

Portfolio Management

CFA二级培训项目

讲师:何旋

www.pzacademy.com

AN INTRODUCTION TO MULTIFACTOR MODELS

Arbitrage pricing theory (APT) ★★

公式	$E(R_P) = R_F + \beta_{P,1}(\lambda_1) + \beta_{P,2}(\lambda_2) + + \beta_{P,k}(\lambda_k)$ (均衡模型) • λ :factor risk premium (or factor price) • β_p : factor sensitivities
Assumption	 A factor model describes asset returns There are many assets, so investors can form well-diversified portfolios that eliminate asset-specific risk No arbitrage opportunities exist among well-diversified portfolios
特点	• 不同的asset, λ_1 一样, $\beta_{p,1}$ 不一样 • 只有well-diversified portfolios满足这个公式,no-arbitrage opportunity • <i>cross-sectional</i> equilibrium pricing model

Carhart four-factor model: an extension of Fama and French

理解

 $E(R_p) = R_F + \beta_{p,1} RMRF + \beta_{p,2} SMB + \beta_{p,3} HML + \beta_{p,4} WML$; **WML** = winners minus losers, a *momentum factor*

- > CAPM: there are size, value, and momentum anomalies.
- Carhart model: size, value, and momentum represent systematic risk factors.

Multifactor models: Types

$R_{i} = a_{i} + b_{i1}F_{P/E} + b_{i2}F_{SIZE} + \varepsilon_{i}$ • a_{i} : No economic interpretation • Standardized beta: $b_{i1} = \frac{(P/E)_{1} - P/E}{S_{DIZ}}$	Macroeconomic Factor model ★★ 计算、性质	$R_i = a_i + b_{i1} F_{GDP} + b_{i2} F_{INT} + e_i$ (回归模型) • R_i = return for asset i • a_i = E(R_i) = expected return for asset I • F_{GDP} = surprise in the GDP rate • Surprise = actual value — expected value • b_{i1} = GDP surprise sensitivity of asset I • ϵ_i = firm-specific surprise
F: factor return ✓ Cross-sectional data ✓ 不同的asset F一样,b不一样	Fundamental factor models	 a_i: No economic interpretation Standardized beta: b_{i1} = (P/E)₁ - P/E F: factor return ✓ Cross-sectional data

Factor Models in Return Attribution

Active return =
$$R_p - R_B$$

Active return =
$$\sum_{k=1}^{N} \left[\left(\text{Portfolio sensitivity} \right)_{k} - \left(\text{Benchmark sensitivity} \right)_{k} \right] \times \left(\text{Factor return} \right)_{k} + \text{Security selection}$$

Factor tilts: over- or underweights relative to the benchmark factor sensitivities

Security selection: reflects the manager's skill in individual asset selection

Factor Models in Risk Attribution

Active risk squared (variance) = $s^2(R_p - R_B)$ = Active factor risk + Active specific risk (security selection risk)

Information Ratio =
$$\frac{\overline{R_p} - \overline{R_B}}{S_{(R_p - R_p)}}$$

resulting from the portfolio's different-from-benchmark exposures relative to factors specified in the risk model.

the *active non-factor or residual risk* assumed by the manager.

Factor Models in Portfolio Construction

Factor Portfolio	sensitivity equal to 1 to only one risk factor and sensitivities of 0 to the remaining factors 应用: <i>hedge</i> that risk (offset it) or <i>speculate</i> on it
Tracking Portfolio	Portfolio with factor sensitivities that match benchmark-portfolio

Factor Models in Portfolio Construction

Accept above average exposures to risks that they have a comparative advantage in bearing.

Individual investor

- The investor who depends on income from salary or self-employment is sensitive to business cycle risk and he might be very sensitive to invest in procyclical assets.
 - An investor with independent wealth and no job-loss concerns would have a comparative advantage in bearing business cycle risk

Institutional investor

long investment horizons → *comparative advantage in bearing business cycle risk* of traded equities or the liquidity risk

MEASURING AND MANAGING MARKET RISK

Understanding Value at Risk

Value at Risk: Formal Definition

Value at risk (VaR) is the *minimum loss* in either currency units or as a percentage of portfolio value that would be expected to be incurred a certain *percentage* of the time over a certain *period of time* given assumed market conditions.

