Базы данных

Гаврилова Юлия Михайловна

2019

Оглавление

1	Вве	едение	2
	1.1	Реляционная модель	
		1.1.1 Структурная часть	
		1.1.2 Целостная часть	;
		1.1.3 Манипуляционная часть	;
	1.2	Реляционная алгебра	4
		1.2.1 GROUP	(
		1.2.2 Summarize	(
		1.2.3 UNGROUP	(
	1.3	Реляционное сравнение	(
		1.3.1 Агрегатные сравнения	,
	1.4	Исчисление доменов	,
2	Teo	рия проектирования реляционных баз данных	10

Глава 1

Введение

Способы организации			
OLAP (online analytic processor)	OLTP (jnline transaction processor)		
Время отклика	Быстрая вставка		
3NF	1NF		
Нормальная форма	Для сбора статистики		

1.1 Реляционная модель

- 1. Стректурная часть: как построена модель
- 2. Целостная часть: какие ограничения, как должны быть организованы данные
- 3. Манипуляционная: обработка данных

1.1.1 Структурная часть

- Тип int, char
- домен надстройка над типом, набор ограничений/правил (положительные четные для int), можно объявить над типом или над доменом
- атрибут упорядоченная пара (<имя, тип или домен>)
- заголовок (схема) отношения множество всех пар атрибутов {<имя атрибута $_1$, значение $_1$ >,..., <имя атрибута $_N$, значение $_N$ >}

$$\{ \langle a_1, \text{ int} \rangle, \langle a_2, \text{ float} \rangle, \langle a_3, \text{ char} \rangle, \langle a_4, \text{ varchar} \rangle \}$$

• кортеж над схемой

$$\{ \langle a_1, 1 \rangle, \langle a_2, 1.4 \rangle, \langle a_3, 'a' \rangle, \langle a_4, 'aaa' \rangle \}$$

• отношение

a_1	a_2	a_3	a_4
1	1.4	'a'	'aaa'

ER-модель

• отношение/сущность

Здесь студент сущность сильная. Если студент зависит, то студент - слабая сущность

- связь 1 1 (Студент → зачетка)
- связь 1 ко многим (Студенты → группа)
- многие ко многим (Студенты курс)

Лабораторная работа 1 -

- Подобрать предметную область на весь семестр
- ER модель (не менее 3ч самостоятельных сущностей)
- Создать свою БД (не менее 1000 записей на таблицу)

Защита:

- Добавить связь/атрибут
- Создать ссылку

1.1.2 Целостная часть

- целостность сущностей/отношений
- целостность ссылок

id	ФИО	Age
1	Иванов	10
2	Петров	15
3	Иванов	45

Потенциальный ключ:

- однозначная идентификация записи
- никаких подмножеств не должно быть под ключом

id	ΦИ	Ю	id гру	ппы
1	Пет	ров	1	
	↓Вне	квнш	я ссылк	a
	id	Has	ввание	
	1	И	У7-53	

Ссылочная целостность - нельзя ссылаться на несуществующий объект

1.1.3 Манипуляционная часть

- Реляционная алгебра
- Реляционные исчисления

1.2 Реляционная алгебра

id	name	
1	a	
2	b	
id	name	
id 2	name b	

1. Традиционные - работа с множеством

• Объединение (UNION)

	id	name
	1	a
	2	b
Ì	3	c

• Пересечение (INTERSECT)

id	name
2	b

• Вычитание (MINUS)

id	name	
1	a	
id	name	
3	c	

• Декартово произведение (ТІМЕЅ) - все возможные комбинации атрибутов

2. Специальные

• Соединение (JOIN)

id	name1	name2
2	b	b

- Ограничение (WHERE)
- Проекция (PROJECT)
- Деление (DIVIDE BY)

Реляционное выражение = унарное выражение (бинарное выражение)

Унарные выражения

• Проекция

терм | терм[список атрибутов]

• Ограничение

терм WHERE логическое выражение

• Переименование

терм RENAME old_name TO new_name

терм - имя_отношения | (реляционное_выражение)

Бинарные выражения

- Объединение
- Пересечение
- Вычитание
- Декартово произведение

• Соединение

бинарные операции = проекция бинарная_операция реляцонное_выажение S JOIN P[P..,S..]

