

# **Beyond Linear Regression Part I**

Intro to Nonlinear Regression & Model Selection

송 준

고려대학교 <u>통계학과</u> / 융합데이터과학 대학원

# **Recap: Goal of Regression Models**

• 회귀 모형 (Regression Model):

$$Y = f(X) + \epsilon$$

- Goal of Regression Models:
  - 추정 (Estimation): 관계를 나타내는 함수 f에 대한 추정
  - 예측 (Prediction): X 값이 주어졌을 때 대응되는 Y 값의 예측
  - 추론 (Inference): Further investigation
    - 예측이 "얼마나" 정확한가?
    - 함수 f() 가 얼마나 정확한가?
    - 예측변수가 여러 개 있을 때 모든 변수가 Y의 값에 영향을 주나?
    - 모형이 충분히 적합 됐나?

### **Recap: Goal of Regression Models**

• 회귀 모형 (Regression Model):

$$Y = f(X) + \epsilon$$

- Goal of Regression Models:
  - 추정 (Estimation): 관계를 나타내는 함수 f에 대한 추정
  - 예측 (Prediction): X 값이 x로 주어졌을 때 Y 값의 예측
  - 추론 (Inference): Further investigation of the data
    - 예측이 "얼마나" 정확한가?
    - 함수 f() 가 얼마나 정확한가?
    - 예측변수가 여러 개 있을 때 모든 변수가 Y의 값에 영향을 주나?
    - 모형이 충분히 적합 됐나?
  - 예측만 목표로 할 시: 다양한 방법론 적용 가능
  - 추론을 목표로 할 시: 관계를 나타내는 f()에 제약이 필요함
  - 단순한 모형부터 시작! **f 는 선형함수.**

### **Recap: Function Estimation**

#### **Optimal predictor:**

$$f^* = argmin_f \mathbb{E}[(f(X) - Y)^2]$$

#### **Empirical Risk Minimizer:**

$$\widehat{f}_n = argmin_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n ((f(X_i) - Y_i))^2$$
Class of predictors Empirical mean

# **Recap: Linear Regression Algorithm**

- **Input**: Dataset  $Z = \{(x_1, y_1), \dots, (x_n, y_n)\}$
- Compute

$$\widehat{\beta}(Z) = \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} L(\beta; Z)$$

$$= \underset{\beta \in \mathbb{R}^p}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n (y_i - \beta^T x_i)^2$$

- Output :  $f_{\widehat{\beta}(Z)}(x) = \widehat{\beta}(Z)^T x$
- Discuss algorithm for computing the minimal eta later

### **Recap: Solution to the Optimization Problem**

• Analytic Solution (Explicit form, closed form – solution): 미분=0

$$L(\beta; x) = \beta^2 - 2x\beta + 10 = (\beta - x)^2 + 9$$
  
$$\arg\min_{\beta} L(\beta) = x$$

Numerical Solution (Optimization Algorithm)



# Recap: $R^2$

#### SST (총 편차제곱합)



결정계수  $\mathbb{R}^2$  (coefficient of determination) 회귀직선의 적합도를 평가하는 방법 전체변동에서 회귀로 설명되는 부분이 차지하는 비율

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSR}{SST}$$

$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2 + \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

# **Feature Mapping**

# **Function Approximation View of ML**



ML algorithm outputs a model f that best "approximates" the given data Z

### **Function Approximation View of ML**

Framework for designing machine learning algorithms

#### Two design decisions

- What is the family of candidate models f? (E.g., linear functions)
- How to define "approximating"? (E.g., MSE loss)

### **Aside: "True Function"**

- **Input:** Dataset **Z** 
  - Presume there is an unknown function f\*that generates Z
- **Goal:** Find an approximation  $f_{\beta} \approx f^*$  in our model family  $f_{\beta} \in F$ 
  - Typically, f\* not in our model family F



### **Function Approximation View of ML**

- Framework for designing machine learning algorithms
- Two design decisions
  - What is the family of candidate models f? (E.g., linear functions)
  - How to define "approximating"?(E.g., MSE loss)
- How do we specialize to linear regression?

