Aktif Filtre Devreleri

Aktif filtrelerin pasif filtrelere göre avantajları bulunmaktadır:

- Aktif devrelerle bant geçiren ve bant durduran filtreler bobin kullanılmadan elde edilebilir. Bobinler büyük, ağır, pahalı olduğu için bobinin kullanılmaması avantaj sağlar.
- Aktif filtreler pasif filtrelerde olmayan yükseltme kontrolü sağlar.
- Kesim frekansı pasif filtreye eklenen yük ile değişir. Bu durum aktif filtrelerde geçerli değildir.

Alçak Geçiren Filtre

$$H(s) = \frac{-Z_f}{Z_i}$$

$$= \frac{-R_2 \| \left(\frac{1}{sC}\right)}{R_1}$$

$$= -K \frac{\omega_c}{s + \omega_c},$$

$$K = \frac{R_2}{R_1},$$

$$\omega_c = \frac{1}{R_2 C}.$$

1/21

Alçak Geçiren Filtre

Soru: $R_1 = 1\Omega$ kazanç 1 ve kesim frekansı 1 rad/sn ise alçak geçiren filtrenin transfer fonksiyonunu bulunuz.

$$R_2 = KR_1$$
 $C = \frac{1}{R_2\omega_c}$ $H(s) = -K\frac{\omega_c}{s + \omega_c}$ -15
= 1 Ω . $= \frac{1}{(1)(1)}$ $= \frac{-1}{s+1}$. -20
= 1 F.

3/21

Alçak Geçiren Filtre

Ödev: 5 μ F kapasitor kullanılarak aşağıda belirtilen transfer fonksiyonunu elde etmek için alçak geçiren birinci mertebe aktif filtrede R_1 ve R_2 değerleri ne olmalıdır?

$$H(s) = \frac{-20,000}{s + 5000}.$$

$$R_1 = 10 \ \Omega, R_2 = 40 \ \Omega.$$

Yüksek Geçiren Filtre

$$H(s) = \frac{-Z_f}{Z_i}$$

$$= \frac{-R_2}{R_1 + \frac{1}{sC}}$$

$$= -K \frac{s}{s + \omega_c}, \qquad K = \frac{R_2}{R_1},$$

$$\omega_c = \frac{1}{R_1 C}.$$

Yüksek Geçiren Filtre

Soru: Bode diyagramı verilen devrede $0.1~\mu F$ kapasitör kullanılmış ise istenilen outputu verecek R_1 ve R_2 değerlerini bulunuz.

Diyagramda ise K=10 olur.

kazanç=20dB
$$H(s) = \frac{-10s}{s + 500}$$
.

$$H(s) = \frac{-10s}{s + 500} = \frac{-(R_2/R_1)s}{s + (1/R_1C)}.$$

$$10 = \frac{R_2}{R_1}$$
, $500 = \frac{1}{R_1 C}$. $R_1 = 20 \text{ k}\Omega$, $R_2 = 200 \text{ k}\Omega$.

$$R_1 = 20 \,\mathrm{k}\Omega, \quad R_2 = 200 \,\mathrm{k}\Omega.$$

Yüksek Geçiren Filtre

Odev: Birinci mertebe aktif yüksek geçiren filtre devresinde kazanç 1 ve kesim frekansı 1 rad/sn ve $R_1=1\Omega$ ise kapasitor ve diğer direncin değerini bulunuz.

$$R_2 = 1 \Omega, C = 1 F.$$

Olçeklendirme

Devre tasarımını birim değerlerle yapmak devrenin analizini kolaylaştırır ama bu durum gerçekci değildir. Bundan dolayı hesaplamalar uygun değerlerle yapıldıktan sonra ölçeklendirme ile gerçekci değerlere çevrilir.

Iki tür ölçeklendirme vardır: Büyüklük ve frekans.

Belirlenen frekansta büyüklükte ölçeklendirme için direnç ve bobin k_m ile kapasitör $1/k_m$ ile çarpılır. Bu durumda ölçeklenmiş değerler: $R' = k_m R$, $L' = k_m L$, and $C' = C/k_m$.

Frekans ölçeklendirmesinde empedansların yeni frekansta, eski frekansta olduğu gibi aynı kalması sağlanır.

$$R' = R$$
, $L' = L/k_f$, and $C' = C/k_f$.

Büyüklük ve frekans ölçeklendirmesi aynı anda yapılırsa:

$$R'=k_mR,$$

$$L' = \frac{k_m}{k_f} L,$$

$$L' = \frac{k_m}{k_f} L, \qquad C' = \frac{1}{k_m k_f} C.$$

Ölçeklendirme

Soru: Verilen devrede merkez frekansı 1 rad/sn, bant genişliği 1 rad/sn ve kalite fakötrü 1'dir. Ölçeklendirme ile aynı kalite faktöründe merkez frekansı 500 Hz olması için yeni R ve L değerlerini hesaplayınız. Kapasitör 2 μ F olacaktır.

$$R' = k_m R = 159.155 \,\Omega,$$

$$L' = \frac{k_m}{k_f} L = 50.66 \text{ mH}.$$

9/21

Ölçeklendirme

Soru: Alçak geçiren OpAmp filtresinde $R_1=R_2=1\Omega$, C=1 F'dır. Bu devreyi kazancı 5, kesim frekansı 1000 Hz, kapasitör değeri 0.01 μ F olacak şekilde yeniden tasarlayınız.

