Groupes et Anneaux II — Cours

Ivan Lejeune

5 février 2025

Table des matières

Chapitre	1 - qqch	 	 		 2
1	Exemples importants de groupes	 	 		 . 2
2	Action de groupe	 	 		 . 2

Chapitre 1 — qqch

Exemples importants de groupes 1

 A^{\times}

Soit A un anneau et A^{\times} l'ensemble des éléments inversibles de A. L'ensemble A^{\times} est un groupe pour la multiplication.

Si $A = \mathbb{K}$ est un corps, alors pour tout $n \in \mathbb{N}$, l'ensemble

$$\mu_n(\mathbb{K}) = \{ z \in \mathbb{K} \mid z^n = 1 \}$$

est un groupe pour la multiplication.

Remarque. On a $\mu_n \simeq \mathbb{Z}/n\mathbb{Z}$ via l'isomorphisme de groupes

$$\mathbb{Z}/n\mathbb{Z} \to \mu_n$$

$$\overline{k} \mapsto e^{2i\pi k/n}$$

 $\mathsf{GL}_{\mathsf{n}}(\mathbb{K})$

Soit \mathbb{K} un corps et $\mathsf{GL}_{\mathsf{n}}(\mathbb{K})$ l'ensemble des matrices carrées inversibles de taille n à coefficients dans \mathbb{K} . L'ensemble $\mathsf{GL}_{\mathsf{n}}(\mathbb{K})$ est un groupe pour la multiplication des matrices.

Remarque. Si $\mathbb{K} = \mathbb{F}_p$, c'est-à-dire un $\mathbb{Z}/p\mathbb{Z}$ avec p premier, alors $|\mathsf{GL_n}(\mathbb{F}_p)|$ est fini. Pour le calculer, considérons $X \in GL_n(\mathbb{F}_p)$. On a

$$X = \begin{pmatrix} X_1 & X_2 & \cdots & X_n \end{pmatrix}$$

avec $X_i \in \mathbb{F}_p^n$. On a $X_1 \neq 0$, donc on a $p^n - 1$ choix pour X_1 . Ensuite, on a $X_2 \notin \mathbb{F}_p X_1 = \mathsf{Vect}_{\mathbb{F}_p}(X_1)$, donc on a $p^n - p$ choix pour X_2 .

En général, on a $p^n - p^{i-1}$ choix pour X_i .

On a donc

$$|\operatorname{GL}_{\mathsf{n}}(\mathbb{F}_p)| = (p^n - 1)(p^n - p)\cdots(p^n - p^{n-1}) = \prod_{k=0}^{n-1}(p^n - p^k)$$

 \mathscr{S}_n

Considérons les éléments suivants :

- n > 1 un entier naturel,
- $R \in GL_n(\mathbb{R})$ la rotation d'angle $\frac{2\pi}{n}$ dans le plan (dans le sens anti-horaire),
- $S \in \mathsf{GL}_{\mathsf{n}}(\mathbb{R})$ la réflexion par rapport à l'axe des abscisses.

Si on identifie \mathbb{R}^2 à \mathbb{C} , alors pour tout $z \in \mathbb{C}$,

$$R(z) = e^{\frac{2i\pi}{n}}z$$
 et $S(z) = \overline{z}$

et alors pour tout $k \in \mathbb{Z}$,

$$SR^kS = R^{-k}$$

Alors, le groupe

$$\mathcal{D}_n = \left\{ \mathsf{Id}, R, \dots, R^{n-1}, S, SR, \dots, SR^{n-1} \right\}$$

est un sous-groupe de $\mathsf{GL}_n(\mathbb{R})$, c'est le groupe diédral à 2n éléments.

2 Action de groupe

Soit G un groupe et X un ensemble.

Définition 2.1. Une action de G sur X est une application

$$\alpha: G \times X \to X$$
$$(g, x) \mapsto g \cdot x$$

telle que

- (i) pour tout $x \in X$, on a $e \cdot x = x$,
- (ii) pour tout $g, h \in G$ et $x \in X$, on a $g \cdot (h \cdot x) = (gh) \cdot x$.

Notation.

- On notera $g \cdot x$ pour signifier $\alpha(g, x)$.
- On notera $G \subset X$ pour signifier que G agit sur X.

Définition 2.2. Un *G*-ensemble est un ensemble muni de l'action de *G*.

Définition 2.3. Une représentation de G dans X est un morphisme de groupes

$$\rho: G \to \mathfrak{S}_X$$

où \mathfrak{S}_X est le groupe des permutations/bijections de X.

Notation. On notera alors pour tout $g \in G$

$$\rho_g \coloneqq \rho(g)$$

et pour tout $x \in X$

$$\rho_g(x) \coloneqq \rho(g(x))$$

Exercice.

