Rosen Section 9.5

Tom Michoel

MNF130V2020 - Week 16

We often want to divide a large set into a smaller number of **classes** such that items sharing a certain characteristic belong to the same class. If each item belongs to *exactly one* class, we obtain a **partition** of the set.

Figure 1: Partition of a set

We often want to divide a large set into a smaller number of **classes** such that items sharing a certain characteristic belong to the same class. If each item belongs to *exactly one* class, we obtain a **partition** of the set.

Example

Even vs. odd integers.

Figure 1: Partition of a set

We often want to divide a large set into a smaller number of **classes** such that items sharing a certain characteristic belong to the same class. If each item belongs to *exactly one* class, we obtain a **partition** of the set.

- Even vs. odd integers.
- Positive vs. negative real numbers.

Figure 1: Partition of a set

We often want to divide a large set into a smaller number of **classes** such that items sharing a certain characteristic belong to the same class. If each item belongs to *exactly one* class, we obtain a **partition** of the set.

- ► Even vs. odd integers.
- Positive vs. negative real numbers.
- ▶ Books written by the same author.
- **.**..

Figure 1: Partition of a set

Partitions can be created using **equivalence relations**.

Partitions can be created using **equivalence relations**.

Definition

A relation on a set A is an equivalence relation if it is reflexive, symmetric and transitive (see Section 9.1).

Partitions can be created using **equivalence relations**.

- A relation on a set A is an equivalence relation if it is reflexive, symmetric and transitive (see Section 9.1).
- ▶ If R is an equivalence relation and $(a, b) \in R$, then we say that a and b are **equivalent elements** with respect to R and write $a \sim b$.

Partitions can be created using **equivalence relations**.

- A relation on a set A is an equivalence relation if it is reflexive, symmetric and transitive (see Section 9.1).
- ▶ If R is an equivalence relation and $(a, b) \in R$, then we say that a and b are **equivalent elements** with respect to R and write $a \sim b$.
- ► Note that:

Partitions can be created using **equivalence relations**.

- ▶ A relation on a set A is an equivalence relation if it is reflexive, symmetric and transitive (see Section 9.1).
- ▶ If R is an equivalence relation and $(a, b) \in R$, then we say that a and b are **equivalent elements** with respect to R and write $a \sim b$.
- ► Note that:
 - $ightharpoonup a \sim a$ for all a, because R is reflexive.

Partitions can be created using **equivalence relations**.

- A relation on a set A is an equivalence relation if it is reflexive, symmetric and transitive (see Section 9.1).
- ▶ If R is an equivalence relation and $(a, b) \in R$, then we say that a and b are **equivalent elements** with respect to R and write $a \sim b$.
- ► Note that:
 - $ightharpoonup a \sim a$ for all a, because R is reflexive.
 - ▶ If $a \sim b$ then $b \sim a$ for all a, b, because R is symmetric.

Partitions can be created using **equivalence relations**.

- A relation on a set A is an equivalence relation if it is reflexive, symmetric and transitive (see Section 9.1).
- ▶ If R is an equivalence relation and $(a, b) \in R$, then we say that a and b are **equivalent elements** with respect to R and write $a \sim b$.
- ► Note that:
 - $ightharpoonup a \sim a$ for all a, because R is reflexive.
 - ▶ If $a \sim b$ then $b \sim a$ for all a, b, because R is symmetric.
 - ▶ If $a \sim b$ and $b \sim c$ then $a \sim c$ for all a, b, c, because R is transitive.

Let m > 1 be an integer and $R = \{(a, b) \mid a, b \in \mathbb{Z}, a \equiv b \pmod{m}\}.$

Let m>1 be an integer and $R=\{(a,b)\mid a,b\in\mathbb{Z},a\equiv b\pmod m\}.$

R is reflexive: $a - a = 0 = 0 \cdot m$ and hence $a \equiv a \pmod{m}$ for all integers a.

Let m>1 be an integer and $R=\{(a,b)\mid a,b\in\mathbb{Z},a\equiv b\pmod m\}.$

- R is reflexive: $a a = 0 = 0 \cdot m$ and hence $a \equiv a \pmod{m}$ for all integers a.
- ▶ R is symmetric: if $a \equiv b \pmod{m}$ then there exists k such that $a b = k \cdot m$; hence $b a = (-k) \cdot m$ and $b \equiv a \pmod{m}$.

