Package 'pCODE'

October 14, 2022

Title Estimation of an Ordinary Differential Equation Model by

Parameter Cascade Method

Type Package

2 bootsvar

	innerobj_lkh_1d	5
	innerobj_multi	
	innerobj_multi_missing	6
	nls_optimize	7
	nls_optimize.inner	8
	outterobj	8
	outterobj_lkh	9
	outterobj_lkh_1d	9
	outterobj_multi_missing	10
	outterobj_multi_nls	11
	pcode	11
	pcode_1d	13
	pcode_lkh	14
	pcode_lkh_1d	15
	pcode_missing	16
	prepare_basis	18
	tunelambda	18
Index		20

bootsvar

Bootstrap variance estimator of structural parameters.

Description

Obtaining an estimate of variance for structural parameters by bootstrap method.

Usage

data	A data frame or a matrix contain observations from each dimension of the ODE model.
time	A vector contain observation times or a matrix if time points are different between dimensions.
ode.model	An R function that computes the time derivative of the ODE model given observations of states variable and structural parameters.
par.names	The names of structural parameters defined in the 'ode.model'.
state.names	The names of state variables defined in the 'ode.model'.
likelihood.fun	A likelihood function passed to PCODE in case of that the error terms devtools::document()do not have a Normal distribution.
par.initial	Initial value of structural parameters to be optimized.

deltavar 3

basis.list	A list of basis objects for smoothing each dimension's observations. Can be the same or different across dimensions.
lambda	Penalty parameter.
bootsrep	Bootstrap sample to be used for estimating variance.

A list of control parameters. Same as the controls in pcode.

Value

controls

boots.var The bootstrap variance of each structural parameters.

method.	deltavar	Numeric estimation of variance of structural parameters by Delta method.
---------	----------	--

Description

Obtaining variance of structural parameters by Delta method.

Usage

data	A data frame or a matrix contain observations from each dimension of the ODE model.
time	A vector contain observation times or a matrix if time points are different between dimensions.
ode.model	An R function that computes the time derivative of the ODE model given observations of states variable and structural parameters.
par.names	The names of structural parameters defined in the 'ode.model'.
state.names	The names of state variables defined in the 'ode.model'.
likelihood.fun	A likelihood function passed to PCODE in case of that the error termsdevtools::document()do not have a Normal distribution.
par.initial	Initial value of structural parameters to be optimized.
basis.list	A list of basis objects for smoothing each dimension's observations. Can be the same or different across dimensions.
lambda	Penalty parameter.
stepsize	Stepsize used in estimating partial derivatives with respect to structural parameters for the Delta method.
y_stepsize	Stepsize used in estimating partial derivatives with respect to observations for the Delta method.
controls	A list of control parameters. Same as the controls in pcode.

innerobj_lkh

Value

par.var The variance of structural parameters obtained by Delta method.

innerobj	Inner objective function (Single dimension version)

Description

An objective function combines the sum of squared error of basis expansion estimates and the penalty controls how those estimates fail to satisfies the ODE model

Usage

```
innerobj(basis_coef, ode.par, input, derive.model,NLS)
```

Arguments

basis_coef	Basis coefficients for interpolating observations given a basis object.
ode.par	Structural parameters of the ODE model.
input	Contains dependencies for the optimization, including observations, penalty parameter lambda, and etc
derive.model	The function defines the ODE model and is the same as the ode.model in 'pcode'
NLS	Default is TRUE so the function returns vector of residuals, and otherwise returns sum of squared errors.

Value

residual.vec	Vector of residuals and evaluation of penalty function on quadrature points for
	approximating the integral.

innerobj_lkh	Inner objective function (likelihood and multiple dimension version)

Description

An objective function combines the likelihood or loglikelihood of errors from each dimension of state variables and the penalty controls how the state estimates fail to satisfy the ODE model.

```
innerobj_lkh(basis_coef, ode.par, input, derive.model, likelihood.fun)
```

innerobj_lkh_1d 5

Arguments

basis_coef Basis coefficients for interpolating observations given a basis boject.

ode.par Structural parameters of the ODD model.

input Contains dependencies for the optimization, including observations, ode penalty,

and etc..

derive.model The function defines the ODE model and is the same as the ode.model in 'pcode'.

likelihood.fun The likelihood or loglikelihood function of the errors.

