KON. J. ITANA

KACHETTOY THE BYZANTINHE EKKAHCIACTIKHE MOYEIKHE EN THE APEAKEIWE HAIDAFWEIKHE AKADHMIAE HATPWH

ΘΕΦΡΙΑ, ΜΕΘΟΔΟΟ ΚΑΙ ΟΡΘΟΓΡΑΦΙΑ ΤΗС ΒΥΖΑΝΤΙΝΗС ΕΚΚΑΗС. ΜΟΥСΙΚΗС

TPOC XPHCIN

Των επογδλετών λύτης, εκκλής, φροντιστηριών, πλιδλιτωτικών λκλαμνιών, ωδείων, ιεροψλλτών κλι πλίντος φιλονιούςού

GKAOCIC IJEUTH

» Τὰ μὲν οὖν πας' ἡμῶν τοιαὖτα· » Εἰδὲ μικοὰ καὶ τῆς ἀξίας ἐλάττω, » καὶ Θεῷ φίλον τὸ κατὰ δύναμιν», (Γοηγόριος ὁ Ναζιανζηνός).

EKAOTIKOC OIKOC

XAP. & IW. KATIADA

ABHHAI- HATTAI 1970

MEPOE [.'

KEDANAION IIT.

ΠΕΡΙ ΟΡΘΟΓΡΑΦΙΑΣ ΤΗΣ ΒΥΖΑΝΤΙΝΉΣ ΕΚΚΛΉΣ. ΜΟΥΣΙΚΉΣ Η ΤΟΙ

ΠΕΡΙ ΤΗΣ ΟΡΘΗΣ ΠΛΟΚΗΣ ΤΩΝ ΜΟΥΣΙΚΩΝ ΧΑΡΑΚΤΗΡΩΝ ΚΑΙ ΑΠΑΓΓΕΛΙΑΣ ΑΥΤΩΝ.-

"Η όρθη γραφή ώς και ή έντεχνος πλοκή των χαρακτήρων της "Εκκλησιαστικής ήμων μουσικής έκανονίσθησαν ώς γνωστόν, ύπό των δοχαίων Διδασκάλων, οίτινες διά των μελιρρήτων και θεοπνεύστων, ούτως είπετν, μουσικών αύτων συνθέσεων έθησαύρισαν και έκληροδότησαν είς ήμας πλούτον πνευματικόν άνυπολογίστου άξίας και διδασκαλίαν άνταξίαν τῆς ἐξόχου αὐτῶν μαθήσεως καὶ σοφίας. Ἐκ τῆς μελέτης δὲ τῶν πολλων και ποικίλων άσματων των Διδασκάλων ήμων τούτων και της άκριβούς κατανοήσεως τού τρόπου, καθ' δν ούτοι έγραψαν καὶ τῶν ὀρθογοασικών κανόνων τούς όποίους μεταχειρίσθησαν όδηγούμενοι δυνάμεθα καί ήμεῖς νὰ γράψωμεν μέ ὀρθογραφικήν ἀκρίβειαν ἕν μουσικὸν μάθημα, ἄν ἔγωμεν τὰς, πρὸς τοῦτο ἀπαιτουμένας γνώσεις. Διότι ὅχι μόνον ἡ ὁρθὴ γραφή, άλλά και ή έντελής γνώσις τῆς εκκλησιαστικῆς ήμῶν μουσικῆς καὶ ὁ δυθμὸς καὶ ἄλλα πολλά χρησιμεύουν πρὸς τοῦτο. "Οθεν, ἔνα δοθῶς γράψωμεν, ἀνάγκη ὡς εἶπομεν, νὰ γνωρίζωμεν καλῶς τοὺς ὀρθογραοικούς τῆς μουσικῆς κανόνας, τοὺς ρυθμοὺς καί ἐν γένει πᾶν ὅ,τι πρὸς τούτο συντελεί.

'Η "Υλη, περὶ τῆς ἐν γένει ὀρθογραφίας τῆς Ἐκκλησιαστικῆς μουσικῆς, ἀναλόγως τῆς φύσεως καὶ ἐνεργείας τῶν σημείων δύναται νὰ κατανεμηθῆ εἰς τρεῖς (3) κατηγορίας.

- Α΄. 'Ορθογραφία καὶ πλοκὴ τοῦ ἴσου, ὡς καὶ τῶν ἀνιόντων χαρακτήρων.
 - Β΄. 'Ορθογραφία και πλοκή των κατιόντων χαρακτήρων.
- καὶ Γ΄. 'Ορθογραφία τῶν τροπικῶν ὑποστάσεων ἤ καλλωπιστικῶν σημείων, ὡς καὶ τῶν ἐγχρόνων ὑποστάσεων, ἤτοι (χρονικῶν σημείων αὐξανόντων τὸν χρόνον καὶ τῆς διαφόρου ἐνεργείας αὐτῶν ὡς πρὸς τὴν ἀπαγγελίαν).

Α΄. Περὶ τῆς ὁρθογραφίὰς τοῦ ἴσου () καὶ τῆς συμπλοκῆς αὐτοῦ μετὰ τῶν χαρακτήρων τῆς ποσότητος τῶν ἐγχρόνων, ὡς καὶ τῶν ἀχρόνων ὑποστάσεων.

Τὸ ἴσον ώς βὰσις τῆς μελφδίας είναι πάντοτε ἀπαραίτητον καὶ ἄνευ αὐτοῦ, οὕτε ἀνάβασις, οὕτε κατάβασις γίνεται. Τὸ ἴσον ἔχον τὴν δύναμιν τῆς ἰσότητος, τὶθεται ἐν ἀρχῷ μετὰ τῆς μαρτυρίας τοῦ τυχόντος ῆχου καὶ εἰς τὸ τέλος τῆς μελφδίας. Πρὸ τοῦ ἴσου προηγεῖται οἰοσδήποτε χαρακτήρ ἐκτὸς τῆς πεταστῆς, μετ' αὐτὸ δὲ ἀκολουθεῖ ὁμοίως οἰοσδήποτε χαρακτήρ.

Όταν παραστῆ ἀνάγκη νὰ ἐξέλθωμεν τῆς ἰσότητος καὶ νὰ έξαγγείλωμεν τὸ ἴσον μὲ ζωηρότητα, τότε ἐἀν μετὰ τὸ ἴσον δὲν ἀκολουθῆ κατιοῦσα φωνὴ ἀλλ' ἔτερον ἴσον, θέτομεν ὑπ' αὐτὸ τὸ ὀλίγον —οῦτω:

$$\frac{\pi}{q}$$
 $\frac{\pi}{A}$
 $\frac{$

'Αντί τοῦ δλίγου τίθεται ψηφιστὸν , ἢ βαρεῖα , ἤ πεταστὴ , δσάκις πρόκειται ἀπαραιτήτως νὰ ἐπακολουθήσωσι κατιόντες χαρακτῆρες, εἰς ἢ περισσότεροι κατὰ τὴν περίστασιν, πρὸς ἔκφρασιν τῆς ζωηρότητος τοῦ ψηφιστοῦ ἢ τῆς βαρύτητος τῆς βαρείας ἤ τῆς ὀξύτητος τῆς πεταστῆς.

Όταν πάλιν εἰς τὴν αὐτὴν γραμμὴν εὑρίσκωνται δύο ἥ τρία ἴσα (), τῶν ὁποίων τὸ τελευταῖον ἔχει ἀνάγκην ζωηρότητος, τότε, ἐἀν μὲν οἱ ἐπακολουθοῦντες χαρακτῆρες εἰναι ἰσόχρονοι πρὸς τὸ τελευταῖον τοῦτο ἴσον, τὸ ἔχον ἀνάγκην ζωηρότητος, τίθεται ὑπ'αὐτὸ ψηφιστὸν Π.Χ.

$$\Delta = \frac{\lambda}{\omega} = \frac{\lambda}{\omega} = \frac{\lambda}{\omega} = \frac{\lambda}{\omega} = \frac{\kappa}{\lambda} = \frac{\kappa}{\lambda} = \frac{\lambda}{\omega} = \frac{\kappa}{\lambda} = \frac{\kappa}{\lambda} = \frac{\lambda}{\omega} = \frac{\kappa}{\lambda} =$$

'Εὰν δὲ οἱ ἐπακολουθοῦντες χαρακτήρες εἶναι ἐτερόχρονοι, ήτοι ἐἀν τὸ ἴσον τοῦτο ἔχει δύο χρόνους, οἱ δὲ ἐπακολουθοῦντες κατιόντες χαρακτήρες ἔχουν ἔνα χρόνον, τότε τίθεται ὑπὸ τὸ ἴσον πεταστή. Π. Χ.

'Ομοίως τὸ ἴσον ὑποτὰσσει τὴν πεταστὴν ἄνευ ἐτεροχρὸνου, ὅταν ἔπεται τούτῳ μία μόνη 'Απόστροφος εἰς τὴν ὁποίαν νὰ τίθεται συλλαβὴ οὕτω:

'Αλλ' ὅταν τὸ ἴσον δἐν ἀπαιτῆ ζωηρὸτητα, τότε τὶθεται ἄνευ πεταστῆς καὶ ἄς ἀλλάζει συλλαβὴ εἰς τὴν 'Απόστροφον π. χ. οὕτω:

Όταν εν μιᾶ καὶ τῷ αὐτῷ συλλαβῷ εὑρίσκεται τὸ ἴσον μετὰ τῆς ᾿Αποστρόφου, τότε τίθεται πρὸ αὐτοῦ βαρεῖα π. χ.

'Εὰν δὲ ὑπάρχη ἀνάγκη νὰ τεθῆ εἰς τὴν 'Απόστροφον χρονικὸν σημεῖον ἀπαραιτήτως δέον νὰ είναι ἀπλῆ οὕτω :

$$\frac{1}{2} \frac{1}{\pi \eta_{\varsigma}} = \frac{1}{E \kappa} \frac{\pi \kappa \lambda_{\eta}}{\kappa \lambda_{\eta}} = \frac{1}{\pi} \frac{1}{\pi \kappa_{s}} = \frac{1}{\pi \kappa_{s}} \frac{\pi \kappa_{s} \lambda_{s} \pi_{s}}{\kappa \lambda_{s}} = \frac{1}{\pi \kappa_{s}} \frac{\pi \kappa_{s} \lambda_{s} \pi_{s}}{\kappa \lambda_{s}} = \frac{1}{\pi \kappa_{s}} \frac{1}{\pi \kappa_{s}} = \frac{1}{\pi$$

Έπίσης δταν τὸ ἴσον ἀπαιτῆ ὁξύτητα μεθ' ἐτεροχρόνου, τίθεται πεταστή μετὰ κλάσματος καὶ ἐφ' ὄσον ἀκολουθεῖ τούτῷ ζεῦγος 'Αποστρό-

φων άνευ κλάσματος, έννοείται, ύπο μίαν και την αύτην συλλαβήν τότε προτάσσεται τούτων ή βαρεία. Ούτω:

$$\frac{\pi}{q}$$
 $\frac{1}{X\alpha}$ ρι σμα α σιν ιι α α α σε ω ων πλου $\frac{\pi}{1}$ κ. λ. $\frac{\pi}{1}$

Έὰν δὲ αἱ ἀκολουθοῦσαι ᾿Απόστροφοι εἶναι τρεῖς ἄνευ ἐτέρου χρόνου, τότε τίθενται ἄνευ βαρείας οὕτω:

$$\pi$$
 Σ η με ε ρον π κρε μα α ται αι αι π Λ Λ τρα νως π α α ρε δ ω ω κε η

'Εὰν ὅμως εἰς μίαν γραμμὴν εὑρεθῶσι τέσσαρες ἢ καὶ περισσότεραι 'Απόστροφοι, τῶν ὁποίων 'Αποστρόφων ἔκαστον ζεῦγος λαμβάνει ἀνὰ μίαν συλλαβὴν τοῦ κειμένου καὶ ἐφ' ὅσον εἰς τὴν πρώτην ἀπόστροφον ἑκάστου ζεύγους ἀλλάζει συλλαβὴ, τότε πρὸ ἑκάστου ζεύγους γράφεται ἡ βαρεῖα οῦτω:

Έἀν δὲ ἐκάστη τῶν ᾿Αποστρόφων λαμβάνη συλλαβήν τὸτε οὐδόλως προγράφεται βαρεῖα, ἀλλὰ τίθεται μὸνον ψηφιστὸν εἰς τὸ ἴσον ἢ τὸ ὀλίγον οὕτω:

ЭЭ|>> — | — к. λ. π. ος και δε δο ξα σμε κ. λ. π.
Ομοίως δὲ ὅταν εἰς τὴν τελευταίαν συλλαβὴν δὲν εὐρεθῶσι δύο μνητος και δε δο

'Απόστροφοι τής αὐτής συλλαβής, βαρεία οὐδόλως τίθεται. Οὕτω:

 $\frac{1}{6}$ Πρε σβε ευ ε ε δι ι η νε ε ε κω ω ως $\frac{1}{6}$ κ.λ.π.

Έαν είς μίαν μουσικήν γραμμήν υπάρχωσι δύο Ίσα, ή καί περισσότερα, έχοντα κατόπιν αὐτῶν ἀνὰ μίαν ᾿Απόστροφον, τὸτε εἰς ἔκαστον "Ισον προτάσσεται ή βαρεία, έφ' δσον εύρισκονται έν μιᾶ συλλαβᾶ ούτω:

η Οι οι μοι ο Α α δαμ εν θρη η νω κε $\frac{1}{\epsilon}$ $\frac{\Delta}{\kappa \rho \alpha}$ $\frac{\Delta}{\alpha}$ κ . λ . π .

"Οταν δύο Ίσα, ἤ ὀλίγον καὶ "Ισον ἔχουσι ἀνάγκην κυματισμοῦ, θέτομεν ύπ' αὐτὰ τὸ "Ετερον (σύνδεσμον) ὁπότε οἱ φθόγγοι αὐτῶν προφέρονται μὲ ἐλαφρὸν καὶ λιγυρὸν κυματισμόν. Οὕτω:

Å TO 0 0 100 0 100 0 10 0 0 Å « к. д. ж. д. к. д. ж. д. ж. д. ж.

*Επίσης δταν μετά τό ἴσον ἀκολουθῆ Συνεχές ἐλαφρὸν, βαρεῖα πρὸ τοῦ ἴσου δὲν τίθεται. Οὕτω:

 Δ κ . λ . π .

Διότι τό Συνεχές έλαφρον ἀποτελούμενον ἐκ δύο κατιουσῶν φωνῶν, ήτοι τῆς 'Αποστρόφου καὶ τοῦ 'Ελαφροῦ, ἐκ τῶν ὁποίων ἡ πρώτη ὑποτάσσεται εἰς τὴν δευτέραν προξενούσα οὐχί πλέον ὑπέρβασιν, ἀλλὰ συνέχειαν φωνῆς καὶ μέλους εἰς τοὺς δύο τόνους λαμβανομένου τοῦ μέν πρώτου εἰς τὴν ἄρσιν, τοῦ δὲ δευτέρου δεχομένου συλλαβὴν, ἐξουδετεροῖ τὴν ἔπὶ τοῦ ἴσου τούτου ἐπιρροὴν τῆς βαρείας.

