TABLE 5.1
 Select (Unilateral) z-Transform Pairs

No.	x[n]	X[z]
l	$\delta[n-k]$	z ^{-k}
2	u[n]	$\frac{z}{z-1}$
3	nu[n]	$\frac{z}{(z-1)^2}$
4	$n^2u[n]$	$\frac{z(z+1)}{(z-1)^3}$
5	$n^3u[n]$	$\frac{z(z^2 + 4z + 1)}{(z - 1)^4}$
6	$\gamma^n u[n]$	$\frac{z}{z-\gamma}$
7	$\gamma^{n-1}u[n-1]$	$\frac{1}{z-y}$
8	$n\gamma^n u[n]$	$\frac{\gamma z}{(z-\nu)^2}$
9	$n^2 \gamma^n u[n]$	$\frac{\gamma z(z+\gamma)}{(z-\gamma)^3}$
10	$\frac{n(n-1)(n-2)\cdots(n-m+1)}{\gamma^m m!} \gamma^n u[n]$	$\frac{z}{(z-\gamma)^{m+1}}$
l la	$ \gamma ^n \cos \beta n u[n]$	$\frac{z(z- \gamma \cos\beta)}{z^2-(2 \gamma \cos\beta)z+ \gamma ^2}$
1b	$ \gamma ^n \sin \beta n u[n]$	$\frac{z \gamma \sin\beta}{z^2 - (2 \gamma \cos\beta)z + \gamma ^2}$
2a	$r \gamma ^n\cos(\beta n+\theta)u[n]$	$\frac{rz[z\cos\theta - \gamma \cos(\beta - \theta)]}{z^2 - (2 \gamma \cos\beta)z + \gamma ^2}$
2b	$r \gamma ^n\cos(\beta n + \theta)u[n]$ $\gamma = \gamma e^{j\theta}$	$\frac{(0.5re^{j\theta})z}{z-\nu} + \frac{(0.5re^{-j\theta})z}{z-\nu^*}$
2e	$r \gamma ^n\cos(\beta n+\theta)u[n]$	$\frac{z(Az+B)}{z^2+2az+ y ^2}$
	$r = \sqrt{\frac{A^2 \gamma ^2 + B^2 - 2AaB}{ \gamma ^2 - a^2}}$	
	$\beta = \cos^{-1} \frac{-a}{ \gamma }$	
	$\theta = \tan^{-1} \frac{Aa - B}{A\sqrt{ \gamma ^2 - a^2}}$	

and

!0)

$$\lim_{z \to 1} \frac{(z-1)X[z]}{z} = \lim_{z \to 1} (z-1)X[z] = \lim_{z \to 1} \lim_{N \to \infty} \sum_{n=-\infty}^{N} \{x[n] - x[n-1]\} z^{-n} = \lim_{N \to \infty} x[N]$$

All these properties of the z-transform are listed in Table 5.2.

TABLE 5.2 z-Transform Properties

Operation	x[n]	X[z]
Addition	$x_1[n] + x_2[n]$	$X_1[z] + X_2[z]$
Scalar multiplication	ax[n]	aX[z]
Right shifting	x[n-m]u[n-m]	$\frac{1}{z^m}X[z]$
	x[n-m]u[n]	$\frac{1}{z^m}X[z] + \frac{1}{z^m} \sum_{n=1}^m x[-n]z^n$
	x[n-1]u[n]	$\frac{1}{z}X z +x[-1]$
	x[n-2]u[n]	$\frac{1}{z^2}X[z] + \frac{1}{z}x[-1] + x[-2]$
	x[n-3]u[n]	$\frac{1}{z^3}X[z] + \frac{1}{z^2}x[-1] + \frac{1}{z}x[-2] + x[-3]$
Left shifting	x[n+m]u[n]	$z^m X[z] - z^m \sum_{n=0}^{m-1} x[n] z^{-n}$
	x[n+1]u[n]	$zX[z] - zv[0]^{n=0}$
	x[n+2]u[n]	$z^2X[z] - z^2x[0] - zx[1]$
	x[n+3]u[n]	$z^3X[z] - z^3x[0] - z^2x[1] - zx[2]$
Multiplication by γ^n	$\gamma^n x[n]u[n]$	$X\left[\frac{z}{y}\right]$
Multiplication by n	nx[n]u[n]	$-z\frac{d}{dz}X[z]$
Time reversal	x[-n]	X[1/z]
Time convolution	$x_1[n] * x_2[n]$	$X_1[z]X_2[z]$
Initial value	x[0]	$\lim_{z\to\infty}X[z]$
Final value	$\lim_{N\to\infty}x[N]$	$\lim_{z \to 1} (z - 1)X[z]$ Poles of $(z - 1)X[z]$ inside the unit circle