Ponovitev osnov

1 Kombinatorika

1.1 Permutacije

1. brez ponavljanja: $P_n = n!$

2. s ponavljanjem: $P_n^{k_1,\dots,k_n} = \frac{n!}{k_1!\dots k_n!}$

1.2 Variacije

- 1. brez ponavljanja: $V_n^r = \frac{n!}{(n-r)!}$
- 2. s ponavljanjem: $V_n^r = n^r$

1.3 Kombinacije

- 1. brez ponavljanja: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$
- 2. s ponavljanjem: $\binom{n}{k} = \binom{n+k-1}{k}$

Lastnosti binomskega simbola:

$$\binom{n}{n} = 1$$
 $\binom{n}{0} = 1$ $\binom{n}{1} = n$ $\binom{n}{r} = \binom{n}{n-r}$
Binomski izrek:
 $(a+b)^n = \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n}a^0b^n$

Za kombinacije velja, da vrstni red ni pomemben. Medtem pa ko v splosnem za variacije in permutacije velja, da vrstni red je pomemben.

2 ${f Verjetnost}$

2.1 Elementarna verjetnost

Izid iz dane mnozice izidov je izbran na slepo, ce so vsi izidi iz te mnozice enako verjetni. Takrat se dogodek A zgodi z verjetnostjo:

$$P(A) = \frac{st.\,izidov,\,ki\,so\,v\,A}{st.\,vseh\,izidov}$$

Nasprotni dogodek pa z verjetnostjo:

$$P(\overline{A}) = 1 - P(A)$$

Nacelo vkljucitev in izkljucitev dogodkov:

$$P(A_1 \cup \dots \cup A_n) = P(A_1) + \dots + P(A_n)$$

$$-P(A_1 A_2) - P(A_1 A_3) - \dots - P(A_{n-1} A_n)$$

$$+P(A_1 A_2 A_3) + P(A_1 A_2 A_4) + \dots +$$

$$P(A_{n-2} A_{n-1} A_n) - \dots$$

$$+(-1)^{n+1} P(A_1 \dots A_n)$$

Dogodki A_1, A_2, \ldots, A_k in B so **neodvisni**, ce velja

$$P(A_1 \dots A_k) = P(A_1) \dots P(A_k)$$

ali z drugimi besedami... Verjetnost produkta paroma neodvisnih dogodkov je enaka produktu vrjetnosti teh dogodkov.

2.2 Pogojna verjetnost Verjetnost da se zgodi dogodek A, ce vemo, da se zgodi dogodek B, je

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B|A)}{P(B)}$$

Dogodka A in b sta **neodvisna**, ce velja P(A|B) = P(A) ali P(AB) = P(A)P(B). Pazi! Za par $\mathbf{nezdruzljivih}$ dogodkov Ain B pa velja P(AB) = 0, P(A + B) =P(A) + P(B), P(A|B) = 0 in P(B|A) = 0.

2.3 Popolna verjetnost

Dogodki $H_1, H_2, \dots H_n$ tvorijo **popoln** sistem dogodkov, ce se nobena dva dogodka ne moreta zgoditi hrkati in se vedno zgodi vsaj en od njih. Ce dogodki izpolnjujejo ta pogoj, potem po nacelu vkljucitev/izkljucitev velja:

$$P(A) = \sum_{i=1}^{\infty} P(A \cap H_i) = \sum_{i=1}^{\infty} P(H_1) P(A|H_i)$$

Zanje velja tudi Bayesova formula:

$$P(H_i|A) = \frac{P(H_i)P(A|H_i)}{P(A)} = \frac{P(H_i)P(A|H_i)}{\sum_{k=1}^{n} P(H_k)P(A|H_k)}$$

2.4 Geometrijska verjetnost

Tocka je izbrana na slepo iz intervala, lika, telesa.. ce za vsak dogodek A velja:

$$P(A) = \frac{mera\ izidov,\ ki\ so\ v\ A}{mera\ vseh\ izidov}$$

Pri tem je mera lahko dolzina, ploscina, volumen,.. Basically upas da narises graf pravilno.

