Section 3.8 – Taylor and Maclaurin Series

The sum of a power series:

$$\begin{split} f\left(x\right) &= \sum_{n=0}^{\infty} a_n \left(x-a\right)^n \\ &= a_0 + a_1 \left(x-a\right) + a_2 \left(x-a\right)^2 + \dots + a_n \left(x-a\right)^n + \dots \\ f'(x) &= a_1 + 2a_2 \left(x-a\right) + 3a_3 \left(x-a\right)^2 + \dots + na_n \left(x-a\right)^{n-1} + \dots \\ f''(x) &= 2a_2 + 2 \cdot 3a_3 \left(x-a\right) + 3 \cdot 4a_4 \left(x-a\right)^2 + \dots + (n-1) \cdot na_n \left(x-a\right)^{n-2} + \dots \\ f'''(x) &= 1 \cdot 2 \cdot 3a_3 + 2 \cdot 3 \cdot 4a_4 \left(x-a\right) + 3 \cdot 4 \cdot 5a_5 \left(x-a\right)^2 \dots + (n-2) \cdot (n-1) \cdot na_n \left(x-a\right)^{n-3} + \dots \\ f^{(n)}(x) &= n! a_n + a \text{ sum of terms with } (x-a) \text{ as a factor} \end{split}$$

In general:
$$f^{(n)}(x) = n!a_n$$
 $\Rightarrow a_n = \frac{f^{(n)}(a)}{n!}$

If f has a series representation, then the series must be

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \dots$$

Taylor and Maclaurin Series

Definitions

Let f be a function with derivatives of all orders throughout some interval containing a as an interior point. Then the *Taylor series generated by* f at x = a is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$$

The Maclaurin series generated by f is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = f(0) + f'(0)x + \frac{f''(0)}{2!} x^2 + \dots + \frac{f^{(n)}(0)}{n!} x^n + \dots,$$

The Taylor series generated by f at x = 0.

Find the Taylor series generated by $f(x) = \frac{1}{x}$ at a = 2. Where, if anywhere, does the series converges to $\frac{1}{x}$.

Solution

$$f(x) = x^{-1}$$

$$f(2) = 2^{-1} = \frac{1}{2}$$

$$f'(x) = -x^{-2}$$

$$f''(2) = -\frac{1}{2^{2}}$$

$$f'''(x) = 2!x^{-3}$$

$$\frac{f'''(2)}{2!} = 2^{-3} = \frac{(-1)^{3}}{2^{3}}$$

$$f''''(x) = -3!x^{-4}$$

$$\vdots$$

$$\vdots$$

$$f^{(n)}(x) = (-1)^{n} n!x^{-(n+1)}$$

$$\frac{f^{(n)}(2)}{n!} = \frac{(-1)^{n}}{2^{n+1}}$$

The Taylor series is:

$$f(2) + f'(2)(x-2) + \frac{f''(2)}{2!}(x-2)^2 + \dots + \frac{f^{(n)}(2)}{n!}(x-2)^n$$

$$= \frac{1}{2} - \frac{(x-2)}{2^2} + \frac{(x-2)^2}{2^3} + \dots + (-1)^n \frac{(x-2)^n}{2^{n+1}} + \dots$$

Taylor Polynomials

Definition

Let f be a function with derivatives of order k for k = 1, 2, ..., N in some interval containing a as an interior point. Then for any integer n from 0 through n, the Taylor polynomial of order n generated by f at x = a is the polynomial

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

Find the Taylor series and the Taylor polynomials generated by $f(x) = e^x$ at x = 0

Solution

$$f^{(n)}(x) = e^{x} \rightarrow f^{(n)}(0) = 1$$

$$P_{n}(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^{2} + \dots + \frac{f^{(n)}(0)}{n!}x^{n} + \dots$$

$$= 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots + \frac{1}{n!}x^{n} + \dots$$

$$= \sum_{k=0}^{\infty} \frac{1}{k!}x^{k}$$

This is also the Maclaurin series of e^x

The Taylor polynomial of order n at x = 0 is

$$P_n(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots + \frac{x^n}{n!}$$

