Research in Computing	M.Sc(IT) PART-I	Roll No:- 2086877
	1	
	±	

Roll No:- 2086877

Practical 1

Aim: Write a program for obtaining descriptive statistics of data.

Program/Steps to obtain descriptive statistics of data.

Using Excel

Go to File Menu -> Options -> Add-Ins -> Select Analysis Tool Pak -> Press OK

M.Sc(IT) PART-I

Roll No:- 2086877

Select the data range from the excel worksheet.

M.Sc(IT) PART-I

Roll No:- 2086877

Output:

	Α	В	С	D	Е	F	G	
1	Sr. No	Name	Age	Rating				
2	1	AA	25	4.23		Column1		
3	2	BB	26	3.24				
4	3	CC	25	3.98		Mean	31.83333	
5	4	DD	23	2.56		Standard Error	2.665246	
6	5	EE	30	3.2		Median	29.5	
7	6	FF	29	4.6		Mode	25	
8	7	GG	23	3.8		Standard Deviation	9.232682	
9	8	HH	34	3.78		Sample Variance	85.24242	
10	9	II	40	2.98		Kurtosis	0.24931	
11	10	JJ	30	4.8		Skewness	1.135089	
12	11	KK	51	4.1		Range	28	
13	12	LL	46	3.65		Minimum	23	
14						Maximum	51	
15						Sum	382	
16						Count	12	
17						Largest(1)	51	
18						Smallest(1)	23	
19						Confidence Level(95.0%)	5.866167	

Research in Computing	M.Sc(IT) PART-I	Roll No:- 2086877	
	5		

Practical 2

Aim:Import data from different data sources (from Excel, csv, mysql, sql server, oracle to R/Python/Excel)

#Read data from SQLite3

```
import pandas as pd
import sqlite3 as sq

# Change database name/file if needed
sInputFileName='utility.db'
sInputTable='Country_Code'
conn = sq.connect(sInputFileName)
sSQL='select * FROM ' + sInputTable + ';'
InputData=pd.read_sql_query(sSQL, conn)
print('Input Data Values ========')
print(InputData)
print('==========')
```

#Read data from MySQL

#Install Python-MySQL connector(Download from Resource folder)

Click Start> MySQL CLI> Login > Create database > create table > Insert records in table

```
mysql> create database mydb1;
Query OK, 1 row affected (0.01 sec)

mysql> use mydb1;
Database changed
mysql> create table test( name varchar(10), eid int);
Query OK, 0 rows affected (0.01 sec)

mysql> insert into test values('Abc', 1);
Query OK, 1 row affected (0.00 sec)

mysql> insert into test values('Def', 2);
Query OK, 1 row affected (0.01 sec)
```

#To install pymysql package run pip command on cmd

#pip3 install pymysql

M.Sc(IT) PART-I

Roll No:- 2086877

```
import pymysql
db = pymysql.connect("localhost","root","123456","mydb1")
cursor = db.cursor()
sql = """SELECT * from TEST"""
try:
      cursor.execute(sql)
      results = cursor.fetchall()
     # Now print fetched result
       for row in results:
         print(row)
       print("success")
      db.commit()
except:
     db.rollback()
db.close()
 ('Abc', 1)
('Def', 2)
success
```

#Read data from CSV

Create a csv file with random data or uses any existing CSV file.

4	Α	В	С
1	Math	Reading	Writing
2	48	68	63
3	62	81	72
4	79	80	78
5	76	83	79
6	59	64	62
7	69	84	85
8	70	84	83
9	46	48	41
10	61	78	80
11	86	78	77

Save file as CSV.

#to install pandas run pip3 command on cmd

M.Sc(IT) PART-I

Roll No:- 2086877

```
#pip3 install pandas
```

```
#note keep RICStudentCSV.csv file and program in the same directory
```

import pandas as pd

```
marks = pd.read\_csv('RICStudentCSV.csv')
```

print(marks)

print("Summary of data")

print(marks.describe())

			DECUADO.	A:/RIC/programs/ReadCSV.py
				A./KIC/plograms/Keadcsv.py
_	Math	_	Writing	
0	48		63	
1	62		72	
2	79	80	78	
3	76	83	79	
4	59	64	62	
5	69	84	85	
6	70	84	83	
7	46	48	41	
8	61	. 78	80	
9	86	78	77	
Su	mmary	of data		
		Math	Reading	Writing
CO	unt	10.000000	10.000000	10.00000
me	an	65.600000	74.800000	72.00000
st	d	12.937456	11.564313	13.35831
mi	n	46.000000	48.000000	41.00000
25	ક	59.500000	70.500000	65.25000
50	&	65.500000	79.000000	77.50000
75	ક	74.500000	82.500000	79.75000
ma	x	86.000000	84.000000	85.00000

M.Sc(IT) PART-I

Roll No:- 2086877

#Read data from Excel

Save the previous file as Excel.

import pandas as pd

marks = **pd.read_excel**('RICStudentEx.xlsx')

print(marks)

print("Summary of data")

print(marks.describe())

