Методы машинного обучения. Выявление аномалий и робастное обучение

Bоронцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: voron@forecsys.ru

материалы курса: github.com/MSU-ML-COURSE/ML-COURSE-22-23 орг.вопросы по курсу: ml.cmc@mail.ru

ВМК МГУ • 21 марта 2023

Содержание

- 🚺 Выявление аномальных объектов
 - Эвристики для оценивания аномальности объектов
 - Отсев выбросов в непараметрической регрессии
 - Систематизация подходов
- Теория робастного (помехоустойчивого) обучения
 - Робастные функции потерь
 - Робастные агрегирующие функции
 - Методы итерационного взвешивания
- ③ Задачи с аномальными или новыми классами
 - Одноклассовая классификация
 - Обучение по выборке одного класса
 - Задачи с новыми или неизвестными классами

Задачи выявления аномалий (Anomaly Detection)

Выявление выбросов (Outlier Detection)

- ошибки в данных обучающего или тестового объекта
- неадекватность модели на некоторых объектах

Выявление «новизны» (Novelty Detection)

• ничего подобного не было в обучающей выборке

Примеры приложений

- обнаружение мошенничества (Fraud Detection)
- обнаружение вторжений (Intrusion Detection)
- обнаружение инсайдерской торговли на бирже
- обнаружение неполадок по показаниям датчиков
- медицинская диагностика (Medical Diagnosis)

Метрические методы

Аномальность объекта — расстояние до его k-го ближайшего соседа: чем больше, тем меньше локальная плотность выборки

M.M.Breunig, H.-P.Kriegel, R.T.Ng, J.Sander. Local outlier factor: identifying density-based local outliers. 2000

Случайный изолирующий лес (IsolationForest)

- Строится случайный лес деревьев
- Каждое ветвление: случайный признак и порог
- В каждом листе остаётся только один объект
- Аномальность объекта средняя глубина листьев, в которые он попадает: чем меньше, тем более объект изолирован

Fei Tony Liu, Kai Ming Ting, Zhi-Hua Zhou. Isolation Forest. 2008

Случайный изолирующий лес (IsolationForest)

- Строится случайный лес деревьев
- Каждое ветвление: случайный признак и порог
- В каждом листе остаётся только один объект
- *Аномальность объекта* средняя глубина листьев, в которые он попадает: чем меньше, тем более объект изолирован

https://dyakonov.org/2017/04/19/поиск-аномалий-anomaly-detection

Разделение смеси распределений с фоновой компонентой

Порождающая модель смеси распределений:

$$p(x) = w_0 \varphi_0(x) + \sum_{j=1}^k w_j \varphi(x, \theta_j), \qquad \sum_{j=0}^k w_j = 1, \qquad w_j \geqslant 0,$$

Варианты задания фонового распределения $\varphi_0(x)$:

- равномерное на всём X
- гауссовское с огромной фиксированной дисперсией

Задача максимизации логарифма правдоподобия

$$L(w,\theta) = \ln \prod_{i=1}^{\ell} p(x_i) = \sum_{i=1}^{\ell} \ln \left(w_0 \varphi_0(x_i) + \sum_{i=1}^{k} w_j \varphi(x_i, \theta_j) \right) \to \max_{w,\theta}$$

Аномальность объекта x_i — вероятность $p(j=0|x_i)$ того, что он является фоновым, оценивается на Е-шаге ЕМ-алгоритма

Робастные автокодировщики (Robust AutoEncoder)

Автокодировщик реконструирует $\hat{x} = g(f(x))$ по исходным x:

$$\sum_{i=1}^{\ell} \left\| g(f(x_i, \alpha), \beta) - x_i \right\|^2 \to \min_{\alpha, \beta}$$

Аномальность объекта — неизвестный разреженный шум $\|\varepsilon_i\|$. Реконструируются «нормальные» объекты $\tilde{x}_i = x_i - \varepsilon_i$:

$$\sum_{i=1}^{\ell} \|g(f(x_i - \varepsilon_i, \alpha), \beta) - (x_i - \varepsilon_i)\|^2 + \lambda \sum_{i=1}^{\ell} \|\varepsilon_i\|_1 \to \min_{\alpha, \beta, \varepsilon}$$

Пример. Робастный метод главных компонент (Robust PCA):

$$\|F - GU^{\mathsf{T}} - E\|^2 + \lambda \|E\|_1 \to \min_{G,U,E}$$

где GU^{T} — матрица низкого ранга, E — разреженная матрица

C.Zhou, R.C.Paffenroth. Anomaly detection with robust deep autoencoders. 2017. E.J.Candès, X.Li, Y.Ma, J.Wright. Robust Principal Component Analysis. 2009.

Напоминание. Непараметрическая регрессия

Модель регрессии — константа $f(x,\alpha)=\alpha$ в окрестности x:

$$Q(\alpha; X^{\ell}) = \sum_{i=1}^{\ell} \frac{w_i(x)}{(\alpha - y_i)^2} \to \min_{\alpha \in \mathbb{R}};$$

где $w_i(x) = K\left(\frac{\rho(x,x_i)}{h}\right)$ — веса объектов x_i относительно x_i K(r) — ядро, невозрастающее, ограниченное, гладкое; h — ширина окна сглаживания.

Формула ядерного сглаживания Надарая-Ватсона:

$$a_h(x; X^{\ell}) = \frac{\sum_{i=1}^{\ell} y_i w_i(x)}{\sum_{i=1}^{\ell} w_i(x)} = \frac{\sum_{i=1}^{\ell} y_i K\left(\frac{\rho(x, x_i)}{h}\right)}{\sum_{i=1}^{\ell} K\left(\frac{\rho(x, x_i)}{h}\right)}.$$

Проблема выбросов (эксперимент на синтетических данных)

$$\ell=100,\;\;h=1.0,\;\;$$
 гауссовское ядро $K(r)=\exp\left(-2r^2\right)$ Две из 100 точек — выбросы с ординатами $y_i=40$ и -40 Синяя кривая — выбросов нет

Проблема выбросов и идея перевзвешивания объектов

Проблема выбросов: аномальные точки с большими случайными ошибками y_i сильно искажают функцию $a_h(x)$

Основная идея:

Аномальность объекта — LOO-ошибка $\varepsilon_i = |a_h(x_i; X^{\ell} \backslash x_i) - y_i|$. Чем больше ε_i , тем меньше должен быть вес $w_i(x)$. Повторять в итерациях: обучение, перерасчёт ошибок и весов.

Эвристика:

домножить веса $w_i(x)$ на коэффициенты $\gamma_i = \tilde{K}(\varepsilon_i)$, где $\tilde{K}(r)$ — ядро, вообще говоря, отличное от K(r).

Рекомендация:

брать квартическое ядро $\tilde{K}(\varepsilon)=K_Q(rac{arepsilon}{6\,\mathrm{med}\{arepsilon_i\}})$, где $\mathrm{med}\{arepsilon_i\}$ — медиана вариационного ряда ошибок.

Gary W. Moran. Locally-Weighted-Regression Scatter-Plot Smoothing (LOWESS): a graphical exploratory data analysis technique. 1984

Алгоритм LOWESS (LOcally WEighted Scatter plot Smoothing)

Вход: X^{ℓ} — обучающая выборка;

Выход: коэффициенты γ_i , $i=1,\ldots,\ell$;

инициализация: $\gamma_i := 1, i = 1, \ldots, \ell$;

повторять

оценки скользящего контроля в каждом объекте:

оценки скользящего контроля в каждом совекте.
$$a_i := a_h\big(x_i; X^\ell \backslash \{x_i\}\big) = \frac{\sum\limits_{j=1,\,j\neq i}^\ell y_j \gamma_j K\big(\frac{\rho(x_i,x_j)}{h(x_i)}\big)}{\sum\limits_{j=1,\,j\neq i}^\ell \gamma_j K\big(\frac{\rho(x_i,x_j)}{h(x_i)}\big)}, \quad i=1,\ldots,\ell;$$

$$\gamma_i := \tilde{K}\big(|a_i-y_i|\big), \quad i=1,\ldots,\ell;$$

$$\gamma_i := K(|a_i - y_i|), \quad i = 1, \dots, \ell$$

пока коэффициенты γ_i не стабилизируются;

