CMPE 212 Principles of Digital Design

Lecture 4

Boolean Algebra

February 3, 2016

www.csee.umbc.edu/~younis/CMPE212/CMPE212.htm

Lecture's Overview

Previous Lecture:

- → Representation of signed fixed numbers (signed magnitude, 1's complement, 2's complement, excess)
- → Addition and subtraction of signed binary fixed numbers (sign handling, overflow and underflow, effect of the representation)
- → Fixed number representation (arithmetic overflow)

☐ This Lecture:

- → Boolean Algebra
- → Simplification of Boolean expressions
- → Boolean algebra and switching circuits

Digital Systems

Slide contents are courtesy of Vishwani D. Agrawal

Boolean Algebra

- A set of Axioms developed by George Boole
- Formulation based on set theory

An Axiom or Postulate

- A self-evident or universally recognized truth
- An established rule, principle, or law
- ➤ A self-evident principle or one that is accepted as true without proof as the basis for argument
- A postulate Understood as the truth

George Boole 1815-1864

- Born, Lincoln, England
- Professor of Math., Queen's College, Cork, Ireland
- Book, The Laws of Thought,
 1853

Basic Postulates

Postulate 1: A Boolean algebra is a closed algebraic system

- > A set K containing two or more elements and two binary operators:
 - "+", also called "OR"
 - "-", also called "AND"
 - Such that for any pair of elements, a and b in K, the results of a + b and a·b also belong to K

Postulate 2: Existence of 1 and 0 (Identity Elements)

- > There exist unique 0 and 1 elements in K, such that for every element a in K
 - a + 0 = a
 - $a \cdot 1 = a$

Where: 0 and 1 are the identity elements for "+" and "-" operation, respectively

Postulate 3: Commutativity of the + and · operators

- for any elements a and b in K:
 - a + b = b + a
 - $a \cdot b = b \cdot a$

Basic Postulates (Cont.)

Postulate 4: Associativity of the + and · operators

- a + (b + c) = (a + b) + c
- $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

Postulate 5: Distributivity of + and + over ·

- $a+(b\cdot c)=(a+b)\cdot (a+c)$
- $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$
- Important:

dot (·) operation has precedence over + operation:

$$a+b\cdot c=a+(b\cdot c)\neq (a+b)\cdot c$$

Postulate 5: Existence of the complement

- > for every element a in K, there exist a unique element \bar{a} (called complement of a) in K such that:
 - $a + \overline{a} = 1$
 - $a \cdot \overline{a} = 0$

Venn Diagram Representation

- ➤ The "." and "+" operations are equivalent to the intersection and union operations on sets
- > The Boolean axioms can be illustrated using Venn diagrams

 $a \cdot b$ = $b \cdot a$

Venn Diagram (Cont.)

Postulate 6: existence of complement

$$a \cdot \overline{a} = 0$$

$$a + \overline{a} = 1$$

Postulate 3

Set a is shaded

Set $b \cdot c$ is shaded

Set $a + b \cdot c$

Set a + b is shaded

Set a + c is shaded

 $\mathbf{Set}\,(a+b)(a+c)$

The Duality Principle

- □ Each postulate of Boolean algebra contains a pair of expressions or equations such that one is transformed into the other and vice-versa by interchanging the operators, + ↔ ·, and identity elements, 0 ↔ 1
- The two expressions are called the duals of each other

- □ Example: $a \cdot (b+c) = a \cdot b + a \cdot c$
 - is dual for: $a + (b \cdot c) = (a + b) \cdot (a + c)$
- ☐ Should not alter the position of parentheses if they are present
- The principle of duality is used extensively in proving Boolean algebra theorems

Slide contents are courtesy of Vishwani D. Agrawal

More Examples of Duals

Postulate	Duals	
rostulate	Expression 1	Expression 2
1	$a, b, a + b \in K$	$a, b, a \cdot b \in K$
2	a+0=a	$a \cdot 1 = a$
3	a+b=b+a	$a \cdot b = b \cdot a$
4	a + (b + c) = (a + b) + c	$a \cdot (b \cdot c) = (a \cdot b) \cdot c$
5	$a + (b \cdot c) = (a+b) \cdot (a+c)$	$a \cdot (b+c) = (a \cdot b) + (a \cdot c)$
6	$a + \overline{a} = 1$	$a \cdot \overline{a} = 0$

