

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
8 April 2004 (08.04.2004)

PCT

(10) International Publication Number
WO 2004/028346 A2

- (51) International Patent Classification⁷: **A61B**
- (21) International Application Number: PCT/US2003/030359
- (22) International Filing Date: 25 September 2003 (25.09.2003)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
60/413,583 25 September 2002 (25.09.2002) US
60/491,842 1 August 2003 (01.08.2003) US
- (71) Applicant (for all designated States except US): **AMERSHAM BIOSCIENCES (SV) CORP.** [US/US]; 928 East Arques Avenue, Sunnyvale, CA 94085 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): **LOUKOLA, Anu-Maria** [FI/FI]; Mäkitie 4, FIN-02880 Veikkola (FI). **PENN, Sharron, Gaynor** [GB/US]; 1529 School Street, San Carlos, CA 94070 (US). **RANK, David, Russell** [US/US]; 886 Bruce Drive, Palo Alto, CA 94303 (US).
- (74) Agents: **Ji, Yonggang et al.**; Amersham Biosciences Corp, 800 Centennial Avenue, Piscataway, NJ 08855 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PI, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: DETECTION METHODS

Testosterone biosynthetic pathway

(57) Abstract: The present invention relates to the prognosis, diagnosis and treatment of cancer, particularly prostate cancer. Polynucleotides having single nucleotide polymorphisms (SNPs) and haplotypes are provided which are of utility in the prognosis, diagnosis, prophylaxis and treatment of prostate and breast cancer.

WO 2004/028346 A2

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

DETECTION METHODS

Cross Reference to Related Applications

This application claims priority to United States provisional patent application numbers 60/413,583 filed September 25, 2002, and 60/491,842 filed August 1, 2003; the disclosures of which are incorporated herein by reference in their entirety.

Field of Invention

The present invention relates to single nucleotide polymorphisms in nucleic acids involved in encoding enzymes in the testosterone biosynthetic pathway and to methods for detecting such polymorphisms. The invention has utility in the diagnosis, prognosis, prevention and treatment of disease, particularly those relating to prostate cancer and breast cancer.

15

Background of the Invention

Prostate cancer is the most common non-skin cancer in males all over the world. Currently, there are no means to predict how aggressive an individual's cancer will be. Thus, many patients are given unnecessary drastic treatment with severe side effects and possibly others do not receive treatment effective enough.

Incidence of prostate cancer shows strong age dependence, being a disease of old men, and strong race dependence, being almost twice as common in African Americans as in Caucasians, while Asian populations have the lowest risk (Cook et al. (1999) J Urol 161, 152-155; Hsing et al. (2000) Int J Cancer 85, 60-67). The third well-known risk factor is having a family history of prostate cancer (Cerhan et al. (1999) Cancer Epidemiol Biomarkers Prev 8, 53-60; Kalish et al. (2000) Urology 56, 803-806), and several studies have supported the presence of predisposing genetic factors.

30

Genome wide linkage analyses have pointed multiple chromosomal regions showing linkage in prostate cancer families and several prostate cancer candidate loci have been suggested; HPC1 in 1q24 (Smith et al. (1996) Science 274, 1371-1374), HPCX in Xq27 (Xu et al. (1998) Nat Genet 20, 175-179), PCAP

in 1q42.2 (Berthon et al. (1998) Am J Hum Genet 62, 1416-1424), CABP in 1p36 (Gibbs et al. (1999) Am J Hum Gen 64, 776-787), and *HPC2/ELAC2* in 17p (Tavtigian et al. (2001) Nat Genet 27, 172-180). Recently, a candidate cancer-susceptibility gene, *RNASEL*, was cloned at the HPC1 loci (Carpenter et al. (2002) 5 Nat Genet 30, 181-184) and two possibly deleterious germline mutations segregating in prostate cancer families were discovered.

The growth of prostate cells is dependent on active testosterone (Ekman (1995) J Urol 153, 22-25) and strikingly, prostate adenocarcinomas can be created by testosterone administration in rats (Gupta et al. (1999) Cancer Res 10 59, 2115-2120). Testosterone seems to be a strong tumour promoter for the rat prostate, even at doses that do not measurably increase circulating testosterone (Bosland et al. (1991) Princess Takamatsu Symp 22, 109-123). Consequently, genes involved in the testosterone biosynthetic pathway, e.g., *CYP17*, *CYP3A4*, and *SRD5A2* (Figure 1) are good candidates for being involved in the initiation 15 and progression of prostate cancer. Several polymorphisms have been discovered in these genes and some of them show association either with increased risk or progression of prostate cancer (Table 1). Nevertheless, there is no evidence of higher testosterone levels in prostate cancer patients.

Approximately 55 different Cytochrome P450 genes are present in the 20 human genome and are classified into different families and subfamilies on the basis of sequence homology. Members of the CYP3A subfamily catalyze the oxidative, peroxidative and reductive metabolism of different endobiotics, drugs, and prototoxic or procarcinogenic molecules. As an example, CYP3A4 is responsible for the oxidative metabolism of an estimated 60% of all clinically used 25 drugs. Up to 30-fold interindividual differences in expression has been detected, causing variation in oral bioavailability and systemic clearance of CYP3A substrates, such as HIV protease inhibitors, several calcium channel blockers and some cholesterol-lowering drugs. Variation in CYP3A expression is particularly important in substrates with narrow therapeutic indices, such as 30 cancer chemotherapeutics and immunosuppressants. Variation in CYP3A expression can result in clinically significant differences in drug toxicities and response.

As with prostate cancer, breast cancer also shows age-dependency indicating a possible hormonal influence on the disease risk. Endogenous oestradiol synthesis takes place in the ovarian theca cells of pre-menopausal women, in the stromal adipose cells of the breast of post-menopausal women, 5 and in minor quantities in peripheral tissue. These cells, as well as breast cancer tissue, express all the necessary enzymes for this synthesis, including CYP17, and enzymes that further hydroxylate oestradiol, such as CYP3A4 (Kristensen et al. (2000) *Mutat Res* 462, 323-333). Thus, polymorphisms in these enzymes may also be associated with the risk of breast cancer (Kristensen et al. (2000) *Mutat 10 Res* 462, 323-333). Furthermore, CYP3A4 is also involved in the activation of many mammary carcinogens, such as the polycyclic aromatic hydrocarbons and heterocyclic amines (Guengerich et al. (1991) *Chem Res Toxicol.* 4, 168-179). According to a recent study (Zheng et al. (2001) *Cancer Epidemiol Biomarkers Prev* 10, 237-242), high CYP3A4 activity may be a risk factor for breast cancer 15 risk.

Single nucleotide polymorphisms (SNPs) are the most common type of genetic variation in the human genome, and are expected to be helpful in identifying human disease genes. In addition to occurring frequently, on average every 500-2,000 bp (Li & Sadler (1991) *Genetics* 129, 513-523; Chakravarti 20 (1998) *Nat Genet* 19, 216-217; Cargill et al. (1999) *Nat Genet* 22, 231-238; Halushka et al. (1999) *Nat Genet* 22, 239-247), SNPs have a low mutation rate when compared to microsatellite markers, both of which are characteristics that may have particular advantages for association analysis. The utility of SNPs is not only in their use as markers for discovering additional functional variants and 25 for the general evaluation of a specific gene in the context of a given clinical phenotype but also in their potential functional relevance. However, rather than finding a single SNP with drastic effect on the phenotype, more likely it will be multiple SNPs in relevant genes, either linked (i.e., grouped as a haplotype) or independent (perhaps on different chromosomes), that contribute to the 30 phenotype.

Recently, several studies have shown the utility of haplotypes, i.e., a combination of SNPs with alleles physically assigned to a chromosome, in association analysis (Daly et al. (2001) *Nat Genet* 29, 229-232). Studying

haplotypes might give the analysis more power but traditionally demands either samples from multiple generations or tedious molecular haplotyping.

Alternatively, several algorithms have been developed for inferring haplotypes from genotype data (Clark (1990) Mol Biol Evol 7, 111-122; Excoffier & Slatkin (1995) Mol Biol Evol 12, 921-927; Stephens et al. (2001) Am J Hum Genet 68, 978-989). These algorithms have been proven to work with a very low error rate (Drysdale et al. (2000) PNAS 97, 10483-10488). In a sense, haplotyping is equivalent to performing a study in a family or other select group of people. It helps to get back the power of linkage, and can be regarded as a crucial step in association studies using random individuals.

WO02/055735 discloses specific nucleic acids useful for identifying, diagnosing, monitoring, staging, imaging and treating prostate cancer and breast cancer. Similar compositions comprising prostate specific nucleic acids are described by the same applicant (Diadexus Inc.) in related applications (WO02/42776, WO02/42499, WO02/42463, WO02/42329, WO02/39431, WO02/239431, WO02/38810, WO02/38810, WO02/236808 and WO0224718).

Diadexus Inc. have also disclosed a method of diagnosing, monitoring, staging, imaging and treating prostate and breast cancer by means of specific nucleic acids, in a series of related applications (WO01/39798 & WO00/23111 & WO00/23108).

WO01/53537 (DZ Genes Inc.) describes isolated polynucleotides containing at least one polymorphism useful for the diagnosis of disease, particularly prostate and breast cancer.

Single nucleotide polymorphisms associated with prostate cancer are disclosed in WO01/83828, as are methods for using these SNPs to determine susceptibility to this disease.

In order to improve the lives of prostate and breast cancer patients it is essential to develop prognostic markers for cancer as well as markers allowing general assessment of disease risk. Patients need to be categorized into those needing immediate, extensive treatment, and those who just need watchful waiting. As a result, prostate and breast cancer mortality could be reduced and unnecessary side effects caused by invasive treatments could be avoided. There is therefore a need for prognostic molecular markers for aggressive breast and

prostate cancer to aid predicting, diagnosing and monitoring these diseases in individuals. Furthermore, there is a continued need for improved methods of treatment of both conditions in patients. The present invention addresses these needs and provides improvements over the prior art in the form of novel and specific nucleic acids, microarrays and kits useful for the diagnosis of breast and prostate cancer.

Summary of the Invention

According to the first aspect of the present invention, there is provided an isolated polynucleotide selected from the group consisting of a nucleotide sequence comprising one or more polymorphic sequences of SEQ ID NOS 1-34. Suitably, a fragment of the isolated polynucleotide comprises a polymorphic site in the polymorphic sequence.

In a second aspect of the present invention, there is provided an isolated polynucleotide comprising a sequence complementary to one or more of the polymorphic sequences of SEQ ID NOS 1-34. Suitably, a fragment of the complementary nucleotide sequence comprises a polymorphic site in the polymorphic sequence.

Preferably, the polynucleotides of the first and second aspect comprise DNA, RNA, cDNA, or mRNA

Preferably, at least one single nucleotide polymorphism of the isolated polynucleotide is at a position selected from the group consisting of position [CYP3A4_IVS9 +187] of SEQ ID No. 1, position [CYP3A4, 1639 base pairs after the stop codon] of SEQ ID No. 2, position [CYP3A4, 945 base pairs after the stop codon] of SEQ ID No. 3, position [CYP3A4_5' region -747] of SEQ ID No. 4, position [CYP3A4_ IVS7 -202] of SEQ ID No. 5, position [CYP3A4, 2204 base pairs after the stop codon] of SEQ ID No. 6, position [CYP3A4_ IVS2 -132] of SEQ ID No. 7, position [CYP3A4_IVS1 -868] of SEQ ID No. 8, position [CYP3A4_5' region -847] of SEQ ID No. 9, position [CYP3A4, 766 base pairs after the stop codon] of SEQ ID No. 10, position [CYP3A4, 1454 base pairs after the stop codon] of SEQ ID No. 11, position [CYP3A4_IVS3 +1992] of SEQ ID No. 12, position [CYP3A4_IVS9 +841] of SEQ ID No. 13, position [CYP3A4_IVS12 -473] of SEQ ID No. 14, position [CYP3A4_IVS12 +581] of SEQ ID No. 15,

position [CYP3A4_IVS12 +586] of SEQ ID No. 16, position [CYP3A4_IVS12 +646] of SEQ ID No. 17, position [CYP3A4_IVS3 -734] of SEQ ID No. 18, position [CYP17_IVS1 -271] of SEQ ID No. 19, position [CYP17_IVS5 +75] of SEQ ID No. 20, position [CYP17_IVS1 +426] of SEQ ID No. 21, position 5 [CYP17_IVS1 -99] of SEQ ID No. 22, position [CYP17_IVS1 -700] of SEQ ID No. 23, position [CYP17_IVS1 -565] of SEQ ID No. 24, position [CYP17_IVS3 +141] of SEQ ID No. 25, position [CYP17_5' region -1488] of SEQ ID No. 26, position [CYP17_5' region -1204] of SEQ ID No. 27, position [CYP17_IVS1 +466] of SEQ ID No. 28, position [CYP17, 712 base pairs after the stop codon] of SEQ ID No. 10 29, position [SRD5A2, 1356 base pairs after the stop codon (3' UTR)] of SEQ ID No. 30, position [SRD5A2, 849 base pairs after the stop codon (3' UTR)] of SEQ ID No. 31, position [SRD5A2_5' region -870] of SEQ ID No. 32, position [SRD5A2_5' region between -2036 and -2030] of SEQ ID No. 33, and position [SRD5A2, 545 base pairs after the stop codon (3' UTR)] of SEQ ID No. 34.

15 More preferably, at least one single nucleotide polymorphism is selected from the group consisting of [CYP3A4_IVS9 +187C>G] of SEQ ID No. 1, [CYP3A4, 1639 base pairs after the stop codon, A>T] of SEQ ID No. 2, [CYP3A4, 945 base pairs after the stop codon, A>T] of SEQ ID No. 3, [CYP3A4_5' region -747C>G] of SEQ ID No. 4, [CYP3A4_IVS7 -202C>T] of SEQ ID No. 5, [CYP3A4, 20 2204 base pairs after the stop codon, G>C] of SEQ ID No. 6, [CYP3A4_IVS2 -132C>T] of SEQ ID No. 7, [CYP3A4_IVS1 -868C>T] of SEQ ID No. 8, [CYP3A4_5' region -847A>T] of SEQ ID No. 9, [CYP3A4, 766 base pairs after the stop codon, delT] of SEQ ID No. 10, [CYP3A4, 1454 base pairs after the stop codon, C>T] of SEQ ID No. 11, [CYP3A4_IVS3 +1992T>C] of SEQ ID No. 12, 25 [CYP3A4_IVS9 +841T>G] of SEQ ID No. 13, [CYP3A4_IVS12 -473T>G] of SEQ ID No. 14, [CYP3A4_IVS12 +581C>T] of SEQ ID No. 15, [CYP3A4_IVS12 +586G>A] of SEQ ID No. 16, [CYP3A4_IVS12 +646C>A] of SEQ ID No. 17, [CYP3A4_IVS3 -734G>A] of SEQ ID No. 18, [CYP17_IVS1 -271A>C] of SEQ ID No. 19, [CYP17_IVS5 +75C>G] of SEQ ID No. 20, [CYP17_IVS1 +426G>A] of 30 SEQ ID No. 21, [CYP17_IVS1 -99C>T] of SEQ ID No. 22, [CYP17_IVS1 -700C>G] of SEQ ID No. 23, [CYP17_IVS1 -565G>A] of SEQ ID No. 24, [CYP17_IVS3 +141A>T] of SEQ ID No. 25, [CYP17_5' region -1488C>G] of SEQ ID No. 26, [CYP17_5' region -1204C>T] of SEQ ID No. 27, [CYP17_IVS1

- +466G>A] of SEQ ID No. 28, [CYP17, 712 base pairs after the stop codon, G>A] of SEQ ID No. 29, [SRD5A2, 1356 base pairs after the stop codon (3' UTR), A>C] of SEQ ID No. 30, [SRD5A2, 849 base pairs after the stop codon (3' UTR), A>G] of SEQ ID No. 31, [SRD5A2_5' region -870G>A] of SEQ ID No. 32, [SRD5A2_5' 5 region -2036(A)7-8] of SEQ ID No. 33, and [SRD5A2, 545 base pairs after the stop codon (3' UTR), T>C] of SEQ ID No. 34.

Optionally, the polynucleotide is the complement of any of the isolated polynucleotides hereinbefore described.

In one aspect, the polynucleotide comprises part of the *CYP17* gene, the 10 *CYP3A4* gene or the *SRD5A2* gene.

Preferably, the isolated polynucleotide further comprises a detectable label. More preferably, the detectable label is selected from the group consisting of fluorophore, radionuclide, peptide, enzyme, antibody and antigen. In a preferred embodiment, the fluorophore is a fluorescent compound selected from 15 the group consisting of Hoechst 33342, Cy2, Cy3, Cy5, CypHer, coumarin, FITC, DAPI, Alexa 633, DRAQ5 and Alexa 488.

In a third aspect of the present invention, there is provided a method for diagnosing a genetic susceptibility for a disease, condition or disorder related to prostate or breast cancer in a subject, the method comprising analysing a 20 biological sample containing nucleic acid obtained from the subject to detect the presence or absence of one or more single nucleotide polymorphisms at a position selected from the group consisting of position [CYP3A4_IVS9 +187] of SEQ ID No. 1, position [CYP3A4, 1639 base pairs after the stop codon] of SEQ ID No. 2, position [CYP3A4, 945 base pairs after the stop codon] of SEQ ID No. 25 3, position [CYP3A4_5' region -747] of SEQ ID No. 4, position [CYP3A4_ IVS7 - 202] of SEQ ID No. 5, position [CYP3A4, 2204 base pairs after the stop codon] of SEQ ID No. 6, position [CYP3A4_ IVS2 -132] of SEQ ID No. 7, position [CYP3A4_ IVS1 -868] of SEQ ID No. 8, position [CYP3A4_5' region -847] of SEQ ID No. 9, position [CYP3A4, 766 base pairs after the stop codon] of SEQ ID No. 30 10, position [CYP3A4, 1454 base pairs after the stop codon] of SEQ ID No. 11, position [CYP3A4_ IVS3 +1992] of SEQ ID No. 12, position [CYP3A4_ IVS9 +841] of SEQ ID No. 13, position [CYP3A4_ IVS12 -473] of SEQ ID No. 14, position [CYP3A4_ IVS12 +581] of SEQ ID No. 15, position [CYP3A4_ IVS12 +586] of

SEQ ID No. 16, position [CYP3A4_IVS12 +646] of SEQ ID No. 17, position [CYP3A4_IVS3 -734] of SEQ ID No. 18, position [CYP17_IVS1 -271] of SEQ ID No. 19, position [CYP17_IVS5 +75] of SEQ ID No. 20, position [CYP17_IVS1 +426] of SEQ ID No. 21, position [CYP17_IVS1 -99] of SEQ ID No. 22, position 5 [CYP17_IVS1 -700] of SEQ ID No. 23, position [CYP17_IVS1 -565] of SEQ ID No. 24, position [CYP17_IVS3 +141] of SEQ ID No. 25, position [CYP17_5' region -1488] of SEQ ID No. 26, position [CYP17_5' region -1204] of SEQ ID No. 27, position [CYP17_IVS1 +466] of SEQ ID No. 28, position [CYP17, 712 base pairs after the stop codon] of SEQ ID No. 29, position [SRD5A2, 1356 base pairs 10 after the stop codon (3' UTR)] of SEQ ID No. 30, position [SRD5A2, 849 base pairs after the stop codon (3' UTR)] of SEQ ID No. 31, position [SRD5A2_5' region -870] of SEQ ID No. 32, position [SRD5A2_5' region between -2036 and -2030] of SEQ ID No. 33, position [SRD5A2, 545 base pairs after the stop codon (3' UTR)] of SEQ ID No. 34, position [SRD5A2_IVS2+626] of SEQ ID No. 35, 15 position [SRD5A2_5' region -8029] of SEQ ID No. 36, position [CYP3A4_IVS7+34] of SEQ ID No. 42, position [CYP3A4_5' region -1232] of SEQ ID No. 43, position [SRD5A2_5' region -3001] of SEQ ID No. 44, and position [SRD5A2, 1552 base pairs after the stop codon] of SEQ ID No. 45.

Suitably, the nucleic acid is DNA, RNA, cDNA or mRNA.

20 Preferably, the single nucleotide polymorphism is selected from the group consisting of [CYP3A4_IVS9 +187C>G] of SEQ ID No. 1, [CYP3A4, 1639 base pairs after the stop codon, A>T] of SEQ ID No. 2, [CYP3A4, 945 base pairs after the stop codon, A>T] of SEQ ID No. 3, [CYP3A4_5' region -747C>G] of SEQ ID No. 4, [CYP3A4_IVS7 -202C>T] of SEQ ID No. 5, [CYP3A4, 2204 base pairs 25 after the stop codon, G>C] of SEQ ID No. 6, [CYP3A4_IVS2 -132C>T] of SEQ ID No. 7, [CYP3A4_IVS1 -868C>T] of SEQ ID No. 8, [CYP3A4_5' region -847A>T] of SEQ ID No. 9, [CYP3A4, 766 base pairs after the stop codon, delT] of SEQ ID No. 10, [CYP3A4, 1454 base pairs after the stop codon, C>T] of SEQ ID No. 11, [CYP3A4_IVS3 +1992T>C] of SEQ ID No. 12, [CYP3A4_IVS9 30 +841T>G] of SEQ ID No. 13, [CYP3A4_IVS12 -473T>G] of SEQ ID No. 14, [CYP3A4_IVS12 +581C>T] of SEQ ID No. 15, [CYP3A4_IVS12 +586G>A] of SEQ ID No. 16, [CYP3A4_IVS12 +646C>A] of SEQ ID No. 17, [CYP3A4_IVS3 -734G>A] of SEQ ID No. 18, [CYP17_IVS1 -271A>C] of SEQ ID No. 19,

- [CYP17_IVS5 +75C>G] of SEQ ID No. 20, [CYP17_IVS1 +426G>A] of SEQ ID No. 21, [CYP17_IVS1 -99C>T] of SEQ ID No. 22, [CYP17_IVS1 -700C>G] of SEQ ID No. 23, [CYP17_IVS1 -565G>A] of SEQ ID No. 24, [CYP17_IVS3 +141A>T] of SEQ ID No. 25, [CYP17_5' region -1488C>G] of SEQ ID No. 26,
- 5 [CYP17_5' region -1204C>T] of SEQ ID No. 27, [CYP17_IVS1 +466G>A] of SEQ ID No. 28, [CYP17, 712 base pairs after the stop codon, G>A] of SEQ ID No. 29, [SRD5A2, 1356 base pairs after the stop codon (3' UTR), A>C] of SEQ ID No. 30, [SRD5A2, 849 base pairs after the stop codon (3' UTR), A>G] of SEQ ID No. 31, [SRD5A2_5' region -870G>A] of SEQ ID No. 32, [SRD5A2_5' region -10 2036(A)7-8] of SEQ ID No. 33, [SRD5A2, 545 base pairs after the stop codon (3' UTR), T>C] of SEQ ID No. 34, [SRD5A2_IVS2+626C>T] of SEQ ID No. 35, [SRD5A2_5' region -8029C>T] of SEQ ID No. 36, [CYP3A4_IVS7+34T>G] of SEQ ID No. 42, [CYP3A4_5' region -1232C>T] of SEQ ID No. 43, SRD5A2_5' region -3001G>A] of SEQ ID No. 44, and [SRD5A2, 1552 base pairs after the 15 stop codon, G>A] of SEQ ID No. 45.

Optionally, the single nucleotide polymorphism is selected from the complement of any of the single nucleotide polymorphisms described hereinbefore.

Suitably, the analysis is accomplished by sequencing, genotyping, 20 fragment analysis, hybridisation, restriction fragment analysis, oligonucleotide ligation or allele specific PCR. Preferably, the analysis is accomplished by hybridisation, the method comprising the steps of

- 25 i) contacting the nucleic acid with an oligonucleotide that hybridises to one or more isolated polynucleotide polymorphic sequence selected from the group consisting of SEQ ID NOS 1-36, 42-45 or its complement
- ii) determining whether the nucleic acid and the oligonucleotide hybridize;

whereby hybridisation of the nucleic acid to the oligonucleotide indicates the 30 presence of the polymorphic site in the nucleic acid.

In a fourth aspect of the present invention, there is provided a method for diagnosing a genetic susceptibility for a disease, condition or disorder related to prostate or breast cancer in a subject, or predicting an individual's response to a

drug, the method comprising adding an antibody to a polypeptide present in a biological sample obtained from the subject which polypeptide is encoded by a polynucleotide selected from the group consisting of SEQ ID NOS 1-36 and SEQ ID NOS 42-45, or the complement thereof, and detecting specific binding of the 5 antibody to the polypeptide.

In a fifth aspect of the present invention, there is provided a kit comprising at least one isolated polynucleotide of at least 5 contiguous nucleotides of SEQ ID NOS: 1-36 or 42-45, or the complement thereof, and containing at least one single nucleotide polymorphic site associated with a disease, condition or 10 disorder related to prostate or breast cancer together with instructions for the use thereof for detecting the presence or the absence of said at least single nucleotide polymorphism in said nucleic acid.

In a sixth aspect of the present invention, there is provided an oligonucleotide array comprising at least one oligonucleotide capable of 15 hybridising to a first polynucleotide at a polymorphic site encompassed therein, wherein the first polynucleotide comprises a nucleotide sequence comprising one or more polymorphic sequences of SEQ ID NOS: 1-36 and SEQ ID NOS: 42-45.

Suitably, the first polynucleotide comprises a fragment of any of the nucleotide sequences, the fragment comprising a polymorphic site in the 20 polymorphic sequence.

Suitably, the first polynucleotide is a complementary nucleotide sequence comprising a sequence complementary to one or more polymorphic sequences of SEQ ID NOS: 1-36 and SEQ ID NOS: 42-45.

Suitably, the first polynucleotide comprises a fragment of said 25 complementary sequence, the fragment comprising a polymorphic site in the polymorphic sequence.

Suitably, the position of the polymorphic site in the kit or the microarray as hereinbefore described is at a position selected from the group consisting of position [CYP3A4_IVS9 +187] of SEQ ID No. 1, position [CYP3A4, 1639 base 30 pairs after the stop codon] of SEQ ID No. 2, position [CYP3A4, 945 base pairs after the stop codon] of SEQ ID No. 3, position [CYP3A4_5' region -747] of SEQ ID No. 4, position [CYP3A4_IVS7 -202] of SEQ ID No. 5, position [CYP3A4, 2204 base pairs after the stop codon] of SEQ ID No. 6, position [CYP3A4_IVS2 -

- 132] of SEQ ID No. 7, position [CYP3A4_IVS1 -868] of SEQ ID No. 8, position [CYP3A4_5' region -847] of SEQ ID No. 9, position [CYP3A4, 766 base pairs after the stop codon] of SEQ ID No. 10, position [CYP3A4, 1454 base pairs after the stop codon] of SEQ ID No. 11, position [CYP3A4_IVS3 +1992] of SEQ ID No.
- 5 12, position [CYP3A4_IVS9 +841] of SEQ ID No. 13, position [CYP3A4_IVS12 -473] of SEQ ID No. 14, position [CYP3A4_IVS12 +581] of SEQ ID No. 15, position [CYP3A4_IVS12 +586] of SEQ ID No. 16, position [CYP3A4_IVS12 +646] of SEQ ID No. 17, position [CYP3A4_IVS3 -734] of SEQ ID No. 18, position [CYP17_IVS1 -271] of SEQ ID No. 19, position [CYP17_IVS5 +75] of
- 10 10 SEQ ID No. 20, position [CYP17_IVS1 +426] of SEQ ID No. 21, position [CYP17_IVS1 -99] of SEQ ID No. 22, position [CYP17_IVS1 -700] of SEQ ID No. 23, position [CYP17_IVS1 -565] of SEQ ID No. 24, position [CYP17_IVS3 +141] of SEQ ID No. 25, position [CYP17_5' region -1488] of SEQ ID No. 26, position [CYP17_5' region -1204] of SEQ ID No. 27, position [CYP17_IVS1 +466] of SEQ
- 15 15 ID No. 28, position [CYP17, 712 base pairs after the stop codon] of SEQ ID No. 29, position [SRD5A2, 1356 base pairs after the stop codon (3' UTR)] of SEQ ID No. 30, position [SRD5A2, 849 base pairs after the stop codon (3' UTR)] of SEQ ID No. 31, position [SRD5A2_5' region -870] of SEQ ID No. 32, position [SRD5A2_5' region between -2036 and -2030] of SEQ ID No. 33, position .
- 20 20 [SRD5A2, 545 base pairs after the stop codon (3' UTR)] of SEQ ID No. 34, position [SRD5A2_IVS2+626] of SEQ ID No. 35, position [SRD5A2_5' region -8029] of SEQ ID No. 36, position [CYP3A4_IVS7+34] of SEQ ID No. 42, position [CYP3A4_5' region -1232] of SEQ ID No. 43, position [SRD5A2_5' region -3001] of SEQ ID No. 44 and position [SRD5A2, 1552 base pairs after the stop codon] of
- 25 25 SEQ ID No. 45.

Preferably, at least one single nucleotide polymorphism is selected from the group consisting of [CYP3A4_IVS9 +187C>G] of SEQ ID No. 1, [CYP3A4, 1639 base pairs after the stop codon, A>T] of SEQ ID No. 2, [CYP3A4, 945 base pairs after the stop codon, A>T] of SEQ ID No. 3, [CYP3A4_5' region -747C>G] of SEQ ID No. 4, [CYP3A4_IVS7 -202C>T] of SEQ ID No. 5, [CYP3A4, 2204 base pairs after the stop codon, G>C] of SEQ ID No. 6, [CYP3A4_IVS2 -132C>T] of SEQ ID No. 7, [CYP3A4_IVS1 -868C>T] of SEQ ID No. 8, [CYP3A4_5' region -847A>T] of SEQ ID No. 9, [CYP3A4, 766 base pairs after

- the stop codon, delT] of SEQ ID No. 10, [CYP3A4, 1454 base pairs after the stop codon, C>T] of SEQ ID No. 11, [CYP3A4_IVS3 +1992T>C] of SEQ ID No. 12, [CYP3A4_IVS9 +841T>G] of SEQ ID No. 13, [CYP3A4_IVS12 -473T>G] of SEQ ID No. 14, [CYP3A4_IVS12 +581C>T] of SEQ ID No. 15, [CYP3A4_IVS12 +586G>A] of SEQ ID No. 16, [CYP3A4_IVS12 +646C>A] of SEQ ID No. 17, [CYP3A4_IVS3 -734G>A] of SEQ ID No. 18, [CYP17_IVS1 -271A>C] of SEQ ID No. 19, [CYP17_IVS5 +75C>G] of SEQ ID No. 20, [CYP17_IVS1 +426G>A] of SEQ ID No. 21, [CYP17_IVS1 -99C>T] of SEQ ID No. 22, [CYP17_IVS1 -700C>G] of SEQ ID No. 23, [CYP17_IVS1 -565G>A] of SEQ ID No. 24,
- 10 [CYP17_IVS3 +141A>T] of SEQ ID No. 25, [CYP17_5' region -1488C>G] of SEQ ID No. 26, [CYP17_5' region -1204C>T] of SEQ ID No. 27, [CYP17_IVS1 +466G>A] of SEQ ID No. 28, [CYP17, 712 base pairs after the stop codon, G>A] of SEQ ID No. 29, [SRD5A2, 1356 base pairs after the stop codon (3' UTR), A>C] of SEQ ID No. 30, [SRD5A2, 849 base pairs after the stop codon (3' UTR), A>G]
- 15 of SEQ ID No. 31, [SRD5A2_5' region -870G>A] of SEQ ID No. 32, [SRD5A2_5' region -2036(A)7-8] of SEQ ID No. 33, [SRD5A2, 545 base pairs after the stop codon (3' UTR), T>C] of SEQ ID No. 34, [SRD5A2_IVS2+626C>T] of SEQ ID No. 35, [SRD5A2_5' region -8029C>T] of SEQ ID No. 36, [CYP3A4_IVS7+34T>G] of SEQ ID No. 42, [CYP3A4_5' region -1232C>T] of SEQ ID No. 43, [SRD5A2_5' region -3001G>A] of SEQ ID No. 44, and [SRD5A2, 1552 base pairs after the stop codon, G>A] of SEQ ID No. 45.

Optionally, at least one single nucleotide polymorphism is the complement of any of the single nucleotide polymorphisms as hereinbefore described.

Suitably, the oligonucleotide further comprises a detectable label.

- 25 Preferably, the label is selected from the group consisting of fluorophore, radionuclide, peptide, enzyme, antibody or antigen. More preferably, the fluorophore is a fluorescent compound selected from the group consisting of Hoechst 33342, Cy2, Cy3, Cy5, CypHer, coumarin, FITC, DAPI, Alexa 633 DRAQ5 and Alexa 488.

- 30 In a seventh aspect of the present invention, there is provided a method of treatment or prophylaxis of a subject comprising the steps of

- i) analysing a biological sample containing nucleic acid obtained from the subject to detect the presence or absence of at least one single

nucleotide polymorphism in SEQ ID NOS 1-36 or SEQ ID NOS 42-45, or the complement thereof, associated with a disease, condition or disorder related to prostate or breast cancer; and

- ii) treating the subject for the disease, condition or disorder if step i)
5 detects the presence of at least one single nucleotide polymorphism in SEQ ID NOS: 1-36 or SEQ ID NOS 42-45, or the complement thereof.

Treatment may take a variety of forms depending upon the nature of the cancer. Hormonal therapy is a widely used treatment for patients with metastatic 10 carcinoma of the prostate (Goethuys et al. (1997) Am J Clin Oncol. 20, 40-45). Such treatment may, for example, involve androgen deprivation by surgical (e.g. orchietomy) or androgen suppressive agents such as estrogens, 15 (e.g.diethylstilbestrol), antiandrogens (e.g. flutamide) and luteinising hormone-releasing hormone agonists (e.g. leuprolide). Radiotherapy using radionuclides, such as ³²Phosphorus or ⁸⁹Strontium, can be an effective treatment for the disease. There is also growing interest in the development of vaccines (Slovin 20 (2001) Hematol. Oncol. Clinic N. Am, 15, 477-496) or the use of gene therapeutic methods (Ferrer & Rodriguez (2001) Hematol Oncol Clinic of N. Am 15, 497-508) for the treatment of prostate cancer.

Suitably, the nucleic acid is selected from the group consisting of DNA, RNA and mRNA.

Preferably, the sample is analysed to detect the presence or absence of at least one single nucleotide polymorphism at a position selected from the group consisting of position [CYP3A4_IVS9 +187] of SEQ ID No. 1, position [CYP3A4, 25 1639 base pairs after the stop codon] of SEQ ID No. 2, position [CYP3A4, 945 base pairs after the stop codon] of SEQ ID No. 3, position [CYP3A4_5' region - 747] of SEQ ID No. 4, position [CYP3A4_ IVS7 -202] of SEQ ID No. 5, position [CYP3A4, 2204 base pairs after the stop codon] of SEQ ID No. 6, position [CYP3A4_ IVS2 -132] of SEQ ID No. 7, position [CYP3A4_IVS1 -868] of SEQ ID 30 No. 8, position [CYP3A4_5' region -847] of SEQ ID No. 9, position [CYP3A4, 766 base pairs after the stop codon] of SEQ ID No. 10, position [CYP3A4, 1454 base pairs after the stop codon] of SEQ ID No. 11, position [CYP3A4_IVS3 +1992] of SEQ ID No. 12, position [CYP3A4_IVS9 +841] of SEQ ID No. 13, position

[CYP3A4_IVS12 -473] of SEQ ID No. 14, position [CYP3A4_IVS12 +581] of SEQ ID No. 15, position [CYP3A4_IVS12 +586] of SEQ ID No. 16, position [CYP3A4_IVS12 +646] of SEQ ID No. 17, position [CYP3A4_IVS3 -734] of SEQ ID No. 18, position [CYP17_IVS1 -271] of SEQ ID No. 19, position [CYP17_IVS5 5 +75] of SEQ ID No. 20, position [CYP17_IVS1 +426] of SEQ ID No. 21, position [CYP17_IVS1 -99] of SEQ ID No. 22, position [CYP17_IVS1 -700] of SEQ ID No. 23, position [CYP17_IVS1 -565] of SEQ ID No. 24, position [CYP17_IVS3 +141] of SEQ ID No. 25, position [CYP17_5' region -1488] of SEQ ID No. 26, position [CYP17_5' region -1204] of SEQ ID No. 27, position [CYP17_IVS1 +466] of SEQ ID No. 28, position [CYP17, 712 base pairs after the stop codon] of SEQ ID No. 29, position [SRD5A2, 1356 base pairs after the stop codon (3' UTR)] of SEQ ID No. 30, position [SRD5A2, 849 base pairs after the stop codon (3' UTR)] of SEQ ID No. 31, position [SRD5A2_5' region -870] of SEQ ID No. 32, position [SRD5A2_5' region between -2036 and -2030] of SEQ ID No. 33, position [SRD5A2, 545 base pairs after the stop codon (3' UTR)] of SEQ ID No. 34, position [SRD5A2_IVS2+626] of SEQ ID No. 35, position [SRD5A2_5' region -8029] of SEQ ID No. 36, position [CYP3A4_IVS7+34] of SEQ ID No. 42, position [CYP3A4_5' region -1232] of SEQ ID No. 43, position [SRD5A2_5' region -3001] of SEQ ID No. 44, and position [SRD5A2, 1552 base pairs after the stop codon] of SEQ ID No. 45.

More preferably, at least one single nucleotide polymorphism is selected from the group consisting of [CYP3A4_IVS9 +187C>G] of SEQ ID No. 1, [CYP3A4, 1639 base pairs after the stop codon, A>T] of SEQ ID No. 2, [CYP3A4, 945 base pairs after the stop codon, A>T] of SEQ ID No. 3, [CYP3A4_5' region -747C>G] of SEQ ID No. 4, [CYP3A4_IVS7 -202C>T] of SEQ ID No. 5, [CYP3A4, 2204 base pairs after the stop codon, G>C] of SEQ ID No. 6, [CYP3A4_IVS2 -132C>T] of SEQ ID No. 7, [CYP3A4_IVS1 -868C>T] of SEQ ID No. 8, [CYP3A4_5' region -847A>T] of SEQ ID No. 9, [CYP3A4, 766 base pairs after the stop codon, delT] of SEQ ID No. 10, [CYP3A4, 1454 base pairs after the stop codon, C>T] of SEQ ID No. 11, [CYP3A4_IVS3 +1992T>C] of SEQ ID No. 12, [CYP3A4_IVS9 +841T>G] of SEQ ID No. 13, [CYP3A4_IVS12 -473T>G] of SEQ ID No. 14, [CYP3A4_IVS12 +581C>T] of SEQ ID No. 15, [CYP3A4_IVS12 +586G>A] of SEQ ID No. 16, [CYP3A4_IVS12 +646C>A] of SEQ ID No. 17,

- [CYP3A4_IVS3 -734G>A] of SEQ ID No. 18, [CYP17_IVS1 -271A>C] of SEQ ID No. 19, [CYP17_IVS5 +75C>G] of SEQ ID No. 20, [CYP17_IVS1 +426G>A] of SEQ ID No. 21, [CYP17_IVS1 -99C>T] of SEQ ID No. 22, [CYP17_IVS1 -700C>G] of SEQ ID No. 23, [CYP17_IVS1 -565G>A] of SEQ ID No. 24,
- 5 [CYP17_IVS3 +141A>T] of SEQ ID No. 25, [CYP17_5' region -1488C>G] of SEQ ID No. 26, [CYP17_5' region -1204C>T] of SEQ ID No. 27, [CYP17_IVS1 +466G>A] of SEQ ID No. 28, [CYP17, 712 base pairs after the stop codon, G>A] of SEQ ID No. 29, [SRD5A2, 1356 base pairs after the stop codon (3' UTR), A>C] of SEQ ID No. 30, [SRD5A2, 849 base pairs after the stop codon (3' UTR), A>G]
- 10 of SEQ ID No. 31, [SRD5A2_5' region -870G>A] of SEQ ID No. 32, [SRD5A2_5' region -2036(A)7-8] of SEQ ID No. 33, [SRD5A2, 545 base pairs after the stop codon (3' UTR), T>C] of SEQ ID No. 34, [SRD5A2_IVS2+626C>T] of SEQ ID No. 35, [SRD5A2_5' region -8029C>T] of SEQ ID No. 36, [CYP3A4_IVS7+34T>G] of SEQ ID No. 42, [CYP3A4_5' region -1232C>T] of SEQ ID No. 43, [SRD5A2_5'
- 15 region -3001G>A] of SEQ ID No. 44, and [SRD5A2, 1552 base pairs after the stop codon, G>A] of SEQ ID No. 45.

Optionally, at least one single nucleotide polymorphism is the complement of any of the single nucleotide polymorphisms hereinbefore described.

Suitably, the method counteracts the effect of at least one single
20 nucleotide polymorphism detected.

In a first embodiment of the seventh aspect, the method comprises treatment with a polynucleotide selected from the group consisting of polymorphic sequences SEQ ID NOS 1-36 or SEQ ID NOS 42-45, or their complement, provided that the polymorphic sequence, or the complement, does not contain at
25 least one single nucleotide polymorphism at a position selected from the group consisting of position [CYP3A4_IVS9 +187] of SEQ ID No. 1, position [CYP3A4, 1639 base pairs after the stop codon] of SEQ ID No. 2, position [CYP3A4, 945 base pairs after the stop codon,] of SEQ ID No. 3, position [CYP3A4_5' region -747] of SEQ ID No. 4, position [CYP3A4_ IVS7 -202] of SEQ ID No. 5, position
30 [CYP3A4, 2204 base pairs after the stop codon,] of SEQ ID No. 6, position [CYP3A4_ IVS2 -132] of SEQ ID No. 7, position [CYP3A4_ IVS1 -868] of SEQ ID No. 8, position [CYP3A4_5' region -847] of SEQ ID No. 9, position [CYP3A4, 766 base pairs after the stop codon] of SEQ ID No. 10, position [CYP3A4, 1454 base

pairs after the stop codon] of SEQ ID No. 11, position [CYP3A4_IVS3 +1992] of SEQ ID No. 12, position [CYP3A4_IVS9 +841] of SEQ ID No. 13, position [CYP3A4_IVS12 -473] of SEQ ID No. 14, position [CYP3A4_IVS12 +581] of SEQ ID No. 15, position [CYP3A4_IVS12 +586] of SEQ ID No. 16, position 5 [CYP3A4_IVS12 +646] of SEQ ID No. 17, position [CYP3A4_IVS3 -734] of SEQ ID No. 18, position [CYP17_IVS1 -271] of SEQ ID No. 19, position [CYP17_IVS5 +75] of SEQ ID No. 20, position [CYP17_IVS1 +426] of SEQ ID No. 21, position [CYP17_IVS1 -99] of SEQ ID No. 22, position [CYP17_IVS1 -700] of SEQ ID No. 23, position [CYP17_IVS1 -565] of SEQ ID No. 24, position [CYP17_IVS3 +141] 10 of SEQ ID No. 25, position [CYP17_5' region -1488] of SEQ ID No. 26, position [CYP17_5' region -1204] of SEQ ID No. 27, position [CYP17_IVS1 +466] of SEQ ID No. 28, position [CYP17, 712 base pairs after the stop codon] of SEQ ID No. 29, position [SRD5A2, 1356 base pairs after the stop codon (3' UTR)] of SEQ ID No. 30, position [SRD5A2, 849 base pairs after the stop codon (3' UTR)] of SEQ 15 ID No. 31, position [SRD5A2_5' region -870] of SEQ ID No. 32, position [SRD5A2_5' region between -2036 and -2030] of SEQ ID No. 33, position [SRD5A2, 545 base pairs after the stop codon (3' UTR)] of SEQ ID No. 34 position [SRD5A2_IVS2+626] of SEQ ID No. 35, position [SRD5A2_5' region - 8029] of SEQ ID No. 36, position [CYP3A4_IVS7+34] of SEQ ID No. 42, position 20 [CYP3A4_5' region -1232] of SEQ ID No. 43, position [SRD5A2_5' region -3001] of SEQ ID No. 44, and position [SRD5A2, 1552 base pairs after the stop codon] of SEQ ID No. 45.

Preferably, the polymorphic sequence does not contain at least one single nucleotide polymorphism selected from the group consisting of [CYP3A4_IVS9 25 +187C>G] of SEQ ID No. 1, [CYP3A4, 1639 base pairs after the stop codon, A>T] of SEQ ID No. 2, [CYP3A4, 945 base pairs after the stop codon, A>T] of SEQ ID No. 3, [CYP3A4_5' region -747C>G] of SEQ ID No. 4, [CYP3A4_IVS7 - 202C>T] of SEQ ID No. 5, [CYP3A4, 2204 base pairs after the stop codon, G>C] of SEQ ID No. 6, [CYP3A4_IVS2 -132C>T] of SEQ ID No. 7, [CYP3A4_IVS1 - 30 868C>T] of SEQ ID No. 8, [CYP3A4_5' region -847A>T] of SEQ ID No. 9, [CYP3A4, 766 base pairs after the stop codon, delT] of SEQ ID No. 10, [CYP3A4, 1454 base pairs after the stop codon, C>T] of SEQ ID No. 11, [CYP3A4_IVS3 +1992T>C] of SEQ ID No. 12, [CYP3A4_IVS9 +841T>G] of SEQ ID No. 13,

- [CYP3A4_IVS12 -473T>G] of SEQ ID No. 14, [CYP3A4_IVS12 +581C>T] of SEQ ID No. 15, [CYP3A4_IVS12 +586G>A] of SEQ ID No. 16, [CYP3A4_IVS12 +646C>A] of SEQ ID No. 17, [CYP3A4_IVS3 -734G>A] of SEQ ID No. 18, [CYP17_IVS1 -271A>C] of SEQ ID No. 19, [CYP17_IVS5 +75C>G] of SEQ ID No. 20, [CYP17_IVS1 +426G>A] of SEQ ID No. 21, [CYP17_IVS1 -99C>T] of SEQ ID No. 22, [CYP17_IVS1 -700C>G] of SEQ ID No. 23, [CYP17_IVS1 -565G>A] of SEQ ID No. 24, [CYP17_IVS3 +141A>T] of SEQ ID No. 25, [CYP17_5' region -1488C>G] of SEQ ID No. 26, [CYP17_5' region -1204C>T] of SEQ ID No. 27, [CYP17_IVS1 +466G>A] of SEQ ID No. 28, [CYP17, 712 base pairs after the stop codon, G>A] of SEQ ID No. 29, [SRD5A2, 1356 base pairs after the stop codon (3' UTR), A>C] of SEQ ID No. 30, [SRD5A2, 849 base pairs after the stop codon (3' UTR), A>G] of SEQ ID No. 31, [SRD5A2_5' region -870G>A] of SEQ ID No. 32, [SRD5A2_5' region -2036(A)7-8] of SEQ ID No. 33, [SRD5A2, 545 base pairs after the stop codon (3' UTR), T>C] of SEQ ID No. 34, [SRD5A2_IVS2+626C>T] of SEQ ID No. 35, [SRD5A2_5' region -8029C>T] of SEQ ID No. 36, [CYP3A4_IVS7+34T>G] of SEQ ID No. 42, [CYP3A4_5' region -1232C>T] of SEQ ID No. 43, [SRD5A2_5' region -3001G>A] of SEQ ID No. 44, and [SRD5A2, 1552 base pairs after the stop codon, G>A] of SEQ ID No. 45.

Preferably, the polymorphic sequence does not contain at least one single nucleotide polymorphism which is the complement of any of the single nucleotide polymorphisms hereinbefore described.

In a second embodiment of the seventh aspect, the method comprises treatment with a polypeptide which is encoded by a polynucleotide selected from the group consisting of polymorphic sequences SEQ ID NOS 1-36 and SEQ ID NOS 42-45 or their complement, provided that the polymorphic sequence, or the complement, does not contain at least one single nucleotide polymorphism at a position selected from the group consisting of position [CYP3A4_IVS9 +187] of SEQ ID No. 1, position [CYP3A4, 1639 base pairs after the stop codon] of SEQ ID No. 2, position [CYP3A4, 945 base pairs after the stop codon] of SEQ ID No. 3, position [CYP3A4_5' region -747] of SEQ ID No. 4, position [CYP3A4_IVS7 -202] of SEQ ID No. 5, position [CYP3A4, 2204 base pairs after the stop codon] of SEQ ID No. 6, position [CYP3A4_IVS2 -132] of SEQ ID No. 7, position [CYP3A4_IVS1 -868] of SEQ ID No. 8, position [CYP3A4_5' region -847] of SEQ

- ID No. 9, position [CYP3A4, 766 base pairs after the stop codon] of SEQ ID No. 10, position [CYP3A4, 1454 base pairs after the stop codon] of SEQ ID No. 11, position [CYP3A4_IVS3 +1992] of SEQ ID No. 12, position [CYP3A4_IVS9 +841] of SEQ ID No. 13, position [CYP3A4_IVS12 -473] of SEQ ID No. 14, position 5 [CYP3A4_IVS12 +581] of SEQ ID No. 15, position [CYP3A4_IVS12 +586] of SEQ ID No. 16, position [CYP3A4_IVS12 +646] of SEQ ID No. 17, position [CYP3A4_IVS3 -734] of SEQ ID No. 18, position [CYP17_IVS1 -271] of SEQ ID No. 19, position [CYP17_IVS5 +75] of SEQ ID No. 20, position [CYP17_IVS1 +426] of SEQ ID No. 21, position [CYP17_IVS1 -99] of SEQ ID No. 22, position 10 [CYP17_IVS1 -700] of SEQ ID No. 23, position [CYP17_IVS1 -565] of SEQ ID No. 24, position [CYP17_IVS3 +141] of SEQ ID No. 25, position [CYP17_5' region -1488] of SEQ ID No. 26, position [CYP17_5' region -1204] of SEQ ID No. 27, position [CYP17_IVS1 +466] of SEQ ID No. 28, position [CYP17, 712 base pairs after the stop codon] of SEQ ID No. 29, position [SRD5A2, 1356 base pairs 15 after the stop codon (3' UTR)] of SEQ ID No. 30, position [SRD5A2, 849 base pairs after the stop codon (3' UTR)] of SEQ ID No. 31, position [SRD5A2_5' region -870] of SEQ ID No. 32, position [SRD5A2_5' region between -2036 and -2030] of SEQ ID No. 33, position [SRD5A2, 545 base pairs after the stop codon (3' UTR)] of SEQ ID No. 34, position [SRD5A2_IVS2+626] of SEQ ID No. 35, 20 position [SRD5A2_5' region -8029] of SEQ ID No. 36, position [CYP3A4_IVS7+34] of SEQ ID No. 42, position [CYP3A4_5' region -1232] of SEQ ID No. 43, position [SRD5A2_5' region -3001] of SEQ ID No. 44 and position [SRD5A2, 1552 base pairs after the stop codon] of SEQ ID No. 45.

Preferably, the polymorphic sequence does not contain at least one single 25 nucleotide polymorphism selected from the group consisting of [CYP3A4_IVS9 +187C>G] of SEQ ID No. 1, [CYP3A4, 1639 base pairs after the stop codon, A>T] of SEQ ID No. 2, [CYP3A4, 945 base pairs after the stop codon, A>T] of SEQ ID No. 3, [CYP3A4_5' region -747C>G] of SEQ ID No. 4, [CYP3A4_IVS7 -202C>T] of SEQ ID No. 5, [CYP3A4, 2204 base pairs after the stop codon, G>C] 30 of SEQ ID No. 6, [CYP3A4_IVS2 -132C>T] of SEQ ID No. 7, [CYP3A4_IVS1 -868C>T] of SEQ ID No. 8, [CYP3A4_5' region -847A>T] of SEQ ID No. 9, [CYP3A4, 766 base pairs after the stop codon, delT] of SEQ ID No. 10, [CYP3A4, 1454 base pairs after the stop codon, C>T] of SEQ ID No. 11, [CYP3A4_IVS3

- +1992T>C] of SEQ ID No. 12, [CYP3A4_IVS9 +841T>G] of SEQ ID No. 13, [CYP3A4_IVS12 -473T>G] of SEQ ID No. 14, [CYP3A4_IVS12 +581C>T] of SEQ ID No. 15, [CYP3A4_IVS12 +586G>A] of SEQ ID No. 16, [CYP3A4_IVS12 +646C>A] of SEQ ID No. 17, [CYP3A4_IVS3 -734G>A] of SEQ ID No. 18, 5 [CYP17_IVS1 -271A>C] of SEQ ID No. 19, [CYP17_IVS5 +75C>G] of SEQ ID No. 20, [CYP17_IVS1 +426G>A] of SEQ ID No. 21, [CYP17_IVS1 -99C>T] of SEQ ID No. 22, [CYP17_IVS1 -700C>G] of SEQ ID No. 23, [CYP17_IVS1 -565G>A] of SEQ ID No. 24, [CYP17_IVS3 +141A>T] of SEQ ID No. 25, [CYP17_5' region -1488C>G] of SEQ ID No. 26, [CYP17_5' region -1204C>T] of 10 SEQ ID No. 27, [CYP17_IVS1 +466G>A] of SEQ ID No. 28, [CYP17, 712 base pairs after the stop codon, G>A] of SEQ ID No. 29, [SRD5A2, 1356 base pairs after the stop codon (3' UTR), A>C] of SEQ ID No. 30, [SRD5A2, 849 base pairs after the stop codon (3' UTR), A>G] of SEQ ID No. 31, [SRD5A2_5' region -870G>A] of SEQ ID No. 32, [SRD5A2_5' region -2036(A)7-8] of SEQ ID No. 33, 15 [SRD5A2, 545 base pairs after the stop codon (3' UTR), T>C] of SEQ ID No. 34, [SRD5A2_IVS2+626C>T] of SEQ ID No. 35, [SRD5A2_5' region -8029C>T] of SEQ ID No. 36, [CYP3A4_IVS7+34T>G] of SEQ ID No. 42, [CYP3A4_5' region -1232C>T] of SEQ ID No. 43, SRD5A2_5' region -3001G>A] of SEQ ID No. 44, and [SRD5A2, 1552 base pairs after the stop codon, G>A] of SEQ ID No. 45.

20 Suitably, the polymorphic sequence does not contain at least one single nucleotide which is the complement of any of the single nucleotide polymorphisms as hereinbefore described.

25 In a third embodiment of the seventh aspect, the method comprises treatment with an antibody that binds specifically with a polypeptide encoded by a polynucleotide selected from the group consisting of SEQ ID NOS 1-34, or SEQ ID NOS 42-45, or the complement thereof.

According to an eighth aspect of the present invention, there is provided a 30 method for predicting the genetic ability of a subject or an organism to metabolise a chemical, the method comprising analysing a biological sample containing nucleic acid obtained from the subject or organism to detect the presence or absence of one or more single nucleotide polymorphisms at a position selected from the group consisting of position [CYP3A4_IVS9 +187] of SEQ ID No. 1, position [CYP3A4, 1639 base pairs after the stop codon] of SEQ ID No. 2,

position [CYP3A4, 945 base pairs after the stop codon] of SEQ ID No. 3, position [CYP3A4_5' region -747] of SEQ ID No. 4, position [CYP3A4_ IVS7 -202] of SEQ ID No. 5, position [CYP3A4, 2204 base pairs after the stop codon] of SEQ ID No. 6, position [CYP3A4_ IVS2 -132] of SEQ ID No. 7, position [CYP3A4_ IVS1 -868] of SEQ ID No. 8, position [CYP3A4_5' region -847] of SEQ ID No. 9, position [CYP3A4, 766 base pairs after the stop codon] of SEQ ID No. 10, position [CYP3A4, 1454 base pairs after the stop codon] of SEQ ID No. 11, position [CYP3A4_ IVS3 +1992] of SEQ ID No. 12, position [CYP3A4_ IVS9 +841] of SEQ ID No. 13, position [CYP3A4_ IVS12 -473] of SEQ ID No. 14, position [CYP3A4_ IVS12 +581] of SEQ ID No. 15, position [CYP3A4_ IVS12 +586] of SEQ ID No. 16, position [CYP3A4_ IVS12 +646] of SEQ ID No. 17, position [CYP3A4_ IVS3 -734] of SEQ ID No. 18, position [CYP17_ IVS1 -271] of SEQ ID No. 19, position [CYP17_ IVS5 +75] of SEQ ID No. 20, position [CYP17_ IVS1 +426] of SEQ ID No. 21, position [CYP17_ IVS1 -99] of SEQ ID No. 22, position [CYP17_ IVS1 -700] of SEQ ID No. 23, position [CYP17_ IVS1 -565] of SEQ ID No. 24, position [CYP17_ IVS3 +141] of SEQ ID No. 25, position [CYP17_5' region -1488] of SEQ ID No. 26, position [CYP17_5' region -1204] of SEQ ID No. 27, position [CYP17_ IVS1 +466] of SEQ ID No. 28, position [CYP17, 712 base pairs after the stop codon] of SEQ ID No. 29, position [SRD5A2, 1356 base pairs after the stop codon (3' UTR)] of SEQ ID No. 30, position [SRD5A2, 849 base pairs after the stop codon (3' UTR)] of SEQ ID No. 31, position [SRD5A2_5' region -870] of SEQ ID No. 32, position [SRD5A2_5' region between -2036 and -2030] of SEQ ID No. 33, position [SRD5A2, 545 base pairs after the stop codon (3' UTR)] of SEQ ID No. 34, position [SRD5A2_ IVS2+626] of SEQ ID No. 35, position [SRD5A2_5' region -8029] of SEQ ID No. 36, position [CYP3A4_ IVS7+34] of SEQ ID No. 42, position [CYP3A4_5' region -1232] of SEQ ID No. 43, position [SRD5A2_5' region -3001] of SEQ ID No. 44, and position [SRD5A2, 1552 base pairs after the stop codon] of SEQ ID No. 45.

