1. Voltage Division Rule

The voltage is divided between two series resistors in direct proportion to their resistance.

Voltage Divider Rule – Example 2

Using the voltage divider rule, determine the voltage V₁

and V₃ for the series circuit

Voltage Divider Rule - Example 2

Using the voltage divider rule, determine the voltage V_1 and V_3 for the series circuit

$$\begin{split} V_1 &= \frac{R_1 V_{10}}{R_T} = \frac{(2k\Omega)(4SV)}{2k\Omega + 5k\Omega + 8k\Omega} = \frac{(2k\Omega)(4SV)}{15k\Omega} \\ &= \frac{(2\times10^3\Omega)(4SV)}{15\times10^3\Omega} = \frac{90}{15} = 6V \\ V_3 &= \frac{R_3 V_{10}}{R_T} = \frac{(8k\Omega)(4SV)}{2k\Omega + 5k\Omega + 8k\Omega} = \frac{(8\times10^3\Omega)(4SV)}{15\times10^3\Omega} \end{split} \qquad \begin{array}{c} + \\ \text{Vin} \\ \hline 15\times10^3\Omega \end{array} \qquad \begin{array}{c} + \\ \text{R2} \end{array} \qquad \begin{array}{c} \times 1 \\ \times 1 \\ \times 1 \\ \times 2 \\ \times 1 \\ \times 2 \\ \times 3 \end{array} \qquad \begin{array}{c} \times 1 \\ \times 1 \\ \times 3 \\ \times 45V \end{array} \qquad \begin{array}{c} \times 1 \\ \times 1 \\ \times 3 \\ \times 3 \\ \times 45V \end{array} \qquad \begin{array}{c} \times 1 \\ \times 1 \\ \times 3 \\ \times 3 \\ \times 45V \end{array} \qquad \begin{array}{c} \times 1 \\ \times 1 \\ \times 3 \\ \times 3 \\ \times 45V \end{array} \qquad \begin{array}{c} \times 1 \\ \times 1 \\ \times 3 \\ \times 3 \\ \times 45V \end{array} \qquad \begin{array}{c} \times 1 \\ \times 1 \\ \times 3 \\ \times 3 \\ \times 45V \end{array} \qquad \begin{array}{c} \times 1 \\ \times 2 \\ \times 3 \\ \times 3 \\ \times 4 \\ \times 3 \\ \times 4 \\$$

Current division refers to the splitting of current between the branches .

Examples-1

Examples-1

current Division & Voltage Division.

current Parallel.

Voltage
$$\Rightarrow$$
 Parallel.

Voltage \Rightarrow Series.

 $I = I_1 + I_2$
 $I_1 = ? , I_2 = ?$
 $I_1 = (\frac{4}{2+4}) \times ?$
 $I_1 = \frac{4}{2+4} \times ?$
 $I_2 = \frac{4}{3} + \frac{4}{3} = \frac{4}{3}$
 $I_3 = \frac{4}{3} + \frac{4}{3} = \frac{4}{3}$
 $I_4 = \frac{4}{3} \times ?$
 $I_4 = \frac{4}{3} \times ?$
 $I_5 = \frac{4}{3} \times ?$
 $I_7 = \frac{4}{3} \times ?$

Current division – example 2

Determine the resistance, R, which makes I = 2mA.

Nodal analysis is a method that provides a general procedure for analyzing circuits using node voltages as the circuit variables. **Nodal Analysis** is also called the **Node-Voltage Method**.

Mesh analysis is a method that is used to solve circuits for the currents at any place in the electrical circuit.

Ti= 184.2 mA

Ti= -157.89 mA

Ti= 157.89 mA

Ti= 157.89 mA

Ti= 157.89 mA

Ti= 157.89 mA

Independent Source

Independent Source

The Source which does not depend on any other quantity (like voltage and current) in the circuit.

Independent Source

Dependent Source

Dependent Source

The Source whose output value depends upon the voltage or current at some other part of the circuit.

Dependent Voltage Source

Dependent Current Source

Discussions

Discussions

Calculate current across 5Kohm using thevenin theorem

Step 1.

Open the $5k\Omega$ load resistor (Fig 2).

Total Voltage/ Total Resistance= Total Current

*No Current flow through- 8kohm

*Voltage Across 4kohm will be same- As Across A and B terminal

Step 3.

Open current sources and short voltage sources as shown below. Fig (4)

Click image to enlarge

Step 5.

Connect the R_{TH}in series with Voltage Source V_{TH} and re-connect the load resistor. This is shown in fig (6) i.e. Thevenin circuit with load resistor. This the Thevenin's equivalent circuit

Click image to enlarge

Thevenin's equivalent circuit

$$V_{L} = I_{L} \times R_{L}$$

$$V_{L} = 0.75 \text{mA} \times 5 \text{k}\Omega$$

$$V_{L} = 3.75 \text{V}$$

Norton Theorem

Norton Theorem

Norton Theorem

Norton Theorem

- 1. Each time an AC generator moves through one complete revolution, it is said to complete one cycle.
- 2. The two half of a cycle are referred as alternations.
- 3. One complete cycle per second is defined as a hertz.

