Mathematical and Logical Foundations of Computer Science

Predicate Logic (Equivalences continued)

Vincent Rahli

(some slides were adapted from Rajesh Chitnis' slides)

University of Birmingham

Where are we?

- Symbolic logic
- Propositional logic
- ► Predicate logic
- ▶ Intuitionistic vs. Classical logic
- Type theory

Today

Equivalences:

- in Natural Deduction
- ▶ in the Sequent Calculus
- rewriting using "known" equivalences
- using semantics

Today

Equivalences:

- in Natural Deduction
- ▶ in the Sequent Calculus
- rewriting using "known" equivalences
- using semantics

Further reading:

Chapter 8 of

http://leanprover.github.io/logic_and_proof/

The syntax of predicate logic is defined by the following grammar:

$$\begin{array}{ll} t & ::= & x \mid f(t,\ldots,t) \\ P & ::= & p(t,\ldots,t) \mid \neg P \mid P \land P \mid P \lor P \mid P \to P \mid \forall x.P \mid \exists x.P \end{array}$$

The syntax of predicate logic is defined by the following grammar:

$$\begin{array}{ll} t & ::= & x \mid f(t,\ldots,t) \\ P & ::= & p(t,\ldots,t) \mid \neg P \mid P \land P \mid P \lor P \mid P \to P \mid \forall x.P \mid \exists x.P \end{array}$$

where:

- x ranges over variables
- f ranges over function symbols
- $f(t_1, \ldots, t_n)$ is a well-formed term only if f has arity n
- p ranges over predicate symbols
- $p(t_1,\ldots,t_n)$ is a well-formed formula only if p has arity n

The syntax of predicate logic is defined by the following grammar:

$$\begin{array}{ll} t & ::= & x \mid f(t,\ldots,t) \\ P & ::= & p(t,\ldots,t) \mid \neg P \mid P \land P \mid P \lor P \mid P \to P \mid \forall x.P \mid \exists x.P \end{array}$$

where:

- x ranges over variables
- f ranges over function symbols
- $f(t_1, \ldots, t_n)$ is a well-formed term only if f has arity n
- p ranges over predicate symbols
- $p(t_1,\ldots,t_n)$ is a well-formed formula only if p has arity n

The pair of a collection of function symbols, and a collection of predicate symbols, along with their arities, is called a **signature**.

The syntax of predicate logic is defined by the following grammar:

$$\begin{array}{ll} t & ::= & x \mid f(t,\ldots,t) \\ P & ::= & p(t,\ldots,t) \mid \neg P \mid P \land P \mid P \lor P \mid P \to P \mid \forall x.P \mid \exists x.P \end{array}$$

where:

- x ranges over variables
- lacktriangleright f ranges over function symbols
- $f(t_1, \ldots, t_n)$ is a well-formed term only if f has arity n
- p ranges over predicate symbols
- $p(t_1,\ldots,t_n)$ is a well-formed formula only if p has arity n

The pair of a collection of function symbols, and a collection of predicate symbols, along with their arities, is called a **signature**.

The scope of a quantifier extends as far right as possible. E.g., $P \wedge \forall x. p(x) \vee q(x)$ is read as $P \wedge \forall x. (p(x) \vee q(x))$

Substitution is defined recursively on terms and formulas: $P[x \backslash t]$ substitute all the free occurrences of x in P with t.

Substitution is defined recursively on terms and formulas: $P[x \mid t]$ substitute all the free occurrences of x in P with t.

Substitution is defined recursively on terms and formulas:

 $P[x \setminus t]$ substitute all the free occurrences of x in P with t.

The additional conditions ensure that free variables do not get captured.

Substitution is defined recursively on terms and formulas:

 $P[x \setminus t]$ substitute all the free occurrences of x in P with t.

The additional conditions ensure that free variables do not get captured.

These conditions can always be met by silently renaming bound variables before substituting.

Recap: \forall & \exists elimination and introduction rules

Natural Deduction rules for quantifiers:

$$\frac{P[x \backslash y]}{\forall x.P} \quad [\forall I] \qquad \frac{\forall x.P}{P[x \backslash t]} \quad [\forall E] \qquad \frac{P[x \backslash t]}{\exists x.P} \quad [\exists I] \qquad \frac{\exists x.P \quad Q}{Q} \quad 1 \quad [\exists E]$$

Recap: $\forall \& \exists$ elimination and introduction rules

Natural Deduction rules for quantifiers:

$$\frac{P[x \backslash y]}{\forall x.P} \quad [\forall I] \qquad \frac{\forall x.P}{P[x \backslash t]} \quad [\forall E] \qquad \frac{P[x \backslash t]}{\exists x.P} \quad [\exists I] \qquad \frac{\exists x.P}{Q} \quad 1 \quad [\exists E]$$

Condition:

- for $[\forall I]$: y must not be free in any not-yet-discharged hypothesis or in $\forall x.P$
- for $[\forall E]$: fv(t) must not clash with bv(P)
- for $[\exists I]$: fv(t) must not clash with bv(P)
- for $[\exists E]$: y must not be free in Q or in not-yet-discharged hypotheses or in $\exists x.P$

Recap: ∀ & ∃ left and right rules

Sequent Calculus rules for quantifiers:

$$\frac{\Gamma \vdash P[x \backslash y]}{\Gamma \vdash \forall x. P} \quad [\forall R] \qquad \frac{\Gamma, P[x \backslash t] \vdash Q}{\Gamma, \forall x. P \vdash Q} \quad [\forall L]$$

$$\frac{\Gamma \vdash P[x \backslash t]}{\Gamma \vdash \exists x. P} \quad [\exists R] \qquad \frac{\Gamma, P[x \backslash y] \vdash Q}{\Gamma, \exists x. P \vdash Q} \quad [\exists L]$$

Recap: ∀ & ∃ left and right rules

Sequent Calculus rules for quantifiers:

$$\frac{\Gamma \vdash P[x \backslash y]}{\Gamma \vdash \forall x. P} \quad [\forall R] \qquad \frac{\Gamma, P[x \backslash t] \vdash Q}{\Gamma, \forall x. P \vdash Q} \quad [\forall L]$$

$$\frac{\Gamma \vdash P[x \backslash t]}{\Gamma \vdash \exists x. P} \quad [\exists R] \qquad \frac{\Gamma, P[x \backslash y] \vdash Q}{\Gamma, \exists x. P \vdash Q} \quad [\exists L]$$

Conditions:

- for $[\forall R]$: y must not be free in Γ or $\forall x.P$
- for $[\forall L]$: fv(t) must not clash with bv(P)
- for $[\exists R]$: fv(t) must not clash with bv(P)
- for $[\exists L]$: y must not be free in Γ , Q, or $\exists x.P$

Models: a model provides the interpretation of all symbols

Models: a model provides the interpretation of all symbols

```
Given a signature \langle\langle f_1^{k_1},\dots,f_n^{k_n}\rangle,\langle p_1^{j_1},\dots,p_m^{j_m}\rangle\rangle
```

- of function symbols f_i of arity k_i , for $1 \le i \le n$
- of predicate symbols p_i of arity j_i , for $1 \le i \le m$

