ECE2 Mathématiques

ESSEC II 2017

Étudier l'évolution des inégalités dans la répartition des richesses, matérielles ou symboliques, dans une société est un des thèmes majeurs des sciences humaines. Considérons un exemple élémentaire. Le tableau ci-dessous présente le pourcentage d'accès à l'enseignement secondaire en Grande-Bretagne lors de deux périodes pour deux catégories sociales :

	avant 1910	entre 1935 et 1940
Profession libérale	37%	62%
Ouvriers	1%	10%

On propose trois modes de comparaison des inégalités entre les deux classes sociales.

- 1. En regardant l'augmentation des pourcentages pour les deux classes entre les deux périodes on conclut que l'inégalité a augmenté entre la classe la plus aisée (Profession libérale) et la plus défavorisée (Ouvriers).
- 2. Si on regarde le taux d'accroissement des pourcentages, comme $\frac{10}{1} > \frac{62}{37}$, on déduit que l'inégalité a diminué.
- 3. Si on regarde le taux d'accroissement des pourcentages de ceux qui n'accèdent pas à l'enseignement secondaire, comme $\frac{90}{99} > \frac{38}{63}$, on déduit que l'inégalité a augmenté puisque le nombre de ceux qui n'ont pas accès à l'enseignement supérieur a proportionnellement plus diminué que celui de ceux qui y ont accès.

Comme on le voit chacune des façons de voir est légitime à sa manière. L'objet du problème est d'introduire des outils afin d'étudier la *concentration* d'une loi de probabilité pour contourner des paradoxes auxquels une analyse trop rapide peut conduire, ou du moins d'en être conscient.

I. Indice de Gini

On rappelle qu'une fonction numérique définie sur l'intervalle J de \mathbb{R} est convexe sur J si elle vérifie la propriété suivante : $\forall (t_1, t_2) \in J^2$, $\forall \lambda \in [0, 1]$, $f(\lambda t_1 + (1 - \lambda) t_2) \leq \lambda f(t_1) + (1 - \lambda) f(t_2)$.

On rappelle en outre qu'une fonction f est concave si -f est convexe.

On désigne par E l'ensemble des applications f définies sur [0,1] à valeurs dans [0,1], continues et convexes sur [0,1], et telles que f(0)=0 et f(1)=1. Pour toute application f de E, on note \tilde{f} l'application associée à f, définie sur [0,1] par $\tilde{f}(t)=t-f(t)$.

On pose
$$I(f)=2\int_0^1 \tilde{f}(t)\ dt=2\int_0^1 (t-f(t))\ dt.\ I(f)$$
 s'appelle l'**indice de Gini** de l'application f .

- 1. a) Donnez une interprétation géométrique de la propriété de convexité.
 - b) Lorsque f est une fonction de classe C^1 sur [0,1], rappeler la caractérisation de la convexité de f sur [0,1] à l'aide de la dérivée f'.
- 2. a) Justifier que \tilde{f} est concave sur [0,1].
 - **b)** Montrer que $I(f) = 1 2 \int_0^1 f(t) dt$.
 - c) Représenter dans un même repère orthonormé les fonctions f et $t \mapsto t$ et donner une interprétation géométrique de I(f).

ECE2 Mathématiques

3. Un premier exemple.

Soit $f:[0,1] \to \mathbb{R}$ telle que $f(t)=t^2$ pour tout $t \in [0,1]$.

- a) Montrer que f est un élément de E.
- **b)** Calculer I(f).

4. Propriétés de l'indice de Gini.

- a) Pour f élément de E, établir que $I(f) \ge 0$.
- b) Montrer que I(f) = 0 si et seulement si f(t) = t pour tout $t \in [0, 1]$.
- c) Montrer que pour tout f élément de E, I(f) < 1.
- d) Pour tout entier n > 0, on définit f_n sur [0,1] par $f_n(t) = t^n$.
 - (i) Pour tout entier n strictement positif, calculer $I(f_n)$.
 - (ii) En déduire que pour tout réel A vérifiant $0 \le A < 1$, il existe f appartenant à E telle que I(f) > A.

5. Minoration de l'indice de Gini

- a) Soit f élément de E. Montrer qu'il existe t_0 dans]0,1[tel que $\tilde{f}(t_0)=\max_{t\in[0,1]}\,\tilde{f}(t).$
- **b)** Montrer que pour tout t de $[0, t_0]$, $\tilde{f}(t) \geqslant \tilde{f}(t_0) \cdot \frac{t}{t_0}$.
- c) Montrer que pour tout t de $[t_0, 1]$, $\tilde{f}(t) \geqslant \tilde{f}(t_0) \cdot \frac{t-1}{t_0-1}$.
- d) En déduire que $I(f) \geqslant \tilde{f}(t_0)$.

L'indice de Gini donne une indication sur la concentration des richesses d'un pays si l'on suppose que la fonction f rend compte de cette concentration. Par exemple, f(0,3) = 0,09 s'interprète par le fait que dans la population classée par ordre de richesse croissante, les premiers 30% de la population possèdent 9% de la richesse totale du pays. Plus l'indice I(f) est grand, plus la répartition des richesses est inégalitaire.

