Stochastic Block-Iterative Projections Method for Convex Feasibility

Javier I. Madariaga

Department of Mathematics North Carolina State University Raleigh, NC 27695, USA

> NLA Student Seminar March 24, 2025

NC STATE UNIVERSITY

Background

 Throughout, H is a separable real Hilbert space with scalar product ⟨· |·⟩ and norm ||·||.

Background

- Throughout, H is a separable real Hilbert space with scalar product $\langle\cdot|\cdot\rangle$ and norm $\|\cdot\|$.
- $(\Omega, \mathcal{F}, \mathsf{P})$ is the probability space that defines all the random variables.

Background

- Throughout, H is a separable real Hilbert space with scalar product ⟨·|·⟩ and norm ||·||.
- (Ω, F, P) is the probability space that defines all the random variables.
- We use sans-serif letters for deterministic variables and italicized serif letters for random variables.

General problem

Problem 1

Let Z be a nonempty closed convex subset of H. The task is to

find $\bar{x} \in H$ such that $\bar{x} \in Z$.

(1)

General problem

Problem 1

Let Z be a nonempty closed convex subset of H. The task is to

find
$$\bar{x} \in H$$
 such that $\bar{x} \in Z$. (1)

Problem 1 covers many problems in analysis and optimization.

Example

Let $f: H \to]-\infty, +\infty]$ be a proper, lower semicontinuous convex function.

Let C be a nonempty closed and convex subset of H. The minimization problem

$$\underset{x \in C}{\text{minimize}} \ f(x).$$

is an example of Problem 1.

How to solve Problem 1 using iterative methods. Take $x_0 \in H$.

How to solve Problem 1 using iterative methods. Take $x_0 \in H$.

0.- Compute $\overline{x} = \operatorname{proj}_{Z} x_0$.

How to solve Problem 1 using iterative methods. Take $x_0 \in H$.

- 0.- Compute $\bar{X} = \text{proj}_7 X_0$.
 - Convergence in one iteration! $(\bar{x} \in Z)$.

How to solve Problem 1 using iterative methods. Take $x_0 \in H$.

- 0.- Compute $\bar{x} = \text{proj}_Z x_0$.
 - Convergence in one iteration! $(\bar{x} \in Z)$.
 - It is not realist to know proj_Z.

How to solve Problem 1 using iterative methods. Take $x_0 \in H$.

- 0.- Compute $\bar{x} = \text{proj}_Z x_0$.
 - Convergence in one iteration! (x̄ ∈ Z).
 - It is not realist to know proj_Z.

We will assume that Z = $\bigcap_{1 \le k \le p} C_k$ and each proj_{C_k} is easy to compute.

1.- Successive projections (Von Neumann 1933).

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = \operatorname{proj}_{C_{n \operatorname{mod} n}} x_n. \tag{1}$$

1.- Successive projections (Von Neumann 1933).

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = \operatorname{proj}_{C_{n \operatorname{mod}_{D}}} x_{n}. \tag{1}$$

2.- Barycentric method (Auslender 1969).

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = \frac{1}{p} \sum_{k=1}^{p} \operatorname{proj}_{C_k} x_n. \tag{2}$$

1.- Successive projections (Von Neumann 1933).

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = \operatorname{proj}_{C_{n \operatorname{mod}_{D}}} x_{n}. \tag{1}$$

2.- Barycentric method (Auslender 1969).

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = \frac{1}{p} \sum_{k=1}^{p} \operatorname{proj}_{C_k} x_n. \tag{2}$$

Weak convergence to a point in Z is guaranteed.

- 3.- Parallel projections (Combettes 1997).
 - Set $K_n \subset \mathbb{N}$ and weights $\beta_{k,n} \in [0,1]$ with $\sum_{k \in K_n} \beta_{k,n} = 1$.

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = \sum_{k \in K_n} \beta_{k,n} \operatorname{proj}_{C_k} x_n. \tag{3}$$

- 3.- Parallel projections (Combettes 1997).
 - Set $K_n \subset \mathbb{N}$ and weights $\beta_{k,n} \in [0,1]$ with $\sum_{k \in K_n} \beta_{k,n} = 1$.

