Few-Shot Inductive Learning on Temporal Knowledge Graphs using Concept-Aware Information

Zifeng Ding^{1,3}, Jingpei Wu², Bailan He¹, Yunpu Ma^{1,3}, Zhen Han^{1,3}, Volker Tresp^{1,3} ¹Ludwig Maximilian University of Munich & ²Technical University of Munich & ³Siemens AG

SIEMENS

New Entities Constantly Emerge in Temporal **Knowledge Graphs (TKGs)**

- Newly-emerged entities in TKGs exhibit long-tail distributions and have only few edges.
- Traditional TKG reasoning methods have no way to model newlyemerged, yet unseen entities.

What we do

- Propose the TKG few-shot out-of-graph (OOG) link prediction task.
- Propose a meta-learning-based model to solve the new task by effectively learning the inductive representations of unseen entities.
- Exploit entity concepts from temporal knowledge bases for boosting model performance.

GOAL: improving link prediction performance concerning newly-emerged entities in TKGs.

TKG Few-Shot Out-of-Graph Link Prediction

Given:

- A background TKG $\mathcal{G}_{back} \subseteq \mathcal{E}_{back} \times \mathcal{R} \times \mathcal{E}_{back} \times \mathcal{T}$.
- Unseen entities $\mathcal{E}' = \{e'\}, \mathcal{E}' \cap \mathcal{E}_{\text{back}} = \emptyset$.
- K (1 or 3) observed associated TKG facts for each e^\prime .

TKG few-shot OOG link prediction aims to:

 Predict the missing entities in the link prediction queries derived from the unobserved TKG facts containing unseen entities, i.e., $(e', r_q, ?, t_q)$ or $(?, r_q, e', t_q), r_q \in \mathcal{R}, t_q \in \mathcal{T}$.

Support Set

→ Query Set

Formulate into Meta-Learning Problem

- Split \mathcal{E}' into $\mathcal{E}'_{ ext{meta-train}}, \mathcal{E}'_{ ext{meta-valid}}, \mathcal{E}'_{ ext{meta-test}}.$
- Meta-training over training tasks $\{T\}$. N unseen entities in each task, each with support set (observed) $S_{e'}$, and query set (unobserved) $Q_{e'}$. Maximize performance over $\mathcal{Q}_{e'}$

given $S_{e'}$. Meta-validation and meta-test over $\mathcal{E}'_{ ext{meta-valid}}, \mathcal{E}'_{ ext{meta-test}}.$

FILT consists of

- Concept modeling component.
- Time difference-based graph encoder.
- Knowledge graph scoring function.

Concept Modeling Component

temporal knowledge base

Event Date	Source Name	Source Sectors	Event Text	Target Name	Target Sectors
2014-09-09	Government (Iraq)	Government	Demand meeting	Al-Shabaab	Muslim
Timestamp	Subject Su	ubject Entity Concept	Relation	Object	Object Entity Concept
$\mathbf{h}_c = rac{1}{ \mathcal{N}_c } \sum_{i=1}^{n} \mathbf{h}_c^i$		Initialize concept r	•		
	$\mathcal{N}_c \alpha_c^{e_i} \mathbf{h}_{e_i},$	$\alpha_c^{e_i} = \frac{\epsilon}{\sum_{e_j \in S}}$	$rac{\exp(\mathbf{h}_{e_i}^{ op}\mathbf{h}_c)}{\exp(\mathbf{h}_{e_j}^{ op}\mathbf{h}_c)}$	- Correct co	ncept representations
$\mathbf{h}_e^{\mathcal{C}_e} = \sum_{c_i}$	$\in \mathcal{C}_e \beta_e^{c_i} \mathbf{h}_{c_i},$	$\beta_e^{c_i} = \frac{\epsilon}{\sum_{c_i \in S}}$	$rac{\exp(\mathbf{h}_{c_i}^{ op}\mathbf{h}_e)}{\mathbb{E}_{\mathcal{C}_e}\exp(\mathbf{h}_{c_j}^{ op}\mathbf{h}_e)}$	Compute of information	oncept-aware n

Time-Difference-Based Graph Encoder

- Find temporal neighbors for unseen entities from support quadruples.
- We assume that the smaller the time difference is, the more important a temporal neighbor is.

