Part III Model Calibration

Meritxell Riera i Marín, Researcher Sycai Medical, Barcelona, Spain Universitat Pompeu Fabra, Barcelona, Spain Adrian Galdran, RYC Research Fellow Computer Vision Center, UAB, Barcelona, Spain

Contents

1. What is Calibration?

- a. What is Calibration?
- b. Understanding Calibration

2. Measuring Calibration

- a. Reliability Plots
- Expected Calibration Error
- c. Alternative Calibration Measures

3. Improving Calibration

- a. Training
- b. Post Training

4. Hands-On Session & Complementary Materials

Contents

1. What is Calibration?

- a. What is Calibration?
- b. Understanding Calibration

2. Measuring Calibration

- a. Reliability Plots
- b. Expected Calibration Error
- c. Alternative Calibration Measures

3. Improving Calibration

- a. Training
- b. Post Training

4. Hands-On Session & Complementary Materials

What is Calibration?

Calibration is the process of ensuring that a model's predicted probabilities match the actual outcomes.

Example: if a model predicts a 70% chance of an event, it should occur 70% of the time.

Why is Calibration important?

To avoid over and under confident predictions.

Example: a diagnostic of having or not having cancer has to be calibrated to be able to detect the ambiguous cases and act accordingly.

p	y
1/5	0
1/5	0
1/5	0
1/5	0
1/5	1

p	y
1/3	0
1/3	0
1/3	1
1/2	0
1/2	1

p	y
3/4	0
3/4	1
3/4	1
3/4	1
1	1

p	y
1/5	0
1/5	0
1/5	0
1/5	0
1/5	1

p	y
1/3	0
1/3	0
1/3	1
1/2	0
1/2	1

p	y
3/4	0
3/4	1
3/4	1
3/4	1
1	1

Contents

1. What is Calibration?

- a. What is Calibration?
- b. Understanding Calibration

2. Measuring Calibration

- a. Reliability Plots
- b. Expected Calibration Error
- c. Alternative Calibration Measures

3. Improving Calibration

- a. Training
- b. Post Training

4. Hands-On Session & Complementary Materials

Measuring calibration: Reliability plots

X-Axis: Predicted probability bins (e.g., 0.1, 0.2, ..., 0.9, 1.0).

Y-Axis: Observed frequency of positive

outcomes within each bin.

Ideal Calibration: Points lie on the diagonal

line (y = x), indicating perfect calibration.

Measuring calibration: Reliability plots

QUESTION:

Are these predictions under-confident or over-confident?

Measuring calibration: Reliability plots

QUESTION:

Are these predictions under-confident or over-confident?

ANSWER:

<u>under</u>-confident

Measuring calibration: Reliability plots (1)

X-Axis: Predicted probability bins (e.g., 0.1, 0.2, ..., 0.9, 1.0).

Y-Axis: Observed frequency of positive outcomes within each bin.

Ideal Calibration: Points lie on the diagonal line (y = x), indicating perfect calibration.

Measuring calibration: Reliability plots (2)

Measuring calibration: Expected Calibration Error

The average of gaps across bins, weighted by bin population:

$$ECE = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{|B_i|} |prob(B_i) - pos(B_i)|$$

Full Calibration

Consider the whole probability vector

Class-wise Calibration

Only consider marginal probabilities

Confidence Calibration

Only consider highest probability

Measuring Calibration

- Expected Full Calibration Error $fullECE = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{|\mathbb{B}_i|} ||prob(\mathbb{B}_i) - true(\mathbb{B}_i)||$

- Expected Class-Wise Calibration Error $cwECE = \frac{1}{K} \sum_{k=1}^{K} binECE_k$
- Expected Confidence Calibration Error $confECE = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{|B_i|} |conf(B_i) acc(B_i)|$

Expected Calibration Error Example

[class1, class2, class3]

р	y
$[\frac{2}{3}, \frac{1}{3}, 0]$	1
[3, 1/3, 0]	1
[3, 1/3, 0]	2

р	y
$[0, \frac{2}{3}, \frac{1}{3}]$	2
$[0, \frac{2}{3}, \frac{1}{3}]$	2
$[0, \frac{2}{3}, \frac{1}{3}]$	3

- **Full ECE**: 0
- Class-wise ECE:
- Class 1: 0
- Class 2: 0
- Class 3: 0
- Confidence ECE: 0

p	y
$[\frac{1}{3}, 0, \frac{2}{3}]$	3
$[\frac{1}{3}, 0, \frac{2}{3}]$	3
$[\frac{1}{3}, 0, \frac{2}{3}]$	1

