INDENG 262A: Homework 2

Arnaud Minondo

September 29, 2022

Problem 1.4

$$\min(2x_1 + 3|x_2 - 10|)$$
 s.t. $|x_1 + 2| + |x_2| \le 5$

Let $u_0 \in \mathbb{R}$ such that $u_0 \ge u_0 \ge x_2 - 10$ and $u_0 \ge 10 - x_2$

Then $u_0 \ge |x_2 - 10|$ so $2x_1 + 3u_0 \ge 2x_1 + 3|x_2 - 10|$ and $\min_{x_1, x_2, u_0} (2x_1 + 3u_0) \ge \min_{x_1, x_2, u_0} (2x_1 + 3|x_2 - 10|)$ But let $u_0 = |x_2 - 10|$ and $2x_1 + 3u_0 = 2x_1 + 3|x_2 - 10|$ so $\min_{x_1, x_2, u_0}(2x_1 + 3u_0) = \min_{x_1, x_2, u_0}(2x_1 + 3|x_2 - 10|)$.

To linearize $|x_1 + 2| + |x_2| \le 5$:

Introduce $u_1, u_2 \in \mathbb{R}$ such that, $u_1 \geq x_1 + 2$ and $u_1 \geq -2 - x_1$ and $u_2 \geq x_2$ and $u_2 \geq -x_2$ and $u_1 + u_2 \leq 5$

The first problem which is non linear is equivalent to this linear problem:

$$\min(2x_1 + 3u_0) \text{ s.t.} \begin{vmatrix} u_0 \ge x_2 - 10 \\ u_0 \ge 10 - x_2 \\ u_1 \ge x_1 + 2 \\ u_1 \ge -2 - x_1 \\ u_2 \ge x_2 \\ u_2 \ge -x_2 \\ u_1 + u_2 \le 5 \end{vmatrix}$$

Problem 1.9

In this problem I introduced a tensor $T = (s_{igj})_{(i,g,j) \in [1], I] \times [1], G[1] \times [1], J[1]}$ where s_{igj} represents the number of students from neighborhood i of grade g going to school j.

So that finding T gives an attribution of each student to a school.

Moreover: we can notice that $\sum_{i=1}^{J} s_{igj} = S_{ig}$ as a student has a school, no students has no school to

say so. And $\sum_{i=1}^{r} s_{igj} \leq C_{jg}$ as the number of students in a school and of a certain grade can not exceed the school capacity.

The problem becomes:

$$\overline{\min(\sum_{i,j} d_{ij} \sum_{g=1}^{G} s_{igj}) \text{ s.t. } \forall (i,g,j) \in [1;I] \times [1;G] \times [1;J], \sum_{j=1}^{J} s_{igj} = S_{ig}, \sum_{i=1}^{I} s_{igj} \leq C_{jg}, s_{igj} \geq 0 }$$

Problem 1.11

Define $\forall r \in [\![0;N-3]\!], S_r = \{(i_0,i_1,...,i_r) \in [\![2;N-1]\!]^r \text{ s.t. } \forall p,q \in [\![0;r]\!]^2, p \neq q \implies i_p \neq i_q \}$ And define : $\forall k \in [\![2;N-1]\!], S_{rk} = \{s \in S_r, k \in s \}$

Now notice that a transaction from devise 1 to devise N is uniquely identified by the intermediate devise and the order in which they are exchanged.

Let $r \in [0; N-3]$, $p=(p_0, p_1, ..., p_r) \in S_r$, r is the number of intermediate devise used to change 1 in N, p is identifying which devise is being exchange from which divise so that $\forall i \in [0; r-1], p_i$ is exchanged for p_{i+1} and if r=0 it means 1 is directly exchanged to N.

