

(11)Publication number:

2000-351271

(43) Date of publication of application: 19.12.2000

(51)Int.Cl.

B41M 5/00 B05D 5/04 BO5D C08J C08K CO8K CO8L 31/04 CO8L 83/04 CO8L 91/06 C08L101/16

(21)Application number: 11-165868

11.06.1999

(71)Applicant: DAICEL CHEM IND LTD

(72)Inventor: SUMIDA KATSUHIKO

OMURA MASAYA

(54) RECORDING SHEET AND MANUFACTURE THEREOF

(57)Abstract:

(22)Date of filing:

PROBLEM TO BE SOLVED: To provide a recording sheet which shows a high quality/performance level in terms of ink absorption, anti-blocking properties, color reproducibility, recorded image, the water resistance, weatherability, transparency and surface gloss of a recorded image or recorded characters. SOLUTION: The recording sheet is constituted of a base material, an ink absorptive layer formed on at least one of the faces of the base material and a porous layer which is freely peelable from the ink absorptive layer, formed on the ink absorptive layer. The interlayer adhesive strength between the porous layer and the ink absorptive layer is 1-500 g/15 mm. The ink absorptive layer may contain at least either of a mold release agent or fine particles as a component and also may contain a crosslinking agent or a curing agent.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-351271 (P2000-351271A)

(43)公開日 平成12年12月19日(2000.12.19)

(51) Int.Cl.7		識別記号		FΙ			ī	-73-1 (参考)
B41M	5/00			B41M	5/00		В	2 C 0 5 6
B 0 5 D	5/04			B 0 5 D	5/04			2H086
	7/00				7/00		F	4D075
B 4 1 J	2/01			C08J	7/04		CFDH	4 F 0 O 6
C08J	7/04	CFD		C 0 8 K	3/00			4 J 0 0 2
			審査請求	未請求 請才	マダイ マグラ	OL	(全 13 頁)	最終頁に続く

(21)出願番号

特額平11-165868

(22)出願日

平成11年6月11日(1999.6.11)

(71)出願人 000002901

ダイセル化学工業株式会社

大阪府堺市鉄砲町1番地

(72)発明者 隅田 克彦

兵庫県姫路市余部区上余部500

(72)発明者 大村 雅也

兵庫県姫路市網干区新在家940

(74)代理人 100090686

弁理士 鳅田 充生

最終頁に続く

(54) 【発明の名称】 記録用シート及びその製造方法

(57) 【要約】

【課題】 インク吸収性、耐ブロッキング性、色再現性、記録画像または文字の耐水性、耐候性、透明性、表面光沢に優れた記録用シートを得る。

【解決手段】 基材と、基材の少なくとも片面に形成されたインク吸収層と、このインク吸収層の上にインク吸収層に対して剥離可能な多孔質層とで記録用シートを構成する。多孔質層とインク吸収層との層間接着強度が1~500g/15mmである。インク吸収層は離型剤及び微粒子のうち少なくとも一方の成分を含有してもよく、架橋剤または硬化剤を含有していてもよい。

【請求項1】 基材と、基材の少なくとも片面に形成さ れたインク吸収層と、このインク吸収層の上に形成され た多孔質層とで構成され、インク吸収層と多孔質層とが 剥離可能であることを特徴とする記録用シート。

【請求項2】 多孔質層とインク吸収層との層間接着強 度が1~500g/15mmである請求項1記載の記録 用シート。

【請求項3】 多孔質層とインク吸収層との層間接着強 度が1~200g/15mmである請求項1記載の記録 10 用シート。

【請求項4】 多孔質層とインク吸収層との層間接着強 度が7~200g/15mmである請求項1記載の記録 用シート。

【請求項5】 画像形成後の記録用シートにおいて、非 画像部における多孔質層とインク吸収層との層間接着強 度をFnとし、画像部における多孔質層とインク吸収層 との層間接着強度をFpとしたとき、下記式(1)を満 足する請求項1記載の記録用シート。

 $| F_p - F_n | < 150 \text{ g} / 15 \text{ mm}$

【請求項6】 インク吸収層が、水溶性高分子または吸 水性高分子で構成され、多孔質層が親水性重合体で構成 されている請求項1記載の記録用シート。

【請求項7】 インク吸収層が、酢酸ビニル系重合体で 構成され、多孔質層が酢酸セルロースで構成されている 請求項1記載の記録用シート。

【請求項8】 インク吸収層が、架橋または硬化可能な 水溶性高分子または吸水性高分子で構成されているとと もに、多孔質層に対して離型性を有している請求項1に 記載の記録用シート。

【請求項9】 インク吸収層が、離型剤を含有する請求 項1記載の記録用シート。

【請求項10】 インク吸収層が、架橋剤または硬化剤 を含有する請求項1記載の記録用シート。

【請求項11】 インク吸収層が、微粒子を含有する請 求項1記載の記録用シート。

【請求項12】 多孔質層の平均孔径が0.005~1 0μmである請求項1記載の記録用シート。

【請求項13】 インク吸収層の厚さが5~50 μmで あり、多孔質層の厚さが1~100μmである請求項1 40 記載の記録用シート。

【請求項14】 波長400nmの光線透過率が45% 以上である請求項1記載の記録用シート。

【請求項15】 基材シートの少なくとも片面に、イン ク吸収層を形成し、さらにこのインク吸収層に対して剥 離可能な多孔質層を形成する記録用シートの製造方法。

【請求項16】 重合体と、離型剤及び微粒子のうち少 なくとも一方の成分とを含有する途布液を途布してイン ク吸収層を形成し、このインク吸収層の上に重合体を含 む塗布液を塗布し、成膜工程で多孔質層の孔を形成する 50 174381号公報、特開昭60-224578号公報

請求項15記載の記録用シートの製造方法。

【請求項17】 重合体、この重合体に対する良溶媒、 及びこの重合体に対する貧溶媒でかつ前記良溶媒よりも 高沸点である溶媒で構成されている塗布液をインク吸収 層の上に塗布し、乾燥することにより多孔質層を形成す る請求項16記載の記録用シートの製造方法。

【請求項18】 重合体、この重合体に対する良溶媒、 及びこの重合体に対する貧溶媒でかつ前記良溶媒よりも 高沸点である溶媒で構成されている塗布液を基材の上に 塗布し、乾燥することにより調製した多孔質層を、イン ク吸収層の上に積層する請求項15記載の記録用シート の製造方法。

【請求項19】 請求項1記載の記録用シートの多孔質 層上に画像を記録した後、多孔質層をインク吸収層から 剥離する記録画像の形成方法。

【請求項20】 請求項1記載の記録用シートの多孔質 層上に画像を記録した後、カバーシートを多孔質層上に 積層して一体化し、さらにそのカバーシートおよび多孔 質層をインク吸収層から剥離する記録画像の形成方法。

【発明の詳細な説明】 20

[0001]

【発明の属する技術分野】本発明は記録用シート及びそ の製造方法に関する。さらに詳しくはインクジェット記 録方式におけるインクの吸収性、耐ブロッキング性、記 録画像の耐水性、耐候性、色再現性に優れ、かつ透明 性、表面光沢、記録画像の鮮明性に優れた記録用シート 及びその製造方法に関する。

[0002]

【従来の技術】インクジェット記録方式は、フルカラー 30 化が容易であり、低騒音で印字品質が良好で、かつ経済 性にも優れるので、近年急速に普及しつつあり、オフィ スや一般家庭用のプリンターやサインディスプレイ用の 広幅プリンターに使用されている。インクジェット記録 においては、インク噴射ノズルの詰まりを防ぐために、 乾燥性の低いインクが要求され、さらに安全性、記録適 性の点から、主に水性インクが一般的に使用されてい る。インクは噴射ヘッドから記録用シートに向けて小滴 で噴射され、記録用シートは速やかにインクを吸収して 画像を記録することが要求される。

【0003】例えば、インク吸収性の低い記録用シート では、記録終了後も長時間インクが乾燥定着せずにシー ト表面に残っているため、記録装置の送りロールに触れ たり、作業者が触れたり、重ね合わせたりすると、乾燥 定着していないインクで記録部分が汚れる。また、高密 度画像部では、多量に供給されたインクが吸収されず、 各色のインクが混合して、記録した画像や文字の質が低 下したり、記録用シート表面で流れ出す。

