

Artificial Intelligence

Dr. Eng. Wajdi SAADAOUI

Assistant Professor, ENIT, ENSI, ISSAT, Higher Education Ministry, Tunisia

Outline

- 1. Artificial Intelligence (AI): from perception to reasoning
- 2. How to design and use a Machine Learning (ML)?
- 3. Machine Learning Techniques: A brief Review & Comparison
- 4. Neural Network: Theory and Application
- 5. Naïve Bayes: Theory and Application
- 6. Support Vector Machines (SVM): Theory and Application
- 7. How to select the appropriate Machine Learning
- 8. How to evaluate a Machine Learning Performance?

1. Artificial Intelligence (AI): from perception to reasoning

Intelligence

Artificial Intelligence

Perception
Living beings

Image Processing

Optimization

Living beings

Bio-Inspired Optimization

Learning

Baby, Animal, etc.

Machine Learning

Reasoning

Human

Fuzzy Logic

2. How to design and use a Machine Learning (ML)?

3. Machine Learning Techniques: A brief Review & Comparison

Structure of artificial neuron

3x5x5x2

Feedforward neural network with 2 hidden layers

[x,y,z]: Input Vector

W1: Weight Matrix of Input LayerW2: Weight Matrix of Hidden LayerW3: Weight Matrix of Output Layer

F: Activation Function **C1**: Class Output 1 **C2**: Class Output 2

F= Nonlinear Activation Function to insert a Non Linear Representation into Neural Network

Train Vector = [2, -1]; Train Label = 1

Logistic function =
$$\frac{1}{1+e^{-x}}$$

Train Vector = [2 , -1] ; Train Label = 1

Logistic function =
$$\frac{1}{1+e^{-x}}$$

Step 1: Weights' Initialization

Train Vector = [2, -1]; Train Label = 1

Step 2: Forward Pass

?=
$$logistic(0,5 * 2 + 1,5 * (-1)) = logistic(-0,5) = 0,378$$

Train Vector = [2, -1]; Train Label = 1

Logistic function =
$$\frac{1}{1+e^{-x}}$$

Step 2: Forward Pass

?=
$$logistic(0.5 * 2 + 1.5 * (-1)) = logistic(-0.5) = 0.378$$

Train Vector = [2, -1]; Train Label = 1

Logistic function = $\frac{1}{1+e^{-x}}$

Step 2: Forward Pass

?=
$$logistic((-1) * 2 + (-2) * (-1)) = logistic(0) = 0.5$$

Train Vector = [2, -1]; Train Label = 1

Logistic function =
$$\frac{1}{1+e^{-x}}$$

Step 2: Forward Pass

?=
$$logistic (1 * 0,378 + 3 * 0,5) = logistic (1,878) = 0,876$$

Train Vector = [2, -1]; Train Label = 1

Logistic function = $\frac{1}{1+e^{-x}}$

Step 2: Forward Pass

?=
$$logistic((-1) * 0.378 + (-4) * 0.5) = 0.085$$

Train Vector = [2, -1]; Train Label = 1

Logistic function =
$$\frac{1}{1+e^{-x}}$$

?=
$$logistic (1 * 0.876 + (-3) * 0.085) = 0.648$$

Logistic function =
$$\frac{1}{1+e^{-}}$$

Logistic function = $\frac{1}{1+e^{-x}}$ Train Vector = [2, -1]; Train Label = 1

Step 3: Backward Pass

Train Vector = [2, -1]; Train Label = 1

Logistic function =
$$\frac{1}{1+e^{-x}}$$

Step 3: Backward Pass

$$\Delta = 0.876 * (1 - 0.876) * (1 * 0.352) = 0.041$$

Train Vector = [2, -1]; Train Label = 1

Logistic function =
$$\frac{1}{1+e^{-x}}$$

Step 3: Backward Pass

$$\Delta = 0.085 * (1 - 0.085) * ((-3) * 0.352) = -0.082$$

Train Vector = [2, -1]; Train Label = 1

Logistic function =
$$\frac{1}{1+e^{-x}}$$

Step 3: Backward Pass

$$\Delta = 0.378 * (1 - 0.378) * [1*0.041 + (-1) * (-0.082)] = 0.029$$

Train Vector = [2, -1]; Train Label = 1

Logistic function =
$$\frac{1}{1+e^{-x}}$$

Step 3: Backward Pass

$$\Delta = 0.5 * (1 - 0.5) * [3 * 0.041 + (-4) * (-0.082)] = 0.113$$

Train Vector = [2, -1]; Train Label = 1

Logistic function =
$$\frac{1}{1+e^{-x}}$$

Step 3: Backward Pass

$$\Delta = 0.5 * (1 - 0.5) * [3*0.041 + (-4) * (-0.082)] = 0.113$$

Train Vector = [2 , -1] ; Train Label = 1

Logistic function =
$$\frac{1}{1+e^{-x}}$$

0,5 -> weight old value + α * neuron value * Delta of the next neuron

$$0.5 \rightarrow 0.5 + 0.1 * 2 * 0.029 = 0.506$$

Train Vector = [2 , -1] ; Train Label = 1

Logistic function =
$$\frac{1}{1+e^{-x}}$$

0,5 -> weight old value + α * neuron value * Delta of the next neuron

$$0.5 -> 0.5 + 0.1 * 2 * 0.029 = 0.506$$

Train Vector = [2, -1]; Train Label = 1

Logistic function =
$$\frac{1}{1+e^{-x}}$$

 $\Delta = 0.029$ $\Delta = 0.041$ 0,506 **Step 4: Weights' Update** 0,5 0,378 0,876 $\Delta = 0.352$ **Learning Rate α=0,1** 0,648 $\Delta = -0.082$ $\Delta = 0.113$ 3 1,5 -3 0,085 -1 0,5

$$0.5 \rightarrow 0.5 + 0.1 * 2 * 0.029 = 0.506$$
 $-1 \rightarrow -1 + 0.1 * 2 * 0.113 = -0.977$
 $1.5 \rightarrow 1.5 + 0.1 * (-1) * 0.029 = 1.497$
 $-2 \rightarrow -2 + 0.1 * (-1) * 0.113 = -2.011$

Train Vector = [2, -1]; Train Label = 1

Logistic function = $\frac{1}{1+e^{-x}}$

$$1 \rightarrow 1 + 0.1 * 0.378 * 0.041 = 1.002$$

 $-1 \rightarrow -1 + 0.1 * 0.378 * (-0.082) = -1.003$
 $3 \rightarrow 3 + 0.1 * 0.5 * 0.041 = 3.002$
 $-4 \rightarrow -4 + 0.1 * 0.5 * (-0.082) = -4.004$

Train Vector = [2, -1]; Train Label = 1

Logistic function =
$$\frac{1}{1+e^{-x}}$$

$$1 \rightarrow 1 + 0.1 * 0.876 * 0.352 = 1.031$$

 $-3 \rightarrow -3 + 0.1 * 0.085 * 0.352 = -2.997$

Train Vector = [2 , -1] ; Train Label = 1

Logistic function =
$$\frac{1}{1+e^{-x}}$$

Step 5: Repeat Step 1 to Step 4 for all train vectors

Train Database

Train Vector = [2 , -1] ; Train Label = 1

Logistic function = $\frac{1}{1+e^{-x}}$

Step 5: Repeat Step 1 to Step 4 for all train vectors

Train Vector = [2, -1]; Train Label = 1

Logistic function = $\frac{1}{1+e^{-x}}$

Step 4: Weights' Update

Epoch

Step 5: Repeat Step 1 to Step 4 for all train vectors

5. Naïve Bayes: Theory and Application

Learning

Activity

Color	Туре	Origin	Stolen
Red	Sport	Domicile	Yes
Red	Sport	Domicile	No
Red	Sport	Domicile	Yes
Yellow	Sport	Domicile	No
Yellow	Sport	Importation	Yes
Yellow	Classic	Importation	No
Yellow	Classic	Importation	Yes
Yellow	Classic	Domicile	No
Red	Classic	Importation	No
Red	Sport	Importation	Yes

$$P(Red/Yes) = \frac{3}{5}$$
 $P(Yellow/Yes) = \frac{2}{5}$
 $P(Red/No) = \frac{2}{5}$ $P(Yellow/No) = \frac{3}{5}$

Type

$$P(Sport/Yes) = \frac{4}{5}$$
 $P(Classic/Yes) = \frac{1}{5}$
 $P(Sport/No) = \frac{2}{5}$ $P(Classic/No) = \frac{3}{5}$

Origin

$$P(Domicile/Yes) = \frac{2}{5}$$
 $P(Importation/Yes) = \frac{3}{5}$ $P(Domicile/No) = \frac{3}{5}$ $P(Importation/No) = \frac{2}{5}$

