3.4 Cup products

November 5, 2021

De Rham cohomology

 $H_{dR}^{i}(X)$ is a real vector space whose elements are represented by differential *i*-forms.

We can take wedge products of differential forms.

De Rham cohomology

 $H_{dR}^{i}(X)$ is a real vector space whose elements are represented by differential *i*-forms.

We can take wedge products of differential forms.

This defines a multiplication on

$$H_{dR}^{\bullet}(X) = \bigoplus_{i=0}^{\infty} H_{dR}^{i}(X)$$

making this into a graded ring:

De Rham cohomology

 $H_{dR}^{i}(X)$ is a real vector space whose elements are represented by differential *i*-forms.

We can take wedge products of differential forms.

This defines a multiplication on

$$H_{dR}^{\bullet}(X) = \bigoplus_{i=0}^{\infty} H_{dR}^{i}(X)$$

making this into a graded ring: $dx \wedge dy = -dy \wedge dx$.

Today

We'll see the existence of a multiplication, called the **cup product** and denoted by \cup or \smile , for group cohomology.

Today

We'll see the existence of a multiplication, called the **cup product** and denoted by \cup or \smile , for group cohomology.

This multiplication will be compatible with the maps Res, Cor, and Inf.

Let
$$\bigotimes = \bigotimes_{\mathbb{Z}}$$
.

Let G be a group and let A and B be G-modules.

Let G be a group and let A and B be G-modules.

Given inhomogeneous cochains

$$f:G^i\to A, \qquad f':G^j\to B,$$

Let G be a group and let A and B be G-modules.

Given inhomogeneous cochains

$$f: G^i \to A, \qquad f': G^j \to B,$$

the **cup product** of f and f' is the (i + j)-cochain

Let G be a group and let A and B be G-modules.

Given inhomogeneous cochains

$$f: G^i \to A, \qquad f': G^j \to B,$$

the **cup product** of f and f' is the (i + j)-cochain

$$f \cup f' : G^{i+j} \to A \otimes B$$

defined by

Let G be a group and let A and B be G-modules.

Given inhomogeneous cochains

$$f: G^i \to A, \qquad f': G^j \to B,$$

the **cup product** of f and f' is the (i + j)-cochain

$$f \cup f' : G^{i+j} \to A \otimes B$$

defined by

$$(f \cup f')(g_1, g_2, ..., g_{i+j}) := f(g_1, ..., g_i) \otimes g_1g_2 \cdots g_i f'(g_{i+1}, ..., g_{i+j}).$$

Let G be a group and let A and B be G-modules.

Given inhomogeneous cochains

$$f: G^i \to A, \qquad f': G^j \to B,$$

the **cup product** of f and f' is the (i + j)-cochain

$$f \cup f' : G^{i+j} \to A \otimes B$$

defined by

$$(f \cup f')(g_1, g_2, ..., g_{i+j}) := f(g_1, ..., g_i) \otimes g_1g_2 \cdots g_i f'(g_{i+1}, ..., g_{i+j}).$$

This defines a map

$$C^{i}(G,A)\otimes C^{j}(G,B)\stackrel{\cup}{\to} C^{i+j}(G,A\otimes B).$$

For
$$f \in C^i(G,A)$$
 and $f' \in C^j(G,B)$, the cup product satisfies
$$d_{A \otimes B}^{i+j}(f \cup f') = d_A^i(f) \cup f' + (-1)^j f \cup d_B^i(f').$$

For
$$f \in C^i(G,A)$$
 and $f' \in C^j(G,B)$, the cup product satisfies
$$d_{A \otimes B}^{i+j}(f \cup f') = d_A^i(f) \cup f' + (-1)^j f \cup d_B^i(f').$$

Thus \cup descends to a map

$$H^{i}(G,A)\otimes H^{j}(G,B)\stackrel{\cup}{\rightarrow} H^{i+j}(G,A\otimes B).$$

For $f \in C^i(G,A)$ and $f' \in C^j(G,B)$, the cup product satisfies $d_{A \otimes B}^{i+j}(f \cup f') = d_A^i(f) \cup f' + (-1)^j f \cup d_B^i(f').$

Thus \cup descends to a map

$$H^{i}(G,A)\otimes H^{j}(G,B)\stackrel{\cup}{\rightarrow} H^{i+j}(G,A\otimes B).$$

For i = j = 0, this is just the map

$$A^G \otimes B^G \to (A \otimes B)^G$$

induced by the identity on $A \otimes B$.

Remark 1

The cup product can be better defined starting with projective resolutions of \mathbb{Z} as $\mathbb{Z}[G]$ -modules. See first few pages of Section 3.4 in Gille-Szamuely.

Remark 2

The map

$$H^{i}(G,A)\otimes H^{j}(G,B)\stackrel{\cup}{\rightarrow} H^{i+j}(G,A\otimes B).$$

is called the **cup-product** map.

Remark 2

The map

$$H^{i}(G,A)\otimes H^{j}(G,B)\stackrel{\cup}{\rightarrow} H^{i+j}(G,A\otimes B).$$

is called the cup-product map.

More generally, given morphism of G-modules $A \times B \rightarrow C$, the composite

$$H^{i}(G,A)\otimes H^{j}(G,B)\to H^{i+j}(G,A\otimes B)\to H^{i+j}(G,C).$$

is called a cup-product map.

