What is the impact of new product announcements on the stock volatility of major technology companies?

Dauer L. Profumo N. Tognolini B. Angevin P.

December 11, 2024

Table of content

- Introduction
- Shiny app.R
- Oata
- Oescriptive Analysis
- Model
- Results
- Conclusion
- Bibliography

• Why did we choose this topic ?

- Why did we choose this topic ?
- We are 4 students studying Finance who are interested in financial markets.

- Why did we choose this topic ?
- We are 4 students studying Finance who are interested in financial markets.
- We wanted to learn how to use IT as a tool for finance

- Why did we choose this topic ?
- We are 4 students studying Finance who are interested in financial markets.
- We wanted to learn how to use IT as a tool for finance
- And we were wondering if there is any correlation between stock prices and product announcements for companies such as Apple, Amazon, Tesla etc...

Introduction: Git and Github

• As everything was new for us, we first got our hands dirty on GitHub.

Introduction: Git and Github

- As everything was new for us, we first got our hands dirty on GitHub.
- We learned what Git and Github was and found out how to track and manage versions of a local and remote repository by using the main git commands via Git Bash (git status, git add, git commit, git push/pull, git clone, etc...).

Introduction: Git and Github

```
PS C:\Users\Admin\Desktop\digital_tools> git push origin master
Enumerating objects: 9, done.
Counting objects: 100% (9/9), done.
Delta compression using up to 20 threads
Compressing objects: 100% (5/5), done.
Writing objects: 100% (5/5), 485 bytes | 242.00 KiB/s, done.
Total 5 (delta 2), reused 0 (delta 0), pack-reused 0 (from 0)
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
To https://github.com/PierreAg1/stock_analysis.git
    db417ee..0321c82 master -> master
PS C:\Users\Admin\Desktop\digital_tools>
```

Figure: Pushing changes on branch master of a Github repository

Introduction: Repository Structure

```
Data
                     # Data used for our analysis
 Text
                     # Documentation files

→ presentation

                     # Presentation of project
 report
                     # Report of project
 code
                     # Python notebook that performs analysis
 - notebook
 L output
                     # Charts outputted from code
 .gitignore
                     # Git configuration to ignore specific files or directories
 Dockerfile
                     # Instructions to build a Docker image for the project
 app.R
                     # Interactive R Shiny app
 README . md
                     # Project overview and instructions
- requirements.txt
                     # Python dependencies for the project
```

Figure: Our Github repository structure

Shiny app.R

- Dockerfile
- requirements.txt
- app.R
- results in the browser with the graphic

Data

2 datasets:

- Company announcements dataset retrieved from ChatGPT and official company websites.
- Daily stock prices dataset in USD (adjusted for dividends) from 31.12.2013-31.12.2023 for the ten biggest tech firms in terms of current market capitalization compiled with Refinitiv EIKON (Datastream).
- Key steps:
 - Data Importation, Merging and Cleaning.
 - Compute Daily Returns & Rolling Volatility

Data: Libraries Importations

- pandas for data manipulation and analysis
- matplotlib for creating visualisations
- numpy for numerical computation
- seaborn for enhanced statistical visualisations
- scikit-learn for statical modeling (linear regression) and for model validation

Data: Data Importation, Merging and Cleaning

Import both Excel spreadsheets thanks to Pandas library.

Data: Data Importation, Merging and Cleaning

- Import both Excel spreadsheets thanks to Pandas library.
- Ensure consistency between data types before merging.

Data: Data Importation, Merging and Cleaning

- Import both Excel spreadsheets thanks to Pandas library.
- Ensure consistency between data types before merging.
- Deal with inconsistent or missing values (e.g. zero or negative stock prices).

Data: Compute Daily Returns & Rolling Volatility

• Computed the daily stock returns and rolling volatility over a 10-day window.

Data: Compute Daily Returns & Rolling Volatility

- Computed the daily stock returns and rolling volatility over a 10-day window.
- Delete the missing values because the first row of each stock can't provide a daily return and that the 10 day rolling volatility can't be computed before having 10 data points.

Data: Compute Daily Returns & Rolling Volatility

Name	Date	Announcement	StockPrice	Daily_Return	Rolling_Volatility
AMZN	2014-01-14	NaN	20299.90	0.016778	0.010152
AMZN	2014-01-15	NaN	20214.63	-0.004201	0.010226
AMZN	2014-01-16	NaN	20211.05	-0.000177	0.010216
AMZN	2014-01-17	NaN	20405.61	0.009626	0.010606
AMZN	2014-01-20	NaN	20405.61	0.000000	0.010248

Table: Sample of the final dataset

Descriptive Analysis

- Descriptive Statistics of the Daily Returns
- Cumulative Performance Analysis
- Volatility Analysis
- Spotting Patterns between Volatility and Product Announcements

Descriptive Analysis: Daily Returns

Name	Mean (%)	Std (%)	Min (%)	Max (%)
AMZN	0.100	2.055	-14.049	14.131
APPL	0.109	1.758	-12.865	11.981
AVGO	0.151	2.156	-19.913	15.834
GOOG	0.077	1.727	-11.634	16.259
META	0.098	2.315	-26.390	23.283
MSFT	0.112	1.675	-14.739	14.217
NVDA	0.230	2.872	-18.756	29.807
TECHY	0.070	2.189	-12.418	23.261
TSLA	0.186	3.447	-21.063	19.895
TSMC	0.091	1.617	-8.870	10.337

Table: Descriptive Statistics of the Daily Returns by firm

Descriptive Analysis: Cumulative Performance Analysis

Figure: Cumulative Performance by firm

Descriptive Analysis: Volatility Analysis

Figure: Volatility over Time by firm

Descriptive Analysis: Spotting Patterns(1)

Figure: Volatility and Product Announcements for GAFAM

Descriptive Analysis: Spotting Patterns(2)

Figure: Volatility and Product Announcements during COVID crisis for Google

Descriptive Analysis: Spotting Patterns(3)

Figure: Tesla Stock Volatility around Model S P85D Announcement

Model

• Very naive linear model:

$$\mathsf{Rolling_Volatility}_{\mathit{it}} = \alpha + \beta \cdot \mathsf{Announcement}_{\mathit{it}} + \epsilon_{\mathit{it}}$$

- Binary independent variable but too few observations.
- Absence of control variables to prevent biases.

Results

Parameter	Value		
Intercept Coefficient for Announcement_Binary	0.019317437887891822 0.0019166839158981386		
R ² Score	-0.0005099587924510818		

Table: Regression Results

Conclusion

- Limitations & Future Improvements
- Business Implications

Conclusion: Limitations & Future Improvements

- Hard to know where the impact exactly takes place: for example, is it when the product is announced or released?
- Finding control variables is not easy but factors such as changes in interest rates, geopolitical events, and general economic conditions could have a significant impact on volatility and affect product announcements of firms.
- Asymmetry between stock returns computed daily and products announced only several times in a year.
- Is rolling volatility a good measure in our case? Window size?
- Trade-off between interesting subjects and data accessibility.

Conclusion: Business Implications

- Investors need to consider a broader range of factors beyond announcements when evaluating stock price movements.
- Companies can focus on product strategy and innovation without excessive concern for short-term market reactions.
- Our findings challenge the logical assumption that major product announcements significantly affect stock behavior, emphasizing the importance of a more comprehensive approach when analyzing market dynamics.