MTH 416: Lecture 23

Cliff Sun

November 19, 2024

Lecture Span

- Inner product spaces
- Orthonormal bases & Gram-Schmidt

Recall: Inner product axioms

1.
$$\langle x+z,y\rangle = \langle x,y\rangle + \langle z,y\rangle$$

2.
$$\langle cx, y \rangle = c \langle x, y \rangle$$

3.
$$\overline{\langle x, y \rangle} = \langle y, x \rangle$$

4. If
$$x \neq 0$$
, then $\langle x, x \rangle > 0$ and $||x|| = \sqrt{\langle x, x \rangle}$

Theorem 0.1. Let V be an inner product space, for all $x, y \in V$, we have that

1. (Cauchy-Schwarz)
$$|\langle x, y \rangle| \le ||x|| ||y||$$

2. (Triangle Inequality)
$$||x+y|| \le ||x|| + ||y||$$

Proof. We can prove 2 assuming 1. We first square both sides:

$$||x+y||^2 = \langle x+y, x+y \rangle \tag{1}$$

$$= \langle x, x + y \rangle + \langle y, x + y \rangle \tag{2}$$

$$= \langle x, x \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle \tag{3}$$

Note:

$$\langle x, y \rangle + \langle y, x \rangle = 2\mathbb{R}(\langle x, y \rangle)$$
 (4)

$$= \langle x, x \rangle + 2\mathbb{R}(\langle x, y \rangle) + \langle y, y \rangle \tag{5}$$

We note that if $2\mathbb{R}(\langle x,y\rangle)=2a$, then

$$2|a| \le |a+bi| + |a-bi| \tag{6}$$

$$2|a| \le 2\sqrt{a^2 + b^2} \tag{7}$$

Then the whole equation simplifies down to

$$\leq \langle x, x \rangle + 2|\langle x, y \rangle| + \langle y, y \rangle \tag{8}$$

$$\leq ||x||^2 + 2||x||||y|| + ||y||^2 \tag{9}$$

$$= (||x|| + ||y||)^2 \tag{10}$$

We prove (1), then

Proof. It is clearly true if y=0, thus we assume that $y\neq 0$. For any $c\in F$, then

$$0 \le \langle x - cy, x - cy \rangle \tag{11}$$

We first expand out the first value:

$$= \langle x, x - cy \rangle - c \langle y, x - cy \rangle \tag{12}$$

$$= \overline{\langle x - cy, x \rangle} - c \overline{\langle x - cy, y \rangle} \tag{13}$$

$$= \langle x, x \rangle - \overline{c\langle y, x \rangle} - c\overline{\langle x, y \rangle} + c\overline{c\langle y, y \rangle}$$
(14)

$$= \langle x, x \rangle - \overline{c} \langle x, y \rangle - c \overline{\langle x, y \rangle} + c \overline{c} \langle y, y \rangle \tag{15}$$

Choose

$$c = \frac{\langle x, y \rangle}{\langle y, y \rangle} \tag{16}$$

Then we have

$$\overline{c}\langle x, y \rangle = \frac{\overline{\langle x, x \rangle}}{\langle y, y \rangle} \langle x, y \rangle = \frac{\langle x, y \rangle \langle y, x \rangle}{\langle y, y \rangle}$$
(17)

$$c\overline{\langle x, y \rangle} = \frac{\langle x, y \rangle \langle y, x \rangle}{\langle y, y \rangle} \tag{18}$$

$$c\overline{c}\langle y, y \rangle = \frac{\langle x, y \rangle \langle y, x \rangle}{\langle y, y \rangle}$$
 (19)

So

$$0 \le \langle x, x \rangle - \frac{\langle x, y \rangle \langle y, x \rangle}{\langle y, y \rangle} \tag{20}$$

Thus

$$\langle x, y \rangle \langle y, x \rangle \le \langle x, x \rangle \langle y, y \rangle$$
 (21)

$$= (|\langle x, y \rangle|)^2 \le ||x||^2 ||y||^2 \tag{22}$$

Then, because all numbers are positive, we have that

$$|\langle x, y \rangle| \le ||x|| ||y|| \tag{23}$$

This is the Cauchy-Schwarz inequality.

