Bachelor of Science (I.T.) Semester-VI Examination OPERATION RESEARCH

Paper—6

Time: Three Hours] [Maximum Marks: 50

N.B.:— (1) **ALL** questions are compulsory and carry equal marks.

(2) Draw neat and labelled diagrams wherever necessary.

EITHER

1. (a) Give the classification of Models in Operation Research.

5

(b) Use two phase method to:

Max.
$$Z = 5x_1 + 3x_2$$

subject to constraints:

$$2x_1 + x_2 \le 1$$

$$x_1 + 4x_2 \ge 6$$

where $x_1, x_2 \ge 0$

5

OR

(c) Solve the following LPP by Simplex Method:

Max.
$$Z = 3x_1 + 2x_2 + 5x_3$$

subject to constraints:

$$x_1 + 2x_2 + x_3 \le 430$$

$$3x_1 + 2x_3 \leq 460$$

$$x_1 + 4x_2 \le 420;$$

where
$$x_1, x_2, x_3 \ge 0$$

5

(d) Use Graphical method to solve the following LP problem:

Min.
$$Z = x_1 + x_2$$

subject to constraints:

$$-x_1 + 3x_2 \le 10$$

$$x_1 + x_2 \le 6$$

$$x_1 - x_2 \le 2$$

where $x_1, x_2 \ge 0$

5

EITHER

2. (a) Construct the dual for the following LP problem:

Max.
$$Z = 3x_1 + 5x_2$$

subject to constraints:

$$x_1 + 4x_2 \le 9$$

$$5x_1 + 2x_2 \ge 6$$

$$3x_1 + 3x_2 = 9$$

where $x_1, x_2 \ge 0$

(b) What is degeneracy in Transportation Problem? How to solve Unbalanced Transportation Problem? Explain. 5

OR

- (c) Define first feasible solution in Assignment Problem. How to solve Non-square Assignment Problem? Explain. 5
- (d) Determine the optimal solution for the following Transportation Problem by using Vogel's Approximation Method:

Destinations

	\mathbf{D}_{1}	$\mathbf{D_2}$	\mathbf{D}_3	\mathbf{D}_4	Supply
$\mathbf{S_{1}}$	5	3	6	4	30
$\mathbf{S_2}$	3	4	7	8	15

5

8

15

Sources

 S_3 10 25 18 **Demand**

9

EITHER

3. (a) What is recursive nature of dynamic programming? Explain.

6

(b) Construct the Network Diagram and obtain the minimum time for completion of project for the following tasks:

$$A < B; B_{1}C < E; D < E_{1}F; F < I; G < H$$

Tasks В \mathbf{C} D Ι Ε F G Η Time (In days) 8 9 7 10 11 9 10 8 7 5 :

OR

- (c) Explain the following with suitable examples:
 - (i) Merge Event
 - (ii) Burst Event

(iii) Activity. 5

(d) Use the concept of dynamic programming to find maximum path through the following network:

EITHER

4. (a) Solve the Assignment Problem by Hungarian method:

Machines

Jobs

	$\mathbf{M_{_1}}$	$\mathbf{M_{2}}$	\mathbf{M}_{3}	$\mathbf{M_4}$
$\overline{\mathbf{J}}_{1}$	5	7	11	6
$\overline{\mathbf{J}_{2}}$	8	5	9	6
\overline{J}_3	4	7	10	7
$\overline{\mathbf{J}_{_{4}}}$	10	4	8	3

5

5

5

5

(b) Explain the Branch and Bound Technique to solve the Assignment Problem.

5

OR

(c) Define Assignment Problem. What are the different types of Assignment Problem? Explain.

5

- (d) Explain the zero-one Programming Model for Assignment Problem in detail.
- 5

- 5. (a) Define the following terms in graphical solution of LP Problem:
 - (i) Unbounded solution
 - (ii) Infeasible solution.

 $2\frac{1}{2}$

(b) Explain the algorithm for least cost method in Transportation Problem.

21/2

(c) What are the different rules to numbering the event in Network diagram?

 $2\frac{1}{2}$

(d) Find the first feasible solution of following Assignment Problem :

Territories

		Ι	II	III	IV
	A	8	28	17	11
Salesmen	В	13	28	4	26
	C	38	19	18	15
	D	19	28	24	10

21/2