Διότι ἀδύνατον νὰ διακριθῆ εἰς Ἰσον, μετὰ τὸ ὁποῖον ἀκολουθοῦν δύο ἢ περισσότεραι κατιοῦσαι φωναί, τὸ βὰρος, τὸ ὁποῖον ὡς ἐκ τῆς θὲσεώς της προσδίδει ἡ βαρεῖα εἰς τὴν φωνὴν, τοῦ πρὸ αὐτῆς φθὸγγου ἀπὸ τὸν φθόγγον τὸν ἐπὸμενον, ὅστις ἐνταῦθα εἰναι ἡ ὑποτασσομένη εἰς τὸ Ἐλαφρὸν ᾿Απόστροφος, ἀλλὰ μαλακῶς προφέρεται τὸ Ἰσον αὐτὸ καὶ ἐν συνεχεία μετὰ τῆς ᾿Αποστρόφου, μετὰ τῆς ὁποίας συνδέεται τὸ Ἑλαφρὸν, ὅπερ, οὐχὶ ὡς αἱ ᾿Απόστροφοι, ἀλλὰ μὲ ἐλαφρότητα καταβιβάζει τοὺς δύο φθὸγγους. Ἐνῷ ἀντιθέτως εἰς τὴν αὐτὴν μουσικήν γραμμὴν καὶ εἰς τὴν λέξιν (ἡμέρα) ποὺ ἀκολουθεῖ μετὰ τὸ Ἰσον μία ᾿Απόστροφος, προτάσσεται πρὸ τοῦ Ἰσου βαρεῖα. Καὶ εἰς τὰς δύο περιπτώσεις τῆς μουσικῆς γραμμῆς τὸ γοργὸν τῶν κεντημάτων είναι παρεστιγμένον μὲ τὴν στίξιν δεξιὰν ἀπαραιτήτως Π. χ.

Ἐπίσης πρὸ τοῦ Ἰσου προτάσσεται βαρεῖα, ὅταν μετ' αὐτὸ ἀκολουθεῖ μία ᾿Απόστροφος μὲ γοργὸν ἥ καὶ ἄνευ γοργοῦ, ἔχουσα ὅμως τὴν αὐτὴν συλλαβὴν μετὰ τοῦ Ἰσου, οῦτω:

Οὐδέποτε ὅμως τίθεται βαρεῖα πρὸ δὺο ἢ καὶ περισσοτέρων ᾿Αποστρόφων ὧν ἑκάστη τούτων ἔχει ἰδίαν συλλαβὴν. Εἰς τὴν περίπτωσιν αὐτὴν δυνὰμεθα εἰς τήν πρὼτην ᾿Απόστροφον, ἐφ᾽ ὅσον ἔχει ἔντονον συλλαβὴν, νὰ τὴν θέσωμεν ἐπὶ τοῦ ὀλίγου μὲ ψηφιστὸν. Οὕτω:

'Εὰν δύο ἤ τρία Ἰσα εἰναι ἀνὰγκη νὰ ἐξαγγελθῶσι μετὰ τραχέως κυματισμοῦ τῆς φωνῆς ἐν τῷ λάρυγγι, τότε προγράφομεν τὴν βαρεῖαν καὶ συνδέομεν αὐτὰ διὰ τοῦ ὁμαλοῦ (—), θὲτοντες εἰς τὸ δεύτερον Ἰσον γοργὸν. Οῦτω:

(Όρα καί περὶ ἐνεργείας τοῦ ὁμαλοῦ, εἰς τὰ ἐκφραστικὰ σημεῖα σελ. 9).
Τὰ συνδεόμενα Ἰσα ἢ ᾿Ολίγα δέον ἀπαραιτήτως νὰ δέχωνται μίαν καὶ τὴν αὐτὴν συλλαβὴν καὶ νὰ εἰναι καὶ τῆς αὐτῆς ὀξύτητος, δηλαδὴ τὸ ὁμαλὸν συνδέει δύο Ἰσα ἢ ϶Ολίγον μὲ Ἰσον,ἢ ᾿Απὸστροφον μὲ Ἰσον. Οῦτω: ΄΄ Τον ἤ ΄΄ Τον πάλιν τὸ Ἰσον ἤ τὸ ᾿Ολίγον μετὰ κλὰσματος ἀπαιτῆ ζωηρότητα, ἀκολουθεῖ ὅμως κατόπιν μία ᾿Απόστροφος μετὰ κλάσματος ἢ καὶ ἄνευ κλάσματος, τότε τίθεται ὑπὸ τὸ Ἰσον ἥ τὸ ᾿Ολίγον, τὸ Ὅμαλὸν. Οὕτω:

Έν τῆ γραφῆ ταύτη τὸ κλάσμα μὲ τὸ 'Ομαλὸν ἀναλύεται καὶ ἐκτελεῖται οὕτω :

$$\frac{z}{To}$$
 α ο νο μα α α $\frac{z}{Y}$ γρα αν δι ο $\frac{z}{\delta}$ ευσας ω σει ξη η ραν

'Επίσης ὅταν τὸ 'Ολίγον μὲ κλάσμα γράφεται ἐν μιῷ καταλήξει ἐν τῷ ὁποίᾳ εὑρίσκεται μαρτυρία, καὶ ἐφ' ὅσον ἀκολουθεῖ μία καὶ μόνον 'Απόστροφος ἰσόχρονος τοῦ 'Ολίγου, τότε τὶθεται 'Ομαλὸν ὑπὸ τὸ 'Ολίγου. Οὕτω:

στειτε λουντων

Τοῦτο γίνεται διὸτι ή μαρτυρία ἐπειδή διακόπτει τὴν φωνὴν, ὁ ἀκόλουθος φθόγγος γίνεται τρόπον τινὰ ὡς ἀρχὴ μέλους. Πολλάκις ὅμως ἡ

μετὰ τοῦ Ἰσου ἤ τοῦ Ὁλίγου, ᾿Απόστροφος δὲν ἰσοχρονεῖ αὐτῷ, τότε ἀναπληροῦται τὸ ἰσόχρονον διὰ τοῦ ἐπομένου τῇ ᾿Αποστρόφφ ταύτῃ φθόγγου τοῦ Ὁλίγου ἢ τῶν Κεντημάτων, καθώς τοῦτο:

'Η ἐνέργεια τοῦ ὁμαλοῦ δύναται ἀκριβέστερον νὰ παρασταθή διὰ τῆς ἀναλυτικῆς γραμμῆς.

Όταν μεταξύ δύο Ίσων ἀπαιτήται ἀνιών χαρακτήρ, τότε μὴ ὑπαρχούσης μὲν ἀνάγκης γοργοῦ, τίθενται μεταξύ αὐτῶν τὰ κεντήματα καὶ προφέρονται ἠπίως. Οὕτω:

$$\frac{\pi}{q}$$
 Προσκυ νει ειν και αι δο ο ξα α ζειν $\frac{\pi}{q}$ $\frac{\pi}$

'Εὰν δὲ ὑπάρχη ἀνάγκη γοργοῦ, τὸτε μεταξὺ τῶν δὺο Ἰσων ἀντὶ τῶν Κεντημάτων, τίθεται τὸ 'Ολίγον με Γοργὸν, προφερόμενον διὰ λαρυγγισμοῦ. Οὕτω:

Δυνάμεθα ὅμως νὰ θέσωμεν καί Γοργὸν εἰς τὰ Κεντήματα ὅταν εδρεθῶσι μεταξύ δύο Ἰσων, ἐὰν ἐπί τοῦ ᾿Ολίγου θέσωμεν τὸ Ἰσον καὶ τὰ Κεντήματα, ὁπότε λαμβάνουσι τὴν ζωηρότητα αὐτοῦ, τὸ δὲ μέλος προ-

φέρεται τραχέως πώς και με έλαφρον κυματισμόν θέτοντες το "Ετερον. Ούτω:

Έπειδή τὰ Κεντήματα () δὲν δέχονται έτερόχρονα σημεῖα (δηλαδή Κλάσματα ἤ Απλᾶς), πρὸς ἀποπλήρωσιν χρόνου, δυνάμεθα ἐὰν παραστῇ ἀνὰγκη νὰ δώσωμεν εἰς τὰ Κεντήματα χρονικὴν παρὰτασιν ἑνὸς, δύο ἤ καὶ περισσοτέρων χρόνων, ἐφ' δσον μετ' αὐτὰ ἀκολουθεῖ "Ισον εἰς τὸ ὁποίον θέτομεν τὰ χρονικὰ σημεῖα (κλάσμα ἤ 'Απλᾶς). Οῦτω

π Διὰ νὰ μὴν χωρισθῶσιν ὅμως οἱ χρόνοι ἐνοῦνται 9 δι ο ο ο μὲ τὸ ὑφὲν ().

Ούτω: ν Κ.λ.π. Οὐχὶ μὲ τὸ Έτεδιότι τότε γίνεται χωρισμός.

'Εὰν δὲ ἀπαιτῆται καὶ μεγαλυτέρα βραδύτης, τότε ἀντὶ τοῦ κλάσματος δυνάμεθα νὰ θέσωμεν ὑπὸ τὸ Ἱσον διπλῆν καὶ τριπλῆν. Οὕτω:

Τὸ Ἰσον ἀντὶ τοῦ κλὰσματος δέχεται καὶ τὴν ἀπλῆν, ἀλλὰ μόνον μετ' ἀντικενώματος, ὁπότε μετ' αὐτὸ ἔπεται ἀπαραιτήτως ᾿Απόστροφος ἤ καὶ Ἐλαφρὸν μετὰ γοργοῦ ἐν μιῷ καὶ τῷ αὐτῷ συλλαβῷ. Οὕτω:

Τό Τότε τόσον ἡ ᾿Απόστροφος ὅσον καὶ τὸ Ἐλαφρὸν προφέρονται πάντοτε ἐκκρεμῶς πως καὶ ἀχωρίστως ἀπὸ τοῦ πρὸ αὐτῶν Ἰσου ἄνευ διακοπῆς τῆς ἀναπνοῆς. Οὕτω:

$$\chi$$
 το ο νο ο μα το ος ε ε ε π ο ο ο

"Εὰν εἰς τὰς συνθέσεις ή άπαιτῆται μεγαλυτέρα βραδύτης, τότε προτάσσοντες τοῦ Ἰσου τὴν βαρεῖαν, γράφομεν ὑπ' αὐτὸ διπλῆν ἡ τριπλῆν καὶ συνδὲομεν τοῦτο μετὰ τοῦ ἐπομένου κατιόντος χαρακτῆρος, οὐχὶ πλέον δι' ἀντικενώματος, ἀλλὰ δι' ετέρου (Συνδέσμου),

Οὔτω: 1) καὶ 3) καὶ 3) , Όπότε καὶ εἰς τὰς τρεῖς περιπτώσεις αὐτὰς ἡ ἐνέργεια τῆς βαρείας πίπτει ἐπὶ τῆς τελευταίας ἀπλῆς, χωρὶς νὰ σημειώνεται ἡ βαρεῖα, μεθ'ἤν ἀκολουθεῖ κατάβασις καὶ οὐχὶ ἐπὶ τοῦ "Ισου τοῦ ὁποἰου προγράφεται. Έννοεῖται ὅτι καὶ ἐνταῦθα πρέπει ἡ αὐτὴ συλλαβὴ τοῦ "Ισου νὰ ἐξακολουθῆ καὶ διὰ τοῦ ἑπομένου κατιόντος χαρακτῆρος. Ὁ δὲ κατιὼν χαρακτήρ θὰ είναι "Από στροφος ἢ "Ελαφρὸν.

$$to = \frac{1}{to =$$

Παραδείγματα μὲ φράσεις ἀπὸ κείμενα ἀρχαίων Διδασκάλων καὶ μὲ ἀνάλυσιν γραφῆς αὐτῶν πῶς πρέπει νὰ ἐκτελοῦνται.

$$\sum_{v \in V} \sum_{v \in V} \sum_{v$$

ἥ 'Αντὶ τῆς 'Αποστρόφου μὲ ἐλαφρὸν Οῦτω:

2) Δ Ανάλυσις ο Ανάλυσις ο Ανάλυσις ο Ανάλυσις ο Ανάλυσις ο Εκτέλεσις ο Ο Εκτέλεσις ή 'Αντί τῆς 'Αποστρόφου μὲ ἐλαφρὸν Οὕτω:

Ο ψάλλων μουσικάς συνθέσεις τοῦ ἀνωτέρω είδους, δέον ἀπαραιτήτως διά την καλην και δρθην άποδοσιν της έκτελέσεως αὐτῶν νὰ ἔχη ύπ' όψιν την άναλυτικήν γραμμήν αὐτῶν. Ἡ δὲ βαρεῖα, ῆτις δὲν ἀναγράφεται εἰς τὴν ἀναλυτικὴν γραμμὴν ὅλων τῶν περιπτώσεων, ἐννοεῖται. Η δὲ ἐνέργειὰ της πίπτει ἐπὶ τῆς τελευταίας ἀπλῆς μὲ τὸ ἀντικένωμα. (Κατά τὸν Π. Κιλτζανίδην τὴν βαρεῖαν ἀναπληροῖ τὸ Έτερον (Σύνδεσμος). Έὰν είς τὰς ἀνωτέρω συνθέσεις καὶ τῶν τριῶν περιπτώσεων, ἡ 'Απόστροφος ή τὸ 'Ελαφρὸν λαμβάνη συλλαβὴν, τότε οὔτε βαρεῖα τίθεται, ούτε "Ετερον. Ούτω:

βαρείαν και Έτερον, εάν την διπλην η τριπλην άντικαταστήσωμεν δι ἰσοχρὸνων χαρακτήρων. Π. Χ. εἰς τὴν ἀνωτέρω μουσικὴν γραμμὴν «ἐπάκουσον» ή ἀντικατάστασις τῆς διπλῆς, προκειμένου νὰ μεταχειρισθώμεν βαρείαν καὶ Έτερον, θὰ ἔχη Οὕτω:

Έτερον παράδειγμα μὲ Ἐλαφρὸν ἔχων συλλαβὴν π. χ. | \sim | κ.λ.π.

δι ι κα α Δι κα α ζε ε ε ε ται Ή Απόστροφος ἢ τὸ Ἑλαφοὸν δύνος

"Η "Απόστροφος ἢ τὸ "Ελαφρὸν δύναται νὰ ἔχη ἰδίαν συλλαβὴν, βαρεῖαν καὶ "Ετερον μόνον εἰς τοὺς τερερισμοὺς. Οὕτω:

 $\frac{\pi}{q}$ $\frac{\pi}$

Είς τὸ "Ισον, τὸ γοργὸν καὶ αἱ φθοραὶ τίθενται ἄνωθεν και κάτωθεν αὐτοῦ. Τὸ ψηφιστὸν, τὸ 'Ομαλὸν και τὸ "Ετερον τίθενται κὰτωθεν, ἡ δὲ βαρεῖα τίθεται πρὸ αὐτοῦ καὶ μετ' αὐτοῦ. 'Εκ δὲ τῶν χρονικῶν σημείων, τὸ μὲν κλάσμα τίθεται ἄνωθεν, ἡ δὲ ἀπλῆ μετ' ἀντικενώματος κάτωθεν, ἡ διπλῆ καὶ τριπλῆ μεθ' 'Ετέρου καὶ ἄνευ αὐτοῦ πάντοτε κάτωθεν.

