Brief Contents

PART I II INTRODUCTION	1
1 III INTRODUCTION TO PROCESS CONTROL	3
2 M CONTROL OBJECTIVES AND BENEFITS	19
PART II # PROCESS DYNAMICS	45
3 M MATHEMATICAL MODELLING PRINCIPLES	49
4 m MODELLING AND ANALYSIS FOR PROCESS	
CONTROL	97
5 III DYNAMIC BEHAVIOR OF TYPICAL PROCESS	
SYSTEMS	135
6 EMPIRICAL MODEL IDENTIFICATION	175
PART III # FEEDBACK CONTROL	207
7 II THE FEEDBACK LOOP	211
8 E THE PID ALGORITHM	239
9 ■ PID CONTROLLER TUNING FOR DYNAMIC	
PERFORMANCE	267
10 E STABILITY ANALYSIS AND CONTROLLER	
TUNING	303
11 I DIGITAL IMPLEMENTATION OF PROCESS	
CONTROL	357
12 # PRACTICAL APPLICATION OF FEEDBACK	
CONTROL	381
13 m PERFORMANCE OF FEEDBACK CONTROL	
SYSTEMS	409
PART IV II ENHANCEMENTS TO SINGLE-LOOP PID	
FEEDBACK CONTROL	453

14 ■ CASCADE CONTROL	457
15 m FEEDFORWARD CONTROL	483
16 ■ ADAPTING SINGLE-LOOP CONTROL SYSTEMS	
FOR NONLINEAR PROCESSES	511
17 m INFERENTIAL CONTROL	535
18 B LEVEL AND INVENTORY CONTROL	561
19 ■ SINGLE-VARIABLE MODEL PREDICTIVE	
CONTROL	583
PART V B MULTIVARIABLE CONTROL	615
20 m MULTILOOP CONTROL: EFFECTS	
OF INTERACTION	619
21 ■ MULTILOOP CONTROL: PERFORMANCE	
ANALYSIS	661
22 ■ VARIABLE-STRUCTURE AND CONSTRAINT	
CONTROL	705
23 ■ CENTRALIZED MULTIVARIABLE CONTROL	727
PART VI - PROCESS CONTROL DESIGN	761
24 m PROCESS CONTROL DESIGN: DEFINITION	
AND DECISIONS	765
25 PROCESS CONTROL DESIGN: MANAGING THE	
DESIGN PROCEDURE	819
26 ■ CONTINUAL IMPROVEMENT	859
APPENDIX A ■ PROCESS CONTROL DRAWINGS	889
APPENDIX B ■ INTEGRATING FACTOR	895
APPENDIX C # CHEMICAL REACTOR MODELING	
AND ANALYSIS	897
APPENDIX D ■ APPROXIMATE DYNAMIC MODELS	909
APPENDIX E # DETERMINING CONTROLLER	
CONSTANTS TO SATISFY	
PERFORMANCE SPECIFICATIONS	915
Appendix f = discrete models for digital	
CONTROL	921
APPENDIX G ₪ GUIDE TO SELECTED PROCESS	
EXAMPLES	925
APPENDIX H = PARTIAL FRACTIONS AND	
FREQUENCY RESPONSE	931
APPENDIX I & PROCESS EXAMPLES OF	000
PARALLEL SYSTEMS APPENDIX J m PROCESS CONTROL CASE STUDY:	939
TWO-PRODUCT DISTILLATION	949
APPENDIX K = PROCESS CONTROL CASE STUDY:	343
FIRED HEATER	961
APPENDIX L = ANALYSIS OF DIGITAL CONTROL	331
SYSTEMS	973
INDEX	1003
INVEA	1003

Contents

vii

xiii

Syml	ools and Acronyms	XXV	
PAR	T I m INTRODUCTION	1	
1 =	INTRODUCTION TO PROCESS CONTROL	3	
1.1	Introduction	3	
1.2	What Does a Control System Do?	4	
1.3	Why Is Control Necessary?	7	
1.4	Why Is Control Possible?	7	
1.5	How Is Control Done?	8	
1.6	Where Is Control Implemented?	9	
1.7	What Does Control Engineering "Engineer"?	10	
1.8	How Is Process Control Documented?	12	
1.9	What Are Some Sample Control Strategies?	13	8
1.10	Conclusions	14	×
2 ■	CONTROL OBJECTIVES AND BENEFITS	19	
2.1	Introduction	19	
2.2	Control Objectives	20	

