Тематическое моделирование

Сергей Николенко

DataFest², 6 марта 2016 г.

Outline

- 1 От наивного байеса к topic modeling
 - Naive Bayes
 - pLSA
- Тематическое моделирование
 - LDA
 - Расширения LDA

Категоризация текстов

- Классическая задача машинного обучения и information retrieval – категоризация текстов.
- Дан набор текстов, разделённый на категории. Нужно обучить модель и потом уметь категоризовать новые тексты.
- Атрибуты w_1, w_2, \ldots, w_n это слова, v тема текста (или атрибут вроде «спам / не спам»).
- Bag-of-words model: забываем про порядок слов, составляем словарь. Теперь документ – это вектор, показывающий, сколько раз каждое слово из словаря в нём встречается.

Naive Bayes

- Заметим, что даже это сильно упрощённый взгляд: для слов ещё довольно-таки важен порядок, в котором они идут...
- Но и это ещё не всё: получается, что $p(w_1, w_2, ..., w_n | x = v)$ это вероятность в точности такого набора слов в сообщениях на разные темы. Очевидно, такой статистики взять неоткуда.
- Значит, надо дальше делать упрощающие предположения.
- Наивный байесовский классификатор самая простая такая модель: давайте предположим, что все слова в словаре условно независимы при условии данной категории.

Naive Bayes

Иначе говоря:

$$p(w_1, w_2, ..., w_n | x = v) = p(w_1 | x = v) p(w_2 | x = v) ... p(w_n | x = v).$$

ullet Итак, наивный байесовский классификатор выбирает v как

$$v_{NB}(w_1, w_2, \dots, w_n) = \arg\max_{v \in V} p(x = v) \prod_{i=1}^{n} p(w_i | x = v).$$

 В парадигме классификации текстов мы предполагаем, что разные слова в тексте на одну и ту же тему появляются независимо друг от друга. Однако, несмотря на такие бредовые предположения, naive Bayes на практике работает очень даже неплохо (и этому есть разумные объяснения).

Naive Bayes: графическая модель

Как можно обобщить наивный байес

- В наивном байесе есть два сильно упрощающих дело предположения:
 - мы знаем метки тем всех документов;
 - у каждого документа только одна тема.
- Мы сейчас уберём оба эти ограничения.
- Во-первых, что можно сделать, если мы не знаем метки тем, т.е. если датасет неразмеченный?

Кластеризация

- Тогда это превращается в задачу кластеризации.
- Её можно решать EM-алгоритмом (Expectation-Maximization, используется в ситуациях, когда есть много скрытых переменных, причём если бы мы их знали, модель стала бы простой):
 - на Е-шаге считаем ожидания того, какой документ какой теме принадлежит;
 - на М-шаге пересчитываем наивным байесом вероятности $p(w \mid t)$ при фиксированных метках.
- Это простое обобщение.

Как ещё можно обобщить наивный байес

- А ещё в наивном байесе у документа только одна тема.
- Но это же не так! На самом деле документ говорит о многих темах (но не слишком многих).
- Давайте попробуем это учесть.

- Рассмотрим такую модель:
 - каждое слово в документе d порождается некоторой темой $t \in \mathcal{T}$;
 - документ порождается некоторым распределением на темах $p(t \mid d)$;
 - ullet слово порождается именно темой, а не документом: $p(w \mid d, t) = p(w \mid d);$
 - итого получается такая функция правдоподобия:

$$p(w \mid d) = \sum_{t \in T} p(w \mid t) p(t \mid d).$$

 Эта модель называется probabilistic latent semantic analysis, pLSA (Hoffmann, 1999).

pLSA: графическая модель документа

- Как её обучать? Мы можем оценить $p(w \mid d) = \frac{n_{wd}}{n_d}$, а нужно найти:
 - $\bullet \ \phi_{wt} = p(w \mid t);$
 - $\bullet \ \theta_{td} = p(t \mid d).$
- Максимизируем правдоподобие

$$p(D) = \prod_{d \in D} \prod_{w \in d} p(d, w)^{n_{dw}} = \prod_{d \in D} \prod_{w \in d} \left[\sum_{t \in T} p(w \mid t) p(t \mid d) \right]^{n_{dw}}.$$

• Как максимизировать такие правдоподобия?

• ЕМ-алгоритмом. На Е-шаге ищем, сколько слов w в документе d из темы t:

$$n_{dwt} = n_{dw}p(t \mid d, w) = n_{dw} \frac{\Phi_{wt}\theta_{td}}{\sum_{s \in T} \Phi_{ws}\theta_{sd}}.$$

• А на М-шаге пересчитываем параметры модели:

$$n_{wt} = \sum_{d} n_{dwt}, \quad n_t = \sum_{w} n_{wt}, \quad \phi_{wt} = \frac{n_{wt}}{n_t},$$

$$n_{td} = \sum_{w \in d} n_{dwt}, \quad \theta_{td} = \frac{n_{td}}{n_d}.$$

• Вот и весь вывод в pLSA.

- Можно даже не хранить всю матрицу n_{dwt} , а двигаться по документам, каждый раз добавляя n_{dwt} сразу к счётчикам n_{wt} , n_{td} .
- Чего тут не хватает?
 - Во-первых, разложение такое, конечно, будет сильно не единственным.
 - Во-вторых, параметров очень много, явно будет оверфиттинг, если корпус не на порядки больше числа тем.
 - А совсем хорошо было бы получать не просто устойчивое решение, а обладающее какими-нибудь заданными хорошими свойствами.
- Всё это мы можем решить как?

- Правильно, регуляризацией. Есть целая наука о разных регуляризаторах для pLSA (К.В. Воронцов).
- В общем виде так: добавим регуляризаторы R_i в логарифм правдоподобия:

$$\sum_{d \in D} \sum_{w \in d} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} + \sum_{i} \tau_{i} R_{i}(\Phi, \Theta).$$

• Тогда в ЕМ-алгоритме на М-шаге появятся частные производные R:

$$n_{wt} = \left[\sum_{d \in D} n_{dwt} + \phi_{wt} \frac{\partial R}{\partial \phi_{wt}} \right]_{+},$$

$$n_{td} = \left[\sum_{w \in d} n_{dwt} + \theta_{td} \frac{\partial R}{\partial \theta_{td}} \right]_{+}$$

• Чтобы доказать, EM надо рассмотреть как решение задачи оптимизации через условия Каруша-Куна-Такера.