Δυστυχῶς αἱ ἀνωτέρω μουσικαὶ γραμμαὶ, ὡς δέον νὰ ἐκτελοῦνται, οὐδόλως τηροῦνται ὑπὸ τῶν σημερινῶν Ἱεροψαλτῶν, καθότι οἱ περισσότεροι οὐδόλως ἐμελέτησαν ἢ ἐνδιαφέρθησαν νὰ ἐκμάθουν τὰς ἐπεξηγήσεις τῶν χρονικῶν καὶ ἐκφραστικῶν σημείων, ὡς καὶ τὴν καλὴν καὶ ὀρθὴν ἐκτέλεσιν αὐτῶν.-

ΟΡΘΟΓΡΑΦΙΑ ΤΩΝ ΑΝΙΟΝΤΩΝ ΧΑΡΑΚΤΗΡΩΝ

1) περί της συμπλοκής τοῦ 'Ολίγου (—).

Τὸ ὁλίγον —, ὡνομάσθη οὕτω διότι ὁλίγον κατ' ὁλίγον καὶ ἀνὰ ἔνα φθόγγον ἀναβιβάζει τὴν φωνὴν. Δηλαδὴ ὅταν ἔχωμεν ἀνάγκην ἀνα-

βάσεως ένὸς φθόγγου λαμβάνοντος συλλαβήν, τότε μεταχειριζόμεθα μόνον τὸ ὁλίγον —, ὅπερ συνεπινοηθὲν μὲ τὸ "Ισον καὶ τὴν "Απόστροφον 🦜, ἀνὲκαθεν ἐχρησιμοποιεῖτο διὰ τὴν ἀνάβασιν, καθώς καὶ ἡ 'Απόστροφος διὰ τὴν κατάβασιν, τὸ δὲ Ισον ὡς βὰσις τῆς μελωδίας. 'Η κάτωθι μουσική γραμμή περιλαμβάνουσα καὶ τούς τρείς θεμελιώδεις τούτους μουσικούς χαρακτήρας καταδεικνύει, πώς οί παλαιοί Διδάσκαλοι εσχημάτιζον την μελωδίαν της κλίμακος.

Ή Κλίμαξ καὶ μὲ μέλος. Ρυθ. ὁι οι τως ουν α να βαι νε εκαι ου τωκαικα

Ή Κλίμαξ καὶ μὲ ἄλλην φράσιν. ο κα τοι κων εν ου ρα νοις το και ελ θων 22 / 20 FX

*Εάν ὅμως ἡ συνεχής ἀνὰβασις εύρεθῆ ἐν μιῷ καὶ τῆ αὐτῆ συλλαβή τότε τίθενται ύπὸ τὸ όλίγον — τὰ κεντήματα ιι Π. χ. — διὸτι ταῦτα ώς και ή υπορροή οὐδέποτε λαμβάνουσι συλλαβήν, ώς σώματα

οὐδέτερα. Π. χ. $\frac{\Delta}{\ddot{\Lambda}}$ $\frac{\Delta}{A\lambda}$ $\frac{\Delta}{\lambda\eta}$ $\frac{\Delta}{\eta}$ λου ι ι $\frac{\Delta}{\alpha}$ $\frac{\chi}{\dot{q}}$

Έτερον μὲ, Κεντήματα κάτωθεν καὶ ἄνωθεν τοῦ [°]Ολίγου.

Π. χ. τ Πα α α α α α α α α α α σα αν θ την βι

Επίσης τὰ κεντήματα τίθενται ἐν συνεχεῖ, ἄνευ ἐτεροσυλλάβων, άναβάσει και παρά τὸ όλίγον και ἄνωθεν αὐτοῦ κατά τὴν περίστασιν.

Όταν ἀπαιτήται ζωηρὰ ἐκφώνησις ἐν τῷ τέλει τοιαύτης συνεχοῦς ἀναβὰσεως, τότε κάτωθεν τοῦ ὀλίγου, ἐπὶ τοῦ ὁποίου είναι τὰ Κεντήματα, τίθεται ψηφιστὸν, ὅπερ ἐνεργεῖ ἐπὶ τῶν Κεντημάτων καὶ οὐχί ἐπὶ Ὁλίγου. Οὕτω:

Έὰν ὅμως ἡ μετὰ τὴν τελευταίαν συνεχή ἀνάβασιν ᾿Απόστροφος λάβη συλλαβὴν τὸτε παραλείπεται τὸ ψηφιστὸν καὶ προτὰσσεται εἰς ἔκαστον ζεῦγος Ἦποστρόφων βαρεῖα. Ἐννοεῖται ὅτι ἔκαστον ζεῦγος θὰ ἔχη ἰδίαν συλλαβὴν π. χ.

Τὸ "Ολίγον κατὰ τὴν σύνθεσιν λαμβάνει διαφόρους 'θέσεις. Γράφεται μόνον καὶ συμπλέκεται μεθ' ὅλων σχεδὸν τῶν μουσικῶν χαρακτὴρων, ἐξ' ὧν ἄλλους μὲν ὑποτάσσει, εἰς ἄλλους δὲ ὑποτάσσεται καὶ εἰς ἄλλους προτάσσεται.

Τὸ ὁλίγον καὶ ἡ πεταστὴ ἀνάγονται εἰς τὰ ὑποτακτικὰ τῆς μουσικῆς σημεῖα καὶ λέγονται Σώματα. Γίνονται δὲ βοηθητικὰ εἰς τὰ πνεύματα, ἄτινα εἰναι τὰ Κέντημα καὶ ἡ Ύψηλὴ,ἐπειδή τὰ πνεύματα οὕτε ἐκφωνοῦνται, οὕτε γρὰφονται μὸνα των. Ἐκφωνοῦνται ὅμως καὶ γρὰφονται ὅταν στηρίζωνται ἐπὶ τῶν δύο τούτων σωμάτων π. χ. (ἡ) ἡ ἡ ἡ ἡ). Ἐὰν εἰς τὸ ἀνωτέρω παράδειγμα ἡ συνεχὴς αὕτη ἀνάβασις εύρεθῆ ἐν μιᾳ καὶ μόνη συλλαβῆ, τὸ δὲ τέλος αὐτῆς ἀπαιτεῖ γοργὸν, τότε τὰ τελευταῖα κεντήματα τίθενται ἄνωθεν τοῦ ὀλίγου μετὰ γοργοῦ

π. χ. Δ Δε ε ευ τε Ομοίως τὸ αὐτὸ συμβαίνει καὶ εἰς τάς συνήθεις καταλήξεις ὅλων τῶν ἣχων. π. χ.

Αἱ ἀνωτέρω γραμμαί τῆς συνεχοῦς ἀναβάσεως εἶναι ἰσόχρονοι. Ἐὰν ὅμως ἡ τελευταία ἀνιοῦσα φωνή ἀπαιτῆ καὶ ζωηρὰν ἔκφρασιν, τότε τί-

θεται δλίγον μὲ 'Αντικένωμα καὶ προφέρεται μετὰ τετιναγμένης φωνής.

Όταν ἐν συνεχεῖ ἀναβάσει ὁ τελευταῖος ἀνιὼν χαρακτήρ καὶ αἱ μετ' αὐτὸν κατιοῦσαι ᾿Απόστροφοι ἀπαιτῶσιν ἑτερὸχρονα,ὁ δὲ ἀνιὼν καὶ ζωηρότητα, τότε ὑπὸ μὲν τόν τελευταῖον ἀνιὸντα τίθεται ψηφιστὸν, ἄνωθεν δὲ αὐτοῦ καὶ τῶν ἑπομένων δύο τοὐλάχιστον ἤ καὶ περισσοτέρων ᾿Αποστρόφων κλὰσμα, οὕτω:

$$\frac{6}{2}$$
 το ον Πε τρονκαι Ι α κω ω βο ον

Έαν δὲ μόνον ὁ τελευταῖος ἀνιών χαρακτήρ ἀπαιτή σὺν τῷ ἐτέρῳ χρόνφ καὶ ζωηρότητα,αἰ δὲ ἐπόμεναι Απόστροφοι δὲν ἀπαιτώσιν ἔτερον χρόνον, τότε ἀντὶ τοῦ μετὰ Ψηφισμοῦ 'Ολίγου τίθεται Πεταστή. π. χ.

$$\frac{\pi}{9}$$
 Οι φο βου με ε νοι το ον Κυ υ υ ρι ι $\frac{\pi}{1}$ ον $\frac{\pi}{9}$ κ.λ. $\frac{\pi}{1}$

"Όταν μετὰ τὸ ἔχον ἀνὰγκην ζωηρότητος "Ολίγον ἀκολουθή μία μόνη ἑτεροσύλλαβος "Απόστροφος, τότε, ἐὰν μὲν καὶ τὸ "Ολίγον καὶ ἡ ἐπομένη ἑτεροσύλλαβος "Απόστροφος δέχωνται καὶ κλάσμα, τίθεται ὑπὸ τὸ ὁμαλὸν. π. χ.

'Εὰν δὲ τὸ 'Ολίγον καὶ ἡ 'Απόστροφος δὲν δέχωνται κλάσμα, τότε τὸ 'Ολίγον ἀντικαθίσταται διὰ τῆς Πεταστῆς. Cὕτω:

$$\frac{\varepsilon}{\omega} \frac{3}{M\eta} \frac{3}{\alpha} \frac{1}{\pi \omega \rho} = \frac{3}{\mu \eta \zeta} \frac{1}{\mu \varepsilon} \frac{1}{\alpha} \frac{1}{\kappa} \frac{1}{$$

'Επίσης δταν τὸ 'Ολίγον δέχεται Κεντήματα κάτωθεν ή ἄνωθεν μὲ γοργὸν, τὸτε τὸ γοργὸν πάντοτε ἀνήκει εἰς τὰ κεντήματα.

$$\Pi$$
. χ . $\frac{\pi}{M}$ $\frac{\pi$

Τὸ 'Ολίγον δταν είναι όμοσύλλαβον μετὰ τῶν κεντημάτων, ἀπαιτεῖ δπως ταῦτα τίθενται παρ' αὐτῷ ἡ ἐπ' αὐτοῦ καὶ προφέρονται ἡπίως. π.χ.

"Η σύνθεσις 'Ολίγου μὲ Κεντήματα κάτωθεν π. χ. δέν ἐπιδὲχεται ποτὲ ἰδίαν συλλαβὴν. 'Εὰν δὲ τὸ 'Ολίγον δέχεται συλλαβὴν ἡ γραφὴ μεταβάλλεται εἰς τοιαύτην , ἴδε τὸ ἄνωθεν παράδειγμα. Τὸ 'Ολίγον ἀντί τοῦ κλάσματος δέχεται καὶ τὴν ἁπλῆν, ἀλλὰ μόνον μετ' ἀντικενώματος. Διπλῆν δὲ καὶ τριπλῆν μεθ' 'Ετέρου καὶ ἄνευ 'Ετέρου. Καὶ γενικῶς ἰσχύει καὶ διὰ τὸ 'Ολίγον, ὅ,τι ἐλέχθη καὶ διὰ τὸ 'Ισον. (ὅρα σελ. 125).

Τὸ "Ολίγον ἄνευ έτεροχρόνου καὶ μὲ ψηφιστὸν τίθεται πάντοτε, εἴτε ἐν θέσει, εἴτε ἐν ἄρσει, ὅταν μετ' αὐτὸ ἀκολουθῆ Συνεχὲς ἐλαφρὸν ἡ

Έὰν ἄνωθεν τοῦ 'Ολίγου μὲ ψηφιστὸν ὑπάρχουσι Κεντήματα καὶ είναι ἀνάγκη ν' ἀκολουθῆ 'Υπορροὴ ἢ Συνεχὲς ἐλαφρὸν π. χ. οὕτω: (), τότε ἀντὶ κεντημάτων τίθεται 'Ολίγον, καθὸτι μετὰ ἀπὸ Κεντήματα δὲν δύναται ν'ἀκολουθῆ ὑπορροὴ ἢ Συνεχὲς ἐλαφρὸν, ἐκ τοῦ ὅτι ἡ 'Υπορροὴ καὶ ἡ 'Απόστροφος τοῦ συνεχοῦς ἐλαφροῦ δὲν ἐπιδέχονται ἰδὶαν συλλαβὴν, ἐξαρτῶνται δὲ ἀπὸ τὸν προηγούμενον χαρακτῆρα, ὅστις διὰ τοῦτο δὲν δύναται νὰ είναι Κεντήματα. Διότι καὶ αὐτὰ ἐξαρτῶνται ἀπὸ τὸν προηγούμενον χαρακτῆρα καὶ δὲν λαμβάνουν ἱδιαιτέραν συλλαβὴν. Δυστυχῶς τοιαῦτα λὰθη ἀνορθογραφίας παρατηρεῖ τις (εἰς τὴν Μ. ἑβδομάδα Γ. Ραιδεστηνοῦ καὶ εἰς τὰς νεοεκδόσεις Θεσ-

σαλονίκης). Παραδείγματα λανθασμένης γραφής είς Μ. έβδομάδα Γ. Ραιδεστηνού δρα (σελ. 7 καί 61). π. χ.

$$\Delta$$
 | ∇ | ∇

Ένφ ή όρθη γραφή σύμφωνα με τὸν άνωτερω κανόνα έχει ούτω :

Έπίσης 'Ολίγον μὲ ψηφιστὸν ἔχομεν ὅταν ἀκολουθοῦν δύο 'Απόστροφοι ἤ καὶ περισσότεραι. π. χ.

$$\frac{\Delta}{\delta}$$
 εκ φθο ρας ε λυ τρω θημεν Κυ ρι ε δο ο ξα α $\frac{\pi}{\delta}$

Τὸ 'Ολίγον δὲν ὑποδέχεται ψηφιστόν, ὅταν κάτωθεν αὐτοῦ εὑρεθῶσι Κεντήματα μὲ γοργὸν ἄνωθεν καὶ ἀκολουθεῖ Συνεχὲς ἐλαφρὸν μὲ 'Αντικένωμα καὶ ἀπλῆν, π. χ.

'Εὰν μετὰ τὸ 'Ολίγον κεῖται μιὰ καὶ μὸνη 'Απόστροφος μὲ κλάσμα καὶ ἰσοχρονεῖ μὲ τὸ 'Ολίγον, τότε τὸ 'Ολίγον ἀντὶ τοῦ ψηφιστοῦ λαμβάνει τὸ 'Ομαλὸν. π. χ.

