DIGITALNI UPRAVLJAČKI SISTEMI

PRVI TEORIJSKI TEST

Ime i p	rezime: Br. Indeksa:		
1.	Meri se temperatura tečnosti unutar određenog suda. Merni uređaj je kalibrisan tako da na svom izlazu daje 4mA na 0°C i 20mA na 100°C. Data analogna vrednost se digitalizuje pomoću 8-bitnog A/D konvertora. Koliki je izlaz A/D konvertora ukoliko je temperatura tečnosti 40°C. Smatrati da su merni uređaj i A/D konvertor približno linearni. ODGOVOR: A/D kovertor na izlazu daje:		
2.	U digitalnim sistemima prisutne su dve vrste kvantizacije: kvantizacija po nivou i kvantizacija po vremenu. Impulsni signali su signali kvantovani po, dok su digitalni signali kvantovani po		
3.	Prema teoremi odabiranja , analogni signal se može u potpunosti rekonstruisati iz svojih odbiraka ukoliko je (zaokružiti jedan ili više tačnih odgovora): a. Frekvencija odabiranja bar dvostruko veća od najveće frekvencije u signalu; b. Frekvencija odabiranja najviše dvostruko veća od najmanje frekvencije u signalu; c. Period odabiranja je od 4 do 10 puta veći od vremena uspona sistema.		
4.	Dat je sinusni signal $f(t)=\sin(10\pi t)$. Na osnovu teoreme odabiranja, minimalna frekvencija sa kojom se ovaj signal može odbirkovati je Ukoliko frekvencija odabiranja $8Hz$, pojaviće se $alias$ na frekvenciji (zaokružiti tačan odgovor): a. $3Hz$; b. $8Hz$; c. $2Hz$; d. aliasi se neće pojaviti jer je frekvencija odabiranja izabrana u skladu sa teoremom odabiranja.		
5.	Definisati $\mathcal Z$ transformaciju, tj. napisati kako glasi $\mathcal Z$ tranformacija niza odbiraka $f(kT)$. ODGOVOR:		
6.	$\mathcal Z$ transformacija signala je $\frac{2z^2+z+3}{(z-0.1)(z-0.2)(z-0.3)}$. Odrediti a. Vrednost signala u početnom trenutku: $f(0)=$;		

b.	Vrednost signala u ustaljenom stanju: $\lim_{t \to \infty}$	$\inf_{x \in \mathcal{T}} f(kT) = \underline{\qquad}.$

- 7. Pokazati da je $\mathbb{Z}\{r^k f(kT)\} = F(rz)$, ukoliko je $\mathbb{Z}\{f(kT)\} = F(z)$. Dokaz zapisati na poleđini testa.
- 8. Digitalni sistem je opisan funkcijom prenosa $\frac{z}{(z-0.1)(z-0.2)}$.
 - a. Dati sistem je stabilan (zaokružiti) : DA / NE;
 - b. Statičko pojačanje sistema je: ______;
 - c. Impulsni odziv sistema je (u diskretnom vremenskom domenu):

_____.

- 9. Kontinualni sistem je opisan funkcijom prenosa $\frac{5}{s^2+s+2}$.
 - a. Dati sistem je stabilan (zaokružiti): DA / NE;
 - b. Statičko pojačanje sistema je: ______;
 - c. Vremenska konstanta sistema je: ______;
 - d. Kružna učestanost sopstvenih oscilacija je: _______
 - e. Neprigušena prirodna učestanost je: ______;
 - f. Koeficijent relativnog prigušenja je: ______.
- 10. Kontinualni sistem je opisan modelom u prostoru stanja

$$\dot{x} = -2x + 3u$$
, $y = x$.

Pod pretpostavkom da se na ulazu sistema nalazi kolo zadrške nultog reda, naći odgovarajući diskretni model u prostoru stanja.

- 11. Modifikovana ${\mathcal Z}$ transformacija je (zaokružiti tačan odgovor):
 - a. \mathcal{Z} transformacija signala koji **kasni** za vreme **manje ili jednako** jednom periodu odabiranja;
 - b. \mathcal{Z} transformacija signala koji **kasni** za vreme **veće ili jednako** jednom periodu odabiranja;
 - c. $\mathcal Z$ transformacija signala koji **kasni** za **proizvoljno, ali tačno određeno** vreme;
 - d. $\mathcal Z$ transformacija signala koji **prednjači** za **proizvoljno, ali tačno određeno** vreme.
- 12. Kontinualni sistem je opisan funkcijom prenosa $\frac{2}{s+3}e^{-1.6s}$. Naći njegov digitalni ekvivalent, ukoliko se na ulazu nalazi kolo zadrške nultog reda, a vreme odabiranja je T=0.5s.

- 13. Pri preslikavanju iz s u z ravan, polovi se transformišu prema formuli: ODGOVOR:
- 14. Za svaki od ponuđenih položaja polova u s ravni napisati odgovarajući položaj polova u z ravni. Pretpostaviti da je vreme odabiranja T=0.5s.
 - a. p = -1 se preslikava u _____;
 - b. p = 5j se preslikava u _____;
 - c. p = 2 se preslikava u ______.
- 15. Na slici je prikazan položaj polova određenog kontinualnog sistema. Skicirati položaj polova odgovarajućeg diskretnog ekvivalenta na slici ispod. Za svaki od prikazanih polova skicirati odziv na impulsnu pobudu.

