Announcements

* Mid-term course evaluation

- * ~50% response rate
- * French accent, MOOC, HW and projects, grades
- More engaging teaching
- * Go to Recitations, and OH
- * HW solutions
- * Pace

Announcements contd.

- Paper checking
 - * OH today 6-8pm JI-326A
- * Sat. Nov. 2
 - * Recitation 7:00pm-8:00pm in F104
- * Thu. Nov. 7
 - * Lecture 10am:11:40am in D205
 - * OH 1pm-2pm
- Project 4 released soon!

Ve492: Introduction to Artificial Intelligence

Propositional Logic and Logical Agent

Paul Weng

UM-SJTU Joint Institute

Slides adapted from AIMA, UM, CMU

Logical Agents

Logical agents and environments

Wumpus World

4

3

2

Performance

- * pick up gold = +1000,
- * get eaten or fall in pit = -100
- * step = -1
- * shoot = -10

Environment

* grid

Actuators

- * move forward,
- turn left or right,
- pick up,
- * shoot

Sensors

- * Stench,
- * Breeze,
- * Glitter,
- * Bump,
- * Scream

SSSSS Stench		Breeze	PIT
7000	SSTSS Stench S Gold	PIT	Breeze
SSSSS Stench		Breeze	
START	Breeze	PIT	Breeze

2

1

3

4

http://thiagodnf.github.io/wumpus-world-simulator/

A Knowledge-based Agent

```
function KB-AGENT(percept) returns an action
  persistent: KB, a knowledge base
              t, an integer, initially 0
  TELL(KB, PROCESS-PERCEPT(percept, t))
  action \leftarrow ASK(KB, PROCESS-QUERY(t))
  TELL(KB, PROCESS-RESULT(action, t))
  t←t+1
  return action
```

Logical Agents

So what do we TELL our knowledge base (KB)?

- * Facts (sentences)
 - * The grass is green
 - * The sky is blue
- * Rules (sentences)
 - * Eating too much candy makes you sick
 - * When you're sick you don't go to school
- * Percepts and Actions (sentences)
 - * Pat ate too much candy today

What happens when we ASK the agent?

- * Inference new sentences created from old
 - * Pat is not going to school today

Knowledge

- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
- Tell it what it needs to know (or have it Learn the knowledge)
- * Then it can Ask itself what to do—answers should follow from the KB
- Agents can be viewed at the knowledge level
 i.e., what they know, regardless of how implemented
- * A single inference algorithm can answer any answerable question
 - * Cf. a search algorithm answers only "how to get from A to B" questions

Knowledge base Inference engine

Domain-specific facts

Generic code

Formal Language

- Syntax: What sentences are allowed?
- * Semantics:
 - * What are the possible worlds?
 - Which sentences are true in which worlds? (i.e., definition of truth)
- Model theory: how do we define whether a statement is true or not?
 - Truth and entailment
- Proof theory: what conclusion can we draw given a state of partial knowledge?
 - Soundness and completeness

Logic Language

- Natural language?
- Propositional logic
 - * Syntax: $P \vee (\neg Q \wedge R)$; $X \Leftrightarrow (R \Rightarrow S)$
 - * Possible model: {P=true, Q=true, R=false, S=true, X=true} or 11011
 - * Possible world: interpretations of symbols
 - * Semantics: $\alpha \wedge \beta$ is true in a world iff α is true and β is true (etc.)
- First-order logic
 - * Syntax: $\forall x \exists y P(x,y) \land \neg Q(Joe,f(x)) \Rightarrow f(x)=f(y)$
 - * Possible model: Objects o_1 , o_2 , o_3 ; P holds for $<o_1,o_2>$; Q holds for $<o_3>$; $f(o_1)=o_1$; Joe= o_3 ; etc.
 - Possible world: interpretations of objects, predicates, and functions.
 - * Semantics: $\phi(\sigma)$ is true in a world if $\sigma = o_i$ and ϕ holds for o_i ; etc.

Summary

- Single-agent
- World is deterministic
- State is partially-observable

- Planning agent instead of reflex agent
- Derives new facts from what it currently knows

Propositional Logic

Copyright © 2004 Creators Syndicate, Inc.

