PROGRAMA DE POS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA - PPGEE

DISCIPLINA: TÉCNICAS DE OTIMIZAÇÃO (PARTE I) PROFESSOR: RICARDO DE ANDRADE

Lista de Exercícios - Unidade III (Solução Numérica de Equações Algébricas Não Lineares)

Exercícios de Fixação (EF)

1 – Determine a raiz real das seguintes equações:

a)
$$f(x) = x - 2,965 = 0$$

b)
$$f(x) = x^2 - 23x + 132 = 0$$

c)
$$f(x) = x^3 - 64 = 0$$

d)
$$f(x) = x^4 - 7x^3 + 12x^2 = 0$$

e)
$$f(x) = e^x - 1 = 0$$

f)
$$f(x) = sen(x)$$

g)
$$f(x) = \sqrt{x} - 2 = 0$$

2 – Determine a raiz das seguintes equações:

a)
$$f(x) = x^4 + 81 = 0$$

b)
$$f(x) = (x^2 - 6x + 10)(x - 1) = 0$$

- 3 Determine a raiz real da equação $f(x) = e^x \sin x 2 = 0$. Utilize a implementação computacional da Lista de Exercícios da Unidade I (Conceitos e Princípios Gerais em Cálculo Numérico) para auxiliar no processo de obtenção da raiz real da equação.:
- 4 Considere a equação $f(x) = (x^{-3}) \ln x = 0$, em que a única raiz é $\bar{x} = 1$. Determine o valor de f(x) para os seguintes valores de x = 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 e 16384.

#	x	f(x)	#	x	f(x)
1	2		8	256	
2	4		9	512	
3	8		10	1024	
4	16		11	2048	
5	32		12	4096	
6	64		13	8192	
7	128		14	16384	

5 - Determine o zero das funções, por meio do Método da Bisseção (retenha, durante os cálculos, cinco casas decimais):

a)
$$f(x) = x^2 - 3$$
; [1; 2] com $\epsilon = 10^{-2}$;

b)
$$f(x) = x^2 + \ln x$$
; [0,5; 1,0] com $\epsilon = 10^{-2}$;

c)
$$f(x) = 4\cos x - e^x$$
; [0,0; 1,0] com $\epsilon = 10^{-2}$.;

d)
$$f(x) = x^2 + 62,10x + 1$$
; [-1; 0] com $\epsilon = 10^{-4}$;

e)
$$f(x) = x^2 + 62{,}10x + 1; [-63; -61] \text{ com } \epsilon = 10^{-4}.$$

DISCIPLINA: TÉCNICAS DE OTIMIZAÇÃO (PARTE I)

PROFESSOR: RICARDO DE ANDRADE

6 – Determine a aproximação linear das seguintes funções por meio da expansão em série de Taylor (retenha, durante os cálculos, cinco casas decimais):

- a) $f(x) = x^2 3$; $x_k = 2.0$;
- b) $f(x) = x^2 + \ln x$; $x_k = 1.0$;
- c) $f(x) = 4\cos x e^x$; $x_k = 1.0$.
- 7 Determine o zero de cada função linear, obtida a partir da linearização por meio da expansão em série de Taylor, do Exercício anterior (retenha, durante os cálculos, cinco casas decimais).
- 8 Determine o zero das funções, por meio do método de Newton (retenha, durante os cálculos, cinco casas decimais):
 - a) $f(x) = x^2 3$; [1; 2] com $\epsilon = 10^{-2}$;
 - b) $f(x) = x^2 + \ln x$; [0,5; 1,0] com $\epsilon = 10^{-2}$;
 - c) $f(x) = 4\cos x e^x$; [0,0; 1,0] com $\epsilon = 10^{-2}$.;
 - d) $f(x) = x^2 + 62,10x + 1$; [-1; 0] com $\epsilon = 10^{-4}$;
 - e) $f(x) = x^2 + 62{,}10x + 1; [-63; -61] \text{ com } \epsilon = 10^{-4}.$
- 9 Determine o zero da função, por meio do método de Newton (retenha, durante os cálculos, quatro casas decimais):

$$f(x) = x^3 - 5 \operatorname{sen} x$$
; [1; 2] $\operatorname{com} \epsilon = 10^{-3}$.

