REPORT

February 2, 2025

Information Theory CheatSheet

1.1 Quick Review

1.1.1 Information Theory CheatSheet

(Based on Elements of Information Theory, 2nd Edition by Thomas M. Cover, Joy A. Thomas)

1. Capacity Regions

• Multiple Access Channel (MAC):

Capacity region:

$$R_1 \le I(X_1; Y|X_2), \quad R_2 \le I(X_2; Y|X_1), \quad R_1 + R_2 \le I(X_1, X_2; Y)$$

- Broadcast Channel:
 - No general formula for all cases.
 - For degraded channels, optimal rates achieved using superposition coding: $R_1 \le I(X; Y_1), \quad R_2 \le I(X; Y_2 | Y_1)$

2. Markov Chains

• Definition:

A stochastic process where future states depend only on the current state: $P(X_{n+1}|X_n,X_{n-1},\dots) = P(X_{n+1}|X_n)$

• Entropy Rate:
$$H(X) = \lim_{n \to \infty} \frac{H(X_1, X_2, \dots, X_n)}{n}$$

• Stationary Distribution:

For transition matrix P, solve $\pi P = \pi$.

3. Maximization of Entropy

• Discrete case:

Entropy is maximized when all outcomes are equally likely: $H(X) \le \log_2 |\mathcal{X}|$

• Continuous case:

Differential entropy is maximized by a Gaussian distribution:

 $h(X) \le \frac{1}{2} \log_2(2\pi e\sigma^2)$

4. Capacities of Different Channels

1. Binary Symmetric Channel (BSC):

$$C = 1 - H(p), \quad H(p) = -p \log_2 p - (1-p) \log_2 (1-p)$$

2. Binary Erasure Channel (BEC):

$$C = 1 - p$$

3. AWGN Channel:

$$C = \frac{1}{2}\log_2\left(1 + \frac{P}{N_0 B}\right)$$

5. Calculate Entropy of Channels

• Mutual Information:

$$I(X;Y) = H(Y) - H(Y|X)$$

• Entropy of a channel with output *Y*:

$$H(Y) = -\sum_{y \in \mathcal{Y}} P(y) \log_2 P(y)$$

6. Index Coding

• Definition:

Reduce the number of transmissions by using side information at clients.

• Example:

For messages ${\cal W}_1, {\cal W}_2, {\cal W}_3$ and side information:

- Client 1 knows W_2
- Client 2 knows W_3
- Client 3 knows W_1 Optimal coded transmissions: $W_1 \oplus W_2, W_2 \oplus W_3, W_3 \oplus W_1$.

7. Network Coding

• Definition:

Intermediate nodes perform operations (e.g., XOR) on data streams to increase throughput.

• Example:

In a butterfly network, transmit $X=A\oplus B.$ Both sinks decode:

$$A = X \oplus B, \quad B = X \oplus A$$

8. Coded Caching

• Basic Idea:

Pre-store coded data at users to reduce peak-time traffic.

• Formula:

 $L = \frac{N(1-M/N)}{1+KM/N}$ where N is the number of files, M is the cache size per user, and K is the number of users.

9. Gambling (after 10 goals)

• Kelly Criterion:

Maximizes logarithmic utility by choosing the optimal bet fraction: $f^* = \frac{bp-q}{b}$, q = 1-p

• Example:

If p=0.6 and odds b=2, the optimal bet is: $f^*=\frac{2\cdot 0.6-0.4}{2}=0.4$

10. MAC or Broadcast Channel (Optimal Schemes)

• MAC:

Achieve optimal rates using successive interference cancellation: $R_1 \leq I(X_1;Y|X_2), \quad R_2 \leq I(X_2;Y|X_1)$

• Broadcast:

Achieve capacity using superposition coding:

 $X = \alpha X_1 + (1 - \alpha) X_2$

11. Asymptotic Equipartition Property (AEP)

• Definition:

For a sequence of i.i.d. random variables, the probability of typical sequences converges to: $P(x^n) \approx 2^{-nH(X)}$

• Implications:

– Most sequences are typical as $n \to \infty$.

- Supports data compression and channel coding by focusing on typical sequences.

