Matemática Discreta

Dirk Hofmann

Departamento de Matemática, Universidade de Aveiro dirk@ua.pt, http://sweet.ua.pt/dirk/aulas/

Gabinete: 11.3.10

OT: Quinta, 14:00 – 15:00, Sala 11.2.24 **Atendimento de dúvidas**: Segunda, 13:30 – 14:30

Enumeração Combinatória

Exemplo

• Quantos sequências binárias de comprimento *n* existem?

- Quantos sequências binárias de comprimento *n* existem?
- Quantos números de 4 algarismos (divisíveis por 5) se podem escrever com os dígitos 1,...,9?

- Quantos sequências binárias de comprimento n existem?
- Quantos números de 4 algarismos (divisíveis por 5) se podem escrever com os dígitos 1,...,9?
- Quantas maneiras existem de colocar k bolas em n caixas?

- Quantos sequências binárias de comprimento *n* existem?
- Quantos números de 4 algarismos (divisíveis por 5) se podem escrever com os dígitos 1,...,9?
- Quantas maneiras existem de colocar k bolas em n caixas?
- Quantas seguências binárias com k uns e n-1 zeros existem?

- Quantos sequências binárias de comprimento *n* existem?
- Quantos números de 4 algarismos (divisíveis por 5) se podem escrever com os dígitos 1,...,9?
- Quantas maneiras existem de colocar k bolas em n caixas?
- Quantas sequências binárias com k uns e n-1 zeros existem?
- Sejam $k, n \in \mathbb{N}$. A equação $x_1 + \cdots + x_n = k$ tem quantas soluções com $x_i \in \mathbb{N}$?
- . . .

Índice

1 Os prinípios da adição e da multiplicação

② Generalizações

3 O prinípio da bijeção

Os prinípios da adição e da multiplicação

Dois princípio simples

O príncipio da adição

Sejam A_1 , A_2 , ..., A_n conjuntos finitos dois a dois disjuntos (isto é, tais que $A_i \cap A_j = \emptyset$, para $i \neq j$). Então

$$\left|\bigcup_{i=1}^n A_i\right| = \sum_{i=1}^n |A_i|.$$

Dois princípio simples

O príncipio da adição

Sejam A_1 , A_2 , ..., A_n conjuntos finitos dois a dois disjuntos (isto é, tais que $A_i \cap A_j = \varnothing$, para $i \neq j$). Então

$$\left|\bigcup_{i=1}^n A_i\right| = \sum_{i=1}^n |A_i|.$$

O princípio da multiplicação

Sejam A_1, A_2, \ldots, A_n conjuntos finitos. Então

$$|A_1 \times A_2 \times \cdots \times A_n| = |A_1| \cdot |A_2| \cdot \cdots \cdot |A_n|.$$

Exemplo

ullet O número de sequências binárias de comprimento n é

Exemplo

• O número de sequências binárias de comprimento $n \in 2^n$.

Contamos os elementos de
$$\underbrace{\{0,1\}\times\cdots\times\{0,1\}}_{n \text{ yezes}}$$
.

- O número de sequências binárias de comprimento $n \in 2^n$.
- Qual é o número de números naturais com 4 algarismos que se pode escrever com os dígitos 1,...,9.

Exemplo

- O número de sequências binárias de comprimento $n \in 2^n$.
- Qual é o número de números naturais com 4 algarismos que se pode escrever com os dígitos 1,...,9.
 Determinamos o tamanho do conjunto

$$\{1,\ldots,9\}^4;$$

ou seja, existem $9^4 = 6561$ tais números.

Exemplo

- O número de sequências binárias de comprimento $n \in 2^n$.
- Qual é o número de números naturais com 4 algarismos que se pode escrever com os dígitos 1,...,9.
 Determinamos o tamanho do conjunto

$$\{1,\ldots,9\}^4;$$

ou seja, existem $9^4 = 6561$ tais números.

 Qual é o número de números naturais com 4 algarismos que se pode escrever com os dígitos 0,..., 9 e que são divisíveis por 5?

Exemplo

- O número de sequências binárias de comprimento $n \in 2^n$.
- Qual é o número de números naturais com 4 algarismos que se pode escrever com os dígitos 1,...,9.
 Determinamos o tamanho do conjunto

$$\{1,\ldots,9\}^4;$$

ou seja, existem $9^4 = 6561$ tais números.

 Qual é o número de números naturais com 4 algarismos que se pode escrever com os dígitos 0,...,9 e que são divisíveis por 5?

