# **FCC Test Report**

**Application Purpose** : Original grant

**Applicant Name:** : TECNO MOBILE LIMITED

FCC ID : 2ADYY-CXAIR

**Equipment Type** : Mobile phone

Model Name : CX Air

**Report Number**: FCC17030129A-7

**Standard(S)** : FCC Part 15 Subpart E

Date Of Receipt : March 13, 2017

Date Of Issue : March 27, 2017

Test By :

(Daisy Qin)

Reviewed By

(Sol Qin)

Authorized by

(Michal Ling)

Prepared by

QTC Certification & Testing Co., Ltd.

2nd Floor,B1 Building,Fengyeyuan Industrial Plant,,Liuxian

2st.Road,Xin'an Street,Bao'an District,,Shenzhen, 518000China. **Registration Number: 588523** 

# REPORT REVISE RECORD

| Report Version Revise Time |              | Issued Date | Valid Version  | Notes |                 |  |
|----------------------------|--------------|-------------|----------------|-------|-----------------|--|
| \                          | <b>/</b> 1.0 | /           | March 27, 2017 | Valid | Original Report |  |

| Table of Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Page                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 1. GENERAL INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                      |
| 2. TEST DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7                                                                                      |
| 2.1 MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                                                      |
| 2.2 DESCRIPTION OF TEST MODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                                      |
| 2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                                      |
| 2.4 CONFIGURATION OF SYSTEM UNDER TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                     |
| 2.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                     |
| 3. SUMMARY OF TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                     |
| 4. MEASUREMENT INSTRUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                     |
| 5. EMC EMISSION TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13                                                                                     |
| 5.1 CONDUCTED EMISSION MEASUREMENT 5.1.1 POWER LINE CONDUCTED EMISSION LIMITS 5.1.2 TEST PROCEDURE 5.1.3 DEVIATION FROM TEST STANDARD 5.1.4 TEST SETUP 5.1.5 EUT OPERATING CONDITIONS 5.1.6 TEST RESULTS  5.2 RADIATED EMISSION MEASUREMENT 5.2.1 RADIATED EMISSION LIMITS 5.2.2 TEST PROCEDURE 5.2.3 DEVIATION FROM TEST STANDARD 5.2.4 TEST SETUP 5.2.5 EUT OPERATING CONDITIONS 5.2.5.1 RESULTS (BELOW 30 MHZ) 5.2.5.2 TEST RESULTS (BETWEEN 30M – 1000 MHZ) 5.2.5.3 TEST RESULTS (16HZ TO 40GHZ) | 13<br>13<br>14<br>14<br>14<br>15<br>17<br>17<br>18<br>18<br>19<br>20<br>21<br>22<br>24 |
| 6. ANTENNA APPLICATION 7 FCC PART 15.407 REQUIREMENTS FOR 802.11A/N SYSTEMS 7. 1 Test Equipment 7. 2 Test Procedure 7. 3 Test Setup 7. 4 Configuration of the EUT 7. 5 EUT Operating Condition 7. 6 Limit 7. 7 Test Result                                                                                                                                                                                                                                                                           | 34<br>35<br>35<br>36<br>36<br>36<br>37<br>38                                           |

#### 1. GENERAL INFORMATION

# GENERAL DESCRIPTION OF EUT

|                             | TION OF EUT                                                                                                                   |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Test Model                  | CX Air                                                                                                                        |
| Applicant                   | TECNO MOBILE LIMITED                                                                                                          |
| Address                     | ROOMS 05-15, 13A/F., SOUTH TOWER, WORLD FINANCE CENTRE,<br>HARBOUR CITY, 17 CANTON ROAD, TSIM SHA TSUI, KOWLOON, HONG<br>KONG |
| Manufacturer                | SHENZHEN TECNO TECHNOLOGY CO.,LTD.                                                                                            |
| Address                     | 1-4th Floor,3rd Building,Pacific Industrial Park,No.2088,Shenyan<br>Road,Yantian District,Shenzhen,Guangdong,China            |
| Equipment Type              | Mobile phone                                                                                                                  |
| Brand Name                  | TECNO                                                                                                                         |
| Hardware<br>version:        | V1.1                                                                                                                          |
| Software version:           | CX Air-H3713B1-N-170209V2                                                                                                     |
| Extreme Temp.<br>Tolerance  | -10℃ to +65℃                                                                                                                  |
| Battery information:        | Li-Polymer Battery : BL-32BT<br>Voltage: 3.85V Capacity: 3200mAh<br>Limited Charge Voltage: 4.4V                              |
| Adapter<br>Information:     | Adapter: A8-501000<br>Input: 100~240V 50/60Hz 200mA<br>Output: 5V~1A                                                          |
| Operating<br>Frequency      | see the below table                                                                                                           |
| Channels                    | see the below table                                                                                                           |
| Channel Spacing             | see the below table                                                                                                           |
| Modulation Type             | see the below table                                                                                                           |
| Antenna Type:               | PIFA Antenna                                                                                                                  |
| Antenna gain:               | -1.4dBi                                                                                                                       |
| Data of receipt             | March 13, 2017                                                                                                                |
| Date of test                | March 13, 2017 to March 27, 2017                                                                                              |
| Deviation                   | None                                                                                                                          |
| Condition of<br>Test Sample | Normal                                                                                                                        |

# **EUT Specification:**

| Items                | Descri                                                                                                        | iption                                                                                                      |  |  |  |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Modulation           | IEEE 802.11a: OFDM IEEE 802.11n: see the below table IEEE 802.11ac: see the below table                       |                                                                                                             |  |  |  |  |  |
| Data Modulation      |                                                                                                               | IEEE 802.11n: OFDM (BPSK / QPSK / 16QAM / 64QAM) IEEE 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM) |  |  |  |  |  |
| Data Rate (Mbps)     | IEEE 802.11a: OFDM 6,9,12,18,24,36,4 IEEE 802.11n: MCS 0-15 up to 150 Mb IEEE 802.11ac: MCS 0-9 up to 866.7 M | ps                                                                                                          |  |  |  |  |  |
| Frequency Range      | Band 1: 5150 MHz ~ 5250 MHz<br>Band 4: 5725 MHz ~ 5850 MHz                                                    |                                                                                                             |  |  |  |  |  |
| Channel Number       | 13 for 20MHz bandwidth; 6 for 40MHz                                                                           | bandwidth ;                                                                                                 |  |  |  |  |  |
| Communication Mode   | ⊠IP Based (Load Based)                                                                                        | ☐Frame Based                                                                                                |  |  |  |  |  |
| TPC Function         | ☐With TPC                                                                                                     | ⊠Without TPC                                                                                                |  |  |  |  |  |
| Weather Band         | ☐With 5600~5650MHz                                                                                            | ⊠Without 5600~5650MHz                                                                                       |  |  |  |  |  |
| Beamforming Function | ☐With beamforming                                                                                             |                                                                                                             |  |  |  |  |  |
| Operating Mode       | Outdoor access point                                                                                          | ☐Indoor access point                                                                                        |  |  |  |  |  |
|                      | ☐Fixed point-to-point access points                                                                           |                                                                                                             |  |  |  |  |  |
|                      | ☐Master                                                                                                       | ☐Slave with radar detection                                                                                 |  |  |  |  |  |
|                      | ☐Slave without radar detection                                                                                |                                                                                                             |  |  |  |  |  |

| Antenna         | One (TX) |        |  |  |  |  |
|-----------------|----------|--------|--|--|--|--|
| Band width Mode | 20 MHz   | 40 MHz |  |  |  |  |
| IEEE 802.11a    | V        | X      |  |  |  |  |
| IEEE 802.11n    | V        | V      |  |  |  |  |
| IEEE 802.11ac   | V        | V      |  |  |  |  |

| Protocol        | Number of<br>Transmit Chains (NTX) | Data Rate / MCS |
|-----------------|------------------------------------|-----------------|
| 802.11n (HT20)  | 1                                  | MCS 0-15        |
| 802.11n (HT40)  | 1                                  | MCS 0-15        |
| 802.11ac (HT20) | 1                                  | MCS 0-9         |
| 802.11ac (HT40) | 1                                  | MCS 0-9         |

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT supports HT20 and HT40 .
Note 2: Modulation modes consist of below configuration:

HT20/HT40: IEEE 802.11n HT20/HT40: IEEE 802.11ac

| We hereby certify that:                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All measurement facilities used to collect the measurement data are located at QTC Certification &                                                                                                                                                                                                                                                                                                               |
| Testing Co., Ltd.                                                                                                                                                                                                                                                                                                                                                                                                |
| Registration Number: 588523                                                                                                                                                                                                                                                                                                                                                                                      |
| The data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C 63.10:2013. The sample tested as described in this report is in compliance with the FCC Rules Part15 Subpart E.  All the testing was referenced KDB NO. 789033.  The test results of this report relate only to the tested sample identified in this report. |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                  |

# 2. TEST DESCRIPTION

#### **2.1 MEASUREMENT UNCERTAINTY**

The reported uncertainty of measurement  $\mathbf{y} \pm \mathbf{U}$ , where expended uncertainty  $\mathbf{U}$  is based on a standard uncertainty multiplied by a coverage factor of  $\mathbf{k=2}$ , providing a level of confidence of approximately 95 %  $^{\circ}$ 

| No. | Item                          | Uncertainty |
|-----|-------------------------------|-------------|
| 1   | Conducted Emission Test       | ±3.2dB      |
| 2   | RF power, conducted           | ±0.16dB     |
| 3   | Spurious emissions, conducted | ±0.21dB     |
| 4   | All emissions, radiated(<1G)  | ±4.7dB      |
| 5   | All emissions, radiated(>1G)  | ±4.7dB      |
| 6   | Temperature                   | ±0.5°C      |
| 7   | Humidity                      | ±2%         |

#### 2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

| Pretest Mode | Description |  |  |  |
|--------------|-------------|--|--|--|
| Mode 1       | 802.11a     |  |  |  |
| Mode 2       | 802.11n20   |  |  |  |
| Mode 3       | 802.11n40   |  |  |  |
| Mode 4       | 802.11ac20  |  |  |  |
| Mode 5       | 802.11ac40  |  |  |  |

| For Conducted Emission |             |  |  |  |  |
|------------------------|-------------|--|--|--|--|
| Final Test Mode        | Description |  |  |  |  |
| Mode 1                 | 802.11a     |  |  |  |  |

| For Radiated Emission |             |  |  |  |  |  |
|-----------------------|-------------|--|--|--|--|--|
| Final Test Mode       | Description |  |  |  |  |  |
| Mode 1                | 802.11a     |  |  |  |  |  |
| Mode 2                | 802.11n20   |  |  |  |  |  |
| Mode 3                | 802.11n40   |  |  |  |  |  |
| Mode 4                | 802.11ac20  |  |  |  |  |  |
| Mode 5                | 802.11ac40  |  |  |  |  |  |

#### Note:

- (1) The measurements are performed at the highest, lowest available channels.
- (2) The EUT use new battery.
- (3) Record the worst case of each test item in this report.

#### 2.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS

| Test<br>Software          | N/A         |                                 |             |             |  |        |          |  |  |  |  |
|---------------------------|-------------|---------------------------------|-------------|-------------|--|--------|----------|--|--|--|--|
| Test                      |             | *#3646633#*                     |             |             |  |        |          |  |  |  |  |
| program                   |             |                                 |             |             |  |        |          |  |  |  |  |
| Mode                      |             | Test Frequency (MHz) NCB: 20MHz |             |             |  |        |          |  |  |  |  |
| 802.11a                   | 5180<br>MHz | 5240<br>MHz                     | 5745<br>MHz | 5825<br>MHz |  |        |          |  |  |  |  |
| 802.11n<br>MCS0<br>VHT20  | 5180<br>MHz | 5240<br>MHz                     | 5745<br>MHz | 5825<br>MHz |  |        |          |  |  |  |  |
| 802.11ac<br>MCS9<br>VHT20 | 5180<br>MHz | 5240<br>MHz                     | 5745<br>MHz | 5825<br>MHz |  |        |          |  |  |  |  |
| Mode                      |             |                                 |             |             |  | NCB: 4 | 0MHz     |  |  |  |  |
| 802.11n<br>MCS0<br>VHT40  | 5190<br>MHz | 5230<br>MHz                     | 5755<br>MHz | 5795<br>MHz |  |        |          |  |  |  |  |
| 802.11ac<br>MCS9<br>VHT40 | 5190<br>MHz | 5230<br>MHz                     | 5755<br>MHz | 5795<br>MHz |  |        | ll l 4l- |  |  |  |  |

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

#### 2.4 CONFIGURATION OF SYSTEM UNDER TEST



(EUT: Mobile phone)

| I/O Port of EUT |                      |                          |             |  |
|-----------------|----------------------|--------------------------|-------------|--|
| I/O Port Type   | Port Type Q'TY Cable |                          | Tested with |  |
| USB port        | 1                    | 1m USB cable, unshielded | 1           |  |
| Power           | 1                    | 1m                       | 1           |  |

#### 2.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Item | Equipment | Mfr/Brand | Model/Type No. | Series No. | Note |
|------|-----------|-----------|----------------|------------|------|
| 1    | Adapter   | /         | A8-501000      | /          | /    |
| 2    | Earphone  | /         | N/A            | /          | /    |

#### Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length\_"</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".
- (4) The adapter supply by the applicant.

