LATENT COOPERATION TREATY

From	the	INT	ERN	ATIONAL	BUREAU
------	-----	-----	-----	---------	--------

PCT

NOTIFICATION OF ELECTION

(PCT Rule 61.2)

United States Patent and Trademark Office (Box PCT) Crystal Plaza 2 Washington, DC 20231 ETATS-UNIS D AMERIQUE

Date of mailing (d.a., morth year) 04 December 1997 (04.12.97)	in its čapacity as elected Office		
International application No.	Applicant's or agent's file reference		
PCT GB97 01158	38630 JMD		
International filing date iday mente year.	Priority date (day month year)		
24 April 1997 (24.04.97)	24 April 1996 (24 04.96)		
Applicant			
OUIBELL Martin et al			

1	The designated Office is hereby notified of its election made
	X in the demand filed with the International Preliminary Examining Authority on
	21 November 1997 (21.11.97)
	in a notice effecting, after election filed with the International Bureau on
2	The electron X was
	- walnot
	en appropriation appropriation and the second residual appropriation for a propriation of the second residual appropriation and the second residua

r saferration provincy is $4e^{2}$ 34 chemin de l'Calombette i 1211 Geneva 20. Switzerland

PATENT COOPERATION TREATY

REG'D 2 7 JUL 1998

PCT

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

(PCT Article 36 and Rule 70)

38630/JME	-	s file reference	FOR FURTHER ACTION	Preliminary Examination Report (PCT/IPEA/416)
international a	applica	tion No	International filing date (day/month/year	Priority date (day/month/year)
PCT/GB97/01158			24/04/1997	24/04/1996
International I	Patent	Classification (IPC) or r	national classification and IPC	
C07K1/04				
Applicant				
PEPTIDE 1	THER	APEUTICS LIMITE	ED et al.	
1. This int	ernatio	onal preliminary exa	mination report has been prepared by	this International Preliminary Examining Authority
and is t	ransm	itted to the applicant	t according to Article 36.	
2. This RE	EPOR'	T consists of a total of	of 6 sheets, including this cover shee	et.
Tr	nis ren	ort is also accompar	nied by ANNEXES, i.e., sheets of the	description, claims and/or drawings
14/1	sich ha	va haan amended a	and are the basis for this report and/o	r sheets containing rectifications made
be I	fore th	nis Authority (see Hu	lie 70.16 and Section 607 of the Admi	inistrative Instructions under the PCT).
Thoso	2000	es consist of a total	of sheets	
These	aillex	es consist of a total	or sineste.	
3. This re	port co	ontains indications re	elating to the following items:	
	\boxtimes	Basis of the report		
	=	Priority		
111	3	Non-establishment	of opinion with regard to novelty, inve	entive step and industrial applicability
IV	[3]	Lack of unity of inv	ention	
V	(3	Reasoned stateme	ent under Article 35(2) with regard to n	ovelty, inventive step or industrial applicability;
ļ		citations and expla	inations supporting such statement	
VI	:=	Certain documents		
VII	:		the international application	
VIII	\approx	Certain observatio	ns on the international application	
'				

Name and mailing address of the IPEA

Authorized officer

21.11.1.49

المراجع المراجع

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/GB97/01158

l. Basis	of the	report
----------	--------	--------

1. This report has been drawn on the basis of (substitute sheets which have been furnished to the receiving Office in response to an invitation under Article 14 are referred to in this report as "originally filed" and are not annexed to the report since they do not contain amendments.):

	resp the	onse to an invitation in the second since they of the second since they of the second	on under Article 14 are referred to in this report as "originally filed" and are not affinexed to to not contain amendments.):
	Des	cription, pages:	
	1-10	05	as originally filed
	Clai	ms, No.:	
	1-15	5	as originally filed
	Dra	wings, sheets:	
	1/17	7-17/17	as originally filed
2.	The	amendments hav	e resulted in the cancellation of:
		the description,	pages:
		the claims,	Nos.:
		the drawings,	sheets:
3.		This report has b considered to go	een established as if (some of) the amendments had not been made, since they have been beyond the disclosure as filed (Rule 70.2(c)):
4.	Add	ditional o bserva tio	ns, if necessary:
Ш	. No	n-establishment (of opinion with regard to novelty, inventive step and industrial applicability
TI	he qi	uestions whether the	he claimed invention appears to be novel, to involve an inventive step (to be non-obvious).
			: · · · · ·

I was to the Add of the said of the second of the Add of the Add of the said of the Add of the Add

INTERNATIONAL PRELIMINARY EXAMINATION REPORT

International application No. PCT/GB97/01158

	\boxtimes	the said international application, or the said claims Nos. 4.5 relate to the following subject matter which does not require an international preliminary examination (<i>specify</i>):			
		see separate sheet			
		the description, claims or drawings (indicate particular elements below) or said claims Nos. are so unclear that no meaningful opinion could be formed (specify):			
		the claims, or said claims Nos. are so inadequately supported by the description that no meaningful opinion could be formed.			
		no international search report has been established for the said claims Nos			
IV	. Lac	k of unity of invention			
1.	In re	n response to the invitation to restrict or pay additional fees the applicant has:			
		restricted the claims.			
		paid additional fees.			
		paid additional fees under protest.			
		neither restricted nor paid additional fees			
2.	×	This Authority found that the requirement of unity of invention is not complied and chose, according to Rule 68.1, not to invite the applicant to restrict or pay additional fees.			
3.	Thi	s Authority considers that the requirement of unity of invention in accordance with Rules 13.1, 13.2 and 13.3 i			
		complied with.			
	×	not complied with for the following reasons:			
		see separate sheet			
	٠٠,	an Dalio			
		the parts relating to claims Nos.			

INTERNATIONAL PRELIMINARY **EXAMINATION REPORT**

International application No. PCT/GB97/01158

- V. Reasoned statement under Article 35(2) with regard to novelty, inventive step or industrial applicability; citations and explanations supporting such statement
- 1. Statement

Novelty (N)

Yes:

Claims 2,3,6-15

No:

Claims 1

Inventive step (IS)

Yes: Claims

No:

Claims 1-3,6-15

Industrial applicability (IA)

Claims 1-3,6-15

Yes: No:

Claims

2. Citations and explanations

see separate sheet

VIII. Certain observations on the international application

The following observations on the clarity of the claims, description, and drawings or on the question whether the claims are fully supported by the description, are made:

see separate sheet

INTERNATIONAL PRELIMINARY International application No. PCT/GB97/01158 EXAMINATION REPORT - SEPARATE SHEET

1. Reference is made to the following document:

D1: Proc. 23rd Eur. Peptide Symp. 1995:455-456

2. The present application is directed to "autodeconvoluting" libraries for the characterisation of an *active motif* in *any* group of compounds.

D1, which considered representing the closest prior art, discloses "self-deciphering", orthogonal libraries which lead to the discovery of a potent V2 vasopressin antagonist. "Self-deciphering" is to be interpreted as being a synonym for "autodeconvoluting". Therefore, all technical features of present claim 1, as far as they are fulfilling the requirements of clarity (Article 6, cf point), are present in D1, i.e. the subject-matter of claim 1 is not new in the sense of Article 33(2) PCT.

Furthermore, D1 discloses the suitability of the described type of self-deciphering libraries for *any* group of compounds, i.e. methods using this type of libraries are not restricted to peptides or oligonucleotides.

The problem underlying the present application can be regarded as to provide further particular "autodeconvoluting" (*sive* self-deciphering or self-decoding) libraries to identify an inhibitor of an enzyme or a binding motif of an antigen etc.

Since the general principle of self-decoding libraries is known from D1 (for three variables) it appears not to involve an inventive step to adapt the principle to four variable entities. The skilled person is enabled to develop any library format as presently claimed to screen for a desired activity from the teachings of D1. Therefore, claims 2-15 are not in accordance with the requirements of Article 33(3) PCT with respect to inventive step.

invention" according to Rule 6.3(a) PCT.

Independent claim 1 is not in the two-part form -and therefore not in accordance with Rule 6.3(b) PCT-, which in the present case would be appropriate, with those features known in combination from the prior art (document D1) being placed in a preamble (Rule 6.3(b)(i) PCT) and with the remaining features being included in a characterising part (Rule 6.3(b)(ii) PCT).

3. The problem concerning the screening and rapid identification of an desired effector out of a large number of compounds has been solved already by the disclosure of the principle of "self-decoding" libraries (D1).

The target classes of compounds of claims 8-12 which the method of claim 3 is directed to are not anymore linked in such a way by a special technical feature in the sense of Rule 13(2) PCT that they represent a single inventive concept (non-unity *a posteriori*; Rule 13(1) PCT). Every single library claimed (and methods using this library) concerning a particular target class of compounds is considered as a separate invention.

- 4. The terms "active moiety" and "active motif" used in claim 1 are vague and unclear and leave the reader in doubt as to the meaning of the technical features to which they refer, thereby rendering the definition of the subject-matter of said claim unclear (Article 6 PCT).
- 5. The subject-matter of present claims 4 and 5 is directed to performing a pure mental act, i.e. a deciphering procedure. This subject-matter is excluded from international preliminary examination (Article 34(4)(b); Rule 67.1(iii) PCT).

PATENT COOPERATION TREAT 5 0CT 1997

From the INTERNATIONAL SEARCH NG AUTHORITY	PCT
TECHNICAL TECHNICAL MARKET TECHNICAL MAR	NOTECATION OF TRANSMITTAL OF THE INTERNATIONAL SEARCH REPORT OR THE DECLARATION
UNITED KINGDOM A.A.S. ALE: A Can	POTRULE RIECEIVED
	Date of mailing (day/month/year) 1 3, 10. CAMBRIDG
Applicant's or agent's file reference 38630/JMD	FOR FURTHER ACTION See paragraphs 1 and 4 below
International application No PCT/GB 97/ 01158	International filing date (day/month/year) 24/04/1997
Applicant PEPTIDE THERAPEUTICS LIMITED et al.	
The applicant is hereby notified that the International Search Filing of amendments and statement under Article 19: The applicant is entitled, if he so wishes, to amend the claims.	
When? The time limit for filing such amendments is normal International Search Report; however, for more detailed.	ly 2 months from the date of transmittal of the tails, see the notes on the accompanying sheet DG =
Where? Directly to the International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20, Switzerland Fascimile No.: (41-22) 740.14.35	DUE DATE 13/18/197
For more detailed instructions, see the notes on the according to the acco	
2. The applicant is hereby notified that no International Search Article 17(2)(a) to that effect is transmitted herewith.	Heport Will be established and matthe declarator dide.
3. With regard to the protest against payment of (an) addition	
the protest together with the decision thereon has been applicants's request to forward the texts of both the pro	transmitted to the International Bureau together with the test and the decision thereon to the designated Offices
no decision has been made yet on the protest, the app	licant will be notified as soon as a decision is made
4. Further action(s): The applicant is reminded of the following	pleation will be published by the International Burgari
Shortly after 18 months from the priority date, the international ap If the applicant wishes to avoid or postpone publication, a notice priority claim, must reach the International Bureau as provided: completion of the technical preparations for international publica	of withdrawal of the international application, or of the n Rules 90 bis.1 and 90 bis.3, respectively, before the tion
Within 19 months from the priority date, a demand for international wishes to postpone the entry into the national or acceptant 30 most	al preliminary examination must be filed if the applicant of the from the process, data in some Officer agent of an inter-

Name and making address of the International Searching Authority

Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2 NE-2080 HV Ryswyk Tool 1977 1984

Alfredo Prein

These Notes are intended to give the basic instructions concerning the filing of amendments under article 19. The Notes are based on the requirements of the Patent Cooperation Treaty, the Regulations and the Administrative Instructions under that Treaty. In case of discrepancy between these Notes and those requirements, the latter are applicable. For more detailed information, see also the PCT Applicant's Guide, a publication of WIPO.

In these Notes, "Article", "Rule", and "Section" refer to the provisions of the PCT, the PCT Regulations and the PCT Administrative Instructions respectively.

INSTRUCTIONS CONCERNING AMENDMENTS UNDER ARTICLE 19

The applicant has, after having received the international search report, one opportunity to amend the claims of the international application. It should however be emphasized that, since all parts of the international application (claims, description and drawings) may be amended during the international preliminary examination procedure, there is usually no need to file amendments of the claims under Article 19 except where, e.g. the applicant wants the latter to be published for the purposes of provisional protection or has another reason for amending the claims before international publication. Furthermore, it should be emphasized that provisional protection is available in some States only.

What parts of the international application may be amended?

Under Article 19, only the claims may be amended.

During the international phase, the claims may also be amended (or further amended) under Article 34 before the International Preliminary Examining Authority. The description and drawings may only be amended under Article 34 before the International Examining Authority.

Upon entry into the national phase, all parts of the international application may be amended under Article 28 or, where applicable, Article 41.

When?

Within 2 months from the date of transmittal of the international search report or 16 months from the priority date, whichever time limit expires later. It should be noted, however, that the amendments will be considered as having been received on time if they are received by the International Bureau after the expiration of the applicable time limit but before the completion of the technical preparations for international publication (Rule 46.1).

Where not to file the amendments?

The amendments may only be filed with the International Bureau and not with the receiving Office or the International Searching Authority (Rule 46.2).

Where a demand for international preliminary examination has been is filed, see below.

How?

Either by cancelling one or more entire claims, by adding one or more new claims or by amending the text of one or more of the claims as filed.

A replacement sheet must be submitted for each sheet of the claims which, on account of an amendment or amendments, differs from the sheet originally filed

All the claims appearing on a replacement sheet must be numbered in Arabic numerals. Where a claim is cancelled, no renumbering of the other claims is required. In all cases where claims are renumbered, they must be renumbered consecutively (Administrative Instructions, Section 205(b)).

The amendments must be made in the language in which the international application is to be published.

What documents must/may accompany the amendments?

Letter (Section 205(b)):

The amendments must be submitted with a letter

reference to come a signal of creations and the charge of the applicant thowever. The language of the elementational application in English, the letter must be in English. The effect must be in English, the letter must be in French.

The letter must indicate the differences between the claims as filed and the claims as amended. It must, in particular, indicate, in connection with each claim appearing in the international application (it being understood that identical indications concerning several claims may be grouped), whether

- (i) the claim is unchanged;
- (ii) the claim is cancelled;
- (iii) the claim is new;
- (iv) the claim replaces one or more claims as filed;
- (v) the claim is the result of the division of a claim as filed

The following examples illustrate the manner in which amendments must be explained in the accompanying letter:

- [Where originally there were 48 claims and after amendment of some claims there are 51]:
 "Claims 1 to 29, 31, 32, 34, 35, 37 to 48 replaced by amended claims bearing the same numbers;
 claims 30, 33 and 36 unchanged; new claims 49 to 51 added."
- [Where originally there were 15 claims and after amendment of all claims there are 11]: "Claims 1 to 15 replaced by amended claims 1 to 11."
- 3. [Where originally there were 14 claims and the amendments consist in cancelling some claims and in adding new claims]:
 "Claims 1 to 6 and 14 unchanged; claims 7 to 13 cancelled; new claims 15, 16 and 17 added." or
 "Claims 7 to 13 cancelled; new claims 15, 16 and 17 added; all other claims unchanged."
- [Where various kinds of amendments are made]:
 "Claims 1-10 unchanged; claims 11 to 13, 18 and 19 cancelled; claims 14, 15 and 16 replaced by amended claim 14; claim 17 subdivided into amended claims 15, 16 and 17; new claims 20 and 21 added."

"Statement under article 19(1)" (Rule 46.4)

The amendments may be accompanied by a statement explaining the amendments and indicating any impact that such amendments might have on the description and the drawings (which cannot be amended under Article 19(1)).

The statement will be published with the international application and the amended claims.

It must be in the language in which the international appplication is to be published.

It must be brief, not exceeding 500 words if in English or if translated into English.

It should not be confused with and does not replace the letter indicating the differences between the claims as filed and as amended. It must be filed on a separate sheet and must be identified as such by a heading, preferably by using the words "Statement under Article 19(1)."

It may not contain any disparaging comments on the international search report or the relevance of citations contained in that report. Reference to citations, relevant to a given claim, contained in the international search report may be made only in connection with an amendment of that claim.

Consequence if a demand for international preliminary examination has already been filed

If, at the time of filing any amendments under Article 19, a demand for international preliminary examination has already been submitted, the applicant must preferably, at the same time of filing the amendments with the International Bureau, also file a copy of such amendments with the International Preliminary Examining Authority (see Rule 62 2(a), first sentence).

Consequence with regard to translation of the international application for entry into the national phase

The applicant's attention is drawn to the fact that, where upon entry into the national phase, a translation of the claims as amended under Article 19 may have to be furnished to the designated/elected Offices, instead of, or in addition to the translation of the claims as filed.