Value

obj.eval The evaluation of the inner objective function.

Description

An objective function combines the likelihood or loglikelihood of errors from each dimension of state variables and the penalty controls how the state estimates fail to satisfy the ODE model.

Usage

```
innerobj_lkh_1d(basis_coef, ode.par, input, derive.model, likelihood.fun)
```

Arguments

basis_coef Basis coefficients for interpolating observations given a basis boject.

ode.par Structural parameters of the ODD model.

input Contains dependencies for the optimization, including observations, ode penalty,

and etc..

derive.model The function defines the ODE model and is the same as the ode.model in 'pcode'.

likelihood.fun The likelihood or loglikelihood function of the errors.

Value

obj.eval The evaluation of the inner objective function.

innerobj_multi	
----------------	--

Description

An objective function combines the sum of squared error of basis expansion estimates and the penalty controls how those estimates fail to satisfies the ODE model

Usage

```
innerobj_multi(basis_coef, ode.par, input, derive.model,NLS)
```

Arguments

NLS

basis_coef	Basis coefficients for interpolating observations given a basis object.
ode.par	Structural parameters of the ODE model.
input	Contains dependencies for the optimization, including observations, penalty parameter lambda, and etc
derive.model	The function defines the ODE model and is the same as the ode. model in pcode.

Default is TRUE so the function returns vector of residuals, and otherwise returns

sum of squared errors.

Value

residual.vec Vector of residuals and evaluation of penalty function on quadrature points for approximating the integral.

innerobj_multi_missing

Inner objective function (multiple dimension version with unobserved state variables)

Description

An objective function combines the sum of squared error of basis expansion estimates and the penalty controls how those estimates fail to satisfies the ODE model

```
innerobj_multi_missing(basis_coef, ode.par, input, derive.model,NLS)
```

nls_optimize 7

Arguments

basis_coef Basis coefficients for interpolating observations given a basis object.

ode.par Structural parameters of the ODE model.

input Contains dependencies for the optimization, including observations, penalty pa-

rameter lambda, and etc..

derive.model The function defines the ODE model and is the same as the ode.model in 'pcode'

NLS Default is TRUE so the function returns vector of residuals, and otherwise returns

sum of squared errors.

Value

residual.vec Vector of residuals and evaluation of penalty function on quadrature points for

approximating the integral.

nls_optimize Optimizer for non-linear least square problems

Description

Obtain the solution to minimize the sum of squared errors of the defined function fun by levenberg-marquardt method. Adapted from PRACMA package.

Usage

```
nls_optimize(fun, x0, ..., options, verbal)
```

Arguments

fun The function returns the vector of weighted residuals.

x0 The initial value for optimization.... Parameters to be passed for funoptions Additional optimization controls.

verbal Default = 1 for printing iteration and other for suppressing

Value

par The solution to the non-linear least square problem, the same size as x0

8 outterobj

functions)	nls_optimize.inner	Optimizer for non-linear least square problems (for inner objective functions)
------------	--------------------	--

Description

Obtain the solution to minimize the sum of squared errors of the defined function fun by levenberg-marquardt method. Adapted from PRACMA package.

Usage

```
nls_optimize.inner(fun, x0, ..., options)
```

Arguments

fun	The function returns the vector of weighted residuals.
×0	The initial value for optimization.
	Parameters to be passed for fun
options	Additional optimization controls.
Value	
par	The solution to the non-linear least square problem, the same size as x0

outterobj	Outter objective function (Single dimension version)

Description

An objective function of the structural parameter computes the measure of fit.

