Moore determinant

January 30, 2016

Definition 0.1. Let $\{\alpha_1, \alpha_2, \dots, \alpha_m\}$ be a set of m elements of \mathbb{F}_{q^m} . Then the determinant

$$\det M(\alpha_1, \dots, \alpha_m) = \begin{vmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_m \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_m^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{q^{m-1}} & \alpha_2^{q^{m-1}} & \dots & \alpha_m^{q^{m-1}} \end{vmatrix}$$

is called the Moore determinant of the set $\{\alpha_1, \ldots, \alpha_m\}$.

Theorem 0.2. Let $\{\alpha_1, \ldots, \alpha_m\}$ be a set of m elements of \mathbb{F}_{q^m} . Then

$$\det M(\alpha_1, \dots, \alpha_m) = \alpha_1 \prod_{i=1}^{m-1} \prod_{c_1, \dots, c_i \in \mathbb{F}_q} (\alpha_{i+1} - \sum_{j=1}^i c_j a_j).$$

Example 0.2.1. Let $\{a_1, a_2, a_3\}$ be a set of elements of \mathbb{F}_{2^3} . Then

$$\det M(a_1, a_2, a_3) = \begin{vmatrix} a_1 & a_2 & a_3 \\ a_1^2 & a_2^2 & a_3^2 \\ a_1^4 & a_2^4 & a_3^4 \end{vmatrix} = a_1 a_2 (a_2 - a_1) a_3 (a_3 - a_1) (a_3 - a_2) (a_3 - a_1 - a_2)$$

Proposition 0.3. Let $\{\alpha_1, \ldots, \alpha_m\}$ be a normal basis of \mathbb{F}_{q^m} over \mathbb{F}_q . Then we have that

$$\det M(\alpha_1,\ldots,\alpha_m)=1.$$

Proof. We note that the elements which appear in the product of the Moore determinant are in fact all the elements of the field \mathbb{F}_{q^m} , since we have all the possible linear combinations of the normal basis $\{\alpha_1, \ldots, \alpha_m\}$ with coefficients over \mathbb{F}_q . Since the product of the elements of a field is 1, using the Theorem 0.2 we obtained that the Moore determinant is equal to 1.

References

[1] Gary L. Mullen, Daniel Panario Handbook of finite fields, CRC Press, 2013.