3

12. Coded MapReduce

• Definition:

Encode intermediate data to reduce communication during the shuffle phase.

• Example:

If there are 4 mappers and 3 reducers, coded transmissions allow each reducer to decode its required data from fewer transmissions.

• Communication Reduction:

 $R = \frac{1}{r}$ where r is the number of reducers.

This cheat sheet covers essential formulas, examples, and definitions for each topic, providing a quick reference for Information Theory concepts.

1.2 Exercices 1

1.2.1 Information Theory Q&A with Mathematical Problems

(With focus on AEP and related concepts)

1. Capacity Regions

1. **Q**:

For a two-user Gaussian multiple access channel (MAC) with $P_1 = 4$, $P_2 = 6$, and noise N=2, find the sum-rate constraint.

A:

The sum-rate constraint is:

$$R_1 + R_2 \le \frac{1}{2} \log_2 \left(1 + \frac{P_1 + P_2}{N} \right) = \frac{1}{2} \log_2 \left(1 + \frac{4+6}{2} \right) = 1.8 \text{ bits}$$

Explain how the capacity region changes when time-sharing is used in a broadcast channel.

Time-sharing allows convex combinations of achievable rate points, expanding the capacity region by alternating between different transmission schemes.

2. Markov Chains

1. **Q**:

For a Markov chain with transition matrix

Per a markov chain with transition matrix
$$P = \begin{bmatrix} 0.6 & 0.4 \\ 0.3 & 0.7 \end{bmatrix}$$
, find the stationary distribution.

Solve
$$\pi P = \pi$$
 with $\pi_1 + \pi_2 = 1$:
 $\pi_1 = 0.6\pi_1 + 0.3\pi_2$, $\pi_2 = 0.4\pi_1 + 0.7\pi_2$ Solution: $\pi = (0.43, 0.57)$.

2. **Q**:

Calculate the entropy rate of this Markov chain.

A:

$$H(X) = \sum_{i,j} \pi(i) P_{ij} \log_2 \frac{1}{P_{ij}}$$
 Substituting values:

$$H(X) = 0.43 \cdot (0.6 \log_2 \frac{1}{0.6} + 0.4 \log_2 \frac{1}{0.4}) + 0.57 \cdot (0.3 \log_2 \frac{1}{0.3} + 0.7 \log_2 \frac{1}{0.7})$$

3. Maximization of Entropy

1. **Q**:

Prove that entropy is maximized for a discrete variable when all outcomes are equally likely.

A

If
$$p(x) = \frac{1}{|\mathcal{X}|}$$
, then:

$$H(X) = -\sum_{x \in \mathcal{X}} \frac{1}{|\mathcal{X}|} \log_2 \frac{1}{|\mathcal{X}|} = \log_2 |\mathcal{X}|$$

2. **Q**:

Calculate the differential entropy of a Gaussian variable with variance $\sigma^2 = 3$.

 \mathbf{A}

$$h(X) = \frac{1}{2} \log_2(2\pi e \sigma^2) = \frac{1}{2} \log_2(2\pi e \cdot 3) \approx 2.77\,\mathrm{bits}$$

4. Capacities of Different Channels

1. **Q**:

For a binary symmetric channel (BSC) with p = 0.2, calculate the channel capacity.

Δ.

$$C=1-H(p), \quad H(p)=-p\log_2 p-(1-p)\log_2 (1-p)$$
 Substitution gives $H(p)\approx 0.72,$ so $C\approx 0.28$ bits.

2. **Q**:

Find the capacity of an AWGN channel with power P=10, noise spectral density $N_0=1$, and bandwidth B=1.

A :

$$C = \frac{1}{2} \log_2 \left(1 + \frac{P}{N_0 B} \right) = \frac{1}{2} \log_2 (1 + 10) = 1.73 \, \mathrm{bits}$$

5. Calculate Entropy of Channels

1. **Q**

Given
$$P(Y = 1|X = 1) = 0.9$$
 and $P(Y = 0|X = 0) = 0.8$, find the conditional entropy $H(Y|X)$.

