

Docket No.: 58799-099

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of : Customer Number: 20277

Osamu KAWAMAE, et al. : Confirmation Number:

Serial No.: : Group Art Unit:

Filed: October 30, 2003 : Examiner:

For: INFORMATION RECORDING METHOD AND RECORDING APPARATUS

**CLAIM OF PRIORITY AND
TRANSMITTAL OF CERTIFIED PRIORITY DOCUMENT**

Mail Stop Patent Application
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

In accordance with the provisions of 35 U.S.C. 119, Applicants hereby claim the priority of:

Japanese Patent Application No. 2003-139756, filed May 19, 2003

and

Japanese Patent Application No. 2003-191590, filed July 4, 2003

cited in the Declaration of the present application. Certified copies are submitted herewith.

Respectfully submitted,

MCDERMOTT, WILL & EMERY

Keith E. George
Registration No. 34,111

600 13th Street, N.W.
Washington, DC 20005-3096
(202) 756-8000 KEG:prg
Facsimile: (202) 756-8087
Date: October 30, 2003

58799-099
Kawamae et al.
October 30, 2003

McDermott, Will & Emery

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 2003年 5月19日
Date of Application:

出願番号 特願2003-139756
Application Number:

[ST. 10/C] : [JP2003-139756]

出願人 株式会社日立製作所
Applicant(s): 株式会社日立エルジーデータストレージ

2003年 8月19日

特許庁長官
Commissioner,
Japan Patent Office

今井康夫

【書類名】 特許願
【整理番号】 D03002561A
【あて先】 特許庁長官殿
【国際特許分類】 G11B 7/00
【発明者】
【住所又は居所】 神奈川県横浜市戸塚区吉田町292番地 株式会社日立
製作所デジタルメディア開発本部内
【氏名】 川前 治
【発明者】
【住所又は居所】 神奈川県横浜市戸塚区吉田町292番地 株式会社日立
製作所デジタルメディア開発本部内
【氏名】 星沢 拓
【特許出願人】
【識別番号】 000005108
【氏名又は名称】 株式会社 日立製作所
【特許出願人】
【識別番号】 501009849
【氏名又は名称】 株式会社 日立エルジーデータストレージ
【代理人】
【識別番号】 100075096
【弁理士】
【氏名又は名称】 作田 康夫
【手数料の表示】
【予納台帳番号】 013088
【納付金額】 21,000円
【提出物件の目録】
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1

【包括委任状番号】 9902691

【包括委任状番号】 0103264

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 情報記録方法及び記録装置

【特許請求の範囲】

【請求項 1】

追記型記録媒体にデータを記録する情報記録方法であって、前記記録媒体上の記録済み領域の位置に対応した情報を前記記録媒体上に記録し、前記記録済み領域の位置に対応した情報が更新された場合には、所定の契機で前記記録媒体に新たに記録する情報記録方法。

【請求項 2】

前記記録済み領域の位置に対応した情報は、所定数の領域の情報を記録できるものとし、記録済み領域は、前記所定数を上限として離れた領域として記録されることを許可することを特徴とする請求項 1 記載の情報記録方法。

【請求項 3】

前記情報は、記録媒体上の物理的なアドレス情報であり、記録開始アドレスと記録終了アドレスを記録することを特徴とする請求項 1 記載の情報記録方法。

【請求項 4】

ピックアップ、記録に伴う信号処理を行う信号処理回路、及びデータの入出力を行うインターフェイスを備え、追記型記録媒体にデータを記録する記録装置において、

前記ピックアップにて前記記録媒体上の記録済み領域の位置に対応した情報を記録媒体から読み出し、前記記録済み領域の位置に対応した情報を不揮発性メモリに蓄えることを特徴とする記録装置。

【請求項 5】

請求項 4 に記載の記録装置において、前記記録済み領域の位置に対応した情報が更新された場合には更新されたことを示す更新フラグを前記不揮発性メモリ内に立て、前記記録済み領域の位置に対応した情報は所定の契機で記録媒体上に記録し、記録が終了した時に前記更新フラグをリセットすることを特徴とする記録装置。

【発明の詳細な説明】

【0001】**【発明の属する技術分野】**

本発明は、追記型光ディスクに、データを書き込む場合の記録／未記録の領域管理の方法に関する。

【0002】**【従来の技術】**

データを記録する記録媒体として、光ディスクが広く普及している。特にCD-RやDVD-Rのような追記型記録ディスクといわれる1回だけ記録可能な光ディスクは、データの保存用に用いられている。

