Task 1

REVISION

A -Imple (\mathcal{H}, \cdot, e) is a monoid of \mathcal{H} is a set, $\cdot \cdot \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$ is a binary operation on \mathcal{H} and $e \in \mathcal{H}$ that sailsfy:

-
$$(\forall x, y, z) [(x, y), z = x \cdot (y \cdot z)]$$
 associatively

Two mathematical structures are isomorphic if an isomorphism exists between them A function h: $M_1 \Rightarrow M_2$ between monorphis (M_1, e_1) and $(M_2, *, e_2)$ is called homomorphism if:

A byedure monoid homomorphism is called a monoid isomorphism.

$$h(x+y)=h(x)\cdot h(y)$$

$$h(0) = 1$$
 or $h(1) = 0$

Let's check what happend if we take x = 1 y = 1 $h(1+1) = h(2) = h(1) + h(1) = [h(1)]^{2}$

Now let's take
$$x=y$$

$$h(2x) = h(x) \cdot h(x) \cdot [h(x)]^{2}$$

$$h(3x) = h(2x) + h(x) = [h(x)]^{q} \cdot h(x) = [h(x)]^{3}$$

So we can notice that for any
$$\alpha \in \mathbb{N}$$
, $y = (\alpha - 1) \times h$
 $h(\alpha \times) = [h(x)]^{\alpha}$ (Because $h(n \times) = h(n-1) \times h(x) = \dots = [h(x)]^{-1} h(x)$
- recurrence)

Thanks to this observation we can notice that any natural number can be represented as $a \times fon \times = 1$ and a equal this number, so

$$h(x) = [h(\lambda)]^{x'}$$

Because h(1) have to be natural number (no matter if we go from $M_1 \rightarrow M_2$ on $M_2 \rightarrow M_1$), so we can write $h(1) = C \in \mathbb{N}$. Then for $x = x + y \in \mathbb{N}$, we got $h(2) = C^2$

for 2=0, h(z)=0=1

So it's homomorphism. Of course it's injecture but it's not surjecture (not all elements can be represented as C^2 , f.e. C^{11})

It's equivalent to fact that there is not exist byecture homomorphism believen this two monoids, so M_1 , M_2 are not isomorphic.

Now hel's their Ma > M, Because if we want to obtain byection homomorphism then it must exist a inverse homomorphism.

But we have just groved that this inverse homomorphism have to be in following form

 $h'(x) = C^* = h(x) = \ln_{C}(x) = h(x) = \ln_{C}(x \cdot y) = \ln_{C}(x \cdot y) = \ln_{C}(x) \cdot \ln_{C}(y) = \ln_{C}(x) \cdot \ln_{C}($

h(ez) = h(1) = ln (1) = 0 = e1

but again logarithm function is not byection if arguments are natural numbers (not all elements can be represented in this way).

2) $\mathcal{H} = (N_1 + 0) (N^2 \oplus (0,0)) = \mathcal{H}_2$ $(N_1 + N_2) = h(0,0) = h(0,0)$

 $h(x \circ y) = h(x) + h(y)$ $h(e_2) = e_1 = \lambda h((0,0)) = 0$ Is just adding in NV2 I changed sign for clarity

on $M_1 > M_2$ $h(x + y) = h(x) \otimes h(y)$ $h(e_1) = e_2 = h(0) = (0,0)$

Let's us concider first case: M2-5 M1. De know that h((0,0))=0

Moreover h((0,1)=x, where xe IN

h ((1,0)) = y, where ye IN

De know that, any meniber of IN^2 can be represented as a linear combination of (0,1) and (1,0)

h ((1,1)) = h ((0,1) + h ((1,0)) = x-4

In general

 $\lambda\left((k,l)\right) = \lambda\left((k,0) \oplus (0,l)\right) = \lambda\left((k,0)\right) + \lambda\left((0,l)\right) = \lambda\left((k,0) + \lambda\left((0,l)\right)\right) = \lambda\left((k,0) + \lambda\left((0,l)\right)\right) = \lambda\left((k,0) \oplus (0,l)\right) = \lambda\left((k,0) \oplus (0,l)\right)$ = ... = k.h ((1,0)) -1 l h ((0,1)) = k x + hy

Such construct is homomorphism. Now let's check if it's byection. y + O 1 x = , x + y => because otherwise h(x1) = h(x2) for x1 + x2. It's mean that only one can be equal of. This mean that x on y have to be bigger than I. Dithout loss of generality we can assume 1 < p 2 ' h half

Fusil let's check injection.

(k,, l,) ± (k2, l2)

If h: 12 myestron then h((kn, Ln) = h((k2, L2)) => kx + l, y = k2 + lzy => (k1-k2) x + (k1-12)y. \(> b) d d's not lue for some 1 1 1 2 1 1 1 2 => k, k2 = -4 1 1 1 - 62 = x

So d's not byedion

Now let's concider second case: Mrs Me mow that h(o) = (o,o) $h(1) = (x,y) \in \mathbb{N}^{2}$

h(2)= h(1+1)= h(1)⊕ h(1) = (x,y) @ (x,y)=(2x, 2y)

h(n) = h(h-1), 1) = h(n-1) @ h(1) = h(n-2) @ h(1) d(1) = ... = h h (1) = (n x, ny)

This Jun Acon 15h't surjecture because we cannot obtain (x+1,y) as nes with.

So M, and M, also aren't 150 morphic.

TASK2

 $\times = \mathbb{N}$, $M = (\mathbb{N}, 1, 0)$, $f \times \rightarrow M$ $f(x) = \times$ h: Xx > M such that ho n= f

First let's recall Universal mapping property (UMP) for monords Let X be a set and let (M., e) be a monad. Say we have function f: X > Y. then there exist exactly one homo morphism h: X such that the following diagrams commites:

ho n = f

Now let's find such h.

$$\int (x) = h (\eta(x)) = h(I^{*}) = x$$

 $h([x_1,\ldots,x_m]) = h([x_1,\ldots,x_m]) + h([x_m]) = h([x_1,\ldots,x_m]) + h([x_m]) = f(x_1) + \dots + f(x_m) = f(x_m$

Task 3

C-> Category that consist one object looks following

So 1-object category have one object A. Now let us notice that operations on monord H are exactly the same as the operations on Monph(C) so we may regard the category C as a monord M. It's of course reversible : quen category C= IA] we obtain a monord H whose elements are the armous of C. It's work; because the binary operations are the same for both structures.

Task 4

det (G, ·) be a group and C= (Obj (C), Ann (C))= (dGJ, G) is the category with exactly one object of g and morphisms from JGJ to itself are given by G. det h, g be a morphisms mentioned before. Then composition of morphisms book in the following way:

Every group have to have unit element e. Thanks to fact that G 13 a group then there is always exist an inverse morphism. These two facts let us tell that:

The word clemement of a group is given by by the identity monphism on to) and vice iersa - identity monphism (identity arrow) is given by unit element of the arriver (G.)

-4 ... An all Tous k 5

Reminder:

A dual (or opposite) category to C= loby(c), Ann(c)) is the category Cop = (Ob/(Cop), Ann (Cop)) with

- Op/(60b) = Op/(C)

- Arr (Cop) = of for fe Am (c)] where for B > A is an arrow f. A > B with a thoped domain with codomain

- there is a dual composition • such that for amous fig we have 100 · 9 00 = (901)00

From the grevious task we know that

a group (G,) forms a category C= (16), G) with exactly one object within which every morphism is neversible - is iso morphism

So by definition of dual cortegory

Ob/ (Cos) = Op/(C) =) C) Ann (cop) = } } } ; } c Ann (c)}

but for differ from I by place of domain and codomain. In our case domain and codomain are equal so $f = f^{op} \Rightarrow Ann(C^{op}) = Ann(L)$ 100 = (d = t)00 => f . 8 = 8 of

Thus cartegories $C^{0P} = (16)^2$, G^1 and $C = (16)^2$, G^1 are iso morphic , because there is exust a isomorphism between them (identify).

Task G QE HINDE Q

Partially order is defined as (X, \leq) . It can be treated as a category in the following way: $Ob_{\lambda}(C) = X$; your (x,y) is an arrow if $x \leq y$

An object T is terminal if for every object & there is exactly one amou f: A > T

An object I is initial if for every object A there is exactly one arrows f: I s T

1) Let $C = (X, \subseteq)$ be a category where objects are sets.

Initial objects: exist iff X contain the smallest element x => x Terminal objects: exist iff X contain the questest element $x \Rightarrow x$ I so morphims: $\times \subseteq y$ $\wedge y \subseteq \times \Rightarrow \times = y$ so only identity amous are $C^{op} = (X^{op}, (\underline{C})^{op})$, By definition objects of duality category are the same as in C So $X^{op} = X$. Now arrows have swapped do main with cook main. It's implified that $(\underline{C})^{op} = 2^{1}$. So $C^{op} = (X, \underline{C})$

Initial object: exist iff X contour the greatest element: $x \Rightarrow x$ Terminal object: exist iff X contour the smallest element: $x \Rightarrow x$ I so marphisms: $x \ge y$ or $y \ge x \Rightarrow x = y$. So only identify arrows are iso morphisms.

2) det $C = (N^+, 1)$ be a casegory where objects are natural numbers groader than 0 and arrow is division. Arrow between x and y x-xy exist iff x/y.

Switcel object: Exist iff there is element which can divide without next any other element

Terminal object: Exist if f there is element which is divisible by all other elements. Isomorphisms: $X \mid y \mid x \mid y \mid x \Rightarrow x = y$. So only identity amous are isomorphisms.

 $C^{op} = ((N_1^p)^o)^o$, By definition objects of duality category are the same as in C So $((N_1^p)^o)^o = ((N_1^p)^o)^o$, By definition objects of duality category are the same as in C So $((N_1^p)^o)^o = ((N_1^p)^o)^o$, By definition objects of duality category are the same as in C So $((N_1^p)^o)^o = ((N_1^p)^o)^o$, By definition objects of duality category are the same as in C So $((N_1^p)^o)^o = ((N_1^p)^o)^o$, By definition objects of duality category are the same as in C So $((N_1^p)^o)^o = ((N_1^p)^o)^o$, By definition objects of duality category are the same as in C So $((N_1^p)^o)^o = ((N_1^p)^o)^o$, By definition objects of duality category are the same as in C So $((N_1^p)^o)^o = ((N_1^p)^o)^o$, By definition objects of duality category are the same as in C So $((N_1^p)^o)^o = ((N_1^p)^o)^o$.

Swhool object: Exist iff there is element which is divisible by all other elements

Terminal object: Exist if I there is element which can divide without rest all other somorphisms: $y \mid x \mid x \mid y \Rightarrow y = x$ So only identity amous are isomorphisms.

3) $C = (\mathbb{Z}_1 \leq)$ is analogicall to the first subpoint.

Task 7 RE MINDER

det C, D be categories. De call $F: C \to D$ a function if for all objects $A, B, C \in Ob_3(C)$ and arrows $f: A \to B$, $g: B \to C$ $C \longrightarrow D$ F(A)

arrows f: A > B, g: B > C

- ∓ (A) ∈ Ob_A (D)
- · F(1): F(1) > F(6)
- · F (dA) = dF(A)
- · L(801) = L(8)0 L(1)

det's introduce a counter example:

Let C be a category with just one object X, and just one amow idx Let D be a category with just one object Y, and two arrows: id, and f, where composition is defined as follow. fof = f Now let F be a "function" which send X into Y and ω_X to f. It's gresserve composition $F(\omega_X \circ \omega_X) = F(\omega_X) = f = f \circ f = F(\omega_X) \circ F(\omega_X)$

but it's not preserve identities > Preservation of identity is necessary

Task 8

 $F: C \rightarrow D$ C, D, E - categories $G: D \rightarrow E$ } functions,

Let $x \in Ob_{\lambda}(C)$. Then $T(x) \in Ob_{\lambda}(D)$

(3) (d) (2) (2) (3) (4) (5) (6) (6) (7) (7)

Thus:

 $(\forall \ \ X \in Ob_{X}(C)) \ (G \circ F)(X) = G(F(X)) : (C \rightarrow D) \rightarrow \mathcal{E} = C \rightarrow \mathcal{E}$

 $(\forall f \in Ann(c)) (G \circ P)(f) = G(P(f)) \in Ann(E)$

Task 9

C- calegory

1) By identity function Id we understand function which works in following way: M. C-> C $(\forall x \in 0P'(c))$ P(x) = x

(A & e Arr(b)) 19 (b)= b

det's check if it's really a functor:

This t conduction is obvious thanks to above definition

· Id (Ldx) = Ldx = Ld(x)

. (A t' d e Yw (c): t Y > B Y d: P > c) 19 (d.t) = d.t = 19(d) . 19(t)

evolute so educed had a function buch some as fallow: U: MON > SET

If (\mathcal{H}, \cdot, e) is a monoid then $\mathbb{H}((\mathcal{H}, \cdot e)) = \mathcal{H}$

If h is monord homomorphism then U(h) = h

This t conduction is obvious thanks to above definition:

· $\mathcal{M}(rq^x) = rq^x = rq^{n(x)}$

Task 10

det $F, G, H : C \rightarrow D$ be a functions and C, D coalegories $\eta: F \xrightarrow{\cdot} G$, $\mu: G \xrightarrow{\cdot} H$

Thus

Task 11

n: L -> L defined as a list reversing transformation

To check if it's a natural transformation we have to check if the following diagram commute.

$$= \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \left($$

Task 12

In HOMENORK 3

Task 13

det
$$F(x) = x^N$$
. det's check how it work for some $n \in \mathbb{N}$

$$F(x) = \underbrace{(x_1 \dots x_n)}_{N \text{ times}}, \quad F(x) = \underbrace{(f(x_n)_1 \dots f(x_n)_n)}_{N \text{ times}}$$

$$\eta: F \rightarrow F$$
, for example:
$$\eta\left(\begin{pmatrix} x_{1}, \dots, x_{n} \end{pmatrix}\right) = \begin{pmatrix} x_{n}, \dots, x_{n} \end{pmatrix}$$

To check if it's a natural transformation we have to check if following diagram commute: $F(Y) = F(Y) \cdot \sum_{k=1}^{n} F(Y) \cdot \sum_$

$$F(x) \xrightarrow{F(f)} F(y) = F(f) (x_{1}, \dots, x_{n}) =$$

Our function is in $X = X^A$ form so we can use someda lemma: Not $(F(x), F(x)) = Not (X, F(x)) \approx F(n) = n^n$

So se have n' such natural transformations

Task 14

1)
$$V_n = \chi^n$$
a) functor

$$V_{n}(x) = (x_{1} \dots x_{n})$$

$$V_{n}(f \circ g) = (f \circ g_{1} \dots f \circ g_{n}) = (f_{1} \dots f_{n}) \circ (g_{1} \dots g_{n})$$

$$V_{n}(\iota d_{x}) = (\iota d_{x_{1}} \dots \iota d_{x_{n}}) = \iota d_{x_{n}}(g_{1} \dots g_{n})$$

det
$$\mu(x) = (x, \dots, x), \quad f: x \rightarrow y$$

$$= (f(x), ..., f(x)) = (y_1, ..., y) = \mu_y(y) =$$

H's commute so µ is natural transformation

det
$$\eta \left(\bar{x}_{1}, \bar{x}_{2}, \dots, \bar{x}_{n} \right) = \left(x_{1}^{(4)}, x_{2}^{(2)}, \dots, x_{n}^{(n)} \right)$$
 where $x_{2}^{(1)}$ means

 $\chi_{1}^{(4)}$ element in it is easy.

 $\chi_{2}^{(4)} \left(x_{1}^{(4)}, x_{2}^{(2)}, \dots, x_{n}^{(n)} \right) = \left(\chi_{1}^{(4)}, \chi_{2}^{(2)}, \dots, \chi_{n}^{(n)} \right) = \left(\chi_{1}^{(4)}, \chi_{2}^{(4)}, \dots, \chi_{n}^{(n)} \right) = \left(\chi_{1}^{$

So y is also natural transformation:

C) monadic diagrams:

$$\begin{array}{cccc}
V_{n}(x) & \xrightarrow{V_{n}(\mu_{x})} & V_{n}^{2}(x) \\
\mu_{V_{n}(x)} & & & & & & & & \\
V_{n}(x) & & & & & & & & \\
V_{n}(x) & & & & & & & & \\
V_{n}(x) & & & & & & & & \\
V_{n}(x) & & & & & & & \\
V_{n}(x) & & & & & & & \\
V_{n}(x) & & & & & & & \\
V_{n}(x) & & & \\
V_{n}(x) & & & \\
V_{n}(x) & & & & \\
V_{n}(x) & & & \\
V_{$$

$$\overline{x} = k_{A_1 \dots 1} v_n \gamma_1 \cdot \overline{y}_1 = (x_{L_1 \dots L_n} \cdot x_n)$$

$$= (\eta_X \circ \mu_{V_n}(x)) ((x_{A_1 \dots 1} x_n)) = \eta_X (\mu_{V_n}(x) (V_n(x))) =$$

$$= \eta_X (\overline{x}_{1 \dots 1} \overline{x}_{n}) = (x_{A_1 \dots 1} x_n) = \eta_X (V_n(\mu_X) (y_{A_1 \dots 1} x_n)) =$$

$$= \eta_X (\overline{y}_{1 \dots 1} \overline{y}_{n}) = (x_{A_1 \dots 1} x_n) = (x_{A_1 \dots 1} x_n) = (x_{A_1 \dots 1} x_n)$$

$$= \eta_X (\overline{y}_{1 \dots 1} \overline{y}_{n}) = (x_{A_1 \dots 1} x_n) = (x_{A_1 \dots 1} x_n)$$

$$V_{n}^{3}(\chi) \xrightarrow{V_{n}(\chi_{x})} V_{n}^{2}(\chi)$$

$$V_{n}(\chi) \downarrow \qquad \qquad \downarrow \chi_{x}^{2}(\chi)$$

$$\mathcal{M}(X) = X \cup \{n_X\}$$

$$\mathcal{M}(f) = \{ \cup \{(n_x, n_y)\}\}$$

$$n_x \in X , \{(x > y), g(y > z)\}$$

$$\mu(x) = \begin{cases} x, & \text{for } x \in [n_x, n_{x \cap \{n_x\}}] \\ x, & \text{otherwise} \end{cases}$$

$$\mu(x) = \begin{cases} x, & \text{otherwise} \\ x, & \text{otherwise} \end{cases}$$

$$\begin{array}{cccc}
M(X) & & & & & & \\
M(Y) & & & & & \\
M(Y) & & & & & \\
\end{array}$$

$$L = M(f) \circ M(f) (x) = M(f) (x) = y$$
 $L = M(f) \circ M(f) (x) = M(f) (x) = y$

ν, & Χ

$$\mathcal{D} L = \mu_{y} \mathcal{M}^{2}(f)(x) = \mu_{y}(y) = y$$

$$\mathcal{O}(f) \circ \mu_{\chi}(n_{\chi \cup \{n_{\chi}\}}) = \mathcal{M}(f)(n_{\chi \cup \{n_{\chi}\}}) = \mathcal{M}(f)(n_{$$

$$0 = \mu \cdot M(n \cdot \gamma (x) = \mu \cdot (x) = x$$

3) monord diagrams.

$$Q = \mu_x \circ M(\eta_x)(x) = \mu_x(x) = x$$

$$L = \mu_x \circ \eta_x(x) \neq x = \mu_x(x) = x = k = id_x$$

$$\rho = \mu_{x} \cdot \mathcal{H}(\mu_{x}) \left(n_{x \cup \{n_{x}\} \cup \{n_{x} \cup \{n_{x}\}\} \cup \{n_{x} \cup \{n_{x}\}\} \right)} = \mu_{x} \left(n_{x} \right) = n_{x}$$

$$O$$
 L= μ_{x} $\mathcal{H}(\mu_{x})(x) = \mu_{x}(x) = x$

$$0 \quad Q = \mu_{x} \cdot \mu_{M(x)} \left(n_{x \cup \{n_{x} : n_{x} \cup \{n_{x} \}\}} \right) = \mu_{x} \left(n_{x \cup \{n_{x} \}} \right) = n_{x} = L$$

$$0 \quad Q = \mu_{x} \left(n_{x \cup \{n_{x} \}} \right) = n_{x} = L$$

$$0 \quad Q = \mu_{x} \cdot \mu_{M(x)} \left(x \right) = \mu_{x} \left(x \right) = x = Q$$

$$\begin{aligned}
& \text{function} \\
& \text{W}_{n}(x) = x \times M \\
& \text{W}_{n}(f) = (f, \text{id}_{H})
\end{aligned}$$

$$\begin{aligned}
& \text{W}_{n}(f) = (f, \text{id}_{H}) \times W_{n}(f) \times W_{n}(g) \\
& \text{W}_{n}(g) = (f, \text{id}_{H}) \times W_{n}(g)
\end{aligned}$$

b) natural transformations:
$$\eta: Jd \rightarrow W_n : \mu: W_n^2 \rightarrow W_n$$

 $\eta(x) = (x,e)$
 $\eta(x) = \chi_y \circ Jd(f) (x) = \eta_y (y) = (y,e)$
 $\eta(x) = \chi_y \circ \eta_z (x) = \chi_y (y) = (y,e)$
 $\eta(x) = \chi_y \circ \eta_z (x) = \chi_y (y) = (y,e)$
 $\chi(x) = \chi_y \circ \eta_z (x) = \chi_y (y) = (y,e)$

$$h^{x} \left((x', w')' w^{x} \right) = \left(x', w', w^{x} \right)$$

$$h^{x} \left((x', w')' w^{x} \right) = \left(x', w', w^{x} \right)$$

$$\mathcal{L} = \mu_{y} \circ \mathcal{N}_{n}^{\ell}(f)((x_{1}m_{1})_{1}m_{2}) = \mu_{y}((y_{1}m_{1})_{1}m_{\ell}) = (y_{1}m_{1} \cdot m_{2}) = \lambda_{n}(f)(x_{1}m_{1} \cdot m_{2}) = \lambda_{n}(f)(x_{1}m_{1} \cdot m_{2}) = (y_{1}m_{1} \cdot m_{2}) = \mathcal{R}_{n}(f)(x_{1}m_{1} \cdot m_{2}) = \mathcal{R}_{n}(f)($$

$$V'(x) \xrightarrow{\Lambda'(x)} V''(x)$$

$$\frac{\mathcal{N}_{n}(\xi)}{\mathcal{N}_{n}(\xi)} \qquad \frac{\mathcal{N}_{n}(\xi)}{\mathcal{N}_{n}(\xi)} \qquad \frac{\mathcal{$$

$$V_{N}(x)$$
 $V_{N}(x)$
 $V_{N}(x)$
 $V_{N}(x)$
 $V_{N}(x)$
 $V_{N}(x)$
 $V_{N}(x)$

$$\mu_{N}(x) = \frac{\mu_{X}}{\mu_{X}} \times \mu_{X}(x)$$

$$\mu_{N}(x) = \frac{\mu_{X}}{\mu_{X}} \times \mu_{X}(x)$$

$$\begin{array}{l}
\mathcal{L} = \mu_{x} \circ W_{n} (\eta_{x}) ((x_{1} m_{n})) = \mu_{x} ((x_{1} m_{n})_{1} e) = \\
= (x_{1} m_{n} \cdot e) = (x_{1} m_{n}) \\
\mathcal{L} = \mu_{x} \circ \eta_{x} ((x_{1} m_{n})) = \mu_{x} ((x_{1} m_{n})_{1} e) = \\
= (x_{1} m_{n} \cdot e) = (x_{1} m_{n}) = Q \\
\mu_{x} \circ W_{n} (\eta_{x}) = \mu_{x} \circ \eta_{x} (x_{1} m_{n}) = Q \\
\mu_{x} \circ W_{n} (\eta_{x}) = \mu_{x} \circ \eta_{x} (x_{1} m_{n}) = Q \\
\mathcal{L} = \mu_{x} \circ W(\mu_{x}) ((x_{m})_{1} m_{2})_{1} m_{3}) = \\
= \mu_{x} ((x_{1} m_{n} \cdot m_{2})_{1} m_{2} \cdot m_{3}) = (x_{1} m_{n} \cdot m_{2} \cdot m_{3}) = Q \\
= \mu_{x} \circ \mu_{x} ((x_{n} m_{n})_{1} m_{2} \cdot m_{3}) = (x_{1} m_{n} \cdot m_{2} \cdot m_{3}) = Q
\end{array}$$