Usage

```
outterobj(ode.parameter, basis.initial, derivative.model, inner.input, NLS)
```

ode.parameter	Structural parameters of the ODE model.
basis.initial	Initial values of the basis coefficients for nonlinear least square optimization.
derivative.mode	el
	The function defines the ODE model and is the same as the ode.model in 'pcode'
inner.input	Input that will be passed to the inner objective function. Contains dependencies for the optimization, including observations, penalty parameter lambda, and etc
NLS	Default is TRUE so the function returns vector of residuals, and otherwise returns sum of squared errors.

outterobj_lkh 9

Value

residual Vector of residuals and evaluation of penalty function on quadrature points for approximating the integral.

outterobj_lkh Outter objective function (likelihood and multiple dimension version)

Description

An objective function of the structural parameter computes the measure of fit.

Usage

```
outterobj_lkh(ode.parameter, basis.initial, derivative.model, likelihood.fun, inner.input)
```

for the optimization, including observations, penalty parameter lambda, and etc..

Arguments

ode.parameter Structural parameters of the ODE model.

basis.initial Initial values of the basis coefficients for nonlinear least square optimization.

derivative.model

The function defines the ODE model and is the same as the ode.model in 'pcode'
likelihood.fun The likelihood or loglikelihood function of the errors.

inner.input Input that will be passed to the inner objective function. Contains dependencies

Value

neglik The negative of the likelihood or the loglikelihood function that will be passed further to the 'optim' function.

outterobj_lkh_1d Outter objective function (likelihood and single dimension version)

Description

An objective function of the structural parameter computes the measure of fit.

Arguments

ode.parameter Structural parameters of the ODE model.

basis.initial Initial values of the basis coefficients for nonlinear least square optimization. derivative.model

The function defines the ODE model and is the same as the ode.model in 'pcode'

likelihood.fun The likelihood or loglikelihood function of the errors.

inner.input Input that will be passed to the inner objective function. Contains dependencies

for the optimization, including observations, penalty parameter lambda, and etc..

Value

neglik The negative of the likelihood or the loglikelihood function that will be passed further to the 'optim' function.

outterobj_multi_missing

Outter objective function (multiple dimension version with unobserved state variables)

Description

An objective function of the structural parameter computes the measure of fit for the basis expansion.

Usage

outterobj_multi_missing(ode.parameter, basis.initial, derivative.model, inner.input, NLS)

Arguments

ode.parameter Structural parameters of the ODE model.

basis.initial Initial values of the basis coefficients for nonlinear least square optimization.

derivative.model

The function defines the ODE model and is the same as the ode.model in 'pcode'

inner.input Input that will be passed to the inner objective function. Contains dependencies

for the optimization, including observations, penalty parameter lambda, and etc..

NLS Default is TRUE so the function returns vector of residuals, and otherwise returns

sum of squared errors.

Value

residual Vector of residuals and evaluation of penalty function on quadrature points for

approximating the integral.

outterobj_multi_nls 11

outterobj_multi_nls <i>Outter</i>	objective function	on (multiple dimensio	on version)
-----------------------------------	--------------------	-----------------------	-------------

Description

An objective function of the structural parameter computes the measure of fit for the basis expansion.

Usage

```
outterobj_multi_nls(ode.parameter, basis.initial, derivative.model, inner.input, NLS)
```

Arguments

S	
ode.parameter	Structural parameters of the ODE model.
basis.initial	Initial values of the basis coefficients for nonlinear least square optimization.
derivative.mod	el
	The function defines the ODE model and is the same as the ode $\mbox{\tt .model}$ in pcode.
inner.input	Input that will be passed to the inner objective function. Contains dependencies for the optimization, including observations, penalty parameter lambda, and etc
NLS	Default is TRUE so the function returns vector of residuals, and otherwise returns sum of squared errors.
Value	

Vector of residuals and evaluation of penalty function on quadrature points for

pcode Parameter Cascade Method for Ordinary Differential Equation Models

approximating the integral.

