

~6627988
SEQUENCE LISTING

<110> Children's Cancer Institute Australia for Medical Research
 <120> DETERMINING DRUG RESISTANCE
 <130> S80668522:TG
 <150> 2003901239
 <151> 2003-03-18
 <160> 10
 <170> PatentIn version 3.2
 <210> 1
 <211> 1845
 <212> DNA
 <213> Homo sapiens
 <400> 1

atggaaagaag	agatcgccgc	gctggtcatt	gacaatggct	ccggcatgtg	c _{aa} agcttgt	60
t _{tt} tgctgggg	acgacgctcc	ccgagccgtg	t _{ttt} c _{ttt} cca	tcgtcggcg	ccccagacac	120
cagggcgtca	tgggtggcat	gggcagaag	gactcctacg	tgggcacga	ggcccagagc	180
aagcgtggca	t _{cc} ctgaccct	gaagtacccc	attgagcatg	gcatcgtcac	caactgggac	240
gacatggaga	agatctggca	ccacacettc	tacaacgagc	tgcgcgtggc	cccggaggag	300
cacccagtgc	tgctgaccga	ggcccccctg	aaccccaagg	ccaacagaga	gaagatgact	360
cagattatgt	t _t gagacctt	caacaccccg	gccatgtacg	tggccatcca	ggccgtgctg	420
tcccttctacg	c _{ct} tctggcg	caccactggc	attgtcatgg	actctggaga	cggggtcacc	480
cacacgggtgc	ccatctacga	gggctacgcc	ctcccccacg	ccatccitgcg	tctggacctg	540
gctggccggg	acctgaccca	ctacctcatg	aagatcctca	ctgagcgagg	ctacagcttc	600
accaccacgg	ccgagcggga	aatcg _t gcgc	gacatcaagg	agaagctgtg	ctacgtcgcc	660
ctggacttcg	agcaggagat	ggccacccgc	gcatcctcct	t _{tt} tctctgg	g _a agagctac	720
gagctgccc	atggccaggt	catcaccatt	ggcaatgagc	ggttccggtg	tccggaggcg	780
ctgttccagc	tttcccttct	gggtatggaa	tcttgcggca	tccacgagac	taccc _{tt} caac	840
tccatcatga	agtgtgacgt	ggacatccgc	aaagacctgt	acgeccaaac	ggtgctgtcg	900
ggcggcacca	ccatgtaccc	ggcattgcc	gacaggatgc	agaaggagat	caccgcctg	960
gcgc _{cc} agca	ccatgaagat	caagatcatac	gcaccccccag	agcgaagta	ctcggtgtgg	1020
atcggtggct	ccatcctggc	t _t cactgtcc	accttccagc	agatgtggat	tagcaagcag	1080
gagtacgacg	agtcgggccc	ctccatcg _t c	caccgc _{aa} at	gettctaaac	ggactcagca	1140
gatgcgttagc	at _{tt} tgctgca	tgggttaatt	gagaatagaa	at _{tt} gcccct	ggcaa _{tt} tgca	1200
cacacccat	gttagcctca	cgaaaactgga	ataagccttc	gaaaagaaaat	tgtc _{tt} tgaa	1260
gtttgtatct	gatatcagca	ctggattgta	gaacttggtg	ctgat _{ttt} tg	ccttgrattg	1320
aagttaactg	t _{tt} cccccttgg	tat _{tt} gttta	ataccctgta	cata _{ttt} tg	agttcaacct	1380
tttagtacgtg	tggcttggc	acttcgtggc	taaggtaaga	acgtgttgt	ggaagacaag	1440

~6627988

tctgtggctt ggtgagtctg tggccagc agcctctgat ctgtgcaggg tattaacgtg	1500
tcagggctga gtgttctggg atttctctag aggctggcaa gaaccagttg ttttgtctg	1560
cgggtctgtc agggttggaa agtccaagcc gtaggaccac gttcccttc ttagctgatg	1620
tctttggcca gaacaccgtg ggctgtact tgcttgagt tggaageggt ttgcattac	1680
gcctgttaat gtattcatc ttaattttatg taagggtttt ttgtacgca attctcgatt	1740
ctttgaagag atgacaacaa atttgggtt tctactgtta tgtgagaaca ttaggccccca	1800
gcaacacgtc attgtgttaag gaaaaataaa agtgcgtgccg taacc	1845

