(11) E

(12)

(43) Date of publication: 19.11,1997 Bulletin 1997/47 (51) Int CLS: HO4N 7/30

FUROPEAN PATENT APPLICATION

(21) Application number: 97303246.9

(22) Date of filing: 13.05.1997

(72) Inventor: Kim, Sang-Ho Seoul (KR)

(84) Designated Contracting States: DE FR GB NL

(30) Priority: 14.05.1996 KR 9616005 14.05.1996 KR 9616006 14.05.1996 KR 9616007 14.05.1996 KR 9616011

Page White & Farrer 54 Doughly Street London WC1N 2LS (GB)

(74) Representative: Neobard, William John et al

(71) Applicant: DAEWOO ELECTRONICS CO., LTD Jung-Gu, Seoul 100-095 (KR)

(54) Methods and apparatus for removing blocking effect in a motion picture decoder

(57) Methods and apparatus for removing blocking effect in a motion picture decoder. Boundary pixel values of a current block and corresponding adjacent block are extracted. A mean value for the resulting different values between the extracted pixel values of the current and adjacent blocks is calculated. The calculated mean value is limited between \(\frac{1}{2}\) and \(\frac{1}{2}\) quantization step size. The limited mean value is added to the each pixel values of the current block to generate a resulting output, another aspect absolute values for the resulting different parts of the resulting different parts of the resulting output.

ence values between extracted pixel values of the current and adjacent block is calculated. The calculated absolute values are compared with the respective difference values and threshold level to determine whether the current block contains an edge. The current block without the edge is selected, filtered, and outputted, in which the blocking effect due to a quantization error, the promyout without having distortion to the original data.

Description

10

15

20

25

30

95

The present invention relates to methods and apparatuses for removing blocking effect caused by quantization error in a motion picture decoder.

In general, the amount of data associated with visual information is so large that its storage would require enormous storage capacity. Although the capacities of utilizing several storage media are substantial, the access speeds are usually inversely proportional to the capacity. Storage and transmission of such data require large capacity and bandwidth. To eliminate the need for large storage capacity, there is an image data compression technique, which reduces the number of bits required to stor or transmit image without any appreciable loss of data.

The image data compression removes redundancies contained in mage signals. The redundancies comprises a spectral redundancy among colors, a temporal redundancy between successive screens, a spatial redundancy between adjacent pixels within the screen, and a statistical redundancy. Here, a method of image coding for removing the spatial redundancy is transform coding, which divides original input images into small size blocks and processes them individuals.

In the transmitter, each blocks of original image is converted by the transform coding and transform coefficients are generated. The transform coefficients are quantized and transmitted to the receiver, in the receiver, the transform coefficients are inverse quantized and converted so that each blocks of original image is recenterated.

Fig. 1 shows a block diagram of a conventional digital motion picture coder/decoder, which is widely used in image processing system such as a High Definition Television (HDTV).

In Fig. 1, the motion picture coder comprises a differential image generator (DIG), a discreta cosine transform unit (DCT unit), a quantizer (O), a variable length coding unit (VLC unit), an inverse quantizer (IO), an inverse discrete cosine transform unit (IOT unit), an adder (ADD), a frame memory, a motion estimator, and a motion compensator

In DIG, a current image and a prodicted image are inputted, and a differential image is generaled. The generated differential image is outputted to the DCT unit to be divided into blocks. The DCT unit processes every block into DCT coefficients. The DCT coefficients are then quantized according to a quantization step size in the quantizer. The quantized coefficients are coded according to the Huffman Table in the VLC unit. The quantized coded coefficients are then transmitted to the channel.

The predicted image inputted to the DIG is obtained as following. First, quantized DCT coefficients from the quantizer are quantized in the IDCT. The converted image data are inputted to the adder, the deder, original images are regenerated by using the transformed image data are inputted to the adder, the deder, original images are regenerated by using the transformed image data and previous image data from the motion compensator. The regenerated images from the adder are stored in the frame memory. From the frame memory, the previous images are outputted by delaying them in frame units. In the motion estimator, the previous image signals from the frame memory and tha current image signals are compared for difference between the two frames, and a motion vector is generated. In the motion compensator, the previous image signals are compared for difference between the two frames, and a motion vector is generated. In the motion compensator, the previous image signal outputted from the frame memory as much as the motion vector.

