Can real-time pricing be progressive? Identifying cross-subsidies under fixed-rate electricity tariffs

Gordon Leslie, Armin Pourkhanali, Guillaume Roger¹

¹Monash University

19 May 2021 Monash Brown Bag Series

- Traditional pricing of electricity (and other utility services)
 - Connection fee (\$x per day)
 - Usage fee (\$y per kWh)

- Traditional pricing of electricity (and other utility services)
 - Connection fee (\$x per day)
 - Usage fee (\$y per kWh)
- Underlying wholesale costs are time varying
 - Some customers will use energy when w'sale prices are cheap, others when w'sale prices are expensive, but they pay a flat rate regardless

- Traditional pricing of electricity (and other utility services)
 - Connection fee (\$x per day)
 - Usage fee (\$y per kWh)
- Underlying wholesale costs are time varying
 - Some customers will use energy when w'sale prices are cheap, others when w'sale prices are expensive, but they pay a flat rate regardless
- Therefore, under fixed rate retail pricing, customers will either be ex-post net funders or net beneficiaries from an implicit cross-subsidy

- Traditional pricing of electricity (and other utility services)
 - Connection fee (\$x per day)
 - Usage fee (\$y per kWh)
- Underlying wholesale costs are time varying
 - Some customers will use energy when w'sale prices are cheap, others when w'sale prices are expensive, but they pay a flat rate regardless
- Therefore, under fixed rate retail pricing, customers will either be ex-post net funders or net beneficiaries from an implicit cross-subsidy
 - This paper: We ask, who cross-subsidizes whom, and to what extent?

- Traditional pricing of electricity (and other utility services)
 - Connection fee (\$x per day)
 - Usage fee (\$y per kWh)
- Underlying wholesale costs are time varying
 - Some customers will use energy when w'sale prices are cheap, others when w'sale prices are expensive, but they pay a flat rate regardless
- Therefore, under fixed rate retail pricing, customers will either be *ex-post* net funders or net beneficiaries from an implicit cross-subsidy
 - This paper: We ask, who cross-subsidizes whom, and to what extent?
 - **Motivation:** To better understand the distributional consequences of more cost-reflective pricing, which a) can improve economic efficiency, and b) is now technologically feasible in many jurisdictions.

Average wholesale prices, Victoria 2018

■ Electricity use at the evening peak is cross-subsidised on-average by consumption overnight and during the middle of day

Average wholesale prices, Victoria 2018

Non-summer

Summer

■ If wholesale energy component of electricity bills are socialised via a year-long fixed price, then consumption at the summer peak is the largest recipient of cross-subsidies

- Metering upgrades
 - Possible to monitor consumption at high frequency, therefore vary retail prices at high frequency
- Increasing variation in wholesale procurement costs (predictable + idiosyncratic)
 - Changes in electricity supply (eg. intermittent renewables)
 - \blacksquare Changes in electricity demand (eg. extreme and prolonged weather events + A/C)

- Metering upgrades
 - Possible to monitor consumption at high frequency, therefore vary retail prices at high frequency
- Increasing variation in wholesale procurement costs (predictable + idiosyncratic)
 - Changes in electricity supply (eg. intermittent renewables)
 - Changes in electricity demand (eg. extreme and prolonged weather events + A/C)
- ⇒ Economic value of flexible demand for electricity is growing

- Metering upgrades
 - Possible to monitor consumption at high frequency, therefore vary retail prices at high frequency
- Increasing variation in wholesale procurement costs (predictable + idiosyncratic)
 - Changes in electricity supply (eg. intermittent renewables)
 - Changes in electricity demand (eg. extreme and prolonged weather events + A/C)
- ⇒ Economic value of flexible demand for electricity is growing
 - Incentivising demand flexibility requires more cost-reflective pricing

- Metering upgrades
 - Possible to monitor consumption at high frequency, therefore vary retail prices at high frequency
- Increasing variation in wholesale procurement costs (predictable + idiosyncratic)
 - Changes in electricity supply (eg. intermittent renewables)
 - Changes in electricity demand (eg. extreme and prolonged weather events + A/C)
- ⇒ Economic value of flexible demand for electricity is growing
 - Incentivising demand flexibility requires more cost-reflective pricing
 - But what are the distributional consequences from real-time pricing?

