥2,9 B _T
Внутреннее сопротивление	5,2 кОм
Сопротивление изоляции между катодом и подо-	0,4
гревателем	≥2 MOM
Коэффициент нелинейных искажений при $R_a =$	> - ···O.m
=5 кОм	≪10 %
Межэлектродные емкости:	€10 /U
входная	$(9.5\pm1.6) \text{ n}\Phi$
выходная	3.8—9.2 np
проходная	
Наработка	≥1000 q
Критерий оценки:	≈ 1000 4
выходная мощность (при $R_a=5$ кОм)	≥2,3 Br
banoghan momnocth (npn Ma=0 KOM)	∞2,0 D 1

Предельные эксплуатационные данные

Напряжение накала	5,7-6,9 B
Напряжение анода	350 B
Напряжение 2-й сетки	310 B
Напряжение между катодом и подогревателем	180 B
Мощность, рассеиваемая анодом	13,2 Вт
Мощность, рассеиваемая 2-й сеткой	2,2 B _T
Сопротивление в цепи 1-й сетки:	
при автоматическом смещении	0,5 МОм
при фиксированном смещении	0,1 МОм
Интервал рабочих температур окружающей среды.	$O\tau - 60$ до
	+70 °C

6П9. Аналог 6L10

Пентод для работы в выходных каскадах широкополосных усилителей в видеоусилителях телевизионных устройств.

Оформление — в металлической оболочке, с октальным цоколем (рис. 4M). Масса 47 г.

Основные параметры

при $U_{\rm H}$ =6,3 В, $U_{\rm a}$ =300 В, $U_{\rm c2}$ =150 В, $U_{\rm c2}$	$U_{c_1} = -3$ B, U	c3=0 B
	6119	6L10
Ток накала, мА	650 ± 40	650
Ток анода, мА	30 ± 10	30
То же в начале характеристики, мкА	≤ 100	
Ток 2-й сетки, мА	$6,5\pm 2,5$	7
Ток эмиссии катода, мА	≥180	
Обратный ток 1-й сетки, мкА	€2	****
Ток утечки между катодом и подогревате-	-40	
лем, мкА	≤ 40 11,7 $\pm 2,5$	11
То же при $U_{\rm H}$ =5,7 В	>7.35	11
Выходная мощность (при Ra=10 кОм), Вт		
То же при напряжении накала 5,7 В, Вт.	$\geqslant 2$	
Межэлектродные емкости, пФ:	~ -	
входная	$11,15\pm1,85$	13
выходная	$6,65\pm0,85$	6,5
проходная	≤ 0.06	≤ 0.06
Наработка, ч	≥3000	
Критерии оценки:		
обратный ток 1-й сетки, мкА	≤ 5	
выходная мощность (при $R_a = 10$ кОм),	≥1,5	
Вт	#1,0	
Предельные эксплуатационны	е данные	
• • • • • • • • • • • • • • • • • • • •	6П9	6L10
Чатражение некала В	5 7_7	
Напряжение накала, В	330	5,7-6,9 330
Напряжение 2-й сетки, В	330	330
Напряжение между катодом и подогревате-	000	000
лем, В	100	100
Мощность, рассеиваемая анодом, Вт	9	9
Мощность, рассеиваемая 2-й сеткой, Вт	1,5	1,5
Сопротивление в цепи 1-й сетки, МОм:		
при автоматическом смещении	0,75	-
при фиксированном смещении	0,5	
Интервал рабочих температур окружающей	От60 ло	

среды .

6П13С

Тетрод лучевой для работы в выходных каскадах блока строчной развертки телевизионных приемников.

От —60 до +70 °C

телевизионных приемников.
Оформление — в стеклянной оболочке, с октальным цоколем (рис. 11Ц). Масса 45 г.

Основные параметры	
при $U_{\rm H}$ =6,3 В, $U_{\rm a}$ =200 В, $U_{\rm c_2}$ =200 В, $U_{\rm c_1}$ =-	-19 B
	$3\pm0,15)$ A
	,о±о, 10) A 8±26) мА
To we be with the control of the popular true with the control of	01120) MA
То же в импульсе (на горизонтальном участке	000 1
	220 мА
Ток 2-и сетки	8 мА
То же в импульсе (на горизонтальном участке ха-	100
	120 мА
Обратный ток 1-й сетки ≪	2 мкА
Напряжение 1-й сетки запирающее отрицательное	
	0 B
Крутизна характеристики	,5±3) мА/В
Внутреннее сопротивление	кОм
Сопротивление изоляции между катодом и подо-	
	1,5 MOm
Межэлектродные емкости:	-,
	20 пФ
	-7.5 пФ
выходная	0,9 пФ
проходная	2000 ч
Tapacotna	2000 4
Критерии оценки:	
ток анода в импульсе (на горизонтальном	180 мА
участке характеристики) *	
участке характеристики) * \geqslant обратный ток 1-й сетки \leqslant	3 мкА
* При $f = 50$ Гц, $Q = 10$, $U_{a} = 100$ В, $U_{c2} = 170$ В, $U_{c1} = -1$ В.	
Предельные эксплуатационные данные	
Напряжение накала	5,7—6,9 B
Напряжение анола	. 450 B
Напряжение накала	. 8000 B
Напряжение 2-й сетки при включении лампы	. 450 B
Напряжение 1-й сетки отрицательное в импульсе	. 150 B
Напряжение между катодом и подогревателем	. 100 B
Ток катода:	. 1002
	. 400 мА
в импульсе постоянная составляющая	. 130 мА
	. 14 BT
Мощность, рассеиваемая анодом	. 4 Br
Мощность, рассеиваемая 2-й сеткой	. 16 Вт
мощность, рассеиваемая анодом и 2-и сеткои	10 DT
Мощность, рассеиваемая 1-й сеткой	. 0,2 Br
Температура баллона лампы	. 220 °C

6П14П, 6П14П-В, 6П14П-ЕВ, 6П14П-ЕР. Аналог EL84

Пентоды для работы в выходных каскадах усилителей низкой частоты.

Оформление — в стеклянной оболочке, миниатюрное (рис. 21П). Масса 20 г.

Основные параметры при $U_{\rm H}\!=\!6,3$ В, $U_a\!=\!250$ В, $U_{c_2}\!=\!250$ В, $R_{\kappa}\!=\!120$ Ом (для EL84 $R_{\kappa}\!=\!135$ Ом)

Наименование	6111411	6П4П-В	6П14П-ЕВ	6)П4П-ЕР	EL84
Ток накала, мА Ток анода, мА То же в динамическом режиме (при U _{c1} ≈3,4 В, R _a =5,2 кОм), мА То же в динамическом режиме (при U _{c1} ≈3,4 В, Oбратный ток 1-й сетки, мкА То же ком подотревателем, мкА Крутизна характеристики, мА/В Выходная мощность (при R _a =5,2 кОм), Вт То же (при U _a =5,7 В), Вт Коффициент нелинейных искажений, % Витрение сопротивление, кОм Сопротивление нзоляции между катодом и подотревателем, МОм Входная Входная Входная Наработка, ч Критерии оценки:	760±60 48±8 5+2 11 <25 11,3-2,3 4,2-1,2 8+2 	760±60 48±8 5+½ 9+² <25 11,5+¾ 4,3-1,2 >2,7 8+½ >10 11±2,5 8±2 0,175-0,4	760±60 48±8 5+2 9+2 <11,5+3 11,5+3 4,3-12 >2,7 8+2 - >10 >10 >11±2,5 8±2 0,175-0,4	800±60 48±8 5+½ 11 <11 <12+½ 3,4-4,3 8-10 - - - 11+2,5 8,5±2 0,175 >5000	760 48±12 5,5 - 25 11,3±2,3 5,3 - 10 30 6 0,5 800
выходная мощность (при $R_a=5,2$ кОм), Вт	>2,0	>2,7	≥2,7	>2,7	ı

Предельные эксплуатационные данные

Наименование	6П14П	6П14П-В	6П14П-ЕВ	6П14П•ЕР	EL84
Напряжение накала, В Напряжение анода, В:	5,7—7	5,7—7	5,7—7	6-6,6	5,7- 6,9
при рассеиваемой мощности более 8 Вт	300	300	300	.300	300
при рассеиваемой мощ- ности менее 8 Вт	400		400	_	
при запертой лампе .		500	500	500	500
Напряжение 2-й сетки, В .	300	300	300	300	300
То же при запертой лампе, В	_	500	500	500	500
Напряжение между като- дом и подогревателем, В	100	200	200	200	100
Ток катода (среднее значение), мА	65	65	65	65	65
Мощность, рассеиваемая анодом, Вт	14	14	14	14	12
Мощность, рассеиваемая 2-й сеткой, Вт	2,2	2	2	2	2
Сопротивление в цепи 1-й сетки, МОм	1	1	1	1	1
Температура баллона, °C .	-	300	300	30 0	
Устойчивость к внешним воздействиям:					
ускорение при вибрации в диапазоне частот $5-600~\Gamma$ ц g		6	10	6	
ускорение при вибра- ции на частоте 50 Гц g	2,5	6	10	-	_
ускорени е при много- кратных ударах <i>g</i>	35	150	150	150	_
ускорение при одиночных ударах g	_	300	300	300	_
интервал рабочих тем- ператур окружающей среды, °С	От —60 до +70	От60 до +-70	От —60 до +70	От —60 до +200	_

Анодные характеристики.

Анодно-сеточные характеристи-

6П15П, 6П15П-В, 6П15П-ЕВ, 6П15П-ЕР

Пентоды для работы в выходных каскадах видеочастоты телевизионных приемников. Оформление — в стеклянной оболочке, миниатюрное (рис. 21П). Масса 20 г.

Анодные характеристики.

Анодно-сеточная характеристика.

Основные параметры при U_n = 6,3 В, U_a = 300 В, U_{c2} = 150 В, R_{κ} = 70 Ом

	,			
Наименование	6П15П	6П15П-В	6П15П-ЕВ	6П15П-ЕР
Ток накала, мА	760±60 30±8	760±60 30±8	760±60 30±8	800±60 30±8
То же в начале характеристи- ки, мА	≤100 ≤1 ≤2	<100 <0,7	≤100 ≤0,2 ≤1,2	≤100 ≤0,7
То же при $U_{\rm H}$ =7,5 В, мкА Ток 2-й сетки, мА Крутизна характеристики,	4.5+2,5	4,5+2,5	4,5+2,5	4,5-6,5
мА/В	15±3	14,7± ±2,7	14,7±2,7	14,7± ±2,7
То же при $U_{\rm H} = 5.7$ В, мА/В .	≥10	≥10	≥ 10	
внутреннее сопротивление, кОм	100	10030	100_30	100_30
Сопротивление изоляции между катодом и подогревателем, МОм	≥5.	≥10	≥ 10	_
входная	13,5±2 7±1,5	$7 \pm 1,5$	7 ± 1.5	13,5±2 9±1,5
проходная	$ \leqslant 0.07 $ $\geqslant 3000$	≤ 0.08 ≥ 1000	<0,08 ≥5000	0,065—0,1 > 5000
Критерии оценки: обратный ток 1-й сетки, мкА	≪1,2	≤1,2	<1,2	≪1,2
крутизна характеристики, мА/В	≥ 10	≥10	≥10	≥10
		1	1	Į.

Предельные эксплуатационные данные

Наименование	6П15П	6П15П-В	6П15П-ЕВ	6П15П-ЕР
Напряжение накала, В Напряжение анода, В	5,7—6,9 330	5,7—7 330	5,7 7 330	6-6,6 330
То же при запертой лампе, В	330	500 330	500 330	500 330
То же при запертой лампе, В	-	500	500	500
Напряжение между катодом и подогревателем, В	100	200	200	200
Отрицательное напряжение 1-й сетки, В	_	100	100	100
Ток катода, мА: в режиме измерений . пиковое значение	90	65 —	65 —	65 —

Наименование	6П15П	6П15П-В	6П15П-ЕВ	6ПІ5П-ЕР
Мощность, рассеиваемая анодом, Вт	12	12	12	12
Мощность, рассеиваемая 2-й сеткой, Вт	1,5	1,5	1,5	1,5
Сопротивление в цепи 1-й сетки, МОм	1	1	1	1
Температура баллона лам- пы, °С	200	300	300	300
Устойчивость к внешним воздействиям:				
ускорение при вибра- ции на частоте 50 Гц g	2,5	6	6	6
ускорение при много- кратных ударах g .	35	150	150	150
ускорение при одиноч- ных ударах g	_	3 00	300	300
ускорение постоянное	_	100	100	100
интервал рабочих тем- ператур окружающей среды, °С	От —60 до +70	От —60 до +70	От —60 до +200	От —60 до +200

6П18П. Аналог EL82

Пентод низкой частоты для работы в выходных каскадах кадровой развертки телевизионных приемников.

Оформление — в стеклянной оболочке, миниатюрное (рис. 21П). Масса 20 г.

Основные параметры

для 6П18П при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!180$ В, $U_{\rm c2}\!=\!180$ В, $R_{\rm K}\!=\!110$ Ом; для EL82 при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!170$ В, $U_{\rm c1}\!=\!-10,\!4$ В, $U_{\rm c2}\!=\!170$ В

	6H18H	EL82
Ток накала, мА	60 ± 60	800
Ток анода, мА	3±9	53
Обратный ток 1-й сетки, мкА		
То же (при $U_{\rm H} = 7.5$ В), мкА	$\leqslant\! 2$	_
Ток 2-й сетки, мА	+2,5	10
То же в динамическом режиме (при $R_a = 3$ кОм),		
мА		
Крутизна характеристики, мА/В	$1\pm 2,2$	9

Продолжение

Выходная мощность (при $R_a=3$ кОм), Вт $3_{-6.8}$ То же при $U_n=5.7$ В, Вт	4
Сопротивление изоляции между катодом и по-	
догревателем, кОм	20
Қоэффициент нелинейных искажений, % 8+2	10
Межэлектродные емкости, пФ:	
входная	12,5
выходная 6	5 ,5
проходная	≤ 0.5
Наработка, ч	
Критерий оценки:	
выходная мощность (при $R_a = 3$ кОм), Вт $\geqslant 1,5$	_

Предельные эксплуатационные данные

	6П18П	EL82
Напряжение накала, В	250	5,7 7 250 2500
То же в импульсе, В	250	250 100
Ток катода, мА	75	75 9
Мощность, рассеиваемая 2-й сеткой, Вт		2,5
при автоматическом смещении при фиксированном смещении	1 0,3 230	1 0,4 230
Температура баллона лампы, °С		_

Анодные характеристики.

Анодно-сеточная характеристи-

6П20С

Пентод для работы в выходных каскадах строчной развертки цветных телевизоров.

Оформление — в стеклянной оболочке, с октальным цоколем (рис. 16Ц). Масса 75 г.

Основные параметры при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!175$ В, $U_{\rm c_2}\!=\!175$ В, $U_{\rm c_1}\!=\!-30$ В

Ток накала
между катодом и подогревателем «100 мкА между 1-й сеткой и всеми остальными элек-
тродами ≪20 мкА между анодом и всеми остальными электро-
дами
входная
проходная
Предельные эксплуатационные данные
Напряжение накала
при включении лампы
Напряжение 2-й сетки
То же в импульсе
Мощность, рассеиваемая анодом 27 Вт Мощность, рассеиваемая 2-й сеткой 3,6 Вт
Наименьшая частота строчной развертки

6П21С

Тетрод лучевой прямого накала для усиления и генерирования колебаний высокой частоты.

Оформление — в стеклянной оболочке, с октальным цоколем (рис. 9Ц). Масса 70 г.

Основные параметры
при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 600$ В, $U_{\rm c2} = 200$ В, $U_{\rm c1} = -16$ В
Ток накала
Ток анода
То же в начале характеристики 1 мА
Ток 2-й сетки
Ток эмиссии катода
Обратный ток 1-й сетки
Крутизна характеристики (при $U_a = 250$ В. $U_{c2} =$
$=150$ В, $U_{c1}=-6$ В)
Выходная мощность (при $f = 80 \text{МГц})$ $\geqslant 28 \text{Вт}$
То же при $U_{\rm H} = 5.7$ В
То же при $U_{\rm H}\!=\!5,7$ В >20 Вт Напряжение виброшумов (при $R_{\rm a}\!=\!2$ кОм)
Межэлектродные емкости:
входная
выходная 6,5 пФ
проходная
Наработка
Критерий оценки:
критерии оценки. выходная мощность (при $f = 80$ мГц) $\geqslant 20$ Вт
выходная мощность (при 1—00 мгц)
Предельные эксплуатационные данные
Напряжение накала 6—6,6 B
Напряжение анода 600 В
Напряжение анода
Ток катода
Мощность, рассенваемая анодом
Мощность, рассеиваемая 2-й сеткой 3,5 Вт
Интервал рабочих температур окружающей среды От -60
до +70 °C

6П23П

Тетрод лучевой для усиления и генерирования колебаний в диапазоне частот до 180 МГц.

Оформление — в стеклянной оболочке, миниатюрное (рис. 24П). Масса 25 г.

Основные параметры

при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!300$ В, $U_{\rm c2}\!=\!200$ В,	$U_{c_1} = -16 \text{ B}$
Ток накала	
Ток анода	
То же в начале характеристики	· · Ì MA
Ток 2-й сетки	≪5 мА
Обратный ток 1-й сетки	≪3 мкА
Крутизна характеристики	4.5 . MA/B
Колебательная мощность (при $f = 180 \text{ M}\Gamma\text{u}$).	≥11 Bτ
То же при $U_{\rm H} = 5,7$ В	≥9,4 Br

Межэлектродные емкости:

входная .										•			•	,	•	7, 5 ^{+0,8} пФ
выходная																4,5 ^{+0,5} пФ
проходная			•		٠	٠			٠				٠		•	≪υ, ι nΦ
Наработка .	•	•	. •	٠	•	٠	•	•	•	•	•	•	•	•	•	≥ 1000 q
Клителий опец																

Критерий оценки:

колебательная мощность (при $f=180~\mathrm{MFu}$) . $>9~\mathrm{Br}$

Предельные эксплуатационные данные

напряжение накала.	•			•	•	•		•	5,7—6,6 B
Напряжение анода .									350 B
Напряжение 2-й сетки									250 B
Ток катода									
Мощность, рассеиваема	ая	ан	од	ОМ					11 Br
Мощность, рассеиваема	Я	2-й	C	етк	Ой				3 Вт
Рабочая частота									

Анодно-сеточные характеристики.

6П25Б, 6П25Б-В

Пентод для усиления низкой частоты. Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 12Б). Масса 5 г.

Основные параметры при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!110$ В, $U_{\rm c2}\!=\!110$ В, $U_{\rm c1}\!=\!-8$ В

npn 04-0,0 b, 04-110 b, 062-110 b, 061- 0 b
Ток накала
Межэлектродные емкости:
входная
Критерии оценки:
мригории оделки. обратный ток 1-й сетки
Предельные эксплуатационные данные
Напряжение накала 5,7—6,9 В Напряжение анода 170 В То же при запертой лампе 350 В Напряжение 2-й сетки 160 В То же при запертой лампе 350 В Отрицательное напряжение 1-й сетки 100 В Напряжение между катодом и подогревателем 150 В Ток катода 50 мА Мощность, рассеиваемая анодом 4,1 Вт Мощность, рассеиваемая 2-й сеткой 0,55 Вт Сопротивление в цепи 1-й сетки 0,5 МОм
Температура баллона лампы

Устойчивость к внешним воздействиям:

ускорение при вибрации в диапазоне частот 5-	
2000 Гц	10 g
ускорение при многократных ударах	150 g
ускорение при одиночных ударах	500 g
ускорение постоянное	100 g
интервал рабочих температур окружающей среды.	$O_{\rm T} - 60$
	до
	+200 °C

Анодные характеристики.

Анодно-сеточная характеристика.

6П27С. Аналог EL34

Тетрод лучевой низкой частоты для работы в выходных каскадах усилителей. Оформление — в стеклянной оболочке, с октальным цоколем (рис. 6Ц). Масса 65 г.

Основные параметры при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!250$ В, $U_{\rm c2}\!=\!265$ В, $U_{\rm c1}\!=\!-13,5$ В

		6П27C	EL34
Ток накала, А		$1,5\pm0,15$	1,5
Ток анода, А		100 ± 25	100
Ток 2-й сетки, мА		≤ 15	14,9
Обратный ток 1-й сетки, мкА		≪3	
Ток утечки между катодом и подогрева	ітелем, мкА	≤ 150	

		Π_{i}	родолжен ие
Крутизна характеристики,	MA/B	· · 10±3	
Выходная мощность (при R То же при $U_n=5,7$ В, Вт.	(a=2 KOM), BT.	$ \geqslant 8,5$	11
Коэффициент нелинейных и	искажений (при	$R_{a}=$	_
=2 кOM), %		8	10
Внутреннее сопротивление, Межэлектродные емкости, по		15	15
входная	<i></i>	15	15,2
выходная		11	8,4
проходная	• • • • • • •	· . ≤1	1,1
Наработка, ч	• • • • • • •	≥ 500	_
выходная мощность (пр	он $R=2$ к O_M), Ва	r ≥7	
_	•		
предельные	эксплуатационны		
		6П27С	EL34
Напряжение накала, В	• • • • • • •	5,7—6,9 800	5,7-6,9
То же при включении лампи	ы. В	2000	800 2000
Напряжение 2-й сетки, В		. 425	4 25
То же при включении лампи Ток катода, мА	ы, В	. 800	800
Мощность, рассеиваемая ан	олом. Вт	. 150 . 27.5	150 27,5
Мощность, рассеиваемая 2-й		. 8	8
Сопротивление в цепи 1-й се:	тки, МОм:		
при фиксированном сме	щении	. 0,05	
при автоматическом сме	ещении	. 0,25	
Температура баллона лампы Интервал рабочих темпера	I, C	. 250 ដ	250
среды	·····	. От —60	
		до + 70 °С	
6П30Б,	**		0
•	<i>4</i> 1	4	<i>B</i>
6П30Б-Р,	α	a l	α
6П30Б-ЕР		\sqrt{T}	7/
8-	4) "		
Пентоды низкой час-	$\frac{1}{c_z}$	3 -	c2
выходных каскадах		5	ミノ
усилителей.	YY "	<i>K, C₃</i> _	T.,
Оформление — в стек- лянной оболочке,	" "	2	6
сверхминиатюр-	26	L	0
ное (рис. 21Б — для			
6П30Б, рис. 38Б — для 6П30Б-Р.			
6П30Б-ЕР). Масса			
6,5 г для 6П30 Б ,			
12 г для 6П30Б-Р, 6П30Б-ЕР.	6П30Б	6П30Б-Р, 6	П30Б-ЕР
OLIGOD-EF.			

Основные параметры		
при $U_{\mathbf{a}} = 6.3$ В, $U_{\mathbf{a}} = 120$ В, $U_{\mathbf{c}2} = 120$) B, K _K =33(
	6П30Б	6П30Б-Р, 6П30Б-ЕР
Ток накала, мА	395 ± 35	410±30
Ток анода, мА	35±8	35±8
Ток 2-й сетки, мА	$1,3^{+0.7}_{-0.8}$	≥3
мкА	<0,5	≪0,5
Ток утечки между катодом и подогревателем, мкА	≪30	
Крутизна характеристики, мА/В	$4,45\pm1,05$	$4,4^{+1,1}_{-1,0}$
То же при $U_{\rm H} = 5.7$ В, мА/В	≥3	_
Напряжение виброшумов (при $R_a = 2 \text{ кОм}$), мВ	≤150	≪75
Межэлектродные емкости, пФ:		
входная .'	12±3	$13,5\pm3,5$
выходная	$4,2^{+1,8}_{-0,9}$	$4,8^{+2,1}_{-2,0}$
проходная	≪0,6	≤ 0.7
катод — подогреватель	<12 1500	≤13,8
Наработка, ч	≥1500	≽2000—для 6П30Б-Р
		> 5000—для
		6П30Б-ЕР
Критерии оценки:		_
обратный ток 1-й сетки, мкА	≪1	≤5
крутизна характеристики, мА/В	≥3	≥3 ≤30
изменение крутизны характеристики, %		# 500
Предельные эксплуатационны	е данные	erroop n
	6П30Б	6П30Б-Р 6П30Б-ЕР
Напряжение накала, В	5,7—7	5,7—7
Напряжение анода, В	250 250	250
То же при запертой лампе, В	350 250	350 250
Напряжение 2-й сетки, В	230	230
телем, В	200	200
Мощность, рассеиваемая анодом, Вт	5,5	6
Мощность, рассеиваемая 2-й сеткой, Вт	2	2
Ток катода, мА	60	60
Сопротивление в цепи 1-й сетки, МОм	1	1
Температура баллона, °С	280	280
ускорение при вибрации в диапазоне		-
частот 5-1000 Гц д	15	15
ускорение при многократных ударах д	150	150
ускорение при одиночных ударах g	500	500
ускорение постоянное g	100	100
шэй среды, °С	От60	От —60
_	до +125	до +125

Анодные характеристики.

Анодно-сеточные характеристики.

6П31С. Аналог EL36

Тетрод лучевой для работы в выходных каскадах строчной развертки телевизоров с углом отклонения 110°.

Оформление — в стеклянной оболочке, с октальным цоколем (рис. 11Ц). Масса 45 г.

Основные параметры		
при $U_{\rm H}$ =6,3 В, $U_{\rm a}$ =100 В, $U_{\rm c2}$ =100 В, $U_{\rm c1}$ =-9 В		
6П3I C	EL36	
Ток накала, А	1,2	
Обратный ток 1-й сетки, мкА		
Ток анода, мА	100	
Ток анода на горизонтальном участке харак-		
теристики (при $U_a = 70$ В, $U_{c_2} = 170$ В, $U_{c_1} =$		
=-1 B), MA 100	500	
Ток 2-й сетки, мА	7,2	
Ток утечки, мкА:		
между катодом и подогревателем <100		
между 1-й сеткой и всеми остальными		
электродами	_	

между анодом и всеми остальными элек-	
тродами	
Крутизна характеристики, мА/В 12,5±4	14
Внутреннее сопротивление, кОм	5
Межэлектродные емкости, пФ:	
входная	19
выходная	8
проходная	11
катод — подогреватель	
Наработка, ч	
Критерий оценки:	
крутизна характеристики, мА/В >6	-

Предельные эксплуатационные данные

	∈П31С	EL36
Напряжение накала, В	5,7—6,9 300 550	5,7—6,9 250 550
Напряжение анода в импульсе (при ти метора в импульсе (при ти метора в мес), В	7000 250 550 150 200	7000 250 550 —
Ток катода, А:		
в импульсе	0,6 0,2 10 4 13 0,2 250 12	10 5 12 0,2 220
стот 20—250 Гц	6 g	
ускорение при многократных ударах	75 g 100 g	
интервал рабочих температур окружаю- щей среды	От —60 до +100°С	_

6П33П. Аналог EL86

Пентод низкой частоты для работы в выходных каскадах усилителей. Оформление — в стеклянной оболочке, миниатюрное (рис. 20П). Масса 21 г.