【0003】

通常、追記型ディスクは記録膜として有機色素を用いており、レーザの照射により光を吸収して発熱し、基板が塑性変形を起こす。その結果、変形した部分は変形していない部分より反射率が低下する。よって、この反射率の違いを用いて情報の読み取りを行っている。記録により基板が変形してしまうと元には戻らないため、1回だけの記録が可能になる。よって、追記型のディスクでは、記録済みの領域と未記録の領域を管理することは重要である。

【0004】

また、光ディスクの大容量化により、記録できるデータの量も増加し、特にPC用途の場合には、ファイルの大きさも様々であるため、記録領域の管理が複雑になる。そのため、特許文献1のような工夫を考えられている。

【0005】**【特許文献1】**

特開平6-119127号公報(第2-3頁、図1-2)

【0006】**【発明が解決しようとする課題】**

光ディスクはランダムアクセス性が大きな特徴であり、記録する領域を例えれば内周から記録するというような規定をしなくても、ディスク上のどの領域にもランダムにアクセスして記録することが可能である。しかしながら、上記特許文献では、具体的な領域の管理テーブルの構成については、述べられていない。ディ

スクの容量が大きくなると、管理する領域の数が膨大になり、管理テーブルのために大きな容量が必要になる。特に1回だけしか記録できない記録媒体では、管理用領域の消耗も課題となる。また管理情報は重要なので高い信頼性が必要になる。そのため、どのようなテーブルの構成で領域の管理を行うかで、読み出し速度や信頼性に影響が生じてくる。

【0007】

【課題を解決するための手段】

そのために本発明では、追記型記録媒体にデータを記録する情報記録方法であって、記録媒体上の記録済み領域の位置に対応した情報を記録媒体上に記録し、所定の契機で、記録媒体上に新たに記録するようにした。

【0008】

また、ピックアップと記録に伴う信号処理を行う信号処理回路とデータの入出力を行うインターフェイスを備え、追記型記録媒体にデータを記録する記録装置において、記録媒体上の記録済み領域の位置に対応した情報を記録媒体から読み出し、記録済み領域の位置に対応した情報を不揮発性メモリに蓄えるようにし、更に、記録済み領域の位置に対応した情報が更新された場合には更新されたことを示す更新フラグを不揮発性メモリ内に立て、記録済み領域の位置に対応した情報は所定の契機で記録媒体上に記録し、記録が終了した時に更新フラグをリセットするようにした。

【0009】

【発明の実施の形態】

以下、本発明による記録方法の実施の形態について、図を用いて説明する。

【0010】

図2は、本発明の一実施例である記録／未記録領域と、その管理テーブルの内容について示したものである。図はディスク上の記録領域を示しており、右上り斜線にて示した領域丸で囲んだ1、丸で囲んだ2、丸で囲んだ3はデータが記録されて記録済みとなった領域を示している。ここでは、図の左側から右側へディスク上に割り付けられたアドレスが増えていくものとし、データを書き込む場合には横矢印で示した方向に記録が進んでいくものとする。領域丸で囲んだ1、丸

で囲んだ2、丸で囲んだ3は未記録部をはさんで記録されている。SRA(*)及びLRA(*)はディスク上のアドレスを示している。領域丸で囲んだ1はアドレスSRA(1)からアドレスLRA(1)まで、データが記録されており、領域丸で囲んだ2はアドレスSRA(2)からアドレスLRA(2)まで、データが記録されており、領域丸で囲んだ3はアドレスSRA(3)からアドレスLRA(3)まで、データが記録されている。

【0011】

記録／未記録領域管理テーブルは、上記記録済み領域丸で囲んだ1、丸で囲んだ2、丸で囲んだ3に対応したテーブルであり、記録開始アドレスSRA(*)とそれに対応した記録終了アドレスLRA(*)が一組として蓄えられる。ディスク上にデータが記録されると、所定のタイミングで記録／未記録領域管理テーブルをディスク上に保存することにより、実際にディスクの記録／未記録領域をチェックすることなく、テーブルの読み出しによって記録／未記録領域を知ることができる。

【0012】

図3は、図2に示した記録領域丸で囲んだ1、丸で囲んだ2、丸で囲んだ3に対して、新たに領域丸で囲んだ4を記録した場合の状態を示したものである。データが領域丸で囲んだ4に記録されると、記録／未記録領域管理テーブルに開始アドレスSRA(4)と終了アドレスLRA(4)が追加される。ここで、この例では領域丸で囲んだ4が最もアドレスが大きい領域に記録した例を示したが、例えば領域丸で囲んだ1と丸で囲んだ2の間に記録した場合には、記録／未記録領域管理テーブルの並びをSRAの小さい順に並び替えることで、記録済み領域の管理が容易になる。

