5.10 * If $F = -F_0 \sinh \alpha x$, then $U = -\int F dx = (F_0/\alpha) \cosh \alpha x$. The only equilibrium position is at x = 0 and, for points close to this, Taylor's series gives

$$U(x) \approx (F_{\rm o}/\alpha)(1 + \frac{1}{2}\alpha^2 x^2) = \frac{1}{2}kx^2 + {\rm const},$$

where $k = \alpha F_o$. The angular frequency of oscillations is $\omega = \sqrt{k/m} = \sqrt{\alpha F_o/m}$.

5.11 \star The given information gives two expressions of the total energy E

$$E = \frac{1}{2}mv_1^2 + \frac{1}{2}kx_1^2$$
 and $E = \frac{1}{2}mv_2^2 + \frac{1}{2}kx_2^2$. (i)

Equating these two, we find $m(v_1^2 - v_2^2) = k(x_2^2 - x_1^2)$. This implies that

$$\omega^2 = \frac{k}{m} = \frac{v_1^2 - v_2^2}{x_2^2 - x_1^2}.$$

We know also that $E = \frac{1}{2}kA^2$, and inserting this in the first of Eqs.(i) we conclude that

$$A^{2} = \frac{m}{k}v_{1}^{2} + x_{1}^{2} = \frac{x_{2}^{2} - x_{1}^{2}}{v_{1}^{2} - v_{2}^{2}}v_{1}^{2} + x_{1}^{2} = \frac{x_{2}^{2}v_{1}^{2} - x_{1}^{2}v_{2}^{2}}{v_{1}^{2} - v_{2}^{2}}.$$

5.12 ** Because $\sin^2(\omega t - \delta)$ oscillates symmetrically between 0 and 1, its average over a cycle is fairly obviously $\frac{1}{2}$. To prove it, write $\sin^2\theta = \frac{1}{2}[1 - \cos 2\theta]$, so that

$$\langle \sin^2(\omega t - \delta) \rangle = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2} - \frac{1}{2\tau} \left[\sin 2(\omega t - \delta) \right]_0^\tau = \frac{1}{2\tau} \left[\sin 2(\omega t - \delta) \right]_0^\tau = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt = \frac{1}{2\tau} \int_0^\tau [1 - \cos 2(\omega t - \delta)] dt$$

where the final square bracket is zero because the sine function is τ -periodic. The corresponding result with a cosine follows in exactly the same way.

We know from (5.16) that $E = \frac{1}{2}kA^2$, and, since $T = \frac{1}{2}kA^2\sin^2(\omega t - \delta)$, it follows that $\langle T \rangle = \frac{1}{4}kA^2 = \frac{1}{2}E$, and similarly for $\langle U \rangle$.

5.13 ** Since $U(r) = U_o(r/R + \lambda^2 R/r)$, its derivative is $dU/dr = U_o(1/R - \lambda^2 R/r^2)$, which vanishes at $r = \lambda R$ and nowhere else. Clearly $U(r) \to +\infty$ when $r \to 0$ or ∞ , so U(r) has a minimum at $r = r_o = \lambda R$. If we write $r = r_o + x$ then

$$U = \lambda U_{o} \left(\frac{r_{o} + x}{r_{o}} + \frac{r_{o}}{r_{o} + x} \right) = \lambda U_{o} \left(1 + \frac{x}{r_{o}} + \left[1 + \frac{x}{r_{o}} \right]^{-1} \right)$$

$$\approx \lambda U_{o} \left(1 + \frac{x}{r_{o}} + 1 - \frac{x}{r_{o}} + \frac{x^{2}}{r_{o}^{2}} \right) = \lambda U_{o} \left(2 + \frac{x^{2}}{\lambda^{2} R^{2}} \right).$$

where, in the second line, I dropped all terms in $(x/r_o)^3$ and higher. This has the expected form $U = \frac{1}{2}kx^2 + \text{const}$, where $k = 2U_o/(\lambda R^2)$. The angular frequency is $\omega = \sqrt{k/m} = \sqrt{2U_o/(m\lambda R^2)}$.