Estimating VaR

结论、对比

The Parametric Method (analytical method, variance-covariance method)

Assumption	The risk factors are distributed normally, which allows us to estimate the risk of the portfolio based only on the means, variances, and covariances (or correlations).	
Calculation		
Advantages and disadvantages	 The major advantage of the parametric method is its simplicity and straightforwardness. Disadvantage: The calculated VaR is also very sensitive to the covariance estimate. The parametric method apply under the assumption of normally distributed returns. When the portfolio contains options, the parametric method has limited usefulness. 	

Estimating VaR (续)

The Historical Simulation Method

Method	Estimating VaR is based on the <i>actual periodic changes in risk factors</i> over a lookback period. By ordering the changes in portfolio value from most positive to most negative, we can find the largest 5% of losses. The smallest of those losses is our estimate of the 5% VaR
The Historical Simulation & The Parametric Method	 Under the historical simulation method, no adjustments are made for different time period The historical simulation VaRs are much smaller Both the parametric and historical simulation methods have the limitation that all observations are weighted equally.
Advantages and disadvantages	 Advantage of the historical simulation method Do not need the assumption of normality Can be used to estimate the VaR for portfolios that include options. based on what actually happened. Weakness of the historical simulation method There can be no certainty that a historical event will re-occur The historical simulation method is best used when the distribution of returns during the lookback period are expected to be representative of the future.

Estimating VaR (续)

The Monte Carlo Simulation

Method	 Monte Carlo simulation is based on an assumed probability distribution for each risk factor. Computer software is used to generate random values. The more values we use, the more reliable our answers are, but the more time-consuming
Advantages	 The <i>flexibility</i> of the Monte Carlo method to <i>handle more complex distributions</i>. The Monte Carlo and historical simulation methods are much <i>more capable</i> incorporating the effects of <i>option</i> positions. With the speed of today's <i>computers</i>, it is relatively <i>easy and fast</i> to simulate extremely complex processes

Advantages & Disadvantage of Nonparametric Methods Compared To Parametric Methods *		
Advantage	 The concept of VaR is simple and easy to explain VaR allows the risk of different portfolios, asset classes, or trading operations to be compared VaR can be used for performance evaluation (calculation of the ratio of income to VaR). A firms risk managers can look at the allocation of VaR and optimize the allocation of capital Global banking regulators accept VaR Reliability of VaR as a measure of risk can be verified by backtesting. 	
Disadvantage	 VaR estimation requires many choices and can be very significantly affected by these choices. The assumption of normality leads to underestimates of downside (tail) risk A VaR will understate the actual losses incurred when liquidating positions Increasing correlations mean that VaR measures based on normal levels of correlation will overestimate diversification benefits and underestimate the magnitude of potential losses Many aspects of risk are not quantified or included. 	

• VaR focuses only on downside risk and extreme negative outcomes.

Extensions of VaR **

Conditional VaR (CVaR): expected tail loss or expected shortfall

The CVaR is the expected loss, given that the loss is equal to or greater than the VaR.

Incremental VaR (IVaR)

• the *change in VaR* from a change in the portfolio allocation to a security Marginal VaR (MVaR)

- the change in VaR for a 1% increase in the security's weight.
- Marginal VaR may be used to determine the contribution of each asset to the overall VaR

Ex ante tracking error (relative VaR)

 measures the VaR of the difference between the return on a portfolio and the return on its managers benchmark portfolio

Sensitivity and Scenario Measures ★

概念、对比

- Sensitivity Risk Measures: focuses on the effect on portfolio value given a small change in one risk factor.
- Scenario Risk Measures: While sensitivity analysis provides an estimate of the change in portfolio value due to a small change in a single risk factor, scenario analysis provides an estimate of the effect on portfolio value of a set of changes of significant magnitude in multiple risk factors.
 - Stress tests: Apply extreme negative stress to a particular portfolio exposure

Scenario Risk Measures

Historical Scenarios & Hypothetical Scenarios	Historical Scenarios: Use a set of changes in risk factors that have actually occurred in the past, especially changes during a period of financial disruption and stress Hypothetical Scenarios: Any set of changes in risk factors can be used, not just one that has happened in the past. A hypothetical scenario could have more extreme changes in risk factors than those that have occurred in the past
The use of scenario risk measures	 Parties that use leverage, such as banks and hedge funds: pass/fail tests Long-only asset managers do not typically use leverage and are thus less likely to become insolvent, making a pass/fail test for solvency less relevant to them Reverse stress testing: To design an effective hypothetical scenario, it is necessary to identify the portfolio's most significant exposures.

