PR: ABOULFADIL YASSINE

Les fonctions exponentielles

2 BAC PC/SVT

I- La fonction exponentielle népérienne :

1- Définition:

La fonction réciproque de la fonction ln est une fonction définie sur IR est appelée la fonction exponentielle népérienne ou naturelle et se note exp. Donc $exp(x) = y \Leftrightarrow x = ln(y)$ avec $x \in IR$ et y > 0.

2- Propriétés:

Pour tous réels a et b, on a:

$e^a \times e^b = e^{a+b}$	$\frac{e^a}{e^b} = e^{a-b}$	$\frac{1}{e^a} = e^{-a}$
$(e^a)^n = e^{n.a}; (n \in R)$	$ln(e^a) = a$	$e^{\ln b} = b$; $(b > 0)$

Equations et inéquations :

Pour tous réels x et y, on a :

- $e^{(x)} = e^{(y)} \Leftrightarrow x = y$
- $e^{(x)} > e^{(y)} \Leftrightarrow x > y$
- $\bullet \quad e^{(x)} > 0$

• $e^{(x)} = y \Leftrightarrow x = \ln(y) \ avec \ y > 0$

3-Le Domaine de définition :

La fonction f est définie comme suit :	Son domaine de définition est :
$f(x) = e^{(x)}$	$D_f = R$
$f(x) = e^{(u(x))}$	$D_f = \{ x \in R x \in D_u \}$

4- Les limites:

Limites principales

$$\lim_{x \to +\infty} e^{x} = +\infty$$

$$\lim_{x \to +\infty} e^{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^{x}}{x^{n}} = +\infty$$

$$\lim_{x \to +\infty} x^{n} e^{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^{x} - 1}{x} = 1$$

Déductions

$$\lim_{x \to x_0} u(x) = +\infty \Rightarrow \lim_{x \to x_0} e^{u(x)} = +\infty$$

$$\lim_{x \to x_0} u(x) = -\infty \Rightarrow \lim_{x \to x_0} e^{u(x)} = 0$$

$$\lim_{x \to x_0} u(x) = +\infty \Rightarrow \lim_{x \to x_0} \frac{e^{u(x)}}{[u(x)]^n} = +\infty$$

$$\lim_{x \to x_0} u(x) = -\infty \Rightarrow \lim_{x \to x_0} [u(x)]^n e^{u(x)} = 0$$

$$\lim_{x \to x_0} u(x) = 0 \Rightarrow \lim_{x \to x_0} \frac{e^{u(x)} - 1}{u(x)} = 1$$

Ces limites sont toujours valables lorsqu'on les traite soit a droite ou a gauche de X_0 ou bien au voisinage de $+\infty$ ou $-\infty$

5- La continuité:

La fonction $x \to e^{(x)}$ est continue sur R.

Si u(x) est continue sur un intervalle I alors la fonction $x \to e^{(u(x))}$ est continue sur l'intervalle I.

6- La dérivabilité:

La fonction $x \to e^{(x)}$ est dérivable sur R et on a :

$$\forall x \in R ; (e^{(x)})' = e^{(x)}$$

Si u(x) est dérivable sur un intervalle I alors la fonction $x \to e^{(u(x))}$ est dérivable sur l'intervalle I et on a :

$$\forall x \in I ; \left(e^{\left(u(x)\right)}\right)' = u'(x)e^{\left(u(x)\right)}$$

7- La représentation graphique :

II- La fonction exponentielle de base a avec $a \in \mathbb{R}_+^* - \{1\}$:

1- Définition:

La fonction réciproque de la fonction $\log_a(x)$ est une fonction définie sur IR est appelée la fonction exponentielle de base a et se note exp_a tel que :

$$exp_a(x) = a^x = e^{xln(a)}.$$

2- Propriétés

Pour tous réels x et y, on a:

$$\frac{a^x \times a^y = a^{x+y}}{a^y} \qquad \frac{\frac{a^x}{a^y} = a^{x-y}}{\frac{1}{a^x} = a^{-x}}$$

$$(a^x)^n = a^{nx} \ avec \ n \in R$$

3-Les équations et les limites et inéquations:

$\forall x \in \mathbb{R} \qquad a^x = e^{x \ln a}$		
$\log_a(a^x) = x$		
$\forall x \in]0; +\infty[a^{\log_{\sigma} x} = x$		
$a^x = a^x \Leftrightarrow x = y$		
$\forall x \in \mathbb{R} \forall y \in \left]0; +\infty\right[$		
$a^x = y \iff x = \log_a y$		

a≻1	0≺a≺1	
$a^x \succ a^y \Leftrightarrow x \succ y$	$a^x \succ a^y \Leftrightarrow x \prec y$	
$\lim_{x \to +\infty} a^x = +\infty$	$\lim_{x \to +\infty} a^x = 0$	
$\lim_{x\to-\infty}a^x=0$	$\lim_{x\to-\infty}a^x=+\infty$	
$\lim_{x\to 0} \frac{a^x - 1}{x} = \ln a$		

Dérivée de la fonction $x \rightarrow a^x$:

$$\forall x \in R \; ; \; (a^x)' = \left(e^{x \ln(a)}\right)' = (\ln(a))\left(e^{x \ln(a)}\right) = \ln(a) \times a^{\frac{1}{2}}$$

3