

## เรื่อง การวิเคราะห์ข้อมูลรายรับรายจ่ายและข้อมูลการเดินทาง

#### จัดทำโดย

นายชิษณุพงศ์ วรวิจิตรชัยกุล รหัสประจำตัว 6010502543

เสนอ

ผส.ดร.สุภาพร เอื้อจงมานี

รายงานนี้เป็นส่วนหนึ่งของการเรียนวิชา
01204314 สถิติสำหรับการประยุกต์ทางวิศวกรรมคอมพิวเตอร์
มหาวิทยาลัยเกษตรศาสตร์

#### คำนำ

รายงานฉบับนี้เป็นส่วนหนึ่งของของวิชาสถิติสำหรับการประยุกต์ทางวิศวกรรม
คอมพิวเตอร์ โดยมีจุดประสงค์เพื่อให้ผู้จัดทำได้ฝึกการรวบรวมข้อมูล และนำข้อมูลที่
ได้มาสร้างเป็นกราฟเพื่อวิเคราะห์ข้อมูล รวมทั้งการตั้งสมมติฐานทางสถิติ การทดสอบ
สมมติฐาน และการสรุปผลการทดสอบสมมติฐาน ซึ่งเป็นการประยุกต์ใช้หลักวิชาสถิติ
ที่สำคัญ

ทั้งนี้ทางผู้จัดทำหวังเป็นอย่างยิ่งว่ารายงานฉบับนี้จะสามารถเป็นประโยชน์ต่อผู้ ที่เข้ามาศึกษาไม่มากก็น้อย และหากมีข้อผิดพลาดประการใด ทางผู้จัดทำต้องขออภัย มา ณ ที่นี้ด้วย

> นาย ชิษณุพงศ์ วรวิจิตรชัยกุล ผู้จัดทำ

# สารบัญ

| หัวข้อ                                            | หน้า  |
|---------------------------------------------------|-------|
| การเก็บข้อมูล                                     | 3     |
| Visualization                                     |       |
| การเตรียมข้อมูลสำหรับทำ visualization             | 4     |
| Time-series                                       | 5-6   |
| Part-to-whole                                     | 7     |
| Deviation                                         | 8-10  |
| Hypothesis test                                   |       |
| การเตรียมข้อมูลสำหรับทำ Hypothesis test           | 11-12 |
| Hypothesis test                                   | 13-14 |
| Anova on single factor                            |       |
| การเตรียมข้อมูลสำหรับทำ Anova on single factor    | 15    |
| Anova on single factor                            | 16    |
| Anova on two factor                               |       |
| การเตรียมข้อมูลสำหรับทำ Anova on two factor       | 17    |
| Anova on two factor                               | 18    |
| Categorical data analysis                         |       |
| การเตรียมข้อมูลสำหรับทำ Categorical data analysis | 19    |
| Categorical data analysis                         | 20    |
| สรุป                                              | 21    |

## การเก็บข้อมูล

ข้อมูลที่นำมาใช้ในการวิเคราะห์ คือข้อมูลค่าใช้จ่ายทั้งหมดของนายชิษณุพงศ์ วรวิจิตรชัยกุล ตั้งแต่วันพฤหัสบดีที่ 9 มกราคม 2563 ถึงวันพุธที่ 22 มกราคม 2563 รวมเป็นระยะเวลา 14 วัน



รูปที่ 1 ตัวอย่างข้อมูลจาก Google sheet : 6010502543\_Assignment\_1 (Collecting\_data)

