

<221> variation

SEQUENCE LISTING

```
<110>
      Schutte, Brian C.
      Murray, Jeffrey C.
      Kondo, Shinji
      Dixon, Michael J.
<120> IRF6 POLYMORPHISMS ASSOCIATED WITH CLEFT LIP AND/OR PALATE
<130> P06215US01
<140> US
<141> 2004-05-06
<150> US 60/468,191
<151> 2003-05-06
<160> 4
<170> PatentIn version 3.3
<210> 1
<211> 2171
<212> DNA
<213> Homo sapiens
<220>
<221> 5'UTR
<222> (215)..(215)
<220>
<221> variation
<222> (216)..(216)
<223> Frame shift to encode a MET. A to T (exon 2).
<220>
<221> variation
<222>
      (216)..(216)
<223> Shift to encode alternate MET. A to T (exon 2).
<220>
<221> CDS
<222> (264)..(1667)
<220>
<221> variation
<222> (266)..(266)
<223> G to A (exon 3)
<220>
<221> variation
<222>
      (268)..(268)
<223> C to T (exon 3)
<220>
```

```
<222> (280)..(280)
<223> 17ins(C) (exon 3)
<220>
<221> variation
<222> (312)..(312)
<223> 49del (CAGGTGGATAGTGGCC (exon 3)
<220>
<221> variation
<222> (315)..(315)
<223> G to A (exon 3)
<220>
<221> variation
<222> (316)..(316)
<223> T to C (exon 3)
<220>
<221> variation
<222> (332)..(332)
<223> C to A (exon 3)
<220>
<221> variation
<222> (378)..(378)
<223> C to G (exon 3)
<220>
<221> variation
<222> (441)..(441)
<223> T to G (exon 4)
<220>
<221> variation
<222> (460)..(460)
<223> C to G (exon 4)
<220>
<221> variation
<222> (465)..(465)
<223> C to T (exon 4)
<220>
<221> variation
<222> (471)..(471)
<223> G to C (exon 4)
<220>
<221> variation
<222> (489)..(489)
<223> C to T (exon 4)
<220>
<221> variation
<222> (507)..(507)
<223> C to A (exon 4)
```

```
<220>
<221> variation
<222> (513)..(513)
<223> C to T (exon 4)
<220>
<221> variation
<222> (514)..(514)
<223> G to A (exon 4)
<220>
<221> variation
<222> (525)..(525)
<223> A to C (exon 4)
<220>
<221> variation
<222> (528)..(528)
<223> A to G (exon 4)
<220>
<221> variation
<222> (531)..(531)
<223> A to G (exon 4)
<220>
<221> variation
<222> (537)..(537)
<223> G to T (exon 4)
<220>
<221> variation
<222> (555)..(555)
<223> G to C (exon 4)
<220>
<221> variation
<222> (615)..(615)
<223> C to T (exon 4)
<220>
<221> variation
<222> (729)..(729)
<223> 466ins(C) (exon 5)
<220>
<221> variation
<222> (821)..(821)
<223> C to A (exon 6)
<220>
<221> variation
<222> (839)..(839)
<223> G to A (exon 6)
```

<220>

```
<221> variation
<222> (897)..(897)
<223> 634ins(CCAC) (exon 6)
<220>
<221> variation
<222> (920)..(920)
<223> 657del(CTCTCTCCC)ins(TA) (exon 6)
<220>
<221> variation
<222> (1007)..(1007)
<223> 744del(CTGCC) (exon 7)
<220>
<221> variation
<222> (1012)..(1012)
<223> G to A (exon 7)
<220>
<221> variation
<222> (1022)..(1022)
<223> T to A (exon 7)
<220>
<221> variation
<222> (1058)..(1058)
<223> 795del(C) (exon 7)
<220>
<221> variation
<222> (1081)..(1081)
<223> A to G (exon 7)
<220>
<221> variation
<222> (1105)..(1105)
<223> 842del(A) (exon 7)
<220>
<221> variation
<222> (1133)..(1133)
<223> 870del(CACTAGCAAGCTGCTGGAC)lns(A) (exon 7)
<220>
<221> variation
<222> (1144)..(1144)
<223> T to C (exon 7)
<220>
<221> variation
     (1152)..(1152)
<222>
<223> G to A (exon 7)
<220>
<221> variation
<222> (1221)..(1221)
```

```
<223> A to G (exon 7)
<220>
<221> variation
<222>
      (1224)..(1224)
<223> G to A (exon 7)
<220>
<221> variation
<222> (1237)..(1237)
<223> G to A (exon 7)
<220>
<221> variation
<222> (1297)..(1297)
<223> T to C (exon 7)
<220>
<221> variation
<222> (1303)..(1303)
<223> G to T (exon 7)
<220>
<221> variation
<222> (1369)..(1369)
<223> T to C (exon 8)
<220>
<221> variation
<222> (1385)..(1385)
<223> C to G (exon 8)
<220>
<221> variation
<222> (1425)..(1425)
<223> A to G (exon 8)
<220>
<221> variation
<222> (1440)..(1440)
<223> C to T (exon 8)
<220>
<221> variation
      (1497)..(1497)
<222>
<223> C to T (exon 9)
<220>
<221> variation
<222> (1551)..(1551)
<223> G to A (exon 9)
<220>
<221> variation
<222> (1644)..(1644)
<223> 1381ins(C) (exon 9)
```