при $U_{\rm H}$ =6,3 В, $U_{\rm a}$ =170 В, $U_{\rm c_2}$ =170 В, $U_{\rm c_1}$ =-12,5	В
6П33П	EL86
Ток накала, мА	760
Ток анода, мА	70
Ток 2-й сетки, м A	5
Обратный ток 1-й сетки, мк A $\leqslant 2$	
Ток утечки, мкА:	
между катодом и подогревателем $\leqslant 50$	-
между 1-й сеткой и всеми электродами . 🛚 < 15	
между анодом и всеми электродами \leqslant 20	_
Крутизна характеристики, м A/B 10 ± 3	10
Выходная мощность*, Вт	5,6
То же при коэффициенте нелинейных искаже-	
ний 10%, Вт	
Внутреннее сопротивление, кОм	23
Межэлектродные емкости, пФ:	
входная	12
выходная	6
проходная ≪1	≪1
Наработка, ч	
Критерий оценки:	
выходная мощность *, Вт $> 3,6$	_
* Прн $R_{\rm K}$ = 1700 Ом, $U_{\rm a} = U_{\rm C2}$ = 185 В, $R_{\rm a}$ = 2400 Ом.	
Предельные эксплуатационные данные	
6П33П*	EL86
Напряжение накала, В	5,7—6,9 250 550 200 550

Напряжение между катодом и подогревате-		
лем, В	100	100
Ток катода, мА	100	100
Мощность, рассеиваемая анодом, Вт	12	12
То же в динамическом режиме, Вт	6	4,5
Мощность, рассеиваемая 2-й сеткой, Вт	1,75	1,75
Сопротивление в цепи 1-й сетки при автомати-		
ческом смещении, МОм	1	1
Температура баллона лампы. °С	220	
Интервал рабочих температур окружающей		
среды, °С	От60	
•	до +70	

^{*} Рекомендуется использовать лампы с автоматическим смещением.

Анодные характеристики.

Анодно-сеточные характеристи-

6П34С

Тетрод лучевой для генерирования импульсов тока малой скважности в блоках стационарных быстродействующих счетно-решающих устройств.

Оформление — в стеклянной оболочке, с октальным цоколем (рис. 7Ц). Масса 55 г.

Основные параметры		
при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 180$ В, $U_{\rm c2} = 180$	B, <i>U</i> c	$_{1} = -14 \text{ B}$
Ток накала		. (2±0,15) mA
Ток анода:		
в режиме измерений		. (70±30) MA
To we B umpy, been not $U_{\pi} = 5.7 \text{ B}$.	• •	. ≥330 mA . ≥270 mA
в импульсе *		«8,5 MA
10 же в импульсе		• ≪80 MA
Обратный ток 1-й сетки		
Ток утечки между катодом и подогревателе Запирающее напряжение 1-й сетки	м	• ≤100 mkA • ≤-35 B
Крутизна характеристики		(13±3,6)мA/B
Межэлектродные емкости:		(
входная		· (21±3) пФ
выходная		· (11±2) пФ
проходная		<1,2 nΦ
Наработка		. ≽1500 ч
Критерии оценки:		
обратный ток 1-й сетки		. <5 MKA
ток анода в импульсе	• •	. ≥250 мА
$\tau=1,6$ MKC.		
Предельные эксплуатационны	е данні	ыe
Предельные эксплуатационные Напряжение накала		
Напряжение накала		
Напряжение накала		5,7—6,9 B
Напряжение накала		5,7—6,9 B
Напряжение накала		5.7—6,9 B 250 B 450 B 800 B
Напряжение накала		5.7—6,9 B 250 B 450 B 800 B
Напряжение накала		5.7—6,9 B 250 B 450 B 800 B 200 B 400 B
Напряжение накала		5,7—6,9 B 250 B 450 B 800 B 200 B 400 B 100 B
Напряжение накала		5,7—6,9 B 250 B 450 B 800 B 200 B 400 B 100 B
Напряжение накала		5,7—6,9 B 250 B 450 B 800 B 200 B 400 B 100 B 200 B 250 B
Напряжение накала		5,7—6,9 B 250 B 450 B 800 B 200 B 400 B 100 B 200 B 250 B
Напряжение накала Напряжение анода: в нормальном режиме		5,7—6,9 B 250 B 450 B 800 B 200 B 400 B 100 B 200 B 250 B
Напряжение накала Напряжение анода: в нормальном режиме		5,7—6,9 B 250 B 450 B 800 B 200 B 400 B 100 B 200 B 250 B
Напряжение накала		5.7—6,9 B 250 B 450 B 800 B 200 B 100 B 200 B 250 B 100 MA 18 BT 3,5 BT
Напряжение накала Напряжение анода: в нормальном режиме		5,7—6,9 B 250 B 450 B 800 B 200 B 100 B 200 B 250 B 108 B 250 B 100 MA 18 BT 3,5 BT 0,2 BT 100 кОм
Напряжение накала Напряжение анода: в нормальном режиме		5,7—6,9 B 250 B 450 B 800 B 200 B 100 B 200 B 200 B 250 B 100 MA 450 MA 18 BT 3,5 BT 0,2 BT 100 KOM
Напряжение накала Напряжение анода: в нормальном режиме		5,7—6,9 B 250 B 450 B 800 B 200 B 100 B 200 B 250 B 100 MA 450 MA 18 BT 3,5 BT 0,2 BT 100 KOM 3
Напряжение накала Напряжение анода: в нормальном режиме		5.7—6,9 B 250 B 450 B 800 B 200 B 400 B 100 B 200 B 250 B 100 MA 450 MA 18 BT 3,5 BT 0,2 BT 100 KOM . 3 . 2 MKC . 220 °C

6П35Г-В

Пентод выходной повышенной надежности для усиления колебаний низкой частоты.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 17Б). Масса 10 г.

Основные параметры при $U_{\rm H}\!=\!6.3\,$ В, $U_{\rm a}\!=\!80\,$ В, $U_{\rm c2}\!=\!80\,$ В, $U_{\rm c1}\!=\!-5\,$ В

Ток накала	(450 ± 45) mA (50 ± 15) mA <10 mA <1 mKA $10,5^{+3.5}_{-3}$ mA/B
Сопротивление изоляции:	
входное	≥ 100 MOm ≥ 50 MOm < 180 mB
Межэлектродные емкости:	
входная	11,5 πΦ 6 πΦ <0,2 πΦ <10 πΦ ≥500 ч
Критерии оценки:	
крутизна характеристики	${\geqslant}6$ mA/B ${\leqslant}2$ mkA
Предельные эксплуатационные данны	e
Напряжение накала	170 B 300 B 100 B 300 B 100 B 5,2 BT 0,8 BT 75 MA

Продолжение Сопротивление в цепи 1-й сетки
Температура баллона:
при температуре окружающей среды 200°C 320 °C
при температуре окружающей среды 100 С 200 С
при нормальной температуре
Устойчивость к внешним воздействиям: ускорение при вибрации в диапазоне частот 10—
2000 Γu 10g
ускорение при многократных ударах 150 g
ускорение при одиночных ударах 500 g
интервал рабоних температур окружающей среды . От —оч
до +200 °C

6П36С, 6П36С-В. Аналог EL500

Тетрод лучевой для работы в выходных каскадах строчной развертки телевизионных приемников с углом отклонения луча 110°.

Оформление — в стеклянной оболочке, бесцокольное (рис. 6С) (EL500 имеет наибольший диаметр 30,2 мм). Масса 90 г.

обратный ток 1-й сетки, мкА

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 100$ В, $U_{\rm c2} = 100$ В, $U_{\rm c1} = -7$ В E1.500 6П36С 6П36С-В $2.05^{+0.15}$ $2^{+0,2}_{-0,15}$ 1,3 Ток накала, А. 120 ± 50 Ток анода, мА 120 ± 50 440 То же в импульсе *, мА . ≥ 400 ≥ 400 То же в импульсе при $U_{\rm H} = 5.7 \, {\rm B}^*$ ≥ 340 ≥340 Ток 2-й сетки в импульсе *, мА . < 100 ≪100 Обратный ток 1-й сетки, мкА . . <1 ≪1 Ток утечки между катодом и по-<100 ≤ 100 догревателем, мкА . . . Крутизна характеристики, мА/В . ≥14 ≥ 14 Напряжение 1-й сетки отрицательное, запирающее, В . . . <140 Внутреннее сопротивление, кОм . 4.5 4,5Межэлектродные емкости, пФ: 32 ± 6 31 ± 4 входная . . ≪21 ≪21 выходная . ≪1 ≤ 1.5 проходная . ≥ 2000 ≥ 2000 Наработка, ч . Критерии оценки: ≥ 320 ≥ 320 ток анода в импульсе *, мА .

<2

^{*} Для 6П36С $U_{\rm a}$ =50 В, $U_{\rm c2}$ =170 В, $U_{\rm c1}$ =0 В, f=50 Гц. Q=10, для EL500 $U_{\rm a}$ =75 В, $U_{\rm c2}$ =200 В, $U_{\rm c1}$ =-10 В.

Предельные эксплуатационные данные

	6П36C	6П36С-В	EL500
Напряжение накала, В	5,7-6,9	5,7-6,9	5,7-6,9
Напряжение анода, В	250	250	300
То же при включении лампы, В .	500	550	550
То же в импульсе, В	7000	7000	7000
Напряжение 2-й сетки *, В	250	250	300
То же при включении лампы, В .	550	550	550
Отрицательное напряжение 1-й			000
сетки в импульсе, В	250	250	_
Напряжение между катодом и по-			
догревателем, В	100	100	100
Средний ток катода, мА	250	250	250
Мощность, рассеиваемая ано-			
дом, Вт	12	12	12
Мощность, рассеиваемая 2-й сет-			
кой, Вт	5	5	4
Сопротивление в цепи 1-й сет-			
ки **, МОм	0,5	0,5	0,5
ки **, МОм	230	230	<u> </u>
Устойчивость к внешним воздей-			
ствиям:			
ускорение при вибрации на			
частоте 50 Гц	2,5g	6 <i>g</i>	
ускорение при многократных	, 0	G	
ударах	12g	100g	
ускорение при одиночных	3		
ударах	_	300g	
ускорение постоянное		100g	
интервал рабочих температур	От60	От —60	
окружающей среды, °С	до +70	до +85	

^{*} В период обратного хода строчной развертки при $\tau = 14$ мкс, f = 16 кГц. -100 мкА.

^{**} Для 6П36С в схемах строчной развертки допускается $R_{ ext{cf}} = 2,2$ МОм.

6П37Н-В

Тетрод для работы в выходных каскадах усилителей низкой частоты и в каскадах строчной развертки телевизоров.

Оформление — в металлокерамической оболочке, миниатюрное (рис. 5H). Масса 30 г.

Основные параметры $U_{\rm n}=6.3$ В, $U_{\rm a}=100$ В, $U_{\rm c}{}_{2}=100$ В, $U_{\rm c}{}_{1}=100$	
Ток накала	$1,1_{-0,2}^{+0,15}$ A
Ток анода	(125 ± 45) м А
Ток анода	≥400 mA
Ток 2-й сетки	6+9 мА
То же в импульсе *	<100 MA
Обратный ток 1-й сетки	≪1 мкА ≪100 мкА
Напряжение 1-й сетки отрицательное, запирающее (при $I_a=0,1$ мА, $U_a=7$ кВ, $U_{c2}=200$ В,	3.00 mm.
$f=16 \text{ K}\Gamma\text{u}, \tau=14 \text{ MKC}) \dots \dots \dots$	<30 B
Крутизна характеристики	(20±7) мА/В ≤500 мВ
Напряжение виброшумов (при $R_a=2$ кОм)	≪ 900 MD
Межэлектродиые емкости:	(28±2) πΦ
выходная	$(5,5\pm2,5)$ n Φ
выходная	<0,4 пФ
Наработка	≽1000 ч
Критерии оценки:	
обратный ток 1-й сетки	≪5 MKA
крутизна характеристики	$\geqslant 9.6 \text{ mA/B}$
* При U_a =50 В, U_{c2} =170 В, U_{ci} =0 В.	
Предельные эксплуатационные дани	ные
Напряжение накала	. 5,7-6,9 B
Напряжение анода	. 300 B
То же в импульсе при запертой лампе	. 7000 B
Напряжение 2-й сетки	. 200 B
Напряжение 1-й сетки отрицательное	
Напряжение между катодом и подогревателем.	
Ток анода в импульсе	
Мощность, рассеиваемая анодом	
Мощность, рассеиваемая 2-й сеткой	
Сопротивление в цепи 1-й сетки	. 0,5 МОм

Температура баллона лампы	Продолжение 250 °C
ускорение при вибрации в диапазоне частот 5-	
300 Гц	6 g
ускорение при многократных ударах	75 g
ускорение при одиночных ударах	300 g
ускорение постоянное	75 g
интервал рабочих температур окружающей сре-	
ДЫ	От60
	$\pi o + 150 ^{\circ}C$

Анодные характеристики.

Анодно-сеточные характеристи-

6П38П

Пентод выходной для усиления напряжения высокой частоты в выходных каскадах широкополосных усилителей. Оформление — в стеклянной оболочке, миниатюрное (рис. 13П). Масса 20 г.

Основные параметры		
при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 150$ В, $U_{\rm c2} = 150$ В, $U_{\rm c3} = 0$	B, $R_{\rm H}$ =22 Om	
<u>Т</u> ок накала		
Т ок анода	$(50\pm20)^{\circ}$ MA	
Ток анода в начале характеристики (при U_{c1}		
=-8.5 B)	≪40 мкА	
Ток 2-й сетки	8+4 MA	
Обратный ток 1-й сетки (при $U_{c1} = -2$ В)	<0,3 MKA	
Крутизна характеристики	(65 ± 20) mA/B	
Внутреннее сопротивление	≈30 кОм	

Эквивалентное сопротивление внутраламновых шумов ≈110 Ом Входное сопротивление (при f=60 МГц) ≈680 Ом Напряжение виброшумов (при R₄=0,5 кОм) <200 мВ Межэлектродные емкости: (21±4) пФ входная (3,85±0,55) пФ проходная <0,75 пФ катод — подогреватель <14 пФ Наработка >350 ч Критерии оценки: >36 мА/В крутизна характеристики >36 мА/В обратный ток 1-й сетки (при Uc1 = -8,5 В) <1,5 мкА Предельные эксплуатационные данные Напряжение накала 5,7-7 В Напряжение анода 200 В То же при запертой лампе 350 В Напряжение 2-й сетки 160 В То ке при запертой лампе 350 В Мощность, рассеиваемая анодом 10,5 Вт Ток катода 1,8 Вт Ток катода 90 мА Напряжение между катодом и подогревателем: 160 В при отрицательном потенциале подогревателя 160 В Интервал рабочих температур окружающей среды От —60		Продолжени е
входная (21±4) пФ выходная (3,85±0,55) пФ проходная <0,75 пФ	Входное сопротивление (при f=60 МГц) Напряжение виброшумов (при Ra=0,5 кОм)	≈680 Ом
Предельные эксплуатационные данные Напряжение накала	входная выходная вых	(3,85±0,55) πΦ <0,75 πΦ <14 πΦ ≥1500 9 ≥36 мA/B
Ток катода	Продолично оусплатопионные панив	ae.
	Ток катода	90 MA 100 B 160 B Or -60

Анодные характеристики.

Анодно-сеточные характеристики.

6П39С

Выходной пентод для усиления напряжения видеочастоты в приемниках цветного телевидения.

Оформление — в стеклянной оболочке (рис. 13С). Масса 30 г.

Основные параметры

при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!125$ В, $U_{\rm c2}\!=\!125$ В, $U_{\rm c3}\!=\!0$ В, $R_{\rm s}\!=\!51$ Ом

Ток накала	(600± ke) MA (50±17,5) MA ≪10 MKA 6+2 MA ≪1 MKA. (45±11) MA/B
Коэффициент усиления 2-й сетки по отношению к 1-й сетке	30 ≈18 MOm ≈1 кОм ≪400 мВ
входная	(18±3) пФ (4,0±0,7) пФ ≪0,11 пФ ≥2000 ч
крутизна характеристики	> 27 mA/B <5 mkA <2 mkA
Напряжение накала	5,7-6,9 B 250 B 400 B 175 B 350 B 60 B 10 Br 1,5 Br 100 B 200 B OT -60 до +70 °C

Анодные характеристики.

Анодно-сеточная характеристи-

6II41C

Тетрод лучевой выходной для работы в генераторах колебаний и в блоках кадровой и строчной развертки телевизионных устройств.

Оформление -- в стеклянной оболочке (рис. 15С). Масса 36 г.

Основные параметры

при
$$U_{\rm H} = 6.3$$
 В, $U_{\rm a} = 190$ В, $U_{\rm c2} = 190$ В, $R_{\rm K} = 300$ Ом

Ток накала	(1,1±0,1) A (66±10) мA ≥100 мA
=-1 B)	•
Ток 2-й сетки	2,7 ^{+0,8} мА
	(18 + C) - 1
=170 B, U_{e1} =-55 B)	(17 ± 6) MA
Обратный ток 1-й сетки	≪1 мкА _
Крутизна характеристики	$8.4_{-1.7}$ MA/B
Винтренное сопротивление	≈12 кОм
Внутреннее сопротивление	≪500 мВ
	₩ 000 IMB
Межэлектродные емкости:	02 # /
входная	≈23 пФ

										Продолжение
выходная						,				≈10,5 nΦ
проходная			•			•			•	≈0,5 nΦ
Наработка			•	•				•	•	≽2000 प
Критерии оценки:										
ток анода в им	пуль	ce	(прі	ιL	$J_a = 5$	60 I	3,	$U_{\mathbf{e}_2}$	===	
$=170 \text{ B}, U_{c_1}=-$	-1 B)									≽80 мА
обратный ток 1-	й сет	ки.								<2 mkA
то же для 80%	ламп	٠.,								$\ll 1,2$ MKA

Предельные эксплуатационные данные

Анодные характеристики.

Анодно-сеточные характеристи-

6П42С

Тетрод лучевой для работы в выходных каскадах блоков строчной развертки телевизионных приемников, а также в различной аппаратуре широкого применения.

Оформление — в стеклянной оболоч-ке (рис, 19С). Масса 120 г.

Основные параметры при $U_{\rm H} = 6.3 \, {\rm B}$

Ток накала	$(2,1\pm0,2)$ A >700 MA <120 MA >7
Ток анода в начале характеристики (при $U_{c2} = 200$ В, $U_a = 7$ кВ, $U_{c1} = -170$ В, $f = 16$ кГц) Внутреннее сопротивление на горизонтальном участ-	\leqslant $100~\text{mkA}$
ке характеристики	2,5 кОм
Обратный ток 1-й сетки (при U_a =200 В, U_{c_2} = =250 В, R_h =150 Ом)	\leqslant 2 мк A
Межэлектродные емкости:	55 A
входная	55 пФ
выходная	20 пФ
проходная	<1,5 πΦ
Наработка	≽1500 ч
Критерии оценки:	
ток анода в импульсе*	>> 600 мA
ток анода в импульсе (при $U_{\rm H} = 5.7$ В) *	≽ 500 мА
обратный ток 1-й сетки (при $U_a = 200$ В, $U_{c2} = 250$ В, $R_{\kappa} = 150$ Ом)	≪10 мкА
* U_a =75 В, U_{c2} =150 В, U_{c1} = -60 В, результирующее U	слимп =0.

Предельные эксплуатационные данные

Напряжение накала 5,7—6,9 В Напряжение анода во время прямого хода в блоке строчной развертки 400 В Напряжение анода в импульсе 7 кВ То же при включении лампы 700 В Напряжение 2-й сетки 300 В То же при включении лампы 500 В Напряжение 1-й сетки отрицательное 300 В Мощность, рассеиваемая анодом 35 Вт Мощность, рассеиваемая 2-й сеткой 5,5 Вт Напряжение между катодом и подогревателем 100 В Ток катода (среднее значение) 500 мА Температура баллона 250 °C		
строчной развертки 400 В Напряжение анода в импульсе 7 кВ То же при включении лампы 700 В Напряжение 2-й сетки 300 В То же при включении лампы 500 В Напряжение 1-й сетки отрицательное 300 В Мощность, рассеиваемая анодом 35 Вт Мощность, рассеиваемая 2-й сеткой 5,5 Вт Напряжение между катодом и подогревателем 100 В Ток катода (среднее значение) 500 мА		5,7—6,9 B
Напряжение анода в импульсе 7 кВ То же при включении лампы 700 В Напряжение 2-й сетки 300 В То же при включении лампы 500 В Напряжение 1-й сетки отрицательное 300 В Мощность, рассеиваемая анодом 35 Вт Мощность, рассеиваемая 2-й сеткой 5,5 Вт Напряжение между катодом и подогревателем 100 В Ток катода (среднее значение) 500 мА	Напряжение анода во время прямого хода в блоке	
Напряжение анода в импульсе 7 кВ То же при включении лампы 700 В Напряжение 2-й сетки 300 В То же при включении лампы 500 В Напряжение 1-й сетки отрицательное 300 В Мощность, рассеиваемая анодом 35 Вт Мощность, рассеиваемая 2-й сеткой 5,5 Вт Напряжение между катодом и подогревателем 100 В Ток катода (среднее значение) 500 мА	строчной развертки	
То же при включении лампы		
Напряжение 2-й сетки		700 B
То же при включении лампы		300 B
Напряжение 1-й сетки отрицательное 300 В Мощность, рассеиваемая анодом 35 Вт Мощность, рассеиваемая 2-й сеткой 5,5 Вт Напряжение между катодом и подогревателем 100 В Ток катода (среднее значение) 500 мА		500 B
Мощность, рассеиваемая анодом		300 B
Мощность, рассеиваемая 2-й сеткой 5,5 Вт Напряжение между катодом и подогревателем 100 В Ток катода (среднее значение)	Мошность, рассеиваемая анолом	35 Вт
Напряжение между катодом и подогревателем 100 В Ток катода (среднее значение)		5.5 Вт
Ток катода (среднее значение) 500 мА	Напряжение межлу католом и пологревателем	
Температура баллона	Ток катола (среднее значение)	500 MA
	Температура балнона	
Интервал рабочих температур окружающей среды . От -10		
ло +55 °C	Timepatti paootina tempertyp okpymatomen epedia.	

Анодные характеристики.

Анодно-сеточная характеристика.

6П43П-Е

Пентод для работы в блоках кадровой развертки телевизионных приемников. Оформление — в стеклянной оболочке, миниатюрное (рис. 21П). Масса 20 г.

		Осн	овные	парамет	гры		
при	$U_{\rm II} = 6.3$	В,	$U_{\rm a} = U$	$l_{c2} = 185$	В,	$R_{\rm E} = 340$	Ом

Ток накала	$(625 \pm 55) \text{ MA}$
Ток анода	(45±9) MA
Ток анода в импульсе *	≥210 mA
Ток анода в начале характеристики (при $U_a = U_{ca} =$	
$=170 \text{ B } \text{ M} = U_{c_1} = -50 \text{ B}) \dots \dots$	<0,3 mA
Ток 2-й сетки	$2,7{-4},5 \text{ mA}$
Ток 2-й сетки в импульсе *	≽35 мA
Обратный ток 1-й сетки	≪1 мкA
Напряжение отсечки тока 1-й сетки (отрицательное,	
при $U_{\rm a} = U_{\rm c2} = 0$)	≪1,3 B
Крутизна характеристики	$(7,5\pm1,5)$
M	мА/В
Межэлектродные емкости:	
входная	1,3 пФ
выходная	9 пФ
проходная	<0,7 πΦ
I-я сетка — подогреватель	<0,4 пΦ
Наработка	≥ 5000 ч

	П родолжени е
Критерии оценки: ток анода в импульсе *	≽130 мА ≪2 мкА
• Прв $U_{\mathbf{a}} = 50 \text{ B}, \ U_{\mathbf{c}2} = 170 \text{ B}, \ U_{\mathbf{c}1} = -1 \text{ B}.$	
Предельные эксплуатационные данные	
Напряжение накала	5,7—7 B 300 B 550 B 2,5 kB 250 B 550 B 100 B 75 MA 12 BT 2 BT
при автоматическом смещении при фиксированном смещенин	. 2,2 MOM . 1 MOM . 240 °C . OT -60 до +70 °C
6П44С	<u>"</u>
Пентод низкочастотный для работы в выходных каскадах строчной развертки телевизионных приемников. Оформление — в стеклянной оболочке (рис. 23C). Масса 45 г.	$\begin{array}{c} 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$
Основные параметры при $U_{\rm B}\!=\!6,3$ В, $U_{\rm a}\!=\!50$ В, $U_{\rm c2}\!=\!200$ В, $U_{\rm c1}\!=\!-$	10 B
Ток накала	(1,35± ±0,15) A
Ток анода в импульсе (при $\tau=4000\pm1000$ мкс) Ток 2-й сетки в импульсе	(100±30) мА 420 мА 37—55 мА
$U_{\text{c}2}=170$ В, $U_{\text{c}1}=-60$ В)	$\leqslant 0,7 \text{ MA}$ $\leqslant 1,2 \text{ MKA}$ $\geqslant 5 \text{ MOM}$ $\leqslant 2000 \text{ MB}$

	родолжение
Межэлектродные емкости:	
	2 пФ
	Фп
	,5—2,0 пФ
Наработка в импульсном режиме	1500 q
Критерии оценки:	
	<4 мкA
Предельные эксплуатационные данные	
Напряжение накала	5,7—7,0 B
Напряжение анода	250 B
То же при включении лампы.	550 B
Напряжение 2-й сетки	250 B
То же при включении лампы	550 B
Напряжение анода в импульсе (при $\tau \le 18$ мкс, $Q \ge 4.5$)	7 кВ
Honnawoung Movern Rottorion is To represent the state of	
Напряжение между катодом и подогревателем	220 B
Ток катода	250 мА
Мощность, рассенваемая анодом (при P_{c2} ≤ 5 Вт)	21_Вт
Мощность, рассеиваемая 2-й сеткой (при P _a ≤11 Вт).	6 Вт
Сопротивление в цепи 1-й сетки:	
при автоматическом смещении	0,51 МОм
в схеме с автоматической стабилизацией	2,2 MOm
Температура баллона	280 °C
Интервал рабочих температур окружающей среды	От60
	до
	+70 °C

6П45С

Тетрод выходной лучевой для работы в выходных каскадах строчной развертки телевизионных приемников цветного изображения с отклонением луча 110°. Оформление — в стеклянной оболочке (рис. 20С). Масса 140 г.

Основные параметры

при $U_{\rm n}=6.3$ В, $U_{\rm a}=50$ В, $U_{\rm c_2}=175$ В, $f=50$ Гц и $U_{\rm c_1 m}$	$_{M\Pi} = -10 \text{ B}$
Ток накала	$(2,5\pm$
Ток анода в импульсе (при $Q = 10$).	±0,2) A ≥800 MA
То же при $U_{\rm H} = 5.7~{\rm B}$	≽700 мА ≪100 мкА
Ток 2-й сетки в импульсе (при $Q=10$)	≥150 мА
$R_{\rm R} = 180$ Ом и $R_{\rm C2} = 3$ кОм). Отношение тока анода к току 2-й сетки в импульсе	≪2 mkA >7

Πρ	одолжение
Внутреннее сопротивление	≪2,5 кОм ≪90 с
входная	55 пФ 20 пФ ≪1,5 пФ ≥5000 ч
обратный ток 1-й сетки	≪10 mkA >>640 mA
=15±3 MKC	Сохра- няется
Предельные эксплуатационные данные	
Напряжение анода Напряжение анода при включении лампы Напряжение 2-й сетки То же при включении лампы Напряжение анода в импульсе (при т=18 мкс) Напряжение 1-й сетки отрицательное Напряжение 1-й сетки отрицательное Напряжение между катодом и подогревателем Напряжение на лучеобразующих пластинах Ток катода (средний) Мощность, рассеиваемая анодом Мощность, рассеиваемая 2-й сеткой Сопротивление в цепи 1-й сетки: при фиксированном смещении	5,7—6,9 B 400 B 700 B 300 B 700 B 8 kB 300 B ±100 B 500 MA 35 BT 5,5 BT 0,5 MOM 2,2 MOM
в схеме строчной развертки со стабилизацией	2,2 MOM 260 °C
Устойчивость к внешним воздействиям: ускорение при вибрации на частоте 50 Гц интервал рабочих температур окружающей среды.	2,5g От —60 до +70°C

4.6. ТЕТРОДЫ И ПЕНТОДЫ ДВОЙНЫЕ

6Р2П

Тетрод лучевой двойной для генерирования и усиления колебаний на частотах до 300 МГц.