Models: a model provides the interpretation of all symbols

Given a signature $\langle\langle f_1^{k_1},\dots,f_n^{k_n}\rangle,\langle p_1^{j_1},\dots,p_m^{j_m}\rangle\rangle$

- of function symbols f_i of arity k_i , for $1 \le i \le n$
- of predicate symbols p_i of arity j_i , for $1 \le i \le m$

a model is a structure $\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$

- of a non-empty domain D
- interpretations \mathcal{F}_{f_i} for function symbols f_i
- interpretations \mathcal{R}_{p_i} for function symbols p_i

Models: a model provides the interpretation of all symbols

Given a signature $\langle\langle f_1^{k_1},\dots,f_n^{k_n}\rangle,\langle p_1^{j_1},\dots,p_m^{j_m}\rangle\rangle$

- of function symbols f_i of arity k_i , for $1 \le i \le n$
- of predicate symbols p_i of arity j_i , for $1 \leqslant i \leqslant m$

a model is a structure $\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$

- of a non-empty domain D
- interpretations \mathcal{F}_{f_i} for function symbols f_i
- interpretations \mathcal{R}_{p_i} for function symbols p_i

Models of predicate logic replace truth assignments for propositional logic

Models: a model provides the interpretation of all symbols

Given a signature $\langle\langle f_1^{k_1},\dots,f_n^{k_n}\rangle,\langle p_1^{j_1},\dots,p_m^{j_m}\rangle\rangle$

- of function symbols f_i of arity k_i , for $1 \leqslant i \leqslant n$
- of predicate symbols p_i of arity j_i , for $1 \le i \le m$

a model is a structure $\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$

- of a non-empty domain D
- interpretations \mathcal{F}_{f_i} for function symbols f_i
- interpretations \mathcal{R}_{p_i} for function symbols p_i

Models of predicate logic replace truth assignments for propositional logic

Variable valuations:

Models: a model provides the interpretation of all symbols

Given a signature $\langle\langle f_1^{k_1},\dots,f_n^{k_n}\rangle,\langle p_1^{j_1},\dots,p_m^{j_m}\rangle\rangle$

- of function symbols f_i of arity k_i , for $1 \le i \le n$
- of predicate symbols p_i of arity j_i , for $1 \le i \le m$

a model is a structure $\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$

- of a non-empty domain D
- interpretations \mathcal{F}_{f_i} for function symbols f_i
- interpretations \mathcal{R}_{p_i} for function symbols p_i

Models of predicate logic replace truth assignments for propositional logic

Variable valuations:

lacktriangle a partial function v

Models: a model provides the interpretation of all symbols

Given a signature $\langle\langle f_1^{k_1},\dots,f_n^{k_n}\rangle,\langle p_1^{j_1},\dots,p_m^{j_m}\rangle\rangle$

- of function symbols f_i of arity k_i , for $1 \le i \le n$
- of predicate symbols p_i of arity j_i , for $1 \leqslant i \leqslant m$

a model is a structure $\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$

- of a non-empty domain D
- interpretations \mathcal{F}_{f_i} for function symbols f_i
- interpretations \mathcal{R}_{p_i} for function symbols p_i

Models of predicate logic replace truth assignments for propositional logic

Variable valuations:

- ightharpoonup a partial function v
- ▶ that map variables to *D*

Models: a model provides the interpretation of all symbols

Given a signature
$$\langle\langle f_1^{k_1},\dots,f_n^{k_n}\rangle,\langle p_1^{j_1},\dots,p_m^{j_m}\rangle\rangle$$

- of function symbols f_i of arity k_i , for $1 \le i \le n$
- of predicate symbols p_i of arity j_i , for $1 \le i \le m$

a model is a structure
$$\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$$

- ightharpoonup of a non-empty domain D
- interpretations \mathcal{F}_{f_i} for function symbols f_i
- interpretations \mathcal{R}_{p_i} for function symbols p_i

Models of predicate logic replace truth assignments for propositional logic

Variable valuations:

- ightharpoonup a partial function v
- that map variables to D
- i.e., a mapping of the form $x_1 \mapsto d_1, \dots, x_n \mapsto d_n$

Recap: Semantics of Predicate Logic

Given a model M with domain D and a variable valuation v:

- $[\![t]\!]_v^M$ gives meaning to the term t w.r.t. M and v
- $ightharpoonup \models_{M,v} P$ gives meaning to the formula P w.r.t. M and v

Recap: Semantics of Predicate Logic

Given a model M with domain D and a variable valuation v:

- $[\![t]\!]_v^M$ gives meaning to the term t w.r.t. M and v
- $\blacktriangleright \models_{M,v} P$ gives meaning to the formula P w.r.t. M and v

Meaning of terms:

- $\qquad \qquad \mathbf{I}_{f}(t_{1},\ldots,t_{n})\mathbf{I}_{v}^{M} = \mathcal{F}_{f}(\langle [t_{1}]_{v}^{M},\ldots,[t_{n}]_{v}^{M}\rangle)$

Recap: Semantics of Predicate Logic

Given a model M with domain D and a variable valuation v:

- $[\![t]\!]_v^M$ gives meaning to the term t w.r.t. M and v
- $ightharpoonup \models_{M,v} P$ gives meaning to the formula P w.r.t. M and v

Meaning of terms:

- $\qquad \qquad \mathbf{I}_v f(t_1, \dots, t_n) \mathbf{I}_v^M = \mathcal{F}_f(\langle [t_1]_v^M, \dots, [t_n]_v^M \rangle)$

Meaning of formulas:

- $\blacktriangleright \models_{M,v} p(t_1,\ldots,t_n) \text{ iff } \langle \llbracket t_1 \rrbracket_v^M,\ldots,\llbracket t_n \rrbracket_v^M \rangle \in \mathcal{R}_p$
- $\blacktriangleright \models_{M,v} \neg P \text{ iff } \neg \models_{M,v} P$
- $ightharpoonup \models_{M,v} P \land Q \text{ iff } \models_{M,v} P \text{ and } \models_{M,v} Q$
- $\blacktriangleright \models_{M,v} P \lor Q \text{ iff } \models_{M,v} P \text{ or } \models_{M,v} Q$
- $\blacktriangleright \models_{M,v} P \rightarrow Q \text{ iff } \models_{M,v} Q \text{ whenever } \models_{M,v} P$
- $\blacktriangleright \models_{M,v} \forall x.P$ iff for every $d \in D$ we have $\models_{M,(v,x\mapsto d)} P$
- $\blacktriangleright \models_{M,v} \exists x.P$ iff there exists a $d \in D$ such that $\models_{M,(v,x\mapsto d)} P$

Recap: Logical equivalences for Propositional Logic

The same equivalences hold as in Propositional Logic:

- ▶ De Morgan's law (I): $\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)$
- ▶ De Morgan's law (II): $\neg(A \land B) \leftrightarrow (\neg A \lor \neg B)$
- ▶ Implication elimination: $(A \to B) \leftrightarrow (\neg A \lor B)$
- ▶ Commutativity of \wedge : $(A \wedge B) \leftrightarrow (B \wedge A)$
- ▶ Commutativity of \vee : $(A \lor B) \leftrightarrow (B \lor A)$
- ▶ Associativity of \wedge : $((A \wedge B) \wedge C) \leftrightarrow (A \wedge (B \wedge C))$
- ▶ Associativity of \vee : $((A \lor B) \lor C) \leftrightarrow (A \lor (B \lor C))$
- ▶ Distributivity of \land over \lor : $(A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C))$
- ▶ Distributivity of \lor over \land : $(A \lor (B \land C)) \leftrightarrow ((A \lor B) \land (A \lor C))$
- ▶ Double negation elimination: $(\neg \neg A) \leftrightarrow A$
- ▶ Idempotence: $(A \land A) \leftrightarrow A$ and $(A \lor A) \leftrightarrow A$

