

STATISTICS WITH R

Avaliação da disciplina

Avaliação	Peso
Listas de Exercícios (indiv.)	0.5
Projeto Integrado (2 a 4)	0.5
Aprenda R no R (indiv.)	+1 pto

FIND MBA+

Aprenda R no R

 Conjunto de lições de R em que deve-se seguir um tutorial da linguagem.

- Lições feitas em casa;
- No próprio ambiente R Studio
- Banco de dados NoSQL na nuvem
- Micro serviço com autenticação

Aprenda R no R

.Comandos de referência

```
# Instala pacote swirl
install.packages("swirl")
library(swirl)
select language(language = 'portuguese')
# Instala curso
library(swirl)
uninstall course ('Aprenda R no R')
install course github('elthonf', 'Aprenda R no R')
# Inicia os cursos interativos
swirl()
# Outros comandos
library(swirl)
bye()
info()
Sys.setlocale("LC ALL", 'en US.UTF-8')
```


Aprenda R no R

```
Toda a prática está rendendo frutos!
  Gostaria de informar ao professor sobre a
  conclusão desta lição
1: Sim
2: Não
 Qual o código da sua turma?
                                (Usar FIAP-5DTS)
Qual seu cã³digo de aluno?
```


Consultar a nota utilizando o Link abaixo

Visualizando notas

user	Comandos básicos do R	Logicos	Sequencias Numéricas	Vetores	Valores ausentes	Data e Hora	Filtrando vetores	Matrizes e tabelas	Amostras e Simulações	Funções	Manipulação com dplyr	Gráficos Básicos	K- Médias	Gráficos Analíticos	Total	Nota
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0

AULA 2 Estatística descritiva Introdução a probabilidade Distribuição de probabilidades

Importando Dados

O pacote {readr} do tidyverse é utilizado para importar arquivos de texto, como .txt ou .csv, para o R. Para carregálo, rode o código:

library(readr)

O {readr} transforma arquivos de textos em tibbles usando as funções:

read_csv(): para arquivos separados por vírgula. read rds(): para arquivos do tipo rds

Importando Dados

imdb <- read_rds("imdb.rds")</pre>

•	titulo	ano [‡]	diretor	duracao	cor	generos	pais	classificacao
1	Avatar	2009	James Cameron	178	Color	Action Adventure Fantasy Sci-Fi	USA	A partir de 13 anos
2	Pirates of the Caribbean: At World's End	2007	Gore Verbinski	169	Color	Action Adventure Fantasy	USA	A partir de 13 anos
3	The Dark Knight Rises	2012	Christopher Nolan	164	Color	Action Thriller	USA	A partir de 13 anos
4	John Carter	2012	Andrew Stanton	132	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
5	Spider-Man 3	2007	Sam Raimi	156	Color	Action Adventure Romance	USA	A partir de 13 anos
6	Tangled	2010	Nathan Greno	100	Color	Adventure Animation Comedy Family Fantasy Musical Roma	USA	Livre
7	Avengers: Age of Ultron	2015	Joss Whedon	141	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
8	Batman v Superman: Dawn of Justice	2016	Zack Snyder	183	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
9	Superman Returns	2006	Bryan Singer	169	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
10	Pirates of the Caribbean: Dead Man's Chest	2006	Gore Verbinski	151	Color	Action Adventure Fantasy	USA	A partir de 13 anos
11	The Lone Ranger	2013	Gore Verbinski	150	Color	Action Adventure Western	USA	A partir de 13 anos
12	Man of Steel	2013	Zack Snyder	143	Color	Action Adventure Fantasy Sci-Fi	USA	A partir de 13 anos
13	The Chronicles of Narnia: Prince Caspian	2008	Andrew Adamson	150	Color	Action Adventure Family Fantasy	USA	Livre
14	The Avengers	2012	Joss Whedon	173	Color	Action Adventure Sci-Fi	USA	A partir de 13 anos
15	Pirates of the Caribbean: On Stranger Tides	2011	Rob Marshall	136	Color	Action Adventure Fantasy	USA	A partir de 13 anos
16	Men in Black 3	2012	Barry Sonnenfeld	106	Color	Action Adventure Comedy Family Fantasy Sci-Fi	USA	A partir de 13 anos
17	The Amazing Spider-Man	2012	Marc Webb	153	Color	Action Adventure Fantasy	USA	A partir de 13 anos
18	Robin Hood	2010	Ridley Scott	156	Color	Action Adventure Drama History	USA	A partir de 13 anos
19	The Hobbit: The Desolation of Smaug	2013	Peter lackson	186	Color	AdventurelFantasy	USA	A partir de 13 anos

