Introduzione
II modello linguistico
II modello computazionale
Un modello stocastico della classificazione azionale
Primi esperimenti computazionali
Conclusioni e svilupoi futuri

La classificazione azionale del verbo italiano primi esperimenti computazionali

Alessandra Zarcone

Università di Pisa - Corso di Laurea in Informatica Umanistica

12 Ottobre 2006

Indice

- Introduzione
- 2 II modello linguistico
- 3 Il modello computazionale
- 4 Un modello stocastico della classificazione azionale
- Primi esperimenti computazionali
- 6 Conclusioni e sviluppi futuri

Un'analisi computazionale del verbo italiano

task: l'azionalità: un compito semantico complesso

ipotesi: indicatori contestuali ⇒ categoria azionale

precedente: Siegel e McKeown 2000

 costruzione di un modello stocastico della scopi: classificazione azionale

> valutazione del ruolo degli indicatori contestuali nella scelta della categoria azionale

3 analisi computazionale del problema

modello teorico linguistico: categorie vendleriane

modello computazionale: Maximum Entropy

Achievements

L'Azionalità

L'Azionalità

L'Azionalità è un tratto della semantica del verbo che individua il tipo di evento descritto da ogni verbo in un contesto

(modelli di Azionalità: Vendler 1967, Bertinetto 1986, Rothstein 2004) Le classi azionali sono descrivibili tramite tratti (omogeneità, duratività, dinamicità)

Categorie vendleriane:	[omg]	[dur]	[din]
States (STA)	+	+	_
Activities (ACT)	+	+	+
Accomplishments (ACC)	_	+	+
Achievements (ACH)	_	_	+

Categorie vendleriane

States

States

States (STA)

Indicano qualità, abitudini, abilità e altre caratteristiche, permanenti o transitorie, possedute dal soggetto:

• Si trovava in Calabria in compagnia della moglie.

Gli states sono tipicamente durativi, non dinamici e omogenei

omogeneità

un evento omogeneo è descrivibile come una serie omogenea di elementi (istanti o "piccole azioni") uguali

States

States (STA)

Indicano qualità, abitudini, abilità e altre caratteristiche, permanenti o transitorie, possedute dal soggetto:

• Si trovava in Calabria in compagnia della moglie.

Gli states sono tipicamente durativi, non dinamici e omogenei

omogeneità

un evento omogeneo è descrivibile come una serie omogenea di elementi (istanti o "piccole azioni") uguali

L'Azionalità Le categorie vendleriane States

Activities

Accomplishments Achievements

Activities

Achievements

Activities

Activities (ACT)

Sono verbi di attività:

• Di notte scrive alla sua fidanzata

Si tratta di verbi durativi, dinamici e omogenei

omogeneità

un'activity è omogenea perchè descrivibile come una "catena di eventi" (camminare, ad esempio, è una serie di eventi minimi descrivibili come "fare un passo")

L'Azionalità Le categorie vendleriane

Activities

Accomplishments Achievements

Activities

Activities (ACT)

Sono verbi di attività:

Di notte scrive alla sua fidanzata

Si tratta di verbi durativi, dinamici e omogenei

omogeneità

un'activity è omogenea perchè descrivibile come una "catena di eventi" (camminare, ad esempio, è una serie di eventi minimi descrivibili come "fare un passo")

omogenei vs. telici

- States e Activities sono classi di verbi omogenei e atelici
- Accomplishments e Achievements sono classi di verbi non omogenei e telici

omogeneità

un evento omogeneo è descrivibile come una serie omogenea di elementi (istanti o "piccole azioni") uguali

telicità

un evento telico esprime intrinsecamente il raggiungimento di un certo risultato

l'azione descritta da un evento telico tende quindi verso un "compimento": non è una catena omogenea di eventi uguali ("camminare") ma una catena progressiva di eventi incrementali che tendono verso un risultato ("dipingere un quadro")

omogenei vs. telici

- States e Activities sono classi di verbi omogenei e atelici
- Accomplishments e Achievements sono classi di verbi non omogenei e telici

omogeneità

un evento omogeneo è descrivibile come una serie omogenea di elementi (istanti o "piccole azioni") uguali

telicit?

un evento telico esprime intrinsecamente il raggiungimento di un certo risultato

l'azione descritta da un evento telico tende quindi verso un "compimento": non è una catena omogenea di eventi uguali ("camminare") ma una catena progressiva di eventi incrementali che tendono verso un risultato ("dipingere un quadro")

