

Introduction

- Inkjet Printing and Fixation process
- Objective of the research
- Governing Physics of the fixation model
- PINN(Physics Informed Neural Network)
 - Data-driven optimization with PINN
 - Parameter estimation problem with PINN
- Result
 - Dataset introduction
 - Result of PINN with different hyper-parameters
 - Result of PINN estimation on different dataset
- Future Work

Inkjet Printing

Fixation Process

For optimal drying, the moisture content of the printed product is important.

- No measuring sensor...
- Vary over location and time...

This makes the entire fixation process hard to control.

Governing Physics of the fixation model

- Dynamic space-time varying system
- Dynamic model:

• Boundry Condition

How to optimally combine the physics and data to find the surrogate model of the fixation process?

My solution is using **machine learning** to combine physics and data.

Normal neural network training is a data-driven optimization problem.

The prior physics knowledge isn't used in the algorithm...

Optimize a PINN

$$egin{aligned} heta^\star = & \mathrm{argmin}_{m{ heta}} rac{1}{N} \sum_{i=1}^N \left(u_{m{ heta}}(t_i, x_i) - y_i
ight)^2 \ & \mathrm{s.\ t.\ } rac{\partial u_{m{ heta}}}{\partial t}(t, x) + \mathcal{N}[u_{m{ heta}}](t, x) = 0, \quad (t, x) \in [0, T) imes \Omega. \end{aligned}$$

Optimize a PINN

$$egin{aligned} heta^\star =& \mathrm{argmin}_{m{ heta}} rac{1}{N} \sum_{i=1}^N \left(u_{m{ heta}}(t_i, x_i) - y_i
ight)^2 \ & ext{s. t. } \iint (rac{\partial u_{m{ heta}}}{\partial t}(t, x) + \mathcal{N}[u_{m{ heta}}](t, x))^2 dt dx = 0, \quad (t, x) \in [0, T) imes \Omega. \end{aligned}$$

Using Lagrange multiplier:

$$heta^\star = \mathrm{argmin}_{m{ heta}} \max_{\lambda \geq 0} \sum_{i=1}^N rac{\left(u_{m{ heta}}(t_i, x_i) - y_i
ight)^2}{N} + \lambda \underbrace{\iint_{[0,T] imes \Omega} \left(rac{\partial u_{m{ heta}}}{\partial t}(t, x) + \mathcal{N}[u_{m{ heta}}](t, x)
ight)^2 dt dx}_{ ext{Physics cost}}$$

Different from normal machine learning, the optimization of PINN is:

Inverse Problem: Parameter estimation

Parameter estimation is the inverse problem of data-driven optimization. When we lack knowledge of the physics model but have **input dataset** along with corresponding **output**, it's still possible to estimate the parameters in the PDE.

To achieve this, we can **add the unknown parameters into the optimizer as trainable parameters.**

This is the principle of parameter estimation:

Results Presentation

Dataset Introduction

$$rac{\partial u}{\partial t} = lpha rac{\partial^2 u}{\partial x^2} + eta rac{\partial u}{\partial x} + \gamma u \, .$$

Use the MATLAB function

$$sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)$$

to make the dataset. The parameters in PDE, boundary and initial conditions can be defined by yourself. Define a specific PDE as follow:

$$egin{aligned} rac{\partial u(x,t)}{\partial t} &= 3.5rac{\partial^2 u(x,t)}{\partial x^2} + 6.5rac{\partial u(x,t)}{\partial x} + 8.5u(x,t) & 0 \leq x \leq 2, 0 \leq t \leq 1 \ & u(x,0) = sin(\pi x) & x(0,t) = x(2,t) = 0 \end{aligned}$$

Use the MATLAB function to find the solution, the points in the solution are our dataset.

Dataset Introduction

Define a PDE as follow:

$$egin{aligned} rac{\partial u}{\partial t} &= 3.5rac{\partial^2 u}{\partial x^2} + 6.5rac{\partial u}{\partial x} + 8.5u & 0 \leq x \leq 2, 0 \leq t \leq 1 \ u(x,0) &= sin(\pi x) & x(0,t) = x(2,t) = 0 \end{aligned}$$

Select 512 x points, and 256 t points. The dataset is visualized as :

Different Epochs

Dataset size: 3000
Batch size: 1000
Learning rate:0.001
Hidden layers: [32,32]
Activation Function: tanh

α: 3.5 β: 6.5 γ: 8.5

Epoch	α_pred	β_pred	γ_pred	loss
10000	3.3250	6.4638	7.8527	0.0514
20000	3.4084	6.5854	8.1606	0.0298
40000	3.4521	6.6641	8.3377	0.0115

Different Learning Rate

Dataset size: 3000 Batch size: 1000 Epoch: 20000

Hidden layers: [32,32]

Activation Function: tanh

α: 3.5 β: 6.5 γ: 8.5

•						
Lr	α_pred	β_pred	γ_pred	loss		
0.0001	2.8040	5.9089	8.1714	0.1107		
0.0005	3.4508	6.5293	8.3082	0.0279		
0.001	3.4084	6.5854	8.1606	0.0298		
0.005	3.3871	6.5714	8.0326	0.0506		
0.01	3.1979	6.5162	7.4019	0.0951		

Different Dataset Size

Batch size: 1000 Learning rate:0.001

Epoch: 20000

Hidden layers: [32,32]

Activation Function: tanh

α: 3.5 β: 6.5 γ: 8.5

Data size	a_pred	β_pred	γ_pred	loss
1000	3.3487	6.6316	8.0147	0.0376
3000	3.4084	6.5854	8.1606	0.0298
6000	3.4393	6.5986	8.2980	0.0162

Test the network on different PDE

Dataset size: 3000

Batch size: 1000

Epoch: 40000

Learning rate: 0.0005

Hidden layers: [32,32]

Activation Function: Tanh

	α	a_pred	β	β_pred	γ	γ_pred	loss
I	3.5	3.4521	6.7	6.6641	8.5	8.3377	0.0115
II	5	4.8468	-3.5	-3.3422	-12	-12.2361	0.0168
III	5	4.8190	7	6.6506	-9	-9.3474	0.0069

Future Work

- Tune the hyperparameters or find some other ways to make the results of the network more accurate. And test the network on the data from fixation process.
- Extend the model to the coupled PDE-ODE part, and the model has a spatial coefficient in the parameters.
- After identifying the parameters in the real setup, find a way to predict the change of temperature and moisture in the fixation process in a future state.

Q&A

