Sheet 3 Evgenij Page 1

Exercise 1 (4 Points). The Clayton Copula with parameter $\theta > 0$ is given by

$$C_{\theta}(u, v) = (u^{-\theta} + v^{-\theta} - 1)^{-1/\theta}$$
.

Show that the Clayton copula is an archimedian copula.

We need to find a 2-monotone or convex φ so that $(u^{-\theta}+v^{-\theta}-1)^{-1/\theta}=$ $\phi(\varphi^{-1}(u)+\varphi^{-1}(v))$. If we set the pseudo-inverse of the generator to $\varphi^{-1}(t)=$ $t^{-\theta}-1$ for $t\in(0,1]$ and t_0 for t=0, then we get that $\varphi^{-1}(C_\theta(u,v))=$ $u^{-\theta}+v^{-\theta}-2=\varphi^{-1}(u)+\varphi^{-1}(v)$. That is, the Clayton copula is an archimedian copula with generator $\varphi(t)=(t+1)^{-1/\theta}$.

Let $U_1, U_2 \sim \mathrm{U}[0,1]$ independent random variables. Determine the function f_θ such that $(U_1, f_\theta(U_1, U_2)) \sim C_\theta$.

Exercise 3 (4 Points). Prove Proposition 3.4: Let $X = (X_1, ..., X_d)$ and $Y = (Y_1, ..., Y_d)$ be d-dimensional random vectors. Then

(i)
$$X \leq_{st} Y \implies X \leq_{lcx} Y$$
, $X \leq_{uo} Y$ and $X \geq_{lo} Y$

If $X \leq_{st} Y$, then

(iii)
$$X \leq_{sm} Y \implies X \leq_{c} Y \implies X \leq_{lo} Y$$
 and $X \leq_{uo} Y$

Since we don't have the script at hand, we use the definition 6.1 from [Rüs13]. First, $X \leq_c Y$ is defined by $X \leq_{uo} Y$ and $X \leq_{lo} Y$, so it is enough to that $X \leq_{sm} Y \implies X \leq_{lo} Y$ and $X \leq_{sm} \implies X \leq_{uo} Y$. To this end we follow Theorem 6.15. from [Rüs13]. If $X \leq_{sm} Y$, then for all φ with for all $\epsilon, \delta > 0$ and $x \in \mathbb{R}^n$ $\Delta_i^{\epsilon} \Delta_j^{\delta} \varphi(x) \geq 0$ it holds that $E\varphi(X) \leq E\varphi(Y)$ Here proof is missing.

(iv)
$$X \leq_{sm} Y \implies X \leq_{dcx} Y \implies \sum_{i=1}^{d} X_i \leq_{cx} \sum_{i=1}^{d} Y_i$$

See Remark 6.27.b in [Rüs13].

Sheet 3 Evgenij Page 2

Exercise 5 (4 Points; Bonus). Show that the Markov product $A \times B$ is a bivariate copula. Moreover, show that for a bivariate copula C it holds that $\pi^2 * C = C * \Pi^2 = \Pi^2$.

The Markov product is defined by $\Pi*C=\int_0^1\partial_2\Pi(u,t)\partial_1C(t,v)dt=\int_0^1u\partial_1C(t,v)dt=u(C(1,v)-C(0,v))=uv.$

References

[Rüs13] RÜSCHENDORF, Ludger: Mathematical risk analysis. In: Springer Ser. Oper. Res. Financ. Eng. Springer, Heidelberg (2013)