5.14 \star Given that $\mathbf{F} = -(k_x x, k_y y)$, the PE is

$$U(\mathbf{r}) = -\int_0^{\mathbf{r}} \mathbf{F}(\mathbf{r}') \cdot d\mathbf{r}' = \int_0^{\mathbf{r}} (k_x x' dx' + k_y y' dy') = k_x \int_0^x x' dx' + k_y \int_0^y y' dy' = \frac{1}{2} (k_x x^2 + k_y y^2).$$

5.15 * If we replace the variable t by $t' = t + t_0$, Eq. (5.19) becomes

$$x = A_x \cos(\omega t' - \omega t_o - \delta_x)$$
 and $y = A_y \cos(\omega t' - \omega t_o - \delta_y)$

and if we then choose t_0 such that $\omega t_0 = -\delta_x$ these become

$$x = A_x \cos(\omega t')$$
 and $y = A_y \cos(\omega t' - [\delta_y - \delta_x]).$

If we rename t' as t and set $\delta_y - \delta_x = \delta$, this is the desired form.

5.16 * With $\delta = \pi/2$ Eq.(5.20) reads

$$x = A_x \cos(\omega t)$$
 and $y = A_y \cos(\omega t - \pi/2) = A_y \sin(\omega t)$

from which it follows that $x^2/A_x^2 + y^2/A_y^2 = \cos^2(\omega t) + \sin^2(\omega t) = 1$, the equation of an ellipse with semi-major and semi-minor axes A_x and A_y .

5.17 ** (a) Suppose that the ratio of frequencies is rational, that is $\omega_x/\omega_y = p/q$, where p and q are integers. Then let $\tau = 2\pi p/\omega_x = 2\pi q/\omega_y$. Now consider the following

$$x(t+\tau) = A_x \cos[\omega_x(t+\tau]) = A_x \cos[\omega_x t + 2\pi p] = A_x \cos[\omega_x t] = x(t)$$

where in the second equality I used our definition of τ and in the second the fact that if p is an integer then $\cos(\theta + 2\pi p) = \cos(\theta)$. This shows that x(t) is periodic with period τ . By exactly the same argument, y(t) is also periodic with the same period τ , and we've proved that the whole motion is likewise. What we usually call the period of the motion is the value of $\tau = 2\pi p/\omega_x$ with p and q the smallest integers for which $\omega_x/\omega_y = p/q$.

- (b) Suppose the motion is periodic. Then there is a τ such that $x(t+\tau)=x(t)$ and $y(t+\tau)=y(t)$. Running the previous argument backward, we see that $\omega_x\tau$ must be an integer multiple of 2π , that is $\omega_x\tau=2\pi p$ for some integer p. Similarly $\omega_y\tau=2\pi q$ for some integer q. Dividing these two conclusions, we see that $\omega_x/\omega_y=p/q$ and the ratio of frequencies is rational. Therefore, if the ratio is irrational, the motion cannot be periodic.
- **5.18** *** When the mass is at position (x, y), the lengths of the two springs are l_1 and l_2 , where

$$l_1 = \sqrt{(a+x)^2 + y^2} = a\left(1 + \frac{2x}{a} + \frac{x^2 + y^2}{a^2}\right)^{1/2}$$

$$\approx a \left[1 + \frac{1}{2} \left(\frac{2x}{a} + \frac{x^2 + y^2}{a^2} \right) - \frac{1}{8} \left(\frac{2x}{a} \right)^2 \right] = a + x + \frac{y^2}{2a}.$$

5.22 * (a) The general solution for a critically damped oscillator ($\beta = \omega_0$) is given in (5.44) as $x(t) = e^{-\omega_0 t}(C_1 + C_2 t)$. Thus

$$x_{\rm o} = x(0) = C_1$$
 and $v_{\rm o} = \dot{x}(0) = C_2 - \omega_{\rm o} C_1$. (ii)

Here $x_0 = 0$, so $C_1 = 0$ and $C_2 = v_0$. Therefore, $x(t) = v_0 t e^{-\omega_0 t}$.

