CS F402: Computational Geometry

Lecture 12:

Straight-Line Drawings of Planar Graphs II:

Schnyder Realizer

Siddharth Gupta

March 21+26 + April 2+4, 2025

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n - 4) \times (n - 2)$.

Theorem.

[Schnyder '90]

Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4) \times (n-2)$.

Theorem.

[Schnyder '90]

Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4) \times (n-2)$.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Idea.

Fix outer triangle.

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4) \times (n-2)$.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

- Fix outer triangle.
- Compute coordinates of inner vertices

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4) \times (n-2)$.

Theorem.

[Schnyder '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4) \times (n-2)$.

Theorem.

[Schnyder '90]

Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle and
 - how much space there should be for other vertices

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4) \times (n-2)$.

Theorem.

[Schnyder '90]

Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle and
 - how much space there should be for other vertices
 - using weighted barycentric coordinates.

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-4) \times (n-2)$.

Theorem.

[Schnyder '89]

Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n - 5) \times (2n - 5)$.

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle and
 - how much space there should be for other vertices
 - using weighted barycentric coordinates.

Recall: barycenter($x_1, ..., x_k$) = $\sum_{i=1}^k x_i/k$

Recall: barycenter($x_1, ..., x_k$) = $\sum_{i=1}^k x_i/k$

Let *A*, *B*, *C* form a triangle

Recall: barycenter($x_1, ..., x_k$) = $\sum_{i=1}^k x_i/k$

Let A, B, C form a triangle, let x lie inside $\triangle ABC$.

Recall: barycenter($x_1, ..., x_k$) = $\sum_{i=1}^k x_i/k$

Let A, B, C form a triangle, let x lie inside $\triangle ABC$.

Recall: barycenter($x_1, ..., x_k$) = $\sum_{i=1}^k x_i/k$

Recall: barycenter($x_1, ..., x_k$) = $\sum_{i=1}^k x_i/k$

Let A, B, C form a triangle, let x lie inside $\triangle ABC$. The **barycentric coordinates** of x with respect to $\triangle ABC$ are a triple $(\alpha, \beta, \gamma) \in \mathbb{R}^3_{>0}$ such that

 $\mathbf{x} = \alpha A + \beta B + \gamma C$ and

Recall: barycenter($x_1, ..., x_k$) = $\sum_{i=1}^k x_i/k$

- $\mathbf{x} = \alpha A + \beta B + \gamma C$ and
- $\alpha + \beta + \gamma = 1$

Recall: barycenter($x_1, ..., x_k$) = $\sum_{i=1}^k x_i/k$

- $\mathbf{x} = \alpha A + \beta B + \gamma C$ and
- $\alpha + \beta + \gamma = 1$

Recall: barycenter($x_1, ..., x_k$) = $\sum_{i=1}^k x_i/k$

- $\mathbf{x} = \alpha A + \beta B + \gamma C$ and
- $\alpha + \beta + \gamma = 1$

Recall: barycenter($x_1, ..., x_k$) = $\sum_{i=1}^k x_i/k$

- $\mathbf{x} = \alpha A + \beta B + \gamma C$ and
- $\alpha + \beta + \gamma = 1$

Recall: barycenter($x_1, ..., x_k$) = $\sum_{i=1}^k x_i/k$

- $\mathbf{x} = \alpha A + \beta B + \gamma C$ and
- $\alpha + \beta + \gamma = 1$

Recall: barycenter($x_1, ..., x_k$) = $\sum_{i=1}^k x_i/k$

- $\mathbf{x} = \alpha A + \beta B + \gamma C$ and
- $\alpha + \beta + \gamma = 1$

Recall: barycenter($x_1, ..., x_k$) = $\sum_{i=1}^k x_i/k$

- $\mathbf{x} = \alpha A + \beta B + \gamma C$ and
- $\alpha + \beta + \gamma = 1$

Recall: barycenter($x_1, ..., x_k$) = $\sum_{i=1}^k x_i/k$

- $\mathbf{x} = \alpha A + \beta B + \gamma C$ and
- $\alpha + \beta + \gamma = 1$

Recall: barycenter($x_1, ..., x_k$) = $\sum_{i=1}^k x_i/k$

- $\mathbf{x} = \alpha A + \beta B + \gamma C$ and
- $\alpha + \beta + \gamma = 1$

