Université Paris-Saclay - L3 Mathématiques Analyse théorique et numérique des EDO - Année 2023-2024

TD1 (suite) : équations linéaires d'ordre 2 à coefficients constants et systèmes d'équations linéaires.

Exercice 1. EDO d'ordre 2

Résoudre les edo suivantes en utilisant l'équation caractéristique.

1.
$$y'' - y' - 6y = 0$$
.

2.
$$y'' - y' - 6y = t^2$$
.

3.
$$y'' + y' + y = 0$$
.

4.
$$y'' + y' + y = \cos(2t)$$

5.
$$y'' - 4y' + 3y = e^{-2t}$$

6.
$$y'' - 4y' + 3y = e^t$$
.

7.
$$y'' - 4y' + 4y = 0$$
.

8.
$$y'' - 4y' + 4y = e^t$$
.

Exercice 2. Systèmes différentielles linéaires - cas d'une matrice diagonalisable dans \mathbb{R} . Soit $A \in \mathcal{M}_n(\mathbb{R})$. On considère le système d'équations différentielles linéaire Y' = AY. Supposons que la matrice A est diagonalisable dans \mathbb{R} : il existe $P \in \mathcal{M}_n(\mathbb{R})$ inversible, $D \in \mathcal{M}_n(\mathbb{R})$ diagonale, tel que $A = PDP^{-1}$.

- 1. Soient $U_1, \ldots, U_n \in \mathbb{R}^n$ les vecteurs correspondant aux colonnes de P, et $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ les scalaires correspondant à la diagonale de A. Justifier pourquoi (U_1, \ldots, U_n) est une base de \mathbb{R}^n et rappeler le lien entre les vecteurs U_i et les scalaires λ_i , $i = 1, \ldots, n$.
- 2. Soit $V = P^{-1}Y$. Écrire le système différentiel vérifié par V et donner l'ensemble de ses solutions. En déduire que Y est solution de Y' = AY si et seulement si

$$Y(t) = C_1 e^{\lambda_1 t} U_1 + \dots + C_n e^{\lambda_n t} U_n,$$

où C_1, \ldots, C_n sont des constantes réelles, et conclure que l'ensemble des solutions de Y' = AY est un espace vectoriel de dimension n.

3. Soit $B:\mathbb{R}\longrightarrow\mathbb{R}^n$ une fonction continue. On considère le système linéaire non homogène

$$(E_B) \quad Y'(t) = AY(t) + B(t).$$

(a) Soit $Y_p : \mathbb{R} \longrightarrow \mathbb{R}^n$ une solution de (E_B) . Montrer que l'ensemble des solutions de (E_B) est l'ensemble

$$\left\{t\mapsto C_1e^{\lambda_1t}U_1+\cdots+C_ne^{\lambda_nt}U_n+Y_p(t),\ C_1,\ldots,C_n\in\mathbb{R}\right\}.$$

(b) Montrer que l'on peut construire une solution Y_p de (E_B) par la méthode de la variation des constantes, c'est-à-dire en choisissant une fonction Y_p de la forme

$$Y_p(t) = C_1(t)e^{\lambda_1 t}U_1 + \dots + C_n(t)e^{\lambda_n t}U_n,$$

$$C_1,\ldots,C_n:\mathbb{R}\longrightarrow\mathbb{R}$$
.

Exercice 3. Systèmes différentielles linéaires - cas d'une matrice diagonalisable dans \mathbb{C} . Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice diagonalisable dans \mathbb{C} , c'est-à-dire tel qu'il existe $P \in \mathcal{M}_n(\mathbb{C})$ inversible, $D \in \mathcal{M}_n(\mathbb{C})$ diagonale, tel que $A = PDP^{-1}$. On remarque que comme A est à coefficients réels, si $U \in \mathbb{C}^n$, $\lambda \in \mathbb{C}$ sont tels que $AU = \lambda U$, on a $A\overline{U} = \overline{\lambda U}$.

- 1. Soient $U=U_1+iU_2\in\mathbb{C}^n,\ (U_1,\ U_2\in\mathbb{R}^n),\ \lambda=\alpha+i\beta\in\mathbb{C},$ tels que $AU=\lambda U.$ Montrer que (U_1, U_2) est une base de \mathbb{R}^2 .
- 2. Justifier que $Y(t) = e^{\lambda t}U$ est une solution à valeurs complexes de Y' = AY et que sa partie réelle et sa partie imaginaire sont des solutions à valeurs réelles de Y' = AY.
- 3. En déduire que

$$Y_1(t) = e^{\alpha t}(\cos(\beta t)U_1 - \sin(\beta t)U_2) \text{ et } Y_2(t) = e^{\alpha t}(\sin(\beta t)U_1 + \cos(\beta t)U_2),$$

sont deux solutions à valeurs réelles de Y' = AY linéairement indépendentes.

Exercice 4. Des EDO d'ordre 2 aux systèmes d'ordre 1.

Résoudre les edo suivantes de deux façons en vous ramenant à un système différentiel d'ordre 1.

1.
$$y'' - y' - 6y = 0$$
.

2.
$$y'' - y' - 6y = t^2$$
.

3.
$$y'' + y' + y = 0$$
.

Exercice 5. Systèmes différentiels d'ordre 1.

Résoudre les systèmes différentiels d'ordre 1 suivants

1.
$$\begin{cases} x' = 4x - 2y \\ y' = x + y \end{cases}$$

1.
$$\begin{cases} x' = 4x - 2y \\ y' = x + y \end{cases}$$
2.
$$\begin{cases} x' = x + 8y + e^t \\ y' = 2x + y + e^{-3t} \end{cases}$$

$$3. \begin{cases} x' = y+z \\ y' = x \\ z' = x+y+z \end{cases}$$