- И теперь мы можем кучу разных регуляризаторов вставить в эту модель:
 - регуляризатор сглаживания (позже, это примерно как LDA);
 - регуляризатор разреживания: максимизируем KL-расстояние между распределениями ϕ_{wt} и θ_{td} и равномерным распределением;
 - регуляризатор контрастирования: минимизируем ковариации между векторами ϕ_t , чтобы в каждой теме выделилось своё лексическое ядро (характерные слова);
 - регуляризатор когерентности: будем награждать за слова, которые в документах стоят ближе друг к другу;
 - и так далее, много всего можно придумать.

LDA Расширения LDA

Outline

- - Naive Bayes
 - pLSA
- Тематическое моделирование
 - LDA
 - Расширения LDA

LDA

- Развитие идей pLSA LDA (Latent Dirichlet Allocation), фактически байесовский вариант pLSA.
- Задача та же: смоделировать большую коллекцию текстов (например, для information retrieval или классификации).
- У одного документа может быть несколько тем. Давайте построим иерархическую байесовскую модель:
 - на первом уровне смесь, компоненты которой соответствуют «темам»;
 - на втором уровне мультиномиальная переменная с априорным распределением Дирихле, которое задаёт «распределение тем» в документе.

LDA

- Если формально: слова берутся из словаря $\{1,\ldots,V\}$; слово это вектор $w,\ w_i\in\{0,1\}$, где ровно одна компонента равна 1.
- ullet Документ последовательность из N слов w. Нам дан корпус из M документов $\mathcal{D} = \{ w_d \mid d = 1..M \}$.
- Генеративная модель LDA выглядит так:
 - выбрать $\theta \sim \mathrm{Di}(\alpha)$;
 - для каждого из N слов w_n :
 - выбрать тему $z_n \sim \operatorname{Mult}(\theta)$;
 - выбрать слово $w_n \sim p(w_n \mid z_n, \beta)$ по мультиномиальному распределению.

LDA: графическая модель

LDA: что получается [Blei, 2012]

LDA

Расширения LDA

LDA: вывод

- Два основных подхода к выводу в сложных вероятностных моделях, в том числе LDA:
 - вариационные приближения: рассмотрим более простое семейство распределений с новыми параметрами и найдём в нём наилучшее приближение к неизвестному распределению;
 - сэмплирование: будем набрасывать точки из сложного распределения, не считая его явно, а запуская марковскую цепь под графиком распределения (частный случай сэмплирование по Гиббсу).
- Сэмплирование по Гиббсу обычно проще расширить на новые модификации LDA, но вариационный подход быстрее и часто стабильнее.

Варианты и расширения модели LDA

- В последние десять лет эта модель стала основой для множества различных расширений.
- Каждое из этих расширений содержит либо вариационный алгоритм вывода, либо алгоритм сэмплирования по Гиббсу для модели, которая, основываясь на LDA, включает в себя ещё и какую-либо дополнительную информацию или дополнительные предполагаемые зависимости.
- Обычно или дополнительная структура на темах, или дополнительная информация.

Коррелированные тематические модели

- В базовой модели LDA распределения слов по темам независимы и никак не скоррелированы; однако на самом деле, конечно, некоторые темы ближе друг к другу, многие темы делят между собой слова.
- Коррелированные тематические модели (correlated topic models, CTM) меняем априорное распределение на более выразительное, которое может моделировать корреляции.
- Предлагается алгоритм вывода, основанный на вариационном приближении.

Марковские тематические модели

- Марковские тематические модели (Markov topic models, MTM): марковские случайные поля для моделирования взаимоотношений между темами в разных частях датасета (разных корпусах текстов).
- Несколько копий гиперпараметров β_i в LDA, описывающих параметры разных корпусов с одними и теми же темами. Гиперпараметры β_i связаны между собой в марковском случайном поле (Markov random field, MRF).

Марковские тематические модели

В результате тексты из i-го корпуса порождаются как в обычном LDA, используя соответствующее β_i . В свою очередь, β_i подчиняются априорным ограничениям, которые позволяют «делить» темы между корпусами, задавать «фоновые» темы, присутствующие во всех корпусах, накладывать ограничения на взаимоотношения между темами и т.д.

Реляционная тематическая модель

- Реляционная тематическая модель (relational topic model, RTM) – иерархическая модель, в которой отражён граф структуры сети документов.
- Генеративный процесс в RTM работает так:
 - сгенерировать документы из обычной модели LDA;
 - для каждой пары документов d_1 , d_2 выбрать бинарную переменную y_{12} , отражающую наличие связи между d_1 и *d*₂:

$$y_{12} \mid \mathbf{z}_{d_1}, \mathbf{z}_{d_2} \sim \psi(\cdot \mid \mathbf{z}_{d_1}, \mathbf{z}_{d_2}, \eta).$$

• В качестве ψ берутся разные сигмоидальные функции; разработан алгоритм вывода, основанный на вариационном приближении.

Модели, учитывающие время

- Ряд важных расширений LDA касается учёта трендов, т.е. изменений в распределениях тем, происходящих со временем.
- Цель учёт времени, анализ «горячих» тем, анализ того, какие темы быстро становятся «горячими» и столь же быстро затухают, а какие проходят «красной нитью» через весь исследуемый временной интервал.

LDA

Расширения LDA

- В модели ТОТ (Topics over Time) время предполагается непрерывным, и модель дополняется бета-распределениями, порождающими временные метки (timestamps) для каждого слова.
- Генеративная модель модели Topics over Time такова:
 - для каждой темы z=1..T выбрать мультиномиальное распределение ϕ_z из априорного распределения Дирихле β ;
 - для каждого документа d выбрать мультиномиальное распределение θ_d из априорного распределения Дирихле α , затем для каждого слова $w_{di} \in d$:
 - выбрать тему z_{di} из θ_d ;
 - выбрать слово w_{di} из распределения $\phi_{z_{di}}$;
 - ullet выбрать время t_{di} из бета-распределения $\psi_{z_{di}}$.

Topics over Time

- Основная идея заключается в том, что каждой теме соответствует её бета-распределение ψ_z , т.е. каждая тема локализована во времени (сильнее или слабее, в зависимости от параметров ψ_z).
- Таким образом можно как обучить глобальные темы, которые всегда присутствуют, так и подхватить тему, которая вызвала сильный краткий всплеск, а затем пропала из виду; разница будет в том, что дисперсия ψ_Z будет в первом случае меньше, чем во втором.