In the motion picture coder like the above, intra-mode frames are coded and transmitted. However, in the case of inter-mode frames, differential signals obtained through the motion estimation and the motion compensation should be coded and transmitted in order to decrease the transmission rate. To solve the above problem, a switch is disposed between the DIG and the motion compensator. Accordingly, the switch is opened when the intra-frames are inputted, and the switch is closed when the inter-frames are inputted.

The motion picture decoder comprises a variable length decoding unit (VLD unit), an inverse quantizer, an inverse discrete cosine transform unit (IDCT unit), an adder, a frame memory, and a motion compensator.

In the motion picture decoder, the input image signals are decoded by the VLD unit. The decoded signals are then quantized inversely by the inverse quantized inversely by the inverse quantized inversely by the inverse quantized inversely by the IDCT unit to be outputted to the adder. The image data from the adder are stored and delayed in the trame memory are outputted to the motion compensator in order to be compensated with reference to the previous images. The compensatiod signals are then outputted to the adder.

The intra-mode frames and inter-mode frames are regenerated according to the switch disposed between the adder and motion compensator. Namely, in case of the intra-mode frames, the output data from the IDCT unit are directly outputted to the adder. However, in case of the inter-mode frames, the output data from the IDCT are added to the previous image data from the motion compensator and the resulting data are transmitted to the adder to regenerate a current image signal.

In the decoded digital images like the above, blocking effect occurs near to discontinuous boundary between blocks. The occurrence of this blocking effect is generated during the transform coding process of the divided blocks of digital images. Further, when the quantization step size is expanded during quantization, the quantization error increases and the blocking effect in the discontinuous boundary between blocks becomes even more apparent.

In view of the foregoing, it is an object of the present invention to provide methods and apparatuses for removing

blocking effect due to a quantization error in a motion picture decoder having loss to the original image data.

In order to achieve the above object, the present invention provides a method for removing blocking effect in a motion picture decoder comprising the steps of extracting boundary pixel values of a current block, extracting difference values between boundary pixel values of the current block and boundary pixel values of each adjacent block; calculating the mean value for the difference values; limiting the mean value between -½ quantization step size and 2 quantization step size, and adding the limited mean value to each pixel value of the current block to output an image.

In addition, an apparatus for removing blocking attect in the motion picture decoder of the present invention comprises a frame memory for simultaneously receiving and storing decoded image signals in frame units and a correction decaback current block with removed blocking effect, a current block boundary pixel extracting means for extracting boundary pixel extracting means for extracting boundary pixel values of adjacent blocks boundary pixel extracting means for extracting boundary pixel values of adjacent blocks of frame stored in the frame memory, an adjacent block boundary pixel values of adjacent blocks and of the adjacent blocks, and a mean value of the difference values, a mean value initiniting means for initiniting means for initiniting the available of the current block and of the adjacent block and of the adjacent block and of the current block and of the current block, and an extracting current block of frames stored in the frame memory and outputting pixel value; a current block and of the current block; and an adding means for adding the mean value from the mean value limiting means to each pixel value of the current block from the current block and feeding back the corrected current block to the frame memory.

15

20

25

30

45

50

55

In another aspect, the present invention provides a method for removing blocking effect in a motion picture decoder comprising steps of extracting boundary pixel values within a current block and each adjacent block, calculating absolute values for difference values between boundary pixel values of the current block and boundary pixel values of each adjacent block, detecting whether a boundary of the current block is an edge or not, by comparing the difference values, the absolute values, and a threshold level to each other, and extracting corrected pixel values by filtering one pixel values of boundary pixel of the current block and a plurality of upper and lower pixels referencing the boundary pixel of the current block as a center if the boundary pixel values of the current block as a center if the boundary pixel values of the current block is uniform (not an edge), otherwise extracting directly boundary pixel values of the current block is not uniform (and edge).

