Algorithms for the 0-1 Knapsack Problem (KP01)

KP01: given:

- *n* items,
- P_j "profit" of item $j, j = 1, ..., n (P_j > 0),$
- W_j "weight" of item j, j = 1, ..., n $(W_j > 0),$

one container ("knapsack") with "capacity" C:

"Determine a subset of the *n* items so as to maximize the global profit, and such that the global weight is not larger than the knapsack capacity *C*."

- KP01 is NP-Hard.
- * Assume (P_j) and (W_j) positive integers.
- * $\sum_{j=1,n} W_j > C$

Branch-and-Bound Algorithms for KP01

- * Horowitz-Sahni (Journal of ACM, 1974).
- * Ahrens-Finke (Operations Research, 1974).
- * Nauss (Management Science, 1976).
- * Martello-T. (European Journal of Operational Research, 1977).
- * Balas-Zemel (Operations Research, 1980).
- * Fayard-Plateau (Computing, 1982).
- * Martello-T. (Management Science, 1988, Operations Res. 1997).
- * Pandit Ravi Kumar (Opsearch, 1993).
- * Pisinger (Operations Research, 1997).
- * Martello-Pisinger-T. (Management Science, 1999).

Dynamic Programming Algorithms for *KP01*

- * Bellman (Dynamic Programming Book, 1957).
- * Horowitz-Sahni (Journal of ACM, 1974).
- * T. (Computing, 1980).

ILP Model KP01

$$x_j = \begin{cases} 1 & \text{if item } j \text{ is inserted in the knapsack} \\ 0 & \text{otherwise} \end{cases}$$
 $(j = 1, ..., n)$

$$z(KP01) = \max \sum_{j=1, n} P_j x_j$$

$$\sum_{j=1,n} W_j x_j \leq C \qquad (**)$$

$$x_j \in \{0, 1\}$$
 $(j = 1, ..., n)$

- * Relaxations:
- * Continuous (LP) Relaxation.
- * Lagrangian Relaxation of the "Capacity Constraint" (**)

LP Relaxation of KP01

$$x_j = \begin{cases} 1 & \text{if item } j \text{ is inserted in the knapsack} \\ 0 & \text{otherwise} \end{cases}$$
 $(j = 1, ..., n)$

$$UB_D = \max \qquad \sum_{j=1, n} P_j x_j$$

$$\sum_{j=1,n} W_j x_j \leq C$$

$$0 \le x_j \le 1$$
 $(j = 1, ..., n)$

LP Relaxation of KP01: Dantzig Upper Bound

1) Assume:

$$P_j / W_j \ge P_{j+1} / W_{j+1}$$
 for $j = 1, ..., n-1$

2) Define the "critical item" s such that:

$$s = \min \{ k : \sum_{j=1,k} W_j > C \}$$

3) Optimal LP solution:

$$x_{j} = 1$$
 for $j = 1, ..., s - 1$; $x_{j} = 0$ for $j = s + 1, ..., n$; $x_{s} = (C - \sum_{j=1, s-1} W_{j}) / W_{s}$ $(0 \le x_{s} < 1)$

$$UB_{D} = \left[\sum_{j=1, s-1} P_{j} + (C - \sum_{j=1, s-1} W_{j}) P_{s} / W_{s}\right]$$

Dantzig Upper Bound (2)

1)
$$P_j/W_j \ge P_{j+1}/W_{j+1}$$
 for $j = 1, ..., n-1$

- 2) $s = \min \{j : \sum_{i=1,j} W_i > C \}$
- 3) $x_j = 1$ for j = 1, ..., s 1; $x_j = 0$ for j = s + 1, ..., n;

$$x_s = (C - \sum_{j=1, s-1} W_j) / W_s$$

$$UB_D = \left[\sum_{j=1, s-1} P_j + (C - \sum_{j=1, s-1} W_j) P_s / W_s \right]$$

