Aula 12 - Seleção e Avaliação de Modelos II

João Florindo

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas - Brasil florindo@unicamp.br

Outline

- 1 Diagnosticando Viés e Variância
- Exemplo Prático
- Classes Desbalanceadas
- 4 Grandes Conjuntos de Dados

Cenários Possíveis

- Modelo muito simples n\u00e3o se ajusta aos dados underfitting vi\u00e9s alto.
- Modelo muito complexo ajuste perfeito ao treino, mas sem generalização no teste/validação - overfitting - variância alta.
- Modelo ideal boa generalização.

Cenários Possíveis

- Modelo muito simples n\u00e3o se ajusta aos dados underfitting vi\u00e9s alto.
- Modelo muito complexo ajuste perfeito ao treino, mas sem generalização no teste/validação - overfitting - variância alta.
- Modelo ideal boa generalização.

Cenários Possíveis

- Modelo muito simples n\u00e3o se ajusta aos dados underfitting vi\u00e9s alto.
- Modelo muito complexo ajuste perfeito ao treino, mas sem generalização no teste/validação - overfitting - variância alta.
- Modelo ideal boa generalização.

Para identificarmos qual problema está prevalecendo, comparamos o erro de treino com o de validação (ou de teste):

- Erro de treino: $J_{treino}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) y^{(i)})^2$
- Erro de validação: $J_{cv}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_{cv}^{(i)}) y_{cv}^{(i)})^2$

Viés alto (underfit):

- $J_{treino}(\theta)$ alto
- $J_{cv}(\theta) \approx J_{trenio}(\theta)$

Variância alta (overfit):

- $J_{treino}(\theta)$ baixo
- $J_{cv}(\theta) \gg J_{trenio}(\theta)$.

Viés/Variância e Regularização

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}.$$

Suponha que $h_{\theta}(x)$ original seja um polinômio de alto grau. Então:

- Se $\lambda \to \infty$, temos $\theta_i \to 0$ (reta-*underfit*).
- Se $\lambda = 0$, não há regularização (*overfit*).
- Buscamos λ ótimo!

Viés/Variância e Regularização

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}.$$

Suponha que $h_{\theta}(x)$ original seja um polinômio de alto grau. Então:

- Se $\lambda \to \infty$, temos $\theta_i \to 0$ (reta-*underfit*).
- Se $\lambda = 0$, não há regularização (*overfit*).
- Buscamos λ ótimo!

Viés/Variância e Regularização

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}.$$

Suponha que $h_{\theta}(x)$ original seja um polinômio de alto grau. Então:

- Se $\lambda \to \infty$, temos $\theta_i \to 0$ (reta-*underfit*).
- Se $\lambda = 0$, não há regularização (*overfit*).
- Buscamos λ ótimo!

Dada uma função de hipótese complexa (ex.

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$
).

Definimos a função de custo regularizada:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{i=1}^{n} \theta_{j}^{2}.$$

Definimos os erros sem regularização

$$J_{treino}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2}$$

$$J_{teste}(\theta) = \frac{1}{2m_{teste}} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}_{teste}) - y^{(i)}_{teste})^{2}$$

Dada uma função de hipótese complexa (ex.

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$
).

Definimos a função de custo regularizada:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2m} \sum_{i=1}^{n} \theta_{j}^{2}.$$

Definimos os erros sem regularização:

$$J_{treino}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2}$$

$$J_{teste}(\theta) = \frac{1}{2m_{teste}} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}_{teste}) - y^{(i)}_{teste})^{2}$$

• Dada uma função de hipótese complexa (ex.

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$
).

Definimos a função de custo regularizada:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{i=1}^{n} \theta_j^2.$$

Definimos os erros sem regularização:

$$J_{treino}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^{2}$$

$$J_{teste}(\theta) = \frac{1}{2m_{teste}} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}_{teste}) - y^{(i)}_{teste})^{2}$$

- Testar sequência de valores de λ .
- EX.: 0, 0.01, 0.02, 0.04, 0.08, ···, 10.24 (ou 10.00).
- Para cada λ obter parâmetros como usual:

$$\underset{\theta}{\operatorname{argmin}} J(\theta)$$

- e calcular $J_{cv}(\theta)$ correspondente.
- Escolher θ cujo λ resultou no menor $J_{cv}(\theta)$.
- Usar estes mesmos parâmetros no cálculo de $J_{teste}(\theta)$.

