S102T01/S102T02 S202T01/S202T02

■ Features

- 1. Low profile type (height:16mm)
- 2. Built-in zero-cross circuit (S102T02/S202T02)
- 3. RMS ON-state current I_T (rms) : MAX. 2A (T₃≤40°C)
- 4. Recognized by UL, file No.E94758 Approved by CSA, No.LR63705

■ Applications

- 1. Programmable controllers
- 2. Air conditioners
- 3. Copiers
- 4. Automatic vending machines

■ Absolute Maximum Ratings $(T_a=25^{\circ}C)$								
Parameter			Symbol	Rating	Unit			
	Forward current		I_F	50	mA			
Input	Reverse voltage		V_R	6	V			
Output	RMS ON-st	ate current	I _{T(rms)}	*1 2	A			
	*2 Peak one cycle	surge current	I _{surge}	20	A			
	Repetitive peak OFF-state voltage	S102T01		400				
		S102T02		400				
		S202T01	V_{DRM}	600	V			
		S202T02		600				
	Non-repetitive peak OFF-state voltage	S102T01		400				
		S102T02		400				
		S202T01	V_{DSM}	600	V			
		S202T02		600				
	Critical rate of rise o	f ON-state current	dI _T /dt	50	A/μs			
	Operating fr	requency	f	45 to 65	Hz			
Operating temperature			Topr	-25 to +100	°C			
Storage temperature			T_{stg}	-30 to +125	°C			
*3 Isolation voltage			V _{iso (rms)}	3.0	kV			
*4 Soldering temperature			T _{sol}	260	°C			

- *1 Refer to Fig.2, Fig.3
- *2 60Hz sine wave, start at T_i=25°C
- *3 Isolation voltage measuring method
 - (1) Dielectric withstand voltage tester with zero cross circuit shall be used

- (2) The applied voltage waveform shall be sine wave
- (3) Voltage shall be applied between input and output (Input and output terminals shall be shorted respectively)
- (4) 40 to 60% RH, AC 60Hz, for 1minute
- *4 For 10s

Low Profile Type Solid State Relays

■ Outline Dimensions

(Unit: mm)

Internal connection diagram

■ Model line-up

	For 100V lines	For 200V lines
No zero-cross circuit	S102T01	S202T01
Built-in zero-cross circuit	S102T02	S202T02

1

10

1

10

10

Ω

ms

ms

Transfer characteristics

Isolation resistance

Turn-on

Turn-off

time

time

S102T01

S102T02

S202T01

S202T02

S102T01

S102T02

S202T01

S202T02

■ Electro-optical Characteristics									
	Paran	neter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Input	Forward voltage		V_F	I _F =20mA	_	1.2	1.4	V	
	Reverse current		I_R	$V_R=3V$	_	-	1×10 ⁻⁴	A	
Output	Repetitive peak OFF-state current		I_{DRM}	$V_{\mathrm{D}}\!\!=\!\!V_{\mathrm{DRM}}$	-	-	1×10 ⁻⁴	A	
	ON-state voltage		V _{T (rms)}	I _{T (rms)} =2A, Resistance load, I _F =20mA	1	-	1.7	V	
	Holding current		I_{H}	_	_	_	25	mA	
	Critical rate of rise of OFF-state voltage		dV/dt	$V_D = 2/3V_{DRM}$	30	-	_	V/µs	
	Critical rate of rise of OFF-state voltage at commutation		(dV/dt) _C	$T_j=125$ °C, $V_D=2/3V_{DRM}$, $dI_t/dt=-2.5A/ms$	4	-	-	V/µs	
s	Minimum	S102T01/S202T01	I_{FT}	$V_D=12V, R_L=30\Omega$	_	-	8	mA	
	trigger current	S102T02/S202T02		$V_D=6V, R_L=30\Omega$					
	Zero cross voltage	S102T02/S202T02	Vox	I _F =8mA	_	_	35	V	

DC500V, 40 to 60% RH

 $V_{D \text{ (rms)}}=100V, AC50Hz, I_{T \text{ (rms)}}=2A,$

Resistance load, I_F=20mA

V_{D (rms)}=200V, AC50Hz, I_{T (rms)}=2A,

Resistance load, I_F=20mA

 $V_{D (rms)} = 100V$, AC50Hz, $I_{T (rms)} = 2A$, Resistance load, I_F=20mA

 $V_{D \text{ (rms)}}=200V, AC50Hz, I_{T \text{ (rms)}}=2A,$ Resistance load, I_F=20mA

Fig.1 Forward Current vs. Ambient **Temperature**

Riso

 t_{on}

 t_{off}

Fig.2 RMS ON-state Current vs. Ambient **Temperature**

 1×10^{10}

Fig.3 Forward Current vs. Forward Voltage

Fig.5 Minimum Trigger Current vs. Ambient Temperature (Typical Value)

Fig.7 Maximum ON-state Power Dissipation vs. RMS ON-state Current (Typical Value)

Fig.4 Surge Current vs. Power-on Cycle

Fig.6 Minimum Trigger Current vs. Ambient Temperature (Typical Value)

Fig.8 Repetitive Peak OFF-state Current vs. Ambient Temperature

Fig.9 Repetitive Peak OFF-state Current vs.
Ambient Temperature

NOTICE

- The circuit application examples in this publication are provided to explain representative applications of SHARP
 devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes
 no responsibility for any problems related to any intellectual property right of a third party resulting from the use of
 SHARP's devices.
- Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP
 reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents
 described herein at any time without notice in order to improve design or reliability. Manufacturing locations are
 also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage
 caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used
 specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - --- Personal computers
 - --- Office automation equipment
 - --- Telecommunication equipment [terminal]
 - --- Test and measurement equipment
 - --- Industrial control
 - --- Audio visual equipment
 - --- Consumer electronics
 - (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
 - --- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
 - --- Traffic signals
 - --- Gas leakage sensor breakers
 - --- Alarm equipment
 - --- Various safety devices, etc.
 - (iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
 - --- Space applications
 - --- Telecommunication equipment [trunk lines]
 - --- Nuclear power control equipment
 - --- Medical and other life support equipment (e.g., scuba).
- If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this publication.