

第二重要

Principles of Compiler Construction

SH definition不重要,拓扑排序不重要

L-attribute = translation scheme 重要 translation scheme就是SDT,关于一些详细的概念不是很清楚,需要再复习

yac 自底向上 能力更强 性能没有因此减弱

Prof. Wen-jun LI

School of Computer Science and Engineering Inslwj@mail.sysu.edu.cn

语义分析和中间代码生成是同时实现的,因为这两部分没有形式化理论支撑,同时使用的工具都是编程工具

语义分析与中间代码生成一起讲,因为原理是一样的。

Lecture 8. Syntax-Directed Translation

- 1. Introduction
- 2. Syntax-Directed Definition: Examples
- Evaluation Order and Dependency Graphs
- S-Attributed Definitions
- 5. L-Attributed Definitions and Translation Schemes
- 6. L-Attributed Definitions in Predictive Parsing
- 7. L-Attributed Definitions in LR Parsing

1. Introduction

- What is syntax-directed translation?
 - E.g. denotational semantics
 - Every component has its denotation.
 - The denotation of a composite component depends only on the denotations of its subcomponents.

• Why syntax-directed?

Applications of Syntax-Directed Translation

- Two compiling phases are covered
 - Semantic analysis
 - Intermediate code generation
- Our learning steps
 - The general concepts and framework of syntax-directed translation
 - Application of these concepts and framework to semantic analysis and intermediate code generation.

Basic Ideas

- Associate grammar symbols with attributes
 - Based on specific applications.
 - The data to be manipulated.
- Associate productions with semantic rules
 - Also named semantic actions.
 - The operations that manipulate the attributes.

More Insights: A Virtual Machine

- Syntax-directed translation can be explained as a virtual machine
 - What to do: semantic actions.
 - How to do: evaluation order, i.e. the order in which the actions are performed.

Challenges

- Efficiency of the decision of semantic actions execution order
 - The best way is to execute the semantic actions while parsing.
 - I.e. the evaluation order of actions is the same as the order of parsing output.
 - Trade-off: capability vs. efficiency

Concepts

- Syntax-directed definition
 - Translation Scheme
- Annotated parse tree
 - Annotated parse tree with actions
- Synthesized Attribute
- Inherited Attribute

SDD 语法制导定义

Syntax-Directed Definition

	Productions	Semantic Rules		
1	回车 L → E n	L.val = E.val Side-effects print(L.val)		
2	$E \rightarrow E_1 + T$ 标是后面引用	$E.val = E_1.val + T.val$		
3	E → T 用 T 区分	E.val = T.val		
4	$T_1 \rightarrow T_2 * F$	$T_1.val = T_2.val * F.val$		
5	T → F	T.val = F.val		
6	F → (E)	F.val = E.val		
7	F → digit	F.val = digit .lexval		
Different subfix style				

Annotated Parse Tree

Inherited Attribute 左部

<u>左部</u>右部 综合属性 继承属性

No.	Productions	Semantic Rules		
1	$D \rightarrow TL$	L.inh = T.type		
2	$T \rightarrow int$	T.type = INTEGER		
3	T → real	T.type = REAL		
4	$L \rightarrow L_1$, id	$L_1.inh = L.inh$ addType(id .entry, L.inh)		
5	L → id	addType(id .entry, L.inh)		

Annotated Parse Tree

2. Syntax-Directed Definition: Examples

- Construction of Syntax Trees
- Construction of DAG
- Type Structure of Arrays

Syntax Trees

SDD 语法制导定义

No.	Productions	Semantic Rules	
1	$E \rightarrow E_1 + T$	E.node = new Node('+', E ₁ .node, T.node)	
2	$E \rightarrow E_1 - T$	E.node = new Node('-', E ₁ .node, T.node)	
3	E → T	E.node = T.node	
4	T → (E)	T.node = E.node	
5	$T \rightarrow id$	T.node = new Leaf(id , id .entry)	
6	T → num	T.node = new Leaf(num , num .val)	

Syntax Trees (cont')

