

THE RESEARCH PROCESS:

THE RESEARCH PROCESS:

RESEARCH QUESTION:

Are Covid-19 rates higher in US communities depending on income?

HYPOTHESIS:

Covid-19 rates in low-income communities are higher than in high-income communities.

THEORY:

"essential work"; healthcare costs; racist & classist healthcare practices and social services; pre-existing health disparities

THE RESEARCH PROCESS:

RESEARCH QUESTION:

Why is volunteering in the community less likely among low-income families?

too leading

Are families more likely to volunteer in local community events depending on their income?

great question!

HYPOTHESIS: low-income families are less likely to volunteer than high-income families

 μ low-income families < μ high-income families

[review]

RESEARCH HYPOTHESES

1. μ group 1 > μ group 2 Avg rent in Santa Cruz, CA > Avg rent in Chapel Hill, NC

2. μ group 1 < μ group 2
 Avg income of US residents who speak no English
 Avg income of U.S. residents who speak English

3. μ group 1 ≠ μ group 2

Price per gallon of gas in CA ≠ price per gallon of gas in NY

T-TEST:

What we use to test for differences between means when:

- + the population standard deviation is unknown
- + the **population standard deviation** is **estimated** using the **sample standard deviation**

$$t = (X_1 - X_2) / S_{\bar{Y}^1 - \bar{Y}^2}$$

$$X_1 - X_2 = difference in means$$

 $S_{\bar{Y}^1 - \bar{Y}^2} = combined standard error$

ALTERNATIVE HYPOTHESIS:

The difference between two means is significantly different from zero.

```
H<sub>A</sub>: \mu group 1 > \mu group 2
H<sub>A</sub>: \mu group 1 < \mu group 2
H<sub>A</sub>: \mu group 1 ≠ \mu group 2
```

NULL HYPOTHESIS:

The difference between two means is <u>NOT</u> significantly different from zero. The noise (combined standard errors) overwhelms the signal (difference between means).

```
H_0: \mu group 1 = \mu group 2
```


ARE FAMILIES MORE LIKELY TO VOLUNTEER IN LOCAL COMMUNITY EVENTS DEPENDING ON THEIR INCOME?

H_A: [ALTERNATIVE HYPOTHESIS]

low-income families are less likely to volunteer than other families.

 μ low-income families < μ high-income families

Ha: [NULL HYPOTHESIS]

families with different income levels are no more or less likely to volunteer

 μ low-income families = μ high-income families

SAMPLING DISTRIBUTION OF DIFFERENCE BETWEEN MEANS:

P-VALUE: *p* The probability of obtaining the observed difference if the null hypothesis is true (i.e., if there is no actual difference between the two groups)

The **smaller the p-value**, the **less likely** the observed difference can be **explained by chance**. This **does provide support** for our **alternative hypothesis**.

The <u>larger</u> the p-value, the <u>more</u> likely the observed difference can be <u>explained</u> by chance. This <u>does NOT</u> provide support for our alternative hypothesis.

SAMPLING DISTRIBUTION OF DIFFERENCE BETWEEN MEANS: *IF THE NULL HYPOTHESIS IS TRUE* $\mu_1 - \mu_2 = 0$ observed $\bar{\mathbf{X}}_1 - \bar{\mathbf{X}}_2$ **P-VALUE** -150 -100 -50 100 **150 50**

SAMPLING DISTRIBUTION OF DIFFERENCE BETWEEN MEANS: *IF THE NULL HYPOTHESIS IS TRUE* $\mu_1 - \mu_2 = 0$ observed $\bar{\mathbf{X}}_1 - \bar{\mathbf{X}}_2$ **P-VALUE** -3

HYPOTHESES & THEIR TESTS:

H₁:
$$\mu$$
 group 1 > μ group 2

ONE-TAILED TEST

LEFT-SIDED

H₁: μ group 1 < μ group 2

Two-Tailed Test

If there is no diff in population means ($\mu_1-\mu_2=0$), what is the probability of seeing <u>at least</u> the observed diff in sample means ($\bar{X}_1-\bar{X}_2$ or more <u>negative</u>)?

ONE-TAILED TEST (RIGHT-SIDED):

If there is no diff in population means ($\mu_1-\mu_2=0$), what is the probability of seeing <u>at least</u> the observed diff in sample means ($\bar{X}_1-\bar{X}_2$ or more <u>positive</u>)?

