6. Tinjauan Pustaka

6.1 Tinjauan Empiris

Terdapat beberapa penelitian serupa baik pendekatan, metode, maupun lingkup penelitian yang mirip seperti penelitian ini. Berikut ini beberapa penelitian tersebut.

6.1.1 Knowledge Representation Issues in Musical Instrument Ontology Design

(S. Kolozali, M. Barthet, G. Fazekas, dan M.B. Sandler, 2011)

Dalam penelitian ini, penulis mengusulkan sebuah desain dalam desain ontologi instrumen musik berdasarkan klasifikasi skema Hornbostel dan Sach yang mengklasifikasi peran utama dari setiap instrumen. Desain ini menjadi inspirasi untuk melakukan pengembangan ontologi instrumen musik tradisional di Bali. Ontologi instrumen tradisional menggunakan kriteria asal dari instrumen, sumber bunyi, bahan dasar, dan cara bermain sebagai informasi detail dari masing-masing instrumen.

6.1.2 Integrating Ontology-based Approach in Knowledge Management System (KMS): Construction of Batik Heritage Ontology

(S. A. M. Nasir dan N. L. M. Noor, 2010)

Penelitian ini menetapkan pendekatan untuk mengintegrasikan ontologi dalam Sistem Manajemen Pengetahuan (*knowledge management system*, KMS) untuk memungkinkan potensi penuh aplikasi e-Museum di web untuk direalisasikan. Penelitian ini berkaitan dengan desain e-Museum berbasis komunitas yang dimaksudkan untuk mendukung pelestarian warisan budaya digital. Untuk menggambarkan pendekatan, penelitian ini mempertimbangkan manajemen pengetahuan dan metodologi ontologi untuk menjelaskan proses konstruksi ontologi (Nasir et al., 2010).

6.1.3 Towards Automatic Wayang Ontology Construction using Relation Extraction from Free Text

(H. R. Sanabila dan R. Manurung, 2014)

Penelitian ini menjadi acuan pelaporan pekerjaan peneliti untuk secara otomatis membangun dan mengisi ontologi mitologi wayang (wayang kulit Indonesia) dari teks bebas menggunakan ekstraksi relasi dan pengelompokan relasi. Referensi ontologi digunakan untuk mengevaluasi

ontologi yang dihasilkan. Referensi ontologi berisi konsep dan properti dalam domain karakter wayang. Peneliti memeriksa pengaruh variasi data corpus, variasi nilai ambang batas dalam proses pengelompokan relasi, dan penggunaan pasangan entitas atau tipe pasangan entitas selama tahap ekstraksi fitur (Sanabila et al., 2014).

6.1.4 Methontology: From Ontological Art Towards Ontological Engineering

(M. Fernández-López, A. Gómez-Pérez dan N. Juristo, 1997)

Tujuan dari penelitian ini adalah untuk mengklarifikasi kepada pembaca yang tertarik untuk membangun ontologi dari awal, kegiatan yang harus mereka lakukan dan dalam urutan apa, serta serangkaian teknik yang akan digunakan dalam setiap fase metodologi. Penelitian ini menyajikan satu set kegiatan yang sesuai dengan proses pengembangan ontologi, siklus hidup untuk membangun ontologi berdasarkan prototipe yang berkembang, dan Methontology, metodologi terstruktur dengan baik yang digunakan untuk membangun ontologi dari awal. Penelitian ini mengumpulkan pengalaman penulis tentang membangun ontologi dalam domain bahan kimia (Fernández-López et al., 1997).

6.1.5 **Digital Preservation of Cultural Heritage: Balinese Kulkul Artefact and Practices**

(C. R. A. Pramartha dan Joseph G. Davis, 2016)

Dalam penelitian ini, penulis memperkenalkan kerangka kerja baru berdasarkan prinsip-prinsip budaya Bali (Tri Hita Karana dan Desa Kala Patra) untuk menangkap, mengklasifikasikan, dan mengatur artefak budaya dan mempraktikkan pengetahuan, dan merancang dan mengembangkan prototipe portal digital online untuk memungkinkan berbagi dan pertumbuhan pengetahuan terkait ke kulkul Bali. Tujuan dari penelitian ini adalah untuk mendokumentasikan, melestarikan, dan mendidik masyarakat Bali dan generasi muda khususnya pada aspek penting dari budaya Bali. Komunitas ini akan didorong tidak hanya untuk belajar tentang kulkul dan praktik terkait, tetapi juga berkontribusi pengetahuan mereka sendiri untuk memungkinkan portal digital online untuk berkembang menjadi tempat

penyimpanan pengetahuan budaya Bali. Pengetahuan dan pemahaman kulkul dasar diperoleh melalui wawancara mendalam dengan beberapa pakar budaya Bali terpilih dan anggota masyarakat berpengetahuan (profesor dari universitas di Bali, pemimpin spiritual, pemimpin komunitas senior, dan pengrajin). Sebagai bagian dari portal digital, penelitian penulis juga mencakup pengembangan ontologi dasar konsep dan istilah terkait kulkul, dan hubungan antar mereka untuk mendukung pencarian semantik dan penelusuran sumber daya online (Pramartha et al., 2016).

6.1.6 Assembly the Semantic Cultural Heritage Knowledge

(C. R. A. Pramartha, 2018)

Penelitian ini bertujuan untuk mengumpulkan pengetahuan warisan budaya semantik yang berhubungan dengan satu aspek dari warisan Bali, sistem kulkul. Penulis membahas metode dan prosedur penulis untuk mewujudkan tujuan proyek. Kontribusi yang signifikan dari ahli warisan budaya menghasilkan spesifikasi dan fitur kulkul. Juga, keterlibatan komunitas berpengetahuan membantu penulis untuk memperluas dan mengesahkan ontologi kulkul. Akhirnya, pengetahuan warisan budaya dibuat tersedia dalam bentuk ontologi untuk mewakili pengetahuan yang dapat diproses dan dimanipulasi oleh program komputer (Pramartha, 2018).

6.1.7 A Semantically-Enriched Digital Portal for the Digital Preservation of Cultural Heritage with Community Participation

(C. R. A. Pramartha, J. G. Davis, dan K. K. Y. Kuan, 2018)

Dalam penelitian ini, penulis menyajikan rincian penelitian yang berhubungan dengan satu aspek budaya Bali, sistem komunikasi tradisional Bali (kulkul), yang dilakukan di pulau Bali, Indonesia. Penelitian ini bertujuan untuk mendokumentasikan, mengorganisasi, dan melestarikan pengetahuan kulkul yang relevan untuk manfaat masyarakat Bali, dan generasi muda khususnya dengan merancang dan mengembangkan portal digital sebagai repositori dinamis. mengumpulkan pengetahuan warisan budaya semantik yang berhubungan dengan satu aspek dari warisan Bali, sistem kulkul. Portal digital prototipe diimplementasikan oleh penulis di *cloud* untuk memfasilitasi pertumbuhan elastis dan akses pengguna yang

mudah ke sumber daya untuk membaca dan menambahkan konten. Hasil evaluasi penelitian menunjukkan bahwa sebagian besar pengguna menganggap portal digital relatif berguna dan mudah digunakan. (Pramartha, 2018).

6.2 Tinjauan Teoritis

6.2.1 Semantic Web

Semantic web merupakan perluasan dari web saat ini, dimana informasi memiliki arti yang terdefinisi secara lebih baik dengan mengupayakan persamaan persepsi antara konsep-konsep yang ada, sehingga memungkinkan manusia dan komputer untuk bekerjasama secara lebih optimal (Berners-Lee., 2001).

W3C (*World Wide Web Consortium*) memberikan suatu visi dari semantic web yaitu gagasan untuk memiliki data di web yang didefinisikan serta dihubungkan sedemikian rupa sehingga bisa digunakan oleh mesin, bukan hanya untuk ditampilkan tetapi juga untuk tujuan automasi, integrasi dan penggunaan kembali data antar berbagai aplikasi (*W3C*, 2001).

Semantic web mengindikasikan bahwa makna data pada web dapat dipahami, baik oleh manusia maupun oleh komputer (Passin, 2004). Agar dapat diproses oleh mesin, dokumen web dinotasikan dengan metadata.

Menurut *World Wide Web Consortium (W3C)*, arsitektur dari *semantic web* terdiri dari beberapa *layer* yang ditunjukkan oleh Gambar 6.1.

Gambar 6.1 Arsitektur semantic web

- 1) Layer Unicode dan URI. Uniform Resource Identifiers (URI) memastikan penggunaan sekumpulan karakter yang telah disepakati secara internasional dan menyediakan alat untuk mengidentifikasi objek di semantik web. Jenis URL yang terkenal adalah URL (Uniform Resource Locator) yang akan memberitahu komputer dimana letak suatu resource.
- 2) Layer XML, Namespace, XML Schema. Layer ini mengintegrasikan definisi Semantic web dengan dokumen XML (Extensible Markup Language) lain yang sesuai standar. XML merupakan format standar untuk dokumen terstruktur dan sebagai cara paling fleksibel untuk menciptakan standar bagi format informasi dan kemudian menyediakan format tersebut beserta datanya di web. XML Schema menggambarkan struktur dan batasan dari isi dokumen XML, namespace merupakan standar yang digunakan untuk menentukan label unik kepada sekumpulan nama elemen yang didefinisikan oleh XML Schema.
- 3) RDF dan RDF Schema. RDF (Resource Description Framework) dan RDF Schema memungkinkan pengguna untuk membuat pernyataan tentang objek dan URI serta mendefinisikan kosakata yang bisa diacu dengan URI tersebut. Layer inilah yang menentukan tipe dari resource dan link. RDF Schema mendeklarasikan keberadaan kelas dan properti, termasuk subkelas, sub properti, domain dan range.
- 4) Ontology vocabulary. Ontology mendukung perkembangan kosakata karena pada Layer RDF dapat ditentukan relasi antar konsep yang berbeda.
- 5) Logic. Layer logic menyediakan framework untuk menulis aksioma dari aturan dasar sistem. Layer ini digunakan untuk meningkatkan bahasa ontologi dan memungkinkan penulisan aplikasi pengetahuan deklaratif khusus.
- 6) *Proof. Layer proof* mengeksekusi aturan dari *Layer logic. Layer proof* melibatkan proses deduktif serta representasi proof dalam bahasa web dan validasi proof.

- 7) *Trust. Layer trust* mengevaluasi apakah hasil dari Layer proof bisa dipercaya. Layer ini akan muncul melalui penggunaan *digital signature* berdasarkan rekomendasi yang diberikan oleh agen yang terpercaya.
- 8) Digital Signature. Digital signature mendefinisikan blok dari data yang terenkripsi yang akan dimanfaatkan oleh komputer dan agen untuk memastikan apakah suatu informasi yang disediakan oleh sumber yang terpercaya serta mendeteksi adanya perubahan pada dokumen.

6.2.2 Ontologi dan Peranannya dalam Pelestarian Budaya

Semantic web memanfaatan ontologi untuk merepresentasikan basis pengetahuan dan sumber daya web. Ontologi menghubungkan simbolsimbol yang dipahami manusia dengan bentuknya yang dapat diproses oleh mesin, dengan demikian ontologi menjadi jembatan antara manusia dan mesin (Davies dkk., 2006).

Ontologi bermanfaat untuk meningkatkan akurasi dalam proses pencarian informasi di web. Mesin pencari dapat mencari halaman yang merujuk pada konsep yang tepat dalam sebuah ontologi. Mesin pencari dapat menemukan dokumen yang relevan, juga dapat menyarankan pengguna untuk memberikan *query* yang lebih umum (Nurkhamid, 2009). Jika terlalu banyak dokumen yang ditemukan, mesin pencari dapat menyarankan *query* yang lebih spesifik (Antoniou & van Harmelen, 2008).