Syntax tree for a – 4 + c

Page **15/63**

DAG

有向无环图

- DAG: Directed Acyclic Graph
 - a + a * (b c) + (b c) * d

使用现成节点,不再重复新建。从而形成DAG, 好处是自动合并了重复的子表达式

- (1) $p_1 = new Leaf(id, entry-a)$
 - $p_2 = \mathbf{new} \text{ Leaf}(\mathbf{id}, \text{ entry-a})$
- (3) $p_3 = new Leaf(id, entry-b)$
- (4) $p_4 = \mathbf{new} \operatorname{Leaf}(\mathbf{id}, \operatorname{entry-c})$
- (5) $p_5 = \text{new Node}('-', p_3, p_4)$
- (6) $p_6 = \text{new Node}('*', p_2, p_5)$
- (7) $p_7 = \text{new Node}('+', p_1, p_6)$
- (8) $p_8 = \text{new Leaf(id, entry-b)}$
- (9) \setminus p₉ = **new** Leaf(**id**, entry-c)
- (10) $p_{10} = \text{new Node}('-', p_8, p_9)$
- (11) $p_{11} = \mathbf{new} \operatorname{Leaf}(\mathbf{id}, \operatorname{entry-d})$
- (12) $p_{12} = \text{new Node}('*', p_{10}, p_{11})$
- (13) $p_{13} = \text{new Node}('+', p_7, p_{12})$

Page **16/63**

Type Structures

No.	Productions	Semantic Rules
1	T → B C	T.type = C.type C.base = B.type
2	B → int	B.type = int
3	B → float	B.type = float
4	$C \rightarrow [num] C_1$	C.type = $array$ (num .val, C ₁ .type) C ₁ .base = C.base
5	$C \rightarrow \epsilon$	C.type = C.base

Type Structures (cont')

Type structure for int[2][3]

3. Evaluation Order and Dependency Graphs

general but useless

- A general framework of working steps:
 - Introduce attributes to grammar symbols.
 - Define semantic rules for each production.
 - Draw the dependency graph based on the parse tree.
 - Determine the evaluation order by topological sorting of the dependency graph.
 - Execute the semantic rules according to the evaluation order.

Work with **explicit** parse tree

Pros and Cons

Pros

- A general and powerful approach.
- Can be used to demonstrate the principles of evaluation order of syntax-directed definitions.

Cons

- Explicit parse tree.
- Low efficiency and impractical.

The Previous Syntax-Directed Definition

No.	Productions	Semantic Rules	
1	$D \rightarrow TL$	L.inh = T.type	
2	$T \rightarrow int$ T.type = INTEGER		
3	T → real	T.type = REAL	
4	$L \rightarrow L_1$, id	$L_1.inh = L.inh$ addType(id .entry, L.inh)	
5	L → id	addType(id .entry, L.inh)	

之后考虑:LR、递归下降预测分析器中如何实现

Dependency Graph: An Example

adj. 假的,仿真的 6, 8, 10 are dummy attributes

addType(id.entry, L.inh) ^{没有计算出值,但是会产生影响}

Evaluation Order

- Topological sorting
 - Specification: dependency graph
 - Implementation: evaluation order
- Mapping a specification to an implementation
 - 1:1 -- without any cycles in the graph
 - 1:n -- without any cycles in the graph
 - 1:0 -- with cycles in the graph

Implicit Parse Trees

- S-attributed definitions 都是综合属性,顺序都是 upward
 - Every attribute is synthesized.
 - Guarantee an evaluation order that is the same order of the output of LR parsing.
- L-attributed definitions 综合 或 非右的继承属性
 - Every attribute is synthesized, or only inherited from parent or left siblings (not from right siblings).
 - Guarantee an evaluation order that is the same order of recursive descent predictive parsing.

4. S-Attributed Definitions

- A syntax-directed definition with only synthesized attributes
- Evaluation order for S-attributed definitions
 - Upwards, and only upwards
 - The same order as LR parsing!