(b) In this case $v_o = 0$ and Eqs.(ii) imply that $C_1 = x_o$ and $C_2 = \omega_o x_o$. Therefore $x(t) = x_o e^{-\omega_o t} (1 + \omega_o t)$. When $t = \tau_o$, the natural period, $x = x_o e^{-2\pi} (1 + 2\pi) = 0.0136x_o$. The motion is almost 99% damped out.

5.23 * Because
$$E = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$$
,

$$\frac{dE}{dt} = m\dot{x}\ddot{x} + kx\dot{x} = \dot{x}(m\ddot{x} + kx) = \dot{x}(-b\dot{x}) = vF_{\rm dmp}$$

where, for the third equality, I used the differential equation (5.24). Since $vF_{\rm dmp}$ is the rate at which $F_{\rm dmp}$ does work on the oscillator, this is the requested result.

5.24 * As long as $\beta < \omega_0$, we can define $\omega_1 = \sqrt{\omega_0^2 - \beta^2}$ and we can use as two independent solutions

$$x_1(t) = e^{-\beta t} \cos(\omega_1 t)$$
 and $x_2(t) = e^{-\beta t} \sin(\omega_1 t)$.

If $\beta \to \omega_o$, then $\omega_1 \to 0$ and so $x_1(t) \to e^{-\beta t}$. That is, as $\beta \to \omega_o$, our first solution for the case $\beta < \omega_o$ becomes the first solution for the case $\beta = \omega_o$.

Unfortunately, in the same limit, $x_2(t) \to 0$, and our second solution evaporates. However, for our second solution we could equally have used $\tilde{x}_2(t) = e^{-\beta t} \sin(\omega_1 t)/\omega_1$. Since $\sin(kt)/k \to t$ as $k \to 0$, this new second solution does not vanish as $\omega_1 \to 0$; instead, as $\beta \to \omega_0$, the new solution satisfies $\tilde{x}_2(t) \to te^{-\beta t}$ and we obtain the second solution for the case $\beta = \omega_0$.

5.25 ** (a) Because $x(t) = Ae^{-\beta t}\cos(\omega_1 t - \delta)$, its derivative is $dx/dt = -Ae^{-\beta t}[\beta\cos(\cdots) + \omega_1\sin(\cdots)]$. The maxima and minima of x(t) occur when this derivative vanishes, that is, when $\tan(\omega_1 t - \delta) = -\beta/\omega_1$. Because $\tan \theta$ is π -periodic, the zeroes of dx/dt are equally spaced, with separation π/ω_1 . The zeroes of the derivatives correspond alternately to maxima and minima.

the derivatives correspond alternately to maxima and minima, so the maxima are separated by a time $\tau_1 = 2\pi/\omega_1$.

- (b) The zeroes of x(t) occur when $\cos(\omega_1 t \delta) = 0$. Thus they are regularly spaced with separation of π/ω_1 , which equals $\tau_1/2$.
 - (c) With $\beta = \omega_0/2$, the amplitude shrinks by a factor

$$e^{-\beta \tau_1} = e^{-2\pi\beta/\sqrt{\omega_o^2 - \beta^2}} = e^{-2\pi/\sqrt{3}} = 0.027$$

(This is much more shrinkage than in the picture, for which β was chosen to be $\omega_{\rm o}/10$ and the shrinkage factor is about 0.53).

5.26 ** The damping changes the frequency to $\omega_1 = \sqrt{\omega_0^2 - \beta^2}$, which we can solve to give

$$\beta = \omega_{\rm o} \sqrt{1 - \frac{{\omega_{\rm l}}^2}{{\omega_{\rm o}}^2}} = \omega_{\rm o} \sqrt{1 - \frac{{\tau_{\rm o}}^2}{{\tau_{\rm l}}^2}} = \omega_{\rm o} \sqrt{1 - 0.998} = 0.0447 \omega_{\rm o} = 0.281 \text{ s}^{-1}$$

After a time $t = 10\tau_1 \approx 10\tau_0$, the amplitude will have changed by a factor of

$$e^{-\beta t} \approx e^{-10\beta \tau_0} = e^{-20\pi\beta/\omega_0} = e^{-20\pi(0.0447)} = 0.060$$
.

