EC708 Discussion 6 Linear Panel Data

Yan Liu

Department of Economics
Boston University

February 25, 2022

Outline

Relationship between RE and FE Estimators

Relationship between FE and FD Estimators

Oynamic Linear Panel

Notation

Consider the panel data model ("small" notation):

$$y_{it} = x'_{it}\beta + \epsilon_{it}, \quad i = 1, \dots, N, \ t = 1, \dots, T.$$

Level of individual ("medium" notation):

$$y_i = X_i \beta + \epsilon_i, \quad i = 1, \dots, N.$$

"Large" notation:

$$Y_{NT\times 1} = X_{NT\times k}\beta + \epsilon_{NT\times 1}.$$

Error Component Structure

Unobserved heterogeneity:

$$\epsilon_{it} = \alpha_i + u_{it}.$$

Assumption RE.1:

- Strict exogeneity: $\mathbb{E}[u_{it}|X_i,\alpha_i]=0$;
- Orthogonality: $\mathbb{E}[\alpha_i|X_i] = \mathbb{E}[\alpha_i] = 0$.

Assumption RE.2: Equicorrelated random effects structure

$$\Omega_T \equiv \mathbb{E}[\epsilon_i \epsilon_i' | X_i] = \begin{pmatrix} \sigma_{\alpha}^2 + \sigma_u^2 & \sigma_{\alpha}^2 & \cdots & \sigma_{\alpha}^2 \\ \sigma_{\alpha}^2 & \sigma_{\alpha}^2 + \sigma_u^2 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \sigma_{\alpha}^2 \\ \sigma_{\alpha}^2 & \cdots & \cdots & \sigma_{\alpha}^2 + \sigma_u^2 \end{pmatrix} = \sigma_{\alpha}^2 J_T + \sigma_u^2 I_T,$$

where I_T is a $T \times T$ identity matrix and $J_T = \mathbf{1}_T \mathbf{1}_T'$.

Error Component Structure

- Demeaning operator: $Q_T = I_T J_T/T$ and $Q = I_N \otimes Q_T$.
- Define $P = I_{NT} Q$ and $V = I_N \otimes \Omega_T$. Then

$$V = \sigma_u^2(I_N \otimes I_T) + \sigma_\alpha^2(I_N \otimes J_T)$$
$$= \sigma_u^2(P+Q) + T\sigma_\alpha^2 P$$
$$= \underbrace{(\sigma_u^2 + T\sigma_\alpha^2)}_{=\sigma_1^2} P + \sigma_u^2 Q.$$

• P and Q are symmetric and idempotent. Hence,

$$PQ = P(I_{NT} - P) = 0$$

$$\Rightarrow (\sigma_1^{-2}P + \sigma_u^{-2}Q)(\sigma_1^2P + \sigma_u^2Q) = P + 0 + 0 + Q = I_{NT}$$

$$\Rightarrow V^{-1} = \sigma_1^{-2}P + \sigma_u^{-2}Q.$$

Error Component Structure

We can write the RE and FE estimators as

$$\hat{\beta}_{RE} = \left(\sum_{i=1}^{N} X_i' \Omega_T^{-1} X_i\right)^{-1} \sum_{i=1}^{N} X_i' \Omega_T^{-1} y_i$$

$$= (X'(\sigma_1^{-2} P + \sigma_u^{-2} Q) X)^{-1} X'(\sigma_1^{-2} P + \sigma_u^{-2} Q) y,$$

$$\hat{\beta}_{FE} = \left(\sum_{i=1}^{N} X_i' Q_T X_i\right)^{-1} \sum_{i=1}^{N} X_i' Q_T y_i$$

$$= (X' Q X)^{-1} X' Q y.$$

Between and Within Estimators

- $\hat{\beta}_{FE}$ is also called the within estimator because it uses time variation within each cross-section.
- Similarly, we can define the between estimator which uses variation between the cross-section observations:

$$\hat{\beta}_{\text{between}} = (X'PX)^{-1}X'Py.$$

ullet $\hat{eta}_{
m between}$ is OLS applied to the time-averaged equation

$$\overline{y}_i = \alpha_i + \overline{x}_i'\beta + \overline{\epsilon}_i.$$

Between and Within Estimators

 \hat{eta}_{RE} and \hat{eta}_{POLS} are both linear combinations of $\hat{eta}_{
m between}$ and $\hat{eta}_{
m within}$:

$$\hat{\beta}_{RE} = \underbrace{\frac{1}{\sigma_1^2} (X'(\sigma_1^{-2}P + \sigma_u^{-2}Q)X)^{-1}}_{=A(X'PX)^{-1}} X'Py + \underbrace{\frac{1}{\sigma_u^2} (X'(\sigma_1^{-2}P + \sigma_u^{-2}Q)X)^{-1}}_{=B(X'QX)^{-1}} X'Qy$$

 $=A\hat{\beta}_{\rm between}+B\hat{\beta}_{\rm within},$

$$\begin{split} \hat{\beta}_{POLS} &= \underbrace{(X'X)^{-1}}_{C(X'PX)^{-1}} X'Py + \underbrace{(X'X)^{-1}}_{D(X'QX)^{-1}} X'Qy \\ &= C\hat{\beta}_{\text{between}} + D\hat{\beta}_{\text{within}}. \end{split}$$

We can calculate $A = I_k - B$ and $C = I_k - D$, where

$$B = \left(X'\left(\frac{\sigma_u^2}{\sigma_1^2}P + Q\right)X\right)^{-1}X'QX, \quad D = (X'X)^{-1}X'QX.$$

an Liu February 25, 2022 6/21

Between and Within Estimators

- What happens when $T \to \infty$ or $\frac{\sigma_u}{\sigma_\alpha} \to 0$? $\frac{\sigma_u^2}{\sigma_1^2} = \frac{(\sigma_u/\sigma_\alpha)^2}{(\sigma_u/\sigma_\alpha)^2 + T} \to 0 \Rightarrow B \to I_k \Rightarrow \text{RE approaches FE}.$
- We can calculate $\operatorname{Cov}(\hat{\beta}_{\operatorname{between}},\hat{\beta}_{\operatorname{within}}|X)=0,$

$$\mathrm{Var}(\hat{\beta}_{\mathsf{between}}|X) = \sigma_1^2 (X'PX)^{-1}, \quad \mathrm{Var}(\hat{\beta}_{\mathsf{within}}|X) = \sigma_u^2 (X'QX)^{-1},$$

and thus

$$\begin{split} &\operatorname{Var}(\widehat{\beta}_{RE}|X) = \operatorname{Cov}(\widehat{\beta}_{RE}, \widehat{\beta}_{\operatorname{within}}|X) = (\sigma_1^{-2}X'PX + \sigma_u^{-2}X'QX)^{-1} \\ \Rightarrow &\operatorname{Var}(\widehat{\beta}_{RE} - \widehat{\beta}_{\operatorname{within}}|X) = \operatorname{Var}(\widehat{\beta}_{\operatorname{within}}|X) - \operatorname{Var}(\widehat{\beta}_{RE}|X). \end{split}$$

Hence, RE is more efficient than FE.

Hausman Test: FE vs RE

$$H_0: \mathbb{E}[\alpha_i|X_i] = 0, \quad H_1: \mathbb{E}[\alpha_i|X_i] \neq 0.$$

- Under H_0 : both FE and RE are consistent while RE is more efficient.
- Under H_1 : only FE is consistent.

Hausman statistic:

$$H_N = (\hat{\beta}_{FE} - \hat{\beta}_{RE})'[\operatorname{Var}(\hat{\beta}_{FE}|X) - \operatorname{Var}(\hat{\beta}_{RE}|X)]^{-1}(\hat{\beta}_{FE} - \hat{\beta}_{RE}).$$

Under H_0 , $H_N \stackrel{d}{\rightarrow} \chi_k^2$.

