Lista

	N=10000	N=15000	N=20000	N=25000	N=30000
Czas wstawiania	0.123	0.341	0.784	1.120	1.873
(s)					
Czas wyszukiwania (s)	0.501	1.499	2.811	4.291	5.967
Czas usuwania (s)	0.414	1.273	2.234	3.262	4.219

BST

	N=10000	N=15000	N=20000	N=25000	N=30000
Czas wstawiania (s)	0.002	0.004	0.004	0.006	0.007
Czas wyszukiwania (s)	0.002	0.003	0.004	0.005	0.006
Czas usuwania (s)	0.002	0.003	0.004	0.005	0.006

Wnioski:

- -Drzewo BST jest o wiele bardziej efektywne niż lista, co widać po czasach wstawiania, wyszukiwania i usuwania dla tych samych danych
- -Eliminując niedokładność pomiarową uzyskanych rezultatów można przyjąć, że wyszukiwanie i usuwanie w liście zmienia się w porządku liniowym, wstawianie z kolei przyjmuje charakter bardziej wykładniczy, niż liniowy, mimo, że złożoność czasowa wszystkich tych operacji powinna oscylować w porządku liniowym
- -Złożoność czasowa dla BST w pesymistycznym przypadku wynosi O(n), natomiast w optymistycznym przypadku O(log n). Mimo bardzo szybkiego wykonywania operacji wstawiania, wyszukiwania i usuwania w BST i ciężkiego jednoznacznego stwierdzenia w jakim porządku zmieniają się te operacje, można przyjąć, że wykonywane operacje przyjmują charakter liniowy.