

GRACE: Generating Concise and Informative Contrastive Sample to Explain Neural Network Model's Prediction

Thai Le, Suhang Wang, Dongwon Lee

The Pennsylvania State University

August 23-27, 2020

KDD2020

Thai Le (PSU) KDD2020 August 23-27, 2020 1 / 26

- 2 Motivation & Challenges
- 3 Contrastive Explanation
- GRACE Algorithm
- 6 Experiments
- **6** Conclusion

Motivation - Previous Methods

Figure: Example of Highlighting Spans of Words/Phrases. Source: Google Image

Text: "if bare_nuclei is less than or equal 6.0, on average, this prediction would be 0.14 less Malignant. etc.,"

Figure: Example of Lime [Ribeiro et al., 2016] Method on Tabular Data Instance

Thai Le (PSU) KDD2020 August 23-27, 2020 3 / 26

Motivation - Challenges

- 1. Tabular data is prominent in many important fields.
- 2. Explanation for tabular data: high-dimensional inter-correlated features
 - Which key features to select?
 - If top K, what if features are highly correlated? (E.g. "Frequency of !" and "Frequency of !!!")
- 3. How to present the explanation to the end-users?
 - Highlighting a batch of an image, a span of words in a sentence?
- 4. End-users might have different interests than researchers, developers
- GOAL: Develop an algorithm to explain neural network models' predictions on tabular datasets to end-users

- ② ✓ Motivation & Challenges
- 3 Contrastive Explanation
- GRACE Algorithm
- 6 Experiments
- **6** Conclusion

Contrastive Sample - Definition

Feature	freq_now	freq_credit	freq_!!!	freq_!	class
\boldsymbol{x}_1	0.1	0.0	0.0	0.0	Ham
\widetilde{x}_1	0.1	0.0	0.3	0.453	Spam
Feature	freq you	freq direct	ava longest	canital	class
	meq_you	meq_unect	avg_longest	_capitai	Class
x ₂	0.68	0.34	avg_longest	158.0	Spam

Table: Examples of original samples \mathbf{x}_i and contrastive samples $\tilde{\mathbf{x}}_i$ on spam dataset.)

Contrastive Explanation - Definition

1. End-users are interested in explanation: "Why X rather than Y?"

Feature	freq_you	freq_direct	avg_longest_capital	class
X	0.68	0.34	158.0	Spam
x	0.68	0.34	1.0	Ham

Examples

Explanation "Had the message had no words written in all capital letters, it would have been classified as ham rather than spam."

Explanation by Intervention

Problem Statement

Given x and neural network model $f(\cdot)$, our goal is to generate new contrastive sample \tilde{x} to provide concise and informative explanation for the prediction f(x).

- ② ✓ Motivation & Challenges
- **3** ✓ Contrastive Explanation
- 4 GRACE Algorithm
- 6 Experiments
- **6** Conclusion

Objective Formulation

Feature	freq_now	freq_credit	freq_!!!	freq_!	class
X 1	0.1	0.0	0.0	0.0	Ham
\widetilde{x}_1	0.1	0.0	0.3	0.453	Spam

Table: Examples of original samples \mathbf{x}_i and contrastive samples $\tilde{\mathbf{x}}_i$

1. Constraint on the contrastive class:

$$argmax(f(\tilde{x})) \neq argmax(f(x))$$
 (1)

2. Constraint on the # of key features:

$$|\mathcal{S}| \le K \tag{2}$$

3. Constraint on the mutual information:

$$SU(\mathcal{X}^i, \mathcal{X}^j) \le \gamma \quad \forall i, j \in \mathcal{S}$$
 (3)

4. Constraint on the domain:

$$\widetilde{\mathbf{x}} \in dom(\mathcal{X})$$
 (4)

Objective Function

Objective Function

Given \mathbf{x} , hyperparameter K, γ , our goal is to generate new contrastive sample $\widetilde{\mathbf{x}}$ to explain the prediction $f(\mathbf{x})$ by solving the objective function:

$$\min_{\tilde{\mathbf{x}}} \quad dist(\tilde{\mathbf{x}}, \mathbf{x})
s.t. \quad \operatorname{argmax}(f(\mathbf{x})) \neq \operatorname{argmax}(f(\tilde{\mathbf{x}})), \quad |\mathcal{S}| \leq K$$

$$\operatorname{SU}(\mathcal{X}^{i}, \mathcal{X}^{j}) \leq \gamma \quad \forall i, j \in \mathcal{S}, \quad \tilde{\mathbf{x}} \in dom(\mathcal{X})$$
(5)

Thai Le (PSU) KDD2020 August 23-27, 2020 11 / 26

Generation Algorithm

Figure: Grace Algorithm - Local-Based Feature Selection

Figure: Grace Algorithm

Thai Le (PSU) KDD2020 August 23-27, 2020 12 / 26

- ② ✓ Motivation & Challenges
- **3** ✓ Contrastive Explanation
- ◆ ✓ GRACE Algorithm
- 6 Experiments
- **6** Conclusion

Experiment - Dataset & Baseline

Table: Dataset statistics and prediction performance

Dataset	#Class	#Feat.	#Data	Acc.*	F1*
eegeye	2	14	14980	0.858	0.858
diabetes	2	8	768	0.779	0.777
cancer95	2	9	699	0.963	0.963
phoneme	2	5	5404	0.774	0.772
segment	7	19	2310	0.836	0.817
magic	2	10	19020	0.862	0.859
biodeg	2	41	1055	0.853	0.851
spam	2	57	4601	0.932	0.932
cancer92	2	30	569	0.958	0.958
mfeat	10	216	2000	0.943	0.936
musk	2	166	476	0.783	0.789

^(*) Accuracy and F1 scores are averaged across 10 different runs.

- 1. NearestCT: Select nearest contrastive sample from the training set
- 2. **DeepFool** [Moosavi-Dezfooli et al., 2016]: Generate adversarial samples with $\min_{\tilde{x}} \|\tilde{x} x\|_2$
- 3. Lime [Ribeiro et al., 2016]: Instance-based explanation method

Experiment - Quantitative

1. Conciseness:

$$\mathbf{R}_{\text{fidelity}} = \frac{1}{|\tilde{\mathcal{X}}|} \sum_{(\tilde{\mathbf{x}}, \tilde{\mathbf{y}}) \in \tilde{\mathcal{X}}} \mathbb{1}(\tilde{\mathbf{y}} = \operatorname{argmax}(f(\tilde{\mathbf{x}})))$$
(6)

$$\mathsf{R}_{\mathrm{avg\#Feats}} = \frac{1}{|\tilde{\mathcal{X}}|} \sum_{\tilde{\mathbf{x}} \in \tilde{\mathcal{Y}}} |\mathcal{S}_{\tilde{\mathbf{x}}}| \tag{7}$$

2. Info-Gain:

$$\mathbf{R}_{\text{info-gain}} = 1 - \frac{1}{|\tilde{\mathcal{X}}|} \sum_{\mathbf{x} \in \tilde{\mathcal{X}}} \sum_{i \in \mathcal{S}_{\mathbf{x}}} \sum_{j \in \mathcal{S}_{\mathbf{x}}} \frac{\mathsf{SU}\left(\mathcal{X}^{i}, \mathcal{X}^{j}\right)}{|\mathcal{S}_{\mathbf{x}}|^{2}} \tag{8}$$

3. Influence:

$$\mathbf{R}_{\text{domain}} = \frac{1}{|\tilde{\mathcal{X}}|} \sum_{\mathbf{x} \in \tilde{\mathcal{X}}} \mathbb{1}(\mathbf{x} \in \text{dom}(\mathcal{X}))$$
(9)

$$R_{\rm influence} = \frac{R_{\rm fidelity} \times R_{\rm info-gain} \times R_{\rm domain}}{R_{\rm avg\#Feats}} \tag{10}$$

Experiment - Quantitative Results

		biodeg	spam	cancer92	mfeat	musk
	NearestCT	20.53	17.50	29.97	204.22	147.86
В	DeepFool	41.00	57.00	30.00	216.00	166.00
$R_{\rm avg\#Feats}$	GRACE-Local	<u>3.07</u>	<u>2.95</u>	3.95	3.28	<u>3.74</u>
	GRACE-Gradient	1.93	1.09	<u>4.5</u>	2.76	2.85
	NearestCT	0.44	0.62	0.02	0.58	0.28
D *	DeepFool	0.58	0.53	0.01	0.59	0.29
$R^*_{\rm info-gain}$	GRACE-Local	0.46	0.47	0.13	0.34	0.3
	GRACE-Gradient	0.76	0.95	0.04	0.50	0.4
$R_{\mathrm{influence}}$	NearestCT	0.02	0.04	0.00	0.00	0.00
	DeepFool	0.01	0.01	0.00	0.00	0.00
	GRACE-Local	0.15	0.16	0.04	0.1	<u>0.08</u>
	GRACE-Gradient	0.4	0.88	<u>0.01</u>	0.18	0.14

