2023 전기 졸업과제 중간보고서

물류 창고에서 이동체 위치 추적을 위한 BLE Zoning 시스템 개발

팀명	전주 부산 제주						
분과	C(네트워크/시스템)						
팀원	이정현						
	김지명						
	강중헌						
지도교수	정상화						

목차

- 1. 요구조건 및 제약사항 분석에 대한 수정사항
 - 1.1 요구조건
 - 1.2 제약사항 분석에 대한 수정사항
- 2. 설계 상세화 및 변경 내역
 - 2.1 실험환경구성
 - 2.2 모델구성
 - 2.3 모델최적화
 - 2.4 웹 서비스 구현
 - 2.5 모델구성 진행상황
- 3. 갱신된 과제 추진 계획
- 4. 구성원별 진척도
- 5. 보고 시점까지의 과제 수행 내용 및 중간 결과
 - 5.1 비콘 번호와 각 위치 별 데이터셋
 - 5.2 초기모델 정확도

1. 요구조건 및 제약사항 분석에 대한 수정사항

1.1 요구조건

- BLE Zoning 기술을 활용하여, 물류 창고에서 자재와 근로자의 실시간이동 추적 기술을 구현하고 분석해 볼 것.
- 네트워크 메트릭을 활용하여 ble 노드의 위치를 추정하는 학습기법 개발
- 수집한 RSSI 값을 이용하여 지도학습 모델을 구성하고, 이를 활용하여 물체의 위치를 추정.
- 물류환경의 실시간 이동체 관리시스템 개발 및 추가적 서비스 도출
- 실시간으로 웹에서 이동하는 위치를 표시하는 맵을 나타내 BLE zoning 시스템을 구현.

1.2 제약사항 분석에 대한 수정사항

● 초기에 3m 간격의 비콘 설치

-초기에 3m 간격으로 설치된 비콘 간의 RSSI 패턴이 유의미한 차이를 보이지 않아, 비콘 간격을 5m 로 변경함.

이동체의 데이터 수집

- -이동체 위치 추정을 위한 모델 개발을 목표로 하여 이동중에 데이터를 수집하려 했으나, 실제 좌표를 기록할 수 없는 제약사항으로 인해 고정된 위치에서 데이터를 수집하기로 함.
- -해당 제약사항으로 인해 모델의 학습 데이터에 이동체의 다양한 경로와 조건에 대한 제한적인 정보가 반영될 수 있으므로, 이를 고려하여 모델의 성능을 평가할 예정.

● 실사용 상황에서의 자원 소모 문제

-데이터 수집 단위를 더 큰 단위로 확장하여 자원 효율성 극대화를 위한 최적 구간 탐구

● 학습 과 적합 가능성 인지

-데이터 수집을 작은 단위로 측정하여 초기 학습 모델을 구성함에 따른 과적합의 잠재적 위협에 대응하기 위해서 커널 선택의 다양성 고려.

2. 설계 상세화 및 변경내역

2.1 실험환경 구축

- x축 y축 각각11개로 나눠 11*11포인트에서 각 포인트 50개씩 측정 후,

2.2 모델구성

2.2.1 offline Phase

-오프라인 단계에서는 훈련 및 초기화 단계로, 미리 수집된 RSSI 지문(fingerprint)데이터로 모델을 학습, 훈련하고 최적의 모델을 찾는 과정.

2.2.1.1 fingerprint data

- 데이터 수집 단계에서, 총 121 개지점에서 6 개의 수신점에 대해 각각 50 개의 RSSI 데이터를 수집.
- 50 개의 RSSI 데이터 중 불안정한 데이터 앞쪽 10 개를 제거.
- 수집된 원시 RSSI 데이터들은 잡음이 포함되어 큰 변동을 보이므로, 필터링 단계를 거쳐 가공.
- 실험 환경에서 원시 RSSI값에 칼만 필터(Kalman filter)를 적용한 결과가 평균 필터(mean filter) 적용 결과보다 표준 편차가 작음에 따른 **필터링 방식 변경.**

2.2.1.2 GPR(Gaussian Process Regression) Modeling

-GPR 은 평균 함수와 공분산 함수로 정의되는 Gaussian Process 로써 입력 데이터와 해당 데이터에 대한 출력 값을 기반으로 모델을 학습.

-GPR 은 예측 결과에 대한 신뢰도 정보를 제공하여, 예측결과의 불확실성 처리, 신뢰도 파악, 비선형 문제에 대한 유연한 모델링의 강점이 있음.

- 학습단계와 검증단계로 구분.
- RSSI 벡터 데이터를 불러와 전체 데이터의 70%를 학습용 데이터(training dataset), 나머지 30%를 검증용 데이터(Validation dataset)과 시험 데이터(Test dataset)로 분리.

학습단계

-GPR 모델을 생성하고 학습용데이터를 사용하여 x 와 y 좌표를 예측하는 두개의 GPR 모델을 학습시킴.

