

Figure 1

Figure 2

0001060 " TRACE 60

Figure 3

001060 " 152655 000

FIG. 4 A.

FIG. 4 B.

FIG. 4 C.

FIG. 4 D.

FIG. 4 E.

FIG. 4 F.

FIG. 4 G.

FIG. 4 H.

FIG. 4 I.

FIG. 4 J.

FIG. 4 K.

FIG. 4 L.

FIG. 4 M.

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

FIG. 12 A

FIG. 12 B

FIG. 13

卷之三

FIG. 14 A

FIG. 14 B

A	A	A	A

FIG. 14 C

FIG. 14 D

A	A	A	A
B	B	B	B

FIG. 14 E.

FIG. 14 F

AA	AA	A	A
BA	BA	B	B

FIG. 14 G

FIG. 14 H

AA	AA	AB	AB
BA	BA	BB	BB

FIG. 14 I

FIG. 14 J

AAA	AA	ABA	AB
BAA	BA	BBA	BB

36 32

AAA	AAB	ABA	ABB
BAA	BAB	BBA	BBB

FIG. 15 A

5.9 μ m beads / 7,000 Fluorescein

$\sim 2 \times 10^{-6}$ chromophore / A^2

FIG. 15 B

$\sim 8 \times 10^{-6}$ chromophore / Å^2

000 T 00600 = TRAVERSE 60

FIG. 16 A

007060-TRACES 960

FIG. 16 B

FIG. 17 A

01-16-1998

VLSIPS (c) Affymax Research Institute

1023027
728188.3
322785.5
300672.6
285930.7
278559.7
271188.8
212221.1
197479.2
182737.3
138511.5

Mean:	285930.7
Var:	2.173242E+10
σ :	147419.2

FIG. 17 B

FIG. 17 C

01-22-1990
VLSIPS (c) Affymax Research Institute

FIG. 17 D

495246
335766.3
116481.9
104520.9
96546.92
92559.93
88572.94
56677.02
48703.04
40729.06
16807.12

01-22-1998
VLSIPS (c) Affymax Research Institute

Mean: 96546.92
Var: 6.358437E+09
 σ : 79739.8

FIG. 18

FIG. 19 A

NVOC GGFL

FIG. 19 B

↓ hν

500 x 500 μm MASK

↓ NVOCY, hν

↓ GOAT ANTI-mouse-F1

FIG. 19 C

SIPS © 1989 Affymax Research Institute

FIG. 19 D

879976.1
600504.3
216230.6
195270.2
181296.6
174309.8
167323
111428.7
97455.07
83481.48
41560.72

01-22-1990
JLSIPS (c) Affymax Research Institute

Mean:	181296.6
Var:	1.952612E+10
σ :	139735.9

FIG. 20

636588
428583.8
142577.9
126977.5
116577.3
111377.2
106177.1
64576.25
54176.03
43775.82
12575.18

02-28-1998
VLSIPS (c) Affymax Research Institute

Mean: 116577.3
Var: 1.081645E+10
 σ : 101002.1

FIG. 21

667348.3
453053
158397
142324.9
131610.1
126252.7
120895.3
78036.29
67321.52
56606.77
24462.47

91-22-1990
VLSIPS (c) Affymax Research Institute

Mean: 131610.1
Var: 1.148062E+10
 σ : 107147.6

P A S G

<u>LPGFL</u>	<u>LAGFL</u>	<u>LSGFL</u>	<u>LGGFL</u>
<u>FPGFL</u>	<u>FAGFL</u>	<u>FSGFL</u>	<u>FGGFL</u>
<u>WPGFL</u>	<u>WAGFL</u>	<u>WSGFL</u>	<u>WGGFL</u>
<u>YPGFL</u>	<u>YAGFL</u>	<u>YSGFL</u>	<u>YGGFL</u>

L

F

L set

W

Y

FIG. 22 A

P - a - a - g

<u>y_pGFL</u>	<u>y_aGFL</u>	<u>y_aGFL</u>	<u><u>YGGFL</u></u>
<u>f_pGFL</u>	<u>f_aGFL</u>	<u>f_aGFL</u>	<u>FGGFL</u>
<u>w_pGFL</u>	<u>w_aGFL</u>	<u>w_aGFL</u>	<u>WGGFL</u>
<u>y_pGFL</u>	<u>y_aGFL</u>	<u>y_aGFL</u>	<u>YGGFL</u>

Y

F

D set

W

Y

FIG. 22 B

FIG. 23

149,000

20,000

20..1491 MI21500.TIF

FIG. 24

325,000

40,000

40..325] M3D2300.TIF