IMAGENET ILSVRC 2015 CLS-LOC.

Multi-Class AttentionNet.

D. Yoo¹, K. Paeng¹, S. Park¹, S. Hwang², H. E. Kim², J. Lee², M. Jang², A. S. Paek², K. K. Kim¹, S. D. Kim¹, I. S. Kweon¹.

¹KAIST, ²Lunit Inc.

Lunit **KAIST**

State-of-the-art methods for object localization.

State-of-the-art methods for object localization.

1) Box-regression with a CNN.

[Szegedy et al., NIPS'13], DeepMultiBox [Erhan et al., CVPR'14], OverFeat [Sermanet et al., ICLR'14],

. . .

State-of-the-art methods for object localization.

1) Box-regression with a CNN.

(–) Direct mapping from an image to an exact bounding box is relatively difficult for a CNN.

State-of-the-art methods for object localization.

2) Region proposal + classifier.

R-CNN [Gkioxari et al., CVPR'14], Fast R-CNN [Gkioxari, ICCV'15], Faster R-CNN [Ren et al., NIPS'15], DeepMultiBox [Erhan et al., CVPR'14],

. . .

State-of-the-art methods for object localization.

2) Region proposal + classifier.

(–) Prone to focus on discriminative part (e.g. face) rather than entire object (e.g. human body).

Idea: Ensemble of weak directions.

Idea: Ensemble of weak directions.

Idea: Ensemble of weak directions.

Idea: Ensemble of weak directions.

Idea: Ensemble of weak directions.

Idea: Ensemble of weak directions.

Idea: Ensemble of weak directions.

Idea: Ensemble of weak directions.

Idea: Ensemble of weak directions.

Idea: Ensemble of weak directions.

Idea: Ensemble of weak directions.

Model:

Model: (CNN regression model)

Model: Rather than CNN regression model, we use *CNN classification* model.

Model: Rather than CNN regression model, we use <u>CNN classification</u> model.

Define weak directions: fixed length, and quantized.

Strength to the previous methods.

Box-regression:

(-) Relatively difficult for a CNN.

Weak direction:

(+) Relatively easy for a CNN.

Strength to the previous methods.

Box-regression:

(-) Relatively difficult for a CNN.

Weak direction:

(+) Relatively easy for a CNN.

R-CNN:

(-) Focuses on distinctive parts.

Stop signal:

(+) Supervision of clear terminal point.

AttentionNet: Two layers for each corner.

AttentionNet: Two layers for each corner.

AttentionNet: Two layers for each corner.

AttentionNet.

AttentionNet.

Human detection examples on PASCAL VOC 2007

Boxes satisfying .

Boxes satisfying

Rejected.

Boxes satisfying

Rejected.

Boxes satisfying

Continue.

Boxes satisfying .

Multi-{scale, aspect ratio} sliding window search using *fully-convolutional network*.

Class 1.

CNN

Multi-class AttentionNet.

Final architecture.

- Pre-training.
 - GoogLeNet [Szegedy et al, CVPR'15].
 - ILSVRC-CLS dataset.

- Pre-training.
 - GoogLeNet [Szegedy et al, CVPR'15].
 - ILSVRC-CLS dataset.
- Fine-tuning.
 - # epochs: 5.
 - # training region: 22M. (randomly generated.)
 - Learning rate of the classification layer: 0.01.
 - Learning rate of the 2K(=1K+1K) directional layers: 0.01.
 - Learning rate of the layers from conv1 to conv21: 0.001.

$$Loss = \frac{1}{3}Loss^{TL} + \frac{1}{3}Loss^{BR} + \frac{1}{3}Loss^{CLS},$$

Directional terms.

Classification term.

$$Loss = \frac{1}{3}Loss^{TL} + \frac{1}{3}Loss^{BR} + \frac{1}{3}Loss^{CLS},$$

$$Loss^{TL} = \frac{1}{N} \sum_{i=1}^{N} (t_{c_i}^{TL} \neq 0) \cdot SoftMaxLoss(y_{c_i}^{TL}, t_{c_i}^{TL}),$$

$$Loss^{BR} = \frac{1}{N} \sum_{i=1}^{N} (t_{c_i}^{BR} \neq 0) \cdot SoftMaxLoss(y_{c_i}^{BR}, t_{c_i}^{BR}),$$

$$Loss^{CLS} = SoftMaxLoss(y^{CLS}, t^{CLS}).$$

Test:
Given top-5 class predictions,
we detect the classes by AttentionNet.

Test:
Given top-5 class predictions,
we detect the classes by AttentionNet.

Top-5 class prediction (7% Err):
 Ensemble of GoogLeNet, GoogLeNet-BN, VGG-16.

Test: Given top-5 class predictions, we detect the classes by AttentionNet.

Top-5 class prediction (7% Err):
 Ensemble of GoogLeNet, GoogLeNet-BN, VGG-16.

• Number of multi-{scale, aspect ratio} inputs: 6.

Method.	Top-5 CLS-LOC Error.
OverFeat [Sermanet et al., ICLR'14]	30.00%
VGG [Simonyan and Zisserman, ICLR'15]	26.90%
GoogLeNet [Szegedy et al, CVPR'15]	26.70% (test set)

Method.	Top-5 CLS-LOC Error.
OverFeat [Sermanet et al., ICLR'14]	30.00%
VGG [Simonyan and Zisserman, ICLR'15]	26.90%
GoogLeNet [Szegedy et al, CVPR'15]	26.70% (test set)
A single "Multi-class AttentionNet",	16.11%
without test augmentation.	

Method.	Top-5 CLS-LOC Error.
OverFeat [Sermanet et al., ICLR'14]	30.00%
VGG [Simonyan and Zisserman, ICLR'15]	26.90%
GoogLeNet [Szegedy et al, CVPR'15]	26.70% (test set)
A single "Multi-class AttentionNet", without test augmentation.	16.11%
A single "Multi-class AttentionNet", with test augmentation (original and flip).	14.96%

Method.	Top-5 CLS-LOC Error.
OverFeat [Sermanet et al., ICLR'14]	30.00%
VGG [Simonyan and Zisserman, ICLR'15]	26.90%
GoogLeNet [Szegedy et al, CVPR'15]	26.70% (test set)
A single "Multi-class AttentionNet", without test augmentation.	16.11%
A single "Multi-class AttentionNet", with test augmentation (original and flip).	14.96%

Note that we use a SINGLE "Multi-class AttiontionNet".

&Lunit **KAIST**

Related publication:

Donggeun Yoo, Sunggyun Park, Joon-Young Lee, Anthony S. Paek, In So Kweon, AttentionNet: Aggregating Weak Directions for Accurate Object Detection, In ICCV, 2015.