Preface

xiv	2.3	Determining Plant Operating Conditions	25
	2.4	Benefits for Control	28
Contents	2.5	Importance of Control Engineering	35
	2.6	Conclusions	38
	PAI	RT II = PROCESS DYNAMICS	45
	3 ≡	MATHEMATICAL MODELLING PRINCIPLES	49
	3.1	Introduction	49
	3.2	A Modelling Procedure	50
	3.3	Modelling Examples	62
	3.4	Linearization	69
	3.5	Numerical Solutions of Ordinary Differential Equations	82
	3.6	The Nonisothermal Chemical Reactor	85
	3.7	Conclusions	86
	4 =	MODELLING AND ANALYSIS FOR PROCESS	
		CONTROL	97
	4.1	Introduction	97
	4.2	The Laplace Transform	98
	4.3	Input-Output Models and Transfer Functions	110
	4.4	Block Diagrams	115
	4.5	Frequency Response	119
	4.6	Conclusions	125
	5 m	DYNAMIC BEHAVIOR OF TYPICAL PROCESS	
		SYSTEMS	135
	5.1	Introduction	135
	5.2	Basic System Elements	136
	5.3	Series Structures of Simple Systems	143
	5.4	Parallel Structures of Simple Systems	152
	5.5	Recycle Structures	155
	5.6	Staged Processes	157

Multiple Input-Multiple Output Systems

5.7

5.8

Conclusions

163

165

6 ■	EMPIRICAL MODEL IDENTIFICATION	175
6.1	Introduction	175
6.2	An Empirical Model Building Procedure	176
6.3	The Process Reaction Curve	179
6.4	Statistical Model Identification	188
6.5	Additional Topics in Identification	196
6.6	Conclusions	198
PAF	IT III & FEEDBACK CONTROL	207
7 =	THE FEEDBACK LOOP	211
7.1	Introduction	211
7.2	Process and Instrument Elements of the Feedback Loop	212
7.3	Selecting Controlled and Manipulated Variables	216
7.4	Control Performance Measures for Common Input Changes	218
7.5	Approaches to Process Control	228
7.6	Conclusions	231
8 8	THE PID ALGORITHM	239
8.1	Introduction	239
8.2	Desired Features of a Feedback Control Algorithm	240
8.3	Block Diagram of the Feedback Loop	242
8.4	Proportional Mode	245
8.5	Integral Mode	. 248
8.6	Derivative Mode	249
8.7	The PID Controller	252
8.8	Analytical Expression for a Closed-Loop Response	253
8.9	Importance of the PID Controller	257
8.10	Conclusions	258
9 ∎	PID CONTROLLER TUNING FOR DYNAMIC PERFORMANCE	267
9.1	Introduction	
9.1 9.2	Introduction Defining the Tuning Problem	267 268
9.2 9.3	Determining Good Tuning Constant Values	269

XV Contents

xvi	9.4	Correlations for Tuning Constants	278
	9.5	Fine Tuning the Controller Tuning Constants	289
Contents	9.6	Conclusions	293
	10 =	STABILITY ANALYSIS AND CONTROLLER TUNING	303
	10.1	Introduction	303
	10.2	The Concept of Stability	303
	10.3	Stability of Linear Systems-A Simple Example	304
	10.4	Stability Analysis of Linear and Linearized Systems	305
	10.5	Stability Analysis of Control Systems: Principles	308
	10.6	Stability Analysis of Control Systems: The Bode Method	313
	10.7	Controller Tuning Based on Stability: Ziegler-Nichols Closed-Loop	329
	10.8	Controller Tuning and Stability — Some Important Interpretations	334
	10.9	Additional Tuning Methods in Common Use, with a Recommendation	345
	10.10	Conclusions	348
	11 N	DIGITAL IMPLEMENTATION OF PROCESS CONTROL	357
	11.1	Introduction	357
	11.2	Structure of the Digital Control System	358
	11.3	Effects of Sampling a Continuous Signal	362
	11.4	The Discrete PID Control Algorithm	365
	11.5	Effects of Digital Control on Stability, Tuning, and Performance	367
	11.6	Example of Digital Control Strategy	372
	11.7	Trends in Digital Control	373
	11.8	Conclusions	374
	12 ■	PRACTICAL APPLICATION OF FEEDBACK CONTROL	381

