Part IV. Variants of Finite Automata

Theory vs. Practice

a) Configuration: pax

Next Configuration:

 q_1x or q_2x or q_3ax ?

Theory: [⊙] × Practice: [⊙]

b) Configuration: *pax*

Next Configuration:

only q_1x

Theory: 😊 × Practice: 😊

Simulation of all possible moves from every configuration.

Example:

FA *M* is defined as:

Simulation of all possible moves from every configuration.

Example:

FA *M* is defined as:

Simulation of all possible moves from every configuration.

Example:

FA M is defined as:

Simulation of all possible moves from every configuration.

Simulation of all possible moves from every configuration.

Example:

FA *M* is defined as:

Simulation of all possible moves from every configuration.

Example:

FA *M* is defined as:

Simulation of all possible moves from every configuration.

Example:

FA M is defined as:

Question: $ab \in L(M)$?

Answer: YES, $ab \in L(M)$ because $f \in F$.

Preference in practice: Determinictic FA (DFA) that makes no more than one move from every configuration.

1) Gist: Removal of ε-moves

Preference in practice: Determinictic FA (DFA) that makes no more than one move from every configuration.

1) Gist: Removal of ε-moves

Preference in practice: Determinictic FA (DFA) that makes no more than one move from every configuration.

1) Gist: Removal of ε-moves

Preference in practice: *Determinictic FA* (DFA) that makes no more than one move from every configuration.

1) Gist: Removal of ε-moves

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. M is an ε -free finite automaton if for all rules $pa \to q \in R$, where $p, q \in Q$, holds $a \in \Sigma \ (a \neq \varepsilon)$

2) Gist: Removal of nodeterminism

Definition: Let $M = (Q, \Sigma, R, s, F)$ be an ε -free FA. M is a *deterministic finite automaton* (DFA) if for each rule $pa \rightarrow q \in R$ it holds that $R - \{pa \rightarrow q\}$ contains no rule with the left-hand side equal to pa.

2) Gist: Removal of nodeterminism

Definition: Let $M = (Q, \Sigma, R, s, F)$ be an ε -free FA. M is a deterministic finite automaton (DFA) if for each rule $pa \rightarrow q \in R$ it holds that $R - \{pa \rightarrow q\}$ contains no rule with the lefthand side equal to pa.

Theorem

• For every FA M, there is an equivalent DFA M_d .

Proof is based on these conversions:

Gist: q is in ϵ -closure(p) if FA can reach q from p without reading.

Definition: For every states $p \in Q$, we define a set ε -closure(p) as ε -closure $(p) = \{q: q \in Q, p \vdash^* q\}$

Example:

Gist: q is in ϵ -closure(p) if FA can reach q from p without reading.

Gist: q is in ϵ -closure(p) if FA can reach q from p without reading.

Gist: q is in ϵ -closure(p) if FA can reach q from p without reading.

Gist: q is in ϵ -closure(p) if FA can reach q from p without reading.

Algorithm: \(\epsilon\)-closure

- **Input:** $M = (Q, \Sigma, R, s, F); p \in Q$
- Output: ε-closure(p)
- Method:
- $i := 0; Q_0 := \{p\};$
- repeat

$$i := i + 1;$$
 $Q_i := Q_{i-1} \cup \{ p' : p' \in Q, q \rightarrow p' \in R, q \in Q_{i-1} \};$

until $Q_i = Q_{i-1}$;

• ε -closure $(p) := Q_i$.

 $M = (Q, \Sigma, R, s, F)$, where: $Q = \{s, p, q, f\}, \Sigma = \{a\}, R = \{s \to p, p \to q, qa \to f\}, F = \{f\}$

Task: ϵ -closure(s)

 $M = (Q, \Sigma, R, s, F)$, where: $Q = \{s, p, q, f\}, \Sigma = \{a\}, R = \{s \to p, p \to q, qa \to f\}, F = \{f\}$

Task: ϵ -closure(s)

$$Q_0 = \{ \mathbf{s} \}$$

```
M = (Q, \Sigma, R, s, F), where: Q = \{s, p, q, f\}, \Sigma = \{a\}, R = \{s \rightarrow p, p \rightarrow q, qa \rightarrow f\}, F = \{f\}

Task: \varepsilon-closure(s)
```

