Applied Missing Data Analysis

2017 ABCT Annual Convention AMASS Workshop

Craig Enders University of California - Los Angeles Department of Psychology

Workshop Overview

Missing data mechanisms and assumptions

Multiple imputation and maximum likelihood estimation for normally distributed variables

Practical issues: categorical variables, composite variables, interaction effects, multilevel data

Analysis examples

2

Workshop Materials

Multiple imputation software available at www.appliedmissingdata.com/multilevel-imputation

Workshop slides and analysis scripts available at www.appliedmissingdata.com/training-materials

Analysis scripts for Mplus, R, SAS, SPSS, and Stata

Missing Data Mechanisms

Patterns Versus Mechanisms

The missing data pattern describes the configuration of observed and the missing values in a data set

The pattern describes the location of the holes in the data but says nothing about why the data are missing

The missing data mechanism describes how the probability of missingness is related to the data, if at all

Motivating	Examp	le
		_

20 participants enroll in a smoking cessation study

Participants report age, number of years smoking, number of cigarettes smoked, and self-efficacy to quit

Number of cigarettes and selfefficacy have missing values

Age	Years	Cigs	Efficacy
29	7	9	NA
39	8	NA	NA
25	1	11	16
41	4	NA	21
39	6	10	17
41	8	5	10
46	8	7	13
40	10	NA	10
51	15	NA	11
43	5	11	13
26	9	12	11
51	11	11	16
36	14	NA	10
51	13	19	9
41	12	15	5
28	11	8	7
30	10	13	10
41	10	8	NA
23	7	10	7
33	11	10	6

Obs	served + l	Missing	Data		Observ	ed Data		Indi	cators
Age	Years	Cigs	Efficacy	Age	Years	Cigs	Efficacy	Cigs	Efficacy
29	7	9	12	29	7	9	NA	0	1
39	8	12	14	39	8	NA	NA	1	1
25	1	11	16	25	1	11	16	0	0
41	4	3	21	41	4	NA	21	1	0
39	6	10	17	39	6	10	17	0	0
41	8	5	10	41	8	5	10	0	0
46	8	7	13	46	8	7	13	0	0
40	10	11	10	40	10	NA	10	1	0
51	15	12	11	51	15	NA	11	1	0
43	5	11	13	43	5	11	13	0	0
26	9	12	11	26	9	12	11	0	0
51	11	11	16	51	11	11	16	0	0
36	14	10	10	36	14	NA	10	1	0
51	13	19	9	51	13	19	9	0	0
41	12	15	5	41	12	15	5	0	0
28	11	8	7	28	11	8	7	0	0
30	10	13	10	30	10	13	10	0	0
41	10	8	15	41	10	8	NA	0	1
23	7	10	7	23	7	10	7	0	0
33	11	10	6	33	11	10	6	0	0

Notation and Terminology

The complete (hypothetical) data set is comprised of observed and missing parts, Yobs and Ymis

The unseen values in Y_{mis} can be viewed as latent scores

R is a missing data indicator (or matrix of indicators) where R = 0 if Y is observed and R = 1 if Y is missing

Missing Data Mechanisms

Rubin's (1976) missing data mechanisms describe relations between missing data indicators in R (the probability of nonresponse) and Y_{obs} and Y_{mis}

Missing completely at random (MCAR)

Missing at random (MAR)

Not missing at random (NMAR)

Diagram of Mechanisms

X represents a set of observed variables correlated with Y, Z represents a set of observed variables uncorrelated with X and Y, and R_Y is the missing data indicator for Y

MCAR

1/7(1)

9

Missing Completely At Random (MCAR)

The probability of missing data on a variable is unrelated to observed and latent parts of the data

$$P(R \mid Y_{\text{obs}}, Y_{\text{mis}}) = P(R)$$

MCAR implies an unsystematic process where all participants have the same chance of missing data

MCAR = observed and missing scores are the same, on average

1

Testing MCAR with Missing Data Indicators

MCAR is the only mechanism with testable propositions

Create a missing data indicator R for each incomplete variable (e.g., 0 = complete, 1 = missing) and examine mean differences across missing data patterns

This strategy can rule out MCAR but says nothing about the plausibility of MAR and NMAR mechanisms

13

MCAR Example

The absence of large mean differences supports MCAR

Pattern	Mean	SD	n			
	Age					
Complete	37.5	8.6	15			
Missing	38.2	10.1	5			
	Years					
Complete	8.9	3.7	15			
Missing	9.4	2.9	5			
Se	elf-Efficacy	/				
Complete	11.5	4.9	13			
Missing	10.8	1.7	4			

Age	Years	Cigs	SE	Rcigs
29	7	9	NA	0
39	8	12	NA	0
25	1	11	16	0
41	4	3	21	0
39	6	10	17	0
41	8	5	10	0
46	8	7	13	0
40	10	11	10	0
51	15	12	11	0
43	5	NA	13	1
26	9	NA	11	1
51	11	11	16	0
36	14	10	10	0
51	13	NA	9	1
41	12	15	5	0
28	11	8	7	0
30	10	NA	10	1
41	10	NA	NA	1
23	7	10	7	0
33	11	10	6	0

1.

Missing At Random (MAR)

The probability of missing data on a variable is unrelated to the latent parts of the data, but it can be related to the observed parts

$$P(R \mid Y_{\text{obs}}, Y_{\text{mis}}) = P(R \mid Y_{\text{obs}})$$

MAR implies systematic missingness where nonresponse varies across different observed score profiles

MAR = observed and missing scores are the same, on average, after conditioning on (controlling for) other variables

1

MAR Example

The presence of large mean differences refutes MCAR

Pattern	Mean	SD	n		
	Age				
Complete	36.5	9.4	15		
Missing	41.4	5.7	5		
	Years				
Complete	8.1	3.2	15		
Missing	11.8	2.9	5		
Se	Self-Efficacy				
Complete	12.0	4.5	13		
Missing	9.0	2.7	4		

Age	Years	Cigs	SE	Rcigs
29	7	9	NA	0
39	8	NA	NA	1
25	1	11	16	0
41	4	3	21	0
39	6	10	17	0
41	8	5	10	0
46	8	7	13	0
40	10	NA	10	1
51	15	NA	11	1
43	5	11	13	0
26	9	12	11	0
51	11	11	16	0
36	14	NA	10	1
51	13	19	9	0
41	12	NA	5	1
28	11	8	7	0
30	10	13	10	0
41	10	8	NA	0
23	7	10	7	0
33	11	10	6	0

Inclusive Analysis Strategy and Auxiliary Variables

Satisfying MAR requires that we condition on all variables that simultaneously correlate with an incomplete variable and its missing data indicator

This may require additional auxiliary variables that wouldn't have appeared in the analysis had the data been complete

Choosing a small set of additional variables with the strongest correlations is a good strategy

18

Hierarchy of Auxiliary Variables

Power-boosting auxiliary variables

Auxiliary Variables

Analysis

Variables

Indicator
Variables

Unhelpful auxiliary variables

Indicator Variables

Analysis

Variables

Auxiliary Variables

Not Missing At Random (NMAR)

The probability of missing data on a variable is related to the observed and latent parts of the data

$$P(R \mid Y_{\text{obs}}, Y_{\text{mis}})$$

NMAR implies systematic missingness where nonresponse depends on the latent (unseen) scores

NMAR = observed and missing scores are different, on average, after conditioning on (controlling for) other variables

21

NMAR Example

The presence of large mean differences refutes MCAR

Pattern	Mean	SD	n		
	Age				
Complete	35.5	8.5	15		
Missing	44.4	6.1	5		
	Years				
Complete	8.1	3.3	15		
Missing	11.6	2.7	5		
Se	Self-Efficacy				
Complete	12.1	4.5	13		
Missing	8.8	2.6	4		

