FUEL PROCESSING SYSTEM FOR A 5KM METHANOL FUEL CELL POMER UNIT(U) ENERGY RESEARCH CORP DANBURY CT G STEINFELD 27 NOV 85 DARK70-84-C-0099 AD-A163 636 1/2 NL UNCLASSIFIED F/G 7/1

MICROCOPY RESOLUTION TEST CHART
NATIONAL BERTAL OF STANDARDS 1963-A

DAAK70-84-C-0099

FUEL PROCESSING SYSTEM FOR A 5KW METHANOL FUEL CELL POWER UNIT

G. STEINFELD G. STEINFELD
ENERGY RESEARCH (
3 GREAT PASTURE F
DANBURY, CT 0683

27 NOVEMBER 1985

FINAL TECHNICAL R **ENERGY RESEARCH CORPORATION** 3 GREAT PASTURE ROAD DANBURY, CT 06810

FINAL TECHNICAL REPORT FOR PERIOD 20 SEPTEMBER 1984 - 20 SEPTEMBER 1985

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED

PREPARED FOR:

BELVOIR R&D CENTER LOGISTICS SUPPORT DIRECTORATE STRBE-FGC FORT BELVOIR, VA 22060-5606

DTC FILE COPY

CONTRACT DAAK70-84-C-0099

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States nor any agency thereof, nor any of its employees, nor any of its contractors, subcontractors, or their employees, make any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use or the results of such use of any information, apparatus, product or process disclosed in this report or represents that its use by such third party would not infringe privately owned rights.

DISCLAIMERS

The citation of tradenames and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to originator.

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
DAAK70-84-C-0099 #10- #163	8 636
4. TITLE (and Subtitio)	5. TYPE OF REPORT & PERIOD COVERED
Fuel Processing System for a 5kW Methanol	FINAL 09/20/84 - 09/20/85
Fuel Cell Power Unit	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(*)
G. Steinfeld	DAAK70-84-C-0099
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Energy Research Corporation	1V463702DG11-03;
3 Great Pasture Road Danbury, CT 06810	016EF;6.3702
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Belvoir R&D Center	27 November 1985
Logistics Support Directorate STRBE-FGC Fort Belvoir, VA 22060-5606	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
DCASMA, Bridgeport	
555 Lordship Blvd.	UNCLASSIFIED
Stratford, CT 06497-7124	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	L
Approved for Public Release; Distribution	is Unlimited
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different fro.	m Report)
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number))
Neat Methanol Reforming	
Reforming Fuel Cell Power Plant	
Phosphoric Acid Fuel Cell	
Thought the table to table to the table to ta	•
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
This report documents the development and	design of a 5kW neat
methanol reformer for phosphoric acid fuel The reformer design was based on utilizing	l cell power plants.
the source of water required for reforming	J. This approach was
arrived at after evaluation of several sys	stem options. A de-
velopmental unit was tested, and test data	a is documented indi-
cating that all design objectives were met	t except for start-up

SUMMARY

A 12-month project was conducted for the development of a methanol fuel processor to produce hydrogen fuel for a phosphoric acid fuel cell power unit. The fuel processor is based on steam reforming of the methanol using water vapor obtained by combustion of fuel cell stack anode tail-gas with ambient air. In contrast to conventional steam reformers, this approach avoids introduction of liquid water at the reformer inlet. Vaporizer heat requirements are reduced substantially, and water condenser and fuel premix equipment are eliminated.

Mass and energy balance calculations were performed for four candidate power unit system configurations. A preliminary fuel processor design was developed for use with the preferred power unit system design. The burner and vaporizer for the fuel processor were built and tested. Based on the results of these tests, a 5kW rated fuel processor design was developed and evaluated.

The fuel processor met the anticipated power unit requirements for fuel conversion efficiency and weight. Startup time was 30 minutes instead of the projected 15 minutes. The test results were used to generate a modified developmental design which projects improved start-up and system integration features.

Page No. 1

PREFACE

This effort was conducted under the direction of Dr. Larry Christner, with advisory support from Dr. Baker, Dr. Maru, Mr. Abens and Dr. Farooque. The Program Manager was Mr. Steinfe 1.

Material and energy balances, and systems evaluations we conducted by Dr. Ghezel-Ayagh. Experimental component designed and specification was conducted by Mr. Gionfriddo. Test of erations, including fabrication, component assembly, gas analysis and data acquisition were conducted by Mr. Koehler.

Drafting and drawings were done by C. DeCarvalho and C. Hunt. Word processing and layout were done by M. Shanley and J. Muehlfeld. Technical editing was done by L. Rindner and J. Muehlfeld.

The cooperation and support of all the above people is appreciated and acknowledged in carrying out this effort.

The U.S. Army Belvoir R&D Center Project Manager was Mr. E. Starkovich.

TABLE OF CONTENTS

SECTION		FAGE NO.
	SUMMARY	1
	PREFACE	2
1.0	INTRODUCTION	9
2.0	POWER UNIT SYSTEM CONFIGURATION	11
3.0	FUEL PROCESSOR CONCEPT DEVELOPMENT	17
3.1	HEAT BALANCE	17
3.2	AIR AND FUEL REQUIREMENTS	2.1
3.3	CONFIGURATION AND OPERATION	21
3.4	MATERIAL AND ENERGY BALANCES	21
4.0	PRELIMINARY FUEL PROCESSOR DESIGN	31
4.1	COMBUSTION OF ANODE EXHAUST	31
4.2	VAPORIZATION OF METHANOL	31
4.3	REFORMING/SHIFT CATALYST BED	32
5.0	COMPONENT TESTING	37
5.1	COMBUSTION TUBE	3.7
5.2	METHANOL VAPORIZER	45
6.0	DESIGN AND CONSTRUCTION OF THE REFORMER	51
7.0	FUEL PROCESSOR TESTING	57
7.1	COMBUSTION OF ANODE EXHAUST	57
7.2	STEADY STATE TESTING	63
7.3	START-UP AND TRANSIENTS	₹ €

TABLE OF CONTENTS concluded

SECTION																		PAGE NO.
8.0	CONCLUSIONS F	AND	REC	COM	ME	ND	ATI	ONS	5	•	•	•	•	•	• -	• -	•	71
	BIBLIOGRAPHY			•	•	•		•	•		•	•	•	•	•	•	•	73
	APPENDIX A .	•		•		•		•	•		•	•	•	•	•	•	•	A-1
	APPENDIX B .	•		•	•			•	•	•	•	•		•	•		•	B-1
	APPENDIX C .	•		•	•	•		•	•	•	•	•	•	•	•	•	•	C-1
	APPENDIX D .	•		•	•	•		•	•		•	•	•		•		•	D-1
	DISTRIBUTION	LI	ST															

LIST OF FIGURES

FIGURE NO.		PAGE NO.
1	Neat Methanol Configurations 1 and 2	12
2	Neat Methanol Configurations 3 and 4	13
3	Net System Efficiency and Hydrogen Production	16
4	5kW Neat Methanol Fuel Processor System	18
5	Reformer and Recycle Heat Exchanger Heat Balance	20
6	Reformer Heat Balance at Part Load	20
7	Recycle Blower Flow Rate at Full Load and Part Load Conditions	2.2
8	Air Required for Combustion of Anode Exhaust	23
9	Recycle and Fuel Flows at Full Load	23
10	Hydrogen Concentration as a Function of ${\rm H_2O/CH_3OH}$	24
11	CO Concentration as a Function of H ₂ O/CH ₃ OH	24
12	Recycle Heat Exchanger at Part Load	25
13	Recycle Blower Flow Rate at Full Load	25
14	5kW Fuel Processor Conceptual Design	26
15	Preliminary Fuel Processor Design	34
16	Preliminary Reformer Design Components	35
17	5kW Fuel Processor Flow Schematic in Test Stand Configuration	38
18	Combustion Tube Testing - 5kW Neat Methanol System	39
19	Combustion Tube Temperature Profile - Part Load	40

LIST OF FIGURES continued

FIGURE NO.		<u>P</u>	AGE NO.
20	Combustion Tube Exhaust Gas Compositions - Part Load	•	41
21	Combustion Tube Temperature Profile - Full Load		42
22	Combustion Tube Temperature Profile - Full Load and Excess Air	•	43
23	Combustion Tube Exhaust Gas Composition Full Load	•	44
24	Catalytic Anode Exhaust Combustor with Vaporizer 5kW Methanol Fuel Processor		46
25	Vaporizer and Combustion Tube Temperature Profile at Part Load	•	47
26	Vaporizer and Combustion Tube Temperature Profile at Full Load	•	48
27	5kW Neat Methanol Reformer Vaporizer Tests	•	49
28	Neat Methanol Reformer Components - Modified Design		53
29	5kW Neat Methanol Reformer	•	54
30	Assembly - 5kW Neat Methanol Reformer		55
31	Reformer Temperature Profiles	•	61
32	Vaporizer and Catalyst Bed Temperature Profile		64
33	Vaporizer and Catalyst Bed Temperature Profile		65
34	Start-up - Catalyst Bed Temperature Profile		68
35	Vaporizer and Catalyst Bed Temperature Profile After Start-up		69
36	Catalyst Bed Temperature Profile Before and After Transient		70
37	Assembly - 5kW Neat Methanol Reformer		72

LIST OF FIGURES concluded

NO.		PAGE NO.
C-1	Relationship Between Heat Transfer Coefficient and Pressure Drop in Empty, Baffled and Packed Tubes	C-4
D-1	Vaporizer Heat Transfer Correlation	D-6
D-2	Approximate Values of Heat Transfer Coefficients	D-9
D-3	Combustion Tube Heat Transfer Correlation	D-10

LIST OF TABLES

TABLE	NO.	PAG	E NO.
1	Neat Methanol Reformer Specifications	•	10
2	System Configuration Options	•	14
3	5kW Neat Methanol Fuel Processor Design Basis Operating Conditions		19
4	5kW Neat Methanol Fuel Processor Conceptual Design	•	27
5	Material and Energy Balance Conditions	•	29
6	Typical Chemical and Physical Properties	•	33
7	5kW Neat Methanol Reformer Design Parameters .	•	52
8	Component Weight Breakdown	•	5 6
9	Summary of Flows Used in Testing		58
10	Summary of Tests Conducted on Modified Reformer Design	•	59
11	Neat Methanol Reformer Specifications		60
12	Effect of Excess Combustion Air		62
C-3	Pressure Drop in Pipes		C-6
C-2	Pressure Drop Through Packed Beds		C-7
C-	Molecular Weight/Viscosity Ratios		C-8
C-	5kW Neat Methanol Reformer Design Parameters .		C-9
D-	Leva Cooling Correlation	•	D-4
D-	Combustion Tube Heat Transfer Coefficients	•	D-5
D-	Beek Correlation for Cylinders	•	D-7
D	1 Vanorizor Wort Myanafor Coofficients		D_8

1.0 INTRODUCTION

The development of small methanol fuel cell power units has so far evolved with methanol-water mix as the fuel. Hydrogen for the fuel cell stack is generated by steam reforming of this fuel over a low temperature shift catalyst. This approach results in a simple power plant system design, but complicates fuel supply logsitics because of the need to mix the methanol with water. The mixed fuel also has a lower energy content, an important drawback for remote power applications.

Energy Research Corporation (ERC) has been pursuing approaches for operation of the fuel cell power unit on neat methanol. Recently, ERC completed acceptance testing of a 5kW neat methanol power unit built for the Air Force under Contract F33615-82-C-2201. In this power unit, water was recovered by condensation from the exhaust streams and mixed automatically in the required proportions with methanol prior to steam reforming. This approach was further developed by building and testing a 3kW neat methanol brassboard power unit for the U.S. Army under Contract DAAK70-79-C-0249.

This report describes a 12-month effort toward the development of an alternate approach to processing neat methanol in a fuel cell power unit. This approach is based on recirculation of combusted anode exhaust from the fuel cell stack to the reformer, eliminating the condenser and the fuel mixing tank. The scope of the project included:

- Overall fuel cell power unit system analysis.
- Conceptual design of the fuel processor.
- Design development of key fuel processor components.
- Fabrication of a complete 5kW rated fuel processor.
- Testing of the fuel processor with simulated fuel cell stack gas streams.

The minimum performance requirements and the achievements of the reformer established for this project are shown in Table 1.

TABLE 1.
NEAT METHANOL REFORMER SPECIFICATIONS

	REQUIRED	DESIRED	ACHI EVED
METHANOL CONSUMPTION (L/hr)			
Rated Load	7.75	4.0	4.7
50% Rated Load	7.75	2.0	2.5
WEIGHT (Kg)	114	50	2.11
STARTUP TIME (min)	15	5	3:₫
METHANOL FUEL QUALITY	OM 232	OM 232 with 5% higher alcohols or hydrocarbons	CM 2.3.2
PRODUCT GAS QUALITY			
% H ₂ , minimum	25	25	26.9
% CO	<3	<1	9.8

2.0 POWER UNIT SYSTEM CONFIGURATION

The development of a fuel processor that can operate on neat methanol was initiated by evaluation of various options in fuel cell power unit system configuration. Among the options available, two categories can be identified:

- Water recovery by condensation
- Water recovery by vapor recycle

The second category was chosen for this effort because it requires no condenser or liquid water metering. The water needed for reforming is provided by recycling water vapor available in stack exhaust gases and by partial oxidation of methanol. Four possible power unit system configurations were evaluated:

System #1 - Partial Oxidation with Air

System #2 - Cathode Exhaust Recycle

System #3 - Cathode and Anode Exhaust Recycle

System #4 - Anode Exhaust Recycle and Air

These systems are illustrated in Figures 1 and 2, and their key features are summarized in Table 2.

System #1 requires no recycle and obtains water by the partial oxidation of methanol. This is the simplest, but least efficient system because methanol is combusted to generate water for reforming. The unused anode hydrogen and moisture in the stack exhaust are not utilized.

System #2 utilizes the cathode exhaust to provide oxygen for partial oxidation of methanol and recycles some of the moisture in the cathode exhaust. The anode exhaust hydrogen again is not utilized. This system is more efficient than System #1, but requires a recycle blower on the cathode exhaust, and a means to control the flow rate of the recycled gas.

FIGURE 1.
SYSTEM CONFIGURATIONS 1 and 2

CONFIGURATION ≠4 ANODE RECYCLE

FIGURE 2.

SYSTEM CONFIGURATIONS 3 and 4

TABLE 2
SYSTEM CONFIGURATION OPTIONS

SYSTEM	FEATURES	EFFICIENCY	COMPLEXITY
1	No recycle Air Oxidation	Low	Low
2	Cathode Recycle	Medium	Medium
3	Cathode & Anode Recycle	Highest	High
4	Anode Recycle and Air Oxi- dation	High	Medium

System #3 recycles both anode and cathode exhausts, and as a result obtains the highest efficiency. In this configuration, anode exhaust is burned using the oxygen in the cathode exhaust. The product water is utilized in the reformer by recycling the combusted anode exhaust. This configuration requires recycle blowers on anode and cathode streams and a flow split of the cathode exhaust making the system more complicated to control.

The elimination of the cathode recycle from System #3 results in a simpler system design with a minimum loss of efficiency. This system (System #4) was adopted as the basis for the 5kW reformer development.

Relative efficiencies of Systems #2, #3, and #4 are shown in Figure 3. System #2, with cathode recycle, results in the lowest efficiency, which declines with increasing $\rm H_2O/CH_3OH$ ratio since more CH₃OH is oxidized to obtain higher $\rm H_2O/CH_3OH$ ratios, leaving less CH₃OH to be reformed to hydrogen.

Systems #3 and #4 show significantly higher efficiencies because water is derived by combusting anode exhaust hydrogen, rather than methanol. System #3 shows slightly higher efficiencies than System #4 due to the moisture utilized from the cathode recycle. However, System #4 is simpler to control since the cathode stream is decoupled from the fuel processor.

