

Report No.: FR932216-01E

FCC RADIO TEST REPORT

FCC ID : 2AGOZ-CM5X Equipment : Media Receiver

Brand Name : facebook Model name : LW94NS

Applicant : Facebook Technologies LLC

1 Hacker Way Menlo Park CA 94025

Standard : FCC Part 15 Subpart E §15.407

The product was received on Apr. 08, 2019 and testing was started from Apr. 08, 2019 and completed on Jun. 14, 2019. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Jones Tsai

Ince/sus

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

TEL: 886-3-327-3456 Page Number : 1 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

Table of Contents

Report No. : FR932216-01E

His	tory o	of this test report	3
Sui	nmary	y of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	5
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency and Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test Result		
	3.1	6dB and 26dB and 99% Occupied Bandwidth Measurement	11
	3.2	Maximum Conducted Output Power Measurement	14
	3.3	Power Spectral Density Measurement	15
	3.4	Unwanted Emissions Measurement	18
	3.5	AC Conducted Emission Measurement	23
	3.6	Automatically Discontinue Transmission	25
	3.7	Antenna Requirements	26
4	List o	of Measuring Equipment	27
5	Unce	rtainty of Evaluation	29
Ap	pendi	x A. Conducted Test Results	
Αp	pendix	x B. AC Conducted Emission Test Result	
Αp	pendix	x C. Radiated Spurious Emission	
Ap	pendix	x D. Radiated Spurious Emission Plots	
Αp	pendix	x E. Duty Cycle Plots	
Ap	pendi	x F. Setup Photographs	

TEL: 886-3-327-3456 Page Number : 2 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

History of this test report

Report No. : FR932216-01E

Report No.	Version	Description	Issued Date
FR932216-01E	01	Initial issue of report	Jul. 04, 2019
FR932216-01E	02	 Adding description of worst case in section 2 Revising the Connection Diagram of Test System in section 2.3 	Jul. 21, 2019
FR932216-01E	03	Revising brand name	Jul. 31, 2019

TEL: 886-3-327-3456 Page Number : 3 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

Summary of Test Result

Report No.: FR932216-01E

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.403 (i)	6dB & 26dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.407 (a)	Maximum Conducted Output Power	Pass	-
3.3	15.407 (a)	Power Spectral Density	Pass	-
3.4	15.407(b)	Unwanted Emissions	Pass	Under limit 6.57 dB at 897.18 MHz
3.5	15.207	AC Conducted Emission	Pass	Under limit 11.08 dB at 0.686 MHz
3.6	15.407 (c)	Automatically Discontinue Transmission	Pass	-
3.7	15.203 & 15.407 (a)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang Report Producer: Yimin Ho

TEL: 886-3-327-3456 Page Number : 4 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac

Product Specification subjective to this standard			
Antonno Typo	WLAN: PIFA Antenna		
Antenna Type	Bluetooth: PIFA Antenna		

Report No.: FR932216-01E

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory			
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978	Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456		
Test Site No.	Sporton Site No.			
rest site NO.	TH05-HY	CO05-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory			
Test Site Location	No. 58, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton Site No. 03CH013-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

TEL: 886-3-327-3456 Page Number : 5 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR932216-01E

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-3456 Page Number : 6 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

2 Test Configuration of Equipment Under Test

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in two setup, without all accessories, with all accessories. The worst cases (without all accessories) were recorded in this report.

Report No.: FR932216-01E

b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	149	5745	157	5785
5725-5850 MHz Band 4	151*	5755	159*	5795
(U-NII-3)	153	5765	161	5805
(8 1411 0)	155 [#]	5775	165	5825

Note:

- 1. The above Frequency and Channel in "*" were 802.11n HT40 and 802.11ac VHT40.
- 2. The above Frequency and Channel in "#" were 802.11ac VHT80.

TEL: 886-3-327-3456 Page Number : 7 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

MIMO Mode

Modulation	Data Rate
802.11a	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11n HT20 (Covered by VHT20)	MCS0
802.11n HT40 (Covered by VHT40)	MCS0
802.11ac VHT80	MCS0

Report No. : FR932216-01E

	Test Cases					
AC						
Conducted	Mode 1: Bluetooth Link + WLAN (5GHz) Link + Adapter + MPEG4 + HDMI					
Emission						
Remark: For	Remark: For Radiated Test Cases, the tests were performed with Adapter.					

	Ch #	Band IV:5725-5850 MHz				
	Ch. #	802.11a	802.11n HT20	802.11n HT40	802.11ac VHT80	
L	Low	149	149	151	-	
M	Middle	157	157	-	155	
Н	High	165	165	159	-	

TEL: 886-3-327-3456 Page Number : 8 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

2.3 Connection Diagram of Test System

<WLAN Tx Mode>

Report No. : FR932216-01E

<AC Conducted Emission Mode>

TEL: 886-3-327-3456 Page Number : 9 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded,1.8m
2.	Notebook	DELL	Latitude E6320	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
3.	LCD Monitor	DELL	P2715Qt	FCC DoC	Shielded, 1.6m	Unshielded,1.8m

Report No.: FR932216-01E

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT v3.0-00271" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 17.80 dB and 10.00dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB). = 17.80 + 10.00 = 27.80(dB)

TEL: 886-3-327-3456 Page Number : 10 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

3 Test Result

3.1 6dB and 26dB and 99% Occupied Bandwidth Measurement

3.1.1 Description of 6dB and 26dB and 99% Occupied Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz. 26dB and 99% Occupied bandwidth are reporting only.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section C) Emission bandwidth for the band 5.725-5.85GHz

Report No.: FR932216-01E

- 2. Set RBW = 100kHz.
- 3. Set the VBW \geq 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- 6. Measure the maximum width of the emission that is 6 dB down from the peak of the emission.
- 7. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 6dB and 26dB and 99% Occupied Bandwidth

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 11 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

TEL: 886-3-327-3456 Page Number : 12 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

Report No.: FR932216-01E

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-3456 Page Number : 13 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

Report No.: FR932216-01E

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

The testing follows Method PM-G of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, $10 \log(1/x)$, where x is the duty cycle.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 14 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

For the band 5.725–5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

Report No.: FR932216-01E

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section F) Maximum power spectral density.

Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 300 kHz.
- Set VBW ≥ 1 MHz.
- Number of points in sweep ≥ 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add 10 log(500kHz/RBW) to the test result.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.

TEL: 886-3-327-3456 Page Number : 15 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.

Report No.: FR932216-01E

3. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Method (c): Measure and add 10 log(N_{ANT}) dB.

With this technique, spectrum measurements are performed at each output of the device, but rather than summing the spectra or the spectral peaks across the outputs, the quantity $10 \log(N_{ANT})$ dB is added to each spectrum value before comparing to the emission limit. The addition of $10 \log(N_{ANT})$ dB serves to apportion the emission limit among the N_{ANT} outputs so that each output is permitted to contribute no more than $1/N_{ANT}$ th of the PSD limit.

3.3.4 Test Setup

TEL: 886-3-327-3456 Page Number : 16 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

Report No.: FR932216-01E

TEL: 886-3-327-3456 Page Number : 17 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

3.4 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

Report No.: FR932216-01E

3.4.1 Limit of Unwanted Emissions

- (1) For transmitters operating in the 5.725-5.85 GHz band: 15.407(b)(4)(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (2) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table,

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts)

EIRP (dBm)	Field Strength at 3m (dBµV/m)
- 27	68.3

TEL: 886-3-327-3456 Page Number : 18 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

- (3) KDB789033 D02 v02r01 G)2)c)
 - (i) Section 15.407(b)(1) to (b)(3) specify the unwanted emission limits for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz.3

Report No.: FR932216-01E

- (ii) Section 15.407(b)(4) specifies the unwanted emission limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are in terms of a Peak detector. An alternative to the band emissions mask is specified in Section 15.407(b)(4)(ii). The alternative limits are based on the highest antenna gain specified in the filing. There are also marketing and importation restrictions for the devices using the alternative limit.⁴
- **Note 3:** An out-of-band emission that complies with both the average and peak limits of Section 15.209 is not required to satisfy the -27 dBm/MHz peak emission limit.
- Note 4: Only devices with antenna gains of 10 dBi or less may be approved using the emission limits specified in Section 15.247(d) till March 2, 2018; all other devices operating in this band must use the mask specified in Section 15.407(b)(4)(i).