# 3. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

| FCC Part15 Subpart C&E |                                                                    |          |          |  |
|------------------------|--------------------------------------------------------------------|----------|----------|--|
| Standard<br>Section    | Test Item                                                          | Judgment | Remark   |  |
| 2.1049<br>15.403(i)    | 26dB & 99% Bandwidth                                               | PASS     | Complies |  |
| 15.407(e)              | 6dB Spectrum Bandwidth                                             | PASS     | Complies |  |
| 15.407(a)              | Maximum Conducted Output Power                                     | PASS     | Complies |  |
| 15.407(a)              | Power Spectral Density                                             | PASS     | Complies |  |
| 15.407(b)              | Unwanted Emissions                                                 | PASS     | Complies |  |
| 15.207                 | AC Conducted Emission                                              | PASS     | Complies |  |
| 15.407(g)              | Frequency Stability                                                | PASS     | Complies |  |
| 15.407(c)              | Automatically Discontinue Transmission                             | PASS     | Complies |  |
| 15.203 &<br>15.407(a)  | Antenna Requirement                                                | PASS     | Complies |  |
| 15.407(h)              | Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS) | PASS     | Complies |  |

#### NOTE:

(1)" N/A" denotes test is not applicable in this test report.

# 4. MEASUREMENT INSTRUMENTS

| NAME OF<br>EQUIPMENT                    | MANUFACTURER              | MODEL        | SERIAL<br>NUMBER | Calibration<br>Date | Calibratio<br>n Due. |
|-----------------------------------------|---------------------------|--------------|------------------|---------------------|----------------------|
| EMI Test Receiver                       | R&S                       | ESCI         | 100005           | 08/19/2016          | 08/18/2017           |
| LISN                                    | AFJ                       | LS16         | 16010222119      | 08/19/2016          | 08/18/2017           |
| LISN(EUT)                               | Mestec                    | AN3016       | 04/10040         | 08/19/2016          | 08/18/2017           |
| Universal Radio<br>Communication Tester | R&S                       | CMU 200      | 1100.0008.02     | 08/19/2016          | 08/18/2017           |
| Coaxial cable                           | Megalon                   | LMR400       | N/A              | 08/12/2016          | 08/11/2017           |
| GPIB cable                              | Megalon                   | GPIB         | N/A              | 08/12/2016          | 08/11/2017           |
| Spectrum Analyzer                       | R&S                       | FSU          | 100114           | 08/19/2016          | 08/18/2017           |
| Pre Amplifier                           | H.P.                      | HP8447E      | 2945A02715       | 10/13/2016          | 10/12/2017           |
| Pre-Amplifier                           | CDSI                      | PAP-1G18-38  |                  | 10/13/2016          | 10/12/2017           |
| Bi-log Antenna                          | SUNOL Sciences            | JB3          | A021907          | 09/13/2016          | 09/12/2017           |
| 9*6*6 Anechoic                          |                           |              |                  | 08/21/2016          | 08/20/2017           |
| Horn Antenna                            | COMPLIANCE<br>ENGINEERING | CE18000      |                  | 09/13/2016          | 09/12/2017           |
| Horn Antenna                            | SCHWARZBECK               | BBHA9120D    | 9120D-631        | 08/23/2016          | 08/22/2017           |
| Cable                                   | TIME MICROWAVE            | LMR-400      | N-TYPE04         | 04/25/2016          | 04/24/2017           |
| System-Controller                       | CCS                       | N/A          | N/A              | N.C.R               | N.C.R                |
| Turn Table                              | CCS                       | N/A          | N/A              | N.C.R               | N.C.R                |
| Antenna Tower                           | ccs                       | N/A          | N/A              | N.C.R               | N.C.R                |
| RF cable                                | Murata                    | MXHQ87WA3000 | -                | 08/21/2016          | 08/20/2017           |
| Loop Antenna                            | EMCO                      | 6502         | 00042960         | 08/22/2016          | 08/21/2017           |
| Horn Antenna                            | SCHWARZBECK               | BBHA 9170    | 1123             | 08/19/2016          | 08/18/2017           |
| Power meter                             | Anritsu                   | ML2487A      | 6K00003613       | 08/23/2016          | 08/22/2017           |
| Power sensor                            | Anritsu                   | MX248XD      |                  | 08/19/2016          | 08/18/2017           |

#### **5. EMC EMISSION TEST**

#### **5.1 CONDUCTED EMISSION MEASUREMENT**

# 5.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

| FREQUENCY (MHz)  | Conducted  | Conducted  |              |
|------------------|------------|------------|--------------|
| FREQUENCY (MIDZ) | Quasi-peak | Quasi-peak | limit (dBµV) |
| 0.15 -0.5        | 66 - 56 *  | 56 - 46 *  | FCC          |
| 0.50 -5.0        | 56.00      | 46.00      | FCC          |
| 5.0 -30.0        | 60.00      | 50.00      | FCC          |

#### Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

| Receiver Parameters | Setting  |
|---------------------|----------|
| Attenuation         | 10 dB    |
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |

#### **5.1.2 TEST PROCEDURE**

- a. The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

#### 5.1.3 DEVIATION FROM TEST STANDARD

No deviation

#### **5.1.4 TEST SETUP**



Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

#### **5.1.5 EUT OPERATING CONDITIONS**

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

#### **5.1.6 TEST RESULTS**

| EUT         | Mobile phone   | Model Name        | CX Air |
|-------------|----------------|-------------------|--------|
| Temperature | <b>26</b> ℃    | Relative Humidity | 54%    |
| Pressure    | 1010hPa        | Phase             | L      |
| Test Date   | March 27, 2017 | Test Mode         | Mode 1 |



| No. | Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz     | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector |
| 1   |     | 0.1620  | 37.55            | 11.79             | 49.34            | 65.36 | -16.02 | QP       |
| 2   |     | 0.1819  | 18.36            | 11.50             | 29.86            | 54.39 | -24.53 | AVG      |
| 3   | *   | 0.4620  | 37.63            | 10.77             | 48.40            | 56.66 | -8.26  | QP       |
| 4   |     | 0.4780  | 23.83            | 10.74             | 34.57            | 46.37 | -11.80 | AVG      |
| 5   |     | 1.1900  | 20.73            | 10.67             | 31.40            | 46.00 | -14.60 | AVG      |
| 6   |     | 1.5180  | 35.66            | 10.63             | 46.29            | 56.00 | -9.71  | QP       |
| 7   |     | 2.2700  | 20.31            | 10.60             | 30.91            | 46.00 | -15.09 | AVG      |
| 8   |     | 3.0020  | 32.76            | 10.57             | 43.33            | 56.00 | -12.67 | QP       |
| 9   |     | 4.8780  | 15.50            | 10.51             | 26.01            | 46.00 | -19.99 | AVG      |
| 10  |     | 7.3020  | 23.75            | 10.57             | 34.32            | 60.00 | -25.68 | QP       |
| 11  |     | 10.5540 | 7.45             | 10.61             | 18.06            | 50.00 | -31.94 | AVG      |
| 12  |     | 14.7220 | 26.95            | 10.63             | 37.58            | 60.00 | -22.42 | QP       |

Remark: All the modes have been investigated, and only worst mode is presented in this report.

| EUT         | Mobile  | e phone      |              | N               | Model Name C          |                               | CX Ai             | CX Air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|-------------|---------|--------------|--------------|-----------------|-----------------------|-------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Temperature |         | •            |              |                 | Relative Humidity 54% |                               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Pressure    | 1010h   |              |              |                 | Phase N               |                               | 0                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Test Date   |         | 27, 2017     |              |                 | est Mod               | de                            | Mode              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 80.0 dBuV   |         |              |              |                 |                       |                               | 111111111         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             |         |              |              |                 |                       |                               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limit: ——<br>AVG: ——                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|             |         |              |              |                 |                       |                               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 40          | MANNEY  | all phylogen | MANAGE STATE | yddibynaydayydd |                       | Way Wall App WA               | TANAN KANINAN     | t godge de gelger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A WANTER OF THE PARTY OF THE PA |  |
| M           | ~~~/\   |              | MANA MANA    | h/mapanahara    | May m                 | Harry and property agency was | handragh agh jaka | a who have made and the state of the state o | Horas Andrew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 0.0         |         | 0.5          |              | (MHz)           |                       | 5                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|             |         | Res          | ading        | Correct         | t Ma                  | asure-                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| No. I       | Mk. Fre |              | evel         | Factor          |                       | asure-<br>nent                | Limit             | Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|             | MH:     | -            | BuV          | dB              |                       | BuV                           | am.ar             | -ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Datastas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|             |         |              |              |                 |                       |                               | dBuV              | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| 1           | 0.166   | 60 33        | 3.45         | 11.73           | 45                    | 5.18                          | 65.15             | -19.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 2           | 0.181   | 19 14        | 1.45         | 11.50           | 25                    | 5.95                          | 54.39             | -28.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 3           | * 0.486 | 60 38        | 3.13         | 10.72           | 48                    | 3.85                          | 56.24             | -7.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 4           | 0.494   |              | 3.43         | 10.71           |                       | 9.14                          |                   | -16.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 5           | 1.050   |              | 5.74         | 10.68           |                       | 5.42                          |                   | -19.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|             |         |              |              |                 |                       |                               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 6           | 1.162   |              | 6.68         | 10.67           |                       | 7.35                          |                   | -8.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 7           | 2.126   | 60 35        | 5.21         | 10.61           | 45                    | 5.82                          | 56.00             | -10.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 8           | 2.374   | 40 14        | 1.77         | 10.60           | 25                    | 5.37                          | 46.00             | -20.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 9           | 5.438   | 80 30        | 80.0         | 10.53           | 4(                    | 0.61                          | 60.00             | -19.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | QP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 10          | 7.342   | 20 ε         | 3.39         | 10.57           | 18                    | 3.96                          | 50.00             | -31.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|             |         |              |              | 40.00           |                       | 0.00                          | E0.00             | 24.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 11          | 15.954  | 40 18        | 3.26         | 10.62           | 20                    | 8.88                          | טט.טכ             | -21.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |

Remark: All the modes have been investigated, and only worst mode is presented in this report.

