Examen del Bloc 2 de Sistemes Intel·ligents (tipus B) ETSINF, UPV, 18 de desembre de 2017. Puntuació: nencerts - nerrors/3.

- Quina de les següents expressions és incorrecta?

 - A) $\sum_{x} P(x \mid y) = 1$, $\forall y$ B) $\sum_{y} P(x \mid y) = 1$, $\forall x$ C) $\sum_{x} \sum_{y} P(x, y) = 1$ D) $\sum_{x} P(x \mid u) = \sum_{y} P(y \mid w)$, $\forall u, w$
- Es tenen dos magatzems de taronges: 1 i 2. El 65% de les taronges es troben al magatzem 1 i la resta al 2. Se sap que al magatzem 1 hi ha un 1% de taronges no aptes per al consum; i un 3% al 2. Suposeu que es distribueix una taronja no apta per al consum. Quina és la probabilitat P que siga del magatzem 1?
 - A) 0.00 < P < 0.25
 - B) $0.25 \le P < 0.50$
 - C) $0.50 \le P < 0.75$
 - D) 0.75 < P
- Siga $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$ un objecte donat mitjançant una seqüència de N vectors de característiques, el qual es vol classificar en una C de classes. Indica quin dels següents classificadors si és d'error mínim $(\mathbf{x}_2^N \text{ denota } \mathbf{x}_2, \dots, \mathbf{x}_N)$:
 - A) $c(\mathbf{x}) = \arg \max \ p(\mathbf{x}_1 \mid c) \ p(\mathbf{x}_2^N \mid \mathbf{x}_1)$ c=1,...,C
 - B) $c(\mathbf{x}) = \arg \max \ p(\mathbf{x}_1 \mid c) p(\mathbf{x}_2^N \mid \mathbf{x}_1, c)$ c=1,...,C
 - C) $c(\mathbf{x}) = \arg \max \ p(\mathbf{x}_1, c) \ p(\mathbf{x}_2^N \mid \mathbf{x}_1)$
 - D) $c(\mathbf{x}) = \arg \max \ p(\mathbf{x}_1, c) \ p(\mathbf{x}_2^N \mid \mathbf{x}_1, c)$
- Siga un classificador en 3 classes per a $\mathbf{x} = (x_1, x_2)^t \in [0, 1]^2$ amb les distribucions de probabilitat donades a la dreta. Quina és la probabilitat d'error p_e del classificador?

A)	0.65	<	p_e
<i>i</i>	0.00		PP.

- B) $0.45 \le p_e < 0.65$
- C) $0.35 \le p_e < 0.45$
- D) $p_e < 0.35$

x_1	x_2	$p(c=1 \mathbf{x})$	$p(c=2 \mathbf{x})$	$p(c=3 \mathbf{x})$	$p(\mathbf{x})$
0	0	1.0	0.0	0.0	0.1
0	1	0.01	0.01	0.98	0.2
1	0	0.25	0.5	0.25	0.3
1	1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0.4

- Siga un problema de classificació en quatre classes d'objectes a \mathbb{R}^3 . Es té un classificador de funcions discriminants lineals amb vectors de pesos (en notació homogènia): $\mathbf{w}_1 = (-2, 1, 2, 0)^t$, $\mathbf{w}_2 = (0, 2, 2, 0)^t$, $\mathbf{w}_3 = (1, 1, 1, 0)^t$ i $\mathbf{w}_4 = (3,0,0,1)^t$. Indica a quina classe s'assignarà l'objecte $\mathbf{x} = (1,2,2)^t$ (no en notació homogènia).
 - A) 4.
 - B) 3.
 - C) 2.
 - D) 1.
- En la figura es representen frontera i regions de decisió d'un classificador binari. Quin dels següents parells de vectors de pesos correspon al classificador de la figura?

- B) $\mathbf{w}_1 = (1, -1, -2)^t$ i $\mathbf{w}_2 = (0, -2, -1)^t$
- C) $\mathbf{w}_1 = (-1, 1, 2)^t \text{ i } \mathbf{w}_2 = (0, 2, 1)^t$
- D) $\mathbf{w}_1 = (1, 1, 2)^t i \mathbf{w}_2 = (1, 2, 1)^t$

- Siga un problema de classificació en 3 classes, c = 1, 2, 3, per a objectes representats mitjançant vectors de característiques bidimensionals. Es tenen 3 mostres d'entrenament representades en notació homogènia: $\mathbf{x}_1 = (1, 1, 2)^t$ de la classe $c_1 = 1$, $\mathbf{x}_2 = (1, 2, 3)^t$ de la classe $c_2 = 2$ i $\mathbf{x}_3 = (1, 3, 1)^t$ de la classe $c_3 = 3$. Així mateix, es té un classificador lineal definit pels vectors de pesos: $\mathbf{w}_1 = (w_{10}, w_{11}, w_{12}) = (2, -8, 0)^t$, $\mathbf{w}_2 = (w_{20}, w_{21}, w_{22}) = (-5, -2, -1)^t$ i $\mathbf{w}_3 = (w_{30}, w_{31}, w_{32}) = (-2, 1, -10)^t$. Si apliquem una iteració de l'algorisme Perceptró a partir d'aquests vectors de pesos, amb factor d'aprenentatge $\alpha = 1$ i marge b = 1.5, llavors:
 - A) Es modificaran els vectors de pesos \mathbf{w}_1 i \mathbf{w}_2 .
 - B) Es modificaran els vectors de pesos \mathbf{w}_1 i \mathbf{w}_3 .
 - C) Es modificaran els vectors de pesos \mathbf{w}_2 i \mathbf{w}_3 .
 - D) No es modificarà cap vector de pesos.

