

La face cachée de notre monde numérique

- Printemps des Sciences 2022

Notre monde numérique,

La face cachée

Composants électroniques

Message

Applications

Appel

Le langage de l'électronique: le binaire

Pour communiquer:

Les humains envoient des sons correspondant à des lettres, assemblés pour former des mots et des phrases.

Les circuits électroniques envoient des signaux électriques correspondant à des symboles binaires (0 ou 1, appelés bits), assemblés pour former un message (nombre, texte, information...)

Challenge #1 Communiquer comme un ordinateur

Quelques exemples de codes

Système binaire

Binaire	Décimal
0	0
1	1
101	5
1111	15
1111011	123
1011001000001	5697

Code ASCII

Binaire	Caractère
01000001	Α
01000010	В
01011010	Z
00111111	
00100010	?
00110001	1

Objectif:

Une personne doit envoyer un message secret à l'autre partie du groupe, en utilisant uniquement un signal binaire (représenté par les lumières).

Ces ateliers contiennent des dispositifs électriques sous tension. Attention à les utiliser de manière appropriée sans mettre en danger vous-mêmes ou vos camarades.

Le transistor, l'élément de base

• Matériau semiconducteur

Ex: silicium, germanium

2 états: conducteur ou isolant

 Canal controllé par un signal électrique

≈ interrupteur, vanne...

Démo #1 Des maths avec des interrupteurs ??

Objectif:

Découvrir des fonctions logiques de base conçues à base d'interrupteurs.

Des circuits, de plus en plus complexes

Challenge #2 Assembler un premier circuit

Tables de vérité

Porte OU

Entrées		Sorties
0	0	0
0	1	1
1	0	1
1	1	1

Porte ET

Entrées		Sorties
0	0	0
0	1	0
1	0	0
1	1	1

Porte NON

Entrées	Sorties
0	1
1	0

Objectif:

A l'aide de portes logiques de base, reconstituer une nouvelle function logique.

Porte OU exclusif

Entrées		Sorties
0	0	0
0	1	1
1	0	1
1	1	0

+12V

Challenge #2 Assembler un premier circuit

Entrée A

Entrées	Sorties
0	1
1	0

Entrée A Entrée B

Entrées		Sorties
0	0	0
0	1	1
1	0	1
1	1	1

Entrée A Entrée B

Entrées		Sorties
0	0	0
0	1	0
1	0	0
1	1	1

Porte OU exclusif

Entrées		Sorties
0	0	0
0	1	1
1	0	1
1	1	0

Démo #2 En plus complexe, ça donne quoi?

OU exclusive (XOR)

Objectif:

Observer le fonctionnement d'un circuit logique plus complexe, l'additioneur 5-bits.

L'électronique au cours du temps

Nom	Bionic A15 (Apple)	
Année	2021	
Technologie	Transistors 5 nm (× 15 milliard)	
Performance	3 000 000 000 000 opérations / seconde	
Taille	108 mm²	
Puissance électrique	5 W	

'erforma	Puissance éle
Taille ÷ 1 500	000 000

Nom ENIAC Année 1945 Technologie Tubes à vides (× 17 000) Performance 50 000 opérations / seconde Taille 167 m², 30 t Puissance électrique 150 kW		
Technologie Tubes à vides (× 17 000) Performance 50 000 opérations / seconde Taille 167 m², 30 t	Nom	ENIAC
Performance 50 000 opérations / seconde Taille 167 m², 30 t	Année	1945
Taille 167 m², 30 t	Technologie	Tubes à vides (× 17 000)
<u>'</u>	Performance	50 000 opérations / seconde
Puissance électrique 150 kW	Taille	167 m², 30 t
•	Puissance électrique	150 kW

La loi de Moore

Historique des microprocesseurs

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2021 by K. Rupp

Démo #3A la découverte des circuits intégrés

Objectif:

Observer de plus près les circuits intégrés sous différentes formes.

Un ordinateur, beaucoup de composants...

Objectif:

Identifier les différents composants d'un ordinateur et les relier à leur role.

Permet à l'utilisateur d'interagir avec l'interface du dispositif électronique

L'autre face cachée de l'électronique...

les déchets!

Chaque année, plus de 50 millions de tonnes de déchets électroniques dans le monde.

= 5 000 ×

- Pollution
- Difficulté de recyclage
- Extraction de matériaux
- Conditions des travailleurs

• • •

Que peut-on faire à notre échelle ?

Merci pour votre participation!

Qu'est-ce que vous voulez retenir? Qu'est-ce qui vous a marqués?

