Introduction to Digital Image Processing and Analysis

Fabrice P. Cordelières, PhD Bordeaux Imaging Center

fabrice.cordelieres@u-bordeaux.fr

@fab_cordelieres, @BIC_Bordeaux

Before we start...

What are we going to do?

Labelling, on the pictures:

- Cyan: DAPI, nuclear staining
- Magenta: p16, inhibitor of CDK/Cyclin, preventing entry in G1/S
- **Yellow**: Ki67, expressed by cycling cells

Our aims: count cells and quantify p16 and Ki67 signals, cell per cell

What will we learn during this session?

Step 1	Prepare nuclei image for segmentation	Play with the image's display, visualize and handle the noise
Step 2	Differentiate signal from background	Partition pixels into 2 classes, based on their intensities
Step 3	Handle touching nuclei	Use morphomathematical operations to separated objects
Step 4	Individualise nuclei, get their outlines	Tag positive pixels into an objects' map, extract objects' boundaries
Step 5	Quantify p16 and Ki67 signals, cell per cell	Use nuclei boundaries to extract the associated signal

What is an image?

What is an image? The image IS NOT the object

René Magritte, La trahison des images, 1928-29, huile sur toile, Los Angeles county Museum of Art, Los Angeles.

What is an image? The nature of data

Raster image

Painted using individual elements:
 pixels (picture elements)

(0, 0)

Printing quality depends on a compromise between dimension and resolution

Vector image

 Painted using vectors and mathematical descriptors

 Printing quality is independent of dimension and resolution

What is an image? An image is a matrix

255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	253	107	141	126	144	166	2/13	255	255	255	255	255	255	255	255	255	255
255	255			255	255	255	255	255	255		255	255		255	_	201	102	61	110			-	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255	255	255	255		195	110		111			255	255	255	255	255	255	255	255	255	255
255	255		255	255	255	255	255	255	255	255			255	255		149	89	79	102	130		255	255	255		255	_	255	255		
255	255	255	255	255	255	255	255	255	255	255	255	255	255	255	245	161	126		118		-	255	255	255	255	255	255	255	255	255	255
255			255	255	255	255	255	255	255		255	255	255	255		192	168	79	153				255	255			255		255		
255	255	255	255	255	255	255	255	255	255		255	255	255	255	254	196	179	84	159	183	252	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255		255	255	255	252	174	136		128	154		255	255	255	255	255	255	255	255		
255	255	255	255	255	255	255	255	255	255		255	255	255	255	252	162	113		105		245	255	255	255	255	255	255	255	255	255	\vdash
255	255	255	255	255	255	255	255	255	255		255	255	255	255	251		120		96	138		255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	248	230	215	223	243	254	250	158	122		92	140	248	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	229	171	112	135	197	250	250	151	117		93	148	251	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	253	226	113	163	246	253	239	130	98		99	137	244	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	224	151	86	122	168	151	131	114	89		118	107	181	253	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	220	130	81	102	141	183	182	148	122		102	148	213	254	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	233	138	84	101	160	254	254	201	106		112	215	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	234	137	84	99	162	254	255	235	105	74	132	246	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	234	137	85	97	162	254	255	244	128	78	150	251	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	234	132	84	95	163	254	255	252	165	100	189	255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	254	202	103		76	121	196	211	203	188	175	213	231	232	241	254	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	252	156	102	71	84	62	70	82	77	76	72	95	109	111	139	233	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	254	205	112	81	79	108	139	115	104				105	94	158	238	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	241	137	87	80	121	159	226	223	107	78	122	232	238	248	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	241	135	92	93	104	104	223	249	226	217	227	251	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	241	132	94	101	153	168	247	246	249	253	255	255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	240	133	97	95	137	149	173	134	186	200	220	246	254	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	240	132	98	92	111	106	58		60	123	158	179	215	253	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	254	202	112	88	98	120	213	200	165	140	110	118	105	160	245	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	246	137	98	72	85	72	112	125	106	94	85	93	94	105	194	254	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	234	109	93	89	88	77	92	97	93	92	91	94	96	99	148	247	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	230	105	94	106	96	87	85	85	85	86	87	90	92	93	128	243	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	247	197	167	158	149	144	145	143	142	142	144	146	147	148	174	248	255	255	255	255	255	255	255	255

What is an image? Data handling in a computer: bits and bytes

2 states per bit

28 states per byte

	0	1	1	0	1	0	1	1	
Little endian	2º 1	2 ¹ 2	2 ² 4	2 ³ 8	2 ⁴ 16	2 ⁵ 32	2 ⁶ 64	2 ⁷ 128	
	0	2	4	0	16	0	64	128	214
Big endian	2 ⁷ 128	2 ⁶ 64	2 ⁵ 32	2 ⁴ 16	2 ³ 8	2 ² 4	2 ¹ 2	2 ⁰ 1	
5	0	64	32	0	8	0	2	1	107

"There are only 10 types of people in the world: those who understand binary, and those who don't."

