- protein intake , and the risk of gout in men[J]. N Engl J Med , $2004\ 350:1093-1103.$
- [7] 张志宏 陈松康 林昕晨 等. GC 测定硫唑嘌呤中吡啶残留量 [J]. 中国现代应用药学杂志 2008 25(6):540-542.
- [8] 李志良 涨五九. 高效液相色谱法测定麦汁、发酵液和啤酒中的嘌呤含量[J]. 食品与发酵工业 2006 32:373-374.
- [9] 李忠琴,邬敏辰,许小平,等.偶联酶催化分光光度法测定黄嘌呤[J].化学通报,2007,7:536-540.
- [10] PAOLA D, LUIGI M, LAURA D, et al. LC-MS for tile identification of oxygen heterocyclic compounds in citrus essential

- oils[J]. J Pharmaceut Biomed 2000 24(1):147-154.
- [11] 张书胜 陈勇 ,袁倬斌. 无环鸟苷和鸟嘌呤的高效毛细管电泳测定[J]. 分析化学 ,1996 ,24(10):1212-1215.
- [12] LOU S N ,CHEN T Y. Studies on the analytical method of the purine contents in fishery products [J]. Food Sci ,1997 24(1): 1-11.
- [13] JOU J H, KER K C. The investigation of analytical method of purine content in high purine foods [J]. Nutr Sci J,1999,24 (4):366-378.

实验技术与方法

固相萃取-超高效液相色谱串联质谱法检测甘蔗中 3-硝基丙酸的方法研究

李兵,吴国华,刘伟,赵旭东,赵海燕,薜颖,赵榕(北京市疾病预防控制中心,北京 100013)

摘 要: 目的 建立甘蔗中 3-硝基丙酸的固相萃取-超高效液相色谱串联质谱检测方法。方法 样品经乙腈萃取 Sep-pak 氨基固相萃取柱净化 ,超高效液相色谱串联质谱法测定甘蔗中 3-硝基丙酸含量。色谱柱为 Waters ACQUITY BEH C_{18} 柱($1.7~\mu m$,50 mm × 2.1~m m) 柱温 40~% 样品温度 10~% 进样体积 $5~\mu l$ 流动相 A 为水 ,流动相 B 为乙腈 ,梯度洗脱。结果 方法的线性范围为 $4.0~40.0~\mu g/k g$,基质加标工作曲线线性相关系数为 0.998 。方法的定性检出限为 $1.0~\mu g/k g$,定量检出限为 $4.0~\mu g/k g$ 。高、中、低 3~% 个浓度水平的加标回收率为 92.5%~93.6% 相对标准偏差小于 10%。结论 本方法灵敏、快速、准确 ,可用于甘蔗中 3-硝基丙酸的测定。

关键词: 甘蔗; 3-硝基丙酸; 固相萃取; 超高效液相色谱-串联质谱

中图分类号: TS242.1 文献标识码: A 文章编号: 1004-8456(2012)02-0127-06

Detection of 3-nitropropionic acid in sugarcane by solid-phase extraction coupled with ultra high performance liquid chromatography-tandem mass spectrometry

Li Bing , Wu Guohua , Liu Wei , Zhao Xudong , Zhao Haiyan , Xue Ying , Zhao Rong (Beijing Centers for Diseases Control and Prevention , Beijing 100013 , China)