Table: All results are averaged across 10 different runs. The best and second best results are highlighted in **bold** and <u>underline</u>.

Figure: Percentage of Perturbed Features v.s. Fidelity

- 1. Comparison between Grace and Lime
 - Hypothesis \mathcal{H}_1 : more intuitive and friendly
 - Hypothesis \mathcal{H}_2 : more comprehensible
 - Hypothesis \mathcal{H}_3 : leads to better post-explanation decisions
- 2. Recruit Amazon MTurk workers as general end-users
- 3. No assumptions on workers' prior knowledge in machine learning

Feature	Bare_nuclei	MarAdh	CluThic	mitoses	CelSizUni	CelShaUni	NorNuc	SinEpCeSi	Model Prediction
Value	10.0	5.0	8.0	1.0	8.0	5.0	3.0	2.0	Malignant

Explanation

"Had bare_nuclei been 3.0 point lower and CluThic been 7.0 point lower, the patient would have been diagnosed as Benign rather than Malignant"

Q1:Given a scale from 1 to 10, "how intuitive and friendly is the explanation to you?" (1 is least preferable, 10 is most preferable)

O 0 0

Q2:Given a scale from 1 to 10, "how understandable is the explanation to you?" (1 is least preferable, 10 is most preferable)

0

Figure: Example of an User-study Task for \mathcal{H}_1 , \mathcal{H}_2

Explanation

"If Bare_nuclei is 3.0 point lower and CluThic is 7.0 point lower, while keeping other features the same, the patient would be diagnosed as Benign rather than Malignant"

Q2:Below is the current value for each features of <u>PATIENT 1</u>. Following the <u>explanation</u> displayed, please <u>ADJUST</u> (<u>increase</u>, <u>decrease</u>, <u>do not change</u>) these values such that the computer model will change the prediction for this patient to <u>BENIGN</u>

BlaChr: _______ 4 ©

Figure: Example of an User-study Task for \mathcal{H}_3

Figure: Comparison of generated explanation: GRACE v.s. Lime. Scores are normalized to [0,1]. All results are statistically significant ($\mathcal{H}_1: p-value < 0.05$, $\mathcal{H}_2, \mathcal{H}_3: p-value < 0.01$)

Sensitivity Analysis - K, γ

Figure: Sensitivity of K on Fidelity

Table: Effects of entropy threshold γ on Info-Gain

Dataset	Method	1.0	0.7	0.5	0.3
musk	GRACE-Gradient				0.58
musk	GRACE-Local	0.36	0.36	0.54	0.54
segment	GRACE-Gradient	0.57			0.59
	GRACE-Local	0.79	0.79	0.84	0.84

- ② ✓ Motivation & Challenges
- **3** ✓ Explanation by Intervention
- **4** ✓ GRACE Algorithm
- **⑤** ✓ Experiments
- 6 Conclusion

Future Direction & Conclusion

- 1. **GRACE**: A novel instance-based algorithm that provides end-users with simple natural text explaining neural network models' predictions in a contrastive "Why X rather than Y" fashion.
- 2. **GRACE**: more intuitive, friendly, comprehensible and leads to more accurate decisions than Lime

Additional Information

- Source Code and Slides: https://github.com/lethaiq/GRACE_KDD20
- 2. Pike Group at Penn State: http://pike.psu.edu

References I

[Moosavi-Dezfooli et al., 2016] Moosavi-Dezfooli, S.-M., Fawzi, A., and Frossard, P. (2016).

Deepfool: a simple and accurate method to fool deep neural networks. In *Proceedings of the 2016 IEEE CVPR*, pages 2574–2582.

[Ribeiro et al., 2016] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). "why should I trust you?": Explaining the predictions of any classifier. In *KDD*, pages 1135–1144.