Stochastic Calculus

Based on lecture notes by Prof. Xunyu Zhou

Michaelmas Term, 2015

Contents

0	Cor	nventions and abbreviations	2
1	\mathbf{Pre}	eliminaries	2
	1.1	Probability Space	2
	1.2	Convergence and Uniform Integrability	4
	1.3	Stochastic Processes and Filtration	6
	1.4	Martingales	7
2	Brownian Motion		9
	2.1	Definition	9
	2.2	Markov property and finite-dimensional distributions	10
	2.3	The reflection principle and martingale property	12
	2.4	Quadratic variation process	13
3	Itô's calculus		15
	3.1	Stochastic integrals for BM	15
	3.2	Stochastic integrals for adapted processes	16
	3.3	Itô's integration for semimartingales	17
	3.4	Itô's formula	18
	3.5	Stochastic exponentials and Girsanov theorem	20
4	Sto	chastic Differential Equations	23
	4.1	Introduction	23
	4.2	Several examples	24
		4.2.1 Linear SDEs	24
		4.2.2 Geometric BM	24
		4.2.3 Cameron-Martin's formula	24
	4.3	Existence and uniqueness	25

0 Conventions and abbreviations

Vectors are column vectors.

a.s. almost surely

BM Brownian motion

CDF cumulative distribution function r.v. random variable / random vector

s.t. such that

PDF probability density function

SDE stochastic differential equation

w.r.t. with respect to

1 Preliminaries

1.1 Probability Space

Definition 1.1.1. Let a set Ω be non-empty and $\mathcal{F} \subseteq 2^{\Omega}$, called a class, be non-empty. We call \mathcal{F}

- (i) a π -system if $A, B \in \mathcal{F} \implies A \cap B \in \mathcal{F}$.
- (ii) a λ -system if

$$\begin{cases}
\Omega \in \mathcal{F} \\
A, B \in \mathcal{F} \text{ and } A \subseteq B \Longrightarrow B \setminus A \in \mathcal{F} \\
A_i \in \mathcal{F}, A_i \uparrow A, i = 1, 2, \dots^1 \Longrightarrow A \in \mathcal{F}
\end{cases}$$

(iii) a σ -field (or σ -algebra) if

$$\begin{cases}
\Omega \in \mathcal{F} \\
A, B \in \mathcal{F} \Longrightarrow B \backslash A \in \mathcal{F} \\
A_i \in \mathcal{F}, i = 1, 2, \dots \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}
\end{cases}$$

Remark. \mathcal{F} is a σ -field if and only if \mathcal{F} is both a π -system and a λ -system.

For any class $\mathcal{A} \subseteq 2^{\Omega}$, $\sigma(\mathcal{A})$ is the smallest σ -field containing \mathcal{A} , which is called the σ -field generated by \mathcal{A} .

Lemma 1.1.2 (Monotone Class Theorem). Let $A \subseteq \mathcal{F} \subseteq 2^{\Omega}$.

If A is a π -system and F is a λ -system, then $\sigma(A) \subseteq F$.

Definition 1.1.3. Let $\{\mathcal{F}_{\alpha}\}$ be a (possibly uncountable) family of σ -fields on Ω . Then we define

$$\bigvee_{\alpha} \mathcal{F}_{\alpha} := \sigma \left(\bigcup_{\alpha} \mathcal{F}_{\alpha} \right)$$
 the smallest σ -field containing all \mathcal{F}_{a} ;
$$\bigwedge_{\alpha} \mathcal{F}_{\alpha} := \bigcap_{\alpha} \mathcal{F}_{\alpha}$$
 the largest σ -field contained in \mathcal{F}_{α} .

Definition 1.1.4. Let Ω be non-empty and let \mathcal{F} be a σ -field on Ω .

Then we call (Ω, \mathcal{F}) a measurable space.

A map $\mathbf{P}: \mathcal{F} \to [0,1]$ is called a probability measure on (Ω, \mathcal{F}) if

(i) $P(\Omega) = 1, P(\emptyset) = 0$:

(ii)
$$\forall A_i \in \mathcal{F} \text{ with } A_i \cap A_j = \emptyset \ \forall j \neq i \implies \mathbf{P}(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mathbf{P}(A_i).$$

Then we call $(\Omega, \mathcal{F}, \mathbf{P})$ a probability space.

We call Ω a sample space, $A \in \mathcal{F}$ an event and $\omega \in \Omega$ a sample or outcome.

$$^{1}A_{i} \uparrow A \text{ means } A_{1} \subseteq A_{2} \subseteq \cdots \text{ and } A = \bigcup_{i=1}^{\infty} A_{i}.$$

Definition 1.1.5 (Independence). Two events A, B are called independent if $\mathbf{P}(A \cap B) = \mathbf{P}(A)\mathbf{P}(B)$.

An event A is independent of a σ -field \mathcal{F} if A is independent of $B \ \forall B \in \mathcal{F}$.

Two σ -fields \mathcal{F}, \mathcal{G} are independent if all $A \in \mathcal{F}$ are independent of \mathcal{G} .

If an event A is s.t. P(A) = 1, we may denote it as "A holds, P-a.s." or just a.s. (almost surely) if the probability measure in question is clear.

A is called **P**-null if $\mathbf{P}(A) = 0$.

Definition 1.1.6. $(\Omega, \mathcal{F}, \mathbf{P})$ is called complete if for any \mathbf{P} -null set $A \in \mathcal{F}$, we have $B \in \mathcal{F}$ whenever $B \subseteq A$.

Definition 1.1.7. Given $(\Omega, \mathcal{F}, \mathbf{P})$.

Let $X: \Omega \to \mathbb{R}^d$ be measurable, i.e. for every Borel measurable set B of \mathbb{R}^d ,

$$X^{-1}(B) := \{\omega : X(\omega) \in B\} \in \mathcal{F}.$$

Then X is called a random variable (or random vector, if d > 1).

If X is integrable, denoted as $X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P})$, i.e. $\int_{\Omega} |X(\omega)| d\mathbf{P}(\omega) < \infty$, then its mean (or expectation) is

$$E[X] := \int_{\Omega} X(\omega) d\mathbf{P}(\omega).$$

In general, for $p \geq 1$, X is called p-th integrable, denoted as $X \in \mathcal{L}^p(\Omega, \mathcal{F}, \mathbf{P})$ if $\int_{\Omega} |X(\omega)|^p d\mathbf{P}(\omega) < \infty$.

Definition 1.1.8. If $X, Y \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbf{P})$ then $Cov(X, Y) := \mathbf{E}[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y])^T]$.

We can then define the variance as Var(X) = Cov(X, X).

Definition 1.1.9. Let $X \equiv (X_1, X_2, \dots, X_d)^T$ be a r.v..

We define the cumulative distribution function (CDF)

$$F(x) \equiv F(x_1, x_2, \dots, x_d) := \mathbf{P}(\{\omega : X_i(\omega) \le x_i, i = 1, 2, \dots, d\}).$$

Definition 1.1.10. If there exists an $f \in \mathcal{L}^1(\mathbb{R}^d)$ s.t.

$$F(x) = \int_{-\infty}^{x_d} \cdots \int_{-\infty}^{x_1} f(y_1, \dots, y_d) dy_1 \dots dy_d,$$

then f is called the probability density function (PDF) of F.

If X is a one-dimensional r.v., then

$$\mathbf{E}[X] = \int_{\mathbb{R}} x \ dF(x) = \int_{-\infty}^{\infty} x f(x) \ dx \qquad \text{if } f \text{ exists}$$

$$\mathbf{E}[g(X)] = \int_{\mathbb{R}} g(x) \ dF(x) = \int_{-\infty}^{\infty} g(x) f(x) \ dx \qquad \text{if } f \text{ exists and } g : \mathbb{R} \to \mathbb{R} \text{ measurable}$$

Example 1. If

$$f(x) = [(2\pi)^d |\Sigma|]^{-1/2} \exp\left[-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right], \ x \in \mathbb{R}^d$$

where $\mu \in \mathbb{R}^d$, $\Sigma \in \mathbb{R}^{d \times d}$ and $\Sigma^T = \Sigma > 0^2$, then we say that X is a normal r.v., denoted $X \sim \mathcal{N}(\mu, \Sigma)$. X is also called Gaussian.

Definition 1.1.11. Let X be an integrable r.v. on $(\Omega, \mathcal{F}, \mathbf{P})$ and $\mathcal{G} \subseteq \mathcal{F}$.

The conditional expectation of $\mathbf{E}[X|\mathcal{G}]$ of X given \mathcal{G} is a r.v. (unique up to a.s.) satisfying

(i) $\mathbf{E}[X|\mathcal{G}]$ is measurable w.r.t. \mathcal{G} (also called a \mathcal{G} -r.v.);

 $[\]overline{\ ^2 \Sigma > 0}$ means that Σ is positive definite, i.e. $x^T \Sigma x > 0 \ \forall x \in \mathbb{R}^d \setminus \{0\}.$

(ii)
$$\mathbf{E}[X; A] := \mathbf{E}[X \mathbb{1}_A] = \mathbf{E}[\mathbf{E}[X|\mathcal{G}]; A] \ \forall A \in \mathcal{G}.$$

Remark. (i) If X is \mathcal{F} -measurable and Y is \mathcal{G} -measurable then

$$\mathbf{E}[XY|\mathcal{G}] = Y\mathbf{E}[X|\mathcal{G}], \text{ a.s.,}$$

so long as both sides are well defined (cf. integrability requirement for a conditional r.v.).

(ii) Let $\mathcal{G}_1 \subseteq \mathcal{G}_2 \subseteq \mathcal{F}$, then

$$\mathbf{E}[\mathbf{E}[X|\mathcal{G}_1]|\mathcal{G}_2] = \mathbf{E}[X|\mathcal{G}_1] = \mathbf{E}[\mathbf{E}[X|\mathcal{G}_2]|\mathcal{G}_1], \text{ a.s..}$$

(iii) Jensen's inequality. Suppose $\varphi: \mathbb{R}^d \to \mathbb{R}$ is a convex function³, then

$$\varphi(\mathbf{E}[X|\mathcal{G}]) \leq \mathbf{E}[\varphi(X)|\mathcal{G}].$$

A σ -field $\sigma(X)$ generated by a r.v. X is the smallest σ -field contained in \mathcal{F} w.r.t. which X is measurable. Similarly, we can define $\sigma(X_{\alpha}: \alpha \in A)^4$, for a collection of random variables.

We define $\mathbf{E}[X|Y] := \mathbf{E}[X|\sigma(Y)].$

X is independent of \mathcal{G} if $\sigma(X)$ is independent of \mathcal{G} , which is equivalent to

$$\mathbf{E}[f(X)|\mathcal{G}] = \mathbf{E}[f(X)]$$
 for all bounded Borel-measurable functions f .

Random variables X_1, \ldots, X_n are mutually independent if $\sigma(X_1), \ldots, \sigma(X_n)$ are mutually independent, which is equivalent to

$$\mathbf{E}\left[\prod_{i=1}^n f_i(X_i)\right] = \prod_{i=1}^n \mathbf{E}[f_i(X_i)] \text{ for all bounded Borel-measurable functions } f_1, \dots, f_n.$$

In particular, if X, Y are independent, then $\mathbf{E}[XY] = \mathbf{E}[X]\mathbf{E}[Y]$.