What is an image?

Dual sampling: intensity and bit depth

What is an image? Color versus colorised image

Color image

- A reference is selected
- One channel is generated per reference's component
- Each color is expressed as a weighted sum of each component

Indexed colors

- Build a dictionnary: 1 color=1 reference
- Replace each pixel's color by its reference

Additive mixing

Subtractive mixing

What is an image? Storing an image: the container

- TIFF (Tagged Image File Format)
- JPEG (Joint Photographic Experts Group)
- JFIF (JPEG File Interchange Format)
- PNG
- CZI, LIF, ND2, NDPI, OIB, ZVI...

Metadata

format

ImageWidth

ImageLength BitsPerSample

Compression

PhotometricInterpretation

FillOrder

DocumentName

ImageDescription

Make

Model

XResolution YResolution

Compression

CODEC (**CO**mpression/**DEC**ompression)

- RLE (Run Length Encoding, PackBits)
- LZW (Lempel-Ziv-Welch)
- JPEG (Joint Photographic Experts Group)
- Modified Huffman compression (CCITT Group 3 1D)

What is an image?

Storing an image: saving space, compression strategies

Run-length encoding

Sentence:

AAABBBBBBAAACCCCCAAAAAB

For each value, count the number of occurrence

Compressed sentence:

3A6B3A5C5A1B

Dictionary-based compression

Sentence:

ABCDDEFABCEFEABC

Identify individual words

ABCDDEFABCEFEABC

Build a dictionary:

1=ABC; 2=DD; 3=EF; 4=E

Re-write the sentence using the dictionary:

Compressed sentence:

1231341

Used in LZW/ZIP compressions

Only non destructive compressions should be used for image processing and analysis

JPEG is a destructive compression: to be ONLY used for mail or presentation purposes

Tutorial 1 From individual images to an overlay

 Transtype each RGB image into an 8-bits image Image>Type>8-bits

Overlay images

Image>Color>Merge channels

Interact with the display

Image>Color>Channels tool

Image Processing

Several way to consider a single image

And associated processing techniques

The image is a collection of intensities Working with the image's histogram

- 1. Group pixels per increasing intensity
- 2. Count pixels per group
- 3. Plot count as a function of intensity

This is a **REALLY BAD** histogram! But a good support to illustrate histogram modifications...

Tutorial 2 Explore data display

Have a look at the intensities' distribution
 Analyze>Histogram

 Place a rectangular ROI and activate live mode Histogram window>Click « live »

Modify the image's display

Image>Adjust>Brightness and contrast

The image is a collection of intensities

Linear histogram modification: brightness

Brightness:

The same value is added to all intensities

Thresholding:

Negative values are shifted to zero

Saturation:

Values over the maximum of the range are clipped to the maximum of the range

80

70

60

50

30

20

10

32

Count

Bright.=+40

224

192

160

128

96

64

32

128 160 192 224

Recorded intensity

The image is a collection of intensities

Linear histogram modification: contrast

Contrast:

Response line: the slope is changed The mid-range value remains constant

Thresholding:

Negative values are shifted to zero

Saturation:

Values over the maximum of the range are clipped to the maximum of the range

The image is a collection of intensities

Linear histogram modification: min-max

Min-Max:

Intensities are linearly distributed between the two newly set limits

Thresholding:

Negative values are shifted to zero

Saturation:

Values over the maximum of the range are clipped to the maximum of the range

Several way to consider a single image

And associated processing techniques

Tutorial 3 Explore local intensities

- Place a linear ROI over the image
- Modify the line's width

Double click on the line tool

Plot the intensity profile

Analyze>Plot profile

Activate the live mode

Profile window>Click « live »

Spatial filtering

Linear filtering: taking care of the neighbours, based on values

Original image

168	151	131	114	89	62	118
141	183	182	148	122	60	102
160	254	254	201	106	66	112
162	254	255	235	105	74	132
162	254	255	244	128	78	150
163	254	255	252	165	100	189
121	196	211	203	188	175	213

Filter

1	1	1
1	1	1
1	1	1

168x1+151x1+131x1+ 141x1+183x1+182x1+ 160x1+254x1+254x1 =1624

1624/9=180.44444 → 180

168	151	131	114	89	62	118
141	180	182	148	122	60	102
160	254	254	201	106	66	112
162	254	255	235	105	74	132
162	254	255	244	128	78	150
163	254	255	252	165	100	189
121	196	211	203	188	175	213