In addition, the following hold (some hold only classically):

$$(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$$

$$(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$$

$$\blacktriangleright (\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$$

$$\bullet$$
 $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$

•
$$(\forall x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$$

•
$$(\exists x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$$

$$(\forall x. A \lor B) \leftrightarrow ((\forall x. A) \lor B) \text{ if } x \notin \text{fv}(B)$$

•
$$(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B) \text{ if } x \notin \text{fv}(B)$$

$$(\forall x.A \to B) \leftrightarrow ((\exists x.A) \to B) \text{ if } x \notin \text{fv}(B)$$

$$\bullet (\exists x.A \to B) \leftrightarrow ((\forall x.A) \to B) \text{ if } x \notin \text{fv}(B)$$

$$(\forall x.A \to B) \leftrightarrow (A \to \forall x.B) \text{ if } x \notin \text{fv}(A)$$

•
$$(\exists x.A \to B) \leftrightarrow (A \to \exists x.B) \text{ if } x \notin \text{fv}(A)$$

As before: if $(P \leftrightarrow Q \text{ or } Q \leftrightarrow P)$ and P occurs in A, then replacing P by Q in A leads to a formula B, such that $A \leftrightarrow B$

As before: if $(P \leftrightarrow Q \text{ or } Q \leftrightarrow P)$ and P occurs in A, then replacing P by Q in A leads to a formula B, such that $A \leftrightarrow B$

As before: if $(P \leftrightarrow Q \text{ or } Q \leftrightarrow P)$ and P occurs in A, then replacing P by Q in A leads to a formula B, such that $A \leftrightarrow B$

Also,

Semantical equivalence: two formulas P and Q are equivalent if for all models M and valuations v, $\models_{M,v} P$ iff $\models_{M,v} Q$

As before to prove a logical equivalence $A \leftrightarrow B$, we will prove:

- that we can derive B form A
- ▶ that we can derive A form B

As before to prove a logical equivalence $A \leftrightarrow B$, we will prove:

- that we can derive B form A
- ▶ that we can derive A form B

We will start by proving:

- $(\forall x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $(\exists x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B) \text{ if } x \notin \text{fv}(B)$
- $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B) \text{ if } x \notin \text{fv}(B)$

As before to prove a logical equivalence $A \leftrightarrow B$, we will prove:

- that we can derive B form A
- ▶ that we can derive A form B

We will start by proving:

- $(\forall x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $(\exists x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B) \text{ if } x \notin \text{fv}(B)$
- $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B) \text{ if } x \notin \text{fv}(B)$

We will use the following result:

As before to prove a logical equivalence $A \leftrightarrow B$, we will prove:

- that we can derive B form A
- ▶ that we can derive A form B

We will start by proving:

- $(\forall x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $(\exists x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B) \text{ if } x \notin \mathtt{fv}(B)$
- $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B) \text{ if } x \notin \text{fv}(B)$

We will use the following result:

Lemma (L1): if
$$x \notin fv(A)$$
 then $A[x \setminus t] = A$

Prove $(\forall x.A) \leftrightarrow A$ if $x \notin fv(A)$ in Natural Deduction

Prove $(\forall x.A) \leftrightarrow A$ if $x \notin fv(A)$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

Prove $(\forall x.A) \leftrightarrow A$ if $x \notin fv(A)$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

 $\forall x.A$

Prove $(\forall x.A) \leftrightarrow A$ if $x \notin fv(A)$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

$$\frac{A[x \backslash y]}{\forall x.A} \quad [\forall I]$$

Prove $(\forall x.A) \leftrightarrow A$ if $x \notin fv(A)$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

$$\frac{A}{\forall x.A} \quad [\forall I]$$

- pick y such that it does not occur in A
- by L1, because $x \notin fv(A)$ then $A[x \setminus y] = A$

Prove $(\forall x.A) \leftrightarrow A$ if $x \notin fv(A)$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

$$\frac{A}{\forall x.A} \quad [\forall I]$$

- pick y such that it does not occur in A
- by L1, because $x \notin fv(A)$ then $A[x \setminus y] = A$

Here is a proof of the left-to-right implication (constructive):

 \boldsymbol{A}

Prove $(\forall x.A) \leftrightarrow A$ if $x \notin fv(A)$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

$$\frac{A}{\forall x.A} \quad [\forall I]$$

- pick y such that it does not occur in A
- ▶ by L1, because $x \notin fv(A)$ then $A[x \setminus y] = A$

Here is a proof of the left-to-right implication (constructive):

$$\overline{A[x\backslash y]}$$

- ▶ by L1, because $x \notin fv(A)$ then $A[x \setminus y] = A$
- pick y such that it does not occur in A

Prove $(\forall x.A) \leftrightarrow A$ if $x \notin fv(A)$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

$$\frac{A}{\forall x.A} \quad [\forall I]$$

- pick y such that it does not occur in A
- ▶ by L1, because $x \notin fv(A)$ then $A[x \setminus y] = A$

Here is a proof of the left-to-right implication (constructive):

$$\frac{\forall x.A}{A[x \backslash y]} \quad [\forall E]$$

- by L1, because $x \notin fv(A)$ then $A[x \setminus y] = A$
- pick y such that it does not occur in A

Prove $(\exists x.A) \leftrightarrow A$ if $x \notin fv(A)$ in Natural Deduction

Prove $(\exists x.A) \leftrightarrow A \text{ if } x \notin \mathtt{fv}(A) \text{ in Natural Deduction}$

Here is a proof of the right-to-left implication (constructive):

Prove $(\exists x.A) \leftrightarrow A$ if $x \notin fv(A)$ in Natural Deduction Here is a proof of the right-to-left implication (constructive):

Prove $(\exists x.A) \leftrightarrow A$ if $x \notin fv(A)$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

$$\frac{A[x \backslash y]}{\exists x.A} \quad [\exists I]$$

ightharpoonup pick y such that it does not occur in A

Prove $(\exists x.A) \leftrightarrow A$ if $x \notin fv(A)$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

$$\frac{A}{\exists x.A}$$
 [$\exists I$]

- pick y such that it does not occur in A
- by L1, because $x \notin fv(A)$ then $A[x \setminus y] = A$

Prove $(\exists x.A) \leftrightarrow A$ if $x \notin fv(A)$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

$$\frac{A}{\exists x.A}$$
 [$\exists I$]

- pick y such that it does not occur in A
- by L1, because $x \notin fv(A)$ then $A[x \setminus y] = A$

Here is a proof of the left-to-right implication (constructive):

 \boldsymbol{A}

Prove $(\exists x.A) \leftrightarrow A$ if $x \notin fv(A)$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

$$\frac{A}{\exists x.A}$$
 [$\exists I$]

