Cours MPC - Partie 2

Régression : prédiction d'une variable à l'aide d'une ou plusieurs autres variables

Simon Malinowski

M1 Miage, Univ. Rennes 1

- Introduction
- Régression linéaire

Qu'est-ce que la régression?

Des données aux prédictions

Exemple de régression

Maison	Taille de la maison (pieds carrés)	Année de construction	Prix de l'immobilier (objectif, en milliers)e)
1	80	1985	120
2	92	2010	180
3	75	2008	145
4	110	2015	220
5	85	2000	140
6	150	1975	225
7	55	1992	100
8	105	1999	??
9	95	2018	??

Autres exemples de régression

- Combien de personnes retweeteront votre tweet ? (y)
 - → dépend de x : nombre de followers, popularité, sujet du tweet, ...
- Quel sera votre prochain salaire ? (y)
 - → dépend de x : votre diplôme, votre expérience, ...
- Combien de points aura une équipe de football à la fin de la saison ?
 - → dépend de x : statistiques sur les performances de l'équipe (buts, tirs, possession,...)

Différents types de régression

Régression →la variable cible est numérique

- Simple VS multiple
 - → régression simple : une variable caractéristique (X) pour prédire Y
 - → régression multiple : plusieurs variables caractéristiques (X1, . . . , Xp) pour prédire Y
- Linéaire VS Non linéaire

Régression linéaire simple en quelques mots

Taille	Prix
80	120
92	180
75	145
110	220
85	140
150	225
55	100
105	??
95	??

Régression linéaire simple en quelques mots

Année	Prix
1985	120
2010	180
2008	145
2015	220
2000	140
1975	225
1992	100
1999	??
2018	??

Ce que nous verrons sur la régression simple

- Comment trouver le modèle ? (ie coefficients de la droite de régression)
- Comment évaluer la performance d'un modèle ?
 - → le modèle sera-t-il bon pour prédire de nouvelles entrées ?
 - → si j'ai plus d'une variable, laquelle me semble la meilleure ?

La régression linéaire multiple en bref

Taille	Année	Prix
80	1985	120
92	2010	180
75	2008	145
110	2015	220
85	2000	140
150	1975	225
55	1992	100
105	1999	??
95	2018	??

Régression linéaire multiple pour la régression non linéaire

Taille	Taille ₂	Prix
80	6400	120
92	8464	180
75	5625	145
110	12100	220
85	7225	140
150	22500	225
55	3025	100
105	11025	??
95	9025	??

P=-91.3+3.94×*S*-0.012×*S*₂

Ce que nous verrons à propos de la régression multiple

- Comment trouver le modèle ? (ie les coefficients du modèle)
- Comment évaluer la performance d'un modèle ?
 - → le modèle sera-t-il bon pour prédire de nouvelles entrées ?
 - → comment comparer des modèles avec un nombre différent de variables
- Régression non linéaire avec régression multiple
- Sélection de variables
 - Ai-je vraiment besoin de toutes les variables dont je dispose, ou un sous-ensemble serait peut-être mieux?
 - → comment effectuer une sélection de variables ? (critères, méthodes)

Régression avec des variables non numériques

Taille	District	Prix
80	Centre	120
92	Bourg-Lesvèque	180
75	Centre	145
110	Longchamps	220
85	Longchamps	140
150	Bourg-Lesvèque	225
55	Centre	100
105	Longchamps	??
95	Centre	??

1 ntroduction

- **2**égression linéaire
 - Données, problème
 - Modèle linéaire
 - Estimation des coefficients Coefficient de
 - détermination (R-carré) Tests statistiques sur les
 - modèles de régression Estimation de la performance
 - générale d'un modèle

Données, problème

Régression simple : 1 variable cible numérique, 1 variable explicative numérique

Individus	Х	Oui
1	<i>X</i> 1	et ₁
io	 V:-	ot:
je	Xje	etje
n	Xn	etn

Régression multiple : 1 variable cible numérique, plusieurs variables explicatives numériques

Individus	<i>X</i> 1	 Xj		Хр	Oui
1	<i>X</i> 11	 <i>X</i> 1 <i>j</i>		<i>X</i> 1 <i>p</i>	et ₁
io		V::			ot:
Jе	Xje1	 Xij	• • • •	Xadresse IP	etje
n	Xn1	 XNew Jersey		Xnp	et n