Preview

- We estimate average wholesale procurement costs for Victorian households in 2018
 - Disaggregate high-frequency substation-level data by housing and demographic characteristics

Preview

- We estimate average wholesale procurement costs for Victorian households in 2018
 - Disaggregate high-frequency substation-level data by housing and demographic characteristics
- Main findings:
 - Households in areas with low house prices, high levels of renters, and more elderly residents are the net **funders** of cross-subsidies from flat-rate pricing.
 - E.g, average wholesale procurement costs in high rental neighborhoods is 9.91 c/kWh, 11% less than equivalent households in high owner-occupier neighborhoods (11.15 c/kWh).
 - Magnitude of cross-subsidies have been increasing, co-incident with solar penetration

Preview

- We estimate average wholesale procurement costs for Victorian households in 2018
 - Disaggregate high-frequency substation-level data by housing and demographic characteristics
- Main findings:
 - Households in areas with low house prices, high levels of renters, and more elderly residents are the net **funders** of cross-subsidies from flat-rate pricing.
 - E.g, average wholesale procurement costs in high rental neighborhoods is 9.91 c/kWh, 11% less than equivalent households in high owner-occupier neighborhoods (11.15 c/kWh).
 - Magnitude of cross-subsidies have been increasing, co-incident with solar penetration
- Results raise possibility that cost-reflective electricity pricing could *on* average benefit more vulnerable segments of the population

Roadmap

- 1 Introduction
- 2 Literature
- 3 Data and setting
- 4 Method overview
- 5 Results
- 6 Discussion

Selected Literature

Distributional impacts from electricity tariff structures:

Network tariffs: Simshauser (2014); Net-metering + clean energy subsidies: Borenstein (2012), Borenstein and Davis (2016), Borenstein (2017); Energy pricing: Simshauser and Downer (2016), Cahana et al. (mimeo)

 \Rightarrow We identify cross-subsidies from energy, with reference to wholesale spot procurement costs

Selected Literature

Distributional impacts from electricity tariff structures:

Network tariffs: Simshauser (2014); Net-metering + clean energy subsidies: Borenstein (2012), Borenstein and Davis (2016), Borenstein (2017); Energy pricing: Simshauser and Downer (2016), Cahana et al. (mimeo)

 \Rightarrow We identify cross-subsidies from energy, with reference to wholesale spot procurement costs

Empirical studies of electricity use:

High frequency data: Cicala (2020); Disaggregated data: Jessoe and Rapson (2014), Wolak (2015), Lynham et al. (2016), ACIL Allen (2019); Demographic data: Brounen et al. (2012); Lyubich (2020)

 \Rightarrow We develop a methodology that can disaggregate substation data to identify average usage profiles along key demographic lines

Selected Literature

Distributional impacts from electricity tariff structures:

Network tariffs: Simshauser (2014); Net-metering + clean energy subsidies: Borenstein (2012), Borenstein and Davis (2016), Borenstein (2017); Energy pricing: Simshauser and Downer (2016), Cahana et al. (mimeo)

 \Rightarrow We identify cross-subsidies from energy, with reference to wholesale spot procurement costs

Empirical studies of electricity use:

High frequency data: Cicala (2020); Disaggregated data: Jessoe and Rapson (2014), Wolak (2015), Lynham et al. (2016), ACIL Allen (2019); Demographic data: Brounen et al. (2012); Lyubich (2020)

 \Rightarrow We develop a methodology that can disaggregate substation data to identify average usage profiles along key demographic lines

Welfare economics of fixed rate and real-time electricity pricing: Borenstein (2005), Borenstein and Holland (2005), Holland and Mansur (2006)

 \Rightarrow We identify population groups that would win/lose on average if they were to adopt RTP.