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = \sum_{k \in K_n} \beta_{k,n} \operatorname{proj}_{C_k} x_n. \tag{3}$$

• Add relaxation parameters $\lambda_n \in [\varepsilon, 2 - \varepsilon]$ (**).

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = x_n + \lambda_n \left(\sum_{k \in K_n} \beta_{k,n} \operatorname{proj}_{C_k} x_n - x_n \right). \tag{4}$$

- 3.- Parallel projections (Combettes 1997).
 - Add extrapolation.

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = x_n + \lambda_n L_n \left(\sum_{k \in K_n} \beta_{k,n} \operatorname{proj}_{C_k} x_n - x_n \right), \quad (5)$$

where

$$L_{n} = \begin{cases} \frac{\displaystyle\sum_{k \in K_{n}} \beta_{k,n} \left\| \operatorname{proj}_{C_{k}} X_{n} - X_{n} \right\|^{2}}{\left\| \displaystyle\sum_{k \in K_{n}} \beta_{k,n} \operatorname{proj}_{C_{k}} X_{n} - X_{n} \right\|^{2}}, & \text{if } X_{n} \notin \bigcap_{k \in K_{n}} C_{k};\\ 1, & \text{otherwise.} \end{cases}$$

$$(6)$$

- 3.- Parallel projections (Combettes 1997).
 - Weak convergence guaranteed under some assumptions over K_n, e.g.,

$$(\forall k \in \mathbb{N})(\exists\, M_k \in \mathbb{N} \smallsetminus \{0\})(\forall n \in \mathbb{N}) \quad k \in \bigcup_{j=n}^{n+M_k-1} K_j. \tag{7}$$

Problem

Let (K, \mathcal{K}) be a measurable space and $(C_k)_{k \in K}$ a family of closed and convex subsets of H. Let k be a K-valued random variable.

Problem

Let (K, \mathfrak{K}) be a measurable space and $(C_k)_{k \in K}$ a family of closed and convex subsets of H. Let k be a K-valued random variable. The task is to

find
$$x \in Z = \{z \in H \mid z \in C_k \text{ P-a.s.}\},$$
 (8)

under the assumption that $Z \neq \emptyset$.

We propose a stochastic extension of the parallel projections algorithm with stochasticity at four levels:

 The sets are indexed on a general measurable space rather than a countable set.

We propose a stochastic extension of the parallel projections algorithm with stochasticity at four levels:

- The sets are indexed on a general measurable space rather than a countable set.
- The block of activated operators are randomly selected at each iteration.

We propose a stochastic extension of the parallel projections algorithm with stochasticity at four levels:

- The sets are indexed on a general measurable space rather than a countable set.
- The block of activated operators are randomly selected at each iteration.
- The evaluations of the projections at iteration n are averaged and extrapolated with random weights $(\beta_{i,n})_{1 \le i \le M}$.

We propose a stochastic extension of the parallel projections algorithm with stochasticity at four levels:

- The sets are indexed on a general measurable space rather than a countable set.
- The block of activated operators are randomly selected at each iteration.
- The evaluations of the projections at iteration n are averaged and extrapolated with random weights $(\beta_{i,n})_{1 \le i \le M}$.
- The relaxation parameter λ_n at iteration n is random and not confined to the interval]0,2[.

Theorem (1)

for n = 0, 1, ...

In the setting of Problem 1, let $x_0 \in L^2(\Omega, \mathcal{F}, P; H)$, $0 < M \in \mathbb{N}$, $\delta \in [0, 1/M[$, and $\rho \in [2, +\infty[$. Iterate

