Problema 52. Demostreu que un grup abelià finit és cíclic si, i només si, tots els seus subgrups de Sylow ho són.

Solució.

 \Rightarrow

Sabem que tot subgrup d'un grup cíclic és cíclic. Per tant, els p-subgrups de Sylow són cíclics, ja que són subgrups de G i aquest és cíclic.

 \Leftarrow

G és un grup abelià finit.

Sigui $\#G = p_1^{a_1} \cdots p_n^{a_n}$ la descomposició del seu ordre en nombres primers diferents entre si, on $a_i \geqslant 1$.

Pel teorema d'estructura, tenim que $G \simeq G_{p_1} \times \cdots \times G_{p_n}$, on G_{p_i} són els components primaris, $1 \leq i \leq n$.

Sabem que els components p-primaris són p-grups, per tant, pel teorema de Sylow aquests estan continguts en els p-subgrups de Sylow. Com que els p-subgrups de Sylow són cíclics, els G_{p_i} també ho són.

Sigui g_i el generador de G_{p_i} , $1 \leq i \leq n$; tenim que $\# < (g_1, ..., g_n) > |\#G$, per tant, per uns certs enters b_i tals que $0 \leq b_i \leq a_i$, $\# < (g_1, ..., g_n) > = p_1^{b_1} ... p_n^{b_n}$.

Com $p_1^{b_1} \dots p_n^{b_n}$ és l'ordre de $(g_1, \dots, g_n) >$, tenim que $(g_1, \dots, g_n)^{p_1^{b_1} \dots p_n^{b_n}} = e$.

Per altre banda tenim que $(g_1,...,g_n)^{p_1^{b_1}...p_n^{b_n}}=(g_1^{p_1^{b_1}...p_n^{b_n}},...,g_n^{p_1^{b_1}...p_n^{b_n}})$

Per tant, $(g_1^{p_1^{b_1}\dots p_n^{b_n}}, \dots, g_n^{p_1^{b_1}\dots p_n^{b_n}}) = e$ i perquè la igualtat sigui certa cal que $b_i = a_i$, $1 \le i \le n$.

Per tant, $\# < (q_1, ..., q_n) >= p_1^{a_1} ... p_n^{a_n} = \#G \Longrightarrow G$ cíclic.