Recall: barycenter($x_1, ..., x_k$) = $\sum_{i=1}^k x_i/k$

- $\mathbf{x} = \alpha A + \beta B + \gamma C$ and
- $\alpha + \beta + \gamma = 1$

A **barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f\colon V\to\mathbb{R}^3_{\geq 0},v\mapsto (v_1,v_2,v_3)$$

with the following properties:

A **barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

A **barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(B2) for each $xy \in E$

A **barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(B2) for each $xy \in E$ and each $z \in V \setminus \{x, y\}$

A **barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

A **barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f\colon V\to\mathbb{R}^3_{\geq 0},v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

A **barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

A **barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G:

$$f \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

Barycentric Representations of Planar Graphs

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G

Barycentric Representations of Planar Graphs

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position.

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

gives a **planar** drawing of *G* inside $\triangle ABC$.

No vertex x can lie on an edge $\{u, v\}$.

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

gives a **planar** drawing of *G* inside $\triangle ABC$.

No vertex x can lie on an edge $\{u, v\}$.

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

gives a **planar** drawing of *G* inside $\triangle ABC$.

No vertex x can lie on an edge $\{u, v\}$.

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

- No vertex x can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

- No vertex x can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

- No vertex x can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

- No vertex x can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

$$u_i' > u_i, v_i$$

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

- No vertex x can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

$$u_i' > u_i, v_i \quad v_j' > u_j, v_j$$

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

- No vertex x can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

$$u_i' > u_i, v_i \quad v_j' > u_j, v_j \quad u_k > u_k', v_k'$$

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

- No vertex x can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

$$u'_{i} > u_{i}, v_{i}$$
 $v'_{j} > u_{j}, v_{j}$ $u_{k} > u'_{k}, v'_{k}$ $v_{l} > u'_{l}, v'_{l}$

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

- No vertex x can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

$$u'_{i} > u_{i}, v_{i} \quad v'_{j} > u_{j}, v_{j} \quad u_{k} > u'_{k}, v'_{k} \quad v_{l} > u'_{l}, v'_{l}$$

$$\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$$

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

- No vertex x can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

$$u'_{i} > u_{i}, v_{i}$$
 $v'_{j} > u_{j}, v_{j}$ $u_{k} > u'_{k}, v'_{k}$ $v_{l} > u'_{l}, v'_{l}$
 $\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$
wlog $i = j = 2$

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

- No vertex x can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

$$u'_{i} > u_{i}, v_{i} \quad v'_{j} > u_{j}, v_{j} \quad u_{k} > u'_{k}, v'_{k} \quad v_{l} > u'_{l}, v'_{l}$$

 $\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$
 $\text{wlog } i = j = 2 \Rightarrow u'_{2}, v'_{2} > u_{2}, v_{2}$

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

gives a **planar** drawing of *G* inside $\triangle ABC$.

- No vertex x can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

$$u'_{i} > u_{i}, v_{i} \quad v'_{j} > u_{j}, v_{j} \quad u_{k} > u'_{k}, v'_{k} \quad v_{l} > u'_{l}, v'_{l}$$

$$\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$$

wlog $i = j = 2 \Rightarrow u'_2, v'_2 > u_2, v_2 \Rightarrow$ separated by straight line

How to find barycentric representation?

Lemma.

Let $f: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position. Then the mapping

$$\phi \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

gives a **planar** drawing of *G* inside $\triangle ABC$.

- No vertex x can lie on an edge $\{u, v\}$.
- No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross:

$$u'_{i} > u_{i}, v_{i} \quad v'_{j} > u_{j}, v_{j} \quad u_{k} > u'_{k}, v'_{k} \quad v_{l} > u'_{l}, v'_{l}$$

$$\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$$

wlog $i = j = 2 \Rightarrow u'_2, v'_2 > u_2, v_2 \Rightarrow$ separated by straight line

 $x_1 > y_1, z_1$

Schnyder Labeling

$$x_1 > y_1, z_1$$

$$y_2 > x_2, z_2$$

 $y_2 > x_2, z_2$

 $z_3 > x_3, y_3$

Schnyder Labeling

Let $\phi : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in $\triangle xyz$ uniquely with $k \in \{1,2,3\}$.

Let $\phi : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in $\triangle xyz$ **uniquely** with $k \in \{1, 2, 3\}$.