<400> 1 gagctcgg		tgggct g	ggcaggta	a ggg	ctggtg	ggga	acggg	ga ç	gagga	acctg	60
cagtccct	ac ttgg	gtagag co	caggcgcc	c ctt	ggctaag	g acgt	cgag	ga g	gcgtg	ggtagc	120
gacgggtgat cttcgctgcg gacttggttc ggagggacgt ccgcttctgg tggacagatt											180
gagcaaagaa tetttgageg gteaagggaa agacaageeg actetteaga teeetgtgga											240
cacactgcct getettecat atc atg gee etc eac eec ege aga gte egg eta Met Ala Leu His Pro Arg Arg Val Arg Leu 1 5 10											
aag ccc Lys Pro											. 341
atc tgg Ile Trp				_			Pro				389
gcc acc Ala Thr											437
gcc tgg Ala Trp 60											485
gac cca Asp Pro 75											533
aga gaa Arg Glu											581
cca gtg Pro Val	_			_		_	Pro	_		-	629
		gga tcc Gly Ser	, -				-				· 677
aat gat Asn Asp 140											725
cac cat His His 155						e Leu					773
tct ccc Ser Pro											821

								act Thr 195								, 869
								tat Tyr								917
_				_		-	_	gac Asp		-		_		_		965
_				_		_		gtg Val	_			_		_	_	1013
								atg Met								1061
		-	-	_		-	_	aaa Lys 275								1109
								act Thr								1157
								agc Ser								1205
								tgg Trp								1253
								aga Arg		-						1301
		-						ctc Leu 355								1349
								atc Ile			-					1397
		_				_		agg Arg				_	_	_	-	1445
								tac Tyr		_						1493
aca	cga	tcc	ttt	gat	agt	ggc	agt	gtc	cgc	ctg	cag	atc	tca	acc	cca	1541

Thr Arg Ser Phe Asp Ser Gly Ser Val Arg Leu Gln Ile Ser Thr Pro 415 420 425	
gac atc aag gat aac atc gtt gct cag ctg aag cag ctg tac cgc atc Asp Ile Lys Asp Asn Ile Val Ala Gln Leu Lys Gln Leu Tyr Arg Ile 430 435 440	1589
ctt caa acc cag gag agc tgg cag ccc atg cag ccc acc ccc agc atg Leu Gln Thr Gln Glu Ser Trp Gln Pro Met Gln Pro Thr Pro Ser Met 445 450 455	1637
caa ctg ccc cct gcc ctg cct ccc cag taa ttgtgaatgc catcttcttc Gln Leu Pro Pro Ala Leu Pro Pro Gln 460 465	1687
cttctctttt ttataatatt gtacatatgg attttttat tgtttagatt taaccagctt	1747
ttaaatctct cttttctcta acagtgttag aagtttgtga ttctccaaat atgcctagat	1807
ttaaagctga tttaatttat ggaaaaatca cccttcagac tttgcttttc tttttcaaat	1867
ctcctaatgg tagtatgata tagcatagta gaaggagatt tggcctggga gtttggacac	1927
caaagttcta gctgcagctt tgcttccaat gtgaccttga acaagtcctt taacctctgg	1987
gcttcagatt tattgcttat aaagtgaaga gattggagta gtgcctgaaa ttgcatccag	2047
ctttagaacg gactcaatga ccttcttcta cttgtacaag gctaaactgc ctggaacaga	2107
atccttctgc attgttcttg taccacattt ttccttggtt ttgttaaagt ttcctcaagc	2167
acta	2171
<210> 2 <211> 467 <212> PRT <213> Homo sapiens	
<400> 2	
Met Ala Leu His Pro Arg Arg Val Arg Leu Lys Pro Trp Leu Val Ala 1 5 10 15	
Gln Val Asp Ser Gly Leu Tyr Pro Gly Leu Ile Trp Leu His Arg Asp 20 25 30	
Ser Lys Arg Phe Gln Ile Pro Trp Lys His Ala Thr Arg His Ser Pro 35 40 45	
Gln Gln Glu Glu Glu Asn Thr Ile Phe Lys Ala Trp Ala Val Glu Thr 50 55 60	

