Final Exam

- · Due No due date
- Points 100
- Questions 32
- Available May 13 at 1:15pm May 13 at 3:15pm 2 hours
- Time Limit 120 Minutes

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	47 minutes	77.5 out of 100

(!) Correct answers will be available on May 13 at 3:30pm.

Score for this quiz: 77.5 out of 100

Submitted May 13 at 2:01pm

This attempt took 47 minutes.

Question 1

3 / 3 pts

Bezier Curve of Degree 5 given by

- $(1-t)^4p_0 + 5t(1-t)^3p_1 + 10t^2(1-t)^3p_2 + 10t^3(1-t)^2p_3 + 5t^3(1-t)p_4 + t^4p_4$
- $(1-t)^5p_0 + 5t(1-t)^4p_1 + 10t^2(1-t)^3p_2 + 10t^3(1-t)^2p_3 + 5t^4(1-t)p_4 + t^5p_5$
- $(1-t)^5p_0 + 5t(1-t)^4p_1 + 10t^3(1-t)^2p_2 + 10t^2(1-t)^3p_3 + 5t^4(1-t)p_4 + t^5p_5$
- $\bigcirc \ \, (1-t)^5p_5+5t(1-t)^4p_4+10t^2(1-t)^3p_3+10t^3(1-t)^2p_2+5t^4(1-t)p_1+t^5p_0$

Question 2

3 / 3 pts

The Binomial Coefficients of degree 7 Bezier curve given as

- 0 1 5 10 10 5 1
- 0 1 21 20 35 20 21 1
- 0 1 6 15 20 15 6 1
- 0 1 7 21 35 35 21 7 1

IncorrectQuestion 3

0 / 4 pts

if an equation given as

 $(-t^4+2t^3+t^1)p_0 + 5(t^4-t^2)p_1 + (t^2-t^1+2)p_2 + (1-t)p_3 + (t^4)p_4$: the 3rd row of the matrix M given as (Note: Row 1 indexed as 1)

 $[\ P_0\ p_1\ p_2\ p_3\ p_4\]\ M\ [\ t^4\ t^3\ t^2\ t\ 1]^T$

- 0 1-1-1-10
- 001-12
- 000-1-1
- 0 10000

IncorrectQuestion 4

0 / 5 pts

Find the equation of line passing (2,-1,5) and (4,8,0)

- x = 2+2t, y = -1+9t, z = 5+5t
- x = 2(1+t), y = (-1+9t), z = 5(1-t)
- x = 2+4t, y = -1+8t, z = 5
- x = 2-t, y = -1-9t, z = 5+5t

Question 5

3 / 3 pts

Given Matrix X and Y

Diagonal values of resulting matrix of X x Y is (Note: diagonal is top left most to bottom right most column)

- 61 60 23
- 29 23 0
- 29 23 17
- 0 61 39 65

Question 6

3 / 3 pts

Construct a matrix sequence for a triangle that rotates around the y - axis

- Through θ = 30 degrees counter clockwise about its point B = (1 0 -1)
- Let C = $\cos (30^\circ)$, S = $\sin(30^\circ)$.

What is the diagonal values 4 x 4 Matrix after multiplying first 2 Matrices.

(Nate: First is left most matrix and diagonal is top left most to bottom right most ...)

- O C1S1
- C1C1
- O 1 C -1
- C1C3

Question 7

3 / 3 pts

Construct a matrix sequence for a triangle that rotates around the y - axis

- Through $\theta = 30$ degrees counter clockwise about its point B = (1 0 -1)
- Let C = cos (30°), S = sin(30°).

If Triangle repeat the rotation for 3 times what is the value of B?