$$\begin{aligned} & \text{for } \mathbf{n} = \mathbf{0}, \mathbf{1}, \dots \\ & \mathcal{X}_{\mathbf{n}} = \sigma(x_0, \dots, x_{\mathbf{n}}) \\ & \text{for } \mathbf{i} = \mathbf{1}, \dots, \mathbf{M} : k_{\mathbf{i},\mathbf{n}} \text{ is distributed as } k \text{ and independent of } \mathcal{X}_{\mathbf{n}} \\ & (\beta_{\mathbf{i},\mathbf{n}})_{1 \leqslant \mathbf{i} \leqslant \mathbf{M}} \text{ are } [\delta, 1] \text{ -valued } r. \text{ v. such that } \sum_{\mathbf{i}=1}^{\mathbf{M}} \beta_{\mathbf{i},\mathbf{n}} = 1 \text{ P-a.s.} \\ & p_{\mathbf{n}} = \sum_{\mathbf{i}=1}^{\mathbf{M}} \beta_{\mathbf{i},\mathbf{n}} \operatorname{proj}_{\mathbf{C}_{k_{\mathbf{i},\mathbf{n}}}} x_{\mathbf{n}} \\ & L_{\mathbf{n}} = \frac{\sum_{\mathbf{i}=1}^{\mathbf{M}} \beta_{\mathbf{i},\mathbf{n}} \| \operatorname{proj}_{\mathbf{C}_{k_{\mathbf{i},\mathbf{n}}}} x_{\mathbf{n}} - x_{\mathbf{n}} \|^2 + \mathbf{1}_{[p_{\mathbf{n}} = x_{\mathbf{n}}]} \\ & L_{\mathbf{n}} = \frac{\sum_{\mathbf{i}=1}^{\mathbf{M}} \beta_{\mathbf{i},\mathbf{n}} \| \operatorname{proj}_{\mathbf{C}_{k_{\mathbf{i},\mathbf{n}}}} x_{\mathbf{n}} - x_{\mathbf{n}} \|^2 + \mathbf{1}_{[p_{\mathbf{n}} = x_{\mathbf{n}}]} \\ & \lambda_{\mathbf{n}} \in L^{\infty}(\Omega, \mathcal{F}, \mathbf{P};]\mathbf{0}, \rho]) \\ & x_{\mathbf{n}+1} = x_{\mathbf{n}} + \lambda_{\mathbf{n}} L_{\mathbf{n}}(p_{\mathbf{n}} - x_{\mathbf{n}}). \end{aligned}$$

Theorem (1)

Suppose that, there exists $\mu \in \]0,1[$ such that

$$\inf_{n\in\mathbb{N}} \mathsf{E}(\lambda_n(2-\lambda_n))\geqslant \mu. \tag{10}$$

Then $(x_n)_{n\in\mathbb{N}}$ converges weakly in $L^2(\Omega, \mathcal{F}, \mathsf{P}; \mathsf{H})$ and P -a.s. to some $x\in L^2(\Omega, \mathcal{F}, \mathsf{P}; \mathsf{Z})$.

From Theorem 1 we see that

$$E(\lambda_n(2-\lambda_n)) \geqslant \mu \implies E\lambda_n \in [\varepsilon, 2-\varepsilon].$$
 (11)

From Theorem 1 we see that

$$E(\lambda_n(2-\lambda_n)) \geqslant \mu \implies E\lambda_n \in [\varepsilon, 2-\varepsilon].$$
 (11)

When $(\lambda_n)_{n\in\mathbb{N}}$ is deterministic we obtain,

$$\lambda_{\mathsf{n}} \in [\varepsilon, 2 - \varepsilon],$$
 (12)

and it recover the standard range found in the literature.

Example

• Let $\chi \in \]0,1[$, $\alpha \in \]0,+\infty[$, and $\beta \in \]0,+\infty[$.

Example

- Let $\chi \in]0,1[$, $\alpha \in]0,+\infty[$, and $\beta \in]0,+\infty[$.
- We assume that $P([\lambda_n = \alpha]) = \chi$ and $P([\lambda_n = \beta]) = 1 \chi$.