- At most one non-integer variable (x_s) .
- Computation of UB_D in O(n) time, once s is known;
- Computation of s in $O(n \log(n))$ time (Sorting Proc.), in O(n) time through the "partitioning" procedure proposed by Balas-Zemel (Operations Research, 1980)

Dantzig Upper Bound (3)

- 1) $P_j / W_j \ge P_{j+1} / W_{j+1}$ for j = 1, ..., n-1
- 2) $s = \min \{j : \sum_{i=1,j} W_i > C \}$
- 3) $x_j = 1$ for j = 1, ..., s 1; $x_j = 0$ for j = s + 1, ..., n; $x_s = (C \sum_{j=1, s-1} W_j) / W_s$ $UB_D = [\sum_{j=1, s-1} P_j + (C \sum_{j=1, s-1} W_j) P_s / W_s]$

*Example:

$$n = 7$$
; $C = 100$; $(P_j) = (100, 90, 60, 40, 15, 10, 10)$; $(W_j) = (20, 20, 30, 40, 30, 60, 70)$. $s = 4$; $x_1 = x_2 = x_3 = 1$; $x_4 = 30/40$; $x_5 = x_6 = x_7 = 0$. $UB_D = [100 + 90 + 60 + 30 * 40 / 40] = 280$ $z^* = 265$, $(x^*_j) = (1, 1, 1, 0, 1, 0, 0)$

Balas-Zemel Procedure (O.R., 1980): Finding the Critical Item in O(n) time

- 1) For each $j \in N = \{1, ..., n\}$ define $r_j = P_j / W_j$.
- 2) The "critical ratio" r_s can be identified by determining a "partition" of N into subsets J1, JC, J0:

```
r_{j} > r_{s} \text{ for } j \in J1
r_{j} = r_{s} \text{ for } j \in JC
r_{j} < r_{s} \text{ for } j \in J0
\text{with } \Sigma_{j \text{ in } J1} W_{j} \leq C < \Sigma_{j \text{ in } J1 \text{ union } JC} W_{j}
```

- * Progressively determine J1 and J0 using, at each iteration, a tentative value U for r_s to partition the subset of the currently "free" items in $N \setminus (J1 \ union \ J0)$: U = "median" of (r_j) (with j in $N \setminus \{J1 \ union \ J0\}$).
- * Given the subsets J1, JC and J0, the critical item s is determined by filling, in any order, the "residual capacity" $(C \Sigma_{j \text{ in } J1} W_j)$ with items in subset JC.

Lagrangian Relaxation of KP01

$$x_j = \begin{cases} 1 & \text{f item } j \text{ is inserted in the knapsack} \\ 0 & \text{otherwise} \end{cases}$$
 $(j = 1, ..., n)$

$$z(KP01) = \max \sum_{j=1, n} P_j x_j$$

$$\sum_{j=1,n} W_j x_j \leq C \qquad (**)$$

$$x_j \in \{0, 1\}$$
 $(j = 1, ..., n)$

Lagrangian Relaxation of inequality (**), with $v \ge 0$:

$$UB(v) = \max \left(\sum_{j=1,n} P_j x_j + v \left(C - \sum_{j=1,n} W_j x_j \right) \right)$$

Lagrangian Relaxation of KP01

$$x_j = \begin{cases} 1 & \text{if item } j \text{ is inserted in the knapsack} \\ 0 & \text{otherwise} \end{cases}$$
 $(j = 1, ..., n)$

Lagrangian Relaxation of inequality (**), with $v \ge 0$:

$$UB(v) = (\max \sum_{j=1,n} P_j x_j + v (C - \sum_{j=1,n} W_j x_j))$$

$$UB(v) = v C + \max \sum_{j=1,n} P(v)_j x_j$$
(where $P(v)_j = P_j - v W_j$)

$$x_j \in \{0, 1\}$$
 $(j = 1, ..., n)$

Lagrangian Relaxation of KP01

$$x_j = \begin{cases} 1 & \text{if item } j \text{ is inserted in the knapsack} \\ 0 & \text{otherwise} \end{cases}$$
 $(j = 1, ..., n)$

