Faltings height and Néron-Tate height of a theta divisor

Robin de Jong based on joint work with Farbod Shokrieh

3 September 2018

Intercity Seminar in Arakelov Geometry, Copenhagen

\sim			
<i>(</i>)	1+1	line	
	111.1	1116	

Goal: study Faltings height vs. height of a theta divisor ...

- ► Function field setting (good reduction)
- ► Number field setting (good reduction)

- Function field setting (good reduction)
- ► Number field setting (good reduction)
- General case (number fields)

- Function field setting (good reduction)
- ► Number field setting (good reduction)
- General case (number fields)
- Examples

► S smooth projective connected curve over an alg. closed field

- ► S smooth projective connected curve over an alg. closed field
- ▶ π : $A \to S$ abelian scheme, zero section $e \in A(S)$

- ► S smooth projective connected curve over an alg. closed field
- ▶ π : $A \to S$ abelian scheme, zero section $e \in A(S)$
- ► ⊖ symmetric effective relative Cartier divisor defining a principal polarization

- ► S smooth projective connected curve over an alg. closed field
- ▶ $\pi: A \to S$ abelian scheme, zero section $e \in A(S)$
- ► ⊖ symmetric effective relative Cartier divisor defining a principal polarization
- $ightharpoonup \mathcal{L} = \mathcal{O}_{\mathcal{A}}(\Theta)$

- ► S smooth projective connected curve over an alg. closed field
- ▶ π : $A \to S$ abelian scheme, zero section $e \in A(S)$
- ► ⊖ symmetric effective relative Cartier divisor defining a principal polarization
- $ightharpoonup \mathcal{L} = \mathcal{O}_{\mathcal{A}}(\Theta)$
- ▶ $L = \mathcal{L}_{\eta}$, $A = \mathcal{A}_{\eta}$, $g = \dim A$

- ► S smooth projective connected curve over an alg. closed field
- ▶ $\pi: A \to S$ abelian scheme, zero section $e \in A(S)$
- ► ⊖ symmetric effective relative Cartier divisor defining a principal polarization
- $ightharpoonup \mathcal{L} = \mathcal{O}_{\mathcal{A}}(\Theta)$
- ▶ $L = \mathcal{L}_{\eta}$, $A = \mathcal{A}_{\eta}$, $g = \dim A$
- $h(A) := \deg e^* \Omega_{\mathcal{A}/S}^g$

- ► S smooth projective connected curve over an alg. closed field
- ▶ $\pi: A \to S$ abelian scheme, zero section $e \in A(S)$
- ► ⊖ symmetric effective relative Cartier divisor defining a principal polarization
- $ightharpoonup \mathcal{L} = \mathcal{O}_{\mathcal{A}}(\Theta)$
- ▶ $L = \mathcal{L}_n$, $A = \mathcal{A}_n$, $g = \dim A$
- $\blacktriangleright \ \mathrm{h}(A) := \deg e^* \Omega^g_{\mathcal{A}/S}$
- $ightharpoonup \mathcal{L}' := \mathcal{L} \otimes \pi^* e^* \mathcal{L}^{\otimes -1}$

- ► S smooth projective connected curve over an alg. closed field
- ▶ π : $A \to S$ abelian scheme, zero section $e \in A(S)$
- ► ⊖ symmetric effective relative Cartier divisor defining a principal polarization
- $\blacktriangleright \mathcal{L} = \mathcal{O}_{\mathcal{A}}(\Theta)$
- ► $L = \mathcal{L}_n$, $A = \mathcal{A}_n$, $g = \dim A$
- $\blacktriangleright \ \mathrm{h}(A) := \deg e^* \Omega^g_{\mathcal{A}/S}$
- $ightharpoonup \mathcal{L}' := \mathcal{L} \otimes \pi^* e^* \mathcal{L}^{\otimes -1}$
- $\blacktriangleright \ \mathrm{h}'_L(\Theta) := \deg \pi_*(c_1(\mathcal{L}')^g \cdot \Theta)/g \cdot g!$

- ► S smooth projective connected curve over an alg. closed field
- ▶ $\pi: A \to S$ abelian scheme, zero section $e \in A(S)$
- ► ⊖ symmetric effective relative Cartier divisor defining a principal polarization
- $ightharpoonup \mathcal{L} = \mathcal{O}_{\mathcal{A}}(\Theta)$
- ▶ $L = \mathcal{L}_n$, $A = \mathcal{A}_n$, $g = \dim A$
- $\blacktriangleright \ \mathrm{h}(A) := \deg e^* \Omega^g_{\mathcal{A}/S}$
- $ightharpoonup \mathcal{L}' := \mathcal{L} \otimes \pi^* e^* \mathcal{L}^{\otimes -1}$
- $\qquad \qquad \mathbf{h}'_L(\Theta) := \deg \pi_*(c_1(\mathcal{L}')^g \cdot \Theta)/g \cdot g!$

Have $\pi_* \mathcal{L} = \mathcal{O}_S$ hence $\deg \pi_* \mathcal{L}' = -\deg e^* \mathcal{L}$.

- ► S smooth projective connected curve over an alg. closed field
- ▶ $\pi: A \to S$ abelian scheme, zero section $e \in A(S)$
- ► ⊖ symmetric effective relative Cartier divisor defining a principal polarization
- $ightharpoonup \mathcal{L} = \mathcal{O}_{\mathcal{A}}(\Theta)$
- ▶ $L = \mathcal{L}_{\eta}$, $A = \mathcal{A}_{\eta}$, $g = \dim A$
- $\blacktriangleright \ \mathrm{h}(A) := \deg e^* \Omega^g_{\mathcal{A}/S}$
- $ightharpoonup \mathcal{L}' := \mathcal{L} \otimes \pi^* e^* \mathcal{L}^{\otimes -1}$
- $\qquad \qquad \mathbf{h}'_L(\Theta) := \deg \pi_*(c_1(\mathcal{L}')^g \cdot \Theta)/g \cdot g!$

Have $\pi_*\mathcal{L} = \mathcal{O}_S$ hence $\deg \pi_*\mathcal{L}' = -\deg e^*\mathcal{L}$. Have $\pi_*(c_1(\mathcal{L}')^{g+1}) = 0$ hence $\deg e^*\mathcal{L} = g \cdot \mathrm{h}'_L(\Theta)$.