Specification vs. Implementation

 Evaluate S-attributed definitions while bottom-up parsing

The Previous Calculator Example

No.	Productions	Semantic Rules	
1	L → E n	L.val = E.val print(L.val)	
2	$E \rightarrow E_1 + T$	$E.val = E_1.val + T.val$	
3	$E \to T$	E.val = T.val	
4	$T_1 \rightarrow T_2 * F$	$T_1.val = T_2.val * F.val$	
5	T → F	T.val = F.val	
6	F → (E)	F.val = E.val	
7	F → digit	F.val = digit .lexval	

Associate attributes of grammar symbols with positions in the parsing stack.

Implementation in LR Parsing

No.	Productions	Code	Notes
1	L → E n	<pre>stack[ntop].val = stack[top - 1].val; print(stack[ntop].val);</pre>	
2	$E \to E_1 + T$	stack[ntop].val = stack[top - 2].val + stack[top].val;	stack[top - 1].val = '+'
3	$E\toT$	new top	
4	$T_1 \rightarrow T_2 * F$	stack[ntop].val = stack[top - 2].val * stack[top].val;	stack[top - 1].val = '*'
5	$T \rightarrow F$		
6	F → (E)	stack[ntop].val = stack[top - 1].val;	stack[top].val = ')' stack[top - 2].val = '('
7	F → digit		

Setup an attribute stack with the same height as parsing (state) stack:

Evaluation While LR Parsing

Step	States (Illustrative)	Attributes	Input	Code	Output
1	\$	\$	3 * 5 + 4 n \$		
2	\$ 3	\$ 3	* 5 + 4 n \$		$F \rightarrow digit$
3	\$ F	\$ 3	* 5 + 4 n \$		$T \rightarrow F$
4	\$ T	\$ 3	* 5 + 4 n \$		
5	\$ T *	\$ 3 *	5 + 4 n \$		
6	\$ T * 5	\$ 3 * 5	+ 4 n \$		$F \rightarrow digit$
7	\$ T * F	\$ 3 * 5	+ 4 n \$	3 * 5	$T \rightarrow T * F$
8	\$ T	\$ 15	+ 4 n \$		$E \to T$
9	\$ E	\$ 15	+ 4 n \$		
10	\$ E +	\$ 15 +	4 n \$		
11	\$ E + 4	\$ 15 + 4	n \$		F o digit
12	\$ E + F	\$ 15 + 4	n \$		$T \to F$
13	\$ E + T	\$ 15 + 4	n \$	15 + 4	$E \rightarrow E + T$
14	\$ E	\$ 19	n \$		
15	\$ E n	\$ 19 n	\$	print(19)	L → E n
16	\$ L	\$ 19	\$	accept	

5. L-Attributed Definitions and Translation Schemes

- A syntax-directed definition is L-attributed if each inherited attribute depends only on attributes of its **left** siblings or **inherited** attributes of its parent.
 - Synthesized attributes are supported.
 - Can NOT depend on any synthesized attributes of its parent! (Why?)

Depth-First Evaluation Order

- The evaluation order of an L-attributed definition
 - The same as depth-first visiting of the parse tree.
 - Also the same order as top-down parsing.

```
void dfvisit(n: Node) {
   for (each child m of n, from left to right) {
      evaluate inherited attributes of m;
      dfvisit(m)
   }
   evaluate synthesized attributes of n
}
```

Translation Schemes

- Translation scheme vs. L-attributed definition
 - Explicit evaluation order in a translation scheme.

 Perform semantic actions in a left-to-right depth-first order.