Оформление — в стеклянной оболочке, миниатюрное, с гибкими выводами (рис. 15П). Масса 20 г.

Основные параметры $U_{-} = 6.3 \text{ B}$ $U_{-} = 200 \text{ B}$ $U_{-} = 200 \text{ B}$

при $U_{\rm H}=0.3$ В, $U_{\rm a}=20$	υв,	$U_{c2} = 200 \text{ I}$	$O_{c1} = -$	-10 B.
Ток накала				(0.6 ± 0.05) A
Ток анода каждого тетрода				(20 ± 10) мА
Ток 2-й сетки				≪6 мА
Обратный ток 1-й сетки	.			≪1,5 mkA
Крутизна характеристики ках	ждого	тетрода.		$2.5\pm0.7 \text{ mA/B}$
Напряжение виброшумов (пр	и R _a =	≥2 кОм) .		≪300 мВ
Межэлектродные емкости:		Í		`
входная				$(4,5\pm0,5)$ n Φ
выходная				$(2\pm 0.5) \text{ n}\Phi$
проходная				≪0,1 nΦ
Наработка				≽100 ч
Критерий оценки:				
обратный ток 1-й сетки				≪ 8 мкА

* При измерении параметров одного тетрода другой запирают напряжением $U_{\rm \,CJ} = -100\,$ В.

Предельные эксплуатационные данные	
Напряжение накала	5,7-7
Напряжение анода	350 B
Напряжение 2-й сетки	250 B
Напряжение 1-й сетки отрицательное	100 B
Мощность, рассеиваемая анодом	6,5 Вт
Мощность, рассеиваемая 2-й сеткой	3 Вт
Мощность, рассеиваемая 1-й сеткой каждого тетрода	0.25 Вт
Ток анода (постоянная составляющая)	100 MA
Ток катода (амплитудное значение)	300 мА
Напряжение между катодом и подогревателем	150 B
Рабочая частота	300 MΓι
Температура баллона	260 °C
Устойчивость к внешним воздействиям:	-00
ускорение при вибрации на частоте 10-1000 Гц	10g
Ускорение при многократных ударах	35σ

Анодно-сеточные характеристи-

6P3C-1

Тетрод лучевой двойной для работы в выходных каскадах усилителей низкой частоты. Оформление — в стеклянной оболочке (рис. 17С). Масса 100 г.

Основные параметры

при параллельном включении подогревателей $U_{\mathtt{H}} =$	6,3 B,
при последовательном включении подогревателей $U_{\mathbf{n}}$ =	=12,6 B,
$U_a = 350 \text{ B}, \ U_{c2} = 200 \text{ B}, \ U_{c1} = -22 \text{ B} *$	
Ток накала при параллельном включении (2,1:	±0,3) A
	5±0,15) A
Ток анода каждого тетрода	5±17,5) мА
To же при $U_{c_1}=0$	0 мА
Асимметрия токов анодов	%
Ток 2-й сетки (при $U_{c_1}=0$)	
	5 мкА
Коэффициент усиления 1-й сетки относительно	
2-й сетки	
Напряжение виброшумов (при $R_a = 2$ кОм) ≤ 80	0 мВ
Межэлектродные емкости:	
входная	:3) пФ
	2) nΦ
проходная $\leqslant 0$,	3 пФ
Наработка	00 ч
Критерии оценки:	
ток анода при $U_{c1}=0$	0 мА
обратный ток 1-й сетки	мкА

^{*} При измерении параметров одного тетрода другой запирают напряжением $U_{{
m C}1}\!=\!-100$ В.

Предельные эксплуатационные данные

Напряжение накала при параллельном включении .	5,7-6,9 B
То же при последовательном включении	11,4—13,8 B
Напряжение анода	600 B
Напряжение 2-й сетки	300 B
Напряжение 1-й сетки отрицательное	175 B
Мощность, рассенваемая каждым анодом	20 Βτ
Мощность, рассеиваемая 2-й сеткой	7 Вт
Мощность, рассеиваемая 1-й сеткой каждого тетрода	1_Вт
Ток катода (постоянная составляющая)	250 мА
То же (пиковое значение)	1,5 A
Напряжение между катодом и подогревателем	100 B
Температура баллона	250 °C
Устойчивость к внешним воздействиям:	
ускорение при вибрации в диапазоне частот 5-	
200 Γμ	2,5 g
ускорение при многократных ударах	12 g
интервал рабочих температур окружающей сре-	- 00
ды	От —60 до +100°С

Анодные характеристики.

Анодные характеристики.

Анодио-сеточные характеристики.

6P4Π

Пентод двойной для использования в качестве оконечного усилителя сигналов низкой и видеочастот (1-й пентод) и усиления и генерирования напряжения низкой и промежуточной частот, селектора синхроимпульсов, детектора ключевой АРУ (2-й пентод), в радиотехнической аппаратуре.

Оформление — в стеклянной оболочке, миниатюрное (рис. 22П). Масса 25 г.

335

Основные параметры 1-й пентод: при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!U_{\rm c2}\!=\!180$ В; 2-й пентод: при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!200$ В, $U_{\rm c2}\!=\!150$ В

	1-й пентод	2-й пентод
Ток накала, мА	840 ± 60	840 ± 60
ток анода, мА	30	10
Ток 2-й сетки, мА	7	2,8
Обратный ток 1-й сетки, мкА	$\leq 1,0$	≪0,8
Крутизна характеристики, мА/В	21	
Сопротивление в цепи катода для автома-		
тического смещения, Ом	75	130
Напряжение виброшумов, мВ	≪150	≪300
Межэлектродные емкости, пФ:		
входная	13	10
выходная	7	11
проходная	0,1	0,14
между анодами	≤ 0.15	≤ 0.15
Наработка, ч	≥ 5000	5000
Критерий оценки:		
выходная мощность, Вт	$\geqslant 2,4$	

Предельные эксплуатационные данные

Напряжение пакала	- · · · · · · · · · · · · · · · · · · ·	
То же без токоотбора		
Напряжение 2-й сетки каждого пентода	Напряжение анода каждого пентода	
Напряжение 2-й сетки каждого пентода	То же без токоотбора	
То же без токоотбора	Напряжение 2-й сетки каждого пентода	250 B
Напряжение между катодом и подогревателем каждого пентода	То же без токоотбора	550 B
дого пентода		
Мощность, рассенваемая анодом: 1-го пентода	•	-200 B
1-го пентода 7,3 BT 2-го пентода 2,8 BT Мощность, рассенваемая 2-й сеткой: 2,5 BT 1-го пентода 0,65 BT Наибольший ток катода: 16 мА 2-го пентода 60 мА Сопротивление в цепи 1-й сетки: 0,5 МОм 1-го пентода 1 МОм		
2-го пентода 2,8 Вт Мощность, рассенваемая 2-й сеткой: 2,5 Вт 1-го пентода 0,65 Вт 2-го пентода 16 мА 2-го пентода 60 мА Сопротивление в цепи 1-й сетки: 0,5 МОм 1-го пентода 1 МОм		7 3 Br
Мощность, рассенваемая 2-й сеткой: 1-го пентода		
1-го пентода 2,5 Вт 2-го пентода 0,65 Вт Нанбольший ток катода: 16 мА 2-го пентода 60 мА Сопротивление в цепн 1-й сетки: 0,5 МОм 1-го пентода 1 МОм		2,0 1.1
2-го пентода 0,65 Вт Наибольший ток катода: 1-го пентода 1-го пентода 60 мА Сопротивление в цепи 1-й сетки: 0,5 МОм 1-го пентода 1 МОм		$0.5 R_{\rm m}$
Наибольший ток катода: 1-го пентода		
1-го пентода 16 мА 2-го пентода 60 мА Сопротивление в цепи 1-й сетки: 0,5 МОм 2-го пентода 1 МОм		U,05 BT
2-го пентода	Нанбольший ток катода:	
2-го пентода	1-го пентода	16 mA
Сопротивление в цепи 1-й сетки: 1-го пентода		60 мА
1-го пентода		
2-го пентода 1 МОм	•	0,5 МОм
		1 МОм
Интепвал рабочих температур окружающей среды От —60	Интервал рабочих температур окружающей среды .	От —60
no +70 °C	Trutham has an inchair half and manager shows .	

6Р5П

Пентод двойной для усиления мощности в выходных каскадах двухканальных и стереофонических усилителей низкой частоты в радиоприемной и телевизионной аппаратуре.

Оформление — в стеклянной оболочке, миниатюрное (рис. 21П). Масса 20 г.

Основные параметры

TD11	$U_u = 6.3$	\mathbf{p} I	11	- 250	D	<i>II</i> _	Ω	D
при	$U_{\rm u} = 0.3$	B. 0	a = U	$a_2 = 250$	В.	$U_{c1} =$	9	В

Ток накала .											$(550\pm50) \text{ MA}$
Ток анода ках	кдого	пен	ITO	да							$(24\pm 8) \text{ MA}$
Ток 2-й сетки											4,5-7,5 MA
Обратный ток	1-й	сеті	КИ								≪0,5 мкА
Крутизна хар	актер	исті	КИ				٠			•	6-1.5 мА/В
Выходная моц	цност	ь.					,				8,5-2,5 Br
Наработка											≽1500́ч
Критерий оцен	ки:									-	
выходная	мощ	ност	Ъ							,	≥4,5 Bτ

Предельные эксплуатационные ванные

предельные эксплуатационные данные	
Напряжение накала	5,7-7B 300 B
То же без токоотбора (при $I_a \leqslant 1$ мА)	550 B 300 B
То же без токоотбора (при $I_a \le 1$ мА)	550 B 100 B

	Продолжен ие
Ток катода каждого пентода	
в динамическом режиме	. 1,75 Вт
ускорение при вибрации	. 35 g

4.7. ГЕПТОДЫ

1А2П. Аналог 1Н34

Гептод для преобразования частоты в радиовещательных приемниках широкого применения.

Оформление - в стеклянной оболочке, миниатюрное (рис. 3П). Масса 10 г.

Основные параметры

при $U_{\rm H}=1,2$ В, $U_{\rm cl}=U_{\rm cl}=0$ для 1А2П и 1Н34;

лин $U_a = 1,2$ В, $U_{c1} = U_{c3} = 0$ для 1А2П в 110-7, для 1А2П: режим: $U_a = 60$ В, $U_{c2} = U_{c4} = 45$ В, $U_{c1nep} = 8$ В, $R_{c1} = 51$ кОм, $C_{c1} = 4$ мкФ; для 1Н34: режим I $U_a = 45$ В, $U_{c2} = U_{c4} = 45$ В, $R_{c1} = 100$ кОм режим II $U_a = 90$ В, $U_{c2} = U_{c4} = 45$ В, $R_{c1} = 100$ кОм режим III $U_a = 90$ В, $U_{c2} = U_{c4} = 67,5$ В, $R_{c1} = 100$ кОм

			1H34					
Наименование	1 A2TI	Режимы						
		1	11	111				
Ток накала, мА	30 ± 3 $0,7\pm0,3$ $ 80-115$ $1,1\pm0,5$ $<0,3$	30 0,57 2,5 150 1,8	30 0,8 2,75 150 1,9	30 1,6 5 250 3,2				
Крутизна преобразования, м A/B : при $U_{\rm H}\!=\!1,2$ B . при $U_{\rm H}\!=\!0,95$ B .	0,17—0,24 ≥0,12	0,24	0,25 —	0,3 —				

337

			•					
			1H34					
Наименование	1 A 2TI	Режимы						
		1	11	111				
в начале характеристики	0,005	0,005	0,005	0,005				
Крутизна характеристи- ки гетеродина, мА/В:								
при $U_a = U_{c2} = U_{c4} = 45 \text{ B}$ при $U_a = 90 \text{ B}, U_{c2} = 0.000$	0,65-0,82		-	-				
$=U_{c_4}=67,5 \text{ B}, U_{c_1}=$ $=U_{c_3}=-0,5 \text{ B}$		0,45	0,45	0,45				
Межэлектродные емко- сти, пФ:								
входная по 1-й сет- ке	0,95	_	3,8					
входная по 3-й сет-	5,1		6,2	-				
выходная гетеродина	7,3		12,5					
выходная сигнальная части	6,3		9	_				
между анодом и 3-й сеткой между 1-й и 3-й сет-	≪0,6		≪0,4	_				
ками	0,14 ≥1500	_	_	_				
Критерий оценки:								
крутизна преобразования, мА/В	≥0,1		_	_				
	1	ŀ	l					

Предельные эксплуатационные данные

1A2 ∏	1 H 34
Напряжение накала, В 0,9-	-1,40,9-1,4
Напряжение анода, В 90	90
Напряжение 2-й и 4-й сеток, В 75	67,5
Ток катода (среднее значение), мА 3	5,5
Мощность, рассеиваемая анодом, Вт 0,3	_
Сопротивление в цепи 3-й сетки, МОм 1	3
Интервал рабочих температур окружающей	
среды, °С От -	45
До -	- 70

6А2П. Аналог 6Н31

Гептод для преобразования частоты. Оформление — в стеклянной оболочке, миниатюрное (рис. 2П), Macca 12 г.

Основные параметры

при $U_{\rm H}=6,3$ В, $U_{\rm a}=250$ В, $U_{\rm c_2}=U_{\rm c_4}=100$ В, $U_{\rm c_3}=-1,5$ В, $R_{\rm c_1}=20$ кОм, $C_{\rm c_1}=4$ мкФ, $U_{\rm c_1nep}=10$ В (для 6Н31), для 6А2П $U_{\rm c_1nep}$ подбирается таким, чтобы $I_{\rm c_1}=0,5$ мА

	6A2Π	6H31
Ток накала, мА	300 ± 25	300
Ток анода, мА	3 ± 1	3
Ток 1-й сетки, мА	0,5	0,5
Ток 2-й и 4-й сеток, мА	$7\pm 2,1$	7,1
Обратный ток 3-й сетки, мкА	€2	<u> </u>
Крутизна преобразования (при $U_{\text{сзпер}} = 0.7 \text{ B}$),		
MA/B	$\geqslant 0,3$	$\geqslant 0,3$
То же в начале характеристики (при U_{c3} =		
=-35 B), MKA/B	0,5-25	10
Крутизна характеристики гетеродина (при		
$U_a = U_{c_2} = U_{c_4} = 100 \text{ B}, \ U_{c_1} = U_{c_3} = 0), \text{ MA/B}.$	$\geqslant 4,5$	
Напряжение виброшумов (при $R_a = 10$ кОм),	-0.00	
мВ	≪300	
Межэлектродные емкости, пФ:	0.1.0.5	E =
входная по 1-й сетке	$3,1\pm0,5$	5,5
входная по 3-й сетке	6,7±0,8	7,15
выходная	$9,25\pm1,25$	8,6
между анодом и 3-й сеткой	≤ 0,35	$\leq 0,35$
Наработка, ч	≥3000	
Критерни оценки:		
крутизна характеристики гетеродина (по	. 0.0	
1-й сетке), мA/B	≥3,6	_
изменение крутизны характеристики гете-	- 45	
родина, %	<45 ≥0.2	
крутизна преобразования, мА/В	≥ 0.3	
изменение крутизны преобразования, % .	€40	

Предельные эксплуатационные данные

	OAZII	orioi
Напряжение накала, В		5,7-6,9
Напряжение анода, В	330	300
Напряжение 2-й и 4-й сеток, В	110	100
Напряжение 3-й сетки (отрицательное), В	50	50
Напряжение между катодом и подогревате-		
лем. В	100	90

CT 191

6Ж35Б, 6Ж35Б-В

Пентоды с двойным управлением для усиления, преобразования высокой частоты, а также для использования в схемах формирования импульсов.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 4Б). Масса 3,5 г.

при $U_{\rm H}$ =6,3 B, $U_{\rm a}$ =120 B, $U_{\rm c2}$ =110 B, $U_{\rm c1}$ =—2 B, $U_{\rm c3}$ =0 В
Ток накала
Крутизна характеристики:
по 1-й сетке при $U_{\rm H}{=}6,3~{\rm B}$
Межэлектродные емкости: (4,4±0,8) пФ выходная (3,5±0,9) пФ проходная <0,03 пФ
Критерин оценки: обратный ток 1-й сетки
Предельные эксплуатационные данные
Напряжение накала 5,7—6,9 В Напряжение анода 150 В То же при запертой лампе 250 В Напряжение 2-й сетки 125 В То же при запертой лампе 250 В Отрицательное напряжение: 1-й сетки 1-й сетки 50 В
1-й сетки
рассеиваемая анодом 0,9 Вт

Основные параметры

6Α3Π

Гентод лучевой с двойным управлением для работы в амплитудных ограничителях, детекторах частотно- и фазомо- пулированных колебаний и в схемах совпадений.

Оформление — в стеклянной оболочке, миниатюрное (рис. 6П). Масса 17 г.

341

Основаме параметры	
при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 75$ В, $U_{\rm ych} = U_{\rm c2} = 75$ В, $U_{\rm c} =$	$U_{c_1} = U_{c_3} = 4 \text{ B}$
Ток накала	(295 ± 25) мА
Ток анода	$5,4^{+1,6}_{-1,65}$ MA
Ток ускорителя	≪8 mA 650—1000 mkA 400—750 mkA ≪0,25 mkA ≪30 mkA
Напряжение 1-й сетки отрицательное, соответствующее половине тока анода	$1,75_{-0.75}^{+0.55}$ B
Напряжение 3-й сетки отрицательное, соответствующее половине тока анода	$(0.85\pm0.75)\mathrm{B}$
при токе анода 100 мкА: по 1-й сетке	$(2,75\pm0,75)$ B $(3\pm0,75)$ B
Крутизна характеристики (средняя) * по 1-й сетке	$\geqslant 1,2 \text{ MA/B}$ $\geqslant 1,1 \text{ MA/B}$ $\geqslant 0,95 \text{ MA/B}$ $\leqslant 100 \text{ MB}$
Межэлектродные емкости: входная по 1-й сетке	3,6—5,6 пФ 1,3—2 пФ 3,4—4,8 пФ 1,8—2,8 пФ ≪0,007 пФ ≪2 пФ ≪0,007 пФ ≈1000 ч
Критерии оценки: изменение тока анода	$\leq 12\%$ ≤ 0.5 MKA

^{*} Определяется по формуле $S = \frac{0.8\,I_{\rm a}}{U_{\rm c}^{'} - U_{\rm c}^{''}}$, где $I_{\rm a}$ — ток апода при напря-

жении 1-й и 3-й сеток, равном 4 В; $U_{\mathbf{C}}'$ — напряжение 1-й (или 3-й) сетки, при котором ток анода равен $0.9I_{\mathbf{A}}$; $U_{\mathbf{C}}$ — напряжение 1-й (или 3-й) сетки, при котором ток анода равен $0.1I_{\mathbf{A}}$.

6Ж38П, 6Ж38П-ЕВ

Пентоды для усиления напряжения высокой частоты в широкополосных усилителях на частотах до 300 МГц.

Оформление — в стеклянной оболочке, миниатюрное (рис. 2П). Масса 15 г.

Осно	вные параметры	

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 150$ В, $U_{\rm c2} = 100$ В, $U_{\rm c3} = 0$, $R_{\rm K} =$	=82 Ом
Ток накала, м A	6Ж38П-ЕВ 190±20 12±3,5
= —8 В), мкА	≤ 30 1,8+1,7 $\leq 0,15$
лем, мкА	≤ 10 $10,6\pm 3$ $\geq 6,5$
MB	≪100
Межэлектродные емкости, пФ:	
входная 5,8 выходная 3,1±0,9 проходная ≤0,02 Наработка, ч >5000	$5,2\pm1,1$ $3,3\pm0,9$ $\leq 0,02$ ≥ 5000
Критерии оценки:	
обратный ток 1-й сетки, мк A $\leqslant 0,5$ крутизна характеристики, м A/B $\geqslant 6,5$	$\underset{\geqslant 6,2}{\leqslant 1}$
Предельные эксплуатационные данные	
Напряжение накала, В	6ж38П-ЕВ 6—6,6 165 — 135 — 120 20
Мощность, рассеиваемая анодом, Вт 3 Мощность, рассеиваемая 2-й сеткой, Вт 0,5 Сопротивление в цепи 1-й сетки, МОм 1 Температура баллона лампы, °С 120	2,3 0,35 1 150

6Α4Π

Гептод для преобразования частоты в импульсных схемах радиоэлектронных устройств.

Оформление — в стеклянной оболочке, миниатюрное (рис. 11П). Масса 15 г.

Сопротивление в цепи 1-й сетки . . .

Интервал рабочих температур окружающей среды .

Основные параметры

Genomine napamerps.
при $U_a = 6.3$ В, $U_a = 200$ В, $U_{c2} = U_{c4} = 100$ В, $U_{c3} = 0$, $U_{c1} = -10$ В
Ток накала
Ток анода в импульсе
Ток 4-й сетки в импульсе
Ток 4-й сетки в импульсе
Напряжение отсечки тока анода (отрицательное)
при токе анода 0,5 мА:
по 1-й сетке ≤5.5 В
по 1-й сетке
Крутизна характеристики:
по 1-й сетке при $U_{c1} = -11$ В > 16 мА/В
по 1-й сетке при $U_{c1} = -11~{\rm B}$ $\geqslant 16~{\rm mA/B}$ по 3-й сетке при $U_{c3} = -3~{\rm B}$ $\geqslant 5,5~{\rm mA/B}$
Межэлектродные емкости:
входная по 1-й сетке
входная по 3-й сетке
выходная (для каждого анода) $(2,8\pm0,6)$ пФ
анод — 1-я сетка
между анодами
между анодами
катод — подогреватель
Наработка
Tiapacotka
Критерии оценки:
обратный ток 1-й сетки ≪1 мкА изменение тока анода в импульсе От—30 до+35%
изменение тока анода в импульсе
Предельные эксплуатационные данные
E 7 7 D
Напряжение анода
Напряжение 2-и и 4-и сеток
Напряжение между катодом и подогревателем
Мощность, рассеиваемая анодом
Мощность, рассенваемая анодом
Мощность, рассеиваемая 4-и сеткой

0,5 MOm

От—60 до+70 °С

Анодные

характеристики при $U_{c3} = 0$.

Анодные

характеристики $U_{c1} = 0$.

при

Анодно-сеточная характеристика по 1-й сетке. Анодно-сеточная характеристика по 3-й сетке.

6A11Γ-B

Гептод для преобразования частоты. Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 16Б). Масса 8 г.

Основные параметры

при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!100$ В, $U_{\rm c\,3}\!=\!U_{\rm c\,4}\!=\!100$ В, $U_{\rm c\,I}\!=\!-\!2$ В, $U_{\rm c\,3}\!=\!e_{\rm B}\!=\!8,\!5$ В

Напряжение виброшумов (при $R_a=2$ кОм)	<i>Продолжениє</i> ≪150 мВ
Межэлектродные емкости: входная по 1-й сетке входная по 3-й сетке выходная анод — 1-я сетка анод — 3-я сетка 1-я — 3-я сетка катод — подогреватель Наработка Критерии оценки:	6,5 пФ 7 пФ 5 пФ ≪0,03 пФ ≪0,04 пФ ≪0,04 пФ ≪7 пФ >500 ч
крутизна преобразования	≥0,5 мА/В ≤1,5 мкА ≤±35%
Предельные эксплуатационные данные	
Напряжение накала	5,7—6,9 B
Напряжение анода	150 B
То же при запертой лампе	200 B
Напряжение 2-й и 4-й сеток	100 B
То же при запертой лампе	200 B
Напряжение 1-й сетки (отрицательное)	30 B
Напряжение между катодом и подогревателем	100 B
Ток катода	30 мА
Мощность, рассеиваемая анодом	1,5 Br
Мощность, рассеиваемая 2-й и 4-й сетками	1,5 Вт
Сопротивление в цепи 1-й сетки	1 MOm
Температура баллона лампы	170 °C
Устойчивость к внешним воздействиям:	
ускорение при вибрации в диапазоне частот 10—2000 Гц	10 g
ускорение при многократных ударах	150 g
ускорение при одиночных ударах	500 g
ускорение постоянное	100 g
интервал рабочих температур окружающей среды	От—60 до +200 °С

Анодные характеристики.

Анодно-сеточные характеристи-

4.8. ГЕПТАГРИДЫ

6Л1П

Гептагрид высокочастотный с разрывногистерезисной характеристикой для работы в качестве нелинейного элемента в быстродействующих амплитудных дискриминаторах, бинарных запоминающих и счетных устройствах, ключевых схемах и ограничителях.

Оформление — в стеклянной оболочке, миниатюрное (рис. 14П). Масса 18 г.

Основные параметры

при $U_{\rm H}$ = 6,3 B, $U_{\rm A}$ = 150 B, $U_{\rm ycx1}$ = $U_{\rm ycx2}$ = $U_{\rm c2}$ = 150 B, $U_{\rm c1}$ = 0, $R_{\rm ycx2}$ = 510 Ом, $U_{\rm \Phi}$ — оптимальное, подбирается в пределах от 0 до минус 30 B

Ток	накала	1.												(320 ± 30) мА
Tok	анода													(16,5+3,5) MA
Tok	катода	٠.												$(24\pm 5) \text{ MA}$
Ток	1-ro vc	Kop	нте	ля										З мА
Ток	2-го ус	скоп	ите	эля	(1	при	U	c.i	 1	0	B)			≪22 мА
	2-й се													

	Продолжени е
Электронный ток 1-й сетки (при $U_{c1} = +10$ В) Обратный ток 1-й сетки (при $U_{c1} = -5$ В) Ток 3-й сетки, экрана и утечки между катодом и по-	$\underset{\leqslant}{\leqslant} 2$ MA MKA
догревателем суммарный	≪1 mA
туде U_{c1} = 2 B)	(10±2) MA ≥7,5 MA
вого скачка тока анода	0,5-4 B
ка тока анода (при $U_{\rm H}{=}5,7$ В)	≪0,25 B
ка тока анода (при $U_{\rm H}$ =7 В)	≪0,25 B
стики (по 1-й сетке)	0,25—1,55 B ≪0,2 B
входная по аноду	3,2 ^{+0,3} / _{-0,4} nΦ 8 nΦ (2,4±0,3) nΦ ≪3,2 nΦ ≪0,007 nΦ ≪0,04 nΦ ≪0,65 nΦ >500 ч
сдвиг напряжения 1-й сетки в момент правого скачка тока анода	≪0,3 B ≽7,5 mA
Предельные эксплуатационные данные	
Напряжение накала	. 5,7—7 B . 300 B . 160 B . 200 B
при отрицательном потенциале подогревателя . Мощность, рассеиваемая анодом Мощность, рассеиваемая 2-м ускорителем Мощность, рассеиваемая 1-м ускорителем Мощность, рассеиваемая 2-й сеткой Сопротивление в цепи 1-й сетки Температура баллона лампы Интервал рабочих температур окружающей среды .	. 10 В . 3 Вт . 3,5 Вт . 1,5 Вт . 0,8 Вт . 30 кОм . 120 °C . От—60 до+70 °C

Анодные характеристики.

Зависимость тока анода от напряжения 2-го ускорителя.

Зависимость тока 2-го ускорителя от напряжения 2-го ускорителя.

Зависимость тока анода от напряжения 1-й сетки.

Зависимость гока 2-го ускорятеля от напряжения 1-й сетки.

6Л2Г

Сеточно-лучевая лампа для работы в различных электронных схемах, пользующих элементы с двойным управлением.

Оформление - в стеклянной оболочке, сверхминиатюрное (рис. 16Б). Масса 6 г.