1.2 Convergence and Uniform Integrability

Definition 1.2.1. Let X_n , n = 1, 2, 3, ... and $X : (\Omega, \mathcal{F}, \mathbf{P}) \to \mathbb{R}^d$ be r.v.s. We say X_n converges to X

- almost surely (a.s.) if $\lim_{n\to\infty} |X_n X| = 0$ a.s.,
- in probability if $\forall \varepsilon > 0$, $\lim_{n \to \infty} P(|X_n X| > \varepsilon) = 0$,
- in \mathcal{L}^1 if $\lim_{n\to\infty} \mathbf{E}|X_n X| = 0$.

Remark.

a.s. convergence \implies convergence in probability

 \mathcal{L}^1 convergence \implies convergence in probability

convergence in probability \implies there exists a subsequence that converges a.s.

Lemma 1.2.2 (Fatou's Lemma). If $X_n \ge 0^5$, then

$$\mathbf{E}\left[\liminf_{n\to\infty}X_n\right] \le \liminf_{n\to\infty}\mathbf{E}[X_n].$$

1. Fatou's lemma holds when $X_n \geq Y$ and $\mathbf{E}[Y] > -\infty$ (consider that $X_n - Y \geq 0$). Remark.

³A function f is convex if $f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2) \ \forall x_1, x_2 \in \mathbb{R}, \ \forall t \in [0,1]$ ⁴ $\sigma(X_\alpha : \alpha \in A) = \sigma(\{\omega \in \Omega : X_\alpha(\omega) \in B\} : \alpha \in A, B \in \mathcal{B}).$

⁵a.s. is implied here and in all other inequalities involving r.v.s.

2. When $X_n \leq 0$, applying the lemma to $-X_n$ gives us

$$\mathbf{E}\left[\limsup_{n\to\infty} X_n\right] \ge \limsup_{n\to\infty} \mathbf{E}[X_n].$$

Lemma 1.2.3 (Monotone Convergence Theorem). If $X_n \uparrow X$ and $\mathbf{E}[X_1] > -\infty$, then

$$\mathbf{E}[X] = \mathbf{E}\left[\lim_{n \to \infty} X_n\right] = \lim_{n \to \infty} \mathbf{E}[X_n].$$

Lemma 1.2.4 (Dominated Convergence Theorem). If $X_n \to X$ a.s. and $|X_n| \le Y$ with $\mathbf{E}[Y] < \infty$, then

$$\mathbf{E}[X] = \mathbf{E}\left[\lim_{n \to \infty} X_n\right] = \lim_{n \to \infty} \mathbf{E}[X_n].$$

If
$$X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P})$$
, then $\lim_{N \to \infty} \int_{\{|X| \ge N\}} |X| d\mathbf{P} = 0.$ (1.2.1)

If
$$X \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P})$$
, then $\int_A |X| d\mathbf{P} \to 0$ as $\mu(A) \to \infty$. (1.2.2)

Definition 1.2.5. Let $\Gamma \subseteq \mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P})$ be given.

 Γ is said to be uniformly integrable (UI) if

$$\lim_{N\to\infty} \sup_{X\in\Gamma} \int_{\{|X|\geq N\}} |X| \ d\mathbf{P} = 0.$$

Remark. 1. Any finite family of integrable r.v.s is UI. (Note that because the family is finite, the supremum becomes a maximum.)

- 2. Let $\Gamma \subseteq \mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P})$, and suppose there is $Y \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P})$, s.t. $|X| \leq Y \ \forall X \in \Gamma$, then Γ is UI by (1.2.1).
- 3. Let $\Gamma \subseteq \mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P})$ and suppose $\exists p > 1$ s.t. $\sup_{X \in \Gamma} \mathbf{E}|X|^p < \infty$, then Γ is UI.

Theorem 1.2.6. $\Gamma \subseteq \mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P})$ is UI if and only if

- 1. $\sup_{X \in \Gamma} \mathbf{E}|X| < \infty$,
- 2. $\forall \varepsilon > 0, \ \exists \delta > 0 \ s.t. \ \int_A |X| \ d\mathbf{P} < \varepsilon, \ \forall X \in \Gamma, \ whenever \ A \in \mathcal{F}^6 \ and \ \mathbf{P}(A) < \delta.$

 $^{^6}A$ here is like a more general form of $\{|X| \ge N\}$ in the definition of UI.

Proof. Necessity

For any $A \in \mathcal{F}$ and N > 0,

$$\begin{split} \int_{A} |X| \ d\mathbf{P} &= \int_{A \cap \{|X| < N\}} |X| \ d\mathbf{P} + \int_{A \cap \{|X| \ge N\}} |X| \ d\mathbf{P} \\ &\leq N \mathbf{P} (A \cap \{|X| < N\}) + \int_{A \cap \{|X| \ge N\}} |X| \ d\mathbf{P} \\ &\leq N \mathbf{P} (A) + \underbrace{\int_{A \cap \{|X| \ge N\}} |X| \ d\mathbf{P}}_{\text{c.f. UI definition}}. \end{split}$$

Let $A = \Omega$. Then, for N sufficiently large,

$$\mathbf{E}[X] \le NP(\Omega) + \int_{\{|X| \ge N\}} |X| \ d\mathbf{P}$$

$$\le N + 1.$$

For any $\varepsilon > 0$, choose N > 0 s.t.

$$\sup_{X \in \Gamma} \int_{\{|X| \ge N\}} |X| \ d\mathbf{P} \le \frac{\varepsilon}{2}.$$

Let $\delta = \varepsilon/(2N)$. Then, so long as $P(A) \leq \delta$, we have

$$\int_{|A|} |X| \ d\mathbf{P} \leq N \times \delta + \frac{\varepsilon}{2} = N \times \frac{\varepsilon}{2N} + \frac{\varepsilon}{2} = \varepsilon, \ \forall X \in \Gamma.$$

Sufficiency Refer to exercise sheet 2, question 3.

Theorem 1.2.7. Let $\{X_n\} \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P})$. Then $\mathbf{E}|X_n - X| \to 0$ as $n \to \infty$ for some X if and only if $\{X_n\}$ is UI and $X_n \to X$ in probability as $n \to \infty$.

Let $\{A_n\} \subseteq \mathcal{F}$. Define

$$\{A_n \text{ i.o.}\} \equiv \{A_n \text{ occurs infinitely often}\} \equiv \limsup_{n \to \infty} A_n := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k.$$

Lemma 1.2.8 (Borel-Cantelli Lemma). 1. If $\sum_{n=1}^{\infty} \mathbf{P}(A_n) < \infty$, then $\mathbf{P}(\{A_n \ i.o.\}) = 0$,

2. If $\sum_{n=1}^{\infty} \mathbf{P}(A_n) = \infty$ and A_1, A_2, \ldots are independent, then $\mathbf{P}(\{A_n \ i.o.\}) = 1$.

1.3 Stochastic Processes and Filtration

Let T denote either $\mathbb{Z}^+ := \{0, 1, 2, \dots\}$ or $\mathbb{R}^+ = [0, \infty)$.

Definition 1.3.1. A family $X \equiv (X_t)_{t \in T}$ of r.v.s from $(\Omega, \mathcal{F}, \mathbf{P})$ to \mathbb{R}^d is called a stochastic process.

 $(X_t)_{t\in T}$ is also a mapping from $T\times\Omega\to\mathbb{R}^d$, which is sometimes also called a random function.

For any $\omega \in \Omega$, the function $t \to X_t(\omega)$ is called a *sample path*. The process is called *continuous* (or càdlàg / RCLL⁷) if $T = [0, \infty)$ and the sample is continuous (resp. càdlàg / RCLL) for almost all $\omega \in \Omega$.

Let $X = (X_t)_{t \ge 0}$ be a stochastic process and $0 \le t_1 < t_2 < \cdots < t_n$ be an arbitrary partition. The joint distribution of r.v.s $(X_{t_1}, X_{t_2}, \dots, X_{t_n})$:

$$\mu_{t_1,...,t_n}(dx_1,...,dx_n) = \mathbf{P}(X_{t_1} \in dx_1,...,X_{t_n} \in dx_n)$$

is called a finite dimensional distribution of $(X_t)_{t\geq 0}$.

⁷Right continuous with left limits.

Definition 1.3.2. Two processes X_t and Y_t are (stochastically) equivalent if $X_t = Y_t$ a.s., $\forall t \in T$.

For a measurable space (Ω, \mathcal{F}) , we introduce a montone family of σ -fields $\mathcal{F}_t \subseteq \mathcal{F}$, $\forall t \in T$, satisfying

$$\mathcal{F}_{t_1} \subseteq \mathcal{F}_{t_2} \ \forall 0 \le t_1 \le t_2, \ t_1, t_2 \in T.$$

Such a family is called a *filtration*, and $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_t)_{t \in T})$ is called a *filtered probability space*. Set

$$\mathcal{F}_{t+} := \bigcap_{s>t} \mathcal{F}_s, \ \forall t \ge 0,$$
$$\mathcal{F}_{t-} := \bigcup_{s \le t} \mathcal{F}_s, \ \forall t \ge 0.$$

If $\mathcal{F}_{t+} = \mathcal{F}_t$ (resp. $\mathcal{F}_{t-} = \mathcal{F}_t$), then we say that the filtration is right (resp. left) continuous. If $(X_t)_{t \in T}$ is a process, then $\mathcal{F}_t := \sigma\{X_s, s \in T, s \leq t\}$ is called the filtration generated by $(X_t)_{t \in T}$. If $(X_t)_{t>0}$ is càdlàg, then it generates a right continuous filtration.

Definition 1.3.3. We say that $(\Omega, \mathcal{F}, \mathbf{P})$ satisfies the usual conditions if it is complete, \mathcal{F}_0 contains all the \mathbf{P} -null sets in \mathcal{F} , and $(\mathcal{F}_t)_{t>0}$ is right-continuous.

Remark. In future, we always assume a filtered probability space satisfies the usual conditions.

Definition 1.3.4. Let $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_t)_{t\geq 0})$ be a filtered probability space, and $(X_t)_{t\geq 0}$ a process.

- 1. $(X_t)_{t\geq 0}$ is called measurable if the map $(t,\omega)\mapsto X_t(\omega)$ is $(\mathcal{B}(\mathbb{R}^+)\times\mathcal{F})/\mathcal{B}(\mathbb{R}^d)$ -measurable.
- 2. $(X_t)_{t\geq 0}$ is called \mathcal{F}_t -adapted if $\forall t\geq 0$, the map $\omega\mapsto X_t(\omega)$ is $\mathcal{F}_t/\mathcal{B}(\mathbb{R}^d)$ -measurable.

1.4 Martingales

Let $\{X_n : n \in \mathbb{Z}\}$ be a discrete time process on a filtered probability space $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_n)_{n \in \mathbb{Z}^+})$.

If X_n is \mathcal{F}_{n-1} measurable $\forall n \geq 1$ and X_0 is \mathcal{F}_0 measurable, then we say that $\{X_n\}$ is predictable or previsible.

On $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_n)_{n \in \mathbb{Z}^+})$, a measurable function $\tau : \Omega \to \mathbb{Z}^+ \cup \{+\infty\}$ is called a *stopping time* (or random time) w.r.t. the filtration $\{\mathcal{F}_n\}$ if $\{\omega : \tau(\omega) = n\} \in \mathcal{F}_n \ \forall n \in \mathbb{Z}^+$.

Given τ , the σ -field

$$\mathcal{F}_{\tau} := \{ A \in \mathcal{F} : A \cap \{ \tau \le n \} \in \mathcal{F}_n \ \forall n \in \mathbb{Z}^+ \}$$

represents the information available up to the random time τ .

Definition 1.4.1. Let $\{X_n\}$ be adapted to (\mathcal{F}_n) on $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_n)_{n \in \mathbb{Z}^+})$. Assume that each $X_n \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P})$.

