

Jundi Shapur

University of Technology-Dezful

پردازش تصاویر رقومی فصل اول: مقدمه

Nurollah Tatar Digital Image Processing Semester 2021

- هر تمرین 0.25 (مجموعا 1 نمره)
- پروژه های برنامه نویسی مجموعا 7 نمره
 - پایان ترم و میان ترم جمعا 12 نمره
- فعالیت در مباحث کلاسی 1 نمره (نمره اضافی)

- منبع اصلی
- Solomon, Chris, and Toby Breckon. Fundamentals of Digital Image Processing: A practical approach with examples in Matlab. John Wiley & Sons, 2011.
 - ساير منابع
- McGlone & et al. 2013. Manual of photogrammetry, ASPRS
 - "جزوه درس پردازش تصویر پیشرفته دکتر فرهاد صمدزادگان". دانشگاه تهران
 - جزوات و دانش سایر اساتید و مدرسین درس پردازش تصویر دانشگاههای ایران

پیش نیازها

- جبر خطی
- اندکی آمار و احتمالات
 - برنامه نویسی
 - مطالعه منابع
 - مقداری انگیزه
 - کنجکاوی فراوان
 - نداشتن ترس!

برنامه نویسی

• دانشجو بایستی پروژه های برنامه نویسی را در یکی از زبانهای

زير ارائه دهد:

Python •

حس انسان

سنحنده

حس

• چشم

ٰ بینایی

۰ گوش

' شنوایی

• زبان

• چشایی

• بيني

• بویایی

پوست

• **Vamb**

سیستم بینایی انسان

• سیستم درک رنگی چشم

• طيف الكترومغناطيسي هر جسم، نشانه پخش پرتوهاي الكترومغناطيسي

جذب شده و یا تولید شده توسط آن جسم است.

طيف الكترومغناطيس

بخش مرئی (Visible): قسمت کوچکی از طیف الکترومنیتیک حدود ۰.۴ – ۰.۷ میکرون. این بخش به وسیله چشم قابل تشخیص است و با نام رنگها شناخته می شوند و معمولا به این بخش نور (Light) گویند.

بخش مادون قرمز (Infra Red): این بخش قابل دیدن نیست و محدوده ۰.۷۲ میکرون تا ۱ میلیمتر را در بر می گیرد. مادون قرمز به بخشهای متفاوتی تقسیم می شود:

مادون قرمز نزدیک (NIR): مادون قرمز نزدیک

مادون قرمز میانی (MIR): مادون قرمز میانی

مادون قرمز دور (FIR): مادون قرمز دور

مادون قرمز كوتاه (SWIR): مادون قرمز كوتاه (

مادون قرمز حرارتي (TIR): 8 - 14 mm

بخش مایکرو ویو (Microwave): محدوده از ۳۰ -۳۰۰ میلیمتر را پوشش می دهد که در سنجنده های راداری استفاده می شود.

Visible Light

تصوير رقومي

- تصویر در واقع عبارت است از بازنمایش اطلاعات مکانی و طیفی یک محدوده به صورت همزمان.
- تصویر رقومی از تعدادی مربع کوچک، مشهور به پیکسل تشکیل شدهاست. هر پیکسل دارای یک عدد است که بیان گر مقدار روشنایی آن پیکسل است.
 - تصویر را می توان یک سیگنال چند بعدی نیز در نظر گرفت.

تعريف تصوير

Jundi Shapur

• همچنین یک "تصویر رقومی" در واقع تبدیل یک عکس که دارای سیگنال پیوسته است به حالت گسسته و الکترویکی است که اجزاء تشکیل دهنده آن واحد های کوچکی به نام پیکسل

تصوير رقومي

ستون M سطر و M ستون ماتریسی است به ابعاد N

• هر پیکسل در تصاویر خاکستری تنها شدت را بازنمایش میدهد

Digital Image Processing - Introduction
N. Tatar
Jundi Shapur

تصویر رنگی

• هر پیکسل در تصاویر رنگی حداقل شامل سه مقدار برای نمایش

باندهای قرمز، سبز و آبی است.

تصویر رنگی

- تصاویر رقومی می تواند به سه حالت در یک فایل ذخیره شود: به صورت غیرفشرده، فشرده و برداری.
 - دو حالت اول را تحت یک نام و بهصورت تصاویر رستری نیز میشناسند.
- در تصاویر برداری، اطلاعات تصویر به صورت یک توصیف هندسی ذخیره می شود: مثلا تصویری که شامل یک دایره و مربع باشد.