<210> 2
<211> 1845

<212> DNA
<213> Homo sapiens

<400> 2	
atggagaagaag agatcgccgc gctggtcatt gacaatggct cggcatgtg caaagctgg	60
tttgcgtgggg acgacgctcc ccgagccgtg ttcccttc ca tcgtcggcg cccagacac	120
cagggcgtca tgggtggcat gggccagaag gactcctacg tgggcgacga ggcccagagc	180
aagcgtggca tcctgaccct gaagtacccc attgagcatg gcacgtcac caactggac	240
gacatggaga agatctggca ccacaccc tcacaacgagc tgcgcgtggc cccggaggag	300
cacccattgc tgctgaccga ggccccctg aaccccaagg ccaacagaga gaagatgact	360
cagattatgt ttgagacctt caacaccccg gccatgtacg tggccatcca ggccgtgctg	420
tcctctacg cctctggcg caccactggc attgtcatgg actctggaga cggggtcacc	480
cacacgggtgc ccatctacga gggctacgccc ctccccacg ccacccctgcg tctggacctg	540
gctggccggg acctgaccga ctacccatg aagatctca ctgagcgagg ctacagcttc	600
accaccacgg ccgagcggga aatcggtgcg gacatcaagg agaagctgtg ctacgtcgcc	660
ctggacttcg agcaggagat ggccaccgccc gcatcctctt ctctctggaa gaagagctac	720
gagctgcccgg atggccaggt catcaccatt ggcaatgagc ggttccgggtg tccggaggcg	780
ctgttccagc ctcccttcctt gggtatggaa tcttgcggca tccacgagac cacccatcaac	840
tccatcatga agtgtgacgt ggacatccgc aaagacctgt acgccaacac ggtgctgtcg	900
ggcggcacca ccatgtaccc gggcattgcc gacaggatgc agaaggagat cacccctcg	960
gcgcccagca ccatgaagat caagatcatc gcaccccccag agcgaagta ctcgggtgtgg	1020
atcgggtggct ccatccgtgc ctcactgtcc accttccagc agatgtggat tagcaagcag	1080
gagtacgacg agtcgggccc ctccatgtc caccgcaaat gtttctaaac ggactcagca	1140
gatgcgtacg atttgctgca tgggttaatt gagaatagaa atttgccctt ggcaaatgca	1200
cacacccat gctagcctca cgaaaactgga ataagccttc gaaaagaaaat tgccttgaa	1260
gcttgtatct gatatcagca ctggattgtt gaaactgtt gtcattttga ctttgtattt	1320
aagtttaactg ttcccttgg tatttgtta ataccctgtt catacttttga agttcaacct	1380

~6627988

ttagtacgtg	tggcttggtc	acttcgtggc	taaggtaaaga	acgtgcttgt	ggaagacaag	1440
tctgtggctt	ggtgagtctg	tgtggccagc	agcctctgat	ctgtgcaggg	tattaacgtg	1500
tcagggctga	gtgttctggg	atttctctag	aggctggcaa	gaaccagttg	ttttgtcttg	1560
cgggtctgtc	agggttggaa	agtccaagcc	gttggaccca	gtttccttcc	ttagctgtatg	1620
tctttggcca	gazcacccgt	ggctgttaact	tgctttgagt	tggaaagcggt	ttgcatttac	1680
gcctgtasat	gtattcattc	ttaattttag	taaggttttt	tttgtacgca	attctcgatt	1740
ctttgaagag	atgacaacaa	attttggttt	tctactgtta	tgtgagaaca	tragggccca	1800
gcaacacgtc	attgtgtaaag	aaaaaataaa	agtgtgtccg	taacc		1845