### **Loss Minimization**



# **Linear Regression**



# **Linear Regression**

#### **General strategy**

- Model family  $F = \{f_{\beta}\}_{\beta}$
- Loss function  $L(\beta; \mathbb{Z})$

#### **Linear regression strategy**

- Linear functions  $F = \{f_{\beta}(x) = \beta^T x\}$
- MSE  $L(\beta; Z) = \frac{1}{n} \sum_{i=1}^{n} (y_i \beta^T x_i)^2$

#### **Linear regression algorithm**

$$\hat{\beta}(Z) = \underset{\beta}{\operatorname{argmin}} L(\beta; Z)$$

# **Agenda**

- Function approximation view of machine learning
  - Modern strategy for designing machine learning algorithms
  - By example: Linear regression, a simple machine learning algorithm
- Bias-variance tradeoff
  - Fundamental challenge in machine learning
  - **By example:** *Linear regression with feature maps*

# **Example: Quadratic Function**



# **Example: Quadratic Function**



Can we get a better fit?

# **Feature Maps**

#### **General strategy**

- Model family  $F = \{f_{\beta}\}_{\beta}$
- Loss function  $L(\beta; \mathbb{Z})$

#### Linear regression with feature map

• Linear functions over a given **feature**  $map \ \phi: X \to \mathbb{R}^d$ 

$$F = \left\{ f_{\beta}(x) = \beta^T \phi(x) \right\}$$

• MSE  $L(\beta; \mathbf{Z}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \beta^T \phi(x_i))^2$ 

# **Quadratic Feature Map**

• Consider the feature map  $\phi: \mathbb{R} \to \mathbb{R}^2$  given by

$$\phi(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix}$$

• Then, the model family is

$$f_{\beta}(x) = \beta_1 x + \beta_2 x^2$$

# **Quadratic Feature Map**



# **Feature Maps**

- Powerful strategy for encoding prior knowledge
- Terminology
  - x is the input and  $\phi(x)$  are the features
  - Often used interchangeably

### **Examples of Feature Maps**

#### Polynomial features

- $f_{\beta}(x) = \beta_1 + \beta_2 x_1 + \beta_3 x_2 + \beta_4 x_1^2 + \beta_5 x_1 x_2 + \beta_6 x_2^2 + \cdots$
- Quadratic features are very common; capture "feature interactions"
- Can use other nonlinearities (exponential, logarithm, square root, etc.)

#### Basis expansion approach

- $f_{\beta}(x) = \beta_0 + \beta_1 \phi_1(x) + \dots + \beta_d \phi_d(x)$
- Fit the data in a more general way

#### Encoding non-real inputs

- E.g., x = "the food was good" and y = 4 stars
- $\phi(x) = [1("good" \in x) \quad 1("bad" \in x) \quad \cdots]^T$

# **Algorithm**

- Reduces to linear regression
- **Step 1:** Compute  $\phi_i = \phi(x_i)$  for each  $x_i$  in Z
- Step 2: Run linear regression with  $Z' = \{(\phi_1, y_1), \dots, (\phi_n, y_n)\}$

### Question

#### Why not throw in lots of features?

- $f_{\beta}(x) = \beta_1 + \beta_2 x_1 + \beta_3 x_2 + \beta_4 x_1^2 + \beta_5 x_1 x_2 + \beta_6 x_2^2 + \cdots$
- Can fit any n points using a polynomial of degree n



### Question

- Issue: prediction with a new data
  - Given a **new** input x, predict the label  $\hat{y} = f_{\beta}(x)$



The errors on new inputs is very large!

### Question

- Issue: prediction with a new data
  - Given a **new** input x, predict the label  $\hat{y} = f_{\beta}(x)$



Vanilla linear regression actually works better!