São estatísticas que resumem, em um único valor, a tendência central (média, mediana, moda), a variabilidade (variância, desvio padrão) e a forma da distribuição (simétrica ou assimétrica) da variável.

Distribuição simétrica

Distribuição do tempo de uso de internet (horas)

Medidas de tendência central:

- Média
- Mediana
- Moda

Indicam o centro da distribuição de frequências ou a região de maior concentração de frequência na distribuição.

Medidas de dispersão:

- Variância
- Desvio padrão

Indicam o grau de homogeneidade dos valores, até que ponto eles se encontram concentrados ou dispersos da média.

•

Medidas Resumo

Decisão pela média

Qual ativo você escolheria para investir? Justifique sua escolha.

Exemplo 2

Durante uma verificação de qualidade no conteúdo de seis recipientes de café instantâneo, foram obtidas as seguintes notas:

Qual a média e a mediana encontrada?

Média aritmética:
$$\overline{x} = \sum_{\overline{X} = 0}^{n} x = \frac{6.03 + 5.59 + 6.40 + 6.00 + 5.99 + 6.02}{6}$$

Mediana: $5.59 \quad 5.99 \quad 6.00 \quad 6.02 \quad 6.03 \quad 6.40$
 $mediana = \frac{6.00 + 6.02}{2} = 6.01$

Exemplo 1

Durante uma verificação de qualidade no conteúdo de seis recipientes de café instantâneo, foram obtidas as seguintes notas:

Qual a média e a mediana encontrada?

$$\bar{x} = 6,00$$
 $mediana = 6,01$

Suponha que o terceiro valor tenha sido incorretamente medido e que na verdade seja de 6,04. Determine novamente a nota média e mediana.

Média aritmética:
$$\bar{x} = \frac{6,03+5,59+6,04+6,00+5,99+6}{4}$$

$$mediana = \frac{6,00+6,02}{2} = 6,0$$

Comparação entre Média, Mediana e Moda

	VANTAGENS	LIMITAÇÕES	TIPO DE VARIÁVEIS
MÉDIA	Reflete todos os valores da amostra	É influenciada por valores extremos	Contínua e discreta
MEDIANA	Menos sensível a valores extremos que a média	Mais difícil de ser determinada para grande quantidade de dados	Contínua e discreta
MODA	Representa um valor típico	Não tem função em certos conjuntos de dados	Contínua, discreta, nominal e ordinal

+

MEDIDAS DE POSIÇÃO - MÉDIA

• Média Aritmética Simples:

$$\bar{\mathbf{x}} = \frac{\sum_{i=1}^{n} \mathbf{x}_{i}}{\mathbf{n}}$$

• Média Aritmética Ponderada:

$$\overline{X} = \frac{\sum_{i=1}^{n} x_i \cdot F_i}{n}$$

• Média Geométrica (evolução):

$$Mg = \sqrt[n]{\cdot_1 x \cdot \cdot_2 \cdot \cdot_x \cdot_n}$$

• Média Quadrática:

$$\overline{X}^2 = \frac{\sum_{i=1}^{n} x^i}{n}$$

. . •

Moda

```
library(dplyr)
moda <- function(vetor){
posModa <- vetor %>% table %>% data.frame() %>%
arrange(desc(Freq))
modaVec <- posModa %>% filter(Freq >= posModa[1, 2])
moda <- modaVec[,1] %>% as.character %>% as.numeric() moda}
vetor <- c(1,2.1, 2.1,3,3,5,6)
moda(amostra)
amostra <- sample.int(10, 15, replace = TRUE)
moda(amostra)
```


Decisão pela média ??????

Assimétrico à direita

Média > Mediana

Assimétrico à esquerda

Média < Mediana

Outras Medidas de Posição

Decis: dividem um conjunto de dados em dez partes iguais.

