DGT:	The	35	山

o finile cyclic gip

(Zn, +) ✓

. Every infinite cyclic group is isomorphic to (Z,+). \subseteq Proof: Let A be an ∞ -cyclic group with a generator α .

A:
$$\langle \alpha \rangle$$

Let $f: \mathbb{Z} \longrightarrow A$
 $r \longmapsto \alpha^r$

Is f bijetechic?

O Surjetive: pick an arbitrary ett in A, call it ar Is there a corresponding of in Z?

(2) Injective: If f(r) = f(s) does r = s necessarily.

If
$$a' = a^s$$
 does $r = s$?

If $a' = a^s \rightarrow a' = e$

$$a' = a^s \rightarrow a' = e$$

of A is
$$\infty$$
 then $\Gamma - S = C$

Is f compatable? Check if $f(r+s) = f(r) \circ_A f(s)$ LHS: $f(r+s) = a^{r+s} = J_{aa}^{r}$ RHS = $f(r) \circ_A f(s) = a^r \circ_A a^s$

$$f(x) = a^{2}$$

$$f(x) = a^{2}$$

$$f(x) = a^{2}$$

Zn

Cayley's The	
Every abstract group is isomorphic to a group of permuta	chons
Proof: From the discussion we define the map:	$a \rightarrow T_a$ $b \rightarrow T_b$
Claim Ta(x) is bijective: O injective @ surjective. Injective: If Ta(x)= Ta(y) -> x=y?// If ax=ay then gax=axay x=y x=y the for all ye G. does there exist an elt in G st If Ta(x)=y the ax=y -> x=a'y	t. Ta(x)=y

Now define $G^* = \{ T_a \mid a \in G \} \subseteq S_G$ Claim: G^* is a group in itself under composition of permis.

(3) Closur:
$$Ta \circ Tb = T$$

 $(Ta \circ Tb)(x) = Ta \circ Tb(x)$
 $= Ta \circ (bx)$
 $= Ta \circ (bx)$
 $= Ta \circ (x)$
 $= Ta \circ (x)$
 $= Ta \circ (x)$
 $= Ta \circ (x)$
 $= Ta \circ (x)$

Remembe. Ta(x)= Cox

$$T_{a^{-1}} \circ T_{a}(x) = T_{a^{-1}}(ax) = a^{-1}ax = x = T_{e}(a)$$

Claim: Gis 1 to G. Use: Dijecto: Injective: If f(a) = f(b) does a= b? If= Ma=Mb dues a=b. If = Ta(x)= Tp(x) does a=b? If ax = bx does a=b? 2 a=b v For any elt in G'isthrea corresponding ett in G?

45 by definition., from inspection.

Compatibility:

Does $f(a_0b) = f(a) a_0f(b)$?

LHS= $f(a_0b)$ RHS= $\pi_a \circ_{G} \pi_b$ Taob

G S To The Train

 $f: \chi \longrightarrow \widetilde{\Pi}_{\chi}$

Given an abstract group, deline the function $f: X \to \mathbb{R}_x \to \mathbb{R}_x$

Then G=G*