【0013】

次に、図1は、記録領域(n-2)、(n-1)、(n)を記録した場合の状態を示したものである。データが領域(n-2)、(n-1)、(n)に記録されると、それに対応して記録／未記録領域管理テーブルに開始アドレスSRA(n-2)、(n-1)、(n)と終了アドレスLRA(n-2)、(n-1)、(n)が追加される。ここで、予め細切れとなった記録領域の数の上限をnと決めておくことで、記録／未記録領

域管理テーブルの大きさを制限することができる。また、これは予め n 個のSRA アドレスを決めておくことで、規定することも可能である。

【0014】

図4は、記録領域（m）、（m+1）に対して、新たに領域（k）を記録した場合の状態を示したものである。データを領域（k）として記録する時に、領域（m）に隣接したアドレスから記録する場合、すなわち、LRA（m）とSRA（k）が連続する場合には、記録領域は $m+k$ という連続した一連の領域になり、LRA（m）がLRA（m）'に移動したように見える。このとき、記録／未記録領域管理テーブルに記録領域（k）の開始アドレスSRA（k）は、新たに追加されず、 $m+k$ に対する領域としてLRA（m）を変更してLRA（m）'とする。ここで、記録／未記録領域管理テーブルの領域欄は、これまでの説明のために記したが、実際には、記録／未記録領域の判別ができればよいので、特に領域欄を蓄える必要はない。勿論、LRA(*)—SRA(*)とすれば領域の大きさに関する情報は得ることができる。

【0015】

図5は、記録領域（m）、（m+1）に対して、新たに領域（j）を記録した場合の状態を示したものである。データを領域（j）記録する時に、開始アドレスSRA（j）からデータを書き込みはじめ、領域（m+1）の直前まで記録を行ったとする。すなわち、LRA（j）を記録した結果、LRA（j）とSRA（m）が連続した場合には、記録領域は $(m+1) + j$ という連続した一連の領域になり、SRA（j）がSRA（m+1）'に移動したように見える。このとき、記録／未記録領域管理テーブルに記録領域（j）の開始アドレスSRA（j）は、新たに追加されず、 $(m+1) + j$ に対する領域としてSRA（m+1）を変更してSRA（m+1）'とする。勿論、記録領域 $(m+1) + j$ に対する開始アドレスとしてSRA（j）とし、終了アドレスをLRA（m+1）として、記録領域 $m+1$ に対するSRA（m+1）とLRA（m+1）を削除しても構わない。

【0016】

図6は、記録領域（m）、（j）+（m+1）に対して、新たに領域（j+1）を記録した場合の状態を示したものである。データを領域（j+1）記録する時に、

LRA (m) に隣接する開始アドレスSRA (j+1) からデータを書き込みはじめ、領域 (j) + (m+1) の直前まで記録を行ったとする。すなわち、LRA (m) とSRA (j+1) は連続しており、データを記録した結果、LRA (j+1) とSRA (m+1) が連続した場合には、記録領域は $m + (j+1) + j + (m+1)$ という連続した一連の領域になる。このとき、記録／未記録領域管理テーブルに記録領域 (j) の開始アドレスSRA (j+1) は、新たに追加されず、 $m + (j+1) + j + (m+1)$ に対する領域としてSRA (m) を用い、終了アドレスとしてLRA (m+1) を用いる。そして、それまで、2個に分かれていた領域は一つの領域となつたため、不要になつた領域のアドレス情報は削除される。

【0017】

図8は、これまで示したデータの記録領域と記録／未記録領域管理テーブルを追記型の光ディスク上に記録した一例を示したものである。追記型光ディスク800は管理情報を記録するための管理領域802とユーザのデータを記録するデータ記録領域を備える。データ領域にデータを記録していくと、ディスク上には801のように記録され、所定のタイミングで、記録／未記録領域管理テーブルを管理領域802内の所定の場所に803のように記録する。信頼性を確保するために、管理領域802内の別の領域に複数回繰り返して記録しても良いし、管理領域を更に別の場所に設けても良い。仮に管理領域がいっぱいになった場合には、データ領域の一部を管理領域として代用しても構わない。

