

Team Members:

Reentika Awasthi, Jasper Breurkens, Vinchy He, Chiara Pignatiello, Jasmine Saran, Eric Wang

Problem Statement

Group N1 is tasked with designing a Rainwater Harvesting (RWH) system to provide clean, reliable drinking water for a two-person household in Van Anda, a remote community on Texada Island in British Columbia.

Table of Contents

1. Stakeholder Consult

5. Pump Specifications

2. Topography

6. Power Systems

3. Rainwater Collection

7. Risk Exposure

and Storage

8. Cost and Satisfaction

4. Water Treatment

Stakeholder Needs

Low costs, with **reduced shipping costs** and **front end load**

Reliable, with a **self-powered** system providing **year-round** potable water

Simple system, with **minimal maintenance** and **no chlorine** usage

Topography

1. Refers to the position of the tank

2. Origin at Yellow Dot

3. Chosen distance and elevation:

```
(distance = 10 m)
```

(elevation = 2.3 m)

Rainwater Collection

Total Catchment Area: 100m²

Collection Tank Volume: 2 500L

Full Roof Catchment

Water Storage

2500 L Catchment Tank

- 40000L Storage Tank
- 3m water tower
- Most efficient use of volume
- Meets requirement of daily consumption and rainwater collection

Disinfection

- Overall lower cost in the span of five years.
- No significant impact to the environment nor personal health
- No chlorine taste in water

Ozone Disinfection

Filtration

Filter Location: Filter to storage

Filter Components: 1 µm, 5 µm and 200 µm

200 µm

Bag Filter Cartridge Filter Cartridge Filter 5 µm

1 µm

Pump Chosen - Pump A

- 70% efficiency
- Upfront cost of \$640
- 900 running hours

Considering cost, flow rate, power consumption and efficiency, Pump A presented itself as the optimal Choice.

Power System

Diesel Generator **4** Batteries

15 Shipments of Diesel

Power System

Selection Justification:

- Most affordable costs, meeting the demands and resulting in high satisfaction of customers
- Consistent power generation unaffected by time or weather.
- Lower maintenance occurrences.

Risk Exposure

Chlorine Refilling Risk:

- N1 opted for UV filtration making chlorine risk nonexistent.

Diesel Refueling Risk:

- The average refuelling period of 120 days had to be assumed from the given data.

Total Health Risk: 3.20 Total Environmental Risk: 4.80

Total Risk: 8.00

Greenhouse Gas Emissions

GHG from existing system

- Centralized water treatment
- Land & sea transport
- Storage & distribution
- 10 117 kg CO2e

- Relative GHG%: 92%

GHG from new system

- Local water treatment
- Storage & distribution

- 9 282 kg CO2e

Cost

Total Cost: **\$50,968.84**

Budget Limit: **\$115500**

Satisfaction

Satisfaction in Percentage

The Team

Appendix: Topography Map

Appendix: Parameters

GIVEN & DECIDED PARAMETERS					
Initial Stored Water (m^3)	0				
Daily Consumption (m^3)	0.3				
Catchment Whole Roof (m^3)	100				
Collection Tank Volume (m^3)	2.5				
Storage Tank Volume (m^3)	40				
Storage Tank Distance from House (m)	10				
Storage Tank Elevation (m)	7				
Pump Pressure (kPa)	121.0695704				
Chemical Treatment	Ozone				
UV Purifier Power (W)	50				
Filter	Line Storage to House				
Power Strategy	Diesel				
Battery Power (Wh)	2000				
Battery Efficiency in	0.96				
Battery Efficiency out	0.96				
Pipe Friction Factor	0.05				

These parameters were either given in the Component Selection Guide or found with the data given

Appendix: Flow rate and Pump Pressures

Pump Paramete	ers			Efficiency Curve						
System Curve	а	b	С	Α	В	Qmax				
Pump A	-0.0172	-0.3605	150.9	0.7	0.39	83.7 LPM				
Pump B	-0.0039	-0.096	237.86	0.94	0.85	245.7 LPM				
Pump C	-0.0151	-0.5516	356.8	0.72	0.55	136.5 LPM				
							System curve			
	Pump A	Pump B	Pump C					а	0.04930332986	
a	-0.0172	-0.0039	-0.0151	pressure = (a)*(I	Flow Rate)^2 + (b)*(Flow Rate) +c		b	0.01350690021	
b	-0.3605	-0.096	-0.5516					С	68.67	
С	150.9	237.86	356.8				Quadric Equatio	Α	В	С
Initial Cost	\$640	\$1,250	\$3,250				a	-0.06650332986	-0.05320332986	-0.06440332986
efficiency	70%	72%	65%				b	-0.3740069002	-0.1095069002	-0.5651069002
MTBF	900	1650	1800				С	82.23	169.19	288.13
							Q	32.463921	55.372311	62.643229
							P	121.0695704	220.5864961	262.9909654

Appendix: Cost Breakdown

System	Cost		
Power System	9610		
Pump	\$640		
Filter - Initial Costs	\$335		
Filter - Maintenance	\$3,500		
Ozone - Initial costs	\$4,000		
Ozone - Maintenance	N/A		
UV - Initial Costs	\$850		
UV - Maintenance Costs	\$550		
Collection Tank	900		
Storage Tank	3000		
Tank Tower	8183.84		
Piping	6300		
Roof Catchment	350		
Shipped Water	12750		
TOTAL	50968.84		

Appendix: Power System Results

FINAL RESULTS (OVER 5 YEARS)						
COSTS	(\$)	GHG	i (kgCO2e)	MAINTENANCE (how many times)		
Panel	N/A	Panel	N/A	Panel	N/A	
Battery	1560	Battery	960	Oil Change	5.753928689	
Inverter	N/A	Inverter	N/A	Refuelling	14.38482172	
Generator	3250	Generator	1250	TOTAL	21	
Fuel	4550	Fuel	4675.06706			
Oil Change	250	TOTAL	6885.06706			
TOTAL	9610					

Appendix: Satisfaction Attributes Breakdown

Attribute	Weight	Satisfaction	Weighted Satisfaction
Consumption	13%	1.00	0.13
Relative Cost	22%	0.80	0.18
Health & Environmental Risk	7%	0.88	0.06
GHG Emissions	5%	0.04	0.002
Maintenance Occurrences	15%	0.81	0.12
On-Demand Flow Rate	13%	1.00	0.13
Reliability	10%	0.91	0.09
Land Use	15%	0.60	0.09
Total	100%		0.80