Τὸ ἄνωθεν τοῦ 'Ολίγου τιθέμενον κλάσμα, μέ κάτωθεν τὸ 'Ομαλὸν τῆς ἀνωτέρω γραμμῆς ἀναλύεται καὶ ἐκτελεῖται οὕτω: π. χ.

$$\stackrel{\times}{q} \stackrel{\longleftarrow}{\varepsilon} | \stackrel{\longrightarrow}{\gamma_{\omega}} | \stackrel{\longrightarrow}{\varepsilon_{1}} \stackrel{\longrightarrow}{\varepsilon_{1}} \stackrel{\longrightarrow}{\varepsilon_{2}} \stackrel{\longrightarrow}{\varepsilon_{1}} \stackrel{\longrightarrow}{\varepsilon_{2}} \stackrel{\longrightarrow}{\varepsilon_{2}} \stackrel{\longrightarrow}{\varepsilon_{1}} \stackrel{\longrightarrow}{\varepsilon_{2}} \stackrel{\longrightarrow}{\varepsilon_$$

Όταν μετὰ τὸ "Ολίγον ἀκολουθοῦν τέσσερες (.4) "Απόστροφοι, ἐκ τῶν ὁποίων ἡ μὲν δευτέρα ἀπαιτεῖ κλάσμα, ἡ δὲ τρίτη βαρεῖαν, τότε ἀντὶ τοῦ κλὰσματος τίθεται "Απλῆ εἰς τὴν δευτέραν "Απόστροφον. Οὕτω:

Έκ τῶν ἐγχρόνων ὑποστάσεων, τὸ ᾿Αργὸν τίθεται ἄνωθεν τοῦ Ὁλίγου τοῦ ἔχοντος κάτωθεν Κεντήματα. Τὸ κλάσμα καὶ τὸ γοργὸν τίθεται καὶ ἄνωθεν καὶ κάτωθεν αὐτοῦ, καθώς καὶ ἄπασαι αἰ φθοραὶ τῶν ἤχων. Ἡ ᾿Απλῆ μετ᾽ ᾿Αντικενώματος καὶ ἡ Διπλῆ, τριπλῆ κ. λ. π. μεθ᾽ ἹΕτέρου ἡ ἄνευ τοιούτου τίθενται κὰτωθεν.

"Η Σιωπή καὶ ὁ Σταυρὸς καὶ προηγούνται καὶ ἔπονται τοῦ "Ολίγου. "Εκ δὲ τῶν ἀχρόνων ὑποστάσεων ἡ μὲν βαρεῖα προγράφεται τοῦ "Ολίγου, αὶ δέ λοιπαὶ ὑπογρὰφονται πᾶσαι πλήν τοῦ "Ενδοφώνου, τὸ ὁποῖον οὐδέποτε τίθεται εἰς τὸ "Ολίγον.

Τὰ σημεῖα τῶν ὑφεσοδιὲσεων τίθενται καὶ ἄνωθεν καὶ κάτωθεν τοῦ Ολίγου κατὰ τὴν περίστασιν.

Ή Πεταστὴ ἀνομάσθη οὕτω, διότι οἱ ἀρχαῖοι, ἐμφαίνοντες διὰ χειρονομίας τήν μελφδίαν αὐτῆς ἐσχημάτιζον πάντοτε πτέρυγὰ τινα κινουμένην. Ἡ Πεταστὴ, ὡς ἐκ τῆς ποιότητὸς της, ἔχει ἰδιάζουσαν θέσιν εἰς
τὴν μουσικὴν γραφὴν. Τὸ μέλος δύναται ν᾽ ἀρχίζη, ὅχι ὅμως καί νὰ
καταλὴγη μὲ Πεταστὴν. Πρὸ αὐτῆς δύναται νὰ ὑπάρχη ὁποιοσδήποτε ἄλλος χαρακτήρ, κατόπιν δμως αὐτῆς μόνον κατιὼν χαρακτὴρ καὶ οὐδέποτε
ἀνιὼν ἢ Ἰσον. Οἱ μετ᾽ αὐτὴν κατιόντες χαρακτῆρες οὐδέποτε εἰναι ἰσόχρονοι αὐτῆς. Δηλαδὴ ἄν ἡ Πεταστὴ , δέχεται κλάσμα π. χ. ()
δέον οἱ μετ᾽ αὐτὴν κατιόντες χαρακτῆρες νά μὴ δέχωνται κλάσμα. Ἄν
δὲ αὕτη δὲν δὲχηται κλάσμα, τὸτε δέον νὰ δέχηται τοὐλάχιστον ὁ πρῶ-

τος μετ' αὐτὴν κατιών χαρακτήρ κλάσμα. Η Πεταστή ἀπαιτεί ὅπως μετ' αὐτὴν ἀκολουθοῦν κατιόντες χαρακτήρες καὶ οὐχὶ ἀνιόντες ἢ Ἰσον, διὰ νὰ δύναται νὰ διακριθή ἡ ποιοτική της ἐνέργεια.

Ή Πεταστή άναβαίνει ἔνα φθόγγον (μίαν φωνήν) καὶ ἐν τῷ τέλει τῆς συνεχοῦς ἀναβάσεως λαμβάνει ζωπρότητὰ τινα ἐν εἴδει πετάγματος μετὰ κύκλου. Ὁ Χρύσανθος γράφων ἐν τῷ Μ. Θεωρητικῷ αὐτοῦ περὶ τῆς διαφορᾶς τῆς ἐντὰσεως τοῦ φθόγγου τοῦ χαρακτῆρος τῆς Πεταστῆς λέγει ἐν § 113 τὰ ἑξῆς: «ἡ δὲ πεταστὴ θέλει νὰ ἀναβιβάζωμεν τήν φωνήν ὀλίγον περισσότερον ἀπὸ τὴν φυσικὴν ὀξύτητα τοῦ τυχὸντος τόνου. Φυλάττει δὲ τοῦτο τὸ ἰδίωμα καὶ ὅταν ὑποτάσσηται ὑπὸ τοῦ Ἰσου ἡ τῶν κατιόντων χαρακτήρων».

Ό Θ. Φωκαεύς εν Κεφ. ΙΑ΄. τοῦ θεωρητικοῦ του λέγει «Ἡ δὲ πεταστὴ ἀναβιβάζει τὴν φωνὴν ὀλίγον περισσότερον ἀπὸ τὴν φυσικὴν βάσιν τοῦ τυχόντος τὸνου μὲ ταχεῖαν ἐπιστροφὴν ἀνεπαισθήτως εἰςτὴν ἰδίαν βάσιν του. Φυλάττει δὲ τοῦτο τὸ ἰδίωμα καὶ ὅταν ὑποτάσσηται ἀπὸ τὸ Ἰσον». Ἡ πεταστὴ τὴν αὐτὴν ἐνέργειαν, καθὼς καὶ τὸ αὐτὸ ἀκριβῶς σχῆ μα καὶ ὄνομα εἶχε καὶ εἰς τὸ ἀρχαῖον σύστημα τῆς Βυζαντινῆς παρασημαντικῆς.

'Εὰν ἡ Πεταστὴ τεθή ἄνευ ἐτεροχρόνου, (δηλαδὴ κλάσματος) τὸτε ἀπαραιτήτως μίαν καὶ μόνην 'Απόστροφον δέχεται καί οὐχὶ περισσοτέρας, ὁπὸτε καὶ ἡ 'Απόστροφος λαμβάνει συλλαβὴν. π. χ.

η του Γα βρι ηλ φθεγ ξα με νου σοι παρ θε νε το χαι αι Δ η π κ λ. π. ρε δ δ δ Σε γαρ μη τε ρα

Όταν μετὰ τὴν Πεταστὴν ἡ ᾿Απόστροφος λαμβάνη κλάσμα, τότε δύναται νὰ τεθῆ καὶ δευτέρα καὶ τρίτη ᾿Απόστροφος μετὰ κλάσματος ἢ καὶ ἄνευ κλάσματος π. χ. Δ δος μοι το ο μυ υ υ ρον Δ ἢ Δ και του το οι δας δι ι δο ο ο ο ο ναι Δ κ. τ. λ.

Έαν μετά την Πεταστην φέρουσα κλάσμα (>),εύρεθωσιν εν ή καί

περισσότερα ζεύγη "Αποστρόφων, τότε έὰν μὲν ή πρώτη ἐκάστου" ζεύγους "Απόστροφος λαμβάνη συλλαβήν, προτάσσεται ἐκάστου ζεύγους βαρεία. Π. χ. Δ γι α σαιαι τα α υ υ υ δα α α α α α α α

Έτερα παραδείγματα όρα (είς σελίδα 127). «Πώς χειροθετήσει...»

Έπίσης μετά τὴν πεταστὴν μὲ κλάσμα τίθεται βαρεῖα, ἐὰν αί Απόστροφοι είναι εἰς μὶαν καὶ τὴν αὐτήν συλλαβὴν μέ τὴν πεταστὴν. π. χ.

Έὰν ὅμως ἡ δευτὲρα Ἦπόστροφος λαμβάνη συλλαβήν, τότε βαρεῖα δὲν τίθεται. π. χ.

Όμοίως δταν άναβαίνωμεν ἐπὶ τὸ ὀξὺ συνεχῶς καὶ ὁ τελευταῖος ἀνιών χαρακτήρ ἐπιδέχεται κλάσμα, τότε ἐὰν μὲν οἰ ἐπόμενοι κατιὸντες χαρακτήρες δὲν ἔχουσι κλάσμα τίθεται πεταστή. Οῦτω:

*Εάν δὲ ἔχουσι κλάσμα τίθεται 'Ολίγον μετά ψηφιστοῦ. Οὕτω:

Όταν μετὰ τὴν Πεταστὴν μὲ κλάσμα (), ἀκολουθοῦν δύο κατιόντες χαρακτῆρες, ἐκ τῶν ὁποίων ὁ πρῶτος ἔχει γοργὸν καὶ ὑπὸ τὴν ἰδίαν συλλαβὴν, τότε ἀπαραιτήτως τίθεται ὑπορροὴ. Π. χ.

 $q = \frac{1}{100} =$

η Π.χ. π | γω ω ω σορ νην α πορ ριι ιι ψης ο τε

*Εὰν ὅμως ὁ δεύτερος τούτων κατιών χαρακτήρ, λαμβάνη ἰδίαν συλλαβήν, τότε τίθεται Συνεχὲς ἐλαφρὸν. Π. χ.

Καὶ γενικώς ἐκ τῶν ἀνωτέρω παραδειγμάτων ἐπισυνάγεται ὅτι ἡ Πεταστὴ οὐδέποτε τίθεται ἄνευ κλάσματος, ὅταν ἐπακολουθοῦν δύο ἡ περισσότεροι κατιόντες χαρακτῆρες μὴ ἑτερόχρονοι. Ἡ Ὑπορροὴ εἰς τὰ κρατήματα τῶν τερερισμῶν δέχεται καὶ συλλαβήν. Π. χ.

Έὰν μετὰ τὴν Ύπορροήν εδρίσκωνται καὶ ἄλλοι κατιόντες χαρακτήρες, τότε ἀντί Πεταστής τίθεται 'Ολίγον μετὰ ψηφιστοῦ καὶ κλὰσματος. Π. χ.

'Επίσης δύναται νὰ τεθή καὶ εἰς τήν 'Απόστροφον γοργὸν π. χ.

$$\pi = \begin{bmatrix} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\$$

"Όταν πάλιν μετά τὴν πεταστήν ἀκολουθοῦν δύο κατιόντες χαρακτῆ ρες, ἐκ τῶν ὁποίων ὁ δεύτερος ἀπαιτεῖ γοργὸν, τὸτε ἀντὶ τῆς "Υπορροῆς τίθενται δύο 'Απόστροφοι, ἵνα ἡ δευτέρα λάβη ἄνωθεν γοργὸν. π. χ.

Ή Πεταστή ὑ ὑποτάσσεται ὑπὸ τοῦ ἵσου Π. χ. ΄ς, καὶ ὑπὸ τῆς Ύψηλῆς ἐκ τῶν ἀνιόντων χαρακτήρων, μόνον ὅταν αὕτη τίθεται εἰς τὸ ἄκρον μέρος τοῦ ὅεξιοῦ τῆς πεταστῆς οὕτω: ΄ς ΄, ἐκ δὲ τῶν κατιόντων ὑπὸ πάντων τῶν χαρακτήρων. Τὰ δὲ Κεντήματα οὐδέποτε τίθενται ἐπ' αὐτῆς. Τὸ δὲ 'Ολίγον καὶ τὸ Κέντημα τιθέμενα ἐπ'αὐτῆς π. χ. ΄ς ὡς καὶ ἡ 'Υψηλὴ τιθεμένη εἰς τὸ ἀριστερὸν ἄκρον τῆς πεταστῆς π. χ. συνεκφωνοῦνται. 'Η Πεταστὴ, εἴτε ὑποτασσομένη, εἴτε συνεκφωνουμένη, φυλάσσει ἀμείωτον τὴν ποιοτικὴν της ἐνέργειαν (δηλα δὴ τὴν ἐν εἴδει πετάγματος ὀξύτητα) καὶ τὴν ὁποίαν μεταβιβάζει πρός τοὺς μετ' αὐτῆς συντεθειμὲνους χαρακτῆρας.

"Η Πεταστή δέχεται ὑφ' ἐαυτήν ἐκ μὲν τῶν ἐγχρόνων ὑποστὰσεων μόνον τὸ κλάσμα καὶ τὴν 'Απλῆν μετ' 'Αντικενώματος καὶ οὐδέποτε μὸνην. Εκ δὲ τῶν ἀχρόνων σημείων μόνον τὸ 'Αντικένωμα μὲ ἀπλῆν, τὴν βαρεῖαν καὶ τὸ Έτερον.

1) Παραδείγματα μὲ Πεταστήν, 'Αντικένωμα καὶ Βαρεῖαν.

2) μὲ "Ετερον (Σύνδεσμον). Π. χ.

Μονόχρονος Πεταστή με ἀκολουθοῦντας πολλούς κατιόντας χαρακτῆρας συχνότατα λαμβάνεται εἰς τήν ἄρσιν. Ἐὰν μετὰ τῆς μονοχρόνου Πεταστῆς ἀκολουθοῦν δύο ᾿Απόστροφοι ἡ καὶ ζεύγη ᾿Αποστρόφων ἄνευ
κλάσματος, (ἐννοεῖται ὑπὸ μὶαν καὶ τήν αὐτὴν συλλαβήν) τότε προτὰσ-

Συνήθως τοῦ ἀνωτέρω εἴδους μουσικὰς γραμμὰς μὲ τὴν Πεταστὴν μονόχρονον καὶ εἰς τὴν ἄρσιν συναντῶμεν εἰς τὰ ἀργὰ στιχηραρικὰ μαθήματα τοῦ ἀειμνήστου ΙΑΚΩΒΟΥ Πρωτοψάλτου. π. χ.

'Η Πεταστή καὶ εἰς τό ἀρχαῖον σύστημα τὸ αὐτὸ ἀκριβῶς σχήμα καὶ ὄνομα εἰχε, καθώς καὶ τὴν αὐτήν ἐνέργειαν. Ἡ δὲ ἀνάλυσὶς της μετὰ κλάσματος καὶ ἄνευ κλάσματος ὡς πρὸς τήν ἐκτέλεσιν γίνεται μὲ τὰ κεντήματα ὡς ἀνωτέρω.

Ή ποιοτική ἐνέργεια τῆς Πεταστῆς, καθώς καὶ τῶν ἄλλων σημείων ποιότητος, δύναται νὰ παρασταθῆ διὰ ζώσης μόνον φωνῆς.