Sensitivity and Scenario Risk Measures & VaR

Sensitivity Risk Measures and VaR

- VaR is a measure of losses and the probability of large losses
- Sensitivity risk measures capture changes in the value of an asset in response to a change in risk factor; they do not tell us anything about the probability

Scenario Risk Measures and VaR

- Similarity: estimate potential loss
- The *VaR* estimate is *vulnerable if correlation relationships and market volatility* are not representative of future condition
- Scenario analysis allows the risk assessment to be fully hypothetical

Advantages and Limitations of Sensitivity and Scenario Risk Measures

Sensitivity and scenario risk measures can *complement VaR* in the following ways:

- They do not *need to rely on history*.
- Scenarios can be designed to overcome any assumption of normal distributions
- Scenarios: allowing *liquidity* to be taken into account.

Limitations of Scenario Risk Measures

- Historical scenarios are interesting but are not going to happen in exactly the same way again
- Hypothetical scenarios may incorrectly specify how assets will co-move
- *Hypothetical* scenarios can be very *difficult to create* and maintain
- It is very *difficult* to know how to *establish the appropriate limits* on a scenario analysis or stress test.

Applications of Risk Measures

_	>	h	71
	ľ	捆	Æ
- 4	,	74	П

机构	结论
Banks	 sensitivity measures, scenario analysis and stress testing, leverage risk measures, VaR and asset-liability mismatches
Hedge funds	non-normal returns distributions
Traditional (long-only) asset managers	 focus on relative risk measures Ex-post tracking error is a measure over a lookback period. Ex-post tracking error is used for performance attribution and to assess manager skill over prior periods.
Defined benefit pension funds	• surplus-at-risk
Insurance companies	 Life insurers: more highly correlated with the market risk Property and casualty insurers: Insurance risks are reduced by purchasing reinsurance and by geographical diversification.

Using Constraints in Market Risk Management

- Risk Budgeting: first determines the acceptable total risk, and then allocates
- Position limits: limit risk because they ensure some minimum level of diversification
- Scenario limits are limits on expected loss for a given scenario
- Stop-loss limits require that a risk exposure be reduced if losses exceed a specified amount over a certain period of time

ECONOMICS AND INVESTMENT MARKETS

整章以结论为主

Framework

$$P_{t}^{i} = \sum_{s=1}^{N} \frac{E_{t} \left[CF_{t+s}^{i} \right]}{\left(1 + l_{t,s} + \theta_{t,s} + \rho_{t,s}^{i} \right)^{s}}$$

I_{t,s}: real default-free interest rate.

- inflation-linked bond issued by the government of a developed economy.
- θ_{ts} : expected inflation compensation.
 - nominal default-free investment.
- pi_{t.s}: compensation of *uncertainty about the asset's future cash flows*.
 - Credit risk, liquidity risk

marginal utility of concumption

The Discount Rate on Real Default-free Bonds **

	m=marginal utility of consumption _{future} /marginal utility of consumption _{today}
	 Wealth increases → marginal utility diminishes
Inter-temporal rate of	• Inter-temporal rate of substitution is <i>lower</i> in the <i>good state</i> of the economy
substitution	 One-period real risk-free rate is inversely related to the inter- temporal rate of
	substitution. That is, the higher the return the investor can earn, the more important
	current consumption becomes relative to future consumption.
	P _{t,s} = risk neutral present value (discounted at the risk-free rate) + covariance term

• risk-averse investors: Negative covariance term → asset return > risk-free rate
 Positive covariance term → asset return < risk-free rate

(discount for risk)

ositive covariance term -> asset return < risk-free rate

higher trend real economic growth \rightarrow higher real default-free interest rates GDP growth is *more volatile* → real interest rates are *higher*

