

Diabetes Prediction

Dr. Siadat - Reza Barahmand

Kharazmi University School of Business MBA – MIS

Contents

- Introduction
 - Internet of Medical Things
 - Diabetes
 - Objectives
 - Data (Pima Indians)
- Methodology
 - Over All Pipeline
 - Data Cleaning and Pre-processing
 - Cleaning
 - Sampling
 - Feature Engineering
 - ML Models
 - Naïve Bayes Classifier
 - Random Forest
 - SVM
 - ...

- Results
 - Evaluation Metric
 - Accuracy
 - Recall
 - ROC-AUC
 - WMSE
 - Scores
 - Overall Best Model
 - Conclusion
- Future Works
- Resources

Internet of Medical Things

- Application of the Internet of Things (IoT) in the medical field
- Network technologies and it's connection with medical equipment
- Healthcare IT systems
- Remote (lacking medical experts)
- Constant data computation
- Benefit of using patient records
- Lower the cost of medical services
- Delivering feedback to medical staff
- ML techniques used because of the large amount of data
- Combination of Al and IoMT is a game changer in this field

Diabetes

- Chronic illness
- Develops in 2 situations:
 - Pancreas are not able to generate sufficient insulin
 - Body does not utilize the insulin produced effectively
- Why people get it?
 - Genetic factors
 - **Environmental factors**
- Type 1:
 - Need to inject insulin every day
 - Has no cure
- Type 2 (our main focus):
 - Blood sugar need to be testes constantly
 - Can be prevented in early stages with healthy diet

Objectives

- Early detection of diabetes
- Using patient records to accelerate the diagnostic procedure.
- Using ML and DL to achieve maximum accuracy in prediction.
- Remote prediction (lacking medical experts)
- Provide doctors; preliminary diagnosis
- Feedback doctors about patient records
 - Diet
 - Exercise
 - Blood glucose testing

Pima Indians Diabetes Dataset

- National Institute of Diabetes and Digestive and Kidney Diseases
- All patients here are females at least 21 years old of Pima Indian heritage (768 records)
- Predictor variables (8 features):
 - Number of pregnancies
 - Glucose
 - Blood pressure
 - Skin Thickness
- Target Value:
 - 1 = Has diabetes
 - 0 = Does not have diabetes
- Data problems
 - Some values inserted as zero that is no possible
 - Data suffers from outliers in some fields
 - Data lacks standardization
 - Imbalanced target

Pima Indians Diabetes Dataset

Data Mining Based Prediction Techniques

- Classification-based:
 - Supervised
 - Data preparation is a plus
- Regression-based:
 - Statistical
 - · Based on relationship between 2 feature
- Association-based:
 - Extracting frequent pattern and correlations

- Clustering-based:
 - Unsupervised
 - · Base on similarity
- SPM (Sequential Pattern Mining)
 - Finding patterns, happened orderly.
- Hybrid
 - Combination of different models
 - Most robust one

Over All Pipeline (Mine)

Data Preparation

Data Cleaning:

- Data duplication
- Noisy data
- Outliers
- Missing data

Feature Engineering:

- Standardization
- Feature encoding
- Feature selection
- Feature extraction
- Imbalanced data

Modeling

Data Sampling:

- Stratification
- Cross validation

Modeling:

- Best model selection
- Hyper parameter tuning
- Optimization

Evaluation

Results:

- Max prediction score
- Best evaluation metric
- Prevent overfitting
- Implement the model
- Final test
- Visualizations

Over All Pipeline (Classic ML Model)

Data Cleaning:

Missing data (Imputation)

Feature Engineering:

- Standardization
- Feature selection (Correlation)

Modeling

Data Sampling:

80-20% sampling

Modeling:

- Naïve bayes
- J48 decision tree
- Random forest
- Hyper parameter tuning

Evaluation

Results:

- Max prediction score
- Best evaluation metric
- Implement the model
- Visualizations

Over All Pipeline (Neural Network)

Data Preparation

Data Cleaning:

Feature Engineering:

- Neural network
- NN Auto scaling

Modeling

Data Sampling:

Neural Network

Modeling:

- Quasi-Newton Model
- NN optimization
 - Performance function
 - Learning Rate
 - Numbers of epoch

Evaluation

Results:

- Min error scores
- Implement the model
- Visualizations

Confusion Matrix

Evaluation Metrics

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{TN + FP}$$

Evaluation Metrics (ROC-AUC)

Error Scores

$$SS_{Total} = \sum_{\substack{\text{Care Points} \\ \text{Care Points}}} Square \text{ The Result} \\ Symmotry \\ Sum Squared \\ Total Error \\ Sum Squared \\ Point \\ Square The Result \\ Result \\ Result \\ Value \\ Value \\ Result \\ Value \\$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

$$WMSE = \frac{1}{n} \frac{\sum_{i=1}^{1} weights_{i} (\widehat{predicted_{i}} - \operatorname{actual}_{i})^{2}}{\sum_{i=1}^{n} weights_{i}}$$

Suitable for imbalanced classes

Classic Models Results (J48 decision tree)

Table 4 J48 decision tree confusion matrix

	Actual positive	Actual negative	
Predicted positive	107	44	
Predicted negative	14	65	

Table 5 J48 decision tree confusion matrix with feature selection (3factor)

	Actual positive	Actual negative	
Predicted positive	106	45	
Predicted negative	12	67	

Table 6 J48 decision tree confusion matrix with feature selection (5factor)

	Actual positive	Actual negative	
Predicted positive	107	44	
Predicted negative	12	67	

Classic Models Results (Random Forest)

Table 7 Random forest confusion matrix

	Actual positive	Actual negative
Predicted positive	136	15
Predicted negative	28	51

Table 8 Random forest confusion matrix with feature selection (3factor)

	Actual positive	Actual negative	
Predicted positive	123	28	
Predicted negative	31	48	

Table 9 Random forest confusion matrix with feature selection (5factor)

	Actual positive	Actual negative
Predicted positive	121	30
Predicted negative	30	49

Classic Models Results (Naïve Bayes)

Table 10 Naive Bayes confusion matrix

/	Actual positive	Actual negative	
Predicted positive	131	29	
Predicted negative	20	50	

Table 11 Naive Bayes confusion matrix with feature selection (3-factor)

	Actual positive	Actual negative	
Predicted positive	133	30	
Predicted negative	18	49	

Table 12 Naive Bayes confusion matrix with feature selection (5-factor)

	Actual positive	Actual negative
Predicted positive	130	30
Predicted negative	21	49

Likelihood of the
Evidence given that the
Hypothesis is True

$$P(H|E) = \frac{P(E|H) * P(H)}{P(E)}$$

Posterior Probability of the Hypothesis given that the Evidence is True

Prior Probability that the evidence is True

Prior

Probability of

the Hypothesis

Classic Models Results (All Models)

 Table 13 Results of all models using the only imputation

Model	Accuracy (%)	Precision (%)	Sensitivity (%)	Specificity (%)	F-score (%)	AUC (%)
J48 decision tree	74.78	70.86	88.43	59.63	78.68	78.55
Random forest	79.57	89.40	81.33	75.00	85.17	86.24
Naïve Bayes	78.67	81.88	86.75	63.29	84.24	84.63

Table 14 Results of all models using feature selection (3-factor)

Model	Accuracy (%)	Precision (%)	Sensitivity (%)	Specificity (%)	F-score (%)	AUC (%)
J48 decision tree	75.22	70.20	89.83	59.82	78.81	81.28
Random forest	75.22	82.12	80.52	64.47	81.31	82.27
Naïve Bayes	79.13	81.60	88.08	62.03	84.71	86.15

 Table 15 Results of all models using feature selection (5-factor)

Model	Accuracy (%)	Precision (%)	Sensitivity (%)	Specificity (%)	F-score (%)	AUC (%)
J48 decision tree	75.65	70.86	89.92	60.36	79.26	80.84
Random forest	73.91	80.79	79.74	62.34	80.26	81.77
Naïve Bayes	77.83	81.25	86.09	62.03	83.60	84.10

