Konsistenzhinweise und Formelverzeichnis zum T0-Modell

Johann Pascher

21. April 2025

Zusammenfassung

Dieses Dokument enthält Hinweise zu bekannten Konsistenzproblemen in der T0-Modell-Dokumentation sowie ein Verzeichnis der verwendeten Formelzeichen. Es dient als Referenz für Leser der Dokumentation und als Anleitung für zukünftige Überarbeitungen. Die identifizierten Inkonsistenzen betreffen hauptsächlich die Darstellung der Feldgleichungen, Lagrange-Dichten und die Kennzeichnung von Näherungen.

Inhaltsverzeichnis

1	Bekannte Konsistenzprobleme				
	1.1	Uneinheitliche Kennzeichnung von Näherungen			
	1.2	Varianten der Lagrange-Dichte			
	1.3	Parameter und Konstanten			
	1.4	Referenzen und URL-Struktur			
	1.5	Prioritäten für zukünftige Überarbeitungen			
2	Formelzeichenverzeichnis				
3	Dimensionen in natiirlichen Einheiten				

1 Bekannte Konsistenzprobleme

Hinweis für Leser

Die folgende Auflistung enthält bekannte Konsistenzprobleme in der aktuellen T0-Modell-Dokumentation. Diese werden in zukünftigen Überarbeitungen behoben. Bis dahin dient dieser Abschnitt als Orientierungshilfe, um die verschiedenen Darstellungen derselben Konzepte in den verschiedenen Dokumenten korrekt zu interpretieren.

1.1 Uneinheitliche Kennzeichnung von Näherungen

P1. Feldgleichung für T(x): Die Grundgleichung $\nabla^2 T(x) \approx -\frac{\rho}{T(x)^2}$ wird in manchen Dokumenten ohne das Approximationszeichen (\approx) dargestellt. Dies ist inkonsistent und sollte überall als Näherung gekennzeichnet werden.

Betroffene Dokumente:

- MathZeitMasseLagrange.tex (Abschnitt 2)
- EmergentGravT0En.tex (Abschnitt 3.2)
- MassVarGalaxienEn.tex (Abschnitt 2.1)
- QMRelTimeMassPart1ZEn.tex (Abschnitt 5.1)
- NatEinheitenSystematikZEn.tex (Abschnitt 15.1)

1.2 Varianten der Lagrange-Dichte

P2. Intrinsische Lagrange-Dichte: Es werden verschiedene Versionen präsentiert ohne klare Abgrenzung oder Erklärung der Beziehungen zwischen den Varianten:

Einfache Version (freie Felddynamik):

$$\mathcal{L}_{\text{intrinsic}} = \frac{1}{2} \partial_{\mu} T(x) \partial^{\mu} T(x) - \frac{1}{2} T(x)^{2}$$
 (1)

Mit Materiekopplung:

$$\mathcal{L}_{\text{intrinsic}} = \frac{1}{2} \partial_{\mu} T(x) \partial^{\mu} T(x) - \frac{1}{2} T(x)^{2} - \frac{\rho}{T(x)}$$
 (2)

Vollständige Form:

$$\mathcal{L}_{\text{intrinsic}}^{\text{complete}} = \underbrace{\frac{1}{2} \partial_{\mu} T(x) \partial^{\mu} T(x) - \frac{1}{2} T(x)^{2}}_{\text{Freie Felddynamik}} + \underbrace{\bar{\psi} \left(i\hbar \gamma^{0} \frac{\partial}{\partial (t/T(x))} - i\hbar \gamma^{0} \frac{\partial}{\partial t} \right) \psi}_{\text{Wechselwirkung mit Materie}}$$
(3)

Betroffene Dokumente:

- MathZeitMasseLagrange.tex
- NotwendigkeitQMErweiterungEn.tex (Abschnitt 5.1)
- EmergentGravT0En.tex (Abschnitt 2.3)
- QMRelTimeMassPart1ZEn.tex (Abschnitt 4.1)

1.3 Parameter und Konstanten

P3. κ -Parameter: Die Herleitung und Dimension des κ -Parameters wird unterschiedlich dargestellt:

Variante 1: $\kappa = \beta_T \cdot \frac{yv}{r_q^2}$ mit Dimension [E]

Variante 2: $\kappa^{\rm SI} \approx 4.8 \times 10^{-11} \, {\rm m/s}^2$ ohne explizite Herleitung

Betroffene Dokumente:

- MassVarGalaxienEn.tex (Abschnitt 2.2)
- MessdifferenzenT0StandardEn.tex (Abschnitt 3.1)
- T0VereinheitlichungDEGal.tex (Abschnitt 4.2)

1.4 Referenzen und URL-Struktur

P4. Uneinheitliche URL-Struktur: Die Verweise auf andere Dokumente der Reihe folgen nicht immer dem gleichen Muster:

Korrekte Struktur:

- Deutsch: /pdf/Deutsch/Dateiname.pdf
- Englisch: /pdf/English/DateinameEn.pdf

Betroffene Dokumente: Verschiedene Dokumente mit inkonsistenter Verlinkungsstruktur

1.5 Prioritäten für zukünftige Überarbeitungen

Die folgenden Maßnahmen sollten bei zukünftigen Überarbeitungen vorrangig umgesetzt werden:

- M1. Einheitliche Kennzeichnung aller Näherungen mit dem Symbol \approx in allen Feldgleichungen.
- M2. Einführung einer konsistenten Darstellung der Lagrange-Dichte mit klaren Angaben, welche Version in welchem Kontext verwendet wird:
 - Freie Felddynamik für Ausbreitungsstudien
 - Mit Materiekopplung für gravitationsrelevante Anwendungen
 - Vollständige Form für umfassende theoretische Darstellung
- M3. Vereinheitlichung der Herleitung und Dimension des κ -Parameters mit expliziter Verbindung zwischen theoretischer Form und SI-Wert.
- M4. Standardisierung der URL-Struktur in allen Dokumenten entsprechend der korrekten Struktur.

2 Formelzeichenverzeichnis

Formelzeichen des T0-Modells

Dieses Verzeichnis enthält die wichtigsten Formelzeichen des T0-Modells mit kurzen Erklärungen.

Symbol	Bedeutung
T(x)	Intrinsisches Zeitfeld; fundamentales Feld mit Dimension $[E^{-1}]$
T_0	Konstante intrinsische Zeit bei Ruhemasse
\hbar	Reduziertes Plancksches Wirkungsquantum; in natürlichen Einhei-
	ten $\hbar = 1$
c	Lichtgeschwindigkeit; in natürlichen Einheiten $c=1$
G	Gravitationskonstante; in natürlichen Einheiten $G=1$
k_B	Boltzmann-Konstante; in natürlichen Einheiten $k_B = 1$
$lpha_{ m EM}$	Feinstrukturkonstante; in natürlichen Einheiten $\alpha_{\rm EM}=1$
$lpha_{ m W}$	Wien-Konstante; in natürlichen Einheiten $\alpha_{\rm W}=1$
$eta_{ ext{T}}$	T0-Parameter; in natürlichen Einheiten $\beta_{\rm T}=1$
$eta_{ m T}^{ m SI}$	T0-Parameter in SI-Einheiten; $\beta_{\rm T}^{\rm SI} \approx 0,008$
$\gamma_{ m Lorentz}$	Lorentzfaktor; $\gamma_{\text{Lorentz}} = 1/\sqrt{1 - v^2/c^2}$
ξ	Verhältnis T0-Länge zu Planck-Länge; $\xi = r_0/l_P \approx 1,33 \times 10^{-4}$
r_0	Charakteristische T0-Länge; $r_0 = \xi \cdot l_P$
l_P	Planck-Länge; $l_P = \sqrt{\hbar G/c^3}$
$\Phi(r)$	Modifiziertes Gravitationspotential; $\Phi(r) = -GM/r + \kappa r$
κ	Linearer Term im modifizierten Gravitationspotential; $\kappa \approx 4.8 \times 10^{-11} \mathrm{m/s}^2$
λ_h	Higgs-Selbstkopplung; $\lambda_h \approx 0.13$
v	Higgs-Vakuumerwartungswert; $v \approx 246 \text{GeV}$
m_h	Higgs-Masse; $m_h \approx 125 \text{GeV}$
ω	Kreisfrequenz oder Photonenergie
ho	Massendichte oder allgemein Energiedichte
$T(x)(\partial_{\mu} + igA_{\mu})\Phi + \Phi\partial_{\mu}T(x)$	Modifizierte kovariante Ableitung für Higgs-Feld
$\mathcal L$	Lagrange-Dichte
z	Rotverschiebung
z_0	Referenzrotverschiebung
λ	Wellenlänge
λ_0	Referenzwellenlänge

Tabelle 1: Wichtige Formelzeichen des T0-Modells

3 Dimensionen in natürlichen Einheiten

Physikalische Größe	SI-Einheit	Dimension in natürlichen Einheiten
Länge	m	$[E^{-1}]$
Zeit	S	$[E^{-1}]$
Masse	kg	[E]
Energie	J	[E]
Temperatur	K	[E]
Elektrische Ladung	\mathbf{C}	[1] (dimensionslos)
Elektrisches Feld	V/m	$[E^2]$
Magnetisches Feld	$\mathbf{T}^{'}$	$[E^2]$
Kraft	N	$[E^2]$
Druck	Pa	$[E^4]$
Vakuumpermittivität ε_0	F/m	[1] (in nat. Einheiten $\varepsilon_0 = 1$)
Vakuumpermeabilität μ_0	H/m	[1] (in nat. Einheiten $\mu_0 = 1$)

Tabelle 2: Dimensionen physikalischer Größen in natürlichen Einheiten