Yan Liu Linear Panel Data

Hausman Test: FE vs RE

Caveats:

- Failure of equicorrelated RE structure leads to a non-standard limiting distribution
- Cannot compare FE and RE coefficients on time-constant variables
- Post model selection size distortion

Hausman Test: FE vs RE

The two-stage test statistic is

$$t_N(\beta_0) = t_{RE}(\beta_0)1(H_N < \chi^2_{k,1-\alpha}) + t_{FE}(\beta_0)1(H_N > \chi^2_{k,1-\alpha}).$$

Guggenberger (2010) shows that the asymptotic distribution of $t_N(\beta_0)$ is discontinuous in $\gamma_1 = \text{Corr}(\alpha_i, \bar{x}_i)$:

- When $\sqrt{N}\gamma_1 \to \infty$, t_{FE} is almost always used.
- When $\sqrt{N}\gamma_1 \to h < \infty$, Hausman test does not have enough power. t_{RE} is frequently used, leading to invalid second-stage inference.
- ullet Unfortunately, it is impossible to uniformly consistently estimate h.
 - Partial solution: use least favorable critical values (e.g. Andrews and Guggenberger, 2009)

n Liu Linear Panel Data February 25, 2022 10/21

Outline

Relationship between RE and FE Estimators

Relationship between FE and FD Estimators

Oynamic Linear Panel

First-Difference Estimator

Differencing operator:

$$D_{(T-1)\times T} = \begin{pmatrix} -1 & 1 & 0 & \cdots & 0 \\ 0 & -1 & 1 & 0 & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & 1 \end{pmatrix}.$$

FD estimator is OLS applied to $Dy_i = DX_i\beta + Du_i$:

$$\hat{\beta}_{FD} = \left(\sum_{i=1}^{N} X_i' D' D X_i\right)^{-1} \sum_{i=1}^{N} X_i' D' D y_i.$$

n Liu Linear Panel Data February 25, 2022

Assumption FE.1 (strict exogeneity): $\mathbb{E}[u_{it}|X_i,\alpha_i]=0$.

Assumption FE.2: $\mathbb{E}[u_i u_i' | X_i, \alpha_i] = \sigma_u^2 I_T$.

- Under Assumption FE.2, $\mathbb{E}[(Du_i)(Du_i)'|X_i,\alpha_i] = \sigma_u^2 DD'$ is not spherical, so OLS is not efficient.
- A natural thought is to use GLS:

$$\hat{\beta}_{FD,GLS} = \left(\sum_{i=1}^{N} X_i' D' (DD')^{-1} DX_i\right)^{-1} \sum_{i=1}^{N} X_i' D' (DD')^{-1} Dy_i.$$

Linear Panel Data February 25, 2022 12/21

- It turns out that $D'(DD')^{-1}D = Q_T$, so $\hat{\beta}_{FD,GLS} = \hat{\beta}_{FE}$.
 - Let $\mathcal{H}_{T \times T} = \begin{pmatrix} T^{-1/2} \mathbf{1}_T' \\ (DD')^{-1/2} D \end{pmatrix}$. Then $\mathcal{HH}' = I_T$, so that also $\mathcal{H}'\mathcal{H} = J_T/T + D'(DD')^{-1}D = I_T$.
 - Forward orthogonal transformation (Arellano and Bover, 1995):

$$(DD')^{-1/2}Dv_{it} = \sqrt{\frac{T-t}{T-t+1}} \left[v_{it} - \frac{1}{T-t} (v_{i,t+1} + \dots + v_{iT}) \right].$$

- Under Assumption FE.2, FE is more efficient than FD.
- Alternatively, if $\mathbb{E}[(Du_i)(Du_i)'|X_i,\alpha_i]=\sigma_e^2I_{T-1}$, FD is efficient.
 - ullet Now u_{it} is a random walk, which has substantial serial dependence.

Liu Linear Panel Data February 25, 2022

Outline

Relationship between RE and FE Estimators

Relationship between FE and FD Estimators

Oynamic Linear Panel

FE in Dynamic Linear Panel AR(1)

Consider the lagged dependent variable model:

$$y_{it} = \rho y_{i,t-1} + \alpha_i + u_{it}$$

Within transformation:

$$y_{it} - \overline{y}_i = \rho(y_{i,t-1} - \overline{y}_{i,-1}) + u_{it} - \overline{u}_i$$

where $\overline{y}_{i,-1} = \frac{1}{T} \sum_{t=0}^{T-1} y_{it}$.

- $\overline{y}_{i,-1}$ is correlated with \overline{u}_i .
- Results in inconsistency of $\hat{\rho}_{FE}$:

$$\hat{\rho}_{FE} = \rho + \frac{\sum_{i=1}^{N} \sum_{t=1}^{T} (y_{i,t-1} - \overline{y}_{i,t-1}) (u_{it} - \overline{u}_i)}{\sum_{i=1}^{N} \sum_{t=1}^{T} (y_{i,t-1} - \overline{y}_{i,t-1})^2}.$$

Yan Liu Linear Panel Data

FE in Dynamic Linear Panel: Nickell (1981) Bias

• Fix T and let $N \to \infty$,

$$\hat{\rho}_{FE} - \rho \xrightarrow{p} -\frac{1+\rho}{T-1} \left\{ 1 - \frac{1}{T} \frac{1-\rho^T}{1-\rho} \right\} \times \left\{ 1 - \frac{2\rho}{(1-\rho)(T-1)} \left[1 - \frac{1}{T} \frac{1-\rho^T}{1-\rho} \right] \right\}^{-1}$$

• When T=2,

$$\hat{\rho}_{FE} - \rho \xrightarrow{p} -\frac{1+\rho}{2}$$
.

• When T is large (long panel),

$$\underset{N \to \infty}{\text{plim}} (\hat{\rho}_{FE} - \rho) \approx -\frac{1+\rho}{T-1}.$$

RE and FD in Dynamic Linear Panel

RE estimator:

• $y_{i,t-1}$ also depends on α_i , violating Assumption RE.1.

FD estimator is OLS on

$$y_{it} - y_{i,t-1} = \rho(y_{i,t-1} - y_{i,t-2}) + u_{it} - u_{i,t-1}$$

• $y_{i,t-1} - y_{i,t-2}$ is correlated with $u_{it} - u_{i,t-1}$.

Takeaway: When lagged dependent variable is included as a regressor, FE, RE, and FD fail to account for the endogeneity it brings.

Yan Liu Linear Panel Data February 25, 2022

Anderson and Hsiao (1982): First-Differenced IV

Consider the first-differenced equation:

$$\Delta y_{it} = \rho \Delta y_{i,t-1} + \Delta u_{it}$$

- Assume sequential exogeneity: $\mathbb{E}[u_{it}|y_{i,t-1},\ldots,y_{i,0},\alpha_i]=0.$
- FD is problematic because $\Delta y_{i,t-1}$ is correlated with Δu_{it} .
- Remedy: use $y_{i,t-2}$ or $\Delta y_{i,t-2}$ as an instrument for $\Delta y_{i,t-1}$
 - **1** IV relevance: $y_{i,t-2} = y_{i,t-1} \Delta y_{i,t-1}$;
 - ② IV validity: $\mathbb{E}[y_{i,t-2}\Delta u_{it}] = \mathbb{E}[\Delta y_{i,t-2}\Delta u_{it}] = 0.$
- Estimator is consistent but inefficient: doesn't exploit all moment conditions.

/an Liu Linear Panel Data February 25, 2022 17/21

Arellano and Bond (1991)

Consider the first-differenced equation:

$$\Delta y_{it} = \rho \Delta y_{i,t-1} + \Delta u_{it}$$

- What are the valid instruments for each period?
 - t = 2: no instruments;
 - t = 3: $\Delta y_{i2} = y_{i2} y_{i1}$. IV is y_{i1} .
 - t = 4: $\Delta y_{i3} = y_{i3} y_{i2} = \rho(y_{i2} y_{i1}) + \Delta u_{i3}$. IVs are y_{i2} and y_{i1} .
 - t = T: IVs are $y_{i,T-2}, \ldots, y_{i1}$.
- There are in total $\frac{(T-1)(T-2)}{2}$ IVs and hence moment conditions:

$$\mathbb{E}[(\Delta y_{it} - \rho \Delta y_{i,t-1})y_{is}] = 0, \quad t = 3, \dots, T, \ s = 1, \dots, t-2.$$

• Estimate by two-step GMM.