A :

$$H(Y|X) = 0.5 \left(-0.9 \log_2 0.9 - 0.1 \log_2 0.1\right) + 0.5 \left(-0.8 \log_2 0.8 - 0.2 \log_2 0.2\right)$$

6. Index Coding

1. **Q**:

For messages $W_1, W_2, W_3,$ find the optimal index code if:

- Client 1 knows W_2 ,
- Client 2 knows W_3 ,
- Client 3 knows W_1 .

Coded transmissions: $W_1 \oplus W_2, W_2 \oplus W_3, W_3 \oplus W_1$.

7. Network Coding

1. **Q**:

In a butterfly network, compute the coded message if A = 1 and B = 0.

Transmit $X = A \oplus B = 1$. Both sinks decode:

$$A = X \oplus B = 1$$
, $B = X \oplus A = 0$

8. Coded Caching

For N = 4, K = 2, and M = 1, find the communication load.

A:
$$L = \frac{N(1 - M/N)}{1 + KM/N} = \frac{4(1 - 1/4)}{1 + 2(1/4)} = 2.4$$

1.2.2 9. Gambling (after 10 Gains)

1. **Q**:

Suppose you have achieved 10 consecutive gains and your current wealth is W = 1000. The probability of winning the next bet is p = 0.55 and the odds are b = 2. Apply the Kelly **Criterion** to determine the optimal bet size.

The Kelly Criterion formula is:

$$f^* = \frac{bp - (1-p)}{b}$$

Substituting values:
$$f^* = \frac{2 \cdot 0.55 - 0.45}{2} = \frac{1.1 - 0.45}{2} = 0.325$$

The optimal bet size is 32.5% of your current wealth:

$$f^* \cdot W = 0.325 \cdot 1000 = 325$$

10. MAC or Broadcast Channel (Optimal Schemes)

1. **Q**:

For a MAC with $P_1 = 3$, $P_2 = 5$, and noise N = 1, find the individual rates.

6

A:

$$R_1 \le \frac{1}{2} \log_2 \left(1 + \frac{P_1}{N} \right) = 1, \quad R_2 \le \frac{1}{2} \log_2 \left(1 + \frac{P_2}{N} \right) = 1.32$$

11. Asymptotic Equipartition Property (AEP) – Picking a Small Subset of Numbers Problem**

Q: Given a random variable X with entropy H(X) = 2 bits, there are $2^{10} = 1024$ possible sequences of length n = 5. You want to find a small subset of sequences such that their total probability is at least 0.99. How many sequences should you pick from the typical set?

Solution:

1. Typical Set Definition:

The **typical set** $A_{\epsilon}^{(n)}$ contains sequences x^n whose probability is approximately: $P(x^n) \approx 2^{-nH(X)} = 2^{-5\cdot 2} = 2^{-10}$

2. Total Number of Typical Sequences:

The number of sequences in the typical set is approximately: $|A_{\epsilon}^{(n)}| \approx 2^{nH(X)} = 2^{10} = 1024$

3. Finding the Required Subset:

To achieve a cumulative probability of at least 0.99, we need the smallest number m of sequences such that: $m \cdot 2^{-10} \ge 0.99$

Solving for m:
$$m \ge \frac{0.99}{2^{-10}} = 0.99 \cdot 1024 = 1013$$

4. Answer:

You need to pick at least 1013 sequences from the typical set to ensure a cumulative probability of at least 0.99.

This problem demonstrates how AEP helps determine the number of typical sequences necessary to capture most of the probability mass.

12. Coded MapReduce

1. **Q**:

For 4 mappers and 3 reducers, calculate the communication reduction using coded MapReduce.

A:

$$R = \frac{1}{r} = \frac{1}{3}$$

This set of Q&As is designed to test both conceptual understanding and mathematical problem-solving skills in **Information Theory**.

7

1.3 Exercices 2

Here's a new set of advanced questions and answers covering all the topics on the list, focusing on more difficult mathematical problems.

