1.8 ENERGIA PRÚDENIA KVAPALINY

1. Vodorovným potrubím s prierezom 50 cm² preteká voda rýchlosťou 4 ms⁻¹ pri tlaku 200 kPa. Určte jej rýchlosť a tlak v zúženom priereze s obsahom 10 cm².

Zápis: $S_1 = 50 \text{ cm}^2 = 0,005 \text{ m}^2$ $v_1 = 4 \text{ ms}^{-1}$ p = 200 kPa $S_2 = 10 \text{ cm}^2 = 0,001 \text{ m}^2$ Riešenie: $S_1 \times v_1 = S_2 \times v_2$ $v_2 = \frac{S_1 \times v_1}{S_2}$ $v_2 = \frac{0,005 \times 4}{0,001}$ $v_2 = 20ms^{-1}$ $p_1 + \frac{1}{2} \times \rho \times v_1^2 = p_2 + \frac{1}{2} \times p_2$ $p_2 = p_1 + \frac{1}{2} \times \rho \times (v_1^2 - v_2^2)$

$$p_{1} + \frac{1}{2} \times \rho \times v_{1}^{2} = p_{2} + \frac{1}{2} \times \rho \times v_{2}^{2}$$

$$p_{2} = p_{1} + \frac{1}{2} \times \rho \times (v_{1}^{2} - v_{2}^{2})$$

$$p_{2} = 200000 + \frac{1}{2} \times 1000 \times (16 - 400)$$

$$p_{2} = 8 kPa$$

- 2. Vypočítajte zmenu celkovej vnútornej energie kvapaliny, ktorá má vo väčšom priereze tlak 250 kPa a rýchlosť 3 ms⁻¹ a v menšom priereze tlak 236,5 kPa. [Zmena celkovej vnútornej energie je vždy 0J.]
- 3. Voda prúdi rýchlosťou 4 ms⁻¹. Vypočítajte aký tlak by musela mať voda, aby mala rovnakú hodnotu tlakovej a kinetickej energie? [p = 8000 Pa]
- 4. Voda prúdi vodorovným potrubím, ktoré sa postupne zužuje z priemeru 6 cm na 4 cm a potom sa rozšíri na 8 cm. Aká bude rýchlosť a tlak v každej časti, ak v najširšej časti je rýchlosť 1,2 ms⁻¹ a tlak 250 kPa? [Ak r_1 = 6 cm tak v_1 = 2,13 ms⁻¹, p_1 = 248,45 kPa Ak r_2 = 4 cm tak v_2 = 4,78 ms⁻¹, p_2 = 239,30 kPa]
- 5. Vo vodnej trubici prúdi voda rýchlosťou 6 ms⁻¹ a má tlak 0,15 MPa. Akou veľkou rýchlosťou bude prúdiť voda v širšom priestore, ak tam pôsobí tlak 0,16 MPa? $[v_2 = 4 \text{ ms}^{-1}]$
- 6. Vo vodorovnej trubici s priemerom $d_1 = 5$ cm tečie voda rýchlosťou $v_1 = 2$ ms⁻¹ a tlaku $p_1 = 2x10^5$ Pa. Aký tlak je v užšej časti trubice s priemerom $d_2 = 2$ cm? $[p_2 = 1,24 \times 10^5 \text{ Pa}]$
- 7. Voda prúdi vodorovným potrubím, kde v jednom bode má rýchlosť 1 ms⁻¹ a v druhom 5 ms⁻¹. Vypočítaj tlakový rozdiel medzi týmito bodmi. [$\Delta p = -12$ kPa => v bode s rýchlosťou 5 ms⁻¹ je tlak o 12000 Pa menší]

- 8. Aká kvapalina prúdi v potrubí ak tlakový rozdiel medzi prvým miestom, kde prúdi táto kvapalina rýchlosťou 6 ms⁻¹ a druhým miestom s rýchlosťou 4 ms⁻¹ je 135,3 kPa. [Kvapalinou je ortuť, lebo hustota je 13530 kgm⁻³]
- 9. V potrubí je tlak v prvom mieste 180 kPa a v druhom mieste 120 kPa. Rýchlosť v prvom mieste je 2 ms⁻¹. Akou rýchlosťou prúdi kvapalina v druhom mieste, ak danou kvapalinou je nafta (ρ = 850 kgm⁻³)? [v_2 = 12,05 ms⁻¹]
- 10. Akou rýchlosťou padá kvapka dažďa, ak jej hmotnosť 0,005g a polomer je 2,26 mm. $\rho_{(vzduch)}=1,3~kgm^{-3},~C=0,4~[v=3,47~ms^{-1}]$