Quadratically constrained quadratic programming, Second-order cone programming Computational Intelligence, Lecture 6

by Sergei Savin

Spring 2023

CONTENT

- Quadratic programming: recap
- Quadratically constrained quadratic programming (QCQP)
 - ▶ QCQP to LP; QCQP to LP
 - \triangleright Ellipsoidal constraints \rightarrow to canonical form
- Second-order cone programming
 - ► SOCP to QCQP
 - \triangleright Second-order cone constraints \rightarrow to canonical form

Quadratic programming

General form

Remember the general form of a quadratic program:

minimize
$$\mathbf{x}^{\top} \mathbf{H} \mathbf{x} + \mathbf{f}^{\top} \mathbf{x}$$
,
subject to
$$\begin{cases} \mathbf{A} \mathbf{x} \leq \mathbf{b}, \\ \mathbf{F} \mathbf{x} = \mathbf{g}. \end{cases}$$
 (1)

where **H** is positive-definite and $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ describe a convex region.

Quadratically constrained quadratic PROGRAMMING

General form

General form of a quadratically constrained quadratic program (QCQP) is given below:

minimize
$$\mathbf{x}^{\top} \mathbf{P}_0 \mathbf{x} + \mathbf{q}_0^{\top} \mathbf{x}$$
,
subject to
$$\begin{cases} \mathbf{x}^{\top} \mathbf{P}_i \mathbf{x} + \mathbf{q}_i^{\top} \mathbf{x} + r_i \leq 0, \\ \mathbf{F} \mathbf{x} = \mathbf{g}. \end{cases}$$
 (2)

where \mathbf{P}_i are positive-definite.

Quadratically constrained quadratic **PROGRAMMING**

Domain

Domain of a QCQP without equality constraints and with no degenerate inequality constraints is an intersection of ellipses:

QCQP TO QP AND LP

Set $\mathbf{P}_i = \mathbf{0}$ and you get a QP.

minimize
$$\mathbf{x}^{\top} \mathbf{P}_0 \mathbf{x} + \mathbf{q}_0^{\top} \mathbf{x}$$
,

subject to
$$\begin{cases} \begin{bmatrix} \mathbf{q}_1^{\top} \\ \dots \\ \mathbf{q}_n^{\top} \end{bmatrix} \mathbf{x} \leq \begin{bmatrix} -r_1 \\ \dots \\ -r_n \end{bmatrix} \\ \mathbf{F} \mathbf{x} = \mathbf{g}. \end{cases}$$
 (3)

Set $\mathbf{P}_0 = \mathbf{0}$ and you get an LP.

Turning ellipsoid to the canonical form (1)

Can we re-write the expression $\mathbf{x}^{\top} \mathbf{P} \mathbf{x} + \mathbf{q}^{\top} \mathbf{x} + r \leq 0$ as a canonical form ellipsoid:

$$\frac{z_1^2}{m_1^2} + \frac{z_2^2}{m_2^2} + \dots + \frac{z_n^2}{m_n^2} \le 1 \tag{4}$$

We start by proposing a substitution $\mathbf{x}_0 = -\frac{1}{2}\mathbf{P}^{-1}\mathbf{q}$ and $-d = r - \mathbf{x}_0^{\mathsf{T}}\mathbf{P}\mathbf{x}_0$. We can prove that: $(\mathbf{x} - \mathbf{x}_0)^{\mathsf{T}}\mathbf{P}(\mathbf{x} - \mathbf{x}_0) - d^2 = \mathbf{x}^{\mathsf{T}}\mathbf{P}\mathbf{x} + \mathbf{q}^{\mathsf{T}}\mathbf{x} + r$

$$(\mathbf{x} - \mathbf{x}_0)^{\top} \mathbf{P}(\mathbf{x} - \mathbf{x}_0) - d^2 = \tag{5}$$

$$= \mathbf{x}^{\top} \mathbf{P} \mathbf{x} - 2 \mathbf{x}_0^{\top} \mathbf{P} \mathbf{x} + \mathbf{x}_0^{\top} \mathbf{P} \mathbf{x}_0 - d^2 =$$
(6)

$$= \mathbf{x}^{\top} \mathbf{P} \mathbf{x} + 2 \left(\frac{1}{2} \mathbf{P}^{-1} \mathbf{q} \right)^{\top} \mathbf{P} \mathbf{x} + \mathbf{x}_{0}^{\top} \mathbf{P} \mathbf{x}_{0} + r - \mathbf{x}_{0}^{\top} \mathbf{P} \mathbf{x}_{0} =$$
(7)

$$= \mathbf{x}^{\top} \mathbf{P} \mathbf{x} + \mathbf{q}^{\top} \mathbf{x} + r. \qquad \Box \tag{8}$$

