Facultad de Ingeniería

Lenguaje de consulta de datos

Tema VII

Semestre 2024-1

Objetivo

El alumno comprenderá los conceptos teóricos y prácticos que le permitan realizar el acceso y consulta de datos a través del uso de sentencias del lenguaje SQL, así como las diferentes estrategias de acceso a datos.

Select

La sentencia select nos permite obtener información de una tabla.

Select

SELECT (col1, col2, ...) | *
FROM nombre_Tabla nt
[CONDICIONES|AGREGADOS|
ORDENAMIENTO ...]

Select

Consideraciones

- Permisos en la(s) tablas
- Podemos hacer tan compleja la obtención de información como sea necesario

- LiteralesSELECT 'Fernando';
- ExpresionesSELECT 5*4;
- Alias
 SELECT columna AS alias FROM tabla;

Tablas de apoyo

Algunos DBMS las emplean para complementar consultas

En postgres no es necesario

Select - Distinct

SELECT DISTINCT nombre AS nombre_unico FROM cliente;

Select - Order

SELECT DISTINCT nombre AS nombre_unico FROM cliente ORDER BY nombre;

Definición

El álgebra relacional define una serie de operaciones que podemos aplicar a una o más relaciones

Definición

Dos tipos:

- Unarias
- Binarias

Proyección

Nos permite remover atributos que no es de nuestro interés visualizar.

$$\pi_{nombres-atributos}(R)$$

Proyección

Empleado

num. empleado	nombre	departamento	sueldo
2342	Juan	Contabilidad	8000
5236	Fernando	Computacion	12000
7643	Lorena	Marketing	10000
1232	Francisco	Computacion	8000
4356	Jimena	Computacion	13500

Mostrar sólo el sueldo y nombre

Proyección

Empleado
SELECT sueldo,
nombre

FROM empleado;

 $\pi_{sueldo,nombre}(Empleado)$

num. empleado	nombre	departamento	sueldo
2342	Juan	Contabilidad	8000
5236	Fernando	Computacion	12000
7643	Lorena	Marketing	10000
1232	Francisco	Computacion	8000
4356	Jimena	Computacion	13500

Sueldo	Nombre
8000	Juan
12000	Fernando
10000	Lorena
8000	Francisco
13500	Jimena

Selección

Permite seleccionar registros que cumplen una determinada condición, que puede evaluarse con los operadores:

$$\sigma_{condiciones}(R)$$

Selección

Empleado

num. empleado	nombre	departamento	sueldo
2342	Juan	Contabilidad	8000
5236	Fernando	Computacion	12000
7643	Lorena	Marketing	10000
1232	Francisco	Computacion	8000
4356	Jimena	Computacion	13500

Datos de los empleados que trabajen en el departamento de computación y sueldo mayor a 9000

Selección

Empleado

num. empleado	nombre	departamento	sueldo
2342	Juan	Contabilidad	8000
5236	Fernando	Computacion	12000
7643	Lorena	Marketing	10000
1232	Francisco	Computacion	8000
4356	Jimena	Computacion	13500

R1 =

 $\sigma_{departamento='computacion'\ AND\ sueldo>9000}(Empleado)$

$$R = \pi_{nombre}(R1)$$

num. empleado	nombre	departamento	sueldo
5236	Fernando	Computacion	12000
4356	Jimena	Computacion	13500

SELECT *

FROM empleado

WHERE departamento = 'computacion' AND sueldo > 9000;

Operaciones binarias

Para que dos tablas sean compatibles, deben cumplir lo siguiente:

- 1. Deben ser del mismo grado
- 2. Los atributos deben tener el mismo nombre en ambas relaciones
- 3. El i-ésimo atributo de la primer relación debe ser del mismo dominio del i-ésimo atributo de la segunda relación, para toda i

Permite obtener una nueva relación, compuesta por todos los registros de la primera y segunda relación

 $R1 \cup R2$

Empleado

nombre	edad
Juan	25
Fernando	26
Lorena	23
Francisco	22
Jimena	24

Gerente

nombre_Jefe	edad
Francisco	22
Laura	29
Xavier	26

¿Empleado U Gerente?

Empleado

nombre	edad
Juan	25
Fernando	26
Lorena	23
Francisco	22
Jimena	24

Gerente

nombre_Jefe	edad
Francisco	22
Laura	29
Xavier	26

Empleado U Gerente

nombre	edad
Juan	25
Fernando	26
Lorena	23
Francisco	22
Jimena	24
Laura	29
Xavier	26

Empleado SELECT *

nombre	edad
Juan	25
Fernando	26
Lorena	23
Francisco	22
Jimena	24

Gerente

nombre_Jefe	edad
Francisco	22
Laura	29
Xavier	26

FROM EMPLEADO

UNION

SELECT nombre_Jefe AS nombre, edad

FROM GERENTE

Empleado U Gerente

nombre	edad
Juan	25
Fernando	26
Lorena	23
Francisco	22
Jimena	24
Laura	29
Xavier	26

Intersección

Permite obtener los registros que se encuentran en ambas relaciones

 $R1 \cap R2$

Intersección

Empleado

edad
25
26
23
22
24

Gerente

nombre	edad
Francisco	22
Laura	29
Xavier	26

¿Empleado Gerente?