Of the four options evaluated, System #4 appears to be most attractive because of:

- Relative simplicity of operation and control,
- High efficiency,
- Achievement of thermal balance with high anode fuel utilization.

NET SYSTEM EFFICIENCY

HYDROGEN PRODUCTION

FIGURE 3. Page No. 16

3.0 FUEL PROCESSOR CONCEPT DEVELOPMENT

The fuel cell power unit system chosen for development is System #4 and is enlarged in Figure 4, for clarity. The fuel processor is defined within the dotted line. This system operates on anode exhaust and air. A portion of the burner exhaust is recycled to provide the water for reforming.

The fuel processor concept was developed based on the following key criteria:

- 75% anode fuel utilization in the stack at full load
- 65% anode fuel utilization in the stack at part load (idling condition)
- Constant recycle blower speed for all load conditions

Design basis operating conditions are shown in Table 3.

3.1 HEAT BALANCE

Figure 5 shows the heat balance for the reformer and the heat duty for the recycle heat exchanger at anode fuel utilizations of 75% and 80%. At 75% anode utilization and a $\rm H_2O/CH_3OH$ ratio of 1.22, the excess heat in the reformer will be 5500 BTU/hr. This heat will be lost to the surroundings. The recycle heat exchanger at the same conditions will require a heat load of 2700 BTU/hr.

Figure 6 indicates that at part load conditions, (4 kW stack) the excess heat in the reformer will be 4590 BTU/hr at an anode fuel utilization of 65% and a $\rm H_2O/CH_3OH$ mol ratio of 2.28. This indicates that a heat balance can be maintained as the load varies from full load to part load conditions. In order to reduce control requirements, constant recycle blower speed was chosen.

CONFIGURATION # 4

FIGURE 4.
5kW NEAT METHANOL FUEL PROCESSOR SYSTEM

TABLE 3.

5kW NEAT METHANOL FUEL PROCESSOR DESIGN BASIS-OPERATING CONDITIONS

STACK OUTPUT, kW	7.25	4.0
Anode Utilization, %	75	65
Cathode Utilization, %	50	50
H ₂ O/CH ₃ OH at Reformer Inlet	1.22	2.28
Reformer Heat Load, (BTU/Hr)	5479	4590
HX Heat Load	2700	2643
Recycle Gas Flow Rate (Actual Ft ³ /Hr)	894	892
Product H ₂ Concentration, %	31	19.9
CO Concentration, %	1.3	.3
Fuel Flow, LB/Hr	8.16	4.35
Oxidizer Air Flow, SCFH	195	135

FIGURE 5.
REFORMER AND RECYCLE HEAT EXCHANGER HEAT BALANCE

FIGURE 6.
REFORMER HEAT BALANCE AT PART LOAD

Figure 7 indicates that the $\rm H_2O/CH_3OH$ mol ratio increases as the load decreases. At rated load, the water to methanol mol ratio is 1.22:1.

3.2 AIR AND FUEL REQUIREMENTS

Air and fuel requirements of the fuel processor are shown in Figures 8 and 9. The hydrogen concentration in the fuel gas to the anode is shown in Figure 10. The curves indicate that higher H₂O/CH₃OH mol ratios and higher anode utilizations produce lower H₂ concentrations. This is due to dilution by the recycle gas as H₂O/CH₃OH mol ratio is increased by increasing the recycle flow rate. The equilibrium CO concentrations are reduced by increasing H₂O/CH₃OH mol ratio due to the CO shift reaction and the diluting effect of the recycle gas as seen in Figure 11. Figure 12 demonstrates the recycle heat exchanger heat duty at part load, and Figure 13 shows the recycle blower flow rate at full load.

3.3 CONFIGURATION AND OPERATION

The conceptual design of the fuel processor is shown in Figure 14. Stack anode exhaust is combusted with air over a platinum catalyst in the center annulus to heat the middle annulus where methanol is vaporized. A portion of the combustion product is recycled back into the vaporizer annulus which contains a stainless steel wick material for absorbing the liquid methanol. The catalyst bed is in the outermost annulus and is heated by heat transfer from the vaporizer and by the sensible heat of the incoming gases. The top of the bed is cooled by the inlet of the vaporizer section to minimize CO and maximize H2 production. The dimensions and weights estimated for this processor design are summarized in Table 4.

3.4 MATERIAL AND ENERGY BALANCES

Material and energy balances were conducted for a number of operating parameters to determine their effect on the per-

FIGURE 7.

RECYCLE BLOWER FLOW RATE AT FULL LOAD AND PART LOAD CONDITIONS

FIGURE 8.
AIR REQUIRED FOR COMBUSTION OF ANODE EXHAUST

FIGURE 9.
RECYCLE AND FUEL FLOWS AT FULL LOAD

HYDROGEN CONCENTRATION AS A FUNCTION OF H2O/CH3OH MOL RATIO

FIGURE 11.
CO CONCENTRATION AS A FUNCTION OF H₂O/CH₃OH MOL RATIO

FIGURE 12.
RECYCLE HEAT EXCHANGER AT PART LOAD

FIGURE 13.
RECYCLE BLOWER FLOW RATE AT FULL LOAD

GURE 14.
5kW FUEL PROCESSOR CONCEPTUAL DESIGN

TABLE 4. 5kW NEAT METHANOL FUEL PROCESSOR CONCEPTUAL DESIGN

Overall Length	24 inches
Overall Diameter (without insulation)	5 9/16 inches
Catalyst Volume	0.20 ft ³
${ t GHSV}^{ t l}$ at Reformer Inlet	3500
Catalyst Loading	11.97 Lbs
Estimated Weight	75 Lbs.

 $^{^{\}rm l}$ GHSV at inlet based on gas volume at $60^{\rm o}F$ and 760 mm $\rm H_{\rm g}$ pressure.

formance of the overall system. The key parameters of the material and energy balance are shown in Table 5. The complete node array analysis for the system is given in Appendix A. The baseline design compositions and flow rates at full load are shown on page A-3. Baseline design compositions and flow rates at part load are shown on page A-4.

TABLE 5.

MATERIAL AND ENERGY BALANCE CONDITIONS

	CONDITIONS	CONDITIONS EVALUATED				
PARAMETER	FULL LOAD (7.25 kW) GROSS POWER	PART LOAD (4.0 kW) GROSS POWER	FULL LOAD DESIGN CONDITION CHOSEN			
Anode Utilization	.65, .70, .75 .80	. 65	. 75			
Cathode Utilization	.50	.50	.50			
H ₂ O/CH ₃ OH At Reformer Inlet	1.1, 1.3, 1.5	2.28	1.22			
Anode Exhaust Combustion Air	Stoichiometric	Stoichiometric	Stoichiometric			

THIS PAGE LEFT INTENTIONALLY BLANK

4.0 PRELIMINARY FUEL PROCESSOR DESIGN

The preliminary fuel processor design was based on the system analysis and the material and energy balance. The key components of the fuel processor are:

- . a combustion tube for oxidation of anode exhaust
- a methanol vaporizer
- a reforming/shift catalyst bed

4.1 COMBUSTION OF ANODE EXHAUST

The approach chosen for this design was to use catalytic combustion utilizing platinum catalysts only. Catalytic combustion can be efficient at low excess air levels, possibly approaching stoichiometric. This would increase adiabatic flame temperatures and reduce the work load of the combustion air blowers.

Based on previous subscale testing, the combustion tube was sized at 1 1/4 inch diameter and 24 inches long. The platinum catalyst chosen for the combustion tube was a spiralled platinum monolith.

4.2 VAPORIZATION OF METHANOL

The vaporizer design for this fuel processor includes a wick vaporizer. The wick vaporizer was tested and used in subscale boilers and reactors in previous work and was found to operate smoothly. The advantage of the wick vaporizer is that it spreads the liquid over a large surface area for good heat transfer. The wick material can be catalyzed thereby promoting some catalytic decomposition of methanol and hydrogen production in the vaporizer. This takes some of the reforming load off the catalyst bed, easing the heat requirements in the reforming zone.

Wick temperatures were used to determine at what point along the wick all of the liquid was vaporized. In simple tube tests it was found that generally all the methanol was vaporized within one inch of the inlet. The wick material keeps the liquid against the heated surface resulting in good heat transfer and rapid, smooth vaporization.

4.3 REFORMING/SHIFT CATALYST BED

The size of the catalyst bed was determined from previous experience with the Army 3 kW power plant (Contract DAAK 7D-C-79-0249), and was scaled up directly. The preliminary design was specified as follows:

Catalyst Volume: 0.2 Ft³
Catalyst Loading: 11.97 Lbs.
Catalyst: UCI T2107 RS

The chemical and physical properties of the datalyst are shown in Table 6.

Figure 15 depicts the preliminary fuel processor design and Figure 16 shows a photograph of various components of the fuel processor.

TABLE 6. TYPICAL CHEMICAL AND PHYSICAL PROPERTIES OF UCI T2107 CATALYST

Chemical Composition	Weight % (Oxide Basis)
CuO	43.0 <u>+</u> 4.0
ZnO	20.0
Al ₂ O ₃	30.0
Cr ₂ O ₃	3.2 <u>+</u> 0.4
s	<0.05
Physical Properties	
A. Bulk Density, lbs./cu.Ft	70 <u>+</u> 5
B. Surface Area, m^2/g	130 <u>+</u> 30
C. Pore Volume, cc/g	0.25 - 0.35
D. Crush Strength, lbs. DWL	. 10 minimum
E. Form	1/8"x1/8" tablets

FIGURE 15.
PRELIMINARY FUEL PROCESSOR DESIGN

THIS PAGE LEFT INTENTIONALLY BLANK

5.0 COMPONENT TESTING

The preliminary design described in Section 4.0 was first evaluated by testing the combustor and vaporizer as separate components. The test facility flow schematic for the complete fuel processor is shown in Figure 17. The gas composition required was arrived at by metering the required amount of CH₃OH, H₂O, CO₂ N₂, H₂ and air, and preheating the mixture to the required temperature. Instrumentation included thermocouples, pressure gauges, pressure differential gauges, and gas flow meters. Gas composition was determined by gas chromatography. Test conditions were defined at full load (7.25 kW) and part load (4 kW) reactant flows.

5.1 COMBUSTION TUBE

Figure 18 illustrates the test configuration for combustion tube testing. Tests at 4 kW (idle power) flows indicated that the maximum bed temperature achieved was 1010°F, and the maximum wall temperature was 1026°F. Hydrogen combustion was 93.4% complete, and oxygen was 94.9% consumed, using stoichiometric air.

At full load flows, complete hydrogen combustion was achieved with 16.3% excess air. Maximum bed temperature was $1165^{\circ}F$ and maximum tube wall temperature was $1146^{\circ}F$. Without excess air at full load conditions, the inlet wall temperature was reduced by about $30^{\circ}F$, and the exhaust gas contained 0.17% H₂. Figures 19 to 23 depict combustion tube temperature profiles and exhaust gas compositions for part load and full load flows.

The pressure drop in the combustion tube was 67-84 inches of water (part load and full load conditions). A larger diameter tube was used in the subsequent design to reduce the pressure drop.

Bassia Brasilian Ruddid In

5kw FUEL PROCESSOR FLOW SCHEMATIC IN TEST STAND CONFIGURATION FIGURE 17.

FIGURE 18. COMBUSTION TUBE TESTING - 5kw NEAT METHANOL REFORMER

FIGURE 19.

COMBUSTION TUBE TEMPERATURE PROFILE - PART LOAD

FIGURE 20.

COMBUSTION TUBE EXHAUST GAS COMPOSITIONS - PART LOAD

FIGURE 21.

COMBUSTION TUBE TEMPERATURE PROFILE - FULL LOAD

FIGURE 22.

COMBUSTION TUBE TEMPERATURE PROFILE - FULL LOAD AND EXCESS AIR

FIGURE 23.
COMBUSTION TUBE EXHAUST GAS COMPOSITION FULL LOAD

5.2 METHANOL VAPORIZER

Figure 24 illustrates the vaporizer tested. Tests were conducted at part load (4.36 lb/hr flow) and full load (8.17 lb/hr flow). In both cases all the methanol was vaporized within the first inch of the wick. The wick vaporizer appeared to function smoothly, and resulted in very rapid vaporization of the methanol. Temperature profiles in the vaporizer and combustion tube are shown in Figures 25 and 26. A photograph of the vaporizer mounted in the test facility is shown in Figure 27.

Although vaporization of the methanol was accomplished effectively in the wick vaporizer tested, the temperature of the fuel gas leaving the vaporizer was not as high as desired because of heat transfer limitation between the combustion tube and the vaporizer.

The heat duty required for heat transfer from the combustion tube to the vaporizer is 9072 BTU/hr. The actual heat transfer obtained was 2961 BTU/hr. Therefore, an increase in heat transfer by a factor of 3 was required. This necessitated a design modification which provided the additional heat transfer area to meet the requirement.

FIGURE 24.

CATALYTIC ANODE EXHAUST COMBUSTOR WITH VAPORIZER 5kW METHANOL FUEL PROCESSOR

FIGURE 25.

VAPORIZER AND COMBUSTION TUBE TEMPERATURE PROFILE AT PART LOAD

"IGURE 26.
VAPORIZER AND COMBUSTION TUBE TEMPERATURE PROFILE AT FULL LOAD

FIGURE 27. Page No. 49

THIS PAGE LEFT INTENTIONALLY BLANK

6.0 DESIGN AND CONSTRUCTION OF THE REFORMER

Based on the results obtained with the prelimnary design components, the reformer was redesigned as shown in Table 7. Pressure drop and heat transfer considerations used to arrive at this design are given in Appendices C and D, respectively.

A photograph of the key components are shown in Figure 28, and the assembled reformer can be seen in Figure 29. A cross-sectional drawing of the reformer is shown in Figure 30.

The overall weight of the reformer is 46 lbs. The weight breakdown is shown in Table 8.

SKW NEAT METHANOL REFORMER DESIGN PARAMETERS TABLE 7.

ANNULAR REGION	INTERNAL	VAPORIZER	REFORMER	EXTERNAL COMBUSTION I	EXTERNAL COMBUSTION II
0.D.		•	i		
Tube I.D. (inch)	5.45 5.90	5.90 6.35	6.35 7.70	.7.70 8.05	8.05 8.70
Annulus (inch)	0.20	0.20	0.65	0.15	0.30
. Area	0.028	0.030		0.026	0.055
Surface Area ³ (ft²) Surince Area ⁴ (ft²)	3.12	3.12 3.35	3.35 4.06	3.04 3.18	3.18 3.44
Mass Flow 4 kW (lb/hr ft²)	2286	2141	531	2490	1170
7.25 kW (1b/hr ft²)	2620	2454	582	2853	1341
Gas Velocity 4 kW (ft/sec)	41	37	9.5	.45	21
7.25 kW (ft/sec)	42	42	9.3	46	22
Heat Transfer h empty (Btu/Hr ft² OF)	4.35	3.44	3.21	4.26	.2
Δp (inches of water)	0.2	0.2	4.0	0.24	0.03

Tube 0.D. of inside and outside tube defining each annulus ${\rm Tube}\ {\rm I.D.}$ of inside and outside tube defining each annulus

Based on 2 ft high active area of internal annuli Based on 1.5 ft high active area of combustion annuli I and

NEAT METHANOL REFORMER COMPONENTS - MODIFIED DESIGN FIGURE 28.

