Instance Weighting for Domain Adaptation in NLP

Jing Jiang & ChengXiang Zhai University of Illinois at Urbana-Champaign

June 25, 2007

Domain Adaptation

- Many NLP tasks are cast into classification problems
- · Lack of training data in new domains
- Domain adaptation:
 - POS: WSJ → biomedical text
 - NER: news → blog, speech
 - Spam filtering: public email corpus → personal inboxes
- Domain overfitting

NER Task	$\textbf{Train} \rightarrow \textbf{Test}$	F1
to find PER, LOC, ORG from news text	$NYT \to NYT$	0.855
	$Reuters \rightarrow NYT$	0.641
to find gene/protein from biomedical literature	mouse → mouse	0.541
	$fly \rightarrow mouse$	0.281

Existing Work on Domain Adaptation

- Existing work
 - Prior on model parameters [Chelba & Acero 04]
 - Mixture of general and domain-specific distributions [Daumé III & Marcu 06]
 - Analysis of representation [Ben-David et al. 07]
- Our work
 - A fresh instance weighting perspective
 - A framework that incorporates both labeled and unlabeled instances

3

Outline

- Analysis of domain adaptation
- Instance weighting framework
- Experiments
- Conclusions

- Labeled target domain instances are useful
- Unlabeled target domain instances may also be useful

Three Sets of Instances

$$\theta_{t}^{*} = \underset{\theta}{\operatorname{arg max}} \int_{X} p_{t}(x) \sum_{y \in Y} p_{t}(y \mid x) \log p(y \mid x; \theta) dx$$

19

Three Sets of Instances: Using D_s D_s $D_{t, I}$

$$\theta_{t}^{*} = \underset{\theta}{\operatorname{arg max}} \int_{X} p_{t}(x) \sum_{y \in Y} p_{t}(y \mid x) \log p(y \mid x; \theta) dx$$

 $\mathbf{X} \approx \mathbf{D_{S}} \approx \underset{\theta}{\operatorname{arg max}} \frac{1}{\sum_{i=1}^{N_{s}} \alpha_{i} \beta_{i}} \sum_{i=1}^{N_{s}} \alpha_{i} \beta_{i} \log p(y_{i}^{s} \mid x_{i}^{s}; \theta)$ $\beta_{i} = \underbrace{\frac{p_{i}(x_{i}^{s})}{p_{s}(x_{i}^{s})}}$

in principle, non-parametric density estimation; in practice, high dimensional data (future work)

need labeled target data

Three Sets of Instances: Using
$$D_{t,l}$$

$$D_{s}$$

$$D_{t,u}$$

$$D_{t,u}$$

$$\theta_{t}^{*} = \arg\max_{\theta} \int_{X} p_{t}(x) \sum_{y \in Y} p_{t}(y \mid x) \log p(y \mid x; \theta) dx$$

$$\approx \arg\max_{\theta} \frac{1}{N_{t,l}} \sum_{j=1}^{N_{t,l}} \log p(y_{j}^{t} \mid x_{j}^{t}; \theta)$$

$$small sample size, estimation not accurate$$

A Combined Framework

$$\hat{\theta} = \arg\max_{\theta} \left[\lambda_{s} \frac{1}{C_{s}} \sum_{i=1}^{N_{s}} \alpha_{i} \beta_{i} \log p(y_{i}^{s} \mid x_{i}^{s}; \theta) \right]$$

$$+ \lambda_{t,l} \frac{1}{C_{t,l}} \sum_{j=1}^{N_{t,l}} \log p(y_{i}^{t} \mid x_{i}^{t}; \theta)$$

$$+ \lambda_{t,u} \frac{1}{C_{t,u}} \sum_{k=1}^{N_{t,u}} \sum_{y \in Y} \gamma_{k}(y) \log p(y \mid x_{k}^{t}; \theta)$$