Destination image

168	151	131	114	89		118
141	183	182	148	122	60	102
160	254	254	201	106	66	112
162	254	255	235	105	74	132
162	254	255	244	128	78	150
163	254	255	252	165	100	189
121	196	211	203	188	175	213

Spatial filtering Most currently used filters

Original

_ tal	-1	0	1
Sobel Horizonta	-2	0	2
3, 유	-1	0	1

1- 0 ctec	0
Laplacian	-1
La La CC -1	0

Gaussian (σ=1)

1	4	7	4	1
4	16	26	16	4
7	26	41	26	7
4	16	26	16	4
1	4	7	4	1

Sobel

-	-1	-2	-1
Vertical	0	0	0
>	1	2	1

Sharpen

-1	-1	-1	
-1	12	-1	
-1	-1	-1	

'n: ve !	?	?	?
Your turn: be creative	?	?	?
Yo be o	?	?	?

Spatial filtering

Rank filtering: taking care of the neighbours, based on order

Original image

168	151	131	114	89	62	118
141	183	182	148	122	60	102
160	254	254	201	106	66	112
162	254	255	235	105	74	132
162	254	255	244	128	78	150
163	254	255	252	165	100	189
121	196	211	203	188	175	213

Filter

Destination image

					0-	
168	151	131	114	89		118
141	183	182	148	122	60	102
160	254	254	201	106	66	112
162	254	255	235	105	74	132
162	254	255	244	128	78	150
163	254	255	252	165	100	189
121	196	211	203	188	175	213

 131
 141
 151
 160
 168
 182
 183
 254
 254

Tutorial 4 Trying to smooth intensities, locally

 Always duplicate the image BEFORE trying anything Image>Duplicate

 Try the linear/rank filters on the image Process>Filters

Control the effects using the profile plot in live mode

Several way to consider a single image

And associated processing techniques

Morphomathematics

From intensity image to binary image (mask)

Intensity image

Binary image

How to partition image in object vs background pixels?

Tutorial 5

Partitionning the intensities into 2 sets: signal and background

 Always duplicate the image BEFORE trying anything Image>Duplicate

 Try several algorithm to highlight the nuclei in red Image>Adjust>Threshold

Mathematical morphology

Morphological operators: 4-connected case

Structuring element

Binary image

Erode: propagate background

Dilate: propagate objects

Erosion

Dilation

Erode → Dilate = Open

Dilate → Erode = Close

Mathematical morphology

Morphological operators: 8-connected case

Structuring element

Binary image

Erode: propagate background

Dilate: propagate objects

Erosion

Dilation

Erode → Dilate = Open

Dilate → Erode = Close

Mathematical morphology How to separate peanuts? Watershed transform

Tutorial 6 Separating touching pixels' blocks

- Always duplicate the image BEFORE trying anything Image>Duplicate
- Try several algorithm to highlight the nuclei in red Image>Adjust>Threshold
- Apply the threshold

Threshold window>Apply

Use the watershed processing

Process>Binary>Watershed

2D morphometry

Several way to consider a single image

And associated processing techniques

Image as a collection of objects Connexity analysis

Pixel tagging, line per line → Objects' map

Features extraction:

- -Count objects: maximum of all tags
- -Total intensity: sum intensities for each tag
- -Area: number of pixels per tag x pixel surface
- -Perimeter: number of pixels lacking at least 1 neighbour x pixel size

Extension to the 3D case: 6 or 26-connected

Image as a collection of objects

Influence of the threshold

Low threshold

High threshold

Tagged map

Tagged map

Image as a collection of objects Connexity analysis: extracting data

Low threshold

Tagged map

Example parameters:

Area: number of pixels carrying the same tag **Perimeter:** number of pixels carrying the same tag,
and lacking at least one neighbour

8-connected

Tutorial 7 Grouping pixels into objects and extracting outlines

Activate the thresholded, watershed processed image

Group pixels into objects

Analyze/Analyze particles (Check « Add to manager »)

Display the detected ROIs over the image

ROI Manager window>Check « Show all »

Tutorial 8 Extracting intensities for all channels

Set the parameter to extract

Analyze/Set Measurements
Check: mean

 Activate the composite image and duplicate a channel Image>Duplicate

Perform the measurements of all ROIs

ROI Manager window>More>Multi-Measure Check: Nothing

- Get the distribution of the mean intensity, estimate nb of +w cells
 Result Table window>Results>Distribution
- Repeat for all channels

Final results

Nb cells	DAPI cyan	p16 magenta	Ki67 yellow
DMSO			
ATRAC			

Final results

Nb cells	DAPI cyan	p16 magenta	Ki67 yellow
DMSO	716	9 1.25%	7 0.97%
ATRAC	461	8 1.73%	5 1.08%

