静的な漸近AdS3時空の バルク時空再構築

竹田 大地(京都大学)

arXiv:2112.11437 に基づく

2022年3月16日

日本物理学会 年次大会

QFTは重力理論を語る?

? QFT = 重力理論

バルクの時空・計量はQFTのどこにある?

AdS₃/CFT₂で

境界のエンタングルメントエントロピー ⇒ バルク時空

成功例:AdS₃, AdS₃ソリトン, BTZ (まだ制限は多い) ウェッジの重要性

- 1. バルク時空 ∈ 境界の「光円錐切断」と「点関数」
- 2. エンタングルメント・エントロピー ⇒ 光円錐切断と点関数
 - →バルク時空と計量

AdS₃/CFT₂で

境界のエンタングルメントエントロピー ⇒ バルク時空

- 1. バルク時空 ∈ 境界の「光円錐切断」と「点関数」
- 2. エンタングルメント・エントロピー ⇒ 光円錐切断と点関数
 - ⇒ バルク時空と計量

しばらくはQFTは登場しない

バルク時空の情報は境界に焼き直せるか

点関数は空間的測地線を知る

Czech, Lamprou (2014)

性質

$$\alpha_p(\theta) = \alpha_{p+\delta p}(\theta)$$
 $\Rightarrow \delta p$ は測地線の接べクトル (θ : 固定)

$$p\mapsto \alpha_p$$
 は1対1 (Σ上)

光円錐切断はヌルベクトルを知る

Engelhardt, Horowitz (2015)

光円錐切断

点 p の光円錐と 境界の共通部分

性質

$$C_p^+$$
 と $C_{p+\delta p}^+$ が1点で接する $\Rightarrow \delta p$ はヌルベクトル

$$p\mapsto C_p^+$$
は1対1

点関数と光円錐切断は1対1

D. Takeda (hep-th [2112.11437])

今回考えるクラス

有名ないくつかの時空で

$$C_p^+ = t_0 + L\alpha_p \qquad \text{(EW = CW)}$$

まとめ: 点関数 ラバルク時空

Σ上の点に点関数が1つ対応

光円錐切断は点関数から $C_p^+ = t_0 + L\alpha_p$

点関数は Σ 上の測地線を知る $\alpha_p(\theta) = \alpha_{p+\delta p}(\theta)$

AdS₃/CFT₂で

境界のエンタングルメントエントロピー ⇒ バルク時空

- 1. バルク時空 ∈ 境界の「光円錐切断」と「点関数」
- 2. エンタングルメント・エントロピー ⇒ 光円錐切断と点関数
 - ⇒バルク時空と計量

AdS₃/CFT₂で

境界のエンタングルメントエントロピー ⇒ バルク時空

- 1. バルク時空 ∈ 境界の「光円錐切断」と「点関数」
- 2. エンタングルメント・エントロピー ⇒ 光円錐切断と点関数
 - →バルク時空と計量

エンタングルメント⇒点関数 = バルク時空

Czech, Lamprou (2014)

次の方程式は $t=\lambda^0$ 上の点関数の集合を与える

$$[1 - \alpha'(\theta)^2]S'''(\alpha(\theta)) + 2\alpha''(\theta)S''(\alpha(\theta)) = 0$$

 $S(\alpha)$: エンタングルメント・エントロピー

積分定数2つを λ^1, λ^2 $\rightarrow \alpha_{\lambda}$ と記す

 $\{(\lambda^0, \alpha_\lambda)\}$: バルク時空 $\lambda = (\lambda^0, \lambda^1, \lambda^2)$: 座標系

光円錐切断から因果構造

D. Takeda (hep-th [2112.11437])

仮定
$$C_{\lambda}^{+}(\theta) = t_0 + L\alpha_{\lambda}(\theta)$$
 (EW = CW)

Engelhardt, Horowitz (2015)

$$C_{\lambda}^{+}$$
 と $C_{\lambda+\delta\lambda}^{+}$ が接する \Rightarrow $\delta\lambda$ は λ でのヌルベクトル

$$\forall \theta, \, \delta \lambda^{\mu} \delta \lambda^{\nu} g_{\mu\nu}(\lambda) = 0$$

点関数から共形因子

D. Takeda (hep-th [2112.11437])

$$\alpha_{\lambda}(\theta) = \alpha_{\lambda+\delta\lambda}(\theta)$$
 $\alpha_{\lambda}(\theta) = \alpha_{\lambda+\delta\lambda}(\theta) \Rightarrow \delta\lambda$ は測地線の接ベクトル

 $\forall \theta$, $e^{\omega(\lambda)}$ で書いた測地線方程式

不定の $e^{\omega(\lambda)}$ が決まる (計量が決定)

成功例:AdS₃、AdS₃ソリトン, BTZ

QFTのエンタングルメントから出発

点関数と光円錐切断の合わせ技

局所 AdS₃ 時空を構成

一般化:点関数 → 光円錐切断

今回は
$$C_p^+ = t_0 + L\alpha_p$$
 (EW = CW)
一般にはそうではない (EW \neq CW)

バルクごとに決まっている

ならば、境界QFTごとに決まっているはず

$$C_p^+(\theta) = t_0 + L\alpha_p(\theta)$$

