18-703-modern-algebra-spring-2013 Final Exam Answers

Amauel Tewodros Getachew

January 5, 2025

Problem 1

(i) Give the definition of a group.

A group is a set G along with a binary operation $(\cdot): G \mapsto G$ such that the following three properties are satisfied:

- (a) Associativity: If $a, b, c \in G$, then $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- (b) Existence of Identity: There is an element e of G such that for every $a \in G$, $e \cdot a = a \cdot e = a$.
- (c) Existence of Inverse: For each element $a \in G$, there is an element $b = a^{-1} \in G$ such that $a \cdot b = e$.
- (ii) Give the definition of an automorphism of groups.

An automorphism φ of a group G is an injective mapping from G to itself such that for any $a, b \in G$, $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$.

(iii) Give the definition of D_n , the dihedral group.

 D_n is the group of rota-reflections of a regular n-gon with distinguishable vertices. Mathematically,

$$D_n := \{r^i s^j : r^n = 1, s^2 = 1, rs = sr^{-1}\}.$$

(iv) Give the definition of an ideal.

An Ideal I is a sub-ring of a ring R such that for every $r \in R$, $rI \subseteq I$ and $Ir \subseteq I$.

(v) Give the definition of a principal ideal domain.

A principal ideal domain (PID) is an integral domain R in which every ideal is generated by a single member. Mathematically, if $I \subseteq R$, then $I = \{a\} = \{ra : r \in R\}$ for some $a \in R$.

(vi) Give the definition of a unique factorisation domain.

A unique factorisation domain (UFD) is an integral domain R in which every element a can be expressed uniquely as a product of irreducibles in R upto multiplication by units in R. Mathematically, if p_i, q_i is irreducible in R, and $a = p_1 \cdots p_r = q_1 \cdots q_s$ then r = s and $p_i = u_i q_i$ where u_i is a unit in R.

Problem 2

- (i) Let G be a group and let \sim be the relation $g_1 \sim g_2$ if there is an element $h \in G$ such that $g_1 = hg_2h^{-1}$. Show that \sim is an equivalence relation.
 - (a) Reflexive: $a = aaa^{-1} = a$, thus $a \sim a$.
 - (b) Symmetric: If $g_1 = hg_2h^{-1}$ then, $h^{-1}g_1h = g_2$, which implies $g_1 \sim g_2 \implies g_2 \sim g_1$.
 - (c) Transitive: If $g_1 = h_1 g_2 h_2^{-1}$ and $g_2 = h_2 g_3 h_2^{-1}$ then, $g_1 = h_1 h_2 g_3 h_2^{-1} h_1^{-1} = h_3 g_3 h_3^{-1}$, where $h_3 = h_1 h_2$.
- (ii) If $G = S_5$ then identify the equivalence classes.

Let $\overline{\sigma}$ be the equivalence class that contains σ . To list all the equivalence classes of \sim , we use the following theorem.

Theorem 1 If $\sigma = \prod_i (a_{i,1}, \dots, a_{i,n_i}), \tau \in S_n$ then $\tau \sigma \tau^{-1} = \prod_i (\tau(a_{i,1}), \dots, \tau(a_{i,n_i}))$. In particular, $\sigma_1 \sim \sigma_2$, if and only if σ_1 and σ_2 have the same types.

Therefore, the equivalence classes of S_5 are the following,

- $(1) \ \overline{1} = \{1\}.$
- (2) $\overline{(1,2)} := \{ \sigma : \text{type}(\sigma) = (2,1,1,1) \}$
- (3) $\overline{(1,2)(3,4)} := \{ \sigma : \text{type}(\sigma) = (2,2,1) \}$
- (4) $\overline{(1,2,3)} := \{ \sigma : \text{type}(\sigma) = (3,1,1) \}$
- (5) $\overline{(1,2,3),(4,5)} := \{\sigma : \text{type}(\sigma) = (3,2)\}$
- (6) $\overline{(1,2,3,4)} := \{ \sigma : \text{type}(\sigma) = (4,1) \}$
- (7) $\overline{(1,2,3,4,5)} := \{ \sigma : \text{type}(\sigma) = (5) \}$

Problem 3

Classify all groups of order at most ten.