A **Schnyder Labeling** of a plane triangulation *G* is a labeling of all internal angles with labels 1, 2 and 3 such that:

Let $\phi : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

A **Schnyder Labeling** of a plane triangulation *G* is a labeling of all internal angles with labels 1, 2 and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise order.

Let $\phi : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in $\triangle xyz$ **uniquely** with $k \in \{1, 2, 3\}$.

A **Schnyder Labeling** of a plane triangulation *G* is a labeling of all internal angles with labels 1, 2 and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise order.

Let $\phi : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

A **Schnyder Labeling** of a plane triangulation *G* is a labeling of all internal angles with labels 1, 2 and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise order.

Vertices: The ccw order of labels around each vertex consists of

Let $\phi : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

A **Schnyder Labeling** of a plane triangulation *G* is a labeling of all internal angles with labels 1, 2 and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise order.

Vertices: The ccw order of labels around each vertex consists of

a nonempty interval of 1's

Let $\phi : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

A **Schnyder Labeling** of a plane triangulation *G* is a labeling of all internal angles with labels 1, 2 and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise order.

Vertices: The ccw order of labels around each vertex consists of

- a nonempty interval of 1's
- followed by a nonempty interval of 2's

Let $\phi : v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a planar graph G and let $A, B, C \in \mathbb{R}^2$ be in general position.

We can label each angle in $\triangle xyz$ uniquely with $k \in \{1, 2, 3\}$.

A **Schnyder Labeling** of a plane triangulation *G* is a labeling of all internal angles with labels 1, 2 and 3 such that:

Faces: The three angles of an internal face are labeled 1, 2 and 3 in counterclockwise order.

Vertices: The ccw order of labels around each vertex consists of

- a nonempty interval of 1's
- followed by a nonempty interval of 2's
- followed by a nonempty interval of 3's.

A Schnyder labeling induces an edge labeling.

A **Schnyder Realizer** (or **Wood**) of a plane triangulation G = (V, E) is a partition of the inner edges of E into three sets of oriented edges T_1 , T_2 , T_3

A Schnyder labeling induces an edge labeling.

A Schnyder labeling induces an edge labeling.

A **Schnyder Realizer** (or **Wood**) of a plane triangulation G = (V, E) is a partition of the inner edges of E into three sets of oriented edges T_1 , T_2 , T_3 such that for each inner vertex $v \in V$ holds:

■ v has one outgoing edge in each of T_1 , T_2 , and T_3 .

A Schnyder labeling induces an edge labeling.

- v has one outgoing edge in each of T_1 , T_2 , and T_3 .
- \blacksquare The ccw order of edges around v is:

A Schnyder labeling induces an edge labeling.

- v has one outgoing edge in each of T_1 , T_2 , and T_3 .
- The ccw order of edges around v is: leaving in T_1

A Schnyder labeling induces an edge labeling.

- v has one outgoing edge in each of T_1 , T_2 , and T_3 .
- The ccw order of edges around v is: leaving in T_1 , entering in T_3

A Schnyder labeling induces an edge labeling.

- v has one outgoing edge in each of T_1 , T_2 , and T_3 .
- The ccw order of edges around v is: leaving in T_1 , entering in T_3 , leaving in T_2

A Schnyder labeling induces an edge labeling.

- v has one outgoing edge in each of T_1 , T_2 , and T_3 .
- The ccw order of edges around v is: leaving in T_1 , entering in T_3 , leaving in T_2 , entering in T_1

A Schnyder labeling induces an edge labeling.

- v has one outgoing edge in each of T_1 , T_2 , and T_3 .
- The ccw order of edges around v is: leaving in T_1 , entering in T_3 , leaving in T_2 , entering in T_1 , leaving in T_3

A Schnyder labeling induces an edge labeling.

- v has one outgoing edge in each of T_1 , T_2 , and T_3 .
- The ccw order of edges around v is: leaving in T_1 , entering in T_3 , leaving in T_2 , entering in T_1 , leaving in T_3 , entering in T_2 .

- All inner edges incident to a, b, and c are incoming in the same color.
- T_1 , T_2 , and T_3 are trees on all inner vertices and one outer vertex each (as its root).

- All inner edges incident to a, b, and c are incoming in the same color.
- T_1 , T_2 , and T_3 are trees on all inner vertices and one outer vertex each (as its root).

- All inner edges incident to a, b, and c are incoming in the same color.
- T_1 , T_2 , and T_3 are trees on all inner vertices and one outer vertex each (as its root).