검증/시험단계

- -나머지 30% 데이터를 검증데이터, 시험데이터로 1:1 비율로 나눔.
- -학습된 xy 두 모델을 새로운 입력데이터를 기반으로 x,y 좌표를 예측 후 출력.

2.2.2 Online Phase

- -온라인단계에서는 미리 학습된 GPR 모델을 활용하여 실시간으로 수집된 RSSI 값을 기반으로 위치를 추정하는 단계.
- -GPR 과 wkNN 을 결합하여 처리시간을 줄이고 정확도를 향상.

2.2.2.1 wkNN(w-weighted k-Nearest Neighbor) **method**

-wkNN 은 kNN 과 다르게, 가장 가까운 이웃의 수 k 개를 사용하여 예측하는 것이 아니라, k 개의 이웃의 가중평균을 사용하여 예측하는 방법.

-GPR 을 통해 추정된 위치 주변의 k 개의 최근접 이웃을 찾고, 이웃들의 거리에 대한 가중치를 부여하여 가중평균을 계산하여 추정위치 계산.

2.2.2.2 GPR wkNN 의 결합

- -GPR 은 작은 데이터셋에도 높은 성능을 보이며, 계산속도가 빠르다는 장점.
- -wkNN 은 대량의 데이터셋에 연산비용이 증가할 수 있음.
- -GPR 을 통해 검색 영역을 예측 후, wkNN 을 수행하여 실시간 위치 추정할 때, 연산비용의 감소.
- -GPR 은 불확실성을 고려하여 신뢰도 높은 예측 가능.
- -거리에 따른 가중평균을 사용하는 wkNN을 결합하여 보다 정확한 위치 추정가능.
- -연산비용을 최소화하며 높은 정확도를 유지.

2.3 모델 최적화

2.3.1 데이터 셋 크기 간소화

- -현재 학습에 사용된 데이터 셋은 총 5600 개이지만, 실제 사용시 이정도의 양의 데이터를 수집하기 어려울 것으로 예상.
- -2000 개 정도로 데이터셋 간소화 후 학습진행예정.

2.3.2 다른 커널 사용

- -GPR 학습에서 데이터에 알맞은 커널을 선택하는 것은 학습 결과에 직접적인 영향을 미침.
- -다양한 커널을 비교하여 모델 성능을 측정, 최적을 커널을 선택하여 모델의 성능 최적화예정.

2.3.3 커널 파라미터 조절

-커널의 매개변수인 length_scale, periodicity 등을 현재 학습에 사용한 RSSI, 비콘의 x, y 데이터에 알맞게 조절하는 과정을 거치며, 이를 통해 모델의 성능향상 예정.

2.3.4 데이터 누락 및 이상치 확인

-학습에 사용한 데이터 누락 값이나 이상치가 존재할 경우, 데이터의 품질저하로 인해 학습결과에 영향.

누락 및 이상치를 확인하여 학습데이터 정제예정.

2.3.5 실시간 측위

-실시간 비콘 위치를 추정하는 과정에서 계산 횟수를 줄이기 위해 GPR 을 적용하여 검색영역을 예측한 후 예측된 영역에서 클러스터링 기법(k-means, DBSCAN, wkNN 등)을 적용하여 비콘 위치를 추정.

2.4 웹서비스 구현

- 실시간으로 웹에서 이동하는 Beacon 의 따른 Scanner 의 위치를 표시하는 맵을 나타내 BLE zoning 시스템을 구현.
 - Scanner 의 x, y 좌표를 넘겨 javascript 를 통해 구현.

2.5 모델 구성 진행상황

	offline Phase	Online Phase	웹 서비스 구현	
fingerprint data -데이터 수집 (완료) -RSSI 값 필터	-학습/검증/시험 모델링	PR 최적화 -데이터 셋 크기 조정 (진행 예정) -데이터 누락 및 이상치 확인 (진행 중)	-GPR과 클러스터링 기법	구연 -웹 구성 (진행 중) -웹 서비스 구현
선택(kalman) 및 필터링 (<mark>완료</mark>)	보델링 (완료)	-커널 비교 및 선택 (진행 예정) -커널 파라미터 조절 (진행 중)	기반 모델 구성 (진행 중)	(진행 예정)

3. 갱신된 과제 추진 계획

6월	7월			8월				9월				
4주차	1주차	2주차	3주차	4주차	1주차	2주차	3주차	4주차	1주차	2주차	3주차	4주차
데이	데이터 셋 확보											
	기본 모델 작성											
			중간	보고서	작성							
					모델 최적화 및							
					수정/예외 처리							
					웹서비스 -			구현				
										최종 브	보고서 직	학성 및
									Ŀ	발표 준비	I	

