Machine Learning from Data

Lecture 12: Spring 2021

Today's Lecture

- Regularization ——
- Constraining the Model
- Augmented Error

Overfit (Recap)

Fitting the data more than is warranted

Human: Good at extracting the simple pattern, ignoring the noise and complications.

Computer: Pays equal attention to all pixels. Needs help simplifying → (features, regularization)

What is Regularization?

- A cure for our tendency to fit noise, hence improve out-of-sample Error.
- It works by constraining the model so that we cannot fit noise.
- Side effects: If we cannot fit noise maybe we cannot fit the actual signal (f)

Constraining the Model

Bias Variance

Mathematics of Regularization

· Constraint the model

(n,yi) (n2y2) -- -- (n,yn) + (z,yi) (zzy2)-Dala matin = X Taget rector = Y (Zn yn) Transformed data materia = Z Min. $(Z\widetilde{\omega}-\widetilde{y})(Z\widetilde{\omega}-\widetilde{y})$ find W-3 Z spree If 2 -> was inventible

W = Zy

(2 $(z^{T} = (z^{T}z)^{-1}z^{T})$ Polynomials. Legen Arl's

T, N

\mathcal{H}_{Q} : polynomials of order Q.

Standard Polynomial

$$\mathbf{z} = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^Q \end{bmatrix} \qquad h(x) = \mathbf{w}^{\mathsf{T}} \mathbf{z}(x) \\ = w_0 + w_1 x + \dots + w_Q x^Q$$

Legendre Polynomial

$$\mathbf{z} = \begin{bmatrix} 1 \\ L_1(x) \\ L_2(x) \\ \vdots \\ L_Q(x) \end{bmatrix} \qquad h(x) = \mathbf{w}^{\mathsf{T}} \mathbf{z}(x) \\ = w_0 + w_1 L_1(x) + \dots + w_Q L_Q(x)$$
allows us to treat the weights 'independently'

 $\mathcal{H}_{2} = \left\{ \left. h(\mathcal{H}) \right| h(\mathcal{H}) = \omega_{o} + \omega_{1} h(\mathcal{H}) + \omega_{2} l_{2}(\mathcal{H}), \omega \in \mathbb{R}^{3} \right\}$ $\mathcal{H}_{\mathbf{0}} = \left\{ \begin{array}{l} h(\mathbf{x}) \\ h(\mathbf{x}) \end{array} \right\} \left\{ \begin{array}{l} h(\mathbf{x}) = \omega_{\mathbf{0}} + \omega_{\mathbf{1}} \lambda_{\mathbf{1}}(\mathbf{x}) + \omega_{\mathbf{2}} \lambda_{\mathbf{2}}(\mathbf{x}) \\ \omega_{\mathbf{10}} \lambda_{\mathbf{10}}(\mathbf{x}) \\ \end{array} \right\}$ $\mathcal{H}_{2} = \sum_{q=0}^{\infty} V_{q} l_{q}(n)$ $\mathcal{H}_{2} = \left(\begin{array}{c} W_{10} \\ W_{2} \end{array} \right)$ if tim(Nz) = tim(M10) VC Theory. Constrain

 $\mathcal{H}_{2} = \left\{ h(x) \middle| h(x) = \omega_{0} + \omega_{1} l_{1}(x) + \omega_{2} l_{2}(x) + \cdots + \omega_{n} l_{n}(x) \right\}$ - Wiolida), WERTS Mud-order roustaint.
Soft over constrain. $=\omega_{1D}=0$ Budget = C $\mathcal{M}_{c} = \left\{ \frac{\lambda(n)}{h(n)} \middle| \frac{\lambda(n)}{h(n)} = \omega_{0} + \omega_{1} \lambda(n) + \dots + \omega_{10} \lambda(n) \right\}$ $\frac{10}{2000} = \frac{10}{2000} =$

subject to wTW 40 min Ein(W)

Casel: Win Win & C gnadratic Wreg = Whin Win Win > Case 2: fersible Em

min:
$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} (\mathbf{Z}\mathbf{w} - \mathbf{y})^{\text{T}} (\mathbf{Z}\mathbf{w} - \mathbf{y})$$

subject to:
$$\mathbf{w}^{\mathrm{T}}\mathbf{w} \leq C$$

Observations:

- 1. Optimal \mathbf{w} tries to get as 'close' to \mathbf{w}_{lin} as possible.

