Micro II, Dominic Rohner, Spring 2005

Problem Set 1

1. We analyze a contract between an employer (the Principal) and an employee (the Agent) in a context of moral hazard. The agent can exert two levels of effort, e^H and e^L , which have costs $c^H = 1$ and $c^L = 0$. The employee's reservation utility is $\overline{U} = 1$. The Principal is risk-neutral, and the Agent is risk-averse, with a utility function $u(w) = \sqrt{w}$.

There are two possible outcomes, $x^L = 2$ and $x^H = 10$. The probabilities of these outcomes depending on the Agent's effort levels are given in the following table:

	x^L	x^H
e^{L}	1	0
e^{H}	$\frac{1}{2}$	$\frac{1}{2}$

- (a) First, assume that the Principal can observe the Agent's effort level and chooses to pay a wage w^H for effort level e^H and w^L for effort level e^L .
 - i. Write the expected profit of the Principal when the agent chooses effort level e^H , Π^H , and when they choose effort level e^L , Π^L .

Solution:

$$\begin{split} \Pi^{H} &=& 2\frac{1}{2} + 10\frac{1}{2} - w^{H}, \\ &=& 6 - w^{H}, \\ \Pi^{L} &=& 2 - w^{L}. \end{split}$$

ii. Write the participation constraints of the Agent when choosing effort level e^H and effort level e^L .

Solution: We find:

$$\sqrt{w^H} - 1 \ge \overline{U} = 1$$
$$\sqrt{w^L} > 1$$

iii. What are the wages paid by the Principal in the optimal contract? What is the expected profit of the Principal when choosing to implement effort level e^L and effort level e^H ? Show that the Principal prefers to implement effort level e^H .

Solution: From the participation constraints, we find $w^H = 4$ and $w^L = 1$. Thus, $\Pi^H = 6 - 4 = 2$ whereas $\Pi^L = 2 - 1 = 1$.

- (b) Now assume that the Principal cannot observe the Agent's effort and pays wage w^H when the outcome is x^H and wage w^L when the outcome is x^L . First, assume that the Principal chooses to implement effort level e^H .
 - i. Write the expected profit of the Principal

Solution: We calculate

$$\Pi^H = 6 - \frac{1}{2}w^H - \frac{1}{2}w^L$$

ii. Write the participation constraint of the Agent choosing effort $e^{\cal H}$

Solution: We find

$$\frac{1}{2}\sqrt{w^H} + \frac{1}{2}\sqrt{w^L} - 1 \ge 1.$$

iii. Write the incentive constraint of the Agent

We find

$$\frac{1}{2}\sqrt{w^H} + \frac{1}{2}\sqrt{w^L} - 1 \ge \sqrt{w^L}.$$

iv. Plot the participation and incentive constraints of the Agent and the Principal's isoprofit curves in the space (t^H, t^L) where $t^H = \sqrt{w^H}, t^L = \sqrt{w^L}$.

Solution:

v. What is the optimal contract? Compute the expected profit of the Principal.

Solution: Optimal contract is $w^H=9, w^L=1$ (intersection in the figure). Profit is $\Pi^H=6-\frac{9}{2}-\frac{1}{2}=1$.

- (c) Now, suppose that the Principal chooses to implement the effort level e^L .
 - i. Write the expected profit of the Principal:

Solution: $\Pi^L = 2 - w^L$.

ii. Write the participation constraint of the Agent who chooses the effort level e^L :

Solution: We obtain:

$$\sqrt{w^L} > 1$$
.

iii. Deduce the optimal wage and the expected profit of the Principal. Show that the Principal is indifferent between the two effort levels.

Solution: With $w^L=1$, the expected profit is equal to $\Pi^L=2-1=\Pi^H.$

2. We now study a contract between a seller and a buyer. The buyer has a utility function given by $\theta q - pq$, where q is the quantity purchased and p is the unit price. There are two types of buyers: low-demand buyers $(\theta = 1)$ and high-demand buyers $(\theta = 2)$. It is assumed that there is a fraction $\frac{2}{3}$ of low-demand buyers and a fraction $\frac{1}{3}$ of high-demand buyers. Each buyer has a reservation utility of 0. Finally, the seller has a quadratic production cost given by $c(q) = q^2$.

The seller cannot distinguish between low-demand and high-demand buyers and offers two contracts, (p^H, q^H) and (p^L, q^L) , to separate them.

(a) Write the expected profit of the seller when buyers of type H and type L self-select:

Solution:

$$\Pi = \frac{2}{3}(p^L q^L - (q^L)^2) + \frac{1}{3}(p^H q^H - (q^H)^2).$$

(b) Write the participation constraints for both types of agents:

Solution:

$$q^{L} - p^{L}q^{L} \ge 0,$$

$$2q^{H} - p^{H}q^{H} \ge 0.$$

(c) Write the incentive constraints for both types of agents:

Solution:

$$\begin{array}{cccc} q^L - p^L q^L & \geq & q^H - p^H q^H, \\ 2q^H - p^H q^H & \geq & 2q^L - p^L q^L. \end{array}$$

(d) Use the participation constraint of L-type agents and the incentive constraint of H-type agents to express p^Lq^L and p^Hq^H only as functions of q^L and q^H .

Solution: We obtain:

$$\begin{aligned} p^L q^L &=& q^L, \\ p^H q^H &=& 2q^H - q^L. \end{aligned}$$

(e) By substituting these expressions into the seller's expected profit, determine the optimal contract quantities q^H and q^L .

Solution: We obtain:

$$\Pi = \frac{2}{3}(q^L - (q^L)^2) + \frac{1}{3}(2q^H - q^L - (q^H)^2).$$

By differentiating with respect to q^L and q^H , we find:

$$q^L = \frac{1}{4}, q^H = 1.$$

(f) Verify that the quantity q^H corresponds to the efficient quantity (which maximizes total surplus), whereas the quantity q^L is below the efficient level.

Solution: The total surplus for H-type agents is $2q^H - (q^H)^2$, which is maximized when $q^H = 1$. The total surplus for L-type agents is $q^L - (q^L)^2$, which is maximized at $q^L = \frac{1}{2} > \frac{1}{4}$.

(g) Which of the two prices, p^H or p^L , is higher?

We find that $p^L = 1$, and:

$$p^{H} = 2 - \frac{q^{L}}{q^{H}} = 2 - \frac{1}{4} = \frac{7}{4} > 1 = p^{L}.$$

Multiple Choice Question
Tick all boxes with correct answers.

- ☐ Adverse selection is about hidden actions
- ☐ In the Spence signalling model the Principal moves first.
- \checkmark In Adverse Selection, the bad type is pushed to the reservation utility level, whereas the good type collects an informational rent.
- ☐ In Moral Hazard models, the relation between effort and the result is deterministic.
- ✓ In the context of Expected Utility Theory, strict risk-aversion and strict concavity of the utility function are equivalent

Short Question: Describe the Independence Axiom of Expected Utility Theory

Solution: See slides 12-13 of the Behavioral Economics slides.