Bayesian Inference and Explainable Al Quantifying the uncertainty of the explanations

Vasilis Gkolemis¹

¹ATHENA Research and Innovation Center

November 2021

Feature Effect

DALE vs ALE - 3 Bins

DALE vs ALE - 5 Bins

DALE vs ALE - 10 Bins

DALE vs ALE - 20 Bins

DALE vs ALE - 40 Bins

Traditional Machine Learning

- Parametric model $f_{\theta}: \mathbf{x} \to \mathbf{y}$
- Define a distance function $d(\cdot,\cdot)$ and measure the distance (loss) from observed data

$$L(\theta) = \sum_{i}^{N} d(f_{\theta}(\mathbf{x}^{i}), y^{i})$$
 (1)

ullet Search for the parameter set $\hat{oldsymbol{ heta}}$ that reproduces the observed data best

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) \tag{2}$$

We search for a single configuration (point-estimate) $\hat{\theta}$

Bayesian Formulation

- On the modelling part:
 - we need the joint distribution $p(x, y, \theta)$
 - to replace the parametric model $f_{\theta}: \mathbf{x} \to \mathbf{y}$
- Training part:
 - infer the posterior distribution $p(\theta|D)$
 - to replace the optimal point estimate $\hat{\theta} = \arg \min_{\theta} L(\theta)$
- Prediction part:
 - infer the predictive distribution p(y|x, D)
 - to replace the point-estimate prediction $y = f_{\hat{\theta}}(x)$

We replace point estimates with distributions (uncertainty quantification)

Modelling part

- joint distribution $p(x, y, \theta) = p(y|x, \theta)p(x)p(\theta)$
- \bullet $p(\theta)$, our prior belief about the parameters of the model
- $p(y|x,\theta)$, the likelihood of the model
- joint distribution can be defined as a DAG

• We need to model $p(\theta)$ and $p(y|x,\theta)$

Training part

• We use Bayes law to infer the posterior distribution

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)} \propto \prod_{i}^{N} p(y^{i}|\mathbf{x}^{i},\theta)p(\theta)$$
(3)

where $D = \{x^i, y^i\}_{i=\{1,\dots,N\}}$, the observed data (training-set)

• In the extreme case where $p(\theta|D) = \delta(\theta - \hat{\theta})$, we get a point-estimate is in traditional ML

The 'training process' leads to many possible models, each one with different probability (uncertainty about the model)

Inference part

- We need to solve/approximate the predictive distribution $p(y|\mathbf{x},D) = \int_{\boldsymbol{\theta}} p(y|\mathbf{x},\boldsymbol{\theta}) p(\boldsymbol{\theta}|D) \partial \boldsymbol{\theta}$
- We consider the posterior $p(\theta|D)$ as known (computed exactly or approximated)
- In the extreme case where $p(\theta|D) = \delta(\theta \hat{\theta})$, we get all the mass of the prediction $p(y|\mathbf{x}, D) = p(y|\mathbf{x}, \hat{\theta})$ from a single model

The 'prediction process' gets one prediction per each plausible model (uncertainty about the model leads to uncertainty about the prediction)

Bayesian Formulation - Disadvantages

What we lose

- On the modelling part
 - Time to think how the input features x_i relate to each other i.e. building the DAG
- On the training-prediction (inference) part
 - Expressions difficult to approximate
 - $p(\theta|D)$ how to compute the posterior distribution?
 - $p(y|\mathbf{x}, D) = \int_{\boldsymbol{\theta}} p(y|\mathbf{x}, \boldsymbol{\theta}) p(\boldsymbol{\theta}|D) \partial \boldsymbol{\theta}$ how to compute the predictive distribution?

Bayesian Formulation is difficult from both the mathematical and the computational point-of-view

Bayesian Formulation - Advantages

What we get:

- On the modelling part
 - Specify who the features relate to each other
 - check Model-based Machine Learning a new approach for ML model building
- On the inference part
 - Uncertainty estimation! Why we need it?
 - Most times the available data is not enough to reveal a single instance $\hat{\pmb{\theta}}$
 - Sometimes we want to predict on a new x that is very different from the training set

Let's be wise enough and be uncertain about our predictions.

Bayesian Formulation - Example

• In areas without training points our uncertainty is bigger