Arellano and Bond (1991)

Remarks:

- When T is large, using full set of lags as instruments may cause many instruments problem.
- Blundell and Bond (1998) point out that the Anderson-Hsiao and Arellano-Bond class of estimators suffer from weak instruments. For example, when T=3, let the first-stage regression be

$$\Delta y_{i2} = \pi y_{i1} + r_i.$$

Some algebra shows

$$\hat{\pi} \stackrel{p}{\to} (\rho - 1) \frac{k}{k + \sigma_{\alpha}^2 / \sigma_u^2}, \quad k = \frac{1 - \rho}{1 + \rho}.$$

 $\mathrm{plim}_{N o \infty} \hat{\pi} o 0$ if ho o 1 (persistent dynamics) or $\sigma_{lpha}^2/\sigma_u^2 o \infty$.

an Liu February 25, 2022 19/21

Blundell and Bond (1998)

Recall

$$y_{it} = \rho y_{i,t-1} + \underbrace{\alpha_i + u_{it}}_{\epsilon_{it}}$$

To reduce weak instruments problem,

Arellano and Bover (1995) add moments

$$\mathbb{E}[\epsilon_{it}\Delta y_{i,t-1}] = 0, \quad t = 3, \dots, T$$

• Blundell and Bond (1998): Δy_{i1} is observed, additional moment

$$\mathbb{E}[\epsilon_{i2}\Delta y_{i1}] = 0.$$

Needs restrictions on initial conditions generating y_{i0} .

an Liu Linear Panel Data February 25, 2022 20 / 21

Blundell and Bond (1998)

- Specify $y_{i0} = \frac{\alpha_i}{1-\rho} + \epsilon_{i0}$.
 - $\alpha_i/(1-\rho)$ is unconditional "mean" of y_{it} under stationarity.
- Then $\mathbb{E}[\epsilon_{i2}\Delta y_{i1}]=0$ is equivalent to

$$\mathbb{E}[(\alpha_i + u_{i2})(u_{i1} + (\rho - 1)\epsilon_{i0}] = 0.$$

• Necessary conditions: $\mathbb{E}[\epsilon_{i0}\alpha_i] = \mathbb{E}[\epsilon_{i0}u_{i2}] = 0.$

In sum, Blundell and Bond (1998) use the following moment conditions:

$$\mathbb{E}[(\Delta y_{it} - \rho \Delta y_{i,t-1})y_{is}] = 0, \quad t = 3, \dots, T, \ s = 1, \dots, t-2,$$

$$\mathbb{E}[\epsilon_{it} \Delta y_{i,t-1}] = 0, \quad t = 2, \dots, T.$$

Bibliography

- Anderson, T. W. and Hsiao, C. (1982), "Formulation and estimation of dynamic models using panel data," *Journal of econometrics*, 18, 47–82.
- Andrews, D. W. and Guggenberger, P. (2009), "Hybrid and size-corrected subsampling methods," *Econometrica*, 77, 721–762.
- Arellano, M. and Bond, S. (1991), "Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations," *The review of economic studies*, 58, 277–297.
- Arellano, M. and Bover, O. (1995), "Another look at the instrumental variable estimation of error-components models," *Journal of econometrics*, 68, 29–51.
- Blundell, R. and Bond, S. (1998), "Initial conditions and moment restrictions in dynamic panel data models," *Journal of econometrics*, 87, 115–143.
- Guggenberger, P. (2010), "The impact of a Hausman pretest on the size of a hypothesis test: The panel data case," *Journal of Econometrics*, 156, 337–343.
- Nickell, S. (1981), "Biases in dynamic models with fixed effects," *Econometrica: Journal of the econometric society*, 1417–1426.