L'Azionalità Le categorie vendleriane

Activities

Accomplishments **Achievements**

omogenei vs. telici

- States e Activities sono classi di verbi omogenei e atelici
- Accomplishments e Achievements sono classi di verbi non omogenei e telici

omogeneità

un evento omogeneo è descrivibile come una serie omogenea di elementi (istanti o "piccole azioni") uguali

telicità

un evento telico esprime intrinsecamente il raggiungimento di un certo risultato

l'azione descritta da un evento telico tende quindi verso un "compimento": non è una catena omogenea di eventi uguali ("camminare") ma una catena progressiva di eventi incrementali che tendono verso un risultato ("dipingere un quadro")

Accomplishments

Accomplishments

Accomplishments (ACC)

Esprimono il raggiungimento di un risultato, sono verbi dinamici, durativi e telici (quindi non omogenei). Il tratto di telicità li distingue dalle *ACT* (spesso gli *ACC* sono *ACT* "telicizzate" da un complemento):

- mangiare (ACT) ← mangiare una mela (ACC)
- trascinare $(ACT) \iff$ portare qualcosa fino a qui (ACC)
- leggere (ACT) \iff leggere tutto "Guerra e Pace" (ACC)
- Di notte scrivo alla mia fidanzata (ACT)
- Giorgio Celli ha scritto un romanzo giallo (ACC)

Achievements

Achievements

Achievements (ACH)

Sono verbi dinamici e telici (quindi non omogenei), come gli *ACC*, ma non durativi. Esprimono generalmente un cambio di stato, una trasformazione:

- Il treno è partito alle quattro
- Ho scoperto il loro nascondiglio

Ibridismo azionale, commutazione azionale

Ibridismo azionale e opposizioni infralessicali

Naturale polisemia statisticamente significativa tra due interpretazioni azionali. Un verbo come *conoscere*, ad esempio, può equivalere a 'fare la conoscenza' o a 'essere a conoscenza', dove l'uno indica 'l'attuarsi dell'azione indicata dall'altro' (Lucchesi 1971).

- Ieri ho conosciuto Chiara (ACH)
- Conosco Chiara da diversi anni (STA)

Commutazione azionale

Può al contrario coinvolgere un verbo fortemente prototipico. Particolari elementi del contesto possono "forzare" la classe azionale prototipica di un verbo e modificarla

- A un certo punto Mangiafuoco starnutì (ACH)
- Mangiafuoco starnutì per mezz'ora (ACT)

Ibridismo azionale, commutazione azionale

Ibridismo azionale e opposizioni infralessicali

Naturale polisemia statisticamente significativa tra due interpretazioni azionali. Un verbo come *conoscere*, ad esempio, può equivalere a 'fare la conoscenza' o a 'essere a conoscenza', dove l'uno indica 'l'attuarsi dell'azione indicata dall'altro' (Lucchesi 1971).

- Ieri ho conosciuto Chiara (ACH)
- Conosco Chiara da diversi anni (STA)

Commutazione azionale

Può al contrario coinvolgere un verbo fortemente prototipico. Particolari elementi del contesto possono "forzare" la classe azionale prototipica di un verbo e modificarla

- A un certo punto Mangiafuoco starnutì (ACH)
- Mangiafuoco starnutì per mezz'ora (ACT)

Apprendimento automatico

tipo: supervisionato

task: assegnare la categoria azionale corretta

(⇒ la più probabile dato un contesto)

modello: Maximum Entropy (Berger et al. 1996)

algoritmo: AMIS (Miyao and Tsujii 2005)

test: i test sono stati condotti secondo il metodo della k-fold

crossvalidation (nel nostro caso, 30-fold crossvalidation)

Maximum Entropy

- frase = verbo + contesto linguistico (insieme di marche contestuali)
- il modello costruisce la distribuzione di probabilità $p(r \mid c)$ (dove r = particolare classe azionale e c = caratterizzazione del contesto)
- risposta corretta = $argmax(p(r \mid c))$
- secondo la Maximum Entropy $p(r \mid c)$ viene stimata come:

$$p(r \mid c) = \frac{1}{Z_c} \prod_{i=1}^k r_i^{m_i(r,c)}$$

dove Z_c sarà un fattore di normalizzazione, e $m_i(r,c)$ i parametri di ogni marca m per (r,c) (i pesi assegnati alle marche: ovvero quanto la marca m del contesto c è rilevante per la risposta r)