<210> 3
<211> 1845
<212> DNA
<213> Homo sapiens

<400> 3						
atggaaagaag	agatcgccgc	gctggtcatt	gacaatggct	ccggcatgtg	caaagctgg	60
tttgcgtggg	acgacgtccc	ccgagccgtg	tttccttcca	tcgtcggcg	ccccagacac	120
cagggcgtca	tggtgggcat	gggccagaag	gactccttacg	tgggcgacga	ggcccagagc	180
aagcgtggca	tcctgacccct	gaagtacccc	attgagcatg	gcatcgtcac	caactggac	240
gacatggaga	agatctggca	ccacacccctc	tacaacgagc	tgcgcgtggc	cctggaggag	300
caccaggatgc	tgctgacccga	ggccccccctg	aaccccaagg	ccaaacagaga	gaagatgact	360
cagattatgt	tttagacccctt	caacaccccg	gccccatcca	ggccgtgtcg		420
tccctctacg	cctctggcg	caccactggc	attgtcatgg	actctggaga	cggggtcacc	480
cacacggatgc	ccatctacga	gggctacgac	ctccccacg	ccatccgtcg	tctggacctg	540
gctggccggg	acctgacccga	ctacctcatg	aagatcctca	ctgagcgagg	ctacagcttc	600
accaccacgg	ccgagcggga	aatcgtgcgc	gacatcaagg	agaagctgtg	ctacgtcgcc	660
ctggacttcg	agcaggagat	ggccaccgc	gcatcctcct	cttctctgg	gaagagctac	720
gagctgccc	atggccaggt	catcaccatt	ggcaatgagc	ggttccggtg	tccggaggcg	780
ctgttccacg	cttccttcc	gggtatggaa	tcttgcggca	tccacgagac	caccttcaac	840
tccatcatga	agtgtgacgt	ggacateccgc	aaagacctgt	acgccaacac	ggtgctgtcg	900
ggcggcacca	ccatgtaccc	gggcattgcc	gacaggatgc	agaaggagat	caccggccctg	960
gcccggagca	ccatgaagat	caagatcatc	gcacccctag	agcgcacatc	ctcggtgtgg	1020
atcggtggct	ccatccgtgc	ctcaactgtcc	accttccacg	agatgtggat	tagcaagcag	1080
gagtacgacg	atgtggggcc	ctccatcgac	cacccgaaaat	gcttctaaac	ggactcagca	1140
gatgcgtacg	atttgtgtca	tgggttaatt	gagaatagaa	atttggccct	ggcaaattgca	1200
cacacccat	gctagcctca	cgaaactgga	ataagccttc	gaaaagaaaat	tgttcttgaa	1260
gcttgtatct	gatatcagca	ctggattgt	gaacttgcgt	ctgattttga	ccttgtattg	1320
aagttaactg	ttcccttgg	tatttggta	ataccctgt	catatctttg	agttcaaccc	1380

~6627988

ttagtacgtg tggcttggtc acttcgtggc taaggtaaga acgtgcttgt ggaagacaag	1440
tctgtggctt ggtgagtcgtg tgtggccagc agccctctgat ctgtgcaggg tattaacgtg	1500
tcagggctga gtgttctggg atttctctag aggctggcaa gaaccagttg ttttgcatttg	1560
cgggtctgtc agggttggaa agtccaagcc gtaggaccca gtttcctttc ttagctgatg	1620
tcttggcca gaacaccgtg ggctgttact tgctttgagt tggaaagcgggt ttgcatttac	1680
gcctgtaaat gtattcattc ttaattttag taaggtttt tttgtacgca attctcgatt	1740
ctttaagag atgacaacaa attttggttt tctactgtta tgtgagaaca ttaggccccca	1800
gcaacacgtc attgtgtaaag gaaaaataaaa agtgctgccg taacc	1845

<210> 4
<211> 1845

<212> DNA
<213> Homo sapiens

<400> 4

atgaaagaag agatcgccgc gctggtcatt gacaatggct ccggcatgtg caaagctgg	60
tttgctgggg acgacgctcc ccgagccgtg ttcccttcca tcgtcgggca ccccagacac	120
cagggcgtca tggtgggcat gggccagaag gactcctacg tggcgacgaa ggcccagagc	180
aagcgtggca tcctgaccct gaagtacccc attgagcatg gcattgtcac caactgggac	240
gacatggaga agatctggca ccacacccctc tacaacgagc tgcgcgtggc cccggaggag	300
caccctgtgc tgctgaccga ggccccctg aaccccaagg ccaacagaga gaagatgact	360
cagattatgt ttgagacctt caacaccccg gccatgtacg tggccatcca ggccgtgtcg	420
tccctctacg cctctgggca caccactggc attgtcatgg actctggaga cggggtcacc	480
cacatggtgc ccattctacga gggctacgccc ctccccacg ccattctgcg tctggacctg	540
gctggccggg acctgaccga ctacctcatg aagatcctca ctgagcgagg ctacagcttc	600
accaccacgg ccgagcggga aatctgtgcgc gacatcaagg agaagctgtg ctacgtcgcc	660
ctggacttcg agcaggagat ggccaccgccc gcattccctt ctctctggaa gaagagctac	720
gagctgcccgg atggccaggt catcaccatt ggcaatgagc ggttccgggtg tccggaggcg	780
ctgttccagc ttcccttcctt gggatggaa tcttgcggca tccacgagac caccttcaac	840
tccatcatga agtgtgacgt ggacatccgc aaagacctgt acgccaacac ggtgctgtcg	900
ggccggcacca ccattgtaccc gggattgcc gacaggatgc agaaggagat cacccctcg	960
gcgcccagca ccattgtaccc caagatcatc gcaccccccag agcgtcaagta ctgggtgtgg	1020
atcggtggct ccattctggc ctcaactgtcc accttccagc agatgtggat tagcaagcag	1080
gagttacgacg agtcggggccc ctccatcgcc cacccgaaat gcttctaaac ggactcagca	1140
gtatcgtagc attttgtcgca tgggttaatt gagaatagaa atttgcctt ggcaaatgc	1200
cacacccat gcttagcctca cgaaactggaa ataagccccc gaaaagaaaat tgtccttga	1260
gtttgttatct gatatcagca ctggattgtt gaaacttggat ctgatatttga ctttgtat	1320

~6627988

aagttaactg ttcccccttgg tatttgtta ataccctgtat	cataccttg agttcaacct	1380
ttagtacgtg tggcttggtc acttcgtggc taaggtaaga acgtgcttgt	ggaagacaag	1440
tctgtggctt ggtgagtctg tgcgtggccagc agcctctgtat	ctgtgcaggg tattaacgtg	1500
tcagggctga gtgttctggg atttctctag aggctggcaa gaaccagttg ttttgtcttg		1560
cgggtctgtc aggggttggaa agtccaagcc gtaggaccca gttttcttttc ttagctgtatg		1620
tctttggcca gaacaccgtg ggctgttact tgctttgagt tggaagcggt ttgcatttac		1680
gcctgtaaat gtattcatc ttzatttatg taaggtrttt tttgtacgca attctcgatt		1740
ctttgaagag atgacaacaa attttggtt tctactgtta tgtgagaaca ttaggccccca		1800
gcaacacgtc attgtgttaag gaaaaataaaa agtgctgccg taacc		1845

<210> 5
<211> 375
<212> PRT
<213> Homo sapiens
<400> 5

Met Glu Glu Glu Ile Ala Ala Leu Val Ile Asp Asn Gly Ser Gly Met
1 5 10 15

Cys Lys Ala Gly Phe Ala Gly Asp Asp Ala Pro Arg Ala Val Phe Pro
20 25 30

Ser Ile Val Gly Arg Pro Arg His Gln Gly Val Met Val Gly Met Gly
35 40 45

Gln Lys Asp Ser Tyr Val Gly Asp Glu Ala Gln Ser Lys Arg Gly Ile
50 55 60

Leu Thr Leu Lys Tyr Pro Ile Glu His Gly Ile Val Thr Asn Trp Asp
65 70 75 80

Asp Met Glu Lys Ile Trp His His Thr Phe Tyr Asn Glu Leu Arg Val
85 90 95

Ala Pro Glu Glu His Pro Val Leu Leu Thr Glu Ala Pro Leu Asn Pro
100 105 110

Lys Ala Asn Arg Glu Lys Met Thr Gln Ile Met Phe Glu Thr Phe Asn
115 120 125

Thr Pro Ala Met Tyr Val Ala Ile Gln Ala Val Leu Ser Leu Tyr Ala
130 135 140

Ser Gly Arg Thr Thr Gly Ile Val Met Asp Ser Gly Asp Gly Val Thr
145 150 155 160

His Thr Val Pro Ile Tyr Glu Gly Tyr Ala Leu Pro His Ala Ile Leu
165 170 175

~6627988

Arg Leu Asp Leu Ala Gly Arg Asp Leu Thr His Tyr Leu Met Lys Ile
180 185 190

Leu Thr Glu Arg Gly Tyr Ser Phe Thr Thr Thr Ala Glu Arg Glu Ile
195 200 205

Val Arg Asp Ile Lys Glu Lys Leu Cys Tyr Val Ala Leu Asp Phe Glu
210 215 220

Gln Glu Met Ala Thr Ala Ala Ser Ser Ser Ser Leu Glu Lys Ser Tyr
225 230 235 240

Glu Leu Pro Asp Gly Gln Val Ile Thr Ile Gly Asn Glu Arg Phe Arg
245 250 255

Cys Pro Glu Ala Leu Phe Gln Pro Ser Phe Leu Gly Met Glu Ser Cys
260 265 270

Gly Ile His Glu Thr Thr Phe Asn Ser Ile Met Lys Cys Asp Val Asp
275 280 285

Ile Arg Lys Asp Leu Tyr Ala Asn Thr Val Leu Ser Gly Gly Thr Thr
290 295 300

Met Tyr Pro Gly Ile Ala Asp Arg Met Gln Lys Glu Ile Thr Ala Leu
305 310 315 320

Ala Pro Ser Thr Met Lys Ile Lys Ile Ile Ala Pro Pro Glu Arg Lys
325 330 335

Tyr Ser Val Trp Ile Gly Gly Ser Ile Leu Ala Ser Leu Ser Thr Phe
340 345 350

Gln Gln Met Trp Ile Ser Lys Gln Glu Tyr Asp Glu Ser Gly Pro Ser
355 360 365

Ile Val His Arg Lys Cys Phe
370 375

<210> 6
<211> 375
<212> PRT
<213> Homo sapiens

<400> 6

Met Glu Glu Glu Ile Ala Ala Leu Val Ile Asp Asn Gly Ser Gly Met
1 5 10 15

Cys Lys Ala Gly Phe Ala Gly Asp Asp Ala Pro Arg Ala Val Phe Pro
20 25 30

~6627988

Ser Ile Val Gly Arg Pro Arg His Gln Gly Val Met Val Gly Met Gly
35 40 45

Gln Lys Asp Ser Tyr Val Gly Asp Glu Ala Gln Ser Lys Arg Gly Ile
50 55 60

Leu Thr Leu Lys Tyr Pro Ile Glu His Gly Ile Val Thr Asn Trp Asp
65 70 75 80

Asp Met Glu Lys Ile Trp His His Thr Phe Tyr Asn Glu Leu Arg Val
85 90 95

Ala Pro Glu Glu His Pro Leu Leu Leu Thr Glu Ala Pro Leu Asn Pro
100 105 110

Lys Ala Asn Arg Glu Lys Met Thr Gln Ile Met Phe Glu Thr Phe Asn
115 120 125

Thr Pro Ala Met Tyr Val Ala Ile Gln Ala Val Leu Ser Leu Tyr Ala
130 135 140

Ser Gly Arg Thr Thr Gly Ile Val Met Asp Ser Gly Asp Gly Val Thr
145 150 155 160

His Thr Val Pro Ile Tyr Glu Gly Tyr Ala Leu Pro His Ala Ile Leu
165 170 175

Arg Leu Asp Leu Ala Gly Arg Asp Leu Thr Asp Tyr Leu Met Lys Ile
180 185 190

Leu Thr Glu Arg Gly Tyr Ser Phe Thr Thr Thr Ala Glu Arg Glu Ile
195 200 205

Val Arg Asp Ile Lys Glu Lys Leu Cys Tyr Val Ala Leu Asp Phe Glu
210 215 220

Gln Glu Met Ala Thr Ala Ala Ser Ser Ser Ser Leu Glu Lys Ser Tyr
225 230 235 240

Glu Leu Pro Asp Gly Gln Val Ile Thr Ile Gly Asn Glu Arg Phe Arg
245 250 255

Cys Pro Glu Ala Leu Phe Gln Pro Ser Phe Leu Gly Met Glu Ser Cys
260 265 270

Gly Ile His Glu Thr Thr Phe Asn Ser Ile Met Lys Cys Asp Val Asp
275 280 285

Ile Arg Lys Asp Leu Tyr Ala Asn Thr Val Leu Ser Gly Gly Thr Thr
290 295 300

~6627988

Met Tyr Pro Gly Ile Ala Asp Arg Met Gln Lys Glu Ile Thr Ala Leu
 305 310 315 320

Ala Pro Ser Thr Met Lys Ile Lys Ile Ile Ala Pro Pro Glu Arg Lys
 325 330 335

Tyr Ser Val Trp Ile Gly Gly Ser Ile Leu Ala Ser Leu Ser Thr Phe
 340 345 350

Gln Gln Met Trp Ile Ser Lys Gln Glu Tyr Asp Glu Ser Gly Pro Ser
 355 360 365

Ile Val His Arg Lys Cys Phe
 370 375

<210> 7
 <211> 375
 <212> PRT
 <213> Homo sapiens

<400> 7

Met Glu Glu Glu Ile Ala Ala Leu Val Ile Asp Asn Gly Ser Gly Met
 1 5 10 15

Cys Lys Ala Gly Phe Ala Gly Asp Asp Ala Pro Arg Ala Val Phe Pro
 20 25 30

Ser Ile Val Gly Arg Pro Arg His Gln Gly Val Met Val Gly Met Gly
 35 40 45

Gln Lys Asp Ser Tyr Val Gly Asp Glu Ala Gln Ser Lys Arg Gly Ile
 50 55 60

Leu Thr Leu Lys Tyr Pro Ile Glu His Gly Ile Val Thr Asn Trp Asp
 65 70 75 80

Asp Met Glu Lys Ile Trp His His Thr Phe Tyr Asn Glu Leu Arg Val
 85 90 95

Ala Leu Glu Gln His Pro Val Leu Leu Thr Glu Ala Pro Leu Asn Pro
 100 105 110

Lys Ala Asn Arg Glu Lys Met Thr Gln Ile Met Phe Glu Thr Phe Asn
 115 120 125

Thr Pro Ala Met Tyr Val Ala Ile Gln Ala Val Leu Ser Leu Tyr Ala
 130 135 140

Ser Gly Arg Thr Thr Gly Ile Val Met Asp Ser Gly Asp Gly Val Thr
 145 150 155 160

~6627988

His Thr Val Pro Ile Tyr Glu Glu Tyr Ala Leu Pro His Ala Ile Leu
 165 170 175

Arg Leu Asp Leu Ala Gly Arg Asp Leu Thr Asp Tyr Leu Met Lys Ile
 180 185 190

Leu Thr Glu Arg Gly Tyr Ser Phe Thr Thr Thr Ala Glu Arg Glu Ile
 195 200 205

Val Arg Asp Ile Lys Glu Lys Leu Cys Tyr Val Ala Leu Asp Phe Glu
 210 215 220

Gln Glu Met Ala Thr Ala Ala Ser Ser Ser Ser Leu Glu Lys Ser Tyr
 225 230 235 240

Glu Leu Pro Asp Gly Gln Val Ile Thr Ile Gly Asn Glu Arg Phe Arg
 245 250 255

Cys Pro Glu Ala Leu Phe Gln Pro Ser Phe Leu Gly Met Glu Ser Cys
 260 265 270

Gly Ile His Glu Thr Thr Phe Asn Ser Ile Met Lys Cys Asp Val Asp