$$Q_0 = \{ \mathbf{s} \}$$

1)
$$s \rightarrow p'; p' \in Q: s \rightarrow p$$

 $Q_1 = \{s\} \cup \{p\} = \{s, p\}$

```
M = (Q, \Sigma, R, s, F), where: Q = \{s, p, q, f\}, \Sigma = \{a\},
R = \{s \rightarrow p, p \rightarrow q, qa \rightarrow f\}, F = \{f\}
Task: \varepsilon-closure(s)
Q_0 = \{\mathbf{s}\}
1) \quad s \to p'; p' \in Q: \quad s \to p
Q_1 = \{s\} \cup \{p\} = \{s, p\}
2) s \rightarrow p'; p' \in Q: s \rightarrow p

p \rightarrow p'; p' \in Q: p \rightarrow q
Q_2 = \{s, p\} \cup \{p, q\} = \{s, p, q\}
```

```
M = (Q, \Sigma, R, s, F), where: Q = \{s, p, q, f\}, \Sigma = \{a\},
R = \{s \rightarrow p, p \rightarrow q, qa \rightarrow f\}, F = \{f\}
Task: \varepsilon-closure(s)
Q_0 = \{ \mathbf{s} \}
1) \quad s \to p'; p' \in Q: \quad s \to p
Q_1 = \{s\} \cup \{p\} = \{s, p\}
2) s \rightarrow p'; p' \in Q: s \rightarrow p

p \rightarrow p'; p' \in Q: p \rightarrow q
Q_2 = \{s, p\} \cup \{p, q\} = \{s, p, q\}
3) s \rightarrow p'; p' \in Q: s \rightarrow p

p \rightarrow p'; p' \in Q: p \rightarrow q
           q \rightarrow p'; p' \in \widetilde{Q}: none
Q_3 = \{s, p, q\} \cup \{p, q\} = \{s, p, q\} = Q_2 = \varepsilon-closure(s)
```

Algorithm: FA to ε-free FA

Gist: Skip all ε-moves

- Input: FA $M = (Q, \Sigma, R, s, F)$
- Output: ε -free FA $M' = (Q, \Sigma, R', s, F')$
- Method:
- $\bullet R' := \emptyset;$
- for all $p \in Q$ do

$$R' := R' \cup \{ pa \rightarrow q: p'a \rightarrow q \in R, a \in \Sigma, p' \in \text{ϵ-closure}(p), q \in Q \};$$

• $F' := \{ p : p \in Q, \epsilon \text{-closure}(p) \cap F \neq \emptyset \}.$

Algorithm: FA to ε-free FA

Gist: Skip all ε-moves

- Input: FA $M = (Q, \Sigma, R, s, F)$
- Output: ε -free FA $M' = (Q, \Sigma, R', s, F')$
- Method:
- $\bullet R' := \emptyset;$
- for all $p \in Q$ do

$$R' := R' \cup \{ pa \rightarrow q: p'a \rightarrow q \in R, a \in \Sigma, p' \in \text{ϵ-closure}(p), q \in Q \};$$

• $F' := \{ p : p \in Q, \varepsilon\text{-closure}(p) \cap F \neq \emptyset \}.$

Algorithm: FA to ε-free FA

Gist: Skip all ε-moves

- Input: FA $M = (Q, \Sigma, R, s, F)$
- Output: ε -free FA $M' = (Q, \Sigma, R', s, F')$
- Method:
- $\bullet R' := \emptyset;$
- for all $p \in Q$ do

$$R' := R' \cup \{ pa \rightarrow q: p'a \rightarrow q \in R, a \in \Sigma, p' \in \text{ϵ-closure}(p), q \in Q \};$$

• $F' := \{ p : p \in Q, \varepsilon\text{-closure}(p) \cap F \neq \emptyset \}.$

FA to ε-free FA: Example 1/3

$$M = (Q, \Sigma, R, s, F)$$
, where:
 $Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\};$
 $R = \{sa \to s, s \to q_1, q_1b \to q_1, q_1b \to f, s \to q_2, q_2c \to q_2, q_2c \to f, fa \to f\}; F = \{f\}$

FA to ε-free FA: Example 1/3

```
M = (Q, \Sigma, R, s, F), where:

Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\};

R = \{sa \to s, s \to q_1, q_1b \to q_1, q_1b \to f, s \to q_2, q_2c \to q_2, q_2c \to f, fa \to f\}; F = \{f\}
```

- 1) for p = s: ϵ -closure(s) = {s, q_1 , q_2 }
- **A.** $sd \rightarrow q', d \in \Sigma, q' \in Q: sa \rightarrow s$
- **B.** $q_1d \rightarrow q', d \in \Sigma, q' \in Q: q_1b \rightarrow q_1, q_1b \rightarrow f$
- C. $q_2d \rightarrow q', d \in \Sigma, q' \in Q: q_2c \rightarrow q_2, q_2c \rightarrow f$

$$R' = \emptyset \cup \{sa \rightarrow s, sb \rightarrow q_1, sb \rightarrow f, sc \rightarrow q_2, sc \rightarrow f\}$$

FA to ε-free FA: Example 2/3

```
2) for p = q_1: \varepsilon-closure(q_1) = \{q_1\}

A. q_1d \rightarrow q'; d \in \Sigma; q' \in Q: q_1b \rightarrow q_1, q_1b \rightarrow f

R' = R' \cup \{q_1b \rightarrow q_1, q_1b \rightarrow f\}
```

- 2) for $p = q_1$: ε -closure $(q_1) = \{q_1\}$ A. $q_1d \rightarrow q'; d \in \Sigma; q' \in Q: q_1b \rightarrow q_1, q_1b \rightarrow f$ $R' = R' \cup \{q_1b \rightarrow q_1, q_1b \rightarrow f\}$
- 3) for $p = q_2$: ε -closure $(q_2) = \{q_2\}$
- A. $q_2d \rightarrow q'; d \in \Sigma; q' \in Q: q_2c \rightarrow q_2, q_2c \rightarrow f$ $R' = R' \cup \{q_2c \rightarrow q_2, q_2c \rightarrow f\}$