In still another aspect, the present invention provides an apparatus for removing blocking effect comprising a frame memory for receiving and storing decoded image signals in frame units and a corrected feedback current block with removed blocking effect, a current block boundary pixel extracting means for extracting sequentially boundary pixel values of the current block stored in the frame memory, an adjacent block boundary perfect where sequentially boundary pixel values of adjacent block stored in the frame memory, an edge detecting means for outputting a first selection signal if the boundary pixel values of the current block are not an edge, whereas outputting a second selection signal if the boundary pixel values of the current block are not an edge after receiving pixel values control block and boundary pixel values of an adjacent block; an input pixel extracting means for outputting in parallel a boundary pixel value of the current block and a piturelity of upper and lower pixel values referencing the boundary pixel values of the current block are a center in secondarse with an output order of boundary pixel values of the current block from the frame memory, a selecting means for inputting pixel values from the input pixel values of the current block remains according to the first selection signal, and inputting directly pixel values from the input pixel values from the pixel pixel values from the selection means.

The above and other objects, features, and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments of the invention in conjunction with the accompanying drawings. In which:

Fig. 1 is a block diagram illustrating a conventional motion picture coder and decoder;

Figs 2A to 2D are views iffustrating loss of an information due to a quantization error;

Fig. 3 is a block diagram illustrating a motion picture decoder comprising an apparatus for removing blocking effect in accordance with the present invention;

Fig. 4 is a block diagram illustrating an apparatus for removing blocking effect in accordance with a first preferred embodiment of the present invention;

Fig. 5 is a view illustrating transformed 8 × 8 pixels of current block and upper, lower, left, right adjacent blocks; Fig. 6 is a block diagram illustrating an apparatus for removing blocking effect in accordance with a second preferred embodiment of the present invention; and

Fig. 7 is a view illustrating a plurality of pixel extracted from boundary pixels of a current block for describing an operation of an input pixel extractor in Fig. 6.

Reference will now be made in detail to the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.

Figs. 2A to 2D show a process of an information loss due to a quantization error. When a DCT coefficient is quantized according to a quantization steps size, the quantized DCT coefficient value is Ω Fe1, if the range of the DCT coefficient value is Ω Fe1, if the range of the DCT coefficient relay is value in Ω Fe1, if the range of the DCT coefficient value is Ω Fe1, if the range of the DCT coefficient relay is value in Ω Fe1. X step when the above quantized coefficient value Ω Fe1 is quantized invalue Ω Fe1 is determined by expression Fe1. X step when the above quantized coefficient value Ω Fe1 is quantized values Ω Fe1 is quantized inversely. Accordingly, the difference (iF-Fi1) between the original DCT coefficient value F and the inversely quantized DCT coefficient F may be $\frac{1}{2}$ × step at its maximum. Namely, the quantization error that which cause the blocking effect in the digital image falls within 0 ≤ iF-Fi3 4 × step.

Fig. 3 shows a motion picture decoder comprising an apparatus for removing blocking effect 36 of the present invention, which is connected to an end portion of the decoder in Fig. 1. Decoded image signals and a quantized step size information are inputted into the apparatus for removing blocking effect 36 such that blocking effects in the image signals are removed and the corrected image signals are outputted.

Fig. 4 shows a first embodiment of the apparatus for removing blocking effect 35. The apparatus for removing blocking effect 36. The apparatus for removing blocking effect 36 comprises a frame memory 40, a current block boundary pixel extractor 41, a raijacent block boundary pixel extractor 42, a mean value calculator 43, an ena value limiter 44, a current block extractor 45, aid an addor 46. The mean value limiter 44 comprises a multiply 44-1 for multiplying quantized step size by $\frac{1}{2}$; a selector 44-2 for selecting and outputting a mainimum MMX, a multiply 44-3 for multiplying the quantized step size by $-\frac{1}{2}$ and a selector 44-4 for selecting and outputting a maximum MAX.

