Segunda Avaliação de Circuitos Elétricos II – 2º/2016 Departamento de Engenharia Elétrica – ENE/FT/UnB Faculdade de Tecnologia Universidade de Brasília

Nome:		Turma:
Matrícula:/		
Data:/		
	Folha de Respostas	
Questão 1	Questão 2	
Questão 3	Questão 4	
Questão 5		

Questão 1 – No circuito a seguir, determine R_x para que a tensão de saída v_o tenha o valor especificado. Considere os amplificadores operacionais como ideais: $R_1 = 3 \Omega$; $R_2 = 2 \Omega$; $R_4 = 6 \Omega$; $v_s = 2V$; $v_o = 6V$.

Questão 2 — Dados os valores para v_1 e v_2 , calcule a tensão v_o . Considere os amplificadores operacionais como ideais: $R_1 = 3 \Omega$; $R_2 = 6 \Omega$; $R_a = 4 \Omega$; $v_1 = 2V$; $v_2 = 5V$.

Questão 3 – Determine a resposta de amplitude no domínio das frequências. $R_1 = 1 \Omega$; $R_2 = 2 \Omega$; $R_3 = 1 \Omega$; $C_1 = 1/3 F$; $C_2 = 1/2 F$; g = 1/2 mho.

Questão 4 – Determine R_x de forma que a frequência de corte do circuito seja $\omega_0 = 3$ rad./s. $R_1 = 3 \Omega$; $R_2 = 1 \Omega$; C = 1/3 F.

Questão 5 — A partir da curva de resposta em frequência de um circuito elétrico, determine a sua função de transferência. Considere polos e zeros no semi-plano esquerdo.

Questão 6 – Por meio de inspeção da função de transferência H(s), plote a aproximação por assíntotas de sua resposta de amplitude em decibéis (Plote o diagrama de Bode na folha de respostas na primeira página).

$$H(s) = 100 \frac{s^3}{(s+0,1)(s+2)(s+20)}$$