- 2) for $p = q_1$: ε -closure $(q_1) = \{q_1\}$ A. $q_1d \rightarrow q'; d \in \Sigma; q' \in Q: q_1b \rightarrow q_1, q_1b \rightarrow f$ $R' = R' \cup \{q_1b \rightarrow q_1, q_1b \rightarrow f\}$
- 3) for $p = q_2$: ε -closure(q_2) = { q_2 }
- A. $q_2d \rightarrow q'; d \in \Sigma; q' \in Q: q_2c \rightarrow q_2, q_2c \rightarrow f$ $R' = R' \cup \{q_2c \rightarrow q_2, q_2c \rightarrow f\}$
- 4) for p = f: ε -closure(f) = {f}
- A. $fd \rightarrow q'; d \in \Sigma; q' \in Q: fa \rightarrow f$ $R' = R' \cup \{fa \rightarrow f\}$

- 2) for $p = q_1$: ε -closure $(q_1) = \{q_1\}$ A. $q_1d \rightarrow q'; d \in \Sigma; q' \in Q: q_1b \rightarrow q_1, q_1b \rightarrow f$
- $R' = R' \cup \{q_1b \rightarrow q_1, q_1b \rightarrow f\}$ $R' = R' \cup \{q_1b \rightarrow q_1, q_1b \rightarrow f\}$
- 3) for $p = q_2$: ε -closure(q_2) = { q_2 }
- A. $q_2d \rightarrow q'; d \in \Sigma; q' \in Q: q_2c \rightarrow q_2, q_2c \rightarrow f$ $R' = R' \cup \{q_2c \rightarrow q_2, q_2c \rightarrow f\}$
- 4) for p = f: ε -closure(f) = {f}
- A. $fd \rightarrow q'; d \in \Sigma; q' \in Q: fa \rightarrow f$ $R' = R' \cup \{fa \rightarrow f\}$
- $R' = \{sa \rightarrow s, sb \rightarrow q_1, sb \rightarrow f, sc \rightarrow q_2, sc \rightarrow f, q_1b \rightarrow q_1, q_1b \rightarrow f, q_2c \rightarrow q_2, q_2c \rightarrow f, fa \rightarrow f\}$

```
\begin{array}{ll} \text{$\epsilon$-closure}(s) & \cap F = \{s, q_1, q_2\} \cap \{f\} = \varnothing \\ \text{$\epsilon$-closure}(q_1) \cap F = \{q_1\} \cap \{f\} \\ \text{$\epsilon$-closure}(q_2) \cap F = \{q_2\} \cap \{f\} \\ \text{$\epsilon$-closure}(f) & \cap F = \{f\} \cap \{f\} = \{f\} \neq \varnothing \} \end{array}
```

```
\begin{array}{ll} \hline \text{$\epsilon$-closure}(s) & \cap F = \{s, q_1, q_2\} \cap \{f\} = \varnothing \\ \hline \text{$\epsilon$-closure}(q_1) \cap F = \{q_1\} \cap \{f\} & = \varnothing \\ \hline \text{$\epsilon$-closure}(q_2) \cap F = \{q_2\} \cap \{f\} & = \varnothing \\ \hline \text{$\epsilon$-closure}(f) & \cap F = \{f\} \cap \{f\} = \{f\} \neq \varnothing \\ \hline \end{array}
```


Algorithm: ε-free FA to DFA 1/2

Gist: In DFA, make states from all subsets of states in \varepsilon-free FA and move between them so that all possible states of \varepsilon-free FA are simultaneously simulated.

Algorithm: ε-free FA to DFA 1/2

Gist: In DFA, make states from all subsets of states in ε-free FA and move between them so that all possible states of ε-free FA are simultaneously simulated.

Illustration:

$$Q_{DFA} = \{\{s\}, \{q_1\}, \{q_2\}, \{f\}, \{s,q_1\}, \{s,q_2\}, \{s,f\}, \{q_1,q_2\}, \{q_1,f\}, \{q_2,f\}, \{s,q_1,q_2\}, \{s,q_1,f\}, \{s,q_2,f\}, \{q_1,q_2,f\}, \{s,q_1,q_2,f\}\}$$

Gist: In DFA, make states from all subsets of states in \varepsilon-free FA and move between them so that all possible states of \varepsilon-free FA are simultaneously simulated.

Illustration:


```
Q_{DFA} = \{\{s\}, \{q_1\}, \{q_2\}, \{f\}, \{s,q_1\}, \{s,q_2\}, \{s,f\}, \{q_1,q_2\}, \{q_1,f\}, \{q_2,f\}, \{s,q_1,q_2\}, \{s,q_1,f\}, \{s,q_2,f\}, \{q_1,q_2,f\}, \{s,q_1,q_2,f\}\}
```

For state $\{s\}$: ...