Proceda com o método de Newton, adotando como $x_0 = 1$ e $x_0 = 2$. Para cada aproximação inicial escolhida, determine a trajetória (ou a sequência) de aproximações determinadas pelo processo iterativo.

10 – Determine o zero da função por meio do método de Newton com derivada constante (retenha, durante os cálculos, quatro casas decimais):

$$f(x) = x^3 - 1/2$$
; [0; 1] com $\epsilon = 10^{-2}$

11 – Determine o zero da função por meio do método das secantes (retenha, durante os cálculos, quatro casas decimais):

$$f(x) = x^3 - 1/2$$
; [0; 1]; $x_0 = 0.0$; $x_1 = 1.0$; com $\epsilon = 10^{-2}$

12 – Determine o zero da função por meio do método de Newton, método de Newton com derivada constante e método das secantes (retenha, durante os cálculos, oito casas decimais):

$$f(x) = \cos x - 3 + e^x$$
; [0; 1]; $x_0 = 0.0$; $x_1 = 0.8$; com $\epsilon = 10^{-7}$

Proceda com um quadro (ou tabela) comparativo de modo a ilustrar as aproximações e a quantidade de iterações obtidas em cada método.

13 – Determine o zero da função por meio do método *regula falsi* (retenha, durante os cálculos, quatro casas decimais):

$$f(x) = x - \cos x$$
; [0,7; 0,8]; $x_0 = 0.0$; $x_1 = 1.0$; com $\epsilon = 10^{-3}$

DISCIPLINA: TÉCNICAS DE OTIMIZAÇÃO (PARTE I)

PROFESSOR: RICARDO DE ANDRADE

1 – Determine o zero das funções, por meio do Método da Bisseção, Método de Newton, Método das Secantes e Método *Regula Falsi*. Adicionalmente, determine o número de iterações em cada método:

- a) $f(x) = 2x^3 + \ln x 5$; [1; 2] com $\epsilon = 10^{-7}$;
- b) $f(x) = e^{-0.1x} + x^2 10$; [2,5; 3,5] com $\epsilon = 10^{-5}$;
- 2 Determine a "raiz negativa" (zero da função no \mathbb{R}_-) da equação $f(x) = x^3 5x^2 + x + 3 = 0$; com $\epsilon = 10^{-5}$, por meio de qualquer método (método da Bisseção, método de Newton, Método das Secantes e Método *Regula Falsi*), retendo, durante os cálculos, seis casas decimais. Para realizar o isolamento (localização) das raízes, proceda com o esboço do gráfico da função (Exercício de Implementação Computacional 1), de modo a determinar o intervalo que contenha uma raiz negativa da equação:
- 3 Determine o zero da função por meio do método das secantes (retenha, durante os cálculos, três casas decimais):

$$f(x) = \sqrt{x} - 5e^{-x}$$
; [0; 3]; $x_0 = 1.4$; $x_1 = 1.5$; com $\epsilon = 10^{-2}$

4 – O método das secantes é uma modificação do método de Newton, inclusive as condições de convergência são parecidas. Explique qual o principal problema que pode surgir durante a aplicação do método das secantes quando $f(x_k) \cong f(x_{k-1})$.

.....

Exercícios para Implementação Computacional (EI)