Abstract: **Objective** To establish a method for the detection of 3-nitropropionic acid in sugarcane by solid-phase extraction (SPE) coupled with ultra high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). **Methods** Samples were extracted by acetonitrile and cleaned up by Sep-pak NH₂ solid phase extraction column. The 3-nitropropionic acid was determined by UPLC-MS/MS. The chromatographic conditions: using Waters ACQUITY BEH C_{18} column (1.7 μ m, 50 mm \times 2.1 mm) with water as mobile phase A and acetonitrile as mobile phase B for gradient elution; keeping the column temperature at 40 °C and the samples at 10 °C with an injection volume of 5 μ l. **Results** There was a good linearity of the calibration curve for 3-nitropropionic acid standard in the range of 4.0 – 40.0 μ g/kg with correlation coefficient of 0.998. The detection limit of the method was 1.0 μ g/kg and the limit of quantification was 4.0 μ g/kg. The average recovery at three spiked levels was in the range of 92.5% – 93.6%, and the relative standard derivation was lower than 10%. **Conclusion** The method is simple, rapid, sensitive and accurate, which can be used in the detection of 3-nitropropionic acid in sugar cane.

Key words: Sugarcane; 3-nitropropionic acid; solid-phase extraction; UPLC-MS/MS

收稿日期: 2011-07-25

作者简介: 李兵 女 技师 研究方向为食品中污染物检测

通信作者: 赵榕 女 副主任技师 研究方向为食品中污染物及营养成分检测 E-mail: lxyue@ yeah. net

中国是甘蔗生产大国之一,所生产的甘蔗含糖量高,还含有丰富的维生素、无机元素等营养成分,是人们喜爱的水果,同时也是制造蔗糖的主要原料。但甘蔗霉变后可产生导致人类和动物中毒的毒素 3-硝基丙酸(3-nitropropionic acid 3-NPA)。3-NPA是一种嗜神经毒素^[1-3],可对中枢神经系统产生严重损伤^[4]。1972年2—3月份我国北方相继发生了多起因食用霉变甘蔗导致的中毒事件,重症病人多为儿童及青年,其中约10%死亡,幸存者往往留下严重的后遗症^[5]。1984年我国研究人员发现并首次阐明霉变甘蔗中萎饱霉菌的代谢产物3-硝基丙酸是导致中毒的主要原因^[6]。历年来,我国均有食用霉变甘蔗中毒的报道^[7-10]。卫生部门每年都会发出食品安全预警提醒消费者不要购买霉变甘蔗。

目前关于甘蔗中 3-NPA 的检测方法报道较少, 且不同基质中的 3-NPA 检测方法不一, 多为提取液 经过液液分配净化后,经过薄层色谱法、气相色谱 法、气相色谱-质谱法和高效液相色谱法测定[11-4]。 不仅前处理繁琐费时,灵敏度低、回收率不高,使用 气相色谱法时还需要衍生,难以适应快速检测工 作。加之甘蔗含糖量高,基质较为复杂,如果不经 净化,提取后直接进样会对仪器造成污染,并且会 降低灵敏度。固相萃取方法溶剂使用量小、快速、 回收率高,是一种环境友好的前处理方法。超高效 液相色谱一串联质谱法灵敏、快速。本文通过对甘蔗 中 3-NPA 的提取、净化及测定条件的优化 ,建立了 甘蔗中3-NPA 乙腈提取、固相萃取净化以及超高效 液相色谱-串联质谱测定方法。具有操作简便、快 速、灵敏度高等特点。目前国内外还未见相关方法 的报道。

1 材料与方法

1.1 仪器和试剂

超高效液相色谱-质谱/质谱联用仪:配备有ACQUITY 超高效液相色谱仪、Quattro Premier XE 质谱仪(Waters 公司),离心机(Beckman 公司),均质仪 B-400(BUCHI 公司)。

Sep-pak 氨基柱(500 mg/6 ml, Waters 公司)。 甲醇、乙腈(色谱纯,迪马公司)。甲酸(分析纯,北京化学试剂公司)。试验用水均为超纯水(25 ℃电阻率 \geq 18.2 M Ω •cm, Millipore 公司)。3-硝基丙酸标准品纯度大于98%(Sigma 公司)。

3-硝基丙酸标准储备液的配制: 称取标准品 $10.0~\mathrm{mg}$,用甲醇溶解后转移至 $10.0~\mathrm{ml}$ 棕色容量瓶中,用甲醇定容,配制成质量浓度为 $1.0~\mathrm{mg/ml}$ 的标准储备液 ,于 $-20~\mathrm{^{\circ}C}$ 条件下保存。

