

Implementati...

Expand all Back to top

Go to bottom

A Simple Range Proof From Polynomial Commitments

Dan Boneh, Ben Fisch, Ariel Gabizon, and Zac Williamson

Let's construct a simple zero knowledge range proof from a hiding polynomial commitment scheme (PCS).

The setup

changed 3 years ago 🔞

Let p be a prime, where $p>2^n$ for some n. We want a commitment scheme for elements in \mathbb{F}_p that allows a prover to efficiently convince a verifier that a committed quantity $z\in\mathbb{F}_p$ is in the range $0 \le z < 2^n$.

We show that for a committed $z\in\mathbb{F}_p$, the prover can provide an HVZK proof to convince the verifier that $0 \le z < 2^n$ by committing to **two** polynomials of degree (n+1), and running the polynomial evaluation protocol three times. Therefore:

- For the pairing-based polynomial commitment scheme of Kate, Zaverucha and Goldberg, this gives a range proof of length $O_{\lambda}(1)$ that can be verified in time $O_{\lambda}(1)$, with a trusted setup and an updatable SRS of size $O_{\lambda}(n)$.
- For the DARK polynomial commitment scheme of Bünz, Fisch, and Szepieniec, this gives a range proof of length $O_{\lambda}(\log n)$ that can be verified in time $O_{\lambda}(\log n)$, with no trusted setup.
- For comparison, recall that Bulletproofs give a range proof with no trusted setup of length $O_{\lambda}(\log n)$ that can be verified in time $O_{\lambda}(n)$.

In what follows we use $\mathbb{F}_p^{(< n)}[X]$ to denote polynomials in $\mathbb{F}_p[X]$ of degree less than n. We assume that n divides p-1 so that there is an element $\omega\in\mathbb{F}_p$ of order n. Let $H = \{1, \omega, \omega^2, \dots, \omega^{n-1}\}$

The commitment scheme

Suppose that we have available a hiding and binding PCS for polynomials in $\mathbb{F}_p^{(< n)}[X].$ Moreover, we assume that the polynomial evaluation protocol is HVZK.

To commit to an element $z\in \mathbb{F}_p$, choose an arbitrary polynomial $f\in \mathbb{F}_p^{(< n)}[X]$ such that f(1)=z. Taking f as the constant polynomial f(X)=z is sufficient. The commitment to z is the polynomial commitment \mathbf{com}_f to f.

If the PCS is additive, then the commitment scheme is additively homomorphic: given commitments to z_1 and z_2 in \mathbb{F}_p , anyone can construct a commitment to z_1+z_2 .

Range proof for the range $[0, 2^n)$

Let \mathbf{com}_f be a commitment to $z \in \mathbb{F}_p$ so that f(1) = z, as above. Let $z_0, \dots, z_{n-1} \in \{0,1\}$ be the binary digits of z, so that $z = \sum_{i=0}^{n-1} 2^i \cdot z_i$.

Now, given \mathbf{com}_f , the prover proves that $0 \leq z < 2^n$, by constructing a degree-(n-1)polynomial $g \in \mathbb{F}_p^{(< n)}[X]$ such that

$$g(\omega^{n-1})=z_{n-1} \quad ext{and} \quad g(\omega^i)=2g(\omega^{i+1})+z_i \ ext{ for all } i=n-2,\ldots,0.$$

Observe that $g(1)=g(\omega^0)=\sum_{i=0}^{n-1}2^i\cdot z_i=z.$ Now the prover needs to prove three things:

2. $g(\omega^{n-1}) \in \{0,1\}$, and

polynomial

1. g(1) = f(1)

- 3. $g(X)-2g(X\omega)\in\{0,1\}$ for all $x\in H\setminus\{\omega^{n-1}\}$.

