

Universidad Central del Ecuador

FACULTAD DE INGENIERÍA Y CIENCIAS APLICADAS

Sistemas De Información

Documento de Modelos

Estudiante:

- Luis Angel Gaona Cumbicus lagaona@uce.edu.ec
- Raul Alexander Pazos Erraez <u>rapazos@uce.edu.ec</u>
- Cristian Daniel Toca Rocha
 cdtoca@uce.edu.ec
- Marlon Josue Espinosa Mancero <u>mjespinosam@uce.edu.ec</u>

Docente:

 PhD, Jefferson Tarcisio Beltrán Morales <u>jtbeltran@uce.edu.ec</u>

Asignatura: Minería de datos

Paralelo: S8-P2

Fecha: sábado 13 de julio de 2024

Generative Al-Powered Economic Impact Analysis System (GEIA)

Fecha:13/07/2024

Contenido

HOJA DE CONTROL	4
Historial de Cambios	4
Introducción	5
Resumen	7
Conclusión	8

HOJA DE CONTROL

Organismo	Universidad Central Del Ecuador		
Proyecto	Generative AI-Powered Economic Impact Analysis System (GEIA)		
Entregable	Documento de modelos		
Autor	Luis Angel Gaona Cumbicus		
Versión/Edición	V1.0	Fecha Versión	13/07/2024
Aprobado por		Fecha Aprobación	//
		N.º Total de Páginas	9

Historial de Cambios

Fecha	Autor	Organización	Descripción

Introducción

Este documento presenta una variedad de métodos para el análisis de series de tiempo interrumpidas utilizando distintos paquetes en Python. Cada método proporciona una forma única de modelar y evaluar el impacto de eventos adversos en series temporales.

Modelo	Descripción	Funcionamiento Detallado	Aplicaciones Comunes
CausalImpact	Herramienta de análisis de impacto	1. Definición de Períodos: Pre-Intervención y	Evaluación de campañas
	causal basada en el enfoque	Post-Intervención.	publicitarias, políticas
	bayesiano, desarrollada por	2. Modelado Contrafactual: Ajuste del modelo	públicas, eventos adversos
	Google. Permite evaluar el impacto	en el período pre-intervención para prever cómo	como crisis económicas o
	de una intervención sobre una serie	habría evolucionado la serie.	pandemias.
	de tiempo comparando la	3. Comparación y Evaluación: Comparación de	
	evolución observada con una	la serie observada con el modelo contrafactual	
	predicción contrafactual.	para determinar el efecto del evento.	
statsmodels	Biblioteca para análisis estadístico	1. Preparación de Datos: Organización en una	Predicción de precios de
(ARIMA)	en Python que incluye el modelo	serie temporal con índice de fecha.	acciones, tasas de interés,
	ARIMA, útil para modelar y	2. Selección del Modelo ARIMA: Identificación	PIB, inflación, demanda en
	predecir series temporales con	de parámetros AR, I, MA.	manufactura y ventas en
	patrones de tendencia y	3. Estimación de Parámetros: Estimación y	retail.
	estacionalidad.	diagnóstico del modelo.	
		4. Predicción: Generación de pronósticos y	
		evaluación.	
bsts	Permite ajustar modelos	1. Preparación de Datos: Organización de la	Modelado de
(Bayesian	estructurales bayesianos a series de	serie para el ajuste.	estacionalidades complejas,
	tiempo, descomponiendo la serie	2. Definición del Modelo: Componentes	impacto de eventos
	en componentes como tendencia,	estructurales como tendencia y estacionalidad.	