완료사항						
진행중						
진행예정						

4. 구성원 별 진척도

이름	역할
이정현	RSSI 데이터 수집 실험 환경 구축 완료
	칼만 필터를 활용한 RSSI 데이터 전처리 완료
	모델 결과 분석 및 검증 진행 중
김지명	RSSI 데이터 수집 실험 환경 구축 완료
	초기 GPR 학습 모델 구성 완료
	모델 최적화 진행 중
	모델 결과 분석 및 검증 진행 중
강중헌	RSSI 데이터 수집 실험 환경 구축 완료
	학습에 필요한 MySQL 데이터베이스 구축 완료
	실시간 위치 정보 웹 서비스 진행 중
	모델 결과 분석 및 검증 진행 중

5. 보고 시점까지의 과제 수행 내용 및 중간 결과

5.1 비콘 번호와 각 위치 별 데이터셋

value_1	value_2	value_3	value_4	value_5	value_6	x	у
-43.91	-63.67	-43.91	-50.71	-43.91	-26.45	10	5
-43.91	-65.89	-64.79	-65.89	-60.93	-31.42	10	5
-43.91	-65.89	-64.79	-70.16	-60.93	-31.5	10	5
-43.91	-65.89	-64.79	-71.3	-60.93	-31.32	10	5
-43.91	-65.89	-68.17	-71.3	-60.93	-31.18	10	5
-43.91	-66.91	-66.64	-72.23	-62.59	-31.67	10	5
-43.91	-66.91	-66.26	-73.62	-62.59	-32.28	10	5
-58.23	-67.02	-66.98	-73.62	-64.78	-31.95	10	5
-63.89	-67.02	-68.33	-73.62	-65.31	-32.02	10	5
-63.89	-67.76	-68.33	-73.92	-65.31	-32.46	10	5
-65.57	-67.76	-67.88	-74.16	-65.31	-32.92	10	5
-65.57	-67.76	-68.92	-74.16	-68.8	-32.87	10	5
-66.62	-67.95	-68.92	-74.35	-68.62	-32.69	10	5
-68.48	-68.59	-69.28	-74.35	-68.62	-32.65	10	5
-68.48	-68.59	-70.14	-74.35	-68.62	-32.94	10	5
-68.84	-68.69	-70.14	-75.47	-70.6	-32.81	10	5
-68.84	-68.69	-69.6	-75.47	-70.6	-33.07	10	5
-69.99	-68.65	-69.84	-75.68	-70.6	-32.95	10	5
-69.99	-68.65	-69.84	-76.14	-70.25	-33.14	10	5
-70.89	-69.05	-69.45	-76.14	-70.25	-33.35	10	5
-70.9	-69.05	-69.11	-76.2	-69.89	-33.3	10	5
-70.92	-69.05	-68.8	-76.25	-69.75	-33.19	10	5
-70.92	-69.11	-68.8	-76.24	-69.75	-33.15	10	5
-70.92	-69.16	-69.04	-76.69	-69.75	-33.05	10	5
-71.47	-69.44	-69.58	-77.09	-69.98	-33.17	10	5
-71.47	-69.47	-69.58	-77.03	-69.78	-33.37	10	5
-72.03	-69.49	-70.07	-77.43	-70.04	-33.27	10	5
-71.95	-69.49	-70.57	-77.36	-70.27	-33.63	10	5
-71.89	-69.73	-70.57	-77.36	-69.98	-33.8	10	5
-71.9	-70	-70.57	-77.3	-69.98	-33.84	10	5
-71.9	-70.51	-70.57	-77.29	-70.18	-33.82	10	5
-71.85	-70.41	-70.57	-77.27	-70.08	-33.77	10	5

- 비콘 번호와 RSSI 값을 토픽으로 하여 데이터베이스(DB)에 수집하고 동기화하여 피벗 테이블 구성하여 저장.

5.2 초기 모델 정확도

x 좌표의 평균 제곱 오차: 0.035870271826123096 y 좌표의 평균 제곱 오차: 0.10520107279160844 R-squared for x coordinate: 0.9968124023726769 R-squared for y coordinate: 0.9588298431720987

Explained variance score for x coordinate: 0.9968152646709545 Explained variance score for y coordinate: 0.9617340258399238

5.2.1 각 좌표 별 성능 지표

- 모델의 성능을 평가하기위한 MSE, R-Squared, EVS를 계산.
- MSE 값은 0에 수렴할 수록, R-Squared, EVS는 1에 수렴할 수록 좋은 성능을 나타냄.
- x 좌표에 대한 모델은 3가지 평가에서 모두 좋은 결과를 보여주고 있음. 반면 y 모델에서는 상대적으로 낮은 R-Squared값을 가지는 것으로 나타남.

5.2.2 각 좌표에 대한 실제 값과 예측 값 비교

- 위 두 도표는 RSSI 값에 따른 예측 x, y 좌표와 실제 x, y 좌표 간의 관계를 보여줌.
- 45 ° 선은 예측 값과 실제 값이 일치하는 경우를 나타냄.
- x 좌표의 경우 예측이 잘 이루어진 반면, y 좌표의 경우 약간의 편차가 발생함.
- y 좌표의 성능 향상을 위해 모델의 수정이 필요함이 보여 짐.