Neural Network Results (All Models)

Values	
3.84505	
120.895	
69.1055	
20.5365	
79.7995	
31.9926	
0.471876	
50.2409	
0.494677295	

Error type	Training	Selection	Testing
Sum squared error	51.7483	38.3264	33.4827
Mean squared	0.112009	0.250499	0.218841
Root mean squared	0.334678	0.500499	0.467805
Normalized squared	0.494779	1.08793	0.966577
Cross entropy error	0.666707	1.75652	1.47763
Minkowski error	64.3526	43.4166	38.1428
Weighted squared	0.434355	1.03511	0.832647

Example output of NN

Error table

Overall Best Results (Best Model Selected)

Model		Score	
SVM (Mine)		ROC-AUC = 87.6715 %	
Random Forest		ROC-AUC = 86.24 %	
J48 Decision Tree		ROC-AUC = 81.28 %	
Naïve Bayes		ROC-AUC = 86.15 %	
Neural Networks	WMSE = 0.434355 (train) - 0.832647 (test)		
Maximum Ever		ROC-AUC = 90.12 %	

N	Nodel	Imbalance	Balanced (SMOTE)
S	GD-EN (Stocastic Gradient Decent)	84	85.0041
Lo	ogistic Regression	85.9	84.9778
R	andom Forest	85.7	85.9652
S	VM	85.73	87.6715
K	NN	86.63	86.9467
N	laïve Bayes	0.8467	-
X	GBOOST	82.1	0.839518

Future Works

- Challenges and Recommendations
 - Data:
 - Availability of relevant accurate and quality data
 - Data collection and sharing
 - Data privacy & security
 - Data integration
 - Data access and storage
 - Data preparation:
 - Appropriate data selection
 - Data cleaning
 - Feature selection and extraction
 - Dimensionality reduction
 - Feature engineering

- Diagnosis and Prediction Techniques:
 - Generic and universal technique
 - Clinical and public usability
 - Evaluation of existing techniques over new datasets
 - Robust software tools
 - Development a Realtime prediction system
 - Appropriate model selection
 - Integration of models from different domains
 - Higher efficiency and accuracy

Resources

- Victor Chang et al. Pima Indians diabetes mellitus classification based on machine learning (ML) algorithms. https://link.springer.com/article/10.1007/s00521-022-07049-z. 2022.
- Farrukh Aslam Khan et al. Detection and Prediction of Diabetes Using Data Mining: A Comprehensive Review. https://doi.org/10.1109/ACCESS.2021.3059343. 2021.
- Kamlesh Lakhwani et al. Prediction of the Onset of Diabetes Using Artificial Neural Network and Pima Indians Diabetes Dataset. https://doi.org/10.1109/ICRAIE51050.2020.9358308. 2020.
- Pima Indian Diabetes Dataset. https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database.
- Jason Brownlee. Imbalanced Classification with Python.
 https://machinelearningmastery.com/imbalanced-classification-with-python. 2021.
- **Jason Brownlee. Data Preparation for Machine Learning.** https://machinelearningmastery.com/data-preparation-for-machine-learning/. 2020.
- Reza Barahmand. Jupyter Notebook and Results. https://github.com/rbarahmand/2-years-data-scince-journey/tree/master/docs/myCodes/pima-Indians. 2022.
- IBM CRISP Methodology. https://inseaddataanalytics.github.io/INSEADAnalytics/CRISP_DM.pdf. 2011.

Contents

- Introduction
 - Internet of Medical Things
 - Diabetes
 - Objectives
 - Data (Pima Indians)
- Methodology
 - Over All Pipeline
 - Data Cleaning and Pre-processing
 - Cleaning
 - Sampling
 - Feature Engineering
 - ML Models
 - Naïve Bayes Classifier
 - Random Forest
 - SVM
 - ...

- Results
 - Evaluation Metric
 - Accuracy
 - Recall
 - ROC-AUC
 - WMSE
 - Scores
 - Overall Best Model
 - Conclusion
- Future Works
- Resources

THANKS!

thanks!
Any questions?

@rbarahmand