Task 1

a

We were not successful in proving the unweighted importance sampling is unbiased. Although we show our approaches below:

$$egin{aligned} v_{\pi} &= \mathbb{E}_{\pi}[g_{k}|s_{k}] \ &= \mathbb{E}_{\mathbb{D}}\left[rac{\sum_{k \in \mathcal{T}(s_{k})}
ho_{k:T(k)}g_{k}}{|\mathcal{T}\left(s_{k}
ight)|}|a_{k}
ight] \end{aligned}$$

we assume sample mean from MC and $\rho_{k:T(k)}$ is the factor that project from the b distribution to the π distribution

$$egin{aligned} &= \mathbb{E}_{\mathbb{D}}\left[\mathbb{E}_{\mathbb{G}}\left[g_k \cdot
ho_{k:T(k)} | a_k
ight]
ight] \ &= \mathbb{E}_{\mathbb{D}}\left[g_k \cdot rac{\sum_{i=k}^T \pi\left(a_k \mid s_k
ight)}{|T(k)|}
ight] \end{aligned}$$

C

Weighted importance sampling is biased when only a small number of trajectories is sampled. In this case the state value can be dominated by a small number of samples. A example is the following scenario:

Take 3 states: s_1 the start state, s_2 a terminal state to the right and s_3 a state to the left of s_1 which is also a terminal state. The actions for s_1 are left (a_{left}) with reward -10 and right (a_{right}) with reward 10.

For the behavior policy $b(a_k|s_k)$ the probability of going left in s_1 is 95% and right is 5%. For $\pi(a_k|s_k)$ it is the opposite.

Given one sampled trajectory which denotes as follows: $s_1 o a_{left} o s_3$ The state value would be estimated as follows:

$$egin{aligned} V(s) &\doteq rac{\sum_{t \in \mathcal{T}(s)}
ho_{t:T(t)-1} G_t}{\sum_{t \in \mathcal{T}(s)}
ho_{t:T(t)-1}} \ &= rac{\sum_{t \in \mathcal{T}(s)} rac{\prod_{i=k}^T \pi(a_k|s_k)}{\prod_{i=k}^T b(a_k|s_k)} G_t}{\sum_{t \in \mathcal{T}(s)} rac{\prod_{i=k}^T \pi(a_k|s_k)}{\prod_{i=k}^T b(a_k|s_k)}} \ &= G_t \end{aligned}$$

The fractions for one trajectory can be canceled out thus only G_t remains. In this case G_t is the unbiased estimation of the state value according to the behavior policy. Which we also use to estimate the state value of our policy π which is the bias.

In our example the estimated state value of the s_1 would be $-10=\hat{v}_\pi(s_1)$ This is far from the true state value of $v_\pi(s_1)$ is: $0,95\cdot 10+0,05\cdot -10=9=v_\pi(s_1)$ If we sample more trajectories the bias converges asymptotically to zero.