Степени двойки с цифрами из $\{1,2,8\}$: комбинаторное доказательство конечности

Горюшкин С.В.

25 октября 2025 г.

Аннотация

Мы даём полностью элементарное доказательство того, что единственные степени двойки, чья десятичная запись использует только цифры из $\{1,2,8\}$, это 2,8,128. Ключевые идеи: (i) фазовое условие $2^n \equiv 2 \pmod 6$ для нечётных n; (ii) инвариант состава цифр $a \equiv b \pmod 3$ (число единиц и число цифр из $\{2,8\}$ в старших разрядах равны по модулю 3); (iii) явный вывод допустимых двух- и трёхзначных хвостов; (iv) запрет длины 4 через сумму цифр и делимость на 16; (v) запрет длин ≥ 5 с помощью инварианта.

1 Постановка

Назовём число валидным, если его десятичная запись содержит только цифры из $\{1,2,8\}$. Нас интересуют валидные степени двойки $N=2^n$. Очевидно, 2 и 8 валидны, а также $128=2^7$ валидно. Покажем, что других нет.

2 Фаза по модулю 6 и структура разрядов

Отметим две элементарные наблюдения.

- Для нечётных n имеем $2^n \equiv 2 \pmod 6$ (фаза 2); для чётных n остаток 4, а последняя цифра 4 или 6, что невалидно. Значит, всегда n нечётно, а $N \equiv 2 \pmod 6$.
- В $\mathbb{Z}/6\mathbb{Z}$ справедливо $10 \equiv 4$ и, следовательно, $10^j \equiv 4$ для всех $j \geq 1$.

Лемма 1 (Инвариант состава по модулю 6). Пусть валидное N имеет последнюю цифру $u \in \{2,8\}$, а выше единиц стоят a штук цифры 1 и b штук цифр из $\{2,8\}$. Тогда

$$2a+b\equiv 0\pmod 3, \qquad a+2b\equiv 0\pmod 3, \qquad$$
в частности $a\equiv b\pmod 3.$ (1)

Доказательство. Работаем в $\mathbb{Z}/6\mathbb{Z}$. Вклад единиц $u \equiv 2$. Каждый старший разряд 1 даёт вклад $4 \cdot 1 \equiv 4$, каждый старший разряд 2 или 8 даёт вклад $4 \cdot 2 \equiv 8 \equiv 2$. Итак,

$$N \equiv 2 + 4a + 2b \pmod{6}.$$

Так как $N \equiv 2 \pmod{6}$, получаем $4a + 2b \equiv 0 \pmod{6}$, т. е. $2a + b \equiv 0 \pmod{3}$.

С другой стороны, по модулю 3 сумма цифр равна $N\pmod 3$. При нечётном n имеем $2^n\equiv 2\pmod 3$. Остатки цифр: $1\equiv 1,\,2\equiv 2,\,8\equiv 2$. Следовательно,

$$(2) + a \cdot 1 + b \cdot 2 \equiv 2 \pmod{3} \quad \Rightarrow \quad a + 2b \equiv 0 \pmod{3}.$$

Вычитая две конгруэнции, получаем $a \equiv b \pmod{3}$.

Следствие 1. Если N валидно, то добавление слева одной цифры из $\{1,2,8\}$ нарушает $a \equiv b \pmod{3}$. Следовательно, любое возможное удлинение валидной записи слева должно происходить блоками по три цифры.

Пример. Для N=128 имеем $a=1,\ b=1$ и $a\equiv b\pmod 3$. Добавление слева любой одной цифры (получая 1128, 2128 или 8128) нарушает инвариант (или другие обязательные признаки степени 2, см. ниже).

3 Разрешённые хвосты: mod10, mod100, mod1000

В этом разделе явно получаем допустимые хвосты.

Одна цифра

Последняя цифра степеней 2 циклична: $2,4,8,6,\ldots$ Для нечётных n остаются 2 и 8 — обе валидны.

Две цифры: вывод через CRT

Период $2^n \mod 100$ равен $\operatorname{lcm}(\operatorname{ord}_{25}(2), \operatorname{ord}_4(2)) = \operatorname{lcm}(20, 2) = 20$. Рассмотрим только нечётные n (последняя цифра 2 или 8). Явная таблица остатков $2^n \mod 100$ для нечётных n даёт ровно три хвоста с обеими цифрами в алфавите $\{1, 2, 8\}$:

Из этой строки видны только 12, 28, 88 как допустимые пары.

Три цифры: кратность 8 + период по 125

Для $n \ge 3$ имеем $2^n \equiv 0 \pmod 8$, значит последние три цифры кратны 8. Среди трёхзначных на алфавите $\{1,2,8\}$ и с последней цифрой 2 или 8 кратность 8 оставляет кандидатов:

Далее используем периодичность по модулю 1000: $\operatorname{ord}_{125}(2) = 100$, следовательно период $2^n \mod 1000$ равен 100. Просмотр цикла даёт ровно три реальных хвоста:

$$112, 128, 288,$$
 (3)

а 888 не встречается.

Замечание (Как проверить (2)–(3) вручную). Для двух цифр: считать $2^n \mod 25$ при $n=1,3,\ldots,19$ и согласовать с $\mod 4$ (последняя цифра уже фиксирует $\mod 4$). Для трёх цифр: требование кратности 8 резко сокращает список, затем согласовать с $\mod 125$ (цикл длины 100).

