

# Girraween High School

## 2018

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

## **Mathematics Extension 2**

#### General Instructions

Reading time: 5 minutes

Working time: 3 Hours

- Write using a black or blue pen
- Board approved calculators may be used
- Laminated reference sheets are provided
- Answer multiple choice questions by completely colouring in the appropriate circle on your multiple choice answer sheet on the front page of your answer booklet.
- In questions 11-16 start all questions on a separate page in your answer booklet and show all relevant mathematical reasoning and/or calculations.

Total Marks: 100

Section 1 (Pages 2-5) 10 Marks

Attempt Q1 - Q10

Allow about 15 minutes for this section

Section 2 (Pages 5-13) 90 marks

- Attempt Q11 Q16
- Allow about 2 hours and 45 minutes for this section

### Section 1 (10 marks)

Allow about 15 minutes for this section. Fill in the appropriate circle in your answer booklet.

- 1. Given that z = 1 + i, what is the value of  $z^8$ ?
  - (A) 16
- (B) 8
- (C) 8
- (D) 16
- 2. Consider the Argand diagram below.



Which inequality could define the shaded area?

- (A)  $0 \le |z| \le 2$
- (B)  $1 \le |z| \le 2$
- (C)  $0 \le |z-1| \le 2$
- (D)  $1 \le |z-1| \le 2$
- 3. The equation  $x^4+px+q=0$ , where  $p\neq 0$  and  $q\neq 0$  has roots  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\delta$ . What is the value of  $\alpha^4+\beta^4+\gamma^4+\delta^4$ ?
- (A) -4q (B)  $p^2 2q$  (C)  $p^4 2q$  (D)  $p^4$
- 4. When  $x^y = e$  is implicitly differentiated with respect to x, the result for  $\frac{dy}{dx}$  is
  - (A)  $\frac{-y}{x \log_e x}$  (B)  $\frac{y}{x \log_e x}$  (C)  $\frac{-x \log_e x}{y}$  (D)  $\frac{x \log_e x}{y}$

5. Which of the following is an expression for  $\int_{1}^{\frac{\pi}{2}} \frac{1}{1+\sin x} dx$ 

after the substitution  $t = \tan \frac{x}{2}$ ?

(A) 
$$\int_{0}^{1} \frac{1}{1+2t} dt$$

(B) 
$$\int_{0}^{1} \frac{2}{1+2t} dt$$

(C) 
$$\int_0^1 \frac{1}{(1+t)^2} dt$$

(A) 
$$\int_0^1 \frac{1}{1+2t} dt$$
 (B)  $\int_0^1 \frac{2}{1+2t} dt$  (C)  $\int_0^1 \frac{1}{(1+t)^2} dt$  (D)  $\int_0^1 \frac{2}{(1+t)^2} dt$ 

6. What are the equations of the directrices of the hyperbola with equation

$$\frac{x^2}{144} - \frac{y^2}{25} = 1 ?$$

(A) 
$$x = \pm \frac{13}{144}$$
 (B)  $x = \pm \frac{13}{25}$  (C)  $x = \pm \frac{25}{13}$  (D)  $x = \pm \frac{144}{13}$ 

(B) 
$$x = \pm \frac{13}{25}$$

(C) 
$$x = \pm \frac{25}{13}$$

(D) 
$$x = \pm \frac{144}{13}$$

- 7. The region enclosed by  $y = \sin x$ , y = 0 and  $x = \frac{\pi}{2}$  is rotated about the y-axis to produce a solid. What is the volume of this solid using the method of cylindrical shells?
  - (A)  $\pi$  cubic units (B)  $\frac{\pi}{2}$  cubic units (C)  $\frac{3\pi}{2}$  cubic units (D)  $2\pi$  cubic units

8. The graph of  $y = 4x^2 - x^4$  is given below.



The region in the first quadrant bounded by the curve  $y = 4x^2 - x^4$  and the x-axis between x = 0 and x = 2 is rotated about the y-axis . Which of the following is an expression for the volume, V, of the solid formed?

(A) 
$$V = 2\pi \int_0^4 \sqrt{4 - y} \ dy$$

(B) 
$$V = 4\pi \int_0^4 \sqrt{4-y} \ dy$$

(C) 
$$V = 8\pi \int_{0}^{4} \sqrt{4 - y} \ dy$$

(D) 
$$V = 16\pi \int_0^4 \sqrt{4 - y} \, dy$$

- 9. A wheel of radius 2 metres rotates at 1200 revolutions per minute. What is the tangential velocity of a point on the wheel?
  - (A) 40 m/s
- (B) 80 m/s
- (C) 251 m/s
- (D) 260 m/s

10. A particle of mass m is moving horizontally in a straight line. Its motion is opposed by a force of magnitude  $2m(v+v^2)$  Newtons when its speed is v m/s. At time t seconds the particle has a displacement of x metres from a fixed point x on the line and velocity y m/s.

Which of the following is an expression for x in terms of v?

$$(A) \quad -\frac{1}{2} \int \frac{1}{1+v} dv$$

(B) 
$$-\frac{1}{2}\int \frac{1}{v(1+v)}dv$$

(C) 
$$\frac{1}{2} \int \frac{1}{1+v} dv$$

(D) 
$$\frac{1}{2} \int \frac{1}{v(1+v)} dv$$

#### Section 2

Question 11 (15 marks)

a. z = p + 2i, where p is a real number, and w = 1 - 2i represent two complex numbers.

