Lista 1

Łukasz Magnuszewski

25 lutego 2023

1	2	3	4	5	6	7
-	-	+	-	-	-	+

Zadanie 1

Zbiór spójników $\{\land, \neg\}$ jest funkcjonalnie pełny, więc wystarczy przedstawić te spójniki przy pomocy kreski Sheffera.

$$\neg \alpha \stackrel{\text{\tiny def}}{=} \alpha | \alpha$$

Teraz używając negacji

$$\alpha \wedge \beta \stackrel{\text{def}}{=} \neg(\alpha|\beta)$$

Zadanie 2

Mamy następujący zbiór aksjomatów

$$\{p \to q \lor r, \neg q \to s, s \land p \to \neg r\}$$

A naszym celem jest $r \to \neg s \lor \neg p$

naszym celem jest
$$r \to \neg s \lor \neg p$$

$$\frac{\overline{\neg (\neg s \lor \neg p) \vdash \neg (\neg s \lor \neg p)}}{\neg (\neg s \lor \neg p) \vdash s \land p} \xrightarrow{\text{(De Morgan)}} \frac{\neg (\neg s \lor \neg p) \vdash s \land p}{\neg (\neg s \lor \neg p) \vdash \neg r} \xrightarrow{\text{(Ax)}} \frac{\neg (\neg s \lor \neg p) \vdash \bot}{\neg r} \xrightarrow{\text{(Ass)}} \frac{r, \neg (\neg s \lor \neg p) \vdash \bot}{r \vdash r \to \neg s \lor \neg p} \xrightarrow{\text{(AAA)}} \frac{r \vdash \neg s \lor \neg p}{\vdash r \to \neg s \lor \neg p} \xrightarrow{\text{(AS)}}$$

Zadanie 3

Wprowadźmy następujące oznaczenia:

 $p \stackrel{\text{def}}{=} \text{oskarżony jest winny}$

 $q \stackrel{\text{def}}{=}$ oskarżony miał wspólnika

Wtedy wypowiedź oskarżyciela można zapisać jako

$$p \rightarrow q$$

zaś obrońcy jako

$$\neg (p \rightarrow q)$$

co jest równoważne

$$p \wedge \neg q$$

Czyli twierdzi on że oskarżony jest winny, oraz nie miał wspólnika. Co raczej nie zapowiada zbyt krótkiego wyroku. 🖐

Zadanie 7

Niech α będzie formułą rachunku zdać. Niech $L(\alpha)$ i $P(\alpha)$ oznaczają odpowiednio liczbę lewych i prawych nawiasów w formule α . Udownijmy że dla każdej formuły zdaniowej $L(\alpha) = P(\alpha)$.

Przeprowadźmy dowód przez indukcję strukturalną:

1. Zmienne zdaniowe

Ustalmy dowolną zmienną zdaniową p, wtedy L(p) = 0 = P(p).

2 T I

$$L(\bot) = 0 = P(\bot) \text{ oraz } L(\top) = 0 = P(\top)$$

3. Negacja

Ustalmy dowolną formułę α taką że $P(\alpha) = L(\alpha)$, wtedy

$$P((\neg \alpha)) = P(\alpha) + 1 \stackrel{\text{ind}}{=} L(\alpha) + 1 = L((\neg \alpha))$$

4. Koniunkcja

Ustalmy dowolne formuły α, β takie że $P(\alpha) = L(\alpha)$ oraz $P(\beta) = L(\beta)$, wtedy

$$P((\alpha \land \beta)) = P(\alpha) + P(\beta) + 1 \stackrel{\text{ind}}{=} L(\alpha) + L(\beta) + 1 = L((\alpha \land \beta))$$

Dowód dla pozostałych przypadków(impikacja, alternatywa, równoważność) analogiczny do tego dla koniunkcji 🖐