Week 2: Data Preparation

Visual Data Analytics
University of Sydney

Outline

- Data frames
- Operations on data frames
- Data types
- Data profiling

Data frames

What is data?

- Data can be structured or unstructured
- Structured data has
 - Observations/ cases in rows
 - Variables/ features in columns
- Think of structured data as something that can be put into a spreadsheet.

Example

	Α	В	С	D	E
1	Player	Games Played	Minutes	Points	Birthplace
2	LeBron James	1394	53142	37860	Akron, USA
3	Kevin Durant	974	35776	26565	Washington DC, USA
4	James Harden	962	33378	23915	Los Angeles, USA
5	Russell Westbrook	1054	36352	23781	Long Beach, USA
6	Chris Paul	1178	40623	21235	Winston-Salem, USA
7	Stephen Curry	852	29256	20843	Akron, USA
8	DeMar DeRozan	993	34087	20812	Compton, USA
9	Damian Lillard	734	26648	18149	Oakland, USA
10	Rudy Gay	1089	34135	17463	New York, USA
11	Paul George	765	25711	15713	Palmdale, USA
12	Kyle Lowry	1055	33750	15556	Philadelphia, USA
13	Giannis Antetokounmpo	686	22365	15283	Athens, Greece
14	Anthony Davis	629	21641	15075	Chicago, USA
15	Bradley Beal	668	23211	14772	St Louis, USA
16	Kyrie Irving	637	21756	14770	Melbourne, Australia

Current as of January 2023

US Cities and States

	Α	В
1	Akron	Ohio
2	Los Angeles	California
3	Long Beach	California
4	Winston-Salem	North Carolina
5	Compton	California
6	Oakland	California
7	New York	New York
8	Palmdale	California
9	Philadelphia	Pennsylvania
10	Chicago	Illinois
11	St Louis	Missouri
12		

Observations and variables

- In the first table:
 - What are the observations?
 - What are the variables?
- How about the second table?

Pandas

- The Python library pandas stores data in a basic object called a data frame.
- It also provides
 functions for reading in
 and manipulating data
 frames.

NBA Data

```
import pandas as pd
NBA = pd.read_csv('../data/NBA1.csv')
NBA
```

##		Player	Games Played	Minutes	Points	Birthpl
##	0	LeBron James	1394	53142	37860	Akron,
##	1	Kevin Durant	974	35776	26565	Washington DC,
##	2	James Harden	962	33378	23915	Los Angeles,
##	3	Russell Westbrook	1054	36352	23781	Long Beach,
##	4	Chris Paul	1178	40623	21235	Winston-Salem,
##	5	Stephen Curry	852	29256	20843	Akron,
##	6	DeMar DeRozan	993	34087	20812	Compton,
##	7	Damian Lillard	734	26648	18149	Oakland,
##	8	Rudy Gay	1089	34135	17463	New York,
##	9	Paul George	765	25711	15713	Palmdale,
##	10	Kyle Lowry	1055	33750	15556	Philadelphia,
##	11	Giannis Antetokounmpo	686	22365	15283	Athens, Gre
##	12	Anthony Davis	629	21641	15075	Chicago,
##	13	Bradley Beal	668	23211	14772	St Louis,
##	14	Kyrie Irving	637	21756	14770	Melbourne, Aus∜ra

Keys

- A key uniquely identifies an entry into the database.
- In the first table the player name can act as a key.
- Player birthplace could not be a key since both
 James and Curry are born in Akron.
- However, be careful with names as keys, since two players may have the same name.

Atomicity

- Beware of variables that combine multiple pieces of information.
- Birthplace can be broken down into city and country.
- This may be useful if we want to visualise points scored by players born in USA and players born outside USA.
- Variables should be atomic
- This is also known as parsing the data.

