ASSIGNMENT 1

Name: Md Lutfor Rahman Abir

ld: 1811215642

Course: CSE 231 Lab

Sec: 10

BCD				EXCESS -3		
A	B	C	D	WXXZ		
0	0	0	0	0 0 0 1		
0	0	0	1	0 1 0 0		
0	0	1	0	0 1 0 1		
0	Ō	1	1	0 1 1 0		
0	1	0	0	0 1 1 1		
0	1	0	1	© 1 0 0 0		
0	١	1	0	1001		
0	1	1	1	1 0 1 0		
1	0	0	0	1 6 1 1		
1	0	0	1	1 1 0 0		
1	0	1	0	XXXX		
1	0	1	1	XXXX		
1	1	0	0	XXXX		
1	1	0	1	XXXX		
1	1	1	0	XXXX		
1	-1	1	1	XXXX		

K-map

- 2. The NAND and NOR gates are universal gates. We can construct any logic circuit using universal gates. Yes, I can design a 7 segment using universal gates.
- 3. a) I need 3 types of ic to construct the following(fig-1) circuit.
 - b) F= A'C+AB'+BC in 1st canonical form.
 - c) to construct the fig-1 circuit using NAND gate we need new equation.
- 4. To activate the fig-2 circuit positive wire should be connect to vcc, pin number is 7. And negative wire should be connect to ground(gnd) pic number is 14. This is 2 input NAND gate. Ic number is 7400.
- 5. First task in the lab was Boolean function using logic gates. So far we used OR, NAND,AND,7 SEGMENT, WIRE, BREADBORD,NOT GATES,TRAINER BOARD.
- 6. Constructing 3 input OR gate using 2 input OR gate.

7. Building an inverter using NAND gate:

- 8. In Binary number system the first digit (bit) from right to left is called as least significant bit (LSB).
- 9. In digital systems, 1 byte is equal to 8 bit(s).
- 10. Maximum number in decimal that can be represented by 4 bits (binary) is 15.
- **11**. a) 01010101
- 12. The Boolean algebra is mostly based on Boolean theorem.