LDA

Topics over Time

Динамические тематические модели

- Динамические тематические модели представляют временную эволюцию тем через эволюцию их гиперпараметров α и/или β .
- Бывают дискретные ([d]DTM), в которых время дискретно, и непрерывные, где эволюция гиперпараметра β (α здесь предполагается постоянным) моделируется посредством броуновского движения: для двух документов і и j (j позже i) верно, что

$$\beta_{j,k,w} \mid \beta_{i,k,w}, s_i, s_j \sim \mathcal{N}(\beta_{i,k,w}, v\Delta_{s_i,s_j}),$$

где s_i и s_j — это отметки времени (timestamps) документов i и j, $\Delta(s_i,s_j)$ — интервал времени, прошедший между ними, v — параметр модели.

• В остальном генеративный процесс остаётся неизменным.

Непрерывная динамическая тематическая модель (cDTM)

LDA

Расширения LDA

DiscLDA

- Дискриминативное LDA (DiscLDA), расширение модели LDA для документов, снабжённых категориальной переменной у, которая в дальнейшем станет предметом для классификации.
- Для каждой метки класса у в модели DiscLDA вводится линейное преобразование $T^y: \mathbb{R}^K o \mathbb{R}^L_+$, которое преобразует K-мерное распределение Дирихле θ в смесь L-мерных распределений Дирихле $T^y\theta$.
- В генеративной модели меняется только шаг порождения темы документа z: вместо того чтобы выбирать z по распределению θ , сгенерированному для данного документа,
 - \bullet сгенерировать тему z по распределению $T^y\theta$, где T^y преобразование, соответствующее метке данного документа у.

LDA

Расширения LDA

DiscLDA

I DA

Расширения LDA

TagLDA

- TagLDA: слова имеют теги, т.е. документ не является единым мешком слов, а состоит из нескольких мешков, и в разных мешках слова отличаются друг от друга.
- Например, у страницы может быть название слова из названия важнее для определения темы, чем просто из текста. Или, например, теги к странице, поставленные человеком – опять же, это слова гораздо более важные, чем слова из текста.
- Математически разница в том, что теперь распределения слов в темах – это не просто мультиномиальные дискретные распределения, они факторизованы на распределение слово-тема и распределение слово-тег.

TagLDA

I DA

Расширения LDA

Author-Topic model

- Author-Topic modeling: кроме собственно текстов, присутствуют их авторы.
- У автора тоже вводится распределение на темах, на которые он пишет, и тексты автора будут скорее о более вероятных для него темах.
- Т.е. это всё же скорее об авторах научных статей, чем об атрибуции текстов (там другие методы).

Author-Topic model

Базовая генеративная модель Author-Topic model (остальное как в базовом LDA):

- для каждого слова w:
 - выбираем автора x для этого слова из множества авторов документа a_d ;
 - выбираем тему из распределения на темах, соответствующего автору *x*;
 - выбираем слово из распределения слов, соответствующего этой теме

I DA

Расширения LDA

LDA для sentiment analysis

- LDA для sentiment analysis: можно ли выделить из, например, обзоров продуктов разные темы (аспекты): например, для отеля – место, качество обслуживания, еда, комнаты и т.п.
- К этому ещё добавляется, что разные слова в разных аспектах могут нести разную нагрузку.
- Здесь есть несколько расширений LDA.

Расширения LDA

Joint Sentiment-Topic model (JST):

- тема зависит от сентимента;
- сентимент берётся из распределений сентимента π_d ;
- у слов тоже есть метки сентимента λ;
- а слова в документах зависят от пар «тема-сентимент».

ASUM

Aspect and Sentiment Unification Model (ASUM): примерно то же, что JST, но делим обзор на предложения и предполагаем, что одно предложение всегда говорит об одном аспекте (SentenceLDA).

USTM

User-aware Sentiment Topic Model (USTM): а теперь добавим данные о конкретном пользователе, выраженные как теги документов a_j , взятые из соответствующих распределений ψ_d .

Наши последние результаты

- Все эти модели для определения окрашенных слов модифицируют их априорные распределения β , т.е. фактически подставляют готовый словарь окрашенных слов.
- Но на практике не всегда словарь по данному аспекту есть, а когда есть, его всё равно неплохо бы расширить.
- Поэтому идея такая:
 - инициализируем β по имеющемуся словарю;
 - ЕМ-схема повторяем до сходимости:
 - немножко обучаем тематическую модель с фиксированными В:
 - переобучаем β по обучившимся темам.

SVD-LDA

- LDA для рекомендательных систем: как нам рекомендовать тексты?
- Можно просто обучить темы и построить «профили интересов».
- Но можно и лучше: можно обучить темы так, чтобы темы лучше соответствовали тому, что мы хотим рекомендовать.
- Это делается при помощи варианта модели Supervised LDA.

Supervised LDA

- Supervised LDA: документы снабжены дополнительной информацией, дополнительной переменной отклика (обычно известной).
- Распределение отклика моделируется обобщённой линейной моделью (распределением из экспоненциального семейства), параметры которой связаны с полученным в документе распределением тем.
- Т.е. в генеративную модель добавляется ещё один шаг: после того как темы всех слов известны,
 - сгенерировать переменную-отклик $y \sim \mathrm{glm}(\mathbf{z}, \eta, \delta)$, где \mathbf{z} распределение тем в документе, а η и δ другие параметры glm .
- К примеру, в контексте рекомендательных систем дополнительный отклик может быть реакцией пользователя.

SVD-LDA

 В качестве связей можно представить себе SVD. Но фактор получается слишком сложный, для каждого сэмпла нужно бегать по всему рекомендательному датасету. Мы разработали приближённую схему сэмплирования.

TwitterLDA

- TwitterLDA тематическая модель для коротких текстов.
- Вряд ли один твит может содержать сразу много разных тем.
- Но при этом у твитов есть авторы, и у авторов-то уже есть любимые темы.
- Поэтому TwitterLDA устроен так:
 - распределение θ не у текста, а у автора;
 - из него сэмплируется тема сразу на весь твит;
 - и потом из этой темы сэмплируются все слова.
- Похоже на SentenceLDA.

I DA

Расширения LDA

- Совсем недавние работы как скрестить topic modeling и deep learning?
- Одна идея изменить понятие темы:
 - раньше было мультиномиальное распределение, и все слова были независимы;
 - теперь пусть будет распределение в семантическом пространстве word2vec;
 - в [Sridhar, 2015] тема это смесь гауссианов в семантическом пространстве.

