

Halbleitertechnik IV-Nanoelectronics

Friedrich-Alexander-Universität Erlangen-Nürnberg | Lehrstuhl für Elektronische Bauelemente | Cauerstraße 6 | 91058 Erlangen | www.leb.tf.fau.de | Michael Jank

Short-channel effects

Objectives of the lecture

Mission and goals?

Objectives

- You should take away the effects of aggressive scaling of devices according to the scaling paradigms on both the electrical parameters of devices as well as secondary aspects like reliability
- · In particular, the issue of leakage currents as well as different mechanisms behind,
- · geometrical effects from short and narrow channels and
- degradation by strongly accelerated carriers

will be discussed

Outline

- Leakage currents in MOS transistors
- Geometrical and layout effects in scaling
 - p-n junctions
 - subthreshold current
 - Drain-Induced Barrier Lowering (DIBL) and Punch Through
 - charge sharing model
 - narrow channel effect
- Degradation by hot carriers
 - hot holes from avalanche multiplication
 - channel hot electrons

Leakage Currents

- Scaling of MOS devices may be accompanied by unwanted effects
- Reduction of the ratio of ON-level of saturation current when MOSFET is fully conducting to OFF-Level current in subthreshold regime $(I_{ON}/I_{OFF} \text{ ratio})$
- Other leakage currents
- Short channel effects
- Reliability aspects
- Wiring issues

Leakage Currents

- Leeakage currents are the most critical issue in scaling
- Desired:
 - maximum ON current (I_{ON} = I_{Dsat})
 - minimum OFF current
- Impact of scaling rules on (leakage) currents
- Increased substrate doping concentration
 - lower mobility (I_{ON}↓),
 - higher p-n capacitance: typicallly only observed during switching, not directly related to ON or OFF currents. However, higher currents are needed for (re-)charging of p-n junctions, when capacitance is higher (I_{ON}↓).
 - band-to-band tunnel currents at p-n junctions (I_{OFF}†)
 - higher defect densities lead to charge carrier generation in blocked p-n junctions (I_{OFF}[†])

Leakage Currents

- Leakage currents are the most critical issue in scaling
- Desired:
 - maximum ON current (I_{ON} = I_{Dsat})
 - minimum OFF current
- Impact of scaling rules on (leakage) currents
- Reduced thickness of gate dielectrics
 - Tunneling leads to an increase in gate leakage (I_{OFF}↑)
- (Ultra-)shallow p-n junctions at Source and Drain
 - increased series resistance (laterally) R_{SD} (I_{ON}↓)

- e.g. weaker scaling of gate insulator thickness by $\beta < \alpha$
- however, for meeting all demands of scaling, especially in sub-100 nm technologies, new materials/architectures are mandatory

Leakage Currents

Overview of leakage and short channel effects

K. Roy et al., Proceedings of the IEEE 91, 305 (2003), technical current orientation

- I_1 : blocking current p-n diode
- I₂: subthreshold current MOSFET
- I₃: gate leakage current
- I₄: injection of hot electrons
- I₅: Gate Induced Drain Leakage (GIDL)
- I_6 : punch through

Assignment to

- geometry or architecture
- tunneling
- degradation

Outline

- Leakage currents in MOS transistors
- Geometrical and layout effects in scaling
 - p-n junctions
 - subthreshold current
 - Drain-Induced Barrier Lowering (DIBL) and Punch Through
 - charge sharing model
 - narrow channel effect
- Degradation by hot carriers
 - hot holes from avalanche multiplication
 - channel hot electrons

