George Mason University

Physics 311

Operational Amplifier Circuits I

In this lab, you will get acquainted with essential operational amplifier circuits and parameters.

Your task is to design and build an inverting voltage amplifier using a 741 op-amp and the following resistor: $R_i = 2.2 k\Omega$, $R_f = 15 k\Omega$ $R_L = 1 k\Omega$. DC supply voltage is set to +/- 12 V.

- 1. Draw a circuit diagram and build the circuit. Apply a $500 \text{mV}_{\text{p-p}}$, 1 kHz sinewave signal to the input of the amplifier.
- 2. Calculate the expected gain (A_v) for the amplifier.
- 3. Measure and record V_{in} , V_{out} and A_{v} .
- 4. Compare your calculated value of A_v with your measured values. What is the difference?
- 5. Now turn of the power and replace R_f with a resistor in the range of $2.2k\Omega$ to 39 $k\Omega$. Record your R_f and reapply power.
- 6. Calculate A_v.
- 7. Measure v_{in} , v_{out} and A_v and compare your measured A_v to your calculated A_v . Is there a significant difference? If yes, how would you explain it?
- 8. Comparing your measurements with two different feedback resistors, what did you learn? How does the feedback resistor influence your output?
- 9. Explain the gain-bandwidth product of an amplifier. How can you measure the gain bandwidth product of an amplifier? Explain.
- 10. Determine the gain-bandwidth product of <u>your</u> amplifier.