Выборный Евгений Викторович email: evybornyi@hse.ru

Математический анализ Тема 6: Функции многих переменных

Москва 2016

Пространство \mathbb{R}^n

Определение. Вещественное n-мерное пространство \mathbb{R}^n

Множество упорядоченных наборов из n действительных чисел называют вещественным n-мерным пространством \mathbb{R}^n :

$$x=(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n.$$

Эти наборы чисел из \mathbb{R}^n называют точками или векторами. В \mathbb{R}^n определена сумма векторов и операция умножения вектора на число:

$$x + y = (x_1, x_2, ..., x_n) + (y_1, y_2, ..., y_n) = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n),$$

$$\alpha x = \alpha \cdot (x_1, x_2, ..., x_n) = (\alpha x_1, \alpha x_2, ..., \alpha x_n).$$

Определено понятие расстояния между точкам:

$$d(x,y) = ||x-y|| = \sqrt{(x_1-y_1)^2 + \cdots + (x_n-y_n)^2}.$$

Выполнено неравенство треугольника:

$$||x + y|| \le ||x|| + ||y||.$$

Шар в \mathbb{R}^n

Ключевым понятием для определения сходимости в одномерном случае была ε -окрестность точки a. Определим аналогичные понятия в многомерном пространстве \mathbb{R}^n .

Определение. Шар в \mathbb{R}^n

Открытым шаром в \mathbb{R}^n с центром в точке a и радиусом r называют множество точек $x \in \mathbb{R}^n$, удовлетворяющих условию

$$||x-a|| < r \iff (x_1-a_1)^2 + \cdots + (x_n-a_n)^2 < r^2.$$

Иногда это множество называют r-окрестностью точки a, сохраняя обозначение $O_r(a)$. Тогда **проколотой** r-окрестностью точки a, называют множество точек:

$$\dot{O}_r(a) = O_r(a) \setminus \{a\} = \{x \in \mathbb{R}^n \mid 0 < ||x - a|| < r\}.$$

Определение. Ограниченное множество

Множество $A\subset \mathbb{R}^n$ называется **ограниченным**, если A полностью лежит в некотором шаре. В этом случае существует R такое, что

$$||x|| < R \quad \forall x \in A.$$

Предел последовательности точек

Определение. Предел последовательности точек

Говорят, что последовательность точек $\{x^{(k)}\}$, $x^{(k)}\in\mathbb{R}^n$ сходится к точке $y\in\mathbb{R}^n$, пишут $x^{(k)}\to y$, если к нулю стремится расстояние между y и $x^{(k)}$ при $k\to+\infty$:

$$\lim_{k\to+\infty}d(y,\ x^{(k)})=0.$$

Эквивалентные записи имеют вид:

$$\forall \varepsilon > 0 \ \exists N : \quad x^{(k)} \in O_{\varepsilon}(y) \quad \forall k \geq N.$$

$$\forall \varepsilon > 0 \ \exists N : \quad ||x^{(k)} - y|| < \varepsilon \quad \forall k \ge N.$$

Таким образом, последовательность точек стремится к y тогда и только тогда, когда в любом открытом шаре с центром в точке y лежит бесконечно много точек последовательности, а вне его — лишь конечное число.

Упражнение

Докажите, что множество точек сходящейся последовательности является ограниченным.

Предел последовательности точек

Предложение

Сходимость последовательности точек $\{x^{(k)}\}$ к точке y эквивалентна сходимости координат точек $x^{(k)}=(x_1^{(k)},\dots,x_n^{(k)})$ к координатам точки $y=(y_1,\dots,y_n)$:

$$\lim_{k\to+\infty}x^{(k)}=y\quad\iff\quad \lim_{k\to+\infty}x^{(k)}_1=y_1,\ldots,\lim_{k\to+\infty}x^{(k)}_n=y_n.$$

Доказательство

Доказательство теоремы непосредственно следует из очевидных неравенств:

$$|x_j^{(k)} - y_j| \le \sqrt{(x_1^{(k)} - y_1)^2 + \dots + (x_n^{(k)} - y_n)^2} \le n \max_{1 \le j \le n} |x_j^{(k)} - y_j|.$$

Замечание

Иногда в \mathbb{R}^n вводят другое понятие расстояния по формуле:

$$\tilde{d}(x, y) = \max_{1 \le j \le n} |x_j - y_j|.$$

Следовательно, сходимость последовательности точек относительно расстояния d и \tilde{d} эквивалентна.

Открытые множества

Определение. Внутренние точки множества

Точка $a \in A \subset \mathbb{R}^n$, которая принадлежат множеству A вместе с некоторым открытым шаром с центром в точке a, называется **внутренней точкой** множества A.

Определение. Открытое множество

Множество точек $A\subset \mathbb{R}^n$ называется **открытым**, если для каждой точки $a\in A$ этого множества существует открытый шар с центром в точке a, который полностью лежит в A:

$$A$$
 — открыто \iff $\forall a \in A \; \exists r > 0 : \; O_r(a) \subset A.$

Пустое множество ∅ полагается открытым по определению.

Таким образом, открытое множество — это множество, которое полностью состоит из внутренних точек.

Пример

Открытый шар является открытым множеством. Действительно, $\forall x \in A = O_R(a)$ положим $r = R - \|x - a\| > 0$. Тогда

$$y \in O_r(x) \ \Rightarrow \ \|y - a\| = \|y - x + x - a\| \leq \|y - x\| + \|x - a\| < r + \|x - a\| = R \ \Rightarrow \ y \in A.$$

Свойства открытых множеств

Свойства открытых множеств

- **①** Все пространство \mathbb{R}^n является открытым.
- 2 Любое объединение открытых множеств является открытым.
- € Конечное пересечение открытых множеств является открытым.