【0004】これらの問題を解決するために、従来から いくつかの提案がなされてきた。例えば、特開昭59-

には、支持体上に澱粉、水溶性セルロース誘導体、ポリ ビニルアルコール等の親水性重合体をインク受容層とし て使用することが提案されているが、この記録用シート では、インク吸収性を満足しても、シート自体の耐水性 が悪く、インク受容層や記録部が水に溶け出したり、表 面がべとついてシートを重ね合わせた時にブロッキング が生じる。

【0005】また、特公平3-72460号公報には、 インク透過性表面層とインク吸収下地層との組み合わせ からなり、インクは下地層で吸収し表面層で耐ブロッキ 10 ングを改善する方法が提案されている。しかし、インク が表面層を通過して下地層に吸収されるために、インク が記録用シートに深く浸透し、記録部分の色濃度を高め ることが困難であるうえに、下地層の耐水性も低い。

【0006】また、インク吸収層として多孔質層を設 け、毛細管現象によりインクを吸収させることも提案さ れている。例えば、特開昭58-11028号公報、特 開平5-51470号公報には、シリカなどの微粒子を 凝集し、粒子同士の間隙で構成されている空孔を有する 多孔質層を支持体上に設けた記録用シートが提案されて いる。これらの記録用シートは、インク吸収性は向上す るが、粒子の光散乱により透明性や表面光沢が低く、透 明性が要求されるOHP(オーバーヘッドプロジェクタ 一)シートや高表面光沢が要求される写真等の高画質画 像には不適である。特開平10-278417号公報に は、支持体上に設けたインク吸収層の上に、さらに多孔 質層を設けた記録用シートが提案されているが、この記 録用シートも高画質画像用途においては充分ではない場 合がある。

【0007】さらに、特開昭61-86251号公報に 30 は、インク吸収層に多孔性プラスチック薄膜層を積層す る記録用シートが提案されているが、多孔性プラスチッ ク薄膜がポリエチレンやポリプロピレン等の疎水性プラ スチックで形成されているために、水系インクが主に使 用されるインクジェット記録ではインク透過性が充分で はなく、また、多孔性プラスチック薄膜が熱圧着法で積 層されるために、孔がつぶれたり、変形する。

[0008]

- 【発明が解決しようとする課題】従って、本発明の目的 は、インクの吸収性、耐ブロッキング性に優れるととも に、透明性、表面光沢、記録画像の鮮明性を大きく向上 できる記録用シートおよびその製造方法を提供すること

【0009】また、本発明の他の目的は、記録画像の耐 水性、耐候性、色再現性が優れる記録用シートおよびそ の製造方法を提供することにある。

【0010】さらに、本発明の他の目的は、鮮明性およ び色再現性を大きく向上できる記録画像の形成方法を提 供することにある。

[0011]

【課題を解決するための手段】本発明者らは、前記目的 を達成するために鋭意検討の結果、基材上にインク吸収 層と、このインク吸収層に対して剥離可能な多孔質層と を設けると、記録用シートの透明性、表面光沢、記録画 像の鮮明性等を大幅に改善できることを見出し、本発明 を完成した。

【0012】すなわち、本発明の記録用シートは、基材 と、基材の少なくとも片面にインク吸収層と、このイン ク吸収層の上に形成された多孔質層とで構成され、イン ク吸収層と多孔質層とが剥離可能である。前記多孔質層 とインク吸収層との層間接着強度は、1~500g/1 5mmであってもよい。前記インク吸収層は、水溶性高 分子または吸水性高分子で構成してもよく、前記多孔質 層は、親水性重合体で構成してもよい。前記インク吸収 層は、架橋または硬化可能な水溶性高分子または吸水性 高分子で構成するとともに、多孔質層に対して離型性を 有してもよく、また、離型剤、架橋剤または硬化剤、微 粒子を含有してもよい。多孔質層の平均孔径は0.00 5~10μm程度であってもよい。前記インク吸収層の 20 厚さは5~50μm程度であってもよく、多孔質層の厚 さは1~100μm程度であってもよく、記録用シート は波長400nmの光線透過率が45%以上であっても よい。

【0013】本発明には、基材シートの少なくとも片面 に、インク吸収層を形成し、さらにこのインク吸収層に 対して剥離可能な多孔質層を形成する記録用シートの製 造方法も含まれる。インク吸収層は、重合体と、離型剤 及び微粒子のうち少なくとも一方の成分とを含有する途 布液を用いて形成でき、多孔質層は、このインク吸収層 の上に重合体を含む塗布液を塗布し、成膜工程で多孔質 層の孔を形成することにより形成できる。多孔質層は、 例えば、重合体、この重合体に対する良溶媒、及びこの 重合体に対する貧溶媒でかつ前記良溶媒よりも高沸点で ある溶媒で構成されている塗布液をインク吸収層や他の 基材の上に塗布し、乾燥してもよい。

【0014】また、本発明には、前記記録用シートの多 孔質層上に画像を記録した後、多孔質層をインク吸収層 から剥離する記録画像の形成方法や、前記記録用シート の多孔質層上に画像を記録した後、カバーシートを多孔 質層上に積層して一体化し、さらにそのカバーシートお よび多孔質層をインク吸収層から剥離する記録画像の形 成方法も含まれる。

[0015]

【発明の実施の形態】 [多孔質層] 多孔質層の表面およ び内部での平均孔径は0.005~10μm程度、好ま しくは $0.01\sim8\mu$ m程度、さらに好ましくは0.01~5 μm (例えば、0.01~3 μm) 程度の範囲か ら選択できる。平均孔径が O. 005 μ m未満では、イ ンクの吸収性が不充分な虞があり、平均孔径が10 µm

【0016】インク吸収性は多孔質層の空孔率にも影響 される。多孔質層の空孔率は40~80%程度、好まし くは42~75%程度の範囲から選択できる。空孔率が 40%未満では、吸収面の表面積が少ないため、膜のイ ンクに対する吸収能が低く、80%を超えると、多孔質 層自体の強度が低下する虞がある。

【0017】多孔質層を構成する重合体としては、イン クに対して高い濡れ性を有する多孔質層を形成できる限 り、特に制限されず、種々の樹脂(熱可塑性樹脂および 熱硬化性樹脂)が使用でき、通常、熱可塑性樹脂が使用 10 体等] される。熱可塑性樹脂としては、以下の樹脂または重合 体等が例示できる。

【0018】セルロース系樹脂(セルロース誘導体): セルロースエステル [例えば、セルロースアセテート (酢酸セルロース)、セルロースプロピオネート、セル ロースプチレート、セルロースアセテートプロピオネー ト、セルロースアセテートブチレート等の有機酸エステ ル;硝酸セルロース、硫酸セルロース、リン酸セルロー ス等の無機酸エステル;硝酸酢酸セルロースなどの混酸 エステル等]

セルロースエーテル [例えば、メチルセルロース、エチ ルセルロース、イソプロピルセルロース、ブチルセルロ ース、ベンジルセルロース、ヒドロキシエチルセルロー ス、カルボキシメチルセルロース、カルボキシエチルセ ルロース、シアノエチルセルロース等〕

【0019】ビニル系重合体:

オレフィン系重合体 [例えばオレフィン類の単独または 共重合体(ポリエチレン、ポリプロピレン、ポリ1-ブ テン、ポリイソブテン、ポリブタジエン、ポリイソプレ ン、ポリアレン、エチレンープロピレン共重合体等)、 オレフィン類と共重合性単量体との共重合体(エチレン -酢酸ビニル共重合体、エチレン- (メタ) アクリル酸 エステル共重合体、変性ポリオレフィン等)]

ハロゲン含有ビニル重合体 [例えば、ハロゲン含有ビニ ル単量体の単独または共重合体(ポリビニルクロライド など)、ハロゲン含有ビニル単量体と共重合性単量体と の共重合体(塩化ビニルー酢酸ビニル共重合体、塩化ビ ニリデンー酢酸ビニル共重合体、塩化ビニリデンー(メ タ) アクリル酸共重合体、塩化ビニリデンー (メタ) ア クリル酸エステル共重合体等)]

ビニルエステル系重合体またはその誘導体 [例えば、ポ リ酢酸ビニル、ポリビニルアルコール、エチレンービニ ルアルコール共重合体、ポリビニルアセタール系重合体 (ポリビニルホルマール、ポリビニルアセタール、ポリ ビニルブチラール等)]

複素環式ビニル系重合体 [ポリビニルピロリドン、ポリ ビニルピリジン等] 芳香族ビニル系重合体 [例えば、ス チレン系重合体(ポリスチレンなど)、芳香族ビニル単 量体と共重合性単量体との共重合体 (スチレンー (メ タ)アクリル酸C1-10アルキルエステル共重合体、スチ 50 【0026】多孔質層を構成する重合体は、層表面及び