Percentis (P): dividem a série em cem partes, de modo que p% ficam abaixo dele (P). 0% 100%

Quartis: dividem a série em quatro partes iguais.

Medidas Resumo

Qual o desvio padrão?

• Medidas de Dispersão

Exemplo 8:

A: 4, 4, 4, 4, 4, 4, 4

B: 3, 3, 3, 5, 5, 5, 5

C: 1, 1, 3, 3, 5, 5, 7, 7

Medidas de Dispersão: variância e desvio padrão Exemplo C

X	Média	(X-Média)	(X-Média) ²
1	4	-3	9
1	4	-3	9
3	4	-1	1
3	4	-1	1
5	4	1	1
5	4	1	1
7	4	3	9
7	4	3	9
Soma	-	0	40

Variância:

$$\sigma^2 = \frac{40}{8} = 5$$

Desvio padrão:

$$\sigma = \sqrt{\sigma^2} = \sqrt{5} = 2.24$$

O quanto os pontos (dados) estão distantes da média (ponto central)

$$\rightarrow$$
 variância da população $\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - x)^2}{n}$

variância da amostra

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

.

. . . .

No R...

```
x <- c(1, 1, 3, 3, 5, 5, 7, 7)
sd(x) (desvio-padrão)
sd(x)² (variância)</pre>
```


No R...

```
x <- c(1, 1, 3, 3, 5, 5, 7, 7)
```

sd(x) (desvio-padrão)

 $sd(x)^2$ ou var(x) (variância)

Como calcular a variância populacional?

Exercícios

- 1) Leia a base imdb.rds e selecione as variáveis **ano, duração e orçamento**.
- 2) Calcule média, dp, 1° Quartil, Mediana, 3° Quartil, min, máx.
- 3) Dado a variável y<-c(445, 530, 540, 510, 570, 530, 545, 545, 505, 535, 450, 500, 520, 460, 430, 520, 520, 430, 535, 535, 475, 545, 420, 495, 485, 570, 480, 495, 470, 490); Calcule as medidas de resumo do item 2.

Medidas de Assimetria

As medidas de assimetria referem-se à forma da curva que representa a distribuição de frequência. A assimetria é o afastamento da simetria de uma frequência.

- Curvas de frequência simétrica ou em forma de sino: caracterizamse pelo fato das observações equidistantes do ponto central terem a mesma frequência (curva normal)
- Curvas de frequência moderadamente assimétricas ou desviadas: a cauda de um lado da ordenada máxima é mais longa do que do outro. Se o ramo mais alongado fica à direita, a curva é dita de assimetria positiva, enquanto que, se ocorre o inverso, diz-se que a curva é de assimetria negativa.

Coeficientes de Assimetria (Skewness)

As=
$$\frac{m^3}{\sigma^3} = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^3}{[\frac{1}{n} (x_i - \bar{x})^2]^{\frac{3}{2}}}$$

As=0 →simétrica

As>0 →assimétrica positiva

As<0 → assimétrica negativa

Índice de Assimetria (Pearson)

$$A = \frac{\text{média} - \text{moda}}{\text{desviopadião}}$$

|A|<0,15→simétrica 0,15<|A|<1→ assimetria moderada |A|>1 → assimetria forte

Medidas de Assimetria

- Curtose: grau de achatamento em relação a uma curva Normal
 - ➤ Leptocúrtica (afilado) → K>3
 - ➤ Mesocúrtica → K=3
 - ➤ Platicúrtica (achatado) → K<3

Outras Medidas de Dispersão

- Coeficiente de Variação
- > Amplitude
- Amplitude Inter-Quartílica

Outras Medidas de Dispersão

Coeficiente de variação (CV)

É o quociente entre o desvio padrão e a média.

$$CV = \frac{\sigma}{\overline{X}}$$

Vantagem: caracterizar a dispersão dos dados em termos relativos a seu valor médio.

Medidas Resumo

Média

Qual o coeficiente de variação?

