Digition-Amologe-Weindler DAC 4071

Der DAC 4071 ist ein hochauflösender 16 Bit Hybrid-Digital-Analog-Wandler, der in einem 24poligen DIL-Metall-Hermetikgehäuse gefertigt wird. Der DAC 4071 ist pinkompatibel zum DAC 71.

Der Wandler wird mit Strom- oder Spannungsausgang angeboten. Für die verschiedenen Anwendungen kann zwischen drei digitalen Eingangskodes (CB, COB und CCD) gewählt werden.

Durch ein spezielles System geregelter Stromquellen in Verbindung mit hochstabilen Dünnfilmwiderständen wird auf modernen Trimmanlagen durch Funktionsabgleich sowohl für die absolute, als auch für die differentielle Linearität eine Genauigkeit von $\pm 0,003$ % von FSR erreicht. Diese Genauigkeit wird im gesamten Temperaturbereich von 0...70 °C ein-

gehalten. Damit ist eine Monotonie von 15 Bit garantiert.
Der Wandler arbeitet mit einer internen Referenzspannung
von 10,00 V, die einen Temperaturkoeffizient von ±5 ppm/K hat. Diese Referenz kann auch für externe Aufgaben genutzt werden.

Die Spannungsmodelle beinhalten einen Präzisionsoperationsverstärker vom Typ B087, mit dem eine slew rate von 10 V/μs erreicht wird.

Die Einschwingzeit der Strommodelle beträgt 1 µs.

Blockschaltbild

Pinbelegung

		<u> </u>
Pin-Nr.	U-Modell	I-Modell
1	Bit 1 (MSB)	Bit 1
	Bit 2	Bit 2
3	Bit 3	Bit 3
4	Bit 4	Bit 4
5	Bit 5	Bit 5
2 3 4 5 6 7	Bit 6	Bit 6
7	Bit 7	Bit 7
8	Bit 8	Bit 8
9	Bit 9	Bit 9
10	Bit 10	Bit 10
11	Bit 11	Bit 11
12	Bit 12	Bit 12
13	Bit 13	Bit 13
14	Bit 14	Bit 14
15	Bit 15	Bit 15
16	Bit 16 (LSB)	Bit 16
17	U _{out} `´´	R _f
18	+112	$+U_{cc3}$
19	$-U_{cc2}$	U _{cc2}
20	Masse	Masse
21	Summier-Punkt	lout
22	FS-Abgleich	FS-Abgleich
23	$+U_{cc1}$	$+U_{cc1}$
24	Ref. out	Ref. out

Betriebsbedingungen

Kenngröße	Symbol	min	typ	max.	Einheit
Betriebsspannung	Ucci	14,25		15,75	V
. •	U_{cc2}	14,25		15,75	V
	U_{cc3}	4,75		5,25	V
Eingangsspannung	U_{1L}	0		0,8	٧
	UIH	2,4		U_{cc3}	٧
Betriebs-					
temperaturbereich	ϑ_a	0		70°	С

Kennwerte

Die Kennwerte gelten bei $U_{cc1}=-U_{cc2}=15~V\pm0.5~V$, $U_{cc3}=5~V\pm0.25~V$ und $U_{IL}=OV$, $U_{IH}=U_{cc3}$ sowie der Umgebungstemperatur $\vartheta_a=23~^{\circ}\mathrm{C}\pm2~\mathrm{K}$

Kenngröße	Symbol	min	typ	max,	Einheit
Auflösung CB, COB CCD Linearitätsfehler CB, COB CCD				16 4 0,5 ¹) 士0,003 士0,005	Bit Digit LSB % von FSI
differentieller Linearitätsfe Bipolarität COB Monotonie 9 0…70°C	ehler			0,5 ¹) 0,5 ¹) 15	LSB LSB Bit
Drift ⁸ a 0···70 °C					
Gaindrift U-Modelle I-Modelle			±0,0003 ±0,0005	±0,0015 ±0,0045	% FSR/K % FSR/K
Offsetdrift CB-U/CCD-U CB-I/CCD-I —FS COB-U			±0,0001	±0,0002 ±0,0001 ±0,001	% FSR/K % FSR/K % FSR/K
Drift der differentiellen Linearität					% FSR/K
Drift der absoluten Linear	ität			±0,00007	% FSR/K
Umsetzzeit am Spannungsausgang auf ±0,003 % v. FSR bei einem 20-V-Schritt³)			10		μς
slew rate am Stromausgang auf ±0,003 % v. FSR bei einem 2-mA-Schritt		8	15		V/μ s
10···100 Ohm-Last 1 kOhm-Last				1 3	μs μs
Betriebsspannungsabhäng 4-1,5 V cc11,5 V;	igkeit d	es FS			
$-U_{cc2}$; $U_{cc3} = const.$	SS ₁		±0,001	±0,005	% FSR/ % U _{cc1}
Δ —U _{cc2} +1,5 V;					
U_{cc1} ; $U_{cc3} = const.$	SS ₂		<u>+</u> 0,001	土0,005	% FSR/ % U _{cc2}
ΔU cc3 +0,5 V -0,5 V;					
U_{cc1} ; $-U_{cc2} = const.$	SS ₃		<u>+</u> 0,0001	±0,0005	% SFR/ %∪ _{cc3}
Stromaufnahme	cc1		10		mA
	$-l_{cc2}^{2}$)	35 12		mA mA
Referenzspannung Drift	· · · · · · · · · · · · · · · · · · ·	9,97		10,03 ±50	V μV/K
Laststrom für externe Anwendung				1	mA

