

COMPUTER NETWORKS AND APPLICATIONS

COMP SCI 3001
Faculty of Engineering, Computer and Mathematical Sciences

LAN Addressing

LAN technologies

Data Link Layer so far

Services, error detection/correction, multiple access

Next: LAN technologies

- Addressing
- Ethernet
- Switches
- MPLS

LAN addresses and ARP

We know 32 bit IP addresses

- Network Layer address
 - Used to get datagram to destination network (recall IP network definition)

LAN (or MAC (media access control) or physical) address

- used 'locally" to get frame from one interface to another physicallyconnected interface (same network, in IP-addressing sense)
- At LAN level:
 - 48 bit MAC address (for most LANs) burned in the adapter ROM
 - e.g.: 1A-2F-BB-76-09-AD

```
hexadecimal (base 16) notation (each "number" represents 4 bits)
```

MAC address allocation

- MAC address allocation administered by IEEE
- Manufacturer buys portion of MAC address space (to assure uniqueness)
- Analogy
 - (a) MAC address like Tax File Number
 - (b) IP address like postal address
- MAC flat address > portability
 - can move LAN card from one LAN to another
- IP hierarchical address not portable
 - depends on network to which one attaches

LAN addresses and ARP

each adapter on LAN has unique LAN address

Earlier routing discussion?

Starting at A, given IP datagram addressed to B:

- look up net. address of B, find B on same net. as A
- link layer send datagram to B inside link layer frame

How do we work out the MAC address of the destination host?

Address Resolution Protocol (ARP)

- Each IP node (host, router) on LAN has ARP module and table
- ARP Table: IP/MAC address mappings for some LAN nodes

< IP address; MAC address; TTL>

Time To Live (TTL): time after which address mapping will be forgotten (typically 20 min)

Why?

ARP protocol: same LAN

- A wants to send datagram to B
 - B's MAC address not in A's ARP table.
- 2. A broadcasts ARP query packet, containing B's IP address
 - dest MAC address = FF-FF-FF-FF-FF
 - all nodes on LAN receive ARP query
- 3. B receives ARP packet, replies to A with its (B's) MAC address
 - frame sent to A's MAC address (unicast)

- A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed
- ARP is "plug-and-play":
 - nodes create their ARP tables without intervention from net administrator

Earlier routing discussion?

Starting at A, given IP datagram addressed to E:

• ??

How do we work out the MAC address of the destination host?

Addressing: routing to another LAN

Example: send datagram from A to B via R

- focus on addressing at IP (datagram) and MAC layer (frame)
- assume A knows B's IP address
- assume A knows IP address of first hop router, R (how?)
- assume A knows R's MAC address (how?)

- A creates IP datagram with IP source A, destination B
- A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram

- frame sent from A to R
- frame received at R, datagram removed, passed up to IP

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram

Addressing: routing to another LAN R forwards datagram with IP source A, destination B

- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram

COMPUTER NETWORKS AND APPLICATIONS

COMP SCI 3001
Faculty of Engineering, Computer and Mathematical Sciences

Ethernet

Ethernet

- "dominant" wired LAN technology:
- cheap \$20 for NIC
- first widely used LAN technology
- simpler, cheaper than token LANs and ATM
- kept up with speed race: 10 Mbps 10 Gbps

Metcalfe's Ethernet sketch

Ethernet frame structure

sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

type					
preamble	dest. address	source address		data (payload)	CRC

preamble:

- ❖ 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- used to synchronize receiver, sender clock rates

Ethernet: physical topology

- bus: popular through mid 90s
 - all nodes in same collision domain (can collide with each other)
- star: prevails today
 - active switch in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

bus: coaxial cable

- bus:
 - Every one was able to share the wire because it used a media access control protocol called what? CSMA/CD
- star: prevails today (also called switched networks)
 - active switch in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)
 - Full duplex communication, separate wires for sending and receiving
 - So collisions domains are isolated and the CD part of CSMA/CD is not needed any more.
 - The switch is transparent => as if there is a direct wire from A to B
- NOTE original Ethernet specification are half-duplex

COMPUTER NETWORKS AND APPLICATIONS

COMP SCI 3001
Faculty of Engineering, Computer and Mathematical Sciences

Switches

Ethernet switch

- link-layer device: takes an active role
 - Filtering, Storing, Forwarding Ethernet frames
 - examine incoming frame's MAC address,
 selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment
- transparent
 - hosts are unaware of presence of switches
- plug-and-play, self-learning
 - -switches do not need to be configured

How do switches know where to send information? Switch filtering

- Switches learn which hosts can be reached through which interfaces: maintains switch table
 - when frame received, switch learns location of sender: incoming LAN segment
 - records sender location in switch table
- Switch table entry
 - [node LAN address, switch interface (incoming), time stamp,
 TTL]
 - stale entries in filtering table dropped (TTL can be 60 minutes)

Switch: self-learning

- switch *learns* which hosts can be reached through which interfaces
 - when frame received,
 switch "learns" location of
 sender: incoming LAN
 segment
 - records sender/location pair in switch table

MAC addr	interface	TTL
A	1	60

Switch table (initially empty)

Filtering and Forwarding

```
if destination is on LAN on which frame was received
    then drop the frame
    else {
        lookup switch table
        if entry found for destination
            then forward the frame on interface indicated;
            else flood; /* forward on all but the interface on which the frame arrived */
        }
```

Self-learning, forwarding: example

frame destination, A', locaton unknown: flood

destination A location known: selectively send on just one link

MAC addr	interface	TTL
A	1	60
Α'	4	60

switch table (initially empty)

Source: A Dest: A'