Default-Free Interest Rates and Economic Growth

Pricing a s-Period Default-

Free Bond

The Yield Curve on Nominal Default-free Bonds **

Impact of inflation

Short-Term Nominal Interest Rates, investors can forecast inflation perfectly

• compensate for the expected inflation, θ_{ts} Long-Term Nominal Interest Rates, investors are unlikely to forecast inflation accurately →

• compensation for taking on the uncertainty related to future inflation the expected inflation, $\pi_{t,s} + \theta_{t,s}$

Short-Term Nominal

Interest

Rates

Long-Term

Nominal

• Be influenced by the *inflation* environment and inflation expectations over time

• Be influenced by *real economic activity*, which is influenced by the saving and investment decisions

• These interest rates will also be affected by the *central bank's policy rate*, which should fluctuate around

the neutral policy rate

BEI = $\theta_{t,s}$ + $\pi_{t,s}$

Yield curve

• Investor Expectations: expect interest rates to decline > yield curve to be downward sloping or inverted

• The Term Spread and the Business Cycle: Term spread = long-term rate - short-term rate • A recession is often preceded by a *flattening*, or even an inversion, in the yield curve.

• During a recession, short rates are often lower because central banks tend to lower their policy rate

and the slope of the yield curve will typically **steepen** during a recession.

• Short-dated bonds have been more reliable hedges against bad economic times

• Correlation between the bond price and the economic growth is negative

• Government bond risk premiums are positive and related to the consumption hedging benefits of government bonds

Interest Rates **Government Bonds**

Credit-risky Bonds (Corporate Bond) ★★

Credit-risky bonds
$$=$$
 Default-free rate = $I_{t,s} + \pi_{t,s} + \theta_{t,s} \rightarrow$ interest rate risk Credit premium (credit spread)= $\gamma_{t,s} \rightarrow$ credit risk

Expected loss = probability of default \times (1 – recovery rate)

- Defaults tend to cluster around downturns in the business cycle. Default rate increases.
- Recovery rates tend to be higher when the economy is expanding and lower when it is contracting.

Credit Premiums and The Business Cycle

- Bond spreads do tend to rise in the lead up to and during a recession, and to decline once the economy comes out of recession.
- As the business cycle turns down, and spreads widen, those issuers with a good credit rating tend to outperform.
- credit risky bonds (corporate or sovereign) tend to perform poorly in bad economic times

Factors influencing credit spread

- Industrial Sectors and Credit Quality: During recession, the spread on the consumer cyclical sector rose more dramatically
- Company-Specific Factors: If this ability to meet its debt obligations declines, then the spread demanded on their debt will rise
- Sovereign Credit Risk: important in developing or emerging economies

Equities and The Equity Risk Premium

Equity risk premium, $\lambda^{i}_{t,s} \xrightarrow{} \text{Credit risk premium}$ $\kappa^{i}_{t,s} \xrightarrow{} \text{equity premium relative to credit risky bonds}$

Equity Risk Premium and the economic cycle	 Equities are a bad hedge for bad consumption outcomes, so equity risk premium should be positive (pro-cyclicality) In times of economic weakness or stress, equity risk premium rise
Valuation Multiples	 The P/E tends to rise during periods of economic expansion An increase in expectation of future real earnings growth Falling real interest rates, possibly associated with falling volatility in real GDP growth A fall in inflation expectations A decline in uncertainty about future inflation A fall in the equity risk premium
Investment Strategy	 Cyclical sector has greater sensitivity to business conditions During economic expansion, by rotating into growth stocks, or small-cap stocks, or into cyclical stocks, a manager can, if correct, outperform a broad equity market index.

Commercial Real Estate ★★

Regular cash flow	Commercial Real Estate and the Business Cycle		
Bond-like: rent income	Nominal rental income might be relatively stable		
Equity-like: value of property	 The capital values are highly sensitive to the economic environment. A recession will generally cause these values to fall The pro-cyclical nature means that investors will demand a high risk premium Bad hedge against bad economic outcomes. 		
Illiquidity $\rightarrow \phi^{i}_{t,s}$			

PZACADEMY.COM

ANALYSIS OF ACTIVE PORTFOLIO MANAGEMENT

Value added ★★

Definition Active return (value added):
$$R_p = R_p - R_B$$
Alpha (risk-adjusted calculation of value added): $\alpha_p = R_p - \beta_p R_B$