Age	Years	Cigs	SE	R _{Cigs}
29	7	9	NA	0
39	8	NA	NA	1
25	1	11	16	0
41	4	3	21	0
39	6	10	17	0
41	8	5	10	0
46	8	7	13	0
40	10	NA	10	1
51	15	NA	11	1
43	5	11	13	0
26	9	12	11	0
51	11	11	16	0
36	14	10	10	0
51	13	NA	9	1
41	12	NA	5	1
28	11	8	7	0
30	10	13	10	0
41	10	8	NA	0
23	7	10	7	0
33	11	10	6	0

2

Why Mechanisms Matter

Mechanisms function as assumptions

Some older approaches require MCAR and others make no attempt to satisfy any mechanism

Modern approaches like multiple imputation, maximum likelihood, and Bayes assume MAR (or MCAR)

Estimates are biased when assumptions are violated

Illustrative Computer Simulation

Generate 1000 samples of bivariate data with N = 250

Delete 50% of one variable's scores according to an MCAR, MAR, or NMAR mechanism

Exclude incomplete cases or apply multiple imputation to each of the 1000 data sets

Compute the average estimates for both methods and compare to the true population values

24

MCAR Simulation Results

Both approaches are unbiased because assumptions about the nonresponse mechanism are satisfied

Parameter	True Value	Imputation	Deletion
Mean of X	100.00	100.02	99.98
Std. Dev. of X	13.00	12.97	13.38
Mean of Y	12.00	11.99	12.00
Std. Dev. of Y	3.00	2.99	3.00
Correlation	0.50	0.50	0.50

25

MAR Simulation Results

Deletion is biased because it assumes unsystematic nonresponse, imputation is accurate because the MAR assumption is satisfied

Parameter	True Value	Imputation	Deletion
Mean of X	100.00	100.01	110.35
Std. Dev. of X	13.00	12.98	7.86
Mean of Y	12.00	12.01	13.21
Std. Dev. of Y	3.00	2.99	2.76
Correlation	0.50	0.49	0.14

26

Bias Illustration

More years smoking is associated with higher rates of nonresponse (MAR)

Systematic missingness due to observed scores

Deletion biases estimates because the complete cases are not representative of the full sample

Years	Cigs
7	9
8	NA
1	11
4	3
6	10
8	5
8	7
10	NA
15	NA
5	11
9	12
11	11
14	NA
13	19
12	NA
11	8
10	13
10	8
7	10
11	10

17

Hypothetical Complete-Data Scatterplot

NMAR Simulation Results

Both methods are biased due to assumption violations, but deletion estimates are generally worse

Parameter	True Value	Imputation	Deletion
Mean of X	100.00	100.00	105.51
Std. Dev. of X	13.00	13.00	11.90
Mean of Y	12.00	14.12	14.40
Std. Dev. of Y	3.00	1.82	1.81
Correlation	0.50	0.36	0.32

33

Practical Recommendations

MAR-based methods are usually a good starting point but are not necessarily perfect solutions

We cannot test for an MAR mechanism and thus we must rely on logical arguments and knowledge about our data collection and participants to justify these methods

NMAR-based procedures are available but are difficult to implement and require other tenuous assumptions

34

Multiple Imputation

Multiple Imputation Overview

Multiple imputation generates several complete data sets (e.g., 20 or more), each with different imputations

Unique regression coefficients generate each data set

Analyzing multiple complete data sets provides a mechanism for adjusting standard errors

Multiple Imputation Steps: Imputation

The imputation phase creates multiple copies of the data, each with different replacement values

X	Υ	z
4	4	3
3	NA	5
7	1	6
NA	1	6
5	9	3
3	NA	NA
1	6	7
9	4	9
2	NA	6

х	Υ	z	х	Υ	z	х		Y
4	4	3	4	4	3	4	4	
3	3.3	5	3	4.7	5	3	2.6	
7	1	6	7	1	6	7	1	
2.4	1	6	1.3	1	6	2.1	1	
5	9	3	5	9	3	5	9	
3	2.1	1.9	3	6.5	3.5	3	3.9	
1	6	7	1	6	7	1	6	
9	4	9	9	4	9	9	4	
2	5.3	6	2	4.2	6	2	4.6	

37

Multiple Imputation Steps: Analysis

In the analysis the researcher analyzes and obtains estimates from each complete data set

(Υ	z
4	4	3
3	3.3	5
7	1	6
.4	1	6
5	9	3
3	2.1	1.9
1	6	7
9	4	9
2	5.3	6

Х	Υ	Z
4	4	3
3	2.6	5
7	1	6
2.1	1	6
5	9	3
3	3.9	3.0
1	6	7
9	4	9
2	4.6	6

$$X - \theta_1 - Y$$

$$X - \theta_3 \rightarrow Y$$

Multiple Imputation Steps: Pooling

The pooling phase combines the estimates and standard errors into a single set of results

$$X - \theta_1 \rightarrow Y$$

$$X - \theta_2 \rightarrow Y$$

$$\overline{\theta} = \underline{(\theta_1 + \theta_2 + \theta_3)}$$

$$X - \theta_3 \rightarrow Y$$

How Imputation Works

The imputation phase creates many imputed data sets, each generated from unique regression parameters

Imputation uses a regression model with an incomplete variable as the outcome and complete (and previously imputed) variables as predictors

Imputation = predicted score + random noise

Markov Chain Monte Carlo (MCMC)

Imputation use an iterative MCMC algorithm that applies two major steps: estimate regression model parameters and update imputations based on the estimates

Bayesian estimation generates the regression parameters

The regression parameters define a distribution of plausible imputations for each observation

41

Iteration			
1	Estimate parameters	Impute	
2	Estimate parameters	Impute	
3	Estimate parameters	Impute	
	Iterate		

Motivating Example

Number of years smoking and number of cigarettes smoked

More years smoking is associated with higher rates of nonresponse (MAR)

20% of respondents do not report the number of cigarettes smoked

Years	Cigs	
7	9	
8	NA	
1	11	
4	3	
6	10	
8	5	
8	7	
10	NA	
15	NA	
5	11	
9	12	
11	11	
14	NA	
13	19	
12	NA	
11	8	
10	13	
10	8	
7	10	
11	10	

Updating Parameter Values

Bayesian estimation generates new regression parameters for the next round of imputation

Bayesian estimation "draws" new parameters from a posterior distribution (like a sampling distribution)

The updating process is akin to estimating the regression from the filled-in data and randomly perturbing estimates

Burn-in and Thinning

The first imputed data set is saved only after a burn-in period where parameters achieve stable distributions

Imputed data sets from consecutive MCMC cycles are highly correlated (too similar) and so we want to allow MCMC cycles to lapse between each saved data set

Saving a data set at regular intervals (e.g., after every 200th imputation step) eliminates this autocorrelation

Burn-in Interval Iteration Update parameters Impute 2 Impute Update parameters Burn-in interval Update parameters Impute 3 Iterate ... 200 Update parameters Save Data Set 1 Impute

Fully Conditional Specification (FCS) Imputation

FCS imputes variables in a sequence, drawing missing values from a univariate normal distribution

FCS is just a series of univariate imputation problems

The incomplete variable from one step serves as a complete predictor in all other imputation steps

62

FCS Imputation Scheme FCS imputation uses a series of univariate regression models to impute incomplete variables in a sequence Update Y₁ Parameters Update Y₂ Parameters Update Y₃ Parameters Impute Y₁ | Y₂, Y₃ Save a data set

Blimp Script Ex0a.imp Diagnostic Phase

```
DATA: ~/desktop/examples/smoking.dat;
VARNAMES: id txgroup txdum1 txdum2 male age years
    cigs heavycig efficacy stress;
MISSING: -99;
MODEL: ~ years cigs efficacy;
SEED: 90291;
BURN: 3000;
THIN: 1;
NIMPS: 2;
OUTFILE: ~/desktop/examples/imp*.csv;
OPTIONS: separate psr;
CHAINS: 2 processors 2;
```

Potential Scale Reduction (PSR) Factors

The PSR captures the degree of similarity between imputations generated from two separate MCMC runs

The MCMC algorithm converges when the two runs begin to produce similar imputations

PSR < 1.05 to 1.10 is often considered acceptable

Use the PSR to specify the burn-in and thinning intervals

65

Diagnostic Output

POTENTIAL SCALE REDUCTION (PSR) OUTPUT:

Comparing iterations 51 to 100 for 2 chains.