Parameter Learning

function ComplEx (Trouillon et al., 2016).

$$\mathcal{L} = \sum_{e' \in \mathcal{E}_T} \sum_{q^+ \in \mathcal{Q}_{e'}} \sum_{q^- \in \mathcal{Q}_{e'}^-} \max\{\theta - score(q^+) + score(q^-), 0\}$$
Score computed with a knowledge graph scoring

Output Quadruples Negative Sample

New Datasets for TKG OOG Link Prediction

Dataset	$ \mathcal{E} $	$ \mathcal{R} $	$ \mathcal{T} $	$ \mathcal{E}'_{ ext{meta-train}} $	$ \mathcal{E}'_{ ext{meta-valid}} $	$ \mathcal{E}'_{ ext{meta-test}} $	$N_{ m back}$	$N_{ m meta-train}$	$N_{ m meta-valid}$	$N_{ m meta-tes}$
ICEWS14-OOG	7128	230	365	385	48	49	83448	5772	718	705
ICEWS18-OOG	23033	256	304	1268	160	158	444269	19291	2425	2373
CEWS0515-OOG	10/188	251	4017	647	80	82	118695	10115	1917	1228

1-Shot and 3-Shot Results

Datasets	ICEWS14-OOG							
	M	RR	R H		$@1 ext{H}$		H@	10
${f Model}$	1-S	3-S	1-S	3-S	1-S	3-S	1-S	3-S
$\overline{\text{ComplEx}}$.048	.046	.018	.014	.045	.046	.099	.089
BiQUE	.039	.035	.015	.014	.041	.030	.073	.066
TNTComplEx	.043	.044	.015	.016	.033	.042	.102	.096
${ m TeLM}$.032	.035	.012	.009	.021	.023	.063	.077
TeRo	.009	.010	.002	.002	.005	.002	.015	.020
MEAN	.035	.144	.013	.054	.032	.145	.082	.339
LAN	.168	.199	.050	.061	.199	.255	.421	.500
GEN	.231	.234	.162	.155	.250	.284	.378	.389
FILT	.278	.321	.208	.240	.305	.357	.410	.475

Datasets	ICEWS18-OOG								
	MRR		H@1		H@3		H@10		
\mathbf{Model}	1-S	3-S	1-S	3-S	1-S	3-S	1-S	3-S	
$\overline{\text{ComplEx}}$.039	.044	.031	.026	.048	.042	.085	.093	
BiQUE	.029	.032	.022	.021	.033	.037	.064	.073	
TNTComplEx	.046	.048	.023	.026	.043	.044	.087	.082	
${ m TeLM}$.049	.019	.029	.001	.045	.013	.084	.054	
TeRo	.007	.006	.003	.001	.006	.003	.013	.006	
MEAN	.016	.101	.003	.014	.012	.114	.043	.283	
LAN	.077	.127	.018	.025	.067	.165	.199	.344	
GEN	.171	.216	.112	.137	.189	.252	.289	.351	
$\overline{ ext{FILT}}$.191	.266	.129	.187	.209	.298	.316	.417	

Datasets	ICEWS0515-OOG							
	M	RR	RR H(@1 H		H@	10
\mathbf{Model}	1-S	3-S	1-S	3-S	1-S	3-S	1-S	3-S
ComplEx	.077	.076	.045	.048	.074	.071	.129	.120
BiQUE	.075	.083	.044	.049	.072	.077	.130	.144
TNTComplEx	.034	.037	.014	.012	.031	.036	.060	.071
TeLM	.080	.072	.041	.034	.077	.072	.138	.151
TeRo	.012	.023	.000	.010	.008	.017	.024	.040
MEAN	.019	.148	.003	.039	.017	.175	.052	.384
LAN	.171	.182	.081	.068	.180	.191	.367	.467
GEN	.268	.322	.185	.231	.308	.362	.413	.507
FILT	.273	.370	.201	.299	.303	.391	.405	.516

Visualization of Concept Representations

Concepts bearing the same label tend to form a cluster.

Clusters having similar semantic meanings tend to be close to each other.

Concept modeling component learns the semantics of entity concepts.