3.4 - Emitterföljaren

- 1. Du har en emitterföljare till höger. Transistorernas Earlyspänning kan antas ligga på 100 V. Matningsspänningen V_{CC} / V_{EE} är satt till ± 50 V. Kollektorströmmen I_{CQ} skall sättas till 0,5 mA i vilopunkten.
- a) En BJT-strömspegel är placerad i emittern. Dimensionera strömspegelns emitterresistorer $R_{E1}-R_{E2}$ för att hålla emitterföljaren temperaturstabil. Ett spänningsfall runt 220 mV kan användas, vilket medför en emitterfaktor EF runt 10.
- b) Dimensionera referensresistor R_{REF} för en kollektortröm Icq på 0,5 mA i vilopunkten.
- c) Rita småsignalschema och beräkna emitterföljarens förstärkningsfaktor G samt in- och utresistans R_{IN} samt R_{UT} . Anta att samtliga BJT-transistorer innehar en strömförstärkningsfaktor h_{FE} på 100.

Emitterföljare.

Elektroteknik

- 2. Differentialförstärkaren till höger skall dimensioneras för kollektorströmmar I_{C1Q} samt I_{C2Q} på 1 mA var i vilopunkten. Matningsspänningen V_{CC} / V_{EE} är satt till \pm 15 V. Transistorernas Earlyspänning U_A kan antas ligga på 100 V.
- a) Dimensionera emitterresistorer R_{E1} − R_{E3} för att öka GE-stegets temperaturstabiltet, samtidigt som spänningsfallet över dem inte begränsar utsignalernas toppvärde allför mycket. Återigen kan ett spänningsfall runt 220 mV anses vara lagom, vilket medför en emitterfaktor EF runt 10.
- b) Placera ytterligare emitterresistorer i den enkla strömspegeln (transistor Q3 samt Q4) via ovanstående tumregel. Uppskatta strömspegelns utresistans r₀ då emitterresistorer används via dess emitterfaktor EF.
- c) Förklara varför en kaskadkopplad strömspegel placeras mellan emittrarna på transistor Q1 och Q2. Förklara förhållandet mellan denna strömspegels utresistans $r_{o,CM}$ och påverkan på Common Mode-signaler. Rita också småsignalschema för denna strömspegel och beräkna utresistansen $r_{o,CM}$.

Differentialförstärkare

- d) Placera emitterresistorer i den kaskadkopplade strömspegeln (transistor Q5 Q8). Låt spänningsfallet över dessa resistorer hamnar tio gånger högre än för resterande emitterresistorer, alltså ca 2,2 V, vilket medför en emitterfaktor EF runt 100.
 - **Tips:** Kom också ihåg att strömmarna I_{EEQ} samt I_{REFQ} som flödar genom den kaskadkopplade strömspegeln är dubbelt så höga i vilopunkten jämfört med kollektorströmmarna I_{C1Q} samt I_{C2Q}.
- e) Uppskatta den kaskadkopplade strömspegelns utresistans r_{o,CM} när emitterresistorer används. Genomför uppskattningen via dess emitterfaktor EF, som nu ligger omkring 100.
- f) Rita differentialförstärkarens småsignalschema i både *Differential Mode* samt *Common Mode* och beräkna GE-stegets differentialförkning G_{DM}, Common Mode-förstärkning G_{CM} samt CMRR. Visa tydligt varför G_{DM} och G_{CM} skiljer sig avsevärt via begrepp såsom virtuell jordpunkt.
 - **Tips:** Ersätt den kaskadkopplade strömspegeln med en resistans R_{EE} i småsignalschemat. Ersätt den enkla strömspegeln (transistor Q3 Q4) med en resistans r_o .
- g) Uppskatta differentialförstärkarens in- och utimpedans Z_{IN} samt Z_{UT} i *Differential Mode*.

Obs! Genomför endast en av nedanstående uppgifter!

Labbuppgift - Alternativ I:

3. GE-steget till höger skall användas för att driva en högtalare (med en en buffer dem emellan).

GE-steget skall inneha följande parametrar:

Matningsspänning: Vcc = 15 V

Kollektorström i vilopunkten: I_{CQ} = 0,5 mA

Frekvenser under det hörbara området (20 Hz – 20 kHz) skall dämpas.

a) Dimensionera kollektorresistor R_C , emitterresistor R_E samt resistorer R_1 och R_2 i spänningsdelaren för så höga utsignalen U_{UT} som möjligt utan klippning.

Se till dimensionera resistorer R_1 och R_2 så att spänningsdelarens impedans R_1 // R_2 är minst tio gånger lägre än GE-stegets inimpedans ($R_E + 1 / g_m$) * h_{FE} , även i värstafallscenaritot (då h_{FE} är ca 50).

GE-steg.