Ouput:-

Math Reading Writing 0 48 68 63 1 62 81 72 2 79 80 78 3 76 83 79 4 59 64 62 5 69 84 85 6 70 84 83 7 46 48 41 8 61 78 80 9 86 78 77 Summary of data
1 62 81 72 2 79 80 78 3 76 83 79 4 59 64 62 5 69 84 85 6 70 84 83 7 46 48 41 8 61 78 80 9 86 78 77
2 79 80 78 3 76 83 79 4 59 64 62 5 69 84 85 6 70 84 83 7 46 48 41 8 61 78 80 9 86 78 77
3 76 83 79 4 59 64 62 5 69 84 85 6 70 84 83 7 46 48 41 8 61 78 80 9 86 78 77
4 59 64 62 5 69 84 85 6 70 84 83 7 46 48 41 8 61 78 80 9 86 78 77
5 69 84 85 6 70 84 83 7 46 48 41 8 61 78 80 9 86 78 77
6 70 84 83 7 46 48 41 8 61 78 80 9 86 78 77
7 46 48 41 8 61 78 80 9 86 78 77
8 61 78 80 9 86 78 77
9 86 78 77
Summary of data
Math Reading Writing
count 10.000000 10.000000 10.00000
mean 65.600000 74.800000 72.00000
std 12.937456 11.564313 13.35831
min 46.000000 48.000000 41.00000
25% 59.500000 70.500000 65.25000
50% 65.500000 79.000000 77.50000
75% 74.500000 82.500000 79.75000
max 86.000000 84.000000 85.00000

10	Research in Computing	M.Sc(IT) PART-I	Roll No:- 2086877
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
10			
		10	

Roll No:- 2086877

Practical 3

Aim:Design a survey form for a given case study, collect the primary data and analyse it

Case 1:

A researcher wants to conduct a Survey in colleges on Use of ICT in higher education from Mumbai, Thane and Navi Mumbai. The survey focuses on access to and use of ICT in teaching and learning, as well as on attitudes towards the use of ICT in teaching and learning.

Design questionnaire addressed to teachers seeks information about the target class, his experience using ICT for teaching, access to ICT infrastructure, support available, ICT based activities and material used, obstacles to the use of ICT in teaching, learning activities with the target class, your skills and attitudes to ICT, and some personal background information.

Arrange question in following groups:

- 1. Information about the target class you teach
- **2.** Experience with ICT for teaching
- 3. ICT access for teaching
- **4.** Support to teachers for ICT use
- 5. ICT based activities and material used for teaching
- 6. Obstacles to using ICT in teaching and learning
- 7. Learning activities with the target class
- 8. Teacher skills
- **9.** Teacher opinions and attitudes
- 10. Personal background information

Case 2:

A research agency wants to study the perception about App based taxi service in Mumbai, Thane and Navi Mumbai. The survey focuses on customers attitude towards app base taxi service as well as on attitudes towards regular taxi cab.

Design questionnaire seeks information about the target taxi service, his experience using taxi services, access, support available, obstacles and some personal background information, with the following objectives:

- 1. To find out the customer satisfaction towards the App based-taxi services.
- 2. To find the level of convenience and comfort with App based -taxi services.
- **3.** To know their opinion about the tariff system and promptness of service.
- **4.** To ascertain the customer view towards the driver behaviour and courtesy.
- **5.** To provide inputs to enhance the services to delight the customers.
- **6.** To examine relationship between service quality factors and taxi passenger satisfaction.
- **7.** To suggest better regulations for transportation authorities regarding customer protection and effective monitoring of taxi services.

Case 3:

A popular electronic store want to conduct a survey to develop awareness of branded laptop baseline estimates and determine popularity of different company's laptop. It suggests steps to be initiated or strengthened in the field of demand in a region. The key indicators are among the general population, demand branded laptop and the problem users.

The objectives of this particular study are:-

- **1.** To know the preferences of different types of branded laptops by students and professionals.
- **2.** To study which factor influence for choosing different types of branded laptops.

M.Sc(IT) PART-I

- Roll No:- 2086877
- **3.** To know about the level of satisfaction towards different types of branded laptops.
- **4.** To identify the perception of consumers towards the laptop positioning strategy.
- **5.** To know the consumer preference towards laptop in the present era.

Using the collected data for analysis

Formula for operation

count(N) = COUNTA(B2:B21)

Not Answer = COUNT(D2:D21)

M.Sc(IT) PART-I

Roll No:- 2086877

Toal = SUM(C23:C24)

Disagree = COUNTIF(B\$2:B\$21,\$A28)

strongly disagree = COUNTIF(E\$2:E\$21,\$A29)

Agree = COUNTIF(D\$2:D\$21,\$A31)

strongly agree = COUNTIF(D\$2:D\$21,\$A31)

Total = SUM(B28:B31)

Percentage

disagree(%) =B28/B32

strongly disagree(%) = B29/B32

agree(%) = B30/B32

strongly agree(%) = =B31/B32

Total = SUM(B34:B37)

Output:-

Research in Computing	M.Sc(IT) PART-I	Roll No:- 2086877
	14	

Roll No:- 2086877

Practical 4

Aim:Perform analysis of given secondary data. Steps in Secondary Data Analysis

- 1. **Determine your research question** Knowing exactly what you are looking for.
- 2. **Locating data** Knowing what is out there and whether you can gain access to it. A quick Internet search, possibly with the help of a librarian, will reveal a wealth of options.
- 3. **Evaluating relevance of the data** Considering things like the data's original purpose, when it was collected, population, sampling strategy/sample, data collection protocols, operationalization of concepts, questions asked, and form/shape of the data.
- 4. **Assessing credibility of the data** Establishing the credentials of the original researchers, searching for full explication of methods including any problems encountered, determining how consistent the data is with data from other sources, and discovering whether the data has been used in any credible published research.
- 5. **Analysis** This will generally involve a range of statistical processes.

Example: Analyze the given Population Census Data for Planning and Decision Making by using the size and composition of populations.

M.Sc(IT) PART-I

Roll No:- 2086877

Output:-

Put the cursor in cell **B22** and click on the **AutoSum** and then click **Enter**. This will calculate the total population. Then copy the formula in cell **D22** across the row **22**.

(Total population)

To calculate the percent of males in cell **E4**, enter the formula

[-1*100*Male_count*Total_population]

=-1*100*B4/\$D\$22

And copy the formula in cell **E4** down to cell **E21**.

To calculate the percent of females in cell **F4**, enter the formula

[1*100*Female_count*Total_population]

=100*C4/\$D\$22. Copy the formula in cell F4 down to cell F21.

This gives percentage in +ve for female and -ve foe male.

To build the population pyramid, we need to choose a horizontal bar chart with two series of data (% male and % female) and the age labels in column A as the **Category X-axis** labels. Highlight the range **A3:A21**, hold down the CTRL key and highlight the range **E3:F21**

Under inset tab, under horizontal bar charts select clustered bar chart

Put the tip of your mouse arrow on the **Y-axis** (vertical axis) so it says "Category Axis", right click and chose **Format Axis**

Choose **Axis options** tab and set the major and minor tick mark type to **None**, Axis labels to **Low**, and click **OK**.

Click on any of the bars in your pyramid, click right and select "format data series". Set the **Overlap** to **100** and **Gap Width** to **0**. Click **OK**.

M.Sc(IT) PART-I

Roll No:- 2086877

Format Data Series SERIES OPTIONS A SERIES OPTIONS Plot Series On Primary Axis Secondary Axis Series Overlap Gap Width O% \$\frac{1}{4}\$

Research in Computing	M.Sc(IT) PART-I	Roll No:- 2086877
	19	

Practical 5

Aim: Perform testing of hypothesis using one sample t-test.

One sample t-test: The One Sample t Test determines whether the sample mean is statistically different from a known or hypothesised population mean. The One Sample t Test is a parametric test.

H0: Mean age of given sample is 30.

H1: Mean age of given sample is not 30

#pip3 install scipy

#pip3 install numpy

```
from scipy.stats import ttest_1samp
import numpy as np
ages = np.genfromtxt('ages.csv')
print(ages)
ages\_mean = np.mean(ages)
print("Mean age:",ages_mean)
print("Test 1: m=30")
tset, pval = ttest_1samp(ages, 30)
print('p-values - ',pval)
if pval< 0.05:
  print("we reject null hypothesis")
else:
  print("we fail to reject null hypothesis")
Output:-
       ====== RESTART: A:/RIC/programs/RICttest.py ====
[20. 30. 25. 13. 16. 17. 34. 35. 38. 43. 45. 48. 49. 50. 51. 54. 55. 56.
```

#Test 2

H0: Mean age of given sample is 38.

p-values - 0.01333239479255858

59. 61. 62. 18. 22. 29.]

we reject null hypothesis

Mean age: 38.75 Test 1: m=30

H1: Mean age of given sample is not 38.

M.Sc(IT) PART-I

Roll No:- 2086877

```
from scipy.stats import ttest_1samp
import numpy as np
ages = np.genfromtxt('ages.csv')
print(ages)
ages\_mean = np.mean(ages)
print("Mean age:",ages_mean)
print("Test 2: m=38")
tset, pval = ttest_1samp(ages, 38)
print('p-values - ',pval)
if pval< 0.05:
  print("we reject null hypothesis")
else:
  print("we fail to reject null hypothesis")
              ======= RESTART: A:/RIC/programs/RICttest.py ==
[20. 30. 25. 13. 16. 17. 34. 35. 38. 43. 45. 48. 49. 50. 51. 54. 55. 56.
 59. 61. 62. 18. 22. 29.]
Mean age: 38.75
Test 2: m=38
p-values - 0.8202593087020069
we fail to reject null hypothesis
```

Research in Computing	M.Sc(IT) PART-I	Roll No:- 2086877
	22	

Practical 6

Aim: Write a program for t-test comparing two means for independent samples.

The *t* distribution provides a good way to perform one sample tests on the mean when the population variance is not known provided the population is normal or the sample is sufficiently large so that the Central Limit Theorem applies.

Two Sample t Test

Example: A college Princiapal informed classroom teachers that some of their students showedunusual potential for intellectual gains. One months later the students identified to teachers ashaving potentional for unusual intellectual gains showed significiantly greater gains performanceon a test said to measure IQ than did students who were not so identified. Below are the data forthe students:

Experimental	Compa	rison
35	2	
40	27	
12	38	
15	31	
21	1	
14	19	
46	1	
10	34	
28	3	
48	1	
16	2	
30	2 3 2	
32	2	
48	1	
31	1	
22	1	
12	3	
39	29	
19	37	
25	2	
27.15	11.95	Mean
12.51	14.61	Sd

Experimental Data

To calculate Standard Mean go to cell A22 and type =SUM(A2:A21)/20

To calculate Standard Deviation go to cell A23 and type =STDEV(A2:A21)

Comparison Data

To calculate Standard Mean go to cell B22 and type =SUM(B2:B21)/20

To calculate Standard Deviation go to cell B23 and type =STDEV(B2:B21)

To find T-Test Statistics go to data □Data Analysis

23

2/1

12.51

14.61

Sd

M.Sc(IT) PART-I

Roll No:- 2086877

M.Sc(IT) PART-I

Roll No:- 2086877

To caluculate the T-Test square value go to cell E20 and type

=(A22-B22)/SQRT((A23*A23)/COUNT(A2:A21)+(B23*B23)/COUNT(A2:A21))

Now go to cell E20 and type

=IF(E20<E12,"H0 is Accepted", "H0 is Rejected and H1 is Accepted")

Our calculated value is larger than the tabled value at alpha = .01, so we reject the null hypothesis and accept the alternative hypothesis, namely, that the difference in gain scores is likely the result of the experimental treatment and not the result of chance variation.