Form PIGTISAIQ10 | second sheet) | July 1990

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 CO7K1/04 GOIN G01N33/68 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system tollowed by classification symbols) C07K G01N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1.2 M. MELDAL ET AL.: "Portion-mixing peptide Χ libraries of quenched fluorogenic substrates for complete subsite mapping of endoprotease specificity" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 91, no. 8, 12 April 1994, WASHINGTON pages 3314-3318, XP002042095 see page 3317, right-hand column, paragraph 2 - page 3318, right-hand column, paragraph 1 1,3,9-12WO 95 34575 A (SYNTHETIC PEPTIDES INC) 21 December 1995 see the whole document -/--Patent family members are listed in annex | X | Further documents are listed in the continuation of box ${\mathbb S}$ Χ *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the * Special categories of cited documents *A* document defining the general state of the art which is not considered to be of particular relevance. invention *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to "E" earlier document but published on or after the international filing date involve an inventive step when the document is taken alone document which may throw doubts on priority claim(s) or "Y" document of particular relevance; the claimed invention which is cited to establish the publication date of another cannot be considered to involve an inventive step when the considered with one or more other such docucitation or other special reason (as specified) a comprehense styles is tell give to be a second ് പറി നെക്കുന്നു. സൂനലിനുന്നു അവസ് വിവരം ATH STORMASTERS OF MEMORIES OF THE PROPERTY OF THE 1 3, 10, 97 30 September 1997 A Johnson & Bar SH SAR Name and mailing address of the IGA Furdbear Patent 174 w N - 3080 HV Alaw H 14 - +311-701340-204 Fax (+31-10) 340-3016

lonal Application No PCT/GB 97/01158

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9534575 A	21-12-95	AU 2805995 A	05-01-96
WO 9405394 A	17-03-94	US 5585275 A US 5591646 A AU 4844593 A AU 6393994 A JP 8507602 T WO 9419694 A	17-12-96 07-01-97 29-03-94 14-09-94 13-08-96 01-09-94

(PCT Article 18 and Rules 43 and 44)

Applicant's or agent's file reference 38630/JMD	FOR FURTHER see Notification (Form PCT/ISA/	of Transmittal of International Search Report 220) as well as, where applicable, item 5 below
International application No.	International filing date (day/month/year)	(Earliest) Priority Date (day/month/year)
PCT/GB 97/01158	24/04/1997	24/04/1996
Applicant		
PEPTIDE THERAPEUTICS	LIMITED et al.	
This International Search Report I according to Article 18. A copy is	has been prepared by this International Searching Aut being transmitted to the International Bureau	hority and is transmitted to the applicant
This International Search Report of X It is also accompanied by	consists of a total ofsheets by a copy of each prior art document cited in this repor	t.
Certain claims were for	und unsearchable (see Box I).	
2. Unity of invention is la	cking (see Box II).	
3. The international application international search was	ation contains disclosure of a nucleotide and/or amir s carned out on the basis of the sequence listing	no acid sequence listing and the
	filed with the international application.	
1	furnished by the applicant separately from the inte	
	but not accompanied by a statement to the matter going beyond the disclosure in the	e international application as filed.
	Transcribed by this Authority	
4 With regard to the title.	the text is approved as submitted by the applicant	
	the text has been established by this Authority to	read as follows
5. With regard to the abstract,		
	the text has been established, according to Rule Box III. The applicant may, within one month from	38 2(b), by this Authority as it appears in the date of mailing of this International
Pawings		
1 3	as suggested by the applicant	X tenes of the tightes
	because the applicant failed to suggest a figure	
	para yea thin fig. is exitted about a to the incidence	•

national Application No

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C07K1/04 G01N33/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC $6-0.07\,\mathrm{K}-0.01\,\mathrm{N}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	M. MELDAL ET AL.: "Portion-mixing peptide libraries of quenched fluorogenic substrates for complete subsite mapping of endoprotease specificity" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 91, no. 8, 12 April 1994, WASHINGTON US, pages 3314-3318, XP002042095 see page 3317, right-hand column, paragraph 2 - page 3318, right-hand column, paragraph 1	1,2
Α	WO 95 34575 A (SYNTHETIC PEPTIDES INC) 21 December 1995 see the whole document/	1,3,9-12

X

Χ	Further documents are listed in the continuation of box C
Spe	ecial categories of cited documents

"T" later document published after the international filing date or priority date and not in conflict with the application but oited to understand the principle or theory underlying the invention

Patent family members are listed in annex

- *A* document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
- *X* document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *Y* document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled
- *O* document referring to an oral disclosure, use, exhibition or

30 September 1997

Name and mailing address of the ISA

Authorized officer

T/GB 97/01158

-	TO SHARWAY AND HOLDER TO BE BELLEVILLE	<u> </u>
<u>`</u>	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	Dala
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	WO 94 05394 A (ARRIS PHARMACEUTICAL CORP) 17 March 1994 see claims; examples	1,3,9-12
A	B. Déprez et al.: "Self-decifering, orthogonal combinatorial libraries of soluble organic compounds: Discovery of a potent V2 vasopressin antagonist" in: XP002042096 Peptides 1994 Proceedings of the Twenty-Third European Symposium September 4-10, 1994, Braga, Portugal ed. HLS Maia; pub. ESCOM, Leiden, NL, 1995, pages 455-456	1,3,11
P,X	A.F. SPATOLA AND Y. CROZET: "Rediscovering an Endothelin Antagonist (BQ-123): A Self-Deconvoluting Cyclic Pentapeptide Library" JOURNAL OF MEDICINAL CHEMISTRY, vol. 39, no. 19, 13 September 1996, WASHINGTON US, pages 3842-3846, XP002042200 see page 3844, left-hand column, paragraph 4; table 1	1,3

ation on patent family members

T/GB 97/01158

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9534575 A	21-12-95	AU 2805995 A	05-01-96
WO 9405394 A	17-03-94	US 5585275 A US 5591646 A AU 4844593 A AU 6393994 A JP 8507602 T WO 9419694 A	17-12-96 07-01-97 29-03-94 14-09-94 13-08-96 01-09-94

10

- 1 -

Auto-Deconvoluting Combinatorial Libraries

The present invention relates to the field of apparatus and methods which provide the rapid generation of structure/activity relationships using auto-deconvoluting combinatorial libraries, which facilitate the invention of novel active compounds. The invention provides apparatus and methods which can be used for the rapid generation of structure/activity relationship (SAR) data, and, therefore, the characterisation of the active motif of any group of compounds.

The invention provides libraries of compounds which interact with an active moiety, and apparatus and methods to identify such compounds. The active moieties may be (but are not limited to) enzymes, receptors, antibodies, etc. The interaction of the active moiety with the compounds of the library may be (but is not limited to) the interaction of a substrate or inhibitor with an enzyme, the interaction of a ligand with a receptor, the interaction of an antigen or antigenic epitope with an antibody, etc.

The following list illustrates a number of enzyme classes and supplasses:

Engyme Classes

l. Oxidoreductase

1:12:8:16:

- 2 -

- d) catalase
- 2. Hydrolase
 - f: peptidase (proteolytic enzyme)
- 3. Transferase
- g) aminotransferase
 - h; kinase

 - 4. Lyase
 - j decarboxylase
- 10 k) dehydratease
 - 5. Isomerase
 - 1) racemase
 - m) mutase
 - 6. Ligase
- n) synthetase
 - o' carboxylase

Figureases of interest include obut are not limited too:

- Let Acpartly Proteases, such as remin, HIV, cathepsin D and cathespin E etc.
- Metalloproteases, such as ECE, gelatinase A and B, The Research Committee Committee
 - orthogram (Company vincolor)

- 3 -

- 4. Serine proteases, such as thrombin, factor VIIa, factor Xa, elastase, trypsin.
- 5. Threonyl proteases, such as proteasome S.

<u>Proteases</u>

- Many therapeutically useful drugs act as enzyme inhibitors. In particular, proteolytic enzyme inhibitors have been the focus of much attention in the pharmaceutical industry, because they play a variety of roles in a multitude of biological systems. Their
- proteolytic activities are related to processes ranging from cell invasion associated with metastatic cancer to evasion of an immune response, as seen in certain parasitic organisms; from nutrition to intracellular signalling to the site-specific proteolysis of viral
- proteases and eukaryotic hormone-processing enzymes.

 However, the traditional random screening methods for the identification of lead molecules as inhibitors of proteolytic enzymes are often laborious and time-consuming. Therefore new and efficient methods which can accelerate the drug discovery process are greatly in demand.

We consider that proteases contain an active catalytic site which tends to become increasingly activated as the recognition pockets: (S, and S, etc) and (S,) and S, etc) to the important that

His feet for a figure of the first to be an introduction

- 4 -

inhibitors. Therefore, we have devised a combinatorial method for the rapid identification of these binding motifs which will greatly expedite the synthesis of inhibitors of a variety of proteolytic enzymes such as aspartyl proteases, serine proteases, metallo proteases and cysteinyl proteases.

The use of a fluorescence resonance energy transfer (FRET) substrate for the analysis of proteolytic enzyme specificity was first published by Carmel. Since then many different quenched fluorogenic substrates for measuring enzyme inhibition have been described in the literature. These substrates contain a fluorophore, F, in a P position (vide supra), which is quenched by another group, Q, present in a P position (vide supra) and separated from F by the scissile bond. The advantage of the positioning of these residues, F and Q, is that cleavage of a peptide bond occurs between the two natural residues and, therefore, represents a more natural hydrolytic event rather than the cleavage and release of a C-terminal chromophore.

15

1.5

For example, Bratovanova and Petkoud have synthesised illustragenic substrates from peptide 4-nitroanilides. Manylation of peptide 4-nitroanilides with the aminobenzoyl (ABE: group yielded substrates that are internally quenched by the presence of the 4-nitroanilide moiety.

Upon hydrolysis of the aminoacyl-4-nitroanilide bond, the presence of the 4-nitroanilide bond, the

10

15

- -

- 5 -

Immobilised libraries, where substrates are attached to a polymer or biopolymer support, have also been used for mapping protease binding sites. Singh et al. reported recently that enzymatic substrate activity of 38 selected octapeptides attached via a linker to controlled pore glass is predictive of the same activity of similar peptides in solution. However, these results are preliminary and only for a specific example. Therefore, it is not clear whether immobilised substrates attached to polymers can reliably replace soluble substrates in mapping the hindered protease binding sites, especially since the hydrophilic or lipophilic nature of the polymer and the size of the interstices within the polymer are bound to influence the reaction between the enzyme and its substrates.

Mixtures of internally quenched, fluorogenic substrates have also recently been described in which the quencher group, Q, is 2,4-dinitrophenyl (Dnp) and is attached to the P side of the scissile bond, while the fluorogenic group, is N-methyl anthranilic acid (Nma) and is attached to the P' side. 44

Examples of other Dono: -Acceptor Chromophore Pairs that have been applied to Biological Systems are shown in Table 1.

Table 1 : Donor-Acceptor Chromophore Pairs That Have Been Applied To

ANBD PPY (A LANBD SRH

WO 97/42216 PCT/GB97/01158

- 6 -

	DNSM	LY	ISA	TNP
	IAEDANS	IANBD	Dansyl	ODR
	E-A	F_2DNB	DANZ	IAF
	Pyrene	Bimane	FNAI	EITC
ŧ.	ANAI	IPM	NBD	LRH
	IAANS	IAF	IAF	EIA
	ε-A	F_2DPS	FITC	ENAI
	€-A	DDPM	Proflavin	ETSC
	IAEDANS	TNP	СРМ	TNP-ATP
10	MNA	DACM	IAEDANS	IAF
	PM	NBD	CPM	Fluorescein
	FITC	TNP-ATP	IAEDANS	FITC
	DANZ	DABM	FITC	TMR
	NCP	CPM	IAF	TMR
15	NAA	DNP	CF	TR
	LY	TNP-ATP	CPM	FTS
	IAF	diI-C ₁₈	€-Λ	TNP-ATP
	IAF	TMR	CPM	FM
	FMA	FMA	LY	EM
20	PM	DMAMS	FITC	EITC
	mBBR	FITC	IAEDANS	DiO-C ₁₄
	mBBR	DABM	IAF	ErITC
	ϵ -A	NBD	FITC	EM
	Pyrene	Coumarin	FITC	ETSC
î ÷	IPM	FNAI	FITC	ErITC
	IAEDANS	DABM	BPE	CY5

30

ANAI, 2-anthracene N-acetylimidazole; BPE, B-phycoerythrin; CF, carboxyfluorescein succinimidyl ester; CPM, 7-doethylamino-3-(4'maleimidylphenyl)-4-methylcoumarin; CY5, carboxymethylindocyanine-N-hydroxysuccinimidyl ester; diI-C₁₈, 1,1'-dioctadecyl-3,3,3'3'-tetramethyl-indocarbocyanine; DiO-C₁₄, 3,3'-ditetradecyloxacarbocyanine; DABM, 4-dimethylaniniphenylazo-phenyl-4'-maleimide; DACM, (7-(dimethylamino)coumarin-4-yl)-acetyl; DANZ, dansylaziridine; DDPM, N-(4-dimethylamino-3-5-dinitrophenyl)maleimide; DACM, di-methylamino-4-maleimidostilbene; DMSM, N-(2.5-dimethoxystiben-4-yl)-maleimide; DNP, 2,4-dinitrophenyl; €-A, 1,N'-ethenoadenosine;EIA, 5-(iodoacetetamido)eosin, EITC, eosin-5-isothiocyanate; ENAI, eosin N-acetylimidazole; EM, eosin maleimide; ErITC, erythrosin-5'-isothiocyanate; ETSC, eosin thiosemicarbazide; F₂DPB, 1,5-difluoro-2,4'dinitrobenzene; F₂DPS, 4,4'-difluro-3,3'dinitropheylsulphone; FITC, fluorescein N-acetylimidazole; FTS, fluorescein thiosemicarbazide; IAANS; 2-((4'-todoacetylimidazole; FTS, fluorescein thiose

call satisfies (IPMs τ) so this variate precises sincing a interest commutator δA_{τ} .

WO 97/42216 PCT/GB97/01158

- 7 -

(iodoacetamido)salicylie acid;LRH, lissaminerho-2,1,3-benzoxadiazol-4-yl; NCP, N-cyclohexyl-N'-(1-pyrenyl)carbodiimide; ODR, octadecylrhodamine; PM, N-(1-pyrene)-maleimide; SRHsulphurhodamine; TMR, tetramethylrhodamine; TNP, trinitrophenyl; TR, Texas red.

6 from Wu, P. and Brand, L. 1994. Anal. Biochem. 218, 1-13.

10

15

The specificity of soluble peptide libraries have been determined. 15.16 Berman et al. described an HFLC mass spectrometry technique in which 6 mixtures of 128 peptides were synthesised which were N-terminally labelled with the Dnp group in order to allow UV monitoring on the HPLC. The disadvantage of this approach is that each assay mixture has to be individually analysed, because no fluorogenic substrate is revealed, and that the effective concentration of each separate component is limited by the size of the mixture because of overall solubility factors.

Drevin et al. Thave suggested the use of individually synthesised fluorogenic substrates for the determination of enzyme activity using a chromophore which chelates lanthanide ions. Garmann and Phillips have suggested the use of FRET substrates in which the fluorogenic and quencher moieties are attached via thick or amino nunctional groups after the peptide has been synthesised, but this has the disadvantage that they are not in library form and that these functional amino and thick groups need to be selectively revealed after the peptide has been synthesised. Wang et al. have suggested the use of the

ς,

- 8 -

The above methods which have used FRET techniques for the mapping of the active site around a specific protease suffer from one or more of the following disadvantages:

- i. because of general aqueous insolubility they do not produce mixtures of compounds in a form suitable for high throughput screening in aqueous solution.
 - ii. the derivatised compounds cannot be prepared in combinatorial library form using solid phase techniques.
- iii. the mixtures which have been used* were not self-decoding, and needed time-consuming deconvolutive resynthesis for identification of the active molecules.

<u>Kinases</u>

- Protein kinases are intracellular enzymes that play key roles in cell growth, differentiation and inter-cell communication. Aberrant protein kinase activity has been implicated in many disease states including several forms of cancer and severe-combined immunodeficiency disease.
- All serine/threonine and tyrosine protein kinases have a region of approximately 300 amino acids known as the catalytic subunit which has evolved from a common ancestor kinase (Hunter et al. 1991). Crystal structure determination of several kinases has shown that they all
- have a common bi-lobal structure. The amino-terminal part of the subunit encodes a small lobe responsible for the binding of ATT whereas the subpositionminal receives

a the the ATS chartness protegneral to the annual natives of the

10

15

brought together allowing transfer of the ATP γ -phosphate to the amino acid acceptor on the protein substrate. The protein/peptide binding groove stretches across the face of the large lobe between two α -helices and under the small lobe. This groove therefore contains the residues important for substrate specificity of the kinase. Protein kinases are arranged in kinase cascades within the cell, providing the ability for signal amplification in post-transduction pathways. This amplification relies on the upstream kinase specifically activating its downstream partner. For this reason, protein kinases have developed remarkable substrate specificities which prevent unwanted crosstalk between different kinase cascades. We believe that such substrate specificity can be exploited in the design of selective protein kinase inhibitors.

Existing protein kinase inhibitors

Non-peptide inhibitors

Most available non-peptide protein kinase inhibitors do not target the substrate binding region, but compete with ATP for enzyme binding. These inhibitors can be engineered using conventional medicinal chemistry to demonstrate specific enzyme selectivity. An example of this strategy was the modification of the fungal metabolite staurosporine, a general protein kinase inhibitor, to the bis-indolyl-maleimides Ro 31-7549 and Ro 31-8425 (fig. 17) which are selective protein kinase c inhibitors (Muid et al, 1991). Unfortunately, the potency of ATP antagonist inhibitors can be dramatically reduced in certain intracellular compartments due to the high

The aromatic compound erbstatin (fig. 18) produced by certain Streptomyces strains was identified in screens for reversal of protein tyrosine kinase-induced cell transformation. Erbstatin was subsequently shown to inhibit the EGFR kinase in vitro with a k_i of 5.58 μM and typical lineweaver-Burke competitive kinetics against a peptide substrate, while remaining non-competitive with ATF (Umezawa and Imoto, 1991). The compound is readily inactivated in calf serum and so could not be considered as a serious candidate for therapeutic use. Attempts have 10 been made to both increase the stability of erbstatin, by replacement of the N-formyl moiety, and bias the inhibition towards specific tyrosine kinases using a systematic modification of all parts of the molecule. These synthetic erbstatin derivatives are known as 15 tyrphostins (\underline{tyr} osine \underline{phos} phorylation \underline{in} hibitor \underline{s}) and are mainly used as tools in enzyme/signal transduction research, but have had limited success in animal models of disease (see Levitzki and Gazit, 1995 for an extensive 20 review).