レンー無水マレイン酸共重合体、スチレンーマレイミド 共重合体等)]

アリルアルコール系重合体 (例えば、アリルアルコール -C1-6アルキルビニルエーテル共重合体)

ポリビニルケトン類 [例えば、ポリビニルメチルケト ン、ポリビニルメチルイソブチルケトン、ポリメチルイ ソプロペニルケトン等]

ビニルエーテル系重合体 [例えば、ポリメチルビニルエ ーテル、メチルビニルエーテルー無水マレイン酸共重合

(メタ) アクリル系重合体 [例えば、(メタ) アクリル 系単量体((メタ)アクリロニトリル、(メタ)アクリ ル酸エステル単量体等) の単独または共重合体、(メ タ) アクリル系単量体と共重合性単量体 (ビニルエステ ル系単量体、複素環式ビニル系単量体、芳香族ビニル単 量体、重合性不飽和ジカルボン酸又はその誘導体などの ビニル系単量体) との共重合体]

【0020】ポリスルホン系重合体:

ポリスルホン(例えば、ポリヘキサメチレンスルホンな ど)、スルホン化ポリスルホン、ポリエーテルスルホン 20 等、その分子中に結合基-SO2-を有する重合体

【0021】ポリエステル系重合体:

ポリアルキレンテレフタレート (例えば、1,4-シク ロヘキサンジメチレンテレフタレート、エチレンテレフ タレート、ブチレンテレフタレートを含有するホモまた はコポリエステル等)、ポリアルキレンナフタレート (例えば、エチレンナフタレート、ブチレンナフタレー トを含有するホモまたはコポリエステル)等

【0022】ポリアミド系重合体:

30 脂肪族ポリアミド (例えば、ナイロン6、ナイロン6 6、ナイロン610、ナイロン612、ナイロン11、 ナイロン12等)

【0023】ポリカーボネート系重合体:

2, 2-ビス(4-ヒドロキシフェニル)プロパン(ビ スフェノールA) などのジヒドロキシ化合物とホスゲン またはジメチルカーボネートなどの炭酸ジエステルとの 反応により得られる重合体

【0024】ポリウレタン系重合体:

トリレンジイソシアネートなどのポリエチレングリコー 40 ルなどのポリイソシアネートとポリオールとの反応によ り得られる重合体

【0025】エポキシドから誘導される重合体: ポリアルキレングリコール(例えば、ポリエチレングリ コールやポリプロピレングリコール) やエポキシ樹脂 (例えば、ビスフェノール型エポキシ樹脂やノボラック 型エポキシ樹脂等のエーテル系エポキシ樹脂、アミン系 エポキシ樹脂)

これらの重合体は単独でまたは2種以上組み合わせて使 用できる。

孔の表面において、インクに対する濡れ性が高いものであれば、特に制限されず、対象となるインクの種類によって適宜選択すればよい。しかし、一般的に使用されるインクは水性インクが多く、その場合は、上記重合体のうち、特に親水性重合体が好ましい。なお、親水性重合体とは、水に対する接触角が80°未満(好ましくは0~60°、特に0~40°程度)の重合体を意味する。接触角とは、室温で重合体の表面上に水滴を置いた時、水滴の広がりが停止した時点で水滴の表面と重合体の表面との交点において、水滴に対する接線と重合体の表面との間の角のうち、水滴側の角度を指す。

【0027】このような親水性重合体としては、セルロ ース誘導体(例えば、酢酸セルロース、セルロースプロ ピオネート、硝酸セルロース等のセルロースエステル 類、エチルセルロースなどのセルロースエーテル類)、 ポリアミド、(メタ) アクリル系重合体 [例えば、ポリ メタクリル酸メチルなどのポリ (メタ) アクリル酸エス テル、ポリアクリロニトリル、ポリアクリルアミド、ポ リーNーメチルアクリルアミド等]、ポリビニルピロリ ドン、ポリエチレングリコール、ポリエチレンイミン、 ポリスルホン系重合体(例えば、ポリスルホン、ポリエ ーテルスルホン等)、ビニルエーテル系重合体(例え ば、ポリメチルビニルエーテル、メチルビニルエーテル -無水マレイン酸共重合体等)、酢酸ビニル系重合体ま たはその誘導体(例えば、ポリ酢酸ビニル及びその部分 ケン化物、ポリビニルアルコール、エチレン一酢酸ビニ ル共重合体及びその部分ケン化物等)、スチレンー無水 マレイン酸共重合体等が挙げられる。これらのうち酢酸 セルロース (セルロースジアセテート、セルローストリ アセテート等) が特に好ましい。

【0028】また、ポリテトラフルオロエチレン、ポリエチレン、ポリスチレン等は上記定義においては疎水性である重合体であっても、界面活性剤、湿潤剤等の添加や塗布、プラズマ処理等の方法により表面に親水性を付与させることにより、本発明における親水性重合体に含まれる。

【0029】多孔質層の厚さは、特に制限されず、用途に応じて選択できるが、例えば $1\sim100\mu$ m程度、好ましくは $3\sim50\mu$ m(例えば、 $5\sim30\mu$ m)程度の範囲から選択できる。多孔質層の厚さが 1μ m未満では、耐水性が不充分であり、 100μ mを超えると、透明性が低下したり、インクの吸収性が低下する虞がある

【0030】[インク吸収層]インク吸収層は、インク 4級ア:またはインクの溶媒成分を吸収可能な物質で構成でき、 メチル:特に制限されず、前記多孔質層と同様の樹脂が使用でき る。インクジェット記録方式においては、水性インクが タ用されているため、インク吸収層は、通常、水溶性高 サビニス分子または水に不溶であっても吸水性を有する高分子化 ドポリ:合物(以下、「親水性高分子」と総称する)で構成でき 50 ドン等

る。

【0031】親水性高分子としては、例えば、以下の樹脂または重合体等が例示できる。

【0032】ビニルエステル系重合体:

酢酸ビニル系重合体(例えば、ポリ酢酸ビニル、酢酸ビニルーアクリル酸メチル共重合体等)、ビニルアルコール系重合体(例えば、ポリビニルアルコール、エチレンービニルアルコール共重合体等)、ポリビニルアセタール系重合体(例えば、ポリビニルホルマール、ポリビニルブチラール等)

【0033】親水性天然高分子またはその誘導体: デンプン、コーンスターチ、アルギン酸ナトリウム、ア ラビヤゴム、ゼラチン、カゼイン、デキストリン等 【0034】セルロース誘導体:

メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、シアノエチルセルロース等のセルロースエーテル類、酢酸セルロース、セルロースプロピオネート、硫酸セルロース等のセルロースエステル類

20 【0035】ポリアルキレンオキサイド: ポリエチレンオキサイド、エチレンオキサイドープロピレンオキサイドブロック共重合体等

【0036】カルボキシル基またはスルホン酸基を有する重合体またはその塩:

アクリル系重合体 [例えば、ポリ (メタ) アクリル酸またはその塩 (アンモニウム、ナトリウム等のアルカリ金属塩)、(メタ) アクリル酸メチルー (メタ) アクリル酸共重合体、(メタ) アクリル酸ービニルアルコール共重合体等]

30 ビニルエーテル系重合体 (例えば、ポリビニルメチルエーテル、ポリビニルイソブチルエーテル等のポリビニルアルキルエーテル、メチルビニルエーテルー無水マレイン酸共重合体等)

スチレン系重合体(例えば、スチレンー無水マレイン酸 共重合体、スチレンー(メタ)アクリル酸共重合体、ポ リスチレンスルホン酸ナトリウム等)

【0037】ポリスルホン系重合体:

ポリスルホン (例えば、ポリヘキサメチレンスルホンなど)、スルホン化ポリスルホン (例えば、ポリビニルス 40 ルホン酸ナトリウム)、ポリエーテルスルホン等、その分子中に結合基-SO2-を有する重合体

【0038】窒素含有重合体(またはカチオン性ポリマー)またはその塩:

4級アンモニウム塩(例えば、ポリビニルベンジルトリメチルアンモニウムクロライド、ポリジアリルジメチルアンモニウムクロライド等)、ポリジメチルアミノエチル(メタ)アクリレート塩酸塩、ポリビニルピリジン、ポリビニルイミダゾール、ポリエチレンイミン、ポリアミドポリアミン、ポリアクリルアミド、ポリビニルピロリ