3-硝基丙酸标准工作液的配制: 取上述标准储备溶液 0.10~ml,置于 10.0~ml 棕色容量瓶中,用甲醇定容 配制成 $10.0~\mu\text{g/ml}$ 标准中间液。取上述标准中间液 0.10~ml 于 10.0~ml 棕色容量瓶中,用甲醇定容 配制成 100.0~ng/ml 标准工作液。

样品定容溶液: 称取 $0.385~\mathrm{g}$ 无水乙酸铵溶解于 $500~\mathrm{ml}$ 水中 ,加入 $1~\mathrm{ml}$ 甲酸 ,水定容至 $1~000~\mathrm{ml}$, 配成浓度为 0.1~% 甲酸水的 $5~\mathrm{mmol/L}$ 乙酸铵溶液。 $1.2~\mathrm{Q}$ 设器条件

超高效液相色谱条件: 色谱柱 Waters ACQUITY BEH C_{18} 柱(1.7 μ m ,50 mm ×2.1 mm) 柱温 40 $^{\circ}$ C; 样品温度 10 $^{\circ}$ C; 进样体积 5 μ l。流动相 A 为水,流动相 B 为乙腈,梯度洗脱,梯度洗脱程序见表 1。

表 1 梯度洗脱程序 Table 1 Gradient elution program

时间(min)	流速(ml/min)	流动相 A(%)	流动相 B(%)
0	0. 250	95. 0	5. 0
3.00	0. 250	10.0	90. 0
4. 00	0. 250	10.0	90. 0
4. 50	0. 250	95. 0	5. 0

质谱条件: 离子源: 电喷雾离子源(ESI –);扫描方式: 多反应监测 MRM。毛细管电压 2.5 kV;离子源温度 100 ° ;脱溶剂气温度 450 ° ;脱溶剂气流量 500 ° / ,键孔电压 12 ° / ,离子碰撞能量 10 ° / 。

3-硝基丙酸质谱条件: 母离子(m/z) 118.0; 特征离子(m/z) 46.0。

1.3 样品的制备

将甘蔗去皮 ,均质仪均质 ,称取 1.0~g 试样 ,置于 50~ml 离心管中 ,加入 10.0~ml 乙腈 ,振荡 20~min ,加入 1~g 氯化钠 ,振荡 10~min 于 10~000~r/min 条件下离心 10~min ,取上清液 5~ml ,待净化。

氨基固相萃取柱用 6~ml 乙腈活化后,将试样溶液过柱,先用 4~ml 10% 甲醇水溶液淋洗,再用 5~ml 10% 甲醇氨洗脱 收集洗脱液,用氮气吹至近干,用 0.1% 甲酸水 5~mmol/L 乙酸 铵溶液定容至 1.0~ml 后,过 0.22~μm滤膜后超高效液相色谱- 串联质谱测定。

1.4 基质加标工作曲线的制备

分别称取 6 份 1.0 g 空白样品基质于 50 ml 离心管中 ,分别加入 100.0 ng/ml 标准工作液 40、80、120、160、200、400 μ l ,依 1.3 方法处理 ,制备基质加标工作曲线 ,浓度为 4.0、8.0、12.0、16.0、20.0、40.0 μ g/kg ,在上述优化的仪器条件下进行测定。绘制基质加标工作曲线。