We will use fundamental theorem of finite abelian groups to identify abelian groups. Let |G| = n

- If n < 10 is a prime, then G can not have a proper subgroup other than the trivial sub-group and therefore it is cyclic. Hence, $G \cong \mathbb{Z}/n\mathbb{Z}$ for $n \in \{2, 3, 5, 7\}$
- If n = 4, by Lagrange's theorem, $a \neq e \in G$ implies $|a| \in \{2, 4\}$. If all three non-identity elements are of order 2, then $G \cong V_4$. If G is cyclic, then $G \cong \mathbb{Z}/4\mathbb{Z}$. Since, G can not have two distinct members of order 2 and only one of order 4, we are done.
- Let n = 6. If G is abelian, then $G \cong \mathbb{Z}/6\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. Let G be non-abelian. All elements of G can not be of order 2, because that would mean G is abelian. Similarly, we can't have two elements $a, b, a \neq b^{-1}$ of order 3 because then $G = \{1, a, a^2, b, b^2, ab\}$ in which case $(ab)^2 = b^2a^2 = e$ or $b^2 = b^{-1} = a$, a contradiction. Therefore, the only members of G of order three are a and a^{-1} and G is isomorphic to S_3 .
- Similarly, if n = 10, if G is abelian, then $G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ or $G \cong \mathbb{Z}/10\mathbb{Z}$. If G is non-abelian, then $G \cong D_5$.
- If n=9 and G is abelian, $G \cong \mathbb{Z}/9\mathbb{Z}$ or $G \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. If G is non-abelian, then G is not cyclic and there force contains 3 cyclic sub-groups. Since 3 is prime, two sub-groups have the trivial sub-groups as intersection. WLOG, let $\langle a \rangle$, $\langle b \rangle$, $\langle c \rangle$, $\langle d \rangle$ be the three subgroups of G. Then ab can not be $e, a^{\pm 1}, b^{\pm 1}$. WLOG, let ab = c. This implies ab = c, ac = d and ad = b. If ab = ba, then $ac = a^2b = aba = ca$ and $ad = a^2ca = aca = da$, which implies $a \in Z(G)$ making G commutative. Thus ba = d. But then $ad = b = a^2d = a^2ba = aca = da$ and by similar argument as above, G becomes abelian. Thus there is no non-abelian group of order 9.
- Let n = 8. If G is abelian, then G is isomorphic to either $\mathbb{Z}/8\mathbb{Z}$, $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. If G is non-abelian, by Lagrange's theorem, then there is at least on element a of order 4. If $\langle a \rangle$ is cycle of order 4, and if all elements $b \in G \langle a \rangle$ have order 2, then $G \cong D_4$. Let G contain two elements a, b of order 4. If $\langle a \rangle \cap \langle b \rangle = \{1\}$, then ab = ba is an element of order 2. But $e = abab = aabb = a^2b^2 \implies a^2 = b^2$. Thus $\langle a \rangle \cap \langle b \rangle = \{1, a^2\}$ since $a^{\pm 1}$ is a generator of $\langle a \rangle$. We know $ab, ba \in G \langle a \rangle \langle b \rangle$. Since $a^2 = b^2$, aabb = e or $ab = a^3b^3 = (ba)^{-1}$. Thus $G \cong Q_8$.

Problem 4

(i) State the second isomorphism theorem. Let G be a group and $H \leq G$ and $K \subseteq G$. Then,

$$\frac{HK}{K}\cong \frac{H}{H\cap K}$$

(ii) Prove the second isomorphism theorem.

Define a mapping $\phi: H \to HK/K$, as

$$\phi(h) = hK$$
.

Note that ϕ is surjective because if $a = hK \in HK/K$, then $\phi(h) = a$. If $a, b \in H$, then $\phi(ab) = abK = aK \cdot bK = \phi(a)\phi(b)$. Thus ϕ is a homomorphism. Now, $\ker \phi = \{h \in H : hK = K\} = \{h \in H : h \in K\} = H \cap K$. By the first Isomorphism theorem, the theorem follows.

Problem 5

- (i) State Sylow's theorems.
 - (a) First Sylow Theorem: Let n be the order of a group G and $n = p^a m$ where p does not divide m. Then there is a subgroup of G with order p^a known as a Sylow p-group.
 - (b) Second Sylow Theorem: If P and Q are two Sylow p-subgroups of G, then P and Q are conjugates of each other.
 - (c) Third Sylow Theorem: If n_p is the number of Sylow p-subgroups of G, then $n_p \equiv 1 \mod p$.
- (ii) Let G be a group of order pqr, where p, q and r are distinct primes. Show that G is not simple.

