Title

Contents

1 Wednesday April 22nd

2

1 | Wednesday April 22nd

Remarks:

- 1. In the category of G-sets, we have $Aut_{G-set}(G) = G$ where G acts on itself by translation.
- 2. For k a field, G/k a smooth algebraic group, X/k a variety, $\mu:G\times X\to X$ is a torsor iff the map

$$\varphi: G \times X \to X \times X$$
$$(g, x) \mapsto (\mu(g, x), x)$$

is an isomorphism. Letting $G_X := G \times X, X_X := X \times X$ be the base changes, this asks for a commuting diagram

$$G_X \times_X G_X \xrightarrow{\mu_{G_X}} G_X$$

$$\downarrow^{1 \times \varphi}$$

$$G_X \times_X X_X \xrightarrow{\mu_{X_X}} X_X$$

thus the base change to X is the trivial G-torsor on X.

Suppose G is commutative and recall we have a Weil-Chevalley group WC(k,G). Question: What is the difference between a twisted form X/k of G/k and a torsor under fG/k?

Better question: Suppose $(X, \mu) \in WC(k, G)$. How many other elements of $WC(k, G) \ni (X', \mu)$ have $X' \cong_k X$?

Recall that $\cdot [(X, \mu)] = (X, \mu([-1] \circ \cdot, \cdot))$. Letting G = E an elliptic curve, we can consider the subtraction map

$$v: X \times X \to E$$
$$(p,g) \mapsto g$$

with p = q + q iff

For X/k a nice genus one curve, E/k an elliptic curve, $\mu: E \times X \to X$ is a torsor iff the map $\underline{\operatorname{Pic}}^0 X \to E$ is an isomorphism. Therefore two elements $X_1, X_2 \in WC(k, E)$ are isomorphic iff X_1, X_2 lie in the same $\operatorname{Aut}(E)$ -orbit of WC(k, E).

Remarks: Thus the torsors over E aren't much more interesting than E itself. E.g. characteristic zero, $j \neq 0,1728$, you just mod out by ± 1 . There is a version of this for abelian varieties.

- $WC(k, E) = (0) \iff$ every genus 1 curve with Jacobian E has a k-rational point.
- $\forall E/kWC(k,E) = (0) \iff$ every genus $1 \ C/k$ has $C(k) \neq \emptyset$.

Example For $k = \bar{k}$, all nonempty V/k have $V(k) \neq \emptyset$.

Example Say a k is pseudo algebraically closed iff every geometrically integral V/k has a k-rational point, i.e. $V(k) \neq \emptyset$. E.g., if k is separably closed it is pseudo algebraically closed.

Example For $k = \mathbb{F}_q$ a finite field, if X/k is nice of genus g, then

$$|\#X(\mathbb{F}_q) - (q+1)| \le 2g\sqrt{q}.$$

Thus for g = 1, for elliptic curves, we get

$$q+1-2\sqrt{q} \le \#X(\mathbb{F}_q) \le q+1+2\sqrt{q}$$

and since q > 2, the number of points is strictly positive.

Example (Non-Example) Take $C: y^2 = P_4(x) \in k[x]$ for P_4 a separable degree 4 polynomial. Look at $C \xrightarrow{x} \mathbb{P}^1$, and define the *index* I(C) of a genus 1 curve C/k to be the least positive degree of a k-rational divisor on C, equivalently the gcd of degrees of closed points on C.

Exercise If C is a genus 1 curve, then C is given by $y^2 = P_4(x)$ iff C has a k-rational divisor of degree 2 iff $I(C) \in \{1, 2\}$.

Exercise If $C: y^2 = ax^4 + bx^3 + cx^2 + dx + e$, then C(k) is ? iff there exists $x, y \in k$ such that $y^2 = P_4(x)$ or $a \in k^{\times}$ is a square.

Example Take $k = \mathbb{R}$ and $C : y^2 = -(x^4 + 1)$. The leading term is negative, and not a square, and the point at ∞ doesn't need to be check (this would yield exactly 2 real points, thus not a 1-dimensional real manifold). Thus C is a nontrivial element of $WC(\mathbb{P}, \underline{\text{Pic}}^0C)$.

Exercise Let p be a prime number and find $P_4(x) \in \mathbb{Q}_p[x]$ such that $y^2 = P_4(x)$ has no \mathbb{Q}_p -points.

Try not choosing p=2, and try polynomials in $\mathbb{Z}[x]$ and apply Hensel's lemma.

Exercise If C: F(x,y,z) = 0 is a nice plane cubic curve over k

- a. Show that C/k admits such a defining equation iff it has a rational divisor of degree 3 iff $I(c) \in \{1,3\}$.
- b. Take $k = \mathbb{Q}_p$ and find C/k with no k-rational points.

For G/k a smooth (commutative, but not necessary) group, X/k a G-torso, choose $p \in k^{\text{sep}}$. Then defining $g := \text{Aut}(k^{\text{sep}}/k)$, then $X(k^{\text{sep}})$ has two actions: a galois action $g \curvearrowright$ the left, and a $G(k^{\text{sep}})$ action on the right. For all $\sigma \in g$, there exists a unique $a_{\sigma} \in G(k^{\text{sep}})$ such that $\sigma p = pa_{\sigma}$.

This defines a map $a_{\bullet}: g \to G(k^{\text{sep}})$ – however, this is not a group morphism, it is a "twisted" version. For $\sigma, \tau \in g$, by definition we have $p_{a_{\sigma\tau}} = \sigma\tau p = \sigma(\tau p) = \sigma(Pa_{\tau}) = \cdots$ and we can conclude

$$a_{\sigma\tau} = a_{\sigma}^{\sigma} a_{\tau}$$

which is in fact a 1-cocycle.