ОПРЕДЕЛЕНИЕ РАССТОЯНИЯ

ДО ВПЕРЕДИ ИДУЩЕГО АВТОМОБИЛЯ НА ОСНОВЕ ИЗОБРАЖЕНИЙ

Задача в рамках чемпионата "Цифровой прорыв 2022"

УСЛОВИЕ ЗАДАЧИ

Разработать алгоритм, позволяющий определить дистанцию до впереди идущего автомобиля, используя для этого датасет фотографий автомобилей с разного расстояния.

Входные значения:

• train:

* .jpg

* .heic

- train.csv
- test

image_name	distance		
img_1596.jpg	4.88		
img_1600.jpg	1.54		
img_1601.jpg	3.68		
img_1603.jpg	2.22		
img_1605.jpg	3.73		
img_1606.jpg	4.52		

PELLEHIJE

- 1. Найдем все авто на фото.
- 2. Выберем одно, до которого считаем дистанцию.
- 3. Сохраним его размеры и положение в кадре.
- 4. Добавим к этому информацию об особенностях объектива камеры.
- 5. Обучаем регрессионную модель чтобы определять дистанцию до авто.

І. ПОИСК АВТО НА ФОТО

- Распознаем все автомобили на фото с помощью YOLOv5 (в конфигурации yolov5x)
- Это самая точная модель, верно определяющая большинство авто.

2. ВЫБОР ОДНОГО АВТО

- По условиям задачи, мы определяем дистанцию до 1 авто.
- Выберем центральное.
- В случаях, когда автомобиль немного смещен от центра кадра, учтем, что он должен быть больше ближайших соседей.

3. СОХРАНИМ ИНФО О ВЫБРАННОМ АВТО

• Соберем датасет по размеру авто и его положению на изображении

image_name	distance	width	height	x1	y1	x 2	y2
img_2726.heic	8.44	274	232	1831	1417	2105	1649
img_1878.jpg	8.41	297	260	1756	1275	2053	1535
img_2696.heic	8.80	297	250	1822	1365	2119	1615
img_2333.jpg	9.06	302	293	1699	1327	2001	1620
img_2724.heic	9.38	312	260	1779	1341	2091	1601

4. ОСОБЕННОСТИ ФОТОКАМЕРЫ

- Извлечение метаданных для изображений. Отдельно для .jpg и .heic файлов.
- Hac интересует DigitalZoomRatio, чтобы учитывать пространственные искажения авто на картинке.
- Добавим этот параметр в таблицу с инфо о центральном авто.

5 РЕГРЕССИОНАЯ МОДЕЛЬ

- Модель: CatBoostRegressor
- Оптимальные параметры подбирались при помощи grid_search
- Обучающие данные разбивались на трейновую и валидационную выборки с помощью train_test_split

• Метрика

$$R2 = 1 - \frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{N} (y_i - \bar{y})^2} \quad \bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

на валидационной выборке составила 0.9846

СПАСИБО ЗА ВНИМАНИЕ!

Контакты:

Анна Фонарь

- email: starlineann@gmail.com
- telegram: @StarlineAnn
- GitHub: github.com/starline-ann