	Fix Eff	Ran Eff Var	Err Var	Threshold
Max PSR Missing Variable	1.027 cigs		1.008 cigs	nan

Comparing iterations 101 to 200 for 2 chains.

	Ī	Fix Eff Rar	n Eff Var	Err Var	Threshold
Max PSR issing Variable		1.043 efficacy	nan 	1.002 cigs	nan

66

Blimp Script Ex0b.imp Imputation Phase (Mplus Format)

```
DATA: ~/desktop/examples/smoking.dat;
```

VARNAMES: id txgroup txdum1 txdum2 male age years

cigs heavycig efficacy stress;

MISSING: -99;

MODEL: ~ years cigs efficacy;

SEED: 90291; BURN: 100; THIN: 100; NIMPS: 20;

OUTFILE: ~/desktop/examples/imp*.csv;

OPTIONS: separate; CHAINS: 2 processors 2; Blimp Script Ex0c.imp Imputation Phase (R, SAS, SPSS, and Stata Format)

DATA: ~/desktop/examples/smoking.dat;

VARNAMES: id txgroup txdum1 txdum2 male age years

cigs heavycig efficacy stress;

MISSING: -99;

MODEL: ~ years cigs efficacy;

SEED: 90291; BURN: 100; THIN: 100; NIMPS: 20;

OUTFILE: ~/desktop/examples/imps.csv;

OPTIONS: stacked; CHAINS: 2 processors 2;

Imputed Data Sets

The imputation phase generates a set of imputed data sets

The next step is to analyze the data ...

Multiple Imputation Analysis and Pooling Phase

70

Multiple Imputation Steps: Analysis

In the analysis the researcher analyzes and obtains estimates from each complete data set

	Υ	Z		Х	Υ	Z		Х	Υ	Z
	4	3		4	4	3	=	4	4	3
3	3.3	5		3	4.7	5		3	2.6	5
7	1	6		7	1	6		7	1	6
.4	1	6		1.3	1	6		2.1	1	6
5	9	3		5	9	3		5	9	3
3	2.1	1.9		3	6.5	3.5		3	3.9	3.0
1	6	7	•	1	6	7	٠	1	6	7
9	4	9		9	4	9		9	4	9
2	5.3	6		2	4.2	6		2	4.6	6
x }	- θ 1 →	Y		X	- θ 2 -	Y		X	- Ө з -	-

Multiple Imputation Steps: Pooling

The pooling phase combines the estimates and standard errors into a single set of results

$$X \rightarrow \theta_1 \rightarrow Y$$

$$X - \theta_2 \rightarrow Y$$

$$\overline{\theta} = \underbrace{(\theta_1 + \theta_2 + \theta_3)}_{2}$$

$$X - \theta_3 \rightarrow Y$$

Analysis Model

The analysis model is a multiple regression predicting self-efficacy to quit based on years smoking and number of cigarettes smoked

Years	Cigs	Efficacy	Years	Cigs	Efficacy	Years	Cigs	Efficacy
7	9	15.50	7	9	15.38	7	9	5.86
8	8.96	15.78	8	8.28	9.25	8	10.04	13.88
1	11	16	1	11	16	1	11	16
4	3	21	4	3	21	4	3	21
6	10	17	6	10	17	6	10	17
8	5	10	8	5	10	8	5	10
8	7	13	8	7	13	8	7	13
10	9.92	10	10	13.41	10	10	12.95	10
15	13.62	11	15	6.99	11	15	14.40	11
5	11	13	5	11	13	5	11	13
9	12	11	9	12	11	9	12	11
11	11	16	11	11	16	11	11	16
14	14.42	10	14	15.31	10	14	14.47	10
13	19	9	13	19	9	13	19	9
12	18.04	5	12	12.75	5	12	11.46	5
11	8	7	11	8	7	11	8	7
10	13	10	10	13	10	10	13	10
10	8	9.18	10	8	14.85	10	8	6.79
7	10	7	7	10	7	7	10	7
11	10	6	11	10	6	11	10	6

Pooling Estimates

The multiple imputation point estimate is the arithmetic average of the ${\it M}$ complete-data estimates

Example: Descriptives

	Data	Set 1			Data	Set 2			Data	Set 3	
	М	SD	N		М	SD	N		Years	Cigs	SI
ears/	9.00	3.45	20	Years	9.00	3.45	20	Years	9.00	3.45	2
Cigs	10.59	3.84	20	Cigs	10.19	3.61	20	Cigs	10.52	3.51	2
SE											
JE .	11.62	4.19	20	SE	11.57	4.14	20	SE	10.93	4.28	
3E	11.62	4.19	20	SE	11.57	4.14	20		ooled E	stimate	
<u> </u>	<u>M</u>	•	20	SE	11.57	4.14	20				
JE .	<u>M</u>	â					20		ooled E	stimate	es
$\hat{ heta}$	<u>M</u>	$\hat{\theta}_m = \frac{1}{2}$		SE + 10.19 + 3				F	ooled E	estimate SD	es N

Example: Correlations

	Data	Set 1			Data Set 2				Data	Data Set 3		
	Years	Cigs	SE			Years	Cigs	SE		Years	Cigs	SE
Years	1.00			Ye	ears	1.00			Years	1.00		
Cigs	0.54	1.00		С	igs	0.38	1.00		Cigs	0.54	1.00	
SE	-0.60	-0.45	1.00		SE	-0.57	-0.38	1.00	SE	-0.52	-0.26	1.00

$$\hat{\theta} = \frac{\sum_{m=1}^{M} \hat{\theta}_m}{M} = \frac{-.45 - .57 - .26}{3} = -.37$$

1 00lea Estimates							
	Years	Cigs	SE				
Years	1.00						
Cigs	0.49	1.00					
SE	-0.57	-0.37	1.00				

Example: Regression Parameters

	lmp 1	Imp 2	Imp 3	Pooled
B ₀ (Intercept)	19.20	19.16	18.30	18.88
B ₁ (Years)	-0.62	-0.59	-0.63	-0.61
B ₂ (Cigarettes)	-0.19	-0.22	0.04	-0.12
Residual Variance	12.07	12.41	14.81	13.10
R ²	0.39	0.35	0.28	0.34

$$\hat{\theta} = \frac{\sum_{m=1}^{M} \hat{\theta}_m}{M} = \frac{-.19 - .22 + .04}{3} = -.12$$

78

Pooling Standard Errors

Averaging standard errors underestimates sampling variability because the component standard errors are based on complete data sets

Imputation standard errors consist of two components

Within-imputation variance estimates complete-data sampling error, and between-imputation variance captures additional noise from the missing data

Within-Imputation Variance

The within-imputation variance is the average squared standard error

$$V_{W} = \frac{\sum_{m=1}^{M} SE_{m}^{2}}{M}$$

Within-imputation variance estimates sampling error in the hypothetically complete data

80

Example

	Data	Set 1		Data Set 2 Data Set 3				Set 3			
	Est.	SE	SE ²		Est.	SE	SE ²		Est.	SE	SE ²
B ₀	19.20	2.559	6.548	B ₀	19.16	2.762	7.629	B ₀	16.54	2.970	8.821
B ₁	-0.62	0.275	0.076	B ₁	-0.59	0.253	0.064	B ₁	-0.67	0.304	0.092
B ₂	-0.19	0.247	0.061	B ₂	-0.22	0.242	0.059	B ₂	0.04	0.299	0.089

M	
$\nabla \varsigma_{F^2}$	
\angle SL_m	.061 + .059 + .089
$V_{W} = \frac{m=1}{1.6}$	$=\frac{.001+.009}{.009}=.097$
M	3