これらの親水性高分子は単独でまたは2種以上組合せて 使用できる。

【0039】これらの親水性高分子のうち、セルロース 誘導体(特にヒドロキシエチルセルロースなどのセルロ ースエステル類)、ビニルエステル系重合体(特に酢酸 ビニルーアクリル酸メチルなどの酢酸ビニル系重合体、 ポリビニルアルコールなどのビニルアルコール系重合体 等)、窒素含有重合体(特にポリビニルピロリドンな ど)等が好ましく、ビニルエステル系重合体、特に酢酸 ビニル系重合体が特に好ましい。

【0040】酢酸ビニル系重合体は酢酸ビニルおよびこ れと共重合可能なモノマーとの共重合体で構成でき、そ の部分または完全ケン化物も含まれる。酢酸ビニルと共 重合可能なモノマーとしては、オレフィン類(例えば、 エチレン、プロピレン、ブタジエン等)、(メタ)アク リル酸またはその塩 [例えば、(メタ) アクリル酸、 (メタ) アクリル酸ナトリウム等]、アルキル (メタ) アクリレート [例えば、メチル (メタ) アクリレートな ど]、ヒドロキシル基含有(メタ)アクリレート[例え ば、2-ヒドロキシエチル (メタ) アクリレートな ど]、アミノ基含有(メタ)アクリレート[例えば、 N, N-ジエチルアミノエチル (メタ) アクリレートな ど]、エポキシ基含有(メタ)アクリレート[例えば、 グリシジル (メタ) アクリレートなど]、アミド基含有 モノマー [例えば、 (メタ) アクリルアミドなど] 、エ ポキシ基含有モノマー [例えば、アリルグリシジルエー テルなど]、スルホン酸基またはその塩を含有するモノ マー「例えば、スチレンスルホン酸及びそのナトリウム 塩など〕、カルボキシル基またはその塩を含有するモノ マー[例えば、クロトン酸及びそのナトリウム塩、アル キルマレイン酸モノエステル等]、酸無水物を含有する モノマー [例えば、無水マレイン酸など] 、ビニル基を 含有するモノマー [例えば、ビニルイソシアネート、ア リルイソシアネート、スチレン、ビニルメチルエーテ ル、ビニルトリスアルコキシシラン、(メタ)アクリロ ニトリル、塩化ビニル、塩化ビニリデン等]等が挙げら れる。

【0041】インク吸収層は、耐水性を付与するために、架橋または硬化可能な親水性高分子で構成してもよい。架橋または硬化可能な親水性高分子は、親水性高分子自体が自己架橋可能な高分子(例えば、メチロール基、アルコキシシリル基含有親水性高分子、後述するアセトアセチル基変性親水性高分子等)であってもよいし、架橋剤または硬化剤を添加することにより親水性高分子に架橋性を付与した架橋系で構成してもよい。

【0042】架橋系を構成する高分子としては、(1) ポリオキシアルキレン単位またはヒドロキシル基、

- (2) アセトアセチル基、(3) カルボキシル基、
- (4) 酸無水物基および(5) アミノ基から選択された 少なくとも1つの官能基を有する親水性高分子が好まし 50

く使用される。

【0043】(1) ポリオキシアルキレン単位またはヒドロキシル基を有する親水性高分子には、ビニルエステル系重合体(エーテル基などの親水性基を有するポリオキシアルキレン一酢酸ビニル共重合体など)またはそのケン化物(ポリビニルアルコール)などが使用できる。【0044】(2) アセトアセチル基変性親水性高分子には、ヒドロキシル基を有する親水性高分子とアセト酢酸エステルとの反応により生成するアセトアセチル基含有親水性高分子、例えば、アセトアセチル基変性酢酸ビニル系共重合体(アセトアセチル基含有ポリビニルアルコール、アセトアセチル基含有セルロース誘導体等)が含まれる。

【0045】(3)カルボキシル基変性親水性高分子には、(3a)カルボキシル基変性ビニルエステル系重合体、例えば、ビニルエステル(酢酸ビニルなど)とカルボキシル基含有不飽和単量体((メタ)アクリル酸などのモノカルボン酸、マレイン酸などのジカルボン酸又はこれらの酸無水物もしくはモノアルキルエステルなど)との共重合体またはそのケン化物(カルボキシル基変性ポリビニルアルコール)、例えば、酢酸ビニルー(メタ)アクリル酸共重合体またはそのケン化物など、(3b)カルボキシル基含有多糖類、例えば、カルボキシC1-4アルキルセルロース、カルボキシメチルデキストラン等が含まれる。

【0046】(4)酸無水物基含有親水性高分子には、アルキルビニルエーテルー無水マレイン酸共重合体、エチレンー無水マレイン酸共重合体、(メタ)アクリル酸エステルー無水マレイン酸共重合体等が含まれる。

【0047】(5)アミノ基含有親水性高分子には、ポリアミドーポリアミン、ポリビニルアミン、ポリ (Nービニルホルムアミド)の部分加水分解物、アミノ基含有多糖類等が挙げられる。

【0048】架橋剤または硬化剤は、前記親水性高分子 を架橋可能である限り、特に制限されず、親水性高分子 の種類に応じて選択できる。例えば、架橋剤または硬化 剤としては、有機系架橋剤 [カルボキシル基または酸無 水物基を有する化合物(多価カルボン酸またはその酸無 水物など)、アルデヒド基を有する化合物(グリオキザ ール、マロンジアルデヒド、グルタルアルデヒド、テレ フタルアルデヒド、ジアルデヒドデンプン、アクロレイ ン共重合アクリル樹脂等の複数のアルデヒド基を有する 化合物など)、エポキシ基を有する化合物(アルキレン グリコールジグリシジルエーテル、ポリオキシアルキレ ングリコールジグリシジルエーテル、ネオペンチルグリ コールジグリシジルエーテル、グリセロールトリグリシ ジルエーテル、トリメチロールプロパントリグリシジル エーテル、1,2-3,4-ジエポキシブタン等の複数 のエポキシ基を有する化合物など)、窒素含有化合物

50 (尿素樹脂、グアナミン樹脂、メラミン樹脂等のアミノ

30

樹脂;エチレンジアミン、ヘキサメチレンジアミン、ポ リオキシアルキレン型ジアミンまたはポリアミン(すな わち、ポリエーテル型ジアミン又はポリアミン) 等の脂 肪族、脂環族、芳香族ジアミンまたはポリアミン等)、 メチロール基またはアルコキシメチル基を有する化合物 (例えば、N-メチロール (メタ) アクリルアミド基を 有する重合体など)、イソシアネート基を有する化合物 (ポリイソシアネート、ブロック型ポリイソシアネート 等)]、金属化合物などの無機系架橋剤[ホウ酸または ホウ酸塩(硼砂など)、ジルコニウム化合物(例えば、 ハロゲン化物、硫酸などの無機酸や酢酸などの有機酸と の塩)、チタニウム化合物(例えば、テトラエトキシチ タネートなどのアルコキシドなど)、アルミニウム化合 物(例えば、トリメトキシアルミネートなどのアルコキ シドなど)、リン化合物(例えば、亜リン酸エステル、 ビスフェノールA変性ポリリン酸など)、シランカップ リング剤(アルコキシル基、グリシジル基等の反応性官 能基を有するシリコーン化合物)等]等が使用できる。 これらの架橋剤または硬化剤は、単独でまたは2種以上 を組合せて使用できる。これらの架橋剤または硬化剤の うち、多価カルボン酸またはその酸無水物、金属化合物 等が好ましい。

【0049】インク吸収層がヒドロキシル基含有親水性 高分子を含有する場合、多価カルボン酸またはその塩、 あるいは多価カルボン酸の無水物と組合せると、インク 吸収性、アンチブロッキング性、画像の鮮明性(印字品 質)および耐水性を改善できる。

【0050】多価カルボン酸としては、例えば、脂肪族 ポリカルボン酸(シュウ酸、マロン酸、コハク酸、グル タル酸、アジピン酸、スベリン酸、セバシン酸等のC 2-10脂肪酸飽和ポリカルボン酸など、フマル酸、マレイ ン酸、無水マレイン酸、イタコン酸等のC4-6脂肪族不 飽和ポリカルボン酸など)、脂環族ポリカルボン酸

(1, 4-シクロヘキサンジカルボン酸、テトラヒドロ フタル酸等のC8-10脂環族ポリカルボン酸など)、芳香 族ポリカルボン酸(フタル酸、無水フタル酸、イソフタ ル酸、テレフタル酸、トリメリット酸、ピロメリット酸 等のC8-12芳香族ポリカルボン酸またはその酸無水物な ど)、オキシポリカルボン酸(リンゴ酸、酒石酸、クエ ン酸等のC3-6オキシ多価カルボン酸など)、複素環式 多価カルボン酸(ピリジンカルボン酸、ピリジントリカ ルボン酸、ピリジンテトラカルボン酸等) が例示でき

