Math 551, Duke University

Lecture 4

Week 1 recap: Eigen-expansion solution of matrix/vector problem $L \vec{u} = \vec{f}$ is

$$ec{\mathrm{u}} = \sum_{k=1}^n c_k \phi_k$$
 with coeffs $c_k = c(ec{\mathrm{f}}, \lambda_k, \phi_k, \psi_k)$

- 1. Find λ_k, ϕ_k from $L\phi = \lambda \phi$
- 2. Determine the adjoint L*, this depends on the inner product If L* = L then $\psi = \phi$ else find ψ 's from $(L^* \lambda I)\psi_k = 0$
 - 3. Determine c_k 's from $\langle \psi_k, L\vec{u} \rangle = \langle \psi_k, \vec{f} \rangle$

Extending Linear Algebra Theory to Linear Differential Eqns

$$ullet$$
 Solutions/domains: $\mathbf{u} \in \mathbb{R}^n \quad o \quad L^2 \; ext{fcn} \; u(x) \; ext{on} \; a \leq x \leq b$

$$ullet$$
 Inner products: $\mathbf{u}\cdot\mathbf{v} \qquad o \qquad \int_a^b u(x)v(x)\,dx$

$$extbf{u} \cdot extbf{v} = 0 \qquad o \qquad \int_a^b uv \, dx = 0$$

$$ullet$$
 Linear operators: matrix ${f L}_{n imes n}$ o ${f L}=$ LHS of ODE & BC's

$$ullet$$
 Problems: Lu $=$ f $ullet$ $ullet$

ODE Boundary Value Problems (BVP) (part I)

Ex:
$$\begin{cases} \frac{d^2u}{dx^2} + 4x\frac{du}{dx} + 5u = e^{3x} & 0 \leq x \leq 2 \\ u(0) = 6 & u'(2) - 3u(2) = 0 \end{cases}$$

Every ODE BVP has 4 parts:

- 1. The domain $(a \le x \le b)$
- 2. The differential equation which holds for all points in the domain (ODE)
- 3. The boundary equations that hold at each endpoint (BC's)
- 4. Righthandside forcing (f(x)) fcn in ODE, consts in BC's)
- Each equation in the problem has:

LHS
$$u=$$
 operator acting on soln $egin{array}{ll} ext{RHS} = egin{cases} 0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the problem has: $0 & ext{homogeneous case} \
equation in the pro$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

- If all eqns' RHS's are homogeneous, then the problem is homogeneous
- If any eqn has an inhomogeneous RHS, then the problem is inhomogeneous.
- ullet If both the ODE and BC's are homogeneous, then $u(x)\equiv 0$ is a soln, but it is not helpful (called "the trivial soln"). Only NON-trivial solns are useful.

ODE BVP (part II): definitions

- 1. Linear differential operator = linear sum of soln and derivatives times coeffs Ex: $Lu = 4u'' + 3xu' + 5e^{2x}u$
- 2. Formal linear operator = LHS of ODE only Complete linear operator = LHS's of (ODE and all BC's) Without BC's $\mathbf{L}u = f$ has many solns. With BC's, final soln is "specific".
- 3. Classes of BC's (see Haberman, page 156) (inhom. / hom. versions)
 - (a) Dirichlet (1st kind) Sets value of solution: $u(a)=g \ / \ u(b)=0$
 - (b) Neumann (2nd kind) Sets value of derivative: $u'(a) = h \ / \ u'(b) = 0$
 - (c) Robin (3rd kind) Sets value of a linear combination:

- (d) BVP can mix different kinds of BC's at left (x=a) & right (x=b) boundaries
- (e) Separated BC's: (Isolated) not involving the other boundary (ex: 1st, 2nd, 3rd kind)
- (f) Mixed BC's: coupling properties from both boundaries in a single equation

Ex: Periodic BC's
$$= \{u(b) - u(a) = 0, u'(b) - u'(a) = 0\}$$

ODE Adjoint problems: needed to calculate $c_{m k}$'s (need ψ 's for $\langle f,\psi
angle$ and $\langle \phi,\psi
angle$)

ODE BVP: How do you determine the complete adjoint operator?

 \mathbf{L}^* from \mathbf{L} and BC^* from BC

The complete adjoint L^* is always defined by the **Inner product adjoint relation**:

$$\langle v(x), \mathrm{L} u(x)
angle = \langle \mathrm{L}^* v(x), u(x)
angle$$
 for all u, v 's with `hom.` BC's

For diff eqns, called the Lagrange identity or Green's formula in some books.

- If $L^* = L$ in $\langle v, Lu \rangle = \langle L^*v, u \rangle$ (i.e. L^*v on v is the same as Lu on u) then L is called **formally self-adjoint**
- If $L^* = L$ and $BC^* = BC$ then the <u>complete operator is self-adjoint</u> (a.k.a. <u>fully self-adjoint</u>)
 Important results for (fully) self-adjoint operators:
 - 1. Self-orthogonal set of eigenfunctions: $\langle \phi_k, \phi_j \rangle = 0$ if $k \neq j$.
 - 2. All eigenvalues λ_k are real (see Sakai/Resources/L04b.pdf)

These results can make some problems MUCH easier to solve. (also see Sakai/Resources/L04a.pdf)

^aUsual general proofs from the inner product adjoint relation for any type of inner product.

ODE BVP Eigenvalue problems on domain $a \le x \le b$:

$$L\phi = -\lambda\phi$$
 $BC_1\phi(a) = 0$ $BC_2\phi(b) = 0$ (version 1.0)

Problem structure:

- ullet LHS=Linear operator applied to eigenfcn ϕ and RHS= -(eigenvalue) ϕ
- ullet Homogeneous version of BC's applied to ϕ
- $L\phi + \lambda\phi = 0$ is a homogeneous problem: it has nontrivial solutions (eigenfunctions $||\phi||^2 \neq 0$) only for special choices for λ values (eigenvalues)

Eigenvalue problems: Matrix vs. ODE BVP comparisons

Matrix:
$$L\vec{\phi} = \lambda\vec{\phi}$$
 vs. ODE BVP: { $L\phi(x) = -\lambda\phi(x),\ BC\phi = 0$ }

- Historical tradition: ODE eigenvalue equation has an extra minus sign
- Matrix eigenvalues for $L_{n\times n}$: determinant $|L \lambda I| = 0$ has n eig-vals ODE BVP eigenvalues: has an infinite number of eig-vals. (How? IOU)

Solving ODE BVP eigenvalue problems – the general approach:

1. Get the general solution of the homogeneous ODE.

The general homogeneous soln of an $n^{ ext{th}}$ order ODE is a linear combo of n independent solns:

$$\phi_{\text{gen}}(x) = b_1 \phi_1(x) + b_2 \phi_2(x) + \dots + b_n \phi_n(x)$$

 b_1, b_2, \cdots, b_n constants not determined yet (BC's not applied yet)

2. Apply the homogeneous BC's to the general soln to determine the condition for the eigenvalues, and the form of the eigenfunctions.

A $n^{
m th}$ order problem should have n BC's:

- ullet Will give n eqns for n parameters: λ and (n-1) of the b_k 's
- ullet Can set the last remaining coefficient to be $b_{
 m last}=1$ (eigenfons can always be scaled, like in HW#1 Q1)

Two classes of ODE's with simple solutions: plugging-in the right form of trial solution reduces the homogeneous ODE to an algebraic equation (roots of the characteristic polynomial, P(m)=0) for all independent solns:

1. Linear Constant Coefficient (LCC): Lu = sum of constants times derivatives

$$a \frac{d^2 u}{dx^2} + b \frac{du}{dx} + cu = 0$$
 trial soln: $u = e^{mx}$

2. Cauchy-Euler (CE): $Lu = \text{sum of products of constants times } x^n \text{ times } n^{th}$ derivatives

$$ax^2 rac{d^2u}{dx^2} + bx rac{du}{dx} + cu = 0$$
 trial soln: $u = x^m$

- The general soln of the homogeneous ODE will be a linear combination of all the trial solutions solving the char-poly (with const coeffs to be determined from BC's)
- If the char-poly has repeated roots, those solutions get modified
- ullet For complex roots of the char-poly, solutions should always be combined appropriately to be in terms of real-valued fcns. (like $e^{\pm ix}
 ightarrow \cos(x), \sin(x)$) (See Summary Sheet for LCC and CE eqns: Sheets/LCC_CE_ODE.pdf)