Read the data

```
In [1]: import numpy as nps
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
```

In [2]: T = pd.read_csv('Titanic.csv')
T.head(6)

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q

Clean the data

```
In [3]: T.isnull().sum()
Out[3]: PassengerId
                          0
        Survived
                          0
        Pclass
                          0
        Name
        Sex
                          0
        Age
                        177
        SibSp
                          0
        Parch
                          0
        Ticket
                          0
        Fare
                          0
        Cabin
                        687
        Embarked
                          2
        dtype: int64
In [4]: |T.columns
Out[4]: Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
                'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
              dtype='object')
In [5]: T['Age'].fillna(T['Age'].mean())
                                                # mean of the null values in the data.
Out[5]: 0
                22.000000
                38.000000
        1
               26.000000
        2
         3
               35.000000
        4
                35.000000
        886
                27.000000
        887
               19.000000
        888
               29.699118
               26.000000
        889
        890
                32.000000
        Name: Age, Length: 891, dtype: float64
```

```
In [6]: T = T.drop(['Name', 'PassengerId', 'Cabin', 'Ticket', 'Fare'],axis=1) # deleting the unwanted columns
T = T.dropna() # filling nearest values in the null values.
T.head(6)
```

Out[6]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Embarked
0	0	3	male	22.0	1	0	S
1	1	1	fema l e	38.0	1	0	С
2	1	3	fema l e	26.0	0	0	S
3	1	1	female	35.0	1	0	S
4	0	3	male	35.0	0	0	S
6	0	1	male	54.0	0	0	S

Feature Engineering

```
In [7]: from sklearn.preprocessing import LabelEncoder
gen = LabelEncoder()
emb = LabelEncoder()
```

```
In [8]: T['Sex'] = gen.fit_transform(T['Sex']) # changing sex notation into no.s (1 for male, 0 for female)
T['Embarked'] = emb.fit_transform(T['Embarked']) # embarked is changed to 0,1,2
T.head(6)
```

Out[8]:

 Survived	Pclass	Sex	Age	SibSp	Parch	Embarked
0 0	3	1	22.0	1	0	2
1 1	1	0	38.0	1	0	0
2 1	3	0	26.0	0	0	2
3 1	1	0	35.0	1	0	2
4 0	3	1	35.0	0	0	2
6 0	1	1	54.0	0	0	2

Prepare the data

Building model

```
In [15]: from sklearn.linear_model import LogisticRegression
lr = LogisticRegression()
```

Testing

```
In [18]: y_pred = lr.predict(x_test)
         y_pred
Out[18]: array([1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0,
                1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1,
                1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1,
                1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1,
                1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0,
                1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
                0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1], dtype=int64)
In [20]: y_test
Out[20]: 708
                1
         149
                0
         755
                1
         528
         278
                0
         805
         209
                1
         328
                1
         700
                1
         269
         Name: Survived, Length: 143, dtype: int64
In [21]: from sklearn.metrics import accuracy score
         print("Accuracy: ", accuracy_score(y_pred, y_test))
```

Accuracy: 0.7692307692307693

```
In [23]: | age = int(input("Enter age: "))
         pclass = int(input("Enter pclas: "))
         gender = int(input("enter gender (0-female, 1-male): "))
         sibsp = int(input("enter sibsp: "))
         parch = int(input("enter parched: "))
         emba = int(input("enter embarked : (0-c, 1-q, 2-s)"))
         data = [[pclass, age, gender, sibsp, parch, emba]]
         pred = lr.predict(data)
         print(pred)
         Enter age: 25
         Enter pclas: 4
         enter gender (0-female, 1-male): 1
         enter sibsp: 4
         enter parched: 3
         enter embarked : (0-c, 1-q, 2-s)2
         [0]
         D:\Python\Anaconda\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have valid feature names, bu
         t LogisticRegression was fitted with feature names
           warnings.warn(
In [24]: import joblib
         joblib.dump(lr, filename="titan.pkl")
Out[24]: ['titan.pkl']
 In [ ]:
```