Edit Distance

Guillaume Wisniewski guillaume.wisniewski@linguist.univ-paris-diderot.fr September 2019

Université de Paris & LLF

Definition

1

How similar are two strings?

distance between two strings

- \hookrightarrow how similar are dad and daddy?

2

Edit distance

String transformation

- ullet given an alphabet Σ and a word $w \in \Sigma^*$
- Editing operations
 - $\hookrightarrow \text{ insert the character } x \text{ at position } i$
 - \hookrightarrow delete the character at position i
 - \hookrightarrow substitute the character at position i by x
- ullet a sequence of operations will transform a word w into w'

Edit distance

- given two strings u, v, consider the set of all sequence of editions
- define a cost for each operation (usually 1)
- distance(u, v) = minimum number of operations to transform u into v

Example

| i n t e n t i o n | substitute n by e | e t e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e n | e n t i o n | e

- \hookrightarrow no shorter sequence of operations
- \hookrightarrow edit distance between intention and execution is 5
- \hookrightarrow Levenshtein distance ($\omega_{
 m subst}=$ 2): 8

Alignment

• the sequence of edit operations define an alignment between the two strings

Ę

Is the edit distance a distance?

lf:

- every edit operation has positive cost;
- for every operation, there is an inverse operation with equal

The metric axioms are satisfied as follows:

- d(a,b)=0 if and only if a=b, each string is trivially transformed to itself with a cost of 0
- d(a,b)>0 when $a\neq b$, at least one edit operation
- ullet d(a,b)=d(b,a) by equality of the cost of each operation and its inverse.
- Triangle inequality: $d(a, c) \le d(a, b) + d(b, c)$

6

Application

Comparing documents ## General Comparing Interchance (Interchance Interchance Intercha

Identifiying Frequent Spelling Correction in French

[Wisniewski et al, TALN'2010]

- compute alignement between the different revision of a wikipedia page
- heuristics to filter modifications that correspond to spelling errors
- compute statistics

Erreurs orthographiques				Erreurs grammaticales				
$\begin{array}{ccc} \mathbf{e} \; \rightarrow \; \acute{\mathbf{e}} \\ \mathbf{E} \; \rightarrow \; \acute{\mathbf{E}} \\ \mathbf{o} \mathbf{e} \; \rightarrow \; \mathbf{c} \\ + \mathbf{n} \\ + \mathbf{s} \\ + \mathbf{r} \\ \acute{\mathbf{e}} \; \rightarrow \; \grave{\mathbf{e}} \\ - \mathbf{s} \\ + \mathbf{e} \\ \acute{\mathbf{e}} \; \rightarrow \; \mathbf{e} \end{array}$	6,7% 6,7% 4,6% 4,3% 2,8% 2,7% 2,7% 2,5% 2,2% 2,1%	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,9% 1,9% 1,8% 1,7% 1,7% 1,6% 1,6% 1,4% 1,3%	$\begin{array}{l} +s \\ +e \\ -s \\ \mathbb{A} \longrightarrow \mathbb{A} \\ -e \\ \mathbb{i} \longrightarrow \mathbb{i} \\ \mathbb{a} \longrightarrow \mathbb{a} \\ +nt \\ +t \\ \mathbb{a} \longrightarrow e \end{array}$	16.2% 9.9% 8.8% 5.6% 4.9% 2.7% 2.2% 1.9% 1.7% 1.5%	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5% 1.4% 1.0% 0.9% 0.9% 0.9% 0.8% 0.7% 0.7%	

Identifying Frequent Spelling Correction in French

[Wisniewski et al, TALN'2010]

- compute alignement between the different revision of a wikipedia page
- heuristics to filter modifications that correspond to spelling errors
- compute statistics

	erreurs lexicales	erreurs grammaticales
première moitié du mot	34,06%	4,08%
seconde moitié du mot	62,81%	93,26%
erreurs dans les deux moitiés	3,13%	2,63%

Computing minimal edit distance

Number of sequence of edits

Given two strings a and b, how many sequence of edits can transform a into b?

Number of sequence of edits

Observation • combinat

- combinatorial explosion
- number of answers grows very/too quickly with respect to the size of the words

Consequence

- minimum edit is a search
 problem can be reduced to shortest path
- the space of all edit sequences is huge!
- we can afford to navigate

Some observations

- lots of different sequence of editions result in the same word:
 - a can be transformed into b by:
 - \hookrightarrow 1 substitution
 - $\hookrightarrow \ 1 \ \mathsf{deletion} \ \mathsf{and} \ 1 \ \mathsf{insertion}$
 - →

⇒ overlapping sub-problems

- minimal edit distance → only need to keep track of the 'shortest' way to generate a given word
- $\Rightarrow \mathsf{optimal} \; \mathsf{substructure}$

10

12

Some notations

holy sh*t

- X, Y: two strings of length n and m
- D(i,j): min. edit distance between X[1..i] and Y[1..j]
 - \hookrightarrow the first i characters of X and j characters of Y
 - \hookrightarrow the 'overlapping sub-problems'
- D(n, m) is the edit distance between X and Y

11

Dynamic Programming

- dynamic programming: a tabular computation of D(n, m)
- solving problems by combining solutions to sub-problems
- bottom-up:
 - \hookrightarrow compute D(i,j) for 'small' i,j
 - \hookrightarrow compute 'larger' D(i,j) based on previously computed smaller values
- avoid computing the same 'sub-result' twice

An historical wink (1)

- dynamic programming (Bellman, 1950) = generic optimization method
- many applications (e.g. shortest path problem,
 Viterbi algorithm, matrix multiplication, ...)
- explore an exponential number of solutions in a polynomial time
 - \hookrightarrow simply by 'organizing' the computation correctly

An historical wink (2)

"Where did the name, dynamic programming, come from? The 1950s were not good years for mathematical research. We had a very interesting gentleman in Washington named Wilson. He was Secretary of Defense, and he actually had a pathological fear and hatred of the word research. [...] I decided therefore to use the word "programming". I wanted to get across the idea that this was dynamic, this was multistage, this was time-varying. I thought, let's [...] take a word that has an absolutely precise meaning, namely dynamic [...] it's impossible to use the word dynamic in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible. Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities."

Richard Bellman, "Eye of the Hurricane: an autobiography" 1984.

Computing D (1)

Obviously:

$$\begin{cases} D(i,0) = i & \forall i \in \llbracket 1, n \rrbracket \\ D(0,j) = j & \forall j \in \llbracket 1, m \rrbracket \end{cases}$$
 (1)

- $\hookrightarrow D(i,0) \to \text{generate}$ the empty string from the first i character of X
- \hookrightarrow 'best' way: i deletions
- \hookrightarrow recursive definition: $D(i,0) = D(i-1,0) + 1 \rightarrow$ considering a larger suffix, require one extra deletion

15

Computing D (2)

$$D(i,j) = \begin{cases} D(i-1,j-1) & \text{if } X[i] = Y[j] \\ \min \begin{cases} d[i-1,j] + \omega_{\text{del}}(X[i]) \\ d[i,j-1] + \omega_{\text{ins}}(Y[j]) & \text{if } X[i] \neq Y[j] \\ d[i-1,j-1] + \omega_{\text{sub}}(X[i], Y[j]) \end{cases}$$
(2)

- \hookrightarrow compute the edit distance incrementally
- $\ \hookrightarrow \$ at each step: best way to 'extend' the best solution achieved so far

16

18

14

For the moment...

$$\begin{cases} \omega_{\text{del}}(a) = 1 & \forall a \in \Sigma \\ \omega_{\text{sub}}(b) = 1 & \forall b \in \Sigma \\ \omega_{\text{ins}}(a, b) = 2 & \forall a, b \in \Sigma^2 \end{cases}$$

17

The edit distance table

N										
0										
- 1										
Т										
N										
Е										
Т										
Ν										
I										
#										
	#	Е	Х	Е	С	U	Т	1	0	Ν

The edit distance table

The edit distance table Ν Т Ν Ε Т Ν # Χ Ε С Т Ν # Ε U