- 1. $\{X_n\}$ is called a martingale if $\mathbf{E}[X_{n+1}|\mathcal{F}_n] = X_n \ \forall n \in \mathbb{Z}^+$.
- 2. $\{X_n\}$ is called a supermartingale (resp. submartingale) if $\mathbf{E}[X_{n+1}|\mathcal{F}_n] \leq X_n$ (resp. $\mathbf{E}[X_{n+1}|\mathcal{F}_n] \geq X_n$).

Theorem 1.4.2 (Doob's optional sampling theorem / optional stopping theorem). Let $\{X_n\}$ be a martingale (resp. supermartingale) and σ , τ be two bounded stopping times with $\sigma \leq \tau^8$. Then $\mathbf{E}[X_{\tau}|\mathcal{F}_{\sigma}] = X_{\sigma}$ a.s. (resp. $\mathbf{E}[X_{\tau}|\mathcal{F}_{\sigma}] \leq X_{\sigma}$ a.s.).

Theorem 1.4.3 (Kolmogrov's inequality). Let $\{X_n\}$ be a martingale and $X_n \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbf{P}) \ \forall n \in \mathbb{Z}^+$. Then

$$P\left(\max_{k \le n} |X_k| \ge \lambda\right) \le \frac{\mathbf{E}[|X_n|^2]}{\lambda^2}.$$

⁸Recall that this is a.s. because σ and τ are random.

Remark. Compare this with Markov's inequality,

$$P\left(\max_{k \le n} |X_k| \ge \lambda\right) \le \frac{\mathbf{E}[\max_{k \le n} |X_k|^2]}{\lambda^2}.$$

Note that Kolmogrove's inequality is "sharper", because we have been able to take advantage of X_n being a martingale.

Theorem 1.4.4 (Convergence Theorem). 1. Let $\{X_n\}$ be a supermartingale. If $\sup_n \mathbf{E}|X_n| < \infty$, then $\exists X_\infty \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P})$ s.t. $X_n \to X_\infty$ a.s. as $n \to \infty$. Moreover, if $\{X_n\}$ is non-negative, then $\mathbf{E}[X_\infty|\mathcal{F}_n] \leq X_n$ a.s. $\forall n$.

2. Let $\{X_n\}$ be a martingale and also be UI. Then $\exists X_\infty \in \mathcal{L}^1(\Omega, \mathcal{F}, \mathbf{P}) \text{ s.t. } X_n \to \infty \text{ a.s. and in } \mathcal{L}^1$. Moreover, $X_n = \mathbf{E}[X_\infty | \mathcal{F}_n]$.

Remark. Applying Fatou's lemma (note that we have X_n non-negative), we have

$$\mathbf{E}[X_{\infty}|\mathcal{F}_n] = \mathbf{E}\left[\lim_{m \to \infty} X_m|\mathcal{F}_n\right] \le \lim_{m \to \infty} \mathbf{E}[X_m|\mathcal{F}_n] = \lim_{m \to \infty} X_n = X_n.$$

Note that $\mathbf{E}[X_m|\mathcal{F}_n] \leq X_n$ is only true for m > n, but we're taking the limit as $m \to \infty$ so this isn't a problem.

Now we consider the continuous time case. Let $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_t)_{t\geq 0})$ be a filtered probability space. A map $\tau: \Omega \to [0, \infty]$ is an (\mathcal{F}_t) -stopping time if

$$\{\omega : \tau(\omega) \le t\} \in \mathcal{F}_t, \ \forall t \ge 0.$$

Define

$$\mathcal{F}_{\tau} := \{ A \in \mathcal{F} : \{ \tau \le t \} \cap A \in \mathcal{F}_t, \ \forall t \ge 0 \}.$$

Definition 1.4.5. A real-valued $(\mathcal{F}_t)_{t\geq 0}$ -adapted process $(X_t)_{t\geq 0}$ is called an (\mathcal{F}_t) -martingale (resp. supermartingale, submartingale) if $\forall t\geq 0$, $X_t\in \mathcal{L}^1(\Omega,\mathcal{F},\mathbf{P})$ with $\mathbf{E}[X_t|\mathcal{F}_s]=X_s$ (resp. \leq,\geq) a.s., $\forall s\leq t$.

Theorem 1.4.6. Let $p \ge 1$ and $(X_t)_{t \ge 0}$ be a right continuous (\mathcal{F}_t) -martingale with $\mathbf{E}|X_t|^p < \infty \ \forall t \ge 0$. Then for any T > 0:

- 1. (Doob's martingale inequality) $P(\sup_{0 \le t \le T} |X_t| \ge \lambda) \le \mathbf{E} |X_T|^p / \lambda^p \ \forall \lambda > 0$.
- 2. For p > 1, $\mathbf{E}[\sup_{0 \le t \le T} |X_t|^p] \le (p/[p-1])^p \mathbf{E} |X_t|^p$.

Theorem 1.4.7 (Doob's optional sampling theorem / optional stopping theorem). Let $(X_t)_{t\geq 0}$ be a right continuous martingale (resp. supermartingale, submartingale) on $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_t)_{t\geq 0})$.

1. If $\sigma \leq \tau$ are two bounded stopping times, then

$$E[X_{\tau}|\mathcal{F}_{\sigma}] = X_{\sigma} \ a.s. \ (resp. \le, \ge). \tag{1.4.1}$$

2. If $(X_t)_{t\geq 0}$ are UI and $\sigma \leq \tau \leq \infty$, then (1.4.1) holds.

Remark. Suppose you're playing a fair game, and you have some strategy for when you stop playing (τ) . The optional sampling theorem tells us that you cannot devise a winning strategy (or a losing strategy, for that matter).

Let $(X_t)_{t\geq 0}$ be a process and τ a stopping time. Then

$$X_{t \wedge \tau}(\omega) := \left\{ \begin{array}{ll} X_t(\omega) & \text{if } t < \tau(\omega) \\ X_{\tau(\omega)}(\omega) & \text{if } t \geq \tau(\omega) \end{array} \right..$$

 $X_{t\wedge\tau}(\omega)$ is called a stopped process, refer to figure 1.

Definition 1.4.8. An (\mathcal{F}_t) -adapted process $(X_t)_{t\geq 0}$ on a filtered space $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_t)_{t\geq 0})$ is called a local martingale if there is an increasing sequence $\{\tau_n\}$ of finite stopping times $\tau_n \uparrow \infty$ as $n \to \infty$ a.s. and s.t. $(X_{t \land \tau_n})_{t\geq 0}$ is a martingale for each n.

Figure 1: Stopped process.

2 **Brownian Motion**

Definition 2.1

Definition 2.1.1. A process $B = (B_t)_{t \geq 0}$ on $(\Omega, \mathcal{F}, \mathbf{P})^9$ taking values in \mathbb{R}^d is called Brownian motion (BM) if

- 1. (Independent Increments)¹⁰ For any $0 \le t_0 < t_1 < \dots < t_n$, the r.v.s B_{t_0} , $B_{t_1} B_{t_0}$, ..., $B_{t_n} B_{t_{n-1}}$ are mutually independent.
- 2. (Normality) For any $t > s \ge 0$, the r.v. $B_t B_s \sim N(0, (t-s)I)$, that is, $B_t B_s$ has pdf

$$p(t-s,x) = \frac{1}{(2\pi[t-s])^{d/2}} \exp\left(-\frac{|x|^2}{2(t-s)}\right), \ x \in \mathbb{R}^d.$$

3. (Continuity) $(B_t)_{t\geq 0}$ is continuous a.s..

If $\mathbf{P}(B_0 = 0) = 1$, then $(B_t)_{t \geq 0}$ is called standard Brownian motion. We typically assume that this is what we are working with.

Example 2. Let $(B_t)_{t\geq 0}$ be a BM in \mathbb{R} . Then

$$\mathbf{E}|B_t - B_s|^p = C_p|t - s|^{p/2} \ \forall t > s \ge 0, \ p \ge 0,$$

where

$$C_p := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |x|^p e^{-|x|^2/2} dx.$$

Indeed,

$$\mathbf{E}|B_t - B_s|^p = \frac{1}{\sqrt{2\pi(t-s)}} \int_{-\infty}^{\infty} |x|^p \exp\left(-\frac{|x|^2}{2(t-s)}\right) dx$$
$$= \frac{1}{\sqrt{2\pi(t-s)}} \int_{-\infty}^{\infty} (t-s)^p |y|^p e^{-|y|^2/2} \sqrt{t-s} dy$$
$$= C_p (t-s)^{p/2},$$

 $^{^9{\}rm Note}$ that is not a filtered probability space. $^{10}{\rm This}$ property is very important.

where we made the change of variables $y = x/\sqrt{t-s}$.

Properties of BM

- 1. $(B_t)_{t>0}$ is nowhere differentiable, a.s..
- 2. $\lim_{t\to\infty} B_t/t = 0$, a.s..
- 3. $Cov(B_t, B_s) = s \wedge t$.
- 4. $\tilde{B}_t := B_{t+s} B_s$, for any given $s \ge 0$, is also a standard Brownian motion. This property is also true for random $s \ge 0$.

Remark. For point 2, consider

$$\frac{B_n}{n} = \frac{(B_n - B_{n-1}) + \dots + (B_1 - B_0)}{n} \to \mathbf{E}[N(0, 1)] = 0 \text{ a.s.}.$$

The result holds due to the strong law of large numbers and the normality property of BM (in particular, $B_i - B_{i-1} \sim N(0,1)$).

This is not a proof! It just provides some intuition.

For point 3, suppose $t \geq s$. Then

$$Cov(B_t, B_s) = Cov([B_t - B_s] + B_s, B_s)$$

$$= Cov(B_t - B_s, B_s) + Cov(B_s, B_s)$$

$$= 0 + Var(B_s)$$

$$= s,$$

Where we have used independent increments and normality of BM. The result as given above follows from symmetry.

Remark (Scaling). 1. $M_t := \lambda B_{t/\lambda^2} \ \forall \lambda \neq 0$ is also a standard BM. In particular, $-B_t$ is a standard BM.

2. Let d = 1. Define

$$W_t = \left\{ \begin{array}{ll} tB_{1/t} & t > 0 \\ 0 & t = 0 \end{array} \right..$$

Then W_t is a BM.

It is easy to check that $Var(W_t) = t$.

For continuity, we need to check that $\lim_{t\to 0} tB_{1/t} = 0$. Then

$$\lim_{to\rightarrow 0}tB_{1/t}=\lim_{t\rightarrow 0}\frac{B_{1/t}}{1/t}=0 \text{ a.s..}$$

The final equality follows from the second property of BM described above.

2.2 Markov property and finite-dimensional distributions

Recall:

$$p(t,x) = \frac{1}{(2\pi t)^{d/2}} e^{-|x|^2/2t}, \ t > 0, \ x \in \mathbb{R}^d.$$

We also have that

$$p(t+s, x-y) = p(t, x-z)p(s, z-y) \ \forall t, s > 0, x, y, z \in \mathbb{R}^d.$$

Refer to exercise sheet 4, problem 2.

Lemma 2.2.1. If t > s > 0, then the joint distribution (B_t, B_s) is given by

$$P(B_s \in dx, B_t \in dy) = p(s, x)p(t - s, y - x) \ dxdy.$$

Proof. Since B_s and $B_t - B_s$ are independent, $(B_s, B_t - B_s)$ has joint density function $p(s, x_1)p(t - s, x_2)$. Hence, for all bounded Borel measurable functions f:

$$E[f(B_s, B_t)] = \mathbf{E}[f(B_s, B_t - B_s + B_s)]$$

$$= \int \int f(x_1, x_2 + x_1) p(s, x_1) p(t - s, x_2) \ dx_1 dx_2$$

$$= \int \int f(x, y) p(s, x) p(t - s, y - x) \ dx dy.$$

In the final equality, we performed the change of variables $x_1 = x$, $x_1 + x_2 = y$. In this case, the Jacobian is 1, so $dx_1dx_2 = dxdy$.