- pick y such that it does not occur in A
- by L1, because $x \notin fv(A)$ then $A[x \setminus y] = A$

Here is a proof of the left-to-right implication (constructive):

$$\frac{\exists x.A \quad A}{A}$$

- by L1, because $x \notin fv(A)$ then $A[x \setminus y] = A$
- pick y such that it does not occur in A

Prove $(\exists x.A) \leftrightarrow A$ if $x \notin fv(A)$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

$$\frac{A}{\exists x.A}$$
 [3I]

- pick y such that it does not occur in A
- by L1, because $x \notin fv(A)$ then $A[x \setminus y] = A$

Here is a proof of the left-to-right implication (constructive):

$$\frac{\exists x.A \quad \overline{A[x \backslash y]}}{A} \stackrel{1}{\underset{1}{\boxtimes} E}$$

- by L1, because $x \notin fv(A)$ then $A[x \setminus y] = A$
- pick y such that it does not occur in A

Prove that $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B)$ if $x \notin \mathbf{fv}(B)$ in the Sequent Calculus

Prove that $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B)$ if $x \notin \mathtt{fv}(B)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (classical):

 $\forall x.A \vee B \vdash (\forall x.A) \vee B$

Prove that $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B)$ if $x \notin \mathbf{fv}(B)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (classical):

$$\frac{\overline{\forall x.A \lor B \vdash (\forall x.A), B}}{\forall x.A \lor B \vdash (\forall x.A) \lor B} \quad [\lor R]$$

Prove that $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (classical):

$$\frac{\forall x.A \lor B \vdash A[x \backslash y], B}{\forall x.A \lor B \vdash (\forall x.A), B} \ [\forall R]$$

$$\frac{\forall x.A \lor B \vdash (\forall x.A), B}{\forall x.A \lor B \vdash (\forall x.A) \lor B} \ [\lor R]$$

Prove that $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (classical):

$$\frac{\overline{A[x \backslash y] \vee B[x \backslash y] \vdash A[x \backslash y], B}}{\frac{\forall x.A \vee B \vdash A[x \backslash y], B}{\forall x.A \vee B \vdash (\forall x.A), B}}_{[\forall R]}}_{[\forall R]}$$

Prove that $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (classical):

Prove that $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (classical):

Prove that $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (classical):

$$\frac{\overline{A[x \backslash y] \vdash A[x \backslash y]} \quad \overline{B \vdash B}}{\underline{A[x \backslash y] \lor B[x \backslash y] \vdash A[x \backslash y], B}} \quad {}^{[\lor L]}$$

$$\frac{\overline{A[x \backslash y] \lor B[x \backslash y] \vdash A[x \backslash y], B}}{\overline{\forall x. A \lor B \vdash (\forall x. A), B}} \quad {}^{[\lor R]}$$

$$\overline{\forall x. A \lor B \vdash (\forall x. A) \lor B} \quad {}^{[\lor R]}$$

- pick y such that it does not occur in A or B
- by L1, because $x \notin fv(B)$ then $B[x \setminus y] = B$

Prove that $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (classical):

$$\frac{\overline{A[x \backslash y] \vdash A[x \backslash y]} \quad \overline{B \vdash B}}{\frac{A[x \backslash y] \lor B[x \backslash y] \vdash A[x \backslash y], B}{\forall x. A \lor B \vdash A[x \backslash y], B}} \quad {}^{[\forall L]} \\ \frac{\overline{\forall x. A \lor B \vdash A[x \backslash y], B}}{\overline{\forall x. A \lor B \vdash (\forall x. A), B}} \quad {}^{[\forall R]} \\ \frac{\overline{\forall x. A \lor B \vdash (\forall x. A), B}}{\overline{\forall x. A \lor B \vdash (\forall x. A) \lor B}} \quad {}^{[\lor R]}$$

- pick y such that it does not occur in A or B
- by L1, because $x \notin fv(B)$ then $B[x \setminus y] = B$

Prove that $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B)$ if $x \notin \mathbf{fv}(B)$ in the Sequent Calculus

Prove that $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B)$ if $x \notin \mathbf{fv}(B)$ in the Sequent Calculus
Here is a proof of the right-to-left implication (constructive):
$(\forall x.A) \lor B \vdash \forall x.A \lor B$

Prove that $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B)$ if $x \notin \mathbf{fv}(B)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{(\forall x.A) \lor B \vdash A[x \backslash y] \lor B[x \backslash y]}{(\forall x.A) \lor B \vdash \forall x.A \lor B} \quad [\forall R]$$

Prove that $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{\forall x.A \vdash A[x \backslash y] \lor B[x \backslash y]}{(\forall x.A) \lor B \vdash A[x \backslash y] \lor B[x \backslash y]} \xrightarrow{[\forall L]} \frac{(\forall x.A) \lor B \vdash A[x \backslash y] \lor B[x \backslash y]}{(\forall x.A) \lor B \vdash \forall x.A \lor B}$$

Prove that $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

Prove that $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{\overline{A[x \backslash y] \vdash A[x \backslash y]}}{\forall x.A \vdash A[x \backslash y]} [\forall L]$$

$$\frac{\forall x.A \vdash A[x \backslash y] \lor B[x \backslash y]}{\forall x.A \vdash A[x \backslash y] \lor B[x \backslash y]} [\forall R_1] \frac{(\forall x.A) \lor B \vdash A[x \backslash y] \lor B[x \backslash y]}{(\forall x.A) \lor B \vdash \forall x.A \lor B} [\forall R]$$

Prove that $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{\overline{A[x\backslash y] \vdash A[x\backslash y]}}{\forall x.A \vdash A[x\backslash y]} \stackrel{[\forall L]}{\forall L]}{\forall x.A \vdash A[x\backslash y]} \stackrel{[\vee R_1]}{=} \frac{B \vdash A[x\backslash y] \vee B[x\backslash y]}{B \vdash A[x\backslash y] \vee B[x\backslash y]} \stackrel{[\vee L]}{=} \frac{(\forall x.A) \vee B \vdash A[x\backslash y] \vee B[x\backslash y]}{(\forall x.A) \vee B \vdash \forall x.A \vee B} \stackrel{[\forall R]}{=}$$

Prove that $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{\overline{A[x\backslash y] \vdash A[x\backslash y]}}{\forall x.A \vdash A[x\backslash y]} \stackrel{[\forall L]}{\models L} \frac{\overline{B \vdash B[x\backslash y]}}{B \vdash A[x\backslash y] \lor B[x\backslash y]} \stackrel{[\lor R_2]}{=} \frac{(\forall x.A \vdash A[x\backslash y] \lor B[x\backslash y] \lor B[x\backslash y]}{(\forall x.A) \lor B \vdash A[x\backslash y] \lor B[x\backslash y]} \stackrel{[\lor R]}{=} \frac{(\forall x.A) \lor B \vdash \forall x.A \lor B}$$