Quantité d'informations dans la variable cible

$$jet = \sum_{je=1}^{n} (et_{je} - \bar{et})_2$$

- **1** ntroduction
- **2**égression linéaire
 - Données, problème
 - Modèle linéaire
 - Estimation des coefficients Coefficient de
 - détermination (R-carré) Tests statistiques sur les
 - modèles de régression Estimation de la performance
 - générale d'un modèle

Modèle linéaire

Nous supposons que Ouiest une fonction linéaire des variables explicatives X_{je}

$$Y'\beta_0+\beta_1X_1+\beta_2X_2+\cdots+\beta_pX_p$$

1 ntroduction

- **2**égression linéaire
 - Données, problème
 - Modèle linéaire
 - Estimation des coefficients Coefficient de
 - détermination (R-carré) Tests statistiques sur les
 - modèles de régression Estimation de la performance
 - générale d'un modèle

Estimation des coefficients

 β_0, \ldots, β_p sont les paramètres « optimaux » (que nous trouverions si nous connaissions toutes les données sur le problème)

Objectif: trouver β_0, \ldots, β_p , estimations de β_0, \ldots, β_p qui sont aussi précis que possible

→ Régression des moindres carrés

Régression des moindres carrés (cas de régression simple)

→ Objectif : minimiser la somme des carrés des résidus

$$jer(\beta_0, \beta_1) = \sum_{je=1}^{n} (\hat{y}_{je} - et_{je})$$

$$jer(\beta_0, \beta_1) = \sum_{je=1}^{n} ((\beta_0 + \beta_1 x_{je}) - et_{je})2$$

Les dérivées partielles doivent être égales à 0 :

$$\beta_1 = \frac{\sum_{\substack{(\underline{y}_{je} - \overline{x})(et_{je} - y\overline{j}) \\ (x_{je} - \overline{x})_2}}}{(x_{je} - \overline{x})_2}$$

$$\beta_0 = y - \beta_1 x$$

Nous pouvons également calculer $\hat{\sigma_{B}}$: l'incertitude quant à la valeur de $oldsymbol{eta}$ 1

- Introduction
- **2** égression linéaire
 - Données, problème
 - Modèle linéaire
 - Estimation des coefficients Coefficient de
 - détermination (R-carré) Tests statistiques sur les
 - modèles de régression Estimation des performances
 - générales d'un modèle

Coefficient de détermination

Nous avons vu que la quantité d'information dans la variable cible est :

$$\int_{e^{-1}}^{\infty} \int_{e^{-1}}^{\infty} (et_{je} - et_{je})^{2}$$

Cette quantité d'informations peut être divisée en deux parties :

- la quantité d'informations expliquées par le modèle jem
- la quantité d'informations non expliquées par le modèle jer

Nous avons jet=jem+jer

Le R-carré est défini comme :

$$R_2=m\frac{je}{jet}$$

- 1 ntroduction
- 2 égression linéaire
 - Données, problème
 - Modèle linéaire
 - Estimation des coefficients Coefficient de
 - détermination (R-carré) Tests statistiques sur les
 - modèles de régression Estimer la performance
 - générale d'un modèle

Régression simple : test de signification de $oldsymbol{eta}_1$

Hypothèse 0 (H_0): X n'influence pas Y $\rightarrow \beta_1=0$ Hypothèse 1 (H_1): X a une influence sur Y $\rightarrow \beta_1 6=0$ Sous H_0 , $\frac{\beta_1}{\beta_1}$ est généré par une loi de Student avec n-2 degrés de liberté

Régression simple : test de signification de $oldsymbol{eta}_1$

Sous *H*0, *β*iest généré par une loi de Student avec *n –*2 degrés de liberté

paprobabilité de prendre une mauvaise décision lors de la prise de décision H

pc<0.05 ⇒décider*H*1

Multiple reg. : Test de significativité d'un coefficient

Hypothèse $H_0: \beta_j=0$ (x_j n'est pas significatifen présence d'autres variables)

Hypothèse $H_1: \beta_j 6 = 0$ (x_j est significatifen présence d'autres variables)

Valeur du test :*T=β_{loj}*

Sous H_0 , Test généré par une loi de Student avec (n - p - 1) degrés de liberté.

 $Si/T/ > t_{n0-p24}$, nous refusons H_0 .