3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

3.4.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
 Section G) Unwanted emissions measurement.
 - (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
 - (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

TEL: 886-3-327-3456 Page Number : 19 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.

Report No.: FR932216-01E

- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

3.4.4 Test Setup

For radiated emissions below 30MHz

TEL: 886-3-327-3456 Page Number : 20 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

Report No.: FR932216-01E

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

TEL: 886-3-327-3456 Page Number : 21 of 29 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 : 03

Report Version

Report Template No.: BU5-FR15EWLB4 AC MA Version 2.4

3.4.5 Test Results of Radiated Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

Report No.: FR932216-01E

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.4.6 Test Result of Radiated Band Edges

Please refer to Appendix C and D.

3.4.7 Duty Cycle

Please refer to Appendix E.

3.4.8 Test Result of Unwanted Radiated Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-3456 Page Number : 22 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

3.5 AC Conducted Emission Measurement

3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR932216-01E

Eroquency of emission (MUz)	Conducted limit (dBµV)						
Frequency of emission (MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					

^{*}Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

3.5.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

TEL: 886-3-327-3456 Page Number : 23 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

3.5.4 Test Setup

Report No.: FR932216-01E

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.5.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-3456 Page Number : 24 of 29 FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019 : 03

3.6 Automatically Discontinue Transmission

3.6.1 Limit of Automatically Discontinue Transmission

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signaling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization to describe how this requirement is met.

Report No.: FR932216-01E

3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

3.6.3 Test Result of Automatically Discontinue Transmission

While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

TEL: 886-3-327-3456 Page Number : 25 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

3.7 Antenna Requirements

3.7.1 Standard Applicable

If transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: FR932216-01E

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

<CDD Modes >

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = GANT + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = 10 log(NANT/NSS=1) dB.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for NANT \leq 4.

Directional gain may be calculated by using the formulas applicable to equal gain antennas with

GANT set equal to the gain of the antenna having the highest gain;

The EUT supports CDD mode.

For power, the directional gain G_{ANT} is set equal to the antenna having the highest gain, i.e., F(2)f(i).

For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01 v02r01.

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

The directional gain "DG" is calculated as following table.

<cdd modes<="" th=""><th>></th><th></th><th></th><th></th><th></th><th></th></cdd>	>						
			DG	DG	Power	PSD	
			for	for	Limit	Limit	
	Ant. 1	Ant. 2 Power		PSD	Reduction	Reduction	
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)	
Band IV	2.50	1.75	5.14	5.14	0.00	0.00	

Power Limit Reduction = DG(Power) - 6dBi, (min = 0)

 $PSD \ Limit \ Reduction = DG(PSD) - 6dBi, (min = 0)$

TEL: 886-3-327-3456 Page Number : 26 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jan. 07, 2019	Apr. 08, 2019 ~ Apr. 11, 2019	Jan. 06, 2020	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-124 1	1GHz ~ 18GHz	Jun. 29, 2018	Apr. 08, 2019 ~ Apr. 11, 2019	Jun. 28, 2019	Radiation (03CH13-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	37059&01	30MHz~1GHz	Oct. 13, 2018	Apr. 08, 2019 ~ Apr. 11, 2019	Oct. 12, 2019	Radiation (03CH13-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz- 40GHz	Dec. 05, 2018	Apr. 08, 2019 ~ Apr. 11, 2019	Dec. 04, 2019	Radiation (03CH13-HY)
Preamplifier	Keysight	83017A	MY532700 80	1GHz~26.5GHz	Nov. 14, 2018	Apr. 08, 2019 ~ Apr. 11, 2019	Nov. 13, 2020	Radiation (03CH13-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590074	1GHz~18GHz	May 21, 2018	Apr. 08, 2019 ~ Apr. 11, 2019	May 20, 2019	Radiation (03CH13-HY)
Amplifier	Sonoma-Instru ment	310 N	187282	9KHz~1GHz	Dec. 18, 2018	Apr. 08, 2019 ~ Apr. 11, 2019	Dec. 17, 2019	Radiation (03CH13-HY)
Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz, VSWR : 2.5:1 max	Jul. 16, 2018	Apr. 08, 2019 ~ Apr. 11, 2019	Jul. 15, 2019	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0030/126E	30M-18G	Feb. 13, 2019	Apr. 08, 2019 ~ Apr. 11, 2019	Feb. 12, 2020	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	804793/4	30M-18G	Feb. 13, 2019	Apr. 08, 2019 ~ Apr. 11, 2019	Feb. 12, 2020	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24961/ 4	30M-18G	Feb. 13, 2019	Apr. 08, 2019 ~ Apr. 11, 2019	Feb. 12, 2020	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30M~40GHz	Mar. 13, 2019	Apr. 08, 2019 ~ Apr. 11, 2019	Mar. 12, 2020	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY4274/2	30M~40GHz	Mar. 13, 2019	Apr. 08, 2019 ~ Apr. 11, 2019	Mar. 12, 2020	Radiation (03CH13-HY)
Spectrum Analyzer	Agilent	N9010A	MY553705 26	10Hz~44GHz	Mar. 19, 2019	Apr. 08, 2019 ~ Apr. 11, 2019	Mar. 18, 2020	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1m~4m	N/A	Apr. 08, 2019 ~ Apr. 11, 2019	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Apr. 08, 2019 ~ Apr. 11, 2019	N/A	Radiation (03CH13-HY)
Software	AUDIX	E3 6.2009-8-24c	RK-001124	N/A	N/A	Apr. 08, 2019 ~ Apr. 11, 2019	N/A	Radiation (03CH13-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY541300 85	20Hz ~ 8.4GHz	Nov. 01, 2018	Apr. 08, 2019 ~ Apr. 11, 2019	Oct. 31, 2019	Radiation (03CH13-HY)
Filter	Woken	WHKX8-5272. 5-6750-18000 -40ST	SN5	6.75G Highpass	Mar.13, 2019	Apr. 08, 2019 ~ Apr. 11, 2019	Mar. 12, 2020	Radiation (03CH13-HY)
Filter	Wainwright	WHKX12-108 0-1200-15000 -60ST	SN3	1.2G Low Pass	Jul. 05, 2018	Apr. 08, 2019 ~ Apr. 11, 2019	Jul. 04, 2019	Radiation (03CH13-HY)

Report No. : FR932216-01E

TEL: 886-3-327-3456 Page Number : 27 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	Testo	DTM-303A	TP157075	N/A	Nov. 05, 2018	May 03, 2019~ Jun. 14, 2019	Nov. 04, 2019	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	13I00030S NO32	9kHz~6GHz	Dec. 03, 2018	May 03, 2019~ Jun. 14, 2019	Dec. 02, 2019	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101397	10Hz~40GHz	Nov. 13, 2018	May 03, 2019~ Jun. 14, 2019	Nov. 12, 2019	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC120838 2	N/A	Mar. 27, 2019	May 03, 2019~ Jun. 14, 2019	Mar. 26, 2020	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	May 21, 2019	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9KHz~3.6GHz	Nov. 12, 2018	May 21, 2019	Nov. 11, 2019	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Mar. 19, 2019	May 21, 2019	Mar. 18, 2020	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 14, 2018	May 21, 2019	Nov. 13, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 09, 2018	May 21, 2019	Nov. 08, 2019	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	May 21, 2019	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Dec. 31, 2018	May 21, 2019	Dec. 30, 2019	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Dec. 31, 2018	May 21, 2019	Dec. 30, 2019	Conduction (CO05-HY)

