

Determination of Relevant Hyperspectral Bands using a Spectrally Constrained CNN

Ulrike Pestel-Schiller

Institut für Informationsverarbeitung Leibniz Universität Hannover

Hyperspectral Imagery

- 3D data cube
- Wavelength range 400 to 1000 nm
- ▶ 186 spectral bands
- Spectral signature allows identification of materials
- Applied for classification and detection

Classification of Natural and Man-Made Fruits

RGB data

Which fruit is natural, which is man-made?

Motivation

Goal

Classification of natural and man-made fruits

Advantage of hyperspectral imagery

Exploitation of spectral information

Challenge

- High spectral dimensionality
- Computationally expensive
- Consumer friendly

Approach

Approach

- Band reduction method using CNN
- b obtaining information about relevant wavelengths resp. bands
 - → selecting relevant bands possible

Aim

- ► Few spectrometers necessary → Low cost application for customer
- No overfitting from sparse data

Idea

- Spectrally constrained CNN
- CNN shows contribution of each spectral band to class decision.

Band Reduction Method using CNN

How can the spectral location of one band be maintained?

- Relationship between spectral information of input and class decision
- Layers with functions operating across the spectral bands are interesting
- Layers with pixelwise nonlinear functions not considered

Spectral band contribution to class decision

Spectral band contribution to class decision

Spectral Signature of Fruits

Spectral Band Contribution to Class Decision

Spectral Band Contribution to Class Decision

Test Accuracy of CNNs using Sparse Data

- Training data red and green apples
- Test data
 14 fruits
- Input value HSI pixelwise

Training of network parameters
10 times

CNN using relevant bands more stable

Relevant Spectral Bands for Spectrometers

Two Spectrometers

RGB

2: Band 125

G: Band 174

B: Band 174

Two Spectrometers

RGB

: Band 125

G: Band 174

B: Band 174

Dr.-Ing. Ulrike Pestel-Schiller pestel@tnt.uni-hannover.de

Conclusion

- Band reduction method using CNN for determination of relevant bands
- CNN finds spectral bands relevant to class decision
 - → Spectrally constrained CNN
- Accuracy of relevant-band-CNN better than all-band-CNN
- Two most relevant bands are easily identified and work satisfyingly