- ► S smooth projective connected curve over an alg. closed field
- ▶ $\pi: A \to S$ abelian scheme, zero section $e \in A(S)$
- ► ⊖ symmetric effective relative Cartier divisor defining a principal polarization
- $ightharpoonup \mathcal{L} = \mathcal{O}_{\mathcal{A}}(\Theta)$
- ▶ $L = \mathcal{L}_{\eta}$, $A = \mathcal{A}_{\eta}$, $g = \dim A$
- $\blacktriangleright \ \mathrm{h}(A) := \deg e^* \Omega^g_{\mathcal{A}/S}$
- $ightharpoonup \mathcal{L}' := \mathcal{L} \otimes \pi^* e^* \mathcal{L}^{\otimes -1}$
- $\qquad \qquad \mathbf{h}'_L(\Theta) := \deg \pi_*(c_1(\mathcal{L}')^g \cdot \Theta)/g \cdot g!$

Have $\pi_*\mathcal{L} = \mathcal{O}_S$ hence $\deg \pi_*\mathcal{L}' = -\deg e^*\mathcal{L}$. Have $\pi_*(c_1(\mathcal{L}')^{g+1}) = 0$ hence $\deg e^*\mathcal{L} = g \cdot \mathrm{h}'_L(\Theta)$. Have $\deg \pi_*\mathcal{L}' = -\frac{1}{2}\mathrm{h}(A)$ by GRR / key formula.

- ► S smooth projective connected curve over an alg. closed field
- ▶ $\pi: A \to S$ abelian scheme, zero section $e \in A(S)$
- ► ⊖ symmetric effective relative Cartier divisor defining a principal polarization
- $ightharpoonup \mathcal{L} = \mathcal{O}_{\mathcal{A}}(\Theta)$
- ► $L = \mathcal{L}_n$, $A = \mathcal{A}_n$, $g = \dim A$
- $\blacktriangleright \ \mathrm{h}(A) := \deg e^* \Omega^g_{\mathcal{A}/S}$
- $ightharpoonup \mathcal{L}' := \mathcal{L} \otimes \pi^* e^* \mathcal{L}^{\otimes -1}$

Have $\pi_* \mathcal{L} = \mathcal{O}_S$ hence $\deg \pi_* \mathcal{L}' = -\deg e^* \mathcal{L}$.

Have $\pi_*(c_1(\mathcal{L}')^{g+1}) = 0$ hence $\deg e^*\mathcal{L} = g \cdot \mathrm{h}'_L(\Theta)$.

Have deg $\pi_* \mathcal{L}' = -\frac{1}{2} h(A)$ by GRR / key formula.

Hence $h(A) = 2g \cdot h_I'(\Theta)$.

▶ k number field,

• k number field, $d = [k : \mathbb{Q}]$

- ▶ k number field, $d = [k : \mathbb{Q}]$
- ► A/k abelian variety with semistable reduction, origin e, g = dim A

- ▶ k number field, $d = [k : \mathbb{Q}]$
- ► A/k abelian variety with semistable reduction, origin e, g = dim A
- ▶ ⊖ symmetric effective Cartier divisor defining a principal polarization

- ▶ k number field, $d = [k : \mathbb{Q}]$
- ► A/k abelian variety with semistable reduction, origin e, g = dim A
- ▶ ⊖ symmetric effective Cartier divisor defining a principal polarization
- ▶ $L = \mathcal{O}_A(\Theta)$

- ▶ k number field, $d = [k : \mathbb{Q}]$
- ► A/k abelian variety with semistable reduction, origin e, g = dim A
- ▶ ⊖ symmetric effective Cartier divisor defining a principal polarization
- ▶ $L = \mathcal{O}_A(\Theta)$
- ► G connected component of Néron model over $S = \operatorname{Spec} O_k$

- ▶ k number field, $d = [k : \mathbb{Q}]$
- ► A/k abelian variety with semistable reduction, origin e, g = dim A
- ▶ ⊖ symmetric effective Cartier divisor defining a principal polarization
- ▶ $L = \mathcal{O}_A(\Theta)$
- ▶ G connected component of Néron model over $S = \operatorname{Spec} O_k$
- $\blacktriangleright \ \mathrm{h}_F(A) := \operatorname{\mathsf{deg}} e^* \Omega_{G/S}^g / d$

- ▶ k number field, $d = [k : \mathbb{Q}]$
- ► A/k abelian variety with semistable reduction, origin e, g = dim A
- ▶ ⊖ symmetric effective Cartier divisor defining a principal polarization
- ▶ $L = \mathcal{O}_A(\Theta)$
- ▶ G connected component of Néron model over $S = \operatorname{Spec} O_k$
- ▶ $h_F(A) := \deg e^* \Omega_{G/S}^g / d$ stable Faltings height

- ▶ k number field, $d = [k : \mathbb{Q}]$
- ► A/k abelian variety with semistable reduction, origin e, g = dim A
- ► ⊖ symmetric effective Cartier divisor defining a principal polarization
- ▶ $L = \mathcal{O}_A(\Theta)$
- ► G connected component of Néron model over $S = \operatorname{Spec} O_k$
- ▶ $h_F(A) := \overline{\deg} e^* \Omega_{G/S}^g / d$ stable Faltings height
- $\blacktriangleright \ \, \mathit{L}' := \mathit{L} \otimes e^*\mathit{L}^{\otimes -1}$

- ▶ k number field, $d = [k : \mathbb{Q}]$
- ► A/k abelian variety with semistable reduction, origin e, g = dim A
- ► ⊖ symmetric effective Cartier divisor defining a principal polarization
- ▶ $L = \mathcal{O}_A(\Theta)$
- ► G connected component of Néron model over $S = \operatorname{Spec} O_k$
- ▶ $h_F(A) := \overline{\deg} e^* \Omega_{G/S}^g / d$ stable Faltings height
- $ightharpoonup L' := L \otimes e^* L^{\otimes -1}$
- $h'_{L}(\Theta) := \langle \hat{c}_{1}(\overline{L'})^{g} | \Theta \rangle / d \cdot g \cdot g!$

- ▶ k number field, $d = [k : \mathbb{Q}]$
- ► A/k abelian variety with semistable reduction, origin e, g = dim A
- ► ⊖ symmetric effective Cartier divisor defining a principal polarization
- ▶ $L = \mathcal{O}_A(\Theta)$
- ► G connected component of Néron model over $S = \operatorname{Spec} O_k$
- ► $h_F(A) := \widehat{\operatorname{deg}} e^* \Omega_{G/S}^g / d$ stable Faltings height
- $ightharpoonup L' := L \otimes e^*L^{\otimes -1}$
- $\mathrm{h}'_L(\Theta) := \langle \hat{c}_1(\overline{L'})^g | \Theta \rangle / d \cdot g \cdot g!$ Néron-Tate height of Θ

- ▶ k number field, $d = [k : \mathbb{Q}]$
- ► A/k abelian variety with semistable reduction, origin e, $g = \dim A$
- ► ⊖ symmetric effective Cartier divisor defining a principal polarization
- ▶ $L = \mathcal{O}_A(\Theta)$
- ▶ G connected component of Néron model over $S = \operatorname{Spec} O_k$
- ► $h_F(A) := \widehat{\operatorname{deg}} e^* \Omega_{G/S}^g / d$ stable Faltings height
- $ightharpoonup L' := L \otimes e^*L^{\otimes -1}$
- $\mathrm{h}'_L(\Theta) := \langle \hat{c}_1(\overline{L'})^g | \Theta \rangle / d \cdot g \cdot g!$ Néron-Tate height of Θ
- use Zhang / Chambert-Loir / Gubler adelic admissible intersection theory to define $\langle \hat{c}_1(\overline{L'})^g | \Theta \rangle$

