Molarity Worksheet

Definition

 $Molar Concentration = \frac{amount of solute (mol)}{volume of solution (L)}$

Imagine 0.24 mol of CaF_2 are present in 1.9 L of solution, then the molar concentration of CaF_2 is:

$$[CaF2] = \frac{0.24 \text{ mol CaF}_2}{1.9 \text{ L}}$$
$$= 0.13 \frac{\text{mol}}{\text{L}} \text{ CaF}_2$$
$$= 0.13 \text{ M CaF}_2$$

Where [X] means the molar concentration (or molarity) of X and M is an abbreviation meaning mol/L.

Conversion-Factor

It is convenient to think of molar concentration as a conversion factor. If we have a solution that's 12.0 M HCl(aq)—then that means:

$$[HC1] = \frac{12.0 \text{ mol HC1}}{1 \text{ L}}$$

12.0 mol HCl = 1 L

and the two conversion factors are:

$$\frac{12.0 \text{ mol HCl}}{1 \text{ L}} \text{ or } \frac{1 \text{ L}}{12.0 \text{ mol HCl}}$$

If we had 0.21 L of this solution, then it would contain:

$$0.21 \text{ L} \times \frac{12.0 \text{ mol HCl}}{1 \text{ L}} = 2.5 \text{ mol HCl}$$

Or if we wanted 1.09 mol of HCl, then we would have to measure out:

1.09 mol HCl×
$$\frac{1 L}{12.0 \text{ mol HCl}} = 0.0908 L$$

We typically measure volume in mL in lab, and if you remember that there are 1000 mL in 1 L, we can make the following kinds of conversions:

25.0 mL of this solution contains:

25.0 mL ×
$$\frac{1 \text{ L}}{1000 \text{ mL}}$$
 × $\frac{12.0 \text{ mol HCl}}{1 \text{ L}}$ = 0.300 mol HCl

And if we wanted to know what volume in milliliters would contain 0.100 mol HCl:

$$0.100 \text{ mol HCl} \times \frac{1 \text{ L}}{12.0 \text{ mol HCl}} \times \frac{1000 \text{ mL}}{1 \text{ L}} = 8.33 \text{ mL}$$

Problems to try

- 1. Write out the two conversion factors for the following solutions:
 - a. 1.8 mol/L HNO₃(aq)

b. 0.25 M NaOH(aq)

c. $18.0 \text{ M H}_2\text{SO}_4(\text{aq})$

- 2. How many moles of solute are present in the following samples:
 - a. $0.29 \text{ L of } 1.8 \text{ mol/L HNO}_3(aq)$

b. 423 mL of 0.25 M NaOH(aq)

c. $12.4 \text{ mL of } 18.0 \text{ M H}_2\text{SO}_4(\text{aq})$

- 3. What volume of solution (in both L and mL) contains the following amounts of solute?
 - a. 0.30 mol HNO₃, given 1.8 mol/L HNO₃(aq)

b. 0.93 mol NaOH, given 0.25 M NaOH(aq)

c. 2.90 mol H₂SO₄, given 18.0 M H₂SO₄(aq)