- 0 101
- (1 0 -1)
- 0, 0, -1
- -1 0-1

IncorrectQuestion 8

0 / 3 pts

Consider the Given WaveFront model

```
v -67.88 56.95 17.50

v -87.78 59.63 11.98

v -165.98 132.04 124.09

v 44.16 63.88 79.08

vt 0.71 0.81

vt 0.67 0.82

vt 0.81 0.82

vt 0.82 0.82

vt 0.69 0.82

vn -1.0 0.0 0.0

vn 0.5 0.0 -1.0

vn 1.0 0.6 0.0

vn 0.0 0.0 1.0
```

output of f 1/1/3, 2/2/1, 1/3/3 (order of v, vt, vn)

-67.88 56.95 17.50 / 0.71 0.81/0.00 0.00 1.00, -87.78 59.63 11.98/0.67 0.82/-1.0 0.0 0.0 , -165.98 132.04 124.09/0.81 0.82/1.0 0.6 0.0

-87.78 59.63 11.98/0.67 0.82/0.0 0.0 1.0, -165.98 132.04 124.09/0.81 0.82/0.5 0.0 -1.0, -87.78 59.63 11.98/0.82 0.82/0.0 0.0 1.0

-67.88 56.95 17.50/0.71 0.81/1.0 0.6 0.0, -87.78 59.63 11.98/0.67 0.82/-1.0 0.0 0.0, -67.88 56.95 17.50/0.81 0.82/1.0 0.6 0.0

None of the answers

IncorrectQuestion 9

0 / 3 pts

True Statements about Normal Mapping

- Technique uses RGB color to represent normal
- Normal mapping works with per fragment normal using textures
- Normal maps can show angles like Bump Maps
- Bump Maps are advanced than Normal Maps uses in 3D graphics

Question 10

3 / 3 pts

Which of the following is true about shader rendering?

Fragment Shader comes before Vertex Shader			
Fragment Shader comes after Vertex Shader			
Fragment shader and Vertex Shader comes at same time			
Both shaders process before Rasterization			
Question 11 3 / 3 pts One way to pass variables between shaders?			
Using uniform variable type			
 Using varying variable type 			
Using Attribute variable type			
 shaders cannot pass variables each other Question 12 3 / 3 pts Match test operations Scissor test 			
Restrict drawing of some po 🗸			
Alpha test			
Accept or reject fragments 🗸			
stencil test			
Restrict drawing of some po 🗸			
Accumulation Buffer			
uses for depth fields and mc 🗸			
PartialQuestion 13 1.5 / 3 pts True statements relate to buffers			
The accumulation buffer used for accumulating a series of images into a final, composite image			

Depth Buffer only uses for shadow mapping
Contains only Color Index or only RGB color data
Stencil buffer facilitates masking
Question 14 3 / 3 pts
Which would give an compile error in shader
vec3 alpha = vec3(1.0, 2.0, 3.0);
vec4 a;
a.x= alpha.y
All of the statements
a=(alpha, 2.0)
a= alpha.rgba
Question 15 3 / 3 pts What is NOT the main purpose of the Vertex Buffer Object None of these
Vertex Buffer Object mainly handles pixel data
 VBO uses to connect the vertex data to the vertex shader
VBO uses to control over the vertex shader data
Question 16 3 / 3 pts Which of the statement are true? Accumulation Buffer is a combination of VBO, VAO and PBO
VAO handles one or more Vertex Buffer Objects
EBO helps to organize elements
PBO mostly used to store texture data
Question 17 3 / 3 pts Which is true about Graphic pipeline?

- Pixel Shading handles in Geometry stage
- All of the statements
- Screen mapping and vertex shading is part of Rasterization stage
- There are three main stages : Application, Geometry , Rasterizer

Question 18

3 / 3 pts

A 3D model translate to the center and performing a rotation known as

- Affine Transformation
- Rotation
- Center Mapping
- Translation

Question 19

4 / 4 pts

Find p' after translate point p= (10,20,30) by t = [5,-6,3]^T

- p' = (50, -60, 90)
- p' = (15, 14 33)
- p' = (15, 26, 27)
- p' = (5, 14, 27)

IncorrectQuestion 20

0 / 3 pts

Find the Inverse matrix of R where the R is a 30 degree 4 x 4 Rotation matrix that rotates around y axis in clockwise direction

$$\begin{bmatrix} 0.87 & 0 & 0.5 & 0 \\ 0 & 1 & 0 & 0 \\ -0.5 & 0 & 0.87 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -0.87 & 0 & -0.5 & 0 \\ 0 & 1 & 0 & 0 \\ 0.5 & 0 & -0.87 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