2406	
	-
₽	
Ž	9

Ě	
担	
8	١
-	

Relationship	Dual	Property		
AB = BA	A + B = B + A	Commutative		
A (B+C) = A B + A C	A + B C = (A + B) (A + C)	Distributive		
1 A = A	0 + A = A	Identity		
$A\overline{A} = 0$	$A + \overline{A} = 1$	Complement		
0 A = 0	1 + A = 1	Zero and one theorems		
A A = A	A + A = A	Idempotence		
$\underline{A}(BC) = (AB)C$	A + (B+C) = (A+B) + C	Associative		
$\overline{A} = A$		Involution		
$\overline{A} B = \overline{A} + \overline{B}$	$\overline{A+B} = \overline{A} \overline{B}$	DeMorgan's Theorem		
$AB + \overline{A}C + BC$	$(A+B)(\overline{A}+C)(B+C)$	Consensus Theorem		
$= AB + \overline{AC}$	$= (A+B)(\overline{A}+C)$			
A (A + B) = A	A + AB = A	Absorption Theorem		

Principle of duality: The dual of a Boolean function is obtained by replacing AND with OR and OR with AND, 1s ith 0s, and 0s with 1s.

Theorem: Idempotency (Invariance)

• For all elements "a" in K: a + a = a; $a \cdot a = a$.

Proof:

$$a + a = (a + a)1, (identity element)$$

$$= (a + a)(a + \bar{a}), (complement)$$

$$= a + a \bar{a}, (distributivity)$$

$$= a + 0, (complement)$$

$$= a, (identity element)$$

$$= (a \cdot a) + 0, (identity element)$$

$$= (a \cdot a) + (a \cdot \bar{a}), (complement)$$

$$= a \cdot (a + \bar{a}), (distributivity)$$

$$= a \cdot 1, (complement)$$

$$= a, (identity element)$$

More Theorems

Theorem: Null Elements

```
• a+1=1, for + operator, and a\cdot 0=0, for · operator

Proof: a+1=(a+1)\cdot 1, (identity element)

=1\cdot (a+1), (commutativity)

=(a+\bar{a})\cdot (a+1), (complement)

=a+\bar{a}\cdot 1, (distributivity)

=a+\bar{a}, (identity element)

=1, (complement)
```

Similar proof can be made for: $a \cdot 0 = 0$

Theorem: Involution $(\bar{a} = a)$

Proof: $a + \bar{a} = 1$ and $a \cdot \bar{a} = 0$, (complements) or $\bar{a} + a = 1$ and $\bar{a} \cdot a = 0$, (commutativity)

i.e., a is complement of \bar{a} , since the complement of \bar{a} is unique. Therefore, $\bar{a} = a$

More Theorems

Theorem: Absorption a + a b = a, and a (a + b) = a

Proof:
$$a + a b = a + a b$$
, (identity element)
= $a + a b = a + a b$, (distributivity)
= $a + a b = a + a b$, (distributivity)
= $a + a b = a + a b$, (identity element)
= $a + a + a b = a + a + a b$, (identity element)

Similar proof can be made for: a(a + b) = a

Theorem: $a + \bar{a} b = a + b$ and $a (\bar{a} + b) = a b$

Proof:

$$a + \bar{a} b = (a + \bar{a})(a + b)$$
, (distributivity)
= 1 $(a + b)$, (complement)
= $(a + b)$, (identity element)

Similar proof can be made for: $a(\bar{a} + b) = ab$

Figure is courtesy of Vishwani D. Agrawal

DeMorgan's Theorem

DeMorgan's Theorem:

and
$$\overline{a+b}=\overline{a}\cdot\overline{b},$$
 $\overline{a\cdot b}=\overline{a}+\overline{b}$

<u>Proof:</u> From the complement postulate $\bar{x} \cdot x = 0$. Thus is suffice to show that $(a \cdot b) \cdot \overline{(a \cdot b)} = (a \cdot b) \cdot (\bar{a} + \bar{b}) = 0$

$$(a \cdot b) \cdot (\overline{a} + \overline{b}) = (a \cdot b) \cdot \overline{a} + (a \cdot b) \cdot \overline{b}$$
 (Distributivity)
 $= \overline{a} \cdot (a \cdot b) + (a \cdot b) \cdot \overline{b}$ (Commutativity)
 $= (\overline{a} \cdot a) \cdot b + a \cdot (b \cdot \overline{b})$ (Associativity)
 $= 0 \cdot b + a \cdot 0$ (Complement)
 $= 0 + 0$ (Null element)
 $= 0$