Output:

	А	В	С	D	Е	F	G	Н	1	J	K
1	Experimental	Comparison		HO - Difference in gain score is n	ot likely the res	ult of experim	ental trea	tment.			
2	35	2		H1 - Difference in gain score is li	kely the result	of experiment	al treatme	ent and not	the result	of change	variation.
3	40	27		t-Test: Paired Two Sample for M	eans						
4	12	38		t-Test: Paired Two Sample for M	eans						
5	15	31		t-Test: Paired Two Sample for M	eans						
6	21	1									
7	14	19			Experimental	Comparison					
8	46	1		Mean	27.15	11.95					
9	10	34		Variance	156.45	213.5236842					
10	28	3		Observations	20	20					
11	48	1		Pearson Correlation	-0.395904927						
12	16	2		Hypothesized Mean Difference	0						
13	30	3		df	19						
14	32	2		t Stat	2.996289153						
15	48	1		P(T<=t) one-tail	0.003711226						
16	31	2		t Critical one-tail	1.729132792						
17	22	1		P(T<=t) two-tail	0.007422452						
18	12	3		t Critical two-tail	2.09302405						
19	39	29									
20	19	37		Caluculated Value	3.534053898						
21	25	2									
22	27.15	11.95	Mean		H0 is Rejected	and H1 is Acce	pted				
23	12.51	14.61	Sd								

Research in Computing	M.Sc(IT) PART-I	Roll No:- 2086877
	26	

Practical 7

Aim: Perform testing of hypothesis using paired t-test.

The paired sample t-test is also called dependent sample t-test. It's an univariate test that tests for a significant difference between 2 related variables. An example of this is if you where to collect the blood pressure for an individual before and after some treatment, condition, or time point. The data set contains blood pressure readings before and after an intervention. These are variables "bp_before" and "bp_after".

The hypothesis being test is:

- **H0** The mean difference between sample 1 and sample 2 is equal to 0.
- **H1** The mean difference between sample 1 and sample 2 is not equal to 0 from scipy import stats

```
import matplotlib.pyplot as plt
```

```
import pandas as pd
```

```
df = pd.read_csv("blood_pressure.csv")
```

```
print(df[['bp_before','bp_after']].describe())
```

tst,pval=stats.ttest_rel(df['bp_before'], df['bp_after'])

if pval< 0.05:

print("we reject null hypothesis")

else:

print("we fail to reject null hypothesis")

Output:-

	<pre>bp_before</pre>	<pre>bp_after</pre>
count	120,000000	120.000000
mean	156.450000	151.358333
std	11.389845	14.177622
min	138.000000	125.000000
25 %	147.000000	140.750000
50%	154.500000	149.500000
75 %	164.000000	161.000000
max	185.000000	185.000000
we rei	ect null hyp	othesis

Research in Computing	M.Sc(IT) PART-I	Roll No:- 2086877
	28	

Γ

Practical 8:

Aim: Perform testing of hypothesis using chi-squared godness-of-fit test.

Problem

Ansystem administrator needs to upgrade the computers for his division. He wants to know what sort of computer system his workers prefer. He gives three choices: Windows, Mac, or Linux. Test the hypothesis or theory that an equal percentage of the population prefers each type of computer system.

System	0	Ei	$\sum \frac{(O_{\underline{i}} - E_{\underline{i}})^2}{E_{\underline{i}}}$
Windows	20	33.33%	
Mac	60	33.33%	
Linux	20	33.33%	

H0: The population distribution of the variable is the same as the proposed distribution

HA: The distributions are different

To calculate the Chi –Squred value for Windows go to cell D2 and type

=((B2-C2)*(B2-C2))/C2

To calculate the Chi –Squred value for Mac go to cell D3 and type

=((B3-C3)*(B3-C3))/C3

To calculate the Chi –Squred value for Mac go to cell D3 and type

=((B4-C4)*(B4-C4))/C4

$$\sqrt{(O_i - E_i)^2}$$

Go to Cell D5 for Ei and type

=SUM(D2:D4)

To get the table value for Chi-Square for $\alpha = 0.05$ and dof = 2, go to cell D7 and type

=CHIINV(0.05,2)

At cell D8 type =IF(D5>D7, "H0 Accepted", "H0 Rejected")

Output:

				-		_	_							
	Α	В	C	D	Е	F	G	Н	1	J	K	L	М	N
1	System	О	Ei	$\frac{\sum \frac{(O_i - E_i)^2}{Ei}}{Ei}$										
2	Windows	20	33.33	5.333333		Ho: The p	opulation	distributio	n of the va	riable is th	ne same a	s the prop	osed distr	ibution
3	Mac	60	33.33	21.33333		H1 - : The	distributior	ns are differ	ent					
4	Linux	20	33.33	5.333333										
5	Total	100	100	32										
6														
7			Table Value	5.991465										
8			H0 Accepted	I										

Research in Computing	M.Sc(IT) PART-I	Roll No:- 2086877
	30	

M.Sc(IT) PART-I

Roll No:- 2086877

Practical 9

Aim: Perform testing of hypothesis using chi-squared test of independence.

In a study to understated the permormacne of M. Sc. IT Part -1 class, a college selects a random sample of 100 students. Each student was asked his grade obtained in B. Sc. IT.