Pseudosubstrate inhibitors

Research into the structure and function of protein kinases uncovered a natural method of regulating catalytic activity known as pseudosubstrate inhibition. This method uses sequences, either on the same molecule as the matalytic site (protein kinase C) or on a regulatory matalytic site (protein kinase C) or on a regulatory

the filter of the first that is a some second or approximate specific to the second the second of th

10

- 11 -

a phospho-acceptor results in the formation of a good substrate sequence. It is for this reason that the sequences are known as pseudosubstrates. Peptides based on pseudosubstrate motifs have been used as tools for inhibition of specific proteins kinases such as cyclic cAMP-dependent protein kinase (PKA), protein kinase C (PKC), myosin light chain kinase (MLCK) and calmodulindependent protein kinase II (Kemp et al, 1994). Pseudosubstrate peptides of less than 20 amino acids have been shown to be potent low nanomolar inhibitors in vitro with pseudosubstrate-based peptides of six amino acids inhibiting protein kinases at less than one micromolar (Kemp et al, 1991).

It is clear that there is scope for a small molecular
weight inhibitor of protein kinases that competes with
substrate for binding to the active site. A rational and
peptide proven approach would be to base these inhibitors
or, substrate molecules which can specifically access the
catalytic site. By focusing on pseudosubstrates, this
approach would also have the advantage of "in-built"
specificity, an element which is generally missing when
loads are identified from random screening approaches.

Exotein kinase inhibitors in disease treatment

Currently, there are no specific protein kinase inhibitors available for clinical use. Nevertheless, the potential for such compounds is clear with every major

in the $\tau_{\rm c} = 440$ in matrix to a matrix the single limit of the 0.01

Prototypic kinase inhibitor compounds are widely available from many companies, and are used as tools for in vitro signal transduction research. Several have formed the basis for extensive medicinal chemistry programmes designed to engineer both selectivity and enhanced activity into these compounds. A number of examples have been reported which indicate that this strategy has had some success in producing compounds active both in vitro within cell assay systems, and in animal models of disease. Staurosporine analogues (CGP41251 and UCN-01) 10 have been used to show anti-tumour activity in vivo (Meyer et al, 1989; Akinagaka et al, 1991) and selective PKC inhibitors have been shown to work in animal models of acute inflammation (Bradshaw et al, 1993). Moreover, the BMN tyrphostin AG490 has been shown to inhibit lymphoblastic leukaemia growth in animal models, correlating with its ability to inhibit the non-receptor intracellular tyrosine kinase JAK-2 (Meydan et al, 1996). These promising preclinical studies have yet to be translated into the clinic, and it is possible that 2.0 unforeseen toxicological problems, perhaps related to compound specificity, could be delaying their progress.

Luring the past few years, there has been an explosion of knowledge relating to kinase structure, function and activity. New kinases have also been identified, some of which have a sufficiently restricted cellular distribution that one could envisage that a specific inhibitor would

- 13 -

promise of new approaches for the development of kinase inhibitors to treat a range of conditions.

Method of Protein Kinase Inhibitor Design

Generation of initial substrate information

A technique has recently been developed by L. Cantley's laboratory to provide, consensus peptide kinase substrate information (Songyang et al, 1994). Firstly, a degenerate peptide library of peptides with a central phosphoacceptor such as tyrosine or serine/threonine flanked by four unknown amino acids on each side is synthesised. The library is then phosphorylated by the protein kinase of interest and phosphorylated peptides isolated by DEAEsephacel and ferric chelation chromatography. The phosphopeptide mixture is then sequenced and the frequency of each amino acid at every position -4 to +4 assessed to 15 give a preferred substrate sequence. These studies have yielded consensus substrate information, and do not allow a detailed analysis of particular preferences for neighbouring residue interactions. Similarly, the analysis was performed solely with natural amino acids. Filamentous phage are now also being used to generate substrate information (Miami, Biotechnology Conference, 1996). Substrate information can also be obtained from knowledge of the physiological substrates for the kinase in vivo.

- 14 -

Figures 1 to 14 inclusive exemplify component distributions in the plates of a library matrix;

Figure 15 illustrates a reaction scheme for production of compound number 4: Boc-Val-Ala-Leu-H wherein

- i. isobutylchloroformate, N-methylmorpholine, then N,O-dimethylhydroxylamine HC1, THF.
 - ii $\mbox{HC1, dioxan.}$ iii. isobutylchloroformate, N-methylmorphline, then Boc-Ala-OH, THF.
- 1V. HCl, dioxan. V. Boc-Val-Osuc, N-methylmorpholine, DMF. Vi. LAH;

Figure 16 illustrates a reaction scheme for production of active inhibitors of *Der PI*.

Figure 17 shows the molecular structure of the Roche protein kinase C inhibitors. A; Ro 31-8425/002, 3-[8(RS)-4] (aminomethyl)-6,7,8,9-tetrahydropryridol[1,2-a]indol-10-yl]-4-(1-methyl-3-indolyl)-1H-pyrrole-2,5-dione hydrochloride. E; Ro 31-7549/001, 3-[1-3-aminopropyl--3-indolyl]-4-(1-methyl-3-indolyl-1H-pyrrole-2, 5-dione hydrochloride.

Figure 18 shows the molecular structure of the protein tyrosine kinase inhibitor erbstatim, isolated from

Brief Description of the Invention

- 15 -

The present invention relates to the field of apparatus and methods which provide the rapid generation of structure-activity relationships using auto-deconvoluting combinatorial libraries, which facilitate the invention of novel active compounds.

We describe herein apparatus and methods which can be used for the rapid generation of structure-activity relationship (SAR) data and, therefore, the characterisation of the active motif of any group of compounds.

The invention provides two orthogonal sets of mixtures of compounds in solution providing two complementary combinatorial libraries indexed in two dimensions for autodeconvolution. These are referred to as primary and secondary libraries.

The general concept of two orthogonal sets of mixtures indexed in two dimensions can be applied to various permutations of numbers of wells, plate layout, number of permutations per mixture etc. However, according to the invention the numerical interrelationship is defined as indicated below for libraries containing compounds with four variable groups B,C,D and E.

General Deconvolution Formulae

- 16 -

- Primary and Secondary plates preferably have the same number of compounds per well $\{X\}$: otherwise there are two values, having X_i and X_n respectively.
- The primary library comprises [np] plates.
- If Rp.Cp=Rs.Cs, then the number of plates in the secondary library is also [np]. If not, the number of plates in the secondary library [ns] is:

ns = Rp.Cp . np Rs.Cs

eg. A primary library of np=4, Rp=8, Cp=10 can be set out in an Rs=4, Cs=5 secondary library with the number of plates equal to:

 $ns = 8 \times 10 . np$ 4×5

= 16 plates.

Number of compounds per well

-Bb-Cc-Dd-np(Ee +

- 17 -

(2)

When number of wells on a plate = [N], number of compounds per well = [X] and number of plates = [np]:

$$k = X.N.np$$

(3)

However, number of wells [N] is also defined by the number of rows [Rp] and number of columns [Cp]:

$$N = Rp. Cp$$

(4)

Combining (3) and (4):

$$k = X.Rp.Cp.np$$

(5)

Combining (2) and (5): 10

$$b.c.d.np.e = M.Rp.Cp.np$$
 (6)

Cancelling [np] from both sides of the equation:

$$b.q.d.e = M.Rp.Cp$$
 (7)

- 18 -

left side must be equal in number to the number of rows $\{Rp\}$. So:

$$[Cp]^2$$
. $Rp.e = X.Rp.Cp$ (8)

Cancelling [Cp] and [Rp] from both sides of the equation:

$$S Cp.e = X (9)$$

where [e] is the number of variants along a fixed row; and if Rp=Cp, then Rp.e=X.

Example

for a 10 x 10 x 8 x 8 format over 4 plates:

 $\mathbb{D} \oplus \mathbb{R} = \mathbb{Z} = \mathbb{R}$

X = 20.

15

19 -

From an understanding of the general deconvolution formulae shown above, those skilled in the art will readily appreciate that the advantageous results of self-deconvolution according to the invention are obtainable utilising a number of different arrangements of wells, plate layouts, mixtures etc and that such variants on the preferred embodiment illustrated herein are intended to be within the scope of the present invention.

The molecules may be cyclic or alicyclic. They may be linear or cyclic on the same structure

B-C-D-E or B——C

or BCDE can be on a central scaffold (linear or cyclic)

Where the symbol -B-C-D-E- or -B-C-D-nE- is used herein, it is to be understood to include all of these linear and cyclic variants within its definition.

At least one but not all the bonds between B, C, D, E need to be scissile. Non scissile bonds may include sulphonamide, urea, aminomethylene.

Several non-limiting examples of "scaffold" molecules are shown in Table 2, in which substituents $R_1\!-\!R_4$ correspond to possible variable groups B, C, D and E.

In a first aspect the invention provides novel compounds represented by the formula A-B-C-D-nE-F [I] in which;
A represents a fluorescor internally guenched by F;

F, C, D, and E represent groups such that the scissile bond between any two ci these groups is a suitable bond; F represents a quencher capable of internally quenching the fluorescor A; and

n represents an integer between 1 and 4 inclusive.

- 21 -

In some embodiments the suitable bond is an unsubstituted amide bond (see Example 1); in other embodiments the suitable bond is an ester bond (see Example 2).

In preferred embodiments B, C, D, E are amino acids or hydroxy acids. That is a molecule with an amine or hydroxy terminus and a carboxylic acid terminus. The amine/hydroxy group may be positioned on the same carbon atom or separated by a number of atoms and atom types.

In a second aspect the invention provides a combinatorial library of FRET compounds comprising a mixture of compounds of formula [I].

In a third aspect the invention provides for the use of such a combinatorial FRET library in a method which provides rapid generation of structure-activity relationships (SAR) which comprises detection and measurement of proteolytic enzyme activity by carrying out an assay with a library of combinatorial FRET (fluorescence resonance energy transfer) molecules to find a substrate or substrates for the enzyme. According to this method an identified substrate can be synthesised and used in biological assay for proteolytic enzymes. Novel substrates are included in the scope of the invention.

In a forth aspect the invention provides for the use of

efector of and the relation

- 22 -

In a fifth aspect the invention provides a method which comprises the identification of an enzyme inhibitor or inhibitors wherein a FRET compound which has been

- 23 -

ŔЗ

TABLE 2

- 24 -

identified as a substrate is used in an inhibition assay with the enzyme separately against a panel of possible inhibitors.

In a sixth aspect the invention provides a set of

compounds which comprises two complementary FRET compound
libraries. Such a set will be referred to hereafter as
"apparatus" because it allows for the screening or assay
method for identifying substrates or inhibitors of
proteolytic enzymes. This set of compounds constituting an
apparatus is capable of providing an auto-deconvoluting
combinatorial library as will be described below.

In a seventh aspect the invention provides a method of identifying and synthesising an inhibitor of a proteolytic enzyme which comprises detection and measurement of proteolytic enzyme activity by carrying out an assay with a library of combinatorial FRET (fluorescence resonance energy transfer) molecules, deconvoluting the library to find a substrate or substrates for the enzyme and synthesis of an inhibitor based on the substrate or substrates. The direct product of this method is one or more novel proteolytic enzyme inhibitors.

In an eighth aspect the invention provides an inhibition assay which uses a FRET molecule, which has been identified as a substrate for the enzyme, wherein the

1.5

- 25 ~

In a ninth aspect the invention provides a complementary pair of compound libraries L1 and L2 which constitute a set containing compounds of formula:

Aa-Bb-Cc-Dd-n(Ee)-Ff-Gq

giving a x b x c x d x e x f x g = Mn compounds in each library, there being a predetermined number (P1, P2) of mixtures each consisting of a predetermined number (Q1, Q2) of individual identifiable compounds in each library, wherein both L1 and L2 contain the same Mn compounds, but wherein any two compounds which are found together in one mixture of Q1 compounds of L1 are not found together in any one of the P2 mixtures of L2.

In a tenth aspect the invention provides a method of screening for enzymic activity using the libraries L1, L2 described above in which the P1 mixtures of L1 and the P2 mixtures of L2 are each placed separately into individual wells of well plates, the well plates having wells arranged in a format adapted to allow deduction of a unique active compound formula from the presence of activity in one well of L1 and one well of L2.

The apparatus of the invention preferably comprises two complementary compound libraries, L1 and L2, each containing n \times 1600 compounds of the invention, of the

15

A \approx a fluorescor internally quenched by F, preferably an unsubstituted or substituted anthranilic acid derivative, connected by an amide bond to B

B, C, D, E, are natural or unnatural amino acid residues connected together by suitable bonds, although B, C, D and E can be any set of groups, provided that the scissile bond between D-E is an unsubstituted bond.

F = a quencher capable of internally quenching the fluorescor A, preferably an unsubstituted or substituted 3-nitrotyrosine derivative.

G = optionally present and is a hydrophilic moiety, preferably an aspartyl amide moiety. If present, G advantageously ensures that all compounds in the library are imparted with aqueous solubility. Also, G should not be a substrate for any type of enzyme.

n = any integer between 1 and 4 inclusive.

In an alternative, the scissile bond could be between B-C or C-D.

(Note that A and F herein correspond generally and respectively no molecies F and C of the prior art referred to above).

The numbers represented in subscript following residues B, C, D and E reier to the number of possibilities from which

- 27

$$A-B_1-C-D-E_1-F-G$$

$$A - B_4 - C - D - E_1 - F - G_1$$

$$A-B_1-C-D-E_2-F-G$$

$$A = B_4 = C = D = E_5 = F = G$$

10
$$A-B_c-C-D-E_c-F-G$$

15

20

The general combinatorial formula for each library can be expressed as:

$$A_{i}\text{-}B_{i,j}\text{-}C_{i,0}\text{-}D_{e}\text{-}n\left(E_{i,j}\right)\text{-}F_{i}\text{-}G_{i,j} \quad \text{[III]}$$

providing 1 x 10 x 10 x 8 x n x 2 x 1x 1 = 1600n compounds.

Both compound libraries, LL and LL, of the above type are synthesized using solid phase techniques using the Multipin approach such that each library contains 1600n compounds as 8th mixtures of 20 distinct, identifiable compounds. These 20 component mixtures are then placed separately into each of 80 wells of a 96 well plate (the other two large are used for control experiments) and then

remarkless of the number of the number of

- 28 -

libraries L1 and L2 (e.g. in the preferred embodiment: 1600n, where n=any integer between 1 and 4° the libraries themselves are complementary and amenable to deconvolution without recourse to resynthesis. It is also an important part of the invention that the library matrix has been especially formatted so that the most important site pairings P_{ν} and P_{ν} for proteolytic enzymes can be identified immediately without recourse to resynthesis.

Those compounds of the type A-B-C-D-E-F-G that are the

better substrates for the protease will be cleaved, and
can be readily identified because the fluorescor, A, will
be cleaved from its nearby quencher F, in a time dependent
manner which can be easily quantified. The fluorescent
quenching by F of A only occurs when the two are in nearby
proximity, normally within 30 angstrom units. Hence
cleavage of a scissile bond (e.g. the scissile bond D-E)
allows F to move further away from A and thus allow A to
fluoresce when excited by light of the correct wavelength.

In this manner the most active compound can be rapidly identified without the need for further resynthesis and deconvolution. Moreover, the wells that show the most rapid development of fluorescence can also be analysed by mass spectrometry, since by comparison with the original mixture, the identity of the most efficient substrate can be found by its

Hence the problem of library deconvolution can be overcome and the most active substrate for the enzyme can be rapidly identified.

In addition, after the initial treatment of the proteclytic enzyme with the library mixtures, L1 and L2, the residual enzymatic activity in each well can be quantified by the addition of the most potent fluorogenic substrate for the enzyme, S1, which is found in the 16xn compound library. Because of the nature of the library design this can be quickly prepared and purified. If there is no appearance of increased fluorescence with the known substrate, S1, then the presence of an enzyme inhibitor can be inferred, which again can be quickly identified without the need for resynthesis.

The general description of the library layout will now be described with reference to figures 1 to 14.

For example, when n=1 and the library contains 1600 compounds, in the first column of the first row (A1) (Fig.1) in the first plate (P1) of the library L1, hereinafter designated as location A1,F1,L1 there will be one 3 component, C_1 , one 3 component, D_2 , the ten b components and the two E components (E1 and E2) (Fig. 2). In the tenth column of the first row (A10) in the first plate (P1) of the library D1, thereinafter designated as

a we Hat the throughputy file formed incling but

- 30 -

(hereinafter designated as location H10,P1,L1) there will be one C component, C_{10} , one D component, D_4 , the ten E components and the two E components (E₁ and E₂). Hence all 1600 components are present in the one plate, because the 80 wells each contain 20 components.

A second complementary library is synthesised as follows (Fig. 3). In the first column of the first row (Al) of the first plate (P1) of the library, L2, (hereinafter designated as location Al,PI,L2), there will be ten C components, two D components (D, and D,), one B component, $\boldsymbol{E}_{1},$ and one \boldsymbol{E} component, $\boldsymbol{E}_{1}.$ In the tenth column of the first row (Al0) of the first plate (Pl) of the library, L2, (hereinafter designated as location A10,P1,L2), there will be ten C components, two D components $\{D_1$ and $D_2\}$, one B component, $E_{10},$ and one E component, $E_{1}.$ In the first 15 column of the second row (B1) of the first plate (P1, of the library, L2, (hereinafter designated as location B1,F1,L2), there will be ten C components, two D components $(\mathbb{D}_1$ and $\mathbb{D}_2)$, one B component, $\mathbb{B}_1,$ and one E 26 component, $E_{\epsilon}.$ In the tenth column of the second row (B10) of the first plate (P1) of the library, L1, (B10,F1,L2) there will be ten C components, two $\mathbb N$ components $\mathbb T_{\mathbb N}$ and $E_{\perp}\cdot$, $\forall n\in \ P$ component, $B_{\perp}\cdot$ and one E component, $E_{\perp}\cdot$ Hence only the first two rows are used to accommodate 400 25 compounds in total.

