ERD - Renuka Dixit - IMT 577B

Schema and modeling decisions

My data model is designed as a Snowflake schema.

I initially wanted to build a Star schema because I had read that outrigger dimensions should be used sparingly and I didn't want to complicate my queries by having to add more joins. But the address and date data was repeated in multiple tables so I decided to make separate dimension tables for them (Dim_Address and Dim_Date) and linked them to other dimension tables.

In some scenarios though, I decided not to have outriggers. E.g. Initially, Dim_Product was one dimension table and Dim_Product_Category was another dimension table that was connected to it. Since it only connected to one dimension table, I decided to merge them in a way that I added ProductCategoryID in the Dim_Product dimension table. Also, I noticed PhoneNumber and EmailAddress in multiple tables and thought about creating a separate Dim_Contact_Info table but decided against it because it felt like I was creating too many of these outriggers and this one was less important than the other two.

Business process

The Entity Relationship Diagram is organized around the Sales of the company.

Dimension tables

I have 7 dimension tables:

- 1. Dim Store
 - This table contains data from the Store spreadsheet
 - It has 1 foreign key for store address
 - It has 1 natural and 1 surrogate key for StoreID
- 2. Dim Product
 - This table contains data from the Product spreadsheet
 - It has 1 natural and 1 surrogate key for ProductID
 - I decided to add ProductCategoryID to this table from the ProductCategory spreadsheet instead of creating a separate dimension table for ProductCategory
- 3. Dim_Customer
 - This table contains data from the Customer spreadsheet
 - It has 1 foreign key for customer address

It has 1 natural and 1 surrogate key for CustomerID

4. Dim Reseller

- This table contains data from the Reseller spreadsheet
- It has 1 foreign key for reseller address
- It has 1 natural and 1 surrogate key for ResellerID

5. Dim Channel

- This table contains data from the Channel spreadsheet
- It has 1 natural and 1 surrogate key for ChannellD
- I decided to add ChannelCatgeory to this table from the ChannelCategory spreadsheet instead of creating a separate dimension table for ChannelCategory

6. Dim Date

- This table contains date information
- It's a separate dimension table because it's present in most of the other dimension tables and is related to all the fact tables
- I've broken the date down into DayName (e.g., Monday), DayNumber (e.g., 28), MonthName, MonthNumber and Year because we'll be looking at trends in several ways. E.g., I might want to see if more sales occur on a certain day of the week or a certain month of the year and this break-down will help me find patterns/trends.

7. Dim Address

- This table contains address information
- It's a separate dimension table because it's present in multiple other dimension tables so it made sense to reduce the duplication of data
- It has 1 surrogate key for address

Fact tables

I have 3 fact tables:

1. Fact Sales Detail

- This table contains sales data (such as SalesQuantity and SalesAmount) from the Sales Detail spreadsheet.
- The grain is day (for daily sales)
- It has 7 foreign keys
- It has 2 natural keys of SalesHeaderID and SalesDetailID

2. Fact_Target_Channel_Reseller_Store

- This table contains target sales amounts for different channels, stores and years from the Target Data Channel Reseller & Store spreadsheet
- The grain is year (for yearly target sales amount for specific stores and channels)
- It has 4 foreign keys

3. Fact_Target_Product

- This table contains target sales quantity for specific products and years from the Target Data Product spreadsheet
- The grain is year (yearly target sales quantity for specific products)
- It has 2 foreign keys