High Performance
Computing for Weather
and Climate (HPC4WC)

Content: Graphics Processing Units

Lecturer: Simon Adamov, Oliver Fuhrer

Block course 701-1270-00L

Summer 2025

Learning Goals

- Understand why specialized hardware such as GPUs has become the new norm
- Learn how to program a GPU using a high-level programming language
- Grasp the potential and difficulties of GPU computing

Moore's "Law" (1965)

"The number of transistors in a dense integrated circuit will double every two years"

--- Yearly
doubling
--- Biannual
doubling

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2021 by K. Rupp

The End of General Purpose Computing?

Transistor

Distance between Si-atoms is 0.21 nm! Currently 3nm designs are available.

Chip Design Costs Increase

Source: top500.org

How Do the Most Powerful Systems Perform?

Performance Development

--- Yearly doubling

So why are we (still) ok?

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	El Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8GHz, AMD Instinct MI300A, Slingshot-11, TOSS, HPE DOE/NNSA/LLNL United States	11,039,616	1,742.00 2,746.38 29,581 AMD GPU		
2	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE Cray OS, HPE D0E/SC/Oak Ridge National Laboratory United States	9,066,176	1,353.00 2,055.72 24,607 AMD GPU		
3	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11, Intel D0E/SC/Argonne National Laboratory United States	9,264,128	1,012.00	1,980.01	38,698 PU
4	JUPITER Booster - BullSequana XH3000, GH Superchip 72C 3GHz, NVIDIA GH200 Superchip, Quad-Rail NVIDIA InfiniBand NDR200, RedHat Enterprise Linux, EVIDEN EuroHPC/FZJ Germany	4,801,344	793.40	930.00 DIA G	13,088 PU
5	Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure Microsoft Azure United States	2,073,600	561.20	846.84	PU

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
6	HPC6 - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, RHEL 8.9, HPE Eni S.p.A. Italy	3,143,520	477.90	606.97 D GPU	8,461 J
7	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
8	Alps - HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA GH200 Superchip, Slingshot-11, HPE Cray OS, HPE Swiss National Supercomputing Centre (CSCS) Switzerland	2,121,600	434.90	574.84 DIA G	7,124 PU
9	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,752,704	379.70	531.51 D GPU	7,107
10	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, EVIDEN EuroHPC/CINECA Italy	1,824,768	241.20 NVII	306.31 DIA G	7,494 PU

Specialized Chips are on the Rise!

Google's TPU (e.g. machine learning)

FPGA (e.g. bitcoin mining)

GPU (e.g. gaming)

The NVIDIA GraceHopper 200

Node Architecture

Important to minimize memory transfers between CPU and GPU!

CPU vs. GPU

Architecture

Latency

scalar

Optimization

Compute Primitive

Bandwidth

Hybrid Supercomputer - ALPS

~ 90% BW

~ 80% FLOP/s

Weather and Climate on GPUs

ML-Weather Modelling

Pitfalls and Challenges

Programming GPUs

Lab Exercises

01-GPU-programming-cupy.ipynb

Introduction to GPU programming using a high-level programming language