1.5 定性及定量

在 1.2 仪器条件下测定基质加标标准溶液及样 品溶液。目标化合物以保留时间和特征离子定性。 要求被测试样中目标化合物的保留时间与标准溶液 中目标化合物的保留时间一致(偏差小于 20%)。以标准溶液浓度对特征离子峰面积绘制标准曲线,外标法定量。样品中待测物 3-NPA 的浓度按下述公式进行计算:

$$C = \frac{c \times v}{W} \times 2$$

式中 C 一样品中目标化合物含量(μ g/kg); c一测定液中目标化合物的量(μ g/ml); v 一试样定容体积(ml); W 一称试样质量(kg)。

2 结果与分析

2.1 色谱柱的优化

液相色谱法分析 3-硝基丙酸一般使用 С18 反相 色谱柱,由于3-硝基丙酸具有较强的酸性和亲水 性,在反相 C。色谱柱上保留较弱,为了增强保留有 关作者曾使用磷酸二氢钾溶液作流动相[14],而 UPLC-MS/MS 在流动相中应避免使用磷酸盐,因此 本试验考察了有利于极性物质保留的反相色谱柱 Waters ACQUITY HSS T3, Waters ACQUITY BEH ShieldRP18 色谱柱 ,结果表明 ,与 Waters ACQUITY BEH C₁₈色谱柱相比,这两种色谱柱对于 3-硝基丙 酸的保留相差不多,并考察了 Waters ACQUITY BEH HILIC、Waters ACQUITY BEH Amide 两种亲水色谱 柱[15]。Waters ACQUITY BEH Amide 色谱柱允许使 用的 pH 范围为 2~11 因此本试验考察了乙腈-水、 乙腈-0.1% 甲酸水、乙腈-0.1% 氨水、乙腈-5 mmol/L 乙酸铵水溶液、乙腈-0.1%甲酸 5 mmol/L 乙酸铵水 溶液、乙腈-0.1 % 氨水 5 mmol/L 乙酸铵水溶液流 动相体系。对于 Waters ACQUITY BEH HILIC 色谱 柱,由于其允许使用的pH 范围为1~9,因此本试验 考察了乙腈-水、乙腈-0.1% 甲酸水、乙腈-5 mmol/L 乙酸铵水溶液、乙腈-0.1%甲酸5 mmol/L乙酸铵水 溶液流动相体系。对于两种色谱柱均将纯水-乙腈、 乙腈-甲醇,以及初始比例流动相作为定容溶液进行 了考察。结果表明, HILIC 和 Amide 色谱柱对于 3-硝基丙酸的保留情况相似,不同的流动相及定容溶 液对于 3-硝基丙酸的保留几乎没有影响,在 HILIC 和 Amide 色谱柱中 3-硝基丙酸的出峰时间均早于 C₁₈ 柱 , 见 图 1 ~ 图 3。 最 终 确 定 使 用 Waters ACQUITY BEH C₁₈色谱柱。

2.2 流动相的优化

首先选取最常用的 Waters ACQUITY BEH C_{18} 色谱 柱,对于流动相进行了考察,3-硝基

$$O_2N$$
 OH 丙酸是一种小分子有机酸结构式,

图 1 3-硝基丙酸在 Waters ACQUITY BEH C₁₈ 柱上的保留情况

Figure 1 The retention of 3-nitropropionic acid on the Waters ACQUITY BEH C_{18} column

图 2 3-硝基丙酸在 Waters ACQUITY BEH Amid 柱上的保留情况

Figure 2 The retention of 3-nitropropionic acid on the Waters ACQUITY BEH Amid column

图 3 3-硝基丙酸在 Waters ACQUITY BEH HILIC 柱上的保留情况

Figure 3 The retention of 3-nitropropionic acid on the Waters ACQUITY BEH HILIC column

ACD/Labs V8. 14 软件计算出其 pKa 为 3. 66 , $\log P$ 为 $-0.17^{[16]}$,具有较强的酸性和亲水性 ,在色谱柱上的保留较弱^[17] ,为了兼顾 3-硝基丙酸在色谱柱上的保留与质谱上的响应 ,对于甲醇-水、乙腈-水、乙