【0051】さらに好ましい多価カルボン酸は、水溶性 または水分散性である場合が多く、温度30℃において 水100gに対して5g以上(好ましくは10g以上、 さらに好ましくは30g以上)溶解する水溶性多価カル ボン酸である。このような多価カルボン酸には、C2-6 脂肪族多価カルボン酸(特にC3-5脂肪族多価カルボン 酸、例えば、マレイン酸または無水マレイン酸)等が含 50 カ、タルク、カオリン、デラミカオリン、クレー、酸化

まれる。

【0052】多価カルボン酸は塩としても使用でき、多 価カルボン酸のカルボキシル基の一部または全部が塩基 との塩を形成してもよい。多価カルボン酸には、無機塩 基(アンモニア、カリウム、ナトリウム等のアルカリ金 属など)との塩、有機塩基(第3級アミンなど)との塩 が含まれる。

【0053】インク吸収層には、硬化反応を促進するた めに、硬化触媒または硬化促進剤を添加してもよい。硬 10 化触媒または硬化促進剤としては、親水性高分子の種類 や架橋機構に応じて、例えば、酸、アルカリ、有機スズ 化合物、有機アルミニウム化合物、有機チタニウム化合 物、有機ジルコニウム化合物、酸性化合物、酸性リン酸 エステル、前記酸性リン酸エステルとアミンとの混合物 または反応物が挙げられる。これらの硬化触媒または硬 化促進剤は単独でまたは2種以上組み合わせて用いるこ とができる。

【0054】架橋剤または硬化剤の使用量は、例えば、 固形分換算で、インク吸収層を構成する重合体100重 量部に対して0.1~30重量部、好ましくは1~20 重量部程度(例えば、0.1~18重量部、好ましくは 0. 5~15重量部、さらに好ましくは1~10重量 部) である。

【0055】インク吸収層と多孔質層との剥離を容易に するために、インク吸収層が多孔質層に対して離型性を 有していてもよい。また、インク吸収層の離型性を向上 させるために、インク吸収層に離型剤を添加してもよ い。

【0056】離型剤としては、シリコーン系化合物(例 えば、シリコーンオイル、シリコーン樹脂、ポリオキシ アルキレン単位を有するポリオルガノシロキサン等)、 高級脂肪酸またはその塩、高級脂肪酸エステル、ワック ス類(例えば、カルナウバワックスなどの植物ロウ、羊 毛ワックスなどの動物ロウ、パラフィンワックスなどの パラフィン類、ポリエチレンワックス等)、フッ素含有 化合物(例えば、フッ素オイル、ポリテトラフルオロエ チレン等)等が挙げられる。これらの離型剤はエマルジ ョン形態で使用してもよい。これらの離型剤は単独でま たは2種以上組み合わせて使用できる。

【0057】離型剤の使用量は、例えば、固形分換算 で、インク吸収層を構成する重合体100重量部に対し て0.01~10重量部、好ましくは0.1~5重量部 (例えば、0.1~2) 程度である。

【0058】また、インク吸収層の離型性を向上させる ために、インク吸収層に微粒子を含有させてもよい。微 粒子としては、例えば、無機微粒子(ホワイトカーボ ン、珪酸カルシウム、珪酸アルミニウム、珪酸マグネシ ウム、ゼオライト、アミノ珪酸マグネシウム、ケイソウ 土、焼成珪成土、炭酸マグネシウム、アルミナ、シリ

亜鉛、重質炭酸カルシウム、軽質炭酸カルシウム、炭酸 マグネシウム、二酸化チタン、水酸化アルミニウム、水 酸化カルシウム、水酸化マグネシウム、硫酸カルシウ ム、硫酸バリウム、セリサイト、ベントナイト、スメク タイト等の鉱物質微粒子など)、有機微粒子(ポリスチ レン樹脂、アクリル系樹脂、尿素樹脂、メラミン樹脂、 ベンゾグアナミン樹脂等の架橋または非架橋有機微粒 子、微小中空粒子などの有機質微粒子など) が挙げられ る。これらの微粒子は単独でまたは2種以上組み合わせ て使用できる。微粒子の平均粒径は1~30μm、好ま しくは2~25μm (例えば、2~20μm) 程度であ り、通常、5~25μm (例えば、10~25μm) 程

【0059】微粒子の使用量は、例えば、固形分換算 で、インク吸収層を構成する重合体100重量部に対し て0.05~10重量部、好ましくは0.1~5重量 部、さらに好ましくは0.15~3重量部程度である。

【0060】本発明では、多孔質層とインク吸収層とは 剥離可能であり、多孔質層とインク吸収層との層間接着 強度は用途に応じて適宜選択されるが、1~500g/ 15mm (例えば、2~500g/15mm) 程度、好 ましくは1~200g/15mm (例えば、7~200 g/15mm)程度、さらに好ましくは2~150g/ 15mm (例えば、2~140g/15mm) 程度であ り、通常、3~100g/15mm (例えば、10~6 0g/15mm) の範囲から選択できる。

【0061】また、本発明では、画像形成後の記録用シ ートにおいて、非画像部における多孔質層とインク吸収 層との層間接着強度をFnとし、画像部における多孔質 層とインク吸収層との層間接着強度をFpとしたとき、 下記式(1)を満足してもよく、好ましくは下記式

(2)、さらに好ましくは下記式(3)を満足してもよ い。なお、画像部の形成条件は後述する実施例のインク 吸収性試験における条件と同様である。

[0062]

$$| Fp - Fn | < 150 g / 15mm$$
 (1)

$$|Fp-Fn| < 120g/15mm$$
 (2)

$$| Fp - Fn | < 90 g / 15 mm$$
 (3)

【0063】インク吸収層の厚さは、用途に応じて選択 でき、例えば、 $5\sim50\mu$ m程度、好ましくは $10\sim3$ 0μm程度の範囲から選択できる。インク吸収層の厚さ が5μm未満では、インクが充分に吸収されない虞があ り、50μmを超えると、透明性が低下したり、記録用 シートがカールする虞がある。

【0064】さらに、多孔質層および/またはインク吸 収層は慣用の添加剤、例えば、消泡剤、塗布性改良剤、 增粘剤、滑剤、安定剤(抗酸化剤、紫外線吸収剤、熱安 定剤、耐光安定剤等)、染料、顔料、帯電防止剤、アン チブロッキング剤、充填剤、ゲル化剤等を含んでいても てもよい。

【0065】 [基材] 基材の材質は特に制限はなく、例 えば、紙、塗工紙、不織布、またはプラスチックフィル ムもしくはシート等が挙げられるが、透明性、強度、実 用上の点からプラスチックフィルムもしくはシートが好 ましく使用できる。

【0066】プラスチックフィルムもしくはシートを構 成するポリマーとしては、オレフィン系重合体(例え ば、ポリプロピレン等)、ハロゲン系重合体(例えば、 10 ポリ塩化ビニルなど)、スチレン系樹脂(例えば、ポリ スチレン、ゴム強化ポリスチレン、ABS樹脂等)、セ ルロース系樹脂 (セルロース誘導体) (例えば、セルロ ースアセテートなど)、ポリエステル系樹脂(例えば、 ポリエチレンテレフタレート、ポリブチレンテレフタレ ート、ポリエチレンナフタレート、ポリブチレンナフタ レート等)、ポリカーボネート樹脂(例えば、ビスフェ ノールA型ポリカーボネートなど)、ポリアミド系樹脂 (例えば、ナイロン6などの脂肪族ポリアミドなど)等 が例示できる。さらに、透明性に問題がなければ、これ らの共重合体、ブレンド物、架橋物も使用することがで きる。これらのうち、機械的強度、作業性等の点から、 ポリエステル系樹脂、特にポリエチレンテレフタレート などのポリアルキレンアリレート系樹脂が好ましく使用 できる。これらの樹脂は単独でまたは2種以上組み合わ せて単層フィルムまたは積層フィルムとして使用でき

【0067】プラスチックフィルムもしくはシートには 必要に応じて、酸化防止剤、熱安定剤、滑材、顔料、紫 外線吸収剤等を添加してもよい。また、インク吸収層と 30 の接着性を向上させるため、コロナ放電処理やアンダー コート処理等も行うこともできる。

