- 1. Find all solutions to the indicated equations in $\mathbb{Z}/n\mathbb{Z}$, or prove that there are none. Justify your answers:
 - (a) [8]x = [21] in $\mathbb{Z}/23\mathbb{Z}$.

Answer: Using problem 9 from homework 2, we have a=8, b=21 and n=23. Then d=(a,n)=1, $b_1=b/d=21$ and $n_1=n/d=23$. We can take u=3 and v=-1 to have au+nv=24-23=1=d. Then by problem 9(b), there exists d=1 solution and the only solution is $[ub_1]=[63]\equiv [17]\pmod{23}$. Therefore x=[17].

(b) $x^3 + x = [1] \text{ in } \mathbb{Z}/7\mathbb{Z}.$

Answer:

x	$x^3 + x$	is solution?
[0]	$[0] \cdot [0] \cdot [0] + [0] = [0] + [0] = [0]$	no
[1]	$[1] \cdot [1] \cdot [1] + [1] = [1] + [1] = [2]$	no
[2]	$[2] \cdot [2] \cdot [2] + [2] = [1] + [2] = [3]$	no
[3]	$[3] \cdot [3] \cdot [3] + [3] = [6] + [3] = [2]$	no
[4]	$[4] \cdot [4] \cdot [4] + [4] = [1] + [4] = [5]$	no
[5]	$[5] \cdot [5] \cdot [5] + [5] = [6] + [5] = [4]$	no
[6]	$[6] \cdot [6] \cdot [6] + [6] = [6] + [6] = [5]$	no

Therefore the equation has no solution in $\mathbb{Z}/7\mathbb{Z}$.

2. The Fibonacci sequence F_n is defined recursively as follows:

$$F_0 = 1, \quad F_1 = 1$$

For any $n \ge 1, \quad F_{n+1} = F_n + F_{n-1},$

so the first few terms are $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, \dots$

Prove that for any integer $n \ge 1$, $gcd(F_n, F_{n-1}) = 1$.

Answer: By induction on n.

Base case: n = 1, we have $F_0 = 1$ and $F_1 = 1$, so $gcd(F_1, F_0) = 1$.

Inductive step: Suppose that $\gcd(F_{n-1},F_{n-2})=1$, we will show that $\gcd(F_n,F_{n-1})=1$ by contradiction. Assume that $\gcd(F_n,F_{n-1})=d>1$, then by Theorem 1.2 there must exist some $u,v\in\mathbb{Z}$ such that $d=F_nu+F_{n-1}v$. Since $F_n=F_{n-2}+F_{n-1}$, we have $d=(F_{n-2}+F_{n-1})u+F_{n-1}v=F_{n-2}u+F_{n-1}(u+v)$. But this implies that d>1 is a common factor of F_{n-2} and F_{n-1} , which contradicts with $\gcd(F_{n-2},F_{n-1})=1$, so our assumption must be false and $\gcd(F_n,F_{n-1})=1$.

Therefore $gcd(F_n, F_{n-1}) = 1$ by induction.

3. Let $R = \{0_R, a, b, c, d\}$ be a ring with 5 elements and additive identity 0_R . We are given that $a + b = c + d = 0_R$ and ad = b. Which of the five elements of the ring is equal to ac? Justify your answer. **Answer**: Since $a + b = c + d = 0_R$, we have b = -a and d = -c. By substitution and Theorem 3.5(2), we have $ad = b \implies a(-c) = (-a) \implies -ac = -a$. Now we can add ac + a to both sides, which gives us $-ac + ac + a = -a + ac + a \implies ac = a$.

- 4. Prove that each of the following sets with the specified operations is *NOT* a ring. In each part, identify a specific property of rings which fails, and *prove* that it fails.
 - (a) The set $R = \{[0], [2], [4], [6], [8], [10]\} \subseteq \mathbb{Z}/11\mathbb{Z}$, with addition and multiplication defined as they are in $\mathbb{Z}/11\mathbb{Z}$.

Answer: R is not a ring because it is not closed under addition. Take $a = [4] \in R$ and $b = [8] \in R$, we have a + b = [4] + [8] = [1] which is not in R.

(b) The set $S = \{f : \mathbb{R} \to \mathbb{R} \mid f(2) = 2f(1)\}$ of functions from \mathbb{R} to \mathbb{R} satisfying f(2) = 2f(1), with addition and multiplication defined pointwise.

Answer: S is not a ring because it is not closed under multiplication. Take f(x) = g(x) = x, note that both functions are in S as f(2) = g(2) = 2 = 2f(1) = 2g(1). However, $(fg)(x) = f(x)g(x) = x^2$ is not in S as $(fg)(2) = 4 \neq 2 = 2(fg)(1)$.

(c) The set $T = \{x \in \mathbb{R} \mid x > 0\}$ of *positive* real numbers, where addition in T is defined by $x \oplus y = xy$ and multiplication in T is defined by $x \odot y = x + y$.

Answer: T is not a ring because it doesn't not have an additive identity. Suppose we do have a $0_T \in T$, then we can take any $a \in T$ and have $a + 0_T = a$. However, since $0_T \in T$, we have $0_T > 0$, so $a + 0_T > a$. Therefore T does not have an additive identity by contradiction.

5. Let $f: \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be any homomorphism. Prove that f must equal one of the four homomorphisms:

$$f_0(n) = (0,0),$$
 $f_1(n) = (n,0),$ $f_2(n) = (0,n),$ $f_3(n) = (n,n).$

Answer: Since \mathbb{Z} is a ring, by Theorem 3.1 $\mathbb{Z} \times \mathbb{Z}$ is also a ring. Then by definition of homomorphism we have f(ab) = f(a)f(b) for all $a, b \in \mathbb{Z}$. Take a = b = 1 and let f(1) = (p, q), we have $f(ab) = f(1^2) = f(1)f(1) = (p, q)(p, q) = (p^2, q^2)$. Then since $1 = 1^2$, we have $f(1) = f(1^2) \implies (p, q) = (p^2, q^2)$, therefore $p = p^2$ and $q = q^2$. Since the only integers satisfying these properties are 0 and 1, any f must satisfy one of the following:

- (a) p = 0, q = 0: $f_0(1) = (0, 0)$
- (b) p = 1, q = 0: $f_1(1) = (1, 0)$
- (c) p = 0, q = 1: $f_2(1) = (0, 1)$
- (d) p = 1, q = 1: $f_3(1) = (1, 1)$

Then since f is a linear function, we have f(n) = nf(1) for any $n \in \mathbb{Z}$, therefore we can multiply the scalar n to the above to achieve the desired result.

I assert, on my honor, that I have not received assistance of any kind from any other person, or given assistance to any other person, while working on the midterm.

Signature:

Date: 2/5/2021