Théorie des perturbation (?)

Il fait un rappel de la théorie des perturbation, qu'on a fait au dernier cours

Figure 1 – spectre énérgétique

Cas dégénéré

On pose :

$$\left|\varphi_{n,\alpha}\right\rangle = \sum_{i=1}^{g_n} c_{n,i}^{\alpha} \left|\varphi_n^i\right\rangle$$

On fait un chanement de base pour utilisel les ket α au lieu d'utiliser les ket i

$$H_0 |\varphi_n, \alpha\rangle = E_n^0 |\varphi, \alpha\rangle$$

$$H_{0}\left|\varphi^{(1)}\right\rangle + W\left|\varphi_{n,\alpha}\right\rangle = E_{n}^{0}\left|\varphi_{n}^{i}\right\rangle + E^{(1)}\left|\varphi_{n,\alpha}\right\rangle$$
$$\left\langle\varphi_{n}^{i}\right|H_{0}\left|\varphi^{(1)}\right\rangle + \left\langle\varphi_{n}^{i}\right|W\left|\varphi_{n,\alpha}\right\rangle = \left\langle\varphi_{n}^{i}\right|E_{n}^{0}\left|\varphi_{n}^{i}\right\rangle + \left\langle\varphi_{n}^{i}\right|E^{(1)}\left|\varphi_{n,\alpha}\right\rangle$$

$$\sum_{i=1}^{g_n} \left\langle \varphi_n^i \middle| \bar{W} \middle| \varphi_n^{i\prime} \right\rangle \left\langle \varphi_n^{i\prime} \middle| \varphi_{n,\alpha} \right\rangle = E^{(1)} \left\langle \varphi_n^i \middle| \varphi_{n,\alpha} \right\rangle$$

C'est essentiellement un produit matriciel

$$\det\left(P_{\mathcal{E}}\left(\bar{W}=E^{(1)}\mathbb{F}\right)P_{\mathcal{E}}\right)=0\to E^{(1)}$$
 valeur propres

On va se limiter en ordre 1 en énérgie, et donc en ordre 0 en état dans le cadre du cours.

L'odre 0 n'est pas trivial même à l'ordre 0 dans le cas dégénéré.

Algorithme

 \sin

$$H = H_0 + W$$

si $|\varphi_n\rangle$ est non-dégénéré : formule sinon

$$E_0 = E_n^0 + \lambda E_{\alpha}^{(1)}$$

Application : structure fine de l'atome ${\cal H}$

rappel: eq dirac:

$$(c\vec{\alpha} \cdot \vec{p} + \beta mc^2 + V(r))\psi = E\psi \quad V = -\frac{e^2}{r}$$

$$H_{sf} = \frac{\vec{p}^2}{2m} + V + \underbrace{W_{mv} + W_D + W_{SD}}_{\text{perturbation}}$$

$$\boxed{|n=1,l=0,n=0,\pm\rangle=|\varphi_{1s}\rangle}$$

$$|n=2,l=0,m=0,\pm\rangle=|2s\rangle$$

$$|n=2, l=1, m \in \{1, 0, -11\}, \pm \rangle = |2p\rangle$$

on définit

$$E_n^0 = -\frac{E_I}{n^2}$$
 $E_I = \frac{me^4}{2\hbar^2} = \frac{1}{2}mc^2\alpha^2$

et

$$\alpha = \frac{e^2}{\hbar c} \simeq \frac{1}{137}$$

$$\begin{array}{c|c}
\hline
2S, 2P & m = 2 \\
\hline
1S & m = 1
\end{array}$$

FIGURE 2 – spectre de l'atome d'hydrogene

Niveau 1s

$$\begin{split} E_{1s} &= E_{1s}^0 \left< 1,0,0,\pm |W_{mv} + W_0| 1,0,0,\pm \right> \\ &\left< 1,0,0| \otimes \left< 1,0,0 \right| \pm W_0 \left| 1,0,0 \right> \otimes \left| \pm \right> = \left< 1,0,0 \right| W_0 \left| 1,0,0 \right> \\ &= \int \mathrm{d}^3 r \left< 1,0,0 \right| W_D \left| \vec{r} \right> \left< \vec{r} \right| 1,0,0 \right> = \int \mathrm{d}^3 r \varphi_{1s}(r) \frac{\hbar^2 e^2 \pi}{2m^2 c^2} \delta(\vec{r}) \varphi_{1s}(r) = \frac{\hbar^2 e^2 \pi}{2m^2 c^2} \underbrace{\| \varphi_{1s}(0) \|^2}_{\frac{1}{\pi a_0^2}} = \frac{1}{2} m c^2 \alpha^4 \\ &\left< 1,0,0,\pm |\underbrace{W_{mv}}_{\frac{-\vec{p}^4}{8m^3 c^2}} \right| 1,0,0,\pm \right> \\ &\text{si } \underbrace{\frac{p^2}{2m} H_{0-V}}_{} \implies P^4 = (2m)^2 (H_0 - V)^2 = 4m^2 (H_0^2 - H_0 V - V H_0 + V^2) \\ &\left< 1,0,0 \right| W_{mv} \left| 1,0,0 \right> = -\frac{1}{2mc^2} \left< 1,0,0 \right| H_{0^2} - H_0 V - V H_0 + V^2 \left| 1,0,0 \right> = \\ &-\frac{1}{2mc^2} \left(E_{1s}^2 + E_{1s} \left< 1,0,0 \right| V \left| 1,0,0 \right> + \left< 1,0,0 \right| V^2 \left| 1,0,0 \right> \right) = -\frac{5}{8} m c^2 \alpha^4 \end{split}$$

(On obtien le résultat après avoir intergrés sur V)

Donc:

$$E_{1s} = E_{1S}^0 + \left(\frac{1}{2} - \frac{5}{8}\right) mc^2 \alpha^2$$

Niveau n=2

$$2s: |2, 0, 0, \pm\rangle, \quad g = 2$$

 $2p: |1, 2, (\pm 1, 0), \pm\rangle, \quad g = 6$

$$[\mathbf{L}^2, \mathbf{P}^4] = [\mathbf{L}^2, P^2 P^2] = p^2 [L^2, P^2] + [L^2, P^2] P^2$$

$$\mathbf{P}^2 = P_{r^2} + L^2 \implies \text{tout commute}$$

$$\implies P^4$$
 conserve l

$$[L^2, \mathbf{L} \cdot \mathbf{S}] = L^2, \mathbf{L}] \cdot + \mathbf{L}[\mathbf{L}, \mathbf{S}] = 0$$

$$\implies W_{so}$$
 conserve l

$$\langle \pm, 2, 0, 0 | W_D | 2, 0, 0, \pm \rangle = \langle 2, 0, 0 | W_d | 2, 0, 0 \rangle$$

$$\varphi_{2s}(r) = \frac{1}{\sqrt{8\pi a_0^3}} \left(1 - \frac{r}{2a_0}\right) r^{-\frac{r}{2a_0}}$$

$$(WsF) = \begin{pmatrix} 2x2 & 0 \\ 2x2 & 0 \\ 0 & 6x6 \end{pmatrix}$$

FIGURE 3 – matrice de Wsf