	Est.	$\mathbf{V}_{\mathbf{W}}$
B ₀	18.30	10.745
B ₁	-0.63	0.080
B ₂	-0.12	0.097

Pooled Estimates

81

Between-Imputation Variance

Variability in the estimates across data sets results from using different imputations

$$V_{B} = \frac{\sum_{m=1}^{M} (\theta_{m} - \overline{\theta})^{2}}{M - 1}$$

Between-imputation variance captures this additional variability by applying the sample variance formula to the M estimates

82

Example

	Data Set 1			 Data Set 2			 Data Set 3				
	Est.	SE	SE ²		Est.	SE	SE ²		Est.	SE	SE ²
B ₀	19.20	2.559	6.548	B ₀	19.16	2.762	7.629	B ₀	16.54	2.970	8.821
B ₁	-0.62	0.275	0.076	B ₁	-0.59	0.253	0.064	B ₁	-0.67	0.304	0.092
B ₂	-0.19	0.247	0.061	B ₂	-0.22	0.242	0.059	B ₂	0.04	0.299	0.089

$$V_{B} = \frac{\left(-.19 + .12\right)^{2} + \left(-.22 + .12\right)^{2} + \left(.04 + .12\right)^{2}}{2} \\ = .021 \\ \hline \begin{array}{c|cccc} & \textbf{Est.} & \textbf{Vw} & \textbf{V}_{B} \\ \hline \textbf{B}_{0} & 18.30 & 10.745 & 2.311 \\ \hline \textbf{B}_{1} & -0.63 & 0.080 & 0.002 \\ \hline \textbf{B}_{2} & -0.12 & 0.097 & 0.021 \\ \hline \end{array}$$

Total Variance and Standard Error

The total variance (squared standard error) combines complete-data sampling error and missing data uncertainty

Complete data sampling error
$$V_{\rm T} = V_{\rm W} + V_{\rm B} + \frac{V_{\rm B}}{M}$$

$$SE = \sqrt{V_{\rm W} + V_{\rm B} + \frac{V_{\rm B}}{M}} = \sqrt{V_{\rm T}}$$

Significance Testing

The usual t or z ratio is based on pooled quantities

Pooled estimate

Hypothesized value

$$t \text{ (or } z\text{)} = \frac{\hat{\theta} - \theta_0}{SE}$$
Pooled standard error

Multivariate significance tests (e.g., Wald and likelihood ratio) are also available

Mplus Script Ex0a.inp Analysis and Pooling Phase

```
DATA:
file = implist.csv;
type = imputation;
VARIABLE:
names = id txgroup txdum1 txdum2 male age years
 cigs heavycig efficacy stress;
usevariables = years cigs efficacy;
efficacy on years (b1)
 cigs (b2);
MODEL TEST:
b1 = 0; b2 = 0;
OUTPUT:
standardized(stdyx);
```

Mplus Output

```
MODEL RESULTS
                                                Two-Tailed
                   Estimate
                                 S.E. Est./S.E.
                                                  P-Value
 EFFICACY ON
   YEARS
                    -0.652
                                                     0.015
                                0.269
                                          -2.423
   CIGS
                    -0.069
                                0.278
                                          -0.249
                                                     0.803
Intercepts
   EFFICACY
                    17.815
                                2.818
                                          6.323
                                                     0.000
 Residual Variances
   EFFICACY
                    11.240
                                3.972
                                           2.830
                                                     0.005
```

Mplus Output, Continued

STANDARDIZED MOD	EL KESULIS				
STDYX Standardiz	ation				
				Two-Tailed	
	Estimate	S.E.	Est./S.E.	P-Value	
EFFICACY ON					
YEARS	-0.540	0.201	-2.684	0.007	
CIGS	-0.055	0.254	-0.216	0.829	
Intercepts					
EFFICACY	4.393	0.735	5.975	0.000	
Residual Varian	ices				
EFFICACY	0.677	0.178	3.791	0.000	
R-SQUARE					
0bserved				Two-Tailed	
Variable	Estimate	S.E.	Est./S.E.	P-Value	
EFFICACY	0.323	0.178	1.813	0.070	

Maximum Likelihood Estimation

89

Maximum Likelihood Overview

Maximum likelihood identifies the population parameter values that best fit the observed data

The analysis uses the incomplete data, and missing data handling is integrated into estimation

An iterative algorithm generates temporary imputations at each computational cycle as it searches for the optimal parameter values (i.e., implicit imputation)

90

Multivariate Normal Distribution

Multivariate normal distribution function

$$\{...\} = \text{Likelihood}$$

$$\log L_i = \log \left\{ \frac{1}{\sqrt{2\pi}^{k/2} |\Sigma|^{.5}} e^{\left[-.5(\mathbf{y}_i - \mu)^T \Sigma^{-1}(\mathbf{y}_i - \mu)\right]} \right\}$$

The likelihood gives the probability that a set of scores came from a multivariate normal distribution with a particular mean vector and covariance matrix

Geometric Interpretation

Mahalanobis Distance

The key kernel of the likelihood is a squared *z*-score that gives the sum of squared standardized deviation scores

Deviation scores for observation *i*

$$z_i^2 = (\mathbf{y}_i - \boldsymbol{\mu})^T \sum_{i=1}^{-1} (\mathbf{y}_i - \boldsymbol{\mu})^T$$

Standardize by "dividing by" the covariance matrix

93

Sample Log Likelihood

The log likelihood gives the probability of the sample data, given a multivariate normal distribution with a particular mean vector and covariance matrix

$$\log L = \sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi^{k/2} |\Sigma|^{5}}} e^{\left[-.5(\mathbf{y}_{i} - \mu)^{T} \Sigma^{-1}(\mathbf{y}_{i} - \mu)\right]} \right)$$
$$= \sum_{i=1}^{N} \left(-\frac{k}{2} \log(2\pi) - \frac{1}{2} \log|\Sigma| - \frac{1}{2} (\mathbf{y}_{i} - \mu)^{T} \Sigma^{-1}(\mathbf{y}_{i} - \mu) \right)$$

94

Missing-Data Log Likelihood

Number of observed scores for case i Mean vector elements corresponding to observed scores $\log L = \sum_{i=1}^{N} \left(-\frac{k_i}{2} \log \left(2\pi \right) - \frac{1}{2} \log \left| \Sigma_i \right| - \frac{1}{2} \left(\mathbf{y}_i - \boldsymbol{\mu}_i \right)^T \boldsymbol{\Sigma}_i^{-1} \left(\mathbf{y}_i - \boldsymbol{\mu}_i \right) \right)$ Observed scores for case i

Covariance matrix elements corresponding to observed scores

Missing-Data Log Likelihood, Continued

The squared *z*-scores in the log likelihood are compute using all available data

Deviation scores are computed using only the means that correspond to the observed data for an observation

The size of the covariance matrix used to standardize the deviation scores adjusts to the observed data

Motivating Example

Number of years smoking and number of cigarettes smoked

More years smoking is associated with higher rates of nonresponse (MAR)

Two missing data patterns

Years (Y ₁)	Cigs (Y ₂)
1	11
4	3
5	11
6	10
7	9
7	10
8	5
8	7
9	12
10	8
10	13
11	8
11	10
11	11
13	19
8	NA
10	NA
12	NA
14	NA
15	NA