Εἰς τὰ κρατήματα, ἡ ᾿Απόστροφος μετὰ γοργοῦ, κατόπιν τῆς Πεταστῆς μὲ ᾿Αντικένωμα καὶ ʿΑπλῆν, λαμβὰνει συλλαβήν καὶ προφέρεται ἐκκρεμῶς πως καὶ ἀχωρίστως. π. χ.

"Αλλως οὐδόλως δέχεται ἡ "Απόστροφος συλλαβήν.

Ή Πεταστή εθρισκομένη πρό μιᾶς καὶ μόνης Αποστρόφου μετὰ γοργοῦ δὲν δέχεται οὕτε ψηφιστὸν οὕτε κλάσμα, πλήν μιᾶς καὶ μόνηςθέσεως τήν ὁποίαν οἱ Διδὰσκαλοι τής μουσικής δὲν ἐξήγησαν π. χ.

καὶ ἡ ἐξήγησὶς της ὡς πρὸς τήν ἐκτέλεσιν γίνεται περίπου ὡς ἑξῆς: π.χ.

Όλαι δὲ αί φθοραὶ τῶν ἤχων τίθενται καὶ ἄνωθεν καὶ κάτωθεν ἀδια κρίτως κατὰ τήν περίστασιν. Ἡ ὕφεσις τίθεται ἄνωθεν. Δίεσις δὲν τίθεται εἰς τήν Πεταστήν λόγω ὅτι ἐπακολουθεῖ κατιών χαρακτήρ πάντοτε.

3ον Περί των Κεντημάτων (..).

Τὰ Κεντήματα () ἀνομάσθησαν οὕτω ἀπό τὸ ῥῆμα Κεντῶ, φανερώνει δὲ τήν ἀνάβασιν τῆς φωνῆς ἐλαφρὰν (ἠπίως) βαθμιαίαν καὶ οὐχὶ ἐλευθὲραν, ὡς εἰς τὸ ὀλίγον, ὕψωσιν τῆς φωνῆς καὶ θέλουσι νὰ συνέχηται ἡ φωνή καὶ νὰ μή χωρίζηται ὁ φθὸγγος αὐτῶν ἀπὸ τοῦ προηγουμένου. Τὰ Κεντήματα () οὐδέποτε δέχονται ἰδίαν συλλαβήν, πλήν τῶν ἀσημάντων εἰς τὰ κρατήματα τῶν τερερισμῶν, κατὰ κανόνα δὲ ἐκτείνουν τὸ φωνῆεν τοῦ προηγουμένου χαρακτῆρος. Όπου ἀπαιτεῖται Ὁλίγον, Κεντήματα δὲν τίθενται. ᾿Αντὶ Κεντημὰτων ὅμως τίθεται εἰς τινὰς περιπτώσεις Ὁλίγον. Κατὰ κανόνα ἔπειτα ἀπὸ Κεντήματα δὲν ἀκολουθοῦν Κεντήματα, ἔστω καὶ ἄν συνεχίζεται ἡ αὐτή συλλαβή. Τὰ Κεντήματα οὐδέποτε τίθενται εἰς τήν ἀρχήν καὶ εἰς τὸ τέλος τοῦ μέλους ἤ καταλήξεως, ὡς καὶ μετὰ τὴν Πεταστήν, ἀλλὰ πάντοτε ἐν μέσφ τῶν λοιπῶν χα-

ρακτήρων καὶ είναι έξηρτημένα έκ τοῦ πρὸ αὐτῶν χαρακτῆρος, εἰς τὸν ὁποῖον μεταβιβάζουσι καὶ τήν ἔμφασὶν των. Τίθενται δὲ πάντοτε ἐν συνεχεῖ ἀναβάσει ὑπὸ μίαν καὶ τὴν αὐτήν συλλαβήν μετὰ τοῦ πρὸ αὐτῶν χαρακτῆρος, δηλαδή ἐν παραθὲσει. π. χ.

"Όταν τὰ Κεντήματα τίθενται μετὰ τὸ ὀλίγον π. χ. τό ἄνωθεν αὐτοῦ π. χ. τότε καὶ εἰς τήν πρώτην καὶ εἰς τήν δευτέραν περὶπτωσιν, τὸ ὀλίγον δέχεται συλλαβήν, ὅταν ὅμως τὰ Κεντήματα τίθενται κάτωθεν τοῦ 'Ολίγου, οὕτω: οὐδέποτε λαμβάνει τὸ ὀλίγον συλλαβήν, ἀλλ' ἐπέκτασιν τῆς πρώην συλλαβής. Π. χ.

$$q$$
 $\Pi\omega$ ω $\omega\varsigma$ $\Sigma\varepsilon$ ε κ , λ , π .

'Οσάκις ὅμως ἐπέρχεται σύγχυσις μεταξὺ Κεντήματος καὶ Κεντημάτων, τὰ Κεντήματα ἀντικαθίστανται διὰ τοῦ 'Ολίγου. π. χ.

κάτωθι: "Ήτοι τὰ Κεντήματα θὰ ἀντικατασταθοῦν μὲ τὸ "Ολίγον π. χ.

$$\frac{\pi}{q}$$
 $\frac{\kappa}{\Pi\omega}$ $\frac{\kappa}{\omega\varsigma}$ $\frac{\lambda}{\omega\varsigma}$ $\frac{\pi}{\mu\eta}$ $\frac{\kappa}{\theta\alpha\nu}$ $\frac{\lambda}{\mu\alpha}$

Πάντως τὰ Κεντήματα, ὅπως καὶ ἄν τεθῶσι, εἶτε ἄνωθεν, εἶτε κατωθεν τοῦ Ὁλίγου, συλλαβὴν δέν ἐπιδέχονται καὶ ἄν ἤθελε τύχη γοργὸν τοῦτο τίθεται διά τὰ Κεντήματα. π. χ. τη Γ

γοργὸν τοῦτο τίθεται διά τὰ Κεντήματα. π. χ.
$$\frac{\kappa}{1}$$
 $\frac{\pi}{1}$ $\frac{\pi}{1}$

Τὸ αὐτὸ ἰσχύει καὶ διὰ τὸ ᾿Αργὸν, Τριημίαργον καὶ Δίαργον π . χ .

Όταν τὰ Κεντήματα ἀπαιτῶσι βραδύτητα μεγαγαλυτέραν τοῦ ἐνὸς χρόνου μετά ζωηρότητος, τότε τίθενται μετ' αὐτῶν τὸ Ἰσον μετ' ἀναλόγων χρονικῶν σημείων αὐξανόντων τὸν χρόνον (Διπλῆν, Τριπλῆν).

41

"Επίσης Κεντήματα οὐδέποτε ἐπακολουθοῦν μετὰ τὴν "Απόστροφον φέρουσαν γοργόν π. χ. [Δε ε ε σπο

$$οῦτω: ξ$$
 $\Delta ε$
 $ε$
 $σπο$
 $κ. λ. π.$

Όμοίως Πεταστή μὲ κλάσμα καὶ ψηφιστὸν, ὅταν ἀκολουθεῖ ᾿Απόστροφος μὲ γοργὸν μία καὶ μόνη εἶναι ἡ περίπτωσις αὐτὴ ὅρα (σελ. 147). Τὰς δύο ἀνωτέρω περιπτώσεις ὁ ἀεἰμνηστος Γ. Ραιδεστηνὸς εἰς τὸ ἀρχαῖον μέλος «Φῶς ἱλαρὸν....» (Μ. ἐβδομὰς σελ. 101) τὰς παρουσιὰζει λανθασμένας ἀπὸ ὀρθογραφίαν τῆς μουσικῆς π. χ.

α ον α 'Η ὀρθή γραφή ὅπως είναι καὶ είς τὰ ἀρχαῖα μουσικὰ κείμενα ἔ-

Δηλαδή άντὶ Κεντημάτων, τίθεται 'Ολίγον καὶ άντὶ Πεταστῆς μέ κλάσμα καὶ ψηφιστὸν, τίθεται 'Ολίγον μὲ 'Αντικένωμα καὶ 'Απλῆν.

Οὕτως ή Πεταστή δὲν δέχεται, οὒτε ψηφιστόν, οὕτε κλάσμα ὅταν ἀκολουθεῖ ᾿Απόστροφος μὲ γοργὸν πλὴν τῆς περιπτώσεως (σελ. 147).

"Ερωτήσας ποτέ τὸν ἀοίδιμον Κ. ΨΑΧΟΝ διὰ τὸν μακαρίτην Γ. Ραιδεστηνὸν μοῦ εἶπε ἐπὶ λέξει τὰ ἑξῆς: «Ό μακαρίτης Ραιδεστηνὸς ὑπῆρξεν ἄριστος καὶ λίαν καλλίφωνος πρωτοψάλτης, διακρινόμενος διὰ τὸ ἀρχαῖζον πατριαρχικὸν ὕφος, διαδεχθεὶς τὸν ΙΩΑΝΝΗΝ πρωτοψάλτην ἀποχωρήσαντα λὸγω γήρατος, ἀλλὰ ἀπό θεωρίαν καὶ ὀρθογραφίαν τής μουσικής ήτο τελείως ἀνίδεος». Δι' αὐτό καὶ εἰς τὴν Μ. ἐβδο μὰδα του βλέπει τις πολλάς ἀνορθογραφίας, ἐν ἀντιθέσει πρὸς τὴν Μουσικήν Κυψέλην Πέτρου καὶ Στεφάνου Λαμπαδαρίου, ὅπου δὲν παρατηροῦνται τοιαῦται ἀνορθογραφίαι. 'Ομοίως τὰ Κεντήματα χρησιμεύουσι καὶ διὰ τὴν ἀνάλυσιν τοῦ κλάσματος, τοῦ 'Ομαλοῦ καὶ τῆς Πεταστής μὲ κλάσμα.

Παραδείγματα 1) μὲ κλάσμα καὶ ἀνάλυσιν αὐτοῦ.

2) μὲ "Ομαλὸν καὶ ἀνάλυσιν αὐτοῦ ὡς πρὸ τὴν ἐκτέλεσιν.

$$\frac{1}{3} = \frac{1}{3} = \frac{1}$$

καί 3) Πεταστή μετὰ κλάσματος ή καὶ ἄνευ κλάσματος ὅρα ἀνὰλυσιν (σελ. 146).

'Εκ τῶν ἐγχρόνων ὑποστάσεων εἰς τὰ Κεντήματα (ι) τίθεται μόνον τὸ γοργὸν, τὸ δὲ 'Αργὸν ἐν τῷ μοναδικῷ συνθέσει καὶ δὴ ἐν ταῖς τελικαῖς καταλήξεσι π. χ.

ἤ

ἤ

ἤ

ἤ

Έκ δὲ τῶν τροπικῶν ὑποστάσεων τίθενται τὸ Ετερον (Σύνδεσμος) καὶ τὸ ψηφιστὸν κατὰ τὴν περίστασιν, ὡς εἴπομεν. Πᾶσαι δὲ αί φθοραὶ τῶν ἤχων ὡς καὶ αἱ ὑφεσοδιέσεις τίθενται ἄνωθεν καὶ κάτωθεν αὐτῶν.

4ον) ΠΕΡΙ ΤΟΥ ΚΕΝΤΗΜΑΤΟΣ ($^{\circ}$) ΚΑΙ ΤΗΣ ΥΨΗΛΗΣ ($^{\circ}$).

Όπως γνωρίζομεν τὸ μὲν Κέντημα ἔχει ὑπερβατήν ἀνὰβασιν δύο φθόγγων καὶ ἡ Ύψηλὴ ἔχει ὑπερβατήν ἀνάβασιν τεσσάρων φθόγγων. ᾿Αμφότεροι οἱ χαρακτῆρες οὖτοι ὀνομάζονται πνεύματα καὶ ὡς πνεύματα δὲν τίθενται μόνοι των, ἀλλὰ συντίθενται μετὰ τῶν σωμάτων. Καὶ τὸ μέν Κέντημα μηδενίζει τὴν ποσότητα τοῦ Ὁλίγου, ὅταν τεθη ὑπ᾽ αὐτὸ ἡ μετ᾽ αὐτὸ π. χ. ἡ , ὅταν ὅμως τεθη ἄνωθεν αὐτοῦ ἡ τῆς Πεταστῆς π. χ. ἡ , ὅταν ὅμως τεθη ἄνωθεν αὐτοῦ ἡ τῆς Πεταστῆς π. χ. ἡ , ὅταν ὅμως τεθη ἐνψηλὴ μηδενίζει μὲν τὴν ποσότητα τοῦ Ὁλίγου ἡ τῆς Πεταστῆς τιθεμένη εἰς τὸ δεξιὸν μέρος αὐτῶν π. χ. ἐ ἡ , Συνεκφωνεῖται δὲ τιθεμένη εἰς τὸ ἀριστερόν

μέρος αὐτῶν π. χ. _ ή . Πάντως εἴτε μηδενίζεται, εἴτε συνεκφωνεῖται ἡ ποσότης τοῦ 'Ολίγου ἢ τῆς Πεταστῆς, ἡ ποιοτικὴ των ἐνέργεια διατηρεῖται ἀμείωτος. (Δηλαδὴ ἡ ζωηρότης τοῦ 'Ολίγου καὶ ἡ ἐν εἴδει πετάγματος ποιοτικὴ ἐνέργεια τῆς Πεταστῆς).

*Εάν άλλάζη συλλαβή τότε δὲν τίθεται *Ετερον (Σύνδεσμος). (ὅρα εἰς τήν πλοκήν τοῦ ἐΕλαφροῦ).

Β'. ΟΡΘΟΓΡΑΦΙΑ ΤΩΝ ΚΑΤΙΟΝΤΩΝ ΧΑΡΑΚΤΗΡΩΝ

1) περί τῆς *Αποστρόφου (>).

"Η 'Απὸστροφος ἕλαβε τὸ ὄνομα κατὰ τὸνΠ. Κηλτσανίδην ἐκ τοῦ ἀποστρέφω καὶ μᾶλλον ἐπιστρέφω πρὸς τὰ ὀπίσω (κάτω). 'Ο μουσικὸς οὐτος χαρακτήρ ἐπενοὴθη μετὰ τῶν πρὼτων χαρακτήρων τοῦ Ἰσου () καὶ τοῦ 'Ολίγου (), διὰ τήν κατάβασιν. 'Η 'Απόστροφος τίθεται ἐν ἀρχῆ ἐν μέσω καὶ ἐν τέλει τοῦ μέλους ὅταν λαμβάνη ἀνάγκην καταβάσεως ἑνὸς φθόγγου. Διὰ πᾶσαν συνεχῆ καὶ βαθμιαίαν κατὰ φθὸγγον κατάβασιν, καθ' ῆν πᾶς φθόγγος λαμβάνει συλλαβήν, ἤ καὶ πάντες οἱ φθόγγοι εὐρίσκονται ἐν μιᾳ καί μόνη συλλαβῆ μεταχειριζόμεθα τήν 'Απόστροφον, διότι καταβαίνει ἐλευθέρως ἕνα πρὸς ἕνα φθόγγον π. χ.

