

Statique des fluides : Série d'exercices n°1

BTS ATI

Objectifs:

A partir du cours de statique des fluides, être capable :

- D'identifier les hypothèses et les données énoncées
- D'appliquer les lois de la mécanique des fluides

Eléments utilisés :

- Cours

Données:

Masse volumique de l'eau : $\rho_0 = 1000 \text{ kg.m}^{-3}$ Intensité de la pesanteur : $g = 9.81 \text{ N.kg}^{-1}$

Exercice 1

Déterminer le poids volumique d'un mélange d'essence sachant que sa densité d = 0,7.

Exercice 2

- 1- Calculer le poids P₀ d'un volume V = 3 litres d'huile d'olive ayant une densité d=0,918.
- 2- Déterminer le volume occupé par 1 kg d'eau et 1 kg d'huile d'olive

Exercice 3

Le coefficient de compressibilité χ d'un liquide est donné par la relation :

$$\chi = -\frac{1}{\Delta p} \times \frac{\Delta V}{V}$$
 avec Δp en Pa et χ en m².N⁻¹

- 1- Pour l'eau, $\chi = 5.10^{-10} \text{ m}^2.\text{N}^{-1}$. Déterminer la variation de volume d'un litre d'eau lorsqu'il subit une surpression de 20 bars. Conclure
- 2- On considère un tuyau (cylindrique) de circuit hydraulique. L'huile qu'il contient est de l'huile hydraulique. En fonctionnement, l'huile contenue dans le tuyau est soumise à une variation de pression de 200 bars. Compléter le tableau suivant et conclure.

Diamètre tuyauterie	12,7 mm	Coefficient de compressibilité	6,7.10 ⁻¹⁰ m ² .N ⁻¹
Longueur de la tuyauterie	3 m	Volume d'huile	
Variation de pression Δp	200 bar	Variation de volume de l'huile	