PROVA DE MATEMÁTICA

Marque, no cartão-resposta anexo, a única opção correta correspondente a cada questão.

1. O número $(5 - 4\sqrt{3})$ é obtido calculando-se a raiz quadrada do seguinte número:

(a)
$$73 - 16\sqrt{3}$$

(b)
$$73 - 40\sqrt{3}$$

$$(c)73 - 50\sqrt{3}$$

$$(d)75 - 40\sqrt{3}$$

(e)
$$75 - 50\sqrt{3}$$

2. Qual é o valor da expressão abaixo?

$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{17}}}$$

$$(a)\frac{53}{35}$$

$$\begin{array}{c} (a) \frac{53}{35} \\ (b) \frac{35}{53} \end{array}$$

$$(c)\frac{53}{17}$$

$$(d)\frac{17}{53}$$

$$(e)\frac{17}{35}$$

3. A expressão $\sqrt[8]{3} \times \sqrt{3} \times \sqrt[5]{3} \times \sqrt[4]{3} \times \sqrt[20]{3}$ é igual a:

(a)
$$3^2 \cdot \sqrt[8]{3}$$

(b)
$$3.\sqrt[8]{3}$$

(c)
$$\sqrt[8]{3}$$

$$(d) 3 \cdot \sqrt[20]{3}$$

$$(e) \sqrt[20]{3}$$

4. A equação $(m-3)x^2 + mx + m^2 - 9m + 20 = 0$, com m real, possui duas raízes reais e distintas em x: $x_1 \in x_2$. Sabendo que $x_1 < 0$ e $x_2 > 0$, é correto afirmar que:

5. Um jogo de perguntas e respostas foi realizado com um grupo de estudantes, cuja pontuação está relacionada a seguir:

Pergunta	Pontuação
Pergunta 1	2 pontos
Pergunta 2	3 pontos
Pergunta 3	4 pontos

A tabela abaixo especifica o número de crianças com seus respectivos pontos, obtidos nesse jogo.

Quantidade de estudantes	Pontuação obtida
4	2
3	3
5	4
7	5
8	6
7	7
2	9

O número de estudantes que acertaram a pergunta 3 é:

- (a)5
- (b) 22
- (c) 29
- (d)32
- (e) 39
- 6. Um jovem parado num ponto A de um plano horizontal observa, com um teodolito (instrumento de medida de ângulos), o topo de um edifício sob um ângulo de 30° . Depois, ele caminha 30 metros em direção ao edifício, para num ponto B, faz uma nova observação, e dessa vez, obtém um ângulo de 45° . Então, ele continua a caminhada até chegar na entrada do edifício. Desprezando-se a altura do jovem, a distância por ele percorrida do ponto A até a entrada do edifício, é um valor, em metros (considere $\sqrt{3} = 1,73$):
- (a) entre 40 e 41
- (b) entre 42 e 43
- (c) entre 52 e 53
- (d) entre 70 e 71
- (e) entre 74 e 75
- 7. Um grupo de pessoas participou de um passeio no qual foi gasto um valor total de R\$ 1056,00 para o pagamento do transporte. Esse valor seria dividido igualmente por todos os participantes. No dia do passeio, quatro pessoas faltaram, e desta forma os presentes pagaram R\$ 2,00 a mais do que o programado. Assinale a opção que aponte o número de pessoas que realizou, efetivamente, o passeio.
- (a) 28
- (b)44
- (c) 48
- (d)64
- (e)88

CONCURSO DE ADMISSÃO 2019/2020 – 1º ANO DO ENS. MED. – MATEMÁTICA PÁG. 3

8. Na figura abaixo, os pontos V e A são comuns às funções $f(x) = 2\sqrt{2}x - 8$ e $g(x) = ax^2 + bx + c$. Sabendo que o ponto V é o vértice do gráfico da função g(x), o valor de g(-8) é igual a:

- (a)0
- (b) 10
- (c) 16
- (d)40
- (e) 56

9. Na figura abaixo, f representa o gráfico da função f(x) e g representa o gráfico da função g(x). Se os conjuntos F e G são soluções, respectivamente, das inequações $\frac{f(x)}{g(x)} \le 0$ e $f(x) \le g(x)$, então $F \cap G$ é igual a:

- (a) $x \le -3$ ou $0 < x \le 2$
- $(b) -2 \le x \le 3$
- (c)0 < x < 2
- $(d) 0 \le x \le 3$
- $(e) -2 \le x < 0$

10. Na figura abaixo, a reta r representa a função f(x) = ax + b e a reta s representa a função g(x) = cx + d. A alternativa que melhor representa o gráfico de y = (ax + b)(cx + d) é:

CONCURSO DE ADMISSÃO 2019/2020 – 1º ANO DO ENS. MED. – MATEMÁTICA PÁG. 5

11. A quantidade de filas de cadeira de uma sala é igual à metade da quantidade de cadeiras em cada fila. Se a quantidade de filas for triplicado, e se forem removidas 40 cadeiras de cada fila, a quantidade total de cadeiras na sala terá um aumento de 256 unidades. Qual a quantidade de filas, inicialmente?

(a) 16

(b) 22

(c) 32

(d)64

(e)96

12. A tabela abaixo relaciona os países que possuem maior número de usuários de internet, no ano de 2017.

Colocação	País	Quantidade (em milhões)
1°	China	705
2°	Índia	333
3°	E.U.A.	242
4°	Brasil	120
5°	Japão	118
6°	Rússia	104
7°	Nigéria	87
8°	Alemanha	72
9°	México	72
10°	Reino Unido	59

(Fonte: Revista Exame, 2017).

Em um gráfico de setores circulares, cada quantidade de usuários corresponde a um setor circular. Em relação aos dados da tabela acima, o ângulo do setor que representa os usuários de internet do Brasil, em graus, é um número entre:

- (a)7e8
- (b) 12 e 13
- (c) 17 e 18
- (d) 22 e 23
- (e) 27 e 28

13. Considere os seguintes números reais:

$$a = \frac{0.3}{0.025};$$
 $b = \sqrt[3]{\sqrt{512}};$ $c = 8^{-0.6}$

Assinale a alternativa correta:

- (a) a é um número racional não inteiro
- (b) b é um número irracional maior do que 3
- (c) a < b < c
- (d) c < a < b
- (e) c < b < a

14. A raiz quadrada do número expresso por $2^5 \cdot 3^2 \cdot 5^2$ é igual ao produto da expressão

quadrado do seguinte número:

- (a) $2^{-\frac{3}{4}} \cdot 3^{\frac{1}{2}} \cdot 5^{\frac{1}{2}}$
- (b) $2^{-\frac{3}{4}} \cdot 3^{\frac{1}{4}} \cdot 5^{\frac{1}{2}}$
- $(c) 2^{-\frac{3}{4}} \cdot 3^{\frac{1}{4}} \cdot 5^{\frac{1}{4}}$
- $(d) 2^{-\frac{3}{2}} \cdot 3^{\frac{1}{2}} \cdot 5^{\frac{1}{2}}$
- $(e) 2^{-\frac{3}{2}} \cdot 3^{\frac{1}{4}} \cdot 5^{\frac{1}{4}}$
- 15. A figura abaixo contém diversos triângulos retângulos, e as respectivas medidas de alguns lados, com o ângulo x em comum.

Calculando sen(x) + cos(x), o resultado é:

- $(a) \frac{4}{5}$
- (b)1
- $(c) \frac{6}{5}$ $(d) \frac{7}{5}$
- $(e) \frac{8}{5}$
- 16. Sejam \mathbf{m} e \mathbf{n} números reais, onde 3m + n = 11. Qual é o valor mínimo da expressão $m^2 + n^2$?.
- (a) 11,1
- (b) 11,3
- (c) 12,1
- (d) 12,3
- (e) 13,1

CONCURSO DE ADMISSÃO 2019/2020 – 1º ANO DO ENS. MED. – MATEMÁTICA PÁG. 7

17. Se
$$X = \frac{\sqrt{2}+1}{\sqrt{2}-1} - \frac{\sqrt{2}-1}{\sqrt{2}+1}$$
 e $Y = \frac{\sqrt{2}-1}{\sqrt{2}+1} - \frac{\sqrt{2}+1}{\sqrt{2}-1}$, então o valor da expressão $(X^2 - Y^2)$ é igual ao valor

da expressão:

- (a) X · Y
- (b) X + Y
- (c)X-Y
- (d) X:Y
- (e) Y: X
- 18. Na figura abaixo, os lados MN, PQ e RS são paralelos entre si. O valor de x + 2 é:

- (a) 13
- (b) 14
- (c) 15
- (d) 16
- (e) 17
- 19. Ao se multiplicar um número $\underline{\mathbf{x}}$ por oito, e soma-lo pelo dobro de um número $\underline{\mathbf{y}}$, obtém-se 64. Se multiplicarmos quatro pelo quadrado do número $\underline{\mathbf{x}}$ e somarmos com o dobro do produto do número $\underline{\mathbf{x}}$ pelo número $\underline{\mathbf{y}}$, obtém-se 192. Qual o maior valor de y encontrado?
- (a)0
- (b)4
- (c)8
- (d) 12
- (e) 16

20. A função f(x) = -4x + c está representada no gráfico abaixo. Resolvendo a expressão $\frac{y_1 - y_2}{y_3}$, onde

 y_1 , y_2 e y_3 são as ordenadas dos pontos (3; y_1), (5; y_2) e (0; y_3), pertencentes ao gráfico de f(x), obtémse:

- (a)0
- (b)1
- (c)2
- (d)3
- (e)4