- Testar sequência de valores de λ .
- EX.: 0, 0.01, 0.02, 0.04, 0.08, ···, 10.24 (ou 10.00).
- Para cada λ obter parâmetros como usual:

$$\underset{\theta}{\operatorname{argmin}} J(\theta)$$

- e calcular $J_{cv}(\theta)$ correspondente.
- Escolher θ cujo λ resultou no menor $J_{cv}(\theta)$.
- Usar estes mesmos parâmetros no cálculo de $J_{teste}(\theta)$.

- Testar sequência de valores de λ .
- EX.: 0, 0.01, 0.02, 0.04, 0.08, ···, 10.24 (ou 10.00).
- Para cada λ obter parâmetros como usual:

$$\operatorname*{argmin}_{\theta} J(\theta)$$

- e calcular $J_{cv}(\theta)$ correspondente.
- Escolher θ cujo λ resultou no menor $J_{cv}(\theta)$.
- Usar estes mesmos parâmetros no cálculo de $J_{teste}(\theta)$.

- Testar sequência de valores de λ .
- EX.: 0, 0.01, 0.02, 0.04, 0.08, ···, 10.24 (ou 10.00).
- Para cada λ obter parâmetros como usual:

$$\operatorname*{argmin}_{\theta} J(\theta)$$

- e calcular $J_{cv}(\theta)$ correspondente.
- Escolher θ cujo λ resultou no menor $J_{cv}(\theta)$.
- Usar estes mesmos parâmetros no cálculo de $J_{teste}(\theta)$.

- Testar sequência de valores de λ .
- EX.: 0, 0.01, 0.02, 0.04, 0.08, ···, 10.24 (ou 10.00).
- Para cada λ obter parâmetros como usual:

$$\operatorname*{argmin}_{\theta} J(\theta)$$

- e calcular $J_{cv}(\theta)$ correspondente.
- Escolher θ cujo λ resultou no menor $J_{cv}(\theta)$.
- Usar estes mesmos parâmetros no cálculo de $J_{teste}(\theta)$.

Influência do λ em J_{treino} e J_{cv}

Curvas de Aprendizado

Erro de treino e de validação (ou teste) em função do número m de amostras de treino.

Curvas de Aprendizado - Alto Viés

Curvas de Aprendizado - Alta Variância

- ullet Obter mais exemplos de treinamento o corrige variância alta
- ullet Usar menos atributos o corrige variância alta
- Usar mais atributos \rightarrow corrige viés alto
- Adicionar atributos polinomiais $(x_1^2, x_2^2, x_1x_2, \text{ etc.}) \to \text{corrige viés alto}$
- ullet Aumentar λo corrige viés alto
- ullet Diminuir λo corrige variância alta

- ullet Obter mais exemplos de treinamento o corrige variância alta
- ullet Usar menos atributos o corrige variância alta
- Usar mais atributos \rightarrow corrige viés alto
- ullet Adicionar atributos polinomiais $(x_1^2,\,x_2^2,\,x_1x_2,\,{
 m etc.}) o{
 m corrige}$ viés alto
- ullet Aumentar λo corrige viés alto
- ullet Diminuir λo corrige variância alta

- ullet Obter mais exemplos de treinamento o corrige variância alta
- ullet Usar menos atributos o corrige variância alta
- Usar mais atributos \rightarrow corrige viés alto
- ullet Adicionar atributos polinomiais $(x_1^2,\,x_2^2,\,x_1x_2,\,{
 m etc.}) o{
 m corrige}$ viés alto
- ullet Aumentar λo corrige viés alto
- ullet Diminuir λo corrige variância alta

- ullet Obter mais exemplos de treinamento o corrige variância alta
- ullet Usar menos atributos o corrige variância alta
- Usar mais atributos \rightarrow corrige viés alto
- ullet Adicionar atributos polinomiais $(x_1^2,\,x_2^2,\,x_1x_2,\,{
 m etc.}) o{
 m corrige}$ viés alto
- ullet Aumentar λo corrige viés alto
- ullet Diminuir λo corrige variância alta