MINERIA DE DATOS

Structural	estacionalidad y efectos de	3. Ajuste del Modelo: Uso de métodos	específicos, evaluación de
Time Series)	intervención.	bayesianos para estimar el modelo.	tendencias a largo plazo.
		4. Análisis y Evaluación: Evaluación del	
		modelo usando análisis de residuos.	
pmdarima	Biblioteca para automatizar la	1. Preparación de Datos: Organización y	Forecasting de ventas en
	selección de modelos ARIMA,	división en conjuntos de entrenamiento y prueba.	retail, datos económicos
	facilitando el ajuste automático de	2. Automatización del Ajuste del Modelo:	como inflación y tasas de
	parámetros para el modelo	Selección automática de parámetros.	empleo, análisis y previsión
	ARIMA, incluyendo componentes	3. Validación y Predicción: Evaluación del	de precios de activos y tasas
	estacionales.	modelo y generación de previsiones.	de interés.
Prophet	Desarrollado por Facebook,	1. Preparación de Datos: Estructuración en	Predicción de demanda en
	diseñado para manejar series	columnas ds (fecha) y y (valor observado),	retail y servicios, análisis de
	temporales con patrones	incluyendo eventos especiales.	tráfico web, evaluación del
	estacionales y efectos de eventos.	2. Ajuste del Modelo: Componentes de	impacto de campañas de
	Incluye componentes para	tendencia, estacionalidad y eventos.	marketing y promociones.
	tendencias y estacionalidades	3. Predicción y Evaluación: Generación de	
	anuales, semanales y diarias.	pronósticos y evaluación de precisión.	

Resumen

Modelo	Propósito	Aplicación para Impacto de Intervención
CausalImpact	Analizar el impacto de una	Estima cómo habría evolucionado la serie de tiempo sin
	intervención en una serie de tiempo	la intervención y calcula el impacto neto comparando los
	utilizando un enfoque bayesiano.	datos reales con los contrafactuales.
ARIMA	Modelar y prever una serie de tiempo	Prevé la serie de tiempo y compara las predicciones con
	basada en sus valores pasados y	los datos reales después de la intervención para estimar
	errores.	el impacto.
BSTS	Modelar una serie de tiempo mediante	Estima cómo habría evolucionado la serie de tiempo sin
(Bayesian	componentes estructurales y estimar	la intervención y mide el impacto comparando el modelo
Structural	el impacto de eventos o	ajustado con los datos reales.
Time Series)	intervenciones.	
pmdarima	Automatizar la selección de	Prevé la serie de tiempo automáticamente y compara las
(AutoARIMA)	parámetros para el modelo ARIMA.	predicciones con los datos reales después de la
		intervención para evaluar el impacto.
Prophet	Modelar series de tiempo con	Ajusta el modelo a los datos históricos y prevé el futuro,
	estacionalidades y tendencias	luego compara las predicciones con los datos reales
	robustas, desarrollada por Facebook.	después de la intervención.

CausalImpact: Directamente diseñado para evaluar el impacto de intervenciones al comparar datos reales con un modelo contrafactual.

ARIMA: Utilizado para prever y comparar predicciones con datos reales para inferir el impacto de la intervención.

BSTS: Similar a CausalImpact, proporciona una medida del impacto mediante la comparación entre el modelo ajustado y los datos reales.

pmdarima (**AutoARIMA**): Facilita la selección automática del modelo ARIMA y puede usarse para evaluar el impacto al comparar previsiones con datos reales.

Prophet: Adecuado para datos con estacionalidad y tendencias, y se utiliza para prever el impacto mediante la comparación entre previsiones y datos reales.

Conclusión

En el análisis de series temporales interrumpidas, se han explorado diversas técnicas y herramientas para evaluar el impacto de intervenciones o eventos en datos históricos. Entre los modelos analizados, **CausalImpact** y **Prophet** se destacan por sus capacidades específicas y ventajas en el contexto de análisis de impacto.

CausalImpact

Es una herramienta avanzada basada en el enfoque bayesiano que permite evaluar el impacto de una intervención al comparar la evolución observada de una serie temporal con una predicción contrafactual. Su capacidad para modelar y comparar escenarios contrafactuales proporciona una comprensión profunda del efecto de eventos específicos, como campañas

publicitarias o políticas públicas. Este modelo es especialmente útil en situaciones donde la intervención tiene efectos potencialmente complejos y no lineales sobre la serie temporal.

Prophet

Desarrollado por Facebook, es una herramienta poderosa para el modelado de series temporales que maneja patrones estacionales y efectos de eventos de manera eficiente. Es particularmente adecuado para datos con estacionalidades complejas y la inclusión de eventos especiales. Su flexibilidad en la modelización de tendencias y estacionalidades lo convierte en una opción excelente para predecir y analizar el impacto de intervenciones en una serie temporal, especialmente cuando se trata de datos con patrones estacionales y efectos de eventos.