Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 1 514 950 A1 (11)

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 16.03.2005 Bulletin 2005/11

(51) filt cl.7: C22C 38/00, C22C 38/58, C21D 9/08

(21) Application number: 03733478.6

(86), International application number: RCT/JP2003/007709

The pare of the property of the state of the property of the parent of the property of the pro WO 2004/001082 (31.12.2003 Gazette 200

அ (84) Designated Contracting States வாக்க அண்டு வி AT BE BG CH CY CZ DE DK EE ES FI FR GB GR

HUIE IT LI LUIMO NL PT RO SE SI SK TR Large the tight of the part of the contract of the antique to the *(30)*Priority: 19.06.2002 JP. 2002178974 *****

102:06:2003 JP 2003156234 (中国中国 電流)

(71): Applicants: JFE Steel Corporation (1) Tokyo, 100-0011 (JP)

-1 (72) "Inventors; and the control of the same and a second second begin to the same training of the same second as TEN ●TENDURA, Mitsuo, c/o'JFE STEEL CORPORATION (\$1.5 100) TO THE TOTAL AND THE STEEL CORPORATION (\$1.5 100) TO THE TOTAL AND THE STEEL CORPORATION (\$1.5 100) TO THE TOTAL AND THE STEEL CORPORATION (\$1.5 100) TO THE TOTAL AND THE STEEL CORPORATION (\$1.5 100) TO THE TOTAL AND THE STEEL CORPORATION (\$1.5 100) TO THE TOTAL AND THE STEEL CORPORATION (\$1.5 100) TO THE TOTAL AND THE STEEL CORPORATION (\$1.5 100) TO THE STEEL COR Chiyoda-ku, Tokyo 100-0011 (JP)

Pro MAMARI, Takanoria O vidodi isterio Chiyoda-ku, Tokyo 100-0011 (JP) THE STEEL CORPORATION токуо 18.04.2003 «JР. 20031-14775 в за челе зак ректос Chiyoda-ku, Tokyo 100-0011 (JP)

THE PROPERTY OF A PROPERTY OF (74), Representative: Grünecker, Kinkeldey, Stockmair & Schwanhäusser Anwaltssozietät Maximilianstrasse,58, - api sa especiale cale was the second to the second of the second of the second of the second by the second of the second o

STAINLESS-STEEL PIPE FOR OIL WELL AND PROCESS FOR PRODUCING THE SAME to grade in the first of the control of tailmilial matrice Control of the asserting of the control of the contr

· 通知。李·伊·西州·西州 (1987年) · 西州 (1987年) · 西州

media i echectori i izzula<u>n est deligere pti dones di Pantaolles i las semisevedi succes. I anch</u>

less of P; 0.005% or less of S; 14.0% to 18.0% of Cr; 5.0% to 8.0% of Ni; 1.5% to 3.5% of Mo; 0.5% to 3.5% of Cu; 0.05% or less of Al; 0.20% or less of V; 0.01% to 0.15% of N; and 0.006% or less of O on a mass basis, and satisfies the following expressions: Cr + 0.65Ni + 0.6Mo + 0.55Cu - 20C ≥ 18.5 and Cr + Mo + 0.3Si - 43.5C 0.4Mn - Ni - 0.3Cu - 9N ≤ 11 (where Cr, Ni, Mo, Cu, C Si, Mn, and N represent their respective contents (mass%)). After such a steel pipe material is formed into a steel pipe, the steel pipe is quenched by cooling after heating to a temperature of the Aca transformation point or more and tempered at a temperature of the Act trans-

A steel composition contains: 0.05% or less of formation point or less. The composition may further C; 0.5% or less of Si, 0.20% to 1.80% of Mn; 0.03% or "contain at least one element of No and Ti; at least-one of Cr. element selected from the group consisting of Zr, B, and W; or Ca; singly or in combination. Preferably; the steel pipe has a martensitic structure containing 5 to 25 percent by volume of a residual austenite phase, or further containing 5% percent by volume or less of a ferrite phase. Thus, the resulting stainless steel pipe for oil country tubular goods exhibits a superior corrosion resistance éven in extremely severe, corrosive environments containing carbon dioxide gas (CO2), chloride ions (CF), or the like?

Printed by Jouve, 75001 PARIS (FR)

Description

5

10

15

25

30

35

50

55

Technical Field

[0001] The present invention relates to steel pipes for oil country tubular goods used in crude oil wells and natural gas wells. In particular, the present invention relates to an improvement of corrosion resistance to extremely severe, corrosive environment in which carbon dioxide gas (CO₂), chloride ions (Cl⁻), and the like are present.

Background Art

[0002] Deep oil wells, which have not conventionally been regarded at all, and corrosive sour gas wells, the development of which was abandoned for a time, have recently been developed increasingly on a world scale in order to cope with increase of crude oil price and anticipated oil resource depletion in the near future. These oil wells and gas wells generally lie at great depths in a severe, corrosive environment of a high-temperature atmosphere containing corrosive substances, such as CO₂ and Cr. Accordingly, steel pipes for oil country tubular goods used for digging such an oil or gas well have to-be highly-strong and corrosion-resistant.

[0003] In general, highly CO₂ corrosion resistant 13%-Cr martensitic stainless steel pipes are used in oil wells and gas wells whose atmospheres contain CO₂, Chror the like. However, conventional martensitic stainless steels cannot wear in environments at high temperatures of more than 100°C containing a large amount of Cl. Accordingly, two-phase stainless steel pipes are used in oil wells requiring corrosion resistance. Unfortunately, the two-phase stainless steel pipes contain large amounts of alloying elements to reduce the hot workability. Consequently, they must be manufactured only by special heat-treatment due to their reduced hot workability, and besides, they are disadvantageously expensive. Accordingly, an inexpensive 13%-Cr martensitic stainless steel-based pipe for oil country tubular goods having a superior hot workability and CO₂ corrosion resistance has been strongly desired. On the other hand, oil well development in cold districts has recently become active, and, accordingly, superior toughness at low temperatures is often required in addition to high strength the strength active, and, accordingly, superior toughness at low temperatures is

[0004] To these demands; improved martensitic stainless steels (or steel pipes) based on a 13%-Cr martensitic stainless steel (or steel pipe), having an enhanced corrosion resistance have been proposed in, for example, Japanese Unexamined Patent Application Publication Nos. 8-120345; 9-268349, and 10-1755 and Japanese; Patent Nos. 2814528 and 3251648.

[0005] Japanese Unexamined Patent Application Publication No. 8-120345 has disclosed a method for manufacturing a seamless martensitic stainless steel pipe having a superior corrosion resistance. For a steel composition of a 13%-Cr martensitic stainless steel pipe, the C content is limited to the range of 0.005% to 0.05%, 2.4% to 6% of Ni and 0.2% to 4% of Cu are added in combination, and 0.5% to 3% of Mo is further added. Furthermore, Ni_{eq} is set at 10.5 or more. This steel material is subjected to hot working, subsequently cooled at air cooling speed or more, and then tempered. Alternatively, after being cooled, the steel material is further heated to a temperature between A_{C3} transformation point ± 10°C and A_{C3} transformation point + 200°C, or a temperature between A_{C1} transformation point and A_{C3} transformation point, subsequently cooled to room temperature at air cooling speed or more, and then tempered. According to this method, a seamless martensitic stainless steel pipe is achieved which has a high strength of the grade API-C95 or grater, corrosion resistance in environments at 180°C or more containing CO₂, and SCC resist-

[0006] Japanese Unexamined Patent Application Publication No. 9-268349 has disclosed a method for manufacturing a martensitic stainless steel having a superior stress-corrosion cracking resistance to sulfides. In this method, a steel composition of a 13%-Cr martensitic stainless steel contains 0.005% to 0.05% of C. 0.005% to 0.1% of N, 3.0% to 6.0% of Ni, 0.5% to 3% of Cu, and 0.5% to 3% of Mo. After hot working and being left to cool down to room temperature, this steel material is heated to a temperature between (A_{C1} point + 10°C) and (A_{C1} point + 40°C) for 30 to 60 minutes, then cooled to a temperature of Ms point or less, and tempered at a temperature of A_{C1} point or less. Thus, the resulting steel has a structure in which tempered martensite and 20 percent by volume or more of γ phase are mixed. According to this method, the sulfide stress-corrosion cracking resistance is remarkably enhanced by forming a martensitic structure containing 20 percent by volume or more of γ phase.

[0007] Japanese Unexamined Patent Application Publication No. 10-1755 has disclosed a martensitic stainless steel containing 10% to 15% of Cr, having a superior corrosion resistance and sulfide stress-corrosion cracking resistance. This martensitic stainless steel has a composition in which the Cr content is set at 10% to 15%; the C content is limited to the range of 0.005% to 0.05%; 4.0% or more of Ni and 0.5% to 3% of Cu are added in combination; and 1.0% to 3.0% of Mo is further added. Furthermore, Ni_{eq} of the composition is set at -10 or more. The structure of the martensitic stainless steel contains a tempered martensitic phase, a martensitic phase, and a residual austenitic phase. The total percentage of the tempered martensitic phase and the martensitic phase is set in the range of 60% to 90%. According to this disclosure, corrosion resistance and sulfide stress-corrosion cracking resistance in environments where wet

carbon dioxide gas or wet hydrogen sulfide is present are enhanced:

[0008] Japanese Patent No. 2814528 relates to an oil well martensitic stainless steel product having a superior sulfide stress-corrosion cracking resistance. This steel product has a steel composition containing more than 15% and 19% or less of Cr. 0.05% or less of C. 0.1% or less of N, 3.5% to 8.0% of Ni, and 0.1% to 4.0% of Mo, and simultaneously satisfying the relationships: 30Cr + 36Mo + 14Si - 28Ni ≤ 455 (%); and 21Cr + 25Mo + 17Si + 35Ni ≤ 731 (%). According to this disclosure, the resulting steel product exhibits a superior corrosion resistance in severe environments in oil wells where chloride ions, carbon dioxide gas, and a small amount of hydrogen sulfide gas are present.

