8.3 More Integral Theorems

May 30, 2015

Abstract

Exercices de la secion 8.3 des théorèmes se rapportant à l'intégrale de Riemann dérivés à l'aide du critère d'intégrabilité de Lebesgue.

8-16

- 1. $f, g: [a, b] \to \mathbb{R}$ une fonction riemann
- 2. $\exists \epsilon > 0$ tel que $|g(x)| > \epsilon$ pour tout $x \in [a, b]$

(a)

$$\diamond$$
 (1) $\frac{f}{g}$ est riemann

Puisque g n'est jamais nulle sur [a,b], on a que $\frac{1}{g}(x)$ est bien définie sur [a,b].

Or, $\frac{1}{q}$ est continue pp puisque g est continue pp ([1] + thm 8.12).

On applique alors la partie 1 du thm 8.14.

(b)

$$\diamond |f|$$
 est riemann et $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$

Puisque |x| est continue sur \mathbb{R} et f est continue pp sur [a,b], |f| est continue pp sur [a,b] car si f est continue en x, alors |f| le sera aussi (**thm 3.30**). Donc |f| est riemann (**thm 8.12**).

Par le **lemme 5.6**, puisque f est riemann, alors pour toutes suites de partition $\{P_k\}$ telle que $\lim_{n\to\infty}||P_k||=0$ avec suite d'ensemble d'évaluation $\{T_k\}$ correspondant, on a $\lim_{k\to\infty}R(f,P_k,T_k)=\int_a^bf$.

Par **2-12**, puisque la limite des sommes de riemann existe, on a $\left| \int_a^b f \right| = \left| \lim_{k \to \infty} R(f, P_k, T_k) \right| = \lim_{k \to \infty} |R(f, P_k, T_k)|$.

On déduit

$$\lim_{k \to \infty} |R(f, P_k, T_k)|$$

$$=$$

$$\lim_{k \to \infty} \left| \sum_{i=1}^{n_k} f(x_{k,i}) \Delta x_{k,i} \right|$$

$$\leq$$

$$\lim_{k \to \infty} \sum_{i=1}^{n_k} |f(x_{k,i})| \Delta x_{k,i}$$

$$=$$

$$\lim_{k \to \infty} R(|f|, P_k, T_k)$$

$$=$$

$$\int_{a}^{b} |f|$$

où la dernière égalité est une autre application du lemme 5.6.

On peut terminer la preuve en considérant n'importe quelle partition donc la norme tend vers 0 et considérer sa somme supérieure ou inférieure.

(c)

 \diamond Dans le but d'illustrer l'utilité du critère d'intégrabilité de Lebesgue, démontrez l'intégrabilité de |f| sur [a,b] à l'aide du critère de Riemann (**thm 5.25**).

Puisque f est riemann, pour tout $\epsilon > 0$ il existe P une partition de [a,b] tel que $U(f,P) - L(f,P) < \epsilon$ (thm 5.25).

Alors

$$U(|f|, P) - L(|f|, P)$$

$$= \sum_{i=1}^{n} M_i \Delta x_i - \sum_{i=1}^{n} m_i \Delta x_i$$

$$= \sum_{i=1}^{n} (M_i - m_i) \Delta x_i$$

où $M_i = \sup\{|f(x)| : x \in [x_{i-1}, x_i]\}$ et $m_i = \inf\{|f(x)| : x \in [x_{i-1}, x_i]\}$.

Soit
$$S_i := \sup\{f(x) : x \in [x_{i-1}, x_i]\}\$$
 et $L_i := \inf\{f(x) : x \in [x_{i-1}, x_i]\}.$

On a alors quelques cas. Si $S_i \geq 0$ et $L_i \geq 0$, alors $M_i = S_i$ et $m_i = L_i$

car $|f|([x_{i-1}, x_i]) = f([x_{i-1}, x_i])$ et donc $S_i - L_i = M_i - m_i$.

Si $S_i \geq 0$ et $L_i < 0$, alors $M_i = \max\{|S_i|, |L_i|\}$ et $m_i \geq 0$.

Si $S_i > |L_i|$, alors c'est que $S_i > 0$. SPDG, on ne considérera que des x tel que f(x) > 0. Supposons alors $L < S_i$ tel que L soit le supremum.On pose $\alpha := S_i - L$. Alors il existe $x \in [x_{i-1}, x_i]$ tel que $S_i - f(x) < \alpha = S_i - L$. Alors f(x) > L et donc L ne peut pas être le supremum. En particulier $|L_i|$.

Si $|L_i| > S_i$. Supposons $L < |L_i|$ le supremum. On pose $\alpha := |L_i| - L$. Puisque L_i est l'infimum de $\{f(x) : x \in [x_{i-1}, x_i]\}$, il existe x tel que $f(x) - L_i < \alpha = |L_i| - L = -L_i - L$. Alors f(x) < -L. SPDG, f(x) < 0. Alors |f(x)| > L et donc L ne peut pas être le supremum. À plus forte raison S_i .

Si alors $M_i=S_i$, alors $S_i-L_i\geq S_i$ car $-L_i>0$. Si $M_i=|L_i|$, alors $S_i-L_i=S_i+|L_i|=M_i+S_i\geq M_i-m_i$ car $m_i\geq 0$.

Si $S_i < 0$ et $L_i < 0$, alors $M_i = |L_i|$ et $m_i = |S_i|$. Car alors $|f|([x_{i-1}, x_i]) = -f([x_{i-1}, x_i])$ et donc $\sup(|f|([x_{i-1}, x_i])) = -\inf(f([x_{i-1}, x_i])) = |L_i|$ et analoguement pour l'infimum.

