DA_ASSIGNMENT-4 TEAM ID - PNT2022TMID54263

Team Members: Prithiv R S(TL), Mahammad Mubharak M(TM-1), Maharaja Abishek A(TM-2), Lokeshwaran K(TM-3).

1. Download the dataset.

Importing libraries

```
import numpy as pn
import pandas as dp
import matplotlib.pyplot as tlp
%matplotlib inline
import seaborn as ss
```

2.loading the dataset

```
from google.colab import files
upload = files.upload()
```

```
a = dp.read_csv('abalone.csv')
```

a.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

```
a['age'] = a['Rings']+1.5
a = a.drop('Rings',axis = 1)
```

3. Performing Visualizations.

1. univariate Analysis.

```
ss.kdeplot(a['Diameter'])
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f36f75625d0>

2. Bi-Variate Analysis

ss.boxplot(x=a.Diameter,y=a.Length,palette='rainbow')

<matplotlib.axes._subplots.AxesSubplot at 0x7f36ff791dd0>

3. Multi-Variate Analysis

ss.pairplot(a)

4. Perform descriptive statistics on the dataset.

5. Check for Missing values and deal with them.

a.isnull()

```
a.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 4177 entries, 0 to 4176
    Data columns (total 9 columns):
                        Non-Null Count Dtype
         Column
        ----
                        -----
    _ _ _
     0
         Sex
                       4177 non-null object
     1 Length
                      4177 non-null float64
                        4177 non-null float64
     2
       Diameter
     3 Height
                       4177 non-null float64
     4 Whole weight 4177 non-null float64
         Shucked weight 4177 non-null
     5
                                       float64
       Viscera weight 4177 non-null float64
     6
     7
         Shell weight
                        4177 non-null float64
     8
                        4177 non-null
                                       float64
         age
    dtypes: float64(8), object(1)
    memory usage: 293.8+ KB
a['Diameter'].describe()
    count
             4177.000000
    mean
               0.407881
    std
               0.099240
    min
               0.055000
    25%
               0.350000
    50%
               0.425000
    75%
               0.480000
    max
                0.650000
    Name: Diameter, dtype: float64
a['Sex'].value_counts()
         1528
    Μ
         1342
    Ι
         1307
    Name: Sex, dtype: int64
```

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	
0	False	False	False	False	False	False	False	False	
1	False	False	False	False	False	False	False	False	
2	False	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	False	
4172	False	False	False	False	False	False	False	False	
4173	False	False	False	False	False	False	False	False	
4174	False	False	False	False	False	False	False	False	
4175	False	False	False	False	False	False	False	False	
4176	False	False	False	False	False	False	False	False	
4477 rows w 0 columns									

4177 rows × 9 columns

```
a.isnull().sum()
```

Sex 0
Length 0
Diameter 0
Height 0
Whole weight 0
Shucked weight 0
Viscera weight 0
Shell weight 0
age 0
dtype: int64

6. Find the outliers and replace them outliers.

```
# outlier handling
a = dp.get_dummies(a)
dummy_a = a

var = 'Viscera weight'
tlp.scatter(x = a[var], y = a['age'])
tlp.grid(True)
```


DA_ASSIGNMENT-4 TEAM ID - PNT2022TMID54263

Team Members: Prithiv RS(TL), Mahammad Mubharak M(TM-1), Maharaja Abishek A(TM-2), Lokeshwaran K(TM-3).

```
var = 'Shucked weight'
tlp.scatter(x = a[var], y =a['age'])
tlp.grid(True)
```



```
var = 'Diameter'
tlp.scatter(x = a[var], y = a['age'])
tlp.grid(True)
```



```
var = 'Height'
tlp.scatter(x = a[var], y = a['age'])
tlp.grid(True)
```



```
var = 'Length'
tlp.scatter(x = a[var], y =
a['age'])tlp.grid(True)
```


7. Check for Categorical columns and perform encoding.