Medidas de Dispersão

Exemplo 8:

A: 4, 4, 4, 4, 4, 4, 4

B: 3, 3, 3, 5, 5, 5, 5

C: 1, 1, 3, 3, 5, 5, 7, 7

Outras Medidas de Dispersão Amplitude

É definida como a diferença entre o maior e o menor valor de um conjunto de dados. Fortemente relacionado com a dispersão dos dados.

A amplitude pode levar a erros de avaliação, pois não representa o conjunto dos dados. Muitas vezes reflete muito mal a dispersão dos mesmos.

Outras Medidas de Dispersão

Amplitude Inter-quartílica

É a diferença entre o terceiro e o primeiro quartil (Q3-Q1).

Usada em análise exploratória de dados - gráficos Box Plot. • -

. . .

Distribuição de Frequência

O número de vezes que ocorreram valores em cada classe ou valores chama-se frequência absoluta. O conjunto das ocorrências, com correspondentes frequências absolutas (FA) e relativas (FR), define a distribuição de frequências da variável. Conhecer o comportamento da variável.

Distribuição etária dos trabalhadores da Empresa XXX, 01/05/2019

Faixa etária	Fraguanay	Dorsont	Cumulative	Cumulative
	Frequency	Percent	Frequency	Percent
00 - 17	19052	33,8	19052	33,8
18 - 29	16143	28,6	35195	62,4
30 - 39	13710	24,3	48905	86,7
40 - 49	5773	10,2	54678	96,9
50 - 59	1559	2,8	56237	99,7
60 - 69	174	0,3	56411	100,0
Acima 69	13	0,0	56424	100,0
Total	56424	100,0		

Apresentação Gráfica dos Dados

As regras básicas de elaboração de um gráfico são:

- > simplicidade
- > clareza
- > veracidade

Apresentação Gráfica dos Dados

Como medir incerteza? (Probabilidade?)

FIND MBA+

· • +

.

.

+ .

•

. . . .

Experimento Aleatório: procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes.

Exemplos:

- 1. Resultado do lançamento de um dado equilibrado;
- 2. Sorteado um estudante da escola e perguntar se ele é fumante ou não.
- 3. Tipo sanguíneo de um habitante escolhido ao acaso;
- 4. Um lote de ações é comprado por R\$ 100,00. Você deseja observar o preço que esse lote de ações pode ser vendido daqui a um ano;
- 5. Dois motoristas em uma rodovia do estado de São Paulo são selecionados aleatoriamente e verifica-se se estão usando o cinto de segurança.

Espaço Amostral (Ω): Conjunto de todos os resultados possíveis de um experimento aleatório.

1. Lançamento de um dado equilibrado.

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

2. Sorteado um estudante da escola e perguntar se ele é fumante ou não.

$$\Omega = \{Fumante, Não Fumante\}$$

3. Tipo sanguíneo de um habitante de Osasco escolhido ao acaso.

$$\Omega = \{A, B, AB, O\}$$

4. Um lote de ações é comprado por R\$ 100,00. A que preço esse lote de ações pode ser vendido em um ano.

$$\Omega = \{x \in \mathbb{R} \mid x \ge 0\}$$

5. Se um motorista estiver usando cinto de segurança usaremos a letra C, caso contrário S. $\Omega = \{CC, CS, SC, SS\}$

* *Probabilidade*: é uma medida da incerteza associada aos resultados do experimento aleatório.

Deve fornecer a informação de quão verossímil é a ocorrência de um particular evento.

Como atribuir probabilidade aos eventos do espaço amostral?

Temos duas abordagens possíveis:

Freqüências de ocorrências de um evento: é o número de vezes que esse evento ocorre dividido pelo total de vezes que o experimento é realizado.

Suposições teóricas: nessa abordagem a atribuição de probabilidade a um evento e feita baseando-se em características teóricas do experimento.

FIVE WBA+

Variável peso: Frequência

Variável peso: Probabilidade

FIND MBA+

Variável peso: Fitada por uma N(120,30)

Variável Aleatória

- Uma quantidade X, associada a cada possível resultado do espaço amostral Ω, é denominada variável aleatória, se assume valores em um conjunto, com certa probabilidade P.
- Dizemos que a ocorrência de eventos segue uma distribuição de probabilidade.
- Assume-se que as observações de uma amostra são oriundas de uma variável aleatória cuja distribuição é conhecida ou não.

