Preprocessing with SVM

Ryan Del Bel

March 6, 2014

We first consider removing the contaminated observations by hand. Any reference to SVM or SV in this table referrs to removing the contaminated observations by hand, and the contaminated observations themselves.

```
latex(tbl2, file = "", cgroup = c("", "AUC", "TOP10", "NULLP", ""), rgroup = c("1\\%", "2\\%", "5\\%", "10\\%"), n.cgroup = c(1, 2, 2, 2, 3), n.rgroup = c(5, 5), here = T, rowlabel = "", rowname = NULL)
```

	AUC		TOP10		NULLP				
OR	SVM	Normal	SVM	Normal	SVM	Normal	#SV	#Con	%ConSV
1.25	0.896	0.893	5.88	5.75	0.479	0.478	10	10	1
1.5	0.975	0.977	8.00	7.75	0.470	0.471	10	10	1
1.75	0.996	0.996	9.00	9.00	0.472	0.471	10	10	1
1.1 - 1.5	0.886	0.876	5.38	5.50	0.484	0.484	10	10	1
1.1-2	0.905	0.906	6.88	6.75	0.479	0.480	10	10	1
1.25	0.895	0.838	4.88	3.38	0.479	0.483	50	50	1
1.5	0.987	0.963	8.00	6.50	0.471	0.471	50	50	1
1.75	0.993	0.973	8.62	6.88	0.468	0.469	50	50	1
1.1 - 1.5	0.869	0.819	5.50	4.38	0.482	0.476	50	50	1
1.1-2	0.883	0.847	6.88	6.25	0.489	0.494	50	50	1

We see that when removing the contaminated points by hand we obtain better results. The following table is a comprehensive look at the performance of SVM when contaminating observations and removing the 'worst' support vectors.

```
latex(tbl, file = "", cgroup = c("", "AUC", "TOP10", "NULLP", ""), rgroup = c("1\\%", "2\\%", "5\\%", "10\\%"), n.cgroup = c(1, 2, 2, 2, 3), n.rgroup = c(5, 5, 5, 5, 5, 5), here = T, rowlabel = "", rowname = NULL)
```

	AUC		TOP10		NULLP				
OR	SVM	Normal	SVM	Normal	SVM	Normal	#SV	#Con	%ConSV
1.25	0.876	0.895	4.50	5.00	0.424	0.489	96.38	10	0.250
1.5	0.971	0.972	7.12	7.38	0.420	0.457	49.50	10	0.162
1.75	0.994	0.996	8.50	8.62	0.440	0.463	28.12	10	0.150
1.1 - 1.5	0.793	0.806	4.25	4.50	0.426	0.486	81.62	10	0.288
1.1-2	0.888	0.898	7.12	7.00	0.465	0.488	34.25	10	0.075
1.25	0.806	0.818	2.75	3.62	0.413	0.484	103.12	50	0.225
1.5	0.951	0.959	6.50	6.50	0.421	0.477	77.38	50	0.242
1.75	0.985	0.986	8.12	8.12	0.436	0.477	53.88	50	0.248
1.1 - 1.5	0.789	0.799	3.50	3.50	0.414	0.493	106.88	50	0.268
1.1-2	0.855	0.866	5.62	5.25	0.435	0.486	71.62	50	0.248
1.25	0.874	0.875	4.38	4.50	0.478	0.487	10.00	10	0.000
1.5	0.989	0.989	8.38	8.50	0.452	0.463	10.00	10	0.062
1.75	0.997	0.997	9.25	9.12	0.471	0.479	10.00	10	0.038
1.1 - 1.5	0.867	0.866	5.50	5.38	0.464	0.477	10.00	10	0.038
1.1-2	0.919	0.919	6.38	6.38	0.472	0.479	10.00	10	0.075
4.05	0.045	0.040	0.00	0.00	0.400	0.4=4	40.00	~ ^	0.000
1.25	0.815	0.818	3.62	3.62	0.460	0.471	10.00	50	0.030
1.5	0.943	0.942	7.38	7.38	0.462	0.474	10.00	50	0.040
1.75	0.983	0.984	8.38	8.38	0.459	0.472	10.00	50	0.048
1.1-1.5	0.838	0.842	4.12	4.00	0.470	0.479	10.00	50	0.028
1.1-2	0.913	0.911	5.50	5.50	0.476	0.485	10.00	50	0.048
1.05	0.010	0.000	0.00	0.00	0.450	0.407	10.00	F 0	0.010
1.25	0.810	0.809	2.88	2.88	0.478	0.487	10.00	50	0.018
1.5	0.967	0.970	6.88	7.00	0.475	0.483	10.00	50	0.045
1.75	0.959	0.960	7.75	7.88	0.471	0.480	10.00	50	0.050
1.1-1.5	0.878	0.879	5.12	4.88	0.455	0.489	48.50	10	0.200
1.1-2	0.909	0.915	6.75	7.00	0.450	0.482	40.75	10	0.175
1.25	0.856	0.856	3.75	4.25	0.443	0.476	50.00	50	0.145
1.25 1.5	0.850 0.962	0.970	$\frac{3.73}{7.12}$	7.25	0.445 0.437	0.476 0.475	50.00	50 50	0.143
1.75	0.902 0.973	0.970 0.971	7.12 7.62	7.25 7.75	0.437 0.428	0.475 0.465	46.88	50 50	0.148 0.215
1.1-1.5	0.975	0.803	4.88	4.62	0.428 0.443	0.480	50.00	50 50	0.213 0.148
1.1-1.5	0.733	0.855	5.38	5.75	0.445 0.451	0.480 0.482	49.12	50	0.146
1.1-4	0.040	0.000	0.00	0.10	0.401	0.402	43.14	90	0.100

We see that we do not obtain better results when removing the support vectors. Only a very small proportion of our removed support vectors are the comtaminated observations.