Package 'rbc'

November 6, 2024

140vember 0, 2024
Title Regression by Composition
Version 0.1.0
Description Flexible statistical modelling using a modular framework for regression, in which groups of transformations are composed together and act on probability distributions.
License MIT + file LICENSE
Depends R (>= 2.10)
Imports Formula, R6
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
NeedsCompilation no
Author Daniel Farewell [aut, cre, cph] (https://orcid.org/0000-0002-8871-1653), Simon Schoenbuchner [ctb] (https://orcid.org/0000-0003-4892-2170)
Maintainer Daniel Farewell <farewelld@cardiff.ac.uk></farewelld@cardiff.ac.uk>
Repository CRAN
Date/Publication 2024-11-06 21:00:01 UTC
Contents
AIC.RegressionByComposition append_flow Bernoulli coef.RegressionByComposition fitted.RegressionByComposition logLik.RegressionByComposition LogNormal Moebius

13

Normal	٠	•	 ٠	•	 •	٠	•		•	•	٠	٠	•	•	•		•	٠	٠	O
Power																				7
predict.RegressionByComposition .																				7
rbc																				8
residuals.RegressionByComposition																				9
Scale																				9
ScaleOdds																				10
ScaleRisk0																				10
ScaleRisk1																				10
starr																				11
summary.RegressionByComposition																				11
Translate																				12
TranslateRisk1																				12
vcov.RegressionByComposition																				12

AIC.RegressionByComposition

Compute Akaike Information Criterion from a regression by composition

Description

Compute Akaike Information Criterion from a regression by composition

Usage

Index

```
## S3 method for class 'RegressionByComposition' AIC(object, ..., k = 2)
```

Arguments

object a RegressionByComposition object; usually the result of a call to rbc()
... ignored
k numeric, the *penalty* per parameter to be used; 'k = 2' is the classical AIC.

append_flow 3

append_flow

Append a flow to a CompositeFamily object

Description

Append a flow to a CompositeFamily object

Usage

```
append_flow(family, flow)
```

Arguments

family a CompositeFamily object flow a Flow object

Value

a new CompositeFamily object

Examples

```
append_flow(Normal(0, 1), Translate)
Reduce(append_flow, list(Scale, Translate), init = Normal(0, 1))
```

Bernoulli

Bernoulli distribution as a CompositeFamily

Description

Bernoulli distribution as a CompositeFamily

Usage

```
Bernoulli(prob = 0.5)
```

Arguments

prob

the probability of a success

Value

```
a new BinaryFamily object
```

```
dist <- Bernoulli()
dist$probability()</pre>
```

 ${\tt coef.RegressionByComposition}$

Extract regression coefficients from a regression by composition

Description

Extract regression coefficients from a regression by composition

Usage

```
## S3 method for class 'RegressionByComposition' coef(object, \dots)
```

Arguments

```
object a RegressionByComposition object; usually the result of a call to rbc()
... ignored
```

 ${\it fitted.} Regression By Composition\\$

Compute fitted values from a regression by composition

Description

Compute fitted values from a regression by composition

Usage

```
## S3 method for class 'RegressionByComposition' fitted(object, \dots)
```

Arguments

object a RegressionByComposition object; usually the result of a call to rbc()
... further arguments passed to the R6 method \$fitted() associated with the model's CompositeFamily

logLik.RegressionByComposition

Extract log-likelihood from a regression by composition

Description

Extract log-likelihood from a regression by composition

Usage

```
## S3 method for class 'RegressionByComposition'
logLik(object, ...)
```

Arguments

object a RegressionByComposition object; usually the result of a call to rbc() ... ignored

LogNormal

Lognormal distribution as a CompositeFamily

Description

Lognormal distribution as a CompositeFamily

Usage

```
LogNormal(meanlog = 0, sdlog = 1)
```

Arguments

meanlog the mean of the logarithm

sdlog the standard deviation of the logarithm

Value

a new ContinuousFamily object

```
dist <- LogNormal()
log(dist$quantile(0.95))</pre>
```

Normal Normal

Moebius

Moebius flow

Description

Moebius flow

Usage

Moebius

Format

An object of class Flow (inherits from R6) of length 6.

Normal

Normal distribution as a CompositeFamily

Description

Normal distribution as a CompositeFamily

Usage

```
Normal(mean = 0, sd = 1)
```

Arguments

mean the mean

sd the standard deviation

Value

```
a new ContinuousFamily object
```

```
dist <- Normal()
dist$quantile(0.95)</pre>
```

Power 7

Power flow

Description

Power flow

Usage

Power

Format

An object of class Flow (inherits from R6) of length 6.

```
predict.RegressionByComposition
```

Compute predicted values from a regression by composition

Description

Compute predicted values from a regression by composition

Usage

```
## S3 method for class 'RegressionByComposition'
predict(object, newdata, ...)
```

Arguments

 $object \qquad \qquad a \ Regression By Composition \ object; \ usually \ the \ result \ of \ a \ call \ to \ rbc()$

newdata data.frame containing new data

.. further arguments passed to the R6 method \$fitted() associated with the model's

CompositeFamily

8 rbc

rbc

Fit a regression by composition model

Description

Fit a regression by composition model

Usage

```
rbc(formula, init, flows, family, data, par, hessian = TRUE)
```

Arguments

formula	a formula object, with model components separated by 'l'
init	the initial distribution
flows	a list of flows
family	(optional) an object of class 'CompositeFamily'; if supplied, 'init' and 'flows' are ignored $% \left(1\right) =\left(1\right) \left(1\right) \left($
data	a data frame
par	a vector of starting values
hessian	logical; use Hessian matrix in model fitting?