```
numerical_features = a.select_dtypes(include = [pn.number]).columns
categorical_features = a.select_dtypes(include = [pn.object]).columns
```

```
numerical_features
```

```
categorical_features
```

```
Index([], dtype='object')
```

Encoding

```
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
print(a.Length.value_counts())
```

```
0.550
       93
0.575
        93
0.625
        93
0.580
        92
0.600
      86
0.755
        2
0.220
        2
0.150
       1
0.135
         1
0.760
Name: Length, Length: 126, dtype: int64
```

8. Spliting the data into dependent and independent variables.

```
x=a.iloc[:,:5]
x
```

	Length	Diameter	Height	Whole weight	Shucked weight
0	0.455	0.365	0.095	0.5140	0.2245
1	0.350	0.265	0.090	0.2255	0.0995
2	0.530	0.420	0.135	0.6770	0.2565
3	0.440	0.365	0.125	0.5160	0.2155
4	0.330	0.255	0.080	0.2050	0.0895
4172	0.565	0.450	0.165	0.8870	0.3700
4173	0.590	0.440	0.135	0.9660	0.4390
4174	0.600	0.475	0.205	1.1760	0.5255
4175	0.625	0.485	0.150	1.0945	0.5310
4176	0.710	0.555	0.195	1.9485	0.9455

4096 rows x 5 columns

```
y=a.iloc[:,:5]
```


	Lengt h	Diamete r	Heigh t	Wholweigh e t	Shuck weigh ed t
0	0.455	0.365	0.095	0.514 0	0.224 5
1	0.350	0.265	0.090	0.225 5	0.099 5
2	0.530	0.420	0.135	0.677 0	0.256 5
3	0.440	0.365	0.125	0.516 0	0.215 5
4	0.330	0.255	0.080	0.205 0	0.089 5
•••					•••
4172	0.565	0.450	0.165	0.887 0	0.370 0

9. Scale the independent variables.

```
from sklearn.preprocessing import StandardScaler
ss=StandardScaler()
x_train=ss.fit_transform(x_train)

mlrpred=mlr.predict(x_test[0:9])
```

mlrpred

```
array([[0.41 , 0.31 , 0.125 , 0.3595, 0.1415],
        [0.585 , 0.435 , 0.14 , 0.6955, 0.3085],
        [0.575 , 0.43 , 0.13 , 0.7425, 0.2895],
        [0.67 , 0.525 , 0.165 , 1.6085, 0.682 ],
        [0.645 , 0.51 , 0.2 , 1.5675, 0.621 ],
        [0.7 , 0.535 , 0.16 , 1.7255, 0.63 ],
        [0.41 , 0.325 , 0.1 , 0.3245, 0.132 ],
        [0.58 , 0.425 , 0.15 , 0.844 , 0.3645],
        [0.465 , 0.375 , 0.135 , 0.6 , 0.2225]])
```

Double-click (or enter) to edit

10. Spliting the data into training and testing

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
```

11. Building the model.

from sklearn.linear_model import LinearRegression
mlr=LinearRegression()
mlr.fit(x_train,y_train)

LinearRegression()

12. Training the model

13. Testing the model

x_test[0:5]

	Length	Diameter	Height	Whole weight	Shucked weight	%
3268	0.410	0.310	0.125	0.3595	0.1415	
2668	0.585	0.435	0.140	0.6955	0.3085	
3042	0.575	0.430	0.130	0.7425	0.2895	
1040	0.670	0.525	0.165	1.6085	0.6820	
184	0.645	0.510	0.200	1.5675	0.6210	
_test[0:5]						

	Length	Diameter	Height	Whole weight	Shucked weight	<i>7</i> .
3268	0.410	0.310	0.125	0.3595	0.1415	
2668	0.585	0.435	0.140	0.6955	0.3085	
3042	0.575	0.430	0.130	0.7425	0.2895	
1040	0.670	0.525	0.165	1.6085	0.6820	
184	0.645	0.510	0.200	1.5675	0.6210	

14. Measure the performance using Metrics.

from sklearn.metrics import r2_score
r2_score(mlr.predict(x_test),y_test)

1.0

DA_ASSIGNMENT-4 TEAM ID - PNT2022TMID54263

Team Members: Prithiv R S(TL), Mahammad Mubharak M(TM-1), Maharaja Abishek A(TM-2), Lokeshwaran K(TM-3).

