

Biomolecular Simulation BT2123

Lecture 5 : Creating an all-atom model of DNA

Himanshu Joshi 30 January 2024

Course contents

- Historical perspective
- Foundations of Molecular Mechanics (MM)
- Statistical ensembles
- Quantum Mechanics (QM)
- Introduction molecular dynamics simulations
- Equation of motion,
- Force-fields, Scheme of integrations,
- Langevin Dynamics,
- Non-bonded Computations,
- Brownian Dynamics,
- Monte Carlo Techniques,
- Coarse Graining Models

Reading material

Who discovered DNA?

https://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-function-watson-397/

Friedrich Miescher, 1869

doi:10.1006/jmbi.2001.4987 available online at http://www.idealibrary.com on IDE Land. (2001) 313, 229-237

NOMENCLATURE

A Standard Reference Frame for the Description of Nucleic Acid Base-pair Geometry

Wilma K. Olson, Manju Bansal, Stephen K. Burley Richard E. Dickerson, Mark Gerstein, Stephen C. Harvey Udo Heinemann, Xiang-Jun Lu, Stephen Neidle, Zippora Shakked Heinz Sklenar, Masashi Suzuki, Chang-Shung Tung, Eric Westhof Cynthia Wolberger and Helen M. Berman

© 2001 Academic Press

Keywords: nucleic acid conformation; base-pair geometry; standard reference frame

Various forms of DNA

3 D structure of DNA

Structural DNA Nanotechnology

- There is plenty of room at the bottom.
- Bottom up self-assembly: DNA as a construction material

R. Feynman

N. Seeman

- Why DNA
- Molecular recognition property
- Chemically easy to modify the backbone
- Well studied molecule.

Seeman. Nature 1991

Geometrical parameters characterizing the structure of dsDNA

Geometrical parameters of various form of dsDNA

Structure	Helical Twist	Helical Rise	X- Displ			Propeller Twist	Diameter	
A-DNA	33°	2.56 Å	-4.5 Å	21°	6°	-7.5°	23 Å	
B-DNA	36°	3.38 Å	0.23 Å	-6°	0°	-4.4°	20 Å	
Z-DNA	-30°	3.7Å	3.0 Å	-6.2°	0°	-4.4°	18 Å	

DNA Nanotechnology

DNA cube, Chen and Seeman. Nature 1991

DNA Nanotechnology

- A method to create nanoscale object using DNA/RNA as construction material
- Incepted by Nadrian C. Seeman, in 1982 to crystalize protein which is a very hard problem to solve.
- The field was inspired by using DNA nanostructure as a tool to in biophysics but now taken as a entire

Chemist saw it as a water-soluble polymer whose growth could be controlled and whose branching, or cross-linking, could be rationally manipulated.

Yamuna and Ned, 2019

Ned Seeman 1945-2021

DNA Origami

Platonic solids

Only five convex regular polyhedron exist in 3d euclidian space

Tetrahedron	Cube	Octahedron	Dodecahedron	Icosahedron	
Four faces	Six faces	Eight faces	Twelve faces	Twenty faces	

Parameters

Figure	Tetrahedron 4 4		Octahedron	Cube	20 12 (4 × 3)		Dodecahedron		
Faces			8	6			12		
Vertices			6 (2 × 3)	8			20 (8	+ 4 × 3)	
Position	1	2			1	2	1	2	
Vertex coordinates		(-1, -1, -1) (-1, 1, 1) (1, -1, 1)		(±1, ±1, ±1)				asse $(\pm \phi, \pm \frac{1}{\phi}, 0)$	mbly
	(-1, -1, 1)	(1, 1, -1)					,	$(\pm \frac{1}{\phi}, 0, \pm \phi)$	

Using VMD

Download VMD

https://www.ks.uiuc.edu/Training/Tutorials/vmd/tutorial-html/node1.html

Visualizing a cube in VMD

Tcl programming

Usage: Visualization, Building models, Analysis of simulation Trajectories

Homework

Laws of thermodynamics

DNA translational and rotational parameters

Reading material