This proves the claim. \Box

Let $\mathcal{F}_t^0 := \sigma\{B_s, s \leq t\}$, $t \geq 0$. This is the natural filtration generated by the BM. $B_t - B_s$ is independent of $\mathcal{F}_s^0 \ \forall t > s \geq 0$, because of independent increments.

Theorem 2.2.2 (Markov Property). Let $t > s \ge 0$ and f be a bounded Borel measurable function. Then

$$\mathbf{E}[f(B_t)|\mathcal{F}_s^0] = \mathbf{E}[f(B_t)|B_s].$$

This is sometimes called the "history independent" or "memoryless" property.

Proof. It suffices to prove for $f \in C_b^{\infty}(\mathbb{R}^d)$, the set of infinitely differentiable ("smooth"), bounded functions.¹¹

For such f, we have the Taylor expansion

$$f(x+y) = \lim_{N\to\infty} \sum_{n=1}^{N} f_n(x)g_n(y)$$
 for some functions f_n , g_n .

Then

$$\mathbf{E}[f(B_t)|\mathcal{F}_s^0] = \mathbf{E}[f(B_t - B_s + B_s)|\mathcal{F}_s^0]$$

$$= \mathbf{E}\left[\lim_{N \to \infty} \sum_{n=1}^N f_n(B_s)g_n(B_t - B_s)|\mathcal{F}_s^0\right]$$

$$= \lim_{N \to \infty} \sum_{n=1}^N \mathbf{E}[f_n(B_s)g_n(B_t - B_s)|\mathcal{F}_s^0]$$

$$= \lim_{N \to \infty} \sum_{n=1}^N \mathbf{E}[g_n(B_t - B_s)|\mathcal{F}_s^0]f_n(B_s)$$

$$= \lim_{N \to \infty} \sum_{n=1}^N \mathbf{E}[g_n(B_t - B_s)]f_n(B_s)$$

where we move the limit out of the expectation by the dominated conergence theorem, we move the $f_n(B_s)$ term out because B_s is \mathcal{F}_s^0 measurable and we remove the condition on \mathcal{F}_s^0 because of independent increments.

If we repeat the above derivation, but with \mathcal{F}_s^0 replaced by B_s , we get the same result.

We now consider a more general version of lemma 2.2.1.

Theorem 2.2.3 (Finite-Dimensional Distributions). For any $0 < t_1 < t_2 < \cdots < t_n$, the \mathbb{R}^{nd} valued r.v. $(B_{t_1}, B_{t_2}, \dots, B_{t_n})$ has a joint density function

$$p(t_1, x_1)p(t_2 - t_1, x_2 - x_2) \dots p(t_n - t_{n-1}, x_n - x_{n-1}).$$

¹¹Any Borel measurable function can be approximated by functions in this space, cf. pp. 27 - 28 in Stochastic Differential Equations, Øksendal (2000).

2.3 The reflection principle and martingale property

Let $B = (B_t)_{t \ge 0}$ be a standard BM on $(\Omega, \mathcal{F}, \mathbf{P}; \mathcal{F}_t^0)$ in \mathbb{R} . Let b > 0, b > a and $\tau_b = \inf\{t \ge 0 : B_t = b\}$ (a stopping time).

FIGURE 2: The reflection principle.

Consider

$$\mathbf{P}\left(\max_{0 \le s \le t} B_s \ge b, B_t \le a\right) = \mathbf{P}\left(\max_{0 \le s \le t} B_s \ge b, B_t \ge b + (b - a)\right) = \mathbf{P}\left(B_t \ge 2b - a\right) = \frac{1}{\sqrt{2\pi t}} \int_{2b - a}^{\infty} e^{-x^2/2t} dx.$$

The first equality is clear from figure 2, the second follows because the second event in implies the first, and the third equality holds because $B_t \sim N(0, t)$.

Now we consider the case where $\max_{0 \le s \le t} B_s \le b$,

$$\mathbf{P}\left(\max_{0 \le s \le t} B_s \le b, B_t \le a\right) = \mathbf{P}\left(B_t \le a\right) - \mathbf{P}\left(B_t \le a - 2b\right) = \mathbf{P}\left(a - 2b \le B_t \le a\right) = \int_{a - 2b}^{a} \frac{1}{\sqrt{2\pi t}} e^{-x^2/2t} dx.$$

Let $M_t := \max_{0 \le s \le t} B_s$. This is called the running maximum process.

We now consider the joint distribution of M_t and B_t , which are highly correlated with each other.

Theorem 2.3.1. The joint distribution of (M_t, B_t) is

$$P(M_t \in db, B_t \in da) = \frac{2(2b-a)}{\sqrt{2\pi t^3}} \exp\left(-\frac{(2b-a)^2}{2t}\right) dadb,$$

over the region $\{b-a: b \geq a, b > 0\}$.

Now,

$$P(M_t \ge c) = \frac{2}{\sqrt{2\pi t^3}} \int_c^{\infty} \int_{-\infty}^b (2b - a) \exp\left(-\frac{(2b - a)^2}{2t}\right) dadb$$

$$= \frac{2}{\sqrt{2\pi t^3}} \int_c^{\infty} \int_b^{\infty} x \exp\left(-\frac{x^2}{2t}\right) dxdb$$

$$= \frac{2}{\sqrt{2\pi}} \int_{c/\sqrt{t}}^{\infty} \exp\left(-\frac{x^2}{2}\right) dx$$

$$= 2[1 - N(c/\sqrt{t})]$$

$$= 2\mathbf{P}(B_t \ge c),$$

where
$$N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy$$
.

In the above, we first used the change of variable x := 2b - a, followed by $x := b/\sqrt{t}$.

A martingale $(M_t)_{t\geq 0}$ is called square integrable if $\mathbf{E}[M_t^2]<\infty \ \forall t\geq 0.$

We define the class $\mathcal{M}_2^c := \{\text{all continuous, square integrable martingales}\}.$

Theorem 2.3.2. 1. $B_t \equiv (B_t^1 \ B_t^2 \ \dots \ B_t^d)$ is a continuous, square integrable martingale.

2. $M_t := B_t^i B_t^j - \delta_{ij}t$ is a continuous martinagle, where δ_{ij} is Kronecker's delta.

Proof. 1. We only show that B_t is a martingale:

$$\mathbf{E}[B_t|\mathcal{F}_s^0] = \mathbf{E}[B_t - B_s + B_s|\mathcal{F}_s^0]$$

$$= \mathbf{E}[B_t - B_s|\mathcal{F}_s^0] + \mathbf{E}[B_s|\mathcal{F}_s^0]$$

$$= \mathbf{E}[B_t - B_s] + B_s$$

$$= 0 + B_s$$

$$= B_s.$$

2. We only need to show for BM in \mathbb{R} that

$$\mathbf{E}[B_t^2 - t | \mathcal{F}_s^0] = B_s^2 - s.$$

Rearranging, we see that

$$\mathbf{E}[B_t^2 - B_s^2 | \mathcal{F}_s^0] = \mathbf{E}[(B_t - B_s)^2 | \mathcal{F}_s^0] + \mathbf{E}[2B_s(B_t - B_s) | \mathcal{F}_s^0]$$

$$= \mathbf{E}[(B_t - B_s)^t] + 2B_s \underbrace{\mathbf{E}[B_t - B_s | \mathcal{F}_s^0]}_{=0}$$

$$= \text{Var}(B_t - B_s) + \mathbf{E}[B_t - B_s]^2$$

$$= t - s + 0^2$$

$$= t - s.$$

2.4 Quadratic variation process

Lemma 2.4.1. Let $\mathcal{D} := \{0 = t_0 < t_1 < \dots < t_n = t\}$ be a finite partition of [0, t], and let $V_D := \sum_{l=1}^{n} |B_{t_l} - B_{t_{l-1}}|^2$, the quadratic variation of B over D. Then $E[V_D] = t$, $Var(V_D) = 2\sum_{l=1}^{n} (t_l - t_{l-1})^2$.

Proof. The expectation is

$$\mathbf{E}[V_D] = \sum_{l=1}^{n} \mathbf{E}|B_{t_l} - B_{t_{l-1}}|^2$$

$$= \sum_{l=1}^{n} |t_l - t_{l-1}|$$

$$= t,$$

and the variance is

$$Var(V_D) = \mathbf{E} \left[\left(\sum_{l=1}^{n} |B_{t_l} - B_{t_{l-1}}|^2 - |t_l - t_{l-1}| \right)^2 \right]$$

$$= \mathbf{E} \left[\left(\sum_{l=1}^{n} |B_{t_l} - B_{t_{l-1}}|^2 - |t_k - t_{l-1}| \right) \left(|B_{t_l} - B_{t_{l-1}}|^2 - |t_l - t_{l-1}| \right) \right]$$

$$= \sum_{k=1}^{n} \mathbf{E} \left[\left(|B_{t_k} - B_{t_{k-1}}|^2 - |t_k - t_{k-1}| \right)^2 \right] +$$

$$\sum_{k \neq l} \mathbf{E} \left[\left(|B_{t_k} - B_{t_{k-1}}|^2 - |t_k - t_{k-1}| \right) \left(|B_{t_l} - B_{t_{l-1}}|^2 - |t_l - t_{l-1}| \right) \right]$$

$$= \sum_{k=1}^{n} \mathbf{E} \left[\left(|B_{t_k} - B_{t_{k-1}}|^2 - |t_k - t_{k-1}| \right) \left(|B_{t_k} - B_{t_{k-1}}|^2 - |t_k - t_{k-1}| \right) \right]$$

$$= \sum_{k=1}^{n} \mathbf{E} \left[\left(|B_{t_k} - B_{t_{k-1}}|^2 - |t_k - t_{k-1}| \right) \left(|B_{t_k} - B_{t_{k-1}}|^2 - |t_k - t_{k-1}| \right) \right]$$

$$= \sum_{k=1}^{n} \left\{ 3(t_k - t_{k-1})^2 - 2(t_k - t_{k-1})^2 + (t_k - t_{k-1})^2 \right\}$$

$$= 2\sum_{l=1}^{n} (t_k - t_{k-1})^2.$$

Theorem 2.4.2. We have $\lim_{m(D)\to 0} \sum_{l=1}^n |B_{t_l} - B_{t_{l-1}}|^2 = t$ in \mathcal{L}^2 and in probability, for any $t \geq 0$, where \mathcal{D} runs over all finite partitions of [0,t] and $m(D) := \max_l |t_l - t_{l-1}|$.

Proof. We only need to show convergence in \mathcal{L}^2 as this implies convergence in \mathcal{L}^1 which in turn implies convergence in probability.

$$\mathbf{E} \left| \sum_{l=1}^{n} |B_{t_{l}} - B_{t_{l-1}}|^{2} - t \right|^{2} = \mathbf{E}|V_{D} - \mathbf{E}V_{D}|^{2}$$

$$= \operatorname{Var}(V_{D})$$

$$= 2 \sum_{l=1}^{n} (t_{l} - t_{l-1})^{2}$$

$$\leq 2m(D) \sum_{l=1}^{n} (t_{l} - t_{l-1})$$

$$= 2t \cdot m(D) \to 0 \text{ as } m(D) \to 0.$$

Let $M = (M_t)_{t \geq 0} \in \mathcal{M}_c^2$. As with BM, the limit

$$\langle M \rangle_t := \lim_{m(D) \to 0} \sum_{l=1}^n |M_{t_l} - M_{t_{l-1}}|^2$$

exists in \mathcal{L}^2 and hence also in probability.