Report No. : FR932216-01E

TEL: 886-3-327-3456 Page Number : 28 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

5 Uncertainty of Evaluation

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

Measuring Uncertainty for a Level of Confidence	2.2dB
of 95% (U = 2Uc(y))	2.2U B

Report No.: FR932216-01E

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	4.9dB
of 95% (U = 2Uc(y))	4.905

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.4dB
of 95% (U = 2Uc(y))	

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

	<u> </u>
 or a Level of Confidence = 2Uc(y))	4.3dB

TEL: 886-3-327-3456 Page Number : 29 of 29
FAX: 886-3-328-4978 Issued Date : Jul. 31, 2019

Report Number : FR932216-01E

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Leo Li	Temperature:	21~25	°C
Test Date:	2019/5/3~2019/6/14	Relative Humidity:	51~54	%

Report Number : FR932216-01E

<u>TEST RESULTS DATA</u> 6dB and 26dB EBW and 99% OBW

	Band IV											
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Band	9% width Hz)	Band	dB lwidth Hz)	6 dB Bandwidth (MHz)		6 dB Bandwidth Min. Limit (MHz)	Pass/Fail
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	(1411 12)	
11a	6Mbps	2	149	5745	16.83	16.68	25.33	24.93	15.63	15.13	0.5	Pass
11a	6Mbps	2	157	5785	16.98	16.68	25.92	25.38	16.03	15.04	0.5	Pass
11a	6Mbps	2	165	5825	16.88	16.83	25.52	25.13	15.09	15.58	0.5	Pass
HT20	MCS0	2	149	5745	18.03	17.98	27.07	25.67	16.73	15.93	0.5	Pass
HT20	MCS0	2	157	5785	18.03	18.03	28.07	25.77	14.99	16.13	0.5	Pass
HT20	MCS0	2	165	5825	18.08	17.93	28.12	25.67	16.53	16.53	0.5	Pass
HT40	MCS0	2	151	5755	36.66	36.46	42.17	42.08	35.07	35.07	0.5	Pass
HT40	MCS0	2	159	5795	36.66	36.56	42.53	42.17	35.87	35.07	0.5	Pass
VHT80	MCS0	2	155	5775	76.24	76.12	85.03	83.76	75.12	75.12	0.5	Pass

Report Number: FR932216-01E

TEST RESULTS DATA Average Power Table

	Band IV											
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Average Conducted Power (dBm)		Conducted Conducted DG Power Power Limit (dBi)		Conducted Power Limit		_	Pass/Fail
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	2	149	5745	19.20	18.90	22.06	30.	00	2.5	50	Pass
11a	6Mbps	2	157	5785	19.30	18.80	22.07	30.00 2.50		50	Pass	
11a	6Mbps	2	165	5825	19.00	18.40	21.72	30.	00	2.50		Pass
HT20	MCS0	2	149	5745	19.10	18.70	21.91	30.00 2.50		50	Pass	
HT20	MCS0	2	157	5785	19.10	18.60	21.87	30.00 2.50		Pass		
HT20	MCS0	2	165	5825	18.90	18.30	21.62	30.00		2.5	50	Pass
HT40	MCS0	2	151	5755	19.50	19.20	22.36	30.00		2.	50	Pass
HT40	MCS0	2	159	5795	19.40	19.00	22.21	30.	00	2.	50	Pass
VHT20	MCS0	2	149	5745	19.10	18.70	21.91	30.	00	2.5	50	Pass
VHT20	MCS0	2	157	5785	19.10	18.60	21.87	30.	00	2.	50	Pass
VHT20	MCS0	2	165	5825	18.80	18.20	21.52	30.	30.00		50	Pass
VHT40	MCS0	2	151	5755	19.50	19.20	22.36	30.	00	2.5	50	Pass
VHT40	MCS0	2	159	5795	19.30	18.70	22.02	30.	00	2.5	50	Pass
VHT80	MCS0	2	155	5775	18.80	18.20	21.52	30.	.00	2.5	50	Pass

Report Number : FR932216-01E

TEST RESULTS DATA Power Spectral Density

	Band IV															
Mod.	Data Rate	INTX	CH.	Freq. (MHz)	Duty Factor (dB) 10log (500kHz /RBW) Factor (dB)		Average Power Density (dBm/500kHz)		Average PSD Limit (dBm/500kHz)		DG (dBi)		Pass /Fail			
					Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	2	149	5745	0.08	0.08	2.22		5.01	4.86	8.02	30.00		5.	14	Pass
11a	6Mbps	2	157	5785	0.08	0.08	2.22		5.16	5.03	8.17	30.00		5.14		Pass
11a	6Mbps	2	165	5825	0.08	0.08	2.22		5.12	4.73	8.13	30.00		5.	14	Pass
HT20	MCS0	2	149	5745	0.09	0.09	2.22		4.60	4.77	7.78	30.00		5.14		Pass
HT20	MCS0	2	157	5785	0.09	0.09	2.22		4.51	4.43	7.52	30.00		5.14		Pass
HT20	MCS0	2	165	5825	0.09	0.09	2.22		4.35	4.29	7.36	30.00		5.14		Pass
HT40	MCS0	2	151	5755	0.17	0.17	2.22		7 2.22 2.00 1.90 5.01 30.00 5.1		30.00		14	Pass		
HT40	MCS0	2	159	5795	0.17	0.17	2.22		1.90	1.62	4.91	30.00		5.	14	Pass
VHT80	MCS0	2	155	5775	0.20	0.20	2.22		-1.61	-1.78	1.40	30.00		5.	14	Pass

Note: PSD Sum = Max PSD(Ant. 1, Ant. 2) + 10 log (n)

Appendix B. AC Conducted Emission Test Results

Report No. : FR932216-01E

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
0.152250		37.19	55.88	18.69	L1	OFF	19.5
0.152250	43.16		65.88	22.72	L1	OFF	19.5
0.161250		39.70	55.40	15.70	L1	OFF	19.5
0.161250	43.97		65.40	21.43	L1	OFF	19.5
0.181500		37.73	54.42	16.69	L1	OFF	19.5
0.181500	41.35		64.42	23.07	L1	OFF	19.5
0.377250		27.82	48.34	20.52	L1	OFF	19.5
0.377250	31.09		58.34	27.25	L1	OFF	19.5
0.442500	-	34.90	47.02	12.12	L1	OFF	19.5
0.442500	40.33		57.02	16.69	L1	OFF	19.5
0.683250		33.82	46.00	12.18	L1	OFF	19.6
0.683250	35.56		56.00	20.44	L1	OFF	19.6

TEL: 886-3-327-3456 Page Number : B1 of B2

FAX: 886-3-328-4978

 Test Engineer :
 Eric Jeng
 Temperature :
 22~25°C

 Relative Humidity :
 52~55%

 Test Voltage :
 120Vac / 60Hz
 Phase :
 Neutral

Report No. : FR932216-01E

Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
0.152250		38.06	55.88	17.82	N	OFF	19.5
0.152250	43.47		65.88	22.41	N	OFF	19.5
0.161250		39.74	55.40	15.66	N	OFF	19.5
0.161250	44.05		65.40	21.35	N	OFF	19.5
0.188250		38.85	54.11	15.26	N	OFF	19.5
0.188250	42.31		64.11	21.80	N	OFF	19.5
0.424500		32.48	47.36	14.88	N	OFF	19.5
0.424500	36.75		57.36	20.61	N	OFF	19.5
0.685500		34.92	46.00	11.08	N	OFF	19.6
0.685500	36.59		56.00	19.41	N	OFF	19.6
10.367250		26.63	50.00	23.37	Ν	OFF	19.9
10.367250	28.58		60.00	31.42	N	OFF	19.9

