14.4 习题

张志聪

2025年4月24日

14.4.1

按度量空间的定义(定义 12.1.2),我们需证明 $d_{B(X\to Y)}$ 满足下面四个公理:

- (a) 对任意的 $f \in B(X \to Y)$,我们有 $d_{B(X \to Y)}(f, f) = 0$ 。 由定义 14.4.2 可知, $d_{B(X \to Y)}(f, f) = \sup\{d_Y(f(x), f(x)) : x \in X\}$,因为任意 $x \in X, d_Y(f(x), f(x)) = 0$,所以 $\sup\{d_Y(f(x), f(x)) : x \in X\} = \sup\{0\} = 0$,即 $d_{B(X \to Y)}(f, f) = 0$
- (b) (正性)对任意两个不同的 $f,g \in B(X \to Y)$,我们有 $d_{B(X \to Y)}(f,g) > 0$ 。

因为 $f \neq g$,那么,存在 $x_0 \in X$ 使得 $f(x_0) \neq g(x_0)$,于是 $d_Y(f(x_0), g(x_0)) > 0$, 所以 $\sup\{d_Y(f(x), g(x)) : x \in X\} > 0$, 即 $d_{B(X \to Y)}(f, g) > 0$

• (c) (对称性) 对任意的 $f,g \in B(X \to Y)$, 我们有 $d_{B(X \to Y)}(f,g) = d_{B(X \to Y)}(g,f)$

由定义 14.4.2 可知,

$$d_{B(X\to Y)}(f,g) = \sup\{d_Y(f(x),g(x)) : x \in X\}$$

$$d_{B(X\to Y)}(g,f) = \sup\{d_Y(g(x),f(x)) : x \in X\}$$

令

$$A := \{d_Y(f(x), g(x)) : x \in X\}$$
$$B := \{d_Y(g(x), f(x)) : x \in X\}$$

容易证明 A = B,所以 sup A = sup B,即 $d_{B(X \to Y)}(f, g) = d_{B(X \to Y)}(g, f)$

• (d) (三角不等式)对任意的 $f, g, h \in B(X \to Y)$,我们有 $d_{B(X \to Y)}(f, h) \le d_{B(X \to Y)}(f, g) + d_{B(X \to Y)}(g, h)$ 。 由定义 14.4.2 可知,我们需证明:

$$\sup\{d_Y(f(x), h(x)) : x \in X\} \le \sup\{d_Y(f(x), g(x)) : x \in X\} + \sup\{d_Y(g(x), h(x)) : x \in X\}$$

$$A := \{d_Y(f(x), h(x)) : x \in X\}$$
$$B := \{d_Y(f(x), g(x)) : x \in X\}$$
$$C := \{d_Y(g(x), h(x)) : x \in X\}$$

任意 $a_0 \in A$, 存在 $x \in X$ 使得

$$a_0 = d_Y(f(x), h(x))$$

我们有

$$d_Y(f(x), h(x)) \le d_Y(f(x), g(x)) + d_Y(g(x), h(x))$$

又因为

$$d_Y(f(x), g(x)) \in B$$

 $d_Y(g(x), h(x)) \in C$

综上可得, $supA \leq supB + supC$, 命题得证。

说明 1. $supA \leq supB + supC$ 这个结论可用反证法证明,假设 supA > supB + supC,那么存在 $a \in A$ 使得 supA > a > supB + supC,因为 $a \in A$,所有存在 $x \in X$ 使得

$$a = d_Y(f(x'), h(x'))$$

由上面的讨论可知, 存在 $b \in B, c \in C$ 使得

$$a \leq b+c$$

这会导致以下矛盾

$$b+c > supB + supC$$

14.4.2

• ⇒

对任意的 $\epsilon > 0$,因为 $(f^{(n)})_{n=1}^{\infty}$ 是依度量 $d_{B(X\to Y)}$ 收敛于 f,所以存在 $N\geq 1$,使得只要 $n\geq N$,就有

$$d_{B(X\to Y)}(f^{(n)},f)<\epsilon$$

即

$$\sup\{d_Y(f^{(n)}(x), f(x)) : x \in X\} < \epsilon$$

综上可得,对任意 $\epsilon > 0$,存在 $N \ge 1$,使得只要 $n \ge N$ 和 $x \in X$,就有

$$d_Y(f^{(n)}(x), f(x)) < \epsilon$$

所以, $(f^{(n)})_{n=1}^{\infty}$ 一致收敛于 f。

• =

对任意 $\epsilon>0$,因为 $(f^{(n)})_{n=1}^{\infty}$ 一致收敛于 f,所以存在 $N\geq 1$,使得只要 $n\geq N$ 和 $x\in X$,就有

$$d_Y(f^{(n)}(x), f(x)) < \epsilon$$

对每一个n,令

$$A_n := \{ d_Y(f^{(n)}(x), f(x)) : x \in X \}$$

由于 A_n 是实数集合,且存在上界 ϵ ,所以其上确界小于 ϵ ,即 $\sup A_n < \epsilon$ 。 综上可得,对任意 $\epsilon > 0$,存在 $N \ge 1$,使得只要 $n \ge N$,就有

$$d_{B(X\to Y)}(f^{(n)},f)<\epsilon$$

所以, $(f^{(n)})_{n=1}^{\infty}$ 是依度量 $d_{B(X\to Y)}$ 收敛于 f。

14.4.3

设 $(f^{(n)})_{n=1}^{\infty}$ 是 $C(X \to Y)$ 中的柯西函数序列,对任意 $\epsilon > 0$,存在 N > 0,使得只要 $p,q \geq N$,就有

$$d_{B(X\to Y)}(f^{(p)}, f^{(q)}) = \sup\{d_Y(f^{(p)}(x), f^{(q)}(x)) : x \in X\} < \epsilon$$

对任意 $x \in X$, 构造序列 $(f^{(n)}(x))_{n=1}^{\infty}$, 因为对 $p,q \geq N$ 我们有

$$d_Y(f^{(p)}(x), f^{(q)}(x)) \le d_{B(X \to Y)}(f^{(p)}, f^{(q)}) < \epsilon$$

由此可知, $(f^{(n)}(x))_{n=1}^{\infty}$ 是柯西序列,由题设 (Y,d_Y) 是一个完备的度量空间可得, $(f^{(n)}(x))_{n=1}^{\infty}$ 收敛,不妨设为 y_x 。

定义函数 $f:X\to Y, f(x)=y_x=\lim_{n\to\infty}f^{(n)}(x), x\in X$ 。接下来我们证明 $(f^{(n)})_{n=1}^\infty$ 收敛于 f。

任意 $x\in X$,因为 $f(x)=\lim_{n\to\infty}f^{(n)}(x)$,那么,存在 N'>0,使得只要 $k\geq N'$,就有

$$d_Y(f^{(k)}(x), f(x)) < \epsilon$$

综上, n > N, k > max(N, N') 我们有

$$d_Y(f^{(n)}(x), f(x)) \le d_Y(f^{(n)}(x), f^{(k)}(x)) + d_Y(f^{(k)}(x), f(x)) < 2\epsilon$$

即:

$$d_Y(f^{(n)}(x), f(x)) < 2\epsilon$$

(注意:以上说明了,不管 x 取什么值,都会可以找到一个上界。) 由 x 的任意性可得,对任意 $n > N, x \in X$ 都有

$$d_{B(X\to Y)|C(X\to Y)\times C(X\to Y)}(f^{(n)},f) < 2\epsilon$$

于是可得 $(f^{(n)})_{n=1}^{\infty}$ 一致收敛于 f,由命题 14.4.4 可知, $(f^{(n)})_{n=1}^{\infty}$ 收敛于 f。

又因为 $C(X \to Y)$ 是闭的,所以 $f \in C(X \to Y)$ 。

14.4.4

关于拓扑的习题,都忽略。