Going beyond linear regression

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

Course objectives

- Learn building blocks of GLMs
- Train GLMs
- Interpret model results
- Assess model performance
- Compute predictions

- Chapter 1: How are GLMs an extension of linear models
- Chapter 2: Binomial (logistic) regression
- Chapter 3: Poisson regression
- Chapter 4: Multivariate logistic regression

salary \sim experience

salary =
$$\beta_0 + \beta_1 \times \text{experience} + \epsilon$$

$$y = eta_0 + eta_1 x_1 + \epsilon$$

salary \sim experience

salary =
$$\beta_0 + \beta_1 \times \text{experience} + \epsilon$$

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$

where:

y - response variable (output)

salary \sim experience

salary =
$$\beta_0 + \beta_1 \times \text{experience} + \epsilon$$

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$

where:

y - response variable (output)

* - explanatory variable (input)

salary
$$\sim$$
 experience

salary =
$$\beta_0 + \beta_1 \times \text{experience} + \epsilon$$

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$

where:

y - response variable (output)

x - explanatory variable (input)

\beta - model parameters

 β_0 - intercept

 β_1 - slope

salary
$$\sim$$
 experience

salary =
$$\beta_0 + \beta_1 \times \text{experience} + \epsilon$$

$$y = \beta_0 + \beta_1 x_1 + \epsilon$$

where:

y - response variable (output)

x - explanatory variable (input)

B - model parameters

 β_0 - intercept

 β_1 - slope

€ - random error

LINEAR MODEL - ols()

from statsmodels.formula.api import ols

GENERALIZED LINEAR MODEL - glm()

```
import statsmodels.api as sm
from statsmodels.formula.api import glm
```

Assumptions of linear models

salary =
$$25790 + 9449 \times \text{experience}$$

Regression function

$$E[y] = \mu = \beta_0 + \beta_1 x_1$$

Assumptions

- Linear in parameters
- Errors are independent and normally distributed
- Constant variance

What if ...?

ullet The response is binary or count $ightarrow ext{NOT continuous}$

• The variance of y is not constant $ightarrow ext{depends on the mean}$

Dataset - nesting of horseshoe crabs

Variable Name	Description
sat	Number of satellites residing in the nest
У	There is at least one satellite residing in the nest; 0/1
weight	Weight of the female crab in kg
width	Width of the female crab in cm
color	1 - light medium, 2 - medium, 3 - dark medium, 4 - dark
spine	1 - both good, 2 - one worn or broken, 3 - both worn or broken

¹ A. Agresti, An Introduction to Categorical Data Analysis, 2007.

satellite crab \sim female crab weight

y ~ weight

P(satellite crab is present) = P(y = 1)

Linear model and binary data

Linear model and binary data

From probabilities to classes

Let's practice!

GENERALIZED LINEAR MODELS IN PYTHON

How to build a GLM?

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

Random Component

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Random Component

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Systematic Component

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Random Component

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Systematic Component

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Interaction

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \beta_1 x_2 + \beta_3 x_1 * x_2$$

Random Component

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Systematic Component

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Interaction

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \beta_1 x_2 + \beta_3 x_1 * x_2$$

Curvilinear

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2$$

Random Component

Systematic Component

Link Function

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

$$g(E[y]) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

Continuous \rightarrow Linear Regression

Data type: continuous

Domain: $(-\infty, \infty)$

Examples: house price, salary, person's height

Family: Gaussian()

Link: identity

$$g(\mu) = \mu = E(y)$$

Model = Linear regression

Binary \rightarrow Logistic regression

Data type: binary

Domain: 0, 1

Examples: True/False

Family: Binomial()

Link: logit

Model = Logistic regression

$\textbf{Count} \rightarrow \textbf{Poisson regression}$

Data type: count

Domain: $0, 1, 2, ..., \infty$

Examples: number of votes, number of

hurricanes

Family: Poisson()

Link: logarithm

Model = Poisson regression

Link functions

Density	Link: $\eta=g(\mu)$	Default link	glm(family=)
Normal	$\eta=\mu$	identity	Gaussian()
Poisson	$\eta = log(\mu)$	logarithm	Poisson()
Binomial	$\eta = log[p/(1-p)]$	logit	Binomial()
Gamma	$\eta=1/\mu$	inverse	Gamma()
Inverse Gaussian	$\eta=1/\mu^2$	inverse squared	<pre>InverseGaussian()</pre>

Benefits of GLMs

- A unified framework for many different data distributions
 - Exponential family of distributions
- Link function
 - Transforms the expected value of y
 - Enables linear combinations
 - Many techniques from linear models apply to GLMs as well

Let's practice

GENERALIZED LINEAR MODELS IN PYTHON

How to fit a GLM in Python?

GENERALIZED LINEAR MODELS IN PYTHON

Ita Cirovic DonevData Science Consultant

statsmodels

• Importing statsmodels

```
import statsmodels.api as sm
```

• Support for formulas

```
import statsmodels.formula.api as smf
```

• Use glm() directly

from statsmodels.formula.api import glm

Process of model fit

- 1. Describe the model \rightarrow glm()
- 2. Fit the model \rightarrow .fit()
- 3. Summarize the model \rightarrow .summary()
- 4. Make model predictions → .predict()

Describing the model

FORMULA based

```
from statsmodels.formula.api import glm
```

```
model = glm(formula, data, family)
```

ARRAY based

```
import statsmodels.api as sm
```

```
X = sm.add_constant(X)
model = sm.glm(y, X, family)
```

Formula Argument

```
{\tt response} \sim {\tt explanatory} \ {\tt variable(s)} {\tt output} \sim {\tt input(s)}
```

```
formula = 'y \sim x1 + x2'
```

- C(x1): treat x1 as categorical variable
- -1 : remove intercept
- x1:x2: an interaction term between x1 and x2
- x1*x2: an interaction term between x1 and x2 and the individual variables
- np.log(x1): apply vectorized functions to model variables

Family Argument

```
family = sm.families.____()
```

The family functions:

- $Gaussian(link = sm.families.links.identity) \rightarrow the default family$
- Binomial(link = sm.families.links.logit)
 - probit, cauchy, log, and cloglog
- Poisson(link = sm.families.links.log)
 - identity and sqrt

Other distribution families you can review at statsmodels website.

Summarizing the model

print(model_GLM.summary())

Dep. Variabl	e:		v No. (Observations:		173
Model:	•		GLM Df Re			171
Model Family:		Binom	ial Df Mo	al Df Model:		1
Link Function	n:	lo	git Scale	e:	1.0000	
Method: Date:		I	RLS Log-l	_ikelihood:	-97.226	
		Mon, 21 Jan 2019		Deviance:		194.45
Time:		11:30	:01 Pears	son chi2:		165.
No. Iteratio	ns:		4 Covar	riance Type:		nonrobust
========	coef	std err	======= Z	P> z	[0.025	0.975]
Intercept	 -12.3508			0.000		
width	0.4972	0.102	4.887	0.000	0.298	0.697

Regression coefficients

.params prints regression coefficients

```
model_GLM.params
```

```
Intercept -12.350818
width 0.497231
dtype: float64
```

```
.conf_int(alpha=0.05, cols=None)
prints confidence intervals
```

```
model_GLM.conf_int()
```

```
0 1
Intercept -17.503010 -7.198625
width 0.297833 0.696629
```

Predictions

- Specify all the model variables in test data
- .predict(test_data) computes predictions

```
model_GLM.predict(test_data)
```

```
0 0.029309
1 0.470299
2 0.834983
3 0.972363
4 0.987941
```


Let's practice!

GENERALIZED LINEAR MODELS IN PYTHON