TEL: 886-3-327-3456 Page Number: B2 of B2

FAX: 886-3-328-4978

Appendix C. Radiated Spurious Emission

Test Engineer :	Alex Jheng, JC Liang, Wilson Wu	Temperature :	20~24°C
rest Engineer:	Alex Sherig, 3C clarig, wilson wu	Relative Humidity :	50~55%

Report No. : FR932216-01E

Band 4 - 5725~5850MHz

WIFI 802.11a (Band Edge @ 3m)

ote	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	
									Pos			
	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	5637.6	52.6	-15.6	68.2	43.72	32.09	6.34	29.55	106	47	Р	Н
	5699.2	56.08	-48.53	104.61	47.1	32.17	6.36	29.55	106	47	Р	Н
	5718.4	60.41	-49.94	110.35	51.38	32.21	6.37	29.55	106	47	Р	Н
	5724.6	71.3	-49.99	121.29	62.27	32.21	6.37	29.55	106	47	Р	Н
*	5745	117.03	-	-	107.96	32.24	6.38	29.55	106	47	Р	Н
*	5745	108.98	-	-	99.91	32.24	6.38	29.55	106	47	Α	Н
	5642	51.34	-16.86	68.2	42.46	32.09	6.34	29.55	293	355	Р	V
	5682.8	54.07	-38.44	92.51	45.13	32.14	6.35	29.55	293	355	Р	V
	5718.6	57.85	-52.56	110.41	48.82	32.21	6.37	29.55	293	355	Р	V
	5724.2	72.09	-48.29	120.38	63.06	32.21	6.37	29.55	293	355	Р	V
*	5745	115.73	-	-	106.66	32.24	6.38	29.55	293	355	Р	V
*	5745	107.73	-	-	98.66	32.24	6.38	29.55	293	355	Α	V
3	k k	5699.2 5718.4 5724.6 5745 5745 5642 5682.8 5718.6 5724.2 5745	5637.6 52.6 5699.2 56.08 5718.4 60.41 5724.6 71.3 5745 117.03 5745 108.98 5642 51.34 5682.8 54.07 5718.6 57.85 5724.2 72.09 5745 115.73	5637.6 52.6 -15.6 5699.2 56.08 -48.53 5718.4 60.41 -49.94 5724.6 71.3 -49.99 5745 117.03 - 5642 51.34 -16.86 5682.8 54.07 -38.44 5718.6 57.85 -52.56 5724.2 72.09 -48.29 5745 115.73 -	(MHz) (dBμV/m) (dB) (dBμV/m) 5637.6 52.6 -15.6 68.2 5699.2 56.08 -48.53 104.61 5718.4 60.41 -49.94 110.35 5724.6 71.3 -49.99 121.29 5745 117.03 - - 5745 108.98 - - 5642 51.34 -16.86 68.2 5682.8 54.07 -38.44 92.51 5718.6 57.85 -52.56 110.41 5724.2 72.09 -48.29 120.38 5745 115.73 - -	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV) 5637.6 52.6 -15.6 68.2 43.72 5699.2 56.08 -48.53 104.61 47.1 5718.4 60.41 -49.94 110.35 51.38 5724.6 71.3 -49.99 121.29 62.27 5745 117.03 - - 107.96 5745 108.98 - - 99.91 5642 51.34 -16.86 68.2 42.46 5682.8 54.07 -38.44 92.51 45.13 5718.6 57.85 -52.56 110.41 48.82 5724.2 72.09 -48.29 120.38 63.06 5745 115.73 - - 106.66	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV) (dBμV) 5637.6 52.6 -15.6 68.2 43.72 32.09 5699.2 56.08 -48.53 104.61 47.1 32.17 5718.4 60.41 -49.94 110.35 51.38 32.21 5724.6 71.3 -49.99 121.29 62.27 32.21 5745 117.03 - - 107.96 32.24 5745 108.98 - - 99.91 32.24 5642 51.34 -16.86 68.2 42.46 32.09 5682.8 54.07 -38.44 92.51 45.13 32.14 5718.6 57.85 -52.56 110.41 48.82 32.21 5724.2 72.09 -48.29 120.38 63.06 32.24 5745 115.73 - - 106.66 32.24	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) (dB) 5637.6 52.6 -15.6 68.2 43.72 32.09 6.34 5699.2 56.08 -48.53 104.61 47.1 32.17 6.36 5718.4 60.41 -49.94 110.35 51.38 32.21 6.37 5724.6 71.3 -49.99 121.29 62.27 32.21 6.37 5745 117.03 - - 107.96 32.24 6.38 5745 108.98 - - 99.91 32.24 6.38 5642 51.34 -16.86 68.2 42.46 32.09 6.34 5682.8 54.07 -38.44 92.51 45.13 32.14 6.35 5718.6 57.85 -52.56 110.41 48.82 32.21 6.37 5724.2 72.09 -48.29 120.38 63.06 32.21 6.37 5745 115.73 -<	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) (dB) (dB) 5637.6 52.6 -15.6 68.2 43.72 32.09 6.34 29.55 5699.2 56.08 -48.53 104.61 47.1 32.17 6.36 29.55 5718.4 60.41 -49.94 110.35 51.38 32.21 6.37 29.55 5724.6 71.3 -49.99 121.29 62.27 32.21 6.37 29.55 5745 117.03 - - 107.96 32.24 6.38 29.55 5745 108.98 - - 99.91 32.24 6.38 29.55 5642 51.34 -16.86 68.2 42.46 32.09 6.34 29.55 5682.8 54.07 -38.44 92.51 45.13 32.14 6.35 29.55 5718.6 57.85 -52.56 110.41 48.82 32.21 6.37 29.55 5	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (cm) 5637.6 52.6 -15.6 68.2 43.72 32.09 6.34 29.55 106 5699.2 56.08 -48.53 104.61 47.1 32.17 6.36 29.55 106 5718.4 60.41 -49.94 110.35 51.38 32.21 6.37 29.55 106 5724.6 71.3 -49.99 121.29 62.27 32.21 6.37 29.55 106 5745 117.03 - - 107.96 32.24 6.38 29.55 106 5745 108.98 - - 99.91 32.24 6.38 29.55 106 5642 51.34 -16.86 68.2 42.46 32.09 6.34 29.55 293 5718.6 57.85 -52.56 110.41 48.82 32.21 6.37 29.55 293 5724.2	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV/m) (dBμV) (dBμ/m) (dB) (dB) (deg) 5637.6 52.6 -15.6 68.2 43.72 32.09 6.34 29.55 106 47 5699.2 56.08 -48.53 104.61 47.1 32.17 6.36 29.55 106 47 5718.4 60.41 -49.94 110.35 51.38 32.21 6.37 29.55 106 47 5724.6 71.3 -49.99 121.29 62.27 32.21 6.37 29.55 106 47 5745 117.03 - - 107.96 32.24 6.38 29.55 106 47 5745 108.98 - - 99.91 32.24 6.38 29.55 106 47 5642 51.34 -16.86 68.2 42.46 32.09 6.34 29.55 293 355 5718.6 57.85 -52.56 1	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (cm) (deg) (P/A) 5637.6 52.6 -15.6 68.2 43.72 32.09 6.34 29.55 106 47 P 5699.2 56.08 -48.53 104.61 47.1 32.17 6.36 29.55 106 47 P 5718.4 60.41 -49.94 110.35 51.38 32.21 6.37 29.55 106 47 P 5724.6 71.3 -49.99 121.29 62.27 32.21 6.37 29.55 106 47 P 5745 117.03 - - 107.96 32.24 6.38 29.55 106 47 P 5745 108.98 - - 99.91 32.24 6.38 29.55 106 47 A 5642 51.34 -16.86 68.2 42.46 32.09 6.34 29.55 2