#### **5.2 RADIATED EMISSION MEASUREMENT**

#### 5.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Frequencies | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (micorvolts/meter) | (meters)             |
| 0.009~0.490 | 2400/F(KHz)        | 300                  |
| 0.490~1.705 | 24000/F(KHz)       | 30                   |
| 1.705~30.0  | 30                 | 30                   |
| 30~88       | 100                | 3                    |
| 88~216      | 150                | 3                    |
| 216~960     | 200                | 3                    |
| Above 960   | 500                | 3                    |

#### LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

|                 | Limit (dBu\ | //m) (at 3M) |
|-----------------|-------------|--------------|
| FREQUENCY (MHz) | PEAK        | AVERAGE      |
| Above 1000      | 74          | 54           |

#### Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

| Spectrum Parameter              | Setting                                         |
|---------------------------------|-------------------------------------------------|
| Attenuation                     | Auto                                            |
| Start Frequency                 | 1000 MHz                                        |
| Stop Frequency                  | 10th carrier harmonic                           |
| RB / VB (emission in restricted | 1 MHz / 1 MHz for Dook 1 MHz / 1 Hz for Averege |
| band)                           | 1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average |

| Receiver Parameter     | Setting                          |
|------------------------|----------------------------------|
| Attenuation            | Auto                             |
| Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP |

#### **5.2.2 TEST PROCEDURE**

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

|    | then Quasi Peak detector mode re-measured.                                                                                                                                            |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| e. | If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. |
|    | performed. For the actual test configuration, please refer to the related Item –EUT Test Photos.                                                                                      |
|    | Note:                                                                                                                                                                                 |
|    | Both horizontal and vertical antenna polarities were tested<br>and performed pretest to three orthogonal axis. The worst case emissions were reported                                 |
|    | 3 DEVIATION FROM TEST STANDARD deviation                                                                                                                                              |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |
|    |                                                                                                                                                                                       |

#### **5.2.4 TEST SETUP**

# (A) Radiated Emission Test-Up Frequency Below 30MHz



# (B) Radiated Emission Test-Up Frequency 30MHz~1GHz



# (C) Radiated Emission Test-Up Frequency Above 1GHz



# **5.2.5 EUT OPERATING CONDITIONS**

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

# **5.2.5.1 RESULTS (BELOW 30 MHZ)**

| EUT         | Mobile phone | Model Name        | CX Air         |
|-------------|--------------|-------------------|----------------|
| Temperature | <b>20</b> ℃  | Relative Humidity | 48%            |
| Pressure    | 1010 hPa     | Polarization      |                |
| Test Mode   | Mode 1       | Test Date         | March 27, 2017 |

| Freq. | Reading  | Limit    | Margin | State |
|-------|----------|----------|--------|-------|
| (MHz) | (dBuV/m) | (dBuV/m) | (dB)   | P/F   |
|       |          |          |        | Р     |
|       |          |          |        | Р     |

#### NOTE:

No result in this part for margin above 20dB.

Distance extrapolation factor =20 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuV) + distance extrapolation factor.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

# **5.2.5.2 TEST RESULTS (BETWEEN 30M - 1000 MHZ)**

| EUT         | Mobile phone | Model Name        | CX Air         |
|-------------|--------------|-------------------|----------------|
| Temperature | <b>20</b> ℃  | Relative Humidity | 48%            |
| Pressure    | 1010 hPa     | Polarization:     | Horizontal     |
| Test Mode   | Mode 1       | Test Date         | March 27, 2017 |



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *   | 33.0950  | 24.30            | 1.41              | 25.71            | 40.00  | -14.29 | QP       |
| 2   |     | 54.6429  | 28.88            | -9.47             | 19.41            | 40.00  | -20.59 | QP       |
| 3   |     | 127.2176 | 25.01            | -2.16             | 22.85            | 43.50  | -20.65 | QP       |
| 4   |     | 204.9551 | 29.25            | -5.00             | 24.25            | 43.50  | -19.25 | QP       |
| 5   | ,   | 383.9318 | 26.16            | -3.14             | 23.02            | 46.00  | -22.98 | QP       |
| 6   | (   | 824.5968 | 25.05            | 5.15              | 30.20            | 46.00  | -15.80 | QP       |

Remark: All the modes have been investigated, and only worst mode is presented in this report.



Remark: All the modes have been investigated, and only worst mode is presented in this report.

#### 5.2.5.3 TEST RESULTS (1GHZ TO 40GHZ)

| EUT         | Mobile phone   | Model Name           | CX Air    |
|-------------|----------------|----------------------|-----------|
| Temperature | 12() ( '       | Relative<br>Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode            | Mode 1 TX |
| Test Date   | March 27, 2017 | Frequency            | 5180MHz   |

| Freq. | Ant. | Emission    |       | Limit      |    | Over(dB) |        |
|-------|------|-------------|-------|------------|----|----------|--------|
| (MHz) | Pol. | Level(dBuV) |       | 3m(dBuV/m) |    |          |        |
|       | H/V  | PK          | AV    | PK         | AV | PK       | AV     |
| 10360 | V    | 59.81       | 39.06 | 74         | 54 | -14.19   | -14.94 |
| 15540 | V    | 59.78       | 40.31 | 74         | 54 | -14.22   | -13.69 |
| 10360 | Н    | 58.22       | 40.27 | 74         | 54 | -15.78   | -13.73 |
| 15540 | Н    | 59.74       | 40.74 | 74         | 54 | -14.26   | -13.26 |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT         | Mobile phone   | Model Name        | CX Air    |
|-------------|----------------|-------------------|-----------|
| Temperature | <b>20</b> ℃    | Relative Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode         | Mode 1 TX |
| Test Date   | March 27, 2017 | Frequency         | 5240MHz   |

| Freq.<br>(MHz) | Ant.Pol. | Emission Level(dBuV |       | nission Level(dBuV Limit 3m(dBuV/m) |    | Over(dB) |        |
|----------------|----------|---------------------|-------|-------------------------------------|----|----------|--------|
| (111112)       | H/V      | PK                  | AV    | PK                                  | AV | PK       | AV     |
| 10480          | \/       | 60.82               | 39.97 | 74                                  | 54 | -13.18   | -14.03 |
|                | V V      |                     |       |                                     |    |          |        |
| 15720          | V        | 59.31               | 40.81 | 74                                  | 54 | -14.69   | -13.19 |
| 10480          | Н        | 59.15               | 40.17 | 74                                  | 54 | -14.85   | -13.83 |
| 15720          | Н        | 58.57               | 39.57 | 74                                  | 54 | -15.43   | -14.43 |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT         | Mobile phone   | Model Name        | CX Air    |
|-------------|----------------|-------------------|-----------|
| Temperature | <b>20</b> ℃    | Relative Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode         | Mode 1 TX |
| Test Date   | March 27, 2017 | Frequency         | 5745MHz   |

| Freq. | Ant.Pol. | Emission Level(dBuV |       | Limit      |    | Over(dB) |        |
|-------|----------|---------------------|-------|------------|----|----------|--------|
| (MHz) |          |                     |       | 3m(dBuV/m) |    |          |        |
|       | H/V      | PK                  | AV    | PK         | AV | PK       | AV     |
| 11490 | V        | 60.15               | 40.00 | 74         | 54 | -13.85   | -14.00 |
| 17235 | V        | 59.04               | 39.99 | 74         | 54 | -14.96   | -14.01 |
| 11490 | Н        | 59.45               | 39.48 | 74         | 54 | -14.55   | -14.52 |
| 17235 | Н        | 59.20               | 40.20 | 74         | 54 | -14.80   | -13.80 |

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT         | Mobile phone   | Model Name        | CX Air    |
|-------------|----------------|-------------------|-----------|
| Temperature | <b>20</b> ℃    | Relative Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode         | Mode 1 TX |
| Test Date   | March 27, 2017 | Frequency         | 5825MHz   |

| Freq. | Ant.Pol. | Emission Level(dBuV) |       | Lir   | Limit      |        | Over(dB) |  |
|-------|----------|----------------------|-------|-------|------------|--------|----------|--|
| (MHz) |          |                      |       | 3m(dB | 3m(dBuV/m) |        |          |  |
|       | H/V      | PK                   | AV    | PK    | PK AV      |        | AV       |  |
| 11650 | V        | 59.43                | 41.89 | 74    | 54         | -14.57 | -12.11   |  |
| 17475 | V        | 58.38                | 39.89 | 74    | 54         | -15.62 | -14.11   |  |
| 11650 | Н        | 59.89                | 40.85 | 74    | 54         | -14.11 | -13.15   |  |
| 17475 | Н        | 58.02                | 39.02 | 74    | 54         | -15.98 | -14.98   |  |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT    |         | Mobile phone   | Model Name           | CX Air    |
|--------|---------|----------------|----------------------|-----------|
| Temp   | erature | 120 (*         | Relative<br>Humidity | 48%       |
| Pressi | ure     | 1010 hPa       | Test Mode            | Mode 2 TX |
| Test D | Date    | March 27, 2017 | Frequency            | 5180MHz   |

| Freq. | Ant. | Emission |       | Limit   |            | Over(dB) |            |  |  |
|-------|------|----------|-------|---------|------------|----------|------------|--|--|
| (MHz) | Pol. | Level(   | dBuV) | 3m(dBu\ | 3m(dBuV/m) |          | 3m(dBuV/m) |  |  |
|       | H/V  | PK       | AV    | PK      | AV         | PK       | AV         |  |  |
| 10360 | V    | 60.39    | 41.05 | 74      | 54         | -13.61   | -12.95     |  |  |
| 15540 | V    | 58.74    | 39.33 | 74      | 54         | -15.26   | -14.67     |  |  |
| 10360 | Н    | 59.43    | 39.28 | 74      | 54         | -14.57   | -14.72     |  |  |
| 15540 | Н    | 59.22    | 40.22 | 74      | 54         | -14.78   | -13.78     |  |  |

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT         | Mobile phone   | Model Name        | CX Air    |
|-------------|----------------|-------------------|-----------|
| Temperature | <b>20</b> ℃    | Relative Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode         | Mode 2 TX |
| Test Date   | March 27, 2017 | Frequency         | 5240MHz   |

| Freq. | Ant.Pol. | Emission Level(dBuV |       | Lir | Limit      |        | Over(dB) |  |
|-------|----------|---------------------|-------|-----|------------|--------|----------|--|
| (MHz) |          |                     | ,     |     | 3m(dBuV/m) |        |          |  |
|       | H/V      | PK                  | AV    | PK  | AV         | PK     | AV       |  |
| 10480 | V        | 58.11               | 41.00 | 74  | 54         | -15.89 | -13.00   |  |
| 15720 | V        | 58.13               | 39.17 | 74  | 54         | -15.87 | -14.83   |  |
| 10480 | Н        | 59.45               | 40.83 | 74  | 54         | -14.55 | -13.17   |  |
| 15720 | Н        | 59.75               | 40.75 | 74  | 54         | -14.25 | -13.25   |  |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT         | Mobile phone   | Model Name        | CX Air    |
|-------------|----------------|-------------------|-----------|
| Temperature | <b>20</b> ℃    | Relative Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode         | Mode 2 TX |
| Test Date   | March 27, 2017 | Frequency         | 5745MHz   |

| Freq. | Ant.Pol. | Emission Level(dBuV |       | Limit |            | Over(dB) |        |
|-------|----------|---------------------|-------|-------|------------|----------|--------|
| (MHz) |          |                     |       |       | 3m(dBuV/m) |          |        |
|       | H/V      | PK                  | AV    | PK    | AV         | PK       | AV     |
| 11490 | V        | 60.78               | 40.36 | 74    | 54         | -13.22   | -13.64 |
| 17235 | V        | 58.62               | 39.26 | 74    | 54         | -15.38   | -14.74 |
| 11490 | Н        | 58.20               | 39.86 | 74    | 54         | -15.80   | -14.14 |
| 17235 | Н        | 58.74               | 39.74 | 74    | 54         | -15.26   | -14.26 |

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT         | Mobile phone   | Model Name        | CX Air    |
|-------------|----------------|-------------------|-----------|
| Temperature | <b>20</b> ℃    | Relative Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode         | Mode 2 TX |
| Test Date   | March 27, 2017 | Frequency         | 5825MHz   |

| Freq. | Ant.Pol. | Emission Level(dBuV) |       | Limit |            | Over(dB) |        |  |
|-------|----------|----------------------|-------|-------|------------|----------|--------|--|
| (MHz) |          |                      |       |       | 3m(dBuV/m) |          |        |  |
|       | H/V      | PK                   | AV    | PK    | AV         | PK       | AV     |  |
| 11650 | V        | 58.60                | 40.05 | 74    | 54         | -15.40   | -13.95 |  |
| 17475 | V        | 59.10                | 40.17 | 74    | 54         | -14.90   | -13.83 |  |
| 11650 | Н        | 58.20                | 40.15 | 74    | 54         | -15.80   | -13.85 |  |
| 17475 | Н        | 58.98                | 39.98 | 74    | 54         | -15.02   | -14.02 |  |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT         | Mobile phone   | Model Name           | CX Air    |
|-------------|----------------|----------------------|-----------|
| Temperature | 12() (*        | Relative<br>Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode            | Mode 3 TX |
| Test Date   | March 27, 2017 | Frequency            | 5190MHz   |

| Freq. | Ant. | Emission |       | Limit   |            | Over(dB) |        |
|-------|------|----------|-------|---------|------------|----------|--------|
| (MHz) | Pol. | Level(   | dBuV) | 3m(dBu\ | 3m(dBuV/m) |          |        |
|       | H/V  | PK       | AV    | PK      | AV         | PK       | AV     |
| 10380 | V    | 60.89    | 41.50 | 74      | 54         | -13.11   | -12.50 |
| 15570 | V    | 58.01    | 39.06 | 74      | 54         | -15.99   | -14.94 |
| 10380 | Н    | 59.17    | 40.39 | 74      | 54         | -14.83   | -13.61 |
| 15570 | Н    | 59.01    | 40.01 | 74      | 54         | -14.99   | -13.99 |