Description

residual

Obtain estimates of both structural and nuisance parameters of an ODE model by parameter cascade method.

pcode pcode

Arguments

data	A data frame or a matrix contain observations from each dimension of the ODE model.
time	A vector contain observation times or a matrix if time points are different between dimensions.
ode.model	An R function that computes the time derivative of the ODE model given observations of states variable and structural parameters.
par.names	The names of structural parameters defined in the 'ode.model'.
state.names	The names of state variables defined in the 'ode.model'.
likelihood.fun	A likelihood function passed to PCODE in case of that the error terms do not have a Normal distribution.
par.initial	Initial value of structural parameters to be optimized.
basis.list	A list of basis objects for smoothing each dimension's observations. Can be the same or different across dimensions.
lambda	Penalty parameter for controlling the fidelity of interpolation.
controls	A list of control parameters. See Details.

Details

The controls argument is a list providing addition inputs for the nonlinear least square optimizer or general optimizer optim:

nquadpts Determine the number of quadrature points for approximating an integral. Default is 101.

smooth.lambda Determine the smoothness penalty for obtaining initial value of nuisance parameters.

tau Initial value of Marquardt parameter. Small values indicate good initial values for structural parameters.

tolx Tolerance for parameters of objective functions. Default is set at 1e-6.

tolg Tolerance for the gradient of parameters of objective functions. Default is set at 1e-6.

maxeval The maximum number of evaluation of the outter optimizer. Default is set at 20.

Value

structural.par The structural parameters of the ODE model.

nuisance.par The nuisance parameters or the basis coefficients for interpolating observations.

Examples

library(fda)
library(deSolve)
library(MASS)
library(pracma)
#Simple ode model example
#define model parameters

pcode_1d 13

```
model.par \leftarrow c(theta = c(0.1))
#define state initial value
                       = 0.1)
state
            <- c(X
#Define model for function 'ode' to numerically solve the system
ode.model <- function(t, state,parameters){</pre>
with(as.list(c(state,parameters)),
        dX \leftarrow theta*X*(1-X/10)
        return(list(dX))
      })
#Observation time points
times <- seq(0,100,length.out=101)
#Solve the ode model
desolve.mod <- ode(y=state,times=times,func=ode.model,parms = model.par)</pre>
#Prepare for doing parameter cascading method
#Generate basis object for interpolation and as argument of pcode
#21 konts equally spaced within [0,100]
knots \leftarrow seq(0,100,length.out=21)
#order of basis functions
norder <- 4
#number of basis funtions
nbasis <- length(knots) + norder - 2</pre>
#creating Bspline basis
basis <- create.bspline.basis(c(0,100),nbasis,norder,breaks = knots)
#Add random noise to ode solution for simulating data
nobs <- length(times)</pre>
scale <- 0.1
noise <- scale*rnorm(n = nobs, mean = 0, sd = 1)
observation <- desolve.mod[,2] + noise
#parameter estimation
pcode(data = observation, time = times, ode.model = ode.model,
                      par.initial = 0.1, par.names = 'theta', state.names = 'X',
                      basis.list = basis, lambda = 1e2)
```

pcode_1d

Parameter Cascade Method for Ordinary Differential Equation Models (Single dimension version)

Description

Obtain estiamtes of structural parameters of an ODE model by parameter cascade method.

```
pcode_1d(data, time, ode.model, par.initial,par.names, basis,lambda,controls = list())
```

14 pcode_lkh

Arguments

data A data frame or a vector contains observations from the ODE model.

time The vector contain observation times.

ode.model Defined R function that computes the time derivative of the ODE model given

observations of states variable.

par.initial Initial value of structural parameters to be optimized.

par.names The names of structural parameters defined in the 'ode.model'.

basis A basis objects for smoothing observations.

lambda Penalty parameter.

controls A list of control parameters. See 'Details'.

