CS4102 Algorithms

Nate Brunelle

Fall 2017

Warm up (from practice exam)

The maximum-sum subarray of a given array of integers A is the interval [a, b] such that the sum of all values in the array between a and b inclusive is maximal.

Given an array of n integers (may include both positive and negative values), give a $O(n \log n)$ algorithm for finding the maximum-sum subarray.

Cool Down

Give a O(n) algorithm for finding the maximum-sum subarray.

Divide and Conquer $\Theta(n \log n)$

Divide and Conquer $\Theta(n \log n)$

Divide and Conquer $\Theta(n \log n)$

Return the Max of

Left, Right, Center

Today's Keywords

- Dynamic Programming
- Gerrymandering
- World Domination

CLRS Readings

• Chapter 15

Homeworks

- Hw5 released Thursday Oct. 19
 - Dynamic Programming
 - Programming assignment (use Python!)

Midterm

- Thursday October 19 in class
 - Covers all content through sorting
 - Take-home programming problem included
 - Submit by 11pm Tuesday Oct. 24

Dynamic Programming

- Requires Optimal Substructure
 - Solution to larger problem contains the solutions to smaller ones
- Idea:
 - 1. Identify recursive structure of the problem
 - 2. Select a good order for solving subproblems
 - Usually smallest problem first

DP Algorithms so far

- $2 \times n$ domino tiling (fibonacci)
- Log cutting
- Matrix Chaining
- Longest Common Subsequence
- Seam Carving

Domino Tiling

```
Tile(n):
                                            M
     Initialize Memory M
                                               0
     M[0] = 0
     M[1] = 0
     for i = 0 to n:
                                               3
           M[i] = M[i-1] + M[i-2]
     return M[n]
```

Log Cutting

Solve Smallest subproblem first

Matrix Chaining

$$Best(i,j) = \min_{k=1}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j\right)$$

$$Best(i,i) = 0$$

$$\int_{k=1}^{j-1} \left(Best(i,k) + Best(k+1,j) + r_i r_{k+1} c_j\right)$$

$$\int_{k=1}^{j-1} \left(Best(i,k) + Best(i,k) + Best(i$$

Logest Common Subsequence

$$LCS(i,j) = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ LCS(i-1,j-1) + 1 & \text{if } X[i] = Y[j] \\ \max(LCS(i,j-1), LCS(i-1,j)) & \text{otherwise} \end{cases}$$

$$X = \begin{cases} A & T & C & T & G & A & T \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{cases}$$

_		0	1	2	3	4	5	6	7
'	0	0	0	0	0	0	0	0	0
T	1	0	0	1	1	1	1	1	1
G	2	0	0	1	1	1	2	2	2
С	3	0	0	1	2	2	2	2	2
\boldsymbol{A}	4	0	1	1	2	2	2	3	3
T	5	0	1	2	2	3	3	3	4
\boldsymbol{A}	6	0	1	2	2	3	3	4	4

To fill in cell (i, j) we need cells (i - 1, j - 1), (i - 1, j), (i, j - 1)Fill from Top->Bottom, Left->Right (with any preference)

Seam Carving

Start from bottom of image (row 1), solve up to top

Initialize
$$S(1,k) = e(p_{1,k})$$
 for each pixel $p_{1,k}$

For
$$i > 2$$
 find $S(i, k) = - \begin{cases} S(n-1, k-1) + e(p_{n,k}) \\ S(n-1, k) + e(p_{n,k}) \\ S(n-1, k+1) + e(p_{n,k}) \end{cases}$

Pick smallest from top row, backtrack, removing those pixels

Energy of the seam initialized to the energy of that pixel

15

Supreme Court Associate Justice Anthony Kennedy gave no sign that he has abandoned his view that extreme partisan gerrymandering might violate the Constitution. I Eric Thayer/Getty Images

Supreme Court eyes partisan gerrymandering

Anthony Kennedy is seen as the swing vote that could blunt GOP's map-drawing successes.

Gerrymandering

- Manipulating electoral district boundaries to favor one political party over others
- Coined in an 1812 Political cartoon

According to the Supreme Court

- Gerrymandering cannot be used to:
 - Disadvantage racial/ethnic/religious groups
- It can be used to:
 - Disadvantage political parties

Gerrymandering Today

Computers make it really effective

Gerrymandering Today

Computers make it really effective

THE EVOLUTION OF MARYLAND'S THIRD DISTRICT

SOURCE: Shapefiles maintained by Jeffrey B. Lewis, Brandon DeVine, Lincoln Pritcher and Kenneth C. Martis, UCLA. Drawn to scale. GRAPHIC: The Washington Post, Published May 20, 2014

How does it work?