O conjunto

$$\{1, \dots 9\} \times \{0, 1, \dots, 9\}^2 \times \{0, 5\}$$

tem 1800 elementos.

Exemplo

Determinamos o número das palavras de comprimento 5 que se podem escrever com os símbolos "a", "b", "c", "(", ")" de modo que

Exemplo

Determinamos o número das palavras de comprimento 5 que se podem escrever com os símbolos "a", "b", "c", "(", ")" de modo que

• o número de "(" é igual ao número de ")",

Exemplo

Determinamos o número das palavras de comprimento 5 que se podem escrever com os símbolos "a", "b", "c", "(", ")" de modo que

- o número de "(" é igual ao número de ")",
- em cada parte inicial da palavra, o número de "(" é maior ou igual ao número de ")",

Exemplo

Determinamos o número das palavras de comprimento 5 que se podem escrever com os símbolos "a", "b", "c", "(", ")" de modo que

- o número de "(" é igual ao número de ")",
- em cada parte inicial da palavra, o número de "(" é maior ou igual ao número de ")",
- entre "(" e ")" está pelo menos um dos símbolos "a,b,c".

Exemplo

Determinamos o número das palavras de comprimento 5 que se podem escrever com os símbolos "a", "b", "c", "(", ")" de modo que

- o número de "(" é igual ao número de ")",
- em cada parte inicial da palavra, o número de "(" é maior ou igual ao número de ")",
- entre "(" e ")" está pelo menos um dos símbolos "a,b,c".

Seja S o conjunto destas palavras, e consideramos

logo
$$S = S_0 \cup S_1 \cup S_2$$
 (dois a dois disjunto),

Exemplo

Determinamos o número das palavras de comprimento 5 que se podem escrever com os símbolos "a", "b", "c", "(", ")" de modo que

- o número de "(" é igual ao número de ")",
- em cada parte inicial da palavra, o número de "(" é maior ou igual ao número de ")",
- entre "(" e ")" está pelo menos um dos símbolos "a,b,c".

Seja S o conjunto destas palavras, e consideramos

• $S_0 = \{p \mid p \text{ não tem nenhuma parêntese}\},$

logo
$$S = S_0 \cup S_1 \cup S_2$$
 (dois a dois disjunto),

Exemplo

Determinamos o número das palavras de comprimento 5 que se podem escrever com os símbolos "a", "b", "c", "(", ")" de modo que

- o número de "(" é igual ao número de ")",
- em cada parte inicial da palavra, o número de "(" é maior ou igual ao número de ")",
- entre "(" e ")" está pelo menos um dos símbolos "a,b,c".

Seja S o conjunto destas palavras, e consideramos

- $S_0 = \{p \mid p \text{ não tem nenhuma parêntese}\},$
- $S_1 = \{p \mid p \text{ tem uma vez o símbolo "("}\},$

logo $S = S_0 \cup S_1 \cup S_2$ (dois a dois disjunto),

Exemplo

Determinamos o número das palavras de comprimento 5 que se podem escrever com os símbolos "a", "b", "c", "(", ")" de modo que

- o número de "(" é igual ao número de ")",
- em cada parte inicial da palavra, o número de "(" é maior ou igual ao número de ")",
- entre "(" e ")" está pelo menos um dos símbolos "a,b,c".

Seja S o conjunto destas palavras, e consideramos

- $S_0 = \{p \mid p \text{ não tem nenhuma parêntese}\}$,
- $S_1 = \{p \mid p \text{ tem uma vez o símbolo "("}\},$
- $S_2 = \{p \mid p \text{ tem duas vezes o símbolo "("}\},$

logo $S = S_0 \cup S_1 \cup S_2$ (dois a dois disjunto),

Exemplo

Determinamos o número das palavras de comprimento 5 que se podem escrever com os símbolos "a", "b", "c", "(", ")" de modo que

- o número de "(" é igual ao número de ")",
- em cada parte inicial da palavra, o número de "(" é maior ou igual ao número de ")",
- entre "(" e ")" está pelo menos um dos símbolos "a,b,c".

Seja S o conjunto destas palavras, e consideramos

- $S_0 = \{p \mid p \text{ não tem nenhuma parêntese}\},$
- $S_1 = \{p \mid p \text{ tem uma vez o símbolo "("}\},$
- $S_2 = \{p \mid p \text{ tem duas vezes o símbolo "("}\},$

logo $S = S_0 \cup S_1 \cup S_2$ (dois a dois disjunto), e por isso

$$|S| = |S_0| + |S_1| + |S_2|.$$

Exemplo

•
$$|S_0| =$$

Exemplo

•
$$|S_0| = 3^5 = 243$$
.