Let m>1 be an integer and $R=\{(a,b)\mid a,b\in\mathbb{Z},a\equiv b\pmod m\}.$

- R is reflexive: $a a = 0 = 0 \cdot m$ and hence $a \equiv a \pmod{m}$ for all integers a.
 - ▶ R is symmetric: if $a \equiv b \pmod{m}$ then there exists k such that $a b = k \cdot m$; hence $b a = (-k) \cdot m$ and $b \equiv a \pmod{m}$.
 - $a-b=k\cdot m$; hence $b-a=(-k)\cdot m$ and $b\equiv a\pmod m$. R is transitive: if $a\equiv b\pmod m$ and $b\equiv c\pmod m$ then there exist k,l such that $a-b=k\cdot m$ and $b-c=l\cdot m$. Hence

a-c=(k+1)m and $a\equiv c\pmod{m}$

Let S be the set of all books in a library. We assume each book has one author and define

$$R = \{(a, b) \mid b \text{ has the same author as } a\}$$

Let S be the set of all books in a library. We assume each book has one author and define

$$R = \{(a, b) \mid b \text{ has the same author as } a\}$$

R is reflexive: each book has a unique author.

Let S be the set of all books in a library. We assume each book has one author and define

$$R = \{(a, b) \mid b \text{ has the same author as } a\}$$

- ▶ *R* is reflexive: each book has a unique author.
- Arr R is symmetric: if b has the same author as a then a has the same author as b.

Let S be the set of all books in a library. We assume each book has one author and define

$$R = \{(a, b) \mid b \text{ has the same author as } a\}$$

- ▶ *R* is reflexive: each book has a unique author.
- R is symmetric: if b has the same author as a then a has the same author as b.
- Arr R is transitive: if b has the same author as a and c has the same author as b, then c has the same author as a.

The graph of an equivalence relation

▶ The graph of an equivalence relation *R* on *A* decomposes into subsets of vertices such that within each subset all possible edges are present and between two subsets no edges are present.

Figure 2: Graph of an equivalence relation

The graph of an equivalence relation

- ▶ The graph of an equivalence relation *R* on *A* decomposes into subsets of vertices such that within each subset all possible edges are present and between two subsets no edges are present.
- These subsets are called equivalence classes and define a partition of A.

Figure 2: Graph of an equivalence relation

Definition

Let R be an equivalence relation on a set A. The set of all elements related to an element $a \in A$ is called the **equivalence class** of a, written

$$[a]_R = \{b \in A \mid (a, b) \in R\}$$

Definition

Let R be an equivalence relation on a set A. The set of all elements related to an element $a \in A$ is called the **equivalence class** of a, written

$$[a]_R = \{b \in A \mid (a, b) \in R\}$$

▶ If $b \in [a]_R$, then b is a **representative** of $[a]_R$.

Definition

Let R be an equivalence relation on a set A. The set of all elements related to an element $a \in A$ is called the **equivalence class** of a, written

$$[a]_R = \{b \in A \mid (a, b) \in R\}$$

- ▶ If $b \in [a]_R$, then b is a **representative** of $[a]_R$.
- Any element of an equivalence class can be used as a representative, they are all equivalent.

Definition

Let R be an equivalence relation on a set A. The set of all elements related to an element $a \in A$ is called the **equivalence class** of a, written

$$[a]_R = \{b \in A \mid (a, b) \in R\}$$

- ▶ If $b \in [a]_R$, then b is a **representative** of $[a]_R$.
- ► Any element of an equivalence class can be used as a representative, they are all equivalent.
- ▶ If only one relation is under consideration, we write [a] instead of $[a]_R$.

 $0 \le k < m$:

Example

Let m > 1 and $R = \{(a, b) \mid a, b \in \mathbb{Z}, a \equiv b \pmod{m}\}$. Then for all

Let m > 1 and $R = \{(a, b) \mid a, b \in \mathbb{Z}, a \equiv b \pmod{m}\}$. Then for all $0 \le k < m$:

▶ The equivalence class $[k] = \{a \in \mathbb{Z} \mid a \mod m = k\}$, that is, the set of integers that have the same remainder k after division by m.