- 1 Implemente os procedimentos computacionais necessários para a obtenção do gráfico de uma função $f(x): \mathbb{R} \to \mathbb{R}$. A execução da implementação computacional deve exibir o gráfico da função, bem como os eixos das abcissas e das ordenadas. Os dados de entrada são:
 - a) A expressão algébrica da função $f(x): \mathbb{R} \to \mathbb{R}$. De modo a facilitar a implementação computacional, pode-se considerar a expressão algébrica da função diretamente no códigofonte;
- b) O intervalo do domínio no qual deve-se exibir o gráfico da função $x \in [a,b]$. Considerando o gráfico obtido a partir da implementação computacional, procure isolar todas as raízes das seguintes funções:
 - i) $f(x) = x^2 \sin x 1; [-3; 3]$
 - *ii)* $f(x) = x^3 2x^2 20x + 30; [-8; 8]$
 - *iii*) $f(x) = x^4 5x^3 7x^2 + 29x + 30; [-6; 6]$
 - iv) $f(x) = 4\cos x e^x$, [0; 2]
- 2 Implemente os procedimentos computacionais necessários para a determinação do zero de uma função f(x) (raiz da equação f(x) = 0) por meio do Método da Bisseção. A execução da implementação computacional deve fornecer a sequência de aproximações (inclusive o zero da função), além da imagem da função para todas os termos da sequência. Os dados de entrada são:
 - a) Expressão analítica da função (f(x)). De modo a facilitar a implementação computacional, pode-se considerar a expressão algébrica da função diretamente no código-fonte;

DISCIPLINA: TÉCNICAS DE OTIMIZAÇÃO (PARTE I)

PROFESSOR: RICARDO DE ANDRADE

- b) Intervalo [a; b], contendo uma e somente uma raiz real da equação f(x);
- c) Tolerância ϵ ;
- d) Número máximo de iterações M.

Os dados de saída devem ser exibidos em formato tabular, compreendendo:

- a) Sequência de intervalos obtidos durante a execução do método da Bisseção;
- b) Sequência de aproximações sucessivas (termos iterados);
- c) Imagem da função relativa às aproximações sucessivas;
- d) Sequência de valores relativos ao cálculo da verificação do critério de parada ($E = |x_k x_{k-1}|$).

Complementarmente, os dados de saída devem exibir:

- a) Número de iterações;
- b) Zero da função (\bar{x});
- c) Imagem da função no ponto (\bar{x}) .

Determine o zero das seguintes funções:

- i) $f(x) = x^2 \sin x$; [0; 1]; $\epsilon = 10^{-5}$ e M = 100;
- *ii)* $f(x) = 3x^3 76x^2 + 163x 46$; [20; 25]; $\epsilon = 10^{-8}$ e M = 100;
- *iii*) $f(x) = x^2 + \ln x$; [0,1; 1,0]; $\epsilon = 10^{-3}$ e M = 100;
- iv) $f(x) = \cos x x$; [0,7; 1,0]; $\epsilon = 10^{-8}$ e M = 100;
- v) $f(x) = x^5 + x^3 + x^2 + x 25$; [0,96; 1,93] com $\epsilon = 10^{-5}$;
- vi) $f(x) = 2x^2 + \sin x 10$; [1,57080; 3,14159] $\cos \epsilon = 10^{-3}$;
- vii) $f(x) = \sqrt{x} 5e^{-x}$; [0; 3]; com $\epsilon = 10^{-6}$
- viii) $f(x) = 10^x + x^3 + 2$; [-2,1; 1,0] com $\epsilon = 10^{-8}$;
- ix) $f(x) = e^x \tan x$; [0,7; 1,9126] com $\epsilon = 10^{-10}$;
- x) $f(x) = 5 xe^x$; [1,0; 2,0] com $\epsilon = 10^{-5}$.

3 – Implemente os procedimentos computacionais necessários para a determinação do zero de uma função f(x) (raiz da equação f(x)=0) por meio do Método de Newton. A execução da implementação computacional deve fornecer a sequência de aproximações (inclusive o zero da função), além da imagem da função para todas os termos da sequência. Os dados de entrada são:

- a) Expressão analítica da função (f(x)). De modo a facilitar a implementação computacional, pode-se considerar a expressão algébrica da função diretamente no código-fonte;
- b) Expressão analítica da derivada primeira da função (f'(x)). De modo a facilitar a implementação computacional, pode-se considerar a expressão algébrica da função diretamente no código-fonte;
- c) Expressão analítica da derivada segunda da função (f''(x)). De modo a facilitar a implementação computacional, pode-se considerar a expressão algébrica da função diretamente no código-fonte;

DISCIPLINA: TÉCNICAS DE OTIMIZAÇÃO (PARTE I) PROFESSOR: RICARDO DE ANDRADE

- d) Intervalo [a; b], contendo uma e somente uma raiz real da equação f(x);
- e) Tolerância ϵ ;
- f) Número máximo de iterações M.

