Model validation and selection

STEPHANIE J. SPIELMAN, PHD

BIO5312, FALL 2017

Recall our models

Linear models

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

Logistic regression

$$Pr(success) = \frac{e^t}{1 + e^t}$$
$$t = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$

Model validation and selection

Model Validation

- What approaches can we use to evaluate the performance of a model?
- What metrics can we use to measure model performance?

Model Selection

- Given a set of possible models, how do we choose the "best" one?
- How do we choose predictors, in particular main vs. interaction effects?
- What metrics can we use to compare model performance?

Evaluating logistic regressions

```
> model <- glm(outcome ~ ., data=biopsy, family=binomial)</pre>
> new.patient <- tibble(clump_thickness = 4,</pre>
                         uniform_cell_size = 2,
                         uniform_cell_shape = 7,
                         marg_adhesion = 3,
                         epithelial_cell_size = 8,
                         bare_nuclei = 1,
                         bland_chromatin =5,
                         normal_nucleoli = 2,
                         mitoses = 0)
> predict(model, new.patient, type = "response")
0.2875157
```


Confusion matrix

TRUTH

PREDICTION

	Negative (False)	Positive (True)
Positive (True)	Type I error (False positive)	True positive
Negative (False)	True negative	Type II Error (False negative)

Confusion matrix on the biopsy model

Emerging quantities

		ŢRUTH	
		Negative (False)	Positive (True)
REDICTION	Positive (True)	FP	TP
	Negative (False)	TN	FN
Δ		I	1

True Positive Rate aka Sensitivity or Recall

$$TPR = TP/P = TP/(TP+FN)$$

Precision aka Positive Predictive Value (PPV)

True Negative Rate aka Specificity

$$TNR = TN/N = TN/(FP+TN)$$

False discovery rate

$$FP/(FP+TP) = 1-PPV$$

False Positive Rate

$$FPR = FP/N = FP/(FP+TN) = 1 - TNR$$

Accuracy

$$(TP + TN) / (TP + TN + FP + FN)$$

Not enough for you? https://en.wikipedia.org/wiki/Confusion_matrix

Calculate these qualities for biopsy model

```
> model <- glm(outcome ~ ., data=biopsy, family=binomial)</pre>
### Predict on all the rows
> predict(model, biopsy, type = "response") %>% as.data.frame()
   0.0160465814
   0.9088086224
   0.0081376226
   0.7609349192
  0.0181668485
  0.9999736224
```

Calculate these qualities for biopsy model

```
> biopsy2 <- biopsy %>%
      mutate(pred = predict(model, biopsy, type = "response") )
### Let's say >=0.5 is a prediction of malignancy ###
> biopsy2 %>%
      mutate(pred.malignancy = ifelse(pred >= 0.5, "mal", "benign")) %>%
      group_by(outcome, pred.malignancy) %>%
      tally()
   outcome pred.malignancy
    <fctr> <chr> <int>
    benign benign 434 true negative
                 mal 10 false positive
    benign
               benign 11 false negative
3 malignant
                      mal 228 true positive
4 malignant
```

Evaluating the classifier

```
outcome pred.malignancy n
<fctr> <chr> <int>
1 benign benign 434 true negative
2 benign mal 10 false positive
3 malignant benign 11 false negative
4 malignant mal 228 true positive
```

```
TPR = TP / (TP + FN) = 228 / (228 + 11) = 0.953

FPR = FP / (FP + TN) = 10 / (10 + 434) = 0.023

TNR = 1 - FPR = 0.977

PPV = TP / (TP + FP) = 228/(228 + 10) = 0.957

Acc = (TP+TN) / (total) = (228 + 434) / (683) = 0.969
```

What about for any possible cutoff?