【0018】

図7は、ディスクにデータを記録再生するシステムの一例であり、701はホスト側I/Fであり、702はデータを記録再生する装置、703は入出力I/F、704は記録再生のための信号処理回路、705は信号処理に用いられるバッファ、706は光ディスク、707は、システム制御回路、708は不揮発性メモリ、709は表示装置を示す。

【0019】

ホストI/F701は、例えばPC等データの入出力の要求を出すものであり、ディスクのアドレスを指定して所定の領域にデータを記録したり、所定のアドレスからデータを読み出す、という要求を出す。入出力 I / F 703では、記録のためのデ

ータを受け取ったり、再生されたデータを出力したり、それらの制御のためのコマンドの入出力を行う。信号処理回路704では、記録時には記録フォーマットに従ってデータに誤り訂正符号を付加したり、変調を行ったりしてエンコード処理を行い、再生時には復調や誤り訂正などのデコード処理を行う。信号処理の際には、データを一旦蓄えるためのバッファ705を用いることがある。ディスク706上には、（図示しない）光ピックアップによってデータが記録され、記録／未記録の領域が存在している。ここで、例えばデータを記録する場合には、ディスクの内周から記録するという規定を設ければ、記録／未記録の領域が混在することは無く、記録済みの最終アドレスを示す情報だけで、その内側は記録済み領域であり、外側は未記録領域であることが容易に判別できるが、そのような規定を設けることは、使い勝手を制限してしまう場合がある。例えば、書換え型の光ディスクでは、何度も上書きが可能であるため、必要なデータを残して不要なデータを削除、上書きしていくと、記録可能な領域がランダムに分散するような状態になる。このようなシステムの制御と、同じ制御方法で追記型のディスクの管理を行えるようにすると、システム制御がある程度、共通化でき、簡略化が可能となる。よって、追記型の光ディスクでも、ランダムな記録を許容して記録再生をする場合がある。このような場合には、記録／未記録の領域の管理が重要であり、管理方法を工夫する必要がある。もし、ディスクの全面を全て検出して記録／未記録の領域判別を行うと、非常に時間がかかるてしまう。そのため、これまで示したような記録／未記録の領域を管理するためのテーブルを用いて、毎回ディスク全面を検出することなく、記録／未記録の領域判別領域を行えるようにする。ただし、全てランダムな領域に記録を許容すると、記録／未記録領域管理テーブルが非常に大きくなってしまうため、所定の数の領域分割までを認め、それ以上は連続した記録を行うようにする。ホストI/F701は、データを記録媒体に記録する際にユーザデータ領域に割り付けられた論理的なアドレスを指定して記録を行うが、所定の数の領域分割まで行った後は、所定数に達したことを受けて連続するアドレスを指定するように制御を行う。または、所定数に達した後は、記録再生装置702内で、ホストI/Fから指定された論理アドレスを連続した領域になるよう論理アドレスから物理アドレスを変換して記録し、変換情報を管理することに

より、分割された領域が所定数を越えないように制御を行う。

【0020】

システム制御回路707はシステム全体を制御する。ディスク706上には、記録／未記録領域管理テーブルが記録されており、それを読み出して不揮発性メモリ708に蓄える。記録／未記録領域管理テーブルの更新は、この不揮発性メモリ708上で行われ、所定のタイミングでディスク上に記録される。不揮発性メモリは、仮に電源が切れても内容が消去されないため、たとえディスクに最新の記録／未記録領域管理テーブルが記録される前に電源が切れたとしても、記録／未記録領域管理テーブルの内容は保持される。勿論、記録／未記録領域管理テーブルは、バッファメモリ705上に蓄えても構わない。ディスクへの書き込みは、記録／未記録領域管理テーブルが更新される毎に聞け込んでも構わないが、その場合には、管理用の領域が大量に必要となる。そのため、ディスクへの書き込みはディスク取り出し時のみとし、テーブルが更新された場合は、不揮発性メモリ708を書き換えることでディスクへの書き込み回数を少なくすることができる。更に通常は記録／未記録領域管理テーブルをバッファメモリ705に蓄え、更新された時だけ不揮発性メモリ708を用いるようにすると不揮発性メモリに書換え回数を低減できる。