 Optimal \mathbf{w} will use full budget and be on the surface $\mathbf{w}^{\mathsf{T}}\mathbf{w} = C$.
- 2. Surface $\mathbf{w}^{\mathsf{T}}\mathbf{w} = C$, at optimal \mathbf{w} , should be perpindicular to ∇E_{in} . Otherwise can move along the surface and decrease E_{in} .
- 3. Normal to surface $\mathbf{w}^{\mathsf{T}}\mathbf{w} = C$ is the vector \mathbf{w} .
- 4. Surface is $\perp \nabla E_{\text{in}}$; surface is \perp normal. ∇E_{in} is parallel to normal (but in opposite direction).

TEin + $2 \lambda_c \omega = 0$ Tein + $2 \lambda_c \omega = 0$ A gradient of $\lambda_c \omega^T \omega$ Condition

The standard conviction of $\lambda_c \omega^T \omega$ min $E_{in}(w) + \lambda_{in} w^{T}w$ optimization TCT -> C mut go down Un constrained of timizan Titting under a constraint (Budget)
Unconstrained penalized fitting (penalty parameter)

min Earg (w) = Ein (w) + 2 ww pundty

min Earg (w) = Fin (w) + 2 www. $E_{ang}(\omega) = E_{m}(\omega) + \lambda Sl(\omega) \int_{N}^{\infty} twm$ Earg(h) = Ein(h) + 2 Si(h) complimity of hypitheris. Who Regularization parameter to know worked

The Regularization parameter to know worked

The Regularization parameter to know the tensor to t

Weight Decay Earny. (wTw) -> weight decay. Wreg. min Ein(w) + X/NWTW min $\frac{1}{N}(Zw-y)^T(Zw-y) + \frac{1}{N}w^T\omega$ $ww = \omega^{T} Z^{T} Z \omega - 2\omega^{T} Z^{T} y + yy + \lambda \omega^{T} \omega$ min $\omega^{T}(ZZ+\lambda I)\omega^{-2}\omega^{Z}y+y^{T}y$ gradient -> 0

2(ZZ+)Z)W-2ZY=0tre definite Invertible Solve for w wreg = (ZZZ+NI)ZY Regularized times Regnession feature hamform. A-spenalizing.

Regularization In Action

Uniform Weight Decay

Low Order Fit

Weight Growth!

Choosing a Regularizer – A Practitioner's Guide

The perfect regularizer:

constrain in the 'direction' of the target function. target function is $\underline{\text{unknown}}$ (going around in circles \bigcirc).

The guiding principle:

constrain in the 'direction' of **smoother** (usually simpler) hypotheses hurts your ability to fit the 'high frequency' noise smoother and simpler weight decay not weight growth.

Stochastic noise \longrightarrow nothing you can do about that.

Good features \longrightarrow helps to reduce deterministic noise.

Regularization:

Helps to combat what noise remains, especially when N is small.

Typical modus operandi: sacrifice a little bias for a huge improvement in var.

VC angle: you are using a smaller \mathcal{H} without sacrificing too much $E_{\rm in}$

$$E_{
m aug}(h) = E_{
m in}(h) + \frac{\lambda}{N}\Omega(h)$$

$$\updownarrow$$

$$E_{
m out}(h) \leq E_{
m in}(h) + \Omega(\mathcal{H})$$
this was $O\left(\sqrt{\frac{d_{
m vc}}{N}\ln N}\right)$

 E_{aug} can beat E_{in} as a proxy for E_{out} .

depends on choice of λ

Thanks!