In other words, the amplitude will have diminished by a factor of 1/0.060 = 17. Clearly the change of amplitude of by a factor of 17 is far more noticeable than the change of period by 0.1%.

- 5.27 ** The question is: How many times can the function x(t) vanish? If the oscillator is weakly damped ($\beta < \omega_o$), then according to Eq.(5.38) x(t) contains a factor $\cos(\omega t \delta)$, which vanishes infinitely many times as it oscillates.
- (a) If the oscillator is critically damped $(\beta = \omega_0)$, then, according to (5.44), $x(t) = e^{-\beta t}(C_1 + C_2 t)$. This vanishes if and only if $t = -C_1/C_2$; therefore, x(t) vanishes at most once. (It may never vanish for example, if the motion starts at t = 0 and $-C_1/C_2 < 0$.)
 - (b) If the oscillator is overdamped ($\beta > \omega_0$), then according to (5.40),

$$x(t) = e^{-\beta t} (C_1 e^{\lambda t} + C_2 e^{-\lambda t}) = e^{-(\beta - \lambda)t} (C_1 + C_2 e^{-2\lambda t})$$

where $\lambda = \sqrt{\beta^2 - \omega_0^2}$. This vanishes if and only if $e^{-2\lambda t} = -C_1/C_2$, and, since $e^{-2\lambda t}$ is a monotonic function (always decreasing), this happens at most once.

5.28 ** The final resting position is the equilibrium position, at a height h = 0.5 m below the unloaded position. This height is determined by the condition kh = mg, from which we see that $\omega_0^2 = k/m = g/h$.

5.33 * According to Eq.(5.69), $x(t) = A\cos(\omega t - \delta) + e^{-\beta t}[B_1\cos(\omega_1 t) + B_2\sin(\omega_1 t)]$. Setting t = 0, we obtain

$$x_0 = x(0) = A\cos\delta + B_1 \implies B_1 = x_0 - A\cos\delta.$$

Similarly, differentiating x(t) and then setting t = 0, we find

$$v_{o} = \dot{x}(0) = A\omega \sin \delta - \beta B_{1} + \omega_{1}B_{2} \implies B_{2} = \frac{1}{\omega_{1}}(v_{o} - A\omega \sin \delta + \beta B_{1})$$
 as in Eq.(5.70).

5.34 ★ We are given that both x_p and x satisfy the same inhomogeneous equation, $Dx_p = f$ and Dx = f. Therefore, since D is linear, $D(x - x_p) = Dx - Dx_p = f - f = 0$. That is, the difference $x - x_p = x_h$ is a solution of the homogeneous equation $Dx_h = 0$. Therefore x can always be written as $x = x_p + x_h$ as claimed.

5.35 ** (a) $z = x + iy = r\cos\theta + i(r\sin\theta) = r(\cos\theta + i\sin\theta) = re^{i\theta}$.

(b)
$$zz^* = (x+iy)(x-iy) = x^2 + y^2 = |z|^2$$
.

(c)
$$z^* = x - iy = r\cos\theta - i(r\sin\theta) = r[\cos(-\theta) + i\sin(-\theta)] = re^{-i\theta}$$

(d) If $z = re^{i\theta}$ and $w = se^{i\phi}$, then $zw = rse^{i(\theta+\phi)}$. Therefore, $(zw)^* = rse^{-i(\theta+\phi)} = (re^{-i\theta})(se^{-i\phi}) = z^*w^*$. If $z = re^{i\theta}$, then $1/z = 1/(re^{i\theta}) = (1/r)e^{-i\theta}$, so $(1/z)^* = (1/r)e^{i\theta}$. Finally, $1/z^* = 1/(re^{-i\theta}) = (1/r)e^{i\theta} = (1/z)^*$.

(e) If
$$z = \frac{a}{b+ic}$$
, then $|z|^2 = zz^* = \frac{a}{b+ic} \left(\frac{a}{b+ic}\right)^* = \frac{a}{b+ic} \cdot \frac{a}{b-ic} = \frac{a^2}{b^2+c^2}$.