Lagrangian Relaxation of inequality (**), with $v \ge 0$:

$$UB(v) = v C + \max \sum_{j=1, n} P(v)_j x_j$$
(where $P(v)_j = P_j - v W_j$)

$$x_i \in \{0, 1\}$$
 $(j = 1, ..., n)$

- * Optimal Solution (O(n) time):
- $x_i = 1$ if $P(v)_i > 0$; $x_i = 0$ if $P(v)_i \le 0$ (j = 1, ..., n)
- It can be proved that: $UB(v^*) = UB_D$

and that:
$$v^* = P_s / W_s$$
 (where $s = critical item$)

Determination of "good" Lagrangian multipliers: Subgradient Optimization Procedure for KP01

*
$$UB(v) = v \ C + \max \sum_{j=1, n} P(v)_j \ x_j$$
 $(P(v)_j = P_j - v \ W_j)$

$$x_j \in \{0, 1\} \qquad (j = 1, ..., n); \qquad v \ge 0$$
* $x_j = 1$ if $P(v)_j > 0$; $x_j = 0$ if $P(v)_j \le 0$ $(j = 1, ..., n)$
Define: $S(v) = C - \sum_{j=1, n} W_j \ x_j$ ("subgradient element")
Input parameters:
$$LB = \text{Lower Bound (value of a feasible solution)};$$

 $v_0 > 0$; Kmax = max number of iterations;

= "step length" (h > 0);

Subgradient Optimization Procedure for KP01 (2)

```
k := 1; \ v := v_0; UB = \infty;
while UB > LB do
   UB(v) := v * C; S(v) := C;
  \underline{for} \ j := 1 \ \underline{to} \ n \ \underline{do}
     P(v)_i = P_i - v * W_i;
      \underline{if} \ P(v)_i > 0 \ \underline{then} \ x(v)_i := 1; UB(v) := UB(v) + P(v)_i; S(v) := S(v) - W_i
                        <u>else</u> x(v)_i := 0;
   UB := \min \{UB, UB(v)\}; k := k + 1;
   if k > Kmax then STOP;
   v := \max \{0, v - h * S(v)\}
```

<u>endwhile</u>

Subgradient Optimization Procedure for KP01 (3)

$$P(v)_j = P_j - v W_j \quad (j = 1, ..., n)$$

$$S(v) = C - \sum_{j=1,n} W_j x_j$$
 ("subgradient element")

Multiplier Updating Formula: $v := \max \{0, v - | h * S(v) \}$

- * If S(v) > 0 the relaxed constraint is "too satisfied":
 - v must be decreased $(P(v)_i$ increases);
- * If S(v) < 0 the relaxed constraint is violated:
 - v must be increased $(P(v)_j$ decreases);
- * If S(v) = 0 the relaxed constraint is exactly satisfied: v (and $P(v)_i$) must not be changed.

Branching Scheme for KP01

- * Assume: $P_j / W_j \ge P_{j+1} / W_{j+1}$ for j = 1, ..., n-1
- * At each level i (i = 1, ..., n) consider item i and generate two descendent nodes by setting first $x_i = 1$, and then $x_i = 0$.
- * Depth-first branching strategy.
- * At each node k, corresponding to subproblem generated at level (i-1):

$$P(k) = \sum_{j=1, i-1} P_j x_j$$
 (profit at node k)

$$C(k) = C - \sum_{j=1, i-1} W_j x_j$$
 ("residual capacity" at node k)

