

Algebra

Alessandro D'Andrea

12. Reciprocità quadratica e teorema di Solovay-Strassen

Richiami

- ► Simbolo di Legendre e simbolo di Jacobi
- Il simbolo di Jacobi si calcola rapidamente grazie alle proprietà di reciprocità quadratica
- La rapidità nel calcolo del simbolo di Jacobi permette di verificare rapidamente la primalità di un numero grande (algoritmo di Solovay-Strassen)
- Oggi: Dimostrazione combinatoria del teorema di reciprocità quadratica
- Dimostrazione della correttezza dell'algoritmo di Solovay-Strassen

Calcolo di $\left(\frac{2}{p}\right)$

In tutto quello che segue, p e q sono primi dispari. Abbiamo visto come calcolare $\left(\frac{2}{p}\right)$. Si scrive

$$2^{(p-1)/2} \cdot \left(\frac{p-1}{2}\right)!$$

$$= 2 \cdot 4 \cdot \dots \cdot (p-3) \cdot (p-1)$$

$$\equiv 2 \cdot 4 \cdot \dots \cdot (-3) \cdot (-1)$$

$$\equiv (-1)^{\frac{p-1}{2} - \lfloor \frac{p-1}{4} \rfloor} \left(\frac{p-1}{2}\right)! \mod p,$$

per ottenere

$$\left(\frac{2}{p}\right) \equiv 2^{(p-1)/2} \equiv (-1)^{\frac{p-1}{2} - \lfloor \frac{p-1}{4} \rfloor} \mod p.$$

Calcolo di $\left(\frac{q}{p}\right)$

Proviamo a fare lo stesso per calcolare $\begin{pmatrix} q \\ p \end{pmatrix}$.

$$q^{(p-1)/2} \cdot \left(\frac{p-1}{2}\right)!$$

$$= q \cdot 2q \cdot \ldots \cdot \left(\frac{p-3}{2} \cdot q\right) \cdot \left(\frac{p-1}{2} \cdot q\right)$$

Se riduco tutto modulo p, e riscrivo ogni $(p+1)/2 \le m < p$ come -(p-m), allora il secondo membro diventa

$$q \cdot 2q \cdot \ldots \cdot \left(\frac{p-3}{2} \cdot q\right) \cdot \left(\frac{p-1}{2} \cdot q\right) \equiv \pm \left(\frac{p-1}{2}\right)! \mod p$$

Se troviamo un modo di stimare il segno, abbiamo calcolato il simbolo di Legendre.

Calcolo di $(\frac{7}{23})$ - I

$$7^{11} \cdot 11! = 7 \cdot 14 \cdot 21 \cdot 28 \cdot 35 \cdot 42 \cdot 49 \cdot 56 \cdot 63 \cdot 70 \cdot 77$$

$$\equiv 7 \cdot (-9) \cdot (-2) \cdot 5 \cdot (-11) \cdot (-4) \cdot 3 \cdot 10 \cdot (-6) \cdot 1 \cdot 8$$

$$\equiv (-1)^{5} 11! \mod 23.$$

Il segno è + quando $7n \mod 23$ si trova nella metà inferiore $1, \ldots, 11$; equivalentemente, quando la parte frazionaria di 7n/23 è compresa tra 0 e 1/2 (esclusi).

Il segno è - quando $7n \mod 23$ si trova nella metà superiore $12, \ldots, 22$; equivalentemente, quando la parte frazionaria di 7n/23 è compresa tra 1/2 e 1 (esclusi).

Calcolo di $(\frac{7}{23})$ - II

Il segno è + quando $7n \mod 23$ si trova nella metà inferiore $1, \ldots, 11$; equivalentemente, quando la parte frazionaria di 7n/23 è compresa tra 0 e 1/2 (esclusi).

Il segno è - quando $7n \mod 23$ si trova nella metà superiore 12,..., 22; equivalentemente, quando la parte frazionaria di 7n/23 è compresa tra 1/2 e 1 (esclusi).

Possiamo tradurre tutto in questo modo: il segno è + se $\lfloor 14n/23 \rfloor$ è pari, mentre è - se $\lfloor 14n/23 \rfloor$ è dispari. In conclusione, il segno di ciascun fattore è

$$(-1)^{\lfloor 14n/23 \rfloor}$$
.

Nel caso generale del calcolo di $\left(\frac{q}{p}\right)$, il segno di ciascun fattore è

$$(-1)^{\lfloor 2qn/p \rfloor}$$
.

Espressione esplicita per $\left(\frac{q}{p}\right)$ -

$$q^{(p-1)/2} \cdot \left(\frac{p-1}{2}\right)!$$

$$= q \cdot 2q \cdot \ldots \cdot \left(\frac{p-3}{2} \cdot q\right) \cdot \left(\frac{p-1}{2} \cdot q\right)$$

$$\equiv (-1)^{\lfloor 2q/p \rfloor} \cdot (-1)^{\lfloor 4q/p \rfloor} \cdot \ldots \cdot (-1)^{\lfloor (p-1)q/p \rfloor} \cdot \left(\frac{p-1}{2}\right)!$$

$$\equiv (-1)^{\lfloor 2q/p \rfloor + \lfloor 4q/p \rfloor + \ldots + \lfloor (p-1)q/p \rfloor} \cdot \left(\frac{p-1}{2}\right)! \mod p.$$

Pertanto

$$q^{(p-1)/2} \equiv (-1)^{\lfloor 2q/p \rfloor + \lfloor 4q/p \rfloor + \dots + \lfloor (p-1)q/p \rfloor} \mod p.$$

Espressione esplicita per $\left(\frac{q}{p}\right)$ - \prod

$$q^{(p-1)/2} \equiv (-1)^{\lfloor 2q/p \rfloor + \lfloor 4q/p \rfloor + \dots + \lfloor (p-1)q/p \rfloor} \mod p.$$

Di conseguenza

Vogliamo mostrare che

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{(p-1)(q-1)}{4}}.$$

Daremo di questo fatto una dimostrazione grafica.