(i) Find 
$$\frac{z}{w}$$
 in the form  $a + ib$ , where  $a$  and  $b$  are real numbers. [2]

(ii) Given that 
$$\left| \frac{z}{w} \right| = 13$$
, find all possible values of  $p$ . [2]

b. 
$$z = 1 - \sqrt{3} i$$

- (i) Find the values of |z| and  $\arg z$ . [2]
- (ii) Find the exact value of  $z^6$ .
- c. (i) On an Argand diagram, sketch the locus of z represented by |z-3|=3. [2]
  - (ii) Explain why  $\arg (z-3) = 2 \arg z$ . [2]
- d. If 2 + i is a root of  $P(x) = x^4 6x^3 + 9x^2 + 6x 20$ , resolve P(x) into

irreducible factors over the complex field. [3]

#### Question 12 (15 marks)

a. Find

$$(i) \int x e^{-x} dx$$
 [2]

(ii) 
$$\int_{0}^{\frac{\pi}{2}} \frac{1}{2 - \cos x + 2\sin x} dx$$
 [3]

(iii) 
$$\int_{0}^{\frac{\pi}{6}} \sec^{3} 2\theta \, d\theta$$
 [3]

b. (i) Find real numbers a, b, c and d such that:

$$\frac{5x^3 - 3x^2 + 2x - 1}{x^2(x^2 + 1)} = \frac{a}{x} + \frac{b}{x^2} + \frac{cx + d}{x^2 + 1}$$
 [2]

(ii) Hence find 
$$\int \frac{5x^3 - 3x^2 + 2x - 1}{x^2(x^2 + 1)} dx$$
 [2]

c. The diagram shows the region enclosed by the curves y = x + 1 and  $y = (x - 1)^2$ .

The region is rotated about the y-axis .

Find the volume of the solid using the method of cylindrical shells.



[3]

a.



In the diagram, MAN is the common tangent to two circles touching internally at A.

B and C are two points on the larger circle such that BC is a tangent to the smaller circle with point of contact at D. AB and AC cut the smaller circle at E and F respectively.

- (i) Copy or trace the into your answer booklet.
- (ii) 5how that AD bisects  $\angle BAC$

[4]

- b. An ellipse has the equation  $\frac{x^2}{100} + \frac{y^2}{75} = 1$ .
  - (i) Sketch the curve, showing the coordinates of the foci and the equations of the directrices. [2]
  - (ii) Find the equation of the normal to the ellipse at the point  $P\left(5, 7\frac{1}{2}\right)$ . [2]
  - (iii) Find the equation of the circle that is tangential to the ellipse at P and  $Q\left(5, -7\frac{1}{2}\right)$ . [3]
- c. (i) Show that the tangent to the curve  $xy = c^2$  at  $T\left(ct, \frac{c}{t}\right)$  is given by

$$x + t^2 y = 2ct ag{2}$$

(ii) The tangent cuts the x and y axes at A and B respectively.

Prove that  $\,T\,$  is the centre of the circle that passes through  $\,O$ , A and  $\,B\,$  where  $\,O\,$  is the origin.

[2]

Question 14 (15 marks)

a. (i) Prove that 
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$$
. [2]

(ii) Hence, find the value of 
$$\int_{0}^{2} x(2-x)^{5} dx$$
. [2]

b. Given that 
$$I_{2n+1} = \int_{0}^{1} x^{2n+1} e^{x^{2}} dx$$
, where  $n$  is a positive integer,

(i) Show that 
$$I_{2n+1} = \frac{1}{2}e - nI_{2n-1}$$
. [3]

(ii) Hence, or otherwise, evaluate 
$$\int_{0}^{1} x^{5} e^{x^{2}} dx$$
. [3]

c. (i) Use the binomial theorem to expand 
$$(\cos\theta + i\sin\theta)^3$$
. [1]

(ii) Use De Moivre's Theorem and your result from (i) to prove that

$$\cos^3\theta = \frac{1}{4}\cos 3\theta + \frac{3}{4}\cos \theta \ . \tag{2}$$

(iii) Hence, or otherwise, find the smallest positive solution of

$$4\cos^3\theta - 3\cos\theta = 1$$
 [2]

#### Question 15 (15 marks)

a. A mass of m kg at P is suspended by a light inextensible string from point O. It describes a circle with a constant speed in a horizontal plane whose vertical distance below O is h metres.



(i) Show that 
$$\omega = \sqrt{\frac{g}{h}}$$
.

[2]

(ii) What is the period of the motion?

[1]

b.



From a point on the ground an object of mass m kg is projected vertically upward with an initial speed of u. The object reaches a maximum height of H before falling back to the ground. The resistance to motion is equal to  $mkv^2$  and g is the acceleration due to gravity.

(i) Show that 
$$H = \frac{1}{2k} \ln \left( \frac{g + ku^2}{g} \right)$$
. [2]

(ii) P is a point at height h above the point of projection.

Let V be the speed of the object at P on its upward path when x = h.

