

Empowering Retrieval-based Conversational Recommendation with Contrasting User Preferences

Heejin Kook*, Junyoung Kim*, Seongmin Park, Jongwuk Lee† Sungkyunkwan University (SKKU), Republic of Korea

^{*} equal contribution

Introduction

- Conversational Recommender Systems (CRSs)
- Limitations of Existing Methods
- Challenges: Contrasting Preferences
- Key Contributions

Task: Conversational Recommender Systems (CRSs)

 CRSs provide personalized recommendations by understanding users' intentions through multi-turn interactions.

Of course! How about an action, humorous movie, **Spy (2015)**.

Task: Conversational Recommender Systems (CRSs)

- Accurately capturing diverse sentiments—both positive and negative—is essential.
 - This reflects opposing intentions!

Task: Conversational Recommender Systems (CRSs)

- Accurately capturing diverse sentiments—both positive and negative—is essential.
 - This reflects opposing intentions!

Q

User's opposing intentions in dialogue, namely contrasting preference

Limitations of Existing Methods

 Most existing methods overlook the complex relationship between the user, item, and contrasting preferences.

Hello! What type of movie are you looking for today?

Positive

I like action movies but, I don't want them to be too violent.

Negative

Spy (2015)

Action Humorous

Limitations of Existing Methods

- Most existing methods overlook the complex relationship between the user, item, and contrasting preferences.
 - All this information is aggregated in a single representation.

Our Solution

- We represent contrasting preferences as distinct vectors.
 - Explicitly representing and modeling the user, item, and contrasting preferences enables more accurate recommendations that reflect the user's intent.

Our Solution

We devised Contrasting USER PREFERENCE EXPANSION AND LEARNING (CORAL), which extracts and learns contrasting preferences.

Challenge 1.

How do we extract contrasting user preferences from the conversation?

Method 1.

Contrasting Preference Expansion

Challenge 2.

How do we learn the relationship between the contrasting preferences and the user/item?

Method 2.

Preference-aware Learning

Proposed Method

- Overview of Coral
- Contrasting Preference Expansion
- Preference-aware Learning

Overview of CORAL ******

CORAL (a) extracts and (b) learns contrasting preferences.

Contrasting Preference Expansion

- Extract superficial contrasting preferences from dialogue history/review.
- Expand potential preferences via LLMs' reasoning abilities.

Contrasting Preference Expansion

 User-side expansion distinguishes and infers user preferences embedded in the dialogues

Contrasting Preference Expansion

- **Item-side expansion** enhance the representation of an item using review summary.
 - The metadata lacks sufficient information about user preferences.
 - It can connect user conversations with item metadata using review data.

Preference-aware Learning

 Explicitly represent these preferences separately from the conversation and learn the relationship between them.

Preference-aware Learning

• **Preference modeling** explicitly represent preferences and conversation separately, and engage them in item scoring directly.

Experiments

- Experimental Setting
- Overall Performance
- Case Study

Experimental Setting ①: Dataset

- We use three well-known public English movie recommendation conversation datasets
 - PEARL, INSPIRED, and ReDial

Dataset	#Dial.	#Items	#Likes	#Dislikes
PEARL	57,159	9,685	9.59	5.97
INSPIRED	1,997	1,058	11.09	5.65
REDIAL	31,089	5,896	10.99	1.00

#Dial. : the number of dialogues.

#Items: the number of items

#Likes, #Dislikes: The average counts of the like and dislike preference after the augmentation stage, respectively.

Experimental Setting 2: Baselines

	UniCRS	A model built on DialoGPT (117M)with prompt tuning
(1) Traditional CRS	RevCore	Categorizes user sentiments regarding entities as either positive or negative
	ECR	Identifies nine distinct emotional responses regarding entities.
(2) LLM bood CDS	Zero-shot	Recommends solely based on dialogue history and internal knowledge items.
(2) LLM-based CRS	ChatCRS	Enhances the domain knowledge of LLM through a knowledge graph
(2) Potrioval based CPS	BM25	Ranks item by term relevance from a static index
(3) Retrieval-based CRS	DPR	Retrieves items based on the similarity with dense vectors of the dialogue context (BERT-base (110M))

Key Results

 CORAL achieves state-of-the-art performance over existing methods in three benchmark datasets, improving up to 99.7% in Recall@10

Key Results: Ablation Study on INSPIRED

Effect of Like/Dislike preferences

Variant	R@10	R@50	N@10	N@50
CORAL	0.3481	0.5667	0.1827	0.2297
w/o <i>Like, Dislike</i>	0.3248	0.5767	0.1668	0.2226
w/o Review	0.3167	0.5348	0.1710	0.2193
w/o <i>Like, Dislike, Review</i>	0.2948	0.5633	0.1595	0.2196

• Effect of Preference-aware Learning

Varia	R@10	R@50	N@10	N@50	
W/o	w/ PL	0.2974	0.5692	0.1520	0.2115
Negative sampling	w/o PL	0.1847	0.3616	0.1107	0.1491

^{*} PL: Preference-aware Learning

Key Results: Performance by Model Size

CORAL ** significantly improves performance even with a relatively small model.

