Тема I: Многочлены

§7. Поле разложения многочлена

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Постановка задачи

Мы уже неоднократно сталкивались с ситуациями, когда у многочлена нет корней в поле F, но есть корни в некотором большем поле $F'\supset F$.

Примеры. 1) У многочлена x^2-2 нет корней в \mathbb{Q} , но есть корни в \mathbb{R} :

$$x^{2} - 2 = (x - \sqrt{2})(x + \sqrt{2}).$$

2) У многочлена x^2+1 нет корней в \mathbb{R} , но есть корни в \mathbb{C} :

$$x^{2} + 1 = (x - i)(x + i).$$

Вопрос: Для каждого ли многочлена $f \in F[x]$ имеется такое поле $F' \supset F$, которое содержит все корни f?

Если такое поле F' существует, то над ним многочлен f разлагается в произведение линейных множителей:

$$f = a(x - \alpha_1)^{k_1}(x - \alpha_2)^{k_2} \cdots (x - \alpha_s)^{k_s}.$$

Здесь $a\in F$ – старший коэффициент многочлена, $\alpha_1,\alpha_2,\dots,\alpha_s\in F'$ – все его различные корни, k_i – кратность корня α_i , и $k_1+k_2+\dots+k_s=\deg f$. Поэтому такое поле F' называют полем разложения многочлена f.

Сведение к неприводимым многочленам

Теорема (существование поля разложения)

Для любого поля F и любого многочлена f над F существует поле разложения $F'\supseteq F$.

Доказательство. Проведем индукцию по $\deg f$. Если $\deg f=1$, доказывать нечего, так как корень линейного двучлена лежит в самом поле F.

Пусть $\deg f>1$ и многочлен f приводим над F. Тогда f=gh для некоторых многочленов g и h над F таких, что $\deg g, \deg h < \deg f$. По предположению индукции, примененному к полю F и многочлену g, имеется поле $F_1\supseteq F$, содержащее все корни g, а по предположению индукции, примененному к полю F_1 и многочлену h, имеется поле $F_2\supseteq F_1$, содержащее все корни h. Ясно, что любой корень f — это корень одного из многочленов g и h, и потому F_2 будет полем разложения для f.

Осталось рассмотреть случай, когда $\deg f>1$ и многочлен f неприводим над F. Достаточно построить поле F_1 , в котором у f есть хотя бы один корень α . Тогда $f=(x-\alpha)f_1$, где $\deg f_1=\deg f-1$, и по предположению индукции, примененному к полю F_1 и многочлену f_1 , имеется поле $F_2\supseteq F_1$, содержащее все корни f_1 . Оно будет полем разложения для f.

Поле вычетов по модулю неприводимого многочлена

Итак, f – неприводимый над F многочлен степени >1 и нужно построить поле F_1 , в котором у этого многочлена есть корень. Конструкция очень похожа на конструкцию поля вычетов по модулю простого числа.

Пусть $n:=\deg f.$ Ясно, что множество $F^{< n}[x]:=\{g\in F[x]\mid \deg g< n\}$ образует группу относительно обычного сложения многочленов.

Определим умножение в $F^{< n}[x]$ так: «новое» произведение $g\odot h$ многочленов $g,h\in F^{< n}[x]$ — это остаток от деления на f их обычного произведения gh. Заметим, что $g\odot h=gh$, если $\deg gh< n$.

Понятно, что $F^{< n}[x]$ с операциями + и \odot - коммутативно-ассоциативное кольцо с 1. Покажем, что оно является полем.

Если $g\in F^{< n}[x]$ и $g\neq 0$, из неприводимости f следует, что $\mathsf{HOД}(f,g)=1.$ Тогда существуют такие многочлены $u,v\in F[x]$, что ug+vf=1. Поделим u на f с остатком: u=qf+r, где $\deg r< n.$ Тогда $r\in F^{< n}[x]$ и

$$1 = (qf + r)g + vf = rg + (qg + v)f,$$

откуда остаток от деления rg на f равен 1. Таким образом, $r\odot g=1$. Мы проверили, что у каждого ненулевого элемента из $F^{< n}[x]$ есть обратный, т.е. $F^{< n}[x]$ с операциями + и \odot - поле.

Поле вычетов по модулю неприводимого многочлена (2)

Осталось показать, что в $F^{< n}[x]$ у многочлена f есть корень.

Корнем будет \dots корнем будет \dots одночлен x.

