LECTURE I

CEIC6789 NOTES

WHAT IS DATA SCIENCE?

ALGORITHM

INSIGHT

Red wine (\$)	White wine (\$)
21	1
15	6
5	18
31	2
25	22
6	21
14	8
8	16
21	18
26	2
4	17
23	17
14	7
5	19
13	3
4	20
5	15
29	22
22	1
8	19
13	4
30	2
14	6
6	10

ALGORITHM

ob.select- 1 r ob.select-1

INSIGHT

- Pricing
- Perks and Strategies

APPLICATIONS

DATA SCIENCE APPLICATIONS

DATA SCIENCE TASK

DATA

L	U	-	U	^
name	composition	P (bar)	T (K)	Efficiency (%)
cat1	0.6	1.1	320	60
cat2	0.7	1.2	310	55
cat3	0.8	1.1	200	76
cat4	0.66	1000	304	67
cat5	0.82	1.3		68
25	0.55	0.9		55
cat7	0.9	0.8	1.00E+05	78
cat8	0.5	1.3	299	cat10

DATA SCIENTIST

Data

Analysis

Analytics

- Two scenarios
 - Given data, improve efficiency!
 - Given data, do something!

DATA

Data collection

- ♦ Cannot be analyzed

Preprocessing

- class labeling: numerical, categorical, text, video, audio etc.
- data cleaning: numbers mixed with text or vice versa
- ♦ missing values

14	J	100	2.5.6	-
name	composition	P (bar)	T (K)	Efficiency (%)
cat1	0.6	1.1	320	60
cat2	0.7	1.2	310	55
cat3	0.8	1.1	200	76
cat4	0.66	1000	304	67
cat5	0.82	1.3		68
25	0.55	0.9		55
cat7	0.9	0.8	1.00E+05	78
cat8	0.5	1.3	299	cat10

DATA

Data collection

- Cannot be analyzed

Preprocessing

- class labeling: numerical, categorical, text, video, audio etc.
- data cleaning: numbers mixed with text or vice versa
- missing values

ANALYSIS

Analyze the data

- ♦ What happened?
- ♦ When did it happen?
- ♦ How did it happen?

Extract info and present:

- ♦ metrics
- KPIs (key performance indicators)
- ♦ Reports
- ♦ Dashboard

ANALYTICS

DATA

Data collection

- ♦ Cannot be analyzed

Preprocessing

- class labeling: numerical, categorical, text, video, audio etc.
- data cleaning: numbers mixed with text or vice versa
- ♦ missing values

ANALYSIS

Analyze the data

- ♦ What happened?
- ♦ When did it happen?
- ♦ How did it happen?

Extract info and present:

- ♦ metrics
- KPIs (key performance indicators)
- ♦ Reports
- ♦ Dashboard

ANALYTICS

Branches

- ♦ Traditional methods
- ♦ Machine learning

Techniques

- Regression (linear, non-linear)
- ♦ Clustering
- PCA (Principal Component Analysis)
- ♦ Time series
- SVMs (support vector machines)
- ♦ Neural networks
- ♦ Deep learning
- ♦ Bayesian networks

REGRESSION

T (K)		efficiency (%)
	371.4	48
	366.4	50.4
	376	50.8
	368.5	54.8
	369.3	56.6
	367	58.2
	376.4	60
	376.4	60
	379.2	60.2
	385	60.2
	373.5	60.4
	377.5	61.4
	373.5	61.6
	371.2	61.6
	377.3	62.4
	387.2	63.4
	375.5	63.4
	367.4	63.4
	384.2	63.4
	378.6	63.8

REGRESSION

T (K)		efficiency (%)
	371.4	48
	366.4	50.4
	376	50.8
	368.5	54.8
	369.3	56.6
	367	58.2
	376.4	60
	376.4	60
	379.2	60.2
	385	60.2
	373.5	60.4
	377.5	61.4
	373.5	61.6
	371.2	61.6
	377.3	62.4
	387.2	63.4
	375.5	63.4
	367.4	63.4
	384.2	63.4
	378.6	63.8

DATA

Data collection

- ♦ Cannot be analyz

Preproce. in

- class labering: numerical, categorical, text, video, audio etc.
- data cleaning: numbers mixed with text or vice versa
- missing values

ANALYSIS

Analyze the data

- ♦ What happened?
- ♦ When did it har en?
- ♦ How dit b pen?

Extract info and present:

- ♦ metrics
- KPIs (key performance indicators)
- ♦ Reports
- ♦ Dashboard

ANALYTICS

Branches

- ♦ Traditional methods
- ♦ Machine learning

Technique

- ♦ Regression (linear, non-linear)
- ♦ Clustering
- PCA (Principal Component Analysis)
- ♦ Time series
- SVMs (support vector machines)
- ♦ Neural networks
- ♦ Deep learning
- ♦ Bayesian networks

DATA SCIENCE DIAGRAM: WHY IS IT NECESSARY?

DATA

Data-driven decision making relies on well-organized and relevant data sets **ANALYSIS**

Use data sets to create reports and dashboards to obtain useful insights

ANALYTICS

Predict future scenarios using advanced statistical and machine learning techniques

NOW

PAST

FUTURE

DISCUSSION WITH EXPERTS

QUESTIONS ASKED DURING PANEL DISCUSSION

General

- Could you introduce yourself?
- What are some exciting areas where data science/machine learning (ML) is being applied?
- How important are data science/ML jobs becoming? Do you see an upward trend?

Jobspecific

- What are the most important data science/ML concepts you use in your job?
- Which programming languages do you use?
- How much of learning (skills, software etc) happened before, and how much is happening during the job?

Studentspecific

- What factors motivated you to pursue a data scientist role?
- Could you share your job interview experience? (Topics the interviewers expected you to know? depth or breadth? Coding skills? Software/programming language?
- Any other advice for students in their final year preparing for a data science job?