Let m > 1 and $R = \{(a, b) \mid a, b \in \mathbb{Z}, a \equiv b \pmod{m}\}$. Then for all $0 \le k < m$:

- ▶ The equivalence class $[k] = \{a \in \mathbb{Z} \mid a \mod m = k\}$, that is, the set of integers that have the same remainder k after division by m.
- ▶ If $l \neq k$ and $0 \leq l < m$ then $l \notin [k]$.

Let m > 1 and $R = \{(a, b) \mid a, b \in \mathbb{Z}, a \equiv b \pmod{m}\}$. Then for all $0 \le k \le m$:

- $0 \le k < m$:

 The equivalence class $\lceil k \rceil = \{ a \in \mathbb{Z} \mid a \mod m = k \}$ that is, the
 - ▶ The equivalence class $[k] = \{a \in \mathbb{Z} \mid a \mod m = k\}$, that is, the set of integers that have the same remainder k after division by m.
 - ▶ If $l \neq k$ and $0 \leq l < m$ then $l \notin [k]$.
 - ▶ If a < 0 or $a \ge m$, then there exists $0 \le k < m$ such that $a \in [k]$, namely $k = a \mod m$.

Let m > 1 and $R = \{(a, b) \mid a, b \in \mathbb{Z}, a \equiv b \pmod{m}\}$. Then for all

- 0 < k < m: ▶ The equivalence class $[k] = \{a \in \mathbb{Z} \mid a \mod m = k\}$, that is, the set
 - of integers that have the same remainder k after division by m.
 - ▶ If $l \neq k$ and 0 < l < m then $l \notin [k]$. ▶ If a < 0 or $a \ge m$, then there exists $0 \le k < m$ such that $a \in [k]$,
- namely $k = a \mod m$.
- \blacktriangleright Hence the set of all equivalence classes of R is $\{[0], [1], \dots, [m-1]\}$.

▶ Let S be the set of all books in a library with one author per book, and let $R = \{(b_1, b_2) \mid b_2 \text{ has the same author as } b_1\}.$

Figure 3: Equivalence classes and mapping from S to A.

- ▶ Let S be the set of all books in a library with one author per book, and let $R = \{(b_1, b_2) \mid b_2 \text{ has the same author as } b_1\}.$
- ▶ Let *A* be the set of unique authors of books in *S*: $A = \{a \mid \exists b \in S("a \text{ is the author of } b")\}.$

Figure 3: Equivalence classes and mapping from S to A.

- ▶ Let S be the set of all books in a library with one author per book, and let $R = \{(b_1, b_2) \mid b_2 \text{ has the same author as } b_1\}.$
- ▶ Let *A* be the set of unique authors of books in *S*: $A = \{a \mid \exists b \in S("a \text{ is the author of } b")\}.$
- ▶ Let $f: S \to A$ be the function which maps a book $b \in S$ to its author $f(b) \in A$. Then define $f^{-1}(a) = \{b \in S \mid f(b) = a\} \subseteq S$ as the subset of books authored by a.

Figure 3: Equivalence classes and mapping from S to A.

- ▶ Let S be the set of all books in a library with one author per book, and let $R = \{(b_1, b_2) \mid b_2 \text{ has the same author as } b_1\}.$
- ▶ Let A be the set of unique authors of books in S: $A = \{a \mid \exists b \in S("a \text{ is the author of } b")\}.$
- ▶ Let $f: S \to A$ be the function which maps a book $b \in S$ to its author $f(b) \in A$. Then define $f^{-1}(a) = \{b \in S \mid f(b) = a\} \subseteq S$ as the subset of books authored by a.
- ▶ The equivalence class [b] of a book $b \in S$ is the subset of all books that have the same author as b. Hence $[b] = f^{-1}(f(b))$.

Figure 3: Equivalence classes and mapping from S to A.

