1. Sample Solution:

Let $x \in \mathbb{R}^+$.

We'll prove that $\forall n \in \mathbb{N} : (1+x)^n \ge 1 + nx$ by induction.

Base step: Prove P(0)

Let n = 0.

Then $(1+x)^n = 1$ and 1 + nx = 1.

Then $(1+x)^0 \ge 1 + (0)x$.

Then P(0).

Induction step: Prove $\forall k \in \mathbb{N} : ((1+x)^k \ge 1 + kx) \Rightarrow ((1+x)^{k+1} \ge 1 + (k+1)x)$

Let $k \in \mathbb{N}$.

Assume $(1+x)^k \ge 1 + kx$.

We want to prove that $(1+x)^{k+1} \ge 1 + (k+1)x$.

We'll start with the quantity on the left, and show that it's \geqslant the quantity on the right.

Then
$$(1+x)^{k+1} = (1+x)^k (1+x)$$

 $\geq (1+kx)(1+x)$ (by our assumption)
 $= 1+kx+x+kx^2$
 $\geq 1+kx+x$ (since $kx^2 \geq 0$)
 $= 1+(k+1)x$

Then $(1+x)^{k+1} \ge 1 + (k+1)x$.

Then $((1+x)^k \ge 1 + kx) \Rightarrow ((1+x)^{k+1} \ge 1 + (k+1)x)$.

Then $\forall k \in \mathbb{N} : ((1+x)^k \ge 1 + kx) \Rightarrow ((1+x)^{k+1} \ge 1 + (k+1)x).$

Then $\forall n \in \mathbb{N} : (1+x)^n \geqslant 1+nx$.

Proof by induction is complete

Therefore, $\forall x \in \mathbb{R}^+ : \forall n \in \mathbb{N} : (1+x)^n \geqslant 1 + nx$.