

SpaceGAN

A generative adversarial net for geospatial point data

Konstantin Klemmer, Adriano Koshiyama, and Sebastian Flennerhag

Deep Learning is revolutionising science

Machine learning predicts the look of stem cells

Amy Maxmen

05 April 2017

Research into effectiveness of AI at diagnosing disease

By Emma Morriss - September 26, 2019

Deep Learning is also entering social science

Fusing Social Networks with Deep Learning for Volunteerism Tendency Prediction

Yongpo Jia^{1,2}, Xuemeng Song², Jingbo Zhou³, Li Liu², Liqiang Nie², David S. Rosenblum²

Using the TensorFlow Deep Neural Network to Classify Mainland China Visitor Behaviours in Hong Kong from Check-in Data

Shanshan Han ¹, Fu Ren ^{1,2}, Chao Wu ¹, Ying Chen ¹, Qingyun Du ^{1,2,3,4,*} and Xinyue Ye ^{5,*}

Predicting judicial decisions of the European Court of Human Rights: a Natural Language Processing perspective

Nikolaos Aletras, Dimitrios Tsarapatsanis, Daniel Preotiuc-Pietro, Vasileios Lampos

Topic today ——————

Learning to Generate Reviews and Discovering Sentiment

Alec Radford 1 Rafal Jozefowicz 1 Ilya Sutskever 1

Augmenting correlation structures in spatial data using deep generative models

Konstantin Klemmer *
The Alan Turing Institute &
University of Warwick
kklemmer@turing.ac.uk

Adriano Koshiyama *
The Alan Turing Institute &
University College London
akoshiyama@turing.ac.uk

Sebastian Flennerhag The Alan Turing Institute & University of Manchester sflennerhag@turing.ac.uk

Generative Adversarial Networks - What are they?

- → **Discriminator**: Train a classifier to distinguish between the two distributions using samples
- → **Generator**: Train to generate samples that fool the discriminator
- → Minimax game alternates between training discriminator and generator

Generative Adversarial Networks - How to train them?

• Comparison (Discriminator)

 Use a hypothesis test or comparison to build an auxiliary model to indicated how data synthetically generated differs from the observed one.

Learning (Generator)

 Adjust model parameters to better match the data distribution using the comparison.

Generative Adversarial Networks - How to train them?

- ightarrow Learn a generative model $\mathbf{x} = G_{\theta}(\mathbf{z}), \mathbf{z} \sim p_{\mathbf{z}}$
- → Goal
 - Given samples $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$ from the distribution $p^*(\mathbf{x})$, find θ
- → How: define a joint loss function and alternate between training D and G

$$\min_{G} \max_{D} V(D,G)$$

$$V(D,G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]$$

Generative Adversarial Networks - Hype or Hope?

https://github.com/junyanz/CycleGAN/blob/master/imgs/horse2zebra.gif

Examples from Ian Goodfellow: https://arxiv.org/pdf/1701.00160.pdf

practicin' the alphabet with my son:

A is for AffGAN

B is for B-GAN

C is for Conditional GAN

D is for DCGAN

E is for EBGAN

F is for f-GAN

https://github.com/hindupuravinash/the-gan-zoo

Pseudo-code - GAN - Goodfellow et al., 2014

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \dots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Conditional GANs

Conditional GANs - What are they?

- → Conditional GANs (cGANs) are an extension of a traditional GAN, when both G and D decision is based not only in noise or generated inputs, but include an additional context set v:
 - a class label
 - historical data
 - additional features
 - neighbourhood structure

$$\min_{G} \max_{D} V(D, G) = E_{\mathbf{x} \sim p_{data}(\mathbf{x})} [\log D(\mathbf{x}(\mathbf{v})) + E_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})} [\log (1 - D(G(\mathbf{z}(\mathbf{v})))]$$

Conditional GANs - Why we need them?