Intersección

Empleado

nombre	edad
Juan	25
Fernando	26
Lorena	23
Francisco	22
Jimena	24

Gerente

nombre	edad
Francisco	22
Laura	29
Xavier	26

nombre	edad
Francisco	22

Diferencia

Permite obtener los registros que se encuentran sólo en la primera relación

R1-R2

Diferencia

Empleado

nombre	edad
Juan	25
Fernando	26
Lorena	23
Francisco	22
Jimena	24

Gerente

nombre	edad
Francisco	22
Laura	29
Xavier	26

¿Empleado — Gerente?

Diferencia

Empleado

nombre	edad
Juan	25
Fernando	26
Lorena	23
Francisco	22
Jimena	24

Gerente

nombre	edad
Francisco	22
Laura	29
Xavier	26

Empleado — Gerente

nombre	edad
Juan	25
Fernando	26
Lorena	23
Jimena	24

Genera las combinaciones entre los registros de ambas relaciones

R1 X R2

como resultado una nueva relación de grado n + m y cardinalidad a*b

Producto cartesiano

R1

nombre	edad
Juan	25
Fernando	26

R2

departamento	sueldo
Contabilidad	12000
Sistemas	13900
Marketing	10000

¿R1 X R2?

Producto cartesiano

R1

nombre	edad
Juan	25
Fernando	26

departamento	sueldo
Contabilidad	12000
Sistemas	13900
Marketing	10000

Producto cartesiano

R1

nombre	edad
Juan	25
Fernando	26

departamento	sueldo
Contabilidad	12000
Sistemas	13900
Marketing	10000

R1 X R2

nombre	edad	departamento	sueldo
Juan	25	Contabilidad	12000
Juan	25	Sistemas	13900
Juan	25	Marketing	10000
Fernando	26	Contabilidad	12000
Fernando	26	Sistemas	13900
Fernando	26	Marketing	10000

Join

Permite combinar registros de dos relaciones a través de una condición sobre los atributos

$$R1 \bowtie_{condicion} R2$$

$$\sigma_{condicion}(R1 \ X \ R2)$$

Join

R1

nombre	edad	dept_id
Juan	25	1
Fernando	26	2
Lucia	27	1

R2

departamento	sueldo	dept_id
Contabilidad	12000	1
Sistemas	13900	2
Marketing	10000	3

 $R1 \bowtie_{R1.dept_id=R2.dept_id} R2?$

Join

R1

nombre	edad	dept_id
Juan	25	1
Fernando	26	2
Lucia	27	1

R2

departamento	sueldo	dept_id
Contabilidad	12000	1
Sistemas	13900	2
Marketing	10000	3

$$R1\bowtie_{R1.dept_id=R2.dept_id} R2$$

nombre	edad	R1.dept_id	R2.dept_id	departamento	sueldo
Juan	25	1	1	Contabilidad	12000
Fernando	26	2	2	Sistemas	13900
Lucia	27	1	1	Contabilidad	12000

Join

R1

Α	В	С
1	2	3
6	7	8
9	7	8

R2

 $\partial R1 \bowtie_{A < D} R2?$

Join

R1

Α	В	С
1	2	3
6	7	8
9	7	8

R2

В	С	D
2	3	4
2	3	5
7	8	10

 $R1\bowtie_{A< D} R2$

Α	R1.B	R1.C	R2.B	R2.C	D
1	2	3	2	3	4
1	2	3	2	3	5
1	2	3	7	8	10
6	7	8	7	8	10
9	7	8	7	8	10

Genera las combinaciones entre los atributos que se llaman igual en las dos relaciones

 $R1\bowtie R2$

¿Y si no hay?

