

제1강 (1장)

실험계획의개요

- 실험계획이란 무엇인가? 1.1
- 실험계획의 기본원리 1.2
- 실험계획의 순서 1.3
- 실험계획을 활용할 때의 유의사항 1.4

실 후 가 후 기 후 의 구 이 정보통계학과 백재욱 교수

제1강 실험계획의 개요

1.1 실험계획이란 무엇인가?

1.1 실험계획이란 무엇인가?

Q. 왜 사람들은 실험을 하는가?

A. 특정 프로세스 또는 시스템을 이해하기 위해!

예 1.1 중요 요인의 선별

 정화시간에 영향을 미치는 정화수의 종류, 정화온도, 필터의 종류 등의 통계적인 유의성을 살펴본다.

예 1.2 입력변수와 출력변수의 관계 규명

염색온도(입력변수)가 명암(출력변수)에 미치는
 영향은 일원배치법으로 파악할 수 있다.

1.1 실험계획이란 무엇인가?

Q. 왜 사람들은 실험을 하는가?

A. 특정 프로세스 또는 시스템을 이해하기 위해!

예 1.3 최적조건의 결정

 정화시간에 영향마감온도, 냉각온도, 첨가제의 양이 비닐봉지의 강도에 영향을 미칠 때(통계적 유의성이 있을 때) 이들 독립변수의 최적조건(최적수준)을 파악하기 위해 시험한다.

예 1.4 비교실험

• 여러 가지 진통제의 효과를 비교하기 위하여 시험을 실시한다.

1.1 실험계획이란 무엇인가?

[그림 1-1] 프로세스의 모형도

1.1 실험계획이란 무엇인가? 두가지 연구

- 01 관측연구
 - 기존의 자료, 문헌, 관찰 등
- 2 실험연구
 - 실제 실험대상에 대해 처리 (treatment)를 하는 연구
 - 모든 연구는 관측연구에서 시작하여 의문이 생기면 실험을 통해 확인할 수 있다.

스 그는 그는 그는 그는 전보통계학과 **백재욱** 교수

제1강 실험계획의 개요

1.2 실험계획의 기본원리

- 1.2 실험계획의 기본원리
 - 01 랜덤화 (randomization)
 - 실험단위의 배정 또는 실험순서들을 랜덤하게 결정하는 것
 - 일 블록화
 - 실험의 대상을 끼리끼리 묶는 것
 - 블록화 후 블록 내에서 랜덤화 해야 함
 - 3 교락 (confounding)
 - 고차의 교호작용효과와 블록효과 간 분간이 안 되는 것
 - 4 직교화 (orthogonalization)
 - 주효과의 부호의 곱으로 표현되는 열(교호작용)이 균형을 이루는 것
 (각 요인의 효과를 독립적으로 추정)

- 4 직교화 (orthogonalization)
 - 주효과의 부호의 곱으로 표현되는 열(교호작용)이 균형을 이루는 것
 (각 요인의 효과를 독립적으로 추정)

예 1.5 비타민C가 감기에 효과가 있는가?

- 감기환자들을 랜덤하게 두 개의 그룹으로 나누어 한 쪽 그룹{실험 또는 처리집단(treatment group)}에는 비타민 C를 먹이고, 다른 그룹{대조집단(control group)}에는 위약(placebo)을 먹인다.
 - 이때 이중눈가림실험(double blind test)을 실시한다.

예 1.7 구제역이나 닭 전염병 등의 약 치료제 효과 파악

• 첫 번째 방법: 작년 동물에 기존의 치료제를 투여했을 때의 발병률과 올해 동물에 새로운 치료제를 투여할 때의 발병률 비교 (No good!)

■ 두 번째 방법: 올해의 동물들을 랜덤하게 두 그룹으로 나누어 이중눈가림실험 실시 (better!)

예 1.8 두통약 선전

 몇 년 전 미국 TV에서 장엄한 분위기를 연출하면서 'Advill은 10명의 의사 중 9명의 의사가 선택하는 두통약' 이라고 선전하던데, 이는 감성에 호소하는 좋은 광고이다. 하지만 ...

예 1.9 새로운 수술방법이 기존의 수술방법보다 더 좋은가?

 통제되지 않은 실험에서는 새로운 수술방법이 기존의 수술방법보다 과대평가될 수 있다.

예 1.10 심슨의 모순

<표 1-2> 자사 및 타사 항암제 생존율

항암제	생존	사망	합계	생존률
자사	50명	50명	100명	50%
타사	30명	70명	100명	30%

■ 그러나 환자의 성별이 남자인가 여자인가에 따라 항암제의 효과가 다르다면…

예 1.10 심슨의 모순(연속)

<표 1-3> 성별 자사 및 타사 항암제 생존율

	항암제	생존	사망	합계	생존율
남자	자사	48명	32명	80명	60%
	타사	14명	6명	20명	70%
	합계	62명	38명	100명	
여자	자사	2명	18명	20명	10%
	타사	16명	64명	80명	20%
	합계	18명	82명	100명	

※ 남자 대신 건강군, 여자 대신 비건강군일 수 있음

예1.11 소크백신(Salk Vaccine) 접종

<표 1-4> 이중눈가림 확률화 대조표준실험 결과

집단		집단의 크기 (명)	병에 걸린 사람수	
			총 사람수	100,000명당 사람수
부모허가	처리집단	200,000	58	28.3
받은 집단	대조집단	200,000	142	71
부모허가 받지 못한 집단		350,000	161	46

정보통계학과 백재욱 교수

제1강 실험계획의 개요

1.3 실험계획의 순서

1.3 실험계획의 순서

제1강 실험계획의 개요

1.4 실험계획을 활용할 때의 유의사항

1.4 실험계획을 활용할 때의 유의사항

■ 주어진 문제에 대한 기술적인 지식을 최대한 활용하라.

■ 설계와 분석은 가능한 한 **간단**한 것을 사용하라.

- 실제적 차이와 통계적 차이를 구분하라.
- **통계적 분석 결과**가 기술적 지식, 상식 등과 상반되어서는 안 된다.

■ 실험은 한번으로 끝나지 않는다.

다음시간 안내

제2강

두모집단의 비교