Supplementary material for: Multiresolution dictionary learning for conditional distributions

Anonymous Author(s)

Affiliation Address email

1 Predictions

Consider the case we want to predict the response y^* for a future observation based on predictors x^* and previous observations $(x^{(n)},y^{(n)})$ with $x^{(n)}=(x_1,\ldots,x_n\}$ and $y^{(n)}=(y_1,\ldots,y_n\}$. Because the partitioning strategy that we adopted lacks an elegant out-of-sample embedding function (unlike other paritioning strategies), we adopt a Voronoi expansion procedure by which the new predictors x^* are allocated to $C_{j,k}$'s having the closest centers with respect to ρ_W . Summaries of the predictive density of y^* will be computed as follows:

- (i) allocate predictors x^* to $C_{j,k}$'s having the closest centers with respect to ρ_W
- (ii) run the Gibbs sampler for S iterations, and at the sth iteration:
- a) sample parameters $\{\sigma_{j,k_j}^{(s)},\mu_{j,k_j}^{(s)},\pi_{j,k_i}^{(s)}\}_{j\in\mathbb{Z},k_j\in\mathcal{K}_j}$ from its posterior, i.e. $p(.|x^{(n)},y^{(n)})$
- b) sample \hat{y}_{s}^{*} from the following mixture

$$\sum_{j \in \mathbb{Z}} \pi_{j, k_j(x^*)}^{(s)} \mathcal{N} \left(\mu_{j, k_j(x^*)}^{(s)}, \sigma_{j, k_j(x^*)}^{(s)} \right)$$

(iii) given sequence $\{\hat{y}_s^*\}_{s=1}^S$, summaries of the predictive density such as mean, variance and quantiles can be computed.

2 Partition Tree Schematic

3 Synthetic examples

3.1 Competitor Algorithms

As we are unaware of other methods, even frequentist, that estimate posteriors with such high-dimensional predictors, we compare point estimates of our approach with other moderately regression algorithms. In particular, we elected to compare against lasso, classification and regression trees (CART), Random Forest (RF) and principal component (PC) regression. In particular, the lasso regularization parameter and the number of principal components for PC regression were chosen based on the Akaike information criterion (AIC). For all algorithms, standard Matlab packages were utilized.

3.2 Additional results

Tables 1, and show mean squared errors and CPU usage under MSB, CART and lasso based on leave-one-out prediction. In particular, table 1 shows results concerning the linear subspace in section 4.4 for different number of factors, i.e. d=5 and d=10. Table 2 shows results concerning the

Figure 1: (i) Multiscale partition of the data. (ii) Path through the tree for $x_i \in \mathbb{R}^p$. (iii) Conditional density of y_i given x_i defined as a convex combination of densities along the path.

Table 1: Linear manifold example 1: Mean and standard deviations of squared errors under multiscale stick-breaking (MSB), CART and Lasso for sample size 50 and 100 for different simulation scenarios.

				d = 5			d = 10		
p	n		MSB	CART	LASSO	MSB	CART	LASSO	
50k	50	MSE STD TIME	0.18 0.32 3	0.31 0.30 2	0.25 0.42 1	0.22 0.24 3	0.58 0.54 3	0.22 0.30 1	
50k	100	MSE STD TIME	0.18 0.26 5	0.27 0.42 5	0.26 0.46 2	0.20 0.23 5	0.41 0.46 5	0.52 0.78 1	
100k	50	MSE STD TIME	$0.35 \\ 0.53 \\ 3$	$0.45 \\ 0.77 \\ 25$	$0.89 \\ 1.04 \\ 2$	$0.16 \\ 0.21 \\ 3$	$0.33 \\ 0.46 \\ 27$	$0.20 \\ 0.31 \\ 2$	
100k	100	MSE STD TIME	$0.43 \\ 0.59 \\ 7$	0.88 1.29 50	$0.52 \\ 0.70 \\ 5$	$0.17 \\ 0.24 \\ 7$	0.50 0.75 51	$0.31 \\ 0.49 \\ 5$	
500k	50	MSE STD TIME	0.11 0.15 5	0.16 0.24 90	0.15 0.19 11	0.83 1.01 5	2.26 2.60 121	0.92 3.69 10	
500k	100	MSE STD TIME	0.003 0.16 10	0.17 0.23 214	0.08 0.13 43	0.13 1.12 8	1.37 1.81 227	1.06 1.50 42	
700k	50	MSE STD TIME	1.70 2.18 6	1.48 2.47 121	1.47 1.63 12	0.66 0.87 7	1.65 1.49 151	1.07 0.95 13	
700k	100	MSE STD TIME	0.69 0.94 13	1.36 1.47 321	0.82 1.28 41	0.78 1.03 12	1.52 1.34 325	1.43 2.11 44	

