Geometric Measure Theory Need 2 Get Good at Tensor Products

Jacob White

October 2022

Problem 1. Prove that the tensor product of vector spaces $V_1 \times \cdots \times V_n$ exists and is unique.

Proof.

• Existence: Let F be the vector space of all functions $f: V_1 \times \cdots \times V_n \to \mathbf{R}$ such that for all $f \in F$, there exists a finite set $S_f \subseteq V_1 \times \cdots \times V_n$ such that

$$f \equiv 0$$
 outside S_f .

Further, define $\phi: V_1 \times \cdots \times V_n \to F$ by

$$\phi(v_1, \dots, v_n) = \begin{cases} 1 & \text{at } (v_1, \dots, v_n) \\ 0 & \text{elsewhere} \end{cases}$$

Then, the set *G* generated by all elements of two types:

$$\phi(v_1, \dots, v_{i-1}, x, v_{i+1}, \dots, v_n) + \phi(v_1, \dots, v_{i-1}, y, v_{i+1}, \dots, v_n)$$
$$-\phi(v_1, \dots, v_{i-1}, x + y, v_{i+1}, \dots, v_n)$$

and

$$\phi(v_1,\ldots,v_{i-1},cv_i,v_{i+1},\ldots,v_n)-c\;\phi(v_1,\ldots,v_{i-1},v_i,v_{i+1},\ldots,v_n)$$

with $c \in \mathbf{R}$ defines a subspace of F. Then, define

$$V_1 \otimes \cdots \otimes V_n = F/G$$

where

$$\mu = \pi \circ \phi$$

where π is the canonical map of F onto F/G.

Next, we'll check that μ is multilinear. We have,

$$\mu(v_1, \dots, v_{i-1}, x + y, v_{i+1}, \dots, v_n) = \pi(\phi(v_1, \dots, v_{i-1}, x + y, v_{i+1}, \dots, v_n))$$

$$= \pi \left\{ \begin{cases} 1 & \text{at } (v_1, \dots, v_{i-1}, x + y, v_{i+1}, \dots, v_n) \\ 0 & \text{elsewhere} \end{cases} \right\}$$

The equivalence class of the above function has the two elements below:

$$[\phi(v_1,\ldots,v_{i-1},x+y,v_{i+1},\ldots,v_n)]$$

$$= \{\phi(v_1,\ldots,v_{i-1},x,v_{i+1},\ldots,v_n) + \phi(v_1,\ldots,v_{i-1},y,v_{i+1},\ldots,v_n), \phi(v_1,\ldots,v_{i-1},x+y,v_{i+1},\ldots,v_n)\}$$

Hence.

$$\pi(\phi(v_1,\ldots,v_{i-1},x+y,v_{i+1},\ldots,v_n)) = \pi[\phi((v_1,\ldots,v_{i-1},x,v_{i+1},\ldots,v_n)) + \phi((v_1,\ldots,v_{i-1},y,v_{i+1},\ldots,v_n))]$$

$$= \pi(\phi(v_1,\ldots,v_{i-1},x,v_{i+1},\ldots,v_n)) + \pi(\phi(v_1,\ldots,v_{i-1},y,v_{i+1},\ldots,v_n))$$

$$= \mu(v_1,\ldots,v_{i-1},x,v_{i+1},\ldots,v_n) + \mu(v_1,\ldots,v_{i-1},y,v_{i+1},\ldots,v_n)$$

which establishes additivity in every slot. For the scalar property, with $c \in \mathbf{R}$, we have,

$$\mu(v_1, \dots, v_{i-1}, cx, v_{i+1}, \dots, v_n) = \pi(\phi(v_1, \dots, v_{i-1}, cx, v_{i+1}, \dots, v_n))$$

$$= \pi(c\phi(v_1, \dots, v_{i-1}, x, v_{i+1}, \dots, v_n))$$

$$= c\pi(\phi(v_1, \dots, v_{i-1}, x, v_{i+1}, \dots, v_n))$$

$$= c\mu(v_1, \dots, v_{i-1}, x, v_{i+1}, \dots, v_n)$$

and hence μ is n-linear. Now, we check that $(F/G, \mu)$ defines a tensor product of V_1, \dots, V_n . Let W be another vector space, and $L: V_1 \times \dots \times V_n \to W$ some n-linear map. Since each $f \in F$ is uniquely determined by its values on S_f , we may write

$$f(v_1,\ldots,v_n)=\sum_{v_1\times\cdots\times v_n}c_f(v_1,\ldots,v_n)\chi_{(v_1,\ldots,v_n)}$$