Поставщик S

↓ Многие ко многим SP

Детали Р

S(Sno:integer, Sname:string, Status:integer, City:string)

P(Pno:integer, Pname:string, Color:string, Weight:real, City:string)

SP(Sno:integer, Pno:integer, Quantity:integer)

 \mathbf{S}

Sno	Sname	Status	City
1	Алмаз	20	Смоленск
2	Дельта	10	Владимир
3	Орион	30	Смоленск

 \mathbf{P}

Pno	Pname	Color	Weight	City
1	Гайка	K	12.0	Смоленск
2	Болт	C	17.1	Рязань
3	Винт	3	15.47	Владимир
4	Винт	K	18	Москва
5	Шайба	3	25	Смоленск

 SP_{-}

	Sno	Pno	Quantity
ĺ	1	1	25
	1	2	14
	2	4	2

1. Имена всех поставщиков детали под номером 2

$$((\underbrace{\mathrm{SP\ join\ S})}_{\mathrm{peл.\ Bыр.}})$$
 where $\underbrace{\mathrm{Pno}=2}_{\mathrm{лог.\ Bыр.}})$ [Sname]

select Sname

from SP inner join S on SP.Sno = S.Sno

where SP.Pno = 2

2. Вывести все имена поставщиков, которые поставляюк как минимум одну красную деталь

3. Получить имена поставщиков, которые поставляют все детали

$$A(X_1,\ldots,X_n,Y_1,\ldots,Y_n)$$

$$B(Y_1,\ldots,Y_n)$$

A divide by
$$B = (X_1, \dots, X_n)$$

Sno	Pno
1	1
1	2
1	3
2	2
2	3
3	1

P[Pno]

SP divide by P[Pno]

((SP divide by P[Pno]) join S)[Sname]

4. Все поставщики, которые поставляют только красные детали

 $(Sp ext{divide by } (P ext{ where Color} = 'K')[Pno])[Sname]$

5. Переименовать города из первой таблицы во вторые

(S rename Sno to firstName)[firstName, City] join

(S rename Sno to secondName)[secondName, City]) where secondName > firstName join S

firstName	С
1	С
2	В
3	С

secondName	С
1	С
2	В
3	С

firstName	secondName	С
1	1	С
1	3	\mathbf{C}
2	2	В
3	1	\mathbf{C}
3	3	\mathbf{C}

6. Поставщики, которые не поставляют деталь номер 2

((S[Sno] minus (SP where Pno = 2)[Sno]) join S)[Sname]

1.2.1 GROUP

SP group (Pno, Qty) as PQ - группирует

Sno	Pno	Qty
1	1	10
1	2	15
2	1	5
T		

Sno	PQ
1	1-10 2-15
2	1-5

1.2.2 Summarize

summarize SP per SP {Pno} add sum(Qty) as sQty

Pno	sQty
1	15
1	16

extend S add 'Поставщик' as Sname2 extend SP add Qty*100 as Qty2

1.2.3 UNGROUP

1.3 Реляционное сравнение

S(Sno) = SP(Sno)

is_epmty(реляционное выражение)

t in R \Leftrightarrow RELATION $\{t\} \le R$

t - Кортеж

R - отношение


```
объявление = range of переменная із список
область = отношение | реляционное выражение
реляционное выражение = (список целевых элементов) [where(wff)]
целевой элемент = переменная | переменная атрибут [as имя]
wff = условие | not условие | условие and (or) wff | if условие then(wff)
```

Примеры

range of SX is S

range of SPX is SP

range of SY is (SX) where SX.City = 'Смоленск', (SX) where exists SPX(SPX.Sno=SX.Sno and SPX.Pno=1)

Задачи как в реляционной алгебре

- 1. range of SX is S (SPX.Sno) where SPX.Pno = 2 (SX.Sname) where exists SPX(SPX.Sno = SX.Sno and SPX.Pno = 2)
- 2. range of SX os P (SX.Sname) where exists SPX(SPX.Sno = SX.Sno and exists PX(SPX.Pno = PS.Pno and PX.Color = 'K'))

(SX.Sname) where exists $SPX(where exists PX(SPX.Sno = SX.Sno and SPX.Pno = SX.Pno and <math>PX.Color = '\kappa'))$

range of PX is (Pno) where P.Color = 'K'

- 3. (SX.Sname) where forall PX(exists SPX(SPX.Pno = SX.Pno and SPX.Sno = SX.Sno))
- 4. $\langle S_1, S_2 \rangle$

range of SY is S (SX.Sname as FirstName, SY.Sname as SecondName) SX.City = SY.City and SX.Sno > SY.Sno

5. (SX.Sname) where not exists SPX(SPX.Sno = SX.Sno and SPX.Pno = 2)

1.3.1 Агрегатные сравнения

```
(sum(SPX.Qty) as Total) агрегатная функция((атрибуты) where f[атрибуты])
```

1.4 Исчисление доменов

R(pair, pair...) - условие принадлежности в общем виде

R - имя отношения, pair = A:v, где A - атрибут отношения R, v - или переменная домена, или литерал

SP(Sno:1, Pno:1) - истина если есть кортеж с Sno=1 и Pno=1 SP(Sno:SX, Pno:PX) - только если в отношении SP есть кортеж

- 1. (SX) множество всех номеров поставщиков
- 2. (SX) where S(Sno : SX) множество всех номеров поставщиков в отношении S
- 3. (SX) where S(Sno : SX, City : 'Смоленск') подмножество номеров поставщиков из города Смоленска 7

