This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

中華民國經濟部智慧財產局

INTELLECTUAL PROPERTY OFFICE MINISTRY OF ECONOMIC AFFAIRS REPUBLIC OF CHINA \

兹證明所附文件,係本局存檔中原申請案的副本,正確無訛,

其申請資料如下

This is to certify that annexed is a true copy from the records of this office of the application as originally filed which is identified hereunder:

申 請 日: 西元 <u>2002</u>年 <u>12</u>月 <u>06</u>日 Application Date

申 請 案 號: 091135347

Application No.

申 請 人:鴻海精密工業股份有限公司

Applicant(s)

리너 인터 리터 리터 리터 리터 리터 리터 리터 리턴 리턴

局 長 Director General

發文日期: 西元 2003 年 _____ 月 ___ 6

Issue Date

發文字號: 09220011960

Serial No.

申請日期: 91、12、6 案號: 9(13534) 類別:

(以上各欄由本局填註)

發明專利說明書					
_	中文	導光板之製造方法			
發明名稱	英文	A METHOD OF MANUFACTURING A LIGHT GUIDE PLATE			
	姓 名 (中文)	1. 陳杰良 2. 召昌岳			
二、 發明人	姓 名 (英文)	1.Ga-lane Chen 2.Charles Leu			
	國籍	1. 中華民國 ROC 2. 中華民國 ROC			
	住、居所	1. 台北縣土城市自由街二號(2, Tzu Yu Street, Tu-Cheng City, Taipei Hsien, Taiwan, ROC) 2. 台北縣土城市自由街二號(2, Tzu Yu Street, Tu-Cheng City, Taipei Hsien, Taiwan, ROC)			
	姓 名 (名稱) (中文)	1. 鴻海精密工業股份有限公司			
三、申請人	姓 名 (名稱) (英文)	1. HON HAI PRECISION INDUSTRY CO., LTD.			
	國 籍	1. 中華民國 ROC			
	住、居所 (事務所)	1.台北縣土城市自由街二號(2, Tzu Yu Street, Tu-Cheng City, Taipei Hsien, Taiwan, ROC)			
	代表人姓 名(中文)	1. 郭台銘			
	代表人姓 名 (英文)	1.Tai-Ming Gou			

四、中文發明摘要 (發明之名稱:導光板之製造方法)

一種導光板之製造方法包括如下步驟:提供一模具;熔融預定之樹脂材料;將熔融之材料與惰性氣體一起注入模具之模腔中;保壓冷卻該模具;脫模即形成導光板成品。

【本案指定代表圖及說明】

- (一)、本案指定代表圖為:第二圖
- (二)、本代表圖之元件代表符號簡單說明:

英文發明摘要 (發明之名稱:A METHOD OF MANUFACTURING A LIGHT GUIDE PLATE)

A manufacturing method of a light guide plate includes the steps: proving a mold; heating and fusing a mixture of some polymerization and inert gas; then injecting the mixture into the mold; finally, colding and striping the mold to get the light guide plate.

本案已向

國(地區)申請專利

申請日期

案號

主張優先權

無

有關微生物已寄存於

寄存日期

寄存號碼

無

五、發明說明(1)

【發明所屬之技術領域】

本發明係關於一種導光板之製造方法,尤指低成本、輕薄均勻導光板之製造方法。

【先前技術】

目前,導光板之製程主要分為兩種:印刷式(Screen Printing)與非印刷式。其中,印刷式係在導光板之底面塗附墨點以形成特定之圖案(Dot Pattern),其破壞入射光線之全反射條件,進而使光線均勻射出導光板。然,該種導光板中光線必須透過導光板才能接觸圖案,因而使反射光線之強度減弱;另,在印刷過程中由於印刷油墨塗覆不均勻,進而影響光線之散射效果,從而無法為背光模組提供均勻之光線,影響液晶顯示之效果。

而非印刷式製程目前較為成熟之技術係採用壓力克 (PMMA)材質之射出成型 (Injection Molding),在導光板之底面以切割或直接射出成型方式設置複數凸凹圖案以

五、發明說明 (2)