Основные параметры	
при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!120$ В, $U_{\rm c10TKJ}\!=\!U_{\rm c20TKJ}\!=\!15$ В	$R_{\rm H} = 180$ Ом
Ток накала	(190±20) MA
Ток каждого анода	4±2 мA ≪2,5 мA
Ток 2-й сетки	€0,7 MA
Асимметрия токов анодов	€0.15
Обратный ток 1-й сетки	€ 0,5 мкА
Крутизна характеристики:	
по 1-й сетке	$(4,5\pm1,5)$ MA/B
по отклоняющей сетке	≥0,5 mA/B
Эквивалентное сопротивление шумов, приведен-	
ное к 1-й сетке	2,5-6,5 кОм
Напряжение виброшумов	≼100 мВ

Продолжение

Межэлектродные емкости: 85 пФ входная по 1-й сетке
обратный ток 1-й сетки
Предельные эксплуатационные данные
Напряжение накала
ускорение при вибрации в диапазоне частот 5— 2000 Гц

РАЗДЕЛ ПЯТЫЙ

СПРАВОЧНЫЕ ДАННЫЕ КОМБИНИРОВАННЫХ ЛАМП

5.1. ДИОД-ПЕНТОДЫ

1Б2П. **Аналог** 1AF34

Диод-пентод для предварительного усиления напряжения низкой частоты и детектирования.

Оформление — в стеклянной оболочке, миниатюрное (рис. 2П). Масса 10 г.

Основные параметры

для 1Б2П при $U_{\rm H}=$ 1,2 B, $U_{\rm a.H}=$ 60 B, $U_{\rm c2}=$ 45 B, $U_{\rm c1}=$ 0 B, $U_{\rm a.H}=$ 1,2 B; для 1АГ34 при $U_{\rm H}=$ 1,2 B, $U_{\rm a.H}=$ 67,5 B, $U_{\rm c2}=$ 67,5 B, $U_{\rm c1}=$ —1 B, $U_{\rm a.H}=$ 3 B

		1 Б 2∏	1AF34
Ток накала, мА		30±3	30
Ток анода пентода, мА		0,9±0,4	1,4
Ток 2-й сетки, мА		0,18-0,35	0,4
Обратный ток 1-й сетки, мкА		. ≤0,1	
Ток анода диода, мкА			100
Крутизна характеристики пент			$\geqslant 0,3$
То же при $U_{\rm H} = 0.95$ В			_
Внутреннее сопротивление, МО	Эм,	1	0,6
Межэлектродные емкости, пФ:	•		_
входная пентода		1,85	2,4
выходная пентода			4,6
проходная пентода			0,3
анод диода — катод			1,5
Наработка, ч		≥ 1500	_
Критерии оценки:		0	
ток анода диода, мкА .		≥3	_
крутизна характеристики,	мА/В	$\geqslant 0,25$	_

Предельные эксплуатационные данные

	1Б2П	1AF34
Напряжение накала, В	0,9-1,4	0,9-1,4
Напряжение анода пентода, В	90	90
То же при включении лампы, В	250	250
Напряжение 2-й сетки, В		67,5
То же при включении лампы, В	250	250
Ток катода, мА		4,5
Мощность, рассенваемая анодом пентода, Вт	0,15	
Интервал рабочих температур окружающей		
среды, °С	От-60	-
	до+70	

Анодная характери- Анодно-сеточная ха- Анодные характеристики пенстика диодной части. рактеристика пентодной части.

5.2. ТРИОД-ПЕНТОДЫ

6Ф1П. Аналог ЕСГ 80

Триод пентод для генерирования, преобразования и усиления напряжения высокой частоты, а также для использования в импульсных схемах цепей развертки и схемах APV телевизионных приемников.

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 20 г.

Основные параметры

при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a.r}\!=\!100$ В, $U_{\rm c.r}\!=\!-2$ В, $U_{\rm a.n}\!=\!170$ В, $U_{\rm c_1n}\!=\!-2$ В, $U_{\rm c_2n}\!=\!170$ В

Ток накала, мА	6ф1il 420±40	ECF80 430
Триодная часть		
Ток анода, мА	13±5 ≪30 ≪1	14 —
между катодом и подогревателем между сеткой и остальными электро-	€20	_
дами	€10	_
дами	≪30 5±1,5 20	5 20
=10 кОм), мВ	€200	_
входная	$2,5\pm0,05$ $0,35\pm0,15$ $1,45\pm0,35$	$\frac{2.5}{1.8}$
Пентодная часть		
Ток анода, мА	10±5 ≪4,5 ≪0,5	10 2,8
между катодом и подогревателем между 1-й сеткой и остальными электродами .	≤20 ≤10	
гродами между аподом и остальными электро- дами	<10 <30	_
Крутизна характеристики, мА/В Внутреннее сопротивление, МОм Входное сопротивление, кОм:	6,2±2,2 0,4	6.2 0,4
на частоте 50 МГц на частоте 100 МГц Эквивалентное сопротивление шумов, кОм Напряжение виброшумов (при $R_a=2$ кОм),	4 1 4	10 2 1,5
мВ	€200	
Межэлектродные емкости, пФ: входная выходная проходная Наработка Критерии оченки	$5,5$ $3,4$ $\leq 0,025$ ≥ 3000	5,2 3,4 ≤0,025
Критерии оценки: крутизна характеристики триода, мА/В крутизна характеристики пентода, мА/В	≥2,8 ≥3,2	_

Предельные эксплуатационные данные

	6Ф1П		ECF	80
Наименование	Триод	Пен- тод	Трнод	Пен- тод
Напряжение накала, В	5,7—6,9 250 350 — 100 300 14 1,5 — 0,5	250 350 175 200 - 300 - 2,5	5,7—6,9 100 14 1,5 0,5	250

Анодные характеристики триод- Аподные характеристики пентодной части.

.1

-3

Анодно-сеточные характеристики пентодной части.

6Ф3П. Аналог ECL82

Триод-пентод для работы в усилителях низкой частоты и блоках развертки телевизионных приемников: триодная часть предварительный усилитель низкой частоты, задающий генератор кадровой развертки; пентодная часть — выходной усилитель низкой частоты, выходной усилитель кадровой развертки.

Оформление — в стеклянной оболочке, миниатюрное (рис. 18П). Масса 20 г.

Основные параметры

для $6\Phi 3\Pi$ при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a.T}\!=\!170$ В, $U_{\rm c.T}$ $U_{\rm c.T}\!=\!-11,5$ В, $U_{\rm c.T}\!=\!-170$ В, $U_{\rm c.T}\!=\!-170$ В, $U_{\rm c.T}\!=\!-170$ В, $U_{\rm c.T}\!=\!0$ В $U_{\rm c.T}\!=\!0$ В, $U_{\rm c.T}\!=\!0$ В $U_{\rm c.T}\!=\!0$ В, $U_{\rm c.T}\!=\!0$ В) B;	00 B,
	6Ф3П	ECL82
Ток накала, мА	810±80	780
Триодная часть		
Ток анода, мА	$2,5\pm1,2$	3,5
Обратный ток сетки, мкА	$\leq 0,5$	
между катодом и подогревателем	≤ 20	-
между анодом и остальными электродами . между сеткой и остальными электродами	€ 20 € 10	_
Крутизна характеристики, мА/В	$2,5\pm 1,2$	2,5
Коэффициент усиления	75 ≪1000	70
Напряжение виброшумов (при $R_a = 10$ кОм), мВ	1,000	_

	11,0000	incitac
Межэлектродные емкости, пФ:	0.0	0.7
входная	$\begin{array}{c} 2,2\\0,4 \end{array}$	$\frac{2}{4}$
выходная	3,7	$\frac{1}{4},5$
mponogama, t t t t t t t t t t t t t t	- • •	-,-
Пентодная часть		
Ток анода, мА	41 ± 13	35
Ток анода, мА То же в импульсе*, мА	140	
Обратный ток 1-й сетки, мкА	≤ 0.5	7
Ток 2-й сетки, мА	≤14 35	<u></u>
Ток утечки, мкА:		
между катодом и подогревателем	≪30	
между анодом и остальными электродами.	≤ 20	
между 1-й сеткой и остальными электродами Крутизна характеристики, мА/В	≤10 7±2	$\frac{-}{6,4}$
Внутреннее сопротивление, кОм	15	20
Напряжение отсечки тока по 1-й сетке (отрица-		
тельное), В	≪ 1	-
выходная мощность (при коэффициенте нелинеи-	3	
ных искажений 10%), Вт	≪300	
Межэлектродные емкости, пФ:	-	
входная	9,3	9,3
выходная	8,5 0,3	8 0,3
проходная	≥ 3000	
Критерии оценки:		
крутизна характеристики пентода, мА/В	≥ 4	
крутизна характеристики триода, мА/В	≥l	-
* На горизонтальном участке характеристики при U_a =	70 B. U.a=	=170 B.
U _{c1} =1 B.		,
Предельные эксплуатационные данны	ie	
	3Π EC.	
Напряжение накала, В	7-6,9 5,	7-6,9
Напряжение между катодом и подогревателем, В	0 10	0
10.1., 2	•	•
Триодная часть		
Напряжение анода, В:	300	n
в обычном режиме		
Мощность, рассенваемая анодом, Вт 1	0,1	
Ток катода, мА:	•	
в обычном режиме		1
в импульсном режиме) 250	J
при автоматическом смещении	3	
при фиксированном смещении 1	1	

Пентодная часть

Напряжение анода, В:	
в обычном режиме	300
при включении холодной лампы 300	900
в импульсном режиме	2500
Напряжение 2-й сетки, В:	
в обычном режиме	300
при включении холодной лампы 300	550
Мощность, Вт:	
рассеиваемая анодом 8	7
рассеиваемая 2-й сеткой 2,5	1,8
Ток катода, мА 60	50
Сопротивление в цепи 1-й сетки, МОм:	
при автоматическом смещении 1	2
при фиксированном смещении 0,5	1
Интервал рабочих температур окружающей	
среды От —	60 —
до +7	0 ℃

Анодные характеристики триодной части.

Анодно-сеточные характеристики триодной части.

Анодные характеристикы пентодной части.

Анодно-сеточные характеристики пентодной части.

6Ф4П. Аналог ECL84

Триод-пентод для работы в выходных каскадах видеоусилителей (пентодная часть) и в качестве предварительного усилителя низкой частоты в различных схемах автоматической регулировки усиления радиовещательных и телевизионных приемников (триодная часть).

Оформление — в стеклянной оболочке, миниатюрное (рис. 16П). Масса 20 г.

≪10

130

8,7

4,2

10,4

130

Основные параметры для 6Ф4П при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm 2.T}\!=\!200$ В, $U_{\rm a.T}\!=\!200$ В, $U_{\rm c2T}\!=\!200$ В,

 $R_{\text{к.т}} = 570\,\text{ Ом},\ R_{\text{к.п}} = 140\,\text{ Ом};$ для ECL84 при $U_{\text{H}} = 6,3\,\text{ B},\ U_{\text{a.т}} = 200\,\text{ B},\ U_{\text{c.т}} = -1,7\,\text{ B},\ U_{\text{a.n}} = 170\,\text{ B},\ U_{\text{c.m}} = 170\,\text{ B},\ U_{\text{c.m}} = 20\,\text{ B}$

Ток накала, мА	€Ф4П 720±70	ECL84 720		
Триодная часть				
Ток анода, мА	$3\pm1,1 \le 0,3$	3		
тродами, мкА	≪10	_		
тродами, мкА	€5	_		
Коэффициент усиления	≤20 4±1 65	 4 65		
выходная	3,8 0,6 2,7	4 2,5 2,7		
Пентодная часть				
	18±4 ≪1 3,2 ^{+3,3}	18 - 3,2		

Ток утечки между катодом и подогревате-

электродами, мкА . . .

Внутреннее сопротивление, кОм . Межэлектродные емкости, пФ:

> входная . выходная .

проходная	Πpo 6Φ4Π ≪0,1 ≪0,01 ≪0,01 ≈5000 >2,1 ≥6,2	одолжение ECL84 ≪0,1 ≪0,01 ≪0,01 —	
Предельные эксплуатационные да	нные		
Напряжение накала, В	6Ф4П	ECL84 5,7—6,9 150 200	
Триодная часть			
Напряжение анода, В	250 550 12 1	250 550 12 1	
Пентодная часть			
Напряжение анода, В	250 550 250 550 40 4 1,7 1 От—60 до +70 °	250 550 250 550 40 4 1,7	

Анодные характеристики триодной части.

Анодно-сеточные характеристики триодной части.

Анодные характеристики пентодной части.

6Ф5П. Аналог ЕСС85

Триод-пентод для усиления и генерирования напряжения низкой частоты (триодная часть) и для работы в выходных блоках кадровой развертки телевизионных приемников с углом отклонения луча 110°. Оформление — в стеклянной оболочке, ми-

ниатюрное (рис. 21П). Масса 20 г.

Основные параметры

при $U_n = 6.3$ В, $U_{a,r} = 100$ В, $U_{a,n} = 185$ В, $U_{e2n} = 185$ В, $R_{\text{K.T}} = 160 \text{ OM}, R_{\text{K.H}} = 340 \text{ OM}$

Ток накала, мА	ECL85 E65 860
Триодная часть	
Ток анода, мА	5,5*
входная	

Пентодная часть

Ток анода, мА	41 ± 9 $\geqslant 150$ $\leqslant 1,0$ $2,7^{+1,3}$ 30 $7,5_{-1}$	200 - 35
Межэлектродные емкости, пФ:		
входная	11,7	
выходная	8,8	
проходная	≪ 0,7	≤ 0.6
между анодом пентода и сеткой триода,	•	
пФ	≪0,03	≤ 0.03
между анодами, пФ	€0,4	
Наработка, ч	≥3000	
Критерии оценки:	20000	
ток анода пентода на сгибе характеристи-	≥ 120	
ки **, мА		
обратный ток 1-й сетки пентода, мкА	≤l	_
крутизна характеристики триода, мА/В .	≥4	
+ H. A. B.		

предельные эксплуатационные да	HILLIDIC									
Напряжение накала, В	6Ф5П 5,7—7	ECL85 5,7—6,9								
Напряжение между катодом и подогревателем, В	100 220	150								
Триодная часть	Триодная часть									
Напряжение анода, В	250 350 15 200 0,5	250 550 15 200 0,5								
Пентодная часть										
Напряжение анода, В: в усилительном режиме	300 550 2000 250 550 75 9	250 550 2000 250 550 75 9								

^{*} При $U_{\, {\bf c}} = 0$ В. ** При $U_{\, {\bf a}} = 50$ В, $U_{\, {\bf c}\, {\bf i}} = 170$ В, $U_{\, {\bf c}\, {\bf i}} = -1$ В.

	6Ф5П	ECL85
Сопротивление в цепи 1-й сетки, МОм:		
при автоматическом смещении	2,2	2,2
при фиксированном смещении **	1	1
Интервал рабочих температур окружающей		
среды	От —60 ло +70	

^{*} Продолжительность импульса не должна превышать 2% периода (не более 0,4 мкс).

** Эксплуатация ламп в режиме с фиксированным смещением не рекомендуется.

*** Продолжительность импульса не должна превышать 4% периода (не более 0,8 мкс).

Анодные характеристики триодной части.

Анодные характеристики пентодной части.

Анодно-сеточные характеристики триодной части.

Анодно-сеточные характеристики пентодной части.

6Ф12П

Триод-пентод широкополосный для усиления напряжения высокой и низкой частоты в устройствах широкого применения и работы в частотно-преобразовательных каскадах.

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 12,5 г.

Ток утечки между катодом и подогревателем .

Основные параметры

при	$U_{\rm B} = 6.3$	В,	$U_a =$: 150	В,	<i>K</i> _K =	-68	кОм,	$U_{c2} = 150 \text{ B}$
									. (330± 30) мА
Напряжение	виброш	умог	в.						. ≪100 мВ

Триодная часть

Ток анода	$(12,5\pm3,5)$ MA
Обратный ток сетки	≪0,2 mkA
Крутизна характеристики	19 _{_4} мА/В
Коэффициент усиления	100
Входное сопротивление на частоте 100 МГц	1 кОм
Эквивалентное сопротивление внутриламповых	
шумов	130 Ом
Межэлектродные емкости:	
входная	$4,2^{+1,8}_{-1}$ пФ
выходная	$(0,26\pm0,08) \text{ n}\Phi$
проходная	≪ 2 nΦ

Пентодная часть

Ток анода														$(13\pm 4) \text{ MA}$
Ток 2-й сетки		•									٠.			<2,2 MA
Обратный ток	1-й	C	етк	и.					٠					$\leq 0,2$ MKA
Крутизна хар	акт	ери	сті	ики										19_4 мА/В
Входное сопро	тив	леі	ие	на	1 4	аст	оте	1	00	M:	Γц			1 кОм
Эквивалентное	C	ОП	рот	'ИВ	лен	ие	В	нут	ри	лам	ипс	вь	X	
шумов									٠.					250 Ом
Межэлектродни	ые е	MK	OC1	ги:										
входная.							è							$(6,6\pm1,6)$ $\pi\Phi$
выходная		,	•	. ,										$(1.9\pm0.5) \text{ n}\Phi$
проходная			. ,											≪ 0,02 пФ
Наработка .								_						≽2000 ч

Предельные эксплуатационные данные

Напряжение накала	5,77B
Напряжение анода: пентода	300 B 250 B
Напряжение анода при включении лампы:	
пентода	550 B
триода	550 B
Напряжение триода при запертой лампе	400 B
Напряжение 2-й сетки	250 B
Напряжение 2-й сетки пентода при включении лампы.	550 B
Мощность, рассенваемая анодом:	
пентода	5 Вт
триода	3,5 Вт
Мощность, рассеиваемая 2-й сеткой	0,4 Вт
Напряжение между катодом и подогревателем	160 B
Ток катода	22 мА
Температура баллона	230 °C
Устойчивость к внешним воздействиям:	
ускорение при вибрации на частотах 10—150 Гц .	2,5 g
ускорение при многократных ударах	35 g
интервал рабочих температур окружающей среды.	От—60
	до +70 °С

Анодные характеристики триодной части.

Зависимость тока анода (сплошные линии) и крутизны характеристики (пунктирные линии) триодной части от напряжения сетки.

Анодные характеристики пентодной части.

Зависимость тока анода (сплошные линии) и крутизны характеристики (пунктирные линии) пентодной части от напряжения 1-й сетки.

9Ф8П. Аналог РСГ80

Триод-пентод для усиления напряжения высокой частоты в импульсных схемах цепей развертки телевизионных приемников и для работы в качестве гетеродина и преобразователя. Предназначены для аппаратуры с последовательным соединением цепей накала.

Оформленис — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 20 г.

при
$$U_{\rm H}\!=\!9$$
 В, $U_{\rm a.r}\!=\!100$ В, $U_{\rm c.r}\!=\!-\!2$ В, $U_{\rm a,n}\!=\!170$ В, $U_{\rm c.ln}\!=\!-\!2$ В

Ток накала, мА	PCF80 300
Триодная часть	
Ток анода, м A	14
Ток анода в начале характеристики (при $U_a = 140$ В, $U_c = -15$ В), мкА $\leqslant 30$ Крутизна характеристики, мА/В 5,0 ± 1 ,5 Коэффициент усиления	 5 20
Напряжение виброшумов (при R _a =10 кОм), мВ	_
Межэлектродные емкости, пФ: входная	$\frac{2,5}{1,8}$

Пентодная часть

Ток анода, мА	10 2,8 6,2 0,4
на частоте 50 МГц, кОм	10 2
шумов, кОм	1,5 —
входная 5,5 выходная 3,2 проходная ≤0,025 Наработка, ч ≥2000	$ \begin{array}{c} 5,2 \\ 3,4 \\ \leq 0,025 \end{array} $
Критерии оценки: крутизна характеристики триода, мА/В . ≥2,6 крутизна характеристики пентода, мА/В . ≥2,8	_

	9Ф8П	PCF80
Напряжение накала, В	8,1—9,9 250 300 250 350	8,1—9,9 250 — 250 —
Напряжение 2-й сетки (при токе катода 14 мА), В	175 200 350	175 200
В. Мощность, рассеиваемая анодом триода, Вт. Мощность, рассеиваемая анодом пентода, Вт. Мощность, рассеиваемая 2-й сеткой, Вт. Суммарная мощность, рассеиваемая анодами	1,5	1,5 2,5 0,5
триода и пентода и 2-й сеткой	4,5 Br	_
триода	14 14	14 14
при включении лампы, В	300 0,5 1	300 0,5 1
среды, °С	От—60 до +70	-

Анодные характеристики триодной части.

Анодные характеристики пентодной части.

Анодно-сеточные характеристики пентодной части.

15Ф4П. Аналог РСL84

Триод-пентод для работы в выходных каскадах усилителей низкой частоты и видеоусилителей (пентодная часть) и в качестве предварительного усилителя низкой частоты в различных схемах автоматической регулировки усиления (триодная часть) телевизионных и радиовещательных приемников с последовательным включением цепей накала.

Оформление — в стеклянной оболочке, миниатюрное (рис. 13П). Масса 18 г.

для 15Ф4П, PCL84 при $I_{\rm H}\!=\!300$ мА, $U_{\rm a.\tau}\!=\!20$ для PCL84 при $U_{\rm c.\tau}\!=\!-1,7$ В, $U_{\rm для}$ 15Ф4П при $R_{\rm K.\tau}\!=\!570$ Ом, $R_{\rm H}$	$c_1 = -2.9 \text{ B};$	$V_{c2} = 200 \text{ B};$
	15Ф4П	PCL84
Напряжение накала, В	$15\pm1,5$	15
Триодная часть		
	3+1,2	3
Обратный ток сетки, мкА	$\underset{\leqslant}{\leqslant} 60$	<u>≤</u> 60*
Напряжение отсечки электронного тока сетки (отрицательное) при $U_{\mathbf{a},\mathbf{r}} = 0$, B .	1,3	
	1,0 4±1	4
Коэффициент усиления	65±13	65
Межэлектродные емкости, пФ:	3,8±0,8	4
	$2,3\pm0,4$	2,3
проходная	$2,7\pm0,5$	2,7
между сеткой и подогревателем	≪0,1	0,045—0,1
Пентодная часть		
Ток анода, мА	18+4.8	18
Ток анода в начале характеристики, мА .	€0,7**	≪1 ,3***
Ток 2-й сетки, мА	3-4,7	3
Обратный ток 1-й сетки, мкА	≪ 1	
сетки (отрицательное) при $U_{a.n} = U_{c2} = 0$,		
В	1,3	
Крутизна характеристики, мА/В	$10,4^{+3,1}_{-2,4}$	10,4
	90-130	≥130
Напряжение виброшумов (при $R_a = 2 \text{ кОм}$),	≤150	_
мВ	100	
входная	$8,7\pm1,7$	9
выходная	$4,2^{+0,8}_{-0,7}$	4,5
	≪0,1	≪0,1
между анодом триода и 1-й сеткой пентода	≪0,01	≪0,01
между сеткой триода и 1-й сеткой пен-	• •	•
тода	≤ 0,01	≤ 0.01
Наработка, ч	≥800	_
обратный ток сетки триода, мкА	≪l	
обратный ток 1-й сетки пентода, мкА .	≤ 2	
крутизна характеристики триода, мА/В	$\geqslant 2,4$ $\geqslant 6,4$	
крутизна характеристики пентода, мА/В	~ U,T	-

^{*} При $U_{\text{CT}} = -4$ В. ** При $U_{\text{CI}} = -12$ В. *** При $U_{\text{CI}} = -8$ В.

Предельные эксплуатационные данные

The Manager American American	
Ток накала	285—315 мА
Триодная часть	
Напряжение анода	250 B 550 B 600 B
Напряжение между катодом и подогревателем: при положительном потенциале подогревателя при отрицательном потенциале подогревателя. Ток катода Мощность, рассеиваемая анодом	150 B 200 B 12 MA 1 BT
Сопротивление в цепи сетки: при автоматическом смещении	3 МОм 1 МОм
Пентодная часть	
Напряжение анода То же при включении лампы Напряжение 2-й сетки То же при включении лампы Напряжение между катодом и подогревателем Ток катода Мощность, рассеиваемая анодом Мощность, рассеиваемая 2-й сеткой	250 B 550 B 250 B 550 B 200 B 40 MA 4 BT 1,7 BT
Сопротивление в цепи 1-й сетки: при автоматическом смещении при фиксированном смещении Температура баллона лампы Интервал рабочих температур окружающей среды	2 МОм 1 МОм 230°C От —60 до +70°C

Анодные хапактеристики триодной части. Анодно-сеточные характеристики триодной части.

Анодные характеристики пентодной части.

16Ф3П. Аналог PCL82

Триод-пентод для работы в блоках усиления низкой частоты и кадровой развертки телевизионных приемников с последовательным включением цепей накала. Триодная часть — предварительный усилитель низкой частоты, задающий генератор кадровой развертки. Пентодная часть — выходной усилитель низкой частоты, выходной усилитель кадровой развертки.

Оформление — в стеклянной оболочке, миниатюрное (рис. 21П). Масса 25 г.

16Ф3П

PCL82

Основные параметры

для 16ФЗП, PCL82 при $I_{\rm H}\!=\!300$ мА, $U_{\rm a.T}\!=\!U_{\rm c2}\!=\!170$ В, $U_{\rm c.T}\!=\!-11,5$ В; для 16ФЗП при $U_{\rm a.T}\!=\!170$ В, $U_{\rm c.T}\!=\!-1,5$ В; для PCL82 при $U_{\rm a.T}\!=\!100$ В, $U_{\rm c.T}\!=\!0$

Напряжение накала, В	16±2	16
Триодная часть		
Ток апода, мА	$2,5\pm1,2 \\ <0,5$	3,5 —
сстки (отрицательное) при $U_{a,\tau} = 0, B$ Крутизна характеристики, м A/B		2,5 70
Напряжение внорошумов (при $R_{a.\tau} = 10 \text{ кOм}$), мВ	≪1000	_
выходная	2,2 0,4 3,7	3 4,3 4,5
Пентодная часть		
Ток анода, мА	41±13	41
стке характеристики *, мА	140 ≪14	8
То же в импульсе на горизонтальном уча-		
стке характеристики *, мА	35	_
Обратный ток 1-й сетки, мкА	35	
Обратный ток 1-й сетки, мкА	<0,5 <1	
Обратный ток 1-й сетки, мкА	≪0,5	

Напряжение виброшумов (при $R_a = 10$ кОм), мВ	<500	
Межэлектродные емкости, пФ:		
входная	9,3	9,3
выходная	8,5	8
проходная	$\leq 0,3$	$\leq 0,3$
между анодом триода и 1-й сеткой	•	
пентода		$\leq 0,02$
между анодом триода и анодом пен-		
тода		$\leq 0,25$
между сеткой триода и анодом пен-		
тода		$\leq 0,02$
между сеткой триода и 1-й сеткой пен-		
тода		≤ 0.025
Наработка, ч	≥800	
Критерии оценки:	•	
крутизна характеристики пентода,		
MA/B	≥3,8	
крутизна характеристики триода, мА/В	≥0.9	_
крутнопа карактерпетики триода, мицъ	~ - ,-	

• • • • • • • • • • • • • • • • • • • •	16Ф3П	PCL82
Ток накала, мА	285—315	285—315
Напряжение между катодом и подогревателем, В	100	200
Триодная часть		
Напряжение анода, В	250 600	300 600
пы, В	 15 250	550 15 250
Мощность, рассенваемая анодом, Вт Сопротивление в цепи сетки, МОм:	1	1
при автоматическом смещении при фиксированном смещении	3 1	3 1
Пентодная часть		
Напряжение анода, В	275	300
при плюсе на аноде при минусе на аноде	2500 200	2500 500
Напряжение анода при включении лампы, В	300 250	900 300 550
То же при включении лампы, В	300	5 500

^{*} При $U_{\mathbf{a}\cdot\mathbf{u}}$ =70 В, $U_{\mathbf{c}1}$ =—1 В, f=50 Гц. ** При $R_{\mathbf{a}\cdot\mathbf{u}}$ =3,8 кОм и коэффициенте нелинейных искажений 10%.