Definition 0.2. Let V be an inner product space with $x, y \in V$, then

- 1. x and y are orthogonal if $\langle x, y \rangle = 0$
- 2. A subset $S \subseteq V$ is orthogonal if all pairs of distinct $x, y \in S$ are orthogonal
- 3. x is a unit vector if $\langle x, x \rangle = 1 \iff ||x|| = 1 = \sqrt{\langle x, x \rangle}$
- 4. A set $S \subseteq V$ is orthonormal if it is orthogonal and consists entirely of unit vectors.

Example 1

Let $V = \mathbb{C}^2$, then

1. $\{e_1, e_2\}$ are still orthonormal.

2.
$$v = {2+i \choose i}$$
 and $w = {-1 \choose 1+2i}$ are orthogonal. Then

$$\langle x, w \rangle = (2+i)(-1) + i(\overline{1+2i}) = 0$$
 (24)

Example 2

Let $V = P_1(\mathbb{R})$ with

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x)dx$$
 (25)

Claim vectors that

$$f(x) = \frac{1}{\sqrt{2}} \tag{26}$$

and

$$g(x) = \sqrt{\frac{3}{2}}x\tag{27}$$

are orthonormal basis. We check:

$$\langle f, g \rangle \int_{-1}^{1} \frac{1}{\sqrt{2}} \sqrt{\frac{3}{2}} x dx \tag{28}$$

This is an odd function, thus this evaluates to 0.

$$\langle f, f \rangle = \int_{-1}^{1} \frac{1}{2} dx \iff 2 \cdot \frac{1}{2} = 1 \tag{29}$$

$$\langle g, g \rangle = \int_{-1}^{1} \frac{3}{2} x^2 dx \iff x^3(\frac{1}{2}) = \frac{1}{2} \cdot 2 = 1$$
 (30)

Goal:

Let's try to orthonormal bases for a given inner product space. Then

Theorem 0.3. Every finite dimensional inner product space has an orthonormal basis.

Theorem 0.4. Given an orthogonal set

$$S = \{v_1, \dots, v_k\} \text{ with } 0 \notin S$$

$$\tag{31}$$

with

$$y = a_1 v_1 + \dots + a_k v_k \tag{32}$$

$$a_i = \frac{\langle y, v_i \rangle}{\langle v_i, v_i \rangle} \tag{33}$$

Proof. Given

$$y = a_1 v_1 + \dots + a_k v_k \tag{34}$$

Calculate

$$\langle y, v_i \rangle = a_1 \langle v_1, v_i \rangle + \dots \tag{35}$$

Because this is an orthongal basis, we have that

$$\langle v_i, v_i \rangle = 0 \iff j \neq i \tag{36}$$

Then the only one standing is

$$\langle y, v_i \rangle = a_i \langle v_i, v_i \rangle \tag{37}$$

In other words

$$a_i = \frac{\langle y, v_i \rangle}{\langle v_i, v_i \rangle} \tag{38}$$

Corollary 0.5. If $S \subseteq V$ is an orthogonal set in V, and $0 \notin S$, then S is linearly independent.

Proof. If we have any linear dependency, that is

$$a_1v_1 + \dots + a_kv_k = 0 = y \tag{39}$$

Then

$$a_i = \frac{\langle y, v_i \rangle}{\langle v_i, v_i \rangle} \tag{40}$$

This means that

$$a_i = 0 (41)$$

Fourier Series

Let $V = C[-\pi, \pi]$ where C represents continuous functions in the interval $[-\pi, \pi]$. We define

$$\langle f, g \rangle = \frac{1}{\pi} \int_{\pi}^{-\pi} f(x)g(x)dx \tag{42}$$

then

Fact

The following set is orthonormal in V:

$$S = \left\{ \frac{1}{\sqrt{2}} \right\} \cup \left\{ \cos(nx) \ n \in \mathbb{N} \right\} \cup \left\{ \sin(nx) \ n \in \mathbb{N} \right\}$$
 (43)

We can solve for the coefficients using

$$a_i = \frac{\langle y(x), v_i \rangle}{\langle v_i, v_i \rangle} \tag{44}$$

S is not a basis of V, but most functions in practice can be expressed as Fourier Series.