CNN不具有尺度,旋转,平移不变性,但是通过加上spatial transformer layer可以使之具有一定程度的上述性质。

spatial transformer其实就是对原始图像进行了一个仿射变换。输入的是原始图像,输出的是仿射变换的6个参数(也可以是4个)。

ST不只是可以用在卷积层之前,对原始图像进行处理,还可以用在每个filter之后,对feature map进行处理。

Spatial Transformer

Ref: Max Jaderberg, Karen Simonyan, Andrew Zisserman, Koray Kavukcuoglu, "Spatial Transformer Networks", NIPS, 2015

CNN is not invariant to scaling and rotation

端到端指的就是输入的是原始数据,输出的是结果。而非端到端指的是原始数据要通过人工提取特征,再喂给网络 得到结果。

How to transform an image/feature map

Layer I-1

a_{11}^{l-1}	a_{12}^{l-1}	a_{13}^{l-1}
a_{21}^{l-1}	a_{22}^{l-1}	a_{23}^{l-1}
a_{31}^{l-1}	a_{32}^{l-1}	a_{33}^{l-1}

Spatial Transformer Layer

Layer l

a_{11}^l	a_{12}^l	a_{13}^l		
a_{21}^l	a_{22}^l	a_{23}^l		
a_{31}^l	a_{32}^l	a_{33}^l		

General layer:
$$a_{nm}^{l} = \sum_{i=1}^{3} \sum_{j=1}^{3} w_{nm,ij}^{l} a_{ij}^{l-1}$$

If we want translate as above: $a_{nm}^l = a_{(n-1)m}^{l-1}$

$$w_{nm,ij}^l = 1$$
 if $i = n - 1, j = m$ $w_{nm,ij}^l = 0$ otherwise

How to transform an image/feature map

Image Transformation

Expansion, Compression, Translation

Image Transformation

Rotation

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} e \\ f \end{bmatrix}$$
 6 parameters to describe the affine transformation lindex of layer I

6 parameters to describe

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
 6 parameters to describe the affine transformation lindex of layer I

6 parameters to describe

6 parameters to describe the affine transformation

What is the problem?

直接对小数结果进行四舍五入,那么如果对输入做一点变化,那么结果大概率保持不变,那么就无法进行GD。 所以采用插值法。

Interpolation

Now we can use gradient descent

 a_{12}^l

6 parameters to describe the affine transformation

Street View House Number

	Size	
Model	64px	128px
Maxout CNN [10]	4.0	-
CNN (ours)	4.0	5.6
DRAM* [1]	3.9	4.5
ST-CNN Single	3.7	3.9
Multi	3.6	3.9

Single: one transformation layer Multi: many transformation layer

Brid Recognition

Model	
Cimpoi '15 [4]	66.7
Zhang '14 [30]	74.9
Branson '14 [2]	75.7
Lin '15 [20]	80.9
Simon '15 [24]	81.0
CNN (ours) 224px	82.3
$2 \times ST$ -CNN 224px	83.1
$2\times$ ST-CNN 448px	83.9
$4\times$ ST-CNN 448 px	84.1

11

Highway Network & Grid LSTM

Feedforward v.s. Recurrent

- 1. Feedforward network does not have input at each step
- 2. Feedforward network has different parameters for each layer

Applying gated structure in feedforward network

GRU → Highway Network

No input x^t at each step

No output y^t at each step

a^{t-1} is the output of the (t-1)-th layer

a^t is the output of the t-th layer

No reset gate

Highway Network

$h' = \sigma(Wa^{t-1})$ $z = \sigma(W'a^{t-1})$ $a^{t} = z \odot a^{t-1} + (1-z) \odot h$

Highway Network

Training Very Deep Networks https://arxiv.org/pdf/1507.0622 8v2.pdf

Residual Network

Deep Residual Learning for Image Recognition http://arxiv.org/abs/1512.03385

Highway Network

Grid LSTM

Grid LSTM

3D Grid LSTM

Recursive Structure

Application: Sentiment Analysis

syntactic structure

How to do it is out of the scope

word sequence:

not

very

good

By composing the two meaning, what should the meaning be.

V("not")

not

Dimension of word vector = |Z|

Input: 2 X |Z|, output: |Z|

syntactic structure

 $V(w_A w_B) \neq V(w_A) + V(w_B)$

"not": neutral

"good": positive

"not good": negative

V("not")

not

very

syntactic structure

good

 $V(w_A w_B) \neq V(w_A) + V(w_B)$

"棒": positive

"好棒": positive

"好棒棒": negative

syntactic structure

Recursive Neural Tensor Network

Experiments

5-class sentiment classification (-- , - , 0 , + , ++)

Demo: http://nlp.stanford.edu:8080/sentiment/rntnDemo.html

Experiments

Socher, Richard, et al. "Recursive deep models for semantic compositionality over a sentiment treebank." *Proceedings of the conference on empirical methods in natural language processing (EMNLP)*. Vol. 1631. 2013.

Matrix-Vector Recursive Network

More Applications

Sentence relatedness

a woman is slicing potatoes

- 4.82 a woman is cutting potatoes
- 4.70 potatoes are being sliced by a woman
- 4.39 tofu is being sliced by a woman

Tai, Kai Sheng, Richard Socher, and Christopher D. Manning. "Improved semantic representations from treestructured long short-term memory networks." *arXiv preprint arXiv:1503.00075* (2015).

Batch Normalization

Experimental Results