Page No. 53

Page No. 54

FIGURE 30. 5kW NEAT METHANOL REFORMER AS TESTED

Page No. ⁵⁵

TABLE 8
REFORMER WEIGHT BREAKDOWN

COMPONENT		WEIGHT,	grams
Combustion Annulus (I) with Spac	ers	1,570	
Vaporizer Cap		490	
Reformer Upper Ring		40	
Combustion Gas Flow Distributor and Combustor		470	
Plug Assembly with Insulation		3,320	
Combustion Tube		2,760	
Reformer and Vaporizer Assembly		6,110	
Catalyst		6,090	
	TOTAL	20,850	grams
		(45.93	1b)

The total weight does not include external insulation.

7.0 FUEL PROCESSOR TESTING

The objective of this series of tests was to verify performance of the reformer at full load (7.25 kW) and part load (4 kW) conditions, and to test startup and transient load operation.

Testing was carried out in the following sequence:

- Combustion of anode exhaust in catalytic burner prior to complete assembly of reformer.
- Reforming at 7.25 kW flows with N₂ heat up.
- Reforming at 4 kW flows with N2 heat up.
- Startup at 4 kW flow conditions.
- Startup at 4 kW flow conditions and transient to 7.25 kW flow conditions.

The flows used during these tests are summarized in Table 9, and Table 10 summarizes the tests conducted. A summary of the performance of the fuel processor is given in Table 11.

7.1 COMBUSTION OF ANODE EXHAUST

The combustion of simulated anode exhaust at idle (4 kW) and full load (7.25kW) conditions was tested prior to the installation of the catalyst bed and vaporizer sections of the reformer. The parameters tested included fuel flow rate and excess air rate. The reformer temperature profile is shown in Figure 31. The effect of excess combustion air can be seen in Table 12.

The tests indicated that adequate combustion was obtained. However, combustion at full load flows was better than at part load flows. Excess air tested was 2% to 10%. Unconverted hydrogen detected was 0.19% at part load and 0.1% at full load, initially. Subsequent tests at full load resulted in unconverted H_2 of .03%. The unconverted hydrogen decreased with excess air and increasing (part load to full load) flows.

TABLE 9. FLOWS USED IN REFORMER TESTING

COMPONENT		kW D FLOW		25 kW D FLOW
	BURNER	VAPORIZER	BURNER	VAPORIZER
CH ₃ OH (CC/min)	-	41.61	-	78.02
H ₂ O (CC/min)	36.5	42.22	32.9	42.5
N ₂ (SL/min)	156.5	155.4	147.7	142.16
H ₂ (SL/min)	25.2	-	32.9	-
CO ₂ (SL/min)	99.8	76.54	130.36	90.13
Air (SL/min)	62.6	_	78.3	_

TABLE 10.

SUMMARY OF TESTS CONDUCTED ON MODIFIED REFORMER DESIGN

TEST SUMMARIES	CONDITIONS	RESULTS
5kW 016	4 kl. Flow Combustion	Uninsulated combustor yielded 850°F gas and 0.19% unburned H ₂ -
5kW 017	7.25 kW Flow Combustion	Uninsulated combustor yielded $962^{\rm OF}$ gas and 0.1% unburned ${\rm H_2}$.
5k% 018	7.25 kW Flow Reforming. 10% Excess Combustion Air	87.7% conversion of methanol and 0.6% CO.
5kW 019	7.25 kW Flow Reforming. 10% Excess Combustion Air	99.2% Conversion of methanol and 1.06% CO after additional insulation.
5kW 020	7.25 kW Flow Reforming. 2-7% Excess Air.	Reducing combustion air to 2% excess air does not affect performance adversely. 99.85% conversion of MeOH exit CO at 1%.
5kW 021	7.25 kW gross flow. H ₂ O/CH ₃ OH = 1.3 stoichiometric air to burner.	Methanol flow distribution prob- lem persists, methanol conver- sion 95.66% due to low tempera- ture in one side of catalyst bed CO 0.67%,
5kW 022	7.25 kW gross flow. H ₂ O/CH ₃ OH = 1.1 0-2% excess combustion air simulated air preheat.	Preheating combustion air to 427°F increased combustion gas temp. 52°F, methanol conversion improved to 99.39%, CO higher at 1.46.
5kW 023	4kW gross flow design condition.	Low hydrogen level in exit gas indicates leak in system. Shutdown for repairs to fix leaks and poor methanol flow distribution.
5k% 024	4kW part load flows after meth- anol feed tupe modification, and leak repair.	Improvement in temperature pro- file uniformity. Exit gas compo- sition approximately as expected. MeOH conversion 91.1%.
5kW 025	4kW part load flows with simulated preheated (250°F) combustion air and additional insulation on top of reformer.	Proheating combustion air increases cutalivit bed temperatures 55-65°F, and improves methanol conversion by 3.2°N, to 94.3°N. Complete H ₂ combustion in burner.
5kW 026	7.25 kW full load flow with simulated prehented (250°F) combustion air.	Improvement in temperature profile uniformity. MeOH conversion 83.8%, CO 0.8%.
5kW 027	Start-up at 4 kW methanol flow 30 SL/min nir to vaporizer. 33 SL/min to emmossion.	Start-up conditions reached within 30 minutes.
.5kW 028	Start-up at 4 kW methanol flow, 40 SL/min air to vaporizer, 50 SL/min air combustion.	
5kW 029	Start-up at 4 kW methanol flow, 25 SL/min air to vaporizer. 33 SL/min air to combustion, switch to 4 kW normal flows.	Demonstrated start-up and switch to 4 kW flow conditions after 30 minutes 95.1%, methanol conversion. CO 0.45%.
5kW 030	Start-up at 4kW methanol flow, 25 SL/min air to vaporizer. 33 SL min air to combustion switch to 4kW normal flows transient to 7.25 kW flow.	Transient to 7.25 flow conducted under simulated conditions. Catalist bed inlet dropped 166°F initially and recovered. Methanol onversion 97%.

TABLE 11.
NEAT METHANOL REFORMER SPECIFICATIONS

	ACTUAL	REQUIRED	DESIRED
<pre>METHANOL FUEL CONSUMPTION: Rated Load (liter/hr)</pre>	4.68	7.75	4.0
50% Rated Load (liter/hr)	2.49	7.75	2.0
WEIGHT (Kg)	20.85	114	20
STARTUP TIME (ming	30	15	Z.
METHANOL FUEL QUALITY	OM 232	OM 232	Same but contaminated with up to 5% higher alcohols or hydrocarbons
QUALITY OF H2 STREAM PRODUCED AT RATED LOAD:			
a. Carbon Monoxide (%) b. Hydrogen (%)	0.8	Less Than 3% At Least 25%	Less Than 1% At Least 25%
QUALITY OF H, STREAM PRODUCED AT			
e. Carkon Nenowide (s)	प्र प्र विष्	11	į
n. Hydrogen (%)	च ; क —	i'	и

FIGURE 31.
REFORMER TEMPERATURE PROFILES

TABLE 12.

EFFECT OF EXCESS COMBUSTION AIR
TEST 5kW 020 7.25 kW Flow

UNCONVERTED MeoH AT CATALYST BED EXIT	. 28\$.15%	.078
COMBUSTION EXHAUST O28	0.80	0.79	0.75
COMBUSTION EXHAUST H28	.02	.03	.03
AVERAGE CATALYST BED TEMPERATURE OF	463	466	466
AVERAGE COMBUSTION TEMPERATURE OF	1188	1189	1174
& EXCESS	78	λ æ	28
AIR FLOW SL/MIN	84	82	80

NOTE

Water flow rate may have been higher than expected due to increase in temperature of water supply from D.I. water. This may have caused the decrease in unconverted methanol.

Testing with 250°F preheated air resulted in complete combustion of hydrogen. The CO level measured was 0.04% at full load. Reducing excess air to 2% did not have an adverse affect on the performance.

7.2 STEADY STATE TESTING

Initial testing of the fully assembled reformer was at 7.25 kW flows. After insulating the reformer, catalyst bed temperatures of $375-607^{\circ}F$ were achieved and 99.85% methanol conversion was obtained. At these conditions, the CO level was 1%. In other tests where the catalyst bed exit temperature was lower, the CO level achieved was as low as 0.6%. Tests at H_2O/CH_3OH of 1.1 to 1.3 were conducted, and only small variations in performance were observed.

Plots of catalyst bed and vaporizer temperatures shown in Figure 32 indicated that flow distribution in the vaporizer and the catalyst bed were not uniform. This may be seen by the difference in temperatures measured at opposite sides of the reformer 180°F apart. This effect was attributed to nonuniform methanol fuel flow distribution, which was later corrected by the use of an improved liquid distribution manifold.

Figure 33 shows the temperature profiles after the modification. Here it can be seen that the vaporizer temperatures are much more uniform. The temperature dropped to a low of 135-145 $^{\circ}$ F at 4 1/2 inches from the inlet of the vaporizer, and increased to 350-485 $^{\circ}$ F at the exit.

Gas analysis at the exit of the vaporizer indicated that both methanol decomposition and reforming were occurring in the vaporizer. Hydrogen content of 1 - 5.24% was measured due to thermal and catalytic decomposition of methanol, and possibly some reforming of methanol over the platinum catalyst in the vaporizer. Conversion of methanol to hydrogen in the vaporizer is desirable since it spreads the thermal load over a larger area. In addition, the hydrogen maintains the inlet of the catalyst bed in a reduced state.

FIGURE 32.

VAPORIZER AND CATALYST BED TEMPERATURE PROFILE.

FIGURE 33.
VAPORIZER AND CATALYST BED TEMPERATURE PROFILE

Figure 31 depicts temperature profiles in the combustion annulus, catalyst bed and the vaporizer. The temperature gradients providing the driving force for heat transfer can be seen in this plot. The outer combustion gas annulus provides heat at approximately 1050°F to the catalyst bed in the which is operating at 405-510°F, a gradient of 540-645°F. The combustion gas temperature drops rapidly and reaches approximately 9500 T within 9 inches. This, essentially, is the reforming zone of the catalyst bed as determined by the large amount of heat absorbed by the reforming reaction. Further up the reformer the rate of heat loss from the outer combustion annulus is reduced as the exothermic shift reaction moves to completion. As the combustion gas moves up the internal annulus, it heats the vapourizer. In the vaporizer the gradient increases as the temperature of the incoming methanol drops near the top (inlet) of the This gradient causes a sharp increase in temperature after all of the methanol is vaporized. Preheating amd vaporization of methanol is carried out by the exiting combustion gas, which is at its lowest temperature (1900F) as it leaves the reformer. Analysis of the combustion exit gas during test 5kW 025 indicated complete hydrogen combustion, and no CO was detected in the reformer exhaust stream.

7.3 START-UP AND TRANSIENTS

During start-up, the reformer operates on methamol and afronly. Start-up was tested by introducing the 4 kW methamol flow and air into the vaporizer section of the reformer to partially oxidize the methanol, providing heat for vaporization and heating of the reformer to its operating temperature. The gas leaving the catalyst bed was diverted to the reformer burner where it was combusted with air.

Results of this testing indicated that the platinized wirk was not effective for oxidizing methanol and raising the temperature in the vaporizer. Instead, an exothermic seaction was

observed at the inlet of the catalyst bed as depicted in the temperature profile of Figure 34. This was interpreted as oxidation of the catalyst and thermal and/or catalytic decomposition of methanol. This process resulted in a heat-up of the reformer to operating conditions after 30 minutes.

Analysis of the gas leaving the catalyst bed during start-up conditions indicated methanol conversion up to 95.1% with hydrogen measured at 19.2 - 33%. CO was at 0.45 - 2.39%, and methanol at 0.3 - 1.23%. During the start-up mode, this gas was fed to the burner where it was combusted with air to provide additional heat for start-up.

Figure 35 depicts the temperature profile in the vaporizer and catalyst bed seven minutes and 4.6 hours after switching from start-up conditions to 4 kW flow conditions with simulated anode recycle combustion gas. The data indicates that even after switching to normal operating conditions, there is still a slight increase in temperature as the reformer operates at 4 kW flows. This indicates that higher start-up temperatures may be desired.

A transient test was conducted by increasing the flows to 7.25 kW from 4 kW. Figure 36 depicts catalyst bed temperatures at 4 kW and 7.25 kW conditions. A drop in catalyst bed temperatures of 166°F (average) was recorded, followed by a temperature recovery. However, after 42 minutes the catalyst inlet temperatures were still an average of 155°F lower with 7.25 kW flows as compared to the 4 kW flow conditions. Overall methanol conversion at 7.35 kW flow condition was 97% with CO at 1.12%. Transients under these conditions result in unconverted methanol levels increasing after the transient, and gradually decreasing to the normal level with time.

FIGURE 34.
START-UP - CATALYST BED TEMPERATURE PROFILE

FIGURE 35.

VAPORIZER AND CATALYST BED
TEMPERATURE PROFILE AFTER START-UP

FIGURE 36.
CATALYST BED TEMPERATURE PROFILE BEFORE AND AFTER TRANSIENT

8.0 CONCLUSIONS AND RECOMMENDATIONS

A preliminary conceptual design of a neat methanol reformer utilizing burner exhaust as the source of water was developed. A reformer having sufficient capacity for a 5kW fuel cell power unit was built and tested.

The reformer weight is less than half of the permissible weight. This allows for additional weight of a recycle blower and recycle gas heat exchanger. Fuel consumption is also less than the maximum allowable figure.

Start-up time based on limited testing was found to be longer than required. Thirty minutes were needed in tests conducted, whereas 15 minutes is required and 5 minutes desired. The developmental design incorporates design changes that are intended to improve the start-up time, and are shown in Figure 37. The changes include:

- longer platinized wick;
- coverage of gas passage holes between vaporizer and reformer with platinized wick;
- replacement of monolith catalyst with additional layer of platinized wick in the burner.

The quality of hydrogen exceeds the requirement of 25% at rated load and the CO level is better than the desired level of 1%. At part load the hydrogen drops to 19.4% and the CO is 0.45%.

All the required objectives for the reformer were met with the exception of startup time. The desired objectives were met or exceeded for weight and quality of hydrogen steam. The fuel consumption could meet the desired level if lower parasitic power requirements were assumed. A very conservative parasitic power requirement was assumed in the basis for the reformer design, requiring a large portion of the fuel flow to generate parasitic power. If parasitic losses can be reduced, overall fuel consumption can be reduced.

Recommendations for future development of this technology are as follows:

- Testing of developmental design with final modifications is suggested.
- Additional testing of start-up and transient conditions is required.
- Incorporate the recycle blower and test reformer in conjunction with a fuel cell power unit.
- Consider second generation design with enhanced heat transfer (i.e. finned surfaces and other heat transfer enhancement) in order to reduce size of the reformer.
- Consider lighter weight materials where possible in order to reduce weight.

