

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P O Box 1450 Alexandria, Virginsa 22313-1450 www.msplo.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/754,785	01/04/2001	Pierre-Alain Darlet	40101/06901	3238
30636 7590 11/06/2012 FAY KAPLUN & MARCIN, LLP			EXAMINER	
150 BROADW	AY, SUITE 702		RUTTEN, JAMES D	
NEW YORK, NY 10038			ART UNIT	PAPER NUMBER
			2197	
			MAIL DATE	DELIVERY MODE
			11/06/2012	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Application No. Applicant(s) 09/754.785 DARLET, PIERRE-ALAIN Office Action Summary Fxaminer Art Unit James D. Rutten 2197 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 09 October 2012. 2a) ☐ This action is FINAL. 2b) This action is non-final. 3) An election was made by the applicant in response to a restriction requirement set forth during the interview on the restriction requirement and election have been incorporated into this action. 4) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 5) Claim(s) 1-15 and 40-60 is/are pending in the application. 5a) Of the above claim(s) _____ is/are withdrawn from consideration. 6) ☐ Claim(s) is/are allowed. 7) Claim(s) 1-15 and 40-60 is/are rejected. 8) Claim(s) _____ is/are objected to. 9) Claim(s) are subject to restriction and/or election requirement. * If any claims have been determined allowable, you may be eligible to benefit from the Patent Prosecution Highway program at a participating intellectual property office for the corresponding application. For more information, please see http://www.uspto.gov/patents/init_events/pph/index.jsp or send an inquiry to PPHfeedback@uspto.gov. Application Papers 10) The specification is objected to by the Examiner. 11) ☐ The drawing(s) filed on is/are: a) ☐ accepted or b) ☐ objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) ☐ All b) ☐ Some * c) ☐ None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. _ 3.☐ Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s) 3) Interview Summary (PTO-413) Notice of References Cited (PTO-892)

Information Disclosure Statement(s) (PTO/SB/08)
Paper No(s)/Mail Date

Paper No(s)/Mail Date.

4) Other:

Art Unit: 2197

DETAILED ACTION

 The reply filed October 9, 2012, has been received and entered. Claims 1, 9, and 55 have been amended. Claims 1-15 and 40-60 are pending and have been examined.

Continued Examination Under 37 CFR 1.114

2. A request for continued examination under 37 CFR 1.114 was filed in this application after a decision by the Board of Patent Appeals and Interferences, but before the filing of a Notice of Appeal to the Court of Appeals for the Federal Circuit or the commencement of a civil action. Since this application is eligible for continued examination under 37 CFR 1.114 and the fee set forth in 37 CFR 1.17(e) has been timely paid, the appeal has been withdrawn pursuant to 37 CFR 1.114 and prosecution in this application has been reopened pursuant to 37 CFR 1.114. Applicant's submission filed on October 9, 2012 has been entered.

Response to Arguments

- 3. In section II of the remarks filed 10/9/2012, Applicant refers to the rejection of claims 1-15, 40, 41, and 43-60 under 35 U.S.C. § 102(b). However, the 12/31/2008 rejection of these claims includes a rejection under 35 U.S.C. § 103(a), but not 35 U.S.C. § 102(b). Applicant's remarks have been understood to be directed to the 12/31/2008 rejections under 35 U.S.C. § 103(a).
- 4. Applicant's arguments, see pages 9-12, filed 10/9/2012, with respect to the rejection(s) of claim(s) 1-15, 40, 41, and 43-60 under 35 U.S.C. § 103(a) have been fully considered and are persuasive. Therefore, the rejection has been withdrawn. However,

Art Unit: 2197

6

upon further consideration, a new ground(s) of rejection is made in view of prior art of record "Tool Interface Standard (TIS) Portable Formats Specification, Version 1.1."

Claim Rejections - 35 USC § 103

- 5. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- unpatentable over John Levine, "Linkers and Loaders, chapter 6," June 1999 [online] accessed 08/15/2005, Retrieved from Internet <URL: http://www.iecc.com/linker/linker06.txt>, 9 pages (hereinafter *Levine*) in view of prior art of record "Tool Interface Standard (TIS) Portable Formats Specification, Version 1.1" (hereinafter "TIS").