Upper Bound for KP01 at node k

* At each node k, corresponding to subproblem P^k generated at level (*i* -1):

level
$$(i-1)$$
:
$$P(k) = \sum_{j=1, i-1} P_j x_j \qquad \text{(profit at node } k)$$

$$C(k) = C - \sum_{j=1, i-1} W_j x_j \qquad \text{(residual capacity at node } k, C(k) \ge 0)$$

$$* UB(P^k) = P(k) + UB_D(P^k), \text{ where:}$$

$$UB_D(P^k) = \max \sum_{j=1, i-1} P_j y_j$$

$$UB_{D}(P^{k}) = \max \sum_{j=i,n} P_{j} y_{j}$$

$$\sum_{j=i,n} W_j y_j \leq C(k)$$

$$0 \leq y_j \leq 1 \qquad (j = i, ..., n)$$

Dantzig Upper Bound (LP Relaxation of P^k)

Branching Scheme for KP01 (2)

* At each node k, corresponding to subproblem P^k generated at level (i-1):

$$P(k) = \sum_{j=1, i-1} P_j x_j$$
 (profit at node k)

$$C(k) = C - \sum_{j=1, i-1} W_j x_j$$
 (residual capacity at node k , $C(k) \ge 0$)

* At the first descendent node (k+1) $(x_i = 1, generated only if <math>W_j \le C(k)$:

$$P^* = P(k) + P_i; C^* = C(k) - W_i \text{ (with } C^* \ge 0)$$

* At the second descendent node (k + b) $(x_i = 0, always generated)$:

$$P^* = P(k)$$
; $C^* = C(k)$

Upper Bounds at the descendent nodes

* At each node k, corresponding to subproblem P^k generated at level (i-1):

level
$$(i-1)$$
:
$$P(k) = \sum_{j=1,i-1} P_j x_j \qquad \text{(profit at node } k)$$

$$C(k) = C - \sum_{j=1,i-1} W_j x_j \qquad \text{(residual capacity at node } k, C(k) \ge 0)$$
* At node $(k+1)$ $(x_i = 1$, generated only if $W_j \le C(k)$:
$$P^* = P(k) + P_i; \quad C^* = C(k) - W_i \text{ (with } C^* \ge 0):$$
* $UB(P^{k+1}) = UB(P^k)$

* the new imposed constraint $(x_i = 1)$ is satisfied by the optimal solution of the LP Relaxation determined at node k (parametric technique: the critical item at node (k + 1) is equal to the critical item at node k).

Upper Bounds at the descendent nodes (2)

* At each node k, corresponding to subproblem P^k generated at level (i-1):

$$P(k) = \sum_{j=1,i-1} P_j x_j \qquad \text{(profit at node } k)$$

$$C(k) = C - \sum_{j=1,i-1} W_j x_j \qquad \text{(residual capacity at node } k, C(k) \ge 0)$$
* At node $(k+b)$ ($x_i = 0$):
$$P^* = P(k) \; ; \quad C^* = C(k) \; \text{(with } C^* \ge 0) \; ;$$
* $UB(P^{k+b}) \le UB(P^k)$

* the new imposed constraint $(x_i = 0)$ is violated by the optimal solution of the LP Relaxation determined at node k (parametric technique: the critical item at node (k + b) is greater than or equal to the critical item at node k).

Reduction Procedure for KP01

- * Partition the item set $N = \{1, 2, ..., n\}$ into three subsets N0, N1 and F, so that any feasible solution (x^*_j) of value greater than a given Lower Bound LB (corresponding to a feasible solution (x^*_j)) must have:
 - * $x^*_{i} = 0$ for $j \in N0$, $x^*_{i} = 1$ for $j \in N1$
- 1) For j = 1, ..., s compute:

$$U0(j) = Upper Bound$$
 on $z(KP01)$ by imposing $x_j = 0$;

2) For j = s, ..., n compute:

$$U1(j) = Upper Bound \text{ on } z(KP01) \text{ by imposing } x_i = 1.$$

3) Define: $N0 = \{j : U1(j) \le LB\}; N1 = \{j : U0(j) \le LB\};$

$$F = N \setminus NO \setminus NI$$

Reduction Procedure for KP01 (2)

* Partition the item set $N = \{1, 2, ..., n\}$ into three subsets N0, N1 and F, so that any feasible solution (x^*_j) of value greater than a given Lower Bound LB (corresponding to a feasible solution (x^*_j)) must have: * $x^*_j = 0$ for $j \in N0$, $x^*_j = 1$ for $j \in N1$

* Reduced Problem RD:

* The Reduction Procedure can be implemented to run in $O(n \log(n))$ time (a "weaker" version in O(n) time).

