BIO727P GROUP SOFTWARE PROJECT

TEAM CELINE

CELINE, AMANAH & GRACIA

04.03.2022

Data Collection

- SNP VCF files from Ensembl FTP Server
- Population Sample Data from 1000 Genomes Project
- Gene Alias from Org. Hs.eg.db R Bioconductor package containing genome wide annotation for Human genome

Population Selection

Walk-through for allele and genotype frequency processing

1. Convert numbers to letters

- 2. Calculate allele counts, frequencies and genotype frequencies per population using *genetics::genotype()* and *summary()* in **R**
- 3. Frequencies joined to SQL database (see Table 2)

Table 1:

Ref	Alt	Samples (numeric)	Samples (base)
А	G	0 0	A A
Т	С	0 1	T C
А	Т	1 1	T T

Table 2:

GBR_AF _ref	GBR_AF _alt	GBR_GT 00	GBR_GT 0110	GBR_GT 11
1	0	1	0	0
1	0	1	0	0
1	0	1	0	0

Walk-through for derived allele frequency processing

- 1. Extract position and ancestral allele field from VCF
- 2. Remove SNPs with missing ancestral allele by position
- 3. Calculated derived / ancestral allele frequencies
- 4. Join ancestral and derived alleles to database

Justification: determine the occurrence of a mutated/derived allele in the human population which arose after recent divergence from outgroup

SNP Database

SNP_Data_Table				
Unique_SNP_ID	Gene			
Chromosome	Gene ID			
Position	AF & AC per population			
rsID	GT per population			
Ref	Gene Alias			
Alt	Derived Allele Frequency			

Example of Unique SNP ID:

22:50807605:C:A

Features of Software

- SNP search
 - Browse for SNPs via rs ID, Gene Name (or Alias), or Genomic Coordinates
- Summary statistics selection
 - Shannon Diversity, Expected Heterozygosity and Tajima's D
 - FST Analysis
- Population selection
 - Choose one or more of the 5 provided populations
- Download stats as TXT
 - Download the FST or other stats data frame as a txt file
- Visualise summary stats
 - When choosing summary stats and population, plots are automatically shown

Choice of Summary Statistics

- 1. Shannon Diversity
 - More effective at describing diversity than using allele counts/richness
 - Sample size
- Expected Heterozygosity
 - Study the difference in genetic variation in populations affected by urbanisation
 - Physiological responses e.g., disease resistance
- 3. Tajima's D
 - Infer which loci were affected by natural selection by identifying difference between observed and expected allele frequencies
- 4. FST
 - Hudson method not affected by change in sample size and avoid false positive signals

Justification for Visualisation Type

Sliding windows

- X-axis: positions to avoid gaps in graph
- Line graphs commonly used to demonstrate change in variability throughout the region
- Overlapping uniform window size

Justification for Visualisation Type

Heatmap

- FST is calculated pairwise per population combination
- Limited number of comparisons
- Heatmap not too overloaded while easily visualizing which populations are most similar/different to each other

Software Demo

Celine will show our web application now

Limitations & Opportunities

- Only 5 populations
- Bi-allelic SNPs
- Indels or structural variants ignored
- Uniform window size
- Overlapping windows less statistical power
- Interactive graphs

Thank you for listening!

QUESTIONS OR COMMENTS?

Individual Contributions

	Amanah	Celine	Gracia	
Implementation	Data Pre-processing for derived allele frequency (VCFtools)	Web App incl. Flask, HTML / CSS	Data Pre-processing (bcftools) & Data Wrangling	
	Genotype & Allele Frequency Calculation	Python to SQL data base	Genotype & Allele Frequency Calculation	
	FST statistic	Tajima's D and Shannon diversity	Sliding Window	
Documentation	Description of contributed implementation			
	Justification of summary stats	Running the software	Structure / Outline	
	Literature research / References	Database connection & query Data visualisation	Transfer documentation into $\slash\hspace{-0.6em} \mathrm{LAT}_E\hspace{-0.6em} X$	

Software Architecture

Data Mining & Wrangling

Bcftools: pre-process VCF files by population samples

- Vcftools: extract derived allele frequency for SNPs
- R genetics: calculate allele counts, allele & genotype frequency

- Python packages
 - pandas: modify, join and filter data
 - scikit-allele: calculate Tajima's D & FST
 - pandas & math: calculate Shannon Div. & Exp. Heterozygosity