- b) Dimenionera avkopplingskondensatorer C₁ och C₂ för att dämpa frekvenser under det hörbara området (20 Hz 20 kHz).
 - **OBS!** Ha i åtanke att dämpningen på frekvenser som överstiger eller är lika med 20 Hz skall vara (i princip) obefintlig. Därmed måste brytfrekvensen f_c anpassas efter detta!
- c) Verifiera er krets i LTspice via mätningar i vilopunkten, utan avkopplingskondensatorerna. Se till att viloströmmen Icq1 hamnar runt 0,5 mA.
- d) Rita småsignalschema och härled en formel för GE-stegets förstärkningsfaktor G med valfri småsignalmodell. Uppskatta sedan förstärkningsfaktorn G.
- e) Emitterresistor R_E innehar en viktig funktion i GE-steget, främst för temperaturstabilitet. Förklara denna funktion. Ange också en nackdel med R_E. Genomför nödvändiga modifikationer för att GE-steget skall inneha god temperaturstabilitet, samtidigt som nackdelen med R_E elimineras vid hörbara frekvenser (växelström). Vad blir nu förstärkningsfaktor G vid hörbara frekvenser?
- f) Härled formler och beräkna GE-stegets totala in- och utimpedans Z_{IN} samt Z_{UT} vid hörbara frekvenser. Notera att inimpedansen Z_{IN} består av både spänningsdelarens impedans samt GE-stegets inimpedans.

Labbuppgift - Alternativ II:

4. Skelettkretsen till en enkel OP-förstärkare med ett klass-AB slutsteg visas till höger. OP-förstärkaren skall kunna driva en last R_L på 8 Ω .

Matningsspänningen V_{CC} / V_{EE} skall sättas till \pm 15 V. Closed-loop-förstärkningsfaktorn G_{CL} , alltså förstärkningsfaktorn med negativ återkoppling, skall sättas till en faktor 20.

Closed-loop-förstärkningsfaktorn G_{CL} kan approximeras med följande formel:

$$G_{CL} = \frac{R_1 + R_2 + R_3}{R_1},$$

där R₁ – R₃ är resistorerna i spänningsdelaren.

Skelettkrets till en enkel OP-förstärkare med ett klass-AB slutsteg.

- a) Dimensionera resistorer $R_1 R_3$ i spänningsdelaren för en closed-loop-förstärkning G_{CL} på 20. Strömmen genom spänningsdelaren skall sättas mellan 0,5 1 mA vid maximal utsignal U_{UT} .
- b) Dimensionera referensresistor R_{REF} för kollektorströmmar I_{C1Q} I_{C2Q} på 1 mA genom differentialförstärkaren i vilopunkten.
- c) Dimensionera referensresistor R_{REF2} för en kollektorström I_{C3Q} på ca 15 mA genom spänningsförstärkaren i vilopunkten.
- d) Dimensionera emitterresistorer R_{E3} R_{E4} för en kollektorström I_{C4Q} på ca 100 mA genom slutsteget i vilopunkten.
- e) Förklara vad Millerkondensatorn C_C har för funktion i OP-förstärkaren via begrepp såsom oscillation, Millereffekt samt förstärkningsfaktor. Välj ett lämplig värde på denna kondensator för att uppfylla dess funktion.
- f) Konstruera kretsen i LTspice och testa dess funktion. Se till att OP-förstärkaren utan problem kan driva en högtalare på 8 Ω för en insignal U_{IN} med en amplitud $|U_{IN}|$ på 0,5 V och en frekvens f på 1 kHz.
- g) Uppskatta OP-förstärkarens open-loop-förstärkningsfaktor G_{OL}, alltså förstärkningsfaktor utan återkoppling. Inga småsignalscheman behöver ritas ut. Rita sedan upp OP-förstärkaren som ett reglersystem och beräkna sedan den exakta closed-loop-förstärkningsfaktorn via en återkopplingsfaktor K på 1 / 20.
- h) Uppskatta OP-förstärkarens inimpedans Z_{IN,OL} (på plusingången) utan återkoppling. Inget småsignalschema behöver ritas ut. Uppskatta sedan inimpedansen Z_{IN,CL} vid användning av negativ återkoppling.
- i) Uppskatta OP-förstärkarens utimpedans Z_{UT,OL} i olastat tillstånd, utan återkoppling. Inget småsignalschema behöver ritas ut. Uppskatta sedan utimpedansen Z_{UT,CL} vid användning av negativ återkoppling, återigen i olastat tillstånd.
- j) Beräkna effektivvärdet för effektutvecklingen P_L samt strömmen I_L som flödar genom högtalaren vid maximal utsignal U_{UT}. Anta att U_{UT} kan uppgå till V_{CC} / V_{EE}.
- k) Beräkna OP-förstärkarens totala effektförbrukning P_{TOT} i i vilopunkten, i olastat tillstånd. **Tips:** Använd effektlagen:

$$P_{TOT} = (V_{CC} - V_{EE}) * I_{TOT},$$

där I_{TOT} är summan av samtliga strömmar i OP-förstärkaren i vilopunkten.

OBS! Räkna inte med strömmen genom spänningsdelaren (resistor $R_1 - R_3$).