5.36 ** From Eqs.(5.64), (5.65), and (5.70) we can calculate the various constants. A and δ are the same as in Example 5.3 (changing the initial condition doesn't affect them), but $B_1 = 0.945$ and $B_2 = 0.0429$. The resulting graph is the solid curve shown. The dashed curve is that of Fig.5.15(b). With different initial conditions, the two curves differ at first, but after a couple of cycles the transients have pretty well died out and the two graphs are indistinguishable.

5.40 \star We can save ourselves a little trouble if we note that A is maximum if and only is A^2 is maximum, which occurs if and only if $1/A^2$ is minimum. In fact, let's consider $(f_{\rm o}/A)^2 = (\Omega - \omega_{\rm o}^2)^2 + 4\beta^2\Omega$, where I'll use the variable $\Omega = \omega^2$. To find the minimum of this quantity we have only to differentiate and set the derivative equal to zero:

$$\frac{d}{d\Omega}\left(\frac{f_{\rm o}^{2}}{A^{2}}\right) = 2(\Omega - \omega_{\rm o}^{2}) + 4\beta^{2},$$

which vanishes when $\Omega = \omega_o^2 - 2\beta^2$, that is, $\omega = \sqrt{\omega_o^2 - 2\beta^2}$. It is easy to check that the second derivative is positive. Therefore $(f_o/A)^2$ is minimum and A is maximum as expected.

5.41 \star Provided β is significantly less that $\omega_{\rm o}$, the maximum of A^2 comes when $\omega \approx \omega_{\rm o}$ and, at this point, the denominator of Eq.(5.71) is approximately $4\beta^2\omega_{\rm o}^2$. Thus A^2 is equal to half its maximum when the denominator is equal to $8\beta^2\omega_{\rm o}^2$, or when $(\omega^2-\omega_{\rm o}^2)^2=4\beta^2\omega_{\rm o}^2$. This simplifies to $(\omega-\omega_{\rm o})(\omega+\omega_{\rm o})=\pm 2\beta\omega_{\rm o}$. Since $(\omega+\omega_{\rm o})\approx 2\omega_{\rm o}$, this says that the half maximum occurs at $\omega=\omega_{\rm o}\pm\beta$.

5.42 * The period of the pendulum is $\tau = 2\pi\sqrt{l/g} = 10.99$ s. Therefore the quality factor is $Q = \pi(\text{decay time})/\tau = \pi \times (8 \text{ h})/(10.99 \text{ s}) \approx 8,000$.

- 5.43 ** (a) Assuming that the weight of the four men is evenly distributed among the four springs, we can substitute m = 80 kg and x = 2 cm into the equation mg = kx for any one spring. This gives $k = mg/x = 80 \times 9.8/0.02 \approx 4 \times 10^4$ N/m.
- (b) Each axle assembly is attached to two springs, so the effective spring constant of its support is 2k and its natural frequency is

$$f = \frac{1}{2\pi} \sqrt{\frac{2k}{m}} = \frac{1}{2\pi} \sqrt{\frac{2 \times (4 \times 10^4)}{50}} \approx 6 \text{ Hz}.$$

- (c) If the distance between bumps is d, then $v = fd = 6 \times 0.8 \approx 5$ m/s or roughly 10 mi/h.
- 5.44 ** (a) Since $x = A\cos(\omega t \delta)$, the total energy is $E = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2A^2\cos^2(\omega t \delta) + \frac{1}{2}kA^2\sin^2(\omega t \delta).$

Because $\omega \approx \omega_0$, we can replace $k = m\omega_0^2$ by $m\omega^2$, and then, since $\cos^2\theta + \sin^2\theta = 1$, we get $E = \frac{1}{2}m\omega^2A^2$, as claimed.

(b) The rate at which the damping force dissipates energy is $F_{\rm dmp}v=bv^2=2m\beta v^2$. Therefore the energy dissipated in one period is

$$\Delta E_{
m dis} = \int_0^ au 2meta v^2 dt = 2meta \omega^2 A^2 \int_0^ au \sin^2(\omega t - \delta) dt.$$