Stat 230: Probability

Lecture 2

Jeremy VanderDoes

University of Waterloo

Wednesday, May 4th

Review

Example (Review Question)

Consider the random experiment of rolling two, fair dice. We are interested in the event that the sum of pips is greater than 2. Define:

- (1) Sample space
- (2) Probability distribution

Also give:

- (3) Event
- (4) Probability of event

Review

Last time we discussed

- Probability Model:
 - Sample spaces
 - Events
 - Axioms of probability

Schedule for today:

- Review Questions
- Equally likely sample spaces
- Rules of Counting
- (Next Class) Counting

Reading: Chapter 2 - 3

Review

- Discrete vs Non-discrete
- Probability Axioms: Finite Additivity
- Pacing
 - Key definitions (Discussion)
 - Review time
- Examples
- Union (\cup) and Intersection (\cap)

Definition

The **odds** of an event A is defined

$$\frac{P(A)}{1 - P(A)}$$

and the odds against event A is defined

$$\frac{1-P(A)}{P(A)}$$

Example

Consider again rolling a two distinguishable, fair dice

- (1) Give the odds of rolling greater than 8
- (1) Give the odds against rolling greater than 8

Definition

We say a sample space S with a finite number of outcomes is **equally likely** if the probability of every individual outcome in S is the same.

Let |A| denote the number of outcomes in an event A. In case of an equally likely sample space,

$$1 = P(S) = \sum_{i=1}^{|S|} P(a_i) = P(a_i)|S|.$$

So

$$P(a_i)=\frac{1}{|S|}.$$

Therefore;

$$P(A) = \sum_{i: a_i \in A} P(a_i) = \frac{|A|}{|S|}.$$

We can often modify sample spaces to ensure the events are equally likely.

In the context of an equally likely sample space, i.e. when

$$P(A) = \frac{|A|}{|S|},$$

computing probabilities is equivalent with "simply" counting outcomes.

The Addition Rule (OR):

If E and F are disjoint events, then

$$|E \cup F| = |E| + |F|.$$

Example

Suppose two six sided die are rolled, how many outcomes would result in the sum of the die rolls exceeding 8?

The Multiplication Rule (AND):

An ordered k-tuple is an ordered set of k values: $(a_1, a_2, ..., a_k)$. If the outcomes in A can be written as an ordered k – tuple where there are n_1 choices for a_1 , n_2 choices for a_2 ,..., and in general n_i choices for a_i , then

$$|A|=n_1n_2\cdots n_k=\prod_{i=1}^k n_i.$$

$$\begin{bmatrix}
(a_{1,1}, a_{2,1}) & (a_{1,1}, a_{2,2}) & \cdots & (a_{1,1}, a_{2,n_2}) \\
(a_{1,2}, a_{2,1}) & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
(a_{1,n_1}, a_{2,1}) & \cdots & \cdots & (a_{1,n_1}, a_{2,n_2})
\end{bmatrix}$$
(1)

Three-dimensional array with twenty four elements

Figure: A three dimensional array.

Figure: A three dimensional array of three dimensional arrays.

Example

A rebel base has been discovered on Hoth and teams of snow troopers dispatched. If each member of a four trooper team can select one of three specializations, how many ways could the team be configured?

Example

Suppose that three of the numbers $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ are selected at random **without** replacement, and then put together in the order they are drawn to form a three digit number. What is the probability that:

- (1) The number is larger than 500?
- (2) The number is even?
- (3) The number is larger than 700, and is even?