Show that 
$$h = \frac{1}{2k} \ln \left( \frac{g + ku^2}{g + kV^2} \right)$$
. [2]

(iii) During the downward path of the object it passes through  $\,P\,$  with half the speed of when it was first at  $\,P\,$  .

Show that 
$$V = \sqrt{\frac{3g}{k}}$$
. [3]



A road contains a bend that is part of a circle of radius, r. At the bend, the road is banked at an angle of  $\alpha$  to the horizontal. A car travels around the bend at constant speed,  $\nu$ . Assume that the car is represented by a point of mass m, and that the forces acting on the car are the gravitational force mg, a sideways frictional force F (acting down the road) and a normal reaction F0 to the road.

(i) By resolving the horizontal and vertical components of force, find expressions for  $F\cos\alpha \text{ and } F\sin\alpha \ .$ 

(ii) Show that 
$$F = \frac{m(v^2 - gr \tan \alpha)}{r} \cos \alpha$$
. [2]

(iii) Suppose that the radius of the bend is 200 metres and that the road is banked to allow cars to travel at 100 km/h with no sideways friction force. Take  $g = 9.8 \, ms^{-2}$ . Find the value of  $\alpha$ .

[2]

#### Question 16 (15 marks)

- a. P(x) is a polynomial of degree 5 such that P(x) 1 is divisible by  $(x 1)^3$  and P(x) itself is divisible by  $x^3$ . Derive an expression for P(x).
- b. (i) The diagram below shows a trapezium ABCD whose parallel sides AB and DC are 9 metres and 13 metres respectively.

The distance between these sides is 4 metres and AD = BC.

EF is parallel to AB and the distance between them is h metres.



Show that EF = (9 + h) metres.

[2]

(ii) The trench in the diagram below has a rectangular base with sides 9 metres and 3 metres. Its top is also rectangular with dimensions 13 metres and 5 metres. The trench has a depth of 4 metres and each of its four side faces is an isosceles trapezium.



Find the volume of the trench.

[4]

#### Question 16 continues on Page 13

c. (i) Show that if y = mx + k is a tangent to the hyperbola  $xy = c^2$ ,

then 
$$k^2 + 4mc^2 = 0$$
. [3]

(ii) Hence, find the equations of the tangents from the point (-1, -3)

to the rectangular hyperbola xy = 4 and find their points of contact. [3]

# End of Examination



|                                         | CINS 2018 TRIAL USC MATHEMATICS EXT. 2 SOLUTIONS      |
|-----------------------------------------|-------------------------------------------------------|
|                                         | MC.                                                   |
|                                         | $1. Z = 1 + i$ , $Z^8 = 7$ .                          |
|                                         | = \(\frac{1}{2} \cis \overline{1}\)                   |
|                                         |                                                       |
|                                         | Z8 = (52 cir T/4)8                                    |
|                                         | = 2 ( LOS 21T + iSIN 24)                              |
|                                         | = 16                                                  |
|                                         |                                                       |
|                                         | 2.15   2   3                                          |
|                                         | α                                                     |
| <u> </u>                                | $3. x^4 + px + 9 = 0$                                 |
|                                         | $a^4 + p\alpha + q = 0$                               |
| 3.50                                    | B4+PB+9-0                                             |
|                                         | $8^{4} + p8 + q = 0$<br>$8^{4} + p8 + q = 0$          |
| *************************************** |                                                       |
|                                         | $x^{4}+3^{4}+3^{4}+8^{4}=-4p(d+3+8+8)-49$             |
|                                         | = -49(0) - 49 = -49                                   |
| <del></del>                             |                                                       |
|                                         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
|                                         | log xy = log e                                        |
| W                                       | ylagx = 1                                             |
|                                         | y. L + log x dy =0                                    |
|                                         | J Z J Tr                                              |
|                                         | y + log 21 dy =0 x  √                                 |
|                                         | of du                                                 |
|                                         | dy y  du octogra A                                    |
|                                         | Jr schog x A                                          |
|                                         |                                                       |
|                                         |                                                       |
|                                         | <u>O</u>                                              |
|                                         | •                                                     |