Заметим прежде всего, что, поскольку $n=\deg f>1$, многочлены 1-й степени, и в том числе x, лежат в $F^{< n}[x].$

Без ограничения общности можно считать, что f унитарен. Тогда $f=x^n+h$, для некоторого $h\in F^{\leq n}[x]$, и потому остаток от деления x^n на f равен -h. Следовательно, $\underbrace{x\odot x\odot\cdots\odot x}_{n\text{ раз}}=-h$, и, вычисляя

значение многочлена x^n+h от элемента $x\in F^{< n}[x]$, мы получим

$$\underbrace{x \odot x \odot \cdots \odot x}_{n \text{ pas}} + h = -h + h = 0.$$

(Здесь учтено то, что значение h от x в $F^{< n}[x]$ равно h, так как $\underbrace{x\odot\cdots\odot x}_{k\ \text{раз}}=x^k$ при всех k< n, а сложение в $F^{< n}[x]$ то же, что и в F[x].)

Итак, мы проверили то утверждение, к которому свели доказательство теоремы о существовании поля разложения.

Пример: С как поле разложения

Для иллюстрации применим описанное построение к многочлену x^2+1 , неприводимому над полем $\mathbb R.$

Элементы поля $\mathbb{R}^{<2}[x]$ суть линейные двучлены a+bx, где $a,b\in\mathbb{R}.$ Они складываются обычным способом:

$$(a_1 + b_1x) + (a_2 + b_2x) = (a_1 + a_2) + (b_1 + b_2)x,$$

а для умножения нужно сначала перемножить их в $\mathbb{R}[x]$:

$$(a_1 + b_1 x)(a_2 + b_2 x) = a_1 a_2 + (a_1 b_2 + b_1 a_2)x + (b_1 b_2)x^2,$$

и взять остаток от деления произведения на x^2+1 , т.е. заменить x^2 на -1. Это дает

$$(a_1 + b_1 x) \odot (a_2 + b_2 x) = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + b_1 a_2) x.$$

Узнаем правила действий с комплексными числами в поле $\mathbb C$. Более формально, отображение $a+bx\mapsto a+bi$ является изоморфизмом между полями $\mathbb R^{<2}[x]$ и $\mathbb C$. Итак, поле комплексных чисел $\mathbb C$ можно было строить как поле разложения многочлена x^2+1 (Коши, 1847).

Конечные поля

поле из p^n элементов.

Мы доказали, что для любого простого числа p над полем вычетов \mathbb{F}_p существуют неприводимые многочлены любой степени n.

Если применить конструкцию из доказательства теоремы о существовании поля разложения к полю \mathbb{F}_p и неприводимому над этим полем многочлену степени n, получим поле $\mathbb{F}_p^{< n}[x]$. Понятно, что в нем p^n элементов. Итак, для любого простого числа p и любого натурального n существует

С другой стороны, легко понять, что если F – конечное поле, то число его элементов – степень простого числа. Действительно, характеристика F не может быть нулевой – иначе уже элементов вида $\underbrace{1+1+\dots+1}_{k \text{ pos}}$ было

бы бесконечно много. Значит, $\operatorname{char} F = p$ для некоторого простого p. Элементы $0,1,1+1,\dots,\underbrace{1+1+\dots+1}_{p-1\ \text{раз}}$ различны между собой и образуют

подполе в F. Сопоставляя им соответственно вычеты $0,1,2,\ldots,p-1\in\mathbb{F}_p$, получим изоморфизм между этим подполем и полем вычетов \mathbb{F}_p . Вспомним: любое поле является линейным пространством над любым своим подполем. Итак, F — конечномерное линейное пространство над \mathbb{F}_p . Если $\dim F=n$, то $|F|=p^n$.

Конечные поля (2)

Мы доказали такой результат:

Теорема (о конечных полях)

Поле из q элементов существует тогда и только тогда, когда q — степень простого числа.

Можно доказать, что все поля из q элементов изоморфны между собой (Элиаким Гастингс Мур, 1893). Это оправдывает обозначение \mathbb{F}_q . Альтернативное обозначение GF(q) – Galois field, поле Галуа. Эварист Галуа (1811–1832) строил $GF(p^n)$ по существу тем же способом, что был описан выше (с помощью многочлена n-й степени, неприводимого над полем вычетов по модулю p) в работе, вышедшей в 1830 г. Та же идея имеется в работе Гаусса 1797 г., опубликованной лишь в 1863 г.

