YANGON TECHNOLOGICAL UNIVERSITY

DEPARTMENT OF COMPUTER ENGINEERING AND INFORMATION TECHNOLOGY

Development of Children Gender Classification System Using Speech

(Pre-Defence Seminar)

Supervised By Dr. Su Su Maung

Presented By
Ma Khin Aye Chan
M.E CEIT -2

* Outlines

- Objectives
- > Introduction
- Application Areas
- > Problem Statement
- > System Design
- Dataset Preparation
- Methodology
- > Results and Discussion
- Conclusion

* Objectives

- To study the algorithm of feature extraction (MFCC) and machine learning algorithms for classification
- To understand the speech recognition operations in details
- To implement a gender classifier that can automatically predict the gender of the speaker

* Introduction

- Gender classification is to determine a person's gender, e.g., male or female, based on his or her biometric cues.
- There are a number of biometrics which may be used to classify gender such as the face, eyes, fingerprint and hand shape, speech etc.
- This system analyzes speech signals to predict the gender of the speaker.

* Application Areas

- > Automatic Speech Recognition
- > Human-Computer Interaction
- ➤ Multimedia Information Retrieval
- Commercial Development
- Demographic Research
- ➤ Mobile Applications and Video Games

* Problem Statement

- Gender identification of children is difficult than adults, it is confusing to identify whether the speaking child is male or female.
- Due to underdeveloped vocal tract and thin vocal folds in both male and female child, there is no significant difference in their acoustic-phonetic properties.

Figure 1: System Flow Diagram

* Dataset Preparation

- > Firstly, I prepared five Myanmar sentences:
 - မင်္ဂလာပါ
 - 2. ကျေးဇူးတင်ပါတယ်
 - 3. နာမည်ဘယ်လိုခေါ်လဲ
 - 4. ဘယ်သွားမလို့လဲ
 - 5. **နေကောင်းလား**

File Type	.wav format		
Duration	2 or 3 second		
Numbers of Channel	Mono (1 Channel)		
Sampling Frequency	44.1 kHz		
Number of Bits	16 bits		

Table I. Recording Specifications

* Dataset Preparation (Cont'd)

- Dataset used in the system includes total of 1100 audio records.
- > The children range in age from 6 years to 11 years.
- The female records contain 566 samples where male records have 534 samples.

Silence and Unvoiced Speech Removal

- The speech recordings of children consists of many silence and unvoiced regions.
- Leading/trailing silence in the audio may not contain much information and thus not useful for the classification.
- Hence, removing this silence is done in preprocessing step.

* Methodology

- ***** Feature Extraction using MFCC Algorithm
- ➤ Mel-frequency Cepstral Coefficients (MFCCs)
- MFCC technique takes frequency domain as its standard base and thus it approximates the human system response more closely than any other system.
- ➤ It is based on the short term analysis, and thus from each frame of speech signal a MFCC vector is computed.

* Methodology (Cont'd)

Figure 2: Steps for Computing MFCCs

* Methodology (Cont'd)

Extracted features points which were collected in the CSV file can be seen in the figure 3.

cc7	mf	mfcc6	mfcc5	mfcc4	mfcc3	mfcc2	mfcc1
099	-15.814	-31.996782	-30.765772	-2.612753	3.880235	-5.337801	-4.015884
784	-30.996	-13.027446	-25.274026	1.157095	-17.671561	-22.386601	-0.398436
041	-23.942 label	-11.890284 mfcc12	-34.465060 mfcc11	-10.448085 mfcc10	-13.569998 mfcc9	-4.332610 mfcc8	-1.668531
	male	-10.769270	13.396485	7.836277	706910 -1	350799 -3.	-3.
	male	-15.506199	30.468489	3.853052	963798 -1	500207 1.	9.
c7	male mfc	-11.789779 mfcc6	-9.748084 mfcc5	3.943690 mfcc4	719242 1 mfcc3	508446 13. mfcc2	-33.1 mfcc1
17	-23.1556	-24.045389	-5.844882	18.020628	7.169721	-8.969100	2.241353
54	-19.3387	8.949095	-20.967097	9.367084	-29.952706	7.509791	5.199849
21	-20.6210	-20.469231	-26.588636	4.928143	5.424600	-11.949313	2.333304
	label	mfcc12	mfcc11	mfcc10	mfcc9	mfcc8	
	female	-15.055187	-7.103109	1.762388	.574649 -1	539931 -29	-3.
	female	-7.391434	13.067591	5.279948	.497418	104784 -4	-26.
	female	-17.864485	4.316390	5.173062	.850742 -1	143301 -27	-12.

Figure 3

* Methodology (Cont'd)

Classification

- Classification is establishing a mathematical model that separates into male and female based on the features of children's speech.
- Classification model is built on the training set and check the accuracy of the model by using it on the testing set.
- ➤ In this system, machine learning classification algorithms are compared using MFCC feature dataset.
- Train and test set accuracies are observed for five classification algorithms.

- * Methodology (Cont'd)
- Classifiers
- Random Forest (RF)
- Artificial Neural Network (ANN)
- Logistic Regression (LR)
- Support Vector Machine (SVM)
- Gaussian Naive Bayes (GNB)

***** Results and Discussion

- ➤ In this system voice dataset contains 1100 audio records (550 for each gender).
- Two testing is done to estimate the performance of the model: k-fold cross validation method and simple train test split.

* k-Fold Cross-Validation

- > 10 fold cross validation are used to train the models.
- > The accuracies are shown in the Table I.

Classifiers	RF	ANN	SVM	LR	GNB
Cross Validation Score	80%	77%	76%	81%	72%
	80%	76%	75%	70%	77%
	88%	75%	74%	70%	75%
	85%	80%	79%	76%	80%
	79%	77%	75%	72%	72%
	85%	76%	74%	82%	73%
	75%	75%	72%	80%	72%
	81%	74%	80%	77%	70%
10-fold	85%	78%	80%	75%	79%
	89%	72%	81%	78%	70%
Average	83%	76%	77%	76%	74%

Table II. Cross Validation Score

- * Results and Discussion (Cont'd)
- **Simple Train Test Split**
- > 90% of dataset is used as training dataset and 10% is used for testing.
- > Correct and incorrect predictions can be seen in following bar charts.

Figure 4:Bar Chart for the Number of Correct Predictions for Each Classifier

Figure 5:Bar Chart for the Number of Incorrect Predictions for Each Classifier

Classifiers	Training Accuracy	Testing Accuracy		Precision	Recall	F1-score	Support
RF	99%	83%	Female	81%	88%	84%	65
			Male	85%	77%	81%	45
ANN 92%	020/	700/	Female	76%	86%	81%	65
	92%	78%	Male	81%	69%	74%	45
LR	700/	76%	Female	77%	74%	75%	65
	78%		Male	76%	79%	77%	45
SVM	SVM 79%	77%	Female	72%	82%	77%	65
			Male	83%	73%	78%	45
GNB	75%	74%	Female	74%	75%	74%	65
			Male	74%	72%	73%	45

Table III. Performance Measures of Each Classifier

From the above results: cross validation scores and testing set accuracies, Random Forest performs better compared with other machine learning algorithms to classify the gender of a child using MFCC features of voice.

* Conclusion

- The gender classification system implemented by applying Python programming language and the experimental results has been analyzed.
- The analysis of the results shows that the performance of the proposed system is good, as the average accuracy of RF classifier is 83%.
- Therefore, it can be extended to the another researchers and can also be tested by using different features and other classification techniques.

Thank you for your attention!!!