For state $\{s, f\}$: $\{s, f\}$

For state $\{s,q_1,q_2,f\}$: ...

Gist: In DFA, make states from all subsets of states in ε -free FA and move between them so that all possible states of ε -free FA are simultaneously simulated.

$$Q_{DFA} = \{\{s\}, \{q_1\}, \{q_2\}, \{f\}, \{s,q_1\}, \{s,q_2\}, \{s,f\}, \{q_1,q_2\}, \{q_1,f\}, \{q_2,f\}, \{s,q_1,q_2\}, \{s,q_1,f\}, \{s,q_2,f\}, \{g,q_1,q_2,f\}\}$$

For state $\{s\}$: ... q:
For state $\{s, f\}$: $\{s, f\}$:
:
For state $\{s, q_1, q_2, f\}$: ...

Gist: In DFA, make states from all subsets of states in \varepsilon-free FA and move between them so that all possible states of \varepsilon-free FA are simultaneously simulated.

$$Q_{DFA} = \{\{s\}, \{q_1\}, \{q_2\}, \{f\}, \{s,q_1\}, \{s,q_2\}, \{s,f\}, \{q_1,q_2\}, \{q_1,f\}, \{q_2,f\}, \{s,q_1,q_2\}, \{s,q_1,f\}, \{s,q_2,f\}, \{q_1,q_2,f\}, \{s,q_1,q_2,f\}\}$$

For state $\{s\}$: ... qFor state $\{s, f\}$: $\{s, f\}$: ...

For state $\{s, q_1, q_2, f\}$: ...

Gist: In DFA, make states from all subsets of states in ε-free FA and move between them so that all possible states of ε-free FA are simultaneously simulated.

$$Q_{DFA} = \{\{s\}, \{q_1\}, \{q_2\}, \{f\}, \{s,q_1\}, \{s,q_2\}, \{s,f\}, \{q_1,q_2\}, \{q_1,f\}, \{q_2,f\}, \{s,q_1,q_2\}, \{s,q_1,f\}, \{s,q_2,f\}, \{q_1,q_2,f\}, \{s,q_1,q_2,f\}\}$$

For state $\{s\}$: ... qFor state $\{s, f\}$: $\{s, f\}$: $\{q_1, f\}$ For state $\{s, q_1, q_2, f\}$: ...

- Input: ε -free FA: $M = (Q, \Sigma, R, s, F)$
- Output: DFA: $M_d = (Q_d, \Sigma, R_d, s_d, F_d)$
- Method:
- $Q_d := \{Q': Q' \subseteq Q, Q' \neq \emptyset\}; R_d := \emptyset;$
- for each $Q' \in Q_d$, and $a \in \Sigma$ do begin

$$Q'' := \{q: p \in Q', pa \rightarrow q \in R\};$$

$$\mathbf{if} \ Q'' \neq \emptyset \ \mathbf{then} \ R_d := R_d \cup \{Q'a \rightarrow Q''\};$$

end

- $s_d := \{s\};$
- $F_d := \{F': F' \in Q_d, F' \cap F \neq \emptyset\}.$

```
\begin{split} M &= (Q, \Sigma, R, s, F), \text{ where:} \\ Q &= \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\} \\ R &= \{sa \rightarrow s, sb \rightarrow q_1, sb \rightarrow f, sc \rightarrow q_2, sc \rightarrow f, \\ q_1b \rightarrow q_1, q_1b \rightarrow f, q_2c \rightarrow q_2, q_2c \rightarrow f, fa \rightarrow f\}; \\ Q_d &= \{\{s\}, \{s,q_1\}, \{s,q_1,q_2\}, \{s,q_1,f\}, \{s,q_1,q_2,f\}, \{s,q_2\}, \{s,q_2,f\}, \{s,f\}, \{q_1\}, \{q_1,q_2\}, \{q_1,f\}, \{q_1,q_2,f\}, \{q_2\}, \{q_2,f\}, \{f\}\} \end{split}
```

for
$$Q' = \{s\}$$
:
$$b, c$$

$$a$$

$$c$$

$$q_1$$

$$\dots$$

$$s$$

$$c$$

$$q_2$$

```
\begin{split} M &= (Q, \Sigma, R, s, F), \text{ where:} \\ Q &= \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\} \\ R &= \{sa \rightarrow s, sb \rightarrow q_1, sb \rightarrow f, sc \rightarrow q_2, sc \rightarrow f, \\ q_1b \rightarrow q_1, q_1b \rightarrow f, q_2c \rightarrow q_2, q_2c \rightarrow f, fa \rightarrow f\}; \\ Q_d &= \{\{s\}, \{s,q_1\}, \{s,q_1,q_2\}, \{s,q_1,f\}, \{s,q_1,q_2,f\}, \{s,q_2\}, \{s,q_2,f\}, \{s,f\}, \{q_1\}, \{q_1,q_2\}, \{q_1,f\}, \{q_1,q_2,f\}, \{q_2\}, \{q_2,f\}, \{f\}\} \end{split}
```