Null Hypothesis - H0: The performance of girls students is same as boys students. **Alternate Hypothesis - H1:** The performance of boys and girls students are different. Open Excel Workbook

	О	A	В	С	D	Total	$\sum \frac{(O_{\underline{i}} - E_{\underline{i}})^2}{Ei}$
Girls	11	7	5	5	11	39	6.075
Boys	30	4	3	10	14	61	6.075
Total	41	11	8	15	25	100	12.150
Ei	20.5	5.5	4	7.5	12.5	50	

To get the table value go to cell T11 and type =**CHIINV(0.05,4)**Go to cell O13 and type =IF(T8>=T11," H0 is Accepted", "H0 is Rejected")

N	0	Р	Q	R	S	Т	
rmance	of boy	ys and g	girls are o	equal			
Table						$(O_i - E_i)^2$	
0	Α	В	С	D	Total	Ei	
11	7	5	5	11	39	6.075	
30	4	3	10	14	61	6.075	
41	11	8	15	25	100	12.150	
20.5	5.5	4	7.5	12.5	50		
Critical Value of $\alpha = 0.05$ for df = (2-1) * (5-1)							
	IIO is /						
	Table 0 11 30 41 20.5	Table O A 11 7 30 4 41 11 20.5 5.5 lue of α =0.09	Table O A B 11 7 5 30 4 3 41 11 8 20.5 5.5 4 lue of α =0.05 for di	Table O A B C 11 7 5 5 30 4 3 10 41 11 8 15 20.5 5.5 4 7.5 lue of α =0.05 for df = (2-1)	rmance of boys and girls are equal Table O A B C D 11 7 5 5 11 30 4 3 10 14 41 11 8 15 25 20.5 5.5 4 7.5 12.5 lue of α =0.05 for df = (2-1) * (5-1)	Table O A B C D Total 11 7 5 5 11 39 30 4 3 10 14 61 41 11 8 15 25 100 20.5 5.5 4 7.5 12.5 50	

Research in Computing	M.Sc(IT) PART-I	Roll No:- 2086877
	32	

Practical 10A:

Aim: Perform testing of hypothesis using Z-test.

Use a Z test if:

- Your sample size is greater than 30. Otherwise, use a t test.
- Data points should be independent from each other. In other words, one data point isn't related or doesn't affect another data point.
- Your data should be normally distributed. However, for large sample sizes (over 30) this doesn't always matter.
- Your data should be randomly selected from a population, where each item has an equal chance of being selected.
- Sample sizes should be equal if at all possible.

Ho - Blood pressure has a mean of 156 units

Program Code for one-sample Z test.

```
from statsmodels.stats import weightstats as stests
```

```
import pandas as pd
```

```
from scipy import stats
```

```
df = pd.read_csv("blood_pressure.csv")
```

```
print(df['bp_before'].describe())
```

ztest ,pval = stests.ztest(df['bp_before'], x2=None, value=156)

```
print("pval:",float(pval))
```

if pval< 0.05:

print("we reject null hypothesis")

else:

print("we fail to reject null hypothesis")

Output:-

```
120.000000
count
mean
       156.450000
std
        11.389845
min
       138.000000
25%
       147.000000
50%
       154.500000
75%
       164.000000
       185.000000
max
Name: bp before, dtype: float64
pval: 0.6651614730255063
we fail to reject null hypothesis
```

Practical 10B

Aim:Two-sample Z test

In two sample z-test, similar to t-test here we are checking two independent data groups and deciding whether sample mean of two group is equal or not.

H0: mean of two group is 0 H1: mean of two group is not 0

import pandas as pd

from statsmodels.stats import weightstats as stests

 $df = pd.read_csv("blood_pressure.csv")$

print(df[['bp_before','bp_after']].describe())

ztest,pval=stests.ztest(df['bp_before'],x2=df['bp_after'],value=0,alternative= 'two-sided')

print("pval:",float(pval))

if pval< 0.05:

print("we reject null hypothesis")

else:

print("we fail to reject null hypothesis")

	<pre>bp_before</pre>	<pre>bp_after</pre>
count	120.000000	120.000000
mean	156.450000	151.358333
std	11.389845	14.177622
min	138.000000	125.000000
25 %	147.000000	140.750000
50%	154.500000	149.500000
75%	164.000000	161.000000
max	185.000000	185.000000
<pre>pval:</pre>	0.0021623066	11369422
we re	ject null hyp	othesis

Research in Computing	M.Sc(IT) PART-I	Roll No:- 2086877
	25	
	35	

Roll No:- 2086877

Practical 11

Aim: Perform testing of hypothesis using One-way ANOVA.

ANOVA Assumptions

- The dependent variable (SAT scores in our example) should be continuous.
- The independent variables (districts in our example) should be two or more categorical groups.
- There must be different participants in each group with no participant being in more than one group. In our case, each school cannot be in more than one district.
- The dependent variable should be approximately normally distributed for each category.
- Variances of each group are approximately equal.

From our data exploration, we can see that the average SAT scores are quite different for each district. Since we have five different groups, we cannot use the t-test, use the 1-way ANOVA test anyway just to understand the concepts.

Using Excel

H0 - There are no significant differences between the Subject's mean SAT scores.

$$\mu 1 = \mu 2 = \mu 3 = \mu 4 = \mu 5$$

H1 - There is a significant difference between the Subject's mean SAT scores.

If there is at least one group with a significant difference with another group, the null hypothesis will be rejected.

To perform ANOVA go to data □Data Analysis

Input Range: \$S\$1:\$U\$436(Select columns to be analyzed in group)

Output Range :\$K\$453:\$S\$465

ANOVA

Total

Between Groups

Within Groups

Source of Variation

M.Sc(IT) PART-I

Roll No:- 2086877

F crit

3.003745

P-value

0.01108

Since the resulting p-value is less than 0.05. The null hypothesis (H0) is rejected and conclude that there is a significant difference between the SAT scores for each subject.

df

2

1122

1124

MS

19850.28

4390.977

F

4.520698

SS

39700.57

4926677

4966377

Research in Computing	M.Sc(IT) PART-I	Roll No:- 2086877
	20	
	38	

Γ

M.Sc(IT) PART-I

Roll No:- 2086877

Practical 12

Aim: Perform testing of hypothesis using Two-way ANOVA. Using Excel:

Go to Data tab -> Data Analysis

Input Range - \$A\$1:\$C\$61(select values along with column name, only numeric columns) ToothGrowth.csv

Rows Per Sample – 30 (Beacause 30 Patients are given each dose)

Alpha - 0.05

Output Range - \$F\$1:\$M\$24

Output:

Anova: Two-Factor With Replication						
SUMMARY	len	dose	Total			
1						
Count	30	30	60			
Sum	508.9	35	543.9			
Average	16.96333	1.166667	9.065			
Variance	68.32723	0.402299	97.22333			
31						
Count	30	30	60			
Sum	619.9	35	654.9			
Average	20.66333	1.166667	10.915			
Variance	43.63344	0.402299	118.2854			
Total						
Count	60	60				
Sum	1128.8	70				
Average	18.81333	1.166667				
Variance	58.51202	0.39548				
ANOVA						
Source of	SS	df	MS	F	P-value	F crit
Variation						
Sample	102.675	1	102.675	3.642079	0.058808	3.922879
Columns	9342.145	1	9342.145	331.3838	8.55E-36	3.922879
Interaction	102.675	1	102.675	3.642079	0.058808	3.922879
Within	3270.193	116	28.19132			
Total	12817.69	119				

Research in Computing	M.Sc(IT) PART-I	Roll No:- 2086877
P-value = 0.0588079 column in the account output. The p-values for both medical level (0.05), these factors are statistical	ine dose and interaction are grea	

Practical 13

Aim: Perform testing of hypothesis using MANOVA.

MANOVA is the acronym for Multivariate Analysis of Variance. When analyzing data, we may encounter situations where we have there multiple response variables (dependent variables). In MANOVA there also some assumptions, like ANOVA. Before performing MANOVA we have to check the following assumptions are satisfied or not.

- The samples, while drawing, should be independent of each other.
- The dependent variables are continuous in nature and the independent variables are categorical.
- The dependent variables should follow a multivariate normal distribution.
- The population variance-covariance matrices of each group are same, i.e. groups are homogeneous.

Go to http://www.real-statistics.com/free-download/

1. Download Real Statistics Resource Pack

Real Statistics Resource Pack: contains a variety of supplemental functions and data analysis tools not provided by Excel. These complement the standard Excel capabilities and make it easier for you to perform the statistical analyses described in the rest of this website.

Real Statistics Resource Pack for Excel 2010, 2013, 2016, 2019 or 365 for Windows

If you accept the <u>License Agreement</u>, click here on <u>Real Statistics Resource Pack for Excel</u> 2010/2013/2016/2019/365 to download the latest Excel for Windows version of the

Or

http://www.real-statistics.com/wp-content/uploads/2019/11/XRealStats.xlam

Install Add-in in excel. Select **File > Help|Options > Add-Ins** and click on the **Go** button at the bottom of the window (see Figure 1).

Add-ins -> Analysis Pack -> Go

M.Sc(IT) PART-I

Roll No:- 2086877

Click on browse and select XrealStats file (previously downloaded).

Select the following Add-Ins. Click OK.

M.Sc(IT) PART-I

Roll No:- 2086877

Now create an excel sheet with following data.

A study was conducted to see the impact of social-economic class (rich, middle, poor) and gender (male, female) on kindness and optimism using on a sample of 24 people based on the data in Figure 1.

	A	В	С	D
3	gender	economic	kindness	optimism
4	male	wealthy	5	3
5	male	wealthy	4	6
6	male	wealthy	3	4
7	male	wealthy	2	4
8	male	middle	4	6
9	male	middle	3	6
10	male	middle	5	4
11	male	middle	5	5
12	male	poor	7	5
13	male	poor	4	3
14	male	poor	3	1
15	male	poor	7	2
16	female	wealthy	2	3
17	female	wealthy	3	5
18	female	wealthy	5	3
19	female	wealthy	4	2
20	female	middle	9	8
21	female	middle	6	5
22	female	middle	7	6
23	female	middle	8	9
24	female	poor	8	9
25	female	poor	9	8
26	female	poor	3	7
27	female	poor	5	7

Press ctrl-m to open Real Statistics menu.

M.Sc(IT) PART-I

Roll No:- 2086877

Select the data excluding column names. Select a cell for output.

M.Sc(IT) PART-I

Roll No:- 2086877

Output:

Two-Way	MANOVA						SSCP Mate	rices
fact A	stat	df1	df2	F	p-value	part eta-sq	Tot	
Pillai Trac	0.190764	2	16	1.885866	0.183909	0.190764	104.9565	59.86957
Wilk's Lan	0.809236	2	16	1.885866	0.183909	0.190764	59.86957	110.6087
Hotelling	0.235733	2	16	1.885866	0.183909	0.190764		
Roy's Lg Ro	0.235733						Row (A)	
							12.5247	15.41502
fact B	stat	df1	df2	F	p-value	part eta-sq	15.41502	18.97233
Pillai Trac	0.340249	4	34	1.742501	0.163458	0.170125		
Wilk's Lan	0.8181	4	32	1.778757	0.157443	0.1819	Column (E	3)
Hotelling '	0.479878	4	30	1.799541	0.155008	0.193509	31.15295	22.95885
Roy's Lg R	0.448078						22.95885	19.37655

SSCP Ma	trices	Group Co	variance	Matrices			
Tot		female	middle				
104.96	59.87	1.6667	2				
59.87	110.61	2	3.3333				
Row (A)		female	poor				
12.525	15.415	7.5833	2.0833				
15.415	18.972	2.0833	0.9167				
Column (E	3)	female	wealthy				
31.153	22.959	1.6667	-0.5				
22.959	19.377	-0.5	1.5833				
Interaction	- (AB)	male	middle		Covariano	e Matrix	
11.029	4.7457	0.9167	-0.75		4.7708	2.7213	
4.7457	40.593	-0.75	0.9167		2.7213	5.0277	
Res		male	poor				
50.25	16.75	4.25	2.0833		Inverse of Covariance Matri		ce Matrix
16.75	31.667	2.0833	2.9167		0.3032	-0.164	
					-0.164	0.2877	
		male	wealthy				
		1	1.3333		Mean vec	tor	
			1.3333		5	5	

Research in Computing	M.Sc(IT) PART-I	Roll No:- 2086877
	46	

Practical 14

Aim: Perform the Random sampling for the given data and analyse it.