II. Le cas à densité

Soit g une densité de probabilité sur \mathbb{R} , nulle sur $]-\infty,0]$, continue et strictement positive sur $]0,+\infty[$. On définit une fonction G sur \mathbb{R}_+ par $G(x)=\int_0^x g(v)\ dv$ pour $x\in\mathbb{R}_+$. Si g représente la densité de population classée suivant son revenu croissant, G(x) représente la proportion de la population dont le revenu est inférieur à x. On suppose de plus que $\int_0^{+\infty} v\,g(v)\ dv$ est convergente et on note m sa valeur qui représente donc la richesse moyenne de la population.

- 6. a) Montrer que m > 0.
 - b) Montrer que G est une bijection de $[0, +\infty[$ sur [0, 1[. On notera G^{-1} son application réciproque.
 - c) Quel est le sens de variation de G^{-1} sur [0,1]?
- 7. a) À l'aide du changement de variable u = G(v), établir que pour tout $t \in [0, 1]$,

$$\int_0^t G^{-1}(u) \ du = \int_0^{G^{-1}(t)} v \, g(v) \ dv$$

b) En déduire que $\int_0^1 G^{-1}(u) du$ converge et donner sa valeur.

ECE2 Mathématiques

8. Soit f la fonction définie sur [0,1] par : $f(t) = \frac{1}{m} \int_0^t G^{-1}(u) \ du$ pour tout $t \in [0,1[$ et f(1)=1.

- a) (i) Montrer que f est continue sur [0, 1].
 - (ii) Montrer que f est convexe sur [0,1[. On admettra qu'en fait f est convexe sur [0,1].
 - (iii) En déduire que f est un élément de E.
- b) Montrer, à l'aide d'une intégration par parties, l'égalité

$$I(f) = -1 + \frac{2}{m} \int_0^\infty v g(v) G(v) dv$$

- 9. Soit λ un réel strictement positif. On suppose dans cette question que g est une densité de la loi exponentielle de paramètre λ .
 - a) Expliciter G(x) pour x > 0.
 - b) Expliciter $G^{-1}(u)$ pour $u \in [0, 1[$.
 - c) Donner la valeur de m.
 - d) Soit $t \in [0, 1[$. Montrer que $f(t) = -\int_0^t \ln(1-u) \ du$.
 - e) En déduire que pour tout t élément de [0,1[, on a $f(t)=(1-t)\ln(1-t)+t.$
 - f) Justifier la convergence de l'intégrale $\int_0^1 (1-t) \ln(1-t) dt$ et la calculer.
 - g) En déduire la valeur de I(f).

III. Application à une population

Une population de N personnes est divisée en deux classes (typiquement hommes et femmes) et en n catégories (par exemple socio-professionnelles), suivant le tableau à double entrée suivant où tous les x_i et y_i pour i dans [1, n] sont des entiers naturels.

On suppose en outre que pour tout i dans [1, n], $x_i \neq 0$.

Catégories	c_1	c_2	c_3	 c_i	 c_n	Total
I	x_1	x_2	x_3	 x_i	 x_n	X
II	y_1	y_2	y_3	 y_i	 y_n	Y
Total	n_1	n_2	n_3	 n_i	 n_n	N

où on a donc posé $X = \sum_{i=1}^{n} x_i$, $Y = \sum_{i=1}^{n} y_i$ et X + Y = N. On suppose en outre que Y > 0.

Pour i appartenant à [1, n], on adopte les notations suivantes :

$$p_i = \frac{n_i}{N}, \ q_i = \frac{x_i}{X}, \ r_i = \frac{y_i}{V}$$

On note aussi $\varepsilon_i = \frac{x_i}{n_i}$, et $\varepsilon = \frac{X}{N}$, et on suppose que les catégories sont numérotées de telle sorte que :

$$\varepsilon_1 \leqslant \varepsilon_2 \leqslant \cdots \leqslant \varepsilon_n$$

- 10. On pose $\Omega = \{c_1, c_2, \dots, c_n\}$, ensemble des catégories dans la population.
 - a) Montrer que $P=(p_i)_{1\leqslant i\leqslant n}, Q=(q_i)_{1\leqslant i\leqslant n}$ et $R=(r_i)_{1\leqslant i\leqslant n}$ sont des distributions de probabilités.
 - **b)** Montrer que : $\frac{q_1}{p_1} \leqslant \cdots \leqslant \frac{q_n}{p_n}$ (*)
 - c) Montrer que : $\frac{r_1}{p_1} \geqslant \cdots \geqslant \frac{r_n}{p_n}$.
 - d) Montrer que pour i appartenant à [1, n], $r_i = \frac{n_i x_i}{N X} = \frac{p_i \varepsilon q_i}{1 \varepsilon}$.
- 11. Dans un premier temps, nous allons construire une application appartenant à E, qui permet de mesurer les inégalités à l'intérieur de la classe I.

On pose $P_0 = Q_0 = 0$, et pour $i \in [1, n]$, $P_i = \sum_{h=1}^{i} p_h$ et $Q_i = \sum_{h=1}^{i} q_h$. On définit alors l'application φ de [0, 1] dans [0, 1] telle que, pour tout entier $i \in [0, n]$, $\varphi(P_i) = Q_i$ et pour tout entier $i \in [0, n-1]$, φ est affine sur le segment $[P_i, P_{i+1}]$.

- a) On suppose dans cette question n=3. Représenter dans un repère orthonormé φ lorsque $P=\left(\frac{1}{2},\frac{1}{4},\frac{1}{4}\right)$ et $Q=\left(\frac{1}{3},\frac{1}{6},\frac{1}{2}\right)$.
- b) Montrer que, dans le plan rapporté à un repère orthonormé, la pente de la droite passant par les points de coordonnées (P_{i-1}, Q_{i-1}) et (P_i, Q_i) est $u_i = \frac{q_i}{n_i}$ pour i appartenant à [1, n].
- c) Montrer que si $i \in [0, n-1]$ et $t \in [P_i, P_{i+1}]$, on a $\varphi(t) = u_{i+1}(t-P_i) + Q_i$.
- d) En admettant que les inégalités (*) de la question 10.b) permettent d'affirmer que φ est convexe, justifier que φ appartient à E.
- e) Pour $i \in [0, n-1]$, calculer $\int_{P_i}^{P_{i+1}} \varphi(t) dt$.
- f) Exprimer $I(\varphi)$ sous la forme d'une somme en fonction de $P_0, P_1, ..., P_n, Q_0, ...Q_n$.
- 12. Nous allons maintenant étudier l'application correspondante pour la classe II.

On pose $P_0 = R_0 = 0$ et pour $i \in \llbracket 1, n \rrbracket$, $P_i = \sum_{h=1}^i p_h$ et $R_i = \sum_{h=1}^i r_h$. De même, on définit pour i élément de $\llbracket 0, n \rrbracket$, $\Pi_i = 1 - P_{n-i}$. On considère l'application ψ de $\llbracket 0, 1 \rrbracket$ dans $\llbracket 0, 1 \rrbracket$ telle que pour tout $i \in \llbracket 0, n \rrbracket$, $\psi(P_i) = R_i$ et pour tout entier $i \in \llbracket 0, n - 1 \rrbracket$, ψ est affine sur le segment $\llbracket P_i, P_{i+1} \rrbracket$.

- a) Montrer que la pente de la droite passant par les points de coordonnées (P_{i-1}, R_{i-1}) et (P_i, R_i) est $v_i = \frac{r_i}{p_i}$ pour $i \in [1, n]$.
- b) On considère l'application ψ^* définie pour tout $t \in [0,1]$, par $\psi^*(t) = 1 \psi(1-t)$.
 - (i) On suppose dans cette question n=3. Représenter dans un même repère orthonormé les courbes représentatives de ψ et ψ^* lorsque $P=\left(\frac{1}{2},\frac{1}{4},\frac{1}{4}\right)$ et $R=\left(\frac{2}{3},\frac{1}{6},\frac{1}{6}\right)$.
 - (ii) Montrer que ψ^* est convexe sur [0,1].
 - (iii) Montrer que ψ^* est affine sur $[\Pi_{i-1}, \Pi_i]$ pour $i \in [0, n-1]$.
 - (iv) Montrer que la pente de ψ^* sur $[\Pi_{i-1}, \Pi_i]$ est v_{n-i+1} pour $i \in [1, n]$.

On dit dans cette situation que les fonctions φ et ψ^* sont **adjointes** l'une de l'autre. C'est leur comparaison que Gini a proposé de considérer pour « mesurer les inégalités » entre la population de catégorie I et celle de catégorie II.

Une égalité entre les fonctions adjointes signale notamment l'absence totale d'inégalité sociale. La dernière question précise quelque peu ce point. 13. a) Montrer que si $\varphi = \psi^*$ alors pour tout i appartenant à $[\![1,n]\!]$:

$$\frac{\varepsilon_i}{\varepsilon} = \frac{1 - \varepsilon_{n-i+1}}{1 - \varepsilon}$$

- $\textbf{\textit{b})} \ \ \text{Montrer que si} \ \ \varphi = \psi^*, \ \text{alors pour tout} \ \ i \ \ \text{appartenant} \ \ \grave{a} \ \ \llbracket 1, n \rrbracket, \ \varepsilon_i + \varepsilon_{n-i+1} = 2\varepsilon.$
- c) Déduire que si $\varphi = \psi^*$, on a pour tout i appartenant à [1, n], $\varepsilon_i(1 2\varepsilon) = \varepsilon(1 2\varepsilon)$.
- d) On suppose que $\varepsilon \neq \frac{1}{2}$. Montrer que si $\varphi = \psi^*$, alors pour tout i appartenant à [1, n], $\varepsilon_i = \varepsilon$. Interpréter ce résultat.