Statistical and mathematical modelling for seroepidemiological data of tropical infectious diseases

Nuno Sepúlveda, <u>nuno.sepulveda@pw.edu.pl</u>

Faculty of Mathematics & Information Science, Warsaw University of Technology

CEAUL - Centro de Estatística e Aplicações da Universidade de Lisboa

Centro de Estatística e Aplicações Universidade de Lisboa

Workshop content

- 1. Defining seropositivity (using two-Gaussian mixture models) and estimating seroprevalence
- 2. Estimating seroconversion rate (using reversible catalytic models)
- 3. Calculating sample size for controlling precision of seroconversion rate

GitHub:

https://github.com/immune-stats/Workshop_Malaria_PALOP_2025

How to measure malaria transmission?

How to measure malaria transmission?

- 1. Prevalence of infection or parasite rate (non-informative when disease transmission intensity is low)
- 2. Entomological inoculation rate (trick to estimate)
- 3. Seroprevalence (prevalence of exposure)
- 4. Seroconversion rate (proxy of transmission intensity)

Seroepidemiology

Epidemiology

Seroepidemiology

Immunology

Statistics

1.

Defining seropositivity (using two-Gaussian mixture models) and estimating seroprevalence

Basic principle

Antibody data are intrinsically quantitative

Rosado et al (2020). Serological signatures of SARS-CoV-2 infection: Implications for antibody-based diagnostics. medRxiv 2020.05.07.20093963.

Who are the seropositive individuals?

Rosado et al (2020). Serological signatures of SARS-CoV-2 infection: Implications for antibody-based diagnostics. medRxiv 2020.05.07.20093963.

How to determine the cut-off?

Approaches to determine the cutoff Use of data under Use of a known seronegative population analysis only European samples Two-Gaussian mixture model The 3-sigma rule

The 3-sigma rule

$$\mu_{A^{-}} = E\left[X \mid A^{-}\right]$$

$$\sigma_{A^{-}} = \sqrt{Var\left[X|A^{-}\right]}$$

Seronegative, if $X_i \leq \mu_{A^-} + 3\sigma_{A^-}$

Seropositive, otherwise

The link to the Normal distribution

Approaches to determine the cutoff Use of data under Use of a known seronegative population analysis only Two-Gaussian mixture model Pre-pandemic samples The 3-sigma rule

Two-Gaussian mixture models

$$f_X(x) = (1 - \pi) f_{N(\mu_{S^-}, \sigma_{S^-})}(x) + \pi f_{N(\mu_{S^+}, \sigma_{S^+})}(x)$$

Definition of
$$S^- \Rightarrow \mu_{S^-} < \mu_{S^-}$$

In general:

$$f_X(x) = \sum_{i=1}^k \pi_i f_{N(\mu_i, \sigma_i)}(x)$$
 where $\sum_{i=1}^k \pi_i = 1$

Estimation of the model by maximum likelihood method

EM (Expectation-Maximization) Algorithm

- 1. Start with initial estimates for the parameters
- 2.E-Step calculate the probability of each individual belonging to a given subpopulation according to estimates at 1.
- 3.M-Step re-estimate the parameters using these probabilities and repeat the E-step with these new estimates
- 4. Stop with the increment in the log-likelihood is below a given tolerance error.

Calculate the cutoff for seropositivity according to $\hat{\mu}_{S^-}$ and $\hat{\sigma}_{S^-}$

Package mixtools

time!

Serological Markers Suggest Heterogeneity of Effectiveness of Malaria Control Interventions on Bioko Island, Equatorial Guinea

Jackie Cook¹, Immo Kleinschmidt², Christopher Schwabe³, Gloria Nseng⁴, Teun Bousema¹, Patrick H. Corran¹, Eleanor M. Riley¹, Chris J. Drakeley¹*

1 Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom, 2 Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom, 3 Medicinal Care Development International, Silver Spring, Maryland, United States of America, 4 Ministry of Health and Social Welfare, Malabo, Equatorial Guinea

Table 1. Demographic characteristics of the study population.