Split

```
new = NBA.Birthplace.str.split(', ',expand = True)
new
```

```
##
                    0
                                1
## 0
                Akron
                              USA
## 1
       Washington DC
                              USA
         Los Angeles
                              USA
## 2
## 3
          Long Beach
                              USA
       Winston-Salem
## 4
                              USA
## 5
                Akron
                              USA
              Compton
                              USA
## 6
              0akland
                              USA
## 7
             New York
## 8
                              USA
## 9
             Palmdale
                              USA
        Philadelphia
## 10
                              USA
## 11
               Athens
                           Greece
## 12
              Chicago
                              USA
             St Louis
                              USA
## 13
## 14
           Melbourne
                      Australia
```

With original table

```
NBA["CityOfBirth"] = new[0]
NBA["CountryOfBirth"] = new[1]
NBA
```

Player

LeBron James

Kevin Durant

Bradley Beal

Kyrie Irving

##

0

1

13

##	2	James Harden	962	 Los Angeles	USA
##	3	Russell Westbrook	1054	 Long Beach	USA
##	4	Chris Paul	1178	 Winston-Salem	USA
##	5	Stephen Curry	852	 Akron	USA
##	6	DeMar DeRozan	993	 Compton	USA
##	7	Damian Lillard	734	 0akland	USA
##	8	Rudy Gay	1089	 New York	USA
##	9	Paul George	765	 Palmdale	USA
##	10	Kyle Lowry	1055	 Philadelphia	USA
##	11	Giannis Antetokounmpo	686	 Athens	Greece
##	12	Anthony Davis	629	 Chicago	USA

668

637

Games Played ...

1394

974

CountryOfBirth

USA

USA

USA

AustraPia

CityOfBirth

Washington DC

Akron

St Louis

Melbourne

Another example

Player	Points
Steph Curry	20843 for Warriors
Kevin Durant	17566 for Thunder, 5374 for Warriors, 3625 for Nets

Split

Player	Points for Warriors	Points for Thunder	Points for Nets
Steph Curry	20843		
Kevin Durant	5374	17566	3625

Problems

- Empty cells for Steph Curry
 - Not such a big issue (see missing data later)
- What if Kevin Durant moves to another team?
- What if we want to include Giannis (only played for Bucks)?
 - Would need new columns and code that previously worked may break.

Solution

Player	Team	Points
Steph Curry	Warriors	20843
Kevin Durant	Thunder	17566
Kevin Durant	Warriors	5374
Kevin Durant	Nets	3625

First Normal Form

- New data entries can be added by adding rows only.
- Now the player and team combined form key.
- Overall the example so far is about getting the data into the first normal form.
- For the purposes of visualisation the lesson is to think carefully about how the data is structured.

Operations on Data Frames

The simple machines

- Hundreds of years ago, it was believed that all machines were made up of six simple machines
- These include: levers, wheels, pulleys, screws, etc.
- Nowadays machines are more complicated.
- But this is a good metaphor for data frames

Simple machines of data

- We will consider six "simple machines" of data frames.
 - Transforming
 - Sorting
 - Filtering
 - Group by/ aggregate
 - Reshaping (melting and casting)
 - Joining (merging)
- By some combination of these we can 'munge' data frames into almost any data frame we need.

Transform

- Create a new variable based on values of existing variables.
- For example, in the NBA data frame we have games played and points.
- Suppose we want to create a variable of points per game (PPG)

Transform in Python

```
NBA["PPG"]=NBA["Points"]/ NBA["Games Played"]
NBA
```

##		Player	Games Played	 CountryOfBirth	PPG
##	0	LeBron James	1394	 USA	27.159254
##	1	Kevin Durant	974	 USA	27.274127
##	2	James Harden	962	 USA	24.859667
##	3	Russell Westbrook	1054	 USA	22.562619
##	4	Chris Paul	1178	 USA	18.026316
##	5	Stephen Curry	852	 USA	24.463615
##	6	DeMar DeRozan	993	 USA	20.958711
##	7	Damian Lillard	734	 USA	24.726158
##	8	Rudy Gay	1089	 USA	16.035813
##	9	Paul George	765	 USA	20.539869
##	10	Kyle Lowry	1055	 USA	14.745024
##	11	Giannis Antetokounmpo	686	 Greece	22.278426
##	12	Anthony Davis	629	 USA	23.966614
##	13	Bradley Beal	668	 USA	22.113772
##	14	Kyrie Irving	637	 Australia	23.186813 ₂₃
##					

Sort

- Suppose we want to sort the data according to one of the variables.
- We can use the sort values function.
- Consider that we want to sort by minutes played from smallest to largest.