Mahalanobis Distance Computations

Complete cases

$$\begin{split} \boldsymbol{z}_{i}^{2} &= \left(\mathbf{y}_{i} - \boldsymbol{\mu}_{i}\right)^{T} \boldsymbol{\Sigma}_{i}^{-1} \left(\mathbf{y}_{i} - \boldsymbol{\mu}_{i}\right) \\ &= \left(\begin{bmatrix} \boldsymbol{Y}_{1i} \\ \boldsymbol{Y}_{2i} \end{bmatrix} - \begin{bmatrix} \boldsymbol{\mu}_{\boldsymbol{Y}_{1}} \\ \boldsymbol{\mu}_{\boldsymbol{Y}_{2}} \end{bmatrix}\right)^{T} \left(\begin{array}{c} \boldsymbol{\sigma}_{\boldsymbol{Y}_{1}}^{2} & \boldsymbol{\sigma}_{\boldsymbol{Y}_{1}\boldsymbol{Y}_{2}} \\ \boldsymbol{\sigma}_{\boldsymbol{Y}_{2}\boldsymbol{Y}_{1}} & \boldsymbol{\sigma}_{\boldsymbol{Y}_{2}}^{2} \end{array}\right)^{-1} \left(\begin{bmatrix} \boldsymbol{Y}_{1i} \\ \boldsymbol{Y}_{2i} \end{bmatrix} - \begin{bmatrix} \boldsymbol{\mu}_{\boldsymbol{Y}_{1}} \\ \boldsymbol{\mu}_{\boldsymbol{Y}_{2}} \end{bmatrix}\right) \end{split}$$

Incomplete cases

$$z_{i}^{2} = \left(\mathbf{y}_{i} - \boldsymbol{\mu}_{i}\right)^{T} \Sigma_{i}^{-1} \left(\mathbf{y}_{i} - \boldsymbol{\mu}_{i}\right) = \left(Y_{1i} - \boldsymbol{\mu}_{Y_{1}}\right)^{T} \left(\sigma_{Y_{1}}^{2}\right)^{-1} \left(Y_{1i} - \boldsymbol{\mu}_{Y_{1}}\right) = \frac{\left(Y_{1i} - \boldsymbol{\mu}_{Y_{1}}\right)^{2}}{\sigma_{Y_{1}}^{2}}$$

QR.

Analysis Model

The analysis model is a multiple regression predicting self-efficacy to quit based on years smoking and number of cigarettes smoked

Structural Equation Modeling Representation of a Regression Model

Normally distributed pseudo-latent variables share a one-to-one linkage with the manifest variables

Parameter Constraints

Loadings = 1, residual variance = 0, intercept = 0

These constraints produce a normally distributed pseudo-latent variable with the same mean and variance as its indicator

The pseudo-latent variable is a carbon copy of the indicator

Mahalanobis Distance Expression

$$\begin{split} z^2 &= \left(\mathbf{y}_i - \mathbf{\mu}_i\right)^T \Sigma_i^{-1} \left(\mathbf{y}_i - \mathbf{\mu}_i\right) \\ &= \left(\begin{bmatrix} Y_i \\ X_{1i} \\ X_{2i} \end{bmatrix} - \begin{bmatrix} \beta_0 + \beta_1 \kappa_{X_1} + \beta_2 \kappa_{X_2} \\ \kappa_{X_1} \\ \kappa_{X_2} \end{bmatrix} \right)^T \Sigma^{-1} \left(\begin{bmatrix} Y_i \\ X_{1i} \\ X_{2i} \end{bmatrix} - \begin{bmatrix} \beta_0 + \beta_1 \kappa_{X_1} + \beta_2 \kappa_{X_2} \\ \kappa_{X_1} \\ \kappa_{X_2} \end{bmatrix} \right) \\ \text{Latent means} \qquad \text{Latent residual variance} \\ \Sigma &= \begin{pmatrix} \beta \Phi \beta^T + \psi & \beta \Phi \\ \Phi \beta^T & \Phi \end{pmatrix} \\ \text{Covariance matrix of latent predictors} \end{split}$$

Mplus Script Ex0b.inp Maximum Likelihood Analysis

```
DATA:
file = smoking.dat;
VARIABLE:
names = id txgroup txdum1 txdum2 male age years
    cigs heavycig efficacy stress;
usevariables = years cigs efficacy;
missing = all(-99);
MODEL:
efficacy years cigs;
efficacy on years (b1)
    cigs (b2);
MODEL TEST:
b1 = 0; b2 = 0;
OUTPUT:
standardized(stdyx);
```

Analysis Comparison

	Estimate	S.E.	Est./S.E.	P-Value
EFFICACY ON				
YEARS	-0.652	0.269	-2.423	0.015
CIGS	-0.069	0.278	-0.249	0.803
Intercepts				
EFFICACY	17.815	2.818	6.323	0.000
	Maximum	Likelihood	I	
	Estimate	S.E.	Est./S.E.	P-Value
EFFICACY ON				
YEARS	-0.637	0.254	-2.505	0.012
	-0.106	0.267	-0.397	0.691
CIGS	0.100			
CIGS Intercepts	0.100			

Multiple Impurtation

Conclusions

With normally distributed variables, multiple imputation and maximum likelihood estimation tend to give similar results

Maximum likelihood is preferable based on ease of use

Multiple imputation is arguably more flexible for handling complexities that arise with behavioral science data

105

Practical Issue 1 Mixtures of Categorical and Continuous variables

Practical Issues: Advantage Imputation

Mixtures of categorical and continuous variables

Composite scores with missing components

Interactive (moderation) effects

Multilevel data

10

Mixtures of Categorical and Continuous Variables

Maximum likelihood has limited capacity for handling categorical variables, particularly categorical predictors where software programs generally assume normality

Multiple imputation is ideally suited for this situation because it can tailor each variable's regression model to match its scale

Software programs use logistic or probit regression models for categorical imputation

10

Complete Categorical Variables

Complete categorical variables can serve as predictors in the imputation model

Nominal variables must appear as dummy codes (Blimp's NOMINAL command automatically performs the coding)

Ordinal variables can be left as is or dummy coded

103

Latent Variable Formulation

Blimp uses probit regression for categorical imputation

Discrete responses arise from one or more underlying normal latent variables (Y^* variables)

Imputations are generated on the latent variable metric and are subsequently converted to discrete imputes

11

Nominal

Motivating Example

Data from a cluster-randomized study investigating a novel math problem-solving curriculum

29 schools were randomly assigned to an intervention or control condition, with an average of 33.86 students per school

We will ignore the multilevel data structure for now

Problem-Solving Data Set

Variable	Description	Missing	Metric
school	School identifier variable		
condition	Treatment code (0 = control, 1 = intervention)		Nominal
esolpercent	Percentage of English as second language	*	Numeric
student	Student identifier		
abilitygrp	Ability grouping (3-group classification)	*	Nominal
female	Female dummy code		Nominal
stanmath	Standardized math test scores	*	Numeric
frlunch	Lunch assistance dummy code	*	Nominal
efficacy	Math self-efficacy rating scale	*	Ordinal
probsolve1	Math problem-solving score at baseline	*	Numeric
probsolve7	Math problem-solving score at final wave	*	Ordinal

Analysis Model

The substantive analysis is a regression model where a number of student-level covariates predict end-of-year problem-solving

$$probsolve7 = \beta_0 + \beta_1(probsolve1) + \beta_2(efficacy) + \beta_3(female) + \beta_4(abilitygrp2) + \beta_5(abilitygrp3) + \varepsilon$$

The ordinal self-efficacy ratings and nominal ability grouping variables are incomplete

114

Blimp Script Ex1a.imp Diagnostic Phase

DATA: ~/desktop/examples/probsolve.dat;

VARIABLES: school condition esolpercent student abilitygrp female

stanmath frlunch efficacy probsolve1 probsolve7;

ORDINAL: efficacy;

NOMINAL: abilitygrp female frlunch;

MISSING: -99;

MODEL: ~ abilitygrp female stanmath frlunch efficacy

probsolve1 probsolve7;

NIMPS: 2; BURN: 3000; THIN: 1; SEED: 90291;

OUTFILE: ~/desktop/examples/imp*.csv;

OPTIONS: separate psr; CHAINS: 2 processors 2;

Diagnostic Output

Comparing iterations 751 to 1500 for 2 chains.

	1	Fix Eff	Ran Eff Var	Err Var	Threshold
Max PSR Missing Variable		1.054 abilitygrp	nan	1.002 probsolve7	

Comparing iterations 801 to 1600 for 2 chains.