- All inner edges incident to a, b, and c are incoming in the same color.
- T_1 , T_2 , and T_3 are trees on all inner vertices and one outer vertex each (as its root).

... requires that a and x have exactly 2 common neighbors.

... requires that a and x have exactly 2 common neighbors.

... requires that a and x have exactly 2 common neighbors.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b$, c.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b$, c.

Theorem.

Every plane triangulation has a Schnyder Labeling and Realizer.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b$, c.

Theorem.

Every plane triangulation has a Schnyder Labeling and Realizer.

Proof by induction on # vertices via edge contractions.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b$, c.

Theorem.

Every plane triangulation has a Schnyder Labeling and Realizer.

Proof by induction on # vertices via edge contractions.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b$, c.

Theorem.

Every plane triangulation has a Schnyder Labeling and Realizer.

Proof by induction on # vertices via edge contractions.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b$, c.

Theorem.

Every plane triangulation has a Schnyder Labeling and Realizer.

Proof by induction on # vertices via edge contractions.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b$, c.

Theorem.

Every plane triangulation has a Schnyder Labeling and Realizer.

Proof by induction on # vertices via edge contractions.

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b$, c.

Theorem.

Every plane triangulation has a Schnyder Labeling and Realizer.

Proof by induction on # vertices via edge contractions.

Schnyder Realizer – Existence

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b$, c.

Theorem.

Every plane triangulation has a Schnyder Labeling and Realizer.

Proof by induction on # vertices via edge contractions.

... requires that a and x have exactly 2 common neighbors.

Schnyder Realizer – Existence

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b$, c.

Theorem.

Every plane triangulation has a Schnyder Labeling and Realizer.

Proof by induction on # vertices via edge contractions.

... requires that a and x have exactly 2 common neighbors.

Schnyder Realizer – Existence

Lemma.

[Kampen 1976]

Let G be a plane triangulation with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b$, c.

Theorem.

Every plane triangulation has a Schnyder Labeling and Realizer.

Proof by induction on # vertices via edge contractions.

... requires that a and x have exactly 2 common neighbors.

Constructive proof can be used as algorithm to compute a Schnyder labeling. It can be implemented in O(n)

time.

 \blacksquare From each vertex v there exists

From each vertex v there exists a directed red path $P_1(v)$ to a,

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i .

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i .

Lemma.

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i .

Lemma.

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i .

Lemma.

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i .

Lemma.

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i .

Lemma.

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i .

Lemma.

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i .

Lemma.

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 .

Lemma.

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 .

Lemma.

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

Lemma.

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.
- $|R_1(v)| + |R_2(v)| + |R_3(v)| =$

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.
- $|R_1(v)| + |R_2(v)| + |R_3(v)| = 2n 5$

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.
- $|R_1(v)| + |R_2(v)| + |R_3(v)| = 2n 5$

From each vertex v there exists a directed red path $P_1(v)$ to a, a directed blue path $P_2(v)$ to b, and a directed green path $P_3(v)$ to c.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

- $\blacksquare P_1(v), P_2(v), P_3(v)$ cross only at v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.
- $|R_1(v)| + |R_2(v)| + |R_3(v)| = 2n 5$

Theorem.

[Schnyder '89]

For a plane triangulation *G*, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

Theorem.

[Schnyder '89]

For a plane triangulation *G*, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$

Theorem.

[Schnyder '89]

For a plane triangulation *G*, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$

Theorem.

[Schnyder '89]

For a plane triangulation *G*, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

is a barycentric representation of *G*, which thus gives a planar straight-line drawing of *G*

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$

(B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$

Theorem.

[Schnyder '89]

For a plane triangulation *G*, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$

- (B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in some $R_i(z)$ for $i \in \{1,2,3\}$

Theorem.

[Schnyder '89]

For a plane triangulation *G*, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$

- (B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in some $R_i(z)$ for $i \in \{1,2,3\}$

Theorem.

[Schnyder '89]

For a plane triangulation *G*, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$

- (B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in some $R_i(z)$ for $i \in \{1,2,3\}$

Theorem.

[Schnyder '89]

For a plane triangulation *G*, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$

- (B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in some $R_i(z)$ for $i \in \{1,2,3\}$
 - For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.

Theorem.

[Schnyder '89]

For a plane triangulation *G*, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$

- (B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in some $R_i(z)$ for $i \in \{1,2,3\}$
 - For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.