- 4. (SX,CityX) where S(Sno : SX, City : CityX) and SP(Sno : SX, Pno : 2) запрос на получение номера поставщиков поставляющих деталь под номером 2
- 5. (SX, PX) where S(Sno:Sx, City:CityX) and P(Pno:PX, City:CityY) and CityX <> CityY получение пар номер поставщика и детали где поставщики и детали находятся не в одном городе
- 1. Получить номера поставщиков из Смоленска у которых статус больше 20 SX where exists StatusX (StatusX > 20 and S(Sno : SX, Status : StatusX, City : 'Смоленск'))
- 2. Получить все пары поставщиков, что два поставщика размещаются в одном городе (SX as FirstSno, SY as SecondSnno) where exists CityZ(S(Sno:SX, City:CityZ) and S(Sno:SY, City:CityZ) and SX < SY)
- 3. Получить имена поставщиков которые поставляют как минимум одну красную деталь NameX where exists SX exists PX (S(Sno : SY, Sname : NameX) and SP(Sno : SX, Pno : PX) and P(Pno : PX, Color = 'Красный'))
- 4. Получить имена поставщиков которые поставляют хотя бы одну деталь поставляемую поставщиком под номером 2

NameX where exists SX exists PX (S(Sno : SX, Sname : NameX) and SP(Sno : SX, Pno : PX) and SP(Sno : 2, Pno : PX))

- 5. Получить имена поставщиков которые поставляют все типы деталей NameX where exists $SX(S(Sno:SXm\ Sname:NameX)$ and forall $PX(if\ P(Pno:PX))$ then (Sno:SX, Pno:PX)))
- 6. Получить имена поставщиков которые не поставляют деталь с номером 2 NameX where exists SX(S(Sno: SX, Sname: NameX) and not SP(Sno: SX, Pno: 2))
- 7. Получить номера поставщиков которые поставляют как минимум все типы деталей поставляемыми поставщиком с номером 2

SX where for all PX(if SP(Sno: 2, Pno: PX) then SP(Sno: SX, Pno: PX))

8. Получить номера деталей которые не весят больше 16 фунтов или поставляются с поставщиком под номером 2, или и то и другое

PX where exists WeightX(P(Pno: PX, WeightX) and WeightX > 16) or SP(Sno: 2, Pno: PX))

Поставщики (S)

Sno	Sname	Status	City
1	Алмаз	20	Смоленск
2	Циклон	10	Владивосток
- i			

Детали (Р)

Pno	Pname	Color	Weight	City
1	Гайка	Красный	12	Смоленск
2	Болт	Зеленый	17	Владимир
:				

Проекты (J)

Jno	Jname	City
1	Ангара	Владимир
2	Алтай	Рязань
:		

Поставки (SPJ)

Sno	Pno	$_{ m Jno}$	Qty
1	1	1	200
1	1	4	700
:			

1. (SX,Name, SX.City) where exists JX for all PX exists PSJX (JX.City = 'Ярославль' and JX.Jno = SPJX.Jno and PX.Pno = SPJX.Pno and SX.Sno = SPJX and SPJX.Qty >= 50)

SX : все кортежи отношения S (5 шт)

РХ: все кортежи отношения Р (6 шт)

JX : все кортежи отношения J, в которых City = 'Ярославль' (2шт)

SPJX: все кортежи отношения SPJ, d которых $Qty >= 50 \ (24 \ mt)$

- 2. JX.JN = SPJX.Jno and PX.Pno = SPJX.Ono and SX.Xno = SPJX.Sno
- 3. exists RX, forall RX
- 4. exists JX forall PX exists SPJX
- 1. exists SPJX исключая SPJ (SPJ.Sno, SPJ.Pno, SPJ.Jno и SPJ.Qty)

Sn	ю	Sname	City	Pno	Pname	Color	weight	City	Jno	Jname	City

2. forall РХ Делим на Р

Sno	Sname	Status	City	Jno	Jname	City

3. exists JX исключаем J(J.Jno, J.Jname, J.City)

Sno	Sname	Status	City

5. SX.Sname, SX.City

Глава 2

Теория проектирования реляционных баз данных

Есть две проблемы: как повсить эффективность и как представить реальные объекты. Классический подход это выделение решений и их реализация. Нормальные формы. каждая НФ - набор ограничений. Каждая следующая НФ лучше предыдущей. Следующие нормальные формы:

- 1. 1 NF
- 2. 2 NF
- 3. 3 NF
- 4. 4 NF
- 5. PSNF форма проекций соединения

Свойства НФ

- 1. Каждая следующая Н Φ лучше предыдущей
- 2. При переходе к следующей ${\rm H}\Phi,$ свойства предыдущей сохраняются