Value

structural.par The structural parameters of the ODE model.

nuisance.par The nuisance parameters or the basis coefficients for interpolating observations.

pcode_lkh (likelihood and multiple dimension version)

Description

Obtain estimates of both structural and nuisance parameters of an ODE model by parameter cascade method.

Usage

Arguments

data A data frame or a matrix contain observations from each dimension of the ODE

model.

likelihood.fun A function computes the likelihood or the loglikelihood of the errors.

time A vector contains observation ties or a matrix if time points are different between

dimesion.

ode.model An R function that computes the time derivative of the ODE model given obser-

vations of states variable and structural parameters.

par.names The names of structural parameters defined in the 'ode.model'.

state.names The names of state variables defined in the 'ode.model'.

par.initial Initial value of structural parameters to be optimized.

basis.list A list of basis objects for smoothing each dimension's observations. Can be the

same or different across dimensions.

lambda Penalty parameter.

controls A list of control parameters. See 'Details'.

pcode_lkh_1d 15

Details

The controls argument is a list providing addition inputs for the nonlinear least square optimizer:

- nquadpts Determine the number of quadrature points for approximating an integral. Default is 101.
- smooth.lambda Determine the smoothness penalty for obtaining initial value of nuisance parameters.
- tau Initial value of Marquardt parameter. Small values indicate good initial values for structural parameters.
- tolx Tolerance for parameters of objective functions. Default is set at 1e-6.
- tolg Tolerance for the gradient of parameters of objective functions. Default is set at 1e-6.
- maxeval The maximum number of evaluation of the optimizer. Default is set at 20.

Value

structural.par	The structural parameters of the ODE model.
nuisance.par	The nuisance parameters or the basis coefficients for interpolating observations.
pcode_lkh_1d	Parameter Cascade Method for Ordinary Differential Equation Models (likelihood and Single dimension version)

Description

Obtain estimates of both structural and nuisance parameters of an ODE model by parameter cascade method.

Usage

	A data frame or a matrix contain observations from each dimension of the ODE model.
likelihood.fun	A function computes the likelihood or the loglikelihood of the errors.
	A vector contains observation ties or a matrix if time points are different between dimesion.
	An R function that computes the time derivative of the ODE model given observations of states variable and structural parameters.
par.names	The names of structural parameters defined in the 'ode.model'.
state.names	The names of state variables defined in the 'ode.model'.

pcode_missing

par.initial	Initial value of structural parameters to be optimized.
basis.list	A list of basis objects for smoothing each dimension's observations. Can be the same or different across dimensions.
lambda	Penalty parameter.
controls	A list of control parameters. See 'Details'.

Details

The controls argument is a list providing addition inputs for the nonlinear least square optimizer:

- nquadpts Determine the number of quadrature points for approximating an integral. Default is 101.
- smooth.lambda Determine the smoothness penalty for obtaining initial value of nuisance parameters.
- tau Initial value of Marquardt parameter. Small values indicate good initial values for structural parameters.
- tolx Tolerance for parameters of objective functions. Default is set at 1e-6.
- tolg Tolerance for the gradient of parameters of objective functions. Default is set at 1e-6.
- maxeval The maximum number of evaluation of the optimizer. Default is set at 20.

Value

```
structural.par The structural parameters of the ODE model.

nuisance.par The nuisance parameters or the basis coefficients for interpolating observations.
```

pcode_missing	Parameter Cascade Method for Ordinary Differential Equation Models with missing state variable
	cis with missing state variable

Description

Obtain estiamtes of both structural and nuisance parameters of an ODE model by parameter cascade method when the dynamics are partially observed.

pcode_missing 17

Arguments

data	A data frame or a matrix contain observations from each dimension of the ODE model.
time	A vector contain observation times or a matrix if time points are different between dimensions.
ode.model	An R function that computes the time derivative of the ODE model given observations of states variable and structural parameters.
par.names	The names of structural parameters defined in the 'ode.model'.
state.names	The names of state variables defined in the 'ode.model'.
likelihood.fun	A likelihood function passed to PCODE in case of that the error termsdevtools::document()do not have a Normal distribution.
par.initial	Initial value of structural parameters to be optimized.
basis.list	A list of basis objects for smoothing each dimension's observations. Can be the same or different across dimensions.
lambda	Penalty parameter.
controls	A list of control parameters. See Details.

