Clustering

Clustering

- Clustering is an unsupervised problem.
 - There are no targets
 - Find relationships and structure within data
- There are multiple methods used for clustering.
 - They all share the concept of distance
 - Clustering is about how "close" data is.
 - Close means a distance is measured.
 - Distance can be a real distance or a mathematical distance.

Clusters of Data

- Both clusters are centered at (2,1) (blue) and (1,2) (orange) but the
 distribution of the data is much tighter on the left. For the graph on the right,
 are there 2 distinct clusters? There are 2 distinct distributions!
- How many clusters are there? How do we decide?

Clustering Algorithms

- Different algorithms
 produce different results;
 some will classify outliers
 (DBSCAN, OPTICS) or
 try and guess the number
 of clusters
- Others require careful selection of initial conditions
- All the algorithms do well with isolated tightly grouped data; when the cluster shapes become complex is when the results diverge

DataScience@SMU

Distance

Distance

- While the basic concept of distance is familiar from the most basic courses in math, it does get an update.
- Standard distance (Euclidian distance): $(\sum_{i=1}^{n} (X_{1i} X_{2i})^2)^{\frac{1}{2}}$
 - Aka the shortest distance between two points is a straight line.
- Think of the data as vectors in an abstract space.
- Data that is "nearby" will have a small distance:

$$X_{1i} = (x_1, y_1, z_1, etc...)$$

Nonstandard Distance

Manhattan

- How many "hops" between points
- Useful in graphs and networks
- Named after the grid of blocks in New York City

Manhattan Distance Diagram in 2D

You may only "travel" along the grid, thus the red and blue paths have equal length (and the shortest path may not be unique!)

End

$$\left(\sum_{i=1}^{n} |X_{1i} - X_{2i}|^{1}\right)^{\frac{1}{1}}$$

Weird way to write it but look at the pattern!

$$\left(\sum_{i=1}^{n} |X_{1i} - X_{2i}|\right)$$

Start

A General Distance Formula

Minkowski distance

$$\left(\sum_{i=1}^{n} |X_{1i} - X_{2i}|^p\right)^{\frac{1}{p}}$$

- p = 1, Manhattan distance
- p = 2, Euclidean distance
- p = ∞, Chebyshev distance
 - Not a curiosity—used in warehouses where cranes can move in x, y, z independently

Shapes of Equal Distance for Various P

- We can see that as p increases, the shape of positions that are the same distance from the center becomes a square (only 1st quadrant shown here).
- The p = 1 would be a diamond, while p = 2 is the traditional circle.
- The Chebyshev distance would be when something like a crane independent motors (move in X, Y at the same time). Thus, to get to any point on X = 1, from Y = 0 to Y = 1, take the same time (and the time in this case would be the distance metric).

Cosine Distance

- Many times we want to look not at the vector position but the vector relationship, or if two vectors "point" in the same direction.
- If they point in the same direction, the angle between them is small.
 - If we take the cosine of that angle, we say similar vectors have a cosine similarity close to 1 (cos 0 = 1).
 - If we want a distance, distance needs to be positive, and nearby things need to have a small distance. Thus, cosine distance is 1—cosine similarity.

Cosine Similarity and Distance

- Let's say the angle between red and blue vectors is 2 degrees, while blue and orange are separated by 20 degrees.
- The cosine similarity of red and blue will be .999 and the cosine distance will be 0.001. Blue and orange have a cosine similarity of 0.939 and cosine distance of 0.061.
- However, if we give a rough estimate of Euclidean distance, blue and orange is about 3x closer than blue to red.
- Subjects like NLP use cosine distance.

DataScience@SMU