Exemplo

- $|S_0| = 3^5 = 243$.
- $S_1 =$

Exemplo

- $|S_0| = 3^5 = 243$.
- $S_1 = S_1^{1,3} \cup S_1^{1,4} \cup S_1^{1,5} \cup S_1^{2,4} \cup S_1^{2,5} \cup S_1^{3,5}$ (o primeiro número indica a posição de "(", o segundo a posição de ")").

Exemplo

- $|S_0| = 3^5 = 243$.
- $S_1 = S_1^{1,3} \cup S_1^{1,4} \cup S_1^{1,5} \cup S_1^{2,4} \cup S_1^{2,5} \cup S_1^{3,5}$ (o primeiro número indica a posição de "(", o segundo a posição de ")").

Aqui
$$|S_1^{i,j}| =$$

Exemplo

- $|S_0| = 3^5 = 243$.
- $S_1 = S_1^{1,3} \cup S_1^{1,4} \cup S_1^{1,5} \cup S_1^{2,4} \cup S_1^{2,5} \cup S_1^{3,5}$ (o primeiro número indica a posição de "(", o segundo a posição de ")").

Aqui
$$|S_1^{i,j}| = 3^3 = 27$$
, logo $|S_1| = 6 \cdot 27 = 162$.

Exemplo

Temos:

- $|S_0| = 3^5 = 243$.
- $S_1 = S_1^{1,3} \cup S_1^{1,4} \cup S_1^{1,5} \cup S_1^{2,4} \cup S_1^{2,5} \cup S_1^{3,5}$ (o primeiro número indica a posição de "(", o segundo a posição de ")").

Aqui
$$|S_1^{i,j}| = 3^3 = 27$$
, logo $|S_1| = 6 \cdot 27 = 162$.

• $S_2 =$

Exemplo

Temos:

- $|S_0| = 3^5 = 243$.
- $S_1 = S_1^{1,3} \cup S_1^{1,4} \cup S_1^{1,5} \cup S_1^{2,4} \cup S_1^{2,5} \cup S_1^{3,5}$ (o primeiro número indica a posição de "(", o segundo a posição de ")").

Aqui
$$|S_1^{i,j}| = 3^3 = 27$$
, logo $|S_1| = 6 \cdot 27 = 162$.

• $S_2 = \{ \text{"((a))", "((b))", "((c))"} \}$, logo $|S_2| = 3$.

Exemplo

Temos:

- $|S_0| = 3^5 = 243$.
- $S_1 = S_1^{1,3} \cup S_1^{1,4} \cup S_1^{1,5} \cup S_1^{2,4} \cup S_1^{2,5} \cup S_1^{3,5}$ (o primeiro número indica a posição de "(", o segundo a posição de ")").

Aqui
$$|S_1^{i,j}| = 3^3 = 27$$
, logo $|S_1| = 6 \cdot 27 = 162$.

•
$$S_2 = \{ \text{"((a))", "((b))", "((c))"} \}$$
, logo $|S_2| = 3$.

Portanto |S| = 243 + 162 + 3 = 408.

O príncipio da multiplicação generalizada

Suponhamos que temos um procedimento com \emph{n} escolhas onde há

O príncipio da multiplicação generalizada

Suponhamos que temos um procedimento com \emph{n} escolhas onde há

ullet r_1 possibilidades para a primeira escolha,

O príncipio da multiplicação generalizada

Suponhamos que temos um procedimento com n escolhas onde há

- ullet r_1 possibilidades para a primeira escolha,
- r_2 possibilidades para a segunda escolha (independente da primeira escolha),

O príncipio da multiplicação generalizada

Suponhamos que temos um procedimento com n escolhas onde há

- ullet r_1 possibilidades para a primeira escolha,
- r_2 possibilidades para a segunda escolha (independente da primeira escolha),
-
- r_n possibilidades para a última escolha (independente das escolhas anteriores);

O príncipio da multiplicação generalizada

Suponhamos que temos um procedimento com n escolhas onde há

- ullet r_1 possibilidades para a primeira escolha,
- r_2 possibilidades para a segunda escolha (independente da primeira escolha),
- . . .
- r_n possibilidades para a última escolha (independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

O príncipio da multiplicação generalizada

Suponhamos que temos um procedimento com n escolhas onde há

- r₁ possibilidades para a primeira escolha,
- r_2 possibilidades para a segunda escolha (independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