Find the Taylor series and the Taylor polynomials generated by $f(x) = \cos x$ at x = 0

Solution

$$f(x) = \cos x, \qquad f'(x) = -\sin x,$$

$$f''(x) = -\cos x, \qquad f''(x) = \sin x,$$

$$\vdots \qquad \vdots$$

$$f^{(2n)}(x) = (-1)^n \cos x, \qquad f^{(2n+1)}(x) = (-1)^{2n+1} \sin x$$

$$f^{(2n)}(0) = (-1)^n, \qquad f^{(2n+1)}(0) = 0$$

The Taylor series generated by f at x = 0 is

$$f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \dots$$

$$= 1 + 0 \cdot x - \frac{x^2}{2!} + 0 \cdot x^3 + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}$$

$$P_{2n}(x) = P_{2n+1}(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!}$$

Find the Taylor series for $\cos x$ about $\frac{\pi}{3}$. Where is the series valid?

Solution

$$\cos x = \cos\left(x - \frac{\pi}{3} + \frac{\pi}{3}\right)$$

$$= \cos\left(x - \frac{\pi}{3}\right)\cos\left(\frac{\pi}{3}\right) - \sin\left(x - \frac{\pi}{3}\right)\sin\left(\frac{\pi}{3}\right)$$

$$= \frac{1}{2}\left[1 - \frac{1}{2!}\left(x - \frac{\pi}{3}\right)^2 + \frac{1}{4!}\left(x - \frac{\pi}{3}\right)^4 - \cdots\right] - \frac{\sqrt{3}}{2}\left[\left(x - \frac{\pi}{3}\right) - \frac{1}{3!}\left(x - \frac{\pi}{3}\right)^3 + \frac{1}{5!}\left(x - \frac{\pi}{3}\right)^5 - \cdots\right]$$

$$= \frac{1}{2} - \frac{\sqrt{3}}{2}\left(x - \frac{\pi}{3}\right) - \frac{1}{2}\frac{1}{2!}\left(x - \frac{\pi}{3}\right)^2 - \frac{\sqrt{3}}{2}\frac{1}{3!}\left(x - \frac{\pi}{3}\right)^3 + \frac{1}{2}\frac{1}{4!}\left(x - \frac{\pi}{3}\right)^4 + \frac{1}{5!}\frac{\sqrt{3}}{2}\left(x - \frac{\pi}{3}\right)^5 - \cdots$$

This series representation is valid for all x.

Find the Taylor series for $\ln x$ in powers of x-2. Where does the series converge to $\ln x$?

Solution

Let
$$t = \frac{x-2}{2}$$
, then
$$\ln x = \ln \left(2 + (x-2)\right)$$

$$= \ln \left[2\left(1 + \frac{x-2}{2}\right)\right]$$

$$= \ln 2 + \ln(1+t)$$

$$f(t) = \ln(1+t)$$

$$f'(0) = \ln(1) = 0$$

$$f'(t) = \frac{1}{1+t}$$

$$f''(0) = 1$$

$$f'''(t) = \frac{-1}{(1+t)^2}$$

$$f''''(0) = -1$$

$$f''''(t) = \frac{2}{(1+t)^3}$$

$$f''''(0) = 2$$

$$f^{(4)}(t) = \frac{-6}{(1+t)^4}$$

$$f''''(0) = -6$$

$$f^{(n)}(t) = (-1)^{n+1} \frac{(n-1)!}{(1+t)^n}$$

$$\ln(1+t) = f(0) + f'(0)t + \frac{f''(0)}{2!}t^2 + \frac{f'''(0)}{3!}t^3 + \frac{f^{(IV)}(0)}{4!}t^4 + \cdots$$

$$= t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4} + \cdots$$

$$= \ln 2 + \ln(1+t)$$

$$= \ln 2 + t - \frac{t^2}{2} + \frac{t^3}{3} - \frac{t^4}{4} + \cdots$$

$$= \ln 2 + \frac{x-2}{2} - \frac{(x-2)^2}{2 \times 2^2} + \frac{(x-2)^3}{3 \times 2^3} - \frac{(x-2)^4}{4 \times 2^4} + \cdots$$

$$= \ln 2 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \times 2^n} (x-2)^n$$

