1 排列统计量

排列的各种统计量是组合数学研究的一个重要课题,对排列统计量的研究可以使我们更清楚的了解排列的内部结构。下面我们就介绍一些在排列上十分熟知的统计量。

位置 $i(1 \le i < n)$ 称为是 π 的一个下降位 (descent) 如果 $\pi_i > \pi_{i+1}$; 反之则称 为 π 的上升位 (acscent). 定义所有下降位构成的集合

$$Des(\pi) = \{i | \pi_i > \pi_{i+1}\}$$

为 π 的下降集 (descent set), 定义该集合的个数为 $des(\pi) = |Des(\pi)|$ 为 π 的下降数。由定义 $n \notin Des(\pi)$. 同时我们定义一个排列的主指标 (major index) 为

$$\mathrm{maj}(\pi) = \sum_{i \in \mathrm{Des}(\pi)} i.$$

如果位置 i 满足 $\pi_i > i$, 则称 i 是一个胜位 (excedance), 若 i 满足 $\pi_i \geq i$, 则称 i 是弱胜位 (weak excedance). 我们记 π 的所有胜位的个数为 $\operatorname{exc}(\pi)$.

一对元素 (i,j) 称为是一个逆序 (inversion),如果满足 i < j 且 $\pi_i > \pi_j$,称 π 的所有逆序的个数为 π 的逆序数,记作 $\mathrm{inv}(\pi)$.

对于排列 $\pi = \pi_1 \pi_2 \cdots \pi_n$, 定义其逆为其作为映射的逆, 即 $\pi^{-1} = \pi^{-1}(1)\pi^{-1}(2)\cdots \pi^{-1}(n)$; 定义其反为 $\pi^r = \pi_n \pi_{n-1} \dots \pi_1$; 定义其补为 $\pi^c = (n+1-\pi_1)(n+1-\pi_2)\cdots (n+1-\pi_n)$, 显然它们三个都是 S_n 上自然的一一映射。

例 1.1 对于 [5] 上的排列 $\pi = 43521$,以上的统计量分别为: $Des(\pi) = \{1, 3, 4\}$, $des(\pi) = 3$, $maj(\pi) = 1 + 3 + 4 = 8$, $exc(\pi) = 3$, $inv(\pi) = 7$.

1.1 下降数与胜位的等分布性质

我们称两个统计量 u,v 在某个集合 S 上是等分布的 (equidistribute),若对于任意的自然数 k,有 # $\{x \in S | u(x) = k\} = \#\{x \in S | v(x) = k\}$.

定理 1.2 exc 与 des 在 S_n 上是等分布的。

一般而言,证明两个统计量的等分布性有两个主要的思路:一个是组合证明,即寻找所在集合的一个到自身的双射;另一个是代数证明,即证明二者有相同的生成函数。

证明 组合证明:

在证明之前,先引入排列的另一种表示形式——圈表示。对于任意 $x \in [n]$,考虑序列 $x,\pi(x),\pi^2(x),\ldots$,最终一定形成一个圈(因为 π 是双射且 [n] 是有限集)。对所有的元素寻找这样的圈,我们可以把排列 π 写成若干个不交圈的并的形式。这种形式显然不是唯一的,首先,圈之间的顺序可以任意,其次,圈内部的圈排列也有不同的表示。为保证其唯一性,我们定义如下标准圈表示形式:

a. 每个圈的最大元素放在首位;

b. 圈按照其最大元从小到大排列。

可以证明,以上的标准圈表示形式存在且唯一的。

对于任意一个排列 $\pi \in S_n$,我们考虑其标准圈表示,并将标准圈表示的圈去掉,这样就得到 [n] 上的一个新的排列 π' ,可以证明 $\pi \to \pi'$ 必然是 S_n 上的双射。事实上,对于任意 $\pi \in S_n$,取其自左向右极大元(即满足对于任意 $j < i, \pi_j > \pi_i$ 的元素 π_i)。在相应位置加括号就可以得到上述映射的逆映射。

我们利用以上映射证明我们的结论,只需要证明对于任意的 $\pi \in S_n$, $\exp(\pi) = \deg(\pi')$. 事实上,考虑 π 的补排列 π^c 的标准圈表示形式, π 的每一个胜位恰好对应到 $(\pi^c)'$ 的一个下降位。命题得证。

一般地, 称与 des 在 S_n 上等分布的统计量为 Eulerian 的.