Players by minutes

```
NBAbymin = NBA.sort_values(by = 'Minutes')
NBAbymin
```

##		Player	Games Played	 CountryOfBirth	PPG
##	12	Anthony Davis	629	 USA	23.966614
##	14	Kyrie Irving	637	 Australia	23.186813
##	11	Giannis Antetokounmpo	686	 Greece	22.278426
##	13	Bradley Beal	668	 USA	22.113772
##	9	Paul George	765	 USA	20.539869
##	7	Damian Lillard	734	 USA	24.726158
##	5	Stephen Curry	852	 USA	24.463615
##	2	James Harden	962	 USA	24.859667
##	10	Kyle Lowry	1055	 USA	14.745024
##	6	DeMar DeRozan	993	 USA	20.958711
##	8	Rudy Gay	1089	 USA	16.035813
##	1	Kevin Durant	974	 USA	27.274127
##	3	Russell Westbrook	1054	 USA	22.562619
##	4	Chris Paul	1178	 USA	18.026316
##	0	LeBron James	1394	 USA	27.159254
##					2

25

Filter

- Filtering involves selecting only some subset of the data.
- There are many ways to do this
 - Select rows
 - Select columns
- Select by a logical condition

Example

- Suppose we only want to consider
 - Players with points per game greater than 20
 - Players born in Akron
 - Players not born in the United States
- These are all examples of logical conditions (either true or false).

Players with PPG above 20

```
NBAppg20 = NBA.loc[NBA["PPG"]>20]
NBAppg20
```

```
##
                        Plaver
                                 Games Played
                                                       CountryOfBirth
                                                                               PPG
                                                 . . .
## 0
                 LeBron James
                                          1394
                                                                   USA
                                                                         27.159254
                                                 . . .
                                           974
                                                                   USA
                                                                         27,274127
## 1
                 Kevin Durant
                                                 . . .
## 2
                 James Harden
                                           962
                                                                   USA
                                                                         24.859667
                                                 . . .
            Russell Westbrook
## 3
                                          1054
                                                                   USA
                                                                        22.562619
                                                 . . .
## 5
                Stephen Curry
                                           852
                                                                   USA
                                                                         24.463615
                                                 . . .
## 6
                DeMar DeRozan
                                           993
                                                                   USA
                                                                         20.958711
## 7
               Damian Lillard
                                           734
                                                                   USA
                                                                         24.726158
                                                 . . .
## 9
                   Paul George
                                           765
                                                                   USA
                                                                         20.539869
## 11
       Giannis Antetokounmpo
                                           686
                                                                Greece
                                                                         22.278426
                                                 . . .
## 12
                Anthony Davis
                                           629
                                                                   USA
                                                                         23.966614
## 13
                 Bradley Beal
                                           668
                                                                   USA
                                                                         22.113772
                                                 . . .
## 14
                 Kyrie Irving
                                           637
                                                            Australia
                                                                         23.186813
                                                 . . .
##
   [12 rows x 8 columns]
```

Players born in Akron

```
NBAAkr = NBA.loc[NBA["CityOfBirth"] == 'Akron']
NBAAkr
##
            Player Games Played
                                Minutes ...
                                               CityOfBirth CountryOfBirth
                                   53142 . . .
## 0
    LeBron James
                            1394
                                                     Akron
                                                                     USA
                            852
                                   29256 ...
                                                     Akron
## 5 Stephen Curry
                                                                     USA
##
## [2 rows x 8 columns]
```

Note that a single = denotes assignment, a double == denotes 'equals' in a logical statement.

Players born outside USA

In general we can read! as 'not' in Python

[2 rows x 8 columns]

Group by / aggregate

- Suppose we want to compare total points scored by players country of birth.
- This requires two functions
 - The groupby function tells us the variable to group on (in this case Country of Birth).
 - The agg function tells us which variable to aggregate (in this case points)

Groupby/aggregate in Python

```
NBAg = NBA.groupby('CountryOfBirth').agg({'Points': 'sum'})
NBAg
```

```
## CountryOfBirth
## Australia 14770
## Greece 15283
## USA 271739
```

Other ways to aggregate include mean, min and max.

Reshape

- Often in order to produce the visualisation we want we need to reshape the data.
- This is done using two functions
 - The function melt converts the data from wide to long.
 - The function pivot converts the data from long to wide.