THIS PAGE LEFT INTENTIONALLY BLANK

APPENDIX A

NODE ARRAY ANALYSIS - MATERIAL AND ENERGY BALANCES

5kw neat methanol fuel processor system

NODE ARRAY ANALYSIS

CONFIGURATION #4

			FLO	# RATE -	lb mole/h	r			Press	Tean	Enthaloy	
NODE	H2	H20	CO	CO2	02	N2	CH2OH	TOTAL		Deg-F	BTU/hr	NODE
1	0.000	0.000	0.000	0.000	0.000	0.000	0.255	0.255	1.000	50	-2.3924E+04	1
2	0.000	0.312	0.000	0.504	0.000	0.795	0.000	1.611	1.000	200	-1.0805E+05	2
3	C.736	0.097	0.031	0.729	0.000	0.795	0.000	2.377	1.000	400	-1.1855E+05	3
4	0.000	0.023	0.000	0.000	0.552	2.076	0.000	2.651	1.000	250	1.0728E+04	4
5	0.184	0.281	0.031	0.729	0.000	0.795	0.000	2.020	1.000	350	-1.4131E+05	5
6	0.000	0.380	0.000	0.000	0.276	2.076	0.000	2.732	1.000	350	-2.3379E+04	6
7	0.000	0.004	0.000	0.000	0.107	0.403	0.000	0.515	1.000	70	1.4380E+03	7
9	0.000	0.470	0.000	0.759	0.000	1.199	0.000	2.428	1.000	812	-1.5209E+05	8
9	0.000	0.312	0.090	0.504	0.000	0.795	0.255	1.866	1.000	712	-1.1975E+05	9
19	0.000	0.470	0.000	0.759	0.000	1.199	0.000	2.428	1.000	590		10
11	0.000		9.000	0.255	0.000	0.403	0.000	0.817	1.000			11
12	0.000	0.312	0.00 0	0.504	0.000	0.795	0.000	1.611	1.000	500	-1.0535E+05	12
			790	POSITION	- MOLE PE	RCENT						
NODE	H2	H20	CO	C32	02	H2	CHICH	HODE				
i	0.0	0.0	0.0	0.0	0.0	0.0	100.0	1				
2	0.0	19.3	0.0	31.3	0.0	49.4	0.0	2				
3	31.0	3.6	1.3	30.7	0.0		0.0	3				
4	0.0	0.9	9.0	0.0	20.8	78.3	0.0	4			•	
5	9.1	13.9	1.5	36.1	0.0	39.4	0.0	5				
6	0.0	13.9	0.0	0.0	10.1	76.0	0.0	6				
7	0.0	0.9	0.0	0.0	20.8	78.3	0.0	7				
8	0.0	19.3	0.0	31.3	0.0	49.4	0.0	8				
9	0.0	16.7	0.0	27.0	0.0	42.5	13.7	9				
10	0.0	19.3	0.0	31.3		49.4	0.0	10				
11 12	0.0 0.0	19.3 19.3	0.0 0.0	31.3 31.3	0.0	49.4 49.4	0.0 0.0	- 11				
	INPUT PA	RAMETERS:						UUTFU	T PARAME	TERS:		
	MBER OF CE				79			CELL VOL				40.2
	LL AREA .			10				CURRENT				59.B
	OSS POWER				7.25			NET EFFI				24.3%
	RASITIC P		umpilum ,					STACK HE				119.1
	ODE UTILI				0.75			REFORMER				779.1
	TTU BOCHT		OMEO INCE		0.50			HEAT EX.				700.4 193.9
	O:Methano: neop.avva							ול אזמטים	TINU MOT	, EU. †	t/hr 8	112.7
ΕĂ	CESS OTYS	ed at BOR	NEM INLE		0.0%							

DATE: 12-14-1984

NODE ARRAY ANALYSIS

CONFIGURATION #4

			FLO	# RATE -	lb sole/h	r			Press	Temp	Enthalpy	
NODE	H2	H20	CO	002	02	N2	CH3OH	TOTAL	ATM	Deg-F	BTU/hr	NODE
1	0.000	0.000	0.000	0.000	0.000	0.000	0.135	0.136	1.000	60	-1.2741E+04	1
2.	0.000	0.310	0.000	0.428	0.000	0.869	0.000	1.607	1.000	300	-9.5178E+04	2
3	0.402	0.180	0.006	0.558	0.000	0.869	0.000	2.015	1.000	400	-1.0035E+05	3
4	0.000	0.011	0.000	0.000	0.261	0.983	0.000	1.255	1.000	250	5.0795E+03	4
5	0.141	0.265	0.006	0.558	0.000	0.869	0.000	1.839	1.000	350	-1.1077E+05	5
6	0.000	0.187	0.000	0.000	0.131	0.983	0.000	1.301	1.000	350	-1.1780E+04	6
7	0.000	0.003	0.000	0.000	0.073	0.276	0.000	0.353	1.000	70	9.8453E+02	7
8	0.000	0.409	0.000	0.564	0.000	1.145	0.000	2.118	1.000	738	-1.1762E+05	8
9	0.000	0.310	0.000	0.428	0.000	0.869	0.136	1.743	1.000	638	-1.0008E+05	9
10	0.000	0.409	0.000	0.554	0.000	1.145	0.000	2.119	1.000	500	-1.2194E+05	10
11	0.000	0.099	0.000	0.135	0.000	0.276	0.000	0.511	1.000	500	-2.9409E+04	
12	0.000	0.310	0.000	0.428	0.000	0.869	0.000	1.607	1.000	500	-9.2535E+04	
			COM	ROITIZOR	- MOLE PE	RCENT						
NODE	H2	H20	CO	C02	02	N2	СНЗОН	NODE				
1	0.0	0.0	0.0	0.0	0.0	0.0	100.0	1				
2	0.0	19.3	0.0	25.6	0.0	54.1	0.0	. 2				
3	19.7	8.9	0.5	27.7	0.0	43.1	0.0	3				
4	0.0	Ú.9	0.0	0.0	20.8	78.3	0.0	4				
5	7.7	14.4	0.3	30.3	0.0	47.3	0.0	5				
5	0.0	14.4	0.0	0.0	10.0	75.5	0.0	6				
7	0.0	0.9	9.0	0.0	20.8	78.3	0.0	7				
8	0.0	19.3	0.0	26.6	0.0	54.1	0.0	8				
9	0.0	17.3	0.0	24.6	0.0	49.3	7.8	9				
10	0.Ŭ	19.3	0.0	26.5	0.0	54.1	0.0	10				
11	0.0	19.3	0.0		0.0		0.0	11				
12	0.0	19.3	0.0	26.6	0.0	54.1	0.0	12				
	INPUT PA	RAMETERS:						OUTPU	T PARAME	TERS:		
พบพ	BER OF CE	LLS			79			CELL VOL	TAGE , aV		6	29.6
CEL	L AREA .	ca2		107				CURRENT				75.2
GRO	ISS POWER				.00			NET EFFI				5.2%
			JMPTION .		.24			STACK HE				25.1
	DE UTILIZ		•		. 65			REFORMER				89.8
	HODE UTIL).50			HEAT EX.				43.0
			MER INLET		.19			BLOWER FI				91.8
			ER INLET		.0%					'\		

MATERIAL AND ENERGY BALANCE - PART LOAD DESIGN CONDITION

DATE: 12-13-1984

NODE ARRAY ANALYSIS

CONFIGURATION #4

			FLO	H RATE -	lb mole/h	r			Press	Tead	Enthaloy	
NOCE	H2	H20	CO	602	02	N2	CH3OH	TOTAL	ATM	Deq-F	BTU/hr	NODE
1	0.000	0.000	0.000	0.000	0.000	0.000	0.245	0.245	1.000	60	-2.2916E+04	1
2	0.000	0.269	0.000	0.505	0.000	0.489	0.000	1.463	1.000	300	-1.0465E+05	2
3	0.695	0.063	0.039	0.711	0.000	0.689	0.000	2.197	1.000	400	-1.1461E+05	3
1	0.000	0.023	0.000	0.000	0.556	2.093	0.000	2.672	1.000	250	1.0815E+04	4
5	0.139	0.257	0.039	0.711	0.000	0.689	0.000	1.835	1.000	350	-1.3725E+05	5
6	0.000	0.385	0.000	0.000	0.278	2.093	0.000	2.757	1.000	350	-2.3796E+04	6
7	0.000	0.004	0.000	0.000	0.089	0.334	0.000	0.427	1.000	70	1.1917E+03	7
8	0.000	0.400	0.000	0.749	0.000	1.024	0.000	2.173	1.000	761	-1.4667E+05	8
7	0.000	0.269	0.000	0.505	0.000	0.689	0.245	1.708	1.000	661	-1.1697E+05	9
10	0.000	0.400	0.000	0.749	0.000	1.024	0.000	2.173	1.000	500	-1.5171E+05	10
11	0.000	0.130	0.000	0.245	0.000	0.334	0.000	0.709	1.000	500	-4.9533E+04	11
12	0.000	0.259	0.000	0.505	0.000	0.689	0.000	1.463	1.000	500	-1.0213E+05	12

COMPOSITION - MOLE PERCENT

NODE	H2	H20	CO	C02	02	N2	CH3OH	NODE
1	0.0	0.0	0,0	0.0	0.0	0.0	100.0	1
2	9.0	18.4	0.0	34.5	0.0	47.1	0.0	2
3	31. ò	2.7	1.3	32.3	0.0	31.4	0.0	3
4	0.0	0.9	0.0	0.0	20.8	78.3	0.0	4
5	7.5	14.0	2.1	33.7	0.0	37.6	0.0	5
5	0.0	14.0	0.0	0.0	10.1	75.9	0.0	6
7	0.0	0.9	0.0	0.9	20.8	78.3	0.0	7
8	0.0	18.4	0.0	34.5	0.0	47.1	0.0	8
9	0.0	15.8	0.0	29.5	0.0	40.4	14.3	9
10	0.0	18.4	0.0	34.5	0.0	47.1	0.0	10
11	0.0	18.4	9.0	34.5	0.0	47.1	0.0	11
12	0.0	18.4	0.0	34.5	0.0	47.1	0.0	12

INPUT PARAMETERS:

NUMBER OF CELLS 79 CELL VOLTAGE , av. CELL AREA , cm2 1070.6 CURRENT DENSITY

SROSS POWER . KN 7.25
PARASITIC POWER CONSUMPTION . KN 2.25
ANODE UTILIZATION 0.80
CATHODE UTILIZATION 0.50
H20/Methanol AT REFORMER INLET 1.10
EXCESS 00YGEN AT BURNER INLET 0.0X

CELL VOLTAGE , aV 535.8

CURRENT DENSITY , mA/ca2 160.0

NET EFFICIENCY (LHV) 25.4%

STACK HEAT LOAD , BTU/hr 32506.7

REFORMER HEAT LOAD , BTU/hr 2491.8

HEAT EX. HEAT LOAD , BTU/hr 2421.3

BLOWER FLOW RATE , cu. ft/hr 812.1

OUTPUT PARAMETERS:

MATERIAL AND ENERGY BALANCE FULL LOAD AT $\rm H_2O/C=1.1$ and 80% ANODE UTILIZATION

DATE: 12-37-1999

NODE ARRAY ANALYSIS

CONFIGURATION #4

			FLO	W RATE -	lb aole/h	ır			ेंट बड़ड	Teas	Entitical py	
HODE	H2	H20	03	CO2	02	N2	снзон	TOTAL	ARM:	Pear 5	9TW/Hr	NODE
1	0.000	0.000	0.000	0.000	0.000	0.000	0.257	0.257	15.0000	401	-21. AUICIE+04	1
2	0.000	0.283	0.000	0.445	0.000	0.719	0.000	1.447	e. ma	300	-7.507BE+04	2
3	0.735	0.064	0.038	0.664	0.000	0.719	0.000	2.220	11.400	400	-L. J. H. H. 195	3
4	0.000	0.023	0.000	0.000	0.551	2.072	0.000	2.646	14,000	250)	1.07/3/DE#04	4
5	0.184	0.259	0.038	0.664	0.000	0.719	0.000	1.864	11. 9000	350)	-129/45E+05	5
6	0.000	0.379	0.000	0.000	0.275	2.072	0.000	2.726	1.000	351	-31JUZSE404	6
7	0.000	0.005	0.000	0.000	0.111	0.417	0.000	0.532	ilutioo.	70°	14BELE+03	7
8	0.000	0.447	0.000	0.702	0.000	1.135	0.000	2.295	16.000	8531	-!. 4UEHE+05	8
9	0.000	0.283	0.000	0.445	0.000	0.719	0.257	1.705	1,000	7.53	-1.07#ZH-05	9
10	0.000	0.447	0.000	0.702	0.000	1.136	0.000	2.285	9. 300	300	-1。47月8日#35	19
11	0.000	0.164	0.000	0.257	0.000	0.417	0.000	0.838	1 .460	539	-5.4233 E+ 04	11
12	0.000	0.283	0.000	0.445	0.000	0.719	0.000	1.447	1,3090	500	-9.095323-04	12

COMPOSITION - HOLE PERCENT

NODE	H2	H20	CO	002	02	N2	CH3OH	NODE
1	0.0	0.0	0.0	0.0	0.0	0.0	100.0	1
2	0.0	19.5	9.0	30.7	0.0	49.7	0.0	2
3	33.1	2.9	1.7	29.9	0.0	32.4	0.0	3
4	0.0	0.9	0.0	0.0	20.8	78.3	0.0	4
5	9.9	13.9	2.0	35.6	0.0	38.6	0.0	5
6	0.0	13.9	0.0	0.0	10.1	76.0	0.0	6
7	0.0	0.9	0.0	0.0	20.8	78.3	0.0	7
8	0.0	19.6	0.0	30.7	0.0	49.7	0.0	8
9	0.0	16.6	0.0	26.1	0.0	42.2	15.1	9
10	0.0	19.6	0.0	30.7	0.0	49.7	0.0	10
11	0.0	19.5	0.0	30.7	0.0	49.7	0.0	11
12	÷ΰ	19.5	0.0	30.7	0.0	49.7	0.0	12

INPUT PARAMETERS:

OUTPUT PIRAMETERS:

NUMBER OF CELLS	79	CELL VOLTAGE . SV	541.2
CELL AREA . cm2	1070.0	CURRENT DENSITY . *4%c>2	159.5
GROSS POWER . kW	7.25	NET EFFICIENTY (CHW)	24.1%
PARASITIC POWER CONSUMPTION . KN	2.25	STACK HEAT LEGD , BTW/hm	31752.1
ANODE UTILIZATION	0.75	REFORMER HEAT LIAD . BAUY br	4413.6
CATHODE UTILIZATION	0.50	HEAT EX. HEAR LOAD . SEU/Mm	2321.9
H2O/Methanol AT REFORMER INLET	1.19	BLOWER FLOW FATE cu. 15/56	₩3.2
EXCESS OXYGEN AT BURNER INLET	0.0%		

MATERIAL AND ENERGY BALANCE FULL LOAD AT H20/C = 1.1 and 75% ANODE UTILIZATION

DATE: 12-13-1984

NODE ARRAY ANALYSIS

CONFIGURATION #4

			FLC	¥ RATE −	lb æole/h	r			Press	Temp	Enthalpy	
MODE	H2	H20	CO	CO2	02	N2	снзон	TOTAL	ATM	Deg-f	BTU/hr	NODE
1	0.000	0.000	0.000	0.000	0.000	0.000	0.273	0.273	1.000		-2.5548E+04	1
2	0.000	0.300	0.000	0.401	0.000	0.753	0.000	1.454	1.000	300	-9.0482E+04	2
3	0.781	0.045	0.038	0.637	0.000	0.753	0.000	2.272	1.000	400	-1.0184E+05	3
4	0.000	0.023	0.000	0.000	0.546	2.055	0.000	2.625	1.000	250	1.0623E+04	4
5	0.234	0.264	0.03B	0.637	0.000	0.753	0.000	1.925	1.000	350	-1.2495E+05	5
6	0.000	0.370		0.000		2.055	0.000	2.699	1.000	350	-2.2526E+04	
7	0.000	0.004	0.000	0.000	0.136	0.511	0.000	0.653	1.000		1.8232E+03	7
8	0.000	0.504	9.000	0.674	0.000	1.264	0.000	2,442	1.000	965	-1.3790E+05	8
9	0.000	0.300	0.000		0.000	0.753		1.727	1.000		-1.0126E+05	9
10	0.000	0.504	0.000			1.264	0.000	2.442	1.000		-1.4792E+05	
11	0.900	0.204		0.273	0.000			0.988	1.000			
12	0.000	0.300	0.000	0.401	0.000	0.753	0.000	1.454	1.000	500	-8.8076E+04	12
			CCH	POSITION	- MOLE PE	RCENT						
NODE	Н2	H20	00	C92	02	N2	CH30H	NODE				
1	0.0	0.0	0.0	0.0	0.0	0.0	100.0	1				
2	0.0	20.6	0.0	27.6	0.0	51.8	0.0	2				
3	24.4		1.7	23.0	0.0	33.1	0.0	3				
4	0.Û	0.9	9.0	0.0	20.8		0.0	4				
5	12.2	13.7	2.0	33.1	0.0		0.0	5				
5		13.7	0.0		10.1		0.0	5				
7	0.0	0.9	0.0	0.0	20.8	78.3	0.0	7				
8	0.0	20.6	0.0	27.6	0.0		0.0	8				
9	0.0	17.4	0.0	23.2	0.0		15.8	9				
10	0.0	20.6	0.0		0.0		0.0	10				
11 12	0.0 0.0	20.5 20.6	0.0	27.6 27.6	0.0 0.0	51.8 51.3	0.0 0.0	11 12				
	TNPHT PA	RAMETERS:						OUTPU	T PARAME	TERS:		
	MBER OF CI				79 70 û			CELL VOLT				545.6
	LL AREA .			10				CURRENT I		*		157.2
680	OSS POWER	, kW	UMBTION		7.25			NET EFFIC				22.9%
			UMPTION .					STACK HE				514.4
	ODE UTILI:).70			REFORMER				505.6
	THODE UTI				0.50			HEAT EX.				106.1
H29	O/Methanol	AT REFO	RMER INLET		1.19			BLOWER FL	LUW RATE	, cu. f	t/hr !	9.602
ΕX	CESS OXYG	EN AT BUR	NER INLET		0.0%							