| · · · · · · · · · · · · · · · · · · ·   | 5. T/2                                                                                                                                                                                                 |                                        |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                                         | dx                                                                                                                                                                                                     |                                        |
|                                         | 1+Siù 74                                                                                                                                                                                               | t= fan 2                               |
|                                         |                                                                                                                                                                                                        | 2                                      |
|                                         | $= \int \frac{1}{1+\frac{2t}{1+t^2}} \cdot \frac{2dt}{1+t^2}$                                                                                                                                          | $\frac{dt}{dx} = \frac{1}{2} \sec^2 x$ |
|                                         | 1+2t 1+t2 1+t2                                                                                                                                                                                         | -                                      |
| *                                       |                                                                                                                                                                                                        | dx = zdt                               |
|                                         | = ( 2 d+                                                                                                                                                                                               | $dx = \frac{2dt}{Sec^2 \frac{\pi}{2}}$ |
| *************************************** | $= \int \frac{2}{(1+t^2+2t)} dt$                                                                                                                                                                       | $dx = 2dt$ $1+t^{2}$                   |
| *                                       | 0                                                                                                                                                                                                      | 1++2                                   |
|                                         | = ( 2 d+                                                                                                                                                                                               | When x = 7/2, +=1                      |
|                                         | $= \int \frac{2}{(1+t)^2} dt$                                                                                                                                                                          | when $n = 0$ , $t = 0$                 |
|                                         |                                                                                                                                                                                                        | what )( = 8 , E38                      |
|                                         | 6. x <sup>2</sup> - 4 <sup>2</sup> - 1                                                                                                                                                                 |                                        |
|                                         | $\frac{6}{3^2} - \frac{4^2}{25} = 1$                                                                                                                                                                   |                                        |
|                                         | $b^2 = a^2(e^2 - 1)$                                                                                                                                                                                   | •                                      |
|                                         | $e^2 - 1 = 25$                                                                                                                                                                                         |                                        |
|                                         | 144                                                                                                                                                                                                    |                                        |
|                                         | $e^2 = 169$                                                                                                                                                                                            |                                        |
| -                                       | 144                                                                                                                                                                                                    |                                        |
|                                         | e = 13                                                                                                                                                                                                 |                                        |
| <del></del>                             | 12                                                                                                                                                                                                     |                                        |
|                                         | Directrices: x = ± a                                                                                                                                                                                   |                                        |
|                                         |                                                                                                                                                                                                        | D                                      |
|                                         | = + 144                                                                                                                                                                                                |                                        |
|                                         | 7. V = Lui = 2 T x Sin                                                                                                                                                                                 | Α 2π                                   |
|                                         | 7. $\sqrt{=}$ $\frac{1}{\Delta \eta} = \frac{2 \pi \kappa Sim}{2 \pi \kappa Sim}$                                                                                                                      | и Д 271 н.                             |
|                                         | 11/2                                                                                                                                                                                                   |                                        |
|                                         | = 2TI Susin R die                                                                                                                                                                                      | <u> </u>                               |
|                                         | ν τ/2 ·                                                                                                                                                                                                | 7/2 1 7                                |
|                                         | $= 2\pi \left[ \left( \chi \omega S \mathcal{L} \right)^{\frac{\pi}{2}} + \frac{2\pi \left[ S \ln \mathcal{L} \right]^{\frac{\pi}{2}}}{2\pi \left[ S \ln \mathcal{L} \right]^{\frac{\pi}{2}}} \right]$ | [ ws n da]                             |
|                                         | = 2TT / SIN K /2                                                                                                                                                                                       |                                        |
|                                         | = 2TT D                                                                                                                                                                                                |                                        |
|                                         |                                                                                                                                                                                                        |                                        |



2. 
$$y = 4x^{2} - x^{4}$$
 $(x^{4} - 4x^{2} + 4) = -y + 4$ 
 $(x^{2} - 4x^{2} + 4) = -y + 4$ 
 $(x^{2} - 2)^{2} = 4 - y$ 
 $x^{2} - 2 = \pm \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2} = 2 + \sqrt{4} - y = x^{2}$ 
 $x^{2$ 





Question 11

$$\frac{1}{1} = \frac{1}{2} = \frac{1}{1-2i} \times \frac{1+2i}{1+2i}$$

$$= p-4 + 2(p+1) i$$
5
5

$$\frac{p^2+4}{5} = 169$$

p 2 = 841

$$p = \pm \sqrt{841} = \pm 29$$

b) 
$$z = 1 - \sqrt{3}i$$
  
 $|z| = \sqrt{1+3} = 2$ 

arg = -1





| <u>.                                    </u> |                                                                                 |                                                          |
|----------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------|
|                                              | Question 12                                                                     |                                                          |
|                                              | a). i)                                                                          |                                                          |
|                                              | xe-x dx                                                                         | u=x V=-e-2                                               |
|                                              | J                                                                               | u'=1 V'=e-x                                              |
|                                              | $= -xe^{-x} - \int -e^{-x} dx$                                                  |                                                          |
|                                              | J                                                                               |                                                          |
|                                              | $= -xe^{-x} + \int e^{-x} dx$                                                   |                                                          |
|                                              |                                                                                 |                                                          |
|                                              | $= -xe^{-x} - e^{-x} + C$                                                       | 2                                                        |
| <u> </u>                                     | 1) T/2                                                                          |                                                          |
|                                              | da da                                                                           | let t= tay 2                                             |
|                                              | J 2 - COSX + 25111 H                                                            | 2                                                        |
| *                                            | U U                                                                             | $dt = \frac{1}{2} \sec^2 \frac{x}{2} dx$                 |
|                                              | = [ . ]                                                                         | 7 7                                                      |
|                                              | $2 - \left(\frac{1-t^2}{1+t^2}\right) + 2\left(\frac{2+}{1+t^2}\right)$ $1+t^2$ | = 1 (1+t2) dx                                            |
|                                              | J 1+E2)                                                                         | dn - 2dt                                                 |
|                                              |                                                                                 | $\frac{dn = 2dt}{1+t^2}$                                 |
|                                              | = 2 dt                                                                          | When >c=0, t=0                                           |
|                                              | $\int 2(1+t^2)-(1-t^2)+4t^2$                                                    |                                                          |
|                                              | O ,                                                                             | 2 = 17/2 t=1                                             |
|                                              | = ( 2 dt                                                                        |                                                          |
|                                              | $\begin{array}{c c} 2 & dt \\ \hline 1 + 3t^2 + 4t \end{array}$                 | 4                                                        |
|                                              | 8                                                                               |                                                          |
|                                              | = ( 2 d+                                                                        | A + B = 2                                                |
|                                              | $= \int \frac{2}{(3t+1)(t+1)} dt$                                               | $\frac{A}{3t+1} + \frac{B}{t+1} = \frac{2}{(3t+1)(t+1)}$ |
| ,                                            | 1                                                                               | A(t+1) + B(3t+1) = 2                                     |
|                                              | = ( / 3 - 1 ) 1 +                                                               | sussiblife t=-1                                          |
| ***************************************      | $= \left( \begin{array}{cc} 3 & -1 \\ 3t+i & t+1 \end{array} \right) dt$        | - 2B = Z = ) B = -1                                      |
|                                              | $= \left[\log(3t+1) - \log(t+1)\right]$                                         | Substitute +=-1                                          |
|                                              | L'Yt Y Y                                                                        | $\frac{2}{3}A = 2$                                       |
|                                              | = (log 4 - log 2) - (log 1 - log 1)                                             | A = 3                                                    |
|                                              | = log Z                                                                         | (3)                                                      |
|                                              |                                                                                 | +                                                        |



