How I did it?

Initially, I reviewed the data on Excel, but I opted to use SQL on BigQuery to analyse it due to the substantial number of rows, which was approximately 400,000. To organise the files, I renamed them according to the year and month format (e.g., 2023-01, 2023-02), and subsequently merged them into a single table named "Cyclistic" using the UNION operator.

SELECT ride_id, rideable_type, started_at, ended_at, start_station_name, start_station_id, end_station_name, end_station_id, start_lat, start_lng, end_lat, end_lng, member_casual FROM `casestudy1-cyclistic-380506.DataSet.2023-01` UNION ALL

SELECT ride_id, rideable_type, started_at, ended_at, start_station_name, start_station_id, end_station_name, end_station_id, start_lat, start_lng, end_lat, end_lng, member_casual FROM `casestudy1-cyclistic-380506.DataSet.2023-02`

After executing this query, I selected the option to save the results and created a table in BigQuery with the name "Cyclistic" to store the data.

I then began cleaning the data. Firstly, I checked for the duplicate rows in the data set.

SELECT ride_id, COUNT(*) as count FROM `casestudy1-cyclistic-380506.DataSet.Cyclistic` GROUP BY ride_id HAVING COUNT(*) > 1

I found that 1 ride_id is repeated. I checked that ride_id and found these are not duplicate entries, they are different rides taken that have been given the same ride id for whatever reason. I decided to leave them in as they will not affect the analysis.

Row	1	ride_id //	rideable_type	started_at	ended_at	start_station_name	start_station_id	end_station_i	end_station_id	start_lat
	1	7.41E+21	electric_bike	2023-02-08 1	2023-02-08	null	null	Damen A	KA17018054	4
	2	7.41E+21	classic_bike	2023-01-20 1	2023-01-20	Franklin St & A	TA1309000	Clinton S	13021	41.879434

After this, I will add 2 new columns "ride_length_minutes" and "day_of_week" and include only valid columns. The "ride_length_minutes" column calculates the length of each ride in minutes. The "day_of_week" column indicates the day of the week the ride took place, with 1 representing Sunday and 7 representing Saturday.

```
SELECT ride_id, rideable_type,
    started_at,
    ended_at,
    ROUND(TIMESTAMP_DIFF(ended_at, started_at, second)/60, 1) AS ride_length_minutes,
    EXTRACT(DAYOFWEEK FROM started_at) AS day_of_week,
    start_station_name,
    start_station_id,
    end_station_name,
    end_station_id,
    member_casual

FROM `casestudy1-cyclistic-380506.DataSet.Cyclistic`
```

Then saved this result as a new table titled "Cyclistic-N".

Let's Analyse the data now

Ride Length

Finding the average, minimum and maximum ride lengths for all rides.

SELECT AVG(ride_length_minutes) AS avg_ride_len, MIN(ride_length_minutes) AS min_ride_len, MAX(ride_length_minutes) AS max_ride_len FROM `casestudy1-cyclistic-380506.DataSet.Cyclistic-N`

Row	avg_ride_len	min_ride_len	max_ride_len //
1	13.26867701827485	-3.3	33603.7

It is observed that we have a minimum ride length as negative, which doesn't make sense. I will filter out the negative ride length as that is invalid.

Row	avg_ride_len	min_ride_len	max_ride_len //
1	13.2824654	0.1	33603.7

Now, Let's calculate average, minimum and maximum ride lengths for casual riders and member riders.

SELECT member_casual,

AVG(ride_length_minutes) AS avg_ride_len,

MIN(ride_length_minutes) AS min_ride_len,

MAX(ride_length_minutes) AS max_ride_len

FROM `casestudy1-cyclistic-380506.DataSet.Cyclistic-N`

WHERE ride_length_minutes > 0

GROUP BY member_casual

Row	avg_ride_len	min_ride_len	max_ride_len //
1	23.0742199	0.1	33603.7

Finding out the number of rides taken by members and casuals on each day of the week.

Let's calculate the average ride length for each day of the week, for both members and causal riders.

SELECT day_of_week,
 AVG(ride_length_minutes) AS member_avg_ride_length
FROM `casestudy1-cyclistic-380506.DataSet.Cyclistic-N`
WHERE member_casual= 'member'
 AND ride_length_minutes > 0

GROUP BY day_of_week
ORDER BY day_of_week

SELECT day_of_week,

AVG(ride_length_minutes) AS casual_avg_ride_length
FROM `casestudy1-cyclistic-380506.DataSet.Cyclistic-N`
WHERE member_casual= 'casual'

AND ride_length_minutes > 0

GROUP BY day_of_week
ORDER BY day_of_week

Member VS Casual

First calculate: Of all the rides taken, how many were by members and how many were by casual riders?

Select COUNT(*) as rides_taken FROM `casestudy1-cyclistic-380506.DataSet.Cyclistic-N` WHERE ride_length_minutes > 0 Group by member_casual

Checking to see if there are differences in the type of vehicles chosen

Let's find out which stations are most frequented by riders.