| المدة  | الوحدة التعلميـــة 01     |                   | المستــوى     | المتوسطــة | الأستساذة |
|--------|---------------------------|-------------------|---------------|------------|-----------|
| 3 ساعة | الشاردة و المحلول الشاردي | المادة و تحولاتها | الرابعة متوسط |            |           |

| المائية، موظفا | ✓ يحل مشكلات من الحياة اليومية متعلقة ،متعلقة بتحولات المادة في المحاليل                   | الكفاءة الختامية  |
|----------------|--------------------------------------------------------------------------------------------|-------------------|
|                | نموذجي الذرة و الشاردة و مبدأ انحفاظ كل من الكتلة و الشحنة.                                |                   |
|                | ✓ يحضر محلولا مائيا لاستخدامات تجريبية و يحقق تجارب لتحولات                                | مركبات الكفاءة    |
|                | كيميائية مستخدما التجهيز المناسب و محترما قواعد الأمن .                                    |                   |
|                | <ul> <li>✓ يستفيد من خصائص التحولات الكيميائية في المحاليل المائية الشاردية في</li> </ul>  |                   |
| و المحلول      | التطبيقات العملية من الحياة اليومية.                                                       |                   |
|                | <ul> <li>✓ يوظف مفهوم الشاردة للتعبير عن التحولات الكيميائية في وسط شاردي.</li> </ul>      |                   |
|                | ✓ يوظف مفهوم الشاردة                                                                       | مؤشرات التقويم    |
|                | 💉 يوظف مبدأ التعادل الكهربائي في المحلول                                                   | ·                 |
|                | <ul> <li>✓ توظيف النموذج المجهري لتفسير ما يحدث في المحلول الشاردي</li> </ul>              | العقبات المطلوب   |
|                | ✓ فعل الكاشف على المحلول الشاردي                                                           | تخطيها            |
| هجرة الشوارد   | <ul> <li>✓ مساحیق (جزیئیة و شاردیة) و محلیلها، الکواشف ، أنابیب اختبار، تجهیز ،</li> </ul> | السندات التعليمية |

#### أنشطة الاستساد

## الوضعية الجزئية: ينصح بعدم لمس القاطع أو القاطعة بيد مبللة

- هل السوائل قادرة على نقل الكهرباء؟ قدم تفسيرا لذلك.

1- المحاليل الجزيئية و المحاليل الشارديـة

تذكير: المحاليل المائية هي خلائط متجانسة ، المذيب فيها هو الماء نشاط: نحقق التركيب الموضح في الوثيقة 01

- ◄ توهج المصباح عند استخدام المحلول الملحى
- ◄ عدم تو هج المصباح عند استخدام المحلول السكري
- ◄ عدم تو هج المصباح عند استخدام مسحوقي السكر و الملح إرساء للموارد المعرفية
- ♣المحاليل الجزيئية لا تنقل التيار الكهربائي مثل: المحلول السكري ♦المحاليل الشاردية تنقل التيار الكهربائي مثل: المحلول الملحي
  - ◄ المساحيق الجزيئية أو الشاردية لا تنقل التيار الكهربائي
- 2- حاملات الشحنة الكهربائية في المحاليل المائية الشاردية :الشـــاردة الموجبـة و الشـاردة السالبـة

نشاط: نحقق التركيب الموضح في الوثيقة 02 (هجرة الشوارد) الملاحظة: هجرة اللون الأزرق نحو المسرى السالب و هجرة اللون البنفسجي نحو المسرى الموجب

التفسير: تتجه حاملات الشحنة الكهربائية في جهتين متعاكستين إرساء للموارد المعرفية

- تذكير: الذرة تتكون من نواة شحنتها موجبة . تدور حولها الكترونات شحنتها سالبة و هي متعادلة كهربائيا
- ♦ المحلول المائي الشاردي يتكون من نوعين من حاملات الشحنة الكهر بائية هما:
  - → الشاردة البسيطة الموجبة: هي ذرة فقدت الكترونا أو أكثر.  $Na \longrightarrow Na^++1\acute{e}$ ,  $Cu \longrightarrow Cu^{2+}+2\acute{e}$
  - ◄ الشاردة البسيطة السالبة: هي ذرة اكتسبت الكترونا أو أكثر.
    - $Cl + 1\acute{e} \longrightarrow Cl^{-}$ ,  $O + 2\acute{e} \longrightarrow O^{2-}$ 
      - أمثلة عن الشوارد البسيطة (الجدول)
  - الشاردة المركبة: تتكون من عنصر بن او اكثر. أمثلة: الكبريتات - $SO_4^2$  ، النترات - $NO_3$  الكربونات - $SO_4^2$

#### أنشطة التلميك

- يناقش الوضعية الجزئية و يقدم فرضياته.
- يميز بين المحلول الجزيئي و المحلول الشاردي عن طريق النقل الكهربائي بانجاز التجارب التالية:



الوثيقة 01 التركيب التجريبي علامظ تحرك الشوارد في جهتين متعاكستين



# التعادل الكهريائكي لمحلول مائكي شاردي

المحلول الشاردي متعادل كهربائيا أي مجموع الشحن الموجبة يساوي مجموع الشحن السالبة (النشاطين السابقين)

# 4- الصيغة الإحصائية لنوع كيميائي شاردي صلب و الصيغة

| الصيغة الشاردية                        | الصيغة الإحصائية  | اسم المركب          |
|----------------------------------------|-------------------|---------------------|
| (Fe <sup>2+</sup> , 2Cl <sup>-</sup> ) | FeCl <sub>2</sub> | كلور الحديد الثنائي |
| (H <sup>+</sup> ,Cl <sup>-</sup> )     | HCl               | حمض كلور الماء      |
| $(Cu^{2+},SO_4^{2-})$                  | CuSO <sub>4</sub> | كبريتات النحاس      |

## 5\_ قسراءة و تحليسل ملصقسة قارورة مساء معنسي نشاط الديك ملصقة قارورة ماء معدني.

- ◄ تعرف على الشوارد الموجودة في الماء ثم صنفها في جدول.
- ◄ اقترح بروتوكول تجريبي للتعرف على بعض مكونات الماء.
  - 1- تصنيف الشوارد (المخطط)

#### 2- تحلیل ماء معدنی

الملاحظة

أ- الكشف عن الشوارد: -SO42-,CO2-3, CI على التوالى نستعمل ماصة و نضيف بعض القطرات من كل كاشف (الوثيقة 04)

في الأنبوب (1): تشكل راسب أبيض يسود في وجود الضوء AgCl في الأنبوب (2): تشكل راسب أبيض من كبريتات الباريوم Baso4 في الأنبوب (3):فوران و انطلاق غاز ٢٠٥٠ يعكر رائق الكلس. ب- الكشف عن شوارد معدنية: نصب كمية من محلول هيدروكسيد الصوديوم (NaOH) في محلول شاردي



شاهد + Cu<sup>2+</sup> Zn<sup>2+</sup> Fe<sup>2+</sup> Fe<sup>3+</sup> شاهد

| رقم الانبوب | 1                | 2                | 3                | 4                | 5                |
|-------------|------------------|------------------|------------------|------------------|------------------|
| لون الراسب  | أبيض             | أزرق             | أبيض             | أخضر             | أحمر             |
| الشاردة     | Al <sup>3+</sup> | Cu <sup>2+</sup> | Zn <sup>2+</sup> | Fe <sup>2+</sup> | Fe <sup>3+</sup> |

# نقويم الموارد المعرفي

لدينا ثلاث كؤوس بيشر كما هو موضح في الأشكال التالية:



1- نغلق القاطعة في كل دارة: هل يتوهج المصباح؟ علل. 2- نضيف ماء مقطر في الوعاء 3: هل يتوهج المصباح؟ علل أكتب الصيغة الشاردية و الصيغة الاحصائية للمحلول الناتج.

- ◄ يميز بين الذرة و الشاردة
- يميز بين الشاردة الموجبة و الشاردة السالبة

| الشاردة السالبة |          | الشاردة الموجبة  |                |
|-----------------|----------|------------------|----------------|
| الرمز           | الاسم    | الرمز            | الاسم          |
| Cl <sup>-</sup> | الكلور   | $H^+$            | الهيدروجين     |
| F-              | الفلور   | Na <sup>+</sup>  | الصوديوم       |
| Br-             | البروم   | $Ag^+$           | الفضية         |
| $O^{2-}$        | الاكسجين | Cu <sup>2+</sup> | النحاس الثنائي |
| S <sup>-</sup>  | الكبريت  | $Zn^{2+}$        | الزنك الثنائي  |
| N <sup>3-</sup> | الازوت   | Fe <sup>3+</sup> | الحديد الثلاثي |

# ◄ يقرأ و يحلل ملصقة قارورة ماء معدني



موجبة: +Ca<sup>2+</sup>,Mg<sup>2+</sup>,Na<sup>+</sup>,K سيطة سالية - 1 الشوارد

مركبة SO<sub>4</sub><sup>2-</sup> · HCO<sup>-</sup><sub>3</sub> · NO<sup>-</sup><sub>3</sub>



## يحل التقويسم

الجواب1: •في الدارة 1 يتوهج المصباح لأن المحلول شاردي (يحتوي على حاملات الشحن)

- في الدارة 2 لا يتو هج المصباح لأن المحلول جزيئي (لا يحتوى على حاملات الشحن)
- في الدارة 3 لا يتوهج المصباح لأن المسحوق لا ينقل الكهرباء (به شوارد غير حرة)

الجواب2: يتو هج المصباح لأن المسحوق أصبح محلول شاردي (الشوارد أصبحت حرة)

- ◄ الصيغة الإحصائية ZnCl₂
- (Zn²+,2Cl⁻) الصيغة الشاردية (Zn²+,2Cl⁻)