Full Calibration

[3, 1/3, 0]	1
[3, 1/3, 0]	1
[3, 1/3, 0]	2
[0, 3/3, 1/3]	2
[0, ² / ₃ , ¹ / ₃]	2
[0, 3/3, 1/3]	3
[1/3, 0, 2/3]	3
[1/3, 0, 2/3]	3
[1/3, 0, 2/3]	1

$$fullECE = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{|\mathbb{B}_i|} ||prob(\mathbb{B}_i) - true(\mathbb{B}_i)||$$
 Consider the whole probability vector

Bin 1 (confidence ~ [3/3, 1/3, 0]):

- Prob: [\(\frac{1}{3}\), \(\frac{1}{3}\), 0], Acc: [\(\frac{1}{3}\), \(\frac{1}{3}\), 0]

Bin 2 (confidence ~ [0, ¾, ⅓]):

- Prob: [0, ½, ½], Acc: [0, ½, ⅓]

Bin 3 (confidence ~ [1/3, 0, 2/3]):

- Prob: [1/3, 0, 1/3], Acc: [1/3, 0, 1/3]

fullECE =
$$\frac{1}{3} \times \frac{1}{3} \times \left(\left| \left| \left[\frac{1}{3}, \frac{1}{3}, 0 \right] - \left[\frac{1}{3}, \frac{1}{3}, 0 \right] \right| \right) + \frac{1}{3} \times \frac{1}{3} \times \left(\left| \left| \left[0, \frac{1}{3}, \frac{1}{3} \right] - \left[0, \frac{1}{3}, \frac{1}{3} \right] \right| \right) + \frac{1}{3} \times \frac{1}{3} \times \left(\left| \left| \left[\frac{1}{3}, 0, \frac{1}{3} \right] - \left[\frac{1}{3}, 0, \frac{1}{3} \right] \right| \right) = \frac{1}{9} \times 0 + \frac{1}{9} \times 0 + \frac{1}{9} \times 0 = 0$$

Full Calibration

[3, 1/3, 0]	1
[3, 1/3, 0]	1
[3, 1/3, 0]	2
[0, 3/3, 1/3]	2
[0, 3/3, 1/3]	2
[0, 3/3, 1/3]	3
[1/3, 0, 2/3]	3
[1/3, 0, 2/3]	3
[1/3, 0, 2/3]	1

$$fullECE = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{|\mathbb{B}_i|} ||prob(\mathbb{B}_i) - true(\mathbb{B}_i)||$$
 Consider the whole probability vector

Bin 1 (confidence ~ [3/3, 1/3, 0]):

- Prob: [\(\frac{1}{3}\), \(\frac{1}{3}\), 0], Acc: [\(\frac{1}{3}\), \(\frac{1}{3}\), 0]

Bin 2 (confidence ~ [0, ¾, ⅓]):

- Prob: [0, ¾, ⅓], Acc: [0, ⅓, ⅓]

Bin 3 (confidence ~ [1/3, 0, 1/3]):

- Prob: [1/3, 0, 1/4], Acc: [1/3, 0, 1/4]

fullECE =
$$\frac{1}{3} \times \frac{1}{3} \times (||[\%_3, \%_3, 0] - [\%_3, \%_3, 0]||) + \frac{1}{3} \times \frac{1}{3} \times (||[0, \%_3, \%_3] - [0, \%_3, \%_3]||) + \frac{1}{3} \times \frac{1}{3} \times (||[\%_3, 0, \%_3] - [\%_3, 0, \%_3]||) = \frac{1}{9} \times 0 + \frac{1}{9} \times 0 + \frac{1}{9} \times 0 = 0$$

fullECE = 0→ perfectly calibrated

Full Calibration

$[\frac{2}{3}, \frac{1}{3}, 0]$	1
[3, 1/3, 0]	1
[3, 1/3, 0]	2
[0, ² / ₃ , ¹ / ₃]	2
[0, ² / ₃ , ¹ / ₃]	2
[0, ² / ₃ , ¹ / ₃]	3
[1/3, 0, 2/3]	3
[1/3, 0, 2/3]	3
[1/3, 0, 2/3]	2

$$fullECE = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{|\mathbb{B}_i|} ||prob(\mathbb{B}_i) - true(\mathbb{B}_i)||$$
 Consider the whole probability vector

Bin 1 (confidence ~ [3/3, 1/3, 0]):

- Prob: [¾, ¼, 0], Acc: [¾, ¼, 0]

Bin 2 (confidence ~ [0, ¾, ⅓]):

- Prob: [0, ¾, ⅓], Acc: [0, ⅓, ⅓]

Bin 3 (confidence ~ [1/3, 0, 2/3]):

- Prob: [1/3, 0, 1/3], Acc: [0, 1/3, 1/3]

fullECE =
$$\frac{1}{3} \times \frac{1}{3} \times \left(\left| \left| \left[\frac{1}{3}, \frac{1}{3}, 0 \right] - \left[\frac{1}{3}, \frac{1}{3}, 0 \right] \right| \right) + \frac{1}{3} \times \frac{1}{3} \times \left(\left| \left| \left[0, \frac{1}{3}, \frac{1}{3} \right] - \left[0, \frac{1}{3}, \frac{1}{3} \right] \right| \right) + \frac{1}{3} \times \frac{1}{3} \times \left(\left| \left| \left[\frac{1}{3}, 0, \frac{1}{3} \right] - \left[0, \frac{1}{3}, \frac{1}{3} \right] \right| \right) = \frac{1}{9} \times 0 + \frac{1}{9} \times 0$$

fullECE != 0→ not perfectly calibrated

Class-wise Calibration

[3, 1/3, 0]	1
[3, 1/3, 0]	1
[3, 1/3, 0]	2
[0, 3/3, 1/3]	2
[0, ² / ₃ , ¹ / ₃]	2
[0, 3/3, 1/3]	3
[1/3, 0, 2/3]	3
[1/3, 0, 2/3]	3
[1/3, 0, 2/3]	1

$$cwECE = \frac{1}{K} \sum_{k=1}^{K} binECE_{k}$$

Only consider marginal probabilities

Class 1:

- Prob:
$$\frac{^{2}/_{3}+^{2}/_{3}+^{2}/_{3}+0+0+0+^{1}/_{3}+^{1}/_{3}+^{1}/_{3}}{3} = \frac{7}{9} \approx 0.7778$$

- Acc: $\frac{TP+TN}{TP+TN+FP+FN} = \frac{2+5}{2+5+1+1} = \frac{7}{9} \approx 0.7778$

- Acc:
$$\frac{TP+TN}{TP+TN+FP+FN} = \frac{2+5}{2+5+1+1} = \frac{7}{9} \approx 0.7778$$

Class 2 and Class 3:

Same results as in class 1

cwECE =
$$\frac{1}{3} \times (\frac{1}{3} \times (0.7778 - 0.7778) + \frac{1}{3} \times (0.7778 - 0.7778) + \frac{1}{3} \times (0.7778 - 0.7778)) = \frac{1}{9} \times 0 + \frac{1}{9} \times 0 + \frac{1}{9} \times 0 = 0$$

cwECE = $0 \rightarrow$ perfectly calibrated

Class-wise Calibration

$[\frac{2}{3}, \frac{1}{3}, 0]$	1
[3/3, 1/3, 0]	1
[3/3, 1/3, 0]	2
[0, 3/3, 1/3]	2
[0, 3/3, 1/3]	2
[0, 3/3, 1/3]	3
[1/3, 0, 2/3]	3
[1/3, 0, 2/3]	3
[1/3, 0, 2/3]	2

$$cwECE = \frac{1}{K} \sum_{k=1}^{K} binECE_{k}$$

Only consider marginal probabilities

Class 1:

- Acc:
$$\frac{TP+TN}{TP+TN+FP+FN} = \frac{2+6}{2+6+1+0} = \frac{8}{9} \approx 0.8889$$

Class 2:

- Acc:
$$\frac{TP+TN}{TP+TN+FP+FN} = \frac{2+4}{2+4+1+2} = \frac{6}{9} \approx 0.6667$$

Class 3 remains the same

cwECE =
$$\frac{1}{3} \times (\frac{1}{3} \times (0.7778 - 0.8889) + \frac{1}{3} \times (0.7778 - 0.6667) + \frac{1}{3} \times (0.7778 - 0.7778)) = \frac{1}{9} \times |-\frac{1}{9}| + \frac{1}{9} \times |\frac{1}{9}| + \frac{1}{9} \times 0 = \frac{2}{27}$$

cwECE != 0→ not perfectly calibrated

Confidence Calibration

[3, 1/3, 0]	1
[3, 1/3, 0]	1
[3, 1/3, 0]	2
[0, 3/3, 1/3]	2
[0, 3/3, 1/3]	2
[0, 3/3, 1/3]	3
[1/3, 0, 2/3]	3
[1/3, 0, 2/3]	3
[1/3, 0, 2/3]	1

$$confECE = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{|B_i|} |conf(B_i) - acc(B_i)|$$
 Only consider highest probability

There is just one bin, since all the max probabilities in this example are 2/3.

- Prob:
$$\frac{^{2/_{3}+^{2}/_{3}+^{2}/_{3}+^{2}/_{3}+^{2}/_{3}+^{2}/_{3}+^{2}/_{3}+^{2}/_{3}}{3} = \frac{6}{9} \approx 0.6667$$

- Acc:
$$\frac{6}{9} \approx 0.6667$$

confECE =
$$\frac{1}{3} \times |(0.6667 - 0.6667)| = 0$$

confECE = 0→ perfectly calibrated

Confidence Calibration

[3, 1/3, 0]	1
[3, 1/3, 0]	1
[3, 1/3, 0]	2
[0, ² / ₃ , ¹ / ₃]	2
[0, 3/3, 1/3]	2
[0, 3/3, 1/3]	3
[1/3, 0, 2/3]	3
[1/3, 0, 2/3]	3
[1/3, 0, 2/3]	2

$$confECE = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{|B_i|} |conf(B_i) - acc(B_i)|$$
 Only consider highest probability

There is just one bin, since all the max probabilities in this example are 2/3.

- Prob:
$$\frac{^2/_3 + ^2/_3 + ^2/_3 + ^2/_3 + ^2/_3 + ^2/_3 + ^2/_3 + ^2/_3}{3} = \frac{6}{9} \approx 0.6667$$

- Acc: $\frac{6}{9} \approx 0.6667$

- Acc:
$$\frac{6}{9} \approx 0.6667$$

confECE =
$$\frac{1}{3} \times |(0.6667 - 0.6667)| = 0$$

confECE = 0→ perfectly calibrated

Confidence Calibration

[3, 1/3, 0]	1
[3, 1/3, 0]	1
[3, 1/3, 0]	2
[0, ² / ₃ , ¹ / ₃]	2
[0, 3/3, 1/3]	2
[0, 3/3, 1/3]	3
[1/3, 0, 2/3]	3
[1/3, 0, 2/3]	3
[1/3, 0, 2/3]	3

$$confECE = \frac{1}{M} \sum_{i=1}^{M} \frac{1}{|B_i|} |conf(B_i) - acc(B_i)|$$
 Only consider highest probability

There is just one bin, since all the max probabilities in this example are 2/3.

- Prob:
$$\frac{^2/_3 + ^2/_3 + ^2/_3 + ^2/_3 + ^2/_3 + ^2/_3 + ^2/_3 + ^2/_3 + ^2/_3}{3} = \frac{6}{9} \approx 0.6667$$
- Acc: $\frac{7}{9} \approx 0.7778$

- Acc:
$$\frac{7}{9} \approx 0.7778$$

confECE =
$$\frac{1}{3} \times |(0.6667 - 0.7778)| = \frac{1}{27}$$

confECE != 0→ not perfectly calibrated

- Evaluate the quality of of probabilistic predictions by ensuring that the best score is achieved when the predicted probabilities match the true probabilities.
- Tool for measuring calibration and discrimination jointly.
- Most popular: Brier Score, Negative Log-Likelihood

$$Brier(p, y) = ||p - y||_2^2$$
 $NLL(p, y) = -\log p_y$

Example:
$$y = 3, y = (0,0,1), p_{bad} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), p_{better} = (0, \frac{1}{3}, \frac{2}{3})$$

$$Brier(p_{bad}, y) = \frac{2}{3} \qquad Brier(p_{better}, y) = \frac{2}{9} \qquad Brier(y, y) = 0$$

$$NLL(p_{bad}, y) \approx 0.477 \qquad NLL(p_{better}, y) \approx 0.176 \qquad NLL(y, y) = 0$$

Note that a fully uncertain prediction p_{bad} does not score well.

