0. Aufgabenblatt – Diskrete Strukturen

SoSe 2024

Stand: 19. April 2024

(Besprechung in den Tutorien in der Woche vom 22.04.2022)

Aufgabe 1

Gegeben seien die folgenden Mengen:

$$A = \{x \mid x \in \mathbb{N} \land x \le 2\}$$

$$B = \{k+1 \mid k, k-1 \in A\}$$

$$C = \{S \mid S \subset A\}$$

- (i) Geben sie die Mengen A, B und C explizit an.
- (ii) Geben sie die Mengen $A \cup B$, $A \cap B$ und $A \setminus C$ explizit an.
- (iii) Geben sie die Menge $A \times B$ explizit an. $A \times B_2 \neq (a_1b) \setminus a \in A$ und $b \in \mathcal{C}$
- (iv) Geben sie eine Menge S minimaler Größe an, sodass ein $a \in S$ existiert mit $a \subseteq A$ und ein $b \in S$ mit $b \subseteq B$.

Aufgabe 2

Das Mengensystem aus den Mengen M_1, \ldots, M_n mit $n \ge 1$ bildet eine Sonnenblume genau dann, wenn eine Menge S existiert, sodass $M_i \cap M_j = S$ für alle $1 \le i < j \le n$ gilt.

- (i) Entscheiden Sie für jedes der folgenden Mengensysteme, ob es eine Sonnenblume bildet und geben Sie bei einer positiven Entscheidung die entsprechende Menge S an.
 - $A_1 = \{S, o, n, e\}, A_2 = \{b, l, u, m, e\}$
 - $B_1 = \{1, 2, 3\}, B_2 = \{4\}, B_3 = \{5, 6\}, B_4 = \{7, 8, 9\}$
 - $C_1 = \{1, 2, 3\}, C_2 = \{2, 3, 4\}, C_3 = \{3, 4, 5\}, C_4 = \{4, 5, 6\}$
 - $D_1 = \mathbb{N}, D_2 = \mathbb{Z}, D_3 = \mathbb{R}$
 - $E_1 = \{a, b, c\}, E_2 = \{f, b, e, g, c\}, E_3 = \{c, b\}, E_4 = \{j, i, c, k, b\}$
- (ii) Sei M_1, \ldots, M_n ein nichtleeres Mengensystem aus zweielementigen Mengen, die sich paarweise in genau einem Element schneiden, das keine Sonnenblume bildet. Begründen Sie, welche Werte aus $\{0,1,2,3,4\}$ für n möglich sind.

Aufgabe 3

Betrachten Sie eine beliebige Platzierung der natürlichen Zahlen von 1 bis 9 auf einem Kreis. Zeigen oder widerlegen sie, es gibt drei auf dem Kreis nebeneinanderliegende Zahlen x, y und z mit $x + y + z \ge 16$.

Aufgabe 1

Gegeben seien die folgenden Mengen:

$$A = \{x \mid x \in \mathbb{N} \land x \le 2\}$$

$$B = \{k+1 \mid k, k-1 \in A\}$$

$$C = \{S \mid S \subset A\}$$

$$2 \mid A \circ A$$

- (i) Geben sie die Mengen A, B und C explizit an.
- (ii) Geben sie die Mengen $A \cup B$, $A \cap B$ und $A \setminus C$ explizit an.
- (iii) Geben sie die Menge $A \times B$ explizit an.
- (iv) Geben sie eine Menge S minimaler Größe an, sodass ein $a \in S$ existiert mit $a \subseteq A$ und ein $b \in S$ mit $b \subseteq B$.

11) AUB =
$$\{0, 1, 2, 3\}$$

A $\prod B = \{2\}$
A\C = $\{0, 1, 2\}$

Aufgabe 2

Das Mengensystem aus den Mengen M_1, \ldots, M_n mit $n \ge 1$ bildet eine Sonnenblume genau dann, wenn eine Menge S existiert, sodass $M_i \cap M_j = S$ für alle $1 \le i < j \le n$ gilt.

- (i) Entscheiden Sie für jedes der folgenden Mengensysteme, ob es eine Sonnenblume bildet und geben Sie bei einer positiven Entscheidung die entsprechende Menge S an.
 - $A_1=\{S,o,n,e\},\ A_2=\{b,l,u,m,e\}$ for Anna = fell
 - $B_1 = \{1, 2, 3\}, B_2 = \{4\}, B_3 = \{5, 6\}, B_4 = \{7, 8, 9\}$
 - $C_1 = \{1,2,3\}, C_2 = \{2,3,4\}, C_3 = \{3,4,5\}, C_4 = \{4,5,6\}$ Niv., Can DCz = $\{2,3,4\}, C_2 = \{3,4,5\}, C_4 = \{4,5,6\}$
 - $D_1=\mathbb{N},\,D_2=\mathbb{Z},\,D_3=\mathbb{R}$ heigh
 - $E_1 = \{a, b, c\}, E_2 = \{f, b, e, g, c\}, E_3 = \{c, b\}, E_4 = \{j, i, c, k, b\}$
- (ii) Sei M_1, \ldots, M_n ein nichtleeres Mengensystem aus zweielementigen Mengen, die sich paarweise in genau einem Element schneiden, das keine Sonnenblume bildet. Begründen Sie, welche Werte aus $\{0,1,2,3,4\}$ für n möglich sind.
 - n=0 ist nicht möglich, da es von der Angabe ausgeschlossen wird.
 - n=1 ist nicht möglich, da jede Menge S das System zur Sonnenblume machen würde
 - n = 2 ist nicht möglich, da die Schnittmenge der zwei Mengen eine passende Menge S darstellt, die das System zur Sonnenblume machen würde
 - n = 3 ist möglich, $M_1 = \{1, 2\}, M_2 = \{2, 3\}, M_3 = \{1, 3\}$ ist ein Beispiel.
 - n=4 ist nicht möglich, wie man folgendermaßen zeigen kann:

Seien o.B.d.A. $\{a,b\}$ und $\{b,c\}$ zwei dieser Mengen. Dann kann eine dritte Menge nur die Form $\{a,c\}$ oder $\{b,d\}$ haben. Im Fall von $\{a,c\}$ existiert nun keine vierte Menge mit zwei Elementen, die $\{a,b\},\{b,c\}$ und $\{a,c\}$ in einem Element schneidet. Im Fall von $\{b,d\}$, kann eine vierte Menge nur dann $\{a,b\},\{b,c\}$ und $\{b,d\}$ schneiden, wenn sie b enthält. Dann hat sie also die Form $\{b,e\}$ und wir haben eine Sonnenblume.

Aufgabe 3

Betrachten Sie eine beliebige Platzierung der natürlichen Zahlen von 1 bis 9 auf einem Kreis. Zeigen oder widerlegen sie, es gibt drei auf dem Kreis nebeneinanderliegende Zahlen x, y und z mit $x + y + z \ge 16$.