Schnyder Drawing

Set
$$A = (0,0)$$
, $B = (2n - 5,0)$, and $C = (0,2n - 5)$.

Theorem.

[Schnyder '89]

For a plane triangulation *G*, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

is a barycentric representation of *G*, which thus gives a planar straight-line drawing of *G*

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$

- (B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in some $R_i(z)$ for $i \in \{1,2,3\}$
 - For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.

Schnyder Drawing

Set
$$A = (0,0)$$
, $B = (2n - 5,0)$, and $C = (0,2n - 5)$.

Theorem.

[Schnyder '89]

For a plane triangulation *G*, the mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

is a barycentric representation of G, which thus gives a planar straight-line drawing of G on the $(2n-5)\times(2n-5)$ grid.

(B1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$

- (B2) for each $\{x,y\} \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with $x_k < z_k$ and $y_k < z_k$
 - $\{x,y\}$ must lie in some $R_i(z)$ for $i \in \{1,2,3\}$
 - For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.

$$n = 7, 2n - 5 = 9$$

$$n = 7, 2n - 5 = 9$$

 $f(a) = (9, 0, 0)$

$$n = 7, 2n - 5 = 9$$
 $f(a) = (9, 0, 0)$
 $f(b) = (0, 9, 0)$

$$n = 7, 2n - 5 = 9$$

$$f(a) = (9,0,0)$$

$$f(b) = (0,9,0)$$

$$f(c) = (0,0,9)$$

$$n = 7, 2n - 5 = 9$$

$$f(a) = (9,0,0)$$

$$f(b) = (0,9,0)$$

$$f(c) = (0,0,9)$$

$$f(a) = (9,0,0) f(e) = f(b) = (0,9,0)$$

$$f(c) = (0,0,9)$$

$$n = 7, 2n - 5 = 9$$
 $f(d) = (2, 6, 1)$
 $f(a) = (9, 0, 0)$ $f(e) = (5, 2, 2)$
 $f(b) = (0, 9, 0)$ $f(g) = (1, 2, 6)$
 $f(c) = (0, 0, 9)$

$$n = 7, 2n - 5 = 9$$
 $f(d) = (2, 6, 1)$
 $f(a) = (9, 0, 0)$ $f(e) = (5, 2, 2)$
 $f(b) = (0, 9, 0)$ $f(g) = (1, 2, 6)$
 $f(c) = (0, 0, 9)$ $f(h) = (4, 1, 4)$

[Schnyder '89]

Every n-vertex planar graph has a planar straight-line drawing of size $(2n-5) \times (2n-5)$.

$$n = 7, 2n - 5 = 9$$
 $f(d) = (2, 6, 1)$

$$f(a) = (9,0,0)$$
 $f(e) = (5,2,2)$

$$f(b) = (0,9,0)$$
 $f(g) = (1,2,6)$

$$f(c) = (0,0,9)$$
 $f(h) = (4,1,4)$

A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$$

with the following properties:

A **weak barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0}, v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

A weak barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0}, v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each $xy \in E$

A **weak barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0},v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each $xy \in E$ and each $z \in V \setminus \{x, y\}$

A **weak barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0}, v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each $xy \in E$ and each $z \in V \setminus \{x, y\}$ there exists $k \in \{1, 2, 3\}$ with $(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1})$ and $(y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1})$.

A **weak barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0},v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each $xy \in E$ and each $z \in V \setminus \{x, y\}$ there exists $k \in \{1, 2, 3\}$ with $(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1})$ and $(y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1})$.

i.e., either
$$y_k < z_k$$
 or $y_k = z_k$ and $y_{k+1} < z_{k+1}$

A **weak barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0}, v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each $xy \in E$ and each $z \in V \setminus \{x, y\}$ there exists $k \in \{1, 2, 3\}$ with

$$(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1}) \text{ and } (y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1}).$$

A **weak barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0}, v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each $xy \in E$ and each $z \in V \setminus \{x, y\}$ there exists $k \in \{1, 2, 3\}$ with

$$(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1}) \text{ and } (y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1}).$$

A **weak barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0}, v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each $xy \in E$ and each $z \in V \setminus \{x,y\}$ there exists $k \in \{1,2,3\}$ with

$$(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1}) \text{ and } (y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1}).$$

A **weak barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0}, v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each $xy \in E$ and each $z \in V \setminus \{x, y\}$ there exists $k \in \{1, 2, 3\}$ with $(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1})$ and $(y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1})$.