Splosno za vse nastete verjetnosti velja:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
in
$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

3 Dss in porazdelitve

3.1 Diskretna slucjana spremenljivka Naj bo X diskretna slucajna spremenljivka $\implies X$ je funkcija s koncno ali stevno zalogo vrednosti a_1, a_2, \ldots Verjetnost, da X zavzame vrednost $a_i \in R$, oznacimo z P(X = a_i) = p_i . Porazdelitev X lahko podamo na dva enakovredna nacina, in sicer s:

1. s porazdelitveno shemo

$$X \sim \begin{pmatrix} a_1 & a_2 & a_3 & \dots \\ p_1 & p_2 & p_3 & \dots \end{pmatrix}$$

velja $0 \le p_i \le 1$ in $p_1 + p_2 + \dots = 1$

2. s porazdelitveno funkcijo

$$F_x(x) := P(X \le x)$$

3.2Bernoullijeva slucajna menljivka

$$X \sim B(p)$$

• V vsakem poskusu ima dogodek A verjetnost p, X pa ima vrednost 1, ce se je zgodil dogodek A, in 0 sicer.

•
$$P(X = 1) = p, P(X = 0) = 1 - p$$

3.3 Binomska slucajna spremenljivka

$$X \sim B(n, p)$$

 \bullet X je stevilo pojavitev izida A v n ponovitvah poskusa

•
$$P(X = k) = \binom{n}{k} p^k (1-p)^{(n-k)}$$
 za $k = 0, 1, \dots, n$.

Izvajamo n neodvisnih slucajnih poskusov. V vsakem poskusu se lahko zgodi dogodek A s konstantno verjetnostjo p, p = P(A). X nam pove kolikokrat se je zgodil dogodek A v nposkusih. npr. kovanec vrzemo 10x, koliksne so vrjetnosti, da pade cifra 0x, 2x, vsaj 3x,.. ali 5x vrzemo posteno kocko, izracunaj stevilo sestic, ki pade $\implies B(5, \frac{1}{6})$ 3.4 Geometrijska slucajna

menljivka

$$X \sim G(p)$$

- \bullet X je stevilo ponovitev poskusa do (vkljucno) prve ponovitve izida A.
- $P(X = k) = (1-p)^{k-1}p$ za k = 1, 2, ...
- $P(X \le k) = 1 (1-p)^k$ za k = 1, 2, ...

Izvajamo neodvisne slucajne poskuse, dokler se ne zgodi dogodek A. V vsakem poskusu se lahko zgodi dogodek A s konstantno verjetnostjo p, p = P(A). npr. koliko metov kocke je potrebnih, do prve sestice $\implies G(1/6)$.

3.5 Pascalova oz. negativna binomska slucajna spremenljivka

$$X \sim P(n, p)$$

- \bullet X je stevilo ponovitev poskusa do (vkljucno) n-te ponovitve izida A.
- $P(X = k) = {k-1 \choose n-1} (1-p)^{k-n} p^n$ za $k = n, n+1, n+2, \dots$

npr. koliko metov kocke je potrebnih, dokler sestica ne pade $5x \implies P(5, \frac{1}{6})$. Stevilo metov kovanca, dokler grb ne pade $2x \implies$ $P(2,\frac{1}{2}).$

3.6 Hipergeometrijska slucjana spremenliivka

$$X \sim H(K, N - K, n)$$

- X je stevilo elementov z doloceno lastnostjo med izbranimi.
- $P(X = k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{k}}$ za k = $0, 1, 2, \dots min\{n, R\}$

V populaciji N imamo K elementov z doloceno lastnostjo. Izbiramo brez vracanja n elementov. npr. koliko pikov med 7 kartami, ki smo jih na slepo izbrali izmed 16 kart, kjer so bli stirje piki. imamo 400 ljudi, 100 brezposlenih, nakljucno jih izberemo 10. Zanima nas kaksna verjetnost je da sta 2 izmed teh brezposelna $\implies P(x=2) = H(100, 400-100, 10)$.