1.3.1 1. Capacity Regions

1. **Q**:

Consider a two-user Gaussian multiple access channel (MAC) with $P_1=3,\,P_2=5,$ and noise N=2. Find all valid rate pairs $(R_1,R_2).$

A:

The constraints are:

$$R_1 \leq \frac{1}{2}\log_2\left(1 + \frac{P_1}{N}\right), \quad R_2 \leq \frac{1}{2}\log_2\left(1 + \frac{P_2}{N}\right), \quad R_1 + R_2 \leq \frac{1}{2}\log_2\left(1 + \frac{P_1 + P_2}{N}\right)$$

Calculating:

$$R_1 \leq \tfrac{1}{2}\log_2(1+1.5) \approx 0.58, \quad R_2 \leq \tfrac{1}{2}\log_2(1+2.5) \approx 0.92 \ R_1 + R_2 \leq \tfrac{1}{2}\log_2(1+4) \approx 1.16$$

The capacity region consists of all rate pairs that satisfy these inequalities.

1.3.2 2. Markov Chains

1. **Q**:

A Markov chain has the following transition matrix:

$$P = \begin{bmatrix} 0.5 & 0.5 \\ 0.3 & 0.7 \end{bmatrix}$$
 Find the stationary distribution and the entropy rate.

Α :

Step 1: Find the stationary distribution π . Solve $\pi P = \pi$:

$$\pi_1 = 0.5\pi_1 + 0.3\pi_2, \quad \pi_2 = 0.5\pi_1 + 0.7\pi_2, \quad \pi_1 + \pi_2 = 1 \text{ Solving gives } \pi = (0.375, 0.625).$$

Step 2: Calculate entropy rate:

$$H(X) = \sum_{i,j} \pi(i) P_{ij} \log_2 \frac{1}{P_{ij}}$$
 Substitution yields the entropy rate.

1.3.3 3. Maximization of Entropy

1. **Q**:

A continuous random variable X has a Gaussian distribution with variance $\sigma^2 = 4$. Find its differential entropy and compare it to the maximum entropy of a uniform distribution over the interval [-a, a].

A:

Step 1: Differential entropy of Gaussian:

$$h(X) = \frac{1}{2} \log_2(2\pi e \sigma^2) = \frac{1}{2} \log_2(2\pi e \cdot 4) \approx 3.06 \text{ bits}$$

Step 2: For a uniform distribution:

 $h(X) = \log_2(2a)$ To match the variance of the Gaussian, $a = 2\sqrt{3}$, so $h(X) = \log_2(4\sqrt{3}) \approx 3.17$ bits.

1.3.4 4. Capacities of Different Channels

1. **Q**:

Calculate the capacity of a binary symmetric channel (BSC) with crossover probability p = 0.3.

A:

$$C=1-H(p), \quad H(p)=-p\log_2 p-(1-p)\log_2 (1-p)$$
 Substituting $p=0.3$: $H(0.3)=-(0.3\log_2 0.3+0.7\log_2 0.7)\approx 0.881$ $C=1-0.881=0.119$ bits

1.3.5 5. Calculate Entropy of Channels

1. **Q**:

For a channel with transition matrix:

$$P(Y|X) = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.8 \end{bmatrix}$$
, and input probabilities $P(X=1) = 0.6$, find the mutual information $I(X;Y)$.

A:

Step 1: Find
$$P(Y)$$
:

$$P(Y = 1) = 0.6 \cdot 0.9 + 0.4 \cdot 0.2 = 0.62, \quad P(Y = 2) = 0.6 \cdot 0.1 + 0.4 \cdot 0.8 = 0.38$$

Step 2: Calculate H(Y) and H(Y|X).

$$H(Y) = -(0.62\log_2 0.62 + 0.38\log_2 0.38) \ H(Y|X) = 0.6 \cdot (-0.9\log_2 0.9 - 0.1\log_2 0.1) + 0.4 \cdot (-0.8\log_2 0.8 - 0.2\log_2 0.2)$$

Step 3:

$$I(X;Y) = H(Y) - H(Y|X)$$

1.3.6 6. Index Coding

1. **Q**:

For a system with 4 clients and 4 messages, each client knows all messages except the one they request. Find the optimal number of transmissions.

A:

Use **XOR-based** coding. Transmit:

 $W_1 \oplus W_2 \oplus W_3 \oplus W_4$ Only 1 transmission is required.

1.3.7 7. Network Coding

1. **Q**:

In a butterfly network, if sources A = 1 and B = 0, compute the transmitted coded message and the values decoded at both sinks.