Switches - spanning trees

- Increased reliability
 - desirable to have redundant, alternate paths from source to destination
- With multiple simultaneous paths, cycles result
 - switches may multiply and forward frame forever
- Solution: organize switches in a spanning tree by disabling subset of interfaces

http://www.youtube.com/watch?v=ihF_78oIaDI

Switches vs. routers

Switches vs. routers

both are store-and-forward:

- routers: network-layer devices (examine networklayer headers)
- switches: link-layer devices (examine link-layer headers)

both have forwarding tables:

- routers: compute tables using routing algorithms, IP addresses
- switches: learn forwarding table using flooding, learning, MAC addresses

Routers versus switches

Switches + and -

- Switch operation is simpler requiring less processing bandwidth (only layer 2)
- + Plug and Play devices
- Topologies are restricted with switches (a spanning tree must be built to avoid cycles)
- Switches do not offer protection from broadcast storms (endless broadcasting by a host will be forwarded by a switch)
- Large networks will lead to nodes with large ARP tables and a lot of ARP traffic

Routers versus switches (cont.)

Routers + and -

- Arbitrary topologies can be supported, cycling is limited by TTL counters (and good routing protocols)
- + Provide **firewall protection** against broadcast storms
- Require IP address configuration (not plug and play)
- Require higher processing bandwidth (e.g. routing algorithms)

Switches do well in **small** (few hundred hosts) while routers used in **large** networks (thousands of hosts)

COMPUTER NETWORKS AND APPLICATIONS

COMP SCI 3001
Faculty of Engineering, Computer and Mathematical Sciences

MPLS

MPLS - where did it come from?

- IP over ATM was a mechanism to get a good layer 3 protocol working over fast and efficient lower level hardware
 - but there were scalability problems
- Toshiba produced a Cell Switching Router (CSR) that had an ATM switching fabric controlled by IP protocols
- A little later Ipsilon produced their **IP Switching** solution. Their rationale:
 - want a device as fast as an ATM switch that routes
 - the Internet needs fast routers, not switches, because IP is dominant
 - ATM signalling and mapping to IP is complex; ditch ATM control protocols!
- Cisco followed this up with Tag Switching
 - didn't need data traffic to flow to populate its tables
 - worked for link layer technologies other than ATM
 - after revision and consultation this became MPLS

Multiprotocol label switching (MPLS)

- Initial goal: high-speed IP forwarding using fixed length label (instead of IP address)
 - fast lookup using fixed length identifier (rather than longest prefix matching)
 - borrowing ideas from Virtual Circuit (VC) approach
 - but IP datagram still keeps IP address!

Need MPLS capable routers: Label-Switched Router (LSR)

MPLS capable routers

- a.k.a. label-switched router
- forward packets to outgoing interface based only on label value (don't inspect IP address)
 - MPLS forwarding table distinct from IP forwarding tables

MPLS versus IP paths

❖ IP routing: path to destination determined by destination address alone

MPLS versus IP paths (main interest now: traffic engineering)

IP routing: path to destination determined by destination address alone

MPLS routing: path to destination can be based on source and dest. address

 fast reroute: precompute backup routes in case of link failure

MPLS Example

in label	out label	dest	out interface
10	6	Α	1
12	9	D	0

Routers (LERs)

Γ	in	out		out
	label		dest	interface
ŀ	0		^	
	8	б	A	U

in	out		out
label	label	dest	interface
6	-	Α	0

MPLS - how it works

- Routers work out routing tables and forward packets through their interfaces
 - for unicast packets we use a longest prefix match on the destination IP address
- This partitions all possible packets that a router can forward into a finite number of disjoint subsets. Why disjoint?
 - from a forwarding point of view anything sent to the same next hop is the same
 - we refer to these subsets as Forwarding Equivalence Classes (FECs)

MPLS - how it works (cont.)

- If we know that a set of IP prefixes are all going out the same interface we can throw all of them into the same Forwarding Equivalence Class
- Our forwarding table is now a set of FECs and a next hop for each FEC
- We can set the granularity of these as we wish
 - a FEC can model many entries or just one
 - this is where the scalability comes from
- We need to map into the FEC consistently or we can get some odd results

MPLS - label swapping

- When a packet arrives, the label is extracted and compared to a forwarding table
- The table will have subentries matching each incoming label
 - these contain the outgoing label, the outbound interface and the designated next hop
- You can have multiple subentries for each incoming label to implement (among other things) traffic management capabilities
- The forwarding table may also specify resource usage, such as which outgoing queue to use
 - this allows the implementation of Quality of Service requirements
- The incoming label is replaced by the outgoing label in the subentry and sent out over the designated interface to the specified next hop
 - this is called label swapping

MPLS Features

- Single forwarding algorithm
 - multicast is the same as unicast, just with more subentries
 - Just make sure swapping works correctly
- Multiprotocol support: up and down
 - the forwarding component is not network layer specific
 - we can stick a label onto the front of any packet
 - similarly, we can also use an underlying link layer protocol through the use of existing link layer fields or 'shim' headers

MPLS Features

- flexibility: MPLS forwarding decisions can differ from those of IP
 - use destination and source addresses to route flows to same destination differently (traffic engineering)
 - re-route flows quickly if link fails: pre-computed backup paths (useful for VoIP)
- MPLS can support multiple levels of connection tunnelling through label stacking
 - VPN support

MPLS signaling (distributing labels)

- modify link-state flooding protocols to carry info used by MPLS routing,
 - e.g., link bandwidth, amount of "reserved" link bandwidth
- ❖ IETF effort: entry MPLS router uses RSVP-TE signaling protocol to set up MPLS forwarding at downstream routers