In the first column or the first yow (Al of the second

20

component, E_1 (Fig. 4). In the tenth column of the first row (Al0) of the second plate (P2) of the library, L2, (hereinafter designated as location Al0,F2,L2), there will be ten C components, two D components (D3 and D4), one B component, B1, and one E component, E1. In the first column of the second row (B1) of the second plate (P2) of the library, L1, (hereinafter designated as location E1,P2,L2), there will be ten C components, two D components (D3 and D4), one B component, B1, and one E component, E2. In the tenth column of the second row (B10) of the second plate (P2) of the library, L1, (B10,P2,L2), there will be ten C components, two D components (D, and D1), one B component, E3, and one E component, E3. Hence only the first two rows are used to accommodate 400 compounds in total.

In the first column of the first row (A1) of the third plate (P3) of the library, L2, (hereinafter designated as location A1,P3,L2), there will be ten C components, two D components (D, and D,), one B component, B1, and one E component, E1 (Fig 5). In the tenth column of the first row (A10) of the third plate (P3) of the library, L2, (hereinafter designated as location A10,F3,L2), where will be ten C components, two D components (D and D), one B component, B1, and one E component, B2. In the first column of the second row (B1) of the third plate (P3) of the library, L2, (hereinafter designated as location B1,F3,L2), there will be ten C components, two D components (D) and D), one P component

The solution of the test of months of world or one heart of the and

D.), one B component, $B_{\rm B}$, and one E component, E. Hence only the first two rows are used to accommodate 400 compounds in total.

In the first column of the first row (A1) of the fourth plate (P4) of the library, L2, (hereinafter designated as location A1,P4,L2), there will be ten C components, two D components (D, and D,), one B component, $B_{\rm i},$ and one Ecomponent, E_{i} (Fig. 6). In the tenth column of the first row (AlO) of the fourth plate (P4) of the library, L2, (nereinafter designated as location Al0,P4,L2), there will be ten C components, two D components (D- and $D_{ij})\,,$ one B component, $B_{\rm i},$ and one E component, $E_{\rm i}.$ In the first column of the second row (B1) of the fourth plate (P4) of the library, LC, (hereinafter designated as location B1,P4,L2), there will be ten C components, two D 1.5 components (D, and D,), one B component, $B_1,$ and one Ecomponent, $E_{\epsilon}.$ In the tenth column of the second row (B10) of the fourth plate (P4) of the library, L2, (B10,P4,L2), there will be ten C components, two D components (D4 and $D_{\alpha}) \; , \;$ one B component, $B_{10} \; , \;$ and one E component, $E_{2} \; . \;$ Hence only the first two rows are used to accommodate 400 rempounds in total.

in this fashion two complementary libraries, L1 and L0 are
prepared. In library, L1, each of the 80 of wells
contains a mixture of 20 components providing 1600
compounds for occeening. In library, L2, four plates are

- 33 -

library L1, but in a format in which no two compounds found together in library, L1, will be found together in library, L2.

Thus it is an important part of the invention that the compounds contained in the two libraries L1 and L2 are themselves complementary, in that any two compounds which are found together in a 20 component mixture in the same location (e.g. AlPlL1) in library L1, are not found together in any of the 20 component mixtures in any location of the library L2.

Thus, for example, with reference to the primary library P1 L1 of figure 2 and the secondary libraries P1 L2, P2, L2, P3 L2 and P4 L2 of figures 3-6 it is possible to deconvolute an exemplary sequence:

 $-B_2 - C_2 - D_4 - E_1 -$

If this sequence is a substrate fluorescence will occur in F1 L1 at C_3D_4 . This gives the information that the substrate is

-?-C,-D,-?-

If fluorescence occurs in P2 L2 at $B_{\rm c} E_{\rm c}$ it indicates a

- 34 -

The confirmation of the substrate as

-B2-C3-D4-E3-

should be provided by non-fluorescence of P1 L2, P3 L2 and P4 L2 which all contain $-B_1-C_3-M-E_1-$ where X is not D_4 .

In practice it is likely that more than one sequence will result in a substrate. Information as to which positions B-C-D-E- are sensitive to change (i.e. require a specific group) and which are insensitive (i.e. can tolerate more than one choice of group) in the context of the whole sequence gives valuable SAR data which can be used to model and/or synthesise related compounds.

In analogous examples, where separately n=2, 3 or 4, extra plates are constructed in library L1 format to accommodate the component pairs E_3 and E_4 (n=2), E_5 and E_6 (n=3), and E_7 and E_8 (n=4), respectively. For the respective deconvolution libraries of the type, L2, the respective rows in the plates P1, P2, P3, and P4, are increasingly filled with the paired components E_1 and E_7 . L and E_8 , and E_8 and E_9 , a

For example, when n=3, and the library contains 4800 compounds, in the first column of the first row (Al in the first plate (Pl) of the library LL. Thereinafter

the first the second of the se

15

20

25

- 35 -

of the first row (AlO) in the first plate (Pl) of the library Ll, (hereinafter designated as location AlO,Pl,Ll) there will be one C component, C_{10} , one D component, D_1 , the ten B components and the two E components (E_1 and E_2). In the tenth column of the eighth row (MlO) in the first plate (Pl) of the library Ll, (hereinafter designated as location HlO,Pl,Ll) there will be one C component, C_{10} , one D component, D_{10} , the ten B components and the two E components (E_1 and E_2). Hence 1600 components are present in the one plate, because the 80 wells each contain 20 components.

In the first column of the first row (Al) in the second plate (P2) of the library L1, (hereinafter designated as location A1,P2,L1) there will be one C component, C_1 , one D component, $D_{\rm i}$, the ten B components and the two E components (E, and E,). In the tenth column of the first row (Al0) in the second plate (P2) of the library L1, (hereinafter designated as location A10,P2,L1) there will be one C component, C_{i_1} , one D component, D_i , the ten B components and the two E components $(E_1 \ \text{and} \ E_4)$. In the tenth column of the eighth row (H10) in the second plate (P2) of the library L1, (hereinafter designated as location $\mathrm{HI}(0,\mathrm{PL},\mathrm{LL})$ there will be one 0 component, $\mathrm{C}_{\mathrm{L}^{2}}$, one D component, $E_{\rm co}$, the ten B components and the two E components (E, and E_4). Hence 1600 components are present in the one plate, because the 80 wells each contain 20 components.

15

20

location A1,P3,L1) there will be one C component, C, one D component, D, the ten E components and the two E components (E, and E,). In the tenth column of the first row (A10) in the third plate (P3) of the library L1, (hereinafter designated as location A10,P3,L1) there will be one C component, C10, one D component, D1, the ten B components and the two E components (E, and E4). In the tenth column of the eighth row (H10) in the third plate (P3) of the library L1, (hereinafter designated as location H10,P3,L1) there will be one C component, C1, one C component, C4, the ten B components and the two E components (E4 and E4). Hence 1600 components are present in the one plate, because the 80 wells each contain 20 components. In total the three plate, P1, P2 and P3, contain 1600 compounds/plate 4800 compounds in total.

For example, when n=4, and the library contains 6400 compounds, in the first column of the first row (A1) in the first plate (P1) of the library L1, (hereinafter designated as location A1,P1,L1) there will be one C component, C_i , one D component, D_i , the ten B components and the two E components (E_i and E_i) (Fig. 7). In the tenth column of the first row (A10 in the first plate (P1) of the library L1, (hereinafter designated as location A10,P1,L1) there will be one C component, D_i , one E component, D_i , the ten B components and the two E components (E_i and E_i). In the tenth column of the eighth row (H10) in the first plate (P1) of the library L1, hereinafter designated as location D_i , the ten B components and the two E components (E_i and E_i). In the tenth column of the eighth

1600 components are present in the one plate, because the 80 wells each contain 20 components.

In the first column of the first row (A1) in the second plate (P2) of the library L1, (hereinafter designated as location A1, P2, L1) there will be one C component, C1, one D component, E1, the ten B components and the two E components (E. and E4) (Fig. 8). In the tenth column of the first row (A10) in the second plate (P2) of the library L1, (hereinafter designated as location A10, P2, L1) there will be one C component, C10, one D component, D1, the ten B components and the two E components (E. and E4). In the tenth column of the eighth row (H10) in the second plate (P2) of the library L1, (hereinafter designated as location H10, P2, L1) there will be one C component, C10, one D component, D4, the ten B components and the two E components (E. and E4).

In the first column of the first row (Al) in the third plate (P3) of the library L1, (hereinafter designated as location A1,P3,L1) there will be one C component, C1, one D component, D1, the ten B components and the two E components (E and E) (Fig. 9). In the tenth column of the first row (Al) in the third plate (P3) of the library L1, (hereinafter designated as location A10,P3,L1) there will be one C component, C1, one D component, D1, the ten B components and the two E components (E and E2). In the tenth column of the eighth row (H1) in the third plate

- 38 -

D component, D,, the ten B components and the two E components (E, and E,).

In the first column of the first row (AI) in the fourth plate (P4) of the library L1, (hereinafter designated as location A1,P4,L1) there will be one C component, C1, one D component, D1, the ten B components and the two E components (E- and E1) (Fig. 10). Likewise, in the tenth column of the first row (A10) in the fourth plate (P4) of the library L1, (hereinafter designated as location A10,P4,L1) there will be one C component, C1c, one D component, D1, the ten B components and the two E components (E- and E4). In the tenth column of the eighth row (H10) in the fourth plate (P4) of the library L1, (hereinafter designated as location H10,P4,L1) there will be one C component, C10, one D component, D3, the ten B components and the two E components (E7 and E8).

A second complementary library is synthesised as follows. In the first column of the first row (A1) of the first plate (P1) of the library, L2, (hereinafter designated as location A1,F1,L2;, there will be ten C components, two D components (D, and D,), one B component, B, and one E component, E, Fig. 11. In the tenth column of the first row (A10) of the first plate (P1) of the library, L2, (hereinafter designated as location A10,P1,L2), there will be the ten C components, two D components (D, and D,), one E component, E, and one E component, E, In the first

20

components (D_ and D_), one B component, B_, and one E component, E_4 . In the tenth column of the eighth row (H10) of the first plate (P1) of the library, L2, (H10,P1,L2) there will be the ten C components, two D components ($D_{\rm i}$ and $\text{D}_{\text{\tiny I}}^{-}$, one B component, $\text{B}_{\text{\tiny IU}},$ and one E component, $\text{E}_{\text{B}}\,.$ Hence the matrix containing all ten columns and all eight rows are used to accommodate 1600 compounds in total.

In the first column of the first row (Al) of the second plate (P2) of the library, L2, (hereinafter designated as location A1, P2, L2), there will be ten C components, two D 10 components (D. and D4), one B component, $B_{1},$ and one Ecomponent, $E_{\rm i}$ (Fig. 12). In the tenth column of the first row (Al0) of the second plate (P2) of the library, L2, (hereinafter designated as location A10,P2,L2), there will be ten C components, two D components (D, and D,), one B component, $B_{16},\ \mbox{and one E component, }E_{1}.$ In the first column of the second row (B1) of the second plate (P2) of the library, L2, (hereinafter designated as location B1,P2,L2), there will be ten C components, two D components (D, and D4), one B component, B1, and one E component, E_2 . In the tenth column of the eighth row (H10) of the second place (PD) of the library, LD, (H10,FD,LD), there will be ten C components, two D components (D) and \mathfrak{I}_{i} , one b component, \mathtt{F}_{i} , and one E component, \mathtt{E}_{i} .

In the first column or the first row (Al) of the third place (PE) of the library, LD, (hereinafter designated as

- 40 -

row (A10) of the third plate (P3) of the library, L2, (hereinafter designated as location A10,P3,L2), there will be ten C components, two D components (D $_{\epsilon}$ and D $_{\epsilon}$), one B component, B $_{10}$, and one E component, E $_{1}$. In the first column of the second row (B1) of the third plate (P3) of the library, L2, (hereinafter designated as location B1,P3,L2), there will be ten C components, two D components (D $_{\epsilon}$ and D $_{\epsilon}$), one B component, B $_{1}$, and one E component, E $_{2}$. In the tenth column of the eighth row (H10) of the third plate (P3) of the library, L2, (H10,P3,L2), there will be ten C components, two D components (D $_{\epsilon}$ and D $_{\epsilon}$), one B component, B $_{10}$, and one E component, E $_{11}$.

In the first column of the first row (A1) of the fourth plate (P4) of the library, L2, (hereinafter designated as location A1,P4,L2), there will be ten C components, two D 1.5 components (E- and D_a), one B component, B_i, and one E component, $E_{\rm i} \; ({\rm Fig.14}) \; .$ In the tenth column of the first row (AlO) of the fourth plate (F4) of the library, L2, (hereinafter designated as location A10,P4,L2), there will be ten C components, two D components (D, and $D_{\alpha}) \;,$ one B component, $B_{\rm H},$ and one E component, $E_{\rm L}.$ In the first column of the second row (B1) of the fourth plate (P4) of the library, 52, thereinafter designated as location B1,P4,L2:, there will be ten 0 companents, two Γ components (D. and $D_\alpha{}^{\lambda}$, one B component, B_{μ} , and one E2.5 component, $E_{\rm t}_{\rm c}$. In the tenth column of the eighth row (H10) of the fourth plate (P4) of the library, L2, (H10,P4,L2). there will be ten a sumponers on the company.

15

The FRET strategy is based on the synthesis of two orthogonal sets of mixtures in solution. These solutions are each indexed in two dimensions. Thus the data from, for example, a protease scan identifies the most active compounds without the need for decoding or resynthesis. The positional preferences of sub-units (in this case amino acids) are optimised with respect to all other variant positions simultaneously. The synergistic relationship between all four positions is realised and both positive, beneficial and negative, deactivating data are generated. This leads to families (sub-populations) of substrates and their sub-unit preferences. The data can be fed into molecular modelling programs to generate pharmacophoric descriptors that encompass both the desirable features (from the positive data) and indicate undesirable interactions (from the negative data sets). Note that a one dimensional scan only indicates one position at a time as 'most active' and does not explore the synergistic relationship between positions.

- The general methodology exemplified above with regard to the use of complementary combinatorial FRET libraries for the identification of proteclytic enzyme substrates, is equally applicable for identification of compounds from a library which interact with another active morety.
- Combinatorial libraries of compounds containing four variable groups B, C. D and E can be produced an interactions with active moietier detected using suitable reporters or markets.

15

For example, the active moiety may be a protein kinase. Protein kinases include (but are not limited to) the following:

ZAP-70, Syk, p56 lex, p59tym, Yes, Hck, Src, Btk, Blk, Lyn, Raf, EGF kinase, Insulin receptor kinase, cyclin dependent kinases, Bcl-Abl, lkB-kinase C-terminal kinases, lkB N-terminal kinases, Jak kinases, MAP kinase kinases, MAP kinase kinases, MAP kinase kinase kinases, MAP kinases (Erks 1-3, p33 and Jun kinases), STAT family C-terminal serine/throonine kinases, protein kinase A, protein kinase B, all protein kinase C isoforms.

The active interaction of a protein kinase with a compound in a library may be detected, for example, by radioactively labelled phosphorylation of the substrate in the library.

Thus it is possible to identify peptide substrates of protein tyrosine kinase by phosphorylation of exagenous peptide substrates present in a library. The assay uses the transfer of ^{6}P from radiclabelled ATP to lysine-tagged tyrosine-peptides substrate as a measure of kinase activity. The peptide binds to negatively charged membrane and is washed free of unincorporated $[\gamma^{-6}P]$ -ATP. The detection of β -energy emission using a fluorcontaining scintillant on a β -counter instrument provides the measurement of peptide phosphorylation

- 43 -

In another example the active moiety could be a glycosidase and the interaction would be with enzyme substrates in the library. In such a case a scissile bond between at least one of the groups B, C, D and E would be an acetal or glycosidic bond. The groups B, C, D and E could be selected from furanosides and pyranosides.

In another example the active moiety could be a nuclease. In such a case the scissile bond would be a phosphodiester bond and the groups B, C, D and E would be nucleotides.

The general methodology of the present invention can also be applied to the detection of an interaction between an active moiety such as a receptor and a library containing ligands for the receptor. Examples of receptor/ligand interactions are shown by way of non-limiting illustration below:

Chemokine receptor/chemokine i.e. CKR3/Eotaxin SH3 domain/proline amino acid sequence i.e. Grb2/SOS peptide

WW domain/proline amino acid sequence i.e. Yap "Yesassociated profein/ RSV Gag protein

SH2 domain/phosphopeptide i.e. Grb2/LNK phosphopeptide Lectin domain/ligand i.e. CD72/CD5.

- 44 -

The reporter or marker for detection of a reaction in receptor/ligand and antibody/antigen libraries could be similar. Suitable reporters are, for example, (but not limited to):

- 5 1. Biotin tag on the ligand using streptavidin-HRP for detection,
 - 2. Alkaline phosphatase tag,
 - 3. Radioisotope tag.

The invention will now be described by reference to the following examples.

Example 1: Cysteine Protease Inhibitors and Substrates

In this Example the protectytic enzyme of interest is Der P1, which is found in house dust mite faeces. The example illustrates the synthesis of a number of FRET compounds in which the suitable bond is an unsubstituted amide bond, their use as a library for screening for potential substrates of Der P1, and subsequent identification and synthesis of active inhibitors of the enzyme.

Purification of Der pl.

take a wear and an appeared but each of the particular.

- 45 -

potassium phosphate; pH 7.4 containing 150 mM NaCl Der pI was purified by affinity column chromatography using 4Cl antibody (indoor Biotechnology, Deeside, U.K.) The crude preparation was mixed with ~2 mL of affinity resin for 2 h at 4°C and then washed with 2-3 volumes of PBS. Elution of bound protein was carried out using 5mM glycine containing 50%(v/v) ethylene glycol. Fractions(2.2 mL) were collected and neutralised with 0.8 mL of 0.2 M sodium phosphate buffer, pH 7.0. The fractions were pooled and dialysed overnight against 4 L PBS followed by a second dialysis against 2 L PBS for 2-3h. The total protein was concentrated as required by ultrafiltration (MacroSep; Flowgen, U.K.)