If there is no diff in population means ($\mu_1-\mu_2=0$), what is the probability of seeing <u>at least</u> the observed diff in sample means ($|\bar{X}_1-\bar{X}_2|$ or more <u>extreme</u>)?

If there is no diff in population means ($\mu_1-\mu_2=0$), what is the probability of seeing <u>at least</u> the observed diff in sample means ($|\bar{X}_1-\bar{X}_2|$ or more <u>extreme</u>)?

ALPHA LEVEL: α Also known as the **SIGNIFICANCE LEVEL**. The level of probability (p-value) below which the null hypothesis is rejected. It is customary to set alpha at the .05, .01, or .001 level.

 $p < \alpha$ If the p-value is <u>less than</u> alpha, we <u>reject</u> the null hypothesis. $p > \alpha$ If the p-value is <u>greater than</u> alpha, we <u>fail to reject</u> the null hypothesis.

CRITICAL VALUE: t^* The t-statistic associated with the alpha level (α) .

 $|t| > |t^*|$ If the observed t-score is <u>more extreme</u> than the critical value, we <u>reject</u> the null hypothesis.

 $|t| < |t^*|$ If the observed t-score is <u>less extreme</u> than the critical value, we <u>fail to reject</u> the null hypothesis.

ONE-TAILED TEST (LEFT-SIDED)

TWO-TAILED TEST

ONE-TAILED TEST (RIGHT-SIDED)

 $H_0: \mu_1 = \mu_2$ $H_A: \mu_1 < \mu_2$

 $H_0: \mu_1 = \mu_2$ $H_A: \mu_1 \neq \mu_2$

 $1-\alpha$

FAIL TO

REJECT Ho

 $\sqrt{\alpha/2}$

REJECT Ho

 $\alpha/2$

H_A: μ1 > μ2

1-α

FAIL TO

REJECT Ho

REJECT Ho

 $H_0: \mu_1 = \mu_2$

REJECT H₀
1-α
FAIL TO
REJECT H₀
*

T-TESTS & CONFIDENCE INTERVALS

When we run a t-test, we are essentially calculating a **confidence interval** for the **difference between means**:

T-TESTS & CONFIDENCE INTERVALS

CONFIDENCE LEVEL = $1 - \alpha$

90% confidence level corresponds to alpha = 0.1
95% confidence level corresponds to alpha = 0.05
99% confidence level corresponds to alpha = 0.01

COMMANDS: t-tests

HYPOTHESIS:

LATINX PEOPLE UNDER 40 have LOWER INCOME than LATINX PEOPLE 40 AND OVER.

1. Generate the independent variable. Let's name it Latinx_TwoGroups.

```
generate Latinx_TwoGroups=. This creates a variable with blank values
(1,138 missing values generated)
```

```
replace Latinx_TwoGroups = 1 if race ==4 & age<40

This codes Latinx respondents who are under 40 as "1"

(192 real changes made)
```

2. Determine type of hypothesis test.

2. Determine type of hypothesis test.

$$H_0$$
: μ group 1 = μ group 2

 H_1 : μ group 1 < μ group 2

LEFT-TAILED TEST

2. Determine type of hypothesis test.

IF THE GROUP CODES WERE REVERSED:

$$H_0$$
: μ group 1 = μ group 2

 H_1 : μ group 1 > μ group 2

RIGHT-TAILED TEST

3. Run t-test.

ttest incwage, by(Latinx TwoGroups)

 H_1 : μ group 1 < μ group 2

Two-sample t test with equal variances

-		Mean			_	_
1 2	192 187	49234.9 67639.04	3200.404 5183.168	44346.1 70878.75	42922.22 57413.68	55547.57 77864.39
Combined	379	58315.57	3060.778	59586.98	52297.28	64333.85
diff		-18404.14	6056.479		-30312.85	-6495.43
<pre>diff = H0: diff =</pre>	mean(1) -	mean(2)		Degrees	t = of freedom =	3.0388 - 377
Ha: diff < 0 $Pr(T < t) = 0.0013$		Pr(Ha: diff !=	Ha: diff > 0 $Pr(T > t) = 0.9987$		

Pr(|T| > |t|) = 0.0025 Pr(T > t) = 0.9987

3. Run t-test.

ttest incwage, by (Latinx TwoGroups)

