第11讲 二重积分

11.1 二重积分的概念.性质与对称性

二重积分的几何背景

二重积分的几何背景:

- 曲顶柱体的体积
 - $\circ \iint_D f(x,y)d\sigma$
- - 。 长方体:底面积×高

二重积分的存在性/可积性

- 设平面有界闭区域 D由一条或者几条逐段光滑闭曲线所围成
- 当
 - f(x,y)在D上连续时
 - \circ 或 f(x,y) 在 D 上有界,且它在 D 上除了有限个点和有限条光滑曲线外都是连续的,
- 则它在D上可积,即二重积分存在

二重积分的精确定义

类比于定积分的精确定义

$$\iint_D f(x,y) d\sigma = \lim_{n o \infty} \sum_{i=1}^n \sum_{j=1}^n f(a + rac{b-a}{n}i, c + rac{d-c}{n}j) \cdot rac{b-a}{n}rac{d-c}{n}$$

• D是一个"长方形区域"

基本用在将和式〉转为积分和「中

"凑二重积分定义"的步骤

- 先提出¹/_n·¹/_n
- 再凑出ⁱ/_n, ^j/_n
- 由于

$$\circ \ \ \tfrac{i}{n} = 0 + \tfrac{1-0}{n}i,$$

■ $\frac{i}{n}$ 故可以读作0到1上的x

$$\circ \quad \frac{j}{n} = 0 + \frac{1-0}{n}j$$

- - 。 既可以读作"0到1上的dx",也可以读作"0到1上的dy"

例如

- $\lim_{n\to\infty}\sum_{i=1}^n\sum_{j=1}^n\frac{ij}{n^4}$
 - - $\begin{array}{ll} \bullet & \lim_{n \to \infty} \sum_{i=1}^n \sum_{j=1}^n \frac{ij}{n^2} \cdot \frac{1}{n} \cdot \frac{1}{n} \\ \bullet & \lim_{n \to \infty} \sum_{i=1}^n \sum_{j=1}^n \frac{i}{n} \cdot \frac{j}{n} \cdot \frac{1}{n} \cdot \frac{1}{n} \\ \bullet & \int_0^1 \int_0^1 xy dx dy \end{array}$
- $\sum_{n\to\infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)(n^2+j^2)}$
 - 。 凑定义

 - $-\int_0^1 \int_0^1 \frac{n}{(1+x)(1+y^2)} dxdy$

定积分 $\int_a^b f(x) dx = A$ 是一个数,二重积分 $\iint_D f(x,y) dx dy = A$ 也是一个数

二重积分的性质

性质1 求区域面积:

• $\iint_D 1 \cdot d\sigma = \iint_D d\sigma = A$

性质2 可积函数必有界

- $\exists f(x,y)$ 在有界闭区域D上可积时,
 - 则 f(x,y) 在D上必有界

性质3 积分的线性性质

- 设k₁, k₂为常数,
 - \circ 则 $\iint_D [k_1 f(x,y) \pm k_2 f(x,y)] d\sigma = k_1 \iint_D f(x,y) \pm k_2 \iint_D f(x,y)$

性质4 积分的可加性

- 当f(x,y)在有界闭区域D上可积时,且 $D_1 \subset D_2 = D,D_1 \subset D_2 = Varnothing,$
 - 则\iint_{D}f(x,y)d\sigma = \iint_{D_1}f(x,y) + \iint_{D_2}f(x,y)

性质5 积分的保号性

- 当f(x,y),g(x,y)在有界闭区域D上可积时,若在D上,f(x,y) \leqslant g(x,y)
 - 则\iint_{D}f(x,y) \leqslant \iint_{D}g(x,y)
 - 特别地有|\iint_{D}f(x,y)| \leqslant \iint_{D}|f(x,y)|

性质6 二重积分的估值定理

- 设M,m分别是f(x,y)在有界闭区域D上的最大值和最小值,A为D的面积,
 - 则有mA \leqslant \iint_{D}f(x,y)d\sigma \leqslant MA

性质7二重积分的中值定理

- 设函数f(x,y)在有界闭区域D上连续,A为D的面积,
 - 则在D上至少存在一点(\varepsilon, \eta),使得\iint_{D}f(x,y)d\sigma = f(\varepsilon, \eta)A

普通对称性和轮换对称性

- 对称性问题本质上是概念,不是计算
- 是关于积分区域 D的对称性

普通对称性

$$\iint_D f(x,y) dx dy = \left\{egin{array}{ll} 2 \iint_{D_1} f(x,y) dx dy & , f(x,y) = f(-x,y) \ 0 & , f(x,y) = -f(-x,y) \end{array}
ight.$$

- 区域*D*关于*x*轴对称
 - 两个f(x,y)\mathrm{d}\sigma = f(-x,y)\mathrm{d}\sigma
 - 对称位置体积相等
- 区域*D*关于原点对称
 - o f(x,y)\mathrm{d}\sigma = -f(-x,y)\mathrm{d}\sigma
 - 。 对称位置体积正好相反