- ullet Obter mais exemplos de treinamento o corrige variância alta
- ullet Usar menos atributos o corrige variância alta
- Usar mais atributos \rightarrow corrige viés alto
- Adicionar atributos polinomiais $(x_1^2,\,x_2^2,\,x_1x_2,\,{
 m etc.}) o{
 m corrige}$ viés alto
- ullet Aumentar λo corrige viés alto
- Diminuir $\lambda \to \text{corrige variancia alta}$

- ullet Obter mais exemplos de treinamento o corrige variância alta
- ullet Usar menos atributos o corrige variância alta
- Usar mais atributos \rightarrow corrige viés alto
- ullet Adicionar atributos polinomiais $(x_1^2,\,x_2^2,\,x_1x_2,\,{
 m etc.}) o{
 m corrige}$ viés alto
- ullet Aumentar λo corrige viés alto
- ullet Diminuir λo corrige variância alta

Redes Neurais e Overfitting

Outline

- Diagnosticando Viés e Variância
- Exemplo Prático
- 3 Classes Desbalanceadas
- 4 Grandes Conjuntos de Dados

Pedir o seu cartão de crédito online faz toda a diferenca nesse momento. Ainda mais quando você pode zerar a parcela da anuidade. E zerar a parcela da anuidade é mais fácil do que você imagina.

SAIBA COMO:

Use o seu Cartão Carrefour 1x por mês em qualquer uma das seguintes lojas:

PRONTO A PARCELA DA ANUIDADE SERÁ ZERADA.

E VOCÊ AINDA TEM VÁRIOS OUTROS BENEFÍCIOS NAS LOJAS CARREFOUR:

Alternate text

Descontos exclusivos nas lojas e no Carrefour com

Alternate text

Parcelamento nas Drogarias e Postos Carrefour

Alternate text

Parcelamento em até 20x sem juros Prazo para pagar as suas compras dentro e fora do Carrefour

DEU VONTADE DE APROVEITAR TANTAS VANTAGENS?

PECA O SEU AGORA

• Definir os atributos relevantes do email (x): 100 palavras indicativas de spam/não-spam e

$$x_j = \begin{cases} 1 & \text{se a palavra } j \text{ aparece no email} \\ 0 & \text{caso contrário.} \end{cases}$$

Exemplo:

$$x \in \mathbb{R}^{100} = egin{bmatrix} {
m florindo} \\ {
m saiba} \\ {
m parcela} \\ {
m fatura} \\ {
m \vdots} \\ {
m agora} \\ {
m \vdots} \\ {
m \vdots} \\ {
m \vdots} \\ {
m \vdots} \\ {
m i} \\ {
m \vdots} \\ {
m i} \\ {
m \vdots} \\ {
m i} \\ {
m i}$$

Estratégias para reduzir o erro:

- Coletar mais dados.
- Desenvolver atributos sofisticados com base no roteamento do email (cabeçalho).
- Desenvolver atributos sofisticados com base no corpo do email.
- Desenvolver algoritmos sofisticados de pré-processamento, p.ex., detectando erros de ortografia.

Estratégias para reduzir o erro:

- Coletar mais dados.
- Desenvolver atributos sofisticados com base no roteamento do email (cabeçalho).
- Desenvolver atributos sofisticados com base no corpo do email.
- Desenvolver algoritmos sofisticados de pré-processamento, p.ex., detectando erros de ortografia.

Estratégias para reduzir o erro:

- Coletar mais dados.
- Desenvolver atributos sofisticados com base no roteamento do email (cabeçalho).
- Desenvolver atributos sofisticados com base no corpo do email.
- Desenvolver algoritmos sofisticados de pré-processamento, p.ex., detectando erros de ortografia.

Exemplo Prático - Anti-Spam

Estratégias para reduzir o erro:

- Coletar mais dados.
- Desenvolver atributos sofisticados com base no roteamento do email (cabeçalho).
- Desenvolver atributos sofisticados com base no corpo do email.
- Desenvolver algoritmos sofisticados de pré-processamento, p.ex., detectando erros de ortografia.