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT         | Mobile phone   | Model Name        | CX Air    |
|-------------|----------------|-------------------|-----------|
| Temperature | <b>20</b> ℃    | Relative Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode         | Mode 3 TX |
| Test Date   | March 27, 2017 | Frequency         | 5230MHz   |

| Freq. | Ant.Pol. | Emission Level(dBuV |       | Limit |            | Over(dB) |        |  |
|-------|----------|---------------------|-------|-------|------------|----------|--------|--|
| (MHz) |          |                     | ·     |       | 3m(dBuV/m) |          |        |  |
|       | H/V      | PK                  | AV    | PK    | AV         | PK       | AV     |  |
| 10460 | V        | 60.99               | 41.14 | 74    | 54         | -13.01   | -12.86 |  |
| 15690 | V        | 59.44               | 39.23 | 74    | 54         | -14.56   | -14.77 |  |
| 10460 | Н        | 59.35               | 40.04 | 74    | 54         | -14.65   | -13.96 |  |
| 15690 | Н        | 58.31               | 39.31 | 74    | 54         | -15.69   | -14.69 |  |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT         | Mobile phone   | Model Name        | CX Air    |
|-------------|----------------|-------------------|-----------|
| Temperature | <b>20</b> ℃    | Relative Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode         | Mode 3 TX |
| Test Date   | March 27, 2017 | Frequency         | 5755MHz   |

| Freq. | Ant.Pol. | Emission Level(dBuV |       | Limit |            | Over(dB) |        |
|-------|----------|---------------------|-------|-------|------------|----------|--------|
| (MHz) |          |                     | ·     |       | 3m(dBuV/m) |          |        |
|       | H/V      | PK                  | AV    | PK    | AV         | PK       | AV     |
| 11510 | V        | 60.66               | 41.77 | 74    | 54         | -13.34   | -12.23 |
| 17265 | V        | 58.07               | 39.46 | 74    | 54         | -15.93   | -14.54 |
| 11510 | Н        | 59.41               | 39.17 | 74    | 54         | -14.59   | -14.83 |
| 17265 | Н        | 58.86               | 39.86 | 74    | 54         | -15.14   | -14.14 |

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT         | Mobile phone   | Model Name        | CX Air    |
|-------------|----------------|-------------------|-----------|
| Temperature | <b>20</b> ℃    | Relative Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode         | Mode 3 TX |
| Test Date   | March 27, 2017 | Frequency         | 5795MHz   |

| Freq. | Ant.Pol. | Emission Level(dBuV) |       | Limit |            | Over(dB) |        |  |
|-------|----------|----------------------|-------|-------|------------|----------|--------|--|
| (MHz) |          |                      | , j   |       | 3m(dBuV/m) |          |        |  |
|       | H/V      | PK                   | AV    | PK    | AV         | PK       | AV     |  |
| 11590 | V        | 59.12                | 39.54 | 74    | 54         | -14.88   | -14.46 |  |
| 17385 | V        | 59.40                | 40.52 | 74    | 54         | -14.60   | -13.48 |  |
| 11590 | Н        | 59.72                | 40.90 | 74    | 54         | -14.28   | -13.10 |  |
| 17385 | Н        | 58.33                | 39.33 | 74    | 54         | -15.67   | -14.67 |  |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT         | Mobile phone   | Model Name           | CX Air    |
|-------------|----------------|----------------------|-----------|
| Temperature | 12() (         | Relative<br>Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode            | Mode 4 TX |
| Test Date   | March 27, 2017 | Frequency            | 5180MHz   |

| Freq. | Ant. | Emission |       | Limit      |    | Over(dB)   |        |
|-------|------|----------|-------|------------|----|------------|--------|
| (MHz) | Pol. | Level(   | dBuV) | 3m(dBuV/m) |    | 3m(dBuV/m) |        |
|       | H/V  | PK       | AV    | PK         | AV | PK         | AV     |
| 10360 | V    | 58.03    | 41.90 | 74         | 54 | -15.97     | -12.10 |
| 15540 | V    | 59.11    | 40.79 | 74         | 54 | -14.89     | -13.21 |
| 10360 | Н    | 58.64    | 39.76 | 74         | 54 | -15.36     | -14.24 |
| 15540 | Н    | 58.34    | 39.34 | 74         | 54 | -15.66     | -14.66 |

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT         | Mobile phone   | Model Name        | CX Air    |
|-------------|----------------|-------------------|-----------|
| Temperature | <b>20</b> ℃    | Relative Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode         | Mode 4 TX |
| Test Date   | March 27, 2017 | Frequency         | 5240MHz   |

| Freq. | Ant.Pol. | Emission Level(dBuV |       | Limit |            | Over(dB) |        |
|-------|----------|---------------------|-------|-------|------------|----------|--------|
| (MHz) |          |                     | , ,   |       | 3m(dBuV/m) |          |        |
|       | H/V      | PK                  | AV    | PK    | AV         | PK       | AV     |
| 10480 | V        | 59.86               | 40.35 | 74    | 54         | -14.14   | -13.65 |
| 15720 | V        | 58.14               | 40.39 | 74    | 54         | -15.86   | -13.61 |
| 10480 | Н        | 59.75               | 39.09 | 74    | 54         | -14.25   | -14.91 |
| 15720 | Н        | 58.00               | 39.00 | 74    | 54         | -16.00   | -15.00 |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT         | Mobile phone   | Model Name        | CX Air    |
|-------------|----------------|-------------------|-----------|
| Temperature | <b>20</b> ℃    | Relative Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode         | Mode 4 TX |
| Test Date   | March 27, 2017 | Frequency         | 5745MHz   |

| Freq. | Ant.Pol. | Emission Level(dBuV |       | Lir | Limit      |        | Over(dB) |  |
|-------|----------|---------------------|-------|-----|------------|--------|----------|--|
| (MHz) |          |                     | ·     |     | 3m(dBuV/m) |        |          |  |
|       | H/V      | PK                  | AV    | PK  | AV         | PK     | AV       |  |
| 11490 | V        | 60.77               | 40.96 | 74  | 54         | -13.23 | -13.04   |  |
| 17235 | V        | 58.82               | 39.15 | 74  | 54         | -15.18 | -14.85   |  |
| 11490 | Н        | 58.08               | 39.91 | 74  | 54         | -15.92 | -14.09   |  |
| 17235 | Н        | 58.27               | 39.27 | 74  | 54         | -15.73 | -14.73   |  |

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT         | Mobile phone   | Model Name        | CX Air    |
|-------------|----------------|-------------------|-----------|
| Temperature | <b>20</b> ℃    | Relative Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode         | Mode 4 TX |
| Test Date   | March 27, 2017 | Frequency         | 5825MHz   |

| Freq. | Ant.Pol. | Emission Level(dBuV) |       | Limit |            | Over(dB) |        |
|-------|----------|----------------------|-------|-------|------------|----------|--------|
| (MHz) |          |                      | , j   |       | 3m(dBuV/m) |          |        |
|       | H/V      | PK                   | AV    | PK    | AV         | PK       | AV     |
| 11650 | V        | 60.44                | 41.54 | 74    | 54         | -13.56   | -12.46 |
| 17475 | V        | 59.66                | 40.99 | 74    | 54         | -14.34   | -13.01 |
| 11650 | Н        | 59.16                | 41.00 | 74    | 54         | -14.84   | -13.00 |
| 17475 | Н        | 58.35                | 39.35 | 74    | 54         | -15.65   | -14.65 |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT         | Mobile phone   | Model Name           | CX Air    |
|-------------|----------------|----------------------|-----------|
| Temperature | 20 ℃           | Relative<br>Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode            | Mode 5 TX |
| Test Date   | March 27, 2017 | Frequency            | 5190MHz   |

| Freq. | Ant. | Emission    |       | Limit      |    | Over(dB) |        |
|-------|------|-------------|-------|------------|----|----------|--------|
| (MHz) | Pol. | Level(dBuV) |       | 3m(dBuV/m) |    |          |        |
|       | H/V  | PK          | AV    | PK         | AV | PK       | AV     |
| 10380 | V    | 59.25       | 40.56 | 74         | 54 | -14.75   | -13.44 |
| 15570 | V    | 58.44       | 40.50 | 74         | 54 | -15.56   | -13.50 |
| 10380 | Н    | 58.95       | 40.73 | 74         | 54 | -15.05   | -13.27 |
| 15570 | Н    | 58.03       | 39.03 | 74         | 54 | -15.97   | -14.97 |

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT         | Mobile phone   | Model Name        | CX Air    |
|-------------|----------------|-------------------|-----------|
| Temperature | <b>20</b> ℃    | Relative Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode         | Mode 5 TX |
| Test Date   | March 27, 2017 | Frequency         | 5230MHz   |

| Freq. | Ant.Pol. | Emission I | Level(dBuV | Limit      |    | Over(dB) |        |
|-------|----------|------------|------------|------------|----|----------|--------|
| (MHz) |          |            |            | 3m(dBuV/m) |    |          |        |
|       | H/V      | PK         | AV         | PK         | AV | PK       | AV     |
| 10460 | V        | 59.32      | 40.54      | 74         | 54 | -14.68   | -13.46 |
| 15690 | V        | 58.53      | 40.39      | 74         | 54 | -15.47   | -13.61 |
| 10460 | Н        | 58.61      | 40.14      | 74         | 54 | -15.39   | -13.86 |
| 15690 | Н        | 59.82      | 40.82      | 74         | 54 | -14.18   | -13.18 |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT         | Mobile phone   | Model Name        | CX Air    |
|-------------|----------------|-------------------|-----------|
| Temperature | <b>20</b> ℃    | Relative Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode         | Mode 5 TX |
| Test Date   | March 27, 2017 | Frequency         | 5755MHz   |

| Freq. | Ant.Pol. | Emission I | Level(dBuV | Limit      |    | Over(dB) |        |
|-------|----------|------------|------------|------------|----|----------|--------|
| (MHz) |          |            |            | 3m(dBuV/m) |    |          |        |
|       | H/V      | PK         | AV         | PK         | AV | PK       | AV     |
| 11510 | V        | 58.71      | 39.20      | 74         | 54 | -15.29   | -14.80 |
| 17265 | V        | 58.19      | 40.40      | 74         | 54 | -15.81   | -13.60 |
| 11510 | Н        | 58.30      | 39.31      | 74         | 54 | -15.70   | -14.69 |
| 17265 | Н        | 58.85      | 39.85      | 74         | 54 | -15.15   | -14.15 |

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

| EUT         | Mobile phone   | Model Name        | CX Air    |
|-------------|----------------|-------------------|-----------|
| Temperature | <b>20</b> ℃    | Relative Humidity | 48%       |
| Pressure    | 1010 hPa       | Test Mode         | Mode 5 TX |
| Test Date   | March 27, 2017 | Frequency         | 5795MHz   |

| Freq. | Ant.Pol. | Emission Level(dBuV) |       | Limit |            | Over(dB) |        |  |
|-------|----------|----------------------|-------|-------|------------|----------|--------|--|
| (MHz) |          |                      | , l   |       | 3m(dBuV/m) |          |        |  |
|       | H/V      | PK                   | AV    | PK    | AV         | PK       | AV     |  |
| 11590 | V        | 60.89                | 39.69 | 74    | 54         | -13.11   | -14.31 |  |
| 17385 | V        | 59.08                | 39.10 | 74    | 54         | -14.92   | -14.90 |  |
| 11590 | Н        | 59.59                | 40.45 | 74    | 54         | -14.41   | -13.55 |  |
| 17385 | Н        | 59.40                | 40.40 | 74    | 54         | -14.60   | -13.60 |  |

#### Remark:

All emissions not reported were more than 20dB below the specified limit or in the noise floor. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

All the x/y/z orientation has been investigated, and only worst case is presented in this report.

