TERCER EXAMEN PRÁCTICO DE ECONOMETRÍA ACHALMA MENDOZA, Elmer Edison

. use "C:\Users\achal\Downloads\3 examen práctico pool\Supply y Demand.dta"

. log using pract3

name: <unnamed>

log: C:\Users\achal\Downloads\3 examen práctico pool\pract3.smcl

log type: smcl

opened on: 8 Jan 2022, 07:15:22

. **PREGUNTA A

*Condición de orden.

Evaluando las condiciones de orden, para ello debemos identificar las varibles endógenas y exogena:

VARAIBLES EXÓGENAS: PS DI PF VARIABLES ENDÓGENAS: Q P

Condiciones de orden de la primera ecuación:

Número de variables excluidas den en la primera ecuación: 1

Número de variables endógenas incluidas al lado derecho de la primera ecuación. 1

Como el número de variables exógenas excluidas, en la primera ecuación es IGUAL al número de variables endógenas incluidas. Al lado derecho el primer ecuación, por tanto, se concluye la primera ecuación. Está EXACTAMENTE IDENTIFICADO.

Condición de orden de la segunda ecuación.

Número de variables excluidas den en la primera ecuación. 2

Número de variables endógenas incluidas al lado derecho de la primera ecuación. 1

Como el número de variables exógenas excluidas, en la primera ecuación es MAYOR al número de variables endógenas incluidas. Al lado derecho el primer ecuación, por tanto, se concluye la segunda ecuación. Está SOBRE IDENTIFICADA.

- . **PREGUNTA B
- . **MÉTODO MCI
- . *Para este método usamos las ecuaciones reducidas.
- . reg p ps pf di

Source	SS	df	MS	Number of obs	=	30
				F(3, 26)	=	69.07
Model	9033.01906	3	3011.00635	Prob > F	=	0.0000
Residual	1133.45369	26	43.5943729	R-squared	=	0.8885
	·			Adj R-squared	=	0.8756
Total	10166.4728	29	350.568026	Root MSE	=	6.6026

р	•	Std. Err.			-	. Interval]
ps pf di	1.712487 1.354409 7.759804 -32.95381	.3507337 .2982102 1.75577	4.88 4.54 4.42	0.000 0.000 0.000	.9915438 .741429 4.150768	2.433431 1.967389 11.36884 -16.56817

. predict p_est
(option xb assumed; fitted values)

. reg q p_est ps di

Source	SS	df	MS	Number of obs	=	30
+				F(3, 26)	=	19.16
Model	424.909142	3	141.636381	Prob > F	=	0.0000
Residual	192.227668	26	7.39337186	R-squared	=	0.6885
+				Adj R-squared	=	0.6526
Total	617.136811	29	21.2805797	Root MSE	=	2.7191

q	Coef.	Std. Err.	t P> t		[95% Conf. Interval]		
p_est	3666775	.0906732	-4.04	0.000	5530589	1802962	
ps	1.293886	.196049	6.60	0.000	.8909019	1.696871	
di	4.957835	1.28123	3.87	0.001	2.324229	7.591441	
_cons	-4.390062	3.084427	-1.42	0.167	-10.73019	1.950068	

. predict q_est
(option xb assumed; fitted values)

. **PREGUNTA C

*Llevamos la ecuacion de la demanda en función de su precio: P=Q/a2-a1/a2-a3/a2*PS-a4/a2*DI-ed

. reg p q ps di

Source	SS	df	MS		er of obs	=	30 34.95
Model Residual	8146.18316 2020.2896	3 26	2715.39439 77.7034462	Prob R-sq) > F uared	=	0.0000 0.8013
Total	10166.4728	29	350.568026	_	R-squared MSE	=	0.7783 8.815
p	Coef.	Std. Err.	t	P> t	[95% Cd	onf.	Interval]
q ps di _cons	.1991848 1.330692 12.58389 -14.30451	.4981431 .5954783 1.858965 9.102456	0.40 2.23 6.77 -1.57	0.693 0.034 0.000 0.128	824763 .106668 8.76273 -33.0148	36 35	1.223133 2.554715 16.40505 4.405853

*Llevamos la ecuacion de la oferta en función de su precio:

P=Q/b2-b1/b2-b3/b2*PF-es

. reg p q pf

Source	SS	df	MS		r of obs	=	30
Model	9684.32509	2	4842.16254		> F	=	271.16 0.0000
Residual			17.8573211 	Adj R	-squared	=	0.9526 0.9491
Total	10166.4728	29	350.568026	Root	MSE	=	4.2258
p	Coef.	Std. Err.	t	P> t	[95% Co	 nf.	Interval]
q pf _cons	2.66509 2.922851 -52.94449	.1722035 .1491423 5.055725	19.60	0.000 0.000 0.000	2.31175 2.61683 -63.3179	6	3.018423 3.228865 -42.571

. **PREGUNTA D

Teniendo ya las ecuaciones de oferta y demanda en función de sus precion, hacemos la regresión:

****MC2E***

Son las endógenas que actual como exógenas

. ivregress 2sls p (q= ps di)

