Natural Computing

LMU Munich summer term 2025

Thomas Gabor

Cellular

Automata

Wolfram. A New Kind of Science. Online, 2002.

www.wolframscience.com/nks/

Shiffman. The Nature of Code. Online, 2012.

natureofcode.com/book/

What was an automaton again?

Definition 1 (cellular automaton). Let G = (V, E) be a graph with vertices V and edges $E \subseteq V \times V$. Let $neighborhood : V \to V^{d+1}$ for some neighborhood degree $d \in \mathbb{N}$ be a function that returns an ordered vector of neighbors of a given node v, always including v itself. A state $\underline{x} \in \mathcal{X}$ is a mapping of vertices to the values $\{0,1\}$, i.e., the state space \mathcal{X} is given via $\underline{\mathcal{X}} = (V \to \{0,1\})$. Let x_t be a state that exists at time step $t \in \mathbb{N}$. The evolution of a state x_t to its subsequent state x_{t+1} is given deterministically via a function $f: \{0,1\}^{d+1} \to \{0,1\}$ so that

$$x_{t+1}(v) = f(x_t(u_1), \dots, x_t(u_{d+1}))$$

where $\vec{u} = \langle u_1, \dots, u_{d+1} \rangle = neighborhood(v)$.

A tuple (G, f, x_0) is called a cellular automaton with initial state $x_0 \in \mathcal{X}$.

Definition 2 (1D cellular automaton). A cellular automaton (G, f, x_0) is called a 1D cellular automaton iff all vertices have exactly one incoming edge ("left neighbor") and one outgoing edge ("right neighbor") and $neighbors(v) = \langle u, v, w \rangle$ where $(u, v) \in E$ and $(v, w) \in E$ and thus d = 2. Subsequently, we usually write

$$x_{t+1}(v) = f(x_t(u), x_t(v), x_t(w))$$

for the evolution where u is the left neighbor of v and w is the right neighbor of v.

Why?

Experiment Time!

Experiment 1
What is the average number in the room?

3

128

Experiment 2 What is the most frequent number in the room?

But whispering only!

Experiment 3
What is the highest number in the room?

But whispering only!

Experiment Results

	your result	my result
Experiment 1: average	13	128
Experiment 2: most frequent – whisper only	78	
Experiment 3: highest – whisper only	35	32

local information
is a constraint on
what are can do
efficiently for meaningful computation?

When I can use
only lack information,
I unight be more...
- physical - robust