【0068】基材の厚みは、通常、インクジェットプリ ンターに挿入して画像を形成することを考慮すると、例 えば、20~200μm程度、好ましくは50~170 μ m程度、さらに好ましくは80~150 μ m程度であ

[製造方法] 本発明の記録用シートは、基材シートの少 なくとも片面に、インク吸収層を形成し、さらにそのイ ンク吸収層の上にインク吸収層に対して剥離可能な多孔 40 質層を形成することにより製造することができる。

【0069】インク吸収層は、常法により製造すること ができる。すなわち、前記インク吸収層の構成成分を含 む塗布液を、基材上に塗布し、乾燥するなどの方法によ り、形成することができる。塗布方法は、特に限定され ず、ロールコーティング、エアナイフコーティング、ブ レードコーティング、ロッドコーティング、バーコーテ ィング、コンマコーティング法等の公知の方法を適用す ることができる。途布液の溶媒は、親水性高分子の種類 などに応じて選択でき、特に限定されない。

よい。また、多孔質層は架橋剤または硬化剤を含んでい 50 【0070】多孔質層は、良溶媒と貧溶媒とを用いて高

分子をミクロ相分離させる相分離法、高分子を発泡させ て孔を形成する発泡法、高分子フィルムを延伸処理する 延伸法、放射線を高分子フィルムに照射して孔を形成す る放射線照射法、溶媒に可溶な高分子または無機塩類と 前記溶媒に不溶な高分子とからなるフィルムから、前記 溶媒により可溶な成分を抽出除去して孔を形成する抽出 法、高分子粒子を部分融着したりバインダーなどで固め て粒子間の間隙を孔として利用する焼結法等により製造 することができる。

【0071】これらの方法のうち、良溶媒と貧溶媒とを 用いて高分子をミクロ相分離させる相分離法が好ましく 使用され、ミクロ層分離法には、例えば、乾式相転換法 (主として重合体、この重合体に対する良溶媒、及びこ の重合体に対する貧溶媒でかつ前記良溶媒よりも高沸点 である溶媒で構成されている塗布液を塗布後、乾燥する ことにより多孔質層を得る方法) や、湿式相転換法(少 なくとも前記重合体に対する良溶媒を含む塗布液を流延 または途布し、前記重合体に対する貧溶媒に浸漬して、 相分離を生じさせて多孔質層を形成得る方法)等が含ま れるが、乾式相転換法が量産性に優れているので、特に 20 好ましく使用される。

【0072】乾式相転換法による多孔質層の製造方法 は、より詳細には、次の通りである。重合体、この重合 体に対する良溶媒、及びこのこの重合体に対する貧溶媒 でかつ前記良溶媒よりも高沸点である溶媒で構成されて いる塗布液を基材上に塗布し、乾燥を行うと沸点の低い 良溶媒が先に蒸発する。その際に、この良溶媒の蒸発の 進行に伴い、重合体の溶解性は低下し、重合体はミセル を形成し貧溶媒相と相分離する。さらに、貧溶媒の蒸発 が進むと、ミセル同士が接触して網目構造が形成され、 貧溶媒の蒸発の完了により、多孔質層が形成される。

【0073】良溶媒は、高分子の種類などに応じて選択 でき、例えば、ケトン類(アセトン、メチルエチルケト ン、メチルプロピルケトン、メチルブチルケトン、メチ ルイソブチルケトン等のC3-6ジアルキルケトン、シク ロヘキサノンなど)、エステル類(ギ酸エチルなどのギ 酸C1-4アルキルエステル、酢酸メチル、酢酸エチル、 酢酸ブチル等の酢酸C1-4アルキルエステル、プロピオ ン酸エチル、乳酸エチル等)、エーテル類(1,4-ジ オキサン、テトラヒドロフラン、テトラヒドロピラン、 ジエチルエーテル、ジイソプロピルエーテル、ジメトキ シエタン等の環状又は鎖状C4-6エーテル)、セロソル ブ類(メチルセロソルブ、エチルセロソルブ、ブチルセ ロソルブ等のC1-4アルキルロソルブ)、セロソルブア セテート類(メチルセロソルブアセテート、エチルセロ ソルブアセテート等のC1-4アルキルセロソルブアセテ ート)、芳香族炭化水素類(ベンゼン、トルエン、キシ レン等)、ハロゲン化炭化水素類(塩化メチレン、塩化 エチレン等)、アミド類(ホルムアミド、アセトアミ ド、Nーメチルホルムアミド、Nーメチルアセトアミ

ド、N, N-ジメチルホルムアミド、N, N-ジメチル アセトアミド等)、スルホキシド類(ジメチルスルホキ シドなど)、ニトリル類(アセトニトリル、プロピオニ トリル、ブチロニトリル、ベンゾニトリル等)、有機酸 類(ギ酸、酢酸、プロピオン酸等)、有機酸無水物(無 水マレイン酸、無水酢酸等)、およびこれらの混合物等 が例示できる。なお、良溶媒 [例えば、低級アルコール 類(メタノール、エタノール、イソプロパノール、ブタ ノール等のC1-4アルキルアルコール、ジアセトンアル コール等)、シクロアルカノール(シクロペンタノー ル、シクロヘキサノール、メチルシクロヘキサノール、 ジメチルシクロヘキサノール等のC1-4アルキル基が置 換していてもよいC4-8シクロアルカノール)等]は、 樹脂の種類によっては、貧溶媒となる場合がある。良溶 媒は、ニトロ化合物 (ニトロメタン、ニトロエタン、ニ トロプロパン等ど)などを含んでいてもよい。

【0074】より具体的には、重合体として酢酸セルロ ースを用いる場合、好ましい良溶媒には、アセトン、メ チルエチルケトン、酢酸エチル、ジオキサン、ジメトキ シエタン、メチルセロソルブ、メチルセロソルブアセテ ート、またはこれらの混合物、特にアセトンが好まし

【0075】貧溶媒とは、使用する重合体に対する溶解 性がないか、または溶解性の低い溶媒を意味し、種類 は、上記良溶媒よりも沸点が高ければ、特に制限されな い。貧溶媒としては、例えば、水、エステル類(ギ酸ア ミル、ギ酸イソアミル等のギ酸C5-8アルキルエステ ル、酢酸アミル、酢酸ヘキシル、酢酸オクチル、酢酸3 ーメトキシブチル、酢酸3-エトキシブチル、プロピオ 30 ン酸ブチル、プロピオン酸3-メトキシブチル等のC 1-4アルコキシル基を有してもよいC2-4脂肪族カルボン 酸C6-10アルキルエステル、安息香酸メチル、安息香酸 エチル、安息香酸プロピル等の安息香酸C1-4アルキル エステル類)、アルコール類(アミルアルコールなどの C6-10アルコール類、複素環式アルコール等)、脂肪族 多価アルコール類(エチレングリコール、ジエチレング リコール、プロピレングリコール、ポリエチレングリコ ール、グリセリン等)、およびこれらの混合物などが例 示できる。

【0076】より具体的には、重合体として酢酸セルロ 40 ースを用いる場合、好ましい貧溶媒には、蟻酸アミル、 シクロヘキサノール、メチルシクロヘキサノール、安息 香酸エチル、またはこれらの混合物、特にシクロヘキサ ノールが好ましい。

【0077】塗布液中の良溶媒と貧溶媒との割合は、重 合体の均一溶液を形成できる限り特に制限されず、目的 とする多孔質層の空孔比率などによって適宜選択すれば よいが、通常、良溶媒100重量部に対して、貧溶媒0 ~300重量部程度、好ましくは3~250重量部程

50 度、さらに好ましくは5~250重量部程度の範囲から

選択できる。

【0078】 塗布液中の重合体の含有量は、重合体の重合度などに応じて選択でき、例えば、 $1\sim30$ 重量%、好ましくは $1\sim25$ 重量%、特に $3\sim20$ 重量% (例えば、 $3\sim15$ 重量%) 程度の範囲から選択できる。

【0079】 塗布液中には、本発明の特性を損なわない 範囲で慣用の添加剤、例えば、消泡剤、塗布性改良剤、 増粘剤、熱安定剤、滑剤、紫外線吸収剤、帯電防止剤、 アンチブロッキング剤等を添加してもよい。

【0080】前記重合体、良溶媒及び貧溶媒の混合方法は、常法により、重合体を良溶媒に添加して溶解し、貧溶媒を添加して攪拌混合するなどの方法で行うことができる

【0081】多孔質層の塗布方法は、特に限定されず、ロールコーティング、エアナイフコーティング、ブレードコーティング、ロッドコーティング、バーコーティング、コンマコーティング法等の公知の方法を適用することができる。

