#### StartDate

StartDate = datetime
22-Jan-2020

### EndDate

EndDate = *datetime* 09-Apr-2020 00:00:00

```
gradient_span=5; %days
CountrywiseData=struct();
for category_count=1:size(Categories,1)
    plot_titles=cell(size(Selected_Countries,2),1);
    for country_count=1:size(Selected_Countries,2)
        RAW.(Categories{category_count}).Country_Region=categorical(RAW.(Categories{category_count}).Country_Region==Selected_Countries(country_count).country_Region==Selected_Countries(country_count).countrywiseData.(Categories{category_count}){Idn,(5:end)};
        CountrywiseData.(Categories{category_count})(country_count,:)=sum(temp,1);
        plot_titles{country_count,1}=[char(Categories{category_count}),'_',char(Selected_Countries).country_count});
SimpleScatter(StartDate,CountrywiseData.(Categories{category_count}),fig_title,plot_titles.end
```

Starting parallel pool (parpool) using the 'local' profile ... Connected to the parallel pool (number of workers: 8).



Daily v/s Cummu\_Confirmed



Grad of Daily v/s Cummu\_Confirmed



DailyIncrease\_Confirmed



Grad of DailyIncrease\_Confirmed



Confirmed



Log\_Confirmed



Gradient\_Confirmed



Goodness of Fit\_Confirmed



Daily v/s Cummu\_Deaths



Grad of Daily v/s Cummu\_Deaths



DailyIncrease\_Deaths



Grad of DailyIncrease\_Deaths



## Deaths



# Log\_Deaths



Gradient\_Deaths



## Goodness of Fit\_Deaths



Daily v/s Cummu\_Recovered



Grad of Daily v/s Cummu\_Recovered



## DailyIncrease\_Recovered



Grad of DailyIncrease\_Recovered



Recovered



Log\_Recovered



Gradient\_Recovered



Goodness of Fit\_Recovered