Tampereen yliopisto

Asymptoottisen tehokkuuden idea

COMP.CS.300 Tietorakenteet ja algoritmit 1

Matti Rintala (matti.rintala@tuni.fi)

Tampereen yliopisto Asymptoottinen tehokkuus

- Miten algoritmin käyttäytyminen muuttuu, kun datan määrä kasvaa?
- Ajankulutus, muistinkulutus tms.

Aika

(t)

 Asymptoottinen: miltä muutos näyttää suurilla datamäärillä ("lähestyy ääretöntä")

Tampereen yliopisto Kertaluokat

- Kuvataan datan kasvun vaikutusta funktiolla, jota todellisuus lähestyy määrän kasvaessa
- Algoritmin ajankäyttö: Suoritettujen "askelten" määrä
- Askel: jokin syötekoosta riippumaton operaatio
- Lasketaan yhteen askelten määrä, ilmaistaan syötteen koon n funktiona
- Yksinkertaistus: jätetään vain "ylimmän asteen" termi, poistetaan vakiokertoimet (miksi? selviää myöhemmin)
- Merkintä: Θ(funktio)

Tampereen yliopisto Esimerkki: summaus

Summa(A)

```
1 summa := 0
2 for i := 1 to A.length
3 summa := summa + A[i]
```


Esimerkki: summaus

n	
1	
10	
100	
1000	
10000	

Esimerkki: summaus

Esimerkki: etsiminen

```
Etsi(A, arvo)
1 for i := 1 to A.length
    if A[i] = arvo then
       return i
4 return 0 (ei löytynyt)
```


Control Contro

- Paras tapaus?
- Huonoin tapaus?
- Keskimääräinen tapaus?

Cy Tampereen yliopisto Esimerkki: etsiminen

•
$$\left(1\frac{p}{n}+2\frac{p}{n}+...+n\frac{p}{n}+n(1-p)\right)$$