Today's Content

Connecting the Robes
Heap Introduction
Insertion
Heapify
Extract Min
Build Heap

Q .	Conne	ecting	FNC	Ropes				
		G						
_	2	5	,	2	6	_	3	
404	can	connect	i an	4 two	ropes t	bejether	, there	is a
cost	asso(ciated	40 (connect	them	= sum	of le	ngth
of .	sopes	that	400,8	ic conn	ecting.			
					whne		ropes	•
		1						
	L 2	,5,2,	6,3	3			C	420
C7, 2, 6	.,37 —		6	;		7		7
9								+
•					• :			9
[9,6	,37	2		1		9		+
15								
•	,				. =			15
C15, 3		9		6		15		*
								18
				3	=	18		10
[18			15				-	
								49
<u> </u>	Sort	<u> </u>	5,2,	6,33	→ E2,	2,3,5,	67	
				•				
			0 -			Ce	54	
4,	3,5,6		7 -	7 = 4			+ +	
	4		3 +	4 = 7			7 🕌	
7	,5,6		5 4	- 6 = 11			U 🛖	
	7		1 +	11 = 18	S		18	
7	, 11					_	40	
•	7					_	70	
	18							

2) order of lements	
~	
Heap Order Proper	EMOP]
(A) than	Heap Nock > Children
min (x)	Heap Node & Children
	Mark
win win	Heap
war 15	Max 18
20	26
25/3/24/22/	(34) (12) (3) (4)
35) 34)	(6)
1. Complete BT	1. Complete BT
2. HOP	2. HOP
min Heap - min Je	(1)0 toor to ei
	ele is at root ocis
1-10x Flort -> LAN	ue is at two octs

$$N \rightarrow \frac{H}{\log_2 N}$$

$$1 \qquad \log_2 N$$

void insert (int x, int [] heap) <

heap. add Last (1)
i= heap. size() -1

while (i 70) 4

int Pi = (i-1)/2

if Cheap [i] < heap [Pi]) <

Swap (heap [i] heap [Pi])

i = Pi

else 4

break

TC: O (He ight

TC: 0 (log 2N)

Heapify Given a min heap, all elements are following heap property except for first ele, fix the heap 175 4 20 12 15 24 22 35 25 14 16 0 1 2 3 4 5 6 7 8 9 10 min caci?, aczi+17, aczi+27 min (13, 4,20) Swap (0,1) min (13,12,5) =5 (id+ 4) M=11 (Heap size) swap (1,4) thin (13,14,10) Invalid idx 2N = 10 Cidn 10) Swap (4,10) 21+1 21+2 5 11 × 12 × 13× 14×

Build Heap [Min	Heap 3
[5 13 -2	11 27 31 0 193
×5	
	Idea 1: Sout the arr
1 13 -2	T-2 0 5 11 13 19 27 31]
11 27 31 0	
11 27 31 0	-2
	0 5 TC:0 (Nlogni
(9)	0 5 TC:0 (Nlogni
	1
	31
[5 13 -2	11 27 31 0 193
Idea 2: Insert	dements one by one in heap
(- 2)	heap
	C5 13] -/
1) (2)	-2 5
	T(: O(Nlog2N)
(A) (3)	

Last Non - Leaf Node Parent of Last leaf Heap 4 N Last leaf (de) = 10-1 $Parent = \frac{1-1}{2} = \frac{N-1-1}{2} = \frac{2}{N-2} = \frac{2}{N-1}$ Last Non- red Node = 11-2 = 9 = 4 for (:= N-2; i 20; i--) < heapily (heap, i) TC:O(N) X N 1092N man no. of nodes 2 rd lost 10 10/8 Total swaps

$$= \frac{1}{\sqrt{2}} + 0 + \frac{1}{\sqrt{2}} + 1 + \frac{1}{\sqrt{2}} + \frac{1}{2} + \frac{1}{\sqrt{2}} + \frac{3}{2} + \dots$$

$$= \frac{N}{2} \left(\frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \cdots \right)$$

$$= \frac{N}{2} \times 2 = \frac{N}{2}$$

$$= \frac{N}{2} \times 2 = \frac{N}{2}$$

$$\frac{5}{2} = \frac{1}{4} + \frac{2}{8} + \frac{3}{16}$$

Merge N sorted Arrays

0 - [2,3,11,15,20]

We've to merge

1 - [1,5,7,9]

these sorted arrays.

2 - [0,2,4]

3 - [-2, 5, 10, 20]

Idea

- · If we want to merge 2 sorted arrays, then we need 2 pointers.
- · If we want to merge 3 sorted arrays, then we need 3 pointers.
- · If we want to marge n sorted arrays, then we need n pointers. => complexity becomes very high we need to keep track of N pointers.

Optimized: