Meshtastic Under the Microscope From Chirps to Chat

Allan Boll

RF Village at DEF CON 33

What's Meshtastic?

- Off-grid, multi-mile, low-power mesh network
- Text messages: DMs and group chats
- Open source firmware + phone app
- Censorship resistant
- Community momentum

Image credit: https://meshtastic.org/docs/introduction/

Agenda

- Audience prerequisites
- How LoRa is modulated and encoded
- How Meshtastic is encoded
- Software:
 - Gqrx
 - Inspectrum
 - GNU Radio
 - Wireshark
 - Bunch of Python

Audience prerequisites

- You probably need some prior knowledge of
 - RF and SDR
 - GNU Radio
 - Packet formats and Protobuf
 - Wireshark

Hardware

SenseCAP T1000-E HackRF SDR

Arduino with LoRa

What is LoRa?

- A radio modulation and encoding
- Closed source chips by Semtech
- Primary use: LoRaWAN
- Also, the physical layer Meshtastic uses

Recap of common modulations

• AM - Amplitude Modulation

ASK - Amplitude-shift keying

• FM - Frequency Modulation

• FSK - Frequency-Shift Keying

LoRa's (Meshtastic's) modulation

- CSS Chirp Spread Spectrum
- Aka. FSCM Frequency shift chirp modulation
- More resilient to noise even at very low power
- LoRa can work below the noise floor

Let's capture a chirp!

- We will first use:
 - A HackRF as my SDR device
 - Gqrx to find and capture
 - Inspectrum to zoom really close

LoRa packet anatomy

- Lora packet
 - Preamble: 8-16 up chirps
 - Sync Word: Meshtastic uses 0×2B
 - Down chirps: 2.25
 - Payload: Meshtastic packet
- Let's look in Inspectrum!

A useful property of chirps

- Dechirp: Complex multiply by downchirp to get a constant freq signal
 - Now it looks like frequency shift keying
 - Run N-point discrete fourier transform

Up-chirp

Down-chirp

Preamble syncing

- Symbol 0 repeats e.g. 16 times
- Dechirp offset anywhere still gives const freq signal
- Calc sync offset based on symbol we randomly aligned at

Learn more about LoRa demodulation

YouTube video by Visual Electric

https://www.youtube.com/watch?v=jHWepP1ZWTk

LoRa encoding

- Before modulation, data bits are encoded:
 - CRC: Error detection
 - Whitening: Scrambling for long-run avoidance
 - Hamming coding: Forward error correction
 - Interleaving: Spread bits over multiple symbols
 - Gray coding: Reduce impact of errors
- Let's look in GNU Radio!

Learn more about LoRa encoding/decoding

Talk on YouTube video by Matt Knight

https://www.youtube.com/watch?v=NoquBA7IMNc

Meshtastic LoRa modem settings

Param	Example		
Preset name	MediumSlow		
Frequency	914.875 kHz (<u>calc</u>)		
Bandwidth	250 kHz		
Spread factor	7-12 bits per sym		
Hamming coding rate	4/5 - 4/8		
Preamble len	8-16		
Sync word	0×2B		

Presets are in src/mesh/RadioInterface.cpp

Meshtastic packet anatomy

- Meshtastic packet (payload of LoRa packet)
 - 16-byte header (docs)
 - Destination (4 bytes)
 - Sender (4 bytes)
 - Channel hash (1 byte):
 - o xor_hash(name) xor xor_hash(key)
 - 0
 - Payload: AES256-CTR encrypted
 - Data protobuf <u>source</u>
 - Encrypted with channel key
- Let's look in Wireshark

Payload Data protobuf

```
message Data {
  PortNum portnum
                         = 1;
                       = 2;
  bytes payload
message User {
  string id = 1;
  string long name = 2;
  string short_name = 3;
  HardwareModel hw model = 5;
  bytes public_key = 8;
```

Github links: <u>Data</u>, <u>User</u>

Encryption

- AES-256-CBC
- Default key in <u>firmware/src/mesh/Channels.h</u>
 - Not actually literally "AQ=="
- DMs use public key cryptography
- No perfect-forward-secrecy
 - Nice discussion in the docs

Transmission

- Using an Arduino with a LoRa radio
 - Simple relay program
- Using a Python script to drive the Arduino
- No Multi-Hop Messaging
- And no CSMA/CA though ... woops ...

Questions?