for
$$Q' = \{s\}$$
:
$$b, c$$

$$a$$

$$c$$

$$q_1$$

$$a$$

$$a$$

$$c$$

$$q_2$$

```
M = (Q, \Sigma, R, s, F), \text{ where:}
Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\}\}
R = \{sa \to s, sb \to q_1, sb \to f, sc \to q_2, sc \to f,
q_1b \to q_1, q_1b \to f, q_2c \to q_2, q_2c \to f, fa \to f\};
Q_d = \{\{s\}, \{s,q_1\}, \{s,q_1,q_2\}, \{s,q_1,f\}, \{s,q_1,q_2,f\}, \{s,q_2\}, \{s,q_2,f\},
\{s,f\}, \{q_1\}, \{q_1,q_2\}, \{q_1,f\}, \{q_1,q_2,f\}, \{q_2\}, \{q_2,f\}, \{f\}\}
```



```
M = (Q, \Sigma, R, s, F), \text{ where:}
Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\}\}
R = \{sa \to s, sb \to q_1, sb \to f, sc \to q_2, sc \to f,
q_1b \to q_1, q_1b \to f, q_2c \to q_2, q_2c \to f, fa \to f\};
Q_d = \{\{s\}, \{s,q_1\}, \{s,q_1,q_2\}, \{s,q_1,f\}, \{s,q_1,q_2,f\}, \{s,q_2\}, \{s,q_2,f\},
\{s,f\}, \{q_1\}, \{q_1,q_2\}, \{q_1,f\}, \{q_1,q_2,f\}, \{q_2\}, \{q_2,f\}, \{f\}\}\}
for Q' = \{s\}:
```



```
M = (Q, \Sigma, R, s, F), \text{ where:}
Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\}\}
R = \{sa \to s, sb \to q_1, sb \to f, sc \to q_2, sc \to f,
q_1b \to q_1, q_1b \to f, q_2c \to q_2, q_2c \to f, fa \to f\};
Q_d = \{\{s\}, \{s,q_1\}, \{s,q_1,q_2\}, \{s,q_1,f\}, \{s,q_1,q_2,f\}, \{s,q_2\}, \{s,q_2,f\},
\{s,f\}, \{q_1\}, \{q_1,q_2\}, \{q_1,f\}, \{q_1,q_2,f\}, \{q_2\}, \{q_2,f\}, \{f\}\}
```


$$R_d = \varnothing \cup \{\{s\}a \rightarrow \{s\}, \{s\}b \rightarrow \{q_1,f\}, \{s\}c \rightarrow \{q_2,f\}\}\}$$

$$R_d = R_d \cup \{\{s,q_1\}a \rightarrow \{s\}, \{s,q_1\}b \rightarrow \{q_1,f\}, \{s,q_1\}c \rightarrow \{q_2,f\}\}\}$$

Final states: $F_d := \{F': F' \in Q_d, F' \cap F \neq \emptyset\}$ for $F = \{f\}$: $\{s\} \cap \{f\} = \emptyset$ $\{s\} \notin F_d$ $\{s,q_1\} \cap \{f\} = \emptyset$ $\Rightarrow \{s, q_1\} \notin F_d$ $\{s,q_1,q_2\} \cap \{f\} = \emptyset$ $\Rightarrow \{s,q_1,q_2\} \notin F_d$ $\{s,q_1,f\} \cap \{f\} = \{f\} \neq \emptyset$ $\Rightarrow \{s, q_1, f\} \in F_d$ $\{s,q_1,q_2,f\} \cap \{f\} = \{f\} \neq \emptyset \implies \{s,q_1,q_2,f\} \in F_d$

$$F_d = \{\{s,q_1,f\}, \{s,q_1,q_2,f\}, \{s,q_2,f\}, \{s,f\}, \{q_1,f\}, \{q_1,q_2,f\}, \{q_2,f\}, \{f\}\}\}$$

Question: Can we make DFA smaller?

Question: Can we make DFA smaller?

Answer: YES

Accessible States

Gist: State q is accessible if a string takes DFA from s (the start state) to q.

Definition: Let $M = (Q, \Sigma, R, s, F)$ be an FA.

A state $q \in Q$ is *accessible* if there exists $w \in \Sigma^*$ such that $sw \vdash q$; otherwise, q is *inaccessible*.

Note: Each inaccesible state can be removed from FA

Accessible States

Gist: State q is accessible if a string takes DFA from s (the start state) to q.

Definition: Let $M = (Q, \Sigma, R, s, F)$ be an FA.

A state $q \in Q$ is accessible if there exists $w \in \Sigma^*$ such that $sw \vdash q$; otherwise, q is inaccessible.

Note: Each inaccesible state can be removed from FA

```
Example:
```

State s - accesible: $w = \varepsilon$: $s \vdash_{0} s$

State q_1 - accesible: w = a: $sa \vdash q_1$ State f - accesible: w = ab: $sab \vdash q_1b \vdash f$

State q_2 - inaccessible (there is no $w \in \Sigma^*$ such that $sw \vdash^* q_2$

Previous Example

Previous Example

Many inaccessible states

Algorithm II: \(\epsilon\)-free FA to DFA 1/2

Gist: Analogy to the previous algorithm except that only sets of accessible states are introduced.

$$Q_{DFA} = \{\{s\}\}\$$
For state $\{s\}$: $\{s\}$: $\{q_1, f\}$...

