Esercizi Spazi vettoriali

December 15, 2020

Esercizio 1. Per le seguenti applicazioni lineari determinare la dimensione e una base per $\ker(f)$ e per $\operatorname{Im}(f)$ e dire se sono iniettive, suriettive e/o isomorfismi [Sceglietene qualcuna, non importa farle tutte]:

1.
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x,y) = (x,y-x)$;
2. $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (x+y,y-x)$;
3. $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x,y,z) = (-z,x-y+2z,x+2z)$;
4. $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x,y,z) = (-2x-z,x-y,x)$;
5. $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x,y,z) = (-x-z,x-y+z,x+z)$;
6. $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x,y,z) = (y-z,-x+z,-x+z)$;
7. $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x,y,z) = (x,-x,0)$;
8. $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x,y,z) = (-x+2y-2z,-x+2z,-2x+2z)$;
9. $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x,y,z) = (x+y-2z,-x+y,-x+z)$;

11. $f: \mathbb{R}^3 \to \mathbb{R}^4$, f(x, y, z) = (2x + 2y + z, -x + y, 2x - y, 4y + z);

12. $f: \mathbb{R}^4 \to \mathbb{R}^3$. f(x, y, z, t) = (-x + y + t, 2x + y + 2z + t, y - z + t):

10. $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x, y, z) = (x - 2z, -x + y, 0);

Esercizio 2. Determinare quali tra le applicazioni dell'esercizio 1 sono diagonalizzabili su \mathbb{R} ; nel caso in cui non lo siano, determinare se sono diagonalizzabili su \mathbb{C} .

Esercizio 3. Data una applicazione lineare F da \mathbb{R}^n in \mathbb{R}^m , descrivere la relazione tra la dimensione del nucleo di F, la dimensione dell'immagine di F, e il rango di F.

Esercizio 4. Data una applicazione lineare F da \mathbb{R}^n in \mathbb{R}^m , descrivere le condizioni su m e n tali che F possa essere iniettiva, suriettiva, o un isomorfismo. E' vero che una applicazione lineare $F: \mathbb{R}^3 \to \mathbb{R}^5$ e' sempre iniettiva?

Esercizio 5. Sia F l'applicazione lineare definita da F((1,1)) = (2,1,3) e F(1,-1) = (2,1,1). Scrivere la matrice associata a F con le basi canoniche in partenza e in arrivo. Scrivere una base per l'immagine di F.

Esercizio 6. Sia $A \in M_{4\times 4}$ e siano 1, 2, i, -i i suoi autovalori. Determinare gli autovalori delle seguenti matrici: -A; 3iA; \overline{A} ; 5A.

Esercizio 7. Sia f la applicazione di cui al punto 10. dell'esercizio 1 e g la applicazione di cui al punto 9. dell'esercizio 1. Calcolare la matrice associata (rispetto alle basi canoniche) alla applicazione lineare $h = f \circ g$ e all'applicazione lineare $L = g \circ f$. Scegliere un isomorfismo tra le applicazioni lineari dell'esercizio 1 e scrivere la matrice associata alla sua applicazione inversa.

Esercizio 8. Determinare per $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x,y,z) = (x+y-2z,-x+y,-x+z) una base di \mathbb{R}^3 composta da autovettori di f. Scrivere l'espressione di f rispetto a quella base.

Esercizio 9. Sia $f: \mathbb{R}^3 \to \mathbb{R}^2$ l'applicazione la cui matrice associata rispetto alle basi canoniche di \mathbb{R}^2 e \mathbb{R}^3 è $A_f = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & 1 \end{pmatrix}$. Determinare:

- 1. f(x, y, z);
- 2. se f è iniettiva e/o suriettiva;
- 3. una base per Ker(f) e Im(f).

Esercizio 10. Stabilire se due matrici simili hanno gli stessi autovalori e/o gli stessi autovettori.

Esercizio 11. Scrivete tutte le condizioni che implicano che una matrice sia diagonalizzabile su \mathbb{R} .