Derivative Free Optimization

Lecture 2: Exhaustive & Grid Search

Warren Hare

DFO framework

DFO Framework

We seek to solve

$$(arg) min\{f(x) : x \in \Omega\}$$

where $f: \mathbb{R}^n \mapsto \mathbb{R}$

The DFO/BBO framework assumes, given a point $x \in \mathbb{R}^n$

- we can check if $x \in \Omega$ or $x \notin \Omega$
- we can acquire a function value f(x)
- but, we cannot 'look' at f

Exhaustive Search

Countable Dense subsets

Definition: A set $S \subseteq \mathbb{R}^n$ is **countable** if it can be ordered: i.e., $S = \{x^0, x^1, \ldots\}$.

Definition: A set $S \subseteq \mathbb{R}^n$ is a **dense subset** of Ω if

- $S \subseteq \Omega$, and
- given any $x \in \Omega$ and $\delta > 0$, there exists a point $\tilde{x} \in S$ such that $\|x - \tilde{x}\| < \delta$.

Countable Dense subsets

Example: Show that the set

$$S = \left\{ x : x = \frac{a}{b}, a \in \mathcal{Z}, b \in \mathcal{Z}, 0 < a < b \right\}$$

is countable and dense in $[0,1]\subseteq\mathbb{R}^1$

Example: Create a countable dense subset of $[0,1]^2 \subseteq \mathbb{R}^2$

Algorithm: Exhaustive Search (ES)

Given $f: \mathbb{R}^n \mapsto \mathbb{R}$, and $\Omega \subseteq \mathbb{R}^n$

0. Initialization

$$\begin{array}{ll} S = \{x^0, x^1, x^2, \ldots\} & \text{a countable dense subset of } \Omega \\ k \leftarrow 0 & \text{iteration counter} \\ x_{\text{best}} = x^0 \in S & \text{best point found so far} \\ f_{\text{best}} = f(x_{\text{best}}) & \text{best objective function value found so far} \\ \end{array}$$

1. Update

```
evaluate f(x^{k+1})

if f(x^{k+1}) < f_{\text{best}}, then

update x_{\text{best}} \leftarrow x^{k+1}, f_{\text{best}} \leftarrow f(x_{\text{best}})

increment k \leftarrow k+1 and go to 1
```

Convergence of ES

Theorem: Suppose $f \in \mathcal{C}^0$, $\Omega \subseteq \mathbb{R}^n$ and

$$X^* = \operatorname{argmin}_x \{ f(x) : x \in \Omega \} \neq \emptyset.$$

Denote the value f_{best} at iteration k of ES by f_{best}^k and the point x_{best} at iteration k by x_{best}^k . Then

$$\lim_{k\to\infty} f_{\mathtt{best}}^k = f^* := \min_{x} \{f(x) \ : \ x\in\Omega\}$$

and moreover, if Ω is *compact*, then

$$\liminf_{k\to\infty} \operatorname{dist}(x_{\mathtt{best}}^k, X^*) = 0.$$

Exhaustive Search

Pros:

It works

Cons:

- Need to construct S
- Requires infinite time
- No way to know when you can stop

Conclusion

- Debatable if it is a DFO method
- Not a good approach for BBO

Grid Search

Grid search

Example: Let $\Omega = [0, 1]^2$

Suppose S is an $p \times p$ grid of equally spaced points in Ω

- How many points are in S?
- **2** What is the farthest any point in Ω is from S?

Algorithm: Grid Search (GS)

Given $f: \mathbb{R}^n \mapsto \mathbb{R}$, and $[\ell, u] \subset \mathbb{R}^n$

- 0. Initialization
 - $p_i \in \mathbb{N}$ with $p_i \geq 2$ number of grid points for each variable
- 1. Sample f at all grid points

$$\begin{array}{l} \text{define } \delta_i = (u_i - \ell_i)/(p_i - 1) \text{ for each } i \in \{1, 2, \ldots, n\} \\ \text{create } G = \left\{ \begin{array}{ll} x \in [\ell, u] & : & x_i = \ell_i + z \delta_i, \\ & i = 1, 2, \ldots, n, z = 0, 1, \ldots, p - 1 \end{array} \right\} \\ \text{choose } x_{\mathsf{best}} \in \operatorname{argmin} \{ f(t) : t \in G \} \end{array}$$

Convergence of GS

Suppose $f \in \mathcal{C}^{0+}$ with constant KSuppose GS is used to minimize f over $x \in [\ell, u] \subseteq \mathbb{R}^n$ The optimal value $f^* = \min_x \{f(x) : x \in [\ell, u]\}$ satisfies

$$f_{\mathsf{best}} - K\sqrt{n}\frac{\delta}{2} \le f^* \le f_{\mathsf{best}}$$

where $f_{\text{best}} = f(x_{\text{best}})$ and $\delta = \max \delta_i$

GS example

Example: Let $\Omega = [0,5]^4$. Suppose $f \in \mathcal{C}^{0+}$ with constant K = 0.25.

- What value of p is required to ensure $f_{\text{best}} f^* \le 10^{-3}$?
- How many function evaluations are required to ensure $f_{\text{hest}} f^* < 10^{-3}$?

GS example

Example: Suppose $\Omega = [-1, 1]^n$. Suppose $f \in \mathcal{C}^{0+}$ with constant K = 3. As a function of n,

- **1** What value of *p* is required to ensure $f_{\text{best}} f^* \leq 10^{-3}$?
- Mow many function evaluations are required to ensure $f_{\text{best}} f^* \le 10^{-3}$?
- **3** If you can do 1000 function evaluation per second, what is the largest value of n that you can solve before this course is over ($\approx 8 \times 10^6$ seconds)?

Grid Search

Pros:

- Finite time
- Quality of result is known

Cons:

- The value of K is seldom known
- In \mathbb{R}^n the number of points evaluated grows at p^n
- Most function evaluations are a waste of time

Conclusion

- A DFO method
- Generally not a good idea for BBO

DFO

DFO Framework

The basic approach

- \bullet Evaluate f at some points
- 2 Use the information we gathered to decide where to evaluate next

Example: Suppose $f: \mathbb{R}^2 \mapsto \mathbb{R}$ and $\Omega = [0, 10]^2$ Suppose

$$f(0,0) = 4$$

 $f(0,10) = 4$
 $f(10,0) = 5$
 $f(10,10) = 7$
 $f(5,5) = 4$

Where should we evaluate next?

Assignment 2

Assignment 2

MATH 462

- Textbook # 3.2(abc), 3.4
- Textbook # 3.5 (this requires reading Example 3.1)

COSC 419K

- Textbook # 3.2(a), 3.4
- ullet Write a MATLAB script that numerical solves Textbook # 3.2(bc)
- Textbook # 3.5 (this requires reading Example 3.1)

MATH 562

- All MATH 462 and COSC 419K questions
- ullet Write a MATLAB script that numerical completes Textbook # 3.6
- Textbook # 3.8

