2 / 3 som 1, 4

ECE275 Midterm 2 2025

Instructor: Vikas Dhiman (vikas.dhiman@maine.edu)

April 7, 2025

Student Name: Student Email:

1 Instructions

- There are three problems. All problems are required.
- Maximum number of marks is 50. This exam amounts 10% toward the final grade.
- Time allowed is 50 minutes.
- In order to minimize distraction to your fellow students, you may not leave during the last 10 minutes of the examination.
- \bullet The examination is closed-book. One 8×11 in two-sided cheatsheet is allowed.
- Non-programmable calculators are permitted.
- Please use a pen or heavy pencil to ensure legibility. Colored pens/pencils are recommended for K-map grouping.
- Please show your work; where appropriate, marks will be awarded for proper and well-reasoned explanations.

Problem 1. Give two Moore state transition tables for a sequential circuit to control a phone answering machine. The circuit should have three inputs (R, A, and S) and one output (Z). R=1 for one clock cycle at the end of each phone ring. A=1 when the phone is answered. Seelects whether the machine should answer the phone after two rings (S=0) or four rings (S=1). To cause the tape recorder to answer the phone, the circuit should set the output Z=1 after the end of the second (S=0) or fourth (S=1) ring, and hold Z=1 until the recorder circuit answers the phone (i.e., when A goes to 1). If a person answers the phone at any point, A will become 1, and the circuit should reset. Assume that S is not changed while the phone is counting rings. (15 marks).

(Hint: You can draw two Moore state transition tables, one for S=0 and one for S=1. Fill in the following tables)

Table for $\check{S} = 0$

Unanswered	Present State	Next State			Output (Z)	
Ring count						
		RAS = 000	010	100	110	
0	P_0	P_0	P_0	P_1	P_0	0
1	P_1					
2	P_2					

Table for S=1

11

	Unanswered	Present State	Nex	Next State		
	Ring count		RAS = 001	011 101	111	
	0	P_0	P_0	P_0 P_1	P_0	0
	1	P_1	P,	Po P2	Po	0
	2	P_2	Pz	Po P3 P4	Po	0
	3	P_3	β3	Po Pu	β.	\
	4	P_4	Ph	Po Py when S= 0	l Po (tw	onwys)
				RA200,	01	10 11
	009		Po	Po	Po	P, Ro
E A	5:000		P	ρ,	Po	Pz Po
\bigcap	001	3 possible onous	١,	1	υ,	
$\binom{0}{2}$		curous	P	ρ_{2}	r _o	Pz Po
	7	L				
(0= counted	o mmgs so Ja	^			
P) _ 11	1 11 11 12 11 12 11 12 11 11 11 11 11 11	2			
_		_				

11 /

Owbit

0

Problem 2. Determine the propagation delay and contamination delay of the circuit in Figure 2.83. Use the gate delays given in Table 2.8. (5 marks).

Table 2.8 Gate delays for Exercises 2.43-2.47

	C00	, 1- F	
Figure	2.83	Circuit	schematic

Gate	t_{pd} (ps)	t_{cd} (ps)
NOT	15	10
2-input NAND	20	15
3-input NAND	30	25
2-input NOR	30	25
3-input NOR	45	35
2-input AND	30	25
3-input AND	40	30
2-input OR	40	30
3-input OR	55	45
2-input XOR	60	40

Problem 3. Consider the timing diagram in Figure 1. Assuming that the D and Clock inputs shown are applied to the circuit in Figure 1, Draw waveforms for the Q_a , Q_b , and Q_c signals. (10 marks)

Problem 4. Find the expression for J_0 and K_0 assuming that J_0 and K_0 are inputs to the J-K flip flop that capture the state of the least significant bit Q_0 of the following state encoded table. The state encoding table given with state encoding denoted as $Q_2Q_1Q_0$. (20 marks).

Pre	esent State N	$\begin{array}{c} \text{ext State} \\ X = 1 \end{array}$	Out_I	put			
>		X = 1	X = 0	X = 1	L .	. ,	
	$Q_2Q_1Q_0$ $Q_2^+\overline{Q}_1^+Q_1^-$	$^{+}_{0}$ $Q_{2}^{+}Q_{1}^{+}Q_{0}^{+}$	(Z') <u></u>	<u>zout</u>	[Excitat	ion table	
So=	00 () 6 100 001 1 100 010 2 000	4 101	1	0	, A 6		
5,-	001 100	4 101	θ	1	Qo C	20 50 Ko	•
S3'=	010 • 000	10 000	1	0	0	0 - 0	
	011 3 000	h 000	0	1		0 10	9
	100 4 111 101 5 110	\2110	$\frac{1}{\theta}$	0			JK0=07
	101 5 110 110 6 011	เร <i>110</i> เห <i>010</i>	<i>0</i> 1	0		1 4 101 - 0	0,0 08
n+ 57=	111 7 011		0	1			
Q0 57=	<u> </u>					- [3. 8]-	
\	ر 1	· Jailer	1.		3.	Ko Ko	
01101		dad	-1]Q0	X	· next Ko		
	1)	0010	' ' "	020	a I ctrible T	- 15 BI -	
000	1/00 /	011010	2)	Q29	losic K.	- [3, ° a -]	
1/2/1/2	ك. K	0		((~			
Q1 0 1 0 0		\ 	1))	52		
" 0 1	ا _	19/9/9/9	1,	1 11		- 152 D \	
QV		1110	Q _o	1 11	Kz	- Kr 1 11	
		1 1191 11	- '	/ //	~		\
		[a(a) a ro	لم	/ //		$\int f$	i ^l i
		•		/ //		J ') (
	< 02Q, Q0	Jo K		رر		5	<u>ś</u>
-		`	2		Q2 Q1 Q		1/Q2Q,Q2
>	0000	o d					11—
	0001					$\times \longrightarrow 0$	logic
	O					(' _	Logic
						_	
							\