Homework 8

Math 141

Due November 13, 2020 by 5pm

Topics covered: fundamental group

Instructions:

- This assignment must be submitted on Gradescope by the due date.
- If you collaborate with other students (which is encouraged!), please mention this near the corresponding problems.
- Some problems from this assignment come from Armstrong's book, as indicated next to the problem. Note that the statements on this assignment might differ slightly from the book.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.

Problem 1 (Armstrong 6.1). Construct triangulations for the cylinder, Klein bottle, and the two-holed torus $(T^2 \# T^2)$.

 \Box

Problem 2. Let K be a simplicial complex. Prove that |C(K)| and C(|K|) are topologically equivalent.

 \Box

Problem 3. Compute $\pi_1(\mathbb{R}P^2)$ by choosing a triangulation and writing down a presentation for the edge group.

 \square

Problem 4. Let $F = \mathbb{Z} * \mathbb{Z}$ be the free group with two generators a, b and no relations. Define a graph G with a vertex for each element $u \in F$ and an edge between u and v if us = v for some $s \in \{a, b\}$. Draw G. Observe that there is a group action of F on G induced by left multiplication on vertices. Determine the quotient space G/F.

 \Box

Problem 5. Let $X = S^1 \times D^2$ and let $A \subset X$ be the subset illustrated below. Show that there is no retract $r: X \to A$. Give proof.³

 \square

Problem 6. Let A be a 3×3 matrix with positive real entries. Use topology to prove that A has a positive eigenvalue.⁴

Solution.

¹Be careful not to have too few triangles.

 $^{{}^{2}}G$ has infinitely many vertices. Draw enough of G to illustrate the pattern.

³This should be a simple matter of algebra. If your proof is not short, then it is not correct.

⁴What does the fact that the entries are positive tell you about the action on octants of \mathbb{R}^3 ? Try to use the Brouwer Fixed Point Theorem.