Fig. 5 shows 8 \times 8 pixel current block, adjacent upper, lower, left, and right blocks and boundary pixels between each block here, the current block for removal of blocking effect is illustrated. The boundary pixels a_0 - a_0 of the current block correspond to the boundary pixels b_0 - b_0 of the upper adjacent block B. The boundary pixels b_0 - b_0 of the current block correspond to the boundary pixels b_0 - b_0 of the left adjacent block B. The boundary pixels a_0 - a_0 of the current block correspond to the boundary pixels a_0 - a_0 of the lower adjacent block C. The boundary pixels a_0 - a_0 of the current block borrespond to the boundary pixels a_0 - a_0 - a_0 of the light adjacent block C. The boundary pixels a_0 - a_0 - a_0 of the current block borrespond to the boundary pixels a_0 - a_0

In Fig. 4, the decoded image signals are inputted and stored in the frame memory 40 in frame units. In the current block boundary pixel extractor 41, boundary pixels values £ of the current block, which lies between the current block and the adjacent blocks are extracted from the frame memory 40. Namely, 32 boundary pixel values a₀, a₇, b₉-b₇, c₀-c₇, d₉-d₇ are outputted sequentially from the current block boundary pixel extractor 41.

In addition, by the adjacent block boundary pixel extractor 42, boundary pixels values m of the adjacent blocks, which lies between the current block and the adjacent blocks are extracted from the frame memory 40. Namely, 32 boundary pixel values A₀-A₇, B₀-B₇, C₀-C₇, D₀-D₇ are outputted sequentially from the adjacent block boundary pixel extractor 42.

In the mean value calculator 43, the pixel values ℓ of the current block and the pixel values m of the adjacent blocks are sequentially inputted. Each difference value ℓ —in between the inputted pixel values is calculated by the mean value calculator 43. Further, a mean value for each difference value is calculated and ouputted from the mean value calculator 43. The mean value is obtained by the following expression.

Equation 1.

20

35

50

$$M = \frac{1}{32} \left[\sum_{i=0}^{7} (\ell_i - m_i) \right]$$

$$=\frac{1}{32}\left[\sum_{i=0}^{7} (a_i-A_i) + \sum_{i=0}^{7} (b_i-B_i) + \sum_{i=0}^{7} (c_i-C_i) + \sum_{i=0}^{7} (d_i-D_i)\right]$$

The above equation 1 is applied when there are 4 adjacent blocks. However, when there are 2 or 3 adjacent blocks, the mean value is obtained by dividing all the added boundary pixel values by 24 or 16 respectively.

In the mean value limiter 44, the mean value and a quantization step size are inputted. The inputted mean value is limited between the minimum -\frac{2}{2} x step and maximum \frac{2}{2} x step by the mean value limited 44, and the limited mean value LIM is outputted. Namely, in the minimum selector 44-2, the mean value is compared to maximum \frac{1}{2} \times tep x step to select a smaller value. In the maximum selector 44-2, the smaller value obtained from the minimum selector 44-2 is

compared to the minimum $-\frac{1}{2} \times$ step to select a bigger value. The limited mean value LIM from the maximum selector 44-4 is outputted to the adder 46.

in the current block extractor 45, the current block is extracted from the frame memory 40. 64 pixel values of the extracted current block are sequentially outputted to the adder 46.

In the adder 46, the limited mean value LIM from the mean value limiter 44 is added to each pixel value of the current block outputted from the current block extractor 45. The added and corrected current block is injurted into a display processor (not shown). In addition, the corrected current block is fed back to the frame memory 40. In the frame memory 40, the stored current block is replaced with the corrected current block from the adder 46. This corrected current block is used for removal of blocking fellor in the next block.