- fase di training: il modello calcola le distribuzioni di probabilità e restituisce i pesi delle marche
- fase di test: il modello utilizza i pesi calcolati per trovare la categoria azionale di contesti nuovi

Precision, Recall, F-measure

Sugli stativi:

precision:
$$P_{STA} = \frac{(STA \text{ corretti})}{(\text{tot. risposte STA})}$$

(percentuale di STA corretti trovati dal sistema su tutti gli STA individuati dal sistema)

recall:
$$R_{STA} = \frac{(STA \text{ corretti})}{(\text{tot. STA nel corpus})}$$

(percentuale di STA corretti trovati dal sistema rispetto a tutti gli STA presenti nel test corpus)

f-measure:
$$F_{STA} = \frac{2(P_{STA} \cdot R_{STA})}{P_{STA} + R_{STA}}$$

(media armonica tra precision e recall)

Precision, recall e f-measure sono calcolati su ognuna delle quattro categorie. Un sistema perfetto avrà precision e recall uguali a 1, e quindi anche f-measure uguale a 1.

L'annotazione

- 3429 occorrenze (di 33 verbi particolarmente frequenti) con relativi contesti (italiano scritto contemporaneo), estratte dal corpus TreSSI (Montemagni et al. 2003)
- le 3429 frasi sono state annotate secondo le quattro categorie azionali descritte come vettori di tratti
- cambiare, crescere, ridurre, salire, scendere (per un totale di 300 occorrenze): sono stati considerati appartenenti a una quinta categoria (incrementativi) e "messi da parte" per una fase successiva del lavoro
- totale di 3129 frasi annotate (gold standard):

verbi	tot.occorrenze	ACT	STA	ACH	ACC
28	3129	430	583	1294	822

Ibridi e prototipici

	tot.occorrenze tot.occorrenze per classe aziona			percentuale		classe prototipica		
lemma	del lemma	STA	ACT	ACH	ACC	INC		crasse protoupica
chiamare	93	36	13	0	44	0	47%	ACC
cambiare	72	4	5	28	0	35	49%	INC
scendere	60	primo gr	unnoi	23	4	33	55%	INC
mettere		max 60%		66	94	0	57%	ACC
trovare				99	0	0	57%	ACH
capire	0.1	di proto	tipicita	47	0	0	58%	ACH
indicare	97	37	1	58	1	0	60%	ACH
conoscere	68	secondo	arunno:	26	0	0	62%	STA
presentare		max 70%		15	97	0	68%	ACC
prendere				90	24	0	69%	ACH
passare	129	di protot	прісіта	0	92	0	71%	ACC
portare	174	29	18	0	127	0	73%	ACC
ridure	51	terzo arı	ınno:	0	12	39	76%	INC
scrivere		max 80%		0	B2	0	77%	ACC
costituire				14	0	0	77%	STA
salire	67	di protot	ipicita	11	2	52	78%	INC
omprendere	64	53	0	11	0	0	83%	STA
trattare	113	quarto g	runnoi	0	2	0	83%	STA
lasciare		max 90%		04	1	0	86%	ACH
vendere	73			54	0	0	88%	ACH
controllare	0.5	di protot	ipicita	0	1	0	89%	STA
entrare	90	8	0	82	0	0	91%	ACH
arrivare	185	6	8	171	0	0	92%	ACH
chiedere	152	0	11	0	141	0	93%	ACC
spiegare	115	7	0	0	108	0	94%	ACC
partire	78	4	0	74	0	0	95%	ACH
parlare	181	9	172	0	0	0	95%	ACT .
morire	87	0	0	83	4	0	95%	ACH
chiudere	100	4	0	96	0	0	96%	ACH
tornare	117	1	1	113	2	0	97%	ACH
lavorare	84	0	82	0	2	0	98%	ACT
vincere	81	0	0	81	0	0	100%	ACH
crescere	50	0	0	0	0	50	100%	INC

L'annotazione Ibridi e prototipici Baseline Selezione di marche contestuali rilevanti

Baseline

- Siegel e McKeown (2000): "fundamental aspectual class" (non considerano l'ibridismo azionale, solo la commutazione)
- proviamo a legittimare il concetto di "fundamental aspectual class"
- data un'occorrenza, il sistema assegna la classe azionale più probabile per il lemma corrispondente:

Gruppi	Baseline
Primo gruppo	56,1%
Secondo gruppo	60%
Terzo gruppo	64,6%
Quarto gruppo	69,6%
Tutto il corpus	79,8%

L'annotazione Ibridi e prototipici Baseline Selezione di marche contestuali rilevanti

Selezione di marche contestuali rilevanti

- Il modello ha bisogno di una selezione di marche contestuali rilevanti per la caratterizzazione azionale dei contesti verbali
- Marche estratte semi-automaticamente
- Tipologie di marche utilizzate:
 - 1 tratti morfologici tempo-aspettuali e diatesi della testa verbale;
 - @ modificatori della testa verbale (di varie tipologie);
 - argomenti e complementi, retti dalla testa verbale, e loro tratti morfologici, sintattici e semantici (lessicalizzati e non lessicalizzati).

L'amotazione Ibridi e prototipici Baseline Selezione di marche contestuali rilevanti

Revisione ciclica del modello

Configurazione migliore

	ACT	STA	ACC	ACH	
ACT	319	21	50	40	⇒ tot. act: 430
STA	20	454	30	79	⇒ tot. sta: 583
ACC	33	15	733	41	⇒ tot. acc: 822
ACH	10	55	63	1166	⇒ tot. ach: 1294
precision:	0,84	0,83	0,84	0,88	occorrenze: 3129
recall:	0,74	0,78	0,89	0,9	errori: 14,6%
f-measure:	0,79	0,8	0,86	0,89	corrette: 85,4%

Configurazione migliore Errori comuni

Errori comuni Inter-Tagger Agreement Decisione su tratti

Confronto con la baseline

Gruppi	Baseline	Conf. migliore
Primo gruppo	56,1%	69,34%
Secondo gruppo	60%	72,37%
Terzo gruppo	64,6%	75,47%
Quarto gruppo	69,6%	78,43%
Tutto il corpus	79,8%	85,39%

Errori comuni del sistema

- usi idiomatici (soprattutto verbi mettere, prendere, portare)
 - Umberto Eco ha potuto divertirsi a prendere un po' tutti per il bavero, sia gli autori gialli sia i lettori di quelli, ma non solo i giallomani.
- infiniti, participi, gerundi
 - Basta <u>chiedere</u> a Poulidor, infaustamente <u>chiamato</u> Poupou, che segue il Tour con un'aria da clown.
 - Tutto ciò lascia <u>capire</u> come il gruppo Lazard abbia già mangiato la foglia.

Inter-Tagger Agreement

Problema dell'Inter-Tagger Agreement (ITA)

- problema tipico di ogni approccio automatico alla semantica
- disaccordo in letteratura tra diverse teorie sull'azionalità

Un esperimento di stima dell'ITA per valutare la complessità del task dal punto di vista di un parlante nativo

- selezione di 100 frasi dal secondo gruppo di ibridi
- 2 le frasi vengono sottoposte ad altri tre annotatori umani, che devono annotarle secondo le quattro categorie vendleriane

	annot.A	annot.B	annot.C	sistema
accordo osservato	73%	44%	67%	76%

Media di k-statistic: 0.51

Media di accordo osservato in percentuale: 65%

Decisione su tratti

- non più decisione su classi,
 ma su singoli tratti
- baseline diversa (..e più alta)
- maggiori difficoltà con il tratto di duratività

Gruppi	Baseline	Conf. migliore
	DUR	
Primo gruppo	60,9%	72,8%
Secondo gruppo	62,2%	74,3%
Terzo gruppo	70%	79,1%
Tutto il corpus	87,7%	90,6%
	DIN	
Primo gruppo	63,9%	79,9%
Secondo gruppo	68,3%	84,9%
Terzo gruppo	75,5%	85,4%
Tutto il corpus	88,3%	92%
	OMG	
Primo gruppo	56,9%	79,5%
Secondo gruppo	66,8%	81,7%
Terzo gruppo	71,9%	83,2%
Tutto il corpus	84,4%	89,9%

Conclusioni

- Dalla teoria al modello stocastico.
- Dal modello stocastico alla teoria
- Una questione interessante: gli incrementativi
- Modelli non supervisionati
- Psicolinguistica

