

## **Description**

The vssono6-t2 uses advanced trench technology and design to provide excellent  $R_{DS(ON)}$  with low gate charge. It can be used in a wide variety of applications.

#### **General Features**

- $V_{DS}$  =60V, $I_{D}$  =80A  $R_{DS(ON)}$  <8.5mΩ @  $V_{GS}$ =10V
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E<sub>AS</sub>
- Excellent package for good heat dissipation

## **Application**

- PWM
- Load Switching



Schematic diagram



## **Package Marking and Ordering Information**

| Device Marking | Device     | Device Package | Reel Size | Tape width | Quantity |
|----------------|------------|----------------|-----------|------------|----------|
| VS80N06-T2     | VS80N06-T2 | TO-252-2L      | -         | -          | -        |

# Absolute Maximum Ratings (T<sub>c</sub>=25℃unless otherwise noted)

| Parameter                                        | Symbol                | Limit      | Unit          |
|--------------------------------------------------|-----------------------|------------|---------------|
| Drain-Source Voltage                             | V <sub>DS</sub>       | 60         | V             |
| Gate-Source Voltage                              | V <sub>GS</sub>       | ±20        | V             |
| Drain Current-Continuous                         | I <sub>D</sub>        | 80         | А             |
| Drain Current-Continuous(T <sub>C</sub> =100℃)   | I <sub>D</sub> (100℃) | 56.5       | Α             |
| Pulsed Drain Current                             | I <sub>DM</sub>       | 320        | Α             |
| Maximum Power Dissipation                        | P <sub>D</sub>        | 110        | W             |
| Derating factor                                  |                       | 0.73       | <b>W</b> /℃   |
| Single pulse avalanche energy (Note 5)           | E <sub>AS</sub>       | 390        | mJ            |
| Operating Junction and Storage Temperature Range | $T_{J}$ , $T_{STG}$   | -55 To 175 | ${\mathbb C}$ |



## **Thermal Characteristic**

| Thermal Resistance, Junction-to-Case (Note 2) | R <sub>eJC</sub> | 1.36 | °C/W |
|-----------------------------------------------|------------------|------|------|
|                                               |                  |      |      |

## Electrical Characteristics (T<sub>C</sub>=25°C unless otherwise noted)

| Parameter                          | Symbol              | Condition                                                            | Min | Тур  | Max  | Unit |
|------------------------------------|---------------------|----------------------------------------------------------------------|-----|------|------|------|
| Off Characteristics                |                     |                                                                      |     |      |      |      |
| Drain-Source Breakdown Voltage     | BV <sub>DSS</sub>   | V <sub>GS</sub> =0V I <sub>D</sub> =250µA                            | 60  | -    | -    | V    |
| Zero Gate Voltage Drain Current    | I <sub>DSS</sub>    | V <sub>DS</sub> =60V,V <sub>GS</sub> =0V                             | -   | -    | 1    | μA   |
| Gate-Body Leakage Current          | I <sub>GSS</sub>    | V <sub>GS</sub> =±20V,V <sub>DS</sub> =0V                            | -   | -    | ±100 | nA   |
| On Characteristics (Note 3)        |                     |                                                                      |     |      |      |      |
| Gate Threshold Voltage             | V <sub>GS(th)</sub> | $V_{DS}=V_{GS}$ , $I_{D}=250\mu A$                                   | 2   | 2.8  | 4    | V    |
| Drain-Source On-State Resistance   | R <sub>DS(ON)</sub> | V <sub>GS</sub> =10V, I <sub>D</sub> =20A                            | -   | 7    | 8.5  | mΩ   |
| Forward Transconductance           | <b>g</b> FS         | V <sub>DS</sub> =5V,I <sub>D</sub> =20A                              | 20  | -    | _    | S    |
| Dynamic Characteristics (Note4)    | 1                   |                                                                      |     |      |      | 1    |
| Input Capacitance                  | C <sub>lss</sub>    | V <sub>DS</sub> =30V,V <sub>GS</sub> =0V,                            | -   | 4000 | -    | PF   |
| Output Capacitance                 | Coss                |                                                                      | -   | 290  | =    | PF   |
| Reverse Transfer Capacitance       | C <sub>rss</sub>    | F=1.0MHz                                                             | -   | 210  | -    | PF   |
| Switching Characteristics (Note 4) | 1                   |                                                                      |     |      |      |      |
| Turn-on Delay Time                 | t <sub>d(on)</sub>  |                                                                      | =   | 8.5  |      | nS   |
| Turn-on Rise Time                  | t <sub>r</sub>      | $V_{DD}$ =30V, $R_L$ =1 $\Omega$                                     | -   | 7    | -    | nS   |
| Turn-Off Delay Time                | t <sub>d(off)</sub> | $V_{GS}$ =10V, $R_{G}$ =3 $\Omega$                                   | -   | 40   | =    | nS   |
| Turn-Off Fall Time                 | t <sub>f</sub>      |                                                                      | -   | 15   | -    | nS   |
| Total Gate Charge                  | Qg                  |                                                                      | -   | 90   |      | nC   |
| Gate-Source Charge                 | Q <sub>gs</sub>     | V <sub>DS</sub> =30V,I <sub>D</sub> =20A,                            | -   | 9    |      | nC   |
| Gate-Drain Charge                  | $Q_{\mathrm{gd}}$   | V <sub>GS</sub> =10V                                                 | -   | 18   |      | nC   |
| Drain-Source Diode Characteristics | -                   |                                                                      |     |      |      |      |
| Diode Forward Voltage (Note 3)     | V <sub>SD</sub>     | V <sub>GS</sub> =0V,I <sub>S</sub> =20A                              | -   |      | 1.2  | V    |
| Diode Forward Current (Note 2)     | Is                  |                                                                      | -   | -    | 80   | Α    |
| Reverse Recovery Time              | t <sub>rr</sub>     | TJ = 25°C, IF = 20A                                                  | -   | 32   | =    | nS   |
| Reverse Recovery Charge            | Qrr                 | di/dt = 100A/µs <sup>(Note3)</sup>                                   | -   | 45   | -    | nC   |
| Forward Turn-On Time               | t <sub>on</sub>     | Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) |     |      |      |      |

#### Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5.  $E_{AS}$  condition : Tj=25  $^{\circ}\!\mathrm{C}$  ,V\_DD=20V,V\_G=10V,L=0.5mH,Rg=25 $\Omega$



## **Test circuit**

# 1) E<sub>AS</sub> Test Circuit



# 2) Gate Charge Test Circuit



# 3) Switch Time Test Circuit





# **Typical Electrical and Thermal Characteristics (Curves)**



**Figure 1 Output Characteristics** 



**Figure 2 Transfer Characteristics** 



Figure 3 Rdson- Drain Current



Figure 4 Rdson-JunctionTemperature



Figure 5 Gate Charge



Figure 6 Source- Drain Diode Forward









80 70 Current (A) 30 \_ 20 10 0 25 50 75 100 125 150 175 0 T<sub>J</sub>-Junction Temperature(°C)

Figure 8 Safe Operation Area

**Figure 10ID Current- Junction Temperature** 



Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance