Отбор признаков и линейные методы снижения размерности

Кантонистова Елена

elena.kantonistova@yandex.ru

27 октября 2017

План лекции

- Методы отбора признаков
 - VarianceThreshold
 - Отбор по корреляции с целевой переменной
 - Отбор признаков по различным статистическим тестам
- Линейные методы снижения размерности
 - Метод главных компонент
 - Линейный дискриминантный анализ

VarianceThreshold

Можем удалить признаки, которые имеют очень маленькую дисперсию, т.е. практически константы.

Отбор по корреляции с целевой переменной

Для каждого признака вычислим его корреляцию с целевой переменной. Будем выкидывать признаки, имеющие маленькую корреляцию.

Отбор признаков по различным статистическим тестам

B sklearn есть сразу несколько методов, использующих отбор по статистическим критериям. Среди них выделим следующие:

- SelectKBest оставляет к признаков с наибольшим значением выбранной статистики
- SelectPercentile оставляет признаки со значениями выбранной статистики, попавшими в заданную пользователем квантиль
- и другие (см.sklearn)

Статистические тесты для отбора признаков

 mutual information: для векторов X и Y статистика вычисляется по формуле

$$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \left(\frac{p(x,y)}{p(x) p(y)} \right)$$

• хи-квадрат:

$$\chi^{2}(X, Y) = \sum_{i=1}^{n} \frac{(Y_{i} - X_{i})^{2}}{X_{i}}$$

• f-regression - тест, основанный на корреляции линейного регрессора с целевой переменной

Снижение размерности

Предыдущие методы отбирали из исходных признаков некоторое подмножество признаков. Теперь мы хотим придумать новые признаки, каким-то образом выражающиеся через старые, причем новых признаков хочется меньше, чем старых. Сегодня будем рассматривать только случай, когда новые признаки линейно выражаются через старые.

Метод главных компонент

Постановка задачи:

$$f_1(x),...,f_n(x)$$
— исходные числовые признаки; $g_1(x),...,g_m(x)$ — новые числовые признаки, $m\leq n$;

Мы хотим, чтобы новые числовые признаки $g_i(x)$ линейно выражались через исходные признаки $f_j(x)$, при этом чтобы исходные признаки также линейно восстанавливались по новым признакам. При этом мы хотим, чтобы при переходе к новым признакам было потеряно наименьшее количество исходной информации.

Метод главных компонент

Метод главных компонент работает только с признаками. Для него не важна целевая переменная (если она есть). Таким образом, метод главных компонент - это обучение без учителя.

Геометрическая интерпретация РСА

Геометрически метод главных компонент ищет гиперплоскость заданной размерности, при проекции на которую сумма квадратов расстояний от исходных точек будет минимальной.

Визуализация проекции на гиперплоскость

Точки, плохо разделимые в исходном пространстве, могут быть лучше разделимы при проекции на некоторую гиперплоскость.

Faces dataset

Faces dataset (main components)

Первые главные компоненты после применения РСА

Linear Discriminant Analisys, LDA

LDA - это обучение с учителем. При помощи метода линейного дискриминантного анализа выбирается проекция исходного пространства признаков на новое пространство признаков таким образом, чтобы минимизировать внутриклассовый разброс точек и максимизировать межклассовое расстояние в пространстве признаков.

LDA, формализация

- ullet Классификация между ω_1 и ω_2 .
- Пусть $C_1 = \{i : x_i \in \omega_1\}, \quad C_2 = \{i : x_i \in \omega_2\}$ и

$$m_1 = \frac{1}{N_1} \sum_{n \in C_1} x_n, \quad m_2 = \frac{1}{N_2} \sum_{n \in C_2} x_n$$

$$\mu_1 = \mathbf{w}^T \mathbf{m}_1, \quad \mu_2 = \mathbf{w}^T \mathbf{m}_2$$

Определим дисперсии спроецированных на подпространство w классов:

$$s_1 = \sum_{n \in C_1} (w^T x_n - w^T m_1)^2, \quad s_2 = \sum_{n \in C_2} (w^T x_n - w^T m_2)^2$$

ullet Критерий LDA Фишера: $rac{(\mu_1-\mu_2)^2}{s_1^2+s_2^2} o {\sf max}_{{\sf w}}$