1 Netiesinių lygčių sprendimas

Duotos dvi netiesinės lygtys: daugianaris f(x) = 0 ir transcendentinė funkcija g(x) = 0.

Nr.	Daugianaris $f(x)$	Funkcija $g(x)$		
1	$x^4 - 11x^3 - 155x^2 - 33x + 1710$	$x^2 + 10 \cdot \cos(2 \cdot x)$; $-5 \le x \le 5$		
Sprendimo metodai: skenavimo, pusiaukirtos, Niutono (liestinių).				

1.1 Lygties f(x) = 0 (f(x) - daugianaris) sprendimas

Daugianario šaknų intervalo įverčiai

1 pav. Daugianario šaknų intervalo įverčiai (a) ir grafinis funkcijos vaizdas tikslesniame šaknų intervale (b)

1 lentelė. Šaknų intervalo įverčiai.

Grubus lygties $f(x) = 0$ šaknų intervalo įvertis	[-1771; 1771]
Tikslesnis lygties $f(x) = 0$ šaknų intervalo įvertis	[-13,4499; 156]

% komentarai

%-----

Šaknų atskyrimas skenavimo metodu

Skenavimas atliekamas intervale [-13,4499; 156], skenavimo žingsnis lygus 1.

2 pav. Daugianario šaknų atskyrimo intervalai

2 lentelė. Šaknies atskyrimo intervalai.

Intervalo Nr.	Intervalas
1	[-6.4498999999999995; -5.4498999999999999
2	[-5.4498999999999995; -4.4498999999999999
3	[2.5501000000000005; 3.5501000000000005]
4	[18.5501000000000000; 19.55010000000000000]

/(
%	komentarai. Kaip parenkamas skenavimo žingsnis ir par
%)S

Šaknų tikslinimas skenavimo, pusiaukirtos ir Niutono metodais.

Tariama, kad x_g yra šaknis (stabdomi skaičiavimai), jei $|f(x_g)| < 1e - 9$. Skaičiavimuose naudojamas šaknies tikslumo įvertis $|f(x_g)|$.

3 lentelė. Rezultatų lentelė.

	Pradinis intervalas	Šaknis	Tikslumas	Iteracijų skaičius
Skenavimo metodas	[-6.4499000000000000;	-5.999999999995053	0.0000000001118678	49
	-5.44990000000000000			.,
o m	[-5.449900000000000; -4.4499000000000000]	-4.999999999950013	0.0000000009599717	39
vim	[2.5501000000000000];			
ena	3.5501000000000001]	2.999999999995026	0.0000000005729817	111
Sk	[18.5501000000000000;	18.999999999999680	0.0000000003119567	121
	19.55010000000000000			
8	Pradinis intervalas	Šaknis	Tikslumas	Iteracijų skaičius
oda	[-6.4499000000000000;	-6.0000000000003846	0.0000000000864020	37
ieto	-5.44990000000000000			
Pusiaukirtos metodas	[-5.449900000000000; -4.4499000000000000]	-5.0000000000003846	0.0000000000736691	37
irto	[2.550100000000000];			
auk	3.550100000000001;	2.999999999996168	0.0000000004415597	37
usi	[18.5501000000000000;			
I	19.55010000000000000]	19.00000000000000710	0.0000000006816663	41
	Pradinis artinys	Šaknis	Tikslumas	Iteracijų skaičius
no las	-5.949900000000000	-6.0000000000000000	0.0000000000000000	5
Niutono metodas	-4.949900000000000	-5.00000000000000000	0.0000000000000000	5
Ni me	3.0501000000000001	3.0000000000000000	0.0000000000000000	4
	19.050100000000000	19.00000000000000000	0.0000000000000000	4
	Pradinis artinys	Šaknis (fzero)	Šaknis (roots)	
AB jos	-5.949900000000000	-6.00000000000000000002	-6.000000000000012	
MATLAB funkcijos	-4.949900000000000	-4.99999999999997	-4.99999999999989	
MATLAB funkcijos	3.0501000000000001	3	3.0000000000000000	
	19.050100000000000	19.0000000000000004	19.000000000000014	

%-----

%-----

[%] komentarai. Metodų palyginimas

1.2 Lygties g(x) = 0 (g(x) – transcendentinė funkcija) sprendimas

• Šaknų atskyrimas skenavimo metodu

4 lentelė. Šaknies atskyrimo intervalai.