# **Model Selection Basic**

# **Training vs. Test Data**

• Training data: Examples  $Z = \{(x, y)\}$  used to fit our model

• **Test data:** New inputs x whose labels y we want to predict

Goal: Find a model that works well on the test data (unseen data)

### **Recap: Function Estimation**

```
Ideal goal: Construct prediction rule f^*: \mathcal{X} \to \mathcal{Y}

f^* = argmin_f \mathbb{E}_{XY}[loss(Y, f(X))]
```

$$\widetilde{f} = \arg\min_{f \in F} \mathbb{E}_{XY}[\log(Y, f(X))]$$

$$\widehat{f_n} = \arg\min_{f \in F} \sum_{i=1}^n \log(Y_i, f(X_i))$$

$$F$$

### Training Loss (MSE) v.s Test Loss (MSE)

Ideal goal: Construct prediction rule  $f^*: \mathcal{X} \to \mathcal{Y}$   $f^* = argmin_f \mathbb{E}_{XY}[loss(Y, f(X))]$   $\widehat{f}_n = arg \min_{f \in F} \mathbb{E}_{XY}[loss(Y, f(X))]$ It is obtained using the data

Given the estimated function from the data,  $\widehat{f_n}$ ,

**Test MSE:**  $\mathbb{E}_{XY}\left[\log\left(Y,\widehat{f_n}\left(X\right)\right)\right]$  We need to minimize the Test MSE! Training MSE:  $\frac{1}{n}\sum_{i=1}^{n}\log\left(Y_i,\widehat{f_n}\left(X_i\right)\right)$ 

### Training Loss (MSE) v.s Test Loss (MSE)

- If no test observations are available? Should we choose the method that minimizes the training MSE?
- No! There is no guarantee that the method with the smallest training MSE will have the smallest test MSE

### Training Loss (MSE) v.s Test Loss (MSE)

 Training MSE (grey) decreases monotonically as the model flexibility increases and Test MSE (red) has U-shape



### **Overfitting v.s Underfitting**

- Overfitting
  - Fit the **training data** Z well
  - Fit new test data (x, y) poorly



#### Underfitting

- Fit the **training data Z** poorly
- (Necessarily fit new test data
- (x, y) poorly)



### Training Loss (MSE) vs Test Loss (MSE)

- See the <u>example</u>
- There is no way to have the true Test MSE
- Estimate the TEST MSE!

# **Training/Test Split**

- Issue: How to detect overfitting vs. underfitting?
- Solution: Use held-out test data to estimate loss on new data
  - Typically, randomly shuffle data first

Given data Z



Training data  $Z_{train}$ 

Test data  $Z_{test}$ 

• Step 1: Split Z into  $Z_{train}$  and  $Z_{test}$ 

### Training data $Z_{train}$

Test data  $Z_{test}$ 

- **Step 2:** Run linear regression with  $Z_{train}$  to obtain  $\hat{\beta}(Z_{train})$
- **Step 3:** Evaluate
  - Training loss:  $L_{train} = L(\hat{\beta}(Z_{train}); Z_{train})$
  - Estimated Test (or generalization) loss:  $L_{test} = L(\hat{\beta}(Z_{train}); Z_{test})$

- Overfitting
  - Fit the **training data** Z well
  - Fit new test data (x, y) poorly



#### Underfitting

- Fit the **training data Z** poorly
- (Necessarily fit new test data (x, y) poorly)



- Overfitting
  - $L_{train}$  is small
  - *L*<sub>test</sub> is large



#### Underfitting

- Fit the **training data** *Z* poorly
- (Necessarily fit new test data (x, y) poorly)



- Overfitting
  - $L_{train}$  is small
  - *L*<sub>test</sub> is large



#### Underfitting

- $L_{train}$  is large
- L<sub>test</sub> is large



# **Aside: IID Assumption**

#### Underlying IID assumption

- Future data are drawn IID from same data distribution P(x, y) as  $Z_{test}$
- IID = independent and identically distributed
- This is a strong (but common) assumption!

#### Time series data

- Particularly important failure case since data distribution may shift over time
- **Solution:** Split along time (e.g., data before 2024.05.18 vs. data after 2024.05.18)

# **How to fix Underfitting/Overfitting?**

Choose the right model family!

# **Role of Capacity**

- **Capacity** of a model family captures "complexity" of data it can fit
  - Higher capacity more likely to overfit(model family has high variance)
  - Lower capacity more likely to underfit(model family has high bias)
- For linear regression, capacity corresponds to feature dimension d
  - *I.e., number of features in*  $\phi(x)$

#### Overfitting(high variance)

- High capacity model capable of fitting complex data
- Insufficient data to constrain it



#### Underfitting(high bias)

- Low capacity model that can only fit simple data
- Sufficient data but poor fit





- For linear regression, increasing feature dimension d...
  - Tends to increase capacity
  - Tends to decrease bias but increase variance
- Need to construct  $\phi$  to balance tradeoff between bias and variance
  - Rule of thumb:  $n \approx d \log d$
  - Large fraction of data science work is data cleaning + feature engineering

- Increasing number of examples n in the data...
  - Tends to increase bias and decrease variance
- General strategy
  - **High bias:** *Increase model capacity d*
  - **High variance:** *Increase data size n (i.e., gather more labeled data)*

```
Ideal goal: Construct prediction rule f^*: \mathcal{X} \to \mathcal{Y}
                                                          f^* = argmin_f \mathbb{E}_{XY}[loss(Y, f(X))]

\widetilde{f} = \arg\min_{f \in F} \mathbb{E}_{XY}[\log(Y, f(X))]

\widehat{f_n} = \arg\min_{f \in F} \sum_{i=1}^{n} \log(Y_i, f(X_i))

   Overfitting?
   Underfitting?
                                                                                      variance
                                                    bias
                                                                     total loss
```

# **Bias-Variance Tradeoff(Overfitting)**



# **Bias-Variance Tradeoff(Underfitting)**



# **Bias-Variance Tradeoff(Ideal)**



# **Cross Validation**

# **Training/Test Split**

Validation Set Approach: Is it enough?

Given data Z



Training data  $Z_{train}$ 

Test data  $Z_{test}$ 

# **Validation Set Approach**



- Left: Test MSE for a single split
- Right: Validation method repeated 10 times, each time split is done randomly
- There is a lot of variability among the MSE's and this is Not good!
- We need more stable methods!

# **Validation Set Approach**

- Advantages:
  - Simple and computationally less expensive.
- Disadvantages:
  - The validation MSE can be highly variable.
  - Only a subset of observations is used to fit the model (training data).
  - Statistical methods tend to perform worse when trained **on fewer observations**.
  - i.e., the test MSE tends to be over-estimated.

## Leave-one-out cross validation (LOOCV)



- Split the data set of size n into
  - training: n-1
  - validation: 1
- Fit the model using the training data
- Validate the model using the validation data:  $MSE_{(i)}$  (do this n times)
- Final test MSE =  $\frac{1}{n}\sum_{i=1}^{n} MSE_{(i)}$

## Leave-one-out cross validation (LOOCV)

- LOOCV has less bias
  - We repeatedly fit the statistical learning method using training data that contains n − 1 obs., i.e. almost all the data set is used.
- LOOCV is stable (no more randomness)
- Issue: LOOCV is computationally expensive
  - We need to fit the model n times!

### k-fold CV

Example: K=3 fold



Choose the tuning parameter that minimizes the CV

## k-fold CV

LOOCV v.s. 10-fold CV



## k-fold CV

- LOOCV = n-fold CV
- k-fold CV
  - (good & bad) slightly biased / variable
  - (good) computationally efficient

### k-fold CV: in actual scenario

- ✓ Goal: Find a hyperparmeter (model complexity, some tuning parameter)
- ✓ Split train & test. Apply k-fold CV to train!



For reporting test loss

### k-Fold Cross-Validation

Goal: Find  $\lambda$ 

- Alternative: k-fold cross-validation (e.g., k = 3)
  - Split Z into Z<sub>train</sub> and Z<sub>test</sub>
  - Split  $Z_{train}$  into k disjoint sets  $Z_{val}^{S}$ , and let  $Z_{train}^{S} = \bigcup_{s' \neq s} Z_{val}^{S}$
  - Use  $\lambda'$  that works best on average across  $s \in \{1, ..., k\}$  with  $Z_{train}$
  - Chooses better  $\lambda'$  than above strategy
- Compute vs. accuracy tradeoff
  - As  $k \rightarrow N$ , the model becomes more accurate
  - But algorithm becomes more computationally expensive