MICROPROCESSOR LAB EXPERIMENT 1

Deenabandhan N ee23b021 Sai Harshith Gajendra ee23b069 Krutarth Patel ee23b137

7 August 2024

Introduction

FPGA board : Edge Artix 7

This experiment involves

- Simulating a half-adder using Xilinx Vivado and implementing on the FPGA board.
- Extending the half-adder design to a full-adder, simulating it and implementing on the FPGA board.
- Designing a 4-bit ripple-carry adder and implementing on the FPGA board.

Xilinx Vivado

- We were introduced to Xilinx vivado, a software that is used to synthesize and analyse the hardware description designs.
- The procedures that we followed are,
 - Create a project with source file as our Verilog code.
 - Add constraints to the ports that we have defined in the Verilog code.
 - Run the synthesis to check whether our Verilog code has any error in it.
 - We can open the Schematics to see the design that we have coded in Verilog.
 - After running synthesis, we can run simulation using our testbench and check for logical errors.
 - Once we confirm there is no logical/syntax error , we can run the implementation which basically implements
 our hardware description in the board which we have chosen while creating the project.
 - After the implementation is done, we can generate bitstream which is basically a file that contains the configuration information for an FPGA.
 - Once we successfully generate the bitstream , we can connect the target source and program it with the generated bitstream.
- In this report , we have included
 - Verilog code for module instantiation.
 - We have included both data flow as well as gate level modelling here.
 - The Schematics generated from Xilinx Vivado.
 - The Constraints file generated for FPGA.
 - The testbench and simulation generated
 - The analysis of reports obtained from Xilinx Vivado.

Half Adder

Data flow model

Schematics

Figure 1: Schematics of the Data flow modelling

Gate level model

Constraints on ports of FPGA

```
set_property IOSTANDARD LVCMOS33 [get_ports a]
set_property IOSTANDARD LVCMOS33 [get_ports b]
set_property IOSTANDARD LVCMOS33 [get_ports cout]
set_property IOSTANDARD LVCMOS33 [get_ports s]

set_property PACKAGE_PIN L4 [get_ports a]
set_property PACKAGE_PIN L5 [get_ports b]
set_property PACKAGE_PIN J3 [get_ports cout]
set_property PACKAGE_PIN H3 [get_ports s]
```

Testbench

```
`timescale 1ns/100ps
```

```
module frbit_adder;
        wire s,cout;
        reg a;
        reg b;
        half_adder t(a,b,cout,s);
        initial
        begin
                 $dumpfile("test_circuit.vcd");
                 $dumpvars(0,frbit_adder);
                 a=0;b=0;
                #10 b=1;
                #10 a=1;b=0;
                #10 b=1;
                #10 $finish;
        end
endmodule
```

Simulation

Reports:

Resources utilized:

- For this code, the FPGA has used one **SLICE LUT** where LUT is used as a logic and not memory.
- We can also infer that we have not used any clocking resources or RAM memory.
- As we have not used any clock resources in this experiment, there are no timing constraints.

Time delays

Type of Path	Path taken	Time delay (ns)
Max Delay path	$\mathbf{a} o \mathbf{cout}$	8.789
Y	$\mathbf{a} o \mathbf{s}$	8.496
Min Delay path	$\mathbf{b} o \mathbf{cout}$	2.426
	$\mathbf{b} o \mathbf{s}$	2.347

Power consumed

 \bullet The power consumed by FPGA is $\bf 1.988~W$

Full Adder

Code

Data flow model

Schematics

Figure 2: Schematics of the Data flow modelling

Gate level model

endmodule

Schematics

Figure 3: Schematics of the Gate level modelling

Constraints on ports of FPGA

```
set_property IOSTANDARD LVCMOS33 [get_ports a]
set_property IOSTANDARD LVCMOS33 [get_ports a1]
set_property IOSTANDARD LVCMOS33 [get_ports b]
set_property IOSTANDARD LVCMOS33 [get_ports b1]
set_property IOSTANDARD LVCMOS33 [get_ports cin]
set_property IOSTANDARD LVCMOS33 [get_ports cin1]
set_property IOSTANDARD LVCMOS33 [get_ports cout]
set_property IOSTANDARD LVCMOS33 [get_ports s]
set_property PACKAGE_PIN L5 [get_ports a]
set_property PACKAGE_PIN J3 [get_ports a1]
set_property PACKAGE_PIN L4 [get_ports b]
set_property PACKAGE_PIN H3 [get_ports b1]
set_property PACKAGE_PIN M4 [get_ports cin]
set_property PACKAGE_PIN J1 [get_ports cin1]
set_property PACKAGE_PIN K1 [get_ports cout]
set_property PACKAGE_PIN L3 [get_ports s]
```

Testbench

```
`timescale 1ns/100ps
module test_FA;
        wire sum,cout;
        reg i0, i1, cin;
        full_adder_dataflow DUT(i0,i1,cin,sum,cout);
        initial
        begin
                $dumpfile("test_circuit.vcd");
                $dumpvars(0,test_FA);
                $monitor("At t=%t i0=%b i1=%b cin=%b cout=%b sum=%b ",$time,i0,i1,cin,cout,sum);
                i0=0; i1=0; cin=0;
                #10 i0=1; i1=0;
                #10 i0=0; i1=1;
                #10 i0=1; i1=1;
                #10:
        end
endmodule
```

Simulation:

Reports:

Resources utilized:

- For this code, the FPGA has used one **SLICE LUT** where LUT is used as a logic and not memory.
- We can also infer that we have not used any clocking resources or RAM memory.
- As we have not used any clock resources in this experiment, there are no timing constraints.