12.1 Introduction

12.2 Equipment Specification12.3 Input Processing

12.4 Feedback Control Algorithm

381 383

387

396

12.5	Output Processing	403	
12.6	Conclusions	403	
13 =	PERFORMANCE OF FEEDBACK CONTROL SYSTEMS	409	
12.1	Introduction	409	
13.1 13.2	Control Performance	410	
13.3	Control Performance Control Performance via Closed-Loop Frequency Response	410	
13.4	Control Performance via Closed-Loop Simulation	422	
13.5	Process Factors Influencing Single-Loop Control Performance	425	
13.6	Control System Factors Influencing Control Performance	433	
13.7	Conclusions	443	
13.1	Conclusions	773	
PAR	T IV ■ ENHANCEMENTS TO SINGLE-LOOP PID		
	FEEDBACK CONTROL	453	
	•		
14 ■	CASCADE CONTROL	457	
14.1	Introduction	457	
14.2	An Example of Cascade Control	458	
14.3	Cascade Design Criteria	461	
14.4	Cascade Performance	462	
14.5	Controller Algorithm and Tuning	468	
14.6	Implementation Issues	469	
14.7	Further Cascade Examples	471	
14.8	Cascade Control Interpreted as Distributed Decision Making	476	
14.9	Conclusions	477	
15 ■	FEEDFORWARD CONTROL	483	
15.1	Introduction	483	
15.2	An Example and Controller Derivation	483	
15.3	Feedforward Control Design Criteria	486	
	•		
15.4	Feedforward Performance	489	
15.4 15.5	· ·	489 492	
	Feedforward Performance		
15.5	Feedforward Performance Controller Algorithm and Tuning	492	

xvii Contents

		•	۰
v	л	۱	1

Contents

15.8	Feedforward Control Is General	503
15.9	Conclusions	504
16 ■	ADAPTING SINGLE-LOOP CONTROL SYSTEMS FOR NONLINEAR PROCESSES	511
16.1	Introduction	511
16.2	Analyzing a Nonlinear Process with Linear Feedback Control	512
16.3	Improving Nonlinear Process Performance through Deterministic Control Loop Calculations	517
16.4	Improving Nonlinear Process Performance through Calculations of the Measured Variable	519
16.5	Improving Nonlinear Process Performance through Final Element Selection	520
16.6	Improving Nonlinear Process Performance through Cascade Design	525
16.7	Real-Time Implementation Issues	526
16.8	Additional Topics in Control Loop Adaptation	526
16.9	Conclusions	528
17 =	INFERENTIAL CONTROL	535
17.1	Introduction	535
17.2	An Example of Inferential Control	537
17.3	Inferential Control Design Criteria	541
17.4	Implementation Issues	543
17.5	Inferential Control Example: Distillation	545
17.6	Inferential Control Example: Chemical Reactor	549
17.7	Inferential Control Example: Fired Heater	553
17.8	Additional Topics in Inferential Control	554
17.9	Conclusions	555
18 =	LEVEL AND INVENTORY CONTROL	561
18.1	Introduction	561
18.2	Reasons for Inventories in Plants	562
18.3	Level Processes and Controllers	564
18.4	A Nonlinear Proportional-Integral Controller	567
18.5	Matching Controller Tuning to Performance Objectives	567
18.6	Determining Inventory Size	572

18.7	Implementation Issues	574
18.8	Vessels in Series	574
18.9	Conclusions	576
19 =	SINGLE-VARIABLE MODEL PREDICTIVE CONTROL	583
10.1		583
19.1	Introduction	584
19.2	The Model Predictive Control Structure	
19.3	The IMC Controller	590
19.4	The Smith Predictor	600
19.5	Implementation Guidelines	604
19.6	Algorithm Selection Guidelines	605
19.7	Additional Topics in Single-Loop Model Predictive Control	608
19.8	Conclusions	609
PAK	T V . MULTIVARIABLE CONTROL	615
20 =	MULTILOOP CONTROL: EFFECTS	
	OF INTERACTION .	619
20.1	Introduction	619
20.2	Modeling and Transfer Functions	621
20.3	Influence of Interaction on the Possibility of Feedback Control	624
20.4	Process Interaction: Important Effects on Multivariab	
	System Behavior	628
20.5	Process Interaction: The Relative Gain Array (RGA)	633
20.6	Effect of Interaction on Stability and Tuning of Multiloop	
	Control Systems	638
20.7	Additional Topics in Interaction Analysis	650
20.8	Conclusions	651
24 -	MULTILOOP CONTROL: PERFORMANCE	
21 -	ANALYSIS	661
21.1	Introduction	661
21.2	Demonstration of Key Multiloop Issues	662
21.3	Multiloop Control Performance through Loop Pairing	671
21.4	Multiloop Control Performance through Tuning	682
21.5	Multiloop Control Performance through Enhancements:	
	Decoupling	683

