Harvard University Computer Science 121

Problem Set 9

Due Tuesday, December 7, 2010 at 1:20 PM.

Submit a single PDF (lastname+ps9.pdf) of your solutions to cs121+ps9@seas.harvard.edu Late problem sets may be turned in until NO LATE DAYS at 1:20 PM with a 20% penalty. See syllabus for collaboration policy.

Name

Problem set by !!! Your Name Here !!!

with collaborator !!! Collaborators' names here !!!!

PROBLEM 1 (5 + 5 points)

- (A) Let Double-Sat = $\{\langle \phi \rangle : \phi \text{ is a boolean formula with at least two satisfying assignments }\}$. Show that Double-Sat is NP-complete.
- (B) Let k be a natural number, and let \mathcal{C} be a finite collection of finite sets. Then \mathcal{C} is said to be a k-HITTING SET if there is a set H of size at most k that intersects every member of \mathcal{C} . That is, a finite collection C of finite sets is a k-HITTING SET if there exists a set H of size at most k such that $S \cap H \neq \emptyset$ for every $S \in \mathcal{C}$. Prove deciding k-HITTING SET is NP-complete. [Hint: Reduce from Vertex Cover.]

PROBLEM 2
$$(5+5+2 \text{ points})$$

Consider the following two languages:

 $A = \{\langle D \rangle : D \text{ is a DFA and } D \text{ accepts at least one string}\}$

 $B = \{\langle D_1, D_2, ..., D_k \rangle : \text{Each } D_i \text{ is a DFA and all of the } D_i \text{ accept at least one string in common} \}$

- (A) Show that $A \in P$.
- (B) THIS PROBLEM HAS BEEN CORRECTED by changing "NP-complete" to "NP-hard."

Show that B is NP-hard by giving a reduction from 3-SAT to B.

(C) We can convert an instance of B into an instance of A by applying the product construction (See p.45-46 of Sipser) k-1 times in succession. Does this show that P = NP? Why or why not?

PROBLEM 3 (5+2 points)

Recall that Co-NP = $\{L : \overline{L} \in \text{NP}\}$. It is unknown whether or not NP = Co-NP. Note that NP = Co-NP if and only if NP is closed under complement.

- (A) Prove that if NP \neq Co-NP, then P \neq NP. (Aside: Nonetheless, we can't rule out the possibility that NP = Co-NP and yet P \neq NP.)
- (B) To prove that NP = Co-NP, it would suffice to show that for every $L \in \text{NP}$, $\overline{L} \in \text{NP}$. Suppose $L \in \text{NP}$. Then there exists a nondeterministic Turing machine M that decides L in polynomial time. Consider the new Turing machine M', which is identical to M except that its accept and reject states are reversed.

What language does M' decide? Explain briefly.

PROBLEM 4 (5+5+10 points)

A search problem is a mapping $S: \Sigma^* \to P(\Delta^*)$ from strings ("instances") to sets of strings ("valid solutions"). An algorithm M solves a search problem S if for every input $x \in \Sigma^*$ such that $S(x) \neq \emptyset$, M outputs some solution in S(x).

An NP search problem is one for which there exists a polynomial p and a polynomial-time algorithm V such that for every x and y

- 1. $y \in S(x) \Rightarrow |y| \le p(|x|)$, and
- 2. $y \in S(x) \Leftrightarrow V \text{ accepts } \langle x, y \rangle$.

Informally, these conditions say that valid solutions are short and can be verified efficiently.

- (A) Show that the SAT-SEARCH problem "given a satisfiable boolean formula φ , find a satisfying assignment" is an NP search problem
- (B) Prove that $SAT \in P$ if and only if the SAT-SEARCH problem can be solved in polynomial time.
- (C) Prove that P = NP if and only if every NP search problem can be solved in polynomial time.

PROBLEM 5 (BONUS +1 points)

A language is in NST(S,T) if it is accepted by a nondeterministic Turing Machine that runs simultaneously in space S(n) and time T(n). Show that NST(S(n),T(n)) \subseteq DSPACE($S(n)\log T(n)$). Then show that actually NST(S(n),T(n)) \subseteq DSPACE($S(n)\log(T(n)/S(n))$) (an improvement, for example, if $T(n) = S(n)\log S(n)$).