

Motivation

porous media

Model equation

$$-div(\mathbf{K} \operatorname{grad} p) = g \ on \ \Omega$$

with

 $oldsymbol{K}$ - permeability tensor (symmetric and positive definite)

p - pressure (potential)

g - source term

→ Can be solved with MPFA method (control volume discretization)

Motivation

MPFA method

- → Stability, monotonicity, convergency
- Matrix of coefficients are nonsymmetric

- Symmetric MPFA method
- → Transformation to orthogonal reference space

- No convergency theory available for general MPFA
- → Reformulation as mixed finite element (MFE) problem

Overview

easy part

• Integrate model equation $-div(\boldsymbol{K} \operatorname{grad} p) = g$

$$-\int_{\Omega_i} \operatorname{div}(\boldsymbol{K}\operatorname{grad} p) \, d\tau = -\int_{\partial\Omega_i} (\boldsymbol{K}\operatorname{grad} p) \cdot \boldsymbol{n} \, d\sigma = -\int_{\Omega_i} g \, d\tau$$

• Formulation is locally conserved if fluxes are equal on the cell surface

$$f = -\int_{S} (\boldsymbol{K} \operatorname{grad} p) \cdot \boldsymbol{n} \, d\sigma$$

→ Until now, this is just the control volume approach

- Multi point flux approximation
- → Principal directions of *K* are not aligned with the grid
- → Need more information from neighboring cells

Assuming (O-Method):

- continuity of flux on each half edge
- continuity of pressure on each center of half edge
- → 4x4 system of linear equations

$$f = Tp$$

$$f_e = \sum_{i \in I} t_{e,i} p_i$$

- Do the same procedure for the other interaction volume
- Add the two half edge fluxes

$$\rightarrow f_a + f_b = f$$

• Do this for all edges of a cell

$$\Rightarrow f_1 + f_2 - f_3 - f_4 = \int_{\Omega_i} g \ d\tau$$

Assembling the entire grid

$$\rightarrow Mp = r$$

with **M** being nonsymmetric

What is the idea behind symmetric MPFA?

- Instead of physical space, use an orthogonal reference space
- Apply MPFA O-Method there
- $F: \hat{E} \to E$ is a diffeomorphism
- Jacobian Matrix $\mathbf{D} \neq \text{const}$
- → Evaluation needed
- → Different symmetric MPFA versions

How are the quantities transformed?

- Permeability
- $\rightarrow \widehat{K} = \det D \cdot D^{-1} K D^{-T}$
- → Symmetric and positive definite
- Pressure

$$\rightarrow \hat{p} = p \circ F(\hat{x})$$

remain unchanged

Flux

$$\rightarrow f_e = -\int_e \mathbf{K} \operatorname{grad} p \cdot \mathbf{n}_e \, ds = -\int_{\hat{e}} \hat{\mathbf{K}} \operatorname{grad} \hat{p} \cdot \hat{n}_e \, d\hat{s} = \hat{f}_e$$

How does it become symmetric?

• Flux through e_1 :

with \widehat{K}_{E_1} being the evaluation of \widehat{K} at some point

$$\rightarrow \widehat{K}_{E_1} = const \ on \ E_1$$

- Assuming \hat{p} linear on each subcell
- \rightarrow grad $\hat{p} = const$

reference space

- Do the same procedure for the other subcells and eliminate λ_i
- \rightarrow Af = p, with **A** being symmetric and positive definite

Where should the Jacobian be evaluated?

Where should the Jacobian be evaluated?

Cell center

- Correct distances from cell center to edge midpoints
- Wrong length and orientation of edges

Corner

- Correct length and orientation of edges
- Cell center moved

$$-div(K \ grad \ p) = g$$
 \longrightarrow $u = -K \ grad \ p$ and $div(u) = g$ velocity

- Assuming p = 0 on $\partial \Omega$
- \rightarrow Weak formulation: Find $(u, p) \in H(div) \times L^2$ such that

$$(K^{-1}u, v) - (p, div(v)) = 0$$
 $\forall v \in H(div)$

$$(div(\mathbf{u}), q) = (g, q) \qquad \forall q \in L^2$$

$$\rightarrow$$
MFE (discrete): Find $(u_h, p_h) \in V_h \times Q_h$ such that

$$\left(\mathbf{K}^{-1}\mathbf{u_h}, \mathbf{v}\right) - \left(p_h, div(\mathbf{v})\right) = 0 \qquad \forall \mathbf{v} \in V_h$$

$$(div(\mathbf{u_h}), q) = (g, q) \qquad \forall q \in Q_h$$

What finite element spaces can be used?