【0021】

ここで、最新の記録／未記録領域管理テーブルが、ディスク上に記録されたかどうかを示す更新フラグを、この不揮発性メモリに記憶しておくことで、ディスク上の記録／未記録領域管理テーブルが最新のものであるかどうかを知ることができる。ちなみに更新フラグは、記録／未記録領域管理テーブルの内容が一部でも変更された場合にはフラグビットを立て、ディスクへの記録が終了した時にフラグビットを戻すようになると、最新のテーブルの記録がなされたかどうかを判別しやすい。更にこの更新フラグと一緒にディスクを1枚ごとに識別するディスク識別記号を同時に記録することで、更新フラグが立った状態のまま電源が切れ、その間に異なるディスクが挿入された場合に、記録／未記録領域管理テーブルが異なることを予め認識することができ、その場合には、ディスクが異なることを表示装置709に表示し、または、電源が切れる前の状態まで入っていたディ

スク識別記号を表示することで、ユーザは正しいディスクに入れ替えることができる。ディスク識別記号は、予め製造時にディスクに記録されているディスクIDのようなものを用いても良いし、記録再生装置702によって、任意に割り付けられたディスク識別用の番号などを用いても構わない。

【0022】

また、記録／未記録領域管理テーブルをディスクに記録するタイミングとしては、例えばディスクが取り出される時には、最新の情報を記録するようにし、この他にも記録／未記録領域管理テーブルの内容が変更された場合、すなわち更新フラグがたっている場合にはディスクに記録するようとする。ただし、あまり頻繁に記録を行うと、管理情報を記録するための領域が不足してしまうため、記録／未記録領域管理テーブルの内容が変更されていない場合には新たな記録は行わない。また、記録／未記録領域管理テーブルを異なる領域に複数回繰り返して記録することで、信頼性を高めることができる。

【0023】

このような制御をおこなうことで、新たなディスクが挿入された時に、ディスクの全面を検出することなく、記録／未記録領域管理テーブルを読み込むことで、記録／未記録の領域を知ることが可能になる。

【0024】

また、仮に更新フラグを用いた更新を行わなくても、大まかな記録／未記録領域の情報を得ることができるため、その付近をアクセスして記録／未記録の判別を行えばよく、ディスク全面の検出を行うより、判別時間を短縮できる。

【0025】

図9は、これまでに示した記録／未記録領域管理テーブルの内容が変更された処理の流れを示した一例である。特にこの場合は、領域分割がまだ、所定のN個に達していない場合のデータの記録に伴う記録／未記録領域管理テーブルの内容が変更について示したものである。ディスクに新たにデータを記録する場合、システム制御は記録を開始するアドレスを指定する。901では、このデータの開始アドレス新SRAが既に記録が終わっている領域のいずれかのLRAと隣接するかを判断し、いずれにも隣接しない場合には、902にて記録／未記録領域管理テ

ーブルに新たなSRAとして登録する。隣接するLRAがある場合には、記録済み領域の直後から記録開始することになるため、903により前隣接するLRAを一旦削除し、904によりLRA隣接フラグを“1”とする。勿論、903のSRA削除と904のフラグ付加はどちらを先に行っても構わない。そして、905にてデータの記録を行う。

【0026】

906では、まず隣接フラグが“1”であるかどうかを確認し、“0”的には907へ進む。907では、このデータの終了アドレス新LRAが既に記録が終わっている領域のいずれかのSRAと隣接するかを判断し、いずれにも隣接しない場合には、908にて記録／未記録領域管理テーブルに新たなLRAとして登録する。ちなみに、このパスを通る場合は、図3に示したように前後に未記録領域が存在するような領域の記録である。

【0027】

隣接するSRAがある場合には、記録終了位置が記録済み領域とつながることになるため、909により後ろに隣接する領域の情報SRA、LRAを一旦削除し、910にて新たな記録領域に対応したLRAとして、一旦削除した後隣接のLRAを登録する。勿論、909の削除と910の登録はどちらが先でも構わない。ちなみに、このパスを通る場合は、図5に示したように後ろの記録済み領域とつながるような領域での記録である。

【0028】

906で、隣接フラグが“1”的には911へ進む。911では、907と同様に、このデータの終了アドレス新LRAが既に記録が終わっている領域のいずれかのSRAと隣接するかを判断し、いずれにも隣接しない場合には、912にて記録／未記録領域管理テーブルに新たなLRAとして登録する。ちなみに、このパスを通る場合は、図4に示したように前の記録済み領域とつながるような領域での記録である。

【0029】

隣接するSRAがある場合には、記録終了位置が記録済み領域とつながることになるため、913により後ろに隣接する領域の情報SRA、LRAを一旦削除し、914にて

新たな記録領域に対応したLRAとして、一旦削除した後隣接のLRAを登録する。勿論、913の削除と914の登録はどちらが先でも構わない。ちなみに、このパスを通る場合は、図6に示したように前後の記録済み領域とつながるような領域での記録である。これらのパスを通った後、915にて 隣接フラグをリセットし、記録は終了となる。