Gly Lys Tyr Gln Glu Gly Val Asp Asp Pro Asp Pro Ala Lys Trp Lys Ala Gln Leu Arg Cys Ala Leu Asn Lys Ser Arg Glu Phe Asn Leu Met Tyr Asp Gly Thr Lys Glu Val Pro Met Asn Pro Val Lys Ile Tyr Gln Val Cys Asp Ile Pro Gln Pro Gln Gly Ser Ile Ile Asn Pro Gly Ser Thr Gly Ser Ala Pro Trp Asp Glu Lys Asp Asn Asp Val Asp Glu Glu Asp Glu Glu Asp Glu Leu Asp Gln Ser Gln His His Val Pro Ile Gln Asp Thr Phe Pro Phe Leu Asn Ile Asn Gly Ser Pro Met Ala Pro Ala Ser Val Gly Asn Cys Ser Val Gly Asn Cys Ser Pro Glu Ala Val Trp Pro Lys Thr Glu Pro Leu Glu Met Glu Val Pro Gln Ala Pro Ile Gln Pro Phe Tyr Ser Ser Pro Glu Leu Trp Ile Ser Ser Leu Pro Met Thr Asp Leu Asp Ile Lys Phe Gln Tyr Arg Gly Lys Glu Tyr Gly Gln Thr Met Thr Val Ser Asn Pro Gln Gly Cys Arg Leu Phe Tyr Gly Asp Leu Gly Pro Met Pro Asp Gln Glu Glu Leu Phe Gly Pro Val Ser Leu Glu Gln Val Lys Phe Pro Gly Pro Glu His Ile Thr Asn Glu Lys Gln Lys Leu Phe Thr Ser Lys Leu Leu Asp Val Met Asp Arg Gly Leu Ile Leu 290 295 300

