Introducción a los Elementos Finitos Tarea IV

Daniel Castañón Quiroz*1

¹Departamento de Matemáticas y Mecánica, IIMAS-UNAM, Cd. de México, México

November 22, 2023

1 Instrucciones

Resuelve todos los siguientes problemas posibles. Se calificará para un total de 100 puntos. Si la calificación es mayor a 100 puntos, entonces los puntos extras se tomarán como puntos de recuperación para la calificación final.

2 Problemas teóricos

2.1 Instrucciones

Resolver los siguientes problemas de forma clara y legible. Escanear las páginas y enviarlo al correo correspondinete del profesor de la materia.

1. (10 puntos) Utilizar el teorema de existencia y unicidad para ecuaciones diferenciales ordinarias con condición inicial para demostrar que los siguientes problemas tienen solución única. Adicionalmente, para cada uno de los problemas encuentra su solución única:

(a)
$$y' = y\cos(t), \ 0 \le t \le 1, \ y(0) = 1.$$

(b)
$$y' = \frac{2}{t}y + t^2e^t$$
, $1 \le t \le 2$, $y(1) = 0$.

2. (20 puntos) Demostrar que el **método del punto medio** definido como:

$$\hat{y}_0 = y_0$$

$$\hat{y}_{i+1} = \hat{y}_i + \Delta t \left[f\left(t_i + \frac{\Delta t}{2}, \hat{y}_i + \frac{\Delta t}{2} f(t_i, \hat{y}_i)\right) \right] \text{ para } i \in \{0, \dots, N\},$$

que se emplea para aproximar la ecuación diferencial ordinaria escalar:

$$y' = f(t, y) \ t \in (a, b)$$
$$y(a) = y_0.$$

tiene un error de truncamiento de orden r=2. (**Sugerencia**: utilizar el hecho de que f satisface la condición de Lipschitz en la variable y, el teorema de Taylor varias veces, y la desigualdad $x \le |x| \ \forall x \in \mathbb{R}$).

^{*}daniel.castanon@iimas.unam.mx

3. (15 puntos) Utiliza el teorema de Taylor con residuo para obtener la siguiente approximación de segundo orden para una función suficientemente derivable $y : \mathbb{R} \to \mathbb{R}$,

$$y(x + 2h) = 2y(x + h) - y(x) + Ch^{2}$$
,

donde C es una constante.

4. (20 puntos) Utiliza el teorema de Taylor con residuo para obtener la siguiente approximación de tercer orden para una función suficientemente derivable $y : \mathbb{R} \to \mathbb{R}$,

$$y(x+3h) = 3y(x+2h) - 3y(x+h) + y(x) + Ch^{3},$$

donde C es una constante.

3 Problemas de EDOs en Matlab

3.1 Instrucciones

Todo los problemas se deberán entregar en archivos diferentes con extensión .m. Por ejemplo el problema 1 deberá estar estar en el archivo Problema_1.m, etc. Dentro de cada archivo se deberá poner el nombre del estudiante y su correo eléctronico. Todos los programas deberán correr y tener solamente el output que se específica utilizando el comando disp. Para todo los problemas, el único output del programa deber ser una tabla de la forma:

donde N_vec es el vector que contiene en cada entrada el número de subintervalos que divide al intervalo global para cada problema, err_max el vector que contiene en cada la norma L^{∞} , err_rate el vector que contiene en cada entrada la tasa de convergencia de la norma L^{∞} . Para ello utilizar un número de subintervalos de N=4,8,16,32,64,128. Tomar como referencia el script de matlab número #3 en la lista de 'Métodos numéricos para EDOs 1D' que esta en el website del curso.

5. (15 pts) Sea el problema de valor inicial en el intervalo $0 \le t \le 1$:

$$y' = y - t^2 + 1,$$

sujeta a $y(0) = \frac{1}{2}$; verificar que su solución analítica es

$$y(t) = (t+1)^2 - \frac{1}{2}e^t$$
.

Programar el **método del punto medio** (véase problema 2) para resolver este problema. Recordar que este método tiene un error de truncamiento de $O(\Delta t^2)$. Entonces para confirmar que el método es implementado correctamente, verificar (utilizando las instrucciones mencionadas al inicio de la Sección) que la tasa de convergencia calculada debe ser cercana a 2.

6. (15 pts) Sea el problema de valor inicial en el intervalo $0 \le t \le 1$:

$$y' = y - t^2 + 1,$$

sujeta a $y(0) = \frac{1}{2}$; verificar que su solución analítica es

$$y(t) = (t+1)^2 - \frac{1}{2}e^t$$
.

Programar el **método del trapecio** (véase notas de clase) para resolver este problema. Recordar que este método tiene un error de truncamiento de $O(\Delta t^2)$. Entonces para confirmar que el método es implementado correctamente, verificar (utilizando las instrucciones mencionadas al inicio de la Sección) que la tasa de convergencia calculada debe ser cercana a 2.

7. (20 pts) Sea el problema de valor inicial en el intervalo $0 \le t \le 2$:

$$y' = -(y+1)(y+3),$$

sujeta a y(0) = -2; su solución analítica es

$$y(t) = -3 + \frac{2}{1 + e^{-2t}}.$$

Programar el método de **Euler ímplicito** para resolver este problema. Utilizar el método de Newton con criterio de paro de $\epsilon = 10^{-9}$ de la diferencia absoluta entre aproximaciones sucesivas, y un máximo de iteraciones $N_0 = 100$. Recordar que este método tiene un error de truncamiento de $O(\Delta t)$, entonces verificar que la tasa de convergencia calculada debe ser cercana a 1.

8. (20 pts) Sea el problema de valor inicial en el intervalo $0 \le t \le 2$:

$$y' = -(y+1)(y+3),$$

sujeta a y(0) = -2; su solución analítica es

$$y(t) = -3 + \frac{2}{1 + e^{-2t}}.$$

Programar el **método del trapecio** para resolver este problema. Utilizar el método de Newton con criterio de paro de $\epsilon = 10^{-9}$ de la diferencia absoluta entre aproximaciones sucesivas, y un máximo de iteraciones $N_0 = 100$. Recordar que este método tiene un error de truncamiento de $O(\Delta t^2)$, entonces verificar que la tasa de convergencia calculada debe ser cercana a 2.