



# Design, Implementation and Evaluation of an Incremental Nonlinear Dynamic Inversion Controller for a Nano-Quadrotor

Entwurf, Implementierung und Evaluierung eines Inkrementellen Nichtlinearen Dynamischen Inversionsreglers für einen Nano-Quadrotor

# Semesterarbeit

Author: Evghenii Volodscoi

Matriculation number: 03663176

Supervisor: Dr. Ewoud Smeur



# **Statutory Declaration**

I, Evghenii Volodscoi, declare on oath towards the Institute of Flight System Dynamics of Technische Universität München, that I have prepared the present Semester Thesis independently and with the aid of nothing but the resources listed in the bibliography.

This thesis has neither as-is nor similarly been submitted to any other university.

Garching,



# Kurzfassung

Deutsche Kurzfassung der Arbeit.

#### **Abstract**

English abstract of the thesis.



## **Table of Contents**

| 1  | Introduction                                  | 1 |
|----|-----------------------------------------------|---|
|    | 1.1 Motivation                                | 1 |
|    | 1.2 Contribution of the Thesis                | 1 |
|    | 1.3 Structure of the Thesis                   | 1 |
| 2  | Theoretical Background                        | 2 |
|    | 2.1 General Equations of Motion               | 2 |
|    | 2.2 Nonlinear Dynamic Inversion               | 2 |
|    | 2.3 Incremental Nonlinear Dynamic Inversion   | 2 |
|    | 2.3.1 INDI inner loop                         | 2 |
|    | 2.3.2 INDI outer loop                         | 2 |
| 3  | Implementation                                | 3 |
|    | 3.1 Research Quadrotor                        | 3 |
|    | 3.2 Simulink Model                            | 3 |
|    | 3.2.1 Purpose                                 | 3 |
|    | 3.2.2 Structure                               | 3 |
|    | 3.2.3 Simulation Results                      | 3 |
|    | 3.3 Implementation on Hardware                | 3 |
|    | 3.3.1 Structure of the Code                   | 3 |
|    | 3.3.2 Testing with contact Forces and Moments | 3 |
| 4  | Results                                       | 4 |
| 5  | Discussion                                    | 5 |
| Αp | opendix                                       | i |



# **List of Figures**



# **List of Tables**



# **Table of Acronyms**

**Acronym Description** 

ADF Automatic Direction Finder
ADI Automatic Direction Indicator



# **Table of Symbols**

#### **Latin Letters**

| Symbol | Unit Description |                            |
|--------|------------------|----------------------------|
| F      | N                | Force                      |
| g      | $m/s^2$          | Gravitational acceleration |

#### **Greek Letters**

| Symbol   | Unit | Description                             |
|----------|------|-----------------------------------------|
| $\alpha$ | rad  | Angle of attack                         |
| ζ        | _    | Damping of a linear second order system |
| Indices  |      |                                         |
|          |      |                                         |

## Symbol Unit Description

m Variable related to pitch moment

W Wind



- 1 Introduction
- 1.1 Motivation
- 1.2 Contribution of the Thesis
- 1.3 Structure of the Thesis



## 2 Theoretical Background

#### 2.1 General Equations of Motion

#### General:

- Linear Momentum
- Angular Momentum
- Attitude differential equations
- Position differential equations
- External forces and moments

with some of the used assumptions

### 2.2 Nonlinear Dynamic Inversion

- Theory from Sieberling paper.

#### 2.3 Incremental Nonlinear Dynamic Inversion

- Here only the general principle is provided, next subsections show the full derivation of the two controller loops.

#### 2.3.1 INDI inner loop

- Derivation of the inner INDI loop (detailed equations).

#### 2.3.2 INDI outer loop

- Derivation of the outer INDI loop (detailed equations).



## 3 Implementation

#### 3.1 Research Quadrotor

- Some facts about Crazyflie hardware (foto, uC frequency, weight, length)

#### 3.2 Simulink Model

#### 3.2.1 Purpose

- Estimation of relevant components (Matrices...)
- Testing of the PD-gains
- Testing the filter

#### 3.2.2 Structure

- Parameters
- Actuator dynamics
- Filter
- Images of the Simulink model

#### 3.2.3 Simulation Results

# 3.3 Implementation on Hardware

#### 3.3.1 Structure of the Code

#### 3.3.2 Testing with contact Forces and Moments



# 4 Results



# 5 Discussion



# **Appendix**