1. $R_p = R_p - R_B$
2. $R_A = \sum_{i=1}^N \Delta w_i R_i$, $\Delta w_i = w_{p,i} - w_{B,i}$ (The sum of the active weights is **zero**)
3. $R_A = \sum_{i=1}^N \Delta w_i R_{Ai}$, $R_{Ai} = R_i - R_B$

Decomposition 1. $R_A = R_P - R_B = \sum_{j=1}^M w_{P,j} R_{P,j} - \sum_{j=1}^M w_{B,j} R_{B,j}$
2. $R_A = \sum_{j=1}^M \Delta w_j R_{B,j} + \sum_{j=1}^M w_{P,j} R_{A,j}$

Comparing Risk and Return ★★

结论、计算

Sharpe Ratio -

$$SR_P = \frac{R_P - R_F}{\sigma_P}$$

Sharpe ratio is *unaffected by the addition of cash or leverage* (created by borrowing riskfree cash) in a portfolio.

- Same Sharpe Ratio → combination = portfolio +/- R_f Same Sharpe Ratio, change *volatility* →
 - $\sigma_{\rm C}$ (目标volatility) = ${\rm w_p}\sigma_{\rm P}$, ${\rm w_f}$ (cash or leverage比例) =1 ${\rm w_p}$

Information Ratio $IR = \frac{\overline{R_p} - \overline{R_B}}{S_{(R_p - R_B)}}$

The information ratio is affected by the addition of cash or the use of leverage. The information ratio is *unaffected by the aggressiveness* of active weights.

- Same Information Ratio → combination portfolio= active portfolio +/- benchmark Same Sharpe Ratio, change active risk →
 - $\sigma^{c}_{\Delta} = c\sigma_{\Delta} (\sigma^{c}_{\Delta} : 目标active risk; \sigma_{\Delta} : 原active risk)$
 - c: 原portfolio的权重; 1 c: long或short benchmark portfolio的比例

Closet index fund: advertises itself as active but is actually close to being an index fund Market-neutral long-short equity fund: offsetting long and short positions → beta=0

Constructing
Optimal Portfolios

 $SR^2 = SR^2_B + IR^2 \rightarrow$ The expected information ratio is the **single best criterion**

 $\sigma_P^2 = \sigma_B^2 + \sigma_A^2$ Optimal amount of active risk (maximizing active risk or "aggressiveness") $\rightarrow \sigma_A = \frac{IR}{SR_B} \sigma_B$

The Fundamental Law of Active Management ★★

$$IR = (TC)(IC)\sqrt{BR}$$

计算

Key Parameters The correlation triangle **Forecasted Active** Returns µi Portfolio Signal Quality: Construction; Realized Active Active Weights: Returns: R_{Ai} Value Added \triangle W_i **Basic Fundamental Law**

Signal quality: information coefficient (IC)

- $IC = COR\left(\frac{R_{Ai}}{\sigma_i}, \frac{\mu_i}{\sigma_i}\right)$
- higher IC, or ability to forecast returns → add more value
 Portfolio construction: transfer coefficient (TC)

•
$$TC = COR\left(\frac{\mu_i}{\sigma_i}, \Delta w_i \sigma_i\right)$$

- degree to which the investor's forecasts are translated into active weights BR (breadth)
- the number of *independent decisions* made *per year*

Basic Fundamental Law
$$IR = IC\sqrt{BR} \qquad E\left(R_{\scriptscriptstyle A}\right) = IC\sqrt{BR}\sigma_{\scriptscriptstyle A}$$
 Full Fundamental Law
$$IR = (TC)\big(IC\big)\sqrt{BR} \qquad E\left(R_{\scriptscriptstyle A}\right) = \big(TC\big)\big(IC\big)\sqrt{BR}\sigma_{\scriptscriptstyle A}$$

Optimal amount of active risk $\rightarrow \sigma_A = TC \frac{IR^*}{SR_B} \sigma_B$

Constrained portfolio's squared sharpe ratio \rightarrow SR² = SR²_B + (TC)(IR*)²

Application of The Fundamental Law 结论

Global Equity Strategy	Unconstrained portfolio: IR is invariant to the level of active risk Constrained portfolio: IR generally decreases with the aggressiveness of the strategy, in accordance with an increasingly lower transfer coefficient.	
Fixed-Income Strategies	 Cross sectional (选security): 比如credit risk管理 Time-series (择时): 比如每个季度判断一次市场,BR=4 	

Practical Limitations of The Fundamental Law

结论

1. Ex Ante Measurement of Skill

- Investors tend to *overestimate their own skills* (IC)
- Forecasting ability differs among different asset segments and varies over time.

