

FICHE TECHNIQUE : PUISSANCE DE DIX

I Le nom des multiples et sous multiples :

Exemple avec les longueurs :

Nom	<u>Valeur</u>	<u>Symbole</u>
Femto mètre	$10^{-15} \mathrm{m}$	fm
Picomètre	$10^{-12} \mathrm{m}$	pm
Nanomètre	10 ⁻⁹ m	nm
Micromètre	$10^{-6} \mathrm{m}$	μm
Millimètre	$10^{-3} \mathrm{m}$	mm
Mètre	$10^0 \mathrm{m}$	m
Kilomètre	$10^3 \mathrm{m}$	km
Méga mètre	$10^6 \mathrm{m}$	Mm
Giga mètre	$10^9 \mathrm{m}$	Gm
Téra mètre	$10^{12} \mathrm{m}$	Tm

II Les opérations avec les puissances de dix :

$$\frac{10^{n} \times 10^{m} = 10^{n+m}}{10^{m}} = \frac{10^{n}}{10^{m}} = 10^{n-m}} = 10^{n-m}$$

$$a.10^{n} + b.10^{n} = (a+b).10^{n}$$

III Ecriture scientifique d'un nombre :

Un nombre est écrit en notation scientifique s'il est de la forme :

$$a \times 10^{n}$$
 avec $1 < a < 9$ et n entier

Celle-ci permet de comparer plus aisément de grandeurs ayant même unité

Exemples:

$$123 = 1,23 \times 10^2$$
 $4586,7 = 4,5867 \times 10^3$ $0,086 = 8,6 \times 10^{-2}$

IV Conversions et écriture scientifique avec les puissance de 10 :

Généralement on veut convertir des grandeurs exprimées dans de grandes unités ou de petites unités en mètres :

Exemples:

$$12 \mu m = 12 \times 10^{-6} m = 1.2 \times 10^{-6} m = 1.2 \times 10^{-5} m$$

 $0.312 \text{ GHz} = 0.312 \times 10^{9} \text{ Hz} = 3.12 \times 10^{-1} \times 10^{9} \text{ Hz} = 3.12 \times 10^{8} \text{ Hz}$

FICHE TECHNIQUE : PUISSANCE DE DIX

I Le nom des multiples et sous multiples :

Exemple avec les longueurs :

Nom	<u>Valeur</u>	<u>Symbole</u>
Femto mètre	$10^{-15} \mathrm{m}$	fm
Picomètre	$10^{-12} \mathrm{m}$	pm
Nanomètre	10 ⁻⁹ m	nm
Micromètre	$10^{-6} \mathrm{m}$	μm
Millimètre	$10^{-3} \mathrm{m}$	mm
Mètre	$10^0 \mathrm{m}$	m
Kilomètre	$10^3 \mathrm{m}$	km
Méga mètre	$10^6 \mathrm{m}$	Mm
Giga mètre	$10^9 \mathrm{m}$	Gm
Téra mètre	$10^{12} \mathrm{m}$	Tm

II Les opérations avec les puissances de dix :

$$\frac{10^{n} \times 10^{m} = 10^{n+m}}{10^{m}} = \frac{10^{n}}{10^{m}} = 10^{n-m}} = 10^{n-m}$$

$$a.10^{n} + b.10^{n} = (a+b).10^{n}$$

III Ecriture scientifique d'un nombre :

Un nombre est écrit en notation scientifique s'il est de la forme :

$$a \times 10^{n}$$
 avec $1 < a < 9$ et n entier

Celle-ci permet de comparer plus aisément de grandeurs ayant même unité

Exemples:

$$123 = 1,23 \times 10^2$$
 $4586,7 = 4,5867 \times 10^3$ $0,086 = 8,6 \times 10^{-2}$

IV Conversions et écriture scientifique avec les puissance de 10 :

Généralement on veut convertir des grandeurs exprimées dans de grandes unités ou de petites unités en mètres :

Exemples:

$$12 \mu m = 12 \times 10^{-6} m = 1.2 \times 10^{-6} m = 1.2 \times 10^{-5} m$$

 $0.312 \text{ GHz} = 0.312 \times 10^{9} \text{ Hz} = 3.12 \times 10^{-1} \times 10^{9} \text{ Hz} = 3.12 \times 10^{8} \text{ Hz}$