Roadmap

- 1 Introduction
- 2 Literature
- 3 Data and setting
- 4 Method overview
- 5 Results
- 6 Discussion

Setting: Victoria 2018

■ Time: Pre-Covid; significant renewable penetration (eg. 2GW rooftop solar)

Setting: Victoria 2018

- Time: Pre-Covid; significant renewable penetration (eg. 2GW rooftop solar)
- Climate: Summer price peak, Winter + Summer highest use periods, particularly in early evening

Setting: Victoria 2018

- Time: Pre-Covid; significant renewable penetration (eg. 2GW rooftop solar)
- Climate: Summer price peak, Winter + Summer highest use periods, particularly in early evening
- Retail pricing:
 - Contestable retail markets
 - Fixed-price plans dominate (\approx 90%), no real-time pricing, customers switch on average every 4-7 years (CME, 2017)
 - Exercise in this paper recovers average wholesale procurement costs for groups of households
 - Can relate findings to cross-subsidies given prevalence of fixed price plans

Raw:

- Electricity use
 - Half-hourly, substation level, (DNSPs; see paper for public source links)

Raw:

- Electricity use
 - Half-hourly, substation level, (DNSPs; see paper for public source links)
- Electricity prices
 - Half-hourly, VIC price, AEMO

Raw:

- Electricity use
 - Half-hourly, substation level, (DNSPs; see paper for public source links)
- Electricity prices
 - Half-hourly, VIC price, AEMO
- Housing, demographics, climate
 - Postcode-level, Australian Bureau of Statistics
 - Weather-station-level, Bureau of Meteorology

Final:

- Substation (s) x half-hour (t) panel
- Electricity use $(Q_{s,t})$, Wholesale procurement cost $(PC_{s,t} = Q_{s,t} * P_t^{VIC})$
- Map each postcode + weather station to closest substation (see paper)
 - $|I_s|$: Number of households; $|J_s|$: Number of businesses
 - \blacksquare Z_s : Vector of housing, demographics, climate characteristics

Final:

- Substation (s) x half-hour (t) panel
- Electricity use $(Q_{s,t})$, Wholesale procurement cost $(PC_{s,t} = Q_{s,t} * P_t^{VIC})$
- Map each postcode + weather station to closest substation (see paper)
 - $|I_s|$: Number of households; $|J_s|$: Number of businesses
 - \blacksquare Z_s : Vector of housing, demographics, climate characteristics

Coverage:

- We include substations with complete electricity and housing+demographic data
- 5,151,930 people, 1,706,786 residential dwellings and 47,530 businesses connecting to the 157 substations in our sample.
- Covers 80-90% of the total population in 2018 Victoria

■ Econometric model decomposes substation load into household and business load

- Econometric model decomposes substation load into household and business load
- Extended model estimates how household load varies with demographic and housing rankings of substations

- Econometric model decomposes substation load into household and business load
- Extended model estimates how household load varies with demographic and housing rankings of substations
- Can measure things such as:
 - Average household load for connections to a substation that ranks in the top tercile in income across all substations

- Econometric model decomposes substation load into household and business load
- Extended model estimates how household load varies with demographic and housing rankings of substations
- Can measure things such as:
 - Average household load for connections to a substation that ranks in the top tercile in income across all substations
 - Average wholesale procurement cost per kWh of serving households that connect to a substation with particular characteristics

Usage profiles: Base statistical model

■ 48 models indexed by *h* (one for each half-hour of day)

$$\underbrace{Q_{s,t}}_{\text{subs'n kW}} = \alpha_h + \beta_h \cdot \underbrace{|I_s|}_{\text{N h'hold}} + \gamma_h \cdot \underbrace{|J_s|}_{\text{N bus}} + \epsilon_{s,t}$$

■ Recover average electricity use in half-hour h over 2018 for households (β_h) and businesses (γ_h) , assuming $E(\epsilon_{s,t}|I_s,J_s)=0$. (OLS)

Roadmap

- 1 Introduction
- 2 Literature
- 3 Data and setting
- 4 Method overview
- 5 Results
- 6 Discussion

Usage profiles: Base statistical model

- Business use heavily concentrated between 9-5
- Households exhibit the so-called "duck-curve"

Usage profiles: Full statistical model

- Include vector of substation-level characteristics
- Each substation ranked into terciles (high, medium, low) for 12 measures
 - Demographics: prop. of people over age 65; av. h'hold size, prop. born o'seas; prop. work from home; unemployment; av. income; prop. Uni/TAFE
 - Housing: prop. rental; median house price; residential density; prop. rooftop solar
 - Climate: cooling degree days