Translation Scheme: Example 1

翻译模式与语法制导翻译SDD的区别:用花括号写,里面的可以动作可以插入 表达式,从而说明计算顺序

O Postfix translation scheme for an L-attributed definition:

```
\begin{array}{lll} \mathsf{L} \to \mathsf{E} \, \mathbf{n} & \{ \, \mathsf{print}(\mathsf{E}.\mathsf{val}); \, \} \\ \mathsf{E} \to \mathsf{E}_1 + \mathsf{T} & \{ \, \mathsf{E}.\mathsf{val} = \mathsf{E}_1.\mathsf{val} + \mathsf{T}.\mathsf{val}; \, \} \\ \mathsf{E} \to \mathsf{T} & \{ \, \mathsf{E}.\mathsf{val} = \mathsf{T}.\mathsf{val}; \, \} \\ \mathsf{T} \to \mathsf{T}_1 \, {}^*\mathsf{F} & \{ \, \mathsf{T}.\mathsf{val} = \mathsf{T}_1.\mathsf{val} \, {}^*\mathsf{F}.\mathsf{val}; \, \} \\ \mathsf{T} \to \mathsf{F} & \{ \, \mathsf{T}.\mathsf{val} = \mathsf{F}.\mathsf{val}; \, \} \\ \mathsf{F} \to \mathsf{(E)} & \{ \, \mathsf{F}.\mathsf{val} = \mathsf{E}.\mathsf{val}; \, \} \\ \mathsf{F} \to \mathsf{digit} & \{ \, \mathsf{F}.\mathsf{val} = \mathsf{digit}.\mathsf{lexval}; \, \} \end{array}
```

Translation Scheme: Example 2

Translation scheme for LR parsing:

```
L \rightarrow E n
                     { print(stack[top - 1].val);
                      top = top - 1; 
E \rightarrow E_1 + T { stack[top - 2].val = stack[top - 2].val + stack[top].val;
                      top = top - 2;
\mathsf{E} \to \mathsf{T}
T \rightarrow T_1 * F { stack[top - 2].val = stack[top - 2].val * stack[top].val;
                      top = top - 2; 
T \rightarrow F
F \rightarrow (E) { stack[top - 2].val = stack[top - 1].val;
                      top = top - 2; 
F \rightarrow digit
```

Translation Scheme: Example 3

- Translation scheme for transformation from infix to postfix expressions:
 - Actions inside productions.

Translation Scheme: Example 3 (cont')

嵌入的原因:深度优先,从左到右遍历的时候发挥作用,与执行顺序保持一致。

Parse Tree with Actions

动作要用虚线、动作用括号括起来,动作过长的时候标上序号,树上挂序号

Translation Scheme: Example 4

- Problematic translation scheme for prefix expressions:
 - In both top-down and bottom-up parsing.

Translation Scheme: Example 4 (cont')

真正能起作用 From L-Attributed Definitions to Translation Schemes →只能从左兄弟或者父节点继承

Three transformation rules

- Inherited attributes of A must be calculated before A.
- An action must not refer to a synthesized attribute of a symbol to the right of the action.
 - A synthesized attribute must be computed after all attributes it references have been computed.

```
Does not satisfy the requirements: 

S \rightarrow A_1 A_2 \{A_1.in = 1; A_2.in = 2;\}

A \rightarrow a \{print(A.in);\}
```

Typesetting Boxes: **EQN** and **T_EX**

	No.	Productions	Semantic Actions		
	1	$S \rightarrow B$	B.ps = 10 右部 继承属性	ps = point size	
	2	$B \rightarrow B_1 B_2$	$B_1.ps = B.ps$ $B_2.ps = B.ps$ $B.ht = max(B_1.ht, B_2.ht)$ $B.dp = max(B_1.dp, B_2.dp)$	ht = height dp = depth	
Higher precede		$B \rightarrow B_1$ sub B_2	$B_1.ps = B.ps$ $B_2.ps = B.ps \times 70\%$ $B.ht = max(B_1.ht, B_2.ht - B.ps \times 25\%)$ $B.dp = max(B_1.dp, B_2.dp + B.ps \times 25\%)$)	
right associati	4	$B \rightarrow (B_1)$	$B_1.ps = B.ps$ $B.ht = B_1.ht$ $B.dp = B_1.dp$		
	5	B → text	B.ht = getHight(B.ps, text .lexval) B.dp = getDepth(B.ps, text .lexval)		