Test Instances for KP01

* Given: n, generate a set of random instances as follows:

- 1) Uncorrelated (UCR) Instances:
- * W_j integer value randomly generated according to the uniform distribution in the interval [1, 1000] (j = 1, ..., n);
 - * P_i integer uniformly random in [1, 1000] (j = 1, ..., n).
- 2) Weakly Correlated (WCR) Instances:
 - * W_i integer uniformly random in [1, 1000] (j = 1, ..., n);
 - * P_i integer un. rand. in $[W_i, W_i + 100]$ (j = 1, ..., n).
- 3) Strongly Correlated (SCR) Instances:
- * W_i integer uniformly random in [1, 1000] (j = 1, ..., n);
 - * $P_i = W_i + 100 (j = 1, ..., n)$.
- $* \quad C = 0.5 \sum_{i=1,n} W_i$

Computational Results for the Reduction Procedure for KP01

- * Partition the item set N into three subsets N0, N1 and F
- * The global computing times of the Reduction Procedure are about 1.5 times the corresponding sorting times.
- * For the UCR instances, the average number of items left in the Reduced Problem (i.e., |F|) is about 25 if n = 100, and about 80 if n = 500.
- * For the WCR instances, average |F| is about 55 if n = 100, and about 180 if n = 500.
- * For the SCR instances, average |F| is about 90 if n = 100, and about 450 if n = 500.

"Core Problem" Approach for KP01

- * In Large-Size "easy" KP01 instances: most of the computing time is spent for preliminary sorting of the items according to non-increasing P_j / W_j ratios
- * If the items are sorted, the Optimal Solution (x^*_j) to a Large-Size KP01 instance is defined by:

$$x^*_{j} = 1$$
 for $j = 1, ..., j_1 - 1$; $x^*_{j} = 0$ for $j = j_2 + 1, ..., n$; $x^*_{j} \in \{0, 1\}$ for $j = j_1, ..., j_2$ ("Core Problem" *CP*) with $j_1 < s < j_2$

* $(j_2 - j_1)$ very small fraction of n (30 to 40 for n = 1000) and slowly increasing with n

Algorithm MT2 for KP01 (M. - T., Man. Sc. 1988)

- 1) Find J1, JC, J0, s without sorting (Balas-Zemel, 1980).
- 2) Define: $j1^*$ and $j2^*$ such that $j1^* < s < j2^*$ and $j2^* j1^* \ge u$ (u given) "Approximate Core Problem" ACP (O(n) time).
- 3) Sort the items in ACP according to non-increasing P_i / W_i ratios.
- 4) Solve ACP through a Branch-and-Bound Algorithm:

$$LB = \sum_{j \text{ in } JI^*} P_j + z(ACP) \text{ (where } JI^* = \{j : P_j / W_j > P_{jI^*} / W_{jI^*} \},$$

- z(ACP) = optimal value of ACP) is a valid Lower Bound for KP01.
 - **UB** = Upper Bound for KP01 (Improved Dantzig Upper Bound).
- 5) If LB = UB then STOP (optimal solution found).

Algorithm MT2 for KP01 (2)

- 6) Apply the *Reduction Procedure* (version without "sorting", O(n) time) to $\overline{KP01}$, and determine subsets N0, N1 and F.
- 7) If $\{1, ..., j1^* 1\} \subseteq N1$ and $\{j2^* + 1, ..., n\} \subseteq N0$ then STOP (optimal solution found).
- 8) Sort the items in F according to non-increasing P_j / W_j ratios.
- 9) Solve the *KP01* corresponding to *F* through a Branch-and-Bound Algorithm.

Computational Results for KP01

- * Algorithm MT2 is able to solve to optimality UCR and WCR instances with up to 100,000 items in few CPU seconds,
- but it can fail to determine, within 5-10 minutes, the optimal solution for SCR instances with 100 items.
- * Dynamic Programming Algorithm DPT (T. 1980) is able to solve to optimality UCR and WCR instances with up to 10000 items in 5-10 CPU seconds,
- but it can fail to determine, within 5-10 CPU minutes, the optimal solution for SCR instances with 1000 items.

Difficult KP01 Instances

- * Algorithm PR (Pandit and Ravi-Kumar, 1993) is a "specialized" exact algorithm for KP01 designed to solve only SCR instances:
- * it is able to solve to optimality *SCR* instances with up to 10,000 items in few CPU minutes,
- * but it cannot solve *UCR* and *WCR* instances.

Data Set	n	MT2	DPT	PR
	50	0.01	0.02	-
	100	0.01	0.02	-
UCR	500	0.05	0.09	-
	1000	0.09	0.24	-
	10000	0.50	3.73	-
	50	0.01	0.06	-
	100	0.02	0.08	-
WCR	500	0.08	0.49	-
	1000	0.12	1.66	-
	10000	0.31	5.86	-
	50	0.13	0.51	0.01
SCR	100	134.48 (9)	2.03	0.03
	500	642.62 (4)	45.01	0.50
	1000	_	124.78 (5)	1.94
	10000	-	-	207.48

^{*} VAXstation 3100 seconds; Time limit = 2000 seconds;

^{*} Average time over 10 instances (solved instances if < 10)

Data Set	n	MT2	DPT	PR	Cplex
	50	0.01	0.02	-	0.12
	100	0.01	0.02	-	0.19
UCR	500	0.05	0.09	-	0.72
	1000	0.09	0.24	-	1.51
	10000	0.50	3.73	-	27.84
	50	0.01	0.06	-	0.14
	100	0.02	0.08	-	0.23
WCR	500	0.08	0.49	-	1.29
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1000	0.12	1.66	-	2.54
	10000	0.31	5.86	-	21.81
	50	0.13	0.51	0.01	4.22
SCR	100	(9)	2.03	0.03	(8)
	500	(4)	45.01	0.50	(4)
	1000	-	(5)	1.94	(1)
	10000	-	-	207.48	_

^{*} VAXstation 3100 seconds; Time limit = 2000 seconds;

^{*} Average time over 10 instances (solved instances if < 10)

Additional Test Instances for KP01

* Given: n, generate a set of random instances as follows

*
$$C = 0.5 \sum_{j=1,n} W_j$$

- 4) Almost Strongly Correlated (ASCR) Instances:
 - * W_i integer uniformly random in [1, 1000] (j = i, ..., n);
 - * P_j integer un. rand. in $[W_j + 99, W_j + 101]$ (j = i, ..., n).
- 5) Uncorrelated with Large Weights (ULWR) Instances:
 - * W_i integer un. rand. in [100,001; 101,000] (j = i, ..., n);
 - * P_i integer uniformly random in [1, 1000] (j = i, ..., n).

* Algorithm PR cannot solve ASCR and ULWR instances.

Data Set	n	MT2	DPT	PR
	50	0.09	0.51	-
	100	(9)	2.11	-
ASCR	500	(5)	44.47	-
	1000	-	118.78 (5)	-
	10000	-	-	-
ULWR	50	0.10	(8)	-
	100	0.02	(5)	-
	500	(7)	-	-
	1000	(8)	-	-
	10000	-	-	-

^{*} VAXstation 3100 seconds; Time limit = 2000 seconds;

^{*} Average time over 10 instances (solved instances if < 10)

[•] Better Upper Bounds for *KP01* are needed:

Data Set	n	MT2	DPT	PR
	50	0.09	0.51	-
	100	(9)	2.11	-
ASCR	500	(5)	44.47	-
HOCK	1000	-	118.78 (5)	-
	10000	-	-	-
ULWR	50	0.10	(8)	-
	100	0.02	(5)	-
	500	(7)	-	-
	1000	(8)	-	-
	10000		-	-

• Better Upper Bounds for *KP01* are needed: strengthen a relaxed problem *RP* by adding valid inequalities which are redundant for the original problem,

but could be violated by the optimal solution of RP.