#### Visualization

จากข้อมูลในรูปที่ 1 นำมาจัดเรียงใหม่ให้เหมาะสำหรับนำไปใช้ในการวิเคราะห์ โดยแบ่งรายจ่ายออกเป็น 3 ส่วน คือ 1. ค่าอาหาร 2. ค่าเดินทาง และ 3. ค่าใช้จ่ายอื่นๆ เช่น ค่าอุปกรณ์ทำความสะอาด ค่าตัดผม ค่าสนามฟุตบอล ฯลฯ

| 20 | Day | Food expenses | Travel expenses | Other expenses |
|----|-----|---------------|-----------------|----------------|
| 0  | 9   | 94            | 28              | 121            |
| 1  | 10  | 113           | 0               | 0              |
| 2  | 11  | 359           | 0               | 0              |
| 3  | 12  | 100           | 0               | 0              |
| 4  | 13  | 80            | 28              | 0              |
| 5  | 14  | 372           | 28              | 0              |
| 6  | 15  | 130           | 29              | 0              |
| 7  | 16  | 176           | 28              | 69             |
| 8  | 17  | 590           | 31              | 0              |
| 9  | 18  | 460           | 16              | 657            |
| 10 | 19  | 137           | 15              | 0              |
| 11 | 20  | 127           | 27              | 0              |
| 12 | 21  | 210           | 27              | 1000           |
| 13 | 22  | 157           | 15              | 0              |

รูปที่ 2 ข้อมูลจาก Google sheet : 6010502543\_Assignment\_1 (Data\_visualization)



Food expenses between 09-22 Jan 2022

รูปที่ 3 กราฟ Time\_series\_FoodExpenses

• กราฟแสดงค่าอาหารตั้งแต่วันพฤหัสบดีที่ 9 ถึงวันพุธที่ 22 มกราคม 2563

Date

- กราฟ time-series แสดงให้เห็นถึงแนวโน้มของค่าใช้จ่ายในเรื่องอาหารที่ เปลี่ยนแปลงไปในแต่ละวันเป็นระยะเวลา 14 วัน
- จากกราฟแสดงให้เห็นถึงค่าใช้จ่ายในเรื่องอาหารที่ไม่คงที่ในแต่ละวัน บางวันมี
  ค่าใช้จ่ายเพียง 100 บาท ในขณะที่บางวันค่าใช้จ่ายกลับสูงถึง 600 บาท แต่จะ
  สังเกตุเห็นได้ว่าในวันที่ 17 และ 18 มกราคม มีค่าใช้จ่ายสูงกว่าในวันอื่นๆ
  เนื่องจากเป็นวันศุกร์และเสาร์ ซึ่งเป็นวันที่นิสิตไม่มีเรียนและกลับไปอยู่ที่
  บ้านทำให้มีค่าใช้จ่ายสูงกว่าปกติ





รูปที่ 4 กราฟ Time series TravelExpenses

- กราฟแสดงค่าเดินทางตั้งแต่วันพฤหัสบดีที่ 9 ถึงวันพุธที่ 22 มกราคม 2563
- กราฟ time-series แสดงให้เห็นถึงแนวโน้มของค่าใช้จ่ายในการเดินทางที่ เปลี่ยนแปลงไปในแต่ละวันเป็นระยะเวลา 14 วัน
- จากกราฟแสดงให้เห็นถึงค่าใช้จ่ายในการเดินทางที่แตกต่างกันไปในแต่ละวัน ซึ่งแบ่งออกเป็น 3 แบบ คือ 1. ประมาณ 30 บาท 2. ประมาณ 15 บาท และ 3. ไม่มีค่าใช้จ่ายในการเดินทาง โดยแบบที่ 1 เกิดจากค่าใช้จ่ายทั้งขาไปและ ขากลับจากมหาวิทยาลัย แบบที่ 2 เกิดจากมีค่าใช้จ่ายแค่ขาไปเพียงอย่างเดียว ขากลับติดรถเพื่อนกลับมา และแบบที่ 3 ไม่มีค่าใช้จ่ายเนื่องจากไม่มีเรียน