Turning ellipsoid to the canonical form (1)

Thus our original expression became:

$$(\mathbf{x} - \mathbf{x}_0)^{\mathsf{T}} \mathbf{P}(\mathbf{x} - \mathbf{x}_0) - d^2 \le 0 \tag{9}$$

We define $\mathbf{A} = \sqrt{\mathbf{P}}$ and give its SVD $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^{\top}$. Defining $\mathbf{z} = \mathbf{V}^{\top}(\mathbf{x} - \mathbf{x}_0)$ we get:

$$(\mathbf{x} - \mathbf{x}_0)^{\top} \mathbf{A}^{\top} \mathbf{A} (\mathbf{x} - \mathbf{x}_0) - d^2 \le 0$$
 (10)

$$(\mathbf{x} - \mathbf{x}_0)^{\top} \mathbf{V} \Sigma \mathbf{U}^{\top} \mathbf{U} \Sigma \mathbf{V}^{\top} (\mathbf{x} - \mathbf{x}_0) - d^2 \le 0$$
 (11)

$$(\mathbf{x} - \mathbf{x}_0)^{\mathsf{T}} \mathbf{V} \Sigma^2 \mathbf{V}^{\mathsf{T}} (\mathbf{x} - \mathbf{x}_0) - d^2 \le 0$$
 (12)

$$\mathbf{z}^{\top} \Sigma^2 \mathbf{z} - d^2 \le 0 \tag{13}$$

$$\sum z_i^2 \sigma_i^2 \le d^2 \tag{14}$$

Defining $1/m_i^2 = \sigma_i^2/d^2$ we get:

$$\frac{z_1^2}{m_1^2} + \frac{z_2^2}{m_2^2} + \dots + \frac{z_n^2}{m_n^2} \le 1 \tag{15}$$

SECOND-ORDER CONE PROGRAMMING (SOCP) General form

The general form of a Second-order cone program (SOCP) is:

minimize
$$\mathbf{f}^{\top}\mathbf{x}$$
,
subject to
$$\begin{cases} ||\mathbf{A}_{i}\mathbf{x} + \mathbf{b}_{i}||_{2} \leq \mathbf{c}_{i}^{\top}\mathbf{x} + d_{i}, \\ \mathbf{F}\mathbf{x} = \mathbf{g}. \end{cases}$$
(16)

LP, QP and QCQP are subsets of SOCP.

SOC CONSTRAINTS, 1

Consider the following SOC constraint:

$$||\mathbf{A}\mathbf{x} + \mathbf{b}||_2 \le \mathbf{c}^{\mathsf{T}}\mathbf{x} + d \tag{17}$$

Let us consider a special case when $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{(n-1)\times n}$ and rank $\begin{pmatrix} \begin{bmatrix} \mathbf{A} \\ \mathbf{c}^{\top} \end{bmatrix} \end{pmatrix} = n$. Then we can introduce the following substitution:

$$\xi = \begin{bmatrix} \mathbf{A} \\ \mathbf{c}^{\mathsf{T}} \end{bmatrix} \mathbf{x} + \begin{bmatrix} \mathbf{b} \\ d \end{bmatrix}, \quad \mathbf{I} = \begin{bmatrix} \mathbf{E} \\ \mathbf{e}^{\mathsf{T}} \end{bmatrix}$$
 (18)

where $\mathbf{I} \in \mathbb{R}^{n,n}$ is an identity matrix. Then constraint (17) becomes:

$$||\mathbf{E}\xi||_2 \le \mathbf{e}^{\mathsf{T}}\xi\tag{19}$$

SOC CONSTRAINTS, 2

Notice that $||\mathbf{E}\xi||_2 \leq \mathbf{e}^{\top}\xi$ is equivalent to:

$$\sum_{i=1}^{n-1} \xi_i^2 \le \xi_n^2 \tag{20}$$

which is a standard form of a cone. A map back from ξ to ${\bf x}$ is given as:

$$\mathbf{x} = \begin{bmatrix} \mathbf{A} \\ \mathbf{c}^{\top} \end{bmatrix}^{-1} \left(\xi - \begin{bmatrix} \mathbf{b} \\ d \end{bmatrix} \right) \tag{21}$$

SECOND-ORDER CONE PROGRAMMING Special cases

We can write problem where our domain is a ball as SOCP:

minimize
$$\mathbf{f}^{\top}\mathbf{x}$$
, subject to $||\mathbf{x}||_2 \le d_i$ (22)