Geometrical and layout effects in scaling

- Blocking currents in p-n junctions
- Drift / diffusion of minority carriers
 - reverse saturation current is related to doping concentration

$$j_{S} = qn^{2} \left(\frac{D_{n}}{L_{n}N_{A}} + \frac{D_{p}}{L_{p}N_{D}} \right)$$

then:
$$N_{A,D} \uparrow \rightarrow I_{rev} \downarrow$$

- consider also decreasing minority carrier lifetimes or diffusion lengths with increasing doping concentrationdue to increased defect concentration > effect may be neglected against doping concentration effect
- Generation and recombination current
 - increasing defect concentration leads to an increase in leakage current: $N_{A,D} \uparrow \rightarrow I_{GEN,REK} \uparrow$
- Band-to-band tunneling $N_{A,D} \uparrow \rightarrow I_{rev} \uparrow$
 - see chapter on tunneling

Geometrical and layout effects in scaling

Subthreshold current / subthreshold swing S

$$S = \ln 10 \cdot \frac{kT}{q} \left(1 + \frac{C_{HL}}{C_{OX}} \right) = 2,3 \cdot \frac{kT}{q} \left(1 + \frac{C_{HL}}{C_{OX}} \right)$$

Geometrical and layout effects in scaling

- Subthreshold current / subthreshold swing S: modeling
- Consider channel area (Source-Substrate-Drain) as a bipolar junction transistor
 - distribution of base minority carriers by charge triangle (e.g. Halbleiterbauelemente, Nano IV)

Geometrical and layout effects in scaling

- Subthreshold current / subthreshold swing S: modeling
- Consider channel area (Source-Substrate-Drain) as a bipolar junction transistor
 - distribution of base minority carriers by diffusion triangle (e.g. Halbleiterbauelemente, Nano IV)

Geometrical and layout effects in scaling

- Subthreshold current / subthreshold swing S: modeling
- The diffusion current in subthreshold can be calculated as

$$I_{D} = AqD_{n}\frac{dn}{dx} = AkT\mu\frac{n_{\text{CH,S}} - 0}{L} = A\frac{kT\mu n_{i}^{2}}{LN_{A}} \exp\left(\frac{q\phi_{\text{S}}}{kT}\right)$$

• the crossection A is the width W of the transistor times depth d_{HL} of minority carrier distribution

$$d_{HL} = \frac{kT}{qE_S} = \frac{kT\sqrt{\varepsilon_0\varepsilon_{HL}}}{q\sqrt{2qN_A\phi_S}}$$

decay length of surface potential, reduction by kT/q

Geometrical and layout effects in scaling

- Subthreshold current / subthreshold swing S: modeling
- According to the definition of subthreshold swing S

$$S = \left(\frac{d \log I_D}{dU_{GS}}\right)^{-1} = \ln 10 \cdot \left(\frac{d \ln I_D}{dU_{GS}}\right)^{-1}$$

· the drain current from diffusion triangle

$$\ln I_D = \ln \left(A \frac{kT \mu n_i^2}{LN_A} \right) + \frac{q \phi_S}{kT}$$

· is differentiated to yield

$$\frac{d \ln I_D}{dU_{GS}} = \frac{d}{dU_{GS}} \ln \left(A \frac{kT \mu n_i^2}{LN_A} \right) + \frac{d}{dU_{GS}} \frac{q \phi_S}{kT} \approx 0 + \frac{q}{kT} \cdot \frac{d\phi_S}{dU_{GS}}$$

Geometrical and layout effects in scaling

- Subthreshold current / subthreshold swing S: modeling
- the modification of surface potential is given by charge vs. voltage considerations

$$\frac{dQ_{HL}}{dU_{GS}} = C_{ges}$$

and accordingly

$$Q_{HL} = \sqrt{2\varepsilon_0\varepsilon_{HL}qN_{_A}\phi_{_S}}$$

$$\frac{dQ_{HL}}{d\phi_{S}} = \sqrt{2\varepsilon_{0}\varepsilon_{HL}qN_{A}} \cdot \frac{1}{2}\phi_{S}^{-\frac{1}{2}} = \sqrt{\frac{\varepsilon_{0}\varepsilon_{HL}qN_{A}}{2\phi_{S}}} = C_{HL}$$

is derived after differentiation for $\phi_{\rm S}$

• Please also be aware that in this case the charging/decharging of the semiconductor is exclusively guided by extension or reduction of the SCR (subthreshold!)

