Anéis

José Antônio O. Freitas

MAT-UnB

2 de outubro de 2020

Seja $A \neq \emptyset$ um conjunto.

Seja $A \neq \emptyset$ um conjunto. Dizemos que A está munido

Seja $A \neq \emptyset$ um conjunto. Dizemos que A está munido (ou equipado)

Seja $A \neq \emptyset$ um conjunto. Dizemos que A está munido (ou equipado) de uma **operação binária**

Seja $A \neq \emptyset$ um conjunto. Dizemos que A está munido (ou equipado) de uma **operação binária** quando existe uma função

Seja $A \neq \emptyset$ um conjunto. Dizemos que A está munido (ou equipado) de uma **operação binária** quando existe uma função

$$\Delta: A \times A \to A$$
$$(a, b) \longmapsto a\Delta b$$

Uma operação binária também é chamada de uma **operação interna** em A.

Seja $A \neq \emptyset$ um conjunto. Dizemos que A está munido (ou equipado) de uma **operação binária** quando existe uma função

$$\Delta: A \times A \to A$$
$$(a, b) \longmapsto a\Delta b$$

Uma operação binária também é chamada de uma **operação interna** em A.

1) A soma usual

1) A soma usual nos conjuntos \mathbb{Z} ,

1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} ,

3/11

1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R}

3/11

1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C}

1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} ,

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} ,

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R}

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1,

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo.

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, m $\in \mathbb{Z}$ fixo. A soma

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, m $\in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m =$

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m>1, $m\in\mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m=\{\overline{0},\overline{1},...,\overline{m-1}\}$

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação ÷

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^*

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^* é uma operação binária.

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^* é uma operação binária.
- 5) Já em \mathbb{N} ,

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^* é uma operação binária.
- 5) Já em \mathbb{N} , \mathbb{Z} ,

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^* é uma operação binária.
- 5) Já em \mathbb{N} , \mathbb{Z} , \mathbb{Z}^*

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^* é uma operação binária.
- 5) Já em \mathbb{N} , \mathbb{Z} , \mathbb{Z}^* e em \mathbb{Q}

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^* é uma operação binária.
- 5) Já em \mathbb{N} , \mathbb{Z} , \mathbb{Z}^* e em \mathbb{Q} a operação \div

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^* é uma operação binária.
- 5) Já em \mathbb{N} , \mathbb{Z} , \mathbb{Z}^* e em \mathbb{Q} a operação \div não é uma operação binária.

- 1) A soma usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 2) A multiplicação usual nos conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} e \mathbb{C} é uma operação binária.
- 3) Seja m > 1, $m \in \mathbb{Z}$ fixo. A soma e a multiplicação definidos em $\mathbb{Z}_m = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}$ são operações binárias.
- 4) A operação \div em \mathbb{Q}^* é uma operação binária.
- 5) Já em \mathbb{N} , \mathbb{Z} , \mathbb{Z}^* e em \mathbb{Q} a operação \div não é uma operação binária.

Seja $A \neq \emptyset$ um conjunto

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus

Seja A $\neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes ,

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma**

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto**

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**.

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes)

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel**

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**:

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x,

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y,

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

 $(x \oplus y)$

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

$$(x \oplus y) \oplus z$$

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

$$(x \oplus y) \oplus z = x \oplus$$

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de **propriedade associativa**

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de **propriedade associativa** da soma.

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de **propriedade associativa** da soma.

ii) **Comutatividade**:

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de **propriedade associativa** da soma.

ii) **Comutatividade**: Para todos x,

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de **propriedade associativa** da soma.

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de **propriedade associativa** da soma.

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de **propriedade associativa** da soma.

$$x \oplus y =$$

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de **propriedade associativa** da soma.

$$x \oplus y = y \oplus x$$
.

Seja $A \neq \emptyset$ um conjunto no qual estão definidas duas operações binárias \oplus e \otimes , chamadas **soma** e **produto** ou **multiplicação**. Dizemos que (A, \oplus, \otimes) é um **anel** quando as seguintes condições são verdadeiras:

i) **Associatividade**: para todos x, y, $z \in A$ vale

$$(x \oplus y) \oplus z = x \oplus (y \oplus z).$$

Essa propriedade é chamada de **propriedade associativa** da soma.

$$x \oplus y = y \oplus x$$
.

iii) Elemento Neutro:

iii) Elemento Neutro: Existe em A

iii) Elemento Neutro: Existe em A um elemento denotado por 0

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

 $x \oplus 0_A$

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x$$

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x\oplus 0_A=x=0_A\oplus x.$$

Tal elemento 0_A

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma**

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iv) Elemento Oposto:

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iv) **Elemento Oposto**: Para cada elemento $x \in A$,

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

$$x \oplus y$$

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

$$x \oplus y = 0_A$$

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

$$x \oplus y = 0_A = y \oplus x$$
.

