Problem

Consider the function $pad \colon \Sigma^* \times \mathcal{N} {\longrightarrow} \Sigma^* \#^*$ define the language pad(A, f) as

 $pad(A, f) = \{pad(s, f(m)) | \text{ where } s \in A \text{ and } m \text{ is the length of } s\}.$

Prove that if $A \in TIME(n^6)$, then $pad(A, n^2) \in TIME(n^3)$.

Step-by-step solution

Step 1 of 1

For any function $f: N \to N$ and language, pad(A, f) is defined as:

 $pad(A, f) = \{pad(s, f(m)) | \text{ where } s \in A \text{ and m is the length of } s\}$

If $A \in TIME(n^6)$ is given then, it is supposed that M be a machine that decide A in time n^6 .

- Now a machine M' can be considered for $pad(A, n^2)$ that on input x, check if x is of the format $pad(w, |w|^2)$ for some string $w \in \sum^*$. Input x will be rejected if it will not matched. Otherwise, simulate M on w.
- The running time of machine M' is $O(|x|^3) + O(|w|^6) = O(|x|^3)$.

Hence, it can be said that $pad(A, n^2) \in TIME(n^3)$.

Comment