Solution to Week 1 Exercises

The following Exercises correspond to those in the notes.

Sets

Exercise 1.1.1

- 1. List the elements of each of the following sets:
 - (a) $\{x | x \in \mathbb{N} \text{ and } x < 5\}$

This is the set of all natural numbers that are less than 5. Thus,

$$\{x|x \in \mathbb{N} \text{ and } x < 5\} = \{1, 2, 3, 4\}$$

(b) $\{x | x \in \mathbb{N} \text{ and } 10 < x^2 < 90\}$ $10 < x^2 < 90 \iff \sqrt{10} < x < \sqrt{90} \text{ or } -\sqrt{90} < x < \sqrt{10}.$

$$3 < \sqrt{10} < 4$$
, $9 < \sqrt{90} < 10$ $-4 < -\sqrt{10} < -3$, $-10 < -\sqrt{90} < -9$

This means that the set consists of integers that are either in interval (-10, -4) or in interval (4, 10).

 \Longrightarrow

$${x|x \in \mathbb{N} \text{ and } 10 < x^2 < 90} = {4, 5, 6, 7, 8, 9}$$

(c) $\{x | x \in \mathbb{N} \text{ and } x^2 - 4 = 0\}$

The set of numbers satisfying $x^2 - 4 = 0$ are $\{-2, 2\}$. Thus,

$${x|x \in \mathbb{N} \text{ and } x^2 - 4 = 0} = {2}$$

- 2. Determine whether 3 belongs to each of the following sets:
 - (a) $\{x|x > -2\} \cup \{x|x < 0\}$

Yes. 3 is in the first set, and hence is in the union.

(b) $\{x|x^2<5\}\cap\{x|x^2-1\text{ is an even integer}\}$

No. $3^2 = 9 > 5$ hence $3 \notin \{x | x^2 < 5\}$. Thus, 3 is not in the intersection.

3. Describe all the subsets of each of the following sets:

- (a) $\{0,1\}$
 - ϕ (the empty set), $\{0\}$, $\{1\}$, $\{0, 1\}$
- (b) {dog, cat, budgie}
 - ϕ (the empty set), {dog}, {cat}, {budgie}, {dog, cat}, {dog, budgie}, {cat, budgie}, {dog, cat, budgie}
- (c) The set consisting of all pairs (x, y) where x = 0 or 1 and y = 0 or 1.

```
 \phi \text{ (the empty set),} 
 \{(0,0)\}, \{(0,1)\}, \{(1,0)\}, \{(1,1)\} 
 \{(0,0),(0,1)\}, \{(0,0), (1,0)\}, \{(0,0),(1,1)\}, \{(0,1),(1,0)\}, \{(0,1),(1,1)\}, \{(1,0),(1,1)\} 
 \{(0,1),(1,0),(1,1)\}, \{(0,0),(1,0),(1,1)\}, \{(0,0),(0,1),(1,1)\}, \{(0,0),(0,1),(1,0)\} 
 \{(0,0),(0,1),(1,0),(1,1)\}
```

- 4. Describe the set of all real numbers for which the following holds:
 - (a) $x^2 < 4$
 - -2 < x < 2
 - (b) x(x-1) > 0

x and x-1 are either both positive or both negative.

$$1 < x < \infty$$
 or $-\infty < x < 0$

5. Solution is given in Week 1 Exercise Sol.ipynb.

Functions

Exercise 1.2.2

Solutions are given in Week 1 Exercise Sol.ipynb.

Exercise 1.2.4

- 1. Each of the following functions assigns the value y to x as given in the table. Find the domain and range of each function.
 - (a) The function is given by

Domain: $\{0, 1, 2, 3\}$

Range: $\{4, 6, 10, 12\}$

(b) The function is given by

\overline{x}	a	b	c	d
\overline{y}	g	h	i	j

Domain:
$$\{a, b, c, d\}$$

Range:
$$\left\{ \begin{array}{ll} \{g,h,i,j\}, & \text{if } g,h,i,j \text{ are distinct} \\ \{g\} \cup \{h\} \cup \{i\} \cup \{j\}, & \text{if } g,h,i,j \text{ are not distinct} \end{array} \right.$$

(Example: If
$$g=h=0$$
 and $i=j=1$, for example, then Range= $\{0,1\}$ instead of $\{0,0,1,1\}$.)

2. For each of the following real functions of a real variable given by a formula, state the domain and range.

(a)
$$y = -2 - x^2$$

Domain:
$$(-\infty, \infty)$$
; Range: $[-2, \infty)$

(b)
$$y = x^3 - x$$

Domain:
$$(-\infty, \infty)$$
; Range: $(-\infty, \infty)$

(c)
$$y = \frac{1}{x-1}$$

Domain:
$$(-\infty, 1) \cup (1, \infty)$$
; Range: $(-\infty, 0) \cup (0, \infty)$

