

Final Examination Tuesday, April 22, 2014 - 9:00 am

Course Coordinator A. Sebak ENGR233 – Applied Advanced Calculus Time: 3 Hours

Instructors:

H. Akbari, C. David,

N. Rossokhata, A. Shnirelman

Instructions:

- ✓ Books, Notes and Calculators are NOT allowed.
- ✓ Submit all sheets and papers at the end of the exam.
- ✓ Credit will NOT be given for correct answers unless the full details of the calculation are shown.

Problem 1 (10 Marks) - Find an equation of the plane containing (1, 5, -1) that is perpendicular to the line of intersection of the two planes: -x + y - 5z = 4 and 2x - y - 2z = 0.

of intersection of the two planes. X + y = 3Z = 4 and ZX = y = 2Z = 0.

<u>Problem 2</u> (10 Marks) - A thin wire has the shape of the curve C traced by $\vec{r}(t) = \cos(\pi t) \hat{\mathbf{i}} + t \hat{\mathbf{j}} + (\sin(\pi t) + 5) \hat{\mathbf{k}}$ on the interval $0 \le t \le 1$.

(a) Find the length of the curved wire. (b) Find the mass $\int_C \rho \, ds$ of the wire if its mass density $\rho(x, y, z) = xz$.

Problem 3 (10 Marks) - Use Green's theorem to evaluate the line integral $\int_C (3x^2 - 4xy) dx + (y^3 - x^2) dy$ where *C* is the rectangle with vertices (2,1), (3,1), (3,6), and (2,6) traversed in a **clockwise direction**.

<u>Problem 4</u> (10 Marks) - Using spherical coordinates, find the volume of the solid inside $z = (x^2 + y^2)^{1/2}$ and bounded by $z^2 + x^2 + y^2 = 1$, and $z^2 + x^2 + y^2 = 4$.

Problem 5 (10 Marks) - Evaluate the surface integral $\iint_S y^3 z \, dS$

where S is the portion of the surface $x = 4 + z^2$ bounded by z = 0, z = 1, y = 0 and y = 2.

Problem 6 (10 Marks) - Use the divergence theorem to compute the outward flux $\iint_S (\vec{F} \cdot \hat{n}) dS$ of the vector field $\vec{F} = 3x^2 \hat{i} + (2x + y) \hat{j} + (x^2 - z^2) \hat{k}$ through the finite cylinder $x^2 + y^2 = 4$, and $-1 \le z \le 3$.

<u>Problem 7</u> (10 Marks) - Use Stokes' Theorem to evaluate $\oint_C \vec{F} \cdot d\vec{r}$ where

 $\vec{F} = (4z + x)\hat{\mathbf{i}} - 2xy\hat{\mathbf{j}} + (x^2 - y)\hat{\mathbf{k}}$ and *C* is a triangle in the first octant defined by the plane of x + 3y + z = 3 and C is oriented **counter clockwise** direction when viewed from above.

and C is offened counter ciockwise direction when viewed from above.

Problem 8 (10 Marks) - Find the center of mass of the half cylinder whose shape is described by $x^2 + y^2 \le 4$, $x \ge 0$, and $-1 \le z \le 1$ and whose density is $\rho(x, y, z) = x^2$. **Hint**: Use and apply symmetry.

Problem 9 (10 Marks) - Find the function g(x, z) so that the vector

 $\vec{F} = \left(8x\cos(y)\sin^2(z) + 2ze^{2xz}\right)\hat{\mathbf{i}} - 4x^2\sin(y)\sin^2(z)\hat{\mathbf{j}} + \left(g(x,z)\cos(y) + 2xe^{2xz}\right)\hat{\mathbf{k}} \text{ is a conservative field.}$

Problem 10 (10 Marks) - Use the change of variable technique to evaluate the integral

 $\iint_{R} (x^{2} + y^{2})(x^{2} - y^{2})^{5} dxdy \text{ where R is the region bounded by the graphs of } x = 0, x = 1, y = 0, y = 1 \text{ by means of the change of variables } u = 2xy \text{ and } v = x^{2} - y^{2}.$