Add new states $\{q_1, f\}$, $\{q_2, f\}$ to Q_{DFA}

For state $\{q_1, f\}$: ...

For state $\{q_2, f\}$: ...

Add new states ...

•

Algorithm II: \(\epsilon\)-free FA to DFA 2/2

- Input: ε -free FA: $M = (Q, \Sigma, R, s, F)$
- Output: DFA: $M_d = (Q_d, \Sigma, R_d, s_d, F_d)$

without any inaccessible states

```
• Method:
```

```
• s_d := \{s\}; Q_{new} := \{s_d\}; R_d := \emptyset; Q_d := \emptyset; F_d := \emptyset;
```

• repeat

let
$$Q' \in Q_{new}$$
; $Q_{new} := Q_{new} - \{Q'\}$; $Q_d := Q_d \cup \{Q'\}$; for each $a \in \Sigma$ do begin

$$Q'' := \{q: p \in Q', pa \rightarrow q \in R\};$$
if $Q'' \neq \emptyset$ then $R_d := R_d \cup \{Q'a \rightarrow Q''\};$
if $Q'' \notin Q_d \cup \{\emptyset\}$ then $Q_{new} := Q_{new} \cup \{Q''\}$

end;

if
$$Q' \cap F \neq \emptyset$$
 then $F_d := F_d \cup \{Q'\}$ until $Q_{new} = \emptyset$.

$$M = (Q, \Sigma, R, s, F)$$
, where:
 $Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\}$
 $R = \{sa \rightarrow s, sb \rightarrow q_1, sb \rightarrow f, sc \rightarrow q_2, sc \rightarrow f,$
 $q_1b \rightarrow q_1, q_1b \rightarrow f, q_2c \rightarrow q_2, q_2c \rightarrow f, fa \rightarrow f\};$

$$Q_{new} = \{\{s\}\}; R_d = \emptyset; Q_d = \emptyset; F_d = \emptyset$$

$$M = (Q, \Sigma, R, s, F)$$
, where:
 $Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\}$
 $R = \{sa \to s, sb \to q_1, sb \to f, sc \to q_2, sc \to f, q_1b \to q_1, q_1b \to f, q_2c \to q_2, q_2c \to f, fa \to f\};$

$$Q_{new} = \{\{s\}\}; R_d = \emptyset; Q_d = \emptyset; F_d = \emptyset$$

$$M = (Q, \Sigma, R, s, F), \text{ where:}$$

$$Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\}\}$$

$$R = \{sa \rightarrow s, sb \rightarrow q_1, sb \rightarrow f, sc \rightarrow q_2, sc \rightarrow f,$$

$$q_1b \rightarrow q_1, q_1b \rightarrow f, q_2c \rightarrow q_2, q_2c \rightarrow f, fa \rightarrow f\};$$

$$Q_{new} = \{\{s\}\}; R_d = \emptyset; Q_d = \emptyset; F_d = \emptyset$$

$$M = (Q, \Sigma, R, s, F)$$
, where:
 $Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\}$
 $R = \{sa \rightarrow s, sb \rightarrow q_1, sb \rightarrow f, sc \rightarrow q_2, sc \rightarrow f,$
 $q_1b \rightarrow q_1, q_1b \rightarrow f, q_2c \rightarrow q_2, q_2c \rightarrow f, fa \rightarrow f\};$

$$Q_{new} = \{\{s\}\}; R_d = \emptyset; Q_d = \emptyset; F_d = \emptyset$$

 $M = (Q, \Sigma, R, s, F)$, where: $Q = \{s, q_1, q_2, f\}; \Sigma = \{a, b, c\}; F = \{f\}$ $R = \{sa \rightarrow s, sb \rightarrow q_1, sb \rightarrow f, sc \rightarrow q_2, sc \rightarrow f,$ $q_1b \rightarrow q_1, q_1b \rightarrow f, q_2c \rightarrow q_2, q_2c \rightarrow f, fa \rightarrow f\};$

$$Q_{new} = \{\{s\}\}; R_d = \emptyset; Q_d = \emptyset; F_d = \emptyset$$

$$R_d := \varnothing \cup \{\{s\} a \to \{s\}, \{s\} b \to \{q_1, f\}, \{s\} c \to \{q_2, f\}\}\}$$

$$Q_{new} = \{\{q_1, f\}, \{q_2, f\}\}\}, Q_d = \varnothing \cup \{\{s\}\}\}, F_d = \varnothing$$

for $Q' = \{q_1, f\}$:

Terminating States

Gist: State q is terminating if a string takes DFA from q to a final state.

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a DFA. A state $q \in Q$ is *terminating* if there exists $w \in \Sigma^*$ such that $qw \vdash f$ with $f \in F$; otherwise, q is *nonterminating*.

Note: Each nonterminating state can be removed from DFA

Terminating States

Gist: State q is terminating if a string takes DFA from q to a final state.