	I	Fix Eff R	Ran Eff Var	Err Var	Threshold
Max PSR Missing Variable		1.050 abilitygrp	nan	1.003 probsolve7	1.034 efficacy

Blimp Script Ex1b.imp Imputation Phase (Mplus Format)

```
DATA: ~/desktop/examples/probsolve.dat;

VARIABLES: school condition esolpercent student abilitygrp female stanmath frlunch efficacy probsolve1 probsolve7;

ORDINAL: efficacy;

NOMINAL: abilitygrp female frlunch;

MISSING: -99;

MODEL: ~ abilitygrp female stanmath frlunch efficacy probsolve1 probsolve7;

NIMPS: 20;

BURN: 1000;

THIN: 1000;

SEED: 90291;

OUTFILE: ~/desktop/examples/imp*.csv;

OPTIONS: separate;

CHAINS: 2 processors 2;
```

Blimp Script Ex1c.imp Imputation Phase (R, SAS, SPSS, and Stata Format)

```
DATA: ~/desktop/examples/probsolve.dat;

VARIABLES: school condition esolpercent student abilitygrp female stanmath frlunch efficacy probsolve1 probsolve7;

ORDINAL: efficacy;

NOMINAL: abilitygrp female frlunch;

MISSING: -99;

MODEL: ~ abilitygrp female stanmath frlunch efficacy probsolve1 probsolve7;

NIMPS: 20;

BURN: 1000;

THIN: 1000;

SEED: 90291;

OUTFILE: ~/desktop/examples/imps.csv;

OPTIONS: stacked;

CHAINS: 2 processors 2;
```

Mplus Script Ex1.inp Analysis and Pooling Phase

```
DATA:
file = implist.csv;
type = imputation;
VARIABLE:
names = school condition esolpercent student abilgrp female
stanmath frlunch efficacy probsolve1 probsolve7;
usevariables = female efficacy probsolve1 probsolve7
abilgrp2 abilgrp3;
DEFINE:
abilgrp2 = 0;
abilgrp3 = 0;
if (abilgrp eq 2) then abilgrp2 = 1;
if (abilgrp eq 3) then abilgrp3 = 1;
MODEL:
probsolve7 on probsolve1 efficacy female abilgrp2 abilgrp3;
OUTPUT:
standardized;
```

Mplus Output

	MODEL RESULTS				
	MODEL REGOLIO			Т	wo-Tailed
		Estimate	S.E.	Est./S.E.	P-Value
	PROBSOLV ON				
	PROBSOLVE1	0.444	0.044	10.072	0.000
	EFFICACY	0.732	0.297	2.464	0.014
	FEMALE	0.146	0.764	0.191	0.849
	ABILGRP2	0.470	1.445	0.325	0.745
	ABILGRP3	3.854	1.650	2.335	0.020
	Intercepts				
	PROBSOLVE7	60.034	4.445	13.505	0.000
	Residual Variances				
	PROBSOLVE7	114.089	5.717	19.956	0.000
/					
					/

Practical Issue 2 Composite Scores with Missing Components

Scale Scores

Measuring complex psychological constructs requires multiple questionnaire items, each of which taps into a different aspect of the construct

Researchers often compute scale scores by summing or averaging questionnaire items

How to compute the composite when its constituent items are incomplete?

Prorated Scale Scores (Averaging the Available Items)

Researchers often compute so-called prorated scale scores by averaging the available item responses

e.g., A respondent who answered 7 out of 10 items has a scale score equal to the average of the 7 responses

This approach is not ideal because it makes stringent assumptions that are unlikely to hold in practice

Proration = Person Mean Imputation

Prorated Scale Scores						Pe	rson-N	lean Ir	nputat	ion	
	ID	Q1	Q2	Q3	Scale		ID	Q1	Q2	Q3	Sca
	1	1	2	1	1.3		1	1	2	1	1.:
	2	5	NA	4	4.5		2	5	4.5	4	4.
	3	3	2	4	3.0		3	3	2	4	3.0
	4	NA	3	NA	3.0		4	3.0	3	3.0	3.0

Q3 Scale

1.3

4.5

3.0

3.0

Proration Assumptions

Proration requires MCAR plus identical item means and inter-item correlations (parallel factor structure)

	Q1	Q2	Q3	
Q1	1.00			.60
Q2	0.36	1.00		(L) .60 —
Q3	0.36	0.36	1.00	.60
Means	3.00	3.00	3.00	

Scale-Level vs. Item-Level Missing Data Handling

Scale-level imputation fills in the incomplete composite scores, ignoring item-level information

Item-level imputation fills in the items, and the composite is subsequently computed during the analysis phase

Item-level imputation offers a dramatic gain in power

Scale-Level Imputation

ID	X ₁	X ₂	X ₃	Y ₁	Y ₂
1	1	2	1	NA	3
2	5	NA	4	NA	NA
3	3	2	4	3	4
4	NA	3	NA	5	5
	IVA	3	IVA	5	

Component Variables

ID	Scale X	Scale Y
1	4	NA
2	NA	NA
3	9	7
4	NA	10
200	13	7

Imputation Variables

Item-Level Imputation

	Com	ooner	nt Vari	ables	;			Impu	tatior	n Varia	ables
ID	X ₁	X ₂	X ₃	Y ₁	Y ₂	-	ID	X ₁	X ₂	X ₃	Y ₁
1	1	2	1	NA	3		1	1	2	1	NA
2	5	NA	4	NA	NA		2	5	NA	4	NA
3	3	2	4	3	4		3	3	2	4	3
4	NA	3	NA	5	5		4	NA	3	NA	5
200	4	5	4	3	4		200	4	5	4	3
						-					

	•				
ID	X ₁	X ₂	X ₃	Y ₁	Y ₂
1	1	2	1	NA	3
2	5	NA	4	NA	NA
3	3	2	4	3	4
4	NA	3	NA	5	5
200	4	5	4	3	4

Motivating Example

Questionnaire data from a study of eating disorder risk in a sample of 500 college-aged women

Variables include body mass index (BMI), questionnaire items measuring body dissatisfaction and eating disorder risk, past sexual abuse history (0 = no abuse history, 1 = abuse history)

All questionnaire items measured on a 7-point scale

129

Eating Disorder Risk Data

Variable	Description	Missing	Metric
abuse	Previous history of abuse indicator	*	Nominal
bmi	Body mass index	*	Numeric
bds1 - bds7	Body dissatisfaction questionnaire items	*	Ordinal
edr1 - edr6	Eating disorder risk questionnaire items	*	Ordinal

130

Analysis Model

Body dissatisfaction and eating disorder risk are scale scores computed as the sum of the item responses

Blimp Script Ex2a.imp Diagnostic Phase

DATA: ~/desktop/examples/eatingrisk.dat; VARNAMES: abuse bmi bds1-bds7 edr1-edr6;

NOMINAL: abuse;

ORDINAL: bds1-bds7 edr1-edr6;

MISSING: -99;

MODEL: ~ abuse bmi bds1-bds7 edr1-edr6;

SEED: 90291; BURN: 20000; THIN: 1; NIMPS: 2:

OUTFILE: ~/desktop/examples/imp*.csv;

OPTIONS: separate psr; CHAINS: 2 processors 2;

Diagnostic Output

```
| Fix Eff| Ran Eff Var| Err Var| Threshold| |
| Max PSR | 1.007| nan| 1.000| 1.055|
| Missing Variable | edr2| | bmi| bds1|
| Comparing iterations 9301 to 18600 for 2 chains.
| Fix Eff| Ran Eff Var| Err Var| Threshold| |
| Max PSR | 1.007| nan| 1.000| 1.046|
| Missing Variable | edr2| | bmi| bds1|
```

Blimp Script Ex2b.imp Imputation Phase (Mplus Format)

```
DATA: ~/desktop/examples/eatingrisk.dat;
VARNAMES: abuse bmi bds1-bds7 edr1-edr6;
NOMINAL: abuse;
ORDINAL: bds1-bds7 edr1-edr6;
MISSING: -99;
MODEL: ~ abuse bmi bds1-bds7 edr1-edr6;
SEED: 90291;
BURN: 10000;
THIN: 10000;
NIMPS: 20;
OUTFILE: ~/desktop/examples/imp*.csv;
OPTIONS: separate;
CHAINS: 2 processors 2;
```

