Matematická analýza 1

2025/2026

Contents

1	Výroková logika							
	1.1	Výrok	1					
	1.2	Negace výroku	2					
	1.3	Složené výroky	2					
		1.3.1 Pravdivost implikace	2					
		1.3.2 Vztahy v implikaci	2					
2	Mn	nožiny						
3	Cvià	ení	3					
	3.1	1. cvičení 17. 9. 2025	3					
		3 1 1 Příklad 1	•					

1 Výroková logika

1.1 Výrok

Výrok – oznamovací věta, u které má smysl se bavit o pravdivosti, avšak pravdivost nemusí být zjistitelná. O výroku, pro který lze o pravdivosti rozhodnout a zároveň je pravdivý říkáme, že je dokazatelný.

Příklady:

- Venku prší. je výrok.
- 1 + 1 = 2 je výrok.
- Běž ven. není výrok.
- x + 2 = 3 není výrok.

1.2 Negace výroku

Negace výroku – má opačnou pravdivostní hodnotu. "Není pravda, že A." Zapisuje se jako $\rceil A$

1.3 Složené výroky

Složené výroky – výroky lze spojovat do složených výroků pomocí logických spojek.

- Konjukce (\land) "A a zároveň B."
- Disjukce (V) "A nebo B."
- Implikace (⇒) "Pokud A, potom B." "Je-li A, potom B."
- Ekvivalence (\Leftrightarrow) "A právě tehdy, když B." (Pozn.: $(A \Rightarrow B) \land (A \Rightarrow B)$)

Tabulka pravdivostních hodnot:

A	В	A	$A \wedge B$	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$
1	1	0	1	1	1	1
1	0	0	0	1	0	0
0	1	1	0	1	1	0
0	0	1	0	0	1	1

1.3.1 Pravdivost implikace

Implikace $A \Rightarrow B$ je pravdivá vždy, když platí předpoklad A a současně i závěr B, nebo když předpoklad A neplatí.

Například (Pozn.: m|n značí "n je dělitelné m".):

$$6|2 \Rightarrow 3|2$$

Jestliže 6 dělí 2, pak 3 dělí 2. Tato implikace je pravdivá, protože podmínka "6 dělí 2" není splněna. Implikace tedy nic neslibuje, pokud předpoklad neplatí.

Za zmínku stojí i související pojmy:

- $A \Rightarrow B$ je obměněná implikace.
- $B \Rightarrow A$ se nazývá **obrácená implikace**.

1.3.2 Vztahy v implikaci

Implikace $A \Rightarrow B$. A je **dostačující podmínka** pro B. B je **nutná podmínka** pro A. Ukážeme si to na příkladu.

$$\forall (n \in \mathbb{N}) : 6|n \Rightarrow 3|n$$

Přeloženo: pro každé přirozené n platí: jestliže číslo 6 dělí n, pak číslo 3 dělí n. Výrok "6|n" je pouze dostačující podmínkou, protože každé n, které je dělitelné třemi, nezaručuje, že je zároveň dělitelné šesti.

2 Množiny

- Omezená zdola $\exists d \in \mathbb{R} \ \forall x \in A : x > d$
- Omezená shora $\exists h \in \mathbb{R} \ \forall x \in A : x \leq h$
- Negace om. shora $\forall h \in \mathbb{R} \exists x \in A : x > h$
- Omezená shora i zdola konjunkce (∧) obou zápisů

Minimum – ideální dolní hranice (u omezených množin / intervalů)

 $\operatorname{Infimum}-\operatorname{doln\'i}$ hranice, nemus´ı být součást´ı množiny / intervalu, ale pln´ı funkci minima

Maximum – ideální horní hranice (u omezených množin / intervalů)

Supremum – horní hranice, nemusí být součástí množiny / intervalu, ale plní funkci maxima

Př.: $A = <1; \infty$) – $\exists \min A = \inf A = 1$ a sup $A = +\infty$, ale $\nexists \max A$

Př.: $A = (1, \infty) - \exists \inf A = 1 \text{ a sup } A = +\infty - \text{ale } \nexists \min A \text{ ani } \nexists \max A$

Každá množina má supremum i infimum, ale nemusí mít minimum a maximum

3 Cvičení

3.1 1. cvičení 17. 9. 2025

3.1.1 Příklad 1

- 1. $\min A = -4$; $\max A = 10$; $\inf A = -4$; $\sup A = 10$
- 2. $\min A = \#; \max A = 6; \inf A = -2; \sup A = 6$
- 3. x
- 4. $\min A = 2$; $\max A = 4$; $\inf A = 2$; $\sup A = 4$
- 5. min $A=\nexists$; max $A=\nexists$; inf A=1; sup A=5 Pozn.: zde se narozdíl od celých čísel můžeme příblížit ideální dolní/horní hranici
- 6. x
- 7. x
- 8. $\min A = \nexists; \max A = 1; \inf A = -\infty; \sup A = 1$
- 9. $\min A = \nexists; \max A = \nexists; \inf A = -\infty; \sup A = 3 // x * (x^2 x 6) < 0 = x * (x 3) * (x + 2) < 0 // interval bude vypadat: <math>(-\infty; -2) \cup (0; 3)$