Gary W. Moran. Locally-Weighted-Regression Scatter-Plot Smoothing (LOWESS): a graphical exploratory data analysis technique. 1984

Пример работы LOWESS на синтетических данных

 $\ell=100,\;\;h=1.0,\;\;$ гауссовское ядро $K(r)=\exp\left(-2r^2\right)$ Две из 100 точек — выбросы с ординатами $y_i=40$ и -40 В данном случае LOWESS сходится за несколько итераций:

Выявление новизны (novelty detection) и другие задачи

Аномальность объекта (anomaly/novelty/surprise score) — это значение функции потерь $\mathcal{L}(a(x_i),y_i)$ на данном объекте

Варианты оценивания аномальности:

- аномальность оценивается для объекта обучающей выборки (outlier) или для нового объекта (novelty)
- \bullet потеря зависит от y_i (supervised) или нет (unsupervised)
- при оценивании аномальности обучающего объекта он исключается из выборки $(a(x_i; X^\ell \backslash x_i))$ или нет $(a(x_i; X^\ell))$
- функция потерь та же, что в критерии обучения или нет

Варианты использования оценок аномальности:

- жёсткое удаление аномальных объектов из выборки
- мягкое перевзвешивание весов объектов

M.Salehi et al. A unified survey on anomaly, novelty, open-set, and out-of-distribution detection: solutions and future challenges. 2021.

Оптимизационные задачи машинного обучения

Постановки задач регрессии, классификации, кластеризации, восстановления плотности, снижения размерности и других отличаются функциями потерь $\mathscr{L}_i(\alpha)$ и регуляризацией $\tau R(\alpha)$:

$$Q(\alpha) = \sum_{i=1}^{\ell} w_i \mathcal{L}_i(\alpha) + \tau R(\alpha) \rightarrow \min_{\alpha}$$

Проблема: выбросы могут искажать $\mathscr{L}_i(\alpha)$ и критерий $Q(\alpha)$ **Идея:** уменьшать веса w_i выбросов с большими $\mathscr{L}_i(\alpha)$

$$Q(\alpha) = \sum_{i=1}^{\ell} \mu(\mathcal{L}_i(\alpha)) + \tau R(\alpha) \rightarrow \min_{\alpha}$$

$$\nabla Q(\alpha) = \sum_{i=1}^{\ell} \underbrace{\mu'(\mathcal{L}_i(\alpha))}_{w_i} \nabla \mathcal{L}_i(\alpha) + \tau \nabla R(\alpha) = 0$$

Итерационное взвешивание (Iterative Reweighting Scheme, IRS)

Пусть
$$\mu(r)$$
 — функция медленного роста: $\mu(r)\geqslant 0, \;\; \mu'(r)\geqslant 0, \;\; \mu'(r)$ убывает, $\;\; \mu'(r)\to 0$ при $r\to +\infty$

Вход: $\mathscr{L}_i(\alpha)$ — функции потерь на обучающей выборке;

Выход: параметры модели α , веса объектов w_i ;

инициализация: $w_i := rac{1}{\ell}, \ i = 1, \ldots, \ell;$

повторять

$$lpha := rg \min_{lpha} \sum_{i=1}^{\ell} w_i \mathscr{L}_i(lpha) + au R(lpha); \ w_i := \operatorname{norm}_i ig(\mu'(\mathscr{L}_i(lpha)) ig), \ i = 1, \dots, \ell;$$

пока веса w_i не стабилизируются;

где $\operatorname{norm}(v_i) = rac{v_i}{\sum_i v_j}$ — операция нормирования вектора.