Wherein the presence of a polymorphism at one or more of the positions is indicative of the subject's or organism's ability or inability to metabolise the chemical.

Preferably, the analysis comprises detecting the presence or absence of one or more single nucleotide polymorphisms selected from the group consisting

of [CYP3A4_IVS9 +187C>G] of SEQ ID No. 1, [CYP3A4, 1639 base pairs after the stop codon, A>T] of SEQ ID No. 2, [CYP3A4, 945 base pairs after the stop codon, A>T] of SEQ ID No. 3, [CYP3A4_5' region -747C>G] of SEQ ID No. 4, [CYP3A4_ IVS7 -202C>T] of SEQ ID No. 5, [CYP3A4, 2204 base pairs after the stop codon, G>C] of SEQ ID No. 6, [CYP3A4_ IVS2 -132C>T] of SEQ ID No. 7, [CYP3A4_ IVS1 -868C>T] of SEQ ID No. 8, [CYP3A4_5' region -847A>T] of SEQ ID No. 9, [CYP3A4, 766 base pairs after the stop codon, delT] of SEQ ID No. 10, [CYP3A4, 1454 base pairs after the stop codon, C>T] of SEQ ID No. 11, [CYP3A4_ IVS3 +1992T>C] of SEQ ID No. 12, [CYP3A4_ IVS9 +841T>G] of SEQ ID No. 13, [CYP3A4_ IVS12 -473T>G] of SEQ ID No. 14, [CYP3A4_ IVS12 +581C>T] of SEQ ID No. 15, [CYP3A4_ IVS12 +586G>A] of SEQ ID No. 16, [CYP3A4_ IVS12 +646C>A] of SEQ ID No. 17, [CYP3A4_ IVS3 -734G>A] of SEQ ID No. 18, [CYP17_ IVS1 -271A>C] of SEQ ID No. 19, [CYP17_ IVS5 +75C>G] of SEQ ID No. 20, [CYP17_ IVS1 +426G>A] of SEQ ID No. 21, [CYP17_ IVS1 -99C>T] of SEQ ID No. 22, [CYP17_ IVS1 -700C>G] of SEQ ID No. 23, [CYP17_ IVS1 -565G>A] of SEQ ID No. 24, [CYP17_ IVS3 +141A>T] of SEQ ID No. 25, [CYP17_5' region -1488C>G] of SEQ ID No. 26, [CYP17_5' region -1204C>T] of SEQ ID No. 27, [CYP17_ IVS1 +466G>A] of SEQ ID No. 28, [CYP17, 712 base pairs after the stop codon, G>A] of SEQ ID No. 29, [SRD5A2, 1356 base pairs after the stop codon (3' UTR), A>C] of SEQ ID No. 30, [SRD5A2, 849 base pairs after the stop codon (3' UTR), A>G] of SEQ ID No. 31, [SRD5A2_5' region -870G>A] of SEQ ID No. 32, [SRD5A2_5' region -2036(A)7-8] of SEQ ID No. 33, [SRD5A2, 545 base pairs after the stop codon (3' UTR), T>C] of SEQ ID No. 34, [SRD5A2_ IVS2+626C>T] of SEQ ID No. 35, [SRD5A2_5' region -8029C>T] of SEQ ID No. 36, [CYP3A4_ IVS7+34T>G] of SEQ ID No. 42, [CYP3A4_5' region -1232C>T] of SEQ ID No. 43, [SRD5A2_5' region -3001G>A] of SEQ ID No. 44, and [SRD5A2, 1552 base pairs after the stop codon, G>A] of SEQ ID No. 45.

Preferably, the method further comprises predicting the response of the subject or the organism to the chemical by their ability or inability to metabolise the chemical.

Suitably, the chemical is a drug or a xenobiotic.

Suitably, the organism is selected from the group consisting of bacterium, fungus, protozoa, alga, insect, nematode, amphibian, plant, fish and mammal.

In a ninth aspect of the present invention, there is provided a vector comprising a polynucleotide selected from the group consisting of a nucleotide sequence comprising one or more polymorphic sequences of SEQ ID NOS 1-34 or SEQ ID NOS 42-45.

In a tenth aspect of the present invention, there is provided a host cell transformed with the vector hereinbefore described.

Preferably, the host cell is selected from the group consisting of, 10 bacterium, fungus, protozoa, alga, insect, nematode, amphibian, plant, fish and mammal. More preferably the mammalian cell is a human cell.

In an eleventh aspect of the present invention, there is provided a method of metabolising a chemical using the host cell as hereinbefore described.

In a twelfth aspect of the present invention, there is provided a method for 15 making a host cell resistant to a chemical, the method comprising transforming a cell with any of the polynucleotides or with any of the vectors as hereinbefore described.

In a thirteenth aspect of the present invention, there is provided an isolated 20 haplotype selected from the group consisting of CYP3A4_Hap4 and SRD52_Hap3.

Preferably, the isolated CYP3A4_Hap4 haplotype consists of Allele T at [CYP3A4_5' region -1232C>T], Allele C at [CYP3A4_5' region -747C>G], Allele G at [CYP3A4_5' region -392A>G], Allele G at [CYP3A4_IVS7+34T>G], Allele T at [CYP3A4_IVS7-202C>T], Allele G at [CYP3A4_stop+766T>G], Allele C at 25 [CYP3A4_stop+1454C>T], Allele T at [CYP3A4_stop+1639A>T] and Allele C at [CYP3A4_stop+2204G>C].

Preferably, the isolated SRD52_Hap3 haplotype consists of Allele C at [SRD5A2_5' region -8029C>T], Allele G at [SRD5A2_5' region -3001G>A], Allele G at [SRD5A2_145G>A], Allele G at [SRD5A2_265G>C], Allele T at 30 [SRD5A2_IVS2+626C>T], Allele G at [SRD5A2_stop+1552G>A], Allele G at [SRD5A2_stop+3059G>A] and Allele G at [SRD5A2_stop+9301G>C].

In a fourteenth aspect of the present invention, there is provided a method for diagnosing a genetic susceptibility for a disease, condition or disorder related

to prostate or breast cancer in a subject, the method comprising analysing a biological sample obtained from the subject to detect the presence or absence of a haplotype as hereinbefore described.

In a fifteenth aspect of the present invention, there is provided a method of diagnosing a genetic susceptibility for a disease, condition or disorder related to prostate or breast cancer in a subject, the method comprising adding an antibody to a polypeptide present in a sample obtained from the subject, which polypeptide is encoded by a haplotype as hereinbefore described, or the complement thereof, and detecting specific binding of the antibody to the polypeptide.

In a sixteenth aspect of the present invention, there is provided a method of treatment or prophylaxis of a subject comprising the steps of

- i) analysing a sample of biological material containing a nucleic acid obtained from the subject to detect the presence or absence of at least one haplotype as hereinbefore described, or the complement thereof, associated with a disease, condition or disorder related to prostate or breast cancer; and
- ii) treating the subject for the disease, condition or disorder if step i) detects the presence of at least one haplotype, or the complement thereof.

Preferably, the method comprises treatment with a portion of the isolated CYP3A4_Hap4 haplotype as hereinbefore described wherein the portion of the haplotype does not consist of at least one allele from the group consisting of Allele T at [CYP3A4_5' region -1232C>T], Allele C at [CYP3A4_5' region -747C>G], Allele G at [CYP3A4_5' region -392A>G], Allele G at [CYP3A4_IVS7+34T>G], Allele T at [CYP3A4_IVS7-202C>T], Allele G at [CYP3A4_stop+766T>G], Allele C at [CYP3A4_stop+1454C>T], Allele T at [CYP3A4_stop+1639A>T] and Allele C at [CYP3A4_stop+2204G>C].

Optionally, the method comprises treatment with a portion of the isolated SRD5A2_Hap3 haplotype as hereinbefore described wherein the portion of the haplotype does not comprise of at least one allele from the group consisting of Allele C at [SRD5A2_5' region -8029C>T], Allele G at [SRD5A2_5' region -3001G>A], Allele G at [SRD5A2_145G>A], Allele G at [SRD5A2_265G>C], Allele T at [SRD5A2_IVS2+626C>T], Allele G at

[SRD5A2_stop+1552G>A], Allele G at [SRD5A2_stop+3059G>A] and Allele G at [SRD5A2_stop+9301G>C].

Brief Description of the Figures

- 5 Figure 1 illustrates the Testosterone Biosynthetic Pathway. Figures 2A, 2B, and 2C show the location and allele frequencies of selected SNPs in *CYP17A1* (FIG. 2A), *CYP3A4* (FIG. 2B), and *SRD5A2* (FIG. 2C), together with the major haplotypes. Solid black triangles refer to the locations of novel SNPs while white triangles denote locations of known SNPs. All haplotypes
10 with frequency $\geq 3\%$ in at least one of the four sub-groups (European Americans(EA), African Americans(AA), cases, controls) are given, along with their case and control frequencies. Composite haplotype refers to all the remaining rare haplotypes pooled together.

15 **Detailed Description of the Invention**

Approach

A two-phase study was undertaken of *CYP17*, *CYP3A4*, and *SRD5A2*, to evaluate the relationship between their genotypes/haplotypes and prostate cancer. Phase I of the study first searched for single nucleotide polymorphisms (SNPs) in these genes by re-sequencing 24 individuals from Coriell Polymorphism Discovery Resource (Coriell Cell Repositories, Camden, NJ), approximately 100 men from prostate cancer case-control sibships, and by leveraging public databases. Eighty-seven SNPs were discovered and genotyped in 276 men from case-control sibships. Those SNPs exhibiting preliminary case-control allele frequency differences, or distinguishing (i.e., 'tagging') common haplotypes across the genes, were identified for further study (24 SNPs total). In Phase II of the study, the 24 SNPs were genotyped in an additional 841 men from case-control sibships. Finally, associations between genotypes/haplotypes in *CYP17*, *CYP3A4*, and *SRD5A2* and prostate cancer were evaluated in the total
25 case-control sample of 1,117 brothers.
30

Subjects

A family-based association study population of 1,117 men (637 cases, 480 controls) was recruited between January 1998 and January 2001 from the major medical institutions in the greater Cleveland area and from the Henry Ford Health System in Detroit. The study was approved by the collaborating institution's Review Boards, and informed consent was obtained from all participating men. Characteristics of the study population have been described (Casey et al. (2002) Nat Genet 32, 581-583).

Men diagnosed with histologically confirmed prostate cancer at age 73 or younger were invited to join the study if they had a living unaffected brother who was either older than the proband, or at most eight years younger than the age at diagnosis of the proband. This age restriction was selected in an attempt to increase the potential for genetic factors affecting disease, and to help make certain that the controls were not unaffected due simply to being of a younger age. To help confirm that the controls were not diseased, the prostate specific antigen (PSA) levels in their blood was tested. Individuals in the study with PSA levels above 4 ng/ml were retained as 'controls' unless a subsequent diagnosis of prostate cancer was made, at which time they were reclassified as cases. Keeping them in the study was important because automatically excluding men with elevated PSA levels regardless of their ultimate prostate cancer status can lead to biased estimates of association (Lubin & Hartge (1984) Am J Epidemiol 120, 791-793; Poole (1999) Am J Epidemiol 150, 547-551). Information on the cases' Gleason score (a measure of prostate cancer cellular differentiation) and tumor stage (TNM, tumor-node-metastasis stage) was determined from their medical records. The study population was comprised of 90% Caucasians (European Americans), and the remainder primarily African American (9%).

Polymorphism discovery

Polymorphisms were discovered by sequencing individuals from prostate cancer sibships (67 cases and 43 controls for CYP17 and CYP3A4, and 51 cases and 41 controls for SRD5A2). Of the 110 individuals sequenced for CYP17 and CYP3A4, 106 were Caucasian, 2 were Hispanic, and 2 were African-American. Of the 92 individuals sequenced for SRD5A2, 84 were Caucasian and 8 were

African American. In addition, the 24 individuals from the Coriell Cell Repository Polymorphism Discovery Resource (Collins et al. (1998) Genome Res 8, 1229-1231) were sequenced against the three genes.

PCR primers covering coding regions, splice sites, 5' and 3' regions, and parts of introns of *CYP3A4* (reference sequence No. 39), *CYP17* (reference sequence No. 40), and *SRD5A2* (reference sequence No. 41), were designed using the Primer3 program (<http://www.genome.wi.mit.edu/cgi-bin/primer/primer3.cgi>). PCR products were sequenced using energy transfer dye terminators on the Amersham Bioscience's MegaBACE1000 (Amersham Biosciences, Sunnyvale, California) using standard protocols. Sequence analysis was performed by assigning quality values (Phred; University of Washington, Seattle, Washington), assembling contigs (Phrap; University of Washington), automated identification of candidate heterozygote SNPs (PolyPhred, University of Washington), automated identification of candidate homozygote SNPs (High Quality Mismatch, Amersham Biosciences, Sunnyvale, California) and by operator confirmation (Consed, University of Washington). All polymorphisms were confirmed by Single Nucleotide Primer Extension (SNuPE) assay (Amersham Biosciences, Sunnyvale, California)

In addition to novel polymorphisms discovered in this study, several publicly available SNPs from the dbSNP (<http://www.ncbi.nlm.nih.gov/SNP/>), Utah Genome Center (UGC) (<http://www.genome.utah.edu/genesnps/genes/>), the Human Cytochrome P450 Allele Nomenclature Committee (HCANC) (<http://www.imm.ki.se/CYPalleles/>), the Human Gene Mutation Database (HGMD) (<http://archive.uwcm.ac.uk/uwcm/mg/hgmd0.html>) and the Human Genic Bi-Allelic SEquences (HGBASE) Release 8 (<http://hbase.interactiva.de/>) were searched for *CYP17*, *CYP3A4*, and *SRD5A2*. For the *Androgen Receptor* gene, several publicly available SNPs from dbSNP, HGBASE and the Androgen Receptor Mutation Database (ARMD) (<http://ww2.mcgill.ca/androgendb/>) were included.

30

Genotyping

In Phase I, 276 individuals from prostate cancer sibships were genotyped for 29 SNPs (11 novel, 18 known) in *CYP17*, 33 SNPs (18 novel, 15 known) in

CYP3A4, and 25 SNPs (5 novel, 20 known) in SRD5A2. The individuals included 153 cases and 123 brother controls, 70% European Americans and 30% African Americans. The information from the 276 men was then used to determine initial case-control frequency differences and haplotype tagging. The results were then 5 used to determine which SNPs should be genotyped in the remainder of the study population (i.e. in Phase II of the study).

In Phase II, a total of 24 SNPs were genotyped in 841 individuals, giving information on a total of 1117 individuals for Phase II.

Genotyping was performed utilizing the Single Nucleotide Primer 10 Extension (SNuPE) assay on the MegaBACE1000 (Amersham Biosciences, Sunnyvale California) capillary electrophoresis platform (Amersham Biosciences). The Primer3 program (<http://www.genome.wi.mit.edu/cgi-bin/primer/primer3.cgi>) was used to design PCR primers to amplify regions containing the SNPs of interest.. PCR fragments were purified with 0.5U of Shrimp Alkaline Phosphatase 15 (Amersham Biosciences) and 10U of Exonuclease I (Amersham Biosciences) by incubating at 37°C for 40 min and at 85°C for 15 min. The single base extension (SBE) reaction was set with 1 pmol of HPLC purified SBE primer, 2-4 µl of SNuPe Premix (Amersham Biosciences), 2-4 µl of sterile water, and 1 µl of purified PCR fragment, and incubated at 25 cycles of 96°C for 10 sec, 50°C for 5 20 sec, and 60°C for 10 sec. For phase I of the study, SNuPe reactions were set in 96-well plates at 10 µl volume and purified with AutoSeq™96 Plates (Amersham Biosciences) prior to injecting into the MegaBACE1000 system. For phase II of the study, SNuPe reactions were set in 384-well plates at 5-6 µl volume, diluted with 3-4 µl of sterile water and purified with 1 U of Shrimp Alkaline Phosphatase 25 (Amersham Biosciences) by incubating at 37°C for 45 min and at 85°C for 15 min prior to injecting into the MegaBACE4000 system. In cases where low signal was anticipated (due to faint PCR), SNuPe reactions were desalted using a custom 384-well filter plate incorporating modified size-exclusion technology (Millipore Corporation, Billerica, MA). The Sierra Genotyping LWS™ (Amersham 30 Biosciences) system was utilized for the tracking and management of samples and laboratory activity for Phase II of the study.

Specific software (SNPriDe) was developed for the automated design of SNuPE primers. Using a purified PCR fragment containing the SNP of interest as

a template, a third, internal primer was designed so that the 3' end anneals adjacent to the polymorphic base-pair, and during the SNuPE reaction a fluorescently labeled dideoxynucleotide (terminator) was added onto the primer. A separate software package has been developed (SNP ProfilerTM, Amersham Biociences) that automatically processes the signal data and outputs the maximum likelihood SNP genotypes. The system includes a user interface for editing and verification.

Three SNPs, SRD5A2_SNP20 (V89L), SRD5A2_SNP22 (A49T) and CYP17-_SNP29(-34>C) were analysed by restriction enzyme digestion (Cicek et al., unpublished data).

Proofreading genotype data

A large number of haplotypes inferred during initial rounds of haplotyping implied erroneous genotype data. A phylogenetic study of inferred haplotypes was performed to reveal the relationships between different haplotypes. All haplotypes differing from another haplotype by only one SNP, and being represented by only one individual, were subject to inspection. Genotype data for the individual at stake were reanalysed by SNP ProfilerTM (Amersham Biosciences) to exclude the possibility of an incorrect genotype. Rounds of phylogenetic study of haplotypes, followed by reanalysing suspicious genotypes and inferring new haplotypes were applied until no more incorrect genotypes could be found. Three to six rounds were applied for each of the genes.

Haplotyping

Alleles within each of the three candidate genes were in strong linkage disequilibrium with one another. Thus, for each gene, haplotypes were estimated using the resulting genotypes, by disease status and within major ethnic groups using the software PHASE. This program uses Markov chain Monte Carlo to estimate haplotypes, imputes information for missing genotypes, and incorporates a statistical model for the distribution of unresolved haplotypes based on coalescent theory (Stephens et al. (2001) Am J Hum Genet 68, 978-989).

Haplotypes and haplotype tagging SNPs were first determined among the 276 men genotyped for Phase I of the study, where tagging SNPs was necessary to define the most common haplotypes (e.g., >5%). After completing genotyping on the entire study population (Phase II of the study), the resulting data were 5 used to estimate haplotypes.

Association analysis

Case versus control allele frequencies were first compared within major ethnic groups. Then the association between the resulting genotypes/haplotypes 10 and prostate cancer risk was evaluated by calculating odds ratios (OR, estimates of relative risk) and 95% confidence intervals from conditional logistic regression with family as the matching variable, using a robust variance estimator that incorporates familial correlations. This is a standard approach for analyzing sibling matched case-control data, although sibling sets without any controls do 15 not contribute any information (197 cases total here) (Breslow and Day (1980) IARC Sci Publ 32, 335-338). In the analyses of CYP17, CYP3A4, and SRD5A2 a log-additive coding was used which treats the most common polymorphism (or haplotype) as the null-risk referent group and assumes that the relative risk of carrying one polymorphism (or haplotype) is the square-root of the risk of carrying 20 two. Since haplotypes were estimated for these three genes, the probabilities of observed haplotypes were used in the analyses (Schaid et al. (2002) Am J Hum Genet 70, 425-434).

To control for potential confounding, age was adjusted for in all regression models. In addition to looking at the main effects of each SNP or haplotype, the 25 analyses were also stratified by the case's disease aggressiveness, where high aggressiveness was defined by TNM stage \geq T2B or Gleason score \geq 7; and low aggressiveness by TNM stage $<$ T2B and Gleason score $<$ 7. All statistical analyses were undertaken with the S+ software (version 6.0, Insightful Corp, 2001).

30

Polymorphism discovery (Phase I)

A total of 34 novel SNPs were detected: 11 in CYP17, 18 in CYP3A4, and 5 in SRD5A2 (Table 2). In addition, 11 SNPs were "rediscovered" from the public

databases. Including these 11 SNPs, 53 SNPs were selected in total from the databases: 18 in *CYP17*, 15 in *CYP3A4*, and 20 in *SRD5A2*. These were chosen based on the intention to obtain an even distribution of SNPs across the genes and the availability in the databases at that time (January-April 2001). Twenty-one SNPs were chosen from dbSNP, 27 from GeneSNPs, 12 from HGMD, 8 from HGVbase, and 2 from HCANC (the total number of SNPs listed here exceeds 53 as several SNPs were present in multiple databases). Table 3 lists all 87 SNPs (34 novel, 53 from databases), with their origins, exact locations and allele frequencies.

Among the 34 novel SNPs, 26 (76%) were discovered in both the Coriell and case-control populations. Three SNPs were only observed in the Coriell data, and the remaining five were found only in the prostate cancer sibships. Of these five, three were relatively rare (allele frequencies 0.2-1.5%), suggesting that they may not have been discovered in the Coriell population simply due to its small sample size (n=24). Nevertheless, the other two SNPs that were only found in the prostate cancer sibships (*CYP3A4_SNP12* and *CYP17_SNP42*) showed higher allele frequencies (7.5% and 21.8%, respectively), suggesting that they might be specific to the prostate cancer case-control population.

20 Genotyping and Haplotyping

Phase I

The 87 SNPs were genotyped in a total of 276 males from prostate cancer sibships (29 in *CYP17*, 33 in *CYP3A4*, and 25 in *SRD5A2*). Eleven SNPs gave ambiguous genotyping results. This might have been due to unoptimized genotyping reactions or primer self-priming due to secondary structures and unspecificity of PCR and/or SNuPe primers, especially within the Cytochrome P450 gene family. Of the remaining 76 SNPs, a similar percentage of those novel (41%, or 12/29) and known (38%, or 18/47) had allele frequencies $\geq 10\%$. However, 19/47 (40%) of the known SNPs were found to be monoallelic in the 276 men, suggesting that they are either extremely rare, population specific, or artifacts.

In light of these results, the 11 SNPs with ambiguous genotype results, the 19 SNPs that appeared monoallelic in all samples tested, and an additional four

that were seen only in the Coriell Diversity Set but not in the prostate cancer sibships were excluded. Also excluded was one SNP because >15% of data was missing (due to a low success rate for PCR and SNuPe reaction). Finally, 12 SNPs were excluded because their minor allele frequencies were less than 5% in 5 all of the following four subgroups: European Americans, African Americans, cases, and controls (Table 3). Following these exclusions, a total of 40 SNPs remained for consideration in the Phase II association study (14 in CYP17, 16 in CYP3A4, and 10 in SRD5A2) (Table 3).

Using the preliminary genotype information, haplotypes estimated with a 10 frequency $\geq 5\%$ in at least one of the four major subgroups (i.e., European American, African American, cases, or controls) were identified. Each gene had a single "common" haplotype, with a frequency ranging between 42 and 51 percent (not shown). Haplotype tagging SNPs were identified and used as a basis for inclusion in Phase II of the study. In addition, non-tagging SNPs exhibiting 15 suggestive case versus control allele frequencies were considered (Table 3). Altogether 24 SNPs were selected for Phase II.

Phase II

The 24 tagging and suggestive SNPs were genotyped in an additional 841 20 men, giving information on a total of 1117 individuals for Phase II. Case versus control allele frequency differences by ethnic group are presented in Table 3. Haplotypes estimated with a frequency $\geq 3\%$ in at least one of the four major subgroups of the study population were identified. The major haplotypes for 25 CYP17, CYP3A4, and SRD5A2 along with their frequencies are presented in Figure 2.

Association analyses

In the association analyses, no associations between CYP17 30 genotypes/haplotypes and prostate cancer were detected. When looking at CYP3A4, SNP1 was found to be associated with an approximately 50% reduction in risk ($OR=0.53$, 95% CI=0.29-0.99; p -value=0.05) (Table 4A). Furthermore, the haplotype analysis revealed an association with an approximately 55% decrease in prostate cancer risk and CYP3A4_Hap4 ($OR=0.46$, 95% CI=0.21-1.02; p -

value=0.05) (Table 5A). Two SNPs in SRD5A2 were also found to be associated with an approximately 50% increase in prostate cancer risk: SRD5A2_SNP26 (OR=1.57, 95% CI=1.08-2.30; p-value=0.02), and SRD5A2_SNP20 (V89L) (OR=1.56, 95% CI=1.08-2.25; p-value=0.02) (Table 4A). These SNPs, however, 5 were in almost complete linkage disequilibrium.

When the study population was stratified by high and low aggressiveness of prostate cancer, several interesting associations emerged (see Table 4B and 10 5B). First, five SNPs in CYP3A4 showed statistically significant associations with low aggressiveness: CYP3A4_SNP11 (CYP3A4*1B) (OR=0.20, 95% CI=0.06-0.67; p-value=0.009), CYP3A4_SNP47 (OR=0.19, 95% CI=0.06-0.62; p-value=0.006), CYP3A4_SNP1 (OR=0.21, 95% CI=0.05-0.86; p-value=0.03), CYP3A4_SNP25 (OR=6.54, 95% CI=0.99-43.10; p-value=0.05) and 15 CYP3A4_SNP15 (OR=0.41, 95% CI=0.22-0.79; p-value=0.007). Second, an association was observed between CYP3A4_Hap4 and low aggressiveness 20 (OR=0.06, 95% CI=0.008-0.50; p-value=0.009) (Table 5B). Finally, an inverse association was observed between SRD5A2_Hap3 and high aggressiveness (OR=0.52, 95% CI=0.29-0.91; p-value=0.02) (Table 5B).

Table 6 provides annotation of CYP3A4, CYP17 and SRD5A2 genomic sequences.

20 All of the SNPs disclosed in the present invention have utility in the prognosis and diagnosis of prostate and breast cancer.

Although this invention has been described in terms of certain preferred embodiments, other embodiments which will be apparent to those of ordinary skill in the art in view of the disclosure herein are also within the scope of this 25 invention. Accordingly, the scope of the invention is intended to be defined only by reference to the appended claims. All documents cited herein are incorporated herein by reference in their entirety.

Table 1. Known polymorphisms in CYP17, CYP3A4, and SRD5A2 associated with increased risk for prostate cancer or increased risk for progression of prostate cancer.

Gene	Polymorphism	Association with	References
CYP17	-34 bp T→C	increased risk	Lunn et al. (1999) <i>Carcinogenetics</i> 20, 1727-1731 Wadeilus et al. (1999) <i>Pharmacogenetics</i> 9, 635-639 Gsur et al. (2000) <i>International Journal of Cancer</i> 87, 434-437 Habuchi et al. (2000) <i>Cancer Res</i> 60, 5710-5713 Kittles et al. (2001) <i>Cancer Epidemiol Biomarkers Prev</i> 10, 943-947
CYP3A4	-392 bp A→G	increased risk, progression	Rebbeck et al. (1998) <i>J Nat Cancer Inst</i> 90, 1225-1229
SRD5A2	145G>A (A49T)	increased risk, progression	Paris et al. (1999) <i>Cancer Epidemiol Biomarkers Prev</i> 8, 901-905 Makridakis et al. (1999) <i>Lancet</i> 354, 975-978
SRD5A2	265G>C (V89L)	increased risk, progression	Jaffe et al. (2000) <i>Cancer Res</i> 60, 1626-1630 Nam et al. (2001) <i>Urology</i> 57, 199-204

Table 2(a) : Novel SNPs

SNP identified in Seq ID Number	Novel SNPs	Location	Comment	Sequence
1 CYP3A4_SNP2	Intron 9 [IVS9 +187C>G]			ATGAGAAATTCTGCCAACATAAGCAGAACACATGTT TGAATGTTATAAGTGGTAGTTGGAGGCACCTTCTAGA GGCATGCAGGCCATAGATAGCCATGTT(C/G)TAAGAGT AAAGGGCAACCCCTAACGAAACCTGGCATGCTAGAAA GTCAGTCGCGCTGTGGATCACCTACATCAGATCA AATGCCAATTCTAGCCCTC
2 CYP3A4_SNP5	1639 base pairs after the stop codon, A>T		Possible association (OR 0.51, 95% CI 0.26-0.99, p=0.05) with prostate cancer in the European population	TGATAGAACGCCAGGCTTCTCACCTTGAGAACAGGA GTCATGGATTTCAGAAAGGGAGAAAACTAGCATGAACT CTATGAAATTAGATTGGAAATGGATGTA(A/T)CCGTGTA TATTCAATACCCCTTAGATAGATAGATGGTAGATAG ATGATAGATAGGTAACAGATAGATGACAGATAATGAG ATAGATAGATGTAATGTA
3 CYP3A4_SNP6	945 base pairs after the stop codon, A>T			GGCAGGAGAACTTCACTTGAAGGGATCTGGGGGGGATGTT GAAGTGAGCTGAGATTGCACCACTGCACCTCCAGTCT GGGTGAGAGTGAGACTCAGCTTAAAA(A/T)ATATGC CTTTTGAAAGCAGTACATTGTAAACAAGAACTGAA GCTCTTATTATTATTAGTTTGTATTATGTTTCAG CCCATCTCCCTTCATAT
4 CYP3A4_SNP12	5' region [-747C>G]		Possible association (OR 12.067, 95% CI 1.491-97.692, p=0.020) with increased risk of prostate cancer	AAGTCACCGAAAGTCAGAACGGGATGACATGCGAG GCCCAACATCTCAGCTAAGTCAACTCACCCAGCCT TCTAGTTGCCCACTGTGTACAGGAC(C/G)CTGGTA GGGACCAAGGCCATGACAGGAATAAGACTAGACTA TGCCCCTTGAGGAGCTCACCTCTGTTCAAGGAAACAG GCGTGAAACACAAATGGTGGTA CTGTAGTCCAATGATAAAAGGCAAAGGATTAGGGCA TTGAATTGGTTCTTTATCCTTAAAGATGCACAA GGGGCTGCTGATCTCACTGCTGTAG(C/T)GGTGCCTC TTATGCAATAGACCTGCCCTGCTCAGCACACTGGCCTG AAAGAGGGCAAAAGTCAATGAAAGGAATGGCTTC
5 CYP3A4_SNP13	Intron 7 [IVS7 -202C>T]			

6	CYP3A4_SNP15	2204 base pairs after the stop codon, G>C	Possible association (OR 0.41, 95% CI 0.22-0.79, p=0.007) with prostate cancer	GTTGAGAACCTTGATGTCT GAACATTGGAAACTGATAAACACATTCAAGTAAAGTTG CAGGATACAAAATCAGCATAACAAAAATCAAGTAGCATT TCTATATGCCAATAGTGAACAAATCTG(G/C)CAAAAATA AAAAAGTAATCCCATTACAATAGCCACAAATAAAACT AAATACTAGAAAATTAACCTTAATCAAAGAAGAGAAAG GTCTCTACAATGAAATC
7	CYP3A4_SNP19	Intron 2 [IVS2 -132C>T]		ATAAGTCATTCACTGATCCACAAACACTTGGAGAGAATT CAAGAGTGTATTAAATTCCCTTTCAAAATACCTCT CTGTTTCTCTTATTCCTTTATGA(C/T)GTCCTCAAAT AAGCTTCCCTCAACTGCCAGGAAGTCTGATTTCAATTG GCTTCGACTGTTTCATCCCAATTAGAGGCAGGGTTA AGTACATTTAAATAAA
8	CYP3A4_SNP21	Intron 1 [IVS1 -868C>T]		AACTGCCTCTAGGATCCAATCATCTCCTACCAAGCCCC CACCTCCAGATTGGGATTGGCATTTCACATGAGAT TTGGTAGGGCACAGATTGACCAATT(G/T)ACTG GCACTGTGCTAATCAGATGAAATATCACCAGTTGGAAAG GCTAGATTCCACAAAGAGGAATGACTGGAAATT GGTCTTTAGTTGTGATTCT
9	CYP3A4_SNP22	5' region [-847A>T]		GGGTCCCCCTGCCAACAGAATCACAGAGGACAGC CTGAAAAGTGCAGAGACAGCAGCTGAGGCACAGCCAA GAGCTCTGGCTGTATTAAATGACCTAA(G/A)TAGTCACC AGAAAGTCAGAAGGGATGACATGAGGCCAGCA ATCTAGCTAAGTCAACTCACCAGCCCTTAGTGT CCCACTGTGTACAGCACCC
10	CYP3A4_SNP24	766 base pairs after the stop codon, delT		TCAAGGCACAGTGGCTCACGCCCTGTAATCTAGCAGTT TGGGAGGCTGAGCCGGGTGATCGCCCTGAGGTCA GAGTTCAAGACAAGGCCTGGCTACATG(T/-) TGAAACCCATCTCTACTAAATAACACAAATTAGCTA GGCATGGTGGACTGCCCTGTAATCTCACTACACAGG AGGCTGAGGCAGGAGAATCACTTGA
11	CYP3A4_SNP25	1454 base pairs after the stop codon, C>T	Possible association (OR 6.54, 95% CI 0.99-43.10, p=0.05) with prostate cancer	TGGGTGGAGTCCAAGCAAGCAGAGAAGGGGTC GACGCCAGGGGGCTTGCAGAGCAGGCCAGAGC CTAAATAGGGTATGGAGAACCCACATGAGG(C/T)GAG GAGGGCATCCATGAGTGGGGGGTTGGTGAGGT TTGGCTACATAAGGGGATTGATCAAATAAGTAATG TATTAAGGGATGATAAGGCCAGGT
12	CYP3A4_SNP26	Intron 3 [IVS3 +1992T>C]		TTGCATTCTCTAATGACCAAGTGTGAGGCAATT TCACATGTCCTGGCTGCATAGATGTCCTCTTGA GAAGTGTCTGGTCATATCCCTTGGC(T/C)ATTTTTGAT

			GGGGTTGTTGCTTTTCTTGAAATTGTTAAGT TCCTTGATTCGGATGTAGCCCTTCGTCAGATG GATAGATTGCAAAA
13	CYP3A4_SNP27	Intron 9 [IVS9 +841T>G]	TAACATTGGTTCTAGAGCAGGACTGGCTTACTC CAGCATACTGCTTTAAATAATCCATGTCACATCAC TTTGTCTGTATGCTATGTTATCTAT(G)CTATGTA ATCTAGCTATGTA(TCTATCTATCTATCATCTATC ATCTATCTATCATCTATCCATCTATCATCTATCAT TTATCCATCTAT
14	CYP3A4_SNP28	Intron 12 [IVS12 - 473T>G]	CTTCCCCTTACACTGGATGGGTCAAATTGGGAGG AATTACTGGACTCTGGAAAGTGAAGACTGTCCATATA ATTTAAATGTCACATAACTACCCAGG(TG)TTACCTG CAAGTTCAACATACACAAAATAACTTATATGACTC TTCAAAANACAGTTGCCATCATACCTAAATAATCTGGTT TAAATTAAAAACTC
15	CYP3A4_SNP29	Intron 12 [IVS12 +581C>T]	TGCCCCAGAGTGTGGCTTAAAGCTCCCCATTGCTT CTCATGTAAGCCAAGGGTGGAAATGACTAAATTAG GCATTTCGGTGATAAAAGGACTAC(C)CACAGTCC AAGGCCATCCTGACTGACCTCACCTTCAGGTGCTA GCTCCATCCAGCTGGCTCCTTTCAACCCAAATTATA ACTCTTAAATGTTGTT
16	CYP3A4_SNP30	Intron 12 [IVS12 +586G>A]	AGAGTGTGGCTTAAAGCTCCCCATTGCTTCTCAT GTGAAGGCCAAGGGTGGAAATGACTAAATTAGGCA TCTGGGGATAAAAGGACTACCACA(GA)TCCAAGG CCATCTGACTGACCTCACCTCCAGGTGCCTAGCTC CATCCAGCTGGGCTCCTTTCAACCCAAATTAAACTC TATTAATGTTGTTCCAGC
17	CYP3A4_SNP31	Intron 12 [IVS12 +646C>A]	TAATTAAAGGCATTCTGGGGATAAAAGGACTACC ACAGTCCAAGGCATCCCTGACTGACCTCACCTCAG GTGCCCTAGCTCCATCCAGCTGGCTCC(A)TTTCAA CCCAATAACCTCTTAAATGTTGCCAGCCAG CATGGTGGCTCATGCCGTAAATCCCAGCACCTTGGGA GGCCGAAGCAGGGGGATCA
18	CYP3A4_SNP32	Intron 3 [IVS3 -734G>A]	CTAATTGATGGCACTGTGGCTGAGAGACAGTTGT TATGATTTCGTTCTTACATTGCTGAGGAGTGCCT TACCTCCAATTATGGGTCAATT(G/A)GAATAAGTG CGATGTGGTGGCTGAGAAGAATGTATATTCTGTTGATT TGGGGTGGAGAGTTCTGTAGATGTCTTAAAGTCG CTTGGTGCAGAGCTGAGT

19	CYP17_SNP1	Intron 1 [IVS1 -271A>C]		GGACAGGCATAGTTAGAGAGTTATCCCATCCAGAG TTGCCCTTCTGGTCAGAAAACTGATGAGCAAAAGAA GCCCAAGGGCACCCCTGTCAAGCGAA(A/G)AGAACCC CAATGCCTGCTGCATTCTAATTAAAGGGTTCTTCTTCT CTTGATCTACTGTATTCTGAAGGAATTGGGAGTAG GAGGCCTTAAGGGCTGTC
20	CYP17_SNP3	Intron 5 [IVS5 +75C>G]		TGGCCCTTCTGCTGCACAATCCTCAGGTGTGCTTCCC CCTCATTTGATCCTAGACCCCAGCCAGGCCAATCTCTG GGCTCAGAGAAAGGGAGAGGCCAATT(C/G)CTCAGG CTTTCTGTGCAGGAAGACTAGGCCCTGCTCTCT ACCCAAGCAGTAGTTGGCTTGTGACCCAGAGTAGAG CTGGCCCCATCTGGAAAGC
21	CYP17_SNP4	Intron 1 [IVS1 +426G>A]		CAGGCACTTAGCCTAGCAGGATTCTATGTTACTCTTTCATGGAAAA CTTATACAGGCCAGGATTCTATGTTACTCTTTCATGGAAAA TGGGGCAGTGAATCTACTGTGCTCTCCAT(G/A)AAAGCTG CTGGGGAGAATTAGCCTAGCTATTGCAGGCTGGGAT TGCTGCTTCTGTGTGCTATTTCAGCTACTCAGGCT CACAGGGGAGTGTGTTCTACA
22	CYP17_SNP6	Intron 1 [IVS1 -99C>T]	Possible association (OR 2.130, 95% CI 1.141-3.977, p=0.018) with increased risk of prostate cancer	ATTGGGAGTAGGGAGGCCTTAGGGTCTGTCCTACCAA GTGCTTGCAGTCATGGGAGTGCAGTGGGCTGTG CCCACATGGGAGTCAGCATGCCAGGTAC(C/T)TGCT TCTCCTCCAGGAAGGAAAGCAGGGACCCAGAGGTGTA AGGGCAAGAGTGGGTGGATGGTGTGAGATTCCCTAC AGCCTGCTGCTCTCTAAAGGCC
23	CYP17_SNP8	Intron 1 [IVS1 -700C>G]		GCCACTGTGCCCTGCCAGCCTCTCAGCTTGTATCAA GCCAAGGGTTGGTTATTTTCTGGACCAATTCAGC CAGGTCTGCTGACCAACTACTAGCTC(C/G)CACCTC TGCTGCTCCTCCGGGGCAGAGAAGATGGAGAA GGCTAGTCATGTGGATCTCAGGGTCAGGAAATGGA AAAGGGAGGGCTTGGACCCCTT
24	CYP17_SNP11	Intron 1 [IVS1 -565G>A]		ATGGAGAAGGCATAGTCATGTGGATCTTCAGGGTCAG GAAATGGAAAAGGGAGGCCTTGGACCTTTGCTTGG GGGGGACCTCTAGGGAGGCAGTC(G/A)GCCCA AGTCAGACCTGGTAGACAAACATCTGCACTCTCCA AATGTGGCTTGTGGCTGGATGAGGCTTGAAT GGAAGGGTAACCTGAGTGAAG
25	CYP17_SNP12	Intron 3 [IVS3 +141A>T]		CTGACATTGTCCTCCAAATCTTCCCTTTTACTTCCC TGCTCAGGCCAAATGACCAATCTTTTCCTGATTAC CTCCGCCACCTCTACCTCCCTGTGCC(A/T)CTTAAACC TTTGGCCATTCTCTGCAGAGATAGATTAGCCTTTAA

26	CYP17_SNP18	5' region [-1488C>G]		TTATGCACCTTAGTACTCCAGATAATGACCTTCATTCTTTCCAAATTACCAT ATTTTTAGGGAAACAAGGGAAAACAACCAATAAGGTCTG ACTGCCTGCAGGTGGCGAGAAAGGCCATATTCTCTCTGAGAGGGCTATAATGGA(C/G)ATGCAAG TAGGGAAGATACTACTAAATTCTTTCTAGCAAGGA GTATTATTAAATACCCTGGAAAGGAATGCATTCTGGGGAGGGTCTATAAACAA
27	CYP17_SNP19	5' region [-1204C>T]		TAGGGTGGGGAAAAGAAACTCCGCCCTGGTAATTGTTG GTCAAGACCGGGTTCTCTGTGCAACCTGTGTTGCTG TTGTTTAAGGTGTTTATCAAGACAGTA(C/G)GTGACC GCTGAACATAGACCCCTCATCTGTAGTTCTGCTTTGC CCTTGGCTTGTGATCTTGTGGACCCCTATCAGTG GTTCAGCTTTGGCCCTTGG
28	CYP17_SNP20	Intron 1 [IVS1 +466G>A]		TACAGGCCAGGATTCACTGTTACCTTTCATGGAAAATGG GGGAGTGACTACTGCTCCATAAAAGCTGCTGG GAGAAATTAGCCTAGCTATTGCAGGCTG(G/A)GATTGC TGCTTCTGGTGTCTATTCCAGCTACTCAGGCTCAC AGGGCAGTTTCTACAATGACATTCAAGGGTTGCTG ATGAGGCCACTCAGCAG CTGGAGGATTAAAGTATGTAAGTGGACAATCTGTT TTTTGGTTTTGTTTGTGAGGAGTTTCGCTC TTGTTGCCCTGCTGGAGTGCATG(G/A)CATGATCT TGCTCACTGCACCCCTGCCCTGAGTTCAAGTGA TTCTCCCTGCCCTCAGCCTCCAATAATAGCTGGGATTGCA GGCGTGTGCCACCATGCC
29	CYP17_SNP42	712 base pairs after the stop codon, G>A		TCTTGTGAAGGGTACCCCAGCATGAGTGTGAGA TATGGACTCTCA(A/C)GGAAGGGGCCAACGCTGT AATTGGAATACATGGAAAATTGTCTTCAGGCTA TTGGTGGGAATGCAATTGTCATAATTAGCAAACGTGTT TTGA
30	SRD5A2_SNP2	1386 base pairs after the stop codon (3' UTR), A>C		CGAGAACAGTTTACAATAGACATTGCCAAACTCTCAT GTTTTGGAAACT(A/G)GTGCAATATCCAATAATGAG TGATGTTAAACAAAGAGAAATTATGAGGGTTACA TGCTGCTTGCCTCACCAGATGTCACAAATAATGAG AGTAC
31	SRD5A2_SNP4	849 base pairs after the stop codon (3' UTR), A>G		GTCTGCGGTATGACGGCTAGACAGGAGTTAGAGA ACAGCGGGTGGCCAGGCCACACCTGATGGGCGCA CGGCTCATGGCTCTAGGAGCTGGGAAAG(G/A)GCAT CCCAGGAAAGGCCCTAGACTTTAGCCTGAGTCG
32	SRD5A2_SNP30	5' region [-870G>A]		

			GGCCAACTCTAGGGGACCGGGAGTGGGGGGGG GAGGAACGGCGCAGAATCTCGAACCTCT
33	SRD5A2_SNP31	5' region [-2036(A)7-8]	AGCTAATTGTTATAATAGTGAGAAAAAGATCATGAGG ACAAAAGTGGCAGAGTCGGAGAAAGAAAAGAGAGGAA GAAATTGAGACAGAAAGACATTTCATTTA/ <i>A</i> TATTCCA TTGAGCTGGGTTTGAATAATAGTGCACTGCCTGTTCTCC TAATGCTGTATGGTCATGAAATCTATTGGTTACTGA GTCTATGAGCC
34	SRD5A2_SNP32	545 base pairs after the stop codon (3' UTR), T>C	AACTCTGAAGGCCACAAAGACCCAGAGCAGAAACCCACT CCCCAAATGAAAACCCCAGTCATGGCTTCTTTTCTT GGTTAATTAGGAAAGATGAGAAATTAT(T/C)AGGTAGA CCTTGAATAACAGGAGCCCTCTCCCTCATAGTGCTGAAA AGATACTGATGCATTGACCTCATTTCAAATTGTCAG TGTCTTAGTTGATGAGTG
Table 2(b) : Public SNPs			
SNP	Public SNPs	Location	Comment
Present in Seq ID Number			
35	SRD5A2_SNP12 (NCBI ss#543530, rs#413836)	Intron 2 [IVS2 +626C>T]	Possible association (OR 3.006, 95% CI 1.231-7.343, p=0.016) with increased risk for progression of prostate cancer
36	SRD5A2_SNP17 (NCBI ss#1037918; rs#545303)	5' region [-8029C>T]	Possible association (OR 0.308, 95% CI 0.126-0.750, p=0.010) with increased risk for progression of prostate cancer
42	CYP3A4_SNP1 (NCBI)	Intron 7 [IVS7 +34T>G]	Possible association (OR 0.21, 95% CI
			CCCTTTGTGGAAAAACACCAAGGAAGCTTTAAGATTG ATTTTTGGATCCATTCTCTCAATAAGTATGTCG

	ss#6903779; rs#2687116)		0.05-0.86, p=0.03) with prostate cancer	ACTACTATTTCCCTTTTATTATCTTT(T/G)CTCTCTAAAA ATAACTGCTTTTATGAGATATAAATCACCATGTAATT ATCCACCTAAATACAGTCAGTGTAGTTGTAGTACA TTTGAAAGATATGT
43	CYP3A4_SNP47 (NCBI ss#2723639; rs#1851426)	5' region [-1232C>T]	Possible association (OR 0.19, 95% CI 0.06-0.62, p=0.006) with prostate cancer	TTGGGGTGTGTCGGGGTGTGTCGGGGTTAAAAAG CGCCGCCACGCTTGTGAACCTCAATTCCACCCCCAAGA GGCTGGGACCATCTTA(C/T)GGAGTCCTGTATGCTG TGTGACCTGCAGTGACCACGCCCATCATTGCTGG CTGAGGTGGTGGGTCCATCTGGCTATCTGGCAG CTGTTCTCTTC
44	SRD5A2_SNP26 (NCBI ss#1037925; rs#676033)	5' region [-3001G>A]	Possible association (OR 1.57, 95% CI 1.08-2.30, p=0.02) with prostate cancer	ACTATATCTCCCTGCCCTAATCAGCCAGGGCCAGGTAAAC AGAAAAGTAAGACAGGCCGCTGTACCCAGAGCCCTG CTAAAAGATTCAAACGAGCTAATCCCTAACGCTGATTA CCTTGTCACTGCCACACTTTCTGCAAGAAACTACAGT AA AGGCTCTTGCCACCTGACCCCCTACCTCC (G/A) GCTGCCTCCCTAACACTGGTGTCTCCATGTGGCTT GGGGGGTGTGCTCTCTGTTGAGGGATCTGT CGATATAAACCTTTCTTCTACCGATA
45	SRD5A2_SNP1 (NCBI ss# 4403959; rs# 1042578)	1552 bp after the stop codon, G>A	Possible association (OR 0.52, 05% CI 0.27-1.0, p=0.05) in the European American population	GGTACTAAAGCACAGAAACTCACTATAAAGTCACATA GGAAACCTTGAAGGGTCTGAGGGATGATGTAGATTACTG AAAAAT(G/A)CAAATTGCAATCATATAAAATAAGTGT TGTGGTTCAATAAATACCTTAAATCATGGATGTAAGC AGTTTGTGATA

* SNP was discovered in the Coriell Diversity Set and was not present in the 276 individuals from prostate cancer sibships (still obviously a real SNP since it's seen in the Diversity Set)

© ambiguous genotyping results; SNP was excluded from all further analyses. However, most likely real SNPs

The numbering system for the location of SNPs is according to the common mutation nomenclature (den Dunnen and Antonarakis (2000) Human Mut 15, 7-12; <http://www.dmd.nl/mutnomen.html#DNA>).

Table 3. The origins, nucleotide changes and allele frequencies of single nucleotide polymorphisms (SNPs) in CYP17, CYP3A4, and SRD5A2 observed in the Coriell Diversity set (CDS), European Americans, and African-Americans.

SNP	Origin ^a	Nucleotide Change ^b	c	d	Allele Frequency			
					European Americans		African-Americans	
					Ctrls	Cases	Ctrls	Cases
CYP17								
SNP18	Novel (C+C)	-1488C> <u>G</u>	B	I	.26	NA ^e	NA	NA
SNP19	Novel (C+C)	-1204C> <u>T</u>	B	I	.10	NA	NA	NA
SNP29	dbSNP / HGvbase (-)	-34T>C	1,2,3	II	.44	.40	.38	.33
SNP30	GeneSNPs / dbSNP (-)	C22W (66C> <u>G</u>)	B	I	-	NA	NA	.38
SNP31	GeneSNPs / dbSNP / HGvbase (-)	H46H (138C> <u>T</u>)	I	-	.43	.43	.36	.41
SNP32	GeneSNPs / dbSNP / HGvbase (-)	S65S (195G> <u>T</u>)	I	-	.46	.44	.33	.40
SNP4	Novel (C+C)	IVS1 +426G> <u>A</u>	1	II	.27	.40	.39	.30
SNP20	Novel (C+C)	IVS1 +466G> <u>A</u>	4	II	.06	.03	.01	.02
SNP8	Novel (C+C)	IVS1 -700C> <u>G</u>	I	-	.19	.14	.15	.21
SNP26	GeneSNPs / dbSNP (+<)	IVS1 -679C> <u>T</u>	D	I	-	.06	.02	.04
SNP11	Novel (CDS)	IVS1 -565G> <u>A</u>	A	I	.04	-	-	.01
SNP1	Novel (C+C)	IVS1 -271A> <u>C</u>	I	-	.44	.46	.40	.43
SNP6	Novel (C+C)	IVS1 -99C> <u>T</u>	2	II	.38	.29	.28	.11
SNP23	HGMD (*)	S106P (316T> <u>C</u>)	A	I	-	-	-	.15
SNP25	HGMD (*)	IVS2 +5G> <u>T</u>	A	I	-	-	-	-
SNP7	dbSNP (R)	IVS2 +105A> <u>C</u>	1	II	.46	.29	.28	.13
SNP22	dbSNP (+<)	IVS2 -83C> <u>T</u>	1	II	.04	.002	.0008	.06
SNP24	HGMD (+ <)	E194X (580G> <u>T</u>)	D	I	-	-	-	.09
SNP5	dbSNP (R)	IVS3 +35T> <u>C</u>	I	-	.06	.16	.16	.20
SNP12	Novel (C+C)	IVS3 +141A> <u>T</u>	I	-	.04	.04	.02	.01
SNP21	GeneSNPs / dbSNP (*)	D283D (849C> <u>T</u>)	A	I	-	-	-	.01
SNP3	Novel (C+C)	IVS5 +75C> <u>G</u>	1	II	.33	.40	.39	.20
SNP33	HGMD (-)	IVS7 +5G> <u>A</u>	D	I	-	.02	-	.23
SNP34	HGMD (*)	F417C (1250T> <u>G</u>)	A	I	-	-	-	-

25
CYP3A4

SNP31	Novel (CDS)	IVS12 +646C> <u>A</u>	A	-	.02	-	-	-	.27
SNP28	Novel (C+C)	IVS12 -473T> <u>G</u>			.08	.006	.01	.24	.53
SNP24	Novel (C+C)	stop + 766delT; T> <u>G</u>	1	-	.33	.14	.13	.52	.53
SNP6	Novel (CAP)	stop +945A> <u>T</u>	D	-	-	.02	.02	-	
SNP25	Novel (CDS)	stop + 1454C> <u>T</u>	1	=	-	.003	.006	.23	.28
SNP5	Novel (C+C)	stop + 1639A> <u>T</u>	1	=	.08	.63	.17	.61	.62
SNP15	Novel (C+C)	stop + 2204G> <u>C</u>	1	=	.13	.13	.11	.24	.20
SRD5A2									
SNP17	GeneSNPs (R)	-8029C> <u>T</u>							.37
SNP18	GeneSNPs (*)	-7819G> <u>C</u>							-
SNP26	GeneSNPs (+)	-3001G> <u>A</u>							.39
SNP28	GeneSNPs (*)	-2851A> <u>T</u>	A	-	.30	.29	.30	.27	-
SNP31	Novel (C+C)	-2036(A)7-8,A> <u>T</u>	C	-	-	.29	.28	.43	.33
SNP5	GeneSNPs (R)	-1971G> <u>A</u>	B	-	.48	.NA	.NA	.NA	.NA
SNP30	Novel (CAP)	-870G> <u>A</u>	D	-	.01	.02	-	.01	
SNP21	HGMID (*)	G34R (100G> <u>A</u>)	A	-	-				
SNP22	GeneSNPs / dbSNP / HGVPbase (-)	A49T (145G> <u>A</u>)	1,3	-	-				
SNP20	GeneSNPs / dbSNP / HGVPbase (-)	V89L (265G> <u>C</u>)	1,3	-	-				
SNP23	GeneSNPs / dbSNP (-)	IVS1 +15C> <u>T</u>	B	-	.NA	.29	.29	.32	.34
SNP11	GeneSNPs / dbSNP (-)	IVS1 +24664G> <u>T</u>			.46	.NA	.NA	.NA	.NA
SNP12	GeneSNPs / dbSNP (-)	IVS2 +626C> <u>T</u>			.48	.24	.27	.19	.22
SNP7	HGMID (*)	IVS3 (547G> <u>A</u>)	A	-	.41	.40	.27	.30	
SNP8	HGMID (*)	N193S (578A> <u>G</u>)	A	-	-	-	-	-	
SNP9	HGMID (*)	P212R (635C> <u>G</u>)	A	-	-	-	-	-	
SNP10	HGMID (*)	IVS4 +1G> <u>T</u>	A	-	-	-	-	.005	.16
SNP32	Novel (CAP)	stop +545T> <u>C</u>	D	-	-				
SNP4	Novel (C+C)	stop +849A> <u>G</u>	D	-	.13	.11	.12	.009	-
SNP2	Novel (C+C)	stop +1356A> <u>C</u>	D	-	.02	.006	.006		
SNP1	GeneSNPs (R)	stop +1552G> <u>A</u>	1	=	.16	.12	.12	.19	.23
SNP13	GeneSNPs (+)	stop +3059G> <u>A</u>	1	=	.13	.09	.09	.13	.14
SNP14	GeneSNPs (-)	stop +5179A> <u>C</u>	D	-	.02	.01	.005		-

SNP15	GeneSNPs (-)	stop +9301G> <u>C</u>	1	II	.46	.26	.27	.21	.23
SNP16	GeneSNPs (-)	stop +9502C> <u>T</u>	D	I	-	.006	-	-	-

^a Explanations: (*), SNP did not show up in our study population; (R), rediscovered; (+), we had sequence coverage but did not rediscover the SNP; (+ <), we had sequence coverage but did not rediscover the SNP, most likely due to the low minor allele frequency; (-), we did not have sequence coverage explaining why we did not rediscover the SNP; (CDS), novel SNP discovered originally in the Coriell Diversity Set; (CAP), novel SNP discovered originally in the prostate cancer sibships; (C+C), novel SNP discovered originally in both populations

^b Underlined bases indicate the allele for which frequencies are given

^c Excluded from haplotyping in Phase I and from consideration for Phase II based on (A) being monoallelic in the prostate cancer sibships, (B) yielding ambiguous genotyping results, (C) low success rate, (D) allele frequency <5%. Included in Phase II association analyses based on (1) being a haplotype tagging SNP, (2) case-control difference in Phase I, (3) previous publications supporting association, (4) SNP conveniently located within the same PCR fragment as another included SNP

^d I, allele frequencies based on 276 samples; II, allele frequencies based on 1117 samples

^e NA, data not available

Table 4A. All non-stratified association results between CYP17, CYP3A4, and SRD5A2 variants and risk of prostate cancer among cases and sibling controls ^a

Genes	Genotype Comparison ^b	All Subjects (n=886...920)		European Americans (n=781...834)		African-Americans (n=74...76)	
		OR (95% CI)	p- value	OR (95% CI)	p- value	OR (95% CI)	p- value
CYP17							
SNP29	CC or TC vs. TT	0.91 (0.65-1.29)	0.61	0.86 (0.59-1.25)	0.42	1.96 (0.72-5.31)	0.19
SNP4	AA or GA vs. GG	0.88 (0.62-1.25)	0.47	0.82 (0.56-1.19)	0.30	1.96 (0.72-5.31)	0.19
SNP20	AA or GA vs. GG	0.57 (0.25-1.31)	0.19	0.52 (0.21-1.28)	0.15	1.87 (0.55-6.35)	0.31
SNP6	TT or CT vs. CC	0.90 (0.64-1.27)	0.56	0.81 (0.57-1.17)	0.27	2.38 (0.71-7.92)	0.16
SNP7	CC or AC vs. AA	0.84 (0.59-1.19)	0.33	0.77 (0.53-1.11)	0.16	2.00 (0.59-6.72)	0.27
SNP22	TT or CT vs. CC	1.99 (0.67-5.86)	0.21	NA ^c	NA	1.69 (0.43-6.68)	0.45
SNP3	GG or CG vs. CC	0.90 (0.63-1.27)	0.54	0.81 (0.56-1.19)	0.28	2.23 (0.76-6.54)	0.14
CYP3A4							
SNP47	TT or CT vs. CC	0.59 (0.31-1.09)	0.09	0.60 (0.29-1.23)	0.16	0.56 (0.17-1.86)	0.34
SNP12	GG or CG vs. CC	1.51 (0.92-2.50)	0.11	1.44 (0.86-2.38)	0.16	NA	NA
SNP11	GG or AG vs. AA	0.76 (0.43-1.36)	0.36	0.83 (0.41-1.66)	0.59	0.61 (0.23-1.63)	0.32
SNP1	GG or TG vs. TT	0.53 (0.29-0.99)	0.05	0.57 (0.28-1.18)	0.13	0.44 (0.13-1.57)	0.21
SNP13	TT or CT vs. CC	0.79 (0.51-1.22)	0.29	0.71 (0.45-1.12)	0.14	2.33 (0.42-12.84)	0.33
SNP24	GG or TG vs. TT	0.95 (0.62-1.44)	0.79	0.88 (0.56-1.36)	0.56	1.81 (0.45-7.25)	0.40
SNP25	TT or CT vs. CC	1.59 (0.58-4.39)	0.37	NA	NA	1.21 (0.37-3.98)	0.75
SNP5	TT or AT vs. AA	0.86 (0.56-1.31)	0.47	0.74 (0.48-1.15)	0.19	4.48 (0.67-30.07)	0.12
SNP15	CC or GC vs. GG	0.69 (0.46-1.05)	0.09	0.68 (0.44-1.05)	0.08	0.82 (0.22-3.03)	0.77
SRD5A2							
SNP17	TT or CT vs. CC	0.87 (0.58-1.29)	0.48	0.93 (0.61-1.41)	0.74	0.21 (0.04-1.12)	0.07
SNP26	AA or GA vs. GG	1.57 (1.08-2.30)	0.02	1.59 (1.08-2.34)	0.02	1.00 (0.19-5.31)	1.00
SNP22	AA or GA vs. GG	0.84 (0.38-1.85)	0.66	0.90 (0.40-2.02)	0.79	NA	NA
SNP20	CC or GC vs. GG	1.56 (1.08-2.25)	0.02	1.47 (1.00-2.16)	0.05	2.29 (0.81-6.50)	0.12

SNP12	TT or CT vs. CC	1.00 (0.69-1.46)	0.98	0.98 (0.67-1.44)	0.94	0.94 (0.18-4.97)	0.94
SNP1	AA or GA vs. GG	0.81 (0.53-1.24)	0.33	0.83 (0.53-1.31)	0.43	1.20 (0.23-6.21)	0.83
SNP13	AA or GA vs. GG	0.94 (0.61-1.47)	0.80	0.98 (0.61-1.55)	0.92	1.64 (0.25-10.54)	0.61
SNP15	CC or GC vs. GG	1.14 (0.79-1.63)	0.49	1.14 (0.79-1.65)	0.49	0.77 (0.15-3.94)	0.75

^a From conditional logistic regression, with matching on family, and a variance estimator that incorporates sibling correlations.

^b All results are from dominant models that compare homozygous and heterozygous carriers of variant versus the homozygous wildtype (OR=1.0).

^c NA, data not available

Table 4B. Statistically significant allele associations obtained from analysis stratified by aggressiveness ^a

SNP	Stratification	All Subjects (n=443...465)		European Americans (n=394...418)		African-Americans (n=39)	
		OR (95% CI)	p-value	OR (95% CI)	p-value	OR (95% CI)	p-value
CYP3A4							
SNP47	Low TNM and grade	0.19 (0.06-0.62)	0.006	0.07 (0.01-0.53)	0.10	0.66 (0.14-3.04)	0.59
SNP11	Low TNM and grade	0.20 (0.06-0.67)	0.009	0.08 (0.01-0.59)	0.13	0.66 (0.14-3.04)	0.59
SNP1	Low TNM and grade	0.21 (0.05-0.86)	0.03	0.16 (0.03-0.82)	0.03	0.65 (0.03-16.26)	0.80
SNP25	Low TNM and grade	6.54 (0.99-43.10)	0.05	NA ^b	NA	6.57 (1.26-34.17)	0.03
SNP5	Low TNM and grade	0.57 (0.30-1.10)	0.09	0.51 (0.26-0.99)	0.05	NA	NA
SNP15	Low TNM and grade	0.41 (0.22-0.79)	0.007	0.52 (0.27-1.01)	0.06	NA	NA
SRD5A2							
SNP1	Low TNM and grade	0.59 (0.32-1.10)	0.09	0.52 (0.27-1.00)	0.05	1.41 (0.18-10.79)	0.74

^a From conditional logistic regression, with matching on family, and a variance estimator that incorporates sibling correlation.

^b NA, data not available

Table 5A. All non-stratified haplotype association results for CYP17, CYP3A4, and SRD5A2.^a

Haplotype	All Subjects (n=920)		European Americans (n=834)		African-Americans (n=76)	
	OR (95% CI)	p-value	OR (95% CI)	p-value	OR (95% CI)	p-value
CYP17						
Hap1	1.0	-	1.0	-	1.0	-
Hap2	0.83 (0.61-1.12)	0.22	0.80 (0.58-1.10)	0.17	2.63 (0.45-15.33)	0.28
Hap3	1.07 (0.67-1.70)	0.78	1.09 (0.65-1.83)	0.74	1.41 (0.49-4.08)	0.52
Hap4	0.85 (0.56-1.31)	0.47	0.84 (0.51-1.40)	0.51	1.02 (0.43-2.42)	0.97
CYP3A4						
Hap1	1.0	-	1.0	-	1.0	-
Hap2	1.25 (0.74-2.08)	0.41	1.16 (0.69-1.96)	0.57	NA ^b	NA
Hap3	1.20 (0.70-2.03)	0.51	1.07 (0.62-1.82)	0.82	3.34 (0.49-22.89)	0.22
Hap4	0.46 (0.21-1.01)	0.05	0.44 (0.20-0.96)	0.04	0.99 (0.06-16.37)	0.99
Hap5	1.08 (0.78-1.50)	0.66	1.05 (0.74-1.51)	0.77	1.86 (0.60-5.75)	0.28
SRD5A2						
Hap1	1.0	-	1.0	-	1.0	-
Hap2	1.14 (0.82-1.60)	0.43	1.12 (0.80-1.58)	0.50	2.57 (0.43-15.52)	0.30
Hap3	0.76 (0.48-1.21)	0.25	0.81 (0.51-1.30)	0.39	NA	NA
Hap4	1.13 (0.72-1.77)	0.61	1.03 (0.64-1.66)	0.90	NA	NA
Hap5	1.59 (0.78-3.24)	0.20	1.58 (0.79-3.19)	0.20	NA	NA
Hap6	1.27 (0.60-2.68)	0.52	2.16 (0.87-5.37)	0.10	0.64 (0.10-4.00)	0.63
Hap7	0.74 (0.50-1.09)	0.13	0.80 (0.51-1.23)	0.30	1.11 (0.29-4.27)	0.88

^a From conditional logistic regression, with matching on family, and a variance estimator that incorporates sibling correlation.

^b NA, data not available

Table 5B. Statistically significant haplotype associations obtained from analysis stratified by high aggressiveness (i. e., high TNM stage or Gleason score) and low aggressiveness (i. e., low TNM stage and Gleason score).^a

Haplotype	Stratification	All Subjects (n=395...465)		European Americans (n=362...418)		African-Americans (n=33...39)	
		OR (95% CI)	p-value	OR (95% CI)	p-value	OR (95% CI)	p-value
CYP3A4							
Hap4	Low TNM and grade	0.06 (0.008-0.50)	0.009	0.09 (0.01-0.68)	0.02	NA ^b	NA
SRD5A2							
Hap3	High TNM or grade	0.52 (0.29-0.91)	0.02	0.53 (0.30-0.95)	0.03	NA	NA

^a From conditional logistic regression, with matching on family, and a variance estimator that incorporates sibling correlation.

^b NA, data not available

Table 6. Annotation of CYP3A4, CYP17 and SRD5A2 genomic sequences

Gene	Annotation	Base pairs	Sub annotation	Base pairs
CYP3A4	5' region	1-10481		
	Exon 1	10482-10642		
			5' UTR	10482-10571
			Start codon	10572-10574
			Translated region	10572-10642
	Intron 1	10643-14574		
	Exon 2	14575-14668		
	Intron 2	14669-16579		
	Exon 3	16580-16632		
	Intron 3	16633-22072		
	Exon 4	22073-22172		
	Intron 4	22173-24526		
	Exon 5	24527-24640		
	Intron 5	24641-24905		
	Exon 6	24906-24994		
	Intron 6	24995-26259		
	Exon 7	26260-26408		
	Intron 7	26409-27502		
	Exon 8	27503-27630		
	Intron 8	27631-28314		
	Exon 9	28315-28381		
	Intron 9	28382-30736		
	Exon 10	30737-30897		
	Intron 10	30898-32482		
	Exon 11	32483-32709		
	Intron 11	32710-33768		
	Exon 12	33769-33931		
	Intron 12	33932-36520		
	Exon 13	36521-37073		
			Translated region	36521-36613
			Stop codon	36614-36616
			3' UTR	36617-37073
	3' region	37074-39071		

CYP17	5' region	1-9992		
	Exon 1	9993-10337		
			5' UTR	9993-10040
			Start codon	10041-10043
			Translated region	10041-10337
	Intron 1	10338-12009		
	Exon 2	12010-12148		
	Intron 2	12149-12387		
	Exon 3	12388-12617		
	Intron 3	12618-13279		
	Exon 4	13280-13366		
	Intron 4	13367-14193		
	Exon 5	14194-14409		
	Intron 5	14410-14721		
	Exon 6	14722-14891		
	Intron 6	14892-15790		
	Exon 7	15791-15894		
	Intron 7	15895-16416		
	Exon 8	16417-16872		
			Translated region	16417-16697
			Stop codon	16698-16700
			3' UTR	16701-16872
	3' region	16873-26865		
SRD5A2	5' region	1-9995		
	Exon 1	9996-10307		
			5' UTR	9996-10026
			Start codon	10027-10029
			Translated region	10027-10307
	Intron 1	10308-57160		
	Exon 2	57161-57324		
	Intron 2	57325-59454		
	Exon 3	59455-59556		
	Intron 3	59557-61469		
	Exon 4	61470-61620		
	Intron 4	61621-64664		
	Exon 5	64665-66344		
			Translated region	64665-64728
			Stop codon	64729-64731
			3' UTR	64732-66344
	3' region	66345-76341		

What is claimed is:

1. An isolated polynucleotide selected from the group consisting of a nucleotide sequence comprising one or more polymorphic sequences of SEQ ID NOS 1-34.
2. A fragment of said isolated polynucleotide of claim 1, wherein said fragment comprises a polymorphic site in the polymorphic sequence.
- 10 3. An isolated polynucleotide comprising a sequence complementary to one or more of the polymorphic sequences (SEQ ID NOS 1-34) of claim 1.
4. A fragment of said complementary nucleotide sequence of claim 3, wherein said fragment comprises a polymorphic site in the polymorphic sequence.
- 15 5. The isolated polynucleotide of any of claims 1 to 4, wherein said polynucleotide is DNA, RNA, cDNA, or mRNA.
- 20 6. The isolated polynucleotide of any of claims 1 to 5, wherein at least one single nucleotide polymorphism is at a position selected from the group consisting of position [CYP3A4_IVS9 +187] of SEQ ID No. 1, position [CYP3A4, 1639 base pairs after the stop codon] of SEQ ID No. 2, position [CYP3A4, 945 base pairs after the stop codon] of SEQ ID No. 3, position [CYP3A4_5' region -747] of SEQ ID No. 4, position [CYP3A4_ IVS7 -202] of SEQ ID No. 5, position [CYP3A4, 2204 base pairs after the stop codon] of SEQ ID No. 6, position [CYP3A4_ IVS2 -132] of SEQ ID No. 7, position [CYP3A4_ IVS1 -868] of SEQ ID No. 8, position [CYP3A4_5' region -847] of SEQ ID No. 9, position [CYP3A4, 766 base pairs after the stop codon] of SEQ ID No. 10, position [CYP3A4, 1454 base pairs after the stop codon] of SEQ ID No. 11, position [CYP3A4_ IVS3 +1992] of SEQ ID No. 12, position [CYP3A4_ IVS9 +841] of SEQ ID No. 13, position [CYP3A4_ IVS12 -473] of SEQ ID No. 14, position [CYP3A4_ IVS12 +581]

of SEQ ID No. 15, position [CYP3A4_IVS12 +586] of SEQ ID No. 16, position [CYP3A4_IVS12 +646] of SEQ ID No. 17, position [CYP3A4_IVS3 -734] of SEQ ID No. 18, position [CYP17_IVS1 -271] of SEQ ID No. 19, position [CYP17_IVS5 +75] of SEQ ID No. 20, position [CYP17_IVS1 +426] of SEQ ID No. 21, position [CYP17_IVS1 -99] of SEQ ID No. 22, position [CYP17_IVS1 -700] of SEQ ID No. 23, position [CYP17_IVS1 -565] of SEQ ID No. 24, position [CYP17_IVS3 +141] of SEQ ID No. 25, position [CYP17_5' region -1488] of SEQ ID No. 26, position [CYP17_5' region -1204] of SEQ ID No. 27, position [CYP17_IVS1 +466] of SEQ ID No. 28, position [CYP17, 712 base pairs after the stop codon] of SEQ ID No. 29, position [SRD5A2, 1356 base pairs after the stop codon (3' UTR)] of SEQ ID No. 30, position [SRD5A2, 849 base pairs after the stop codon (3' UTR)] of SEQ ID No. 31, position [SRD5A2_5' region -870] of SEQ ID No. 32, position [SRD5A2_5' region between -2036 and -2030] of SEQ ID No. 33 and position [SRD5A2, 545 base pairs after the stop codon (3' UTR)] of SEQ ID No. 34.

7. The isolated polynucleotide of claim 6, wherein at least one single nucleotide polymorphism is selected from the group consisting of [CYP3A4_IVS9 +187C>G] of SEQ ID No. 1, [CYP3A4, 1639 base pairs after the stop codon, A>T] of SEQ ID No. 2, [CYP3A4, 945 base pairs after the stop codon, A>T] of SEQ ID No. 3, [CYP3A4_5' region -747C>G] of SEQ ID No. 4, [CYP3A4_IVS7 -202C>T] of SEQ ID No. 5, [CYP3A4, 2204 base pairs after the stop codon, G>C] of SEQ ID No. 6, [CYP3A4_IVS2 -132C>T] of SEQ ID No. 7, [CYP3A4_IVS1 -868C>T] of SEQ ID No. 8, [CYP3A4_5' region -847A>T] of SEQ ID No. 9, [CYP3A4, 766 base pairs after the stop codon, delT] of SEQ ID No. 10, [CYP3A4, 1454 base pairs after the stop codon, C>T] of SEQ ID No. 11, [CYP3A4_IVS3 +1992T>C] of SEQ ID No. 12, [CYP3A4_IVS9 +841T>G] of SEQ ID No. 13, [CYP3A4_IVS12 -473T>G] of SEQ ID No. 14, [CYP3A4_IVS12 +581C>T] of SEQ ID No. 15, [CYP3A4_IVS12 +586G>A] of SEQ ID No. 16, [CYP3A4_IVS12 +646C>A] of SEQ ID No. 17, [CYP3A4_IVS3 -734G>A] of SEQ ID No. 18, [CYP17_IVS1 -271A>C] of SEQ ID No. 19,

[CYP17_IVS5 +75C>G] of SEQ ID No. 20, [CYP17_IVS1 +426G>A] of SEQ ID No. 21, [CYP17_IVS1 -99C>T] of SEQ ID No. 22, [CYP17_IVS1 -700C>G] of SEQ ID No. 23, [CYP17_IVS1 -565G>A] of SEQ ID No. 24, [CYP17_IVS3 +141A>T] of SEQ ID No. 25, [CYP17_5' region -1488C>G] of SEQ ID No. 26, [CYP17_5' region -1204C>T] of SEQ ID No. 27, [CYP17_IVS1 +466G>A] of SEQ ID No. 28, [CYP17, 712 base pairs after the stop codon, G>A] of SEQ ID No. 29, [SRD5A2, 1356 base pairs after the stop codon (3' UTR), A>C] of SEQ ID No. 30, [SRD5A2, 849 base pairs after the stop codon (3' UTR), A>G] of SEQ ID No. 31, [SRD5A2_5' region -870G>A] of SEQ ID No. 32, [SRD5A2_5' region -2036(A)7-8] of SEQ ID No. 33 and [SRD5A2, 545 base pairs after the stop codon (3' UTR), T>C] of SEQ ID No. 34.

8. The complement of any of the isolated polynucleotides of claim 7.
- 15 9. The isolated polynucleotide of any of claims 1 to 8, wherein the nucleotide comprises part of the *CYP17* gene, the *CYP3A4* gene or the *SRD5A2* gene.
- 20 10. A polypeptide encoded by a polynucleotide according to any of claims 1 to 9.
11. An antibody to a polypeptide according to claim 10.
- 25 12. The isolated polynucleotide of any of claims 1 to 9, further comprising a detectable label.
13. The isolated polynucleotide of claim 12, wherein said detectable label is selected from the group consisting of fluorophore, radionuclide, peptide, enzyme, antibody and antigen.
- 30 14. The isolated polynucleotide of claim 13, wherein said fluorophore is a fluorescent compound is selected from the group consisting of Hoechst

33342, Cy2, Cy3, Cy5, CypHer, coumarin, FITC, DAPI, Alexa 633, DRAQ5 and Alexa 488.

15. A method for diagnosing a genetic susceptibility for a disease, condition or disorder related to prostate or breast cancer in a subject, said method comprising analysing a biological sample containing nucleic acid obtained from said subject to detect the presence or absence of one or more single nucleotide polymorphisms at a position selected from the group consisting of position [CYP3A4_IVS9 +187] of SEQ ID No. 1, position [CYP3A4, 1639
5 base pairs after the stop codon] of SEQ ID No. 2, position [CYP3A4, 945
base pairs after the stop codon] of SEQ ID No. 3, position [CYP3A4_5'
region -747] of SEQ ID No. 4, position [CYP3A4_ IVS7 -202] of SEQ ID
10 No. 5, position [CYP3A4, 2204 base pairs after the stop codon] of SEQ ID
No. 6, position [CYP3A4_ IVS2 -132] of SEQ ID No. 7, position
15 [CYP3A4_IVS1 -868] of SEQ ID No. 8, position [CYP3A4_5' region -847]
of SEQ ID No. 9, position [CYP3A4, 766 base pairs after the stop codon]
of SEQ ID No. 10, position [CYP3A4, 1454 base pairs after the stop
codon] of SEQ ID No. 11, position [CYP3A4_IVS3 +1992] of SEQ ID No.
12, position [CYP3A4_IVS9 +841] of SEQ ID No. 13, position
20 [CYP3A4_IVS12 -473] of SEQ ID No. 14, position [CYP3A4_IVS12 +581]
of SEQ ID No. 15, position [CYP3A4_IVS12 +586] of SEQ ID No. 16,
position [CYP3A4_IVS12 +646] of SEQ ID No. 17, position [CYP3A4_IVS3
25 -734] of SEQ ID No. 18, position [CYP17_IVS1 -271] of SEQ ID No. 19,
position [CYP17_IVS5 +75] of SEQ ID No. 20, position [CYP17_IVS1
+426] of SEQ ID No. 21, position [CYP17_IVS1 -99] of SEQ ID No. 22,
position [CYP17_IVS1 -700] of SEQ ID No. 23, position [CYP17_IVS1 -
30 565] of SEQ ID No. 24, position [CYP17_IVS3 +141] of SEQ ID No. 25,
position [CYP17_5' region -1488] of SEQ ID No. 26, position [CYP17_5'
region -1204] of SEQ ID No. 27, position [CYP17_IVS1 +466] of SEQ ID
No. 28, position [CYP17, 712 base pairs after the stop codon] of SEQ ID
No. 29, position [SRD5A2, 1356 base pairs after the stop codon (3' UTR)]
of SEQ ID No. 30, position [SRD5A2, 849 base pairs after the stop codon
(3' UTR)] of SEQ ID No. 31, position [SRD5A2_5' region -870] of SEQ ID

- No. 32, position [SRD5A2_5' region between -2036 and -2030] of SEQ ID No. 33, position [SRD5A2, 545 base pairs after the stop codon (3' UTR)] of SEQ ID No. 34, position [SRD5A2_IVS2+626] of SEQ ID No. 35, position [SRD5A2_5' region -8029] of SEQ ID No. 36, position [CYP3A4_IVS7+34] of SEQ ID No. 42, position [CYP3A4_5' region -1232] of SEQ ID No. 43, position [SRD5A2_5' region -3001] of SEQ ID No. 44 and position [SRD5A2, 1552 base pairs after the stop codon] of SEQ ID No. 45.
- 10 16. The method according to claim 15, wherein said nucleic acid is DNA, RNA, cDNA or mRNA.
17. The method according to claims 15 or 16, wherein said single nucleotide polymorphism is selected from the group consisting of [CYP3A4_IVS9 +187C>G] of SEQ ID No. 1, [CYP3A4, 1639 base pairs after the stop codon, A>T] of SEQ ID No. 2, [CYP3A4, 945 base pairs after the stop codon, A>T] of SEQ ID No. 3, [CYP3A4_5' region -747C>G] of SEQ ID No. 4, [CYP3A4_ IVS7 -202C>T] of SEQ ID No. 5, [CYP3A4, 2204 base pairs after the stop codon, G>C] of SEQ ID No. 6, [CYP3A4_ IVS2 - 132C>T] of SEQ ID No. 7, [CYP3A4_IVS1 -868C>T] of SEQ ID No. 8, [CYP3A4_5' region -847A>T] of SEQ ID No. 9, [CYP3A4, 766 base pairs after the stop codon, delT] of SEQ ID No. 10, [CYP3A4, 1454 base pairs after the stop codon, C>T] of SEQ ID No. 11, [CYP3A4_IVS3 +1992T>C] of SEQ ID No. 12, [CYP3A4_IVS9 +841T>G] of SEQ ID No. 13, [CYP3A4_IVS12 -473T>G] of SEQ ID No. 14, [CYP3A4_IVS12 +581C>T] of SEQ ID No. 15, [CYP3A4_IVS12 +586G>A] of SEQ ID No. 16, [CYP3A4_IVS12 +646C>A] of SEQ ID No. 17, [CYP3A4_IVS3 -734G>A] of SEQ ID No. 18, [CYP17_IVS1 -271A>C] of SEQ ID No. 19, [CYP17_IVS5 +75C>G] of SEQ ID No. 20, [CYP17_IVS1 +426G>A] of SEQ ID No. 21, [CYP17_IVS1 -99C>T] of SEQ ID No. 22, [CYP17_IVS1 - 700C>G] of SEQ ID No. 23, [CYP17_IVS1 -565G>A] of SEQ ID No. 24, [CYP17_IVS3 +141A>T] of SEQ ID No. 25, [CYP17_5' region -1488C>G] of SEQ ID No. 26, [CYP17_5' region -1204C>T] of SEQ ID No. 27,

- [CYP17_IVS1 +466G>A] of SEQ ID No. 28, [CYP17, 712 base pairs after the stop codon, G>A] of SEQ ID No. 29, [SRD5A2, 1356 base pairs after the stop codon (3' UTR), A>C] of SEQ ID No. 30, [SRD5A2, 849 base pairs after the stop codon (3' UTR), A>G] of SEQ ID No. 31, [SRD5A2_5' region -870G>A] of SEQ ID No. 32, [SRD5A2_5' region -2036(A)7-8] of SEQ ID No. 33, [SRD5A2, 545 base pairs after the stop codon (3' UTR), T>C] of SEQ ID No. 34, [SRD5A2_IVS2+626C>T] of SEQ ID No. 35, [SRD5A2_5' region -8029C>T] of SEQ ID No. 36, [CYP3A4_IVS7+34T>G] of SEQ ID No. 42, [CYP3A4_5' region -1232C>T] of SEQ ID No. 43, [SRD5A2_5' region -3001G>A] of SEQ ID No. 44 and [SRD5A2, 1552 base pairs after the stop codon, G>A] of SEQ ID No. 45.
18. The method according to claims 15 or 16, wherein said single nucleotide polymorphism is selected from the complement of any of the single nucleotide polymorphisms of claim 17.
19. The method of any of claims 15 to 18, wherein said analysis is accomplished by sequencing, genotyping, fragment analysis, hybridisation, restriction fragment analysis, oligonucleotide ligation or allele specific PCR.
20. The method of claim 19, wherein the analysis is accomplished by hybridisation, the method comprising the steps of
- i) contacting said nucleic acid with an oligonucleotide that hybridises to one or more isolated polynucleotide polymorphic sequence selected from the group consisting of SEQ ID NOS 1-36 and SEQ ID NOS 42-45 or its complement;
- ii) determining whether the nucleic acid and said oligonucleotide hybridize;
- whereby hybridisation of the nucleic acid to the oligonucleotide indicates the presence of the polymorphic site in the nucleic acid.

21. A method for diagnosing a genetic susceptibility for a disease, condition or disorder related to prostate or breast cancer in a subject, or predicting an individual's response to a drug, said method comprising adding an antibody to a polypeptide present in a biological sample obtained from said subject which polypeptide is encoded by a polynucleotide selected from the group consisting of SEQ ID NOS 1-36 and SEQ ID NOS 42-45, or the complement thereof, and detecting specific binding of said antibody to said polypeptide.
5
- 10 22. A kit comprising at least one isolated polynucleotide of at least 5 contiguous nucleotides of SEQ ID NOS 1-36 or SEQ ID NOS 42-45, or the complement thereof, and containing at least one single nucleotide polymorphic site associated with a disease, condition or disorder related to prostate or breast cancer, together with instructions for the use thereof for detecting the presence or the absence of said at least single nucleotide polymorphism in said nucleic acid.
15
- 20 23. An oligonucleotide array comprising at least one oligonucleotide capable of hybridising to a first polynucleotide at a polymorphic site encompassed therein, wherein the first polynucleotide comprises a nucleotide sequence comprising one or more polymorphic sequences of SEQ ID NOS 1-36 or SEQ ID NOS 42-45.
- 25 24. The oligonucleotide array according to claim 23, wherein said first polynucleotide comprises a fragment of any of said nucleotide sequences, said fragment comprising a polymorphic site in said polymorphic sequence.
- 30 25. The oligonucleotide array according to claim 23 wherein the first polynucleotide is a complementary nucleotide sequence comprising a sequence complementary to one or more polymorphic sequences of SEQ ID NOS 1-36 or SEQ ID NOS 42-45.

26. The oligonucleotide array according to claim 25, wherein the first polynucleotide comprises a fragment of said complementary sequence, said fragment comprising a polymorphic site in said polymorphic sequence.
- 5
27. The kit of claim 22 or the array of any of claims 23 to 26, wherein the position of said polymorphic site is at a position selected from the group consisting of position [CYP3A4_IVS9 +187] of SEQ ID No. 1, position [CYP3A4, 1639 base pairs after the stop codon] of SEQ ID No. 2, position [CYP3A4, 945 base pairs after the stop codon] of SEQ ID No. 3, position [CYP3A4_5' region -747] of SEQ ID No. 4, position [CYP3A4_ IVS7 -202] of SEQ ID No. 5, position [CYP3A4, 2204 base pairs after the stop codon] of SEQ ID No. 6, position [CYP3A4_ IVS2 -132] of SEQ ID No. 7, position [CYP3A4_IVS1 -868] of SEQ ID No. 8, position [CYP3A4_5' region -847] of SEQ ID No. 9, position [CYP3A4, 766 base pairs after the stop codon] of SEQ ID No. 10, position [CYP3A4, 1454 base pairs after the stop codon] of SEQ ID No. 11, position [CYP3A4_IVS3 +1992] of SEQ ID No. 12, position [CYP3A4_IVS9 +841] of SEQ ID No. 13, position [CYP3A4_IVS12 -473] of SEQ ID No. 14, position [CYP3A4_IVS12 +581] of SEQ ID No. 15, position [CYP3A4_IVS12 +586] of SEQ ID No. 16, position [CYP3A4_IVS12 +646] of SEQ ID No. 17, position [CYP3A4_IVS3 -734] of SEQ ID No. 18, position [CYP17_IVS1 -271] of SEQ ID No. 19, position [CYP17_IVS5 +75] of SEQ ID No. 20, position [CYP17_IVS1 +426] of SEQ ID No. 21, position [CYP17_IVS1 -99] of SEQ ID No. 22, position [CYP17_IVS1 -700] of SEQ ID No. 23, position [CYP17_IVS1 -565] of SEQ ID No. 24, position [CYP17_IVS3 +141] of SEQ ID No. 25, position [CYP17_5' region -1488] of SEQ ID No. 26, position [CYP17_5' region -1204] of SEQ ID No. 27, position [CYP17_IVS1 +466] of SEQ ID No. 28, position [CYP17, 712 base pairs after the stop codon] of SEQ ID No. 29, position [SRD5A2, 1356 base pairs after the stop codon (3' UTR)] of SEQ ID No. 30, position [SRD5A2, 849 base pairs after the stop codon (3' UTR)] of SEQ ID No. 31, position [SRD5A2_5' region -870] of SEQ ID No. 32, position [SRD5A2_5' region between -2036 and -2030] of SEQ ID

- No. 33, position [SRD5A2, 545 base pairs after the stop codon (3' UTR)] of SEQ ID No. 34, position [SRD5A2_IVS2+626] of SEQ ID No. 35, position [SRD5A2_5' region -8029] of SEQ ID No. 36, position [CYP3A4_IVS7+34] of SEQ ID No. 42, position [CYP3A4_5' region -1232] of SEQ ID No. 43, position [SRD5A2_5' region -3001] of SEQ ID No. 44 and position [SRD5A2, 1552 base pairs after the stop codon] of SEQ ID No. 45.
28. The kit of claim 22 or the array of claim 27, wherein at least one single nucleotide polymorphism is selected from the group consisting of [CYP3A4_IVS9 +187C>G] of SEQ ID No. 1, [CYP3A4, 1639 base pairs after the stop codon, A>T] of SEQ ID No. 2, [CYP3A4, 945 base pairs after the stop codon, A>T] of SEQ ID No. 3, [CYP3A4_5' region -747C>G] of SEQ ID No. 4, [CYP3A4_IVS7 -202C>T] of SEQ ID No. 5, [CYP3A4, 2204 base pairs after the stop codon, G>C] of SEQ ID No. 6, [CYP3A4_IVS2 -132C>T] of SEQ ID No. 7, [CYP3A4_IVS1 -868C>T] of SEQ ID No. 8, [CYP3A4_5' region -847A>T] of SEQ ID No. 9, [CYP3A4, 766 base pairs after the stop codon, delT] of SEQ ID No. 10, [CYP3A4, 1454 base pairs after the stop codon, C>T] of SEQ ID No. 11, [CYP3A4_IVS3 +1992T>C] of SEQ ID No. 12, [CYP3A4_IVS9 +841T>G] of SEQ ID No. 13, [CYP3A4_IVS12 -473T>G] of SEQ ID No. 14, [CYP3A4_IVS12 +581C>T] of SEQ ID No. 15, [CYP3A4_IVS12 +586G>A] of SEQ ID No. 16, [CYP3A4_IVS12 +646C>A] of SEQ ID No. 17, [CYP3A4_IVS3 -734G>A] of SEQ ID No. 18, [CYP17_IVS1 -271A>C] of SEQ ID No. 19, [CYP17_IVS5 +75C>G] of SEQ ID No. 20, [CYP17_IVS1 +426G>A] of SEQ ID No. 21, [CYP17_IVS1 -99C>T] of SEQ ID No. 22, [CYP17_IVS1 -700C>G] of SEQ ID No. 23, [CYP17_IVS1 -565G>A] of SEQ ID No. 24, [CYP17_IVS3 +141A>T] of SEQ ID No. 25, [CYP17_5' region -1488C>G] of SEQ ID No. 26, [CYP17_5' region -1204C>T] of SEQ ID No. 27, [CYP17_IVS1 +466G>A] of SEQ ID No. 28, [CYP17, 712 base pairs after the stop codon, G>A] of SEQ ID No. 29, [SRD5A2, 1356 base pairs after the stop codon (3' UTR), A>C] of SEQ ID No. 30, [SRD5A2, 849 base pairs after the stop codon (3' UTR), A>G] of SEQ ID No. 31, [SRD5A2_5'

region -870G>A] of SEQ ID No. 32, [SRD5A2_5' region -2036(A)7-8] of SEQ ID No. 33, [SRD5A2, 545 base pairs after the stop codon (3' UTR), T>C] of SEQ ID No. 34, [SRD5A2_IVS2+626C>T] of SEQ ID No. 35, [SRD5A2_5' region -8029C>T] of SEQ ID No. 36, [CYP3A4_IVS7+34T>G] of SEQ ID No. 42, [CYP3A4_5' region -1232C>T] of SEQ ID No. 43, [SRD5A2_5' region -3001G>A] of SEQ ID No. 44 and [SRD5A2, 1552 base pairs after the stop codon, G>A] of SEQ ID No. 45.

- 5 29. The kit of claim 28 or the array of claim 27, wherein at least one single nucleotide polymorphism is the complement of any of the single nucleotide polymorphisms of claim 28.
- 10 30. The kit of claim 22 or 27 to 29 or the array of any of claims 23 to 29, wherein said oligonucleotide further comprises a detectable label.
- 15 31. The kit of claim 30 or the array of claim 30, wherein said label is selected from the group consisting of fluorophore, radionuclide, peptide, enzyme, antibody or antigen.
- 20 32. The kit of claim 30 or the array of claim 30, wherein said fluorophore is a fluorescent compound selected from the group consisting of Hoechst 33342, Cy2, Cy3, Cy5, CypHer, coumarin, FITC, DAPI, Alexa 633 DRAQ5 and Alexa 488.
- 25 33. A method of treatment or prophylaxis of a subject comprising the steps of
 - i) analysing a biological sample containing nucleic acid obtained from said subject to detect the presence or absence of at least one single nucleotide polymorphism in SEQ ID NOS 1-36 or SEQ ID NOS 42-45, or the complement thereof, associated with a disease, condition or disorder related to prostate or breast cancer; and
 - 30 ii) treating the subject for said disease, condition or disorder if step i) detects the presence of at least one single nucleotide polymorphism

in SEQ ID NOS: 1-36 or SEQ ID NOS 42-45, or the complement thereof.

34. The method of claim 33, wherein said nucleic acid is selected from the group consisting of DNA, RNA and mRNA.
5
35. The method of claims 33 or 34, wherein the sample is analysed to detect the presence or absence of at least one single nucleotide polymorphism at a position selected from the group consisting of position [CYP3A4_IVS9 +187] of SEQ ID No. 1, position [CYP3A4, 1639 base pairs after the stop codon] of SEQ ID No. 2, position [CYP3A4, 945 base pairs after the stop codon] of SEQ ID No. 3, position [CYP3A4_5' region -747] of SEQ ID No. 4, position [CYP3A4_IVS7 -202] of SEQ ID No. 5, position [CYP3A4, 2204 base pairs after the stop codon] of SEQ ID No. 6, position [CYP3A4_IVS2 -132] of SEQ ID No. 7, position [CYP3A4_IVS1 -868] of SEQ ID No. 8, position [CYP3A4_5' region -847] of SEQ ID No. 9, position [CYP3A4, 766 base pairs after the stop codon] of SEQ ID No. 10, position [CYP3A4, 1454 base pairs after the stop codon] of SEQ ID No. 11, position [CYP3A4_IVS3 +1992] of SEQ ID No. 12, position [CYP3A4_IVS9 +841]
10 of SEQ ID No. 13, position [CYP3A4_IVS12 -473] of SEQ ID No. 14, position [CYP3A4_IVS12 +581] of SEQ ID No. 15, position [CYP3A4_IVS12 +586] of SEQ ID No. 16, position [CYP3A4_IVS12 +646]
15 of SEQ ID No. 17, position [CYP3A4_IVS3 -734] of SEQ ID No. 18, position [CYP17_IVS1 -271] of SEQ ID No. 19, position [CYP17_IVS5 +75] of SEQ ID No. 20, position [CYP17_IVS1 +426] of SEQ ID No. 21,
20 position [CYP17_IVS1 -99] of SEQ ID No. 22, position [CYP17_IVS1 -700] of SEQ ID No. 23, position [CYP17_IVS1 -565] of SEQ ID No. 24, position [CYP17_IVS3 +141] of SEQ ID No. 25, position [CYP17_5' region -1488]
25 of SEQ ID No. 26, position [CYP17_5' region -1204] of SEQ ID No. 27, position [CYP17_IVS1 +466] of SEQ ID No. 28, position [CYP17, 712 base pairs after the stop codon] of SEQ ID No. 29, position [SRD5A2, 1356 base pairs after the stop codon (3' UTR)] of SEQ ID No. 30, position [SRD5A2, 849 base pairs after the stop codon (3' UTR)] of SEQ ID No. 31,
30

- position [SRD5A2_5' region -870] of SEQ ID No. 32, position [SRD5A2_5' region between -2036 and -2030] of SEQ ID No. 33, position [SRD5A2, 545 base pairs after the stop codon (3' UTR)] of SEQ ID No. 34, position [SRD5A2_IVS2+626] of SEQ ID No. 35, position [SRD5A2_5' region - 8029] of SEQ ID No. 36, position [CYP3A4_IVS7+34] of SEQ ID No. 42, position [CYP3A4_5' region -1232] of SEQ ID No. 43, position [SRD5A2_5' region -3001] of SEQ ID No. 44 and position [SRD5A2, 1552 base pairs after the stop codon] of SEQ ID No. 45.
- 10 36. The method of claim 35, wherein at least one single nucleotide polymorphism is selected from the group consisting of [CYP3A4_IVS9 +187C>G] of SEQ ID No. 1, [CYP3A4, 1639 base pairs after the stop codon, A>T] of SEQ ID No. 2, [CYP3A4, 945 base pairs after the stop codon, A>T] of SEQ ID No. 3, [CYP3A4_5' region -747C>G] of SEQ ID No. 4, [CYP3A4_IVS7 -202C>T] of SEQ ID No. 5, [CYP3A4, 2204 base pairs after the stop codon, G>C] of SEQ ID No. 6, [CYP3A4_IVS2 - 132C>T] of SEQ ID No. 7, [CYP3A4_IVS1 -868C>T] of SEQ ID No. 8, [CYP3A4_5' region -847A>T] of SEQ ID No. 9, [CYP3A4, 766 base pairs after the stop codon, delT] of SEQ ID No. 10, [CYP3A4, 1454 base pairs after the stop codon, C>T] of SEQ ID No. 11, [CYP3A4_IVS3 +1992T>C] of SEQ ID No. 12, [CYP3A4_IVS9 +841T>G] of SEQ ID No. 13, [CYP3A4_IVS12 -473T>G] of SEQ ID No. 14, [CYP3A4_IVS12 +581C>T] of SEQ ID No. 15, [CYP3A4_IVS12 +586G>A] of SEQ ID No. 16, [CYP3A4_IVS12 +646C>A] of SEQ ID No. 17, [CYP3A4_IVS3 -734G>A] of SEQ ID No. 18, [CYP17_IVS1 -271A>C] of SEQ ID No. 19, [CYP17_IVS5 +75C>G] of SEQ ID No. 20, [CYP17_IVS1 +426G>A] of SEQ ID No. 21, [CYP17_IVS1 -99C>T] of SEQ ID No. 22, [CYP17_IVS1 - 700C>G] of SEQ ID No. 23, [CYP17_IVS1 -565G>A] of SEQ ID No. 24, [CYP17_IVS3 +141A>T] of SEQ ID No. 25, [CYP17_5' region -1488C>G] of SEQ ID No. 26, [CYP17_5' region -1204C>T] of SEQ ID No. 27, [CYP17_IVS1 +466G>A] of SEQ ID No. 28, [CYP17, 712 base pairs after the stop codon, G>A] of SEQ ID No. 29, [SRD5A2, 1356 base pairs after the stop codon (3' UTR), A>C] of SEQ ID No. 30, [SRD5A2, 849 base

pairs after the stop codon (3' UTR), A>G] of SEQ ID No. 31, [SRD5A2_5' region -870G>A] of SEQ ID No. 32, [SRD5A2_5' region -2036(A)7-8] of SEQ ID No. 33, [SRD5A2, 545 base pairs after the stop codon (3' UTR), T>C] of SEQ ID No. 34, [SRD5A2_IVS2+626C>T] of SEQ ID No. 35, [SRD5A2_5' region -8029C>T] of SEQ ID No. 36, [CYP3A4_IVS7+34T>G] of SEQ ID No. 42, [CYP3A4_5' region -1232C>T] of SEQ ID No. 43, [SRD5A2_5' region -3001G>A] of SEQ ID No. 44, and [SRD5A2, 1552 base pairs after the stop codon, G>A] of SEQ ID No. 45.

- 10 37. The method of claim 35, wherein at least one single nucleotide polymorphism is the complement of any of the single nucleotide polymorphisms of claim 36.
- 15 38. The method of any of claims 33 to 37, wherein said method counteracts the effect of said at least one single nucleotide polymorphism detected.
- 20 39. The method of claims 33 to 38, wherein the method comprises treatment with a polynucleotide selected from the group consisting of polymorphic sequences SEQ ID NOS 1-36 and SEQ ID NOS 42-45, or their complement, provided that the polymorphic sequence, or the complement, does not contain at least one single nucleotide polymorphism at a position selected from the group consisting of position [CYP3A4_IVS9 +187] of SEQ ID No. 1, position [CYP3A4, 1639 base pairs after the stop codon] of SEQ ID No. 2, position [CYP3A4, 945 base pairs after the stop codon] of SEQ ID No. 3, position [CYP3A4_5' region -747] of SEQ ID No. 4, position [CYP3A4_IVS7 -202] of SEQ ID No. 5, position [CYP3A4, 2204 base pairs after the stop codon] of SEQ ID No. 6, position [CYP3A4_IVS2 -132] of SEQ ID No. 7, position [CYP3A4_IVS1 -868] of SEQ ID No. 8, position [CYP3A4_5' region -847] of SEQ ID No. 9, position [CYP3A4, 766 base pairs after the stop codon] of SEQ ID No. 10, position [CYP3A4, 1454 base pairs after the stop codon] of SEQ ID No. 11, position [CYP3A4_IVS3 +1992] of SEQ ID No. 12, position [CYP3A4_IVS9 +841] of SEQ ID No. 13, position [CYP3A4_IVS12 -473] of SEQ ID No. 14,

- position [CYP3A4_IVS12 +581] of SEQ ID No. 15, position [CYP3A4_IVS12 +586] of SEQ ID No. 16, position [CYP3A4_IVS12 +646] of SEQ ID No. 17, position [CYP3A4_IVS3 -734] of SEQ ID No. 18, position [CYP17_IVS1 -271] of SEQ ID No. 19, position [CYP17_IVS5 +75] of SEQ ID No. 20, position [CYP17_IVS1 +426] of SEQ ID No. 21, position [CYP17_IVS1 -99] of SEQ ID No. 22, position [CYP17_IVS1 -700] of SEQ ID No. 23, position [CYP17_IVS1 -565] of SEQ ID No. 24, position [CYP17_IVS3 +141] of SEQ ID No. 25, position [CYP17_5' region -1488] of SEQ ID No. 26, position [CYP17_5' region -1204] of SEQ ID No. 27, position [CYP17_IVS1 +466] of SEQ ID No. 28, position [CYP17, 712 base pairs after the stop codon] of SEQ ID No. 29, position [SRD5A2, 1356 base pairs after the stop codon (3' UTR)] of SEQ ID No. 30, position [SRD5A2, 849 base pairs after the stop codon (3' UTR)] of SEQ ID No. 31, position [SRD5A2_5' region -870] of SEQ ID No. 32, position [SRD5A2_5' region between -2036 and -2030] of SEQ ID No. 33, position [SRD5A2, 545 base pairs after the stop codon (3' UTR)] of SEQ ID No. 34, position [SRD5A2_IVS2+626] of SEQ ID No. 35, position [SRD5A2_5' region -8029] of SEQ ID No. 36, position [CYP3A4_IVS7+34] of SEQ ID No. 42, position [CYP3A4_5' region -1232] of SEQ ID No. 43, position [SRD5A2_5' region -3001] of SEQ ID No. 44 and position [SRD5A2, 1552 base pairs after the stop codon] of SEQ ID No. 45.
40. The method of claim 39, wherein the polymorphic sequence does not contain at least one single nucleotide polymorphism selected from the group consisting of [CYP3A4_IVS9 +187C>G] of SEQ ID No. 1, [CYP3A4, 1639 base pairs after the stop codon, A>T] of SEQ ID No. 2, [CYP3A4, 945 base pairs after the stop codon, A>T] of SEQ ID No. 3, [CYP3A4_5' region -747C>G] of SEQ ID No. 4, [CYP3A4_IVS7 -202C>T] of SEQ ID No. 5, [CYP3A4, 2204 base pairs after the stop codon, G>C] of SEQ ID No. 6, [CYP3A4_IVS2 -132C>T] of SEQ ID No. 7, [CYP3A4_IVS1 -868C>T] of SEQ ID No. 8, [CYP3A4_5' region -847A>T] of SEQ ID No. 9, [CYP3A4, 766 base pairs after the stop codon, delT] of SEQ ID No. 10, [CYP3A4, 1454 base pairs after the stop codon, C>T] of SEQ ID No. 11,

[CYP3A4_IVS3 +1992T>C] of SEQ ID No. 12, [CYP3A4_IVS9 +841T>G] of SEQ ID No. 13, [CYP3A4_IVS12 -473T>G] of SEQ ID No. 14, [CYP3A4_IVS12 +581C>T] of SEQ ID No. 15, [CYP3A4_IVS12 +586G>A] of SEQ ID No. 16, [CYP3A4_IVS12 +646C>A] of SEQ ID No. 17, 5 [CYP3A4_IVS3 -734G>A] of SEQ ID No. 18, [CYP17_IVS1 -271A>C] of SEQ ID No. 19, [CYP17_IVS5 +75C>G] of SEQ ID No. 20, [CYP17_IVS1 +426G>A] of SEQ ID No. 21, [CYP17_IVS1 -99C>T] of SEQ ID No. 22, [CYP17_IVS1 -700C>G] of SEQ ID No. 23, [CYP17_IVS1 -565G>A] of SEQ ID No. 24, [CYP17_IVS3 +141A>T] of SEQ ID No. 25, [CYP17_5' 10 region -1488C>G] of SEQ ID No. 26, [CYP17_5' region -1204C>T] of SEQ ID No. 27, [CYP17_IVS1 +466G>A] of SEQ ID No. 28, [CYP17, 712 base pairs after the stop codon, G>A] of SEQ ID No. 29, [SRD5A2, 1356 base pairs after the stop codon (3' UTR), A>C] of SEQ ID No. 30, [SRD5A2, 849 base pairs after the stop codon (3' UTR), A>G] of SEQ ID No. 31, 15 [SRD5A2_5' region -870G>A] of SEQ ID No. 32, [SRD5A2_5' region -2036(A)7-8] of SEQ ID No. 33, [SRD5A2, 545 base pairs after the stop codon (3' UTR), T>C] of SEQ ID No. 34, [SRD5A2_IVS2+626C>T] of SEQ ID No. 35, [SRD5A2_5' region -8029C>T] of SEQ ID No. 36, [CYP3A4_IVS7+34T>G] of SEQ ID No. 42, [CYP3A4_5' region -1232C>T] 20 of SEQ ID No. 43, [SRD5A2_5' region -3001G>A] of SEQ ID No. 44, and [SRD5A2, 1552 base pairs after the stop codon, G>A] of SEQ ID No. 45.

41. The method of claim 39, wherein the polymorphic sequence does not contain at least one single nucleotide polymorphism which is the complement of any of the single nucleotide polymorphisms of claim 40. 25
42. The method of any of claims 33 to 38, wherein said method comprises treatment with a polypeptide which is encoded by a polynucleotide selected from the group consisting of polymorphic sequences SEQ ID NOS 1-36 and SEQ ID NOS 42-45 or their complement, provided that the polymorphic sequence, or the complement, does not contain at least one single nucleotide polymorphism at a position selected from the group 30 consisting of position [CYP3A4_IVS9 +187] of SEQ ID No. 1, position

[CYP3A4, 1639 base pairs after the stop codon] of SEQ ID No. 2, position [CYP3A4, 945 base pairs after the stop codon] of SEQ ID No. 3, position [CYP3A4_5' region -747] of SEQ ID No. 4, position [CYP3A4_ IVS7 -202] of SEQ ID No. 5, position [CYP3A4, 2204 base pairs after the stop codon] of SEQ ID No. 6, position [CYP3A4_ IVS2 -132] of SEQ ID No. 7, position [CYP3A4_ IVS1 -868] of SEQ ID No. 8, position [CYP3A4_5' region -847] of SEQ ID No. 9, position [CYP3A4, 766 base pairs after the stop codon] of SEQ ID No. 10, position [CYP3A4, 1454 base pairs after the stop codon] of SEQ ID No. 11, position [CYP3A4_ IVS3 +1992] of SEQ ID No. 12, position [CYP3A4_ IVS9 +841] of SEQ ID No. 13, position [CYP3A4_ IVS12 -473] of SEQ ID No. 14, position [CYP3A4_ IVS12 +581] of SEQ ID No. 15, position [CYP3A4_ IVS12 +586] of SEQ ID No. 16, position [CYP3A4_ IVS12 +646] of SEQ ID No. 17, position [CYP3A4_ IVS3 -734] of SEQ ID No. 18, position [CYP17_ IVS1 -271] of SEQ ID No. 19, position [CYP17_ IVS5 +75] of SEQ ID No. 20, position [CYP17_ IVS1 +426] of SEQ ID No. 21, position [CYP17_ IVS1 -99] of SEQ ID No. 22, position [CYP17_ IVS1 -700] of SEQ ID No. 23, position [CYP17_ IVS1 -565] of SEQ ID No. 24, position [CYP17_ IVS3 +141] of SEQ ID No. 25, position [CYP17_5' region -1488] of SEQ ID No. 26, position [CYP17_5' region -1204] of SEQ ID No. 27, position [CYP17_ IVS1 +466] of SEQ ID No. 28, position [CYP17, 712 base pairs after the stop codon] of SEQ ID No. 29, position [SRD5A2, 1356 base pairs after the stop codon (3' UTR)] of SEQ ID No. 30, position [SRD5A2, 849 base pairs after the stop codon (3' UTR)] of SEQ ID No. 31, position [SRD5A2_5' region -870] of SEQ ID No. 32, position [SRD5A2_5' region between -2036 and -2030] of SEQ ID No. 33, position [SRD5A2, 545 base pairs after the stop codon (3' UTR)] of SEQ ID No. 34, position [SRD5A2_ IVS2+626] of SEQ ID No. 35, position [SRD5A2_5' region -8029] of SEQ ID No. 36, position [CYP3A4_ IVS7+34] of SEQ ID No. 42, position [CYP3A4_5' region -1232] of SEQ ID No. 43, position [SRD5A2_5' region -3001] of SEQ ID No. 44, and position [SRD5A2, 1552 base pairs after the stop codon] of SEQ ID No. 45.

43. The method of claim 42, wherein the polymorphic sequence does not contain at least one single nucleotide polymorphism selected from the group consisting of [CYP3A4_IVS9 +187C>G] of SEQ ID No. 1, [CYP3A4, 1639 base pairs after the stop codon, A>T] of SEQ ID No. 2, [CYP3A4, 945 base pairs after the stop codon, A>T] of SEQ ID No. 3, [CYP3A4_5' region -747C>G] of SEQ ID No. 4, [CYP3A4_ IVS7 -202C>T] of SEQ ID No. 5, [CYP3A4, 2204 base pairs after the stop codon, G>C] of SEQ ID No. 6, [CYP3A4_ IVS2 -132C>T] of SEQ ID No. 7, [CYP3A4_ IVS1 -868C>T] of SEQ ID No. 8, [CYP3A4_5' region -847A>T] of SEQ ID No. 9, [CYP3A4, 766 base pairs after the stop codon, delT] of SEQ ID No. 10, [CYP3A4, 1454 base pairs after the stop codon, C>T] of SEQ ID No. 11, [CYP3A4_ IVS3 +1992T>C] of SEQ ID No. 12, [CYP3A4_ IVS9 +841T>G] of SEQ ID No. 13, [CYP3A4_ IVS12 -473T>G] of SEQ ID No. 14, [CYP3A4_ IVS12 +581C>T] of SEQ ID No. 15, [CYP3A4_ IVS12 +586G>A] of SEQ ID No. 16, [CYP3A4_ IVS12 +646C>A] of SEQ ID No. 17, [CYP3A4_ IVS3 -734G>A] of SEQ ID No. 18, [CYP17_ IVS1 -271A>C] of SEQ ID No. 19, [CYP17_ IVS5 +75C>G] of SEQ ID No. 20, [CYP17_ IVS1 +426G>A] of SEQ ID No. 21, [CYP17_ IVS1 -99C>T] of SEQ ID No. 22, [CYP17_ IVS1 -700C>G] of SEQ ID No. 23, [CYP17_ IVS1 -565G>A] of SEQ ID No. 24, [CYP17_ IVS3 +141A>T] of SEQ ID No. 25, [CYP17_5' region -1488C>G] of SEQ ID No. 26, [CYP17_5' region -1204C>T] of SEQ ID No. 27, [CYP17_ IVS1 +466G>A] of SEQ ID No. 28, [CYP17, 712 base pairs after the stop codon, G>A] of SEQ ID No. 29, [SRD5A2, 1356 base pairs after the stop codon (3' UTR), A>C] of SEQ ID No. 30, [SRD5A2, 849 base pairs after the stop codon (3' UTR), A>G] of SEQ ID No. 31, [SRD5A2_5' region -870G>A] of SEQ ID No. 32, [SRD5A2_5' region -2036(A)7-8] of SEQ ID No. 33, [SRD5A2, 545 base pairs after the stop codon (3' UTR), T>C] of SEQ ID No. 34, [SRD5A2_ IVS2+626C>T] of SEQ ID No. 35, [SRD5A2_5' region -8029C>T] of SEQ ID No. 36, [CYP3A4_ IVS7+34T>G] of SEQ ID No. 42, [CYP3A4_5' region -1232C>T] of SEQ ID No. 43, [SRD5A2_5' region -3001G>A] of SEQ ID No. 44, and [SRD5A2, 1552 base pairs after the stop codon, G>A] of SEQ ID No. 45.

