Trabajo Practico 4

Capa de Red

Colazo, Agustín Passaglia, Nicolás

Facultad de Ciencias Exactas, Físicas y Naturales.
Universidad Nacional de Córdoba

Ejercicio 1

1.1)

Dada la red 10.0.0.4/24, subdividir en 8 redes.

Red	Mascara	Broadcast	Asignación útil
10.0.0.0	255.255.255.248	10.0.0.31	10.0.0.1-10.0.0.30
10.0.0.32	255.255.255.248	10.0.0.63	10.0.0.33-10.0.0.62
10.0.0.64	255.255.255.248	10.0.0.95	10.0.0.65-10.0.0.94
10.0.0.96	255.255.255.248	10.0.0.127	10.0.0.97-10.0.0.126
10.0.0.128	255.255.255.248	10.0.0.159	10.0.0.129-10.0.0.158
10.0.0.160	255.255.255.248	10.0.0.191	10.0.0.161-10.0.0.190
10.0.0.192	255.255.255.248	10.0.0.223	10.0.0.193-10.0.0.222
10.0.0.224	255.255.255.248	10.0.0.255	10.0.0.254

1.2)
Dada la red 192.168.0.0/23, subdividir en 16 redes.

Red	Mascara	Broadcast	Asignación útil
192.168.0.0	255.255.255.224	192.168.0.31	192.168.0.1- 192.168.0.30
192.168.0.32	255.255.255.224	192.168.0.63	192.168.0.33- 192.168.0.62
192.168.0.64	255.255.255.224	192.168.0.95	192.168.0.65- 192.168.0.94
192.168.0.96	255.255.255.224	192.168.0.127	192.168.0.97- 192.168.0.126
192.168.0.128	255.255.255.224	192.168.0.159	192.168.0.129- 192.168.0.158
192.168.0.160	255.255.255.224	192.168.0.191	192.168.0.161- 192.168.0.190
192.168.0.192	255.255.255.224	192.168.0.223	192.168.0.193- 192.168.0.222
192.168.0.224	255.255.255.224	192.168.0.255	192.168.0.254
192.168.1.0	255.255.255.224	192.168.1.31	192.168.1.1- 192.168.1.30
192.168.1.32	255.255.255.224	192.168.1.63	192.168.1.33- 192.168.1.62
192.168.1.64	255.255.255.224	192.168.1.95	192.168.1.65-

			192.168.1.94
192.168.1.96	255.255.255.224	192.168.1.127	192.168.1.97- 192.168.1.126
192.168.1.128	255.255.255.224	192.168.1.159	192.168.1.129- 192.168.1.158
192.168.1.160	255.255.255.224	192.168.1.191	192.168.1.161- 192.168.1.190
192.168.1.192	255.255.255.224	192.168.1.223	192.168.1.193- 192.168.1.222
192.168.1.224	255.255.255.224	192.168.1.255	192.168.1.254

1.3)

Con la red 172.16.0.0/24 no se puede cubrir 320 hosts, ya que hay 8 bits para hosts disponibles. Esto hace un total de $2^8-2=254$ hosts disponibles.

Por lo tanto, debemos supernetear. Esto es usar redes contiguas para hacer una superred con mayor capacidad de hosts. Si tuviésemos 9 bits para hosts (un bit mas de lo actual), tendríamos una capacidad para 510 hosts.

Solo podríamos hacer supernetting si la red 172.16.1.0/24 estuviese disponible.

El resultado seria:

Red	Mascara	Broadcast	Asignación útil
172.16.0.0	255.255.254.0	172.16.1.255	172.16.0.1-172.16.1.254

1.4)

Los casos de espacios de direcciones presentados anteriormente tienen las siguientes características en común:

- Son redes classless, esto lleva a un direccionamiento mas eficiente.
- Son todas redes privadas. Están descriptas en una RFC. Estas redes se encuentran detrás del NAT, y no se pueden usar como ips publicas.

