Analyse des correspondances binairess

Interprétation

Véronique Tremblay

Extensions de l'ACB

- Analyse en composante principale
- Analyse des correspondances binaires
- Analyse des correspondances multiples
- Analyse factorielle de données mixtes
- Analyse factorielle multiple
- Analyse factorielle hiérarchique

Analyse	des	correspondances	multiples	(ACM)

Tableau disjonctif complet (tableau logique)

$$Z = [Z_1 | Z_2 | ... | Z_Q]$$

ID	Type d'employé						pe c	Total	
	1	2	3	4	5	1	2	3	Q
1	0	0	1	0	0	0	1	0	2
2	0	1	0	0	0	1	0	0	2
3	1	0	0	0	0	0	1	0	2
4	0	0	0	0	1	0	0	1	2
÷	:	:	:	:	:	:	:	:	:
193	0	1	0	0	0	1	0	0	2

Notation supplémentaire

Un peu de notation additionnelle:

 $Q={\sf nombre}\;{\sf de}\;{\sf questions}$

n= nombre d'individus répondant au questionnaire

 $p_q =$ nombre de modalités de la question q

$$p=p_1+\ldots+p_Q$$

Tableau de Burt

Matrice carrée $p \times p$ définie comme étant

$$B = ZZ^{\top}$$

$$B = \left[\begin{array}{cccc} Z_1^\top Z_1 & Z_1^\top Z_2 & \cdots & Z_1^\top Z_Q \\ Z_2^\top Z_1 & Z_2^\top Z_2 & \cdots & Z_2^\top Z_Q \\ \vdots & \vdots & \cdots & \vdots \\ Z_Q^\top Z_1 & Z_Q^\top Z_2 & \cdots & Z_Q^\top Z_Q \end{array} \right].$$

Tableau de Burt

	AS	AJ	ES	EJ	SE	NON	MOY	GRO
AS	11	0	0	0	0	4	5	2
AJ	0	18	0	0	0	4	10	4
ES	0	0	51	0	0	25	22	4
EJ	0	0	0	88	0	18	57	13
SE	0	0	0	0	25	10	13	2
NON	4	4	25	18	10	61	0	0
MOY	5	10	22	57	13	0	107	0
GRO	2	4	4	13	2	0	0	25

©Véronique Tremblay 2021

Le résultat

- L'ACM permet de projeter l'ensemble des modalités de toutes les variables dans le même plan.
- L'interprétation est similaire à celle de l'ACB:
 - Les modalités d'une même variable sont éloignées
 - Les modalités de deux variables différentes sont proches si elles sont partagées par les mêmes individus.
 - Une modalité est éloignée des autres si elle n'est pas partagée par les mêmes individus

Tableau disjonctif complet vs tableau de Burt

- L'analyse des correspondances multiple peut être effectuée sur l'un ou l'autre des tableaux.
- Les résultats seront identiques (voir les notes de cours)
- Quand privilégier l'un ou l'autre?

©Véronique Tremblay 2021

Analyse factorielle de données mixtes (AFDM)

Permet de présenter des variables continues et catégorielles dans le même plan.

Analyse factorielle multiple (AFM)

Permet de grouper les variables ou les individus (AFMD).

Analyse factorielle multiple hiérarchique (AFMH)

Permet de grouper les variables de façon hiérarchique.

En pratique

FactoMineR

Analyse	Fonction
ACP	PCA
ACB	CA
ACM	MCA
AFDM	FAMD*
AFM	MFA
AFMH	HMFA*