Another method for calculating the mean value utilizes as threshold level TH. TH prevents a damage in edges of original image during the removal process of blocking effect. To obtain the mean value M, the threshold level is determined and an absolute value from the difference value between boundary pixols smaller than the threshold value is selected. For example, when a 256 level image is coded/decoded, the threshold value is obtained as the following. A range of quantization error talls within 4 to 4 when the quantization step size 8 ls utilized, and a range of the absolute difference between boundaries of blocks can be predicted to be 0 to 8. Further, a mean absolute difference between the block boundary is determined to be 4 if the quantization error is an uniform distribution. Accordingly, the threshold level greater than 4 is selected since the threshold value must be greater than the differences of the boundary pixol values. Namely, when the determined threshold level is 4 and the absolute value ($\epsilon_i - m_i$) of differences between the boundary pixel values of less than or equal to 4 is selected to yield a mean value M. At this time, the mean value M is obtained by the following expression.

Equation 2.

$$\begin{split} &\text{if } \{\left[\ell_i - m_i\right] \leq \mathsf{TH}\} \big\{ \mathsf{S} \! \cong \! \mathsf{S} + (\ell_i - m_i) \mathsf{C} \! = \! \mathsf{C} + 1 \big\} \\ &\mathsf{M} = \frac{S}{C} \end{split}$$

(S and C are initialized to 0 at each block)

5

10

20

25

30

35

3A

55

The obtained mean value is inputted into the mean value limiter 44 for limiting the mean value within the range of quantization error.

Fig. 6 shows a second embodiment of the apparatus for removing blocking effect. When there is a drastic difference between the boundary pixel values of the current block and the boundary pixel values of the adjacent blocks. The difference is attributed by either quantization error, which is occurred during transform coding or non-uniform (containing edge) current block. It is not desirable to indiscriminately utilize blocking effect removal process mexistence of this difference, since the current block containing an edge would be distorted by the process. The second embodiment of the apparatus for removing blocking effect provides system for differentiating non-uniform block form uniform block to selectively remove blocking effect caused by the quantization error. The apparatus for blocking effect comprises a frame memory 80, a current block boundary pixel extractor 61, an adjacent block boundary pixel extractor 62, as edge-detector 63, and a boundary pixel extractor 62, an edge-detector 63, and a boundary pixel extractor 62, an edge-detector 65, and a boundary pixel extractor 64.

In the frame memory 60, the decoded image signals are stored in frame units. The stored pixel values in the frame memory 60 are corrected by boundary pixel values of the feedback current block. When corresponding blocks are corrected, the corrected frame is outputted from the frame memory 60 to a display processor (not shown).

A role and an operation of the current block boundary pixel extractor 61 and the adjacent block boundary pixel extractor 62 are same as the current block boundary pixel extractor 41 and the adjacent block boundary pixel extractor 42 of the first preferred embodiment.

In the edge detector 63, boundary pixel values ℓ of the current block boundary and boundary pixel values m adjacent blocks are inputted. According to the quantization step size, a lirst selection signal is outputted if the boundary of the current block is uniform (not an edge). After extracting absolute difference values between the boundary pixel values of the adjacent blocks, an edge is detected by the edge detector δ_0 , if at the absolute difference values are less than equal to the threshold level, the edge detector δ determines that the current block is uniform (edge free) and the removal of the blocking effect is needed. If the absolute difference value is greater than the threshold value, the current block is determined to be non-uniform (containing edge) and the removal of the blocking effect is needed.

For example, as in Fig. 3, consider that there are 4 adjacent blocks to the current block and the threshold level is 4. in the edge detector 63, 32 boundary pixel values ξ₁, a₀-a₇, b₀-b₇, c₀-p₇, d₀-b₇ are inputted sequentially from the current block boundary pixel extractor 61. In addition, in the edge detector 63, 32 boundary pixel values m, A₂-A₇.

EP 0 808 068 A2

B_o·B_o·C_o·C_o·D_o·D_o are inputted sequentially from the adjacent block boundary pixel extractor 62. The absolute difference values (f_c·m₁) between each inputted pixel is obtained by the edge detector 63. After comparing 32 absolute difference values to the threshold level respectively, the first selection signal is outputted when each of 32 absolute difference values is (f_c·m₁) < 4, whereas the second selection signal is outputted when any of 32 absolute difference values is [1, -m₁] > 4.