Недостаток: всё плохо, когда выбросы большие или их много

Итерационное взвешивание наименьших квадратов

(Iteratively Reweighted Least Squares, IRLS) Робастная регрессия:
$$\mathcal{L}_i(\alpha) = \left| f(x_i, \alpha) - y_i \right|$$
 Вход: $(x_i, y_i)_{i=1}^{\ell}$ — обучающая выборка; Выход: параметры модели α , веса объектов w_i ; инициализация: $w_i := \frac{1}{\ell}, \quad i = 1, \dots, \ell$; повторять
$$\alpha := \arg\min_{\alpha} \sum_{i=1}^{\ell} w_i \underbrace{\left(f(x_i, \alpha) - y_i \right)^2}_{\mathcal{L}_i^2(\alpha)} + \tau R(\alpha);$$
 $w_i := \operatorname{norm} \frac{\mu'(\mathcal{L}_i(\alpha))}{\mathcal{L}_i(\alpha)}, \quad i = 1, \dots, \ell$;

пока веса w_i не стабилизируются;

Недостаток: всё плохо, когда выбросы большие или их много

Функции потерь для робастной регрессии

Потеря $\mathcal{L}_i(\alpha) = \mu(r)$ — функция μ от ошибки $r = f(x_i, \alpha) - y_i$ Квадратичная функция потерь $\mu(r) = r^2$ — не робастная.

Робастные функции потерь $\mu(r)$:

• $\max(0, |r| - c)$ — кусочно-линейная (SVM-regression);

$$ullet$$
 $\left\{ egin{array}{ll} rac{1}{2c}r^2, & |r| < c \ |r| - rac{c}{2}, & |r| \geqslant c \end{array}
ight.$ — Хьюбера;

•
$$\begin{cases} \frac{c^2}{6} \left(1 - \left(1 - \frac{r}{c}\right)^2\right)^3, & |r| < c \\ |r| - \frac{c}{2}, & |r| \geqslant c \end{cases}$$
 — Тьюки;

•
$$\left\{ egin{array}{ll} (1-\cos(\pi r/c)), & |r| < c \ 2c, & |r| \geqslant c \end{array}
ight.$$
 — Эндрю;

ullet $\hat{eta}(1-\exp(-rac{r^2}{2eta}))$ — Мешалкина, с параметром eta;

Jonathan T. Barron. A General and Adaptive Robust Loss Function. 2019

Функции потерь для робастной регрессии

Семейство функций потерь Баррона с параметром α :

$$\mu(r) = \frac{|\alpha - 2|}{\alpha} \left(\left(\frac{r^2}{|\alpha - 2|} + 1 \right)^{\alpha/2} - 1 \right)$$

Jonathan T. Barron. A General and Adaptive Robust Loss Function. 2019.

Пример. Робастная регрессия

Недостаток: всё плохо, когда выбросы большие или их много

З.М.Шибзухов. Методы машинного обучения на основе минимизации сглаженных оценок средних, нечувствительных к выбросам. ММРО-2019.

Робастные (устойчивые к выбросам) способы усреднения

Среднее арифметическое (неустойчивое к большим выбросам):

$$\frac{1}{\ell} \sum_{i=1}^{\ell} z_i = \arg\min_{u} \sum_{i=1}^{\ell} (z_i - u)^2$$

Робастные (устойчивые) способы усреднения, определяемые через вариационный ряд $z^{(1)}\leqslant \cdots \leqslant z^{(\ell)}$ значений z_1,\ldots,z_ℓ :

- ullet медиана $rac{1}{2}ig(z^{\left(\left \lfloor rac{\ell+1}{2}
 ight
 floor}ig)} + z^{\left(\left \lceil rac{\ell+1}{2}
 ceil^{}
 ight)}ig) = rg \min_{u} \sum_{i=1}^{\ell} |z_i u|$
- ullet γ -квантиль $z^{(\lfloor \gamma \ell \rfloor)} = \arg\min_{u} \sum_{i=1}^{\ell} |z_i u| \cdot \left\{ egin{array}{l} \gamma, & z_i \geqslant u \\ 1 \gamma, & z_i < u \end{array}
 ight.$
- ullet цензурированное среднее $rac{1}{\ell}\sum_{i=1}^{\ell}\minig(z_i,oldsymbol{z^{(m)}}ig)$

