

## 第九讲 几何变换

**练1.** 设点 B 关于直线 CM 的对称点为 B',则

MA + MB = MA + MB' > AB' = CA + CB' = CA + CB.



练2. 设正方形 ABMN 中心、正方形 BCPQ 中心、

MQ 中点、AC 中点分别为 E、F、G、H,

倍长 BG 到点 I,则 $\triangle BGQ \cong \triangle IGM$ ,MI = BO = BC

 $\mathbb{X} BN = BA$ ,  $\angle BMI = 180^{\circ} - \angle MBQ = \angle ABC$ ,

故 $\triangle ABC \cong \triangle BMI$  于是  $BG = \frac{1}{2}BI = \frac{1}{2}AC = AH$ ,

且  $BG \perp AH$  ,结合  $\triangle AEB$  为等腰三角形,

可得 $\triangle EAH \cong \triangle EBG$  (直观理解为绕点 E 旋转 90°).

故 $\triangle$ HEG 为等腰直角三角形,同理 $\triangle$ HFG 是等腰直角三角形.

故 EFGH 构成一个正方形.



**练3.** 记直线 AB 与圆 O 组成的图形为  $C_1$  ,

直线 AB 与圆 P 组成的图形为  $C_2$ ,

直线 AB 与圆 Q 组成的图形为  $C_3$ .

则 $C_1$ 与 $C_2$ 关于A位似, $C_1$ 与 $C_3$ 关于B位似.

于是 $C_2$ 与 $C_3$ 也位似,位似中心在直线AB上.

同时该点也是圆P和圆Q的位似中心.