In the boundary pixel extractor 64, boundary pixel values $a_n a_n b_n b_n c_n c_n d_n d_n$ of the current block from the frame memory 60 and upper and lower pixel values of the boundary pixel are extracted. The extracted pixel values are sequentially outputted in parallel. For example, as in Fig. 7, consider a boundary pixel value A3 of the current block. Two upper pixels and two lower pixels are additionally extracted centering A3. Then, assuming A3=n3, total of 5 pixels n1, n2, n3, n4, n5 are outputted in parallel

In the selector 65, the pixel values from the boundary pixel extractor 64 are inputted in the boundary pixel filter 66 according to the first selection signal. The pixel values outputted from the boundary pixel extractor 64 are directly fed back to the trame memory 60 in presence of second selection signal. Further, if the pixels are determined to not to have an edge, a plurality of adjacent pixels are outputted to boundary pixel filter 66, whereas the pixels are fed back to the frame memory 60 if the pixels are determined to have an edge.

In the boundary pixel filter 66, a plurality of boundary pixels outputted from the selector 65 are corrected. The corrected pixel values are inputted in the frame memory 60. Namely, the boundary pixel values are multiplied by filter coefficients respectively, and the sum of the multiplied values is the corrected pixel values. For example, the boundary pixel functions as a low pass filter by utilizing a 5-tap mean filter having filter coefficients $\frac{1}{16}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$. When the boundary pixel value on 3(-A3) of the current block and pixel values 11, n2, n4, n5 are extracted from the boundary pixel stractor 64, the corrected boundary pixel values by the boundary pixel filter 65 are $\frac{1}{2}n_1, \frac{1}{2}n_2, \frac{1}{2}n_3, \frac{1}{2}n_4, \frac{1}{2}n_3$.

As described above, the block not having an edge is filtered, whereas the block detected to have an edge is not filtered. Accordingly, the removal of the blocking effect is processed selectively without distorting the original images.

While this invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiment, but, on the contrary, it is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims.

0 Claims

25

38

50

- 1. A method for removing blocking effect comprising the steps of:
 - a) extracting boundary pixel values of a current block and each adjacent block to said current block, which
 exist between boundaries of said current block and said each adjacent block;
 - b) extracting difference values between boundary pixel values of said current block and boundary pixel values of said each adjacent block, and calculating the mean value for the difference values;
 - c) limiting the mean value between ½ quantization step size and ½ quantization step size; and
 - d) adding the limited mean value to said each pixel value of said current block, and outputting corrected images.
- The method for removing blocking effect in a motion picture decoder of claim 1, wherein said step of calculating the mean value comprises the steps of:
 - calculating difference values between boundary pixel values of said current block and of said adjacent blocks;
 - calculating a mean value for the difference values.
- The method for removing blocking effect in a motion picture decoder of claim 1, wherein the step of calculating the mean value comprises the steps of:
 - extracting difference values between the boundary pixel values of said current block and of said adjacent blocks:
 - selecting and accumulating boundary pixel difference values when absolute values are less than a threshold level after comparing said absolute values to said difference values to said threshold level respectively; and calculating a mean value for said accumulated difference values.
- An apparatus for removing blocking effect in a motion picture decoder comprising:

EP 0 808 068 A2

- a) a frame memory for receiving and storing decoded image signals in frame units and a corrected feedback current block:
- b) a current block boundary pixel extracting means for extracting sequentially boundary pixel values of said current block stored in the frame memory.
- c) an adjacent block boundary extracting means for extracting sequentially boundary pixel values of adjacent blocks to said current block stored in the frame memory;
- d) a mean value calculating means for calculating a mean value for difference values between boundary pixel
 values of said current block and of said adjacent blocks, and outputting a mean value;
- e) a mean value limiting means for limiting the mean value between $\frac{1}{2}$ quantization step size and $\frac{1}{2}$ quantization step size, and outputting the limited mean value;
 - f) a current block extracting means for extracting a current block stored in the frame memory, and outputting
 - pixel values of said current block; and g) an adding means to each pixel value of said current block from said current block from said current block from said current block attracting means for outputting the corrected current block, and feeding back said corrected current block to said frame memory.
- The apparatus for removing blocking effect in a motion picture decoder of claim 4, wherein the mean value limiting means comprises:
- a multiplying means for multiplying the quantized step size by $\frac{1}{2}$;

5

10

15

20

30

35

45

sn.