44. The method of claim 42, wherein the polymorphic sequence does not contain at least one single nucleotide which is the complement of any of the single nucleotide polymorphisms of claim 43.
- 5 45. The method of claims 33 to 38, wherein said method comprises treatment with an antibody that binds specifically with a polypeptide encoded by a polynucleotide selected from the group consisting of SEQ ID NOS 1-36 and SEQ ID NOS 42-45, or the complement thereof.
- 10 46. A method for predicting the genetic ability of a subject or an organism to metabolise a chemical, said method comprising analysing a biological sample containing nucleic acid obtained from said subject or organism to detect the presence or absence of one or more single nucleotide polymorphisms at a position selected from the group consisting of position [CYP3A4_IVS9 +187] of SEQ ID No. 1, position [CYP3A4, 1639 base pairs after the stop codon] of SEQ ID No. 2, position [CYP3A4, 945 base pairs after the stop codon] of SEQ ID No. 3, position [CYP3A4_5' region -747] of SEQ ID No. 4, position [CYP3A4_ IVS7 -202] of SEQ ID No. 5, position [CYP3A4, 2204 base pairs after the stop codon] of SEQ ID No. 6, position [CYP3A4_ IVS2 -132] of SEQ ID No. 7, position [CYP3A4_IVS1 -868] of SEQ ID No. 8, position [CYP3A4_5' region -847] of SEQ ID No. 9, position [CYP3A4, 766 base pairs after the stop codon] of SEQ ID No. 10, position [CYP3A4, 1454 base pairs after the stop codon] of SEQ ID No. 11, position [CYP3A4_IVS3 +1992] of SEQ ID No. 12, position [CYP3A4_IVS9 +841] of SEQ ID No. 13, position [CYP3A4_IVS12 -473] of SEQ ID No. 14, position [CYP3A4_IVS12 +581] of SEQ ID No. 15, position [CYP3A4_IVS12 +586] of SEQ ID No. 16, position [CYP3A4_IVS12 +646] of SEQ ID No. 17, position [CYP3A4_IVS3 -734] of SEQ ID No. 18, position [CYP17_IVS1 -271] of SEQ ID No. 19, position [CYP17_IVS5 +75] of SEQ ID No. 20, position [CYP17_IVS1 +426] of SEQ ID No. 21, position [CYP17_IVS1 -99] of SEQ ID No. 22, position [CYP17_IVS1 -700] of SEQ ID No. 23, position [CYP17_IVS1 -565] of SEQ ID No. 24, position [CYP17_IVS3 +141] of SEQ ID No. 25, position [CYP17_5' region -1488]

of SEQ ID No. 26, position [CYP17_5' region -1204] of SEQ ID No. 27, position [CYP17_IVS1 +466] of SEQ ID No. 28, position [CYP17, 712 base pairs after the stop codon] of SEQ ID No. 29, position [SRD5A2, 1356 base pairs after the stop codon (3' UTR)] of SEQ ID No. 30, position [SRD5A2, 849 base pairs after the stop codon (3' UTR)] of SEQ ID No. 31, position [SRD5A2_5' region -870] of SEQ ID No. 32, position [SRD5A2_5' region between -2036 and -2030] of SEQ ID No. 33, position [SRD5A2, 545 base pairs after the stop codon (3' UTR)] of SEQ ID No. 34, position [SRD5A2_IVS2+626] of SEQ ID No. 35, position [SRD5A2_5' region -8029] of SEQ ID No. 36, position [CYP3A4_IVS7+34] of SEQ ID No. 42, position [CYP3A4_5' region -1232] of SEQ ID No. 43, position [SRD5A2_5' region -3001] of SEQ ID No. 44 and position [SRD5A2, 1552 base pairs after the stop codon] of SEQ ID No. 45,
wherein the presence of a polymorphism at one or more of said positions
is indicative of the subject's or organism's ability or inability to metabolise
said chemical.

47. The method of claim 46, wherein said analysis comprises detecting or absence of one or more single nucleotide polymorphisms selected from the group consisting of [CYP3A4_IVS9 +187C>G] of SEQ ID No. 1, [CYP3A4, 1639 base pairs after the stop codon, A>T] of SEQ ID No. 2, [CYP3A4, 945 base pairs after the stop codon, A>T] of SEQ ID No. 3, [CYP3A4_5' region -747C>G] of SEQ ID No. 4, [CYP3A4_IVS7 -202C>T] of SEQ ID No. 5, [CYP3A4, 2204 base pairs after the stop codon, G>C] of SEQ ID No. 6, [CYP3A4_IVS2 -132C>T] of SEQ ID No. 7, [CYP3A4_IVS1 -868C>T] of SEQ ID No. 8, [CYP3A4_5' region -847A>T] of SEQ ID No. 9, [CYP3A4, 766 base pairs after the stop codon, delT] of SEQ ID No. 10, [CYP3A4, 1454 base pairs after the stop codon, C>T] of SEQ ID No. 11, [CYP3A4_IVS3 +1992T>C] of SEQ ID No. 12, [CYP3A4_IVS9 +841T>G] of SEQ ID No. 13, [CYP3A4_IVS12 -473T>G] of SEQ ID No. 14, [CYP3A4_IVS12 +581C>T] of SEQ ID No. 15, [CYP3A4_IVS12 +586G>A] of SEQ ID No. 16, [CYP3A4_IVS12 +646C>A] of SEQ ID No. 17, [CYP3A4_IVS3 -734G>A] of SEQ ID No. 18, [CYP17_IVS1 -271A>C] of

- SEQ ID No. 19, [CYP17_IVS5 +75C>G] of SEQ ID No. 20, [CYP17_IVS1
+426G>A] of SEQ ID No. 21, [CYP17_IVS1 -99C>T] of SEQ ID No. 22,
[CYP17_IVS1 -700C>G] of SEQ ID No. 23, [CYP17_IVS1 -565G>A] of
SEQ ID No. 24, [CYP17_IVS3 +141A>T] of SEQ ID No. 25, [CYP17_5'
5 region -1488C>G] of SEQ ID No. 26, [CYP17_5' region -1204C>T] of SEQ
ID No. 27, [CYP17_IVS1 +466G>A] of SEQ ID No. 28, [CYP17, 712 base
pairs after the stop codon, G>A] of SEQ ID No. 29, [SRD5A2, 1356 base
pairs after the stop codon (3' UTR), A>C] of SEQ ID No. 30, [SRD5A2, 849
base pairs after the stop codon (3' UTR), A>G] of SEQ ID No. 31,
10 [SRD5A2_5' region -870G>A] of SEQ ID No. 32, [SRD5A2_5' region -
2036(A)7-8] of SEQ ID No. 33, [SRD5A2, 545 base pairs after the stop
codon (3' UTR), T>C] of SEQ ID No. 34, [SRD5A2_IVS2+626C>T] of SEQ
ID No. 35, and [SRD5A2_5' region -8029C>T] of SEQ ID No. 36,
[CYP3A4_IVS7+34T>G] of SEQ ID No. 42, [CYP3A4_5' region -1232C>T]
15 of SEQ ID No. 43, [SRD5A2_5' region -3001G>A] of SEQ ID No. 44,
[SRD5A2, 1552 base pairs after the stop codon, G>A] of SEQ ID No. 45.
48. The method of either of claims 46 or 47, wherein the method further
comprises predicting the response of the subject to the chemical by their
ability or inability to metabolise the chemical.
20
49. The method according to any of claims 46 to 48, wherein said chemical is
a drug or a xenobiotic.
- 25 50. The method according to any of claims 46 to 49, wherein said organism is
selected from the group consisting of bacterium, fungus, protozoa, alga,
fish, plant, insect and mammal.
51. A vector comprising a polynucleotide selected from the group consisting of
30 a nucleotide sequence comprising one or more polymorphic sequences of
SEQ ID NOS 1-36 or SEQ ID NOS 42-45.
52. A host cell transformed with the vector of claim 51.

53. The host cell of claim 52, wherein said host cell is selected from the group consisting of bacterium, fungus, protozoa, alga, fish, plant, insect and mammal.
- 5
54. The host cell of claim 53, wherein said mammal cell is a human cell.
55. Method of metabolising a chemical using the host cell of either of claims 52 or 53.
- 10
56. Method for making a host cell resistant to a chemical, said method comprising transforming said cell with any of the polynucleotides of claims 1 to 9 or with any of the vectors of claim 51.
- 15 57. An isolated haplotype selected from the group consisting of CYP3A4_Hap4 and SRD52_Hap3.
58. The isolated CYP3A4_Hap4 haplotype of Claim 57 wherein said haplotype comprises Allele T at [CYP3A4_5' region -1232C>T], Allele C at [CYP3A4_5' region -747C>G], Allele G at [CYP3A4_5' region -392A>G], Allele G at [CYP3A4_IVS7+34T>G], Allele T at [CYP3A4_IVS7-202C>T], Allele G at [CYP3A4_stop+766T>G], Allele C at [CYP3A4_stop+1454C>T], Allele T at [CYP3A4_stop+1639A>T] and Allele C at [CYP3A4_stop+2204G>C].
- 20
- 25 59. The isolated SRD52_Hap3 haplotype of Claim 57 wherein said haplotype comprises Allele C at [SRD5A2_5' region -8029C>T], Allele G at [SRD5A2_5' region -3001G>A], Allele G at [SRD5A2_145G>A], Allele G at [SRD5A2_265G>C], Allele T at [SRD5A2_IVS2+626C>T], Allele G at [SRD5A2_stop+1552G>A], Allele G at [SRD5A2_stop+3059G>A] and Allele G at [SRD5A2_stop+9301G>C].
- 30

60. A method for diagnosing a genetic susceptibility for a disease, condition or disorder related to prostate or breast cancer in a subject, said method comprising analysing a biological sample obtained from said subject to detect the presence or absence of a haplotype as defined in any of claims 5 57-59.
61. A method of diagnosing a genetic susceptibility for a disease, condition or disorder related to prostate or breast cancer in a subject, said method comprising adding an antibody to a polypeptide present in a sample 10 obtained from said subject which polypeptide is encoded by a haplotype as defined in any of claims 57-59, or the complement thereof, and detecting specific binding of said antibody to said polypeptide.
62. A method of treatment or prophylaxis of a subject comprising the steps of 15 i) analysing a sample of biological material containing a nucleic acid obtained from said subject to detect the presence or absence of at least one haplotype as defined in any of claims 57-59, or the complement thereof, associated with a disease, condition or disorder related to prostate or breast cancer; and 20 ii) treating the subject for said disease, condition or disorder if step i) detects the presence of at least one said haplotype, or the complement thereof.
63. The method of claim 62 wherein the method comprises treatment with a portion of the isolated CYP3A4_Hap4 haplotype according to claim 58 25 wherein said portion of said haplotype does not consist of at least one allele from the group consisting of Allele T at [CYP3A4_5' region – 1232C>T], Allele C at [CYP3A4_5' region –747C>G], Allele G at [CYP3A4_5' region –392A>G], Allele G at [CYP3A4_IVS7+34T>G], Allele 30 T at [CYP3A4_IVS7-202C>T], Allele G at [CYP3A4_stop+766T>G], Allele C at [CYP3A4_stop+1454C>T], Allele T at [CYP3A4_stop+1639A>T] and Allele C at [CYP3A4_stop+2204G>C].

64. The method of claim 62 wherein the method comprises treatment with a portion of the isolated SRD5A2_Hap3 haplotype of Claim 59 wherein said portion of said haplotype does not comprise of at least one allele from the group consisting of Allele C at [SRD5A2_5' region -8029C>T], Allele G at [SRD5A2_5' region -3001G>A], Allele G at [SRD5A2_145G>A], Allele G at [SRD5A2_265G>C], Allele T at [SRD5A2_IVS2+626C>T], Allele G at [SRD5A2_stop+1552G>A], Allele G at [SRD5A2_stop+3059G>A] and Allele G at [SRD5A2_stop+9301G>C].

1/4

Figure 1: Testosterone biosynthetic pathway

Figure 2A

Figure 2B

SRD5A2

76 341 bp

	Frequency (all)		Frequency (EA)		Frequency (AA)	
	Controls	Cases	Controls	Cases	Controls	Cases
Hap1	T	G	376 (.39)	348 (.40)	352 (.40)	321 (.40)
Hap2	C	A	218 (.23)	212 (.24)	206 (.24)	197 (.25)
Hap3	C	.	.	.	108 (.11)	84 (.10)
Hap4	C	A	.	A	73 (.08)	73 (.08)
Hap5	C	.	.	.	41 (.04)	42 (.05)
Hap6			32 (.03)	27 (.03)	19 (.02)	20 (.03)
Hap7		Composite	112 (.12)	94 (.10)	84 (.10)	68 (.09)
					19 (.25)	20 (.26)
					11 (.14)	13 (.17)
					6 (.08)	3 (.04)
					-	7 (.09)
					13 (.17)	7 (.09)
					27 (.36)	26 (.34)

4/4

Figure 2C

10/529193

JC06 Rec'd PCT/PTO 24 MAR 2005

PCT/US2003/030359

WO 2004/028346

pto_PB0262.txt
SEQUENCE LISTING

<110> Loukola, Anu-Maria
Penn, Sharron G.
Rank, David R.
Hanzel, David K.
Casey, Graham.
Witte, John S.

<120> Detection Methods

<130> PB0262

<140> to be assigned
<141> 2003-09-25

<150> US 60/413,583
<151> 2002-09-25

<150> US 60/491,842
<151> 2003-08-01

<160> 45

<170> PatentIn version 3.1

<210> 1
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: G.

<400> 1
atgagaattt ctgccacata gcagaacgac acatgtttga atgttataag tggtagttgg 60
aggcactttc tagagggcatg caggcataga tagccatgtt ctaagagtaa agggcaaccc 120
taagcaaacc tggcatgcta gaaagtcagt ctgcggctcg tggatcacct acatcagatc 180
aatgccaat tctcagcctc c 201

<210> 2
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: T.

<400> 2
tgatagaagc caggottctc acctttgcag aaggagtc a tggattcaga aaggagaaa 60
actagcatga atccttatgaa attagattgg aatggatgt accgtgtata ttcataccct 120
tgttagataga tagatggta gatagatgt agatagtaa cagatagatg acagataatg 180

pto_PB0262.txt

agatagatag atgtaaatgt a 201

<210> 3
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: T.

<400> 3
ggcaggagaa tcacttgaac ctgggaggcg gatgttgaag tgagctgaga ttgcaccact 60
gcactccagt ctgggtgaga gtgagactca gtcttaaaaa aatatgcctt tttgaagcac 120
gtacattttgc taacaaagaa ctgaagctct tattatatta ttagtttga tttaatgttt 180
tcagccccatc tcctttcata t 201

<210> 4
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: G.

<400> 4
aagtcaccag aaagtcagaa gggatgacat gcagaggccc agcaatctca gctaagtcaa 60
ctccaccagc ctttctagtt gcccaactgtg tgtacagcac cctggtaggg accagagcca 120
tgacagggaa taagactaga ctatgccctt gaggagctca cctctgttca gggaaacagg 180
cgtggaaaca caatggtggt a 201

<210> 5
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: T.

<400> 5
ctgttagtcca atagataaag gcaaagagat tagggcattt aattttgttc cttttatcct 60
tcaaaaagatg cacaaggggc tgctgatctc actgctgttag cggtgctcct tatgcataga 120
cctgcccttg ctcagccact ggcctgaaag aggggcaaaa gtcatagaag gaatggctc 180

pto_PB0262.txt

cagttgagaa ccttgatgtc t	201
<210> 6	
<211> 201	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> SNP	
<222> (101)..(101)	
<223> Alternative allele: C.	
<400> 6	
gaactattgg aactgataaa cacattcagt aaaggcag gataaaaaat cagcatacaa	60
aatcagtag catttctata tgccaatagt gaacaatctg gcaaaaataa aaaagtaatc	120
ccatttacaa tagccacaaa taaaactaaa tacctagaaa ttaacttaat caaagaagag	180
aaaggcctct acaatgaata c	201
<210> 7	
<211> 201	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> SNP	
<222> (101)..(101)	
<223> Alternative allele: T.	
<400> 7	
ataagtcatt cagtatccac aacacttgg aagaattcaa gagtgattt aaatttccct	60
tttcaaaatac ctccctctgtt ttctcttatt tcctttatga cgtctccaaa taagcttcc	120
ctaactgcc a gcaagtctga tttcattggc ttgcactgtt ttcatccaa ttagaggcag	180
ggttaagtac attaaaaata a	201
<210> 8	
<211> 201	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> SNP	
<222> (104)..(104)	
<223> Alternative allele: T.	
<400> 8	
aactgcccct aggatccaat catctcctac caggccccac ctccagtatt gggattgca	60
tttcaacatg agattttgtt aggggcacag attcagacca tatcactggc actgtgctaa	120
tcagatgaat atcaccagtt ggaaggctag attccacaag aggaggaatg acctggaaat	180
tggttcttta gttgtgattc t	201

pto_PB0262.txt

```

<210> 9
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (100)..(100)
<223> Alternative allele: T.

<400> 9
ggggtccct tgccaaacaga atcacagagg accagcctga aagtgcagag acagcagctg      60
aggcacagcc aagagctctg gctgtattaa tgacctaaga agtcaccaga aagtcaag          120
ggatgacatg cagaggccca gcaatctcag ctaagtcaac tccaccagcc tttctagttg      180
cccactgtgt gtacagcacc c                                              201

<210> 10
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: base deleted.

<400> 10
tcaggcacag tggctcacgc ctgtaatcct agcagtttg gaggctgagc cgggtggatc      60
gcctgaggc aggagttcaa gacaagcctg gcctacatgg ttgaaacccc atctctacta      120
aaaatacaca aatttagctag gcatggtgga ctcgcctgta atctcactac acaggaggct      180
gaggcaggag aatcaacttga a                                              201

<210> 11
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: T.

<400> 11
tgggtgtgg agtccaagca agcagagaag gggtcacgc agaggggtgg cttgcaagag      60
cagccagagc ctaaataggg tatggagaac ccacatgagg cgaggaggc atccatgagt      120
gggaggggtt gggtaggtt tggctacata aaggggattt atcaaataag taaatgtatt      180
aaggatgata gaagccaggc t                                              201

```

pto_PB0262.txt

```

<210> 12
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: C.

<400> 12
ttgcatttct ctaatgacca gtgatgatga gcatttttc acatgtctgt tggotgcata      60
gatgtcttct tttgagaagt gtctgttcat atcccttgcc tatttttga tggggttgtt      120
tgctttttt cttgtaaatt tgtttaagtt cttagat tctggatgtt agcccttcgt      180
cagatggata gattgcaaaa a                                         201

<210> 13
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: G.

<400> 13
taactattgg ttcttagagag caggactggg cttactccag catactgctt taaatatatac      60
catgtctaca tccacttttgc tctgtatgtc tatgtatcta tctatgtatc tatctagcta      120
tgtatctatc tatctatcta tctatcatct atctatctat ctatcatcta tccatctatc      180
atctatcatt tatccatcta t                                         201

<210> 14
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: G.

<400> 14
cttccccatct ttacactgga tgggttcaat tgggaggaat tactggactc tggaagttga      60
agactgtcca tataattaaa atgtacaata actacccagg tttaccttgc aagtttcaac      120
atacacaaaa ttaactttat atgactcttc aaaaacagtt tgccatcata cctaataatc      180
tggtttaaat tttaaaaaact c                                         201

```

pto_PB0262.txt

```

<210> 15
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: T.

<400> 15
tgcccgagt gtggcttaa aagcttcccc attgcttctc atgtgaagcc aaggttgaga      60
atgactaatt taaggcattt ctggtgata taaaggacta ccacagtcca aggcattcct      120
gactgaccctc accttccagg tgcctagctc catccagctg ggctccttt caacccaatt      180
ataactctat taatgttgtt c                                         201

<210> 16
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: A.

<400> 16
agagtgtggc tttaaaagct tccccattgc ttctcatgtg aagccaaggt tgagaatgac      60
taatttaagg catttctgg gatataaaag gactaccaca gtccaaggcc atcctgactg      120
acctcacctt ccaggtgcct agctccatcc agctgggctc ctttcaacc caattataac      180
tctattaatg ttgttcccag c                                         201

<210> 17
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: A.

<400> 17
taatttaagg catttctgg gatataaaag gactaccaca gtccaaggcc atcctgactg      60
acctcacctt ccaggtgcct agctccatcc agctgggctc ctttcaacc caattataac      120
tctattaatg ttgttcccag ccaggcatgg tggctcatgc ctgtaatccc agcactttgg      180
gaggccgaag caggcgatc a                                         201

<210> 18

```

pto_PB0262.txt

```

<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: A.

<400> 18
ctaatttgat tgcactgtgg tctgagagac agtttgttat gatttctgtt cttttacatt      60
tgctgaggag tgctttactt ccaattatgt ggtcaatttt ggaataagtg cgatgtggtg      120
ctgagaagaa tgtatattct gttgatttgg ggtggagagt tctgttagatg tctatttaggt      180
ccgcttggtg cagagctgag t                                         201

<210> 19
<211> 200
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (100)..(100)
<223> Alternative allele: C.

<400> 19
ggacaggcat agtttagaga gtttatccca tccagagttg ctttctgtgg tcagaaaactg      60
atgagcaaaa agaagcccag agggcacccct gtcagcgaaa agaacccaa tgctgctgca      120
ttcttaattaa gggttctttc tttctccttg atctactgta tttctgaagg aattgggagt      180
aggaggcctt agggctctgtc                                         200

<210> 20
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: G.

<400> 20
tggccttcct gctgcacaat cctcaggtgt gttccccct cattgatcct agacccagc      60
cagcccaatc tctgggctcc agagaaaggg agagccaatt ctctcaggct ttctgtgcag      120
gaagactagg cctgccctgc tccttaccca agcagtagtt ggcttgacc ccagagtaga      180
gctgccccat cttctggaag c                                         201

<210> 21
<211> 201

```

pto_PB0262.txt

```

<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: A.

<400> 21
cagcacttag cctagcaccc agcacagtaa gtgcccctta tacagccagg attcatgtta      60
cttttcatgg aaaatggggg cagtgactac tgtcctccat gaaagctgct ggggagaatt      120
agcctagcta ttgcaggctg ggattgctgc tttcctggtg ctatttccag ctactcaggc      180
tcacagggc agttttctac a                                         201

<210> 22
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: T.

<400> 22
attgggagta ggaggcctta gggctgtcc taccaagtcc ttgcagtcgat ggtggagtgc      60
agtggggctg tgcccacatg ggagtcagca tgccaggtac ctgccttctc ctccaggaag      120
gaaagcaggg accagaggtg taaggcagaag agtggggtgg atggtgtgag attcctacag      180
ccttgcctgc tctctaaagg c                                         201

<210> 23
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: G.

<400> 23
gccactgtgc cctgccagcc tctcagctt gatcaagcca agggttggtt tatttttct      60
tggaccaatc agccaggtct gctgaccaac tacctagctc ccacctctgc tggcttcctc      120
ccggggcag agaagatgga gaaggctgt catgtggatc ttcagggtca gcaaatggaa      180
aagggaggct ttggaccctt t                                         201

<210> 24
<211> 201
<212> DNA

```

pto_PB0262.txt

```

<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: A.

<400> 24
atggagaagg ctagtcatgt ggatcttcag ggtcaggaaa tggaaaaggg aggctttgga      60
cccttttgc ttggggggca cctctaggag gaggcagctc gccccaagtc cagactgggt      120
agacaaaaca tctgcactct ccaaattgtgg gcttgtggct ggttatgcag gcttgcaatg      180
gaagggtaaa cctgagttag g      201

<210> 25
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: T.

<400> 25
ctgacattgt ccccaatctt ctttccttt tacttccctg ctccagccgc aatgaccat      60
cttttcctg attacctccg ccacctctac ctcctctgcc actaaaaacc tttgccatt      120
ctctgcagag atagatttag ctttttaatt atgcaccta gtactccaga taatgacatt      180
catttctttt ccaattacca t      201

<210> 26
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (100)..(100)
<223> Alternative allele: G.

<400> 26
attttttaggg aacaaggaa aacaaccata aggtctgact gcctgcaggg tcggcagaa      60
agagccatat ttcccttctt gagagaggct ataaatggac atgcaagtag ggaagatatc      120
actaaattct ttcccttagca aggagtatta ttatataac cctggaaag gaatgcattc      180
ctggggggag gtctataaac a      201

<210> 27
<211> 201
<212> DNA
<213> Homo sapiens

```

pto_PB0262.txt

```

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: T.

<400> 27
tagggtgggg aaaaactccg ccctggtaaa tttgtggtca gaccggttct ctgctgtcga      60
accctgtttg ctgttgtta aggtgttat caagacagta cgtgcaccgc tgaacataga      120
ccctcatctg tagttctgct tttgccctt gccttgtat ctttgttga cccttatcag      180
tggttctgct tttgccctt g                                         201

<210> 28
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: A.

<400> 28.
tacagccagg attcatgtta ctttcatgg aaaatggggg cagtgactac tgtcctccat      60
aaaagctgct ggggagaatt agcctagcta ttgcaggctg ggattgctgc tttcctggtg      120
ctatttccag ctactcaggc tcacagggc agtttctac aatgacatit cagggttgct      180
gatgagcctc ccactcagca g                                         201

<210> 29
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: A.

<400> 29
ctggaggatt ttaagtatgt aagtggaaaca atctgtttt ttgttttgt ttttgttga      60
gaaggagtt cgctcttgtt gccctggctg gagtgcaatg gcatgatctt ggctcactgc      120
aaccctgc tccctgatcc aagtgattct cctgcctcag cctccaaaat agctggatt      180
gcaggcgtgt gccaccatgc c                                         201

<210> 30
<211> 150
<212> DNA
<213> Homo sapiens

```

pto_PB0262.txt

```

<220>
<221> SNP
<222> (50)..(50)
<223> Alternative allele: C.

<400> 30
tcttgtgaag gggtcacccc agcatgagtg ctgagatatg gactctctaa ggaaggggcc      60
gaacgcttgt aatttgaata catggaaata tttgtcttct caggcctatg tttgcggaat      120
gcattgtcaa tatttagcaa actgttttga                                         150

<210> 31
<211> 151
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (51)..(51)
<223> Alternative allele: G.

<400> 31
cgagaacagt tttacaatag acattgcaaa ctctcatgtt tttggaaact agtggcaata      60
tccaaataat gagtagtgta aaacaaagag aattaatgtat gaggttacat gctgcttgcc      120
tccaccagat gtccacaaca atatgaagta c                                         151

<210> 32
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: A.

<400> 32
gtctgcgtgt atgacggcta gacaggagtt cagagaacag cggggtcgcc aggccaccac      60
ctgatgggcc acggctcatt ggctctagga gctggaaag ggcatccag gaaagaagcc      120
ctagacttta gcctgagtct gggccactct aggggaccgg gagtggggtg gcgggagagg      180
acgcgcagaa tctcgacttc t                                         201

<210> 33
<211> 200
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(107)
<223> Alternative allele: eight A's instead of seven after base 100.

```

pto_PB0262.txt

```

<400> 33
agctaattgt tataatagtg gagaaaaagat catgaggaca aaaagtggc agagtcggaa      60
gaaaagagag gaagaaattt agacagaaga catttcattt aaaaaaatat tccattgagc      120
tgggtttgaa atagtgcact gcctgttctc ctaatgctgt atggtgtcat gaaatctatt      180
gtttactgag tctatgagcc      200

<210> 34
<211> 201
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: C.

<400> 34
aactctgaag ccacaaagac ccagagcaaa cccactccc aatgaaaacc ccagtcatgg      60
cttcctttt cttggtaat taggaaagat gagaaattat tagtagacc ttgaatacag      120
gagccctctc ctcatagtgc tggaaagata ctgatgcatt gacctcattt caaatttgc      180
cagtgtctta gttgatgagt g      201

<210> 35
<211> 211
<212> DNA
<213> Homo sapiens

<220>
<221> SNP
<222> (101)..(101)
<223> Alternative allele: T.

<300>
<308> NCBI SNP CLUSTER ID: rs413836
<309> 2003-03-07

<400> 35
aaagaacat tgtttcttaa aacaatgttt taagaaagtg tacgaatttg tgtcaggcca      60
catccaaaac tgtcctggc tgcattggc ccacaggctg cgggttggac aagcctggcc      120
tagaaggctt tgccccatg tattcatggg gttgggtcc tcactttatt tagtcccta      180
ccaatttgca ctcctcaaa gggactttcc c      211

<210> 36
<211> 213
<212> DNA
<213> Homo sapiens

<220>
<221> SNP

```

pto_PB0262.txt

```

<222> (123)..(123)
<223> Alternative allele: T.

<300>
<308> NCBI SNP CLUSTER ID: rs545303
<309> 2003-03-07

<400> 36
gggaactcac agtttttgg ctgtctata gagttgcaa cagtaaaact gcttcttca      60
aagggtctgt gaattcttgc agtttcctg gtatgttccc atggtagttc ttgcagcaaa    120
agctcacagt gtgagtctcc acacactgtt ctgtccattc caagcaggag ctgcatgtta    180
gttctgtctg ctatccacca tttccaatt ttg                                213

<210> 37
<211> 20
<212> DNA
<213> Homo sapiens

<400> 37
tggccttgta cgtcgcaag                                         20

<210> 38
<211> 21
<212> DNA
<213> Homo sapiens

<400> 38
agcagggcag tgcgctgcac t                                         21

<210> 39
<211> 39071
<212> DNA
<213> Homo sapiens

<220>
<221> misc feature
<222> (37334)..(37334) /
<223> Unknown base.

<300>
<308> http://www.genome.utah.edu/genesnps/
<309> 2002-06-05
<313> (1)..(37073)

<400> 39
gatccctac tcactgtctt ctctctacag aacgagatgt ctctggagtc catagaaagc      60
ccaggaggcct ggctgggcac ggtggctcct gcctgtaatc ccagcacttt gggaggccga    120
ggcaggcaga tcacctgagc tcaggagttc aagaccagcc tggcaacat ggcaaaaccc    180
catctctact aaaaatacaa aaaattagct gggcgtggtg gtgcattgc ctaatcccag    240
ctacttggga ggctgaggca caagaattgc ttgagccccag gaggcagcag ttgcagttag   300
ctgagattgt gccagtgcac tccagcctgg gcaacagagc aagattccat ttcaaaaaca   360

```

pto_PB0262.txt

aaaacaaaaca caaacaaaaca aacaaaaata gaaagccag ggaccacctg cgtcaggttc	420
ccagccacac ctttttcttg tcctcctctg tctctggcat cttctcacag gttcctaatt	480
gtttgtggtt gcacaaattc aaaatcccag aaaaattacc acttcacacc cactcagatg	540
gctatttttt ttttgaagga agataacaag tgttgacaag aacatggaga aattggaaatt	600
ctcacccatt gctggtgaga atgtaatacg gtgctgctgc tatggaaaac agcttggagt	660
ttcctcaaaa agttcaacag aatttcaatg tgacccagca attccctct aagttataga	720
tctgagagga ttaaaaacag ttactaaaat acacggactc acatatttct aacagtccaa	780
ttcacaaggg ccaaaaggtg ctaatagccc acatgtccat cgatggatgg ataaataaat	840
tgtggtctat ccatacaatg gaatattatt cggccataaa tggaatgaag tactgacgca	900
tgctacagaa tggatgaacc gcaaaaaaaaaa tggatgaaca catgctacag aatggatagc	960
ctcactttac tatgaagtga aggccagaaa cgaagtccat atattgcatc atacaaaata	1020
tccagaagag ggaagcccc acagacagaa tgtgcaatgg tggatgccag ggtctgggga	1080
gaggggagag tggggagaaa ctgctcaact ggtacaggct ttattttgg aatggatggaa	1140
cattttgcaa cttagatagag gtagtgattt cagaacacag aatgtactga attccactga	1200
tttttttac cttaaaatgg ttaattttca gtcctgagat tggataatca taaaaaaaaatg	1260
gttaattttta tgttatgtga atttcatccc tatacatatt ttaaacctca gaaatataca	1320
ctagcaggca tggaacaggt cactgtggtg cctgccaagc ccggtgatgt tatctggggt	1380
ccccggccag ccttaagcct cttgctgacc ggtggagggc agaacctttg ccctaaaagt	1440
ataatatcca catgctggca tgattcctgg ccagatggct tctttattag cagtaattga	1500
aactgcctcg atacagacac tgtaccttgc aaccaaaaaa tgactcaaca atgataataa	1560
gggttaagct gggcctttct ctctttgcca gttaaattat atttattata gcttgacatg	1620
aaaaacaaaag caactccaac aggtatcaca agggcaaagg acatgaacat tttatcaaag	1680
aagaaatgca gctgtaaaaa atacagaaat atcoaacctt gttcataata aagtggctgg	1740
gctcagtgg tcatgcctgt aatcccagtg ctttgcagg ctgagacagg aggatcattt	1800
gaagccagaa gttcaagacc atcctaggca agtcagttca ataccagact tcatgtctac	1860
aaaacatcaa aaaattagcc aggcatggtg atgcatgcct gttgtccag ctactcagga	1920
ggctgaggca ggagaattgc ttgagcctgg gaggctgcgg tggcggtgag ccatgattgt	1980
gccattgtac tccagcctgg gcaatgcagc aagactgtct aaataacaaa aataatagta	2040
aagaaaaagga ttggatgcc atttacttgc gtattcaata cacagagttt aaagtaattt	2100
ctacgttttc tattttttta ttactaaaaa aagctggacc attctcacag cctgaaatgc	2160
ttctcacttt cccttcttct gtccaaacac ttctctatga taatgcaaac agtcaactct	2220
tttaggaagac ttcaccccaag gtagttccag atcccttat ctctgccttc ccagaactcc	2280

pto_PB0262.txt

tggtgtctct ccagttccct ccgtgtggtg aagtacccta cctagggttt cagtatggct	2340
ctgtctgcaa aggtcttggtt cacacccccc cttatgggtc tggccctg tggtgtgtca	2400
tagcacaggg cacagtggag aaccattca cactgataga gagggccccca tggccctgga	2460
gataaccatg taaccgatca gaataaggca ttgagggctg ggtgtcaggc gtgggctgca	2520
cttgggtggg caggtccccct ggaaagtac tgggttggc aagcttccta gtaacatgtc	2580
tctctggggt ccccttgga acttcatgca aaaatgctgg ttgctgggtt attctagaga	2640
gatggttcat tccttcatt tgattatcaa agaaactcat gtcccaatta aaggtcataa	2700
agcccagtt gtaaactgag atgatctcg ctgaatgaac ttgctgaccc tctgcttcc	2760
tccagcctct cggtgccctt gaaatcatgt cggtcaagc agcctcatga ggcattacaa	2820
agtttaatata ttcaactgat tattaaacct tgtcctgtgt tgaccccagg tgaatcacaa	2880
gctgaacttc tgacaagaac aagctatcat attctttca attacagaaa aaagtaagtt	2940
aattgatagg atttttttg tttaaaaaaa atgttacttag ttttggaaag gtaatatgtg	3000
cacatggtaa acactaagaa ggtataagag cataatgctt ttatactact aagaataatg	3060
ttttctctaa gtttttttg gtagatgctt tcatacgatt aagaaaattc cctgcttata	3120
gttggtaag gtttttatata tataatgaa agttgaatat tattatcatata tattatataat	3180
atattgttat tgaactatca agccttttc ctaaaaccat tgagatgatc ttataaccat	3240
tctcctttaa cctgttgacg agatcattgg tatttataact atttctctgt taaccattct	3300
tgagtctcag gtttaaatttc aacttggtca tgggtgtca tctttgatca ttgctgtctg	3360
tggcttgcta ctgtttgtt taggatttt gcactgatgc tcataatga gactggcatg	3420
ccatcttcct ttgcagtcct gatTTTTTC tgattggat catgtggta tggccctcat	3480
ggaatgagtt gggcatgatg ctttttttc atgtctctgg attgtggga cactttggat	3540
tctctccaga tggccctcaa tggccctgc ctctcattt ttagggccc gggcaagccc	3600
ttctcatttc tggtaggccc aggaacctgt gggggTTTG tttgtttgtt tgTTTCTG	3660
gtcggagtct cactctgtca cccaggctgg agttggagtg caatggcccg atcttggctc	3720
actgcaacct ccaccccca gattcaagca attctcctgc ctcagcctcc tgagtagctg	3780
gaattacagg cacccaccga cacaccctgc taattttgtt atttttagta cagatggggt	3840
ttcacaatat tggccaagct ggtctcgaac tcctgatctc atgatctgcc cggcttggcc	3900
tcccaaagtg ttgagattac aagcatgagc caccacaccc agtgaacctg tggTTTTAG	3960
aagctccccca tgcattgtgaa tgctgtgagc atcccaggat gacagccact gtgtgttcag	4020
ctgttggAAC tgtgagaaag caccagtggg accttctcca gcacctgcct gctgagttca	4080
tggaaagaggc ttgtggggg gatgatgcc tggctgactc ctgaaggatg gtttaggaatg	4140
caccagatgg aagctgggtt ggacccactc tatgctgaag aacagcttgt gtggacacaa	4200

pto_PB0262.txt

ggagacacgg atatgtcatt tttgttagagc ctgaggagtg tccaaatcaca ccatttgctt	4260
aaaacatcat gcacacttgg aaaagtggac tgagaccgaa tgaagaagct aacagtggcc	4320
agatcagaaa gggctttgtg ttacttccta gagatactta gattttatcc tgtgggtgat	4380
aggagcagtt ggagggactg aagacaagga aagaaaacatg tttcaagatc tatgttttc	4440
aagacgctt tctggtggct gagtagggaa ttccctggat aagtcctgcc cagggtcagg	4500
caaaacaagt tagggggta ctgaaataag gagtatgaga aatggtgttag gtttgctga	4560
cgttttgtaa cacatctcat gatgatctc atttccttca ctaatttctt gttcattaa	4620
ttcccttcca cgtgccttc tcaaatttgc ctcacattct ctgatttctc tttacctgt	4680
tggtttcatc acctttact ttttgccttc ctggaaacac aaatgattct gattgtgaca	4740
tgtcagaatt atttgcaca tttgccttc tgctgaaacc atgagttcac tgaatacaca	4800
atttagtaaa gtgttaggatg cacatgtcgt tttcgtggc acaaccagct ctgttagcatt	4860
ttataactac actggcagtg tgctgggagg tgtagagaga aatatttac acatgtgtgg	4920
ctgacacaac ctgccaagtt attttaggag ctccttggaa atcccagcaa gaatgctacc	4980
ggcacaattt gtaatcacag catcctgctc catgccttgg ctcatggca tagtcacttc	5040
tgcaagtctc tttccagctg tctgttccca tgtctataaa gtatgagttt aatcatccta	5100
acactactca tcttacaaag ttttcttgc gatgttaaga gagttggaa agaactgtat	5160
aaactgtgaa gtgccatgga gatgttagtg gttactttt caagaaatag acactctaga	5220
atggagtaga aagccaacag ttatgattga gtcctccctcc tcttcttctt tttattaatt	5280
tataaaagaaa agaggttaa ttgactcaca gttccatatg gctggggagg cctcggaaaa	5340
ctctcagtc tagcaggagg caaaggggaa gaaggcacct tcttcacaag gccccaggag	5400
agagagagct cctgttcttt tttgtcataa agtctacaga agtgcattata cttcaggaca	5460
agggcaggca gagagaagga aggacattgc ttcacccag ccctcactga cgagtttgct	5520
aggggacctc acttgtccc agagtagggc agaactctgg ccactaccca ttcagaaggc	5580
ctgggctgca ctgcgttttc ctcactaact ctgtgtggcc ttggcaagg ttggcctgt	5640
gttaacagat tatgaccctg ggctctcaag cttagggatc taaatttcaa tcctggctct	5700
gctaaagcaa ttagtgatgt aaacttaat gggtcagttt accttcctgt ggcttagttt	5760
gctcatctgt aaaataggaa tcataacagt atcaatacca catgattttt ggacagattt	5820
aatcgttaa tgcagggaa gtacttagca tgacacgtat tcactatcat ttcctggagt	5880
aagagctgtg tgtgagtggg tgtgagcatg tgtgaaacct tttctctgca atctcgttta	5940
agaaaccaat ccagaattta aagttcaggg cctaaatggg tggttatctt ctcccagttc	6000
catcctatcc cacctttgct ctteccccc cccacaggag ctgttggtcc ttgattggc	6060
tggaagacct ggtggaccct aagtgtatcta taagaggaga atagagaaca ggaaatgtct	6120

pto_PB0262.txt

tcaaaaatct	agagggacac	agaggctgag	aggcaggcag	tcctgcaggg	tcttctgatt	6180
gggacaagga	gaaccttggt	cttcacaggc	caattcttgtt	cagtttcccc	catggacaga	6240
tgaggaaaca	ggcccaggaa	tatccaaggt	ctcacacttc	ccatctgtca	agtcttggtg	6300
attctgttgt	attcatgtct	ctcaaaggga	gataagagttt	agggaagaaaa	gaaggatcaa	6360
ctgtgtctga	taccactggg	agcttaagta	aagggttctt	ttacttcata	gcatttatcc	6420
caatttgtaa	ttcagtatta	tttgtgtggc	tgtttggtgt	ctctttctcc	tatatgagtg	6480
ctagcttcat	aaggcaagg	attttgattc	ttaatattt	agtgcctgcc	acatgccctg	6540
aacacagcag	gcatacaggc	taaccaacat	acagtggcat	gaaagtcatg	aaagtgagac	6600
acctacctcc	tccagtgcc	agagagcata	accatgcacc	tgtcactctc	ctcaacacca	6660
cccccaagca	tgaggccaa	aagcatttagc	taatcccctc	ctccagccac	taaaacttaa	6720
aggccaggtg	tgggtggctcc	catctgaaat	cccagaactt	caggagacag	cagcaggagg	6780
atcactttag	gccaggagtt	tgagatcagc	ctggcaaca	tagcttagtc	ccatctgtac	6840
taaaaaattag	ctggcggtt	ttgcatgct	gtagtcccag	ctactaagga	ggctgaggtg	6900
ggaggatcac	ttgagccag	gaggtggaaa	caacagtaag	ctataatcac	agcactgaac	6960
tctagcctgg	gcaacagagt	gacaccctgc	ctcaaaacaa	ttttaaaaat	aaataagagc	7020
aaaacttaga	taccacgtgg	tcaccccaac	atgcaaaatc	aagttttccc	ctactgagaa	7080
aatggggac	ttgacagctg	agttacagag	agataatctt	cttcttctt	ttttttttt	7140
ggtttacatc	ctcaagatca	tgacttgtga	aatttgaatc	gaatacacat	gtaattccag	7200
agcaatgtt	cctccgcata	ccatcagcaa	ttcacttggc	tactggaagt	caggataagc	7260
ttcccagaag	agaggtacca	cttggctac	caatataaaa	ggatgaaaat	atcagagtga	7320
tggtgttctt	tacaacgttg	agtccctgga	cagccgtcc	actgatgctg	atatctgagc	7380
ctaattgttc	tctgaatgtt	gagattgaac	tttgcattcaa	tgaaactaga	acgagaaaga	7440
agataagtct	ttcatttgtt	ataaggacat	tatgtttctc	atacttgtat	gattattttt	7500
ccttagctgt	actataatta	tctgcattatt	tgtctctgt	ctatgtgcctt	agggtacaaa	7560
gttgcaccaag	accaactttt	gttggaaagca	tagtactaag	agcacagtac	tgagagcaca	7620
gtattgagag	cacagcttta	aaaaacatga	tgaaggctt	aatacaggaa	atgagcagg	7680
gagaggcatg	tggtggttgg	atgtatcttc	cttgacacag	tcagtcagc	tctcagtagt	7740
caagtcctta	catgttagaa	gatgttacct	tctgtggaaat	taagtggcag	aacttgcctt	7800
caatttatttt	cctttgcaga	acaacaccaa	ctgcattagt	taggacacag	tgctggctgc	7860
attnaagtcc	caagcgatga	ttagtctctc	actgttggta	tagattcaaa	ccaatcagac	7920
caccccttaa	agtttgttagg	gcaggttaat	cctcatctta	gaataaaaaat	catcttacca	7980
agtatgtgtt	tttagaggcaa	gaagaaaaaca	tatttgttcc	tgtaagagtt	ttgtttaaaa	8040

pto_PB0262.txt

aaaatataag aaaggctctc ggtaggtg agtaatgaa gttgttata gttatcagat	8100
gacactggaa tcttacttc tctgaacgtg ttctgtcat ctctcagtgt gggAACATAG	8160
agagggagat cctccagcaa tgccactgat atggtcagaa actgcacatTT tcttctccc	8220
tgctgagatg agatggagtc ctttgttcta gaagacccat ggtggtGCCG ctgggagtaa	8280
cccttgagac aggaacacaa atcccaacca atttgtggTT gcagccttga gtctcaCTAT	8340
ttccccatagt gatgcgtAGC agggAAATGGC aggtgcacca gagcaggaga ggacctaATA	8400
tctcccttcc tgtagctt ttataaAGTT ttattgtgat cagtagcAGT tggaaAGCTA	8460
cttgcagtCA ctgagcctCA gtttctACAT ctgtAAACTG gggatAGTAG catggcccCT	8520
acttaatgtg ctcAGCAAAG ccactgAAAG gagACAGAAA tgtatCTAAA ttaccCTGGA	8580
cttttatCCT acctcttTG gggattGTCA ccacCCtCC atgtttGTCC ttttggTTT	8640
gatgcttGCT gtcacttCTT tccttaggtg cctctgtA cggcttTTT atcccAGGGA	8700
ttccagAGTT acagcacATG cataccACCA tccaAGCATG tttatttGTC tcctgcttCA	8760
ctaggctGTC cccaAGGAAC atgtggCTCC cggcacACAC ctggcacaAC actgcACATG	8820
acattCACCC acttggCCTT gaatctgACA aggaatCTGG catgatGTT acccaCTCAG	8880
gccaggTGCC gagcAGGCCCt ggaggCTTAG gggcAGGAGG gatggggAAA ggtgttttC	8940
tgggtgAGT atcagTTCT gcaggAGGGC tgaatgtgag aaagaATAAA gagagaAGGA	9000
agcgaacaAG cacagCTAA acatcgCCTA tttctattGA gttttaAGAA cgctgtGATT	9060
ttgtttgtCA tgcaatCCAT tcATCAGGCC aggCAGACAC agaacttGGG tgtgagtGAC	9120
gataatGAGC tgatataATT ttcACACCTC catcaCTGAG atctctCCCA tcagGAATGG	9180
gtcaggGGAGC tcacaggTGG cagcaACTGC tattacAGGC ctcatCTCTA ccagctCCtG	9240
gggcctGCCC tcctcccATT agaaaATCCT ccacttGTCA aaaAGGAAGC catttGCTTT	9300
gaactCCAAT tccACCCCCA agaggCTGGG accatCTTAC tggagtCCTT gatgtGTGT	9360
gacctGCAgT gaccACTGCC ccatCATTGC tggctgaggT ggttgggTC catctggCTA	9420
tctggcAGC tgTTCTCTC tctcTTTCT ctcctgttTC cagACATGCA gtatttCCAG	9480
agagaAGGGG ccactCTTTG gcaaAGAACC tgtctaACTT gctatCTATG gcaggACCTT	9540
tgaagggtTC acagGAAGCA gcacAAATTG atactATTCC accaAGCCAT cagctCCATC	9600
tcatCCATGC cctgtCTCTC ctTTAGGGT cccCTTGCCA acagaATCAC agaggACCAG	9660
cctgaaAGTG cagAGACAGC agCTGAGGCAG cagCCAAGAG ctctggCTGT attaatGACC	9720
taagaAGTC ccagAAAGTC agaAGGGATG acatGCAGAG gcccAGCAAT ctcAGCTAAG	9780
tcaactCCAC cagcCTTCT agttGCCAC tggctgtACA gcaccCTGGT agggACCAGA	9840
gccatGACAG ggaATAAGAC tagACTATGC cttGAGGAG ctcacCTCTG ttcAGGGAAA	9900
caggcgtGGA aacacaATGG tggtaaAGAG gaaAGGAGAC aataggATTG catGAAGGGG	9960

pto_PB0262.txt

atggaagggtg cccaggggag gaaatggta catctgtgtg aggagtttgg tgaggaaaga 10020
 ctctaaagaga aggctctgtc tgtctgggtt tggaggatg ttagggatc ttctaggggg 10080
 cacaggcaca ctccaggcat aggtaaagat ctgttaggtgt ggcttgggtt gatgaatttc 10140
 aagtattttg gaatgaggac agccatagag acaaggcaa gagagaggcg atttaataga 10200
 ttttatgcac atggctccac ttgagtttct gataagaacc cagaaccctt ggactcccc 10260
 gtaacattga ttgagttgtt tatgataacct cataagaatat gaactcaaag gaggtcagt 10320
 agtggtgtgt gtgtgattct ttgccaactt ccaaggtgga gaagcctt ccaactgcag 10380
 gcagagcaca ggtggccctg ctactggctg cagctccagc cctgccttct tctctagcat 10440
 ataaacaatc caacagcctc actgaatcac tgctgtgcag ggcaggaaag ctccatgcac 10500
 atagcccagc aaagagcaac acagagctga aaggaaagact cagaggagag agataagtaa 10560
 gaaaaagtagt gatggctctc atcccagact tggccatgga aacctggctt ctcctggctg 10620
 tcagccttgtt gtcctctat ctgtgagtaa ctgtccaggc tcctcttctc tgttccctt 10680
 gacttggggc gctaattcacg cctcttttc ctttatctgg attgaagatc aaaaaagatg 10740
 ttcaggccgg gcgtggtgcc ttacacctgt aatcccagca ctttgggagg ctaaggcaag 10800
 tggactgcct gaggtcaaga gtccaaagacc agcctggcta acatggcgat actctgtctc 10860
 tactaaaaat acaaaaatata gctggcatg gtgggcacg cctgtattcc cagttacttg 10920
 ggaggctgag gcaggagaat tgcttgaacc cggcaggcgg aggttgcagt gagctgagat 10980
 catgccagtg cacttcagcc tgggtgacag agtggggctg tctaaaaaaa aaaaaaaaaa 11040
 aaaaaaagat gttcaaggag cagtagctt agtgttggat gctacaaaca tatagaggat 11100
 attgttagatc ttatgcagct ctataaagga ataaataagc atcttccccca tccatcttta 11160
 gtggcaagaa gggttttggg atagcattga ttgaggatga tctacttgac aatagttgg 11220
 acccaaggag gataaggaag gaaagtagtg acggatctca ttccaaactt ggctgtggaa 11280
 acctggcttc tccttactaa actagaattt ggatttaca tttccctt tatgttgcag 11340
 tagaagagga tgaatcctt cactgggtgg atcctgccc tctagagcag gttagagagaa 11400
 gagtcactcc ccactgtggg tagtggaggc ttctcacatg tcacattca cttctacctc 11460
 aatttcactc ttactaagat ttggaaatca taatgacagg aaaatagaaa atataaacct 11520
 catttttaatt ct当地caca aaggtagaa attcagttagt ttgtggcaac atatttcca 11580
 tcttctgacc ttttaacact aattgatatg gcttaaattt attctattt aaaccagatt 11640
 tttttggaga tagtctattt ccaacatgtt cttcttaggt gacaaatgag ggctgttagt 11700
 tcagtatttg ttacaataaa tgtgtgtaaa ataacctcac cttccagaa tcatgtcagg 11760
 aatatgaatc taatgcacaa atgtataact ctatgacaag attgcatata tctttaaaa 11820
 tataccttcc caacgttcat ttaatacccttatttcaaa caaacctgct tagcaggtta 11880

pto_PB0262.txt

tgttaaacgc tcagggcaga ggagtaagca agactgttag ccagtatga cagaaaaac	11940
atccaggtag gatcaaaatg gagtaagaaa atattctca tccctcaggg tagaactcca	12000
aagagatatt catgggtcct ggccccgtag tggaggtcac tcaaaggaca aacatgtttg	12060
catctcatct gcttgaagcc tggacacaga ggcaccatct gtgtcaactt gtgtgtggc	12120
tgccatgttg tgggggtggc actacagact cacagactag gcagctggc agacaatacc	12180
ttagccttag atgatgctga tgcagccag gagtcagaaa ctgtagtgca gacaatgccc	12240
tccttaggcc aacacaatta agtgcataatg atgactggct tttctgttag cctttcatt	12300
ggaaccaaaa gcagcattac tctaccaaac agaggggagc tggaaagaaa ctacacagtt	12360
tgcgcgcctt agcctctgcc ttgacacgga accatgttag tctagacatt cacctagatc	12420
attccttggg gaccaatgct actgacacat taactcaata gtttgcctg gcctgagagg	12480
tcatgttaact tgttagaaagt tttagaagcag agatttagtgt catttatttgc ccatggctgt	12540
gacaacaaag gaaggaacag gagtggaaa acccaaggcc accctggttt tggtagatgg	12600
tgcacacgct tccacttagct gttctgggc aaagatccaa atgcactatt gggctggct	12660
atgctgcttc tgctgggtcc cccaaacatg agcctccacg ccatttctca gttgtatccc	12720
accacatatt atcacagtca ccggatttgt acagaatatt tggAACCTT actgtcttaa	12780
gggctaccct ttaaagaaga gaaaacaagg ttttaattca actgtctgga acatTTATG	12840
tttacttatg tggaataacta catctttgt tataaacagg agggaatgtg gacattcgaa	12900
ggcccttacc ttttagctaa aagcccatat gaagcatatg gatccatttacacaccat	12960
gctttcagc tacatTTCC taatttgcct ctctggggcc aaccttgggactactgacatc	13020
ttcatggttt agttgaagga tggtgaccc ttccatcagc ttttcttctt cctccagtct	13080
tccaaaccctc agtaacatca gactggaaag gtcttcagac atccagaaac cccagttcg	13140
ggagttcata catgacccat caaagatgag ttgcaagcag gcctgccttta gggagcacca	13200
gccttaatgg gttttcctac agagatgtt gatggcaga tgcaataaac tgactgcttt	13260
gtgattgacc accttgagaa aaatagcatg tctggctatg ttagtctttt cttgcattgt	13320
tataaaagaaa taccagagtc tgggtattta taaagaaaag ggatttaatt gtctcatggt	13380
tctgcaggct gtacagaaag catagtgact tcttcctcta gggaggtctc gggaaattta	13440
caatcatggc agaaggtgaa ggagaagcag acagatcttacatggcttgcgcagaagcaa	13500
gagaggctgg ggagaaggcg ccacacatttcaaaaccaccag atctcataaa aactcattgt	13560
cacgaggaca acacctaagg cgggatggtg tgaaacatgtg agaaactgccc cctaggatcc	13620
aatcatctcc taccaggccc cacctccagt attggggatttgcatttcaac atgagatTTT	13680
ggttagggca cagattcaga ccatactact ggcactgtgc taatcagatg aatatcacca	13740
tttggaaaggc tagattccac aagaggagga atgacctggaa aattggttct ttagttgtga	13800

pto_PB0262.txt

ttcttctgca cactgtcatt cagggaaata tgagtcaatc atccttccca ataggtcaaa	13860
tcaaccagat catctgatca tagagactga ggttagctg aaagctgctc acatttctat	13920
gaggtcaatg gaaggccttga gcacagttgt caatctgtag aaataaggac tctgtgactc	13980
ctccaagacc tctctgtgaa tgacggttta agaagaacca gatcctaaaa cagggtcaga	14040
gcttagaggg aaggaaagc ataaaagcct ctgagcaaat tctaaagaca gggtcaccat	14100
aggctctcag tgaccctctg tgactgagtg gctgcagtga tgcaaaatct catcatcact	14160
gcggaagaca aaaaaatgtc accctttcta cctaggatga gaatccccaa atttggggag	14220
aggccactta ctaaatagac gtaaaggaac aaagtgaccc ggaagaattc ctgcctgaac	14280
ctctcaggat cattcacatt tgagaacatt tatcaaatat tcattccagg actgggacca	14340
tgaagacttc agctgctttg agctaattcat tgtaactttt tggtgtctca tggtgaggc	14400
aggaaaggac ctgatgaaca aatataatca ttgccgtcag agttactgtt attatttctt	14460
gccttaatgt tacctcggtc tctttagcat tccagttcct cagtcaatga ctcatcaacc	14520
cctatatcta taaagtcaca atcgctgtga cttagttct gtttcaattt gtagatatgg	14580
aaccattca catggacttt ttaagaagct tggaattcca gggcccacac ctctgccttt	14640
tttggaaat attttgtcct accataaggt gagttttt gagctcaactc ttttgcctct	14700
tatgattgcc aagagcagct tagttccatc agtaaaaatg ctttcctca gggggaaagg	14760
ctgaagtttt acactttcag aaacagtgtg taggcacatc ccagaacatg gcaatgttta	14820
cccaagggct ctcttgctaa ctctcaggaa cctcagggtt gcctcagttg aacagccaa	14880
atctcaggta gatcagcaac ctgatgctca gaacctgtatc tgcaaaactt gtgagcgcgc	14940
cataaagaag gttttcttt tgctctatgc aggttccag gaaggtacag tcataacttag	15000
ttagtattaa aagttagaaaa aggacccctt gattgtgact tgttatctgt gtacatgaga	15060
gtcaaaactt cctctctgtt gcaagagctc ttgagtagcc tttttccct tccttctgga	15120
cagcttggaa actcaattta ttagggagcc caggtattta cctttgggtt atttgcaccc	15180
gcttcaatcc tctccgaaaa atgctaaattt ccctgagggt atctccatgg ctctacccca	15240
gctcttactc cccatgacat cttttgcagc tttgagagac agaacaagg gggtctgctt	15300
tatttctttt ctttcaaagg ctgcacatc tgggtgagac tgatcacaga ctggatataa	15360
ctgagatgag acagtgggtt tcaatcaaac tcagatattt aagcacaagg tgagttgtg	15420
gggttttttt ttacacaaag gcggaatcac atgcaaaatc actagaaagg ggatgatttg	15480
atgaaattat taaatattta attttgtgatca atagaatata atatgtgcca cgtggaccgt	15540
gaactttggc cgagccttgc tgcctaacatc agtctgatgc tctgcccagg gtctggccc	15600
tggatggaaa attaggagcc catgtccaca tggccagccg cagcagtcag ctctttggct	15660
tacatcatct ttcccacata cctgaggctt gtttctcaga ttctaaattct ctcaggtgag	15720