- → We inherit all the advantages of GANs
 - Data anonymization
 - Novelty detection
 - Knowledge discovery
- → With additional bonuses of conditioning information
 - Conditional Inference: v can represent a current/expected market condition; such application is more appropriate in cases where the data follows a sequence (time series, text, etc.) or when the user wants to build "what-if" scenarios
 - Data augmentation: imbalanced classification, in particular to fraud detection; they are able to show that cGANs compare favourably to other traditional techniques for oversampling

SpaceGAN - Merging ML and GIS

TL;DR:

→ We develop a novel conditional GAN that is able to augment spatial patterns in the input and can produce high-fidelity data samples with realistic representations of the underlying spatial correlation structure.

Machine Learning with Geospatial Data

Why is it important?

- → Many prime ML applications are inherently spatial in nature (e.g. autonomous cars and fleets, crop yield prediction from satellite images, hurricane trajectory forecasting,...)
- → There is not so much interdisciplinary work going on yet (pointed out at the NeurIPS'18 workshop on spatio-temporal modeling)

Machine Learning with Geospatial Data

Why is it difficult?

- → Data is inherently non-iid
- → Many assumptions (e.g. Euclidean distances) are too simplistic
- → Current methods often struggle with modeling spatial complexities (e.g. the interplay of short- versus long-distance dependencies)

Machine learning approaches are increasingly used to extract patterns and insights from the ever-increasing stream of geospatial data, but current approaches may not be optimal when system behaviour is

This is a great read on the topic!

SpaceGAN - Merging ML and GIS

What can deep learning models learn from geographic information science?

- → How to include and learn from (spatial) neighbourhood information.
 - ♦ (1) We propose a novel neighbourhood conditioning technique for GANs.
- → How to measure the models ability to capture spatial structures.
 - ♦ (2) We evaluate and select the generator based on its ability to reproduce the observed spatial patterns.

(1) Neighbourhood conditioning

We use the **local neighbourhood** of each datapoint as **context vector** to condition our GAN:

- → Works for discrete and continuous spatial data
- → Allows flexible neighbourhood definition / optimization (kNN, queen,...)
- → Flexible weight choice (discrete, distance-based,...)

(2) Optimal representation of spatial structures

We measure the models **ability to replicate observed spatial patterns** throughout training
and select the best one:

- → GIS offer's a great tool to measure spatial autocorrelation: Moran's I
- → We propose a new metric that measures the difference in observed versus augmented local spatial autocorrelation
- → cGAN optimization objective remains unchanged!

Compute local Moran's I

$$I_i = (n-1) \frac{y_i - \bar{y}}{\sum_{j=1, j \neq i}^n (y_j - \bar{y})^2} \sum_{j=1, j \neq i}^n w_{i,j} (y_j - \bar{y})$$

Compute Moran's I Error (MIE)

$$MIE = \sum_{i=1}^n |(I(y_i) - I(\hat{y_i}))|$$

Pseudo-code - SpaceGAN

Algorithm 1 SpaceGAN Training and Selection

Require: snap, C, L: hyper-parameter

- 1: for number of training steps (tsteps) do
- 2: Sample minibatch of \hat{L} noise samples $\{\mathbf{z}_1,...,\mathbf{z}_L\}$ from noise prior $p_{\mathbf{z}}(\mathbf{z})$
- 3: Sample minibatch of L examples from $p_{data}((y_i, \mathbf{x}_i) | \mathcal{N}_i)$
- 4: Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\Theta_D} \frac{1}{L} \sum_{i=1}^{L} \left[\log D((y_i, \mathbf{x}_i) \mid \mathcal{N}_i) + \log(1 - D(G(\mathbf{z}_i \mid \mathcal{N}_i))) \right]$$

- 5: Sample minibatch of L noise samples $\{\mathbf{z}_1, ..., \mathbf{z}_L\}$ from noise prior $p_{\mathbf{z}}(\mathbf{z})$
- 6: Update the generator by ascending its stochastic gradient:

$$abla_{\Theta_G} rac{1}{L} \sum_{l=1}^{L} \left[\log(D(G(\mathbf{z}_i \mid \mathcal{N}_i))) \right]$$
 Training