- ▶ Let S be the set of all books in a library with one author per book, and let $R = \{(b_1, b_2) \mid b_2 \text{ has the same author as } b_1\}.$
- ▶ Let A be the set of unique authors of books in S: $A = \{a \mid \exists b \in S("a \text{ is the author of } b")\}.$
- ▶ Let $f: S \to A$ be the function which maps a book $b \in S$ to its author $f(b) \in A$. Then define $f^{-1}(a) = \{b \in S \mid f(b) = a\} \subseteq S$ as the subset of books authored by a.
- ▶ The equivalence class [b] of a book $b \in S$ is the subset of all books that have the same author as b. Hence $[b] = f^{-1}(f(b))$.
- ▶ Hence there is a one-to-one correspondence between equivalence classes and authors $a \in A$.

Figure 3: Equivalence classes and mapping from S to A.

Equivalence classes and partitions: formal treatment

Theorem

Let R be an equivalence relation on a set A. For all $a, b \in A$, the following statements are equivalent:

(i)
$$a \sim b$$

(i)
$$a \sim b$$
 (ii) $[a] = [b]$

(iii) [a]
$$\cap$$
 [b] \neq \emptyset

Proof.

Equivalence classes and partitions: formal treatment

Theorem

Let R be an equivalence relation on a set A. For all $a, b \in A$, the following statements are equivalent:

(i)
$$a \sim b$$
 (ii) $[a] = [b]$ (iii) $[a] \cap [b] \neq \emptyset$

Proof.

We will show that (i) implies (ii), (ii) implies (iii) and (iii) implies (i), and therefore all three statements are equivalent.

Proof
$$([a] = [b] \rightarrow [a] \cap [b] \neq \emptyset)$$
.

Proof (
$$[a] \cap [b] \neq \emptyset \rightarrow a \sim b$$
).

Ш

▶ Take $c \in [a]$ arbitrary. Then $c \sim a$.

Proof (
$$[a] = [b] \rightarrow [a] \cap [b] \neq \emptyset$$
).

Proof ([a]
$$\cap$$
 [b] \neq $\emptyset \rightarrow$ a \sim b).

- ▶ Take $c \in [a]$ arbitrary. Then $c \sim a$.
- ▶ By transitivity $c \sim b$ and $c \in [b]$.

Proof (
$$[a] = [b] \rightarrow [a] \cap [b] \neq \emptyset$$
).

Proof (
$$[a] \cap [b] \neq \emptyset \rightarrow a \sim b$$
).

- ▶ Take $c \in [a]$ arbitrary. Then $c \sim a$.
- ▶ By transitivity $c \sim b$ and $c \in [b]$.
- ▶ Hence $[a] \subseteq [b]$.

Proof ([a] = [b]
$$\rightarrow$$
 [a] \cap [b] \neq \emptyset).

Proof ([a]
$$\cap$$
 [b] $\neq \emptyset \rightarrow a \sim b$).

- ▶ Take $c \in [a]$ arbitrary. Then $c \sim a$.
- ▶ By transitivity $c \sim b$ and $c \in [b]$.
- ▶ Hence $[a] \subseteq [b]$.
- ▶ By the same argument $[b] \subseteq [a]$ and hence [a] = [b].

Proof $([a] = [b] \rightarrow [a] \cap [b] \neq \emptyset)$.

Proof ($[a] \cap [b] \neq \emptyset \rightarrow a \sim b$).

Proof
$$(a \sim b \rightarrow [a] = [b])$$
.

- ▶ Take $c \in [a]$ arbitrary. Then $c \sim a$.
- ▶ By transitivity $c \sim b$ and $c \in [b]$.
- ▶ Hence $[a] \subseteq [b]$.
- ▶ By the same argument $[b] \subseteq [a]$ and hence [a] = [b].

Proof
$$([a] = [b] \rightarrow [a] \cap [b] \neq \emptyset)$$
.

▶ [a] is nonempty because $a \in [a]$ by reflexivity.

Proof ([a]
$$\cap$$
 [b] \neq $\emptyset \rightarrow$ a \sim b).

Proof
$$(a \sim b \rightarrow [a] = [b])$$
.

- ▶ Take $c \in [a]$ arbitrary. Then $c \sim a$.
- ▶ By transitivity $c \sim b$ and $c \in [b]$.
- ▶ Hence $[a] \subseteq [b]$.
- ▶ By the same argument $[b] \subseteq [a]$ and hence [a] = [b].