The other part of the theorem can be proven in a similar manner

Generalization:

$$\overline{a+b+c+\cdots+z}=\overline{a}\cdot\overline{b}\cdot\overline{c}\cdot\cdots\overline{z},$$

and

$$\overline{a.b.c.\cdots.z} = \overline{a}.\overline{b}.\overline{c}.\cdots\overline{z},$$

Mohamed Younis

Consensus Theorem

Consensus Theorem:

and

$$a \cdot b + \overline{a} \cdot c + b \cdot c = a \cdot b + \overline{a} \cdot c$$

 $(a+b) \cdot (\overline{a} + c) \cdot (b+c) = (a+b) \cdot (\overline{a} + c)$

Proof:

$$a \cdot b + \overline{a} \cdot c + b \cdot c = a \cdot b + \overline{a} \cdot c + 1 \cdot b \cdot c$$
 (Identity element)
 $= a \cdot b + \overline{a} \cdot c + (a + \overline{a}) \cdot b \cdot c$ (Complement)
 $= a \cdot b + \overline{a} \cdot c + a \cdot b \cdot c + \overline{a} \cdot b \cdot c$ (Distributivity)
 $= (a \cdot b + a \cdot b \cdot c) + (\overline{a} \cdot c + \overline{a} \cdot b \cdot c)$ (Commutativity)
 $= a \cdot b + \overline{a} \cdot c$ (Absorption)

The 2nd part of the theorem can be proven in a similar manner

Example:

 $AB + \bar{A}CD + BCD = AB + \bar{A}CD$ (replace c in the theorem with CD)

Simplification of Boolean Expressions

- ☐ Boolean expressions correspond to switching circuit
- □ Postulates and theorems are used in simplifying Boolean expressions to minimize the corresponding switching circuit
- ☐ DeMorgan's and consensus theorems are particularly very useful

Example:

$$ABC + \bar{A}D + \bar{B}D + CD = ABC + (\bar{A} + \bar{B})D + CD \qquad \text{(Distibutivity)}$$

$$= ABC + \bar{A}\bar{B}D + CD \qquad \text{(DeMorgan)}$$

$$= ABC + \bar{A}\bar{B}D \qquad \text{(Consensus)}$$

$$= ABC + (\bar{A} + \bar{B})D \qquad \text{(DeMorgan)}$$

$$= ABC + \bar{A}D + \bar{B}D \qquad \text{(Distibutivity)}$$

Example:

$$\overline{a(b+c)+\bar{a}b} = \overline{ab+ac+\bar{a}b}$$
 (Distibutivity)
$$= \overline{ab+\bar{a}b+ac} = \overline{(a+\bar{a})b+ac}$$
 (Commutativity, Distibutivity)
$$= \overline{b+ac}$$
 (Complement)
$$= \overline{b}(\overline{ac}) = \overline{b}(\overline{a}+\overline{c})$$
 (DeMorgan)

Next, Switching Algebra

- Set K contains two elements, {0, 1}, also called {false, true}, or {off, on}, etc.
- Two operations are defined as, $+ \equiv OR$, $\cdot \equiv AND$.

+	0	1
0	0	1
1	1	1

•	0	1
0	0	0
1	0	1

- More operations will be define as using AND and OR
- Realization of these basic logical functions is referred to as gates.

Logic Gates and Their Symbols

- ☐ Logic symbols for AND, OR, buffer, and NOT Boolean functions
- ☐ Note the use of the "inversion bubble."
- □ Be careful about the "nose" of the gate when drawing AND vs. OR.

* Slide is courtesy of M. Murdocca and V. Heuring

Conclusion

□ <u>Summary</u>

- → Boolean Algebra (History, postulates, theorems)
- → Simplification of Boolean expressions (how to put postulates and theorem to work)
- → Boolean algebra and switching circuits (Logic gates and algebraic method for minimization)

☐ Next Lecture

- → Multiplication and division of binary numbers
- → Binary codes (BCD, Character representation)
- → Representations for floating point numbers

Reading assignment: section 2.1 in the textbook

