MXEN 2002

Project Report

Kee-An Seet
19776219@student.curtin.edu.au
Harry Cassidy
20607591@student.curtin.edu.au

Contents

1	Non	nenclature	1
	2.1	Task Autonomy Zone	
	3.1	Solution Overview	

\mathbf{List}	of Figures	
1	Supplied example of the task map	2
List	of Tables	
1	$Issues + Solutions \dots \dots$	4

1 Nomenclature

2 The Task

We were tasked with building, wiring, and programming a robot to complete a series of objectives, such as navigating a maze autonomously and moving a camera with a servo as to let the operator identify targets. We were to use the Arduino Mega hardware with a DC motor drive system along with several distance sensors to help achieve the objectives.

Figure 1: Supplied example of the task map

2.1 Autonomy Zone

The "Autonomy Zone" is the section of the map in which the robot is completely self controlled. The idea behind this challenge is that in the event of a connection dsiruption in a dangerous area for humans, the robot should be able to rescue it's self from danger.

2.2 Manual Control

The majority of the task is to control the robot through wireless communication. During this period the robot (controlled by the user) must drive through the zone and send a camera feed back to the user for "victim" tags to be recorded.

3 Our Solution

3.1 Overview

Mechanically constructed from the supplied robot base. It has two driving motors each attached to tank treads, on top there is a platform with mounting holes for an Arduino Mega and various sensor brackets. Initially our plan was to use the given prototyping breadboard with limited modification to the drivebase, however after some testing we identified several issues with this. The final product we created used a more permanent Arduino "Shield" that we created with a solder on prototyping board.

3.2 Issues and Solutions

Before starting we identified several potential issues and solutions that we thought may impact our project, listed below:

Issue	Solution
During Lab G we found that the	Initially we intended on using lock-
tracks would fall off if run too long	tite, however we didn't want to use
as the nut would unscrew and as	a potentially damaging product, to
such unbolt the wheel	solve this issue we opted to use a
	second nut on each bolt to reduce
	the effect of vibration
We found throughout our labs we	To remedy this we planned out our
found that we had many issues with	circuit and soldered a "prototyping
the wiring and using the bread-	shield" for an Arduino Mega to cre-
boards as the connections were loose	ate our own "MXEN2002 shield"
The front sensor didnt have the res-	We moved the sensor mounting
olution to sense the in front of the	around as to position it below the
robot from its initial position	robot and sunk back slightly

Table 1: Issues + Solutions