A **weak barycentric representation** of a graph G = (V, E) is an assignment of barycentric coordinates to V:

$$\phi\colon V\to\mathbb{R}^3_{\geq 0},v\mapsto (v_1,v_2,v_3)$$

with the following properties:

(W1)
$$v_1 + v_2 + v_3 = 1$$
 for all $v \in V$,

(W2) for each $xy \in E$ and each $z \in V \setminus \{x, y\}$ there exists $k \in \{1, 2, 3\}$ with $(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1})$ and $(y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1})$.

i.e., either $y_k < z_k$ or $y_k = z_k$ and $y_{k+1} < z_{k+1}$

Lemma.

For a weak barycentric representation $\phi : v \mapsto (v_1, v_2, v_3)$ and a triangle A, B, C, the mapping

$$f \colon v \in V \mapsto v_1 A + v_2 B + v_3 C$$

gives a **planar** drawing of *G* inside $\triangle ABC$.

Counting Vertices

 $P_i(v)$: path from v to root of T_i .

 $R_1(v)$: set of faces contained in P_2 , bc, P_3 .

 $R_2(v)$: set of faces contained in P_3 , ca, P_1 .

 $R_3(v)$: set of faces contained in P_1 , ab, P_2 .

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 . $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

 $v_1 =$

$$v_1 =$$

$$v_1 = 10 - 3 = 7$$

$$v_1 = 10 - 3 = 7$$
 $v_2 =$

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$
 $v_3 = 3$

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$
 $v_3 = 8 - 3 = 5$

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 . $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$
 $v_3 = 8 - 3 = 5$

Lemma.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 . $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$
 $v_3 = 8 - 3 = 5$

Lemma.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 . $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$
 $v_3 = 8 - 3 = 5$

Lemma.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 . $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$
 $v_3 = 8 - 3 = 5$

Lemma.

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 . $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$
 $v_3 = 8 - 3 = 5$

Lemma.

$$v_1 + v_2 + v_3 =$$

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 . $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$
 $v_3 = 8 - 3 = 5$

Lemma.

$$v_1 + v_2 + v_3 = n - 1$$

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 . $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$
 $v_3 = 8 - 3 = 5$

Lemma.

$$v_1 + v_2 + v_3 = n - 1$$

 $P_i(v)$: path from v to root of T_i . $R_1(v)$: set of faces contained in P_2 , bc, P_3 . $R_2(v)$: set of faces contained in P_3 , ca, P_1 . $R_3(v)$: set of faces contained in P_1 , ab, P_2 . $v_i = |V(R_i(v))| - |P_{i-1}(v)|$

$$v_1 = 10 - 3 = 7$$
 $v_2 = 6 - 3 = 3$
 $v_3 = 8 - 3 = 5$

Lemma.

- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow (u_i, u_{i+1}) <_{\text{lex}} (v_i, v_{i+1})$.
- $v_1 + v_2 + v_3 = n 1$

Schnyder Drawing*

Set
$$A = (0,0)$$
, $B = (n-1,0)$, and $C = (0, n-1)$.

Theorem.

[Schnyder '90]

For a plane triangulation *G*, the mapping

$$f \colon v \mapsto \frac{1}{n-1}(v_1, v_2, v_3)$$

is a barycentric representation of G, which thus gives a planar straight-line drawing of G on the $(n-2) \times (n-2)$ grid.

$$n = 16, n - 2 = 14$$

$$n = 16, n - 2 = 14$$

 $f(a) = (n - 2, 1, 0)$

$$n = 16, n - 2 = 14$$

 $f(a) = (n - 2, 1, 0)$

$$n = 16, n - 2 = 14$$

$$f(a) = (n-2,1,0)$$

$$f(b) = (0, n-2, 1)$$

$$n = 16, n - 2 = 14$$

$$f(a) = (n-2,1,0)$$

$$f(b) = (0, n - 2, 1)$$

$$f(c) = (1, 0, n - 2)$$

$$n = 16, n - 2 = 14$$
 $f(a) = (n - 2, 1, 0)$
 $f(b) = (0, n - 2, 1)$
 $f(c) = (1, 0, n - 2)$