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a DFA. A state $q \in Q$ is *terminating* if there exists $w \in \Sigma^*$ such that $qw \vdash f$ with $f \in F$; otherwise, q is *nonterminating*.

Note: Each nonterminating state can be removed from DFA

```
Example: a \rightarrow a \rightarrow a
```

State s - terminating: w = ab: $sab \vdash q_1b \vdash f$

State q_1 - terminating: w = b: $q_1b \vdash \bar{f}$

State f - terminating: $w = \varepsilon$: $f = \int_{-\infty}^{\infty} f^{-1} dt$

State q_2 - nonterminating (there is no $w \in \Sigma^*$

such that $q_2w \vdash^* q, q \in F$

Algorithm: Removal of nont. states

- Input: DFA: $M = (Q, \Sigma, R, s, F)$
- Output: DFA: $M_t = (Q_t, \Sigma, R_t, s, F)$
- Method:
- $Q_0 := F$; i := 0;
- repeat

$$i := i + 1;$$
 $Q_i := Q_{i-1} \cup \{q: qa \to p \in R, a \in \Sigma, p \in Q_{i-1}\};$
until $Q_i = Q_{i-1};$

- $Q_t := Q_i$;
- $R_t := \{qa \rightarrow p : qa \rightarrow p \in R, p, q \in Q_t, a \in \Sigma\}.$

$$M = (Q, \Sigma, R, s, F)$$
, where: $Q = \{s, q_1, q_2, f\}, \Sigma = \{a, b\},$
 $R = \{sa \rightarrow q_1, sb \rightarrow q_2, q_1a \rightarrow q_2, q_1b \rightarrow f\}, F = \{f\}$

$$M = (Q, \Sigma, R, s, F)$$
, where: $Q = \{s, q_1, q_2, f\}, \Sigma = \{a, b\},$
 $R = \{sa \rightarrow q_1, sb \rightarrow q_2, q_1a \rightarrow q_2, q_1b \rightarrow f\}, F = \{f\}$
 $Q_0 = \{f\}$

```
M = (Q, \Sigma, R, s, F), where: Q = \{s, q_1, q_2, f\}, \Sigma = \{a, b\},

R = \{sa \rightarrow q_1, sb \rightarrow q_2, q_1a \rightarrow q_2, q_1b \rightarrow f\}, F = \{f\}

Q_0 = \{f\}

Q_0 = \{f\}

Q_1 = \{f\} \cup \{q_1\} = \{f, q_1\}
```

```
M = (Q, \Sigma, R, s, F), \text{ where: } Q = \{s, q_1, q_2, f\}, \Sigma = \{a, b\}, R = \{sa \to q_1, sb \to q_2, q_1a \to q_2, q_1b \to f\}, F = \{f\}
\boxed{Q_0 = \{f\}}
\boxed{1) \ qd \to f; \ q \in Q; \ d \in \Sigma: \qquad q_1b \to f}
\boxed{Q_1 = \{f\} \cup \{q_1\} = \{f, q_1\}}
\boxed{2) \ qd \to f \ ; \ q \in Q; \ d \in \Sigma: \qquad q_1b \to f
qd \to q_1; \ q \in Q; \ d \in \Sigma: \qquad sa \to q_1
Q_2 = \{f, q_1\} \cup \{q_1, s\} = \{f, q_1, s\}
```

```
M = (Q, \Sigma, R, s, F), where: Q = \{s, q_1, q_2, f\}, \Sigma = \{a, b\},
R = \{sa \rightarrow q_1, sb \rightarrow q_2, q_1a \rightarrow q_2, q_1b \rightarrow f\}, F = \{f\}
Q_0 = \{f\}
1) qd \rightarrow f; q \in Q; d \in \Sigma:
                                                        q_1b \rightarrow f
Q_1 = \{f\} \cup \{g_1\} = \{f, g_1\}
2) qd \rightarrow f; q \in Q; d \in \Sigma:
                                                        q_1b \rightarrow f
    qd \rightarrow q_1; q \in \overline{Q}; d \in \Sigma:
                                                        sa \rightarrow q_1
Q_2 = \{f, q_1\} \cup \{q_1, s\} = \{f, q_1, s\}
3) qd \rightarrow f; q \in Q; d \in \Sigma:
                                                        q_1b \rightarrow f
    qd \rightarrow q_1; \bar{q} \in Q; d \in \Sigma:
                                                        sa \rightarrow q_1
    qd \rightarrow \tilde{s}; \quad q \in \tilde{Q}; d \in \Sigma:
                                                        none
Q_3 = \{f, q_1, s\} \cup \{q_1, s\} = \{f, q_1, s\} = Q_2 = Q_t
```

```
M = (Q, \Sigma, R, s, F), where: Q = \{s, q_1, q_2, f\}, \Sigma = \{a, b\},
R = \{sa \rightarrow q_1, sb \rightarrow q_2, q_1a \rightarrow q_2, q_1b \rightarrow f\}, F = \{f\}
Q_0 = \{f\}
1) qd \rightarrow f; q \in Q; d \in \Sigma:
                                                      q_1b \rightarrow f
Q_1 = \{f\} \cup \{q_1\} = \{f, q_1\}
2) qd \rightarrow f; q \in Q; d \in \Sigma:
                                                      q_1b \rightarrow f
    qd \rightarrow q_1; q \in \widetilde{Q}; d \in \Sigma:
                                                      sa \rightarrow q_1
Q_2 = \{f, q_1\} \cup \{q_1, s\} = \{f, q_1, s\}
3) qd \rightarrow f; q \in Q; d \in \Sigma:
                                                      q_1b \rightarrow f
    qd \rightarrow q_1; \bar{q} \in Q; d \in \Sigma:
                                                      sa \rightarrow q_1
    qd \rightarrow s; q \in Q; d \in \Sigma:
                                                      none
Q_3 = \{f, q_1, s\} \cup \{q_1, s\} = \{f, q_1, s\} = Q_2 = Q_t
R_t = \{sa \rightarrow q_1, sb \neq q_2, q_1a \neq q_2, q_1b \rightarrow f\}
```