Exemplo

• |{números com 4 algarismos distintos}| =

O príncipio da multiplicação generalizada

Suponhamos que temos um procedimento com n escolhas onde há

- r₁ possibilidades para a primeira escolha,
- r_2 possibilidades para a segunda escolha (independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

Exemplo

• $|\{\text{números com 4 algarismos distintos}\}| = 9$

O príncipio da multiplicação generalizada

Suponhamos que temos um procedimento com n escolhas onde há

- r₁ possibilidades para a primeira escolha,
- r_2 possibilidades para a segunda escolha (independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

Exemplo

• $|\{\text{números com 4 algarismos distintos}\}| = 9.9.$

O príncipio da multiplicação generalizada

Suponhamos que temos um procedimento com n escolhas onde há

- r₁ possibilidades para a primeira escolha,
- r_2 possibilidades para a segunda escolha (independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

Exemplo

• $|\{\text{números com 4 algarismos distintos}\}| = 9.9.8.$

O príncipio da multiplicação generalizada

Suponhamos que temos um procedimento com n escolhas onde há

- r₁ possibilidades para a primeira escolha,
- r_2 possibilidades para a segunda escolha (independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

Exemplo

• $|\{\text{números com 4 algarismos distintos}\}| = 9.9.8.7$

O príncipio da multiplicação generalizada

Suponhamos que temos um procedimento com n escolhas onde há

- r₁ possibilidades para a primeira escolha,
- r_2 possibilidades para a segunda escolha (independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

Exemplo

• $|\{\text{n\'umeros com 4 algarismos distintos}\}| = 9.9.8.7 = 4536.$

O príncipio da multiplicação generalizada

Suponhamos que temos um procedimento com n escolhas onde há

- r₁ possibilidades para a primeira escolha,
- r_2 possibilidades para a segunda escolha (independente da primeira escolha),
- . . .
- r_n possibilidades para a última escolha (independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

- $|\{\text{números com 4 algarismos distintos}\}| = 9.9.8.7 = 4536.$
- Para A = {números com 4 algarismos distintos em 1,...,9, um deles igual a 5},

$$|A| =$$

O príncipio da multiplicação generalizada

Suponhamos que temos um procedimento com n escolhas onde há

- r₁ possibilidades para a primeira escolha,
- r_2 possibilidades para a segunda escolha (independente da primeira escolha),
- ...
- r_n possibilidades para a última escolha (independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

- $|\{\text{números com 4 algarismos distintos}\}| = 9.9.8.7 = 4536.$
- Para $A = \{$ números com 4 algarismos distintos em 1,...,9, um deles igual a 5 $\}$,

$$|A| = 4$$

O príncipio da multiplicação generalizada

Suponhamos que temos um procedimento com n escolhas onde há

- r₁ possibilidades para a primeira escolha,
- r_2 possibilidades para a segunda escolha (independente da primeira escolha),
- . . .
- r_n possibilidades para a última escolha (independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

- $|\{\text{números com 4 algarismos distintos}\}| = 9.9.8.7 = 4536.$
- Para $A = \{$ números com 4 algarismos distintos em 1,...,9, um deles igual a 5 $\}$,

$$|A| = 4.8.$$

O príncipio da multiplicação generalizada

Suponhamos que temos um procedimento com n escolhas onde há

- r₁ possibilidades para a primeira escolha,
- r₂ possibilidades para a segunda escolha (independente da primeira escolha),
- . . .
- r_n possibilidades para a última escolha (independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

- $|\{\text{números com 4 algarismos distintos}\}| = 9.9.8.7 = 4536.$
- Para $A = \{$ números com 4 algarismos distintos em 1,...,9, um deles igual a 5 $\}$,

$$|A| = 4.8.7.$$

O príncipio da multiplicação generalizada

Suponhamos que temos um procedimento com n escolhas onde há

- r₁ possibilidades para a primeira escolha,
- r_2 possibilidades para a segunda escolha (independente da primeira escolha),
- . . .
- r_n possibilidades para a última escolha (independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

- $|\{\text{números com 4 algarismos distintos}\}| = 9.9.8.7 = 4536.$
- Para $A = \{$ números com 4 algarismos distintos em 1,...,9, um deles igual a 5 $\}$,

$$|A| = 4.8.7.6$$

O príncipio da multiplicação generalizada

Suponhamos que temos um procedimento com n escolhas onde há

- r₁ possibilidades para a primeira escolha,
- r_2 possibilidades para a segunda escolha (independente da primeira escolha),
- . . .
- r_n possibilidades para a última escolha (independente das escolhas anteriores);

Então, existem $r_1 \cdot r_2 \cdot \cdots \cdot r_n$ maneiras de realizar o procedimento.

