

На тему: Інформаційна система підтримки процесу розпізнавання пневмонії за ренгенівськими знімками

Виконала:

ст. гр. ІС-71

Керівник проєкту:

оекту. доцент Алпаєва Юлія

Майя Сперкач

Призначення розробки

Призначенням розробки є підтримка процесу розпізнавання пневмонії за рентгенівськими знімками збережених в різних форматах

Цілі розробки

Цілями розробки є

- полегшення процесу розпізнавання пневмонії,
- збільшення точності аналізу при лікуванні хворих,
- надання можливості аналізування даних без участі лікаря

Задачі розобки

Підтримка можливості перегляду історії зображень	Підтримка можливості завантажити зображення для аналізу
Формування результату аналізу	Підтримка аналізу зображень різних розмірів та форматів
⊘ Вхід в систему	Аналіз стану легень людини за розпізнанням рентгенівського знімку

Опис предметного середовища

Пневмонія — гостре інфекційне захворювання, переважно бактеріальної етіології, яке характеризується вогнищевим ураженням респіраторних відділів легень та наявністю внутрішньоальвеолярної ексудаці

Наявна пневмонія

Актуальність

На сьогоднішній день пневмонія вважається найбільш поширеною та серйозною інфекційною причиною високого рівня смертності дітей раннього віку у всьому світі. За даними ВООЗ, пневмонія є причиною смертей близько 16% дітей віком до 5 років у всьому світі.

За даними Всесвітньої організації охорони здоров'я, кожні 20 секунд від цієї інфекції помирає одна дитина у світі

Пневмонія залишається госторою проблемою в Україні і світі. Це зумовлено, її поширеністю, високими показниками смертності.

https://downloads.hindaw i.com/journals/jhe/2018/2 908517.pdf

Методи: метод оснований на сегментації по інтенсивності досліджуваного зображення, оператор Собеля Точність: Проведено 5 випробувань отриманий із варіацією точності від 76,9% до 88.4%.

Класи зображень: нормальні легені, знімки де наявний пневмоторакс

https://www.medrxiv.org/c ontent/10.1101/2020.08.13. 20174144v1.full.pdf

Методи: KE Sieve алгоритм Точність: Для випадків пневмонії отримано точність 99%, для випадку COVID-19 -100%, для легень без змін 96% Класи зображень:

зображення без змін, зображення з пневмонією та з COVID-19

https://www.ncbi.nlm.nih. gov/pmc/articles/PMC749 3761/

Методи: Фреймворк базується на капсульних мережах - CapsNet Точність: Використовуючи набір даних, запропонований COVID-CAPS досяг точності 95,7%, чутливості 90%, специфічності 95,8% та AUC 0,97

0,97
Класи зображень: здорові легені, бактеріальна пневмонія, вірусна пневмонія, COVID-19

https://arxiv.org/ftp/arxiv/pap ers/1712/1712.07632.pdf

Методи:

Досліджується ефективність сегментації легенів та виключення тіней для аналізу 2D зімків легень методами глибокого навчання Точність: 99%.

Класи зображень: нормальні легені, знімки де наявні зміни

Діаграма варіантів використання