3.7 Poissonova slucajna spremenljivka

$$X \sim P(\lambda)$$

- X je stevilo ponovitev dogodka A na danem intervalu, pri cemer:
 - se dogodki pojavljajo neodvisno
 - povprecno stevilo dogodgov λ , ki se pojavjio na dolocenem intervalu, je konstantno.

•
$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$
 za $k = 0, 1, 2, ...$

npr. ce se dogodek pojavi v povprecju 3x na minuto, lahko uporabimo poissa za izracun kolikokrat se bo dogodek zgodil v $1/4h \implies P(45)$. St avtomobilov, ki preckajo cesto v 1min.

4 Zss in porazdelitve

3.1 Zvezna slucjana spremenljivka Naj bo X zvezna slucajna spremenljivka $\Longrightarrow X$ je realna funkcija, za katero obstaja integrabilna funkcija $p_X:R\to[0,\infty)$, tako da za vsak $x\in R$ velja:

$$F_X(x) := P(X \le x) = \int_{-\infty}^x p_X(t) dt$$

Funkciji p_X pravimo **gostota verjetnosti**, funkciji F_X pa **porazdelitvena** funkcija. Mnozici vrednosti, ki jih zavzame spremenljivka X, pravimo **zaloga vrednosti** in jo oznacimo z Z_X . Lastnosti:

•
$$\int_{-\infty}^{+\infty} p_X(x) dx = 1$$

•
$$P(a < X < b) = \int_a^b p_X(x) dx = F_X(b) - F_X(a), \ a, b \in R, \ a < b$$

•
$$P(X = a) = 0, a \in R$$
 nqot

ce je funkcija zvezna v x, potem za njo velja tudi F'(x) = p(x).

3.2 Enakomerna zvezna slucajna spremenljivka

$$X \sim U[a, b]$$

•
$$p_X(x) = \{ \begin{array}{cc} \frac{1}{b-a} & x \in [a,b] \\ 0 & sicer \end{array}$$

•
$$F_X(x) = \{ \begin{array}{ll} 0 & x < a \\ \frac{x-a}{b-a} & x \in [a,b] \\ 1 & x > b \end{array}$$

Vsi izidi na intervalu [a, b] so enako verjetni.

3.3 Eksponentna slucajna spremenljivka

$$X \sim \epsilon(\lambda)$$

•
$$p_X(x) = \{ \begin{array}{cc} 0 & x < 0 \\ \lambda e^{-\lambda x} & x \ge 0 \end{array} \}$$

•
$$F_X(x) = \{ \begin{array}{cc} 0 & x < 0 \\ 1 - e^{-\lambda x} & x > b \end{array} \}$$

Slucajna spremenljivka X - cas med zaporednima dogodkoma, pri cemer so dogodki neodvisni in se pojavijo s konstantno stopnjo λ . λ predstavlja povprecno stevilo dogodkov na izbrano casovno enoto.

3.4 Normalna slucajna spremenljivka

$$X \sim N(\mu, \sigma)$$

•
$$p_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 za $x \in R$

• Za $F_X(x)$ ne obstaja eksplicitna formula. Vrednost preberemo iz porazdelitvenih tabel.

Po centralnem limitnem izreku sta vsota in povprecje veliko neodvisnih, enako porazdeljenih spremenljivk, normalno porazdeljeni.

3.5 Gamma slucajna spremenljivka

$$X \sim \Gamma(n,\lambda)$$

•
$$p_X(x) = \{ \begin{cases} 0 & x \le 0 \\ \frac{\lambda^n x^{n-1} e^{-\lambda x}}{\Gamma(n)} & x < 0 \end{cases}$$

V povprecju imamo na casovno enoto λ ponovitev dogodka A, X pa je cas med prvo in (n+1) ponovitvijo dogodka A.