EECS 373: N64 Controller

How it Works

Introduction

- The Controller
- Components:
 - Buttons
 - Joystick
 - Memory/Rumble Pack
- Communication with External Devices
 - Hardware
 - Protocol
 - Arbitration
 - Commands

The Controller

- 14 Buttons
 - Four buttons arranged as a directional pad on the top left (up, down, left, right)
 - Start button in the top middle (start)
 - Six action buttons on the top right (A,B, 4 c's)
 - One action button on the front left (L)
 - One action button on the front right (R)
 - One action button in the bottom middle (Z)
- Analog joystick on the top middle
- Optional Rumble or Memory Pack

Components: Buttons

- A small metal disk beneath the button is pushed into contact with two strips of conductive material on the circuit board inside the controller.
- While the metal disk is in contact, it conducts electricity between the two strips.
- The controller senses that the circuit is closed and remembers that data to send to the N64.

Buttons

@ 2000 How Stuff Works

http://electronics.howstuffworks.com/n643.htm

Components: Joystick

- Detachable from rest of unit
 - 6 pin interface: 2 for power, 4 for data
- Uses wheels in between LED and photocell
 - "Counts" position using light passed through
 - Monitors output of photocells to determine position

Components: Joystick

@ 2000 How Stuff Works

Play

Components: Joystick

http://www.eecs.umich.edu/courses/eecs461/lecture/Lecture3.pdf

http://electronics.howstuffworks.com/n643.htm

Components: Packs

- Rumble Pack
 - Force feedback
 - Uses a motor attached to an unbalanced weight
 - Motion of the unbalanced weight causes the controller to vibrate
- Memory Pack
 - Flash Memory

Communication: Hardware

N64 Controller 3 pin connector

- Three wires
 - Ground
 - Data
 - Bidirectional
 - Asynchronous
 - Serial Interface
 - Power
 - +3.6 Volts
 - Will operate between 3.0 and 3.8 V

http://electronics.howstuffworks.com/n643.htm

Communication: Bus

- Open collector bus
 - Uses pull up resistor to keep data line high at all times
- Pull low to send o
- Leave alone to send 1
 - NEVER DRIVE THE LINE HIGH

Bidirectional Open Collector Bus

Communication: Bus (cont)

- How it works
 - Pull up resistor weakly pulls the bus high
 - Send a o, transistor closes path to ground

Communication: Bus (cont)

 Can't short circuit open collector bus

NO CONFLICT

Source 2

Communication: Protocol

- Data determined by duty cycle
- Each bit (Manchester Encoding):
 - Start sub-bit (low)
 - Two data sub-bits
 - Stop sub-bit (high)
- Series of bits followed by stop bit

Commutation: Arbitration

- Uses a challenge-response scheme (polling)
 - Send request to controller
 - After request is complete, controller responds
 - Quiet state: 200 us controller will not respond to polling requests
 - Repeat process
- One controller and challenge-response = no contention for bus

Communication: Process

Communciation: Commands

- 8'hFF: Reset Controller
- 8'hoo: Get Status
 - Checks state of controller
- 8'ho1: Get Buttons
- 8'ho2: Read Mempack
- 8'ho3: Write Mempack
- 8'ho4: Read EEPROM
- 8'ho5: Write EEPROM

Communication: Timing

- Requesting: 4 MHz clock (internal clock)
- Responding: 250 kHz
 - 16 samples of each transmission bit
 - Wait 8 cycles, sample, wait for next falling edge

http://inst.eecs.berkeley.edu/~cs150/sp01/Labs/lablecckpt1.ppt

Communication: Response (Buttons)

Bit	Button
0	A
1	В
2	Z
3	Start
4	Directional Up
5	Directional Down
6	Directional Left
7	Directional Right
8	N/A
9	N/A
10	L
11	R
12	C Up
13	C Down
14	C Left
15	C Right

Communication: Response (Joystick)

- 16 bits
 - First 8 bits = signed X position
 - Second 8 bits = signed Y position
- From center:
 - Up and left = positive
 - Down and right = negative

Position	Bits
Left Extreme Edge	01111111
Left Off Center	00000001
Center	00000000
Right Off Center	11111111
Right Extreme Edge	10000000

Communication: Example

Communication: Example Command

• 8'ho1: Get Buttons

Communication: Example Buttons

Only A pressed

Communication: Example Joystick

Conclusion

- The Controller
- Components:
 - Buttons
 - Joystick
 - Memory/Rumble Pack
- Communication with External Devices
 - Hardware
 - Protocol
 - Arbitration
 - Commands
- Questions?

References

- http://electronics.howstuffworks.com/n643.htm
- http://courses.cit.cornell.edu/ee476/FinalProjects/s200
 2/jew17/lld.html
- http://www.mixdown.ca/n64dev/
- http://inst.eecs.berkeley.edu/~cs150/fa04/Lab/Checkpoint1.PDF
- http://inst.eecs.berkeley.edu/~cs150/sp01/Labs/lablecc kpt1.ppt
- http://www.eecs.umich.edu/courses/eecs461/lecture/Lecture/Lecture3.pdf