Raster conversion algorithms for line and circle

Introduction

- Pixel addressing
- Primitives and attributes

Line drawing algorithms

- DDA
- Bresehnam

Circle generating algorithms

- Direct method
- Bresenham algorithm

Raster conversion algorithms: requirements

- visual accuracy
- · spatial accuracy
- speed

Line – raster representation

DDA (Digital Differential Algorithm)

Derivation

Bresenham's line algorithm

Bresenham's line algorithm (slope ≤ 1)

- input line endpoints, (x₀,y₀) and (x_n, y_n)
- calculate $\Delta x = x_n x_0$ and $\Delta y = y_n y_0$
- calculate parameter $p_1 = 2 \Delta y \Delta x$
- set pixel at position (x₀,y₀)
- repeat the following steps until (x_n, y_n) is reached:
- if $p_i < 0$
- set the next pixel at position $(x_i + 1, y_i)$
- calculate new $p_{i+1} = p_i + 2 \Delta y$
- if $p_i \ge 0$
- set the next pixel at position $(x_i + 1, y_i + 1)$
- calculate new $p_{i+1} = p_i + 2(\Delta y \Delta x)$

For derivation see http://www.cs.bham.ac.uk/~exc/Teaching/Graphics/Bresenham_derivation.pdf

Circle generating algorithms

- Direct
- Polar coordinate based
- Bresenham's

Direct circle algorithm

- · Cartesian coordinates
- Circle equation:

$$(x - x_c)^2 + (y - y_c)^2 = r^2$$

 Step along x axis from x_c - r to x_c + r and calculate

$$y = y_c \pm \sqrt{r^2 - (x - x_c)^2}$$

Polar coordinates

• Polar coordinate equation (parametric, w.r.t. ϕ)

$$x = x_c + r \cos \varphi$$

$$y = y_c + r \sin \varphi$$

• step through values of ϕ from 0 to 2π

Optimisation and speed-up

- Symmetry of a circle can be used
- Calculations of point coordinates only for a first one-eighth of a circle
- Assumes $(x_c, y_c) = (0,0)$

Bresenham's circle algorithm

• Assumes centre at (0,0)

Initialisation

- · Input radius r
- Plot a point at $x_0=0$, $y_0=r$
- Set k = 0
- Calculate the initial value of the decision parameter $p_0 = 3 2r$

- 5. Determine symmetry points in the other seven octants and plot points
- 6. Repeat steps 4 and 5 until $x \ge y$

Homework

- Implement the Bresenham's circle algorithm for a circle with a centre at an arbitrary position (x_c, y_c).
- Using Bresenham's circle algorithm generate circle with centre at (-10,10) and radius r=40
- Extend the Bresenham's line algorithm for lines at an arbitrary slope
- Extend the Bresenham's line algorithm to draw lines of arbitrary thickness (the original algorithm generates lines of nominal thickness of 1)
- Implement an algorithm for drawing anti-aliased lines