

Problem B: Copper Hydroxide

Time limit: 2s; Memory limit: 256 MB

Copper Hydroxide (chemical formula Cu(OH)₂) is a pale greenish blue or bluish green solid. It is a beautiful strong base, as this problem is for strong and beautiful coders. Let's prove it!

Given a vector $a=(a_1,a_2,...,a_n)$ in \mathbb{R}^n . A vector $b=(b_1,b_2,...,b_n)$ is non-increasing if and only if $b_1 \leq b_2 \leq \cdots \leq b_n$.

The Euclide distance between two vectors a, b is calculated as

$$d(a,b) = \sqrt{(a_1 - b_1)^2 + (a_2 - b_2)^2 + \dots + (a_n - b_n)^2}$$

Find a non-decreasing vector b in \mathbb{R}^n such that d(a,b) is minimized.

Input

The first line contains a natural number, $n \ (1 \le n \le 10^6)$

The second line contains n real numbers $a_1, a_2, ..., a_n$ ($|a_i| \le 10^5$). Each of them has at most 3 decimal digits in the input.

Output

Print one real number, which is the min d(a, b), for all non-increasing vector b. The answer is accepted if the absolute error or relative error does not exceed 10^{-6} .

Sample

Input	Output
3	0
112	
4	12.41750218
3.368 97.561 80 353	

Explanation

In sample 1, a = (1, 1, 2), which is already non-decreasing. We choose b = (1, 1, 2) then d(a, b) = 0.

In sample 2, we choose b = (3.368, 88.7805, 88.7805, 353). Then, $d(a, b) = \sqrt{0 + (97.561 - 88.7805)^2 + (80 - 88.7805)^2 + 0} = 12.41750218...$

Bonus: Find out what $Cu(OH)_2$ facts that correspond to numbers in sample 2. Good luck!