- Começar por um método simples de implementação rápida e testá-lo no conjunto de validação.
- Fazer curvas de aprendizado para ver se mais dados, atributos, etc. ajudam.
- Análise de erro: Examinar manualmente os exemplos no conjunto de validação para os quais o algoritmo erra.
- Tentar identificar alguma tendência nesses erros para, por exemplo, adicionar um atributo que trate aqueles casos.

- Começar por um método simples de implementação rápida e testá-lo no conjunto de validação.
- Fazer curvas de aprendizado para ver se mais dados, atributos, etc. ajudam.
- Análise de erro: Examinar manualmente os exemplos no conjunto de validação para os quais o algoritmo erra.
- Tentar identificar alguma tendência nesses erros para, por exemplo, adicionar um atributo que trate aqueles casos.

- Começar por um método simples de implementação rápida e testá-lo no conjunto de validação.
- Fazer curvas de aprendizado para ver se mais dados, atributos, etc. ajudam.
- Análise de erro: Examinar manualmente os exemplos no conjunto de validação para os quais o algoritmo erra.
- Tentar identificar alguma tendência nesses erros para, por exemplo, adicionar um atributo que trate aqueles casos.

- Começar por um método simples de implementação rápida e testá-lo no conjunto de validação.
- Fazer curvas de aprendizado para ver se mais dados, atributos, etc. ajudam.
- Análise de erro: Examinar manualmente os exemplos no conjunto de validação para os quais o algoritmo erra.
- Tentar identificar alguma tendência nesses erros para, por exemplo, adicionar um atributo que trate aqueles casos.

Exemplo

- Anti-Spam: $m_{cv} = 500$ exemplos de validação.
- Algoritmo classifica erradamente 100 emails, que examinamos manualmente e categorizamos com base em
 - Tipo de email, ex.: medicamento, réplica, roubo de senha, outros.
 - 2 Atributos que ajudariam o algoritmo.

Exemplo

EXEMPLO:

Tipo	Atributo
Medicamento: 12	Erros deliberados de ortografia: 5
Réplica/fake: 4	Rota incomum: 16
Roubo de senha: 53	Pontuação incomum
	(ex.: muitas exclamações): 32
Outros: 31	<u>:</u>

 Concentra-se em novos atributos, algoritmos, etc. para tratar especificamente dos casos mais frequentes: roubo de senha / pontuação incomum.

- Métricas de erro são fundamentais na tomada de decisões em machine learning.
- EX.: Devemos considerar os radicais das palavras? Distinguir maiúsculas e minúsculas?
- Com radicais: 5% de erro; sem radicais: 3% de erro. Melhor usar!
- Distinguindo maiúsculas: 3.2% de erro; sem distinção: 3% de erro.
 Melhor sem!

- Métricas de erro são fundamentais na tomada de decisões em machine learning.
- EX.: Devemos considerar os radicais das palavras? Distinguir maiúsculas e minúsculas?
- Com radicais: 5% de erro; sem radicais: 3% de erro. Melhor usar!
- Distinguindo maiúsculas: 3.2% de erro; sem distinção: 3% de erro.
 Melhor sem!

- Métricas de erro são fundamentais na tomada de decisões em machine learning.
- EX.: Devemos considerar os radicais das palavras? Distinguir maiúsculas e minúsculas?
- Com radicais: 5% de erro; sem radicais: 3% de erro. Melhor usar!
- Distinguindo maiúsculas: 3.2% de erro; sem distinção: 3% de erro.
 Melhor sem!

- Métricas de erro são fundamentais na tomada de decisões em machine learning.
- EX.: Devemos considerar os radicais das palavras? Distinguir maiúsculas e minúsculas?
- Com radicais: 5% de erro; sem radicais: 3% de erro. Melhor usar!
- Distinguindo maiúsculas: 3.2% de erro; sem distinção: 3% de erro.
 Melhor sem!

