

Summary: Logistic regression is used in a classification problem. For example: determine whether a tumor is benign or malignant. The output of the classifier is a value 0 or 1 (for a binary classification problem). That means:

$$y \in \{0,1\}$$

0: "negative class" (i.e. benign tumor)

1: "positive class" (i. e. malignant tumor)

If $y \in \{0,1,2,...\}$, we call this a multi-class classification problem. In classification problem, the output should be either 0 or 1 (for binary classification problem). It should not output value $0 \le h(x) \le 1$.

1. Notation

- o *m*: number of training examples
- o *n*: number of features
- o *x*: input variable
- o *y*: output variable
- o $x^{(i)}$: input features of ith training example
- o $x_i^{(i)}$: value of feature j in ith training example
- o $y^{(i)}$: output of ith training example
- o $(x^{(i)}, y^{(i)})$: ith training example

2. Hypothesis

$$h_{\theta}(x) = g(\theta^T x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

 \circ The function g(x) is called a sigmoid function.

- o Interpretation of the output of the hypothesis function:
 - $h_{\theta}(x)$ is the estimated probability that y = 1 on input x
 - Example:

• If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ tumorSize \end{bmatrix}$$
 and $h_{\theta}(x) = 0.7$

- It tells the patient that there is a 70% chance the tumor is malignant
- $h_{\theta}(x) = P(y = 1|x; \theta)$ → The probability that y = 1, given x, parameterized by θ .

3. Decision Boundary

Consider this graph below:

 \circ We have the decision boundary of the form $x_1+x_2=3$ and the hypothesis $h_\theta=g(\theta_0+\theta_1x_1+\theta_2x_2)$. That means this graphs is predicting "y=1" if $-3+x_1+x_2\geq 0$

o Some other examples:

$$h_{\theta}(x) = g(5 - x_1)$$

 $\theta^T x = 5 - x_1$
 $\rightarrow \begin{cases} x_1 \le 5 : \ y = 1 \\ x_1 > 5 : \ y = 0 \end{cases}$

 $\rightarrow \begin{cases} x_1^2 + x_2^2 \ge 1 : \ y = 1 \\ x_1^2 + x_2^2 < 1 : \ y = 0 \end{cases}$

4. Cost Function

O Given a training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})\}$ with m examples and:

$$x \in \begin{bmatrix} x_0 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^{n+1}, x_0 = 1$$
$$y \in \{0,1\}$$
$$h_{\theta}(x) = \frac{1}{1 + e^{\theta^T x}}$$

• Consider the cost function $J(\theta)$ in linear regression:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

$$= \frac{1}{m} \sum_{i=1}^{m} cost(h_{\theta}(x), y)$$

$$\to cost(h_{\theta}(x), y) = \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

 If we apply the cost function from simple linear regression to logistic regression, it would result in a non-convex function.

Example of Non-Convex Function

o Therefore, we need to come up with a new cost function.

$$cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

When
$$y = 1$$
:

- *if* $h_{\theta}(x) = 1$, cost = 0
- As $h_{\theta}(x) \to 0$, $cost \to \infty$

When
$$y = 0$$
:
• $if h_{\theta}(x) = 0, cost = 0$
As $h_{\theta}(x) \to 1, cost \to \infty$

o We can re-write the function above as following:

$$cost(h_{\theta}(x), y) = -y \log(h_{\theta}(x)) - (1 - y)\log(1 - h_{\theta}(x))$$

- \circ To fit parameters θ , we need to minimize $J(\theta)$
- o To make a prediction on a new input x:

output
$$h_{\theta}(x) = P(y = 1 | x; \theta) = \frac{1}{1 + e^{-\theta^T x}}$$

5. Gradient Descent Algorithm

o We have:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

$$\to \frac{\partial J}{\partial \theta_{j}} = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)} \quad \text{for } j = 0 \dots n$$

We then have the gradient descent algorithm as follow:

Repeat {

$$\theta_j := \theta_j - \frac{\alpha}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 for $j = 0 \dots n$