Neural topic models

- Другая идея neural topic models [Cao et al., 2015]:
 - рассмотрим базовое уравнение тематических моделей $p(w \mid d) = \sum_t p(w \mid t) p(t \mid d) = \phi(w)^\top \theta(d);$
 - ullet и представим ullet(w) и ullet(d) нейронными сетями:

Neural Topic Model

Supervised Extension

Выводы

- Тематические модели берут на вход корпус текстов и без учителя обучают распределения слов в темах и тем в документах.
- Фактически получается сжатое представление матрицы слова×документы как произведение матриц слова×темы и темы×документы.
- Можно просто обучить стандартный LDA и потом темы использовать для ваших целей как features, как сжатое представление текстов.
- А можно использовать одно из многочисленных расширений LDA, которое, теоретически :), должно работать лучше.

Thank you!

Thank you for your attention!

I DA

Расширения LDA

Многомерная модель

- Но есть одна тонкость в деталях реализации наивного байесовского классификатора.
- Сейчас мы рассмотрим два разных подхода к naive Bayes, которые дают разные результаты: мультиномиальный (multinomial) и многомерный (multivariate).

I DA

Расширения LDA

Многомерная модель

- В многомерной модели документ это вектор бинарных атрибутов, показывающих, встретилось ли в документе то или иное слово.
- Когда мы подсчитываем правдоподобие документа, мы перемножаем вероятности того, что встретилось каждое слово из документа и вероятности того, что не встретилось каждое (словарное) слово, которое не встретилось.
- Получается модель многомерных испытаний Бернулли.
 Наивное предположение в том, что события «встретилось ли слово» предполагаются независимыми.

Расширения LDA

Многомерная модель

- Математически: пусть $V = \{w_t\}_{t=1}^{|V|}$ словарь. Тогда документ d_i – это вектор длины |V|, состоящий из битов B_{it} ; $B_{it} = 1$ iff слово w_t встречается в документе d_i .
- Правдоподобие принадлежности d_i классу c_i :

$$p(d_i \mid c_j) = \prod_{t=1}^{|V|} (B_{it}p(w_t \mid c_j) + (1 - B_{it})(1 - p(w_t \mid c_j))).$$

• Для обучения такого классификатора нужно обучить вероятности $p(w_t \mid c_i)$.

Многомерная модель

- Обучение дело нехитрое: пусть дан набор документов $D = \{d_i\}_{i=1}^{|D|}$, которые уже распределены по классам c_j (возможно, даже вероятностно распределены), дан словарь $V = \{w_t\}_{t=1}^{|V|}$, и мы знаем биты B_{it} (знаем документы).
- Тогда можно подсчитать оптимальные оценки вероятностей того, что то или иное слово встречается в том или ином классе (при помощи лапласовой оценки):

$$p(w_t \mid c_j) = \frac{1 + \sum_{i=1}^{|D|} B_{it} p(c_j \mid d_i)}{2 + \sum_{i=1}^{|D|} p(c_j \mid d_i)}.$$

Многомерная модель

- Априорные вероятности классов можно подсчитать как $p(c_j) = \frac{1}{|D|} \sum_{i=1}^{|D|} p(c_j \mid d_i).$
- Тогда классификация будет происходить как

$$\begin{split} c &= \arg\max_{j} p(c_{j}) p(d_{i} \mid c_{j}) = \\ &= \arg\max_{j} \left(\frac{1}{|D|} \sum_{i=1}^{|D|} p(c_{j} \mid d_{i}) \right) \prod_{t=1}^{|V|} (B_{it} p(w_{t} \mid c_{j}) + (1 - B_{it})(1 - p(w_{t} \mid c_{j}))) = \\ &= \arg\max_{j} \left(\log(\sum_{i=1}^{|D|} p(c_{j} \mid d_{i})) + \sum_{t=1}^{|V|} \log(B_{it} p(w_{t} \mid c_{j}) + (1 - B_{it})(1 - p(w_{t} \mid c_{j})) \right) = \\ &= \arg\max_{j} \left(\log(\sum_{i=1}^{|D|} p(c_{j} \mid d_{i})) + \sum_{t=1}^{|V|} \log(B_{it} p(w_{t} \mid c_{j}) + (1 - B_{it})(1 - p(w_{t} \mid c_{j})) \right) = \\ &= \arg\max_{j} \left(\log(\sum_{i=1}^{|D|} p(c_{j} \mid d_{i})) + \sum_{t=1}^{|V|} \log(B_{it} p(w_{t} \mid c_{j}) + (1 - B_{it})(1 - p(w_{t} \mid c_{j})) \right) = \\ &= \arg\max_{j} \left(\log(\sum_{i=1}^{|D|} p(c_{j} \mid d_{i})) + \sum_{t=1}^{|V|} \log(B_{it} p(w_{t} \mid c_{j})) + (1 - B_{it})(1 - p(w_{t} \mid c_{j})) \right) = \\ &= \arg\max_{j} \left(\log(\sum_{i=1}^{|D|} p(c_{j} \mid d_{i})) + \sum_{t=1}^{|V|} \log(B_{it} p(w_{t} \mid c_{j})) + (1 - B_{it})(1 - p(w_{t} \mid c_{j})) \right) = \\ &= \arg\max_{j} \left(\log(\sum_{i=1}^{|D|} p(c_{j} \mid d_{i})) + \sum_{t=1}^{|V|} \log(B_{it} p(w_{t} \mid c_{j})) + (1 - B_{it})(1 - p(w_{t} \mid c_{j})) \right) = \\ &= \arg\max_{j} \left(\log(\sum_{i=1}^{|D|} p(c_{j} \mid d_{i})) + \sum_{t=1}^{|V|} \log(B_{it} p(w_{t} \mid c_{j})) + (1 - B_{it})(1 - p(w_{t} \mid c_{j})) \right) \right) = \\ &= \arg\max_{j} \left(\log(\sum_{i=1}^{|D|} p(c_{j} \mid d_{i})) + \sum_{t=1}^{|V|} \log(B_{it} p(w_{t} \mid c_{j})) + (1 - B_{it})(1 - p(w_{t} \mid c_{j})) \right) \right)$$

- В мультиномиальной модели документ это последовательность событий. Каждое событие – это случайный выбор одного слова из того самого «bag of words».
- Когда мы подсчитываем правдоподобие документа, мы перемножаем вероятности того, что мы достали из мешка те самые слова, которые встретились в документе.
 Наивное предположение в том, что мы достаём из мешка разные слова независимо друг от друга.
- Получается мультиномиальная генеративная модель, которая учитывает количество повторений каждого слова, но не учитывает, каких слов *нет* в документе.

- Математически: пусть $V = \{w_t\}_{t=1}^{|V|}$ словарь. Тогда документ d_i это вектор длины $|d_i|$, состоящий из слов, каждое из которых «вынуто» из словаря с вероятностью $p(w_t \mid c_j)$.
- Правдоподобие принадлежности d_i классу c_j :

$$p(d_i \mid c_j) = p(|d_i|)|d_i|! \prod_{t=1}^{|V|} \frac{1}{N_{it}!} p(w_t \mid c_j)^{N_{it}},$$

где N_{it} – количество вхождений w_t в d_i .

• Для обучения такого классификатора тоже нужно обучить вероятности $p(w_t \mid c_i)$.

- Обучение: пусть дан набор документов $D = \{d_i\}_{i=1}^{|D|}$, которые уже распределены по классам c_j (возможно, даже вероятностно распределены), дан словарь $V = \{w_t\}_{t=1}^{|V|}$, и мы знаем вхождения N_{it} .
- Тогда можно подсчитать апостериорные оценки вероятностей того, что то или иное слово встречается в том или ином классе (не забываем сглаживание – правило Лапласа):

$$p(w_t \mid c_j) = \frac{1 + \sum_{i=1}^{|D|} N_{it} p(c_j \mid d_i)}{|V| + \sum_{s=1}^{|V|} \sum_{i=1}^{|D|} N_{is} p(c_j \mid d_i)}.$$

- Априорные вероятности классов можно подсчитать как $p(c_j) = \frac{1}{|D|} \sum_{i=1}^{|D|} p(c_j \mid d_i).$
- Тогда классификация будет происходить как

$$\begin{split} c &= \arg \max_{j} p(c_{j}) p(d_{i} \mid c_{j}) = \\ &= \arg \max_{j} \left(\frac{1}{|D|} \sum_{i=1}^{|D|} p(c_{j} \mid d_{i}) \right) p(|d_{i}|) |d_{i}|! \prod_{t=1}^{|V|} \frac{1}{N_{it}!} p(w_{t} \mid c_{j})^{N_{it}} = \\ &= \arg \max_{j} \left(\log \left(\sum_{i=1}^{|D|} p(c_{j} \mid d_{i}) \right) + \sum_{t=1}^{|V|} N_{it} \log p(w_{t} \mid c_{j}) \right). \end{split}$$

- Мы пока для простоты фиксируем число тем k, считаем, что β это просто набор параметров $\beta_{ij} = p(w^j = 1 \mid z^i = 1)$, которые нужно оценить, и не беспокоимся о распределении на N.
- Совместное распределение тогда выглядит так:

$$p(\theta, z, w, N \mid \alpha, \beta) = p(N \mid \xi)p(\theta \mid \alpha) \prod_{n=1}^{N} p(z_n \mid \theta)p(w_n \mid z_n, \beta).$$

 В отличие от обычной кластеризации с априорным распределением Дирихле, мы тут не выбираем кластер один раз, а затем накидываем слова из этого кластера, а для каждого слова выбираем по распределению θ, по какой теме оно будет набросано.

Вывод в LDA

 Рассмотрим задачу байесовского вывода, т.е. оценки апостериорного распределения θ и z после нового документа:

$$p(\theta, z \mid \mathbf{w}, \alpha, \beta) = \frac{p(\theta, z, \mathbf{w} \mid \alpha, \beta)}{p(\mathbf{w} \mid \alpha, \beta)}.$$

ullet Правдоподобие набора слов $oldsymbol{w}$ оценивается как

$$p(\mathbf{w} \mid \alpha, \beta) = \frac{\Gamma(\sum_{i} \alpha_{i})}{\prod_{i} \Gamma(\alpha_{i})} \int \left[\prod_{i=1}^{k} \theta_{i}^{\alpha_{i}-1} \right] \left[\prod_{n=1}^{N} \sum_{i=1}^{k} \prod_{j=1}^{V} (\theta_{i} \beta_{ij})^{w_{n}^{j}} \right] d\theta,$$

и это трудно посчитать, потому что θ и β путаются друг с другом.

I DA

Расширения LDA

Вывод в LDA

 Вариационное приближение – рассмотрим семейство распределений

$$q(\theta, z \mid \boldsymbol{w}, \gamma, \phi) = p(\theta \mid \boldsymbol{w}, \gamma) \prod_{n=1}^{N} p(z_n \mid \boldsymbol{w}, \phi_n).$$

- Тут всё расщепляется, и мы добавили вариационные параметры γ (Дирихле) и ϕ (мультиномиальный).
- Заметим, что параметры для каждого документа могут быть свои всё условно по **w**.

LDA: вариационное приближение

LDA: вариационный вывод

• Теперь можно искать минимум KL-расстояния:

$$(\gamma^*, \varphi^*) = \arg\min_{(\gamma, \varphi)} \mathrm{KL}(q(\theta, z \mid \textit{\textbf{w}}, \gamma \varphi) \| \textit{\textbf{p}}(\theta, \textit{\textbf{z}} \mid \textit{\textbf{w}}, \alpha, \beta)).$$

 Для этого сначала воспользуемся уже известной оценкой из неравенства Йенсена:

$$\log p(\mathbf{w} \mid \alpha, \beta) = \log \int_{\theta} \sum_{\mathbf{z}} p(\theta, \mathbf{z}, \mathbf{w} \mid \alpha, \beta) d\theta =$$

$$= \log \int_{\theta} \sum_{\mathbf{z}} \frac{p(\theta, \mathbf{z}, \mathbf{w} \mid \alpha, \beta) q(\theta, \mathbf{z})}{q(\theta, \mathbf{z})} d\theta \ge$$

$$\geq E_{q} [\log p(\theta, \mathbf{z}, \mathbf{w} \mid \alpha, \beta)] - E_{q} [\log q(\theta, \mathbf{z})] =: \mathcal{L}(\gamma, \phi; \alpha, \beta).$$

Расширения LDA

LDA: вариационный вывод

• Распишем произведения:

$$\mathcal{L}(\gamma, \phi; \alpha, \beta) = E_q [p(\theta \mid \alpha)] + E_q [p(z \mid \theta)] + E_q [p(w \mid z, \beta)] - E_q [\log q(\theta)] - E_q [\log q(z)].$$

ullet Свойство распределения Дирихле: если $X\sim {
m Di}(lpha)$, то

$$E[\log(X_i)] = \Psi(\alpha_i) - \Psi(\sum_i \alpha_i),$$

где
$$\Psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$
 – дигамма-функция.