# Page 34 of 88 6. ANTENNA APPLICATION **6.1 Antenna requirement** The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and FCC part 15C section 15.407. FCC part 15C section 15.203 and FCC part 15C section 15.407 requirements: Systems operating in the 5150~5850MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi. 6.2 Result The EUT's antenna integrated on PCB, The antenna's gain is -1.4dBi and meets the requirement.

# 7 FCC PART 15.407 REQUIREMENTS FOR 802.11A/N SYSTEMS 7. 1 Test Equipment

Please refer to Section 4 this report.

#### 7. 2 Test Procedure

| 26dB Bandwidth and 99% Occupied Bandwidth: |                                                                                     |                                                                                       |  |  |  |
|--------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|--|
| Test Method:                               | a)The transmitter was radiated to the                                               | spectrum analyzer in peak hold mode.                                                  |  |  |  |
|                                            | b)Measure the maximum width of the emission that is 26 dB down from the peak of the |                                                                                       |  |  |  |
|                                            |                                                                                     | setting of the analyzer. Readjust RBW and repeat                                      |  |  |  |
|                                            | measurement as needed until the RBV                                                 |                                                                                       |  |  |  |
| Test Equipment Set                         | ting – 26dB Bandwidth:                                                              | Test Equipment Setting – 99%% Bandwidth:                                              |  |  |  |
| a)Attenuation: Auto                        |                                                                                     | a)Span: 1.5 times to 5.0 times the OBW                                                |  |  |  |
| b)Span Frequency:                          | > 26dB Bandwidth                                                                    | b)RBW: 1 % to 5 % of the OBW                                                          |  |  |  |
| c)RBW: Approxima                           | tely 1% of the emission bandwidth                                                   | c)VBW: ≥ 3 x RBW                                                                      |  |  |  |
| d)VBW: VBW > RI                            | BW                                                                                  | d)Detector: Peak                                                                      |  |  |  |
| e)Detector: Peak                           |                                                                                     | e)Trace: Max Hold                                                                     |  |  |  |
| f)Trace: Max Hold                          |                                                                                     |                                                                                       |  |  |  |
| g)Sweep Time: Auto                         |                                                                                     |                                                                                       |  |  |  |
| 6 dB Bandwidth:                            |                                                                                     |                                                                                       |  |  |  |
| Test Method:                               |                                                                                     | spectrum analyzer in peak hold mode. with KDB789033 D02 v01 for Compliance Testing of |  |  |  |
|                                            |                                                                                     | structure (U-NII) Devices - section (C) Emission                                      |  |  |  |
|                                            | Bandwidth.                                                                          |                                                                                       |  |  |  |
|                                            | c)Multiple antenna system was perfor                                                | med in accordance with KDB662911 D01 v02r01                                           |  |  |  |
|                                            | Émissions                                                                           |                                                                                       |  |  |  |
|                                            | Testing of Transmitters with Multiple (                                             | Outputs in the Same Band.                                                             |  |  |  |
|                                            | d)Measured the spectrum width with p                                                | power higher than 6dB below carrier.                                                  |  |  |  |
| Test Equipment Set                         | ting:                                                                               |                                                                                       |  |  |  |
| a)Attenuation: Auto                        |                                                                                     | e)Detector: Peak                                                                      |  |  |  |
| b)Span Frequency: > 6dB Bandwidth          |                                                                                     | f)Trace: Max Hold                                                                     |  |  |  |
| c)RBW: 100kHz                              |                                                                                     | g)Sweep Time: Auto                                                                    |  |  |  |
| d)VBW: $\geq 3 \times RBW$                 |                                                                                     |                                                                                       |  |  |  |
| Maximum Condu                              | cted Output Power Measurement:                                                      |                                                                                       |  |  |  |
| Test Method:                               | a)The transmitter output (antenna por                                               |                                                                                       |  |  |  |
| I                                          | h)Test was performed in accordance with KDR780033 D02 v01 for Compliance Testing of |                                                                                       |  |  |  |

b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter).

c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions

Testing of Transmitters with Multiple Outputs in the Same Band.

d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

Test Equipment Setting: Detector - Average

#### **Power Spectral Density:**

Test Method:

a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer. b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD).

c) Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power

Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the outputs.

d)When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for

the first frequency bin of the summed spectrum. The summed spectrum value for each of the other

frequency bins is computed in the same way.

e)For 5.725~5.85 GHz, the measured result of PSD level must add 10log(500kHz/RBW) and the final result should ≤ 30 dBm.

Page 36 of 88

Test Equipment Setting:

a)Attenuation: Auto
b)Span Frequency: Encompass the entire emissions bandwidth (EBW) of the signal c)RBW: 1000 kHz
d)VBW: 3000 kHz

e)Detector: RMS
f)Trace: AVERAGE
g)Sweep Time: Auto
h)Trace Average: 100 times

Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

#### Frequency Stability Measurement: Test Method: a)The transmitter output (antenna port) was connected to the spectrum analyzer. b)EUT have transmitted absence of modulation signal and fixed channelize. c)Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth. d)Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings. e)fc is declaring of channel frequency. Then the frequency error formula is (fc-f)/fc × 106 the limit is less than ±20ppm (IEEE 802.11nspecification). f)The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of nominal value g)Extreme temperature is 0°C~40°C Test Equipment Setting: a)Attenuation: Auto e)Sweep Time: Auto b)Span Frequency: Entire absence of modulation emissions bandwidth c)RBW: 10 kHz

#### 7. 3 Test Setup

d)VBW: 10 kHz



#### 7. 4 Configuration of the EUT

Same as section 2.4 of this report

#### 7. 5 EUT Operating Condition

Same as section 2.2 of this report.

| 7. 6 Limit                                                                                               |                                                       |  |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|
| 26dB Bandwidth and 99% Occupied Bandwidth:  Limit: No restriction limits.                                |                                                       |  |
| Limit: No restriction limits.  6 dB Bandwidth:                                                           |                                                       |  |
|                                                                                                          | inimum 6dB bandwidth shall be at least 500 kHz.       |  |
| Test Equipment Setting:                                                                                  | Milliam Gab bandwidth shall be at least 500 KHZ.      |  |
| a)Attenuation: Auto                                                                                      | e)Detector: Peak                                      |  |
| b)Span Frequency: > 6dB Bandwidth                                                                        | f)Trace: Max Hold                                     |  |
| c)RBW: 100kHz                                                                                            | g)Sweep Time: Auto                                    |  |
| d)VBW: ≥ 3 x RBW                                                                                         |                                                       |  |
| <b>Maximum Conducted Output Power Measurement:</b>                                                       |                                                       |  |
| <u></u> 5.15~5.                                                                                          |                                                       |  |
| Limit of Outdoor access point:                                                                           | Limit of Indoor access point:                         |  |
| The maximum conducted output power over the                                                              | The maximum conducted output power over the           |  |
| frequency band of operation shall not exceed 1 W                                                         | frequency band of operation shall not exceed 1 W      |  |
| (30dBm) provided the maximum antenna gain does not                                                       | (30dBm) provided the maximum antenna gain does not    |  |
| exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum | exceed 6 dBi. If transmitting antennas of directional |  |
| conducted output power and the maximum power                                                             | gain greater than 6 dBi are used, both the maximum    |  |
| spectral density shall be reduced by the amount in dB                                                    | conducted output power and the maximum power          |  |
| that the directional gain of the antenna exceeds 6 dBi.                                                  | spectral density shall be reduced by the amount in    |  |
| The maximum e.i.r.p. at any elevation angle above 30                                                     | dB                                                    |  |
| degrees as measured from the horizon must not exceed                                                     | that the directional gain of the antenna exceeds 6    |  |
| 125 mW (21 dBm).                                                                                         | dBi.                                                  |  |
| Limit of Fixed point-to-point access points:                                                             | ☑Limit of Mobile and portable client devices:         |  |
| The maximum conducted output power over the                                                              | The maximum conducted output power over the           |  |
| frequency band of operation shall not exceed 1 W                                                         | frequency band of operation shall not exceed 250      |  |
| (30dBm). Fixed point-to-point U-NII devices may employ                                                   | mW (2/4/Pm) provided the maximum entenne gain does    |  |
| antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted | (24dBm) provided the maximum antenna gain does not    |  |
| output power or maximum power spectral density. For                                                      | exceed 6 dBi. If transmitting antennas of directional |  |
| fixed point-to-point transmitters that employ a directional                                              | gain greater than 6 dBi are used, both the maximum    |  |
| antenna gain greater than 23 dBi, a 1 dB reduction in                                                    | conducted output power and the maximum power          |  |
| maximum conducted output power and maximum                                                               | spectral density shall be reduced by the amount in    |  |
| power spectral density is required for each 1 dB of                                                      | dB                                                    |  |
| antenna gain in excess of 23 dBi.                                                                        | that the directional gain of the antenna exceeds 6    |  |
|                                                                                                          | dBi.                                                  |  |
|                                                                                                          | □5.470-5.725 GHz                                      |  |
| The maximum conducted output power over the frequence                                                    |                                                       |  |
| mW (24dBm) or 11 dBm 10 log B, where B is the 26 dB e                                                    |                                                       |  |
| antennas of directional gain greater than 6 dBi are used,                                                |                                                       |  |
| maximum power spectral density shall be reduced by the exceeds 6 dBi.                                    | amount in db that the directional gain of the antenna |  |
| ∑5.725~5                                                                                                 | 85 GHz                                                |  |
| The maximum conducted output power over the frequency                                                    |                                                       |  |
| transmitting antennas of directional gain greater than 6 dl                                              |                                                       |  |
| power and the maximum power spectral density shall be i                                                  |                                                       |  |
| the antenna exceeds 6 dBi. However, fixed point-to-point                                                 | U-NII devices operating in this band may employ       |  |
| transmitting antennas with                                                                               |                                                       |  |
| directional gain greater than 6 dBi without any correspond                                               | ding reduction in transmitter conducted power.        |  |
| Power Spectral Density                                                                                   |                                                       |  |
| ⊠5.15~5.                                                                                                 | 25 GHz                                                |  |
| Limit of Outdoor access point: 17 dBm/MHz                                                                | ☐Limit of Indoor access point: 17 dBm/MHz             |  |
| ☐Limit of Fixed point-to-point access points: 17                                                         |                                                       |  |
| dBm/MHz                                                                                                  | dBm/MHz                                               |  |
| □5.25-5.35 GHz                                                                                           | 11 dBm/MHz                                            |  |
| □5.470-5.725 GHz                                                                                         | 11 dBm/MHz                                            |  |
| ∑5.725~5.85 GHz                                                                                          | 30 dBm/500kHz                                         |  |
| Frequency Stability Measurement:                                                                         |                                                       |  |
|                                                                                                          | the band of operation under all conditions of normal  |  |
| operation as specified in the user's m                                                                   |                                                       |  |
|                                                                                                          | rance shall be ± 20 ppm maximum for the 5 GHz band    |  |
| (IEEE 802.11n specification).                                                                            |                                                       |  |
| 1 002. I III Specification).                                                                             |                                                       |  |

# 7. 7 Test Result

# A. 26dB Bandwidth and 99% Occupied Bandwidth

| Product      | : EUT-Sample                                | Test Mode   | : See section 2.2 |
|--------------|---------------------------------------------|-------------|-------------------|
| Test Item    | : 26dB Bandwidth and 99% Occupied Bandwidth | Temperature | : 25 ℃            |
| Test Voltage | : DC 5V                                     | Humidity    | : 56%RH           |
| Test Result  | : PASS                                      |             |                   |

#### 26dB Bandwidth

IEEE 802.11a

Band1

| Channel | Frequency<br>(MHz) | 26dBBandwidth<br>(MHz) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|------------------------|--------------------|--------|
| Low     | 5180               | 17.236                 |                    | PASS   |
| High    | 5240               | 17.121                 |                    | PASS   |