MATERIAL AND ENERGY BALANCE FULL LOAD AT $H_2O/C = 1.1$ and 70% ANODE UTILIZATION

BATE: 12-13-1984

NODE ARRAY ANALYSIS

CONFIGURATION #4

			FLO	U RATE -	lb mole/h	r			Press	Tean	Enthalov	
HODE	H2	H20	co	682	02	N2	СНЗОН	TOTAL	ATM	Deg-F	BTU/hr	HODE
1	0.000	0.000	0.000	0.000	0.000	0.000	0.291	0.291	1.000	60	-2.7261E+04	1
2	0.000	0.320	0.000	0.371	0.000	0.792	0.000	1.493	1.000	300	-9.7254E+04	2
3	0.835	0.067	0.038	0.624	0.000	0.792	0.000	2.356	1.000	400	-9.9481E+04	3
4	0.000	0.023	0.000	0.000	0.543	2.042	0.000	2.607	1.000	250	1.0552E+04	4
5	0.292	0.272	0.039	0.624	0.000	0.792	0.000	2.019	1.000	350	-1.2316E+05	5
6	0.000	0.361	0.000	0.000	0.271	2.042	0.000	2.673	1.000	350	-2.1683E+04	6
7	0.000	0.007	0.000	0.000	0.165	0.621	0.000	0.794	1.000	70	2.2157E+03	7
8	0.000	0.571	0.000	0.662	0.000	1.414	0.000	2.647	1.000	1066	-1.3319E+05	8
9	0.000	0.000	0.000	0.371	0.000	0.792	0.271	1.774	1.000	966	-9.7267E+04	9
10	0.000	0.571	0.000	0.552	0.000	1.414	0.000	2.547	1.000	500	-1.5137E+05	10
11	0.000	0.251	0.000	0.291	0.000	0.621	0.000	1.164	1.000	500	-6.6550E+04	11
12	0.000	0.320	0.000	0.371	0.000	0.792	0.000	1.483	1.000	500	-9.4323E+04	12
			COM	POSITION	- MOLE PE	RCENT						

NODE	H2	H20	00	C02	02	N2	CH30H	NODE
1	0.0	0.0	9.0	0.0	0.0	0.0	100.0	1
2	0.0	21.5	0.0	25.0	0.0	53.4	0.0	2
3	25.4	2.9	1.5	24.5	0.0	33.6	0.0	3
4	0.0	Ú.9	0.0	0.0	20.8	78.3	0.0	4
5	14.5	13.5	1.9	30.9	0.0	39.2	0.0	5
6	0.0	13.5	0.0	0.0	10.2	76.4	0.0	6
7	0.0	0.9	0.0	0.0	20.8	78.3	0.0	7
8	0.0	21.6	0.0	25.0	0.0	53.4	0.0	8
9	0.0	13.0	0.0	20.9	0.0	44.6	16.4	9
10	0.0	21.6	0.0	25.0	0.0	53.4	0.0	10
11	0.0	21.6	0.0	25.0	0.0	53.4	0.0	11
12	0.0	21.6	0.0	25.0	0.0	53.4	0.0	12

INPUT PARAMETERS:

OUTPUT PARAMETERS:

NUMBER OF CELLS	79	CELL YOLTAGE V	549.3
CELL AREA . co2	1070.0	CURRENT DENSITY , mA/cm2	156.1
SROSS POHER . KN	7.25	NET EFFICIENCY (LHV)	21.3%
PARASITIC POWER CONSUMPTION . KN	2.25	STACK HEAT LOAD , BTU/hr	31170.6
ANODE UTILIZATION	0.65	REFORMER HEAT LOAD , BTU/hr	15394.3
CATHODE UTILIZATION	0.50	HEAT EX. HEAT LOAD . BTU/hr	2431.8
H20/Methanol AT REFORMER INLET	1.10	BLOWER FLOW RATE , cu. ft/hr	823.1
EXCESS GANGER OF BURNER INFET	5 AY		

MATERIAL AND ENERGY BALANCE FULL LOAD AT $_{20/C}$ = 1.1 and 65% ANODE UTILIZATION

DATE: 12-13-1984

NODE ARRAY ANALYSIS

CONFIGURATION #4

			FLO	W RATE -	lb mole/h	r			Press	Temp	Enthalpy	
NODE	H2	H20	co	C O 2	92	N2	СНЗОН	TOTAL	ATH	Deg-F	BTU/hr	NODE
1	0.000	0.000	0.000	0.000	0.000	0.000	0.242	0.242	1.000	60	-2.2676E+04	1
2	0.000	0.315	0.000	0.519	0.000	0.807	0.000	1.741	1.000	300	-1.2705E+05	2
3	0.698	0.101	0.028	0.833	0.000	0.807	0.000	2.467	1.000	400	-1.3681E+05	3
4	0.000	0.023	0.000	0.000	0.559	2.100	0.000	2.682	1.000	250	1.0855E+04	4
5	0.149	0.295	0.028	0.833	0.000	0.807	0.000	2.103	1.000	350	-1.5958E+05	5
6	0.000	0.388	0.000	0.000	0.279	2.100	0.000	2.767	1.000	350	-2.3948E+04	6
7	0.000	0.004	0.000	0.000	0.084	0.316	0.000	0.403	1.000	70	1.1263E+03	7
8	0.000	0.438	0.000	0.861	0.000	1.123	0.000	2.422	1.000	691	-1.6852E+05	8
9	0.000	0.315	0.000	0.619	0.000	0.807	0.242	1.983	1.000	591	-1.3965E+05	9
10	0.000	0.438	0.000	0.851	0.000	1.123	0.000	2.422	1.000	500	-1.7263E+05	10
11	0.000	0.123	0.000	0.242	0.000	0.316	0.000	0.681	1.000	500	-4.8544E+04	11
12	0.000	0.315	0.000	0.619	0.000	0.207	0.000	1.741	1.000	500	-1.2408E+05	12
			COM	POSITION	- MOLE PE	RCENT						

NODE	H2	H20	03	002	02	N2	CH30H	NODE
1	0.0	0.0	0.0	0.0	0.0	0.0	100.0	i
2	0.0	18.1	0.0	35.5	0.0	46.4	0.0	2
2	28.3	4.1	1.2	33.7	0.0	32.7	0.0	3
4	0.0	0.7	0.0	0.0	20.8	78.3	0.0	4
5	6.6	14.0	1.3	39.5	0.0	38.4	0.0	5
5	0.0	14.0	0.0	0.0	10.1	75.9	0.0	6
7	0.0	0.9	0.0	0.0	20.8	78.3	0.0	7
8	0.0	18.1	0.0	35.5	0.0	46.4	0.0	8
9	0.0	15.9	0.0	31.2	0.0	40.7	12.2	9
10	Ú.0	18.1	0.0	35.5	0.0	46.4	0.0	10
11	0.0	19.1	0.0	35.5	0.0	46.4	0.0	11
12	0.0	18.1	0.0	35.5	0.0	46.4	0.0	12

INPUT PARAMETERS:

OUTPUT PARAMETERS:

NUMBER OF CELLS	79	CELL VOLTAGE , mV	533.9
CELL AREA . cm2	1070.0	CURRENT DENSITY . ma/cm2	160.6
GROSS POWER . kM	7.25	NET EFFICIENCY (LHV)	25.7%
PARASITIC POWER CONSUMPTION , kW	2.25	STACK HEAT LOAD, BTU/hr	32929.3
ANODE UTILIZATION	0.80	REFORMER HEAT LOAD , BTU/hr	1263.2
CATHODE UTILIZATION	0.50	HEAT EX. HEAT LOAD , BTU/hr	2953.9
H2O/Methanol AT REFORMER INLET	1.30	BLOWER FLOW RATE , cu. ft/hr	966.2
EXCESS DAYGEN AT BURNER INLET	0.0%		

MATERIAL AND ENERGY BALANCE FULL LOAD AT $_{120/C} = 1.3$ and 80% ANODE UTILIZATION

DATE: 12-13-1984

NODE ARRAY ANALYSIS

CONFIGURATION #4

			FLO	# RATE -	lb sole/h	r			Press	Tenp	Enthalov	
NODE	H2	H20	09	CO2	62	N2	CH3OH	TOTAL	ATM	Deg-F	BTU/hr	NODE
1	0.000	0.000	0.000	0.000	0.000	0.000	0.255	0.255	1.000	60	-2.3850E+04	1
2	0.000	0.331	0.000	0.544	0.000	0.850	0.000	1.725	1.000	300	-1.1626E+05	2
3	0.737	0.104	0.027	0.772	0.000	0.850	0.000	2.489	1.000	400	-1.2569E+05	3
4	0.000	0.023	0.000	0.000	0.553	2.079	0.000	2.654	1.000	250	1.0743E+04	4
5	0.184	0.297	0.027	0.772	0.000	0.850	0.000	2.130	1.000	350	-1.4943E+05	5
6	0.000	0.382	0.000	0.000	0.276	2.079	0.000	2.737	1.000	350	-2.3510E+04	6
7	0.009	0.004	0.000	0.000	0.106	0.397	0.000	0.508	1.000	70	1.4170E+03	7
8	0.000	0.486	0.000	0.799	0.000	1.247	0.000	2.532	1.000	784	-1.6007E+05	8
9	0.000	0.331	0.000	0.544	0.000	0.850	0.255	1.980	1.000	684	-1.2806E+05	9
10	0.000	0.496	0.000	0.799	0.000	1.247	0.000	2.532	1.000	500	-1.6640E+05	10
11	0.000	0.155	0.000	0.255	0.000	0.397	0.000	0.807	1.000	500	-5.3032E+04	11
12	0.000	9.331	0.000	0.544	0.000	0.850	0.000	1.725	1.000	500	-1.1337E+05	12
					- MOLE PE							
NODE	H2	H20	CO	C02	02	!12	CH3OH	NODE				
i	0.0	0.0	0.0	0.0	0.0	0.0	100.0	1				
2	0.0	19.2	9.0	31.6	0.0	49.3	0.0	2				
3	29.5	4.2	1.1	31.0	0.0	34.1	0.0	3				
4	0.0	0.9	9.0	0.0	20.8	78.3	0.0	4				
5	8.6	14.0	1.3	36.2	0.0	39.9	0.0	5				
6	0.0	14.0	0.0	0.0	10.1	75.9	0.0	6				
7	0.0	0.9	0.0	0.0	20.8	78.3	0.0	7				
8	0.0	19.2	0.0	31.6	0.0	49.3	0.0	В				
9	0.0	15.7	0.0	27.5	0.0	42.9	12.9	9				
10	0.0	19.2	0.0	31.6	0.0	49.3	0.0	10				
11	0.0	19.2	0.0	31.6	0.0	49.3	0.0	11				
12	0.0	19.2	0.0	31.6	0.0	49.3	0.0	12				

INPUT PARAME	TEDC.	

OUTPUT PARAMETERS:

NUMBER OF CELLS	79	CELL VOLTAGE . mV	539.5
CELL AREA . cm2	1070.0	CURRENT DENSITY . ma/cm2	159.0
GROSS POWER . KM	7.25	NET EFFICIENCY (LHV)	24.4%
PARASITIC POWER CONSUMPTION , kM	2.25	STACK HEAT LOAD . BTU/hr	32244.3
ANODE UTILIZATION	0.75	REFORMER HEAT LOAD . BTU/hr	4969.5
CATHODE UTILIZATION	0.50	HEAT EX. HEAT LOAD . BTU/hr	2894.6
H20/Methanol AT REFORMER INLET	1.30	BLOWER FLOW RATE , cu. ft/hr	957.3
EXCESS DAYGEN AT BURNER INLET	0.0%		

MATERIAL AND ENERGY BALANCE FULL LOAD AT $_{120/C} = 1.3$ and $_{75\%}$ ANODE UTILIZATION

NODE ARRAY ANALYSIS

CONFIGURATION #4

			FLO	H RATE -	lb mole/h	r			Press	Temp	Enthaloy	
MODE	H2	H20	CO	CO2	02	N2	CH3OH	TOTAL	ATM	Deg-F	BTU/hr	NODE
1	0.000	0.000	0.000	0.000	0.000	0.000	0.270	0.270	1.000	60	-2.5262E+04	1
2	0.000	0.351	0.000	0.490	0.000	0.893	0.000	1.734	1.000	200	-1.0913E+05	2
3	0.783	0.107	0.026	0.734	0.000	0.893	0.000	2.543	1.000	400	-1.2031E+05	3
4	0.000	0.023	0.000	0.000	0.548	2.051	0.000	2.632	1.000	250	1.0652E+04	4
5	0.235	0.303	. 0.026	0.734	0.000	0.893	0.000	2.191	1.000	350	-1.4323E+05	
6	0.000	0.375	0.000	0.000	0.274	2.061	0.000	2.710	1.000	350	-2.2948E+04	6
7	0.000	0.005	0.000	0.000	0.131	0.491	0.000	0.627	1.000	70	1.7516E+03	7
9	0.000	0.544	0.000	0.750	0.000	1.395	0.000	2.688	1.000	878	-1.5577E+05	8
9	0.000	0.351	0.000	9.490	0.000	0.893	0.270	2.004	1.000	778	-1.2010E+05	9
19	0.000	0.544	0.000	0.760	0.000	1.385	0.000	2.698	1.000	500	-1.6469E+05	10
11	0.000	0.193	0.000	0.270	0.000	0.491	0.000	0.954	1.000	500	-5.8440E+04	11
12	9.000	0.351	0.000	0.490	0.000	0.893	0.000	1.734	1.000	500	-1.0625E+05	12
			COM	POSITION	- HOLE PE	RCENT						
NODE	H2	H20	00	C02	02	N2	CH30H	NODE				
1	0.0	0.0	9.0	0.0	0.0	0.0	100.0	1				
2	0.0	20.2	0.0	28.3	0.0		0.0	2				
3	30.8	4.2	1.0	23.8	0.0	35.1	0.0	3				
4	0.0	0.9	0.0	0.0	20.8	79.3	0.0	4				
5	10.7	13.3	1.2	3 3.5	0.0	40.8	0.0	5				
5	0.0	13.9	0.0	0.0	10.1	76.1	0.0	6				
7	0.0	0.9	0.0	0.0	20.8	78.3	0.0	7				
8	0.0	20.2	0.0	28.3	0.0	51.5	0.0	9				
9	0.0	17.5	0.0	24.5	0.0	44.5	13.5	9				
10	0.0	20.2	Ú.Ú	29.3	0.0	51.5	0.0	10				
11	0.0	20.2	0.0	28.3	0.0	51.5	0.0	11				
12	0.0	20.2	0.0	28.3	0.0	51.5	0.0	12				
	INPUT PA	RAMETERS:						OUTPU	IT PARAME	TERS:		
NUI	MBER OF CE	ELLS			7 9			CELL VOL				44.1
	LL AREA .			10	70.0			CURRENT			1	57.6
	OSS FOWER				7.25			NET EFFI				3.0%
PA	RASITIC P	OWER CONS	UMPTION .		2.25			STACK HE				91.1
	ODE UTILI:				0.70			REFORMER				29.4
_	THODE UTI				0.50			HEAT EX.				375.8
			RMER INLE		1.30			BLOHER FI	LOW RATE	. cu. f	t/hr 9	62.4
ΕX	CESS OXYS	EN AT BUR	MER INLET		0.0x							