From L-Attributed Definition to Translation Scheme

```
S
                        \{ B.ps = 10; \} \rightarrow
    \rightarrow
В
                        \{ B_1.ps = B.ps; \}
          B_1
                       \{ B_2.ps = B.ps; \}
          B_2
                        { B.ht = max(B_1.ht, B_2.ht);
                           B.dp = max(B_1.dp, B_2.dp); 
                        \{ B_1.ps = B.ps; \}
         B₁ sub
                       { B_2.ps = B.ps \times 70\%; }
                        { B.ht = max(B_1.ht, B_2.ht - B.ps \times 25\%);
          B_2
                           B.dp = max(B<sub>1</sub>.dp, B<sub>2</sub>.dp + B.ps \times 25%); }
                        \{ B_1.ps = B.ps; \}
          B<sub>1</sub> )
                        \{ B.ht = B_1.ht;
                          B.dp = B_1.dp; 综合属性放最后
                        { B.ht = getHight(B.ps, text.lexval);
B \rightarrow text
                           B.dp = getDepth(B.ps, text.lexval); }
```

6. L-Attributed Definitions in Predictive Parsing

Development steps

May have left-recursions

- Write a possibly LL(1) grammar for syntax rules. 可能含有左递归
- Define an L-attributed definition by appending semantic rules.
- Transform the L-attributed definition to a translation scheme.
- Eliminate left-recursion in the translation scheme.
- Write a recursive descent predictive parser
 (translator).
 递归下降预测分析器,实际上不仅是parser了,而是translator

Eliminating Left-Recursion: A Simple Example

- A motivating example: a simple case
 - Trick: treating actions as terminals if they do not calculate any attributes.

Eliminating Left-Recursion: More Examples

A more complex case

```
{ E.val = E_1.val + T.val; }
E \rightarrow E_1 + T_1
E \rightarrow E_1 - T
                          \{ E.val = E_1.val - T.val; \}
E \rightarrow T
                          { E.val = T.val; }
T \rightarrow (E)
                          { T.val = E.val; }
T \rightarrow num
                           { T.val = num.val; }
                                                   { R.i = T.val; }
                           \rightarrow
                                                   { E.val = R.s; }
                                                   \{ R_1.i = R.i + T.val; \}
                                                   \{ R.s = R_1.s; \}
                       R \rightarrow -T
                                                   \{ R_1.i = R.i - T.val; \}
                                                   \{ R.s = R_1.s; \}
                                  R_1
                                                   \{R.s = R.i;\}
                      T \rightarrow (E)
                                                   { T.val = E.val; }
                       T \rightarrow num
                                                   { T.val = num.val; }
```

Page **44/63**

Eliminating Left-Recursion: More Examples (cont')

Evaluation Order of Input Expression 9 – 5 + 2

Eliminating Left-Recursion

- General rules
 - Only available for S-attributed definitions (postfix translation schemes).

通式

$$\begin{array}{ccc} A & \rightarrow & A_1 \ Y \ \{ \ A.a = g(A_1.a, \ Y.y); \ \} \\ A & \rightarrow & X \ \{ \ A.a = f(X.x); \ \} \end{array}$$

A
$$\rightarrow$$
 X { R.i = f(X.x); } R { A.a = R.s; }
R \rightarrow Y { R₁.i = g(R.i, Y.y); } R₁ { R.s = R₁.s; }
R \rightarrow ϵ { R.s = R.i; }

Writing a Predictive Parser

- Review: writing a recursive descent predictive parser (only for parsing)
 - Each grammar symbol corresponds to a (recursive) subprogram.
 - The start symbol corresponds to the main entry subprogram.
 - In each subprogram, branching actions with regard to the lookahead.