Then, define a map $g^*: F \to W$ by

$$g^*\left(\sum_{V_1\times\cdots\times V_n}c_f(v_1,\ldots,v_n)\chi_{(v_1,\ldots,v_n)}\right)=\sum_{V_1\times\cdots\times V_n}c_f(v_1,\ldots,v_n)L(v_1,\ldots,v_n)$$

It is easy to see that g^* is linear, as for $k \in \mathbb{R}$,

$$g^{*}\left(\sum_{V_{1}\times\cdots\times V_{n}}c_{f}(v_{1},\ldots,v_{n})\chi_{(v_{1},\ldots,v_{n})}+k\sum_{V_{1}\times\cdots\times V_{n}}c_{f'}(v_{1},\ldots,v_{n})\chi_{(v_{1},\ldots,v_{n})}\right)$$

$$=g^{*}\left(\sum_{V_{1}\times\cdots\times V_{n}}(c_{f}(v_{1},\ldots,v_{n})+(kc_{f'}(v_{1},\ldots,v_{n}))\chi_{(v_{1},\ldots,v_{n})}\right)$$

$$=\sum_{V_{1}\times\cdots\times V_{n}}(c_{f}(v_{1},\ldots,v_{n})+kc_{f'}(v_{1},\ldots,v_{n}))L(v_{1},\ldots,v_{n})$$

$$=\sum_{V_{1}\times\cdots\times V_{n}}c_{f}(v_{1},\ldots,v_{n})L(v_{1},\ldots,v_{n})+k\sum_{V_{1}\times\cdots\times V_{n}}c_{f'}(v_{1},\ldots,v_{n})L(v_{1},\ldots,v_{n})$$

$$=g^{*}\left(\sum_{V_{1}\times\cdots\times V_{n}}c_{f}(v_{1},\ldots,v_{n})\chi_{(v_{1},\ldots,v_{n})}\right)+kg^{*}\left(\sum_{V_{1}\times\cdots\times V_{n}}c_{f'}(v_{1},\ldots,v_{n})\chi_{(v_{1},\ldots,v_{n})}\right)$$

By virtue of this, g^* descends to a linear map $F/G \to W$, which we call g. More formally, we define

$$g: F/G \to W$$
 where $[\phi] \mapsto g^*(\phi)$.

Uniqueness of g is trivial.

• Uniqueness: Suppose that (T, μ) and (T', μ') are both tensor products of V_1, \ldots, V_n . Then we have two factorizations:

$$V_1 \times \cdots \times V_n \xrightarrow{\mu} T$$

$$V_1 \times \cdots \times V_n \xrightarrow{\mu'} T'$$

$$T'$$

$$T'$$

Then, we may demonstrate that *T* and *T* are isomorphic by demonstrating that the following diagram

$$V_1 \times \cdots \times V_n \xrightarrow{\mu} T' \text{Id}_T$$

$$T \downarrow g$$

$$\downarrow g' \downarrow \text{Id}_T$$

commutes. It must, for with $\mu: V_1 \times \cdots \times V_n \to T$ has unique factorization through T, that's just the identity map. This lends the result.

Problem 2. Prove that for any linear maps

$$f_1: V_1 \rightarrow V'_1, \ldots, f_n: V_n \rightarrow V'_n$$

there exists a unique linear map

$$f_1 \otimes \cdots \otimes f_n : V_1 \otimes \cdots \otimes V_n \to V'_1 \otimes \cdots \otimes V'_n$$

such that

$$(f_1 \otimes \cdots \otimes f_n)(v_1 \otimes \cdots \otimes v_n) = f_1(v_1) \otimes \cdots \otimes f_n(v_n)$$

whenever $v_i \in V_j$ for j = 1, ..., n.