Stronger Upper Bound for KP01 (M.-T. 1997)

* Determine:

Kmax = maximum number of items in a feasible solution

* Sort the items so that $W_1 \le W_2 \le ... \le W_n$ $Kmax = \min \{ k : \Sigma_{i=1,k} | W_i > C \} - 1$

* Example:

$$n = 6; C = 48; (P_j) = (15, 16, 19, 17, 19, 23);$$

 $(W_j) = (10, 12, 15, 14, 17, 21).$

- * s = 4; $UB_D = 15 + 16 + 19 + [11 * 17 / 14] = 63$
- * sorted (W_i) : (10, 12, 14, 15, 17, 21), Kmax = 3.
- * Optimal Solution $(x_i) = (0, 1, 1, 0, 0, 1), z(KP01) = 58$

Stronger Upper Bound for KP01 (2)

* Determine:

KMAX = maximum number of items in a feasible solution

* Sort the items so that $W_1 \le W_2 \le ... \le W_n$ $KMAX = \min \{ k : \sum_{i=1,k} W_i > C \} - 1$

* Equivalent ILP model for KP01:

$$z(KP01) = \max \quad \sum_{j=1,n} P_j x_j$$
$$\sum_{j=1,n} W_j x_j \le C$$

$$\Sigma_{j=1,n} \ x_j \le KMAX$$
 (**)
 $x_i \in \{0,1\}$ ($j = 1,...,n$)

Stronger Upper Bound for KP01 (3)

* Equivalent ILP model for KP01:

$$z(KP01) = \max \quad \sum_{j=1,n} P_j x_j$$
 (1)

$$\sum_{j=1,n} W_j x_j \le C$$
 (2)

$$\sum_{j=1,n} x_j \le KMAX$$
 (3)

$$x_j \in \{0,1\}$$
 (j = 1, ..., n) (4)

* Lagrangian Relaxation of constraint (3) ($v \ge 0$), and LP Relaxation of the Lagrangian Relaxation:

$$UB(v) = \max \left(\sum_{j=1,n} P_j x_j + v \left(\frac{KMAX - \sum_{j=1,n} x_j}{\sum_{j=1,n} x_j} \right) \right) \text{ s.t. } (2), (4')$$

$$0 \le x_i \le 1 \qquad (j = 1, ..., n) \qquad (4')$$

Stronger Upper Bound for KP01 (4)

$$UB(v) = v * KMAX + \max \sum_{j=1,n} P(v)_j x_j$$

 $\sum_{j=1,n} W_j x_j \le C$
 $0 \le x_j \le 1$ $(j = 1, ..., n)$
with $P(v)_i = P_i - v$ $(j = 1, ..., n)$

- * The corresponding *Dantzig Upper Bound* is computed.
- * The best Lagrangian Multiplier v^* (and the corresponding $UB(v^*)$) can be computed in $O(n^*n)$ time.

Stronger Upper Bound for KP01 (5)

$$UB(v) = v * KMAX + \max \Sigma_{j=1,n} P(v)_j x_j$$

$$\Sigma_{j=1,n} W_j x_j \le C; \quad 0 \le x_j \le 1 \quad (j=1,...,n)$$
with $P(v)_j = P_j - v$ $(j=1,...,n)$
* Example:
$$n = 6; C = 48; \quad (P_j) = (15, 16, 19, 17, 19, 23); z(KP01) = 58$$

$$(W_j) = (10, 12, 15, 14, 17, 21); \quad Kmax = 3.$$
* $v = 0, s(0) = 4; \quad UB(0) = 15 + 16 + 19 + [11 * 17 / 14] = 63$
* $v = 5, \text{ sorted items} \quad (P(5)_j) = (10, 14, 11, 12, 18, 14);$

