

Figure S1. Effects of A438079, a P2X7R-specific antagonist, on agonist-induced receptor activation and deactivation. (A and B) Concentration-dependent effects of A438079 on ATP- (A) and BzATP (B)-induced current response. Note that the current scales are variable. At concentrations indicated above traces, mixture solutions of A438079 and agonist were applied. (C) Dose-dependent effect A438079 on sustained BzATP-induced current.

S2. Markov state Figure model adopted from the scheme in Yan et al. (2010) describing the binding and unbinding of agonist (ATP or BzATP) to the P2X7R. C₁-C₄ are closed states, whereas Q₁-Q₄ are open states, where Q1 and Q2 possess the same conductance g_{12} , whereas Q_3 and Q4 possess the conductance g_{34} ($g_{12} < g_{34}$). The open circles on each state represent unoccupied binding sites, whereas closed circles represent occupied binding sites. C1, C2, Q1, and Q2 are the unsensitized states. whereas Q₃, Q₄, C₃, and C₄ are the sensitized states. Negative cooperativity for agonist binding was assumed to oc-

cur only in the top row (unsensitized states). In other words, binding affinity decreases at each step in the top row (making agonist binding asymmetrical); i.e., $3k_2/k_1 > k_4/k_3 > k_6/3k_5$. Receptor sensitization was assumed to restore both symmetry and backward/forward rates to those belonging to the naive state C_1 (i.e., to k_1 and k_2). In other words, negative cooperativity is lost in the bottom row (L_4 , i = 1-3, are the transition rates between unsensitized and sensitized states). The new feature added to this scheme is the inclusion of the allosteric binding of extracellular Ca^{2+} to the receptor via the two fractions (Hill functions) 2-F, affecting the set of backward rates (k_1 , k_3 , and k_5), and F, affecting the set of forward rates (k_2 , k_4 , and k_6), both of which depend on the concentration of extracellular divalent cations [DC]_e, including Ca^{2+} .

Figure S3. Fitted plots describing the effects of divalent cations. Graphs of the fractions $F = \alpha \beta^2/(\beta^2 + [\mathrm{DC}]_e^2)$ (A) and $2 - F(\mathrm{B})$, the Hill functions describing the dependency of P2X7R allosteric regulation by the concentration of extracellular divalent cations $[\mathrm{DC}]_e$ (specifically fitted to Ca^{2+}). β represents both the IC_{50} for F and EC_{50} for 2 - F, whereas α satisfies $F(0) = \alpha$.

Figure S4. Deactivation phases of the open states $Q_1 + Q_2$ and $Q_3 + Q_4$, normalized by their maximum values, when a single naive model cell is activated by the same free BzATP concentration. This was achieved by simultaneously varying the concentrations of extracellular Ca^{2+} and BzATP, specified by the values on top of each panel. B–D show that at higher [DC]_e, the slow component of the deactivation phase of the open state $Q_3 + Q_4$ gradually recedes in favor of the open state $Q_1 + Q_2$ when compared with A.

Table S1

Parameter values and distributions used in modeling of P2X7R gating according to the scheme in Fig. S1 and Eqs. 1–9

Symbol -	Parameter values and distributions	
	Values	Distribution
$\overline{k_1}$	$0.3 \ s^{-1}$	Normal, $\sigma = 0.003$
k_2	$40,000~{\rm M.s^{-1}}$	Normal, $\sigma = 400$
k_3	$2.4 \ {\rm s^{-1}}$	Normal, $\sigma = 0.024$
k_4	$50,000 \; \mathrm{M.s^{-1}}$	Normal, $\sigma = 500$
k_5	$1.58 \ s^{-1}$	Normal, $\sigma = 0.0158$
k_6	$7,000~{\rm M.s^{-1}}$	Normal, $\sigma = 70$
L_1	$0.0001~{\rm s}^{-1}$	NA
L_2	$0.004~{\rm s}^{-1}$	Normal, $\sigma = 4 \times 10^{-5}$
L_3	$0.5 \ s^{-1}, 0.1 \ s^{-1a}$	Normal, $\sigma = 0.005$
α	1.67 (unitless)	Normal, $\sigma = 0.0167$
β	$2.4\times10^{-3}~M$	Uniform, [2-3] $\times 10^{-3}$
g_{12} (Q ₁ + Q ₂ conductance)	$1.5\times10^{-8}~\mathrm{S}$	Normal, $\sigma = 1.5 \times 10^{-10}$
g_{34} (Q ₃ + Q ₄ conductance)	$4.5\times10^{-8}~\mathrm{S}$	Normal, $\sigma = 4.5 \times 10^{-10}$
V (holding potential)	$60\times 10^{-3}V$	NA
E (reversal potential)	0 V	NA

NA, not applicable.

REFERENCES

Yan, Z., A. Khadra, S. Li, M. Tomic, A. Sherman, and S.S. Stojilkovic. 2010. Experimental characterization and mathematical modeling of P2X7 receptor channel gating. *J. Neurosci.* 30:14213–14224. http://dx.doi.org/10.1523/JNEUROSCI.2390-10.2010

^aThis value was used only once to generate the second panels (counting from left) in Fig. 6 (A and B; see Yan et al. [2010] for more details).