Geometrical and layout effects in scaling

Subthreshold current / subthreshold swing S: modeling

• altogether, the derivative of ϕ_S against U_{GS} is given by

$$\frac{d\phi_{\rm S}}{dU_{\rm GS}} = \frac{dQ_{\rm HL}}{dU_{\rm GS}} \cdot \frac{d\phi_{\rm S}}{dQ_{\rm HL}} = \frac{C_{\rm ges}}{C_{\rm HL}} = \frac{C_{\rm OX}}{C_{\rm OX} + C_{\rm HL}} = \left(1 + \frac{C_{\rm HL}}{C_{\rm OX}}\right)^{-1}$$

and the subthreshold swing can accordingly be calculated as

$$S = \ln 10 \cdot \frac{kT}{q} \left(1 + \frac{C_{HL}}{C_{OX}} \right) = 2,3 \cdot \frac{kT}{q} \left(1 + \frac{C_{HL}}{C_{OX}} \right)$$

Geometrical and layout effects in scaling

Punch-through effect (MOSFET *OFF*)

- Drain SCR extends over the entire channel towards Source SCR
 - · potential barrier at Source is reduced
 - · drain current is strongly increased
- Main factors
 - drain-source and gate-bulk-voltages

Geometrical and layout effects in scaling

Drain-induced barrier lowering DIBL for short channels

- Extension of SCRs is dependent on drain-to-source voltage
- for U_{DS} > 0 the drain-to-bulk SCR reaches source and reduces the barroer height at the source-substrate junction
- reduced threshold voltage can be observed

DIBL factor σ :

$$\Delta U_{Th} = -\sigma U_{D}$$

$$\sigma \sim \frac{(d_{IS} / nm)}{(L / \mu m)^3}$$

Geometrical and layout effects in scaling

- Charge sharing in short channel transistors
 - p-n junctions of source and drain reduce the absolut channel charge
 - · less charge on the gate is needed for turning on the MOSFET
 - reduction of U_{TH} (roll-off) for short channels
 - charge-separation factor F_S

Impact on threshold voltage

$$U_{\mathit{Th}} = U_{\mathit{FB}} + 2\phi_{\scriptscriptstyle{B}} + \gamma \, F_{\scriptscriptstyle{S}} \sqrt{2\phi_{\scriptscriptstyle{B}} - U_{\scriptscriptstyle{B}}}$$

$$F_{s} = 1 - \frac{X_{c} + X_{jL}}{L} \sqrt{1 - \left(\frac{X_{p}}{X_{p} + W_{RL}}\right)^{2}} - \frac{X_{jL}}{L}$$

 x_c , x_{jL} : process dependent

$$W_{RL} = \sqrt{\frac{2\varepsilon_0 \varepsilon_{Si}}{N_{Sub}} \cdot \left(U_B + U_{diff}\right)}$$

U_B: Bulk-Source voltage

Geometrical and layout effects in scaling

Narrow-channel effect

Increasing U_{TH}

$$\Delta U_{Th} = \frac{\delta \pi \varepsilon_{Si}}{4C_{IS}W} \cdot (2\phi_B - U_B)$$

 δ : process dependent parameter

Geometrical and layout effects in scaling

Reduction of U_{TH} by charge sharing and DIBL

Both effects decrease threshold voltage

Geometrical and layout effects in scaling

- Measures for reduction of roll-off and Punch Through
 - local increase of substrate doping below the channel for less SCR widths

HALO- / Pocket-Implantation

Delta-Doping (Punch-Through)

Geometrical and layout effects in scaling

Measures for reduction of roll-off and Punch Through

After Wann et al., IEEE Trans. Electron Dev. 43, 1742 (1996)

