Module-03, Python for Data Analysis Data Visualization (Plotly and Cufflinks)

Dostdar Ali Instructor

Data science and Artificial Intelligence
3-Months Course
at
Karakaroum international University

January 7, 2024

Table of Contents

- Introduction to Plotly
- Introduction to Cufflinks
- Fake Data-sets
- 4 Using Cufflinks and iplot()
- Coding's Screenshots

Plotly

- Plotly is a library that allows we to create interactive plots.
- That we can use in dashboards or websites (we can save them as html files or static images).
- We'll need to install it with pip at your command line or terminal with pip install plotly

Plotly

- Plotly is a library that allows we to create interactive plots.
- That we can use in dashboards or websites (we can save them as html files or static images).
- We'll need to install it with pip at your command line or terminal with pip install plotly

Plotly

- Plotly is a library that allows we to create interactive plots.
- That we can use in dashboards or websites (we can save them as html files or static images).
- We'll need to install it with pip at your command line or terminal with pip install plotly

Cufflinks

- Cufflinks connects plotly pandas.
- These libraries are not currently available through conda but are available through pip.
- Install the libraries at your command line/terminal using:
 pip install cufflinks

Cufflinks

- Cufflinks connects plotly pandas.
- These libraries are not currently available through conda but are available through pip.
- Install the libraries at your command line/terminal using:
 pip install cufflinks

Cufflinks

- Cufflinks connects plotly pandas.
- These libraries are not currently available through conda but are available through pip.
- Install the libraries at your command line/terminal using:
 pip install cufflinks

Fake Data One

• Fake Data,

	Α	В	С	D
0	0.779645	1.585193	0.608366	-0.384866
1	-0.752416	1.482513	-1.302515	-1.218228
2	0.305855	0.226226	-1.044587	-1.462651
3	0.172883	0.235969	-0.140119	0.684981
4	1.377773	-0.258258	-0.225226	0.954624
95	-0.385933	-1.063712	-0.344305	-0.436219
96	-2.325169	-0.925098	0.130071	1.755548
97	0.659679	-1.482659	0.634361	1.256144
98	0.619091	0.865509	0.164927	0.222919
99	-0.112240	-1.231000	-0.055238	0.153212

100 rows × 4 columns

Fake Data One

• Fake Data,

	Α	В	С	D
0	0.779645	1.585193	0.608366	-0.384866
1	-0.752416	1.482513	-1.302515	-1.218228
2	0.305855	0.226226	-1.044587	-1.462651
3	0.172883	0.235969	-0.140119	0.684981
4	1.377773	-0.258258	-0.225226	0.954624
95	-0.385933	-1.063712	-0.344305	-0.436219
96	-2.325169	-0.925098	0.130071	1.755548
97	0.659679	-1.482659	0.634361	1.256144
98	0.619091	0.865509	0.164927	0.222919
99	-0.112240	-1.231000	-0.055238	0.153212

100 rows × 4 columns

Fake Data two

• Data set,

	Category	Values
0	Α	32
1	В	43
2	С	50

• We have (3,2) size data set

Fake Data two

• Data set,

	Category	Values
0	Α	32
1	В	43
2	С	50

• We have (3,2) size data set

- scatter
- bar
- box
- spread
- heatmap
- surface
- histogram
- bubble

- scatter
- bar
- box
- spread
- heatmap
- surface
- histogram
- bubble

- scatter
- bar
- box
- spread
- heatmap
- surface
- histogram
- bubble

- scatter
- bar
- box
- spread
- heatmap
- surface
- histogram
- bubble

Scatter

```
df.iplot(kind='scatter',x='A',y='B',mode='markers',size=10)
```

bar plots

```
df2.iplot(kind='bar',x='Category',y='Values')
```

bar plots

boxplots

```
df[['A','B']].iplot(kind='spread')
```


Scatter

```
df.iplot(kind='scatter',x='A',y='B',mode='markers',size=10)
```

bar plots

```
df2.iplot(kind='bar',x='Category',y='Values')
```

bar plots

boxplots

```
df[['A','B']].iplot(kind='spread')
```


Scatter

```
df.iplot(kind='scatter',x='A',y='B',mode='markers',size=10)
```

bar plots

```
df2.iplot(kind='bar',x='Category',y='Values')
```

bar plots

```
df.count().iplot(kind='bar')
```

boxplots

```
df[['A','B']].iplot(kind='spread')
```


Scatter

```
df.iplot(kind='scatter',x='A',y='B',mode='markers',size=10)
```

bar plots

```
df2.iplot(kind='bar',x='Category',y='Values')
```

bar plots

```
df.count().iplot(kind='bar')
```

boxplots

```
df.iplot(kind='box')
```

```
df[['A','B']].iplot(kind='spread')
```


Scatter

```
df.iplot(kind='scatter',x='A',y='B',mode='markers',size=10)
```

bar plots

```
df2.iplot(kind='bar',x='Category',y='Values')
```

bar plots

```
df.count().iplot(kind='bar')
```

boxplots

```
df.iplot(kind='box')
```

```
df[['A','B']].iplot(kind='spread')
```


Histogram

Bubble

Scatter-matrix()

```
df.scatter_matrix()
```


Great Job Thank yo

