

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Dr. Reetinder Sidhu

Department of Computer Science and Engineering

DIGITAL DESIGN AND COMPUTER ORGANIZATION

Multi-Cycle Processor - 3

Dr. Reetinder Sidhu

Department of Computer Science and Engineering

Multi-Cycle Processor - 3 Outline

PES UNIVERSITY ONLINE

- Introduction
- Performance Analysis
- Multicycle Processor Datapath
- Multicycle Processor Control Logic

Multi-Cycle Processor - 3 Introduction

- Microarchitecture: how to implement an architecture in hardware
- Processor:
 - Datapath: functional blocks
 - Control: control signals

	ON
Application Software	programs
Operating Systems	device drivers
Architecture	instructions registers
Micro- architecture	datapaths controllers
Logic	adders memories
Digital Circuits	AND gates NOT gates
Analog Circuits	amplifiers filters
Devices	transistors diodes
Physics	electrons

Introduction, Performance Analysis Iw Instruction Datapath

STEP 6: Increment PC

Multi-Cycle Processor - 3 Other Instructions

- SW
- R-type (add, sub, and, ...)
- beq

Multi-Cycle Processor - 3 sw Instruction

- Address computation same as for lw
- Register contents to be written to main memory
- So steps 1, 2 and 3 same as for lw
- Step 4: Register contents to be written into computed memory address

Multi-Cycle Processor - 3 Multicycle Datapath: SW

Write data in rt to memory

Multi-Cycle Processor - 3 R-type Instruction

- Step 1 (fetch): Same as for lw
- Step 2: Similar to lw
- Step 3: Write ALU output into destination register

Multi-Cycle Processor - 3 Multicycle Datapath: R-Type

PES UNIVERSITY ONLINE

- Read from rs and rt
- Write *ALUResult* to register file
- Write to rd (instead of rt)

Multi-Cycle Processor - 3 beq Instruction

- Step 1: Fetch
- Step 2: Compare register contents
- Step 3: Change PC contents (if registers equal)

Multi-Cycle Processor - 3 Multicycle Datapath: beq

- rs == rt?
- BTA = (sign-extended immediate << 2) + (PC+4)

Multi-Cycle Processor - 3 Multicycle Processor

Multi-Cycle Processor - 3 Multicycle Control