Dimostrazione grafica - I

Dimostrazione grafica - II

Dimostrazione grafica - III

Dimostrazione grafica - IV

Dimostrazione grafica - V

Dimostrazione grafica - VI

Dimostrazione grafica - VII

Solovay-Strassen - I

Cerchiamo ora di capire per quale motivo l'algoritmo di Solovay-Strassen dia la risposta desiderata.

Innanzitutto, notiamo che il simbolo di Jacobi

$$\left(\frac{a}{n}\right)$$

vale ± 1 ogni volta che MCD(a, n) = 1.

Mentre il simbolo di Legendre produce sicuramente anche il valore −1, il simbolo di Jacobi può valere sempre 1. In effetti

$$\left(\frac{a}{p^2}\right) = \left(\frac{a}{p}\right)^2 = 1,$$

non appena MCD(a, p) = 1.

Solovay-Strassen - II

Dobbiamo dare una dimostrazione del

Teorema (Solovay-Strassen)

Se n non è primo, allora esiste a, primo con n, tale che

$$\left(\frac{a}{n}\right) \not\equiv a^{(n-1)/2} \mod n.$$

Dividiamo la dimostrazione in due casi:

- ▶ n non è libero da quadrati
 - Esiste p primo tale che p² divida n
- n è libero da quadrati

Faremo vedere che, in entrambi i casi, possiamo trovare a tale che $a^{(n-1)/2} \not\equiv \pm 1 \mod n$.

Solovay-Strassen - III

Se p^2 divide n, allora p divide $\varphi(n)$. Questo vuol dire che p divide l'ordine di $(\mathbb{Z}/n)^{\times}$.

Per il teorema di Cauchy, il gruppo $(\mathbb{Z}/n)^{\times}$ deve possedere un elemento \overline{a} di ordine p. Chiaramente, $\overline{a} \neq \overline{1}$

Ma allora $a^p \equiv 1 \mod n$, e poiché n è un multiplo di p, $a^n \equiv 1 \mod n$.

Tuttavia, se $a^{(n-1)/2} \equiv \pm 1 \mod n$, allora $a^{n-1} \equiv 1 \mod n$, il che contraddice $a^n \equiv 1 \mod n$.

Solovay-Strassen - IV

Il caso in cui *n* sia libero da quadrati è solo lievemente più delicato.

n è libero da quadrati solo se $n = p_1 p_2 \dots p_k$, dove i p_i sono primi diversi tra loro.

Il simbolo di Jacobi assume sicuramente entrambi i valori ± 1 : basta trovare a che sia un residuo quadratico in ogni \mathbb{Z}/p_i tranne che in \mathbb{Z}/p_1 . Allora

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right) \left(\frac{a}{p_2}\right) \dots \left(\frac{a}{p_k}\right)$$

deve valere -1. Un tale a esiste sicuramente per il teorema cinese dei resti.

Solovay-Strassen - V

Se $a^{(n-1)/2} \not\equiv -1 \mod n$, abbiamo concluso. Se invece $a^{(n-1)/2} \equiv -1 \mod n$, allora

$$a^{(n-1)/2} \equiv -1 \mod p_i$$

per ogni p_i .

Possiamo allora utilizzare il teorema cinese dei resti per costruire b che sia congruo ad a modulo p_1 e congruo a 1 modulo ogni altro p_i .

Per tale scelta, $b^{(n-1)/2} \equiv a^{(n-1)/2} \equiv -1 \mod p_1$, mentre $b^{(n-1)/2} \equiv 1$ modulo ogni altro p_i .

In conclusione $b^{(n-1)/2} \not\equiv \pm 1 \mod n$, altrimenti i suoi resti modulo ciascun p_i sarebbero tutti 1 o tutti -1.

Solovay-Strassen - VI

Le applicazioni

$$a \mapsto \left(\frac{a}{n}\right), \qquad a \mapsto a^{(n-1)/2}$$

sono entrambe omomorfismi di gruppi $(\mathbb{Z}/n)^{\times} \to (\mathbb{Z}/n)^{\times}$.

Se $\phi, \psi: G \to H$ sono due omomorfismi di gruppi, allora $X = \{g \in G \mid \phi(g) = \psi(g)\}$ è sicuramente un sottogruppo di G, che non può essere tutto G se ϕ, ψ differiscono su almeno un elemento.

Ma per il teorema di Lagrange, l'ordine di un sottogruppo di G divide |G|, e quindi $|X| \leq |G|/2$: i due omomorfismi devono pertanto assumere valore diverso su almeno la metà dei possibili argomenti.