A:

Transmit: $X = A \oplus B = 1$.

Sinks decode:

$$A = X \oplus B = 1, \quad B = X \oplus A = 0$$

1.3.8 8. Coded Caching

1. **Q**:

In a coded caching system with N=6, K=3, and M=2, calculate the transmission load during the delivery phase.

$$\mathbf{A}$$

$$L = \frac{N(1 - M/N)}{1 + KM/N} = \frac{6(1 - 2/6)}{1 + 3(2/6)} = 2$$

9. Gambling (after 10 Gains)

1. **Q**:

After making 10 gains, you want to maximize your long-term wealth by reinvesting a portion of your capital on each bet. Suppose the gain probability is p = 0.6 and the odds are b = 1.8. Calculate the **expected long-term growth rate** if you follow the optimal strategy.

A:

The **expected growth rate** G is given by:

$$G = p \log_2(1+bf^*) + (1-p) \log_2(1-f^*)$$

Step 1: Calculate
$$f^*$$
:
 $f^* = \frac{1.8 \cdot 0.6 - 0.4}{1.8} = \frac{1.08 - 0.4}{1.8} = 0.3778$

Step 2: Substitute into the growth rate formula:

$$G = 0.6\log_2(1+1.8\cdot0.3778) + 0.4\log_2(1-0.3778)$$

Approximation yields:

$$G\approx 0.6\cdot 0.77 + 0.4\cdot (-0.59)\approx 0.322$$

The expected growth rate is approximately **0.322 bits** per bet.

1.3.10 10. MAC or Broadcast Channel (Optimal Schemes)

1. **Q**:

For a broadcast channel with P=10 and noise levels $N_1=1,\ N_2=4,$ find the achievable rates.

$$R_1 \le \frac{1}{2}\log_2(1+10), \quad R_2 \le \frac{1}{2}\log_2\left(\frac{N_1}{N_2}\right) = 0.5$$

1.3.11 11. EAP (Picking Dual Subset of Numbers)

1. **Q**:

A random variable has entropy H(X) = 2. For n = 10, how many sequences are needed to capture 99% of the total probability?

A:

Probability per sequence =
$$2^{-nH(X)}=2^{-20}$$
, $m\cdot 2^{-20}\geq 0.99$ Solving: $m\geq 0.99\cdot 2^{20}\approx 1.04\times 10^6$

1.3.12 12. Coded MapReduce

1. **Q**:

In a system with 5 mappers and 4 reducers, calculate the communication cost reduction using coded MapReduce.

A:
$$R = \frac{1}{n} = \frac{1}{4}$$

These advanced problems provide a thorough challenge across **Information Theory** topics, requiring deep mathematical understanding and application of key concepts.

1.4 Exercices 3

1.4.1 Advanced Information Theory Q&A – Difficult Mathematical Problems

(Based on Elements of Information Theory, 2nd Edition by Cover & Thomas)

1.4.2 1. Capacity Regions

1. **Q**:

Consider a two-user MAC where user 1 transmits with power $P_1=4$ and user 2 with $P_2=16$. The noise variance is N=1. Derive the capacity region equations and find a rate pair (R_1,R_2) where $R_1=1$.

A:

The capacity region equations are:
$$R_1 \leq \tfrac{1}{2}\log_2\left(1+\tfrac{P_1}{N}\right), \quad R_2 \leq \tfrac{1}{2}\log_2\left(1+\tfrac{P_2}{N}\right), \quad R_1+R_2 \leq \tfrac{1}{2}\log_2\left(1+\tfrac{P_1+P_2}{N}\right)$$

Substituting values:

$$R_1 \leq 1, \quad R_2 \leq 2, \quad R_1 + R_2 \leq 1.8$$

For
$$R_1=1,\,R_2$$
 must satisfy: $R_2\leq 0.8$

1.4.3 2. Markov Chains

1. **Q**:

For a Markov chain with the transition matrix:

 $P = \begin{bmatrix} 0.6 & 0.4 \\ 0.3 & 0.7 \end{bmatrix}$, calculate the **second-order entropy rate**, assuming the chain starts in the stationary distribution.