*DPR: CORAL w/o preference-aware learning

Case Study

 CORAL effectively captures contrasting preferences to improve recommendations and enhance explainability.

I'm generally a fan of movies that have a lot of tension and build-up, as well as ones that portray society and reallife characters in an engaging way

• • •

I appreciate films that have a more detailed and realistic portrayal of events [Like]
real-life characters in an engaging way,
psychological thrillers & dramas
Immersive sound design

[Dislike]

unrealistic events over-the-top action sequences

Title: Sicario (2015)

Genre: Cop Drama, Drug,

Crime, Action, Mystery,

Thriller

[Review Summary]

Realistic feel

Immersive atmosphere

Intense and engaging

Amazing sound design

User's utterances

Contrasting preferences

Item metadata & summary

Conclusion

- We propose a novel retrieval-based CRS framework that extracts and learns contrasting preferences.
 - COntrasting user pReference expAnsion and Learning (CORAL 1/2),
- CORAL w addresses contrasting preferences by
 - distinguishing and enhancing contrasting preferences into like/dislike.
 - learning the relationship between conversation, preferences, and items directly.

Thank you! Any question?

Email: hjkook@g.skku.edu

Code: https://github.com/kookeej/CORAL.git

Paper

Code

Appendix: Negative Sampling

• Hard negative sampling differentiate samples that are challenging to predict based on conversation alone with contrasting preferences.

- Calculate the similarity between \mathbf{h}_c and all item embeddings.
- Apply softmax to convert the similarity scores into a probability distribution.

Loss function

$$\mathcal{L} = -\log \frac{\exp(S(c, i^+)/\tau)}{\sum_{i \in \mathcal{I}_c^-} \exp(S(c, i)/\tau)}$$

where i^+ is the positive item of c, \mathcal{I}_c^- is a set of k negative items, and τ is a hyperparameter to adjust the temperature.

Appendix: Overall Performance

Mod	iel	l Traditional CRS		LLM-ba	sed CRS	Retr	Gain			
Dataset	Metric	RevCore	UniCRS	ECR	Zero-shot	ChatCRS	BM25	DPR	CORAL	Gain
	R@10	0.0268	0.1156	0.0957	0.0767	0.0763	0.0026	0.0940	0.1851*	60.07%
PEARL	R@50	0.0898	0.2624	0.2373	0.1129	0.1168	0.0123	0.2206	0.3619*	37.94%
FEARL	N@10	0.0132	0.0642	0.0501	0.0468	0.0462	0.0014	0.0502	0.1125*	75.17%
	N@50	0.0266	<u>0.0958</u>	0.0806	0.0560	0.0565	0.0033	0.0777	0.1511*	57.74%
	R@10	0.0948	0.1113	0.1711	0.1436	0.1410	0.0429	0.1019	0.3417*	99.72%
Inspired	R@50	0.3344	0.2528	0.2826	0.2436	0.2436	0.1210	0.2672	0.5632*	68.45%
INSPIRED	N@10	0.0509	0.0642	0.1077	0.0927	0.0806	0.0202	0.0512	0.1772*	64.52%
	N@50	0.1041	0.0952	0.1417	0.1175	0.1071	0.0373	0.0872	0.2255*	59.07%
	R@10	0.1739	0.1549	0.1685	0.1670	0.1666	0.0373	0.0774	0.2182*	25.48%
REDIAL	R@50	0.3034	0.3540	0.3793	0.2783	0.2824	0.0300	0.2138	0.4741*	25.23%
KEDIAL	N@10	0.1053	0.0776	0.0805	0.0937	0.0893	0.0032	0.0403	0.1128*	7.10%
	N@50	0.1337	0.1215	0.1293	0.1226	0.1191	0.0083	0.0713	0.1724*	28.96%

Table 2: Overall performance. The best and second-best are **bold** and <u>underlined</u>. Gain measures the difference between CORAL and the best competitive baseline. '*' indicates statistically significant improvement (p < 0.01) for a paired t-test of CORAL compared to the best baseline, as conducted across 5 experiments.

