

Лекция 11 Data Mining в реальных системах

Николай Анохин

23 мая 2015 г.

План занятия

Работа с признаками

Алгоритмы машинного обучения

Особенности реальных систем

Что дальше

Работа с признаками

Конструирование признаков

```
Лог посещения пользователями Интернет-сайтов
```

1432068600.002494
46.148.52.217
22B695259
22/159/5/0/0/6/1/1.000000/16.0
2579437
http://vk.com/ivan_se
http://vk.com/friends?act=find
1152*864
1137*747
1432068601241
Поиск друзей

Преобразование признаков

- Дискретизация
- Проекции
 - PCA
 - Random projections
- Заполнение отсутствующих значений
- Удаление шума
- ▶ Преобразование категориальных классов в бинарные
 - One-vs-rest
 - One-vs-one
 - Error correcting output codes

Отбор признаков

Как "нерелевантные", так и "релевантные" признаки могут быть вредными

- 1. Независимо от алгоритма обучения: backward elimnation, forward selection
 - mutual information
 - коэффициент корреляции
 - линейная модель
 - генетические алгоритмы
- 2. С использованием алгоритма обучения (кросс-валидация, hold-out)

Алгоритмы машинного обучения

Некоторые правила 1

Первое правило машинного обучения

Если нет необходимости, не использовать машинное обучение

Второе правило машинного обучения 1

LEARNING =

REPRESENTATION + EVALUATION + OPTIMIZATION

¹A Few Useful Things to Know about Machine Learning

Некоторые правила 2

- ▶ Обобщающая способность имеет значение
- ▶ Только данных не достаточно
- ▶ У переобучения много видов

Некоторые правила 3

- Интуиция подводит в многомерных пространствах
- ▶ Больше данных лучше, чем сложный алгоритм
- ▶ Обучайте много моделей

Все модели имеют недостатки 2

Подход	Что хорошо	Что плохо
bayesian	хорошо работает на ма-	трудно обосновать
learning	леньких данных	априорные распрделе-
		ния, вычислительно
		сложные
градиентный	вычислительно эффек-	подбор параметров для
спуск	тивен, оптимизируем	сходимости, переобуче-
	что нужно	ние
kernel	натуральное выраже-	подбор ядра, медлен-
	ние схожести через	ный
	ядро	
деревья ре-	быстрый и автоматизи-	крайне нестабильный
шений	рованный	
boosting	хорошее качество	выбор алгоритма,
		предположение o weak
		learner нарушается

²All Models of Learning have Flaws

8 худших алгоритмов 3

- ► Linear regression
- Traditional decision trees
- ► Linear discriminant analysis
- K-means clustering
- Neural networks
- Maximum Likelihood estimation
- Density estimation in high dimensions
- Naive Bayes

³The 8 worst predictive modeling techniques

Отбор модели занимает очень много времени⁴

(также, как и работа с признаками)

⁴Three Things About Data Science You Won't Find In the Books

Особенности реальных систем

Пример обучения модели в задаче классификации

Особенности реальной системы

- ▶ Очень грязные данные
- ▶ Простые модели
- Проверка качества на всех этапах
- ▶ Мониторинг и логирование

Что дальше

Изучение Data Mining

- 1. Data Mining II, Hadoop, Инфопоиск
- 2. Kaggle
- 3. Литература и статьи
 - Техблог Twitter
 - Техблог Netflix
 - Техблог Spotify
 - Reddit προ MachineLearning
 - ▶ Подкаст про машинное обучение
 - DataViz

Junior Data Scientist: необходимые навыки

- 1. Все базовые модели и алгоритмы
- Знание языка высокого уровня и соответствующие научные библиотеки (R, python, Matlab)
- 3. Базовые структуры данных и алгоритмы (сортировки, деревья, хэш таблицы и графы)
- 4. Опыт обработки больших объемов данных точно будет плюсом
- 5. Умение разбираться с научной литературой

Вопросы

