Muster-Prüfung 1.2

1. Dezimal-zu-Hexadezimalzahlwandlung

Wandeln Sie die Dezimalzahl 3291 nach Hexadezimal mit wiederholtem Dividieren durch 16 etc. Die Berechnung soll notiert werden und nachvollziehbar sein.

2. Boolesche Algebra

Die beiden Schaltungen unten - so wird behauptet - sind logisch äquivalent. Weisen Sie dies ausschliesslich mit Boolescher Algebra schrittweise - unter Angabe der verwendeten Regeln - nach.

3. KDNF

Die Gleichung Y(X4 = MSB, X3, X2, X1, X0 = LSB) = m21 + m23 + m29 + m31 kann vereinfacht werden. Wie lautet Y minimiert in Abhängigkeit der einzelnen Schaltvariablen?

4. Codewandler

Für die Anzeige der Grossbuchstaben "U" bis "Y" steht eine 14-Segment-Anzeige zur Verfügung. Jedes Segment kann individuell unter einem Anschluss a, b, c .. m zum Leuchten gebracht werden (vgl. Schema links unten, individuelle Zeichen in Logisim mit LED-Balken rechts daneben).

Die Anordnung für Decoder-Tests (Black Box) sieht wie folgt aus:

In der Black Box wurde bisher realisiert:

			_					
	"X"	" <u></u>				n.	\ \	
ш								
_								
Դ								
i.								
h								
g2								
g1								
J								
е								
q								
C								
p								
а								
X0	0	H	0	1	0	1	0	1
X1	0	0	1	1	0	0	1	1
X2	0	0	0	0	T	T	T	П

Testen Sie, ob die bisherige Realisierung in Ordnung ist. Korrigieren Sie die Schaltung allenfalls. Ergänzen Sie sodann die fehlenden Gatter in Minimalform (von KDNF ausgehend) – unter Ausnutzung von *Don't cares* – so dass alle 5 Buchstaben (und nur diese) korrekt ausgegeben werden. Verwenden Sie nötige Karnaugh-Diagramme und notieren Sie die Schaltungsgleichungen.

			X2		
	0	2	6	4	
X0	1	3	7	5	
	<u>X1</u>				

			X2		
	0	2	6	4	
X0	1	3	7	5	
		1			

		X2		
	0	2	6	4
X0	1	3	7	5
X1				

		X2		
	0	2	6	4
X0	1	3	7	5
X1				

5. Minimierung

Gegeben ist die Boolesche Gleichung $y=(\overline{x2}+\overline{x1}+x0)(\overline{x3}+\overline{x1}+x0)(\overline{x3}+\overline{x2}+x0)(\overline{x3}+\overline{x2}+x0)(\overline{x3}+\overline{x2}+x1)$. Zeigen Sie, ob die Gleichung weiter minimiert werden kann (systematische Darstellung und Begründung verlangt!). Wenn ja, wie sieht die vollständig minimierte Schaltung aus?