Example. A company needs to hire people for 5 different positions P_1, \ldots, P_5 . There are 7 candidates C_1, \ldots, C_7 who interviewed for these positions. The table below shows the interview score (higher is better) how each person is qualified for each position. Blank entries indicate the score of 0 (i.e. a candidate is either not suitable or not interested in the corresponding position).

		, Mn	_ W	- W12 - W14			
	C ₁	C_2	C_3	C ₄	C_5	C_6	C ₇
P_1	70	90		75	55		60
P_2	40	95	85			80	
P_3	50		75		70		65
P_4			60	80		35	
P_5		75		70		35	20

Which candidate should be offered which position so that the sum of scores of the assignment is the largest possible?

Integer program:
$$x_{ij}$$
 - decision variable

$$x_{ij} = \begin{cases} 1 & \text{if candiolate } C_{ij} \text{ is selected} \\ & \text{for the position } P_{i} \end{cases}$$

We want to maximize

$$Z = \sum_{ij} w_{ij} x_{ij}$$
Constraints:

1) Select only one person for each position:
$$\sum_{i} x_{ij} = 1 \quad \text{for } i = 1, 2, ..., 5$$
2) Each person can get at most one position:
$$\sum_{i} x_{ij} \leq 1$$
3) $x_{ij} \leq 1$ ont needed, follows from 1) and 4)
$$x_{ij} > 0$$

$$x_{ij} \leq Z$$

Goal: All basic feasible solutions of the assignment problem consist of integers.

Definition

A graph (or a network) is a pair G = (V, E) where:

- *V* is the set of *vertices* (or *nodes*);
- *E* is the set of *edges*;
- each edge connects two vertices.

Example.

Definition

A bipartite graph is a graph G = (V, E) such the set of nodes is a union of two disjoint subsets $V = V_1 \cup V_2$ and that every edge connects some node in V_1 with some node in V_2 .

Example. Bipartite graph for the assignment problem:

Definition

The edge incidence matrix of a graph G = (V, E) is a matrix A such that:

- rows of A are labeled by vertices of G
- \bullet columns of A are labeled by edges of G
- the entry in the row of a vertex \mathbf{v} and the column of an edge \mathbf{e} is 1 if the edge \mathbf{e} is attached to \mathbf{v} ; otherwise it is 0.

Example.

Note: In the assignment problem:

- the decision varial, xij -> edges eij of the graph
- · there is one constraint for every vertex;

$$\frac{C1}{C2}: \times_{11} + \times_{12} \le |$$

$$\frac{C2}{C2}: \times_{21} + \times_{22} + \times_{23} \le |$$

$$\frac{C1}{C2}: \times_{11} + \times_{12} + S_{1} = |$$

$$\frac{C2}{C2}: \times_{21} + \times_{22} + \times_{23} + S_{2} = |$$

$$\frac{C1}{C2}: \times_{11} + \times_{12} + S_{1} = |$$

$$\frac{C2}{C2}: \times_{21} + \times_{22} + \times_{23} + S_{2} = |$$

$$\frac{P2}{C2}: \times_{12} + \times_{22} + \times_{23} + S_{2} = |$$

$$\frac{P2}{C2}: \times_{12} + \times_{22} + \times_{23} + S_{2} = |$$

$$\frac{P2}{C2}: \times_{12} + \times_{22} + \times_{23} + S_{2} = |$$

$$\frac{P2}{C2}: \times_{12} + \times_{22} + \times_{23} + S_{2} = |$$

$$\frac{P3}{C2}: \times_{12} + \times_{22} + \times_{23} + S_{2} = |$$

$$\frac{P3}{C2}: \times_{12} + \times_{22} + \times_{23} + S_{2} = |$$

the incidence matrix of the graph

some columns of the identity