腈-0.1% 甲酸水、乙腈-0.1% 氨水、乙腈-0.1% 甲酸5 mmol/L 乙酸铵水溶液、乙腈-0.1% 氨水 5 mmol/L 乙酸铵水溶液体系进行了考察。结果表明,乙腈-水为流动相时的响应值要比甲醇-水高1倍左右,保留时间差别不大,流动相中加酸、碱或盐时灵敏度较低,可能是酸、碱或盐的存在抑制了目标化合物的电离,并且对于酸的浓度(0.1%、0.3%、0.5%)进行优化后发现保留没有明显增强。因此确定乙腈-水为流动相。

为了增强目标物在色谱柱上的保留 ,对定容溶液进行了优化: 纯水、乙腈-水、0.1% 甲酸水、0.1% 医水、0.1% 甲酸水 5 mmol/L 乙酸铵、0.1% 氨水 5 mmol/L 乙酸铵 ,发现使用 0.1% 甲酸水 5 mmol/L 乙酸铵作为上机溶液时不仅保留时间明显增强而且响应也最佳。最后确定流动相为乙腈-水梯度洗脱 0.1% 甲酸水 5 mmol/L 乙酸铵作为定容溶液。

2.3 样品提取溶液的选择

在空白甘蔗基质中加入 3-硝基丙酸标准溶液,分别用水、乙腈、甲醇、丙酮、乙酸乙酯各 10 ml 振荡提取 20 min 結果表明,以乙腈作为提取溶剂提取率最高,因此,确定乙腈作为提取溶剂。

2.4 氯化钠加入量的优化

因为甘蔗中含有大量的水分,使用氨基柱净化时,要在上柱溶液中最大限度地降低水的含量,因此在提取过程中要加入氯化钠使水相和有机相分离,取有机相过固相萃取柱。本试验对于氯化钠的加入量(0.5、1、2g)进行了优化,结果回收率较为接近,而适量的氯化钠在离心后有助于减少有机溶剂中的漂浮物,使样品更加清澈,有利于固相萃取的进行。因此本试验选择氯化钠的加入量为1g。

2.5 固相萃取柱的选择

WS/T 10—1996《变质甘蔗食物中毒诊断标准及处理原则》采用调节 pH 值后乙酸乙酯提取甘蔗样品,再采用 2% 碳酸氢钠在分液漏斗中提取乙酸乙酯溶液,收集水相弃去乙酸乙酯层,再用三氯甲烷溶液提取碳酸氢钠层后弃去三氯甲烷层,最后调节 pH 值后再采用乙酸乙酯提取,完成提取净化过程。采用不同极性的溶剂反复多次的液-液萃取进行净化较为费时,而且溶剂使用量大,在多次的萃取中容易造成损失。

本试验采用环境友好的固相萃取技术完成甘蔗中目标化合物的富集和净化,选取 Oasis MAX、Oasis WAX、Oasis HLB、氨基柱 4 种小柱进行筛选。3-硝基丙酸分子结构中带有——COOH,首先选择MAX 柱,MAX 柱是一种混合型的固相萃取柱,同时具有反相吸附和阴离子交换的功能,对于酸性

物质有较好的选择性[18]。使用加标的乙腈溶液上 柱后, 收集上柱液分析, 可以确定样品完全保留在 柱子上,对洗脱液进行优化时发现 0.1%、0.5%、 1%、3%、5%、10%、20% 甲酸甲醇溶液均回收较 差,甚至使用 0.1 mol/L 盐酸仍无法将目标物洗脱 下来^[19]。Oasis WAX 洗脱时有二种模式^[20-21]:一 种洗脱液的 pH 大于填料的 pKa 两个 pH 单位 ,使 填料呈中性状态,而使目标物洗脱;另一种洗脱液 的 pH 小于目标化合的 pKa 两个 pH 单位 ,使目标 化合物呈中性状态而洗脱。其中第二种模式与 Oasis MAX 相同,因此采用第一种模式进行试验, 使用加标的乙腈溶液上柱后, 收集上柱液分析, 可 以确定样品完全保留在柱子上,但通过对 0.1% 至 20%的一系列氨水甲醇洗脱液进行优化时发现回 收率均较差。HLB 柱是亲水-亲脂平衡固相萃取 柱,应用较为广泛[22]。本试验对于多种上柱溶液 进行了优化,分别在水、甲醇、乙腈、甲酸水、盐酸 水溶液中加标, 收集上柱溶液, 发现 HLB 柱对目标 物的保留均非常微弱。氨基柱在非极性溶液和水 溶液中可分别表现出极性吸附作用和弱的阴离子 交换作用。使用加标的乙腈溶液上柱后,收集上 柱液分析,可以确定样品完全保留在柱子上,使用 氨水甲醇作为洗脱溶剂,可以获得较好的回收,最 终确定使用氨基柱。