 8 En el procés d'entrenament d'un arbre de classificació, un node intern t té un grau d'impuresa "splits" produeix un decrement d'impuresa igual a \(\mathcal{I}(t) \). Indica l'afirmació correcta: A) No és possible aconseguir aqueix decrement d'impuresa. B) Aquest "split" genera dos nodes purs. C) Aquest "split" genera un node pur i un altre impur. D) Aquest "split" genera dos nodes impurs. 	$\mathcal{I}(t) > 0$. Un dels
9 Per a un problema de classificació de dades bidimensionals $\mathbf{x}=(x_1,x_2)$ en dues classes disporciassificació. Quin tipus de fronteres de decisió defineix el node arrel? A) $a \cdot x_1 + b \cdot x_2 + c = 0$ on $a \neq 0 \land b \neq 0$ B) $a \cdot x_1 + b \cdot x_2 + c = 0$ on $a = 0 \lor b = 0$ C) $a \cdot x_1 + b \cdot x_2 + c = 0$ on $a \neq 0 \lor b = 0$ D) $a \cdot x_1 + b \cdot x_2 + c = 0$ on $a \neq 0 \lor b \neq 0$	sem d'un arbre de
Suposeu que estem aplicant l'algorisme d'aprenentatge d'arbres de classificació per a un problem 1, 2, 3 i 4. L'algorisme ha aconseguit un node t que inclou una dada de cada classe, açò és, 4 de avaluar la qualitat d'una partició del node t mitjançant un "split" $s=(j,r)$, que divideix les dade i t_2 de la següent forma: les dades de les classes 1 i 2 queden en el node t_1 i les dades de les cen el node t_2 . El decrement d'impuresa $\Delta \mathcal{I}(j,r,t)$ (mesurat com entropia) per a quantificar la partició és: A) $\Delta \mathcal{I}(j,r,t) < 0.0$. B) $0.0 \leq \Delta \mathcal{I}(j,r,t) < 0.5$. C) $0.5 \leq \Delta \mathcal{I}(j,r,t) < 1.0$. D) $1.0 \leq \Delta \mathcal{I}(j,r,t)$.	en total. Es pretén des en dos nodes t_1 lasses 3 i 4 queden
 Indica quina de les següents afirmacions sobre un arbre de classificació construït mitjançant l'al tatge d'arbres és incorrecta. A) En cada node t la suma per a totes les classes de P(c t) és 1. B) En cada node t, la probabilitat a posteriori de qualsevol classe c, P(c t), és sempre m menor dels pesos o probabilitats de decisió dels seus dos fills. C) La impuresa d'un node, mesurada com entropia, no pot ser menor que 0 ni major que nombre de classes. D) Si N és el nombre de dades d'aprenentatge, la profunditat de l'arbre no serà major que N pràctica, sol ser proporcional a log₂ N. 	ajor o igual que el $\log_2 C$, on C és el
En la figura de la dreta es representen 4 mostres bidimensionals. Quin és el nombre de clústers que minimitza la suma d'errors quadràtics per a les dites 4 mostres? A) 4 B) 3 C) 2 D) 1 La figura a la dreta mostra una partició de 4 punts bidimensionals en 2 clústers (representats mitjançant els símbols • i •). La transferència del punt (2,3) ^t del clúster • al • condueix a una	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
variació de la SEQ, ΔJ , tal que: A) $-1 \ge \Delta J$. B) $-\frac{1}{2} \ge \Delta J > -1$. C) $0 \ge \Delta J > -\frac{1}{2}$. D) $\Delta J > 0$.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
 En la figura de la dreta es mostra una partició de 4 punts bidimensionals de 2 clústers. La transferència del punt (1,1)^t del clúster • al clúster ∘ A) produeix un decrement en la SEQ. B) produeix un increment en la SEQ. C) no altera la SEQ. D) produeix una SEQ negativa. 	
 Considereu l'algorisme C-mitjanes de Duda i Hart. Indiqueu quina de les següents afirmacions A) Quan un clúster es queda buit, aquest clúster s'elimina. B) La seua bona eficàcia computational s'aconsegueix gràcies al càlcul incremental de la var dels vectors mitjana de clúster. C) Determina el nombre de clústers que minimitza la suma d'errors quadràtics (SEQ). D) Cap de les anteriors. 	