達到擴散光線之目的。因入射光線可直接與凸凹圖案接觸,因此反射之光線強度大於印刷式導光板,且在製造之程中省去印刷程序,因此具有擴射效果優良、製程簡單之份。然,在射出成型時熔融樹脂之黏度(Viscosity)會影響導光板成品之均勻性,若熔融樹脂在射出時其黏度較高,則熔融樹脂未及傳輸至模腔之四周即固化,因使製得較輕薄,則容易在冷卻後產生翹曲,進而會影響光線之傳輸效果。

因此需要提供一種輕薄化、均勻性導光板之製造方法。

【發明內容】

本發明之目的係提供一種低成本、輕薄均勻導光板之 製造方法。

本發明導光板之製造方法包括如下步驟:提供一模 具;熔融預定之樹脂材料與惰性氣體;將熔融之樹脂材料 與惰性氣體一併注入模具之模腔中;保壓冷卻該模具;脫 模即形成導光板成品。

與習知技術相比,本發明之功效在於:該熔融之樹脂材料與惰性氣體一併注入模具之模腔中,因該氣體可降低熔融樹脂材料之黏度,因此形成之導光板成品較為均勻;另,該惰性氣體與樹脂材料之均勻混合可使導光板成品之密度降低,因此該導光板較為輕薄;又因其可省略印刷墨點程序,因此可縮短生產周期,且降低每一導光板之綜合

五、發明說明 (3)

成本。

【實施方式】

請參閱第一圖,係本發明導光板製造方法所使用之裝置10、模具20及充氣裝置30。其其數裝置10包括注射機筒11、在機筒11內供給樹脂20是類構12、驅動螺桿12之馬達13、向機筒11內供給樹脂20是料門14及設置於機筒11外表面之加熱器15。該模具20包括定模21、動模22、轉21與動模22二前端與25、於定模21內形成有通過熔融樹脂之流道23及與計之之之之。於定模21內形成有通過熔融樹脂之流成之間之3分之機性26,其中,該定模21與動模22形成一用之25、於定模21內形成有通過路31與大於型型出一个27。該充氣裝置30包括一氣體通路31及氣腔32,其中充氣時該氣體通路31與機筒11之內腔相連。

該模具20之模腔26之至少一面設有凹凸狀或鋸齒影線上20之模腔26之至少一面設有凹凸狀或鋸齒影線上20光板之一表面對應形成凸凹狀或齒影響之一表面對應形成凸凹狀。該圖案可直接設置於模腔26之內表面圖案之模性。36內貼附具凸凹狀或鋸齒狀圖案之模上。36內點,為是為常規熱導率高之金屬,為提為常規之之剛性,可以銀統、銀結合金(NiCo)或混合碳化矽(SiC)、鉻及碳化鈦(TiC)等高硬質材料電鑄而成。

請一併參閱第二圖,係本發明導光板製造方法之流程圖。在導光板製程60中,包括準備一模具之步驟62、熔融

五、發明說明(4)

預備樹脂材料與惰性氣體之步驟64、將熔融材料與惰性氣體同時射入模具之模腔之步驟70;保壓冷卻該模具中之樹脂材料之步驟72;脫模取出導光板成品之步驟74。

步驟64中,首先將預定之樹脂材料連續充入機筒11內,同時使用加熱器15使樹脂材料熔融,馬達13驅動螺桿12旋轉時充氣裝置30向機筒11之內腔充入惰性氣體,藉由驅動螺桿12旋轉使熔融樹脂與惰性氣體充分混合並將其推至機筒11之前端,然後將熔融樹脂與該惰性氣體快速射達模腔26中。目前,業界注射率一般在600cm³/秒以下,為使導光板不易產生殘留變形之傾向,注射率之范圍最好的1000至2500cm³/秒。常規熔融樹脂之黏度在模具20之澆口24處為50至5000Pa.sec,因熔融樹脂之黏度在成型時愈出於,降低黏度可提高熔融樹脂之黏度優化為200至1000Pa.sec。熔融樹脂之黏度優化為200至1000Pa.sec。熔融樹脂之加熱溫度可藉由所用材料而適當選

五、發明說明 (5)

