ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ

Katedra Fyziky Environmentální inženýrství

Uhlíkově neutrální doprava v Praze

Carbon-neutral transportation in Prague

Případová studie

Vypracoval: Pavel Sedláček

Vedoucí práce: Ing. Štěpán Potocký Ph.D.

Rok: 2024

OBSAH

1. Úvod	
2. Popis problému	1
3. Produkce oxidu uhličitého	1
4. Produkce v dopravě	2
5. Řešení	3
6. Snížení dopravy	3
7. Posílení veřejné dopravy	4
8. Podmíněná ekologická doprava	5
9. Kompenzace emisí	6
10. Implementovaná řešení	6
11. Závěr	
Zdroje	8

1. ÚVOD

Produkce oxidu uhličitého (CO_2) a jeho vliv na životní prostředí je jedním z nejdiskutovanějších témat ve společnosti. Oxid uhličitý je přirozeným produktem řady chemických a biologických procesů a je hlavním skleníkovým plynem v atmosféře. Vyprodukovaný oxid uhličitý je v průběžně rovnoměrně rozprostřen v celé atmosféře obecně však platí, že zůstavá na polokouli, na které byl vyprodukován. Nejvyšší produkce tohoto polutantu je v industriálních oblastech a ve velkých městech. Problém se zněčištěným ovzduším nění dlouhodobě řešitelný na úrovni jednotlivých zemí, krajů nebo měst, ale je třeba ho řešit na globální úrovni. V současné chvíli se z důvodů krizového množství skleníkových plynů v atmosféře řeší i na lokálních úrovních. V případě Prahy jsou hlavními zdroji oxidu uhličitého především spalovací procesy v silničním provozu, průmysl a strojová výroba a energetika. Všechny oblasti doplňené méně znečistujícími odvětvými jako je zemědělství a bydlení je potřeba adresně vykompenzovat a řádně vyřešit. CO_2 vyprodukované dopravou, narozdíl od oxidu vyprodukovaného jinými zdroji, nepodléhá tak razantním opatřením a snižováním jako například produkce v průmyslu, zemědělství nebo energetice. Magistrát hlavního města Prahy v roce 2020 vypracoval studii a rozvojový plán do roku 2030, který má adresovat současné environmentální dopady a navrhuje řadu řešení.

2. POPIS PROBLÉMU

Oxid uhličitý je jedním z hlavních skleníkových plynů, které zodpovídají za stabilní teplé, život podporující klima na Zemi. CO_2 je oproti ostatním plynům z této kategorie (s vyjímkou vodní páry) výrazně méně efektivní v udržování solárních paprsků/energie v atmosféře. Oxidu uhličitému se i přes jeho nízkou efektivitu připisuje vliv na zhruba dvou třetinách globálního oteplování. Metan, druhý nejvýznamnější skleníkový plyn, je 28x efektivnější než CO_2 . A fluorid sírový je 840x silnější než Metan, nicméně se vyskytuje pouze ve stopovém množství 1 . CO_2 je čtvrtý nejběžnější plyn v atmostféře s přibližně 0.04% obsahu. Skleníkové plyny se za účelem unifikované metriky převádí na CO_2 ekvivalent, tedy na množství, které by mělo stejný skleníkový efekt. Většina obecných studií uvádí všechna data v CO_2 ekvivalentech, které zahrnují i Metan, Fluorované uhlovodíky nebo Oxid dusný.

Obrázek 1: Poměr vlivů skleníkových plynů na globální oteplování²

Běžný stav oxidu uhličitého v atmosféře v minulých stovkách tisíců let se pohyboval mezi 200 a 300 ppm. Za posledních sto let se vinou antropomorfní činnosti jeho koncentrace zvedla na 420 ppm³, což vede ke znečišťování vzduchu a ke zvyšování globálních teplot. Za současného stavu industrializace se očekává, že během deseti let dosáhneme hodnost okolo 1′500 ppm, hodnoty, která by se v čisté přírodě vracela do normálu desítky tisíc let⁴.