Example 1: From a population of 10 women and 10 men as given in the table in Figure 1 on the left below, create a random sample of 6 people for Group 1 and a periodic sample consisting of every 3rd woman for Group 2.

You need to run the sampling data analysis tool twice, once to create Group 1 and again to create Group 2. For Group 1 you select all 20 population cells as the Input Range and Random as the Sampling Method with 6 for the Random Number of Samples. For Group 2 you select the 10 cells in the Women column as Input Range and Periodic with Period 3. Open existing excel sheet with population data

Sample Sheet looks as given below:

	Α	В	C	D	Е	F	G	Н	1	J	K
	Sr.	Roll		D	L	ľ	Sr.	Roll	Student's	,	K
1	No	No	Student's Name	Gender	Grade		No	No	Name	Gender	Grade
2	1	1	Gaborone	m	0	+	62	3	Maun	f	0
						+		_		f	
3	2	2	Francistown	m	0	\vdash	63	7	Tete		0
4	3	5	Niamey	m	0	-	64	9	Chimoio	f	0
5	4	13	Maxixe	m	0	-	65	11	Pemba	f	0
6	5	16	Tema	m	0		66	14	Chibuto	f	0
7	6	17	Kumasi	m	0		67	25	Mampong	f	0
8	7	34	Blida	m	0		68	36	Tlemcen	f	0
9	8	35	Oran	m	0		69	40	Adrar	f	0
10	9	38	Saefda	m	0		70	41	Tindouf	f	0
11	10	42	Constantine	m	0		71	46	Skikda	f	0
12	11	43	Annaba	m	0		72	47	Ouargla	f	0
13	12	45	Bejaefa	m	0		73	10	Matola	f	D
14	13	48	Medea	m	0		74	20	Legon	f	D
15	14	49	Djelfa	m	0		75	21	Sunyani	f	D
16	15	50	Tipaza	m	0		76	72	Teenas	f	D
17	16	51	Bechar	m	0		77	73	Kouba	f	D
18	17	54	Mostaganem	m	0		78	75	Hussen Dey	f	D
19	18	55	Tiaret	m	0		79	77	Khenchela	f	D
20	19	56	Bouira	m	0		80	82	Hassi Bahbah	f	D
21	20	59	Tebessa	m	0		81	84	Baraki	f	D
22	21	61	El Harrach	m	0		82	91	Boudouaou	f	D
23	22	62	Mila	m	0		83	95	Tadjenanet	f	D
24	23	65	Fouka	m	0		84	4	Molepolole	f	С
						_					

Set Cell O1 = Male and Cell O2 = Female

To generate a random sample for male students from given population go to Cell O1 and type =INDEX(E\$2:E\$62,RANK(B2,B\$2:B\$62))

Drag the formula to the desired no of cell to select random sample.

Now, to generate a random sample for female students go to cell P1 and type

=INDEX(K\$2:K\$40,RANK(H2,H\$2:H\$40))

Drag teh formula to the desired no of cell to select random sample.

Output:

M.Sc(IT) PART-I

Roll	No:-	2086877

0	Р	
Male	Female	
Α	Α	
Α	Α	
Α	Α	
В	Α	
С	В	
С	С	
D	С	
D	С	
D	С	
D	С	
D	D	
D	Α	
D	В	
D	В	
0	D	
0	D	
0	D	
0	D	
0	0	
0	0	
0	0	
0	0	
O	Δ	

Research in Computing	M.Sc(IT) PART-I	Roll No:- 2086877
	49	

Roll No:- 2086877

Practical 15

Aim: Perform the Stratified sampling for the given data and analyse it.

We are to carry out a **hypothetical** housing quality survey across Lagos state, Nigeria. And we looking at a total of 5000 houses (hypothetically). We don't just go to one local government and select 5000 houses, rather we ensure that the 5000 houses are a representative of the whole 20 local government areas Lagos state is comprised of. This is called stratified sampling. The population is divided into homogenous strata and the right number of instances is sampled from each stratum to guarantee that the test-set (which in this case is the 5000 houses) is a representative of the overall population. If we used random sampling, there would be a significant chance of having bias in the survey results.

```
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['xtick.labelsize'] = 12
plt.rcParams['ytick.labelsize'] = 12
import seaborn as sns
color = sns.color_palette()
sns.set_style('darkgrid')
housing =pd.read_csv('housing.csv')
print(housing.head())
print(housing.info())
#creating a heatmap of the attributes in the dataset
correlation matrix = housing.corr()
plt.subplots(figsize=(8,6))
sns.heatmap(correlation matrix, center=0, annot=True, linewidths=.3)
corr =housing.corr()
print(corr['median house value'].sort values(ascending=False))
sns.distplot(housing.median income)
plt.show()
```


M.Sc(IT) PART-I Roll No:- 2086877

```
==== RESTART: A:/RIC/programs/RICSampling.py ===
  longitude latitude ... median_house_value ocean_proximity
             37.88 ...
0
    -122.23
                                    452600.0
                                                    NEAR BAY
                                   358500.0
    -122.22
               37.86 ...
                                                    NEAR BAY
1
                                                   NEAR BAY
                                    352100.0
    -122.24
               37.85 ...
               37.85 ...
37.85 ...
3
     -122.25
                                    341300.0
                                                    NEAR BAY
  -122.25
               37.85
                                    342200.0
                                                    NEAR BAY
[5 rows x 10 columns]
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):
longitude
                    20640 non-null float64
latitude
                    20640 non-null float64
housing_median_age 20640 non-null float64
median_house_value 20640 non-null float64 ocean proximity 20640 non-null object
dtypes: float64(9), object(1)
memory usage: 1.6+ MB
None
                    1.000000
median house value
              0.134153
median_income
total_rooms
housing_median_age 0.105623
households
                   0.065843
total bedrooms
                   0.049686
population
                   -0.024650
longitude
                    -0.045967
latitude
                    -0.144160
Name: median_house_value, dtype: float64
```

Research in Computing	M.Sc(IT) PART-I	Roll No:- 2086877
	53	

Practical 16

Aim: Write a program for computing different correlation.