Ejercicio 2

2.1)

LAN 1 (10 hosts)

Red	Mascara	Broadcast	Asignación útil
10.4.0.192	255.255.255.240	10.4.0.207	10.4.0.193-10.4.0.206

LAN 2 (63 hosts)

Red	Mascara	Broadcast	Asignación útil
10.4.0.0	255.255.255.128	10.4.0.127	10.4.0.1-10.4.0.126

LAN 3 (32 hosts)

Red	Mascara	Broadcast	Asignación útil
10.4.0.128	255.255.255.192	10.4.0.191	10.4.0.129-10.4.0.190

LINK 1 (2 hosts)

Red	Mascara	Broadcast	Asignación útil
10.4.0.208	255.255.255.252	10.4.0.211	10.4.0.209-10.4.0.210

LINK 2 (2 hosts)

Red	Mascara	Broadcast	Asignación útil
10.4.0.216	255.255.255.252	10.4.0.219	10.4.0.217-10.4.0.218

LINK 3 (2 hosts)

Red	Mascara	Broadcast	Asignación útil
10.4.0.212	255.255.255.252	10.4.0.215	10.4.0.213-10.4.0.214

ROUTER 0

Red	Mascara	Próximo Salto
10.4.0.0	255.255.255.128	10.4.0.218
10.4.0.128	255.255.255.192	10.4.0.214
10.4.0.192	255.255.255.240	10.4.0.209

ROUTER 1

Red	Mascara	Próximo Salto
10.4.0.0	255.255.255.128	10.4.0.210
10.4.0.128	255.255.255.192	10.4.0.210

ROUTER 2

Red	Mascara	Próximo Salto
10.4.0.128	255.255.255.192	10.4.0.217
10.4.0.192	255.255.255.240	10.4.0.217

ROUTER 3

Red	Mascara	Próximo Salto
10.4.0.0	255.255.255.128	10.4.0.213
10.4.0.192	255.255.255.240	10.4.0.213

2.3)

Cuando un host de la LAN 1 quiere comunicarse con un host de la LAN 3 lo que pasa es lo siguiente. Para mayor comprensión llamaremos H1 al host de la LAN 1, y H3 al host de la LAN 3. Supongamos que la ip de H1 es 10.4.0.194 y la ip de H3 es 10.4.0.130.

H1 enviá un mensaje a H3, la ip de la fuente y del destino se encuentra en la cabecera del mensaje ipv4. H1 enviá el mensaje a su Gateway, que se corresponde con la interfaz 10.4.0.193 del Router 1.

El Router 1 busca si la ip destino se corresponde con alguna de las redes agregadas en la tabla de enrutamiento estático o de sus interfaces. Si la ip se corresponde con una red (y su mascara), entonces el mensaje se enviá a la dirección "próximo salto" por la interfaz correspondiente.

El Router 1 busca la dirección asociada a esa red y enviá el mensaje a 10.4.0.217 (Router 0).

El Router 0 busca la red a la que pertenece esa ip en la tabla de enrutamiento y enviá el mensaje a 10.4.0.214 (Router 3).

El Router 3 recibe el mensaje y enviá el mensaje al host 10.4.0.130 por la interfaz 10.4.0.129.

2.4)


```
Command Prompt
                                                                                                                     X
C:\>ping 10.4.0.130
Pinging 10.4.0.130 with 32 bytes of data:
Reply from 10.4.0.130: bytes=32 time=16ms TTL=125
Reply from 10.4.0.130: bytes=32 time=11ms TTL=125
Reply from 10.4.0.130: bytes=32 time=4ms TTL=125
Reply from 10.4.0.130: bytes=32 time=11ms TTL=125
Ping statistics for 10.4.0.130:
Packets: Sent = 4, Received = 4, Lost = \theta (0% loss), Approximate round trip times in milli-seconds:
    Minimum = 4ms, Maximum = 16ms, Average = 10ms
C:\>ipconfig
FastEthernet0 Connection:(default port)
   Link-local IPv6 Address.....: FE80::202:16FF:FE09:7189
   IP Address..... 10.4.0.194
   Subnet Mask...... 255.255.255.240
   Default Gateway..... 10.4.0.193
C:\>
```

Version de Packet Tracer: 7.1

Como se ve en la imagen, se puede hacer ping de una LAN a otra. En la primera imagen se muestra la topologia de la red. Y en la segunda imagen se puede observar un ping de un host de una LAN, a un host de otra LAN.

Nota: El primer ping que se hace al abrir el programa no puede alcanzar el destino (puede que sea un bug del packet tracer). Pero luego de ese ping, comienza a funcionar la red y se pueden alcanzar los destinos de otros de distintas lans.

En el trabajo no se uso la ruta por defecto. Tampoco se agregaron en las tablas de ruteo estatico las redes que corresponden a los enlaces entre routers (LINKS). Solo se agregaron rutas para las LANS.