Example

- Let $\chi \in]0,1[$, $\alpha \in]0,+\infty[$, and $\beta \in]0,+\infty[$.
- We assume that $P([\lambda_n = \alpha]) = \chi$ and $P([\lambda_n = \beta]) = 1 \chi$.
- Then λ_n satisfies (10) if

$$\chi(\alpha(2-\alpha)) + (1-\chi)(\beta(2-\beta)) > 0. \tag{13}$$

Example

- Let $\chi \in]0,1[$, $\alpha \in]0,+\infty[$, and $\beta \in]0,+\infty[$.
- We assume that $P([\lambda_n = \alpha]) = \chi$ and $P([\lambda_n = \beta]) = 1 \chi$.
- Then λ_n satisfies (10) if

$$\chi(\alpha(2-\alpha)) + (1-\chi)(\beta(2-\beta)) > 0. \tag{13}$$

• This holds for $\chi=1/7$, $\alpha=2.5$, and $\beta=1.8$. In such a case, $E_{\lambda_0}=1.9$.

Example

• Let $\alpha \in]0,+\infty[$ and $\beta \in]\alpha,+\infty[$, and we assume that $\lambda_n \sim \text{uniform}([\alpha,\beta]).$

Example

- Let $\alpha \in]0,+\infty[$ and $\beta \in]\alpha,+\infty[$, and we assume that $\lambda_n \sim \text{uniform}([\alpha,\beta]).$
- Then λ_n satisfies (10) if

$$3\alpha + 3\beta - (\alpha^2 + \alpha\beta + \beta^2) > 0. \tag{14}$$

Example

- Let $\alpha \in]0,+\infty[$ and $\beta \in]\alpha,+\infty[$, and we assume that $\lambda_n \sim \text{uniform}([\alpha,\beta]).$
- Then λ_n satisfies (10) if

$$3\alpha + 3\beta - (\alpha^2 + \alpha\beta + \beta^2) > 0. \tag{14}$$

• This condition holds for $\alpha=1.5$, and $\beta=2.3$, where $E\lambda_n=1.9$.

The goal is to recover $\overline{x} \in \mathbb{R}^N$ (N = 1024) from 20 noisy observations given by

$$(\forall \mathsf{k} \in \{1, \dots, 20\}) \quad r_{\mathsf{k}} = \mathsf{L}_{\mathsf{k}} \overline{\mathsf{X}} + w_{\mathsf{k}} \tag{15}$$

where $L_k \colon \mathbb{R}^N \to \mathbb{R}^N$ is a Gaussian convolution filter with zero mean and standard deviation taken uniformly in [10,30], and

$$w_{k} \sim \text{uniform}([-0.1, 0.1]^{N})$$
 (16)

is a bounded random noise vector.

Figure 1: Original signal $\bar{\mathbf{x}}$ and noisy observation r_1 .

Set, for every k
$$\in$$
 {1,...,20} and every j \in {1,...,N},
$$C_{k,j} = \left\{ x \in \mathbb{R}^N \mid -0.1 \leqslant \langle L_k x - r_k \mid e_j \rangle \leqslant 0.1 \right\}. \tag{17}$$

Set, for every $k \in \{1, ..., 20\}$ and every $j \in \{1, ..., N\}$,

$$C_{k,j} = \big\{ x \in \mathbb{R}^N \mid -0.1 \leqslant \langle L_k x - r_k \mid e_j \rangle \leqslant 0.1 \big\}. \tag{17}$$

We find a point on the intersection by using

- $K = \{1, ..., 20\} \times \{1, ..., N\}.$
- $\mathcal{K} = 2^{\mathsf{K}}$.
- *k* ~ uniform(K).

Figure 2: Original signal \bar{x} and solution produced.

Figure 3: Normalized error $20\log(\|x_{\text{n}}-x_{\infty}\|/\|x_{0}-x_{\infty}\|)$ (dB) versus execution time (s). Green: $\lambda_{\text{n}}\equiv 1$. Magenta: $\lambda_{\text{n}}\equiv 1.9$. Blue: $P([\lambda_{\text{n}}=1.5])=1/2$ and $P([\lambda_{\text{n}}=2.3])=1/2$. Brown: $\lambda_{\text{n}}\sim \text{uniform}([1.5,2.3])$. (a): M=1. (b): M=128.

Stochastic Block-Iterative Projections Method for Convex Feasibility

Javier I. Madariaga

Department of Mathematics North Carolina State University Raleigh, NC 27695, USA

> NLA Student Seminar March 24, 2025

NC STATE UNIVERSITY