Os dados de saída devem ser exibidos em formato tabular, compreendendo:

- a) Sequência de intervalos obtidos durante a execução do método de Newton;
- b) Sequência de aproximações sucessivas (termos iterados);
- c) Imagem da função relativa às aproximações sucessivas;
- d) Sequência de valores relativos ao cálculo da verificação do critério de parada (E = $|x_k - x_{k-1}|$).

Complementarmente, os dados de saída devem exibir:

- a) Número de iterações;
- b) Zero da função (\bar{x});
- c) Imagem da função no ponto (\bar{x}) .

Determine o zero das seguintes funções:

i)
$$f(x) = x^2 - \sin x$$
; [0; 1]; $\epsilon = 10^{-5}$ e $M = 100$;

ii)
$$f(x) = 3x^3 - 76x^2 + 163x - 46$$
; [20; 25]; $\epsilon = 10^{-8}$ e $M = 100$;

iii)
$$f(x) = x^2 + \ln x$$
; [0,1; 1,0]; $\epsilon = 10^{-3}$ e $M = 100$;

iv)
$$f(x) = \cos x - x$$
; [0,7; 1,0]; $\epsilon = 10^{-8}$ e $M = 100$;

v)
$$f(x) = x^5 + x^3 + x^2 + x - 25$$
; [0,96; 1,93] com $\epsilon = 10^{-5}$;

vi)
$$f(x) = 2x^2 + \sin x - 10$$
; [1,57080; 3,14159] $\cos \epsilon = 10^{-3}$;

vii)
$$f(x) = \sqrt{x} - 5e^{-x}$$
; [0; 3]; com $\epsilon = 10^{-6}$

viii)
$$f(x) = 10^x + x^3 + 2$$
; [-2,1; 1,0] com $\epsilon = 10^{-8}$;

ix)
$$f(x) = e^x - \tan x$$
; [0,7; 1,9126] com $\epsilon = 10^{-10}$;

x)
$$f(x) = 5 - xe^x$$
; [1,0; 2,0] com $\epsilon = 10^{-5}$.

- 4 Implemente os procedimentos computacionais necessários para a determinação do zero de uma função f(x) (raiz da equação f(x) = 0) por meio do Método de Newton com derivada constante. A execução da implementação computacional deve fornecer a sequência de aproximações (inclusive o zero da função), além da imagem da função para todas os termos da sequência. Os dados de entrada são:
 - a) Expressão analítica da função (f(x)). De modo a facilitar a implementação computacional, pode-se considerar a expressão algébrica da função diretamente no código-fonte;
 - b) Expressão analítica da derivada primeira da função (f'(x)). De modo a facilitar a implementação computacional, pode-se considerar a expressão algébrica da função diretamente no código-fonte;

UFPI

UNIVERSIDADE FEDERAL DO PIAUÍ - UFPI CENTRO DE TECNOLOGIA - CT PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA - PPGEE

DISCIPLINA: TÉCNICAS DE OTIMIZAÇÃO (PARTE I)

PROFESSOR: RICARDO DE ANDRADE

- c) Expressão analítica da derivada segunda da função (f''(x)). De modo a facilitar a implementação computacional, pode-se considerar a expressão algébrica da função diretamente no código-fonte;
- d) Intervalo [a; b], contendo uma e somente uma raiz real da equação f(x);
- e) Tolerância ϵ ;
- f) Número máximo de iterações M.

Os dados de saída devem ser exibidos em formato tabular, compreendendo:

- a) Sequência de intervalos obtidos durante a execução do método de Newton com derivada constante;
- b) Sequência de aproximações sucessivas (termos iterados);
- c) Imagem da função relativa às aproximações sucessivas;
- d) Sequência de valores relativos ao cálculo da verificação do critério de parada ($E = |x_k x_{k-1}|$).