Недостаток: эти функции усреднения недифференцируемы

Общий вид и свойства агрегирующих функций

Идея 1: среднее заменить одномерной минимизацией по *и* Идея 2: затем модуль заменить его гладкой аппроксимацией

$$Q(\alpha) = M(\underbrace{\mathcal{L}_1(\alpha)}_{z_1}, \dots, \underbrace{\mathcal{L}_\ell(\alpha)}_{z_\ell}) = \arg\min_{u} \sum_{i=1}^{\ell} d(z_i - u)$$

Свойства функции несходства (dissimilarity function) d(r):

ullet строго выпуклая, $d(r)\geqslant 0$, d(0)=0

Свойства агрегирующей функции $M(z_1,\ldots,z_\ell)$:

- $M(z_1) = z_1$
- ullet монотонность: $z_i \leqslant z_i' \to M(z_1,\ldots,z_\ell) \leqslant M(z_1',\ldots,z_\ell')$
- ullet симметричность: $M(z_1,\ldots,z_\ell) = M(z_{\pi(1)},\ldots,z_{\pi(\ell)})$ для $\forall \pi$
- $\min(z_1,\ldots,z_\ell) \leqslant M(z_1,\ldots,z_\ell) \leqslant \max(z_1,\ldots,z_\ell)$

Примеры сглаженных функций несходства

Сглаженный модуль (для аппроксимации медианы):

$$d_{\varepsilon}(r) = \sqrt{\varepsilon^2 + r^2} - \varepsilon \xrightarrow{\varepsilon \to 0} |r|$$

Сглаженный несимметричный модуль (для γ -квантили):

$$d_{\gamma\varepsilon}(r) = \begin{cases} 2\gamma d_{\varepsilon}(r), & r \geqslant 0 \\ 2(1-\gamma)d_{\varepsilon}(r), & r < 0 \end{cases} \xrightarrow{\varepsilon \to 0} |r|_{\gamma} = \begin{cases} 2\gamma|r|, & r \geqslant 0 \\ 2(1-\gamma)|r|, & r < 0 \end{cases}$$

22 / 35

Ещё пример: сглаженное цензурированное среднее

Воспользуемся тождеством $\min(z_i, \mathbf{u}) = \frac{1}{2}(z_i + \mathbf{u}) - \frac{1}{2}|z_i - \mathbf{u}|$

$$M(z_1,\ldots,z_\ell) = \frac{1}{2\ell} \sum_{i=1}^{\ell} z_i + \frac{z_{\gamma\varepsilon}}{z_{\varepsilon}} - d_{\varepsilon}(z_i - \frac{z_{\gamma\varepsilon}}{z_{\varepsilon}}) \xrightarrow[\varepsilon \to 0]{} \frac{1}{\ell} \sum_{i=1}^{\ell} \min(z_i, \frac{z^{(m)}}{z^{(m)}})$$

$$\mathbf{z}_{\gamma\varepsilon} = \arg\min_{\mathbf{u}} \sum_{i=1}^{\ell} d_{\gamma\varepsilon} (\mathbf{z}_i - \mathbf{u}) \xrightarrow[\varepsilon \to 0]{} \mathbf{z}^{(m)}, \quad m = \gamma \ell$$

Итерационное взвешивание для агрегирующей функции

Обобщённая минимизация эмпирического риска (ERM):

$$egin{aligned} Q(lpha) &= Mig(\mathscr{L}_1(lpha), \ldots, \mathscr{L}_\ell(lpha)ig) + au Rig(lpha) &
ightarrow \min_lpha \ &
abla Q(lpha) &= \sum_{i=1}^\ell rac{\partial M}{\partial \mathscr{L}_i} ig(\mathscr{L}_1(lpha), \ldots, \mathscr{L}_\ell(lpha)ig) \ &
abla \mathscr{L}_i(lpha) + au
abla Rig(lpha) &= 0 \end{aligned}$$

Алгоритм итерационного взвешивания (IR-ERM):

повторять

$$lpha := rg \min_{lpha} \sum_{i=1}^{\ell} w_i \mathscr{L}_i(lpha) + au R(lpha); \ w_i := rac{\partial M}{\partial \mathscr{L}_i} (\mathscr{L}_1(lpha), \dots, \mathscr{L}_\ell(lpha)), \quad i = 1, \dots, \ell;$$

 $\mathbf{пока}$ веса w_i не стабилизируются;