Correlation is usually defined as a measure of the linear relationship between two quantitative variables.

When the values of one variable increase as the values of the other increase, this is known as positive correlation.

When the values of one variable decrease as the values of another increase to form an inverse relationship, this is known as negative correlation.

A weak correlation is one where on average the values of one variable are related to the other, but there are many exceptions.

Positive Correlation:

import numpy as np
import matplotlib.pyplot as plt
np.random.seed(1)
1000 random integers between 0 and 50
x = np.random.randint(0, 50, 1000)
Positive Correlation with some noise
y = x + np.random.normal(0, 10, 1000)
np.corrcoef(x, y)
plt.style.use('ggplot')
plt.scatter(x, y)
plt.show()

M.Sc(IT) PART-I

Roll No:- 2086877

Negative Correlation:

import numpy as np

import matplotlib.pyplot as plt

np.random.seed(1)

1000 random integers between 0 and 50

x = np.random.randint(0, 50, 1000)

Negative Correlation with some noise

y = 100 - x + np.random.normal(0, 5, 1000)

np.corrcoef(x, y)

plt.scatter(x, y)

plt.show()

M.Sc(IT) PART-I

Roll No:- 2086877

No/Weak Correlation:

import numpy as np
import matplotlib.pyplot as plt
np.random.seed(1)
x = np.random.randint(0, 50, 1000)
y = np.random.randint(0, 50, 1000)
np.corrcoef(x, y)
plt.scatter(x, y)
plt.show()

M.Sc(IT) PART-I

Roll No:- 2086877

Practical 17

Aim: Perform Linear regression for prediction.

Step 1: Import libraries and dataset.

Import the important libraries and the dataset we are using to perform Polynomial Regression.

Step 2: Dividing the dataset into 2 components.

Divide dataset into two components that is X and y. X will contain the Column between 1 and 2. y will contain the 2 column.

Step 3: Fitting Linear Regression to the dataset

Fitting the linear Regression model On two components.

Step 4: Fitting Polynomial Regression to the dataset

Fitting the Polynomial Regression model on two components X and y.

Step 5: In this step we are Visualising the Linear Regression results using scatter plot.

4	Α	В	С
1	sno	Temperat	Pressure
2	1	0	0.0002
3	2	20	0.0012
4	3	40	0.006
5	4	60	0.03
6	5	80	0.09
7	6	100	0.27

data.csv

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Step 1: Import libraries and dataset

datas = pd.read_csv('data.csv')

print(datas)

#Step 2: Dividing the dataset into 2 components

X = datas.iloc[:, 1:2].values

y = datas.iloc[:, 2].values

#Step 3: Fitting Linear Regression to the dataset

from sklearn.linear model import LinearRegression

lin = LinearRegression()

lin.fit(X, y)

Step 4: Fitting Polynomial Regression to the dataset

M.Sc(IT) PART-I

Roll No:- 2086877

from sklearn.preprocessing import PolynomialFeatures

poly = PolynomialFeatures(degree = 4)

 $X_poly = poly.fit_transform(X)$

poly.fit(X_poly, y)

lin2 = LinearRegression()

lin2.fit(X_poly, y)

Step 5: Visualising the Linear Regression results

plt.scatter(X, y, color = 'blue')

plt.plot(X, lin.predict(X), color = 'red')

plt.title('Linear Regression')

plt.xlabel('Temperature')

plt.ylabel('Pressure')

plt.show()

Roll No:- 2086877

Practical 18

Aim: Perform Polynomial Regression for prediction.

Step 1: Import libraries and dataset

Import the important libraries and the dataset we are using to perform Polynomial Regression.

Step 2: Dividing the dataset into 2 components

Divide dataset into two components that is X and y.X will contain the Column between 1 and 2. y will contain the 2 column.

Step 3: Fitting Linear Regression to the dataset

Fitting the linear Regression model On two components.

Step 4: Fitting Polynomial Regression to the dataset

Fitting the Polynomial Regression model on two components X and y.

Step 5: Visualising the Polynomial Regression results using scatter plot.

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Step 1: Import libraries and dataset

```
datas = pd.read\_csv('data.csv')
```

print(datas)

#Step 2: Dividing the dataset into 2 components

```
X = datas.iloc[:, 1:2].values
```

y = datas.iloc[:, 2].values

#Step 3: Fitting Linear Regression to the dataset

from sklearn.linear_model import LinearRegression

lin = LinearRegression()

lin.fit(X, y)

Step 4: Fitting Polynomial Regression to the dataset

from sklearn.preprocessing import PolynomialFeatures

poly = PolynomialFeatures(degree = 4)

 $X_poly = poly.fit_transform(X)$

poly.fit(X_poly, y)

lin2 = LinearRegression()

lin2.fit(X_poly, y)

Step 5: Visualising the Linear Regression results

```
# Visualising the Polynomial Regression results
plt.scatter(X, y, color = 'blue')
plt.plot(X, lin2.predict(poly.fit_transform(X)), color = 'red')
plt.title('Polynomial Regression')
plt.xlabel('Temperature')
plt.ylabel('Pressure')
plt.show()
```