Instrumental v	nstrumental variables (2SLS) regression					Number of obs = 3			
					chi2(1)	=	15.93		
			Prob :	> chi2	=	0.0001			
				R-squa	ared	=	0.0354		
				Root 1	MSE	=	18.08		
p	Coef.	Std. Err.	Z	P> z	[95% C	onf.	Interval]		
+									
q	4.138825	1.036959	3.99	0.000	2.1064	23	6.171228		
_cons	-13.67182	19.42309	-0.70	0.481	-51.740	37	24.39674		

Instrumented: q
Instruments: ps di

. ivregress 2sls p (q=pf)

Instrumental variables (2SLS) regression

Number of obs = 30 Wald chi2(1) = 0.57 Prob > chi2 = 0.4495

R-squared = . Root MSE = 97.233

p | Coef. Std. Err. z P>|z| [95% Conf. Interval]

q | -19.01887 25.14859 -0.76 0.449 -68.3092 30.27146

_cons | 413.7806 464.5404 0.89 0.373 -496.7018 1324.263

Instrumented: q
Instruments: pf

. **PREGUNTA E

. ivreg2 p (q= pf) ps di, first

First-stage regressions

First-stage regression of q:

Statistics consistent for homoskedasticity only Number of obs = 30

q	•				[95% Conf	. Interval]
pf ps	4966312	.1228085 .1444387 .7230588		0.000 0.000	7490678 .3690577 .6262203	2441947 .9628538 3.598758
_cons	7.69336	3.282811	2.34	0.027	.9454456	14.44127

F test of excluded instruments:

F(1, 26) = 16.35Prob > F = 0.0004

Sanderson-Windmeijer multivariate F test of excluded instruments:

F(1, 26) = 16.35Prob > F = 0.0004

 $\label{thm:continuous} \textbf{Summary results for first-stage regressions}$

\text{(Underid)} \tag{Weak id}
\text{Variable} | F(1, 26) P-val | SW Chi-sq(1) P-val | SW F(1, 26) \\
q | 16.35 0.0004 | 18.87 0.0000 | 16.35

Stock-Yogo weak ID F test critical values for single endogenous regressor:

10% maximalIV size16.3815% maximalIV size8.9620% maximalIV size6.6625% maximalIV size5.53

Source: Stock-Yogo (2005). Reproduced by permission.

NB: Critical values are for Sanderson-Windmeijer F statistic.

Underidentification test

Ho: matrix of reduced form coefficients has rank=K1-1 (underidentified)

Ha: matrix has rank=K1 (identified)

Anderson canon. corr. LM statistic Chi-sq(1)=11.58 P-val=0.0007

Weak identification test

Ho: equation is weakly identified Cragg-Donald Wald F statistic

16.35

Stock-Yogo weak ID test critical values for K1=1 and L1=1:

10%	maximal	ΙV	size	16.38
15%	maximal	IV	size	8.96
20%	maximal	IV	size	6.66
25%	maximal	ΙV	size	5.53

Source: Stock-Yogo (2005). Reproduced by permission.

Weak-instrument-robust inference

Tests of joint significance of endogenous regressors ${\tt B1}$ in main equation

Ho: B1=0 and orthogonality conditions are valid

Anderson-Rubin Wald test	F(1,26)=	20.63	P-val=0.0001
Anderson-Rubin Wald test	Chi-sq(1)=	23.80	P-val=0.0000
Stock-Wright LM S statistic	Chi-sq(1)=	13.27	P-val=0.0003

Number	of	observations	N	=	30
Number	of	regressors	K	=	4
Number	of	endogenous regressors	K1	=	1
Number	of	instruments	L	=	4
Number	of	excluded instruments	L1	=	1

IV (2SLS) estimation

Estimates efficient for homoskedasticity only Statistics consistent for homoskedasticity only

		Number of	obs	=	30
		F(3,	26)	=	16.65
		Prob > F		=	0.0000
=	10166.47276	Centered R	2	=	0.5375
=	128195.4787	Uncentered	R2	=	0.9633
=	4701.880452	Root MSE		=	12.52
	=	= 10166.47276	F(3, Prob > F = 10166.47276	F(3, 26) Prob > F = 10166.47276	= 128195.4787

p	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
q	-2.727192	1.13854	-2.40	0.017	-4.95869	4956942
ps	3.528677	1.078955	3.27	0.001	1.413963	5.64339
di	13.52097	2.655544	5.09	0.000	8.316197	18.72574
_cons	-11.97254	12.947	-0.92	0.355	-37.3482	13.40312

Underidentification test (Anderson canon. corr. LM statistic): 11.584

Chi-sq(1) P-val =	0.0007					
Weak identification test (Cragg-Donald Wald F statistic): 16.354 Stock-Yogo weak ID test critical values: 10% maximal IV size 16.38 15% maximal IV size 8.96 20% maximal IV size 6.66 25% maximal IV size 5.53 Source: Stock-Yogo (2005). Reproduced by permission.						
Sargan statistic (overidentification test of all instruments): 0.000 (equation exactly identified)						
Instrumented: q Included instruments: ps di Excluded instruments: pf						

^{. ***}Si alguna de las variables del cuadro es mayor que 16.354 los instrumentos que estamos utilizando son débiles, por lo que en el cuadro nos dice que se excluye pf porque es un instrumentos muy

> débiles para explicar la producción

^{. **}PREGUNTA F

^{. **}PREGUNTA G