Appendix: Ablation Study

	Dat		Insp	IRED		
	Variants		R@10	R@50	N@10	N@50
	Co	PRAL	0.3481	0.5667	0.1827	0.2297
Effect of	w/o <i>Like, Dislike</i>	9	0.3248	0.5767	0.1668	0.2226
Like/Dislike	w/o Review		0.3167	0.5348	0.1710	0.2193
preference	w/o <i>Like, Dislike, Review</i>		0.2948	0.5633	0.1595	0.2196
Effect of Potential preference	w/o Augmentat	ion	0.3016	0.5379	0.1663	0.2202
Effect of	/- NO	w/ PL	0.2974	0.5692	0.1520	0.2115
Preference-aware learning	w/o NS	w/o PL	0.1847	0.3616	0.1107	0.1491

⁻ NS: Negative sampling

⁻ PL: Preference-aware Learning

Appendix: Zero-shot Performance

Datase	Dataset PEARL			Inspired			REDIAL						
Retriever	L, D	R@10	R@50	N@10	N@50	R@10	R@50	N@10	N@50	R@10	R@50	N@10	N@50
BM25	w/o w/	0.0053 0.0079	0.0269 0.0340	0.0031 0.0045	0.0076 0.0099	0.0390 0.0448	0.1486 0.1714	0.0216 0.0297	0.0444 0.0580	0.0091 0.0235	0.0361 0.0704	0.0044 0.0113	0.0104 0.0219
BERT	w/o w/	0.0040 0.0031	0.0203 0.0225	0.0015 0.0015	0.0049 0.0056	0.0057 0.0086	0.0410 0.0648	0.0017 0.0032	0.0100 0.0152	0.0069 0.0087	0.0270 0.0302	0.0039 0.0048	0.0084 0.0096
NV-Emb.	w/o w/	0.0454 0.0569	0.1323 0.1508	0.0210 0.0286	0.0397 0.0489	0.1648 0.2276	0.3943 0.4048	0.0856 0.1140	0.1374 0.1538	0.0767 0.0872	0.1885 0.2190	0.0368 0.0408	0.0613 0.0711

Table 3: The zero-shot performance of various language models depending on the presence or absence of the user's potential preference. L and D mean T_l^{aug} and T_d^{aug} , respectively.

Appendix: Performance depending on the LLM utilized for Contrasting Preference Expansion

Dataset	INSPIRED							
Model	R@10	R@50	N@10	N@50				
UniCRS	0.1113 0.1711	0.2528	0.0642	0.0952				
ECR		0.2826	0.1077	0.1417				
CORAL _{w/o} L,D,R	0.2948	0.5633	0.1595	0.2196				
CORAL _{Mistral}	0.3162	0.5410	0.1809	0.2326				
CORAL _{gpt-4o-mini}	0.3417	0.5632	0.1772	0.2255				

Table 7: Performance depending on the LLM utilized for Contrasting Preference Expansion. L, D and R denote T_l^{aug} , T_d^{aug} , and T_r^{key} , respectively.

Appendix: Zero-shot Performance for Preference Input Variant

Dataset	Input info.	R@10	R@50	N@10	N@50	Avg. Gain(%)
PEARL	C	0.0476	0.1230	0.0229	0.0395	-
	C, L	0.0560	0.1349	0.0303	0.0474	19.91%
	C, D	0.0481	0.1349	0.0224	0.0415	3.40%
	C, L, D	0.0573	0.1481	0.0311	0.0504	26.05%
INSPIRED		0.1837	0.4133	0.1038	0.1545	-
	C, L	0.2103	0.3949	0.1133	0.1534	4.62%
	C, D	0.2000	0.4154	0.1064	0.1527	2.68%
	C, L, D	0.2205	0.4205	0.1166	0.1597	9.37%
REDIAL	C,	0.0887	0.2067	0.0383	0.0640	-
	C, L	0.0954	0.2325	0.0415	0.0710	9.83%
	C, D	0.0910	0.2129	0.0400	0.0665	3.48%
	C, L, D	0.0986	0.2431	0.0427	0.0735	13.78%

Table 5: Zero-shot performance for preference input variant. C, L, and D denote T_c , T_l^{aug} , and T_d^{aug} , respectively.

Appendix: Ablation study on BERT

Dataset	INSPIRED				REDIAL				
Variants	R@10	R@50	N@10	N@50	R@10	R@50	N@10	N@50	
CORAL	0.1219	0.3714	0.0625	0.1173	0.0856	0.2255	0.0446	0.0765	
w/o <i>L</i> , <i>D</i>	0.0962	0.3429	0.0429	0.0968	0.0775	0.2287	0.0407	0.0754	
w/o R	0.1133	0.2695	0.0752	0.1103	0.0749	0.2052	0.0405	0.0702	
w/o <i>L</i> , <i>D</i> , <i>R</i>	0.0876	0.3010	0.0450	0.0967	0.0764	0.2231	0.0403	0.0738	
w/o Neg.	0.0867	0.2629	0.0371	0.0757	0.0725	0.2151	0.0375	0.0697	
w/o PL	0.1076	0.2467	0.0516	0.0832	0.0774	0.2138	0.0403	0.0713	

Table 6: Ablation study of CORAL in INSPIRED and REDIAL on BERT. The best scores are in **bold**. L, D and R denote T_l^{aug} , T_d^{aug} , and T_r^{key} , respectively. Also, Neg. and PL mean potential hard negative sampling and preference-aware learning, respectively.