TEL: 886-3-327-3456 Page Number : C1 of C16

FAX: 886-3-328-4978

FCC RADIO TEST REPORT

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.		,		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		5632.6	49.28	-18.92	68.2	40.41	32.09	6.33	29.55	109	47	Р	Н
		5690.6	51.66	-46.61	98.27	42.68	32.17	6.36	29.55	109	47	Р	Н
		5717.2	53.91	-56.11	110.02	44.9	32.19	6.37	29.55	109	47	Р	Н
		5724	54.43	-65.49	119.92	45.4	32.21	6.37	29.55	109	47	Р	Н
	*	5785	117.05	-	-	107.93	32.29	6.39	29.56	109	47	Р	Н
	*	5785	108.57	-	-	99.45	32.29	6.39	29.56	109	47	Α	Н
		5852	53.74	-63.9	117.64	44.48	32.38	6.44	29.56	109	47	Р	Н
		5866	53.19	-54.53	107.72	43.89	32.41	6.45	29.56	109	47	Р	Н
000.44=		5878.8	53.04	-49.34	102.38	43.71	32.43	6.46	29.56	109	47	Р	Н
802.11a CH 157		5932.2	50.14	-18.06	68.2	40.69	32.5	6.51	29.56	109	47	Р	Н
5785MHz		5646.6	49.82	-18.38	68.2	40.94	32.09	6.34	29.55	289	356	Р	V
3703WI112		5696.8	51.05	-51.79	102.84	42.07	32.17	6.36	29.55	289	356	Р	V
		5711.6	52.29	-56.16	108.45	43.29	32.19	6.36	29.55	289	356	Р	V
		5724	52.61	-67.31	119.92	43.58	32.21	6.37	29.55	289	356	Р	٧
	*	5785	115.97	-	-	106.85	32.29	6.39	29.56	289	356	Р	V
	*	5785	107.51	-	-	98.39	32.29	6.39	29.56	289	356	Α	V
		5851	52.33	-67.59	119.92	43.07	32.38	6.44	29.56	289	356	Р	V
		5855.4	52.76	-57.93	110.69	43.47	32.41	6.44	29.56	289	356	Р	V
		5885.4	51.36	-46.12	97.48	42.02	32.43	6.47	29.56	289	356	Р	V
		5933.6	50.49	-17.71	68.2	41.04	32.5	6.51	29.56	289	356	Р	V

Report No. : FR932216-01E

TEL: 886-3-327-3456 Page Number : C2 of C16

WIFI Limit Table Peak Pol. Note Frequency Level Over Read Antenna Path Preamp Ant Ant. Limit Line Level **Factor** Loss **Factor** Pos Pos Avg. (dBµV/m) 1+2 (MHz) (dB) $(dB\mu V/m)$ (dBµV) (dB/m) (dB) (dB) (cm) (deg) (P/A) (H/V) * Ρ 5825 116 106.78 32.36 6.42 29.56 100 46 Н 5825 108.23 99.01 32.36 6.42 29.56 100 46 Α Н 5850.4 32.38 29.56 Ρ 61.37 -59.92 121.29 52.11 6.44 100 46 Η 32.41 Ρ Н 5857.2 57.87 -52.31 110.18 48.57 6.45 29.56 100 46 5884.4 32.43 Р 55.61 -42.61 98.22 46.27 6.47 29.56 100 46 Н 802.11a 5933.8 52.51 -15.69 68.2 43.06 32.5 6.51 29.56 100 46 Ρ Η CH 165 5825 115.49 106.27 32.36 6.42 29.56 316 355 V 5825MHz 5825 ٧ 107.14 -97.92 32.36 6.42 29.56 316 355 Α Р ٧ 5851 58.23 -61.69 119.92 48.97 32.38 6.44 29.56 316 355 5855.2 57.34 110.74 48.05 32.41 6.44 29.56 316 355 Ρ ٧ -53.4 Ρ ٧ 5889 55.62 -39.19 94.81 46.25 32.46 6.47 29.56 316 355 ٧ 5938.2 51.7 -16.5 68.2 42.25 32.5 6.51 29.56 316 355 Ρ No other spurious found. Remark All results are PASS against Peak and Average limit line.

Report No.: FR932216-01E

TEL: 886-3-327-3456 Page Number: C3 of C16

Band 4 5725~5850MHz

Report No. : FR932216-01E

WIFI 802.11a (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
902 44 6		11490	46.86	-27.14	74	52.78	39.92	10.46	56.3	100	0	Р	Н
802.11a CH 149		17235	49.34	-18.86	68.2	52.12	40.84	12.95	56.57	100	0	Р	Н
5745MHz		11490	48.06	-25.94	74	53.98	39.92	10.46	56.3	100	0	Р	V
37 43WH12		17235	48.55	-19.65	68.2	51.33	40.84	12.95	56.57	100	0	Р	V
802.11a		11570	46.22	-27.78	74	52.26	39.76	10.5	56.3	100	0	Р	Н
		17355	49.25	-18.95	68.2	51.72	41.26	13.08	56.81	100	0	Р	Н
CH 157 5785MHz		11570	47.2	-26.8	74	53.24	39.76	10.5	56.3	100	0	Р	V
37 03 WIT 12		17355	50.52	-17.68	68.2	52.99	41.26	13.08	56.81	100	0	Р	V
000 44 -		11650	46.93	-27.07	74	53.07	39.62	10.54	56.3	100	0	Р	Н
802.11a CH 165 -		17475	50.03	-18.17	68.2	52.19	41.68	13.21	57.05	100	0	Р	Н
		11650	47.97	-26.03	74	54.11	39.62	10.54	56.3	100	0	Р	V
3023WII IZ		17475	49.57	-18.63	68.2	51.73	41.68	13.21	57.05	100	0	Р	٧

Remark

TEL: 886-3-327-3456 Page Number : C4 of C16

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz WIFI 802.11n HT20 (Band Edge @ 3m)

Report No. : FR932216-01E

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5633.4	50.68	-17.52	68.2	41.81	32.09	6.33	29.55	100	19	Р	Н
		5694.2	55.5	-45.42	100.92	46.52	32.17	6.36	29.55	100	19	Р	Н
		5720	62.17	-48.63	110.8	53.14	32.21	6.37	29.55	100	19	Р	Н
		5723.8	73.8	-45.66	119.46	64.77	32.21	6.37	29.55	100	19	Р	Н
802.11n	*	5745	116.82	-	-	107.75	32.24	6.38	29.55	100	19	Р	Н
HT20	*	5745	108.32	-	-	99.25	32.24	6.38	29.55	100	19	Α	Н
CH 149		5643	49.92	-18.28	68.2	41.04	32.09	6.34	29.55	312	351	Р	V
5745MHz		5695.6	53.99	-47.97	101.96	45.01	32.17	6.36	29.55	312	351	Р	V
		5719.8	61.28	-49.46	110.74	52.25	32.21	6.37	29.55	312	351	Р	V
		5724.8	73.9	-47.84	121.74	64.87	32.21	6.37	29.55	312	351	Р	V
	*	5745	115.81	-	-	106.74	32.24	6.38	29.55	312	351	Р	V
	*	5745	107.56	-	-	98.49	32.24	6.38	29.55	312	351	Α	V