Propositional Logic

* Symbol:

- Variable that can be true or false
- * We'll try to use capital letters, e.g. A, B, P_{1,2}
- * Often include True and False

* Operators:

- * ¬ A: not A
- * A ^ B: A and B (conjunction)
- * A v B: A or B (disjunction) Note: this is not an "exclusive or"
- * $A \Rightarrow B$: A implies B (implication). If A then B
- * $A \Leftrightarrow B$: A if and only if B (biconditional)

* Sentences

Propositional Logic Syntax

- * Given: a set of proposition symbols $\{X_1, X_2, ..., X_n\}$
 - Sentence → AtomicSentence | ComplexSentence
 - AtomicSentence → True | False | Symbol
 - * Symbol $\rightarrow X_1 \mid X_2 \mid ... \mid X_n$
 - ComplexSentence → ¬Sentence
 - | (Sentence \(\) Sentence)
 - | (Sentence v Sentence)
 - | (Sentence \Rightarrow Sentence)
 - | (Sentence ⇔ Sentence)

Example: Wumpus World

4

3

2

Logical Reasoning

- * $B_{ij} = breeze felt$
- * $S_{ij} = stench smelt$
- $P_{ij} = pit here$
- $W_{ij} = wumpus here$
- $G_{ij} = gold$

http://thiagodnf.github.io/wumpus-world-simulator/

Wumpus World: Tell KB

- * There is no pit in [1, 1]:
 - * R1: $\neg P_{1,1}$
- * A square is breezy iff there is a pit in a neighboring square:
 - * R2: $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$
 - * R3: $B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1})$
 - ***** ...
- * The first two percepts:
 - * R4: $\neg B_{1,1}$
 - * R5: $B_{2,1}$

1

2

2

3

4

Truth from Semantics

- * A model specifies the truth value of every proposition symbol (e.g., P, $\neg P$, True, False)
- * The truth value of complex sentences is defined in terms of the truth values of its elements:
 - PP P P Q P Q P Q P P Q P

Truth Tables

 $\alpha \vee \beta$ is <u>inclusive or</u>, not exclusive

α	β	α Λ β	_	α	β	ανβ
F	F	F		F	F	F
F	T	F		F	T	T
T	F	F		T	F	T
T	T	T		Τ	T	T

Truth Tables

 $\alpha \Rightarrow \beta$ is equivalent to $\neg \alpha \lor \beta$

α	β	$\alpha \Rightarrow \beta$	$\neg \alpha$	$\neg \alpha \lor \beta$
F	F	T	T	T
F	T	T	T	T
T	F	F	F	F
T	T	T	F	T

Truth Tables

 $\alpha \Leftrightarrow \beta$ is equivalent to $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$

α	β	$\alpha \Leftrightarrow \beta$	$\alpha \Rightarrow \beta$	$\beta \Rightarrow \alpha$	$(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$
F	F	T	T	T	T
F	T	F	Τ	F	F
T	F	F	F	T	F
T	T	T	T	T	T

Equivalence: it's true in all models. Expressed as a logical sentence:

$$(\alpha \Leftrightarrow \beta) \Leftrightarrow [(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)]$$

Propositional Logic Semantics

```
function PL-TRUE?(\alpha,model) returns true or false

if \alpha is a symbol then return Lookup(\alpha, model)

if Op(\alpha) = \neg then return not(PL-TRUE?(Arg1(\alpha),model))

if Op(\alpha) = \wedge then return and(PL-TRUE?(Arg1(\alpha),model),

PL-TRUE?(Arg2(\alpha),model))

if Op(\alpha) = \Rightarrow then return or(PL-TRUE?(Arg1(\alpha),model),

not(PL-TRUE?(Arg2(\alpha),model)))

etc. (Sometimes called "recursion over syntax")
```

Logical Consequences

- Entailment: determines truth of sentence based on semantics (from outside)
- * Inference: generates new sentence from current KB (from inside)

* Two closely related, but very different, concepts

Entailment

Entailment: $\alpha \models \beta$ (" α entails β " or " β follows from α ") iff in every world where α is true, β is also true

* I.e., the α -worlds are a subset of the β -worlds [$models(\alpha) \subseteq models(\beta)$]

Usually we want to know if $KB \models query$

- * models(KB) \subseteq models(query)
- * In other words
 - * KB removes all impossible models (any model where KB is false)
 - * If β is true in all of these remaining models, we conclude that β must be true

Entailment and implication are very much related

* However, entailment relates two sentences, while an implication is itself a sentence (usually derived via inference to show entailment)

Wumpus World: Model

- Possible worlds/models
- $P_{1,2} P_{2,2} P_{3,1}$

Wumpus World: KB

- * Possible worlds/models
- $P_{1,2} P_{2,2} P_{3,1}$
- Knowledge base
 - * Nothing in [1,1]
 - * Breeze in [2,1]

Wumpus World: Query 1

- * Possible worlds/models
- $P_{1,2} P_{2,2} P_{3,1}$
- Knowledge base
 - * Nothing in [1,1]
 - Breeze in [2,1]
- * Query α_1 :
 - * No pit in [1,2]

Wumpus World: Query 2

- * Possible worlds/models
- $P_{1,2} P_{2,2} P_{3,1}$
- Knowledge base
 - * Nothing in [1,1]
 - Breeze in [2,1]
- * Query α_2 :
 - * No pit in [2,2]

Quiz: Wumpus World

- * Possible worlds/models
- $P_{1,2} P_{2,2} P_{3,1}$
- * Knowledge base
 - * Nothing in [1,1]
 - Breeze in [2,1]
- * Query α_3 :
 - * No pit in [1,3]