- ▶ k number field, $d = [k : \mathbb{Q}]$
- ► A/k abelian variety with semistable reduction, origin e, g = dim A
- ▶ ⊖ symmetric effective Cartier divisor defining a principal polarization
- ▶ $L = \mathcal{O}_A(\Theta)$
- ► G connected component of Néron model over $S = \operatorname{Spec} O_k$
- ▶ $h_F(A) := \overline{\deg} e^* \Omega_{G/S}^g / d$ stable Faltings height
- $ightharpoonup L' := L \otimes e^*L^{\otimes -1}$
- $\mathrm{h}'_L(\Theta) := \langle \hat{c}_1(\overline{L'})^g | \Theta \rangle / d \cdot g \cdot g!$ Néron-Tate height of Θ
- use Zhang / Chambert-Loir / Gubler adelic admissible intersection theory to define $\langle \hat{c}_1(\overline{L'})^g | \Theta \rangle$

Our goal: $h_F(A) = 2g \cdot h'_I(\Theta) + d \cdot (a \text{ sum of local factors indexed by the places of } k)$.

Case of good reduction

First case: A/k has everywhere good reduction.

Case of good reduction

First case: A/k has everywhere good reduction. Expect only contributions from the infinite places.

First case: A/k has everywhere good reduction. Expect only contributions from the infinite places.

► A complex abelian variety

- ► A complex abelian variety
- ▶ Θ symmetric effective Cartier divisor defining a principal polarization $\lambda \colon \mathbf{A} \xrightarrow{\sim} \mathbf{A}^t$

- ► A complex abelian variety
- ▶ Θ symmetric effective Cartier divisor defining a principal polarization $\lambda \colon \mathbf{A} \xrightarrow{\sim} \mathbf{A}^t$
- ▶ $L = \mathcal{O}_{A}(\Theta)$

- ► A complex abelian variety
- ▶ Θ symmetric effective Cartier divisor defining a principal polarization $\lambda \colon \mathbf{A} \xrightarrow{\sim} \mathbf{A}^t$
- ▶ $L = \mathcal{O}_{A}(\Theta)$
- ▶ endow L with admissible smooth hermitian metric $\|\cdot\|$ (ie $c_1(\overline{\mathsf{L}})$ is translation-invariant)

- ► A complex abelian variety
- ▶ Θ symmetric effective Cartier divisor defining a principal polarization $\lambda \colon \mathbf{A} \xrightarrow{\sim} \mathbf{A}^t$
- ▶ $L = \mathcal{O}_{A}(\Theta)$
- ▶ endow L with admissible smooth hermitian metric $\|\cdot\|$ (ie $c_1(\overline{L})$ is translation-invariant)
- ▶ choose $s \in H^0(\mathbf{A}, \mathbf{L})$ non-zero

- ► A complex abelian variety
- ▶ Θ symmetric effective Cartier divisor defining a principal polarization $\lambda \colon \mathbf{A} \xrightarrow{\sim} \mathbf{A}^t$
- ▶ $L = \mathcal{O}_{A}(\Theta)$
- ▶ endow L with admissible smooth hermitian metric $\|\cdot\|$ (ie $c_1(\overline{L})$ is translation-invariant)
- ▶ choose $s \in H^0(\mathbf{A}, \mathbf{L})$ non-zero
- ▶ put $I(\mathbf{A}, \lambda) := -\int_{\mathbf{A}} \log \|s\| \, \mathrm{d} \, \mu_H + \frac{1}{2} \log \int_{\mathbf{A}} \|s\|^2 \, \mathrm{d} \, \mu_H$

- ► A complex abelian variety
- ▶ Θ symmetric effective Cartier divisor defining a principal polarization $\lambda \colon \mathbf{A} \xrightarrow{\sim} \mathbf{A}^t$
- ▶ $L = \mathcal{O}_{A}(\Theta)$
- ▶ endow L with admissible smooth hermitian metric $\|\cdot\|$ (ie $c_1(\overline{L})$ is translation-invariant)
- ▶ choose $s \in H^0(\mathbf{A}, \mathbf{L})$ non-zero
- ▶ put $I(\mathbf{A}, \lambda) := -\int_{\mathbf{A}} \log \|s\| \, \mathrm{d} \, \mu_H + \frac{1}{2} \log \int_{\mathbf{A}} \|s\|^2 \, \mathrm{d} \, \mu_H$
- where μ_H Haar measure on **A** normalized to give **A** unit volume

- ► A complex abelian variety
- ▶ Θ symmetric effective Cartier divisor defining a principal polarization $\lambda \colon \mathbf{A} \xrightarrow{\sim} \mathbf{A}^t$
- ▶ $L = \mathcal{O}_{A}(\Theta)$
- ▶ endow L with admissible smooth hermitian metric $\|\cdot\|$ (ie $c_1(\overline{L})$ is translation-invariant)
- ▶ choose $s \in H^0(\mathbf{A}, \mathbf{L})$ non-zero
- ▶ put $I(\mathbf{A}, \lambda) := -\int_{\mathbf{A}} \log \|s\| \, \mathrm{d} \, \mu_H + \frac{1}{2} \log \int_{\mathbf{A}} \|s\|^2 \, \mathrm{d} \, \mu_H$
- where μ_H Haar measure on **A** normalized to give **A** unit volume
- ▶ note $I(\mathbf{A}, \lambda) > 0$.

Hindry and Autissier have shown:

Hindry and Autissier have shown: assume A/k has everywhere good reduction. Then

$$\mathrm{h}_F(A) = 2g \cdot \mathrm{h}_L'(\Theta) - \kappa_0 \, g + \frac{2}{d} \sum_{v \in M(k)_\infty} I(A_v, \lambda_v) \, .$$

$$\mathrm{h}_F(A) = 2g \cdot \mathrm{h}_L'(\Theta) - \kappa_0 g + \frac{2}{d} \sum_{v \in M(k)_\infty} I(A_v, \lambda_v).$$

Here

•
$$\kappa_0 = \log(\pi\sqrt{2})$$
, related to $\|\alpha\|_{\mathrm{Fa}}^2 = \frac{\sqrt{-1}^{g^2}}{2^g} \int_{\mathbf{A}} \alpha \wedge \overline{\alpha}$

$$\mathrm{h}_F(A) = 2g \cdot \mathrm{h}_L'(\Theta) - \kappa_0 g + \frac{2}{d} \sum_{v \in M(k)_\infty} I(A_v, \lambda_v).$$