[0009] Japanese Patent No. 3251648 relates to a precipitation hardening martensitic stainless steel having superior strength and toughness. This martensitic stainless steel has a steel composition containing 10.0% to 17% of Cr, 0.08% or less of C, 0.015% or less of N, 6.0% to 10.0% of Ni, 0.5% to 2.0% of Cu, and 0.5% to 3.0% of Mo. The structure of the steel is formed by 35% or more cold working and annealing and it has a mean crystal grain size of 25 μm or less and precipitates with a particle size of 5 × 10-2 μm or more in the matrix. The number of the precipitates is limited to 6 × 106 per square millimeter or less? According to this disclosure, a high-strength precipitation hardening martensitic stainless steel in which toughness degradation does not occur can be achieved by forming a structure containing fine

with Active on the all great response demonstrate from the control of the control

a Disciosure of the ention material of the entire of the e

[0010] However, improved 13%-Cr martensitic stainless steel pipes manufactured by the techniques of Japanese Unexamined Patent Application Publication Nos. 8-120345; 9-268349, and 10-1755 and Japanese Patent Nos. 2814528 and 3251648 do not stably exhibit desired corrosion resistance in severe, corrosive environments at temperatures of more than 180°C containing CO₂; CI; or the like:

[0011] In view of the circumstances of the known arts stated above, the present invention has been achieved. The object of the present invention is to provide an inexpensive, corrosion-resistant stainless steel pipe for oil country tubular goods, preferably a high-strength stainless steel pipe for oil country tubular goods, having a superior hot workability and exhibiting a superior CO₂ corrosion resistance even in severe; corrosive environments at temperatures of more than 180°C containing CO₂, Ch, or the like.

[0012] The present invention is as follows:

(4) Printing appropriate appropriate printing in the printing of the printi

(1) A corrosion-resistant stainless steel pipe for oil country tubular goods having a steel composition comprising, on a mass basis, 0.05% or less of C; 0.50% or less of Si; 0.20% to 1.80% of Mn; 0.03 or less of P; 0.005% or less of S; 14.0% to 18.0% of Cr; 5.0% to 8.0% of Ni; 1.5% to 3.5% of Mo; 0.5% to 3.5% of Cu; 0.05% or less of Al; 0.20% or less of V; 0.01% to 0.15% of N; 0.006% or less of O and the balance being Fe and incidental impurities. The composition satisfies expressions (1) and (2):

35

40

$$Cr + 0.65Ni + 0.6Mo + 0.55Cu + 20C \ge 18.5$$
 (1)

The contraction assembles a published a problem of the contraction of

and the control of the second of the control of the

 $81354 + 823574 + 81337 + Cr + Mo. + 0.3Si - 43.5C - 0.4Mn - Ni - 0.3Cu - 9N <math>\leq 11 + 1.000$ (2)

് ോട്ട്,where Cr, Ni, Mo, Cu, C, Si, Mn, and N represent their respective contents on a mass% basis. 🧸

- (2) A corrosion-resistant stainless steel pipe for oil country tubular goods according to (1) in which the composition further contains at least one element of 0.20% or less of Nb and 0.30% or less of Ti on a mass basis.
- (3) À corrosion-resistant stainless steel pipe for oil country tubular goods according to (1) or (2) in which the composition further contains at least one element selected from the group consisting of 0.20% or less of Zr, 0.01% or less of W on a mass basis.
- - (5) A stainless steel pipe for oil country tubular goods according to any one of (1) to (4) and whose structure includes 5 to 25 percent by volume of a residual austenitic phase and the balance being a martensitic phase.
 - (6) A corrosion-resistant stainless steel pipe for oil country tubular goods according to any one of (1) to (4) and whose structure includes 5 to 25 percent by volume of a residual austeritic phase, 5 percent by volume or less of a ferrite phase, and the balance being a martensitic phase.
 - (7) A method for manufacturing a corrosion-resistant stainless steel pipe for oil country tubular goods including the steeps of: forming a steel pipe from a steel pipe material having a composition; quenching the steel pipe by heating the steel pipe to a temperature of the A_{C3} transformation point thereof or more and subsequently cooling to room temperature at air-cooling speed or more; and then tempering the steel pipe at a temperature of the A_{C1}

transformation point thereof or less. The composition contains, on a mass basis, 0.05% or less of C; 0.50% or less of Si; 0.20% to 1.80% of Mn; 0.03 or less of P; 0.005% or less of S; 14.0% to 18.0% of Cr; 5.0% to 8.0% of Ni; 1.5% to 3.5% of Mo; 0.5% to 3.5% of Cu; 0.05% or less of Al; 0.20% or less of V; 0.01% to 0.15% of N; 0.006% or less of O, and the balance being Fe and incidental impurities, and the composition satisfies expressions (1) and (2):

 $Cr + Mo + 0.3Si - 43.5C - 0.4Mn - Ni - 0.3Cu - 9N \le 11$ (2)

where Cr, Ni, Mo, Cu, C; Si, Mn, and N represent their respective, contents. See 1918 (8) A method for manufacturing a stainless steel pipe for oil country tubular goods according to (7) in which the composition further contains at least one element of 0.20% or less of Nb and 0.30% or less of Ti.on a mass basis. (9) A method for manufacturing a stainless steel pipe for oil country tubular goods according to (8) in which the quenching includes heating to a temperature in the range of 800 to 1100°C and cooling to room temperature at air-cooling speed or more, and the tempering is performed at a temperature in the range of 500 to 630°C. (10) A method for manufacturing a stainless steel pipe for oil country tubular goods according to any one of (7) to

(9) in which the composition further contains at least one element selected from the group consisting of 0.20% or less of Zr, 0.01% or less of B, and 3.0% or less of W on a mass basis and the contains at least one element selected from the group consisting of 0.20% or less of Zr, 0.01% or less of B, and 3.0% or less of W on a mass basis and the contains at least one element selected from the group consisting of 0.20% or less of Zr, 0.01% or less of B, and 3.0% or less of W on a mass basis and the contains at least one element selected from the group consisting of 0.20% or less of Zr, 0.01% or less of B, and 3.0% or less of W on a mass basis and the contains at least one element selected from the group consisting of 0.20% or less of Zr, 0.01% or less of B, and 3.0% or less of W on a mass basis and the contains at least one element selected from the group consisting of 0.20% or less of W on a mass basis and the contains at least one element selected from the group consisting of 0.20% or less of W on a mass basis and the contains at least one element selected from the group consisting of 0.20% or less of W on a mass basis and the contains at least one element selected from the group consisting of 0.20% or less of W on a mass basis and the contains at least one element selected from the group consisting of 0.20% or less of W on a mass basis and the contains at least one element selected from the group consisting of 0.20% or less of W on a mass basis and the contains at least one element selected from the group consisting of 0.20% or less of W on a mass basis and the contains at least one element selected from the group contains at least one element selected from the group contains at least one element selected from the group contains at least one element selected from the group contains at least one element selected from the group contains at least one element selected from the group contains at least one element selected from the group contains at least one element selected from the group contains at least one ele

(10) in which the composition further contains 0.0005% to 0.01% of Ca on a mass basis. (112) A method for manufacturing a corrosion-resistant seamless stainless steel pipe for oil country tubular goods, including the steps of: forming a steel pipe from a steel pipe material having a composition by hot working; cooling the steel pipe to room temperature at air-cooling speed or more, or quenching the steel pipe by further heating to a temperature of the A_{C3} transformation point thereof or more; and cooling to room temperature at air-cooking speed or more; and then tempering the steel pipe at a temperature of the A_{C1} transformation point thereof or less. The composition contains, on a mass basis, 0.05% or less of C; 0.50% or less of Si; 0.20% to 1.80% of Mn; 0.03 or less of P; 0.005% or less of S; 14.0% to 18.0% of Cr; 5.0% to 8.0% of Ni; 1.5% to 3.5% of Mo; 0.5% to 3.5% of Cu; 0.05% or less of Al; 0.20% or less of V; 0.01% to 0.15% of N; 0.006% or less of O; and the balance being Fe and incidental impurities, and the composition satisfies expressions (1) and (2);

$$Cr + 0.65Ni + 0.6Mo + 0.55Cu + 20C \ge 18.5^{-2}$$
 (1)

Commence of the second second second

The secretary of the second sections in the second section is

 $Cr + Mo + 0.3Si - 43.5C - 0.4Mn - Ni - 0.3Cu - 9N \le 11$ (2)

明月 (1) 2000

where Cr, Ni, Mo, Cu, C, Si, Mn, and N represent their respective contents on a mass% basis.

