Name: #143

ID# B083040004

1. (15%) Two diodes with reverse saturation currents of I_{S1} and I_{S2} placed series. Calculate I_B , V_{D1} , and V_{D2} in terms of V_B , I_{S1} , and I_{S2} . $I_D = I_S \exp(V_D/V_T)$ $V_T = 26 \text{mV}$

VB ISI IS2

$$IB = ID_{1} = ID_{2}$$

$$VB : VD_{1} + VD_{2}$$

$$= VT ln \frac{IB}{IS_{1}} + VT ln \frac{IB}{IS_{2}}$$

$$= VT ln \left(\frac{IB^{2}}{IS_{1}IS_{2}}\right)$$

$$VD_{1} = VT ln \left(\frac{IB^{2}}{IS_{1}IS_{2}}\right)$$

$$VD_{1} = VT ln \left(\frac{IB^{2}}{IS_{1}IS_{2}}\right)$$

$$= 0.026 \times ln \left(\frac{VD_{1}}{IS_{1}IS_{2}}\right)$$

$$IB = I_{S_1} exp(\frac{VD_1}{VT})$$

$$\frac{IB}{B_1} = \exp\left(\frac{VOI}{VJ}\right)$$

$$IB_1 = \exp\left(\frac{VOI}{VJ}\right)$$

$$ln(\overline{ISI}) = VT$$

$$VD_1 = VT ln(\overline{ISI})$$

$$VP_1 = VT ln \left(\frac{IB}{IS_1}\right) \frac{VB}{VB} \sqrt{IS_1IS_2}$$

$$= 0.026 \times ln \left(\frac{e^{0.026} \sqrt{IS_1IS_2}}{IS_1}\right)$$

= 0.026 × (
$$2n e^{\frac{VB}{1026}} + 2n \frac{\sqrt{IS_1I_{12}}}{IS_1}$$
)
= 0.026 ($\frac{VB}{0.026} + 2n \sqrt{\frac{IS_2}{IS_1}}$)

2. (15%) Determine the value of R_I such that R_I carries 0.5mA. Assume $I_S = 5 \times 10^{-16}$ A for each diode.

 $V_{T}=0.026$ $I_{X} \bigoplus 1 \text{ mA} \quad A_{1} \stackrel{?}{=} \quad V_{D_{2}}$ $V_{T}=0.026$ $V_{T}=0.026$ $V_{T}=0.026$ $V_{T}=0.026$ $V_{T}=V_{D_{1}}+V_{D_{2}}$ $V_{T}=V_{D_{1}}+V_{D_{2}}$

ID=Is
$$exp(\frac{Vo}{VT})$$

$$60.05r = \frac{2 \times 10^{19}}{2 \times 10^{19}} = 10_{15}$$

VD= 0.026 × 2010 = 0.028 × 27.63

3. (10%) Plot the input/output characteristics of the circuit shown below using an ideal model for the diode. (Assume $V_B = 2V$).

4. (10%) Assume constant voltage diode model, plot I_{RI} as a function of I_{in} for the circuits shown below. (Assume $V_B = 2V$).

5. (15%) Plot the input/output characteristics of the circuit illustrated in Fig. 3.76 assuming a constant voltage model and $V_B = 2 \text{ V}$. (b)

6. (15%) Suppose the diodes carry a current of 5 mA and the load, a current of 20 mA. If the load current increases to 21 mA, what is the change in the total voltage across the three diodes? Assume R_I is much greater than $3r_d$. $r_d = V_T/I_D$, $V_T = 26mV$

415.

$$rd = ID = \frac{0.026}{5 \times 10^3} = 5.2$$

$$\Delta V = (1 \times 10^{-3})(5.2 \times 3)$$

= $15.6 \times 10^{-3} \text{ V}$
= $1.56 \times 10^{-4} \text{ V}$

8. (10%) Consider a pn junctions in forward bias. Initially a current of 5 mA flows through it, and the current increases by 8 times hen the forward voltage is increased by 1.5 times. Determine the initial bias applied and reverse saturation current. $(V_T = 26 \text{mV})$ $I_D = I_S \exp(V_D/V_T)$ $V_T = 26 \text{mV}$

1111111111