Продолжение

Ток катода, мА	60	50
Мощность, рассеиваемая анодом, Вт	8	7
Мощность, рассеиваемая 2-й сеткой. Вт	2,5	1,8
Сопротивление в цепи 1-й сетки, МСм:		
при автоматическом смещении.	1	2
при фиксированном смещении ,	0,5	1
Интервал рабочих температур окружаю-		
щей среды, °С	От — 60	
•	до +70	

Анодные характеристики триодной части.

Анодно-сеточные характеристики триодной части.

Анодные характеристики пентодной части.

Анодно-сеточные характеристики пентодной части.

18Ф5П. Аналог PCL85

Триод-пентод для работы в качестве задающего генератора (триодная часть) и выходной лампы в блоках кадровой развертки телевизоров с углом отклонения луча 110° и последовательным включением цепей накала.

Оформление — в стеклянной оболочке, миниатюрное (рис. 21П). Масса 20 г.

для 18Ф5П, PCL85 при $I_{\rm H}\!=\!300$ мА, $U_{\rm A,H}\!=\!18Ф5П$ при $R_{\rm K,T}\!=\!160$ Ом, $U_{\rm A,H}\!=\!U_{\rm C2}\!=\!180$ для PCL85 при $U_{\rm C,T}\!=\!0$ В, $U_{\rm A,H}\!=\!50$ В, $U_{\rm C2}\!=\!$	5 B. R_{ν} $n=$	340 Ом:
	18Ф3П	PCL85
Напряжение накала, В	$18_{-1,8}^{+1}$	18
Триодная часть		
Ток анода, мА	$5^{+2}_{-1,5}$	10
То же в начале характеристики, мкА	≪30	
Обратный ток сетки, мкА	$\leq 0,6$	_
Напряжение отсечки тока сетки (отрицатель-		
ное при $U_{a.r}=0$), В	$\leq 1,3$	
Крутизна характеристики, мА/В	5,5	5,5
Коэффициент усиления	4060	50
Напряжение виброшумов (при $R_{a.\tau} = 10$ кОм), мВ	≤50	_
Емкость между сеткой триода и подогревателем, пФ	\leqslant 0,2	0,15
Пентодная часть		
Ток анода, мА	45±9	
Ток анода, мА	165—200	200
Ток анода в начале характеристики, мА	≤ 0.3	_
Ток 2-й сетки, мА	2,7-4,5	
То же в импульсе, мА	50	35
Обратный ток 1-й сетки, мкА	≤ 1.2	_
Напряжение отсечки тока 1-й сетки (отрица-	«·,~	
тельное при $U_{a.u} = U_{c2} = 0$), В	≪1,3	
Крутизна характеристики, мА/В	$7,5\pm1,5$	_
Напряжение виброшумов (при $R_{\rm a.n} = 510$ Ом),		
мВ	≤200	
Межэлектродные емкости, пФ:		
проходная пентода	$\leqslant 0,6$	$\leq 0,6$

	Продолжен ие
между анодом триода и 1-й сеткой пентода	,08 ≪0,08
лем	
ток анода пентода в импульсе, мА ≥13 обратный ток 1 й сетки пентода, мкА <2 обратный ток сетки триода, мкА <1 крутизна характеристики триода, мА/В . ≥3,	_
Предельные эксплуатационные данны	1e
180	Ф5П PCL85
Ток накала, мА	-315 285 315
лем, В	<u>200</u>
Триодная часть	
Напряжение анода, В	250 550 15
при $\tau \leqslant 0.8$ мс и $Q \geqslant 25$	100 200 0,5
при автоматическом смещении 3,3 при фиксированном смещении 1	3,3 1
Пентодная часть	
Напряжение анода, В	250 550 2
при $U_{c2}=150~B$	<pre>> 40 >> 52 250 550 75 7 1,5</pre>
Сопротивление в цепи 1-й сетки, МОм: при автоматическом смещении 2,2 при фиксированном смещении 1 Интервал рабочих температур окружающей	2,2 1
среды, °C . ,	

Анодные характеристики триодной части.

Анодно-сеточные характеристики триодной части.

Анодные характеристики пентодной части.

Анодно-сеточные характеристики пентодной части.

5.3. ТРИОД-ГЕПТОДЫ

6И1П, 6И1П-В, 6И1П-ЕВ. Аналог ЕСН81

Триод-гептод для преобразования частоты в радиовещательных приемниках и других радиотехнических устройствах.

Оформление — в стеклянной оболочке, миниатюрное (рис. 21П). Macca 20 г.

Основные параметры

при $U_{\rm H}=6,3$ В, $U_{\rm a.r}=100$ В, $U_{\rm c.r}=-2$ В (для ЕСН81 $U_{\rm c.r}=0$ В), $U_{\rm a.r}=250$ В, $U_{\rm c2r}=100$ В, $U_{\rm c1r}=-2$ В, $U_{\rm c3r}=0$ В

				
Наименование	6И1П	6И1П-В	6И1П-ЕВ	ECH81
Ток накала, мА	300±25 < 20	300±25 < 20	300±25 < 20	300±25
Триодная часть		ļ		
Ток апода, мА	6,8 <u>+</u> 3	6,8 <u>±</u> 3	6,8±3	13,5+6 -3.5
Обратный ток сетки, мкА	<0,5	< 0,2	≪ 0,5	< 1
Крутизна характеристики, мА/В*	2,20,5	2,30,6	2,30,6	3,5+1,3
То же при $U_{\rm H} = 5.7$ В, мА/В .	≥1,5	≽ 1,5	≽1,5	-

Наименование	6M1U	6И1П-В	6И1П-ЕВ	ECH81
Коэффициент усиления*	23±5	18±3	18 <u>+</u> 3	22+5
Межэлектродные емкости, пФ: входная	2,6±0,6	2,5±0,4	2,5±0,4	2,6±0,4
выходная	2±0,3	1,9±0,25	$1,9\pm0,25$	1,8±0,4
проходная	1±0,2	1,15±0,2	1,15±0,2	1.0 <u>+</u> 0,4
Гептодная часть				
Гок анода, мА	3,8 ^{+1,2} -1,6	3,3 ^{+1,2} -0,4	$3,6+1,4\\-1,5$	6,5±2,5
Ток 2-й и 4-й сеток, мА	6,5+3,5	6 <u>+</u> 2	$6,5 + \frac{3}{-2},5$	3,8±1,9
Ток 3-й сетки гептода и сетки триода, мкА	200±30	180±30	180±30	
Обратный ток 1-й сетки, мкА .	<0,5	< 0,5	≪0,5	≪i
Внутреннее сопротивление, МОм	0,7	0,7	0,7	
Крутизна преобразования: при $U_{\rm H}\!=\!6,3$ В	0,77	0,75	0,75 _{-0,25}	0,77 _{- 0,17}
при U _н =5,7 В	≥0,45	≥0,45	≥0,55	≥0,44
Межэлектродные емкости, пФ: входная по 1-й сетке	5,1±1	5,1±1	5,1±1	4,8+1 -0.8
входная по 3-й сетке	6,3 <u>+</u> 1,3	5,9±0,9	5,9±0,9	6±1
выходная	7,4±1,4	6,6±1,1	6,6±1,1	7,9+0,9 -1,6
проходная по 1-й сетке между анодами гептода и	< 0,006	<0,007	<0,007	0,007
трнода	<0,24	<0,24	<0,24	0,20,3
между анодом гелтода и сеткой триода	<0,1	< 0,1	<0,1	<0.09
между анодом гептода и 3-й сеткой гептода, соединенной с сеткой триода	≪ 0,35	< 0,35	< 0,35	<0,35
между 1-й сеткой гептода и анодом триода	<0, 05	<0,06	<0,06	≪0,06
между 1-й сеткой гептода и 3-й сеткой гептода, сое- диненной с сеткой триода между 1-й сеткой гептода и	≪ 0,45	< 0,45	<0,45	
сеткой триода	<0,17	<0,17	<0,17	<0,17
Наработка, ч	≥5000	≥2000	≥5000	-
Критерии оценки: обратный ток 1-й сетки три- ода, мкА	_	≪1	∠ 1	≪2
крутизна характеристики триода, м A/B	≥1.4	≥1,5	≽1,5	≥1,8
крутизна преобразования гентода, мА/В	≥0,45	≥0,5	≥ 0,5	≥0,43
				

^{*} Для ЕСН81 при U_{c1} =-0,5 В.

Наименование	6И1П	6И1П-В	6И1П-ЕВ	ECH81
Напряжение накала, В	5,7—7	5,7—7	6-6,6	5,7—7
Напряжение анода триода, В	250	250	25 0	250
То же при запертой лампе, В	550	550	500	550
Напряжение анода гептода, В	300	300	300	300
То же при запертой лампе, В	550	500	500	550
Напряжение 2-й и 4-й сеток, В	300	300	30 0	300
То же при запертой лампе, В	55 0	50 0	500	550
Напряжение между като- дом и подогревателем, В Ток катода гептода, мА Ток катода триода, мА	100 12,5 6,5	200 12,5 10	200 12,5 10	100 12,5 6,5
Мощность, рассеиваемая анодом гептода, Вт	1,7	1,7	1,55	1,7
Мощность, рассеиваемая анодом триода, Вт	0,8	0,8	0,75	0,8
Мощность, рассеиваемая 2-й и 4-й сетками, Вт	1	1	0,9	1
Сопротивление в цепи сетки триода, МОм	0,5	0,5	0,5	.3
Сопротивление в цепи 1-й сетки гептода, МОм	3	3	2	3
Сопротивление в цепи 3-й сетки гептода, МОм	3	3	3	3
Температура баллона лам- пы, °С	120	220	150	_
Устойчивость к внешним воздействиям:				
ускорение при вибра- ции в диапазоне частот 5—600 Гц g	2,5	10	10	
ускорение при много- кратных ударах g	35	150	150	
ускорение при одиноч- мых ударах g		500	500	_
ускорение постоянное g		100	100	_
интервал рабочих тем- ператур окружающей среды, °С	От -60 до +70	От —60 до $+200$	От —60 до +2 00	_

Анодные характеристики.

Анодно-сеточные характеристики.

Анодные характеристики гептодной части.

Анодно-сеточные характеристики гептодной части.

6И4П

Триод-гептод для использования в помехозащищенном амплитудном селекторе и для усиления синхро-импульсов в телевизионных приемниках.

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 15 г.

Основные параметры при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a.r}\!=\!100$ В, $R_{\rm K}\!=\!110$ Ом, $U_{\rm a.r}\!=\!14$ В, $U_{\rm c.l}\!=\!14$ В, $U_{\rm c.l}\!=\!0$ В

Ток накала

.... (450±40) мА

Tok Hakasia	(100,000)
Триодная часть	
Ток анода	(9 ± 3) мА $\leqslant 0,5$ мкА $\leqslant 100$ мкА $\leqslant 1,3$ В 9_{-2} мА/В 50 ± 10 $(3\pm0,8)$ пФ $(1,7\pm0,5)$ пФ $(1,8\pm0,5)$ пФ
Гептодная часть	
Ток анода	1,5 _{-0,6} mA ≪100 mkA ≪100 mkA
Напряжение тельное: отсечки электронного тока отрицательное: по 3-й сетке по 1-й сетке ток сеток 2-й и 4-й ток сеток 2-й ток сето	≤1,3 B ≤1,3 B ≤2 mA 1,1 mA/B
входная	$(4.5\pm0.8) \text{ n}\Phi$ $(5\pm1) \text{ n}\Phi$ $\ll 0.1 \text{ n}\Phi$ $\ll 0.25 \text{ n}\Phi$ $\ll 0.15 \text{ n}\Phi$ $\ll 0.01 \text{ n}\Phi$ $\ll 0.5 \text{ n}\Phi$ $\ll 0.005 \text{ n}\Phi$ $\ll 0.03 \text{ n}\Phi$ $\gg 1500 \text{ q}$
Критерии оценки: крутизна характеристики триода	≽5,5 мА/В
ток анода гептода	≥0,7 mA

	5 7 7 D
Напряжение накала	5,7—7 B
Напряжение анода:	050 0
триода	250 B
гептода	250 B
Напряжение анода без токоотбора (при $I_a = 10$ мкA):	
триода	550 B
гептода	550 B
Напряжение 2-й и 4-й сеток	50 B
Напряжение 2-й и 4-й сеток без токоотбора (при	
$I_0 = 10 \text{ MKA}$)	550 B
Напряжение 1-й сетки (отрицательное) в импульсе	100 B
Напряжение 1-и сетки (отридательное) в импульсе	
Напряжение 3-й сетки (отрицательное) в импульсе	150 B
Напряжение сетки триода (отрицательное) в им-	200 D
пульсе	200 B
Мощность, рассеиваемая анодом:	
триода	1,5 Вт
гептода	0,5 Вт
гептода	0.5 Вт
Наибольший ток катода:	•
триода	20 мА
гептода	8 мА
I I TOTAL TO	O MIZI
Напряжение между катодом и подогревателем:	100 B
триода	100 B
гептода	
Сопротивление в цепи сетки триода	3 МОм
Сопротивление в цепи 1-й сетки	3 МОм
Сопротивление в цепи 3-й сетки	3 МОм
Интервал рабочих температур окружающей среды.	От 60
and the second of the second o	до + 70°C

Анодные характеристики триодной части.

Анодно-сеточные характеристики триодной части.

Анодные характеристики гептодной части.

Анодно-сеточные жарактеристики гептодной части.

5.4. ДВОЙНЫЕ ПЕНТОД-ТРИОДЫ

6СР1П

Двойной пентод-триод для работы в качестве фазоинвертора и двухтактного усилителя в оконечных каскадах усиления низкой частоты в радиоприемной и телевизионной аппаратуре широкого применения.

Оформление — в стеклянной оболочке, миниатюрное (рис. 21П). Масса 20 г.

Основные параметры	
при $U_{\rm B} = 6.3$ В, $U_{\rm a.r} = 40$ В, $U_{\rm a.n} = \dot{U}_{\rm c2n} = 250$ В, $U_{\rm c.r}$	$=U_{cin}=-9$ B
Ток накала	(600±50) мА (24±8) мА
Ток анода триода	$11^{+0.3}_{-0.6}$ MA
Ток 2-й сетки каждого пентода (суммарный) Обратный ток сетки триода и 1-й сетки первого пен-	9—15 мА
тода (суммарный)	≤ 0,5 MKA
Обратный ток 1-й сетки второго пентода Крутизна характеристики каждого пентода	≪0,5 мкА 4,5—
Коэффициент усиления триода	6,0 мА/В 1.1±0.3
Внутреннее сопротивление триода	(23±7) KOM
Напряжение виброшумов	6—8,5 Вт ≪250 мВ
Наработка	≥1500 q
Критерии оценки: выходная мощность каждого пентода	≽4,5 Br

Напряжение какала	5,7—7,0 B 300 B 550 B 300 B 550 B 100 B 40 MA 1,2 MOM 8 B _T
То же при отсутствии напряжения возбуждения	3,5 B _T
Устойчивость к внешним воздействиям: ускорение при вибрации	2,5 g 35 g От — 60 до + 70°C

РАЗДЕЛ ШЕСТОЙ

СПРАВОЧНЫЕ ДАННЫЕ СПЕЦИАЛЬНЫХ ЛАМП

6.1. ЭЛЕКТРОННО-СВЕТОВЫЕ ИНДИКАТОРЫ

Напражение накала

1E4A-B

Электронно-световой индикатор повышенной надежности для индикации уровня напряжения в полупроводниковых схемах.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 7Б). Масса 2,5 г.

Примечание. На схеме соединения электродов *а* — анод (покрыт люминофором).

1-1 5 B

Основные параметры

при	$U_{\rm II} = 1$	В,	$U_{\rm a}=150$	В,	$U_{\rm c} = -0.25$	В	
-----	------------------	----	-----------------	----	---------------------	---	--

Ток накала									٠		≪25 мА
Ток анода											
Обратный ток сетки .											$\leq 0.5 \text{ MKA}$
Запирающее напряжение											
Напряжение виброшумов	5	(при	R	a =	2	кO	м)	í			≪100 мВ
Наработка		· · .					Ċ				≥ 500 ฯ
Критерий оценки:											
обратный ток сетки .											≪l mkA
•											

	anpantenne	nakasia	•	 •	•	•	•	•	•	•	•	•	•	1, 1, 1
H	апряжение	анода				,								200 B
	о же приз													
	апряжение													
T	ок катода					,								1,5 mA
	ющность, р													
	опротивлен													
	стойчивость													,
	ускорени							20)	200	0	Γц		10 2

	сшин вооденеть			
ускорение при	и вибрации в диа	пазоне 20 —2	2000 Гц.	10_g
ускорение пр	и многократных	ударах .		150 g
ускорение пр	и одиночных уда	pax		. 500 g
ускорение пос	стоянное			. 100 g
интервал раб	очих температур	окружающей	среды .	Or 60
•	,			до + 125 ℃

6Е1П. Аналог ЕМ80

Электронно-световой индикатор для визуальной настройки радиоприемников и магнитофонов.

Оформление — в стеклянной оболочке, миниатюрное (рис. 16П). Масса 26 г.

Основные параметры

при $U_{\rm H}\!=\!6,\!3$ B, $U_{\rm a}\!=\!100$ B, $U_{\rm a,K}\!=\!250$ B (для EM80 $U_{\rm a,K}\!=\!100$ B), $U_{\rm c}\!=\!-2$ B

6E1Π	EM30
Ток пакала, мА	300
Ток анода, мА	2,55
Ток анода кратера, мА	2,3
Обратный ток сетки триода, мкА	
Крутизна характеристики, мА/В ≥0,5	$\geqslant 0,7$
Коэффициент усиления	
Напряжение отсечки тока анода (отрицатель-	
ное), В	10
Наработка, ч	-

Предельные эксплуатационные данные

								6E1Π	EM80
Напряжение накала,	В							5,7-6,9	5,7-6,9
Напряжение анода, В								250	300
То же при включении	ла	мпы	, В					350	550
Напряжение анода кра	ате	oa, E	3.					150250	160-300
То же при включении	ла	мпы	, B					350	550
Напряжение между									
лем, В								100	100
Мощность, рассеиваем	ая	ано	ДОМ	ι, Ι	Вτ			0.2	0,2
Сопротивление в цепи	ce	тки.	MO	Òм				3	3
Интервал рабочих т									
среды								$O\tau - 60$	
	•	• •	-	-	-	-		до+70 °С	

6E2Π

Электронно-световой индикатор для визуальной настройки радиоприемников с УКВ ЧМ диапазоном.

Оформление — в стеклянной оболочке, минитюрное (рис. 16П). Масса 20 г.

Основные параметры

при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a.r}\!=\!150$ В, $U_{\rm a.K}\!=\!250$ В, $U_{\rm c.r}\!=\!-4$ В
Ток накала
Ток утечки между катодом и подогревателем \lesssim 50 мкA Коэффициент усиления
входная \$3 пФ выходная \$7 пФ проходная \$1,2 пФ между анодами триодов \$0,3 пФ Наработка \$500 ч
Предельные эксплуатационные данные
Напряжение накала

6ЕЗП

Электронно-световой индикатор для визуальной настройки стереофонических магнитофонов.

Оформление — в стеклянной оболочке, миниатюрное (рис. 16П). Масса 26 г.

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 250$ В, $U_{\rm a.k} = 250$ В, $U_{\rm c} = 0$ В
Ток накала
Ток анода
Обратный ток сетки (при U_c = -2 В) ≪1 мкА
Ток утечки между катодом и подогревателем ≪20 мкА
Перекрытие светящихся секторов (при $U_c = -22 \mathrm{B}$) $> 1.5 \mathrm{mm}$
Расхождение светящихся секторов ≥ 12 мм
Наработка ≥ 1000 ч

Предельные эксплуатационные данные

Напряжение накала	5,7-6,9 B
Напряжение анода	. 300 В
Напряжение анода кратера	
Напряжение между катодом и подогревателем	. 100 B
Ток катода	
Мощность, рассеиваемая анодом	. 0,5 B _T
Сопротивление в цепи сетки	
Температура баллона лампы	. 120 ℃
Интервал рабочих температур окружающей среды .	
	до + 70 °С

6E5C

Электронно-световой индикатор для визуальной настройки радиоприемников и магнитофонов.

Оформление — в стеклянной оболочке, с октальным цоколем (рис. 5Ц). Масса 42 г.

Основные параметры

при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a}\!=\!250$ В, $U_{\rm a.s.}\!=\!250$ В, $U_{\rm c}\!=\!-4$ В

Ток накала	
Гок анода	иΑ
Ток анода кратера $(3\pm2,6)$ мА	
Обратный ток сетки	
Крутизна характеристики	мA/B
Коэффициент усиления	
Напряжение отсечки тока анода (отрицательное) 5±4,5 В	
Наработка	

Напряжение	накала								5,7 —6,9 B
Напряжение	анода .								250 B
Напряжение	анода кр	атера	١						140—250 B
Напряжение	между к	атодо	ом и	под	огре	зате	лем	٠	100 B
Интервал ра	бочих те	ипера	тур	окру	жаю	щей	cpe	9-	
ды							٠		От — 60
									до + 70 ℃

6.2. ЭЛЕКТРОМЕТРИЧЕСКИЕ ЛАМПЫ

3M-4

Электрометрический триод для входных каскадов различных электрометрических устройств.

Оформление — в стеклянной оболочке, миниатюрное (рис. 8П). Масса 15 г.

Основные параметры

при $U_{\mathbf{a}} = 1,3$ В, $U_{\mathbf{a}} = 8$ В, $U_{\mathbf{c}} = -1,7$ В	
Ток накала	(24±4) MA ≤200 MKA ≤7.10-14 A
Крутизна характеристики	2,2
Напряжение виброшумов (при $R_{\rm a} = 10~{\rm kOM})$	≪ 50 мВ
Критерии оценки: ток сетки	$\leq 2 \cdot 10^{-13} \text{ A}$ > 60 MKA/B
Предельные эксплуатационные данные	
Напряжение накала	9-10 B
Устойчивость к внешним воздействиям: ускорение при вибрации на частоте 50 Гц ускорение при вибрации в диапазоне частот 5—	10 g
600 Гц	150 g

3M-5

Электрометрический тетрод сдвоенный для входного каскада различных электрометрических устройств.

Оформление — в стеклянной оболочке, бесцокольное (рис. 2C). Macca 15 г.

Основные параметры

при $U_{\rm H} = 3{,}15$ В, $U_{\rm a} = 5$ В, $U_{\rm c.y} = -3$ В, $U_{\rm c.y} = -3$	
Ток накала	. 1,1 . 2,1 B . ≤5 MB . (1,8±0,6) πΦ . ≥1000 ч
Предельные эксплуатационные данн	
Напряжение накала	. 3,6—4,4 B . 5 B
ускорение при многократных ударах	. 35 g

ЭМ-6

Электрометрический сдвоенный тетрод для входных каскадов различных электрометрических устройств. Оформление — в стеклянной оболочке, миниатюрное (рис. 23П). Масса 16 г.

при $U_{\rm H} = 4.5$ В, $U_{\rm a} = 5$ В, $U_{\rm c.y} = -3$ В, $U_{\rm c}$	$_{1.K} = 3.6 \text{ B}$
Ток накала	
Ток анода каждого тетрода ,	75 _40 мкА
Ток управляющей сетки	$\leq 5 \cdot 10^{-15} \text{ A}$
Ток катодной сетки	
Кругизна характеристики каждого тетрода	$45\substack{+25\-20}$ мк A/B
Коэффициент усиления	1,1
Потенциал свободной сетки,	2 B

	Напряжение	виброшу	мов (1	при Ка=	= 10 KOM)	≪ 2 мв
	Емкость вхо,	дная					1,8 пФ
	Наработка.						≥ 500 ч
	Критерий оце	енки:					
	крутизна	характе	ристик	и кажд	ого тетр	ода .	≥20 mkA/B
		•	•		_		
		Предел	ьные я	эксплуат	ационны	е дан	ные
	Hann awayya			_			(4.5±0.4) B
	папряжение	nanana				• •	(4,5±0,4) B (5±0,5) B
	напряжение	анода .				• •	(3±0,0) B
	Напряжение	катоднои	сетки	1			(3,0±0,3) D
•	Напражение	межлу к	STORON	и и пол	огревате	лем .	5 B
	Интервал рас	бочих тем	перату	n okova	кающей с	педы	От−60 до + 70 °C
	Pour Par			E E 1		- F 7::1	•

ЭM-7

Электрометрический триод для входных каскадов

электрометрических устройств. Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 30Б). Масса 4 г.

при $U_{\rm H} = 1$ В, $U_{\rm a} = 7$ В, $U_{\rm c} = -2$ В												
Ток накала												
Крутизна характеристики												
Коэффициент усиления												
Потенциал свободной сетки (отрицательный)												
Межэлектродные емкости: входная												
выходная												
крутизна характеристики												
ток сетки												
Напряжение накала												
ускорение при вибрации в диапазоне частот 20— 600 Гц												

	проволжен ие
ускорение при многократимк ударак	. 150 g
ускорение при одиночных ударах	. 500 g . 100 g
интервал рабочих температур окружающей среды	. От — 40 до + 60 °С

Полуэлектрометрический пентод для усиления переменных напряжений от датчиков с большим внутренним сопротивлением. Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 31Б). Масса 4 г.

Основные параметры

при $U_{\rm m}\!=\!6,\!3$ В, $U_{\rm a}\!=\!15$ В, $U_{\rm c2}\!=\!15$ В, $U_{\rm c1}\!=\!-2,\!5$ В, $U_{\rm c3}\!=\!0$ В

Ток накала	±15) мА
Ток анода	0.9 0.8 мА
Ток 1-й сетки	0-11 A
Ток 2-й сетки	0-12 A
Ток утечки между катодом и подогревателем ≤10	мкА
Крутизна карактеристики),4 0,3 mA/B
Коэффициент усиления	
To we now $U_a = 20$ B. $U_{c2} = 13$ B 60	
Потенциал свободной сетки (отрицательный) 1,7 І	2
Напряжение виброшумов (при R_a =2 кОм) ≪30	мВ
Межэлектродные емкости:	
входная 4,5 г	ıΦ
выходная	ıΦ
выходная	ıΦ
При в в в в в в в в в в в в в в в в в в в	· · ·
параоотка	<i>i</i> U ų
Критерий оценки: ток 1-й сетки	

Напряжение	накала											6-6,6 B
Напряжение	анода				•	•	٠		•	٠		20 B
Напряжение								٠		•	•	15 B
Устойчивость										~~		
ускорени												10
2000 Гц ускорени												

Напряжение накала . .

ЭM-9

Двойной триод для работы в электрометрических устройствах.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 39Б). Масса 6 г.