A:

Step 1: Find the stationary distribution π :

$$\pi_1 = 0.6\pi_1 + 0.3\pi_2, \quad \pi_1 + \pi_2 = 1 \quad \Rightarrow \quad \pi = \left(\frac{3}{7}, \frac{4}{7}\right)$$

Step 2: Calculate the second-order joint entropy:

$$H(X_1,X_2) = \sum_{i,j} \pi(i) P_{ij} \log_2 \frac{1}{P_{ij}}$$

Substituting values:

$$H(X_1, X_2) = \frac{3}{7} \left(0.6 \log_2 \frac{1}{0.6} + 0.4 \log_2 \frac{1}{0.4} \right) + \frac{4}{7} \left(0.3 \log_2 \frac{1}{0.3} + 0.7 \log_2 \frac{1}{0.7} \right)$$

Finally, calculate the **entropy rate** using:

$$H(X) = H(X_1, X_2) - H(X_1)$$

1.4.4 3. Maximization of Entropy

1. **Q**:

Prove that the entropy of a continuous random variable X is maximized when $X \sim \mathcal{N}(0, \sigma^2)$, by using the calculus of variations.

A:

The functional form of entropy is:
$$h(X) = -\int_{-\infty}^{\infty} f(x) \log f(x) \, dx$$

Applying the Euler-Lagrange equation with the constraint $\int_{-\infty}^{\infty} x^2 f(x) dx = \sigma^2$ leads to the solution:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2}{2\sigma^2}}$$

1.4.5 4. Capacities of Different Channels

1. **Q**:

Calculate the capacity of an AWGN channel with bandwidth $B = 5 \,\mathrm{MHz}$, signal power $P = 0.1 \,\mathrm{W}$, and noise power spectral density $N_0 = 10^{-8} \,\mathrm{W/Hz}$.

A:

Capacity is given by:
$$C = B \log_2 \left(1 + \frac{P}{N_0 B}\right)$$

Substituting values:

$$C = 5 \times 10^6 \log_2 \left(1 + \frac{0.1}{5 \times 10^{-8}} \right) = 5 \times 10^6 \log_2 (2001)$$

Approximation:

$$C\approx 5\times 10^6\times 10.97=54.85\,\mathrm{Mbps}$$

1.4.6 5. Calculate Entropy of Channels

1. **Q**:

A channel has input X and output Y with the following joint probability table:

$$P(X,Y) = \begin{bmatrix} 0.3 & 0.2 \\ 0.1 & 0.4 \end{bmatrix} \text{ Calculate } I(X;Y).$$

A:

Step 1: Calculate H(X) and H(Y):

$$H(X) = -(0.5\log_2 0.5 + 0.5\log_2 0.5) = 1, \quad H(Y) = -(0.4\log_2 0.4 + 0.6\log_2 0.6)$$

Step 2: Calculate H(X,Y):

$$H(X,Y) = -\sum_{i,j} P(x_i,y_j) \log_2 P(x_i,y_j)$$

Step 3:

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

1.4.7 6. Index Coding

1. **Q**:

For 5 clients and 5 messages where each client is missing only the message they want, calculate the optimal number of coded transmissions.

A:

Use a single XOR-coded transmission:

$$W_1 \oplus W_2 \oplus W_3 \oplus W_4 \oplus W_5$$

1.4.8 7. Network Coding

1. **Q**:

In a network with two sources A and B, transmit $X = A \oplus B$. If A = 1 and B = 1, what is received and decoded at each sink?

$$X = 1 \oplus 1 = 0$$

Sinks receive X = 0 and decode:

$$A = X \oplus B = 0 \oplus 1 = 1$$
, $B = X \oplus A = 0 \oplus 1 = 1$

1.4.9 8. Coded Caching

1. **Q**:

For N=8, K=4, and M=2, calculate the transmission load.

A:
$$L = \frac{N(1 - M/N)}{1 + KM/N} = \frac{8(1 - 2/8)}{1 + 4(2/8)} = \frac{6}{2} = 3$$

1.4.10 9. Gambling (after 10 Gains)

1. **Q**:

Suppose you use a suboptimal betting strategy, placing a constant fraction f = 0.5 of your wealth on each bet. If the true optimal $f^* = 0.3778$, determine the relative difference in long-term growth rate between the optimal and suboptimal strategies.

