Assignment: MapReduce Methodology for Analyzing Student Grades

Overview

This assignment explores the MapReduce methodology for analyzing student grades using the "UniversityCoursesGrades" dataset. The dataset is provided in the file coursegrades.txt, where each line follows the format:

(Year, Course Name, Student Grade, University Name)

Each value is separated by a comma.

Tasks

Note: For each task, after implementing the MapReduce process, provide a concrete example using a sample dataset.

Task 1: Average Grade per Course

Find the average grade for each course and determine which course has the highest average.

Mapper:

• Generates key-value pairs: (Course Name, Grade) e.g., (Distributed, 100)

Reducer:

- Receives (Course Name, (G1, G2, ...)), e.g., (Distributed, (100, 55, 85))
- Computes the average grade for each course
- Outputs: (Course Name, Average Grade), e.g., (Distributed, 80)

Example Execution:

Input File (coursegrades.txt):

```
2023, Distributed, 55, GIU
2023, Distributed, 85, GIU
2023, Security, 60, GIU
2023, Security, 40, GIU
```

Expected Output:

```
Distributed, 70 Security, 50
```

Task 2: Average Grade per University

Find the average grade for each university and determine which university has the highest average.

Mapper:

• Generates key-value pairs: (University Name, Grade) e.g., (GIU, 200), (GIU, 60)

Reducer:

- Receives (University Name, (G1, G2, ...)), e.g., (GIU, (200, 60, 70))
- Computes the average grade for each university
- Outputs: (University Name, Average Grade), e.g., (GIU, 110)

Example Execution:

```
Input File (coursegrades.txt):
```

```
2024, Security, 90, GIU
2024, Security, 80, GIU
2024, Distributed System, 70, GUC
```

Expected Output:

```
GIU, 85
GUC, 70
```

Bonus Task: Top 3 Highest Grades per Year

Identify the top 3 highest student grades recorded for each academic year.

Mapper:

• Generates key-value pairs: (Year, Grade) e.g., (2025, 80)

Reducer:

- Receives (Year, [G1, G2, ...]), e.g., (2025, [80, 60, 50, 100, ...])
- Sorts the grades in descending order
- Extracts the top 3 highest grades
- Outputs: (Year, [Top 3 Grades]), e.g., (2025, [100, 80, 60])

Example Execution:

Input File (coursegrades.txt):

```
2025, Distributed, 80, Harvard
2025, Security, 60, MIT
2025, AI, 50, Stanford
2025, Networks, 100, Oxford
2025, Systems, 90, Cambridge
```

Expected Output:

```
2025, [100, 90, 80]
```

Deliverables:

1. Your code must be submitted via the Google Form link:

https://forms.gle/ue3RWVR83edUZhmFA

(No emails will be accepted)

Note: Only the team leader should submit the project.

- 2. Submit the notebook that contains both tasks and the obtained output files in a zipped file.
- 3. Submit a PDF file containing:
 - Screenshots of the code
 - Screenshots of the output files
 - A brief description of how you solved the tasks
- 4. Make sure to comment on every step while coding.
- 5. Feel free to use any other Python packages.

Important Notes:

- 1. Plagiarism is not tolerated, and copied work will result in a score of 0.
- 2. **Groups must have the same TA** (different groups with the same TA are allowed). Each team can have up to **4 members**.

Deadline:

The deadline is 14th March 2025 at 11:59 PM.