Since the series for $\ln(1+t)$ is valid for $-1 < t \le 1$, this series for $\ln x$ is valid for $-1 < \frac{x-2}{2} \le 1$ $-2 < x-2 \le 2 \rightarrow 0 < x \le 4$ (1-23) Find the Taylor polynomials of orders 0, 1, 2, and 3 generated by f at a

1.
$$f(x) = e^{2x}$$
, $a = 0$

2.
$$f(x) = \sin x, \quad a = 0$$

3.
$$f(x) = \ln(1+x), \quad a = 0$$

4.
$$f(x) = \frac{1}{x+2}$$
, $a = 0$

5.
$$f(x) = \sqrt{1-x}, \quad a = 0$$

6.
$$f(x) = x^3$$
, $a = 1$

7.
$$f(x) = 8\sqrt{x}, \quad a = 1$$

$$8. f(x) = \sin x, a = \frac{\pi}{4}$$

$$9. f(x) = \cos x, \quad a = \frac{\pi}{6}$$

10.
$$f(x) = \sqrt{x}, \quad a = 9$$

11.
$$f(x) = \sqrt[3]{x}$$
, $a = 8$

12.
$$f(x) = \ln x$$
, $a = e$

13.
$$f(x) = \sqrt[4]{x}$$
, $a = 8$

14.
$$f(x) = \tan^{-1} x + x^2 + 1$$
, $a = 1$

15.
$$f(x) = e^x$$
, $a = \ln 2$

16.
$$f(x) = e^{3x}$$
; $a = 0$

17.
$$f(x) = \frac{1}{x}$$
; $a = 1$

18.
$$f(x) = \cos x; \quad a = \frac{\pi}{2}$$

19.
$$f(x) = \frac{1}{x+1}$$
; $a = 0$

20.
$$f(x) = \tan^{-1} 4x$$
; $a = 0$

21.
$$f(x) = \sin 2x$$
; $a = -\frac{\pi}{2}$

22.
$$f(x) = \cosh 3x$$
; $a = 0$

23.
$$f(x) = \frac{1}{4 + x^2}$$
; $a = 0$

(25-35) Find the *n*th Maclaurin polynomial for the function

24.
$$f(x) = e^{4x}$$
, $n = 4$

25.
$$f(x) = e^{-x}, \quad n = 5$$

26.
$$f(x) = e^{-x/2}$$
, $n = 4$

27.
$$f(x) = e^{x/3}, n = 4$$

28.
$$f(x) = \sin x$$
, $n = 5$

29.
$$f(x) = \cos \pi x$$
, $n = 4$

30.
$$f(x) = xe^x$$
, $n = 4$

31.
$$f(x) = x^2 e^{-x}$$
, $n = 4$

32.
$$f(x) = \frac{1}{x+1}$$
, $n = 5$

33.
$$f(x) = \frac{x}{x+1}$$
, $n=4$

34.
$$f(x) = \sec x, \quad n = 2$$

35.
$$f(x) = \tan x, \quad n = 3$$

(36-39) Find out the *third* term of the Maclaurin series for the following function.