Prove that $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B)$ if $x \notin \mathtt{fv}(B)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{\overline{A[x\backslash y] \vdash A[x\backslash y]}}{\forall x.A \vdash A[x\backslash y]} \stackrel{[\forall L]}{\models L} \qquad \frac{\overline{B \vdash B}}{B \vdash B} \stackrel{[Id]}{\models B} \qquad [\forall R_2]$$

$$\frac{\forall x.A \vdash A[x\backslash y] \lor B[x\backslash y]}{(\forall x.A) \lor B \vdash A[x\backslash y] \lor B[x\backslash y]} \stackrel{[\lor R_2]}{\models A[x\backslash y] \lor B[x\backslash y]} \qquad [\lor L]$$

$$\frac{(\forall x.A) \lor B \vdash A[x\backslash y] \lor B[x\backslash y]}{(\forall x.A) \lor B \vdash \forall x.A \lor B} \qquad [\forall R]$$

- pick y such that it does not occur in A or B
- by L1, because $x \notin fv(B)$ then $B[x \setminus y] = B$

Prove that $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B)$ if $x \notin fv(B)$ in the Sequent Calculus

Prove that $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

 $\exists x.A \land B \vdash (\exists x.A) \land B$

Prove that $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

$$\frac{A[x \setminus y] \land B[x \setminus y] \vdash (\exists x.A) \land B}{\exists x.A \land B \vdash (\exists x.A) \land B} \quad [\exists L]$$

Prove that $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

$$\frac{\overline{A[x \backslash y], B[x \backslash y] \vdash (\exists x.A) \land B}}{\overline{A[x \backslash y] \land B[x \backslash y] \vdash (\exists x.A) \land B}} \quad [\land L]$$

$$\exists x.A \land B \vdash (\exists x.A) \land B$$

Prove that $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

$$\frac{A[x \setminus y], B[x \setminus y] \vdash \exists x.A}{A[x \setminus y], B[x \setminus y] \vdash B} \xrightarrow{A[x \setminus y], B[x \setminus y] \vdash (\exists x.A) \land B} \xrightarrow{[\land L]} \xrightarrow{\exists x.A \land B \vdash (\exists x.A) \land B} \xrightarrow{[\exists L]}$$

Prove that $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

$$\frac{\overline{A[x \backslash y], B[x \backslash y] \vdash A[x \backslash y]}}{A[x \backslash y], B[x \backslash y] \vdash \exists x.A} \xrightarrow{[\exists R]} \frac{\overline{A[x \backslash y], B[x \backslash y] \vdash B}}{A[x \backslash y], B[x \backslash y] \vdash (\exists x.A) \land B} \xrightarrow{[\land L]} \frac{A[x \backslash y], B[x \backslash y] \vdash (\exists x.A) \land B}{\exists x.A \land B \vdash (\exists x.A) \land B} \xrightarrow{[\exists L]}$$

Prove that $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

$$\frac{\overline{A[x \backslash y], B[x \backslash y] \vdash A[x \backslash y]}}{A[x \backslash y], B[x \backslash y] \vdash \exists x. A} \xrightarrow{[\exists R]} \frac{\overline{A[x \backslash y], B[x \backslash y] \vdash B}}{\overline{A[x \backslash y], B[x \backslash y] \vdash (\exists x. A) \land B}} \xrightarrow{[\land L]} \overline{A[x \backslash y] \land B[x \backslash y] \vdash (\exists x. A) \land B} \xrightarrow{[\exists L]} \overline{A[x \backslash A] \land B \vdash (\exists x. A) \land B} \xrightarrow{[\exists L]}$$

Prove that $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

$$\frac{\overline{A[x \backslash y], B[x \backslash y] \vdash A[x \backslash y]}}{A[x \backslash y], B[x \backslash y] \vdash \exists x.A} \stackrel{[\exists R]}{=} \frac{\overline{A[x \backslash y], B \vdash B}}{\overline{A[x \backslash y], B[x \backslash y] \vdash (\exists x.A) \land B}} \stackrel{[\land L]}{=} \frac{A[x \backslash y], B[x \backslash y] \vdash (\exists x.A) \land B}{\overline{A[x \backslash y] \land B[x \backslash y] \vdash (\exists x.A) \land B}} \stackrel{[\land L]}{=} \frac{\exists x.A \land B \vdash (\exists x.A) \land B}{\overline{A[x \backslash y] \land B[x \backslash y] \vdash (\exists x.A) \land B}} \stackrel{[\exists L]}{=} \frac{A[x \backslash y], B[x \backslash y] \vdash (\exists x.A) \land B}{\overline{A[x \backslash y], B[x \backslash y] \vdash (\exists x.A) \land B}} \stackrel{[\exists L]}{=} \frac{A[x \backslash y], B[x \backslash y] \vdash (\exists x.A) \land B}{\overline{A[x \backslash y], B[x \backslash y] \vdash (\exists x.A) \land B}} \stackrel{[\exists L]}{=} \frac{A[x \backslash y], B[x \backslash y] \vdash (\exists x.A) \land B}{\overline{A[x \backslash y], B[x \backslash y] \vdash (\exists x.A) \land B}} \stackrel{[\exists L]}{=} \frac{A[x \backslash y], B[x \backslash y] \vdash (\exists x.A) \land B}{\overline{A[x \backslash y], B[x \backslash y] \vdash (\exists x.A) \land B}} \stackrel{[\exists L]}{=} \frac{A[x \backslash y], B[x \backslash y] \vdash (\exists x.A) \land B}{\overline{A[x \backslash y], B[x \backslash y] \vdash (\exists x.A) \land B}} \stackrel{[\exists L]}{=} \frac{A[x \backslash y], B[x \backslash y] \vdash (\exists x.A) \land B}{\overline{A[x \backslash y], B[x \backslash y] \vdash (\exists x.A) \land B}}$$

- pick y such that it does not occur in A or B
- by L1, because $x \notin fv(B)$ then $B[x \setminus y] = B$

Prove that $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B)$ if $x \notin fv(B)$ in the Sequent Calculus

Prove that $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B)$ if $x \notin \mathtt{fv}(B)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

 $(\exists x.A) \land B \vdash \exists x.A \land B$

Prove that $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{(\exists x.A), B \vdash \exists x.A \land B}{(\exists x.A) \land B \vdash \exists x.A \land B} \quad [\land L]$$

Prove that $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{A[x \setminus y], B \vdash \exists x. A \land B}{(\exists x. A), B \vdash \exists x. A \land B} \xrightarrow{[\exists L]} (\land L)$$

Prove that $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{\overline{A[x\backslash y], B \vdash A[x\backslash y] \land B[x\backslash y]}}{\frac{A[x\backslash y], B \vdash \exists x. A \land B}{(\exists x. A), B \vdash \exists x. A \land B}} [\exists L]}$$

$$\frac{(\exists x. A), B \vdash \exists x. A \land B}{(\exists x. A) \land B \vdash \exists x. A \land B} [\land L]}$$

Prove that $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{\overline{A[x \backslash y], B \vdash A[x \backslash y]} \qquad \overline{A[x \backslash y], B \vdash B[x \backslash y]}}{\underline{A[x \backslash y], B \vdash A[x \backslash y] \land B[x \backslash y]}} \qquad [\land R]$$

$$\frac{A[x \backslash y], B \vdash A[x \backslash y] \land B[x \backslash y]}{\underline{A[x \backslash y], B \vdash \exists x. A \land B}} \qquad [\exists L]$$

$$\underline{(\exists x. A), B \vdash \exists x. A \land B} \qquad [\land L]$$

Prove that $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{\overline{A[x \backslash y], B \vdash A[x \backslash y]} \quad \overline{A[x \backslash y], B \vdash B[x \backslash y]}}{\underline{A[x \backslash y], B \vdash A[x \backslash y] \land B[x \backslash y]} \atop \underline{A[x \backslash y], B \vdash \exists x. A \land B} \atop \underline{(\exists x. A), B \vdash \exists x. A \land B} \quad [\exists L] \atop \underline{(\exists x. A) \land B \vdash \exists x. A \land B} \quad [\land L]}$$