Outline

- 1 Diagnosticando Viés e Variância
- Exemplo Prático
- 3 Classes Desbalanceadas
- 4 Grandes Conjuntos de Dados

- Imagine uma regressão logística $h_{\theta}(x)$ para diagnosticar câncer (y=1) ou sem câncer (y=0).
- E que obtivemos 1% de erro no teste (99% de acerto). Excelente resultado???
- Porém, só 0.5% dos pacientes têm câncer! Temos classes desbalanceadas (skewed).
- Nosso resultado n\u00e3o \u00e9 mais interessante! A fun\u00e7\u00e3o trivial abaixo teria 0.5\u00d7 de erro!

```
def predictCancer(x):
return 0
```

- Imagine uma regressão logística $h_{\theta}(x)$ para diagnosticar câncer (y=1) ou sem câncer (y=0).
- E que obtivemos 1% de erro no teste (99% de acerto). Excelente resultado???
- Porém, só 0.5% dos pacientes têm câncer! Temos classes desbalanceadas (skewed).
- Nosso resultado n\u00e3o \u00e9 mais interessante! A fun\u00e7\u00e3o trivial abaixo teria 0.5\u00d7 de erro!

```
def predictCancer(x):
return 0
```

- Imagine uma regressão logística $h_{\theta}(x)$ para diagnosticar câncer (y=1) ou sem câncer (y=0).
- E que obtivemos 1% de erro no teste (99% de acerto). Excelente resultado???
- Porém, só 0.5% dos pacientes têm câncer! Temos classes desbalanceadas (skewed).
- Nosso resultado n\u00e3o \u00e9 mais interessante! A fun\u00e7\u00e3o trivial abaixo teria 0.5\u00d7 de erro!

```
def predictCancer(x):
return 0
```

- Imagine uma regressão logística $h_{\theta}(x)$ para diagnosticar câncer (y=1) ou sem câncer (y=0).
- E que obtivemos 1% de erro no teste (99% de acerto). Excelente resultado???
- Porém, só 0.5% dos pacientes têm câncer! Temos classes desbalanceadas (skewed).
- Nosso resultado não é mais interessante! A função trivial abaixo teria 0.5% de erro!

def predictCancer(x):
return 0

ullet Convenção: y=1 na presença da classe rara, no caso, a presença de câncer.

Cenários possíveis na classificação binária - Matriz de Confusão:

		Classe Verdadeira			
		1	0		
asse Predita	1	Verdadeiro Positivo	Falso Positivo		
Classe F	0	Falso Negativo	Verdadeiro Negativo		

Precision / Recall

Precision

De todos os pacientes para os quais o algoritmo retornou y=1, qual proporção **realmente** tem câncer?

Número de verdadeiros positivos		Número de verdadeiros positivos		
Número de previsões positivas		Número de verdadeiros positivos + número de falsos positivos		

Recall

De todos os pacientes que realmente têm câncer, qual proporção o algoritmo **detectou** como tendo câncer?

```
\frac{\text{N\'umero de verdadeiros positivos}}{\text{N\'umero real de positivos}} = \frac{\text{N\'umero de verdadeiros positivos}}{\text{N\'umero de verdadeiros positivos} + n\'umero de falsos negativos}
```

- Seja a regressão logística em que prevemos y=1 se $h_{\theta}(x) \geq 0.5$ e y=0 se $h_{\theta}(x) < 0.5$ (threshold 0.5).
- Se quisermos prever y = 1 (câncer) apenas se tivermos muita certeza, subimos o *threshold* para 0.7 ou 0.9.
- Assim temos precision mais alto e recall mais baixo.
- Já se quisermos evitar de passar batido um caso de câncer, baixamos o *threshold*, p.ex., para 0.3.
- E temos recall mais alto e precision mais baixo.

- Seja a regressão logística em que prevemos y=1 se $h_{\theta}(x) \geq 0.5$ e y=0 se $h_{\theta}(x) < 0.5$ (threshold 0.5).
- Se quisermos prever y = 1 (câncer) apenas se tivermos muita certeza, subimos o *threshold* para 0.7 ou 0.9.
- Assim temos precision mais alto e recall mais baixo.
- Já se quisermos evitar de passar batido um caso de câncer, baixamos o *threshold*, p.ex., para 0.3.
- E temos recall mais alto e precision mais baixo.