36.
$$f(x) = (1+x)^{1/3}$$

37.
$$f(x) = (1+x)^{-1/2}$$

38.
$$f(x) = \left(1 + \frac{x}{2}\right)^{-3}$$

39.
$$f(x) = (1+2x)^{-5}$$

(40-55) Find the Maclaurin series for

40.
$$xe^x$$

46.
$$x^2 \sin\left(\frac{x}{3}\right)$$

51.
$$\frac{1+x^3}{1+x^2}$$

41.
$$5\cos \pi x$$

42.
$$\frac{x^2}{x+1}$$

47.
$$\cos^2\left(\frac{x}{2}\right)$$

52.
$$\ln \frac{1+x}{1-x}$$

43.
$$e^{3x+1}$$

49.
$$\tan^{-1}(5x^2)$$

48. $\sin x \cos x$

53.
$$\frac{e^{2x^2}-1}{x^2}$$

44.
$$\cos(2x^3)$$

50.
$$\ln(2+x^2)$$

54.
$$\cosh x - \cos x$$

45.
$$\cos(2x-\pi)$$

55.
$$\sinh x - \sin x$$

(56-59) Finding Taylor and Maclaurin Series generated by f at x = a

56.
$$f(x) = x^3 - 2x + 4$$
, $a = 2$

58.
$$f(x) = 3x^5 - x^4 + 2x^3 + x^2 - 2$$
, $a = -1$

57.
$$f(x) = 2x^3 + x^2 + 3x - 8$$
, $a = 1$

59.
$$f(x) = \cos(2x + \frac{\pi}{2}), \quad a = \frac{\pi}{4}$$

(60-68) Find the Taylor series of the functions, where is each series representation valid?

60.
$$f(x) = e^{-2x}$$
 about -1

65.
$$f(x) = \sin x - \cos x \quad about \quad \frac{\pi}{4}$$

61.
$$f(x) = \sin x$$
 about $\frac{\pi}{2}$

66.
$$f(x) = \cos^2 x$$
 about $\frac{\pi}{8}$

62.
$$f(x) = \ln x$$
 in powers of $x - 3$

67.
$$f(x) = \frac{x}{1+x}$$
 in powers of $x-1$

63.
$$f(x) = \ln(2+x)$$
 in powers of $x-2$

68.
$$f(x) = xe^x$$
 in powers of $x + 2$

64.
$$f(x) = e^{2x+3}$$
 in powers of $x+1$

(69-81) Find the *n*th-order Taylor polynomial centered at c for the function

69.
$$f(x) = \frac{2}{x}$$
, $n = 3$, $c = 1$

75.
$$f(x) = \sin 2x$$
; $n = 3$, $c = 0$

70.
$$f(x) = \frac{1}{x^2}, \quad n = 4, \quad c = 2$$

76.
$$f(x) = \cos x^2$$
; $n = 2$, $c = 0$

71.
$$f(x) = \sqrt{x}, \quad n = 3, \quad c = 4$$

77.
$$f(x) = e^{-x}$$
; $n = 2$, $c = 0$

72.
$$f(x) = \sqrt[3]{x}, \quad n = 3, \quad c = 8$$

78.
$$f(x) = \cos x$$
; $n = 2$, $c = \frac{\pi}{4}$

73.
$$f(x) = \ln x$$
, $n = 4$, $c = 2$

79.
$$f(x) = \ln x$$
; $n = 2$, $c = 1$

74.
$$f(x) = x^2 \cos x$$
, $n = 2$, $c = \pi$

80.
$$f(x) = \sinh 2x$$
; $n = 4$, $c = 0$

81.
$$f(x) = \cosh x$$
; $n = 3$, $c = \ln 2$

(82 - 84) Find the sums of the series

82.
$$1+x^2+\frac{x^4}{2!}+\frac{x^6}{3!}+\frac{x^8}{4!}+\cdots$$

83.
$$1 + \frac{x^2}{3!} + \frac{x^4}{5!} + \frac{x^6}{7!} + \frac{x^8}{9!} + \cdots$$

84.
$$x^3 - \frac{x^9}{3 \times 4} + \frac{x^{15}}{5 \times 16} - \frac{x^{21}}{7 \times 64} + \frac{x^{27}}{9 \times 256} - \cdots$$

(85 – 90) Use the geometric series $\sum_{k=0}^{\infty} x^k = \frac{1}{1-x}$, for |x| < 1, to determine the Maclaurin series and the

interval of convergence for the following functions.