$$(W'_j) = (10, 15, 12, 14, 21, 17).$$

s(5) = 4; UB(5) = 5 * 3 + 10 + 14 + 11 + [11 * 12 / 14] = 59

Stronger Upper Bound for KP01 (6)

$$UB(v) = v * KMAX + \max \Sigma_{j=1,n} P(v)_j x_j$$

$$\Sigma_{j=1,n} W_j x_j \le C; \quad 0 \le x_j \le 1 \quad (j=1,...,n)$$
with $P(v)_j = P_j - v$ $(j=1,...,n)$
* Example:
$$n = 6; C = 48; \quad (P_j) = (15, 16, 19, 17, 19, 23); z(KP01) = 58$$

$$(W_j) = (10, 12, 15, 14, 17, 21); Kmax = 3.$$
* $v = 0, s(0) = 4, UB(0) = 63; * v = 5, s(5) = 4, UB(5) = 59;$
* $v = 10, \text{ sorted items } (P(10)_j) = (13, 9, 9, 5, 6, 7);$

$$(W'''_j) = (21, 15, 17, 10, 12, 14).$$

s(10) = 3; UB(10) = 10 * 3 + 13 + 9 + [12 * 9 / 17] = 58

Alternative Stronger Upper Bound for KP01

* Determine: *KMIN* = minimum number of items in an optimal solution.

* Sort the items so that $P_1 \ge P_2 \ge ... \ge P_n$ $KMIN = \min \{ k : \sum_{j=1,k} P_j > LB \}$ where LB (Lower Bound) is the value of a feasily

where *LB* (Lower Bound) is the value of a feasible solution.

* Equivalent ILP model for KP01:

$$z(KP01) = \max \quad \sum_{j=1,n} P_j x_j$$

$$\sum_{j=1,n} W_j x_j \leq C$$

$$\sum_{i=1,n} x_i \geq KMIN$$

$$x_i \in \{0, 1\}$$
 $(j = 1, ..., n)$

Algorithm MTH for KP01 (M.-T., Oper. Res. 1997)

- * At each node of the branch-decision tree:
- a) compute the "stronger upper bound" (or the "alternative stronger upper bound") by using a parametric technique;
- b) if the node is not fathomed, apply the Reduction Procedure, and try to fathom the node through Dominance Criteria;
- c) try to fathom the node through a "Partial Dynamic Programming" list.

Data Set	n	MT2	DPT	PR	MTH
	50	0.01	0.02	-	0.03
	100	0.01	0.02	-	0.04
UCR	500	0.05	0.09	-	0.08
0011	1000	0.09	0.24	-	0.14
	10000	0.50	3.73	-	1.59
	50	0.01	0.06	-	0.03
	100	0.02	0.08	-	0.04
WCR	500	0.08	0.49	-	0.09
	1000	0.12	1.66	-	0.15
	10000	0.31	5.86	-	1.28
SCR	50	0.13	0.51	0.01	0.10
	100	(9)	2.03	0.03	0.15
	500	(4)	45.01	0.50	0.71
	1000	-	(5)	1.94	1.31
	10000	_	_	207.48	2.31

^{*} VAXstation 3100 seconds; Time limit = 2000 seconds;

^{*} Average time over 10 instances (solved instances if < 10)

Data Set	n	MT2	DPT	PR	MTH
	50	0.09	0.51	-	0.11
	100	(9)	2.11	-	0.64
ASCR	500	(5)	44.47	-	0.78
noch	1000	-	(5)	-	5.65
	10000	-	-	-	102.83
	50	0.10	0.02 (8)	-	0.07
ULWR	100	0.02	0.06 (5)	-	0.04
	500	(7)	-	-	3.30
	1000	(8)	-	-	0.76
	10000	-	-	-	327.58

- * VAXstation 3100 seconds; Time limit = 2000 seconds;
- * Average time over 10 instances (solved instances if < 10)