

Vorlesungsskript

Falk Jonatan Strube

Vorlesung von Herrn Meinhold

2. November 2015

Inhaltsverzeichnis

I.	Elementare Grundlagen	1
1.	Aussagen und Grundzüge der Logik	1
2.	Mengen 2.1. Begriffe 2.2. Mengenverknüpfungen 2.3. Relationen 2.3.1. Grundbegriffe 2.3.2. Operationen auf Relationen 2.3.3. Äquivalenzrelationen 2.3.4. Ordnungsrelationen 2.3.5. Funktionen 2.4. Gleichmächtigkeit, Kardinalzahlen 2.5. Prinzip der vollständigen Induktion	2 3 6 9 10 12
3.	Zahlen 3.1. Gruppen, Ringe, Körper 3.2. Zahlentheorie	18 18

Teil I. Elementare Grundlagen

- 1. Aussagen und Grundzüge der Logik
- 2. Mengen
- 3. Zahlen
- 3.1. Gruppen, Ringe, Körper
 - Gegeben sei eine Menge M und eine zweistellige Operation \circ (d.h. Abb. von $M \times M$ in M) Bezeichnung: (M, \circ) , analog $(M, \circ, *)$
 - Die Operation \circ heißt *kommutativ*, wenn $a \circ b = b \circ a$ für alle $a, b \in M$.
 - Die Operation \circ heißt *assoziativ*, wenn $(a \circ b) \circ c = a \circ (b \circ c)$ für alle $a, b, c \in M$.

Def. 1:

 (M, \circ) heißt *Gruppe*, wenn gilt:

- 1.) Die Operation ∘ ist assoziativ
- 2.) Es gibt genau ein *neutrales Element* $e \in M$ mit $a \circ e = e \circ a = a$ (für alle $a \in M$)
- 3.) Es gibt zu jedem $a \in M$ genau ein *inverses Element* a^{-1} mit $a \circ a^{-1} = a^{-1} \circ a = e$
- 4.) Eine Gruppe heißt *ABELsch*, wenn zusätzlich folgendes gilt:
 ∘ ist kommutativ

Def. 2:

 $(M, \oplus, *)$ heißt *Ring*, wenn gilt:

- 1.) (M, \oplus) ist eine ABELsche Gruppe.
- 2.) Die Operation * ist assoziativ.
- 3.) Es gelten für beliebige $a, b, c \in M$:

$$a*(b\oplus c)=(a*b)\oplus (a*c)$$
 $(a\oplus b)*c=(a*c)\oplus (b*c)$ (Distributivgesetze)

- 4.) Ein Ring heiß kommutativer Ring, wenn gilt:
 - * ist kommutativ

Def. 3:

 $(M, \oplus, *)$ heißt *Körper*, wenn gilt:

- 1.) $(M, \oplus, *)$ ist ein Ring (mit dem neutralen Element E_0 für die Operation \oplus)
- 2.) $(M \setminus \{E_0\}, *)$ ist eine ABELsche Gruppe (mit dem neutralen Element E_1 für die Operation *)

3.2. Zahlentheorie

- Eine natürliche Zahl p > 1, die nurch durch 1 und sich selbst teilbar ist heißt *Primzahl*.
- ullet Jede natürliche Zahl n>1 ist entweder eine Primzahl, oder sie lässt sich als Produkt von Primzahlen schreiben.

Diese sogenannte Primfaktorzerlegung ist bis auf die Reihenfolge der Faktoren eindeutig.

Def. 4:

Zwei natürliche zahlen aus \mathbb{N}^* heißen *teilerfremd*, wenn sie außer 1 keine gemeinsamen teiler besitzen.

- Es sei $a \in \mathbb{Z}$ und $m \in \mathbb{N}^*$. Dann gibt es eine eindeutige Darstellung der Gestalt $a = q \cdot m + r$ mit $0 \le r < m$ und $q \in \mathbb{Z}$. Bezeichnung: $m \dots$ Modul $m \in \mathbb{Z}$. (kleinste nichtnegative) Rest modulo $m \in \mathbb{Z}$ mod(a, m))
- Zur Erinnerung: a und b seien ganze Zahlen, $m \in \mathbb{R}^*$, dann $a \equiv b \pmod{m}$ [a kongruent $b \bmod m$]

```
\Leftrightarrow a und b haben den gleicher Rest modulo\ m \Leftrightarrow a-b ist durch m teilbar (d.h. \exists k \in \mathbb{Z} \quad a-b=k\cdot m)
```

Satz 1:

Es sei $a \equiv b \pmod{m}$, $c \equiv d \pmod{m}$, dann gilt: $a + c \equiv b + d \pmod{m}$ und $a \cdot c \equiv b \cdot d \pmod{m}$ (d.h. in Summen und Produktenn darf jede Zahl durch einen beliebigen Vertreter der gleichen Restklasse ersetzt werden).

Bsp. 1:

- a) $307 + 598 \equiv 1 + (-2) \equiv -1 \equiv 5 \pmod{6}$
- b) $307 \cdot 598 \equiv 1 \cdot (-2) \equiv -2 \equiv 4 \pmod{6}$
- c) $598^6 \equiv (-2)^6 \equiv 64 \equiv 4 \pmod{6}$
- Man wählt aus jeder Restklasse den kleinsten nichtnegativen Vertreter
 - \sim Menge von Resten $modulo\ m$: $\mathbb{Z}_m := \{0, 1, ..., m-1\}$
 - \sim "modulare Arithmetik": Operation \oplus und \odot für Zahlen aus \mathbb{Z}_m erklärbar, in dem für das Ergebnis jeweils der kleinste nichtnegative Rest $modulo\ m$ gewählt wird (vgl. Satz 1)

z.B.
$$\mathbb{Z}_7 = \{0, 1, ..., 6\}, \quad 5 \oplus 4 = 2$$
, da $5 + 4 \equiv 9 \equiv 2 \pmod{7}$ $5 \odot 6 = 2$, da $5 \cdot 6 \equiv 30 \equiv 2 \pmod{7}$

Falls keine Verwechselung zu befürchten ist, wird die übliche Schreibweise + und \cdot anstelle von \oplus und \odot verwendet.