Melting

```
NBAlong = NBA.melt(id_vars=['Player'],value_vars=['Games Played', 'Minu
NBAlong
```

##		Player	variable	value
##	0	LeBron James	Games Played	1394
##	1	Kevin Durant	Games Played	974
##	2	James Harden	Games Played	962
##	3	Russell Westbrook	Games Played	1054
##	4	Chris Paul	Games Played	1178
##	5	Stephen Curry	Games Played	852
##	6	DeMar DeRozan	Games Played	993
##	7	Damian Lillard	Games Played	734
##	8	Rudy Gay	Games Played	1089
##	9	Paul George	Games Played	765
##	10	Kyle Lowry	Games Played	1055
##	11	Giannis Antetokounmpo	Games Played	686
##	12	Anthony Davis	Games Played	629
##	13	Bradley Beal	Games Played	668
##	14	Kyrie Irving	Games Played	637
##	15	LeBron James	Minutes	53142

Pivoting

```
NBAwide = NBAlong.pivot(index='Player', columns = 'variable')
NBAwide
```

##			value		
##	variable	Games	Played	Minutes	Points
##	Player				
##	Anthony Davis		629	21641	15075
##	Bradley Beal		668	23211	14772
##	Chris Paul		1178	40623	21235
##	Damian Lillard		734	26648	18149
##	DeMar DeRozan		993	34087	20812
##	Giannis Antetokounmpo		686	22365	15283
##	James Harden		962	33378	23915
##	Kevin Durant		974	35776	26565
##	Kyle Lowry		1055	33750	15556
##	Kyrie Irving		637	21756	14770
##	LeBron James		1394	53142	37860
##	Paul George		765	25711	15713
##	Rudy Gay		1089	34135	17463
##	Russell Westbrook		1054	36352	23781
			0.5.0	20256	20042

A better example

```
Sydney = pd.read csv('../data/SydneyClimate.csv')
 Sydney
##
       Year
                M01
                       M<sub>0</sub>2
                               M<sub>0</sub>3
                                       M<sub>0</sub>4
                                              M<sub>0</sub>5
                                                      M<sub>0</sub>6
                                                             M<sub>0</sub>7
                                                                     M08
                                                                            M09
                                                                                    M10
                                                                                            M11
##
   0
       2017
                NaN
                       NaN
                               NaN
                                      NaN
                                              NaN
                                                      NaN
                                                             NaN
                                                                     NaN
                                                                             NaN
                                                                                   24.9
                                                                                           24.8
       2018
               28.5
                                     26.7
                                                            19.9
                                                                                   21.9
                                                                                           25.0
## 1
                      28.1
                              27.4
                                             22.2
                                                     17.7
                                                                    19.3
                                                                           21.0
                                                     18.6
                                                                    19.5
                                                                           22.0
## 2
       2019
               29.6
                      27.7
                              26.9
                                     25.1
                                             22.7
                                                            19.8
                                                                                   24.7
                                                                                           27.0
       2020
               29.0
                              25.6
                                     24.5
                                                     18.7
                                                            18.2
                                                                           22.7
                                                                                   24.2
                                                                                          26.1
## 3
                      27.5
                                             20.3
                                                                    19.5
## 4
       2021
               27.4
                      26.7
                              25.5
                                     24.3
                                             20.9
                                                     18.1
                                                            18.2
                                                                    20.7
                                                                           22.5
                                                                                   24.2
                                                                                          23.2
       2022
               27.7
                      26.7
                                                     18.3
                                                                                   22.6
## 5
                              24.8
                                     23.7
                                             20.8
                                                            17.0
                                                                    19.8
                                                                           20.6
                                                                                           24.3
```

Retrieved from Bureau of Meteorology

Melting

```
Sydlong = Sydney.melt(id_vars='Year').sort_values(by = ['Year','variable
Sydlong
```

```
value
##
        Year variable
## 0
                     M01
                               NaN
         2017
## 6
         2017
                     M<sub>0</sub>2
                               NaN
## 12
                     M<sub>0</sub>3
                               NaN
        2017
## 18
                               NaN
         2017
                     M<sub>0</sub>4
## 24
         2017
                     M<sub>0</sub>5
                               NaN
## ..
                      . . .
                               . . .
## 47
         2022
                     80M
                             19.8
                             20.6
## 53
         2022
                     M09
## 59
                             22.6
        2022
                     M10
## 65
        2022
                     M11
                             24.3
                     M12
                               NaN
## 71
         2022
##
## [72 rows x 3 columns]
```

Plot

Merge

- Bring two data frames together
- Similar to a VLOOKUP type function in spreadsheet programs such as Excel.
- We can use merge to add information about State of birth for NBA players.

