An Introduction to Radio Interferometry

2-1 Aperture Synthesis

NSYSU EMI Online Lecture Series Hauyu Baobab Liu (呂浩宇), Department of Physics

(Gaussian) deconvolution theorem

When $\delta\theta < \sigma$, we fundamentally cannot distinguish whether there are two stars or a (slightly elongated) celestial object.

(Gaussian) deconvolution theorem

When $\delta\theta < \sigma$, we fundamentally cannot distinguish whether there are two stars or a (slightly elongated) celestial object.

$$1^{\circ} = 60' = 3600''$$
 arcsecond

Human eyes at visible band ($\lambda \sim 0.5 \cdot 10^{-6} m$): $\sigma \sim 1'$

(Gaussian) deconvolution theorem

When $\delta\theta < \sigma$, we fundamentally cannot distinguish whether there are two stars or a (slightly elongated) celestial object.

Large D \rightarrow small σ , i.e., collecting light from a smaller angular area that is proportional to $(\lambda/D)^2$ (i.e., we receive smaller flux density) but we can collect photons from a bigger surface area, which is approximately D^2 .

$$1^{\circ} = 60' = 3600''$$
 arcminute arcsecond

Human eyes at visible band ($\lambda \sim 0.5 \cdot 10^{-6} \ m$): $\sigma \sim 1'$ A small telescope with $D \sim 1 \ cm$ at visible band ($\lambda \sim 0.5 \cdot 10^{-6} \ m$): $\sigma \sim 10''$

(Gaussian) deconvolution theorem

When $\delta\theta < \sigma$, we fundamentally cannot distinguish whether there are two stars or a (slightly elongated) celestial object.

Large D \rightarrow small σ , i.e., collecting light from a smaller angular area that is proportional to $(\lambda/D)^2$ (i.e., we receive smaller flux density) but we can collect photons from a bigger surface area, which is approximately D^2 .

$$1^{\circ} = 60' = 3600''$$
 arcsecond

Human eyes at visible band ($\lambda \sim 0.5 \cdot 10^{-6} \ m$): $\sigma \sim 1'$ A small telescope with $D \sim 1 \ cm$ at visible band ($\lambda \sim 0.5 \cdot 10^{-6} \ m$): $\sigma \sim 10''$

To achieve $\sigma \sim 10''$ at (sub)millimeter band ($\lambda \sim 10^{-3}$ m): Requires $D \sim 2,000$ cm = 20 meter

Applications: cosmic microwave background anisotropy, black hole imaging and quasar (jet) physics, interstellar moleculalar lines and dust emission, etc

JCMT 15-m telescope, IRAM-30m telescope, etc

To achieve $\sigma \sim 10''$ at centimeter band ($\lambda \sim 10^{-2} m$): Requires $D \sim 20,000 \ cm = 200 \ meter$

Applications: cosmic microwave background anisotropy, complex organic molecules, hyperfine line transitions (e.g., HI, NH₃) chondules and pebbles in protoplanetary disks

Greenbank 100-m telescope, Effelsberg 100-m telescope, Arecibo 300-m telescope (cannot move), FAST 500-m telescope (cannot move), etc

(Gaussian) deconvolution theorem

When $\delta\theta < \sigma$, we fundamentally cannot distinguish whether there are two stars or a (slightly elongated) celestial object.

Large D \rightarrow small σ , i.e., collecting light from a smaller angular area that is proportional to $(\lambda/D)^2$ (i.e., we receive smaller flux density) but we can collect photons from a bigger surface area, which is approximately D^2 .

NSYSU EMI Online Lecture Series Hauyu Baobab Liu (呂浩宇),
Department of Physics

$$1^{\circ} = 60' = 3600''$$
 arcsecond

Aperture Synthesis

Human eyes at visible band ($\lambda \sim 0.5 \cdot 10^{-6} m$): $\sigma \sim 1'$ A small telescope with $D \sim 1 \ cm$ at visible band ($\lambda \sim 0.5 \cdot 10^{-6} \ m$): $\sigma \sim 10''$

To achieve $\sigma \sim 10''$ at (sub)millimeter band ($\lambda \sim 10^{-3}$ m): Requires $D \sim 2,000$ cm = 20 meter

Applications: cosmic microwave background anisotropy,
black hole imaging and quasar (jet) physics,
interstellar moleculalar lines and dust emission, etc

JCMT 15-m telescope, IRAM-30m telescope, etc

To achieve $\sigma \sim 10''$ at centimeter band ($\lambda \sim 10^{-2} m$): Requires $D \sim 20,000 \ cm = 200 \ meter$

Applications: cosmic microwave background anisotropy, complex organic molecules, hyperfine line transitions (e.g., HI, NH₃) chondules and pebbles in protoplanetary disks

Greenbank 100-m telescope, Effelsberg 100-m telescope, Arecibo 300-m telescope (cannot move), FAST 500-m telescope (cannot move), etc

NSYSU EMI Online Lecture Series Hauyu Baobab Liu (呂浩宇),
Department of Physics

$$1^{\circ} = 60' = 3600''$$
 arcsecond

Aperture Synthesis

Human eyes at visible band ($\lambda \sim 0.5 \cdot 10^{-6} \ m$): $\sigma \sim 1'$ A small telescope with $D \sim 1 \ cm$ at visible band ($\lambda \sim 0.5 \cdot 10^{-6} \ m$): $\sigma \sim 10''$

To achieve $\sigma \sim 10''$ at (sub)millimeter band ($\lambda \sim 10^{-3} m$): Requires $D \sim 2,000 \ cm = 20 \ meter$

Applications: cosmic microwave background anisotropy, black hole imaging and quasar (jet) physics, interstellar moleculalar lines and dust emission, etc

JCMT 15-m telescope, IRAM-30m telescope, etc

To achieve $\sigma \sim 10''$ at centimeter band ($\lambda \sim 10^{-2} m$): Requires $D \sim 20,000 \ cm = 200 \ meter$

Applications: cosmic microwave background anisotropy, complex organic molecules, hyperfine line transitions (e.g., HI, NH₃) chondules and pebbles in protoplanetary disks

Greenbank 100-m telescope, Effelsberg 100-m telescope, Arecibo 300-m telescope (cannot move), FAST 500-m telescope (cannot move), etc

NSYSU EMI Online Lecture Series Hauyu Baobab Department of Physics

- 1. Angular resolution of a telescope: $\sigma \sim \frac{\lambda}{D}$
- 2. An interferometric array is an observing device that the *D* corresponds to the largest separation of antennae.
- 3. Interferometer measure the fourier transformed intensity distribution