Proof. Let

$$f: V_1 \times \cdots \times V_n \to V'_1 \times \cdots \times V'_n, \qquad (v_1, \dots, v_n) \mapsto (f_1(v_1), \dots, f_n(v_n))$$

Given that each f_i is linear for $1 \le i \le n$, it is clear that f is n linear. Then, we seek to find φ such that the following diagram commutes:

$$V_{1} \times \cdots \times V_{n} \xrightarrow{\mu} V_{1} \otimes \cdots \otimes V_{n}$$

$$\downarrow \exists ! \varphi \\ V'_{1} \times \cdots \times V'_{n} \xrightarrow{\mu'} V'_{1} \otimes \cdots \otimes V'_{n}$$

Define $g: V_1 \times \cdots V_n \to V'_1 \otimes \cdots \otimes V'_n$ by

$$g(v_1,\ldots,v_n)=f(v_1)\otimes\cdots\otimes f(v_n).$$

Then g is clearly n-linear, so there exists a unique map φ such that the diagram

commutes. That is, there exists a unique map φ such that

$$g(v_1,\ldots,v_n)=\varphi\circ\mu(v_1,\ldots,v_n)$$

That is,

$$\varphi \circ \mu(v_1, \ldots, v_n) = \varphi(v_1 \otimes \cdots \otimes v_n) = f_1(v_1) \otimes \cdots \otimes f_n(v_n)$$

Therefore, set $\varphi = f_1 \otimes \cdots \otimes f_n$.

Problem 3. Prove the following isomorphisms:

(a) For each permutation λ of $\{1, \ldots, n\}$,

$$V_1 \otimes \cdots \otimes V_n \simeq V_{\lambda(1)} \otimes \cdots \otimes V_{\lambda(n)}$$

(b) For m < n,

$$(V_1 \otimes \cdots \otimes V_m) \otimes (V_{m+1} \otimes \cdots \otimes V_n) \simeq V_1 \otimes \cdots \otimes V_n$$

(c) If $V \simeq P \oplus Q$, then

$$V \otimes W \simeq (P \otimes W) \oplus (Q \otimes W)$$

Proof.

(a) Let $f: V_1 \times \cdots \times V_n \to V_{\lambda(1)} \otimes \cdots \otimes V_{\lambda(n)}$ where

$$(v_1,\ldots,v_n)\mapsto v_{\lambda(1)}\otimes\cdots\otimes v_{\lambda(n)}.$$

Then, we have the following commutative diagram

$$V_1 \times \cdots \times V_n \xrightarrow{\mu} V_1 \otimes \cdots \otimes V_n$$

$$\downarrow f \downarrow \qquad \qquad \downarrow \downarrow \qquad \qquad$$

This lends that $\Phi(v_1 \otimes \cdots \otimes v_n) = v_{\lambda(1)} \otimes \cdots \otimes v_{\lambda(n)}$, which is a linear map. Defining $\Phi^{-1}(v_1 \otimes \cdots \otimes v_n) = v_{\lambda^{-1}(1)} \otimes \cdots \otimes v_{\lambda^{-1}(n)}$, we get that $\Phi \circ \Phi^{-1}$ and $\Phi^{-1} \circ \Phi$ are identity maps, whereby the two spaces are isomorphic.

(b) We try another method by demonstrating that

$$(V_1 \otimes \cdots \otimes V_m) \otimes (V_{m+1} \otimes \cdots \otimes V_n)$$

is a tensor product of V_1, \ldots, V_n . We have the following commutative diagram

Then, the solution to the universal mapping problem

$$V_1 \times \cdots \times V_n \xrightarrow{\mu} (V_1 \otimes \cdots \otimes V_m) \otimes (V_{m+1} \otimes \cdots \otimes V_n)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

is given by setting $\mu = \mu_1 \otimes \mu_2$ and $g = g_1 \otimes g_2$.

