Linear Algebra I Summary of Lectures: Vector Spaces

Dr Nicholas Sedlmayr

- 1. Definition 2.1: A vector space V over a field F (see definition 2.3) is a set containing:
 - a special zero vector **0**;
 - an operation of addition of two vectors $\mathbf{u} + \mathbf{v} \in V$, for $\mathbf{u}, \mathbf{v} \in V$; and
 - multiplication of a vector V with a number $\lambda \in F$ with $\lambda \mathbf{v} \in V$.

The vector space must be closed under both of these operations and must satisfy the following laws $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\lambda, \mu \in F$:

- (1) associativity $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w});$
- (2) commutativity $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$;
- (3) u + 0 = u;
- (4) $\mathbf{v} + (-1)\mathbf{v} = \mathbf{0};$
- (5) $\lambda(\mu \mathbf{u}) = (\lambda \mu) \mathbf{v};$
- (6) distributivity $\lambda(\mathbf{u} + \mathbf{v}) = \lambda \mathbf{u} + \mu \mathbf{v}$; and
- (7) distributivity $(\lambda + \mu)\mathbf{u} = \lambda \mathbf{u} + \mu \mathbf{u}$.
- 2. Proposition 2.2 $\forall \mathbf{v} \in V$ and $\forall \lambda \in F$:
 - (a) v = 1v;
 - (b) 0v = 0; and
 - (c) $\lambda 0 = 0$.
- 3. Definition 2.3 A field is a set F containing distinct elements 0 and 1 with two binary operations + and \cdot satisfying the axioms $\forall a, b, c \in F$:
 - (1) a + b = b + a;
 - (2) (a+b)+c=a+(b+c);
 - (3) a + 0 = a;
 - (4) $\forall a \exists -a \text{ such that } a + (-a) = 0;$
 - (5) $a \cdot b = b \cdot a$;
 - (6) $(a \cdot b) \cdot c = a \cdot (b \cdot c);$
 - (7) $a \cdot 1 = a$;
 - (8) $\forall a \neq 0 \ \exists a^{-1} \text{ such that } a \cdot a^{-1} = 1; \text{ and }$
 - (9) $a \cdot (b+c) = a \cdot b + a \cdot c$;

If a field F is finite its order is the number of elements in F.

- 4. Theorem 2.4: For each prime p and each positive integer n, there is a unique field of order p^n . Additionally, every finite field is of this form.
- 5. Definition 2.5 Given a vector space V over F, a subspace of V is a subset $W \subset V$ which contains the zero vector of V and is closed under the operations of addition and scalar multiplication.
- 6. Lemma 2.5.1 Let $W \subset V$ be nonempty, where V is a vector space over F. Then W is a subspace of V iff $\mathbf{v} + \lambda \mathbf{u} \in W$ for each $\mathbf{v}, \mathbf{u} \in W$ and each scalar λ .
- 7. Definition 2.6 Given a vector space V over F, and given a subset of V $A = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots \mathbf{u}_n\},$

$$W = \{\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \lambda_3 \mathbf{u}_3 + \dots \lambda_n \mathbf{u}_n : \lambda_1, \lambda_2, \dots \lambda_n \in F\}$$

is the subspace of V spanned by A. The elements of W are called linear combinations of vectors from A and the subspace W is denoted as span A.

- 8. Definition 2.7 If A is an infinite subset of V, where V is a vector space over F, we define span A to be the set of all linear combinations of finite subsets of A.
- 9. Definition 2.8 A set $A \subset V$ of vectors in a vector space V over F is linearly dependent if there are $n \in \mathbb{N}$ vectors $a_1, a_2, \ldots a_n$ and scalars $\lambda_1, \lambda_2, \ldots \lambda_n$ not all zero such that

$$\lambda_1 a_1 + \lambda_2 a_2 + \dots \lambda_n a_n = 0.$$

Otherwise A is linearly independent.

• For a finite set $A = \{a_1, a_2, \dots a_n\}$ it is linearly independent iff \forall scalars $\lambda_1, \lambda_2, \dots \lambda_n \in F$

$$\lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_n a_n = 0 \Rightarrow \lambda_1 = \lambda_2 = \dots + \lambda_n = 0.$$

- If A is infinite it is linearly independent iff every subset of A is linearly independent.
- By convention the empty set is linearly independent.