Математическая логика. Домашнее задание №1

Горбунов Егор Алексеевич

29 февраля 2016 г.

Задание №1 Определите множество частичных функций через множество их графиков.

Решение: Множество частичный функций $A \to B$ — это множество подмножеств $G \subseteq A \times B$ такое, что если $(a,b_1) \in G$ и $(a,b_2) \in G$, то $b_1 = b_2$. Т.е. множество частичных функций — это просто множество графиков.

Задание №2 Пусть $f:A\to B$ и $g:B\to C$. Задайте графк функции $g\circ f$ через графики функций g и f.

Решение: Пусть G_f и G_g — графики функций f и g. $g \circ f: A \to C$ и её график: $G_{g \circ f}$ задаётся так:

$$(a,c) \in G_{g \circ f} \iff \exists b \in B : (b,c) \in G_g, (a,b) \in G_f$$

Задание №3 Докажите, что если A вкладывается в B и B вкладывается в C, то A вкладывается в C.

Решение: По определению, т.к. A вкладывается в B существует инъекция (вложение) $f: A \to B$. Аналогично существует инъекция $g: B \to C$. Покажем, что $h = g \circ f: A \to C$ тоже является инъекцией. Пусть $h(a_1) = h(a_2)$, тогда:

$$g(f(a_1)) = g(f(a_2)) \Rightarrow f(a_1) = f(a_2) \Rightarrow a_1 = a_2$$

Оба перехода верны в силу тогоа, что f и g — инъекции. Таким образом и h — инъекция. \blacksquare

Задание №4 Доказать, что если A накрывает B и B накрывает C, то A накрывает C.

Решение: Аналогично предыдущей задаче определяем накрытие $f:A \to B$ и $g:B \to C$. Рассмотрим любой a. Точно существует $b \in B: f(a) = b$, тогда точно существует $c \in C: g(b) = c$, т.е. точно существует $c \in C: g(f(a)) = c$, т.е. $g \circ f:A \to C$ — накрытие, а значит A накрывает C.

Задание №5 Доказать:

- (a) A равномощно A
- (b) Если A равномощно B, то B равномощно A
- (c) Есди A равномощно B и B равномощно C, то A равномощно C

Решение:

- (a) Биекция $f: A \to A$: f(a) = a.
- (b) Существует биекция $f: A \to B$. Рассмотрим функцию $f^{-1}: B \to A$ такую, что $f^{-1}(b) = a \iff f(a) = b$. Заметим, что $f(f^{-1}(b)) = b$ и $f^{-1}(f(a)) = a$ в силу определения (достаточно походить по стрелке влево и вправо). Но тогда, по доказанному на лекции (характеристики биекции): f^{-1} биекция, а значит B равномощно A.
- (c) Существуют биекции: $f:A\to B$ и $g:B\to C$. Рассмотрим $g\circ f:A\to C$. Мы в заданиях 4 и 3 показали, что $g\circ f$ это накрытие и вложение, а значит это биекция, т.е. A и C равномощны

Задание №6 Доказать, что $A \sqcup B \to C$ и $(A \to B) \times (B \to C)$ равномощны.

Решение: Посмтроим $f: (A \sqcup B \to C) \to (A \to B) \times (B \to C)$:

$$f(f') = (x \mapsto f'(Left(x)), x \mapsto f'(Right(x)))$$

Теперь построим $g:(A \to B) \times (B \to C) \to (A \sqcup B \to C)$:

$$g((g_1,g_2)) = fun,$$
где
$$\begin{cases} fun(Left(a)) = g_1(a) \\ fun(Right(b)) = g_2(b) \end{cases}$$

Построили взаимнообратные функции, т.е. f и g — биекции, а значит доказано.

Задание №7 Докажите, что $A \times B \to C$ и $A \to (B \to C)$ равномощны.

Решение: Построим взаимнообратные f и q.

$$f: (A \times B \to C) \to (A \to (B \to C))$$

$$f(f') = a \mapsto (b \mapsto f'((a,b)))$$

$$g: (A \to (B \to C)) \to (A \times B \to C)$$

$$g(g') = (a,b) \mapsto (g'(a))(b)$$

Задание №8 Докажите, что $|\mathcal{P}(A)| = 2^{|A|}$ и $|A \to B| = |B|^{|A|}$

Решение: В лекции мы показывали, что есть биекция между \mathcal{P} и $A \to \Omega$, т.е. достаточно доказать $|A \to B| = |B|^{|A|}$. А для этого достаточно доказать, что $|\overline{n} \to \overline{k}| = |\overline{k}||\overline{n}|$. Легко построить взаимнообратные функции для доказательства этого (код из задания в car.hs):

```
1 exp_bij
2 :: Int
3 -> Int
4 -> ((Int -> Int) -> Int, Int -> (Int -> Int))
5 exp_bij n k = (\f -> sum $ zipWith (*) [k^i | i <- [0..n-1]] [f x | x <- [0..n]],
6 \quad \quad x -> (\i -> (x 'div' (k^i)) 'mod' k))
```