擇,若以丙烯酸樹脂為例,其溫度可為170至300℃、其中優選為190至270℃、進一步優選為230至260℃。其中,惰性氣體可為氫氣(Ar)、氦氣(He)、氖氣(Ne),亦可用氦氣代替該惰性氣體,或將該惰性氣體與氦氣以相同比例混合。該氣體之壓力與流速可由外部之調節裝置(圖未示)控制,其中該惰性氣體在充入機筒11之內腔前先進行預熱,預熱之溫度范圍為100至120℃,其中優化溫度為110℃。

步驟72中,當模腔內充入熔融樹脂時,將螺桿12在所預定之距離後退後加保壓力,然後藉由冷卻裝置(圖未示)對其進行致冷,其中冷卻溫度在110℃以下,其中優化溫度為105℃,通過冷卻即製得導光板成品。

五、發明說明 (6)

此外,其他薄型之光學元件如常規光學透鏡、光纖頭之柱狀透鏡、光學引擎中之分色鏡、偏振分光鏡及其他各式稜鏡等,亦可用該射出成型之方法製成。

綜上所述,本發明符合發明專利要件,爰依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,舉凡熟悉本案技藝之人士,在援依本案發明精神所作之等效修飾或變化,皆應包含於以下之申請專利範圍內。

圖式簡單說明

第一圖係本發明導光板製造方法所用之成型裝置之剖面示(意圖。

第三圖係依第二圖所示製造方法製得之導光板之結構示意圖。

第四圖係依第二圖所示製造方法製得之導光板另一結構示意圖。

第五圖係依第二圖所示製造方法製得之導光板又一結構示意圖。

【元件符號說明】

注射裝置	1 0	模具	20
充氣裝置	3 0	注射機筒	11
螺 桿	1 2	馬達	13
料門	14	加 熱 器	15
定模	2 1	動模	_ 22
通道	2 5	澆 口	24
模 腔 [*]	26	突出元件	27
氣 體 通 路	3 1	氣 腔	32
導 光 板 成 品	4 \ 5 \ 6	凸 凹 圖 案	41 \ 51 \ 61

5.5

六、申請專利範圍

1. 一種導光板之製造方法,其包括如下步驟: 提供一模具;

熔融預定之樹脂材料與惰性氣體;

將熔融之樹脂材料與惰性氣體一併注入模具之模腔中;

保壓冷卻該模具;

脱模即形成導光板成品。

- 2. 如申請專利範圍第1項所述之導光板之製造方法,其中該導光板成品為平板形、楔形或碟形。
- 3. 如申請專利範圍第1項所述之導光板之製造方法,其中該樹脂材料為甲基丙烯酸樹脂。
- 4. 如申請專利範圍第1項所述之導光板之製造方法,其中該惰性氣體可為氫氣、氦氣及氖氣中之任意一種。
- 5. 如申請專利範圍第1項所述之導光板之製造方法,其中該惰性氣體可用氮氣替代。
- 6. 如申請專利範圍第1項所述之導光板之製造方法,其中該惰性氣體可用氫氣、氦氣及氖氣與氦氣之混合氣體代替。
- 7. 如申請專利範圍第1項所述之導光板之製造方法,其中該惰性氣體注入模腔之預熱溫度為100至120℃。
- 8. 如申請專利範圍第1項所述之導光板之製造方法,其中該惰性氣體注入模腔之預熱溫度為110℃。
- 9. 如申請專利範圍第1項所述之導光板之製造方法,其中熔融溫度為170至300℃。

六、申請專利範圍

- 10. 如申請專利範圍第1項所述之導光板之製造方法,其中熔融溫度為190至270°C。
- 11. 如申請專利範圍第1項所述之導光板之製造方法,其中熔融溫度為230至260°C。
- 12. 如申請專利範圍第1項所述之導光板之製造方法,其中注入模腔時熔融材料之黏度為50至5000 Pa. sec。
- 13. 如申請專利範圍第1項所述之導光板之製造方法,其中注入模腔時熔融材料之黏度為200至1000 Pa. sec。
- 14. 如申請專利範圍第1項所述之導光板之製造方法,其中該模具之材料為熱導率高之金屬。
- 15. 如申請專利範圍第1項所述之導光板之製造方法,其中該模具之至少一內表面設置凹凸圖案。
- 16. 如申請專利範圍第1項所述之導光板之製造方法,其中該模具之至少一內表面設U形或V形圖案。

第二圖