. . (6-6.6) B

Основные параметры

при $U_{\rm H}$ =6,3 В, $U_{\rm a}$ =7 В, $U_{\rm c}$ =-2 В

Ток	накал	а.															(90±10) мА
Ток	анода			,													160 _8 0 мкА
Ток	сетки											•					$\lesssim 5 \cdot 10^{-13} \text{ A}$ (110±40) MA/B 1,6
Крут	изна	xap	ak'	rep	ист	ΉΚ	И								٠		$(110\pm 40) \text{ mA/B}$
Коэф	фицие	HT.	ycı	ле	ния	Ŧ											1.6
Поте	нциал	CBC	обо.	пно	й	сет	ки										-1,5 B
																	≪100 MB
Fuvo	omi n	20 71	100		· J		•	•	٠	•	•	•	•	•	•	•	1 пФ
LMKO	CID BY	коді	пая	•	•	•	•	•	•	٠	•	٠	٠	•	•	•	1 114
Hapa	ботка																≽500 ч
Крит	ерии с	цен	ки:														
T	ок се	тки															≪10·10 ⁻¹³ A
И	змене	ние	кр	ути	ізн	Ы	хa	pai	кте	рис	сти	ки					≪10·10 ⁻¹³ A ≪±40%

•					•		•	•	•	(,-,	_
Напряжение	между	катодом	и по	догрев	ател	ем.				5 B	
Устойчивост	ь к внеш	ним возд	ейств	:мям							
ускорени	не посто	янное .						٠		100 g	
ускорени	е при и	иногокра:	гных	удара	х.					150 g	
интервал	г рабочи	их темпер	атур	окрух	каюц	цей	cpe,	ды		От — 60 до 85 °С	:

Электрометрический пентод для выходных каскадов электрометрических усилителей. Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 27Б). Масса 4 г.

Основные параметры

при
$$U_{\rm H}=0.7$$
 В, $U_{\rm a}=9$ В*, $U_{\rm c2}=9$ В*, $U_{\rm c1}=-2$ В

Ток накала														≪16,5 mA
Ток накала Ток анода														3 мкА
Ток 1-й сетки.									Ċ	Ċ		Ċ	Ī	≪9.10-15 A
Сопротивление в 1														
Сопротивление в	цепі	и 1-	и (сеті	ΚИ.						•		•	1013 OW
Напряжение вибро														
частоте 50 Гц с														
						, .	•	•	•	•	•	•	•	410 mm
Межэлектродные с	MKO	сти:												
входная выходная .														≪7,5 пФ
рыходиая	-		•	-	•		-			-		_	_	<20 5 πΦ
выходная .	•		•	•		•	•	•	•	٠	•	٠	•	20,0 11
проходная .													٠	€ 0,2 πΨ
Наработка														≽2000 ч
Критерии оценки:	•	• •	•	•	• •	•	•	•	•	•	•	-	•	
критерии оценки:														-F 10 .14 1
ток 1-й сетки								¥		٠	٠	•	4	0.10-14 A

Напряжение накала . Напряжение анода * . Напряжение 2-й сетк Ток анода Температура баллона Устойчивость к внешни	и*	• •	• •	• •	•		. 6—10 В . 12 В . 4 мкА	,
ускорение при виб	раци	и в л	иапаз	воне	част	от 5-		
2000 Гц	٠						. 10 g	
ускорение при мне	ргокра	атных	к уда	pax .	•		. 150 g	
ускорение при од	нрони	ых у	дарал		TOTTE	 	, 500 g	
интервал рабочих ды	Temil	epary	p ok	hymo	ЮЩС	n cp	. От — 60	
	- •	•					до + 60 °C	

[•] Напряжения указаны относительно 1-й сетки.

Тетрод электрометрический для логарифмирования и усиления тока, изменяющегося в широких пределах.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 31Б). Масса 4 г.

при $U_{\rm H}=6.3$ В, $U_{\rm a.HCT}=18$ В, $R_{\rm a}=20$ кОм, $U_{\rm c2MCT}=6$ В, $R_{\rm c2}=20$ кОм, $U_{\rm c1}=-0.5$ В
Ток накала
пазона логарифмирования)
10 ⁻¹² —10 ⁻¹¹ A
10^{-5} — 10^{-4} A от ее значения при U_{c1} = -0.5 В $\leqslant \pm 30\%$ Напряжение виброшумов
изменение крутизны характеристики ≪±30% изменение тока анода ≪±30% коэффициент сеточного логарифмирования при изменении входного тока:
от 10 ⁻¹² до 10 ⁻¹¹ А
Предельные эксплуатационные данные
Напряжение накала
ускорение в днапазоне частот 5—2000 Гц 6 g ускорение постоянное
ды

Тетрод электрометрический с малым уровнем шумов для работы в цифровых приборах и измерительных схемах.

Оформление — в стеклянной оболочке, сверхминиатюрное (рис. 31Б). Масса 5 г.

Основные параметры

Ocnobnic napamerpia									
при $U_{\rm B} = 6.3$ В, $U_{\rm a} = 12.5$ В, $U_{\rm c1} = -2$ В, $U_{\rm c2} = 12.5$ В									
Ток накала									
Ток анода									
Ток 2-й сетки									
Ток 1-й сетки									
Крутизна характеристики									
Коэффициент усиления									
Эквивалентное сопротивление низкочастотных									
шумов на частоте 100 Гц									
Наработка ≥ 2000 ч									
ток 1-й сетки.									
ток 1-й сетки									
эквивалентное сопротивление низкочастотных									
шумов									
Предельные эксплуатационные данные									
Напряжение накала									
Напряжение яноля									
Напражение межну католом и пологревателем . 20 В									
Ток катода									
Tok katoga									
Устойчивость к внешним воздействиям:									
ускорение при вибрации 2,5 g									
ускорение при многократных ударах 35 g									
интервал рабочих температур ОКВУЖАЮЩЕЙ									
среды	3								

6.3. МЕХАНОТРОНЫ

6МДХ1Б

Механотрон для измерения избыточных давлений в диапазоне 0,5 · 105 Па в контрольно-измерительных устройствах. Оформление-в металлостеклянной оболоч-

ке (рис. 22С). Масса 12 г.

Основные параметры

при $U_{\rm H}=6.3$ B, $U_{\rm al}=U_{\rm a2}=10$ B
Ток накала
Ток подвижного анода
Ток неподвижного анода $8^{+2}_{-4,5}$ мА
Внутреннее сопротивление
мкА/Па
Нестабильность (дрейф) выходного сигнала во времени (при $R_{\rm a}{=}2$ кОм)
Чувствительность к изменениям температуры окру-
жающей среды (при $R_a=2$ кОм)
Критерии оценки: чувствительность по току к давлению ≥ 4,5·10—3 мкА/Па
Предельные эксплуатационные данные
Напряжение накала
ускорение при вибрации в диапазоне частот 10-

6МДХ3Б

Механотрон для измерения избыточных давлений в диапазоне 0—106 Па в контрольно-измерительных устройствах. Оформление—в металлостеклянной оболочке (рис. 22C). Масса 12 г.

				пр	И	U_{1}	==	6,3	В	, <i>l</i>	Jai	=	Ua2:	= 1	0	В		
Ток	накала	١.																127^{+23}_{-13} мА
Ток	анода .											,						$8^{+2,0}_{-4,5}$ MA
Ток	неподв	ижн	ого	a	но,	ца												8 ⁺² ,0 мA
Внут Ч уво	греннее ствител и 105 г	СО ЬНОО	про	ти по	ВЛ(Т	ени ок	ie y	к,	цав	вле	ни		(пр	И	да	вл	e-	≪2 KO _M >10 ⁻³ MK Δ /IIa

Прод олжен ие
Нестабильность (дрейф) выходного сигнала во времени (при $R_a=2$ кОм)
Предельные эксплуатационные данные Напряжение накала
6MH16

Критерии оценки:

Сдвоенный триодный механотрон для прецизионных измерений линейных перемещений в диапазоне ± 100 мкм и сил в диапазоне от 0 до 10^{-1} H в контрольноизмерительных устройствах.

Оформление-в металлостеклянной оболочке, сверхминиатюрное (рис. 21С). Масса 8 г.

Основные параметры при $U_{\rm H} = 6.3$ В, $U_{\rm al} = U_{\rm a2} = 100$ В и $U_{\rm c} = -2$ В

Ток накала (200±20) мА
Ток накала
Крутизна характеристики мА/Б
Внутреннее сопротивление
Чувствительность по напряжению к перемещению . ≥ 200 мВ/мкм
Чувствительность по напряжению к силам ≥1,5×
$\times 10^{6} \text{ MB/H}$
Чувствительность кинематической системы к силам ≥9.102 мкм/Р
Собственное измерительное усилие
Нестабильность (дрейф) выходного сигнала во вре-
мени (при $R_a = 50$ кОм)
Чувствительность к изменениям температуры окру-
жающей среды (при $R_2 = 50 \text{ кOm}$) $\leq 0.2 \text{ мкм/°C}$
Наработка

чувствительность по напряжению к перемеще-

≥ 180 мВ/мкм

Предельные эксплуатационные данные

Напряжение	накала							, .				6-6,6 B
Напряжение	анода								• ,			150 B
Напряжение	сетки	OTD	ица	тель	ное							0,5—4 B
Ток анода.	,									•	•	2,5 мА
Мошность, п	ассеива	ема	я а	нодо	M.							1 BT
Наибольшая	сила. г	IDUJ	юж	енна	як	KOF	шу	шт	кри			0,4 H

6МУХ6П

Механотрон для измерения в вертикальной плоскости углов поворота в диапазоне ±5° в измерительной аппаратуре.

в измерительной аппаратуре. Оформление — в стеклянной оболочке, миниатюрное (рис. 12П). Масса 25 г.

Основные параметры

при $U_{\rm H} = 6,3$ В, $U_{\rm a} = 20$ В

Ток накала
Ток 1-го анода
Ток 2-го анода
Внутреннее сопротивление
Чувствительность по току к углу поворота (при
повороте в пределах ±1 град) ≥1 мА/1 град
Hunombumo di moomi, il nomonomino mondonatunti olini.
чувствительность к изменению температуры окруч жающей среды (при $R_a=1$ кОм)
Нестабильность (дрейф) выходного сигнала во угл. мин
Нестабильность (дрейф) выходного сигнала во времени (при $R_a=1$ кОм)
· · · · · · · · · · · · · · · · · · ·
Наработка

Toy augra												14-16 MA
Напряжение	анода				•							20 B
Напряжение	накала	•	•	•	٠	•		•	•	٠	٠	6-6,6 B

6МХ1Б

Межанотрон с одним подвижным анодом для прецизионного измерения динейных перемещений в сил в контрольно-измерительных устройствах широкого применения.

Оформление—в металлостеклянной оболочке, сверхминиатюрное (рис. 33Б). Масса 5 г.

Основные параметры при $U_{n}=6.3$ В. $U_{n,1}=U_{n,2}=10$ В

$npn \ O_{\mathbf{a}} = 0, 3 \ B, \ O_{\mathbf{a}_1} = 0 \mathbf{a}_2 = 10 \ B$	
Ток накала	(200±20) м A 10 мA
бора (при симметричном расположении анодов по отношению к катоду)	≪1,2 кОм
щениям (при смещении штыря от нулевого по- ложения на ±10 мкм)	
(при нагрузке штыря от нулевого положения на $\pm 0.5 \cdot 10^{-2}$ H)	$\gg 2.5 \cdot 10^2 \text{ MA/H}$
лам: в рабочем положении в направлении, перпендикулярном рабочему	≥1·104 MKM/H ≤3·103 MKM/H
Изменение рабочей чувствительности в диапазоне измеряемых перемещений.	≪4%
ружающей среды	<0.08 MKM/Ч
Резонансная частота кинематической системы (с закрепленным штырем)	
Критерий оценки: статическая чувствительность по току к пере- мещениям	

Напряжение	накала									•					6-6,6 B
Напражение	anona		_	_											ע טו
Ток акола							_	_	_	_	-				IZ MA
Сила прило:	женная	ĸ	KOH	IIV	111	ТЪ	ıря								2.10 = 11
Пиятизон из	MengeMi	J.X	пеп	ем	eЦ	ıeı	ии			•		•	•	•	O-140 MKM
Диалазон из	вмеряем	Ы	си	Л				6	•		٠	•	٠	•	±0,5·10 ⁻² H

6MX1C

Механотрон с двумя подвижными анодами для прецизионного измерения линейных перемещений и сил в контрольноизмерительных устройствах широкого применения.

Оформление—в металлостеклянной оболочке, с октальным цоколем (рис. 17Ц). Масса 35 г.

Основные параметры

при $U_{\rm H} = 6.3$ В, $U_{\rm al} = U_{\rm a2} = 10$ В

Ток накала	(170±15) мА (7,5±2,5) мА
Внутреннее сопротивление каждой половины прибора *	≪1,5 кОм
щении штыря от нулевого положения на	
±10 мкм) *	≥30 мкА/мкм
Чувствительность по току к силам *	$\geq 2 \cdot 10^4 \text{ MKA/H}$
Чувствительность к изменениям температуры окружающей среды (при $R_a = 1$ кОм)	<0,05 MKM/°C
Нестабильность выходного сигнала во времени (при $R_a = 1$ кОм)	
Вариация показаний (при Ra=1 кОм и смещении	•
штыря от нулевого положения на 100 мкм)	≤ 0.04 MKM
Собственное измерительное усилие	≪15·10-2 H
Наработка	≽4000 ч
Критерий оценки: чувствительность по току к перемещениям	≥28 мкА/мкм

^{*} При симметричном расположении анодов по отношению к катоду.

напряжение	накала	•	• •	•	•	٠	•	•	٠	٠	٠	•	٠	٠	00,0 B
Напряжение	анода	,		•					•						17 B
Ток анода.															10 мА
Сила, прилог	женная	к к	энцу	ш	ты	ря	٠								0,3 H
Диапазон из	вмеряеми	Χk	пер	ем	еще	ени	Й	•							±100 мкм
Диапазон из	меряемы	x cı	ΑЛ.												±0,1 H
Интервал ра	бочих т	емпе	рат	уp	ок	руг	ка	юш	ей	c	ред	ы	٠	•	От — 25 ло + 50 °C

6МХ2Б

Механотрон с одним подвижным анодом для прецизионного измерения линейных перемещений и сил в контрольно-измерительных устройствах широкого применения.

Оформление—в металлостеклянной оболочке, сверхминиатюрное (рис. 34Б). Масса 5 г.

Основные параметры при $U_{\rm H}$ =6,3 B, $U_{\rm a1}$ = $U_{\rm a2}$ =10 B

Ток накала (200±20) мА
Ток каждого анода $(9\pm 2,5)$ мА
Внутреннее сопротивление каждой половины прибо-
ра
Чувствительность по току к перемещениям ≥ 40 мкА/мкм
Чувствительность по току к силам ≥5.104 мкА/Н
Чувствительность к изменениям температуры окру-
жающей среды
Нестабильность выхолного сигнала во времени ≪0.08 мкм/ч
Собственное измерительное усилие
Резонансная частота кинематической системы (с за-
крепленным штырем)
Напаботка № 1000 ч

Предельные эксплуатационные данные

чувствительность по току к перемещениям . . ≥38 мкА/мкм

															6 6 6 B
Напряжение	накала			•	•	•	٠	•	•	•	٠	٠	٠	٠	00,0 5
Hannawauua	анола												•	٠	20 D
T															12 11113
Ток анода . Сила, прилог	wound t	,	VOUUV	ττ	TL	nα									15·10 ² H
Сила, прило.	женная г	`	KURHY	~**	7.01	7.4	•	•	•	•	٠		Ī		+100 MKM
Диапазон из	меряемы	Х	перем	еп	цен	nn	٠	•	•	•	٠	•	•	•	2.102 H
Диапазон из	меряемы	Х	сил	•	•	•	٠	٠	•	٠	٠	٠		٠	162.10 . 11

6MX3C

Критерий оценки:

Механотрон с двумя подвижными анодами для прецизионного измерения линейных перемещений и сил в контрольно-измерительных устройствах широкого применения.

Офомление — в металлостеклянной оболочке, с октальным цоколем (рис.18Ц). Масса 35 г.

Основные параметры

при $U_{\rm H}=6,3$ В, $U_{\rm al}=U_{\rm al}=10$ В

Ток накала
Ток каждого анода (23±5) мА
Ток каждого анода
Чувствительность по току к перемещениям ≥ 100 мкА/мкм
Чувствительность по току к силам ≥ 10 мкА/Н
Чувствительность к изменениям температуры окру-
жающей среды
Нестабильность выходного сигнала во времени <0,2 мкм/ч
Собственное измерительное усилие
Наработка
Критерий оценки:
чувствительность по току к перемещениям ≥ 95 мкА/мкм
The state of the s
Предельные эксплуатационные данные
Напряжение накала
Напряжение анода
Ток анода
Сила, приложенная к концу штыря
Пиапород приложенная к концу штыря, , , , , , , , , , , , , , , , , , ,
Диапазон измеряемых перемещений ±100 мкм Диапазон измеряемых сил ±0,1 Н

6MX4C

Механотрон с двумя подвижными анодами для прецизионного измерения линейных перемещений и сил в контрольно-измерительных устройствах широкого применения

Оформление — в металлостеклянной оболочке, с октальным цоколем (рис. 18Ц). Масса 35 г.

при $U_{\rm H} = 6.3$ В, $U_{\rm al} = U_{\rm a2} = 12$ В
Ток накала
Ток каждого анода
Внутреннее сопротивление каждой половины прибора
±50 мкм)
Чувствительность по току к силам (при нагрузке штыря от нулевого положения на ±5·10 ⁻² H) ≥10 ⁴ мкА/Н Чувствительность к изменениям температуры
окружающей среды

Продо лжени е
Собственное измерительное усилие
Предельные эксплуатационные данные
Напряжение накала .6—6,6 В Напряжение анода .20 В Ток анода .13 мА Сила, приложенная к концу штыря 0,7 Н Диапазон измеряемых перемещений ±500 мкм Диапазон измеряемых сил ±0,3 Н
6MX5C 35 78
Механотрон с двумя подвижными анодами для прецизионного измерения линейных перемещений и сил в контрольно-измерительных устройствах широкого применения. Оформление — в металлостеклянной оболочке, с октальным цоколем (рис. 18Ц). Масса 35 г.
Основные параметры
при $U_{\rm H}=6.3$ B, $U_{\rm al}=U_{\rm a2}=15$ B
Ток накала
Предельные эксплуатационные данные
Напряжение накала

6MX7C

Механотрон для прецизионных измерений перемещений в диапазоне ±70 мкм и измерения сил в диапазоне от 0 до ±0,1 Н в контрольно-измерительных устройствах. Оформление — в металлостеклянной оболочке (рис. 18Ц). Масса 35 г.

Основные параметры при $U_{\rm H}\!=\!6,3\,$ В, $U_{\rm a1}\!=\!U_{\rm a2}\!=\!12\,$ В

Ток накала	(170 ± 15) mA $\leqslant 2$ kOm > 35 mkA/mkm $> 2 \cdot 10^4$ mkA/H
Нестабильность (дрейф) выходного сигнала во времени (при $R_a = 1$ кОм)	≪ 0,02 мкм/ч
жающей среды (при $R_a = 1$ кОм)	≪0,05 MKM/°C
нагрузке на штыри)	≪0,25 Н ≽4000 ч
Критерии оценки: чувствительность по току к перемещениям.	≽33 мкА/мкм
Предельные эксплуатационные данны	e
Напряжение накала	6—6,6 B 17 B 0,35 H
Устойчивость к внешним воздействиям:	
ускорение при вибрации в диапазоне частот 35 Гц	1— 0,5 φ

РАЗДЕЛ СЕДЬМОЙ СПРАВОЧНЫЕ ДАННЫЕ НЕКОТОРЫХ ЗАРУБЕЖНЫХ ЛАМП

EABC80

Диод-двойной диод-триод для усиления напряжения низкой частоты и детектирования преимущественно в счетновычислительных устройствах.

Оформление - в стеклянной оболочке, миниатюрное (рис. 13П). Масса 12,5 г.

Напряжение анода триода . . .

Ток катода триода.

Обратное напряжение каждого диода в импульсе.

Напряжение между катодом и подогревателем .

Основные параметры при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a.r}\!=\!250$ В, $U_{\rm c}\!=\!-3$ В	
Ток накала	450 mA 1 mA ≪0,15 mA 1,2 mA/B 70 58 кОм 2 mA 5 кОм 25 mA 25 mA
Межэлектродные емкости:	
входная триода	1,9 пФ 1,4 пФ 2,3 пФ 1 пФ 4,5 пФ
Напряжение накала	5,7-6,9 B

300 B 350 B

150 B

5 мА

				Продолжение	
Ток 1-го диода: в импульсе					, 6 мА
среднее значение . Ток 2-го и 3-го диодов:	• • •			• •	. I MA
в импульсе					. 75 мА
среднее значение .				• •	. 10 MA.
Мощность, рассеиваемая	анодом	триода		• •	, I DI

FRF89

a_{η}	EDLOA
$\frac{g}{c_1} \xrightarrow{c_3} \frac{c_2}{c_1}$	Двойной диод-пентод для усиления высокой и промежуточной частоты и детектирования. Оформление — в стеклянной оболочке, миниатюрное (рис. 13П). Масса 16 г.
Осно	овные параметры
при $U_{\rm H} = 6.3$ В, $U_{\rm a.m} = 250$	0 B, $U_{c2}=100$ B, $U_{c3}=0$, $U_{c1}=-2$ B
Ток накала	2,7 MA 3,8 MA/B
2-й сетки	
Межэлектродные емкости:	,
входная пентода выходная пентода проходная пентода анод — катод каждого между диодами	, 5,2 пФ , ≤0,0025 пФ диода, 2,5 пФ
Предельные з	эксплуатационные данные
Напряжение накала	
Ток каждого диода: в импульсе	5 MA

Transparation transfer to the state of the s	0,. 0,0 =
Напряжение анода и 2-й сетки пентода	300 B
То же при включении лампы	550 B
Напряжение между катодом и подогревателем	100 B
Обратное напряжение анода каждого диода в импульсе	350 B
•	
Ток каждого диода:	
	E A

в имі	тульсе .												5 мА
средн	ее значе	ение .											0,8 мА
Ток като,	да пент	ода .											16,5 mA
Мощность	. paccer	ваема	ая а	нодо	м пе	нто	па.						2,25 BT
Мощности													0.45 Вт
Сопротив.	ление в	пепи	1-й	сет	ки .				•		•	-	3 МОм
Сопротив.	пение в	пепи	3-й	сет	ки.	:		•	:			-	10 кОм
		-, -,			•	•	•		•	~	-		

EC86

Триод высокочастотный для работы в качестве усилителя и смесителя (при частоте до $800~\text{M}\Gamma\text{ц}$).

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 14 г.

Основные параметры при $U_{\rm H}\!=\!6,3$ В, $U_a\!=\!175$ В, $U_c\!=\!-1,5$ В

Ток анода	180 mA 12 mA ≤0,15 mA 14 mA/B 70 ≤230 Om 125 Om 50 kOm
анод — сетка	2 nΦ 3,6 nΦ 0,2 nΦ ≪0,36 nΦ 6,6 nΦ 3,9 nΦ 0,3 nΦ 2,1 nΦ
Предельные эксплуатационные данные Напряжение накала	В
Сопротивление в цепи сетки	В

Температура баллона лампы

165 °C

EC88

Триод для усиления напряжения высокой частоты,

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 14 г.

Основные параметры

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 160$ В, $R_{\rm K} = 100$ Ом	
Ток накала	165 mA 12,5 mA 13,5 mA/B 65 ≪240 Om
Межэлектродные емкости: анод — сетка	1,2 пФ 1,7 пФ 0,055 пФ 3,8 пФ
Предельные эксплуатационные данные	
Напряжение накала	5,7-6,9 B 175 B 50 B 100 B 13 MA 2 BT 0,05 BT
щении)	0,5 MOM 20 kOM

Предельная частота.

EC92

Триод для усиления напряжения высокой частоты в схемах с заземленной сеткой, в схемах с заземленным катодом, а также для работы в качестве смесителя.

850 МГц

Оформление --- в стеклянной оболочке, миниа-

тюрное (рис. 2П). Масса 10 г.

Основные параметры при U_a =6,3 B, U_a =250 B, U_c =-2 B

upa Og=0,3 D, Og=230 D, Og=-2 D	
Ток накала Ток анода Крутизна характеристики Коэффициент усиления Эквивалентное сопротивление шумов	150 MA 10 MA 5,6 MA/B 60 500 OM
Межэлектродные емкости:	
в режиме с заземленным катодом	
входная	2,8 пФ 0,55 пФ 1,8 пФ 2 пФ
в режиме с заземленной сеткой	
входная	4,6 πΦ 2 πΦ 0,24 πΦ 2 πΦ ≪0,15 πΦ
Предельные эксплуатационные данные	
Напряжение накала	5,7—6,9 B 300 B 550 B 100 B 15 MA 2,5 Br 1 MOM 20 KOM
Триод малошумящий повышенной долговечности для усиления напряжения высокой частоты, работы в качестве генератора и смесителя (при частоте до 800 МГи). Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 10 г.	1,9 a n n 4 5
Основные параметры	
при $U_{\rm H}=6.3$ В, $U_{\rm a.ист}=185$ В, $U_{\rm c.ист}=+8$ В, $R_{\rm K}=80$	
Ток анода (12 Крутизна характеристики 14 Коэффициент усиления 70	5 mA 2±0,8) mA +3 mA/B 0,5 mkA

без внешнего экрана

сетка — анод	2 nΦ 0,2 nΦ 3,6 nΦ ≪0,3 nΦ 6,6 nΦ 2,1 nΦ 3,9 nΦ 0,3 nΦ
с внешним экраном сетка, соединенная с экраном — катод, соединенный с подогревателем	4,2 пФ 3,1 пФ 0,25 пФ
Предельные эксплуатационные данные Напряжение накала	. 6—6,6 B

То же при включении лампы . Напряжение сетки отрицательное . . .

Мощность, рассеиваемая анодом . Мощность, рассеиваемая сеткой

Ток катода

Напряжение между катодом и подогревателем

E80CC

Триод двойной для усиления напряжения низкой частоты.

400 B

50 B 100 B

18 mA

0,02 Br

1 MOM 20 кОм

165 °C

2 Br

Оформление — в стеклянной оболочке, миниатюрное (рис. 21П). Macca 20 г.

при ($U_{\rm H} = 6.3$	В,	$U_{a.\text{mcr}} = 250$	В,	$R_{\rm K} = 920$	Ом
-------	-------------------	----	--------------------------	----	-------------------	----

Ток накала		•					(600±30) MA
Ток анода							(6±0,6) мА
Обратный ток сетки							≪0.5 mkA
Крутизна характеристики							$(2,7\pm0,5)$ mA/B
Коэффициент усиления .							
Внутреннее сопротивление	•	٠	,	•	•	•	10 кОм

Межэлектродные емкости:

входная каждого триода								2,4 пФ
выходная 1-го триода.							٠	0,45 nΦ
выходная 2-го триода.								0,55 пФ
проходная 1-го триода.								3,1 пФ
проходная 2-го триода.	٠	٠		•	•	,	•	3 пФ
между анодами триодов								
между сетками триодов								Фп 810,0≥

Предельные эксплуатационные данные

Напряжение накала		 	6-6.6 B
Напряжение анода		 	300 B
То же при включении лампы .		 	600 B
Напряжение сетки отрицательное		 	200 B
Напряжение между катодом и под	догревателем	 	120 B
Ток катода		 	12 mA
То же в импульсе (при т≤2 мс)		 	150 mA
Ток сетки		 	0,3 мА
То же в импульсе		 	30 мА
Мощность, рассеиваемая анодом		 	2 Вт
Мощность, рассеиваемая сеткой		 	0,1 Br
Сопротивление в цепи сетки		 	1 MOm

ECC82

Триод двойной для усиления напряжения низкой частоты, для работы в генераторах, блокинг-генераторах и мультивибраторах, в различных телевизионных приемниках и других электронных устройствах.

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 14 г.