85.
$$f(x) = \frac{1}{1-x^2}$$

88.
$$f(x) = \frac{10}{1+x}$$

86.
$$f(x) = \frac{1}{1+x^3}$$

89.
$$f(x) = \frac{1}{(1-10x)^2}$$

87.
$$f(x) = \frac{1}{1+5x}$$

90.
$$f(x) = \ln(1-4x)$$

91. The limit $\lim_{n\to\infty} \frac{n!}{\sqrt{2\pi} n^{n+1/2} e^{-n}} = 1$ that is the relative error in the approximation $n! \approx \sqrt{2\pi} n^{n+1/2} e^{-n}$

Approaches zero as n increases. That is n! grows at a rate comparable to $\sqrt{2\pi} n^{n+1/2} e^{-n}$. This result, known as Stirling's Formula, is often very useful in applied mathemmatics and statistics. Prove it by carrying out the following steps.

a) Use the identity $\ln(n!) = \sum_{j=1}^{n} \ln j$ and the increasing nature of $\ln to$ show that if $n \ge 1$,

$$\int_{0}^{n} \ln x \, dx < \ln(n!) < \int_{1}^{n+1} \ln x \, dx$$

And hence that $n \ln n - n < \ln (n!) < (n+1) \ln (n+1) - n$

b) If
$$c_n = \ln(n!) - \left(n + \frac{1}{2}\right) \ln n + n$$
, show that
$$c_n - c_{n+1} = \left(n + \frac{1}{2}\right) \ln\left(\frac{n+1}{n}\right) - 1$$
$$= \left(n + \frac{1}{2}\right) \ln\left(\frac{1 + \frac{1}{2n+1}}{1 - \frac{1}{2n+1}}\right) - 1$$

c) Use the Maclaurin series for $\ln \frac{1+t}{1-t}$ to show that

$$0 < c_n - c_{n+1} < \frac{1}{3} \left(\frac{1}{(2n+1)^2} + \frac{1}{(2n+1)^3} + \dots \right)$$
$$= \frac{1}{12} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

and therefore that $\left\{c_n\right\}$ is decreasing and $\left\{c_n-\frac{1}{12n}\right\}$ is increasing. Hence conclude that

 $\lim_{n \to \infty} c_n = c \text{ exists, and that}$

$$\lim_{n \to \infty} \frac{n!}{n^{n+1/2}e^{-n}} = \lim_{n \to \infty} e^{c_n} = e^{c}$$

92. Suppose you want to approximate $\sqrt[3]{128}$ to within 10^{-4} of the exact value.

- a) Use a Taylor polynomial for $f(x) = (125 + x)^{1/3}$ centered at 0.
- b) Use a Taylor polynomial for $f(x) = x^{1/3}$ centered at 125.
- c) Compare the two approaches. Are they equivalent?

93. Consider the function

$$f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

- a) Use the definition of the derivative to show that f'(0) = 0
- b) Assume the fact that $f^k(0) = 0$ for k = 1, 2, 3, ... (prove using the definition of the derivative.) Write the Taylor series for f centered at 0.
- c) Explain why the Taylor series for f does not converge to f for $x \ne 0$
- **94.** Teams *A* and *B* go into sudden death overtime after playing to a tie. The teams alternate possession of the ball and the first team to score wins. Each team has a $\frac{1}{6}$ chance of scoring when it has the ball, with Team *A* having the ball first.
 - a) The probability that Team A ultimately wins is $\sum_{k=0}^{\infty} \frac{1}{6} \left(\frac{5}{6}\right)^{2k}$. Evaluate this series.
 - b) The expected number of rounds (possessions by either team) required for the overtime to end is

$$\frac{1}{6}\sum_{k=1}^{\infty} k\left(\frac{5}{6}\right)^{k-1}$$
. Evaluate this series.