²) Die Stromversorgung für U_{cc2} muß beim Einschaltvorgang (≥ 1 ms) einen Strom von \geq 150 mA bereitstellen.

³⁾ Überschwingverhalten kann durch Kondensator zwischen Pin 17 und Pin 21 auf Kosten der Einschwingzeit beseitigt werden.

Web Keranische Werke Hermsdore

IDIDR 26580 Hermsdork/Thurmigen, Hitedrick/Engels-Straße 79 Postforh 2: Teleron 5510 - Velex 58246 Telegrammer KawaharHermsdork/Thur

Stommoentabildes (Kambonote): VSB (Karomistic Werke (Elamsdroid)

Ехропеци

elektronik Exceptronik

Volkseigener Außerhandelsbetrieb der Deutschen Demokratischen Republik DDR § 1026 Berlin, Alexanderplatz 6, Haus der Elektroindustrie (telefon: 2180)

Wandlertypen

Für die verschiedenen Anwendungen wird der DAC 4071 in folgenden Betriebsarten gefertigt:

Betriebsart	Abkürzung	Ausgang
Complementary Bipolar	COB-U	±10 V
Offset Binary	COB-I	+1 mA
Complementary Binary	CB-U CB-I	0 · · · 10 V 0 · · · —2 mA
Complementary Binary	CCD-U	0 · · · 10 V
Coded Decimal	CCD-I	0 · · · —1,25 mA

Abgleich

Die Wirkung des FS- und Offsetabgleichs bei der Betriebsart CB (CCD) bzw. COB ist im Bild dargestellt.

Durch die hohe Trimmgenauigkeit des Wandlers kann die Feineinstellung durch externe Regler bei speziellen Anwendungen entfallen.

Entsprechend gewähltem Wandlertyp ergeben sich bei der angegebenen Grundschaltung folgende Einstellwerte.

Тур	Digitale Eingänge MSB LSB	Einstellwerte	Reihenfolge/ Regler
DAC 4071 COB-U	HHHHHHHH	—10,00000 V	1. Offset
	LLLLLLLL	+ 9,99969 V	2. FS
DAC 4071 CB-U	HHHHHHHH	0,00000 V	1. Offset
	LLLLLLLL	+9,99985 V	2. FS
DAC 4071 CCD-U	HHHH HHHH	0,000 V	1. Offset
	L HHL L HHL	+9,999 V	2. FS
DAC 4071-COB-I	HHHHHHHH	- -1,00000 mA	1. Offset
	LLLLLLLL	0,99997 mA	2. FS
DAC 4071 CB-I	HHHHHHHH	0,00000 mA	1. Offset
	LLLLLLLL	—1,99997 mA	2. FS
DAC 4071 CCD-I	HHHH HHHH	0,00000 mA	1. Offset
	L HHL L HHL	—1,24987 mA	2. FS

Bauform D 24/15-9

Hermetisches Metall-Glas-Gehäuse

Maße in mm

Тур	Erzeugnisnummer
DAC 4071 COB-U DAC 4071 CB-U DAC 4071 CCD-U DAC 4071 COB-I DAC 4071 CB-I	4587.8-21 723 1 4587.8-21 733 1 4587.8-21 743 1 4587.8-21 753 1 4587.8-21 763 1
DAC 4071 CCD-I	45 87 .8- 21 7 7 3 1

Die fettgedruckten Ziffern ergeben das Typkurzzeichen. Vergleichstyp DAC 71

Bestellbeispiel:

Die TGL gerechte Bestellbezeichnung für einen DAC 4071 mit einer Ausgangsspannung von ±10 V lautet: Hybridschaltkreis 87 212 – TGL 43829

Abbildungen und Werte gelten nur bedingt als Unterlagen für Bestellungen. Rechtsverbindlich ist jeweils die Auftragsbestätigung. Änderungen vorbehalten.