Band4

| Channel | Frequency<br>(MHz) | 26dBBandwidth<br>(MHz) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|------------------------|--------------------|--------|
| Low     | 5745               | 16.703                 |                    | PASS   |
| High    | 5825               | 16.799                 |                    | PASS   |

#### IEEE 802.11n 5G 20MHz

Band1

| Channel | Frequency<br>(MHz) | 26dBBandwidth<br>(MHz) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|------------------------|--------------------|--------|
| Low     | 5180               | 18.408                 |                    | PASS   |
| High    | 5240               | 18.198                 |                    | PASS   |

Band4

| Channel | Frequency<br>(MHz) | 26dBBandwidth<br>(MHz) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|------------------------|--------------------|--------|
| Low     | 5745               | 17.815                 |                    | PASS   |
| High    | 5825               | 17.849                 |                    | PASS   |

# IEEE 802.11n 5G 40MHz Band1

| Channel | Frequency<br>(MHz) | 26dBBandwidth<br>(MHz) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|------------------------|--------------------|--------|
| Low     | 5190               | 36.966                 |                    | PASS   |
| High    | 5230               | 36.495                 |                    | PASS   |

Band4

| Channel | Frequency<br>(MHz) | 26dBBandwidth<br>(MHz) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|------------------------|--------------------|--------|
| Low     | 5755               | 36.106                 |                    | PASS   |
| High    | 5795               | 36.056                 |                    | PASS   |

#### IEEE 802.11ac 5G 20MHz

Band1

| Channel | Frequency<br>(MHz) | 26dBBandwidth<br>(MHz) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|------------------------|--------------------|--------|
| Low     | 5180               | 19.808                 |                    | PASS   |
| High    | 5240               | 19.808                 |                    | PASS   |

Band4

| Channel | Frequency<br>(MHz) | 26dBBandwidth<br>(MHz) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|------------------------|--------------------|--------|
| Low     | 5745               | 19.904                 |                    | PASS   |
| High    | 5825               | 19.808                 |                    | PASS   |

| <u>d1</u>                                          | E===================================== | 26dDD and deside                                  | FCC Limit                              |              |
|----------------------------------------------------|----------------------------------------|---------------------------------------------------|----------------------------------------|--------------|
| Channel                                            | Frequency<br>(MHz)                     | 26dBBandwidth<br>(MHz)                            | (kHz)                                  | Result       |
| Low                                                | 5190                                   | 39.583                                            |                                        | PASS         |
| High                                               | 5230                                   | 39.744                                            |                                        | PASS         |
| nd4                                                |                                        |                                                   | ·                                      |              |
| Channel                                            | Frequency<br>(MHz)                     | 26dBBandwidth<br>(MHz)                            | FCC Limit<br>(kHz)                     | Result       |
| Low                                                | 5755                                   | 40.064                                            |                                        | PASS         |
| High                                               | 5795                                   | 39.808                                            |                                        | PASS         |
| % Occupied E<br>E 802.11a<br>d1                    | Bandwidth Frequency                    | 99% Occupied                                      | FCC Limit                              |              |
| Channel                                            | (MHz)                                  | Bandwidth (MHz)                                   | (kHz)                                  | Result       |
| Low                                                | 5180                                   | 27.46                                             | <u></u>                                | PASS         |
| High                                               | 5240                                   | 23.20                                             |                                        | PASS         |
| nd4                                                |                                        | 1 1                                               | —————————————————————————————————————— |              |
| Channel                                            | Frequency<br>(MHz)                     | 99% Occupied<br>Bandwidth (MHz)                   | FCC Limit<br>(kHz)                     | Result       |
| Low                                                | 5745                                   | 16.35                                             |                                        | PASS         |
| High                                               | 5825                                   | 16.30                                             |                                        | PASS         |
| Low                                                | (MHz)<br>5180                          | Bandwidth (MHz)<br>26.62                          | (kHz)                                  | PASS         |
| High                                               | 5240                                   | 29.62                                             |                                        | PASS         |
| nd4                                                |                                        |                                                   |                                        |              |
| Channel                                            | Frequency<br>(MHz)                     | 99% Occupied<br>Bandwidth (MHz)                   | FCC Limit<br>(kHz)                     | Result       |
| Low                                                | 5745                                   | 17.71                                             |                                        | PASS         |
| High                                               | 5825                                   | 17.60                                             |                                        | PASS         |
| E 802.11n 5G 40l<br>id1                            | ИНz                                    |                                                   |                                        |              |
| Channel                                            | Frequency<br>(MHz)                     | 99% Occupied<br>Bandwidth (MHz)                   | FCC Limit<br>(kHz)                     | Result       |
| Low                                                | 5190                                   | 50.35                                             |                                        | PASS         |
| High                                               | 5230                                   | 46.37                                             |                                        | PASS         |
| nd4                                                |                                        | 1 1                                               | —————————————————————————————————————— |              |
| Channel                                            | Frequency<br>(MHz)                     | 99% Occupied<br>Bandwidth (MHz)                   | FCC Limit<br>(kHz)                     | Result       |
|                                                    | 5755                                   | 36.03                                             |                                        | PASS         |
| Low                                                |                                        | 34.91                                             |                                        | PASS         |
| High                                               | 5795                                   | J <del>-</del> 7.31                               |                                        |              |
|                                                    | MHz                                    |                                                   |                                        |              |
| High<br>EE 802.11ac 5G 20<br>nd1<br>Channel        | MHz Frequency (MHz)                    | 99% Occupied<br>Bandwidth (MHz)                   | FCC Limit<br>(kHz)                     | Result       |
| High<br>EE 802.11ac 5G 20<br>nd1<br>Channel<br>Low | Frequency<br>(MHz)<br>5180             | 99% Occupied<br>Bandwidth (MHz)                   |                                        | PASS         |
| High<br>EE 802.11ac 5G 20<br>nd1<br>Channel        | MHz Frequency (MHz)                    | 99% Occupied<br>Bandwidth (MHz)                   |                                        |              |
| High<br>EE 802.11ac 5G 20<br>nd1<br>Channel<br>Low | Frequency<br>(MHz)<br>5180<br>5240     | 99% Occupied<br>Bandwidth (MHz)<br>17.69<br>17.69 | (kHz)<br>                              | PASS         |
| High EE 802.11ac 5G 20 nd1 Channel Low High        | Frequency<br>(MHz)<br>5180             | 99% Occupied<br>Bandwidth (MHz)                   |                                        | PASS         |
| High EE 802.11ac 5G 20 nd1 Channel Low High        | Frequency (MHz) 5180 5240  Frequency   | 99% Occupied Bandwidth (MHz) 17.69 17.69          | (kHz) FCC Limit                        | PASS<br>PASS |

# IEEE 802.11ac 5G 40MHz Band1

| Channel | Frequency<br>(MHz) | 99% Occupied<br>Bandwidth (MHz) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|---------------------------------|--------------------|--------|
| Low     | 5190               | 36.06                           |                    | PASS   |
| High    | 5230               | 36.06                           |                    | PASS   |

### Band4

| Channel | Frequency<br>(MHz) | 99% Occupied<br>Bandwidth (MHz) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|---------------------------------|--------------------|--------|
| Low     | 5755               | 36.22                           |                    | PASS   |
| High    | 5795               | 36.06                           | <del></del>        | PASS   |

#### IEEE 802.11a Band1

### 26dB Bandwidth and 99% Occupied Bandwidth (CH Low)





#### IEEE 802.11a Band4

#### 26dB Bandwidth and 99% Occupied Bandwidth (CH Low)





#### IEEE 802.11n 5G 20MHz Band1

#### 26dB Bandwidth and 99% Occupied Bandwidth (CH Low)





#### IEEE 802.11n 5G 20MHz Band4

#### 26dB Bandwidth and 99% Occupied Bandwidth (CH Low)





#### IEEE 802.11n 5G 40MHz Band1

#### 26dB Bandwidth and 99% Occupied Bandwidth (CH Low)





#### IEEE 802.11n 5G 40MHz Band4

#### 26dB Bandwidth and 99% Occupied Bandwidth (CH Low)





# 26dB Bandwidth and 99% Occupied Bandwidth (CH Low)



Date: 27.MAR.2017 17:50:40

IEEE 802.11ac 5G 20MHz Band1



# 26dB Bandwidth and 99% Occupied Bandwidth (CH Low)



Date: 27.MAR.2017 18:27:46

IEEE 802.11ac 5G 20MHz Band4

#### 26dB Bandwidth and 99% Occupied Bandwidth (CH High)



Date: 27.MAR.2017 18:29:19

# 26dB Bandwidth and 99% Occupied Bandwidth (CH Low)



Date: 27.MAR.2017 18:34:30

IEEE 802.11ac 5G 40MHz Band1

#### 26dB Bandwidth and 99% Occupied Bandwidth (CH High)



Date: 27.MAR.2017 18:37:06

#### IEEE 802.11ac 5G 40MHz Band4

#### 26dB Bandwidth and 99% Occupied Bandwidth (CH Low)



Date: 27.MAR.2017 18:40:15

#### 26dB Bandwidth and 99% Occupied Bandwidth (CH High)



Date: 27.MAR.2017 18:42:45

#### B. 6 dB Bandwidth

| B. C ab banaman |              |             |                   |  |  |
|-----------------|--------------|-------------|-------------------|--|--|
| Product         | : EUT-Sample | Test Mode   | : See Section 2.2 |  |  |
| Test Item       | : 6 dB BW    | Temperature | : 25 ℃            |  |  |
| Test Voltage    | : DC 5V      | Humidity    | : 56%RH           |  |  |
| Test Result     | PASS         |             |                   |  |  |

#### IEEE 802.11a

| Channel | Measured Frequency (MHz) | 6 dB Bandwidth<br>(MHz) | Limit    |
|---------|--------------------------|-------------------------|----------|
| Low     | 5180                     | 16.41                   | > 0.5MHz |
| High    | 5240                     | 16.41                   | > 0.5MHz |

#### Channel Low



Date: 27.MAR.2017 18:45:44

# **Channel High**



#### IEEE 802.11a

| Channel | Measured Frequency (MHz) | 6 dB Bandwidth<br>(MHz) | Limit    |
|---------|--------------------------|-------------------------|----------|
| Low     | 5745                     | 16.41                   | > 0.5MHz |
| High    | 5825                     | 16.41                   | > 0.5MHz |

#### Channel Low



Date: 27.MAR.2017 18:50:35

#### **Channel High**



Date: 27.MAR.2017 18:52:18

| Product      | : EUT-Sample | Test Mode   | : See Section 2.2 |
|--------------|--------------|-------------|-------------------|
| Test Item    | : 6 dB BW    | Temperature | : 25 ℃            |
| Test Voltage | : DC 5V      | Humidity    | : 56%RH           |
| Test Result  | : PASS       |             |                   |

#### IEEE 802.11n 20MHz

| Channel | Measured Frequency (MHz) | 6 dB Bandwidth<br>(MHz) | Limit    |
|---------|--------------------------|-------------------------|----------|
| Low     | 5180                     | 17.63                   | > 0.5MHz |
| High    | 5240                     | 17.63                   | > 0.5MHz |

#### Channel Low



Date: 27.MAR.2017 18:55:22

# **Channel High**



Date: 27.MAR.2017 18:57:19

#### IEEE 802.11n 20MHz

| Channel | Measured Frequency (MHz) | 6 dB Bandwidth<br>(MHz) | Limit    |
|---------|--------------------------|-------------------------|----------|
| Low     | 5745                     | 17.66                   | > 0.5MHz |
| High    | 5825                     | 17.66                   | > 0.5MHz |

#### Channel Low



Date: 27.MAR.2017 18:59:38

### **Channel High**



Date: 27.MAR.2017 19:00:55

#### IEEE802.11n 40MHz

| Channel | Measured Frequency (MHz) | 6 dB Bandwidth<br>(MHz) | Limit    |
|---------|--------------------------|-------------------------|----------|
| Low     | 5190                     | 36.44                   | > 0.5MHz |
| High    | 5230                     | 36.44                   | > 0.5MHz |

#### **Channel Low**



Date: 27.MAR.2017 19:05:22

### **Channel High**



#### IEEE 802.11n 40MHz

| Channel | Measured Frequency (MHz) | 6 dB Bandwidth<br>(MHz) | Limit    |
|---------|--------------------------|-------------------------|----------|
| Low     | 5755                     | 36.44                   | > 0.5MHz |
| High    | 5795                     | 36.54                   | > 0.5MHz |