Broken Raviart-Thomas

$$V_h = \widehat{RT}_0^{1/2}$$

→ MPFA midpoint evaluation

velocity

Brezzi-Douglas-Marini

$$V_h = \widehat{BDM_1}$$

→ MPFA corner point evaluation

pressure

→ Piecewise constants in each cell

How does the MPFA become an MFE?

Note:
$$(K^{-1}u, v)_E = (\widehat{K}^{-1}\widehat{u}, \widehat{v})_{\widehat{E}}$$

$$a_E(\boldsymbol{u},\boldsymbol{v}) = a_{\widehat{E}}(\widehat{\boldsymbol{u}},\widehat{\boldsymbol{v}})$$

Trapezoidal rule:

$$\int_a^b \int_c^d f(x,y) \; dx \; dy \approx \frac{1}{4} h_x h_y \big(f(a,c) + f(b,c) + f(a,d) + f(b,d) \big)$$

Do this for all cells

$$\rightarrow a_h(\boldsymbol{u}, \boldsymbol{v}) = \sum_{\hat{E}} \hat{a}_{\hat{E}}(\hat{\boldsymbol{u}}_h, \hat{\boldsymbol{v}})$$

The MPFA as an MFE formulation:

Find
$$(\boldsymbol{u}_h, p_h) \in V_h \times Q_h$$
 such that
$$a_h(\boldsymbol{u}_h, \boldsymbol{v}) - (p_h, div(\boldsymbol{v})) = 0 \qquad \forall \boldsymbol{v} \in V_h$$

$$(div(\boldsymbol{u}_h), q) = (g, q) \qquad \forall q \in Q_h$$

- \rightarrow Has a unique solution (with $V_h = RT_0^{-1/2}$ or $V_h = BDM_1$)
- → Methods are equivalent with the MPFA method (midpoint or corner point)
- \rightarrow Local 4 \times 4 velocity system
- → Global pressure system

symmetric and positive definite

Use homogeneous medium and smooth solutions:

$$p(x,y) = \cos(2\pi x)\cos(2\pi y)$$
 and $K = const$

Orthogonal grid

Uniform refined grid

- → Second order convergency for all test cases
- → Corner point evaluation performs best

perturb the corners

$$\tilde{x}_i = x_i + R_x h^{\gamma}$$

$$\tilde{y}_i = y_i + R_y h^{\gamma}$$

with

$$R_x \in [-0.5, 0.5]$$

$$R_y \in [-0.5, 0.5]$$
 randomly

 h^1 - perturbed grid

→ Perturb in each refinement step

- $\rightarrow O(h^2)$ convergency rate for h^2 perturbed grids
- \rightarrow No convergency for h^1 -perturbed grids in reference space

- \rightarrow $O(h^1)$ convergency rate for midpoint evaluation in reference space
- \rightarrow $O(h^2)$ convergency rate for corner point evaluation in reference space

- Use subdomains with different permeabilities
- $\rightarrow K \neq const$
- → Nonsmooth solutions occur
- Use interpolated Hilbert spaces $H^{1+\alpha}$ for pressure
- \rightarrow i.e. assume $p \in H^{1+\alpha}$

$$\alpha = 1.47$$

$$\alpha = 0.80, \alpha = 0.51$$

 h^2 -perturbed physical space

 h^2 -perturbed reference space

- \rightarrow min(2, 2 α) order of convergency for all discretizations
- → Corner point evaluation performs better than midpoint

h^2 -perturbed physical space

$$\alpha = 1.47 \Rightarrow O(h^{\alpha})$$
 convergency

$$\alpha < 1 \Rightarrow O(h^{\alpha})$$
 convergency

h^2 -perturbed reference space

$$\alpha = 1.47 \Rightarrow \begin{cases} O(h^1) & \text{midpoint} \\ O(h^{\alpha}) & \text{corner point} \end{cases}$$

$$\alpha < 1 \Rightarrow O(h^{\alpha})$$
 convergency

h^1 -perturbed grids

 $O(h^{\min(2,2\alpha)})$ in physical space

In reference space: no convergence in the last refinement steps

1

 $O(h^{\min(1,\,\alpha)})$ in physical space

In reference space: no convergence at all

Conclusion

- MPFA method can be reformulated as MFE
- Trapezoidal quadrature rule → symmetric and positive definite cell centered pressure system

- Numerical Tests → Corner point evaluation more accurate than midpoint evaluation
- On h^2 -perturbed mashes $\begin{cases} O(h^2) \text{ convergence for corner point} \\ O(h^1) \text{ convergence for midpoint} \end{cases}$ for velocities

• On h^1 -perturbed mashes \rightarrow both methods suffer reduction or loose convergency