Step 1: Calculate the suboptimal growth rate:

 $G_{\text{suboptimal}} = 0.6 \log_2(1 + 0.9) + 0.4 \log_2(0.5)$ Approximation: $G_{\text{suboptimal}} \approx 0.6 \cdot 0.92 + 0.4 \cdot (-1) = 0.152$

Step 2: Compare with optimal growth rate $G^* = 0.322$:

$$\Delta G = G^* - G_{\rm suboptimal} = 0.322 - 0.152 = 0.17$$

The **relative difference** is:

$$\frac{\Delta G}{G^*} \approx \frac{0.17}{0.322} \approx 0.53 (53\%)$$

1.4.11 10. MAC or Broadcast Channel (Optimal Schemes)

1. **Q**:

In a broadcast channel, the transmitter can send two messages M_1 and M_2 to two users with noise levels $N_1 = 1$ and $N_2 = 4$, respectively. The power constraint is P = 10. Find the achievable rate pair using superposition coding.

A:

- Step 1: Assign power allocations P_1 and P_2 with $P_1 + P_2 = P$.
- Step 2: Calculate rates:

For user 1 (stronger channel):
$$R_1 \leq \frac{1}{2}\log_2\left(1+\frac{P_1+P_2}{N_1}\right) = \frac{1}{2}\log_2(1+10) \text{ For user 2 (weaker channel): } \\ R_2 \leq \frac{1}{2}\log_2\left(1+\frac{P_2}{N_2}\right)$$

• Step 3: Choose
$$P_1=6,\ P_2=4$$
:
$$R_1=\frac{1}{2}\log_2(1+10)\approx 1.73,\quad R_2=\frac{1}{2}\log_2(1+1)=0.5$$

2. **Q**:

In a MAC with users transmitting powers $P_1 = 5$ and $P_2 = 15$, and noise variance N = 1, what is the achievable sum rate using **successive decoding**?

A:

• Step 1: Calculate individual rates:

$$R_1 \le \frac{1}{2} \log_2 \left(1 + \frac{P_1}{N} \right) = \frac{1}{2} \log_2(6), \quad R_2 \le \frac{1}{2} \log_2(16)$$

• Step 2: Calculate sum-rate:
$$R_1+R_2 \leq \tfrac{1}{2}\log_2\left(1+\tfrac{P_1+P_2}{N}\right) = \tfrac{1}{2}\log_2(21) \approx 2.14\,\mathrm{bits/symbol}$$

1.4.12 11. EAP (Picking Dual Subset of Numbers)

1. **Q**:

A random variable has entropy H(X) = 1.5. For n = 20, how many sequences are needed to cover 95% of the probability?

A:

Probability of each typical sequence:

$$P(x^n) = 2^{-nH(X)} = 2^{-30}$$

Solve:

$$m \cdot 2^{-30} \geq 0.95 \quad \Rightarrow \quad m \geq 0.95 \cdot 2^{30} \approx 1.02 \times 10^9$$

1.4.13 12. Coded MapReduce

1. **Q**:

In a coded MapReduce setup, there are 6 mappers and 3 reducers. Each mapper generates intermediate data needed by all reducers. How many transmissions are required without and with coding?

A:

- Without coding: Each mapper sends all data to each reducer. Total transmissions: $6 \text{ mappers} \times 3 \text{ reducers} = 18$
- With coding: Use a coded transmission strategy, where each mapper encodes data and sends only once. Total transmissions:

 $\frac{1}{r}$ · number of intermediate blocks = $\frac{1}{3} \times 6 = 2$ transmissions per reducer

• Total transmissions with coding: 6.

2. **Q**:

If each reducer needs access to 3 pieces of data and each mapper can encode 2 pieces of data together, find the minimum number of coded transmissions required.

A:

- Data pieces per reducer = 3.
- Each mapper can combine 2 pieces, reducing the number of transmissions: $\lceil 3/2 \rceil = 2$ coded transmissions per reducer

Total transmissions across all reducers:

$$3 \text{ reducers} \times 2 = 6$$

[]: