

Cos'è una **A**rtificial **N**eural **N**etwork?

E' una macchina progettata per simulare il funzionamento del **cervello umano**, implementata fisicamente utilizzando componenti elettronici e che utilizza software dedicati.

Perché questo nome?

In analogia con le reti neurali biologiche dove i **neuroni** (circa 10¹¹) sono responsabili dell'attività mentale.

- Che cos'è la mente, cosa sono i processi mentali? Sono soltanto processi cerebrali che coinvolgono neuroni, o sono anche qualcos'altro?
- La mente si collega al cervello così come il software di un computer si connette all'hardware?

Il Turco del Barone Wolfgang von Kempelen...

1769: nelle corti europee si può giocare a scacchi con un automa, in sembianze di un turco

...Il *Trucco* del Barone Wolfgang von Kempelen

La macchina era composta da una grossa scatola piena di ingranaggi, sopra la quale stava una scacchiera ed un uomo vestito alla turca, con un turbante.

Von Kempelen affermava che non vi era trucco, e le mosse venivano escogitate dalla macchina.

Alcuni sportelli consentivano di vedere l'interno della macchina prima di far comiciare la partita. In realtà, gli ingranaggi prendevano solo una parte dello spazio interno reale, lasciando il posto per una persona di bassa statura. Gli sportelli dimostrativi venivano aperti uno alla volta, dando modo alla persona all'interno di spostarsi all'interno della cassa per non farsi vedere. Il giocatore all'interno della macchina vedeva le mosse dell'avversario di turno grazie a dei magneti, le riportava su di una piccola scacchiera e poi comandava le braccia del manichino per fare la mossa. Per vedere utilizzava una candela, il cui fumo usciva dal turbante, e si mischiava al fumo dei candelabri che venivano messi vicino alla macchina.

Le previsioni

- Newell e Simon 1957: "Tra 10 anni le macchine saranno dichiarate campioni del mondo di scacchi"
- Dreyfus anni '60: " Una macchina non sarà mai in grado di giocare a scacchi "

Cosa facevate l' 11 maggio 1997?

- 1963: prima partita a scacchi di un giocatore umano con un computer.
 Vince l'essere umano
- 1996: il computer *Deep Blue* della **Ibm** sfida il campione del mondo **Kasparov**

Vince Kasparov

 11 maggio 1997, New York, seconda sfida Vince Deep Blue

Il racconto :"Sta per concludersi una partita a scacchi formidabile, forse la più seguita di tutti i tempi.

In palio oltre un miliardo di lire.

Quello con la testa tra le mani e lo sguardo corrucciato è il campione G.K., 34 anni, il più grande giocatore di tutti i tempi ..."

Settembre 2004

Deep Blue, computer IBM Risk 2000

- riesce a valutare 200 milioni di mosse al secondo
- conosce 600.000 aperture di partita All'Irst di Trento il migliore giocatore italiano, Michele Godena, ha sfidato il programma campione del mondo 2004, Deep Junior, creato in Israele da Bushinsky e Ban

Reti neurali

- Motivate dalla controparte biologica
- Provano ad imparare da esempi

NOTA:

Differente dall'approccio alla programmazione:

Astrarre il problema

Progettare un algoritmo per risolvere il problema Implementare l'algoritmo

Ci vuole un po di cervello...

Ogni tentativo volto a replicare l'attività umana deve fare i conti con il cervello umano

Come funziona il neurone

- biologico?
- Nucleo
- Assoni
- Dendriti

Il **nucleo** somma i segnali di input provenienti dalle **sinapsi** collegate alle **dendriti** di altri neuroni. Quando il segnale raggiunge una soglia limite il neurone genera un segnale di output verso altri neuroni. Si dice che il neurone "fa fuoco".

Come si è arrivati a ciò?

Egli formulò per primo alcuni dei principi basilari dell'apprendimento e della memoria

Un pò di storia... 1943

McCulloch era uno **psichiatra** e **neuroanatomista**, mentre Pitts era un **matematico**.

La collaborazione dei due studiosi condusse alla descrizione del calcolo logico della rete neurale che unisce la neurofisiologia alla logica matematica.