Claims 1-15, 40, 41, and 43-60 are rejected under 35 U.S.C. 103(a) as being

As per claim 1, Levine discloses receiving a software module, the software module including references to locations within the software module, at least some of the references being backward references; and reordering components of the software module into a predetermined order to remove at least some of the backward references, ..._(see "Creating libraries" on pp. 5-6, and in particular, the discussion of using tsort and lorder to arrange object files within an archive library in proper dependency order to allow a single sequential linker pass to resolve all undefined references), wherein the components

Art Unit: 2197

further include at least one of a header, a section, and a table (see p. 2 (Libraries consist of an archive header, followed by alternating file headers and object files)).

Levine teaches the use of ELF libraries (see p. 2, e.g. "ELF libraries"). But Levine does not expressly disclose: wherein each of the components includes one of a plurality of section types and the reordering of the components is based on the section type for each of the components. However, TIS teaches the format for ELF libraries as including an indication of a section type. See TIS, pages 1-9 and 1-10, in particular Fig. 1-9, e.g. "Section Header," Fig. 1-10, e.g. "Section Types," and Fig. 1-14, "Special Sections." As indicated at the top of page 1-9, object file sections have a corresponding section header (including a section type) that describes it. In order to conform to the standardized ELF format, any section ordering would need to be "based on" a section type, since this is necessary information in a section header as taught by TIS. Note that the claimed reordering "based on the section type" is broadly but reasonable interpreted in light of the portions of the specification (published as U.S. Patent Application Publication 2002/0087956), cited by Applicant in the 10/9/12 response, including paragraphs [0034], [0046], [0058], and [0065]. It would have been obvious to one of ordinary skill in the art at the time the invention was made to use Levine's component reordering with the section type and section header taught by TIS in order to conform to a known specification and streamline the software development process as suggested by TIS (see at least "Introduction" on page i).

Levine further discloses that under certain circumstances, lorder and tsort won't be able to come up with a total order for the files, resulting in some backward references

Art Unit: 2197

remaining (see "Exercises" on p. 8). Levine further suggests a solution to remaining backward references, which includes listing the same library several times on the linker command line (see "Searching libraries" on p. 6-7), essentially replacing a backward reference with a forward reference to the repeated library entry, thereby loading (storing in memory) the components in such a manner as to avoid a nonsequential reading of the reordered software module, i.e., the components are still read sequentially, but in a longer sequence that includes some repeats (for example, A B A, B A B, or A B C D A B C D, as described on p. 6 of Levine). Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to utilize such storing of backward references in memory to avoid a nonsequential reading as a known means of handling a known limitation of attempting to remove such backward references.

As per claim 2, Levine further discloses adjusting at least one of the references in the software module to reflect the reordering of the components of the software module, so that the at least one of the references remains a reference to the same component, by to the component's new, reordered location, the new, reordered location coming after the at least one reference in the software module (see "Creating libraries" on pp. 5-6 and "Library formats" on pp. 1-5).

As per claims 3 and 4, Levine further discloses the software module including a symbol table, the symbol table including no backward references after the reordering and adjusting steps (see "Creating libraries" on pp. 5-6, and in particular, the discussion of using tsort and lorder to arrange object files within an archive library in proper dependency

Art Unit: 2197

order to allow a single sequential linker pass to resolve all undefined references). Further, Levine discloses that under certain circumstances, lorder and tsort won't be able to come up with a total order for the files, resulting in backward references remaining (see "Exercises" on p. 8).

As per claims 5-8, Levine further discloses the use of relocatable ELF object files, which include sections grouped into segments (see "Library formats" on pp. 1-5). Levine further discloses the software module including a symbol table, the symbol table including no backward references after the reordering and adjusting steps (see "Creating libraries" on pp. 5-6, and in particular, the discussion of using tsort and lorder to arrange object files within an archive library in proper dependency order to allow a single sequential linker pass to resolve all undefined references). Further, Levine discloses that under certain circumstances, lorder and tsort won't be able to come up with a total order for the files, resulting in backward references remaining (see "Exercises" on p. 8).

As per claim 9, Levine discloses a reorder module configured to receive a software module including references to locations within the software module, at least some of the references being backward references, the reorder module configured to reorder components of the software module into a predetermined order to remove at least some of the backward references, (see "Creating libraries" on pp. 5-6, and in particular, the discussion of using tsort and lorder to arrange object files within an archive library in proper dependency order to allow a single sequential linker pass to resolve all undefined references), the components further including at least one of a header, a section, and a table

Art Unit: 2197

i).