Distribuições de Probabilidade

Quantas funções que descrevem variáveis aleatórias

existem? V.A. Discreta

V.A. Contínua

- Uniforme Discreta
- Bernoulli
 - Binomial
- Geométrica
- Binomial Negativa ou Pascal
- Hipergeométrica

- · Uniforme
- Normal
- Exponencial
- Log-Normal
- Triangular
- · Beta
- · Gamma

O que é importante saber:

- · Tipo de v.a. (discreta ou contínua)
- · Escopo da v.a. (mínimo e máximo)
- Função de Distribuição de Probabilidade e seus parâmetros
- A média (medida de tendência central)
- · A variância (medida de dispersão)

Distribuição de Probabilidade

Familia Uniforme

Distribuição de Probabilidade

Familia Uniforme

-IVD WBA+

- Gerando números aleatórios

- Família Uniforme
 - = runif: Para obter número aleatórios seguindo uma distribuição uniforme a partir de um mínimo min e um máximo max
 - = dunif Avalia a probabilidade uniforme de um valor (dado um mínimo <math>min e dado um máximo max)
 - = punif Avalia a probabilidade ACUMULADA uniforme de um valor (dado min e max)
 - Esta função deve formar uma reta

Distribuição Normal

Se X é uma variável aleatória com distribuição normal de média μ e variância σ^2 , a função densidade de probabilidade de X é definida por

Distribuição Normal

Se X é uma variável aleatória com distribuição normal de média μ e variância σ^2 , a função densidade de probabilidade de X é definida por

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{\sigma^2}(x-\mu)^2},$$

para $-\infty < x, \mu < +\infty$ e $\sigma > 0$. Notação: $X \sim N(\mu, \sigma^2)$.

Padronização

Se $X \sim N(\mu, \sigma^2)$ e $Z \sim N(0, 1)$ (normal padrão), então

$$P(X \leq x) = P\left(Z \leq \frac{x-\mu}{\sigma}\right),$$

ou seja, todos os cálculos podem ser feitos pela normal padrão.

Cálculo de probabilidades

Por exemplo, a probabilidade $A=P(0\leq X\leq 1)$ pode ser calculada pela diferença

$$P(X \le 1) - P(X \le 0) = 0.841 - 0.5 = 0.341.$$

pincelines:

FIAP MBA+

- Tabela da distribuição Normal

P(Z<1.38)=?

- Gerando números aleatórios

Família Normal

Trabalhando no R

- Família normal
 - rnorm: Para obter número aleatórios seguindo uma distribuição normal
 - dnorm Avalia a probabilidade da normal de um valor (dada a média μ e o desvio padrão σ)
 - -pnorm Avalia a probabilidade ACUMULADA da normal de um valor (dada μ e σ)
 - Esta função deve formar uma curva sigmóide!


```
+
```

```
rnorm(100, 0, 10)

dnorm(5, 0, 10)

pnorm(5, 0, 10)
```

Exercício

- **01.** Uma empresa produz televisores de dois tipos, tipo A (comum) e tipo B (luxo), e garante a restituição da quantia paga se qualquer televisor apresentar defeito grave no prazo de seis meses. O tempo para ocorrência de algum defeito grave nos televisores tem distribuição normal sendo que, no tipo A, com média de 10 meses e desvio padrão de 2 meses e no tipo B, com média de 11 meses e desvio padrão de 3 meses. Os televisores de tipo A e B são produzidos com lucro de 1200 u.m. e 2100 u.m. respectivamente e, caso haja restituição, com prejuízo de 2500 u.m. e 7000 u.m., respectivamente.
- (a) Calcule as probabilidades de haver restituição nos televisores do tipo A e do tipo B.
- (b) Calcule o lucro médio para os televisores do tipo A e para os televisores do tipo B.
- (c) Baseando-se nos lucros médios, a empresa deveria incentivar as vendas dos aparelhos do tipo A ou do tipo B?

O que você achou da aula de hoje?

Pelo aplicativo da FIAP

(Entrar no FIAPP, e no menu clicar em Experience Survey)

OBRIGADO

profleandro.ferreira@fiap.com.br