Blimp Script Ex2c.imp Imputation Phase (R, SAS, SPSS, and Stata Format)

```
DATA: ~/desktop/examples/eatingrisk.dat;
VARNAMES: abuse bmi bds1-bds7 edr1-edr6;
NOMINAL: abuse;
ORDINAL: bds1-bds7 edr1-edr6;
MISSING: -99;
MODEL: ~ abuse bmi bds1-bds7 edr1-edr6;
SEED: 90291;
BURN: 10000;
THIN: 10000;
NIMPS: 20;
OUTFILE: ~/desktop/examples/imps.csv;
OPTIONS: stacked;
CHAINS: 2 processors 2;
```

Mplus Script Ex2a.inp Analysis and Pooling Phase

```
DATA:
file = implist.csv;
type = imputation;
VARIABLE:
names = abuse bmi bds1-bds7 edr1-edr6;
usevariables = abuse bodydis eatrisk;
DEFINE:
bodydis = sum(bds1-bds7);
eatrisk = sum(edr1-edr6);
MODEL:
eatrisk on abuse bodydis;
OUTPUT:
standardized(stdyx);
```

Mplus Output

MODEL RESULTS Two-Tailed Estimate S.E. Est./S.E. P-Value EATRISK ON ABUSE 0.512 2.646 0.008 1.355 BODYDIS 0.500 0.031 16.188 0.000 Intercepts EATRISK 10.092 0.879 11.479 0.000 Residual Variances EATRISK 12.142 0.800 15.170 0.000

Mplus Output, Continued

STANDARDIZED MODEL RESULTS STDYX Standardization Two-Tailed Estimate S.E. Est./S.E. P-Value EATRISK ON ABUSE 0.108 2.648 0.008 0.041 BODYDIS 0.601 0.031 19.441 0.000 Intercepts EATRISK 2.211 0.243 9.109 0.000 Residual Variances EATRISK 0.583 0.035 16.815 0.000 R-SQUARE **Observed** Two-Tailed Variable S.E. Est./S.E. P-Value Estimate EATRISK 0.000 0.417 0.035 12.034

Mplus Script Ex2b.inp Scale-Level Maximum Likelihood Analysis

```
DATA:
file = eatingrisk.dat;
VARIABLE:
names = abuse bmi bds1-bds7 edr1-edr6;
usevariables = abuse bodydis eatrisk;
missing = all(-99);
DEFINE:
bodydis = sum(bds1-bds7);
eatrisk = sum(edr1-edr6);
MODEL:
eatrisk abuse bodydis
eatrisk on abuse bodydis;
OUTPUT:
standardized(stdyx);
```

Analysis Comparison

	Estimate	S.E.	Est./S.E.	P-Value
EATRISK ON			-	
ABUSE	1.355	0.512	2.646	0.008
BODYDIS	0.500	0.031	16.188	0.000
Intercepts				
EATRISK	10.092	0.879	11.479	0.000
	Scale-Level Max	imum Like	elihood	
	Estimate	S.E.	Est./S.E.	P-Value
EATRISK ON	Estimate	S.E.	Est./S.E.	P-Value
EATRISK ON ABUSE	Estimate 1.837	S.E. 0.664	Est./S.E. 2.768	P-Value 0.006
			, 1	0.006
ABUSE	1.837	0.664	2.768	

Item-Level Multiple Imputation

Important Conclusions

Item-level imputation offers a dramatic gain in precision

The scale-level analysis would require a 60% increase in sample size to achieve the same standard errors as itemlevel missing data handling

e.g., Reducing the abuse coefficient's standard error from .664 to .512 requires an increase from N = 500 to 790

Practical Issue 3 Incomplete Interaction Effects

14

Interaction (Moderation)

Moderation (interaction) occurs when the magnitude of a bivariate relation depends on a third variable

In a regression analysis, the influence of the focal predictor depends on the value of the moderator

e.g., The influence of pain severity (focal) on daily stress (outcome) is different for males and females (moderator)

Just-Another-Variable Imputation

The just-another-variable method treats the interaction as missing when one of its is missing, and it imputes the product like any other normally distributed variable

Product terms cannot follow a normal distribution, and imputing an interaction can introduce substantial bias unless the mechanism is MCAR

Maximum likelihood suffers from the same problem

14

Substantive Model-Compatible Imputation

Substantive model-compatible imputation does not impute the product or specify its distribution

The interaction components are imputed from a model that includes only other predictors (no product)

A special algorithm (Metropolis) selects imputations that are consistent with a moderated regression

The outcome variable is imputed from a model that includes the product of the imputed predictor variables

145

Motivating Example

Diary data from a sample of 250 chronic pain patients

Variables include gender, number of diagnosed medical conditions, sleep quality ratings, and scale scores measuring pain severity, positive affect, negative affect, and daily life stress

146

Pain Data

Variable	Description	Missing	Metric
female	Gender dummy code		Nominal
diagnose	Number of diagnosed medical problems		Count
sleep	Likert-type sleep quality rating	*	Ordinal
pain	Pain severity scale score	*	Numeric
posaff	Positive affect scale score	*	Numeric
negaff	Negative affect scale score	*	Numeric
stress	Stress scale score	*	Numeric

Analysis Example

The analysis is a regression that examines whether the influence of pain on stress differs for males and females

$$stress = \beta_0 + \beta_1(pain) + \beta_2(female) + \beta_3(pain)(female) + \varepsilon$$

Stress and pain (and thus the product) are incomplete

148

Blimp Script Ex3a.imp Diagnostic Phase

```
DATA: ~/desktop/examples/pain.dat;
VARNAMES: female diagnose sleep pain posaff negaff stress;
MISSING: -99;
MODEL: ~ female diagnose sleep pain negaff stress pain*female;
ORDINAL: sleep;
OUTCOME: stress;
SEED: 90291;
BURN: 3000;
THIN: 1;
NIMPS: 2;
OUTFILE: ~/desktop/examples/imp*.csv;
OPTIONS: separate psr;
CHAINS: 2 processors 2;
```

Diagnostic Output

```
| Fix Eff| Ran Eff Var| Err Var| Threshold| |
| Max PSR | 1.019| nan| 1.005| 1.089|
| Missing Variable | sleep| | pain| sleep|
| Comparing iterations 451 to 900 for 2 chains.
| Fix Eff| Ran Eff Var| Err Var| Threshold| |
| Max PSR | 1.010| nan| 1.003| 1.030|
| Missing Variable | stress| | pain| sleep|
```

Blimp Script Ex3b.imp Imputation Phase (Mplus Format)

```
DATA: ~/desktop/examples/pain.dat;
VARNAMES: female diagnose sleep pain posaff negaff stress;
MISSING: -99;
MODEL: ~ female diagnose sleep pain negaff stress pain*female;
ORDINAL: sleep;
OUTCOME: stress;
SEED: 90291;
BURN: 500;
THIN: 500;
NIMPS: 20;
OUTFILE: ~/desktop/examples/imp*.csv;
OPTIONS: separate;
CHAINS: 2 processors 2;
```

Blimp Script Ex3c.imp Imputation Phase (R, SAS, SPSS, and Stata Format)

```
DATA: ~/desktop/examples/pain.dat;
VARNAMES: female diagnose sleep pain posaff negaff stress;
MISSING: -99;
MODEL: ~ female diagnose sleep pain negaff stress pain*female;
ORDINAL: sleep;
OUTCOME: stress;
SEED: 90291;
BURN: 500;
THIN: 500;
NIMPS: 20;
OUTFILE: ~/desktop/examples/imps.csv;
OPTIONS: stacked;
CHAINS: 2 processors 2;
```

Mplus Script Ex3.inp Analysis and Pooling Phase

```
DATA:
file = implist.csv;
type = imputation;
VARIABLE:
names = female diagnose sleep pain posaff negaff stress;
usevariables = stress female pain femxpain;
DEFINE:
femxpain = female*pain;
MODEL:
stress on female pain femxpain;
OUTPUT:
standardized;
```

Mplus Output

MODEL RESULTS				
				Two-Tailed
	Estimate	S.E.	Est./S.E.	P-Value
STRESS ON			•	
FEMALE	-1.508	0.655	-2.302	0.021
PAIN	0.141	0.094	1.495	0.135
FEMXPAIN	0.296	0.138	2.147	0.032
Intercepts				
STRESS	3.179	0.395	8.045	0.000
Residual Variance	s			
STRESS	0.762	0.081	9.356	0.000
)

Practical Issue 4 Multilevel Data Structures

Multilevel Data

A unit of analysis is the what or whom being studied (e.g., observations, individuals, classrooms, groups, families, etc.)