- 7: **if** tsteps % snap then
- 8: $G_k \leftarrow G, D_k \leftarrow D, MIE \leftarrow 0$ \triangleright store current G, D as G_k, D_k ; initiate MIE
- 9: for C do \triangleright draw C samples from G_k
- 10: **for** $i \leftarrow 1, n$ **do** \triangleright generate spatial data
- 11: sample noise vector $\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})$
- 12: $\operatorname{draw}(\hat{y}_i, \hat{\mathbf{x}}_i) = G_k(\mathbf{z} \mid \mathcal{N}_i)$
- 13: Measure *SpaceGAN y* samples spatial autocorrelation goodness-of-fit:

$$MIE \leftarrow MIE + \sum_{i=1}^{n} |(I(y_i) - I(\hat{y}_i))| \tag{4}$$

- 14: Average of all samples: $MIE(G_k) = \frac{1}{C}MIE$
- 15: **return** $G := arg \min_{G_k} MIE(G_k), D := arg \min_{G_k} MIE(G_k)$

Selection

Does it work? Two experiments

- 1. How does *SpaceGAN* learn spatial processes? How good is the out-of-sample extrapolation / interpolation?
- 2. Can SpaceGAN samples be used to train better predictive models?

(a) Target vector y (top) and its Moran's I value I(y) (bottom) of the observed and SpaceGAN generated data for Toy 1.

(b) Target vector y (top) and its Moran's I value I(y) (bottom) of the observed and SpaceGAN generated data for Toy 2.

(c) Target vector y (top) and its Moran's I value I(y) (bottom) of the observed data, SpaceGAN, Coord.GAN and GP generated samples for California Housing 50.

- SpaceGAN outperforms competitors (GP, Coordinate GAN) at extrapolation / interpolation tasks
- The MIE works! It corresponds well to the generator loss; autocorrelation structures are captured well.
- Even more complex patterns are captured (at least partially).

We use SpaceGAN-generated samples in an ensemble learning framework to generate training data!

We compare this to other methods of spatial data augmentation (spatial bootstrap, GP sampling, coordinate GAN augmentation)

Algorithm 2 "Ganning" for ensemble learning

```
Require: B (number of samples), M (base learner), G

1: for b \leftarrow 1, B do \triangleright generate spatial data

2: for i \leftarrow 1, n do

3: sample noise vector \mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})

4: draw (\hat{y}_i, \hat{\mathbf{x}}_i) = G_k(\mathbf{z} \mid \mathcal{N}_i)

5: train base learner: M^{(b)}(\hat{\mathbf{y}}, \mathbf{x})

6: return ensemble M^{(1)}, ..., M^{(B)}
```

SpaceGAN (with MIE selection) outperforms competitors on almost all tasks!

The exact neighbourhood definition (size of the neighbourhood) seems to be important!

Table 2: Experiment 2: Prediction scores (RMSE) and their standard errors across 10 folds for different ensemble methods with 100 samples across the different prediction tasks.

Dataset	Model (B = 100)				
	SpaceGAN (MIE)	SpaceGAN (RMSE)	Coord.GAN (MIE)	GP	Spatial Boot
Toy I	0.9921	1.1993	1.3067	1.2388	1.2013
	(0.0995)	(0.1494)	(0.1095)	(0.1490)	(0.1366)
Toy 2	1.0097	1.2065	1.3893	1.3135	1.2962
	(0.1092)	(0.1496)	(0.1015)	(0.1443)	(0.1413)
Cal.H. 15	139534	143983	200937	159340	148830
	(12026)	(10341)	(20743)	(8550)	(8660)
Cal.H. 50	128756	145612	171455	156814	148546
	(7463)	(7152)	(22195)	(8718)	(8611)
Inf.Mort.	7.2778	7.2416	7.9648	9.1793	7.3100
	(0.6518)	(0.6464)	(0.9567)	(0.5547)	(0.4685)
Election	0.1163	0.1162	0.1249	0.1330	0.1156
	(0.0035)	(0.0037)	(0.0072)	(0.0043)	(0.0039)

Currently ongoing & future research

- Use MIE for actual optimization (i.e. tweak the cGAN loss functions)
- Explore the importance of the neighbourhood definition and weights further
- Use SpaceGAN in more geospatial ML applications to confirm its usability
- Explore usability of the method for n-dimensional autocorrelation (e.g. spatiotemporal)
- ...and many more (we have 10000000 ideas)