



# Análisis Avanzado - Conjunto no medible

Primer cuatrimestre de 2021

Daniel Carando - Victoria Paternostro

Dto. de Matemática - FCEN - UBA



## Axioma de elecca (enunciado informal)

Sea A es familia de conjuntos no vacíos,

$$\mathcal{A} = \{A_i \ : \ i \in I\}.$$

Entonces, podemos elegir un elemento de cada A<sub>i</sub>.

Construción de un conjunto no medible

Análisis Avanzado D. Carando - V. Paternostro

#### Construción de un conjunto no medible

• Consideramos los conjuntos  $\{\mathbb{Q} + x\}_{x \in \mathbb{R}}$ 

#### Construción de un conjunto no medible

- Consideramos los conjuntos  $\{\mathbb{Q}+x\}_{x\in\mathbb{R}}$
- Si  $x, y \in \mathbb{R}$ , entonces  $(\mathbb{Q} + x) \cap (\mathbb{Q} + y) = \emptyset$  of  $\mathbb{Q} + x = \mathbb{Q} + y$ .

• 
$$\mathbb{Q} + x = \mathbb{Q} + y$$
 si y sólo si  $x - y \in \mathbb{Q}$ .

DX7=924,600

y=X+1

• Definimos una relación de equivalencia en  $\mathbb{R}$ :  $\underline{x \sim y}$  si y sólo si  $\underline{x - y} \in \mathbb{Q}$ .

Análisis Avanzado D. Carando - V. Paternostro

- Definimos una relación de equivalencia en  $\mathbb{R}$ :  $x \sim y$  si y sólo si  $x y \in \mathbb{Q}$ .
- Sea(S)un conjunto formado con un elemento de cada clase de equivalencia.

Análisis Avanzado D. Carando - V. Paternostro DM-FCEN-UBA

- Definimos una relación de equivalencia en  $\mathbb{R}$ :  $x \sim y$  si y sólo si  $x y \in \mathbb{Q}$ .
- Sea S un conjunto formado con un elemento de cada clase de equivalencia. Entonces, si  $x, y \in S$  tenemos que  $(\mathbb{Q} + x) \cap (\mathbb{Q} + y) = \emptyset$ .

A X J & Q

- Definimos una relación de equivalencia en  $\mathbb{R}$ :  $x \sim y$  si y sólo si  $x y \in \mathbb{Q}$ .
- Sea S un conjunto formado con un elemento de cada clase de equivalencia. Entonces, si  $x,y\in S$  tenemos que  $(\mathbb{Q}+x)\cap (\mathbb{Q}+y)=\emptyset$ .

• Si  $x \in \mathbb{R}$ , entonces  $(\mathbb{Q} + x) \cap [0,1] \neq \emptyset$ . Set give  $(\mathbb{Q} + x) \cap [\mathbb{Q},1] = \emptyset$   $x+q \notin [0,1] + q \in \mathbb{Q}$   $\Rightarrow q \notin [-x,1-x] + q \in \mathbb{R}$  ABS[ABS[ Definimos en conjunto E así:

Para codo xe 5 elijo

(Q+x) n[0,1], E=2/2: xe5/4.

A EC TOIL

· En Q+x tiene oxactamente un elimento (Jx) gen

elm. está en [0,1]

$$C_1 = y_{x_1} = x_1 + q_1;$$
  $C_2 = y_{x_2} = x_2 + q_2$   $\Rightarrow C_1 - C_2 = (x_1 - x_2) + (q_1 - q_2) \Rightarrow x_1 - x_2 \in \mathbb{Q}$  Pero  $x_1, x_2 \in S \Rightarrow ASB^1$ .

Análisis Avanzado D. Carando - V. Paternostro

ightharpoonup Sea  $\{q_n\}_{n\in\mathbb{N}}$  una numeración de  $\mathbb{Q}$ .

Sea  $\{q_n\}_{n\in\mathbb{N}}$  una numeración de  $\mathbb{O}$ .

### Afirmación:

$$\mathbb{R} = \bigcup_{n \in \mathbb{N}} E + q_n$$

v la unión es disjunta.

. This es disjuita.

S) 
$$\times \in \mathbb{R}$$
 =  $\rightarrow 3$ ,  $\times \in \mathbb{S} / \times \in \mathbb{Q} + \times \rightarrow \times = 9.0 + \times = 9.0 + \times \rightarrow \times = 9.0 + 9.0 + \times = 9.0 + 9.0 + \times = 9.0 + 9.0 + 9.0 + 9.0 + 9.0 + 9.0 + 9.0 + 9.0 + 9.0 + 9$ 

El conjunto *E* es no medible.

$$\frac{1}{100} = \frac{1}{100} \left( \frac{6}{100} + \frac{1}{100} \right) = \frac{1}{100} \frac{1}{100} = \frac{1}{100} = \frac{1}{100} \frac{1}{100} = \frac{1$$

· Considerement ? ruin ma unera ain de los racionals

Análisis Avanzado D. Carando - V. Paternostro