Geometrical and layout effects in scaling

- Steady reduction of feature sizes results in a change of transistor parameters by shortchannel effects
 - technological challenges

long channel MOSFET	short channel MOSFET	root causes
U_{Th} independent of L and W	U_{Th} reduces mit L , increases with lower W	charge separation, DIBL, narrow channel
U_{Th} independent of U_{DD}	U_{Th} reduces with increasing U_{DD}	DIBL
Subthreshold current increases linearly with decreasing <i>L</i>	Subthreshold current increases strongly with decreasing <i>L</i>	charge separation
Saturation drain current is independent of $U_{\rm DD}$	Saturation drain current increases with $U_{\rm DD}$	DIBL

Simple solution to challenges by modified manufacturing of MOSFETs

Outline

- Leakage currents in MOS transistors
- Geometrical and layout effects in scaling
 - p-n junctions
 - subthreshold current
 - Drain-Induced Barrier Lowering (DIBL) and Punch Through
 - charge sharing model
 - narrow channel effect
- Degradation by hot carriers
 - hot holes from avalanche multiplication
 - · channel hot electrons

- Hot carriers
 - first-ever severe short channel effect
 - critical gate legths
 - n-channel: *L* < 0.8 μm
 - p-channel: *L* < 0.5 μm
 - high electric field strengths at the drainside end of the channel when in saturation mode
 - highly accelerated electrons and holes can surmount the potential barrier between substrate and insulator

- Injection of hot holes into the insulator (n-type MOSFET)
 - Drain Avalanche Hot Carrier Injection (DAHC)
 - observed when $U_{DS} > U_{GS}$

- Acceleration of electrons in lateral electric field
 - high kinetic energy (=hot electrons)

- Injection of hot holes into the insulator (n-type MOSFET)
 - regarding curents, an even stronger acceleration appears through avalanche effect

- Generation of electron hole pairs by impact ionization
 - drift of hot electrons into drain area (lateral field) $\rightarrow I_D \uparrow$
 - drift of hot holes in the SCR field towards the substrate $\rightarrow I_{D(S)}$, I_{B}
 - increased drain and substrate currents mainly generate thermal losses

- Injection of hot channel electrons (n-type MOSFET)
 - in case of UGS > UDS (more linear / triode region)

- 1. Acceleration of electrons in lateral electric field
 - high kinetic energy (→ hot electrons)
 - · direct injection into dielectric by scattering with lattice atoms

- Injection of hot channel electrons (n-type MOSFET)
 - in case of UGS > UDS (more linear / triode region)

- Generation of electron-hole-pairs by impact ionization
 - deflection of electrons in the vicinity of drain contact by vertical field
 - semiconductor-dielectric barrier is surmounted by high kinetic energy

- While the strong drain-to-substrate current during DAHC in observed only temporarily,
 the low number of hot carriers injected into the dielectric cause a permanent alteration of device characteristics
 - n-channel transistor: reduced electron mobility in channel (interface degradation)
 - p-channel transistor: modification of threshold voltage in the vicinity of the drain, effective shortening of the channel (length)
 - degradation of MOSFET characteristics

- Counter measure: Lightly-Doped Drain (LDD-) structures
 - reduction of lateral field strength at drain and source
 - · but: additional resistivity in the channel
- Preparation
 - 1. polysilicon gate patterning
 - 2. LDD implantation, Phosphorus (approx. 4·10¹³cm⁻²)
 - 3. spacer formation (LPCVD and anisotropic etching)
 - 4. thermal oxidation
 - 5. S/D implantation, Arsenic (approx. 5·10¹⁵cm⁻²)
 - 6. activation/diffusion

Outline

- Leakage currents in MOS transistors
- Geometrical and layout effects in scaling
 - p-n junctions
 - subthreshold current
 - Drain-Induced Barrier Lowering (DIBL) and Punch Through
 - charge sharing model
 - narrow channel effect
- Degradation by hot carriers
 - hot holes from avalanche multiplication
 - channel hot electrons

Thanks for your attention!