Glu Val Ser Gly His Ala Ile Tyr Ala Ile Arg Leu Cys Gln Cys Lys 305 310 315 320

Val Tyr Trp Ser Gly Pro Cys Ala Pro Ser Leu Val Ala Pro Asn Leu 325 330 335

Ile Glu Arg Gln Lys Lys Val Lys Leu Phe Cys Leu Glu Thr Phe Leu 340 345 350

Ser Asp Leu Ile Ala His Gln Lys Gly Gln Ile Glu Lys Gln Pro Pro 355 360 365

Phe Glu Ile Tyr Leu Cys Phe Gly Glu Glu Trp Pro Asp Gly Lys Pro 370 375 380

Leu Glu Arg Lys Leu Ile Leu Val Gln Val Ile Pro Val Val Ala Arg 385 390 395 400

Met Ile Tyr Glu Met Phe Ser Gly Asp Phe Thr Arg Ser Phe Asp Ser 405 410 415

Gly Ser Val Arg Leu Gln Ile Ser Thr Pro Asp Ile Lys Asp Asn Ile 420 425 430

Val Ala Gln Leu Lys Gln Leu Tyr Arg Ile Leu Gln Thr Gln Glu Ser 435 440 445

Trp Gln Pro Met Gln Pro Thr Pro Ser Met Gln Leu Pro Pro Ala Leu 450 455 460

Pro Pro Gln 465

<210> 3

<211> 467

<212> PRT

<213> Homo sapiens

<220>

<221> MISC_FEATURE

<223> 5' UTR to Met

```
<220>
<221> VARIANT
<222> (1)..(1)
<223> Met1lle
<220>
<221> VARIANT
<222> (2)..(2)
<223> Ala2Val
<220>
<221> VARIANT
<222> (6)..(6)
<223> Arg6fs
<220>
<221> VARIANT
<222> (17)..(17)
<223> Gln17fs
<220>
<221> VARIANT
<222> (18)..(18)
<223> Val18Met
<220>
<221> VARIANT
<222> (18)..(18)
<223> Val18Ala
<220>
<221> VARIANT
<222> (39)..(39)
<223> Pro39Ala
<220>
<221> VARIANT
<222> (60)..(60)
<223> Trp60Gly
<220>
<221> VARIANT
<222> (61)..(61)
<223> Ala61Gly
<220>
<221> VARIANT
<222> (66)..(66)
<223> Lys66Thr
<220>
<221> VARIANT
<222> (68)..(68)
<223> Gln68X
```

<220>

<221> VARIANT

```
<222> (70)..(70)
```

- <223> Gly70Arg
- <220>
- <221> VARIANT
- <222> (76)..(76)
- <223> Pro76Ser
- <220>
- <221> VARIANT
- <222> (82)..(82)
- <223> Gln82Lys
- <220>
- <221> VARIANT
- <222> (84)..(84)
- <223> Arg84Cys
- <220>
- <221> VARIANT
- <222> (84)..(84)
- <223> Arg84His
- <220>
- <221> VARIANT
- <222> (89)..(89) <223> Lys89Glu
- <220>
- <221> VARIANT
- <222> (90)..(90)
- <223> Ser90Gly
- <220>
- <221> VARIANT
- <222> (92)..(92)
- <223> Glu92X
- <220>
- <221> VARIANT
- <222> (98)..(98)
- <223> Asp98His
- <220>
- <221> VARIANT
- <222> (118)..(118)
- <223> Gln118X
- <220>
- <221> VARIANT
- <222> (156)..(156)
- <223> His156fs
- <220>
- <221> VARIANT
- <222> (186)..(186)
- <223> Cys186X

```
<220>
<221> VARIANT
<222>
      (192)..(192)
<223> Trp192X
<220>
<221> VARIANT
<222>
      (212)..(212)
<223> Ser212fs
<220>
<221> VARIANT
<222> (219)..(219)
<223> Ser219fs
<220>
<221> VARIANT
<222>
      (248)..(248)
<223> Gly248fs
<220>
<221> VARIANT
<222> (250)..(250)
<223> Arg250Gln
<220>
<221> VARIANT
<222> (253)..(253)
<223> Tyr253X
<220>
<221> VARIANT
<222> (265)..(265)
<223> Leu265fs
<220>
<221> VARIANT
<222>
      (273)..(273)
<223> Gln273Arg
<220>
<221> VARIANT
<222> (274)..(274)
<223> Val274Ile
<220>
<221> VARIANT
<222> (294)..(294)
<223> Leu294Pro
<220>
<221> VARIANT
<222>
      (297)..(297)
<223> Va1297Ile
```

<220>

```
<221> VARIANT
```

- <222> (320)..(320)
- <223> Lys320Glu
- <220>
- <221> VARIANT
- <222> (321)..(321)
- <223> Val321Met
- <220>
- <221> VARIANT
- <222> (325)..(325)
- <223> Gly325Glu
- <220>
- <221> VARIANT
- <222> (345)..(345)
- <223> Leu345Pro
- <220>
- <221> VARIANT
- <222> (347)..(347)
- <223> Cys347Phe
- <220>
- <221> VARIANT
- <222> (369)..(369)
- <223> Phe369Ser
- <220>
- <221> VARIANT
- <222> (374)..(374)
- <223> Cys374Trp
- <220>
- <221> VARIANT
- <222> (388)..(388)
- <223> Lys388Glu
- <220>
- <221> VARIANT
- <222> (393)..(393)
- <223> Gln393X
- <220>
- <221> VARIANT
- <222> (412)..(412)
- <223> Arg412X
- <220>
- <221> VARIANT
- <222> (430)..(430)
- <223> Asp430Asn
- <220>
- <221> VARIANT
- <222> (461)..(461)

