Deep Information Retrieval for Malware Searching System

Wonkyung Lee, Uijung Chung, Hyeongjin Byeon, Junyeon Weon

Deep Information Retrieval for Malware Searching System

Wonkyung Lee, Uijung Chung, Hyeongjin Byeon, Junyeon Weon

Index

Part1

- Motivations Malware retrieval systems
- Properties Semantics awareness
- Methods Metric learning

Part2

- Demo Training and starting the system.
- Demo Querying tests

Motivations

Q1. Why do we need malware retrieval systems?

Motivations

- 1. To help security experts
 - Categorize malicious codes.
 - Write reports of malware.
 - If they could search semantically similar malware samples, it'll be useful for above tasks.

Motivations

- 2. Beyond a good feature extraction skills
 - A lot of researches for getting good feature.
 - We focused on how to solve the real problems using good features.

Properties

Q2. Why the malware retrieval system should be semantics-aware?

- Meaning
 - Property of system which uses our semantic relationships between objects.
- Examples
 - Word2Vec : Natural Language -> Vector space
 - Deep IR : Image -> Vector space
 - DCGAN, CVAE : Image <-> Vector space

- If visual retrieval system is semantics-aware, then
 - It can find semantically similar images.

For the malwares,

- We can find samples which are semantically similar with a queried sample.
- We can find samples which have properties like "ransom, smspay, dropper".
- We can find samples which have properties that "dropper" is removed from a queried sample.

Methods

Q3. Why do we use Metric learning?

Metric Learning

- Metric is a distance function.
 - Examples
 - Euclidean distance
 - Cosine similarity
- Learn how similar two objects are.

Similarities between Malwares

- Structural similarity
 - Static features (size, libraries, permissions, entropy, ...)
- Semantic similarity
 - Static + Dynamic features (behaviors, logs, packets...)

Metric Learning

- Objectives
 - Embed malware samples on vector space.
 - Each embedded vector is made up of property vectors and some noise that includes the other informations.
 - Semantically similar samples should be embedded nearly in the vector space.

Metric Learning

- Parameterized distance function
 - $D(s_1, s_2; \theta) = d$
- Deep neural network
 - Universal function approximator
 - Examples of metric learning by deep learning
 - Siamese network, triplet loss
 - Center loss

Objective Function

- Objective Function
 - Multi-label Center Loss

$$L = L_s + \lambda L_c$$

$$= -\frac{1}{N} \sum_{i} \sum_{j} y_{mij} \log \hat{y}_{ij} + \lambda \frac{1}{N} \sum_{i} (\mathbf{s}_{\text{target}} - h(v_i; \theta))^2$$

where

$$\hat{y_{ij}} = \frac{\exp(Wh(v_i; \theta) + \mathbf{b})}{1 + \exp(Wh(v_i; \theta) + \mathbf{b})}$$

Objective Function

- Decrease inner class variance and increase inter class variance.
- If samples share properties, then they are located nearly.

Structure

- Structure of our proposed system.
 - Feature extractor
 - Neural embedder
 - Classifier
 - Ranking module

More Specifically

- Preparing dataset
 - Multi-tagged malware samples
 - Attach multi-tags to malware samples based on their properties.

Qualitative Results

Dataset	Querying trainset				Querying validset							
Metric	Precision		Weighted precision		Precision			Weighted precision				
k	top1	top10	top100	top1	top10	top100	top1	top10	top100	top1	top10	top100
Weighted centerloss (sum)	0.9846	0.9743	0.9374	0.9869	0.9802	0.955	0.8717	0.862	0.8272	0.8808	0.8746	0.8534
Weighted centerloss (avg)	0.9856	0.9772	0.9481	0.9855	0.9779	0.9528	0.8929	0.8837	0.8559	0.8893	0.8815	0.8591
Centerloss (sum)	0.9843	0.9737	0.9358	0.984	0.9733	0.9388	0.8736	0.8676	0.8373	0.8752	0.872	0.8462
Centerloss (avg)	0.987	0.9776	0.9474	0.9872	0.9776	0.9472	0.8845	0.8779	0.8562	0.8892	0.8829	0.8631
Multi-label (baseline2)	0.9764	0.9617	0.9115	0.9752	0.9593	0.9094	0.8871	0.8713	0.8184	0.8869	0.8704	0.8236
Single-label (baseline1)	0.9035	0.8727	0.8061	0.9004	0.8667	0.7946	0.8489	0.8231	0.7446	0.8434	0.8151	0.733

Dataset		APK19000		PE1300			
Variance	Intra-class	Inter-class	Inter/Intra	Intra-class	Inter-class	Inter/Intra	
Weighted centerloss (sum)	0.0473	2.793	59.0486	0.129	2.169	16.8140	
Weighted centerloss (avg)	0.0101	1.1906	117.8812	0.0361	1.2698	35.1745	
Centerloss (sum)	0.2268	5.2967	23.3541	0.1748	1.8299	10.4685	
Centerloss (mean)	0.0258	1.2785	49.5543	0.1332	1.6826	12.6321	
Multi-label (baseline2)	2.4956	21.8435	8.7528	25833.582	840.54	0.0325	
Single-label (baseline1)	1.2103	15.18	12.5423	2310.7649	267.683	0.1158	

Demo - Training MR System

https://github.com/est-ai/malware-retrieval

Demo - Querying test

Sample Analysis

Statistical Analysis - Probabilities of tags

Verify Semantics-awareness

Querying by sample

Querying by tags

Querying by sample + tags

Issues

- Generalization
- Tagging

Demonstration

Thank you