Prove that $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B)$ if $x \notin fv(B)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{\overline{A[x \backslash y], B \vdash A[x \backslash y]} \quad \overline{A[x \backslash y], B \vdash B}}{\frac{A[x \backslash y], B \vdash A[x \backslash y] \land B[x \backslash y]}{A[x \backslash y], B \vdash \exists x. A \land B}} \quad {\tiny [\exists R]} \\ \frac{\overline{A[x \backslash y], B \vdash \exists x. A \land B}}{(\exists x. A), B \vdash \exists x. A \land B} \quad {\tiny [\land L]}}$$

- pick y such that it does not occur in A or B
- by L1, because $x \notin fv(B)$ then $B[x \setminus y] = B$

We will now prove the following using the other equivalences:

- $(\forall x.A \to B) \leftrightarrow ((\exists x.A) \to B) \text{ if } x \notin \text{fv}(B)$
- $(\exists x.A \to B) \leftrightarrow ((\forall x.A) \to B) \text{ if } x \notin \text{fv}(B)$

We will now prove the following using the other equivalences:

- $(\forall x.A \to B) \leftrightarrow ((\exists x.A) \to B) \text{ if } x \notin \mathtt{fv}(B)$
- $(\exists x.A \to B) \leftrightarrow ((\forall x.A) \to B) \text{ if } x \notin \text{fv}(B)$

Prove that $(\forall x.A \to B) \leftrightarrow ((\exists x.A) \to B)$ if $x \notin \mathtt{fv}(B)$ using the other equivalences

We will now prove the following using the other equivalences:

- $(\forall x.A \to B) \leftrightarrow ((\exists x.A) \to B) \text{ if } x \notin \text{fv}(B)$
- $(\exists x.A \to B) \leftrightarrow ((\forall x.A) \to B) \text{ if } x \notin \text{fv}(B)$

Prove that $(\forall x.A \to B) \leftrightarrow ((\exists x.A) \to B)$ if $x \notin \mathtt{fv}(B)$ using the other equivalences

 $\forall x.A \rightarrow B$

We will now prove the following using the other equivalences:

- $(\forall x.A \to B) \leftrightarrow ((\exists x.A) \to B) \text{ if } x \notin \mathtt{fv}(B)$
- $(\exists x.A \to B) \leftrightarrow ((\forall x.A) \to B) \text{ if } x \notin \text{fv}(B)$

Prove that $(\forall x.A \to B) \leftrightarrow ((\exists x.A) \to B)$ if $x \notin \mathtt{fv}(B)$ using the other equivalences

- $\forall x.A \rightarrow B$
- $ightharpoonup \leftrightarrow \forall x. \neg A \lor B$ using implication elimination

We will now prove the following using the other equivalences:

- $(\forall x.A \to B) \leftrightarrow ((\exists x.A) \to B) \text{ if } x \notin \text{fv}(B)$
- $(\exists x.A \to B) \leftrightarrow ((\forall x.A) \to B) \text{ if } x \notin \text{fv}(B)$

Prove that $(\forall x.A \to B) \leftrightarrow ((\exists x.A) \to B)$ if $x \notin fv(B)$ using the other equivalences

- $\forall x.A \rightarrow B$
- $ightharpoonup \leftrightarrow \forall x. \neg A \lor B$ using implication elimination
- $\blacktriangleright \ \longleftrightarrow \big(\forall x. \neg A\big) \lor B \ \ \mathsf{using} \ (\forall x. A \lor B) \ \leftrightarrow \big((\forall x. A) \lor B\big) \ \mathsf{if} \ x \not\in \mathsf{fv}(B)$

We will now prove the following using the other equivalences:

- $(\forall x.A \to B) \leftrightarrow ((\exists x.A) \to B) \text{ if } x \notin \text{fv}(B)$
- $(\exists x.A \to B) \leftrightarrow ((\forall x.A) \to B) \text{ if } x \notin \text{fv}(B)$

Prove that $(\forall x.A \to B) \leftrightarrow ((\exists x.A) \to B)$ if $x \notin \mathbf{fv}(B)$ using the other equivalences

- $\blacktriangleright \ \forall x.A \rightarrow B$
- $ightharpoonup \leftrightarrow \forall x. \neg A \lor B$ using implication elimination
- $\blacktriangleright \ \leftrightarrow (\forall x. \neg A) \lor B \ \ \text{using} \ (\forall x. A \lor B) \leftrightarrow ((\forall x. A) \lor B) \ \text{if} \ x \notin \mathtt{fv}(B)$
- $\blacktriangleright \leftrightarrow (\neg \exists x.A) \lor B \text{using } (\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$

We will now prove the following using the other equivalences:

- $(\forall x.A \to B) \leftrightarrow ((\exists x.A) \to B) \text{ if } x \notin \mathtt{fv}(B)$
- $(\exists x.A \to B) \leftrightarrow ((\forall x.A) \to B) \text{ if } x \notin \text{fv}(B)$

Prove that $(\forall x.A \to B) \leftrightarrow ((\exists x.A) \to B)$ if $x \notin \mathbf{fv}(B)$ using the other equivalences

- $\blacktriangleright \ \forall x.A \rightarrow B$
- $ightharpoonup \leftrightarrow \forall x. \neg A \lor B$ using implication elimination
- $\blacktriangleright \ \leftrightarrow (\forall x. \neg A) \lor B \ \ \text{using} \ (\forall x. A \lor B) \leftrightarrow ((\forall x. A) \lor B) \ \text{if} \ x \notin \mathtt{fv}(B)$
- $\blacktriangleright \leftrightarrow (\neg \exists x.A) \lor B \text{using } (\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$
- $ightharpoonup \leftrightarrow (\exists x.A) \rightarrow B$ using implication elimination

$$\blacksquare x.A \rightarrow B$$

- $\blacksquare x.A \to B$
- $ightharpoonup \leftrightarrow \exists x. \neg A \lor B$ using implication elimination

- $\blacksquare x.A \rightarrow B$
- $ightharpoonup \leftrightarrow \exists x. \neg A \lor B$ using implication elimination
- $\blacktriangleright \leftrightarrow (\exists x. \neg A) \lor (\exists x. B) \mathsf{using} \ (\exists x. A \lor B) \leftrightarrow ((\exists x. A) \lor (\exists x. B))$

- $\blacksquare x.A \rightarrow B$
- $ightharpoonup \leftrightarrow \exists x. \neg A \lor B$ using implication elimination
- $\blacktriangleright \leftrightarrow (\exists x. \neg A) \lor (\exists x. B) \text{using } (\exists x. A \lor B) \leftrightarrow ((\exists x. A) \lor (\exists x. B))$
- $ightharpoonup \leftrightarrow (\exists x. \neg A) \lor B \text{using } (\exists x. A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$

