Analysis of Algorithms

String Matching

The Knuth-Morris-Pratt Algorithm

- String matching algorithm that runs in linear time (O(n+m)) by avoiding the computation of the transition function δ
 - Pattern matching is done using an auxiliary prefix function $\pi[1..m]$ precomputed from the pattern in time O(m).
 - The array $\pi[1..m]$ allows an efficient computation "on-the-fly" of the transition function δ .

The Knuth-Morris-Pratt Algorithm

- For any state q = 0, 1, ..., m, and any character $c \in \Sigma$, the value $\pi[q]$ contains the information needed to compute $\delta(q, c)$ that is independent of c.
- Prefix function $p[q] \Rightarrow O(m)$ (substantial savings, particularly if Σ is large)
- Transition function $\delta[q, c] \Rightarrow O(m|\Sigma|)$

Key Idea

a b a b a c a P

• Using only our knowledge that the **5** first characters matched, we can deduce that a shift *s*+1 is invalid and that a shift *s*+2 is potentially valid.

Thus, we can safely transition to state q=3 with a shift s' = s+2

• $\pi[5] = 3$ and $s' = s + (q - \pi[q])$

The Prefix Function for a Pattern

• Function π can be computed by comparing the pattern against itself

$$\Rightarrow \pi[5] = 3$$
 and $s' = s + (q - \pi[q])$

The Prefix Function for a Pattern

• Formally, π is a function $\{1, 2, ..., m\} \rightarrow \{0, 1, ..., m-1\}$ such that

$$\pi[q] = \max \{k : k < q \text{ and } P_k \supset P_q \}$$

• That is, $\pi[q]$ is the length k of the longest prefix of P that is a **proper** suffix of P_q

Prefix Function Computation

- We will show that by iterating the prefix function π , we can enumerate all the prefixes P_k that are suffixes of a given prefix P_a .
- Let $\pi^*[q] = \{q, \pi[q], \pi^2[q], ..., \pi^t[q]\}$
- where $\pi^i[q]$ is defined in terms of functional composition, so that
 - $\bullet \pi^0[q] = q$
 - $\blacksquare \pi^{i+1}[q] = \pi[\pi^i[q]] \text{ for } i > 0$
- and the sequence in $\pi^*[q]$ stops when $\pi^t[q] = 0$.

Enumerating all the prefixes P_k that are suffixes of a prefix P_q via π^*

• Prefix-function iteration lemma: Let P be a pattern of length m with a prefix function π . Then, for q = 1, 2, ..., m, we have $\pi^*[q] = \{k : P_k \supset P_a\}$

$$\pi[q] = \max \{k : k < q \text{ and } P_k \supset P_q \}$$

Use of π^* to Compute the Prefix Function π

Compute-Prefix-Function(P) $m \leftarrow length[P]$ $\pi[1] \leftarrow 0 \blacktriangleright \text{ true for any pattern } k \leftarrow 0$ for $q \leftarrow 2$ to mdo while k > 0 and $P[k+1] \neq P[q]$) do $k \leftarrow \pi[k]$ if P[k+1] = P[q]then k = k+1 $\pi[q] \leftarrow k$

return π

 $\pi[q] \leftarrow k \Rightarrow \pi[2] \leftarrow 1$

Compute-Prefix-Function(P) $m \leftarrow length[P]$ $\pi[1] \leftarrow 0 \blacktriangleright \text{ true for any pattern}$ $k \leftarrow 0$ for $q \leftarrow 2$ to mdo while k > 0 and $P[k+1] \neq P[q]$) $do k \leftarrow \pi[k]$ if P[k+1] = P[q]then k = k+1 $\pi[q] \leftarrow k$ return π $p[k+1] \neq P[q]$ $k = 0 \Longrightarrow \text{no smaller prefixes}$

Compute-Prefix-Function(P) $\pi[1] \leftarrow 0$ $m \leftarrow length[P]$ $\pi[2] \leftarrow 0$ $\pi[1] \leftarrow 0 \blacktriangleright$ true for any pattern $k \leftarrow 0$ for $q \leftarrow 2$ to m**do while** k > 0 and $P[k+1] \neq P[q]$) $\mathbf{do}\; k \leftarrow \pi[k]$ **if** P[k+1] = P[q]q = 3 (k = 0) **then** k = k + 1a b a b a b a b c a $\pi[q] \leftarrow k$ return π P[k+1] = P[q] $k = k + 1 = 1 (P_k \Longrightarrow P_1)$. $\pi[q] \leftarrow k \Rightarrow \pi[3] \leftarrow 1$ a b a P₁ is the longest prefix that is