Here

•
$$\kappa_0 = \log(\pi\sqrt{2})$$
, related to $\|\alpha\|_{\mathrm{Fa}}^2 = \frac{\sqrt{-1}^{g^2}}{2^g} \int_{\mathbf{A}} \alpha \wedge \overline{\alpha}$

▶ $M(k)_{\infty}$ = set of complex embeddings of k

$$\mathrm{h}_F(A) = 2g \cdot \mathrm{h}_L'(\Theta) - \kappa_0 \, g + rac{2}{d} \sum_{v \in M(k)_\infty} I(A_v, \lambda_v) \, .$$

Here

$$\blacktriangleright \ \kappa_0 = \log(\pi\sqrt{2}), \ \text{related to} \ \|\alpha\|_{\mathrm{Fa}}^2 = \tfrac{\sqrt{-1}^{g^2}}{2^g} \int_{\mathbf{A}} \alpha \wedge \overline{\alpha}$$

▶ $M(k)_{\infty}$ = set of complex embeddings of k

Proof: application of ARR / key formula.

$$\mathrm{h}_F(A) = 2g \cdot \mathrm{h}_L'(\Theta) - \kappa_0 \, g + rac{2}{d} \sum_{v \in M(k)_\infty} I(A_v, \lambda_v) \, .$$

Here

$$\blacktriangleright \ \kappa_0 = \log(\pi\sqrt{2}), \ \text{related to} \ \|\alpha\|_{\mathrm{Fa}}^2 = \tfrac{\sqrt{-1}^{g^2}}{2^g} \int_{\mathbf{A}} \alpha \wedge \overline{\alpha}$$

▶ $M(k)_{\infty}$ = set of complex embeddings of k

Proof: application of ARR / key formula. What about the general case?

▶ (A, λ) principally polarized abelian variety over F, fraction field of a complete discrete valuation ring R

- ▶ (A, λ) principally polarized abelian variety over F, fraction field of a complete discrete valuation ring R
- ▶ assume A has split semistable reduction

- ▶ (A, λ) principally polarized abelian variety over F, fraction field of a complete discrete valuation ring R
- assume A has split semistable reduction
- ▶ get $1 \to T \to \tilde{G} \to B \to 0$ over R with $T = \mathbb{G}_{\mathrm{m}}^r$ split torus, B abelian scheme over R

- ▶ (A, λ) principally polarized abelian variety over F, fraction field of a complete discrete valuation ring R
- assume A has split semistable reduction
- ▶ get $1 \to T \to \tilde{G} \to B \to 0$ over R with $T = \mathbb{G}_{\mathrm{m}}^r$ split torus, B abelian scheme over R
- ▶ set $X := Hom(T, \mathbb{G}_m)$, $Y := Hom(T^t, \mathbb{G}_m)$, principal polarization gives $\phi \colon Y \xrightarrow{\sim} X$

- ▶ (A, λ) principally polarized abelian variety over F, fraction field of a complete discrete valuation ring R
- assume A has split semistable reduction
- ▶ get $1 \to T \to \tilde{G} \to B \to 0$ over R with $T = \mathbb{G}_{\mathrm{m}}^r$ split torus, B abelian scheme over R
- ▶ set $X := Hom(T, \mathbb{G}_m)$, $Y := Hom(T^t, \mathbb{G}_m)$, principal polarization gives $\phi \colon Y \xrightarrow{\sim} X$
- ▶ have natural maps $\Omega: X \to B^t$, $\Omega': Y \to B$

- ▶ (A, λ) principally polarized abelian variety over F, fraction field of a complete discrete valuation ring R
- assume A has split semistable reduction
- ▶ get $1 \to T \to \tilde{G} \to B \to 0$ over R with $T = \mathbb{G}_{\mathrm{m}}^r$ split torus, B abelian scheme over R
- ▶ set $X := Hom(T, \mathbb{G}_m)$, $Y := Hom(T^t, \mathbb{G}_m)$, principal polarization gives $\phi \colon Y \xrightarrow{\sim} X$
- ▶ have natural maps $\Omega: X \to B^t$, $\Omega': Y \to B$
- ightharpoonup and a trivialization of the restriction to the generic fiber of the pullback of the Poincaré bundle to $Y \times X$

- ▶ (A, λ) principally polarized abelian variety over F, fraction field of a complete discrete valuation ring R
- assume A has split semistable reduction
- ▶ get $1 \to T \to \tilde{G} \to B \to 0$ over R with $T = \mathbb{G}_{\mathrm{m}}^r$ split torus, B abelian scheme over R
- ▶ set $X := Hom(T, \mathbb{G}_m)$, $Y := Hom(T^t, \mathbb{G}_m)$, principal polarization gives $\phi \colon Y \xrightarrow{\sim} X$
- ▶ have natural maps $\Omega: X \to B^t$, $\Omega': Y \to B$
- ightharpoonup and a trivialization of the restriction to the generic fiber of the pullback of the Poincaré bundle to $Y \times X$
- ▶ this gives a bilinear map $b: Y \times X \to \mathbb{Z}$ with $b(\cdot, \phi(\cdot))$ positive definite

- ▶ (A, λ) principally polarized abelian variety over F, fraction field of a complete discrete valuation ring R
- assume A has split semistable reduction
- ▶ get $1 \to T \to \tilde{G} \to B \to 0$ over R with $T = \mathbb{G}_{\mathrm{m}}^r$ split torus, B abelian scheme over R
- ▶ set $X := Hom(T, \mathbb{G}_m)$, $Y := Hom(T^t, \mathbb{G}_m)$, principal polarization gives $\phi \colon Y \xrightarrow{\sim} X$
- ▶ have natural maps $\Omega: X \to B^t$, $\Omega': Y \to B$
- ▶ and a trivialization of the restriction to the generic fiber of the pullback of the Poincaré bundle to Y × X
- ▶ this gives a bilinear map $b: Y \times X \to \mathbb{Z}$ with $b(\cdot, \phi(\cdot))$ positive definite
- ▶ the real torus $\Sigma = \text{Hom}(X, \mathbb{R})/Y$ is a principally polarized tropical abelian variety canonically associated to (\mathbf{A}, λ)

A principally polarized tropical abelian variety is a real torus $\Sigma = \operatorname{Hom}(X,\mathbb{R})/Y$ where Y,X is a pair of finitely generated free abelian groups together with an isomorphism $\phi\colon Y\stackrel{\sim}{\to} X$ and a bilinear map $b\colon Y\times X\to \mathbb{Z}$ such that $b(\cdot,\phi(\cdot))$ is positive definite.

A principally polarized tropical abelian variety is a real torus $\Sigma = \operatorname{Hom}(X,\mathbb{R})/Y$ where Y,X is a pair of finitely generated free abelian groups together with an isomorphism $\phi\colon Y\stackrel{\sim}{\to} X$ and a bilinear map $b\colon Y\times X\to \mathbb{Z}$ such that $b(\cdot,\phi(\cdot))$ is positive definite.

We get an induced norm $\|\cdot\|$ on $V = \text{Hom}(X, \mathbb{R})$.

A principally polarized tropical abelian variety is a real torus $\Sigma = \operatorname{Hom}(X,\mathbb{R})/Y$ where Y,X is a pair of finitely generated free abelian groups together with an isomorphism $\phi \colon Y \xrightarrow{\sim} X$ and a bilinear map $b \colon Y \times X \to \mathbb{Z}$ such that $b(\cdot,\phi(\cdot))$ is positive definite.

We get an induced norm $\|\cdot\|$ on $V = \text{Hom}(X,\mathbb{R})$.

We have the Voronoi polytope with center the origin

$$Vor(0) = \left\{ \nu \in V \mid \|\nu\| = \min_{v' \in Y} \|\nu - v'\| \right\}$$

as a rational polytope in V.

A principally polarized tropical abelian variety is a real torus $\Sigma = \operatorname{Hom}(X,\mathbb{R})/Y$ where Y,X is a pair of finitely generated free abelian groups together with an isomorphism $\phi\colon Y\xrightarrow{\sim} X$ and a bilinear map $b\colon Y\times X\to \mathbb{Z}$ such that $b(\cdot,\phi(\cdot))$ is positive definite.

We get an induced norm $\|\cdot\|$ on $V = \text{Hom}(X,\mathbb{R})$.

We have the Voronoi polytope with center the origin

$$Vor(0) = \left\{ \nu \in V \mid \|\nu\| = \min_{v' \in Y} \|\nu - v'\| \right\}$$

as a rational polytope in V.

The tropical moment of $\Sigma = V/Y$ is the value of the integral

$$\int_{\mathsf{Vor}(0)} \|\nu\|^2 \,\mathrm{d}\,\mu_L(\nu) \,.$$

A principally polarized tropical abelian variety is a real torus $\Sigma = \operatorname{Hom}(X,\mathbb{R})/Y$ where Y,X is a pair of finitely generated free abelian groups together with an isomorphism $\phi\colon Y\xrightarrow{\sim} X$ and a bilinear map $b\colon Y\times X\to \mathbb{Z}$ such that $b(\cdot,\phi(\cdot))$ is positive definite.

We get an induced norm $\|\cdot\|$ on $V=\mathsf{Hom}(X,\mathbb{R})$.

We have the Voronoi polytope with center the origin

$$\mathsf{Vor}(0) = \left\{ \nu \in V \; \middle|\; \lVert \nu \rVert = \min_{v' \in Y} \, \lVert \nu - v' \rVert \right\}$$

as a rational polytope in V.

The tropical moment of $\Sigma = V/Y$ is the value of the integral

$$\int_{\mathsf{Vor}(0)} \|\nu\|^2 \,\mathrm{d}\,\mu_L(\nu) \,.$$

Here μ_L denotes the Lebesgue measure on V, normalized to give Vor(0) unit volume.

Tropical moment

Tropical moment

Alternatively, consider the tropical Riemann theta function

$$\Psi(\nu) := \min_{u' \in Y} \left\{ \frac{1}{2} \|u'\|^2 + [\nu, u'] \right\} \tag{1}$$

for $\nu \in V$.

$$\Psi(\nu) := \min_{u' \in Y} \left\{ \frac{1}{2} \|u'\|^2 + [\nu, u'] \right\} \tag{1}$$

for $\nu \in V$. The function Ψ is piecewise affine on V.

$$\Psi(\nu) := \min_{u' \in Y} \left\{ \frac{1}{2} \|u'\|^2 + [\nu, u'] \right\} \tag{1}$$

for $\nu \in V$. The function Ψ is piecewise affine on V. The modified Riemann theta function

$$\|\Psi\|(\nu) := \Psi(\nu) + \frac{1}{2} \|\nu\|^2 \tag{2}$$

on V is Y-invariant and hence descends to Σ .

$$\Psi(\nu) := \min_{u' \in Y} \left\{ \frac{1}{2} \|u'\|^2 + [\nu, u'] \right\} \tag{1}$$

for $\nu \in V$. The function Ψ is piecewise affine on V. The modified Riemann theta function

$$\|\Psi\|(\nu) := \Psi(\nu) + \frac{1}{2} \|\nu\|^2 \tag{2}$$

on V is Y-invariant and hence descends to Σ . Explicitly

$$\|\Psi\|(\nu) = \frac{1}{2} \min_{u' \in Y} \|\nu + u'\|^2$$

for all $\nu \in V$.

$$\Psi(\nu) := \min_{u' \in Y} \left\{ \frac{1}{2} \|u'\|^2 + [\nu, u'] \right\} \tag{1}$$

for $\nu \in V$. The function Ψ is piecewise affine on V. The modified Riemann theta function

$$\|\Psi\|(\nu) := \Psi(\nu) + \frac{1}{2} \|\nu\|^2 \tag{2}$$

on V is Y-invariant and hence descends to Σ . Explicitly

$$\|\Psi\|(\nu) = \frac{1}{2} \min_{u' \in \mathcal{V}} \|\nu + u'\|^2$$

for all $\nu \in V$. The tropical moment of Σ can alternatively be written as

$$2 \int_{\Sigma} \|\Psi\| \,\mathrm{d}\,\mu_H,$$

where μ_H is the Haar measure on Σ , normalized to give Σ unit volume. It is a non-negative rational number, zero iff $\Sigma = (0)$.

General case

General case

When (\mathbf{A}, λ) is a principally polarized abelian variety over F as above we denote by $I(\mathbf{A}, \lambda)$ the tropical moment of the associated principally polarized tropical abelian variety Σ .

Theorem A (-, Shokrieh): Let A be an abelian variety with semistable reduction over the number field k.

Theorem A (-, Shokrieh): Let A be an abelian variety with semistable reduction over the number field k. Set $g = \dim A$.

Theorem A (-, Shokrieh): Let A be an abelian variety with semistable reduction over the number field k. Set $g = \dim A$. Let Θ be an effective symmetric divisor on A defining a principal polarization λ of A, and put $L = \mathcal{O}_A(\Theta)$.

Theorem A (-, Shokrieh): Let A be an abelian variety with semistable reduction over the number field k. Set $g = \dim A$. Let Θ be an effective symmetric divisor on A defining a principal polarization λ of A, and put $L = \mathcal{O}_A(\Theta)$. Let $M(k)_0$ denote the set of finite places of k.