• Теперь можно выписать каждый из пяти членов.

Расширения LDA

LDA: вариационный вывод

$$\begin{split} \mathcal{L}(\gamma, \varphi; \alpha, \beta) &= \log \Gamma(\sum_{i=1}^k \alpha_i) - \sum_{i=1}^k \log \Gamma(\alpha_i) + \sum_{i=1}^k (\alpha_i - 1) \left[\Psi(\gamma_i) - \Psi\left(\sum_{j=1}^k \gamma_j\right) \right] + \\ &+ \sum_{n=1}^N \sum_{i=1}^k \varphi_{ni} \left[\Psi(\gamma_i) - \Psi\left(\sum_{j=1}^k \gamma_j\right) \right] + \\ &+ \sum_{n=1}^N \sum_{i=1}^k \sum_{j=1}^V w_n^j \varphi_{ni} \log \beta_{ij} - \\ &- \log \Gamma(\sum_{i=1}^k \gamma_i) + \sum_{i=1}^k \log \Gamma(\gamma_i) - \sum_{i=1}^k (\gamma_i - 1) \left[\Psi(\gamma_i) - \Psi\left(\sum_{j=1}^k \gamma_j\right) \right] - \\ &- \sum_{n=1}^N \sum_{i=1}^k \varphi_{ni} \log \varphi_{ni}. \end{split}$$

Расширения LDA

LDA: вариационный вывод

- Теперь осталось только брать частные производные этого выражения.
- Сначала максимизируем его по ϕ_{ni} (вероятность того, что n-е слово было порождено темой i); надо добавить λ -множители Лагранжа, т.к. $\sum_{j=1}^k \phi_{nj} = 1$.
- В итоге получится:

$$\phi_{ni} \propto \beta_{i\nu} e^{\Psi(\gamma_i) - \Psi\left(\sum_{j=1}^k \gamma_j\right)},$$

где v – номер того самого слова, т.е. единственная компонента $w_n^v=1$.

LDA: вариационный вывод

- Потом максимизируем по γ_i , *i*-й компоненте апостериорного Дирихле-параметра.
- Получится

$$\gamma_i = \alpha_i + \sum_{n=1}^N \phi_{ni}.$$

- Соответственно, для вывода нужно просто пересчитывать ϕ_{ni} и γ_i друг через друга, пока оценка не сойдётся.
- Фактически мы получили алгоритм вывода pLSA с неким видом регуляризатора (как раз сглаживающим байесовским).

LDA: оценка параметров

- Теперь давайте попробуем оценить параметры α и β по корпусу документов \mathcal{D} .
- ullet Мы хотим найти lpha и eta, которые максимизируют

$$\ell(\alpha, \beta) = \sum_{d=1}^{M} \log p(\mathbf{w}_d \mid \alpha, \beta).$$

• Подсчитать $p(w_d \mid \alpha, \beta)$ мы не можем, но у нас есть нижняя оценка $\mathcal{L}(\gamma, \phi; \alpha, \beta)$, т.к.

$$p(\mathbf{w}_d \mid \alpha, \beta) =$$

$$= \mathcal{L}(\gamma, \phi; \alpha, \beta) + \text{KL}(q(\theta, z \mid \mathbf{w}_d, \gamma \phi) || p(\theta, z \mid \mathbf{w}_d, \alpha, \beta)).$$

LDA: оценка параметров

- ЕМ-алгоритм:
 - **1** найти параметры $\{\gamma_d, \varphi_d \mid d \in \mathcal{D}\}$, которые оптимизируют оценку (как выше);
 - **2** зафиксировать их и оптимизировать оценку по α и β .

LDA: оценка параметров

• Для β это тоже делается нехитро:

$$\beta_{ij} \propto \sum_{d=1}^{M} \sum_{n=1}^{N_d} \Phi_{dni} w_n^j.$$

• Для α_i получается система уравнений, которую можно решить методом Ньютона.

- Теперь давайте попробуем другим методом, который мы знаем: сэмплированием по Гиббсу.
- В случае LDA сэмплирование получается совсем простое и относительно быстрое, но чтобы его получить, надо немножко постараться.
- Дело в том, что некоторые переменные можно будет сразу проинтегрировать.

• Правдоподобие датасета:

$$p(\mathbf{w}, \mathbf{z}, \mathbf{\theta}, \mathbf{\phi} \mid \alpha, \beta) =$$

$$= p(\mathbf{\phi} \mid \beta)p(\mathbf{\theta} \mid \alpha)p(\mathbf{z} \mid \mathbf{\theta})p(\mathbf{w} \mid \mathbf{z}, \mathbf{\phi}) =$$

$$= \prod_{t} p(\mathbf{\phi}_{t} \mid \beta) \prod_{d} p(\mathbf{\theta}_{d} \mid \alpha) \prod_{d} \prod_{w \in d} p(\mathbf{z}_{w} \mid \mathbf{\theta}_{d}) \prod_{d} \prod_{w \in d} p(\mathbf{w} \mid \mathbf{\phi}_{\mathbf{z}_{w}}).$$

• Обозначим через n_{tdw} то, сколько раз слово w в документе d принадлежит теме t; соответственно n_{t*w} , n_{td*} и так далее.

• Для сэмплирования по Гиббсу надо посчитать

$$p(z_{w} \mid z_{-w}, w \mid \alpha, \beta) \propto p(z_{w}, z_{-w}, w, \mid \alpha, \beta) = p(z, w \mid \alpha, \beta) =$$

$$= \iint p(w, z, \theta, \phi \mid \alpha, \beta) d\theta d\phi =$$

$$= \iint p(\phi \mid \beta) p(\theta \mid \alpha) p(z \mid \theta) p(w \mid z, \phi) d\theta d\phi =$$

$$= \iint p(z \mid \theta) p(\theta \mid \alpha) d\theta \times \int p(\phi \mid \beta) p(w \mid z, \phi) d\phi =$$

$$= \iint p(\theta_{d} \mid \alpha) \prod_{d} \prod_{w \in d} p(z_{w} \mid \theta_{d}) d\theta \times$$

$$\times \iiint_{t} p(\phi_{t} \mid \beta) \prod_{d} \prod_{w \in d} p(w \mid \phi_{z_{w}}) d\phi.$$