- Seja a regressão logística em que prevemos y=1 se $h_{\theta}(x) \geq 0.5$ e y=0 se $h_{\theta}(x) < 0.5$ (threshold 0.5).
- Se quisermos prever y = 1 (câncer) apenas se tivermos muita certeza, subimos o *threshold* para 0.7 ou 0.9.
- Assim temos precision mais alto e recall mais baixo.
- Já se quisermos evitar de passar batido um caso de câncer, baixamos o *threshold*, p.ex., para 0.3.
- E temos recall mais alto e precision mais baixo.

- Seja a regressão logística em que prevemos y=1 se $h_{\theta}(x) \geq 0.5$ e y=0 se $h_{\theta}(x) < 0.5$ (threshold 0.5).
- Se quisermos prever y = 1 (câncer) apenas se tivermos muita certeza, subimos o *threshold* para 0.7 ou 0.9.
- Assim temos precision mais alto e recall mais baixo.
- Já se quisermos evitar de passar batido um caso de câncer, baixamos o *threshold*, p.ex., para 0.3.
- E temos recall mais alto e precision mais baixo.

- Seja a regressão logística em que prevemos y=1 se $h_{\theta}(x) \geq 0.5$ e y=0 se $h_{\theta}(x) < 0.5$ (threshold 0.5).
- Se quisermos prever y = 1 (câncer) apenas se tivermos muita certeza, subimos o *threshold* para 0.7 ou 0.9.
- Assim temos precision mais alto e recall mais baixo.
- Já se quisermos evitar de passar batido um caso de câncer, baixamos o *threshold*, p.ex., para 0.3.
- E temos recall mais alto e precision mais baixo.

Curva de Precision/Recall

• Podemos fazer uma curva variando o *threshold* e prevendo y=1 se $h_{\theta}(x) >$ threshold.

F_1 score (F score)

• Como expressar precision e recall em uma única medida?

	Precision (P)	Recall (R)	Média	F_1 score
Algoritmo 1	0.5	0.4	0.45	0.44
Algoritmo 2	0.7	0.1	0.4	0.18
Algoritmo 3	0.02	1.0	0.51	0.04

• Que tal a média?

$$\frac{P+R}{2}$$

- Algoritmo 3 prevê sempre y = 1 e tem média melhor que o Algoritmo 1. Portanto a média não servel
 - I. I ortanto a media nao serve

F_1 score (F score)

• Como expressar precision e recall em uma única medida?

	Precision (P)	Recall (R)	Média	F_1 score
Algoritmo 1	0.5	0.4	0.45	0.44
Algoritmo 2	0.7	0.1	0.4	0.18
Algoritmo 3	0.02	1.0	0.51	0.04

• Que tal a média?

$$\frac{P+R}{2}$$

- \bullet Algoritmo 3 prevê sempre y=1 e tem média melhor que o Algoritmo
 - 1. Portanto a média não serve!

F_1 score (F score)

• Solução é o F_1 score:

$$2\frac{PR}{P+R}$$

- Se $P \approx 0$ OU $R \approx 0$, o score é pequeno e este só fica maior se AMBOS forem relativamente altos.
- Serve para definir um *threshold* ótimo (maior F_1 score no conjunto de validação).

*F*₁ *score* (F *score*)

• Solução é o F₁ score:

$$2\frac{PR}{P+R}$$

- Se $P \approx 0$ OU $R \approx 0$, o score é pequeno e este só fica maior se AMBOS forem relativamente altos.
- Serve para definir um *threshold* ótimo (maior F_1 score no conjunto de validação).

*F*₁ *score* (F *score*)

• Solução é o F₁ score:

$$2\frac{PR}{P+R}$$

- Se $P \approx 0$ OU $R \approx 0$, o score é pequeno e este só fica maior se AMBOS forem relativamente altos.
- Serve para definir um *threshold* ótimo (maior F_1 score no conjunto de validação).

Notas

 Uma alternativa à curva de precision/recall é a curva ROC (Receiver Operating Characteristic) - TPR em função do FPR:

$$TPR = \frac{\text{N\'umero de verdadeiros positivos}}{\text{N\'umero de verdadeiros positivos} + n\'umero de falsos negativos}$$

$$FPR = \frac{\text{N\'umero de falsos positivos}}{\text{N\'umero de falsos positivos} + n\'umero de verdadeiros negativos}$$

- Área sob essas curvas pode ser usada como métrica de desempenho do modelo.
- Essas curvas podem ser adaptadas para múltiplas classes: curva média do *one-vs-all*.

