Foundations of Machine Learning

Module 1: Introduction

Part c: Hypothesis Space and Inductive Bias

Sudeshna Sarkar IIT Kharagpur

Inductive Learning or Prediction

- Given examples of a function (X, F(X))
 - Predict function F(X) for new examples X
- Classification
 F(X) = Discrete
- Regression F(X) = Continuous
- Probability estimation F(X) = Probability(X):

Features

- Features: Properties that describe each instance in a quantitative manner.
- Feature vector: n-dimensional vector of features that represent some object

Feature Space

Slide by Jesse Davis: University of Washington

Terminology

Slide by Jesse Davis: University of Washington

Terminology

Slide by Jesse Davis: University of Washington

Representations

1. Decision Tree

2. Linear function

Representations

- 3. Multivariate linear function
- 4. Single layer perceptron
- 5. Multi-layer neural networks

Hypothesis Space

 The space of all hypotheses that can, in principle, be output by a learning algorithm.

- We can think about a supervised learning machine as a device that explores a "hypothesis space".
 - Each setting of the parameters in the machine is a different hypothesis about the function that maps input vectors to output vectors.

Terminology

- Example (x,y): Instance x with label y.
- Training Data S: Collection of examples observed by learning algorithm.
- Instance Space X: Set of all possible objects describable by features.
- Concept c: Subset of objects from X (c is unknown).
- Target Function f: Maps each instance x ∈ X to target label y ∈ Y

Classifier

- Hypothesis h: Function that approximates f.
- Hypothesis Space \mathcal{H} : Set of functions we allow for approximating f.
- The set of hypotheses that can be produced, can be restricted further by specifying a language bias.
- Input: Training set $S \subseteq X$
- Output: A hypothesis $h \in \mathcal{H}$

Hypothesis Spaces

- If there are 4 (N) input features, there are $2^{16} \left(2^{2^N}\right)$ possible Boolean functions.
- We cannot figure out which one is correct unless we see every possible input-output pair $2^4(2^N)$

Example

Hypothesis language

- 1. may contain representations of all polynomial functions from X to Y if $X = \mathbb{R}^n$ and $Y = \mathbb{R}$,
- 2. may be able to represent all conjunctive concepts over X when $X = B^n$ and Y = B (with B the set of booleans).
- Hypothesis language reflects an inductive bias that the learner has

Inductive Bias

- Need to make assumptions
 - Experience alone doesn't allow us to make conclusions about unseen data instances

- Two types of bias:
 - Restriction: Limit the hypothesis space
 - Preference: Impose ordering on hypothesis space

Inductive learning

- Inductive learning: Inducing a general function from training examples
 - Construct hypothesis h to agree with c on the training examples.
 - A hypothesis is consistent if it agrees with all training examples.
 - A hypothesis said to generalize well if it correctly predicts the value of y for novel example.
- Inductive Learning is an III Posed Problem:
 Unless we see all possible examples the data is not sufficient for an inductive learning algorithm to find a unique solution.

Inductive Learning Hypothesis

• Any hypothesis h found to approximate the target function c well over a sufficiently large set of training examples \mathcal{D} will also approximate the target function well over other unobserved examples.

Learning as Refining the Hypothesis Space

- Concept learning is a task of searching an hypotheses space of possible representations looking for the representation(s) that best fits the data, given the bias.
- The tendency to prefer one hypothesis over another is called a bias.
- Given a representation, data, and a bias, the problem of learning can be reduced to one of search.

Occam's Razor

A classical example of Inductive Bias

 the simplest consistent hypothesis about the target function is actually the best

Some more Types of Inductive Bias

- Minimum description length: when forming a hypothesis, attempt to minimize the length of the description of the hypothesis.
- Maximum margin: when drawing a boundary between two classes, attempt to maximize the width of the boundary (SVM)

Important issues in Machine Learning

- What are good hypothesis spaces?
- Algorithms that work with the hypothesis spaces
- How to optimize accuracy over future data points (overfitting)
- How can we have confidence in the result? (How much training data – statistical qs)
- Are some learning problems computationally intractable?

Generalization

- Components of generalization error
 - Bias: how much the average model over all training sets differ from the true model?
 - Error due to inaccurate assumptions/simplifications made by the model
 - Variance: how much models estimated from different training sets differ from each other

Underfitting and Overfitting

- Underfitting: model is too "simple" to represent all the relevant class characteristics
 - High bias and low variance
 - High training error and high test error
- Overfitting: model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low bias and high variance
 - Low training error and high test error