Complementarmente, os dados de saída devem exibir:

- a) Número de iterações;
- b) Zero da função (\bar{x});
- c) Imagem da função no ponto (\bar{x}) .

Determine o zero das seguintes funções:

```
i) f(x) = x^2 - \sin x; [0; 1]; \epsilon = 10^{-5}e M = 100;
```

ii)
$$f(x) = 3x^3 - 76x^2 + 163x - 46$$
; [20; 25]; $\epsilon = 10^{-8}$ e $M = 100$;

iii)
$$f(x) = x^2 + \ln x$$
; [0,1; 1,0]; $\epsilon = 10^{-3}$ e $M = 100$;

iv)
$$f(x) = \cos x - x$$
; [0,7; 1,0]; $\epsilon = 10^{-8}$ e $M = 100$;

v)
$$f(x) = x^5 + x^3 + x^2 + x - 25$$
; [0,96; 1,93] com $\epsilon = 10^{-5}$;

vi)
$$f(x) = 2x^2 + \sin x - 10$$
; [1,57080; 3,14159] com $\epsilon = 10^{-3}$;

vii)
$$f(x) = \sqrt{x} - 5e^{-x}$$
; [0; 3]; com $\epsilon = 10^{-6}$

viii)
$$f(x) = 10^x + x^3 + 2$$
; [-2,1; 1,0] com $\epsilon = 10^{-8}$;

ix)
$$f(x) = e^x - \tan x$$
; [0,7; 1,9126] com $\epsilon = 10^{-10}$;

x)
$$f(x) = 5 - xe^x$$
; [1,0; 2,0] com $\epsilon = 10^{-5}$.

5 – Implemente os procedimentos computacionais necessários para a determinação do zero de uma função f(x) (raiz da equação f(x) = 0) por meio do Método das Secantes. A execução da implementação computacional deve fornecer a sequência de aproximações (inclusive o zero da função), além da imagem da função para todas os termos da sequência. Os dados de entrada são:

- a) Expressão analítica da função (f(x)). De modo a facilitar a implementação computacional, pode-se considerar a expressão algébrica da função diretamente no código-fonte;
- b) Intervalo [a; b], contendo uma e somente uma raiz real da equação f(x);
- c) Aproximações iniciais (x_0 e x_1);

DISCIPLINA: TÉCNICAS DE OTIMIZAÇÃO (PARTE I)

PROFESSOR: RICARDO DE ANDRADE

- d) Tolerância ϵ ;
- e) Número máximo de iterações M.

Os dados de saída devem ser exibidos em formato tabular, compreendendo:

- a) Sequência de intervalos obtidos durante a execução do método das Secantes;
- b) Sequência de aproximações sucessivas (termos iterados);
- c) Imagem da função relativa às aproximações sucessivas;
- d) Sequência de valores relativos ao cálculo da verificação do critério de parada ($E = |x_k x_{k-1}|$).

Complementarmente, os dados de saída devem exibir:

- a) Número de iterações;
- b) Zero da função (\bar{x}) ;
- c) Imagem da função no ponto (\bar{x}) .

Determine o zero das seguintes funções:

i)
$$f(x) = x^2 - \sin x$$
; [0; 1]; $\epsilon = 10^{-5}$ e $M = 100$;

ii)
$$f(x) = 3x^3 - 76x^2 + 163x - 46$$
; [20; 25]; $\epsilon = 10^{-8}$ e $M = 100$;

iii)
$$f(x) = x^2 + \ln x$$
; [0,1; 1,0]; $\epsilon = 10^{-3}$ e $M = 100$;

iv)
$$f(x) = \cos x - x$$
; [0,7; 1,0]; $\epsilon = 10^{-8}$ e $M = 100$;

v)
$$f(x) = x^5 + x^3 + x^2 + x - 25$$
; [0,96; 1,93] com $\epsilon = 10^{-5}$;

vi)
$$f(x) = 2x^2 + \sin x - 10$$
; [1,57080; 3,14159] com $\epsilon = 10^{-3}$;

vii)
$$f(x) = \sqrt{x} - 5e^{-x}$$
; [0; 3]; com $\epsilon = 10^{-6}$

viii)
$$f(x) = 10^x + x^3 + 2$$
; $[-2,1;1,0]$ com $\epsilon = 10^{-8}$;

ix)
$$f(x) = e^x - \tan x$$
; [0,7; 1,9126] com $\epsilon = 10^{-10}$;

x)
$$f(x) = 5 - xe^x$$
; [1,0; 2,0] com $\epsilon = 10^{-5}$;

