### Problem 1

**Theorem 1.1.** Any tree T has at least  $\Delta(T)$  leaves.





*Proof.* Let T = (V, E) be a tree and  $v \in V$  be a vertex with  $d(v) = \Delta(T)$ . We will show that there is at least one leaf in T for any vertex  $v' \in V$  adjacent to v.

We simply create a path (v, v', ...) that cannot be appended. As already proven in Lemma 1.1.1, the path has to end in a leaf. Now we have to prove that for distinct v-adjacent vertices, the paths end with different leaves. We define  $(v, v', ..., l_1)$ ,  $(v, v'', ..., l_2)$  to be such non appendable paths. Considering that the leaves  $l_1, l_2$  were equal for  $v' \neq v''$ , then T would not be a tree (Lemma 1.1.2).

Therefore, there is at least one leaf for any edge indicent to v. Thereby, the number of leaves exceeds or is equal to  $\Delta(T)$ .

### Graph Theory - Sheet 1 - October 29, 2013 J. Batzill (1698622), M. Franzen (1696933), J. Labeit (1656460)

# Problem 2<sup>1</sup>

| Theorem       | 2.1.   | 1f | any | removal | of | an | edge | increases | the | number | of | connected | components | of | a | graph | G |
|---------------|--------|----|-----|---------|----|----|------|-----------|-----|--------|----|-----------|------------|----|---|-------|---|
| then $G$ is a | acycli | c. |     |         |    |    |      |           |     |        |    |           |            |    |   |       |   |
|               |        |    |     |         |    |    |      |           |     |        |    |           |            |    |   |       |   |

*Proof.* Let S be a connected component of G. If S contained any cycle  $C = (v_0, ..., v_i, v_j, ..., v_0)$ , then the removal of an edge  $\{v_i, v_j\}$  would still leave a complete walkthrough  $(v_j, ..., v_0, ..., v_i)$  of S and therefore maintain the component's connectivity. But - as our preconditions state - the removal of any edge increases the number of connected components (disconnects a component).

Thus, a component of G does not contain any cycles. Considering that none of the graph's connected components contains a cycle, G is acyclic as well.

**Theorem 2.2.** If adding any edge introduces a cycle in an acyclic graph G = (V, E), then any two vertices in G are joined by a unique path.

*Proof.* If adding an edge  $\{v_0, v_1\}$  joining two non-adjacent vertices  $v_0, v_1 \in V$  introduces a cycle  $(v_0, ..., v_1, v_0)$ , then there had to be at least one path from  $v_0$  to  $v_1$ .

Furthermore, if there was more than one path joining  $v_0$  and  $v_1$ , then there would have already been a cycle (but G is acyclic).  $\Rightarrow$  Any vertex had to be joined by a unique path.

**Theorem 2.3.** If any two vertices in a graph are joined by a unique path, then any removal of an edge increases the number of connected components.

Proof. Let G = (V, E) be a graph in which all vertices are joined by a unique path. Let  $e = \{v_0, v_1\} \in E$  be an edge. Thus, the unique path from  $v_0$  to  $v_1$  runs over (and is exactly) e. From these considerations, removing e would make  $v_1$  inaccessible from  $v_0$  and would thereby increase the number of connected components.

 $<sup>^{1}\</sup>mathrm{Bonus}$ 

# Problem 3

**Theorem 3.1.** Either a graph or its complement is connected.

*Proof.* For a *connected* graph, we're done.

Let G = (V, E) be disconnected.

Claim: Any two vertices  $u, v \in V$  are connected in  $\bar{G}$ .

Proof: There are only two cases to distinguish, either u and v lie in the same component or in different components.

• Case 1: u and v are in different components  $S = (V_S, E_S)$  and  $T = (V_T, E_S)$  with  $u \in V_S$  and  $v \in V_T$ .

Then G does not contain the edge  $e = \{u, v\}$ . Otherwise, S and T were interconnected. From these considerations, the graph's complement  $\bar{G}$  does contain e.



• Case 2: u and v are in the same component  $S=(V_S,V_T),\ u,v\in V_S$ : G is disconnected, hence there is at least another not empty component  $T=(V_T,E_T)$  with  $S\neq T$ . Considering that  $V_T$  is not empty, then there is a vertex  $w\in V_T$  such that the edges  $e_1=\{u,w\}$  and  $e_2=\{v,w\}$  exist in  $\bar{G}$  (see Case 1). From these considerations,  $\bar{G}$  also contains the path (u,w,v).



Therefore, any two vertices in a disconnected graph G are connected in  $\bar{G}$  either by one or two edges and hereby  $\bar{G}$  is connected.

# Problem 4

I will prove the theorem that if u and v are the only vertices with odd degree in a graph G, then there is a path connecting u and v. Our assumption is going to be that there is no path connecting those odd-degree vertices - which we will prove to be a contradiction.

**Theorem 4.1.** If u and v are the only vertices of odd degree in a graph then there is a u-v-path.

*Proof.* Let G = (V, E) be a graph with vertices  $u, v \in V$  and let u and v be the only vertices with odd degree in G.

Assuming that there is no path connecting u and v, then u and v have to be in different components. If they were in the same component, then there had to be a path connecting u and v.

Let A be the component of u, then u is the only odd-degree vertex in A (as seen above, v is not in A). Because u is the only vertex with odd degree in A, the sum over the degree of all vertices in A is odd. However, the sum over the degrees over all vertices in a graph has to be even and this leads to the conclusion that A is no valid graph.

This is a contradiction to A being a valid component of G, hence the assumption that there is no path connecting u and v must be wrong leaving the only conclusion that there is a u-v-path.