Основные параметры при $U_{\rm H}{=}6,3$ В, $U_{\rm a}{=}250$ В, $R_{\rm K}{=}800$ Ом (или $U_{\rm c}{=}{-}8,5$ В)

Ток накала								•	•				300 мА 10 5 мА
Крутизна характеристики Коэффициент усиления .													2 2 MA/R
Management yennenny :	•	•	•	•	٠	•	•	•	•	•	•	٠	17

Межэлектродные емкости:

-									
входная									1,8 пФ
выходная 1-го триода.									0,37 пФ
выходная 2-го триода.									
проходная									
между анодами триодов				•	•	٠	•	•	≪ 0,5 пФ

Предельные эксплуатационные данные

Напряжение накала			5,7-6,9B
Напряжение анода			300 B
То же при включении лампы			
Напряжение между катодом и подогревателем .			
Напряжение сетки отрицательное			
Ток катода			20 мА
То же в импульсе (при длительности не более 4%	пe) -	
риода, но не свыше 0,0008 с)			100 мА
Мощность, рассеиваемая анодом каждого триода.			
Сопротивление в цепи сетки			
Температура баллона лампы			180 °C

ECC83

Триод двойной с малой проницаемостью для усиления напряжения низкой частоты в различных усилительных схемах, а также для работы в фазоинверторах. Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 14 г.

Основные параметры	
при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!250$ В, $R_{\rm K}\!=\!1600$ Ом (или $U_{\rm c}\!=\!$	—2 В,
Ток накала	300 mA 1,2 mA 1,6 mA/B 100
Межэлектродные емкости:	
входная	1,6 пФ 0,46 пФ 0,34 пФ 1,7 пФ ≪0,3 пФ
Предельные эксплуатационные данные	
Напряжение накала Напряжение анода То же при включении лампы Напряжение между катодом и подогревателем Напряжение сетки отрицательное Ток катода Мощность, рассеиваемая анодом каждого триода	5,7—6,9 B 300 B 550 B 180 B 50 B 8 MA 1 BT
Сопротивление в цепи сетки (в схеме с автоматическим смещением) Температура баллона лампы	2 МОм 180 °С

ECC85

Триод двойной для усиления напряжения высокой частоты и генерирования в телевизионных приемниках и других радиотехнических устройствах.

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Macca 14 г.

Основные параметры

при $U_{\rm H}$ =6,3 B, $U_{\rm a}$ =250 B, $R_{\rm K}$ =230	Ом (или $U_c = -2.3$ В)
Ток накала	10 MA
Межэлектродные емкости:	
сетка — катод	, 1,5 пФ , 0,18 пФ ≪0,04 пФ
Напряжение накала	5,7—6,9 В 300 В 550 В гелем

ECC189

Триод двойной для работы в каскодных схемах телевизионных приемников (первый триод—в схемах с заземленным катодом, второй—в схемах с заземленной сеткой).

одов

Сопротивление в цепи сетки .

Температура баллона лампы .

Мощность суммарная, рассеиваемая анодами двух три-

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 15 г.

4.5 Br

1 MOM

200 °C

Основные параметры

при $U_{\rm B}$ =6,3 В, $U_{\rm a}$ =90 В, $U_{\rm ci}$ =-1,2 В	
Ток накала	
Ток анода	
К рутизна характеристики	3
Внутреннее сопротивление 2,5 кОм	
Межэлектродные емкости:	
сетка 1-го триода — катод 1-го триода, подогрева-	
тель, экран	
анод 1-го триода — катод 1-го триода, подогрева-	
тель, экран	
тель, экран	
катод 2-го триода — сетка 2-го триода, подогрева-	
тель, экран 6 пФ	
анод 2-го триода — сетка 2-го триода, подогрева-	
тель, экран	
сетка 2-го триода — анод 2-го триода 1,9 пФ	
анод 2-го триода — катод 2-го триода 0,18 пФ	
между анодами триодов	Þ
Предельные эксплуатационные данные	
Напряжение накала	
Напряжение накала	
То же при включении лампы	
Напряжение между катодом и подогревателем 80 В	
Напряжение сетки отрицательное 50 В	
Ток катода	
Мощность, рассеиваемая анодом каждого триода . , 1,8 Вт	
Сопротивление в цепи сетки:	
первого триода 1 МОм	
второго триода	

ECC802S

Триод двойной для усиления напряжения низкой частоты, а также для работы в мультивибраторах и фазоинверторах. Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 12 г.

Основные параметры при $U_{\rm H}\!=\!6,3\,$ В, $U_{\rm A}\!=\!250\,$ В, $R_{\rm K}\!=\!800\,$ Ом

Ток накала	300 мА 10,6±1,9 мА
То же в начале характеристики (при $U_c =$	
=-20 B)	$\leq 0,4$ MA
Обратный ток сетки	≪0,4 мкА
Крутизна характеристики	$2,2^{+0.5}_{-0.4}$ mA/B
Коэффициент усиления	

Межэлектрод	ЦНЬ	re e	MK(ост	и:			
входная		•						

 $(1,8\pm0,3)$ $n\Phi$ $(0,37\pm0,1)$ $n\Phi$ $(0,25\pm0,1)$ $n\Phi$ $(1,95\pm0,3)$ $n\Phi$

выходная 1-го триода . выходная 2-го триода . проходная . .

Предельные эксплуатационные данные

Напряжение накала	6,0-6,6 B
Напряжение анода	3 00 B
10 же при включении лампы	550 B
Напряжение между катодом и подогревателем	100 B
Напряжение сетки отрицательное	100 B
Ток катода	15 мА
во же в импульсе	200 мА
мощность, рассенваемая анодом каждого триода	$2,75~\mathrm{Br}$
Сопротивление в цепи сетки	1 MOm
Температура баллона лампы	170 °C

ECC803S

Триод двойной для усиления напряжения низкой частоты,

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Macca 12 г.

при $U_{\rm H}\!=\!6.3$ В, $U_{\rm a}\!=\!250$ В, $R_{\rm K}\!=\!1.6$ кОм (или	$U_{\rm c} = -2$ B)
Ток накала	(300 ± 15) MA (1.25 ± 0.15) MA
Обратный ток сетки	<0,4 MKA
Крутизна характеристики	1,6 ⁺⁰ ,45 mA/B
Межэлентродные емкости:	100
выходная 1-го токода	(2±0,4) пФ

влодная							
выходная 1-го триода .	٠	•	•	•	•		$0,4^{+0,2'}_{-0,1}$ n Φ
выходная 2-го триода .							$0,3^{+0,2}_{-0,1}$ пФ
проходная							$(2\pm 0.4) \ n\Phi$
между анодами триодов				٠			`<1 пФ

Предельные эксплуатационные данные

Напряжение накала			5,7—6,9 B
Напряжение анода			300 B
То же при включении ла	ампы		550 B
Напряжение между като,	дом и подог	ревателем	100 B
Напряжение сетки отриц	цательное .		
Ток катода			
Мощность, рассеиваемая	анодом каж	дого триода .	1 Br
Сопротивление в цепи с	сетки		2,2 MOm
Температура баллона лам	мпы		170 ℃

Напрамение накала

ECC960

Триод двойной для работы в счетно-решающих устройствах.

Оформление — в стеклянной оболочке, миниатюрное (рис. 6П). Масса 10 г.

Основные параметры при $U_{\rm H}\!=\!6,3$ В, $U_{\rm A}\!=\!100$ В, $R_{\rm K}\!=\!250$ Ом

ток накала								400 MA
Ток анода								$(8,5\pm 2)$ MA
Ток утечки между катодом и	п	одо	гре	ва	гел	ем		≪ 15 мкА
Крутизна характеристики		•	•					$(6\pm 1,5) \text{ MA/B}$
Коэффициент усиления							٠	27
Межэлектродные емкости:								
входная								$(3,4\pm0,5)$ $\pi\Phi$
выходная 1-го триода .								$(0.35\pm0.07) \pi \Phi$
выходная 2-го триода .								$(0.48\pm0.08) \text{ n}\Phi$
проходная								$(3\pm 0.5) \pi \Phi$
между анолами триолов								≪1 4 πΦ

папримение накала.		•	•		•		•						OO,O D
Напряжение анода										ì			300 B
То же при включении л	тампь	đ.							i				600 B
Напряжение между каз	годом	и	по	or	pei	ват	ел	ем			i		100 B
Напряжение сетки отр	ицате	льн	ioe										100 B
То же в импульсе (при	И Тим	n <	10	мс	į.		Ī		:	:			200 B
Ток катода							-	:	:	:	-	:	15 MA
То же в импульсе (пр	и тих	≤	- 10	м	c)	:	:			:	:		75 MA
Ток сетки		•		•	•	:	:	:	:	:	1	-	0.25 мА
То же в импульсе (пр	и ты	≤	:10	M	c)					•	:		1 mA
Мощность, рассеиваема	я ан	oлo	MH	a w	-) เสด	ro	TD	หก	πа		:	•	2 Βτ
Сопротивление в цепи	Cetki	7 .								•		:	
Температура баллона л	іямпь		•	•	•	•	•	:	1	:	:	:	170 ℃
		• •	•	•	•	•	•		3	•	•	•	

ECC962

Триод двойной для работы в счетно-решающих устройствах и ЭВМ.

Оформление — в стеклянной оболочке, миниатюрное (рис. 6П). Масса 10 г.

Основные параметры при $U_{\rm H} = 6.3$ В, $U_{\rm A} = 150$ В, $R_{\rm K} = 200$ Ом

					-,		, -				-, -		_		-
To	к накала	١.													(400 ± 20) MA
To	к анода														$(8,5\pm2)$ MA
To	к утечки	ме	жду	кат	одо	M	п	одо	rpe	ва	тел	ем			≪15 мкА
Кp	утизна	xap	акте	рис	тик	и.			٠.						$(\hat{6}\pm 1,5) \text{ MA/B}$
Ko	эффици е	нτί	/силе	ния						Ċ		·		Ĭ	50
Me	жэлектр	одн	ые е	ико	сти:		•	•	•	•	•	٠	•	•	
	входна												_	_	$(3.5\pm0.9) \ n\Phi$
	выходн								·	Ī		•	•	•	(0.3 ± 0.1) пФ
	выходн	ая	2-го	Th	иоπ	а.	•	•	•	•	•	•	•	•	$(0,4\pm0,1)$ $\Pi\Phi$
							•	•	٠	•	•	•	•		
	проход	ная	1-10	о тр	иод	ца.	•			٠					$(2,6\pm0,4)$ n Φ
	проход	ная	2-rc	ъ тр	иод	ιa.									$(2,4\pm0,4) \ n\Phi$
	между	ан	одам	и 1	DHC	одон	3.				_			-	≪2 пФ
	между														<0,29 пФ
					I	-,		•	•	•	•	•	•	•	Q-1=- II =

Предельные эксплуатационные данные

Напряжение накала	5,7-6,9 B
Напряжение анода	300 B
То же при включении лампы	600 B
Напряжение между катодом и подогревателем	100 B
Напряжение сетки отрицательное	100 B
То же в импульсе (при $\tau_{\text{имп}} \leq 10 \text{ мс}$)	200 B
Ток катода	15 мА
То же в импульсе (при тими≤10 мс)	75 mA
Ток сетки	0,25 мА
То же в импульсе (при $τ_{\text{имп}} ≤ 10$ мс)	1 MA
Мощность, рассеиваемая анодом каждого триода.	
Сопротивление в цепи сетки	1 MOM
Температура баллона лампы	170 °C
- conseparate consistent in the second constitution is a second constitution of the second constitution is a second constitution of the second constitution	110 0

ECF82

Триод-пентод для работы в схемах смесителей, усилителей промежуточной частоты, амплитудных селекторов и мультивибраторов в телевизорах.

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 10 г.

Осн	овные	парамо	тры		.,	0.0 B
при $U_{\text{H}} = 6,3$ В, $U_{\text{0.H}} = 1$ (или $R_{\text{K}} = 68$ О	70÷200	ов, <i>О</i> 150	62=1 R /	10 B	, Uc₁=	0,9 В
_			Β, ι	J G .T -	2 5	450 mA
Ток анода триода	• •		• •	•		II MA
Крутизна характеристики т	риода					5,8 mA/B
Коэффициент усиления три						35
Ток анода пентода			. ,			10 мА
Ток 2-й сетки						3,5 MA
Крутизна характеристики п	ентода			•		5,5 mA/B
Коэффициент усиления по				гельн	ю 2-и	32
сетки				•	· · ·	32 400 кОм
Внутреннее сопротивление	пентода	1 , .		•	• • •	400 KOM
Межэлектродные емкости:						3,1 пФ
	• •			•		0,33 пФ
•				•		1,9 пФ
						5,1 πΦ
выходная пентода						3 пФ
проходная пентода				•		€0,01 nΦ
анод триода — анод пе	нтода	· • •		•		≪0,07 пФ
Предельные	эксплу	атацио	нные	дан	ные	
Напряжение накала						6,7—6,9 B
Напряжение анода и 2-й се	 тки ла	мпы.				800 B
То же при включении лам	пы.				. 5	550 B
Напряжение анода триода						800 B
То же при включении лам	пы.				. 5	550 B
Напряжение между катодо	м и по	одогрев	вател	ем:	_	
при положительном по	тенциа.	пе под	огрев	ател	я. 9	00 B
при отрицательном пот	енциал	е под	огрев	ателя	I . 2	220 B
Ток катода триода		• • •	• •	• •		20 м.А. 20 м.А.
Ток катода пентода Мощность, рассеиваемая ан	· ·	 гриоля	• •			.5 Вт
Мощность, рассенваемая ан	юдом Олом п	иропци Спотна	• •	: :		Br
Мощность, рассенваемая 2-	й сетко	й				,5 Br
Сопротивление в цепи сетки	триод	(a			. 1	МОм
Сопротивление в цепи 1-й с	етки п	ентода			. 1	МОм
ECF801, EC	FR	12			Тоиол-г	пентоды
LCLOUI, L	JI GU	JU			для	
£ #					качес	тве смеси-
5 8		6 8				і, генерато-
$a_n = a_r$	\boldsymbol{a}	7	a 7			и усилите-
			\			схемах те-
$r^{c_2}(\frac{1}{r})^{-1}$	J ₂ ($\cdot \setminus c_r$		левиз УКВ	и хынноиз
'2 	7	F= -	+	<u> </u>	ков.	присмни-
31 01	2 6,		$\int N_T$	_ , (ление — в
" K _n , 3, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Kr. 3	₹\ 	7	- /		янной обо-
κ_T , c_3 π	C,	1/1	n		лочке	
-I I	- J	1			тюрн	' *
4 5		4 5	7		10H)	
					11 r.	

ECF803

ECF801

Основные параметры при $U_{\rm H}=6.3$ В, $U_{\rm a.n}=170$ В, $U_{\rm c2}=120$ В, $R_{\rm K.n}=110$ Ом, $U_{a,T} = 100 \text{ B}, R_{H,T} = 200 \text{ OM}$ Тркодная часть 15 mA ≪0,1 MA 9 MA/B 20 Межэлектродные емкости: 3.3 пФ 1,7 пФ 1,8 пФ Пентодная часть 10 mA 3 мА Крутизна характеристики 11 mA/B Коэффициент усиления по 1-й сетке относительно 350 кОм Межэлектродные емкости: 6,2 пФ 3,7 пФ ≪0,009 пФ 1,6 пФ ≪0.025 пФ анод пентода - анод триода **≪**0,01 nΦ **⊘**n 10,0≽ 1-я сетка пентода — сетка триода ≪0,01 nΦ

Предельные эксплуатационные данные Напряжение накала 5,7-6,9 B 125 B 550 B 50 B Напряжение сетки триода отрицательное Напряжение между катодом и подогревателем . . 100 B Напряжение анода и 2-й сетки пентода 250 B 550 B То же при включении лампы 50 B Напряжение 1-й сетки пентода отрицательное . . . 20 mA 18 мА 1,5 Вт Мощность, рассеиваемая анодом триода Мошность, рассеиваемая анодом пентода 2 B_T Мощность, рассеиваемая 2-й сеткой: 0,3 Br при $-U_{c1} \ge 2$ В 0.4 Вт 0,45 Вт 500 кОм 2.2 MOM Сопротивление в цепи 1-й сетки пентода

420

ECF802

Триод-пентод для генерирования и усиления напряжения высокой частоты, а также для использования в импульсных схемах телевизионных приемников.

Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 14 г.

при $U_{\rm m} = 6,3$ В, $U_{\rm a.r} = 200$ В, $U_{\rm c.r} = -2$ В, $U_{\rm a.u} = U_{\rm c2} = 100$ В, $U_{\rm c.u} = -1$ В									
Ток накала	450 мА								
Триодная часть									
Ток анода	3,5 mA 3,5 mA/B 70								
Межэлектродные емкости:									
входная	2,4 пФ 1,5 пФ								
Пентодная часть									
Ток анода	6 мА 1,7 мА 5,5 мА/В								
2-й сетки	47								
Межэлектродные емкости:									
входная	5,4 пФ 0,06 пФ								
Предельные эксплуатационные данные									
Напряжение накала	5,7—6,9 B 250 B 300 B 250 B								
пульсе	200 B								
Напряжение между катодом и подогревателем	100 В 10 мА								
Ток катода пентода:									
в импульсе	50 MA 15 MA 1,4 BT 1,2 BT 0,8 BT								
Сопротивление в цепи сетки триода (при фиксированном смещении)	3 МОм								

Сопроти	вление в цепи 1-й	сетки пент	ода	a:						
при при	автоматическом фиксированном	смещении смещении	:	:	:	:	:	:	:	1 МОм 0,56 МОм

ECH84

Триод-гептод для работы в качестве генератора, преобразователя и усилителя синхроимпульсов в телевизионных приемниках.

Оформление — в стеклянной оболочке, миниатюрное (рис. 13П). Масса 15 г.

Основные параметры	
при $U_{\rm H}\!=\!6,3$ В, $U_{\rm a.\tau}\!=\!50$ В, $U_{\rm c.\tau}\!=\!0$, $U_{\rm a.r}\!=\!135$ В, $U_{\rm c2}\!=\!U_{\rm c4}\!=\!0$	=14 B,
Ток накала) мА
Триодная часть	
То же в начале характеристики (при $U_{a.\tau}$ =200 В, $U_{c.\tau}$ =—11 В)	MA ,1 MA MA/B 60
	пФ пФ
Гептодная часть	
	мА МА
по 1-й сетке	,9 В В В мА/В
1-я сетка гептода — сетка триода	09 пФ 1 пФ 08 пФ 13 пФ 09 пФ 25 пФ

Предельные эксплуатационные данные

Напряжение накала	5,7-6,9 B
Напряжение анода (триода и гептода)	250 B
То же при включении лампы	550 B
Напряжение 2-й и 4-й сеток гептода	10—250 B
То же при включении лампы	550 B
Напряжение 1-й и 3-й сеток гептода отрицательное	
в импульсе	150 B
Напряжение сетки триода отрицательное в импульсе	200 B
Напряжение между катодом и подогревателем	100 B
Ток катода гептода	12,5 mA
Ток катода триода	7 мА
Мощность, рассеиваемая анодом гептода	1.7 Br
Мощность, рассеиваемая анодом триода	1 Вт
Сопротивление в цепи сеток:	
1-й сетки гептода	3 МОм
3-й сетки гептода	3 МОм
сетки триода	3 МОм

ECH200

Триод-гептод для работы в качестве преобразователя и усилителя синхроимпульсов в телевизионных приемниках.

в телевизионных приемниках. Оформление — в стеклянной оболочке, минатюрное (рис. 10П, но с 10-штырьковой ножкой). Масса 14 г.

при $U_{\rm H}=6,3$ В, $U_{\rm a.r}=100$ В, $U_{\rm c.r}=-0,9$ В, $U_{\rm a.u}=U_{\rm c.}=0$	$v_2 = U_{c4} = 14$ B,
Ток накала	420 mA
Триодная часть	
Ток анода	9 mA 8,8 mA/B 50
Межэлектродные емкости: входная	3,1 πΦ 1,7 πΦ 1,8 πΦ

Гептодная часть

Ток анода	:	•	•	:	:	•	•	•	1,5 mA 1,3 mA
входная									4,4 пФ
выходная									5,4 пФ
1-я сетка — анод									<0,1 пФ
3-я сетка — анод									< 0,25 пФ
1-я сетка — 3-я сетка									$<0.3 \text{ n}\Phi$
1-я сетка — сетка триода .									$< 0.005 \text{ n}\Phi$
1-я сетка — анод триода .									
3-я сетка — анод триода .									
анод гептода — анод триода									<0,15 пФ
Предельные экспл									
Напряжение накала	٠	٠	•	٠		٠.			5,7—6,9 B

папряжение накала	0,/0,9 B
Напряжение анода триода	250 B
Напряжение анода гептода	100 B
Напряжение 2-й и 4-й сеток гептода	6-50 B
Напряжение сетки триода отрицательное в импульсе	200 B
Напряжение 1-й сетки гептода отрицательное в им-	
пульсе	100 B
Напряжение 3-й сетки гептода отрицательное в им-	
пульсе	150 B
Напряжение между катодом и подогревателем	100 B
Ток катода триода	20 мА
Ток катода гептода	8 мА
Мощность, рассеиваемая анодом триода	1,5 Вт
Мощность, рассеиваемая анодом гептода	$0.5~\mathrm{Br}$
Мощность, рассеиваемая 2-й и 4-й сетками	$0.5~\mathrm{Br}$
Сопротивление в цепи сетки триода:	
при фиксированном смещении	2 МОм
при автоматическом смещении	3 МОм
Сопротивление в цепи 1-й сетки гептода	3 МОм
Сопротивление в цепи 3-й сетки гептода	3 МОм
•	

ECL86

Триод-пентод для работы в качестве предварительного и оконечного усилителя низкой частоты.

Оформление — в стеклянной оболочке, миниатюрное (рис. 21П). Масса 20 г.

Основные параметры	
при $U_{\rm H} = 6.3$ В, $U_{\rm a.r} = 250$ В, $U_{\rm c.r} = -1.9$ В, $U_{\rm a.n} = U_{\rm c.2} = 250$ В, $U_{\rm c.r} = -7$ В	50 B,
$U_{\text{cin}} = -7 \text{ B}$	
Ток накала 70	0 мА
Триодная часть	
	_
	2 мА
Напряжение отсечки электронного тока сетки отрица-	
тельное (при $I_{c_1} = 0,3$ мкА)	1,3 B
Крутизна характеристики	мА/В
Крутизна характеристики	100
Межэлектродные емкости:	
2	3 пФ
1	5 пФ
проходная	6 пФ
Пентодная часть	
Ток анода	мА
	мА
Ток 2-й сетки	
цательное (при $I_{c1} = 0.3$ мкА)	.,3 B
Крутизна характеристики	мА/В
цательное (при I_{c1} =0,3 мкA)	٠.
сетки	21
Difference compensations is a second compensation of the second compensatio	кОм
Межэлектродные емкости:	пΦ
Влодии	л Ф
	4 пФ
	.2 пФ
сетка триола — анол пентола <0.0)06 пФ
сетка триода — 1-я сетка пентода <0,	02 пФ
анод триода — анод пентода <0,	15 пФ
The state of the s	
Предельные эксплуатационные данные	
Напряжение накала	-6,9 B
Напряжение анода триода	00 B 50 B
10 MC liph bittle tellin telling telling	ю в)0 В
	50 B
	00 B
	мA
ION NATOAU IPHOAU	мА
Мощность, рассеиваемая анодом триода 0,	5 B _T
Мощность, рассеиваемая анодом пентода 9	B_T
Мощность, рассеиваемая 2-й сеткой пентода:	
при выходной мошности, равной нулю	5 Вт
при максимальной выходной мощности 3,2	25 Вт
Сопротивление в цепи сетки триода:	мо
upu duwendonamon emendenin	МОм МОм
inpit abromatiticenom emengemin	мом МОм
Сопротивление в цепи 1-й сетки пентода	, TO M

EF80

Пентод для усиления напряжения высокой частоты в широкополосных усилителях.

Оформление — в стеклянной оболочке, миниатюрное (рис. 13П). Масса 18 г.

Основные параметры при $U_{\rm H}=6,3$ В, $U_{\rm a}=250$ В, $U_{\rm c2}=250$ В, $U_{\rm c3}=0$, $U_{\rm c1}=-3,5$ (или $R_{\rm H}=270$ Ом)	
Ток накала	иА мА А/В
сетки	
входная 7,5 выходная 3,35 проходная <0,008	п Ф 8 п Ф пФ пФ
Предельные эксплуатационные данные	
Напряжение накала 5,7—6 Напряжение анода 300 То же при включении лампы 550 Напряжение 2-й сетки 300 То же при включении лампы 550 Напряжение между катодом и подогревателем 150 Ток катода 15 м Мощность, рассеиваемая анодом 2,5 м Мощность, рассеиваемая 2-й сеткой 0,7 м Сопротивление в цепи 1-й сетки 1 м	B B B B B A B _T

EF89

Пентод для усиления напряжения высокой и промежуточной частоты.

Оформление — в стеклянной оболочке, миниатюрное (рис. 12П). Масса 16 г.

Основные параметры

при $U_{\rm H}$ =6,3 В, $U_{\rm a}$ =250 В, $U_{\rm c2}$	=100 E	3, <i>U</i> c3=	0, 0	$J_{c_1} = -2 B$
Ток накала				. 200 мА
Ток анода				, 9 мА
Ток 2-й сетки				. 3 мА
Крутизна характеристики				3,6 MA/B
Внутреннее сопротивление			٠.,	. 1 МОм
Коэффициент усиления по 2-й сетн	ке отно	сителы	10	
Сетки				. 19
Межэлектродные емкости:				E EA
			• •	. 5,5 пФ . 5,1 пФ
выходная			• •	. ≪0,003 пФ
пролодиам				. 40,000 1.4
Предельные эксплуат	гационн	ые дан	ные	
Напряжение накала				. 5,7-6,9 B
Напряжение накала				300 B
Напряжение накала			 	300 B 550 B
Напряжение накала		· ·	 	300 B 550 B 300 B
Напряжение накала	• • •		· ·	300 B 550 B 300 B 550 B
Напряжение накала			· ·	300 B 550 B 300 B 550 B
Напряжение накала		лем.		300 B 550 B 300 B 550 B 100 B
Напряжение накала		лем .		300 B 550 B 300 B 550 B 100 B 16,5 MA 2,25 BT
Напряжение накала		лем .		300 B 550 B 300 B 550 B 100 B 16,5 MA 2,25 BT 0,45 BT
Напряжение накала		лем .		300 B 550 B 300 B 550 B 100 B 16,5 MA 2,25 BT

EF184

Пентод для усиления напряжения высокой и промежуточной частоты в телевизионных приемниках.

Оформление — в стеклянной оболочке, миниатюрное (рис. 12П). Масса 14 г.

	при	U	H =	6,3	В	, l	y_{a}	=2	00	В,	U	c 2	=2	00	В,	U	c3=	=0	, ($U_{c_1} = -2.5 \text{ B}$
To	кн	ака	ла																	300 мА
To	сан	ода	a.		٠															10 мА
Tol	₹ 2-	Й	сет	КИ																4,1 мА
Kp	утиз	на	Х	apa	KT	ери	ICT:	икі	Ţ											15 MA/B
Вну	тре	нне	ee	CO	npc	ти	вле	ени	е											380 кОм

Продол	жение
--------	-------

EF800

Пентод для усиления напряжения высокой частоты.

Оформление — в стеклянной оболочке, миниатюрное (рис. 13П). Масса 18 г.

