Supersingular Isogeny Key Encapsulation (SIKE)

Reza Azarderakhsh Matthew Campagna Craig Costello Luca De Feo Basil Hess David Jao Brian Koziel Brian LaMacchia Patrick Longa Michael Naehrig Joost Renes Vladimir Soukharev

Digital Security Group, Radboud University, Nijmegen

1 February 2018

Introduction

(generic intro...)

(1) Fix prime
$$p = 2^{e_2} \cdot 3^{e_3} - 1$$

- (1) Fix prime $p = 2^{e_2} \cdot 3^{e_3} 1$
- (2) Fix starting curve $E_0: y^2 = x^3 + x$

- (1) Fix prime $p = 2^{e_2} \cdot 3^{e_3} 1$
- (2) Fix starting curve $E_0: y^2 = x^3 + x$
- (3) Choose "smallest" points such that

$$E_0[2^{e_2}] = \{P_2, Q_2\}\,, \quad E_0[3^{e_3}] = \{P_3, Q_3\}$$

Only choice to make! How large?

- (1) Fix prime $p = 2^{e_2} \cdot 3^{e_3} 1$
- (2) Fix starting curve $E_0: y^2 = x^3 + x$
- (3) Choose "smallest" points such that

$$E_0[2^{e_2}] = \{P_2, Q_2\}\,, \quad E_0[3^{e_3}] = \{P_3, Q_3\}$$

Prob. 1 (SIDH): Given $\{E_A, P_A, Q_A\}$ and $\{E_B, P_B, Q_B\}$, get E_{AB}

Prob. 1 (SIDH): Given $\{E_A, P_A, Q_A\}$ and $\{E_B, P_B, Q_B\}$, get E_{AB} **Prob. 2 (SSI*)**: Given $\{E_A, P_A, Q_A\}$, get ϕ_A

Prob. 1 (SIDH): Given $\{E_A, P_A, Q_A\}$ and $\{E_B, P_B, Q_B\}$, get E_{AB}

Prob. 2 (SSI*): Given $\{E_A, P_A, Q_A\}$, get ϕ_A

Prob. 3 (SSI): Given E_A , get ϕ_A

Aligning security with the NIST requirements

"As secure as k-bit AES"

	Classical	Quantum
AES128	127	64

Aligning security with the NIST requirements

"As secure as k-bit AES"

	Classical	Quantum
AES128	127	64
SIKEp503	125	83

Aligning security with the NIST requirements

"As secure as k-bit AES"

	Classical	Quantum
AES128	127	64
SIKEp503	125	83
AES192	191	96
SIKEp751	186	124

Aligning security with the NIST requirements

"As secure as k-bit AES"

	Classical	Quantum
AES128	127	64
SIKEp503	125	83
AES192	191	96
SIKEp751	186	124
AES256	255	128
SIKEp964	238	159

SIDH

Passively secure under (SI)CDH

Implementation choices: curve model

(1) Model choice: Montgomery

Implementation choices: curve model

- (1) Model choice: Montgomery
- (2) Only x-coordinates needed

(3) Tree-based isogeny computation

$$(E_0, P_{00})$$

Order of P_{00} is ℓ^e

$$\implies \deg(\phi_{00}) = \ell^e$$

Where to begin

(4) Starting curve $E_0: y^2 = x^3 + x$ with j = 1728 \implies Know things about $\operatorname{End}(E_0)$, could help attacks..¹ \implies Defined over $\mathbb{F}_p \subset \mathbb{F}_{p^2}$ \implies Attack $O(\sqrt{p})$ (with low memory²) \implies No better way to obtain a random starting curve?

¹Petit '17

²Delfs, Galbraith '13

Other implementation choices

(5) No public-key compression

Other implementation choices

- (5) No public-key compression
- (6) Sym. functions cSHAKE256

Final numbers

	Speed (ms)	PK (Kbytes)
RSA 3072	4.6	0.8
NIST P-256	1.4	0.1
Kyber	0.07	1.2
FrodoKEM	1.2-2.3	9.5 – 15.4
SIKEp503	10.1	0.4
SIKEp751	30.5	0.6
SIDHp503	10.3	0.4
SIDHp751	31.5	0.6

(Numbers from Patrick Longa's RWC'18 talk, measured on different platforms..)

Thanks

All details can be found at:

https://csrc.nist.gov/CSRC/media/Projects/ Post-Quantum-Cryptography/documents/round-1/ submissions/SIKE.zip

All authors:

Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, David Jao, Brian Koziel, Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost Renes, Vladimir Soukharev