 $\{0,1\}$ and are the binary digital of z. Together, these conditions prove that $0 \leq z < 2^n$, as required. To prove Conditions (1)-(3), the prover sends to the verifier a polynomial commitment to g. It

Condition (1) proves that g(1)=z; Conditions (2) and (3) prove that z_0,\ldots,z_{n-1} are all in

then proves to the verifier that the following polynomials evaluate to zero for all $x \in H$: $w_1(X) = (g - f) \cdot \left(\frac{X^n - 1}{X - 1}\right),$

$$w_2(X)=g\cdot (1-g)\cdot \Big(rac{X^n-1}{X-\omega^{n-1}}\Big), \quad ext{and}$$
 $w_3(X)=\left[g(X)-2g(X\omega)
ight]\cdot \left[1-g(X)+2g(X\omega)
ight]\cdot (X-\omega^{n-1}).$ This can be done efficiently using a batch opening technique described in this paper. The

 $q(X) = (w_1 + \tau w_2 + \tau^2 w_3)/(X^n - 1).$

verifier sends a radom $au \in \mathbb{F}_p$ to the prover, and the prover computes the quotient polynomial

The prover sends a polynomial commitment to
$$q$$
 to the verifier, and then proves that the polynomial

 $w(X) = w_1 + \tau w_2 + \tau^2 w_3 - q \cdot (X^n - 1)$

is the zero polynomial. To do so, the verifier sends a random $ho \in \mathbb{F}_p$ to the prover, and together they run the evaluation protocol three times: once for g(
ho), once for $g(
ho\omega)$, and once for evaluating $\hat{w}(
ho)$, where $\hat{w}(X)=f(X)\cdot\left(rac{
ho^n-1}{
ho-1}
ight)+q(X)\cdot(
ho^n-1).$ This \hat{w} is a linear combination of f and q, and therefore the verifier can construct a commitment to \hat{w} using the additiving property of the PCS. The three evaluations, $g(\rho)$, $\hat{w}(\rho)$, and $g(\rho\omega)$, along with ρ and au, are sufficient to evaluate w(
ho) and confirm that the result is zero. This proves, with high probability, that w is the zero polynomial. There is one remaining issue, which is that revealing $g(\rho)$, $\hat{w}(\rho)$, and $g(\rho\omega)$ is not zero-

knowledge. The fix is simple: the prover constructs g as a degree n+1 polynomial by interpolating g to a random value at two more points ω',ω'' outside H. That is, g is defined in exactly the same way on all points in H, but $g(\omega')=lpha$ and $g(\omega'')=eta$ for random $lpha,eta\in\mathbb{F}_p$ and $\omega,\omega'
otin H$. Since g has the same values over all points in H, this has no effect on the relations checked above. This is zero-knowledge because g(
ho) and $g(
ho\omega)$ can now be simulated as independent random values in \mathbb{F}_p . Moreover, the value of $\hat{w}(
ho)$ is completely determined by the fact that w(
ho)=0, and can therefore also be simulated. Note that we need to restrict the choice of ho to $(\mathbb{F}_p \setminus H)$ to ensure that the simulation is valid. This entire process makes two polynomial commitments, to g and q, and uses the polynomial

evaluation protocol three times to evaluate $g(\rho)$, $\hat{w}(\rho)$, and $g(\rho\omega)$. We note that, if needed, it is possible to reduce the degree of g by writing z in a base greater than 2.

The Bulletproofs paper (Section 4.1) shows how to implement a range proof using an innerproduct argument. The DARK paper shows how to implemement an inner-product argument

Other constructions

using a polynomial commitment scheme. Combining the two gives another way to construct a range proof from a polynomial commitment scheme with similar properties as the range proof described above. Interestingly, the resulting protocol is quite different. Implementation/related work

Williamson

This scheme initially appeared as a component of Turbo Plonk by Ariel Gabizon and Zac

dabo \heartsuit 2 **©** 6048 Read more

How to Build a Private DAO on Ethereum

\$\$ \def\Fp{\mathbb{F}_p} \$\$ \def\Zq{\mathbb{Z}_q} \def\EE{\mathbb{E}}} \def\deg{\mathrel{\mathop:}=}... \def\deq{\mathrel{\mathop:}=}... Apr 30, 2022 Feb 19, 2022

How to Store a Permutation Compactly

Last changed by

 \heartsuit 2

Read more from dabo

Published on HackMD