【0030】

かりに、記録済み領域が既にn個以上に分割されている場合には、新たに独立した領域に記録することはできないため、前後でどこかの記録済み領域とつながるように記録するようとする。

【0031】

このような処理を行うことにより、記録／未記録領域管理テーブルのアドレス情報を更新できる。

【0032】

【発明の効果】

このように、本発明によれば、追記型ディスクへのデータの記録において、ディスク全面を検出することなく、正確に記録／未記録の領域を知ることができ、管理を行うための時間を短縮できる。また、記録／未記録領域管理テーブルを不揮発性メモリに蓄え、更新された情報をディスク上に記録したことを示すフラグを付加することで、たとえ、電源が切れるようなことが発生しても、常にディスク上に記録された記録／未記録領域管理テーブルが正しいものかどうかを判断することができる。

【0033】

本実施例では、記録媒体の例として光ディスクを用いて示したが、これに限定されるものではなく1回のみ記録可能な記録媒体への記録であれば特に限定はない。また、データの記録アドレスをドライブから指定する説明を用いたが、ホストI/Fからの指示に夜動作でも同様の制御が可能である。

【図面の簡単な説明】

【図1】

本発明の一実施例である記録領域 (n-2) 、 (n-1) 、 (n) を記録した場合の

状態と管理テーブルを示した図である。

【図2】

本発明の一実施例である記録／未記録領域と、その管理テーブルの内容について示した図である。

【図3】

図2に示した記録領域丸で囲んだ1、丸で囲んだ2、丸で囲んだ3に対して、新たに領域丸で囲んだ4を記録した場合の状態を示した図である。

【図4】

記録領域（m）、（m+1）に対して、新たに領域（k）を記録した場合の状態を示した図である。

【図5】

記録領域（m）、（m+1）に対して、新たに領域（j）を記録した場合の状態を示した図である。

【図6】

記録領域（m）、（j）+（m+1）に対して、新たに領域（j+1）を記録した場合の状態を示した図である。

【図7】

ディスクにデータを記録再生するシステムの構成の一例を示した図である。

【図8】

データの記録領域と記録／未記録領域管理テーブルを追記型の光ディスク上に記録した一例を示した図である。

【図9】

記録／未記録領域管理テーブルの内容が変更された処理の流れを示した図である。

【符号の説明】

701…ホスト側I/F、702…データ記録再生装置、703…入出力I/F、704…信号処理回路、705…信号処理用バッファ、706…光ディスク、707…システム制御回路、708…不揮発性メモリ。

【書類名】 図面

【図 1】

図 1

【図2】

図2

【図3】

【図 4】

図 4

【図 5】

図 5

【図 6】

【図 7】

【図 8】

図 8

【図9】

図9

【書類名】 要約書

【要約】

【課題】

従来、追記型光ディスクにおいて、記録／未記録領域を管理する必要があり、ディスク全面に対して記録済みかどうかを調べるのは時間がかかり、処理が遅くなるという問題があった。

【解決手段】

本発明では、これを解決するために、記録／未記録領域を管理する情報をテーブルとしてディスク上に記録し、テーブルの情報を規定するにより、効率よく管理情報を蓄えることが可能となり、また、テーブルのデータをディスクに記録したかどうかを示すフラグにより更新された最新の管理情報がディスク上に記録されているかを知ることが可能となる。

【選択図】 図1

認定・付加情報

特許出願の番号	特願2003-139756
受付番号	50300822595
書類名	特許願
担当官	第八担当上席 0097
作成日	平成15年 5月20日

<認定情報・付加情報>

【提出日】	平成15年 5月19日
-------	-------------

次頁無

出証特2003-3067499

特願2003-139756

出願人履歴情報

識別番号 [000005108]

1. 変更年月日 1990年 8月31日

[変更理由] 新規登録

住所 東京都千代田区神田駿河台4丁目6番地
氏名 株式会社日立製作所

特願2003-139756

出願人履歴情報

識別番号 [501009849]

1. 変更年月日 [変更理由]	2000年12月27日 新規登録
住 所 氏 名	東京都港区虎ノ門一丁目26番5号 株式会社日立エルジーデータストレージ
2. 変更年月日 [変更理由]	2003年 3月 5日 住所変更
住 所 氏 名	東京都港区海岸三丁目22番23号 株式会社日立エルジーデータストレージ