- States are broken into precincts
- All precincts have the same size
- We know voting preferences of each precinct
- Group precincts into districts to maximize the number of districts won by my party

Overall: R:217 D:183					
R:65	R:45				
D:35	D:55				
R:60	R:47				
D:40	D:53				

R:112	R:105		
R:65	R:45		
D:35	D:55		
R:60	R:47		
D:40	D:53		

Gerrymandering Problem Statement

Given:

- A list of precincts: $p_1, p_2, ..., p_n$
- Each containing m voters

Output:

- Districts $D_1, D_2 \subset \{p_1, p_2, \dots, p_n\}$
- Where $|D_1| = |D_2|$
- $R(D_1), R(D_2) > \frac{mn}{4}$
 - $R(D_i)$ gives number of "Regular Party" voters in D_1
 - $R(D_i) > \frac{\text{mn}}{4}$ means D_i is majority "Regular Party"
- "failure" if no such solution is possible

Consider the last precinct

 $egin{array}{c} D_1 \ k \ ext{precincts} \ x \ ext{voters for R} \end{array}$

If we assign p_n to D_1

 D_1 k+1 precincts $x+R(p_n)$ voters for R

After assigning the first n-1 precincts

 p_n

Valid solution if:

$$k + 1 = \frac{n}{2},$$

$$x + R(p_n), y > \frac{mn}{4}$$

 D_2 n-k-1 precincts y voters for R

If we assign p_n to D_2

$$D_2$$

 $n-k$ precincts
 $y+R(p_n)$ voters for R

Valid solution if:

$$n - k = \frac{n}{2},$$

$$x, y + R(p_n) > \frac{mn}{4}$$

Define Recursive Structure

```
S(j,k,x,y)= True if among the first j precincts k are assigned to D_1 x vote for R in D_1 y vote for R in D_2
```

4D Dynamic Programming!!!

Two ways to satisfy S(j, k, x, y):

 D_1 k-1 precincts $x-R(p_j)$ voters for R

 $\frac{D_2}{j-k}$ precincts y voters for R

 b_1 k precincts xvoters for R

 $\begin{array}{c} D_2 \\ j-1-k \end{array}$ precincts $y-R(p_j)$ voters for R

S(j,k,x,y): among the first *j* precincts p_j k are assigned to D_1 x vote for R in D_1 Then assign y vote for R in D_2 p_i to D_1 k precincts OR x voters for R -k precincts voters for R p_{j} Then assign p_i to D_2

$$S(j, k, x, y) = S(j - 1, k - 1, x - R(p_j), y) \vee S(j - 1, k, x, y - R(p_j))$$

Final Algorithm

$$S(j,k,x,y) = S(j-1,k-1,x-R(p_j),y) \vee S\left(j-1,k,x,y-R(p_j)\right)$$
Initialize $S(0,0,0,0) = \text{True}$
for $j=1,\ldots,n$:
for $k=1,\ldots,\min(j,\frac{n}{2})$:
for $x=0,\ldots,jm$:
for $y=0,\ldots,jm$:
$$S(j,k,x,y) = S(j-1,k-1,x-R(p_j),y)$$

$$\vee S\left(j-1,k,x,y-R(p_j)\right)$$
Search for True entry at $S(n,\frac{n}{2},>\frac{mn}{4},>\frac{mn}{4})$

Run Time

$$S(j,k,x,y) = S(j-1,k-1,x-R(p_j),y) \vee S(j-1,k,x,y-R(p_j))$$

Initialize $S(0,0,0,0) = \text{True}$
 $n \text{ for } j = 1, ..., n$:

 $\frac{n}{2} \text{ for } k = 1, ..., \min(j,\frac{n}{2})$:

 $nm \text{ for } x = 0, ..., jm$:

 $nm \text{ for } y = 0, ..., jm$:

 $S(j,k,x,y) = S(j-1,k-1,x-R(p_j),y)$
 $VS(j-1,k,x,y-R(p_j))$

Search for True entry at $S(n,\frac{n}{2},>\frac{mn}{4},>\frac{mn}{4})$

$\Theta(n^4m^2)$

- Runtime depends on the *value* of m, not *size* of m
- Run time is exponential in size of input
- Note: Gerrymandering is NP-Complete

Begin here

Remember two values:

Best So Far

Best ending here

5

Remember two values:

Best So Far 13

Remember two values:

Best So Far 13

Remember two values:

Best So Far 13

Remember two values:

Best So Far 19

Remember two values:

Best So Far 19