goal: quantitatively and qualitatively assess robustivess of feedback loops

refs: Astrom & Murray Ch 10 (SISO case) Zhou, Dayle, Glaver Ch 5 (MIMO case)

o recall that the transfer function from r to y is $Tyr = (I + PC)^{-1}PC = PC$ MIMO
SISC

o letting L=PC denote the (open-) loop transfer function, we note that I+PC=I+L shouldn't be singular:

SISO: $1+PC=1+L\simeq0$ MIMO: $bt(I+L)\simeq0$ i.e. $L\simeq-1\in\mathbb{C}$

- -> in this case, small changes in reference is lead to large changes in outputs (hence, system states)
- -> from onether perspective, small errors in model or implementation

The character puspective, small evers in mover or imperiorism ($T = PC \simeq PC = L$) can cause large tracking ever of feedback system:

the (MIMO Nygrist stability of feedback system:

closed-loop feedback system asymptotically stable

the \pm of clockwise enarchements of $O \in C$ by the locus of let (I + L(s)) on ce Nyguist contains equals the \pm of poles of L in the losed right-half plane (RHP) (\Leftarrow) (siso) \pm encirclements of $-1 \in C$ by locus of L)

othus, if controller C stabilizes process P then the locus of det (I+P(jw)C(jw)) doesn't cross OEC

-> so the distance to OEC is a robustness criterian termed a stability margin

three common ways to guartify robustness in terms of "distance" to -1 \in 1°. $S_m =$ distance from $\Omega = \{L(j_w) : w \in (-\infty, \infty)\}$ to -1 "gain" 2° . $g_m = \frac{1}{2}$ distance from Ω to -1 restricted to scaling "phase 3° . $g_m =$ distance from Ω to -1 restricted to rotation margin"