union of linear subspace in section 4.4. for different number of mixture components, i.e. G=5 and G=10.As shown, in almost all data scenario, our model is able to perform as well as or better than the model associated to the lowest mean squared error and can scale substantially better than others to high dimensional predictors.

Table 2: Non-linear manifold - MFA: Mean and standard deviations of squared errors under multiscale stick-breaking (MSB), CART and Lasso for different sample sizes for different simulations sampled from a mixture of factor analyzers

			G = 10			G = 5		
p	n	SIM	MSB	CART	LASSO	MSB	CART	LASSO
		MSE	0.23	0.42	0.36	0.17	0.43	0.22
50k	100	STD	0.34	0.59	0.43	0.18	0.69	0.23
		TIME	5	24	3	7	27	3
		MSE	0.23	0.42	0.27	0.17	0.22	0.20
50k	200	STD	0.33	0.56	0.23	0.19	0.38	0.25
		TIME	10	51	8	12	56	7
		MSE	0.67	1.35	1.32	0.15	0.17	0.22
100k	100	STD	1.04	2.26	1.36	0.23	0.19	0.23
		TIME	9	47	6	6	44	5
		MSE	0.64	1.37	0.85	0.15	0.26	0.15
100k	200	STD	0.95	1.77	1.29	0.24	0.42	0.24
		TIME	15	99	15	11	89	15
		MSE	0.26	0.39	0.31	0.63	1.40	1.01
300k	100	STD	0.39	0.51	0.52	0.80	1.24	1.46
		TIME	9.28	125	18	9	145	17
		MSE	0.25	0.47	0.26	0.63	1.17	0.92
300k	200	STD	0.36	0.88	0.43	0.80	2.11	1.04
		TIME	15	262	40	13	283	43
		MSE	0.25	0.30	0.30	0.62	1.42	0.70
300k	300	STD	0.36	0.41	0.48	0.89	1.85	0.94
		TIME	15	463	73	16	465	89

Table 3: Non-linear manifold - Swissroll: Mean and standard deviations of squared errors under multiscale stick-breaking (MSB), CART and Lasso for different sample sizes for different simulation scenarios.

			SWISSROLL			
p	n		MSB	CART	LASSO	
		MSE	0.25	0.46	0.38	
10k	100	STD	0.24	0.53	0.40	
		TIME	5	5	1	
		MSE	0.24	0.44	0.25	
100k	50	STD	0.24	0.42	0.29	
		TIME	3	22	2	
		MSE	0.24	0.43	0.17	
100k	100	STD	0.26	0.55	0.22	
		TIME	6	48	7	
		MSE	0.24	0.67	0.29	
200k	50	STD	0.23	0.50	0.29	
		TIME	4	38	5	
		MSE	0.25	0.78	0.33	
200k	100	STD	0.26	0.74	0.36	
		TIME	6	96	13	
		MSE	0.17	0.47	0.23	
500k	50	STD	0.23	0.43	0.22	
		TIME	5	126	10	
		MSE	0.17	0.33	0.19	
500k	100	STD	0.21	0.46	0.23	
		TIME	11	230	25	