 275 280 285

Ile Arg Lys Asp Leu Tyr Ala Asn Thr Val Leu Ser Gly Gly Thr Thr
 290 295 300

Met Tyr Pro Gly Ile Ala Asp Arg Met Gln Lys Glu Ile Thr Ala Leu
 305 310 315 320

Ala Pro Ser Thr Met Lys Ile Lys Ile Ile Ala Pro Pro Glu Arg Lys
 325 330 335

Tyr Ser Val Trp Ile Gly Gly Ser Ile Leu Ala Ser Leu Ser Thr Phe
 340 345 350

Gln Gln Met Trp Ile Ser Lys Gln Glu Tyr Asp Glu Ser Gly Pro Ser
 355 360 365

Ile Val His Arg Lys Cys Phe
 370 375

<210> 8
 <211> 375
 <212> PRT
 <213> Homo sapiens
 <400> 8

Met Glu Glu Glu Ile Ala Ala Leu Val Ile Asp Asn Gly Ser Gly Met
 1 5 10 15

Cys Lys Ala Gly Phe Ala Gly Asp Asp Ala Pro Arg Ala Val Phe Pro
 Page 9

20

25

~6627988

30

Ser Ile Val Gly Arg Pro Arg His Gln Gly Val Met Val Gly Met Gly
35 40 45

Gln Lys Asp Ser Tyr Val Gly Asp Glu Ala Gln Ser Lys Arg Gly Ile
50 55 60

Leu Thr Leu Lys Tyr Pro Ile Glu His Gly Ile Val Thr Asn Trp Asp
65 70 75 80

Asp Met Glu Lys Ile Trp His His Thr Phe Tyr Asn Glu Leu Arg Val
85 90 95

Ala Pro Glu Glu His Pro Val Leu Leu Thr Glu Ala Pro Leu Asn Pro
100 105 110

Lys Ala Asn Arg Glu Lys Met Thr Gln Ile Met Phe Glu Thr Phe Asn
115 120 125

Thr Pro Ala Met Tyr Val Ala Ile Gln Ala Val Leu Ser Leu Tyr Ala
130 135 140

Ser Gly Arg Thr Thr Gly Ile Val Met Asp Ser Gly Asp Gly Val Thr
145 150 155 160

His Met Val Pro Ile Tyr Glu Gly Tyr Ala Leu Pro His Ala Ile Leu
165 170 175

Arg Leu Asp Leu Ala Gly Arg Asp Leu Thr Asp Tyr Leu Met Lys Ile
180 185 190

Leu Thr Glu Arg Gly Tyr Ser Phe Thr Thr Thr Ala Glu Arg Glu Ile
195 200 205

Val Arg Asp Ile Lys Glu Lys Leu Cys Tyr Val Ala Leu Asp Phe Glu
210 215 220

Gln Glu Met Ala Thr Ala Ala Ser Ser Ser Ser Leu Glu Lys Ser Tyr
225 230 235 240

Glu Leu Pro Asp Gly Gln Val Ile Thr Ile Gly Asn Glu Arg Phe Arg
245 250 255

Cys Pro Glu Ala Leu Phe Gln Pro Ser Phe Leu Gly Met Glu Ser Cys
260 265 270

Gly Ile His Glu Thr Thr Phe Asn Ser Ile Met Lys Cys Asp Val Asp
275 280 285

Ile Arg Lys Asp Leu Tyr Ala Asn Thr Val Leu Ser Gly Gly Thr Thr
Page 10

290 295 ~6627988
 300

Met Tyr Pro Gly Ile Ala Asp Arg Met Gln Lys Glu Ile Thr Ala Leu
305 310 315 320

Ala Pro Ser Thr Met Lys Ile Lys Ile Ile Ala Pro Pro Glu Arg Lys
325 330 335

Tyr Ser Val Trp Ile Gly Gly Ser Ile Leu Ala Ser Leu Ser Thr Phe
340 345 350

Gln Gln Met Trp Ile Ser Lys Gln Glu Tyr Asp Glu Ser Gly Pro Ser
355 360 365

Ile Val His Arg Lys Cys Phe
370 375

<210> 9

<211> 8

<212> PRT

<213> Homo sapiens

<400> 9

Asp Leu Thr His Tyr Leu Met Lys
1 5

<210> 10

<211> 18

<212> PRT

<213> Homo sapiens

<400> 10

Val Ala Pro Glu Glu His Pro Val Leu Leu Thr Glu Ala Pro Leu Asn
1 5 10 15

Pro Leu