MATERIAL AND ENERGY BALANCE FULL LOAD AT $_{120/C}$ = 1.3 and 75% ANODE UTILIZATION

BATE: 12-13-1984

NODE ARRAY ANALYSIS

CONFIGURATION #4

			FLO	U RATE -	lb male/h	r			fress	Teno	Enthalov	
NODE	H2	H20	co	CO2	02	N2	снзон	TOTAL	ATM	Deq-F	BTU/hr	NODE
1	0.000	0.000	0.000	0.000	0.000	0.000	0.288	0.288	1.000	60	-2.6949E+04	1
2	0.000	0.374	0.000	0.452	0.000	0.943	0.000	1.769	1.000	300	-1.0488E+05	2
3	0.837	0.113	0.025	0.714	0.000	0.943	0.000	2.532	1.000	400	-1.1692E+05	3
4	0.000	0.023	0.000	0.000	0.544	2.046	0.000	2.613	1.000	250	1.0577E+04	4
5	0.293	0.313	. 0.026	0.714	0.000	0.943	0.000	2.288	1.000	350	-1.4025E+05	5
6	0.000	0.367	0.000	0.000	0.272	2.046	0.000	2.685	1.000	350	-2.2253E+04	
7	0.000	0.007	0.000	0.000	0.160	0.600	0.000	0.766	1.000	70	2.1400E+03	
8	0.000	0.512	0.000	0.740	0.000	1.543	0.000	2.895	1.000	973	-1.5491E+05	8
9	0.000	0.374	0.000	0.452	0.000	0.943	0.288		1.000	873	-1.1502E+05	9
10	0.000	0.512	0.000		0.000	1.543	0.000	2.895	1.000	500	-1.6688E+05	10
11	000	0.239	0.000	0.288	0.000	0.600	0.000	1.126	1.000		-6.4911E+04	
12	0.000	9.374	0.000	0.452	0.000	0.943	0.000	1.769	1.000	500	-1.0197E+05	12
			COM	POSITION	- MOLE PE	RCENT						
NODE	H2		CO	C02		N2	снзон	NODE				
1	0.0	0.0			0.0		100.0	1				
2	0.0		0.0	25.£	0.0	53.3	0.0	2				
3	31.3	4.3	1.0	27.1	0.0	35.8	0.0	3 4				
4	0.0	9.9	0.0	0.0	20.8		0.0					
5	12.3	13.7	1.1	31.2	0.0	41.2	0.0	5				
6		13.7		0.0	10.1	76.2	0.0	6				
7	0.0	0.9	0.0	0.0	20.8			7				
8	0.0	21.1	0.0		0.0	53.3	0.0	8				
9		18.2			0.0		14.0	9				
10	0.0	21.1	0.0				0.0	10				
11			0.0		0.0			11				
12	0.0	21.1	0.0	25.6	0.0	53.3	0.0	12				
	INPUT PA	RAMETERS:						OUTPU	T PARAME	TERS:		
	19ER OF CE				79			CELL VOLT	TAGE , aV	ı	5	48.0
CEI	LL AREA .	c=2		100				CURRENT 1	. YTIRMAD	∆A/ca2	1	56.5
	OSS POWER				1.25			CURRENT I	CIENCY (L	HVI	2	1.6%
PA	RASITIC PO	WER CONS	UMPTION .	kW :	2.25							
ANC	DDE UTILIZ	ATION		(.65			REFORMER	HEAT LOA	O . BTU	314 hr 138	67.4
	THODE UTIL).50			HEAT EX.				04.7
H20	3/Methanol	AT REFOR	MER INLET					BLOWER FL	DW RATE	. cu. fi		81.7
EXI	CESS OXYGE	N AT PURI	NER INLET	(0.0%							

MATERIAL AND ENERGY BALANCE FULL LOAD AT $H_2O/C = 1.3$ and 65% ANODE UTILIZATION

DATE: 12-13-1984

NODE ARRAY ANALYSIS

CONFIGURATION #4

			FLO	W RATE -	lb mole/h	r			Press	Temp	Enthalpy	
NODE	H2	H20	CO	C02	02	N2	снзон	TOTAL	ATM	Deg-F	BTU/hr	NODE
1	0.000	0.000	0.000	0.000	0.000	0.000	0.241	0.241	1.000	60	-2.2601E+04	1
2	0.000	0.362	0.000	0.738	0.000	0.938	0.000	2.038	1.000	300	-1.5031E+05	2
3	0.701	0.144	0.023	0.956	0.000	0.938	0.000	2.762	1.000	400	-1.59B7E+05	3
4	0.000	0.023	0.000	0.000	0.561	2.109	0.000	2.693	1.000	250	1.0901E+04	4
5	0.140	0.337	0.023	0.955	0.000	0.938	0.000	2.394	1.000	350	-1.8272E+05	5
6	0.000	0.391	0.000	0.000	0.280	2.109	0.000	2.781	1.000	350	-2.4194E+04	6
7	0.000	0.003	0.000	0.000	0.082	0.307	0.000	0.392	1.000	70	1.0943E+03	7
9	0.000	0.480	0.000	0.979	0.000	1.245	0.000	2.705	1.000	644	-1.9141E+05	8
9	0.000	0.352	0.000	0.738	0.000	0.938	0.241	2.279	1.000	544	-1.6313E+05	9
10	0.000	0.480	0.000	0.979	0.000	1.245	0.000	2.705	1.000	500	-1.9486E+05	10
11	0.000	0.119	0.000	0.241	0.000	0.307	0.000	0.667	1.000	500	-4.8026E+04	11
12	0.000	0.362	0.000	0.739	0.000	0.938	0.000	2.038	1.000	500	-1.4683E+05	12
			COM	POSITION	- MOLE PE	RCENT						
NODE	Н2	H20	co	C02	02	N2	снзон	NODE				
1	ŋ . ŋ	0.0	0.0	0.0	0.0	0.0	100.0	1				
2	0.0	17.3	0.0	35.2	0.0	46.0	0.0	2				

i	9.9	0.0	0.0	0.0	0.0	0.0	100.0	1
2	0.0	17.3	0.0	35.2	0.0	46.0	0.0	2
3	25.4	5.2	0.8	34.6	0.0	34.0	0.0	3
4	0.0	0.7	0.0	0.0	20.8	78.3	0.0	4
5	5.9	14.1	1.0	39.9	Ú.0	39.2	0.0	5
5	0.0	14.1	0.0	0.0	10.1	75.9	0.0	6
7	0.0	0.9	0.0	0.0	20.8	78.3	0.0	7
8	0.0	17.8	0.0	36.2	0.0	46.0	0.0	8
9	0.0	15.9	0.0	32.4	0.0	41.2	10.6	9
10	0.0	17.8	0.0	36.2	0.0	46.0	0.0	10
11	0.0	17.8	0.0	36.2	0.0	46.0	0.0	11
12	0.0	17.8	0.0	36.2	0.0	46.0	0.0	12

THOUT	DADAMETEDC.	

OUTPUT PARAMETERS:

NUMBER OF CELLS	7 7	CELL VOLTAGE , aV	531.6
CELL AREA . cm2	1070.0	CURRENT DENSITY , ma/cm2	161.3
GROSS POWER . kW	7.25	NET EFFICIENCY (LHV)	25.7%
PARASITIC POWER CONSUMPTION . KW	2.25	STACK HEAT LOAD . BTU/hr	33199.2
ANODE UTILIZATION	0.80	REFORMER HEAT LOAD . BTU/hr	197.6
CATHODE UTILIZATION	0.50	HEAT EX. HEAT LOAD . BTU/hr	3477.0
H2O/Methanol AT REFORMER INLET	1.50	BLOWER FLOW RATE , cu. ft/hr	1131.1
EXCESS OXYGEN AT BURNER INLET	0.0%		

MATERIAL AND ENERGY BALANCE FULL LOAD AT $_{120}$ C = 1.5 and 80% ANODE UTILIZATION

CATHODE UTILIZATION

EXCESS OXYGEN AT BURNER INLET

H20/Methanol AT REFORMER INLET 1.50

NODE ARRAY ANALYSIS

CONFIGURATION #4

			FLO	- 3TAR K	lb cole/h	r			Press	leap	Endihallow	
HODE	H2	H20	02	CO2	02	N2	CH3OH	TOTAL	ATH	Deg:-7	BJUWhr	NODE
1	0.000	0.000	0.000	0.000	0.000	0.000	0.254	0.254	1.000	60	-2. <i>ITITE</i> #04	1
2	0.000	0.381	0.000	0.649	0.000	0.994	0.000	2.024	1.000	Mg	-137 43E #85	2
3	0.740	0.149	0.022	0.892	0.000	0.994	0.000	2.786	1.000	# (0.	-1*J/ LAE+ 05	3
4	0.000	0.023	9.000	0.000	0.555	2.087	0.000	2.665	1.000	2501	PLOTESE+04	4
5	0.185	0.340	0.022	0.882	0.000	0.994	0.000	2.423	1.000	X 0	-!L7083E+95	5
6	0.000	0.386	0.000	0.000	0.277	2.087	0.000	2.751	1.000	350	-2.33:77E+94	6
7	0.000	0.004	0.000	0.000	0.103	0.389	0.000	0.496	1.000	70	1 HON +93	7
8	0.000	0.530	0.000	0.903	0.000	1.383	0.000	2.815	1.000	729	-!!SDV%##15	8
9	0.000	0.381	0.000	0.649	0.000	0.994	0.254	2.278	1.000	£28	-11.49/5 /11 +05	9
19	0.000	0.530	0.000	0.903	0.000	1.383	0.000	2.815	1.000	1 00	-1:.2640E+05	10
11	0.000	0.149	0.000	0.254	0.000	0.389	0.000	0.791	1.000	500	-5.230E+64	11
12	0.000	0.381	0.000	0.649	0.000	0.994		2.024	1.000	Ma	-1LJW2 E+ 95	12
			100	POSITION	- NOLE PE	RCENT						
NODE	Н2	H20	CO			N2		NODE				
1	0.0	0.0		0.0	0.0	0.0		1				
2		18.9	0.0			49.1	0.0	2				
2	26.6	5.3	0.8 0.0		0.0	35.7	0.0 0.0	3				
4				0.0	20.8	78.3	0.0	4				
5	7.6						0.0					
6	0.0	14.0	0.0 0.0	0.0	10.1	75.9	0.0	6				
7	0.0		0.0	0.0	20.9		0.0	7				
В	0.0	18.8			0.0	49.1	0.0					
9	0.0	16.7		28.5	0.0	43.6		9				
10	0.0	18.8	0.0	32.1		49.1	0.0	10				
11					0.0			11				
12	0.0	18.8	9.0	32.1	0.0	49.1	0.0	12				
	INPUT PA	RAMETERS:						OUTPU	T PARAME	TERS:		
	IBER OF CE				79			CELL VOL				37.3
	L AREA .	ca2		100	70.0			CURRENT				57.6
	ISS FOWER				7.25			NET EFFI				4.57
			JMPTIGN .					STACK HE				71.4
	DE UTILIZ).75			REFORMER				20. 1

MATERIAL AND ENERGY BALANCE FULL LOAD AT H₂O/C = 1.5 and 75% ANODE UTILIZATION

HEAT EX. HEAT LOAD . 300/6r

BLOWER FLOW RATE , CM. : 1/Hr

3407.0

2123.4

0.50

DATE: 12-13-1984

NODE ARRAY ANALYSIS

CONFIGURATION #4

			FLO	y RATE -	lb sole/h	r			Press	Teno	Enthalov		
HODE	H2	H20	co	CO2	02	N2	снзон	TOTAL	ATM	Deg-F	BTU/hr	NODE	
1	0.000	0.000	0.000	0.000	0.000	0.000	0.259	0.269	1.000	60	-2.5178E+04	1	
2	0.000	0.403	0.000	0.595	0.000	1.050	0.000	2.038	1.000	200	-1.28B1E+05	2	
3	0.785	0.155	0.021	0.833	0.000	1.050	0.000	2.844	1.000	400	-1.3979E+05	3	
4	0.000	0.023	0.000	0.000	0.550	2.059	0.000	2.642	1.000	250	1.0692E+04	4	
5	0.235	0.347	. 0.021	0.833	0.000	1.050	0.000	2.487	1.000	350	-1.6250E+05	5	
6	0.000	0.381	0.000	0.000	0.275	2.069	0.000	2.724	1.000	350	-2.3452E+04	6	
7	0.000	0.005	0.000	0.000	0.128	0.482	0.000	0.616	1.000	70	1.7200E+03	7	
8	0.000	0.599	0.000	0.854	0.000	1.532	0.000	2.975	1.000	816	-1.7486E+05	8	
9	0.000	0.403	0.000	0.585	0.000	1.050	0.269	2.307	1.000	716	-1.3990E+05	9	
10	0.000	0.589	0.000	0.854	0.000	1.532	0.000	2.975	1.000	500	-1.8306E+05	19	
11	0.000	0.185	0.000	0.269	0.000	0.482	0.000	0.937	1.000	500	-5.7639E+04	11	
12	0.000	0.403	0.000	0.595	0.000	1.050	0.000	2.038	1.000	500	-1.2542E+05	12	
			COM	POSITION	- MOLE PE	RCENT							
NOSE	H2	H20	co	C02	02	!12	CH3OH	NODE					
1	0.0	0.0	0.0	0.0	0.0	0.0	100.0	1					
2	0.0	17.8	0.0	28.7	0.0		0.0	2					
3	27.6	5.5	9.7	29.3	0.0	34.9	0.0	3					
4	0.0	0.9	0.0	0.0	20.8	78.3	0.0	4					
5	9.5	14.0	0.8	33.5	9.0	42.2	0.0	5					
6	0.0	14.0	0.0	0.0	10.1	75.9	0.0	6					
7	0.0	0.9	0.0	0.0	20.8	78.3	0.0	7					
8	0.0	19.B	0.0	28.7	0.0	51.5	0.0	В					
9	0.0	17.5	0.0	25.4	0.0	45.5	11.7	9					
10	0.0	19.8	0.0	28.7	0.0	51.5	0.0	10					
11	0.0	19.3	0.0	28.7	0.0	51.5	0.0	11					
12	0.0	19.8	0.0	28.7	0.0	51.5	0.0	12					
INPUT PARAMETERS:							OUTPUT PARAMETERS:						
NU	MBER OF CE	LLS			79			CELL VOLT	AGE . ±V		5	42.1	
	LL AREA ,			107	70.0			CURRENT D	ENSITY .	nA/cm2		59.2	
	OSS POWER			7	.25			NET EFFIC				3.1%	
PA	RASITIC PO	WER CONSI	JMPTION .	kN 2	2.25			STACK HEA	T LOAD .	BTU/hr		13.7	
AN	ODE UTILIZ	ATION		0	.70			REFORMER	HEAT LCA	D , BTU/		83.8	
CA	ITTU BDOHTI	.IZATION		().50			HEAT EX.				93.0	
H2	O/Methanol	AT REFOR	MER INLET	t	.50			BLOWER FL	ON RATE	, cu. ft	:/hr 11	31.0	
EX	CESS OXYGE	N AT BUR!	HER INLET	(0.0%								