		% [n]						
		Malabo N = 2328	North West N=1749	North East N = 1323	South East N = 700	South West N = 588	Other** N = 699	Total N = 7387
Age (years)	0–1	14.1 [324]	10.5 [182]	10.4 [137]	12.2 [85]	10.0 [58]	7.5 [52]	11.4 [838]
	1–5	21.1 [458]	18.0 [312]	19.8 [261]	14.6 [102]	16.8 [97]	15.2 [106]	18.6 [1363]
	5–15	26.3 [605]	30.6 [531]	30.1 [396]	21.0 [146]	24.0 [139]	28.7 [200]	27.5 [2017]
	15–90	38.6 [890]	41.0 [712]	39.8 [524]	52.2 [364]	49.2 [285]	48.6 [338]	42.5 [3113]
Sex	Female	61.2 [1410]	54.2 [932]	61.1 [805]	55.8 [389]	58.4 [338]	54.8 [382]	58.2 [4256]
House recently sprayed ¹	Yes	74.2 [1580]	81.2 [1306]	85.6 [1076]	81.7 [519]	89.5 [477]	87.9 [574]	81.2 [5532]
Slept under ITN ²	Yes	82.6 [1629]	68.0 [988]	65.8 [797]	63.3 [404]	73.1 [385]	71.4 [449]	72.4 [4652]
Parasite positive	Yes	14.8 [300]	27.0 [374]	7.9 [94]	21.7 [135]	18.6 [97]	12.1 [75]	16.9 [1075]

¹- within the previous 6 months. ²- on the night before the survey.

^{**}Moca and Musola kept separate due to their high altitude. doi:10.1371/journal.pone.0025137.t001

Variables

2. Estimating seroconversion rate (using reversible catalytic models)

Reversible catalytic models

Constant transmission intensity

Longitudinal surveys

Statistical information: ++++

Direct observation of serological transitions

Execution difficulty: ++++

Time consuming
Sampling intensive
Participation adherence/drop-outs

Cross-sectional surveys

Statistical information: ++

No direct observation of serological transitions Age as proxy of time

Execution difficulty: ++

Easy to engage participation Quick sampling

Longitudinal versus cross-sectional surveys

Type of Study	Seroconversion rate	Seroreversion rate
Longitudinal	0.021 (0.001-0096)	0.163 (0.001,0.729)
Cross-sectional	0.023 (0.001,0.052)	0.0001 (0.001,0.255)

Seroreversion rate is difficult to be estimated! So it is often fixed at 0 or an good estimate, say 0.017.

Fixed seroreversion rate at 0

$$\rho = 0 \Rightarrow \pi_t = 1 - e^{-\lambda t}$$

$$\Rightarrow \log 1 - \pi_t = -\lambda t$$

$$\Rightarrow \log(-\log(1-\pi_t)) = \log \lambda + \log t$$

Complementary log-log model

time!

3.

Calculating sample size for controlling precision of seroconversion rate estimate

Sample size calculation for seroconversion rate

Sample size calculation for seroconversion rate

Sample size calculation in practice

- 1. Desired precision
- 2. Antibody with known seroreversion rate
- 3. Transmission intensity of the population
- 4. Age structure associated with sampling scheme
- 5. Type of confidence interval to be used

Identification of transmission intensity

Table 1 Expected relationship between EIR, PR₀₄, SCR and SP in African (AFR), Southeast Asian and South American (SEA + SA) populations where seroreversion rate was fixed at 0.017

			Seroprevalence		
EIR	PR ₀₄	SCR	AFR	SEA + SA	
0.01	0.050	0.0036	0.057	0.073	
0.10	0.073	0.0108	0.156	0.195	
1.00	0.119	0.0324	0.365	0.437	
10.0	0.231	0.0969	0.647	0.720	
100.0	0.625	0.2900	0.860	0.896	
			3.300		

Identification of transmission intensity

Identification of age structure

Type of confidence interval

Pearson-Clopper exact

Coverage higher than nominal confidence level

Wald

Degenerate when x=0 or x=n Overshooting

Wilson

Good coverage in extreme probabilities

Agresti-Coull

Overshooting
Better coverage than the exact CI

time!

References

Cook J, Kleinschmidt I, Schwabe C, et al. Serological markers suggest heterogeneity of effectiveness of malaria control interventions on Bioko Island, equatorial Guinea. PLoS One. 2011;6(9):e25137. doi:10.1371/journal.pone.0025137

Sepúlveda N, Paulino CD, Drakeley C. Sample size and power calculations for detecting changes in malaria transmission using antibody seroconversion rate. Malar J. 2015;14:529. Published 2015 Dec 30. doi:10.1186/s12936-015-1050-3

Sepúlveda N, Stresman G, White MT, Drakeley CJ. Current Mathematical Models for Analyzing Anti-Malarial Antibody Data with an Eye to Malaria Elimination and Eradication. J Immunol Res. 2015;2015:738030. doi:10.1155/2015/738030