Social Media Cocktail

Scott Hendrickson
Data Scientist
Gnip Inc.
@DrSkippy27

March 2, 2013

getting the right mix for data-driven social marketing

why mix social media data?

<one> audience, perspective, coverage

<two>

<three> content richness

Publisher	Daily Activity
Twitter	400M
Tumblr	75M
Wordpress Posts	615k
Wordpress Comments	1.1M
Disqus	1.3M
Engagement (likes, votes)	2.4M

Gnip manages ...

- 4,600 Tweets/second
- 1/2M unique Tumblr users/hour
- PowerTrack filtering
- Delivering:

3B activities/day 40k/second

signal or noise?

<speed> how does the story unfold?

Expected: Hurricane

Unexpected: Earthquake

Events

Туре	Response	Examples
Expected	Approx.	Hurricane Sandy
	Symmetric	Olympics
Unexpected (many obs.)	Social Media Pulse	Beyonce' VMAs
		Mexico earthquake
		Steve Jobs
Unexpected Network (spread) Models	Network	Osama Bin Laden
		Whitney Houston
		Syrian dissidents

Social Media Pulse Half-life

time to observe $\frac{1}{2}$ of the activities for an event

Social media pulse

Probability of an activity from one person,

$$f(t) = \lambda \exp(-\lambda t)$$
, for $t \ge 0$.

Many people, so sum random variables $S = X_1 + ... + X_n$. Probability distribution function,

$$f_{\mathcal{S}}(t) = rac{eta^{-lpha}t^{lpha-1}\exp(rac{-t}{eta})}{\Gamma(lpha)}$$

Why?

- predict total story volume shortly after peak
- identify when the story is evolving due to external influences

Publishers

Publisher	Speed
Twitter	Fast
Tumblr	Fast and Slow
Wordpress Posts	Fast and Medium
Wordpress Comments	Fast
Disqus	Fast
Engagement (likes, votes)	Fast

Speed and Richness

Publisher	Speed	Richness
Twitter	Fast	Concise
Tumblr	Fast, Slow	Rich, multimedia
Wordpress Posts	Fast, Medium	Rich, text
Wordpress Comments	Fast	Reactive, small-to-medium
Disqus	Fast	Reactive, small- to-medium
Engagement	Fast	Terse

Social Cocktail

Thank you!

Presentation, data, code at: github.com/DrSkippy27/SBS2013