Proof
$$([a] = [b] \rightarrow [a] \cap [b] \neq \emptyset)$$
.

- ▶ [a] is nonempty because $a \in [a]$ by reflexivity.
- ▶ Because [a] = [b] we have $a \in [b]$.

Proof ([
$$a$$
] \cap [b] \neq $\emptyset \rightarrow a \sim b$).

Proof
$$(a \sim b \rightarrow [a] = [b])$$
.

- ▶ Take $c \in [a]$ arbitrary. Then $c \sim a$.
- ▶ By transitivity $c \sim b$ and $c \in [b]$.
- ▶ Hence $[a] \subseteq [b]$.
- ▶ By the same argument $[b] \subseteq [a]$ and hence [a] = [b].

Proof
$$([a] = [b] \rightarrow [a] \cap [b] \neq \emptyset)$$
.

- ▶ [a] is nonempty because $a \in [a]$ by reflexivity.
- ▶ Because [a] = [b] we have $a \in [b]$.
- ▶ Hence $a \in [a] \cap [b]$, and $[a] \cap [b] \neq \emptyset$.

Proof ([a]
$$\cap$$
 [b] \neq $\emptyset \rightarrow$ a \sim b).

Proof
$$(a \sim b \rightarrow [a] = [b])$$
.

- ▶ Take $c \in [a]$ arbitrary. Then $c \sim a$.
- ▶ By transitivity $c \sim b$ and $c \in [b]$.
- ▶ Hence $[a] \subseteq [b]$.
- ▶ By the same argument $[b] \subseteq [a]$ and hence [a] = [b].

Proof $([a] = [b] \rightarrow [a] \cap [b] \neq \emptyset)$.

- ▶ [a] is nonempty because $a \in [a]$ by reflexivity.
- ▶ Because [a] = [b] we have $a \in [b]$.
- ▶ Hence $a \in [a] \cap [b]$, and $[a] \cap [b] \neq \emptyset$.

Proof ([a] \cap [b] $\neq \emptyset \rightarrow a \sim b$).

▶ Let $c \in [a] \cap [b]$.

Proof
$$(a \sim b \rightarrow [a] = [b])$$
.

- ▶ Take $c \in [a]$ arbitrary. Then $c \sim a$.
- ▶ By transitivity $c \sim b$ and $c \in [b]$.
- ▶ Hence $[a] \subseteq [b]$.
- ▶ By the same argument $[b] \subseteq [a]$ and hence [a] = [b].

Proof $([a] = [b] \rightarrow [a] \cap [b] \neq \emptyset)$.

- ▶ [a] is nonempty because $a \in [a]$ by reflexivity.
- ▶ Because [a] = [b] we have $a \in [b]$.
- ▶ Hence $a \in [a] \cap [b]$, and $[a] \cap [b] \neq \emptyset$.

Proof ([a] \cap [b] \neq $\emptyset \rightarrow$ a \sim b).

- ▶ Let $c \in [a] \cap [b]$.
- ▶ Then $c \sim a$ and $c \sim b$.

Proof
$$(a \sim b \rightarrow [a] = [b])$$
.

- ▶ Take $c \in [a]$ arbitrary. Then $c \sim a$.
- ▶ By transitivity $c \sim b$ and $c \in [b]$.
- ▶ Hence $[a] \subseteq [b]$.
- ▶ By the same argument $[b] \subseteq [a]$ and hence [a] = [b].

Proof $([a] = [b] \rightarrow [a] \cap [b] \neq \emptyset)$.

- ▶ [a] is nonempty because $a \in [a]$ by reflexivity.
- ▶ Because [a] = [b] we have $a \in [b]$.
- ▶ Hence $a \in [a] \cap [b]$, and $[a] \cap [b] \neq \emptyset$.

Proof ([a] \cap [b] \neq $\emptyset \rightarrow$ a \sim b).

- ▶ Let $c \in [a] \cap [b]$.
- ▶ Then $c \sim a$ and $c \sim b$.
- **b** By transitivity $a \sim b$.

Definition

▶ A **partition** of a set *S* is a collection of *disjoint*, *nonempty* subsets of *S* that have *S* as their *union*.

