Dynamical Analysis of Delay Differential Equations in Macroeconomic Models

Bifurcations, Complex Behavior, and Mathematical Structure

Arthur Mota

University of São Paulo

June 1st, 2025

Outline

- Introduction
- Mathematical Framework
- Mathematical Analysis
- Mumerical Results
- 6 Policy Implications
- **6** Historical Applications
- Mathematical Contributions
- **8** Conclusion & Future Research

Traditional Macroeconomic Models: The Foundation

Linear Rational Expectations Framework

Traditional inflation dynamics equation:

$$\pi_t = \alpha E_t[\pi_{t+1}] + \beta x_t + \varepsilon_t \tag{1}$$

Where:

- $\pi_t = \text{inflation rate}$
- $E_t[\pi_{t+1}]$ = rational expectations of future inflation
- $x_t = \text{output gap}$
- $\varepsilon_t = \text{random shock}$

Key assumptions:

- Linear relationships
- Rational expectations
- Exogenous shocks drive dynamics

The Critical Limitations

Why Linear Models Fall Short

Empirical evidence suggests:

- Persistent inflation volatility without external shocks
- Complex, erratic behavior (1970s stagflation, 2021-2023 surge)
- Bounded rationality in expectation formation
- Multiple time scales in policy transmission

Challenge

Linear models cannot capture the complex dynamics observed in real inflation data

Research Motivation

The Complexity Puzzle

- Standard models: eventual convergence to equilibrium
- Reality: persistent complex dynamics
- Policy puzzle: sophisticated frameworks often ineffective
- Mathematical question: Are economic systems fundamentally non-integrable?

Solution

Develop rigorous mathematical framework using delay differential equations with heterogeneous bounded rationality

Core Innovation

Delay Differential Equations with Bounded Rationality

Key insight: Economic agents have:

- Heterogeneous information processing speeds
- Bounded cognitive capacity
- Distributed memory structures
- Nonlinear feedback mechanisms

Mathematical representation:

- Continuous-time dynamics
- Distributed delay kernels
- Infinite-dimensional phase space
- Nonlinear expectation formation

The Complete System

Integrated Dynamics

Inflation dynamics:

$$egin{split} rac{d\pi}{dt} &= lpha_1 \int_0^{ au_{ ext{max}}} G(au) [\pi^{ ext{e}}(t- au) - \pi(t)] d au + eta_1 x(t) \ &+ \gamma_1 (\pi(t) - \pi_*)^3 + \eta_1(t) \end{split}$$

Output gap dynamics:

$$\frac{dx}{dt} = -\alpha_2 \int_0^{\tau_{max}} H(\tau) [r(t-\tau) - \pi^e(t-\tau)] d\tau
+ \beta_2 [\pi(t) - \pi_*] + \gamma_2 x(t) [1 - x^2(t)/x_{max}^2] + \eta_2(t)$$
(3)

Expectation formation:

$$rac{d\pi^e}{dt} = \int_0^{ au_{max}} W(au) \mathcal{F}[\pi(t- au), \pi^e(t- au), rac{d\pi}{dt}(t- au)] d au \\ -\lambda[\pi^e(t) - \pi_*] + \eta_3(t)$$

(4)

(2)

Heterogeneous Expectation Formation

Bounded Rationality Mechanisms

Agent types with different rules:

$$\mathcal{F}_1 = \pi_* + \kappa_1 \tanh(\theta_1[\pi(t-\tau) - \pi_*]) \quad \text{(Anchored adaptive)} \tag{5}$$

$$\mathcal{F}_2 = \pi^e(t - \tau) + \kappa_2[\pi(t - \tau) - \pi^e(t - \tau)] \quad \text{(Simple adaptive)}$$
 (6)

$$\mathcal{F}_3 = \pi(t - \tau) + \kappa_3 \frac{d\pi}{dt} (t - \tau) \quad \text{(Momentum)}$$
 (7)

$$\mathcal{F}_4 = \frac{1}{\tau} \int_{t-\tau}^t \pi(s) ds \quad \text{(Moving average)} \tag{8}$$

Population shares: $\sum_{i=1}^{4} \mu_i = 1$

Key innovation: tanh function captures bounded cognitive capacity

Distributed Delay Structure

Heterogeneous Timing

Delay kernels capture agent heterogeneity:

$$G(\tau) = \frac{1}{\sigma_G \sqrt{2\pi}} \exp\left(-\frac{(\tau - \mu_G)^2}{2\sigma_G^2}\right) \quad \text{(Gaussian)} \tag{9}$$

$$H(\tau) = \frac{\alpha}{\Gamma(\beta)} \tau^{\beta - 1} e^{-\alpha \tau} \quad (Gamma) \tag{10}$$

$$W(\tau) = \sum_{j=1}^{M} w_j \delta(\tau - \tau_j) \quad \text{(Discrete delays)} \tag{11}$$

