北京师范大学 2019-2020 学年第一学期近世代数期末考试试题(A卷)

课程名称:	近世代数			任课老师姓名:		闭卷	-
	100 5}	考试时长:	120	_分钟	考试类别: 年級:	- Allegrana	
	學 号,				-		

- 一、 (20分) 设 $R = \{a+bi \mid a,b \in \mathbb{Z}, i=\sqrt{-1}\}$ 是高斯整数环。对于 $\alpha = a+bi \in R, I = \langle \alpha \rangle, R = R/I,$ 证明:
 - (1) $\forall \beta \in I^*, |\beta|^2 \ge |\alpha|^2$;
 - (2) A是域当且仅当 |a|2 是素数;
 - (3) 对于 a=1+3i, 求 R 的阶。
- 二、(15分) 设 R 是一个欧式环, δ 是 R 到自然数集 N 的一个欧式映射. 证明:
 - (1) 若任取 $a,b \in R^*$ 都有 $\delta(a) = \delta(b)$, 那么 R 是一个域;
 - (2) 若任取 $a,b \in R^*$ 都有 $\delta(ab) = \delta(a)\delta(b)$, 则对于任意正整数 m, 都存在 R 到自然数集 N 的一个默式映射 δ' 满足 $\delta'(1) = m$, 这里 1 是 R 的单位元.
- 三、(15分) 设 Q 是有理数域, $E=Q(\alpha)$, 其中 α 是 $f(x)=x^4+2x^2+6$ 的一个根.
 - (1) 求 |E: Q], 并说明理由;
 - (2) 对于 $\beta = \alpha^2 + 1$, 求 β 在 Q 中的极小多项式和 [Q(β): Q].
- 四、(15分) 设 E 是域 F 的 n > 1 次扩张且 $E = F(\beta)$. 若 (n, 6) = 1, 证明:
 - (1) $F(\beta) = F(\beta^2) = F(\beta^3)$;
 - (2) $F(\beta) = F(\beta^{2' \cdot 3'})$, 其中 $r, s \ge 0$.
- 五、(15分) 设 p 是素数、 $r,s\in\mathbb{Z}^+$ 、 $q_1=p^r$ 、 $q_2=p^s$. 给定 F_{q_1} 、 F_{q_2} 上的两个次数分别为 m,n 的不可约多项式 f(x),g(x). 令

$$E=F_{q_1}[x]/\langle f(x)\rangle,\ \tilde{E}=F_{q_2}[x]/\langle g(x)\rangle,$$

试给出 E 与 E 同构的一个充要条件, 并证明你的结论.

- 六。 (20分) 设 G 是一个群, $p \ge 3$ 是素数, $n \ge 1$, $|G| = 6p^n$, 证明:
 - (1) G包含唯一的指数为2的子群;
 - (2) G的翡罗 p-子群 P 在 G 中是正规的