Value

an rbc object

```
## Annette Dobson (1990)
## "An Introduction to Generalized Linear Models".
## Page 9: Plant Weight Data.
ctl <- c(4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33, 5.14)
trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
dobson <- data.frame(</pre>
  weight = c(ctl, trt),
  group = gl(2, 10, 20, labels = c("Ctl", "Trt"))
)
dobson_fit <- rbc(weight ~ 1 | 1 + group,</pre>
  init = Normal(0, 1),
  flows = list(Scale, Translate),
  data = dobson
starr_fit <- rbc(
  height \sim 1 \mid 0 + I((280 + age)^{-1})) \mid 1 \mid 1,
  init = LogNormal(),
  flows = list(Power, Moebius, Scale, Translate),
```

```
data = subset(starr, id %in% unique(id)[1:10])
)
```

 $residuals. {\tt RegressionByComposition}$

Compute 'residuals' from a regression by composition

Description

Compute 'residuals' from a regression by composition

Usage

```
## S3 method for class 'RegressionByComposition'
residuals(object, ...)
```

Arguments

```
object a RegressionByComposition object; usually the result of a call to rbc() ... ignored
```

Value

a vector of probabilities of the same length as the data

Scale

Scale flow

Description

Scale flow

Usage

Scale

Format

An object of class Flow (inherits from R6) of length 6.

10 ScaleRisk1

ScaleOdds

ScaleOdds flow

Description

ScaleOdds flow

Usage

ScaleOdds

Format

An object of class Flow (inherits from R6) of length 6.

ScaleRisk0

 $ScaleRiskO\:flow$

Description

ScaleRisk0 flow

Usage

ScaleRisk0

Format

An object of class Flow (inherits from R6) of length 6.

ScaleRisk1

ScaleRisk1 flow

Description

ScaleRisk1 flow

Usage

ScaleRisk1

Format

An object of class Flow (inherits from R6) of length 6.

starr 11

starr

Growth from birth to 3 years in healthy babies in the US

Description

Growth from birth to 3 years in healthy babies in the US

Usage

starr

Format

starr:

A data frame with 104,798 rows and 5 columns:

id Anonymized identifier

sex Sex of baby

age Age of baby, in days

height Jittered height of baby, in cm

weight Jittered weight of baby, in kg ...

Source

doi:10.5061/dryad.4j0zpc8jf

References

doi:10.1186/s12874024021451

summary.RegressionByComposition

Summary of a regression by composition

Description

Summary of a regression by composition

Usage

```
## S3 method for class 'RegressionByComposition'
summary(object, compact = FALSE, ...)
```

Arguments

object a RegressionByComposition object; usually the result of a call to rbc()

compact logical; should coefficients from all flows be compressed into a single matrix?

... ignored

Translate

Translate flow

Description

Translate flow

Usage

Translate

Format

An object of class Flow (inherits from R6) of length 6.

TranslateRisk1

TranslateRisk1 flow

Description

TranslateRisk1 flow

Usage

TranslateRisk1

Format

An object of class Flow (inherits from R6) of length 6.

vcov.RegressionByComposition

Extract variance-covariance matrix from a regression by composition

Description

Extract variance-covariance matrix from a regression by composition

Usage

```
## S3 method for class 'RegressionByComposition' vcov(object, \dots)
```

Arguments

object a RegressionByComposition object; usually the result of a call to rbc() ... ignored

Index

```
* datasets
    Moebius, 6
    Power, 7
    Scale, 9
    ScaleOdds, 10
    ScaleRisk0, 10
    ScaleRisk1, 10
    starr, 11
    Translate, 12
    TranslateRisk1, 12
{\tt AIC.RegressionByComposition, 2}
{\tt append\_flow}, {\tt 3}
Bernoulli, 3
coef.RegressionByComposition, 4
{\it fitted.} \\ {\it RegressionByComposition}, \\ 4
logLik.RegressionByComposition, 5
LogNormal, 5
Moebius, 6
Normal, 6
Power, 7
predict.RegressionByComposition, 7
rbc, 8
residuals.RegressionByComposition, 9
Scale, 9
ScaleOdds, 10
ScaleRisk0, 10
ScaleRisk1, 10
starr, 11
\verb|summary.RegressionByComposition|, 11|\\
Translate, 12
TranslateRisk1, 12
vcov.RegressionByComposition, 12
```