pto_PB0262.txt

ggctttgttg tctaattact atccaggaat ttcatatattt ttccctgtgc aaaagcaata	15780
atttccccgc cacctttcc aggtcaactc ttttagtagat gtaccccaa gatgcacatt	15840
cctgggacct ttgttgcac agttaaaatg tcaccctga aatgtcgata caggaaggtt	15900
tgttttaag ttcagtgaa aactctgagc aagtgttgta atttgctgtc tccgatgtgt	15960
agagggaca ttttctcaga acttccatgt taagctggaa aactggaaag tgagttcact	16020
ttgtcattct gtcactcggt cattttctca ctcaacaaca tgcctcatac ttacctaaat	16080
ctgctagact aaaggagttc cctgggtgtct gtactttcca attctgctag aactctagag	16140
cgagctcatg aaataaatga aaaggatgac aaagagataa aacactgtgc attctttct	16200
gatgctaatt cacttccct tggcctcagt ttcccccattgt gcccctggag gtgatcattc	16260
agggattcat gagattttca agacaacaca tgaaaaagca aaaagacatc agaaagacaa	16320
agaggtactt agtatttata cacaaggata agtcattcag tatccacaac acttggagag	16380
aattcaagag tgatTTaaa ttccctttt caaatacctc ctctgtttc tcttatttcc	16440
tttatgacgt ctccaaataa gcttcctcta actgccagca agtctgattt cattggcttc	16500
gactgttttc atcccaatta gaggcagggt taagtacatt aaaaataata atcaaataatt	16560
atTTTgtttc tcctcccagg gctttgtat gtttgacatg gaatgtcata aaaagtatgg	16620
aaaagtgtgg gggtgagtt tctggaaact tccattggat agacttgtt ctatgtgag	16680
tttaccccac tgcacagagg acagtctcag cccaaagcct cttggatga agctctgtc	16740
aacctaacta caaacagaga gaagtctct gaaagaagaa gatatttatt tgggtgtaga	16800
gtattgcaat gggaatctgc atgcctttat aaactatgtg caaattcagg gaagtaaagc	16860
aagacaaaga ggctccaagg aaaatatgag gaggattct tatcagttt gaaataatta	16920
tccttcgcta caaagatcag taacaagggt gacgcctcac caaggttgg caggcagtt	16980
ctggcagggt gtccttgcag aaatatttt ttaatgttg ggatggcctt tgtcaagct	17040
tgttagtttg cggagtcttt tgtgatagtt ttgttatcag gcacacaagc atgagaatcc	17100
tctcttcata gccttcattt atttattttt cagggtttt acacacacac acacacacac	17160
acacacacac acaactagtg acatcatttt gtttctaaca acattcacac tggttattgt	17220
aaaacttttc gaaggttgtc ctaccaagga tcccatgtgt caccagggtt caagttctac	17280
agtctgaact aggctggag cattgtgatt actttctcc agacttgtt ggcccaggaa	17340
ctcacagcat catgctctgt ccagtgtctg cctattcccc tcttctttt tttttccctt	17400
aggtgccctt ttattacatg tgggtctca gacccttcata atatgtgctc ataaatacat	17460
catatcatct cttccaca tcaattcact ttcaattaaa agccaaaact ctttcattta	17520
gactttggat ttaaagtgtt ttgttgtttt ttaatttttca tctgcaagtg tggaaactttt	17580
caaaccattt atactctgtt gtttgtttt ttaatttttca tctgcaagtg tggaaactttt	17640

pto_PB0262.txt

cattctgttt tgtttattaaa tttaagccaa gacttttaa tagaaggta tataaggcatt 17700
 tctttgtcta tacccctcg ctgaatttga agaaaatgctg aatattctta accactggcg 17760
 ggctgatgga ctgtgatttt attttatttt ttatTTTtag ttttttaaat tataccttaa 17820
 gttctgggtt acatgcatac aatgtgtagt tttgttacat aggtatacac gtgccatggt 17880
 ggTTTgCTgc acccatcaac ctgtcaccta cattaggtat ttctcctaata gctatctc 17940
 ccctagcccc ccacccaaca acaggccccca gtgtgtgatg tttccctccc cgtgtccatg 18000
 ttttctcatt gttcaactcc tacttaggag tgagaacatg tgggtttgag ttttctgatc 18060
 ttgtgatagt ttgctgagaa tggatggtttc cagcttcata cttgtccctg caaaggacat 18120
 gaactcatg ttttttatg gctgcatagt attccatggg gtatacgtgg cacattttct 18180
 ttatccagtc tgtcaactgat ggacatttgg gttgggtcca agtcttttgtt attgtgaata 18240
 gttctgcaat aaacatatgc gtgcattgtgt ctttatcata gaatgatttga tgcttggt 18300
 atatgcccaag taatgggatt gctgggtcaa atggatttc tagttctaga tccttgagga 18360
 atcaccacac tgtcttccac aatgggtgaa ctaatttaca ctcccaccaa cagtgtaaaa 18420
 gtgttccat ttctccacat cctctccagc atctgttgtt tcctgacttt ttaatgatca 18480
 ccataccacc tggcatgaga tggtatctca ttgtgggtt gatttgcatt tctctaatga 18540
 ccagtgtatga tgagcatttt ttcacatgtc tggtggctgc atagatgtct tctttgaga 18600
 agtgtctgtt catatccttt gcctattttt tggatgggtt gtttgcatttt tttttgtaa 18660
 atttggtaa gttctttgtt gattctggat gttagccctt cgtagatgg atagattgca 18720
 aaaattttct cccattctgt aggttgcctg tttgctctga tggatgttca ttttgcgtgt 18780
 tagaagctct ttagtttaat catatccat ttgtcaattt tggctttgt tgccattgtct 18840
 tttgggtttta tatttatgaa gccttgcctt atgcctgtgt cctgaatggt attgcccagg 18900
 ttttcttctta ggattttat ggtccttaggt cttacattta agtcttaat ccatcttgag 18960
 ttaatttttg tataagggtgt aaggaagggg tccagttca attttctgca tatggctagg 19020
 cagtttccacc aacaccattt attaaatagg aaatctttc cccattgtt ttgtgtgtca 19080
 ggtttgtcaa acatcagatg gtagtagatg catgggttta ttctgaggc ctctgttctg 19140
 ttccattgtat ctatatttct gttttggatc ctgtaccatg ctgttttgtt tactgttagcc 19200
 ttttagtata atttgaagtc aggtacgtg atgcctccag ttttggatctt tttgcttagg 19260
 attgtcttgt ctatgtggc tctttttgg ttccatatga actttaaagt agtttttcc 19320
 aattctatga ggaaagtca gtttagcttg atggaaatag cattgaatct ataaattacc 19380
 ttgggcagta tggccatttt catgatatgg agtcttcata cccatgagca tggaatgttc 19440
 ttccattttgt ttgtgttctc ttttatttca ttgagcagcg gtttggatgtt ctcccttgaag 19500
 aggagaacct cacatccctt gtaagctgga ttccttagata ttttattctc tttgtagtaa 19560

pto_PB0262.txt

ttgtgaatgg gagttcaactc atgatttggc tctctgtttg tctattattg gtgtgttagga 19620
 atgcttgta ttttgtaaa ttgattttgt atccctgaggc tttcctgaag ttgccttatca 19680
 gcttaaggag ttttgggct gagacgatgg ggtttctaa atataacaatc atgtcatctg 19740
 caaacagaga caatttgcact tccttttc ctaattgaat atccatttct ttctcttgcc 19800
 tgattgccct attcagaact tccgacacta tggtaatag gagtggtag agaggacatc 19860
 ctgtcttgt gccggtttc aaaggaaatg cttctagtt ttgcccattc agtatgatat 19920
 tggctgttagg tttgtcataa atagctcta ctattttagt atacgttcca ttgataccta 19980
 gtttattcag agtttttagc atgaaaggct gttgaatttt gtcaaaggcc ttttctgcat 20040
 ctattgaggt aattatgtgg ttttgtcat tggttctgtt tatgtgatgg attacattta 20100
 ttgatttgtt atttgaacc cagcctgca tcccagggat gatgctgact tgatcctggt 20160
 ggataagttt ttgtatgttt tgctggattt gattgccag tattttattt aggattttcg 20220
 catcgatatt cattagggat attggactaa aattctctt ttttgttgc tctctgtcag 20280
 gctttggat caggagatac tggcctcata aaatgagttt gggaggattc cctcctttc 20340
 tattgttcag aaaaatttca gaaggaatga taacagctcc tctttgtatc tctggtagaa 20400
 ttcagctgtg aatccatttgc tccctggact tttttgggtt ggtacccat tataattgc 20460
 ctcaattcaa aacctattat tggcttatttca agagattcaa cttcttcctg gtttagtctt 20520
 gggagggggc atgtgtccag gaatttatct atttcttcta gattttcttag tttatttgc 20580
 tagaggtgtt tatagtatttgc tctgtatggta atttgcattt ctgtggatc agtggtagaa 20640
 tcctttttat cattattttat cgcatctatt tgattctgtt tttttcttta ttagtcttgc 20700
 tagcagtcttca tcatttttgc ttgacctttt tcaaaaaacc agtcctggc ttctctcatt 20760
 ttttgaaggg tttgttgtt ctcaatctcc ttctgttctg ctctgatctt aggctcagt 20820
 caacgttagca tagccacagt aactcccccc tctcgatggt aaggggaacg ttacagagtc 20880
 aggaatcgac ctatcctgca ttctctgggg ggcaaatatct tagttatttgc ttgtcttgc 20940
 ctatgttttgc aatttgcatttca ctctgttcttgc ttagttctg ttaattgtga tggactgtg 21000
 tcaatttttag atcttccttgc ctttctcttag tggcattta atgctataaa ttcccttcta 21060
 cacactgctt taaatgtgtc ccagagattc tggcacatttgc tgccttgc tctattgggtt 21120
 tcatagaaca tctttatttgc tgccttcaact tccttatttgc cccggtagtc attcaggagc 21180
 aagttgttca gtttccatgt agttgtgtga ttttgagtca ctttcttaat catgagttgt 21240
 aatttgcatttgc cactgtggtc tgagagacag tttgttgtga ttctttcttgc ttacatttgc 21300
 ctgaggagta tattacttcc aattatgtgg tcaatttttag aataagtgcg atgtgggtct 21360
 gagaagaatg tatattctgt taatttgggg tggagatttgc tggatgtc tattaggtcc 21420
 tcttggtcca gagctgagtt caagttctgaa atatccttgc taattttctg tcttggtagt 21480

pto_PB0262.txt

ctgtctaata ttgacagtgg ggtgttaaaa tctccatta ttattgtgtg gaaatcttag 21540
tctctttgta ggtctctaag aacttgcttt atgaatctgg gtgcctcgtt atttgggtgc 21600
atatatattt aggatattt a gctcttcctg ttgaatttgc cccatcacca ttatgtatg 21660
cccatcttg tctctttgta tctttgttgg tttaatattc tttttaaaat aaaatatttt 21720
aacatcatga aacattatgg agaatggcat gggaaatatc cacgtatgca ccaccaggct 21780
taacaaatgc tctactgtca tttcttaacca tggctctttt gaagagctct tttgtcttcc 21840
aatgtctctt ctttgttgg cccacattat cttcatcat atgaagactt gggtggctcc 21900
tgtgtcagac tcttgctgtg tgtcataacctt aatgaacttag aacctaagat tactgtgtat 21960
tgtacaacta agggattatg taaagtcagg atcaaagtct ggcttcctgg gttgggctcc 22020
agctgttagaa taaggctgtt gatgttaat caactctgtt tttttcacac agctttatg 22080
atggtcaaca gcctgtgctg gctatcacag atcctgacat gatcaaaaca gtgcttagtga 22140
aagaatgtta ttctgtcttc acaaaccgga gggtaagcat tcattgttgg aaattaaaat 22200
actgattgtatg taaatttata ttttggaaatt ctttatattt catagacagt tgocaaaaaa 22260
atgtccagga aggttccacg tccacttcat cctgtcccccc ccgaatggta acatcttgca 22320
atcttgcata actataaaata cagttatattc atgttactat atagttacagg aaattgacat 22380
tgatacaggta cacagagctt attcagattt caccagctt atgtgccctc atttctgttc 22440
tatgcaaatt tatcacaatc atagatttgtt gcaatgacca gcatgatcaa aacgcagaac 22500
ccattttgtt tctatacaaaa tttatcacat cattagtaga tttgtgcaat gaccagcatg 22560
atcaagatgc agatccactc tgcctccatg tggctccctc ctgctatcctt acagtcacaa 22620
gtctttttctt ctgacagggtt ccatatcaga gcaaactatt ttttatttttggtgcataa 22680
tgttataata tttccctttc tggattgtac ttttgggtgcc atgtttggaa gttctttgcc 22740
tagccctctt tcctatattt ctgtttttt ctaaaagtca taaagtttaa cgctttacta 22800
aatgttagctc tataatcaat tttgtgttat ttttgtata aggtctgaga ttttagatcaa 22860
ggttcattttt ttttgggtct tatggctgtc caattccctcc aacgccattt ttggaaagat 22920
gggtatattt ttaaaaaatca actgggcata cttcttgca tctctcacgt actactgtgt 22980
cccattgatc actgtgttta ttattccacc aataccacac tgcgttgcacc ctagtagctg 23040
tacactaact cttaacctcg tgcgttgcata ttctccac ttttatttgc ttattttttc 23100
agattttttt taactcttcc tggctccatg cttttccata aaaattcaga atgagtttct 23160
cagtgctac aaataaacgt gctgttattt tgacaaat tgaattaaat atatagacca 23220
gtttatggaa aatgtgtatc tttactgtttt gatcttcaa ttcatgaaca tagtatgcct 23280
ctccattttcc tttagattttc tttgattgtt tttaacatct tgcgttttc agcatagaga 23340
tcctgtacat gttttgttag atttacagct aaactatttc attttgttgc gaatgaccgt 23400

pto_PB0262.txt

aaatgatatt atgttttct tgtatttca gatattgatt gttgttacat agaaatgtgc	23460
tttgatttg tgtgttgatc tggtatccta gaacctgca gaactgacat agtagttcta	23520
gaagtctctt tgtatatgcc ttgagattt acacattgtc agttatgtca ctgaaaata	23580
gagacaattc ttttatttcc tttccaatct gtatgcctt tatttcttt ctttgtcta	23640
ttgcactagg acttcccagt ataatgttga gtaaatgtgg tgaattttg aattgttcct	23700
aatcttagga gggaaagcctt cagttcttc atcattaagc atcattaga cgaagtgggc	23760
tgttttttg tagattctct ttatcaaatt gaggaatttt ctctccctag tttgctgagt	23820
ttttatcata aatgaatgct ggaagtactc attataaaaa aaatggctat ggaagatgaa	23880
agaaagttc aagcatgttgc ttgtgatagg ccagttccaa gttggcaaaa ataattatct	23940
ctttttctt tctatccatg aaataaaaaa ttaagagcca agaatgttta tggaaattgca	24000
ttatTTCTC aaaatatgtt cctagttta aaggattttc ctactatTC tttaaaacc	24060
atcacattga ggcacttctt tttcacgttgc cccatgctgc aggagaacat aaagacagct	24120
tgtctgaggc aacatacaat ccaccaaagt caccgtcttgc tctgtctcca ctccgtctct	24180
acactgcaga agtgcttagt cttgattctg tttattgtac tggaaaca cattctctac	24240
cacgtggata atttgcattgt aaaagaagac tggatatacg aggctggaga cgacatcagg	24300
gtctcctgaa cactgccgcc accccccccgc cccgccccac acaaatacat cccaggacac	24360
tgggcatctg ggataaatct ctattgagca tctagcatag gcccattcac ccagtagaca	24420
gtcactaaat agttgttcaa taagtgttcc tgTTTAAACAC attttctaca accatggaga	24480
cctccacaaac ttagttagga caaaatgttt ctgcttgc tcttagcctt ttggccatgt	24540
gggattttatg aaaagtgcac tctctatagc tgaggatgaa gaatggaga gattacgtac	24600
attgctgtct ccaacccatca ccagtggaaa actcaaggag gtatgaaaat aacatgagtt	24660
ttaataagaa acttaaaagaa tgaatctggt gggacaggt ataaaataag atcacagtcc	24720
ctttccaaagg ggttagtccac tgaatttgatgc tgcctaaaa atggctttt atctttatgt	24780
acagaaaaaca catcacaaaaa ttcattataa aatgtcactt actgctccat gctggggaaa	24840
gccatgtcct tctggacta gagtctgcac atttaactat gggtggtt gtgtttgtg	24900
cttagatggt ccctatcatt gcccagatgtg gagatgtgtt ggtgagaaat ctgaggcggg	24960
aagcagagac aggcaagcct gtcacccatca aagagtaagt agaagcgcag ccatggggtt	25020
ctgagctgtc atgaacccct ccagctgc tgccttgc tgcattttcct gctgttgggt	25080
tattccagtg accagacaaa aggagggtg tggtaatgca acttcaatgg gtctccaaag	25140
atggggcagc tccgatgagg aggtggggca gctggaggaa aaggatcttc tcccctgtgc	25200
acagggggcca gggtttacat atccattaaa ttgtcacctt ggatattcta gaagactaaa	25260
tatatccttt agggggaaaa agtgtgattt taccaaagtt ttaagcatgg agtgtatggg	25320

pto_PB0262.txt

atggtggaag gggaggcac ttggtatctg ttggttggca gtgagtaggt tggagaggt 25380
 ataatggaga acttagaaata actttgatca tttcatgtt ttttctgagg atatcagtag 25440
 aataactaaat attaaaattc ctaccatttc ttttcctcc agtctcaaag agagagggtg 25500
 gtaaaaacac tataggtagg gcaagcctat tatttgctat ctacacttgc gcagtaaaaa 25560
 caggtgtaat ctgagtttgt cctgggcaga ccagggatat gtggtcactc actatagaaa 25620
 tttccaaatc aaattttgag agatTTTT ttaaccagga cattattgtt cattatattt 25680
 tacaaaaata attctgctgt cagggcaacc tcagtcacc acagctgggg atagtggat 25740
 tttccaaagc ttgagcaggg agtatacgaa ataaggatga tatttctagg agctcagaac 25800
 agggtactgt tgctttgtaa agtgcgtaa aggaatcggc tctggcata gagtctgcag 25860
 tcaggcaata tcaccgtct tgagcccott aggaagagtt aattattcta ctcttgcgt 25920
 gctgaagcac agtgcgttacc catctgtat catccacaat caatacatgc tactgttagt 25980
 gtctgatagt gggctctgt cttccatgtt tgggtccctt gatctcagag gttagtctaa 26040
 ttcagttcag tgtctecatc acacccagcg tagggccagc tgcatcaactg gcacctgata 26100
 acaccttctg atggagtgtg atagaagggtg atctagtaga tctgaaagtc tgtggctgtt 26160
 tgtctgtctt gactggacat gtgggtttcc tggcatgc atagaggaag gatggtaaaa 26220
 aggtgctgat tttaattttc cacatcttc tccactcagc gtcttgggg cctacagcatt 26280
 ggatgtgatc actagcacat catttggagt gaacatcgac tctctcaaca atccacaaga 26340
 cccctttgtg gaaaacacca agaagcttt aagatttgat ttttggatc cattttttct 26400
 ctcataaagt atgtggacta ctatccctt taatttatct ttctctctta aaaataactg 26460
 ctttatttagat atataaatca ccatgttaatt catccactta aaatatacag ttcaatgtt 26520
 tgttagtacat ttgaagatat gtgtgaccat catcattttt aactttaaaa cttttttgt 26580
 caatcttagag acctcataca ttttagcta tcagccccct gtcacaaacc ctgtcatcat 26640
 atgcaaccac taatcaactt tctgcttcta tggatttgcc tattctggac acttcataga 26700
 aatgatatttta attcatcagg gttttttatt ctctagttca tgaatttgta cttagtctg 26760
 tatcattttc ttcttctgc tggcttcagg cttagttgc cttcttcgt ttactatgtt 26820
 gtggcatgaa catagattac tgatttgta tttttttgtt cttctaaatt tagacattac 26880
 agctgttaact ttccctctga gcacttcctt tgctaaatcc catgagattg tggcctatca 26940
 catcttagtt ttgttcaccc caaaacagg tctatccatc cttttgggtt ctactttgac 27000
 tcattgggtta cttaaatgtt tattatTTAA ctccacata tggatgtgtt tctcaatTTT 27060
 ctttccctta ttgatTTAT cttagtcca tgataggtga cagagatatg ctgtgttatt 27120
 tctatcttgc ctacctacta tttcttgaac agcaagatta attttgagct tcagattatg 27180
 atttgggtta ttcttaggaga ctgttagtcca atagataaaag gcaaagagat tagggcattg 27240

pto_PB0262.txt

aattttgttc	ctttatcct	tcaaaaagatg	cacaaggggc	tgctgatctc	actgctgttag	27300
cggtgctcct	tatgcataga	cctgcccttg	ctcagccact	ggcctgaaag	aggggcaaaa	27360
gtcatagaag	aatggcttc	cagttgagaa	ccttgcgttc	ttttactctt	ctgggttgta	27420
gagaaaaacta	gaattgctcc	aggtaaattt	tgcacattca	caatgaattt	cttttctgt	27480
ttttgtttt	ttttcctac	agcagtctt	ccattcctca	tcccaattct	tgaagtatta	27540
aatatctgt	tgtttccaag	agaagttaca	aatttttaa	gaaaatctgt	aaaaaggatg	27600
aaagaaaagtc	gcctcgaaga	tacacaaaag	gtaaaatgtg	gtggtagtta	taggaggatg	27660
tttagtttt	cataatttt	tagataatat	acatatgatc	agtgcagtt	cctgtatgtt	27720
tttaaagaat	gcttttaaca	tgaagactgc	tcatgtttag	agcaagagaa	ttcatttttgt	27780
agaaaatgcag	aaagtgggt	ttggggagg	agatatgaga	atgagtca	gacagcacat	27840
gaaatttgat	atcagacaca	acaatttagta	tgccacggca	taaattttat	ttagataaaa	27900
cttaccact	ttacttccct	tcaataaatt	gtcagaggat	aaacattact	gtttggaaat	27960
atattttact	gatattatgc	tttccccaga	tcataaatttgc	gtaaagactc	atttcaagta	28020
caaacctgtt	attttacaca	ttctcaaatttgc	aaagtcctca	tcaggccacc	tgctgaagtg	28080
tacgtgtgtt	aaatttgagc	catctcacat	gatagccaga	tttgcgtttag	gaaaacatcc	28140
tgctttccaa	ggattttagaa	gggtatgtt	ttcactggtg	attcaggcaa	catgcacat	28200
atttctggtc	ttcaaggagc	catattctca	gaagggagat	caaggaccac	gctgtgatta	28260
cttctgactt	caggagccac	tttctgtcag	tgaaatttct	ctttttgtt	ctagcaccga	28320
gtggatttcc	ttcagctgat	gattgactct	cagaattcaa	aagaaactga	gtcccacaaa	28380
ggtaaccaga	gtgtttctga	gggctacttg	tggggcactc	agagggaaagg	cctgtttctg	28440
aaaatgtgca	ggaagtatttgc	caggatgatg	agaatttctg	ccacatagca	gaacgacaca	28500
tgtttgaatg	ttataagtgg	tagttggagg	cactttcttag	aggcatgcag	gcatacgatag	28560
ccatgttcta	agagtaaagg	gcaaccctaa	gcaaacctgg	catgctgaa	agtca	28620
cggtctgtgg	atcacctaca	tcagatcaa	tgccaaattct	cagcctcatt	cagatccact	28680
gaataaaaaat	ttctgcctag	aaatttatttgc	ggttgcgtca	aaattaatttgc	tgggttttc	28740
cattactttt	aattgcaaaa	aaatgcaattt	aaaagtaatg	gcaaaaacca	caataacttt	28800
tgcagctacc	taatacatct	aacatccaaat	caggagccac	gctgttccaa	aggggtgatt	28860
ttaactggca	gtacttgcgtt	aagtgtgtt	accaggtaat	ctactgcgtt	tattttact	28920
ttggaatgg	tagtaactgt	ggggaaaacc	tctgagaccg	tgtttatc	ctctttgtct	28980
tcaatgttcc	acctacgagt	tttacaaccc	atgtatgttt	tttactgaag	tcactattac	29040
tatgacagt	gcaaaaatgtat	gaccatggtc	aattacaagc	caccaagact	tggcaaccat	29100
ctcacaaaat	tcctgaatat	ttaactatttgc	gttcttagaga	gcaggactgg	gcttactccaa	29160

pto_PB0262.txt

gcatactgct ttaaatatat ccatgtctac atccacttt gtctgtatgt ctatgttatct 29220
 atctatgtat ctatctagct atgtatctat ctatctatct atcatctatc tatctatcat 29280
 ctatccatct atcatctatc atttatccat ctatcatcta tctacttata tattatctat 29340
 ctatcatcta actattcatc tatctatccc aatataactt gctgtgataa agggaaatagt 29400
 ctattgtttt actgtttcat atagaaatca ctagacacat atggctattt agcactggat 29460
 atgtggctag tgccattgaa gatcaatttt aaatggatt tcagtttaat ttaataaaaat 29520
 ttgattttaa atagccacta gtgggttagtg gctaccatat tggacagcag agctctaaac 29580
 tttgagatTA tagttcaatt tcacatcagt atcatcaggt tcatgataac tgaataactat 29640
 gatttaggtag ttgaatttac ttataactgc atcacagaag tcttcactgg taaatcacag 29700
 ctctgtcgac ctttctcaca ctcctttcat attggttttg gttgtgaatt acatgggtgg 29760
 agcaggcatt atatttattt ctatgttcca ggtctctaaa ggtcctaattc cagtcctgat 29820
 caaacagacc agtgatggac catcctgagc ttctctcagg agagaaatca agagggggccc 29880
 aacttgtaat cataggagct tatgctattt taatgccatc catcagacta caatcaatta 29940
 ccactcatct agctttttgt ccatctctca ttcttgtaca tcctgagata gtcaattctg 30000
 agaactgttag cctagatcta tcacctgtatg cctctcaaag atataatccg tgcttctcaa 30060
 gctaggctat gcacacaaat cactgcattt tttgaaagtt cagattttga atcagtagtt 30120
 caagggtggg gtttgagatt ttgcatttct aaatgagctc tcaagatgt tctgacccat 30180
 ggaccacact ttgaataacca agaagtggc ttttagacca tattggtccc ttaagttccc 30240
 tcaaacat ttcggggaaa cgtccttga tttccctac atttaaccat tagtgttgc 30300
 aattctctca aagtttgtca agatataattt tagctaaaat aaattacatt tttcttgggg 30360
 gagagtacta cctcatatta acttacaata aagtactttt aggatcatc aaggaacaca 30420
 cccataacac tgagtatgtt atgcggaaat gctctctctg gaaattacac agctgtgcag 30480
 gtggcgggggg tggcatgagg aggagtggat ggcccacatt ctcgaagacc ttggggaaaa 30540
 ctggattaaa atgatttgcc ttattcttgt tctgttaagat acacatcaga atgaaaccac 30600
 ccccagtgtt cctctgaatt gctttctat tctttccct tagggatttgg agggcttcac 30660
 ttagatttctt cttcatctaa actgtgtatgc cctacattga tctgatttac ctaaaatgtc 30720
 tttcctctcc tttcagctct gtccgatctg gagctcgtgg cccaatcaat tatctttatt 30780
 ttgctggct atgaaaccac gaggcgtttt ctctccttca ttatgtatga actggccact 30840
 cacccctgtatg tccagcagaa actgcaggag gaaattgtatg cagttttacc caataagggt 30900
 agtggatgggt acatggagaa ggagggagga ggtgaaacct tagcaaaaat gcctcctcact 30960
 cacttccccag gagaattttt ataaaaagca taatcactga ttctttcact gactctatgt 31020
 aggaaggctc tgaaaaagaaaa aagaaagaaaa catagcaaat gggttgctact ggcagaagcg 31080

pto_PB0262.txt

taagatctt gtaaaacgtg ctggctctgg ttcatctgct ttctattact acaataatgc 31140
 taagtaaaaa acctccaaaa acctcagtgg catctaaca taagcatttgg ttgctcacac 31200
 tcatttcaat tggtttgggt tgtgaattac atgtttgcag caggcaccat agtggtgtgt 31260
 gatgtcccct tagctgtatc cacatatgga cacaggaatt ggctctttt atctctttt 31320
 attttcttgg ttacagacat gtgactttt ttttigaaag gtaacaatca ctttctcata 31380
 tgttatttga tgcttagtggt catagcctat agtcacattt gtttcaatga gaaagaaaaa 31440
 ccagtagacg gttatgctaa ggatttcaagt ccctgggtg agagccgtct cgaatgtctc 31500
 cccacttcat aactcctcca cacatcatag ttggatagtg agctctgctg atattggcag 31560
 gacttgctct ggtctggctg tagtctgacg gagcctggcc ctgggtgtgc tgtcaggct 31620
 gactcagctc tccccacacc tatctcatgt tccagtcagg cagtaactgg tgaagaagcc 31680
 aagcttaggaa ccaggatatac tggctctga gctaaagtct taaaacacta tcatattgcc 31740
 ttccaaatat aacaccaaata actagggtgca tatcaccctc actgtttca gacctctgcc 31800
 aaaattggga ttctttgtgg tatgaagaga cacggctttg gggctggccc ggetgtgaca 31860
 gtgaggtgaa cacaaaggga ttttcttcag agattacagt ccagccctga agcaacaact 31920
 aggagactga ttgagcaagt gaggacaggg ctgtgtgggg ttctatcctc tttataactt 31980
 ccactagcac tgaaatcgta ttctctgggtt acatccaacc agagccttct ttgtcatttt 32040
 tgggatagaa agggactagt ttatcctcaa attatttatg gagattttat ataataatgt 32100
 gtttctctcc acatttctg tatataacaa aagtccctct ttttagtgtgt gtatacacat 32160
 atatatacac atatataatgt gtgtgtgtat gtgtgtgtgt atatataat acacatataat 32220
 acacggttat gctaaggatt tcagtcctg gggtgagagc ctteccgaat gcttcccacc 32280
 ttcataactc ctccacacat ctcagtgccc cactgagcac agcaatggc atgacagtt 32340
 ttaaaacact ttataaatgc ttcgatcatt taccagtatg agttagtctc tggagctcct 32400
 aataacttcat tagtactgca tggactgagt taaaagttaa ttcaaaatct caatttatcc 32460
 aaatctgttt cgttcttcc aggcaccacc cacctatgtat actgtgctac agatggagta 32520
 tcttgacatg gtggtaatg aaacgctcag attattccca attgctatga gacttgagag 32580
 ggtctgcaaa aaagatgttg agatcaatgg gatgttcatt cccaaagggg tgggtgtgt 32640
 gattccaagc tatgtcttcc accgtgaccc aaagtactgg acagagcctg agaagttcct 32700
 ccctgaaagg tacaaggccc ctgggaaggg agccctccct gaaccagcct ggttcaagca 32760
 tattctgcct ctcttaatct acaggacagt catgtggttg tataattatt tgcttgtatt 32820
 tttatattta gagatttttt taatcatcaa attgattatt gtcacactt acaaaccata 32880
 gactagaaaa aagaaaacta cagtcatcca caattccaac aacttacgat gaaggtcatac 32940
 agttatgtcc ttatgggtca tcagtgcca aaatgttaagg actctttaa aaacacatga 33000

pto_PB0262.txt

tcacaatgct	attattatgt	ccccaaatg	aatattttt	tcataaaat	aatcaaatat	33060
ttaggaataa	catttaata	aaaaacatgc	atctaattctt	caaagaattt	tatacgctac	33120
tggAACAGAT	agacAAAGAA	agcAGGGATG	atactgcatt	acatcggtac	agttagcatca	33180
tatgcctgtg	taaatttatct	gacttcaact	attctatgga	ggtgtggggg	agaaagaggg	33240
agagatggag	agaagaagaa	ggaggagaag	gaggagaag	acaaggtaag	gaggagaagg	33300
aggagaatta	gaaaaacaag	agaggagatg	agaaggaaag	tgcaaataa	caatttgaa	33360
atagtacaag	acaatttccc	cttctccttc	ctcatgacca	atgtaagtgt	gacttgaggc	33420
aggaacctac	ttttccatca	gtcagtccca	tcacttatgt	gcctttata	gtgtggacac	33480
atcaccaccc	tgaatataat	ttcagtgttt	agaaataagt	attcttgca	acactattta	33540
tctcatctca	acaagactga	aagctcctat	agtgtcagga	gagtagaaag	gatctgtac	33600
ttacaattct	catagcaaaa	taagcatagc	aggatttcaa	tgaccagccc	acaaaagtat	33660
cctgtgtact	actagttgag	gggtggccccc	taagtaagaa	accctaacat	gtaactctta	33720
ggggtattat	gtcattaact	ttttaaaaat	ctaccaacgt	ggaaccagat	tcagcaagaa	33780
gaacaaggac	aacatagatc	cttacatata	cacaccctt	ggaagtggac	ccagaaactg	33840
cattggcatg	aggtttgctc	tcatgaacat	gaaacttgct	ctaattcagag	tccttcagaa	33900
cttctccttc	aaaccttgt	aagaaacaca	ggttagtca	ttttctataa	aaataatgtt	33960
gtattaataa	ttctttaac	tgagtggct	gtatTTTTA	aaaagaatat	gcttgttaa	34020
tctttacta	atttgttctc	tgggccaaag	aatcaattag	gcccatctgt	gatctttaag	34080
ggtgcttcag	ttctggagtt	caaaagctgt	agcataaaa	acatcatgta	aagccatgt	34140
agattagcat	ggcataatta	tctgcagtc	ccttgaactt	gagcaaagt	acattcattt	34200
caagtcgatt	ggaaagatgg	ggaagtattt	ttgcacagtc	atgaagtgt	atgattacct	34260
tgttgtgact	tttgaatgct	gctcttccca	accagaactt	ggagaagctt	tctcatgaga	34320
gtggctccca	accactagct	gtacattgga	atcaccaggg	agctttaaaa	attcatgatg	34380
tctgggatat	cacagaaatt	ctaaactaat	ttgcccagag	tgtggcttta	aaagcttccc	34440
cattgcttct	catgtgaagc	caagggttag	aatgactaat	ttaaggcatt	tctgggtggat	34500
ataaaggact	accacagtcc	aaggccatcc	tgactgacct	caccttccag	gtgcctagct	34560
ccatccagct	gggctccccc	tcaacccaat	tataactcta	ttaatgttgt	tcccagccag	34620
gcatgggtgc	tcatgcctgt	aatcccagca	ctttgggagg	ccgaagcagg	cgatcatga	34680
ggtcaggaga	tcgagaccat	cctggctaac	acgggtgaaac	cccgtctcta	ctaaaaatac	34740
aaaaaaattac	cctggagagg	tggcaggcac	ctgttagtccc	agctactctg	gaggctgagg	34800
caggagaatg	gcatgaacccc	cagggagcgg	agcctgcagt	gagccgagat	tggccactg	34860
cactccagcc	tgggtgacag	cgagactctg	tctaaaaaaaaa	aaaaaaatgt	tgttcccttt	34920

pto_PB0262.txt

ctcctcattt	tgttcttatac	tttcaagtcc	tagttcaatc	cccaagcccc	tccaaagtgt	34980
cttctcctcc	tagtccaggg	cccatttact	tctctgctct	gttattggat	actggaggct	35040
attatcataa	atttgacaat	ttgccatcaa	atcattgagt	tttattctct	atattttctt	35100
tgtatctaaa	atgtcttccc	ccctccatta	acaatatcct	ctcattttat	tccttttaa	35160
aatatcccag	tggtgcccttg	caagggactg	tatctaattgc	aagcatttgg	taaatgttta	35220
aggagtgatg	tgcagttgat	ggcttgacata	catatattaa	gctatttaat	gtgaaccttt	35280
aaacaaatgc	cattcgtgca	tatgcatgtg	tgtgtgtgt	tgtcacatg	tggcatgca	35340
tgtctgtctg	cagtgaaaat	atattcaggg	ttttgaaaaa	tttttaaata	ataaggtatt	35400
atatttata	aaagatttga	aatatttct	ctgaagaagt	taaagaacag	acgtcattga	35460
ttcatattaa	acaataccct	ataaaatctt	tttcttagtc	tcatgtattt	attattcaat	35520
tccacccctt	aagtgggctt	tctatatagg	agaggaagaa	gacagaataa	gtttccatata	35580
tatttccata	ttccatattta	tttgtggctt	taggcagca	gtgtagctgt	attatatgtg	35640
cccagacagg	ggactcagcc	ctgaataaaa	gtggcctct	ggcacacctg	ggatggggaa	35700
ggtaactcctt	ggtaagctcc	caacctggca	cttcttgatc	tccctggcaa	ttttcttgcc	35760
cattactcca	tggagatcag	aatatcactc	tgttgtgtcc	cctcaacacg	gaaggagtgt	35820
ctcaataaga	atggggctaa	aagttgagtc	caaacactgt	aggaattttag	agttcccca	35880
ccttgcacta	cccttggaaag	ccaagagaag	atgttaaaaaa	taaaatgtta	atgcttcctg	35940
aaggtgtctt	cccatcttta	cactggatgg	gttcaatgg	gaggaattac	tggactctgg	36000
aagttgaaga	ctgtccatat	aattaaaatg	tacaataact	acccaggttt	accttgcaag	36060
tttcaacata	cacaaaatta	actttatata	actcttcaaa	aacagtttgc	catcatacct	36120
aataatctgg	tttaaatttt	aaaaactcat	ccattttact	taaaattttaa	atcaaaaaag	36180
aacacaggtt	tccatgaatt	tgtctcaggc	ctggcacaga	atagtactcc	ataaaatattt	36240
tgttaaatga	tagatgatga	atgctctcac	tgtccaatct	tcacacatct	tatagactaa	36300
gtataaagaa	tccaaagattt	atagtgctga	aagtagttt	tatatgttta	caaagcatta	36360
ttgtcattac	tgcatttttt	ttgcccattta	ctccatagag	atcagaatat	cactctgttg	36420
tgtccctca	acactgaagg	agtgtctcac	tcactttgat	gctatacttt	ctacttttgt	36480
ttatTTatg	cttctcaata	tgcttggta	actgttgcag	atccccctga	aattaagctt	36540
aggaggactt	cttcaaccag	aaaaaccgt	tgttctaaag	gttgagtcaa	gggatggcac	36600
cgttaagtgga	gcctgaattt	tcctaaggac	ttctgttttg	ctcttcaaga	aatctgtgcc	36660
tgagaacacc	agagacctca	aattactttg	tgaatagaac	tctgaaatga	agatgggctt	36720
catccaatgg	actgcataaa	taaccgggaa	ttctgtacat	gcattgagct	ctctcattgt	36780
ctgtgttagag	tgttataactt	ggaaatataa	aggaggtgac	caaatcagtg	tgaggaggta	36840

pto_PB0262.txt

gatttggctc ctttgcttct cacgggacta tttccaccac ccccagtag caccattaac 36900
 tcctcctgag ctctgataag agaatcaaca tttctaata atttcctcca caaattatta 36960
 atgaaaataa gaattatttt gatggctcta acaatgacat ttatatcaca tgtttctct 37020
 ggagtattct ataagttta tgttaaatca ataaagacca ctttacaaaa gtattatcg 37080
 atgccttcgt gcacattaag gagaaatcta tagaactgaa tgagaaccaa caagtaaata 37140
 ttttggtca ttgtaatcac tggcgtg gggccttgc cagaactaga atttgattat 37200
 taacataggt gaaagttat ccactgtgac tttgccatt gtttagaaag aatattcata 37260
 gtttaattat gcctttttg atcaggcaca gtggctcacg cctgtaatcc tagcagttt 37320
 ggaggctgag cgangtggat cgcctgaggt caggagttca agacaaggct ggcctacatg 37380
 gttgatacc atctctacta aaatacaca ttagcttagc atggtgact cgcctgtaat 37440
 ctcaactacac aggaggctga ggcaggagaa tcacttgaac ctgggagcgg gatgttgaag 37500
 tgagctgaga ttgcaccact gcactccagt ctgggtgaga gtgagactca gtctaaaaaa 37560
 aatatgcctt tttgaagcac gtacattttg taacaaagaa ctgaagctt tattatatta 37620
 tttagtttga tttaatgttt tcagccatc tccttcata tttctggag acagaaaaca 37680
 tgtttcccta cacctcttgc attccatcct caacacccaa ctgtctcgat gcaatgaaca 37740
 cttaataaaa aacagtcgt tggcaattt attgagcaat aagcctaaaaa gcactcattc 37800
 cttttctttt ccaaattctt cttttttt cccttcctga ataatttagt cctaaagcca 37860
 tttagtgggt ggcagccaga tggtgccac acattaaggt agagaagaga gagtcatgg 37920
 ggctccaagt cagagacca ggaggttcat gtggagagac atcctggct gggtgtgg 37980
 gtccaaagcaa gcagagaagg ggtcgacgc gagggtggc ttgcaagagc agccagagcc 38040
 taaatagggat atggagaacc cacatgagggc gaggagggca tccatgagtg ggaggggtt 38100
 ggtgagggtt ggctacataa aggggattga tcaaataagt aaatgttata aggtgatag 38160
 aagccaggct tctcaccttt gcagaaggga gtcatggatt cagaaaggga gaaaactagc 38220
 atgaatccta taaaatttta ttgaaatgga tgtaaccgtt tatattcata cccttgcata 38280
 tagatagatg ggttagataga tgatagatag gtaacagata gatgacagat aatgagatag 38340
 atagatgtaa atgtatgtct gtatttgcgt gtgtgtacaa aaaacatata ttccctactt 38400
 ctctccactg ataggctag gtaacaatga cattcaata gcaatgaaca cacttagtgc 38460
 cccgatcttgc ttgttatgaaat accattttcc actgaaggga accagagctc ttttagagaaa 38520
 tggctgatgc caggcaaga attaagaatg ttcaagataa gtttaggaca cattttgtgc 38580
 caggaagcaa gaaaattttc aaataatttc caagtaatct ttggaaatga tacttgaaaa 38640
 tgacttccaa atgacatttc caaatgactt gcaaacgatt tccaaatgtat atttggaaaa 38700
 acctaaagac tccatcaaag aactatttggactt gactgataaac acattcagta aagttgcagg 38760

pto_PB0262.txt

atacaaaaatc agcatacaaa aatcagtagc atttctatat gccaatagtg aacaatctgg 38820
 caaaaataaa aaagtaatcc catttacaat agccacaaat aaaactaaat acctagaaat 38880
 taacttaatc aaagaagaga aaggctctta caatgaatac tggaaaacat tgatgaaagg 38940
 aattgaagac acaaaaaagg atatttcatg tttatataatt gtgagaatca acattgttaa 39000
 aaatgtccac actactcaaa gcaatgtaca gattcaatgc aatccctcaa aataccaatg 39060
 acattcttca a 39071

<210> 40
 <211> 26865
 <212> DNA
 <213> Homo sapiens

<300>
 <308> <http://www.genome.utah.edu/genesnps/>
 <309> 2002-06-05

<400> 40
 ggctgcaaat ggccttaaaa atctgaacaa catttggaaa ttctgagtaa tggcaacca 60
 ggcagtctgg cttatgaggc ctggccagct ctttttcatc atgaggcccc ctacctgctg 120
 ctttcctgcc taattccagc agccttcact ccattttcac taaacttgca gacagaccac 180
 teccagagag tgggacagat gccatcagat gccatctccc acctctgtga gcctcaacta 240
 acaactcctg tttggcccat ctcttctata atgattgaca ccaagaatgt ctgctacctt 300
 ggggctgtga ttcatctgg taatataaaa aaaatttttt ttttgagagt ctcaacttgt 360
 catccaggct ggagtgcagt ggcatttatc cagctcactg caacctgtac ctcccggtt 420
 caagcgattc tcctgcctca gcctcccaag tagctggat tgcagatgca cgccaccatg 480
 accagctaattt ttagtagaga tggggtttttgcgtgtcagt caggctggc 540
 ttgaactcct ggcctcatgt gatccacccatcattggccctc ccaaagtgtctt gggattata 600
 gcgtggccca ctgcggccag cccgagaggt aaattttttgcgtgtcagt caggctggc 660
 atcctgaaga ataacacaag aggaataaca gttaccagt aaggtgtcag ccaattttttt 720
 ccagtcactt ttgaatccat gtcctataat ctaaaatttgcgtgtcagt caggctggc 780
 gagctttctatca tcatgtcagt atgtatgtta tgaagaaaag gagacttagg tgagatgttt 840
 gtatattatca caactgctgc atcaattgcc taggacttca acagttcat ggaagtctgg 900
 gaaatgttca ggcataaggt tattgcctta gctgactgaa aattggccca tacagtggta 960
 catatcaacc ctttagtgagg ctttttaaaa aacaaacagg ttgaaaaata gattaaagta 1020
 ggcaaaataca gcatctgtct ttagagctat caactcagga attctctcaa tttttttttt 1080
 tttttttttt ttttgagat ggagtcttgc tctgtcaccc aggctggagt gcagtggtgc 1140
 aatctcggtt cactacaagc tctgcctccc aggttcacac cattctcctg cctcagtctc 1200

pto_PB0262.txt

cgaggatagct	gggactacag	gtgccgcga	ccacgcccgg	ctaattttt	gtacttttag	1260
tagagacgga	gtttcaccgt	gttagccagg	atggctcga	tctccgtacc	ttgtgatctg	1320
ctggcgtcag	cctcccaaag	tgctgggatt	acaggcgtga	gccaccatgc	ccggccagga	1380
attctctcaa	ttatgaaatc	ttgcagagaa	gttattttc	tttctcaaaa	tccagatgat	1440
gacaatattc	cttactccag	atctggcatt	ttttcatcat	cactgtctg	tgaatgatca	1500
tctgctccat	ctgctaaatc	tacatcctct	tcaccaccca	tgtggttcat	catctcagag	1560
aaataatcaa	aatcagacat	ggcttcatct	gaaccatctt	cccagtctt	ccaatgattg	1620
gagtcccacac	taagccagtt	aagctttgcc	ctttgtttg	ttaaccttgg	ccatgactgg	1680
ccccatttc	cttttgtaa	acaaaacaaa	ccgatctgtc	cattctctta	tgcttgaat	1740
catttggatc	aatacagtga	aaaagattga	tgccatataa	atgcttaaaa	tgatcacttc	1800
caggaagtgg	cagtacaagg	gcttctgcac	ggatagcaga	gcagtggtcc	cgaccacagt	1860
gcatgccctg	agctctccgc	ctcccctgcc	tgtctgcag	gtggcagcag	tgccacaagc	1920
agcccacggc	agggtggaac	acccacatcg	acaacctcg	ggtggaaggg	acctgttagga	1980
tgcagccatc	tggggctaca	aggacttgc	ttccatccag	gccaccatcc	ctggaaaaac	2040
tttcatcaac	gtcaagccag	ctgaggttga	tgtccctgg	ggcaaagact	ggtcaagttt	2100
ttttgtgaat	gaggtgacac	tgggggcca	gaaatgttct	gtgatctgg	acctactgt	2160
gcaggatggg	gaactgacct	atctttatac	caagagcacc	gatggagccc	ccacccatcaa	2220
tgtcaactgtc	accatgactg	ctaggatgt	agtgttgtag	gaagtcaagg	acccaaatgg	2280
agggatgggc	tggaggcatg	gcagaggaac	agaaattgt	aagatttcat	tttaatatgg	2340
acatttatca	gttcccaaata	aatactttt	taatttctta	tgcctgtctt	taatctctta	2400
atccctgttat	tttcataagc	tgagggtgt	tgtcacctca	ggaccactgt	gataattgt	2460
ttaactgtac	aaattgattt	taaaacatgt	gtgttgaac	aatatgaaat	cagtgcaccc	2520
tgaaaaaagaa	cagaataata	gcgattttt	gggaacaagg	gaagacaacc	ataaggctg	2580
actgcctgtg	gggtcggca	aaaagagcca	tatcccttt	cttgcagaga	ggatataaat	2640
ggacgtgcaa	gtagggaaaga	tattgctaa	ttctttcct	agcaaggaat	attaatatta	2700
ataccctgtg	aaaggaatgc	attccctccgg	ggaggtctat	aaacggccac	tctggaaatg	2760
tctgtcttg	acagttgaga	taaggactga	gatatgcct	ggtctctgc	agtaccctca	2820
ggcttactag	ggtggggaaa	aactctgccc	tgtaaattt	gtggcagac	tggttctctg	2880
ctctcgaacc	ctgtttctg	ttgtttaaga	tgtttctcaa	gacaatatgt	gcaccgctga	2940
acatagaccc	tcatctgttag	ttctgctttt	gcccttgc	ttgtgatctt	tgttgaccc	3000
ttatcagtgg	ttctgctttt	gcccttgc	ctgtccctg	agaagcatgt	gatctttgtt	3060
agacccatata	tagtagttct	gcttttgcc	cttgaagca	tgtgatctt	gtacccatctc	3120

pto_PB0262.txt

cctgttctta	cacccctcc	ccttttgaa	accctaata	aaaacttgct	ggtttgaggc	3180
tcagggcggc	atcacagtcc	tactgatatg	tgtgccacc	cccggtggcc	tagctgtaaa	3240
attcctctct	ttatactgtc	tctctttatt	tctcagccag	ccgacactta	tggaaaatag	3300
aaagaaccta	tgttgaata	ttgggggctg	gttccccaa	tatctggcac	accaatgtgg	3360
ttttcttct	cctaattgca	tgtgggaacc	tgattccctt	tggtaggtgc	ggagaaacgt	3420
tcattggct	ggtccacaga	aatgcttgtt	cagctctctg	atgattggta	agttgtctgt	3480
gtattgtcca	ggctaacttt	gggtcactca	gagtctaaac	attatgctta	tctctgccat	3540
attaaactcc	tgttaaaaca	ggggggagtt	tgggtaccca	tggaaaatat	ggtcacccta	3600
ttcagggcag	tggaagaaca	ttgtcctttg	tttcctgaaa	agggAACATT	agacgtggaa	3660
ctatggatc	gtgttgtgc	aaaattccgg	gaactggtcc	caacaggaaa	ttatgttccc	3720
gtcactgtt	ggggtgactg	ggccttgta	tgtgccgtcc	taatgacata	ccaatcccat	3780
cacccctgc	agttaccaca	gttttctgaa	tctggaaacc	ctccacctct	tcctcaacct	3840
tcctctcccg	cacggccttc	gttacctgat	cagcctctcc	cttcgcctac	tcctccccca	3900
cctgaggata	ttgaagattc	aatatcta	tccagtgact	ttggcttaac	gtcacccct	3960
gatgatctta	tttctttca	cgaacagcca	gtactttag	ctcccacggc	ccgacttgg	4020
acagcccagg	actgtatcta	tgctaactct	tcccttctca	aacctttgca	gccttgcct	4080
ccggagccat	ctaatggctc	cggaactaaa	ctacaattta	cctgtaattc	tgcaggccct	4140
ccccatcca	ccacagcccc	tcaccctcct	gtcatttcgg	ttcctcaact	ggtcactttg	4200
ccatccactc	aacctgcttc	tctgtaccct	tcttcacatg	tggacacccc	tgccactctg	4260
gttgcacagg	attgggcaat	aatcaccagt	atgctctgc	ctctctgtct	cctctgggtc	4320
ccctttctca	cgctctcata	ctggtccaac	ctcctcagcc	tcagtttccc	ttatctacac	4380
ataattttcc	tgtcaactct	gtgccaactc	tgtctcatgt	gcctgttgg	gaaatttcca	4440
tgcaatgctt	attacgccaa	aacaaacaag	tggatttagag	gcgtgggctt	atccgttcat	4500
gctggAACCT	tgcaatgctc	aaggggtaca	agtgcacatcg	taggcgtgc	tcaatcttac	4560
ctttttaaaa	gaattcaagg	atgcttgc	tcagtaggt	cctacttctc	cataatgtta	4620
aatggtatta	cagactctt	gtactgaggt	cattttgctt	ccttttagact	gggacttttg	4680
gcaaaagctg	ttctactcc	atctcaacat	ttacaattct	gtacctggtg	gtcacgggag	4740
gcccatctgc	aggctcagct	aaatcggct	gatggcatc	taattactca	ggctcagctc	4800
acaggctcca	ataattactc	tgacactact	gcccaattag	gctttgatgc	tctcaccgtg	4860
gaacaagtaa	caaagggttg	tatgagagct	tggataaat	tacgcgc	aggccaagct	4920
cctgtttctt	ttactactgt	taaacaggg	cacaatgaat	tatatcctga	tttttagct	4980
aaattacaag	atgctgttga	aaaatctgtc	tctgtatgagc	acgctcaagg	tattttctt	5040

pto_PB0262.txt

cgaatgttag	ctttgagaa	tgcgaaccat	gagtgtaaaa	tggccatgca	ttccgtccaa	5100
caacaaaatt	tacctgatcg	tgagggtttg	cctgagtata	ttaaatatga	aggcattgga	5160
tcagacacaa	agctattctg	tgcccacaaa	gctattctgt	gggcacgggc	catgaaggac	5220
ggcaatcaa	ctggctcgac	tgattcttt	cttggagcct	gctataattg	tggtcaactt	5280
ggtcatactc	aaaaaaattg	cacagttaaa	aacttaaagg	cagccaagcc	ggctcaaaaa	5340
acacagccaa	atgctcctgc	tactgtttgc	ccttgggtt	gtaaaggtaa	acattgggca	5400
agtacttgcc	actctaagtc	tgatatacat	ggaatccct	tgccacagaa	ccagggaaat	5460
gggaaatggg	gccagtccta	ggccccaaatt	tcaaatggga	cacctcagac	tcagacgaat	5520
gttgccttc	tgcttcaatc	ggtciccaacg	cagccccag	cacaaacaaaa	tttacctaca	5580
gccaacccag	atgtgtccca	gcctcttctt	ctgtctcagt	acaacgctta	tctatgctcc	5640
agagtaaggg	gaggggcggt	caatctctgt	agtaccattc	ctctaaattt	actacctaatt	5700
tcttgcctt	taattccag	accaataacct	ggaaacctgg	aacgattata	acatggggaa	5760
gagggtatgc	ttgtgtttca	ccaggagatc	atcaatcccc	tgtctgggtg	cccactagaa	5820
gacttaaact	tcatgtgaat	actgacaata	aaaaccacag	ggaagagacg	tccacgtcag	5880
agaccacccct	catacctggt	gagatctgtg	ccaactcctc	agaaactggc	acgccaaatc	5940
aaaatgggtc	tggttcaatc	ctccctaattg	gcaacagaaa	cccctctaac	taatcccact	6000
tctcctaatt	ccctttcttt	tttccttac	gaacctaaaa	atctcaccat	ttcttattagc	6060
ctgaaaataa	catccccta	ttttcttatt	cctccttcag	cactggatct	tgcttacaat	6120
aggttttatt	taataattct	tttccttata	ctttctgtct	caccagttc	ccctcacatt	6180
gatttacctg	ctacacaaaaa	ttattcttgc	tgggctttag	tgcctttcc	tccacttatt	6240
caacctctca	cctggatgga	tgctcctgca	gaaatctata	ctaattgatag	tgtgtggatg	6300
cctggagcta	cagatgaccg	ttgccccact	caaccaggaa	aagaaggcac	tgcatttaat	6360
tttcctacgg	ttataaaatac	cctcctctgt	gcctcggaca	tgcaccttgt	tgtatccatc	6420
tagaaactca	agtctggct	gcgtaccttc	tggagagatc	agccacaggg	gaacggggac	6480
atttggtctc	cagcctctcc	ctttctcctt	taagacaaat	gaaaggggaa	gtaataggag	6540
atacccccta	ctttcaatat	aaacctgttag	gaaaaccatg	tcctaaaatt	tttggggcc	6600
catctaaatc	ttaattttgg	gaagattgtg	ttaatttcaca	tgcagtacta	ttaaaaaatg	6660
actcatatgg	tttagtaaga	gactgggcac	caaaggcta	tttggaaagc	agttgcttt	6720
ctgctggaaag	ggaatgcctg	gaggctactt	gttttatttc	ttattggag	gacgaggatc	6780
atcatcctac	tttgcataagg	aggttcagct	cattctgtcc	cttaaaaatgg	gaagataaga	6840
gcattacccc	ctgccaccccg	aggccttta	tgatatcccc	cattctgagc	ccagaacacc	6900
cagaactttg	gaaatggct	attgccatgt	ccagactgac	agtatggaa	ggggaaactt	6960