Merge

```
CitiesStates = pd.read_csv('../data/UScitiesstates.csv')
NBAmerge = pd.merge(NBA,CitiesStates, left_on = 'CityOfBirth', right_on
NBAmerge
```

```
##
                             Games Played
                    Player
                                                            City
                                                                             State
## 0
             LeBron James
                                      1394
                                                           Akron
                                                                              Ohio
                                             . . .
                                                                              Ohio
## 1
            Stephen Curry
                                       852
                                                           Akron
                                             . . .
                                                                        California
## 2
             James Harden
                                       962
                                                     Los Angeles
                                             . . .
## 3
       Russell Westbrook
                                      1054
                                                      Long Beach
                                                                        California
                                                                   North Carolina
## 4
               Chris Paul
                                      1178
                                                  Winston-Salem
                                             . . .
                                                                        California
## 5
            DeMar DeRozan
                                       993
                                                         Compton
                                             . . .
                                                                        California
## 6
           Damian Lillard
                                       734
                                                         0akland
                                             . . .
## 7
                 Rudy Gay
                                      1089
                                                        New York
                                                                          New York
                                             . . .
## 8
              Paul George
                                       765
                                                        Palmdale
                                                                        California
                                             . . .
## 9
               Kyle Lowry
                                      1055
                                                   Philadelphia
                                                                     Pennsylvania
                                             . . .
                                                                          Illinois
##
  10
            Anthony Davis
                                       629
                                                         Chicago
                                             . . .
##
   11
             Bradley Beal
                                       668
                                                        St Louis
                                                                          Missouri
##
   [12 rows x 10 columns]
```

Different type of merge

- Left: Keep all entries from first data frame
- Right: Keep all entries from first data frame
- Inner: Keep all entries that appear in both data frames
- Outer: Keep all entries that appear in either data frame

Merge

##

0

1

13

14

```
CitiesStates = pd.read_csv('../data/UScitiesstates.csv')
NBAmerge = pd.merge(NBA,CitiesStates, how = 'outer', left_on = 'CityOfB
NBAmerge
```

Games Played

1394

852

City

Akron

Akron

St Louis

NaN

State

0hio

0hio

Missouri

NaN

Player

LeBron James

Stephen Curry

Bradley Beal

Kyrie Irving

##	2	Kevin Durant	974	 NaN	NaN
##	3	James Harden	962	 Los Angeles	California
##	4	Russell Westbrook	1054	 Long Beach	California
##	5	Chris Paul	1178	 Winston-Salem	North Carolina
##	6	DeMar DeRozan	993	 Compton	California
##	7	Damian Lillard	734	 0akland	California
##	8	Rudy Gay	1089	 New York	New York
##	9	Paul George	765	 Palmdale	California
##	10	Kyle Lowry	1055	 Philadelphia	Pennsylvania
##	11	Giannis Antetokounmpo	686	 NaN	NaN
##	12	Anthony Davis	629	 Chicago	Illinois

668

637

Putting them together

- In your own time, construct data frames for the following following:
 - Each state and with the maximum points per minute (PPM) by a player from each state.
 - The same as above with states ranked from highest to lowest according to the maximum PPM.
 - The same as above but with an extra column with the player name of the player with the highest PPM in each state.
- There may be more than one correct answer.

Data types

Data Types

- Each variable measures a certain characteristic.
- Characteristics can be measured in different ways
- This leads to data type which are important for understanding
 - How we can transform data.
 - The correct visualisation to use.

Scales of measurement

- Any old (or new) statistics textbook will introduce four scales of measurement
 - Nominal
 - Ordinal
 - Interval
 - Ratio
- These are still useful (with some caveats).

Nominal data

- Tells us something about a characteristic but there is no notion of having more or less of a characteristic.
- Example: Country of birth.
- Can you think of other examples?
- Even if we assign numbers to nominal categories, it does not make sense to find means medians etc.
- The mode still makes sense.

Ordinal data

- Tells us whether we have more or less of a characteristic, but not how much more or less.
- Example: rate players as good, very good, excellent.
- If we assign numbers to nominal categories it still does not make sense to add subtract these numbers.
- However the median (and the mode) still make sense.

