Pre-Tutorial (To be completed by student before attending tutorial session)

1. Is G:{S \rightarrow SS | aSb | bSa | E} ambiguous? Explain your answer.

Solution:

: It is ambiguous

2. Is G: $\{S \rightarrow aSbS \mid bSaS \mid E\}$ ambiguous? Explain your answer.

Solution:

· : Et is not ambiguour

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-
Course Code(s)	22CS2002A	Page 103 of 2

consider the following grammar

S > aS | E

The language generated by this grammar is $L = \{a^n : n \ge 0\}$ or a^*

- a. Find the Leftmost Derivation and Rightmost Derivation.
- b. Prove All the strings generated the above grammar have their leftmost derivation and rightmost derivation exactly same. Draw the Parse tree for the same.

Solution:

leftmost:

$$s \rightarrow as$$
 $s \rightarrow as$
 $\rightarrow ae$ $\rightarrow aas$
 $\rightarrow a$

Rightmost:

$$s \rightarrow as$$

$$\Rightarrow as$$

$$\Rightarrow as$$

$$\Rightarrow as$$

". Leftmost derivation = Rightmost derivation.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		104
Course Code(s)	22CS2002A	Page 104 of 261

Student Name

3064 E Mishite

IN-TUTORIAL (To be carried out in presence of faculty in classroom)

1. Construct a CFG for a language $L = \{wcwR \mid w \in (a, b)^*\}$.

solution: P. Es→asalbsb/c/E\$lasb/bsa 3

2. Derive the string "aabbabba" for left most derivation and right most derivation using above CFG.

Solution:

Both leftmost and Rightmost derivations are equal.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		Page 105 of 261
Course Code(s)	22CS2002A	Page 102

and a let postly is a new out to the

3. Consider the following grammar

$$S \rightarrow ASB \mid c$$

$$A \to \epsilon | aA$$

$$B \to \epsilon |bB|$$

Derive the string acb using leftmost and rightmost derivation. Show the parse trees for your derivation.

Solution:

(effmat:

S-> ASB

- aASB

-> aesB

- asB

-> acB

- acbB

- acb

"acb"

Kightmost:

S- ASB

-> ASLB

-> ASb

-> Acb

-> aAcb

- acb"

" ouch "

Co		
Lourse Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
Co		106
Course Code(s)	22CS2002A	Page 106 of 261

Post-Tutorial (To be carried out by student after attending tutorial session)

" Jumphy

1. Generate CFG for the language $L = \{0^i 1^j 0^k : j > i + k\}$

Solution:

CFa:

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-2
Course Code(s)	22CS2002A	Page 107 of 26

2 consider the following grammar-

 $S \rightarrow SaS \mid b$

sitan ambiguous grammar? Generate the string babab from this grammar to prove your

point. solution:

S->Sas

- sasas

-> basas

- babas

- habab

babab"

S-> Sas

-> Sasas

- babab

babab

". It is ambiguous.

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
		108
Course Code(s)	22CS2002A	Page 108 of 261

Viva Questions

1. What is a context-free grammar (CFG), and how is it defined?

Answer:

2. How do you construct a parse tree for a given string using a context-free grammar? Answer:

By substituting the terminals to generate a string.

In that process we form leftmost and Rightmost decivations by substituting terminals, leftmort and from rightmort respectively.

(For Evaluator's use only)

Comment of the Evaluator (if Any)	Evaluator's Observation
Jane 12	Marks Secured: out of 50
	Full Name of the Evaluator:
	Signature of the Evaluator Date of
	· Evaluation:

Course Title	AUTOMATA THEORY AND FORMAL LANGAUGES	ACADEMIC YEAR: 2023-24
Course Code(s)	22CS2002A	Page 109 of 261