

FIG. 1 (PRIOR ART)

FIG. 2

250

FIG. 3

Cycle	MPY 326	ALU A	ALU B	RRAM 304	IRAM 308	ROM 312
1				read b_r	read b_i	read c_r
2						read c_i
3	$b_r * c_r$					read c_i
4	$b_i * c_i$					read c_r
5	$b_r * c_i$					
6	$b_i * c_r$	$A = b_r * c_r$				
7		$A_0 = A - (b_i * c_i)$				
8			$B = b_r * c_i$			
9			$B_0 = B + (b_i * c_r)$			
10				write b_r	write b_i	
11						
12						

FIG. 4A

FIG. 4B

Cycle	MPY 326	ALU A	ALU B	RRAM 304	IRAM 308	ROM 312
1	1	0	1	1	1	1
2	1	1	0	1	1	1
3	1	1	0	0	0	1
4	1	0	1	0	0	1

FIG. 5A

Cycle	MPY 326	ALU A	RRAM 304	IRAM 308	ROM 312
1			read b_r		read c_r
2				read b_i	read c_i
3	$b_r * c_r$				read c_i
4	$b_i * c_i$				read c_i
5	$b_r * c_i$			read a_r	read c_r
6	$b_i * c_r$	$A = b_r * c_r$			read a_i
7		$A = A - b_i * c_i$			
8			$B = b_r * c_i$		
9			$A_i = a_r * A$		
			$B = B + (b_i * c_r)$		
10				$B_1 = a_r * B$	write A_1
11				$B_0 = a_i + B$	write B_1
12					write B_0

FIG. 5B

Cycle	MPY 326	ALU A	ALU B	RAM 304	IRAM 308	ROM 312
1	1	1	1	1	1	1
2	1	1	1	1	1	1
3	1	1	1	1	1	1
4	1	1	1	1	1	1

```

Group = 1;

Block = FFT Length / 2;           /* 64 or 32 */

R2P = Log (FFT Length);          /* 7 or 6 */

for(i=0;i<R2P;i++)               /* radix 2 pass counter */

{
    Aiptr=0;                      /* initialize A imaginary pointer */
    Arptr=0;                      /* initialize A real pointer */
    Biptr=Block;                  /* initialize B imaginar pointer */
    Brptr=Block;                  /* initialize B real pointer */

    for(j=0;j<Group;j++)
    {
        for(k=0;k<Block;k++)
        {
            /* perform butterfly here */

            ar = *Arptr;             /* fetch data */
            ai = *Aiptr;
            br = *Brptr;
            bi = *Biptr;

            rtemp = br * cr - bi * ci; /* perform complex multiply */
            itemp = br * ci + bi * cr;

            *Arptr++ = ar - rtemp;   /* update and write back data */
            *Aiptr++ = ai - itemp;
            *Brptr++ = ar + rtemp;
            *Biptr++ = ai + itemp;
        }

        Aiptr+=block;              /* update addresses to next group */
        Arptr+=Block;
        Biptr+=Block;
        Brptr+=Block;
    }

    Block>>=1;                   /* update block size for next radix 2 pass */
    Group<<=1;                   /* update group size for next radix 2 pass */
}

```

FIG. 5C

Cycle	MPY 326	ALU 330	RRAM 304	IRAM 308
1			read b_2	read x_{n-2}
2			read b_1	read x_{n-1}
3	$b_2 * x_{n-2}$		read b_0	read x_n
4	$b_1 * x_{n-1}$		read a_2	read y_{n-2}
5	$b_0 * x_n$		read a_1	
6	$a_2 * y_{n-2}$	$A = b_2 * x_{n-2}$		
7	$a_1 * y_{n-1}$	$A = A + (b_1 * x_{n-1})$		
8		$A = A + (b_0 * x_n)$		
9		$A = A + (a_2 * y_{n-2})$		
10		$A_0 = (A + (a_1 * y_{n-1})) * 2$		
11				
12				write $y_n (A_0)$

FIG. 6A

Cycle	MPY 326	ALU 330	RRAM 304	IRAM 308
1	1	1	1	1
2	0	1	1	1
3	1	1	1	1
4	1	1	1	1
5	1	0	1	0
6	1	1	0	1

FIG. 6B

FIG. 6C

FIG. 6D

Address	Initial Data	Data n=0	Data n=1	Data n=2	Data n=3
0	y ₋₂				
1	y ₋₁ ~ 655	y ₋₁ ~ 659	y ₋₁ ~ 663	y ₋₁ ~ 667	y ₋₁ ~ 671
2	x ₋₂	y ₀	y ₀	y ₀	y ₀
3	x ₋₁	x ₋₁	y ₁	y ₁	y ₁
4	x ₀	x ₀ 602	x ₀	y ₂	y ₂
5	x ₁	x ₁	x ₁ 604	x ₁	y ₃
•	•	•	x ₂	x ₂	y ₄
•	•	•	•	x ₃	•
•	•	•	•	•	•
•	•	•	•	•	•
124	x ₁₂₀	x ₁₂₀	x ₁₂₀	x ₁₂₀	y ₁₂₂
125	x ₁₂₁	x ₁₂₁	x ₁₂₁	x ₁₂₁	y ₁₂₃
126	x ₁₂₂				
127	x ₁₂₃				

FIG. 6E

Cycle	MPY 326	ALU 330	RRAM 304	IRAM 308
1			read b_2	read x_{n-2}
2			read b_1	read x_{n-1}
3	$b_2 * x_{n-2}$		read b_0	read x_n
4	$b_1 * x_{n-1}$		read a_2	read yl_{n-2}
5	$b_0 * x_n$			read y_{n-2}
6	$a_2 * yl_{n-2}$	$A = b_2 * x_{n-2}$	read a_1	
7	$a_2 * y_{n-2}$	$A = A + (b_1 * x_{n-1})$		
8	$a_1 * yl_{n-1}$	$A = A + (b_0 * x_n)$		
9	$a_1 * y_{n-1}$	$A = A + (a_2 * yl_{n-2})$		
10		$A = A + (a_2 * y_{n-2})$		
11		$A = A + (a_1 * yl_{n-1})$		
12		$A_0 = A + (a_1 * y_{n-1})$		
13				
14				
15				
16				
17				write $yl_n (B_0)$
16				write $y_n (A_0)$

FIG. 7A

Cycle	MPY 326	ALU 330	RRAM 304	IRAM 308
1	0	1	1	1
2	0	1	1	1
3	1	1	1	1
4	1	0	1	1
5	1	0	0	1
6	1	1	1	0
7	1	1	0	0
8	1	1	0	1
9	1	1	0	1

FIG. 7B

Address	Initial Data	Data n=0	Data n=1	Data n=2	Data n=121
0	y _{h_2}				
1	y _{h_1}	755	y _{h_1}	y _{h_1}	y _{h_1}
2	y _{l_2}	y _{h_0}	y _{h_0}	y _{h_0}	y _{h_0}
3	y _{l_1}	y _{l_1}	y _{h_1}	y _{h_1}	y _{h_1}
4	x ₂	y _{l_0}	y _{l_0}	y _{h_2}	• • •
5	x ₁	x ₋₁	y _{l_1}	y _{h_2}	y _{h_2}
•	x ₀	x ₀	x ₀	y _{l_1}	y _{h_3}
•	•	x ₁	x ₁	y _{l_2}	y _{h_4}
•	•	•	x ₂	x ₂	•
•	•	•	•	x ₃	•
124	x ₁₁₈	x ₁₁₈	x ₁₁₈	x ₁₁₈	y _{h_120}
125	x ₁₁₉	x ₁₁₉	x ₁₁₉	x ₁₁₉	y _{h_121}
126	x ₁₂₀				
127	x ₁₂₁				

FIG. 7C

FIG. 8