 $\{\langle M \rangle_t\}_{t\geq 0}$ is called the *quadratic variation process* of $(M_t)_{t\geq 0}$, or simply the *bracket process*. It is an adapted, continuous, increasing process with $\langle M \rangle_0 = 0$.

Doob-Meyer decomposition If $M = (M_t)_{t \ge 0}$ is a continuous martingale and $A = (A_t)_{t \ge 0}$ is adapted, continuous and increasing, then X := M + A is a submartingale.

The reverse is the Doob-Meyer decomposition. In particular, the decomposition is unique.

Theorem 2.4.3. Let $M \in \mathcal{M}_c^2$ be given. Then $\langle M \rangle_t$ is the unique, continuous, adapted and increasing process initially zero s.t. $M_t^2 - \langle M \rangle_t$ is a martingale.

Proof. By Jensen's inequality, $\mathbf{E}[M_t^2|\mathcal{F}_s] \geq \mathbf{E}[M_t|\mathcal{F}_s]^2 = M_s^2$, so M_t^2 is a submartingale. Hence, by the Doob-Meyer decomposition,

$$M_t^2 = N_t + A_t$$

where N_t is a martingale and A_t is an increasing process. This decomposition is unique.

On the other hand, $M_t^2 = (M_t^2 - \langle M \rangle_t) + \langle M \rangle_t$, and since the decomposition above is unique and $\langle M \rangle_t$ is increasing, $\langle M \rangle_t$ is the unique process described in the theorem statement.

Theorem 2.4.4. Let $M, N \in \mathcal{M}_c^2$ and let

$$\langle M, N \rangle_t := \frac{1}{4} (\langle M + N \rangle_t - \langle M - N \rangle_t),$$

called the bracket process of M, N. Then $\langle M, N \rangle_t$ is the unique, adapted, continuous process having finite variation almost surely and with initial zero, s.t. $M_t N_t - \langle M, N \rangle_t$ is a martingale.

Moreover, $\sum_{m(\mathcal{D})\to 0} (M_{t_l} - M_{t_{l-1}})(N_{t_l} - N_{t_{l-1}}) = \langle M, N \rangle_t$ in probability where $\mathcal{D} = \{0 = t_0 < t_1 < \dots t_n = t\}$ and $m(D) = \max_l |t_l - t_{l-1}|$.

3 Itô's calculus

 $B = (B_t)_{t \geq 0}$ is a standard BM on $(\Omega.\mathcal{F}, \mathbf{P})$ and $\mathcal{F}_t^0 = \sigma\{B_s, 0 \leq s \leq t\}$ is the natural filtration. Our objective is to define $\int_0^t F_s dB_s \ \forall t \geq 0$ for some process $(F_t)_{t \geq 0}$.

3.1 Stochastic integrals for BM

By convention, we shall call a process adapted if it is measurable and \mathcal{F}_t^0 -adapted.

An adapted process $F = (F_t)_{t\geq 0}$ is called a *simple process* if $F_t(\omega) = f_0(\omega) \mathbb{1}_{\{0\}}(t) + \sum_{i=0}^{\infty} \mathbb{1}_{(t_i, t_{i+1}]}(t) f_i(\omega)$, where $0 = t_0 < t_1 < \ldots$ so that for any finite $T \geq 0$, there are finitely many $t_i \in [0, T]$, each f_i is a $\mathcal{F}_{t_i}^0$ -measurable r.v., f_0 is \mathcal{F}_0^0 -measurable, and F is uniformly bounded.

Figure 3: A simple process.

Let \mathcal{L}_0 denote the space of all simple processes.

Let $F \in \mathcal{L}_0$, then define

$$\int_0^t F_s dB_s \equiv I(F)_t := \sum_{i=0}^\infty f_i (B_{t_{i+1} \wedge t} - B_{t_i \wedge t}).$$

Note that this sum is finite, since we stop at t.

Clearly, I(F) is continuous in t and \mathcal{F}_t^0 -adapted (f_i is \mathcal{F}_{t_i} -measurable, therefore \mathcal{F}_t -measurable, since $\mathcal{F}_{t_i} \subseteq \mathcal{F}_t$ if $t_i \leq t$).

Lemma 3.1.1. $(I(F))_{t\geq 0}$ is a martingale, i.e.

$$\mathbf{E}[I(F)_t - I(F)_s | \mathcal{F}_s^0] = 0, \ \forall t \ge s \ge 0.$$

Proof. Assume $t_j < s \le t_{j+1}$, $t_k < t \le t_{k+1}$ for some j, k.

Then $j \leq k$. Consider j + 1 < k, in which case

$$I(F)_t - I(F)_s = \sum_{i=j+1}^{k-1} f_i(B_{t_i+1} - B_{t_i}) + f_j(B_{t_{j+1}} - B_s) + f_k(B_t - B_{t_k}).$$

Figure 4

$$0 \qquad t_{j} \qquad s \qquad t_{j+1} \qquad t_{k} \qquad t_{k+1}$$

Consider the expectation of the terms in the sum. By the tower property, we have

$$\mathbf{E}[f_i(B_{t_{i+1}} - B_{t_i}) | \mathcal{F}_s^0] = \mathbf{E}\{\mathbf{E}[f_i(B_{t_{i+1}} - B_{t_i}) | \mathcal{F}_{t_i}^0] | \mathcal{F}_s^0\} = \mathbf{E}\{f_i\mathbf{E}[(B_{t_{i+1}} - B_{t_i}) | \mathcal{F}_{t_i}^0] | \mathcal{F}_s^0\} = 0, \ \forall j+1 \le i \le k-1.$$

Similarly, the terms involving f_j and f_k have conditional expectation zero also. Hence the expectation of the difference is zero and so the given process is a martingale.

Lemma 3.1.2.
$$I(F) \in \mathcal{M}_c^2$$
 and $\langle I(F) \rangle_t = \int_0^t F_s^2 ds$.

Proof. To prove $I(F)_t^2 - \int_0^t F_s^2 ds$ is a martingale, use the same idea as in the proof of lemma 3.1.1.

Lemma 3.1.3 (Itô's isometry).
$$F \mapsto I(F)$$
 is linear and $\mathbf{E}[I(F)_t^2] = \mathbf{E} \left[\int_0^t F_s^2 \ ds \right]$.

Proof. $I(F)_t^2 - \int_0^t F_s^2 ds$ is a martingale, hence $\mathbf{E}[I(F)_t^2 - \int_0^t F_s^2 ds] = 0$. Then by linearity of expectation and rearranging, we have the result.

3.2 Stochastic integrals for adapted processes

Now, for T > 0 define

$$\mathcal{L}^2_{\mathcal{F}}(0,T;\mathbb{R}) = \left\{ F = (F_t)_{t \ge 0} : F \text{ is adapted and } \mathbf{E} \left[\int_0^T F_t^2 dt \right] < \infty \right\} \supseteq \mathcal{L}_0.$$

In fact, \mathcal{L}_0 is dense in $\mathcal{L}_{\mathcal{F}}^2$.

$$\forall F \in \mathcal{L}^2_{\mathcal{F}}(0,T;\mathbb{R}), \ \exists F_n \in \mathcal{L}_0 \text{ s.t. } \mathbf{E}\left[\int_0^T |F_{n,t} - F_t|^2 \ dt\right] \to 0 \text{ as } n \to \infty.$$

$$\mathbf{E}|I(F_n)_T - I(F_m)_T|^2 = \mathbf{E}|I(F_n - F_m)_T|^2 = \mathbf{E}\int_0^T |F_{n,s} - F_{m,s}|^2 ds \to 0 \text{ as } n, m \to \infty.$$

$$I(F_n) \to I(F)$$
.

We define $I(F) := \lim_{n \to \infty} I(F_n)$ as the Itô integral against B, denoted as $I(F)_t = \int_0^t F_s \ dB_s$.

Theorem 3.2.1. If $F = (F_t)_{t\geq 0} \in \mathcal{L}^2_{\mathcal{F}}(0,T;\mathbb{R})$, then both $\int_0^t F_s \ dB_s$ and $\left(\int_0^t F_s \ dB_s\right)^2 - \int_0^t F_s^2 \ ds$ are martingales.

Moreover,
$$\mathbf{E}[\int_0^t F_s \ dB_s]^2 = \mathbf{E} \int_0^t F_s^2 \ ds \ \forall t \geq 0$$
, and $\mathbf{E}\left[\left(\int_s^t F_u \ dB_u\right)^2 \middle| \mathcal{F}_s\right] = \mathbf{E}[\int_s^t F_u^2 \ du | \mathcal{F}_s] \ \forall t \geq s > 0$.
Finally, $\langle \int_0^t F_s \ dB_s, \int_0^t G_s \ dB_s \rangle_t = \int_0^t F_s G_s \ ds, \ \forall F, G \in \mathcal{L}^2_{\mathcal{F}}(0, T; \mathbb{R})$.

We now define $\int_0^t F_s dM_s$ where $M \in \mathcal{M}_c^2$

Suppose $F \in \mathcal{L}_0$: $F_t = f_0 \mathbb{1}_{\{0\}}(t) + \sum_{i=0}^{\infty} f_i \mathbb{1}_{(t_i, t_{i+1}]}(t)$.

Define
$$I^{M}(F) := \sum_{i=0}^{\infty} f_{i}(M_{t \wedge t_{i+1}} - M_{t \wedge t_{i}}).$$

Then

- 1. $I^M(F) \in \mathcal{M}_c^2$;
- 2. $\langle I^M(F)\rangle_t = \int_0^t F_s^2 d\langle M\rangle_s;$
- 3. (Itô's isometry) $E(\int_0^t F_s \ dM_s)^2 = \mathbf{E}[\int_0^t F_s^2 \ d\langle M \rangle_s]$.

$$\mathcal{L}_F^{2,M}(0,T;\mathbb{R}) := \left\{ F = (F_t)_{t \geq 0} : F \text{ is adapted, and } \mathbf{E} \int_0^t F_s^2 \ d\langle M \rangle_s < \infty \right\}.$$

One can define $\int_0^t F_s dM_s$ for $F \in \mathcal{L}^{2,M}_{\mathcal{F}}(0,T;\mathbb{R})$ via a limiting argument.

 $\int_0^t F_s \ dM_s$ is a continuous martingale, $\mathbf{E}(\int_0^t F_s \ dM_s)^2 = \mathbf{E}[\int_0^t F_s^2 \ d\langle M \rangle_s]$.

$$\langle \int_0^t F_s \ dM_s \rangle = \int_0^t F_s^2 \ d\langle M \rangle_s.$$

$$\langle \int_0^t F_s \ dM_s, \int_0^t G_s \ dN_s \rangle = \int_0^t F_s G_s \ d\langle M, N \rangle_s.$$

3.3 Itô's integration for semimartingales

Let $M = (M_t)_{t\geq 0}$ be a continuous local martingale with $M_0 = 0$. Then there exists $\{\tau_n\}$ with $\tau_n \uparrow \infty$ as $n \to \infty$ a.s. and $(M_n)_{t\geq 0} := (M_{t \land \tau_n})_{t\geq 0}$ is a continuous martingale.

Define $\langle M \rangle_t := \langle M_n \rangle_t \ \forall t \leq \tau_n$, which is an adapted, continuous and increasing process, with $\langle M \rangle_0 = 0$ and $M_t^2 - \langle M \rangle_t$ is a local martingale.