Reti di McCulloch e Pitts: analogia con il neurone biologico

- Stimoli
- Sinapsi
- Dendriti
- Nucleo
- Soglia interna
- Assone

Neurone di Mc Culloch e Pitts

Definizione di un'algebra dell'attività neurale:

- Input di ingresso binari
- Pesi sinattici
- Soglia interna
- Uscita binaria

Regola:

Y=1 se la somma degli ingressi è >= θ Y=0 se la somma degli ingressi è < θ

Esperimento di Bliss e Limo

Usando un coniglio anestetizzato, Bliss e Limo stimolarono con un impulso elettrico un canale neurale; poi misurarono il voltaggio che ne risultava più oltre lungo il percorso. Dapprima il voltaggio dell'output fu molto basso, il che stava a indicare che le connessioni sinaptiche nel circuito erano assai deboli. Ma stimolando ripetutamente il canale con scariche elettriche ad alta frequenza, furono in grado in qualche modo di alzare il volume delle connessioni. Ora, ogni volta che il canale veniva stimolato, i neuroni più a valle rispondevano vigorosamente.

Algoritmi di apprendimento

Conclusione: I neuroni possono essere in qualche modo allenati! Provano ad imparare da esempi, è quindi possibile modificare dinamicamente i pesi sinattici tramite

algoritmi di apprendimento (diversamente dalle reti di MC-P in cui i pesi sono statici)

Ancora un po' di storia

Nel 1958 Rosenblatt, propose il cosidetto Perceptron, il primo modello di apprendimento supervisionato.

Che cosa fa?

Discrimina gli ingressi in due insiemi linearmente separabili.

Il perceptrone si rivela utile per il riconoscimento e la classificazione di forme.

II problema della XOR

La XOR è un operatore che discrimina gli ingressi in modo non linearmente separabile

X1	X2	Out
0	0	0
0	1	1
1	0	1
1	1	0

1969 Minsky e Papert

Minsky e Papert, criticarono duramente le potenzialità del percettrone (a quel tempo la rete neurale più nota e oggetto di ricerche) in un celebre libro intitolato "Perceptrons":

Un percettrone non e' in grado di fare uno XOR, quindi e' troppo limitato per essere interessante

Infatti ciò avrebbe richiesto l'addestramento di neuroni detti "nascosti", Cioè neuroni per i quali non esiste un supervisore in grado di condurre l'addestramento

Anni '80

Negli anni '80 le ANN tornarono alla ribalta con l'introduzione di uno o più **livelli intermedi**. Tali reti, in grado di correggere i propri errori, superarono i limiti del Perceptrone di Rosenblatt rivitalizzando la ricerca in tale settore.

.

Applicazioni attuali

- Solitamente usate in contesti dove i dati possono essere parzialmente errati oppure dove non esistano modelli analitici in grado di affrontare il problema
- Nei sistemi di riconoscimento facciale e più in generale nei sistemi che si occupano di trattare dati soggetti a errori o rumore.
- Mezzo previsionistico dell'analisi finanziaria o meteorologica.

...E nel futuro?

- La ricerca sulle reti neurali procede lentamente in relazione ai limiti dei processori
- Il futuro delle reti neurali è legato allo sviluppo dell'hardware

Conclusioni

- I modelli prodotti dalle reti neurali, sono molto efficienti.
- Lavorano in parallelo e sono quindi in grado di trattare molti dati
- Non sono spiegabili in linguaggio simbolico umano: i risultati vanno accettati "così come sono", da cui anche la definizione inglese delle reti neurali come "black box": in altre parole, a differenza di un sistema algoritmico, dove si può esaminare passo-passo il percorso che dall'input genera l'output, una rete neurale e' in grado di generare un risultato valido, o comunque con una alta probabilità di essere accettabile, ma non è possibile spiegare COME e PERCHE' tale risultato sia stato generato.

Bibliografia

- Fausett L., "Fundamentals of Neural Networks", Prentice-Hall, 1994.
- Haykin S., "Neural Networks: A comprehensive foundation", 2nd Edition, Prentice Hall, 1999.
- Bishop Ch., "Neural Networks for Pattern Recognition", Clarendon Press, Oxford, 1995.
- Ham F., Kostanic I., "Principles of Neurocomputing for Science and Engineering "McGraw-Hill, 2001.

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.