轮换对称性

积分值与用什么字母表示示无关的

• $\left(D_{xy}\right)f(x,y)dxdy = \left(D_{yx}\right)f(y,x)dydx$

轮换对称性:

- 若把x与y对调后,区域D不变
 - \circ 或称区域D关于y = x对称
- 则\iint_{D}f(x,y)dxdy = \iint_{D}f(y,x)dydx

例如

- 区域D = \{ (x,y) | x^2 + y^2 \leqslant 1, x, y \geqslant 0\} f(x)为D上的正值连续函数, a,b为常数,求I = \lint_{D}\frac{a\sqrt{f(x)} + b\sqrt{f(y)}}{\sqrt{f(x)} + \sqrt{f(y)\mathrm{d}\sigma}}
- 分析
 - 。 被积函数为抽象的,无法直接计算
 - o 观察发现
 - 把x和y对调后,区域D不变,
 - 即区域D关于y=x对称
 - 。 根据轮换对称性
 - $\begin{tabular}{l} $ I = \lim_{D}\frac{a\sqrt{f(x)} + b\sqrt{f(y)}}{\sqrt{f(x)} + \sqrt{f(y)}} \mathbb{I} = \lim_{D}\frac{a\sqrt{f(y)} + \sqrt{f(y)}}{\sqrt{f(y)} + \sqrt{f(x)}} \mathbb{I} = \mathbb{I} =$
 - 2I = \iint_{D}(a+b) \mathrm{d}\sigma

11.2 二重积分的计算

将二次(累次)积分转化为二重积分时,必须将积分限写成下限小于上限(累次积分无此要求),然后交换次序

直角坐标系

下限均小于上限

D为X型区域

• \iint_{D}f(x,y)d\sigma = \int_{a}^{b}dx\int_{\varphi_1}^{\varphi_2}f(x,y)dy,\varphi_1 \leqslant y \leqslant \varphi_2,a \leqslant x \leqslant b

D为Y型区域

• $\left(D\right)f(x,y)d\simeq = \int_{c}^{d}dx\int_{v,y}dy,\ y \leq 1 \leq 1 \leq 2 f(x,y)dy,\ y \leq$

极坐标系

极点O在区域D外部

• $\left(D\right)^{r_1(x,y)}d\simeq - \left(\frac{r_1(\theta)}^{r_2(\theta)}f(r\cos\theta)\right)^{r_2(\theta)}f(r\cos\theta)$ • $\left(\frac{r_1(\theta)}^{r_2(\theta)}f(r\cos\theta)\right)^{r_2(\theta)}$

极点O在区域D边上

极点O在区域D内部

• $\left(D\right)f(x,y)d\simeq = \int_{0}^{2\pi}d\theta \cdot \int_{0}^{r(\theta)}f(r\cos\theta - r\sin\theta) d\theta$

极坐标中几乎都是先计算r后积分\theta

极坐标与直角坐标系选择的一般原则

满足以下则选择极坐标否则使用直角坐标

- 被积函数是否为f(x^2+y^2),f(\frac{y}{x}),f(\frac{x}{y})等形式
 - 。 是则选择极坐标
- 再看积分区域是否为圆或者圆的一部分
 - 。 是则选择极坐标

极坐标系与直角坐标系的相互转化

• 公式:

$$\left\{egin{array}{l} x=rcos heta\ x=rsin heta \end{array}
ight.$$

- 画好区域*D*的图形,确定好上下限
- r drd\theta = dxdy

出题角度

二重积分的基础题

- 坐标系
 - 。 直角坐标系下的计算
 - 。 极坐标系下的计算
 - 。 极坐标系与直角坐标系的相互转化后的计算
- 积分次序
 - 首先画出积分区域,方便写出交换次序后的积分上下限
 - 。 直角坐标系下交换积分次序
 - 被积函数 f(x,y)关于x或y的函数,原函数无法用初等函数表示
 - 讲行变量替换时观察哪种积分次序方便后续计算
 - 例如
 - $\int_0^1 dy \int_y^1 \sqrt{x^2 y^2} dx$
 - 计算\int\sqrt{x^2 y^2}dx
 - 等价于\sqrt{x^2-a^2}, x = asecx
 - 计算\int\sqrt{x^2 y^2}dy
 - 等价于\sqrt{a^2-y^2}, y = asinx
 - 对比后者更方便计算
 - 。 极坐标系下交换积分次序
- 涉及二重积分概念的计算

交换积分次序

- 例如
 - - 如果不进行积分次序的交换,被积函数sin\frac{\pix}{2y}作为y的函数,原函数无法用初等函数表示
 - \int_1^2dx\int_{\sqrt{x}}^xsin\frac{\pi x}{2y}dy + \int_2^4dx\int_{\sqrt{x}}^2 sin\frac{\pi x} {2 y}dy
 - \iint_{D}\sin\frac{\pi x}{2y}dxdy
 - 此时D由X型区域变为Y型区域
 - D = 1 $\{(x,y) \mid \text{leqslant } y \mid 2, y \mid x \mid x \mid y^2 \}$

\int_1^2dy\int_x^{x^2}\sin\frac{\pi x}{2y}dx