Now we define $\int_0^t F_s \ dM_s$ for F which is left-continuous, adapted and $\int_0^T F_s^2 \ d\langle M \rangle_s < \infty$ a.s. $\forall T > 0$.

$$\int_0^t F_s \ dM_s := \int_0^t F_s d(M_n)_s \text{ if } t \le \tilde{\tau}_n \text{ where } \tilde{\tau}_n \uparrow \infty.$$

Both $\int_0^t F_s dM_s$ and $(\int_0^t F_s dM_s)^2 - \int_0^t F_s^2 d\langle M \rangle_s$ are local martingales.

Definition 3.3.1. An adapted continuous process $X = (X_t)_{t \geq 0}$ is called a semimartingale if $X_t = M_t + V_t$ where $(M_t)_{t \geq 0}$ is a continuous local martingale and $(V_t)_{t \geq 0}$ is a process with finite variation in any finite interval.

$$\int_0^t F_s \ dX_s := \int_0^t F_s \ dM_s + \int_0^t F_s \ dV_s.$$

$$\int_0^t F_s \ dX_s = \lim_{m(\mathcal{D}) \to 0} \sum_l \left(F_{l-1}(X_{t_l} - X_{t_{l-1}}) \right) \text{ in probability.}$$

If X, Y are semimartingales, then

$$\langle X, Y \rangle_t := \lim_{m(\mathcal{D}) \to 0} \sum_{l=1}^n (X_{t_l} - X_{t_{l-1}}) (Y_{t_l} - Y_{t_{l-1}})$$
 in probability

where $\mathcal{D} = \{0 = t_0 < t_1 < \dots < t_n = t\}.$

Properties

- 1. (Bilinearity) $\langle \alpha X + Y, \beta U + V \rangle = \alpha \beta \langle X, U \rangle + \alpha \langle X, V \rangle + \beta \langle Y, U \rangle + \langle Y, V \rangle$.
- 2. $\langle X, Y \rangle = 0$ if X is continuous with finite variation.
- 3. If $X_t = M_t + V_t$, $Y_t = N_t + U_t$, where M, N are martingales, V, U have finite variation and so X, Yare semimartingales, then $\langle X,Y\rangle_t=\langle M,N\rangle_t.$

3.4 Itô's formula

Let $(X_t)_{t \ge 0}$ be a continuous semimartingale. For a partition $0 = t_0 < t_1 < \cdots < t_n = t$,

$$X_{t_j}^2 - X_{t_{j-1}}^2 = (X_{t_j} - X_{t_{j-1}})^2 + 2X_{t_{j-1}}(X_{t_j} - X_{t_{j-1}})$$

$$\Longrightarrow X_t^2 - X_0^2 = 2\sum_{j=1}^n X_{t_{j-1}}(X_{t_j} - X_{t_{j-1}}) + \sum_{j=1}^n (X_{t_j} - X_{t_{j-1}})^2.$$

Letting $m(\mathcal{D}) \to 0$,

$$X_t^2 - X_0^2 = 2 \int_0^t X_s \ dX_s + \langle X \rangle_t. \tag{3.4.1}$$

Compare this with the formula for integration by parts:

$$\int_0^t x_s \ dy_s = x_s y_s \Big|_0^t - \int_0^t y_s \ dx_s.$$

Setting $y_s := x_s$ and rearranging, we get

$$x_t^2 - x_0^2 = 2 \int_0^t x_s \ dx_s.$$

Note that in the stochastic version there is a quadratic variation term, but this is absent in the deterministic version.

This is the simplest case of Itô's formula.

Lemma 3.4.1 (Integration by parts). Let X, Y be two continuous semimartingales. Then

$$X_t Y_t - X_0 Y_0 = \int_0^t X_s \ dY_s + \int_0^t Y_s \ dX_s + \langle X, Y \rangle_t.$$

Theorem 3.4.2 (Itô's formula). Let $(X_t)_{t\geq 0}=(X_t^1,\ldots,X_t^d)_{t\geq 0}$ be a continuous, semimartingale in \mathbb{R}^d with $X_t^i = M_t^i + A_t^i$ where M_t^1, \dots, M_t^d are continuous local martingales and A_t^1, \dots, A_t^d are continuous, adapted processes with finite variation.

Let $f \in C^2(\mathbb{R}^d; \mathbb{R})^{12}$. Then

$$f(X_t) - f(X_0) = \sum_{i=1}^d \int_0^t \frac{\partial f(X_s)}{\partial x_i} dX_s^i + \frac{1}{2} \sum_{i,j=1}^d \int_0^t \frac{\partial^2 f(X_s)}{\partial x_i \partial x_j} d\langle M^i, M^j \rangle_t^{13}.$$

Proof. We prove in the case d = 1 and $X_t = M_t \in \mathcal{M}_c^2$.

We need to show

$$f(M_t) - f(M_0) = \int_0^t f'(M_s) \ dM_s + \frac{1}{2} \int_0^t f''(M_s) \ d\langle M \rangle_s. \tag{3.4.2}$$

This is true for $f(x) = x^2$ (this is just (3.4.1)).

 $¹²f: \mathbb{R}^d \to \mathbb{R}$ and $f \in C^2$. $13 \partial x_i$ is differentiating with respect to the *i*-th parameter of f.

Now suppose (3.4.2) is true for $f(x) = x^n$:

$$M_t^n - M_0^n = n \int_0^t M_s^{n-1} dM_s + \frac{1}{2}n(n-1) \int_0^t M_s^{n-2} d\langle M \rangle_s.$$

Applying integration by parts (lemma 3.4.1) to M^n and M, we have

$$\begin{split} M_t^{n+1} - M_0^{n+1} &= \int_0^t M_s^n \ dM_s + \int_0^t M_s \ dM_s^n + \langle M^n, M \rangle_t \\ &= \int_0^t M_s^n \ dM_s + \int_0^t M_s (nM_s^{n-1} + \tfrac{1}{2}n(n-1)M_s^{n-2} \ d\langle M \rangle_s) \\ &\quad + \left\langle M_0^n + n \int_0^t M_s^{n-1} \ dM_s + \tfrac{1}{2}n(n-1) \int_0^t M_s^{n-2} \ d\langle M \rangle_s, \int_0^t dM_s \right\rangle_t \\ &= \int_0^t M_s^n \ dM_s + n \int_0^t M_s^n \ dM_s + \tfrac{1}{2}n(n-1) \int_0^t M_s^{n-1} \ d\langle M \rangle_s \\ &\quad + n \int_0^t M_s^{n-1} \ d\langle M \rangle_s \\ &= (n+1) \int_0^t M_s^n \ dM_s + \tfrac{1}{2}n(n+1) \int_0^t M_s^{n-1} \ d\langle M \rangle_s \end{split}$$

Corollary 3.4.3 (Itô's formula for diffusion processes). Let $(X_t)_{t\geq 0}=(X_t^1,\ldots,X_t^d)_{t\geq 0}$ be given as

$$X_t^i = X_0^i + \int_0^t b_s^i ds + \sum_{j=1}^n \int_0^t \sigma_s^{i,j} dB_s^j, \ i = 1, 2, \dots, d$$

where $(B_t)_{t\geq 0}=(B_t^1,\ldots,B_t^n)_{t\geq 0}$ is a standard BM in \mathbb{R}^n , and $f\in C^{1,2}([0,\infty]\times\mathbb{R}^d;\mathbb{R})$. Then

$$f(t, X_t) - f(0, X_0) = \int_0^t \frac{\partial f(s, X_s)}{\partial s} ds + \sum_{i=1}^d \int_0^t \frac{\partial f(s, X_s)}{\partial x_i} dX_s^i + \frac{1}{2} \sum_{i,j=1}^d \int_0^t a_s^{i,j} \frac{\partial^2 f(s, X_s)}{\partial x_i \partial x_j} ds,$$

where $a_s^{i,j} = \sum_{k=1}^n \sigma_s^{ik} \sigma_s^{kj}, i, j = 1, 2, ..., d.$

Example 3. Let $B = (B^1, \ldots, B_n)$ be a standard BM. Then for any $f \in C^2(\mathbb{R}^n; \mathbb{R})$:

$$f(B_t) - f(B_0) = \sum_{i=1}^n \int_0^t \frac{\partial f(B_s)}{\partial x_i} dB_s^i + \frac{1}{2} \sum_{i=1}^n \int_0^t \frac{\partial^2 f(B_s)}{\partial x_i^2} ds$$
$$= \int_0^t \nabla f(B_s) \cdot dB_s + \frac{1}{2} \int_0^t \Delta f(B_s) ds.$$

Hence, $f(B_t) - f(B_0) - \frac{1}{2} \int_0^t \Delta f(B_s) \ ds$ is a local martingale.

Example 4. We will show that $\mathbf{E} | \int_0^t \sigma_s \ dB_s|^2 = \mathbf{E} \int_0^t \sigma_s^2 \ ds$ for bounded σ .

Let $M_t := \int_0^t \sigma_s \ dB_s$.

$$f(x) = x^2$$
, $f'(x) = 2x$, $f''(x) = 2$, $\langle M \rangle_t = \int_0^t \sigma_s^2 ds$.

$$f(M_t) - f(M_0) = 2 \int_0^t M_s \ dM_s + \frac{1}{2} \cdot 2 \int_0^t \sigma_s^2 \ ds$$

$$\implies \left| \int_0^t \sigma_s \ dB_s \right|^2 = 2 \int_0^t M_s \ dM_s + \int_0^t \sigma_s^2 \ ds$$

$$\implies \mathbf{E} \left| \int_0^t \sigma_s \ dB_s \right|^2 = \mathbf{E} \int_0^t \sigma_s^2 \ ds.$$

3.5 Stochastic exponentials and Girsanov theorem

Consider a deterministic ODE,

$$\left\{ \begin{array}{ll} dz_t &= z_t \ dx_t \\ z_0 &= 1 \end{array} \right. \implies z_t = e^{x_t}.$$

What about the stochastic case?

$$\begin{cases}
dZ_t = Z_t dX_t \\
Z_0 = 1
\end{cases},$$
(3.5.1)

where X_t is a continuous semimartingale.

The real meaning of (3.5.1) is

$$Z_t = 1 + \int_0^t Z_s \ dX_s. \tag{3.5.2}$$

Try $Z_t = \exp(X_t + V_t)$, where $(V_t)_{t \ge 0}$, a finite variation process, is to be determined. Applying Itô's formula,

$$Z_{t} = Z_{0} + \int_{0}^{t} \exp(X_{s} + V_{s}) d(X_{s} + V_{s}) + \frac{1}{2} \int_{0}^{t} \exp(X_{s} + V_{s}) d\langle X \rangle_{s}^{14}$$

$$= 1 + \int_{0}^{t} Z_{s} d(X_{s} + V_{s}) + \frac{1}{2} \int_{0}^{t} Z_{s} d\langle X \rangle_{s}.$$
(3.5.3)

This suggests we should set $V_t := -\frac{1}{2} \langle X \rangle_t$. Compare (3.5.2) with (3.5.3).

Lemma 3.5.1. Let X_t be a semimartingale with $X_0 = 0$. Then

$$\mathcal{E}(X) := \exp(X_t - \frac{1}{2}\langle X \rangle_t), \tag{3.5.4}$$

called the stochastic exponential of X, is the solution to (3.5.2).

Lemma 3.5.2. Any continuous, non-negative local martingale is a supermartingale.

Proof. Refer to exercise sheet 7, question 1.