TEL: 886-3-327-3456 Page Number : C5 of C16

WIFI Note Level Over Limit Read Antenna Path Preamp Ant **Table** Peak Pol. Frequency Line Factor Ant. Limit Level Loss Factor Pos Pos Avg. (dB) (dB \(\psi V/m \) 1+2 (MHz) (dBµV/m) (dBµV) (dB/m) (dB) (dB) (cm) (deg) (P/A) (H/V) 5627.6 51.17 -17.0368.2 42.32 32.07 6.33 29.55 105 20 Η 5694 Ρ 51.25 -49.53 100.78 42.27 32.17 6.36 29.55 105 20 Η Р 5711.6 54.51 -53.94 108.45 45.51 32.19 6.36 29.55 105 20 Н 5722.2 53.4 -62.42 115.82 44.37 32.21 6.37 29.55 105 20 Ρ Н * 32.29 Ρ 5785 116.58 107.46 6.39 29.56 105 20 Η * 5785 108.14 99.02 32.29 6.39 29.56 105 20 Α Η Р 5852.2 53.9 44.64 32.38 6.44 29.56 105 20 Η -63.28 117.18 5858.4 54.47 -55.38 109.85 45.17 32.41 6.45 29.56 105 20 Ρ Η 51.92 -41.11 32.46 Ρ 5891.4 93.03 42.55 6.47 29.56 105 20 Н 802.11n **HT20** 5929 50.96 -17.2468.2 41.52 32.5 6.5 29.56 105 20 Ρ Η CH 157 32.07 6.33 29.55 307 351 Ρ ٧ 5615.6 49.22 -18.9868.2 40.37 5785MHz 100.04 29.55 351 Ρ ٧ 5693 49.79 -50.25 40.81 32.17 6.36 307 5718.8 51.58 -58.88 110.46 42.55 32.21 6.37 29.55 307 351 Ρ ٧ 5721.2 51.74 -61.8 113.54 42.71 32.21 6.37 29.55 307 351 Ρ ٧ * 5785 115.73 106.61 32.29 6.39 29.56 307 351 Ρ ٧ * 5785 ٧ 107.23 98.11 32.29 6.39 29.56 307 351 Ρ ٧ 5851.4 52.95 -66.06 119.01 43.69 32.38 6.44 29.56 307 351 29.56 307 Ρ ٧ 5857.4 52.01 -58.12 110.13 42.71 32.41 6.45 351 51.82 Р ٧ 5893.8 -39.43 91.25 42.44 32.46 6.48 29.56 307 351 5943.4 51.5 -16.7 68.2 42.02 32.53 6.51 29.56 307 351 Ρ ٧

Report No.: FR932216-01E

TEL: 886-3-327-3456 Page Number : C6 of C16

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
	*	5825	115.65	-	-	106.43	32.36	6.42	29.56	100	20	Р	Н
	*	5825	107.74	-	-	98.52	32.36	6.42	29.56	100	20	Α	Н
		5850.2	60.57	-61.17	121.74	51.31	32.38	6.44	29.56	100	20	Р	Н
		5862.6	56.91	-51.76	108.67	47.61	32.41	6.45	29.56	100	20	Р	Н
802.11n		5886	55.44	-41.59	97.03	46.1	32.43	6.47	29.56	100	20	Р	Н
HT20		5930.6	51.27	-16.93	68.2	41.83	32.5	6.5	29.56	100	20	Р	Н
CH 165	*	5825	114.92	-	-	105.7	32.36	6.42	29.56	320	351	Р	V
5825MHz	*	5825	106.92	-	-	97.7	32.36	6.42	29.56	320	351	Α	V
		5850.2	62.92	-58.82	121.74	53.66	32.38	6.44	29.56	320	351	Р	V
		5855.4	56.44	-54.25	110.69	47.15	32.41	6.44	29.56	320	351	Р	V
		5882.2	55.2	-44.65	99.85	45.86	32.43	6.47	29.56	320	351	Р	V
		5932.4	51.77	-16.43	68.2	42.32	32.5	6.51	29.56	320	351	Р	V

1. No other spurious found.

TEL: 886-3-327-3456 Page Number : C7 of C16

Remark

1. No other spurious results
2. All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz

Report No. : FR932216-01E

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
802.11n		11490	46.89	-27.11	74	52.81	39.92	10.46	56.3	100	0	Р	Н
HT20		17235	48.85	-19.35	68.2	51.63	40.84	12.95	56.57	100	0	Р	Н
CH 149		11490	47.46	-26.54	74	53.38	39.92	10.46	56.3	100	0	Р	V
5745MHz		17235	49.51	-18.69	68.2	52.29	40.84	12.95	56.57	100	0	Р	V
802.11n		11570	46.04	-27.96	74	52.08	39.76	10.5	56.3	100	0	Р	Н
HT20		17355	49.63	-18.57	68.2	52.1	41.26	13.08	56.81	100	0	Р	Н
CH 157		11570	46.61	-27.39	74	52.65	39.76	10.5	56.3	100	0	Р	V
5785MHz		17355	49.57	-18.63	68.2	52.04	41.26	13.08	56.81	100	0	Р	V
802.11n		11650	47.06	-26.94	74	53.2	39.62	10.54	56.3	100	0	Р	Н
HT20		17475	51.9	-16.3	68.2	54.06	41.68	13.21	57.05	100	0	Р	Н
CH 165		11650	49.93	-24.07	74	56.07	39.62	10.54	56.3	100	0	Р	٧
5825MHz		17475	50.65	-17.55	68.2	52.81	41.68	13.21	57.05	100	0	Р	V

TEL: 886-3-327-3456 Page Number : C8 of C16

Remark 1. No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz WIFI 802.11n HT40 (Band Edge @ 3m)

Report No. : FR932216-01E

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	($dB\mu V$)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5621.6	51.22	-16.98	68.2	42.37	32.07	6.33	29.55	105	20	Р	Н
		5691	59.89	-38.67	98.56	50.91	32.17	6.36	29.55	105	20	Р	Н
		5716.6	75.88	-33.97	109.85	66.87	32.19	6.37	29.55	105	20	Р	Н
		5720.8	78.34	-34.28	112.62	69.31	32.21	6.37	29.55	105	20	Р	Н
	*	5755	114.04	-	-	104.96	32.26	6.38	29.56	105	20	Р	Н
	*	5755	106.53	-	ı	97.45	32.26	6.38	29.56	105	20	Α	Н
		5850.8	53.03	-67.35	120.38	43.77	32.38	6.44	29.56	105	20	Р	Н
		5855.4	53.48	-57.21	110.69	44.19	32.41	6.44	29.56	105	20	Р	Н
802.11n		5895.4	52.12	-37.95	90.07	42.74	32.46	6.48	29.56	105	20	Р	Н
HT40		5936	50.58	-17.62	68.2	41.13	32.5	6.51	29.56	105	20	Р	Н
CH 151		5648.6	51.01	-17.19	68.2	42.13	32.09	6.34	29.55	326	351	Р	٧
5755MHz		5697.6	58.56	-44.87	103.43	49.58	32.17	6.36	29.55	326	351	Р	٧
		5719	77.06	-33.46	110.52	68.03	32.21	6.37	29.55	326	351	Р	V
		5723.6	73.25	-45.76	119.01	64.22	32.21	6.37	29.55	326	351	Р	V
	*	5755	112.69	-	-	103.61	32.26	6.38	29.56	326	351	Р	٧
	*	5755	105.53	-	-	96.45	32.26	6.38	29.56	326	351	Α	V
		5851.2	52.1	-67.36	119.46	42.84	32.38	6.44	29.56	326	351	Р	V
		5861.8	51.68	-57.21	108.89	42.38	32.41	6.45	29.56	326	351	Р	V
		5876	51.45	-53.01	104.46	42.12	32.43	6.46	29.56	326	351	Р	V
		5937.6	50.29	-17.91	68.2	40.84	32.5	6.51	29.56	326	351	Р	V