Sec<sup>3</sup> 20 d D Sec 20. Sec 20 do let u= sec 20 tan 20. Sec 20 - Sec 20 tan 20 do  $= (\cos 20)^{-1}$   $u' = -1(\cos 20)^{-2} - 2\sin 20$ = (tan 1/3 . Sec 1/3) - Sec 20 (Sec 20 -1) do  $= \frac{2\sin 2\theta}{\cos^2 2\theta}$  $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\sec^3 20 + \sec 20) d0$ = 2 Sec 20. tan 20 V1 = Sec 20 = \(\int\_3 - \int \sec^2 20 d0 + \int \sec 20 d0  $\frac{176}{2 \int \sec^{3} 20 \, d0} = \sqrt{3} + \int \sec^{2} 0 \, d0$ = \( \frac{17}{3} + \int \) \( \text{Sec 20 (Sec 20 + tan 20)} \) \( \text{Sec 20 + tan 20} \)  $= \sqrt{3} + \frac{1}{2} \int_{0}^{2} 2 \sec^{2} 20 + 2 \sec 20 \tan 20 d0$   $= \sec 20 + \tan 20$ = 13 + 1 In [Sec 20 + tan 20] 17/6 = 13 + ½ ln (2+13) Sec3 20 d0 = V3 + 1 In (2+ V3



b) 1) 
$$5x^{3} - 3x^{2} + 2x - 1 = a + b + Cx + d$$

$$x^{2}(x^{2} + 1) = x - x^{2}$$

$$x^{2}(x^{2} + 1) + b + (x^{2} + 1) + (cx + d) + x^{2}$$

$$= (a + c) + x^{3} + (b + d) + x^{2} + ax + b$$

$$= (a + c) + x^{3} + (b + d) + x^{2} + ax + b$$

$$= (a + c) + x^{3} + (b + d) + x^{2} + ax + b$$

$$= (a + c) + x^{3} + (b + d) + x^{2} + ax + b$$

$$= (a + c) + x^{3} + (b + d) + x^{2} + ax + b$$

$$= (a + c) + x^{3} + (b + d) + x^{2} + ax + b$$

$$= (a + c) + x^{3} + (b + d) + x^{2} + ax + b$$

$$= (a + c) + x^{3} + a + c + a + b$$

$$= (a + c) + x^{3} + a + c + a + b$$

$$= (a + c) + x^{3} + a + c + a + b$$

$$= (a + c) + x^{3} + a + c + a + b$$

$$= (a + c) + x^{3} + a + c + a + b$$

$$= (a + c) + x^{3} + a + c + a + b$$

$$= (a + c) + x^{3} + a + c + a + b$$

$$= (a + c) + x^{3} + a + c + a + b$$

$$= (a + c) + x^{3} + a + c + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + x^{3} + a + b$$

