Teoria: Wartości i wektory własne odwzorowania liniowego i macierzy. $f \in End(V)$ jest diagonalizowalny \iff istnieje baza V złożona z wektorów własnych f. Wyznacznik det(f). f odwracalne \iff $det(f) \neq 0$. Wielomian charakterystyczny $\varphi_A(X)$, $\varphi_f(X)$. Wartości własne f i A jako pierwiastki wielomianu charakterystycznego. Współczynniki wielomanu charakterystycznego $\varphi_f(X)$ jako niezmienniki f. Ślad macierzy Tr(A), ślad endomorfizmu liniowego f: Tr(f) (związek z wielomianem charakterystycznym). Przestrzeń V^λ własna f dla wartości własnej λ (przestrzeń wektorów własnych f dla wartości własnej λ). Podprzestrzeń f-niezmiennicza. V^λ jest f-niezmiennicza. Suma przestrzeni własnych f jako suma prosta. Charakteryzacja diagonalizowalności f przez wymiary przestrzeni wektorów własnych f.

Ćwiczenia.

1. Obliczyć wielomian charakterystyczny i wartości własne oraz wyznaczyć przestrzenie wektorów własnych macierzy:

$$\left(\begin{array}{cc}2&0\\0&3\end{array}\right),\,\left(\begin{array}{cc}2&1\\1&1\end{array}\right),\,\left(\begin{array}{cc}1&2\\0&1\end{array}\right),\,\left(\begin{array}{cc}1&2\\3&4\end{array}\right)$$

2. Zbadać diagonalizowalność macierzy:

$$\left(\begin{array}{ccc} 1 & 4 & -1 \\ 0 & 3 & -5 \\ 0 & 0 & -2 \end{array}\right), \left(\begin{array}{ccc} 1 & 0 & -1 \\ 2 & 0 & 2 \\ 2 & -1 & 4 \end{array}\right)$$

W przypadku, gdy macierz jest diagonalizowalna, zapisać ją w postaci PDP^{-1} , gdzie D jest diagonalna.

- 3. Rozstrzygnąć, które z następujących przekształceń liniowych przestrzeni \mathbb{R}^3 są diagonalizowalne poprzez wskazanie przestrzeni wektorów własnych i ich wymiarów (bez rachunków, korzystając wyłącznie z interpretacji geometrycznej):
 - (a) obrót R wokół osi przechodzącej przez O, o kąt $\alpha \in (0, \pi)$.
 - (b) Odbicie S_{Π} względem płaszczyzny Π przechodzącej przez O.
 - (c) Rzut prostopadły P_{Π} na płaszczyznę z punktu (b).
 - (c) Odbicie S_L względem prostej L przechodzącej przez O.
 - (e) Rzut prostopadły P_L na prostą L z punktu (d).
 - (f) Dylatacja (jednokładność) D_t o środku O i skali $t \in \mathbb{R}$ ($D_t(X) = tX$).

Zadania. Zakładamy wszędzie, że $dim(V) < \infty$ oraz $F, G \in End(V)$.

- 1. (rekurencja liniowa) Ciąg Fibonacciego jest zadany rekurencyjnie wzorami $a_0=1,\ a_1=1,a_{n+1}=a_n+a_{n-1}$ dla $n\geqslant 1$. Wyprowadzić wzór na n-ty wyraz tego ciągu wg następującego planu:
 - (i) Niech $X_n = \begin{pmatrix} a_n \\ a_{n+1} \end{pmatrix}$. Podać macierz M wymiaru 2×2 taką, że $MX_n =$

- X_{n+1} dla wszystkich n.
- (ii) Przedstawić M w postaci PDP^{-1} , gdzie D jest diagonalna.
- (iii) Podać wzór na M^n , a następnie wzór na a_n .
- 2. Załóżmy, że F, G są przemienne (tzn. $F \circ G = G \circ F$).
 - (a) Załóżmy, że W < V jest F-niezmiennicza. Udowodnić, że G[W] też jest F-niezmiennicza.
 - (b) Załóżmy dodatkowo, że F i G są diagonalizowalne. Udowodnić, że istnieje baza \mathcal{B} przestrzeni V taka, że macierze F i G w tej bazie są obie diagonalne.
- 3. Udowodnić, że dla macierzy $A, B \in M_{n \times n}(\mathbb{R}), \varphi_{AB}(X) = \varphi_{BA}(X)$:
 - (a) gdy A jest odwracalna,
 - (b)* gdy A, B są dowolne.