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iv) **Elemento Oposto**: Para cada elemento $x \in A$, existe $y \in A$ tal que

$$x \oplus y = 0_A = y \oplus x$$
.

Tal elemento y

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iv) **Elemento Oposto**: Para cada elemento $x \in A$, existe $y \in A$ tal que

$$x \oplus y = 0_A = y \oplus x$$
.

Tal elemento y é chamado de oposto aditivo

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iv) **Elemento Oposto**: Para cada elemento $x \in A$, existe $y \in A$ tal que

$$x \oplus y = 0_A = y \oplus x$$
.

Tal elemento y é chamado de **oposto aditivo** de x

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iv) **Elemento Oposto**: Para cada elemento $x \in A$, existe $y \in A$ tal que

$$x \oplus y = 0_A = y \oplus x$$
.

Tal elemento y é chamado de **oposto aditivo** de x ou simplesmente **oposto** de x.

iii) **Elemento Neutro**: Existe em A um elemento denotado por 0 (zero) ou 0_A tal que para todo elemento $x \in A$ vale

$$x \oplus 0_A = x = 0_A \oplus x$$
.

Tal elemento 0_A é chamado de **elemento neutro da soma** ou simplesmente **elemento neutro**.

iv) **Elemento Oposto**: Para cada elemento $x \in A$, existe $y \in A$ tal que

$$x \oplus y = 0_A = y \oplus x$$
.

Tal elemento y é chamado de **oposto aditivo** de x ou simplesmente **oposto** de x.

v) **Associatividade**:

v) **Associatividade**: Para todos x,

v) **Associatividade**: Para todos x, y,

$$(x \otimes y)$$

$$(x \otimes y) \otimes z$$

$$(x \otimes y) \otimes z = x \otimes$$

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) **Distributividade**:

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) **Distributividade**: Para todos x,

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) **Distributividade**: Para todos x, y,

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

$$(x \oplus y)$$

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

$$(x \oplus y) \otimes z$$

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

$$(x \oplus y) \otimes z = x \otimes z$$

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

$$(x \oplus y) \otimes z = x \otimes z \oplus$$

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

$$(x \oplus y) \otimes z = x \otimes z \oplus y \otimes z.$$

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) **Distributividade**: Para todos x, y, $z \in A$ vale

$$(x \oplus y) \otimes z = x \otimes z \oplus y \otimes z.$$

Essa propriedade é chamada **distributiva da soma em relação ao produto**.

v) **Associatividade**: Para todos x, y, $z \in A$, vale

$$(x \otimes y) \otimes z = x \otimes (y \otimes z).$$

vi) **Distributividade**: Para todos x, y, $z \in A$ vale

$$(x \oplus y) \otimes z = x \otimes z \oplus y \otimes z.$$

Essa propriedade é chamada **distributiva da soma em relação ao produto**.

vii) Distributividade:

vii) **Distributividade**: Para todos x,

vii) Distributividade: Para todos x, y,

vii) **Distributividade**: Para todos x, y, $z \in A$ vale

7/11

$$x \otimes (y \oplus z)$$

$$x \otimes (y \oplus z) = x \otimes y$$

$$x \otimes (y \oplus z) = x \otimes y \oplus$$

$$x \otimes (y \oplus z) = x \otimes y \oplus x \otimes z$$
.

vii) **Distributividade**: Para todos x, y, $z \in A$ vale

$$x \otimes (y \oplus z) = x \otimes y \oplus x \otimes z$$
.

Essa é a propriedade distributiva do produto em relação à soma.

vii) **Distributividade**: Para todos x, y, $z \in A$ vale

$$x \otimes (y \oplus z) = x \otimes y \oplus x \otimes z$$
.

Essa é a propriedade distributiva do produto em relação à soma.

Seja (A, \oplus, \otimes)

Seja (A, \oplus, \otimes) um anel.

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x,

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

 $x \otimes y$

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes)

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) Unidade:

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

$$x \otimes 1$$

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

$$x \otimes 1 = x$$

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

$$x \otimes 1 = x = 1 \otimes x$$

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$

para todo $x \in A$,

- Seja (A, \oplus, \otimes) um anel.
 - 1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$
,

para todo $x \in A$, então dizemos que (A, \oplus, \otimes)

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$
,

para todo $x \in A$, então dizemos que (A, \oplus, \otimes) é um **anel com unidade**

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$
,

para todo $x \in A$, então dizemos que (A, \oplus, \otimes) é um **anel com unidade** ou um **anel unitário** ou ainda um **anel com identidade**.