2.6 氨基固相萃取柱条件的优化

甘蔗中含有大量的糖分,提取后直接进入色谱系统会对色谱柱造成污染,为了提高净化效果,本试验使用氨基固相萃取柱对于甘蔗中的3-硝基丙酸富集后,使用甲醇水溶液淋洗,进行样品净化。采用水含量分别为0、10%、20%、30%、40%、50%、60%(V/V)的水-甲醇溶液进行淋洗,考察3-硝基丙酸的损失情况,结果见图4。结果表明当溶液中水含量超过20%时,3-硝基丙酸有损失,为了避免损失,又最大限度地除去样品中可能对目标化合物产生干扰的基质,本试验选择了含10%甲醇水溶液作为淋洗液。吸附于氨基固相萃取柱上的3-硝基丙酸,需要在极性溶剂中洗脱。本试验对氨水含量为0、2%、4%、6%、8%、10%、12%的甲醇和乙腈溶液的洗脱能力进行了试验,见图5,最终确定以10%氨水甲醇溶液作为洗脱溶液。

2.7 定量方法的选择

由于甘蔗样品含糖量高,基质复杂,提取后需净化,才能采用液相色谱-串联质谱进行测定,操作过程中难免会造成损失,由于无法得到3-硝基丙酸的同位素内标,因此选择了基质加标工作曲线进行外标法定量,对操作过程的损失进行校正。

图 4 淋洗液中水含量对 3-硝基丙酸的影响

Figure 4 Influence of water content in washing solution on the peak area of the lost 3-nitropropionic acid

图 5 氨水含量不同的洗脱液的洗脱效率

Figure 5 The percentage of ammonia in eluting solvent and the elution efficiency

2.8 检出限、精密度、回收率及线性范围

在空白基质中加标,按照 1.3 所述方法进行提取、净化和浓缩,得到基质加标工作曲线。线性范围为 $4.0 \sim 40.0~\mu g/kg$,线性方程为 y=20.9x~+13.9~线性相关系数(r) 为 0.998。方法的定性检出限为 $1.0~\mu g/kg$,定量检出限为 $4.0~\mu g/kg$ 。

分别称取 1 g 不含 3-NPA 的甘蔗 ,分别加入 100.0 ng/ml 3-NPA 标准溶液 40.60.80 µl ,使得样 品中的加标浓度为 4.0.6.0 和 8.0 µg/kg ,每个浓度做 5 个平行 ,依 1.3 方法处理后上机测定。计算平均回收率及相对标准偏差(RSD)。如表 2 所示 3 个加标浓度水平下所得平均回收率均在 $92.5\% \sim 93.6\%$ 之间 ,相对标准偏差均小于 10% ,可以满足 3-硝基丙酸痕量检测的要求。

表 2 方法精密度及回收率

Table 2 The recovery and precision of the method (n = 5)

本底值 (µg/kg)	加标水平 (μg/kg)	检出浓度 (μg/kg)	回收率 (%)	RSD (%)
0	4. 0	3. 7	93. 0	9.0
0	6. 0	5. 5	92. 5	4. 9
0	8.0	7. 5	93.6	6. 7