Antoniou dan Van Harmelen (2008), mengemukakan bahwa sebuah ontologi didefinisikan sebagai sebuah spesifikasi formal dan eksplisit dari sebuah konseptual. Makna konseptual merujuk pada model abstrak dari sesuatu hal. Eksplisit mengindikasikan bahwa elemen-elemen konseptual harus didefinisikan dengan jelas, dan formal berarti bahwa spesifikasi tersebut harus dapat diproses oleh mesin. Dalam pandangan Gruber ontologi merupakan representasi pengetahuan dari sebuah domain, dengan sekumpulan objek dan relasi dideskripsikan oleh sebuah *vocabulary*.

W3C menyebutkan bahwa ontologi adalah sebuah istilah yang diambil dari ilmu filsafat yang merujuk pada bidang ilmu yang mendeskripsikan berbagai entitas dalam dunia dan bagaimana entitas-entitas tersebut saling berelasi (McGuinness & van Harmelen, 2004). Ontologi menyediakan

deskripsi untuk elemen kelas-kelas (*classes*) dalam berbagai domain, relasi (*relations*) antar kelas-kelas, dan properti (*property*) yang dimiliki oleh kelas-kelas tersebut.

Ontologi digunakan untuk bidang kecerdasan buatan, representasi pengetahuan, pemrosesan bahasa alami, web semantik, rekayasa perangkat lunak, dan banyak bidang lainya. Dalam sistem informasi, ontologi adalah spesifikasi yang jelas tentang serangkaian konsep yang menjelaskan sebuah wilayah pengetahuan tertentu yang dipakai bersama oleh para pengguna sistem yang bersangkutan.

Beberapa manfaat menggunakan ontologi (Antoniou dan Van Harmelen, 2008), yaitu: 1) Ontologi dapat membagi pemahaman atau definisi tentang konsep-konsep dalam sebuah *domain* (*sharing* informasi); 2) Ontologi menyediakan cara untuk menggunakan kembali domain pengetahuan (*knowledge domain reusable*); 3) Ontologi membuat asumsi eksplisit sebuah *domain*; 4) Ontologi bersama dengan bahasa deskripsi (seperti *RDF Schema*), menyediakan cara untuk mengkodekan pengetahuan dan semantik seperti *machine-understand*; 5) Ontologi memungkinkan pemrosesan mesin otomatis dalam skala besar.

Ontologi digunakan secara luas di bidang warisan budaya, terutama dalam melestarikan aspek material dan fisik dari peninggalan masa lalu. Ontologi dipilih sebagai solusi untuk menyelesaikan interoperabilitas struktur data dan terlibat dalam implementasi nyata (Cameron et al., 2007). Beberapa penelitian yang fokus dalam penggunaan ontologi dalam usaha melestarikan warisan budaya adalah pada penelitian oleh Noor et al. (2010), Sanabila et al. (2014), dan Pramartha et al. (2016, 2018).

6.2.3 OWL (Ontology Web Language)

OWL (*Ontology Web Language*) merupakan suatu bahasa ontologi yang digunakan untuk mendeskripsikan kelas-kelas, properti-properti dan relasi antar objek-objek dalam suatu cara yang dapat diinterpretasi oleh mesin (Breitman dkk., 2007).

OWL merupakan sebuah *vocabulary*, namun dengan tingkatan semantik yang lebih tinggi dibandingkan dengan *RDF* dan *RDF Schema*. *OWL*

menyediakan tiga sub bahasa yang berbeda tingkatan bahasanya yang dirancang untuk berbagai kebutuhan tertentu dari pengguna, antara lain (Breitman dkk., 2007):

- 1) *OWL Lite: OWL Lite* menyediakan pendefinisian hirarki kelas dan properti dengan batasan-batasan (*constraints*) yang sederhana. Jenis ini digunakan jika pengguna hanya membutuhkan hirarkis kelas yang sederhana dengan batasan yang sederhana pula.
- 2) OWL DL (Description Logic): OWL DL mendukung pengguna yang menginginkan ekspresi maksimum tanpa kehilangan perhitungan yang lengkap dan ketepatan, OWL DL meliputi semua bahasa konstruksi dalam OWL dengan batasan tertentu. OWL DL dapat menghasilkan hirarkis klasifikasi secara otomatis dan mampu mengecek konsisten dalam suatu ontologi karena OWL DL mendukung reasoning.
- 3) *OWL Full; OWL Full* berguna untuk pengguna yang menginginkan ekspresi maksimum dan kebebasan sintaksis dari *RDF* tanpa ada jaminan perhitungan. *OWL Full* memperbolehkan ontologi untuk meningkatkan arti dari kosakata yang belum digambarkan (*RDF* atau *OWL*). *OWL Full* diperuntukkan bagi pengguna yang menginginkan subbahasa yang sangat ekspresif dan secara sintaks lepas dari RDF tanpa jaminan komputasional.

