MT441P - Assignment 4

Dheeraj Putta 15329966

1. Let |G| = 144. Show that G is not simple.

Solution: We know that $|G| = 144 = 2^43^2$. We have that $n_3 = 1, 4$ or 16.

- If $n_3 = 1$ then *G* is not simple since the 3-Sylow subgroup is normal.
- Suppose $n_3 = 4$. Consider the following map:

$$\varphi: G \to \operatorname{Perm}(G/N_G(Q))$$

where Q is a 3-Sylow subgroup. We know that $\varphi \cong S_4$ as $[G : N_G(Q)] = 4$. Since the order of G is less than the order of S_4 , we see that we have a homomorphism with a non-trivial kernel. Since $\ker \varphi$ is nontrivial and normal in G, G is not simple.

• Suppose $n_3 = 16$. Now suppose that every pair of 3-Sylow subgroups have trivial intersection. This means that there are $16 \cdot 8$ non-identity elements in the 3-Sylow subgroups and there are 16 elements left to form the 2-Sylow subgroup, which means that there is only one 2-Sylow subgroup. Therefore $n_2 = 1 \implies G$ is not simple.

Suppose there exists two different Sylow 3-subgroups P and Q such that $|P \cap Q| = 3$. Let $N = N_G(P \cap Q)$ be the normalizer of $P \cap Q$, which is the largest subgroup of G that contains $P \cap Q$ as a normal subgroup. Since $|P_i| = 3^2$, we know that P_i is abelian for all i and therefore $Q \cap P$ is normal in both P and Q. So we have that both P, $Q \subset N \implies PQ \subset N$. We also have that

$$|PQ| = \frac{|P||Q|}{|P \cap Q|} = 27$$

Hence |N| > 27 as 27 does not divide the order of G. We also know that $9 \mid |N|$. So we have that |N| = 36,72 or 144. If |N| = 144 then it would mean that $P \cap Q$ is normal in G. If |N| = 36 or 72 then [G:N] = 4 or 2. From a similar argument as above, we have $\varphi: G \to \operatorname{Perm}(G/N)$ to get that $\ker \varphi$ is a nontrivial subgroup of G, hence G is not simple.

5. Suppose that |G| = 60 and that G has 20 elements of order 3. Show that $G \cong A_5$.

Solution: Since there are 20 elements of order 3, it must be the case that the intersection of each of the subgroups is trivial, so we get that $n_3(3-1) = 20 \implies n_3 = 10$.

Now assume that *G* is not simple and that it contains a non-trivial proper subgroup *H*.

- If $3 \mid |H|$, then H contains a 3-Sylow subgroup P of G. Since H is normal in G and every 3-Sylow subgroup is a conjugate of P, H contains all 10 3-Sylow subgroups $\Longrightarrow |H| \ge 21$. Since $|H| \mid |G|$ and H is proper, |H| = 30. This contradicts the fact that every group of order 30 has a unique 3-Sylow subgroup. Therefore $3 \nmid |H|$.
- If |H| = 10 or 20, then H has a normal Sylow subgroup which is also normal in G (by Question 9). Thus we may assume, by replacing H by its normal subgroup if necessary, that |H| = 2, 4 or 5. Then |G/H| = 30, 15 or 12. Which implies that G/H has a normal subgroup K/H of order 3, where K is a normal subgroup of G. Now $|K| = |K/H| \cdot |H| = 5 \cdot |H|$. This implies that $5 \mid |K|$ which contradicts the previous point. Therefore G is simple.
- 6. Let *G* be the group of rotations of the Icosahedron. Show that $G \cong A_5$.

Solution: The elements of *G* are:

- 4 rotations (by multiples of $2\pi/4$) about centres of 6 pairs of opposite faces.
- 1 rotation (by π) about centres of 15 pairs of opposite edges.
- 2 rotations (by $\pm 2\pi/3$) about 10 pairs of opposite vertices.

Since |G| = 60 and the number of 3 cycles is 20 we can use the question above to show that $G \cong A_5$.

7. Let $|G| = 2^2 \cdot 5 \cdot 7$. Show that *G* is not simple.

Solution: By Sylow's Theorem n_3 must divide 35 and n_3 has to be one more than a multiple of 3, thus $n_3 \in \{1,7\}$. Now suppose that G is simple, then $n_3 \neq 1$. Then we have that G is isomorphic to a subgroup of S_7 and that |G| has to divide S_7 . But this is false hence we have a contraction. Therefore G is not simple.

8. If |G| = 2p, (p > 2) show that G is cyclic or dihedral.

Solution: Choose $a, b \in G$ with o(a) = 2 and o(b) = p. Let $H = \langle a \rangle$ and $K = \langle b \rangle$. Since every subgroup of index 2 is normal, K is normal in G. Thus $aba^{-1} = b^i$ for some integer i. We also know that $H \cap K = \{1\}$ and hence $G = HK = \langle a, b \rangle$. Now

$$b^{i^2} = (aba^{-1})^i = ab^i a^{-1} = a(aba^{-1})a^{-1} = b$$

as $a^2 = 1$.

Thus $b^{i^2-1} = 1$ and hence $p \mid i^2 - 1$ as o(b) = p. Therefore either $p \mid i - 1$ or $p \mid i + 1$.

- If $p \mid i-1$ then $aba^{-1} = b^i = b$ and so ab = ba. Thus G is abelian and o(ab) = 2p, so G is cyclic in this case.
- If $p \mid i + 1$ then $aba^{-1} = b^i = b^{-1}$ and so

$$G = \langle a, b : a^2 = b^p = 1, aba^{-1} = b^{-1} \rangle \cong D_{2p}$$

Therefore *G* is either cyclic or dihedral.

9. Suppose that N is a normal subgroup of G, and that P is a p-Sylow subgroup of N. Show that $G = N_G(P)N$.

Solution: Pick $g \in G$. Since $P \subset N$ and $N \subseteq G$, $gPg^{-1} \subset N$. Then by applying Sylows theorem to N, there is an $n \in N$ such that $gPg^{-1} = nPn^{-1}$, so $n^{-1}gPg^{-1}n = P$. That means $n^{-1}g \in N_G(P)$, so $g \in nN_G(P)$. Thus $G = N \cdot N_G(P)$.

10. Suppose that $N \subseteq G$, and that P is a p-Sylow subgroup of N and $P \subseteq N$. Show that $P \subseteq G$.

Solution: We know that $G = N_G(P)N$. However since P is normal in N, we know that $N \le N_G(P)$. This implies that $N_G(P)N = N_G(P)$. Therefore $G = N_G(P)$. Since the normalizer is the whole group, P is normal in G.

11. Let *P* be a *p*-Sylow subgroup of A_n , $n \ge 3$. Show that $N_G(P)$ contains an odd permutation.

Solution: Suppose $G = S_n$.

By Frattini's argument we get that $S_n = A_n N_G(P)$. Since A_n contains only even permutations, the only way to obtain odd permutations is to compose it with odd permutations. Therefore $N_G(P)$ must contain an odd permutation.