Примеры конечных полей

Поле \mathbb{F}_4 можно построить, исходя из многочлена x^2+x+1 , т.е. единственного неприводимого многочлена 2-й степени над \mathbb{F}_2 . Имеем $\mathbb{F}_4=\{0,1,x,x+1\}$, а сложение и умножение в \mathbb{F}_4 задаются так:

+	0	1	x	x+1	×	0	1	x	x+1
0	0	1	x	x+1	0	0	0	0	0
1	1	0	x+1	x	1	0	1	x	x+1
\boldsymbol{x}	x	x+1	0	1	x	0	x	x+1	1
x+1	x+1	x	1	0	x+1	0	x+1	1	x

Примеры конечных полей (2)

Поле \mathbb{F}_9 можно построить, исходя из одного из неприводимых многочленов 2-й степени над \mathbb{F}_3 . Таких унитарных многочленов три: $x^2+1,\ x^2+x+2,\ x^2+2x+2$. Возьмем x^2+1 ; если взять другой многочлен, получится изоморфное поле. Имеем $\mathbb{F}_9=\{0,1,2,x,x+1,x+2,2x,2x+1,2x+2\}.$ Умножение ненулевых элементов в \mathbb{F}_9 задается так:

×	1	2	\boldsymbol{x}	x+1	x+2	2x	2x + 1	2x+2
1	1	2	\boldsymbol{x}	x+1	x+2	2x	2x + 1	2x + 2
2	2	1	2x	2x + 2	2x + 1	x	x+2	x+1
x	x	2x	2	x+2	2x + 2	1	x+1	2x + 1
x+1	x+1	2x+2	x+2	2x	1	2x + 1	2	x
x+2	x+2	2x + 1	2x + 2	1	x	x+1	2x	2
2x	2x	\boldsymbol{x}	1	2x + 1	x+1	2	2x+2	x+2
2x + 1	2x + 1	x+2	x+1	2	2x	2x+2	\boldsymbol{x}	1
2x+2	2x+2	x+1	2x + 1	x	2	x+2	1	2x

Примеры конечных полей (3)

И шифр «Кузнечик», и шифр AES работают с полем из 256 элементов, но в «Кузнечике» для его построения используется неприводимый над \mathbb{F}_2 многочлен $x^8+x^7+x^6+x+1$, а в AES — другой неприводимый над \mathbb{F}_2 многочлен, а именно $x^8+x^4+x^3+x+1$. Эти построения приводят к изоморфным, т.е. одинаковым с точки зрения математика полям. Важно понимать, что с точки зрения инженера (реализующего соответствующие процедуры аппаратно) или программиста (реализующего их программно) умножения в построенных с помощью разных неприводимых многочленов полях существенно различны.

Формулы Виета

Пусть $f(x)=a_0x^n+a_1x^{n-1}+a_2x^{n-2}+\cdots+a_n$ – многочлен над некоторым полем, а x_1,x_2,\ldots,x_n – его корни (в поле разложения), причем каждый корень взят столько раз, какова его кратность. Тогда выполняется равенство:

$$a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \dots + a_n = a_0(x - x_1)(x - x_2) \cdots (x - x_n).$$

Раскрывая скобки в его правой части и приравнивая коэффициенты при одинаковых степенях x, получаем формулы Виета:

$$\frac{a_1}{a_0} = -(x_1 + x_2 + \dots + x_n),$$

$$\frac{a_2}{a_0} = x_1 x_2 + x_1 x_3 + \dots + x_1 x_n + x_2 x_3 + \dots + x_{n-1} x_n,$$

$$\frac{a_3}{a_0} = -(x_1 x_2 x_3 + x_1 x_2 x_4 + \dots + x_{n-2} x_{n-1} x_n),$$

$$\dots$$

$$\frac{a_{n-1}}{a_0} = (-1)^{n-1} (x_1 x_2 \dots x_{n-1} + x_1 x_2 \dots x_{n-2} x_n + \dots + x_2 x_3 \dots x_n),$$

$$\frac{a_n}{a_n} = (-1)^n x_1 x_2 \dots x_n.$$

Формулы Виета (2)

Компактно:

$$\frac{a_k}{a_0} = (-1)^k \sum_{1 \leqslant i_1 < i_2 < \dots < i_k \leqslant n} x_{i_1} x_{i_2} \cdots x_{i_k}, \quad k = 1, 2, \dots, n.$$

Иначе говоря, $(-1)^k \frac{a_k}{a_0}$ есть сумма всевозможных произведений по k корней.

Сумма всевозможных произведений по k переменных из множества x_1, x_2, \ldots, x_n называется k-й элементарной симметрической функцией этих переменных и обозначается $\sigma_k(x_1, x_2, \ldots, x_n)$ или просто σ_k :

$$\sigma_k := \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k}, \quad k = 1, 2, \dots, n.$$

Важное для дальнейшего следствие формул Виета звучит так: с точностью до знака коэффициенты унитарного многочлена суть элементарные симметрические функции его корней.