Informe Proyecto 1

Silvina Moyano Franco Rodríguez Fabregues

6 de octubre de 2010

${\bf \acute{I}ndice}$

T				do	_											
2 .1. L	Determiní	stico				 				 					 	
2 .2. E	Estocástic	о				 				 					 	
2	$2.2.1. \alpha =$	= 0.012				 				 						
2	$2.2.2. \alpha =$	= 0.024				 				 						
2	$2.2.3. \alpha =$	= 0.036				 				 						
2	2 .2.4. Su	perposic	ión .			 				 					 	

1. Introducción

El objetivo de este proyecto es implementar numéricamente una red de Hopfield determinística y estocástica y analizar los resultados obtenidos. Luego se comparará con lo visto en el teórico.

2. Implementación y resultados

El lenguaje de programación utilizado fue C. Debido a la complejidad que presenta este lenguaje para el manejo de memoria y para trabajar de manera ordenada se diseñó un tipo abstracto de datos (TAD) matrix. En el TAD se encuentran todas las operaciones necesarias para crear, modificar, acceder y destruir matrices.

En ambos casos el sistema se inicializa partiendo de la primer memoria almacenada.

2.1. Determinístico

Para el caso determinístico, se usaron los algoritmos dados en clase. En particular, el número de patrones p va variando en las distintas iteraciones hasta alcanzar PMAX, de acuerdo a lo pedido.

En el primer ejercicio, el número de neuronas N es 832 y p varía entre 4 y 416 incrementándose en 4. En el segundo, N es 416 y p varía entre 2 y 208 a pasos de 2. En el último, p arranca en 8 y se incrementa en 8 hasta 832 con un N igual a 1664.

El siguiente gráfico muestra el resultado obtenido para el ejercicio con N igual a 1664 y p incrementándose en 8.

Figura 1: N igual a 1664 y p incrementándose en 8.

Se pueden ver en la figura de abajo las superposiciones entre el estado final de la red m_1 , y la primer memoria almacenada en función de α (=p/N) para los tres ejercicios.

2.2. Estocástico

Para el caso de una red de Hopfield estocástica, se deja fija la cantidad de patrones p y se varía el nivel de ruido T entre 0.1 y 1.2 de a pasos de 0.1.

Primero diremos que dejamos evolucionar la red sin tomar en cuenta estos datos, para que se acerque al estado en donde la red va a quedar rondando y luego comenzamos el registro de datos. Se realizaron

Figura 2: Superposición de los tres gráficos.

tres ejercicios para distintos valores de α , para α igual a 0.012, 0.024 y 0.036. Para cada uno de esos valores de α , se hicieron tres casos sobre p y N manteniendo el valor del cociente.

2 .2.1. $\alpha = 0.012$

En este gráfico se ven las tres curvas para N 1664 y p 20 (rojo), N 832 y p 10 (verde) y con N 416 y p 5 (azul).

Figura 3: Red estocástica para α igual a 0.012.

2 .2.2. $\alpha = 0.024$

Aquí se muestran las curvas para N 1664 y p 40 (rojo), N 832 y p 20 (verde) y para N 416 y p 10 (azul).

Figura 4: Red estocástica para α igual a 0.024.

2 .2.3. $\alpha = 0.036$

Por último, se ven los resultados para N 1664 y p 60 (rojo), N 832 y p 30 (verde) y con N 416 y p 15 (azul).

Figura 5: Red estocástica para α igual a 0.036.

2.2.4. Superposición

Graficamos ahora las curvas para los distintos valores de α superpuestos, tomando los tres gráficos con N igual a 1664 para cada uno de los valores de α .

Figura 6: Superposición de los tres valores de α .

3. Conclusión

3.1. Determinístico

Como se puede ver en la Figura 2, en los tres gráficos el valor de m_1 empieza a caer cuando α se aproxima a 0.138 como se vio en el teórico. También se puede observar, que cuanto mayor es el valor de N, más abrupta es la caída y antes se estabiliza. Esto nos dice que cuando el número de neuronas N crece, la red deja de reconocer más fuertemente cuando el número de patrones se aproxima al 13.8 % de N.

3.2. Estocástico

Para el caso de la red de Hopfield estocástica, analizaremos los distintos casos de α en función de las regiones del diagrama de fase.

A medida que α y T se incrementan, el área de reconocimiento es cada vez menor como muestra el diagrama de fase visto en clase. Puede verse en la Figura 6 este efecto, cuanto mayor es α , más abrupta es la caída del m_1 por lo que se deja de reconocer y más rápido se estabiliza la red.