a proper suffix of P3 Compute-Prefix-Function(*P*) $\pi[1] \leftarrow 0$ $m \leftarrow length[P]$ $\pi[2] \leftarrow 0$ $\pi[1] \leftarrow 0 \blacktriangleright$ true for any pattern $\pi[3] \leftarrow 1$ for $q \leftarrow 2$ to m**do while** k > 0 and $P[k+1] \neq P[q]$) **do** $k \leftarrow \pi[k]$ **if** P[k+1] = P[q]q = 4 (k = 1) then k = k + 1a b a b a b a b c a $\pi[a] \leftarrow k$ return π P[k+1] = P[q] $k = k + 1 = 2 (P_k \Longrightarrow P_2)$. $\pi[q] \leftarrow k \Rightarrow \pi[4] \leftarrow 2$ a b a b P₂ is the longest prefix that is

proper suffix of P4

a b

Compute-Prefix-Function(P) $\pi[1] \leftarrow 0$ $m \leftarrow length[P]$ $\pi[2] \leftarrow 0$ $\pi[1] \leftarrow 0 \blacktriangleright$ true for any pattern $\pi[3] \leftarrow 1$ $k \leftarrow 0$ $\pi[4] \leftarrow 2$ for $q \leftarrow 2$ to m**do while** k > 0 and $P[k+1] \neq P[q]$) do $k \leftarrow \pi[k]$ **if** P[k+1] = P[q]q = 5 (k = 2) then k = k + 1a b a b a b a b c a $\pi[q] \leftarrow k$ return π P[k+1] = P[q] $k = k + 1 = 3 (P_k \Longrightarrow P_3)$. $\pi[q] \leftarrow k \Rightarrow \pi[5] \leftarrow 3$ a b a b a P₃ is the longest prefix that is a b a proper suffix of P5 Compute-Prefix-Function(*P*) $\pi[1] \leftarrow 0$ $m \leftarrow length[P]$ $\pi[2] \leftarrow 0$ $\pi[1] \leftarrow 0 \blacktriangleright$ true for any pattern $\pi[3] \leftarrow 1$ $\pi[4] \leftarrow 2$ for $q \leftarrow 2$ to m $\pi[5] \leftarrow 3$ **do while** k > 0 and $P[k+1] \neq P[q]$) **do** $k \leftarrow \pi[k]$ **if** P[k+1] = P[q]q = 6 (k = 3) then k = k + 1a b a b a b a b c a $\pi[q] \leftarrow k$ return π P[k+1] = P[q] $k = k + 1 = 4 (P_{\nu} \Longrightarrow P_{A})$. $\pi[q] \leftarrow k \Rightarrow \pi[6] \leftarrow 4$ a b a b a b P₄ is the longest prefix that is a b a b proper suffix of P6 Compute-Prefix-Function(P) $\pi[1] \leftarrow 0$ $\pi[6] \leftarrow 4$ $m \leftarrow length[P]$ $\pi[2] \leftarrow 0$ $\pi[1] \leftarrow 0 \blacktriangleright$ true for any pattern $\pi[3] \leftarrow 1$ $k \leftarrow 0$ $\pi[4] \leftarrow 2$ for $q \leftarrow 2$ to m $\pi[5] \leftarrow 3$ **do while** k > 0 and $P[k+1] \neq P[q]$) $\mathbf{do}\; k \leftarrow \pi[k]$ **if** P[k+1] = P[q]q = 7 (k = 4) **then** k = k + 1a b a b a b a b c a $\pi[q] \leftarrow k$ return π P[k+1] = P[q] $k = k + 1 = 5 (P_k \Longrightarrow P_5)$. $\pi[q] \leftarrow k \Rightarrow \pi[7] \leftarrow 5$ a b a b a b a P₅ is the longest prefix that is a b a b a proper suffix of P7 Compute-Prefix-Function(P) $\pi[1] \leftarrow 0$ $\pi[6] \leftarrow 4$ $m \leftarrow length[P]$ $\pi[2] \leftarrow 0$ $\pi[7] \leftarrow 5$ $\pi[1] \leftarrow 0 \,\blacktriangleright\, \text{true for any pattern}$ $\pi[3] \leftarrow 1$ for $q \leftarrow 2$ to m $\pi[4] \leftarrow 2$ **do while** k > 0 and $P[k+1] \neq P[q]$) $\pi[5] \leftarrow 3$ **do** $k \leftarrow \pi[k]$ **if** P[k+1] = P[q]q = 8 (k = 5) then k = k + 1a b a b a b a b c a $\pi[q] \leftarrow k$ return π P[k+1] = P[q] $k = k + 1 = 6 \ (P_k \Longrightarrow P_6)$ $\pi[q] \leftarrow k \Rightarrow \pi[8] \leftarrow 6$ a b a b a b a b P₆ is the longest prefix that is a b a b a b proper suffix of P8

The KMP Algorithm

```
KMP-Matcher(T, P)

n \leftarrow length[T]

m \leftarrow length[P]

\pi \leftarrow Compute-Prefix-Function(P)

q \leftarrow 0 \triangleright current position in P

for i \leftarrow 1 to n \triangleright current position in T

do while q > 0 and P[q + 1] \neq T[i])

do q \leftarrow \pi[q]

if P[k + 1] = T[i]

then q = q + 1

if q = m

then print "Pattern occurs with shift" i - m

q \leftarrow \pi[q]
```