

## **Art of Problem Solving**

1984 Balkan MO

Balkan MO 1984

Let  $n \geq 2$  be a positive integer and  $a_1, \ldots, a_n$  be positive real numbers such that  $a_1 + \ldots + a_n = 1$ . Prove that:

$$\frac{a_1}{1 + a_2 + \dots + a_n} + \dots + \frac{a_n}{1 + a_1 + a_2 + \dots + a_{n-1}} \ge \frac{n}{2n - 1}$$

- Let ABCD be a cyclic quadrilateral and let  $H_A$ ,  $H_B$ ,  $H_C$ ,  $H_D$  be the orthocenters of the triangles BCD, CDA, DAB and ABC respectively. Show that the quadrilaterals ABCD and  $H_AH_BH_CH_D$  are congruent.
- Show that for any positive integer m, there exists a positive integer n so that in the decimal representations of the numbers  $5^m$  and  $5^n$ , the representation of  $5^n$  ends in the representation of  $5^m$ .
- 4 Let a, b, c be positive real numbers. Find all real solutions (x, y, z) of the system:

$$ax + by = (x - y)^2 by + cz = (y - z)^2 cz + ax = (z - x)^2$$

www.artofproblemsolving.com/community/c4056

Contributors: pohoatza