$$+ \log p(\theta) \right]$$

$$\lambda_{s} + \lambda_{t,l} + \lambda_{t,u} = 1$$

a flexible setup covering both standard methods and new domain adaptive methods

Standard Supervised Learning using only D_s

$$\hat{\theta} = \arg\max_{\theta} \left[\lambda_{s} \frac{1}{C_{s}} \sum_{i=1}^{N_{s}} \alpha_{i} \beta_{i} \log p(y_{i}^{s} \mid x_{i}^{s}; \theta) + \lambda_{t,l} \frac{1}{C_{t,l}} \sum_{j=1}^{N_{t,l}} \log p(y_{i}^{t} \mid x_{i}^{t}; \theta) + \lambda_{t,u} \frac{1}{C_{t,u}} \sum_{k=1}^{N_{t,u}} \sum_{y \in Y} \gamma_{k}(y) \log p(y \mid x_{k}^{t}; \theta) + \log p(\theta) \right]$$

$$\alpha_i=\beta_i=1,\,\lambda_s=1,\,\lambda_{t,I}=\lambda_{t,u}=0$$

2

Standard Supervised Learning using only D_{t,l}

$$\hat{\theta} = \arg\max_{\theta} \left[\lambda_{s} \sum_{i=1}^{N_{s}} \alpha_{i} \beta_{i} \log p(y_{i}^{s} \mid x_{i}^{s}; \theta) + \lambda_{t,l} \frac{1}{C_{t,l}} \sum_{j=1}^{N_{t,l}} \log p(y_{i}^{t} \mid x_{i}^{t}; \theta) + \lambda_{t,l} \frac{1}{C_{t,u}} \sum_{k=1}^{N_{t,u}} \sum_{y \in Y} \gamma_{k}(y) \log p(y \mid x_{k}^{t}; \theta) + \log p(\theta) \right]$$

$$\lambda_{t,l} = 1$$
, $\lambda_s = \lambda_{t,u} = 0$

Standard Supervised Learning using both D_s and D_{t,l}

$$\hat{\theta} = \arg\max_{\theta} \left[\lambda_{s} \frac{1}{C_{s}} \sum_{i=1}^{N_{s}} \alpha_{i} \beta_{i} \log p(y_{i}^{s} \mid x_{i}^{s}; \theta) \right]$$

$$+ \left(\lambda_{t,l} \frac{1}{C_{t,l}} \sum_{j=1}^{N_{t,l}} \log p(y_{i}^{t} \mid x_{i}^{t}; \theta) \right]$$

$$+ \left(\lambda_{t,u} \frac{1}{C_{t,u}} \sum_{k=1}^{N_{t,u}} \sum_{y \in Y} \gamma_{k}(y) \log p(y \mid x_{k}^{t}; \theta) \right)$$

$$+ \log p(\theta)$$

$$\alpha_i = \beta_i = 1, \ \lambda_s = N_s/(N_s + N_{t,l}), \ \lambda_{t,l} = N_{t,l}/(N_s + N_{t,l}), \ \lambda_{t,u} = 0$$

27

Domain Adaptive Heuristic:

1. Instance Pruning

$$\hat{\theta} = \underset{\theta}{\operatorname{arg max}} \left[\lambda_{s} \frac{1}{C_{s}} \sum_{i=1}^{N_{s}} \alpha_{i} \beta_{i} \log p(y_{i}^{s} \mid x_{i}^{s}; \theta) \right]$$

$$+ \lambda_{t,l} \frac{1}{C_{t,l}} \sum_{j=1}^{N_{t,l}} \log p(y_{i}^{t} \mid x_{i}^{t}; \theta)$$

$$+ \lambda_{t,u} \frac{1}{C_{t,u}} \sum_{k=1}^{N_{t,u}} \sum_{y \in Y} \gamma_{k}(y) \log p(y \mid x_{k}^{t}; \theta)$$

$$+ \log p(\theta)$$

 $\alpha_i = 0$ if (x_i, y_i) are predicted incorrectly by a model trained from $D_{t,i}$; 1 otherwise