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$
,

para todo $x \in A$, então dizemos que (A, \oplus, \otimes) é um **anel com unidade** ou um **anel unitário** ou ainda um **anel com identidade**. O elemento 1_A

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$
,

para todo $x \in A$, então dizemos que (A, \oplus, \otimes) é um **anel com unidade** ou um **anel unitário** ou ainda um **anel com identidade**. O elemento 1_A é chamado de **unidade** de A

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$
,

para todo $x \in A$, então dizemos que (A, \oplus, \otimes) é um **anel com unidade** ou um **anel unitário** ou ainda um **anel com identidade**. O elemento 1_A é chamado de **unidade** de A ou **elemento neutro da multiplicação**

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$
,

para todo $x \in A$, então dizemos que (A, \oplus, \otimes) é um **anel com unidade** ou um **anel unitário** ou ainda um **anel com identidade**. O elemento 1_A é chamado de **unidade** de A ou **elemento neutro da multiplicação** de A.

Seja (A, \oplus, \otimes) um anel.

1) **Comutatividade**: Se para todos x, $y \in A$ vale

$$x \otimes y = y \otimes x$$
.

Dizemos que (A, \oplus, \otimes) é um **anel comutativo**.

2) **Unidade**: Se existe em A um elemento denotado por 1 ou 1_A tal que

$$x \otimes 1 = x = 1 \otimes x$$
,

para todo $x \in A$, então dizemos que (A, \oplus, \otimes) é um **anel com unidade** ou um **anel unitário** ou ainda um **anel com identidade**. O elemento 1_A é chamado de **unidade** de A ou **elemento neutro da multiplicação** de A.

3) Se um anel (A, \oplus, \otimes)

3) Se um anel (A, \oplus, \otimes) satisfaz as duas propriedades anteriores

3) Se um anel (A, \oplus, \otimes) satisfaz as duas propriedades anteriores dizemos que (A, \oplus, \otimes) é um **anel comutativo com unidade**

3) Se um anel (A, \oplus, \otimes) satisfaz as duas propriedades anteriores dizemos que (A, \oplus, \otimes) é um anel comutativo com unidade ou um anel comutativo unitário.

- 3) Se um anel (A, \oplus, \otimes) satisfaz as duas propriedades anteriores dizemos que (A, \oplus, \otimes) é um anel comutativo com unidade ou um anel comutativo unitário.
- 4) Seja (A, \oplus, \otimes) um anel.

- 3) Se um anel (A, \oplus, \otimes) satisfaz as duas propriedades anteriores dizemos que (A, \oplus, \otimes) é um anel comutativo com unidade ou um anel comutativo unitário.
- 4) Seja (A, \oplus, \otimes) um anel. Quando não houver chance de confusão com relação às operações envolvidas diremos simplesmente que

- 3) Se um anel (A, \oplus, \otimes) satisfaz as duas propriedades anteriores dizemos que (A, \oplus, \otimes) é um anel comutativo com unidade ou um anel comutativo unitário.
- 4) Seja (A, \oplus, \otimes) um anel. Quando não houver chance de confusão com relação às operações envolvidas diremos simplesmente que A é uma anel.

- 3) Se um anel (A, \oplus, \otimes) satisfaz as duas propriedades anteriores dizemos que (A, \oplus, \otimes) é um anel comutativo com unidade ou um anel comutativo unitário.
- 4) Seja (A, \oplus, \otimes) um anel. Quando não houver chance de confusão com relação às operações envolvidas diremos simplesmente que A é uma anel.

1)
$$(\mathbb{Z}, +, .)$$
,

1)
$$(\mathbb{Z}, +, .)$$
, $(\mathbb{Q}, +, .)$,

1)
$$(\mathbb{Z}, +, .)$$
, $(\mathbb{Q}, +, .)$, $(\mathbb{R}, +, .)$,

1) ($\mathbb{Z},+,.$), ($\mathbb{Q},+,.$), ($\mathbb{R},+,.$), ($\mathbb{C},+,.$) são anéis comutativos

1) $(\mathbb{Z},+,.)$, $(\mathbb{Q},+,.)$, $(\mathbb{R},+,.)$, $(\mathbb{C},+,.)$ são anéis comutativos e com unidade.

1) $(\mathbb{Z},+,.)$, $(\mathbb{Q},+,.)$, $(\mathbb{R},+,.)$, $(\mathbb{C},+,.)$ são anéis comutativos e com unidade.

2) Considere as operações \star e \odot em $\mathbb Q$ definidas por

$$x \star y = x + y - 8$$
$$x \odot y = x + y - \frac{xy}{8}.$$

Mostre que $(\mathbb{Q}, \star, \odot)$ é um anel comutativo e com unidade.