Usage profiles: Full statistical model

- Include vector of substation-level characteristics
- Each substation ranked into terciles (high, medium, low) for 12 measures
 - Demographics: prop. of people over age 65; av. h'hold size, prop. born o'seas; prop. work from home; unemployment; av. income; prop. Uni/TAFE
 - Housing: prop. rental; median house price; residential density; prop. rooftop solar
 - Climate: cooling degree days

$$Q_{s,t} = \alpha_h + \beta_h \cdot \underbrace{Z_s}_{\text{Char's}} \cdot |I_s| + \gamma_h \cdot |J_s| + \epsilon_{s,t}$$

- Z_s a vector of binary variables
- Can use $\hat{\beta}_h$ to estimate average usage for households in neighbourhoods with characteristics Z_s

Results: Demographic characteristics + consumption

Estimated profiles by average size of household in the neighbourhood

■ Electricity use is higher across all hours of day for households in areas with an older population, larger households, more overseas-born

Results: Housing + consumption

Estimated profiles by median house price in the neighbourhood

■ Electricity use is higher across all hours of day for households in areas with more rental properties, and lower house prices

Results: Housing + consumption

Estimated profiles by neighbourhood rental rates

■ Low rental shares (high OO shares): have lower overall usage but higher weights during the evening peak

Results: Monotonicity with respect to characteristics?

- Middle-income areas highest users
- Middle-solar area higher users (reminder: descriptive, not causal statistical model)

16

20

24

Procurement cost profiles: Base statistical model

■ Wholesale procurement cost: Same framework as usage profiles, replace $Q_{s,t}$ with $PC_{s,t}$ - the procurement cost of energy delivered via substation s at wholesale spot prices at time t

$$PC_{s,t} = \alpha_h^{PC} + \beta_h^{PC} \cdot |I_s| + \gamma_h^{PC} \cdot |J_s| + \epsilon_{s,t}^{PC}$$

Results: Cross-subsidisation across population characteristics

- We construct wholesale cost per kWh for households in areas with specific characteristics from our early estimates
- Mathematically, for a given Z calculate $\frac{\sum_{h=1}^{48} \beta_h^{\hat{p}_C} \cdot Z}{\sum_{h=1}^{48} \hat{\beta}_h \cdot Z}$

Results: Cross-subsidisation

Characteristic	Low	Medium	High	Socialized
				price
Proportion older than 65	10.71	10.40	10.18	10.42
Average household size	10.38	10.40	10.26	10.42
Proportion that are born overseas	10.27	10.40	10.20	10.42
Proportion that work from home	10.40	10.40	10.20	10.42
Unemployment rate	11.07	10.40	10.56	10.42
Average income	11.27	10.40	11.29	10.42
Prop. with post-school qualifications	10.24	10.40	10.08	10.42
Proportion of dwellings rented	11.15	10.40	9.91	10.42
Median house price	10.04	10.40	10.98	10.42
Residential density	10.33	10.40	11.07	10.42
Prop. of dwellings with rooftop solar	10.76	10.40	10.77	10.42
Cooling degree days	10.42	10.40	10.27	10.42

Average cents per kWh if procuring energy at spot prices, assuming all other characteristics of the residence location are ranked in the middle tercile.

Results: Cross-subsidisation summary

- Neighbourhood characteristics with lower wholesale procurement costs per kWh
 - More vulnerable?
 - More elderly
 - More rentals
 - Cheaper houses

Results: Cross-subsidisation summary

- Neighbourhood characteristics with lower wholesale procurement costs per kWh
 - More vulnerable?
 - More elderly
 - More rentals
 - Cheaper houses
 - More rural?
 - Low residential density
 - Hotter weather

Results: Cross-subsidisation summary

- Neighbourhood characteristics with lower wholesale procurement costs per kWh
 - More vulnerable?
 - More elderly
 - More rentals
 - Cheaper houses
 - More rural?
 - Low residential density
 - Hotter weather
- \Rightarrow Cross-subsidies from fixed-rate electricity tariffs, *on-average*, are funded by groups usually considered more vulnerable, with recipients that are usually considered more affluent.
- ⇒ Magnitudes matter: For example, average annual implicit transfer of \$43 away from each household in high rental neighbourhoods, or approximately \$25 million collectively (all other characteristics held equal).

Roadmap

- 1 Introduction
- 2 Literature
- 3 Data and setting
- 4 Method overview
- 5 Results
- 6 Discussion

Distributional considerations

- At observed levels of consumption, it appears that more vulnerable groups would pay *less* under RTP than fixed-rate pricing
- It is possible that RTP could have pro-social redistributive properties

Distributional considerations

- At observed levels of consumption, it appears that more vulnerable groups would pay *less* under RTP than fixed-rate pricing
- It is possible that RTP could have pro-social redistributive properties
- CAVEATS:
 - RTP substantially changes risk profiles and attention costs of end-users
 - See *Griddy* customers in Texas Feb 2021 blackouts...
 - Certain to be household-specific winners and losers

Efficiency considerations

- Clear economic argument for benefits from RTP
 - Incentivise consumption when costs of generation are low (also likely to be "green")
 - Disincentivise consumption when costs of generation are high (also likely to be "brown")

Efficiency considerations

- Clear economic argument for benefits from RTP
 - Incentivise consumption when costs of generation are low (also likely to be "green")
 - Disincentivise consumption when costs of generation are high (also likely to be "brown")
- RTP will initially have higher prices faced by more affluent households on average
 - We found higher wholesale procurement cost in areas with more owner-occupiers and more expensive homes
 - Are these households best equipped to install smart appliances and offer automated demand flexibility?

Efficiency considerations

- Clear economic argument for benefits from RTP
 - Incentivise consumption when costs of generation are low (also likely to be "green")
 - Disincentivise consumption when costs of generation are high (also likely to be "brown")
- RTP will initially have higher prices faced by more affluent households on average
 - We found higher wholesale procurement cost in areas with more owner-occupiers and more expensive homes
 - Are these households best equipped to install smart appliances and offer automated demand flexibility?
- Optimistic interpretation: Jurisdictions with fixed, socialized electricity prices may be able to both improve economic efficiency and redistribute payment shares away from more vulnerable populations with RTP

Discussion - renewable penetration and RTP

- Average procurement cost per half-hour at w'sale spot (\$, red)
- Average procurement cost per half-hour at socialised prices (\$, blue)
- Extent of cross-subsidies has been increasing, coincident with solar penetration
- Could renewable penetration reinforce efficiency *and* pro-social distributional outcomes from RTP?

- Fixed-rate retail electricity pricing entails implicit cross-subsidies
 - The magnitudes are increasing in recent years coincident with renewable penetration

- Fixed-rate retail electricity pricing entails implicit cross-subsidies
 - The magnitudes are increasing in recent years coincident with renewable penetration
- We develop a method to tease out these cross-subsidies
 - Can be applied anywhere with Census data + high frequency substation and wholesale price/cost data

- Fixed-rate retail electricity pricing entails implicit cross-subsidies
 - The magnitudes are increasing in recent years coincident with renewable penetration
- We develop a method to tease out these cross-subsidies
 - Can be applied anywhere with Census data + high frequency substation and wholesale price/cost data
- In Victoria, 2018, we find characteristic groups associated with being net funders of the subsidy being:
 - Areas with low house prices
 - Areas with more renters
 - Areas with more elderly residents

- Fixed-rate retail electricity pricing entails implicit cross-subsidies
 - The magnitudes are increasing in recent years coincident with renewable penetration
- We develop a method to tease out these cross-subsidies
 - Can be applied anywhere with Census data + high frequency substation and wholesale price/cost data
- In Victoria, 2018, we find characteristic groups associated with being net funders of the subsidy being:
 - Areas with low house prices
 - Areas with more renters
 - Areas with more elderly residents
- Results raise possibility that RTP plan offerings can have positive pro-efficiency *and* pro-social distributional outcomes
 - Further work: Risk preferences, attention costs, automation costs, consumer protection.

The Leslie household contributes to the duck curve and feels the cold in Winter...

(This project would have been a lot easier if Victoria's smart meter data was readily available to researchers!) gordon.leslie@monash.edu

https://sites.google.com/site/gwleslie/