pto_PB0262.txt	
ttctttctgt	tgtccccact accacccttc acatccgtga ttctgaaacc catgataaat 7020
cccccttgg	ccatttccct ctttttgatg ccagtcctcc tttatggac tctgattggc 7080
attatgataa	ttcttctgga cccaggtatg tccccctacc tcttcagaat ccccgcccac 7140
ctcggattgc	ttctttacgg catcaaacat tggcggtgc caccgccact cctccccctc 7200
ggtatcaacg	tagattcaaa cattctgctt tgtttacctc cagcctgact attatacaga 7260
gttgtgttaa	gcctccttac atgctgttag tggaaatat caaaatttgg atgaacaatc 7320
aaaccgtcca	atgcattaat tgtcatttat ccacttgcgt taactccgt tttgactcag 7380
gaaaagtgt	a atggtggttc gagcttgaga aggaatctgg ataccagtaa ctttacccag 7440
aacttggaa	tcttccccct cagtacattt aattaatgaa gtgttacaac gaattctcaa 7500
aagatcaaga	gatttggttt cacttaatc actgtgatca tgggccta at tacagtca 7560
gcactggcca	ccactgcccgg agtggcatta caccaatcta ttcaaatggc taattttgtt 7620
aatgatttgt	aaggcaattc cacccaaatg tggaaatcctc aacaaggcat tgcataaaaa 7680
ttagctaatg	at ttaagaca gtctgttatt tggcttgggg accagctaat gagtctcgaa 7740
catcacatgc	aaatgcagtt cgattgcaac acttctgatt tctatagcac accatattcc 7800
tacaacgaga	ctgatcatgg gaaatggtca aaggacacct tctggtagg gaagataatt 7860
tatccttgg	cataactaaa ttaaagaaac aaattttga agcctctcaa gtcatttat 7920
ccatttgcc	tggagctgag gcgttagatc aggtggcaga aagtcttct ggactaaact 7980
ccacaactt	gattaagtct actggggct ccactgttagg aaattttggaa atcatgtttc 8040
tctgttaat	cggcttggtt ttatgtgcc agaccagtca aagaatcctg cataaaacc 8100
gagagaacga	gcaaggccttc atcgccacgg cacattataaaaaagaaa gggagagatg 8160
ttgcggaaag	tcagggaccc tgaatggagg gactggctgg agccatggca gaggaacata 8220
aattgtgaag	atttcatttt aatatggaca tttatcgtt cccaaataat actttataaa 8280
tttcttatgc	ctgtcttac ttatctct taatcctgtt atctttgtt gctgaggatg 8340
tttgtcactt	caggaccact gtgataattg tggtaactgt acaaattgtat tgcataatc 8400
gtgtttgaac	aatatgaaat tagtgcaccc tggaaaaagaa cagaataaga gcaattttta 8460
gggaacaagg	gaaaacaacc ataaggctg actgcctgca gggcgggca gaaagagcca 8520
tatttccctt	cttgagagag gctataatg gacatgcaag tagggaaatgat atcactaaat 8580
tctttccta	gcaaggagta ttattattaa taccctggaa aaggaatgca ttccctgggg 8640
gaggtctata	aacagccgct ctggaaatgt ctatcttgc cagttgagat aaggactgag 8700
atacgcccctg	gtctcctgca gtaccctcag gcttactagg gtggggaaaa actccgcct 8760
ggttaatttgc	tggtcagacc ggttctctgc tgcataaccc tggctgtgt tggtaagg 8820
gtttatcaag	acagttatgtg caccgcgtaa catagaccct catctgttagt tctgcttttq 8880

pto_PB0262.txt

ccctttgcct	tgtgatctt	gttggaccct	tatcagtgg	tctgctttg	ccctttgcct	8940			
tgtgatctt	gttggaccct	tatcggtag	tctgctttg	ccctttgtcc	tttcctcag	9000			
aagcatgtga	tcttgtag	acacttatta	gtagttctgc	tttgcct	ttgaagcatg	9060			
tgatcttgt	accta	ctccc	tgttcttaca	ccccctcccc	ttttgaaac	ccttaataaa	9120		
aacttgctgg	tttgaggc	tc	agg	gggtat	cacagtcc	ccgatatgtg	atgccacccc	9180	
cggcggccca	gctgtaaaat	tcctctttt	atactgtctc	tcttatttc	tcagccggct	9240			
gacacttata	gaaagaacct	acgtt	gaaat	attgggggt	ggttccccca	gtacgctagt	9300		
cctgctgatg	agcaaagaag	gtgtt	gatgg	cattt	gatc	aacaagaaat	gttatgaaac	9360	
ggcctccac	ctctggcatt	cctag	tactg	acctatct	ccctcc	ccaccgctcc	9420		
ccacagctta	gcacccctt	cg	ttccata	ca	catgtaca	tttttattt	gggaccatt	9480	
aacccacagc	ccttatcgct	gcca	aaaacca	catgg	gg	agggccagg	ctgcatggac	9540	
agtcacacca	ctgcacacca	gc	ctgg	gtat	gg	agcaagac	tctgaaaaaa	aaaaaaagaa	9600
gcataaaaga	ccttaaacag	tcc	ctgctac	ttgt	gacc	c	c	tatgtcc	9660
agtgat	ttt	gcaac	atggaaagt	cc	agc	tct	gt	cc	9720
ttcg	cact	tc	ggat	catt	a	agcat	gggg	agctc	9780
cttac	ctt	cc	gg	ttt	g	ctgg	atgt	cc	9840
tcact	ccc	cc	cc	ttt	g	atg	act	cc	9900
aat	ttt	cc	ca	gg	ca	gtc	aa	gg	9960
aaagg	cct	cc	ttt	cc	ca	at	ttt	cc	10020
cct	g	cc	gg	cc	cc	at	gg	cc	10080
at	ttt	ttt	ttt	ttt	ttt	gt	ttt	ttt	10140
tgccc	ctt	cc	gg	cc	cc	cc	cc	cc	10200
tcaag	ctg	ca	gg	cc	cc	cc	cc	cc	10260
tgatt	gtc	gg	cc	cc	cc	cc	cc	cc	10320
ctgg	gg	cc	10380						
gggatt	gtt	cc	10440						
attct	cc	10500							
cac	cc	10560							
gg	10620								
tctg	gac	tt	ct	ct	ct	ct	ct	ct	10680
ccag	cac	at	gt	gg	at	gg	at	gg	10740
ggc	act	gt	cct	cc	cc	cc	cc	cc	10800

pto_PB0262.txt

tgggattgct	gctttcctgg	tgctatttcc	agctactcag	gctcacaggg	gcagtttct	10860
acaatgacat	ttcagggttg	ctgatgagcc	tcccactcag	cagggcccc	agcctctcag	10920
catttttttt	ttttttttt	tttttgaga	cagagtctct	ctctgtcgcc	cagcctggag	10980
tgca	tgca	tgca	tgca	tgca	tgca	11040
cctc	cctc	cctc	cctc	cctc	cctc	11100
tat	tat	tat	tat	tat	tat	11160
cgt	cgt	cgt	cgt	cgt	cgt	11220
ctg	ctg	ctg	ctg	ctg	ctg	11280
gcc	gcc	gcc	gcc	gcc	gcc	11340
gaag	gaag	gaag	gaag	gaag	gaag	11400
tgg	tgg	tgg	tgg	tgg	tgg	11460
ggtag	ggtag	ggtag	ggtag	ggtag	ggtag	11520
aat	aat	aat	aat	aat	aat	11580
aaa	aaa	aaa	aaa	aaa	aaa	11640
acagg	acagg	acagg	acagg	acagg	acagg	11700
ttag	ttag	ttag	ttag	ttag	ttag	11760
ttag	ttag	ttag	ttag	ttag	ttag	11820
ggagg	ggagg	ggagg	ggagg	ggagg	ggagg	11880
ttt	ttt	ttt	ttt	ttt	ttt	11940
ttt	ttt	ttt	ttt	ttt	ttt	12000
tct	tct	tct	tct	tct	tct	12060
tct	tct	tct	tct	tct	tct	12120
gat	gat	gat	gat	gat	gat	12180
tggat	tggat	tggat	tggat	tggat	tggat	12240
aggag	aggag	aggag	aggag	aggag	aggag	12300
ccccc	ccccc	ccccc	ccccc	ccccc	ccccc	12360
ccacc	ccacc	ccacc	ccacc	ccacc	ccacc	12420
tggcc	tggcc	tggcc	tggcc	tggcc	tggcc	12480
atgt	atgt	atgt	atgt	atgt	atgt	12540
tcata	tcata	tcata	tcata	tcata	tcata	12600
tagt	tagt	tagt	tagt	tagt	tagt	12660
acatt	acatt	acatt	acatt	acatt	acatt	12720

pto_PB0262.txt

tttcctgatt	acctccgcca	cctctacctc	ctctgccact	taaaacctt	gccatttctc	12780
tgcagagata	gatttagcct	ttaattatg	caccttagta	ctccagataa	tgaccttcat	12840
ttctttcca	attaccatgt	gccagacta	agcattctat	acgcattcat	cgctgaattc	12900
cccttggaaag	taggtttat	tatccccatt	gtgcaggtga	gaagcaggct	tagcggggtt	12960
aaggagctt	tctgagcctt	caggctcatg	tctctctcac	tcctaaggc	tggacacata	13020
gcagagtca	cgcttgcgt	ttgattgaat	gggaaaggag	aggtgagac	cacgcctcc	13080
tccctgttt	agaattgtct	tcgtcgcat	gataaaccgg	ttctgtgtcc	ccatcttgcc	13140
ttccattctg	gctgaaggc	aggggtggag	taggaacttc	cagagacaga	aagctaagat	13200
ccgcctccag	gagagactct	ggcagctgga	gaagcaaaat	ggaagaaggg	tggatttaac	13260
atttctttt	atttccaga	ttttcccaa	caaaaaccctg	aaaaaattaa	agagccatgt	13320
taaaatacga	aatgatctgc	tgaataaaaat	acttggaaat	tacaaggtag	gtgatagagc	13380
agaagagaat	atgagttagg	ctaaaagtaa	tcacaagagc	agggtggagt	ccattctaca	13440
cactgtagaa	gcttcaaaac	caagcagaga	acctggcaca	tagtaggtgt	acaataaaaa	13500
ctgacttaag	ggctgggcgc	ggtggctcac	gcctgtaatc	ccaacactt	gggaggccga	13560
ggtggcaga	tcaatttgagg	tcaggagttc	gagatgagcc	tggcaatat	ggtgaaaccc	13620
cgtctgtact	aaaaatacaa	aaactaggcc	aggcaagatg	gctcacacct	gtaatcccaa	13680
cattttggga	ggccaagggtg	ggcagatcac	ctgaggttgg	gagttcgaga	ccagcctgac	13740
caacatggag	aaactctgtc	tctactaaaa	atacaaaatt	agccgggcac	gttggcgcac	13800
gcctataatc	ccagcttattt	gggaggctga	ggcaggagac	tcacttgaac	ccgagaagca	13860
gaggttgcag	tgagctgaga	tcatgccatt	gcactccagc	ctggcattt	caccaagatt	13920
ctgtctcaaa	aaaaaaaaaa	aaactgactc	aaggagttgg	gatcgaaaag	tgaggaactg	13980
aagaggatcc	tagaagagac	ctaacctctc	caccaaattt	aaagagggcc	cggggctgcc	14040
tcctacctcc	acaagttcgt	aggcctgcc	cagacttgc	ctacttcaa	gtggaaggag	14100
ctttgttatac	tctagtcagg	gacagaagta	tggcaggagt	gtcacagatg	gggctccttc	14160
cttattaatg	tctcccaacc	tcacccaacc	caggagaaat	tccggagtga	ctctatcacc	14220
aacatgctgg	acacactgat	gcaagccaag	atgaactcag	ataatggcaa	tgctggccca	14280
gatcaagact	cagagctgct	ttcagataac	cacattctca	ccaccatagg	ggacatctt	14340
ggggctggcg	tggagaccac	cacctctgtg	gttaaatgga	ccctggcctt	cctgctgcac	14400
aatcctcagg	tgtgcttccc	cctcattgtat	cctagacccc	agccagccca	atctctggc	14460
tccagagaaa	gggagagcca	attctctcag	gctttctgtg	caggaagact	aggcctgccc	14520
tgctccttac	ccaagcagta	gttggctttg	accccagagt	agagctgccc	catctctgg	14580
aagccggggcc	tggggcccccag	agccactact	gggaagggac	tggacaggct	cttctcgatg	14640

pto_PB0262.txt

tcacagttgg	attcttctct	aagcccttgc	ttctcctggg	cttacacaca	ctagtcacct	14700
ccaacctact	ctggctttca	ggtgaagaag	aagctctacg	aggagattga	ccagaatgtg	14760
ggtttcagcc	gcacaccaac	tatcagtgac	cgttaaccgtc	tcctcctgct	ggaggccacc	14820
atccgagagg	tgcttcgcct	caggcccgtg	gcccttatgc	tcatccccca	caaggccaac	14880
gttgactcca	ggtgtgcctg	ccctccca	gacatcttagc	cccatgatgc	attcaacact	14940
gcttgcagc	ccacctggct	ccccctaccc	ccggccctg	ctggccaacc	taaagtca	15000
caaccatcaa	ctactaaaaaa	tcatcctgcc	ggccgggcac	ggtggctcac	acctgtcatc	15060
ccaacacttt	gggaggtcga	ggcggttgg	tcatgaggc	aggggttcaa	gaccagcctg	15120
accaatatgg	tgaaaaccccg	tctctactaa	aaataaaaaa	attagccatg	catcgtggcg	15180
cgtgcctgta	gtcccagcta	ctcaggaggc	tgaggcagga	aatcacttgc	aaccaaggcg	15240
gcggaggttg	cagtgagcca	agattgcacc	actgcactcc	agcctgggtg	acagagcggg	15300
actctgtctc	aaaataaaata	attaattaat	taaatataaa	aatcatcctg	cccccagccc	15360
cgtggctcca	tgtctctacc	acctacagac	acgcattgac	tcatccacag	atctgcctga	15420
cttcccagag	gagcttcctg	ctgcctcag	agacatgtgg	tctggatga	aaggctggga	15480
gctccatgtt	ccaaaccagct	gcagcacgca	cataacatgc	gctgcagctc	caaacgcaca	15540
cccacataca	ctgcccagaca	ccaaagtcca	cagacacagg	tgttcagaca	gaagcgcctg	15600
ttaggaggga	agggatggag	aagggttgg	tttaggtttg	atctggcaga	agctgaggaa	15660
aacatgagtg	agtggaaatg	agggagtaaa	gggcattttc	ctcacggcgg	aagaatgagg	15720
gggcatgagg	ctgagcaagg	aagggagtac	gaagtcccag	acccactttt	cctttccac	15780
tctggagcag	catcggtgag	tttgcgtgg	acaagggcac	agaagttatc	atcaatctgt	15840
ggcgctgca	tcacaatgag	aaggagtggc	accagccgga	tcaagttcatg	cctggtgagt	15900
ctgtcctgtc	ctgcgcctg	ggccacacag	cgagcctgg	ctctgcctca	ccacccca	15960
accccttcac	ctctgccaag	cttgcgtcta	gaaaacttct	ggctccaact	atacggac	16020
gttgcacacc	tcatcctgcc	atagacttac	ccaaacttct	cacagctggg	tttcccacgc	16080
tcttcttcca	accaactgca	aattcaccct	ccaagaagcc	ctctacgcct	ctgtctgcca	16140
ttaagtctgt	cccttctccc	ctcggatgg	gctatttca	taggttaatt	ccatctcttt	16200
tccatcttc	ctgaatattt	catttcctct	gtgtcgtaa	gggctacctg	aaagcagggc	16260
tgtatcttc	cccaggcggg	ggtccccca	taataaggct	acatcctcag	atcagggttc	16320
cctggcagg	gccatgtctc	cccctcaacc	agggcagaac	catgcctctc	ctccctctg	16380
ccctaacc	tggctgatgc	cactccttgc	ctgcagagcg	tttcttgaat	ccagcgggga	16440
cccagctcat	ctcaccgtca	gtaagctatt	tgcccttcgg	agcaggac	ctgcctgt	16500
taggtgagat	cctggcccgc	caggagctct	tcctcatcat	ggcctggctg	ctgcagaggt	16560

pto_PB0262.txt

tcgacctgga	ggtgcagat	gatgggcagc	tgcctccct	ggaaggcatc	cccaaggtgg	16620	
tctttctgat	cgactcttc	aaagtgaaga	tcaaggtgcg	ccaggcctgg	agggaaagccc	16680	
aggctgaggg	tagcacctaa	aggctgtaac	tcacagcccc	tgtccaccct	atgtggcccc	16740	
acaacacaga	tttagagata	caaccccca	cccttctccg	ccattcttcc	ctactccaa	16800	
cccaactctgc	cttcttttc	agcttgtggc	aatgccagtg	atgtgcataa	acagttttt	16860	
ttttccata	aggtccctga	gtagttcatt	tatgtattca	tttgctca	catttttca	16920	
acaccgattt	tattgagcac	ctactatgt	ccattca	tctcaggaca	ctcgagctcc	16980	
gtggctctg	aagttacat	tctagtgagg	gctaacaagt	gaataagttc	agagactcgt	17040	
aagtgc	tttgaatca	caatttgtt	gatgtgatga	aaaaatggca	gaggcagtgg	17100	
gtggctgctt	tgaacaaggg	gtcagggaaa	gtgttgcatg	ctgagaagca	ggtaaaaagg	17160	
cctccaggtg	ggagaggtca	gcatggccag	tgaagggag	agtggccct	gatgaggtca	17220	
gagtgacat	agtggccgt	tcccactgta	gctgggatta	caggaggcca	ggagggaggt	17280	
tgggttttat	tctaattatg	acaggaagt	actggaggat	tttaagtatg	taagtggAAC	17340	
aatctgtttt	tttgggtttt	ttttgtttt	agaaggagtt	tcgctctgt	tgccctggct	17400	
ggagtgc	aat	ggcatgatct	tggctca	caaccctgc	ctcctgagtt	caagtgattc	17460
tcctgcctca	gcctccaaaa	tagctggat	tgcaggcgtg	tgccaccatg	cccagcta	17520	
tttgtat	tttagagat	gaggtttgc	catgtggc	aggctggct	cgaactcctg	17580	
acctcaggtg	atccacccat	ctcggcctcc	caaagtgc	ggattataga	catgagccac	17640	
agcgcctagc	ctgtttttt	ttttgtttt	tttgggtttt	tttgttgg	tttttgttgc	17700	
tgttttttga	gtgacatgg	ctcactctgt	tgccaggctg	attgcagtgg	cacaatcatg	17760	
gctca	gcctcaac	ccaggctca	agtgc	ccacccatc	atcccaagta	17820	
actaggacta	caggcacaca	tcaccaggcc	tgactaatgt	tttactttt	gtagagatgg	17880	
gttttgctg	tgtttctag	gctggctca	aactccta	ctcaagcgct	tctcccac	17940	
cagcctccca	aagtgtttgg	attataggca	tgaggcgtg	tgcccagctg	gtttgtattt	18000	
ctgaaagatc	gccgttagtt	ctgtgtggag	aatgttgc	taagggatgg	gagtggagc	18060	
aggagaacag	ttaggaagga	ggctgttgt	ctggccagg	aaagccagat	gttgatgagt	18120	
taaaccacgg	ccacacgt	ggaaacagt	agaagtggta	ggattgagtt	tatctttgt	18180	
tttctgtttt	tttgtgtgt	tgtgtgtgt	tgtgtgtgt	tgtgtgtgt	tgtgtgtgt	18240	
tgttttgaga	cagactctg	ctcttcaca	caggctggac	tgcaatggca	caatctcagc	18300	
tcactacaac	ctccaccc	cttgcgc	tctgcgc	cagtccca	agtagctgga	18360	
attacaggcg	cctggataat	tttttattt	ttaccagaga	tggggtttcg	ccatgttggc	18420	
caggctggc	tcgaactcct	gaccta	gatcccac	caggctccca	aagtggcagg	18480	

pto_PB0262.txt

actacaggtg	ttagccaccg	agcctggcct	gaggtttat	tttgaaagta	gggcaggccg	18540
ggcgtggtgg	ctcggtcctg	taattccagc	actttgggag	tccgagatgg	gtggatcgcc	18600
tgaggtgtgg	agttcttagac	tagcctgccc	aacatggcaa	aaccccgct	ctactaaaaaa	18660
tacaaaaaat	tacccgggcg	tggtggcagg	cacctgtagt	cccagctact	cgggaggctg	18720
agacaggaga	atggcgtgaa	ccccggaggc	ggagcttgca	gtgagcggag	atcgcgccac	18780
tgcactccag	cctgggcaac	agttcaagac	tctgtctcaa	aaaaaagaaa	aaaggaaaag	18840
aaaaagaaaag	tagggcaaaa	gtgttgttg	ttttgatcca	aataggcttc	actgcatgtt	18900
acctcacagg	ttcgacccctg	ggggagtgta	tgtgacccac	agactggacc	tgccgttgcc	18960
atccctctgt	cttggtctgc	aaagaccaag	actggtgtgt	cccccttcc	tcacccttcc	19020
ctgggttaaa	cactgccagg	taagggttc	taacagctgtc	ttctgcagca	gtgcctgggt	19080
tccacactcct	tctccccact	caaaaacccc	aggaagtctg	taaaagcttc	ctcactaggg	19140
ctgggtgcag	tggctcacgc	ctgtaatccc	agcactttgg	gaggccgagg	cggcagatc	19200
acgaggtcag	gagatcgaga	ctgtcctggc	taacacgtg	aaacccgtc	tctactaaaa	19260
atacaaaaaa	ttagccgggc	atggtggcg	gcacctata	tcctagctac	tcgggaggct	19320
gaggcaggag	aatggcatga	acccgggagg	gggagctgc	agtgagctga	gatcgcgcca	19380
ctgcactcca	gcctgggcaa	cagtgcgaga	ctccgtctca	aaaaaaaaaa	aaaaaaaaaca	19440
aagcttcctc	actagaaaaat	gaagccctga	ctccttata	tctggaaact	ggtatattta	19500
aaccttggtc	attggccagt	ctgcaaatga	atgtcctgag	acatcccga	agaaactgac	19560
ccttttagcc	tagagagagg	ccccatcccc	agctccctgg	tgccagccag	accagggtca	19620
ggtcatcaac	aaccaggatcc	ttcccccctg	actagacaga	aggacgtcag	cagagcatgg	19680
ctgataccct	gcctagctaa	gtcttagaga	gaagacgtcc	ctatagggag	caagacaagg	19740
ttttcagtta	cgacactacc	ttcttcctta	taaagagctt	tgttaatcag	gtggcagtgg	19800
accgttccct	actattccct	aactcggtct	tggccttcat	ctgccattha	ccctgggact	19860
ttgctaaaga	gcctgcagga	ggccaagtgt	ggtggcttat	gcctggaatt	ccagcacttt	19920
ggggggcccta	ggcaggagga	tcccttgagc	ccaggagtcc	gagagcagcc	tggcaacag	19980
agtgaggccc	tgtttctaca	acactaaaaa	aaaaattggc	cgggcgcggt	ggctcatgcc	20040
tgtatctca	gcactttggg	aggccgaggc	aggcagatca	caagatcagg	agatcgagac	20100
catcctggct	aacacgtga	aaccctgtct	ctactaatga	tacaaaaaat	tagccggcg	20160
tgctggcagg	cgcctgtagt	cccagctaat	cgggaggctg	aggcaggaga	atggcgtgaa	20220
cctgggaggc	ggagcttgca	gtgagcagag	atcgcgccac	tgtactccag	cgtggcgcac	20280
agagcaagac	tctgtctcaa	aaaaaaaaaa	aaaaattacc	caggcatgtt	ggcataccctg	20340
tagtctcagc	tactcaggag	gctgaggtgg	gaggattgct	ggaccccagg	agggcgaggc	20400

pto_PB0262.txt

tgcagtgtc	tgagatcgta	ccactgcact	gcacccctaga	gcaagaccga	atctctaaag	20460
aaaaagaaaag	aaagaagaag	aaggattagt	atttcacttt	cctgccccatc	aatgttctgg	20520
ttcaatagtt	ggagaatgaa	agagtgcata	tgtgtgttgg	ggggcagagt	gagagagaga	20580
aagagatgaa	gatatatggg	aacctataga	cagacaaaca	gatataaaaa	gatgttaat	20640
gcaccaggc	agtatctgtc	aaagtgtggc	tcacagaccc	ctttagccag	actcatctga	20700
gaaacttaact	taagaacaca	gactctggc	cctatcttc	atgcatttag	tacactctgg	20760
gagcagggcc	tggaaatctg	cattttacag	gctatccagg	tgaatcttgt	acacactgct	20820
gcgcacccccc	cccgagtcct	caagtgcacat	tgtgtgagat	tcttgcacaa	ttgcgtatgtt	20880
ttccatccca	gttaaaccca	cccaccactt	ccacagagga	cacagatott	ctgctaattt	20940
cttatcttt	catcaactgt	ctacaaaatg	ccttcaggc	caagcacagt	ggctcacacc	21000
tgtatccca	acactatggg	aggccaaagg	gggcacaacg	ctttagctca	ggaatctgag	21060
accagcctgg	ccaacatgg	gaaacctcg	ctctagctgg	gcatgttggc	gcacacctct	21120
agttccagct	actcaggagg	ctgaggtggg	agaatcgctt	gaacccagga	ggtgaaagtt	21180
gcagtggcc	aagattgtgc	cactgcactc	caactgggt	acagagttag	tgagagagac	21240
gccgtctcaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaagcc	tttcaaattt	tgagcaaaatc	21300
tgaaataactt	aactttcctc	cagccaaatct	tattccctc	tgctttgagc	tgaggatagc	21360
ttgactcgat	ccagcacccca	gctgatgggg	gcagaggaac	cgggagaggg	aaggcacaaa	21420
ctccagtata	gccttccct	tgggctact	gtgggtcag	catctctccc	aggctgcttg	21480
tgtatggggc	tggggtcagc	tgcccacaag	ctctcctacg	gacttcattt	ttttttttag	21540
acagggtctc	actctgtcac	ccaggctgga	gtgcagtggt	gcaatcatgg	ctcacccgag	21600
tctggAACAC	ctgggctcaa	gagagcttcc	tgcctcagct	tcctgggtag	ctgggactac	21660
agggtgtgc	caccactctg	gctaattttt	aagtttttg	aagagatggg	gatcttatta	21720
tgttgcctt	gctggctca	aactcatggc	ccctagtgtat	ccttctgcct	tggcctccca	21780
aaattctagg	attacagatg	tgagccactg	tgtcctgtct	aaaccttcat	tttgaaggaa	21840
actgagggcc	attgtgtggg	ctgggtatag	ggatgtactt	gccccagatc	acacagctac	21900
gtagcagcag	ggctgggacc	agaactcaag	atttcaatgg	tgcatggtgg	ggagccagcc	21960
atgctttccc	acctgtcccc	tgtggtcatg	cagaagggt	cttggatat	tggccggga	22020
gagtacctt	caggcaagcg	gagtgacctt	ttagaaaatg	actttatgaa	ctttgactcc	22080
tgccttAAACT	gtgctctccc	gtctggaaagg	cctttcacc	actgatctaa	acccacactgc	22140
cttggggctc	agacacattt	tttatgactc	ctgagtcac	catgaccatc	cctcttcagc	22200
actcagcttc	tgttccctgg	tactgaacct	aaactgaacc	ttggcatctg	agcatctgcc	22260
tggacttgaa	atgggtgggg	ccccccacag	acactgtcca	cctcctgtac	ctctggagtt	22320

pto_PB0262.txt

caagactgag	ccttctcatg	ttctttatcc	tgcataatcag	cacctgacaa	atagaagggt	22380
agacaaacaa	gagtgatgca	ggacaggcaa	gccctaaaat	tggggcttag	cccaggaggg	22440
ttcatggctt	caccagaaa	gaattccagc	aagcagcagt	ggtggtagcc	agcaagccgc	22500
agtgcacaga	gcagcagagg	tactgctcct	tgtggagcag	ggctacccag	aggcagtgtg	22560
cccagaagag	caacgcaggg	gcagggctgc	actcatatgg	acatctactt	ttaatttatat	22620
gcaaattaag	gggtggatta	tgcagagatt	tccaggatga	ggtagtaac	ttccaggtca	22680
tcaggtcgtt	gccacgaaaa	gggatggtaa	ctcctaggtt	ttgccatggc	aatggtaaac	22740
tgacatggca	cactggcagg	catgtcatgg	aaagctgctt	ctgccccct	acctgtttt	22800
gctagtcctt	aatttggttc	catgtccgag	ccccgcctcc	tacctcaaga	ggactgaatc	22860
aaatgctcta	aatcaacttgg	ttaattggcc	caatgatagt	aaataaattc	tatctcctta	22920
tgcagaagga	agcccagatc	tttgacaaaa	ctggaaggtc	tttgccaaga	ccccacagtt	22980
aaccgtctga	gcctcagact	gtccttaacc	agtatgtga	tgataaataa	atgtttaaca	23040
accaggtctg	ggagggcgg	gggtgtgcgg	aatagcctt	atttgtaatg	tttgctgatt	23100
actgtggtgt	agataactccc	aacgtacca	attttaact	accaatgtga	tgccagtaaa	23160
cagggttgga	aagagacaca	tagtagcatt	atatgttctt	taccgttgtt	attattacat	23220
agtaaatgcc	attatgtagt	atttccacca	tactgatagg	taaatgtaaa	taacctaag	23280
ggcacagata	acagtaacat	gtagaaaaat	aactaggaaa	tgatcagttt	tgagtatcta	23340
'ttacctttgt	tttaatata	actcaattgt	aggtttaagt	tttttaattt	ggctgtttca	23400
tataaacagc	tcataaaatt	cctgaaaatt	taaaaatcag	ttctagtgag	ctattaagag	23460
ccaaccctcc	caggagaaat	gggccacgct	tgtcttaag	aaaagcagtt	cctggctggg	23520
cgaagtggct	catgcctgta	atctcagcac	tttgggaggc	cgaggcaggt	ggatcacctg	23580
aggtcaggag	tttgagacca	gcctggccaa	cttggtgaaa	ccccgtctct	actaaaaata	23640
caaaaattag	cggggtgtgg	tggcgtgcac	ctgttagtccc	agctactcgg	gaggctgagg	23700
caggagaatc	actagaacta	ggtggaggtt	gcagtgagcc	gagattgtgc	cactgcactc	23760
cagcctgtga	gacagaacaa	gactccgtct	caaaacagac	aaacaaaaaa	cgaaaaggag	23820
ttcctgggct	ggggacagtg	gctcaccaca	ccagcacttt	gtaatccac	cactttggga	23880
agtcaaggtg	ggtggatctc	ttgagctctg	gagttccaga	ccagctggc	aacatggtaa	23940
aaccccatca	ctacaaaaaa	atacaaaaaa	ttagccaggt	gtagtggcac	atacctgtgg	24000
tcccagctgg	tcccagttac	ttgggaggct	gaagtggag	gatcacattt	aacccaggag	24060
gtcaaggctg	gcagtgagtg	cgccactgcg	ctccagcctg	ggtgacatag	caagaacttg	24120
tctcaaaaaaa	aaaaaaaaaa	aaaaagagaa	agaaaagcag	ttcccctgag	tctccttgg	24180
gacaggaggg	aaatccttcc	ctattgtggg	agggtgagag	tgagtgaatg	ttctatcagc	24240

pto_PB0262.txt

ctctggtggc cacaacacct gaggcaatg aggagccctc tctgcagtca cactcgtaga	24300
tgttagcgcc cttctctgga gggggggat ccagtcacag aggccgtgca gtgggggtggg	24360
aagcgcaacg gataaaattgg acccagacca ccccggtgct ctgccccagc tcccgttcc	24420
tgaccctgga tcttaggccc atcactaact tcctgagcct caatttcccc atggataatg	24480
tgggggaacc taacacctgc gctgcccatttcccgaggct ctggtgagga tgagaggcag	24540
aaaagagtgt gtggcagga gagtccacaca cagacggaa tgcaaattgac tcgaagtcag	24600
gttgcagaga caaatcctcc cagtgttgc atttacagac tgctggcca tggacacattt	24660
aggtaggcattt aagccttggt ttcccacatct gtaatatggc gggggcgggt ggttagggAAC	24720
tggatgttt gtgtcatagc gttactgtga ggatgaaatg tgaacctatg aaatacattt	24780
agtgccttga taaatattgg gtttctcgac gttgtctata tccaaaccca cgaaatgagt	24840
ccttctcagg gttttataca aacctccca aaagccacca gtttggtcag gaggggggagc	24900
gggtgtgtgc agatgagtcc ctccgcagga tggaaccctg gggaaaccac cctcccccgtt	24960
ccatccctgc agggcccaact acagccctg gcctgccacc tgcccaactcc gtcccccgcag	25020
agccaggcgt gatggactgc cgggcagcgg gtggagaacc caaagacaaa ctcacggctc	25080
cagcacaggt gttccgtcac agtttctgtg ggattgggtt tcttgagcct tcttggtaaa	25140
aaaacatgaa atgaaggaa tctgaagcta tggtgagga caggcttata acagagtaag	25200
gagaggccag gtgtggtggc tcatgcccgt aatctcagca ctttgggagg ccgaggcggg	25260
cggatcacct gaggtcagga gttcaagacc agcctgccc acgtggcggaa acctcgtctc	25320
tactaaaaat acaaaaaatt agccagggtgt gttgggggtt gcttggtaat cccagctact	25380
tgagaggctg agacaggaga atcacttggaa cccgggaggc ggagattgca gtgagccaa	25440
attgcgtcac tgcactccag cctggcgcac aagagcaaaa ctccatctca aaggaagaaa	25500
aaaaagccaa aaacaaacaa aacagagtga ggagaaattt caggtcaaac aaaaatcctc	25560
ttctccctc acaaacacag aaagctgtac tttcatcacc ttggaggaag aacaaaaaca	25620
ctctttcaag gaaaagagac aaagaagatc caaactgtaa ctcctgagaa ttttacagt	25680
tttccaagggtt gttacaccgt ccctggaaagt tgacattggt ccgaataactg gtggcaagca	25740
gcatcacctg tcccagggtt gacgccattt tagcactgaa ttgctttgg aggtgaagcc	25800
tggctgggtt tgggggggtc tgccccctgg agcaagagga gatagggttag ctcctgagga	25860
aatggtgtct gtttcatctt tcaccatgtt actcttagct caatataattt ttctctagtt	25920
ctccctcacc tttgaaaaga aattacaagg ctcacgcctg taatcccagc actttgggag	25980
gccaaggcag gtggatcgct tgagcccagg agttcaagag cagcctaggc aacatggcaa	26040
aatcctgtct ctacaaaaaaa tacagaaattt agctggcat gacgggtgtgc gcctgttagtc	26100
tcacctgctt ggggaggatg aagtggaaag atcacttggag cctggaaagt tgaggctgca	26160

pto_PB0262.txt

gtgagctgag	attgtgccac	tgcactccag	cctggccaa	aagagaagag	aagagagaga	26220
ggaagaagtc	acaagttctt	caggtggctt	gtgagtacct	acattacagc	tcttcactgt	26280
cctgccttct	ggttattaca	ttggccttgg	agccattaga	cctggcttca	aatccttagct	26340
ctgccactta	ttagctatgt	gatcttataa	agttagttaa	gtcctcttgg	tgccacaatc	26400
ccattaataa	agcaggaata	attgcagcct	atatacctca	gagacgtt	ttgaggctac	26460
attttttat	tttttgaga	tggagttcg	ctcttgcac	ccaggcttga	gtacaatggc	26520
gtgatctcgg	ctcactgcaa	cctgagcccc	ccgggttcaa	gcgattctcc	tgctcagcc	26580
tcctgagtag	ctgggactac	aggcatgcac	caccacacct	ggctaatttc	gtatTTTtag	26640
tagagacggg	gtttctctgt	gttggtcagg	ctggtctcga	actcccgacc	tcaggtgatc	26700
cgcacccaccc	ggcctccaa	agtgttagga	ttacaggtgt	gagccaccgt	gccggcctg	26760
aggctaattt	tttttttaa	atgtagctaa	gatgctcaca	caagactggc	attgtggaaa	26820
ccgtcaacca	acaaaacaat	aaagacaaat	taaattaaaa	tatTT		26865

<210> 41
<211> 76341
<212> DNA
<213> Homo sapiens

<300>
<308> <http://www.genome.utah.edu/genesnps/>
<309> 2002-06-05

<400> 41						
ttgtataaaag	tgtaaggaag	ggatccagtt	tcaGTTCA	acatATGCT	AGCCAGTTT	60
cccagcacca	gcaccattta	ttaaataggg	aatCCTTC	ccatttcctg	ttttgtcag	120
gtttgtcaaa	gatcagatag	ttatatatat	gtggcattat	ttctgtatggc	tctgttctgt	180
tccattggtc	tataagtatg	ttttggtacc	agtaccatgc	tgtttggtt	actgtacgc	240
tgttagtata	tttgaagtca	ggtagcatga	tgcctccagc	tttGTTCTT	tggcttagga	300
ttgacttggc	aatgagggt	cttttttgt	tccatATGAA	ctttAAAGTA	gtttttcca	360
gttctgtgaa	gaaagtcat	ggtagcttga	tggggatggc	attGAATCTA	taaattacct	420
tggcagttat	ggccattttc	atgatactga	ttcttcctac	ccatcatgag	tgaactccca	480
ttcacaattt	cttcaaagag	aataaaatac	cttagaatcc	tacttacaag	ggacgtgaag	540
gatctcttca	aggagaactg	caaaccactg	ctcagtgaaa	taaaAGAGGA	tacaaacaaa	600
tggaaagaaca	ttccatgctc	atggaggata	taatCTTGC	ctgtgttggc	caggattagt	660
actcgggtt	ctcaggtgt	gagcggggcc	atagagetcc	caagagttt	tgtctttgt	720
tttcagctgc	caggggtgggt	agagaaaaac	cattgagcgc	agggtgggtg	gggtgggggc	780
gcaggattgg	gcaggtctga	tgctacttgg	gcagggcttgc	ctgcagccac	tgtggaggac	840
agagaggtgg	ttcttaagcc	aatgggttta	tgttccttagg	gggattatgg	gtgcctctac	900

pto_PB0262.txt

tgcattatac atgtcaccag ggaagcgggg gaaaacaggc agtgacgggc ctcactcagc	960
tctcatgcag ccagcaaggc cactttaact cccgccatgc ccctccaaca gcactgagtt	1020
tatatccagg cagccttga gcagggctga gatcttccc caggctacaa tcctccac	1080
tgagaaaagca agcagggctc tcaggcctcc ctccctgcc tgcccttccc ttcagctgca	1140
gcttctgcaa ttgtatgtc acttcccatt tgccccccac cccgttctg cacaggaaaa	1200
ttcgtactca gccaaaatta taacaaagat cagctaggag ctccctcac cctgtggccc	1260
ctccccagtt ctactggctg ccctcccttc ctgaagaatc tctgtgagat gaggccagga	1320
atggtttccc tgggctcccc caggcctcgg cacaaggcct ccagccctcc ctagagaggc	1380
agatgagagt ctttcccaa tggaggttt ctctcgctga gaccagggca ggtgccaagg	1440
tgtctgtgga gttcctgggg gcatccggc agagggaga aggaggacct gggagagcac	1500
accttcctgc cctcactaga gaggtattta ttaacttctg cgctcctggc cactgactga	1560
attcgtgtct acattatcag ctcatgtaaa ttcattatcc caacagctgg gaatgagctc	1620
cactggatga ggtggtggat gaggggccgg gggctggcag ctatccatgc actgtacaag	1680
ctctcttgc acatggcagtt cagtggaaat gtctacaggg ctctccat tgcttctct	1740
acttttatgt tttgcttggc atcctaaatc tggggatgt ctgggtaagg ttaaatcctt	1800
ctcctgtgat ctggattttc aggttccca gtggggatgt gtggcagag gcaaactttt	1860
ccctgctcac actttggaa ctcacagttt tttggctgtc tcatacgtt tgcaacagta	1920
aaactgcttc tttcaaaggg tctgtgaatt cttagtta tcctggatg ttccatgggt	1980
agttcttgca gaaaaagctc acagtgtgag tctccacaca ctgttctgtc cattccaagc	2040
aggagctgca tggatgttct gtctgctatc caccatttc caatggatg atatagttat	2100
gattttttat tggggatgt tttgtcttt ctatttagga caagaatagt gtacacactg	2160
cagttgtgt tataatattt agtggggatc tggggatgtt ctattaccat tttggggat	2220
atcttcataat tacttattat tacttaataa gtgattactt actgctcatt aatgtccctt	2280
tcttttgc tgaagtattc ctttagcat ttcttgcattt acaggctgg tggatgaa	2340
attcctcagc ttttattttt gaaagtcttt atttctctt tccatgtttt cataatattt	2400
tcactagata tattattcta aggtaaaaga ttttcccttc agcattttaa atatataaag	2460
ccattctctc cttgcctgtc aggttggat tctactgtga ggactgctgc ,cagatgtatt	2520
ggagcccat tggatgttattt tttttttttt tttttttttt tttttttttt tttttttttt	2580
tccttgcattt ttggggatttt aattttttaa atgccttgc gtagtctttt ttggggatgaa	2640
tctgcattttt gtttgcattttt tttttttttt tttttttttt tttttttttt tttttttttt	2700
gaagttttttt gtttgcattttt tttttttttt tttttttttt tttttttttt tttttttttt	2760
ctctttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	2820

pto_PB0262.txt

catgcttcat tcttttgat tctttttct tttgtctcct ctgactgtat atttcaaat	2880
agtttgtt caagctcaact aattcttctg cttgatcaat tctgctatga aaagattctg	2940
atgcattctt caatatgccca attgcatttt tagctccaga atttctgttt gattctttt	3000
aaaattttta aaaattctac tttaagttct gggatacatg tgcaaaacat acaggttgt	3060
tacataggtt tacatgtgcc atggtagttt gctgcacctt caacccgtca tctaggttt	3120
aagccccaca tgcatttggtt atttgtccta acgctctccc tccccttgac tccaaccct	3180
tgacaggtcc tgggtgtataa tggcccccctc cctgtatcca tgtgttctca ttgttcaact	3240
gccacttatg agtgagaaca tgggggtttt gatttctgt tcctgtgttt gtttgctgag	3300
aatgatggct tacagcttca tccatgtccc tgcaaaggac atgaactcat ttttttatg	3360
gctgcatagt attccattgt gtatatgtgc cacatttcc ttatccagtc taccattgtat	3420
gggcattcgg gttccatgac tttgttattt taaatagtgc tgccataaac atgtgtgcat	3480
gtgtctttat agtagaatga attatgatcc tttgggtaca tacccagtaa tgggattgct	3540
gggtcaaatg gtatttctgg ttctagatcc ttaaggaatc accacactgt cttccacaat	3600
ggttgaacta atttacactc ccaccaacaa tgtaaaagca ttcctatttc tccacagtt	3660
tgccagcatc tggttcc tgaatttttta atgatcagca ttctaacgggt gatgagatac	3720
caatgagatg gtatcttattt gtgggtttga tttgcgttcc tctaattgtatc agtgtatgt	3780
agctttttt catatgttttgc ttggccgcattt aaatgtcttc ttttgggag tatcttttca	3840
tatcatttcattt ccacttttttgc atggagtttc tggttgcattt ttttaaagta ttttaatctc	3900
tttggtaaat ttatctgata gaattctgaa ttttcctat gtgttatctt taatttcttt	3960
gagatttctc aaaggcagcta ttttgaatttgc tctgtctgaa tggcctatg tcttgggttt	4020
ccaggatttgg tccatgggtgc cttacttagt tcatttgggtg aagtcatgtt ttcctggatt	4080
atcttgatac ttgttaaatgt tctttgggtt taggattttat tggccttc actgtctgt	4140
ttttttgtt cctgtcctcc ttgggatgga ttttcagata tttgaaaaga ccggaggatt	4200
ttgatctatg ctgtatctgc tttagaggggtt accacaatcc cagtaatgtt atggttcttgc	4260
cagtttcttagt atgtactgtt ttgatgggtt tggacaagat ccaggataat tctctggatt	4320
accaggcaga tacttttattt ttcttcctt acttctccca aacagagtcc ctctgtcagt	4380
tctgagacac ctgaagcttagt gagttggagtg aaaccacgc ccctgaggac accaccacta	4440
tgactgtgtt cagccagact tgaagccagc acaacactgg gtctccctg ctgttaaccac	4500
tccctggcca ctgcctatgt ttgctcaagg ctttgggtt ctacaataaa caggtggaaa	4560
agccatccag gtctgtgccc ttcccttcag ggtggcaagt tcccccagaac cccaggtgggg	4620
tccagagatg ttgtcttagga gtcagggact agagaaaaa acctttgaag tctacctggc	4680
attctattgc attaaaatttgc agctggggggg actcgaaaaa aagtgtgaga ggggagtaggg	4740

pto_PB0262.txt

ggataaaaaga	ctacacattg	ggtacggcgt	acaccgcttg	ggtgatggc	acccaaatct	4800
cagaaaatcac	cactaagaac	ttatctgtgt	aaccaaacac	cacctgttcc	ccaaaaacct	4860
attgaaataa	taataataat	aaataataat	aaaatgaata	aacaaaaaca	ctgagctggc	4920
actcaaacca	caaaacacag	tctttccac	tcttcctcc	cctgtccaaa	ggcagaggag	4980
cctcactcca	cagcccacaa	gaagtactgc	tggattatca	caggtattca	tttaaggcag	5040
aaaggctatt	aagttagctg	gtggtgactg	ctgcctggcc	tgggactcac	tctttgggc	5100
agtgggcttc	cctgtggccc	aggaaaggc	tagaaatgct	gttgaagagt	caactcttgg	5160
aatcaaggc	ccccaaagagc	ttgcttggtg	ctttacctcc	ctgtggctga	gccagtacct	5220
gaaaccagct	agtctcagag	gctcacccaa	ggcccttgat	gtatctcg	ggatcactg	5280
ctgggttattc	agagccaaag	ggctttcag	ctagcaggcg	atgaacgctg	ccatgactgg	5340
gtctttccct	tcaaagcagt	gggttccctt	ctggcccagg	gtgtttctag	aatgtcacc	5400
tggaaagctag	ggcctggaac	agggacctca	ttattctgac	tggtgccata	tctgttgtgg	5460
ctgagctggt	atccaagatg	caaggcagag	tcctcctcaa	ctcttcctc	tcctttctc	5520
aagcagcagg	aaggggtctc	tttagagtt	gtgagttgtg	cagcctggg	ttggggaggg	5580
gtgatgccag	cactcccttg	gctgccccag	ctgggtctc	agtatattt	gcacccctca	5640
gtccactgtc	tctggcccta	gttcagttact	aggacttgc	taagaatgc	agttctttg	5700
gcctaaactg	ccttcaggt	ttagtcagag	atccagagca	cttcagccct	cagtggtag	5760
gtttgtggg	actgaaattc	tgactgctgg	aattagtgat	tcccctttgg	ctggactgg	5820
tttgaatgt	ccctttatgt	gtggcatca	gctgaacttt	gtctggcttt	ccttttgct	5880
gtaacaggac	aacactgagt	ttaatgcctc	accattgatg	tgttctccct	cacccagtgc	5940
acgaaaatgc	tcttgcacc	acaccacagc	tgccagggtg	tgtggaggg	gtggcttcag	6000
tgcttcaaga	ctccctctgc	aacctttca	gtgcctttt	cagcaacaca	aagttaaaag	6060
caggtactgc	aagtgcac	ttgagttttg	gttcttgc	aggagcttg	cttgcacaga	6120
tagttgttaa	attgggtgtcc	ttgttgggg	aacaatcagt	ggagccttct	attccaccat	6180
tttgcttataa	taaaactgta	gttgtaagta	tagtgc	cagagttctt	taatttttt	6300
tagtgaat	tcaagcttgc	agggttagt	gggattccta	aatatggtag	ccagctgttt	6360
agaagtata	gtagcttacg	taaccttgc	cttgcagctg	atgtctgaag	taaggacagt	6420
gttatggagg	accatgtcct	taactttgc	agttggc	aactcttagt	gttgggtgtca	6480
aaagttgtat	taacatgcct	agtaatttt	ggaatgctgg	atattgtaaa	ggctatattc	6540
ttacttgtct	ggatttaatt	gacttcctt	aaacagtgtt	ggactgtgtt	aggtaacttg	6600
tgagtcatct	tgatcccttg	ggggattgtat	tttatgtttt	gttaagaaga	tagctttat	6660

pto_PB0262.txt

tctaccta at tccaatac tc tgtagatcat ttctactact aaaccatggc cttctggat	6720
ctcccagcta gctgttcc ct ggagattata aatgactcta acacatctt catatgc aaaa	6780
ccaacta attt caggcgtcat acgttcccc accacttc ttatcaggac tctacaccct	6840
gggccactat tctcctgccc taatcagcca ggtccaggta acagaaaagt aaagacagcc	6900
gctgtacccc agaggctgct aaaagtattc aaacgagcta atcctaagcc tgattacctt	6960
gtcatgccc ctcttcctg cagaaactac agtaaaggct cttgcccacc ttgaccctc	7020
actccagctg ctcctaaca ctggtgcttc tccatgtgg tttgggtgg gtgtgtgtc	7080
ttctgtttgtt agggatctgt cgatataaac ctttccttc acgatagtca ttttgtgtc	7140
tgcatatgtt accacattga taaaaaagag taagttctgt atgattccac ttacccgaaa	7200
ttcaaaagca gacaaaatta acttatggtg ttagaagtca gggtagtgg tttttttt	7260
tttgctttt ttttggtttt tttttgctt ttttttgg tttttttt ttcctggaag	7320
gaggatgtaa ggaggcagga gcacagatcc tgatatgctg ataatctgta tcttgaccta	7380
ggtgcagctt gcaagagggt gttcagttt tgcaa atca ccaagctgta tatttataat	7440
tgggcactt ctcttgcat gtaatacaga ccagttgcat tattggttcc aattttctac	7500
ctcccactat atccctgccc tttaccatgt aactttacaa atagtctctc actttggctc	7560
tagaatccac catatgactt gatttggcca atacaataaa taggaagtaa gggtgtgctt	7620
gttcttgcc tgagcctgaa gaggcctgt gtgtttcttc tactctcgta ct tttgttat	7680
taacattata tagacatggt ggagctagct cactcatccc aggatgagag cctcagctaa	7740
gtttctccat ccaa acacag cctggagctg ggctctaact ttttacacag atgaatgagt	7800
gaatattgtt aagataagtc aagcccagcc cagatttctg acccacagcc aaccacacaga	7860
tgcataagct gaagatgact gtttttatca agctaattgt tataatagt gaaaaagat	7920
catgaggaca aaaagtggc agagtcgaa gaaaagagag gaagaaattg agacagaaga	7980
catttcattt aaaaaat tccattgagc tgggttgaa atagtgcact gcctgttctc	8040
cta atgctgtt atggatcat gaaatctatt gttactgag tctatgagcc agcttcctag	8100
ggaggctatg gcaattgagg acaggaaaga ggtaacactc aggaacatag aaggagaatt	8160
tgggtccaag tgggtggagg gaaaataac tgggttagt tttggtagg gctggtttg	8220
aggtctctga aggacatgta agtggagtt tccagcagg agaaaacgca gagctaaagc	8280
tcatatctt gctggcaatc tagatttggg catcttcaac aagcaggctg tagctgagga	8340
agctggact ggacttgtac tctaaagcca gtgaaaaaaaa agcttggaaac ggctatgatg	8400
gctaaagacct ggctttcca taaaaatgc ttccgtcagt atgagtgatt ccaaagtgg	8460
gatcaattaa aaactgaagt atgattagca ttaattataa cccaatggga atatgataaa	8520
cgactcttgg tcagcaagca gagggtgccc tttttttttt tttttttt tttttttt tttttttt	8580

pto_PB0262.txt

tgtgccaaga atcaggagac accccaaacg ggagcagatg aggggttgtg tctgtcattg	8640
gaccagctgg cctgatccag cagaagtgga tggagataca ctgaatgggg ctcctggag	8700
gcgtgagttg aaggggaagg aagagaagag acctccaaag taagggaga gtaaaaatg	8760
agaaggactg gggtgagcc ccaagttaggg accagaggag aaaacagggtaaaatc	8820
aaggagatg ggacaggaag atgaaagaat gaggtaaaca gcaggtggga agaggaggtc	8880
aacctaaagg agaaagccgg gtcgaagaaa gaaggaagag aagaaaagaa gggttggaa	8940
acagaggagg aggcagccaa gaaagcctgg aagctgaatc atagaacgga agaggtagaa	9000
gacggagggg ctggaggata acataaaggt gggaaacgga agagagaaag aaccgcgtct	9060
gcgtgtatga cggttagaca ggagttcaga gaacagcggg gtcgccaggc caccacctga	9120
tggccacgg ctcatggct ctaggagctg ggaaaggcgtca tcccaggaaa gaagccctag	9180
actttagcct gagtctggc cactctagg gaccggagt ggggtggcgg gagaggacgc	9240
gcagaatctc gacttctggc cccaatctgt gcatgatcac ccgagctcag cggacgctcc	9300
tctctgaccc aggcaaggcgg ctcagggacg cgtgcgggta tgccagagaga aaccgctgag	9360
gaattaggcgcggagagac tggtacctgc cggggcggtg tggtggggca gagctggcac	9420
tgatgctgag agtggctaag gagcgcggcg ccccagagca gaaggcgtgg cagacgctca	9480
gagagccagg atggttcagg gtccaaaggaa ggtcctatgt tgggtggag ctgtgaggga	9540
gtgaaagtgc atgaggaacc ggaggagatg gaaagacctt ggcttgggtt ttcgagggtt	9600
ggactgcgtg gtgaccgacg gcacagaggg tgtgtgttgg ggcggaaagaa ccaccccagc	9660
tgaatcggtcc ccgtgggtt ttcttccgt gtcttagttc cagaagtatg cgcacatcagac	9720
gctaatacgatggaaacaag tcataggaaagg acagcctaag cgggaggtga atgtaaagcc	9780
gtggagaggg cgggcgaact aagaaggcct tcgttctcct cgggccaccgc cggctgcac	9840
cttgagaaag gggatttgct gcgaaccgcg ccaggctgg acgcggcgag gtgggaggca	9900
ggatggaggg gcgggagcca aggccgaggg ggcggacacg ggtggcgctt ggcgtccat	9960
aaagggttg cggggccgc gctctttct gggagggcag cggccaccgg cgaggaacac	10020
ggcgcgtatgc aggttcagtg ccagcagagc ccagtgttgg caggcagcgc cactttggtc	10080
gcccttgggg cactggcctt gtacgtcgac aagccttccg gctacggaa gcacacggag	10140
agcctgaagc cggcggtac ccgcctgcca gccgcgcgc cctgggttccct gcaggagctg	10200
ccttccttcg cggtgccgc gggatcctc gccggcgcgc ccctctccct cttcgggcca	10260
cctgggacgg tacttctggg cctcttctgc ctacattact tccacaggtt gctttttcc	10320
cttgcggcgc cccagtgacg cgcactgccc tgctccggc gtccaggagc gcagcgtaga	10380
gcgcgcaccc aggaacgcca aggaggcagc gtggggcgct gtgaggaacg cggaggccag	10440
cctgcctggc gcacctggcg gggccgggg ccggggcttg gacgctagag agttgacaag	10500

