

Computer Vision

What is Computer Vision

Computer Vision Models

Face Recognition
Introduction

How it works

Design Application

Demos

What is Computer Vision?

Computer Vision Models

Convolutional Neural Networks (CNNs)

- Convolutional layer
- Rectified linear unit (ReLU) Layer
- 3. Pooling Layer
- 4. Fully connected layer (FC)

Convolutional Layer

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4	

Convolved Feature

The objective of the Convolution
Operation is to
extract the
high-level features
such as edges, from the input image.

Convolved feature

Pooled feature

Fully Connected Layer

Popular CNN Architectures

- 1. LeNet
- AlexNet
- 3. VGGNet (VGG16 & VGG19)
- 4. ResNet

LeNet (1998)

AlexNet (2012)

VGGNet (2014)

ResNet (2015)

Skip Connections are introduced as part of the ResNet structured

Face recognition already implemented in many topics, for example:

- surveillance
- attendance or authentication system
- Marketing & retail

Why Using Face?

the face has the advantages that make it one of the most favored biometric characteristics for identity recognition, we can note:

- Natural Character
- Nonintrusive
- Less Cooperation

Main Steps in Face Recognition

Assessment Protocols in Face Recognition

Two-Dimentional Face Recognition Approaches

Holistic/Statistical Approaches

The Patterns expressed as features with the goal to choose and apply the right statistical tool for extraction and analysis

- Principal Component Analysis (Eigen Faces)
- Linear Discriminative Analysis (Fisher Faces)
- Independent Component Analysis (ICA)

Eigen Faces (PCA)

Fisher Faces (LDA)

Fisherfaces was introduced which is an improved version of eigenfaces algorithm.

Independent Component Analysis

Problem:

To extract independent sources' signals from a mixed signal composed of the signals from those sources.

Given:

Mixed signal from five different independent sources.

Local Texture Approaches

Feature extraction strategies focused on knowledge about the texture play a significant role in pattern recognition in which suggestions can be divided into statistical and structural.

- Local Binary Patterns Histograms
- 2. Local Phase Quantization
- 3. Binarized Statistical Image Features
- One-Dimensional Local Binary Pattern

Local Binary Patterns Histograms (LBPH)

Deep Learning Approaches

Categorized into three main classes depending on how the technique and architecture is used:

- 1. Supervised
- 2. Unsupervised
- 3. Hybrid

Three-Dimensional Face Recognition

3D facial recognition systems have been developed with the aim of theoretically providing a high level of precision and reliability, and greater immunity to variations in the face due to different factors. Such a capacity is due to more elaborate acquisition systems and to 3D models taking into account the geometric information

Pipeline in 3D Face Recognition

Open Challenges in Near Future

Face Recognition and Occlusion

Hetegerenous Face Recognition

Face Recognition and Ageing

Single Sample Face Recognition

Face Recognition and Internet of Things

Face Recognition and Occlusion

Some examples of occlusion by hat, glasses, mask, hand, shadow and self occlusion

Hetegerenous Face Recognition

Some modalities of imaging display hetegerenous images

Face Recognition and Ageing

Single Sample Face Recognition

Face Recognition and IoT