3. Find all real zeros of each of the following polynomials, and give the multiplicity of each.

(a)
$$x - 3$$

$$x = 3$$
 multiplicity 1

(b)
$$x^2 - 4$$

$$x = -2$$
 multiplicity 1, and $x = 2$ multiplicity 1

(c)
$$(x-2)^4(x-5)^3$$

$$x = 2$$
 multiplicity 4, and $x = 5$ multiplicity 3

4. Draw the graphs for each of the following functions.

Exercise 1.2.6

1. Simplify
$$\frac{3^x 2^{x+3}}{8}$$
.

$$\frac{3^x 2^{x+3}}{8} = \frac{3^x 2^x 2^3}{8} = \frac{(3 \times 2)^x \times 8}{8} = 6^x$$

Exercises 3.2.7

1. Simplify $e^{3 \log 6x}$

$$e^{3 \log 6x} = e^{\log (6x)^3} = (6x)^3 = 6^3 x^3 = 216x^3$$

2. Simplify $\log_2(4 \times 2^x)$;

$$\log_2(4 \times 2^x) = \log_2 2^2 + \log_2 2^x = 2 + x$$

3. Find x such that $(1 + e^{2x})^2 = 3$.

$$(1 + e^{2x})^2 = 3$$

$$2\log(1 + e^{2x}) = \log 3$$

$$\log(1 + e^{2x}) = \frac{1}{2}\log 3$$

$$\log(1 + e^{2x}) = \log 3^{\frac{1}{2}}$$

$$1 + e^{2x} = 3^{\frac{1}{2}}$$

$$e^{2x} = 3^{\frac{1}{2}} - 1$$

$$2x = \log(3^{\frac{1}{2}} - 1)$$

$$x = \frac{1}{2}\log(3^{\frac{1}{2}} - 1)$$

$$x = \log \sqrt{\sqrt{3} - 1}$$

4. Find the domain of the function $\log (1 - e^x)$

The function is well-defined for (and only for) $1 - e^x > 0$. This implies $e^x < 1$ or $x < \log 1 = 0$

Domain: $\{x \mid x < 0\}$

Exercise 1.2.8

1. Evaluate $\log_2 e^6$ using your calculator.

$$\log_2 e^6 = 8.6562$$

Exercises 3.2.10

1.

- 2. Are given functions even (E), odd (O) or neither (N)?
 - (a) $f(x) = x^4 + 1$ Since $f(-x) = (-x)^4 + 1 = (-1)^4 x^4 + 1 = x^4 + 1 = f(x) \implies \text{Answer}(E)$

(b)
$$f(x) = 2x - 1$$

Since $f(-1) = 2(-1) - 1 = -2 - 1 = -3$, we see that $f(1) = 2 - 1 = 1 \neq f(-1) \implies f(x)$ is not even, and that $-f(1) = -(2-1) = -1 \neq f(-1) \implies f(x)$ is not odd. Hence answer: (N)

(c)
$$f(t) = t|t|$$

Since $f(-t) = -t|-t| = -t|t| = -f(t)$, $f(t)$ is odd. \Longrightarrow Answer: (O)

3. Simplify the following expressions:

(a)
$$\frac{(a^3)(a^6)}{a^5}$$
$$\frac{(a^3)(a^6)}{a^5} = \frac{a^{3+6}}{a^5} = a^{9-5} = a^4$$
(b)
$$\frac{b^x b^y}{b^{x-y}}$$
$$\frac{b^x b^y}{b^{x-y}} = \frac{b^{x+y}}{b^{x-y}} = b^{(x+y)-(x-y)} = b^{2y}$$

4. Given $\log a = 2$ and $\log b = 3$, evaluate the following without calculator:

(a)
$$\log ab$$

$$\log ab = \log a + \log b = 2 + 3 = 5$$
 (b) $\log \frac{a^3}{b^2}$
$$\log \frac{a^3}{b^2} = \log a^3 - \log b^2 = 3\log a - 2\log b = 6 - 6 = 0$$

5. Simplify the following expressions:

(a)
$$\log e^{-x}$$

 $\log e^{-x} = -x \log e = -x$
(b) $e^{3 \log y}$
 $e^{3 \log y} = e^{\log y^3} = y^3$

6. Solve the following equations for y:

(a)
$$\log(y+3) = x$$

 $\log(y+3) = x \implies e^{\log(y+3)} = e^x \implies y+3 = e^x \implies y = e^x - 3$
(b) $e^{-y} = x^4$
 $e^{-y} = x^4 \implies \log(e^{-y}) = \log(x^4) \implies -y = 4\log x \implies y = -4\log(x)$

Inequalities

Exercise 1.3.3

Solve each of the following inequalities for x.

1. 7x + 5 > 26

Solution.

$$7x + 5 > 26 \Leftrightarrow 7x > 21 \Leftrightarrow x > 3$$

$$2. -2x - 2 < -10$$

Solution.

$$-2x-2<-10 \Leftrightarrow -2x<-10+2=-8 \Leftrightarrow x>4$$
 (dividing by a negative number changes the direction of the inequality)

3.
$$4x - 7 < 11x + 7$$

Solution.

$$4x-7 < 11x+7 \Leftrightarrow -7-7 < 11x-4x \Leftrightarrow -14 < 7x \Leftrightarrow x > -2$$