- $|\{\text{números com 4 algarismos distintos}\}| = 9.9.8.7 = 4536.$
- Para $A = \{$ números com 4 algarismos distintos em 1,...,9, um deles igual a 5 $\}$,

$$|A| = 4.8.7.6 = 1344.$$

Nota

O princípio da adição é só válido quando os conjuntos A_1, \ldots, A_n são *dois a dois disjuntos*. Mais geral, temos:

O princípio de inclusão-exclusão

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

O princípio de inclusão-exclusão

• Para conjuntos finitos A_1 e A_2 :

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

$$|A_1 \cup (A_2 \cup A_3)| =$$

O princípio de inclusão-exclusão

• Para conjuntos finitos A_1 e A_2 :

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

$$|A_1 \cup (A_2 \cup A_3)| = |A_1| + |A_2 \cup A_3| - |A_1 \cap (A_2 \cup A_3)|$$

O princípio de inclusão-exclusão

• Para conjuntos finitos A_1 e A_2 :

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

$$|A_1 \cup (A_2 \cup A_3)| = |A_1| + |A_2 \cup A_3| - |A_1 \cap (A_2 \cup A_3)|$$

= $|A_1| + |A_2 \cup A_3| - |(A_1 \cap A_2) \cup (A_1 \cap A_3)|$

O princípio de inclusão-exclusão

• Para conjuntos finitos A_1 e A_2 :

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

$$|A_1 \cup (A_2 \cup A_3)| = |A_1| + |A_2 \cup A_3| - |A_1 \cap (A_2 \cup A_3)|$$

= |A_1| + |A_2 \cup A_3| - |(A_1 \cap A_2) \cup (A_1 \cap A_3)|
= |A_1| +

O princípio de inclusão-exclusão

• Para conjuntos finitos A_1 e A_2 :

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

$$|A_1 \cup (A_2 \cup A_3)| = |A_1| + |A_2 \cup A_3| - |A_1 \cap (A_2 \cup A_3)|$$

$$= |A_1| + |A_2 \cup A_3| - |(A_1 \cap A_2) \cup (A_1 \cap A_3)|$$

$$= |A_1| + |A_2| + |A_3| - |A_2 \cap A_3| -$$

O princípio de inclusão-exclusão

• Para conjuntos finitos A_1 e A_2 :

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

• Para conjuntos finitos A₁, A₂ e A₃:

$$|A_1 \cup (A_2 \cup A_3)| = |A_1| + |A_2 \cup A_3| - |A_1 \cap (A_2 \cup A_3)|$$

$$= |A_1| + |A_2 \cup A_3| - |(A_1 \cap A_2) \cup (A_1 \cap A_3)|$$

$$= |A_1| + |A_2| + |A_3| - |A_2 \cap A_3| -$$

$$(|A_1 \cap A_2| + |A_1 \cap A_3| - |A_1 \cap A_2 \cap A_3|)$$

O princípio de inclusão-exclusão

• Para conjuntos finitos A_1 e A_2 :

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|.$$

• Para conjuntos finitos A₁, A₂ e A₃:

$$\begin{aligned} |A_1 \cup (A_2 \cup A_3)| &= |A_1| + |A_2 \cup A_3| - |A_1 \cap (A_2 \cup A_3)| \\ &= |A_1| + |A_2 \cup A_3| - |(A_1 \cap A_2) \cup (A_1 \cap A_3)| \\ &= |A_1| + |A_2| + |A_3| - |A_2 \cap A_3| - \\ &\qquad (|A_1 \cap A_2| + |A_1 \cap A_3| - |A_1 \cap A_2 \cap A_3|) \\ &= |A_1| + |A_2| + |A_3| \\ &- |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| \\ &+ |A_1 \cap A_2 \cap A_3|. \end{aligned}$$

Teorema

Em geral, para os conjuntos finitos $A_1, A_2, \ldots A_n$:

$$|A_1 \cup \cdots \cup A_n| = \sum_{k=1}^n (-1)^{i+1} \sum_{1 \le i_1 < \cdots < i_k \le n} |A_{i_1} \cap \cdots \cap A_{i_k}|$$

Ísto é:

$$|A_{1} \cup \cdots \cup A_{n}| = |A_{1}| + \cdots + |A_{n}|$$

$$- |A_{1} \cap A_{2}| - \cdots - |A_{n-1} \cap A_{n}|$$

$$+ |A_{1} \cap A_{2} \cap A_{3}| + \cdots + |A_{n-2} \cap A_{n-1} \cap A_{n}|$$

$$- \cdots \cdots$$

$$+ |A_{1} \cap \cdots \cap A_{n}|.$$

Prova por indução.

