Homework 6

PHYSICS 304 March 6, 2020 Kevin Evans ID: 11571810

Chapter 15

6. Since the lepton numbers L_{μ} and L_{e} must be conserved,

$$\mu^+$$
: $L_{\mu} = -1$
 e^- : $L_e = 1$

The neutrinos must be one muon antineutrino $(\bar{\nu}_{\mu}, L_{\mu} = -1)$ and an electron neutrino $(\nu_e, L_e = 1)$.

- 8. (a) $\bar{\nu}_{\mu} (L_{\mu} = -1)$
 - (b) $\nu_{\mu} (L_{\mu} = 1)$
 - (c) $\bar{\nu}_e (L_e = -1)$
 - (d) $\nu_e (L_e = 1)$
 - (e) $\nu_{\mu} (L_{\mu} = 1)$
 - (f) $\nu_{\mu} (L_{\mu} = 1), \bar{\nu}_{e} (L_{e} = -1)$
- 9. (a) Cannot occur; baryon number is not conserved. $B: +1 \rightarrow 0$.
 - (b) Can occur? Wouldn't this violate conservation of energy though?
 - (c) Cannot occur; baryon number is not conserved.
 - (d) Can occur.
 - (e) Can occur.
 - (f) Cannot occur; muon and baryon number are not conserved.
- 11. (a) Muon and electron number are not conserved.
 - (b) Electron number is not conserved.
 - (c) Strangeness is not conserved.
 - (d) Electron and baryon number are not conserved.
 - (e) Strangeness and the baryon number are not conserved.
- 12. (a) Muon and electron lepton numbers are not conserved.
 - (b) Charge is not conserved.
 - (c) Baryon number is not conserved.
 - (d) Baryon number is not conserved.
 - (e) Charge is not conserved.
- 17. Using the hadron compositions,

$$\Sigma^{0} + p \to \Sigma^{+} + \gamma + ?$$

 $uds + uud \to uus + \gamma + \boxed{udd}$

The particle is a neutron (udd).

18. If we sum the quark constituents of each, they equal the values of the K^0 and Λ^0 particles.

	d	$\bar{\mathrm{s}}$	K^0	u	d	s	Λ^0
Q	$-\frac{1}{3}$	$\frac{1}{3}$	0	$\frac{2}{3}$	$-\frac{1}{3}$	$-\frac{1}{3}$	0
В	$\frac{1}{3}$	$-\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1
S	0	1	1	0	0	-1	-1

28. As the momentum of the pion is zero, the total momentum must be conserved. Then $|p_{\mu}|=|p_{\bar{\nu}}|$. Using the energy-momentum relationship,

$$(E_{\mu})^{2} = (pc)^{2} + (m_{\mu}c^{2})^{2}$$

$$(E_{\nu})^{2} = (pc)^{2}$$
Zero rest mass
$$(E_{\mu})^{2} - (E_{\nu})^{2} = (m_{\mu}c^{2})^{2}$$
(*)

From conservation of energy,

$$E_{\pi} = E_{\mu} + E_{\bar{\nu}}$$

$$E_{\pi} - E_{\bar{\nu}} = E_{\mu}$$

$$(E_{\pi} - E_{\bar{\nu}})^2 = (E_{\mu})^2$$

Subtracting the square neutrino energy to achieve the form of (*), we can then expand the LHS polynomial and substitute in (*),

$$(E_{\pi} - E_{\bar{\nu}})^2 - (E_{\bar{\nu}})^2 = (E_{\mu})^2 - (E_{\bar{\nu}})^2$$

$$(E_{\pi})^2 - 2E_{\pi}E_{\bar{\nu}} + (E_{\bar{\nu}})^2 - (E_{\bar{\nu}})^2 = (m_{\mu}c^2)^2$$

$$2E_{\pi}E_{\bar{\nu}} = (E_{\pi})^2 - (m_{\mu}c^2)^2$$

$$E_{\bar{\nu}} = \frac{(E_{\pi})^2 - (m_{\mu}c^2)^2}{2E_{\pi}}$$

Using the energies given in the book (and since the pion energy is its rest mass here),

$$E_{\bar{\nu}} = \frac{(139.5 \,\text{MeV})^2 - (105.7 \,\text{MeV})^2}{2 \,(139.5 \,\text{MeV})}$$

\$\approx 29.71 \text{MeV}\$

- 30. (a) Electron-positron annihilation releasing 2γ . The exchanged particle is e^{\pm} (ambiguous).
 - (b) Neutron decay, $n \pmod{p}$ (udu). The charge is carried from ν_{μ} (0) \rightarrow p (+1). As it's a weak force with +1 charge, the particle is W^+ , and also since the $\nu_{\mu} \rightarrow \mu^-$ primitive uses a W^+ .
- 31. (a) Since the particles are unchanged, the exchange particle is Z^0 .
 - (b) Gluon as the exchange is between quarks (strong process).