Interval/Ratio data

- All numerical data is either interval or ratio data.
- The differences between the two concern whether the zero point of the scale truly represents an absence of the characteristic being measured.
- Best understood with an example.

Points per game

- Suppose I constructed a new index for points per game (PPG) where a PPG of 20 now becomes a PPG of 0.
 - Paul George (PPG: 20.5) would have a "new"
 PPG of 0.5.
 - Steph Curry (PPG: 24.5) would have a "new"
 PPG of 4.5.
- Does this mean that Curry is scoring 9 times as much as George? No.

The textbook example

- The famous example is temperature.
- The Celsius scale attaches 0 and 100 to the freezing and boiling point of water.
 - This is arbitrary
- For the Kelvin scale, zero is true zero since it is a temperature where atoms have no energy (loosely speaking).

Does it matter?

- Not that much (outside of science).
- Most data we see in business are ratio data.
- In general, I will use numeric data and ratio data interchangeably.
- Just think carefully when dividing with numerical variables.

Summary

Operation	Nominal	Ordinal	Interval	Ratio
Equality	~	~	✓	~
Order		~	✓	✓
Add / subtract			✓	✓
Multiply/divide				✓
Mode	✓	✓	✓	✓
Median		~	✓	✓
Arithmetic mean			~	~
Geometric mean				~

Some exceptions

- Nominal data with two categories.
 - Born in US assigned 1, born outside US assigned 0.
 - Arithmetic mean is then the *proportion* born in US.
- Likert (customer satisfaction) scales:
 - Strongly disagree = 1, Disagree = 2, etc.
 - Using an arithmetic mean is controversial but common in practice.
- Time is very unusual since calendar effects are important in business.

Types in Pandas

```
NBA.dtypes
```

```
## Player
                      object
## Games Played
                       int64
## Minutes
                       int64
## Points
                       int64
## Birthplace
                      object
## CityOfBirth
                      object
## CountryOfBirth
                      object
## PPG
                     float64
## dtype: object
```

Object is text, int64 is an integer and float64 is a real number.

Data Profiling

Some issues

- Duplicated entries
 - Can be removed using drop_duplicates function in pandas.
- Data entry errors
 - For example cannot score 20000 points in 3 minutes.
 - Requires domain knowledge.
 - These issues can be discovered during visualisation.

Standardisations

- Steph Curry may appear elsewhere in the data as
 - "Stephen Curry"
 - "Wardell Stephen Curry II" (his full name).
- Similar things happen with company names
 Facebook/ Meta, General Motors/ GM etc.
- Requires domain knowledge and some extra coding.

Missing Data

- There are often missing data
- Need to think of a good strategy to encode missing data.
- In Python there is NaN for this.
- Often will replace with a number but this is a bad strategy

Do not use "0" for "missing"

- Suppose if games played is missing and we replace with zero.
- The zeros will distort the mean.
- If we compute points per game there will be division by zero.
- Do not replace missing values by zeros.

Do not use "-999" for "missing"

- Sometimes a completely implausible number such as -999 is used to denote missing.
- This can lead to strange visualisations
- The following example is for the Sydney temperature data

Temperature

Dealing with missing data

- Only use complete cases
- Impute missing values
 - With a random value
 - With mean/median or mode
 - More complicated models
- Report/Visualise missing data
 - By reporting missing data this gives a better idea of uncertainty.

Report missing

Do you approve or disapprove of the job Anthony Albanese is doing as Prime Minister?

	‡ TOTAL	♣ Labor	† TOTAL: Coalition	\$ Greens		\$
Strongly approve	18%	30%	10%	22%	9%	
Approve	42%	58%	31%	49%	29%	
Disapprove	16%	5%	26%	13%	23%	
Strongly disapprove	12%	0%	22%	2%	26%	
Don't know	13%	7%	11%	14%	13%	
TOTAL: Approve	60%	88%	41%	71%	39%	
TOTAL: Disapprove	28%	5%	48%	15%	49%	

Source: Guardian

Wrap-up

Conclusions

- Our focus from now on will be visualisation.
- Writing code to visualise messy data is hard.
- Spend the time to clean your data.
- Focus on the *principles* since these work for Excel,
 Tableau, R, Python, etc.
- After you appreciate the principles, practice your coding.

Questions