}

6. Vectorized Implementation

o A strategy to optimize gradient descent:

$$\theta \coloneqq \theta - \frac{\alpha}{m} X^{T} (g(X\theta) - Y)$$

$$\theta \in \mathbb{R}^{n+1} \quad Y \in \mathbb{R}^{m}$$

$$X \in M_{m \times (n+1)} \quad \to \quad X^{T} \in M_{(n+1) \times m}$$

7. Optimization Algorithm

- Some available optimization algorithms:
 - Gradient descent
 - Conjugate gradient
 - BFGS
 - L-BFGS
- Advantages of the last 3 algorithms:
 - No need to manually pick learning rate α . They automatically pick the best learning rate for each iteration
 - Often faster than gradient descent
- o Disadvantages:
 - More complex

8. Multiclass Classification

- o Examples:
 - Email foldering/tagging: work, friends, family, etc
 - Weather: sunny, cloudy, rain, snow

- One strategy to solve a multiclass classification problem is <u>One-vs-all (one-vs-rest) classification</u>. In the example above, we can set:
 - Class 1: triangle
 - Class 2: hexagon
 - Class 3: square
- o Then break the problem above into 3 smaller binary classification problems

o In one-vs-all classification, we train logistic regression classifiers $h_{\theta}^{(i)}$ for each class i to predict the probability that y=i

• On new input *x*, to make a prediction, pick the class *i* that maximizes the probability

$$\max_{i} h_{\theta}^{(i)}(x)$$

 \circ For a logistic regression problem with n classes, using one-vs-all classification, we'll need to break it into n binary classification problems.

9. Problem of Overfitting

- Underfitting: poor performance on the training data, high bias, and poor performance on test data
- Overfitting: fit the training data very well but has a poor performance on the test set, which fail to generalize new examples. Overfitting has a high variance.
- There are 2 options to solve overfitting:
 - Reduce the number of features (manually or automatically)
 - Regularization
 - Keep all the features, but reduce the magnitude/values of the parameters θ
 - Work well when we have lots of features, each of which contributes a bit to the prediction of *y*

10. Regularization – Cost Function

- o The ideas of regularization:
 - Penalize the parameters θ (make the values small)
 - → Get a "simpler" hypothesis
 - → Less prone to overfitting

$$J(\theta) = \frac{1}{2m} \left\{ \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} \right] + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right\}$$

 λ : regularization parameter

- o If λ is set too large, we'll have θ_1 , θ_2 , $\theta_n \approx 0$
 - $\rightarrow h_{\theta}(x) \approx 0$
 - → We'll encounter underfitting problem
- o Note:
 - We only penalize $\theta_1, \theta_2, ..., \theta_n$ (Since θ_0 is set to be 1 by default)

11. Regularized Linear Regression

• Consider the regularized cost function $J(\theta)$ that we want to minimize

$$J(\theta) = \frac{1}{2m} \left\{ \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} \right] + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right\}$$

o Gradient descent for linear regression is written as follows:

Repeat until convergence {

$$\theta_{0} \coloneqq \theta_{0} - \alpha \frac{1}{m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) \left(x_{0}^{(i)} \right) \right]$$

$$\theta_{j} \coloneqq \theta_{j} - \alpha \left\{ \frac{1}{m} \sum_{i=1}^{m} \left[\left(h_{\theta}(x^{(i)}) - y^{(i)} \right) \left(x_{j}^{(i)} \right) \right] + \frac{\lambda}{m} \theta_{j} \right\} \quad for j \coloneqq 1, 2, \dots, n$$

$$\frac{\partial}{\partial \theta_{j}} (regularized J(\theta))$$

 Consequently, we can re-write the gradient descent algorithm for regularized linear regression as follows:

Repeat until convergence {

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \left[\sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \left(x_0^{(i)} \right) \right]$$

$$\theta_j \coloneqq \theta_j \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left[\left(h_\theta(x^{(i)}) - y^{(i)} \right) \left(x_j^{(i)} \right) \right] \quad \text{for } j \coloneqq 1, 2, ..., n$$
}

- Notes:
 - $1 \alpha \frac{\lambda}{m} < 1 \rightarrow$ which means this term will shrink θ_j
- Consider normal equation method for linear regression, applying regularization to this method, we'll have:

$$\theta = \begin{pmatrix} X^T X + \lambda \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{-1} X^T Y$$

Is a $(n+1) \times (n+1)$ identity matrix with first value on diagonal line being 0

 Regularization will take care of the non-invertibility issue in normal equation method, making the matrix become an invertible.