Замечание

Пересечение бесконечного числа открытых множеств может не быть открыто. Например,

$$A_k = (-1/k, +1/k) \subset \mathbb{R}, \qquad k = 1, 2, \dots$$

Множества A_k открыты, но

$$\bigcap_{k=1}^{+\infty} A_k = \{ x \in \mathbb{R} \mid x \in A_k \ \forall k \} = \{ 0 \},$$

а множество, состоящее только из одной точки, не является открытым.

Замкнутые множества

Определение. Предельные и изолированные точки множества

Точка $x_0 \in \mathbb{R}^n$ называется **предельной точкой** множества A или точкой сгущения, если в любой окрестности точки x_0 существуют точки из множества A, отличные от x_0 :

$$\forall r > 0 \quad O_r(a) \cap A \neq \{a\}.$$

Точка $a\in A$ называется **изолированной точкой** множества A, если существует окрестность точки a, в которой нет других точек из множества A.

Предельные точки могут как принадлежать, так и не принадлежать рассматриваемому множеству.

Определение. Замкнутое множество

Множество называется **замкнутым**, если оно содержит все свои предельные точки. Пустое множество считают замкнутым по определению.

Предложение. Замкнутость в терминах последовательностей

Множество замкнуто тогда и только тогда, когда предел любой сходящейся последовательности точек этого множества также принадлежит этому множеству.

Свойства замкнутых множеств

Свойства замкнутых множеств

 Множество является замкнутым тогда и только тогда, когда его дополнение является открытым:

$$A$$
 — замкнуто \iff $(\mathbb{R}^n \setminus A)$ — открыто.

- f e Все пространство \mathbb{R}^n является замкнутым.
- Конечное объединение замкнутых множеств является замкнутым.
- Любое пересечение замкнутых множеств является замкнутым.

Определение. Компакт

Замкнутое ограниченное множество в \mathbb{R}^n называют компактом.

Понятие компакта является естественным обобщением понятия отрезка в многомерном пространстве.

Предложение. Компактность в терминах последовательностей

Множество является компактом тогда и только тогда, когда из любой последовательности точек множества можно выбрать подпоследовательность, сходящуюся к точке из заданного множества.

Граница множества

Определение. Граница множества

Точка $x \in \mathbb{R}^n$ называется **граничной точкой** для множества $M \subset \mathbb{R}^n$, если в любой окрестности точки x есть как точки из множества M, так и точки не принадлежащие M. Граничные точки могут принадлежать или не принадлежать множеству M.

Множество всех граничных точек для заданного множества M называют **границей** M и обозначают ∂M .

Несложно доказать, что замкнутое множество всегда содержит свою границу.

Объединение множества и его границы всегда является замкнутым. Это множество называют замыканием множества M и обозначают

$$\bar{M} = M \cup \partial M$$
.

Пример

Несложно найти границы следующих множеств:

$$\partial [a, b] = \{a, b\}, \qquad \partial (a, b) = \{a, b\};$$
$$\partial O_r(a) = \{x \in \mathbb{R}^n \mid ||x - a|| = r\},$$
$$\partial \mathbb{R}^n = \emptyset.$$

Область

Определение. Связное множество

Множество $M \subset \mathbb{R}^n$ является **связным** (линейно связным), если для любой пары точек x и y из M существует непрерывный путь (кривая), которая соединяет точки x и y, и при этом полностью лежит в M.

Определение. Область

Областью в $M \subset \mathbb{R}^n$ называют открытое связное множество.

Множество, изображенное на рисунке слева, является связным, а множество, изображенное справа, не является связным (состоит из двух частей).

Функция нескольких переменных

Определение. Функция нескольких переменных

Числовой функцией нескольких переменных называют отображение $f: E \to \mathbb{R}$, где $E \subset \mathbb{R}^n$ — некоторое множество, называемое **множеством определения** функции. Значение функции f в точке $x \in E$ записывают, как $f(x) = f(x_1, \dots, x_n)$, при этом x_j называют независимыми переменными, а z = f(x) — зависимой переменной, так как ее значение определяется выбором точки x.

При рассмотрении функций двух переменных z = f(x,y) можно рассматривать график функции как поверхность Γ в трехмерном пространстве \mathbb{R}^3 :

$$\Gamma = \{(x, y, z) \mid z = f(x, y), (x, y) \in E\}.$$

Линии уровни

Другой способ визуально представить функцию двух независимых переменных — это рассмотреть семейство кривых на плоскости, вдоль которых функция является постоянной

$$f(x, y) = const$$

Данные кривые называют **линиями уровня** для функции f.

Предел функции

Определение. Предел функции

Пусть функция f определена в некоторой проколотой окрестности точки $a\in\mathbb{R}^n$. Говорят, что число f_0 является **пределом** f(x) при $x\to a$, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \quad |f(x) - f_0| < \varepsilon, \ \forall x \in \dot{O}_{\delta}(a).$$

В этом случае пишут $\lim_{x \to a} f(x) = f_0$.

В случае двух переменных иногда пишут

$$\lim_{x\to x_0,\ y\to y_0} f(x,y)=f_0,$$

а соответствующий предел называют двойным.

Как и в одномерном случае, можно определить сходимость в терминах последовательностей (по Гейне).

Предел f(x) равен f_0 при $x \to a$ тогда и только тогда, когда для любой сходящейся к a последовательности точек $\{x^{(k)}\}$ из проколотой окрестности точки a последовательность значений функции в этих точках $f(x^{(k)})$ сходится к f_0 :

$$\forall \{x^{(k)}\}: x^{(k)} \to a, x^{(k)} \neq a \Rightarrow f(x^{(k)}) \to f_0.$$

По аналогии с одномерным случаем определяются и бесконечные пределы функций.