#### **Channel Low**



Date: 27.MAR.2017 19:11:43

### **Channel High**



#### 802.11ac 5GHz 20MHz

| Channel | Measured Frequency (MHz) | 6 dB Bandwidth<br>(MHz) | Limit    |
|---------|--------------------------|-------------------------|----------|
| Low     | 5180                     | 17.69                   | > 0.5MHz |
| High    | 5240                     | 17.66                   | > 0.5MHz |

# Channel Low



Date: 27.MAR.2017 19:16:11

#### **Channel High**



Date: 27.MAR.2017 19:17:54

#### 802.11ac 5GHz 20MHz

| _ | TIE EVIII IE |                          |                         |          |  |
|---|--------------|--------------------------|-------------------------|----------|--|
|   | Channel      | Measured Frequency (MHz) | 6 dB Bandwidth<br>(MHz) | Limit    |  |
|   | Low          | 5745                     | 17.69                   | > 0.5MHz |  |
|   | High         | 5825                     | 17.69                   | > 0.5MHz |  |

# Channel Low



Date: 27.MAR.2017 19:19:48

#### **Channel High**



Date: 27.MAR.2017 19:21:40

#### 802.11ac 5GHz 40MHz

| Channel | Measured Frequency (MHz) | 6 dB Bandwidth<br>(MHz) | Limit    |
|---------|--------------------------|-------------------------|----------|
| Low     | 5190                     | 36.35                   | > 0.5MHz |
| High    | 5230                     | 36.35                   | > 0.5MHz |

### Channel Low



Date: 27.MAR.2017 19:23:20

#### **Channel High**



#### 802.11ac 5GHz 40MHz

| OTE TOME |         |                          |                         |          |  |  |
|----------|---------|--------------------------|-------------------------|----------|--|--|
|          | Channel | Measured Frequency (MHz) | 6 dB Bandwidth<br>(MHz) | Limit    |  |  |
|          | Low     | 5755                     | 36.44                   | > 0.5MHz |  |  |
|          | High    | 5795                     | 36.44                   | > 0.5MHz |  |  |

# Channel Low



Date: 27.MAR.2017 19:26:45

#### **Channel High**



| C          | Pea | k P | OV | νer   |
|------------|-----|-----|----|-------|
| <b>u</b> . |     | n ı | UV | v C i |

| Product      | : EUT-Sample | Test Mode   | : See Section 2.2 |
|--------------|--------------|-------------|-------------------|
| Test Item    | : Peak Power | Temperature | : 25 ℃            |
| Test Voltage | : DC 5V      | Humidity    | : 56%RH           |
| Test Result  | PASS         |             |                   |

### IEEE 802.11a Band1

| Channel | Frequency<br>(MHz) | Output Power (dBm) | FCC Limit<br>(W/dBm) | Result |
|---------|--------------------|--------------------|----------------------|--------|
| Low     | 5180               | 15.84              | 0.25/24.00           | PASS   |
| High    | 5240               | 15.70              |                      | PASS   |

#### IEEE 802.11a Band4

| Channel | Frequency<br>(MHz) | Output Power (dBm) | FCC Limit<br>(W/dBm) | Result |
|---------|--------------------|--------------------|----------------------|--------|
| Low     | 5745               | 15.97              | 1.00/30.00           | PASS   |
| High    | 5825               | 16.25              |                      | PASS   |

#### IEEE 802.11n 5G 20MHz Band1

| Channel | Frequency<br>(MHz) | Output Power (dBm) | FCC Limit<br>(W/dBm) | Result |
|---------|--------------------|--------------------|----------------------|--------|
| Low     | 5180               | 15.63              | 0.25/24.00           | PASS   |
| High    | 5240               | 15.94              |                      | PASS   |

#### IEEE 802.11n 5G 20MHz Band4

| Channel | Frequency<br>(MHz) | Output Power (dBm) | FCC Limit<br>(W/dBm) | Result |
|---------|--------------------|--------------------|----------------------|--------|
| Low     | 5745               | 15.61              | 4.00/00.00           | PASS   |
| High    | 5825               | 15.14              | 1.00/30.00           | PASS   |

#### IEEE 802.11n 5G 40MHz Band1

| Channel | Frequency<br>(MHz) | Output Power<br>(dBm) | FCC Limit<br>(W/dBm) | Result |
|---------|--------------------|-----------------------|----------------------|--------|
| Low     | 5190               | 12.97                 | 0.25/24.00           | PASS   |
| High    | 5230               | 12.92                 |                      | PASS   |

#### IEEE 802.11n 5G 40MHz Band4

| Channel | Frequency<br>(MHz) | Output Power<br>(dBm) | FCC Limit<br>(W/dBm) | Result |
|---------|--------------------|-----------------------|----------------------|--------|
| Low     | 5755               | 12.98                 | 1.00/30.00           | PASS   |
| High    | 5795               | 12.89                 |                      | PASS   |

#### IEEE 802.11ac 5G 20MHz Band1

| Channel | Frequency<br>(MHz) | Output Power (dBm) | FCC Limit<br>(W/dBm) | Result |
|---------|--------------------|--------------------|----------------------|--------|
| Low     | 5180               | 15.15              | 0.25/24.00           | PASS   |
| High    | 5240               | 15.52              |                      | PASS   |

# IEEE 802.11ac 5G 20MHz Band4

| Channel | Frequency<br>(MHz) | Output Power (dBm) | FCC Limit<br>(W/dBm) | Result |
|---------|--------------------|--------------------|----------------------|--------|
| Low     | 5745               | 15.58              | 1.00/30.00           | PASS   |
| High    | 5825               | 15.13              |                      | PASS   |

#### IEEE 802.11ac 5G 40MHz Band1

| Channel | Frequency<br>(MHz) | Output Power (dBm) | FCC Limit<br>(W/dBm) | Result |
|---------|--------------------|--------------------|----------------------|--------|
| Low     | 5190               | 12.45              | 0.25/24.00           | PASS   |
| High    | 5230               | 12.89              |                      | PASS   |

#### IEEE 802.11ac 5G 40MHz Band4

| Channel | Frequency<br>(MHz) | Output Power (dBm) | FCC Limit<br>(W/dBm) | Result |
|---------|--------------------|--------------------|----------------------|--------|
| Low     | 5755               | 12.78              | 1 00/20 00           | PASS   |
| High    | 5795               | 12.39              | 1.00/30.00           | PASS   |

Page 62 of 88



Date: 27.MAR.2017 19:34:37



Date: 27.MAR.2017 19:35:55

Page 63 of 88



Date: 27.MAR.2017 19:36:39



Page 64 of 88



Date: 27.MAR.2017 19:39:11

#### 20M-802.11n 5240MHz



Date: 27.MAR.2017 19:39:57

Page 65 of 88



Date: 27.MAR.2017 19:40:51



Date: 27.MAR.2017 19:41:56

Page 66 of 88



Date: 27.MAR.2017 19:44:30



Date: 27.MAR.2017 19:45:36

Page 67 of 88



Date: 27.MAR.2017 19:46:57



Date: 27.MAR.2017 19:48:01

Page 68 of 88



Date: 27.MAR.2017 19:49:16



Date: 27.MAR.2017 19:50:11

Page 69 of 88



Date: 27.MAR.2017 19:51:12



Date: 27.MAR.2017 19:52:13

Page 70 of 88



Date: 27.MAR.2017 19:53:16



Date: 27.MAR.2017 19:54:29

Page 71 of 88



Date: 27.MAR.2017 19:55:22



Date: 27.MAR.2017 19:56:55

# D. Peak Power Spectral Density

| Product      | : EUT-Sample                  | Test Mode   | : See Section 2.2 |
|--------------|-------------------------------|-------------|-------------------|
| Test Item    | : Peak Power Spectral Density | Temperature | : 25 ℃            |
| Test Voltage | : DC 5V                       | Humidity    | : 56%RH           |
| Test Result  | PASS                          |             |                   |

### IEEE 802.11a

#### Band1

| Channel | Frequency<br>(MHz) | PPSD<br>(dBm) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|---------------|--------------------|--------|
| Low     | 5180               | 3.657         | 11dBm/MHz          | PASS   |
| High    | 5240               | 2.715         | I IUDIII/IVITZ     | PASS   |

#### Band4

| Channel | Frequency<br>(MHz) | PPSD<br>(dBm) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|---------------|--------------------|--------|
| Low     | 5745               | 1.164         | 30dBm/500 kHz      | PASS   |
| High    | 5825               | 0.965         | (26.99dBm/MHz)     | PASS   |

#### IEEE 802.11n 5G 20MHz

#### Band1

| Channel | Frequency<br>(MHz) | PPSD<br>(dBm) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|---------------|--------------------|--------|
| Low     | 5180               | 2.976         | 11dDm/MU-          | PASS   |
| High    | 5240               | 2.049         | - 11dBm/MHz        | PASS   |

#### Band4

| Channel | Frequency<br>(MHz) | PPSD<br>(dBm) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|---------------|--------------------|--------|
| Low     | 5745               | 1.104         | 30dBm/500 kHz      | PASS   |
| High    | 5825               | 0.996         | (26.99dBm/MHz)     | PASS   |

### IEEE 802.11n 5G 40MHz

#### Band1

| Channel | Frequency<br>(MHz) | PPSD<br>(dBm) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|---------------|--------------------|--------|
| Low     | 5190               | 0.508         | 4.4 alDas /MILI    | PASS   |
| High    | 5230               | -0.938        | 11dBm/MHz          | PASS   |

#### Band4

| Channel | Frequency<br>(MHz) | PPSD<br>(dBm) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|---------------|--------------------|--------|
| Low     | 5755               | -1.709        | 30dBm/500 kHz      | PASS   |
| High    | 5795               | -0.866        | (26.99dBm/MHz)     | PASS   |

### IEEE 802.11ac 5G 20MHz

#### Band1

| Channel | Frequency<br>(MHz) | PPSD<br>(dBm) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|---------------|--------------------|--------|
| Low     | 5180               | 2.14          | 11dBm/MHz          | PASS   |
| High    | 5240               | 2.80          | I IUDIII/IVIDZ     | PASS   |

### Band4

| Channel | Frequency<br>(MHz) | PPSD<br>(dBm) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|---------------|--------------------|--------|
| Low     | 5745               | 1.23          | 30dBm/500 kHz      | PASS   |
| High    | 5825               | 1.60          | (26.99dBm/MHz)     | PASS   |

#### IEEE 802.11ac 5G 40MHz

Band1

Page 73 of 88

| Channel | Frequency<br>(MHz) | PPSD<br>(dBm) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|---------------|--------------------|--------|
| Low     | 5190               | 0.30          | 11dBm/MHz          | PASS   |
| High    | 5230               | -0.07         | I IUDIII/IVIIIZ    | PASS   |

Band4

| Channel | Frequency<br>(MHz) | PPSD<br>(dBm) | FCC Limit<br>(kHz) | Result |
|---------|--------------------|---------------|--------------------|--------|
| Low     | 5755               | 0.09          | 30dBm/500 kHz      | PASS   |
| High    | 5795               | -0.68         | (26.99dBm/MHz)     | PASS   |

Note: For 5.725~5.85GHz (Band4): Power Density (dBm/500kHz)= Power Density (dBm/MHz)- 10log(500kHz/RBW) (dB)

IEEE 802.11a Band1

# PPSD (CH Low)





# IEEE 802.11a Band4

#### PPSD (CH Low)





# IEEE 802.11n 5G 20MHz Band1

#### PPSD (CH Low)





# IEEE 802.11n 5G 20MHz Band4

#### PPSD (CH Low)





# IEEE 802.11n 5G 40MHz Band1

#### PPSD (CH Low)





# IEEE 802.11n 5G 40MHz Band4

#### PPSD (CH Low)







# IEEE 802.11ac 5G 20MHz Band4 PPSD (CH Low) **P** \*RBW 1 MHz \*VBW 3 MHz SWT 20 ms Marker 1 [T1 ] 1.23 dBm 5.748205128 GHz Ref 30 dBm \* Att 30 dB 1 PK VIEW 3DB Date: 27.MAR.2017 20:02:05 PPSD (CH High) **P**S> \* RBW 1 MHz Marker 1 [T1 ] 1.60 dBm 5.821858974 GHz \*VBW 3 MHz SWT 20 ms \* Att 30 dB