$$n = 16, n - 2 = 14$$

$$f(a) = (n - 2, 1, 0)$$

$$f(b) = (0, n - 2, 1)$$

$$f(c) = (1, 0, n - 2)$$

$$n = 16, n - 2 = 14$$

$$f(a) = (n - 2, 1, 0)$$

$$f(b) = (0, n - 2, 1)$$

$$f(c) = (1, 0, n - 2)$$

$$n = 16, n - 2 = 14$$

$$f(a) = (n - 2, 1, 0)$$

$$f(b) = (0, n - 2, 1)$$

$$f(c) = (1, 0, n - 2)$$

$$n = 16, n - 2 = 14$$
 $f(a) = (n - 2, 1, 0)$
 $f(b) = (0, n - 2, 1)$
 $f(c) = (1, 0, n - 2)$

$$n = 16, n - 2 = 14$$
 $f(a) = (n - 2, 1, 0)$
 $f(b) = (0, n - 2, 1)$
 $f(c) = (1, 0, n - 2)$

$$n = 16, n - 2 = 14$$
 $f(a) = (n - 2, 1, 0)$
 $f(b) = (0, n - 2, 1)$
 $f(c) = (1, 0, n - 2)$

$$n = 16, n - 2 = 14$$

$$f(a) = (n - 2, 1, 0)$$

$$f(b) = (0, n - 2, 1)$$

$$f(c) = (1, 0, n - 2)$$

$$n = 16, n - 2 = 14$$
 $f(a) = (n - 2, 1, 0)$
 $f(b) = (0, n - 2, 1)$
 $f(c) = (1, 0, n - 2)$

$$n = 16, n - 2 = 14$$

$$f(a) = (n - 2, 1, 0)$$

$$f(b) = (0, n - 2, 1)$$

$$f(c) = (1, 0, n - 2)$$

$$n = 16, n - 2 = 14$$

$$f(a) = (n-2,1,0)$$

$$f(b) = (0, n-2, 1)$$

$$f(c) = (1, 0, n - 2)$$

$$n = 16, n - 2 = 14$$

$$f(a) = (n - 2, 1, 0)$$

$$f(b) = (0, n - 2, 1)$$

$$f(c) = (1, 0, n - 2)$$

$$n = 16, n - 2 = 14$$

$$f(a) = (n - 2, 1, 0)$$

$$f(b) = (0, n - 2, 1)$$

$$f(c) = (1, 0, n - 2)$$

$$n = 16, n - 2 = 14$$
 $f(a) = (n - 2, 1, 0)$
 $f(b) = (0, n - 2, 1)$
 $f(c) = (1, 0, n - 2)$

$$n = 16, n - 2 = 14$$

$$f(a) = (n - 2, 1, 0)$$

$$f(b) = (0, n - 2, 1)$$

$$f(c) = (1, 0, n - 2)$$

$$n = 16, n - 2 = 14$$
 $f(a) = (n - 2, 1, 0)$
 $f(b) = (0, n - 2, 1)$
 $f(c) = (1, 0, n - 2)$

$$n = 16, n - 2 = 14$$
 $f(a) = (n - 2, 1, 0)$
 $f(b) = (0, n - 2, 1)$
 $f(c) = (1, 0, n - 2)$

$$n = 16, n - 2 = 14$$
 $f(a) = (n - 2, 1, 0)$
 $f(b) = (0, n - 2, 1)$
 $f(c) = (1, 0, n - 2)$

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[Schnyder '90]

Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[Schnyder '90]

Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[Schnyder '90]

Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[Chrobak & Kant '97]

Every *n*-vertex 3-connected planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time.

Theorem.

[De Fraysseix, Pach, Pollack '90]

Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n-4)\times(n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[Schnyder '90]

Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$. Such a drawing can be computed in O(n) time.

Theorem.

[Chrobak & Kant '97]

Every *n*-vertex 3-connected planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time.

Theorem.

[Felsner '01]

Every 3-connected planar graph with f faces has a planar straight-line drawing of size $(f-1) \times (f-1)$ where all faces are drawn convex. Such a drawing can be computed in O(n) time.

Theorem.

A ccw pre-order traversal on T_i induces a canonical order.

Theorem.

A ccw pre-order traversal on T_i induces a canonical order.

Theorem.

A ccw pre-order traversal on T_i induces a canonical order.

Schnyder Realizer → Canonical Order

Theorem.

A ccw pre-order traversal on T_i induces a canonical order.