pto_PB0262.txt

cggctgcggc acagacgccc ctttcactcc cccaggacct catccgctct cagcagctcc 10560
 aaatcctctg gctgctcgag agaaagaggt cctgcggcg ggaggcgacc tggaaagctc 10620
 aggttggga gacctattgg acaggactgt tccttaactg cgccgaggcg gcgttacct 10680
 gtggcatatc gcgc(ccc)gcc ccgc(ttc)ct ttcttccttc acctttccat tgca(ggg)tgg 10740
 ggacagatta gttctggat cttggagag tcttacgcgt ttggcatctc ccgagggaaa 10800
 ctca(gtc)ag aggttctcat tgatttagtc tttgcaggc taaggaggaa ggtggtaga 10860
 gccccaaatcc agacttcaca gatggggaaag agaatatagt gagatcccac tgactcaagc 10920
 gagggtcccc gcttcttagg cccctcccaa aaggaccaa gcacaccacc aattcatcta 10980
 cctttccaat ttccctggg cttgaaatgt gagtggtaa cttacagctc aaatgttctt 11040
 cttagattaa aaaatccggg ttcaggagaa ctttgcttcc tgctctggg aggaaagaca 11100
 ggaaagagac caagggatgt tagggttcag agaaagactg tccageccta gtaaagtctc 11160
 acagggaaag ggaagaacga acacattgtt aaattgccta ccatgcccaa tcgtttagta 11220
 tctatggtct cacttaactc tggtaacc ttttgagaga tatttattat gtccacttta 11280
 caaagaaact gaggctgagt aagg(tat)gg gactgaaaga agacaataca gctggtgc(cc) 11340
 gctaagatgc aaatctgagc ttgtgaatct ctgagg(tta) agac(ttt)ta gccgtttaa 11400
 gtaggcagat attctatgca agaagagaac agagccata aacagagaaa agttatcaaa 11460
 cgaaatcaaa accttgaagg tttgcctta ttttgagtag aagattccta gggtaaaag 11520
 atcaaggaag tttggattag aaatttagat aaagaatgcc tctggcataa tctgtctcg 11580
 aaagagaaaag ttagcctca tttcgagaga agaagggtgc agagacggat ttcaaactgt 11640
 ctttcttaat ttccctttat cctctgaatc ttctttattg gtcaagattt aatatttatg 11700
 caatcttaac tgaattctca ctcttttaa aaggcaaatg ttgtcaagta ataagaacta 11760
 aactgtatcc ttcaacaaa tat(tact)a aagcctgctg tgaacaagat tctttat(t) 11820
 acacagattt tatttactc agatttagat ggttaattt gcacagaaaag aaggatgtt 11880
 gatacaggag ataagagatt agttttat ttcactgatt tttgaacaga catttgacag 11940
 aaatgtgatt tttgtcaaca attattttta tcttcaaatt aactactgta tggcaac 12000
 ataagcaata tttttatgag gtcatttcat cttaatgatt agtgtttgt gacaatcata 12060
 ttaatgtaat cttaggctt gttttgaaa tcaaaaggca cttgcacaa tacattatga 12120
 ccggcgcatt taaaaaaaaa cccaaaggag taattatgca taaaacaaat atctacat 12180
 tgccttctt cagaggaaat tttaaaatat tagtaaagga cttggagatt cattctgcct 12240
 gagggaaaat tgccactgg aagtacaact cttgagctac ttgttccctga ggcacacggg 12300
 tctgatgttt gtcttcctc tttttgaat tcttttttgc aagccactgg agtgtgtgat 12360
 ctgttattat ttgagtgc(t) acagggtgtt acactctgtg tgccaaacac tctgagttaa 12420

pto PB0262.txt

pto_PB0262.txt

acactgactt ccacaatgg tgaactagtt tacagtccca ccaacagtgt aaaagtgttc 14400
 ctatttctcc acatcctctc cagcacctgt tatttcctga ctttttaatg attgccattc 14460
 taactggtgt gagatgatat ctcatacggtt ttttgatttg catttctctg atggccagtg 14520
 atgatgagca tttcttcatg tggtttttgg ctgcataaaat gtcttcttt gagaagtgtc 14580
 tggcatgtc cttcgccccac ttttgcattgg gggtgtttgt tttttcttg taaatttgg 14640
 tgagttcatt gtagattctg gatattagcc ctttgcaga tgagtaggtt gcgaaaattt 14700
 tctcccattt tgttaggttgc ctgttcactc tgatggtagt ttctttgtc gtgcagaagc 14760
 tcttttagttt aattagatcc catttgcataa ttttggctt tggtgccatt gctttcgtg 14820
 ttttggacat gaagtccttg cccacgccta tgtcctgaat ggtaatgcct aggtttctt 14880
 ctagggtttt tatggttta ggtctaacgt ttaaatctt aatccatcca tctcacctct 14940
 tggactgt gattacagct gtggaaatgac cccttgcata aactctctga ttggcttca 15000
 ctttcccaag aagtcttggt gttccataaca gtggtcagtc acatcactta tgcatgtgg 15060
 ggctgatgtc ttttcaaga ctttgcatttttgg accttgataa ctgaatgaac aagacaaga 15120
 aacattttttt tttccagaga agaagtgact acattgtgaa aagggtttgg gcaatgtaat 15180
 ttccatgata tacatctaga agcagagttt aatgcacaca ttagagtcg tttgaattcg 15240
 gagagatatt ctttgagggt tagatgctga aacatttttt tgattagcca aataaaatga 15300
 tggcttcaat aagggtcttt ttgcatttatt agtcagttca ttccccagcg gaatttctcc 15360
 tcatccttca agattcaggt caggcattct ttccttcaag aagccttgc tgagtctttt 15420
 cttttctcta aatccagttg tgatgctgtt ctggggctt tcataatagg cagtggtgg 15480
 ttgcgtgagg catttcacac actggatcat aattatctgt tctaaggaaa cgtagttctc 15540
 atctgcccag ccttttcatt ttacagaagc aaagcacaaa aggttgggtc agttaggggg 15600
 aaatcaaaga gttggaactt gagtcttc atgagccctt gccaatgctt ctcttatttc 15660
 acgagaggtg cagatgtctc aactattcag aagtaatcag accttgctaa ggaaactact 15720
 catctgctga gaatcagaat gagaattaat ggctactttg gaaacaatag acaaatctct 15780
 cctcttagag attaagaaaa aaaaagccca agcaagaaaa gcaacattcc tgtgatcact 15840
 taatcatgtg ttaaggatgt tcctgaatca taatttaat aaattaagat taattgaagg 15900
 attttttag aatgagagtc agcaaactt ttctgtaaaa agccaggtca tgatctctat 15960
 tgcagcaact caccctact gttatagcgg gaaagcagct acagacatcca tgtaaacaga 16020
 tgaatgtgg tggatccaa taaagctta tttacaaaaa caagcagtgg gccatatttg 16080
 gcctatggc catagttac caatcccttc taaagaaaaac tatgaatggc gtggcttac 16140
 attcagtgcc ctggtaattc tataataaaa tttggtaaaa ttctatagca aagcagcggg 16200
 catatcttag aaaatttctg ctacatgtaa gtggggactt ggcagtaaat attgtttct 16260

pto_PB0262.txt

gagaattctt gggttctaag ttttatgg aactttatg gaaaaatagt aggagtctt 16320
 gagttttcat tctaaatgga atgacatcat aagcacatct gaaaaatata tagctatgtt 16380
 tgccaaaaat ataaaccagc ttggagatc gtgaccactt cactttacc acactgaaga 16440
 aaggaccaac ttttgtcca tttaaaatct aatttaatgt cactaaaaa gaacaaacaa 16500
 aataaagaat tacgatggga attcaaggat tcagactggc aaagtgacat gtaccaagtt 16560
 acatggcaag aaagggcaga gtggagctt aagcctggc tcctgatctt tatcagagtt 16620
 ctataggctc agaactatgc taggtctcat gggagtcata ggagtacaat acctagtgt 16680
 tgccctctag gaagaaggca ggaaagaacc ttcattgtgt gcttctcaact ctttctgg 16740
 tgaaaacttgg gtggcagcaa cgtagtctg acaatatcag gcaggtgggaa aatgtaaac 16800
 tgagggggaa agaaggctgg ttagcacggg ccccccggcag gccactgaac attcatctga 16860
 gagggcccta gtgcctgtct atgtttgatt gtgcattggg cagggggcag atagataggt 16920
 ggataggtgt tgagggggcc tcaaaatggc acccttcttc tccattcaag ttcagaacta 16980
 actgagagat ccaggaatta ggttaactaga gacatattac cacctttt tactggtaaa 17040
 gctggtttgg gggaatgtgg ctttagattt tggattatat gggcattata acacagtacc 17100
 tcagaaataa ttagctatga tcatggctgg gcaaccacag gcctctcaca gtggtacctg 17160
 ttctgaaaag acagcagaag ggctgagctg tacgcatttgc ttggcaggc ctgctcccg 17220
 attgaccat caggttaattc acatttcattt gcctgaggag gaatgggtga gggacagtgg 17280
 aaggccttgc agtgatgctc taatgaaggg ccctcagcca gctgttaggg gagcataaat 17340
 attttttgtt actagatgga atacaacgt tgtctactta ttgaattttt ccacagcctg 17400
 gcaacttgg tctgcaactt ggggtacttc ccgttctgct gttgactccc tgccatgtat 17460
 ggcaatgggg acatcaaagt ctggactcaa gttttttaa aagtttctgt gctcaaccca 17520
 ggagccttta acgagactca gctcaacata ggagctctaa atttaaaaa cccctgaact 17580
 agggccaaca gtgcaatttgc tttccattt gttatagaa gggagagaag gggaaaccaat 17640
 atttatttgcg ctctgggtgt tccaggcatt atattatgtt ctttgcattt gctatctcat 17700
 tttgtccttgc aggcaatccc ttgttattgt gctattttac aagtgattgc agtgcagagc 17760
 attgatggag tgagtggag tgaagatggg agacttgacc tggccttga agaatggcct 17820
 gttcccgat ttctgggtgg ggacatgttgc tctgtgggaa aaagggggccctt atttgggtat 17880
 ctgtgactta aatttgcattt atactttgtt tactcagtct tggatgtatct ctctactttt 17940
 agattccaaa catcttctgt aactatgcca tattatccag tcctactacc caagtctaa 18000
 attaggctct gggcctctttt caatttctttt ttttaatat ttgctccata ttgttaaggc 18060
 tgatcctaga agttactgtg aagaaaacag ggttaatttgg ttgtatattttttttttttt 18120
 aaccacgaaa catcccaaga tctttttca tttatgtact ctggttctctt ctgcctctc 18180

pto_PB0262.txt

tgcctgccct	cttgtatcatg	cagtacatga	tcttacttct	atcttttaaa	acttaactct	18240
gtgtctcatg	ctgtcagtca	atgccttta	cttgccaaaa	gttactcatg	tgataaaacaa	18300
atctaagttc	tagtgtattt	ggttgtttgt	tttcttatta	tttagtttta	aaagttgttt	18360
atgtattctg	gatagaagta	ttttgccagg	tataaactta	gcaaataattt	tctctcagtt	18420
tgtgacttgt	ctcttttatt	ctcttaactg	tctttgttt	aaaaaaaaattt	attttttaggt	18480
tcaagttAAC	atatgcagtt	ctgttataca	ggtaaactac	atgtctcagg	ggtttgggtgt	18540
acagattatt	tcatcacccc	agtaataagc	atactacccg	ataggtattt	tttcaatcat	18600
caccctcctt	ccatcctcca	ccctcaagta	gaccccgagt	ctgttgttct	cttagtatcc	18660
atatgtactt	ggtgttttagc	tcccatttat	aagtgaggat	atgcagttgg	ttttcagttt	18720
ctatgttagt	tagctgagga	taatggcctg	caaaggacat	gatctcatta	tttttcatgg	18780
ctgcataata	ttccatggtg	tatataatgcc	acattttctt	tatccagtcc	accattgatg	18840
gatattttagg	ttgagttcat	gtcttgactg	ttgtgaataac	gtgctgcaat	gagcatgcac	18900
atgcatgtgt	ctttatggta	gaacaatata	tattcccttg	gggatataacc	caataatggg	18960
attgctgagt	tcaatggta	ttctgttttta	aattatttga	gaaattccctc	ctagcagtgt	19020
ataggcgttc	cctttctcc	ataaccttgc	cagcatttat	tatttttgac	tttttaatag	19080
tagctattct	gattgatgtg	agatgatatt	ttatggtggt	tttgatttgc	atttctctaa	19140
tgatttagtga	tgccgagcat	tttttcatat	ccttggc	cacatataatc	ttgtttgaa	19200
aagtatctgt	tgatgtcctt	tgcccaacttt	taattgaatt	gtttggtttt	tgctgtaaa	19260
ttagtttaaa	ttcccttata	atgctggata	ttagaccttt	gtcagatgca	cagtttgcag	19320
atattttttc	ccattctgta	agttgcatgt	ttactctctt	gatagttttt	tttccctgtgc	19380
agaagctctt	tagtttaatt	aggtcctatt	tgtcaatttt	ttgttacgtt	gcaattgctt	19440
ttggtgtctt	tgtcatgagg	tcttgccag	atccatgtc	cagaatgca	ttttcttaggt	19500
tttcttctag	ggtgtttatg	gttttaggtt	ttgcatttaa	gtcttaattt	catcttgagt	19560
tgatttttgt	atgtggtgta	aggtagtggt	ccagttccaa	ttttctgcat	atggctagtc	19620
agttatccca	gctccatttt	gaataggag	tcctttccct	gttacttgct	tttgtcaact	19680
gtattaaata	tcagatggtt	gtaggtatgc	agcattgttt	ctgggcactc	tatcctgttc	19740
cattggctca	tatgtctgtt	tttgttaccag	tgccacgctg	ttttggttac	tgttagcctt	19800
tagtgttagt	tgaagtcagg	taatgtggtg	cctccagctt	tgttcttttt	tcttaggatt	19860
gcctggttat	cccaagctt	ttttgattcc	atatgaattt	taaaatagtt	tttttctaatt	19920
tctgtgaaga	atgtcatcat	tagttgata	ggaatagcat	ttaatctgtt	aatcgctttg	19980
gcagttatggc	catttaaca	atattgattc	tttctatcca	tgagcatgga	atgttttct	20040
gtttgtgtca	tctctgattt	ctttcagcag	tgttttgtca	ttctcattgt	agagatctt	20100

pto_PB0262.txt

tacctctctg	gttagttgta	ttcctaggta	ttttattctc	tttgctgcaa	tcatgaatgg	20160
gattgcattc	ttgatttggc	tgtcagttg	gatgttgtt	gtgtatagga	atgctagtaa	20220
tttttgtaca	ttgattttgt	atcctgaaac	tttactgaag	ttgtttatca	gaccaagaag	20280
cttttggaa	gagactatgg	ggtgttccag	gtatagaatc	acatcatctg	caaacaggaa	20340
tagtttaacc	tcttctcttc	ctatttgtat	gccttttatt	tctttctctt	acctgattgc	20400
tctggccagg	atttccagta	ctatgttcaa	aaggagtgg	gagagaggg	atccttatct	20460
tgttctagtt	ttcaagggga	atgcttccag	ctttgccta	ttcagttatga	tgttagctgt	20520
gggtttgtca	ttgatggctc	ttgttatttt	gaattatgtt	tcttaatgc	ctcatttgg	20580
gagggtttt	aacatgatga	ggtgtttagt	tgtattgaaa	gcctttctg	aatctattaa	20640
gataatcatg	tagttttgt	tttagttct	gtttatgtaa	atcacattt	ctgatttgca	20700
tatgttact	caaccctgta	tcccaggat	aaaggctgct	tgatcctggt	ggatttagctt	20760
tttgatgtcc	taccagatta	agtttgcag	tgtttgtta	gggattttt	ccctgatgtt	20820
catcaggat	attggcctga	agtttcttt	ttctgttgg	tctctgtgag	gtttggtat	20880
gaggatgatt	ctggcctcat	agaatgagtt	ggggaggagt	ccctttcc	caattttt	20940
gagtagttt	agtaggagtg	gtaccagctc	ttctttacac	atctggtga	atttgtctt	21000
actgtcttt	aaaaaacaga	aatgttaat	tttgatgaag	tctaatttt	ccattttct	21060
ttggctttt	atgtgatatc	aaaaaaaaattt	ttgcctaatc	taaggtcaca	gtgattttct	21120
cttatatttc	cttctacaag	attttagtt	tttagtttta	atttcaggc	tatgacacat	21180
tttgaattaa	tttttaaagt	aggttccaa	gttgaatca	aagtttttt	gttggttt	21240
ttttttttt	ttttttgttt	tttgcattgt	gacagtcaat	tgttttagta	ccatttgg	21300
aaaatactac	ttttgtcca	atgaactgcc	tttgcacctt	aactttaaaa	ataggagaat	21360
tatatgaaca	gatactttgc	caaagaaaaac	gtatgattgg	caaacaagaa	catgaaagga	21420
tgctcattat	tagtatttt	ggaaatgcaa	attaaaccac	aatggggat	cactatgtgt	21480
ctgatagaat	ggctcaaata	aaaaatactg	accataccaa	gtgtttgtga	ggatgtggaa	21540
gagctggAAC	tctcatacct	ttgatggaa	tttaaatgac	aaccacttt	gaaaatgg	21600
tgatagtttC	ttaaaaagt	aaacatatac	ctatcatata	atgttagccat	tgcatttctg	21660
gttatttttC	taagaaaaat	aaaagcatgt	gttcatacaa	atggtggt	cagcagcctg	21720
actggagtgg	ctgcagtgtt	agaggcatgg	ctggggctgc	gcactccaca	gagctggcac	21780
ggccaggaac	aggcatgagc	cccatcccc	accaagttgg	tggggcagaa	ggccagtgc	21840
ccttggcgca	gctgcagcca	cccagccatg	gctctggacc	cgggcttccc	tgtgctctca	21900
ggggcctggg	aagcgcccc	ccccctgaag	gttggaaat	acctgctccc	gctccttggc	21960
ctcttccac	tctaggcacc	tgctctgggg	tggaacaaag	ttgtggctga	gccaagggtgc	22020

pto_PB0262.txt

tgttgctcg cctggcatgt gcaagctcag ggccgcattg acacaccagg cccctgccgc 22080
cttggcccc tccagacttt gggtgctgat gagcatggga ggaggggcaa gtgggggctg 22140
agggtggctt agtgcaggct tgcaagcacc ccttggcact aacagcctgg gcaccatgga 22200
tggcatgtgg atggtggcag gaggcagaca ggctcctggg tggaaagggg caggtctcg 22260
gtgaaacccc acettcaagc cagggatggc ctgaagcctg ggtgctggc tgtcaattct 22320
ggatggagtc agtggccca agtgacaatt tatggtgctt ttctgaacc tgctcatggt 22380
ggcccatggg ccaatcagca cgcccttcct tctgaggcta taaaaactct ggactcatcc 22440
agacttgggc agacatcagg actaccagct gtgggaagga actgcccact ttgggtctcc 22500
cgagagccctc tctgtcactc actgaagctc ctctctgcct tgctcatcct ccagttgttt 22560
gcgtacctca ttgttccgg acacgggaca agaaatcagg acctgctgaa tgccgggact 22620
gaaagagctg taacacaaac aggtctgaaa catgcccccc tgcttgcac attgcaggca 22680
acaagaagga gagaagagct gggacccttc gggagccca gaactagggg agccctgagc 22740
cagggctatg acacccttt tggggctttg tggcctcctgg catctccaag ctccaggca 22800
ccaccatgtt cccttcatcc agatgtgggt gcccacagtg gaagccactt gggcacatc 22860
tggtccaacc atagcctcac atggagccgg cacttatgct gtcacatggg gctgcttgc 22920
ttgcccagca accagtgtgc ctggctgtgc acagtggctg gaccctgcgc tcactcacac 22980
acacaccctt catcattctg tgcctggctc acccttggca ggtgtggat ccaggcctgt 23040
agcatgagcc aagtgcagcc tgccaggctg agtggacaga ttgagctcag tggcatgag 23100
caatactcag gcagaaggca ctactggcca cagaggttc cagctggta agtacacacc 23160
caaggatctc gtgacacaaa gacttgtata caaatgtttg tagtagctt atttgtacaa 23220
gccaaaaact aggagtacat gctttatgat tatgtttata taaaattcta taaaatttaa 23280
actaatctat ggtgacacaa agtacatcag tggcctcctg aggacacaag aggacaaga 23340
aggtagaact acaaaggta tgaagaacct tttgttgtga tggatgtgtt cattatttt 23400
atgtcacatg gcttcatgtg acatgaaata tatctaccaa actgcactgg tagatatata 23460
tatatatata cacacacaca cacacacaca caccaaattt cacccttaa ataggttcag 23520
ttgactgaat agtaatttac ttcaataaaa ataagaaaac tagtaggcc tgtaaaaaaa 23580
ttatatgtat atgtggccct gtgtcactga gaattgtca aagtttctgt gaagttcatc 23640
tggaaatgtt caacaagtgc tgataagctg tttcacttt ttgaggtgtg agtagaggag 23700
ggccaggaat tctactcaag gaaataatc caaaaggaag aaatcagtct acacaaagtt 23760
atagtgttac tattcacaac tggaaacac tggaaagttac ctaaatgctc tacaattggg 23820
gattgattgt aatcaatatg attaaattac catatatatt tcaaaaatat tagttgcattg 23880
gactatatct gtgtatggaa ataaatataat ggagccattt agttaaaaag tagcacataa 23940

pto_PB0262.txt

agagtacact ctgatttaat ccatgttgac atgtacaaat gaaaattgac catgattgga 24000
 atataaaagt atgtaaaatag ctgataattt aggtttgtat ttttcctt tagtattatt 24060
 aaagtattta attatttaac tcctattata ccttatagaa gaaataatac tgtattacaa 24120
 aattttaaga tgtatTTac aaactgacca tgcaattaaa tctcagcaga gatatgacac 24180
 cccataagta gttactgttc tgagggattt taaaagtcac acttcgtgt tgagatctcc 24240
 cccactgagc tgctatgaca caacccactt atgaaattgt catctttcta ttttcctt 24300
 gtatcaagat gttgatgatc cottaacatg caatcatgtt acctggcaaa gtagcacttg 24360
 gcaaagtcca aactattatc ctttaatat tttgaatctg agaggatctc atctcttca 24420
 tccttaatca tggtaattta tattttccac ttttttcca gatcttttg actagagctt 24480
 tagaaattgt attgatcatc tcagaactag atttttatcattt cattgagttt cactattgt 24540
 tttgttttac atttaaattgt tttctgtttt gatcttttattt atgttttttc ttatgccttac 24600
 tttgaattttt atttgctctc cttttctat ttttattaag gtggaagcca aggttataaa 24660
 tggagacttt ctcttcttc taatatgagc atttattgtt ttgaatttca tcctacatat 24720
 tggggatgg cacctcacaa attccgacat gttgttacca tttaattta tttcatgtat 24780
 tttaatttct ctttgattt attctcatat ctatgggtta tttagaaggg tggtatTTAG 24840
 ttccaaatg tttaggaatt ttccagacat gttctgtatt catttctaatt ttaattccac 24900
 tgtggataga gagcatactt tgtatgacat acatcctttt aaacttactg aatttaaaac 24960
 ttgttttatg gcccagaatt gggcttatca atcgtaataa ttgttctgtg taaacatgaa 25020
 aagaatgtgt atactgccaa gaagaggagt gttctaaaat tgtccatagg ttatTTGAT 25080
 ttttagtgtt cttcaaattt ctatatcctg atgattttct ctctacctat tctaccagtt 25140
 attgagagaa gagtattgag atatctgatc aaaattgttag acttgctttt ttttcttaca 25200
 gctctatcag ttttgcttc atgtatTTT aaggcttattt attacatgca tagagacaga 25260
 actggatgtt cctcttgatc aattgatgtt ttatcgta tgaaacaatc ttcttttattc 25320
 ttggtaatat ctgcttga aatctacttt tgtcttataat taacttagcc actacagatt 25380
 ttttttact agggttaaca tggtatatgt atctaccatg tttattccaa cattttactt 25440
 ttaatctgtt tctgtcttta gatttaatgt gtgtgtctca aagggtggcat actgttcaat 25500
 ttttcttcc ccctccccct gccattctga caatctctga ttttaactg ggatattaga 25560
 atgtttatataat ttaatgagat tattttatataca gtttgaattt tgtcttatcat cttgttattt 25620
 gtttccattt gtgtctctgt tattttgttcc tatttcctat ttatattccaa tcttttggat 25680
 tttagtattat ttatTTCAA ttatattgtt cagtttatttca attataactc ttttggtaat 25740
 ttgcttaaag gtttatttgcata tggatcttaa atttatcagt cttcccttaag gtgatattat 25800
 accacttcaa gtatggtata aaaatctgaa ataatgtact tccatttctt ctctcttgcc 25860

pto_PB0262.txt

cttatgttat tgggtttgtt ttacttacat atgtgctata aaagcctcaa cttattacta 25920
ttatTTTGT ttaaatcgtc aattatcttt taaacagttt taaataagat aataaaaaag 25980
ttatataattt gcttatgtgg ttgccatatt tgatgcttt catTTTgag ggTTgattta 26040
tatttctatg tggtatcatt tttccTTTT acctgaaatc agaattata tttctgaaag 26100
tgTTTTATT tcttgTTTc gaagatagaa aattcttagga tatAGcaatc cagattgaca 26160
gctgcttct ttcattactt taaagatgtt tcactgtcgt ctgtttgca ttatttccaa 26220
caagaaatct gttcttgccc ttatcTTTGT cctctgtact taacgtatct tcttatcttt 26280
gcctactttt aatatttca tggtatcact ggatttgaga tggTTgggta ctatattcct 26340
tggTgtattt atatttctta ttctgggctt ccttaaactt gaatccatga gcttgagtct 26400
ttcatcaaaa ttggacgatt ttcatacact attcttcatt ccctccctac ttctccTTTC 26460
ttttgctgag gaaaatatct atgagaccta catgtatatt aaactgtcct acaactca 26520
gatgctcttt tcatTTTGT ggattctttt tttttctgt gtgcttctt tggtaattt 26580
ctattgctat tcttcaagtt cataatctt tcttctacaa tggTTtatct gttgctaatc 26640
ccatctctgg tatttttatac tcagggattt tagTTTccat ctctagaatt ttggatttcg 26700
gtctttttt ctctttcca tggccctact taatttggg aacacatgga atgcagttat 26760
aacagctgtt ttaatatcat tgctaaccta atatctgtgt catttcggtg tcagTTTga 26820
ctgattaattt attttcccta taataagcag tggTTTcctc ccttttgca tgcctggtaa 26880
tctttgattt gagggcaga aaattgtacc tcattgggtt ttggatattt ttgtgtttct 26940
ataaaatattt ttgagctttt ttctgggatg aagttaagtt acttggaaac aatttgcata 27000
tttcaggcatt tgatctgatt tggTTcagtgg ttccagaaga gtgttaatgc tagggcta 27060
taataatttc ctctgaggta aaggctttt gagtattcta cccaatgtct tatatgagct 27120
tttctatctg gcttatgggt acaggctcta tttggccca tggTTgatca ctggatactg 27180
ttccctttaa ttctttggg tgattcttcc ctcacacaaa tgcataattt aacactctgc 27240
taataacttga ggaaaattct ctgcaggctt ccgtgtgtt ctgtttttt cagcactctg 27300
tcttgaaaat tcttagatgtc ttgatttctt gaaatctcaa ttttggTTTc tcaactcagg 27360
aagtcttttta gcttctccct gggatcccct tccctgtacc tcagcctgga agttttctca 27420
aaccaggaag ctgggtcagt tatgagggtgg tggTTgatcat tttttcttgc ccactcactg 27480
tttttcatgt cctaataatcc agtggTTTGT aaataattat ttcatataac ttaccttttt 27540
tttttctagc ctggaggata aatccaaattc ctgttattcc tccttgactg gaagcagaag 27600
tgtctccaat gggTTTTAGT atttatcttt gctaatttggaa taatctgcaa tactgggtga 27660
tttggTTggTT tttagtgacct ctacttgatc tcaatgtcat gttttttcc ccaaactttc 27720
catcttcagg ctggacgtgt aatgctttgg gacgtatTTTt acttagaaga ctaagtggga 27780

pto_PB0262.txt

tagcagaatg atgacttcct ttacatgagt cctgtggctc catgtagctg cagctggaa 27840
 ggtggctgta ggactataga gtaggagata aagagtggga gataccaaca gatggttatg 27900
 aatgatttgtt ttgaaacttt cacatggaaa attatgttgc agaaacctca gattgtgctt 27960
 ttgttcttt tttgttttgtt ccaaatgaac aatggaatgg aggttagatgt aggagggaga 28020
 tatgctgagg tagatcaatc tttgaatgtt gcctttgatc agggctactg aatccctgga 28080
 catttattta tttgttttaa aaatttaatt caggggtac atgtcaggt ttgttacatg 28140
 ggtatattgt gtgatgctga ggtttgagct tctaattgatc ccatcacgca agtggtaaac 28200
 atagtaccca ataggttagtt tttcaaccct tgcccctctc cctccttttc cctttggaa 28260
 tccctggtgt gtattgttcc catcttgta tcaggacaat atttaatgt aggtggaaac 28320
 tttttaaaag ttctcaaatt tatggcaata tctaggcctc attgctgcaa aactgtacag 28380
 agctgttgc ttccaaataa catcagaaga ctgggattt ttaatggta cattaatatg 28440
 attagattga atgaataagt tctagttt gatacagact gactacagtc aataataatt 28500
 tattactcat ttaaagataa ctaaaatagt ataattggat tgtttgcac agtaaggatc 28560
 aatatttgag gtggggata ccccatttt ccctaattgtt attattacac attgcacatc 28620
 tgtatcaaaa tatctcatgt accacataaa catatacact atataccac aaatattaaa 28680
 cataaaaaatt ttttaaaaag gaaaaaaaaa acctgtaaac ctgggctgca ctaagaagct 28740
 aaacaactga acttagaaaa ccacaattttt cttttgcac acattgagaa ataaaggaga 28800
 caaaaattata gctcagagaa atggcatgta tttatccaac agtggaaatg cctgttatgt 28860
 ctttagctgc ttttcatagg cttgctgagc tttttacttc aagctgaaaa ccattccatg 28920
 tcaatatttg tattttcttgc attttgcattt aatcagtttgc catgagttggc tgagcaactg 28980
 ttgtttcatg atgcacaaat ccacctcaag ttgatcaattt tatagaaaaac ggtttacttag 29040
 ttattcaaat aagtgtattt agttacttcg gccatgaagt tgatctgatt ctcttgatt 29100
 ttgatcttct ggggtattaa aaattttttt aaaatggagc cagtggtcag tagcatgcct 29160
 atgggaggtt tcactccat gatcatttattt ctttctatca ttctgggaa tcctcaaagt 29220
 tttttaaaac cttggtaattt cattagatgt ttggattgaa catctatattt aatgttagagg 29280
 caggaagaaaa gatactgagt ggacagttcc aaggctccc agtattacca ggacatgcca 29340
 taaatactta aaaacataag cagggaaactt aaaggtttc tgctgtatattt tagatattca 29400
 caagctaattc atctcaaaaga ttttgcatttca tttaatggat tctgccatg taggaccatt 29460
 agatagttaa aaccagataa catttgcatttgc ggggtgacaa tggatgtgg ctggccctgtc 29520
 ttccagcatg gcagagtaag atggaaagaa gtcttgagtc attgctttt gggaaaata 29580
 tcattatatg tctaggagtc cttaatattt gtcttacttag agaaagtaat tagttaata 29640
 ttgctgtgct aatagagtct tggagcctga aaactggct aatccacact gtaaatactg 29700

pto_PB0262.txt

gaggccgtgt gtttccccag ttagggcaca cttggagagg agtcaggtgt gcttttac 29760
 aaatctcatt gcattattat tgagctttg gaaaggtgct gagtcttcat tttaaaaaa 29820
 gggattagat gtggagggaa tcactttgt ttccccaggg aggcatctt ctattgcttt 29880
 tctagggttg ggataggtat atagaaggtt tgattctaga atttataaaa tgatattctg 29940
 ggaactttga gcaatatttt agggagggca cccatccaaa aaactagatg agttgctgcc 30000
 tttctctgca acagccctta ggagactagc ttctgtatctt cttcctaaac ttgttatcca 30060
 gtttattttg cttgtcttcc tgcaggccat tcttggag acaccgagta acaaagtctt 30120
 gaagtaatgt gtgacaagct ctgtaggct ataggattat agagcagcta ctcagagggc 30180
 aagggtatga agaaaaagag caggtgcata aaaggaacag gggaaaggaa gtaaaaggaa 30240
 atggggaaag aggttaaag gagatacaac agtaaaaaga agaaaagctg gggaaaggaga 30300
 aaggaagcgc agcaaaaaag gtggaaaaag aagagagagt gctgatgcag gttttcagg 30360
 ggcctatatt gggcaaagca ttgaacaagt tacacccaaa ggccaggagc ctgaaatcag 30420
 gtgccggitc tcaaataaca agggcttatt aagaatcagt gctattgcct aggatagtt 30480
 aacagaaata caaaaagtgc tggagaagtt cagggactg tgagatatacg agggaaaatc 30540
 aggggaagat ggacaggaga tggagctct agacaccctt agacatctt gtttcaggtt 30600
 cattggtcag aactctctcc ccatccccac agtctatcta gatgcttaca tcaaaggcaa 30660
 tgcttgcttgc acagatttctt aatagcagt agcaacaaga tggaaagaag aatggaatgt 30720
 cccatttagag gatataggc caggactca gaaagagttc atatatatta atcacatgtc 30780
 ttagaatatc ctggagcacc tgtcctctca cctacctaaa atacttgatt cccaatggtc 30840
 aatgactttt taaaaaaagg gggggggggg gatttgtatg tacatagata ttgtggaaac 30900
 gtacaatttt taaaaaaagtg atgataaaagt tctataggta ccitcacaaa ccactctgtt 30960
 ctacttaaat cttaacagtt cctggagggaa actttgagat tactcttcag agcttacttt 31020
 ggtggttggg gtgtgttgc tggcttgc tgggtgtgtg tgggtgtgtg tgggtgtgtg 31080
 tgggtgtgtg ggtttgttgc ttttactta tggcactga tggatgggtt actagaaagt 31140
 tcatagataaa attttgccttattcagtag acaaacatac ctgacttgc gacatagagt 31200
 cttaggtgcta acttcattttc tcaattcacc ttactttcat atctttatcc tcattgcct 31260
 ctttttctt taaattttag gccatcttac agcactttat acatctatgt ttatggcctt 31320
 aaatcttttc ttttctttt ttaagagca atttggaaag aactaaaata aaattgaaat 31380
 acaaatcaac atttttgtt ttatgcaaat gtatgtttaa atattcaaaag aataaagagg 31440
 tttttaaag aatagtaggt tctggacagg ctcagttttt atatggatc acttagtaag 31500
 aaacactttc taaaaaacaa ttatattttt ccataattaa gaaaaaaagg gatattgaat 31560
 aagtcaaaga gtggtttcca gggaaagtctt tctttgtctg gaaagatacc ataggatttt 31620

pto_PB0262.txt

ctgcagacag cttactcatt ttttcttga ttgaaatctg gaaaggaaaa cttgcaagaa 31680
aacattccat tctggactcg gcagcaggtc aagccaaagt ggcaacattt gcagcctgga 31740
gatcacacag tctgggagct caaacattt ggcaataaaa gctgatggaa gccaaaaagc 31800
cacgccactg gcatctggtg tcagggtagc tgctggggg gatctggcca tgggtgggg 31860
gcccagccat ataaacaagt tcagaggtag aactggagct gtgtactggg ttgaagcatg 31920
tctctcctaa attcatgttt tctctagaac cttagactat gaccttattt gaaaataggg 31980
tctttgcgt gtcatgcatt gcttaacatt gtggttacat tctgagtaat gtgttggtag 32040
gtgatttcat cattgtccaa acatcataga gtgtactcac acaaaccatg acggtagt 32100
ctcctacaca cctagaccat atactatatc ctattgtcc taggctgcaa acctctacag 32160
cctgttactg tactgactac tgttaggcaat tgggttacaa taatctaatt agactataat 32220
catatatattt gtgtgccatt gaccgaaatg tcattatgt gcatgactgt agttaagatg 32280
aggtcatact ggatttagta ggttctaaat ccaatgtgac tagtgtcctc ataagaggag 32340
agaaaacagac acaaaccacag ggaaacacccg ggacgatggc catctgaaga cagaggcaaa 32400
cattggagtg atgcaatgac aagccaagga atgccaagga ctgcaaaacca ttgccagaag 32460
ctaggaacac tcaagtaagg actcctccct agagccttta gaggaagcat ggctctgcca 32520
accctttagt ctcatacttc cagccttcag aactgtgaga caatacattt ctattgttt 32580
aagctatcca gtctggca atttgttatg gcagcctagg aaattaacac caggcatact 32640
tcagagcagg acaggtaag ggataaccaa ataggtctcc tgttactaga attatttaca 32700
atgtcagagt agttctttagt gtttacttgg ccctcttgc gcaaaggctc tttgtatTTT 32760
cctacactaa aggtctggcc aagtaggggt tcagattctc ttcaagtata gaaactcccc 32820
ccgattttta tgtttgcggc cttccaagt aagatttcca ttgaagaaaa tgctccatgg 32880
ctaaaaagct ttaaaatcca ttggattttt cggcagattt ggactctata gagcctagtt 32940
tctaaagtgc ttcatagtgc cgatctgaaa gtgagatagc actagtccta tcagaggatt 33000
gttcaacctg agactctgca tcagaaggc aggacgact gacctgtgtc aggctggag 33060
caggctctag gaggctgctt tcgtgatgag ttcccttttgc ttcaaggagaa tataaggaag 33120
ctggctctat tttagaagca ataacagcct ttgagttgc tctagggcaa ttgcaaaatc 33180
aagagcccccc agggctgtgt actccagatt tctaggtcac agatatccag accagagttg 33240
accagaaaattt ggccagaatg ggttctgggg atgtggatga atttccattt ctcatttcatt 33300
cctactccat ctccattttt tcattctcca ttccactcc ctcaataccaa aataaaaac 33360
aaattgttgc ttacttaggtt gccttcacat tgagttttc ctatggtata acccttgaaa 33420
aaaattgtatc aaccagacca ttacaagaaaa aaaaattatg gtttactga gttaaggctt 33480
ttacttaggtt ttgcgggtcca atttctctgt gtagacatag acttggaaaa gccaaaacat 33540

pto_PB0262.txt

ctaagcaatg caaatttaaa caaatttagtt aaatctgcc a ctgggagtca ttatgtcatt 33600
 ggcttttaac ctggctgcac attaaaatca tctggggaa cccttaaaat gacttctgct 33660
 ccaaagtcatg tgcccaaggt tgtgattaat ttgtcttcag ggtgattcct ccccttaat 33720
 atttctaaag ccactcaggt gacttgctt g tgcaaccagg ggtgtaatcc tctgtatgtgg 33780
 acatgtgact gcaatagagg aaaatgttag agagcagata ctctggaatc agtgcac 33840
 ggacttgaat cccaaactctg atatctcata attatgtgac ctgggctaa cttagtctca 33900
 ttgtgcctca gtttccttct ctgtagaatg ggaataataa tacctatctc ctagggttgt 33960
 tataaaagatt aaatgagttt atatggcaa agtacttaga acattgcctg gaacatagta 34020
 cgcaatatat aaatattagt tgtctgtcg cctttgctga catttccctt actggatgtc 34080
 tgaactgaaa ttgatctcaa tagtgtaata ttactccaac aagttatatt aacttcctgt 34140
 gactgctgta ataaattacc acaaagtggc ttaaaacaaa ataaatctta ctcttactat 34200
 tctgaaggcc agaagtctga aatcaaggtg tcagcaggc cacacttctt ctgaaagctc 34260
 tgaaggaaaaa cctgctcctt tcctcttca gcttctggtg gctattggca ttccctggct 34320
 tgcggtcaca tctctcttgc cttcatcttc atattacttc ctcccctgtg tgtctttctt 34380
 ctccctggat ttcttgata agaatccatg tgtttgcac tagggccac gtggattata 34440
 cagggatgagc tgctttcta aggattctt atgttagtcac atctttgcc atagaagata 34500
 atattcactt tttttgcta tcataaggta ctattcataa gttcctggaa ttaggacata 34560
 gagatatctt tttggggct accattcaac ccactataca agatggcata ataaaaagta 34620
 agcttggatg ggaggcatca ctgactcatt ctgtgtttag tggacttcac atttggcctg 34680
 cacatcccat tctctaataat gtctaaaacc attatttaca caacaggtagt catccaaata 34740
 tacaacaacaaag tgactatttta ttgtcaatgt ttgttagttac ttctcggcaa ggacccacag 34800
 aagtggagca agtgctcaga ggactgggtt gcccaatggc ctttggcata tagagagctc 34860
 caacaaggaa aggcttcctg gtggtttgc tccaaagaga acaattttt gagaaaactct 34920
 attttgtgct aaaatgtgta cccaaaatct caccaatgtat ggctgtttt tattttgttt 34980
 tcattttaga gatatgatct cactatattt cccaggctgg ccttgaactc ctgggctcaa 35040
 gagatcttcc tactttaccc tcccagtagt cttaggactac aggctgcac actacgcctg 35100
 gctaattttg ggttacatt tggaaaagtc tgatgcttat tttaaaagag aacagggtga 35160
 tgctacatta tcaggacatg tttctgtcc caagtgatag aaaaatcaat ctgaataggc 35220
 ttaagtgaaa ccctaattta ttaactctca taactggaaa attccagtt caggtccaga 35280
 tcaatgcagt ggttccaaag atactatcag gacctggttt ctttctccag ctcttggctc 35340
 tacttttgc ggttgcgtt tcagaaaggc cgtcctttagg tactggcaag acaactgtac 35400
 taagacctac attctctcag gttcaaggca catgaaaata aacagtccctaa gaaaaaaaaatg 35460

pto_PB0262.txt

taagcaaaac cttaccgaga tttgttgggt tgaatactca tgcctgagac aaccaatgtg 35520
 atagcaccccc ttccctgttct gtttggccga ggaccttgga aaggatgacc cctcttaata 35580
 catgggctaa gactgtggaa agaggttagt ctgttctgaa gaaccagtgt aggtaccatc 35640
 agaagggaga atgaatattt ggtggcaaat acaacagatg accactgttag atgcaattag 35700
 gtccttggac taaaatgtct gaaatccaaa cctgggtttt cttgagcgac atgtgggatt 35760
 tttttttttt tctagttgtg tgtgttggtc acaatttccc tttccacttg gaaataagtg 35820
 agttattttt aagcagaaga cccacattta aattccatct ctgctgcctc ttttagctg 35880
 tgtggccttgc gcacattac cttatgtctg taagcttaa attcttcaact ggcctggcgg 35940
 taacacacac acacacatac acacacacac acacacacac acacacacac 36000
 acgatcagga tagaggccat cttaccagga ctattcatca ccagggcaca taaacagaat 36060
 aagcctacat gaacacagtc tgattgatac cgaagaacca tctgtcccta catattttc 36120
 atggtcctga aacatgttgg aaatttctac cattttagta atggaaggaa tggtaaagc 36180
 aacatgttgc cagagagccat ggtgaaaaat gcaaatttgc gccaggaaaa agcaaatg 36240
 aatctgcattt cactgactac tccttatccg ccacccatca agggatgagc caaagtcc 36300
 ttgtgtgatc attctcaaca tgcaaggcaa ccatcaagag acttcaggca aaatgatctt 36360
 tctgttttc cacatttgc ttaggattct tctctaactg cttctcctga ggcagtgttc 36420
 cctggggata tccaataccca cagggatgt ccatattgaa aaactataacc tagagcttt 36480
 ctttctccaa gttgtctcca gttgaaaaaa tgacctttc atctccgtaa tcacagtgt 36540
 cattttcaca gtggagtgc tatttaggtt ggcaagtacc atctgattttaa gaattgatta 36600
 aagcattcat attaagcatg tttgtgatgac aggctcaact ttttttcag ggagtttagt 36660
 tttatcttca atcttctaga ttgaggtaag acatttttgc agaaagatac ccgggtctt 36720
 ttccctttct cctagatcgg ttgcaagtgt actcacaaca gatgttatgt ggtattctac 36780
 ttctaaaaga ctgttggccg taggttttag ctatcacttg gaagataaca agtagtagaa 36840
 ttatccttcc ttttatgggt aggaaggaat tcctacggat aggaatttac tcaagatccc 36900
 tcacagatgt gcactatcat gctccaaaag gtttattttt cctagaaatt gactgcctt 36960
 caagtctttt cagttctctt atcaaaaactt actactcctt tttccaaacc ctttactatt 37020
 cctttgtcata aacccctgtta acccctgtta cagcagccac agggagctaa tataccttgt 37080
 tggagttata ttagaccatt gaaatcaatt ttagttcaga catccagtaa gggaaatctc 37140
 agcaaaggac cacagacagc taatattttat atattgttta ctatgcttac tattcctttg 37200
 tccaaactcc tcaaataatcc ttccctttaga ttgcagagta gtattctgtg gtgtggaccc 37260
 acctcagtttgc aatttggcagt ttttttttgc ttcaactgtt tgaatgtgtc attccactgt 37320
 cttctgggtgt gtaaggcttc ttatgagaaa tctgatggta ttattgtatgt gtccttgc 37380

pto_PB0262.txt

gtgacgtgtc acatttctct tgctgccttc gacaatttct ttgtctctgt attttggcaa	37440
tttgatttga atgtgtcttg gtctagattt ctttatattc atcctatttgc tggcgccat	37500
agcttcatga atctgagtgt tcatttcctc tctggaaattt gagaaatttt cagtgattgt	37560
ttctttaaat aagctttttt tcctattgtc tctctgcttt ccttctagaa tcaccataat	37620
gtatatattt gttgtcttga ttagtgcctca tatgtccctt aggcttctt aactcttca	37680
ttcttttttc ttttgcactt ataactggat aatttcaaattt aacttgcctt tgagttcact	37740
gattccttct taggtttgat caattctgtg tttgaagctt tctattgatt gttttcttt	37800
cagcaattttag attcctcaga tgcagaattt gtctggctt ttgtatagtt cctatcttt	37860
tactgagaat ctcatcttgc aggtattact ttcctgattt ccttgggtt ttcatatgtt	37920
tcctctcgta actcattaaa ctctttatg ataagtattt tgaattctt gtcaggcatc	37980
taaaagatct ccacttctgt agggttgggt gctggagatt tggggccccc tttgattgtg	38040
tcatgtttcc cagattttt atgtttcttg tagcttgcc ttgggtctg cacatttcaa	38100
aaaacagocca tctctccag tttttatgga gtgggtctg cagttaaaga ccttcatcaa	38160
ttagcccagc tagagatttgc gagagcctct cacatagcaa gctgactgcc tctttccctt	38220
tgttcttagc tgccccccatc aaactataact cattctgtca gtcctttggg ttgagtgaa	38280
cagggactgg cattcttctg gcaatgttgtt gaaagaccaa gaggttggag gtatacacca	38340
ctcttctctc ttcttggta gatgcctagg ttctgcaatt tctcccaatc tcacagagct	38400
ctgctatcct gtaacaatct gtttacgccc tttccattgt tgagttgacc gaggggtcca	38460
aactatggca gtactgtcaa tttccatgtt gggcaagat agaaactgtc cccttggaca	38520
attcaactgaa agactggat gccggatgtt cattccactt ctcttccctt cctaattgaga	38580
gaagtgtggg ttgaggcaat atcccttggc attgatctgt gctggctttt gggagaggct	38640
gacataggta aagtgtattt gctcttctta tttttttaa tttttttttt tttttttttt	38700
tgctcatcta ggtatgttgc aacttctcat aaaagtagtc tcacaaaggat attttgggtgt	38760
gtatattattt gttatgttgc tttttttttt tttttttttt tttttttttt tttttttttt	38820
ccatcttgc gatatcactc ccctgaagtg caaaaatttt aaattttgc gatatcactc	38880
ttatgatgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	38940
gtccttagatc ctgaggatttgc tttttttttt tttttttttt tttttttttt tttttttttt	39000
tctccacccatc tataaaaaat catttggcc tttttttttt tttttttttt tttttttttt	39060
attctgtttt gtcaatctat gtttgcatttcc caccaccaac agcacatagt cttgtatcact	39120
ataactattt aataagtctt aatctgata ggaactctga cttttttttt ccaatttattt	39180
tagttatcca agttccttgc actttctgtt tacagatggt ccctgaaattt caacagttct	39240
actttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt	39300

pto_PB0262.txt

cgcaagtgtcc acacactgtt ctgttttca ctttagcac agtactatta aataaattgc 39360
 atgacatatt caacactta ttataaaata ggcttggtgc tagattattt tgctgaactg 39420
 taggttaatg taagtgttct gagtaagttt aaggtaaagc aagctaagct gttatattt 39480
 gtgggttagt tgtattaaat gtatttcaa cttctgatat attgaaaaca atggtttat 39540
 caggaagtaa tctcattgtt agttgaggag catgtgtaca ttttagaatt atcttgtcta 39600
 tatttttaa aaatttctgg gatgtataa aaattgcatt gtcattttgg gggagaatta 39660
 atatccttgc tatattgagt cttaaatcc atgaacatga tatgtcacca tttaaaaaag 39720
 atctttaatt tattttatta attcttgga gtttcacta tagaaccctt gtacatgttt 39780
 gtttagattt acaacaaaat atggtagttt tgggtcatc gtaaatttgg tgatatttt 39840
 aaatttcagt gtcaacatat tcatttagtag caaatagaaa ttaattgtt tattttgtat 39900
 cctgcaaatt cactgaaata atctattaga agtgagggt tttttctgt atattttgg 39960
 ggatttccca catagataat catgtgattt gcaaattgact tttatcttc ctttctaatt 40020
 ctataaattt ttttcttacc ttattacact gactagaatt tctagcatgt tggtaataa 40080
 aagtagtaag aatgcacatc tttgtcttgc tcacgatctt aaggaaaaaa cattcagtt 40140
 ctgactgttc gatataatgt tagctgtaga ttttccttca agttcagg aagtttctt 40200
 ctactcttattt tttcttatttc ttataatttt atcattaataa gaaattgaat tttataaaat 40260
 ttttaatga ttgatataat caggttattt ctctttttt attctgttaa taaggtgggt 40320
 tacatcaattt gatttttaag tataccagcc ttgcattctt gaaatataatc tccagttgg 40380
 catgctatat aattcttcat atagaattac tgaattctgt ttgttaatg ttttgcattc 40440
 aattttatg gggacttagta gcctgttaatt ttttcttgc ttctttgc actgtctta 40500
 tctggtttat cttaacctt ttttttttgc gattaggta atacaagctt tataaaatga 40560
 attgagaagc tttcttattt tttggaaagaa atcacataga attggtattt attacttaaa 40620
 tggggtagt aattctgcag taaagccatc tggacaagga tatctctatt ttggggatatt 40680
 tgaaaattaa gaaataaattt acctagttt ttttttaaag tggttacaaa aaacaaagat 40740
 gaatgttagtt tttaatttac cttagactt ggtctttgat ccatgaattt tttaaaagta 40800
 tgctgttagt ttcttaagtt ttggagaatt tcttgcattt attatgtctg atctctgttt 40860
 ttttcttattt atggccaggat gacatattct gtataattttt acctttttaa aatttgcata 40920
 ggattgcctt atgatataag atgtggtcta ctgtggtata tatcccatgg ccacttgaaa 40980
 agaatgtgca ttctgctgtt gtttgcgtt gtgtataga aatgttgattt atatcttgc 41040
 gtttgatagt gtttgcgtt tttttatat ctgtggtata ttcttgcgtt ttcttagttt 41100
 ctggtttcc tatctatggt ttagaaatgg gtgttgaagc ctgcgtttt aatagtagat 41160
 ctatattttt ttccttctgg ttttgcattca tataatttgc cagtttgcgtt ctgcgttgcac 41220

pto_PB0262.txt

pto_PB0262.txt

ttcataacag atcatctgta agctggagt ccagggaa gc tggtagcatg gtcattcca 43200
agtctgatgg ccttagaacc atggaagcca atgttgc at tctcagtccca ggactgaaag 43260
cccgagagcc tggagaattt ctggtgcaag tcctaaagtc caaagaccag agaatctgaa 43320
cttgc tctcat gatacaaata taatctacca tggtatata tag cccatgtaca cttgaaaagg 43380
gtagaagaaa tgaattctgg ctccagaaga cagatcaaga atttgc ctttacatt 43440
tttattccat cacccacatt gagggcagat cttctccacc cagtccacca actcaaatgc 43500
caatctcttc cagaaacacc ctcacagatg cacctgggtt agccaaatca tttagaatcaa 43560
atgctaaatc acttgggtt ccctttaca gaaggagac atgatcagg tctactgaag 43620
cattgagaat aatttgtact ttatcagctg ctgggtatcc cttaatccag tcaaggtcac 43680
atccaaaatc aaccatcata gcacccttgt caaaaatcat ttaaccat atattagggt 43740
ttatttctgg actctgtatt gtatttcaca ggtctatgtg ctttttagac ttttattttt 43800
attttattt tattttattt tatttttga gatggagttt cactctgtt gccaggctg 43860
gagtgcata ggcgcacatctc ggctcaccac aacctctgcc tcccagggtc aagtgattct 43920
cctgcttcac cctgcctagt aactggatt acaggatgt gccaccacgc ctggctactt 43980
ttttgtattt ttagtagaga cagggtttct ccatgttggt caggctggtc ttgaactcct 44040
gacctcaggat gatccgcctt cttggcctc ccaaagtgc gggattacag gtgtgagcca 44100
ctgtgccag cctatttta ttttttttaa cttaaaaata aagttgaggg ggcacatgta 44160
caggtttattt acatggtaa gttgcacgtt gctgagggtgt ggtgtacaaa cgatccatc 44220
acccagtttag tgagcattgt agccaaactgg tagttttca gcccttagcc ccctctcacc 44280
cttcccactt tattagtc cagtgtctgt tcttttgc tttatgttca agtgtactca 44340
acgttttagct cctacttata agtgagaatg tgca gat ttttctgtt cctgtattaa 44400
tttggctttt aataaaggcc tctagctgca tccatgttgc tgcaaaggac ataatttaat 44460
ttttatggc tgcatagat tccaagatgt atatgtaaca tattttcttt atccagtcc 44520
tcattaatgg gcatctaggt agattgcatttgc tctttgtctt tataggcttt tattgtctat 44580
atgccagtagt tatattgctt tgattactat agtttttagt aagatttgaatcaggaaat 44640
gagagtccctc aatattttt ctccttttc aaaattgttt tggcttttg atgtctctt 44700
agattccatt tgaattttat agtggactgt tttatttctg aaaaaaaaaaa gtcattggaa 44760
ttttgatagg gattgtattt gatcaataga ttgtgttggt agtatggaca tttgaaaaat 44820
attgtcttcc agtccatgaa catggaaatgt tttccatttt tatattcttc tttaacttct 44880
ttcagcaata ttttataatt ttttactgta caagtcttc acgtctttag ttaattccta 44940
agtattttat ttgtttgtt gctatcgtaa atgagactttt cttatatacc ttttcatatt 45000
gtttattgtt agtgtataga aatgcaactg atttttgtgt gtcaactctc tattcctgcta 45060

pto_PB0262.txt

ctttgcttaa ttcgtctatt aacagtttt taaaaatgta tgtggaatcg ttagagtgtt 45120
 ctagacacat gatcatatca tctgtaaagca gagataattt tagttccttc tttctgattt 45180
 gatatctttt gatttctttt ctttgtctaa ttgcctggc taaaacttct agcactatgt 45240
 tgaatagaaa tggcaaaagc agcaccctg cttgttcct gatTTaaaaa gaagagctt 45300
 catcttgag tacgttgct ttgggtttt aatatacaga ttttattatg ttgaggaagt 45360
 tgccttccat tctcagttt gttggtgctt ttatcatgaa agagtgaatt tttcaaattgc 45420
 ttttctgca tcaattaatt gaccacgtgt tttaccctct gtaaggctga caacgctatg 45480
 gattacactg attgattttt gtattttgag ttatccttgc attctagaat taagtcttac 45540
 ttgatcatgg tctataattc tgTTTtatatg ctgctcaatt tggTTTgcta gtattttgtt 45600
 taaaaaaattg ctTTgatgtt cataaaaaat actgctctat aattttctt tctgatagtg 45660
 tctgtgtcta aatttggtgt cagaataatg ctgacctcat agaataagtc aggaagtgtt 45720
 ctctctccctc ttcatTTTT tttggaaaaa gtttgagaac aattggggtt agttctttaa 45780
 atggtagaaag tatttctact attggtagaa ttcaccagtg aaactgttag atcaaggggct 45840
 tttttttca ttatgagatt ttgattttt attactatg taatctcctt actagttata 45900
 agtctttca aattttctat ttctttatga tttagtctt gtaggttag tatttctagg 45960
 aatctgaact ttttcatgta ggTTtatccaa ttttgggggg tacaattgtt catagtctg 46020
 tcttagaatt ctTTTatttc ccatagaata agtagtaatg tcccactttt atttatgatt 46080
 tttagtaatat gagtcttgct tctatTTTC tttagtcaatc taagtgtaga attgtcattt 46140
 taaaaaaaattttaaaga aggagcattt ggTTTTattt gTTTTaccct tggTTTtcta 46200
 ttcttgattt ctTTgatctt ttgTTcaatc ttaatttattc ctTCTTCTG gtagTTTgg 46260
 gtttagctta ttctttctta gtccttaag ttgtaaagt agttggctga tataggatct 46320
 tccttgTTTT taatataatc attttagtattt tcaaatttca tgcttaaacac tactttgt 46380
 gcatcctata agTTTTtagta tgTTatgtt gcatTTTcat tcataatctaa gtattttcta 46440
 atttccctt gcttctctt ttgatccatt aattttttta aagaatgtgt ttAAAATTT 46500
 tcacatattt atagattttt cagTTTTact tttgttattt atttctaact ttatcctgtt 46560
 gtggtcagag ttgTTTgtt tatttctgtt agatcttagtt ggTTTattt gttaaagtct 46620
 ctatgtcatt acttataattc tgcTTtagtta ttctattcat ttggacagt gtaggtattga 46680
 attctttaac tattattgca gaaatgtctc ttTTTacttc aattctgaag ttTTcactgt 46740
 ctTTTatttgc atggTCTGTC attaggtgca taaatgctca taagtcttct atttcttgc 46800
 tataactgaac ctTTtaagat taagtacttt ttTTTttct tggtaaccatt ttAAAAAA 46860
 ttAAAAGTCC attttgcctg tttagtacagc cacatctgct ctTTTTcat ttccatttgc 46920
 atgaaaatgtc atcttccatt ttccactttt caatttattt gtagtcttgg agctaaagt 46980