Economic interpretation:

- Different information processing speeds
- Institutional response times
- Communication delays
- Heterogeneous memory lengths

Infinite-Dimensional Phase Space

Fundamental Mathematical Structure

State space: $C = C([-\tau_{max}, 0], \mathbb{R}^3)$

State at time t: $x_t(\theta) = x(t + \theta)$ for $\theta \in [-\tau_{max}, 0]$

Evolution operator:

$$\frac{d}{dt}T(t)\phi = \mathcal{L}(T(t)\phi) + \mathcal{N}(T(t)\phi)$$
(12)

Theorem (Infinite-Dimensional Structure)

The phase space $\mathcal C$ has uncountably infinite dimension. No finite number of conserved quantities can constrain motion, fundamentally distinguishing DDE integrability from finite-dimensional systems.

Integrability Analysis

Obstacles to Analytical Solutions

Classical integrability requires:

- Sufficient first integrals
- Analytical solution methods
- Conserved quantities

Theorem (Analytical Challenges)

The cubic nonlinearity $(\pi(t) - \pi_*)^3$ combined with distributed delays presents significant obstacles to:

- Power series methods
- Standard perturbation techniques
- Classical analytical approaches

Implication

System likely exhibits non-integrable dynamics

Linear Stability Analysis

Complex Characteristic Equation

Characteristic equation:

$$\det(\mathcal{L}(\lambda)) = 0 \tag{13}$$

Where:

$$\mathcal{L}(\lambda) = \lambda I - A_0 - \sum_{j=1}^{M} A_j e^{-\lambda \tau_j} - \int_0^{\tau_{max}} B(\tau) e^{-\lambda \tau} d\tau$$
 (14)

Transcendental nature:

- No closed-form solutions
- Infinitely many eigenvalues
- Complex stability boundaries
- Necessitates numerical analysis

Parameter Calibration

Empirically Motivated Values

Parameter	Value	Economic Interpretation
α_1	0.8	Expectation adjustment speed
β_1	0.5	Phillips curve slope
γ_1	0.1	Nonlinear feedback strength
$ au_{avg}$	0.25	Average expectation delay
κ_1	1.5	Expectation sensitivity

Calibration sources:

- Survey of Professional Forecasters
- Output-inflation correlations
- Threshold VAR estimates
- Monetary policy transmission studies

Dynamical Regimes

Delay-Dependent Behavior

Regime classification by delay length:

- Low delays ($\tau_{avg} < 0.2$):
 - Stable convergence to target
 - Damped oscillations
- Moderate delays $(0.2 < \tau_{avg} < 0.4)$:
 - Persistent oscillations
 - Inflation cycles
- High delays $(\tau_{avg} > 0.4)$:
 - Complex aperiodic dynamics
 - Sensitive dependence on initial conditions

Key Finding

Realistic delay parameters can generate chaotic dynamics

Chaos Detection

Lyapunov Exponent Analysis

Lyapunov exponent computation:

$$\lambda_1 = \lim_{t \to \infty} \frac{1}{t} \sum_{k=1}^{N} \log \left(\frac{L_k'}{L_k} \right) \tag{15}$$

Results for high-delay regime ($\tau_{avg} = 0.45$):

- $\lambda_1 = 0.089 > 0 \Rightarrow$ Chaotic dynamics
- Correlation dimension $d_c \approx 2.3$
- Fractal attractor structure

Economic Significance

Bounded but unpredictable inflation dynamics without external shocks

Strange Attractor Properties

Complex Geometric Structure

Attractor characteristics:

- Bounded volatility: $\pi \in [0\%, 8\%]$
- Fractal dimension: Non-integer
- Sensitive dependence on initial conditions
- Aperiodic trajectories

Economic interpretation:

- Persistent deviations from target
- Bounded but unpredictable inflation
- Policy challenges in chaotic regime
- Fundamental forecasting limits

Historical Relevance

Consistent with 1970s stagflation and recent inflation episodes

Traditional Policy Failures

Why Standard Approaches Break Down

In chaotic regimes:

- Optimal control theory inadequate
- Small policy changes can have large effects
- Traditional stabilization may destabilize
- Prediction horizons fundamentally limited

Critical threshold:

$$\tau_{critical} \approx \frac{0.5}{\sqrt{\alpha_1 \alpha_2}}$$
(16)

Policy Implication

Keep communication delays below critical threshold

Robust Policy Design

Alternative Approaches

New policy strategies:

- Communication Policy
 - ullet Reduce $au_{ extsf{avg}}$ through clear, frequent communication
 - Minimize information processing delays
- Robust Control
 - Design for multiple parameter regimes
 - Maintain stability margins
- Expectation Management
 - Direct intervention in formation processes
 - Forward guidance strategies
- Adaptive Learning
 - Real-time system identification
 - Continuously updated policy rules