Теперь разберёмся, как вычислять производные $rac{\partial M}{\partial z_i}(z_1,\ldots,z_\ell)$

Вычисление частных производных $\frac{\partial M}{\partial z_k}$

Запишем необходимые условия экстремума по $u \equiv M$

$$M(z_1,\ldots,z_\ell) = \arg\min_{u} \sum_{i=1}^{\ell} d(z_i - u)$$
 (*)

в виде уравнения $\sum_{i=1}^{\ell} d'(z_i - M) = 0$ относительно M, продифференцируем его по z_k и выразим отсюда $\frac{\partial M}{\partial z_k}$:

$$\sum_{i=1}^{\ell} d''(z_i - M) \frac{\partial}{\partial z_k} (z_i - M) = 0$$

$$d''(z_k - M) = \frac{\partial M}{\partial z_k} \sum_{i=1}^{\ell} d''(z_i - M)$$

$$\frac{\partial M}{\partial z_k} = \frac{d''(z_k - M)}{\sum_{i=1}^{\ell} d''(z_i - M)} = \underset{k}{\text{norm }} d''(z_k - M)$$

Осталось разобраться, как вычислять $u \equiv M$ в задаче (*)

O дномерная задача оптимизации по M

Чтобы решать уравнение $\sum_{i=1}^\ell d'(z_i-M)=0$ относительно M методом простой итерации, представим его в виде M=f(M):

$$\sum_{i=1}^{\ell} \frac{d'(z_i - M)}{z_i - M} (z_i - M) = 0$$

$$\sum_{i=1}^{\ell} z_i \frac{d'(z_i - M)}{z_i - M} = M \sum_{i=1}^{\ell} \frac{d'(z_i - M)}{z_i - M}$$

$$M = rac{\sum\limits_{i=1}^{\ell} z_i \, arphi(z_i - M)}{\sum\limits_{i=1}^{\ell} arphi(z_i - M)} = \sum\limits_{i=1}^{\ell} z_i \mathop{\mathsf{norm}}\limits_i arphi(z_i - M), \;\;$$
где $arphi(r) = rac{d'(r)}{r}$

Интересно, что M — средневзешенное значений $\{z_i\}$.

Достаточное условие сходимости метода простой итерации

Процесс $M_{t+1} = f(M_t)$ сходится, если |f'(M)| < 1 в окрестности неподвижной точки M = f(M).

$$\left|\frac{\partial}{\partial M} \frac{\sum_{i} z_{i} \varphi(z_{i} - M)}{\sum_{i} \varphi(z_{i} - M)}\right| < 1$$

После взятия производной по M:

$$\frac{\left|\sum_{i}(z_{i}-M)\,\varphi'(z_{i}-M)\right|}{\left|\sum_{i}\varphi(z_{i}-M)\right|}<1$$

Данное условие нетрудно проверяется для каждой конкретной функции d(r), и для большинства полезных d оно выполнено.

Beliakov G., Sola H., Calvo T. A practical guide to averaging functions. 2016.

3. М. Шибзухов. Минимизации робастных оценок сумм параметризованных функций. 2019.

Собираем всё воедино: алгоритм IR-ERM

```
Вход: \mathcal{L}_i(\alpha) — функции потерь на обучающей выборке;
Выход: параметры модели \alpha, веса объектов w_i;
инициализация w_i := \frac{1}{\ell}, i = 1, \ldots, \ell;
повторять
   \alpha := \arg\min_{\alpha} \sum_{i=1}^{c} w_{i} \mathcal{L}_{i}(\alpha) + \tau R(\alpha);
    z_i := \mathscr{L}_i(lpha); инициализация M := \sum_{i=1}^\ell w_i z_i;
    повторять
     M = \sum_{i=1}^{\ell} z_i \operatorname{norm}_i \varphi(z_i - M), где \varphi(r) = \frac{d'(r)}{r};
    пока значение M не сойдётся;
    w_i := \operatorname{norm} d''(z_i - M), \quad i = 1, \dots, \ell;
пока веса w; не стабилизируются;
```

Пример 1. Робастная регрессия (линейная)

Агрегирующая функция справляется даже с 49% выбросов

^{3.}М.Шибэухов. Методы машинного обучения на основе минимизации сглаженных оценок средних, нечувствительных к выбросам. ММРО-2019.