【0082】多孔質層の乾燥方法は、特に限定されず、 乾式相転換法を用いる場合には、まず、良溶媒が蒸発し て重合体がミセル化し、続いて貧溶媒の蒸発によりその 重合体のミセル同士が接触して網目構造を形成するよう に、温度、蒸気圧等を制御する必要がある。

【0083】本発明の記録用シートにおいて、インク吸収層および多孔質層は基材の片面のみに形成されていてもよく、両面に形成されていてもよい。多孔質層の形成は、インク吸収層の上に重合体を含む塗布液を塗布し、成膜工程で多孔質層の孔を形成してもよく、また、インク吸収層の上に、例えば、乾式相転換法などで別途調製した多孔質層を積層してもよい。

【0084】本発明の記録用シートは、透明基材を使用する場合、可視光に対して透明である方が好ましく、例えば、波長400nmでの光線透過率が、45%以上(すなわち $45\sim100\%$)、好ましくは $60\sim100\%$ (例えば、 $70\sim100\%$)程度の範囲から選択できる。尚、用途によっては不透明基材を使用することもある。

【0085】このようにして得られた記録用シートは、インクが記録用シート表面に到着後、多孔質層に速やかに吸収され、その後インク吸収層によりインクの溶剤成 40分が確実に吸収保持されることにより、記録用シートの表面でインクが長時間べたついたまま残留せず、インクの流れ出しや混合が生じず、良好な画像を記録することができる。

【0086】本発明においては、記録用シートの多孔質 層上に画像または文字を記録した後、多孔質層をインク 吸収層から剥離して記録画像を形成できる。本発明の記 録画像の形成方法では、多孔質層がインク吸収層から剥 離可能であるため、多孔質層の剥離により、インク吸収 層に形成された画像の鮮明性 角표理性及び透明性を改 善できる。

【0087】また、記録用シートの多孔質層上に画像または文字を記録した後、カバーシートを多孔質層上に積層して一体化し、さらにそのカバーシートおよび多孔質層をインク吸収層から剥離して記録画像を形成してもよい。カバーシートとしては、前記基材フィルム、特に透明性フィルムが使用できる。本発明の記録画像の形成方法では、多孔質層がインク吸収層から剥離可能であるため、円滑に多孔質層を転写または移行することができる。特に、画像部分と非画像部分との層間接着強度の差が少ないシートでは、剥離作業性に優れる。また、多孔質層を相対的に耐水性の低いインク吸収層から剥離し、カバーシートとともに用いることで(例えば、多孔質層を有するカバーシートを多孔質層を内側にして貼着するなど)、耐水性に対する要求が厳しい屋外使用にも好適である。

【0088】本発明の記録用シートは、インクの小滴を吐出させて記録するインクジェット方式の記録用シートとして有用であるが、特に透明性や表面光沢を要求されるOHPシートや高画質画像用シートに有用である。

[0089]

【発明の効果】本発明では、インクの吸収性、耐ブロッキング性、色再現性、記録画像または文字の耐水性、耐候性が優れ、かつ透明性、表面光沢を有する記録用シートを製造できる。

[0090]

【実施例】以下に、実施例に基づいて本発明をより詳細 に説明するが、本発明はこれらの実施例によって限定さ れるものではない。

30 【0091】なお、特に断わりのない限り、部または%は重量基準である。実施例および比較例で得られた記録用シートについて、光線透過率、インク吸収性、耐水性、画像の解像度、耐ブロッキング性、及び層間接着強度を以下のように評価した。

【0092】 [光線透過率] 実施例1で得られた記録用シートについて、波長400nmの光線透過率測定を分光光度計U-3300 ((株) 日立製作所製)で行った

【0093】 [インク吸収性] インクジェットプリンター(グラフテック社製、MasterJetーJC2008)を使用し、実施例および比較例で得られた記録用シートに、顔料タイプ水性インク(シアン、イエロー、マゼンタの各々の色)をベタで印字し、記録画像を形成した。印字した後、一定時間ごとに印字部上にPPC用コピー用紙を載せ、コピー用紙の上から荷重250g/cm²を10秒間かけた後、コピー用紙を剥がし、インクの裏移りの程度を目視で判断し、裏移りが認められなくなるまでの時間を測定した。

離可能であるため、多孔質層の剥離により、インク吸収 【0094】 [耐水性-1] 実施例及び比較例で得られ層に形成された画像の鮮明性、色再現性及び透明性を改 50 た記録用シートにインク吸収性試験と同じ印字を行い、

25℃にて充分に水を含んだ綿棒で印字部を3往復拭 き、綿棒へのインクの付着具合を、下記の基準に従い目 視で評価した。

[0095]

◎:綿棒への付着なし

〇:綿棒ヘインクが少し付着し、印字部分が薄くなる

×: 拭いた部分の被覆層が完全に剥離する

【0096】 [耐水性-2] 実施例で得られた記録用シ ートにインク吸収性試験と同じ印字を行い、常温の水に 2.4時間浸せきした後、外観を下記の基準に従い目視で 10 評価した。

[0097]

〇: 異常なし

△:画像部が若干溶出

×:画像部の大部分が溶出

【0098】 [画像の解像度] インクジェットプリンタ ー(グラフテック社製、MasterJetーJC20 08)を使用し、実施例および比較例で得られた記録用 シートに、イエローベースのマゼンタライン(幅100 μm) を印字後、顕微鏡で50倍に拡大してドットの観 20 層を形成した。記録用シートの評価結果を表1に示す。 察を行い、下記の基準に従い評価した。

[0099]

◎:ドットの周囲への滲みがほとんどない

〇:ドットの周囲への滲みが少しあり、実測値が120 μ mを超える

×:ドットの周囲への滲みがあり、隣接するイエローと マゼンタのドットの境目が不明瞭である

【0100】 [耐ブロッキング性] 実施例及び比較例で 得られた記録用シートを2枚以上重ねて、その上から4 0g/cm²をの荷重をかけて、40℃、90%RH湿 度下で1日保存し、下記の基準に従い評価した。

[0101]

◎:マッティング、ブロッキングともになし

○:マッティングはあるが、ブロッキングなし

×:ブロッキングしている

【0102】 [層間接着強度] 実施例及び比較例で得ら れた記録用シートの多孔質層表面にセロハンテープを貼 り付け、15mm幅にサンプルを切り出し、引張試験機 オリエンテック(株)テンシロンUCT-5Tを使用し て、剥離強度200mm/minで測定した。

【0103】実施例1

厚さ100μmの易接着処理済みのポリエチレンテレフ タレートフィルム(デュポンジャパン社製、メリネック ス339)上に、変性ポリビニルアルコール (日本合成 化学社製、OKS-7158G) の15%水溶液100 部にマレイン酸を1.5部、シリコーン系離型剤を0. 02部添加した塗布液を塗布し、120℃で5分間乾燥 して厚さ15μmのインク吸収層を形成し、さらに、こ の上に、酢酸セルロース(平均酢化度55、粘度平均重

クロヘキサノール100部を添加したドープを塗布し、 80℃、90%RHの雰囲気下で3分間乾燥して、平均 孔径が 0.9μmの孔が高密度に存在する厚さ 8μmの 多孔質層を形成した。得られた記録用シートの光線透過 率は70%と良好な透明性を示した。また、記録用シー トのその他の評価結果を表1に示す。

【0104】実施例2

厚さ100μmの易接着処理済みのポリエチレンテレフ タレートフィルム(デュポンジャパン社製、メリネック ス705)上に、ポリビニルアルコール又はその誘導体 (クラレ社製、PVA217) の15%水溶液100部 にマレイン酸を1.5部、シリコーン系離型剤を0.0 2部添加した塗布液を塗布し、120℃で5分間乾燥し て厚さ15μmのインク吸収層を形成し、さらに、この 上に、酢酸セルロース(平均酢化度55、粘度平均重合 度170)のアセトン10%溶液100部にシクロヘキ サノール100部を添加したドープを塗布し、80℃、 90%RHの雰囲気下で3分間乾燥して、平均孔径が 0.9μmの孔が高密度に存在する厚さ8μmの多孔質 【0105】実施例3