Exemples de l'intérêt de ce test

```
Call:
lm(formula = y \sim x1 + x10, data = ozo)
Residuals:
   Min
            10 Median
                            30
                                  Max
-41.940 -11.255 0.369 9.500 55.273
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -28.96058 10.15508 -2.852 0.00521 **
             4.47827 0.66801 6.704 9.58e-10 ***
x1
x10
             0.40446 0.07219 5.602 1.63e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 17.44 on 108 degrees of freedom
Multiple R-squared: 0.6275, Adjusted R-squared: 0.6206
F-statistic: 90.98 on 2 and 108 DF, p-value: < 2.2e-16
```

Exemples de l'intérêt de ce test

```
Call:
lm(formula = y \sim x1 + x2, data = ozo)
Residuals:
           10 Median
   Min
                         30
                               Max
-38.822 -11.896 0.239 11.338 46.672
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
x1
            0.8023 1.2252 0.655 0.51398
            4.9473 0.9254 5.346 5.06e-07 ***
x2
             0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
Residual standard error: 17.61 on 108 degrees of freedom
Multiple R-squared: 0.6199, Adjusted R-squared: 0.6128
F-statistic: 88.06 on 2 and 108 DF, p-value: < 2.2e-16
```

Exemples de l'intérêt de ce test

```
Call:
lm(formula = y \sim x1 + x10 + x2, data = ozo)
Residuals:
   Min
            10 Median
                            30
                                  Max
-49.982 -8.149 0.438 9.916 38.693
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -28.11029 9.04994 -3.106 0.00243 **
x1
            -0.55031 1.10696 -0.497 0.62011
x10
             0.36521   0.06474   5.641   1.39e-07 ***
x2
             4.42587 0.82145 5.388 4.27e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 15.54 on 107 degrees of freedom
Multiple R-squared: 0.707, Adjusted R-squared: 0.6988
F-statistic: 86.07 on 3 and 107 DF, p-value: < 2.2e-16
```

- 1 ntroduction
- **2**égression linéaire
 - Données, problème
 - Modèle linéaire
 - Estimation des coefficients Coefficient de
 - détermination (R-carré) Tests statistiques sur les
 - modèles de régression Estimer la performance
 - générale d'un modèle

On modele donne est-il bon pour faire des prédictions ?
Sont le coefficient de détermination ou le <i>jer</i> (ou les tests statistiques) adaptés pour me dire si un modèle donné est bon pour faire des prédictions ?

Taille	Prix
80	120
92	180
75	145
110	220
85	140
150	225
55	100

Taille	Taille2	Prix
80	6400	120
92	8464	180
75	5625	145
110	12100	220
85	7225	140
150	22500	225
55	3025	100

Taille	Taille2	<i>Taille</i> 3	Prix
80	6400		120
92	8464		180
75	5625		145
110	12100		220
85	7225		140
150	22500		225
55	3025		100

Taille₂ Taille₃ Taille₅ Taille Taille₄

Degree 5 polynomial

Erreur de généralisation d'un modèle

Définition : c'est l'erreur moyenne qu'un modèle ferait en prédisant de nouveaux individus.

Problème : Il est impossible de le savoir exactement car nous n'avons pas de nouveaux individus...

ightarrow nous allons essayer d'avoir une estimation juste de cette valeur. 2

méthodes principales :

- Séparation Train/Test
- Validation croisée K-fold

Séparation Train/Test

Individus	<i>X</i> 1	 Xj	 Хр	Oui
1	<i>X</i> 11	 <i>X</i> 1 <i>j</i>	 <i>X</i> 1 <i>p</i>	<i>et</i> 1
je	Xje1	 Xij	 Xadresse IP	et je
je +1	<i>Xje</i> +1,1	 <i>Xje</i> +1 <i>,j</i>	 <i>Xje</i> +1, <i>p</i>	<i>etje</i> +1
n	<i>Xn</i> 1	 XNew Jersey	 Xnp	etn

Les individus dansbleusont habitués àapprendreun modèle (ou différents modèles) Le modèle est utilisé pour prédire *et* pour tous les individus dansvert L'erreur de généralisation est estimée par une erreur quadratique moyenne de ces prédictions.

Inconvénient?

Validation croisée K-fold

Principe : le jeu de données est divisé en K

L'estimation de l'erreur de généralisation est la moyenne des Kerreurs de mesure.