Theorem A (-, Shokrieh): Let A be an abelian variety with semistable reduction over the number field k. Set $g = \dim A$. Let Θ be an effective symmetric divisor on A defining a principal polarization λ of A, and put $L = \mathcal{O}_A(\Theta)$. Let $M(k)_0$ denote the set of finite places of k. Then

$$\mathrm{h}_F(A) = 2g\,\mathrm{h}_L'(\Theta) - \kappa_0\,g + rac{1}{d}\left(\sum_{v\in M(k)_0} I(A_v,\lambda_v)\log Nv
ight. \ + 2\sum_{v\in M(k)_\infty} I(A_v,\lambda_v)
ight).$$

General case

We recover the result of Hindry and Autissier. Moreover we get

$$\mathrm{h}_F(A) \geq -\kappa_0 \, g + rac{1}{d} \left(\sum_{v \in M(k)_0} I(A_v, \lambda_v) \log Nv
ight.$$
 $+2 \sum_{v \in M(k)_\infty} I(A_v, \lambda_v)
ight),$

$$\mathrm{h}_{F}(A) \geq -\kappa_{0}\,g + rac{1}{d}\left(\sum_{v\in M(k)_{0}}I(A_{v},\lambda_{v})\log Nv
ight. \ +2\sum_{v\in M(k)_{\infty}}I(A_{v},\lambda_{v})
ight),$$

obtained previously by Wagener (2016),

$$\mathrm{h}_F(A) \geq -\kappa_0 \, g + rac{1}{d} \left(\sum_{v \in M(k)_0} I(A_v, \lambda_v) \log Nv
ight.$$
 $+2 \sum_{v \in M(k)_\infty} I(A_v, \lambda_v)
ight),$

obtained previously by Wagener (2016), and

$$h_F(A) \geq -\kappa_0 g + \frac{2}{d} \sum_{v \in M(k)_{co}} I(A_v, \lambda_v),$$

$$\mathrm{h}_F(A) \geq -\kappa_0 \, g + rac{1}{d} \left(\sum_{v \in M(k)_0} I(A_v, \lambda_v) \log Nv
ight.$$
 $+2 \sum_{v \in M(k)_\infty} I(A_v, \lambda_v)
ight),$

obtained previously by Wagener (2016), and

$$h_F(A) \geq -\kappa_0 g + \frac{2}{d} \sum_{v \in M(k)} I(A_v, \lambda_v), \quad h_F(A) > -\kappa_0 g,$$

$$\mathrm{h}_F(A) \geq -\kappa_0 \, g + rac{1}{d} \left(\sum_{v \in M(k)_0} I(A_v, \lambda_v) \log Nv
ight. \ + 2 \sum_{v \in M(k)_\infty} I(A_v, \lambda_v)
ight) \, ,$$

obtained previously by Wagener (2016), and

$$h_F(A) \geq -\kappa_0 g + \frac{2}{d} \sum_{v \in M(k)_{\infty}} I(A_v, \lambda_v), \quad h_F(A) > -\kappa_0 g,$$

previously obtained by Bost (1996).

Side remark: in the function field setting with semistable reduction we obtain

$$h(A) = 2g h'_{L}(\Theta) + \sum_{v \in S_{0}} I(A_{v}, \lambda_{v})$$

with S_0 the set of closed points of S.

Side remark: in the function field setting with semistable reduction we obtain

$$h(A) = 2g h'_{L}(\Theta) + \sum_{v \in S_{0}} I(A_{v}, \lambda_{v})$$

with S_0 the set of closed points of S. This refines the well-known fact (Moret-Bailly, Szpiro, Faltings-Chai) that $h(A) \geq 0$.

Assume (A, λ) is an elliptic curve.

Assume (A, λ) is an elliptic curve. Then Θ is a 2-torsion point of A, so $\mathbf{h}_I'(\Theta) = 0$.

Assume (A, λ) is an elliptic curve. Then Θ is a 2-torsion point of A, so $\mathbf{h}'_L(\Theta) = 0$. If A has bad reduction at $v \in M(k)_0$, then Σ_v is a circle of circumference $\sqrt{\ell_v}$, where $\ell_v = \operatorname{ord}_v \Delta_v$.

Assume (A,λ) is an elliptic curve. Then Θ is a 2-torsion point of A, so $\mathbf{h}'_L(\Theta)=0$. If A has bad reduction at $v\in M(k)_0$, then Σ_v is a circle of circumference $\sqrt{\ell_v}$, where $\ell_v=\operatorname{ord}_v\Delta_v$. The tropical moment of a circle of circumference $\sqrt{\ell}$ is $\frac{1}{12}\ell$.

Assume (A,λ) is an elliptic curve. Then Θ is a 2-torsion point of A, so $\mathbf{h}'_L(\Theta)=0$. If A has bad reduction at $v\in M(k)_0$, then Σ_v is a circle of circumference $\sqrt{\ell_v}$, where $\ell_v=\operatorname{ord}_v\Delta_v$. The tropical moment of a circle of circumference $\sqrt{\ell}$ is $\frac{1}{12}\ell$. So $I(A_v,\lambda_v)=\frac{1}{12}\operatorname{ord}_v\Delta_v$.

Assume (A,λ) is an elliptic curve. Then Θ is a 2-torsion point of A, so $\mathbf{h}'_L(\Theta)=0$. If A has bad reduction at $v\in M(k)_0$, then Σ_v is a circle of circumference $\sqrt{\ell_v}$, where $\ell_v=\operatorname{ord}_v\Delta_v$. The tropical moment of a circle of circumference $\sqrt{\ell}$ is $\frac{1}{12}\ell$. So $I(A_v,\lambda_v)=\frac{1}{12}\operatorname{ord}_v\Delta_v$. For $v\in M(k)_\infty$ we have $I(A_v,\lambda_v)=-\frac{1}{24}\log(|\Delta(\tau)|(2\operatorname{Im}\tau)^6)$ with the usual notation.

Assume (A,λ) is an elliptic curve. Then Θ is a 2-torsion point of A, so $\mathbf{h}'_L(\Theta)=0$. If A has bad reduction at $v\in M(k)_0$, then Σ_v is a circle of circumference $\sqrt{\ell_v}$, where $\ell_v=\operatorname{ord}_v\Delta_v$. The tropical moment of a circle of circumference $\sqrt{\ell}$ is $\frac{1}{12}\ell$. So $I(A_v,\lambda_v)=\frac{1}{12}\operatorname{ord}_v\Delta_v$. For $v\in M(k)_\infty$ we have $I(A_v,\lambda_v)=-\frac{1}{24}\log(|\Delta(\tau)|(2\operatorname{Im}\tau)^6)$ with the usual notation. Our formula specializes as

$$12 d h_{\mathcal{F}}(A) = \sum_{v \in M(k)_0} \operatorname{ord}_v \Delta_v \log Nv$$
$$- \sum_{v \in M(k)_\infty} \log \left((2\pi)^{12} |\Delta(\tau)| (\operatorname{Im} \tau)^6 \right) ,$$

which is well known (Faltings, Silverman).

Let C be a smooth projective geometrically connected curve with semistable reduction over the number field k.

Let C be a smooth projective geometrically connected curve with semistable reduction over the number field k. Let (A, λ) be its jacobian.