WLOG, let p < q < r. By the third Sylow theorem, $n_r = 1 + kr$ for some k > 0 by assumption. Since $n_r > r, p, q$, $n_r|pqr$ and $n_r \nmid r$, $n_r = pq$. However, this means there are pq(r-1) distinct elements in the Sylow r-group of G. Let $n_p = 1 + p$, and $n_q = 1 + q$, yielding $(p-1)(p+1) = p^2 - 1$ and $(q-1)(q+1) = (q^2 - 1)$ distinct elements (resp.) in the Sylow p-subgroups and Sylow q-subgroups (resp.). Thus we have

$$pqr \ge pqr - pq + p^2 + q^2 - 1.$$

Clearly, $q^2 > pq - p^2 = p(q - p) + 2$, yielding a contradiction and thus one of n_p, n_q and n_r is 1.

Problem 6

(i) If the prime ideal P contains the product IJ of two ideals then prove that P contains either I or J.

If $J \subseteq P$, there is nothing to prove, so let $J \nsubseteq P$. There is an element $j \in J$ not in P. We know $\{ij : i \in I\} \subseteq IJ \subseteq P$. Since P is prime, this means $I \subseteq P$.

(ii) Exhibit a natural bijection between the prime ideals of R/IJ and $R/I \cap J$.

Let S_G be the collection of prime ideals in the group G. I claim that the mapping $\pi: S_{R/IJ} \to S_{R/I\cap J}$ defined by

$$\pi(P/IJ) = P/I \cap J$$

is a bijection. By (i), if $IJ \subseteq P \in S_R$, then $I \cap J \subseteq P$. Therefore, π is defined on the whole of $S_{R/IJ}$. It remains to prove if P is a prime ideal that contains $I \cap J$, then it should also contain IJ. This follows from noting that if $i \in I$ and $j \in J$, then $ij \in I \cap J$ and all finite sums of the form $\sum ij \in I \cap J$, implying $IJ \subseteq I \cap J$.

(iii) Give an example of a ring R, and ideals I and J such that IJ and $I \cap J$ are different. Consider the ideals $I = \langle 2 \rangle$ and $J = \langle 4 \rangle$ in the ring $R = \mathbb{Z}$. $IJ \subseteq \langle 8 \rangle \subset \langle 4 \rangle = I \cap J$.

Problem 7

Does every UFD R, which is not a field, contain infinitely many irreducible elements which are pairwise not associates? If your answer is yes then prove it and if no then give an example.

If R is a UFD and not a field, this means it has infinite number of elements because a UFD is an integral domain by definition. Suppose R has finitely many irreducible elements p_1, \ldots, p_n and a unit u. The element $a = p_1 \cdots p_n + u$ is not divisible by any of the p_i , thus there is at least one irreducible element p_{n+1} in the factorization of a. By induction on n, it follows that R contains an infinite number of irreducibles.

Problem 8

Give an example of an integral domain such that every element of R can be factored into irreducibles and yet R is not a UFD.

 $R = \mathbb{Z}[\sqrt{-5}]$ is an integral domain that is not a UFD. To show that 6 can be written as a product of different pairs of irreducibles, as $6 = 2 \cdot 3$ and $6 = (1 + \sqrt{-5})(1 - \sqrt{-5})$. We prove that $2, 3, 1 \pm \sqrt{-5}$ are irreducibles in R. To do that, we define a function(norm) $N : R \mapsto \mathbb{Z}$ as $N(a + b\sqrt{-5}) = a^2 + 5b^2$. It is clear that N(zw) = N(z)N(w). $N(2) = 4 = 2 \cdot 2$. Since $N(a + b\sqrt{-5}) = a^2 + 5b^2 \neq 2$ for $a, b \in \mathbb{Z}$, 2 must be irreducible. Similarly, 3 and $1 \pm \sqrt{-5}$ are irreducible in R. Thus R is not a UFD.

Problem 9

(i) Show that $\mathbb{Z}[i]$ is a Euclidean domain.