<223> Pro461fs

<400> 3

Met Ala Leu His Pro Arg Arg Val Arg Leu Lys Pro Trp Leu Val Ala 1 5 10 15

Gln Val Asp Ser Gly Leu Tyr Pro Gly Leu Ile Trp Leu His Arg Asp 20 25 30

Ser Lys Arg Phe Gln Ile Pro Trp Lys His Ala Thr Arg His Ser Pro 35 40 45

Gln Gln Glu Glu Glu Asn Thr Ile Phe Lys Ala Trp Ala Val Glu Thr 50 55 60

Gly Lys Tyr Gln Glu Gly Val Asp Asp Pro Asp Pro Ala Lys Trp Lys 65 70 75 80

Ala Gln Leu Arg Cys Ala Leu Asn Lys Ser Arg Glu Phe Asn Leu Met 85 90 95

Tyr Asp Gly Thr Lys Glu Val Pro Met Asn Pro Val Lys Ile Tyr Gln
100 105 110

Val Cys Asp Ile Pro Gln Pro Gln Gly Ser Ile Ile Asn Pro Gly Ser 115 120 125

Thr Gly Ser Ala Pro Trp Asp Glu Lys Asp Asn Asp Val Asp Glu Glu 130 135 140

Asp Glu Glu Asp Glu Leu Asp Gln Ser Gln His His Val Pro Ile Gln 145 150 155 160

Asp Thr Phe Pro Phe Leu Asn Ile Asn Gly Ser Pro Met Ala Pro Ala 165 170 175

Ser Val Gly Asn Cys Ser Val Gly Asn Cys Ser Pro Glu Ala Val Trp 180 185 190

Pro Lys Thr Glu Pro Leu Glu Met Glu Val Pro Gln Ala Pro Ile Gln
195 200 205

Pro Phe Tyr Ser Ser Pro Glu Leu Trp Ile Ser Ser Leu Pro Met Thr

210 215 220

	Asp 225	Leu	Asp	Ile	Lys	Phe 230	Gln	Tyr	Arg	Gly	Lys 235	Glu	Tyr	Gly	Gln	Thr 240
	Met	Thr	Val	Ser	Asn 245	Pro	Gln	Gly	Cys	Arg 250	Leu	Phe	Tyr	Gly	Asp 255	Leu
•	Gly	Pro	Met	Pro 260	Asp	Gln	Glu	Glu	Leu 265	Phe	Gly	Pro	Val	Ser 270	Leu	Glu
	Gln	Val	Lys 275	Phe	Pro	Gly	Pro	Glu 280	His	Ile	Thr	Asn	Glu 285	Lys	Gln	Lys
	Leu	Phe 290	Thr	Ser	Lys	Leu	Leu 295	Asp	Val	Met	Asp	Arg 300	Gly	Leu	Ile	Leu
	Glu 305	Val	Ser	Gly	His	Ala 310	Ile	Tyr	Ala	Ile	Arg 315	Leu	Cys	Gln	Cys	Lys 320
	Val	Tyr	Trp	Ser	Gly 325	Pro	Cys	Ala	Pro	Ser 330	Leu	Val	Ala	Pro	Asn 335	Leu
	Ile	Glu	Arg	Gln 340	Lys	Lys	Val	Lys	Leu 345	Phe	Cys	Leu	Glu	Thr 350	Phe	Leu
	Ser	Asp	Leu 355	Ile	Ala	His	Gln	Lys 360	Gly	Gln	Ile	Glu	Lys 365	Gln	Pro	Pro
	Phe	Glu 370	Ile	Tyr	Leu	Cys	Phe 375	Gly	Glu	Glu	Trp	Pro 380	Asp	Gly	Lys	Pro
	Leu 385	Glu	Arg	Lys	Leu	Ile 390	Leu	Val	Gln	Val	Ile 395	Pro	Val	Val	Ala	Arg 400
	Met	Ile	Tyr	Glu	Met 405	Phe	Ser	Gly	Asp	Phe 410	Thr	Arg	Ser	Phe	Asp 415	Ser
	Gly	Ser	Val	Arg 420	Leu	Gln	Ile	Ser	Thr 425	Pro	Asp	Ile	Lys	Asp 430	Asn	Ile
	Val	Ala	Gln	Leu	Lys	Gln	Leu	Tyr	Arg	Ile	Leu	Gln	Thr	Gln	Glu	Ser

```
Trp Gln Pro Met Gln Pro Thr Pro Ser Met Gln Leu Pro Pro Ala Leu
   450
                       455
                                           460
Pro Pro Gln
465
<210> 4
<211> 19
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> 870del(CACTAGCAAGCTGCTGGAC)lns
(A)
<400> 4
                                                                     19
cactagcaag ctgctggac
```