Wywnioskować stąd, że:

- (c)–Tr(AB) = Tr(BA) (oczywiscie to można też sprawdzić rachunkowo).
- (d)- $\varphi_{FG}(X) = \varphi_{GF}(X)$.
- 4. * Dowieść, że każdy endomorfizm liniowy jest automorfizmem liniowym lub jest suma dwóch automorfizmów liniowych (ciało F: dowolne).
- 5. (a) Udowodnić, że:
 - (i) Jesli $F^2 = F$ i $F \neq 0$, to 1 jest wartością własną F.
 - (ii) Jeśli $F^2 = -F$ i $F \neq 0$, to -1 jest wartością własną F.
 - (iii) W punkcie (i): jeśli λ jest wartością własną F to $\lambda = 0$ lub $\lambda = 1$.
 - (iv) W punkcie (ii): jesli λ jest wartością własną F, to $\lambda = 0$ lub $\lambda = -1$.
 - (b)* Załóżmy, że W(X) jest wielomianem niezerowym i W(F) = 0. Udowodnić, że jesli λ jest wartością własną F, to λ jest pierwiastkiem wielomianu W.
- 6. Załóżmy, że $m, n \in \mathbb{Z}$ są względnie pierwsze. Udowodnić, że istnieją $s, t \in \mathbb{Z}$ takie, że 1 = sm + tn. (wsk: rozważyć zbiór $I = \{sm + tn : s, t \in \mathbb{Z}\}$, a nastepnie najmniejszy dodatni element tego zbioru. Wykorzystać dzielenie z resztą).
- 7. Załóżmy, że $W(X), V(X) \in \mathbb{R}[X]$ są względnie pierwsze (tzn. nie istnieje wielomian stopnia > 0, który dzieli W(X) i V(X)). Udowodnić, że istnieją wielomiany $S(X), T(X) \in \mathbb{R}[X]$ takie, że 1 = S(X)W(X) + T(X)V(X). (wsk: wzorować się na dowodzie z poprzedniego zadania).
- 8. Załóżmy, że $W(X), V(X) \in \mathbb{R}[X]$ są względnie pierwsze, U(X) = W(X)V(X) oraz U(F) = 0. Udowodnić, że $V = Ker(W(F)) \oplus Ker(V(F))$.
- 9. Udowodnić, że istnieje niezerowy wielomian $W_F(X) \in \mathbb{R}[X]$ taki, że $W_F(F) = 0$ oraz $W_F(X)$ dzieli V(X) dla każdego wielomianu $V(X) \in \mathbb{R}[X]$ takiego, że V(F) = 0. (Wielomian W_F nazywamy wielomianem minimalnym endomorfizmu F, gdy dodatkowo W_F ma współczynnik 1 przy X w najwyższej potędze).

- 10. * Udowodnić, że F jest diagonalizowalne \iff istnieje wielomian $W(X) \in \mathbb{R}[X]$ taki, że W(F) = 0, W rozkłada się nad \mathbb{R} na iloczyn czynników liniowych oraz wszystkie pierwiastki W sa jednokrotne. (uwaga: to zadanie jest słuszne dla dowolnego ciała w miejsce \mathbb{R}).
- 11. Załóżmy, że V jest przestrzenią liniową nad \mathbb{C} i $F^n=id$ dla pewnego n>0, to F jest diagonalizowalny (wsk: skorzystać z poprzedniego zadania oraz z rozkładu wielomianu X^n-1 nad \mathbb{C}).