MATERIAL AND ENERGY BALANCE FULL LOAD AT ${\rm H_{2O/C}}$ = 1.5 and 70% ANODE UTILIZATION

DATE: 12-13-1984

NODE ARRAY ANALYSIS

CONFIGURATION #4

	Enthalov	Teno	Press			r	lb mole/h	3 RATE -	FLO			
NODE	BTU/hr	Deg-F	ATM	TOTAL	снзон	N2	02	002	CO	H20	H2	NODE
1	-2.6858E+04	60	1.000	0.287	0.237	0.000	0.000	0.000	0.000	0.000	0.000	1
2	-1.2356E+05	300	1.000	2.080	0.000	1.111	0.000	0.539	0.000	0.430	0.000	2
3	-1.3540E+05	400	1.000	2.940	0.000	1.111	0.000	0.805	0.020	0.154	0.840	3
4	1.0614E+04	250	1.000	2.622	0.000	2.054	0.546	0.000	0.000	0.023	0.000	4
5	-1.5836E+05	350	1.000	2.589	0.000	1.111	0.000	0.805	0.020	0.359	0.294	5
6	-2.2903E+04	350	1.000	2.700	0.000	2.054	0.273	0.000	0.000	0.374	0.000	6
7	2.1078E+03	70	1.000	0.755	0.000	0.591	0.157	0.000	0.000	0.007	0.000	7
8	-1.7291E+05	903	1.000	3.187	0.000	1.702	0.000	0.926	0.000	0.659	0.000	8
9	-1.3377E+05	803	1.000	2.367	0.287	1.111	0.000	0.539	0.000	0.430	0.000	9
10	-1.8409E+05	500	1.000	3.187	0.000	1.702	0.000	0.825	0.000	0.559	0.000	10
11	-6.3943E+04	500	1.000	1.107	0.000	0.591	0.000	0.287	0.000	0.229	0.000	11
12	-1.2015E+05	500	1.000	2.080	0.000	1.111	0.000	0.539	0.000	0.430	0.000	12

COMPOSITION - NOLE PERCENT

NODE	H2	H20	03	C02	02	N2	CH3OH	NODE
1	0.0	0.0	0.0	0.0	0.0	0.0	100.0	1
2	0.0	20.7	0.0	25.9	0.0	53.4	0.0	2
3	28.5	5.5	0.7	27.4	0.0	37.9	0.0	3
4	0.0	0.7	0.0	0.0	20.8	78.3	0.0	4
5	11.4	13.8	0.8	31.1	0.0	42.9	0.0	5
5	0.0	13.8	0.0	0.0	10.1	76.0	0.0	6
7	0.0	0.9	0.0	0.0	20.8	78.3	0.0	7
3	0.0	20.7	0.0	25.9	0.0	53.4	0.0	8
9	0.0	18.2	0.0	22.9	0.0	46.9	12.1	9
10	0.0	20.7	0.0	25.9	0.0	53.4	0.0	10
11	0.0	20.7	0.0	25.9	0.0	53.4	0.0	11
12	0.0	20.7	0.0	25.9	0.0	53.4	0.0	12

INPUT PARAMETERS:

NUMBER OF CELLS	/4
CELL AREA . cm2	1070.0
GROSS POWER . KW	7.25
PARASITIC POWER CONSUMPTION . KM	2.25
ANODE UTILIZATION	0.65
CATHODE UTILIZATION	0.50
H20/Methanol AT REFORMER INLET	1.50
FICESS DIVISIN AT BURNER INLET	0.07

OUTPUT PARAMETERS:

CELL VOLTAGE . BV	546.1
CURRENT DENSITY . mA/cm2	157.1
NET EFFICIENCY (LHV)	21.7%
STACK HEAT LOAD , BTU/hr	31735.7
REFORMER HEAT LOAD , BTU/hr	12813.0
HEAT EX. HEAT LOAD , BTU/hr	3417.6
BLOWER FLOW RATE . cu. ft/hr	1154.2

MATERIAL AND ENERGY BALANCE FULL LOAD AT $_{20/C}$ = 1.5 and 65% ANODE UTILIZATION

APPENDIX B

THERMODYNAMIC PROPERTIES OF METHANOL

Some Thermodynamic Properties of Methanol

			Same ale de Sand		1		Saturated Vapor	
Tempera	Vapor Pressure,	Specific	Enthalpy.	Entropy	Heat of	Specific	Enthalpy	Entropy
a.	it in'abs	Volume.	Bl. 18	4, q: c)4	Vaponzation. Btu ib	It' Ib	9	3
. ?	1750	96100	00	0 0000	5160	283 7	5160	1 050
; ;	0 755	0.0199	4.	8600 0	5138	2156	5183	1 038
25	1 05	00700	10.2	0.0510	5111	159.7	5213	1024
60	- 44	0 0202	16.0	0.0372	508 1	981	524 1	0.00
20	1 95	0 0203	218	0 043	504.9	c 88	276	9560
Ç	261	0 0204	27.8	0 054	501.4	67.2	529 2	0 583
3 5	347	0 0206	33.9	9000	4978	51.1	531 7	0 971
200	4 55	0 0207	39.6	9700	1 167	39 6	534 0	0 959
011	9 30	0.0208	46.2	0 0 0 7	1901	31.1	5363	0 947
5.7	7.53	0 0210	52.6	950 0	465.9	246	5385	1560
	0.60	11000	54.1	0.110	4815	19 63	540 6	976 0
3:		0.000	. 65.7		477.1	15 72	542 8	9160
2 5	- 6 4 5	0.0214	4 62	0 131	472.4	12.75	5448	906 0
o (7 61	0.0216	79.2	0 142	467.5	10 40	546 7	0 897
0.1	230	0.0217	562	0.153	462.4	8 54	548 6	0 888
)								27.00
160	28.1	0 0219	93.2	0 164	157 1	90 /	5000	n • 6
061	34.1	0 0221	100 5	9/10	0 10 4	690	0250	0.863
000	- 1.4	0 0222	6 201	0 187	445 /	28.4	0000	0 855
210	491	0 0224	115.3	0 158	967	g (1 000	700
5.0	584	0 0226	122 9	602 0	433 /	64.6	9 900	7 0 0
ć.	0 0 9	0.0228	130 \$	0.220	427 4	2 97	557 9	0 840
3:0	0.50	0.0231	138.5	0 232	420 7	2 53	559 2	0 833
2,0	0 36	0 0233	1466	0.243	4138	2 18	560 4	0 826
2 ti0	911	0 0236	154.8	0 254	406 7	187	5615	0.850
273	127	0 0238	162.9	0 265	389 5	1 62	562 4	0.813
4	•	*******	1111	0.275	342.2	1 406	5633	0 806
C 57	(o ·	0 024	- 00	0.247	3843	1 220	564 1	0 800
067	69.	0.0247	0 8 8 7	6620	3760	1 056	564 9	1670
330	221	0.0250	9861	0.312	366 7	0 918	565 3	0 788
0.0	251	0.0253	208 2	0 325	357 1	0 802	565 3	0 783
3				;		60	3 7 3 3	3120
3,3	264	0.0257	217.2	0.336	4 / 42	50/0	364 0	0 757
340	321	0 0261	225 5	0 346	3368	0.620	295 3	0 757
350	361	0 0265	232 9	0 355	323 /	0 042	0 000	7570
360	404	0.0270	239 5	0.300	303.1	0 4 19	548 6	0 735
) 1	7		,	,			•	
380	503	0 0281	252 7	0 378	2903	0 369	543.0	0 , 24
390	095	0 0288	260 2	0 387	276.4	0 324	536 6	0 7 00
0.0	622	0.0256	9 897	/8C O	2426	0 245	5217	0 687
0 0	0.50	0 0308	2410	0.421	222 0	0 2 1 2	5130	674
02#	*0		2	;		!		;
430	844	0 0332	305 6	0 437	197.9	0 181	503 5	0 660
440	930	0 0349	3219	0.455	50/-	1010	0 764	0.90
450	1023	0 0375	340	0 475	0 0 0 0	2210	0 4 0 4	6850
077	1124	0.0437	363	0.583	0.0	6500	0.4	0.582
404		0.650.0	04	2000			?	,
Smitt. Criem Eng		Prog. 44, 521 (1948). Reprinted by permission	noissin					
								•

IMC METHANOL: A COMPLETE GUIDE SOURCE:

BIBLIOGRAPHY

- Smith, J.M., Chemical Engineering Kinetics Second Edition, McGraw-Hill Book Company, 1970.
- Van Dame, S.E., Smith R.A., Christner, L.G., Experimental Steam - Methanol Reformer Heat Transfer Correlations, American Society of Mechanical Engineers.
- 3. Process Heat Exchange Edited by Vincent Cavaseno and the Staff of Chemical Engineering. McGraw-Hill Publications Co., New York, NY, 1979.
- Ganapathy V., Quick Estimation of Gas Heat Transfer Coefficients. Chemical Engineering September 13, 1976.
- Colburn, A.P., Heat Transfer and Pressure Drop in Empty, Baffled and Packed Tubes, Trans. AICHE V 26, 1931, p. 166.
- 6. Kays, W.M., London, A.L., Compact Heat Exchangers, Third Edition, 1984.
- 7. Perry, R.H., Chilton, C.H., Kirkpatrick, S.D., Chemical Engineers' Handbook, Fourth Edition, 1963.
- 8. Catalyst Handbook, Springer-Verlag New York Inc. Wolfe Scientific Books/London-England 1970
- 9. Development of 3/5k% Fuel Cell Power Plants; Final Report (to be published); Contract DAAK70-79-C-0249.
- 10. Pre-prototype 5kW PAFC Power Plant; Final Report (to be published); Contract F33615-82-C-2201.

AD-R163 636	FUEL PRO PONER UN G STEINF	1T(U) I	ENERGY	RESER	IRCH C	ORP DA	NBURY	UEL C	 2. NL	/2 /2
										i
					T				END Flewer Unic	

MICROCOPY RESOLUTION TEST CHART
NATIONAL BURGALL OF STANDARDS-1963-A

THIS PAGE LEFT INTENTIONALLY BLANK

APPENDIX C PRESSURE DROP CALCULATIONS

PRESSURE DROP CALCULATIONS

The pressure drop of the reformer, and the combustion section of the reformer are important parameters in a fuel cell power plant. The combustion section of the reformer is fed low pressure anode exhaust which is burned and passed through the combustion annuli. In order to minimize pressure boosting by blowers, a minimum pressure drop is desired. Normally no pressure boosting is required in this stream. The vaporizer and catalyst bed section of the reformer are fed by a liquid pump for methanol and a recycle blower for the recycle gas. In order to minimize the pressure boost requirement for the recycle blower, minimum pressure drops are desired for the vaporizer and catalyst bed as well.

The complicating factor in addition to these considerations is that there is a relationship between pressure drop in a system and heat transfer in the same system. Ideally, a low pressure drop and high heat transfer is desired. However, due to the turbulence created in fluid flow as pressure drop increases, there is an increase in heat transfer as well. Colburn defined this relationship as follows (under conditions of turbulent flow):

$$\frac{h}{Cp} = 341 D 0.33 \left(\frac{\rho \Delta p}{L}\right) 0.44$$

where

h = heat transfer coefficient (BTU/Ft² HR OF)

D = Diameter (inches)

 $\rho = density (1b/ft^3)$

 ΔP = inches of water

L = length (ft)

C_D = heat capacity BTU/lb OF

Figure C-l depicts plots of the above equation for tubes of 1 and 3 inches. The equation and the plot show that for a given size pipe, as the mass velocity is increased, the heat transfer rate goes up with 0.44 power of the pressure drop.

For cored tubes containing a centrally located cylindrical core or plug, the above equation applies if D is defined as the equivalent diameter or clearance. For a given mass rate through an empty tube or annulus, an increase in velocity caused by inserting a core in the pipe gives results represented by the following equation.

$$\frac{h}{Cp} = \frac{615 \text{ m}}{d_p-d_c} = \frac{(d_p-d_c)}{d_p-d_c} = \frac{0.125}{L} (\frac{\rho \Delta}{L}P) 0.345$$

where m = total mass flow per tube (lbs/sec)

 d_p = diameter of pipe

 d_{C} = diameter of core

Therefore, it has been shown that pressure drop does have a bearing on heat transfer. Figure C-l does show, however, that baffled tubes result in higher heat transfer coefficients that are not much lower than packed tubes but result in much lower pressure drop. This provides an incentive for improving heat transfer in the reformer by baffles or extended surfaces.

For the purpose of this design, various reformer diameter annuli were examined in order to determine a desirable size which would provide both sufficient heat transfer area and reasonable pressure drop.

Pressure drop of the various annuli at different diameters were calculated based on the equivalent diameter of a tube having an equal cross-sectional area as the annulus in question. A

RELATIONSHIP BETWEEN HEAT TRANSFER COEFFICIENT AND PRESSURE DROP IN EMPTY, BAFFLED AND PACKED TUBES.

Colburn, A.P. Heat Transfer and Pressure Drop in Empty, Baffled and Packed Tubes, Trans AICHE V26, 1931, p166. SOURCE:

nomograph such as depicted in Table C-1 was used to estimate expected pressure drops in each empty annulus of the reformer. For packed annuli, namely the reforming annulus containing the reforming catalyst, a different method was used. Table C-2 shows the equation and parameters used for determining the pressure drop in the packed annulus.

After evaluating various diameters for the reformer, the sizes shown in Table C-4 were chosen. These were chosen for their ability to provide sufficient heat transfer area and low pressure drop in the combustion annulus and in the vaporizor and reforming annuli.

TABLE C-1 PRESSURE DROP IN PIPES

FLOW IN PIPES AND CHANNELS

SOURCE: Perry, R.H. Chilton, C.H., Kirpatrick, S.D., Chemical Engineers' Handbook, Fourth Edition 1963, p. 5-23

TABLE C-2 PRESSURE DROP THROUGH PACKED BEDS

Pressure drop data for fixed beds have been correlated by Carmen [Trans. Inst. Chem. Eng. 15, 150 (1937], where the symbols are defined. He plotted a pressure drop term against Reynolds number.

That is
$$\frac{\Delta P e^3}{h s_0 (1-e) \rho u^2}$$
 against $(Re) = \frac{u \rho}{s_0 u (1-e)}$

The correlation can be rearranged and expressed in more readily available units with the result that

$$\Delta P = Bh^3S^2MT/P$$

where B = a quantity derived from a table by reference to the value of $SMh \mu$.

 $S = \text{space velocity (h}^{-1}),$

M = average molecular weight of gas,

h = height of bed (feet or metres), $\mu = \text{viscosity of gas (lb ft}^{-1} \text{ h}^{-1} \text{ or centipoises)},$

T = average temperature of gas in reactor (Rankine or Kelvin),

 $P = \text{average pressure in reactor } [\text{lb/in}^2 \text{ (abs.) or kg} \\ \text{cm}^{-2} \text{ (abs.)}].$

 ΔP is obtained in $1b/in^2$ or kg cm⁻². The factor B is dependent on SMh/μ .

To calculate a pressure drop, first calculate M/μ (see table 15), and evaluate SMh/μ , and then obtain B in ft lb h units from table 14a, or in metric units from table 14b. Substitution of the value of B in the equation given above gives the required pressure drop.

The values of pressure drop calculated from tables 14a and b are those expected in beds of packed catalyst. In use the bed packs down, causing the voidage in the bed to decrease and the pressure drop to increase to these expected values.

Some typical values of M/μ are given in table C-3.

					Pressure o	irop					
Catalyst size Dia. x length, or dia. Shape ICI Catalyst No.	3×3 mm cylinder	54×36 mm cylinder 11-3, 15-5, 41-3, 52-1	5×5 mm cylinder	6×6 mm cylinder	8 x 8 mm cylinder	10 × 10 mm cylinder	85×113 mm cylinder 15-4	17 × 17 mm ring 46-1, 57-1 Tubular reformer	17 × 17 mm ring 54-2	il + ₹6 in spheres 32-4	i - in granules 35-4
SMh u			Values o	ſBinftlbh	units -						
10 lb h) 20 × 10° 30 × 10° 60 × 10° 10 × 10° 30 × 10°	56×10 ⁻¹³ 40×10 ⁻¹³	31×10 ⁻¹³ 25×10 ⁻¹³ 22×10 ⁻¹³	54×10 ⁻¹³ 537×10 ⁻¹³ 532×10 ⁻¹³	42×10 ⁻¹³ 28×10 ⁻¹³ 25×10 ⁻¹³	25×10 ⁻¹³ 20×10 ⁻¹³ 18×10 ⁻¹³	1.5 × 10 ⁻¹³ 1.5 × 10 ⁻¹³ 1.4 × 10 ⁻¹³	12×10 ⁻¹³ 1·0×10 ⁻¹³ 9·6×10 ⁻¹⁴	79×10 ⁻¹⁴ 64×10 ⁻¹⁴ 56×10 ⁻¹⁴	47×10 14 38×10 14 34×10 14	31×10 25×10 22×10	13 40×10 ⁻¹³ 13 33×10 ⁻¹³ 13 25×10 ⁻¹³ 13 21×10 ⁻¹³ 13 [5×10 ⁻¹³
SMh µ					Values	of B in metr	ric units				
(metric units) 1.5 × 10 ⁶ 2.0 × 10 ⁶ 4.0 × 10 ⁶ 8.0 × 10 ⁶ 2.0 × 10 ⁷	16×10 ⁻¹² 10×10 ⁻¹²	82×10 13 62×10 13	14×10 ⁻¹² 197×10 ⁻¹³ 177×10 ⁻¹³	11×10 ⁻¹³ 7.7×10 ⁻¹³	1 66×10 ⁻¹³ 1 51×10 ⁻¹³ 1 44×10 ⁻¹³	48×10 ⁻¹³ 38×10 ⁻¹³	32×10 ⁻¹³ 26×10 ⁻¹³ 24×10 ⁻¹³	20×10 ⁻¹³ 16×10 ⁻¹³ 14×10 ⁻¹³	12×10 ⁻¹³ 97×10 ⁻¹⁴ 86×10 ⁻¹⁴	82×10 62×10 54×10	13

SOURCE: Catalyst Handbook, Springer-Verlag, New York Inc., Wolfe Scientific Books/London-England, 1970

TABLE C-3
MOLECULAR WEIGHT/VISCOSITY RATIOS

Some values of molecular weight/viscosity are given for typical gas streams. For most duties the accuracy of these values is adequate for the evaluation of pressure drop

Duty	M	$M \cdot \mu$ (ft lb h units)	M μ (metric units)
Primary reformer	15	190	460
Secondary reformer	16	150	360
HT CO shift	16	290	700
LT CO shift	16	370	890
Methanation (NH3 plant)	8.6	200	480
Methanation (H, plant)	2.4	70	160

SOURCE: Catalyst Handbook, Springer-Verlag, New York Inc., Wolfe Scientific Books/London-England, 1970

TABLE C-4 5kw neat methanol reformer design parameters

ANNULAR REGION	INTERNAL	VAPORIZER	REPORMER	EXTERNAL COMBUSTION I	EXTERNAL COMBUSTION II
0.D.	5.5 5.95	5.95 6.40	6.40 7.75	7.75 8.10	
Wall (inch)	.025 .025	.025 .025	.025 .025	.025 .025	.025 .025
Tube 1.D. (inch)?	5.45 5.90	5.90 6.35	6.35 7.70	7.70 8.05	8.05 8.70
Annulus (inch)	0.20	0.20	0.65	0.15	0.30
Cross Sectional Area (ft2)	0.028	0.030	0.100	0.026	0.055
Surface Area 3 (ft²)	3.12	3.12 3.35	3.35 4.06		
Surface Area 4 (ft²)				3.04 3.18	3.18 3.44
Hass Flow					
4 kW (1b/hr ft²)	2286	2141	531	2490	1170
7.25 kW (1b/hr ft²)	2620	2454	582	2853	1341
Gas Velocity					
4 kW (ft/sec)	41	37	9.2	45	21
7.25 kW (ft/sec)	42	42	6.3	46	22
Heat Transfer					
h empty (Btu/Hr ft ² OF)	4.35	3.44	3.21	4.26	.2
Δp (inches of water)	0.2	0.2	4.0	0.24	0.03

1 Tube 0.D. of inside and outside tube defining each annulus 2 Tube I.D. of inside and outside tube defining each annulus 3 Based on 2 ft high active area of internal annuli 4 Based on 1.5 ft high active area of combustion annuli I and II

THIS PAGE LEFT INTENTIONALLY BLANK

APPENDIX D

HEAT TRANSFER CALCULATIONS

HEAT TRANSFER CALCULATIONS

In order to evaluate the heat transfer characteristics of the combustion tube and vaporizer components, heat transfer coefficients were determined based on two correlations. The Leva cooling correlation was used for the combustion tube, and the Beek correlation was used for the vaporizer.

The heat transfer coefficients predicted by the Leva cooling correlation for a packed tube was calculated at part load and full load conditions. This coefficient was then converted to an "empty tube" coefficient by using a factor developed by Colburn. The empty tube coefficient was compared to the effective heat transfer coefficient actually obtained. The results indicated that the effective heat transfer obtained was lower than the predicted empty tube coefficient. Tables D-1 and D-2 depict the correlation and results obtained. A plot of the Nusselt number and heat transfer coefficient versus the Reynolds number in Figure D-1 indicates that improvements in heat transfer can be obtained by increasing the Reynolds number. However, this improvement is obtained at a pressure drop penalty, since pressure drop also increases with the Reynolds number.

The heat transfer in the vaporizer was also evaluated by using the Beek correlation. Here too, a packed tube coefficient was calculated first, and an empty tube coefficient was derived from the packed tube coefficient. The correlation used, and the coefficient obtained are illustrated in Tables D-3 and D-4. The data was also plotted in Figure D-2. Here too, an increase in heat transfer rates can be observed as the Reynolds number increases.

Figure D-3 shows some typical levels of heat transfer coefficients. Although specific conditions, such as temperature, velocity, and geometry affect the heat transfer coefficients, the figure presents some typical values of h for the

purpose of comparison. The h obtained experimentally falls between the h for atmospheric natural convection of air and forced convection of air.

The heat duty desired for heat transfer from the combustion tube to the vaporizer is 9072 BTU/hr. The actual heat transfer obtained was 2961 BTU/hr. Therefore, an increase in heat transfer by a factor of 3 was required. This necessitated a design modification which would provide additional heat transfer to meet the requirement.

TABLE D-1 LEVA COOLING CORRELATION

 $Nu_T = 3.5 e^{-4.6 D_p/D_T} Re_p^{-0.7}$

 $Nu_T = Nusselt Number hDt/k$

h = Heat Transfer Coefficient

 D_t = Hydraulic Diameter of Combustion Tube

k = Thermal Conductivity of Gas

 $Re_p = Reynolds Number D_p G/\mu$

D_p = Particle Diameter

G = Mass Flow Rate/Cross Sectional Area of Combusticon

Tube

 μ = Viscosity of Gas

TABLE D-2

COMBUSTION TUBE HEAT TRANSFER COEFFICIENTS

FLOW	THEORETICAL PACKED TUBE (1) HEAT TRANSFER COEFFICIENT (BTU/Hr Ft ^{2O} F)	THEORETICAL EMPTY TUBE (2) HEAT TRANSFER COEFFICIENT (BTU/Hr Ft ² OF)	EXPERIMENTAL HEAT TRANSFER COEFFICIENT (BTU/Hr Ft ²⁰ F)
4 kW	103	13	8
7.25 kW	108	14	

NOTES:

- 1 3/16 INCH DIAMETER TUBE WITH 3/16 DIAMETER PACKING USING LEVA COOLING CORRELATION
- 2 BASED ON RATIO BETWEEN HEAT TRANSFER COEFFICIENT FOR PACKED TUBES AND EMPTY TUBES DEVELOPED BY COLBURN.
- 3 USING Pt MONOLITH AND 4 3/8 INCH LONG Pt PELLET BED.

VAPORIZER HEAT TRANSFER CORRELATION

TABLE D-3

BEEK CORRELATION FOR CYLINDERS

 $Nu_t = \frac{Dt}{D_p} (2.58 \text{ Re}_p.^{33} \text{ Pr}.^{33} + 0.094 \text{ Re}_p.^{8} \text{ Pr}.^{4})$

 $Nu_t = Nusselt Number hD_t/k$

h = Heat Transfer Coefficient

 D_t = Hydraulic Diameter of Annulus

k = Thermal Conductivity of Gas

 Re_D = Reynolds Number Dp G/μ

Dp = Particle Diameter

G = Mass Flow Rate/Cross Sectional Area of Annulus

 μ = Viscosity of Gas

 $Pr = Prandtl Number \underline{\mu}\underline{C}_{p}$

 C_{p} = Heat Capacity of the Gas

TABLE D-4
VAPORIZER HEAT TRANSFER COEFFICIENTS

FLOW	THEORETICAL PACKED TUBE (1) HEAT TRANSFER COEFFICIENT (BTU/Hr Ft ^{2O} F)	THEORETICAL EMPTY TUBE (2) HEAT TRANSFER COEFFICIENT (BTU/Hr Ft ² OF)	EXPERIMENTAL (3) HEAT TRANSFER COEFFICIENT (BTU/Hr Ft ^{2O} F)
4 kW	39	5	8
7.25 kW	42	5.3	

NOTES:

- 1 3/16 O.D./2.12 INCH I.D. ANNULUS WITH 5/16 INCH PACKING USING BEEK CORRELATION.
- 2 BASED ON RATIO BETWEEN HEAT TRANSFER COEFFICIENT FOR PACKED TUBES AND EMPTY TUBES DEVELOPED BY COLBURN.
- USING Pt MONOLITH AND S/S SHAVINGS AS PACKING.

Approximate values of h, fluid-to-surface heat-transfer coefficients

FIGURE D-2 APPROXIMATE VALUES OF HEAT TRANSFER COEFFICIENTS

SOURCE: Process Heat Exchange, Edited by Vincent Cavaseno and the staff of Chemical Engineering McGraw Hill Publication Co., New York, NY page 101, 1979.

COMBUSTION TUBE HEAT TRANSFER CORRELATION

DISTRIBUTION LIST

DISTRIBUTION LIST

Commander (12)
Defense Technical Information Ctr.
Cameron Station
Alexandria, VA 22314

Chief (1)
Research Development & Acquisition
Office, Deputy Chief of Staff
Department of the Army
Washington, DC 20310

Office of the Under Dep Sec (1) of Defense (Res & Adv Technology) ATTN: ASST DIR, Electronics & Physical Sciences Washington, DC 20301

Director, Tech Information (1) Advanced Res Proj Agency 1400 Wilson Blvd Arlington, VA 22209

Commander (1)
US Army Materiel Development
and Readiness Command
5001 Eisenhower Avenue
Alexandria, VA 22333

Commander (1)
US Army Tank-Automotive R&D
Command,
Technical Library, DRDTA-UL
Warren, MI 48090

Commander (1)
US Army Electronics R&D Command
ATTN: DELET-PB
Fort Monmouth, NJ 07703

Commander (1)
US Army Transportation Research &
Engineering Command
ATTN: Research Directorate
Fort Eustis, VA 23604

Technical Documents Center (2) US Army Belvoir R&D Center ATTN: STRBE-WC Fort Belvoir, VA 22060

Chief (1)
Naval Ships Engineering Center
Department of the Navy
ATTN: Code 6157D, Mr. E. Anderson
Washington, DC 20362

Department of the Navy (1)
Office of Naval Research
Ballston Towser #1
800 N. Quincy St., Code: 472, Rm. 624
Arlington, VA 22217

Commander (1)
Naval Electronics Laboratory Center
ATTN: Research Library
San Diego, CA 92152

Director (1)
US Naval Research Laboratory
ATTN: Code 2027
Washington, D. C. 20390

Commander (1)
Aerospace Power Division
ATTN: AFAPL/PO (Mr. J. D. Reams)
Wright-Patterson Air Force Base
Dayton, OH 45443

Electric Power Research Inst (1) ATTN: A. P. Fickett P. O. Boxn10412 20390 Palo Alto, CA 94304

Dr. Paul Stonehart Stonehart Associates, Inc. 34 Five Fields Road Madison, CT 06443 Dr. Jose Giner (1) Giner, Inc. 14 Spring Street Waltham, MA 02154

US Army Engineer School (1) Director, Combat Developments ATTN: ATZA-CDM (Mr. Mundt) Fort Belvoir, VA 22060-5606

DoD Proj Mgr-Mobile Elec Power (1) ATTN: DRCPM-MEP-TM (J. Wasdi) 7500 Backlick Road Springfield, VA 22150

Logistics Evaluation Agency (1) ATTN: DALO-LEI (Jack Daveau) New Cumberland Army Depot New Cumberland, PA 17070

Commander (2)
US Army Training & Doctrine Command
ATTN: ATCD-MC (MAJ Miller)
Fort Monroe, VA 23651

Power Information Center (1) Franklin Research Center 20th and Race Streets Philadelphia, PA 19130

Directo (1) George Marshall Space Flight Center ATTN: Mr. J. L. Miller (M-ASTR-E) Huntsville, AL 38809

Director (1)
Lewis Research Center
NASA
ATTN: Mr. H. J. Schwartz (M. S. 309-1)
21000 Brookpark Road
Cleveland, OH 44135

Dr. Paul Nelson, Director (1) Argonne National Laboratory Bldg. 205 9700 South Cass Avenue Argonne, IL 60439

US Department of Energy (1) ATTN: Mr. Gary Voelker Division of Fossil Fuel Utilization Mail Station E-178, Germantown Washington, D. C. 20545 Engelhard Industries Div (1) Engelhard Minersal & Chem Corp ATTN: V. A. Forlenza Menlo Park, Edison, NJ 08817

General Electric Company (1) 50 Fordham Road ATTN: L. J. Nuttall Bldg. 1A Wilmington, MA 01887

International Fuel Cells (1) ATTN: Mr. Al Meyer P. O. Box 109 Governor's Highway South Windsor, CT 06074

Energy Research Corporation ATTN: Dr. B. S. Baker 3 Great Pasture Road Danbury, CT 06810

Office Deputy Chief of Staff (1) Res. Develop and Engineering ATTN: DAMA-CSS (MAJ Toch) Washington, D. C. 20301

Gas Research Institute ATTN: Mr. Vincent Fiore 10 West 35th Street Chicago, IL 60616

Jet Propulsion Laboratory (1) California Inst of Technology ATTN: Dr. John Houseman Fuel Conversion Group 4800 Oak Drive Pasadena, CA 91103

Commander (1)
US Army Test & Evaluation Command
ATTN: DRSTE-IN (Mr. Huang)
Aberdeen Proving Ground, MD 21005

Westinghouse R&D Center (1) ATTN: Mr. D. Q. Hoover 1310 Beulah Road Pittsburg, PA 15235

Commander (1)
Harry Diamond Laboratories
DELHD-RDD (Benderly) (Batteries)
Adelphi, MD 20783

END

FILMED

3-86

DTIC