Expenses between 09-22 Jan 2022



รูปที่ 5 กราฟ Part\_to\_Whole\_Expenses

- กราฟแสดงค่าใช้จ่ายทั้งหมดตั้งแต่วันพฤหัสบดีที่ 9 ถึงวันพุธที่ 22 มกราคม
   2563 โดยแบ่งรายจ่ายออกเป็น 3 ส่วน คือ 1. ค่าอาหาร 2. ค่าเดินทาง และ
   3. ค่าใช้จ่ายอื่นๆ
- Stacked Bar Graph แสดงให้เห็นสัดส่วนของค่าใช้จ่ายทั้งหมดที่แตกต่างกันไป ในแต่ละวันเป็นระยะเวลา 14 วัน
- จากกราฟแสดงให้เห็นถึงค่าใช้จ่ายในเรื่องอาหารที่มีทุกวันแต่อาจแตกต่างกัน
   ในเรื่องปริมาณ เนื่องจากรับประทานอาหารทุกวัน แต่อาหารไม่เหมือนกันใน
   แต่ละวัน ค่าใช้จ่ายในการเดินทางไม่ได้มีทุกวันเนื่องจากบางวันไม่มีการเดินทาง
   และค่าใช้จ่ายอื่นๆที่มีแค่บางวันเนื่องจากเป็นค่าใช้จ่ายที่เพิ่มมาจากปกติ เช่น
   ค่าตัดผม ค่าสนามฟุตบอล

จากข้อมูลในรูปที่ 2 นำมาคำนวณหาค่าใช้จ่ายที่เปลี่ยนแปลงไปเมื่อเทียบกับวัน ก่อนหน้าเพื่อใช้ในการสร้างกราฟ Deviation โดยข้อมูลเริ่มต้นที่วันที่ 10 (นำวันที่ 10 เทียบกับวันที่ 9)

|    | Day | Food expenses | Travel expenses |
|----|-----|---------------|-----------------|
| 0  | 10  | 19            | -28             |
| 1  | 11  | 246           | 0               |
| 2  | 12  | -259          | 0               |
| 3  | 13  | -20           | 28              |
| 4  | 14  | 292           | 0               |
| 5  | 15  | -242          | 1               |
| 6  | 16  | 46            | -1              |
| 7  | 17  | 414           | 3               |
| 8  | 18  | -130          | -15             |
| 9  | 19  | -323          | -1              |
| 10 | 20  | -10           | 12              |
| 11 | 21  | 83            | 0               |
| 12 | 22  | -53           | -12             |

รูปที่ 6 ข้อมูลจาก Google sheet : 6010502543 Assignment 1 (Data\_deviation)





รูปที่ 7 กราฟ Deviation\_FoodExpense

- กราฟแสดงค่าอาหารตั้งแต่วันศุกร์ที่ 10 ถึงวันพุธที่ 22 มกราคม 2563 ที่ เปลี่ยนแปลงไปเมื่อเทียบกับวันก่อนหน้า
- Bar Graph แสดงให้เห็นค่าใช้จ่ายในเรื่องอาหารที่เพิ่มขึ้นและลดลงในแต่ละวัน
- จากกราฟแสดงให้เห็นถึงค่าใช้จ่ายในเรื่องอาหารที่มีการเพิ่มขึ้นและลดลงค่อน ข้างมาก ซึ่งเกิดจากการรับประทานอาหารที่ไม่เหมือนกันในแต่ละวัน



Travel expenses compared to the previous day

รูปที่ 8 กราฟ Deviation\_TravelExpense

-30

- กราฟแสดงค่าเดินทางตั้งแต่วันศุกร์ที่ 10 ถึงวันพุธที่ 22 มกราคม 2563
   ที่เปลี่ยนแปลงไปเมื่อเทียบกับวันก่อนหน้า
- Bar Graph แสดงให้เห็นค่าใช้จ่ายในการเดินทางที่เพิ่มขึ้นและลดลงในแต่ละวัน

