

Politecnico di Milano University M.Arch Sustainable Architecture and Landscape Design Fernanda Furuya – Personal Code: 10697655

WEEKLY SUBMISSION - TASK 09

01. Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapor in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Umidità: Relative humidity

Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa)

Temperatura effettiva: temperature to be utilized.

02. Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

								BRINDIS	il, Italy						WMO#:	163200	
	Lat	40.65N	Long:	17.95E	Elev	: 10	StdP:	101.2		Time Zone:	1.00 (EU	W)	Period:	86-10	WBAN:	99999	
	Annual He	ating and H	umidifica	tion Design C	onditions												
							0.11000								-	,	
	Coldest	Heatin	g DB	Humidification DP/MCDB and HR 99.6% 99%				Coldest month WS/MCDB MCWS 0.4% 1% to 99.0						/PCWD 8% DB			
	Month	99.6%	99%	DP	99.6% HR	MCDB	DP	99% HR	MCDB	WS U.	MCDB	WS	MCDB	MCWS	PCWD	1	
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	J	
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
1-7	Appual Ca	olina Debu	en i difficanti	on, and Entha	alou Desig	n Condition											1-2
	Annual Co	ioling, Denu	imidiricati	on, and Enth	aipy Desig	n Condition	\$										
	Laward Hottest Cooling DB/MCWB								Evaporation	WB/MCDE	В		MCWS/PCWD				
Hottest Month		Month		0.4%	1%		2%		0.4%		1%	2%		to 0.49			
	MOHUI	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	i
	(a)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
		Dehumidification DP/MCDB and HR							Enthalpy/MCDB						Hours		
		0.4%			1%			2%			4%		%		%	8 to 4 &	
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	į.
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
	Extreme A	nnual Desig	n Conditi	ons													
	Extr	eme Annual	ws	Extreme Annual DB				n-Year Return Period Values of Extreme DB									
			nual WS Max Mean Stan				Standard			years	n=10 years		n=20 years			years	
	1%	2.5%				Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Ĺ
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(p)	
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

ANSWERS:

01.

Aula A = 10mx5mx4m Temperature = 8°C Saturation pressure of water = 1.07299 kPa Atmospheric pressure = 1020 hPa = 102 kPa Relative Humidity = 92%

$$\phi = \frac{m_v}{m_g} = \frac{P_v}{P_g}$$

 $P_{-}v = \phi \times P_{-}g = 0.92 \times 1.07299 = 0.99 \text{ kPa}$ Partial Pressure Water Vapor

 $P_a = P - P_v = 102 kPa - 0.99 kPa = 101.01 kPa$ Partial Pressure Dry Air

BY FORMULAS:

Specific Humidity / Absolute Humidity:

$$\omega = 0.622 \frac{P_v}{P_a} = 0.622 \frac{0.99}{101.01}$$

$$= 0.0061 \frac{kg_{vapour}}{kg_{dryAir}}$$

Wet-Bulb Temperature:

Enthalpy: $h = h_a + \omega h_v$

 $h = h_a + \omega h_v$

 $h = 1.005 \times 8 + 0.0061 \times [(2501 + (1.82 \times 8))]$

 $h = 8.04 + 0.0061 \times [2515.5]$

h = 8.04 + 15.3445

$$h = 23.384 \, \frac{kJ}{kg_{dryAir}}$$

With enthalpy \simeq 23.5, through the chart we have that:

Wet-Bulb Temperature $\simeq 6.5$

Mass of Water Vapor:

$$m_v = \frac{P_v V_v}{R_v T}$$

$$m_v = \frac{0.99 \ x \ (10 x 5 x 4)}{0.4615 \ x \ (273 + 8)} = \frac{198}{129.68}$$
 = 1.53 kg of water vapor

BY CHART:

Specific Humidity / Absolute Humidity = $0.0061 \frac{kg_{vapour}}{kg_{dryAir}}$

Wet-Bulb Temperature = Wet-Bulb Temperature $\simeq 6.5$

 $\textbf{Mass of Water Vapor} = 1.50 \ kg \ \text{of water vapor}$

- Wet-Bulb Temperature $\simeq 6.5$
- Absolute Humidity = $0,0060 \frac{kg_{vapour}}{kg_{dryAir}}$
- Mass of Water Vapor = 1.50 kg of water vapor

02.