$$= (a + c) + a + a + b$$

$$= (a + c) + a + a + b$$

$$= (a + c) + a + a + b$$

$$= (a + c) + a + a + a$$

$$= (a + c) + a + a + a$$

$$= (a + c) + a + a$$

$$= (a +$$



|                                       | Ouestron 13                                                                                      |
|---------------------------------------|--------------------------------------------------------------------------------------------------|
| 4)                                    | i)                                                                                               |
|                                       |                                                                                                  |
|                                       |                                                                                                  |
|                                       |                                                                                                  |
|                                       |                                                                                                  |
|                                       |                                                                                                  |
|                                       | $M \longrightarrow M$                                                                            |
| · · · · · · · · · · · · · · · · · · · | A                                                                                                |
|                                       | (i) Construct EF, ED.                                                                            |
|                                       | (1) Construct EF, ED.                                                                            |
| ,                                     | LAEF = LNAC (Lin the alternate segment)                                                          |
|                                       | : EF//BC (corresponding Ls on transversal AB)                                                    |
|                                       |                                                                                                  |
|                                       | <pre></pre>                                                                                      |
|                                       | \( \D\tilde{F} = \langle DAF (\langle S \in ubtended by arc DF at the circuference of urile AEF) |
|                                       |                                                                                                  |
|                                       | <bde (<="" <="" =="" aef)<="" alternatesegment="" circle="" dae="" in="" th=""></bde>            |
|                                       | ·· < DAF = < DAE                                                                                 |
|                                       | :- AD bisects < BAC.                                                                             |
|                                       | b) $\frac{2^{\frac{1}{100}} + \frac{4^2}{45} = 1}{a=10}$ $a=10$ , $b=5\sqrt{3}$                  |
|                                       | b) $\frac{1}{100} + \frac{1}{45} = 1$ $a = 10, b = 5\sqrt{3}$<br>i) $b^2 = a^2(1 - e^2)$         |
|                                       | $75 = 100 (1-e^2)$                                                                               |
|                                       | $e^2 = \bot$                                                                                     |
|                                       | $e^{2} = \frac{1}{4}$ $e = \frac{1}{2}$ Fou : $(\pm ae, o)$                                      |
|                                       | Foci = (±5,0); Directuces : x = ±9.                                                              |
|                                       | Directures: >1 = ± 20                                                                            |
|                                       |                                                                                                  |
|                                       |                                                                                                  |
|                                       |                                                                                                  |







| Solving (D & (2) Simultaneously                                          |
|--------------------------------------------------------------------------|
| $2x - 2 \cdot 5 = -2x + 2 \cdot 5$                                       |
| 4n = 5                                                                   |
| $2L = \frac{S}{4}, Y = 0$                                                |
|                                                                          |
| :, C (=, 0)                                                              |
| Radius of circle is CP                                                   |
| Radius of circle is $CP$ $CP = \sqrt{(\xi)^2 + (\xi)^2}$                 |
|                                                                          |
| =\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                   |
| 2 2                                                                      |
| i. Equation of circle = (x - \frac{5}{4})^2 + y^2 = 1125                 |
| ·                                                                        |
| $(y)i) \propto y = c^2$                                                  |
| diffrentify; y + x dy = 0                                                |
| - Ar                                                                     |
| $\frac{dy}{dx} = -\frac{y}{x}  A + T \left( ct, \frac{\zeta}{z} \right)$ |
| $\frac{M}{tangent} = -1$                                                 |
|                                                                          |
| $\frac{E}{tangent}: \frac{Y-C}{t} = -\frac{1}{t^2}(x-ct)$                |
|                                                                          |
| $t^2y - ct = x + ct$                                                     |
| $x+t^2y=2ct$                                                             |
| ii) x int =) y=0 Yint =) x=0                                             |
| ii) $x \text{ int} \Rightarrow y=0$ $y=0$ $y=0$ $y=0$ $y=0$ $y=0$        |
| : A(2ct.0)                                                               |
| Midpoint of AB = (ct, =)=T                                               |
| $B(0,\frac{2\zeta}{+})$                                                  |
| <a href="#"> <a href="#"></a></a>                                        |
| passing through O. T is the midpoint of                                  |
| this diameter and therefore the centre of the                            |
| artle passing through On A and B.                                        |
|                                                                          |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                                                                |                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Question 14                                                      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a) ij $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$            |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~                                                                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RHS = f ca - n) dx                                               |                   |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                  | let u = a - 2c    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                | du = -d x         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $=-\int_{0}^{\infty}f(u)du$                                      | when x = 0, u = a |
| w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ža                                                               | n=a, u=0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a<br>fcu)du                                                      |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                         |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = (f(x) dx                                                       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                |                   |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = LHS.                                                           |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{1}{1}$ $\frac{2}{1}$ $\frac{2}{1}$                        |                   |
| 10 To | $\int x (2-x)^5 dx$                                              | •                 |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 1                                                              | om(i)             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $= \int_{-\infty}^{\infty} (2-x)^{3} \times x^{5} dx \qquad (fr$ | om (1)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $= \left(\frac{5}{2x} - \frac{5}{x^2}\right) dx$                 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                         |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{2}{3} \frac{2L^{2}}{3} - \frac{2L^{2}}{3}$                |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 7 10                                                           |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 64 - 128                                                       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 64 - 128 $= 3 = 7$                                             |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 64                                                             |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21                                                               |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  |                   |



b) 
$$\int \frac{1}{2n\pi} = \int \frac{x^{2n+1} e^{x^2} dx}{x^{2n+1} e^{x^2} dx}$$

$$= \int \frac{1}{x^{2n}} \cdot x \cdot e^{x^2} dx$$

$$= \int \frac{1}{x^{2n}} e^{x^2} - \int \frac{1}{2} e^{x^2} \cdot 2n \cdot 2c \cdot dx \cdot v' = x \cdot e^{x^2}$$

$$= \int \frac{1}{2} e^{x^2} - n \cdot \int \frac{1}{x^{2n+1}} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - n \cdot \int \frac{1}{x^{2n+1}} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2} e^{x^2} dx$$