Date

จากกราฟแสดงให้เห็นถึงค่าใช้จ่ายในการเดินทางในวันที่ 10 ที่ลดลงมามาก
 เนื่องจากในวันที่ 9 มีการเดินทางไปมหาลัยแต่วันที่ 10 ไม่มีการเดินทางไปไหน
 วันที่ 11 และ 12 ไม่มีการเดินทางเช่นกันทำให้ไม่เกิดการเปลี่ยนแปลงของค่าใช้
 จ่ายและกราฟมีค่าเป็น 0 แต่ในวันที่ 13 มีเรียนทำให้มีค่าใช้จ่ายในการเดินทาง
 และกราฟกลายเป็นบวก ในวันต่อๆมามีเรียนเป็นปกติจึงทำให้ค่าใช้จ่ายไม่ค่อย
 มีการเปลี่ยนแปลง

### Hypothesis test on two data sets

จากข้อมูลในรูปที่ 2 มีการเปลี่ยนแปลงตารางข้อมูลใหม่โดยทำการเพิ่มคอลัมน์
Weekend\_or\_Weekday เข้ามาแยกระหว่างวันธรรมดาและวันหยุด เพื่อใช้ในการทำ
Hypothesis test

|    | Day | Food expenses | Travel expenses | Other expenses | Weekend_or_Weekday |
|----|-----|---------------|-----------------|----------------|--------------------|
| 0  | 9   | 94            | 28              | 121            | Weekday            |
| 1  | 10  | 113           | 0               | 0              | Weekday            |
| 2  | 11  | 359           | 0               | 0              | Weekend            |
| 3  | 12  | 100           | 0               | 0              | Weekend            |
| 4  | 13  | 80            | 28              | 0              | Weekday            |
| 5  | 14  | 372           | 28              | 0              | Weekday            |
| 6  | 15  | 130           | 29              | 0              | Weekday            |
| 7  | 16  | 176           | 28              | 69             | Weekday            |
| 8  | 17  | 590           | 31              | 0              | Weekday            |
| 9  | 18  | 460           | 16              | 657            | Weekend            |
| 10 | 19  | 137           | 15              | 0              | Weekend            |
| 11 | 20  | 127           | 27              | 0              | Weekday            |
| 12 | 21  | 210           | 27              | 1000           | Weekday            |
| 13 | 22  | 157           | 15              | 0              | Weekday            |

รูปที่ 9 ข้อมูลจาก Google sheet : 6010502543\_Assignment\_1 (Data\_Weekday-Weekend)

จุดประสงค์ : เพื่อหาว่าค่าเฉลี่ยของค่าอาหารในช่วงวันธรรมดา และวันเสาร์-อาทิตย์ เท่ากันหรือไม่ df\_weekday = df3[df3.Weekend\_or\_Weekday=='Weekday']
df\_weekday

|    | Day | Food expenses | Travel expenses | Other expenses | Weekend_or_Weekday |
|----|-----|---------------|-----------------|----------------|--------------------|
| 0  | 9   | 94            | 28              | 121            | Weekday            |
| 1  | 10  | 113           | 0               | 0              | Weekday            |
| 4  | 13  | 80            | 28              | 0              | Weekday            |
| 5  | 14  | 372           | 28              | 0              | Weekday            |
| 6  | 15  | 130           | 29              | 0              | Weekday            |
| 7  | 16  | 176           | 28              | 69             | Weekday            |
| 8  | 17  | 590           | 31              | 0              | Weekday            |
| 11 | 20  | 127           | 27              | 0              | Weekday            |
| 12 | 21  | 210           | 27              | 1000           | Weekday            |
| 13 | 22  | 157           | 15              | 0              | Weekday            |

df\_weekend = df3[df3.Weekend\_or\_Weekday=='Weekend']
df\_weekend

|    | Day | Food expenses | Travel expenses | Other expenses | Weekend_or_Weekday |
|----|-----|---------------|-----------------|----------------|--------------------|
| 2  | 11  | 359           | 0               | 0              | Weekend            |
| 3  | 12  | 100           | 0               | 0              | Weekend            |
| 9  | 18  | 460           | 16              | 657            | Weekend            |
| 10 | 19  | 137           | 15              | 0              | Weekend            |

df\_weekday.describe()

|       | Day       | Food expenses | Travel expenses | Other expenses |
|-------|-----------|---------------|-----------------|----------------|
| count | 10.000000 | 10.000000     | 10.0000         | 10.000000      |
| mean  | 15.700000 | 204.900000    | 24.1000         | 119.000000     |
| std   | 4.423423  | 158.955934    | 9.5038          | 312.301848     |
| min   | 9.000000  | 80.000000     | 0.0000          | 0.000000       |
| 25%   | 13.250000 | 116.500000    | 27.0000         | 0.000000       |
| 50%   | 15.500000 | 143.500000    | 28.0000         | 0.000000       |
| 75%   | 19.250000 | 201.500000    | 28.0000         | 51.750000      |
| max   | 22.000000 | 590.000000    | 31.0000         | 1000.000000    |

df\_weekend.describe()

|       | Day       | Food expenses | Travel expenses | Other expenses |
|-------|-----------|---------------|-----------------|----------------|
| count | 4.000000  | 4.000000      | 4.000000        | 4.00           |
| mean  | 15.000000 | 264.000000    | 7.750000        | 164.25         |
| std   | 4.082483  | 173.652911    | 8.958236        | 328.50         |
| min   | 11.000000 | 100.000000    | 0.000000        | 0.00           |
| 25%   | 11.750000 | 127.750000    | 0.000000        | 0.00           |
| 50%   | 15.000000 | 248.000000    | 7.500000        | 0.00           |
| 75%   | 18.250000 | 384.250000    | 15.250000       | 164.25         |
| max   | 19.000000 | 460.000000    | 16.000000       | 657.00         |

Claim: Average food expenses on weekdays is the same as the average food expenses on weekends.

```
Let
```

```
\mu_1 = average food expenses on weekdays \mu_2 = average food expenses on weekends. \mu_1 - \mu_2 = difference average food expenses.
```

 $\Delta 0 = 0$ 

 $H_0: \mu_1 - \mu_2 = 0$ 

 $H_a: \mu_1 - \mu_2 \neq 0$ 

```
meanx = df_weekday["Food expenses"].mean()
204.9
meany = df_weekend["Food expenses"].mean()
264.0
stdx = df_weekday["Food expenses"].std()
158.95593379578156
stdy = df_weekend["Food expenses"].std()
173.6529105236458
countx = df_weekday["Food expenses"].count()
county = df_weekend["Food expenses"].count()
county
mean = meanx-meany
-59.09999999999994
sd = np.sqrt((pow(stdx,2)/countx) + (pow(stdy,2)/county))
100.32712605383563
test_statistics = (mean-0)/sd
test_statistics
-0.5890729887776002
x = (pow(stdx, 2)/countx)
y = (pow(stdy,2)/county)
\label{eq:degree_of_freedom} \textit{=} \; \mathsf{math.floor}(\mathsf{pow}(\mathsf{x}+\mathsf{y},2)/((\mathsf{pow}(\mathsf{x},2)/\mathsf{countx}-1) + (\mathsf{pow}(\mathsf{y},2)/\mathsf{county}-1)))
degree_of_freedom
t.ppf(1-alpha, degree_of_freedom)
2.4469118487916806
```

- Test statistics = -0.5891
- Given  $\alpha = 0.05$
- Degree of freedom = 6
- $t_{0.05/2,6} = 2.4469$
- Rejection region :  $t \ge 2.4469$  or  $t \le -2.4469$
- Test statistics fall outside the rejection region.
- Null hypothesis is not rejected.
- Average food expenses on weekdays is the same as the average food expenses on weekends.

### Anova on single factor

เนื่องจากข้อมูลเดิมไม่สามารถนำมาทำ Anova on single factor ได้ ดังนั้นจึง นำข้อมูลใหม่มาใช้ โดยข้อมูลที่นำมาใช้คือ ข้อมูลการค่าเดินทางโดย มอเตอร์ไซค์ รถเมล์ และ รถไฟฟ้า ของนิสิตทุกคนที่เรียนวิชาสถิติสำหรับการประยุกต์ทาง วิศวกรรมคอมพิวเตอร์

|    | Motocycle Expense (Baht) | Bus Expense (Baht) | BTS Expense (Baht) |
|----|--------------------------|--------------------|--------------------|
| 0  | 15.0                     | 13                 | 43.0               |
| 1  | 10.0                     | 15                 | 43.0               |
| 2  | 10.0                     | 13                 | 15.0               |
| 3  | 10.0                     | 15                 | 26.0               |
| 4  | 10.0                     | 14                 | 10.0               |
| 5  | 40.0                     | 14                 | 10.0               |
| 6  | 13.0                     | 14                 | 10.0               |
| 7  | 10.0                     | 15                 | 10.0               |
| 8  | 20.0                     | 13                 | 10.0               |
| 9  | 15.0                     | 15                 | 44.0               |
| 10 | 10.0                     | 8                  | 53.0               |
| 11 | 20.0                     | 8                  | 44.0               |
| 12 | 40.0                     | 8                  | 44.0               |
| 13 | 40.0                     | 8                  | 44.0               |
| 14 | 20.0                     | 14                 | 44.0               |
| 15 | 10.0                     | 1                  | 44.0               |
| 16 | 12.0                     | 13                 | NaN                |

รูปที่ 10 ข้อมูลจาก Google sheet : 6010502543 Assignment 1 (Data\_TravelExpenses\_shared)

จุดประสงค์ : เพื่อหาว่าค่าเฉลี่ยของค่าใช้จ่ายในการเดินทางของยานพาหนะแต่ละ ประเภทเท่ากันหรือไม่

- Analyze 3 types of travel expenses.
- Show that travel expenses from 3 travel type are the same at  $\alpha = 0.05$
- Let

$$\mu_1$$
 = mean of Motorcycle expense.

$$\mu$$
2 = mean of Bus expense.

 $\mu$ 3 = mean of BTS expense.

$$I = 3$$
,  $J_1 = 51$ ,  $J_2 = 57$ ,  $J_3 = 16$ ,  $N = 124$ 

Hypothesis

$$H_0: \mu_1 = \mu_2 = \mu_3$$

 $H_{\text{a}}$  : Not all  $\mu i\text{'s}$  are equal. (at least two of the  $\mu i\text{'s}$  are different.)

<sup>\*</sup> The calculation method is in Google sheet : 6010502543\_Assignment\_1\_Calculation\_method (Anova one factor)

|           | df  | SS         | MS        | f      |
|-----------|-----|------------|-----------|--------|
| Treatment | 2   | 2714.0353  | 1357.0176 | 9.0679 |
| Error     | 121 | 18107.7067 | 149.6505  |        |
| Total     | 123 | 20821.7419 |           |        |

• p-value is 0.000214

0.00021402381039281604

- $\alpha = 0.05$
- At  $\alpha = 0.05 > \text{p-value} = 0.000214$
- Test statistics fall inside the rejection region.
- Null hypothesis is rejected.
- Travel expenses from 3 travel types are not the same.