Properties

On cohomology, the cup product is associative and graded-commutative:

$$a \cup b = (-1)^{ij}(b \cup a).$$

Given an exact sequence

$$A_{ullet}: \quad 0 o A_1 o A_2 o A_3 o 0$$

of G-modules such that $A_{\bullet} \otimes B$, with B a G-module, is also exact, then for $a \in H^{i}(G, A_{3})$ and $b \in H^{j}(G, B)$,

Given an exact sequence

$$A_{\bullet}: 0 \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow 0$$

of G-modules such that $A_{\bullet} \otimes B$, with B a G-module, is also exact, then for $a \in H^{i}(G, A_{3})$ and $b \in H^{j}(G, B)$, the relation

$$\delta(a) \cup b = \delta(a \cup b) \in H^{i+j+1}(G, A_1 \otimes B)$$

holds, where the δ are the connecting maps in the associated long exact sequences.

Given an exact sequence

$$B_{\bullet}: 0 \rightarrow B_1 \rightarrow B_2 \rightarrow B_3 \rightarrow 0$$

of G-modules such that $A \otimes B_{\bullet}$, with A a G-module, is also exact, then for $a \in H^{i}(G, A)$ and $b \in H^{j}(G, B_{3})$,

Given an exact sequence

$$B_{\bullet}: 0 \rightarrow B_1 \rightarrow B_2 \rightarrow B_3 \rightarrow 0$$

of G-modules such that $A \otimes B_{\bullet}$, with A a G-module, is also exact, then for $a \in H^{i}(G,A)$ and $b \in H^{j}(G,B_{3})$, the relation

$$a \cup \delta(b) = (-1)^i \delta(a \cup b) \in H^{i+j+1}(G, A \otimes B_1)$$

holds, where the δ are the connecting maps in the associated long exact sequences.

See Proposition 3.4.9 on page 75 of Gille-Szamuely.

Given G-modules A and B, we have:

Given G-modules A and B, we have:

1. For $a \in H^i(G,A)$ and $b \in H^j(G,B)$, $\mathsf{Res}(a \cup b) = \mathsf{Res}(a) \cup \mathsf{Res}(b).$

Given *G*-modules *A* and *B*, we have:

1. For $a \in H^i(G,A)$ and $b \in H^j(G,B)$, $\operatorname{Res}(a \cup b) = \operatorname{Res}(a) \cup \operatorname{Res}(b).$

2. For
$$H \subseteq G$$
, $a \in H^{i}(G/H, A^{H})$ and $b \in H^{j}(G/H, B^{H})$,
$$Inf(a \cup b) = Inf(a) \cup Inf(b).$$

Given *G*-modules *A* and *B*, we have:

1. For
$$a \in H^i(G,A)$$
 and $b \in H^j(G,B)$,
$$\operatorname{Res}(a \cup b) = \operatorname{Res}(a) \cup \operatorname{Res}(b).$$

2. For
$$H \subseteq G$$
, $a \in H^{i}(G/H, A^{H})$ and $b \in H^{j}(G/H, B^{H})$,
$$Inf(a \cup b) = Inf(a) \cup Inf(b).$$

3. For
$$[G:H]<\infty$$
, $a\in H^i(G,A)$ and $b\in H^j(G,B)$,
$$\operatorname{\sf Cor}(a\cup\operatorname{\sf Res}(b))=\operatorname{\sf Cor}(a)\cup b.$$

Let G be a finite cyclic group of order n and let $\chi \leftrightarrow \operatorname{id}$ in $H^1(G, \mathbb{Z}/n\mathbb{Z}) \cong \operatorname{Hom}(G, \mathbb{Z}/n\mathbb{Z})$.

Let G be a finite cyclic group of order n and let $\chi \leftrightarrow \operatorname{id}$ in $H^1(G, \mathbb{Z}/n\mathbb{Z}) \cong \operatorname{Hom}(G, \mathbb{Z}/n\mathbb{Z})$.

1. Consider the boundary map $\delta: H^1(G,\mathbb{Z}/n\mathbb{Z}) \to H^2(G,\mathbb{Z})$ coming from the SES

$$0 \to \mathbb{Z} \stackrel{n}{\to} \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \to 0$$

Then $\delta(\chi)$ is a generator of the cyclic group $H^2(G,\mathbb{Z})$.

Proof of 1. See text.

Let G be a finite cyclic group of order n and let $\chi \leftrightarrow \operatorname{id}$ in $H^1(G, \mathbb{Z}/n\mathbb{Z}) \cong \operatorname{Hom}(G, \mathbb{Z}/n\mathbb{Z})$.

2 The isomorphisms $H^i(G, A) \cong H^{i+2}(G, A)$ of §2 are induced by cup product with $\delta(\chi)$ for all i > 0.

Proof of 2. See text.

Let G be a finite cyclic group of order n and let $\chi \leftrightarrow \operatorname{id}$ in $H^1(G, \mathbb{Z}/n\mathbb{Z}) \cong \operatorname{Hom}(G, \mathbb{Z}/n\mathbb{Z})$.

3 The isomorphism $A^G/NA \cong H^2(G,A)$ is induced by $a \mapsto a \cup \delta(\chi)$.

Proof of 3. See text.

References

Section 3.4 from Gille-Szamuely, Central Simple Algebras and Galois Cohomology.

Sharifi's notes on group and Galois cohomology, https://www.math.ucla.edu/~sharifi/groupcoh.pdf