3. PRODUKCE OXIDU UHLIČITÉHO

Oxid uhličitý vypouštený do ovzduší může vznikat přírodními způsoby a antropomorfní činností. CO_2 je vedlejší produkt buněčného dýchání, při kterém se cukry a tuky s kyslíkem přeměnují na buněčnou energii (ATP), které probíhá u všech známých živých organismů. Rostliny a buněčné organismy schopné fotosyntézy jsou naopak schopné využít oxid uhličitý pro uchování sluneční energie. Výsledkem je samostatný cyklus, který je schopný zadržovat oxid uhličitý i po smrti

¹USA studie: https://www.climate.gov/news-features/understanding-climate/climate-change-annual-greenhouse-gas-index

²USA studie: https://www.climate.gov/news-features/understanding-climate/climate-change-annual-greenhouse-gas-index

³NASA studie: https://climate.nasa.gov/vital-signs/carbon-dioxide/

⁴Vostok ice core data & NASA predikce

organismu ve formě fosilních nerostů⁵. Antropomorfní činnost tento zachycený oxid uhličitý vypouští do ovzduší za účelem získat zachycenou energii ve fosilních palivech, to zodpovídá zhruba za 87% lidmi vyprodukovaného oxidu uhličitého. Dalšími lidskými zdroji jsou různé industriální procesy (4%) a odlesňování (8%)⁶.

Fosilní paliva jsou hlavním zdrojem energie pro celý svět, spalují se převážně v tepelných elektrárnách a ve spalovacích motorech dopravních prostředků. Globálně největším producentem je energetika, ve které se 67% energie produkuje fosilními palivy. Energetika je silně regulovaná a emise jsou v poměru na spotřebované palivo nižší než v dopravě⁷.

Odlesňování doprovázené lesními požáry je proces s positivní vazbou na globální oteplování. Hoření a mýcení porostu vede k uvolňování oxidu uhličitého zachyceného rostlinou při procesu fotosyntézy a snižuje celkovou schopnost ekosystému s CO_2 pracovat, kvůli zmenšení počtu flóry (i fauny), která je schopná oxid přirozeně zachytávat a zpracovávat.

4. PRODUKCE V DOPRAVĚ

Doprava je nejméně efektivní využívání fosilních paliv. Průměrná efektivita benzínového spalovacího motoru je 20% a plyny a částice vypuštěné do ovzduší odpovídají zhruba 60% váhy spáleného paliva, zbylá hmota je převedena na teplo a vyzářena. Polutantní plyny jsou dusík, vodní pára a oxid uhličitý, které jsou netoxické a v malém množství oxid uhelnatý, uhlovodíky a oxidy dusíku, které jsou toxické. Znečistující často karcinogení a toxické znečištující částice jsou saze, benzoapyren a olovnaté částice, které se šíří do blízkého okolí [1]. Statistiky emisí vytvořené Evropskou agenturou pro životní prostředí z roku 2022 uvádějí, že zatímco produkce v ostatních sektorech postupně klesá, od roku 1990 řádově o 25%, tak v dopravě, ať už veřejné nebo osobní, emise CO_2 za posledních 30 let o 25% stoupla [2].

Obrázek 2: Vývoj emisí sektorů v EU8

⁵Jmenovitě postupně: rašeliny, zemní plyn, ropa a uhlí

⁶Studie EU na zdroje podle sektoru: https://www.europarl.europa.eu/pdfs/news/expert/2018/3/story/20180301ST098928/20180301ST098928_en.pdf

⁷Dle US EPA je efektivita tepelných elektráren 40% a běžných spalovacích motorů 20%

⁸Studie EEA: https://www.europarl.europa.eu/news/cs/headlines/society/20190313ST031218/emise-co2-z--aut-fakta-a-cisla-infografika

Tím se doprava řadí mezi nejkritičtější oblasti, ve kterých je snížení emisí oxidu uhličitého a jiných znečišťujících látek klíčové pro stabilizaci životního prostředí. Nejklíčovější je doprava ve městech a po dopravních tepnách mezi velkými městy, kde je kvůli hustému provozu a méně šetrné jízdě produkce látek vyšší a kde je méně zelených ploch k absorbci znečištění.