#### Anova on two factors (additive)

ข้อมูลที่จะนำมาใช้ทำ Anova on two factors คือ ข้อมูลค่าอาหาร โดยมี 2 ตัวแปร คือ 1. ช่วงเวลาในการรับประทาน (มื้ออาหาร) แบ่งเป็น 2 เวลา ได้แก่

- 1. อาหารกลางวัน
- 2. อาหารเย็น
- 2. วันในสัปดาห์ แบ่งได้ 7 วัน

|   | Day       | Food expenses (lunch) | Food expenses (dinner) |
|---|-----------|-----------------------|------------------------|
| 0 | thursday  | 106                   | 164                    |
| 1 | friday    | 292                   | 160                    |
| 2 | saturday  | 295                   | 330                    |
| 3 | sunday    | 117                   | 120                    |
| 4 | monday    | 67                    | 140                    |
| 5 | tuesday   | 414                   | 168                    |
| 6 | wednesday | 117                   | 170                    |

รูปที่ 11 ข้อมูลจาก Google sheet : 6010502543\_Assignment\_1 (Data\_FoodExpenses\_by\_day\_of\_week)

จุดประสงค์ : เพื่อหาว่าวันในสัปดาห์และมื้ออาหารส่งผลต่อค่าใช้จ่ายในเรื่องอาหาร หรือไม่

- Test 2 meals on 7 days of week at significance level = 0.05
- A = Days of week, I = 7
- B = Meals, J = 2
- Hypothesis

HOA:  $\alpha 1 = \alpha 2 = \alpha 3$  (Factor A has no effect on Food expenses.)

 $H_{aA}$ : Not all  $\alpha$  i's are equal. (Factor A has an effect on Food expenses.)

HOB:  $\beta_1 = \beta_2 = \beta_3$  (Factor B has no effect on Food expenses.)

 $H_{aB}$ : Not all  $\beta$  i's are equal. (Factor B has an effect on Food expenses.)

- SST = 133908.00, df = 13
- SSA = 88570.00, df = 6
- SSB = 1738.29, df = 1
- SSE = 43599.71, df = 6

| f.ppf(0.95,6,6)   |  |
|-------------------|--|
| 4.283865713822639 |  |
| f.ppf(0.95,1,6)   |  |
| 5.987377607273699 |  |

\* The calculation method is in Google sheet : 6010502543\_Assignment\_1\_Calculation\_method (Anova two factor)

|       | df | SS        | MS       | f    | Rejection region |
|-------|----|-----------|----------|------|------------------|
| A     | 6  | 88570.00  | 14761.67 | 2.03 | 4.28             |
| В     | 1  | 1738.29   | 1738.29  | 0.24 | 5.99             |
| Error | 6  | 43599.71  | 7266.62  |      |                  |
| Total | 13 | 133908.00 |          |      |                  |

- Both two test statistics fall outside the rejection region.
- HOA is not rejected. Factor A (Days of week) has no effect on Food expenses.
- Hob is not rejected. Factor B (Meals) has no effect on Food expenses.
- Days of week and meals have no effect on food expenses.

### Categorical data analysis (homogeneity)

ข้อมูลที่จะนำมาใช้ทำ Categorical data analysis คือ ข้อมูลค่าอาหาร โดยมี 2 ตัวแปร คือ 1. ประเภทของค่าใช้จ่าย แบ่งเป็น 3 ประเภท ได้แก่

- 1. ค่าอาหาร
- 2. ค่าเดินทาง
- 3. ค่าใช้จ่ายอื่นๆ
- 2. วันในสัปดาห์ แบ่งได้ 7 วัน

|   | Day       | Food expenses | Travel expenses | Other expenses |
|---|-----------|---------------|-----------------|----------------|
| 0 | thursday  | 270           | 56              | 190            |
| 1 | friday    | 703           | 31              | 0              |
| 2 | saturday  | 819           | 16              | 657            |
| 3 | sunday    | 237           | 15              | 0              |
| 4 | monday    | 207           | 55              | 0              |
| 5 | tuesday   | 582           | 55              | 1000           |
| 6 | wednesday | 287           | 44              | 0              |

รูปที่ 12 ข้อมูลจาก Google sheet : 6010502543\_Assignment\_1 (Data\_Expenses\_by\_day\_of\_week)