<u>Te</u>orema

Em geral, para os conjuntos finitos $A_1, A_2, \ldots A_n$:

$$|A_1 \cup \cdots \cup A_n| = \sum_{k=1}^n (-1)^{i+1} \sum_{1 \le i_1 < \cdots < i_k \le n} |A_{i_1} \cap \cdots \cap A_{i_k}|$$

Exemplo

Teorema

Em geral, para os conjuntos finitos $A_1, A_2, \ldots A_n$:

$$|A_1 \cup \cdots \cup A_n| = \sum_{k=1}^n (-1)^{i+1} \sum_{1 \le i_1 < \cdots < i_k \le n} |A_{i_1} \cap \cdots \cap A_{i_k}|$$

Exemplo

Seja
$$A_k = \{n \in \{1, \dots 1000\} \mid k \text{ divide } n\} \ (k = 1, 2, \dots).$$

Teorema

Em geral, para os conjuntos finitos $A_1, A_2, \ldots A_n$:

$$|A_1 \cup \cdots \cup A_n| = \sum_{k=1}^n (-1)^{i+1} \sum_{1 < i_1 < \cdots < i_k < n} |A_{i_1} \cap \cdots \cap A_{i_k}|$$

Exemplo

Seja
$$A_k = \{n \in \{1, \dots 1000\} \mid k \text{ divide } n\} \ (k = 1, 2, \dots)$$
. Assim,

$$|A_3 \cup A_5|$$

Teorema

Em geral, para os conjuntos finitos $A_1, A_2, \ldots A_n$:

$$|A_1 \cup \cdots \cup A_n| = \sum_{k=1}^n (-1)^{i+1} \sum_{1 \le i_1 \le \cdots \le i_k \le n} |A_{i_1} \cap \cdots \cap A_{i_k}|$$

Exemplo

Seja
$$A_k = \{n \in \{1, \dots 1000\} \mid k \text{ divide } n\}$$
 $(k = 1, 2, \dots)$. Assim,

$$|A_3 \cup A_5| = |A_3| + |A_5| - |A_3 \cap A_5|$$

Teorema

Em geral, para os conjuntos finitos $A_1, A_2, \ldots A_n$:

$$|A_1 \cup \cdots \cup A_n| = \sum_{k=1}^n (-1)^{i+1} \sum_{1 \le i_1 \le \cdots \le i_k \le n} |A_{i_1} \cap \cdots \cap A_{i_k}|$$

Exemplo

Determinamos o número de números entre 1 e 1000 que são divisíveis por 3 ou por 5.

Seja $A_k = \{n \in \{1, \dots 1000\} \mid k \text{ divide } n\} \ (k = 1, 2, \dots).$ Assim,

$$|A_3 \cup A_5| = |A_3| + |A_5| - |A_3 \cap A_5|$$
$$= \lfloor \frac{1000}{3} \rfloor + \lfloor \frac{1000}{5} \rfloor - \lfloor \frac{1000}{15} \rfloor$$

•

Teorema

Em geral, para os conjuntos finitos $A_1, A_2, \ldots A_n$:

$$|A_1 \cup \cdots \cup A_n| = \sum_{k=1}^n (-1)^{i+1} \sum_{1 \le i_1 < \cdots < i_k \le n} |A_{i_1} \cap \cdots \cap A_{i_k}|$$

Exemplo

Seja
$$A_k = \{n \in \{1, \dots 1000\} \mid k \text{ divide } n\} \ (k = 1, 2, \dots).$$
 Assim,

$$\begin{aligned} |A_3 \cup A_5| &= |A_3| + |A_5| - |A_3 \cap A_5| \\ &= \lfloor \frac{1000}{3} \rfloor + \lfloor \frac{1000}{5} \rfloor - \lfloor \frac{1000}{15} \rfloor \\ &= 333 + 200 - 66 = 467. \end{aligned}$$

Um exemplo

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais ("a,e,i,o,u")?

Um exemplo

Exemplo

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais ("a,e,i,o,u")?

Sejam A_a, \ldots, A_u os conjuntos das palavras de comprimento 10 sem "a",..., "u", respetivamente; procuramos $|A_a \cup \cdots \cup A_u|$.

Um exemplo

Exemplo

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais ("a,e,i,o,u")?