• И дальше можно разбить интегралы:

$$\bullet \dots = \int \prod_{d} p(\theta_{d} \mid \alpha) \prod_{d} \prod_{w \in d} p(z_{w} \mid \theta_{d}) d\theta \times$$

$$\int \prod_{t} p(\phi_{t} \mid \beta) \prod_{d} \prod_{w \in d} p(w \mid \phi_{z_{w}}) d\phi =$$

$$= \prod_{d} \int p(\theta_{d} \mid \alpha) \prod_{d} \prod_{w \in d} p(z_{w} \mid \theta_{d}) d\theta_{d} \times$$

$$\times \prod_{t} \int p(\phi_{t} \mid \beta) \prod_{d} \prod_{w \in d} p(w \mid \phi_{z_{w}}) d\phi_{t} =$$

$$= \prod_{d} \int \frac{\Gamma(\sum_{t} \alpha_{t})}{\prod_{t} \Gamma(\alpha_{t})} \prod_{t} \theta_{dt}^{\alpha_{k} - 1} \prod_{w \in d} \theta_{dz_{w}} d\theta_{d} \times$$

$$\times \prod_{t} \int \frac{\Gamma(\sum_{w} \beta_{w})}{\prod_{w} \Gamma(\beta_{w})} \prod_{t} \phi_{tw}^{\beta_{w} - 1} \prod_{t} \phi_{tw}^{n_{t*w}} d\phi_{t} = \dots$$

• Теперь соберём степени при θ и φ:

$$\bullet \dots = \prod_{d} \int \frac{\Gamma(\sum_{t} \alpha_{t})}{\prod_{t} \Gamma(\alpha_{t})} \prod_{t} \theta_{dt}^{\alpha_{k}-1} \prod_{w \in d} \theta_{dz_{w}} d\theta_{d} \times \\ \times \prod_{t} \int \frac{\Gamma(\sum_{w} \beta_{w})}{\prod_{w} \Gamma(\beta_{w})} \prod_{w} \phi_{tw}^{\beta_{w}-1} \prod_{w} \phi_{tw}^{n_{t*w}} d\phi_{t} = \\ \prod_{d} \int \frac{\Gamma(\sum_{t} \alpha_{t})}{\prod_{t} \Gamma(\alpha_{t})} \prod_{t} \theta_{dt}^{\alpha_{k}-1} \prod_{t} \theta_{dt}^{n_{td*}} d\theta_{d} \times \\ \times \prod_{t} \int \frac{\Gamma(\sum_{w} \beta_{w})}{\prod_{w} \Gamma(\beta_{w})} \prod_{w} \phi_{tw}^{\beta_{w}-1} \prod_{w} \phi_{tw}^{n_{t*w}} d\phi_{t} = \\ = \prod_{d} \int \frac{\Gamma(\sum_{t} \alpha_{t})}{\prod_{t} \Gamma(\alpha_{t})} \prod_{t} \theta_{dt}^{\alpha_{t}+n_{td*}-1} d\theta_{d} \times \\ \times \prod_{t} \int \frac{\Gamma(\sum_{w} \beta_{w})}{\prod_{w} \Gamma(\beta_{w})} \prod_{w} \phi_{tw}^{\beta_{w}+n_{t*w}-1} d\phi_{t} = \dots$$

• Теперь ключевой момент - можно взять интегралы:

$$\begin{split} & \int \prod_t \theta_{dt}^{\alpha_t + n_{td*} - 1} d\theta_d = \frac{\prod_t \Gamma(n_{td*} + \alpha_t)}{\Gamma(\sum_t n_{td*} + \alpha_t)}, \\ & \int \prod_w \Phi_{tw}^{\beta_w + n_{t*w} - 1} d\Phi_t = \frac{\prod_w \Gamma(n_{t*w} + \beta_w)}{\Gamma(\sum_w n_{t*w} + \beta_w)}. \end{split}$$

• В итоге получается

$$\dots = \prod_{d} \frac{\Gamma(\sum_{t} \alpha_{t})}{\prod_{t} \Gamma(\alpha_{t})} \frac{\prod_{t} \Gamma(n_{td*} + \alpha_{t})}{\Gamma(\sum_{t} n_{td*} + \alpha_{t})} \times$$

$$\times \prod_{t} \frac{\Gamma(\sum_{w} \beta_{w})}{\prod_{w} \Gamma(\beta_{w})} \frac{\prod_{w} \Gamma(n_{t*w} + \beta_{w})}{\Gamma(\sum_{w} n_{t*w} + \beta_{w})} \propto \dots$$

ullet ...выкидываем то, что зависит только от lpha и eta...

$$\ldots \propto \prod_{d} \frac{\prod_{t} \Gamma(n_{td*} + \alpha_{t})}{\Gamma(\sum_{t} n_{td*} + \alpha_{t})} \prod_{t} \frac{\prod_{w} \Gamma(n_{t*w} + \beta_{w})}{\Gamma(\sum_{w} n_{t*w} + \beta_{w})} = \ldots$$

• ...вытаскиваем то, что зависит от текущего сэмпла (a, b) (док-т a, слово b)...

$$\dots \prod_{d \neq a} \frac{\prod_{t} \Gamma(n_{td*} + \alpha_{t})}{\Gamma(\sum_{t} n_{td*} + \alpha_{t})} \times \frac{\prod_{t} \Gamma(n_{ta*} + \alpha_{t})}{\Gamma(\sum_{t} n_{ta*} + \alpha_{t})} \times$$

$$\times \prod_{t} \frac{\prod_{w \neq b} \Gamma(n_{t*w} + \beta_{w}) \times \Gamma(n_{t*b} + \beta_{b})}{\Gamma(\sum_{w} n_{t*w} + \beta_{w})} \propto \dots$$

• и удаляем всё, что не зависит от (a,b):

$$\ldots \propto \frac{\prod_t \Gamma(n_{ta*} + \alpha_t)}{\Gamma(\sum_t n_{ta*} + \alpha_t)} \prod_t \frac{\Gamma(n_{t*b} + \beta_b)}{\Gamma(\sum_w n_{t*w} + \beta_w)}.$$

$$\bullet \ldots = \frac{\prod_t \Gamma(n_{ta*} + \alpha_t)}{\Gamma(\sum_t n_{ta*} + \alpha_t)} \prod_t \frac{\Gamma(n_{t*b} + \beta_b)}{\Gamma(\sum_w n_{t*w} + \beta_w)} = \ldots$$