6.2.4 RDF (Resource Description Framework)

Resource Description Framework (RDF) merupakan sebuah model data yang sederhana dan fleksibel untuk mendeskripsikan hubungan antara sumberdaya-sumberdaya web dalam bentuk RDF statement (Breitman dkk., 2007). RDF mendukung interoperabilitas antar aplikasi yang melakukan pertukaran informasi dan bersifat machine-understandable di web. RDF menggunakan graf untuk merepresentasikan kumpulan pernyataan. Simpul dalam graf mewakili suatu entitas, dan tanda panah mewakili relasi antar entitas. RDF didasarkan pada gagasan dimana hal-hal yang sedang diuraikan memiliki properti yang didalamnya mempunyai nilai-nilai dan resource yang dapat diuraikan dengan pembuatan statement (Manola dan Miller, 2004).

RDF menggunakan istilah tertentu untuk menguraikan suatu statement. Bagian yang mengidentifikasi dalam statement dapat disebut subject, karakteristik (*property*) dari *subject* disebut sebagai predicate, sedangkan nilai dari *property* disebut sebagai *object*.

Lassila dan Swick (1999) menyatakan model data *RDF* terdiri atas tiga objek tipe: 1) *Resource*, segala sesuatu yang digambarkan dengan *RDF* disebut resource. Resource bisa berupa keseluruhan atau bagian dari sebuah halaman web. *Resource* ini biasanya diberi nama menggunakan *URI* (*Uniform Resource Identifier*). *URI* bersifat bisa diperluas maka *URI* bisa digunakan sebagai pengenal bagi berbagai macam entitas; 2) Properti (*property*), merupakan aspek atau karakteristik, atribut, serta relasi khusus yang digunakan untuk menggambarkan sebuah *resource*. Setiap properti memiliki arti khusus, mendefinisikan nilai yang mungkin, tipe *resource* yang digambarkan dan relasinya dengan properti lain. Pernyataan (*statement*), suatu *resource* bersama dengan properti dan nilai dari suatu properti untuk *resource* membentuk suatu pernyataan *RDF*. Ketiga bagian ini disebut subjek, predikat dan objek, yang membentuk *RDF triple*. Objek dapat berupa *resource* lain, atau berupa literal (*string* sederhana atau tipe data primitif lain yang didefinisikan oleh *XML*).

6.2.5 SPARQL

SPARQL adalah bahasa *query* untuk RDF. Graph RDF merupakan terdiri dari triple yang terbentuk dari subjek, predikat dan objek. RDF dapat didefinisikan pada konsep RDF dan konsep abstrak sintaks. Triple ini dapat datang dari berbagai macam sumber. Instance dapat diperoleh secara langsung dari dokumen RDF dan dapat disimpulkan dari triple RDF. Ekspresi RDF dapat disimpan dalam format lain seperti XML dan *Database Relational*.

6.2.6 Apache Jena Fuseki

Apache Jena Fuseki bertindak sebagai server untuk mengeksekusi SPARQL dalam mengolah data RDF. Pada dasarnya SPARQL sama seperti SQL, yakni bahasa *query* data. Perbedaannya adalah SQL merupakan *command* untuk PHP, sedangkan SPARQL untuk RDF. Fuseki juga

memungkinkan web mengakses file ontologi untuk proses *upload*, *update*, dan *query* di dalam browser, juga melihat hasil untuk proses yang terjadi tanpa mengubah file asal. Berbeda dengan Protégé, Fuseki merupakan tools untuk membina ontologi serta tidak menjalankan *query* di browser, melainkan di *local*. Oleh karena itu, Fuseki perlu diinstal untuk menjalankan proses secara protokol HTTP.