$$= \int \frac{1}{2} e^{x^2} - 2 \cdot \int \frac{1}{2$$

| 9) |  |  |  |
|----|--|--|--|
|    |  |  |  |

|     | ١ |
|-----|---|
| (14 | / |

| ·      |                                                         |
|--------|---------------------------------------------------------|
|        | $= (6)^3 \theta - 3(6) \theta + 3(6)^3 \theta$          |
| c      | $\cos 3\theta = 4\cos^3\theta - 3\cos\theta$            |
| 4      | 60530 = 60530 + 36050                                   |
|        | $\cos^3\theta = \frac{1}{4}\cos 3\theta + 3\cos \theta$ |
|        |                                                         |
| hr)    | $4-\cos^3\theta-3\cos\theta=1$                          |
|        | 1. Cos 30 = 1 (from (i)                                 |
|        | $3\theta = 2k\pi$                                       |
|        | $\theta = 2k\pi$                                        |
|        | 3                                                       |
|        | Smallest value occus when k=1                           |
|        | .'s θ = 2∏                                              |
| ,      |                                                         |
| Q      | Jestron 15.                                             |
| a)_    | <u>i)</u>                                               |
|        | Resolving forces vertically & horizontally              |
|        | 10 T cos 0 =mg -0                                       |
|        | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$  |
|        | Lin P                                                   |
| -      | Ø:0                                                     |
|        | TSIND = Mrw2                                            |
| tan    | D=F Twos D mg                                           |
|        | $\frac{1}{h} = \frac{rw^2}{g}$                          |
|        | 3                                                       |
|        | $\therefore  r w^2 = f$                                 |
| ·      | $\frac{1}{2} = \frac{1}{2}$                             |
|        | $\omega^2 = \frac{9}{7}$                                |
| :<br>[ |                                                         |
|        | W = \f                                                  |
|        | ii) Period = 2TT = 2TT Ji                               |
|        | W                                                       |
|        | 1 <sup>9</sup> / <sub>h</sub> 19                        |
|        |                                                         |



| <u>b)</u> |                               |                                           |                |
|-----------|-------------------------------|-------------------------------------------|----------------|
|           | *                             | P                                         |                |
|           |                               | H                                         |                |
|           | h                             |                                           | <b>A</b>       |
|           | <u>\</u>                      |                                           | ground         |
|           |                               |                                           |                |
| 1)        | 1                             |                                           |                |
|           | <b>9</b>                      |                                           |                |
|           | I mg I mkv2                   |                                           |                |
|           |                               |                                           |                |
|           | $m\ddot{x} = -mg - n$         | nkv²                                      |                |
|           | ii = - (g+                    |                                           |                |
|           | Vdv = - (0                    | 1+kv2)                                    |                |
|           |                               |                                           |                |
|           | dx = -v gtl                   | dV                                        | ut x = H; V =0 |
|           | <u> </u>                      | 2 V                                       | x = 0, y = u   |
|           | $\int_{0}^{H} dx = -1$        | C 2 kv                                    | 1.             |
|           | $\frac{1}{8}$ $\frac{2k}{2k}$ | $\int_{u}^{\infty} \frac{2kv}{g+kv^2} dv$ | 7. V           |
|           |                               | ü                                         |                |
|           | H = _                         | $\frac{1}{2k} \int \frac{2kV}{9+kV^2}$    | dv             |
|           | 2                             | 8 9+kV2                                   |                |
|           |                               |                                           |                |
|           | <u> </u>                      | L [In (g+kv2)                             | )              |
|           |                               |                                           |                |
|           |                               | c (In (g+ku²)                             | 1 - Ing)       |
|           |                               |                                           |                |
|           | H = 1/2                       | k In (gtku                                | <del></del>    |
|           |                               |                                           | -              |
| <u> </u>  |                               |                                           |                |
|           |                               |                                           |                |







|       | Also, using H from (i) and h from                                                    | sm(1)                                                        |
|-------|--------------------------------------------------------------------------------------|--------------------------------------------------------------|
|       | $H-h = \frac{1}{2k} \ln \left( \frac{9 + ku^2}{9} \right) - \frac{1}{2k}$            | In (g+ku²)                                                   |
|       |                                                                                      |                                                              |
|       | $\frac{H-h=1}{2k}\ln\left(\frac{9+kv^2}{9}\right)$                                   | (2)                                                          |
|       |                                                                                      |                                                              |
|       | From (1) $4$ (2) $\ln (9+kV^2) = -\ln (49-k)$ $49$                                   | $\frac{1}{2} = \ln \left( \frac{4g - LV^2}{4g} \right)^{-1}$ |
|       | 9+kV2 49                                                                             |                                                              |
|       | $\frac{g+kv^2}{9} = \frac{4g}{4g-kv^2}$                                              |                                                              |
|       |                                                                                      | 2 . 2                                                        |
|       | 4g2+4gkV2-gkV2-k                                                                     |                                                              |
|       | $3gkV^2 = k^2V'$                                                                     | *                                                            |
|       | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                |                                                              |
|       | $V^2 = \frac{39}{k}$                                                                 |                                                              |
|       | V = 39                                                                               |                                                              |
|       | N V k                                                                                |                                                              |
| ***** | ()                                                                                   |                                                              |
|       |                                                                                      |                                                              |
|       | 11/2-22                                                                              |                                                              |
|       | ma                                                                                   |                                                              |
|       | Resolving Forces                                                                     | Vertically                                                   |
|       | Horizontally                                                                         | N 605 d - mg - F 605(7/2)=0                                  |
| `     |                                                                                      | NGSX-mg-FSINX=0                                              |
| ····· | $\frac{m\sqrt{2}}{r} = r \cos \alpha + N \cos \left( \frac{\pi}{2} - \alpha \right)$ | : Fsind = NGSd-mg                                            |
|       | = FLOSX + NSINX                                                                      | (2                                                           |
| -     | : Fosd = mv2 - Nsind -                                                               | D                                                            |
|       |                                                                                      |                                                              |
|       |                                                                                      |                                                              |
|       |                                                                                      |                                                              |
|       | i                                                                                    |                                                              |