Theorem.

A canonical order induces a unique Schnyder Realizer.

Compute Canonical Order

- Compute Canonical Order
- Compute Schnyder Realizer

- Compute Canonical Order
- Compute Schnyder Realizer

- Compute Canonical Order
- Compute Schnyder Realizer
- Goal: $v_i = |V(R_i(v))| |P_{i-1}(v)|$

- Compute Canonical Order
- Compute Schnyder Realizer
- Goal: $v_i = |V(R_i(v))| |P_{i-1}(v)|$
- With traversal of each T_i , compute:

- Compute Canonical Order
- Compute Schnyder Realizer
- Goal: $v_i = |V(R_i(v))| |P_{i-1}(v)|$
- With traversal of each T_i , compute:
 - The number of vertices in $P_i(v)$

- Compute Canonical Order
- Compute Schnyder Realizer
- Goal: $v_i = |V(R_i(v))| |P_{i-1}(v)|$
- With traversal of each T_i , compute:
 - The number of vertices in $P_i(v)$
 - The number of vertices in the subtree $T_i(v)$ of T_i rooted at v

- Compute Canonical Order
- Compute Schnyder Realizer
- Goal: $v_i = |V(R_i(v))| |P_{i-1}(v)|$
- With traversal of each T_i , compute:
 - The number of vertices in $P_i(v)$
 - The number of vertices in the subtree $T_i(v)$ of T_i rooted at v

- Compute Canonical Order
- Compute Schnyder Realizer
- Goal: $v_i = |V(R_i(v))| |P_{i-1}(v)|$
- With traversal of each T_i , compute:
 - The number of vertices in $P_i(v)$
 - The number of vertices in the subtree $T_i(v)$ of T_i rooted at v
- $|V(R_i(v))| =$

- Compute Canonical Order
- Compute Schnyder Realizer
- Goal: $v_i = |V(R_i(v))| |P_{i-1}(v)|$
- With traversal of each T_i , compute:
 - The number of vertices in $P_i(v)$
 - The number of vertices in the subtree $T_i(v)$ of T_i rooted at v
- $|V(R_i(v))| = \sum_{u \in P_{i+1}(v)} |T_i(u)|$

- Compute Canonical Order
- Compute Schnyder Realizer
- Goal: $v_i = |V(R_i(v))| |P_{i-1}(v)|$
- With traversal of each T_i , compute:
 - The number of vertices in $P_i(v)$
 - The number of vertices in the subtree $T_i(v)$ of T_i rooted at v
- $|V(R_i(v))| = \sum_{u \in P_{i+1}(v)} |T_i(u)| + \sum_{u \in P_{i-1}(v)} |T_i(u)|$

- Compute Canonical Order
- Compute Schnyder Realizer
- Goal: $v_i = |V(R_i(v))| |P_{i-1}(v)|$
- With traversal of each T_i , compute:
 - The number of vertices in $P_i(v)$
 - The number of vertices in the subtree $T_i(v)$ of T_i rooted at v
- $|V(R_i(v))| = \sum_{u \in P_{i+1}(v)} |T_i(u)| + \sum_{u \in P_{i-1}(v)} |T_i(u)| T_i(v)$

- Compute Canonical Order
- Compute Schnyder Realizer
- Goal: $v_i = |V(R_i(v))| |P_{i-1}(v)|$
- With traversal of each T_i , compute:
 - The number of vertices in $P_i(v)$
 - The number of vertices in the subtree $T_i(v)$ of T_i rooted at v
- $|V(R_i(v))| = \sum_{u \in P_{i+1}(v)} |T_i(u)| + \sum_{u \in P_{i-1}(v)} |T_i(u)| T_i(v)$
- Compute these sums in six tree traversals

- Compute Canonical Order
- Compute Schnyder Realizer
- Goal: $v_i = |V(R_i(v))| |P_{i-1}(v)|$
- With traversal of each T_i , compute:
 - The number of vertices in $P_i(v)$
 - The number of vertices in the subtree $T_i(v)$ of T_i rooted at v
- $|V(R_i(v))| = \sum_{u \in P_{i+1}(v)} |T_i(u)| + \sum_{u \in P_{i-1}(v)} |T_i(u)| T_i(v)$
- Compute these sums in six tree traversals

Theorem.

Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$. Such a drawing can be computed in O(n) time.

[Schnyder '90]