- $\blacksquare x.A \rightarrow B$
- $ightharpoonup \leftrightarrow \exists x. \neg A \lor B$ using implication elimination
- $\blacktriangleright \leftrightarrow (\exists x. \neg A) \lor (\exists x. B) \text{using } (\exists x. A \lor B) \leftrightarrow ((\exists x. A) \lor (\exists x. B))$
- $ightharpoonup \leftrightarrow (\exists x. \neg A) \lor B \text{using } (\exists x. A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $\blacktriangleright \leftrightarrow (\neg \forall x.A) \lor B \text{using } (\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$

- $\blacksquare x.A \rightarrow B$
- $ightharpoonup \leftrightarrow \exists x. \neg A \lor B$ using implication elimination
- $\blacktriangleright \leftrightarrow (\exists x. \neg A) \lor (\exists x. B) \mathsf{using} \ (\exists x. A \lor B) \leftrightarrow ((\exists x. A) \lor (\exists x. B))$
- $ightharpoonup \leftrightarrow (\exists x. \neg A) \lor B \text{using } (\exists x. A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $ightharpoonup \leftrightarrow (\neg \forall x.A) \lor B using (\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$
- \rightarrow $(\forall x.A) \rightarrow B$ using implication elimination

We will now prove the following using semantics:

- $(\forall x.A \to B) \leftrightarrow (A \to \forall x.B)$ if $x \notin fv(A)$
- $\bullet \ (\exists x.A \to B) \leftrightarrow (A \to \exists x.B) \ \mathsf{if} \ x \notin \mathtt{fv}(A)$

We will now prove the following using semantics:

- $(\forall x.A \to B) \leftrightarrow (A \to \forall x.B) \text{ if } x \notin \mathtt{fv}(A)$
- $(\exists x.A \to B) \leftrightarrow (A \to \exists x.B)$ if $x \notin fv(A)$

We will use following result:

We will now prove the following using semantics:

$$(\forall x.A \to B) \leftrightarrow (A \to \forall x.B) \text{ if } x \notin \mathtt{fv}(A)$$

•
$$(\exists x.A \to B) \leftrightarrow (A \to \exists x.B) \text{ if } x \notin \text{fv}(A)$$

We will use following result:

Lemma (L2): if
$$x \notin fv(A)$$
, then $\models_{M,v,x\mapsto d} A$ iff $\models_{M,v} A$

Prove $(\forall x.A \to B) \leftrightarrow (A \to \forall x.B)$ if $x \notin \text{fv}(A)$ using the semantics method

Prove $(\forall x.A \to B) \leftrightarrow (A \to \forall x.B)$ if $x \notin \text{fv}(A)$ using the semantics method

Assume $x \notin fv(A)$, M is a model with domain D and v a valuation

Prove $(\forall x.A \to B) \leftrightarrow (A \to \forall x.B)$ if $x \notin \text{fv}(A)$ using the semantics method

Assume $x \notin \mathtt{fv}(A)$, M is a model with domain D and v a valuation Left-to-right implication:

Prove $(\forall x.A \rightarrow B) \leftrightarrow (A \rightarrow \forall x.B)$ if $x \notin fv(A)$ using the semantics method

Assume $x \notin \mathtt{fv}(A)$, M is a model with domain D and v a valuation Left-to-right implication:

• if
$$\models_{M,v} \forall x.A \rightarrow B$$
 then $\models_{M,v} A \rightarrow \forall x.B$

Prove $(\forall x.A \to B) \leftrightarrow (A \to \forall x.B)$ if $x \notin \text{fv}(A)$ using the semantics method

Assume $x \notin \mathtt{fv}(A)$, M is a model with domain D and v a valuation Left-to-right implication:

- if $\models_{M,v} \forall x.A \rightarrow B$ then $\models_{M,v} A \rightarrow \forall x.B$
 - ▶ to prove: $\vDash_{M,v} A \rightarrow \forall x.B$, i.e., $\vDash_{M,v} \forall x.B$ whenever $\vDash_{M,v} A$

Prove $(\forall x.A \rightarrow B) \leftrightarrow (A \rightarrow \forall x.B)$ if $x \notin fv(A)$ using the semantics method

Assume $x \notin \mathbf{fv}(A)$, M is a model with domain D and v a valuation Left-to-right implication:

- if $\models_{M,v} \forall x.A \rightarrow B$ then $\models_{M,v} A \rightarrow \forall x.B$
 - ▶ to prove: $\models_{M,v} A \rightarrow \forall x.B$, i.e., $\models_{M,v} \forall x.B$ whenever $\models_{M,v} A$
 - ▶ assume $\vDash_{M,v} A$ and prove $\vDash_{M,v} \forall x.B$, i.e., for all $d \in D$, $\vDash_{M,v.x\mapsto d} B$

Prove $(\forall x.A \to B) \leftrightarrow (A \to \forall x.B)$ if $x \notin \text{fv}(A)$ using the semantics method

Assume $x \notin \mathtt{fv}(A)$, M is a model with domain D and v a valuation Left-to-right implication:

- if $\models_{M,v} \forall x.A \rightarrow B$ then $\models_{M,v} A \rightarrow \forall x.B$
 - ▶ to prove: $\models_{M,v} A \rightarrow \forall x.B$, i.e., $\models_{M,v} \forall x.B$ whenever $\models_{M,v} A$
 - ▶ assume $\vDash_{M,v} A$ and prove $\vDash_{M,v} \forall x.B$, i.e., for all $d \in D$, $\vDash_{M,v,x\mapsto d} B$
 - ▶ assumption: $\models_{M,v} \forall x.A \rightarrow B$, i.e., for all $e \in D$, $\models_{M,v,x\mapsto e} B$ whenever $\models_{M,v,x\mapsto e} A$

Prove $(\forall x.A \to B) \leftrightarrow (A \to \forall x.B)$ if $x \notin \text{fv}(A)$ using the semantics method

Assume $x \notin \mathbf{fv}(A)$, M is a model with domain D and v a valuation Left-to-right implication:

- if $\models_{M,v} \forall x.A \rightarrow B$ then $\models_{M,v} A \rightarrow \forall x.B$
 - ▶ to prove: $\models_{M,v} A \rightarrow \forall x.B$, i.e., $\models_{M,v} \forall x.B$ whenever $\models_{M,v} A$
 - ▶ assume $\vDash_{M,v} A$ and prove $\vDash_{M,v} \forall x.B$, i.e., for all $d \in D$, $\vDash_{M,v,x\mapsto d} B$
 - ▶ assumption: $\vDash_{M,v} \forall x.A \rightarrow B$, i.e., for all $e \in D$, $\vDash_{M,v,x \mapsto e} B$ whenever $\vDash_{M,v,x \mapsto e} A$
 - ▶ because $\models_{M,v} A$ by L2, $\models_{M,v,x\mapsto d} A$

Prove $(\forall x.A \to B) \leftrightarrow (A \to \forall x.B)$ if $x \notin \text{fv}(A)$ using the semantics method

Assume $x \notin \mathtt{fv}(A)$, M is a model with domain D and v a valuation Left-to-right implication:

- if $\models_{M,v} \forall x.A \rightarrow B$ then $\models_{M,v} A \rightarrow \forall x.B$
 - ▶ to prove: $\models_{M,v} A \rightarrow \forall x.B$, i.e., $\models_{M,v} \forall x.B$ whenever $\models_{M,v} A$
 - ▶ assume $\vDash_{M,v} A$ and prove $\vDash_{M,v} \forall x.B$, i.e., for all $d \in D$, $\vDash_{M,v.x\mapsto d} B$
 - ▶ assumption: $\models_{M,v} \forall x.A \rightarrow B$, i.e., for all $e \in D$, $\models_{M,v,x\mapsto e} B$ whenever $\models_{M,v,x\mapsto e} A$
 - ▶ because $\models_{M,v} A$ by L2, $\models_{M,v,x\mapsto d} A$
 - ▶ instantiating this assumption with d gives us: $\models_{M,v,x\mapsto d} B$ whenever $\models_{M,v,x\mapsto d} A$

Prove $(\forall x.A \to B) \leftrightarrow (A \to \forall x.B)$ if $x \notin \text{fv}(A)$ using the semantics method

Assume $x \notin \mathtt{fv}(A)$, M is a model with domain D and v a valuation Left-to-right implication:

- if $\models_{M,v} \forall x.A \rightarrow B$ then $\models_{M,v} A \rightarrow \forall x.B$
 - ▶ to prove: $\models_{M,v} A \rightarrow \forall x.B$, i.e., $\models_{M,v} \forall x.B$ whenever $\models_{M,v} A$
 - ▶ assume $\vDash_{M,v} A$ and prove $\vDash_{M,v} \forall x.B$, i.e., for all $d \in D$, $\vDash_{M,v.x\mapsto d} B$
 - ▶ assumption: $\vDash_{M,v} \forall x.A \rightarrow B$, i.e., for all $e \in D$, $\vDash_{M,v,x \mapsto e} B$ whenever $\vDash_{M,v,x \mapsto e} A$
 - ▶ because $\models_{M,v} A$ by L2, $\models_{M,v,x\mapsto d} A$
 - ▶ instantiating this assumption with d gives us: $\models_{M,v,x\mapsto d} B$ whenever $\models_{M,v,x\mapsto d} A$
 - ▶ therefore, because $\models_{M,v,x\mapsto d} A$ is true, $\models_{M,v,x\mapsto d} B$ is also true

Right-to-left implication:

• if $\models_{M,v} A \to \forall x.B$ then $\models_{M,v} \forall x.A \to B$

- if $\models_{M,v} A \rightarrow \forall x.B$ then $\models_{M,v} \forall x.A \rightarrow B$
 - ▶ to prove: $\models_{M,v} \forall x.A \rightarrow B$, i.e., for all $d \in D$, $\models_{M,v,x\mapsto d} B$ whenever $\models_{M,v,x\mapsto d} A$

- if $\models_{M,v} A \rightarrow \forall x.B$ then $\models_{M,v} \forall x.A \rightarrow B$
 - ▶ to prove: $\models_{M,v} \forall x.A \rightarrow B$, i.e., for all $d \in D$, $\models_{M,v,x\mapsto d} B$ whenever $\models_{M,v,x\mapsto d} A$
 - ▶ assume $d \in D$ and $\models_{M,v,x\mapsto d} A$, and prove $\models_{M,v,x\mapsto d} B$

- if $\models_{M,v} A \rightarrow \forall x.B$ then $\models_{M,v} \forall x.A \rightarrow B$
 - ▶ to prove: $\models_{M,v} \forall x.A \rightarrow B$, i.e., for all $d \in D$, $\models_{M,v,x\mapsto d} B$ whenever $\models_{M,v,x\mapsto d} A$
 - ▶ assume $d \in D$ and $\models_{M,v,x\mapsto d} A$, and prove $\models_{M,v,x\mapsto d} B$
 - ▶ by L2, we can assume $\models_{M,v} A$

- if $\models_{M,v} A \to \forall x.B$ then $\models_{M,v} \forall x.A \to B$
 - ▶ to prove: $\vDash_{M,v} \forall x.A \rightarrow B$, i.e., for all $d \in D$, $\vDash_{M,v,x\mapsto d} B$ whenever $\vDash_{M,v,x\mapsto d} A$
 - ▶ assume $d \in D$ and $\models_{M,v,x\mapsto d} A$, and prove $\models_{M,v,x\mapsto d} B$
 - ▶ by L2, we can assume $\models_{M,v} A$
 - ▶ assumption: $\vDash_{M,v} A \to \forall x.B$, i.e., $\vDash_{M,v} \forall x.B$ whenever $\vDash_{M,v} A$

- if $\models_{M,v} A \rightarrow \forall x.B$ then $\models_{M,v} \forall x.A \rightarrow B$
 - ▶ to prove: $\models_{M,v} \forall x.A \rightarrow B$, i.e., for all $d \in D$, $\models_{M,v,x\mapsto d} B$ whenever $\models_{M,v,x\mapsto d} A$
 - ▶ assume $d \in D$ and $\models_{M,v,x\mapsto d} A$, and prove $\models_{M,v,x\mapsto d} B$
 - by L2, we can assume $\models_{M,v} A$
 - ▶ assumption: $\vDash_{M,v} A \to \forall x.B$, i.e., $\vDash_{M,v} \forall x.B$ whenever $\vDash_{M,v} A$
 - ▶ because $\vDash_{M,v} A$, we can assume $\vDash_{M,v} \forall x.B$, i.e., for all $e \in D$, $\vDash_{M,v.x\mapsto e} B$

- if $\models_{M,v} A \rightarrow \forall x.B$ then $\models_{M,v} \forall x.A \rightarrow B$
 - ▶ to prove: $\vDash_{M,v} \forall x.A \rightarrow B$, i.e., for all $d \in D$, $\vDash_{M,v,x\mapsto d} B$ whenever $\vDash_{M,v,x\mapsto d} A$
 - ▶ assume $d \in D$ and $\models_{M,v,x\mapsto d} A$, and prove $\models_{M,v,x\mapsto d} B$
 - by L2, we can assume $\models_{M,v} A$
 - ▶ assumption: $\models_{M,v} A \rightarrow \forall x.B$, i.e., $\models_{M,v} \forall x.B$ whenever $\models_{M,v} A$
 - because $\vDash_{M,v} A$, we can assume $\vDash_{M,v} \forall x.B$, i.e., for all $e \in D$, $\vDash_{M,v,x\mapsto e} B$
 - instantiating this assumption using d, we get to assume $\models_{M,v,x\mapsto d} B$, which is what we wanted to prove

Conclusion

What did we cover today?

- Equivalence using Natural Deduction
- Equivalence using the Sequent Calculus
- Rewriting using "known" equivalences
- Equivalences using semantics

Conclusion

What did we cover today?

- Equivalence using Natural Deduction
- Equivalence using the Sequent Calculus
- Rewriting using "known" equivalences
- Equivalences using semantics

Further reading:

► Chapter 8 of http://leanprover.github.io/logic_and_proof/

Conclusion

What did we cover today?

- Equivalence using Natural Deduction
- Equivalence using the Sequent Calculus
- Rewriting using "known" equivalences
- Equivalences using semantics

Further reading:

Chapter 8 of http://leanprover.github.io/logic_and_proof/

Next time?

Theorem Proving