(see p. 2 (Libraries consist of an archive header, followed by alternating file headers and object files)). The use of a processor and memory is inherent in realizing the functionality of Levine.

Levine teaches the use of ELF libraries (see p. 2, e.g. "ELF libraries"). But Levine does not expressly disclose: wherein each of the components includes one of a plurality of section types and the reordering of the components is based on the section type for each of the components. However, TIS teaches the format for ELF libraries as including an indication of a section type. See TIS, pages 1-9 and 1-10, in particular Fig. 1-9, e.g. "Section Header," Fig. 1-10, e.g. "Section Types," and Fig. 1-14, "Special Sections." As indicated at the top of page 1-9, object file sections have a corresponding section header (including a section type) that describes it. In order to conform to the standardized ELF format, any section ordering would need to be "based on" a section type, since this is necessary information in a section header as taught by TIS. Note that the claimed reordering "based on the section type" is broadly but reasonable interpreted in light of the portions of the specification (published as U.S. Patent Application Publication 2002/0087956), cited by Applicant in the 10/9/12 response, including paragraphs [0034], [0046], [0058], and [0065]. It would have been obvious to one of ordinary skill in the art at the time the invention was made to use Levine's component reordering with the section type and section header taught by TIS in order to conform to a known specification and streamline the software development process as suggested by TIS (see at least "Introduction" on page

Art Unit: 2197

Levine further discloses that under certain circumstances, lorder and tsort won't be able to come up with a total order for the files, resulting in some backward references remaining (see "Exercises" on p. 8). Levine further suggests a solution to remaining backward references, which includes listing the same library several times on the linker command line (see "Searching libraries" on p. 6-7), essentially replacing a backward reference with a forward reference to the repeated library entry, thereby loading (storing in memory) the components in such a manner as to avoid a nonsequential reading of the reordered software module, i.e., the components are still read sequentially, but in a longer sequence that includes some repeats (for example, A B A, B A B, or A B C D A B C D, as described on p. 6 of Levine). Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to utilize such storing of backward references in memory to avoid a nonsequential reading as a known means of handling a known limitation of attempting to remove such backward references.

As per claims 10, Levine further discloses adjusting at least one of the references in the software module to reflect the reordering of the components of the software module, so that the at least one of the references remains a reference to the same component, by to the component's new, reordered location, the new, reordered location coming after the at least one reference in the software module (see "Creating libraries" on pp. 5-6 and "Library formats" on pp. 1-5).

As per claims 11 and 12, Levine further discloses the software module including a symbol table, the symbol table including no backward references after the reordering and

Art Unit: 2197

adjusting steps (see "Creating libraries" on pp. 5-6, and in particular, the discussion of using tsort and lorder to arrange object files within an archive library in proper dependency order to allow a single sequential linker pass to resolve all undefined references). Further, Levine discloses that under certain circumstances, lorder and tsort won't be able to come up with a total order for the files, resulting in backward references remaining (see "Exercises" on p. 8).

As per claims 13-15, *Levine* further discloses the use of relocatable ELF object files, which include sections grouped into segments (see "Library formats" on pp. 1-5). *Levine* further discloses the software module including a symbol table, the symbol table including no backward references after the reordering and adjusting steps (see "Creating libraries" on pp. 5-6, and in particular, the discussion of using tsort and lorder to arrange object files within an archive library in proper dependency order to allow a single sequential linker pass to resolve all undefined references). Further, *Levine* discloses that under certain circumstances, lorder and tsort won't be able to come up with a total order for the files, resulting in backward references remaining (see "Exercises" on p. 8).

As per claims 40 and 41, *Levine* further discloses linking the reordered module after the reordering (see "Creating libraries" on pp. 5-6, and in particular, the discussion of using tsort and lorder to arrange object files within an archive library in proper dependency order to allow a single sequential linker pass to resolve all undefined references).

As per claims 43-46, Levine further discloses the use of relocatable ELF object files, which include sections grouped into segments (see "Library formats" on pp. 1-5).