Stejně strukturované grafy platí i pro EU a Čr (s nižším rozlišením) Obrázek 3: Emise automobilů v USA⁹

V současné době se v denním provozojue objevuje 47% benzínových motorů, 28% naftových, 23% elektrických nebo hybridních a zbylá 2% alternativních zdrojů¹⁰.

5. ŘEŠENÍ

Dosáhnout uhlíkové neutrality je cílem všech vyspělých států. Většina implemenací nebo implementačních plánů je složena z kombinace šetrnější výroby a přenosu elektrické energie, ekologičtější konstrukce staveb, snížení dopravního nátlaku a modernizace urbanistického plánování s ohledem na přírodní plochy. Města jako Portland, Amsterdam nebo Copenhagen jsou vzorovým příkladem jak efektivní a přívětivé mohou ekologické změny být, naopak San Francisco a jiné města se při implementaci potýkají s problémy ve formě vysoké ceny řešení, přesunu silného provozu do nepřipravených oblastí a problémy podniků v oblastech s omezeným vjezdem.

6. SNÍŽENÍ DOPRAVY

Snížení automobilové a nákladní dopravy ve městě je nejpřímočařejším řešením snížení emisí s vysokým podílem na výsledku. Inspirace by mohla být ve městech jako Stockholm, Singapur, Oslo, Copenhagen a spoustě dalších, kde je vjezd vozidel do centra (a blízkého okolí) silně omezen a podmíněn. Většina implementací je řešená ve formě nízkoemisních zón, tedy v oblastech, kam je povelen vjezd pouze vozidlům s určitými maximálními emisemi, zpravidla se jedná o elektromobily nebo hybridní vozy. Dalším způsobem, které se používá například v Jakartě nebo Teheránu, je zavedení takzvaných "Car-Free day", tedy dny bez používání automobilů. Posledním řešením je zavedení poplatků za vjezd do města nebo parkování pro neekologická vozidla. Praha má silnou veřejnou dopravu a přijatelnou cyklistickou dopravu, takže takové řešení by mohlo být přijatelné. Největší problém by byl v logistické dopravě a v dopravě do industriálních zón v okolí Prahy.

⁹Studie NASA Earth Observatory https://earthobservatory.nasa.gov/images/8903/annual-carbon-emissions-in-the-united-states

¹⁰Alternativními zdroje se chápe vodík, CNG, LPG; zdroje ACEA 2021

Greenhouse gas emissions in the EU

2018 total: 3.8 Gt CO₃e

Obrázek 4: Poměr produkce CO_2 v automobilové dopravě 11

Automobilá doprava zodpovídá zhruba za 15% veškerého oxidu uhličitého vyprodukovaného na území Evropské Únie. Většina z toho je v městských a příměstských oblastech, kde by se právě toto omezení uplatnilo. Zárověň by mohlo poklesnout využití automobilů v meziměstské dopravě. K tomu je ale zapotřebí hustou a spolehlivou železniční a veřejnou dopravu.

7. POSÍLENÍ VEŘEJNÉ DOPRAVY

Veřejná doprava se obecně považuje za ekologicky šetrné řešení převozu lidí a zboží. V současné době v EU 90% lidí jezdí osobním autem a pouhých 10% veřejnou dopravou¹². Obecný problém s osobní automobilovou dopravou krom samotné poluce je neefektivita využívání dostupných míst vozidel. V průměru se v jednom vozidle pro 4 osoby přepravuje 1,3 osoby, což způsobuje zbytečně neefektivní využívání paliva, zvýšenou dopravní vytíženost a obecné environmentální zatížení z důvodu množnstí vozidel.

Stupně motorizace a automobilizace									
	Praha								
Rok	Stupeň motorizace		Stupeň automobilizace						
	vozidel na 1 000 obyvatel	obyvatel na 1 vozidlo	os. aut. na 1 000 obyv.	obyvatel na 1 os. aut.					
1961	92	10,8	45	22,4					
1971	188	5,3	123	8,1					
1981	310	3,2	241	4,2					
1990	353	2,8	276	3,6					
2000	632	1,6	525	1,9					
2010	739	1,4	557	1,8					
2020	870	1,1	693	1,4					
2021	955	1,0	762	1,3					
2022	927	1,1	739	1,4					

Počet osobních aut odpovídá jejich obsazenosti Obrázek 5: (Osobní) vozidla v Praze¹³

Řešením je posílení veřejné dopravy a využívání sdílených dopravních prostředků. Vysokorychlostní síť vlaků na páteřních trasách a síť pomalejších osobních vlaků a autobusů v odlehlých oblastech usnadní, zlevní a zrychlí vnitrostátní osobní a logistickou dopravu. Příkladem jsou země jako Japonsko, Švýcarsko, Čína nebo Německo. Hlavní páteřní trasy a městská doprava by navíc mohly být převážně přesunuty pod zem a přínést tak menší dopad na prostředí ve formě teraformace a schůdnosti měst.

¹¹Studie ICCT: https://theicct.org/transport-could-burn-up-the-eus-entire-carbon-budget/

¹²Data jsou vstažená k celé EU; data EuroStat: https://ec.europa.eu/eurostat/documents/15216629/15589759/KS-07-22-523-EN-N.pdf

¹³Ročenka TSK: https://www.tsk-praha.cz/static/udi-rocenka-2022-cz.pdf

	Osoby dojíždějící za prací do hl. m. Prahy				
		celkem		ženy	
Použitý dopravní prostředek			(%)	osoby	podílžen na celkovém počtu osob
Dojíždějící za prací doPrahy celkem		163 108	100,0	64 473	39,5
z toho použitý dopravní prostředek	autobus	19 067	11,7	9517	49,9
	Mak	11 795	7,2	4746	40,2
	MHD	36 718	22,5	17 807	48,5
	automobil - řidič	36 610	22,4	6 684	18,3
	automobil - spolucestující	6 761	4,1	2 427	35,9
	motocykl	62	0,0	9	14,5
	kolo	496	0,3	87	17,5
	jiný	1 112	0,7	337	30,3
	autobus + vlak	2 128	1,3	830	39,0
	autobus + MHD	12 753	7,8	7 325	57,4
	vlak + MHD	10 270	6,3	4 899	47,7
	ostatní kombinace	16 504	10,1	6 373	38,6
	žádný dopr. prostředek	6 645	4,1	2676	40,3
Z dojí ždějí cích celkem vybrané k ombi nace:	MHD v jakék oli k ombinaci	59 741	36,6	30 031	50,3
	autobus v jak ékoli kom binaci	33 948	20,8	17 672	52,1
	vlak v jakékoli kombinaci	24 193	14,8	10 475	43,3
	automobil, motocykl	43 433	26,6	9120	21,0

Obrázek 6: Způsob dojížedí do Prahy za prací¹⁴

8. PODMÍNĚNÁ EKOLOGICKÁ DOPRAVA

Určitá omezení na výrobu a nákup vozidel s vysokými emisemi mohou mít pozitivní vliv na produkci ${\rm CO_2}$. Evropská Únie ukládá povinnost členským státum ukončit prodej vozidel s klasickými spalovacími motory do roku 2035 15 . Součástí omezení je také omezení vjezdu vozidel se spalovacími motory do center měst, od toho se slibuje celkové snížení automobilové dopravy 16 .

Pohledem z druhé strany je podpora peší a cyklistické dopravy. V současné době Praha má 19 cyklostezek (C1-C19), které jsou primárně koncentrované okolo toku Vltavy a zbylé jsou vedené po hlavních silnicích. V posledních letech Praha zaznamenala prudký nárust cyklistů. [3]

Obrázek 7: Vztah obyvatelů Prahy k cyklistice 17

Hlavní motivací respondentů, proč nejezdit na kole, je strach z vozidel na silnici. To by se mělo adresovat výstavbou nových cyklostezek, přidáváním nových a širších cyklopruhů na silnice a obecným snížením provozu na pozemních komunikacích. Celá řada měst v Nizozemsku a v Dánksu toho již docílila a jedná se o jedny z nejšťastnějších měst v EU.

¹⁴Studie ČSÚ: https://www.czso.cz/csu/czso/13-1127-04-sldb_2001-4__dojizdka_za_praci

¹⁵Jedná se o součást celoevropské iniciativy snížit evorpské emise o 55% během deseti let.

¹⁶To vyplívá ze studií Dr. Paula Pfaffenbichlera z Institutu dopravních studií Vídeňské univerzity BOKU

¹⁷Studie MEDIAN s.r.o. (pro TSK hl. m. Prahy) [3]

9. KOMPENZACE EMISĪ

Alternativním způsobem snížení emisí, který neřeší samotnou podstatu problém, ale pouze eliminuje nebo spíše zmírňuje jeho efekty, je kompenzování vyprodukovaných emisí. K tomu vedou dvě cesty: biologická a technologická. Biologická využívá přírodních procesů na čištění vzduchu, jako je například fotosyntéza nebo přirozená schopnost vody a půdy zachytávat CO_2 . Jedná se o procesy, které vyžadují spoustu času a jejich efekt není velký, nicméně jsou zcela zdarma a fungují na velkém měřítku. Pro takovéto pasivní řešení stačí výsadba udržitelných a biodiverzních zelených anebo vodních ploch. Průměrná schopnost stromů absorbovat oxid uhličitý se uvádí mezi 20 a 30 kilogramy ročně [4]. Schopnost vody uchovávat CO_2 je závislá na její teplotě, vyšší teplota vede k nižší kapacitě, proto jsou vodní plochy obecně považované za nebezpečné z důvodů, že mohou při postupujícím oteplování vypouštět dříve uchovaný oxid uhličitý¹⁸. Za normálních podmínek jsou mělké vodní plochy schopné uchovávat až dva kilogramy na metr čtvereční ročně¹⁹. V porovnání běžné auto vyprodukuje při běžném provozu 2'300kg oxidu uhličitého ročně²⁰. To odpovídá zhruba sto stromům a sto m^2 vodní plochy na auto, to pro odhadovaný milion a půl aut v Praze vyžaduje sto milionů stromů a 150 km^2 vodních ploch. V současné době je v Čr k 60 miliardám stromů²¹, které jsou převážně mimo oblast Prahy a nemají výrazný vliv na produkci a konzumpci znečištění. Na území Prahy je přibližně 8′300′000²² stromů.

Výstavbou a výsadbou nových parků, lesů a rybníků v městské oblasti by se město ochladil až o pět stupňů, snížilo se čisté množství CO_2 a visuálně se zkulturnila městská výstavba. Pro hustá nebo historická města, kde není dostupné místo na rozlehlé parky a lesy je možné využít střešních ploch k výsadbě zelených zahrad a k montáži solárních panelů, které by napomohly splnit obdobné cíle.

10. IMPLEMENTOVANĂ ŘEŠENÍ

Během posledních roků se Praha zapojila mezi ostatní Evropské metropole v omezení vjezdu motorových vozidel do centra města. Zatím omezení platí pro velká vozidla (nad 3.5 tuny) a pro osobní vozidla v nočních hodinách a to pouze v centru města [5]. Od roku 2016 zavedla nízkoemisní zónu přes většinu oblasti Prahy, která zamezuje vjezd vozidel vyrebených po roce 2001.