XIX Contents

Contents

21.6	Multiloop Control Performance through Enhancements:	
	Single-Loop Enhancements	690
21.7	Additional Topics in Multiloop Performance	691
21.8	Conclusions	693
	VARIABLE-STRUCTURE AND CONSTRAINT	
22 -	CONTROL	705
22.1	Introduction	705
22.2	Split Range Control for Processes with Exce706 Manipulated Variables	706
22.3	Signal Select Control for Processes with Excess Controlled Variables	710
22.4	Applications of Variable-Structure Methods for	
	Constraint Control	715
22.5	Conclusions	720
23 🗉	CENTRALIZED MULTIVARIABLE CONTROL	727
23.1	Introduction	727
23.2	Multivariable Model Predictive Control	728
23.3	An Alternative Dynamic Modelling Approach	730
23.4	The Single-Variable Dynamic Matrix Control (DMC) Algorithm	735
23.5	Multivariable Dynamic Matrix Control	744
23.6	Implementation Issues in Dynamic Matrix Control	748
23.7	Extensions to Basic Dynamic Matrix Control	751
23.8	Conclusions	757
PAR'	T VI B PROCESS CONTROL DESIGN	761
•		-
24 🗷	PROCESS CONTROL DESIGN: DEFINITION	
	AND DECISIONS	765
24.1	Introduction	765
24.2	Defining the Design Problem	766
24.3	Measurements	771
24.4	Final Elements	776
24.5	Process Operability	778
24.6	Control Structure	789
24.7	Control Algorithms	792
24.8	Control for Safety	794

24.9	Performance Monitoring	799	
24.10	The Flash Example Revisited	801	
24.11	Conclusions	804	
25 ■	PROCESS CONTROL DESIGN: MANAGING	THE	
	DESIGN PROCEDURE	819	
25.1	Introduction	819	
25.2	Defining the Design Problem	820	
25.3	Sequence of Design Steps	823	
25.4	Temporal Hierarchy of Control Structure	825	
25.5	Process Decomposition	831	
25.6	Integrating the Control Design Methods	833	
25.7	Example Design: Chemical Reactor with Recycle	835	
25.8	Summary of Key Design Guidelines	849	
25.9	Conclusions	852	
26 ■	CONTINUAL IMPROVEMENT	859	
26.1	Introduction	859	
26.2	Optimization ,	860	
26.3	Statistical Process Control (SPC)	876	
26.4	Conclusions	881	
20.1	Cynolasical	•••	
APP	ENDIXES	889	
APPI	ENDIX A = PROCESS CONTROL DRAWINGS	889	
A.1	Identification Letters	889	
A.2	Final Element	891	
A.3	Process Equipment	892	
APPI	ENDIX B M INTEGRATING FACTOR	895	
APPI	ENDIX C = CHEMICAL REACTOR MODELING AND ANALYSIS	897	•
C .1	Energy Balance	897	•
C .2	Modelling of an Example Nonisothermal CSTR	899	
C.3	The Reactor Transfer Functions	901	
C.4	Multiple Steady States	902	

xxi Contents

xii	C.5	Continuous Oscillations Due to Limit Cycles	906	
1. A	C.6	Conclusions	907	
Contents			909	
	APPENDIX D = APPROXIMATE DYNAMIC MODELS			
	D .1	Method of Moments	909	
	D.2	Padé Dead Time Approximations	913	
	APP	ENDIX E DETERMINING CONTROLLER CONSTANTS TO SATISFY PERFORMANCE SPECIFICATIONS	915	
	E.1	Simulation of the Controlled System Transient Response	915	
	E.2	Optimization of the Tuning Constants	917	
	APP	ENDIX F - DISCRETE MODELS FOR DIGITAL CONTROL	921	
	F.1	Gain	922	
	F.2	Dead Time	922	
	F.3	First-Order System	922	
	F.4	Lead/Lag .	923	
	APPENDIX G GUIDE TO SELECTED PROCESS EXAMPLES			
	G.1	Heat Exchanger	925	
	G.2	Three-Tank Mixing Process	926	
	G.3	Nonisothermal Stirred-Tank Chemical Reactor (CSTR)	926	
	G.4	Two-Product Distillation Column	926	
	G.5	Two Series Isothermal Continuous Stirred-Tank Reactors (CSTR)	927	
	G.6	Heat Exchange and Flash Drum	929	
	APP	ENDIX H D PARTIAL FRACTIONS AND FREQUENCY RESPONSE	931	
	H.1	Partial Fractions	931	
	H.2	Frequency Response	936	

APPENDIX I - PROCESS EXAMPLES OF

PARALLEL SYSTEMS

939

APP	ENDIX J = PROCESS CONTROL CASE STUDY: TWO-PRODUCT DISTILLATION	949	xxiii				
			Contents				
APP	ENDIX K - PROCESS CONTROL CASE STUDY: FIRED HEATER	961					
APPENDIX L . ANALYSIS OF DIGITAL CONTROL							
	SYSTEMS	973					
L.1	Introduction	973	· ·				
L.2	The z-transform	973					
L.3	Methods for Analyzing Digital Control Systems	983					
L.4	Digital Control Performance	989					
L.5	Conclusions	1001					
INDEX		1003					

.

.

.