1.2 逆序数与主指标

首先我们用代数的方法来给出逆序数的生成函数。

定理 1.3

$$\sum_{\pi \in S_n} q^{\text{inv}(\pi)} = (1+q)(1+q+q^2)\cdots(1+q+q^2+\cdots+q^{n-1}).$$
 (1)

证明 对任意的 $\pi \in S_n$, 定义其对应的逆序表 (inversion table) 为 $I(\pi) = (a_1, a_2, \dots, a_n)$, 其中 a_i 为在 i 左边且比 i 大的元素的个数。例如 $\pi = 417396285$, 则 $I(\pi) = (1, 5, 2, 0, 4, 2, 0, 1, 0)$. 由定义容易看出

$$I(n) = \{(a_1, a_2, \dots, a_n) : 0 \le a_i \le n - i\} = [0, n - 1] \times [0, n - 2] \times [0, 1] \times [0, n].$$

且 I(n) 与 S_n 是一一对应的。

因此从上面的分析可知

$$\sum_{\pi \in S_n} q^{\text{inv}(\pi)} = \sum_{a_1=0}^{n-1} \sum_{a_2=0}^{n-2} \cdots \sum_{a_n=0}^{0} q^{a_1 + a_2 + \dots + a_n}$$

$$= \sum_{a_1=0}^{n-1} q^{a_1} \sum_{a_2=0}^{n-2} q^{a_2} \cdots \sum_{a_n=0}^{0} q^{a_n}$$

$$= (1+q)(1+q+q^2) \cdots (1+q+q^2+\dots+q^{n-1}).$$

下面是置换与其逆之间的逆序数的一个关系。

命题 1.4 对任意的 $\pi \in S_n$, 我们有 $\operatorname{inv}(\pi) = \operatorname{inv}(\pi^{-1})$.

逆序数的生成函数从它的定义中就很容易得到,然而另一个定义方式截然不同的统计量——主指标却和它有着非常紧密的联系,下面的定理告诉我们,二者是同分布的。

定理 1.5

$$\sum_{\pi \in S_n} q^{\text{inv}(\pi)} = \sum_{\pi \in S_n} q^{\text{maj}(\pi)}.$$
 (2)

证明 我们寻找 S_n 到自身的一个双射来证明它。下面我们就给出由 Foata 给出的这个经典的双射,一般称为 Foata 双射。

双射 φ 是递归的定义的。对 $w=w_1w_2\cdots w_n\in S_n$,我们首先令 $r_1=w_1$. 现在假设 $r_k(k\leq 1)$ 已经定义了,则 r_{k+1} 的定义是这样的:

如果 r_k 的最后一个字母大于(或小于) w_{k+1} ,则我们就在 r_k 中每个大于(或小于) w_{k+1} 的字母后面画一条竖线,这样就把 r_k 中的元素分成了一些块,然后我们对每个块中的字母向右循环移动一位,此时每个块中的最后一个元素就变成该块中第一个元素了,最后我们再把 w_{k+1} 接到变换后的序列后面,就得到了 r_{k+1} . 令 $\varphi(w) = r_n$.

由 φ 的构造可知在每一步变换后都能保证 $\operatorname{maj}(w_1w_2\cdots w_k) = \operatorname{inv}(r_k)$.

要说明 φ 是双射,我们只需给出其逆映射。从 φ 的定义我们可以类似的定义 φ^{-1} 如下:

假设 $\sigma = \varphi(w)$,则 φ^{-1} 的定义为: 若 $\sigma_n > \sigma_1$,则在小于 σ_n 的数字之前加一条竖线,并且在 σ_n 的前面也加;若 $\sigma_n < \sigma_1$,则在大于 σ_n 的数字之前加一条竖线,并且在 σ_n 的前面也加。然后我们把每个块中的元素向左循环移动一位,去掉竖线就得到了一个新的置换,此时我们就把最后一个元素固定下来作为 φ^{-1} 的最后一个元素。接下来用同样的方法确定最后第二个元素,n 步以后就得到了 $\varphi^{-1}(\sigma)$,且有 $\operatorname{inv}(\sigma) = \operatorname{maj}(\varphi^{-1}(\sigma)$.

我们给出一个例子以便读者更好的理解。

例 1.6 若 w = 417396285, 我们有:

 $\begin{array}{rcl} r_1 &=& w_1 = 4; \\ r_2 &=& 4|1; \\ r_3 &=& 4|1|7; \\ r_4 &=& 4|71|3; \\ r_5 &=& 4|7|1|3|9; \\ r_6 &=& 74|913|6; \\ r_7 &=& 7|4|9|31|6|2; \\ r_8 &=& 7|4|39|1|6|2|8; \\ r_9 &=& 7|934|61|82|5. \end{array}$

 $\mathbb{L} \operatorname{maj}(w) = 1 + 3 + 5 + 6 + 8 = 23, \operatorname{inv}(\varphi(w)) = 23.$

一般地,与 maj 在 S_n 上等分布的统计量称为 Mohonian 的。