Synthesis of compounds

The compounds were synthesised using the Multipin approach using Fmoc-Rink amide Macro crowns (Chiron Mimotypes Pty., Ltd., 11 Duerdin Street, Clayton Victoria 3168, Australia) with a loading of 7 µMoles.

The amine acid residues of each of the compounds were linked using amide bonds in a suitable form. The coupling chemistry employed is similar to that reported in the literature? for fluorenylmethoxycarbonyl protected amino acids and activated pentafluorophenyl esters, in which the side-chains are protected using acid labile protecting groups known to those skilled in the act of the protecting

and only the trajectors with write to the property of the prop

of Aspartic acid and Glutamic acid, Trityl- (for the Amide of Asparagine and Glutamine, and the amine functionality of the Histidine ring.

The N- α -fluorenylmethoxycarbonyl protecting group of the coupled residues were cleaved using 20% piperidine in dimethylformamide (DMF) for 30 minutes at 20° C. The coupling reactions for the free acids such as Boc-ABz-OH (Boc-2-aminobenzoic acid), and Fmoc-(3-nitro)tyrosine-OH were accomplished using 10 equivalents of a mixture of the free acid (1 eq.) :TBTU (0.98 eq.): HOBt (0.98 eq.) : N-methylmorpholine (1.96 eq.) in dimethylformamide (500 μ L) as solvent for 5 hours at 20° C. The other amino acids were coupled as their pentafluorophenyl esters²⁶ for 2-6 hours.

Hence, in order to couple approximately equal ratios of each component in the mixture of the derivatised amino acids as their pentafluorophenyl esters, a solution of a total of 0.98 equivalents (relative to the amino group loading on the crown) of the mixture of amino acid pentafluorophenyl esters: HOBT (1 eq.) in DMF (500 μ L) were coupled for 16 hours at 20 °C. The pins were then washed well with DMF and then recoupled using the same mixture under the same conditions. A third coupling of the equivalents (relative to the amino group loading of the crown) for 2 hours in DMF was performed using this coupling protocol with equimclar mixtures of the derivatised pentafluorophenyl esters of the amino acids in

- 47 -

compounds present on each grown. The compounds were cleaved from the growns directly into the 80 designated wells of the desired 96 well plate. In the cleavage protocol each grown was treated with a mixture (600 μ L) containing trifluoroacetic acid (95%), triethylsilane (5%) for 2 hours at 20° C. The growns were then washed with trifluoroacetic acid (500 μ L) and this was then combined with the cleavage solution.

The Fmcc-Rink amide Macro crowns (Chiron Mimotypes Pty., Ltd., 11 Duerdin Street, Clayton Victoria 3168, Australia) at 7 μMol loading per crown, were coupled with a 10 fold excess of a mixture containing L-Fmoc-Asp(O-t-Bu)-OH (leq) using TBTU (0.98 eq) and N-methylmorpholine (1.96 eq.) in the presence of HOBt (0.98 eq.) in DMF at 0.14M concentration. After deblocking of the Fmos group with 20% piperidine in DMF for 30 minutes and subsequent washing with DMF and then methanol, coupling of the Fmoc-(3nitro)tyrosine-CH was accomplished using 10 equivalents of a mixture of the Fmoc-(3-nitro)tyrosine-OH (1 eq.) :TBTU (0.98 eq.): HOBt (0.98 eq.) : N-methylmorpholine (1.96 eq.) in dimethylformamide as solvent at 0.14 $\ensuremath{\text{M}}$ concentration for 5 hours at 00 C. Removal of the Pmod group (vide infra) was followed by coupling of the mixtures of amino acids in the ratios outlined and under the conditions described .vide infra). 24

in a particular example the amino acids comprising group &

1.0

15

comprising group D include Ala, Val, Ile, Leu, Nle, Ser, Glu, Phe. For n=4, the amino acids comprising group E include Ala, Val, Ile, Leu, Nle, Ser, Glu, Phe. Otherwise any selection from the amino acids can be made for n=1, 2, or 3.

The plates containing the combined cleavage solutions and were then evaporated to dryness to yield the component mixtures using a rotary centrifuge ("SPEEDVAC", Savant Instruments Inc., Farmingdale, NY) at 800 rpm for 1 hour at 20° C under a reduced pressure of 10° mmHg. Each component was then transferred to the final mother plate using a (50%: 45%: 5%) mixture of acetonitrile: water: acetic acid. The plates were then lyophilised to dryness using at 20° C under a reduced pressure of 10° mmHg, and then stored at -20° C. In this fashion libraries of the type shown in Figures 2-14 were prepared.

In further detail, the Multipin approach which was employed is described below:

Multipin Synthesis Of Potential Substrates of Der pI

The 'Chiron' multipin kit consists of a standard 8 x 12 pin holder containing 96 'pin stems' to which are reversibly attached 'crowns'. The 'crowns' provide a reactive polymer surface upon which a growing peptide is

15

- 49

reactor by performing simultaneous synthesis in individual lmL wells of industry standard 96 well plates. Each well, and thus each crown, can be charged with a unique set of reagents providing unique sequences to each crown. Common steps such as washing or removal of $N\alpha$ protection can be performed concomitantly.

Synthesis is based upon the use of $N\alpha$ -fluorenylmethyloxycarbonyl (Fmoc) protected amino acids. Side-chains of tri-functional amino acids are protected with acid labile groups such as trityl or tert-butyl. The addition of amino-acid residues to the growing peptide chain, a process termed 'coupling' proceeds through the utilisation of pre-formed pentafluorophenyl (pfp) esters or activation of the free acid, using the reagents HBTU or BOP in the presence of tertiary base (NMM) and HOBt as catalyst.

The experimental techniques used are fully documented (Maeji, N. J. Bray, A. M. Valerio, R. M. and Wang, W., Peptide Research, 8(1), 33-38, 1995 and Valerio, R. M. Bray, A. M. and Maeji, N. J. Int. J. Pept. Prot. Res, 44, 158-155, 1994) and the main steps are briefly as follows.

General Methods

Preparation of Multipin Assembly

表演にはturt は、 まましょ Win Cart appeting は Coding College Page

WO 97/42216 PCT/GB97/01158

- 50 -

onto stems and slotted into the 8 \times 12 stem holder in the desired pattern for synthesis.

Removal of $N\alpha$ -Fmoc Protection

15

A 250mL solvent resistant bath is charged with 200 ml of a 20% piperidine/DMF solution. The multipin assembly is added and deprotection allowed to proceed for 30 minutes. The assembly is then removed and excess solvent removed by brief shaking. The assembly is then washed consecutively with (200mL each), DMF (5mins) and MeOH (5mins, 2mins, 2mins) and left to air dry for 15mins.

Quantitative UV Measurement of Fmoc Chromophore Release

A lom path length UV cell is charged with 1.2mL of a 20% piperidine/DMF solution and used to zero the absorbance of the UV spectrometer at a wavelength of 290nm. A UV standard is then prepared consisting of 5.0mg Fmoc-Asp(OBut)-Pepsyn RA (0.08mmol/g) in 3.2mL of a 20% piperidine/DMF solution. This standard gives Abs; = 0.55-0.65 (at RT). An aliquot of the multipin deprotection solution is then diluted as appropriate to give a theoretical Abs; = 0.0, and this value compared with the actual experimentally measured absorbance showing the efficiency of previous coupling reaction.

15

2.0

- 51 -

Whilst the multipin assembly is drying, the appropriate $N\alpha$ -Fmoc amino acid pfp esters (10 equivalents calculated from the loading of each crown) and HOBt (10 equivalents) required for the particular round of coupling are accurately weighed into suitable containers. Alternatively, the appropriate $N\alpha$ -Fmoc amino acids (10 equivalents calculated from the loading of each crown), desired coupling agent e.g. HBTU (9.9 equivalents calculated from the loading of each crown) and activation eg HOBt (9.9 equivalents calculated from the loading of each crown), NMM (19.9 equivalents calculated from the loading of each crown) are accurately weighed into suitable containers.

The protected and activated Fmoc amino acid derivatives are then dissolved in DMF (500µl for each macrocrown, e.g. for 20 macrocrowns, 20 x 10eq x 7mmoles of derivative would be dissolved in 10 000µL DMF). The appropriate derivatives are then dispensed to the appropriate wells ready for commencement of the 'coupling cycle'. As a standard, coupling reactions are allowed to proceed for 2-6 hours (depending upon nature of coupling e.g. Ala to Ala 2 hours Val to Leu 6 hours.

When coupling Fmod amino-acid pentafluorophenyl esters, loeg of derivative in DMF (400 μ l) with bromophenol blue stock solution (100 μ l) is used for each magracrown. This allows monitoring of the progress of the adjlation

- 52 -

unreacted amine to a pale yellow upon completion of acylation.

Preparation of Bromophenol Blue Stock Solution

Bromophenol blue (20mg) is dissolved in DMF (50mL) and HOBt (10mg) added.

Washing Following Coupling

If a 20% piperidine/DMF deprotection is to immediately follow the coupling cycle, then the multipin assembly is briefly shaken to remove excess solvent washed consecutively with (200mL each), MeOH (5mins) and DMF (5mins) and deprotected (see above). If the multipin assembly is to be stored, then a full washing cycle consisting brief shaking then consecutive washes with (200mL each), DMF (5mins) and MeOH (5mins, 2mins, 2mins) is performed.

Acidolytic Mediated Cleavage of Peptide-Pin Assembly

Acid mediated sleavage protocols are strictly performed in a fume hood. A polystyrene 95 well plate (lmL / well) is labelled, then the tare weight measured to the nearest mg. Appropriate wells are then charged with a trifluoroacetic

- 53 ~

The multipin assembly is added, the entire construct covered in tin foil and left for 2hrs. The multipin assembly in then added to another polystyrene 96 well plate (1mL /well) containing trifluoroacetic acid / triethylsilane (95:5, v/v, $600\mu l$) (as above) for 5 mins.

The cleaved assembly is washed with DMF (200 μ L, 5mins), MeOH (200 μ L, 5mins), the spent crowns removed and discarded, the stems removed and washed by sonication in methanol (1hr, RT).

Work up of Cleaved Peptides

The primary polystyrene cleavage plate (2hr cleavage) and the secondary polystyrene plate (5min wash) (see above) are then placed in the SpeedVac and the solvents removed (minimum drying rate) for 90mins.

The contents of the secondary polystyrene plate (see above) are transferred to their corresponding wells on the primary plate using an acetomitrile / water / acetic acid [50:45:5, www.sclutton | x | 150µl | and the spent secondary plate discarded

Analysis of Products

and the second of the second o

- 54 -

0.1%ag trifluoroacetic acid, Solvent B = acetonitrile / 10%A. Gradient :- 10-90% B in A over 27mins, 250ml / min, 215nm UV detection. The individual substrates described below were prepared by the above methods and shown by HPLC-MS to be >95% with the correct mass.

Final Lyophilisation of Peptides

The primary polystyrene plate (plus the washings from the secondary plate) is covered with tin foil, held to the plate with an elastic band. A pin prick is placed in the foil directly above each well and the plate placed at -80°C for 30mins. The plate is then lyophilised on the 'Heto freeze drier' overnight. Where appropriate individual peptides were then weighed and dissolved to 10mM stock solutions in DMSO prior to biological screening. Alternatively the 20 component mixture is weighed and the peptide/20 component ratio is calculated.

Further coupling of amino acid residues was carried out according to the multipin approach described above. Whilst the multipin assembly was drying, the appropriate Nor-Proceaming acids 19 equivalents calculated from the loading of each grown. HATU coupling agent 3.3 equivalents calculated from the loading of each crown), HOAt catalyst (9.9 equivalents calculated from the loading of each grown and DIFEA (19.3 equivalents calculated from the

- 55 -

The protected N α -Fmoc amino acids and coupling agents were then dissolved in DMF (500 μl for each macrocrown) and activated by the addition of DIPEA. The appropriate derivatives were then dipensed to their appropriate wells and as standard coupling to each macro crown was allowed to proceed for 2 hours.

When coupling particularly hindered amino acid residues such as N-Methyl, $C\alpha$ -Methyl or unusual amino acids (whose coupling efficiency is unknown) the coupling reaction was repeated, as standard, for a further 2 hours.

Substrates for Der pI

Using the general techniques described above, the following compounds were prepared and assayed as potential substrates against *Der pI* purified as described above.

11	Peptide [SEQ ID Nos. 1-76]	Measured K_{τ} (μM)
	Abz-Val-Ala-Nie-Ser-TyrcNOj-Asp-NH,	<u>. j</u>
	H-Val-Ala-Nle-Ser-TyrMO,-Asp-NH,	NG
	H-Ala-Nle-Ser-Tyr(NO _i)-Asp-NH ₂	NS
	Ac-Val-Ala-Nle-Ser-Tyr(NC)-Asp-NH;	NS
***	H-Val-Ala-Nie-Ser-Tyr(NO::-NH;	NS
	the second of the second of the second	***

	Abz-Val-Ala-Nle-Ser-NH	NM
	Abz-Val-Ala-Nle-Ser-Phe-Asp-NH	MM
	Abz-Val-Ala-Nle-Ser-Tyr-Asp-NH ₂	NM
	Abz-Val-Ala-Nle-Ser-Ala-Asp-NH ₂	NM
F	Abz-Val-Ala-Nle-Ser-Lys-Asp-NH	NM
	Abz-Val-Ala-Nle-Ser-eAHA-Asp-NH,	NM
	Abz-Ala-Nle-Ser-Tyr(NO;) -Asp-NH	NM
	Abz-Nle-Ser-Tyr(NO ₂) -Asp-NH ₂	NS
	Bz-Val-Ala-Nle-Ser-Tyr(NO) -NH2	NM ^a
10	Bz(2-carboxy)-Val-Ala-Nle-Ser-Tyr(NO)-NH	MW.
	Chex-Val-Ala-Nie-Ser-Tyr(NO ₂)-NH ₂	NM^a
	n-Bu-Val-Ala-Nie-Ser-Tyr (NO_2) -NH $_2$	11Mª
	Piv-Val-Ala-Nle-Ser-Tyr(NU ₁)-NH ₂	ХМа
	Bz-Val-Ala-Nle-Ser-Tyr(NO:)-NH	NM^{a}
15	Abz-Val-Ala-Lys-Ser-Tyr $(\mathbb{N}\mathbb{I}_1)$ -Asp- $\mathbb{N}\mathbb{H}_1$	14
	Abz-Val-Ala-Gln-Ser-Tyr(NO ₁) -Asp-NH ₁	ϵ
	${\tt Abz-Val-Ala-Tnr-Ser-Tyr}\left({\tt NO_{0}}\right){\tt -Asp-NH_{0}}$	ϵ
	Abz-Val-Ala-hLeu-Ser-Tyr(NO ₂)-Asp-NH ₂	4
	Abn-Val-Ala-Cha-Ser-Tyr(No Asp-MH)	
*	Abm-Val-Ala-His-Ser-Tyr'N' '-Asp-NH	. 2.
	Abr-Val-Ala-AlH-Ser-Tyr(N) Asp-NH	212
	Abr-Val-Ala- <u>D</u> Nle-Ser-Tyr(NSy)-Asp-NH	NS
	Abz-Val-Ala-Bpyr-Ser-Tyr(NO,)-Asp-NH	10
	Abz-Val-Ala-Hym-Sen-Tym*MC +-Asn-NH	We

	Abz-Val-Tic-hLeu-Ser-Tyr(NO)-Asp-NH;	NS
	Abz-Val-ACH-hLeu-Ser-Tyr(N1)-Asp-NH	NS
	${\tt Abs-Val-Met(O)-hLeu-Ser-Tyr(NO_c)-Asp-NH_c}$	35
	Abn-Val-2Nal-hLeu-Ser-Tyr(NO _c)-Asp-NH _c	NS
ť,	Abz-Val-ACP-hLeu-Ser-Tyr(NO])-Asp-NH;	NS
	Abz-Val- ${ t D}$ Lys-hleu-Ser-Tyr $({ t MC}_2)$ -Asp- ${ t NH}_2$	NS
	Abz-Val- <u>D</u> Gln-hLeu-Ser-Tyr $(\mathbb{M}\mathbb{N}_1)$ -Asp-N \mathbb{H}_1	NS
	Abz-Val-3pyr-hLeu-Ser-Tyr (MO_7) -Asp-NH $_3$	NS
	Abz-Val-Cha-hleu-Ser-Tyr(NO:-Asp-NH:	NS
10	Abz- <u>D</u> Val-Ala-hLeu-Ser-Tyr NO _T)-Asp-NH	NS
	Abz-Gln-Ala-hLeu-Ser-Tyr(NA) Asp-NH	12
	Abz-Lys-Ala-hLeu-Ser-Tyr(NI;:-Asp-NH;	>15
	Abz-Tic-Ala-hLeu-Ser-Tyr($N\mathbb{O}_{\mathbb{P}^1}$ -Asp- $N\mathbb{H}_{\mathbb{P}}$	NS
	Abz-ACH-Ala-hLeu-Ser-Tyr(N $\mathbb{Q}_{\mathbb{Q}}$)-Asp-N \mathbb{H}_2	NS
1 5	Abz-Met(0)-Ala-hLeu-Ser-Tyr(NO $_{1}$)-Asp-NH $_{2}$	20
	Abz-3pyr-Ala-hLeu-Ser-Tyr(NC ₂)-Asp-NH ₂	>10
	Abz-2Nal-Ala-hLeu-Ser-Tyr(NI)-Asp-NH	15
	Abz-Leu-Ala-hLeu-Ser-Tyr (NO_1) -Asp-NH	18
	Abz-Cha-Ala-hLeu-Ser-Tyr(N)) -Asp-NH	
1.1	Abz-Bip-Ala-hleu-Ser-Tyr(NC) -Asp-NH	2.5
	Abz-Bip-Ala-hleu-Tyr-Tyr(N): -Asp-NH	Υ.
	Abz-Bip-Ala-hLeu-Leu-Tyr(NI)-Asp-NH	3.7
	Abz-Bip-Ala-hLeu-Lys-Tym(ND;)-Asp-NH	2
	Abz-Bip-Ala-hLeu-Asp-Tyr(NO:-Asp-NH	5 . 6

Apr Buy Alechaed Mer Termin Algeria

- 58 -

	Abz-Bip-Ala-hLeu-Thr-Tyr(NO;)-Asp-NH;	2.5
	Abz-Bip-Ala-hLeu-3pyr-Tyr(NO ₁)-Asp-NH ₂	4
	Abz-Bip-Ala-hLeu-Bu ^r Gly-Tyr(NO ₂)-Asp-NH ₂	4
	Abz-Bip-Ala-hLeu-Hyp-Tyr(NO;'-Asp-NH;	4
£	Abz-Phe-Val-Ala-Nle-Ser-Tyr(NO])-Asp-NH	NM
	Abz-3.Pyr-Val-Ala-Nle-Ser-Tyr(NO])-Asp-NH;	NM
	Abz-1.Naph-Val-Ala-Nle-Ser-Tyr(NO;)-Asp-NH	17
	Abz-2.Naph-Val-Ala-Nle-Ser-Tyr(NO ₀)-Asp-NH ₁	NM
	Abz-Tyr-Val-Ala-Nle-Ser-Tyr(NO ₂)-Asp-NH ₂	NM
14)	Abz-Bip-Val-Ala-Nle-Ser-Tyr $(\mathrm{N}\!\mathcal{C}_1)$ -Asp-NH $_2$	10
	Abz-Lys-Val-Ala-Nle-Ser-Tyr(NO_2)-Asp- NH_2	15
	${\tt Abz\text{-}Glu\text{-}Val\text{-}Ala\text{-}Nle\text{-}Ser\text{-}Tyr}({\tt NC}_2)\text{-}{\tt Asp\text{-}NH}_2$	20
	Abz-Leu-Val-Ala-Nle-Ser-Tyr(NO_2)-Asp- NH_2	NM
	Abz-Hyp-Val-Ala-Nle-Ser-Tyr(NO ₂)-Asp-NH ₂	NS

NS indicates that the peptide was not hydrolysed by Der pI.

