Decision making under uncertainty

Christoph Schottmüller

Introduction

- so far:
 - preference aggregation:
 - what if preferences are private information and have to be elicited?
 - possibilities for gaming the system
 - proper analysis: incomplete information
 - market equilibrium:
 - auction metaphor
 - auction: game with incomplete information
- today:
 - how to model decision making under uncertainty

Motivation: game theory

	C	D
С	2,2	0,3
D	3,0	1,1

Table: prisoner's dilemma

- What do the numbers in the game table actually mean?
- What if the other player plays C and D with 50% probability? How to evaluate that?
- can we model a rational decision maker as utility maximizer?

Setup I

- today: no game, just decision problem of 1 decision maker under uncertainty
- basic setup: a decision maker has to choose among lotteries over outcomes in a set C
 - set of outcomes $C = \{c_1, c_2 \dots c_n\}$
 - a simple lottery L is a probability distribution $(p_1, p_2 \dots p_n)$ with $p_i \geq 0$ and $\sum_{i=1}^n p_i = 1$ where p_i is the probability of outcome c_i

vacation lottery

You book a vacation in the south. Depending on the weather your vacation has the outcomes

 $C = \{ \text{lying on the beach}, \text{ stuck in the hotel room} \}.$

Given the weather forecast you assign probabilities (0.9, 0.1) to the two possible outcomes.

Setup II

- we start from preferences

Compound lotteries I

vacation lottery II

- third outcome: "being stuck at home", i.e. C = {lying on the beach, stuck in hotel room, stuck at home}
- probabiltiy 0.2 that your tour operator goes bankrupt before you go on holidays (and 0.8 that your holiday goes through)
- compound lottery: with probability $\alpha_1=0.8$ you get the vacation lottery; with probability 0.2 you get the "lottery" that puts all probability on the outcome "stuck at home"

Compound lotteries II

A compound lotteries $(L_1, \ldots, L_K; \alpha_1, \ldots, \alpha_K)$ yields with probability α_k the simple lottery L_k $(\alpha_k \ge 0 \text{ and } \sum_{k=1}^K \alpha_k = 1)$

- What is the probability that you lie on the beach?
- Is there a simple lottery that is similar to the compound lottery (same outcome probabilities)? ("reduced lottery")

Assumption

The decision maker evaluates compound lotteries like their reduced lotteries, i.e. the decision maker is indifferent between a compound lottery and the corresponding reduced lottery.

axioms for preference relation ≥: continuity

continuity axiom:

for all lotteries L, L', L'', the sets

$$\{\alpha \in [0,1] : \alpha L + (1-\alpha)L' \succeq L''\}$$

and

$$\{\alpha \in [0,1] : L'' \succeq \alpha L + (1-\alpha)L'\}$$

are closed.

- no sudden jumps in preferences
- best understood as (mild) mathematical regularity assumption

axioms for preference relation ≥: independence

independence axiom

for all lotteries L, L', L'' and $\alpha \in (0,1)$ we have

$$L \succeq L'$$
 if and only if $\alpha L + (1 - \alpha)L'' \succeq \alpha L' + (1 - \alpha)L''$

- main assumption for what follows
- appealing but some experimental violations are known

Example

There are three prices:

- **2.500.000** \$
- **2** 500.000 \$
- **3** 0 \$

An individual prefers the lottery $L_1 = (0.1, 0.8, 0.1)$ to the lottery $L'_1 = (0, 1, 0)$.

If the independence axiom is satisfied (as well as transitivity and monotonicity), can we say which of the following lotteries the individual prefers?

$$L_2 = (0.55, 0.4, 0.05)$$
 $L'_2 = (0.5, 0.5, 0)$

Some implications I

Lemma

Assume the independence axiom holds for the preference relation \succeq on the set of lotteries \mathcal{L} . Then the following holds:

$$L \sim L'$$
 if and only if $\alpha L + (1 - \alpha)L'' \sim \alpha L' + (1 - \alpha)L''$

$$L \succ L'$$
 if and only if $\alpha L + (1 - \alpha)L'' \succ \alpha L' + (1 - \alpha)L''$

Proof (indifference)

- let $L \sim L'$
 - then $L \succeq L'$
 - then $L' \succeq L$

Some implications II

Lemma

If $L \sim L'$ and $L'' \sim L'''$ and the independence axiom holds, then $\alpha L + (1 - \alpha)L'' \sim \alpha L' + (1 - \alpha)L'''$ where $\alpha \in [0, 1]$.

Proof

By the independence axiom, $L \sim L'$ implies

$$\alpha L + (1 - \alpha)L'' \sim \alpha L' + (1 - \alpha)L''.$$

Also by the independence axiom, $L'' \sim L'''$ implies

$$\alpha L' + (1 - \alpha)L'' \sim \alpha L' + (1 - \alpha)L'''$$
.

Finally, use transitivity to get the result.

Utility representation

Definition

A utility function representing the preferences \succeq on \mathcal{L} is a function $U:\mathcal{L}\to\Re$ such that $U(L)\geq U(L')$ whenever $L\succeq L'$ for $L,L'\in\mathcal{L}$.

von Neumann-Morgenstern utility

Definition (von Neumann-Morgenstern utility)

The utility function $U: \mathcal{L} \to \Re$ has expected utility form if there is an assignment of numbers (u_1, \ldots, u_n) to the n outcomes in C such that for any simple lottery (p_1, \ldots, p_n)

$$U(L)=u_1p_1+\cdots+u_np_n.$$

Such a utility function ${\it U}$ is called von Neumann-Morgenstern utility function.

The idea is that outcome (with certainty) c_i yields utility u_i . To evaluate lotteries, we take the expected utility (i.e. expectation over those u_i).

Expected utility theorem

Theorem

Assume that the preference relation \succeq satisfies transitivity, completeness, the continuity axiom and the independence axiom. Then \succeq can be represented by a von Neumann-Morgenstern utility function $U: \mathcal{L} \to \Re$, i.e. there exists a utility function of the form $U(L) = \sum_{i=1}^n u_i p_i$ such that

$$L \succeq L'$$
 if and only if $U(L) \geq U(L')$.

Proof

somewhat lengthy, see ch. 6B in Mas-Colell, Whinston and Green (1995) or Jehle and Reny (2011) ch. 2.4.2

- under our assumptions a decision maker maximizes expected utility
- *U*: "von Neumann-Morgenstern utility function"
- *u_i*: "Bernoulli utilities"

Risk preferences

- suppose the outcomes are amounts of money
- instead of u_i , function $u: \Re \to \Re$
- risk preferences
 - ullet take lottery arbitrary lottery ${\it L}$ with expected payout μ
 - \bullet risk aversion: decision maker prefers getting μ (for sure!) to L
 - ullet risk love: decision maker prefers L to μ

Proposition

A decision maker is risk averse if and only if his Bernoulli utility function u is concave.

A decision maker is risk loving if and only if his Bernoulli utility function u is convex.

Risk preferences: graph

- let L pay x_1 with probability α and x_2 with 1α
- expected payout $\mu = \alpha x_1 + (1 \alpha)x_2$
- line connecting $(x_1, u(x_1))$ and $(x_2, u(x_2))$ contains point $(\mu, \alpha u(x_1) + (1 \alpha)u(x_2))$