2. Independence of Investment Decisions
$$BR = \frac{N}{1 + (N-1)\rho}$$

- All the stocks in a given industry or all the countries in a given region that are responding to similar influences cannot be counted as completely independent decisions, so breadth is lower than the number of assets.
- Breadth can increase well beyond the number of securities with hedging strategies using derivatives or other forms of arbitrage.
- *Increasing the rebalancing frequency* may increase the realized information ratio, but only to the extent that sequential active return forecasts are independent from period to period.

ALGORITHMIC TRADING AND HIGH-FREQUENCY TRADING

The Basics of Algorithmic Trading ★★ 概念、对比

Algorithmic trading: a trading strategy that has been *automated through the use of a computer*. Computers and trading algorithms make decisions and execute trades thousands of times faster than a human trader

	Execution Algorithms	High-frequency Trading Algorithms	
Definition	slice a large order into smaller pieces and execute them in a way that minimizes price impact	 analyze real-time market data (The "high frequency" refers to the frequency with which data gets updated.) These algorithms identify and execute trades in milliseconds. 	
Types	 Volume-Weighted Average Price (VWAP) Algorithms Implementation Shortfall Algorithms Market Participation Algorithms 	 statistical arbitrage: buy one security and sell the other so as to realize a profit when they eventually converge. Pairs trading, Index arbitrage, Basket trading, Spread trading, Mean reversion and Delta neutral strategies Liquidity aggregation and smart order routing: Market fragmentation (price differences across markets and a lack of liquidity within an individual market.) Real-time pricing of securities Trading on news Genetic tuning: self-evolving ("Darwinian trading") 	
对比	 execution algorithms: "how to trade" → minimizing market impact high-frequency trading algorithms: "when to trade" and "what to trade." → profit 		

Risk Management and Regulatory Oversight

了解

The Use of Technology in Risk Management

Two methods to mitigate trading risk are as follows:

- 1. Real-time pre-trade risk firewall.
- 2. Back testing and market simulation.

The Use of Technology in Regulatory Oversight

- Regulatory Oversight: Real-Time Market Monitoring and Surveillance
- Examples of suspicious trading: Insider trading, Front running, Painting the tape, Fictitious orders, Wash trading and Trader collusion

Impact of Algorithmic and High-frequency Trading

Positive Impacts

- Facilitates large trades.
- Increased liquidity.
- Lower costs. minimize manual labor
- Tighter bid—ask spreads. High-frequency traders that act as market makers
- Improved pricing efficiency. quickly identifying and eliminating any opportunities.
- Promotes open and competitive markets.
- Increased competition between trading venues.
 provide greater order throughput, lower matching latency, and other services such as co-location

Concerns

了解

- Unfair speed advantages. locate themselves as physically close as possible to trading venues
- Magnification of market movements.
- Market manipulation.
- Risk of trading errors. A simple "fat finger error" can quickly cause havoc and huge losses
- Out-of-control algorithms. algorithm may "go wild" and place illogical orders
- Denial-of-service.

THE PORTFOLIO MANAGEMENT PROCESS AND THE INVESTMENT POLICY STATEMENT

Portfolio Management	 ✓ planning step Creating the Investment Policy Statement Forming Capital Markets Expectations Creating the Strategic Asset Allocation ✓ the execution step ✓ the feedback step 		
	Objectives	Return Risk (above/average/below)	Willingness: 业余爱好、以前的投资
IDC			Ability: wealth, age,net income
IPS ★★ 案例分析	Constrains (significant/insignificant)	 Liquidity requirement Time horizon Tax concerns Legal and regulatory factors Unique circumstances 	ors
Investment strategy	✓ Passive investment✓ Active approach✓ Semiactive approach		