Sejam A_a, \ldots, A_u os conjuntos das palavras de comprimento 10 sem "a",..., "u", respetivamente; procuramos $|A_a \cup \cdots \cup A_u|$.

 $\bullet |A_a| = \cdots = |A_u| =$

Exemplo

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais ("a,e,i,o,u")?

Sejam A_a, \ldots, A_u os conjuntos das palavras de comprimento 10 sem "a",..., "u", respetivamente; procuramos $|A_a \cup \cdots \cup A_u|$.

• $|A_a| = \cdots = |A_u| = 22^{10}$.

Exemplo

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais ("a,e,i,o,u")?

- $|A_a| = \cdots = |A_u| = 22^{10}$.
- $\bullet |A_a \cap A_e| = \cdots = |A_o \cap A_u| =$

Exemplo

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais ("a,e,i,o,u")?

- $|A_a| = \cdots = |A_u| = 22^{10}$.
- $|A_a \cap A_e| = \cdots = |A_o \cap A_u| = 21^{10}$.

Exemplo

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais ("a,e,i,o,u")?

- $|A_a| = \cdots = |A_u| = 22^{10}$.
- $|A_a \cap A_e| = \cdots = |A_o \cap A_u| = 21^{10}$.
- $|A_a \cap A_e \cap A_i| = \cdots = |A_i \cap A_o \cap A_u| = 20^{10}$.

Exemplo

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais ("a,e,i,o,u")?

- $|A_a| = \cdots = |A_u| = 22^{10}$.
- $|A_a \cap A_e| = \cdots = |A_o \cap A_u| = 21^{10}$.
- $|A_a \cap A_e \cap A_i| = \cdots = |A_i \cap A_o \cap A_u| = 20^{10}$.
- $\bullet |A_a \cap A_e \cap A_i \cap A_o| = \cdots = |A_e \cap A_i \cap A_o \cap A_u| = 19^{10}.$

Exemplo

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais ("a,e,i,o,u")?

- $\bullet |A_a| = \cdots = |A_u| = 22^{10}.$
- $|A_a \cap A_e| = \cdots = |A_o \cap A_u| = 21^{10}$.
- $|A_a \cap A_e \cap A_i| = \cdots = |A_i \cap A_o \cap A_u| = 20^{10}$.
- $\bullet |A_a \cap A_e \cap A_i \cap A_o| = \cdots = |A_e \cap A_i \cap A_o \cap A_u| = 19^{10}.$
- $\bullet |A_a \cap A_e \cap A_i \cap A_o \cap A_u| = 18^{10}.$

Exemplo

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais ("a,e,i,o,u")?

Sejam A_a,\ldots,A_u os conjuntos das palavras de comprimento 10 sem "a",..., "u", respetivamente; procuramos $|A_a\cup\cdots\cup A_u|$.

- $\bullet |A_a| = \cdots = |A_u| = 22^{10}.$
- $|A_a \cap A_e| = \cdots = |A_o \cap A_u| = 21^{10}$.
- $|A_a \cap A_e \cap A_i| = \cdots = |A_i \cap A_o \cap A_u| = 20^{10}$.
- $\bullet |A_a \cap A_e \cap A_i \cap A_o| = \cdots = |A_e \cap A_i \cap A_o \cap A_u| = 19^{10}.$
- $\bullet |A_a \cap A_e \cap A_i \cap A_o \cap A_u| = 18^{10}.$

Há 10 intersecções de 2 conjuntos, 10 intersecções de 3 conjuntos e 5 intersecções de 4 conjuntos.

Exemplo

Quantas palavras de comprimento 10 com letras em $\{a, ..., z\}$ (23 letras) existem que não contêm todas as vogais ("a,e,i,o,u")?

Sejam A_a, \ldots, A_u os conjuntos das palavras de comprimento 10 sem "a",..., "u", respetivamente; procuramos $|A_a \cup \cdots \cup A_u|$.

- $|A_a| = \cdots = |A_u| = 22^{10}$.
- $|A_a \cap A_e| = \cdots = |A_o \cap A_u| = 21^{10}$.
- $|A_a \cap A_e \cap A_i| = \cdots = |A_i \cap A_o \cap A_u| = 20^{10}$.
- $\bullet |A_a \cap A_e \cap A_i \cap A_o| = \cdots = |A_e \cap A_i \cap A_o \cap A_u| = 19^{10}.$
- $\bullet |A_a \cap A_e \cap A_i \cap A_o \cap A_u| = 18^{10}.$

Há 10 intersecções de 2 conjuntos, 10 intersecções de 3 conjuntos e 5 intersecções de 4 conjuntos. Logo,

$$|A_a \cup \dots \cup A_u| = 5 \cdot 22^{10} - 10 \cdot 21^{10} + 10 \cdot 20^{10} - 5 \cdot 19^{10} + 18^{10}.$$

O prinípio da bijeção

O princípio da bijecção

Sejam A e B conjuntos (finitos). Se existe uma função bijetiva $f:A\to B$ entre A e B, então A e B têm o mesmo número de elementos.

