∠플리글루라민산(∠PGA)의 분리정제에 대한 연구

조원철, 장명철, 리진철, 리형관

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《기초과학을 발전시키는데도 힘을 넣어야 합니다.》(《김정일선집》 증보판 제11권 138폐지) γ —폴리글루타민산(γ -PGA)은 분자량이 $10^5 \sim 2 \times 10^6$ 인 수용성고분자의 아미노산중합물로서 L-Glu의 α —아미노기와 D-Glu의 γ —히드록실기사이의 폴리아실아민중합에 의하여형성된다.[5] γ -PGA는 여러 종의 고초균(실례로 Bacillus subtilis, Bacillus anthraxcis, Bacillus licheniformis 등)으로부터 생산할수 있다. γ -PGA는 막형성능, 섬유형성능, 산소차단성, 가소성, 점결성, 보습성과 생물분해성 등의 독특한 물리화학적 및 생물학적특성을 가지고있는것으로 하여 의약품제조, 식료품가공 그리고 남새, 과일, 수산물 등의 랭동방지및 선도보장, 화장품공업, 담배공업, 가죽이김공업과 식물종자보호, 중금속이온흡착 등의여러 령역에 광범히 응용되고있다.[3, 6] γ -PGA사슬에는 다량의 카르복실기가 존재하므로일부 약물과 γ -PGA—약물복합체를 형성할수 있는 높은 생물친화성 및 생물분해성을 가진다. γ -PGA를 약물운반체로 리용하면 약물의 수용성을 개선하고 반감기를 늘이며 약물의안전성과 치료효과성을 높일수 있다.

우리는 응용전망이 넓은 γ -PGA를 Bacillus subtilis natto 배양물로부터 제조하기 위한 연구를 하였다.

재료와 방법

γ-PGA생성균주로는 전문연구소에 보관되여있는 *Bacillus subtilis natto*를 리용하였다. 시약으로는 NaCl, HCl, NaOH, Glu, 30% 중성포르말린, CuSO₄·5H₂O, 전기영동시약, 95% 에타놀, 효모엑스, 펩톤, 우무를 리용하였다.

균보존 및 계대배지로는 LB배지(펩톤 1%, 효모엑스 0.5%, NaCl 0.5%, 한천 2%, pH 7.0)를 리용하였다.

활성화 및 확대배지로는 콩즙배지에 포도당을 1%, 무기염용액을 첨가한것을 리용하였다. 발효배지로는 콩즙고체배지[4]를 리용하였다.

보존균을 활성화하고 확대배지에 접종하여 종균액을 준비한 다음 발효배지에 5~10%(v/v)로 접종하고 발효시켰다.

 μ PGA분리농축은 중공섬유정밀려과막과 중공섬유한외려과막(100kD)으로 하였다. 0.10~0.14MPa의 압력에서 려과액의 투과속도와 농축액의 투과속도비를 조절하면서 려과액과 농축액을 받은 다음 중공섬유한외려과막에 남아있는 분획들을 농축액과 혼합하여 모았다. 모든 조작은 10~15℃ 조건에서 진행하였다.

투과속도와 중공섬유한외려과막의 메임곁수는 선행방법[5, 7]으로 계산하였으며 SDS-PAGE도 선행방법[1]에 따라 진행하였다. 단백질정량은 선행방법[2]으로 진행하였다.

ρPGA의 정성분석은 려지크로마토그라프법과 적외선스펙트르법으로 진행하였다. ρPGA의 순도는 포르몰법으로 결정하였다.

결과 및 론의

1) 중공섬유한외려과막에 의한 7-PGA의 분리농축

우리는 고체배양한 Bacillus subtilis natto 배양물을 10배의 0.85% 식염수로 반복추출하여 중공섬유한외려과막으로 γ -PGA를 농축하였다.

투과속도와 메임결수 γ -PGA추출액을 중공섬유정밀려과막과 중공섬유한외려과막으로 려과하면서 경과시간에 따르는 려과액량을 측정하여 시간에 따르는 막투과속도(J), 시간과메임곁수(t/O)사이관계를 보았다.(그림 1-4)

그림 1. 중공섬유정밀려과막을 리용할 때 시간에 따르는 막투과속도

그림 2. 중공섬유한외려과막을 리용할 때 시간에 따르는 막투과속도

그림 3. 중공섬유정밀려과막을 리용할 때 시간에 따르는 메임곁수변화

그림 4. 중공섬유한외려파막을 리용할 때 시간에 따르는 메임곁수변화

그림 1과 2에서 보는바와 같이 려과시간이 경과하는데 따라 막투과속도는 점차 감소 하였으며 려과시간(t)에 따르는 메임결수(t/O)사이에는 선형관계가 잘 성립하였다.