2.9 实际样品的测定

运用本方法对 2—3 月份的 10 份市售甘蔗样本进行了分析 ,均未检出 3-硝基丙酸。随机取其中 5 份样本置于 -20 $^{\circ}$ C 冰柜保存 3 个月后取出进行分析 检出浓度为 $2.9 \sim 5.6$ $\mu g/kg$ 。

3 结论

本文建立了固相萃取 - 超高效液相色谱串联质谱测定甘蔗中 3 - 硝基丙酸的方法,固相萃取方法溶剂使用量小、快速、回收率高,是一种环境友好的前处理方法。超高效液相色谱 - 串联质谱法灵敏、快速。本方法适合用于甘庶中 3 - 硝基丙酸的测定,为监测市售甘庶中 3 - 硝基丙酸的产生情况提供了实用的技术手段,可以满足中毒样品的快速检测。

参考文献

- [1] 汪儆 ,雷祖玉 ,冯学勤 ,等. 沙打旺中微量 3-硝基丙酸的气相 色谱测定[J]. 中国草地 ,1992 ,3: 69-72.
- [2] 汪儆,雷祖玉,冯学勤,等.不同品种和形态特点多变小冠花中的3-硝基丙酸含量[J].草地学报,1994,2(1):89-94.
- [3] 陈晓明 胡文娟,陈君石,等.天然毒素 3-硝基丙酸的研究现状[J]. 国外医学卫生学分册,1988,17(3):158-161.
- [4] 刘兴玠 罗雪云 ,吕可在,变质甘蔗中毒的病因研究 I.流行病学及临床资料的分析以及中毒样品的毒性试验 [J].卫生研究 ,1984 ,13(5):24-28.
- [5] PERAICA M, DOMIJAN A. Contamination of food with mycotoxins ycotoxins and human health [J]. Arh Hig Rada Toksikol 2001 52:23-35.
- [6] 刘兴玠,罗雪云,刘秀梅,等.变质甘蔗中毒的病因研究Ⅱ.病原菌的分离及毒性试验[J].卫生研究,1984,13(5):28-32.
- [7] 李金宝 杨国华 赵霞. 重症霉变甘蔗中毒治验一则[J]. 中医

- 杂志 2009 50(12):69-70S1.
- [8] 杨俊香 李占华,马彦峰.中医辨证治疗霉变甘蔗中毒 25 例 体会[J].临床荟萃 2007 22(12):893-894.
- [9] 吴琳莉 李志龙 苏鹤 等. 霉变甘蔗中毒 16 例临床报告[J]. 现代中医药 2007 2(27):22-23.
- [10] 梁瑞乾.霉变甘蔗中毒一例报告[J].广西医学,2003,25 (11):2299-2300.
- [11] 中华人民共和国卫生部. WS/T 10—1996 变质甘蔗食物中毒诊断标准及处理原则[S]. 北京: 中国标准出版社 ,1996.
- [12] 汪儆 濡祖玉 冯学勤 為. 我国某些豆科植物中 3 硝基丙酸 的气相色谱和气相色谱 质谱研究 [J]. 草地学报 ,1992 ,9 (2):34.
- [13] 刘勇,吴南,吴永宁,等.3-硝基丙酸的气相色谱-热能检定器测定法及其在大鼠体内的毒物代谢动力学研究[J].卫生研究,1993,22(1):35-38.
- [14] 江涛,张庆林,罗雪云,等.3-硝基丙酸的高效液相色谱分析 [J].卫生研究,1999,28(5):300→02.
- [15] 王媛 顺惠新 ,路鑫 ,等. 以亲水作用色谱为核心的液相色谱 联用技术及其应用研究[J]. 色谱 2008 26(2):649-657.
- [16] ELISABETH A ,WOLFGANG B ,MICHAEL L ,et al. Retention pattern profiling of fungal metabolites on mixed-mode reversed-