Пример 2. Робастная классификация (SVM)

Агрегирующая функция справляется даже с 44% выбросов

^{3.}М.Шибзухов. Методы машинного обучения на основе минимизации сглаженных оценок средних, нечувствительных к выбросам. ММРО-2019.

Пример 3. Робастная кластеризация

Если в данных смешано несколько зависимостей, то вместо компромиссного «натягивания» одной модели на все данные робастные методы моделируют основную, игнорируя остальные

Одноклассовый SVM (one-class SVM, OSVM)

Дано: обучающая выборка $\{x_i \in \mathbb{R}^n \colon i=1,\ldots,\ell\}$

Найти: центр $c \in \mathbb{R}^n$ и радиус r шара, охватывающего всю выборку кроме аномальных объектов-выбросов

Критерий: минимизация радиуса шара и суммы штрафов за выход из шара:

$$\nu r^2 + \sum_{i=1}^{\ell} \mathscr{L}(\underbrace{r^2 - \|x_i - c\|^2}_{\zeta_i = \mathsf{margin}(c,r)}) \to \min_{c,r}$$

При $\mathscr{L}(\zeta) = (-\zeta)_+$ свойства решения аналогичны SVM:

- Выпуклая задача квадратичного программирования
- Решение разрежено зависит только от опорных объектов
- ullet Обобщение на нелинейные модели: $\langle x_i, x_j
 angle o K(x_i, x_j)$

Частный случай SSL: PU-learning (Positive and Unlabeled)

Примеры задач, когда известны объекты только одного класса:

- обнаружение мошеннических транзакций
- рекомендательные системы, персонализация рекламы
- автоматическое пополнение базы знаний фактами

Модель двухклассовой классификации $a(x_i, w)$.

Неразмеченные трактуются как негативные с весом $\mathcal{C}_- \ll \mathcal{C}_+$:

$$\sum_{i=1}^{k} \frac{C_{+}}{k} \mathcal{L}(a(x_{i}, w), +1) + \sum_{i=k+1}^{\ell} \frac{C_{-}}{\ell - k} \mathcal{L}(a(x_{i}, w), -1) + \tau R(w) \rightarrow \min_{w}$$

Один из успешных методов — Biased SVM.

 $[\]textit{Gang Li.} \ \ A \ \ \text{Survey on Positive and Unlabelled Learning.} \ \ 2013.$

J. Bekker, J. Davis. Learning From Positive and Unlabeled Data: A Survey. 2020.

Обучение по выборке одного класса
Задачи с новыми или неизвестными классами

Задачи классификации с нефиксированным набором классов

- Обычная многоклассовая классификация
- Дообучение модели на каждом новом классе
- Детектирование объектов одного класса против остальных (One-Class Classification)
- ullet Распознавание с открытым набором классов (Open-Set Recognition o Open-World Recognition)

Walter J. Scheirer. https://www.wjscheirer.com/projects/openset-recognition

Резюме

- Природа аномальности объектов:
 - помехи (ошибки, шум, грязь) в исходных данных,
 - модель плохо описывает примеси посторонних явлений,
 - постоянно появляется нечто принципиально новое.
- Простой способ отсева наиболее грубых выбросов исключать объекты с наибольшими значениями потерь.
- Редкий для ML случай: минимизируется не сумма потерь $\mathcal{L}_1 + \dots + \mathcal{L}_\ell$, а обобщённое среднее $M(\mathcal{L}_1, \dots, \mathcal{L}_\ell)$.
- Природа аномальности классов:
 - невозможность собрать обучающие объекты класса,
 - динамическое увеличение числа классов
- Не существует идеального способа определения аномалий.
 Явно или неявно предполагается «модель аномалии».

M.Salehi et al. A unified survey on anomaly, novelty, open-set, and out-of-distribution detection: solutions and future challenges. 2021.

З.М.Шибзухов. Минимизации робастных оценок сумм параметризованных функций. 2019.