None of these

Question 21

3 / 3 pts

Set camera at +10 on z Axis

Center at (0,0,0)

up at Oz axis (0,0,1)

Consider $v' = P \times V \times M \times v$ product of matrixes

Find the sum of diagonal values of View Matrix (Note: diagonal -> top left to bottom right)

- 0 11
- 0 1
- 2
- Not any of these

Question 22

3 / 3 pts

If right = 3, left = 1, top = 5, bottom = 3, near = 12, far = 10

Sum of values in the right most column of a Orthographic Projection Matrix give by

- **5**
- **-6**
- 6
- -16

Question 23

3 / 3 pts

eye at (0, 0, 1), Center at (0,0,0), up at Oy axis (0,1,0)

If right = 3, left = 1, top = 5, bottom = 3, near = 12, far = 10

Product of Orthographic Projection Matrix and View Matrix given by

Not any of these

Question 24

3 / 3 pts

What is true about Skeletal Animations

- Skeletal animation requires a fewer image and less memory.
- Bone space is same as Model space since bones are inside the model
- Bone units can be completely independent
- Can perform without a timer

Question 25

3 / 3 pts

Find the intersection point of a line and a plain

where plain 2x + 2y +5z -2 =0

and line move from (0,0,0) to (2, 3, 1)

- t = 3/10
- Not any of these
- **-1***(0.6, 0.9, 0.3)
- (4/15, 6/15, 2/15)

Question 26

3 / 3 pts

What is true about Barycentric coordinates on a triangle

```
If \beta =0 means P is on Edge
/
   Point in a triangle can be define as P = a + \beta(b-a)+ \lambda(c-a)
/
   \alpha, \beta, \lambda are zero means P is in center
Can use to determine a given point locate inside a triangle
IncorrectQuestion 27
0 / 3 pts
What is true about Model View Projection Matrix Modes

    Sometimes Model Coordinates can fit into world coordinates without conversion

Projection Matrix * View Matrix * Verticies * Model Matrix gives the final Out look
glOrtho () and glFrustum() gives the same outlook after rendering

    Translation handles in View Matrix

Question 28
3 / 3 pts
What is true about Model View Projection Matrix
Model Matrix * View Matrix * Projection Matrix + Model Coordinates
Model Coordinates * Model Matrix * View Matrix * Projection Matrix
     Projection Matrix *View Matrix *Model Matrix* Model Coordinates
View Matrix *Model Matrix * Projection Matrix * Model Coordinates
Question 29
3 / 3 pts
```

https://fresnostate.instructure.com/courses/84584/quizzes/309784

Matrix Multiply

$$\begin{bmatrix} 6 & 0 & 1 & 10 \\ 2 & 2 & 3 & -7 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 0 & 1 & 10 \\ 2 & 2 & 3 & -7 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 0 & 1 & 14 \\ 2 & 2 & 3 & 10 \\ 1 & 2 & 1 & 9 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

None of these

Question 30

3 / 3 pts

Find the determinant of

1 2 4 5 0 7

- None of these
- -28
- 0
- 29

Question 31

3 / 3 pts

The sum of diagonals of a composite Matrix that rotates a triangle in the 2d plane through angle Θ on clockwise direction about it's point c =(-5,-5) and scale by 3 keeping point (0,0) unchanged given by:

Let cos = C and sin = S

(Note: diagonal is top left most to bottom right most column)

- O 6S+3
- 3S+1
- 6C+1
- 0 6C + S

Question 32

3 / 3 pts

If
$$A = (3, 1, 1)$$
 $B = (4.4,3)$ and $C = (6, 8, 4)$

Find the surface normal for the ABC triangle in clockwise order

- [5 3 2]^T
- [5 -3 2]^T
- [-5 3 2]^T
- [-5 3 -2]^T

Quiz Score: 77.5 out of 100