Let
$$s_n = 1 + 3 + 5 + \ldots + (2n - 1)$$
 for $n \in \mathbb{Z}^+$.

- 1. Express s_n using σ notation.
- 2. Calculate s_1 , s_2 and s_3 .
- 3. Find a recurrence relation which expresses s_{n+1} in terms of s_n .

Part 1: Express s_n using \sum notation.

$$s_n = 1 + 3 + 5 + \ldots + (2n - 1)$$
 for $n \in Z^+$

Part 1: Express s_n using \sum notation.

$$s_n = 1 + 3 + 5 + \ldots + (2n - 1)$$
 for $n \in Z^+$

$$\sum_{k=1}^{k=n} (2k-1)$$

Part 2: Calculate s_1 , s_2 and s_3 .

$$\sum_{k=1}^{k=n} (2k-1)$$

Part 3: Find a recurrence relation which expresses s_{n+1} in terms of s_n .