Ή ἀνάλυσις τῆς ἀνωτέρω γραμμῆς ἄρχεται ἀπὸ τοῦ 'Ολὶγου, εἰς τὸ ὁποῖον εὑρίσκεται ἡ "Υψηλή καὶ ἀπὸ τὸ ὁποῖον ἀφαιρεῖται τὸ φηφιστὸν, διότι εἰς 'Αποστρὸφους τά μὲν κλὰσματα ἀντικαθίστανται διὰ τῶν "Ισων προτασσομένης τῆς βαρείας, αἱ δὲ 'Απόστροφοι λαμβάνουσιν ἄνωθεν μὲν γοργὸν, κάτωθεν δὲ 'Απλῆν.

Όταν εἰς τοὺς κατιόντας χαρακτῆρας γράφεται βαρεῖα, ὁ τελευταῖος ἀνιών χαρακτήρ δὲν δύναται νὰ λάβη τὸ ψηφιστόν, διότι μηδενίζεται ἡ τούτου ἐνέργεια καὶ γράφεται οῦτω ἀναλυτικῶς.

Είς τὰ κρατήματα τῶν τερερισμῶν, αἱ ᾿Απόστροφοι ἄνευ ἐτεροχρόνου γράφονται οὖτω:

"Όταν εἰς μίαν γραμμήν εύρεθῶσι τρεῖς "Απύστροφοι, ἐκ τῶν ὁποίων ἡ πρώτη ἀπαιτεῖ ζωηρότητα, τότε τίθεται τὸ ψηφιστὸν ἐπειδή δὲ ἡ "Απόστροφος δὲν δύναται νὰ δεχθῆ ἀπ' εὐθείας ψηφιστὸν, χάριν συμμετρίας τίθεται ἐπὶ "Ολίγου (ἐπειδή τὸ σῶμα τῆς 'Αποστρόφου εἶναι δυσανάλογον μὲ τὸ τοῦ ψηφιστοῦ) καὶ ἀκολουθοῦν κατιὸντες, τὸ αὐτὸ ἰσχύει καί διὰ τὸ 'Ελαφρὸν οὕτω:

'Η 'Απόστροφος ἐν συνθέσει δέχεται πάσας τὰς ἐγχρόνους ὑποστάσεις πλήν τοῦ 'Αργοῦ, ὡς καὶ πάσας τάς τροπικὰς τὸ δὲ Έτερον () ἢ μόνον, ἢ μετὰ διπλῆς ἢ καὶ τριπλῆς καὶ οὐδέποτε μεθ' ἀπλῆς, ἥτις τίθεται μὸνη καί μὲ 'Αντικένωμα. Πᾶσαι αὶ φθοραὶ τῶν ἢχων τίθενται ἄνωθεν ἢ κάτωθεν τῆς 'Αποστρόφου κατὰ τήν περίστασιν, ὡς καὶ αἱ ὑφεσοδιέσεις.

2ον Περί τῆς Υπορροής (,)

Ή ἐνέργεια τῆς Ὑπορροῆς εἶναι ὅτι οἶ δύο αὐτῆς φθόγγοι συνεχῶς καταβαίνουσιν, ἀπαγγελλόμενοι ἄνευ τομῆς ἢ διακοπῆς τῆς φωνῆς μεταξύ τοῦ φθόγγου τοῦ πρὸ αὐτῆς χαρακτῆρος καὶ τῶν δύο αὐτῆς φθόγγων, ἐλαφρῶς καὶ ὡς ὑπορρέουσα. Οὖτω:

$$\frac{\pi}{q} | \frac{\pi}{\kappa \alpha \iota} | \frac{\pi}{\gamma \alpha} | \frac{\pi}{\alpha \rho} | \frac{\pi}{\mu \epsilon \iota} | \frac{\pi}{\epsilon \iota} | \frac{\pi}{\epsilon} | \frac{\pi}{\epsilon$$

Είς τὴν ἀνωτέρω γραμμὴν δηλαδή Δέον νὰ προφέρωνται ἄπαντες οἱ φθόγγοι διὰ μιᾶς καὶ τῆς αὐτῆς εἰσπνοῆς, μὴ ἐπιτρεπομένης διακοπῆς τῆς φωνῆς οὕτε μεταξύ των , οὕτε μεταξύ των ... Όταν τίθεται γοργόν () εἰς τὴν Υπορροὴν, πὰντοτε ἐννοεῖται διὰ τὸν πρῶτον φθόγγον της καὶ γράφεται ἄνωθεν. Οὕτω ...

Όταν είς τὸν δεύτερον αὐτῆς φθόγγον ἀπαιτῆται ζωηρότης ἡ ὁξύτης τότε τίθεται ἄνωθεν τῆς Πεταστῆς μέ κλάσμα. Οὕτω:

$$\dot{\mathbf{x}}$$
 | \mathbf{x} | \mathbf{x}

"Όταν ἀπαιτήται κυματισμός όμαλὸς ἢ τραχὺς καί ἀνὼμαλος, τότε μετὰ τὴν "Υπορροὴν τίθεται τὸ "Ισον, συνδεόμενον μετ' αὐτής διὰ Συνδέσμου ("Ετέρου) ή "Ομαλοῦ — . "Η "Υπορροὴ μὲ γοργὸν καὶ κάτωθεν Σύνδεσμος ἤτοι μὲ "Ελαφρὸν κυματισμόν. Οὕτω:

Έπίσης ή Ύπορροή μὲ δίγοργον καὶ Σύνδεσμον, ῆτοι μὲ ἐλαφρὸν κυματισμὸν.

$$\frac{\Delta}{\tilde{n}} \left| \begin{array}{c} \sum_{i=1}^{n} \frac{1}{\tilde{n}} \\ \sum_{i=1}^{n} \frac{1}{\tilde{n}} \end{array} \right| = \frac{1}{\tilde{n}} \kappa. \lambda. \pi.$$

'Ομοίως ή 'Υπορροή μὲ 'Ομαλόν —, ήτοι μὲ τραχύν καὶ ἀνώμα-λον κυματισμόν. Οὕτω :

Έὰν ἡ Ὑπορροὴ λάβη ᾿Απλῆν (·) καὶ ἀκολουθεῖ ᾿Απόστροφος μὲ γοργὸν τότε ἀπαραιτήτως, ἡ ʿΑπλῆ τίθεται μετ' ᾿Αντικενώματος, ἐννοεῖται ὑπὸ μίαν συλλαβὴν. Ἐὰν δὲ λάβη Διπλῆν · · ἢ Τριπλῆν · · · , τότε ἐφ' ὅσον εἶναι ὑπὸ τὴν αὐτὴν συλλαβὴν ἀπαραιτήτως αὖται τίθενται μεθ' Ἑτέρου (Συνδέσμου). Οὕτω:

2) Mè τριπλῆν Οῦτω :
$$\pi$$
 | T_{ϵ} $=$ ϵ | T_{ϵ} $=$ ϵ $=$ τ $=$ τ

2) 'Aνάλυσις
$$q$$

Τε ε ε ε ε ε ε ε τε μεμιτε ρι ρι

Καὶ εἰς τὰς τρεῖς ἀνωτέρω περιπτώσεις ἡ ᾿Απόστροφος, ἥτις ἐπακολουθεῖ μὲ γοργὸν μετὰ τοῦ ᾿Αντικενώματος καὶ τοῦ Συνδέσμου καὶ ὑπὸ τὴν αὐτὴν συλλαβὴν, προφέρεται ἐκκρεμῶς πως καὶ ἀχωρίστως. Ἡ. Ὑπορροἡ οὐδέποτε λαμβάνει συλλαβὴν, ἐκτὸς τῶν ἀσημάντων τερερισμῶν Οὕτω:

Τάς δὲ φθοράς τῶν Ἦχων, λαμβάνει καὶ εἰς τὸν πρῶτον καὶ εἰς τὸν δεύτερον φθόγγον κατὰ τήν περίστασιν. Ἐκ δὲ τῶν ἐγχρόνων ὑποστὰσε-

3ον) ΠΕΡΙ ΤΟΥ ΕΛΑΦΡΟΥ ΚΑΙ ΣΥΝΕΧΟΥΣ ΕΛΑΦΡΟΥ (>).

Τὸ Ἐλαφρὸν καταβιβάζει δύο φωνάς, ὑπερβατῶς μετ' ἐλαφρότητος, δι' ὅ καὶ ὡνομάσθη Ἐλαφρὸν. Διὰ τὴν σύνθεσιν ἐλαφροῦ μὲ 'Ολίγον ἢ Πεταστήν ἰσχύουν ὅσα καὶ διά τὴν 'Απόστροφον.

Τὸ Ἐλαφρὸν ἐπιδέχεται πάντοτε Ιδιαιτέραν συλλαβήν.

Συνεχὲς ἐλαφρὸν λέγεται ὅταν τῆς ᾿Αποστρόφου ἐγγίζει τὸ Ἦλαφρὸν π. χ. οὕτω: ς, τότε καταβαίνομεν συνεχῶς δύο μὸνον φωνὰς, τῆς μέν πρώτης λαμβανομένης ὡσάν νά φέρη γοργόν καὶ εἶναι ἰσοδύναμον μὲ δύο ᾿Αποστρόφους τῆς πρώτης φερούσης γοργὸν ἥ καὶ μὲ Ὑπορροήν φερούσης γοργόν. Οὕτω:

() = 5 = 5). Όθεν ή τοιαύτη πλοκή του Έλαφρου μετά της 'Αποστρόφου, ώς εἴπομεν ἀνωτέρω, καλεῖται Συνεχές 'Ελαφρόν.

Μεταξύ ὅμως τοῦ Συνεχοῦς "Ελαφροῦ , τῆς Ύπορροῆς φερούσης γοργὸν καὶ τῶν δύο ᾿Αποστρόφων, φέρούσης τῆς πρώτης γοργὸν , ὑπάρχει θεωρητικὸς λόγος ὁ ἑξῆς: "Οτι εἰς μὲν τὸ Συνεχὲς Ἐλαφρὸν τίθεται συλλαβὴ, ῆτις προφέρεται εἰς τήν πλῆξιν τοῦ Ἑλαφροῦ, εἰς δὲ τήν Ὑπορροὴν οὐχὶ, ἀλλ' ἐπέκτασιν τοῦ φωνήεντος τῆς συλλαβῆς. Εἰς δὲ τὰς δύο ᾿Αποστρόφους τίθεται συλλαβὴ καὶ εἰς τήν πρώτην καὶ εἰς τήν δευτέραν ᾿Απόστροφον.

Παραδείγματα Ι) (μὲ Συνεχὲς Ἑλαφρὸν).

π κ. τ. λ.

2) (μὲ Υπορροὴν ς π. χ. π με ε κυ υ υ ρι ι ι ε ε

καὶ 3 (μὲ δύο ᾿Αποστρόφους)

ε ε ε ε

π Ερ χο ο με νος ο κυ υ ρι ι ος
Εἰς τὰ Κρατήματα τῶν νενανισμῶν ἀπαραιτήτως τἰθεται Συνεχὲς

Τὸ Ἐλαφρὸν ἐκ μὲν τῶν ἐγχρόνων ὑποστάσεων δέχεται πάσας, πλήν τοῦ ᾿Αργοῦ, καὶ τὴν ʿΑπλῆν μὸνον μετ᾽ ᾿Αντικενώματος. Διπλῆν δὲ ἢ Τριπλῆν μεθ᾽ Ἑτέρου (Συνδέσμου) καὶ ἄνευ Ἑτέρου, ὅταν ἡ μετά τό Ἐλαφρὸν ᾿Απόστροφος λάβη συλλαβὴν. Παραδείγματα.

1) 'Απλή μετ' 'Αντικενώματος είς τὸ 'Ελαφρόν μὲ Πεταστήν. Οῦτω:

2) Διπλή μεθ' Έτέρου, ὅταν ἡ μετὰ τοῦ Ἐλαφροῦ ᾿Απόστροφος δὲν λαμβάνει συλλαβὴν. Οὕτω:

3) Διπλή ἄνευ Έτέρου όταν ή Απόστρφος λαμβάνει συλλαβήν. Οὕτω :

Έπίσης πρὸ τοῦ Συνεχοῦς Ἐλαφροῦ, ἢ τῆς Ὑπορροῆς φερούσης γοργὸν, ὁσὰκις ἔχομεν ποσοτικὸν χαρακτῆρα ἄνευ έτεροχρόνου, εἴτε ἐν θὲσει, εἴτε ἐν ἄρσει. ἀπαραιτήτως θὰ εἶναι ὑλὶγον μὲ ψηφιστὸν. (ὅρα παραδείγματα σελ. 139).

'Απὸ δὲ τὰς τροπικὰς ὑποστάσεις δέχεται πάσας πλὴν τοῦ 'Ενδοφώνου, καθώς καὶ πάσσς τὰς φθοράς τῶν ἥχων ἄνωθεν ἥ κάτωθεν αὐτοῦ κατὰ τὴν περίστασιν.

Ή Χαμηλή ἐκ πάντων τῶν κατιόντων χαρακτήρων καταβιβάζει τὴν φωνὴν ὑπερβατῶς περισσότερον, ἢτοι μὲ τὴν χαμηλὴν καταβαίνομεν τέσ

σαρας (4) φωνὰς δπερβατῶς. Ἡ ἐνέργεια αὐτῆς είναι ὡς ἡ τοῦ Ἐλαφροῦ καὶ τῆς ᾿Αποστρόφου, τίθεται δηλαδή καὶ εἰς τὸ ᾿Ολίγον καὶ εἰς τήν Πεταστήν καὶ ὑποτάσσει αὐτὰς. Ἦπασαι δὲ αὶ φθοραὶ τῶν ἡχων ἀπαραλλάκτως τίθενται καὶ εἰς τήν Χαμηλήν, ὅπως καὶ εἰς τοὺς ἄλλους χαρακτῆρας. Ἡ Χαμηλή ἐπιδέχεται πάντοτε ἰδιαιτέραν συλλαβὴν καὶ τὸ μέλος δύναται ν᾽ ἀρχίζη μὲ Χαμηλήν. Οὕτω;

ΔΙΑΙΡΕΣΕΙΣ ΚΑΙ ΚΑΤΗΓΟΡΙΑΙ ΤΩΝ ΧΑΡΑΚΤΗΡΩΝ ΠΟΣΟΤΗΤΟΣ.

1) 'Απὸ τοὺς ἀνωτέρω ποσοτικοὺς χαρακτήρας τὸ "Ισον , τό 'Ολίγον , ἡ Πεταστή , ἡ 'Απόστροφος , τὸ 'Ελαφρὸν καὶ ἡ Χαμηλή δέχονται ἰδιαιτέραν συλλαβὴν λέξεως καὶ ἐκφέρουν τὴν φωνήν χωριστὰ, δηλαδὴ αὐτοτελῶς καὶ ἀσχέτως πρὸς τὸν προηγούμε νον καὶ τὸν ἐπόμενον χαρακτήρα, δι' ὅ καὶ ὀνομάζονται Κύριοι χαρακτήρες.

2) 'Απὸ τοὺς ποσοτικοὺς χαρακτήρας, ἰδιαιτέραν ποιοτικήν ἐνέργειαν, δεικνύει ἡ Πεταστὴ , τά κεντήματα καὶ ἡ 'Υπορροή . Καὶ ἡ μὲν Πεταστὴ , ἀκολουθουμένη πάντοτε ὑπό κατιόντων χαρακτήρων, ἐκφέρει τὸν φθὸγγον μὲ κύκλον ἐν εἴδει πετάγματος πρὸς τὰ ἄνω.