Receiver Operating Characteristic (ROC) curves are a common tool to diagnose the ability of a binary classifier

Quantify with metric AUC

- Area Under the Curve (literally)
- 0.5 = random classification
- 1 = perfect classification

FPR= 1 - Specificity

Real-life ROC curves

ROC and AUC for our biopsy model

> library(pROC) ### You will have to install this package

```
## the 2<sup>nd</sup> argument can be either linear.predictors or fitted.values > roc.object <- roc(biopsy$outcome, model$linear.predictors)
```

> roc.object\$auc Area under the curve: 0.9963

Visualize the ROC curve

Model selection via AUC

```
> tidy(model)
                         estimate std.error
                                            statistic
                                                         p.value
                term
          (Intercept) -10.103942243 1.17487744 -8.59999681 7.971831e-18
1
2
3
4
5
       clump_thickness
                      0.535014068 0.14201743
                                           3.76724220 1.650608e-04
     uniform cell size -0.006279717 0.20907739 -0.03003537 9.760388e-01
    uniform_cell_shape 0.322706496 0.23060065 1.39941710 1.616879e-01
        marg_adhesion 0.330636915 0.12345089 2.67828703 7.399977e-03
  epithelial cell size 0.096635417 0.15659236 0.61711452 5.371592e-01
          bare_nuclei 0.383024572 0.09384327 4.08153469 4.473930e-05
8
      9
      normal nucleoli 0.213030682 0.11287348 1.88734050 5.911454e-02
10
                      0.534835631 0.32877389 1.62675821 1.037885e-01
             mitoses
> model1 <- glm(outcome ~ clump_thickness, data=biopsy, family=binomial)</pre>
> model2 <- glm(outcome ~ clump_thickness + marg_adhesion + bare_nuclei +
                              bland_chromatin, data=biopsy, family=binomial)
```

Model selection via AUC

Directly compare ROC curves

Exercise break

Linear model selection and evaluation

Quantities of model fit (how well does my model fit the data?)

```
<u>- R</u><sup>2</sup>
```

- Likelihood
- Akaike Information Criterion (AIC)
- Bayesian Information Criterion (BIC)

Likelihood

The **likelihood** of a model is the probability of observing your data, given the model's parameters

• P(data| parameters)

Generally we use LogL (In likelihood), because likelihoods are very very small

An example likelihood calculation

I flip a coin 500 times and get 380 heads, 120 tails. What is the likelihood of a model with p=0.5?

$$P(k \ successes) = \binom{n}{k} p^k q^{(n-k)}$$

$$P(380 \ successes | p = 0.5) = {380 \choose 500} 0.5^{380} 0.5^{120} =$$
5.9e-30

$$LogL = In(5.9e-30) = -74.21$$

```
> dbinom(380, 500, p=0.5)
[1] 5.9030476e-33
```

Maximum likelihood estimation (very simply)

Estimation approach to find the parameter value which maximizes the likelihood

```
> all.p <- seq(0, 1, by=0.01) #### 0, 0.01, 0.02,..., 0.99, 1.0</pre>
                                                                               The parameter value which
> all.logl <- dbinom(x=380, prob=all.p, size=500, log=T)</pre>
                                                                               maximizes the LogL is the MLE
> p.logl <- tibble(x = all.p, y = all.logl)</pre>
> ggplot(p.logl, aes(x=x,y=y)) +
        geom_line() +
        xlab("Proportion p") +
        ylab("LogL")
                                                                     LogL
                                                                       -1000
> p.logl %>% filter(y == max(y))
                 <dbl>
  < dbl>
1 0.76 -3.176213056
                                                                                 0.25
                                                                                               0.75
                                                                                       Proportion p
```

The likelihood ratio test (LRT)

Hypothesis test to compare fit between two nested models

- Parameters of the alternative model are also in the null
- The null is **less** complex. It is a **special case of the alternative**

Uses the chi-squared distribution

o df = (df alternative) - (df null)

$$D = -2 \ln \left(\frac{LogL_{null}}{LogL_{alternative}} \right) = 2 * [LogL_{alternative} - LogL_{null}]$$

LRT null vs alternative: Which is which?

Null Outcome
$$\sim x1 + x2 + x3$$

Alternative Outcome
$$\sim x1 + x2 + x3 + x4 + x5$$

Outcome $\sim x1 + x2 + x3 + 0 + 0$

Performing a LRT

```
\begin{split} D &= -2 \ln \left( \frac{LogL_{null}}{LogL_{alternative}} \right) \\ &= 2 * LogL_{alternative} - LogL_{null} \end{split}
```

```
> null_model <- lm(Sepal.Length ~ Petal.Length, data = iris)</pre>
> tidy(null_model) %>% select(term, estimate)
                                                               Y = 4.307 + 0.409X
                   estimate
          term
1 (Intercept) 4.3066034150
                                                               → The log likelihood of a model with estimated
2 Petal.Length 0.4089222774
                                                               parameters \beta_0 = 4.307 and \beta_1 = 0.409 is -77.02
> glance(null_model) %>% select( adj.r.squared, df, logLik)
 adj.r.squared df logLik
1 0.7583327177 2 -77.02021159
> alt_model <- lm(Sepal.Length ~ Petal.Length + Species, data = iris)</pre>
> glance(alt_model) %>% select( adj.r.squared, df, logLik)
 adj.r.squared df logLik
1 0.8333687938 4 -48.11637097
#### LRT #####
> D <- 2 * (-48.11637097 - -77.02021159) ### Comes out to 57.80768
> df < -4 - 2
                                   Evidence for model improvement in the alternative compared to
> 1 - pchisq(D, df)
                                   the null.
[1] 2.799982468e-13
```

LRT has very specific utility

Can only compare nested models

```
####### These are not appropriate for LRT ########
> null_model <- lm(Sepal.Length ~ Sepal.Width, data = iris)
> alt_model <- lm(Sepal.Length ~ Petal.Length + Species, data = iris)</pre>
```

Can only compare two models

Not useful if I have 100 models and want to choose the "best" one

Linear model selection and evaluation

Quantities of model fit (how well does my model fit the data?)

```
<u>• R</u><sup>2</sup>
```

- Likelihood
- Akaike Information Criterion (AIC)
- Bayesian Information Criterion (BIC)

Comparing non-nested models

AIC and BIC take number of parameters into account to protect

against overfitted models

$$AIC = 2 * (k - LogL)$$

$$BIC = k * log(n) - 2 * LogL$$

k = number of parameters

n = sample size

BIC penalizes more strongly

Useful for: Is it worth the overfitting risk to have the additional parameters?

Bias-variance tradeoff in model fitting

Prefer model with lowest IC ($\Delta IC \sim 2$)

```
> model1 <- lm(Sepal.Length ~ Petal.Length, data = iris)</pre>
> glance(model1) %>% select( AIC, BIC)
          ATC
                      BIC
1 160.0404232 169.0723291
> model2 <- lm(Sepal.Length ~ Petal.Length + Species, data = iris)</pre>
> glance(model2) %>% select( AIC, BIC)
                                                                      With AIC, we prefer:
          ATC
                                                                      model4 >> model2 ~=model3 >> model1
1 106.2327419 121.2859184
> model3 <- lm(Sepal.Length ~ Petal.Length * Species, data = iris) With BIC, we prefer:
> glance(model3) %>% select( AIC, BIC)
                                                                      model4 >~ model2 > model3 >>model4
         ATC
                     BTC
1 106.7673053 127.8417524
> model4 <- lm(Sepal.Length ~ Sepal.Width * Petal.Length * Species, data = iris)</pre>
> glance(model4) %>% select( AIC, BIC)
          AIC
                      BIC
1 80.40596946 119.5442283
```

Exhaustive searching in R (one option of millions)

```
> model <- lm(Sepal.Length ~ ., data = iris)

### Selection with AIC
> aic.backwards <- step(model, trace=F) ## trace=F reduces output vomit
> aic.forwards <- step(model, trace=F, direction = "forward")

#### Selection with BIC
> bic.backwards <- step(model, trace=F, criterion = "BIC")</pre>
```

Exhaustive search results

```
> glance(aic.backwards)
    r.squared adj.r.squared sigma statistic
                                                 p.value df
BIC
                                   deviance df.residual
      loaLik
                   AIC
1 -32.55801067 79.11602135 100.1904684 13.55648508
> glance(aic.forwards)
    r.squared adj.r.squared sigma statistic
                                                    p.value df
1 0.8673122616  0.8627050485  0.3068261031  188.2509525  2.666942494e-61  6
      logLik
                   AIC
                             BIC
                                   deviance df.residual
1 -32.55801067 79.11602135 100.1904684 13.55648508
> glance(bic.backwards)
    r.squared adj.r.squared sigma statistic
                                              p.value df
1 0.8673122616  0.8627050485  0.3068261031  188.2509525  2.666942494e-61  6
                             BIC
                                   deviance df.residual
      logLik
                   AIC
1 -32.55801067 79.11602135 100.1904684 13.55648508
                                                 144
```