จุดประสงค์ : เพื่อหาว่าค่าใช้จ่ายสำหรับแต่ละวันในสัปดาห์มีอัตราส่วนแบ่งเป็นแต่ละ ประเภท (ค่าอาหาร, ค่าเดินทาง, ค่าใช้จ่ายอื่นๆ) เท่ากันหรือไม่

- In one week has 7 days.
- Test in expenses types at significance level = 0.05
   (Food expenses, Travel expenses and other expenses)
- Hypothesis

Ho: All days of week are homogeneous in term of expenses types (Food expenses, Travel expenses, other expenses)

I = Days of week = 7

J =expenses types = 3

That is we test whether  $p_{1j} = p_{2j} = ... = p_{7j}$  for j = 1, 2, 3

Ha: All days of week are not homogeneous

• Test statistics = 1595.66

1-chi2.cdf(1595.66,12)

0.0

- Degree of freedom = 12
- p-value is 0.0
- $\bullet$   $\alpha = 0.05$
- At  $\alpha = 0.05 > \text{p-value} = 0.0$
- Test statistics fall inside the rejection region.
- Null hypothesis is rejected.
- All days of week are not homogeneous in terms of expenses types.

<sup>\*</sup> The calculation method is in Google sheet : 6010502543\_Assignment\_1\_Calculation\_method (Categorical\_data\_analysis)

### สรุป

จากการวิเคราะห์ข้อมูลค่าใช้จ่ายทั้งหมดของนายชิษณุพงศ์ วรวิจิตรชัยกุล ตั้งแต่วันพฤหัสบดีที่ 9 มกราคม 2563 ถึงวันพุธที่ 22 มกราคม 2563 ทำให้ทราบว่าค่า ใช้จ่ายในเรื่องอาหารในแต่ละวันค่อนข้างแตกต่างกัน ส่วนค่าใช้จ่ายในการเดินทางจะ แตกต่างกันไปขึ้นอยู่กับว่าวันนั้นมีเรียน และมีเพื่อนกลับพร้อมกันหรือไม่ ในส่วนของ ค่าใช้จ่ายอื่นๆจะมีแค่บางวันเนื่องจากเป็นค่าใช้จ่ายที่เพิ่มมาจากค่าใช้จ่ายปกติในชีวิต ประจำวัน เช่น ค่าตัดผม ค่าสนามฟุตบอล

จากการทดสอบถึงแม้ว่าค่าใช้จ่ายในเรื่องอาหารของแต่ละวันจะแตกต่างกันแต่ ค่าเฉลี่ยของค่าอาหารในช่วงวันธรรมดา และวันเสาร์-อาทิตย์นั้นเท่ากัน

ค่าเฉลี่ยของค่าใช้จ่ายในการเดินทางของยานพาหนะแต่ละประเภทนั้นไม่เท่า กันเนื่องจากค่าใช้จ่ายสำหรับการโดยสารรถไฟฟ้า BTS นั้นสูงกว่าค่าใช้จ่ายในการเดิน ทางประเภทอื่น

วันในสัปดาห์และมื้ออาหารไม่ส่งผลต่อค่าใช้จ่ายในเรื่องอาหาร ทำให้ทราบว่า ไม่ว่าจะทานอาหารในวันไหนและในช่วงเวลาใดค่าใช้จ่ายในการรับประทานอาหารก็ ไม่แตกต่างกัน

ค่าใช้จ่ายสำหรับแต่ละวันในสัปดาห์มีอัตราส่วนแบ่งเป็นแต่ละประเภท (ค่า อาหาร, ค่าเดินทาง, ค่าใช้จ่ายอื่นๆ) ไม่เท่ากัน เนื่องจากค่าใช้จ่ายในเรื่องอาหาร มากกว่าค่าใช้จ่ายในการเดินทางอยู่พอสมควร และค่าใช้จ่ายอื่นๆจะมีแค่ในบางวัน