NM indicates that the peptide was a substrate for Der pl, but the KL was not measured.

NM indicates that the peptide was a substrate for Per pl, and its cleavage was followed by HPLC-MS showing hydrolysis to occur between-Nle-Ser-.

Ranked in order of cleavage rate :-Fz > n-But > Piv > Bz(2-carboxy > Abz.

15

- 59 ~

Coupling of amino acid residues was carried out according to the multipin approach described above. Whilst the multipin assembly was drying, the appropriate $N\alpha\text{-Fmoc}$ amino acids (10 equivalents calculated from the loading of each crown), HATU coupling agent (9.9 equivalents calculated from the loading of each crown), HOAt catalyst (9.9 equivalents calculated from the loading of each crown) and DIPEA (19.9 equivalents calculated from the loading of each crown) were accurately weighed into suitable containers.

The protected N α -Fmoc amino acids and coupling agents were then dissolved in DMF (500 μ l for each macrocrown) and activated by the addition of DIPEA. The appropriate derivatives were then dispensed to their appropriate wells and standard coupling to each macrocrown was allowed to proceed for 2 hours.

When coupling particularly hindered amino acid residues such as N-Methyl, $C\alpha$ -Methyl or unusual amino acids (whose coupling efficiency is unknown) the coupling reaction was repeated, as standard, for a further 2 hours.

The following sequences were synthesized in this way:

Peptide Sequence [SEQ ID Nos. 77-85] Measured ${\rm Km}\{\mu{\rm M}$

- 60 -

Abz-Val-Ala-Aib-Ser-Tyr(NO])-Asp-NH	NS
Abz-Val-Aib-Nle-Ser-Tyr(NO])-Asp-NH;	ZZ
Abz-Deg-Ala-Nle-Ser-Tyr(NO;)-Asp-NH;	NS
nHu-D.Ser-D.Nle-D.Ala-D.Val-p.Aba-NH	NS
Br-Val-Ala-Statine-Ser-eAha-NH	RS
Abz-p.Aba-Nle-Ser-Tyr(NO;)-Asp-NH	RS
Ahz-Cmpi-Nle-Ser-Tyr(NC;)-Asp-NH;	NS

NS-Not Substrate: Not hydrolysed by Der pI
NM-Substrate but not measured: Substrate for Der pI but not measured.

Assay procedure

Each mixture of 20 compounds in the libraries of the apparatus described herein was screened at a concentration of 1.0 $\mu\rm M$ per compound in an assay against the cysteinyl protease Der pl. The most active wells were identified by the rate of emission of fluorescence at 420 nm when the samples were irradiated at 320 nm. An analysis of the two complementary libraries showed that the best substrates for the enzyme were:

Abn-E-C-D-E-Tyr(NO2)-Asp-NH2

Where

Leaving the couple of finance couple

2.0

- 61 -

E=Serine

The best substrate was:

[SEQ ID:1] Abz-Val-Ala-Nle-Ser-Tyr(NO₁)-Asp-NH₁

This compound was then resynthesised as a single component using the peptide synthesis methodology described herein. The $k_{\rm cat}/K_{\rm m}$ value for the pure substrate in the Dor pI assay was measured as 3.5x10⁴M 4 s , and was considered to be suitably high for use in a high throughput assay for the general screening of inhibitors of Der pI.

High throughput assay development

Plate assays were carried out in 96 well plate format, using 0.1 ug of Der pI per 100 μ L assay volume in each well and using 20 μ M of the substrate. All assays were performed in Assay Buffer (AB; 50 mM potassium phosphate, pH 8.25 containing lmM ethylenediaminetetraacetic acid EDTA and lmM dithicthreits. (ETT). The Der pl enzyme is pre-activated by addition of DTT and this in incubated at room temperature for 5 min. prior to initiation of the assay. As an example for the screening methodology, each well contains a 5 μ L of a 20 μ M solution of the test compound in DMSO, 10 μ L of a 200 μ M aqueous solution of the substrate. () and 85 μ L of for rT in AP in added to

of the Park Article Control of the C

- 62 -

machine. Kinetic measurements were carried out using a Hitachi F-4500 Fluorescence Spectrophotometer.

Synthesis of inhibitors of Der pI

The best substrate described above was shown by HPLC-mass spectroscopic analysis of the enzyme/ assay solution, to be cleaved between the Norleucine-Serine amide bond. Replacement of the terminal Abr group by a series of derivatives (e.g. Boc-, Pivaloyl, Benzoyl, and 2- carboxy-Benzoyl) affected substrate activity and specificity for the Der pl enzyme. With this knowledge of the P₁-P₁ cleavage site and for the P₄-P₁-P₁-P₁ motif, the compound Boc-Val-Ala-Leu-H, 4, was synthesised as shown in Scheme la, figure 15.

Attachment of a suitable Michael acceptor such as CH=CH-CO2Et, and -CH=CH-SO2 Ph to the motif (Scheme 2, figure 16), provided active inhibitors of the enzyme with apparent IC32 values of 50nM, 1000 nM and 100nM respectively.

Based on the sequence 4, a series of adyloxymethylketone compounds having active Ser FI inhibitor activity was prepared. Details of the preparation and activity of this novel group of dysteine protease inhibitor compounds are assussed in co-pending International Application

Example 1: Viral Protease Inhibitors and Substrates

- 53 -

Design of Depsipeptides

Another suitable bond in a compound of general formula (I), (II) or (III) according to the invention is an ester bond to form a depsipeptide. The incorporation of depsipeptide substrates aided the identification of substrates for low reactivity viral proteases, such as viral serine proteases.

For example, substrates of the general formula

 $\texttt{n} \cdot [\texttt{Abz-B}_{\texttt{lif}} - \texttt{C}_{\texttt{lif}} - \texttt{D}_{\texttt{lig}} y [\texttt{CCO}] - \texttt{E}_{\texttt{lig}} - \texttt{Tyr} (\texttt{NO}_{\texttt{f}}) - \texttt{Asp-NH}_{\texttt{f}}]$

were produced.

However, a significant proportion of viral proteases only recognise substrate sequences larger than those represented by the general structure above. It is well acknowledged that by the very nature of action of a viral protease (function is to cleave immature viral proteins into the mature viral package one automatically receives data concernion the natural substrate sites. Thus, the general structure above can be extended by introducing extra fixed amino-acids at appropriate sites. A logical extension would be to introduce the known P1-P1' cleavage site as the depsipeptide bond, then subsequently introduce the four various positions following the standard format

- 64 -

n [Abz-B₁₋₁₃-C₁₋₁₃-D₁₋₈-E₁₋₄-P1 y [COO] -F1' -Tyr (NC₁' -Asp-NH₂]

Furthermore, if these substrates again proved to be too small, one may use the known substrate sequences to introduce additional fixed positions. For instance, with Hepatitis NS3 protease it is known that the natural p6 position is a conserved acidic residue (aspartic or glutamic acid). Thus one could extend the above structure as detailed below.

n [Abz-P6-B₁₋₁₀-C₁₋₁₀-D₁₋₄-E₁₋₈-P1-y[CGO]-P1'-Tyr(NO₁)-Asp-NH₁]

The novel methodology described herein greatly faciltiates the invention of therapeutically useful proteolytic enzyme inhibitors and is commercially exploitable. This is because the best substrate motif for the proteolytic enzyme can be rapidly identified, and, since there exist in the literature a variety of ways for attaching motifs which react with the active site of a proteolytic enzyme, especially for aspartyl, metallo, serine and cysteinyl proteases, an enzyme inhibitor can be readily synthesised.

Moreover, amine bond replacements or transition state mimetics can be incorporated into the molecule, which would be especially useful for the inhibition of aspartyl or metallo proteases.

The method described also facilitates the rapid

for the detection of inhibitors of the particular proteolytic enzyme under scrutiny.

The presence of an inhibitor within the compound libraries described is readily detected by retreatment of the assay mixture with the most active fluorogenic substrate, which will allow the immediate measurement of the remaining proteolytic enzyme activity.

The invention provides self-decoding, combinatorial fluorogenic libraries, and it will greatly facilitate the design and invention of novel protease inhibitors because:

- i. The peptides of the library may have increased aqueous solubility in comparison to peptides containing similar and other fluorogenic and quencher groups.
- The peptides are stable to contaminating exopeptidases.
 - The self deconvolution method described, coupled with the continuous analysis of the rate of substrate cleavage data, allows the immediate identification of the most active binding motif contained within the substrate library.
 - The method allows for the rapid assessment of the ennyme assay mixture for any

- 66 -

Example 3: Kinase Inhibitors and Substrates

As previously indicated, the present invention is a broadly applicable methodology and is not limited to the use of FRET libraries to detect protease inhibitor/substrate compounds.

An example of another use of the invention is the detection of the interaction of a kinase with a substrate/inhibitor by monitoring radioactively labelled phosphorylation of compounds of complementary combinatorial libraries.

The Identification of a ZAP-70 Tyrosine Kinase Inhibitor

ZAP-70 is a intracellular kinase essential for T-cell signal transduction from the T-cell antigen receptor. Mutations resulting in non-functional ZAP-70 kinase have been observed in patients suffering from a severe combined immunodeficiency disease. Drug down-modulation of ZAP-70 kinase activity has therefore been seen by the major pharmaceutical companies as a potential method of down regulating the immune system in an antigen-independent manner. Such a drug could be used in both transplant treatment and as a therapy in autoimmune diseases.

Generation of MAP-70 kinase catalytic domain

See the second of the second o

- 67 -

recruitment to phosphorylated tyrosine residues on the T cell antigen receptor, but are unnecessary for protein kinase catalytic activity. Removal of the SH2 domains results in a constitutively active, stable ZAP-70 kinase. Specific oligonucleotide polymerase chain reaction (PCR) primers were used to amplify amino acids 308 to 619 and add a carboxy-terminal hexahistidine sequence using human Jurkat cDNA as a template. This amplicon was cloned into the baculoviral transfer vector pACUW51 (Pharmingen) and recombinant baculovirus produced by homologous recombination in Sf9 insect cells.

CatZAP(H5) Purification

Low titre stocks of mixed CatZAP-70 baculovirus were used to infect sub-confluent monolayers of Sf9 cells. Cells were harvested 3 days post-infection, washed in FBS and osmotic lysis performed immediately. Isolation of CatZAP($H_{\rm L}$) protein was carried out using cobalt column chelation chromatography, fractions eluted using 100 mM imidazole and kinase activity determined by "P transfer.

High throughput protein kinase screening assay

The interaction of the active protein kinase moiety with compounds of a combinatorial peptide library can be determined.

- 68 -

produced by CatZAP(H₃). The peptide library was synthesised with a positively charged tetra-lysine tag. After peptide incubation with the protein kinase and ATP, containing trace amounts of radiolabelled ["P-y]-ATP, the reaction mixture is passed through a negatively charged phosphotellulose membrane using a 96 well plate vacuum manifold system (Millipore). Positively charged peptide is bound by the membrane, whereas unincorporated [33P-y]-ATP is washed through. Scintillant is then applied to the membrane and the amount of phosphorylated peptide calculated from the level of radioactivity on the membrane, measured using a well plate scintillation counter. This type of assay can be readily applied to other protein kinase systems.

- The result of this screening assay is the identification of one or more protein kinase substrate motifs, which appear to have the common features of a negatively charged N-terminus and a conserved Pro at the C-terminus.
- For other protein tyrosine kinases, the existing
 libraries may provide some information, although it is
 envisaged that additional libraries will require to be
 built. For Ser/Thr kinases, the technology may be adapted
 by the use of a central Ser of Thr residue as the
 phosphosoceptor moiety.
- In addition, technology is being developed within the chemistry department which will allow for the generation

- 69 -

Abbreviations

Abbreviations used herein are as follows:

Abbreviations for amino acids and nomenclature of peptide structures follow the recommendations given in: IUPAC-IUB Commission on Biochemical Nomenclature, (J. Biol. Chem, 247, 937, 1971). All chiral amino acids are of the <u>L</u> configuration unless otherwise stated. Other abbreviations used are:

-Abu , b-amino butyric acid, : Abz, 2-amino benzoyl : ACH, 10 l-amino-1-carboxy-cyclohexane : ACP, 1-amino-1-carboxy-cyclopropane : Bip, Biphenylalanine : n-Bu, n-butoxycarbonyl : Bz, Benzoyl : Bz(2-carboxy), 2-carboxybenzoyl : Bu'Gly, tert-Butylglycyl : BOP, benzotriazoyl-oxy-tris-(dimethylamino)-phosphonium hexaflucrophosphate: Cha, cyclohexylalanine : Chex, 1-carboxycyclohexyl : eAHA, gamma aminohexanoyl : HBTU, Obenzotriazoyl-N,N,N',N'-tetramethyluronium hexaflucrophosphate : HOBt, 1-hydroxybenzotriazole : Hyp, trans-4-hydroxyprolinyl : hLeu, homoleucyl : 2Nal, 2-napthylalanine : NMM, N-methylmorphuline : Piv, pivoyl : Spyr, 3-pyridylalanine : Tic, 2-carboxytetrahydroguinolyl : Tyr(NO,), 3-nitrotyrosine.

DMF, dimethylformamide; Fmcc. fluorenylmethoxycarponyl;

antigate di indicata a la companya de la companya

chroman, Pbf, pentamethylbenzofuran, TBTU, 2-(1H-Benztrotriazole-1-yl)-1,1,1,3,3-tetramethyluronium tetrafluoroborate; Trt, Trityl.

p.Aba, 4-aminobenzoyl; Aib, Aminorsobutyric acid; Bip,
 Biphenylalanine; nBu, n-Butyl; Bz, Benzoyl; Cmpi,
 Carboxymethylpiperazine; Deg, Diethylglycine; DIPEA, N,N-Dirsopropyl-ethylamine; HATU, O-(7-azabezotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; HOAT, 1-hydroxy-7-azabenzotriazole; Naph, Naphthylalanine; 3.Pyr,
 3-pyridiylalanine; Tyr(NO), 3-nitro-tyrosine.

- 71

References

- I. Schlechter and A. Berger, Biochem. Biophys. Res. Commun., 1967, <u>27</u>, 157-162)
- A. Carmel et al., FEBS Lett., 1973, 30, 11.
- 9 3 M. M. Meldal and I. Svendsen, J. Chem. Soc. Perkin Trans.1, 1995, 1591-1596,
 - M. Meldal and K. Breddam, Anal. Biochem., 1991, 195, 141-147,
 - 5. T. Forster, Ann. Phys., 1948, <u>6</u>, 55.
- 6. A. Yaron, A. Carmel, and E. Katchalski-Katzir, Anal. Biochem. 1979, <u>95</u>, 228 and references therein.
 - 7. S.A. Latt et al., Anal. Biochem., 1972, <u>50</u>, 56.
 - 8. A. Persson et al., Anal. Biochem., 1977, <u>83</u>, 2,96.
 - 9. I. Yu Filppova et al., Bioorg. Khim., 1986, <u>12</u>, 1172.
- 15 10. J. Pohl et al., Anal. Biochem., 1987, <u>165</u>, 96.
 - S.J. Pollack et al., J. Am. Chem. Soc., 1989, <u>111</u>,
 5961.
 - E. K. Bratovanova and D.D. Petkov, Analytical Blochem., 1987, 142, 213.
- 13. G. Singh et al., G. Med. Chem., 1995, 38, 217-219 and references therein.
 - 14. M. Green et al. in `Innovation and Perspectives in Solid Phase Synthesis' (R. Epton Ed.: Mayflower Worldwide Ltd., Birmingham, UK. 1994, 238-244.