(13) A method for manufacturing a seamless stainless steel pipe for oil country tubular goods according to (12) in which the composition further contains at least one element of 0.20% or less of Nb and 0.30% or less of Ti on a mass basis mass basi

(14) A method for manufacturing a seamless stainless steel pipe for oil country tubular goods according to (13) in which the quenching includes heating to a temperature in the range of 800 to 1100° C and cooling to room temperature at air-cooling speed or more, and the tempering is performed at a temperature in the range of 500 to 630°C. (15) A method for manufacturing a seamless stainless steel pipe for oil country tubular goods according to any one of (12) to (14) in which the composition further contains at least one element selected from the group consisting of 0.20% or less of Zr, 0.01% or less of B, and 3.0% or less of Won a mass basis to the contract of t

(16) A method for manufacturing a seamless stainless steel pipe for oil country tubular goods according to any one of (12) to (15) in which the composition further contains 0.0005% to 0.01% of Ca on a mass basis.

Best Mode for Carrying Out the Invention

. The later property to the $p_{ij} \sim 2 \pi \epsilon_{ij} \sim 2 \pi \epsilon$

[0013] "High strength" in the present invention refers to a strength (yield strength: 550 MPa or more) that conventional 13%-Cr martensitic stainless steel pipes for oil country tubular goods have, and preferably to a yield strength of 654 MPa or more:

[0014] In order to accomplish the above-described objects, the inventors of the present invention have conducted

5

10

15

20

25

30

35

intensive research on the effects of alloying element contents to corrosion resistance in corrosive environments at high temperatures in the range of more than 180°C to 230°C containing CO2, CI, or the like, based on the compositions of the improved 13%-Cr martensitic stainless steel pipes. A compared to the property of [0015] As a result, it has been found that both of a favorable hot workability and a superior corrosion resistance in severe, corrosive environments can be ensured by reducing the C content to be lower than that of the known 13%-Cr martensitic stainless steels and adding suitable amounts of Ni, Mo, and Cu to adjust alloying element contents, so as to satisfy following expressions (1) and (2): mad months to more in meeting (Assis and Months) | New Towaliste | 1.000 (1.000 | 1. and Chromos the contract many of the property $Cr + Mo + 0.3Si - 43.5C - 0.4Mn - Ni - 0.3Cu - 9N \le 11$ (2) Transmission of the second second second in the contract of the parties of the second contract of the second of wherein Cr, Ni, Mo, Cu, C, Si, Mn, and N represent their respective contents (mass%). Furthermore, it has been found that a high strength of 654 MPa or more in terms of yield strength can be ensured. [0016] The present invention has been completed based on these findings. [0017] The reason why the steel compositions are controlled will now be explained. Hereinafter, mass percent is expressed by simply % to 0 stone with a control of the stone of a discrete control of the stone of the 20 [0018] C is an essential element relating to the strength of martensitic stainless steel, but a C content of more than 0.05% promotes sensitization at the stage of tempering due to the presence of Ni. In order to prevent the sensitization at the stagesof tempering, the C-content is limited to 0.05% or less; in the present invention. In view of corresion resistance, it is preferable that the C content be set as lower as possible. Preferably, it is 0.03% or less. More preferably, itiis set in the range of:0:01% to 0:03%. His and the many medical primary and the section of th ार गाँउने बार्ट माराखार जिल्हामा स्थान भारत स्थान । स्थान स्थान स्थान स्थान Si: 0.50% or less [0019] The element Si serves as a deoxidizer, and, preferably, its content is 0.05% or more in the present invention. However, a content of more than 0.50% reduces the CO2 corrosion resistance and further reduces the hot workability. Accordingly the Si content is limited to 0.50% or less. Preferably, it is set in the range of 0.10% to 0.30% or less. กข่างสาวไทย์ 20% เอาโทย ความสาย ความสาย การ เกาะ การ การ การ การ การ การ การ เล่า โดย เดิม เดิม เดิม เดิม เดิม [0020] The element Mn enhances steel strength. In order to ensure a strength desired in the present invention, the Mn content has to be 0:20% or more: However, a content of more than 1:80% negatively affects the toughness. Accordingly, the Mn content is limited to the range of 0.20% to 1.80%. Preferably, it is set in the range of 0.20% to 1.00%. More preferably, it is set in the range of 0.20% to 0.80%. The contract of the ্ৰানীৰ Pil0:03%fortless% এবিট্টেপ্টেই নাট্টেই সাল্ডিই সাল্ডি নাটা ভালচাই কল্মান্ড মান্ত মান্ত মান্ত সাল্ডিই নাটা [0021] The element P negatively affects the CO2 corrosion resistance, CO2 stress-corrosion cracking resistance, pitting corrosion resistance, and sulfide stress-corrosion cracking resistance, and it is preferable that the P.content be reduced as low as possible. However, an excessive reduction of P content increases cost. Accordingly, the P content is limited to 0.03% or less so as to allow industrial production at a low cost and prevent the degradation of CO2 corrosion 40 % resistance, CO2 stress-corrosion cracking resistance, pitting corrosion resistance, and sulfide stress-corrosion resistance. ance. Preferably, it is set/at/0.02%tor/lessure Research 2016 and Told about a 2010 of the research and a research ti militibles: 0.005% ordess beliba ed varmimed to the second of the second order of the second of t [0022] of The element Seriously reduces hot workability in manufacture of pipes, and the Scontent is, preferably, as Towas possible. A Stcontent of 0.005% or less makes it possible to manufacture pipes through a common process, and, therefore, the Scontent is limited to 0.005% or less. Preferably, it is set at 0.003% or less: 10.0 Chill 4.0% to 18:0% and substitution of the second in the light of the second contact and the second of the s [0023] The element Cr forms a protective film on the surface of steel to increase the corrosion, resistance, and particularly to increase the CO2 corrosion resistance and CO2 stress-corrosion cracking resistance in the present invention a Cricontent of 14:0% or more is necessary from the viewpoint of increasing the corrosion resistance at high 50 (temperatures: However, a content of more than 18.0% reduces the hot workability. Accordingly, the Cr content is limited to the range of 14:0% to 18.0%, in the present invention. Preferably, it is set in the range of 14.5% to 17.5%. Ni:5:0% tó 8:0% Mag [0024] The element Ni strengthens the protective film on the surface of steel enhance the CO2 corrosion resistance and CO2 stress-corrosion cracking resistance, pitting corrosion resistance, and sulfide stress-corrosion cracking resistance. Furthermore, it has the effect of a solid solution strengthening and, accordingly, increases steel strength. These effects are exhibited when the Ni content is 5.0% or more. However, a content of more than 8.0% reduces the stability of the martensitic structure to decrease the strength. Accordingly, the Ni content is limited to the range of 5.0% to 8.0%. Preferably, it is set in the range of 5.5% to 7.0%.

EP 1 514 950 A1 Mo: 1.5% to 3.5% [0025] The element Mo enhances the resistance to pitting by Cl., and a content of 1.5% or more is necessary in the present invention. While a content of less than 1.5% does not efficiently achieve the corrosion resistance in severe, corrosive environments at high temperatures, a content of more than 3.5% causes the formation of δ -ferrite to reduce the hot workability, CO2 corrosion resistance, and CO2 stress-corrosion cracking resistance and increases cost. Accordingly, the Moccontent is limited to the range of 1.5% to 3.5%. Preferably, it is set in the range of 1.5% to 2.5%. The second and was a second as the second as Cu: 0.5% to 3.5% [0026] The element Cu strengthens the protective film on the surface of the steel to prevent from hydrogen-penetration into the steel, thereby enhancing the sulfide stress-corrosion cracking resistance. This effect is achieved when the Cu content is 0.5% or more. However, a content of more than 3.5% allows CuS to precipitate in grain boundaries to reduce the hot workability. Accordingly, the Cu content is limited to the range of 0.5% to 3.5%. Preferably, it is set in the range of 0.5% to 2.5%. Al: 0.05% or less [0027] The element Al has a strong effect of deoxidation, but a content of more than 0.05% negatively affects the Toughness of the steel. Accordingly, the Al content is limited to 0.05% or less. Preferably, it is set in the range of 0.01% to 0.03%. ាស្តាល់ក្នុង ប្រជាពលរដ្ឋ នេះ បានប្រជាពលរដ្ឋ នេះ បាន បានប្រជាពលរដ្ឋ នេះ បានប្រជាពលរដ្ឋ នេះ បានប្រជាពលរដ្ឋ នេះ ប V: 0.20% or less [0028] The element V enhances the strength of steel and also has the effect of improving the stress-corrosion cracking resistance. These effects are noticeably exhibited when the V content is 0.03% or more. However, a content of

ing resistance. These effects are noticeably exhibited when the V content is 0.03% or more. However, a content of more than 0.20% reduces the toughness. Accordingly, the V content is limited to 0.20% or less. Preferably, it is set in the range of 0.03% to 0.08%.

[0029] The element N extremely enhances the pitting corrosion resistance. This effect is exhibited when the N content is 0.01% or more. However, a content of more than 0.15% allows the formation of various nitrides to reduce the toughness. Accordingly, the N content is limited to the range of 0.01% to 0.15%. Preferably, it is set in the range of 0.03% to 0.15%, and more preferably in the range of 0.03% to 0.08%.

[0030] ** The element O is present in oxide forms in steel and negatively affects various characteristics. It is, therefore, preferable to be reduced as low as possible. In particular, an O content of more than 0.006% seriously, reduces the hot workability, CO₂ stress-corrosion cracking resistance, pitting corrosion resistance, sulfide stress-corrosion cracking resistance; and toughness. Accordingly, the O content is limited to 0.006% or less reduced a decordingly, the O content is limited to 0.006% or less reduced a decordingly or [05:0] [0031] in the present invention, the above-described basic composition may further contain at least either 0.20% or less of NB or 0.30% or less of Tiest and 50:00 and 10:00 and 10

[0032] Both the elements Nb and Ti enhance the strength and the toughness; and particularly increase the strength remarkably by tempering at a relatively low temperature in the range of 500 to 630°C. This effect is noticeably exhibited when the Nb and Ti contents are 0.02% or more and 0.01% or more; respectively. On the other hand, a Nb content of more than 0.30% reduce the toughness. In addition; Ti has the effect of improving the stress corrosion cracking resistance. Accordingly, the Nb content is preferably limited to 0.20% or less, and the Ti content of the stress corrosion cracking resistance. Accordingly, the Nb content is preferably limited to 0.20% or less, and the Ti content of the stress of the st

[0033] **In the present invention, the above-described composition may further contain at least one element selected from the group consisting of 0.20% or less of Zr, 0.01% or less of B, and 3.0% or less of Was in a pide of the strength and at least one of them may be added if necessary. In addition to the effect of increasing the strength, Zr, B, and W can improve the stress-corrosion cracking resistance. These effects are noticeably exhibited when the composition contains 0.01% or more of Zr, 0.0005% or more of B, or 0.1% or more of W. On the other hand, if the composition contains more than 0.20% of Zr; more than 0.01% of B, or more than 3.0% of W, the toughness is reduced. Accordingly, the Zr content is preferably limited to 0.20% or less; the B content, 0.01% of less, and the W content, 3.0% or less, all the composition may further contain 0.0005% to 0.01% of Capacitan and a strength of Capacitan and a stren

[0035] In the present invention, the composition may further contain 0.0005% to 0.01% of Cabb to 1.0005 [0036] The element Ca forms CaS to fix the element S and, thus, to spheroidize sulfide inclusions, thereby reducing lattice distortion of the matrix in the vicinity of the inclusions to reduce the capability of trapping hydrogen of the inclusions advantageously. This effect is achieved when the Ca content is 0.0005% or more. However, a content of more than 0.01% increases CaO, and reduces the CO₂ corrosion resistance and pitting resistance. Accordingly, the Ca content is preferably limited to the range of 0.0005% to 0.01%.

(1)

25

Cr + Mo + 0.3Si - 43.5C - 0.4Mn - Ni - 0.3Cu - 9N ≤ 11

(2)

Te wherein Cr, Ni, Mo, Cu, C, Si, Mn, and N represent their respective contents....

CONTROL OF THE POST OF THE PROPERTY OF THE STATE OF

By adjusting the Cr, Ni, Mo, Cu, and C contents so as to satisfy expression (1), the corrosion resistance in environments at high temperatures up to 230°C including CO₂ or Cl⁻ is remarkably increased. Also, by adjusting the Cr, Mo, Si, C, Mn, Ni, Cu, and N contents so as to satisfy expression (2), the hot workability is enhanced. In the present invention, P, S, and O contents are significantly reduced in order to enhance the hot workability. However, reducing the P, S, and O contents is not enough to ensure a hot workability sufficient to produce seamless martensitic stainless steel pipes. In order to ensure a hot workability sufficient to make seamless martensitic stainless steel-pipes, it is important to extremely reduce the P, S, and O contents, and besides to adjust the Cr, Mo, Si, C, Mn, Ni, Cu, and N contents so as to satisfy expression (2):

[0039] wo The balance of the foregoing elements is Fe and incidental impurities at the comprising 5% to 25% of residual austenite phase on a volume basis and the balance being a martensite phase. Alternatively, the steel pipe of the present invention has a structure comprising 5% to 25% of residual austenite phase, 5% or less of ferrite phase, and the balance being real martensite phase on a volume basis. Los

[0041] Although the structure of the steel pipe of the present invention is essentially composed of the martensite phase, the martensite phase, preferably, contains 5% to 25% of a residual austenite phase, or further contains 5% or a less of a ferrite phase; on a volume basis.

[0042] By allowing 5 percent by volume or more of residual austenite phase to be present, a high toughness can be achieved. However, more than 25 percent by volume of residual austenite phase reduces the strength. Accordingly, it is preferable that the percentage of the residual austenite phase is set in the range of 5 to 25 percent by volume. In addition, in order to enhance the corrosion resistance, it is preferable that 5 percent by volume or less of ferrite phase is allowed to be present. However, more than 5 percent by volume of ferrite phase remarkably reduces the hot workability. Accordingly, it is preferable that the percentage of the ferrite phase is set at 5 percent by volume or less of [0043] A method for manufacturing the steel pipe of the present invention will now be described taking a seamless steel pipe as an example 3 percent by the test additional austenite phase is set at 5 percent by volume or less of [0043] and a seamless steel pipe as an example 3 percent by the test additional austenite phase is set at 5 percent by volume or less of [0043] and [0043]

[0044] First, it is preferable that a molten steel having the above-described composition be melted by a conventional steel making process using a converter, an electric furnace, a vacuum melting furnace, or the like, and then formed into a steel pipe material, such as, a billet by a conventional method, such as continuous casting or ingot making-slabbing. Then, the steel pipe material is heated and subjected to hot working to make a pipe by a common manufacturing process, such as that of Mannesmann-plug mill or Mannesmann-mandrel mill. Thus a seamless steel pipe with a desired size is yielded. After pipe making, the resulting seamless steel pipe is preferably cooled to room temperature at air-cooling speed or more.

[0045] The seamless steel pipe having the above-described steel composition can be given a structure mainly composed of a martensite phase by cooling at air-cooling speed or more after hot working. After the cooling at air-cooling speed or more, preferably, quenching is performed in which the steel pipe is heated again to a temperature of the A_{C3} transformation point or more and cooled to room temperature at air-cooling speed or more. Thus, the martensitic structure can be refined and the toughness of the steel can be increased.

[0046] Preferably, the quenched seamless steel pipe is subjected to tempering by being heated to a temperature of the A_{C1} transformation point or less. By heating to a temperature of the A_{C1} transformation point or less, preferably to 400°C or more, for tempering, the resultant structure comprises a tempered martensite phase, further comprises a residual austenite phase, or still further comprises a small amount of ferrite phase in some cases. Thus, the resulting seamless steel pipe exhibits a desired strength, a desired toughness, and a desired, superior corrosion resistance.

[0047] Only tempering may be performed without quenching.

[0048] The description above illustrates a steel pipe of the present invention taking the seamless steel pipe as an example, but the present invention is not limited to this form. A steel pipe material having the composition within the scope of the present invention may result in an electric welded steel pipe or a UOE steel pipe used as a steel pipe for oil country tubular goods through a conventional process. However, for the electric welded steel tube and UOE steel pipe, it is preferable that, after pipe making, the pipe is quenched by heating the pipe again to a temperature of the A_{C3} transformation point or more and cooling to room temperature at air-cooling speed or more, and is subsequently tempered at a temperature of the A_{C1} transformation point or less.

[0049] In the case of a steel pipe having a composition containing at least one element of Nb and Ti, quenching includes heating to a temperature of 800 to 1100°C, and cooling to room temperature at air-cooling speed or more. Also, tempering is preferably performed at a temperature in the range of 500 to 630°C. By subjecting the steel pipe having the composition containing at least one element of Nb and Ti to these quenching and tempering, a sufficient amount of fine precipitates can occur to achieve a high strength of 654 MPa or more in terms of yield strength.

35

.. 50

[0050] A quenching temperature of less than 800°C does not sufficiently achieve the effect of tempering to provide a desired strength. On the other hand, a quenching temperature of more than 1100°C coarsens the crystal grains to reduce the toughness of the steel. While a tempering temperature of less than 500°C does not pricipitate a sufficient amount of precipitations, a tempering temperature of more than 630°C remarkably reduces the strength of the steel.

(Examples)

[0051] The present invention will be further described in detail with reference to Examples.

(Example 1)

The sect of the company of the section

April 18 Sept. 18 Sept. 18 Sept. 18 May 18 May 18 Sept. 1

international programmes and the contract of t

and the second of the second of the second of the second of

with the second of the second

and the property of the contract of the contra

्र कर्मानुष्यान्तर्भात्रम् । एतः वर्षास्तर्भातः । पूज्यानिकः स्वर्धनः । अस्य स्थानः

化精油水管 网络小女女女子 计通路操作 医内侧皮 化二氯化二二甲酚

in the wind of the control of the co

and the second responsible to the second of the second of

the first of the second of the

the property of the state of th

والمراجع ويعفه والمنصران والمراجع والمراجع والمراجع

the state of the s

[0052] After degassing, each molten steel having a composition shown in Table 1 was cast into a steel ingot of 100 kgf (980 N). The ingot was subjected to hot working to make a pipe with a model seamless rolling mill, followed by air cooling to yield a seamless steel pipe with an outer diameter of 3.3 in. by a thickness of 0.5 in. [0053] The hot workability was evaluated by visually observing the presence of cracks in the internal and external surfaces of the resulting seamless steel pipe as air-cooled after pipe making. [0054] The seamless steel pipe was cut into a test piece. The test piece was heated at 920°C for 1 hour and then water-cooled. The test piece was further subjected to tempering at 600°C for 30 minutes. It was ensured that quenching was performed on each sample at a temperature of its A_{C3} transformation point or more, and that tempering was performed at a temperature of its A_{C1} transformation point or less. The quench-tempered test piece was machined into a corrosion-test piece of 3 mm in thickness by 30 mm in width by 40 mm in length, followed by a corrosion test. Some of the steel pipe samples were subjected to only tempering without quenching. [0055] In the corrosion test, the test piece was immersed in a test solution being 20% NaCl aqueous solution placed in an autoclave (solution temperature: 230°C, CO₂ gas atmosphere at a pressure of 100 atmospheres) and was allowed entral pases open evenues analyst up of helpothers to keep for 2 weeks. [0056] The test piece after the corrosion test was weighed, and the corrosion rate was obtained from the difference between the weight of the test piece before the test and that after the test. The surface of the corrosion test piece after the test was observed to check for the occurrence of pitting with a loupe of a magnification of 10 times and an a [0057] The results are shown in Table 2.77

and the contract of the contra

and the control of th

1995年,大學2015年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年

1. "我们就是我们的,我们就是我们的,我们就是我们的,我们就是我们的。""我们的,我们就是我们的。"

and the second of the second o

 $oldsymbol{a}_{i}$, which is the state of the state of

The second of the second of the second of the second of the second of the second of the second of the second of

· 1967年 1967年 1964年 1965年 1965年 1965年 1967年 1

图 15 文字 "我的Mind 有力,但对你是有这次的"真的人类的人"。 语识之外

The contract of the state of th

in the contract of the contract of the first of the contract o

- Program of the angle of the

"我们的我们,我们就是我们的我们的我们的我们的我们的,我们就是我们的人们的,我们就会不会不是一个。" "我们我们的我们的我们的我们就是我们的我们的我们的我们就是我们的我们的我们的我们就是我们的我们的我们的我们就是我们的我们的我们的我们的我们的我们就是我们的我们

and the second consequences of the second consequences and the second consequences of the second conse

三、大学的大学的"我们",他们们还是想到了"我们"的一个"我们"的一个"我们"。

the second secon

And the second of the second o

the contract of the contract o

and the second of the second o

en en la companya de la co

35

The transport of the second of the second of

				•					-	•					_		- ··	· 	<u>.</u>	-				
5			21.57 22.48	Remarks	100	Example	Example	Example	yo: Example.	Example	Example	Example	Example	€ Example	Example	Comparative Example	Comparative	Comparative	Comparative	Comparative	Example	Example	Example	
10		·		Expression-	(2)	139,5225	9.005	9.7535	.(9.6415	9.1695	10.096	10.914	10.512	10.425	10.4495	C12.38Z	60.7009	8.4245	9 982	C	9,00	12.1545	-1 .9.45	
15	. · ·	<u>.</u>	7 1	Expression	(1)	ં ડેલ9,11	19.22	20.78	23.20.62	20.51	21.20	21.82	21.95	22.40	23.33	22.44	11.218.78	18.28	18 56	_	ा ंस्य ∤ 18.64	o .d21.52	J. 10.19.10	
				1	Other	-	Nb: 0.026	Zr: 0.017	Ti: 0.034		Ti: 0.021, B: 0.001	Ca: 0.002	Nb: 0.019, Ca: 0.001	W. 0.270	B. 0.001		-	Ti 0.024				Nb: 0.033	.	
20		•	•		0	0.0019	0.0025	0.0037	0.0021	0.0018	0.0019	0.0026	0.0036	0.0030	0.0016	0.0028	0.0017	0.0074		0.0020	0.0034	0.0028	(0.0019	
25		٠	•		Z	0.059	0,082	-0:043	0,072	0 033	0:039	0.054	0.095	0.066	0.069	0,056	0 108	0.100	7 000	RCO.	0.058	0.062	0.038	
	ş.·	<i>:</i> ·		-	>	0.049	0.051	0.059	0.048	0.040	0.041	0.030	0.052	0.049	0 042	0 048	0.055	0.00	0.040	0.063	0.065	0.056	0.045	
30	. •	er .		(%58	n _O	¹ 0.65	0.59	1.05	ા.63	0.77	1.14	0.88	1.02	0.64			20.74			,0.69	0.73	0.57	0.26	
	<i>:</i>	•	<u>,</u> 1	em) suc	Ψ	1.60	1.50	2.04	2.49(1.75	1.66	2.17	1.52	1 69,		- 6				1.53	0.56	1.96	1	
35		• .		nnosilic	Ž	5.19	5.50	6.12	5.59	6.27	5.93	6.05	5.99	6 54	7.05	בי בי מי	5	6.19		4.55	5.27	5.15	5.19	,
			.•	Chemical compositions (mass%)	ה ה	14.8	14.9	15.3	15.1	15.5	16.2	16.5	16.9	17.3	47.7	7.7	7.	REI !	4.0	14.7	14.8	17.1	14.6	_
40	•	45	1	Ther		0.01	0.01	0.02	0.01	0.02	0.0 0.01	0 0	0.02	0.0			0.0	0.01	0.01	0.02	10:0	0.02		7
40					Ü	0.001	0.001	0.001	0.002	0.001	0.001	0.00	000	000		00.0		0.00	0.002	0.002	0.001	0.001	0.001	
		·	•	3		0.02	0.02	0 03	0.01	0.01	0.02	0 03	0.0	70	10.0	L0.0	0.05	0.02	0.01	0.03	10.01	0.02	0.02	
45	• • • • • • • • • • • • • • • • • • •	· ;	•		7.82	0.48		1	0.50	0.47	0.40	0.44	. J. O. A.		5 1 .	0.49	0.50	0.45	0.49	0.45	0.44		0.39	· 4
			uriqui e i			0 19	0.20	0.24	0.20	000	22.0	- 3.0	0 33	3 6	0.70	0.27	0.27	0.28	0.31	0.26	0.33		0.35	,
50		Ţ		5.		0 019	+	- 1			0.027	0.064	0.020	0.010	0.026	0.017	0.034	0.022	0.045	0.020	0.016	0.021	0.026	7,0,0
<i>55</i>			Table		Steel	0 0 0								r	-	7	×		Σ.	Z	0	۵	. c	· }
				•						•						•	•							

9

5	Bomarke			Example	Example ,	Example	Example	Example	Example	Example	Example	Ęxample	Example	Comparative Example	Example						
10	000	D	Pitting	: Good :	Good:	Good.	Good	Good,	Good	Good	Good	Good	Good	Good	Good	Good	Good	Bad	Good	Bad	Good
15	Ourreion recietance		Corrosion rate (mm/yr)	0.113	133. 0,1023. C	0,091!	0.092	0.091	0.063	0.061	0.045	0.036	0.044	0.036	0.149) 0.162 ₍	0.132	0.179	0.078	0.119	0.107
20	Lot morrobility	mot workability	Crack	Good:	Goods:	. Good	Good.:	Good	Good	, Good	Good	Good	Good	Good	Good	Good	Good	Bad 1	Good	Good	Good
25	3	Ď.	Cooling	"Alr"	U Aif	Air	: Air	O Alf	· Air:	Air	Air	Ąir	, Air	Air	Air	Air	Air	Ali	Air	Air	Air
<i>30</i>	Table 2	lemperiig	Temp (°C)	25 (1009	7.5 '9.009' v	009. ()	aa, i 009-		. √ €009.	009	009		009.	600	009	009	009	009	009	009	009
35		Bulu:	Cooling	, Wir.	Air	4 - Air	Air	· Air	HVE	. Air	Air	Air	Air	Air	Alr	Air	Air	Air	Air	Air	,
40			(Če)	91 (920)	920	1920	920	920	920	. 920	920	920	920	056	920	6		920	920	920	
45		Cooling after pipe- making		Air " " C	Air	Air Air	Alr' (Air U	Alr u	Y Y Y Y	Air	Air	Air	Air	Air	Air		Air	Air	Alr	Air
50		Steel No.		A	В	 O	(/) :Q:	ш	р , Б	5	エ	-	, L	×		S W K	Z,	0	C	σ	A
55		Steel pipe No.		-	2	ဇ	4	£	. 9	7	8	6	10		12	13	14	15	16	17	18

[0058] Each example of the present invention exhibited no occurrence of cracks in the steel pipe surfaces, a low corrosion rate, and no occurrence of pitting. Hence, it has been shown that the steel pipes of these examples have a superior hot workability and a superior corrosion resistance in a severe, corrosive environment at a high temperature of 230°C containing CO₂. In contrast, comparative examples outside the scope of the present invention exhibited occurrence of cracks, thus showing a reduced hot workability, or exhibited a high corrosion rate, thus showing a reduced corrosion resistance. In particular, there were surface flaws in the steel pipes of comparative examples not satisfying expression (2) due to a reduced hot workability.

(Example 2)

10

15

[0059] After sufficient degassing, each molten steel having a composition shown in Table 3 was cast into a steel ingot of 100 kgf (980 N). The ingot was formed into a seamless steel pipe with an outer diameter of 3.3 in. by a thickness of 0.5 in. with a model seamless rolling mill.

[0060] After the pipe making, the hot workability was evaluated by visually observing the presence of cracks in the internal and external surfaces of the resulting seamless steel pipe.

[0061] The seamless steel pipe was cut into a test piece. The test piece was subjected to quenching and tempering under the conditions shown in Table 4. An ark-shaped API tensile test piece was taken from the quench-tempered test piece and subjected to a tensile test for the tensile properties (yield strength YS, tensile strength TS). Also, a corrosion-test piece of 3 mm in thickness by 30 mm in width by 40 mm in length was taken from the foregoing quench-tempered test piece by machining, and was subjected to a corrosion test.

[0062] In the corrosion test, the test piece was immersed in a test solution being 20% NaCl aqueous solution placed in an autoclave (solution temperature: 230°C, CO₂ gas atmosphere at a pressure of 30 atmospheres) and was allowed to keep for 2 weeks.

[0063] The test piece after the corrosion test was weighed, and the corrosion rate was obtained from the difference between the weight of the corrosion test piece before the test and that after the test. The surface of the corrosion test piece after the test was observed to check for the occurrence of pitting with a loupe of a magnification of 10 times. The results are shown in Table 4.

30

25

35

40

45

50

the second second second

	the state of the s				ه من ه	<u>, </u>		4	٠ ٠	, <u></u>	~. · · ·	<u></u>		• • • • • •	·	
5	Single of the first of the second of the sec	Remarks		Example	Example	Example	Example	Example	Example	Example	Example	· Example	Example -	Gomparative Example	Example	
	in the part of state of gardening	Expression-		8.45	8C) 80.03	8.58	7.77	10.07	7.16	10.51	10.04		7.38	9.02	10.55	
10		1.55	(1)	19,84	19.78	19.83	20.41	21.20	, 22.22	22:01	22.12	22.31,	18.83	1111	18.61	
15	্ষ্টি ক্ষেত্ৰ স্থানি ক্ষেত্ৰ স্থান্ত কৰা কৰিছিল সংগ্ৰহণ ভাই কৈছিল ক্ষেত্ৰ ক্ষেত্ৰ কৰা কৰিছিল ক্ষেত্ৰ ক্ষেত্ৰ ক্ষেত্ৰ কৰা কৰা কৰা কৰা কৰিছিল		Other	71 T	, 3 ÷ 1 1 1 1 · · ·	ul Dia	Zr: 0.061	B: 0.001	Ca: 0.003	W. 0.220	Zr. 0:083 Ca: 0:001	े पूर विद्या अने	1115 115 115	Żr. 0.024	Ça: 0.003	
20			Ĩ	1	0.077	0.072		0.075	0.038	0.042	0.150	z⊹sz XL¶¹	0.062	0.047	,0.023	
20	e in major e seu ne lijest Le la la la calenda e seu en est	ا خوز د	Q.	0:074	1000000	0.049	0.087	0:038	0,089	0,087		0.078	a su Sony	0,073	0.049	
25	in the second of		: O	0.0019	0.0015	0.0021	0.0027	0.0047	0.0028	0.0017	ğ:0028	0.0051	0.0026	0.0022	0.0019	
23	e e e e e e e e e e e e e e e e e e e		N		0.078	0.045	0.052	0.042	0.320	0.062	0.099	0.029	0.053	0.059	0.071	· Barton All All All All All All All All All Al
30		(mass%)	\ \ \	0.044	0.049	0.035	0.059	0.064	0.080	0.040	0.037	0.049	0.062	0.056	0.051	
		tions (m	3	0.65	0.65	0.71	0.58	1.24	0.62	0.91	0.74	0.63	2.48	0.59	0.53	(C) - (NI) - 0.3 (Cu) - 9 (N)
35	;	compositions	QQ M	├	1.94	2.06	1.63	2.34	1.71	1.77	1.59	2.81	2.57	1.55	3 1.63	-0.3 (C
55		Chamiral		1 0	3 5.85	9 .6.13	1 7.03	4 6.17	8 7.06	7 6.29	2 6.34	1 5.96	5.30	3 5.05	4 4.08	
	•	2	2 0	 	14.9	2 14.9	1 15.1	2 15.4	1 16.8	1 16.7	2 17.2	17.1	┼─	+	15.4	0.55 (Cu) - 20 (C) (C) - 0.4 (Mn) - (N
. 40	• •		A		10.01	0.05	0.01	0.02	10.01	1-	,001 0.02	1001			02 0.02	1 → ₩
			S	O	2 0.001	- 	+	2 0.001	- 	+	-	1-3	-	+	1	≥ '_
4.	5		0	10	+		+	8 0.02		-├		9 0.02		-}-	┥	Mo) + 0.
	-		W	+-	+-	+-	+-			-}-		0.35 0.39		 {		(C) + 0 (C) + 0
5	0		10	10		╌	-		1	-1		+-			-}	<u> </u>
		le 3		0.025				+-	+-		-	+-		多數	-	xpressio
£	· E	Table	Steel	2 8	2 8	3 6	20	25	7,	36	3 5	7.5	, i	3 5	22	

5		Remark		Example.	Example	. Example	Example	Example	Example	Example	Example	.∜ -Example	Example	Comparative	Comparative Example	Comparative Example	Comparative	Example	Example	'	Example	
		stance	Pitting:	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	ے Good	Good	:
10		Corrosion-resistance	Corrosion rate (mm/yr)	0.115 ឆ	0.112	., 0.109 £	0.118	0.104	0.065	0.071	0.053	. 0.049	0.051	0.056	0.172	0.1485 E :	. 0.162	- 0.109-	0.113	-, .0.044 _L	0.046	
15	200000 14.1419 196013 2211	Workability.	Crack 3	Good	: Good :	g Good g	Good	Good	Good	Good	Good .	Good	Good	Bad	Good :	Good	Geod S	Good	Good	Good	Good .	60 60 7
20		34.74	TS MPa	1138 🖫		1123	1049	1032	٠.	996	884	901	. 228	864	1073	3943 ÷	.968	- 934	972	÷783 ··	768.5	or Out
25	* ***** * * * *	Tensile properties	YS MPa	910 8	874	926	89.1	892.	821	836	715	723	720	713	908. 3	875	- 892 -	469.	492	ុំ 603	613	,1 ***
30	Table 4	in Superior	Cooling	Air	Air	1	E Air	S Air S		. Air	Air	Air	Alr	A A	Air	Air s	Àir	3. 3	1 2.00	٠ ,, .	a Alr.	5. • 11
<i>35</i>	. ;	Tempering	Temp.	€ 989	610 ·	£ 230 £		580	. 580	580	580	580	580	580	580	. 580	580	₹ 2009 t	, 009 R	. 5 650 to	640	を存在し 程数で 300円 をかっ 320円
		ching	Cooling	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	· Air	Air	Air	Air	Air	
40		Quenching	Temp (°C)	890	890	890	890	890	890	890	890	890	890	890	890	890	890	780	760	890	910	-
45	•	Cooling after pipe- making		Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	Air	
50		Steel No.		2A	2A	2B	28	2C	2D	2E	2F	26	2H	21	21	X	. 2L	2A	2B	26	2H	
55		Steel pipe No.		21	22	23	24	25		27	28	29	30	3.4	32	33	34	35	36	37	38	

[0064] Each example of the present invention exhibited no occurrence of cracks in the steel pipe surfaces, a low
corresion rate, and no occurrence of pitting. Hence, it was shown that the steel pipes of these examples had a superior
bot workability and a superior corrosion resistance in a severe, corrosive environment at a high temperature of 230°C
containing COs. In contrast, comparative examples outside the scope of the present invention exhibited occurrence
of cracks, thus showing a reduced hot workability, or exhibited a high corrosion rate, thus showing a reduced corrosion
resistance. When the manufacture conditions were outside the preferred ranges as set forth in the present invention,
the strength was reduced and, accordingly, a high yield strength of 654 MPa or more was not achieved.