Corollary 3.5.3. Let $M = (M_t)_{t \geq 0}$ be a continuous local martingale with $M_0 = 0$. Then $\mathcal{E}(M)$ is a supermartingale. In particular,

$$\mathbf{E}[\exp(M_t - \frac{1}{2}\langle M \rangle_t)] \le 1 \ \forall t \ge 0.$$

Moreover, $\mathcal{E}(M)$ is a martingale up to time T>0 if and only if

$$\mathbf{E}[\exp(M_T - \frac{1}{2}\langle M \rangle_T)] = 1. \tag{3.5.5}$$

Theorem 3.5.4 (Novikov's condition). Let $M = (M_t)_{t \geq 0}$ be a continuous local martingale with $M_0 = 0$. If $\mathbf{E} \exp(\frac{1}{2}\langle M \rangle_T) < \infty$, then $\mathcal{E}(M)$ is a martingale up to time T.

Proof. Refer to Prof. Qian's lecture notes, theorem 4.6.9.

Example 5. Let $B = (B_t)_{t \geq 0}$ be a standard BM and $F = (F_t)_{t \geq 0} \in \mathcal{L}^2_{\mathcal{F}}(0,T;\mathbb{R})$. Assume

$$\mathbf{E}\exp(\frac{1}{2}\int_0^T F_t^2 dt) < \infty,$$

then $X_t = \mathcal{E}\left[\int_0^t F_s \ dB_s\right] \equiv \exp(\int_0^t F_s \ dB_s - \frac{1}{2} \int_0^t F_s^2)$ is a martingale up to T.

Theorem 3.5.5 (Lévy's characterisation). A process $M = (M_t)_{t \geq 0}$ with $M_0 = 0$ is a standard BM if and only if it is a continuous local martingale with $\langle M \rangle_t = t$.

 $^{^{14}}d\langle X+V\rangle_s=d\langle X\rangle_s$ because V has finite variation.

Proof. We prove the backwards direction.

 $\forall T > 0, \ \lambda \in \mathbb{R}$:

$$\mathbf{E} \exp(\frac{1}{2}\langle \lambda M \rangle_T) = \mathbf{E} \exp(\frac{1}{2}\lambda^2 \langle M \rangle_T) = \mathbf{E} \exp(\frac{1}{2}\lambda^2 T) < \infty.$$

Hence, $\mathcal{E}(\lambda M) = \exp(\lambda M_t - \frac{1}{2}\lambda^2 t)$ is a martingale up to T, by Novikov's condition.

$$\mathbf{E}[e^{\lambda M_t - \frac{1}{2}\lambda^2 t} | \mathcal{F}_s] = e^{\lambda M_s - \frac{1}{2}\lambda^2 s} \ \forall 0 \le s \le t \le T$$

$$\iff \mathbf{E}[e^{\lambda (M_t - M_s)} | \mathcal{F}_s] = e^{\frac{1}{2}\lambda^2 (t - s)}$$

$$\iff \mathbf{E}[e^{\lambda (M_t - M_s)}] = e^{\frac{1}{2}\lambda^2 (t - s)}.$$

So, $(M_t)_{t\geq 0}$ has independent increments.

Note that the last line is just the expression for the MGF of a N(0, t-s) r.v., so $M_t - M_s \sim N(0, t-s)$. \square

Suppose we have a filtered probability space $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_t)_{t>0})$ and T>0.

Let Q be another probability measure s.t.

$$\int_{\Omega} X(\omega) \ d\mathbf{Q}(\omega) = \int_{\Omega} X(\omega) \ \xi(\omega) \ d\mathbf{P}(\omega) \ \forall \text{ bounded } \mathcal{F}_T\text{-measurable r.v.s } X$$
(3.5.6)

where $0 < \xi \in \mathcal{L}^1(\Omega, \mathcal{F}_T, \mathbf{P})$.

We write this as

$$\left. \frac{d\mathbf{Q}}{d\mathbf{P}} \right|_{\mathcal{F}_t} = \xi.$$

We can rewrite (3.5.6) as

$$\mathbf{E}^{\mathbf{Q}}[X] = \mathbf{E}^{P}[X\xi] \implies \mathbf{E}^{\mathbf{P}}[\xi] = 1,$$

where the implication follows by setting $X \equiv 1$.

Now, let X be \mathcal{F}_t -measurable, $\forall t \leq T$. Then

$$\mathbf{E}^{\mathbf{Q}}[X] = \mathbf{E}^{\mathbf{P}}[X\xi] = \mathbf{E}^{\mathbf{P}}[\mathbf{E}^{\mathbf{P}}[X\xi|\mathcal{F}_t]] = \mathbf{E}^{\mathbf{P}}[X\mathbf{E}^{\mathbf{P}}[\xi|\mathcal{F}_t]].$$

So, $\forall t \leq T$, $\frac{d\mathbf{Q}}{d\mathbf{P}}|_{\mathcal{F}_t} = \mathbf{E}^{\mathbf{P}}[\xi|\mathcal{F}_t] > 0^{15}$.

Conversely, let $Z = (Z_t)_{t \ge 0}$ be a continuous, positive martingale up to T with $Z_0 = 1$, on $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_t)_{t \ge 0})$.

Define a measure on (Ω, \mathcal{F}_T) by

$$\left. \frac{d\mathbf{Q}}{d\mathbf{P}} \right|_{\mathcal{F}_t} = Z_t.$$

For any \mathcal{F}_t -measurable r.v. X,

$$\mathbf{E}^{\mathbf{Q}}[X] = \mathbf{E}^{\mathbf{P}}[\mathbf{E}^{\mathbf{P}}[Z_T X | \mathcal{F}_t]] = \mathbf{E}^{\mathbf{P}}[X \mathbf{E}^{\mathbf{P}}[Z_T | \mathcal{F}_t]] = \mathbf{E}^{\mathbf{P}}[X Z_t].$$

Theorem 3.5.6 (Girsanov's theorem). Let $(M_t)_{t\geq 0}$ be a continuous local martingale and $(Z_t)_{t\geq 0}$ a continuous, positive martingale up to T on $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_t)_{t\geq 0})$ with $Z_0 = 1$. Then

$$X_t := M_t - \int_0^t \frac{1}{Z_s} \ d\langle M, Z \rangle_s$$

is a continuous local martingale on $(\Omega, \mathcal{F}, \mathbf{Q}; (\mathcal{F}_t)_{t \geq 0})$ up to T.

$$\mathbf{E}[Y_t|\mathcal{F}_s] = \mathbf{E}[\mathbf{E}[\xi|\mathcal{F}_t]|\mathcal{F}_s] = \mathbf{E}[\xi|\mathcal{F}_s] = Y_s, \ \forall s \le t \le T.$$

¹⁵This expectation is a process in E, in fact, is a martingale up to T. Put $Y_t := \mathbf{E}[\xi|\mathcal{F}_t]$. Then

Proof. We prove for the case when Z and X are bounded and $M \in \mathcal{M}_c^2$. Using integration by parts,

$$\begin{split} Z_t X_t &= Z_0 X_0 + \int_0^t Z_s \ dX_s + \int_0^t X_s \ dZ_s + \langle Z, X \rangle_t \\ &= Z_0 X_0 + \int_0^t Z_s \ dM_s - \underbrace{\int_0^t Z_s \cdot \frac{1}{Z_s} \ d\langle M, Z \rangle_s}_{=\langle M, Z \rangle_t - \langle M, Z \rangle_0} + \int_0^t X_s \ dZ_s + \underbrace{\langle Z, X \rangle_t}_{=\langle M, Z \rangle_t} \\ &= Z_0 X_0 + \int_0^t Z_s \ dM_s + \int_0^t X_s \ dZ_s + \langle M, Z \rangle_0, \end{split}$$

which is a **P**-martingale.

Now, $\forall A \in \mathcal{F}_s, s \leq t$,

$$\begin{split} \mathbf{E}^{\mathbf{Q}}[\mathbbm{1}_A(X_t - X_s)] &= \mathbf{E}^{\mathbf{Q}}[\mathbbm{1}_A X_t] - \mathbf{E}^{\mathbf{Q}}[\mathbbm{1}_A X_s] \\ &= \mathbf{E}^{\mathbf{P}}[\mathbbm{1}_A X_t Z_t] - \mathbf{E}^{\mathbf{P}}[\mathbbm{1}_A X_s Z_s] \\ &= \mathbf{E}^{\mathbf{P}}[\mathbbm{1}_A (X_t Z_t - X_s Z_s)] \\ &= 0. \end{split}$$

Since $Z_t > 0$, applying Itô's lemma to $\log Z_t$

$$\log Z_t - \log Z_0 = \int_0^t \frac{1}{Z_s} dZ_s - \frac{1}{2} \int_0^t \frac{1}{Z_s^2} d\langle Z \rangle_s.$$

Hence, $Z_t = \mathcal{E}(N)_t$ where $N_t := \int_0^t \frac{1}{Z_s} dZ_s$ is a continuous local martingale.

 $Z_t = 1 + \int_0^t Z_s \ dN_s.$

$$\langle M, Z \rangle_t = \left\langle \int_0^t dM_s, \int_0^t Z_s dN_s \right\rangle_t = \int_0^t Z_s d\langle M, N \rangle_s.$$

Corollary 3.5.7. Let N_t be a continuous martingale on $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_t)_{t\geq 0})$, $N_0 = 0$, s.t. $\mathcal{E}(N)_t$ is a continuous martingale up to T.

Define a probability measure \mathbf{Q} on (Ω, \mathcal{F}_T) by

$$\frac{d\mathbf{Q}}{d\mathbf{P}}\Big|_{\mathcal{F}_t} = \mathcal{E}(N)_t, \forall t \leq T.$$

If $(M_t)_{t\geq 0}$ is a continuous local martingale under P, then $X_t := M_t - \langle N, M \rangle_t$ is a continuous local martingale under Q up to T.

Example 6. Consider the stock price

$$dS_t = S_t(r_t dt + dW_t) = S_t d\tilde{W}_t$$

Let $N_t := -\int_0^t r_s \ dW_s$.

 $\mathbf{E}[\exp(\frac{1}{2}\langle N \rangle_t)] = \mathbf{E}[\exp(\frac{1}{2}\int_0^t r_s^2 \ ds)] < \infty$, then $\mathcal{E}(N)_t = \exp(-\int_0^t r_s \ dW_s + \frac{1}{2}\int_0^t r_s^2 \ ds)$ is a martingale up to T, by Novkikov's condition.

Under $\frac{d\mathbf{Q}}{d\mathbf{P}}|_{\mathcal{F}_t} = \mathcal{E}(N)_t$, $\tilde{W}_t := W_t - \langle N, W \rangle_t = W_t + \int_0^t r_s \ ds^{16}$ is a continuous local martingale under \mathbf{Q} .

However, $\langle \tilde{W} \rangle_t = \langle W \rangle_t = t \implies \tilde{W}$ is a BM under **Q**.

In this case, $dS_t = S_t d\tilde{W}_t \implies S_t$ is a martingale under **Q**.

So, e.g. $\mathbf{E}^{\mathbf{Q}}[S_T] = \mathbf{E}^{\mathbf{Q}}[S_0]$, where S_T is the future price and S_0 is the current price. Q is called the "risk-neutral measure" and \mathbf{P} is called the "physical measure".

$$^{16}\langle N,W\rangle_t = -\left\langle \int_0^t r_s \ dW_s, \int_0^t dW_s \right\rangle_t = -\int_0^t r_s \ ds.$$

 $M_t := \int_0^t F_s \ dB_s$ is an \mathcal{F}_t^0 -martingale if $F \in \mathcal{L}_{\mathcal{F}}^2(0,T;\mathbb{R})$.