Let C be a smooth projective geometrically connected curve with semistable reduction over the number field k. Let (A, λ) be its jacobian. Let Γ_v be the dual graph of the geometric special fiber of the stable model of C at v, endowed with its canonical metric structure.

Let C be a smooth projective geometrically connected curve with semistable reduction over the number field k. Let (A, λ) be its jacobian. Let Γ_v be the dual graph of the geometric special fiber of the stable model of C at v, endowed with its canonical metric structure. For example, Γ_v is connected, and the total length $\ell(\Gamma_v)$ equals the number of singular points in the geometric special fiber.

Let C be a smooth projective geometrically connected curve with semistable reduction over the number field k. Let (A, λ) be its jacobian. Let Γ_v be the dual graph of the geometric special fiber of the stable model of C at v, endowed with its canonical metric structure. For example, Γ_v is connected, and the total length $\ell(\Gamma_v)$ equals the number of singular points in the geometric special fiber. Can we relate $I(A_v, \lambda_v)$ for $v \in M(k)_0$ to combinatorial invariants of the metric graph Γ_v associated to C at v?

Let Γ be a connected metric graph. Let r(p,q) denote the effective resistance between points $p, q \in \Gamma$.

Let Γ be a connected metric graph. Let r(p,q) denote the effective resistance between points $p,q\in\Gamma$. Fix $q\in\Gamma$ and set $f(x)=\frac{1}{2}r(x,q)$.

Let Γ be a connected metric graph. Let r(p,q) denote the effective resistance between points $p,q\in\Gamma$. Fix $q\in\Gamma$ and set $f(x)=\frac{1}{2}r(x,q)$. We set (cf. Baker-Rumely, Chinburg-Rumely)

$$\tau(\Gamma) := \int_{\Gamma} (f'(x))^2 dx = \int_{\Gamma} f \Delta f.$$

Let Γ be a connected metric graph. Let r(p,q) denote the effective resistance between points $p,q\in\Gamma$. Fix $q\in\Gamma$ and set $f(x)=\frac{1}{2}r(x,q)$. We set (cf. Baker-Rumely, Chinburg-Rumely)

$$\tau(\Gamma) := \int_{\Gamma} (f'(x))^2 dx = \int_{\Gamma} f \Delta f.$$

Then $\tau(\Gamma)$ is independent of the choice of q.

Let G be a model of Γ , and fix an orientation on G. We then have a natural boundary map $\partial \colon C_1(G,\mathbb{Z}) \to C_0(G,\mathbb{Z})$ with kernel $H_1(G,\mathbb{Z})$.

Let G be a model of Γ , and fix an orientation on G. We then have a natural boundary map $\partial\colon C_1(G,\mathbb{Z})\to C_0(G,\mathbb{Z})$ with kernel $H_1(G,\mathbb{Z})$. The space $C_1(G,\mathbb{R})$ has a natural inner product determined by edge-lengths, i.e. $[e_i,e_j]=\ell(e_i)\delta_{ij}$.

Let G be a model of Γ , and fix an orientation on G. We then have a natural boundary map $\partial\colon C_1(G,\mathbb{Z})\to C_0(G,\mathbb{Z})$ with kernel $H_1(G,\mathbb{Z})$. The space $C_1(G,\mathbb{R})$ has a natural inner product determined by edge-lengths, i.e. $[e_i,e_j]=\ell(e_i)\delta_{ij}$. The Hilbert subspace $H_1(G,\mathbb{R})$ is an invariant of Γ , as is the lattice $Y:=H_1(G,\mathbb{Z})$ in it.

Let G be a model of Γ , and fix an orientation on G. We then have a natural boundary map $\partial\colon C_1(G,\mathbb{Z})\to C_0(G,\mathbb{Z})$ with kernel $H_1(G,\mathbb{Z})$. The space $C_1(G,\mathbb{R})$ has a natural inner product determined by edge-lengths, i.e. $[e_i,e_j]=\ell(e_i)\delta_{ij}$. The Hilbert subspace $H_1(G,\mathbb{R})$ is an invariant of Γ , as is the lattice $Y:=H_1(G,\mathbb{Z})$ in it.

Let X = Y and $b \colon Y \times X \to \mathbb{Z}$ the restriction of $[\cdot, \cdot]$ to $Y \times Y$.

Let G be a model of Γ , and fix an orientation on G. We then have a natural boundary map $\partial\colon C_1(G,\mathbb{Z})\to C_0(G,\mathbb{Z})$ with kernel $H_1(G,\mathbb{Z})$. The space $C_1(G,\mathbb{R})$ has a natural inner product determined by edge-lengths, i.e. $[e_i,e_j]=\ell(e_i)\delta_{ij}$. The Hilbert subspace $H_1(G,\mathbb{R})$ is an invariant of Γ , as is the lattice $Y:=H_1(G,\mathbb{Z})$ in it.

Let X=Y and $b\colon Y\times X\to \mathbb{Z}$ the restriction of $[\cdot,\cdot]$ to $Y\times Y$. We obtain a principally polarized tropical abelian variety $\Sigma=\operatorname{Hom}(X,\mathbb{R})/Y$ from Γ called the tropical jacobian of Γ .

$$I(\Gamma) = \frac{1}{8}\ell(\Gamma) - \frac{1}{2}\tau(\Gamma)$$

holds. Here $\ell(\Gamma)$ is the total length of Γ , and $\tau(\Gamma)$ its tau-invariant.

$$I(\Gamma) = \frac{1}{8}\ell(\Gamma) - \frac{1}{2}\tau(\Gamma)$$

holds. Here $\ell(\Gamma)$ is the total length of Γ , and $\tau(\Gamma)$ its tau-invariant.

Side remark: this allows fast computation of $I(\Gamma)$, starting from the discrete Laplacian on a model G.

$$I(\Gamma) = \frac{1}{8}\ell(\Gamma) - \frac{1}{2}\tau(\Gamma)$$

holds. Here $\ell(\Gamma)$ is the total length of Γ , and $\tau(\Gamma)$ its tau-invariant.

Side remark: this allows fast computation of $I(\Gamma)$, starting from the discrete Laplacian on a model G. Only need to perform a couple of matrix multiplications and Gauss eliminations where the matrices involved have size |V(G)|.

$$I(\Gamma) = \frac{1}{8}\ell(\Gamma) - \frac{1}{2}\tau(\Gamma)$$

holds. Here $\ell(\Gamma)$ is the total length of Γ , and $\tau(\Gamma)$ its tau-invariant.

Side remark: this allows fast computation of $I(\Gamma)$, starting from the discrete Laplacian on a model G. Only need to perform a couple of matrix multiplications and Gauss eliminations where the matrices involved have size |V(G)|. Computation of tropical moment of general lattices is expected by (some) experts to be NP-hard.

Examples

In the notation set earlier, let Γ_{ν} be the dual graph of the geometric special fiber of the stable model of C at ν .