5. Naïve Bayes: Theory and Application

Testing

Sample X= <Red, Classic, Domicile>

$$P(X,Yes) = P(Red/Yes) \times P(Classic/Yes) \times P(Domicile/Yes) \times P(Yes)$$

$$= \frac{3}{5} * \frac{1}{5} * \frac{2}{5} * \frac{5}{10}$$

$$P(X,No) = P(Red/No) \times P(Classic/No) \times P(Domicile/No) \times P(No)$$

$$= \frac{2}{5} * \frac{3}{5} * \frac{3}{5} * \frac{5}{10}$$

$$P(No) = \frac{5}{10} \qquad P(Yes) = \frac{5}{10}$$

Color

$$P(Red/Yes) = \frac{3}{5}$$
 $P(Yellow/Yes) = \frac{2}{5}$
 $P(Red/No) = \frac{2}{5}$ $P(Yellow/No) = \frac{3}{5}$

Type

$$P(Sport/Yes) = \frac{4}{5}$$
 $P(Classic/Yes) = \frac{1}{5}$
 $P(Sport/No) = \frac{2}{5}$ $P(Classic/No) = \frac{3}{5}$

Origin

$$P(Domicile/Yes) = \frac{2}{5}$$
 $P(Importation/Yes) = \frac{3}{5}$
 $P(Domicile/No) = \frac{3}{5}$ $P(Importation/No) = \frac{2}{5}$

Basic Idea: Find the appropriate Support Vector which maximize Margin Distance

Basic Idea: Find the appropriate Support Vector which maximize Margin Distance

Case 1: Linear Separation

Case 2: Non Linear Separation

Basic Idea: Find the appropriate Support Vector which maximize Margin Distance

Kernel

	Kernel function	Expression	
1	Liner kernel function	$K(x_i, x_j) = x_i \cdot x_j$	
4	Polynomial kernel function	$K(x_i, x_j) = \left(x_i \cdot x_j + 1\right)^d$	
2	Radial basis function (RBF) kernel function	$K(x_i, x_j) = \exp\left(-\gamma x_i - x_j ^2\right)$	
3	Sigmoid kernel function	$K(x_i, x_j) = \tanh(b(x_i, x_j) + c)$	

Case 1: Linear Separation

- 1. K Support Vectors = N-1 where N is the number of samples (K=3)
- 2. Initialize 3 linear support vectors
 - D1= A1*X+B1
 - D2= A2*X+B2
 - D3= A3*X+B3
- 3. Compute the accuracy of SVs
 - D1 (75%)
 - D2 (100%)
 - D3 (100%)
- 4. Thresholding Acc>85%
 - D2 (100%)
 - D3 (100%)
- 4. Compare Margin Distance
 - M2 (100%)
 - M3 (100%)
- We keep the highest one

Case 2: Non Linear Separation

- 1. Use a Kernel Function F=x^2
- 2. Transform Vectors using F function
- 3. Apply Linear separability
- 4. K Support Vectors = N-1 where N is the number of samples (K=3)
- 5. Initialize 3 linear support vectors
 - D1= A1*X+B1
 - D2= A2*X+B2
 - D3= A3*X+B3
- 3. Compute the accuracy of SVs
 - D1 (75%)
 - D2 (100%)
 - D3 (100%)
- 4. Thresholding Acc>85%
 - D2 (100%)
 - D3 (100%)
- 4. Compare Margin Distance
 - M2 (100%)
 - M3 (100%)
- We keep the highest one

7. How to select the appropriate Machine Learning

8. How to evaluate the Machine Learning Performance

$$F1-score = 2 * \frac{Recall * Precision}{Recall + Precision}$$

$$g_{mean} = \sqrt{(Recall * Precision)}$$

8. How to evaluate the Machine Learning Performance

$$F1-score = 2 * \frac{Recall * Precision}{Recall + Precision}$$
 $g_{mean} = \sqrt{(Recall * Precision)}$

Accuracy = (100+140)/300 %

	Class 1	Class 2	
Class 1 (150)	100	50 Pred	ision = 100/150
Class 2 (150)	10	140	

Recall = 100/100+10

Activity

After training your model, you have 300 samples for test & validation to evaluate your model portioned as follow:

- 150 Class 1
- 150 Class 2

After testing your model well Classify 100 from Class 1 and 140 from Class 2

7. How to select the appropriate Machine Learning

Summary

Machine Learning	Model	Projection	Efficiency
Similarity	Dataset	Similarity Measures	Discriminant Features vector
Naive Bayes	Set of probabilities	Compute Probability of each class	Huge Categorical Data
Support Vector Machines	Set of Support Vectors	Compute marginal distance	Small Numerical data
Neural Network	Weight Matrix	Scalar Product	Huge Numerical Data