Multilevel data structures have multiple units of analysis that are hierarchically nested

Lower-level units are nested within higher-level units

156

Multilevel Data Example 1

Sample comprised of multiple schools and several students in each school (i.e., students nested within schools)

157

Multilevel Data Example 2

Sample comprised of multiple individuals, each with several daily assessments of mood (i.e., observations nested within individuals)

158

Random Intercept Model

A random intercept model is one where only the means vary across clusters

Random Slope Model

A random slope model allows the relation between a pair of level-1 variables to differ across clusters

Single-Level Imputation Standard imputation routines assume a common distribution for all clusters (same means and variance-covariance matrix) Imputation will introduce substantial bias under any mechanism X Multilevel data

Motivating Example

Data from a cluster-randomized study investigating a novel math problem-solving curriculum

29 schools (level-2 units) were randomly assigned to an intervention or control condition

The average number of students (level-1 units) per school was 33.86, with a range of 13 to 61

School Study Data

	Variable	Description	Missing	Metric
Level-2	school	School identifier variable		
	condition	Treatment code (0 = control, 1 = intervention)		Nominal
	esolpercent	Percentage of English as second language	*	Numeric
	student	Student identifier		
	abilitygrp	Ability grouping (3-group classification)	*	Nominal
	female	Female dummy code		Nominal
-	stanmath	Standardized math test scores	*	Numeric
Level-1	frlunch	Lunch assistance dummy code	*	Nominal
	efficacy	Math self-efficacy rating scale	*	Ordinal
	probsolve1	Math problem-solving score at baseline	*	Numeric
	probsolve7	Math problem-solving score at final wave	*	Ordinal

Analysis Model

The substantive analysis is a random slope model where intervention condition and covariates predict end-of-year problem-solving scores, with self-efficacy ratings as a random predictor

$$\begin{split} probsolve7_{ij} &= \beta_0 + \beta_1(probsolve1_{ij}) + \beta_2(efficacy_{ij}) + \beta_3(female_{ij}) \\ &+ \beta_4(esolpercent_j) + \beta_5(condition_j) \\ &+ u_{0,i} + u_{1,i}(efficacy_{ij}) + \varepsilon \end{split}$$

166

Substantive Model-Compatible Imputation

Fully conditional specification uses a "reverse random coefficient" approach that negatively biases variance estimates when predictors are missing

Substantive model-compatible imputation is better suited for models with random slopes

Same idea as an interaction, as a random slope is just the product of a latent variable (u_1) and manifest variable

Blimp Script Ex4a.imp Diagnostic Phase

DATA: ~/desktop/examples/probsolve.dat;

VARIABLES: school condition esolpercent student abilitygrp female stanmath frlunch efficacy probsolve1 probsolve7;

ORDINAL: condition female frlunch efficacy;

OUTCOME: probsolve7;

MISSING: -99;

 $\ensuremath{\mathsf{MODEL}}\xspace$: school ~ condition esolpercent female stanmath

frlunch probsolve1 efficacy:probsolve7;

NIMPS: 2; BURN: 3000; THIN: 1;

SEED: 90291;

OUTFILE: ~/desktop/examples/imp*.csv;

OPTIONS: separate psr; CHAINS: 2 processors 2;

400

Diagnostic Output

```
Comparing iterations 401 to 800 for 2 chains.
          _____
          | Fix Eff| Ran Eff Var| Err Var| Threshold|
     Max PSR | 1.051| 1.015| 1.005|
                                     nan l
Missing Variable | probsolve7| probsolve7| probsolve7|
          _____
Comparing iterations 451 to 900 for 2 chains.
          .....
          | Fix Eff| Ran Eff Var| Err Var| Threshold|
          ______
     Max PSR | 1.029| 1.025| 1.002|
Missing Variable | probsolve7| probsolve7| probsolve7|
```

Blimp Script Ex4b.imp Imputation Phase (Mplus Format)

```
DATA: ~/desktop/examples/probsolve.dat;
VARIABLES: school condition esolpercent student abilitygrp
   female stanmath frlunch efficacy probsolve1 probsolve7;
ORDINAL: condition female frlunch efficacy;
OUTCOME: probsolve7;
MISSING: -99;
MODEL: school ~ condition esolpercent female stanmath
   frlunch probsolve1 efficacy:probsolve7;
NIMPS: 20;
BURN: 500;
THIN: 500;
SEED: 90291;
OUTFILE: ~/desktop/examples/imp*.csv;
OPTIONS: separate;
CHAINS: 2 processors 2;
```

Blimp Script Ex4c.imp Imputation Phase ((R, SAS, SPSS, and Stata Format)

```
DATA: ~/desktop/examples/probsolve.dat;
VARIABLES: school condition esolpercent student abilitygrp
   female stanmath frlunch efficacy probsolve1 probsolve7;
ORDINAL: condition female frlunch efficacy;
OUTCOME: probsolve7;
MISSING: -99;
MODEL: school ~ condition esolpercent female stanmath
   frlunch probsolve1 efficacy:probsolve7;
NIMPS: 20;
BURN: 500;
THIN: 500;
SEED: 90291;
OUTFILE: ~/desktop/examples/imps.csv;
OPTIONS: stacked;
CHAINS: 2 processors 2;
```

Mplus Script Ex4.inp Analysis and Pooling Phase

```
file = implist.csv;
type = imputation;
VARIABLE:
names = school condition esolpercent student abilgrp female stanmath
  frlunch efficacy probsolve1 probsolve7;
usevariables = condition esolpercent female efficacy probsolve1 probsolve7;
cluster = school;
within = female efficacy probsolve1;
between = condition esolpercent;
ANALYSIS:
type = twolevel random;
MODEL:
%within%
ranslope | probsolve7 on efficacy;
probsolve7 on probsolve1 female;
probsolve7 on esolpercent condition;
probsolve7 with ranslope;
```

Mplus Output

MODEL RESULTS			_	
				Two-Tailed
	Estimate	S.E.	Est./S.E.	P-Value
Within Level				
PROBSOLVE7 ON				
PROBSOLVE1	0.437	0.036	12.260	0.000
FEMALE	0.319	0.683	0.467	0.641
Residual Variance	s			
PROBSOLVE7	89.677	6.201	14.463	0.000
Between Level				
PROBSOLVE7 ON				
ESOLPERCEN	0.078	0.039	1.981	0.048
CONDITION	5.001	1.825	2.740	0.006

Mplus Output, Continued

/ 					
MODEL RESULTS				Two-Tailed	
	Estimate	S.E.	Est./S.E.	P-Value	
PROBSOLV WITH					
RANSLOPE	-1.339	2.081	-0.643	0.520	
Means					
RANSLOPE	0.824	0.271	3.040	0.002	
Intercepts					
PROBSOLVE7	54.070	4.448	12.157	0.000	
Variances					
RANSLOPE	0.256	0.434	0.589	0.556	
Residual Variances					
PROBSOLVE7	24.338	10.724	2.270	0.023	
\					1

17-