- phase/weak anion exchange stationary phases in comparison to reversed-phase and weak anion exchange separation materials by liquid chromatography-electrospray ionisation-tandem mass spectrometry [J]. J Chromatogr A 2008, 1191:171-181.
- [17] MICHAEL S ,RUDOLF K ,RAINER S. Application of an LC-MS/ MS based multi-mycotoxin method for the semi-quantitative determination of mycotoxins occurring in different types of food infected by moulds [J]. Food Chem 2010 ,119: 408-416.
- [18] 赵榕 李兵 赵海燕 等. 固相萃取 超高效液相色谱串接四级 杆质谱同时测定调味品中 12 种工业染料[J]. 中国食品卫生 杂志 2010 22(5): 305-311.
- [19] 蔡增轩 徐小民 俞和建 ,等. 生物样品中 6 种抗凝血鼠药的测定[J]. 中国卫生检验杂志 2008 ,18(10): 2006-2008.
- [20] 赵榕 赵海燕 李兵 等. 建立同时测定调味品中非法添加的 4 种工业染料的 SPE-UPLC-MS/MS 法研究[J]. 中国食品卫生杂志 2009 21(5):410-414.
- [21] 陈小华,汪群杰.固相萃取技术与应用[M].北京:科学出版 社 2010.
- [22] 赵榕 邵兵 赵婕 等. 液相色谱-电喷雾质谱/质谱法测定高温烹制的淀粉类食品中的丙烯酰胺[J]. 色谱 2005 23(3): 289-291.

实验技术与方法

高效液相色谱-示差折光法测定保健食品中的低聚木糖

刘泰然, 李洁, 刘平, 陈忠辉, 罗仁才(北京市疾病预防控制中心, 北京 100013)

摘 要:目的 建立高效液相色谱-示差折光测定保健食品中的低聚木糖(以木糖计)的方法。方法 样品经水提取 在沸水浴中用硫酸水解 ,用氢氧化钠调成中性后以乙腈 + 水(70 + 30)为流动相 ,通过氨基柱(4.6 mm × 250 mm 5 μ m)分离后用示差折光检测器检测,同一样品在水解前后木糖含量的差值即为样品中低聚木糖的含量。结果 被测组分浓度(0.30~4.50 mg/ml)与峰面积线性关系良好(r=0.9999);相对标准偏差 1.86 % ~ 3.80% (n=6),在固体保健食品中加标回收率为 90.3% ~ 93.6% 和 92.6% ~ 98.3%;在液体保健食品中加标回收率为 89.0% ~ 97.0% 和 91.0% ~ 96.0%。结论 本方法快速、灵敏、重现性好,适用于测定保健食品中的低聚木糖。

关键词: 高效液相色谱; 示差折光检测器; 低聚木糖; 木糖

中图分类号: 0657.72 文献标识码: A 文章编号: 1004-8456(2012)02-0132-04

Determination of xylo-oligosaccharides in health foods by HPLC with differential refractive index detector

Liu Tairan , Li Jie , Liu Ping , Chen Zhonghui , Luo Rencai (Beijing Center for Disease Prevention and Control , Beijing 100013 , China)

Abstract: Objective To develop an analytical method for the determination of xylo-oligosaccharides in health foods by high performance liquid chromatography with differential refractive index detector. **Methods** The samples were extracted and then hydrolyzed (4.6 mm \times 250 mm , 5 μ m) with sulfuric acid solution in boiling water bath; neutralized with sodium hydroxide solution; separated on a NH₂ column with a mixture of acetonitrile-water (70 + 30 , V/V) as mobile phase; detected by refractive index detector at a flow rate of 1.0 ml/min. **Results** There was a good linearity of the calibration

收稿日期: 2011-06-21

作者简介: 刘泰然 女 主管检验师 研究方向为食品检测 E-mail: ltr724@ yahoo. com. cn

通信作者: 罗仁才 男 主任技师 研究方向为食品检测