- 16. J. Berman et al., J. Biol. Chem., 1992, 267, 14341437.
- 17. H. Drevin, A, -T. Martin, J. Carlsson, S. Oscarsson, T. Lovgren, I. Hemmila and M. Kwiatkowski, WC89/10975, (5-5-1988)
- 18. A. J. Garman and N. G. Phillips, WO 94/28166 (27-5-1393)
- 13. G.T. Wang and E.D. Matayoshi, E.P. 428000 (3-11-1989)
- 20. G. A. Krafft, G. T. Wang and E.D. Matayoshi, EP 428000, (3-11-1989).
 - 21. G. R. Marshall and M. V. Toth, USP 5,164,300, (11-12-1990).
 - 22. G. R. Marshall and M. V. Toth, USP 5,011,910, (28-12-1989).
 - 23. K. T. Chapman, N. A. Thornberry, M. Maccoss, J. R. Weidner, R. A. Mumford, W. K. Hagmann, EP 528487A
 - 24. R. F. Haugland, WO 93/04077, (23-8-1991)
- 25. R. M. Valerio, A. M. Bray N. J. Maeji, Int. J. Feptide Protein Res., 1994, 44, 188-168
 - D. M. Bastor, N. J. Maegu and R. H. Abeles, Prop. natu. Acad. Sci., 1995, <u>32</u>, 6738-6742.
- 27. Solid Phase Peptide Synthesis', E. Atherton and R.
 C. Sheppard, IRL Press 1989.

Claims

- 1. Libraries of compounds which interact with an active moiety, the libraries comprising two orthogonal sets of mixtures of compounds in solution providing two complementary combinatorial libraries (referred to as primary and secondary libraries indexed in two dimensions for autodeconvolution, thereby allowing characterisation of an active motif in any group of compounds.
- 2. A complementary pair of compound libraries L1 and L2 according to claim 1 which constitute a set containing compounds having four variable groups B, C, D, E of formula:

-Bb-Cc-Dd-n(Ee) -

- giving b x c x d x e = Mn compounds in each library, there being a predetermined number (P1, P2) of mixtures each consisting of a predetermined number (Q1, Q2) of individual identifiable compounds in each library, wherein both L1 and L2 contain the same Mn compounds, but wherein any two compounds which are found together in one mixture of Q1 compounds of L1 are not found together in any one of the P2 mixtures of L2.
 - 3. A method of someoning for interaction of an active
- en and the season of the season to the season of the seaso

- 74 -

mixtures of L2 are each placed separately into individual wells of well plates, the well plates having wells arranged in a format adapted to allow deduction of a unique active compound formula from the presence of activity in one well of L1 and one well of L2.

- 4. A method according to claim 3 wherein the format complies with general deconvolution formulae in which:
- (i) $ns = \frac{Rp.Cp.}{Rs. Cs}$ Np
- 10 (ii) k = b.c.d.np.e
 - (iii) k = M.N.np
 - (iv) N = Rp.Cp
 - (v) = K = K.Rp.Cp.np
 - vi b.o.d.e = M.kj.Op
- is (vii) Cp.e = X
 - the second section of the second

- 75 -

np = number of primary plates

ns = number of secondary plates

Rp - number of primary rows

Rs = number of secondary rows

Cp = number of primary columns

Os - number of secondary columns

K = number of combinations of compounds

N = number of wells on a plate, and

X - number of compounds per well.

18 5. A method according to claim 4 wherein

np = 4

ns = 16

8 = qA

Rs - 4

1% Cp = 10

Cs = 5

K = 6400

N = 80

1 6. A method according to claim ? wherein the active monety is selected from the group consisting or enzymes.

- 76 -

- T. A method according to claim 6 wherein interaction of the active moiety with the compounds of the library is selected from the group consisting of the interaction of a substrate or inhibitor with an enzyme, the interaction of a ligand with a receptor, and the interaction of an antigen or antigenic epitope with an antibody.
- 8. A method according to claim 6 wherein the active moiety is selected from the group consisting of the tollowing enzyme classes:
- 10 Oxidoreductase
 - a) dehydrogenase
 - b) oxidase
 - c) peroxidase
 - d) catalase
- 19 2. Hydrolase
 - f) peptidase (proteolytic enzyme)
 - : Transferase
 - g aminotransferase
 - h) kinase
 - i glucosyltransferase

- 77 -

- 5. Isomerase
 - li racemase
 - m) mutase
- 6. Ligase
 - n) synthetase
 - o) carboxylase
- 9. A method according to claim 8 wherein the active molety is a protease selected from the group consisting of the following:
- 1. Aspartyl proteases, such as renin, HIV, cathepsin D and cathespin E.
 - 1. Metalloproteases, such as ECE, gelatinase A and B, collagenases, stromolysins.
 - c. Cysteinyl proteases, such as apopain, ICI, DerFl. cathepoin B, cathepsin K.
 - 4. Serine proteases, such as thrombin, factor VIIa, factor Na, elastase, trypsin.

- 78 -

- 10. A method according to claim 3 wherein the active moiety is a kinase and the interaction is with a kinase substrate or inhibitor.
- 11. A method according to claim 3 wherein the active moiety is a receptor and the interaction is with a ligand.
- 12. A method according to claim 3 wherein the active moiety is an antibody and the interaction is with an antigen or antigenic epitope.
- 13. A method according to claim 3 wherein the mixture of compounds in all of the wells of primary library L1 contain all variations of a first two variable groups and each well contains a unique pair of the two other variable groups; and wherein the mixture of compounds in all of the wells of secondary library L2 contain all variations of the two other variable groups and each well contains a unique pair of the first two variable groups.
 - 14. A method according to claim 13 wherein the primary library contains all variations of variable groups B and E, and unique pairs of variable groups C and D; and the secondary library contains all variations of variable groups C and D, and unique pairs of variable groups B and E.

graduates are contained the well of well places in a

- 79 .

format according to claim 3 or 4, applying an active moiety to the wells, screening for an interaction of the active moiety with one or more compounds of a mixture in a well of primary library L1 and secondary library L2 and deducing from the respective L1 and L2 well positions a unique active compound formula.

:	-	2	1 3	1 4	5	6	~	9	9	10	-:	122
2	Al	A2	A3	A4	A5	Αć	A7	8A	A9	A10		
3	B1	B2	B 3	B4	B5	B6	B7	B8	39	B10		
C	C1	C2	C 3	C4	C5	C6	g7	CS	C9	Clo		
=	21	בם	D3	D4	D5	D6	27	D8	D9	D10		
Ε	E1	E2	E 3	E-1	E 5	E6	Ξ7	ES	E9	E10		
1.	F1	F2	F3	F4	F5	F6	FT	FS	F9	F10		
G	G1	G2	G3	G4	G5	G6	GT	G8	G9	G10		
Н	H1	HC	HB	H4	H5	нє	H7	HB	HS	H10		

Figure 1

First Example of Library Matrix where n=1

Component Distribution in Plate 1, Library 1 (n=1)

	01	CC	C3	C4	CE.	T Cá	C_	C3	ı Ca	
2:	B _{1.13}	5 _{1 11}	B	B. 13	 		B ₁	E: ::		B _{1 10}
	Ξιι	E, :	E ₁₋₂	E .	$\mathbf{E}_{1,2}$	Ε1.5	E_{1} :	E	Ε _{3 2}	E ₁
D2	B _{1 10}	B: ::	Bill	Ξ: ::	B: 13			B ₁₋₁₀		B ₁₊₁₀
	Ε, ,	Ξ_{1+1}	E ₁₊₂	Ε1.5	Ε, :	E, ;	E _{1 1}	E ₁₊₁	Ξ: :	E ₁₋₁
D3	B: 10	B: ::	B ₁₋₁₃	B _{1 13}	∄1.13	Biric	B: ::	E; ;;		B _{1 10}
	E _{1.2}	E,.;	E _{1 2}	E_{1+1}	E ₁₊₂	E ₁₊₂	E.	E _{1 2}	$\mathbb{E}_{1\cdot 2}$	E ₁₂
D4	B _{1 10}	Biris	Birit	B _{1.10}	B ₁₊₁₀	B ₁₋₁₃	B _{1 15}	B ₁₋₁₃	B ₁₋₁₇	B: -: 3
-	Ξ, :	Eist	E ₁₈₂	Ξ	Ξ_{1+1}	E _{1 2}	Ε:.:	Ξ_{1}	Ε, ,	Ε, ,
DE	B _{1 10}	B _{1 10}	B _{1 13}	B _{1 13}	B _{i is}	B: 10	B ₁₊₁₀	B ₁₋₁₀		B ₁₋₁₂
	E; :	\mathbf{E}_{1+1}	$\mathbf{E}_{1,2}$	Ξ::	Ε _{1 0}	E_{1+3}	Ξ_{1}	$E_{1,1}$	E.	E ₁₋₂
l De	B _{1 10}	B _{1 13}	B. 13	B ₁₋₁₃	B: 18	B ₁₋₁₃		B ₁₊₁ -	Б	B _{1 10}
	Ξ	E	E _{i t}	Ε, , ,		Ε: :	E ₁	Ε	E	E
	B: 1+	Ξ: :	B. : !	Ε	Ē	B ₁₊₁	E:	E1	B; :.	B _{1 (1)}
<u></u>		Ē.,	Ξ	8.	E	E.	Ξ,	Ξ	Ξ: .	Ξ.
2-	ä _{l t}	Ē: :. ;	Ε	Ēį		B: ::	ĒŢ		Ε	Б;
	$E_{1,2}$	Ε ₁ .	E	$\mathbb{E}_{1,i}$	\mathbb{E}_{1+2}	E; ;	Ε, .	Ε, .	Ε, ;	E: .

Figure 2

Component Location in Plate 1, Library 2 (n=1).

	B1_	BC	B 3	B4	35	j B∙a	E	1 28	ВЭ	B10
E1	91 12	G. :	C _{1 13}	C: :,	-:	3. 1	3	Sy.	;	G: 15
	D ₁₋₂	D. 8	Divi	213	\mathcal{D}_{1} .	2::		D ₁₋₃	1	Ð ₁₋₁
EC	C1 19	C _{1 10}	C_{1+1}	€. 1.	C: .:	G; 13	S		C _{1 .0}	G ₁₊₁₃
	D ₁	D; :	D _{1.}	2:1:	D: :	D ₁₋₁	2:12	D; , ;	D: :	\mathbb{D}_{1+2}
		·								_
		i			· · · · · · · · · · · · · · · · · · ·					

Component Location in Plate 2, Library 2 (n=1...

	B1	B2	B 3	84	BS	BÇ	3-	B.8	ВĢ	B10
E1	C ₁₋₁₀	C1+15	C_{1-10}	C1 :2	G: 13	C ₁₊₁₉	C: 13	C ₁₋₁₀	010	Q_{1+13}
	D3-4	D ₃₋₄	D ₃₋₄	D , 4	D _{2.4}	D ₃₋₄	D _{1.1}	D., .	İ	D ₃₋₄
E2	C ₁₋₁₀	C_{1+10}	C ₁₋₁₀	C ₁₋₁₀	C _{1 10}	C_{1-10}	C_{1-13}	\mathbb{C}_{1-10}		
	D ₃₋₄	D_{3+4}	D ₃₋₄	D ₃₊₄	D ₃ ,	Die	D	D ₃₊₄	D:-4	D ₃₋₄
			!							
		- !								
		-								

Component Location in Plate 3, Library 2 (n=1).

	B1	EC.	B 3	Ε÷	35	Вé	E.	E 8	БЭ	E13
E.	J 71-10	C ₁₊₁₁	C ₁₊₁₀	C,	C _{1 .5}	91-15	G ₁₈₁₃	'C: ::	C. 15	91.10
	2₅	$D_{r+\delta}$	D _{s d}	D: , ,;	D _{5.4}	D _{4 _}	Ds.6	Der	D _{s e}	D _{a-k}
E2	C ₁₋₁₀	C ₁₋₁₃	C: 10	C ₁₊₁₀	C_{1+10}	C _{1 10}	$C_{1-1,3}$	C ₁₊₁₀	C: 19	C ₁₊₁₀
	ا د د د	D_{S-n}	D4-6	D ₅₋₆	D ₅₋₄	D _{5.5}	Dsid	D ₅₋₆	D 5-6	D _{e = 5}
:										
,										İ

Component Location in Plate 4, Library 2 (n=1).

	B1	BO	B 3	B4	35	Вé] B ⁻	B8	B9	B10
E1	C_{1-10}	C ₁₊₁₃	C _{1 13}	G ₁₋₁₃	9:4:3	G _{1 1}	C _{1 10}	C ₁₋₁₃	C: 15	C. 1.
	Day	D		Į.					D	i
E2	C ₁₋₁₀	C:-::		1	1		G: 10			G _{1 10}
	D6	Daya					D		İ	D
-										
! !										
								<u>. </u>		

7,17

Example Library where n=4

Component Distribution in Plate 1, Library 1 (n=4)

ĺ		1 00	, 23	C4	1 0-	1 2 :				
				C=	C5	CS	<u> </u>	-28	L C3	Clo
Di	Β _{1.1.}	B: ::	B ₁₋₁₀	B ₁₋₁₀	B: 10	E:-:::	B:	B:	B _{1 + 10}	B ₁₋₁₀
	Ε _{1 5}	E: :	Eist	Ξ _{1/12}	Ε, ,	Eng	E	E	E ₁₉₂	E _{1 a}
D2	B ₁₋₁₀	B _{1 15}	B ₁₋₁₀	E ₁₋₁₀	B _{1 13}	E ₁₊₁₀	E: ::	B ₁₋₁₃	В	B _{1 10}
	E ₁₋₂	E_{1-1}	E ₁₋₂	Ε ₁₋₂	$\Xi_{1,1}$	Ε: :	Ξ1:	Ξ::	E: -:	E_{1+2}
D3	B ₁₋₁₀	B _{1 :0}	B ₁₋₁₀	B _{1 10}	Biris	B ₁₊₁₀	B _{1 10}	B ₁₊₁₅	B ₁₊₁₀	B ₁₋₁₀
	E ₁₋₂	E _{1 2}	Ξ ₁₋₃	E_{1}	E _{1 2}	Ē ₁₋₂	Ε	Ε: :	E _{1 2}	$E_{1,2}$
D4	B ₁₋₁₀	5 ₁₋₁₀	∃ ₁₋₁₀	B _{1 10}	B _{1 10}	B ₁₋₁₅	B_{1+10}	B ₁₋₁₀	B _{1 13}	B _{1 10}
	E ₁₋₂	Etat	Ε ₁₋₂	E_{1-1}	\mathbf{E}_{1} :	E_{1+1}	\mathbf{E}_1	$\mathbb{E}_{1,2}$	E_{1-2}	Ξ_{1} :
D5	B _{1 10}	B _{1.10}	B_{1-1}	B ₁₋₁₀	B _{1×10}	B ₁₊₁₃	Biris	B _{1 10}	Ξ _{1-1:}	B ₁₋₁₀
	Ε _{1.7}	Ξ	$\Xi_{1,2}$	Ξ_{1+2}	Ειι	E	Ξ; .	$\mathbf{E}_{1:1}$	Ε;	E: :
L DF	B; ;-	Ê _i .	Ē: ;;	E ₁₈₁₃	Ε, :	Ε	Ξ+	Ξ	B _{1, 11}	Ext
	E: .		Ξ::	Ε.,	Ξ	Ξ.		=:	Ξ	Ξ
	Ē*	Ε	- ;	E	B ₁ .	E	Ξ,	B: :	Ξ	Ε
	\mathbf{E}_{1+2}	Ξ. :	Ett	Ξ ₁₊₂	E: .	\mathbf{E}_{1}	Ξ::	E	E	Ξ. :
DS	B: 10	B: ::	B ₁₋₁	B _{1/10}	B ₁₋₁₂	B; ;;	В: :::	Ε1	E: 1,	B _{1.1} .
	Ξ::	Ξķ	E _{1 1} 1	Ξ,.	Ξί.	Ε; :	Ξ	E.	Ξ,	Ē

8/17

Component Location in Plate 2, Library 1 (n=4)

	C1	CC	C 3	C4	CS	C6	C7	CS	C9	C10
בם	B: 10	B	Ε	Β	5	B	B ₁ :-	E ₁	B	B
	Ξ3-4	E3-4	E	E3.4	Ξ.,	E, .	Ε	Ε	Ε3.4	Ε
D2	B ₁₋₁₀	∃1-13	Б:-:3	B _{1 13}	B ₁₋₁₃ -	B ₁₋₁₀	B ₁₉₋₁₋₂	B ₁₋₁₀	B _{1 10}	B ₁₊₁₀
	Ξ3-4	E 3 - 4	E3-4	E3-,	Ε,	Ξ.,	Ξ,.,	E3-4	E,	Ξ1-4
D3	B ₁₊₁₀	B_{1+10}	B _{1 10}	B _{1 10}	B: ::	B _{1 16}	B ₁₋₁₃	B: 10	B ₁₊₁₀	Biris
	Ξ3.4	E ₃₋₄	E3-4	Ξ3-4	E 7-4	Ε;.4	E3-4	E,	Ε3-4	Ξ, ,
D4	B ₁₋₁₀	B ₁₋₁₃	B ₁₋₁₀	B ₁₊₁₀	B ₁₊₁₀	B ₁₋₁₅	B ₁₋₁₃	B ₁₋₁₀	B ₁₋₁₃	B ₁₊₁₀
	Ξ3-4	E ₃₋₄	E3-4	E ₃₋₄	E3-4	Ε3.4	Ξ3-4	E3-4	Ξ3-4	E
D5	B _{1 10}	B ₁₊₁₃	В ₁₋₁₀	3 ₁₋₁₀	B ₁₋₁₀	B ₁₋₁₀	B ₁₋₁₀	B ₁₊₁₀	B ₁₋₁₀	B ₁₋₁₀
	E ₃₊₄	E ₃₋₄	E ₃₋₁	E;.4	Ξ_{3-4}	Ε,,,	Ε:.4	E3-4	E, ,	E. 4
D6	B_{t+10}	B ₁₋₁₃	B ₁₋₁₃	B_{1-10}	B ₁₊₁₀	B _{:-13}	B; ;;	B ₁₋₁₀	Bilis	E _{1 13}
	Ξ1-4	Ξ3-4	Ē3-4	E ₃₋₄	E; ,	Ε,	Ε4	E ₃₋₄	E ₃₋₄	E3.4
50	B ; .	Ξ	B: .: -	E- 12	Ξ: :	B _{1 1} +	B ₁₊₁ +	B: ::	B _{1 1.}	Bill
	Ξ.,	Ε,	Ξ.,	Ξ	Ξ.,	Ξ;;	Ξ	Ξ	Ξ.,	Ξ; ,
	Ξ:::	E: :.	Ε	ā,	Ξ	B	3:::	Ξ	Ē	E
	Ε:-4	E	Ξ: ,	Ε,	E	Ξ.,	Ε	E.,	E; ,	Ε, ,