TEL: 886-3-327-3456 Page Number : C9 of C16

WIFI Limit Antenna Note Frequency Level Over Read Path Preamp Ant **Table** Peak Pol. Limit Line Factor Ant. Level Loss Factor Pos Pos Avg. 1+2 (dBµV/m) (dB) (dB \(V/m \) (dBµV) (dB/m) (MHz) (dB) (dB) (cm) (deg) (P/A) (H/V) 32.09 5642 50.1 -18.1 68.2 41.22 6.34 29.55 100 19 Н 52.59 Ρ 5690 -45.24 97.83 43.61 32.17 6.36 29.55 100 19 Η Р 5715.4 55.56 -53.95 109.51 46.55 32.19 6.37 29.55 100 19 Н 5723 56.01 -61.63 117.64 46.98 32.21 6.37 29.55 100 19 Ρ Н * 32.31 Ρ 5795 113.15 104 6.4 29.56 100 19 Η * 5795 106.23 97.08 32.31 29.56 100 6.4 19 Α Η Р 5853.4 59.5 -54.95 114.45 50.24 32.38 6.44 29.56 100 Н 19 5855.4 58.48 -52.21 110.69 49.19 32.41 6.44 29.56 100 19 Ρ Η 55.09 -47.14 102.23 45.76 32.43 6.46 5879 29.56 100 19 Н 802.11n **HT40** 5926.4 51.74 -16.46 68.2 42.3 32.5 6.5 29.56 100 19 Ρ Η CH 159 5618 41.34 32.07 6.33 29.55 307 353 Ρ V 50.19 -18.01 68.2 5795MHz 5698.8 51.24 104.32 29.55 307 353 Ρ ٧ -53.08 42.26 32.17 6.36 5707.4 54.37 -52.9 107.27 45.37 32.19 6.36 29.55 307 353 Ρ ٧ 5724.8 55.02 -66.72 121.74 45.99 32.21 6.37 29.55 307 353 Ρ ٧ * 5795 112.5 103.35 32.31 6.4 29.56 307 353 Ρ ٧ * 96.17 32.31 353 ٧ 5795 105.32 6.4 29.56 307 Ρ ٧ 5850.6 59.33 -61.5 120.83 50.07 32.38 6.44 29.56 307 353 -54.51 32.41 6.44 29.56 307 353 Ρ ٧ 5855.2 56.23 110.74 46.94 54.74 Р ٧ 5875.6 -50.01 104.75 45.41 32.43 6.46 29.56 307 353 5928.2 52.41 -15.79 68.2 42.97 32.5 6.5 29.56 307 353 Ρ ٧

Report No.: FR932216-01E

Remark

TEL: 886-3-327-3456 Page Number : C10 of C16

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz

Report No. : FR932216-01E

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1+2		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		5980	57.21	-10.99	68.2	47.65	32.58	6.54	29.56	105	20	Р	Н
802.11n		11510	46.27	-27.73	74	52.2	39.9	10.47	56.3	100	0	Р	Н
HT40		17265	48.44	-19.76	68.2	51.13	40.96	12.98	56.63	100	0	Р	Н
CH 151		5980	56.51	-11.69	68.2	46.95	32.58	6.54	29.56	326	351	Р	V
5755MHz		11510	46.43	-27.57	74	52.36	39.9	10.47	56.3	100	0	Р	V
		17265	48.75	-19.45	68.2	51.44	40.96	12.98	56.63	100	0	Р	V
		6016	58.71	-9.49	68.2	49.06	32.66	6.56	29.57	100	19	Р	Н
802.11n		11590	45.76	-28.24	74	51.82	39.73	10.51	56.3	100	0	Р	Н
HT40		17385	49.29	-18.91	68.2	51.67	41.38	13.11	56.87	100	0	Р	Н
CH 159		6016	58.15	-10.05	68.2	48.5	32.66	6.56	29.57	307	353	Р	V
5795MHz		11590	46.12	-27.88	74	52.18	39.73	10.51	56.3	100	0	Р	V
		17385	49.35	-18.85	68.2	51.73	41.38	13.11	56.87	100	0	Р	V

Remark

TEL: 886-3-327-3456 Page Number : C11 of C16

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

Band 4 5725~5850MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

Report No. : FR932216-01E

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)			(H/V)
		5649.6	60.13	-8.07	68.2	51.22	32.12	6.34	29.55	100	47	Р	Н
		5692	71.42	-27.88	99.3	62.44	32.17	6.36	29.55	100	47	Р	Н
		5719	75.77	-34.75	110.52	66.74	32.21	6.37	29.55	100	47	Р	Н
		5723.2	75.84	-42.26	118.1	66.81	32.21	6.37	29.55	100	47	Р	Н
	*	5775	111.05	-	-	101.93	32.29	6.39	29.56	100	47	Р	Н
	*	5775	103.83	-	-	94.71	32.29	6.39	29.56	100	47	Α	Н
		5852.4	74.05	-42.68	116.73	64.79	32.38	6.44	29.56	100	47	Р	Н
		5865.8	71.01	-36.76	107.77	61.71	32.41	6.45	29.56	100	47	Р	Н
802.11ac		5877.8	63.39	-39.73	103.12	54.06	32.43	6.46	29.56	100	47	Р	Н
VHT80		5936.2	51.83	-16.37	68.2	42.38	32.5	6.51	29.56	100	47	Р	Н
CH 155		5646.4	56.39	-11.81	68.2	47.51	32.09	6.34	29.55	321	357	Р	V
5775MHz		5698.8	67.06	-37.26	104.32	58.08	32.17	6.36	29.55	321	357	Р	V
		5710	70.86	-37.14	108	61.86	32.19	6.36	29.55	321	357	Р	٧
		5723.4	71.98	-46.57	118.55	62.95	32.21	6.37	29.55	321	357	Р	V
	*	5775	110.06	-	-	100.94	32.29	6.39	29.56	321	357	Р	V
	*	5775	102.35	-	ı	93.23	32.29	6.39	29.56	321	357	Α	V
		5850.2	75.55	-46.19	121.74	66.29	32.38	6.44	29.56	321	357	Р	V
		5868.8	69.04	-37.89	106.93	59.73	32.41	6.46	29.56	321	357	Р	V
		5879	59.33	-42.9	102.23	50	32.43	6.46	29.56	321	357	Р	V
		5941.6	51.05	-17.15	68.2	41.57	32.53	6.51	29.56	321	357	Р	V

1. No other spurious found.

Remark

2. All results are PASS against Peak and Average limit line.

: C12 of C16 TEL: 886-3-327-3456 Page Number

Band 4 5725~5850MHz

Report No. : FR932216-01E

WIFI 802.11ac VHT80 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11ac		11550	46.42	-27.58	74	52.43	39.8	10.49	56.3	100	0	Р	Н
VHT80		17325	49.54	-18.66	68.2	52.11	41.14	13.04	56.75	100	0	Р	Н
CH 155		11550	46.4	-27.6	74	52.41	39.8	10.49	56.3	100	0	Р	٧
5775MHz		17325	49.48	-18.72	68.2	52.05	41.14	13.04	56.75	100	0	Р	٧

Remark

1. No other spurious found.

2. All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number : C13 of C16

Emission below 1GHz

Report No. : FR932216-01E

5GHz WIFI 802.11ac VHT80 (LF @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		41.64	22.8	-17.2	40	36.17	18.4	0.48	32.29	-	-	Р	Н
		118.27	31.79	-11.71	43.5	45.76	17.29	0.87	32.2	-	-	Р	Н
		135.73	26.04	-17.46	43.5	39.84	17.37	0.93	32.18	-	-	Р	Н
		174.53	23.84	-19.66	43.5	39.49	15.36	1.04	32.16	-	-	Р	Н
5GHz		320.03	27	-19	46	38.23	19.43	1.4	32.15	-	-	Р	Н
802.11ac		898.15	37.04	-8.96	46	36.85	29	2.44	31.42	100	0	Р	Н
VHT80		42.61	31.92	-8.08	40	45.77	17.92	0.49	32.29	-	-	Р	V
LF		61.04	27.43	-12.57	40	47.32	11.78	0.58	32.27	-	-	Р	V
		442.25	27.19	-18.81	46	34.55	23.03	1.69	32.16	-	-	Р	V
		595.51	28.47	-17.53	46	33.22	25.38	2.01	32.24	-	-	Р	V
		897.18	39.43	-6.57	46	39.23	29.01	2.44	31.42	100	0	Р	V
		955.38	33.85	-12.15	46	31.41	30.71	2.46	30.94			Р	V
Remark		o other spurio I results are F		st limit li	ne.								