 H_1 : μ group 1 < μ group 2

```
Two-sample t test with equal variances
  Group | Obs Mean Std. err. Std. dev. [95% conf. interval]
     1 | 192
               49234.9 3200.404 44346.1 42922.22 55547.57
           187
               67639.04 5183.168 70878.75 57413.68 77864.39
     2
Combined | 379 58315.57 3060.778 59586.98 52297.28 64333.85
   diff |
                -18404.14
                            6056.479
                                                -30312.85
                                                           -6495.43
   diff = mean(1) - mean(2)
                                                       t = -3.0388
H0: diff = 0
                                         Degrees of freedom =
                                                              377
   Ha: diff < 0
                          Ha: diff! = 0
                                              Ha: diff > 0
Pr(T < t) = 0.0013
                      Pr(|T| > |t|) = 0.0025 Pr(T > t) = 0.9987
```

4. Interpret results.

CONFIDENCE INTERVAL: -\$30312.85 ---> -\$6495.43 The 95% CI for the difference in means **DOES NOT OVERLAP 0**.

T-STATISTIC: -3.0388

P-VALUE: 0.0013 0.0013 is **LESS THAN** 0.05

CONCLUSION: We REJECT THE NULL HYPOTHESIS at an alpha level of 0.05. There is a STATISTICALLY SIGNIFICANT DIFFERENCE in the INCOME of LATINX PEOPLE <40 vs. LATINX PEOPLE 40+. On average, LATINX PEOPLE < 40 MAKE LESS than LATINX PEOPLE 40+.

HYPOTHESIS:

IMMIGRANT ASIAN MEN work MORE HOURS WEEKLY than NON-IMMIGRANT ASIAN MEN.

1. Generate the independent variable. Let's name it APImen.

```
replace APImen=1 if race==3 & sex==1 & immigrant==1

This codes Asian men who are immigrants as "1"

(105 real changes made)
```

HYPOTHESIS:

IMMIGRANT ASIAN MEN work MORE HOURS WEEKLY than NON-IMMIGRANT ASIAN MEN.

2. Determine type of hypothesis test.

tab APImen

2. Determine type of hypothesis test.

3. Run t-test. ttest uhrs, by (APImen)

 H_1 : μ group 1 > μ group 2

Two-sample t test with equal variances

_			Std. err.		_	=	
1 2	105 33	41.82857 39.9697	.7193629 1.742128	7.371276 10.00776	40.40205 36.4211	43.2551	
Combined	138	41.38406	. 6877541	8.079281			
diff		1.858874	1.610402		-1.325794	5.043543	
diff = mean(1) - mean(2) $ t = 1.1543 $ H0: diff = 0 Degrees of freedom = 136							
Ha: diff < 0 Pr(T < t) = 0.8748		Ha: diff != 0 Pr(T > t) = 0.2504			Ha: diff > 0 Pr(T > t) = 0.1252		

3. Run t-test. ttest uhrs, by (APImen)

```
H_4: \mu group 1 > \mu group 2
Two-sample t test with equal variances
         Obs Mean Std. err. Std. dev. [95% conf. interval]
  Group |
        105 41.82857 .7193629 7.371276 40.40205 43.2551
           33
                39.9697 1.742128 10.00776 36.4211 43.5183
Combined |
            138 41.38406 .6877541 8.079281 40.02407 42.74404
   diff |
                                                -1.325794
                                                          5.043543
                  1.858874
                            1.610402
   diff = mean(1) - mean(2)
                                                        † =
                                                             1.1543
H0: diff = 0
                                         Degrees of freedom =
                                                               136
   Ha: diff < 0
                     Ha: diff != 0
                                                     Ha: diff > 0
Pr(T < t) = 0.8748 Pr(|T| > |t|) = 0.2504
                                                  Pr(T > t) = 0.1252
                                                բ group 1 - բ group 2 > 0
```

4. Interpret results.

CONFIDENCE INTERVAL: -1.326 ---> 5.044 The 95% CI for the difference in means **OVERLAPS 0**.

T-STATISTIC: 1.1543

P-VALUE: 0.1252 0.1252 is **GREATER THAN** 0.05

CONCLUSION: We FAIL TO REJECT THE NULL HYPOTHESIS at an alpha level of 0.05. There is **NOT ENOUGH STATISTICAL EVIDENCE** to conclude that there is a difference in the **WEEKLY HOURS WORKED** by **IMMIGRANT ASIAN MEN** vs. **NON-IMMIGRANT ASIAN MEN**.