AC Values

- Peak value: Absolute value of the point with the greatest amplitude.
- Peak to Peak value: Vertical distance b/w 2 peaks.
- The amplitude of an AC waveform is its height as depicted on a graph over time. An amplitude measurement can take the form of peak, peak-to-peak.

Fundamentals of A.C. circuits

• A phase is the position of a wave at a point in time (instant) on a waveform cycle.

• It provides a measurement of exactly where the wave is positioned within its cycle, using either degrees (0-360) or radians (0- 2π).

Fundamentals of A.C. circuits

• The wave starts at the 0-degree phase and has no amplitude.

• The wave reaches positive peak amplitude at the 90-degree phase.

AC Values (cont'd.)

• Effective value of alternating current is the amount that produces same degree of heat in a resistance as produced by direct current. It is also referred as rms value.

$$\mathbf{E_{rms}} = \mathbf{0.707} \mathbf{E_p}$$

where: $E_{rms} = rms$ or effective voltage value

Average Value of alternating current

$$I_{av} = 0.637 I_{m}$$

The average current of a sinusoidal waveform is determined by multiplying the peak voltage value by **0.637**.

Pure Resistive AC Circuit

$$v = V_m Sin\omega t$$
(1)

$$i = \frac{v}{R} = \frac{V_m}{R} \operatorname{sin}\omega t \dots \dots (2)$$

$$i = I_m \sin \omega t \dots \dots (3)$$

$$v = V_m Sin\omega t \dots (1)$$

$$i = I_m sin\omega t \dots (3)$$

Instantaneous power, p= vi

$$p = (V_m sin\omega t)(I_m sin\omega t)$$

• Semiconductor: A semiconductor material has an electrical conductivity value falling between that of a conductor, such as metallic copper, and an insulator, such as glass.

• The semiconductor in its pure form is known as intrinsic semiconductor.

• When a chemical impurity is added to an intrinsic semiconductor, then the resulting semiconductor is known as **extrinsic semiconductor**.

• P type SEMICONDUCTOR:

- A p-type semiconductor is an intrinsic semiconductor doped with boron or indium.
- The majority of carriers in p-type semiconductors are holes.
- Electrons are minority carriers in a p-type semiconductor.
- In a p-type semiconductor, the hole density is much greater than the electron density.
- In an n-type semiconductor an intrinsic semiconductor doped with phosphorus or antimony as impurity.

• N TYPE SEMICONDUCTOR:

• The majority of charge carriers in n-type semiconductors are electrons.

• Holes are minority carriers in a n type semiconductor.

• In the n type of semiconductor, the electron density is much greater than the hole density.

Semiconductors

P-Type Semiconductor

N-Type Semiconductor

- Joining P type and N Type semiconductor create a device is called P-N Junction diode.
- P type-- majority- Holes
- N Type- Majority- Electrons

- 4. Electrons Move Towards holes
- 5. It moves itself & Diffuse. So, it neutralise holes.
- 6. Electrons move so there exist some current which is called as diffusion current. {moment current}
- 7. This process is called as diffusion & current is known as diffusion current.
- 8. In P Type holes vanish/ neutralise electrons near the junction which are not present now.

- 9. Electrons move due to which positive ions are created.
- 10. Shortage of charges in layer is called Depletion layer. {Deplete}
- 11. Here + to create an electric field.

- 12. Due to distance d with electric field creates V=Ed (with the help of E and d, we will have V)
- 13. This potential difference is known as potential barrier.
- 14. Due to + higher potential and lower potential
- 15. Remaining electrons can not go due to large distance.
- 16. They need more energy to do so.

• Whenever PN Diode is connected with battery then this situation is called as biasing.

Forward Biasing

• P with positive terminal and n section is connected with negative terminal. So, this is called as forward biasing.

- Due to Diffusion of electrons to holes so layer of N Type have positive ions and P Type have negative ions.
- Resultant electric field will be less because of opposite direction. So overall electric field decreases.
- Due to this potential barrier decrease & depletion layer becomes small.
- n section electrons will move easily due to battery when electrons diffuse into holes so current start flowing.

Reverse Bias

- p type-- connected---with-- negative Terminal
- n type-- connected-- with- positive terminal
- Inside electric field and outside electric field are in same direction. So net
- electric field will increase.
- Hence, depletion layer increases
- Need more voltage to jump the electrons. So, very small amount of current will flow.

Discussions

Discussions

(b) The resistance between terminals A and B is

$$R_{AB} = 2 + [\{6 + (6 \parallel 12)\} \parallel 10] + 3 = 2 + [\{6 + 4\} \parallel 10] + 3 = 2 + [10 \parallel 10] + 3$$

= 2 + 5 + 3 = 10 \Omega

Discussions

Total resistance

Current across all resistors

Voltage across each resistors