Date:08/03/2021

Roll No : 757

Practical No: 04

<u>Aim:</u> Practical of Clustering.

Theory:

- **1.** Clustering: Clustering is a technique of data segmentation that partitions the data into several groups based on their similarity. Basically, we group the data through a statistical operation. These smaller groups that are formed from the bigger data are known as clusters.
- **2. k-means clustering:-** *k*-means clustering is a method of vector quantization, originally from signal processing, that aims to partition *n* observations into *k* clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster.

3. What is Iris dataset?

The *Iris* flower data set or Fisher's *Iris* data set is a multivariate data set introduced by the British statistician, eugenicist, and biologist Ronald Fisher in his 1936 paper *The use of multiple measurements in taxonomic problems* as an example of linear discriminant analysis.

Input:

1)iris

> i	ris				
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa
7	4.6	3.4	1.4	0.3	setosa
8	5.0	3.4	1.5	0.2	setosa
9	4.4	2.9	1.4	0.2	setosa
10	4.9	3.1	1.5	0.1	setosa
11	5.4	3.7	1.5	0.2	setosa
12	4.8	3.4	1.6	0.2	setosa
13	4.8	3.0	1.4	0.1	setosa
14	4.3	3.0	1.1	0.1	setosa
15	5.8	4.0	1.2	0.2	setosa
16	5.7	4.4	1.5	0.4	setosa
17	5.4	3.9	1.3	0.4	setosa
18	5.1	3.5	1.4	0.3	setosa
19	5.7	3.8	1.7	0.3	setosa
20	5.1	3.8	1.5	0.3	setosa
21	5.4	3.4	1.7	0.2	setosa

T.Y.B.Sc.C.S SEM-VI

2) **summary** is a generic function used to produce result summaries of the results of various model fitting functions.

Roll No : 757

INPUT:

> summary(iris)

```
> summary(iris)
  Sepal.Length
                  Sepal.Width
                                  Petal.Length
                                                  Petal.Width
Min.
        :4.300
                                        :1.000
                                                        :0.100
                Min.
                        :2.000
                                                 Min.
                                 Min.
1st Qu.:5.100
                                                 1st Qu.:0.300
                1st Qu.:2.800
                                 1st Qu.:1.600
                                 Median :4.350
Median :5.800
                Median :3.000
                                                 Median :1.300
        :5.843
                        :3.057
                                       :3.758
                                                        :1.199
Mean
                Mean
                                 Mean
                                                 Mean
 3rd Qu.:6.400
                3rd Qu.:3.300
                                 3rd Qu.:5.100
                                                 3rd Qu.:1.800
        :7.900
                Max. :4.400
                                Max. :6.900
                                                        :2.500
                                                 Max.
       Species
           :50
 setosa
 versicolor:50
virginica:50
```

>

❖ Plot function is used to plot graphs in R Studio .If we don't specify the graph type the R Studio consider default type i.e. Scatter Plot.

3) INPUT:

```
> plot(df[c("Petal.Length","Petal.Width")],col="blue")
> |
```


INPUT:

4) Plot is a Generic function for plotting of R objects. Here we plot a scatterplot of (Sepal Length, Sepal Width) as points.

Roll No : 757

```
plot(df[c("Sepal.Length", "Sepal.width")], col="red")
                                   Ö
      0
      4
                                                                  Ö
Sepal.Width
      LO
      ത
      0
      ത്
                                                                  Ö
      LΩ
      αi
      O,
               4.5
                       5.0
                              5.5
                                      6.0
                                              6.5
                                                      7.0
                                                             7.5
                                                                     8.0
                                  Sepal.Length
```

❖ In R studio for assigning a dataset or value to variable we use(<-) arrow with dash(minus sign).

INPUT:

5) We copy iris dataset into a new variable newiris for future manipulation.

INPUT:

6) Here we disable the species column by providing NULL values to all rows. Command: newiris\$Species<-NULL

```
> newiris$Species<-NULL
|> newiris$species<-NULL
|> |
```

T.Y.B.Sc.C.S SEM-VI

newiris 150 obs. of 4 variables **7) INPUT:** > newiris > newiris Sepal.Length Sepal.Width Petal.Length Petal.Width 1 5.1 3.5 1.4 0.2 2 4.9 3.0 1.4 0.2 3 4.7 3.2 1.3 0.2 4 4.6 3.1 1.5 0.2 5 5.0 3.6 1.4 0.2 6 3.9 5.4 1.7 0.4 7 4.6 3.4 1.4 0.3 8 0.2 5.0 3.4 1.5 9 4.4 2.9 1.4 0.2 10 4.9 3.1 1.5 0.1 11 5.4 3.7 1.5 0.2 12 4.8 3.4 0.2 1.6 13 4.8 3.0 1.4 0.1 14 4.3 3.0 0.1 1.1 15 5.8 4.0 1.2 0.2 4.4 1.5 0.4 16 5.7 17 5.4 3.9 1.3 0.4 18 5.1 3.5 1.4 0.3 19 5.7 3.8 1.7 0.3 20 5.1 3.8 1.5 0.3 21 5.4 3.4 1.7 0.2 22 5.1 3.7 1.5 0.4 23 4.6 3.6 1.0 0.2 24 5.1 3.3 1.7 0.5 25 4.8 3.4 1.9 0.2 5.0 3.0 0.2 26 1.6 27 5.0 3.4 1.6 0.4 28 3.5 5.2 1.5 0.2 29 5.2 3.4 1.4 0.2 30 4.7 3.2 0.2 1.6 31 4.8 3.1 1.6 0.2 32 5.4 3.4 1.5 0.4 33 5.2 4.1 1.5 0.1 34 5.5 4.2 1.4 0.2 35 4.9 3.1 1.5 0.2 36 5.0 3.2 1.2 0.2 37 5.5 3.5 1.3 0.2 38 4.9 3.6 1.4 0.1 39 4.4 3.0 1.3 0.2 40 5.1 3.4 1.5 0.2

Roll No: 757

8) kmeans Performs k-means clustering on a data matrix, with k cluster centers.