- فرمتهای فشردهسازی تصاویر رقومی به دو نوع اتلافی (lossy) و غیراتلافی (lossless) تقسیم میشوند.
- در الگوریتمهای فشردهسازی غیراتلافی، اندازه فایل تصویر به گونهای کاهش مییابد که تمام اطلاعات تصویر اصلی حفظ شود.
 - در فشردهسازی اتلافی، هدف اصلی کاهش هرچه بیشتر اندازه فایل است. تصویرِ به دست آمده از این روش یک کپی کامل از تصویر اصلی نخواهد بود!

BMP •

- این فرمت را مایکروسافت برای ذخیره فایلهای گرافیکی در
 - ویندوز طراحی کرده و بسیار ساده است.
- اطلاعات هر پیکسل به همان صورت که هست ذخیره میشود.
 - فایلهای BMP کاملا غیرفشرده است.
- تنها مزیت این فرمت، سادگی و قابلیت نمایش آن در همهجاست.

- JPEG •
- این فرمت در سال ۱۹۹۲ عرضه شد.
- یک فرمت فشرده سازی اتلافی به شمار میآید که از تصاویر رنگی ۲۴ بیت (هشت بیت برای هر کدام از سه رنگ قرمز، آبی و سبز) یشتیبانی می کند.
 - میزان فشردهسازی تصویر اصلی توسط برنامه فشردهسازی قابل تعیین است.

TIFF •

- یک فرمت انعطافپذیر برای ذخیره سازی تصاویر ۸ یا ۱۶ بیتی
 - فشردهسازی فرمت TIFFمی تواند هم به صورت اتلافی و هم غیراتلافی باشد.
 - این فرمت یکی از اصلی ترین فرمت ها در صنعت چاپ به شمار می آید. دلیل آن هم پشتیبانی آن از فضاهای رنگی مخصوص دستگاههای مختلف است.

GIF •

- امکان پشتیبانی تصاویر از هشت تا ۲۵۶ بیت را دارد.
- این فرمت به دلیل استفاده از یک الگوریتم فشردهسازی خاص برای تصاویری گرافیکی (مانند اشکال، لوگوها و تصاویر کارتونی) بسیار مناسب است.
 - پشتیبانی از تصاویر متحرک

فرمت تصاویر رقومی

PNG •

- قبل از اینکه فرمت **GIF** رایگان شود، این فرمت به صورت متنباز و رایگان ارائه شد.
 - PNG یک فرمت با فشردهسازی غیراتلافی است.
 - قابلیت نمایش خوبی در مرور گرها دارد.
 - در مرور گرها ممکن است تصاویر با این فرمت را با پس زمینه شفاف مشاهده می کنید.

SVG •

- مشهورترین فرمت ذخیرهسازی برداری تصاویر است که توسط استانداردهای وب ارائه شده و توسعه یافته است.
- در این فرمت اطلاعات تصویر (یا انیمیشن) به صورت توصیف هندسی ذخیره می شوند.
- به طور مثال لوگوی جدید گوگل با این فرمت ۳۰۵ بایت است.
 (این لوگو قبلا با فرمت PNG حدود ۱۴ کیلوبایت بود)

فرمت تصاوير

• توضیحات فرمت های رایج تصاویر به طور خلاصه.

IMAGE FORMATS CHARACTERISTICS

IMAGE FORMAT	AVAILABLE COLORS	COMPRESSION	FILE SIZE	BEST FOR
RAW	Billions	No	Very big (<10MB)	Editing
JPEG	16,1 million	Lossy	Small (<1MB)	Websites and storage
GIF	256	Lossless	Small (<1MB)	Animation
PNG	16,1 million + transparency	Lossless	Big (<3MB)	Websites, editing, storage
TIFF	Variable	Variable	Big (<3MB)	Editing and printing
ВМР	Variable	Lossless	Big (<3MB)	-

سایر تصاویر

Medical X-Rays

From X-Ray images to 3D Models: CT Scans

Flower Patterns in Ultraviolet

ساير تصاوير

Traditional images

ساير تصاوير

IR: Near, Medium, Far (~heat)

ساير تصاوير

Atoms

Atomic Nuclei

• تصویربرداری مایکرویو: تصاویر راداری با روزنه مصنوعی

• امواج رادیویی (تصویری اخذ شده توسط تلسکوپ رادیویی)

- توان تفکیک عبارت است از کوچکترین واحد اندازه گیری.
- به طور مثال چنانچه کوچکترین واحد اندازه گیری یک خط کش یک میلیمتر باشد، توان تفکیک آن خط کش یک میلیمتر است.
 - در پردازش تصویر به توان تفکیکهای مکانی، رادیومتریکی، طیفی و زمانی خواهیم پرداخت.

