

Top

85. Maximal Rectangle

Given a rows x cols binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.

	1	0	1	0	0
	1	0	1	1	1
٦	1	1	1	1	1
(1	0	0	1	0

12, -
145 =5
177=3
3 x2 - 6
Output = 62

can we apply DFS & find no of connected is?

why it is marked as HARD?

→ It has more than one an hidden inside it.

Otherwise it's Easy. TRUST ME ...

Thought Process							
	0	1	2	3	4		
0	_	0	_	0	0		
1	_	0	_	_	_	2-D	
2	-	1	-	1	-		
	1	_				•	

- () Height ->
- (·) width -> ???
- (1) Area -> Height[i] * widh[i]

Hidden du-3 (width):-

$$4 - 0 - 1 = 3$$

MIR(Next Smaller to Right).
MSL (Next Smaller to Life). -> Right hand side smaller > j

- Just maide mark

$$L(ak = J - K - 1)$$
 $= 4 - 0 - 1 = 2$

0	1	2	3	4

5
 4
 4
 5

NSR index

MSR