Define an evaluation norm $v: \mathbb{Z}[i] \mapsto \mathbb{N} \cup \{0\}$ as $N(a+bi) = a^2 + b^2$. Clearly, v(0) = 0 and $v(zw) = zw\overline{zw} = z\overline{z}w\overline{w} = v(z)v(w)$. Now we prove that if $0 \neq z, w \in \mathbb{Z}[i]$, then z = qw + r such that $v(w) > v(r) \geq 0$. Let x + yi = z/w and let p + si be an element of $\mathbb{Z}[i]$ such that $|x - p| \leq 1/2$ and $|y - s| \leq 1/2$. If r = z - w(p + si), then

$$\begin{array}{rcl} v(r) & = & v(z-w(p+qi)) \\ & = & z-w(p+qi)\overline{(z-w(p+qi))} \\ & = & w(z/w-(p+qi))\overline{w(z/w-(p+qi))} \\ & = & w\overline{w}(z/w-(p+qi)\overline{(z/w-(p+qi))} \\ & \leq & v(w)(1/4+1/4) \\ & < & v(w). \end{array}$$

This proves $\mathbb{Z}[i]$ is a Euclidean domain.

(ii) Is 6 - i prime in $\mathbb{Z}[i]$?

Since v(zw) = v(z)v(w), if $z \mid 6-i$, $v(z) \mid v(6-i) = 37$. But 37 is a prime number and it's only divisors are 1 and itself, making 6-i irreducible. Since $\mathbb{Z}[i]$ is Euclidean domain, and therefore PID, 6-i is then prime.

Problem 10

Write down all irreducible polynomials of degree 2 over the field \mathbb{F}_5 .

Let $p(x) = ax^2 + bx + c$, $a \neq 0, b, c \in \mathbb{F}_5$. We consider two cases: Case 1: b = 0. Substituting, $x = \pm 1$ and $x = \pm 2$ in p(x), we obtain $a \neq \pm c$. Hence, the polynomials $x^2 \pm 2$ and their associates are irreducible. Case 2: if $b \neq 0$, we obtain $a + b + c \neq 0, -b, \pm 2b$, leaving only $a + b + c = b \implies a = -c$. In this case, the polynomial we need to investigate has the form $ax^2 + bx - a = a(x^2 + a^{-1}bx - 1)$. This implies p(x) is irreducible iff $x^2 + b'x - 1$ is irreducible for $b' \neq 0$. Considering the latter, case by case, we obtain $x^2 \pm 2x - 1$ is irreducible. Hence The irreducible polynomials (upto multiplication by units) over the field \mathbb{F}_5 are $\{x^2 \pm 2, x^2 \pm 2x - 1\}$

Problem 11

- (i) State Gauss' Lemma and Eisenstein's criteria.
 - Gauss' Lemma: Let D be an integral domain and let F be its field of fraction. If p(x) is a monic polynomial in D[x] and it can be factorized in to two polynomials f(x), g(x) in F[x] as p(x) = f(x)g(x), then f(x) = u(x)v(x) such that $u(x), v(x) \in D[x]$ and $\deg f(x) = \deg u(x)$ and $\deg g(x) = \deg v(x)$.

- Eisenstein's Criterion: Let $p(x) = \sum_i a_i x^i \in \mathbb{Z}[x]$ and let p be a prime. If $p \mid a_i$ for $0 \le i < n$, $p \nmid a_n$ and $p^2 \nmid a_0$, then p(x) is irreducible in $\mathbb{Z}[x]$ and hence in $\mathbb{Q}[x]$.
- (ii) Show that the polynomial $1 + x^3 + x^6 \in \mathbb{Q}[x]$ is irreducible (Hint: try a substitution.)

Let $p(x) = 1 + x + x^2$. The given polynomial is irreducible iff p(x) is irreducible in $\mathbb{Q}[x]$. But p(x) is irreducible if $p(x+1) = x^2 + 3x + 3$ is irreducible which it is by Eisenstein's criterion stated in (i) by taking p = 3.

(iii) Show that the polynomial $1-t^2+t^5$ is irreducible over \mathbb{Q} (Hint: consider the ring $\mathbb{F}_2[t]$.)

First, we observe that if a monic polynomial is not irreducible in $\mathbb{Q}[x]$, then it is clearly not irreducible in $\mathbb{F}_p(x)$. To show that let p(x) factorize into $p_1(x) \cdots p_n(x)$ in $\mathbb{Z}[x]$. Then $p(x) + \langle p \rangle = \left(\prod_i p_i(x)\right) + \langle p \rangle = \prod_i (p_i(x) + \langle p \rangle) \in \mathbb{F}_p(x)$. Hence, by contrapositive, p(x) is irreducible in $\mathbb{Q}[x]$ if it is irreducible in $\mathbb{F}_p[x]$. Taking the special case, p = 2, $f(x) = 1 - x^2 + x^5 \neq 0$ for $x \in \{\pm 1, 0\}$. Hence, f(t) must be irreducible in $\mathbb{Q}[t]$.