Několik posledních let probíhá v Praze program modernizace tramvajové a autobusové sítě, které je započítáno v ekoplánu Prahy. Pražská integrovaná doprava, správce hromadné veřejné dopravy v Praze investuje do nákupu nových, ekologických vozidel [6], moderních technologií a infrastuktury. Dalším krokem je výstavba nové linky metra, která by měla výrazně snížit silniční provoz z jižních příměstských oblastí.

Využívání zelených ploch k absorbci a kompenzaci emisí skleníkových plynů. Od roku 2000 v Praze a blízkém okolí přibylo 454 hektarů nových lesů a zelených ploch [7]. Jedná se o nárust přibližně 10%. Plánují a provádějí se výsadby stromů okolo silnic a probíhá snaha o údržbu a rozvoj biodiversity v hustě obydlených oblastech.²³

Jedná se o kroky, které jsou součástí dlouholetého plánu na rozvoj udržitelné Prahy [8], a do roku 2030 se očekává snižení uhlíkových emisí oproti roku 2020 o 25-45 procent.

¹⁸V současnosti se nacházíme už za hranou absorbce https://globalocean.noaa.gov/latest-ocean-carbon-data-atlas-shows-a-significant-decline-in-ocean-co2-measurements

¹⁹Schrnuto v článku https://www.froglife.org/2021/04/22/ponds-against-climate-change

²⁰Uvažována je Škoda Fabia a 20′000 najetých kilometrů ročně

²¹Zpracováno https://www.ecoista.cz/kolik-je-u-nas-stromu-60-miliard-a-lesu-stale-pribyva ze zdrojů Národní inventarizace lesů a Ministerstva zemědělství

²²Uvažováno 5′200 ha a 1′600 stromů na hektar

²³Informace dostupné ze stránek https://zelenvpraze.cz spravovaných Technickou správou komunikací hl. m. Prahy

11. ZÁVĚR

Řešení snížení čitého obsahu oxidu uhličitého vyprodukovaného dopravou v určité oblasti jsou úzce propojená a závislá na dvou klíčových faktorech: Snížení využívání spalovacích motorů a zvětšení objemu absorbčních prvků. Ke snížení vede cesta elektromobilitou, která vyžaduje investice ze strany měst ve formě nabíjecích stanic a ze strany občanů ve formě ceny eleketrovozidla, pěší a cyklistickou dopravou, která je podmíněná výstavbou a kultivací cyklostezek a v neposlední řadě posílením veřejné dopravy. Absorbční plochy ve formě parků, lesoparků a rybníků slouží k absorbci již vyprodukovaného CO_2 . Využít lze i střešní plochy, které v současnosti nejsou využívané, k výsadbě rostlin a produkci šetrné elektřiny. Visuální proměna města je prvním krokem k čistčímu ovzduší a přívětivějšímu prostředí.

GtCO₂/yr Aviation Light-commercial ■ Shipping ■Medium- and heavy trucks 2&3-wheelers ■Buses and minibuses 6 ■ Light-commercial vehicles 5 ■Passenger cars 4 buses and ■ Two/three-wheelers 3 ■Rail 2 1 2000 2070 2020 2030 2060

Figure 3.16 Global CO_2 emissions in transport by mode in the Sustainable Development Scenario, 2000-70

IEA 2020. All rights reserved.

Notes: Dotted lines indicate the year in which various transport modes have largely stopped consuming fossil fuels and hence no longer contribute to direct emissions of CO_2 from fossil fuel combustion. Residual emissions in transport are compensated by negative emissions technologies, such as BECCS and DAC, in the power and other energy transformation sectors.