Define $\forall r \in [0; N-3], \forall p \in S_r x_p$ which is the amount changed using the path p from 1 to N. The problem is:

$$\max \left(\sum_{r=0}^{N-3} \sum_{(i_0,i_1,\dots,i_r) \in S_r} x_{i_0,i_1,\dots,i_r} r_{1i_0} r_{i_r N} \prod_{k=0}^r r_{i_k} \right) \text{ s.t. } \sum_{k=2}^{N-1} \sum_{p \in S_{rk}} x_p \leq u_r$$

Problem 4.1

The corresponding dual problem is:

$$\max(3y_2 + 6y_3) \text{ s.t.} \quad 2y_1 + 3y_2 - y_3 \ge 1$$
$$3y_1 + y_2 - y_3 \le -1$$
$$-y_1 + 4y_2 + 2y_3 \le 0$$
$$y_1 - 2y_2 + y_3 = 0$$
$$y_1 \le 0, y_2 \ge 0$$

Problem 4.4

 x^* is also a boundedness certificate : $x^{*T}A = (A^Tx^*)^T = (Ax^*)^T = c^T$ so $x^{*T}A \le c^T$ and $x^* \ge 0$ so x^* is a certificate of boundedness.

After the weak duality: $\min(c^T x) \ge x^{*T} c = c^T x^*$ as x^* is also feasable then $\min(c^T x) \le c^T x^*$ and finally combining the two inequalities we have:

$$\min(c^T x) = c^T x^*, \ x^* \text{ is optimal}$$

Problem 4.8

(a)

 \tilde{x} (resp. x^*) is optimal for \bar{c} (resp. c) so $\forall x \in \mathbb{R}^n, \bar{c}^T \tilde{x} \leq \bar{c}^T x$ (resp. $c^T x^* \leq c^T x$) So: $(\bar{c} - c)^T (\tilde{x} - x^*) = \bar{c}^T \tilde{x} - \bar{c}^T x^* - c^T \tilde{x} + c^T x^*$ using the two conditions above it is clear that $\bar{c}^T \tilde{x} \leq \bar{c}^T x^*$ and $c^T x^* \leq c^T \tilde{x}$

Finally summing the two inequalities and reorganizing the terms we have:

$$\overline{(\bar{c} - c)^T (\tilde{x} - x^*) \le 0}$$

(b)

Firstly: $p^{*T}b = c^T x^*$.

As between the two problems only b has changed and it does not change the condition of feasability of the dual then p^* is a certificate of boundedness for the changed dual and we can conclude that $p^{*T}\tilde{b} \leq c^T\tilde{x}$. So $p^{*T}\tilde{b} - p^{*T}b \leq c^T\tilde{x} - p^{*T}b = c^T\tilde{x} - c^Tx^*$ and we have obtained that : $p^{*T}\tilde{b} - p^{*T}b \leq c^T\tilde{x} - c^Tx^*$ which is the same thing as :

$$p^{*T}(\tilde{b} - b) \le c^{T}(\tilde{x} - x^{*})$$

Problem 4.26

Suppose both are true at the same time: then $\forall j \in [1; n], (pA)_j = u_j > 0$ but pAx = 0 thus $\sum_{i=1}^n u_j x_j = 0$ with $x_j \geq 0$ thus $u_j x_j \geq 0$ so $\forall j \in [1; n], u_j x_j = 0$ so $x_j = 0$ as $u_j \neq 0$ which contradicts $x \neq 0$. So both can't be true at the same time.

Need to show that if one is false the other is true.

Let $u \in \mathbb{R}^n$ such that $\forall i \in [1; n], u_i = 1$ now notice that the condition pA > 0 is equivalent to $pA \geq u$.

Write the optimization problem (\mathcal{P}) : $\min(p^T 0_{\mathbb{R}^m})$ s.t. $pA \ge u^T$ Its dual is (\mathcal{D}) : $\max(u^T x)$ s.t. $Ax = 0, x \ge 0$.

Suppose not (b) which means : $\forall p \in \mathbb{R}^m, pA$ is not greater or equal to 0. So (\mathcal{P}) is unfeasable. Thus (\mathcal{D}) is either unfeasable either unbounded. But x = 0 is a certificate of feasability for (\mathcal{D}) so (\mathcal{D}) has to be unbounded.

Which means that $\exists w \in \mathbb{R}^n, w \geq 0, Aw = 0$ and $u^T w = \sum_{i=1}^n w_i > 0$ thus $w \neq 0$. Thus (a) is true.

So we have shown : $[(b) \Longrightarrow not (a)]$ and $[not (b) \Longrightarrow (a)]$ thus $[(b) \Leftrightarrow not (a)]$ or more simply either a is true or b is true.