Domain Adaptive Heuristic:

2. $D_{t,l}$ with higher weights

$$\hat{\theta} = \arg \max_{\theta} \left(\lambda_{s} \sum_{i=1}^{N_{s}} \alpha_{i} \beta_{i} \log p(y_{i}^{s} \mid x_{i}^{s}; \theta) \right)$$

$$+ \left(\lambda_{t,l} \right) \frac{1}{C_{t,l}} \sum_{j=1}^{N_{t,l}} \log p(y_{i}^{t} \mid x_{i}^{t}; \theta)$$

$$+ \lambda_{t,u} \frac{1}{C_{t,u}} \sum_{k=1}^{N_{t,u}} \sum_{y \in Y} \gamma_{k}(y) \log p(y \mid x_{k}^{t}; \theta)$$

$$+ \log p(\theta)]$$

 $\lambda_s < N_s/(N_s + N_{t,l}), \ \lambda_{t,l} > N_{t,l}/(N_s + N_{t,l})$

29

Standard Bootstrapping

$$\hat{\theta} = \arg\max_{\theta} \left[\lambda_s \frac{1}{C_s} \sum_{i=1}^{N_s} \alpha_i \beta_i \log p(y_i^s \mid x_i^s; \theta) \right]$$

$$+ \lambda_{t,l} \frac{1}{C_{t,l}} \sum_{j=1}^{N_{t,l}} \log p(y_i^t \mid x_i^t; \theta)$$

$$+ \lambda_{t,u} \frac{1}{C_{t,u}} \sum_{k=1}^{N_{t,u}} \sum_{y \in Y} \gamma_k(y) \log p(y \mid x_k^t; \theta)$$

$$+ \log p(\theta)$$

 $y_k(y) = 1$ if $p(y \mid x_k)$ is large; 0 otherwise

Domain Adaptive Heuristic:

3. Balanced Bootstrapping

$$\hat{\theta} = \arg\max_{\theta} \left[\lambda_{s} \frac{1}{C_{s}} \sum_{i=1}^{N_{s}} \alpha_{i} \beta_{i} \log p(y_{i}^{s} \mid x_{i}^{s}; \theta) + \lambda_{t,l} \frac{1}{C_{t,l}} \sum_{j=1}^{N_{t,l}} \log p(y_{i}^{t} \mid x_{i}^{t}; \theta) + \left[\lambda_{t,u} \frac{1}{C_{t,u}} \sum_{k=1}^{N_{t,u}} \sum_{y \in Y} \gamma_{k}(y) \log p(y \mid x_{k}^{t}; \theta) + \log p(\theta) \right]$$

$$\gamma_k(y) = 1$$
 if $p(y \mid x_k)$ is large; 0 otherwise
$$\lambda_s = \lambda_{t,u} = 0.5$$

31

Experiments

- Three NLP tasks:
 - POS tagging: WSJ (Penn TreeBank) → Oncology (biomedical) text (Penn BiolE)
 - NE type classification: newswire → conversational telephone speech (CTS) and web-log (WL) (ACE 2005)
 - Spam filtering: public email collection → personal inboxes (u01, u02, u03) (ECML/PKDD 2006)

Experiments

- Three heuristics:
 - 1. Instance pruning
 - 2. D_{t,I} with higher weights
 - 3. Balanced bootstrapping
- Performance measure: accuracy

Conclusions

- Formally analyzed the domain adaptation from an instance weighting perspective
- Proposed an instance weighting framework for domain adaptation
 - Both labeled and unlabeled instances
 - Various weight parameters
- Proposed a number of heuristics to set the weight parameters
- Experiments showed the effectiveness of the heuristics

Future Work

- Combining different heuristics
- Principled ways to set the weight parameters
 - Density estimation for setting $\boldsymbol{\beta}$

39

Thank You!