O princípio da bijecção

Sejam A e B conjuntos (finitos). Se existe uma função bijetiva $f:A\to B$ entre A e B, então A e B têm o mesmo número de elementos.

Tipicamente utilizamos^a este princípio quanto é mais fácil contar os elementos de um destes conjuntos.

^aDe facto, já utilizámos durante este semestre.

O princípio da bijecção

Sejam A e B conjuntos (finitos). Se existe uma função bijetiva $f:A\to B$ entre A e B, então A e B têm o mesmo número de elementos.

Tipicamente utilizamos este princípio quanto é mais fácil contar os elementos de um destes conjuntos.

Exemplo

Determinamos o número de subconjuntos de $X = \{1, \dots, n\}$.

O princípio da bijecção

Sejam A e B conjuntos (finitos). Se existe uma função bijetiva $f:A\to B$ entre A e B, então A e B têm o mesmo número de elementos.

Tipicamente utilizamos este princípio quanto é mais fácil contar os elementos de um destes conjuntos.

Exemplo

Determinamos o número de subconjuntos de $X = \{1, \ldots, n\}$. A função

$$PX \longrightarrow \{\text{sequências binárias de comprimento } n\}$$

$$A \longmapsto a_1 a_2 \dots a_n$$
 onde $a_i = \begin{cases} 1 & i \in A, \\ 0 & i \notin A \end{cases}$

O princípio da bijecção

Sejam A e B conjuntos (finitos). Se existe uma função bijetiva $f:A\to B$ entre A e B, então A e B têm o mesmo número de elementos.

Tipicamente utilizamos este princípio quanto é mais fácil contar os elementos de um destes conjuntos.

Exemplo

Determinamos o número de subconjuntos de $X = \{1, \ldots, n\}$. A função

$$PX \longrightarrow \{\text{sequências binárias de comprimento } n\}$$

$$A \longmapsto a_1 a_2 \dots a_n$$
 onde $a_i = \begin{cases} 1 & i \in A, \\ 0 & i \notin A \end{cases}$

é bijetiva (porque é invertível).

O princípio da bijecção

Sejam A e B conjuntos (finitos). Se existe uma função bijetiva $f:A\to B$ entre A e B, então A e B têm o mesmo número de elementos.

Tipicamente utilizamos este princípio quanto é mais fácil contar os elementos de um destes conjuntos.

Exemplo

Determinamos o número de subconjuntos de $X = \{1, \ldots, n\}$. A função

$$PX \longrightarrow \{\text{sequências binárias de comprimento } n\}$$

$$A \longmapsto a_1 a_2 \dots a_n$$
 onde $a_i = \begin{cases} 1 & i \in A, \\ 0 & i \notin A \end{cases}$

é bijetiva (porque é invertível). Logo, $|PX| = 2^n$.

Exemplo

O número de maneiras de colocar k bolas em n caixa coincide com o número de sequências binárias com k uns e n-1 zeros.

Exemplo

O número de maneiras de colocar k bolas em n caixa coincide com o número de sequências binárias com k uns e n-1 zeros.

Exemplo

O número das soluções da equação $x_1+\cdots+x_n=k$ (com $x_i\in\mathbb{N}$)

Exemplo

O número de maneiras de colocar k bolas em n caixa coincide com o número de sequências binárias com k uns e n-1 zeros.

Exemplo

O número das soluções da equação $x_1+\cdots+x_n=k$ (com $x_i\in\mathbb{N}$) coincide com o número de maneiras de colocar k bolas em n caixas.

Exemplo

O número de maneiras de colocar k bolas em n caixa coincide com o número de sequências binárias com k uns e n-1 zeros.

Exemplo

O número das soluções da equação $x_1+\cdots+x_n=k$ (com $x_i\in\mathbb{N}$) coincide com o número de maneiras de colocar k bolas em n caixas.

Exemplo

O número de sequências binárias com k uns e m zero coincide com o número de subconjuntos de k elementos de um conjunto de k+m elementos.

Nota

Voltaremos ao estas questões no

Capítulo 5: Agrupamentos e Identidades Combinatória.