• Montrer que si $\alpha:G\times X\to X$ est une action alors il existe $\rho:G\to\mathfrak{S}_X$ telle que, pour tout $g\in G$, on a

$$\rho(g): X \to X$$
$$x \mapsto g \cdot x$$

• Réciproquement, montrer que si $\rho:G\to\mathfrak{S}_X$ est une représentation alors $\alpha:G\times X\to X$ définie pour tout $g\in G$ et $x\in X$ par

$$\alpha(g,x) \coloneqq \rho_g(x)$$

est une action.

Exemple.

• Soit $n \in \mathbb{N}$. Le groupe symétrique \mathfrak{S}_n agit sur $\{1, \ldots, n\}$ par permutation, c'est-à-dire

$$\mathfrak{S}_n \times \{1, \dots, n\} \to \{1, \dots, n\}$$

 $(\sigma, k) \mapsto \sigma(k)$

- Soit $\mathbb K$ un corps. Le groupe $\mathsf{GL}_n(\mathbb K)$ agit sur $\mathbb K^n$ par multiplication, c'est-à-dire

$$\mathsf{GL}_{\mathsf{n}}(\mathbb{K}) \times \mathbb{K}^n \to \mathbb{K}^n$$

 $(A, x) \mapsto Ax$

- Soit $n \in \mathbb{N}$. Le groupe diédral \mathcal{D}_n agit sur μ_n par multiplication, c'est-à-dire

$$\mathcal{D}_n \times \mu_n \to \mu_n$$
$$(g,\zeta) \mapsto g(\zeta)$$

On peut vérifier que cette action est bien définie pour les générateurs R et S.

- Soit H < G (sous-groupe de G). On a
 - 1. L'action par translation à gauche :

$$H \subset G \text{ par } \rho^L : H \to \mathfrak{S}_G$$

avec
$$\rho_h^L(g) = hg$$

2. L'action par translation à droite :

$$H \subset G$$
 par $\rho^R: H \to \mathfrak{S}_G$

avec
$$\rho_h^R(g) = gh^{-1}$$

Remarque. Attention, en général $\rho_h(g) := gh$ ne définit pas une action de H sur G.

Définition 2.4. Soient X et Y des G-ensembles. On dit que

$$f: X \to Y$$

est G-équivariante si pour tout $x \in X$ et tout $g \in G$, on a

$$f(g \cdot x) = g \cdot f(x)$$

Exercice. On considère G un groupe et H un sous-groupe de G. On note G^L (respectivement G^R) l'ensemble G muni de l'action de H par translation à gauche (respectivement à droite). Montrer que

$$(\cdot)^{-1}: G^L \to G^R$$

$$g \mapsto g^{-1}$$

est une bijection H-équivariante.

Définition 2.5. Soient G et Γ des groupes et V un \mathbb{K} -espace vectoriel.

- (i) Si $G \subset \Gamma$, les assertions suivantes sont équivalentes :
 - G agit par homomorphismes sur Γ ,
 - pour tout $g \in G$ et tout $\gamma_1, \gamma_2 \in \Gamma$, on a

$$g \cdot (\gamma_1 \gamma_2) = (g \cdot \gamma_1)(g \cdot \gamma_2)$$

• Il existe un morphisme de groupes

$$\rho: G \to \mathsf{Aut}(\Gamma) < \mathfrak{S}_{\Gamma}$$

tel que pour tout $g \in G$, on a ρ_g est un morphisme de groupes.

- (ii) Si $G \subset V$, les assertions suivantes sont équivalentes :
 - G agit linéairement sur V (l'action est linéaire),
 - pour tout $g \in G$ et tout $v_1, v_2 \in V$ et tout $\lambda_1, \lambda_2 \in \mathbb{K}$, on a

$$g \cdot (\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 (g \cdot v_1) + \lambda_2 (g \cdot v_2)$$

• Il existe un morphisme de groupes

$$\rho: G \to \mathsf{GL}_{\mathbb{K}}(V) < \mathfrak{S}_V$$

tel que pour tout $g \in G$, on a ρ_g est une application linéaire.

Exemple.

1. Avec H < G, l'action de H par translation à gauche sur G est une action par homomorphismes si et seulement si $H = \{e\}$.

En effet, si $H = \{e\}$, alors l'action est triviale. Réciproquement, si l'action est par homomorphismes, on a

$$h \cdot (gg') = (h \cdot g)(h \cdot g')$$

$$\iff hgg' = hghg'$$

$$\iff e = h$$

pour tout $g, g' \in G$, donc $H = \{e\}$.

- 2. L'action de $\mathsf{GL}_\mathsf{n}(\mathbb{K})$ sur \mathbb{K}^n est linéaire.
- 3. L'action par conjugaison : Si H < G alors $H \subset G$ par $\rho^C : H \to \operatorname{Aut}(G) < \mathfrak{S}_G$ et $\rho^C_h(g) = hgh^{-1}$. Il s'agit d'une action par homomorphismes.

Théorème de Cayley. Si G est un groupe d'ordre n, alors il est isomorphe à un sous-groupe de \mathfrak{S}_n .

Démonstration. On sait que G agit sur lui meme par translation à gauche $\rho^L:G\to\mathfrak{S}_G\simeq\mathfrak{S}_n$. Donc

$$g \in \mathsf{Ker}(\rho^L) \implies \rho_g^L(e) = g \cdot e = e \implies g = e$$

Donc ρ^L est injectif et

$$\rho^L:G\to\rho^L(G)<\mathfrak{S}_G$$

est un isomorphisme de groupes.

Exemple. μ_n est isomorphe au sous-groupe de \mathfrak{S}_n engendré par $(1\ 2\ \cdots\ u)$.

$$\zeta_n = e^{2i\pi/n}, \quad \mu_n = \{\zeta^1, \dots, \zeta^n\} \simeq \{1, 2, \dots, n\}$$

et

$$\rho^{L}: \mu_{n} \to \mathfrak{S}_{\mu_{n}} \simeq \mathfrak{S}_{n}$$
$$\zeta_{n}^{k} \mapsto (1 \ 2 \ \cdots \ n)^{k}$$

Définition 2.6. On prend $G \subset X$.

1. On dit que $Y \subset X$ est **stable** par G si

$$\{g \cdot y \mid g \in G, y \in Y\} = G \cdot Y = Y$$

2. L'orbite de $x \in X$ est

$$\mathsf{orb}(x) = G \cdot x = \{g \cdot x \mid g \in G\}$$

qui est stable par G.

3. Le stabilisateur de $x \in X$ est

$$\operatorname{st}(x) = G_x = \{ q \in G \mid q \cdot x = x \}$$

qui est un sous-groupe de G.

4. On dit que $x \in X$ est un **point fixe** de $g \in G$ si

$$g \cdot x = x$$

c'est à dire si $g \in st(x)$. L'ensemble des points fixes de g est noté

$$X^g = \{x \in X \mid g \cdot x = x\}$$

De plus, $x \in X$ est un point fixe de G si et seulement si

$$x \in X^g$$
, $\forall g \in G$

c'est à dire si et seulement si G_X = G. L'ensemble des points fixes de G est noté

$$X^G = \{x \in X \mid g \cdot x = x, \forall g \in G\}$$

5. L'action est **transitive** si il existe $x \in X$ tel que $\operatorname{orb}(x) = G \cdot x = X$ (dans ce cas, $X = G \cdot x, \forall x \in X$) Dans ce cas, on dit que X est un G-espace homogène.

Proposition. Soit X un G-ensemble et Y un ensemble.

Pour toute application $f:X\to Y$ constante sur les orbites, il existe une unique fonction $\overline{f}:X/G\to Y$ telle que

$$\forall x \in X, \quad \overline{f}(\operatorname{orb}(x)) = f(x)$$

Démonstration. Par définition du quotient.

Lemme. Soit X un G-ensemble et $x \in X$. On a les propriétés suivantes :

(i) Il existe une bijection

$$\overline{\alpha}_x : G/G_x \to G \cdot x$$

$$qG_x \mapsto q \cdot x$$

- (ii) $\overline{\alpha}_x$ est G-équivariante. C'est-à-dire que $G \subset G/G_x$ par translation à gauche, soit $g \cdot g' G_x := gg' G_x$.
- (iii) Pour tout $g \in G$, on a

$$G_{g \cdot x} = g G_x g^{-1}$$

 $D\'{e}monstration.$

(i) L'application $\overline{\alpha}_x$ est bien définie :

$$g'G_x = gG_x \implies s \in G_x : g' = gs$$

 $\implies g' \cdot x = (gs) \cdot x = g \cdot (s \cdot x)$
 $g \cdot x$

L'application $\overline{\alpha}_x$ est aussi surjective par définition de l'orbite

L'application $\overline{\alpha}_x$ est injective :

$$\overline{\alpha}_x(gG_x) = \overline{\alpha}_x(g'G_x)$$

$$\Leftrightarrow g \cdot x = g' \cdot x$$

$$\Leftrightarrow g^{-1} \cdot (g \cdot x) = g^{-1} \cdot (g' \cdot x)$$

$$\Leftrightarrow g^{-1}g' \in G_x \Leftrightarrow gG_x = g'G_x$$

(ii) On a

$$\overline{\alpha}_x(g \cdot g'G_x) = \overline{\alpha}_x(gg'G_x)$$

$$= (gg') \cdot x$$

$$= g \cdot (g' \cdot x)$$

$$= g \cdot \overline{\alpha}_x(g'G_x)$$

(iii) Soit $s \in G_{g \cdot x}$ Alors

$$s \cdot (g \cdot x) = g \cdot x$$

$$\Leftrightarrow g^{-1} \cdot (s \cdot (g \cdot x)) = g^{-1} \cdot (g \cdot x)$$

$$\Leftrightarrow (g^{-1}sg) \cdot x = x$$

$$\Leftrightarrow g^{-1}sg \in G_x$$

$$\Leftrightarrow s \in gG_xg^{-1}$$

Corollaire. Soit X un G-espace homogène (c'est à dire qu'il n'y a qu'une seule orbite). Alors, il existe H < G et $f : G/H \to X$ une bijection G-équivariante.

Démonstration. Soit $x \in X$, on pose $G = G_x$ et on applique le Lemme précédent.

Exemple. On sait que $GL_n(\mathbb{K}) \subset \mathbb{P}^{n-1}(\mathbb{K})$ transitivement et donc on obtient une application

$$\mathsf{GL}_{\mathsf{n}}(\mathbb{K})/H \to \mathbb{P}^{n-1}(\mathbb{K})$$

bijective et G-équivariante où

$$H = (\mathsf{GL_n}(\mathbb{K}))_{[e_1]} = \left\{ \begin{pmatrix} a & b \\ 0 & D \end{pmatrix} \middle| \begin{matrix} a \in \mathbb{K}^x \\ b^T \in \mathbb{K}^{n-1} \\ D \in \mathsf{GL}_{n-1}(\mathbb{K}) \end{matrix} \right\}$$

Corollaire Formule des classes. Soient G, X finis et $G \subset X$. Alors, les propriétés suivantes sont vraies :

- (i) Pour tout $x \in X$, on a $|G \cdot x| = [G : G_x] = |G/G_x|$.
- (ii) Si on a $X = (G \cdot x_1) \sqcup \cdot \sqcup (G \cdot x_n)$ alors

$$|X| = \sum_{i=1}^{n} |G \cdot x_i| = \sum_{i=1}^{n} \frac{|G|}{|G_{x_i}|}$$

 $D\'{e}monstration.$

(i) On a

$$\overline{\alpha}_x : G/G_x \to G \cdot x$$

$$gG_x \mapsto g \cdot x$$

bijective donc

$$|G \cdot x| = |G/G_x| = [G : G_x]$$

(ii) On a $X = \bigsqcup_{i=1}^{n} (G \cdot x_i)$ donc

$$|X| = \sum_{i=1}^{n} |G \cdot x_i|$$
$$= \sum_{i=1}^{n} |G/G_{x_i}|$$
$$= \sum_{i=1}^{n} \frac{|G|}{|G_{x_i}|}$$

Définition 2.7. Soit $p \in N$ premier. Un groupe G est un p-groupe fini si $|G| = p^n$ avec n > 0.

Lemme. Si G est un p-groupe fini et X un G-ensemble fini. Alors

$$|X| \equiv |X^G| \pmod{p}$$

où X^G est l'ensemble des points fixes de $G \subset X$.

Démonstration. Soit $x \in X \setminus X^G$. Alors

$$1 < |G \cdot x| = |G/G_x| = \frac{|G|}{|G_x|}$$

qui divise |G|. Alors $|G \cdot x| \equiv 0 \pmod{p}$

Si $X = (G \cdot x_1) \sqcup \cdots \sqcup (G \cdot x_n)$ et $X = (G \cdot x_1) \sqcup \cdots \sqcup (G \cdot x_m)$ avec $1 \leq m \leq n$. Alors la formule des classes donne

$$|X| = \sum_{i=1}^{m} |G \cdot x_i| + \sum_{j=m+1}^{n} |G \cdot x_j| \equiv m = |X^G| \pmod{p}$$

Corollaire. Soit G un p-groupe fini. Alors, le centre de G noté $\mathsf{Z}(G) \neq \{e\}$.

 $D\acute{e}monstration$. On a $G \subset G$ par conjugaison, donc

$$|G| \equiv |G^G| = |\mathsf{Z}(G)| \pmod{p}$$

et donc $|\mathsf{Z}(G)| > 1$.

Théorème de Cauchy. Soit $p \in \mathbb{N}$ premier qui divise |G|. Alors G admet un élément d'ordre p.

Démonstration. A voir sur le Moodle.

Lemme de Burnside. Soit G un groupe fini et X un G-ensemble fini. Alors

$$|X/G| = \frac{1}{|G|} \times \sum_{g \in G} |X^g|$$