توان تفکیک مکانی

• برای درک بهتر توان تفکیک مکانی، تصویر زیر را براساس یک گرید خیلی متراکم تقسیم کنید.

توان تفکیک مکانی

• چنانچه تصویر اسلاید ماقبل را در موقعیتهای قرمز رنگ بازنمونه برداری کنیم یک تصویر با توان تفکیک مکانی پایین

خواهیم داشت.

Sample picture at each red point

ampling interval

توان تفکیک مکانی

• چنانچه تصویر ماقبل الذکر را در موقعیتهای بیشتری بازنمونه برداری کنیم یک تصویر با توان تفکیک مکانی بالاتر خواهیم داشت.

Coarse Sampling: 20 points per row by 14 rows

توان تفکیک رادیومتریکی

- توان تفکیک رادیومتریکی در واقع همان درجه کوانتیزاسیون است.
- توان تفکیک رادیومتریکی بیانگر این است که مقادیر درجات خاکستری در چه محدوده ای قرار دارند.

1Bit	21 = 2 (0-1)	0	1
4Bit	24 = 16 (0-15)	0	15
8Bit	28 = 256 (0-255)	o managaman na mana	255

توان تفکیک رادیومتریکی

• در شکل زیر K بیانگر درجات کوانتیزاسیون است.

توان تفکیک رادیومتریکی

(A) 8 bits (256 levels)

(B) 4 bits (16 levels)

(C) 2 bits (4 levels)

(D) 1 bit (2 levels)

Digitar Image Processing - Introduction

N. Tatar

41

Jundi Shapur

به طور کلی، توان تفکیک طیفی عبارت است از تعداد باندهای طیفی که توسط سنجنده اخذ میشوند.

• به طور کلی و در حال حاضر تصاویر سیاه و سفید پایین ترین و تصاویر فراطیفی بالاترین توان طیفی را دارند.

Digital Image Processing - Introduction
N. Tatar
Jundi Shapur

Digital Image Processing - Introduction

N. Tatar

Jundi Shapur

• تصاویر هایپراسپکترال نمونهای از تصاویر با توان تفکیک طیفی

• توان تفکیک زمانی به کمترین فاصله زمانی در اخذ تصاویر از یک صحنه گفته می شود.

توان تفکیک زمانی

- توان تفکیک زمانی در ویدیو عبارتست از نرخ فریم.
- در ویدیوهای معمولا شاهد نرخ ۲۵ فریم در ثانیه هستیم.

توان تفکیک زمانی پایین

توان تفکیک زمانی بالا

كاربرد پردازش تصوير

- رباتیک
- فتوگرامتری
- سنجش از دور
- بینایی ماشین
 - نجوم
 - شیمے
- مهندسی پزشکی

تمرین شماره ۱

- برنامه ای بنویسید که در آن کاربر بتواند یک تصویر (هم تصاویر خاکستری و هم رنگی) فراخوانی کند و نمایش دهد.
- نتیجه این فعالیت را در سیستم خود اجرا کرده و از اجرای آن فیلم بگیرید.
- کدها و فیلم را تا هفته آینده به آدرس noorollah.tatar@gmail.com با موضوع "تمرین شماره ۱ درس پردازش تصویر" ایمیل کنید.
 - زمان فیلم کمتر از ۳۰ ثانیه و حجم آن نیز زیر ۲ مگابایت باشد.
- راهنمایی: سعی کنید چگونگی ساخت GUI در محیط برنامه نویسی متلب را یاد بگیرید.

تمرین شماره ۱

• سعی کنید شکل GUI به صورت زیر باشد.

منو بار كليد فراخواني صفحه دستورات صفحه نمایش

N. Tatar

Jundi Shapur