Alors $M_i - m_i = |L_i| - |S_i| = -L_i - (-S_i) = S_i - L_i$.

On conclut

$$\sum_{i=1}^{n} (M_i - m_i) \Delta x_i$$

$$\leq \sum_{i=1}^{n} (S_i - L_i) \Delta x_i$$

$$= U(f, P) - L(f, P) < \epsilon$$

Ainsi $U(|f|, P) - L(|f|, P) \le U(f, P) - L(f, P) < \epsilon$.

8-17

- 1. $f:[a,b]\to\mathbb{R}$
- 2. $m \in (a, b)$

 $\diamond f$ est riemann sur [a,b] ssi f est riemann sur [a,m] et sur [m,b] et alors

$$\int_a^b f = \int_a^m f + \int_m^b f$$

 (\Rightarrow)

Supposons f riemann sur [a, b]. Alors f est continue pp sur [a, b] (thm 8.12) et donc continue pp sur [a, m] et sur [m, b] et donc riemann sur chacun de ces

intervalles (thm 8.12).

Puisque f est riemann sur chacun des intervalles [a, m] et [m, b] alors pour toutes suites de partitions $\{P_k\}$ de [a, m], $\{D_k\}$ de [m, b] on a

$$\lim_{k \to \infty} R(f, P_k, T_k) = \int_a^m f$$

$$\lim_{k \to \infty} R(f, D_k, T_k^*) = \int_m^b f$$

Alors

$$R(f, P_k, T_k) + R(f, D_k, T_k^*) = \sum_{i=1}^{n} f(t_i) \Delta x_i + \sum_{i=1}^{m} f(t_i^*) \Delta x_i = \sum_{i=1}^{n} f(t_i) \Delta x_i + \sum_{i=n}^{n+m} f(t_{n+i}^*) \Delta x_{n+i} = \sum_{i=1}^{n+m} f(t_i) \Delta x_i = R(f, P_k \cup D_k, T_k \cup T_k^*)$$

car $P_k \cup D_k$ forme une partition de [a,b] où P_k termine en m et D_k y débute. De plus, il est clair que $\lim_{k\to\infty}||P_k\cup D_k||=0$.

Puisque f est riemann sur [a,b], on applique à répétition le **lemme 5.6** pour obtenir

$$\int_{a}^{m} f + \int_{m}^{b} f$$

$$= \lim_{k \to \infty} R(f, P_{k}, T_{k}) + \lim_{k \to \infty} R(f, D_{k}, T_{k}^{*})$$

$$= \lim_{k \to \infty} (R(f, P_{k}, T_{k}) + R(f, D_{k}, T_{k}^{*}))$$

$$= \lim_{k \to \infty} R(f, P_{k} \cup D_{k}, T_{k} \cup T_{k}^{*})$$

$$= \int_{a}^{b} f$$

 (\Leftarrow)

Supposons f intégrable sur [a, m] et sur [m, b]. Alors f est continue pp sur chacun de ces intervalles considérés individuellement.

Soit alors $x \in [a, b]$ tel que f : [a, b] est discontinue. Alors $x \in [a, m]$ ou $x \in [m, b]$. SPDG, $x \in [a, m]$. Alors $f(x) = f|_{[a, m]}(x)$. Mais alors $f|_{[a, m]}(x)$ doit être discontinue, car sinon f(x) serait continue. Donc les points de discontinuité de f forment un sous-ensemble des points de discontinuité de $f|_{[a,m]}$ et de $f|_{[m,b]}$. Or la mesure de l'union de ces ensembles est nulle, car la mesure de chacun d'entre eux l'est également, donc f est continue pp sur [a, b] donc riemann sur [a, b] (thm 8.12).

Alors, en appliquant le **lemme 5.6** pour $f|_{[a,m]}$ et $f|_{[m,b]}$, on effectue un raisonnement similaire à celui fait plus haut.

8-18

- 1. f Riemann sur [a, b]
- 2. $x_0 \in [a, b]$
- 3. $G(x) := \int_{x_0}^{x} f(t)dt$
- $\diamond \ G(x) \ \text{est uniformément continue sur} \ [a,b]$ $\diamond \ \mathbf{Si} \ \ f \ \text{est continue en} \ x \in (a,b) \ \mathbf{alors} \ \frac{d}{dx} \left(\int_{x_0}^x f(t) dt \right) = f(x)$

On a que

$$\int_a^x f = \int_a^{x_0} f + \int_{x_0}^x f$$

et donc $G(x) = \int_a^x f - \int_a^{x_0} f$. Or, le premier terme de cette différence est uniformément continue (**thm 8.17**) et le deuxième, étant une constante, l'est également. Donc G(x) est une différence de fonctions continues sur [a,b]. Elle est donc continue sur [a, b] (thm 3.27) et donc uniformément continue sur cet interval (lm 5.19).

Supposons alors f continue en $x \in (a, b)$. Alors

$$G'(x) = \frac{d}{dx} \left(\int_a^x f - \int_a^{x_0} f \right) = f(x)$$

puisque la dérivé de $\int_a^x f$ est f(x) (thm 8.17) et que celle de $\int_a^{x_0} f$ est 0, étant une constante.

8-19

- 1. f, g Riemann sur [a, b]
- $\diamond fg$ est Riemann sur [a,b] à l'aide du critère de Riemann (thm 5.25)