Problem 1

Example 6.4: the planar section shown is released from rest in the position shown. Immediately after release determine the following:

- 1. Angular acceleration
- 2. Minimum coefficient of friction to prevent slip

Review and Hints

- For the force analysis:
 - \circ x-dimension: $-f = ma_x$
 - \circ y-dimension: $N-mg=ma_y$
 - $\circ~ heta$ -dimension: $NL-fL=Ilpha=mL^2lpha$
 - $\circ~$ Hence, we have 3 equations but 5 unknowns: N, f, a_x, a_y , and lpha.
- Let's solve for a_x and a_y first:
 - $\circ \vec{a}_c = \alpha(-L\hat{i})$
 - $egin{aligned} \circ \; ec{a}_G = ec{a}_c + ec{lpha} imes ec{r}_{G/c} ec{\omega}^2 imes ec{r}_{G/c} \end{aligned}$
 - ullet where $ec{a}_G$ is the acceleration of point G, i.e. the center of mass
 - $ec{a}_c$ is the acceleration of point c, i.e. the center of tthe circle
 - $\vec{\omega}$ is the angular velocity of relative rotation, which is **ZERO** in this case.
 - lacksquare Because G and c are rotating together, so there is no relative rotation between them

$$\circ$$
 so, $ec{a}_G=-lpha L\hat{i}+ec{lpha} imes r_{G/c}^{ec{}}=-lpha L\hat{i}+lpha\hat{k} imes (-L\hat{i})=-lpha L\hat{i}-lpha L\hat{j}$

$$\circ \ a_x = - lpha L$$
 , $a_y = - lpha L$

Solution

$$f=mLlpha$$
 $N-mg=-mLlpha$ $NL-fL=mL^2lpha$

Hence, we have:

$$N = mg - mL\alpha$$

 $f = mL\alpha$
 $\alpha = \frac{g}{3L}$

for no slipping condition, we have: $f \leq \mu_s N$, so:

$$N = mg - mL\alpha = \frac{2}{3}mg$$
$$f = mL\alpha = \frac{1}{3}mg$$

And $f \leq \mu_s N$ becomes:

$$rac{1}{3}mg \leq \mu_s rac{2}{3}mg \ \mu_s \geq rac{1}{2}$$

Problem 2

The uniform thin bar of length L and mass m is released from rest in the horizontal position shown. Determine the distance d at which the pin should be located from the end of the bar so that it has the maximum possible angular acceleration $\alpha_{\rm max}$. In addition, determine the value of $\alpha_{\rm max}$.

Solution

Based on the FBD shown, the Newton-Euler equations are

$$\sum F_x: \qquad O_x = ma_{Gx}, \qquad (1)$$

$$\sum F_y: \qquad O_y - mg = ma_{Gy}, \qquad (2)$$

$$\sum M_G: \quad -O_y \left(\frac{L}{2} - d\right) = I_G \alpha_{gbar}, \qquad (3)$$

where α_{bar} is the angular acceleration of the bar and where

$$I_G = \frac{1}{12}mL^2,\tag{4}$$

is the mass moment of the bar about G. Since the bar is in a fixed axis rotation about O, we have

$$a_{Gx} = -\left(\frac{L}{2} - d\right)\omega_{\text{bar}}^2 = 0$$
 and $a_{Gy} = \left(\frac{L}{2} - d\right)\alpha_{\text{bar}},$ (5)

where ω_{bar} is the angular velocity of the bar. Substituting the kinematic equations and the expression for I_G into the Newton-Euler equations, we have a system of three equations in the three unknowns O_x , O_y , and α_{bar} whose solution is

$$O_x = 0$$
, $O_y = \frac{1}{4} \frac{mgL^2}{3d^2 - 3dL + L^2}$, $\alpha_{\text{bar}} = \frac{6dg - 3gL}{6d^2 - 6dL + 2L}$. (6)

We now proceed to find the value of d such that α_{bar} is maximum. Differentiating the expression for α_{bar} with respect to d and setting the result equal to zero, we have

$$-\frac{3}{2}g\frac{6d^2 - 6dL + L}{(3d^2 - 3dL + L^2)^2} = 0 \quad \Rightarrow \quad d_1 = \frac{1}{6}(3 - \sqrt{3})L \quad \text{and} \quad d_2 = \frac{1}{6}(3 + \sqrt{3})L. \tag{7}$$

There are two distinct values of d for which a relative extremum of α_{bar} is achieved. The values of α_{bar} corresponding to the two values of d just found are

$$\alpha_{\rm bar} = \begin{cases} -\sqrt{3}g/L & \text{for } d = d_1, \\ \sqrt{3}g/L & \text{for } d = d_2. \end{cases}$$

Hence, the relative minimum and maximum values of $\alpha_{\rm bar}$ are equal in absolute value and, if we do not distinguish between a clockwise and a counterclockwise rotation of the bar, both results are acceptable. Before providing the final answer, we need to verify whether or not absolute maximum values of $\alpha_{\rm bar}$ are obtained for d=0 and d=L. Indeed, for d=0 and d=L, $|\alpha_{\rm bar}|=3g/(2L)<\sqrt{3}g/L$. Hence, the final result is

$$|\alpha_{\text{bar}}|_{\text{max}} = \sqrt{3} \frac{g}{L}$$
 for $d = \frac{1}{6} (3 - \sqrt{3}) L$ or $d = \frac{1}{6} (3 + \sqrt{3}) L$.