

Institut für Algebra und Geometrie Prof. Dr. Wilderich Tuschmann Dr. Rafael Dahmen Dr. Elisa Hartmann Martin Günther, M. Sc.

Winter-Semester 2020/2021

Lineare Algebra I

Übungsblatt 8

11.01.21

Aufgabe 1 (*Inverse von Matrizen*)

Es sei die Matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 3 \\ 3 & 2 & 2 \end{pmatrix}$ gegeben.

- a) Interpretieren Sie A als Matrix in $\mathbb{R}^{3\times3}$ und bestimmen Sie ihr Inverses.
- b) Interpretieren Sie A als Matrix in $\mathbb{F}_5^{3\times 3}$ und beweisen Sie, dass sie kein Inverses hat.
- c) Interpretieren Sie A als Matrix in $\mathbb{F}_3^{3\times 3}$ und bestimmen Sie ihr Inverses.

Aufgabe 2 (Selbstinverse 2×2 -Matrizen)

(10 Punkte)

Es seien K ein Körper und $a, b \in K$ fest gewählt. Entscheiden Sie, ob es $x, y \in K$ gibt, sodass

$$B := \begin{pmatrix} a & x \\ b & y \end{pmatrix}^2 = \mathbb{1}_2$$

gilt, und bestimmen Sie gegebenenfalls alle möglichen Wahlen für (x, y).

Aufgabe 3 (Darstellungsmatrizen)

(10 Punkte)

Es sei

$$S_3 = \left\{ A \in \mathbb{R}^{3 \times 3} \,\middle|\, A = A^\top \right\}$$

die Menge der reellen symmetrischen 3×3 -Matrizen. Weiterhin sei die Abbildung

$$\operatorname{sym} \colon \mathbb{R}^{3 \times 3} \to S_3$$
$$A \mapsto \frac{1}{2} (A + A^\top)$$

gegeben.

- a) Geben Sie (ohne Beweis) eine geordnete Basis B_{S_3} von S_3 und eine geordnete Basis $B_{\mathbb{R}^{3\times3}}$ von $\mathbb{R}^{3\times3}$ als \mathbb{R} -Vektorräume an.
- b) Zeigen Sie, dass sym eine lineare Abbildung ist und bestimmen Sie die Darstellungsmatrix $M_{{\rm B}_{S_2},{\rm B}_{\mathbb{P}^3\times 3}}({\rm sym})$

Aufgabe 4 (Basiswechsel) (10 Punkte)

Es seien

$$\mathbf{B} \coloneqq \left(\begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix} \right) \qquad \mathbf{C} \coloneqq \left(\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \right)$$

geordnete Basen von \mathbb{F}_3^3 Bestimmen Sie die Basiswechselmatrizen $M_{\mathrm{B,C}}(\mathrm{id}_{\mathbb{F}_3^3})$ und $M_{\mathrm{C,B}}(\mathrm{id}_{\mathbb{F}_3^3})$.

Hinweis für Studierende der Mathematik

Die Anmeldefrist für die Proseminare ist nächste Woche vom 18.01.2021 bis 24.01.2021. Alle Informationen darüber finden Sie auf der folgenden Seite: https://www.math.kit.edu/lehre/seite/prosemanmeld/

Abgabe bis Montag, den 18.01.21 um 18:00 Uhr. Bitte verfassen Sie Ihre Lösung handschriftlich und versehen Sie sie mit Ihren Namen, Ihren Matrikelnummern und E-Mail-Adressen aller Teilnehmenden ihrer Lerngruppe. Laden Sie sie dann als eine pdf-Datei in den entsprechenden Postkasten im ILIAS-Kurs hoch.