Building height = 2.5m Floor area = 200 m² Number of occupants = 2 Number of bedrooms = 1 Wall area = 144 m²

Comfortable thermal condition – Summer: 24°C Comfortable thermal condition – Winter: 20°C

$$\Delta T_{cooling} = 31.1 - 24 = 7.1 \,^{\circ}C$$

 $\Delta T_{heating} = 20 - 4.1 = 15.9 \,^{\circ}C$

Internal Gains:

$$\dot{Q}_{ig_{sensible}} = 136 + 2.2A_{cf} + 22N_{oc}$$

$$\dot{Q}_{ig_{sensible}} = 136 + 2.2 \times 200 + 22 \times 2$$

$$\dot{Q}_{ig_{sensible}} \, = \, 620 \, W$$

$$\dot{Q}_{ig_{latent}} = 20 + 0.22 A_{cf} + 12 N_{oc} = 20 + 0.22 x 200 + 12 x 2 = 88 W$$

$$\dot{Q}_{ig_{latent}} = 20 + 0.22 \times 200 + 12 \times 2$$

$$\dot{Q}_{ig_{latent}} = 88 W$$

Infiltration:

Good Construction
$$\longrightarrow$$
 $A_{ul} = 1.4 \frac{cm^2}{m^2}$

$$A_{es}$$
 (wall + roof) = 144 + 200 = 344 m^2

$$A_L = A_{es} x A_{ul} = 344 x 1.4 = 481.6 cm^2$$

$$IDF_{\text{heating}} = 0.065 \frac{L}{s. cm^2}$$

$$IDF_{cooling} = 0.050 \frac{L}{s. cm^2}$$

$$\dot{Q}_{i_{\text{heating}}} = A_L x IDF = 481.6 x 0.063 = 30.34 \frac{L}{s}$$

$$\dot{Q}_{i_{cooling}} = A_L x IDF = 481.6 x 0.032 = 15.41 \frac{L}{s}$$

$$\Delta T_{cooling} = 31.1 - 24 = 7.1 \,^{\circ}C$$

 $\Delta T_{heating} = 20 - 4.1 = 15.9 \,^{\circ}C$

Table 5 Typical IDF Values, L/(s·cm²)

Н,			ting De peratur		Cooling Design Temperature, °C					
m	-40	-30	-20	-10	0	10	30	35	40	
2.5	0.10	0.095	0.086	0.077	0.069	0.060	0.031	0.035	0.040	
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.043	
4	0.14	0.12	0.11	0.093	0.079	0.065	0.034	0.042	0.049	
5	0.16	0.14	0.12	0.10	0.086	0.069	0.036	0.046	0.055	
6	0.18	0.16	0.14	0.11	0.093	0.072	0.039	0.050	0.061	
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.068	
8	0.22	0.19	0.16	0.14	0.11	0.079	0.043	0.058	0.074	

Ventilation:

$$\dot{Q}_v = 0.05A_{cf} + 3.5(N_{br} + 1)$$

$$\dot{Q}_{inf-ventilation_{heating}} = 30.34 + 17 = 47.34 \frac{L}{s}$$

$$\dot{Q}_v = 0.05 \times 200 + 3.5 \times 2$$

$$\dot{Q}_{inf-ventilation_{cooling}} = 15.41 + 17 = 32.41 \frac{L}{s}$$

$$= 32.41 \frac{L}{s}$$

$$\dot{Q}_v = 17 \frac{L}{s}$$

$$\dot{Q}_{inf-ventilation_{
m heatingsensible}} = C_{sensible} \times V \times \Delta T_{
m heating} = = 1.23 \times 47.34 \times 15.9$$

$$\dot{Q}_{inf-ventilation_{\rm heating latent}} = C_{latent} \times V \times \Delta \omega_{heating} = 3010 \times 47.34 \times 0.0046$$

$$\dot{Q}_{inf-ventilation_{coolingsensible}} = C_{sensible} \times V \times \Delta T_{cooling} = 1.23 \times 32.41 \times 7.1$$

$$= 283.04 W$$

$$\dot{Q}_{inf-ventilation_{coolinglatent}} = C_{latent} \times V \times \Delta \omega_{cooling} = 3010 \times 32.41 \times 0,0045 = 438.99 W$$

$$= 438.99 W$$

 $\Delta\omega_{heating} = 0.0075 - 0.0029 = 0.0046$ $\Delta\omega_{cooling} = 0.0143 - 0.0098 = 0.0045$

