КОНТРОЛНО ПОДБОРНО СЪСТЕЗАНИЕ НА РАЗШИРЕНИЯ НАЦИОНАЛЕН ОТБОР

25-26 юли 2020 г., Група А

Задача АКЗ. ПОЛЕТИ

Иво живее в България и много обича да лети. Единствените случаи, когато пътува с автобус, е само по път към летището, за да хване полет. Той толкова обича да лети, че започна да се чуди колко най-много последователни полети може да хване.

В България има Nграда, номерирани от 0 до N-1, и M различни двупосочни автобусни линии. Всяка линия свързва два различни града и по нея всеки ден пътуват автобуси и в двете посоки. Също така във всеки от следващите T дена има по един полет на ден. Полетът в ден i е от град c_i до град d_i .

В началото на цялото си приключение Иво се намира в град g_0 , който той си избира свободно. След това той се движи по следния начин: нека в началото на ден i Иво се намира в град g_i , тогава той може да направи едно от следните три действия:

- 1. Да си остане в същия град до следващия ден, т.е. $g_{i+1} = g_i$.
- 2. Да хване полет от града, в която е, до друг град, т.е. $g_i = c_i$ и $g_{i+1} = d_i$.
- 3. Да хване автобус от града, в който е, до друг град и от там да хване полет до трети, т.е. (g_i, c_i) е автобусна линия и $g_{i+1} = d_i$.

За жалост Иво не е твърде добър с компютрите и не е сигурен как да открие оптималния маршрут, така че да максимизира броя полети, които ще хване в рамките на следващите T дена. Затова той моли Вас, най-добрите информатици, които познава, за помощ. Напишете програма **flights**, която да намира колко наймного полети може да хване Иво.

Вход

От първия ред на стандартния вход се въвеждат три цели числа N, M и T — броя градове, броя автобусни линии и броя дни. От следващите N реда се въвеждат автобусните линии през градовете. На реда за град j първо се въвежда едно число k_j — броя автобусни линии през град j. След това се въвеждат k_j числа — номерата на другите градове в съответните автобусни линии. Забележете, че това значи, че всяка линия (a,b) ще бъде въведена два пъти — веднъж на реда за град a и веднъж на реда за град b. След това от следващитеa0 реда се въвеждат по две числа: a1 и a2 началния и крайния град на полета в ден a3.

Изход

На първия ред на стандартния изход изведете само едно число - максималния брой полети, които Иво може да хване.

Ограничения

 $1 \le N \le 5 \times 10^5$

 $1 \le M \le 1 \times 10^6$

 $1 \le T \le 5 \times 10^5$

КОНТРОЛНО ПОДБОРНО СЪСТЕЗАНИЕ НА РАЗШИРЕНИЯ НАЦИОНАЛЕН ОТБОР

25-26 юли 2020 г., Група А

Подзадачи

Подзадача	Точки	N	M	T
1	15	≤ 5	≤ 10	≤ 5
2	15	$\leq 2 \times 10^4$	$\leq 4 \times 10^4$	$\leq 5 \times 10^2$
3	10	$\leq 1 \times 10^5$	$\leq 2 \times 10^5$	$\leq 2.5 \times 10^3$
4	10	$\leq 5 \times 10^5$	$\leq 1 \times 10^6$	$\leq 5 \times 10^3$
5	10	$\leq 2 \times 10^3$	$\leq 4 \times 10^3$	$\leq 5 \times 10^5$
6	10	$\leq 5 \times 10^5$	$\leq 1 \times 10^6$	$\leq 2 \times 10^4$
7	30	$\leq 5 \times 10^5$	$\leq 1 \times 10^6$	$\leq 5 \times 10^5$

Точките за подзадача се получават при успешно минаване на всички тестове за нея.

Пример

Вход	Изход
6 6 5	4
3 1 2 3	
2 0 4	
2 0 4	
1 0	
3 1 2 5	
1 4	
0 4	
5 3	
2 1	
1 3	
0 5	

Обяснение

В началото Иво започва в град 0. Първия ден той хваща полет от 0 до 4. Следващия ден си остава в 4. След това хваща полет от 2 до 1, защото има автобусна линия от 4 до 2. Предпоследния ден директно хваща полет от 1 до 3. Накрая хваща полет от 0 до 5, защото има автобусна линия от 3 до 0. Общо е хванал 4 полета.