Τὰ δέ Κεντήματα δὲν δέχονται ποτὲ ἰδιαιτέραν συλλαβὴν, ἀλλά μόνον συνεχίζουν τὴν προηγουμένην συλλαβὴν ἡπὶως (μαλακῶς).

Διὰ τοῦτο ἐξαρτῶνται ἀπὸ τὸν προηγούμενον χαρακτῆρα καὶ ἐκφέρουν τὴν φωνὴν ἐν συνεχεία πρὸς τὸν προηγούμενον φθόγγον, μὲ ὀλιγωτέραν ἐκείνου ζωηρότητα, χωρὶς νὰ χωρίζεται ἡ φωνὴ των οὕτε ἀπὸ τὸν προηγούμενον, οὕτε ἀπὸ τὸν ἐπόμενον χαρακτῆρα. π. χ.

$$\frac{\pi}{\omega} = \frac{1}{\omega} = \frac{1}$$

Ή φωνή τῶν Κεντημάτων είναι συνέχεια τῆς φωνῆς τοῦ 'Ολίγου. Προφέρονται δὲ ἀσθενέστερον ἀπὸ τὸ 'Ολίγον καὶ ή φωνή των δὲν χωρίζεται ἀπὸ τὴν φωνὴν τοῦ 'Ολίγου καὶ τῆς πρώτης 'Αποστρόφου. 'Όμοι- ἀν τι πρὸς τὰ Κεντήματα συμβαίνει καὶ ὡς πρὸς τὴν 'Υπορροὴν. Δὲν

δέχεται δηλαδή καὶ αὐτὴ ἰδιαιτέραν συλλαβήν, ἀλλά ἐπεκτείνει τὴν φωνὴν τῆς συλλαβῆς τοῦ προηγουμένου φθόγγου. Δὲν ἔχει δηλαδή αὐτοτελῆ ἐνέργειαν, ἀλλὰ πὰντοτε ἐξαρτᾶται ἀπὸ τὸν προηγούμενον χαρακτῆρα. Ἐκφέρει δὲ τοὺς δύο αὐτῆς φθόγγους ἐν συνεχεἰα, χωρὶς διακοπὴν, ἀσθενέστερον ἀπὸ τὸν προηγούμενον χαρακτῆρα.

'Ο δεύτερος φθόγγος τής Ύπορροῆς ἀπαγγέλλεται πὰντοτε εἰς τὴν θέσιν, ὅταν δὲν ἔχει γοργὸν (ὅρα σελ. 153 Περὶ Ὑπορροῆς) καὶ 3) Τό Κέντημα () καὶ ἡ ὑψηλὴ (), ὅπως δὲν γρὰφονται μόνα, ἀλλὰ πάντο τε ἐν συνθέσει μὲ 'Ολίγον ἤ Πεταστὴν, οὕτω ἐπίσης δὲν ἔχουν ἰδικὴν των ποιὸτητα, ἀλλὰ λαμβάνουν τὴν ποιότητα τοῦ 'Ολίγου ἢ τῆς Πεταστῆς, μετὰ τῶν ὁποίων εὐρίσκονται συντεθειμένα. Οὕτω:

Ένεκα τής διαφοράς, την όποίαν δεικνύουν είς την ἀπαγγελίαν οί ποσοτικοί χαρακτήρες διακρίνομεν αὐτοὺς εἰς τρεῖς κατηγορίας. 1) Εἰς σώματα, 2) εἰς πνεύματα καὶ 3) εἰς οὐδετέρους.

- 1) Τὰ σώματα είναι οἱ κύριοι χαρακτῆρες. "Ητοι τὸ "Ισον, τὸ "Ολίγον,ἡ Πεταστὴ,ἡ "Απόστροφος, τὸ "Ελαφρὸν καὶ ἡ Χαμηλὴ. "Ητοι ἔξ (6).
 - 2) Τὰ πνεύματα είναι δύο τὸ Κέντημα καὶ ἡ Ύψηλὴ.

καί 3) Τὰ οὐδέτερα είναι δύο τὰ Κεντήματα καὶ ἡ Ύπορροή.

ΠΕΡΙ ΤΗΣ ΔΙΑΦΟΡΑΣ ΤΩΝ ΕΓΧΡΟΝΩΝ ΥΠΟΣΤΑΣΕΩΝ.

(ώς πρὸς τὴν ἀπαγγελίαν τοῦ Κλάσματος, 'Απλῆς, Διπλῆς καὶ χαρακτήρων......) Τὸ κλάσμα , τιθέμενον ἄνωθεν ἣ κάτωθεν ὅλων τῶν χαρακτήρων πλὴν τῶν Κεντημάτων () καὶ τῆς 'Υπορροῆς (,), διπλασιὰζει τὴν χρονικὴν αὐτῶν διάρκειαν. Τὸ αὐτὸ κάμνει καὶ ἡ άπλῆ , ἥτις μόνη μὲν τίθεται μόνον ὑπὸ τὴν 'Απόστροφον π. χ. καὶ 'Υπορροὴν ', μετὰ δὲ τοῦ 'Αντικενώματος π. χ. ὑφ' ὅλους τοὺς χαρακτῆρας πλὴν τῶν Κεντημάτων (), μὴ ἐπιδεχομομένων χρονικὴν παράτασιν πλέον τοῦ βραχὲος χρὸνου. 'Εδῶ γεννᾶται τὸ ἐρώτημα: διατὶ διὰ τὸν αὐτὸν σκοπὸν μεταχειριζόμεθα δύο διαφορετικὰ σημεῖα; Διότι καίτοι δὲν διαφέρουσι χρονικῶς, διαφέρουσι ὅμως κατὰ τὴν γραφὴν καὶ ἐκτέλεσιν. Εἰς τὸ Μέγα θεωρητικὸν τοῦ Χρυσάνθου καὶ εἰς τὴν § 120 ἀναγινώσκομεν ὅτι : «ὁ φθόγγος τοῦ χαρακτῆρος, ὅστις ἔχει τὸ κλάσμα, ἐξοδεύει δύο χρόνους καὶ ἐν τῆ χρονοτριβῆ κυματίζεται ') τρόπον τινὰ

Ή λέξις κλάσμα παράγεται ἐκ τοῦ ρήματος κλάω—ῶ(=θράνω,τσακίζω κ.λ.π. ἐξ οὖ καὶ ἡ μεταβυζαντινή ὀνομασία τοῦ κλάσματος ~ τσάκισμα).

ή φωνή». Προκειμένου δμως περί τής 'Απλής, γράφει άπλως ότι αυτη αὐξάνει κατά ἔνα χρόνον τὴν διάρκειαν τοῦ ὑφ' ὄν τίθεται χαρακτήρος, έξ οδ συνάγομεν δτι πλήν τῆς ἀπλῆς παρατάσεως τῆς χρονικῆς διαρκείας τοῦ φθόγγου ὑφ' ὄν τίθεται κατὰ ἔνα χρόνον, οὐδεμίαν ἄλλην τροπικήν ἐνέργειαν, ἔχει αὕτη.

Συμφωνούντες μὲ τὸ πνεῦμα τοῦ Χρυσάνθου, ὡς πρὸς τὴν τροπικήν έκτέλεσιν τοῦ κλάσματος, καὶ τῶν λοιπῶν χρονικῶν σημείων, ἀνέλαβον τήν διδασκαλίαν του πρακτικού μέρους τῆς καθ' ήμᾶς μουσικῆς οἱ δύο ετεροι Διδάσκαλοι και συνεργάται αὐτοῦ. Ὁ Γρηγόριος ὁ πρωτοψάλτης καὶ ὁ Χουρμούζιος ὁ χαρτοφύλαξ τῶν Πατριαρχείων π. χ.

$$X_{\alpha}$$
 X_{α} $X_{$

Τὸν τρόπον δμως τοῦτον τῆς ἀναλύσεως τοῦ κλάσματος, ὅστις καθ' ήμας είναι και ο άκριβέστερος, δεν καθιέρωσαν ώς μοναδικόν οι Διδάσκαλοι, άλλ' άνέλυον τούτο καί άπλούστερον συχνάκις π. χ. την θέσιν:

Όθεν ή ἐκτέλεσις τοῦ κλάσματος παρουσιάζει διφορετικήν τροπικήν ένέργειαν τῆς Απλῆς, ὡς καὶ διαφορὰν γραφῆς. Δηλαδή εἰς τὸν χαρακτήρα δπου τίθεται τὸ κλάσμα δέν τίθεται ἡ Απλή μόνη της, ἀλλὰ μετά τοῦ ἀΑντικενώματος π. χ. ($= \tilde{\eta} =)$). ἀΑλλά καὶ ἐκεῖ ὅπου τίθεται μόνη της π. χ. (τη ξ), οὐδεμίαν τροπικήν ἐνέργειαν ἔχει, ἀλλὰ ἀπλῶς αὐξάνει κατὰ ἔνα χρόνον τὴν χρονικήν διάρκειαν. Οὔτω αἴ δύο αὖται χρονικαί ύποστάσεις (🤝 καί *) κατ' οὐδὲν διαφέρουσι χρονικῶς. ἀλλὰ τροπικώς μόνον καί κατά τήν γραφήν διαφέρουσι.

Διά δὲ τὰ ἄλλα χρονικὰ σημεΐα καὶ τῶν τριῶν κατηγοριῶν ἔχει γίνη λόγος ἐκτενής μὲ παραδείγματα καὶ γυμνάσματα είς τὰ κεφάλαια Ε΄,

Σημείωσις: Διὰ τὴν ἐκμάθησιν τῆς ὀρθογραφίας τῆς Βυζαντινῆς μουσι-

Γ΄. ΠΕΡΙ ΤΩΝ ΤΡΟΠΙΚΩΝ ΥΠΟΣΤΑΣΕΩΝ.

"Η ΧΑΡΑΚΤΗΡΩΝ ΕΚΦΡΑΣΕΩΣ "Η ΠΟΙΟΤΗΤΟΣ.

Τὰ σημεῖα αὐτὰ δὲν ἔχουν οὕτε φωνήν,οὕτε χρονικήν διάρκειαν ἀλλὰ μόνον τὸνον. 'Ονομάζονται δὲ τροπικὰ, διότι δεικνύουν τὸν τρόπον τῆς ἀπαγγελίας τῶν φθόγγων εἰς τοὺς ὁποίους τίθενται. Μεταχειριζόμεθα αὐτὰ διὰ τὸν τονισμὸν τῶν φθόγγων, ἢτοι διὰ τὸν καλλωπισμὸν τῆς μελφδίας' Διὰ τοῦτο δινάμεθα νὰ τὰ ὁνομὰσωμεν καὶ καλλωπιστικὰ.

Ή έρμηνεία αὐτῶν ἐπιτυγχάνεται διὰ μόνης τῆς φωνητικῆς διδασκαλίας καὶ τῶν ἀναλυτικῶν ἐπεξηγήσεων περὶ τοῦ τρόπου τῆς ἀπαγγελίας των.

Τά τροπικά ή έκφραστικά σημεία είναι έξ (6). Ήτοι

1ον 'Η Βαρεία 🕽

"Η Βαρεῖα απαιτεῖ, ὅπως ὁ χαρακτήρ, ὅστις ἔπεται, ἀπαγγελθή μετά τινὸς βάρους εἰς τρόπον, ὥστε νὰ διακρίνεται ἡ ἐπ' αὐτοῦ ἐνέργεια αὐτῆς τόσον ἀπὸ τὸν προηγούμενον, ὅσον καὶ ἀπό τὸν ἐπὸμενον χαρακτῆρα, χωρὶς νὰ ὑφίσταται πτῶσιν τῆς φωνῆς κάτω τῆς τονικῆς θέσεως.

Προγράφεται δὲ ἡ βαρεῖα πὰντων τῶν χαρακτήρων πλήν τῶν Κεντημάτων καὶ τῆς Ὑποροοῆς.

Η Βαρεία τίθεται ώς έπὶ τὰς έξης περιπτώσεις.

1) Είς τὰς ἐντελεῖς καὶ τελικὰς καταλήξεις ὅλων τῶν ἢχων. Οὕτω:

κῆς, (δηλαδή τῆς ὀρθῆς πλοκῆς τῶν χαρακτήρων), συντελεῖ κατὰ μέγα μέρος ή μετὰ προσοχῆς μελέτη τῶν ἀρχαίων κλασικῶν μουσικῶν κειμένων, ὡς καὶ ἡ ἀντιγραφή αὐτῶν, ὅπου δημιουργοῦνται διὰ τὸν Σπουδαστὴν ὀπτικαὶ εἰκόναι.

2) Όταν μετά τὸ Ἰσον ἀκολουθή ᾿Απ.όστροφος μέ ᾿Απλῆν καὶ γ γὸν ἡ καὶ ἄνευ γοργοῦ, τὸτε ἀπαραιτήτως πρὸ τοῦ Ἰσου τίθεται βαρ Οῦτω:

3ον) "Οταν ἀκολουθοῦν τρία "Ισα ποὺ τὸ δεύτερον φέρει γοργόν κάτωθεν τοῦ πρώτου καὶ δευτέρου "Ισου εύρίσκεται 'Ομαλόν, ἀπαραιτή ἔμπροσθεν τοῦ πρώτου "Ισου τὶθεται καὶ βαρεῖα. Οῦτω: ἐννοεῖται ἔχοντα τὴν αὐτὴν συλλαβὴν.

Παράδειγμα με την δευτέραν και τρίτην περίπτωσιν.

Καὶ 4ον) "Όταν πολλαὶ "Απόστροφοι λαμβάνουν ἀνὰ δύο τὴν αὐτ: συλλαβὴν, τὸτε πρὸ ἐκὰστου ζεύγους "Αποστρόφων τίθεται βαρεῖα. Οὕτ

αλ λε πε στη η προος α αυ τας ο ο ο κ.λ.π.

Βαρεῖα οὐδέποτε τίθεται πρὸ τοῦ Ἰσου, ὅταν μετ' αὐτὸ ἀκολουθ Συνεχὲς ἐλαφρόν ἢ Ὑπορροὴ φέρουσα γοργὸν. Οὕτω:

η προς Κυ ρι ο ο ον ε κε ε

2ον Τὸ Ψηφιστὸν 🧼

Τό Ψηφιστόν δίδει ζωηρότητα είς τὸν φθόγγον τοῦ χαρκτῆρος κά τωθεν τοῦ ὁποίου τίθεται καὶ συνδέει αὐτὸν μὲ τὸν προηγούμενὸν του ζητών ἔμπροσθεν κατιὸντας πάντοτε καὶ ἰσοχρὸνους αὐτοῦ χαρακτῆρας.