厚さ100μmの易接着処理済みのポリエチレンテレフ タレートフィルム(デュポンジャパン社製、メリネック ス705) 上に、変性ポリビニルアルコール (日本合成 化学社製、OKS-7158G) の15%水溶液100 部にマレイン酸を1.5部、ポリメタクリル酸メチル架 橋微粒子(積水化学(株)製、MBX20、平均粒径2 0 μm) を0. 4部、シリコーン系離型剤を0. 02部 添加した塗布液を塗布し、120℃で5分間乾燥して厚 さ15 μ mのインク吸収層を形成し、さらに、この上 に、酢酸セルロース (平均酢化度55、粘度平均重合度 170)のアセトン10%溶液100部にシクロヘキサ ノール100部を添加したドープを塗布し、80℃、9 0%RHの雰囲気下で3分間乾燥して、平均孔径が0. 9μmの孔が高密度に存在する厚さ8μmの多孔質層を 形成した。記録用シートの評価結果を表1に示す。

【0106】実施例4

厚さ100μmの易接着処理済みのポリエチレンテレフ タレートフィルム(デュポンジャパン社製、メリネック 40 ス705)上に、変性ポリビニルアルコール (日本合成 化学社製、OKS-7158G)の15%水溶液100 部にマレイン酸を1.5部、ポリメタクリル酸メチル架 橋微粒子(積水化学(株)製、MBX20、平均粒径2 0 µm) を0. 4部添加した塗布液を塗布し、120℃ で5分間乾燥して厚さ15 µ mのインク吸収層を形成 し、さらに、この上に、酢酸セルロース(平均酢化度5 5、粘度平均重合度170)含有量10%のアセトン溶 液100部にシクロヘキサノール100部を添加したド ープを塗布し、80℃、90%RHの雰囲気下で3分間 合度170)含有量10%のアセトン溶液100部にシ 50 乾燥して、平均孔径が0.9μmの孔が高密度に存在す

る厚さ8μmの多孔質層を形成した。記録用シートの評 価結果を表1に示す。

【0107】比較例1

厚さ100μmの易接着処理済みのポリエチレンテレフ タレートフィルム(デュポンジャパン社製、メリネック ス705)上にポリビニルアルコール又はその誘導体

*(クラレ社製、PVA217)の15%水溶液100部 にマレイン酸を1.5部添加した塗布液を塗布し、12 0℃で5分間乾燥して厚さ15 µmのインク吸収層を設 けた。得られた記録用シートの評価結果を表1に示す。 [0108]

【表1】

20(1						
	インク	耐水性	画像	耐プロッ	層間強度	
	吸収性	- 1	解像度	キング性		
実施例1	1分	0	0	0	60g/15mm	
実施例 2	30 秒以下	0	0	0	50g/15mm	
実施例3	1分	0_	0	0	20g/15mm	
実施例4	1分	0	•	0	80g/15mm	
比較例1	2分	×	0	×		

【0109】実施例5

実施例1で得られた記録用シートにインク吸収性試験と 同じ印字を行った後、層間接着強度(Fp)を測定し た。先に測定した層間接着強度(Fn)とともに、結果 を表2に示す。なお、シアン、マゼンタ、イエロー部分 ともに同じ傾向であったので、代表してシアン部のデー タで示した(以下、同様)。

【0110】次に、印字後のシート表面に表面保護シー ト(桜井(株)製、LAGプロテクトG055AV5 0:粘着剤付き)を多孔質層の上にラミネートした。そ して、多孔質層と一体になった表面保護シートを記録用 シートから剥離した。剥離時には、画像部の剥離抵抗が 大きく、多孔質層が部分的に破れたが、多孔質層とイン ク吸収層との層間で剥離した。耐水性-2試験の結果を 表2示す。

【0111】実施例6

実施例2で得られた記録用シートにインク吸収性試験と 同じ印字を行った後、層間接着強度(Fp)を測定し た。先に測定した層間接着強度(Fn)とともに、結果 を表2に示す。

【0112】次に、印字後のシート表面に表面保護シー ト (桜井 (株) 製、LAGプロテクトG055AV5 0:粘着剤付き)を多孔質層の上にラミネートした。そ して、多孔質層と一体になった表面保護シートを記録用 シートから剥離した。剥離時には、画像部の剥離抵抗が 大きく、多孔質層が部分的に破れたが、多孔質層とイン ク吸収層との層間で剥離した。耐水性-2試験の結果を 表2示す。

【0113】実施例7

実施例3で得られた記録用シートにインク吸収性試験と 同じ印字を行った後、層間接着強度(Fp)を測定し た。先に測定した層間接着強度(Fn)とともに、結果 を表2に示す。

【0114】次に、印字後のシート表面に表面保護シー ト(桜井(株)製、LAGプロテクトG055AV5 0:粘着剤付き)を多孔質層の上にラミネートした。そ

シートから剥離した。多孔質層は破れることなく適度な 剥離抵抗で、多孔質層とインク吸収層との層間で剥離し た。耐水性-2試験の結果を表2示す。

【0115】実施例8

実施例4で得られた記録用シートにインク吸収性試験と 同じ印字を行った後、層間接着強度(Fp)を測定し 20 た。先に測定した層間接着強度 (Fn) とともに、結果 を表2に示す。

【0116】次に、印字後のシート表面に表面保護シー ·ト (桜井 (株) 製、LAGプロテクトG 0 5 5 A V 5 0:粘着剤付き)を多孔質層の上にラミネートした。そ して、多孔質層と一体になった表面保護シートを記録用 シートから剥離した。多孔質層は破れることなく適度な 剥離抵抗で、多孔質層とインク吸収層との層間で剥離し た。耐水性-2試験の結果を表2示す。

[0117]

実施例 1

【表2】

Pp/Pn/Pp-Fn (g/15mm) 耐水性-2 900/60/840 × 1050/50/1000 × 45/20/25 × 110/80/30 ×

実施例 2 実施例3 実施例4 実施例 5 900/60/840 O 実施例 6 1050/50/1000 О 実施例 7 45/20/25 O 110/80/30 実施例8

表 2

【0118】表2には実施例1~4で得られた記録用シ ートの耐水性-2試験の結果も示したが、これらに比べ て、実施例5~8で得られた記録用シートは著しく高い 耐水性を示した。従って、実施例5~8で得られた記録 用シートはサインディスプレイなど屋外使用に耐える高 い耐水性を実現できる。

【0119】比較例2

厚さ100μmの易接着処理済みのポリエチレンテレフ タレートフィルム(デュポンジャパン社製、メリネック ス705) 上に変性ポリビニルアルコール (日本合成化 して、多孔質層と一体になった表面保護シートを記録用 50 学社製、OKS-7158G)の15%水溶液100部

23

にマレイン酸を 1.5 部添加した塗布液を塗布し、120℃で5分間乾燥して厚さ15 μ mのインク吸収層を設けた。次に、ドライラミネート用接着剤(東洋モートン社製、AD563)を塗布し、70℃で2分間乾燥して厚さ2 μ mの接着層を設けた。さらに、この上に、酢酸セルロース(平均酢化度55、粘度平均重合度170)のアセトン10%溶液100部にシクロヘキサノール100部を添加したドープを塗布し、80℃、90%RHの雰囲気下で3分間乾燥して、平均孔径が0.9 μ mの孔が高密度に存在する厚さ8 μ mの多孔質層を形成し

た。

【0120】層間強度を測定したところ、多孔質層とインク吸収層とは接着層により強固に接着しており、多孔質層が凝集破壊したために測定できなかった。

【0121】インクの吸収性を評価したところ、2分以上の時間を要した。多孔質層とインク吸収層との間に接着層が介在するため、インク吸収層が充分機能しなかったと推定される。さらに、実施例5と同様に表面保護フィルムをラミネートして剥離しようとしたが、多孔質層が凝集破壊して印刷画像がつぶれてしまった。

フロントページの続き

(51) Int. CI. ⁷		識別記号	FI		テーマコード(参考)
C 0 8 K	3/00		C 0 8 K	5/101	
	5/101		C 0 8 L	31/04	G
C 0 8 L	31/04			83/04	•
	83/04			91/06	
	91/06		B 4 1 J	3/04	1 0 1 Y
	101/16				1 0 1 Z
			C 0 8 L	101/00	

Fターム(参考) 2C056 EA04 EA13 FB01 FB02 FB08 FC06 HA44

2H086 BA02 BA16 BA31 BA35 BA41

4D075 AC22 AC23 BB24Y CA08

CA35 DA04 DB48 DC27 EA07

EB07 EB19 EB22 EB52 EC03

4F006 AA02 AA12 AA15 AA16 AA35

AA36 AA38 AB02 AB20 AB23

AB24 AB32 BA01 CA01 DA04

4J002 AA011 AE032 BF021 CC183

CC193 CD013 CD183 CH053

CP032 EC077 EH036 EW067

EX037 EZ007 FD143 FD147

FD162 FD166 GH00