| <u>.                                      </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ii) Oxcosd + Oxsind                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fcos <sup>2</sup> d = MV <sup>2</sup> cosd - N Sind Cosd                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Y .                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FSin2d = NSindCosd - mg Sind                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = F(los2d+sin2d) = mv2 losd - mgsind                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $F = \frac{m \cos d \left( v^2 - 9r \sin d \right)}{\cos d}$                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $= m \left( v^2 - gr + an \alpha \right) \cos \alpha$                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u></u>                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11) r = 200m, g=9.8 m/s², F=0                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $V = 100  \text{km/h} = \frac{100 \times 1000}{3600} = \frac{250  \text{m/s}}{9}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3600 9                                                                            |
| \$ TV 1 TO 10 | From (ii) 0 - m (v2 - gr tan x) cos x                                             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | remember of the cost of                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 2                                                                               |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $V^{2}-gr + and = 0$ $fand = V^{2}$ $gr$                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{1}{1}$                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9 7                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = (256/a) <sup>2</sup>                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.8 × 200                                                                         |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 21.486                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d ≈ 21°29'                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A = 2121                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                   |

Question 16 a)  $P(x) = x^3(ax^2+bx+c) = ax^5+bx^4+cx^3$ 

Let  $Q(x) = P(x) - 1 = ax^5 + bx^4 + cx^3 - 1$ 

Since Q(x) is divisible by (x-1)3, x is a triple root

 $Q'(x) = 5qx^4 + 4bx^3 + 3cx^2$ 

(p'(1) = 5a + 4b + 3c = 0

 $(p''(x)) = 20ax^3 + 12bx^2 + 6cx$ 

Q"(1) = 20a + 12b + 6c = 0 - 2

Q(1) = a+b+c=0 \_\_\_\_\_\_3

Solving (). (2) \$ (3) Simultaneously,

a=6, b=-15, c=10

· · P(x)=6x5-15x4+10x13

Draw  $A \times$  and  $B \cup \bot DC$   $\Delta A \times D = \Delta B \cup C (RHS)$  $D \times = C \cup = 2$ 

 $\frac{EY}{AY} = \frac{DX}{AX}$  (ratio of matching sides of  $\equiv \Delta s$ )

 $\frac{Ey}{h} = \frac{2}{4}$ 

EY = h ; Similarly, VF = h

Et = EX+ 4+ AL

or =9+h



| •                                       | ij cross-sections // to the base                              | will be rectaylis |
|-----------------------------------------|---------------------------------------------------------------|-------------------|
|                                         |                                                               | D = X' 5 U' C'    |
|                                         |                                                               |                   |
|                                         | / /9                                                          | E1 -11-/E         |
|                                         | <del></del>                                                   |                   |
|                                         |                                                               | 3                 |
|                                         | From(i) 2 = 9+h                                               | D'x' = c'v' = 1   |
|                                         |                                                               |                   |
|                                         | · ·                                                           | Using III As      |
| *************************************** | Area of cross-section                                         | E'Y' : 1          |
|                                         | $= (a+b)(3+\frac{b}{2})$                                      |                   |
|                                         |                                                               | E'Y' = h          |
|                                         | $=\frac{h^2+15h+27}{2}$                                       | 4-                |
|                                         | 2 2                                                           | y=3+2×4           |
|                                         |                                                               | y = 3+ h          |
|                                         | $\Delta V = \lim_{h \to 0} \frac{1}{h^2 + 15h + 27} \Delta h$ | . 2               |
| ·····                                   | h→0 h=0 1 2 2                                                 |                   |
|                                         | 4                                                             |                   |
| *************************************** | $V = \left( \frac{h^2 + 15h + 27}{2} \right) dh$              |                   |
|                                         | 2 2                                                           |                   |
| ·                                       | 4                                                             |                   |
|                                         | $=(h^3 + 15h^2 + 27h)$                                        |                   |
|                                         | 16 4 10                                                       |                   |
|                                         |                                                               |                   |
|                                         | $V = 178 \frac{2}{3} \text{ m}^3$                             |                   |
| -                                       |                                                               |                   |
|                                         |                                                               | .,                |
|                                         |                                                               |                   |
|                                         |                                                               |                   |
|                                         |                                                               |                   |
|                                         |                                                               |                   |
|                                         |                                                               |                   |
|                                         |                                                               |                   |