(c) Let $V \simeq_{\Phi} P \oplus Q$. We'll show that $(P \otimes W) \oplus (Q \otimes W)$ is a tensor product of $V \times W$:

First, we have $V \simeq_{\Phi} P \oplus Q$. This lends the linear isomorphism $\Phi \times \mathbf{1}_W$ between $V \times W$ and $(P \oplus Q) \times W$. From this, we have the standard tensor product mapping $\mu_1 : (P \oplus Q) \times W \to (P \oplus Q) \otimes W$ where $((u, v), w) \mapsto (u, v) \otimes w$. Finally, we define a mapping

$$\Psi: (P \oplus Q) \otimes W \rightarrow (P \otimes W) \oplus (Q \otimes W)$$

by

$$(u,v) \otimes w \mapsto (u \otimes w, v \otimes w).$$

First we check that this mapping is well-defined. If the projection maps $\Psi_1: (P \oplus Q) \otimes W \to P \otimes W$ and $\Psi_2: (P \oplus Q) \otimes W \to Q \otimes W$ are well defined, then so is $\Psi = \Psi_1 \oplus \Psi_2$. Now, let $\operatorname{pr}_1: P \oplus Q \to P$ where $(u,v) \mapsto u$. Then

$$\Psi_1 = \operatorname{pr}_1 \otimes \mathbf{1}_W$$

and a similar argument shows Ψ_2 is well defined, whereby Ψ is well defined and we have an isomorphism between $(P \oplus Q) \otimes W$ and $(PW) \oplus (Q \otimes W)$, lending the result.

$$V \times W \xrightarrow{\Phi \times \mathbf{1}_W} (P \oplus Q) \times W \xrightarrow{\mu_1} (P \oplus Q) \otimes W \xrightarrow{\Psi} (P \otimes W) \oplus (Q \otimes W)$$

Problem 4. Prove that if B_j is a basis for V_j for each j, then the elements $b_1 \otimes \cdots \otimes b_n$ with $b_j \in B_j$, form a basis of $V_1 \otimes \cdots \otimes V_n$. Therefore,

$$\dim(V_1\otimes\cdots\otimes V_n)=\prod_{i=1}^n\dim V_j$$

Proof. Since B_j is a basis for V_j , we have that $V_j \simeq \bigoplus_{b \in B_i} \operatorname{span}(b)$. Therefore, by **Problem 3**,

$$\bigotimes_{j=1}^{n} V_{j} \simeq \bigotimes_{j=1}^{n} \left(\bigoplus_{b \in B_{j}} \operatorname{span}(b) \right)$$

$$\simeq \bigoplus_{(b_{1}, \dots, b_{j}) \in B_{1} \times \dots \times B_{j}} \operatorname{span}(b_{1} \otimes \dots \otimes b_{j})$$

Problem 5. Let V_1, V_2, \dots, V_n be vector spaces. For $v_1 \otimes \dots \otimes v_n \in V_1 \otimes \dots \otimes V_n$ and $v_1' \otimes \dots \otimes v_n' \in V_1 \otimes \dots \otimes V_n$, prove that

$$v_1 \otimes \cdots \otimes v_n = v'_1 \otimes \cdots \otimes v'_n$$

if and only if for all *n*-linear $f: V_1 \times \cdots \times V_n \to W$, and for all *W*, where *W* is some other vector space,

$$f(v_1,\ldots,v_n)=f(v_1',\ldots,v_n').$$

Proof. Suppose $v_1 \otimes \cdots \otimes v_n = v_1' \otimes \cdots \otimes v_n'$, and let $f: V_1 \times \cdots \times V_n \to W$ be n-linear. Then, we have the following commutative diagram.

$$V_1 \times \cdots \times V_n \xrightarrow{\mu} V_1 \otimes \cdots \otimes V_n$$

$$\downarrow f \downarrow \qquad \qquad \downarrow g$$

$$\downarrow g$$

Since $v_1 \otimes \cdots \otimes v_n = v'_1 \otimes \cdots \otimes v'_n$,

$$f(v_1,\ldots,v_n)=g(v_1\otimes\cdots\otimes v_n)=g(v_1'\otimes\cdots\otimes v_n')=f(v_1',\ldots,v_n').$$

Conversely, suppose that for all *n*-linear $f: V_1 \times \cdots \times V_n \to W$,

$$f(v_1,\ldots,v_n)=f(v_1',\ldots,v_n').$$

We must show

$$\mu(v_1,\ldots,v_n)=v_1\otimes\cdots\otimes v_n=v_1'\otimes\cdots\otimes v_n'=\mu(v_1',\ldots,v_n').$$

Simply pick $W = V_1 \otimes \cdots \otimes V_n$, and we are done.