Duration of Individual Relativistic Electron Microbursts: A Probe Into Their Scattering Mechanism

Mike Shumko, Lauren Blum, and Alex Crew

$$f(t|\mathbf{p}) = Ae^{-\frac{(t-t_0)^2}{2\sigma^2}} + (y_0+mt)$$

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - f_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - f_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - f_{i})^{2}}{\sum_{i} (y_{i} - \bar{y})^{2}}$$

Distribution of SAMPEX microburst durations in L-MLT

The microburst duration is smallest at midnight and increases towards noon MLT. The trend is independent of the distribution quantiles.

Median: 80 -> 160 ms.

Distribution of SAMPEX microburst durations in L-MLT

The microburst duration is smallest at midnight and increases towards noon MLT. The trend is independent of the distribution quantiles.

Median: 80 -> 160 ms.

MLT

MLT

The trend is most pronounced in MLT

The chorus rising tone element duration follows a similar pattern.

How to the chorus and microburst duration distributions compare?

Chorus

Shue et al., 2019

Microbursts

The width distribution as a function of AE is similar, but the distribution becomes more peaked at 0.1 s at higher AE.

Distribution of SAMPEX microburst duration as a function of AE

Teng et al., 2017 found that chorus rising tone elements also shortened with increasing AE.

Distribution of SAMPEX microburst durations in L-MLT

Question to consider:

The chorus-microburst durations follow a similar trend, but why are chorus wave durations typically longer?

Questions?