pto_PB0262.txt

agtctttgt aaacagcata tatttggatc attaaaaaaa tccattctgc tcacatctatat 47040
 tggtaaga gtttaataca ttttcatgta tgcttattact gaaaaggagg aacttacttc 47100
 tataattttt atatttgttt tctctacacc gtataactcc ccatcccttg ttcccctttg 47160
 tatataattct atagctattt tctttgcagt taccattgga attacattta acatcctaaa 47220
 ttataacat tctaacttat aaaccagctt aatttcaata acataaaact ctgctacttt 47280
 aacagctcct tcccatctct ctttgattgt taatgtcaca aaattgcaac tttatatac 47340
 atgtgtcaca aaacataaaat aattccttga aatgcattaa actcttctat ggaaaaaaata 47400
 atgagttaga aaccatagtt tcagtgatata taacttttag actaataatt gttttttaa 47460
 aaagtattag tttcttaaat catgtacaga acacaaagtc aagaaacatt gttataataa 47520
 taccaccttt tacaatgtcc ctatgtttac cttcattgtat atttttattt ctttatatag 47580
 attctagttt ctgtatagta tgctttcatt ttaacctgca ggactccctt taacagtttt 47640
 ggcatggcag atgttagggca gcaagctatc tcagctttg ttagctggg aatgtcttaa 47700
 gtttctcctc acttcaagt tttgccagat atggtgttct tgcttgacag ttttttttt 47760
 atattagcac tttgaaaata tcagcccact gccttcttat ctctaaaatt tctgatgaga 47820
 aatttgtaga taatcttatt gcaagatgctt ggtatgtgac aagtcatttc tatactttgc 47880
 tgctttcaag atttctctt tgcccttga tttggaaagt ttgattataa tgtatatacca 47940
 tgtgggtatc tatgaattca tcttacttgg agttaattga gcttcttggaa gttttatgtt 48000
 catgtctttt ttcaaattcg aagaattttt caccattatt tcttcctata ttctctctac 48060
 tccttcttt ctctctgcgt tgtctggac tctcatggtg tgtatgtga gccccttgat 48120
 gatgtctcac aggtctcttgg ggcctctgtc acttttcttc aattttgttt tctttttgtt 48180
 cctcagactt gatgatttcc attgccttat ctttgagttc tctgattttt tcttttgct 48240
 actcatatct tccctcaaag ccctctagta aatttttcat ttctgttatt ttaattttta 48300
 gctccagatg ttcttttag gtttcaaaa tctttatttg tattgtcatt ttgtttata 48360
 cattgttttc ttgacttcat ccacatgtac ttttagtttta ttatatttatttatttga 48420
 gacaggttct tgctctgtca tccaggctgt agtacatggt tcagttagct cactgcagcc 48480
 tcaacctcct tggctcaggt gatccttctg ccttagcctc ttgagtagct aggactacag 48540
 gtgtgtccca tccatgcctg gataaataaa taaataaatt taatagagat gaggtctcac 48600
 tatgttgctt aggcttttaa atttttattt ttgggtatgt agtaggtgtatataattcatg 48660
 aggtacatga agtattttga tacaggcatg cagtgcataa taatcacttc taagatacaa 48720
 aataaaagccc tcttactct ttgctttctt ttccttaagc agatggtgaa agtaaatttt 48780
 gttgtgagtt gtgttgctg gtgttgcaagg aggaatggca caagcacttc cttagccacc 48840
 ctggctggtg tccaatgttc actgattcta agcccgacac agcacttagga cttgcccagg 48900

pto_PB0262.txt

aattgcagtc cttgtggcct agactgcctc tcaagtttgt ttaggatccc agagcactta 48960
 agcccatggt ggtaagtctt gtgaaaattc aagttccagc tgctggatg ggtgattccc 49020
 ctctggctag ggctgatcta tatgctccct gtgtgttgt gcattggctg agtttagccc 49080
 agctttactt tccattgtga cagggcagca ttgagttcaa tgccagagccc cacaatcact 49140
 gtactgtcca tttcccaggt ttacagattg tctctctgtg ctatgtggct gctgccagag 49200
 ggatagggga ggggcatcat tggcaattca agactatgtt tcttacccctc ttcagtgccc 49260
 ctttcagcaa tatgaagtta aaccaagtac tgtgattgct tatctgattt cctgttttta 49320
 cgaaggtgct ttttgtgtgt gtagatagtt tgttaaatag gtcttctgca gtggggatca 49380
 ttgttcaag gttcagtttg gccatcttgc tccaccctcc ctcttttcca gttcttaaag 49440
 tatcttcaag acagtttattt taaagtctt tttgagtaga tctgctgtt ggttttttc 49500
 aggggcagtt tctgttgact atttttcct ttgaatgggc tatattttcc tcttttttt 49560
 ttgaatgcct tgtgtttttt ttgttgtaaa gttgggtatt tcaatttaat gatgtggtaa 49620
 ctctggatg cagactcttc tttttcctca aggttgtttg cttttgtt tttttttttt 49680
 tttttataaa aattgttta gtctgtctt gtgccaagga tcagcctgag gtgtaaacat 49740
 aagggtttta ctggatttct ctgagcttgc atcttctgt ggtcatgtgt gttaactttc 49800
 taattttccc catatattca gttgtttgt aatgtcctta tctttaatat ctggctccc 49860
 aaaggagaaa aagagaaaaaa tgaaaaaggg agtggaaata ggggccagc cctttaatc 49920
 tctggaaagtc atttcagctg gatggggagg gtttgcaac aatgaaataa ggtgtaacag 49980
 caaagaccca ccacotctt gtctgtacct ctctgatcag aagcagcaat catcaatcta 50040
 agcacatatg cctgatactt agaggacagg gtccattttg cttatcctgg ctccttcaag 50100
 ctgtgtgcaa caagctgctg caggaataca tgcacagctg cctgccacag gggggggat 50160
 agggaaatggg tagctgttac tgtgctaaaga gctaaaattt actgagctga aatcaaagtt 50220
 aactgcaatg taccatccaa atgtttccct gaaagttgca agccttcaat agactccaga 50280
 tttccaaaac agttatatca gacatactt gtcagtgcaa ttattgccta agcagggaga 50340
 cagattcctc gtgttctta ctcttgcaact tccccaggat gtcattccctt cttccctta 50400
 tttaatgttt ttatgataca tctttccccc ttttattac gtttaccctg actatattgt 50460
 tatattttag ttagtttctt gtcattcaacc tattttttgg ttatgtttta gtcaactctt 50520
 gtcttttaat tgtcttagc caactcttgc ctttacaatg atttgaattt tttacattta 50580
 ttggatttat taatgttata atgcttaagt ctgaaatttt attttttgtt ttatattgt 50640
 tctctctgtt ttctatgtg tttcttttt ttatgcttcc tggtgattat atgaatattt 50700
 tttagaaattt cattttgatt tatttttgcataa gagaatctt ttcattatgt 50760
 ttttagtga ttgctttgg tttttttttt tatatgcaca atttttccata gttttttttt 50820

pto_PB0262.txt

gttgcattt taccagttt agtgttagaaa acataactcc cgtaatgcc a cattttctt 50880
cctcatttat aatataattt gtttttttttcc tacatggaa attacataat 50940
acagtgtatt ggcattttttt aattcagttt gagaccttct tgggtttttgg 51000
tatgttaagt tattttccat tgaaacctgg acattttgaa acctgaacgt ggaggctcct 51060
tgttactttt gtgtggcggt ggggtttttg gtccttgc tt agtccctccac tggatctgt 51120
ttggctgaga gagttggaa tgtttccctt cacctccaa ctggtttcca ctgacaccat 51180
ggaatgcagt ggaggaggaa aggtggcctt gttgtcaactg ggaaacggtg aatattccaa 51240
ctctccacta gggcttctct gatactaccc aggccagcag gaggatgtgg agttaagaaa 51300
tcctggctcc ccatgttgc tctactaaca ctgtggagaa gtggatgag cttgttactt 51360
cccagtagga attcctgact coctacccag cttttctga cacagcctgg caaggggtta 51420
gagtgcctat aacagttgg taagggggaa gcacaggctt ctgcacttcc atcagacttt 51480
gctagtgaaa tgagagttag ccagttttc tgtgggtttt gttataacaa agcaactata 51540
ttctaaaagt ttttgccttt ctggttttc ctttttctc attccttggc tagagaaaagt 51600
aagattttgt ttggccttt tgatctgtga tggttccatt ttatgggtgc caacttcaat 51660
ggctctaaat ctggaatata tgaggcaaaa tgaaaatcca ggaacacact gctttgtttt 51720
tcttcaaattt ctaaggtttc tagccatat gccttgcctt ctccaacttt tagaatcttc 51780
tcatgttgc tttttaataa acgtccagag actcaattat atgttagcagg aggaatgtgg 51840
aaaagcatct ccacttcaca cccccctggaa agtaaaagtt atgatgcata tacagtggaa 51900
taaaatttga agctctgcat gcgtatgttg tgtggccattt atagcacatg atagactctc 51960
tttcattcaa aattcattcc aggccgtctg tgtcccaaggc actgttcaag gcattgcaga 52020
tatagtgttgc aacaaaatag ataacatttc tctctttatg gtgcatacat tcttgggaa 52080
agaggtggac aataaacaca gaaagttagaa tatgttagta aaaaatgcta ctggaaaaag 52140
taaagttagat ttatgaggct agtgagtgtt ggaggcattt gaggttattt attttacata 52200
agggtggcag ggaagctaac atttgagoag agtggctgca gtgagatgga caaagacaaa 52260
agtggtagaa gagagcagag atgttagttgg ggaatcagat tgtcttaggtt cttgaaggca 52320
gtcaagaatt tgggtttca ttttagtcatg aaggaggttt tcagagagaa gtaatatgat 52380
ccagtttaca gctttattgg tctgttatgg ggagaataga ttgcgggtggaa gtaatgtgg 52440
tggtaatggcattt tacaatacc cgggagaggt ttaatgagag attaaactca 52500
gatggaaataa tggagttgtt gatgtggc cagattctga aaacattttt cagataaaga 52560
tgacagaaaat tgctaacaga ttttatgtgg ggtgtgagag aatgagagag agagagagat 52620
caaagatgtt ctaagatctt tggcttaagc aatttggaa aataaacttgg catttactga 52680
gatggggaa accgaggaa gtgcaagtct gggaaagaat ggggagtcag aggtttgggt 52740

pto_PB0262.txt

ttgactgtgt	taaaattgaa	atatccatta	aactaggggc	atagtaggag	gttgcacaca	52800
ggagtctgag	tttaaggact	gcagatatcc	tgtctggaga	tatcaatttg	ggacttgctg	52860
tcctatagat	aattgctttt	gtctgttttgc	cgtcgctata	actgaataacc	tgagactggg	52920
taatttacaa	agagaagaaaa	tctatttacac	acgggtctag	aggctggat	gtacaaggcc	52980
aagggtccag	catctgatgg	actccttctt	ggtgtattct	cacgtggagg	aaggcagaag	53040
gtgaaaggc	aagaatgaac	aaatccactc	cctcaagtcc	tatttatacg	agcattaatc	53100
cattcatgtt	ggcagagccc	tcatgaccta	aacacccctt	aaaaggcccc	acctttcagc	53160
accgttgcac	tgggattaa	atttccagca	cacaaatttt	gggaaacaca	ttcagattat	53220
atgaatgata	tttaatgata	tgtcttagatg	tgatcacata	gacagagact	gtaaataaag	53280
aagaaaaaga	gtcctgagtt	ctggggcac	tctcatattt	agaggtcagg	aggatgagga	53340
gaaaccagca	aagaaaaatg	agaacagatc	agtgaagcag	aagaaccaag	agagtgtgg	53400
gtgctggaag	ttgagtaaag	aaagtgttc	cagaaagagg	gagtgattaa	tttgtcaaatt	53460
aagaagagag	ttgtaaattt	attcttgggt	ttgggatgt	gatggctct	ggggccccca	53520
ccaagatttgc	tttccatggg	aggaggggg	aggaggaaag	aagtggagga	gaagacagag	53580
atggtgagca	taagcaactc	tctggagtttgc	ctataaagga	aagcaggaaa	atggagtagt	53640
agatgaacaa	ggttacaggg	tcaagaaagg	tgtaattact	atacagaaca	gttaaatata	53700
tacatggaaa	ctttgtattt	atctatagag	tttgaatttta	ttttgattga	caatgagtct	53760
aaaatttcat	atagtaaaaa	gtcttcaattt	ggcttgataa	tcttagcaat	agcattata	53820
tttgaagaag	acttagttaa	atatgagtttgc	gtctatgca	gatgtgtaat	tttaaagctt	53880
ctttcttttgc	gtttaatttgc	gatttgcattt	ttcagtttac	cctttccat	gaatcccccc	53940
aaatgaatat	ttacttagca	atgataaaaaa	aactttatata	ttacagagta	cttatcagtc	54000
tctctataag	aacaaacata	aaagaatgaa	aatttacatt	agaggtgttag	gaggtaattt	54060
aagtgtgttgc	gtcccaaacc	agggaaacttgc	agtctcagac	cataggtgg	gcatgggatc	54120
tgaaggggaa	actcacctac	aactctacag	caccaatttgc	cagccttgc	ggctaata	54180
ctctctcccg	cttctgtcat	tgtctttgtc	tttttctaca	gtgaaacaag	ctttgaacta	54240
tttccagctt	tccaaatagca	aagttattca	gatttagatga	actttatttgc	ttctccggga	54300
catctagtttgc	tccaaagtct	tctgtctgt	ccatgtgttgc	accaaaccctc	cttcttttgc	54360
ctgctggaa	acccaatcag	ctgcatttcc	cagcctccct	tgcagttgg	tggggccaaa	54420
agaatgaggg	tggaatttat	gccacttcca	gcctgaagca	tggtcattaa	gaaaatcttgc	54480
tacacaatcc	tccttgcctt	ctctcttcc	ttgcctgctg	gatagatgca	gaagatttgc	54540
tggaaaggcc	tgggtcctga	atggctgtgg	agcagaagct	tgaatagcat	cttactgtgg	54600
catgagcaag	aatgagctt	ttattatgtt	gatcttttgc	tactttgttag	ttgtttgtta	54660

pto_PB0262.txt

cagtagtgag cctgccctga ttaatacata cttctactgc aagtattaca aaaatacaac 54720
 tttttaaaaa atacccttct gtagccttc aggatcctt ccttctaaga agtcaccc 54780
 aggctcccaa agctttcctg gagtgtaat gcaaggagaa acaaatacgca acaatcctgt 54840
 atcagttact ttttctgca tcatacttatt taatttctgt aggaatccaa tgattctcat 54900
 aaaacagtag tccaatgagt ccagcctcat aatccataa ggttaataat taacctcagt 54960
 ttacagatga aggagttgt ccaagatcac agagttatga aatagtgaaa tccttcgagc 55020
 ctgacctttt taaccacgga gcccttgctc tcccactaca tcttcactct gtttttttc 55080
 cctctgggaa aggaagtaaa actcatgaat ctaattcact tatgcacact ctggtattag 55140
 agactcaatt tccttctct tgggtgtgtt atttgtgtt tgaaggaggt gagaacaga 55200
 gaaggtaatt atttactgac atgaattgta ggcactgtt gattgggtg gggggggagg 55260
 cattctgcag acgacatagt agacctgagt ccaggtgtga aggggagagg gagacagcag 55320
 acagcattta gtttctaggg agacagcaca ggaaactaac ctttcttcc ctttcagctt 55380
 ttaatacaa ataattaaag atcctcatag tccattaaact ggccaggaga gcagatggta 55440
 gaggtgagaa gtttcagcat cctgagaaca cttgagcagc ctccctgttc caacagaatt 55500
 gtccatattc aagccaagag agggaaagatg tggaaactgct gttgccaagg gggaaagtgc 55560
 aggtcttcaa taccaccttg atgttttatg tttataaaat ttggctcagc tggcgcggt 55620
 ggctcatgcc tgtaatccca gcactttggg aggctgaagc aggtggatca cgaggtcaag 55680
 agttccagac cagcctggcc aatatggta aactctgtct ctactaaaaa tacaaaaatt 55740
 agctggcat ggtggcaggt gcctgttagtc ccagctgctt gggaggctga ggcaggagaa 55800
 ttgcttgaac cctggaggtg gaggttgcag tgagccgaga tcgtgccact gcactccagc 55860
 ctggcaaca gaatgagact ctatctcaa aaaaaaaaaa aaattgactc acacataatg 55920
 caacacctgt ctgcataactt ttgccagtc ctccataatt taaaatgtgc ttcttcata 55980
 gaagcatcaa attagataat ttcatcctca cagcaattt aggaggcaac actcacat 56040
 gatccaggt aaaaaaatgg tgactcacat ccctgacatg aagcccaggg catttcttag 56100
 acttcctgtt tttgagaagg aaatctaaga caaacctccc agactttgaa ggatgggtgt 56160
 tcctatccaa aatgcaactg tgattatctg tgaaatctgc agatcttgc tgctttct 56220
 tgtctgcaa agatcagatg aatgctctgg agatgtgtgt ggttgcctag catgagcatg 56280
 tgcgtgtgca tttgtacatg tgtgtgtgca tgcataatgtg tgtgtgttt tgttaagag 56340
 acaaagaaag aaaaatgaat ataaaattta cagaatcaa tatcagttt caaagctca 56400
 agatccaatt gtgtgtatag gattatctgc cctgtttagg aaagtgttt ctggagtgga 56460
 gctccaagtc tgtgtatgaat gtgccaaact aggggttcct tctcggagag tcatacatc 56520
 cttagtatgc catggcttga agaaacccca caatgagtaa atattaggtc ttgtctgatg 56580

pto_PB0262.txt

ttatagatcc caagcttact taactatgga ttctctttt tgagtctatc actcattcac	56640
atacagtgac agtacatctt tttgaaaatg ccaattcaag agtaattaga aaggtttaat	56700
gtagaaaact aggattatca gaagacctag attttgctct tactctatca ctaataggct	56760
ttataatttt tgataaaatta tttttattta gttcttttc aagtatttt ttctgccttg	56820
aaggaaacat ttctttaagg atatttattt tacttattta aaattgttgt tctgtcatga	56880
taattccact ttgcatggta catgttattc attatttattt acataaaatta tttatatattt	56940
acatgttgtt gattatttct tagtggttgt acttttcagg tatgtaatta ttttggcctg	57000
tgatatacat cctcctggag aagataattt gtattgggtt aaggcgaaat ggcagagcct	57060
gtttttgtt cttctgggt tgagcttaag aaagagggtgg ggatgagacc atgttctttt	57120
ttaacagtga atcctaacct ttccctccctg tgtgtcccag gacatttgc tactcaactgc	57180
tcaatcgagg gaggccttat ccagctatac tcattcttag aggcactgccc ttctgcactg	57240
gaaatggagt cttcaaggc tactatctga tttactgtgc tgaataccct gatgggtgg	57300
acacagacat acggttttagc ttggtaagt gaatctgccc acttctcacc tacttcccag	57360
ctaacaaccc ttcccacaat ctacatcgcc atggcctctc cctactgcaa tgacctcgta	57420
atgatcccattt cttccctcc ctcacctcta ccctgatctt ttctctatataat ggtagccaga	57480
gagattgtt aaacacatcatgccccat cccatcgcaaaactctccag tagatttcct	57540
ttactctcaa aataaaaatac aaattccttc ccactgcctt taaatcctaa atattcttgg	57600
tctttcaat ttcccaacctt ctttcctgg ctccctgcac ctcctttct gtgtccagt	57660
gccagtggcc ttccctgtgt gccacaagct gtcaagcttgc tccagccccaa gtgttttgt	57720
ataggactgt tccctctgcc tagtacaggg gtgtccagtc ttttgcttc cctggaccac	57780
atggaaaaaa gaagaattgc ttggctac acatataatt cactaacacc aatgatagct	57840
gataagctga aagaaacatt ttctttaaa acaatgtttt aagaaagtgt acgaatttgc	57900
gtcaggccac atccaaaact gtcctggct gcatgtggcc cacaggctgt ggggtggaca	57960
agcctggcctt agaaggcttt gccccatgtt attcatgggg gttggctt cactttat	58020
agttccctac caatttgcac ctcctcaaag ggactttccc tgaccaccct atctaaaatg	58080
gttgaagaca ctgctgtgt tgctgtcccc cttccctccc cgctccccata ccatccctg	58140
ccccagatac ctttcttcc aggctaattga tcttttgcact aggcaagggtt gaaaatcctt	58200
gttttataatc aaatcaaata aggtgagaat agacttgatt gttcaacta aactgttctt	58260
gtttttgttcc tattttgaaa agcaccaaaag tgctttgcgtt acaggttggg ttggcctct	58320
ttgtgggacg gtgagtggtt ctggctgtta ataatgcctt ttggatgca ggatcttagca	58380
tccctgatcc tggctgtcctt cacctcagaa caggccctt tctgtaccag tggatagtg	58440
atgtggagac acctccagga tatgtggcta agtaagataa ataaaaatgtt gaacagtgtg	58500

pto_PB0262.txt

tgttagtatgc tactttaat gtcagaatgt gtgtgtgt gtgtgtgt gtgtgtgt	58560
gtgtgaactg gcagtgatgg aagtcagttt gttagtggcc acgcctccaa actagctcac	58620
gttatttcat gagagtgggt gtttcagtc ggaatgcgtt cagaaaacca tataatagt	58680
acgggaataa ttcagaattc atagttctta cataacaagt gtcgaagtag gtggcttctg	58740
cattcctgtg gttgcttact gacaccatta ataactcagg cactttgt gtcccctatt	58800
cttagcatgt ttacctgtgg tcctcttatt catcaattca tggttgcagg atgttgactg	58860
tagctcaagg cattacatct ggcaatcaag acaggaagaa agacgaagta gggcaccgg	58920
tcttcctgc accttttattc agaaaagcaa acgatttcca aggaagtccc ccaaccaaga	58980
cttcacttta catcttattt gtttgcactg ctcatgtgac cccctttctc agtcaacct	59040
ctgttgtgg ggtggcaaa agaaaagggg ctggaatcag ctgttgagat atgaaacctc	59100
gatttgactg tttgtgaatg agctaaaggc ttacttattt gatccatgca tttttttttt	59160
tatctattta aatactggac aatggtgcta ctcctgctc tcctctctt tctaattctgt	59220
ctccatcaatg ggtgccactg tgtactttca gccaaagtct aggaaacagc acacccagtg	59280
ctccccatcc aggaccagga ctcattgccc tccccacttt ctgccacgtc ttaggaccat	59340
tcttagattt agaaattaaa tgccctcct ttcattttag cttagttgt gaaaaaagca	59400
ccacaatctg gacacattt aaaaaaattt ctccttctc tcttcttctt caaggtgtct	59460
tcttattttt tttggaaatg ggaataaaaca ttcatatgtca ctatatttgc cgccagctca	59520
ggaaggcctgg agaaatcagc tacaggattc cacaaggtaa tgtctccct gccccagac	59580
tctcactctt ccctggagcc tgtcccaggat atgatgtat ggtgcagat ggagagggg	59640
cagtgagggc acgaatgata caatacctct cagttgctc ttgacttccc ctgaaaccc	59700
agtcccatca cagtaacctct gcatttctaa tctgaaccca gaagctccag agagctacca	59760
gagccctcag gaagggtgcga gaccgcaata cccggaaagggt gggagagagt gggagattt	59820
agttagggttt gaatcggtca cttacaccct cattgcagta ggtaagggtt tcatgtacag	59880
agggctgatc ctttcttagt tgcaaatgtat gctgaatgt tggccaataa atgtgtcccc	59940
tccaaattgtat cttagacttat cttgtgagca gttaaggcta gaacttgcgt atttcctgcc	60000
attcatatat acttttaaag gtgttagagaa ctatatttac ttaatcaaaa cttaggatgg	60060
gaggccttac aagcacaagt gcattttgg agataaagggt gagcatgtt gtaatcctaa	60120
ctgctccaaa gaaaccaggat tatgagattt acaaataac gcagatggg gcaaatcagt	60180
ccaagtcatc cttcagtagg ttttagatggg tatttgcgtt ggtccttggc ttccaccgtt	60240
tttgcgtttaa atacaaccct ttatattacat caaaaaattt cctcaattt gacatgtat	60300
tagtgcacat taatagtcat tgattaagaa attaatgaca aagttactat gaattcagta	60360
acagattcaa atgaatttga atgttgcgtt aaatcctaaac gtatctacat caaacaaaaa	60420

pto_PB0262.txt

taattttagga ggtaagatg tgccgttac tgtcttcata gaaaatttat aggccttg 60480
cttagatcc gtggttcctc ccagggcgta gggaatcaca gttggaaac cactgacgca 60540
gtctcatctt caagaaagat tcaactctaa gggcttga tttaaaaac attcactcca 60600
taactagata aataaagaag agcagagaaa gcactgaaa accagtgcc aagattgtt 60660
tccaactttt gaattataat agagaatgtt taaaacaaa gtatTTTtat gtaactgttag 60720
aaagaacaaa attgttcgg ttgaaacatc cccagttaa tgtggtaat aaaatttagt 60780
gtggatatat ttaatatcat tagaaatatg ctgatttcta gatacagtcc tgagagaaga 60840
aatacctggt tggatagaaa atgaaacatt taaaatctag aagccgactt caccagccta 60900
cagcaggaca aatacctgca gctcctactc tctgcttta acatgaacag aggagagtgc 60960
tttgcagaag ggtggggagg ggcaaatccc ataagagaat ctaaattcct tctccgtga 61020
gttcagattt ttattttttt aatgttagtgt gcagttcac atttggac tgtaatgtg 61080
aacgtgtgtg tgtccaggaa aggagcgggg aggttaagagg tggccaaaa acttccctta 61140
acagaacaaa acaaaaacca gacccctac acctctccct tatcctaccc aaagctagt 61200
gtccagcagt tgttagagat ttggatagag cccgttaagc agttgaggcc actcttcgca 61260
actccagaat gttctccagg caacaggctg ttgttgctt gttccctt ctccccaaaga 61320
ggattccacc aaactcctat gactatggag ggagcctcca gccccacatt tgttcttgct 61380
gccttgcgtt attttggAAC aacacagatg gtttaatgt caaaatgatt cagttgcaat 61440
gattgacctt ccgattcttc tgcacgcagg tggcttgcgtt acgtatgtt ctggagccaa 61500
tttcctcgtt gagatcattt aatggatcggtt ctatgccttgcgtt ccctccagg 61560
acttgcatttt gcattttctt cactttgtt cttgggtgtt cgagcttgcgtt accaccatag 61620
gtaaattttt caataaaagc ggcagcattt acgtatgtt cttcttccttccaa acacaggctt 61680
ttaacccgca gaggaagatt gagaaacccga agatattaa ttttttaagg gaaggttgat 61740
actataatct gggtagcat attctgactt gctgggttg tattgaagtt ggaagttgc 61800
tggatgagag tagcagtaat aaaattttt ctaagaacaa acataagtcc atgtaaacag 61860
aggcaactga ggtgacggcc gggaaaggccc tgcctgtc ttgttgaaaga aggctgtcca 61920
gcgagaagtgcgtt cttgggttgcgtt gctgacccag gctctgtgcc caccaggcag 61980
gcttacctgg agatgcgttgcgtt ataaagcctc aagaagcggaa agaagccgttccatcc 62040
ccttcgtt catcccccttcc caccacattt ctggaaagtgtt gctccagagg tgggaccatg 62100
gccagcattt tccaaagctc acagatatttatttttatttttatttttatttttattttt 62160
tgagttggag tctcaactctg atgcccaggc tgaagtgcattt tggggcgatc ttgcctact 62220
gcagccttca cttccaggat tcaagtgtt cttccacccatc acgcttccaa atggctgaga 62280
ctacaggccc accaccatgc ccagcttaact ttttgattt ttagtagaga caagtttcac 62340

pto_PB0262.txt

catgttggcc aggctgtcct tgaactcctg acctaagtg atctgcctgc ctcggcctcc	62400
caaaggcgtg ggattacagg caaagccatc acgcctggcc tccacagatg ttctgaggca	62460
cagcaggcta gagaaccact gggaaaaagt actatcttgg tgactatgtg gctgctattt	62520
ttggcaacaa gatttggtgc taacagttca ggtaatcaca gagccctgga actccagaag	62580
gattatttcc cctggaatct ctgcaatgcc agggtttatt ttggtaactgc cttccccc	62640
tgacacccac cctctataaaa tcataaccaa ggccaaccct ggattctggg gaaggttagga	62700
caagaaatcc catgtatggg gcaatcttag gactgcccta tctgctggga aatgccaggg	62760
attgcaggtg tttcagaacc ctccctctga aggtctggcc taaagcttca ctaatccact	62820
aacctggggt ggagtgggaa caaaaagaatt aactaaaagt attgctggaa gtgaaaggta	62880
atatatttagg ttgttatcag gctttaactt gccaagtgtt aatgtcagat cttttcccta	62940
aaatggcttt tgtggaaaga gaaagcctat aattactgga gactatggat actcaaacag	63000
ggaatgagtg gtcttggAAC caggaccctg gggttatgac tcaatgccta gttttgaaga	63060
ttaactaag aatgagttcc ttttttctg attagaattt ttcgaggaca acagttctga	63120
aatgaatgaa gcaacagcta gtgacctatt cctaccacct cctagactct gtgaggaggg	63180
gtggcagagg gttccctagcc cataaaagag tcataacagt tcttaccatt tcaggctggg	63240
tctgctgcc accagaggca gagcgggaat gggagaagag aaggcatcac tcagcacttg	63300
gagggtccct gggaggagg gactctactg tgcttggta ggggaggat ggttaattcca	63360
ccagacgtt ccagctgctg caacaacaaa acccaaattt aggcctcatc ctgtgatgtc	63420
agacctccca gagaaggcgc agaaggcata gtttttaata ggctaacagg actttgtgaa	63480
ggcttctata aaacaaagcc aggcactcac atcagaggca gcacggcg aggccagccca	63540
ccagacttct caaatcacag taccgaaaac cagccacctt ttgttaactt ttatttgc	63600
cctaattcaa actaaggtaac tttaatacag tgtgtcatct tgattatgcc ttgaggaccg	63660
ccagcatcaa ctagtttagga agacagctg gcaacttaAG cagacaggct tcttataaga	63720
tgcattcgtc tcctgtggct gctgcaatac attaccacaa actggcggc ttAAAACAAC	63780
acagatttgt ccttcatac ttctggaggc tagaattttt aatcgaggc gtggcagg	63840
ccaggcccccc gtgacggctc taggaaagaa ttcttccttgc ccttttttta gcttctgatg	63900
gtggccggca acccttggtg ttccgtggct tatacgatca tcactctgtat ctctgcctcc	63960
gtcttcacat ggccttcctt cctgtgtgtc tctgtctcag tctttttgtc tcttctc	64020
ttcttttag gacacagtta tattggatta agggcacacc ctgctccatt atgacctcat	64080
cttaatttta tctgcaatgg tcctagtttc agaaaaaaaaaa aaattaccct ctcagttact	64140
gggggttagg acttcaacat atcttttgc gagacaaaat tcaacccatg atacatggt	64200
acaatttgct ggcattccca ggcctcatga agggatattt tcctggAAC attgctggtt	64260

pto_PB0262.txt

ctctttgcc	atagtcttg	gttccctgta	tttcccagct	gaatccaaac	aagtacctc	64320
ttctagatac	tacattttt	tttctggtag	gatatacgta	acaaaaattt	taccactta	64380
gccgttttta	attgtaaaat	tcagtggcat	taggtacatt	cataatattg	cacagccatc	64440
accactaccc	tctgcctgtt	acttttcatt	tcccagcaaa	agaagcttca	acatttacaa	64500
gaaataggct	gtgggaagga	gaaataagaa	tcataagtga	ccatcgaaat	agtcaggccc	64560
aaaataactg	taggttgact	tgtaacaaag	atttggtaag	agcaaacctc	agctgtcagc	64620
cactgctcca	ttatattttac	aattattcct	ttcttgtctt	ttaggttcta	cctcaagatg	64680
tttgaggact	accccaaatac	tcggaaagcc	cttattccat	tcatcttttta	aaggaaccaa	64740
attaaaaagg	agcagagctc	ccacaatgct	gataaaaact	gtcaagctgc	tgaaactgt	64800
attttcatga	tataatagtc	ccgtatatat	gtaatagtag	gtctcctggc	gttctgccag	64860
ctggcctggg	gattctgagt	ggtgtctgt	tagagttac	tcctaccctt	ccagggaccc	64920
ctatcctgat	ccccaaactga	agcttcaaaa	agccactttt	ccaaatggcg	acagttgctt	64980
cttagctatt	gctctgagaa	agtacaaact	tctcctatgt	ctttcacccgg	gcaatccaaag	65040
tacatgtggc	ttcataaccca	ctccctgtca	atgcaggaca	actctgtaat	caagaatttt	65100
ttgacttcaa	ggcagttactt	atagaccta	ttaaaggtat	gcattttata	catgtaacag	65160
agtagcagaa	atttaaactc	tgaagccaca	aagaccaga	gcaaaccac	tcccaaata	65220
aaaccccaagt	catggcttcc	tttttcttgg	ttaatttagga	aagatgagaa	attatttaggt	65280
agaccttcaa	tacaggagcc	ctctcctcat	agtgtgaaa	agatactgat	gcattgac	65340
catttcaa	tttgtcagt	tcttagttga	tgagtgcctc	tgtttccag	aagatttac	65400
aatccccgga	aaactggtat	ggctatttt	gaaggccagg	tttaataaac	cacaaacaaa	65460
aaggcatgaa	cctgggtggc	ttatgagaga	gtagagaaca	acatgaccct	ggatggctac	65520
taagaggata	gagaacagtt	ttacaataga	cattgcaa	tctcatgttt	ttggaaacta	65580
gtggcaat	ccaaataatg	agtagtgtaa	aacaaagaga	attaatgatg	agtttacatg	65640
ctgcttgcc	ccaccagatg	tccacaacaa	tatgaagtac	agcagaagcc	ccaagcaact	65700
ttccttcc	ggagcttctt	ccttctgttt	ctcaggac	gttcaagaag	gtgtctccta	65760
ggggcagc	aatgcctcc	ctcaaaggac	ctgcaggcag	agactgaaaa	ttgcagacag	65820
aggggcacgt	ctggcagaa	aacctgtttt	gttggctca	gacatata	ttttttttt	65880
tttacaaagt	ttcaaaaact	taaaaatcag	gagattcctt	cataaaactc	tagcattcta	65940
ttttcattt	aaaagttgga	ggatctgaac	atacagagcc	cacatttcca	caccagaact	66000
gaaactacgt	agcttagtaag	catttgagtt	tgcaaaactct	tgtgaaggg	tcacccac	66060
atgagtgc	agatatggac	tctctaagga	agggccgaa	cgcttgtaat	ttgaaatacat	66120
ggaaatattt	gtcttctcag	gcctatgtt	gcggaatgca	ttgtcaat	ttgcaaaact	66180

pto_PB0262.txt

gtttgacaa atgagcacca gtggtaactaa gcacagaaaac tcactatata agtcacata 66240
 gaaaacttcaa aggtctgagg atgatgtaga ttactgaaaa atgcaaattt caatcatata 66300
 aataagtgtt tttgttgttc attaaatacc tttaaatcat ggatgttaag cagtttgc 66360
 tgaattaaaa tatcctggga cttctggaga tttcacaag gtattgggt gtgcttcct 66420
 gtccccctg tccctcattt ccattcaccc tgtctgttagt gtcgtttcct ttcttcctt 66480
 ctctcttcat gaaatttaggg gctgtgtgct ggaaataaag aagtatgact tatacagcct 66540
 ctcagccaca attcagaact acaaggaagt acaataaagg tgcaggaaaa cgtcatgagg 66600
 ttagatgcca ctcctgggtc tgaggaatc acagggggaa tgaacacact tggtaagta 66660
 aatcttcagg tgttagcttga gctctgtgac ataaaagact tccagttctc tccatgacat 66720
 tggaaactac cttgtttaag tcctttatc tactaccatg taaaacatcc aggccggtcc 66780
 ttgagatgaa ataaatatac aataaatggc agtactcagt ctcaggacaa aaccgccatt 66840
 tggcaatttc acttttgcc acaagagggc gctttctaaa atagtatttta gtccaacacctt 66900
 gacttaatta ggtccaaaccc cagtcctgtt gcctgatcgt ggaccttca agttagcatg 66960
 atcgtggAAC ttcttaatct gaatataggg tagagtagcg tgaactctat gaaagctgaa 67020
 accttcctt gataattcag gtattctcag ttttttaggg ctgttgtgtt caatgacagt 67080
 ttgtcattgt ttagggctag gatatgtatg tggattaaat acagtaaagg tctgaacatg 67140
 tgctcatctc taaacatatt tcttcccact tttaaaaataa gggtaacaaca aaattatagt 67200
 taattgaggt ttccatggac tttttttgg ctaaaaataat ctaacagtgt cctagctcac 67260
 aagatactct atcttggctc tgctgaagct ttacggaaag aggcttttc ctgccaacct 67320
 tgaagaaaat gttgagttt gttgtttt cagaatttag acttaaagag ctgaagcaga 67380
 cctcagacat cagctattcc taccacttca cattataggt agtgacactg agacccacag 67440
 agttaaaagg ctcctcaca gctggtacag agctggtcag agcagccatc tcattttgtc 67500
 cctttgaggg tcagatgtat gcttcttctg cttaaggcac agccttttagg gctgccatct 67560
 ggatttctac agagctcatg caggagaaaa atagccagag cttaagtgt gttgcatagt 67620
 tcagttata cacattttgt cccatgcctg tttgtgtgt aggcttcct cgctccgtgg 67680
 gagcaccagg ctcatgccct ttcataaacc tatttgacag aatagagagt tttccctcat 67740
 tggtagtc aagacaacat gtgtgttcag catgaaaaaa aggtttcagg tcataaacc 67800
 ccttatccct aatgttact ttcataaaaga acaacagtgg ctccactgtt ttctaaaagg 67860
 aaaaaggagc tctaattgaga aatacgcaat taaacagcta tttagggcgc ttagaccctt 67920
 tcaggaacaa ataaataaat ccgtggttt acaaccctga agtttgataa tagctctt 67980
 ggatttttgtt ggttacctca tggcaatctc actaagaagc aggggagcaa gctcttggca 68040
 catgaaggaa taggctcatg aagattcatt tctttcccg cttggcctt tggttctcta 68100

pto_PB0262.txt

ataagctgtg	agctgaggc	catgcaggga	aaacaaggag	ggtaacggca	aatgtaaagt	68160
gaatttttct	ggagaaggat	gctgattatt	ttatagcatc	tacactatcc	tatgtatgaaa	68220
gaggcataga	gccgggtggc	aatgtgagtt	cttgggtgat	ttaataagcc	atcgagtgga	68280
ttaatttct	aagtaagaca	tttgtttatt	ctttgtacaa	gtccatggag	ttgtgatctt	68340
aaagagttct	gtgttatttg	cattgtgcct	catttctccc	catcaaccctt	agcttgagat	68400
ttggatgaat	aaaataaata	actggagaag	gttaaagtat	gcaccaagct	gtgttagttt	68460
ctttagtcct	gtctttttgg	gttgagggtt	tggttttgct	caatgcagta	acaatctaga	68520
ttctttatttgc	gaggatagc	aatatccct	tccgacatgg	caagctggct	gggaggagga	68580
ggacaacaga	gaaagtggag	gaaggagggg	agtaatgagc	gagggtctaa	gggagggttg	68640
gcaatggaag	gcccttgaga	gagaggggccc	tcccactgac	agagtgggct	tcctcccttt	68700
cctgtgtcca	ggctgcacaa	gcctggtccc	ttctttatcc	tcccaggaaa	agacccctccct	68760
ctgacagaga	gaataaacac	ttgttagagc	tccatttcat	aaaagaagaa	gtgacttttt	68820
aaaaaaacaca	agccatttgg	ctgtgcttca	ccataaataa	ttgtatttct	gtctgctcac	68880
ctcgtaaaga	tagtttagt	tctgcgtagt	agtgacattt	tgagaaagag	gtgaagtaat	68940
tgctctttaga	gcgtgtggca	gcatccaagt	cggctgaggc	caatggaaag	atgggagcat	69000
ccagaagaat	aagcaactgc	cagggttccc	ctttcaagg	ccttggtttt	cctttactcc	69060
agacgcactc	ccccaaaaag	gatccttcct	tatagagaag	cgttttaca	gtgttgacta	69120
gaaagcaata	ccgtaaaatc	aattaaattt	tgtcaatgta	ttagtgcctt	catttgttac	69180
aagttgcctt	tcagatacta	tttcattaaa	ataattcttt	atgtggttt	ataacaggat	69240
aagctctgaa	cagataagta	agtggggga	agttagaaata	ggagtaaaaa	gtaaaataaa	69300
gccagagata	aagtaaaaat	gcaaaaatgc	ccttggaaaga	tcatgtacag	tggctaaatc	69360
taaacataaa	ttgggtccctg	agtctccaaa	gtacagaagg	aaattaccag	ttgctaaatc	69420
cacaacattc	acaaaagaaa	aacaacttga	ccagggaaac	acaactatta	ccggtactga	69480
gactcatgat	aaatttctac	actgtgtat	gtggggact	atgttcatga	gagcatcttt	69540
acaataaatg	caggggtcac	tttgtgcagc	ttcttataat	gtctttccac	aaggacaaca	69600
ttctaatgcg	cagctcaatt	ttttagaagc	aaaggggatg	aggaggtttt	tttccactt	69660
agggtgtaga	aagccaccag	ataaccattc	ctactctaaa	aatgagaaaa	aaccagatag	69720
tatataagat	tataactttt	tgagcctttt	aatgaactga	gataggagag	caaccagaag	69780
aactgaattt	cagaggaaac	acacaaaccg	tttcaacttc	agcggagttat	gggaggaaga	69840
ggtaatggcc	ataagagtgg	gaaagaagaa	aacaacagaa	atttcaatga	attatcaata	69900
gctgagtgga	acctagcatg	agattagaat	ccctgggaga	ctcagacact	tggctgaaca	69960
agcatccaga	tctgccccag	gatgaggagt	ttcctgggac	acaggacttt	ctgtgctcaa	70020

pto PB0262.txt

actggaaaag tcctaggcag accaggatga cctggtcacc ttagtctggc tgccaggct 70080
tttaccaga cctccacctg gagcttatga ggtgggttgg ggacaggaa ggggatctga 70140
gagggccctt ctttgtggt gcatagttac aaaagcccac tgtatttagtt cgttttcatg 70200
ctgctgataa agacataacct gaaactggga acaaaaagag gttaattgg acttacagtt 70260
ccacatggct ggggaggcct cagaatcatg gctgtggaaa gagaaaaatg aggaaaaaagc 70320
aaaagcggaa atccctgata aacccatcag atctcgtgag acttattcac tatcacgaga 70380
atagcatggg aaagaccagc ccccatgatt caattacctg cccctgggc cctcctacaa 70440
catgtggaa ttctggaga tacaattcaa gttgagattt aggtggggac acagccaaac 70500
catatcatcc cacccctggc ccctccaaat ctcatgtcct cacatttcaa aaccaatcat 70560
accttcccaa cagtccccca aagtgttaat tcatttcagc attaacccaa agtccacagt 70620
ccaaataactc atttgagaca aagcaagtcc cttctaccta ggagcctgta aaatcaaaag 70680
aaagctagtt acttcctaga tacaatgtgg gtacaggtat tcggtaata cagccattct 70740
gaatgggaga aattggccaa aacaaagggg ttacagggcc catgaagtc cagaatccag 70800
caggtcagtc aaattttaaa gctccaaat gatctccgtt gactccaggt ctgcacatcca 70860
ggtaacgctg atgcaagagg tgggttccca tggctttggg cagctccacc cctgtggcct 70920
tgcagggtagc agcctccctt ccggctgact tcacgagctg gtgtttagta tctgtggcct 70980
ttccaggcac gtggtgcaag ctgttggtgg atctaaaatt ctggatctg gagaacagt 71040
gccctttct cacagctcca cttaggcagtg ccccagtagg gactctgtgt gggtcttga 71100
ccccacattt cccttccaca ctgccctatc agaggtctc cataagagcc ctgcccctgc 71160
agcaaactg cctgggcattc caggttttc catacatctt ctgaaatcta tgcagaggtt 71220
cccaaacctc agtttttgc ttctgtgcac ctgcaggctc aacatcacat ggaaggtgcc 71280
aaggcttgg aaaaaaaaaa tctaaggcca cattctgagc tgtacattgg cccctttcag 71340
ccatgggtgg agcagcttgg aaaaaaaaaa ccaagttccct aggctgcaca cagttaggg 71400
accctgggcc cagcccttga agccactttt tcctcctggg cctccaggcc tgtgtatggg 71460
ggagctgctg tgaaggctcg tgacgtggcc tagagacatt ttccccatgg tcttgggat 71520
taacattagg ctcccttgcta tttatgaaaa tttctacagc tggcttgaat atctccccag 71580
aaaatgggtt tttttttct atcacattgt caggctgcaa atttctaaa cttttgtct 71640
ctgcacccctt tgtaaaactg aatgccttta atagtacccaa agtcatctt tgaatgcctt 71700
gttgctttaga aatttcttcc accagatatac ctaaatcatc tttctcaagt tccacaaatc 71760
tctaggacgg gggccaaatg cctccagttt ctttgcataaa acataacaag agtcacccctt 71820
agtcttagttc ccaataagtt tctcatctcc atctgagacc accccagcct ggaccttatt 71880
gtccacattt ctagcagcat tttggcaaa gccattcaac aagtttttag gaggttccaa 71940

pto_PB0262.txt

actttcccac	atttcctgt	cttcttctga	gccctccaaa	ctgttccaac	ctctgcctgt	72000
tacccagttc	caattccaca	tttttggta	tctttcagc	aatgctccac	tctactgcta	72060
ctaatttact	gtatgagttc	atttcacac	tgctgataaa	gacatacctg	aaagtggaa	72120
caaaaagagg	tttaattgga	cttacagtta	tatatggcta	gggaggccctc	agaatcatgg	72180
tgggggggtga	aaggcattcc	ttacatggtg	gtggcaagag	acaaatgaga	atatcactat	72240
cacgagaata	gcacgggaaa	gactggcccc	catgattcaa	ttacctcccc	cgggtccctc	72300
acacagcacg	tggaaattct	gaaagataca	attcaagttg	agattcgggt	ggggtcacag	72360
ccaaactata	tcacccaccc	tcttccaggg	ctttctgtta	tagaaagcaa	aacctgcaag	72420
cctctggag	agggatacga	aaccctcctt	ctctaagaca	caggcaaaagg	tccactgact	72480
ctaggggagg	ggataaaagca	aaaaagaacc	agaaaagagg	gcattcagga	aactgcccc	72540
tcccctgcta	tactgtcact	gagaaagggg	tagaaacaaa	aactatttct	tctaaggggg	72600
tgggtgggga	gaaggcagca	aatccagcaa	ctctgaccaa	gagccttgtt	ccaaggagca	72660
agcattagca	ggctactgca	tggacatcgg	gaaatggccc	cagtctcagg	caatgttaca	72720
ctgatgctga	tggaggggta	gatgcagaag	ctgtctgtcc	tcaaggaggg	gagaggaaac	72780
ccaatctgga	cagaagcctg	cagagctaca	aagaagaggt	ctgcatcact	acgggtccct	72840
cctgactaag	actcccccac	agtccagcat	ttggctgcag	agtgtggat	atggtgcagg	72900
aatgctgaga	attccacacc	atagtggccg	agcccttag	gactcaccta	agactgaggc	72960
tggagtaggg	gcgcctagga	actatcctaa	gtccagcata	cacctcacac	ccaatagtga	73020
gcaagagcaa	agaagaaaag	aaggaaatt	tcaacaaatt	atcaatagtt	gagtggggcc	73080
tagcatgagt	ttagaatccc	tgggagccctc	agatactcg	ttgaccaagc	accagttct	73140
cccccagact	gaggggtttc	ctgggacaca	ggactttcca	tgcttaaact	gcaaaagttc	73200
cccgcaaacc	gggatgagtt	ggtctctact	gctggggagc	acacagagag	aaccacgcat	73260
gtggcacagg	catgctgaga	gctgagagta	gagaagaaac	aaggaatagc	ccctctggcc	73320
ctccaggcct	cacagtaagc	acaaggcagc	agcagctcat	cgtggaaaga	atctgaggag	73380
tgtgatgcat	tacaagttaa	ttcagtaaaa	caaacccaa	atctagcctg	ttcccccagc	73440
cccccaactta	tgatctggta	gaaaaggcaa	gcttaattct	gggtataaaat	actatttacc	73500
tcaataaaac	aaggcaaaaa	acaaaaagat	aatccactgt	gacgagataa	agcagtcaac	73560
agaatgagac	aaagaagtgg	tccagatatt	agaactatca	gatagggaca	ttaaactaat	73680
tatcattaat	atatagaagg	atctagagga	aaaggtggtg	aacatgcatg	agcagatgaa	73740
gaatgtcagc	agaaagacaa	aaactaaaca	aattccaagg	gaaatgctga	caaatctccc	73800
cacaacatca	agagataaag	aattaatggg	cttggcagcc	tggatacagt	aaaaaatcag	73860

pto_PB0262.txt

taaaacttcaa gacagatcaa tagatttatac caaactgaat caaagagaga aaaaaatatg 73920
 tgtaattaga gtcccataag ggtggggtgg ggcagaaggg ggaggggaga gagagagaga 73980
 gataaaattga gacagaagat ttcttaagca aatgcataaa gagaaagcag acagttagtc 74040
 ctcatctgga aaactgtgaa gtgggtgaaa tctaattgtga gcaaattgatt atccctttc 74100
 ttctggcatc atactttctg gtatgtgcc agaagaaaga ggttacctgt taaagaatat 74160
 ccaaactatg ttagttgttgc acagcacaag gtctgattgt atccagggta tatttgcatt 74220
 tcactgaagg aacatttgca taaagatgga aggtcttcaa ggtccacatt aatgaattt 74280
 tggtaaaata tccaccctct gcccagctaa tggactaat ttgaggtcca taccttatct 74340
 aagaccactc atacacatca ttcaagtgg tactcacatt aaaccttcta ggatgaaggc 74400
 tggactttta taccattgttgc actcaaagggtt gtcagccac agggcagaga 74460
 ggggctggag ctgtgagcct gcttcctggg tcagtaattt tgtttctgtg ctctatgaga 74520
 ctgatgcaca aacttggagg ctcaggactg tgacagtccc caacaccaga cagtctagca 74580
 gagcacctag agccaggaac tttccctcca acagttgccc tatggttgtg ctttcaaag 74640
 tattgtttctt ggacccttcc atcagaatttgc ccaaggtgct cctattctgt ctgatctact 74700
 ttgacattta gtcatgttctt caccacactt tatcccaccc ttccagagcc accactatct 74760
 ctcagaatttgc tcataaaagt ttctcaactg atctccccac ttccatactt gctccccat 74820
 agtgtattctt caacacagca agcagtcaga gtgatacttt tataagtact tgtaaacctt 74880
 ttccgatcatcat cttcaaaaca gtatttgggc tcccatctca cccagagcaa aagagtaagt 74940
 ctttgcagtg gcctacaaag ctctacagaa tctggctcc attacctctc tgactttatc 75000
 tcctgttgcctt ctccatgtgg cccactgtcc actaccatgc tgacttcctg gaagatcctc 75060
 aaaacccctt cagccctagg atctttgcac atgctcactc ctctgccttag aacgcttcc 75120
 tttcagacac tcacgtggct cacctctcac ttccattcagg tgccctgcata aataccgcgt 75180
 tgtaagaaag gtctttctgtt cccatctgt tcaacatagt gccccactcc tacccttgg 75240
 acactttctg ccttataccctt ataatggttt tcaaaggact tacaccgtct aatacacaag 75300
 acagttccata gtttatgtgt tcattctctg tctttccca ctagactata agcccccgaa 75360
 ggcaaggact tgtgtgtttt gtcctctgct gtgtcatcag tatttgcattt ggtgcctggc 75420
 ataaaaatgag agcttagtaa atatttatac tatgggaaga gctagaagca aattttcctt 75480
 tctctaaatg tgggggtact tggagagaaa aggactccta aacatggcta aaacatgtac 75540
 aaactttact gctgcttccc atcatcctga gacctggag gaataaaaga aaggatggca 75600
 agctgaatgg gattttaaag gctagatctt gccattcttag gtaattaata catgactcct 75660
 gctcatgata aagaagggtgg tgggtttgc atcagtgtat ggatctctaa gggggctggg 75720
 cctggtatca tccagtcaag catagagcag agtgcaggc caggtcctgg caggtgtgg 75780

pto_PB0262.txt

ggaagattgg cagtggccac tggatgaggt gcatgtcctg atgcctcagg cagtcctgga 75840
 cagacggtca tttggctcct tccttttggc ataggttggc cacttgtcaa gtgtggccag 75900
 gccttcaggc tgggctgctc ggtcataagt aatacactaa cctggctggg cacggtggt 75960
 catgcctgtta atcccagcac tttgggaggc cgagaaggc ggatcacgag gtcaggagat 76020
 caagaccatc ctggctaaca tggtaaaacc ccgtctctac taaagaaata caaaaaatta 76080
 gccgggcatg gtagcgggcc cctgttagtcc cagctactgg cgaggctaag gcaggagaat 76140
 ggtgtgaacc cgggaggcgg ggcttgcagt gagccgagat cgccaccactg cactccagcc 76200
 tgggtgacag aacaagactc tatctcaaaa aaaaaaaaaaaa aaaaaatagt aatacactaa 76260
 ccctttaaac acacacacac acacacaaac acacacacac aaacaagcac agttccacat 76320
 ttcaactctc attctggtgc c 76341

<210> 42
 <211> 201
 <212> DNA
 <213> Homo sapiens

<220>
 <221> SNP
 <222> (101)..(101)
 <223> Alternative allele: G.

<300>
 <308> NCBI SNP CLUSTER ID: rs2687116
 <309> 2003-03-07

<400> 42
 ccctttgtgg aaaacaccaa gaagctttt agatttgatt ttttggatcc attctttctc 60
 tcaataagta tgtggactac tatttccttt tatttatctt tctctcttaa aaataactgc 120
 tttattgaga tataaatcac catgtattc atccacttaa aatatacagt tcagtgattt 180
 gtagtacatt tgaagatatg t 201

<210> 43
 <211> 189
 <212> DNA
 <213> Homo sapiens

<220>
 <221> SNP
 <222> (89)..(89)
 <223> Alternative allele: T.

<300>
 <308> NCBI SNP CLUSTER ID: rs1851426
 <309> 2003-03-07

<400> 43
 ttgggtgtgt ggcgggtgtg tccgcgtttt aaaaagcgcc gcacgctttg aactccaatt 60
 Page 88

pto_PB0262.txt

ccaccccaa gaggctggga ccatcttact ggagtccctg atgctgtgtg acctgcagtg 120
 accactgccc catcattgct ggctgaggtg gttgggtcc atctggctat ctggcagct 180
 gttctcttc 189

<210> 44
 <211> 281
 <212> DNA
 <213> Homo sapiens

<220>
 <221> SNP
 <222> (181)..(181)
 <223> Alternative allele: A.

<300>
 <308> NCBI SNP CLUSTER ID: rs676033
 <309> 2003-03-07

<400> 44
 actattctcc tgccctaatac agccaggtcc aggttaacaga aaagtaaaga cagccgctgt 60
 accccagagc ctgctaaaag tattcaaacg agctaattcct aagcctgatt accttgtcat 120
 gcccactctt tcctgcagaa actacagtaa aggctcttgc ccaccttgac ccctcactcc 180
 ggctgcctcc taacactggt gcttctccat gtggcttgg gtgggtgtgct gtgtcttctg 240
 tttgttaggga tctgtcgata taaacctttt cttcacgat a 281

<210> 45
 <211> 160
 <212> DNA
 <213> Homo sapiens

<220>
 <221> SNP
 <222> (81)..(81)
 <223> Alternative allele: A.

<300>
 <308> NCBI SNP CLUSTER ID: rs1042578
 <309> 2003-03-07

<400> 45
 ggtactaaagc acagaaaactc actatataag tcacatagga aacttgaaag gtctgaggat 60
 gatgttagatt actaaaaat gcaaattgca atcatataaa taagtgtttt tgggtttcat 120
 taaataccctt taaatcatgg atgtaagcag tttgttgata 160

This Page Blank (uspto)