Appendice 1: Le Système International d'unités (SI)

En 1960, lors de la onzième Conférence générale des poids et mesures, apparaît le Système International d'unités qui comprend aujourd'hui deux classes d'unités :

- les **unités de base**, (au nombre de sept)
- les unités dérivées

Ce système reste évidemment ouvert aux progrès de la science et des technologies ainsi qu'aux besoins en termes d'exactitude.

Nature	Unité	Symbole	Définition	
Longueur	mètre	m	Le mètre est la longueur du trajet parcouru dans le vide par la lumière pendant une durée de 1/299 792 458 de seconde. (17 ^e Conférence Générale des Poids et Mesures de 1983)	
Masse	kilogramme	kg	Le kilogramme (est la masse du prototype en platine iridié qui a été sanctionné par la Conférence générale des poids et mesures tenue à Paris en 1889 et qui est déposé au Bureau International des Poids et Mesures. (3 ^e CGPM de 1901)	
Temps	seconde	S	La seconde est la durée de 9 192 631 770 périodes de la radiation correspondant à la transition entre les deux niveaux hyperfins de l'état fondamental de l'atome de césium 133. (13 ^e CGPM de 1967)	
Intensité de courant électrique	ampère	A	L'ampère est l'intensité d'un courant constant qui, maintenu dans deux conducteurs parallèles, rectilignes, de longueur infinie, de section circulaire négligeable et placées à une distance de 1 mètre l'un de l'autre dans le vide, produirait entre ces conducteurs une force égale à 2.10 ⁻⁷ newton par mètre de longueur (<i>CIPM</i> , 1946, approuvé par la 9 ^e CGPM de 1948)	
Température thermodynamique	kelvin	K	Le kelvin est la fraction 1/273,16 de la température thermodynamique du point triple de l'eau. (13 ^e CGPM de 1967; il est décidé également que l'unité Kelvin et son symbole K sont utilisés pour exprimer un intervalle ou une différence de température))	
Intensité lumineuse	candela	Cd	La candela est l'intensité lumineuse, dans une direction donnée d'une source qui émet un rayonnement monochromatique de fréquence 540.10 ¹² hertz et dont l'intensité énergétique dans cette direction est 1/683 watt par stéradian (16 ^e CGPM de 1979)	
Quantité de matière	mole	Mol	La mole est la quantité de matière d'un système contenant autant d'entités élémentaires qu'il y a d'atomes dans 0,012 kilogramme de carbone 12. (14 ^e CGPM de 1971)	

Unités dérivées

Grandeur	Unité	Symbole	Dimensions
angle plan	radian	rad	rad (sans)
angle solide	stéradian	sr	sr (sans)
fréquence	hertz	Hz	s ⁻¹
force	newton	N	m.kg.s ⁻²
pression, contrainte	pascal	$Pa = N/m^2$	m ⁻¹ .kg.s ⁻²
énergie, travail, quantité de chaleur	joule	J = N.m	m ² .kg.s ⁻²
puissance, flux énergétique	watt	W = J/s	m ² .kg.s ⁻³
quantité d'électricité, charge électrique	coulomb	С	s.A
différence de potentiel, force électromotrice	volt	V = W/A	$m^2.kg.s^{-3}.A^{-1}$
capacité électrique	farad	F = C/V	$m^{-2}.kg^{-1}.s^4.A^2$
résistance électrique	ohm	$\Omega = V/A$	$m^2.kg.s^{-3}.A^{-2}$
conductance électrique	siemens	S = A/V	$m^{-2}.kg^{-1}.s^3.A^{-2}$
flux d'induction magnétique	weber	$Wb = V \cdot s$	$m^2.kg.s^{-2}.A^{-1}$
induction magnétique	tesla	$T = Wb/m^2$	kg.s ⁻² .A ⁻¹
inductance	henry	H = Wb/A	m ² .kg.s ⁻² .A ⁻²
flux lumineux	lumen	lm = cd.sr	cd.sr
éclairement lumineux	lux	$lx = lm/m^2$	m ⁻² .cd

Préfixes

Comme ces unités peuvent dans certains cas se révéler être trop grandes (ou trop petites), on utilise également leurs multiples et sous-multiples décimaux en faisant précéder le nom d'un préfixe:

Multiple	Nom	Abréviation
10 ²⁴	yotta	Y
10 ²¹	zetta	Z
10 ¹⁸	exa	Е
10 ¹⁵	peta	P
10 ¹²	tera	Т
10 ⁹	giga	G
10^{6}	méga	M
10^3	kilo	k
10^{2}	hecto	h
10 ¹	déca	da

Sous- multiple	Nom	Abréviation	
10 ⁻²⁴	yocto	у	
10 ⁻²¹	zepto	Z	
10 ⁻¹⁸	atto	a	
10 ⁻¹⁵	femto	f	
10 ⁻¹²	pico	p	
10 ⁻⁹	nano	n	
10 ⁻⁶	micro	μ	
10 ⁻³	milli	m	
10-2	centi	С	
10 ⁻¹	déci	d	