Paper Title*

1st Given Name Surname

dept. name of organization (of Aff.)
name of organization (of Aff.)
City, Country
email address

2nd Given Name Surname dept. name of organization (of Aff.) name of organization (of Aff.) City, Country email address

Abstract— Index Terms—

I. INTRODUCTION

II. SYSTEM MODEL

 V^c is set of cloud nodes. V^f is set of fog nodes. V^e is set of edge nodes. V^s is set of sensor nodes.

$$V^{c} = \{v_{1}^{c}, v_{2}^{c}, ..., v_{l_{c}}^{c}\} => |V^{c}| = l_{c}$$
 (1a)

$$V^f = \{v_1^f, v_2^f, ..., v_{l_e}^f\} \Longrightarrow |V^f| = l_f$$
 (1b)

$$V^e = \{v_1^e, v_2^e, ..., v_{l_e}^e\} => |V^e| = l_e$$
 (1c)

$$V^s = \{v_1^s, v_2^s, ..., v_l^s\} => |V^s| = l_s$$
 (1d)

 C^c is set of capacity of cloud nodes. C^f is set of capacity of fog nodes. C^e is set of capacity of edge nodes.

$$C^c = \{c_1^c, c_2^c, ..., c_{l_c}^c\}$$
 (2a)

$$C^f = \{c_1^f, c_2^f, ..., c_L^f\}$$
 (2b)

$$C^e = \{c_1^e, c_2^e, ..., c_l^e\}$$
 (2c)

T is set of tasks.

$$T = \{t_1, t_2, ..., t_{l_t}\} = |T| = l_t$$
 (3a)

(3b)

$$P_i(u_i) = P_i^{idle} + (P_i^{max} - P_i^{idle})u_i \tag{4}$$

So each IaaS provider try to solve following optimizaiton problem:

$$\max_{p_i, U_i, \Lambda_S^i} \varphi_i(p_i, U_i, \Lambda_S^i)$$
 (5a)

subject to:

$$0 \le u_s^i, \forall s \in \{1, \dots, N_S\} \tag{5b}$$

$$\sum_{s=1}^{N_S} u_s^i \le 1 \tag{5c}$$

$$P_{idle}^{i} + (P_{max}^{i} - P_{idle}^{i}) \sum_{s=1}^{N_S} u_s^{i} \le \bar{P}^{i}$$
 (5d)

$$\Lambda_s^i \in SOL(F_s), \forall s$$
 (5e)

$$\pi(x^{i}, x^{-i}) - \pi(y^{i}, x^{-i}) = \varphi_{i}(x^{i}, x^{-i}) - \varphi_{i}(y^{i}, x^{-i})$$
 (6)

It's easy to show that any global minimum of function π is a nash equilibrium of corresponding game.

show or not??? For IaaS providers exact potential function can be writen as:

$$\pi(x^{i}, x^{-i}) = \sum_{i=1}^{N_{I}} \varphi_{i}(x^{i}, x^{-i})$$
 (7)

III. PROBLEM FORMULATION

$$\max_{p^i, U^i, \Lambda_S^i, \sigma_S^i, \gamma_S^i, \nu_S^i, \eta_S^i} \varphi(p_i, U^i, \Lambda_S^i)$$
 (8a)

subject to:

$$\sum_{s=1}^{N_S} u_s^i \le 1 \tag{8b}$$

$$0 \le u_s^i, \forall s \in \{1, \dots, N_S\}$$
(8c)

$$P_{idle}^{i} + (P_{max}^{i} - P_{idle}^{i}) \sum_{s=1}^{N_S} u_s^{i} \le \bar{P}^{i}$$
 (8d)

$$0 \le \lambda_{s,i}^i$$
 (8e)

$$\lambda_s^{min} - \sum_{j=1}^{N_I} \lambda_{j,s}^i \le 0, \forall s \in \{1, \dots, N_S\}$$
 (8f)

$$\lambda_{j,s}^{i} R_{s} \le 0.9 \mu_{j,s} C_{j}, \forall s \& j \tag{8g}$$

$$\sum_{j=1}^{N_I} \lambda^i_{j,s} (t^{sensors}_{j,s} + \frac{1}{\mu^i_{j,s} - \lambda^i_{j,s}} + t^{actuators}_{j,s} - t^{\max}_s) \tag{8h}$$

$$\leq 0, \forall s$$

$$\sigma_{j,s}^{i}\lambda_{j,s}^{i} = 0, \forall j \& s \tag{8i}$$

$$\gamma_s^i(\lambda_s^{min} - \sum_{i=1}^{N_I} \lambda_{j,s}^i) = 0, \forall s$$
 (8j)

$$\nu_{j,s}^{i}(\lambda_{j,s}R_{s} - 0.9\mu_{j,s}C_{j}) = 0 \forall j \& s$$
 (8k)

$$\begin{split} \eta_{s}^{i} \sum_{j=1}^{N_{I}} \lambda_{j,s}^{i} (t_{j,s}^{sensors} + \frac{1}{\mu_{j,s} C_{j} - \lambda_{j,s} R_{s}} + t_{j,s}^{actuators} - t_{s}^{\max}) \\ &= 0, \forall s \end{split} \tag{81}$$

$$\begin{split} &\frac{1}{\sum_{k=1}^{N_I} \lambda_{k,s}^i} - p_j R_s + \\ &\sigma_{j,s}^i + \gamma_s^i - R_s \nu_{j,s}^i - \\ &\eta_s^i (t_{j,s}^{sensors} + t_{j,s}^{actuators} - t_s^{max} + \frac{\mu_{j,s} C_j}{\mu_{j,s} C_j - \lambda_{j,s}^i R_s}) \end{split} \tag{8m}$$

$$= 0, \forall s \& j$$

$$0 \le \sigma^i_{i,s}, \sigma^i_{i,s}, \nu^i_{i,s} \& \sigma^i_{i,s}, \forall s \& j$$
(8n)

Here $\lambda_{s,i}$ is $[\lambda_1^i,\cdots,\lambda_{N_S}^i]$ and λ_s^i is conjecture of λ_s by PaaS provider $i,\ u^i$ is $[u_{i,1},\cdots,u_{i,N_S}]$ and $u_i=\sum_{i=1}^{N_S}u_{i,s}$. A potential function can be defined for this game.

Function π is potential function of this game:

$$\pi(x^{i}, y^{i}, x^{-i}, y^{-i}) = \sum_{i=1}^{N_{I}} P(u_{i}) - p_{i}u_{i}$$
 (9)

here x^i and y^i are a tuple of (p^i,u^i) and $(\lambda_{s,i},\nu_S^i,\gamma_S^i)$

REFERENCES