

Anahtarlar

Bilinen bir mimar olan Timothy yeni bir odadan kaçış oyunu tasarlıyor. Bu oyunda 0 ile n-1 arasında numaralandırılmış n adet oda bulunmakta. Başlangıçta her bir odada tam olarak bir tane anahtar mevcut. Her bir anahtarın 0 ile n-1 (0 ve n-1 dahil) arasında tam sayı olarak verilmiş özel bir türü olduğu biliniyor. r[i] değeri i ($0 \le i \le n-1$) odasındaki anahtarın türünü belirtiyor. Birden fazla odada aynı türe sahip anahtar olabiliyor, yani, r[i] değerlerinin tamamen farklı olması şart değil.

Ayrıca bu oyunda 0 ile m-1 arasında numaralandırılmış m adet **çift yönlü** birleştirici bulunuyor. j ($0 \le j \le m-1$) birleştiricisi iki farklı odayı, u[j] ve v[j], birbirine bağlamaktadır. Oda ikilileri birden fazla birleştirici ile birbirine bağlanmış olabilir.

Oyun odalardan anahtarları toplayıp, birleştiriciler vasıtasıyla odalar arasında geçiş yapabilen tek bir oyuncu tarafından oynanmaktadır. Oyuncu j numaralı birleştiriciyi kullanırsa, u[j] odasından v[j] odasına veya v[j] odasından v[j] odasına **geçiş yapabilecektir**. Fakat oyuncu sadece v[j] türündeki anahtara sahip olduğu taktirde v[j] numaralı birleştiriciyi kullanabilir.

Oyunun herhangi bir x odasında olduğunu varsaydığımızda, oyuncu şu iki hamleyi yapabilir:

- x odasındaki anahtarı alabilir, bu anahtarın türü r[x] olacaktır (eğer bu anahtara zaten sahip değilse),
- j numaralı birleştiriciden geçebilir, bu durumda u[j]=x veya v[j]=x olmalıdır. Tabi ki oyuncunun daha önce c[j] türündeki anahtara sahip olması gereklidir. Dikkate alınması gereken nokta sahip olunan anahtarın kullanımının **hiçbir zaman** son bulmamasıdır.

Oyuncu oyuna s odasında hiçbir anahtarı olmadan **başlamaktadır**. Eğer oyuncu s odasından oyuna başladığında, verilen tanımlı hamleleri yaparak t odasına varabiliyorsa, t odası s odasından **ulaşılabilirdir**.

Her bir i ($0 \le i \le n-1$) odası için i odasından ulaşılabilir tüm odalar p[i] olarak tanımlanmıştır. Timothy, $0 \le i \le n-1$ arasında, en küçük p[i] değerine sahip olan i değerlerini bulmak istiyor.

Implementasayon Detayıları

Aşağıda verilen fonksiyonu kodlamanız gerekmektedir:

```
int[] find_reachable(int[] r, int[] u, int[] v, int[] c)
```

• r: n uzunluğunda dizi. Her bir i ($0 \le i \le n-1$) değeri için, i odasındaki anahtarın türü olan r[i] değeridir.

- u,v: m uzunluğunda iki adet dizi. Her bir j ($0 \le j \le m-1$) değeri için, j numaralı birleştirici u[j] ve v[j] odalarını birbirine bağlar.
- c: m uzunluğunda bir dizi. Her bir j ($0 \le j \le m-1$) değeri için, j numaralı birleştiriciyi kullanabilmek için gerekli olan anahtar türü c[j] değeridir.
- Bu fonksiyon n uzunluğunda a dizisini döndürmelidir. Her bir $0 \leq i \leq n-1$ değeri için, eğer tüm j $0 \leq j \leq n-1$ değerleri için, $p[i] \leq p[j]$ ise, a[i] değeri 1 olmalıdır. Aksi taktirde a[i] değeri 0 olacaktır.

