Definition of continuity

Definition (21.1)

Suppose (S,d) and (S^*,d^*) are metric spaces. The function $f:\operatorname{dom}(f)\to S^*$ (with $\operatorname{dom}(f)\subset S$) is called **continuous** at $x\in\operatorname{dom}(f)$ if $\forall \varepsilon>0\ \exists \delta>0$ s.t. $d^*(f(x),f(y))<\varepsilon$ whenever $d(x,y)<\delta$. f is called **continuous** on E ($E\subset S$) if it is continuous $\forall x\in E$ – that is, $\forall x\in E$, $\forall \varepsilon>0\ \exists \delta>0$ s.t. $d^*(f(x),f(y))<\varepsilon$ whenever $d(x,y)<\delta$.

Theorem (17.1 + 17.2, more or less)

 $f: S \to S^*$ is continuous at $x \in S$ iff $f(x_n) \to f(x)$ whenever a sequence (x_n) converges to x.

Example: a function discontinuous on $\mathbb R$

Dirichlet function (Exercise 17.13(a)). $f : \mathbb{R} \to \mathbb{R}$: $f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$. f is discontinuous everywhere.

Fix $x \in \mathbb{R}$, and show that f is discontinuous there. To this end, find a sequence $x_n \to x$ s.t. $f(x_n) \not\to f(x)$.

Case 1: $x \notin \mathbb{Q}$. By denseness of \mathbb{Q} , find $x_1, x_2, \ldots \in \mathbb{Q}$ s.t. $x_n \to x$. $f(x_n) = 1$ for any n, yet f(x) = 0.

Case 2: $x \in \mathbb{Q}$. By denseness of $\mathbb{R} \setminus \mathbb{Q}$, find $x_1, x_2, \ldots \notin \mathbb{Q}$ s.t. $x_n \to x$. $f(x_n) = 0$ for any n, yet f(x) = 1.

Example: a function continuous at exactly one point

Dirichlet function, modified (Exercise 17.13(b)). $g : \mathbb{R} \to \mathbb{R}$:

$$g(x) = xf(x) = \begin{cases} x & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$
 . g is continuous only at 0.

First show g is continuous at 0. If $x_n \to 0$, then $|x_n| \to 0$.

 $|g(x_n)-g(0)|\leqslant |x_n|$, hence $g(x_n)\to g(0)$ by Comparison Test.

Fix $x \in \mathbb{R} \setminus \{0\}$, and show that f is discontinuous there. To this end, find a sequence $x_n \to x$ s.t. $g(x_n) \not\to g(x)$.

Case 1: $x \notin \mathbb{Q}$. By denseness of \mathbb{Q} , find $x_1, x_2, \ldots \in \mathbb{Q}$ s.t. $x_n \to x$. $g(x_n) = x_n \to x$, yet $g(x) = 0 \neq x$.

Case 2: $x \in \mathbb{Q} \setminus \{0\}$. By denseness of $\mathbb{R} \setminus \mathbb{Q}$, find $x_1, x_2, \ldots \notin \mathbb{Q}$ s.t.

 $x_n \to x$. $g(x_n) = 0$ for any n, yet g(x) = x.

Example: a function continuous on $\mathbb{R}\setminus\mathbb{Q}$ only

Thomae function (Exercise 17.14). If $x \notin \mathbb{Q}$, let h(x) = 0. If $x \in \mathbb{Q} \setminus \{0\}$, write $x = \frac{a}{b}$ with $a \in \mathbb{Z}$, $b \in \mathbb{N}$, and $\gcd(a, b) = 1$. Set $h(x) = \frac{1}{b}$. Let h(0) = 1. h is continuous at x iff $x \notin \mathbb{Q}$.

- (1) If $x \in \mathbb{Q}$, then h is discontinuous at x. Find $(x_n) \subset \mathbb{R} \setminus \mathbb{Q}$, $x_n \to x$. Then $h(x_n) \not\to h(x)$.
- **(2)** $x \notin \mathbb{Q}$. For $\varepsilon > 0$ find $\delta > 0$ s.t. $h(y) = |h(x) h(y)| < \varepsilon$ when $|x y| < \delta$. Only worry about $y \in \mathbb{Q}$.

Find $N \in \mathbb{N}$ s.t. $\frac{1}{N} < \varepsilon$. Need to find $\delta > 0$ s.t. if $|\frac{a}{b} - x| < \delta$, then b > N. Indeed, then $f\left(\frac{a}{b}\right) = \frac{1}{b} < \frac{1}{N} < \varepsilon$.

