Основные определения и теоремы, вынесенные на минисессию Четвертый семестр, 2015

Основные определения

- 1. Элементарная поверхность
- 2. Поверхностный интеграл первого рода.
- 3. Поверхностный интеграл второго рода.
- 4. Векторное поле.
- 5. Потенциал векторного поля.
- 6. Поток векторного поля.
- 7. Дивергенция векторного поля.
- 8. Ротор векторного поля.
- 9. Циркуляция векторного поля.
- 10. Потенциальное векторное поле.
- 11. Соленоидальное векторное поле.

Основные формулы и теоремы

- 1. Свойства поверхностного интеграла первого рода.
- 2. Свойства поверхностного интеграла второго рода.
- 3. Формула Гаусса-Остроградского для элементарных областей.
- 4. Формула Стокса.
- 5. Необходимые и достаточные условия соленоидальности векторного поля.
- 6. Необходимые и достаточные условия потенциальности векторного поля.

Экзаменационный билет

Математический анализ. Четвертый семестр (сессия), 2015 год Вариант 0

	Фам	илия					
ſ	1	2	3	4	5	6	Σ
	3	5	7	9	9	7	40

- 1. Дайте определение потенциального векторного поля (3 балла)
- 2. Сформулируйте и докажите теорему Гаусса-Остроградского для элементарных областей. (5 балла)
- 3. Вычислите поверхностный интеграл первого рода $\int_S (x+y+z)ds$, где S поверхность, S

заданная представлением $x = u \cos v$, $y = u \sin v$, z = v, $u \in [0, 2]$, $v \in [0, 2\pi]$. (7 баллов)

4. Используя формулу Гаусса-Остроградского, найдите поток векторного поля $\vec{\mathbf{a}} = 2x\vec{\mathbf{i}} + y\vec{\mathbf{j}} - 2xz\vec{\mathbf{k}}$ через внешнюю поверхность S цилиндра: боковая поверхность $-x^2 + y^2 = 1$, $0 \le z \le H$; нижнее основание $-x^2 + y^2 \le 1$, z = 0; верхнее основание $-x^2 + y^2 = 1$, z = H. (9 баллов)

- 5. Вычислите циркуляцию векторного поля $\vec{\mathbf{a}} = 2x\vec{\mathbf{i}} + z\vec{\mathbf{j}} 2y\vec{\mathbf{k}}$ вдоль непрерывного контура Γ , ориентированного против часовой стрелки: $x^2 + y^2 = 1$, z = 3. (9 баллов)
- 6. Используя необходимые и достаточные условия, докажите, что векторное поле $\vec{\mathbf{a}} = 2x\vec{\mathbf{i}} + z\vec{\mathbf{j}} + y\vec{\mathbf{k}}$ является потенциальным (или соленоидальным). (7 баллов)