6.2.7 Protégé

Perangkat lunak Protégé dikembangkan oleh Stanford Center for Biomedical Informatics Research di Stanford University School of Medicine. Perangkat lunak Protégé bersifat *open source* dibawah lisensi bernama Mozilla Public License (MPL). Perangkat lunak Protégé merupakan alat bantu untuk membantu pengembang ontologi untuk memngembangkan sistem yang didasarkan pada sistem basis pengetahuan (*knowledge base system*). Protégé dapat membuat, mengedit dan menyimpan ontologi dalam format CLIPS, RDF, XML, UML dan Relational Database. Secara umum, Protégé memudahkan pengguna untuk membuat pemodelan dasar secara lebih sederhana yang dilengkapi dengan visualisasi hubungan *subclass* dalam *tree* [1].

6.2.8 Technology Acceptance Model

Model penerimaan teknologi (*Technology Acceptance Model*, TAM) adalah teori sistem informasi yang memodelkan bagaimana pengguna menerima dan menggunakan teknologi. TAM bertujuan untuk menjelaskan dan memprediksi penerimaan pengguna terhadap sistem informasi. Model penerimaan teknologi Davis (1989) telah diuji secara luas dan diterima secara luas di antara para peneliti di bidang TI sebagai model berbasis teori dengan validitas prediktif yang baik. TAM menjelaskan hubungan sebab akibat antara keyakinan (kegunaan sistem informasi dan kemudahan penggunaan sistem informasi) dan sikap, niat, dan penggunaan aktual dari pengguna. TAM secara luas dianggap sebagai model teoritis yang relatif kuat untuk menjelaskan penggunaan TI. Dari perspektif praktisi, TAM berguna untuk memprediksi apakah pengguna akan mengadopsi teknologi informasi baru. TAM berupaya menguji dan memprediksi mengapa orang

menerima atau menolak teknologi informasi (Davis, 1989). Gambar 2 menunjukkan diagram alur dari TAM.

Gambar 6.2 Diagram alur dari TAM, diadopsi dari Davis (1989)

6.2.9 Warisan Budaya Digital

Warisan budaya digital adalah penggunaan media digital dalam layanan melestarikan warisan budaya atau alam. Piagam tentang Pelestarian Warisan Digital UNESCO mendefinisikan warisan budaya digital sebagai "merangkul sumber daya budaya, pendidikan, ilmiah, dan administratif, serta informasi teknis, hukum, medis, dan jenis lain yang dibuat secara digital, atau diubah menjadi bentuk digital dari sumber daya analog yang ada" (Cameron, 2007).

6.2.10 Gamelan Bali

Gamelan Bali memiliki alat musik tabuh, gesek, tiup, petik dan sebagainya. Gamelan dapat digolongkan berdasarkan zaman munculnya Gamelan. Gamelan Bali dibagi menjadi tiga garis besar, yaitu Gamelan Wayah, Gamelan Madya, dan Gamelan Anyar (Sunarto, 2014).

1) Gamelan Wayah

Jenis gamelan yang dapat digolongkan menjadi Gamelan Wayah adalah Gamelan yang ada sebelum abad XV yang pada umumnya didominasi oleh alat berbentuk bilahan dan belum terlalu banyak menggunakan kendang. Gamelan yang meliputi gamelan Wayah yaitu, Gamelan Angklung, Gamelan Baleganjur, Gamelan Caruk, Gamelan Gambang, Gamelan Gender Wayang, Gamelan Gong Bheri, Gamelan Gong Luwang, dan Gamelan Selonding.

2) Gamelan Madya

Jenis Gamelan yang dapat digolongkan menjadi Gamelan Madya adalah Gamelan yang berasal dari abad XVI-XIX dimana barungan Gamelan mulai memakai kendang dan instrumen berpencon (bermoncol). Gamelan yang termasuk golongan Gamelan madya yaitu, Gamelan Joged Pingitan, Gamelan Penggambuhan, Gamelan Gong Gede, Gamelan Pelegongan, dan Gamelan Semar Pegulingan.