Sentences as Constraints

Adding a sentence to our knowledge base constrains the

number of possible models:

KB: Nothing

Possible P Q R
Models false false false true false true false true true true false true true true false true false

true

true

true

Sentences as Constraints

Adding a sentence to our knowledge base constrains the

number of possible models:

Possible

Models

KB: Nothing

KB: $[(P \land \neg Q) \lor (Q \land \neg P)] \Rightarrow R$

P	Q	R
false	false	false
false	false	true
false	true	false
false	true	true
true	false	false
true	false	true
true	true	false
true	true	true

Sentences as Constraints

Adding a sentence to our knowledge base constrains the

number of possible models:

Possible

Models

KB: Nothing

KB: $[(P \land \neg Q) \lor (Q \land \neg P)] \Rightarrow R$

KB: \mathbb{R} , $[(P \land \neg Q) \lor (Q \land \neg P)] \Rightarrow \mathbb{R}$

Р	Q	R
false	false	false
false	false	true
false	true	false
false	true	true
true	false	false
true	false	true
true	true	false
true	true	true

Validity and Satisfiability

- * A sentence is valid if it is true in every model
 - * α entails β if and only if $\alpha \Rightarrow \beta$ is valid
 - * A valid sentence is also called tautology
- * A sentence is satisfiable if it is true in *some* model
- * A sentence is unsatisfiable if it is true in *no* model

Inference

Simple model checking Efficient Model Checking via Satisfiability Theorem proving

Simple Model Checking

```
function TT-ENTAILS?(KB, \alpha) returns true or false
  return TT-CHECK-ALL(KB, \alpha, symbols(KB) U symbols(\alpha),{})
function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false
  if empty?(symbols) then
      if PL-TRUE?(KB, model) then return PL-TRUE?(\alpha, model)
      else return true
  else
       P \leftarrow first(symbols)
       rest ← rest(symbols)
       return and (TT-CHECK-ALL(KB, \alpha, rest, model \cup {P = true})
                    TT-CHECK-ALL(KB, \alpha, rest, model \cup {P = false }))
```

Simple Model Checking, contd.

- * Same recursion as backtracking
- * O(2n) time, linear space
- * We can do much better!

Efficient Model Checking via Satisfiability

- * Suppose we have a hyper-efficient SAT solver; how can we use it to test entailment?
- * Suppose $\alpha \models \beta$
- * Then $\alpha \Rightarrow \beta$ is true in all worlds (Deduction theorem)
- * Hence $\neg(\alpha \models \beta)$ is false in all worlds
- * Hence $\alpha \land \neg \beta$ is false in all worlds, i.e., unsatisfiable
- * So, add the negated conclusion to what you know, test for (un)satisfiability; also known as reductio ad absurdum
- Efficient SAT solvers operate on conjunctive normal form

Conjunctive Normal Form (CNF)

- * Every sentence can be expressed as a conjunction of clauses
- * A clause is a disjunction of literals
- * A literal is a symbol or a negated symbol
- * Conversion to CNF by a sequence of standard transformations:
 - $B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$
 - * $(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$
 - * $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$
 - $* (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$
 - $* (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

Inference via Theorem Proving

- * KB: set of sentences
- * Inference rule specifies when:
 - * If certain sentences belong to KB, you can add certain other sentences to KB
- * Proof (KB $|-\alpha$) is a sequence of applications of inference rules starting from KB and ending in α
- * Inference is a completely mechanical operation guided by syntax, no reference to possible worlds

Example of Inference Rules

* Modus ponens:
$$\frac{\alpha \Rightarrow \beta, \alpha}{\beta}$$

* And elimination:
$$\frac{\alpha \wedge \beta}{\alpha}$$

Biconditional elimination: $\frac{\alpha \Leftrightarrow \beta}{(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)}$

Soundness and Completeness

- * We want inference to be *sound*:
 - * If we can prove B from A (A \vdash B), then A \models B

- * We would like inference to be *complete*:
 - * If $A \models B$, then we can prove B from $A(A \models B)$

* These are properties of the relationship between *proof* and *truth*.

PL is Sound and Complete!

* **Theorem:** Sound and complete inference can be achieved in PL with one rule: resolution

$$* \frac{\alpha \vee \beta, \neg \beta}{\alpha}$$

- * More generally, $\frac{\alpha \lor \beta, \neg \beta \lor \gamma}{\alpha \lor \gamma}$
- * More generally yet, $\frac{\alpha_1 \vee ... \vee \alpha_n \vee \beta, \neg \beta \vee \gamma_1 \vee ... \gamma_m}{\alpha_1 \vee ... \vee \alpha_n \vee \gamma_1 \vee ... \gamma_m}$
- KB assumed to be in CNF
- * Show KB $\models \alpha$ by showing unsatisfability of (KB $\land \neg \alpha$)