Expertní systém pro rozpoznávání dominantní projevované emoce z hlasu

Jakub Šmíd Kybernetika a robotika 2022

Cíle práce

- Analýza dostupných datasetů
- Návrh metody vč. architektury, augmentace a extrakce příznaků
- Návrh parametrů systému a srovnání výsledků s ostatními řešeními
- Testování na větě, která není součástí trénovací a validační množiny
- Testování systému na simulaci UHF/VHF vysílaček
- Implementace demonstrační aplikace

Používané metody a jejich výsledky

Dostupné datasety

Rozdělení časů nahrávek

Augmentace

- Přidání Gaussovského šumu
- Posunutí nahrávky v čase (roll)
- Posunutí nahrávky ve frekvenční oblasti
- Změna rychlosti nahrávky

Extrahované příznaky

- Zero Crossing Rate (ZCR)
- Root Mean Square (RMS)
- Spektrogram a Mel spektrogram
- Chromagram
- Mel frekvenční kepstrální koeficienty (MFCC)
- Průměr a směrodatná odchylka základní frekvence

Příklad příznaku – zákl. frekvence

-80 dB -70 dB -60 dB -50 dB -40 dB -30 dB -20 dB -10 dB +0 dB

Příklad příznaku – zákl. frekvence

Použitý software

Výběr příznaků – 1D konv. síť

- Příznaky: ZCR, RMS, Mel spektrogram,
 Chromagram (vektor o velikosti 142)
- Počet parametrů sítě: 226 246

Spektrogram – 2D konv. síť

- Příznaky: amplitudový spektrogram (vektor o velikosti 128x156)
- Počet parametrů sítě: 1 277 702

Výběr příznaků – 1D konv. síť

Spektrogram – 2D konv. síť

Výsledky

Metoda	Dataset	Přesnost sítě [%]
Výběr příznaků	validace	88.23
Výběr příznaků	testování bez šumu	48.83
Výběr příznaků	testování se šumem	49.41
Spektrogram	validace	76.50
Spektrogram	testování bez šumu	52.54
Spektrogram	testování se šumem	51.17

Výsledky – výběr příznaků

- 80

- 60

- 40

- 20

Validace

Testování (bez šumu)

- 70

- 60

- 50

- 40

- 30

- 20

- 10

Výsledky – spektrogram

Validace

Testování (bez šumu)

60

- 50

- 40

- 30

- 20

- 10

Závěr

- Provedena analýza 3 datasetů
- Provedena analýza používaných klasifikátorů
- Provedena analýza příznaků a augmentace zvuku
- Navrženy a otestovány 2 architektury konvoluční NN
- Přesnost validace sítě až 88,2 %
- Přesnost otestované sítě až 52,5 %
- Implementována demonstrační aplikace

Děkuji za pozornost

Přenositelnost na jiné jazyky

- Klasifikace do tříd základních emocí
- Základní emoce jsou shodné napříč kulturami
- Paul Ekman a Wallace V. Friesen. Constants across. cultures in the face and emotion. Journal of Personality and Social Psychology. 1971

Happy

Disgusted

Surprised

Přenositelnost na jiné jazyky

- Kanwal S, Asghar S, Hussain A, Rafique A (2022) Identifying the evidence of speech emotional dialects using artificial intelligence: A cross-cultural study.
- Recall = TP / (TP+FN)

Přenositelnost na jiné jazyky

- Kanwal S, Asghar S, Hussain A, Rafique A (2022) Identifying the evidence of speech emotional dialects using artificial intelligence: A cross-cultural study.
- Recall = TP / (TP+FN)

20/22

Zvolení výsledné architektury

- Odladění parametrů při extrakci příznaků
- Inspirace sítí AlexNet
- Validace klasifikátoru s různými kombinacemi vrstev a různými parametry vrstev
- Dosažení největší přesnosti při validaci
- Testování na finální uvedené architektuře

Nahrávky delší než 1,8 s