3) Gamelan Anyar

Jenis Gamelan yang dapat digolongkan menjadi Gamelan Anyar adalah Gamelan yang muncul pada abad XX dimana Gamelan pada zaman ini mulai menonjolkan permainan kendang. Gamelan yang termasuk golongan Gamelan anyar adalah Gamelan Geguntangan, Gamelan Gong Kebyar, Gamelan Janger, Gamelan Joged Bumbung, dan Gamelan Semarandana.

Gamelan juga dapat digolongkan berdasarkan kegunaannya dalam Upacara Yadnya, khususnya atas jenis dan prosesi Yadnya yang dilakukan. Sesuai dengan konsep Panca Yadnya, maka penggunaan gamelan dalam Upacara Yadnya dapat dipaparkan seperti berikut ini (Arsana dkk., 2014).

1) Dewa Yadnya

Dewa Yadnya adalah persembahan yang tulus ikhlas yang ditujukan kepada Ida Sang Hyang Widhi Wasa dan para Dewa sebagai wujud syukur atas rahmat dan karunia yang telah diberikan-Nya kepada umat manusia. Dalam upacara Dewa Yadnya biasanya digunakan gamelan Gong Gede, Gong Kebyar, Angklung, dan Baleganjur.

2) Rsi Yadnya

Rsi Yadnya adalah sebuah upacara yang ditujukan kepada para Rsi atau orang suci, seperti melakukan upacara penobatan sulinggih (*mediksa*), mengamalkan ajaran beliau, serta mengaturkan punia kepada beliau. Dalam upacara Rsi Yadnya biasanya digunakan gamelan Gong Gede dan Gender Wayang.

3) Manusa Yadnya

Manusa Yadnya merupakan upacara korban suci yang ditujukan untuk membersihkan diri manusia secara lahir dan batin. Dalam upacara Manusa Yadnya biasanya digunakan gamelan Semar Pegulingan dan Gender Wayang.

4) Pitra Yadnya

Pitra Yadnya adalah persembahan kepada leluhur sebagai pernyataan rasa terima kasih atas jasa-jasanya untuk keselamatan bersama. Dalam upacara Pitra Yadnya biasanya digunakan gamelan Gambang, Baleganjur, Gender Wayang, dan Angklung.

5) Bhuta Yadnya

Bhuta Yadnya adalah korban suci kepada Bhuta dan Kala (kekuatan negatif) yang bertujuan untuk membersihkan alam beserta isinya. Dalam upacara Bhuta Yadnya biasanya digunakan gamelan Baleganjur.

6.2.11 Kerangka Kerja Tri Hita Karana (THK) dan Desa Kala Patra (DKP)

Kerangka Kerja Tri Hita Karana (THK) dan Desa Kala Patra (DKP) adalah kerangka kerja yang diusulkan oleh Pramartha (2016) yang mengambil filosofi budaya Bali yaitu Tri Hita Karana dan Desa Kala Patra. Tri Hita Karana memiliki arti tiga penyebab kebahagiaan dengan menekankan kepada keseimbangan hubungan manusia di dalam dunia ini, yaitu sebagai berikut.

- 1) Parahyangan yaitu hubungan manusia dengan Tuhan (*Universal/God*).
- 2) Palemahan yaitu hubungan manusia dengan alam sekitarnya (environment).
- 3) Pawongan yaitu hubungan dengan sesama manusia (social).

Sedangkan konsep desa kala patra (*time, space, circumstances*) merupakan konsep dimana orang Bali menerima perbedaan yang terjadi di masyarakat yang disebabkan oleh pebedaan tempat (desa), waktu (kala), dan keadaan (patra). Juga, konsep ini memberikan pemahaman bahwa budaya Bali merupakan budaya yang sangat dinamis, terus berkembang dan beradaptasi seiring dengan perubahan jaman maupun masuknya budaya lain tanpa menghilangkan identitas inti dari budaya Bali itu sendiri. Gambar 6.3 menunjukkan diagram dari kerangka kerja THK dan DKP.

Gambar 6.3 Diagram kerangka kerja Tri Hita Karana (THK) dan Desa Kala Patra (DKP)