Τὸ Ψηφιστὸν τίθεται κάτωθεν τοῦ "Ισου καὶ τῶν ἄλλων ἀνιόντων χαρακτήρων "Ολίγου καὶ Πεταστῆς, πλὴν τῶν Κεντημάτων. Τίθεται δὲ καὶ κάτωθεν τῶν κατιόντων χαρακτήρων, ἄλλ' ἐν τοιαύτη περιπτώσει μεταξύ τοῦ κατιόντος χαρακτῆρος καὶ τοῦ Ψηφιστοῦ παρατίθεται τὸ 'Ολίγον , τὸ ὁποῖον οὐδεμίαν ἔχει ἐνέργειαν ἀλλὰ τίθεται, διότι τὸ μέγε

Φράσεις με Ψηφιστόν είς κατιόντας χαρακτήρας.

'Ομοίως τίθεται κάτωθεν τοῦ Ίσου ἢ τοῦ 'Ολίγου Ψηφιστόν, ὅταν ἀκολουθῷ 'Υπορροὴ μέ γοργόν ἢ Συνεχές ἐλαφρόν. Οῦτω: Π. χ.

Όμοίως εἰς τήν σύνθεσιν τὸ Ψηφιστὸν ἐνεργεῖ ἐπὶ τοῦ ὑΟλίγου, ἐνῷ εἰς τὰς συνθέσεις ἡ ἡ ἡ ἐνεργεῖ ἐπὶ τῶν Κεντημάτων ὡς ὀξεῖα. Ἐπίσης ἐν τῆ συνθέσει αὐτῆ, ὅταν ὁ ἐπὸμενος φθόγγος γίνεται ἀρχἡ (θέσις) τοῦ μετρικοῦ ποδὸς, τὸ Ψηφιστὸν δὲν ἐνεργεῖ ἐπὶ τῶν Κεντημάτων ὡς ὀξεῖα, ἀλλ° ἐνεργεῖ ὡς βαρεῖα ἐπὶ τοῦ ἐπομένου φθόγγου. Π. χ.

επίσης ἐπὶ τοῦ ἐπομένου φθόγου ἐνεργεῖ τὸ Ψηφιστὸν ὡς βαρεῖα, ὅταν ὁ φθόγγος οὖτος (δηλαδή ὁ ἐπόμενος) δὲχεται ἔντονον συλλαβήν

Δηλαδή τὸ Ψηφιστὸν ἐνεργεῖ οὐχὶ ἐπὶ τοῦ δεχομένου αὐτὸ 'Ολίγου,

άλλ' ἐπί τῆς ἐπομένης 'Αποστρόφου τῆς δεχομένης τὴν ἔντοναν συλλαβὴν (οὖς). 'Ομοίως Ψηφιστὸν τίθεται ὑπὸ τὸ 'Ισον ῆ τὸ 'Ολίγον, ὅταν ἀκολουθοῦν δύο τοὐλάχιστον 'Απόστροφοι ἰσὸχρονοι τοῦ 'Ολίγου π. χ.

*Επίσης ὑπὸ τὸ Ἰσον ή τὸ Ὁλίγον τίθεται ψηφιστὸν ὅταν ἀκολουθή *Υπορροὴ μὲ γοργὸν. Π. χ. Φράσις ἐκ τοῦ «*Αξιον ἐστιν...» *Ανθίμου τοῦ 'Αρχιδιακὸνου.

Σημ. Τὸ Ψηφιστὸν καὶ ἡ βαρεῖα δύνανται νὰ ὀνομασθῶσι καὶ τονιστικὰ σημεῖα, διότι χρησιμεύουσι διὰ τόν τονισμόν τῶν χαρακτήρων.-

3ον Τὸ 'Ομαλόν —

Τὸ 'Ομαλὸν — , κληθὲν κατ' εὐφημισμὸν οὖτω προξενεῖ, εἰς τὸν χαρακτῆρα ὑπὸ τὸν ὁποῖον τίθεται, ἀνώμαλον καὶ τραχὺν κυματισμὸν τῆς φωνῆς ἐπὶ τὸ ὀξύ, οὖτως ὧστε ἡ φωνὴ νὰ ἐγγίζη λίαν ταχέως τοῦ ἀμέσως ὀξέως φθόγγου.-

Π. χ. ν τε ε ε ε δ ή ενέργεια τοῦ Όμαλοῦ ἀναλύεται κατά προσέγγισιν ὡς πρὸς τὴν ἐκτέλεσιν οῦτω:

"Εὰν ὅμως τὸ "Ισον δὲν ἔχη γοργόν, ὅτε καὶ ἀπαιτεῖ νά ἐπακολουθή κατιών χαρακτήρ («Απὸστροφος), τότε τὸ "Ομαλὸν ἐνεργεῖ ὡς ὀξεῖα ἐπὶ

του Ίσου. Π. χ.

Τὸ 'Ομαλὸν τίθεται κάτωθεν πάντων τῶν χαρακτήρων, πλήν τῶν Κεντημάτων καὶ τῆς Πεταστῆς. 'Απαραιτήτως ὅμως ἐπὶ μιᾶς καὶ τῆς αὐτῆς συλλαβῆς καὶ οὐχὶ ἐπὶ δύο διαφόρων. Τὸ 'Ομαλὸν ἀναπληροϊ καὶ τὸ Ψηφιστὸν, ὅταν τεθἢ ὑπὸ τὸ 'Ολίγον μετὰ κλάσματος, εἰς τὸ ὁποῖον ἀκολουθεῖ μία καὶ μόνη 'Απόστροφος μετά κλάσματος Π. χ. καὶ τὸ ὁποῖον ἀπαιτεῖ ζωηρότητα καὶ ἀναλύεται συνήθως οῦτω:

$$\frac{1}{\Delta o} = \frac{1}{\delta a}$$
 ανάλυσις ώς πρός τήν ἐκτέλεσιν = $\frac{1}{\delta a}$ $\frac{1}{\Delta o} = \frac{1}{\delta a}$ $\frac{1}{\delta a}$ $\frac{1}$

Συνηθέστερον δὲ συναντᾶται κάτωθεν τριῶν "Ισων, τοῦ δευτέρου ξχοντος γοργὸν εἰς τὰς παρατεταμένας καταλήξεις δλων τῶν ἤχων. Π. χ.

Όμοίως τὸ "Ομαλόν τίθεται καὶ εἰς τὰς τελικὰς καταλήξεις συντόμων καὶ ἀργῶν μελῶν ὅπου ἀπαραιτήτως τίθεται "Αργὸν ἤ Δὶαργον π. χ.

Δ Σω σον η μα α ας
ταλήξεις Δ ιι Αργον Α

Τὸ ἀντικένωμα τιθέμενον κάτωθεν τοῦ 'Ολίγου μετὰ γοργοῦ ἢ ἄνευ γοργοῦ ἀκολουθοῦν κατιόντες χαρακτήρες π.χ. Α = 3 | καὶ ὁ φθόγγος τοῦ 'Ολίγου προφέρεται ἐντόνως καὶ ἐν είδει πετάγματος.

Φράσις μὲ ἀντικένωμα ἄνευ γοργοῦ καὶ μετά γοργοῦ. Π. χ.

- 1) Τὸ ἀντικένωμα τιθέμενον κάτωθεν τοῦ 'Ολίγου μετὰ γοργοῦ ῆ ἄνευ γοργοῦ ἐνεργεῖ εἰς τὸ δεύτερον μέρος τοῦ μέτρου (δηλαδή τῆς ἄρσεως) ὁπότε ἀπαραιτήτως δέον νὰ ἐπακολουθοῦν κατιὸντες χαρακτῆρες.
- 2) Τό "Αντικένωμα τιθέμενον εἰς τὸ κύριον ἢ ἰσχυρὸν μέρος τοῦ μέτρου ὑπὸ τὸ Ἰσον ἢ τὸ "Ολίγον μὲ ἀπλῆν π. χ. ΄΄ ἢ ἀπαιτεῖ ὅπως ἐπα κολουθεῖ εἰς μόνον κατιὼν χαρακτήρ μετά γοργοῦ, ὅστις ἐκτελούμενος προφέρεται τρόπον τινὰ κρεμάμενος ἄνευ διακοπῆς τῆς ἀναπνοῆς καὶ ἀχω ρίστως ἀπὸ τοῦ προηγουμένου χαρακτῆρος.

Φράσις π. χ. χ | α α με εμ το ο δίδει τήν έξης γραμμήν.

*Ετέρα φράσις μὲ *Αντικένωμα, *Ομαλόν καὶ Βαρείαν, (*Ιακώβου).

Είς τήν σύνθεσιν αὐτὴν τὸ 'Αντικένωμα ἐνεργεῖ ἐπὶ τοῦ Όλίγου, Είς δὲ τὴν σύνθεσιν μὲ τήν Πεταστὴν Οῦτω : "Οπισθεν

 π | χ | χ

5ον Τὸ Έτερον ή Σύνδεσμος

Τὸ "Ετερον ἡ Σύνδεσμος () συνδέει δύο χαρακτήρας τής αὐτής ἡ διαφόρου ὀξύτητος,κάτωθεν τῶν ὁποίων τίθεται καὶ ζητεῖ ὅπως οἱ φθόγ γοι αὐτῶν προφέρωνται συνδεδεμένοι καὶ μὲ "Ελαφρὸν κυματισμὸν τῆς φωνῆς πάντοτε ὑπὸ μίαν καὶ τὴν αὐτήν συλλαβήν, τὴν ὁποίαν δέχεται ὁ πρῶτος τῶν συνδεομὲνων χαρακτήρων καὶ οὐδέποτε ὁ δεύτερος. Π. χ

'Ανεξαρτήτως του Συνδέσμου είς την ανωτέρω γραμμην προγράφεται καὶ ή βαρεία. Έτερον παράδειγμα μὲ Σύνδεσμον. Π. χ.

Όμοιως δταν κάτωθεν χαρακτήρος τινός ὑπὰρχουν δύο ἡ τρεῖς "Απλαί καὶ ἀκολουθῆ κατιών χαρακτήρ, τότε ὑπογράφεται τὸ "Ετερον ὑπὸ
τὰς 'Απλᾶς, ίνα κρατῆ ἀχωρίστως ἐν αὐτῆ τοὺς δαπανωμένους χρόνους
τοῦ φθόγγου μὲ ἐλαφρὸν κυματισμὸν καὶ μὲ ἀκριβῆ ἐκτέλεσιν τῆς ἀναλύ
σεὼς των 1) ἄνευ γοργοῦ καὶ 2) μετὰ γοργοῦ.

Καὶ εἰς τὰς δύο ἀνωτέρω θέσεις ἡ ἐνέργεια τῆς βαρεῖας πὶπτει ἐπὶ τῆς τελευταίας 'Απλῆς, μεθ' ἥν ἀκολουθεῖ κατὰβασις καὶ οὐχὶ ἐπὶ τοῦ Ἰσου τοῦ ὁποίου προγράφεται. ("Όρα παραδείγματα γραφῆς μὲ ἀνάλυσιν καὶ τῶν τριῶν περιπτώσεων σελὶς. 133).

Καί 6ον Τὸ Ἐνδόφωνον ἤ Ρινόφωνον

Τὸ Ἐνδόφωνον ή Ρινόφωνον (>>>) τοῦ ὁποίου ή χρήσις είναι σπανιωτάτη σήμερον, τίθεται εἰς χαρακτήρα φέροντας τὰς συλλαβὰς (ἔμ) καί (ἔν) καὶ ἐκτελεῖται διὰ τῆς ρινὸς κεκλεισμένων τῶν χειλέων.

Συναντᾶται δὲ εἰς κρατήματα παλαιῶν Διδασκάλων (τερερισμούς).
Π. χ.π Ε ρε εμ τε εμ τε ε ρε εμ τε εμ τε ε ρε εμ τε εμ τ

Μὲ τοὺς ἀνωτέρω ἐκφραστικοὺς καὶ ἀναλυτικούς χαρακτήρας, ὡς πρὸς τὴν ἐκτέλεσιν, δύναται ὁ καλῶς κατηρτισμένος μουσικός νὰ ἀποδώση ἐν τῆ ψαλμφδία ὅλα τὰ ποικίλα ἰδιώματα τῆς μουσικής ποιότητος, ἤτοι τὸ ἔντονον τῆς φωνῆς, τὸ κυματοειδές, τὸ ἤπιον, τὸ τραχὺ κ.λ.π. ῶστε διὰ τῆς ἐνεργείας των αὐτῆς νὰ ἀκούηται τὸ μέλος ἐκφραστικόν, εὐχάριστον καὶ λίαν τερπνὸν. Χωρὶς ὅμως νὰ γὶνεται κατάχρησις τῶν ἀναλυτικῶν γραμμῶν, ὡς πρὸς τήν γραφήν, αἴτινες θέσιν ἔχουν εἰς τὰ δημώδη ἄσματα. ᾿Ανευ αὐτῶν, τὸ μέλος θὰ ἤτο ξηρὸν καὶ τρόπον τινὰ ἄψυχον. ἑνγένει ἡ ποιότης ἐξαρτᾶται ἀπὸ τὴν καλαισθησίαν καὶ καλὴν μουσικὴν κατὰρτισιν τοῦ Ἱεροψάλτου.

*Η δέ έρμηνεία τῶν χαρακτήρων αὐτῶν ἐπιτυγχάνεται διὰ μόνης τῆς φωνητικῆς διδασκαλίας, ἥτις διεσώθη εἰς ἡμᾶς ὡς φωνητικὴ παρὰδοσις διὰ τῶν κατὰ καιροὺς ἀριστέων ἐκτελεστῶν καὶ διδασκάλων τῆς 'Εκκλησιαστικῆς Βυζαντινῆς μουσικῆς.

Φωνητικήν παράδοσιν λέγοντες έννοοθμεν το ίδιαίτερον έκεῖνο ήθος δλων όμοθ τῶν μελφδικῶν μας τρόπων καὶ ένὸς ἐκάστου ἰδιαιτέρως, ὑφ' ὅ παρουσιάζονται τὰ εἰς ἕνα ἕκαστον τῶν ὀκτὰ ἢχων ἀναγόμενα πολυ-

ποίκιλα μέλη, έκτελούμενα δμως ὑπὸ μουσικῶν, κατεχόντων ἄπαντα τὰ ἰδιαίτερα γνωρίσματα τῆς ἡμετέρας μουσικῆς, τῆς ἀπὸ στόματος εἰς στόμα διὰ μέσου τῶν αἰώνων διασωθείσης καὶ διὰ τῆς σημειογραφίας αὐτῆς εἰς σύστημα τέλειον ἀποκρυσταλλωθείσης. Τὴν παράδοσιν ταύτην κατὰ τὸ πλεῖστον ἀποτελοῦσι τὰ μουσικὰ διαστήματα έκάστου τῶν τριῶν μουσικῶν γενῶν, ἄτινα εἰναι φυσικὰ καὶ σταθερὰ, ὅπως καὶ τὰ δυνάμει τοῦ νόμου τῆς μελφδικῆς ἔλξεως εἰς καθ' ὡρισμένους, κανόνας κυμαινόμενα.

Έγραφον εν έτει Σωτηρίω 1969 εν τῆ εὐκλεεί τῶν Πατρέων πόλει. ΚΩΝΣΤΑΝΤΙΝΟΣ ΙΩΑΝ. ΠΑΝΑΣ

Μουσικοδιδάσκαλος—Καθηγητής εν τη Αρσακείφ Παιδαγωγική Ακαδημία Πατρών.