Definition

- ▶ A **partition** of a set *S* is a collection of *disjoint*, *nonempty* subsets of *S* that have *S* as their *union*.
- ▶ In other words $\{A_1, A_2, ..., A_n\}$ is a partition of A if and only if

$$A_i \neq \emptyset$$
 for $i = 1, ..., n$
 $A_i \cap A_j = \emptyset$ for all $i \neq j$
 $\bigcup_{i=1}^n A_i = S$

Theorem

- Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S.
- Conversely, given a partition $\{A_1, \ldots, A_n\}$ of S, there exists an equivalence relation R that has the sets A_i as its equivalence classes.

Figure 4: Graph of an equivalence relation

ightharpoonup Let R be an equivalence relation.

Figure 4: Graph of an equivalence relation

- Let *R* be an equivalence relation.
- ▶ Then for all a, $[a]_R \neq \emptyset$ because $a \in [a]_R$.

Figure 4: Graph of an equivalence relation

- Let *R* be an equivalence relation.
- ▶ Then for all a, $[a]_R \neq \emptyset$ because $a \in [a]_R$.
- ▶ This also implies that $\bigcup_{a \in S} [a]_R = S$.

Figure 4: Graph of an equivalence relation

- Let *R* be an equivalence relation.
- ▶ Then for all a, $[a]_R \neq \emptyset$ because $a \in [a]_R$.
- ▶ This also implies that $\bigcup_{a \in S} [a]_R = S$.
- ▶ If $b \notin [a]_R$ then $[a]_R \cap [b]_R = \emptyset$.

Figure 4: Graph of an equivalence relation

- Let *R* be an equivalence relation.
- ▶ Then for all a, $[a]_R \neq \emptyset$ because $a \in [a]_R$.
- ▶ This also implies that $\bigcup_{a \in S} [a]_R = S$.
- ▶ If $b \notin [a]_R$ then $[a]_R \cap [b]_R = \emptyset$.
- \blacktriangleright Hence the equivalence classes of R form a partition of S.

Figure 4: Graph of an equivalence relation

Algorithm

return $\{A_1, \ldots, A_n\}$

```
procedure PARTITION(S: set, R: equivalence relation)
n := 0
while S is nonempty do
n := n + 1
Take a \in S arbitrary.
A_n := [a]_R
S := S \setminus [a]_R
```

▶ Let $\{A_1, \ldots, A_n\}$ be a partition of S.

- ▶ Let $\{A_1, \ldots, A_n\}$ be a partition of S.
- ▶ Because *every* element $a \in S$ belongs to a *unique* A_i there exists a function $f: S \to \{1, ..., n\}$ where f(a) = i if and only if $a \in A_i$.

- ▶ Let $\{A_1, ..., A_n\}$ be a partition of S.
- ▶ Because *every* element $a \in S$ belongs to a *unique* A_i there exists a function $f: S \to \{1, ..., n\}$ where f(a) = i if and only if $a \in A_i$.
- ▶ Define $R = \{(a, b) \mid f(b) = f(a)\}$, then obviously
 - R is reflexive
 - R is symmetric
 - R is transitive

- ▶ Let $\{A_1, \ldots, A_n\}$ be a partition of S.
- \blacktriangleright Because every element $a \in S$ belongs to a unique A_i there exists a function $f: S \to \{1, ..., n\}$ where f(a) = i if and only if $a \in A_i$.
- ▶ Define $R = \{(a, b) \mid f(b) = f(a)\}$, then obviously
 - R is reflexive
 - R is symmetric
 - R is transitive
- Note $a \sim b$ if and only if a, b belong to the same A_i .

What to do next?

▶ Read Section 9.5, especially all the extra examples.

What to do next?

- ▶ Read Section 9.5, especially all the extra examples.
- Solve exercises. Some recommended exercises are in the assignment for week 17:

https://mitt.uib.no/courses/21678/assignments/26394

What to do next?

- ▶ Read Section 9.5, especially all the extra examples.
- ▶ Solve exercises. Some recommended exercises are in the assignment for week 17:

https://mitt.uib.no/courses/21678/assignments/26394

Post questions on the discussion forum and participate in the discussion:

https://mitt.uib.no/courses/21678/discussion_topics/162224