Beijing Data Air-Quality

Nicolas Makaroff & Mathieu Pavard

08/12/2019

- Recall on the DataBase
 - PM2.5 distribution against different features
- Oata Engineering
 - Emulate time series
 - 2 Add Humidity features
 - Projection of the wind direction, hour and month on the trigonometric circle
 - Week day category
- Model Selection
- Method Comparison

1. Recall on the DataBase

- 12 Database of 12 sites in Beijing
- 35 064 rows in each

Figure 1: Description of the data of the Aotizhongxin data set

1.1. PM2.5 distribution against different features

Figure 2: PM2.5 per hour in Aotizhonxin, Beijing

Figure 3: PM2.5 per month in Aotizhongxin, Beijing

Figure 4: PM2.5 against wind speed in Aotizhongxin, Beijing

Figure 5: PM2.5 per day between 2013 - 2016 in Gucheng, Beijing

Season distribution of PM2.5

Figure 6: PM2.5 AVG per season in Beijing

2. Data Engineering

- Emulate time series
- Add Humidity variables
- Projection of the wind direction on the trigonometric circle
- Projection of hour and month on the trigonometric circle

Emulate time series and add humidity features

Shift information on the timeline to add previous observation as features following [1]

```
def shift_timeline(tab):
    .
    tab['PM2.5_5'] = tab['PM2.5'].shift(periods=5)
    tab['TEMP_5'] = tab.TEMP.shift(periods=5)
    tab['SPD_5'] = tab.WSPM.shift(periods=5)
    tab['DEWP_5'] = tab.DEWP.shift(periods=5)
    tab['WD_5'] = tab.wd.shift(periods=5)
```

[1] Mehdi Zamani Joharestani, Chunxiang Cao, Xiliang Ni, Barjeece Bashir, Somayeh Talebiesfandarani, PM2.5 Prediction Based on Random Forest, XGBoost, and Deep Learning Using Multisource Remote Sensing Data, 4 July 2019, Atmosphere 2019, 10, 373;

Add humidity features

$$HUM = 100 * \frac{\exp(\frac{17.625*DEWP}{243.04+DEWP})}{\exp(\frac{17.625*TEMP}{243.04+TEMP})}$$

We used the formula out of [2].

[2] Alduchov, O.A. and R.E. Eskridge, 1996: Improved Magnus Form Approximation of Saturation Vapor Pressure. J. Appl. Meteor., 35, 601–609, https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2

Projection on the trig. circle and week day category

```
def change_wind_dir(df):
    df['WD_sin'] = np.sin(df.wd*(2.*np.pi/360))
    df['WD_cos'] = np.cos(df.wd*(2.*np.pi/360))
```


Figure 7: Wind direction

We added week_day as a features

Figure 8: PM2.5 histogram on a week

Model Selection

3.1. Basic model

- Merge all station and take the mean for all features
- Split between train and test set

3.2. AIC Optimization

Initial AIC: 174873.98897595517

After stepwise algorithm

```
Final AIC: 174868.47328581163

● No real improvement

Root Mean Squared Error: 17.88 (+/- 4.42) ug/m^3
R2: 0.98 (+/- 0.00)
```

....

Figure 9: Regression result for PM2.5 concentration in Beijing

Method used

- Simple Linear Regression
- Lasso Regression
- Ridge Regression
- ElasticNet Regression
- K-Nearest Neighbor Regression
- cross-validation for training
- k choosen using a gridsearch

4. Method comparison

- Adjusted R^2 because of the number of co-variates
- Classic Regression measure = MSE and MAE
- Different result if th size of the town isn't taken into account.
 - North
 - Center
 - South

• Result for Beijing's center :

	Linear Regression	Ridge Regression	Lasso Regression	Knn
R2	0.98 (+/- 0.00)	0.98 (+/- 0.00)	0.98 (+/- 0.00)	0.97 (+/- 0.00)
RMSE_cv_train	10.29 (+/- 1.67)	10.29 (+/- 1.67)	10.59 (+/- 1.68)	13.93 (+/- 1.20)
RMSE_test	9.97	9.97	10.28	13.85
MAE_cv_test	5.91	5.91	5.92	7.83

left: expected values, right: predicted values

