Artificial Neural Network

Md. Hasnain Ali Student Id: 2010976153

May 2025

Q: Compare performance of 10 CNNs pre-trained on ImageNet dataset using images of 20 classes of CIFAR-100 dataset.

Answer: Experiment Details: I took 10 models from keras. I have loaded them with Imagenet-1K weights without head. I have used these as a backbone and then added a 3 layer classification head (Figure 1).

Figure 1: Model architecture of the evaluation system.

Then, 20 classes have selected been from CIFAR-100 dataset (see Table 1). I only filtered the dataset for required classes and use as it is (Train set and test set). Then I train all the heads for each backbone for 1 epoch. Then finally evaluate on the test set. The final results of all the models are in the Table 2.

Table 2: Performance of Pre-trained CNNs on 20 Classes of CIFAR-100

Model	Train	Test	Size	Train T	Eval T	Loss	Acc
			(MB)	(s)	(s)		
Xception	10000	2000	431.9	3.19	0.30	1.076	0.692
VGG16	10000	2000	152.5	2.97	0.54	1.000	0.717
VGG19	10000	2000	172.7	3.70	0.67	0.877	0.751
ResNet50V2	10000	2000	442.2	3.06	0.22	1.068	0.701
${\rm ResNet} 101 V2$	10000	2000	515.0	4.12	0.46	1.111	0.677
Continued on next page					t page		

Table 2: Performance of Pre-trained CNNs on 20 Classes of CIFAR-100 (continued)

Model	Train	Test	Size (MB)	Train T (s)		Loss	Acc
InceptionV3 IncepResNetV2 MobileNet MobileNetV2 DenseNet121		2000 2000 2000		0.94 1.76 0.83 1.57 1.51	0.18 0.06 0.08	1.293 1.008 0.945 1.061 0.812	0.684 0.717 0.691

Performance Analysis of Pre-trained CNNs on CIFAR-100 (20 Classes)

1. Accuracy Comparison

- Top Performer: DenseNet121 achieved the highest accuracy of 78.45% with the lowest loss (0.812), indicating robust generalization to the selected subset of CIFAR-100.
- High Accuracy Contenders: VGG19 (75.05%), VGG16 and MobileNet (71.75%), and Xception (69.15%) also demonstrated strong accuracy. Notably, MobileNet achieved this with the smallest model size (140.7 MB), showcasing high efficiency.
- Lower Accuracy Models: InceptionV3 (60.20%) and ResNet101V2 (67.70%) performed relatively poorly, with InceptionV3 also having the highest evaluation loss (1.293), suggesting weaker feature extraction for this specific dataset subset.

2. Efficiency (Time vs Accuracy)

- Fastest Models: MobileNet (0.83s training / 0.06s eval) and InceptionV3 (0.94s training / 0.10s eval) showed very low compute times, making them ideal for fast and iterative training pipelines.
- Trade-offs with Accuracy: Although InceptionV3 was fast, its performance was subpar in terms of accuracy. In contrast, MobileNet maintained a balanced trade-off between speed and precision.
- Moderately Efficient and Accurate: Models like Xception, VGG16, VGG19, and ResNet variants exhibited training times between 3–4 seconds and evaluation times close to 1 second, representing a reasonable compromise for practical use.

Table 1: Selected 20 Target Classes from CIFAR-100 Dataset

Class Index	Class Name	Class Index	Class Name
11	bicycle	26	leopard
12	bottle	27	lion
13	bowl	28	lizard
14	boy	29	lobster
15	bridge	30	man
16	bus	51	television
17	butterfly	52	tiger
18	camel	53	tractor
19	can	54	train
20	castle	55	trout

Figure 2: Evaluation accuracy of pre-trained CNNs on 20 classes of CIFAR-100.

3. Model Size vs Performance

- Compact Yet Powerful: Models such as MobileNet and DenseNet121 delivered excellent accuracy with smaller model sizes (approximately 140–155 MB), making them suitable for deployment in resource-constrained environments.
- Heavyweight Models with Moderate Returns: ResNet101V2 (515 MB) and ResNet50V2 (442 MB) were the largest in terms of size, yet their accuracies (67.7% and 70.1%, respectively) were modest compared to lighter models such as VGG16/VGG19.

Figure 3: Comperison between the evaluation accuracy of pre-trained CNNs and training time.

4. Optimal Choices

- Best Overall: DenseNet121 demonstrated the best overall performance considering accuracy, model size, and evaluation time.
- Best for Efficiency: MobileNet provides competitive accuracy with minimal computational cost and a small memory footprint.
- Best Classic Architecture: VGG19 remains a solid baseline choice for its robust performance and interpretability.

Code Url: https://pastecode.dev/s/alv1a127

Figure 4: Comperison between the evaluation accuracy of pre-trained CNNs and evaluation time.

Figure 5: Comperison between the evaluation accuracy of pre-trained CNNs and model size.