Uber Rides Data analysis using Python

This project analyzes Uber rides data to uncover insights such as peak ride times, ride distances, and day-night travel patterns.

We use python libraries such as Pandas, Matplotlib and seaborn for data manipulation and Visualization.

Importing Required Libraries

We import required **Python** libraries such as Pandas for Data Manipulation and Matplotlib, Seaborn for Data Visualization.

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Loading The Dataset

We load the Uber Dataset from a CSV File. It contains columns like Start Date, End Date, Miles traveled and Purpose.

	<pre>df = pd.read_csv(r'C:\Users\HP\Desktop\Python Jupyter Project\Uber Rides Data df.head()</pre>								
	START_DATE END_DATE CATEGORY START STOP MILES PURPOSE								
0	01	1-01-2016 21:11	01-01-2016 21:17	Business	Fort Pierce	Fort Pierce	5.1	Meal/Entertain	
1	01	1-02-2016 01:25	01-02-2016 01:37	Business	Fort Pierce	Fort Pierce	5.0	NaN	
2	01	1-02-2016 20:25	01-02-2016 20:38	Business	Fort Pierce	Fort Pierce	4.8	Errand/Supplies	
3	01	1-05-2016 17:31	01-05-2016 17:45	Business	Fort Pierce	Fort Pierce	4.7	Meeting	
4	01	1-06-2016 14:42		Business	Fort Pierce	West Palm Beach	63.7	Customer Visit	
: d1	df.shape								
: ((1156, 7)								
]: d1	df.info								

Out[6]:	<box< th=""><th>d method DataFrame</th><th>.info of</th><th>START_D</th><th>OATE END_DATE</th><th>CATEG</th></box<>	d method DataFrame	.info of	START_D	OATE END_DATE	CATEG	
	ORY	START	\				
	0	01-01-2016 21:11	01-01-20	16 21:17	Business	Fort Pierce	
	1	01-02-2016 01:25	01-02-20	16 01:37	Business	Fort Pierce	
	2	01-02-2016 20:25	01-02-20	16 20:38	Business	Fort Pierce	
	3	01-05-2016 17:31	01-05-20	16 17:45	Business	Fort Pierce	
	4	01-06-2016 14:42	01-06-20	16 15:49	Business	Fort Pierce	
	• • •	• • •		• • •		• • •	
	1151	12/31/2016 13:24	12/31/20	16 13:42	Business	Kar?chi	
	1152	12/31/2016 15:03	12/31/20	16 15:38	Business	Unknown Location	
	1153	12/31/2016 21:32	12/31/20	16 21:50	Business	Katunayake	
	1154	12/31/2016 22:08	12/31/20	16 23:51	Business	Gampaha	
	1155	Totals		NaN	NaN	NaN	
		STOP	MILES		PURPOSE		
	0	Fort Pierce	5.1	Meal/En	tertain		
	1	Fort Pierce	5.0		NaN		
	2	Fort Pierce	4.8	Errand/S	upplies		
	3	Fort Pierce	4.7		Meeting		
	4	West Palm Beach	63.7	Custome	r Visit		
	• • •	• • •	• • •		• • •		
	1151	Unknown Location	3.9	Tempora	ry Site		
	1152	Unknown Location	16.2		Meeting		
	1153	Gampaha	6.4	Tempora	ry Site		
	1154	Ilukwatta	48.2	Tempora	ry Site		
	1155	NaN	12204.7		NaN		
	[1156	rows x 7 columns]	>				

In [7]: pd.isnull(df)

Out[7]:		START_DATE	END_DATE	CATEGORY	START	STOP	MILES	PURPOSE
	0	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	True
	2	False	False	False	False	False	False	False
	3	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False
	•••							
	1151	False	False	False	False	False	False	False
	1152	False	False	False	False	False	False	False
	1153	False	False	False	False	False	False	False
	1154	False	False	False	False	False	False	False
	1155	False	True	True	True	True	False	True

1156 rows × 7 columns

In [8]: pd.isnull(df).sum()

```
Out[8]: START_DATE 0
END_DATE 1
CATEGORY 1
START 1
STOP 1
MILES 0
PURPOSE 503
dtype: int64
```

Now we drop null values and irrelevant columns to clean the dataset for analyzing.


```
In [29]: sns.set(rc={'figure.figsize':(14,5)})
    ax = sns.countplot(x = 'PURPOSE', data=df)
    plt.ylabel("Number of rides")

for bars in ax.containers:
    ax.bar_label(bars)
```



```
In [16]: df['START_DATE'] = pd.to_datetime(df['START_DATE'], errors = 'coerce')
df['END_DATE'] = pd.to_datetime(df['END_DATE'], errors = 'coerce')
```