Основн	іые параметры	
при $U_{\rm H} = 6.3$ В, $U_{\rm a} = 170$ В,		$U_{c3}=0$, $R_{\rm R}=160$ Om
Ток накала		
Ток анода		$10^{+1,5}_{-1}$ MA
То же в начале характеристики	и (при $U_{c_1} = -$	6 B) <350 мкA
Ток 2-й сетки		$2,5^{+0,5}_{-0,3}$ MA
Обратный ток 1-й сетки		≪0,3 мкА
Крутизна характеристики .		. $(7,5\pm 1)$ мА/В
Внутреннее сопротивление		
Коэффициент усиления по 2-й		
1-й сетки		
Межэлектродные емкости:		
входная		(8,1±0,6) пФ
выходная		(0 4 1 0 1 1 7
проходная		≪0,008 πΦ

Предельные эксплуатационные данные

Напряжение накала		. 6-6,6 B
Напряжение анода		. 250 B
То же при включении лампы	. ,	, 550 B
Напряжение 2-й сетки		250 B
То же при включении лампы		
Напряжение 1-й сетки отрицательное		30 B
Напряжение между катодом и подогревателем:		
при положительном потенциале подогревателя		. 60 B
при отрицательном потенциале подогревателя		
Ток катода		. 12.5 мА
Мощность, рассеиваемая анодом		
Мощность, рассеиваемая 2-й сеткой		
Сопротивление в цепи 1-й сетки		
Температура баллона лампы		

EF806S

Пентод малошумящий для усиления напряжения низкой частоты специально для входных каскадов усилителей. Оформление — в стеклянной оболочке, миниатюрное (рис. 10П). Масса 14 г.

Основные параметры					
при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!250$ В, $U_{\rm c}_{\rm 2}\!=\!140$ В, $U_{\rm c}_{\rm 3}\!=\!0$, $R_{\rm H}\!=\!500$ Ом					
Ток накала					
Ток анода					
То же в начале характеристики (при $U_{c_1} = -6$ В) $\leqslant 0,15$ мА Ток 2-й сетки					
Внутреннее сопротивление					
1-й сетки					
Межэлектродные емкости:					
входная					
Предельные эксплуатационные данные					
Напряжение накала 6—6,6 В Напряжение анода 300 В То же при включении лампы 550 В Напряжение 2-й сетки 200 В					
То же-при включении лампы					

Напряжение между катодом и подогревателем		100 B
Ток катода		6 мА
Мощность, рассенваемая анодом		1 Вт
Мощность, рассеиваемая 2-й сеткой		0,2 Br
Сопротивление в цепи 1-й сетки		3 МОм
Температура баллона лампы		170 ℃

EH90

Пентод с двойным управлением для импульсных схем и преобразователей. Оформление — в стеклянной оболочке, миниатюрное (рис. 2П). Масса 10 г.

Основные параметры

при $U_{\rm H}$ =6,3 B, $U_{\rm a}$ =100 B, $U_{\rm 02}$ = $U_{\rm C4}$ =30 B, $U_{\rm 03}$ =0, $U_{\rm C1}$ =-0,95 B (1-й режим) или $U_{\rm 03}$ =-1 B, $U_{\rm 01}$ =0 (2-й режим)

	1-й режим	2 - й режими
Ток накала, мА	300	300
Ток анода, мА	0,8	0,8
Ток 2-й и 4-й сеток (суммарный), мА	o,o	4
Напряжение отсечки тока анода при $I_a =$	ī	4
=0.05 мА. В:		
	0.5	
по 1-й сетке	-2,5	
по 3-й сетке	_	-2,2
Крутизна характеристики, мА/В:		
по 1-й сетке	1,1	
по 3-й сетке		1,25
Внутреннее сопротивление, МОм	1	0,7
Межэлектродные емкости, пФ:		
входная по 1-й сетке	5.5	
входная по 3-й сетке	5,5 7	
выходная (для каждого анода)	7.5	
	≪0,07	
анод — 1-я сетка		
1-я сетка — 3-я сетка	≤ 0.22	
ано <u>д</u> — 3-я сетка	≪ 0,36	
Праваници оуспиратанионные	панные	

Напряжение накала	•	
Напряжение анода		300 B
То же при включении лампы		550 B
Напряжение 2-й и 4-й сеток		300 B
То же при включении лампы		550 B
Напряжение между катодом и подогревателем		100 B

	Продолжени е
Ток катода	14 мА
Мощность, рассеиваемая анодом	1 B _T
Мощность, рассеиваемая 2-й и 4-й сетками (суммар-	
ная)	1 B _T
Сопротивление в цепи 1-й сетки	0,5 МОм
Сопротивление в цепи 3-й сетки	2 МОм

EL83

Пентод для оконечных ступеней широкопо-

лосных усилителей. Оформление— в стеклянной оболочке, миниатюрное (рис. 21П). Масса 18 г.

при $U_{\rm H}\!=\!6,\!3$ В, $U_{\rm a}\!=\!250$ В, $U_{\rm c_2}\!=\!250$ В, U	$r_{c_1} = -5$	5,5 B
Ток накала Ток анода Ток 2-й сетки Крутизна характеристики Внутреннее сопротивление Коэффициент усиления по 2-й сетке относительн	 но 1-й	100 кОм
сетки		24
Межэлектродные емкости: входная	,	10,8 пФ 6,6 пФ ≪0,1 пФ
проподнал		(0,1 N#
Предельные эксплуатационные дан		
		5,7-6,9 B
Напряжение накала		5,7—6,9 B 300 B
Напряжение накала		
Напряжение накала . Напряжение анода . То же при включении лампы . Напряжение 2-й сетки .	· ·	300 B 550 B
Напряжение накала . Напряжение анода . То же при включении лампы . Напряжение 2-й сетки .	· ·	300 B 550 B 300 B
Напряжение накала . Напряжение анода . То же при включении лампы . Напряжение 2-й сетки . То же при включении лампы .		300 B 550 B 300 B 550 B
Напряжение накала . Напряжение анода . То же при включении лампы . Напряжение 2-й сетки . То же при включении лампы . Напряжение между катодом и подогревателем .	• •	300 B 550 B 300 B 550 B 100 B
Напряжение накала		300 B 550 B 300 B 550 B 100 B 70 MA
Напряжение накала . Напряжение анода . То же при включении лампы . Напряжение 2-й сетки . То же при включении лампы . Напряжение между катодом и подогревателем . Ток катода . Мощность, рассенваемая анодом .		300 B 550 B 300 B 550 B 100 B 70 MA 9 BT
Напряжение накала . Напряжение анода . То же при включении лампы . Напряжение 2-й сетки . То же при включении лампы . Напряжение между катодом и подогревателем . Ток катода . Мощность, рассеиваемая анодом . Мощность, рассеиваемая 2-й сеткой .		300 B 550 B 300 B 550 B 100 B 70 MA
Напряжение накала . Напряжение анода . То же при включении лампы . Напряжение 2-й сетки . То же при включении лампы . Напряжение между катодом и подогревателем . Ток катода . Мощность, рассенваемая анодом .		300 B 550 B 300 B 550 B 100 B 70 MA 9 BT

E84L

Пентод для работы в качестве усилителя низкой частоты в выходных каскадах. Оформление — в стеклянной оболочке, миниатюрное (рис. 21П). Масса 18 г.

Основные параметры

при $U_{\rm H} = 6.3$ В, $U_{\rm a} = U_{\rm c2} = 250$ В, $R_{\rm H} = 135$ Ом (и	ли	$U_{c1} = -7.2$ B)
Ток накала		760 мА
Ток анода		48 мА
Ток 2-й сетки		5 ,5 мА
Обратный ток 1-й сетки		≪0,5 mk A
Крутизна характеристики		1Ì,З мА/В
Коэффициент усиления по 1-й сетке относительно	2-й	
сетки		19
Внутрениее сопротивление		40 кОм
Межэлектродные емкости:		_
входная. , ,		10 пФ
выходная		6 пФ
	٠,	≪0,5 пФ
проходная		₩U,U HAP

Предельные эксплуатационные данные

Напряжение накала	6-6,6 B
Напряжение анода и 2-й сетки	450 B
То же при включении лампы	600 B
Напряжение 1-й сетки отрицательное	100 B
Напряжение между катодом и подогревателем	100 B
Ток катода	100 мА
Мощность, рассеиваемая анодом	13,5 Br
Мощность, рассенваемая 2-й сеткой	2,2 Вт
Мощность, рассеиваемая 1-й сеткой	0,5 Вт
Сопротивление в цепи 1-й сетки:	
при фиксированном смещении	0,5 MOm

при фиксированном смещении.

при автоматическом смещении .

Температура баллона лампы .

1 MOM

225 °C

EL803S

Выходной пентод для широкополосных усилителей.

Оформление — в стеклянной оболочке, миниатюрное (рис. 21П). Масса 25 г.

Основные параметры
при $U_{\rm H}=6.3$ В, $U_{\rm a}=U_{\rm c2}=200$ В, $U_{\rm c3}=0$, $R_{\rm K}=110$ Ом
Ток накала , 650 мА
Ток анода
Ток 2-й сетки
Ток утечки между катодом и подогревателем ≪25 мкА
Крутизна характеристики
Коэффициент усиления по 1-й сетке относительно 2-й сетки
2-й сетки
Межэлектродные емкости:
входная
выходная
проходная
Предельные эксплуатационные данные
Напряжение накала
Напряжение анода и 2-й сетки
Напряжение между катодом и подогревателем 120 В
1 ок катода
Мощность, рассеиваемая анодом 6.5 Вт
Мощность, рассеиваемая 2-й сеткой 1.5 Вт
Сопротивление в цепи 1-й сетки:
при фиксированном смещении
при автоматическом смещении 1 МОм
Температура баллона лампы 200 °C

ЕУ86, ЕУ87

Кенотрон высоковольтный для преобразования импульсного напряжения обратного хода строчной развертки в телевизионных приемниках.

Оформление — в стеклянной оболочке, миниатюрное (рис. 24П). Масса 18 г.

Основные параметры

при $U_{\rm H} = 6.3$ В

Ток накала	90 мА 12 мА ≽150 мкА 1,8 пФ
Предельные эксплуатационные данные	
Напряжение накала: при выпрямленном токе до 200 мкА при выпрямленном токе свыше 200 мкА Обратное напряжение (в импульсе) Выпрямленный ток (среднее значение)	5,5—7,1 В 5,9—6,7 В 22 кВ 800 мкА
Ток анода в импульсе (при длительности импульса, не превышающей 10% периода, но не более 10 мкс)	40 мА
напряжение питания (от трансформатора) выпрямленный ток	5 кВ 3 мА

Примечание. Баллон лампы ЕУ87 покрыт водоотталкивающим слоем для предотвращения появления поверхностного разряда в условиях высокой влажности окружающей среды; электрические параметры ламп EУ86 и ЕУ87 идентичны.

PL36

проходная .

Пентод для работы в выходных каскадах строчной развертки телевизионных приемников (с последовательным питанием подогревателей).

Оформление — в стеклянной оболочке, октальным цоколем (рис. 11Ц). Масса 40 г.

Основные параметры

	при	$I_{\rm H}$	=;	300	M	A,	U_{θ}	=	100)]	3,	U_{c}	2==	10	0 1	В,	U_{c}	1=	_	8,2 B
Напря	іжен	ие	на	кал	ıa															25 B
Тока	нода	a																		100 mA
Ток 2	?-й (сети	ίИ																	8 мА
Крути	зна	xa	pai	ктер	ис	стиг	ки													14 mA/B
Внутр																				5 кОм
Коэфф	рици	ент	v	сил	ен	ия	по	2	-й	C	тк	e (OTE	loc:	ите	ль	но	1-	Й	
сетк	и.																			5,6
Межэ.	лект	род	нь	ie e	ΜK	ост	и:													
вх	одн	ая																		19 пФ
ВН	лох	ная	ł																	8 nΦ
п	oxo	дна	Я																	≼ 1,1 пФ

Предельные эксплуатационные данные

Ток накала	5315 мА
	250 B
	550 B
	7000 B
Отрицательное напряжение анода в импульсе	1500 B
Напряжение 2-й сетки	250 B
	550 B
	1000 B
Напряжение между катодом и подогревателем:	
	200 B
при отрицательном потенциале подогревателя	250 B
_ The arbudatement metallique made harman	200 MA
	AND MAY
Мощность, рассеиваемая анодом:	
при мощности, рассеиваемой 2-й сеткой, до 4 Вт.	12 Br
при мощности, рассеиваемой 2-й сеткой, свыше 4 Вт	8 Вт
Мощность, рассенваемая 2-й сеткой	5 Br
	.5 МОм
Composition 2 Zenia I ii Trimi	
Температура баллона лампы	220 °C

PL84

Пентод для усиления низкой частоты в выходных каскадах (преимущественно для устройств с последовательным питанием подогревателей).

Оформление — в стеклянной оболочке, миниатюрное (рис. 21П). Масса 18 г.

Основные параметры

при $I_{\rm H}\!=\!300$ мА, $U_{\rm a}\!=\!170$ В, $U_{\rm c_2}\!=\!170$ В, $U_{\rm c_1}\!=\!-12.5$ В

Напряжение накала						٠.						15 B
Ток анода												70 mA
Ток 2-й сетки												5 мА
Крутизна характерист												10 mA/B
Внутреннее сопротивл												2 3 жОм
Коэффициент усилени	я п	0	2-й	cer	rke	0	TH	oci	те.	лы	O	
I-й сетки												8
Межэлектродные емко	сти:											
входная												12 пФ
выходная												6 пФ
проходная												<0.6 nΦ

Предельные эксплуатационные данные

Ток накала	5 мА
Напряжение анода	
То же при включении лампы	
Напряжение 2-й сетки	В
То же при включении лампы	В
Напряжение между катодом и подогревателем 200	В
Ток катода	
Мощность, рассеиваемая анодом	3T
Мощность, рассеиваемая 2-й сеткой 1,75	Вт
Сопротивление в цепи сетки (при автоматическом	
смещении) 1 МС	Эм

PL500

Пентод для работы в блоках строчной развертки телевизионных приемников (с последовательным питанием подогревателей).

Оформление — в стеклянной оболочке, бесцокольное (рис. 23С). Масса 40 г.

Основные параметры

при $I_n = 300$ мА, $U_a = 75$ В, $U_{c2} = 200$ В, $U_{c1} = -100$	-10 B
Напряжение накала	27 B
Ток анода в импульсе	
Ток 2-й сетки в импульсе	37 мА
Предельные эксплуатационные данные	
Ток накала	285—315 м А
Напряжение анода	250 B
То же при включении лампы	550 B
То же в импульсе (при тимп≤18 мкс)	7000 B
Напряжение 2-й сетки	550 B
Напражение межлу католом и пологревателем	

То же в импульсе (при $\tau_{\text{имп}}$ ≤ 18 мкс)	7000 5
Напряжение 2-й сетки	550 B
Напряжение между катодом и подогревателем	220 B
Ток катода	250 мА
Мощность, рассеиваемая анодом:	12 Вт
при мощности, рассеиваемой 2-й сеткой до 4 Вт	12 DT
при мощности, рассеиваемой 2-й сеткой от 4 до	8 Вт
5 Br	
Сопротивление в цепи 1-й сетки	0,5 МОм
Температура баллона лампы	220 °C

РАЗДЕЛ ВОСЬМОЙ

ГАБАРИТНЫЕ ЧЕРТЕЖИ ЭЛЕКТРОННЫХ ЛАМП

8.1. ВНЕШНЕЕ ОФОРМЛЕНИЕ ЭЛЕКТРОННЫХ ЛАМП

Многообразие в устройстве и назначении электронных ламп привело к необходимости применять различные материалы для баллонов, разные формы их, а также различные присоединительные

устройства.

Чтобы не повторять рисунки оформления для разных групп ламп, имеющих однотипное оформление, все варианты габаритного оформления сведены в этом разделе справочника. Для удобства отыскания нужного типа оформления все рисунки условно разделены на несколько групп (в основу положен наиболее общий для данной группы признак) с присвоением каждой группе следующего буквенного индекса:

сверхминиатюрные лампы — Б;

миниатюрные лампы — Π ;

лампы в стеклянном баллоне с октальным цоколем — Ц;

лампы в стеклянном баллопе без цоколя — С;

лампы в металлическом баллоне - М;

металлокерамические лампы миниатюрные и сверхминиатюрные — H;

лампы с дисковыми влаями — Д;

лампы в керамической оболочке -- К.

В каждой группе габаритные рисунки расположены подряд и обозначены порядковым номером с буквой, присвоенной данной группе. Например, габаритное оформление (рис. 1П) имеют миниатюрные лампы типа 6Х2П и некоторые другие, а лампа 6Х2П-И имеет другие размеры (рис. 3П). Номер рисунка указывается в начале описания каждого типа ламп.

Изображения отдельных элементов ламп и различных ламп

выполнены в условном масштабе.

На габаритных чертежах для ламп нестандартного оформления имеются также и обозначения электродов. В сверхминиатюрных лампах счет выводов ведется от индикаторной метки (цветная точка, стречка или выступ на стекле) либо от «ключа», образованного отсутствующим выводом. Луженая часть выводов на рисунке зачернена.

8.2. РИСУНКИ СВЕРХМИНИАТЮРНЫХ ЛАМП

Рис. 19Б.

Рис. 17Б.

Рис. 18Б.

Рис. 20Б.

Рис. 33Б.

Рис. 34Б.

Рис. 35Б.

Рис. 36Б.

Рис. 37Б.

Рис. 38Б.

Рис. 39Б.

8.3. РИСУНКИ МИНИАТЮРНЫХ ЛАМП

Присоединительные размеры миниатюрных лами.

Рис. 5П. **442**

Рис. 6П.

Рис. 7П.

Рис. 8П.

8.4. РИСУНКИ ЛАМП В СТЕКЛЯННОМ БАЛЛОНЕ С ОКТАЛЬНЫМ ЦОКОЛЕМ

Присоединительные размеры ламп с октальным цоколем.

8.5. РИСУНКИ ЛАМП В СТЕКЛЯННОМ БАЛЛОНЕ БЕЗ ЦОКОЛЯ

8.6. РИСУНКИ МЕТАЛЛОКЕРАМИЧЕСКИХ ЛАМП

Рис. 4Н.

Рис. 5Н.

Рис. 6Н.

Рис. 7Н.

8.7. РИСУНКИ ЛАМП С ДИСКОВЫМИ ВПАЯМИ

Рис. 1Д.

Рис. 2Д.

Рис. 3Д.

Рис. 4Д.

Рис. 5Д.

Рис. 6Д.

Рис. 7Д.

8.8. РИСУНКИ ЛАМП В КЕРАМИЧЕСКОЙ ОБОЛОЧКЕ

8.9. РИСУНКИ ЛАМП В МЕТАЛЛИЧЕСКОЙ ОБОЛОЧКЕ

АЛФАВИТНЫЙ УКАЗАТЕЛЬ ЛАМП

Тип лампы	Стр.	Тип лампы	Стр.	Тип лампы	Стр.	Тип лампы	Стр.
		Or	ечеств	енные лампы			
	337 351 384 190 191 192 193 193 195 196 263 264 288 290 290 66 67 68 68 63 64 65 200 292 79 80 69 70 70 71 65 72 73 74 74 72 73 74 74 72 73 74 74 74 74 74 74 74 74 74 74 74 74 74	лампы	-	лампы	251 253 254 256 257 259 376 376 376 376 265 267 269 269 269 271 271 277 277 279 280 396 397 400 401 401 402 403 404 138 138 138 138 140 140 140 140 140 140 140 140 140 140		CTP. 154 156 156 156 156 156 158 158 158 160 162 164 164 168 168 169 171 172 176 177 178 293 295 295 297 298 299 299 302 302 302 304 306 307 309 310 311
6Д13Д	49	6Ж39Г-В	243	6Н6П-И	146	6П30Б-Р	311
6Д13Д-И	49	6Ж40П	245	6Н7С	148	6П31С	313
6Д14П	58	6Ж43П-Е	246	6H8C	149	6П33П	315
6Д15Д	51	6Ж43П-ДР	246	6H9C	150	6П34С	316
6Д16Д	52	6Ж44П	248	6Н13С	151	6П35Г-В	318
6Д16Д-Р	52	6Ж45Б-В	249	6Н14П	152	6836С	319

Тип лампы	Стр.	Тип лампы	Стр.	Тип лампы	Стр.	Тип лампы	Стр.
61136C-B 61137H-B 6113811 6113811 61139C 61141C 61142C 61144C 61145C 6P211 6P3C-1 6P211 6P3C-1 6P211 6P3C-1 6C2B 6C2B-B 6C2B-B 6C2B-B 6C2B-B 6C31-B 6	319 321 322 324 325 327 328 329 330 331 333 335 336 81 82 84 85 86 87 87 89 89 91 91 93 93	6C13Д 6C15П - E 6C19П - B 6C19П - B 6C19П - B 6C20C 6C21Д 6C28Б - B 6C29Б - B 6C29Б - B 6C31Б - E 6C31Б - E 6C33C - B 6C33C - B 6C33C - B 6C35A - B 6C35A - B 6C35A - B 6C36K 6C36K 6C40П 6C41C 6C41C 6C41C 6C45П - E 6C46Г - B	94 95 96 97 97 97 98 100 101 101 102 103 105 106 106 108 108 110 111 111 112 113 115 116 117 119	6C48Д 6C50Д 6C51H 6C51H-B 6C52H-B 6C53H-B 6C53H-B 6C56П 6C59П 6C59П 6C65H 6C65H 6C65H 6C65H 6C65H 6C91П 6Ф1П 6Ф1П 6Ф1П 6Ф2П-EP 6X2П-EP 6X2П-EP 6X2П-B 6X7Б-B 6X7Б-B 6X7Б-B	120 121 122 124 124 126 127 129 130 132 133 134 136 2355 355 355 363 54 54 57 75	6114H-EB 6115C 61110H 61113H 61119H 635H 635H-B 636H-E 6312H 6312H-B 6313H 6314H 6315H 6314H 6315H 13347C 13347C 1364H 1643H 1643H 1845H 3M-5 3M-6 3M-7 3M-8 3M-9 3M-10 3M-11 3M-12	75 76 61 77 62 180 180 182 184 184 186 187 365 260 367 370 373 388 389 390 391 392 393 391 392 393 394
		ä	З <i>ару</i> беж	сные лампы			
1AF34 1F34 1H34 6B32 6CC41 6CC42 6F10 6F31 6F33 6F36 6H31 6L10 DY30 DY86 DY87 E80C E84L E180F EABC80 EBF89	351 263 337 54 184 184 182 269 203 297 66 68 410 431 220 405 406	EC86 EC88 EC92 EC686 ECC82 ECC83 ECC85 ECC86 ECC89 ECC91 ECC802S ECC960 ECC962 ECC962 ECC962 ECC962	407 408 409 411 412 413 416 416 415 416 417 416 417 416 417 416 417 417 417 418 417 417 418	ECF803 ECH81 ECH84 ECH200 ECL82 ECL84 ECL85 EF80 EF80 EF93 EF93 EF93 EF97 EF98 EF97 EF98 EF98 EF98 EF98 EF98 EF98 EF98 EF98	418 376 421 422 355 358 360 423 425 236 425 269 223 203 210 274 245 245 427 428	EH90 EL34 EL36 EL82 EL83 EL86 EL500 EL8035 EM80 EY86 EY87 EZ35 PCF80 PCL82 PCL84 PCL85 PL36 PL84 PL500	429 313 304 430 299 315 319 432 485 432 59 76 365 370 367 373 433 434 435

СОДЕРЖАНИЕ

Предисловие	3
Раздел первый. Общие сведения	
1.1. Сводная таблица ламп	5 15 21 убеж-
ных аналогов	25 25
Взаимозаменяемость по присоединительным и	габа-
ритным размерам Системы предельных эксплуатационных данни Некоторые особенности оценки взаиможаменяе лами-аналогов	мости 29
1.5. Рекомендации по применению и эксплуатации Общие указания	ламп 32 32
О лампах повышенной надежности	мн . 33 . 40 . 41
1.6. Общие пояснения к справочным данным .	40
Раздел второй. Справочные данные двухэлектро ламп — диодов и кенотронов	48
2.1. Диоды для детектирования ВЧ и СВЧ колебані 2.2. Диоды двойные	ий . 48 54 58 63 66
Раздел третий. Спр авочные данные трехэлектро ламп — триодов и двойных триодов	одных 79
3.1. Триоды	
Раздел четвертый. Справочные данные многоэлек ных ламп	трод-
4.1. Четырехэлектродные лампы — тетроды 4.2. Пятиэлектродные лампы — пентоды с короткой	анод-
но-сеточной характеристикой 4.3. Пятиэлектродные лампы — пентоды с удлина анодно-сеточной характеристикой	енной 263
4.4. Тетроды и пентоды со вторичной эмиссией 4.5. Пентоды выходные и лучевые тетроды 4.6. Тетроды и пентоды двойные	288 331
4.7. Гептоды	337 346

455

Раздел пятый.		(Справечные				нны	e i	комбинированных						
амп										•		•			
5.1.	Дио	д-пе	нтод	ĮЫ								,	•		
5.2 .	Три	од-пе	енто	ды											
5.3.	Три	од-ге	OTE	ды			•								
5.4.	Дво	йные	e n	ент	од-т	рио,	цы		•		•				
Разде								да	нны	e c	пеци	аль	ных	ла	мп
6.1.	Эле	ктро	нно-	све	товы	e	ин,	дик	атор	ы			•		
6.2.	Эле	ктро	метр	энче	ские	• •	ламг	IЫ				•		•	
6.3.	Mex	анот	рон	ы											
Разде бежных Разде	лам	ип	•		٠.	•		•			•	•		•	٠.
газде Іамп			• O MI C	, n.		oap		и с	401		nn ,		riħ.	van.	
8.1.	Вне	шнее		фо	омле	ние	эле	ект	нноа	ых	ла	ип			
		унки									•				
8.3.	Рис	унки	Ми	ниа	тюрі	ных	лам	111					·	•	
8.4.	Рис	унки	ла	мп	в сте	екля	нно	мб	алло	оне	C O	ктај	ьны	M L	10-
0.1.	кол	≘M :							•					• .	•
	коло		-	МП	вс	текл	янн	οм	бал	лон	е бе	3 1	око	ЛЯ	_
8.5.	Рис	унки	ла									23 E	око	ЛЯ	•
8.5. 8.6.	Рис Рис	унки унки	ла 1	иета	ілло	кера	мич	еск	их	ла		3 0	юко	ля •	•
8.5. 8.6. 8.7.	Рис Рис Рис	унки унки унки	ла П	иета мп	алло С Д	кера іско	мич вым	еск и в	их зпая	ла ми	МП	:	юко	ЛЯ	•
8.5. 8.6. 8.7. 8.8.	Рис Рис Рис Рис	унки унки	ла Пла Пла Пла	иета МП ІМП	алло с ді В	кера іско кера	мич вым амич	еск и в еск	и х впаян ой	ла ми об	мп олоч	ке	ЮКО	ля	•

БОРИС ВЛАДИМИРОВИЧ КАЦНЕЛЬСОН АЛЕКСЕЙ СТЕПАНОВИЧ ЛАРИОНОВ

ОТЕЧЕСТВЕННЫЕ ПРИЕМНО-УСИЛИТЕЛЬНЫЕ ЛАМПЫ И ИХ ЗАРУБЕЖНЫЕ АНАЛОГИ

Редактор издательства Г. Н. Астафуров Технический редактор Л. В. Иванова Корректор И. А. Володяева

ИБ № 2880 («Энергия»)

Сдано в набор 11.12.80. Подписано в печать 13.07.81. Т-22042. Формат 84×1081/32. Бумага типографская № 2. Гарв. шрифта литературная. Печать высокая. Усл. печ. л. 23.94. Уч.-изд. л. 28,55. Тираж 100 000 экз. Заказ № 586. Цена 1 р. 80 к.

Энергоиздат, 113114, Москва, М-114, Шлюзовая наб., 10

Владимирская типография «Союзполиграфирома» при Государственном комитете СССР по делам издательств, полиграфии и книжной торговли 600000, г. Владимир, Октябрьский проспект, д. 7