TEL: 886-3-327-3456 Page Number : C14 of C16

All results are PASS against limit line.

Note symbol

Report No. : FR932216-01E

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-3456 Page Number : C15 of C16

A calculation example for radiated spurious emission is shown as below:

Report No.: FR932216-01E

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- 3. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

TEL: 886-3-327-3456 Page Number : C16 of C16

Appendix D. Radiated Spurious Emission Plots

Test Engineer :	Alex Jheng, JC Liang, Wilson Wu	Temperature :	20~24°C
		Relative Humidity :	50~55%

Report No. : FR932216-01E

Band 4 - 5725~5850MHz WIFI 802.11a (Band Edge @ 3m)

TEL: 886-3-327-3456 Page Number: D1 of D28

TEL: 886-3-327-3456 Page Number: D2 of D28

TEL: 886-3-327-3456 Page Number: D3 of D28

TEL: 886-3-327-3456 Page Number : D4 of D28

TEL: 886-3-327-3456 Page Number: D5 of D28

TEL: 886-3-327-3456 Page Number: D6 of D28

Band 4 5725~5850MHz WIFI 802.11n HT20 (Band Edge @ 3m)

Report No. : FR932216-01E

TEL: 886-3-327-3456 Page Number: D7 of D28

TEL: 886-3-327-3456 Page Number : D8 of D28

TEL: 886-3-327-3456 Page Number: D9 of D28

TEL: 886-3-327-3456 Page Number : D10 of D28

TEL: 886-3-327-3456 Page Number : D11 of D28

WIFI

Band 4 5725~5850MHz Band Edge @ 3m

802.11n HT20 CH165 5825MHz

1+2

Vertical

Fundamental

**Transport of the Control of the Control

Report No. : FR932216-01E

TEL: 886-3-327-3456 Page Number : D12 of D28

Band 4 5725~5850MHz WIFI 802.11n HT40 (Band Edge @ 3m)

Report No. : FR932216-01E

TEL: 886-3-327-3456 Page Number: D13 of D28

TEL: 886-3-327-3456 Page Number : D14 of D28

TEL: 886-3-327-3456 Page Number : D15 of D28

Report No. : FR932216-01E WIFI Band 4 5725~5850MHz Band Edge @ 3m ANT 802.11n HT40 CH159 5795MHz

TEL: 886-3-327-3456 Page Number : D16 of D28

Band 4 5725~5850MHz WIFI 802.11ac VHT80 (Band Edge @ 3m)

Report No. : FR932216-01E

TEL: 886-3-327-3456 Page Number: D17 of D28

TEL: 886-3-327-3456 Page Number : D18 of D28

Band 4 - 5725~5850MHz WIFI 802.11a (Harmonic @ 3m) Report No. : FR932216-01E

TEL: 886-3-327-3456 Page Number : D19 of D28

TEL: 886-3-327-3456 Page Number : D20 of D28

TEL: 886-3-327-3456 Page Number : D21 of D28

Band 4 5725~5850MHz WIFI 802.11n HT20 (Harmonic @ 3m)

Report No. : FR932216-01E

TEL: 886-3-327-3456 Page Number : D22 of D28

FCC RADIO TEST REPORT

Report No. : FR932216-01E

TEL: 886-3-327-3456 Page Number : D23 of D28

FAX: 886-3-328-4978

FCC RADIO TEST REPORT

Report No. : FR932216-01E

TEL: 886-3-327-3456 Page Number : D24 of D28

Band 4 5725~5850MHz WIFI 802.11n HT40 (Harmonic @ 3m)

Report No. : FR932216-01E

TEL: 886-3-327-3456 Page Number: D25 of D28

Avg.

FCC RADIO TEST REPORT

TEL: 886-3-327-3456 Print FAX: 886-3-328-4978

Page Number

: D26 of D28

Report No. : FR932216-01E

Band 4 5725~5850MHz WIFI 802.11ac VHT80 (Harmonic @ 3m)

Report No. : FR932216-01E

TEL: 886-3-327-3456 Page Number : D27 of D28

Emission below 1GHz 5GHz WIFI 802.11ac VHT80 (LF)

Report No. : FR932216-01E

TEL: 886-3-327-3456 Page Number : D28 of D28

Appendix E. Duty Cycle Plots

Antenna	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting	Duty Factor(dB)
1+2	802.11a for Ant 1	98.10	-	-	10Hz	0.08
1+2	802.11a for Ant 2	98.10	-	-	10Hz	0.08
1+2	5GHz 802.11n HT20 for Ant 1	98.02	-	-	10Hz	0.09
1+2	5GHz 802.11n HT20 for Ant 2	98.02	-	-	10Hz	0.09
1+2	5GHz 802.11n HT40 for Ant 1	96.07	855	1.17	3kHz	0.17
1+2	5GHz 802.11n HT40 for Ant 2	96.07	855	1.17	3kHz	0.17
1+2	5GHz 802.11ac VHT20 for Ant 1	98.03	1745	0.57	10Hz	0.09
1+2	5GHz 802.11ac VHT20 for Ant 2	98.03	1745	0.57	10Hz	0.09
1+2	5GHz 802.11ac VHT40 for Ant 1	96.09	860	1.16	3kHz	0.17
1+2	5GHz 802.11ac VHT40 for Ant 2	96.09	860	1.16	3kHz	0.17
1+2	5GHz 802.11ac VHT80 for Ant 1	95.56	860	1.16	3kHz	0.20
1+2	5GHz 802.11ac VHT80 for Ant 2	95.56	860	1.16	3kHz	0.20

Report No. : FR932216-01E

TEL: 886-3-327-3456 Page Number : E1 of E7

MIMO <Ant. 1>

802.11a

Date: 14.JUN.2019 10:09:55

802.11n HT20

Date: 14.JUN.2019 11:22:09

FAX: 886-3-328-4978

TEL: 886-3-327-3456 Page Number : E2 of E7

802.11n HT40

Report No.: FR932216-01E

Date: 14.JUN.2019 11:09:27

802.11ac VHT20

Date: 14.JUN.2019 11:19:11

TEL: 886-3-327-3456 Page Number : E3 of E7

802.11ac VHT40

Date: 14.JUN.2019 11:26:02

802.11ac VHT80

Date: 14.JUN.2019 11:32:55

TEL: 886-3-327-3456 Page Number : E4 of E7

802.11a

MIMO <Ant. 2>

Report No.: FR932216-01E

1.0 ms/

Marker								
Type	Ref	Trc	X-value	Y-value	Function		Function Result	
M1		1	3.49 ms	28.71 dBm				
D2	M1	1	2.07 ms	0.50 dB				
D3	M1	1	2.11 ms	0.20 dB				
						Ready	(IIIIII) #	

1001 pts

Date: 14.JUN.2019 10:58:51

802.11n HT20

CF 5.18 GHz

Date: 14.JUN.2019 11:23:32

TEL: 886-3-327-3456 Page Number : E5 of E7

802.11n HT40

Date: 14.JUN.2019 11:14:51

802.11ac VHT20

Date: 14.JUN.2019 11:20:34

TEL: 886-3-327-3456 Page Number : E6 of E7

802.11ac VHT40

Date: 14.JUN.2019 11:27:51

802.11ac VHT80

Date: 14.JUN.2019 11:34:34

TEL: 886-3-327-3456 Page Number : E7 of E7