Let z=xN!, $\gamma=\min\{z-\lfloor z\rfloor,\lfloor z\rfloor+1-z\}$ (distance from z to the nearest integer), $\delta=\frac{\gamma}{N!}$. Suppose, for contradiction, that $|\frac{a}{b}-x|<\delta$, and $b\leqslant N$. Then $|\frac{a}{b}N!-xN!|< N!\delta=\gamma$. This is impossible, since $\frac{a}{b}N!\in\mathbb{Z}$.

Operations on continuous functions

Theorem (17.3, 17.4)

Suppose f and g are continuous at $x_0 \in \text{dom}(f) \cap \text{dom}(g) \subset S$, where (S,d) is a metric space. Then |f|, kf $(k \in \mathbb{R})$, f+g, and fg are continuous at x_0 . $\frac{f}{g}$ is continuous at x_0 if $g(x_0) \neq 0$.

Proof: fg is continuous at x_0 .

Need to show: if $x_n \to x_0$, then $f(x_n)g(x_n) \to f(x_0)g(x_0)$.

Know: $\lim f(x_n) = f(x_0)$, $\lim g(x_n) = g(x_0)$.

 $\lim f(x_n)g(x_n) = \big[\lim f(x_n)\big] \cdot \big[\lim g(x_n)\big] = f(x_0)g(x_0).$

Proposition (Sec. 17, Example 5)

If f and g are functions into \mathbb{R} , continuous at x_0 , then $\max\{f,g\}$ and $\min\{f,g\}$ are continuous at x_0 .

Proof: continuity of $\max\{f,g\}$. For $a,b \in \mathbb{R}$, $\max\{a,b\} = \frac{a+b}{2} + \frac{|a-b|}{2}$. $\max\{f,g\} = \frac{f+g}{2} + \frac{|f-g|}{2}$. f+g,f-g are cont. at $x_0 \Rightarrow \text{so is } |f-g|$.

Further examples

Proposition (Exercises 17.5, 17.6)

- Any polynomial is continuous.
- Any rational function is continuous.

```
Polynomial: p(x) = a_0 + a_1x + ... + a_nx^n (assume a_n \neq 0). dom(p) = \mathbb{R}. Rational function: f = \frac{p}{q}, where p, q are polynomials. dom(f) = \mathbb{R} \setminus \{x : q(x) = 0\}.
```

- **Proof.** (1) Prove that $x \mapsto x^m$ is continuous, for $m \in \{0, 1, 2, ...\}$ (induction; products of continuous functions are continuous).
- (2) p is continuous (sums of continuous functions are continuous).
- (3) $\frac{p}{a}$ is continuous (ratios of continuous functions are continuous).

Compositions of continuous functions

Theorem (17.5 more or less)

Suppose (S_1, d_1) , (S_2, d_2) , (S_3, d_3) are metric spaces, and we have functions $f: \operatorname{dom}(f) \to S_2$ and $g: \operatorname{dom}(g) \to S_3$ $(\operatorname{dom}(f) \subset S_1)$, $\operatorname{dom}(g) \subset S_2$. Suppose $x_0 \in \operatorname{dom}(f)$, $f(x_0) \in \operatorname{dom}(g)$, f is continuous at x_0 , g is continuous at $f(x_0)$. Then $g \circ f$ is continuous at x_0 .

Proposition (Homework)

The function $[0,\infty) \to [0,\infty)$: $x \mapsto \sqrt{x}$ is continuous.

Corollary

Suppose f is continuous at x_0 . If $f(x_0) \ge 0$, then \sqrt{f} (defined on $\{x \in \text{dom}(f) : f(x) \ge 0\}$) is continuous at x_0 .

Another characterization of continuity

Theorem (21.3)

Suppose (S,d) and (S^*,d^*) are metric spaces. $f:S\to S^*$ is continuous iff $f^{-1}(U)$ is open for every open $U\subset S^*$. Here, $f^{-1}(U)=\{s\in S:f(s)\in U\}$.

Proof: next time.

Corollary (Exercise 21.4 – Homework)

Suppose (S,d) is a metric space. Then a function $f:S\to\mathbb{R}$ is continuous iff $f^{-1}((a,b))$ is open whenever a< b.

Lemma (Exercise 21.2 - Homework)

f is continuous at $s_0 \in S$ iff for any open set $U \ni f(s_0) \exists$ open set $V \ni s_0$ s.t. $f(V) \subset U$.

Note: $V \subset f^{-1}(U) \Leftrightarrow f(V) \subset U$.