Örnekler

Örnek 1

Aşağıdaki fonksiyonun çağırıldığını varsayalım:

```
find_reachable([0, 1, 1, 2],
       [0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])
```

Eğer oyuncu oyuna 0 numaralı odadan başlıyorsa, sırasıyla aşağıdaki hamleleri yapabilir:

Bulunduğu oda	Hamle
0	0 türündeki anahtarı al
0	Birleştirici 0 yoluyla 1 numaralı odaya geçiş yap
1	1 türündeki anahtarı al
1	Birleştirici 2 yoluyla 2 numaralı odaya geçiş yap
2	Birleştirici 2 yoluyla 1 numaralı odaya geçiş yap
1	Birleştirici 3 yoluyla 3 numaralı odaya geçiş yap

Dolayısıyla 3 numaralı oda 0 numaralı odadan ulaşılabilirdir. Benzer bir şekilde diğer tüm odalar da 0 numaralı odadan ulaşılabilirdir, bu bize p[0]=4 değerini vermektedir. Aşağıdaki tablo tüm odalar için ulaşılabilir odaları vermektedir.

Başlangıç odası i	Ulaşılabilir odalar	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1,2,3]	3

Tüm odalar içinde en küçük p[i] değeri 2 olacaktır, bu değeri i=1 veya i=2 numaralı odalardan sağlayabiliriz. Dolayısıyla çağrılan fonksiyon [0,1,1,0] sonucunu döndürmelidir.

Örnek 2

Aşağıdaki tablo tüm odalar için ulaşılabilir odaları vermektedir.

Başlangıç odası i	Ulaşılabilir odalar	p[i]
0	[0, 1, 2, 3, 4, 5, 6]	7
1	[1,2]	2
2	[1,2]	2
3	[3,4,5,6]	4
4	[4,6]	2
5	[3,4,5,6]	4
6	[4,6]	2

Tüm odalar içinde en küçük p[i] değeri 2 olacaktır, bu değeri $i \in \{1, 2, 4, 6\}$ odalardan sağlayabiliriz. Dolayısıyla çağrılan fonksiyon [0, 1, 1, 0, 1, 0, 1] sonucunu döndürmelidir.

Örnek 3

```
find_reachable([0, 0, 0], [0], [1], [0])
```

Aşağıdaki tablo tüm odalar için ulaşılabilir odaları vermektedir.

Başlangıç odası i	Ulaşılabilir odalar	p[i]
0	[0, 1]	2
1	[0, 1]	2
2	[2]	1

Tüm odalar içinde en küçük $\,p[i]\,$ değeri $\,1\,$ olacaktır, bu değeri $\,i=2\,$ odasından sağlayabiliriz. Dolayısıyla çağrılan fonksiyon $\,[0,0,1]\,$ sonucunu döndürmelidir.

Kısıtlar

- $2 \le n \le 300\,000$
- $1 \le m \le 300\,000$

- bütün $0 \leq i \leq n-1$ için $0 \leq r[i] \leq n-1$
- bütün $0 \leq j \leq m-1$ için $0 \leq u[j], v[j] \leq n-1$ ve u[j]
 eq v[j]
- bütün $0 \leq j \leq m-1$ için $0 \leq c[j] \leq n-1$

Altgörevler

- 1. (9 puan) bütün $0 \leq j \leq m-1$ ve $n,m \leq 200$ için c[j]=0
- 2. (11 puan) $n, m \leq 200$
- 3. (17 puan) $n, m \leq 2000$
- 4. (30 puan) bütün $0 \leq j \leq m-1$ için $c[j] \leq 29$ ve bütün $0 \leq i \leq n-1$ için $r[i] \leq 29$
- 5. (33 puan) Ek kısıt bulunmamaktadır.

Örnek Grader

Örnek grader girdiyi aşağıdaki formatta okumaktadır:

- satır 1: *n m*
- satır 2: r[0] r[1] ... r[n-1]
- satır 3+j ($0 \le j \le m-1$): u[j] v[j] c[j]

Örnek grader find_reachable fonksiyonunun döndürdüğü değeri aşağıdaki formatta yazmaktadır:

• satır 1: a[0] a[1] \dots a[n-1]