그림 1과 2의 그라프로부터 막투과속도를 계산하면 각각 11.2, 6.0L/(m²·h)이며 그림 3, 4의 그라프로부터 얻은 회귀방정식은 각각 y=0.172x+4.7과 y=0.136x+8.373 3이므로 메임곁수는 각각 17.2와 13.6이다.

상대점도측정법에 의한 γ -PGA검량선작성 상대점도측정법으로 γ -PGA검량선을 작성하여 분리

농축단계에 따르는 γ -PGA량을 결정하였다.(그림 5) 다음으로 우리는 γ -PGA검량선을 리용하여 분 리농축단계별로 려파액파 농축액의 γ -PGA량과 거 둠률을 결정하였다.(표 1)

표 1에서 보는바와 같이 중공섬유정밀려과막으로 려과하여 농축액을 수집한 다음 중공섬유한 외려과막으로 려과하여 농축하였을 때 농축액에서의 γ -PGA량은 각각 291, 130mg으로서 함량은 58.2, 19.5%였다. 이로부터 막분리에 의한 γ -PGA의 거둠률이 77.7%라는것을 알수 있다.

표 1. 분리농축단계에서 려액과 농축액의 %PGA량과 거둠률

분리농축단계	체적/mL	상대점도	농도/(mg·mL ⁻¹)	γ-PGA량/mg	거둠률/%
γ-PGA추출액	2 000	2.03	0.73	1 460	100
정밀려과농축액	200	6.68	4.10	820	56.1
한외려과농축액	200	2.92	1.37	274	18.7
한외려과액	1 600	1.82	0.5	96	11.5

2) %PGA정성분석

우리가 얻은 γ -PGA를 확인하기 위하여 글루타민산나트리움을 표품으로 하여 γ -PGA의 물작용분해물에 대한 려지크로마토그라프분석을 진행한 결과는 그림 6과 같다.

그림 6. γ-PGA의 려지크로마토그라프 1-μ-PGA의 물작용분해시료 2-글루타민산나트리움용액; 물작용분해조건-2mg/mL의 μ-PGA 1mL와 6mol/L의 HCl 2mL를 섞고 110°C에서 18h동안 분해

그림 6에서 보는바와 같이 γ -PGA물 작용분해물의 이동도가 글루타민산나트리움의 이동도와 일치하였다. 이로부터얻어진 물질이 글루타민산만으로 이루어진 물질이라는것을 알수 있다.

3) %PGA의 순도분석

우리는 중공섬유한외려파막으로 분 리농축한 %PGA를 에타놀침전, 투석, 동

결건조하여 γ -PGA순품을 얻고 그 순도를 결정하였다.(표 2)

표 2. 포트폴립에	의안 ½PGA순노문석
이미 ㄴ 샤하라.	다배진하랴/(ug.r

구분	아미노산함량/%	단백질합량/(μg·mL ⁻¹)	γ-PGA순도/%
γ-PGA추출액	20.6	22.3	97
물작용분해전시료	3.2	5.4	_
물작용분해후시료	99.2	0.0	_

표 2에서 보는바와 같이 물작용분해전과 물작용분해후의 아미노산함량으로부터 결정 한 γ PGA의 순도는 97%였다.

맺 는 말

중공섬유정밀려과막과 중공섬유한외려과막(100kD)으로 γ -PGA를 농축할 때 γ -PGA거 둠률은 77.7%, 농축배수는 14배였다.

종이크로마토그라프법으로 γ-PGA를 정성분석하였다.

우리가 제조한 y-PGA의 순도는 97%였다.

참고문 헌

- [1] J. Sambook; Molecular Cloning, Cold Spring Habor Laboartory, 205~208, 2002.
- [2] M. P. Weir et al.; Journal of Chromatography, 396, 143, 1997.
- [3] O. Chunhachart et al.; APCBEE Procedia, 10, 269, 2014.
- [4] 吗静 等; 微生物学通报, 35, 9, 1353, 2008.
- [5] 李晶搏 等; 化工进展, 27, 11, 1789, 2008.
- [6] 张绪瑛 等; 食品科学, 30, 8, 76, 2009.
- [7] 张雨忠 等; 液体分离膜枝术及应用, 化学工业出版社, 72~73, 2004.

주체106(2017)년 10월 5일 원고접수

Isolation and Purification of \(\nu \) Polygultamic Acid(\(\nu \) PGA)

Jo Won Chol, Jang Myong Chol, Ri Jin Chol and Ri Hyong Gwan

We concentrated 14 times the γ -PGA by the hollow fiber ultra-filtration membrane. The yield of γ -PGA was 77.7%. The qualitative analysis of γ -PGA was performed by the paper chromatography. The purity of γ -PGA was 97%.

Key words: γ-polygultamic acid(γ-PGA), Bacillus subtilis natto, isolation, concentration