Figure 8

Component Location in Plate 3, Library 1 (n=4)

	C1	C 2	C3	C÷	C5	C 6	-C7	C8	C9	1010
Di	5,.13	B ₁₇₁₅	B _{1 10}	B ₁₊₁₃	B _{1.10}	B ₁₋₁₀	B ₁₋₁₀	B ₁₋₁₀	E _{1 15}	B _{1 13}
	Ε,,,	E ₅	E	E,	 E _g	İ	 Ε	! E	Ξ	E
D2	B ₁₊₁₃	B _{1 15}	B ₁₋₁₀	B _{1 10}	B: ::	B _{1.13}	B _{1 12}		B _{1,1}	B ₁₋₁₀
	Ε ₅₋₃	E ₅₋₅	E _{5%4}	Ξ,.,	Ε.,	Ē.,;	Ξ, ,	Esse	Ες	E
D3	B ₁₋₁₃	B: ::	B _{1 10}	B _{1 10}	B _{1 13}	B ₁₋₁₀	B _{1 10}	B ₁₋₁₀	Birts	B ₁₋₁₃
	£5	Est	Ε,.,	Ε,.,	Ε		Está	Ξ,,,	Egus	E ₅₋₆
D4	B ₁₋₁₅	B ₁₊₁₃	B _{1 13}	B _{1 10}	B ₁₋₁₀	B ₁₊₁₃	B _{ivia}		E ₁₋₁₀	B: 10
	E ₅₋₆	E ₅₋₅	Ε ₅ .,	$\Xi_{\S_{-1}}$	Ξ_{95}	E _{5-d}	Ξ_{s+c}	E _{5.6}	E ₅₅	E
25	B ₁₊₁₀	B ₁₋₁₀	B ₁₋₁₀	B ₁₋₁₀	B ₁₊₁₁	B: :0	B _{1 10}		B ₁₋₁₃	B _{1 13}
	Ξ5	Ξ_{S+4}	Esin	Ξ4.5	Ξ	E.,,		E ₅₋₅	Ξ_{5+6}	E
26	B ₁₋₁₀	B ₁₋₁₃	B _{1 13}	B ₁₋₁₀		B ₁₊₁₀	B ₁₋₁₅	B ₁₋₁₀	B ₁₋₁₃	B ₁₋₁₀
	E _{s-6}	E ₅₋₆	Egan	Es.	E., ,	E	E _{5.5}	Ξ,-,	E ₅₋₆	Ec.
27	B ₁₋₁₀	Ε,	B ₁₊₁₀	Ξ; ;;	B; ;∈	B: ::	E: ::	B ₁₋₁₀	В: :	B: 10
	Ε, ,	Ε, .	Ξ.,	Ξ	Ξ.,	Ε, .	Ε,	E _{f.}	Ξ_{s}	Ē.
I Z a	E: :	B _t ·	∃ . ₁ :	Ë	Ē: .	Ε	Ξ::	Ë	E,	B: :
	Ξξ	Ξ	Ξ	Ξ,	Ea.,	ĒĻ.	Ε	Ξ.,	Ξ	Έ ¹

Figure 9

10/17

Component Location in Plate 4. Library 1 $|\cdot|n=4\rangle$.

	cı	en	ga .	C÷	i cs	G6	T =-	C8	T 29	220
01	B _{1 1} ,	Bisis	B ₁₊₁₁	В	B _{1 1}	Bisio	B _{1 13}		B _{1 .5}	3: :::
	E	E- ;	E	Ξ- a	Ξ- ,	E	E.	E,	Ξ	Ξ,
D2	3::::	\mathbf{S}_{111}	B: 10	3::::		B _{1 1} .	B _{1 1}	B _{1 13}	B _{1.15}	B _{1.11}
	Ε	Ε	Ε	E.	E-	i	i	E- i	E	Ξ
D3	Ξ;,	Eq. :	B ₁₊₁₃	B; ;q;	Ε,	5 _{1 13}	B ₁₊₁ ;		B ₁₋₁₀	B: :0
	Ξ	Ξ:	Ξ.,	Ε.,	E- :	1	Ξ-,	:		E.,
D4	B ₁₋₁₀	$B_{1+1:1}$	B _{1 10}	B ₁₋₁₃	Ē _{1 10} 0	B ₁₊₁₀	B _{1 150}		B _{1 10}	5 ₁₋₁₀
	Ξ;	E	E	Ξriā	:	Ξ-γ-			E3	Ea
D5	B ₁₋₁₀	B ₁₋₁₃			B ₁₋₁₀		B ₁₄₁₀	B _{1 10}		B ₁₋₁₀
	Ε:	E.,	Ξ	Ε, ,	Ξ	E _{7.4}	E,	Ε		E-la
Dé	E _{1,12}	Biris	В ₁₋₁₀			E _{1 10}	B ₁₊₁₀	B ₁₋₁₀	B ₁₅	B; ;0
	Ξ-,,	Ε	Ξ3	Ε.,	Ξ- :	Ξ	Ξ	E	Ε,	Ε
D7i	B ₁	B: :~	B _{1 10}	B _{1 13}	B: ::	B ₁₋₁₀	B ₁₋₁₀	B ₁₊₁₃	B ₁₋₁₁	B ₁₊₁₀
	Ξ-,	Ε	E	Ξ	i		t	E	E.,	E.,
] = =	E	E _{t to}	B _{1 1}	B; ; !	B: :,	Eş.	B	E: :	E.	F :
	Ξ-	E-	Ξ	Ē	Ξ. !	!	=	Ξ.,	Ξ,	Ē

Figure 10

Component Location in Plate 1, Library 2 (n=4).

	E1	B2	В3	B4	E5	Bé	27	Be	B9	B10
El	C	C _{1 10}	91 13	C _{1.15}	Ciri	C:		: 2: :_	0, 1,	=1.1
	5	Die	=:	D ₁₋₂	D: :		D	D _{1 1}		D_{1}
E2	C ₁₋₁₃	$Q_{1+1:}$	C _{1,10}	C ₁₊₁₃	C _{1 ib}	C1+19	G1 13		C: 13	C _{1.12}
	D_{1+2}	\mathbb{D}_{1-i}	D ₁₋₂	D _{i,i}	Divi	\mathbb{D}_{1+2}	D: 2	D: :	D_{1-2}	D _{1.1}
E3	C:-10	C_{1+10}	C ₁₋₁₀	C ₁₋₁₀	C ₁₋₁₀	C: :2	C1411	C ₁₊₁₀	C _{1 10}	C: ::
	D_{1-2}	$D_{1/2}$	D_{1-2}	D ₁₋₂	D _{1 2}	D_{1} :	J ₁₋₂	D_{1}	D_{1+2}	5:12
E-4	C ₁₋₁₀	C : 16	C ₁₊₁₅	C ₁₋₁₀	C ₁₊₁₀	9,.10	C _{1 10}	Cirib	C ₁₋₁₀	-C ₁₋₁₀
	D _{1.7}	D_{1} :	Dist	\mathbb{D}_{1-2}	$\mathfrak{D}_{1,1}$	D: 2	D: .	Dis	Ξ;	Dist
E 5	C ₁₋₁₀	C_{1}	C_{1+10}	O ₁₋₁₀	C_{1-10}	G _{1 11}	9. 13	$C_{1+1,i}$	C _{1 13}	Califo
	D_{143}	$D_{1:1}$	D ₁	D _{i i}	$\mathfrak{D}_{1,3}$	$D_{1,1}$	D: :	D _{i i}	Ľ.	D _i
Εć	C _{1/10}	C ₁₋₁₀	C _{1 + 10}	C ₁₋₁₀	C_{1-10}	C: ::	01 13	C_{1+1}	C: 10	C _{1 10}
	<u>-</u> : .	D: .	D	5 ;	\mathbb{D}_1	- 2:	÷ ;	Ξ	<u>-</u> , 3	5 _{1.}
Ξ-	- Ci ii		Ç _{1 13}	71.1,	3	2 ₀ :	÷,(1:	Ē.	- 1 100	5 : :
	=	-	<u> </u>	<u>-</u> .	=:	D ₁₁ = 1	= -	£;.		2.
ES	9: 10	C_1	71-15	91.17	Z ₁₋₁₃	G: 17	31.1.		-1.	Z: :- ;
	\mathbb{D}_{1+2}	D: .	D _{i.f}	D: 4	D: :	5:.:	: :	D _{1.7}	2 ;	Ξ_1

Component Location in Plate 2, Library 2 \n=4..

	Bl	BC	В3	B4	B5	. Bé	В7	B8	В9	B10
El	C ₁₋₁₀	Citt	F: 19	9,3	9	C _{1 10}	C ₁₋₁₅	G _{1 10}	G _{1 10}	C ₁₋₁₀
	-3.4	\mathbb{D}_{5-4}	D _f .,	D _{1.4}	! 	E: :	 D ₁₋₄	D.,.4	D ₁₋₄	D ₁
E2	C ₁₊₁₀	C ₁₊₁₀	C ₁₊₁₀	C ₁₊₁ ,	C: : \	G: ::	C1.18	Civis	C _{1 × 15}	C ₁₋₁₀
	5,.,	Ea 4	D ₃₋₄	D ₃₋₄	D ₃₊₄	E ₃₊₄	D;.4	D ₃₋₄	D _{3.4}	D ₃₋₄
E3	C_{1-1p}	C ₁ 13	G _{1 10}	C_{1-10}	C::::	C_{1-10}	C_{1-13}	C ₁₊₁₅	C ₁₋₁₀	C ₁₋₁₀
	- -:-4	D,,4	D ₃₋₄	D _{1.4}	D	D_{i+1}	D	D ₂₋₄	D _{3.4}	D,
Ξ4	Civia	C_{2+12}	C_{1-13}	Civit	C: :;	C_{1+12}	91.11	C_{1+12}	C ₁₋₁₀	9:410
	D 9-4	D:.4	D ₃₋₄	Es.4	J.,,	D _{3.4}	! بار	D _{3 4}	D ₃₋₄	D ₃₋₄
ES	C ₁₋₁₀	C ₁₊₁₃	C_{1-10}	Cirr	C_{1+1}	C _{1 13}		C ₁₋₁₅		C1 10
		Ξ.,	- :	l	D		= ,		Ξ.,	
E6	-:	- :	71	-17.	- ;	-1 :	Z	÷ ;	Z	5. ×
!	Ξ.	2	Συ.	Ē . ;	_		<u>.</u>		<u>.</u>	=
En	C	5. 10	C _{1 12}	-: : .	- 1 l		C1.13	C	ĵ l	3
	Ξ3.4	2	J.,.,	D.,		Ξ, ,	D.,	Z: .	D _{3.} ,	D.,
Ε÷	- ·	Con d		Ĩ	7. 1	2	5	2	C ₁ 1 · 1	2
	- 1	-	-	-	i		- i	_		

Component Location in Plate 3, Library 2 (n=4).

· — — —	Bl	B2	, B3	34	B5	Bé	=-	Ba	Ba	7 7 1 2
E1	C ₁₊₁₀	C _{1 10}					 			B10
			C1.16	G ₁₄₁₀	$C_{1,\frac{1}{4}}$	C: ::	C: -:	C. 13	C: :#	C1+10
	D _{5.6}	Dese	D _{5 -}	Davis	D ₅₋₄	D:	5, .	Deli	I De g	D _s .
E2	C ₁₋₁₀	C ₁₋₁₀	C ₁₊₁₅	G ₁₊₁₀	$C_{1,13}$	Ç ₁₊₁₅	Circi	C ₁₊₁₂	C ₁₋₁₀	C _{1 10}
	D ₅₋₆	D ₅₋₄	D_{s+s}	<u> </u>	D _g ::	□ 5 - 4	D ₅₋₅	D _E	D. s	Deng
E3	C ₁₋₁₀	C ₁₋₁₀	C ₁₋₁₀	C ₁₋₁₀	C_{1-10}	C:-13	C_{1-12}	C ₁₋₁₀	C _{1 10}	C ₁₋₁₀
	D_{5-6}	D _{fre}	D_{a} ,	- -3-4	\mathbb{D}_{s+1}	D ₅₋ ,	D: . ;	D., ,	D _{5 -5}	D _{s14}
E4	C ₁₋₁₀	$C_{1\times 12}$	Cirio	91.11	C_{1}	C: :3	C_{1+13}	C ₁₋₁₃	Ĵ _{: 10}	C ₁₋₁₀
	D ₅₋₆	5:	\mathbb{D}_{n-2}	D _{1-d}	D ₅ , _	D _{8.5}	D 5	D _e .	D ₆₋₅	25.5
E5	C ₁₊₁₀	C_{1-13}	C: 10	C: :5	C ₁₋₁₃	Cirii	C _i ,	C ₁₋₁₂	9: 13	C: ::
	D	Die.	D= ,	Ēr .	E _{dea}	2.	2-	I		<u> </u>
Ed	21.1.	C_{1}	3: :		÷: :	21:	C	Ĉ.		
	Dyna	E	<u>-</u>	Ξ	5 ·		Ξ.,	_	De.	
Ξ	2:::0	J. 13	2: : [J: ;:	5, 9	3	C: ;	J. 1.		·
-	D ₅	D.,	Date	<u> </u>	D.,,	D=1.7	2,	E	5	D
Ea	Civia	3: .:-	C: : -	9: ::	J	Z ₁ .	J	S	2::-	C _{1 12}
	E	5	2 , , 1	<u>-</u>	- . 1	<u>:</u>	2		<u> </u>	T -

1-/17

Component Location in Plate 4, Library 2 (n=4).

	B1	BC.	вз	B4	B5	B6	Б~	8.8	BS	B10
Ξl	C. 13	C	C	J. 15	0,	C	G	C	C	C _{1 13}
			2,						D	D,
E2	C ₁₊₁₀		j 0; :						-	Circ
	27.3	D,	D	Dava	D ;	D,	D-95	12.		D
E3	C ₁₊₁₀		C: 13						C: ::	C _{1 10}
	D8	D.,	D	5,	D,	D a	Da.,	Da	\square_{7+8}	
E4	C1-10		C1 10						:	C ₁₋₁₀
	D8	D _{7, 3}	D 4	D-18	D	D :	Days	 D _{F-8}	i	D ₇₋₈
E5			C_{1+10}							C ₁₊₁₀
			<u> </u>							D-14
Εć			G _{1 10}					C _{1 10}		C ₁₋₁₀
	Da	D- ;	D,	Da	I	D.,	D-14	D- g		D-18
E^	2:.;.	C1 :	, G : 15	: : :	C: :*	C:	G	= 13	G ₁₋₁₀	
	- a	D - 1	Ξ.,.		,					D
ΞĒ			E. :							
	4		=	1			,		Ī	D- 4

Figure 14.

Figure 15

igure 16

Figure 17

manage in a

onal Application No

PCT/GB 97/01158

A CLASSIFICATION OF SUBJECT MATTER IPC 6 CO7K1/04 GOIN G01N33/68

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 CO7K GO1N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	M. MELDAL ET AL.: "Portion-mixing peptide libraries of quenched fluorogenic substrates for complete subsite mapping of endoprotease specificity" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 91, no. 8, 12 April 1994, WASHINGTON US, pages 3314-3318, XP002042095 see page 3317, right-hand column, paragraph 2 - page 3318, right-hand column, paragraph 1	1,2
Α	WO 95 34575 A (SYNTHETIC PEPTIDES INC) 21 December 1995 see the whole document	1,3,9-12
	-/	

Χ Further documents are listed in the continuation of box C Χ Patent family members are listed in annex

- Special categories of cited documents
- "A" document defining the general state of the art which is not considered to be of particular relevance.
- *E* earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled

30 September 1997

· j. 11 J.

Name and mailing address of the ISA

European Patent Office, P.P. 5818 Patentiaan 2

A COM

Authorized officer

Inte Jonal Application No

PCT/GB 97/01158

Category	Citation of document with indication where appropriate of the columnation	
	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
A	WO 94 05394 A (ARRIS PHARMACEUTICAL CORP) 17 March 1994 see claims; examples	1,3,9-12
А	B. Déprez et al.: Self-decifering, orthogonal combinatorial libraries of soluble organic compounds: Discovery of a potent V2 vasopressin antagonist in: XP002042096 Peptides 1994 Proceedings of the Twenty-Third European Symposium September 4-10, 1994, Braga, Portugal ed. HLS Maia; pub. ESCOM, Leiden, NL, 1995, pages 455-456	1,3,11
P,X	A.F. SPATOLA AND Y. CROZET: "Rediscovering an Endothelin Antagonist (BQ-123): A Self-Deconvoluting Cyclic Pentapeptide Library" JOURNAL OF MEDICINAL CHEMISTRY, vol. 39, no. 19, 13 September 1996, WASHINGTON US, pages 3842-3846, XP002042200 see page 3844, left-hand column, paragraph 4; table 1	1,3

INTERNATIONAL SEARCH REPORT

The Electric Con-

Inte donal Application No

PCT/GB 97/01158

Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
WO 9534575 A	21-12-95	AU 2805995 A	05-01-96	
WO 9405394 A	17-03-94	US 5585275 A US 5591646 A AU 4844593 A AU 6393994 A JP 8507602 T WO 9419694 A	17-12-96 07-01-97 29-03-94 14-09-94 13-08-96 01-09-94	