Now we categorize ride times into Morning, afternoon, evening and night to find when users travel the most.

```
In [17]: from datetime import datetime

df['DATE'] = pd.DatetimeIndex(df['START_DATE']).date
 df['TIME'] = pd.DatetimeIndex(df['START_DATE']).hour
```

```
df['DAY-NIGHT'] = pd.cut(x = df['TIME'], bins = [0, 12, 16, 20, 24], labels =
           ax = sns.countplot(x = 'DAY-NIGHT', data=df)
In [18]:
           plt.ylabel("Number of rides")
           for bars in ax.containers:
                ax.bar_label(bars)
           80
                                                                       73
           70
                        63
           60
         Number of rides
           20
           10
                       Morning
                                              Afternoon
                                                                      Evening
                                                                                              Night
                                                        DAY-NIGHT
In [19]:
          ax = sns.countplot(x = 'PURPOSE', hue = 'CATEGORY', data = df)
           plt.ylabel("Number of rides")
           for bars in ax.containers:
                ax.bar_label(bars)
                                                                                                 CATEGORY
           175
                                                                                                   Business
                  160
                                                                                                   Personal
           150
                           128
           125
         Number of rides
                                              101
           100
           75
                                                       50
           50
            25
```

Insights from the above count plots:

Meal/Entertain Errand/Supplies

1. Most of the cabs are book for the **business purpose**.

Meeting

2. Most of the people book cabs for the **Meeting and Meal/Entertainment Purpose**.

Customer Visit Temporary Site Between Offices Charity (\$)

PURPOSE

3. Most number of cabs are book in the **Afternoon (from 12 PM to 4 PM)**.

0

Airport/Travel

Movina

Commute

```
plt.ylabel("Number of rides")
# plt.show()

for bars in ax.containers:
    ax.bar_label(bars)
```


From the above graph, we can see that most of the cabs are book in the month of **June**, **Dec and Feb**.

```
In [22]: df['Days'] = pd.DatetimeIndex(df['START_DATE']).weekday
# df['Days'] = df.START_DATE.dt.weekday

day_label = {0:'Mon', 1:'Tue', 2:'Wed', 3:'Thur', 4:'Fri', 5:'Sat', 6:'Sun'}
df['Days'] = df.Days.map(day_label)
```

```
In [23]: ax = sns.countplot(x = 'Days', data = df)
plt.title("Number of rides per day")
plt.xlabel("Days")
plt.ylabel("Number of rides")

for bars in ax.containers:
    ax.bar_label(bars)
```


From the above graph, we clearly see that most of the cabs are book on **Fridays**.

```
In [24]: df.groupby('Month')['MILES'].max()
```

```
Out[24]:
          Month
          Apr
                   174.2
          Aug
                     8.4
                    18.9
          Dec
          Feb
                    23.3
                    63.7
          Jan
          July
                    13.3
                    22.3
          June
          Mar
                    17.3
                    25.6
          May
                    45.9
          Nov
                    17.1
          Oct
```

Name: MILES, dtype: float64

```
In [25]: mile_dis = df.groupby('Month', as_index=False)['MILES'].max().sort_values(by='MI
         sns.barplot(x = 'Month', y = 'MILES', data = mile_dis)
```

Out[25]: <Axes: xlabel='Month', ylabel='MILES'>

Here we can see that **April** month had the ride with the longest distance.

```
sns.histplot(df[df['MILES'] < 40]['MILES'])</pre>
In [26]:
```


Insights from the above plots:

- 1. Majorly people chooses cabs for the distance of 0-20 miles.
- 2. For the distance more than 20 miles, cab counts is nearly negligible.

```
df.groupby(['Days'])['MILES'].max()
Out[27]:
          Days
          Fri
                   45.9
          Mon
                   23.3
          Sat
                  174.2
          Sun
                  159.3
          Thur
                   17.3
                   17.1
          Tue
          Wed
                   63.7
          Name: MILES, dtype: float64
In [28]: day_miles = df.groupby(['Days'], as_index=False)['MILES'].max().sort_values(by='
         sns.barplot(x = 'Days', y = 'MILES', data=day_miles)
```

Out[28]: <Axes: xlabel='Days', ylabel='MILES'>

Here we can see that cabs are travelled most of the distance on **Weekends**.

Key Insights & Conclusion

- **Peak ride hours** are during Afternoon and Evening.
- Peak ride days are during Fridays.
- Longest Ride typically happen during the month of April and on the Weekends.
- **Most number of cab** book for the distance of 0-20 Miles, for Business category, and for Meal/Entertainment Purpose.