5 (Example 3) 10 [0065], After sufficient degassing, each molten steel having a composition shown in Table 5 was cast into a steel ingot of 100 kgf (980 N). The ingot was formed into a seamless steel pipe with an outer diameter of 3.3 in. by a thickness of 0.5 in. with a model seamless rolling mill. [0066] The hot workability was evaluated by visually observing the presence of cracks in the internal and external surfaces of the resulting seamless steel pipe, as in Example 1. 15 [0067] The seamless steel pipe was cut into a test piece. The test piece was subjected to quenching and tempering under the conditions shown in Table 6. It was ensured that quenching was performed on each sample at a temperature of its Aca transformation point or more, and that tempering was performed at a temperature of its Ac1 transformation point or less. A structure observation test piece was taken from the quench-tempered test piece. The structure observation test piece was etched by aqua regia. The resulting structure was observed with a scanning electron microscope (1000 times), and the percentage of the ferrite phase (percent by volume) was computed with an image analysis system. The percentage of the residual austenite phase was determined by X-ray diffraction. [0068] An ark-shaped API tensile test piece was taken from the quench-tempered test piece and subjected to a tensile test for the tensile properties (yield strength YS, tensile strength TS), as in Example 1. Also, a V-notch test piece (thickness: 5 mm) was taken from the quench-tempered test piece, in accordance with JIS Z 2202, and the 25 Charpy impact test was performed on the V-notch test piece to determine the absorption energy vE-40 (J) at -40°C in accordance with JIS Z 2242. [0069] Furthermore, a corrosion-test piece of 3 mm in thickness by 30 mm-in-width by 40 mm in length was taken from the foregoing quench-tempered test piece by machining, and was subjected to a corrosion test, as in Example 2. [0070] In the corrosion test, the test piece was immersed in a test solution being 20% NaCl aqueous solution placed in an autoclave (solution temperature: 230°C, CO₂ gas atmosphere at a pressure of 30 atmospheres) and was allowed to keep for 2 weeks. [0071] The test piece after the corrosion test was weighed, and the corrosion rate was obtained from the difference between the weight of the test piece before the test and that after the test. The surface of the corrosion test piece after the test was observed to check for the occurrence of pitting with a loupe of a magnification of 10 times. 35

[0072] The results are shown in Table 6.

14

45

5		Remarks	Example	Example	Example	Example	Example	Comparative Example	Comparative	Comparative (Example			
10		Expression (2)*	8:75	8.86	9.93	9.54	10.45	11.98	6.87.	8.94			and the state of t
15		Expression (1):	20.06	19.57	7, 21.35	4, 20.56 58: (1) 20.56	19:0-1 (21.94	C 31 20.09	C3 4 18.66, 1	18.38 n.			
20		Other	121	0025 -Nb. 0.077	0037 Zr. 0.017, Ca: 0.002	.0021 Ti: 0.034, Nb: 0.058	0.0016 B: 0.001,	0.0028	1,0017g	.0024) Tr. 0.024			
25		N TO SERVICE AND ADDRESS OF THE PARTY OF THE	0.049 0	0.062 0	0.043 0.	0.072 0	0.042 0.069 0.	0.046 0.056 0.	10.055g (0.108 120.	0.048 0.042 0.			
30		2	3 0.82 0.	1.22	1.62 1.09 0.059	2.49 1.63 0.048	57, 0.85, 0.0	2,87 0.67 0.0	1.97 0.71, 30.0	1:55 0.59 0.0		(N) 6 - (n)	
<i>35</i>		composition	2 6.14	 	16.1 6.22 1	15.1 5.59 2	16.8 6.26 1	15.5 4.58 2	13.7 t 16.19 1	14.5 1 6.11	0.55 (Cu)-20 (C)	(C)(+0.4 (Mn) - (Ni) - 0.3 (C	
40		Chemical	1.0.0	0.001 10.01	1	0.001 0.02	0.001 0.01	0,001 0.02°	0,001 0.01	0:002 0.010			
45 ·		F. 1860	0.02	0.02	1	0.41 0.02	0.29 0.02	1.0.35 30:02	30i05	0.29 0.02	0.65 (N) + 0.6	= (Cr) + (Mo) + 0.3 (Si)	
50 Th	<u> </u>	To the second se	0.24	0.21	0.23	0.028 0.20	0.017 0.25	0:024- 0.27	0.0323 0.26v 1.0.33	1		sion (2) = (CI) +	
55	ا ر ر	Steel			30	3D. 0	3E 0	3F*; C	33%	3H.	*) Express	**) Expression (2)	

EP 1-514-950-A1

	•						·									
5			Remark	Ехатрів	Example	Example	Example	Example	⊹Example	Example	Example	Example	Comparative Example	Comparative Example	Comparative Example	Example
10		sion	Pitting	Good	poop ၁	poog	Good	Good	poas	.poog.	Good	Good	-Good	Notes Si	Good	Good
		Corrosion	Corrosion rate (mm/yr)	0,109	70/10/	0.111	0.112	0.058	0.102	0.039	0.105	0.037	960.0	621'0	0.150	0.124
15		Hot workabiliy	Crack	Good	pooģ.	Good	Good	Good	Good) Cood	Good	Good	Bad	Good	Good	Good
20	·	Impact property	Absorbed energy E.40 J	80.2	03486.1;	U 1 83.4	85.7	91.2	95.4	95.9 3	104.3	107:6	7 42.3 %	79.3	77.0	37.5
		sile rties	TS	1021	1047,	1001	1030	1035	974	982	915	907	1149	1095	1046	1018
25		Tensile properties	YS MPa	898	1.792	688	847	820	1771	723	634	599	666	875	827	949
30		Structure	quantity	1	000 1000	0.30 €	0.7	1.5	1.9	3.8	717	<u> </u> 말-	-1 i	123	2.7	
		Struc	quantity Volve	7.1	10.9	6.3	11.2	12.5	.16.3	22.7			3.2	6.1	7.3	1
35		Tempering	Cooling	30 <u>4</u> 1.	: Air:	Air.	Air	Air	Air	Ā	Air	₹	·		Ą	Air
		Tem	Temp ≥)(°C)÷	- 550 m	009 3	200	909	550	550	550	650	920	200	550	540	450
40	. ·	Quenching	Cooling EU	€ (Meg) ÷	· Airs	Air	Air	Air	Air	Air		2 4147 4344		Air	Air	Ą
45		Onei	Тетр (°C)	1890 E	890	890	890	890	890	890	1	890		<u> </u>	890	890
•	•	Cooling	after pipe- making	Air	AIR	SeAjra 3	Air	Air	Air	Air	Air				Air	Air
50	· .	9	Steel No.	3A	3A		38	၁၄	30	3.	1	, Щ	0.3F	36	표	3A
		able	pipe No.	A1	RZ.	, A3	A4	A5 .	A6	A7.	A8	-	=		A12	A13

 γ : residual austenite, α : ferrite (8)

16

55

Each example of the present invention exhibited no occurrence of cracks in the steel pipe surfaces, a low corrosion rate, and no occurrence of pitting; hence it was shown that steel pipes of these examples had a superior hot workability. In addition, their structure containing 5 to 25 percent by volume of residual austenite phase, or further containing 5 percent by volume or less of ferrite phase leads to a superior corrosion resistance in a severe, corrosive environment at a high temperature of 230°C containing CO₂. Furthermore, the strength is as high as 654 MPa or more in terms of yield strength YS and the toughness is as high as 60 J or more in terms of absorbed energy at - 40°C.

[0074] In contrast, comparative examples outside the scope of the present invention exhibited occurrence of cracks, thus showing a reduced hot workability, or exhibited a high corrosion rate, thus showing a reduced corrosion resistance. When the manufacture conditions were outside the preferred ranges as set forth in the present invention, the strength

Industrial Applicability

and set ough as to the great common terms of the compatibility of the common terms of the common of

[0075] According to the present invention, a high-strength martensitic stainless steel pipe for oil country tubular goods can be manufactured at a low cost with stability which has a sufficient corrosion resistance in severe, corrosive environments at high temperatures containing CO₂ or Cl⁻ or which has a high toughness in addition to such a sufficient corrosion resistance, thus producing particularly advantageous industrial effects.

was decreased and, accordingly, a high yield strength of 654 MPa or more was not achieved.

20 Claims

1. A corrosion-resistant stainless steel pipe for oil country tubular goods having a steel composition comprising on a mass basis:

0.05% or less of C; 25 0.50% or less of Si; 0.20% to 1.80% of Mn; 7 0.03 or less of P; 0.005% or less of S; 14.0% to 18.0% of Cr; 30 5.0% to 8.0% of Ni: 1.5% to 3.5% of Mo; 0.5% to 3.5% of Cu; 0.05% or less of Al; 0:20% of less of V; 35 0.01% to 0.15% of N; 0.006% or less of O, and the balance being Fe and incidental impurities, it is the balance being Fe and incidental impurities, it is the balance being Fe and incidental impurities, it is the balance being Fe and incidental impurities, it is the balance being Fe and incidental impurities, it is the balance being Fe and incidental impurities, it is the balance being Fe and incidental impurities, it is the balance being Fe and incidental impurities, it is the balance being Fe and incidental impurities, it is the balance being Fe and incidental impurities, it is the balance being Fe and incidental impurities, it is the balance being Fe and incidental impurities, it is the balance being Fe and incidental impurities, it is the balance being Fe and incidental impurities, it is the balance being Fe and incidental impurities, it is the balance being Fe and incidental impurities, it is the balance being Fe and incidental impurities, it is the balance being Fe and incidental impurities. wherein the composition satisfies expressions (1) and (2): 40 ordered & miss Optignibroppe and particles to waster the solution of the contract of the contract of the solution of

α θεν ετραιτού προτιρί όμε ορομού του του κατολίου του λου με ομένου + 20C ≥ 18.5 Του της στο του του του του του του κατολίου και ο ορομού ορομού ορομού του κατολίου του κατολίου του του του τ

and the control of th

CANNOT OF THE CONTROL OF THE STORY BUT WAS A STORY OF THE CONTROL

(1);

where Cr, Ni, Mo, Cu, C, Si, Mn, and N represent the respective contents thereof on a mass% basis.