4 Мини-таблица переносов (локальная динамика)

При переходе $2^n \to 2^{n+1}$ справа налево действует правило: если d — цифра, $c \in \{0,1\}$ — перенос справа, то

$$e = (2d + c) \mod 10,$$
 $c' = \left| \frac{2d + c}{10} \right|.$

Требование $e \in \{1, 2, 8\}$ оставляет только одну локально допустимую пару из $\{1, 2, 8\}$:

\overline{d}	c	2d + c	$e = (2d + c) \bmod 10$	c'	валиден ли e
1	0	2	2	0	да
1	1	3	3	0	нет
2	0	4	4	0	нет
2	1	5	5	0	нет
8	0	16	6	1	нет
8	1	17	7	1	нет

То есть устойчивый правый мотив единственный: $11 \mapsto 22$ без переноса, согласующийся с наблюдаемым хвостом $112 \to 128$.

5 Запрет длины 4

Лемма 2. Никакое четырёхзначное валидное число не является степенью 2.

Доказательство. По (3) возможны трёхзначные хвосты только 112, 128, 288. Рассмотрим dXYZ, где $XYZ \in \{112, 128, 288\}$ и $d \in \{1, 2, 8\}$.

(i) Сумма цифр mod 3. Для нечётных n имеем $2^n \equiv 2 \pmod 3$, т. е. сумма цифр $\equiv 2 \pmod 3$. Дадим значения:

$$sum(d112) = d + 1 + 1 + 2 \equiv d + 1 \pmod{3},$$

$$sum(d128) = d + 1 + 2 + 8 \equiv d + 1 \pmod{3},$$

$$sum(d288) = d + 2 + 8 + 8 \equiv d + 2 \pmod{3}.$$

Отсюда сразу запрещены: $d \in \{2,8\}$ для d112 и d128 (дают 0 mod 3 вместо 2), а также все d288 (так как $d \equiv 1,2,2 \pmod 3$ и ни одно не даёт 2). Остаётся единственный кандидат по сумме цифр: d=1 в случаях 1112 и 1128.

(ii) Делимость на 16. Для $n \ge 4$ число 2^n кратно 16. Проверим кандидатов:

$$1112 \equiv 8 \pmod{16},$$

 $1128 \equiv 8 \pmod{16}.$

Оба не кратны 16. Следовательно, четырёхзначных валидных степеней 2 нет.

Пример. 1128 выглядит правдоподобно (все цифры допустимы), но не делится на 16; 2128, 8128 нарушают сумму цифр mod3.

6 Запрет всех длин ≥ 5

Лемма 3. Валидных степеней 2 длины ≥ 5 не существует.

Доказательство. Пусть N валидно. По лемме 1 инвариант $a \equiv b \pmod{3}$ должен сохраняться. По следствию 1 любое допустимое удлинение/укорочение происходит пакетами по три цифры. Отбрасывая слева по три цифры, мы неизбежно попадём либо в длину 1, 2, 3, либо в длину 4. Случаи 1, 2, 3 дают ровно 2, 8, 128 (прямой просмотр); длина 4 невозможна по лемме 2. Противоречие.

7 Главная теорема и проверяемые примеры

Теорема 1. Единственные валидные степени двойки (для алфавита $\{1,2,8\}$) — это

$$2^1 = 2,$$
 $2^3 = 8,$ $2^7 = 128.$

Доказательство. Нечётность показателя обязательна (фаза mod 6). По разделу о хвостах единственный реализуемый валидный трёхзначный хвост — 128 (при n=7). По леммам 2 и 3 длин ≥ 4 не бывает. Длины 1, 2, 3 даются вычислениями: $2^1=2$, $2^3=8$, $2^7=128$.

Пример. Проверка:

- $2^1 = 2$ валидно.
- $2^3 = 8$ валидно.
- $2^5 = 32$ невалидно (цифра 3).
- $2^7 = 128$ валидно.
- $2^{19} = 524288$ невалидно (хвост 288 формально допустим, но есть цифра 5 слева).
- Любая попытка d128 с $d \in \{1, 2, 8\}$ не степень 2 (см. лемму 2).

8 Расширение: добавление цифры 4

Рассмотрим алфавит $\{1, 2, 4, 8\}$. Цифра 4 по модулю 3 эквивалентна 1, а по модулю 6 её вклад равен 4 (как у единицы), поэтому инвариант леммы 1 сохраняется, если объединить единицы и четвёрки в один класс. Фаза по модулю 6 теперь допускает также чётные n с последней цифрой 4, однако из реальных степеней это даёт лишь $2^2 = 4$.

Теорема 2 (Алфавит $\{1,2,4,8\}$). Единственные валидные степени двойки — это

$$2^1 = 2,$$
 $2^2 = 4,$ $2^3 = 8,$ $2^7 = 128.$

Доказательство. Инвариант и локальная таблица переносов остаются в силе. Новым становится только $2^2=4$ (последняя цифра 4 разрешена). Запрет длины 4 и длин >5 переносится дословно.

Приложение А: как получить хвосты ещё короче

Две цифры. См. таблицу для $2^n \mod 100$ (нечётные n) выше; допустимы только 12, 28, 88.

Три цифры. Кандидаты, кратные 8, сузили список до 112, 128, 288, 888, из которых по циклу mod 1000 реализуются лишь 112, 128, 288.

Приложение В: компактная таблица переносов

Сводная таблица локальных переходов для правой цифры при удвоении приведена в разделе «Мини-таблица переносов». Она показывает, что допустим только переход $1\to 2$ без переноса, что согласуется с наблюдаемым устойчивым фрагментом $11\mapsto 22$ и хвостом $112\to 128$.