р	ŷ	y
$(\frac{1}{3} + 2\epsilon, \frac{1}{3} - \epsilon, \frac{1}{3} - \epsilon)$	1	1
$(\frac{1}{3}-\epsilon, \frac{1}{3}+2\epsilon, \frac{1}{3}-\epsilon)$	2	1
$(\frac{1}{3}-\epsilon, \frac{1}{3}-\epsilon, \frac{1}{3}+2\epsilon)$	3	2

р	ŷ	y
$(\frac{1}{3} + 2\epsilon, \frac{1}{3} - \epsilon, \frac{1}{3} - \epsilon)$	1	2
$(\frac{1}{3}-\epsilon, \frac{1}{3}+2\epsilon, \frac{1}{3}-\epsilon)$	2	3
$(\frac{1}{3}-\epsilon, \frac{1}{3}-\epsilon, \frac{1}{3}+2\epsilon)$	3	3

- This classifier predicts a random class with full uncertainty.
- It always has a confidence of ~1/3, and it has an accuracy of 1/3.
- Therefore, it is perfectly **confidence-calibrated**, but **useless**.

р	ŷ	y
$(\frac{2}{3}, 0, \frac{1}{3})$	1	1
(0, 1/3, 2/3)	3	1
(½, ½, 0)	2	2

p	ŷ	y
$(0, \frac{1}{3}, \frac{2}{3})$	3	2
(½ 3 , ½ 3 , 0)	2	2
(0, 1/3, 2/3)	3	3

- This classifier always predicts with ¾ confidence.
- It has an accuracy of ¾.
- It is perfectly **confidence-calibrated**, but it has **more discrimination ability** than random guessing.

р	ŷ	y
(1, 0, 0)	1	1
(1, 0, 0)	1	1
(0, 1, 0)	2	2

p	ŷ	y
(0, 1, 0)	2	2
(0, 0, 1)	3	3
(0, 0, 1)	3	3

- This is a god-like classifier.
- It is always 100% confident, and always right.
- It is **full-calibrated** and **perfectly discriminative**.

Contents

1. What is Calibration?

- a. What is Calibration?
- b. Understanding Calibration

2. Measuring Calibration

- a. Reliability Plots
- b. Expected Calibration Error
- c. Alternative Calibration Measures

3. Improving Calibration

- a. Training
- b. Post Training

4. Hands-On Session & Complementary Materials

Improving Calibration: Training Calibration

Model Ensembling:

- Ensembling several diverse models can improve calibration.
- It comes with a computational overhead.

- Training Time Calibration:

- Over-parameterized NNs can keep on learning the training set until they are fully confident, minimizing NLL indefinitely. We can avoid this by regularizing so as to discourage confidence.
 - Label Smoothing, MixUp, Focal Loss... Careful of underfitting! Always
 report also a PSR, not only ECE.

Improving Calibration: Post-Training Calibration

For binary classifiers:

- Platt Scaling:
 - Fits a logistic regression model to the classifier's scores, mapping the to well calibrated probabilities, using a validation set.
 - Used in ML to improve the reliability of probability estimates.
- Isotonic Regression:
 - Non-parametric technique
 - Fits a monotonically increasing function to the scores, optimizing bins to maximize calibration.
 - Especially useful when the relationship between predicted scores and actual probabilities is non-linear.

Improving Calibration: Post-Training Calibration

Temperature Scaling:

- Platt scaling tailored for neural networks, particularly in multi-class classification
- Uses a validation set to learn a scalar parameter called the *temperature* (T)
- It divides the logits (pre-softmax scores) by this T before applying the softmax function and tempers their value.
- This method helps to adjust the confidence of predictions without changing their order, improving the reliability of the predicted probabilities.

$$p_{j} = \frac{e^{z_{j}}}{\sum_{k=1}^{N} e^{z_{k}}} \to p_{j} = \frac{e^{(\frac{z_{j}}{T})}}{\sum_{k=1}^{N} e^{(\frac{z_{k}}{T})}}$$

Contents

1. What is Calibration?

- a. What is Calibration?
- b. Understanding Calibration

2. Measuring Calibration

- a. Reliability Plots
- b. Expected Calibration Error
- c. Alternative Calibration Measures

3. Improving Calibration

- a. Training
- b. Post Training

4. Hands-On Session & Complementary Materials

Hands-on Session & Complementary Materials

- GitHub repository: <u>uqinmia-miccai-2024</u>
- Video recording of different sessions on **YouTube**.
- More information about the event on our website.