Customer Segmentation: K-Means

Introduction

- Customer segmentation forms clusters from customer data based on their shared characteristics (Vetrivel-PS, 2020).
- According to Twillo, these clusters are subcategories of of customers.
- K-means clustering has been around since 1932 and helps us uncover the unknown from data (Sharma, 2025).
- As we're making clusters of customers and K-means analyze clusters, K-means would be the best model in this situation.

Project Goal

- A Company is planning on cutting their advertising costs and would like to focus more on targeted advertisements.
- To do this they will need a clustering model to make groups of customers based on their demographics.

About The Data

- The Data set is the Customer Segmentation data set and was obtained from Kaggle.com.
- This data set contains 10 columns and 2,627 rows of data.
- The ID column and the VAR_1 column will be removed as the ID is to identify the customer and Var_1 is an anonymized category for the customer.

Data Preparation

- The dataset was reviewed for null values and rows with null values were removed.
- Histograms of the data were reviewed, and the right skew of Age was transformed to be normally distributed.
- Outliers were removed from age, work experience, and family size.
- String values were converted to integer values.

Model Used

EXPLORATORY DATA ANALYSIS.

K-MEANS MODEL BUILT FROM SCRATCH.

K-MEANS MODEL FROM THE SCIKIT LEARN PACKAGE.

Exploratory Data Analysis (EDA)

9

EDA: Spending Score By Gender

EDA: Work Experience by Age

Evaluation method for K-Means

• Silhouette score using distortions.

• Distortion values:

Cluster	Distortion
1	17.52749466966208
2	10.246898580730525
3	7.4845532018542755
4	6.69547142166002
5	6.07409365617229
6	5.3775895110788
7	4.90381734527993
8	4.856261103350349
9	4.704021996903216

Choosing the amount of Clusters

Choosing Clusters Cont.

Clusters	Silhouette Score
2	0.42635604013380296
3	0.3322695955356506
4	0.2833874824503832
5	0.2595064112399696
6	0.2756362323334624
7	0.24580998789325695
8	0.2199779320111808
9	0.2159896634897718

Model Results

Category	0	1
Gender	0.434357	0.491159
Ever_Married	0.627694	0.530452
Age	6.623126	6.139788
Graduated	0.615284	0.683694
Profession	3.476813	3.532417
Work_Experience	0.702155	6.913556
Spending_Score	0.562378	0.465619
Family_Siz	2.778576	2.589391

K-Means Visualized

Conclusion

- The exploratory data analysis didn't yield meaningful results for the company's business problem.
- K-Means was able to create 2 categories for the targeted advertisement with a silhouette score of 0.426.
- While the company can move forward with this model, it's best that the hold off at this time. The current model is close to being equivalent for random guessing.

Recommendations

- Additional customer information would be needed for model improvements. This can be:
 - Additional Customer data.
 - Additional categories of data. (The actual products being sold).

 If model results do not improve with additional data, other models should be tested such as DBSCAN and Gaussian models.

Future Use cases

- For future use cases we would need to keep in mind that K-Means is for unsupervised learning meaning that there isn't a specific target column for the model.
- Aside from customer segmentation this can be used for:
 - Monitoring weight loss logs.
 - Image classification.
 - Document classification.

References

- Sharma, N. (2025). K-means clustering explained. Retrieved from https://neptune.ai/blog/k-means-clustering#:~:text=Clustering%20was%20introduced%20in%201932,on%20their%20 similarities%20and%20dissimilarities.
- twillo. (n.d.). Customer segmentation models: The what, why & how. Retrieved from https://segment.com/growth-center/customer-segmentation/model/
- Vetrivel-PS. (2020). Customer segmentation. Retrieved from https://www.kaggle.com/datasets/vetrirah/customer?select=Train.csv