• Теперь выделим из сумм текущий сэмпл; пусть $n_{tdw}^{-(a,b)}$ – это те же счётчики, но за вычетом позиции (a,b). Тогда

$$\dots = \frac{\prod_{t \neq z_{b}} \Gamma(n_{ta*}^{-(a,b)} + \alpha_{t}) \Gamma(n_{z_{b}a*}^{-(a,b)} + \alpha_{z_{b}} + 1)}{\Gamma(1 + \sum_{t} (n_{ta*}^{-(a,b)} + \alpha_{t}))} \times$$

$$\times \prod_{t \neq z_{b}} \frac{\Gamma(n_{t*b}^{-(a,b)} + \beta_{b})}{\Gamma(\sum_{w} n_{t*w} + \beta_{w})} \frac{\Gamma(n_{z_{b}*b}^{-(a,b)} + \beta_{b} + 1)}{\Gamma(1 + \sum_{w} (n_{z_{b}*w}^{-(a,b)} + \beta_{w}))} = \dots$$

• ...и теперь вытащим единички из-под Γ ($\Gamma(x+1) = x\Gamma(x)$), а остальное соберём обратно:

$$\dots = \frac{\prod_{t \neq z_{b}} \Gamma(n_{ta*}^{-(a,b)} + \alpha_{t}) \Gamma(n_{z_{b}a*}^{-(a,b)} + \alpha_{z_{b}}) (n_{z_{b}a*}^{-(a,b)} + \alpha_{z_{b}})}{\Gamma(1 + \sum_{t} (n_{ta*}^{-(a,b)} + \alpha_{t}))} \times$$

$$\times \prod_{t \neq z_{b}} \frac{\Gamma(n_{t*b}^{-(a,b)} + \beta_{b})}{\Gamma(\sum_{w} n_{t*w} + \beta_{w})} \frac{\Gamma(n_{z_{b}*b}^{-(a,b)} + \beta_{b}) (n_{z_{b}*b}^{-(a,b)} + \beta_{b})}{\Gamma(\sum_{w} (n_{z_{b}*w}^{-(a,b)} + \beta_{w})) \sum_{w} (n_{z_{b}*w}^{-(a,b)} + \beta_{w})} =$$

$$= \frac{(n_{z_{b}a*}^{-(a,b)} + \alpha_{z_{b}}) \prod_{t} \Gamma(n_{ta*}^{-(a,b)} + \alpha_{t})}{\Gamma(1 + \sum_{t} (n_{ta*}^{-(a,b)} + \alpha_{t}))} \times$$

$$\times \prod_{t} \frac{\Gamma(n_{t*b}^{-(a,b)} + \beta_{b})}{\Gamma(\sum_{w} n_{t*w} + \beta_{w})} \frac{n_{z_{b}*b}^{-(a,b)} + \beta_{b}}{\sum_{w} (n_{z_{b}*w}^{-(a,b)} + \beta_{w})} \propto \dots$$

 ...и теперь это всё можно выкинуть, потому что они не зависят от текущих сэмплов...

$$\dots \propto \frac{\left(n_{z_{b}a^{*}}^{-(a,b)} + \alpha_{z_{b}}\right) \left(n_{z_{b}*b}^{-(a,b)} + \beta_{b}\right)}{\sum_{w} \left(n_{z_{b}*w}^{-(a,b)} + \beta_{w}\right)} = \frac{\left(n_{z_{b}a^{*}}^{-(a,b)} + \alpha_{z_{b}}\right) \left(n_{z_{b}*b}^{-(a,b)} + \beta_{b}\right)}{n_{z_{b}**}^{-(a,b)} + \sum_{w} \beta_{w}}.$$

• Итак, в базовой модели LDA сэмплирование по Гиббсу сводится к так называемому *сжатому сэмплированию по Гиббсу* (collapsed Gibbs sampling), где переменные z_w итеративно сэмплируются по следующему распределению:

$$p(z_{w} = t \mid \boldsymbol{z}_{-w}, \boldsymbol{w}, \alpha, \beta) \propto q(z_{w}, t, \boldsymbol{z}_{-w}, \boldsymbol{w}, \alpha, \beta) = \frac{n_{-w,t}^{(d)} + \alpha}{\sum_{t' \in T} \left(n_{-w,t'}^{(d)} + \alpha\right)} \frac{n_{-w,t}^{(w)} + \beta}{\sum_{w' \in W} \left(n_{-w,t}^{(w')} + \beta\right)},$$

где $n_{-w,t}^{(d)}$ — число слов в документе d, выбранных по теме t, а $n_{-w,t}^{(w)}$ — число раз, которое слово w было порождено из темы t, не считая текущего значения z_w ; заметим, что оба этих счётчика зависят от других переменных z_{-w} .

• Из сэмплов затем можно оценить переменные модели

$$\theta_{dt} = \frac{n_{-w,t}^{(d)} + \alpha}{\sum_{t' \in T} \left(n_{-w,t'}^{(d)} + \alpha\right)},$$

$$\Phi_{wt} = \frac{n_{-w,t}^{(w)} + \beta}{\sum_{w' \in W} \left(n_{-w,t}^{(w')} + \beta\right)},$$

где $\Phi_{w,t}$ – вероятность получить слово w в теме t, а $\theta_{d,t}$ – вероятность получить тему t в документе d.

 Сэмплирование по Гиббсу обычно проще расширить на новые модификации LDA, но вариационный подход быстрее и часто стабильнее.

Author-Topic model

 Алгоритм сэмплирования, соответствующий такой модели, является вариантом сжатого сэмплирования по Гиббсу:

$$p(z_w = t, x_w = a \mid z_{-w}, \mathbf{x}_{-w}, \boldsymbol{w}, \alpha, \beta) \propto$$

$$\propto \frac{n_{-a,t}^{(a)} + \alpha}{\sum_{t' \in T} \left(n_{-w,t'}^{(a)} + \alpha\right)} \frac{n_{-w,t}^{(w)} + \beta}{\sum_{w' \in W} \left(n_{-w,t}^{(w')} + \beta\right)},$$

где $n_{-a,t}^{(a)}$ — то, сколько раз автору a соответствовала тема t, не считая текущего значения x_w , а $n_{-w,t}^{(w)}$ — число раз, которое слово w было порождено из темы t, не считая текущего значения z_w ; заметим, что оба этих счётчика зависят от других переменных z_{-w} , \mathbf{x}_{-w} .