Art Unit: 2197

As per claims 47-54, Levine further discloses the reference pointing to/into a section or module before and after reordering (see "Creating libraries" on pp. 5-6 and "Library formats" on pp. 1-5).

As per claim 55, *Levine* discloses receiving a software module, the software module including components arranged in a first order, ... a first one of the components including a reference to a location in a second one of the components, the second one of the components preceding the first one of the components in the first order; and arranging the components into a predetermined second order so that the second one of the components is subsequent to the first one of the components in the second order, ... (see "Creating libraries" on pp. 5-6, and in particular, the discussion of using tsort and lorder to arrange object files within an archive library in proper dependency order to allow a single sequential linker pass to resolve all undefined references), wherein the components further include at least one of a header, a section, and a table (see p. 2 (Libraries consist of an archive header, followed by alternating file headers and object files)).

Levine teaches the use of ELF libraries (see p. 2, e.g. "ELF libraries"). But Levine does not expressly disclose: wherein each of the components includes one of a plurality of section types and ... wherein the arrangement is based on the section type for each of the first and second ones of the components. However, TIS teaches the format for ELF libraries as including an indication of a section type. See TIS, pages 1-9 and 1-10, in particular Fig. 1-9, e.g. "Section Header," Fig. 1-10, e.g. "Section Types," and Fig. 1-14, "Special Sections." As indicated at the top of page 1-9, object file sections have a corresponding section header

Art Unit: 2197

(including a section type) that describes it. In order to conform to the standardized ELF format, any section ordering would need to be "based on" a section type, since this is necessary information in a section header as taught by TIS. Note that the claimed arrangement "based on the section type" is broadly but reasonable interpreted in light of the portions of the specification (published as U.S. Patent Application Publication 2002/0087956), cited by Applicant in the 10/9/12 response, including paragraphs [0034], [0046], [0058], and [0065]. It would have been obvious to one of ordinary skill in the art at the time the invention was made to use Levine's component reordering with the section type and section header taught by TIS in order to conform to a known specification and streamline the software development process as suggested by TIS (see at least "Introduction" on page i).

Levine further discloses that under certain circumstances, lorder and tsort won't be able to come up with a total order for the files, resulting in some backward references remaining (see "Exercises" on p. 8). Levine further suggests a solution to remaining backward references, which includes listing the same library several times on the linker command line (see "Searching libraries" on p. 6-7), essentially replacing a backward reference with a forward reference to the repeated library entry, thereby loading (storing in memory) the components in such a manner as to avoid a nonsequential reading of the reordered software module, i.e., the components are still read sequentially, but in a longer sequence that includes some repeats (for example, A B A, B A B, or A B C D A B C D, as described on p. 6 of Levine). Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to utilize such storing of backward references

Art Unit: 2197

in memory to avoid a nonsequential reading as a known means of handling a known limitation of attempting to remove such backward references.

As per claims 56 and 57, *Levine* further discloses linking the reordered module after the reordering (see "Creating libraries" on pp. 5-6, and in particular, the discussion of using tsort and lorder to arrange object files within an archive library in proper dependency order to allow a single sequential linker pass to resolve all undefined references).

As per claim 58-60, *Levine* further discloses the use of relocatable ELF object files, which include sections grouped into segments (see "Library formats" on pp. 1-5).

Claim 42 is rejected under 35 U.S.C. 103(a) as being unpatentable over Levine and
TIS as applied to claim 1 above, and further in view of U.S. Patent No. 6,185,733 to Breslau et al.

As per claim 42, Levine discloses such a method but fails to expressly disclose transferring the reordered module to a different computer system and linking the module on the different computer system. However, Breslau et al. teaches the use of remote object libraries distributed prior to linking (see, for example, col. 4, lines 11-20). Therefore, it would have been obvious to one of ordinary skill in the computer art at the time the invention was made to such use of a different computer for linking. One would be motivated to do so, for example, to facilitate distributed software development efforts or reduce the physical storage requirements for object files (see, for example, col. 2, lines 4-25).

Conclusion

 Any inquiry concerning this communication or earlier communications from the examiner should be directed to James D. Rutten whose telephone number is (571)272-3703. The examiner can normally be reached on M-F 10:00-6:30.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Li B. Zhen can be reached on (571)272-3768. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/James D. Rutten/ Primary Examiner, Art Unit 2197