Stability Conditions

Mathematical Foundations for Policy

Stability maintenance requires:

$$\tau_{\text{avg}} < \tau_{\text{critical}} = \frac{0.5}{\sqrt{\alpha_1 \alpha_2}}$$
(17)

Policy levers:

- $\tau_{avg} \downarrow$: Improve communication speed and clarity
- α_1, α_2 : Structural economic parameters (harder to influence)

Practical implications:

- Central bank communication technology
- Media strategy optimization
- Forward guidance timing
- Institutional response speeds

Empirical Validation

Stylized Facts Reproduction

Model explains observed phenomena:

- Inflation persistence: Chaotic dynamics generate long-memory without external persistence
- Regime switching: Natural transitions between volatility periods
- Policy puzzles: Apparent ineffectiveness during certain periods
- Expectation anchoring: Bounded expectations prevent hyperinflation

Key Insight

Complex dynamics emerge endogenously from interaction structure, not external shocks

Historical Episodes Analysis

Case Studies

1970s Stagflation:

- High τ_{avg} due to poor communication
- Complex transmission mechanisms
- System pushed into chaotic regime
- Standard policies ineffective

2021-2023 Inflation Surge:

- Structural changes in expectation formation
- Social media and algorithmic trading effects
- Increased expectation sensitivity parameters
- Movement toward complex dynamics

Both episodes consistent with delay-induced chaos

Theoretical Advances

Mathematical Innovation

Key mathematical contributions:

- New DDE Class
 - Distributed delays with cubic nonlinearities
 - Rigorous existence and uniqueness results
- Integrability Analysis
 - Painlevé analysis for DDEs
 - Connection to differential Galois theory
- **1** Infinite-Dimensional Dynamics
 - Variational equations structure
 - Center manifold theory applications
- Computational Methods
 - Lyapunov spectrum for delay systems
 - Strange attractor reconstruction

Variational equations:

$$\frac{du}{dt} = -\alpha_1 \int_0^{\tau_{max}} G(\tau) u(t-\tau) d\tau + \beta_1 v(t) + 3\gamma_1 (\bar{\pi} - \pi_*)^2 u(t)$$
 (18)

$$\frac{dv}{dt} = \alpha_2 \int_0^{\tau_{max}} H(\tau)[w(t-\tau) + \text{other terms}]d\tau + \beta_2 u(t)$$
 (19)

$$\frac{dw}{dt} = \text{Complex expectation dynamics} - \lambda w(t) \tag{20}$$

Future research: Galois group analysis for understanding algebraic structure of solutions

Key Contributions Summary

Main Results

Mathematical Framework

- Rigorous infinite-dimensional dynamical system
- Proof of existence and uniqueness

Integrability Obstacles

- Demonstrated analytical challenges
- Connected to differential Galois theory

Output Chaotic Dynamics

- Numerical evidence for chaos
- Positive Lyapunov exponents
- Fractal attractors

Economic Applications

- Policy design implications
- Historical episode explanations

Research Agenda

Future Directions

Mathematical Extensions:

- Complete differential Galois analysis
- Stochastic extensions with noise-induced transitions
- Multi-dimensional heterogeneous agent models
- Bifurcation theory for infinite-dimensional systems

Economic Applications:

- Econometric detection of chaotic dynamics
- Machine learning for adaptive policy design
- Multi-country models with spillovers
- Financial market integration

Computational Methods:

- Advanced numerical techniques for DDEs
- Parallel algorithms for Lyapunov computation
- Real-time chaos detection systems

Model Limitations

Areas for Improvement

- Empirical Validation
 - Limited real-data testing
 - Parameter estimation challenges
- 2 Structural Assumptions
 - Simplified agent heterogeneity
 - Exogenous growth and policy parameters
- Computational Limitations
 - Finite-dimensional approximations
 - Numerical precision in chaos detection
- Policy Implementation
 - Gap between theory and practice
 - Real-time applicability questions

Broader Implications

Mathematical and Economic Significance

For Mathematics:

- New techniques for analyzing infinite-dimensional systems
- Applications of differential Galois theory to applied problems
- Computational methods for complex DDEs

For Economics:

- Fundamental limits on economic predictability
- New foundations for policy design
- Bridge between rigorous mathematics and economic theory

For Policy:

- Importance of communication technology
- Limits of traditional stabilization policies
- Need for robust, adaptive approaches

Thank You

Questions & Discussion

Contact Information:

Arthur Mota
University of São Paulo
arthur.lula.mota@gmail.com

Key Takeaway

Economic systems with realistic bounded rationality and communication delays can exhibit intrinsic chaos, fundamentally altering our understanding of macroeconomic policy effectiveness.