Time delays

Type of Path	Path taken	Time delay (ns)
Max Delay path	$\mathbf{a} o \mathbf{cout}$	8.486
	$\mathbf{a} o \mathbf{s}$	8.110
Min Delay path	$\mathbf{b} o \mathbf{cout}$	2.446
	$\mathbf{b} o \mathbf{s}$	2.318

Power consumed

 \bullet The power consumed by FPGA is $\bf 4.882~W$

Ripple Carry Adder

Data flow model

Schematics:

Figure 4: Schematics of the Data flow modelling

Gate level model

```
module HA(sum,cout,a,b);
        input a,b;
        output sum, cout;
        xor x1(sum,a,b);
        and x2(cout,a,b);
endmodule
module FA(sum,cout,a,b,cin);
        input a,b,cin;
        output sum, cout;
        wire s1,s2,s3,s4,s5;
        xor x1(s1,a,b);
        and a1(s2,a,b);
        xor x2(sum,s1,cin);
        and a2(s3,s1,cin);
        or o1(cout,s2,s3);
endmodule
module Frb(out,a,b);
        input [3:0] a;
        input [3:0] b;
        output [4:0] out;
        wire h0,h1,h2;
```

```
HA h(out[0],h0,a[0],b[0]);
FA f1(out[1],h1,a[1],b[1],h0);
FA f2(out[2],h2,a[2],b[2],h1);
FA f3(out[3],out[4],a[3],b[3],h2);
```

endmodule

Schematics:

Figure 5: Schematics of the Gate level modelling

Constraints on ports of FPGA

```
set_property IOSTANDARD LVCMOS33 [get_ports {a[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {a[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {a[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {a[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {b[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {b[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {b[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {b[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {s[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {s[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {s[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {s[0]}]
set_property PACKAGE_PIN L5 [get_ports {a[3]}]
set_property PACKAGE_PIN L4 [get_ports {a[2]}]
set_property PACKAGE_PIN M4 [get_ports {a[1]}]
set_property PACKAGE_PIN M2 [get_ports {a[0]}]
set_property PACKAGE_PIN M1 [get_ports {b[3]}]
set_property PACKAGE_PIN N3 [get_ports {b[2]}]
set_property PACKAGE_PIN N2 [get_ports {b[1]}]
set_property PACKAGE_PIN N1 [get_ports {b[0]}]
set_property PACKAGE_PIN J3 [get_ports {s[3]}]
set_property PACKAGE_PIN H3 [get_ports {s[2]}]
```

```
set_property PACKAGE_PIN J1 [get_ports {s[1]}]
set_property PACKAGE_PIN K1 [get_ports {s[0]}]
set_property PACKAGE_PIN L3 [get_ports cout]
set_property PACKAGE_PIN P1 [get_ports cin]
set_property IOSTANDARD LVCMOS33 [get_ports cin]
set_property IOSTANDARD LVCMOS33 [get_ports cout]
```

Testbench

```
`timescale 1ns/100ps
module frbit_adder;
        wire [4:0] w;
        reg [3:0] a;
        reg [3:0] b;
        Frb t(w,a,b);
        initial
        begin
                 $dumpfile("test_circuit.vcd");
                 $dumpvars(0,frbit_adder);
                 a=0;b=0;
                 for(integer i=0;i<16;i++)</pre>
                 begin
                          for(integer j=0; j<16; j++)
                          begin
                                  #10 b+=1;
                          end
                          a+=1;b=0;
                 monitor("a = \%b b = \%b and a+b = \%b
                 #10 $finish;
        end
endmodule
```

Simulation:

Reports:

${\bf Resources\ utilized:}$

- For this code, the FPGA has used 4 **SLICE LUT** where LUT is used as a logic and not memory.
- We can also infer that we have not used any clocking resources or RAM memory.
- As we have not used any clock resources in this experiment, there are no timing constraints.

Time delays

Type of Path	Path taken	Time delay (ns)
Max Delay path	$\mathbf{cin} o \mathbf{cout}$	10.013
	$ ext{cin} o ext{s[3]}$	9.988
	$\mathbf{cin} o \mathbf{s[2]}$	9.240
	$\mathbf{cin} o \mathbf{s[1]}$	8.701
	$\mathbf{cin} o \mathbf{s}[0]$	8.623
Min Delay path	$\mathbf{a[3]} o \mathbf{cout}$	2.234
	$\mathbf{a[3]} o \mathbf{s[3]}$	2.259
	${f a[2] ightarrow s[2]}$	2.311
	$\mathbf{a}[0] o \mathbf{s}[0]$	2.337
	$ extbf{a[1]} ightarrow extbf{s[1]}$	2.352

Power consumed

 \bullet The power consumed by FPGA is $8.523~\mathrm{W}$