UNIVERSITÉ LUMIÈRE LYON 2

Parallel Computing for Data Science

2 - Good practices for coding

Jairo Cugliari

March 15, 2016

Plan

1 Good Practices for Scientific Computing

2 Debugging

3 Optimize your code

Plan

1 Good Practices for Scientific Computing

2 Debugging

3 Optimize your code

Best Practices for Scientific Computing ¹

- 1. Write programs for people, not computers
- 2. Automate repetitive tasks
- 3. Use the computer to record history
- 4. Make incremental changes
- 5. Use version control
- 6. Don't repeat yourself (or others)
- 7. Plan for mistakes
 - Defensive programming
 - Write and run tests
 - Use a variety of oracles
 - ► Turn bugs into test cases
 - Use a symbolic debugger
- 8. Optimize software only after it works correctly
- 9. Document design and purpose, not mechanics
- 10. Collaborate

^{1.} G. Wilson et al. (2013) Download arXiv preprint

Exemple: find runs of consecutive 1s in 0-1 vectors

The problem

- ▶ Input vectors : (1,0,0,1,1,1,0,1,1)
- ► Function findrums(vector, k) should return the indexes of runs larger than k
- ► E.g. findruns((1,0,0,1,1,1,0,1,1), 2) should return (4, 7, 8)

(Very ugly) code

```
joe=function(x,k){
n=length(x)
r=NULL
for(i in 1:(n-k)) if(all(x[i:i+k-1]==1)) r<-c(r,i)
r
}</pre>
```

Make your code readable

Meaningful names, comments, correct code style & syntax highlight

```
## v1. Serial code ####
findruns <- function(x,k) {
    n <- length(x)
    runs <- NULL
    for (i in 1:(n - k)) {
        if (all(x[i:i + k - 1] == 1)) runs <- c(runs, i)
    }
    return(runs)
}</pre>
```

Plan

1 Good Practices for Scientific Computing

2 Debugging

3 Optimize your code

Debugging

Beware of bugs in the above code; I have only proved it correct, not tried it.

—Donald Knuth, pioneer of computer science

- The essence of debugging : the Principle of Confirmation
- Start small
- ▶ Debug in a modular, top-down manner
- ▶ Use a debug tool! (example with Rstudio)

Plan

1 Good Practices for Scientific Computing

2 Debugging

3 Optimize your code

Before any optimization ...

Ask yourself these questions

- ▶ Do you want your code to be readable?
- ▶ Do you want your code to be sharable?
- Do you have other thing to do?

Get a bigger computer!

- RAM is cheaper and cheaper
- Amazon rents virtual machines on the web

Exemple: mutual web outlinks

The problem : analyzis of Web traffic

- ▶ How often two Web sites have links to the same third site?
- ▶ Data : outlink information for *n* Web pages.
- Aim : find the mean number of mutual outlinks per pair of sites
- Similarity with many statistical methods (e.g. Kendall's τ , U—statistic family,).
- ▶ Need to compute some quantity *g* for each pair of observations, then sum all those values

Pseudocode

```
\begin{array}{l} \mathsf{sum} = 0.0; \\ \mathbf{for} \ i = 1, \ ..., \ n - 1 \ \mathbf{do} \\ & | \ \mathbf{for} \ j = i + 1, \ ..., \ n \ \mathbf{do} \\ & | \ \ \mathsf{sum} = \mathsf{sum} + \mathsf{g(obs.i, obs.j)}; \\ & | \ \mathbf{end} \\ \mathbf{end} \\ \mathbf{return} \ \mathsf{mean} = \mathsf{sum} \ / \ (\mathsf{n} \ * \ (\mathsf{n} - 1) \ / \ 2) \end{array}
```

Serial code (1st. version)

```
## v1. Serial code ####
mutoutser1 <- function (links) {</pre>
  nr <- nrow(links)</pre>
  nc <- ncol(links)</pre>
  tot <- 0
  for (i in 1:(nr - 1)) {
    for (j in (i + 1):nr) {
      for (k in 1:nc)
         tot <- tot + links[i , k] * links[j , k]</pre>
  tot / nr
```

Serial code (2nd. version add vectorization)

```
## v2. Serial code + Vectorization ####
mutoutser2 <- function (links) {</pre>
  nr <- nrow(links)</pre>
  nc <- ncol(links)</pre>
  t.ot. <- 0
  for (i in 1:(nr - 1)) {
    tmp <- links[(i + 1):nr, ] %*% links[i , ]</pre>
    tot <- tot + sum(tmp)</pre>
  tot / nr
```

Timings

Test on simulated link matrix of size 500.

Strategy	user	system	elapsed
Serial (only loops) Serial + Vectorization	117.220	0.000	115.198
	0.000	0.000	1.907

Byte Code Compilation

Timings (with byte code compilation)

Test on simulated link matrix of size 500.