Exercise break

It matters what data you use to build a model

```
> iris %>% sample_frac(0.2) -> iris.sub1
> iris %>% sample_frac(0.2) -> iris.sub2
> m1 <- lm(Sepal.Length ~ Petal.Length, data = iris.sub1)
> glance(m1) %>% select(r.squared)
     r.sauared
1 0.8522912784
> m2 <- lm(Sepal.Length ~ Petal.Length, data = iris.sub2)
> glance(m2)
     r.sauared
1 0.7443233142
> test.data <- tibble(Petal.Length = 8.7)</pre>
                                                     > predict(m2, test.data, interval = "confidence")
> predict(m1, test.data, interval = "confidence")
                                                                                        upr
                 lwr
                                                     1 7.833587103 7.325629373 8.341544834
1 8.174451411 7.791955193 8.556947628
```

A model is only as good as the data used to **train** it

Model validation strategy

- 1. Randomly divide data into:
 - 1. Training data (~60-80%)
 - 2. Testing data (remaining %)
- 2. Build model with training data
- 3. Fit model to test data and assess performance
 - 1. Categorical response: Accuracy, PPV, TPR, FNR, AUC....
 - 2. Numeric response: RMSE = $\frac{1}{n}\sum_{i}(\hat{y}_{i}-y_{i})^{2}$
 - 1. Has same units as the response variable

First, a single test/train set

```
> iris.train <- iris %>% sample_frac(0.7)
> iris.test <- anti_join(iris, iris.train)</pre>
> trained.model <- lm(Sepal.Length ~ Petal.Length, data = iris.train)</pre>
### modelr::rmse(model, test.data) ####
                                                          The RMSE in predicted Sepal Lengths on
> modelr:: rmse(trained.model, iris.test)
                                                          the test data is 0.41
[1] 0.4103412
> summary(iris$Sepal.Length)
   Min. 1st Qu. Median Mean 3rd Qu.
                                            Max.
  4.300 5.100 5.800 5.843 6.400
                                           7.900
                                                          RMSE is the same for training data, showing
> modelr:: rmse(trained.model, iris.train)
                                                          that our models is not biased towards
[1] 0.4035663
```

mediocre data.

Test/train for logistic regression

```
> biopsy.train <- biopsy %>% sample_frac(0.7)
> biopsy.test <- anti_join(biopsy, biopsy.train)</pre>
> trained.model <- glm(outcome ~ ., data = biopsy.train, family=binomial)
### Mutate the predicted test outcomes into test data
> biopsy.test %>%
       mutate(pred = predict(trained.model, biopsy.test, type="response")) %>%
        select(outcome, pred) -> tested
> head(tested)
   outcome
                 pred
    benian 0.006931554
    benign 0.085382168
    benign 0.018999048
    benign 0.003708158
5 malignant 0.999934931
6 malignant 0.602477655
```

Compute various classifier metrics at 0.5 cutoff

```
> tested %>%
     mutate(pred.malignancy = ifelse(pred > 0.5, "mal", "benign")) %>%
     group_by(outcome, pred.malignancy) %>%
     tally()
# Groups: outcome [?]
   outcome pred.malignancy n
    <fctr> <chr> <int>
    benign benign 51 true negative
    benign
                  mal 4 false positive
3 malignant benign 4 false negative
4 malignant
                          63 true positive
                    mal
 PPV = TP / (TP + FP) = 51/(51+4) = 0.927
 Accuracy = (TP+TN) / (total) = (51 + 63) / (122)
                                              = 0.934
```

AUC calculations

```
> roc.train <- roc(biopsy.train$outcome, trained.model$linear.predictors)
> roc.train$auc
Area under the curve: 0.996

> test.predictions <- predict(trained.model, biopsy.test)
> roc.test <- roc(biopsy.test$outcome, test.predictions)
> roc.test$auc
Area under the curve: 0.9929
```

Consistency between training and testing data!

ROC curves for training and testing

K-fold cross validation is common and powerful

- 1. Split data randomly into *k* evenly spaced chunks
 - 1. K=10 is a good choice, K=5 for smaller datasets
- 2. Take first chunk as testing, and remaining chunks as training
- 3. Evaluate on test data
- 4. Repeat k times, so each chunk is used once as a test set

K-fold cross validation

Special case is Leave-one-out cross validation (LOOCV), where k=n