UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea	ı		

Cast

CHESTIONAR DE CONCURS

Numărul legitimației de bancă ______

Numele _____

Prenumele tatălui _____

Prenumele

DISCIPLINA: Geometrie și Trigonometrie M

VARIANTA A

1. Se consideră triunghiul ABC cu laturile BC = 2, $AB = \sqrt{2}$, $AC = 1 + \sqrt{3}$. Să se calculeze $\cos \hat{A}$. (5 pct.)

a)
$$\frac{\sqrt{3}}{2}$$
; b) $\frac{1}{2}$; c) 0; d) $\sqrt{3}$; e) $\frac{\sqrt{2}}{2}$; f) 1.

2. Dacă z = 2 + i atunci $z + \overline{z}$ este: (5 pct.)

a) 3; b) 6; c)
$$1+i$$
; d) 5; e) $7i$; f) 4.

3. Se dau vectorii $\vec{u} = 3\vec{i} + (\lambda - 4)\vec{j}$ și $\vec{v} = \lambda \vec{i} + \vec{j}$. Să se determine $\lambda \in \mathbb{R}$ astfel încât vectorii \vec{u} și \vec{v} să fie perpendiculari. (5 pct.)

a)
$$\lambda = -1$$
; b) $\lambda = 2$; c) $\lambda = 1$; d) $\lambda = \frac{1}{2}$; e) $\lambda = -\frac{3}{2}$; f) $\lambda = 0$.

4. Soluția ecuației $2\sin x - 1 = 0$, $x \in \left[0, \frac{\pi}{2}\right]$ este: (5 pct.)

a)
$$\frac{\pi}{10}$$
; b) $\frac{\pi}{6}$; c) $\frac{2\pi}{5}$; d) 0; e) $\frac{\pi}{7}$; f) $\frac{\pi}{4}$.

5. Fie $\vec{w} = 2\vec{u} + 3\vec{v}$, unde $\vec{u} = 2\vec{i} + 3\vec{j}$ şi $\vec{v} = \vec{i} - 2\vec{j}$. Atunci $||\vec{w}||$ este: (5 pct.)

a) 6; b) 2; c) 0; d) 7; e)
$$\sqrt{5}$$
; f) -2.

6. Să se calculeze produsul $P = \sin 30^{\circ} \cdot \tan 45^{\circ} \cdot \cos 60^{\circ}$. (5 pct.)

a) 2; b) 0; c)
$$\sqrt{3}$$
; d) $\frac{\sqrt{2}}{2}$; e) $\frac{1}{4}$; f) 1.

7. Dacă $\cos x = \frac{3}{5}$ atunci $\sin^2 x$ este: (5 pct.)

a) 0; b) 1; c)
$$\frac{3}{2}$$
; d) $\frac{2}{5}$; e) $-\frac{16}{25}$; f) $\frac{16}{25}$.

8. Să se scrie ecuația dreptei ce trece prin punctele A(1,2), B(2,1). (5 pct.)

a)
$$x-y+3=0$$
; b) $x+y-3=0$; c) $2x-3y-5=0$; d) $x=y$; e) $3x+5y=2$; f) $x-4y-5=0$.

9. Să se calculeze $\operatorname{tg} x$ știind că $\sin x - \sqrt{3} \cos x = 0$. (5 pct.)

a)
$$\frac{\sqrt{3}}{2}$$
; b) -1; c) $\sqrt{2}$; d) 1; e) 2; f) $\sqrt{3}$.

- 10. Expresia $(\sin x + \cos x)^2 \sin 2x$ este egală cu: (5 pct.)
 - a) 1; b) 3; c) $\sin x$; d) 2; e) -1; f) $\cos x$.
- 11. Într-un triunghi ABC se dau $\hat{B} = 60^{\circ}$, $\hat{C} = 30^{\circ}$. Atunci $\sin \frac{\hat{A}}{2}$ are valoarea: (5 pct.)

a) 0; b)
$$\frac{\sqrt{3}}{2}$$
; c) $-\frac{\sqrt{2}}{2}$; d) $\frac{\sqrt{3}}{3}$; e) $\frac{\sqrt{2}}{2}$; f) 1.

- **12.** Pentru $z = \frac{1}{2} + i \frac{\sqrt{3}}{2}$ calculați |z|. (5 pct.)
 - a) $\frac{1}{3}$; b) 2; c) $\frac{1}{4}$; d) -1; e) 0; f) 1.
- 13. Să se determine $m \in \mathbb{R}$ astfel încât dreapta mx + 4y + 2 = 0 să fie paralelă cu dreapta 3x 6y + 1 = 0. (5 pct.)

a)
$$m = \frac{1}{2}$$
; b) $m = 2$; c) $m = \frac{1}{3}$; d) $m = -2$; e) $m = \frac{2}{3}$; f) $m = 1$.

- 14. Fie A(-3,0), B(3,0), C(0,4) şi fie S aria triunghiului ABC. Atunci: (5 pct.)
 - a) S = 15; b) S = 6; c) S = 16; d) S = 8; e) S = 12; f) S = 20.
- 15. Dacă punctele A(2,3), B(-1,4), C(m,m+3) sunt coliniare atunci: (5 pct.)

a)
$$m = \frac{1}{3}$$
; b) $m = \frac{2}{3}$; c) $m = -\frac{1}{3}$; d) $m = -\frac{1}{2}$; e) $m = \frac{1}{2}$; f) $m = 4$.

16. Să se precizeze $m \in \mathbb{R}$ astfel încât dreapta de ecuație 2x - my + 3 = 0 să treacă prin punctul M(1,2) (5 pct.)

a)
$$m = \frac{1}{3}$$
; b) $m = -\frac{3}{4}$; c) $m = \frac{1}{2}$; d) $m = \frac{2}{5}$; e) $m = 0$; f) $m = \frac{5}{2}$.

17. Dacă $E = \cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$, atunci valoarea $a = E^3$ este: (5 pct.)

a)
$$a = -i$$
; b) $a = 1 + i$; c) $a = 3i$; d) $a = 1$; e) $a = i$; f) $a = -1$.

18. Să se determine vârful D al paralelogramului ABCD, cunoscându-se A(0,0), B(0,3), C(2,5). (5 pct.)

a)
$$D(-1,1)$$
; b) $D(1,3)$; c) $D(2,2)$; d) $D(-2,2)$; e) $D(3,3)$; f) $D(2,1)$.