Strategy	user	system	elapsed				
Serial (only loops) (v1)	117.220	0.000	115.198				
Serial + Vectorization (v2)	0.000	0.000	1.907				
v1 (with compilation)	19.284	0.000	17.089				
v2 (with compilation)	0.000	0.000	1.898				

Benchmark results

A gentle introduction to parallel computing in R

- ► Choice of Parallel Tool : snow, multicore, foreach, Rmpi
- ▶ parallel combines snow and multicore and is on the base of R
- snow part of parallel has larger architecture support (in particular for MS Windows)
- How snow works
 - scatter: The manager breaks the desired computation into chunks, and sends ("scatters") the chunks to the workers.
 - chunk computation: The workers then do computation on each chunk, and send the results back to the manager.
 - gather: The manager receives ("gathers") those results, and combines them to solve the original problem

Parallel version

```
doichunk <- function(ichunk) {</pre>
  tot <- 0
  nr <- nrow(lnks) # lnks qlobal at worker
  for(i in ichunk) {
    tmp <- lnks[(i + 1):nr , ] %*% lnks[i , ]</pre>
    tot <- tot + sum(tmp)
  t.ot.
mutoutpar <- function(cls, lnks) {</pre>
  require(parallel)
  nr <- nrow(lnks) # lnks global at worker</pre>
  clusterExport(cls, "lnks")
  ichunks <- 1: (nr - 1) # each "chunk" has only 1 value of i, for now
  tots <- clusterApply(cls, ichunks, doichunk)</pre>
  Reduce(sum, tots ) / nr
```

Timings

Test on simulated link matrix of size 500.

Strategy	user	system	elapsed					
Serial (only loops)	77.000	0.004	76.980					
Serial + Vectorization	1.004	0.000	1.001					
Parallel (2 cores)	0.116	0.032	0.914					
Parallel (8 cores)	0.128	0.016	0.666					

Speepup factors for parallel wrt Serial + Vectorization are

- ightharpoonup 1.001/0.914 = 1.09 < 2!
- ightharpoonup 1.001/0.666 = 1.503 < 8!!!

Speedups are not so impresive

- several sources of overhead
- hyperthreading
- ▶ load balancing

2 [3 [4 [5 [6 [Mem[Swp[100 	.0%] .0%] .0%] .0%]	9 10 11 12				100.0% 0.0% 11.3%	[] [] [] [] []	13 [14 [15 [16 [17 [18 [Tasks: Load a Uptime	300 3	3, 309 je: 16	thr;	21 7.13	runni 2.81	100. 100. 100. 100. 100.	0%] 0%] 0%] 0%]	19 [20 [21 [22 [23 [24 [100 100 100	0.0%] 0.0%] 0.0%] 0.0%] 0.0%]
PID L	PRI		RES			% MEM%																			
9876 j	20	212M	98M				1:17.34																		
9765 j		212M					1:17.23																		
9742 j	20	212M	98M				1:17.35																		
9774 j	20	212M	98M				1:17.26																		
9807 j		212M	98M				1:17.25																		
9826 j		212M	98M				1:17.34																		
9816 j		212M	98M				1:17.12																		
9701 j		212M	98M				1:17.29																		
9712 j	20	212M	98M				1:17.29																		
9797 j	20	212M	98M				1:17.29																		
9691 j		212M					1:17.31																		
9788 j	20	212M	98M				1:17.07																		
9681 j		212M	98M				1:17.35																		
9753 j		212M	98M				1:17.10																		
9731 j		212M	98M				1:17.18																		
9722 j	20	212M	98M				1:16.79																		
9865 j		212M					1:17.10																		
9854 j		212M					1:17.23																		
9835 j		212M																							
9845 j		212M									slave		-rest		e pa	ralle		slave	RSOCK I	rgs	MASTE	R=lo	calhos	t POF	RT=117
8395 j		913M		6792	S 0.	0 1.0	0:09.42	/lib/R/	bin/ex	ec/R															

EnterDone **Esc**Clear Filter: exec

Resorting to C

```
#include <omp.h>
#i.n.c.l.u.d.e. < R.h.>
int tot; // grand total of matches, over all threads
// processes row pairs (i, i+1), (i, i+2), \ldots
int procpairs(int i, int *m, int n)
{ int j,k,sum=0;
  for (j = i+1; j < n; j++) {
    for (k = 0; k < n; k++)
    // find m[i][k]*m[j][k] but remember R uses col-major order
    sum += m[n*k+i] * m[n*k+j];
  return sum;
```

```
void mutlinks(int *m, int *n, double *mlmean)
\{ int nval = *n; 
  tot = 0;
  #pragma omp parallel
  { int i,mysum=0,
     me = omp_get_thread_num(),
     nth = omp_get_num_threads();
     // in checking all (i,j) pairs, partition the work according
     // this thread me will handle all i that equal me mod nth
     for (i = me; i < nval; i += nth) {
       mysum += procpairs(i,m,nval);
    #pragma omp atomic
   tot += mysum;
  int divisor = nval * (nval - 1) / 2;
  *mlmean = ((float) tot)/divisor;
```

}

Compilation and usage in R

Compile in bash

```
gcc -std=gnu99 -fopenmp -I/usr/share/R/include \
  -fpic -g -02 -c romp.c -o romp.o
gcc -std=gnu99 -shared -o romp.so romp.o
  -L/usr/lib/R/lib -lR -lgomp
```

Call from R