Summary: States to Remove

1) Inaccessible state (q_2) :

2) Nonterminating state (q_2) :

There exists no computation from this nonterminating state to a final state.

Gist: Complete DFA cannot get stuck.

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a **DFA**. M is *complete*, if for any $p \in Q$, $a \in \Sigma$ there is exactly one rule of the form $pa \rightarrow q \in R$ for some $q \in Q$; otherwise, M is *incomplete*

Conversion: Incomplete DFA

$$\Sigma = \{a, b, c\}$$

Gist: Complete DFA cannot get stuck.

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a **DFA**. M is *complete*, if for any $p \in Q$, $a \in \Sigma$ there is exactly one rule of the form $pa \rightarrow q \in R$ for some $q \in Q$; otherwise, M is *incomplete*

Conversion: Incomplete DFA

Gist: Complete DFA cannot get stuck.

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a **DFA**. M is *complete*, if for any $p \in Q$, $a \in \Sigma$ there is exactly one rule of the form $pa \rightarrow q \in R$ for some $q \in Q$; otherwise, M is *incomplete*

Conversion: Incomplete DFA

to Complete DFA

$$\Sigma = \{a, b, c\}$$

Gist: Complete DFA cannot get stuck.

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a **DFA**. *M* is *complete*, if for any $p \in Q$, $a \in \Sigma$ there is exactly one rule of the form $pa \rightarrow q \in R$ for some $q \in Q$; otherwise, M is *incomplete*

Conversion: Incomplete DFA

to Complete DFA

$$\Sigma = \{a, b, c\}$$

Gist: Complete DFA cannot get stuck.

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a **DFA**. M is *complete*, if for any $p \in Q$, $a \in \Sigma$ there is exactly one rule of the form $pa \rightarrow q \in R$ for some $q \in Q$; otherwise, M is *incomplete*

Conversion: Incomplete DFA

to Complete DFA

Algorithm: DFA to Complete DFA

Gist: Add a "trap" state

- Input: Incomplete DFA $M = (Q, \Sigma, R, s, F)$
- Output: Complete DFA $M_c = (Q_c, \Sigma, R_c, s, F)$
- Method:
- $Q_c := Q \cup \{q_{false}\};$
- $\begin{array}{c} \bullet \; R_c := R \cup \; \{qa \rightarrow q_{false} : a \in \Sigma, \, q \in \; Q_c, \\ qa \rightarrow p \not \in \; R, \; p \in \; Q\}. \end{array}$

Well-Specified FA

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a <u>complete</u>

DFA. Then, *M* is well-specified FA (WSFA) if:

- 1) Q has no inaccessible state
- 2) Q has no more than one nonterminating state

Note: If well-specified FA has one nonterminating state, then it is q_{false} from the previous algorithm.

Theorem: For every FA M, there is an equivalent WSFA M_{ws} .

Proof: Use the next algorithm.

Algorithm: FA to WSFA

- **Input:** FA *M*
- Output: WSFA M_{ws}
- Method:
- convert a FA M to an equivalent ε -free FA M'
- convert a M' to an equivalent DFA M_d without any inaccessible state
- convert M_d to an equivalent DFA M_t without any nonterminating state
- convert M_t to an equivalent complete DFA M_c
- $\bullet M_{ws} := M_c$

Note: No more than one nonterminating state in M_{ws} — q_{false}

Variants of FA: Summary

	FA	e-free FA	DFA	Complete FA	WSFA
Number of rules of the form $p \rightarrow q$, where $p, q \in Q$	0- <i>n</i>	0	0	0	0
Number of rules of the form $pa \rightarrow q$, for any $p \in Q$, $a \in \Sigma$	0- <i>n</i>	0- <i>n</i>	0-1	1	1
Number of inaccessible states	0- <i>n</i>	0- <i>n</i>	0- <i>n</i>	0- <i>n</i>	0
Number of nonterminating states	0- <i>n</i>	0- <i>n</i>	0- <i>n</i>	0- <i>n</i>	0-1
Number of this FAs for any regular language.	8	8	8	8	8