Examples

In the notation set earlier, let Γ_{ν} be the dual graph of the geometric special fiber of the stable model of C at ν . The tropical jacobian of Γ_{ν} is isometric with the principally polarized tropical abelian variety determined by the jacobian (A_{ν}, λ_{ν}) at ν .

In the notation set earlier, let Γ_{ν} be the dual graph of the geometric special fiber of the stable model of C at ν . The tropical jacobian of Γ_{ν} is isometric with the principally polarized tropical abelian variety determined by the jacobian (A_{ν}, λ_{ν}) at ν .

Corollary: Let C be a smooth projective geometrically connected curve of genus g with semistable reduction over k.

In the notation set earlier, let Γ_{ν} be the dual graph of the geometric special fiber of the stable model of C at ν . The tropical jacobian of Γ_{ν} is isometric with the principally polarized tropical abelian variety determined by the jacobian (A_{ν}, λ_{ν}) at ν .

Corollary: Let C be a smooth projective geometrically connected curve of genus g with semistable reduction over k. Let (A, λ) be its jacobian.

In the notation set earlier, let Γ_{ν} be the dual graph of the geometric special fiber of the stable model of C at ν . The tropical jacobian of Γ_{ν} is isometric with the principally polarized tropical abelian variety determined by the jacobian (A_{ν}, λ_{ν}) at ν .

Corollary: Let C be a smooth projective geometrically connected curve of genus g with semistable reduction over k. Let (A, λ) be its jacobian. Then the formula

$$h_F(A) = 2g h'_L(\Theta) - \kappa_0 g + \frac{1}{d} \left(\sum_{v \in M(k)_0} \left(\frac{1}{8} \ell(\Gamma_v) - \frac{1}{2} \tau(\Gamma_v) \right) \log Nv \right)$$

$$+2\sum_{v\in M(k)_{\infty}}I(A_{v},\lambda_{v})$$

holds.

Examples

Example: take a banana graph Γ_n with n+1 edges, all of unit length.

Example: take a banana graph Γ_n with n+1 edges, all of unit length. One computes

$$\tau(\Gamma_n) = \frac{1}{4(n+1)} + \frac{1}{12} \frac{n^2}{n+1}$$

and thus one should have

$$I(\Gamma_n) = \frac{n+1}{8} - \frac{1}{2} \left(\frac{1}{4(n+1)} + \frac{1}{12} \frac{n^2}{n+1} \right) = \frac{n}{12} + \frac{n}{6(n+1)}.$$

Example: take a banana graph Γ_n with n+1 edges, all of unit length. One computes

$$\tau(\Gamma_n) = \frac{1}{4(n+1)} + \frac{1}{12} \frac{n^2}{n+1}$$

and thus one should have

$$I(\Gamma_n) = \frac{n+1}{8} - \frac{1}{2} \left(\frac{1}{4(n+1)} + \frac{1}{12} \frac{n^2}{n+1} \right) = \frac{n}{12} + \frac{n}{6(n+1)}.$$

The lattice $H_1(\Gamma_n, \mathbb{Z})$ is isometric with the root lattice A_n .

Example: take a banana graph Γ_n with n+1 edges, all of unit length. One computes

$$\tau(\Gamma_n) = \frac{1}{4(n+1)} + \frac{1}{12} \frac{n^2}{n+1}$$

and thus one should have

$$I(\Gamma_n) = \frac{n+1}{8} - \frac{1}{2} \left(\frac{1}{4(n+1)} + \frac{1}{12} \frac{n^2}{n+1} \right) = \frac{n}{12} + \frac{n}{6(n+1)}.$$

The lattice $H_1(\Gamma_n, \mathbb{Z})$ is isometric with the root lattice A_n . Conway-Sloane in their book compute that

$$I(A_n) = \frac{n}{12} + \frac{n}{6(n+1)}$$

so this checks.

Proof of Theorem A

We take as starting point the following consequence, due to Bost, of the key formula.

Let $(\pi\colon \mathcal{A}\to S,\mathcal{L}')$ be a so-called Moret-Bailly model of (A,L') over S. Then $\overline{\pi_*\mathcal{L}'}$ with the ℓ^2 -metric derived from the canonical admissible metric on L' is a hermitian line bundle on S, and the formula

$$-\frac{d}{2} h_F(A) = \widehat{\operatorname{deg}} \, \overline{\pi_* \mathcal{L}'} + \frac{d}{2} \kappa_0 \, g$$

holds in \mathbb{R} .

Let $(\pi\colon \mathcal{A}\to S,\mathcal{L}')$ be a so-called Moret-Bailly model of (A,L') over S. Then $\overline{\pi_*\mathcal{L}'}$ with the ℓ^2 -metric derived from the canonical admissible metric on L' is a hermitian line bundle on S, and the formula

$$-\frac{d}{2}\operatorname{h}_{F}(A)=\widehat{\operatorname{deg}}\ \overline{\pi_{*}\mathcal{L}'}+\frac{d}{2}\,\kappa_{0}\,g$$

holds in \mathbb{R} .

We exhibit a tautological Moret-Bailly model as an open subscheme of a suitable projective model of *A* obtained via Mumford's construction based on non-archimedean uniformization.

Let $(\pi\colon \mathcal{A}\to S,\mathcal{L}')$ be a so-called Moret-Bailly model of (A,L') over S. Then $\overline{\pi_*\mathcal{L}'}$ with the ℓ^2 -metric derived from the canonical admissible metric on L' is a hermitian line bundle on S, and the formula

$$-\frac{d}{2} h_F(A) = \widehat{\operatorname{deg}} \ \overline{\pi_* \mathcal{L}'} + \frac{d}{2} \kappa_0 g$$

holds in \mathbb{R} .

We exhibit a tautological Moret-Bailly model as an open subscheme of a suitable projective model of A obtained via Mumford's construction based on non-archimedean uniformization. As polarization function at $v \in M(k)_0$ we use the tropical Riemann theta function at v.

Let $(\pi\colon\mathcal{A}\to\mathcal{S},\mathcal{L}')$ be a so-called Moret-Bailly model of (A,L') over S. Then $\overline{\pi_*\mathcal{L}'}$ with the ℓ^2 -metric derived from the canonical admissible metric on L' is a hermitian line bundle on S, and the formula

$$-\frac{d}{2} h_F(A) = \widehat{\operatorname{deg}} \ \overline{\pi_* \mathcal{L}'} + \frac{d}{2} \kappa_0 g$$

holds in \mathbb{R} .

We exhibit a tautological Moret-Bailly model as an open subscheme of a suitable projective model of A obtained via Mumford's construction based on non-archimedean uniformization. As polarization function at $v \in M(k)_0$ we use the tropical Riemann theta function at v.

For the tautological Moret-Bailly model we calculate deg $\overline{\pi_* \mathcal{L}'}$ explicitly.