Изолированная система

полностью изолирована от внешнего мира, не может обмениваться с ним ни веществом, ни энергией.

Замкнутая система

не может обмениваться с внешним миром веществом, но может обмениваться энергией.

Открытая система

может обмениваться с внешним миром и веществом, и энергией.

Систему какого типа представляет «синяя бутылка»?

<u>Реагенты</u> – вещества,

вступающие в реакцию

Продукты – вещества, образующиеся в результате реакции

Какие реагенты и продукты вы можете назвать для реакции синей бутылки?

Применимо ли к химической реакции понятие скорости?

Можно ли измерять скорость химической реакции в метрах в секунду?

Верно или нет, что химическая реакция, (по крайней мере при некоторых условиях), может быть обратимой, то есть идти в обратном направлении?

Верно ли, что свойством обратимости обладают также и физические процессы в механике и в молекулярной физике? В электричестве? Приведите примеры.

Прямая реакция – реакция, идущая в прямом направлении

Обратная реакция — реакция, идущая в обратном направлении

Условия, при которых химическая реакция не может быть обращена:

- вывод продуктов из зоны реакции в виде выделения газа или выпадения нерастворимого осадка;
- одно из веществ, плохо растворимых в воде это вода H_2O , поэтому образование воды как продукта реакции тоже препятствует обратимости;
- уход энергии из системы.

Концентрация — количество вещества, приходящееся на единицу объёма

$$\mathbf{c} = \frac{\mathbf{v}}{\mathbf{v}}$$
 [моль/л, моль/см³, шт/см³].

Запись $\mathbf{c} = \mathbf{2,5} \ \mathbf{M}$ -- означает, что концентрация данного вещества составляет 2,5 моль/л.

Концентрация немного похожа на плотность, но плотность — это масса на единицу объёма, а концентрация — это количество вещества на единицу объёма.

Образование <u>ионной связи</u> и формирование кристалла соли NaCl. Ионная связь характерна для молекул типа «металл + неметалл»

При растворении солей, кислот, щелочей происходит

электролитическая диссоциация вещества в воде.

Молекула воды H₂O полярная, угол между связями 104,5°

Количество свободных катионов натрия равно количеству анионов хлора, значит, $v\left(Na^{+}\right)=v\left(Cl^{-}\right)\text{ , а раз они занимают одинаковый объём, то }c(Na^{+})=c(Cl^{-})$

$$\rho$$
 g V погр = mg

$$ho = rac{m}{V_{ ext{norp}}}$$

Ареометр

Штангенциркуль — измерение с точностью до 0,1 мм

Сначала по основной шкале считываем количество миллиметров, потом смотрим какая риска нониуса совпадает с какой-либо (любой) риской основной шкалы — номер этой риски нониуса даёт нам десятые доли миллиметра. В примере показания штангенциркуля 11,6 мм.

Лабораторная работа «Измерение плотности жидкости и концентрации растворённой соли NaCl с помощью ареометра»

$$L = h + H + R$$

Плотность чистой воды: $\rho_0 = 1 \frac{\Gamma}{\text{см}^3}$

Измерения:

Общая высота пробирки	линейка	L =	см
Диаметр пробирки	штангенциркуль	D =	СМ

Радиус пробирки	$R = \frac{D}{2}$	R =	СМ
Масса пробирки	весы	M =	Γ
Высота выступающей над жидкостью части пробирки	линейка	h =	СМ

Вычисления:

Высота цилиндрической части пробирки в жидкости	H = L - h - R	H =	СМ
Объём погружённой части пробирки	$V = \pi R^2 (H + \frac{2}{3}R)$	V =	cm ³
Плотность жидкости	$ \rho = \frac{M}{v} $	ρ=	г/см ³

Масса соли в 1 см ³	$m = \rho \cdot 1 \text{ cm}^3 - \rho_0 \cdot 1 \text{ cm}^3$	m =	Г
Массовая доля соли в растворе	$\omega = \frac{m}{\rho \cdot 1 \text{cm}^3}$	ω =	%
Молярная масса соли Na Cl	Таблица Менделеева	μ=	г/моль
Количество вещества соли в 1 см ³ раствора	$v = \frac{m}{\mu}$	ν=	моль
Концентрация ионов натрия и ионов хлора в растворе	$c=rac{ u}{V}=rac{ u}{0,001 ext{m}\pi/\pi}$	c =	моль/л

Ответ: плотность жидкости:

г/см3,

массовая доля соли в растворе

%

концентрация ионов натрия и хлора:

моль/л

<u>ДЗ.</u>

1. Используя таблицу плотности металлов и таблицу Менделеева, определите концентрацию атомов заданного металла.

Формулу для определения концентрации атомов в металле выведите самостоятельно. Ответ дайте в молях на см³.

Металл	ρ , $\kappa\Gamma/M^3$
Алюминий	2699
Бериллий	1848
Ванадий	6110
Висмут	9800
Вольфрам	19350
Железо	7874
Золото	19320
Иридий	22400
Калий	862
Кобальт	8900

Металл	ρ , $\kappa\Gamma/M^3$
Литий	534
Магний	1738
Марганец	7440
Медь	8960
Молибден	10200
Натрий	968
Никель	8900
Ниобий	8570
Олово	7298
Осмий	22570

Металл	ρ , $\kappa\Gamma/M^3$
Платина	21450
Плутоний	19860
Ртуть	13546
Свинец	11350
Серебро	10500
Титан	4500
Торий	11720
Уран	18950
Хром	7190
Цинк	7140

2. На этой рекламной фотографии фотомодель делает измерение штангенциркулем. Правильно ли он делает?