Theorem 3.5.8 (Martingale representation theorem). Let $M = (M_t)_{t\geq 0}$ be a square-integrable martingale on $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_t^0)_{t\geq 0})$. Then there exists $F = (F_t)_{t\geq 0} \in \mathcal{L}^2_{\mathcal{F}}(0, T; \mathbb{R})$ s.t. $M_t = M_0 + \int_0^t F_s \ dB_s$.

4 Stochastic Differential Equations

4.1 Introduction

Consider

$$dX_t^j = f_0^j(t, X_t)dt + \sum_{i=1}^n f_i^j(t, X_t)dB_t^i, \ j = 1, 2, \dots, N$$
(4.1.1)

where $B_t = (B_t^1, \dots, B_t^n)_{t\geq 0}$ is a standard BM in \mathbb{R}^n on $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_t)_{t\geq 0})$, and

$$f_i^j: [0, \infty) \times \mathbb{R}^N \to \mathbb{R}, \ i = 1, 2, \dots, n, \ j = 1, 2, \dots, N$$

are Borel measurable functions.

Note that (4.1.1) should be interpreted as

$$X_t^j = X_0^j + \int_0^t f_0^j(s, X_s) ds + \sum_{i=1}^n \int_0^t f_i^j(s, X_s) dB_s^i.$$
 (4.1.2)

Definition 4.1.1. 1. An adapted, continuous, \mathbb{R}^N -valued process $X = (X_t)_{t \geq 0} = (X_t^1, \dots, X_t^N)_{t \geq 0}$ on $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_t)_{t \geq 0})$ is a weak solution of (4.1.1) if there is a standard BM $W = (W_t)_{t \geq 0}$ in \mathbb{R}^n , adapted to $(\mathcal{F}_t)_{t \geq 0}$, s.t. (4.1.2) holds with B replaced by W.

2. Given a standard BM $B = (B_t)_{t \geq 0}$ in \mathbb{R}^n on $(\Omega, \mathcal{F}, \mathbf{P})$ with filtration $(\mathcal{F}_t^0)_{t \geq 0}$, an adapted continuous process $X = (X_t)_{t \geq 0}$ on $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_t^0)_{t \geq 0})$ is a strong solution of (4.1.1) if (4.1.2) holds.

Definition 4.1.2. 1. We say that (4.1.1) has pathwise uniqueness if whenever (X, B) and (\tilde{X}, B) are two weak solutions defined on the same space $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_t)_{t>0})$, and $X_0 = \tilde{X}_0$, then $X = \tilde{X}$ a.s..

2. We say that (4.1.1) has uniqueness in law if whenever (X, B) and (\tilde{X}, \tilde{B}) are two weak solutions (possibly defined on different probability spaces) and X_0 and \tilde{X}_0 have the same distribution, then X and \tilde{X} have all the same finite-dimensional distributions.

Theorem 4.1.3 (Yamada-Watanabe). Pathwise uniqueness implies uniqueness in law.

Example 7 (Hiroshi Tanaka). Consider a one-dimensional SDE

$$X_t = \int_0^t \operatorname{sgn}(X_s) dB_s, \ 0 \le t < \infty$$

where
$$sgn(x) = \begin{cases} 1 & \text{if } x \ge 0\\ -1 & \text{if } x < 0 \end{cases}$$

Then

- 1. Uniqueness in law holds: X_t is a continuous martingale and $\langle X \rangle_t = \int_0^t 1 ds = t \implies X_t$ is BM.
- 2. If (X, B) is a weak solution:

$$-X_t = \int_0^t -\operatorname{sgn}(X_s) dB_s = \int_0^t \operatorname{sgn}(-X_s) dB_s \implies (-X,B) \text{ is also a weak solution}.$$

Hence pathwise uniquess does not hold.

3. Let W_t be any standard BM on $(\Omega, \mathcal{F}, \mathbf{P})$ and then let $B_t := \int_0^t \operatorname{sgn}(W_t) dW_t$. $(B_t)_{t \ge 0}$ is BM and $\int_0^t \operatorname{sgn}(W_s) dB_s = \int_0^t \underbrace{\operatorname{sgn}(W_s)^2}_{-1} dW_s = W_t$.

Hence (W_t, B_t) is a weak solution.

4. There is no strong solution (see Roger & Williams 1990, p. 151).

 $^{^{17}}$ The stochastic differential equation (SDE) is defined by the fs. The underlying probability space and the BM are not part of the definition of the SDE.

4.2 Several examples

4.2.1 Linear SDEs

Consider

$$dX_t = \beta X_t dt + \sigma dB_t, \tag{4.2.1}$$

where X_t and B_t are $N \times 1$ column vectors, β is an $N \times N$ matrix and σ is an $N \times n$ matrix. Using integration by parts,

$$\begin{split} e^{-\beta t}X_t - e^{-\beta 0}X_0 &= \int_0^t e^{-\beta s} dX_s + \int_0^t d(e^{-\beta s}) X_s^{18} \\ &= \int_0^t e^{-\beta s} dX_s - \int_0^t e^{-\beta s} \beta X_s ds \\ &= \int_0^t e^{-\beta s} (dX_s - \beta X_s ds) \\ &= \int_0^t e^{-\beta s} \sigma dB_s \\ \Longrightarrow &X_t = e^{\beta t} X_0 + \int_0^t e^{\beta (t-s)} \sigma dB_s. \end{split}$$

Ornstein-Uhlenbeck process

$$dX_t = dB_t - (AX_t)dt.$$

4.2.2 Geometric BM

The Black-Scholes model is

$$dS_t = S_t(\mu_t dt + \sigma_t dB_t).$$

Regarding the parenthesised term as " X_t ", we see that we have a stochastic exponential:

$$S_t = \mathcal{E}(X)_t$$

$$= \mathcal{E}\left(\int_0^t \mu_s ds + \int_0^t \sigma_s dB_s\right)$$

$$= S_0 \exp\left(\int_0^t \mu_s ds + \int_0^t \sigma_s dB_s - \frac{1}{2} \int_0^t \sigma_s^2 ds\right)$$

$$= S_0 \exp\left(\int_0^t [\mu_s - \frac{1}{2}\sigma_s^2] ds + \int_0^t \sigma_s dB_s\right).$$

If $\mu_t \equiv \mu$ and $\sigma_t \equiv \sigma$ then

$$S_t = S_0 \exp(\sigma B_t + [\mu - \frac{1}{2}\sigma^2]t),$$

hence S_t follows a lognormal distribution, because $B_t \sim N(0,t)$ and the remaining terms are constants.

4.2.3 Cameron-Martin's formula

Consider the SDE

$$dX_t = dB_t + b(t, X_t)dt (4.2.2)$$

where b is bounded and measurable on $[0,T] \times \mathbb{R}$.

Let $(W_t)_{t\geq 0}$ be a standard BM on $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_t)_{t\geq 0})$.

Define

$$\left. \frac{d\mathbf{Q}}{d\mathbf{P}} \right|_{\mathcal{F}_t} = \mathcal{E}(N)_t, \ t \ge 0,$$

¹⁸ Recall that the matrix exponential is defined as $e^{\beta t} := \sum_{k=0}^{\infty} \frac{t^k}{k!} \beta^k$ and so we have $\frac{d}{dt} e^{\beta t} = \beta e^{\beta t} = e^{\beta t} \beta$.

where $N_t := \int_0^t b(s, W_s) dW_s$ is a **P**-martingale with $\langle N \rangle_t = \int_0^t b^2(s, X_s) ds$. By Novikov's condition,

$$\mathcal{E}(N)_t \equiv \exp\left(\int_0^t b(s, W_s) dW_s - \frac{1}{2} \int_0^t b^2(s, W_s) ds\right)$$

is a ${f P}$ -martingale.

By corollary 3.5.7,

$$B_t := W_t - \langle W, N \rangle_t = W_t - \int_0^t b(s, W_s) ds$$

is a continuous local **Q**-martingale. Moreover, $\langle B \rangle_t = \langle W \rangle_t = t$.

Hence, $(B_t)_{t\geq 0}$ is a standard BM under **Q**.

However, $dW_t = dB_t + b(t, W_t)dt \implies (W, B)$ is a weak solution of (4.2.2) on $(\Omega, \mathcal{F}, \mathbf{Q})$.

Theorem 4.2.1 (Cameron-Martin's formula). Let $b(t,x) = (b^1(t,x), \ldots, b^n(t,x))$ be bounded measurable functions on $[0,T] \times \mathbb{R}^n$ and $W_t = (W_t^1, \ldots, W_t^n)$ be a standard BM on $(\Omega, \mathcal{F}, \mathbf{P}; (\mathcal{F}_t)_{t \geq 0})$. Define probability measure \mathbf{Q} by

$$\frac{d\mathbf{Q}}{d\mathbf{P}}\Big|_{\mathcal{F}_t} := \exp\left(\sum_{k=1}^n \int_0^t b^k(s, W_s) dW_s^k - \frac{1}{2} \sum_{k=1}^n \int_0^t |b^k(s, W_s)|^2 ds\right), \ 0 \le t \le T.$$

Then $(W_t)_{t\geq 0}$ under **Q** is a solution to

$$dX_t^j = dB_t^j + b^j(t, X_t)dt$$

for some BM $B_t = (B_t^1, \dots, B_t^n)$ under \mathbf{Q} .

4.3 Existence and uniqueness

Consider the SDE

$$dX_t^j = f_0^j(t, X_t)dt + \sum_{i=1}^n f_i^j(t, X_t)dB_t^j, \ j = 1, 2, \dots, N$$
(4.3.1)

Theorem 4.3.1. Suppose that f_i^j i = 1, 2, ..., n, j = 1, 2, ..., N satisfy the Lipschitz condition

$$|f_i^j(t,x) - f_i^j(t,y)| \le c|x-y| \ \forall x,y \in \mathbb{R}^N, \ t \ge 0$$

for some constant c > 0 and the linear growth condition

$$f_i^j(t,x)| \le c(1+|x|) \ \forall x \in \mathbb{R}^N, \ t \ge 0.$$

Then for any $\eta \in \mathcal{L}^2(\Omega, \mathcal{F}, \mathbf{P})$ and a standard BM B_t in \mathbb{R}^n , there is a strong solution $(X_t)_{t\geq 0}$ of (4.3.1) with $X_0 = \eta$. Moreover, the pathwise uniqueness holds, which implies uniqueness in law by theorem 4.1.3 (Yamada-Watanabe).

Consider example 7 (Hiroshi Tanaka). There is no strong solution and no pathwise uniqueness. Note that sgn doesn't satsifiy the Lipschitz condition.

Example 8 (Itô and Watanabe, 1978). The SDE

$$dX_t = 3X_t^{2/3}dB_t + 3X_t^{1/3}dt$$

has infinitely many strong solutions of the form

$$X_t^{(\theta)} := \left\{ \begin{array}{ll} 0 & \text{if } 0 \leq t < \tau_\theta \\ B_t^3 & \text{if } \tau_\theta \leq t < \infty \end{array} \right.$$

where $0 \le \theta < \infty$ and $\tau_{\theta} := \inf\{t \ge \theta : B_t = 0\}.$

If $t < \tau_{\theta}$, then $X_{t}^{(\theta)} = 0$ and so clearly it satisfies the SDE.

When $t \geq \tau_{\theta}$, we see that

$$dB_t^3 = 3B_t^2 dB_t + \frac{1}{2} \cdot 3 \cdot 2B_t dt = 3(B_t^3)^{2/3} + 3(B_t^3)^{1/3} dt.$$

by applying Itô's formula.