Notas

 Uma alternativa à curva de precision/recall é a curva ROC (Receiver Operating Characteristic) - TPR em função do FPR:

$$TPR = \frac{\text{N\'umero de verdadeiros positivos}}{\text{N\'umero de verdadeiros positivos} + n\'umero de falsos negativos}$$

$$FPR = \frac{\text{N\'umero de falsos positivos}}{\text{N\'umero de falsos positivos} + n\'umero de verdadeiros negativos}$$

- Área sob essas curvas pode ser usada como métrica de desempenho do modelo.
- Essas curvas podem ser adaptadas para múltiplas classes: curva média do one-vs-all.

Notas

 Uma alternativa à curva de precision/recall é a curva ROC (Receiver Operating Characteristic) - TPR em função do FPR:

$$TPR = \frac{\text{N\'umero de verdadeiros positivos}}{\text{N\'umero de verdadeiros positivos} + n\'umero de falsos negativos}$$

$$FPR = \frac{\text{N\'umero de falsos positivos}}{\text{N\'umero de falsos positivos} + n\'umero de verdadeiros negativos}$$

- Área sob essas curvas pode ser usada como métrica de desempenho do modelo.
- Essas curvas podem ser adaptadas para múltiplas classes: curva média do *one-vs-all*.

Outline

- Diagnosticando Viés e Variância
- 2 Exemplo Prático
- Classes Desbalanceadas
- Grandes Conjuntos de Dados

- "O vencedor não é o melhor algoritmo, mas sim quem tem mais dados!".
- Condições
 - Os atributos devem ser suficientes para prever y corretamente. Teste útil: um especialista humano poderia prever y com base apenas em x?
 - ① O algoritmo de aprendizado deve ter muitos parâmetros. Assim teremos $J_{treino}(\theta)$ pequeno (viés baixo) e o uso de um conjunto de treinamento muito grande provavelmente não causará *overfit* (variância baixa), de modo que $J_{treino}(\theta) \approx J_{teste}(\theta)$ e, portanto, $J_{teste}(\theta)$ será pequeno, como desejado!

 "O vencedor não é o melhor algoritmo, mas sim quem tem mais dados!".

Condições:

- Os atributos devem ser suficientes para prever y corretamente. Teste útil: um especialista humano poderia prever y com base apenas em x?
- ② O algoritmo de aprendizado deve ter muitos parâmetros. Assim teremos $J_{treino}(\theta)$ pequeno (viés baixo) e o uso de um conjunto de treinamento muito grande provavelmente não causará *overfit* (variância baixa), de modo que $J_{treino}(\theta) \approx J_{teste}(\theta)$ e, portanto, $J_{teste}(\theta)$ será pequeno, como desejado!

- "O vencedor não é o melhor algoritmo, mas sim quem tem mais dados!".
- Condições:
 - Os atributos devem ser suficientes para prever y corretamente. Teste útil: um especialista humano poderia prever y com base apenas em x?
 - ② O algoritmo de aprendizado deve ter muitos parâmetros. Assim teremos $J_{treino}(\theta)$ pequeno (viés baixo) e o uso de um conjunto de treinamento muito grande provavelmente não causará *overfit* (variância baixa), de modo que $J_{treino}(\theta) \approx J_{teste}(\theta)$ e, portanto, $J_{teste}(\theta)$ será pequeno, como desejado!

- "O vencedor não é o melhor algoritmo, mas sim quem tem mais dados!".
- Condições:
 - Os atributos devem ser suficientes para prever y corretamente. Teste útil: um especialista humano poderia prever y com base apenas em x?
 - ② O algoritmo de aprendizado deve ter muitos parâmetros. Assim teremos $J_{treino}(\theta)$ pequeno (viés baixo) e o uso de um conjunto de treinamento muito grande provavelmente não causará *overfit* (variância baixa), de modo que $J_{treino}(\theta) \approx J_{teste}(\theta)$ e, portanto, $J_{teste}(\theta)$ será pequeno, como desejado!