Measuring the Cost of Living: GDP Deflator & CPI

Prof. Ed Cho

Outline: Unit I, Section INT 3

I. Price level: GDP Deflator

II. Price level: CPI

III. Inflation Rate

Current event

US productivity slump?

The Efficiency Enigma Adoption of new technology has traditionally boosted U.S. productivity. But economists can't explain why productivity growth has stalled, despite a cornucopia of labor-saving gadgets and services from Silicon Valley. 1974-1995 End of WWII to 1973 1996-2003 2004-present The post-war economic boom and Oil prices spike, ushering in stagnant Computers' Productivity wilts. productivity's golden age. growth, inflation and falling spread helps even as technology productivity. supercharge goes mainstream. the economy. Labor productivity (output per hour), annual change () and the five-year average (6% Shading indicates recessions 4 2 0 1948 1950 1960 1970 1980 2000 2010

[&]quot;US Productivity: Missing or in Hiding?" WSJ, 07-17-15

Is GDP Just Mis-measured?

- New technological improvements are free
 - E.g. Google search/maps, Skype, other apps
 - Provide productivity improvements
 - Free up time for leisure & media
 - Free up time for additional work
 - GDP measures the market value of all final...
 - Productivity (GDP/L or Y/L) is measured using GDP
 - Ideal GDP?

Alternative View

- Technological Progress takes time to become reflected in official GDP
 - 1980s: Computers eventually increase productivity
- Wages have not increased
- What alternative measure would you use?
 - BEA: Make adjustments to current measure
 - Include intellectual property into investment
 - E.g. Lady Gaga invests in writing and recording music (Sichel)

I. GDP Deflator Real GDP versus Nominal GDP

- Assume your parents made \$30,000 in 1990. Is that the same as making \$30,000 in 2015?
- Nominal GDP = Value of goods and services measured at current prices
- Real GDP = Value of goods and services measured at constant prices
 - => Real purchasing power

GDP Deflator

 GDP Deflator = Measure of the price level = A factor used for converting nominal GDP to real GDP

 Question: How can I compare today's nominal GDP in 2015 with the (nominal) GDP in say 2000?

Answer: Fix prices in the year 2000, and value
 2015 output using constant 2000 prices

Calculating GDP Deflator

Steps:

- 1. Specify the base year
- 2. Fix prices in the base year
- Holding prices fixed, compute real GDP for every year
- 4. Compute GDP $Deflator_t = \frac{nom \ GDP_t}{real \ GDP_t} * 100$ for every year
- 5. Compute inflation rate for every year

GDP Deflator: Apples and Bananas

Year	Apples		Bananas		Nom GDP	Real GDP	GDP deflator
	P_A	Q_A	P_B	Q_B	-	-	-
2011 (base)	2	50	0.50	100			
2012	3	100	1	200			

Calculate nominal GDP and real GDP using the table above.

Notes

Compute the GDP deflator for each year

$$P_{11} = GDP \ Deflator_{11} = \frac{nom \ GDP_{11}}{real \ GDP_{11}} * 100 = \frac{150}{150} * 100 = 100$$

$$P_{12} = GDP \ Deflator_{12} = \frac{nom \ GDP_{12}}{real \ GDP_{12}} * 100 = \frac{500}{300} * 100 = 167$$

How much did the price level increase by?

π : Inflation rate

• π_t = Inflation rate in year t = Percent change in the price level in year t = $\%\Delta P_t$

$$\pi_t = \% \Delta P_t = \frac{P_t - P_{t-1}}{P_{t-1}} * 100$$

$$= \frac{GDP \ Deflator_{12} - GDP \ Deflator_{11}}{GDP \ Deflator_{11}} * 100$$

$$\pi_{12} = \% \Delta P_{12} = \frac{167 - 100}{100} * 100 = 67\%$$

Converting nominal GDP to real GDP

$$real~GDP_t = \frac{nom~GDP_t}{GDP~Deflator_t} * 100$$

Year	GDP deflator	Nominal GDP	Real GDP
2000(base)	100	2000	(2000/100)*100 = 2000
2005	112	4000	(4000/112)*100 = 3571
2010	130	8600	(8600/130)*100 = 6615
2015	158	12400	(1240/158)*100 = 7848

In 2000 US\$

Inflation rates: CPI and GDP deflator

CPI

CPI = Measure of the overall cost of a typical basket of goods and services bought by the average consumer

Steps:

- 1. Specify the base year
- 2. Fix the basket in base year [4 Chips, 2 Donuts]
- 3. Holding the basket (quantities) fixed, compute the basket cost for every year
- 4. Compute $CPI_t = \frac{Cost\ of\ basket\ in\ year\ t}{Cost\ of\ basket\ in\ base\ year} * 100\ for$ every year
- 5. Compute inflation rate for every year

Given P and Q, calculate CPI

Fix the basket: 4 Chips, 2 Donuts

Year	P _C	P _D	Cost	CPI
2010 (base)	1	2		
2011	2	3		
2012	3	4		

Notes

π : Inflation rate

$$\pi_t = \% \Delta P_t = \frac{P_t - P_{t-1}}{P_{t-1}} * 100$$

$$\pi_t = \frac{CPI_t - CPI_{t-1}}{CPI_{t-1}} * 100$$

•
$$\pi_{11} = \frac{CPI_{11} - CPI_{10}}{CPI_{10}} * 100 = \frac{175 - 100}{100} * 100 = 75\%$$

•
$$\pi_{12} = \frac{CPI_{12} - CPI_{11}}{CPI_{11}} * 100 = \frac{250 - 175}{175} * 100 = 43\%$$

CPI Bias

- COLA = Cost of living adjustment
- Overestimates COLA
 - Substitution bias
 - E.g. coffee and tea substitutes
 - New goods bias
 - E.g. TurboTax
 - Unmeasured quality change bias
 - E.g. Better computers and cars
 - Boskin commission (1995): Bias = 1.1%
 - Overcompensating: Soc Sec/Medicare/Retirement payments, private sector wages

GDP Deflator versus CPI

GDP Deflator

- Fixed prices
- Produced domestically
- Any component of GDP
 Y= C + I + G + NX
- Any G&S produced in US

CPI

- Fixed quantity (or basket)
- Purchased by consumers
- C component of GDP
- G&S consumed by households in US

Inflation rates: CPI and GDP deflator