Intervalo Nr.	Intervalas
1	[-3.0000000000000000; -2.000000000000000000]
2	[-1.00000000000000000; 0.00000000000000000
3	[0.0000000000000000; 1.00000000000000000]
4	[2.00000000000000000; 3.000000000000000000

3 pav. Funkcijos šaknų atskyrimo intervalai

• Šaknų tikslinimas skenavimo, pusiaukirtos ir Niutono metodais.

Tariama, kad x_g yra šaknis (stabdomi skaičiavimai), jei $|f(x_g)| < 1e - 9$. Skaičiavimuose naudojamas šaknies tikslumo įvertis $|f(x_g)|$.

5 lentelė. Rezultatų lentelė.

	Pradinis intervalas	Šaknis	Tikslumas	Iteracijų skaičius
Skenavimo metodas	[-3.0000000000000000; -2.000000000000000000]	-2.1225254373500007	0.0000000009908296	68
	[-1.0000000000000000; 0.00000000000000000]	-0.8189579630500000	0.0000000004463032	46
enavii	[0.00000000000000000; 1.00000000000000000	0.8189579630499996	0.0000000004462951	68
Sk	[2.0000000000000000; 3.00000000000000000]	2.1225254373500011	0.0000000009908394	46
	Pradinis intervalas	Šaknis	Tikslumas	Iteracijų skaičius
etodas	[-3.0000000000000000; -2.00000000000000000]	-2.1225254372693598	0.0000000007913696	31
tos me	[-1.0000000000000000; 0.00000000000000000]	-0.8189579630270600	0.0000000000261104	30
Pusiaukirtos metodas	[0.00000000000000000; 1.00000000000000000	0.8189579630270600	0.0000000000261104	30
Pus	[2.0000000000000000; 3.00000000000000000]	2.1225254372693598	0.0000000007913696	31
	Pradinis artinys	Šaknis	Tikslumas	Iteracijų skaičius
no las	-2.500000000000000	-2.1225254373058662	0.0000000000154374	4
Niutono metodas	-0.500000000000000	-0.8189579630256345	0.00000000000000009	5
i N	0.5000000000000000	0.8189579630256345	0.00000000000000009	5
	2.5000000000000000	2.1225254373058662	0.0000000000154374	4

MATLAB funkcijos	Pradinis artinys	Šaknis (fzero)	
	-2.5000000000000000	-2.122525437305168	
	-0.5000000000000000	-0.818957963025635	
	0.5000000000000000	0.818957963025635	
	2.5000000000000000	2.122525437305168	

%-----

% komentarai. Metodų palyginimas.

%-----

1.3 Sąlyginio uždavinio sprendimas

Uždavinio sąlyga.

Teršalų bakterijos koncentracija c(%) ežere mažėja pagal dėsnį $c(t)=75e^{-1,5t}+20e^{-0,075t}$. Nustatykite, kiek laiko reikės, kad bakterijų koncentracijos lygis pasiektų 15%.

Sprendžiama lygtis $75e^{-1.5t} + 20e^{-0.075t} = 15$, čia t – kintamasis.

Sudaroma funkcija $f(t) = 75e^{-1.5t} + 20e^{-0.075t} - 15$ ir **Z** metodu ieškoma, kur funkcija kerta X ašį.

%-----

% komentarai. Aprašomas netiesinės lygties sudarymas, kodėl pasirinkote Z metodą, metodo parametrai, pradinės skaičiavimų reikšmės, gauti rezultatai (sprendinys, tikslumas, funkcijos reikšmė apskaičiuotoje šaknyje).

%-----

4 pav. Sąlyginio uždavinio grafinis sprendimas

1.4 Išvados

% išvados

1.5 Programų tekstai

• Daugianario šaknų intervalo įverčių nustatymas

Programos tekstas

• Skenavimo metodas

Programos tekstas

• Pusiaukirtos metodas

Programos tekstas

• Niutono (liestinių) metodas

Programos tekstas