12. Regularized Logistic Regression

• Consider the cost function $J(\theta)$ for logistic regression in section 4 together with the regularized cost function $J(\theta)$ in section 10:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2} = -\left\{ \frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log[h_{\theta}(x^{(i)})] + (1 - y^{(i)}) \log[1 - h_{\theta}(x^{(i)})] \right\}$$

$$J(\theta) = \frac{1}{2m} \left\{ \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} \right] + \lambda \sum_{j=1}^{n} \theta_{j}^{2} \right\} = \frac{1}{2m} \left[\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

 We can come up with a regularized cost function for logistic regression as follows:

$$J(\theta) = -\left\{\frac{1}{m}\sum_{i=1}^{m} y^{(i)} \log[h_{\theta}(x^{(i)})] + (1 - y^{(i)}) \log[1 - h_{\theta}(x^{(i)})]\right\} + \frac{\lambda}{2m}\sum_{j=1}^{n} \theta_{j}^{2}$$

 The gradient descent algorithm for regularized logistic regression can be written as follows:

Repeat until convergence {

}

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \left[\sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \left(x_0^{(i)} \right) \right]$$

$$\theta_j \coloneqq \theta_j \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m \left[\left(h_\theta(x^{(i)}) - y^{(i)} \right) \left(x_j^{(i)} \right) \right] \quad \text{for } j \coloneqq 1, 2, \dots, n$$

o Note: the algorithm looks identical to the gradient descent algorithm for regularized linear regression, however, the hypothesis h_{θ} for logistic regression is not the same.

13. Mathematical Interpretation of The Partial Derivative of The Cost Function $I(\theta)$

$$cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$= -y\log(h_{\theta}(x)) + (y - 1)(\log(1 - h_{\theta}(x)))$$

$$= -y\log(h_{\theta}(x)) + y[\log(1 - h_{\theta}(x))] - \log(1 - h_{\theta}(x))$$

$$= y[\log(1 - h_{\theta}(x)) - \log(h_{\theta}(x))] - \log(1 - h_{\theta}(x))$$

$$= y\left[\log\left(\frac{e^{-\theta^{T}x}}{1 + e^{-\theta^{T}x}}\right) - \log\left(\frac{1}{1 + e^{-\theta^{T}x}}\right)\right] - \log\left(\frac{e^{-\theta^{T}x}}{1 + e^{-\theta^{T}x}}\right)$$

$$= y[\log(e^{-\theta^{T}x}) - \log(1 + e^{-\theta^{T}x}) + \log(1 + e^{-\theta^{T}x})] - \log(e^{-\theta^{T}x}) + \log(1 + e^{-\theta^{T}x})$$

$$= y \log(e^{-\theta^{T}x}) - \log(e^{-\theta^{T}x}) + \log(1 + e^{-\theta^{T}x})$$

$$= \log(e^{-\theta^{T}x}) (y - 1) + \log(1 + e^{-\theta^{T}x})$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost(h_{\theta}(x^{(i)}), y)$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[\log(e^{-\theta^{T}x^{(i)}}) (y^{(i)} - 1) + \log(1 + e^{-\theta^{T}x^{(i)}}) \right]$$

$$\rightarrow \frac{\partial J}{\partial \theta_{j}} = \frac{1}{m} \sum_{i=1}^{m} \left[\frac{e^{-\theta^{T}x^{(i)}}) (-x_{j}^{(i)})}{e^{-\theta^{T}x^{(i)}}} (y^{(i)} - 1) + \frac{e^{-\theta^{T}x^{(i)}}) (-x_{j}^{(i)})}{1 + e^{-\theta^{T}x^{(i)}}} \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[(-x_{j}^{(i)}) (y^{(i)} - 1) + \frac{e^{-\theta^{T}x^{(i)}}) (-x_{j}^{(i)})}{1 + e^{-\theta^{T}x^{(i)}}} \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[(x_{j}^{(i)}) \left(\frac{1 - y^{(i)} - \frac{e^{-\theta^{T}x^{(i)}}}{1 + e^{-\theta^{T}x^{(i)}}} - y^{(i)} \right) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[(x_{j}^{(i)}) \left(\frac{1}{1 + e^{-\theta^{T}x^{(i)}}} - y^{(i)} \right) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[(x_{j}^{(i)}) (h_{\theta}(x^{(i)}) - y^{(i)}) \right] for all j = 0 \dots n$$