R1

nombre	edad	dept_id
Juan	25	1
Fernando	26	2
Lucia	27	1

R2

departamento	sueldo	dept_id
Contabilidad	12000	1
Sistemas	13900	2
Marketing	10000	3

R1

nombre	edad	dept_id
Juan	25	1
Fernando	26	2
Lucia	27	1

R2

departamento	sueldo	dept_id
Contabilidad	12000	1
Sistemas	13900	2
Marketing	10000	3

$R1\bowtie R2$

nombre	edad	dept_id	departamento	sueldo
Juan	25	1	Contabilidad	12000
Fernando	26	2	Sistemas	13900
Lucia	25	1	Contabilidad	12000

R1

nombre	edad	emp_dept_id
Juan	25	1
Fernando	26	2
Lucia	27	1

R2

nombre	sueldo	dept_id
Contabilidad	12000	1
Sistemas	13900	2
Marketing	10000	3

 $iR1 \bowtie R2?$

R1

nombre	edad	emp_dept_id
Juan	25	1
Fernando	26	2
Lucia	27	1

R2

nombre	sueldo	dept_id
Contabilidad	12000	1
Sistemas	13900	2
Marketing	10000	3

 $R1\bowtie R2$

nombre	edad	emp_dept_id	dept_id	sueldo
--------	------	-------------	---------	--------

R1

nombre	edad	dept_id
Juan	25	1
Fernando	26	2
Marketing	27	1
Sistemas	30	2

R2

nombre	sueldo	dept_id
Contabilidad	12000	1
Sistemas	13900	2
Marketing	10000	3

R1

nombre	edad	dept_id
Juan	25	1
Fernando	26	2
Marketing	27	1
Sistemas	30	2

R2

nombre	sueldo	dept_id
Contabilidad	12000	1
Sistemas	13900	2
Marketing	10000	3

$R1\bowtie R2$

nombre	edad	dept_id	sueldo
Sistemas	30	2	13900

Ejercicio 7_1

cuenta(nombreSucursal,numCta,saldo) sucursal(nombreSucursal,ciudad,activos) cliente(nombreCliente,calle,ciudad) ctaCliente(nombreCliente,numCta) prestamo(nombreSucursal,numPrestamo,importe) prestatario(nombreCliente,numPrestamo)

Ejercicio 7_1

- Encontrar la información de todos los préstamos realizados en la sucursal "copilco"
- Determinar el nombre de los clientes que viven en Guanajuato
- Nombre de los clientes del banco que tienen una cuenta, un préstamo o ambas cosas
- Relación de clientes que tienen abierta una cuenta pero no tienen ninguna de préstamo
- Nombre de los clientes con préstamo mayor a 5000 pesos

Encontrar la información de todos los préstamos realizados en la sucursal "copilco"

Determinar el nombre de los clientes que viven en Guanajuato

$$T_{\text{nombreCliente}}$$
 ($\sigma_{\text{ciudad = 'Guanajuato'}}$ (cliente)

Nombre de los clientes del banco que tienen una cuenta, un préstamo o ambas cosas

$$R1 = \pi_{nombreCliente}(prestatario)$$

$$R2 = \pi_{nombreCliente}(ctaCliente)$$

$$R = R1 \cup R2$$

Relación de clientes que tienen abierta una cuenta pero no tienen ninguna de préstamo

$$R1 = \pi_{nombreCliente}(ctaCliente)$$

$$R2 = \pi_{nombreCliente}(prestatario)$$

$$R = R1 - R2$$

Nombre de los clientes con préstamo mayor a 5000 pesos

$$R1 = prestamo \bowtie prestatario$$

$$R2 = \sigma_{importe > 5000}(R1)$$

$$R = \pi_{nombreCliente}(R2)$$

Tarea 7_1

R1

Α	X	В	Y
7	2	6	11
3	4	9	15
10	7	2	4
1	12	2	11

R2

R1XR2 $R2 \bowtie R1$

Tabla que incluya:

- atributos
- registros

 $R1 \bowtie_{((R1.A > R2.Z \text{ or } R1.A > = R2.W) \text{ and } R1.Y = R2.Y)} R2$

Regresa todas las columnas de múltiples tablas donde se cumple la condición del join

inner

SELECT columns

FROM table

INNER JOIN table2

Regresa los registros de la tabla del lado izquierdo y los registros del lado derecho que hagan match en la condición

left outer

SELECT columns

FROM table1

LEFT JOIN table2

Regresa los registros de la tabla del lado derecho y los registros del lado izquierdo que hagan match en la condición

right outer

SELECT columns

FROM table1

RIGHT JOIN table2

Regresa los registros de la tabla izquierda y los registros de la tabla derecha, asignando un valor nulo donde la condición no hace match

full outer

SELECT columns

FROM table1

FULL OUTER JOIN table 2

Producto cartesiano entre dos tablas. No requiere

condición alguna.

SELECT columns
FROM table1,
CROSS JOIN table2;

Crea un join implícito basado en las columnas con el mismo nombre sobre las tablas que estamos operando.

natural

SELECT columns

FROM table1

NATURAL [INNER, LEFT, RIGHT] JOIN table2;

Sintaxis anterior

SELECT columns

FROM table1, table2

WHERE table1.column = table2.column;

SELECT columns

FROM table1, table2;

Tarea 7_2

Investigar (casos de uso, restricciones, ejemplos):

- Select
- From
- Join
- Where
- Having
- Correlacionadas