Obrázek 8: Předpokládané snížení emisí $\mathrm{CO_2}^{\mathbf{24}}$

²⁴Jedná se o udržitelné ekologické scénáře, které jsou zatím málokde implementované; Studie IEA: https://ourworldindata.org/co2-emissions-from-transport

ZDROJE

- [1] P. Little a R.D. Wiffen, "Emission and deposition of petrol engine exhaust Pb—I. Deposition of exhaust pb to plant and soil surfaces".
- [2] Europa.eu, "Emission and deposition of petrol engine exhaust Pb—I. Deposition of exhaust pb to plant and soil surfaces". Viděno: 31. prosinec 2023. [Online]. Dostupné z: https://www.europarl.europa.eu/news/cs/headlines/society/20190313ST031218/emise-co2-z-aut-fakta-a-cisla-infografika
- [3] MEDIAN s.r.o. (pro TSK hl. m. Prahy), "VÝZKUM CYKLISTICKÉ DOPRAVY 2021". Viděno: 29. prosinec 2023. [Online]. Dostupné z: https://www.praha.eu/file/3402563/PREZENTACE_TSK_Praha_cyklisticka_doprava_zprava.pdf
- [4] Evropská agentura pro životní prostředí, "Trees help reduce the effects of climate change". Viděno: 5. leden 2024. [Online]. Dostupné z: https://www.arborday.org/trees/treefacts/
- [5] Green-Zones.eu, "Ekologická zóna Praha". Viděno: 30. prosinec 2023. [Online]. Dostupné z: https://www.green-zones.eu/cs/environmentalni-zony/cesko/praha
- [6] Dopravník podnik hlavního města Prahy, "Nové elektrobusy v ulicích Prahy". [Online]. Dostupné z: https://www.dpp.cz/spolecnost/aktuality/detail/66_1562-nove-elektrobusy-v-ulicich-prahy
- [7] prazska-priroda.cz, "Nové lesy pro Prahu". Viděno: 2. leden 2024. [Online]. Dostupné z: http://www.praha-priroda.cz/nase-projekty/nove-lesy-pro-prahu/
- [8] Ing. Petr Hlubuček, "Klimatický plán hlavního města Prahy do roku 2030". Viděno: 20. prosinec 2023. [Online]. Dostupné z: https://www.praha.eu/file/3431952/Klimaticky_plan_hl._m._Prahy_2030.pdf
- [9] Ústav výzkumu globální změny AV ČR, "Analýza dopadů klimatické změny v Praze". Viděno: 28. prosinec 2023. [Online]. Dostupné z: https://portalzp.praha.eu/public/fd/5b/38/2525956_814609_Adaptacni_strategie_HMP_analytcast_v0917.pdf
- [10] I. T. Z. Mgr. Tereza Líbová Ing. Kateřina Schön, "STRATEGIE ADAPTACE NA ZMĚNU KLIMATU V HLAVNÍM MĚSTĚ PRAZE". Viděno: 28. prosinec 2023. [Online]. Dostupné z: https://portalzp. praha.eu/file/3159075/Implementacni_plan_2020_24_Strategie_adaptace_na_zmenu_klimatu_vHMP.pdf
- [11] J. K. Martin Bursík Tomáš Voříšek, "Klimatický plán hlavního města Prahy do roku 2030". Viděno: 27. prosinec 2023. [Online]. Dostupné z: https://portalzp.praha.eu/file/3553799/Klimaplan_CZ_2301_09_ONLINE.PDF
- [12] M. R. P. Mgr. Jan Karel Mgr. Ing. Tereza Englmaierová, "AKTUALIZACE EMISNÍ A IMISNÍ ANALÝZY A SKLENÍKOVÝCH PLYNŮ NA ÚZEMÍ HLAVNÍHO MĚSTA PRAHY". Viděno: 26. prosinec 2023. [Online]. Dostupné z: https://portalzp.praha.eu/file/3325808/AKTUALIZACE_EMISNI_A_IMISNI_ANALYZY_A_SKLENIK_PLYNU_Praha_2017_2019_2020.pdf
- [13] Ústav pro hospodářskou úpravu lesů; Brandýs nad Labem, "Národní inventarizace lesů". [Online]. Dostupné z: https://nil.uhul.cz/