Exercice 1 (5points)

Dans un plan (xoy) on place trois charges ponctuelles q_A , q_B et q_C aux point A(1,3), B(-1,1) et C(0,2) respectivement. Les distances sont en mètre.

- Calculer la force électrique qui agit sur la charge qc en fonction de qA, qB et qc
- 2. Calculer cette force dans les deux cas suivants :

$$- q_A = q_B = q_C = q = 1\mu C$$

$$- q_A = -q_B = q_C = q = 1\mu C$$

- 3. Calculer le champ électrique crée par les charges q_A et q_B au point C dans les deux cas. Représenter le vecteur du champ électrique dans le plan dans le deuxième cas.
- 4. Calculer le potentiel électrique crée par q_A et q_B au point C dans les deux cas .

Exercice 2 (5points)

On considère un cylindre de rayon R et de longueur h infini, uniformément chargé en volume avec une densité de charge volumique p positive.

- 1. En utilisant le théorème de gauss, déterminer le champ électrique dans les deux zones (r<R et r>R), sachant que le volume d'un cylindre est donné par l'expression $V = \pi r^2 h$
- Déduire le potentiel électrostatique avec la condition qu'il est nul au centre du cylindre.

Exercice 3 (5points)

On considère le groupement de condensateurs figure 1. tel que $C_1=20~\mu F$, $C_2=2.5~\mu F$ $C_3=3.5\mu F$, $C_4=4~\mu F$ ET $C_5=5~\mu F$

- 1. Déterminer la capacité du condensateur équivalent entre A et B.
- 2. On crée entre A et B une différence de potentiel V=7Volts. Calculer alors la charge totale.
- Calculer la charge et la tension aux bornes de chaque capacité.

Exercice 4 (5points)

Soit le circuit électrique suivant figure 2, composé avec les résistances R1= 1Ω , R₂= 3Ω , R₃= 4Ω , R₄= 4Ω , et les générateur de courant de résistance interne nulle et de force électromotrice E₁=3volts et E₂=6 volts.

- Calculer la résistance équivalente de R₁ et R₂.
- 2. En utilisant la loi des nœuds et la loi des mailles, calculer les courants I1, I2 et I3

$$\frac{E_{KOM}}{E} = \frac{F_{NC} + F_{NC}}{AC} + \frac{F_{NC}}{AC} + \frac{F_{NC}}{BC} = \frac{F_{NC} + F_{NC}}{AC} + \frac{F_{NC}}{AC} + \frac{F_{NC}}{BC} = \frac{F_{NC}}{AC} + \frac{F_{NC}}{AC} + \frac{F_{NC}}{BC} = \frac{F_{NC}}{AC} + \frac{F_{NC}}{AC} + \frac{F_{NC}}{BC} = \frac{F_{NC}}{AC} + \frac{F_{NC}}{AC} + \frac{F_{NC}}{AC} + \frac{F_{NC}}{AC} + \frac{F_{NC}}{AC} + \frac{F_{NC}}{AC} = \frac{F_{NC}}{AC} + \frac{F_{NC}}{AC} + \frac{F_{NC}}{AC} + \frac{F_{NC}}{AC} + \frac{F_{NC}}{AC} + \frac{F_{NC}}{AC} = \frac{F_{NC}}{AC} + \frac{F_{NC}}{AC} + \frac{F_{NC}}{AC} + \frac{F_{NC}}{AC} + \frac{F_{NC}}{AC} + \frac{F_{NC}}{AC} = \frac{F_{NC}}{AC} + \frac{F_{NC}}$$