Same for ellipsoidal constraints:

minimize
$$\mathbf{f}^{\top}\mathbf{x}$$
,
subject to $||\mathbf{A}_{i}\mathbf{x}||_{2} \leq d_{i}$ (23)

SOCP TO QCQP

Part 1

Set $\mathbf{c}_i = 0$ and recognize that $||\mathbf{A}_i\mathbf{x} + \mathbf{b}_i||_2 \le d_i$ is the same as $(\mathbf{A}_i\mathbf{x} + \mathbf{b}_i)^{\top}(\mathbf{A}_i\mathbf{x} + \mathbf{b}_i) \le d_i^2$ (since the first implies that d_i is non-negative).

minimize
$$\mathbf{f}^{\top}\mathbf{x}$$
,
subject to
$$\begin{cases} \mathbf{x}^{\top}\mathbf{A}_{i}^{\top}\mathbf{A}_{i}\mathbf{x} + 2\mathbf{b}_{i}^{\top}\mathbf{A}_{i}\mathbf{x} + \mathbf{b}_{i}^{\top}\mathbf{b}_{i} \leq d_{i}^{2} \\ \mathbf{F}\mathbf{x} = \mathbf{g}. \end{cases}$$
(24)

SOCP TO QCQP

Part 2

Now to make the cost quadratic:

minimize
$$t$$
,

subject to
$$\begin{cases}
\mathbf{x}^{\top} \mathbf{A}_0^{\top} \mathbf{A}_0 \mathbf{x} + 2 \mathbf{b}_0^{\top} \mathbf{A}_0 \mathbf{x} + \mathbf{b}_0^{\top} \mathbf{b}_0 \leq t \\
\mathbf{x}^{\top} \mathbf{A}_i^{\top} \mathbf{A}_i \mathbf{x} + 2 \mathbf{b}_i^{\top} \mathbf{A}_i \mathbf{x} + \mathbf{b}_i^{\top} \mathbf{b}_i \leq d_i^2
\end{cases}$$

$$(25)$$

Which is the same as:

minimize
$$\mathbf{x}^{\top} \mathbf{H} \mathbf{x} + \mathbf{f}^{\top} \mathbf{x}$$
,
subject to
$$\begin{cases} \mathbf{x}^{\top} \mathbf{A}_{i}^{\top} \mathbf{A}_{i} \mathbf{x} + 2 \mathbf{b}_{i}^{\top} \mathbf{A}_{i} \mathbf{x} + \mathbf{b}_{i}^{\top} \mathbf{b}_{i} \leq d_{i}^{2} \\ \mathbf{F} \mathbf{x} = \mathbf{g}. \end{cases}$$
(26)

As long as
$$\mathbf{A}_0 = \sqrt{\mathbf{H}}$$
, and $\mathbf{b}_0 = 0.5\mathbf{A}_0^{-1}\mathbf{f}$.

FRICTION CONE

Normal reaction force and friction

Let **f** be total reaction force, \mathbf{f}_n be its normal component (perpendicular to the surface locally), also known as normal reaction; and let \mathbf{f}_{fr} be its tangential component (a vector lying in the tangent plane to the surface, constructed at the contact point), or friction force. Let \mathbf{e}_n be a unit vector, normal to the surface at the point of contact.

$$\mathbf{f} = \mathbf{f}_n + \mathbf{f}_{fr} \tag{27}$$

SECOND-ORDER CONE PROGRAMMING

Friction cone

Defining $\mathbf{E}_t = [\mathbf{e}_{t,1}, \ \mathbf{e}_{t,2}] = \text{null}(\mathbf{e}_n^{\top})$ be an orthonormal basis in the tangential space to the surface, we can write:

$$\mathbf{f} = \mathbf{e}_n n + \mathbf{E}_t \mathbf{t}$$
 $\mathbf{f}_n = \mathbf{e}_n n$
 $\mathbf{f}_{fr} = \mathbf{E}_t \mathbf{t}$
 $\mathbf{t} = [t_1, t_2]$

The friction cone conditions could be written in any of the following ways:

$$\sqrt{t_1^2 + t_2^2} < \mu n \tag{28}$$

$$||\mathbf{E}_t^{\top} \mathbf{f}|| \le \mu \mathbf{e}_n^{\top} \mathbf{f} \tag{29}$$

where μ is a friction coefficient.

Homework

Implement a program that finds right-most point of an intersection of two ellipsoids; visualise the problem and the solution.

Lecture slides are available via Github, links are on Moodle

You can help improve these slides at: github.com/SergeiSa/Computational-Intelligence-Slides-Spring-2023

