Predicting Myers-Briggs Personality Type

Ankita Budhraja

Introduction

The Myers-Briggs Type Indicator (MBTI) is a personality assessment tool used to determine personality types. The test categorizes people into 16 personality types based on four dichotomies: introversion/extroversion, intuition/sensing, thinking/feeling, and judging/perceiving.

Goal

The overall goal for the outcome is to predict a person's personality type based on their social media posts and trying to address the following questions:

- Can Myers-Briggs personality type be predicted based on social media activity?

- Which Model performs the best and gives the most accurate results?
- What are the essential features of this data?
- Where can this model be used?

About the Dataset

<u>Kaggle Dataset</u>: This dataset contains over 8600 rows. Each row has a person's personality Type (MBTI code) and a list of the last 50 things they've posted.

	type	posts
0	INFJ	'http://www.youtube.com/watch?v=qsXHcwe3krw
1	ENTP	'I'm finding the lack of me in these posts ver
2	INTP	'Good one https://www.youtube.com/wat
3	INTJ	'Dear INTP, I enjoyed our conversation the o
4	ENTJ	'You're fired. That's another silly misconce

Data Preprocessing

- 1. Remove URLs, numbers, extra white spaces, special characters, etc
- 2. Apply lemmatizer.lemmatize() to return the lemma form of each word to get the tokenized text

- 3. Remove default English stopwords
- 4. Performed sentiment analysis (using TextBlob) of the clean tokenized text (giving each a compound score for their 50 posts together)

EDA

Feature Engineering

- 1. Word count
- 2. Variance of word count
- 3. Vocabulary richness (no. of unique words / total number of words)
- 4. Nouns, verbs, adjectives, interjections (using pos tag)
- 5. Average links and images per post
- 6. Average Question_marks, exclamations, ellipses per post
- 7. 4 new categories for each pair E/I, S/N, T/F, J/P
- 8. Sentiment polarity score

Feature Importance using PCA and random forest

word_count: 0.137 images: 0.022

variance_of_wordcount: 0.031
interjections_per_comment: 0.003

nouns_per_comment: 0.021
verbs_per_comment: 0.023

adjectives_per_comment: 0.030 vocabulary_richness: 0.027 links_per_comment: 0.039 question marks: 0.025

exclamations: 0.049

ellipses: 0.131 sentiment: 0.456

Models

Created a pipeline using imblearn package:

- Created a TfidfVectorizer for the tokenized text column.
- Used SelectKBest using the f_classif scoring function and the MinMaxScaler
- Used Under sampling because of class imbalance

Added more stop words as part of preprocessing (as seen in WordCloud)

Types of Models

- Naive Bayes
- Logistic Regression
 - Lasso
 - Ridge
 - LogisticCV
- Random Forest

Evaluation Metrics used to compare models

1. ROC-AUC Score

	Model	Extrovert-Introvert	Sensing-Intuition	Thinking-Feeling	Judging-Perceiving
	NB	0.76	0.76	0.87	0.69
	Logistic	0.76	0.74	0.88	0.69
	LogisticCV	0.75	0.74	0.88	0.70
	Lasso Logistic	0.71	0.69	0.87	0.68
	Ridge Logistic	0.76	0.73	0.88	0.70
	Random Forest	0.66	0.68	0.82	0.61

2. Precision-Recall Score

Model	Extrovert-Introvert	Sensing-Intuition	Thinking-Feeling	Judging-Perceiving
NB	0.47	0.34	0.82	0.57
Logistic	0.48	0.34	0.84	0.58
LogisticCV	0.48	0.35	0.85	0.58
Lasso Logistic	0.45	0.27	0.84	0.59
Ridge Logistic	0.49	0.35	0.85	0.59
Random Forest	0.36	0.26	0.76	0.49

3. Geometric Mean Score

Model	Extrovert-Introvert	Sensing-Intuition	Thinking-Feeling	Judging-Perceiving
NB	0.68	0.56	0.77	0.62
Logistic	0.69	0.66	0.80	0.63
LogisticCV	0.69	0.67	0.81	0.63
Lasso Logistic	0.65	0.62	0.79	0.63
Ridge Logistic	0.68	0.66	0.81	0.64
Random Forest	0.61	0.63	0.74	0.57

Conclusion

- Heavily Imbalanced Data
- Didn't work well for Extrovert-Introvert and Sensing-Intuition as most of them identified as Introvert and Intuitive.
- Regularization didn't improve scores by a lot, but LogisticCV Regression worked best for this dataset.
- In the future:
 - also try Neural Networks which could improve the scores and can skip feature engineering by a lot.
 - Could be used in improving marketing campaigns, understanding social media behavior, and styles of each type