6 – Implemente os procedimentos computacionais necessários para a determinação do zero de uma função f(x) (raiz da equação f(x) = 0) por meio do Método *Regula Falsi*. A execução da implementação computacional deve fornecer a sequência de aproximações (inclusive o zero da função), além da imagem da função para todas os termos da sequência. Os dados de entrada são:

- a) Expressão analítica da função (f(x)). De modo a facilitar a implementação computacional, pode-se considerar a expressão algébrica da função diretamente no código-fonte;
- b) Intervalo [a; b], contendo uma e somente uma raiz real da equação f(x);
- c) Tolerância ϵ ;
- d) Número máximo de iterações M.

Os dados de saída devem ser exibidos em formato tabular, compreendendo:

- a) Sequência de intervalos obtidos durante a execução do método *Regula Falsi*;
- b) Sequência de aproximações sucessivas (termos iterados);
- c) Imagem da função relativa às aproximações sucessivas;

DISCIPLINA: TÉCNICAS DE OTIMIZAÇÃO (PARTE I)

PROFESSOR: RICARDO DE ANDRADE

d) Sequência de valores relativos ao cálculo da verificação do critério de parada ($E = |x_k - x_{k-1}|$).

Complementarmente, os dados de saída devem exibir:

- a) Número de iterações;
- b) Zero da função (\bar{x});
- c) Imagem da função no ponto (\bar{x}) .

Determine o zero das seguintes funções:

- i) $f(x) = x^2 \sin x$; [0; 1]; $\epsilon = 10^{-5}$ e M = 100;
- *ii*) $f(x) = 3x^3 76x^2 + 163x 46$; [20; 25]; $\epsilon = 10^{-8}$ e M = 100;
- *iii*) $f(x) = x^2 + \ln x$; [0,1; 1,0]; $\epsilon = 10^{-3}$ e M = 100;
- iv) $f(x) = \cos x x$; [0,7; 1,0]; $\epsilon = 10^{-8}$ e M = 100;
- v) $f(x) = x^5 + x^3 + x^2 + x 25$; [0,96; 1,93] com $\epsilon = 10^{-5}$;
- vi) $f(x) = 2x^2 + \sin x 10$; [1,57080; 3,14159] $\cos \epsilon = 10^{-3}$;
- vii) $f(x) = \sqrt{x} 5e^{-x}$; [0; 3]; com $\epsilon = 10^{-6}$;
- *viii*) $f(x) = 10^x + x^3 + 2$; [-2,1; 1,0] com $\epsilon = 10^{-8}$;
- ix) $f(x) = e^x \tan x$; [0,7; 1,9126] com $\epsilon = 10^{-10}$;
- x) $f(x) = 5 xe^x$; [1,0; 2,0] com $\epsilon = 10^{-5}$;

7 –

OBSERVAÇÕES:

- 1 A resolução das questões deve ser entregue em sequência, iniciando-se pelos Exercícios de Fixação (EF), seguindo-se pelos Exercícios Propostos (EP), finalizando-se com os Exercícios de Implementação Computacional (EI);
- 2 A lista de exercícios pode ser resolvida em duplas. Se for o caso, entregar somente uma resolução com o nome dos dois integrantes. Os alunos devem assinar (ou rubricar) em <u>todas</u> as folhas de resolução.
- 3 Em se tratando de Lista de Exercícios que tenha implementação computacional, deve-se anexar (em um único arquivo) o código-fonte do programa fonte referente à implementação computacional.