4 MHz/

Span 40 MHz

Date: 27.MAR.2017 20:02:49

Center 5.825 GHz





# E. Frequency Stability

| Product:      | Mobile phone        | Test Mode:   | Mode: IEEE 802.11a |
|---------------|---------------------|--------------|--------------------|
| Test Item:    | Frequency Stability | Temperature: | <b>25</b> ℃        |
| Test Voltage: | DC 5V               | Humidity:    | 56%RH              |
| Test Result:  | PASS                |              |                    |

Voltage vs. Frequency Stability

| Voltage              | Measurement Frequency (MHz) |           |           |           |  |
|----------------------|-----------------------------|-----------|-----------|-----------|--|
| (V)                  | 5180 MHz                    | 5240 MHz  | 5745 MHz  | 5825 MHz  |  |
| 126.50               | 5179.9488                   | 5239.9206 | 5744.9168 | 5824.9134 |  |
| 110.00               | 5179.9488                   | 5239.9206 | 5744.9168 | 5824.9134 |  |
| 93.50                | 5179.9488                   | 5239.9206 | 5744.9168 | 5824.9134 |  |
| Max. Deviation (MHz) | 0.0512                      | 0.0794    | 0.0832    | 0.0866    |  |
| Max. Deviation (ppm) | 9.88                        | 15.15     | 14.48     | 14.87     |  |

Temperature vs. Frequency Stability

| . cimporaton e rei i requi |                             |           |           |           |  |  |
|----------------------------|-----------------------------|-----------|-----------|-----------|--|--|
| Temperature                | Measurement Frequency (MHz) |           |           |           |  |  |
| (℃)                        | 5180 MHz                    | 5240 MHz  | 5745 MHz  | 5825 MHz  |  |  |
| 0                          | 5179.9494                   | 5239.9202 | 5744.9156 | 5824.9132 |  |  |
| 10                         | 5179.9494                   | 5239.9202 | 5744.9156 | 5824.9132 |  |  |
| 20                         | 5179.9494                   | 5239.9202 | 5744.9156 | 5824.9132 |  |  |
| 30                         | 5179.9494                   | 5239.9202 | 5744.9156 | 5824.9132 |  |  |
| 40                         | 5179.9494                   | 5239.9202 | 5744.9156 | 5824.9132 |  |  |
| Max. Deviation (MHz)       | 0.0506                      | 0.0792    | 0.0844    | 0.0868    |  |  |
| Max. Deviation (ppm)       | 9.77                        | 15.11     | 15.42     | 14.90     |  |  |

Page 85 of 88

| Product:      | Mobile phone        | Test Mode:   | Mode: IEEE 802.11n 20MHz |
|---------------|---------------------|--------------|--------------------------|
| Test Item:    | Frequency Stability | Temperature: | <b>25</b> ℃              |
| Test Voltage: | DC 5V               | Humidity:    | 56%RH                    |
| Test Result:  | PASS                |              |                          |

Voltage vs. Frequency Stability

| Voltage              | Measurement Frequency (MHz) |           |           |           |
|----------------------|-----------------------------|-----------|-----------|-----------|
| (V)                  | 5180 MHz                    | 5240 MHz  | 5745 MHz  | 5825 MHz  |
| 126.50               | 5179.9522                   | 5239.9224 | 5744.9214 | 5824.9256 |
| 110.00               | 5179.9522                   | 5239.9218 | 5744.9212 | 5824.9254 |
| 93.50                | 5179.9520                   | 5239.9222 | 5744.9212 | 5824.9256 |
| Max. Deviation (MHz) | 0.0480                      | 0.0782    | 0.0788    | 0.0746    |
| Max. Deviation (ppm) | 9.26                        | 14.92     | 13.72     | 12.81     |

Temperature vs. Frequency Stability

| Tomporation of the Frequency | omportation vol i roquomoy otability |           |           |           |  |
|------------------------------|--------------------------------------|-----------|-----------|-----------|--|
| Temperature                  | Measurement Frequency (MHz)          |           |           |           |  |
| (℃)                          | 5180 MHz                             | 5240 MHz  | 5745 MHz  | 5825 MHz  |  |
| 0                            | 5179.9522                            | 5239.9224 | 5744.9214 | 5824.9256 |  |
| 10                           | 5179.9522                            | 5239.9218 | 5744.9212 | 5824.9254 |  |
| 20                           | 5179.9520                            | 5239.9222 | 5744.9212 | 5824.9256 |  |
| 30                           | 5179.9522                            | 5239.9222 | 5744.9214 | 5824.9252 |  |
| 40                           | 5179.9518                            | 5239.9218 | 5744.9214 | 5824.9254 |  |
| Max. Deviation (MHz)         | 0.0482                               | 0.0782    | 0.0788    | 0.0748    |  |
| Max. Deviation (ppm)         | 9.31                                 | 14.92     | 13.72     | 12.84     |  |

Page 86 of 88

| Product:      | Mobile phone        | Test Mode:   | Mode: IEEE 802.11n 40MHz |
|---------------|---------------------|--------------|--------------------------|
| Test Item:    | Frequency Stability | Temperature: | 25 ℃                     |
| Test Voltage: | DC 5V               | Humidity:    | 56%RH                    |
| Test Result:  | PASS                |              |                          |

Voltage vs. Frequency Stability

| Voltage              | Measurement Frequency (MHz) |           |           |           |
|----------------------|-----------------------------|-----------|-----------|-----------|
| (V)                  | 5190 MHz                    | 5230 MHz  | 5755 MHz  | 5795 MHz  |
| 126.50               | 5189.9348                   | 5229.9214 | 5744.9162 | 5794.9124 |
| 110.00               | 5189.9348                   | 5229.9214 | 5744.9162 | 5794.9124 |
| 93.50                | 5189.9348                   | 5229.9214 | 5744.9162 | 5794.9124 |
| Max. Deviation (MHz) | 0.0652                      | 0.0786    | 0.0838    | 0.0876    |
| Max. Deviation (ppm) | 12.56                       | 15.03     | 14.56     | 15.12     |

Temperature vs. Frequency Stability

|           | Measuremer                                                              | ot Fraguency (MHz)                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|-----------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|           |                                                                         | Measurement Frequency (MHz)                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 5190 MHz  | 5230 MHz                                                                | 5755 MHz                                                                                                                                                                                                            | 5795 MHz                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 5189.9344 | 5229.9210                                                               | 5754.9162                                                                                                                                                                                                           | 5794.9128                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 5189.9344 | 5229.9210                                                               | 5754.9162                                                                                                                                                                                                           | 5794.9128                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 5189.9344 | 5229.9210                                                               | 5754.9162                                                                                                                                                                                                           | 5794.9128                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 5189.9344 | 5229.9210                                                               | 5754.9162                                                                                                                                                                                                           | 5794.9128                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 5189.9344 | 5229.9210                                                               | 5754.9162                                                                                                                                                                                                           | 5794.9128                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 0.0656    | 0.0790                                                                  | 0.0838                                                                                                                                                                                                              | 0.0872                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 12.64     | 15.11                                                                   | 14.56                                                                                                                                                                                                               | 15.05                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|           | 5189.9344<br>5189.9344<br>5189.9344<br>5189.9344<br>5189.9344<br>0.0656 | 5189.9344         5229.9210           5189.9344         5229.9210           5189.9344         5229.9210           5189.9344         5229.9210           5189.9344         5229.9210           0.0656         0.0790 | 5189.9344         5229.9210         5754.9162           5189.9344         5229.9210         5754.9162           5189.9344         5229.9210         5754.9162           5189.9344         5229.9210         5754.9162           5189.9344         5229.9210         5754.9162           5189.9344         5229.9210         5754.9162           0.0656         0.0790         0.0838 |  |  |

Page 87 of 88

| Product:      | Mobile phone        | Test Mode:   | Mode: IEEE 802.11ac<br>20MHz |
|---------------|---------------------|--------------|------------------------------|
| Test Item:    | Frequency Stability | Temperature: | 25 ℃                         |
| Test Voltage: | DC 5V               | Humidity:    | 56%RH                        |
| Test Result:  | PASS                |              |                              |

Voltage vs. Frequency Stability

| Voltage              | Measurement Frequency (MHz) |           |           |           |
|----------------------|-----------------------------|-----------|-----------|-----------|
| (V)                  | 5180 MHz                    | 5240 MHz  | 5745 MHz  | 5825 MHz  |
| 126.50               | 5179.9556                   | 5239.9236 | 5744.9228 | 5824.9244 |
| 110.00               | 5179.9556                   | 5239.9236 | 5744.9228 | 5824.9242 |
| 93.50                | 5179.9554                   | 5239.9234 | 5744.9230 | 5824.9242 |
| Max. Deviation (MHz) | 0.0446                      | 0.0766    | 0.0770    | 0.0758    |
| Max. Deviation (ppm) | 8.61                        | 14.62     | 13.40     | 13.01     |

Temperature vs. Frequency Stability

| Temperature          | Measurement Frequency (MHz) |           |           |           |
|----------------------|-----------------------------|-----------|-----------|-----------|
| (℃)                  | 5180 MHz                    | 5240 MHz  | 5745 MHz  | 5825 MHz  |
| 0                    | 5179.9536                   | 5239.9248 | 5744.9224 | 5824.9234 |
| 10                   | 5179.9536                   | 5239.9244 | 5744.9224 | 5824.9234 |
| 20                   | 5179.9535                   | 5239.9246 | 5744.9224 | 5824.9236 |
| 30                   | 5179.9534                   | 5239.9246 | 5744.9222 | 5824.9236 |
| 40                   | 5179.9534                   | 5239.9244 | 5744.9222 | 5824.9234 |
| Max. Deviation (MHz) | 0.0466                      | 0.0756    | 0.0776    | 0.0766    |
| Max. Deviation (ppm) | 9.00                        | 14.43     | 13.51     | 13.15     |

Page 88 of 88

| Product:      | Mobile phone        | Test Mode:   | Mode: IEEE 802.11ac<br>40MHz |
|---------------|---------------------|--------------|------------------------------|
| Test Item:    | Frequency Stability | Temperature: | 25 ℃                         |
| Test Voltage: | DC 5V               | Humidity:    | 56%RH                        |
| Test Result:  | PASS                |              |                              |

Voltage vs. Frequency Stability

| Voltage              | Measurement Frequency (MHz) |           |           |           |
|----------------------|-----------------------------|-----------|-----------|-----------|
| (V)                  | 5190 MHz                    | 5230 MHz  | 5755 MHz  | 5795 MHz  |
| 126.50               | 5189.9322                   | 5229.9206 | 5744.9154 | 5794.9166 |
| 110.00               | 5189.9322                   | 5229.9206 | 5744.9154 | 5794.9166 |
| 93.50                | 5189.9322                   | 5229.9206 | 5744.9152 | 5794.9162 |
| Max. Deviation (MHz) | 0.0678                      | 0.0794    | 0.0848    | 0.0838    |
| Max. Deviation (ppm) | 13.06                       | 15.18     | 14.74     | 14.46     |

Temperature vs. Frequency Stability

| Temperature          | Measurement Frequency (MHz) |           |           |           |
|----------------------|-----------------------------|-----------|-----------|-----------|
| (℃)                  | 5190 MHz                    | 5230 MHz  | 5755 MHz  | 5795 MHz  |
| 0                    | 5189.9314                   | 5229.9222 | 5754.9188 | 5794.9146 |
| 10                   | 5189.9314                   | 5229.9224 | 5754.9188 | 5794.9144 |
| 20                   | 5189.9316                   | 5229.9224 | 5754.9186 | 5794.9146 |
| 30                   | 5189.9316                   | 5229.9224 | 5754.9184 | 5794.9142 |
| 40                   | 5189.9314                   | 5229.9224 | 5754.9184 | 5794.9142 |
| Max. Deviation (MHz) | 0.0686                      | 0.0776    | 0.0816    | 0.0858    |
| Max. Deviation (ppm) | 13.22                       | 14.84     | 14.18     | 14.81     |