2. A stainless steel pipe for oil country tubular goods according to Claim 1, wherein the composition further comprises at least one element selected from the group consisting of 0.20% or less of Nb and 0.30% or less of Ti on a mass above the production of the pro

3. A stainless steel pipe for oil country tubular goods according to Claim@or 2, wherein the composition further comprises at least one element selected from the group consisting of 0.20% or less of Zr; 0.01% or less of B, and 3.0% or less of W on a mass basis:

4. A stainless steel pipe for oil country tubular goods according to any one of Claims 1 to 3, wherein the composition further comprises 0.0005% to 0.01% of Ca on a mass basis.

in mother has a comparison that they have been a consisting in supplied a comparison.

5. A stainless steel pipe for oil country tubular goods according to any one of Claims 1 to 4, wherein the structure thereof includes 5 to 25 percent by volume of a residual austenite phase and the balance being a martensite phase. The first of the f Automorphisms and the contraction of the contractio 6. A stainless steel pipe for oil country tubular goods according to any one of Claims 1 to 4, wherein the structure thereof includes, on a volume basis, 5 to 25 percent by volume of a residual austenite phase, 5 percent by volume or less of a ferrite phase, and the balance being a martensite phase: a sindly promotive beginners to they at my a mark to be well as the promotive explorer transport of the company 7. A method for manufacturing a corrosion-resistant stainless steel pipe for oil country tubular goods comprising the "steps of: forming a steel pipe from a steel pipe material having a composition; quenching the steel pipe by heating the steel pipe to a temperature of the A_{C3} transformation point thereof or more and subsequently cooling to room 10 temperature at air-cooling speed or more; and then tempering the steel pipe at a temperature of the A_{C1} transformation point thereof or less, wherein the composition comprises on a mass basis: 15 0.20% to 1:80% of Mn; 45 1000 0.03 or less of P; 0.005% or less of S; 14.0% to 18.0% of Cr; 5.0% to 8.0% of Ni; 20 1.5% to 3.5% of Mo; * 0.5% to 3!5% of Cu; ** 0.05% or less of Al; 0.20% or less of V; 0.01% to 0.15% of N; 25 0.006% or less of O, and the balance being Fe and incidental impurities, wherein the composition satisfies expressions (1) and (2): Cr + 0.65Ni + 0.6Mo + 0.55Cu + 20C ≥ 18.5 (1); 30 (2),Cr + Mo + 0.3Si - 43.5C - 0.4Mn - Ni - 0.3Cu - 9N ≤ 11 A to size to 1980 D where Cr, Ni, Mo, Cu, C, Si, Mn, and N represent the respective contents thereof on a mass% basis. 35 8. A method for manufacturing a stainless steel pipe for oil country tubular goods according to Claim 7, wherein the composition further comprises at least one element of 0.20% or less of Nb and 0.30% or less of Ti on a mass basis. า วณาธลองจาก หลุงใช่ปกวากและกับของ ค.ศ. ชังบระบบ A method for manufacturing a stainless steel pipe for oil country tubular goods according to Claim 8, wherein the 40 quenching includes heating to a temperature in the range of 800 to 1100°C and cooling to room temperature at air-cooling speed or more, and the tempering is performed at a temperature in the range of 500 to 630°C. 10. A method for manufacturing a stainless steel pipe for oil country tubular goods according to any one of Claims 7 to 9, wherein the composition further comprises at least one element selected from the group consisting of 0.20% 45 or less of Zr, 0.01% or less of B, and 3.0% or less of W on a mass basis. out i Rizakie i na fasirali Tareliera kallaniaria Probable M. F. C. M. A. M. C. Sand 11. A method for manufacturing a stainless steel pipe for oil country tubular goods according to any one of Claims 7 to 10, wherein the composition further comprises 0.0005% to 0.01% of Ca on a mass basis. The second secon 12. A method for manufacturing a corrosion-resistant seamless stainless steel pipe for oil country tubular goods, comprising the steps of: forming a steel pipe from a steel pipe material having a composition by hot working; cooling the steel pipe to room temperature at air-cooling speed or more, or quenching the steel pipe by further heating to a temperature of the Acci transformation point thereof or more and cooling to room temperature at air cooking speed or more; and then tempering the steel pipe at a temperature of the Act transformation point thereof or less, 55 wherein the composition comprises on a mass basis:

0.05% or less of C;

		0.50% or less of Si;	
		0.20%.to 1.80%.of Mn; 0.03 or less of P;	
5		0.005% or less of S; 14.0% to 18.0% of Cr; 5.0% to 8.0% of Ni;	
		1.5% to 3.5% of Mo;	
		0.5% to 3.5% of Cu; 0.05% or less of Al; 0.20% or less of V;	
10 .		0.01% to 0.15% of N;	
		0.006% or less of O, and the balance being Fe and incidental impurities, and wherein the composition satisfies expressions (1) and (2):
15		Cr + 0.65Ni + 0.65Cu + 20C ≥ 18.5,	(1);
		Cr + Mo + 0.3Si - 43.5C - 0.4Mn - Ni - 0.3Cu - 9N ≤ 11	(2),
20		where Cr, Ni, Mo, Cu, C, Si, Mn, and N represent the respective contents thereof on a mass% basi	s.
	13.	A method for manufacturing a seamless stainless steel pipe for oil country tubular goods according to Claim wherein the composition further comprises at least one element of 0.20% or less of Nb and 0.30% or less of T	12 î ot
25		a mass basis.	
30	14.	A method for manufacturing a seamless stainless steel pipe for oil country tubular goods according to Claim wherein the quenching includes heating to a temperature in the range of 800 to 1100°C and cooling to retemperature at air-cooling speed or more, and the tempering is performed at a temperature in the range of 50 630°C.	ооп
	15.	A method for manufacturing a seamless stainless steel pipe for oil country tubular goods according to any on Claims 12 to 14, wherein the composition further comprises at least one element selected from the group consist of 0.20% or less of Zr, 0.01% or less of B, and 3.0% or less of W on a mass basis.	e o
35	16.	. A method for manufacturing a seamless stainless steel pipe for oil country tubular goods according to any on Claims 12 to 15, wherein the composition further comprises 0.0005% to 0.01% of Ca on a mass basis.	ie c
40			
		्रेड्डिंड राज्यात्वर के स्टार्ट के स्टार्ट के स्टार्ट के लिए हैं जिल्हें के स्टार्ट के स्टार्ट के स्टार्ट के स अस्ति के स्टार्ट के से	
45		The second confidency of the plant and the part of the	
		ended to the content of the content	
50			
<i>55</i>			

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/07709

A. CLASSIFICATION OF SUBJECT MATTER Int.C1 ⁷ C22C38/00, C22C38/58, C21D9/08 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.C1 ⁷ C22C38/00, C21D9/08	
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.C1 ⁷ C22C38/00, C21D9/08	
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.C1 ⁷ C22C38/00, C21D9/08	
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.C1 ⁷ C22C38/00, C21D9/08	
Int.C17 C22C38/00, C21D9/08	
	.•
er krongsterkt, multe krig en totlermog fan een fijn op gijd op de op het beken een op op oe te tim op oe te t De krongsterkt, multe krig en totlermog fan een fijn op gijd op de op het de breke een op op oe te tim op oe t	
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.	hed
Jitsuyo Shinan Koho 1922-1996 Toroku Ortshyo Shinan Toroku Koho 1996-200 Kokai Jitsuyo Shinan Koho 1971-2003 Jitsuyo Shinan Toroku Koho 1996-200	-
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)	
Jesenn sind ingenen) sing ing enthecesor are becaused in the 1907 of the 1907 of the 1907 of the	
C. DOCUMENTS CONSIDERED TO BE RELEVANT	4
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to cla	im No.
A JP 2002-4009 A (Kawasaki Steel Corp.), 1-16 09 January, 2002 (09.01.02),	,
Full text (Family: none)	es e per
JP 2002-60910 A (Sumitomo Metal Industries, Ltd.),	Color State
28 February, 2002 (28.02.02), Full text (Family: none)	J. 1987.
gent part part that the high the term of the first of the section	
Further documents are listed in the continuation of Box C. See patent family annex.	
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date and not in conflict with the application but or priority date and not in conflict with the application but or understand the priority date and not in conflict with the application but or understand the priority date and not in conflict with the application but or understand the priority date and not in conflict with the application but or understand the priority date and not in conflict with the application but or understand the priority date and not in conflict with the application but or understand the priority date and not in conflict with the application but or understand the priority date and not in conflict with the application but or understand the priority date and not in conflict with the application but or understand the priority date and not in conflict with the application but or understand the priority date and not in conflict with the application but or understand the priority date and not in conflict with the application but or understand the priority date and not in conflict. "X" "A" **A" **A" **Countered to involve an invention considered to involve an inve	cited to ion cannot be inventive cannot be ent is
Date of the actual completion of the international search 14 July, 2003 (14.07.03) Date of mailing of the international search 29 July, 2003 (29.07.03)	
Name and mailing address of the ISA/ Japanese Patent Office Authorized officer	
Facsimile No. Telephone No. Telephone No.	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked: ☐ BLACK BORDERS ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES FADED TEXT OR DRAWING ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING ☐ SKEWED/SLANTED IMAGES COLOR OR BLACK AND WHITE PHOTOGRAPHS ☐ GRAY SCALE DOCUMENTS ☐ LINES OR MARKS ON ORIGINAL DOCUMENT ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.