Details

The controls argument is a list providing addition inputs for the nonlinear least square optimizer or general optimizer optim:

- nquadpts Determine the number of quadrature points for approximating an integral. Default is 101.
- smooth.lambda Determine the smoothness penalty for obtaining initial value of nuisance parameters.
- tau Initial value of Marquardt parameter. Small values indicate good initial values for structural parameters.
- tolx Tolerance for parameters of objective functions. Default is set at 1e-6.
- tolg Tolerance for the gradient of parameters of objective functions. Default is set at 1e-6.
- maxeval The maximum number of evaluation of the optimizer. Default is set at 20.

Value

 ${\tt structural.par} \ \ {\tt The} \ {\tt structural} \ {\tt parameters} \ {\tt of} \ {\tt the} \ {\tt ODE} \ {\tt model}.$

nuisance.par The nuisance parameters or the basis coefficients for interpolating observations.

18 tunelambda

prepare_basis	Evaluate basis objects over observation times and quadrature points

Description

Calculate all basis functions over observation time points and store them as columns in a single matrix for each dimension. Also include first and second order derivative. Repeat over quadrature points.

Usage

```
prepare_basis(basis, times, nquadpts)
```

Quadrature points.

Quadrature weights.

Arguments

basis	A basis object.
times	The vector contain observation times for corresponding dimension.
nquadpts	Number of quadrature points will be used later for approximating integrals.
Value	
value	
Phi.mat	Evaluations of all basis functions stored as columns in the matrix.
Qmat	Evaluations of all basis functions over quadrature points stored as columns in the matrix.
Q.D1mat	Evaluations of first order derivative all basis functions over quadrature points stored as columns in the matrix.
Q.D2mat	Evaluations of second order derivative all basis functions over quadrature points stored as columns in the matrix.

tunelambda	Find optimial penalty parameter lambda by cross-validation.

Description

quadts

quadwts

Obtain the optimal sparsity parameter given a search grid based on cross validation score with replications.

tunelambda 19

Arguments

data A data frame or matrix contrain observations from each dimension of the ODE model. The vector contain observation times or a matrix if time points are different time between dimensions. ode.model Defined R function that computes the time derivative of the ODE model given observations of states variable. The names of structural parameters defined in the 'ode.model'. par.names The names of state variables defined in the 'ode.model'. state.names par.initial Initial value of structural parameters to be optimized. basis.list A list of basis objects for smoothing each dimension's observations. Can be the same or different across dimensions. lambda_grid A search grid for finding the optimial sparsity parameter lambda. A number indicating the proportion of data will be saved for doing cross validacv_portion tion. Default is set at 5 as minimum. kfolds A number indicating the number of folds the data should be seprated into. A integer controls the number of replication of doing cross-validation for each rep penalty parameter.

Value

controls

lambda_grid The original input vector of a search grid for the optimal lambda.

cv.score The matrix contains the cross validation score for each lambda of each replica-

A list of control parameters. See 'Details'.

lon

tion

Index

```
bootsvar, 2
deltavar, 3
innerobj, 4
innerobj_lkh, 4
innerobj_lkh_1d, 5
innerobj_multi,6
innerobj_multi_missing, 6
nls_optimize, 7
{\tt nls\_optimize.inner, 8}
outterobj, 8
outterobj_lkh, 9
\verb"outterobj_lkh_1d", 9"
\verb"outterobj_multi_missing", 10
outterobj_multi_nls, 11
pcode, 11
pcode_1d, 13
pcode_lkh, 14
pcode_lkh_1d, 15
pcode_missing, 16
prepare_basis, 18
tunelambda, 18
```