

Nonlinear Models (Neural Networks)

Spring 2020

Instructor: Ankit Shah, Ph.D.

Biological Neural Networks

- Human brain has a net of neurons (neural networks) between 14 and 16 billion neurons in cerebral cortex
- Neurons are responsible for transmitting and processing information that we receive from our senses
- Dendrites: receive the information
- Synapses: transmit the processed information
- Soma (cell body) processes the impulses from dendrites and sends the processed impulse to the axon
- Axon: conducting structure through which the processed information is passed

Biological Neural Networks

- Some impulses are more important than others and can trigger a neuron to fire easier
- In reality, there is no physical connection between neurons chemicals are used to communicate the signals (impulses) from synapses to dendrites among neurons
- One neuron is connected to an adjoining neuron at either the entry or exit point(s)
- The neural networks learn patterns (which neurons to fire and the magnitude of signals) and create memories in our brain

Biological Neural Networks: An Example

I am providing the snapshot from the lecture as a placeholder. Please go through the recorded lecture to understand the details.

Linear Regression: Predict House Prices

Response Variable Predictor Variables

School Ratings integer values (1-10)

Number of Rooms integer values (1-10) **New Representation**

I am providing the snapshot from the lecture as a placeholder. Please go through the recorded lecture to understand the details.

Add New Predictors: Mimic a Neural Network

Response Variable Predictor Variables

Crime Rate value between 0 and 1

School Ratings integer values (1-10)

Number of Rooms integer values (1-10)

Nitric Oxides
Concentration
value between 0 and 1

I am providing the snapshot from the lecture as a placeholder. Please go through the recorded lecture to understand the details.

Generalized Representation of Neural Networks

I am providing the snapshot from the lecture as a placeholder. Please go through the recorded lecture to understand the details.

Also, called a Feedforward Neural Network

Classification

 The objective in classification is to predict a qualitative (categorical or nominal) response outcome, given a set of predictor variable values

- To construct a classifier, we partition the sample space of possible values of X into <u>non-overlapping</u> regions
- We give each region a predicted class

- Can we use Linear Regression to create a two-class classifier?
 - If there are only 2 possible outcomes for the response variable, we can assign them as 0-1 and use OLS regression to fit a linear model and obtain a classification boundary (for e.g., class 1 if $\hat{y} > 0.5$)
 - The fitted OLS model: $E(Y|x) = P(Y = 1|x) = \beta_0 + \beta_1 x$
 - The problem here is that unless β_1 = 0, the estimates of P(Y=1|x) will be more than 1 for some values of x

Logistic Regression

• To counter the issue of some predicted probabilities going outside the range of [0,1] when using a linear function, we use the logistic function:

$$p(x) = \frac{e^{(\beta_0 + \beta_1 x)}}{1 + e^{(\beta_0 + \beta_1 x)}}$$

• For any values of the coefficients, positive, negative or 0, p(x) will belong to (0,1)

Estimating the Parameters

- How to estimate w and b?
- Loss function: measures how well we predict \hat{y} with respect to the ground truth label y for each data point in the training set
- Cost function: measures how well the parameters w and b are doing on the entire training set (with respect to the model fit)

Gradient Descent

• How to train the model?

Forward Pass and Backward Pass

Representation of Neural Networks

Linear Activation Function

Regression Problem: Using a Neural Network

Response Variable Predictor Variables

Crime Rate value between 0 and 1

School Ratings integer values (1-10)

Number of Rooms integer values (1-10)

Nitric Oxides Concentration value between 0 and 1

Input Layer Hidden Layer Output Layer

Other Activation Functions

Other Activation Functions

Please go through the recorded lecture to understand the details.

Parameters and Hyperparameters

- Hyperparameter is a parameter whose value is set before the learning process begins
- Whereas the values of the other parameters are derived upon learning

Please go through the recorded lecture to understand the details. (List of parameters and hyperparameters in Neural Networks)

Neural Networks (in Python)

Import the module from sklearn.neural_network import MLPClassifier

For Regression - MLPRegressor

Create the model

model = MLPClassifier() #a list of parameters that can be passed

Optimizer: Adam (Adaptive Moment Estimation)

Fit the model (on training data)

model.fit(x_train, y_train)

Predict y_hat values for the test data

y_hat = model.predict(x_test)

Calculate the accuracy: First import the module:

from sklearn.metrics import confusion_matrix, accuracy_score confusion_matrix(y_test, y_hat) accuracy_score(y_test, y_hat)

Result from the final code execution from recorded lecture (#19): NN_Class_Example_2 (regression)

```
y_pred_NN = grid_search.predict(x_training_set)

mse_grid = mean_squared_error(y_training_set, y_pred_NN)

mse_grid

6.726265279232006
```