Roll No : 757

COMMAND: (kc<-kmeans(newiris,3))

INPUT:

```
> (kc<-kmeans(newiris,3))
> (kc<-kmeans(newiris,3))
K-means clustering with 3 clusters of sizes 38, 50, 62
cluster means:
 Sepal.Length Sepal.Width Petal.Length Petal.Width
    6.850000 3.073684 5.742105
5.006000 3.428000 1.462000
                               2.071053
                    4.393548
    5.901613
           2.748387
                               1.433871
Clustering vector:
 [127] 3 3 1 1 1 1 1 3 1 1 1 1 3 1 1 1 3 1 1 1 3 1 1 3 3 1 1 3
Within cluster sum of squares by cluster:
[1] 23.87947 15.15100 39.82097
 (between_SS / total_SS = 88.4 \%)
Available components:
[1] "cluster"
              "centers"
                         "totss"
                                   "withinss"
                                              "tot.withinss"
                        cotss"
"iter"
[6] "betweenss"
                                   "ifault"
              "size"
```

9)kc\$size gives the number of points in each cluster.

INPUT:

```
> kc$size
> kc$size
[1] 38 50 62
```

10) **kc\$cluster** A vector of integers (from 1:k) indicating the cluster to which each point is allocated.

COMMAND:kc\$cluster

INPUT:

11) kc\$centers returns a matrix of cluster centres.

[COMMAND:kc\$centers

INPUT:

12) **kc\$withinss** returns a Vector of within-cluster sum of squares, one component per cluster.

Roll No: 757

COMMAND: kc\$withinss

INPUT:

```
> kc$withinss
> kc$withinss
[1] 23.87947 15.15100 39.82097
```

13) **kc\$tot.withinss** returns the Total within-cluster sum of squares, i.e.sum(withinss)

COMMAND: kc\$tot. withinss

Output:

```
> kc$tot.withinss
[1] 78.85144
```

14) kc\$betweenss returns the between-cluster sum of squares, i.e.totss-tot.withinss.

INPUT:

```
> kc$betweenss
> kc$betweenss
[1] 602.5192
> |
```

15) table uses the cross-classifying factors to build a contingency table of the counts at each com bination of factor levels. Here we construct a table with species wise breakdown of clusters

COMMAND: table(iris\$Species,kc\$cluster)

INPUT:

T.Y.B.Sc.C.S SEM-VI

16) COMMAND:

plot(newiris[c("Sepal.Length","Sepal.Width")],col=kc\$Species)

INPUT:

> plot(newiris[c("Sepal.Length","Sepal.width")],col=kc\$Species)
> |

Roll No : 757

17) COMMAND:

plot(newiris[c("Petal.Length","Petal.Width")],col=kc\$Species)

INPUT:

> plot(newiris[c("Petal.Length","Petal.Width")],col=kc\$species)
> |

18) COMMAND: plot(newiris[c("Sepal.Length","Sepal.Width")],col=kc\$cluster)

INPUT:

```
> plot(newiris[c("Sepal.Length","Sepal.Width")],col=kc$cluster)
> plot(newiris[c("Sepal.Length","Sepal.width")],col=kc$cluster)
> |
```

Roll No : 757

19) COMMAND:

$plot(newiris[c("Petal.Length","Petal.Width")], col=kc\\cluster)INPUT:$

- > plot(newiris[c("Sepal.Length","Sepal.Width")],col=kc\$cluster)
- > points(kc\$centers[,c("Sepal.Length","Sepal.Width")],col=1:3,pch=8,cex=2)

```
> plot(newiris[c("Sepal.Length","Sepal.Width")],col=kc$cluster)
> points(kc$centers[,c("Sepal.Length","Sepal.Width")],col=1:3,pch=8,cex=2)
>
```


5.0

4.5

5.5

Roll No : 757

20) points is a generic function to draw a sequence of points at the specified coordinates. The specified character(s) are plotted, centered at the coordinates.

6.0

Sepal.Length

6.5

7.0

7.5

8.0

COMMAND:

plot(newiris[c("Sepal.Length", "Sepal.Width")], col=kc\$cluster)
points(kc\$centers[,c("Sepal.Length", "Sepal.Width")], col=1:3, pch=8, cex=2)

INPUT:

```
> plot(newiris[c("Petal.Length","Petal.Width")],col=kc$cluster)
```

```
> plot(newiris[c("Petal.Length","Petal.Width")],col=kc$cluster)
> |
```


INPUT:

- > plot(newiris[c("Petal.Length","Petal.Width")],col=kc\$cluster)
- > points(kc\$centers[,c("Petal.Length","Petal.Width")],col=1:3,pch=8,cex=2)

Roll No : 757

```
> plot(newiris[c("Petal.Length","Petal.Width")],col=kc$cluster)
> points(kc$centers[,c("Petal.Length","Petal.Width")],col=1:3,pch=8,cex=2)
> |
```


Conclusion:

We can segregate data clusters using k means clustering and find centers of cluster