$$k_f = \omega_c'/\omega_c = 2\pi(1000)/1 = 6283.185,$$

$$k_m = \frac{1}{k_f} \frac{C}{C'} = \frac{1}{(6283.185)(10^{-8})} = 15,915.5.$$

$$v_o \qquad R'_1 = R'_2 = k_m R = (15,915.5)(1) = 15,915.5 \Omega.$$

$$R_1 = R_2/K = (15,915.5)/(5) = 3183.1 \Omega.$$

$$R_1 = 3183.1 \ \Omega$$
, $R_2 = 15,915.5 \ \Omega$, $C = 0.01 \ \mu F$.

$$H(s) = \frac{-31,415.93}{s + 6283.185}.$$

Ölçeklendirme

Ödev: Yüksek geçiren prototip OpAmp filtresinde devre elemanları $R_1=R_2=1\Omega$, C=1 F'dır. Bu devrede kapasitörü $0.5~\mu {\rm F}$ kesim frekansını $10~{\rm kHz}$ yapmak için büyüklük ve frekans ölçekleme faktörlerini hesaplayınız.

$$k_f = 62,831.85, k_m = 31.831.$$

11/21

Bant Geçiren Filtre

Kesim frekansı ω_{c1} olan bir yüksek geçiren filtre ile kesim frekansı ω_{c2} olan alçak geçiren filtre ard arda bağlanırsa bant geçiren filtre elde edilir.

Bant Geçiren Filtre

$$H(s) = \frac{V_o}{V_i} = \left(\frac{-\omega_{c2}}{s + \omega_{c2}}\right) \left(\frac{-s}{s + \omega_{c1}}\right) \left(\frac{-R_f}{R_i}\right) = \frac{-K\omega_{c2}s}{(s + \omega_{c1})(s + \omega_{c2})}$$
$$= \frac{-K\omega_{c2}s}{s^2 + (\omega_{c1} + \omega_{c2})s + \omega_{c1}\omega_{c2}}.$$

13/21

Bant Geçiren Filtre

$$H(s) = \frac{V_o}{V_i} = \frac{-K\omega_{c2}s}{s^2 + (\omega_{c1} + \omega_{c2})s + \omega_{c1}\omega_{c2}}.$$

$$\omega_{c2} \gg \omega_{c1}$$
. $(\omega_{c1} + \omega_{c2}) \approx \omega_{c2}$, $H(s) = \frac{-K\omega_{c2}s}{s^2 + \omega_{c2}s + \omega_{c1}\omega_{c2}}$.

$$\omega_{c1} = \frac{1}{R_H C_H}, \qquad \qquad \omega_{c2} = \frac{1}{R_L C_L}.$$

$$|H(j\omega_o)| = \left| \frac{-K\omega_{c2}(j\omega_o)}{(j\omega_o)^2 + \omega_{c2}(j\omega_o) + \omega_{c1}\omega_{c2}} \right| \qquad |H(j\omega_o)| = \frac{R_f}{R_i}.$$

$$= \frac{K\omega_{c2}}{\omega_{c2}}$$

$$= K.$$

Bant Geçiren Filtre

Soru: $0.2 \mu F$ kapasitor kullanarak kazancı 2 olan ve 100 Hz ile 10kHz arası bant genişliği olan bir bant geçiren filtre tasarlayın.

Bant Durduran Filtre

Bant durduran filtre kazancı 1 olan ω_{c1} kesim frekansına sahip alçak geçiren filtre ile kazancı 1 olan kesim frekansı ω_{c2} olan yüksek geçiren filtre çıkışlarını toplayan devreden elde edilebilir.

Bant Durduran Filtre

Bant Durduran Filtre

$$H(s) = \left(-\frac{R_f}{R_i}\right) \left[\frac{-\omega_{c1}}{s + \omega_{c1}} + \frac{-s}{s + \omega_{c2}}\right]$$

$$= \frac{R_f}{R_i} \left(\frac{\omega_{c1}(s + \omega_{c2}) + s(s + \omega_{c1})}{(s + \omega_{c1})(s + \omega_{c2})}\right)$$

$$= \frac{R_f}{R_i} \left(\frac{s^2 + 2\omega_{c1}s + \omega_{c1}\omega_{c2}}{(s + \omega_{c1})(s + \omega_{c2})}\right).$$

$$K = \frac{R_f}{R_i}.$$

$$\omega_{c1} = \frac{1}{R_L C_L},$$

$$\omega_{c2} = \frac{1}{R_H C_H}.$$

 ${\sf s} o \infty$ ve ${\sf s} o 0$ kazanç R_f/R_i

$$\omega_{c2} \gg \omega_{c1} \qquad |H(j\omega_o)| \approx \frac{R_f}{R_i} \frac{2\omega_{c1}}{\omega_{c2}}.$$

17/21

Bant Durduran Filtre

Bode diyagramında maksimum kazanç 9.5 dB ise 0.5 μ F kapasitör kullanarak paralel bant durduran filtreyi tasarlayınız.

Bant Durduran Filtre

Alçak geçiren filtre:

Frekansı 1'den 100 rad/sn çıktığı için $k_f=100$ olur. Kapasitör $0.5\mu {\rm F}$ olduğu için $k_m=20000$ olur.

$$R'=R imes k_m=1$$
k Ω veya

$$\omega_{c1} = \frac{1}{R_L C_L} \qquad C_L = 0.5 \,\mu\text{F.} \qquad R_L = 20 \,\text{k}\Omega,$$

Yüksek geçiren filtre de aynı mantıkla tasarlanır:

$$k_f = 2000$$
, $k_m = 1000$

$$R_H = 1 \text{ k}\Omega$$
, $C_H = 0.5 \,\mu\text{F}$.

$$9.5dB = 20log_{10}K$$
 ise K=3 olur.

$$R_i=1k$$
 seçelim. $R_f=3\mathrm{k}\Omega$ olur.

20/2

Bant Durduran Filtre