55

- a selecting means for selecting and outputting a minimum,
- a multiplying means for multiplying the quantized step size $\sim \frac{1}{2}$; and a selecting means for selecting and outputting a maximum.
- 25 6. A method for removing blocking effect in a motion picture decoder comprising the steps of:
- a) extracting boundary pixel values of a current block and each adjacent block to said current block, which exist between boundaries of said current block and said each adjacent block;
 - b) calculating absolute values for difference values between boundary pixel values of said current block and boundary pixel values of said each adjacent block;
 - o) detecting whether a boundary of said current block contains an edge or not, by comparing the difference values, the absolute values, and a threshold level; and
 - d) extracting corrected pixel values by filtering one pixel value of boundary pixels of said current block and a plurality of upper and lower pixels referencing said boundary pixel value as a center if the boundary of said current block does not have an odge, whereas extracting directly boundary pixel values of said current block if the boundary of said current block has an edge.
- 7. The method for removing blocking effect in a motion picture decoder of claim 6, wherein it said all absolute difference values are less than or equal to a threshold level, the block is determined not to contain an edge, but when any of said absolute difference values is more than the threshold level, the block is determined to contain an edge.
 - 8. An apparatus for removing blocking effect in a motion picture decoder comprising:
 - a) a frame memory for receiving and storing decoded image signals in frame units and a corrected feedback suggest block.
 - b) a current block boundary pixel extracting means for extracting sequentially boundary pixel values of a current block stored in the frame memory;
 - c) an adjacent block boundary extracting means for extracting sequentially boundary pixel values of adjacent blocks to said current block stored in the frame memory;
 - d) an odge detecting means for outputting a first selection signal if the current block does not contain an edge, wherees outputting a second selection signal if said current block contain an edge after receiving pixel values of said current block and boundary pixel values of an adjacent block;
 - a boundary pixel extracting means for extracting and outputting in parallel a pixel value and a plurality of upper and lower pixels referencing said pixel value as a center according to an output order of boundary pixel values of said current block from said frame memory;
 - i) a selecting means for inputting pixel values from said boundary pixel extracting means to a boundary pixel filtering means according to the first selection signal, and inputting directly pixel values from said boundary pixel extracting means to said frame memory according to the second selection signal, and

EP 0 808 068 A2

 g) a boundary pixel filtering means for filtering pixel values form said selecting means and feeding back corrected boundary pixel values to said frame memory.

- The apparatus for removing blocking effect in a motion picture decoder of claim 8, wherein said edge detecting means comprises:
 - a subtracting means for calculating difference values between boundary pixel values of said current block and said adjacent blocks;
 - an absolute value calculating means for calculating absolute values for the difference values; and a selection signal generating means for outputting a first selection signal if all absolute difference values are less than or equal to a threshold level, whereas outputting a second selection signal if any of all absolute difference values is more than the threshold level, by comparing the absolute difference values and a threshold level.
- 10. The apparatus for removing blocking effect in a motion picture decoder of claim 8, wherein said boundary pixel filtering means is a low pass filter.

10

20

25

30

ΔΩ

50

55

-1

FIG.

FIG.5

FIG.7

INPUT PIXEL	
[n] [n2]	
00 01 02 03 04 05 06 0	2
b1 n4 d	<u> </u>
b2 n5 d	2
b3 d3	3
b4 CURRENT d	1
b5 (8x8) d5	5
b6 d	5
b7 c1 c2 c3 c4 c5 c6 d	7