原来的做法

Writing a Predictive Parser: An Example

For parsing only

```
R \rightarrow addop T  { R_1.i = mknode(addop.lexeme, R.i, T.nptr); }
       R_1 { R.s = R_1.s; }
                \{ R.s = R.i; \}
void R() {
    if (lookahead == addop) {
         match (addop);
         T();
       else {
         // do nothing
```

Writing a Predictive Translator

- Writing a translator with semantic actions
 - Each inherited attribute corresponds to a formal parameter.
 - All synthesized attributes correspond to the return value
 - Multiple synthesized attributes may be merged in a single record.
 - Each attribute of the child nodes corresponds to a local variable.
 - Process the right side of the production
 - Terminals: match()
 - Nonterminals: procedure call
 - Actions: direct execution (copy)

Translation Scheme:

From a Parser to a Translator

```
addop T
                  \{R_1.i = mknode(addop.lexeme, R.i, T.nptr);\}
                  \{ R.s = R_1.s; \}
                  \{ R.s = R.i; \}
SyntaxTreeNode R(SyntaxTreeNode i) {
    Syntax TreeNode s: // synthesized attributes
    char addopLexeme; // temporary
    if (lookahead == addop) {
         addopLexeme = lookahead.lexval;
         match (addop);
          nptr = T();
           i = mknode (addopLexeme, i, t nptr);
        \dot{r}1 s \neq R(r1 i);
          = r1 s;
    } else {
        s = i;
    return 's;
```

7. L-Attributed Definitions in LR Parsing

- S-attributed definitions are easy to be evaluated by LR parsing.
 - See section 4 in these slides.
- What are the challenges for evaluating L-attributed definitions in LR parsing?
 - Not all actions are on the right-most of a production body (postfix translation scheme).
 - Inherited attributes are not stored in the parsing stack.

Make Use of Tricks

- Using markers to move all embedded actions to the right-most of a production body.
- Tracing inherited attributes in the parsing stack.
 - 1. The simplest case: locating inherited attributes which are calculated by **copy rules**.
 - 2. Introduce **markers** to help to locate inherited attributes in the stack.
 - Also make use of new markers to locate inherited attributes which are not calculated by copy rules.

Move Embedded Actions to Right-Most

 A marker is an ε-production that acts as a place-holder.

Trace a Copied Inherited Attribute

 Calculations of inherited attributes are the biggest source of embedded actions.

Trace a Rewriting Inherited Attribute (cont')

Productions	Code	
$D \rightarrow T L$		
$T \rightarrow int$	stack[ntop].val = INTEGER;	
$T \rightarrow \mathbf{real}$	stack[ntop].val = REAL;	
$\stackrel{-7}{\downarrow}$ $\stackrel{-7}{\downarrow}$ $\stackrel{-1}{\downarrow}$ id	addType(stack[top].val, stack[top - 3].val);	
Ļ → id	addType(stack[top].val, stack[top - 1].val);	

一个栈是状态,一个是综合属性,继承属性通过综合属性追踪

Predict Positions of Inherited Attributes

Introduce new markers

```
S \rightarrow \mathbf{a} A \qquad \{C.i = A.s; \}
C
S \rightarrow \mathbf{b} A B \qquad \{C.i = A.s; \}
C
C \rightarrow \mathbf{c} \qquad \{C.s = g(C.i); \}
```

保证C的值从栈的正下方一个处来 C $S \rightarrow \mathbf{a} \, A$ $\{C.i = A.s; \}$ C $S \rightarrow \mathbf{b} \, A \, B$ $\{M.i = A.s; \}$ C $M \rightarrow \mathbf{c}$ $\{C.i = M.s; \}$ $C \rightarrow \mathbf{c}$ $\{C.s = g(C.i); \}$ $\{C.s = g(C.i); \}$ $\{C.s = M.s; \}$

Store Calculated Inherited Attributes

Also make use of new markers

```
S \rightarrow \mathbf{a} A { C.i = f(A.s); }
C
C \rightarrow \mathbf{c} { C.s = g(C.i); }
```

```
S \rightarrow \mathbf{a} A \{M.i = A.s;\} \frac{\mathbb{C}}{\mathbb{C}} \mathbb{C} \mathbb{C}
```

通用的解决方式:加marker存储值

A Practical Example

Productions	Semantic Actions			
$S \to K B$	$\underline{B.ps} = \underline{K.s}$			
$K \to \epsilon$	K.s = 10 Anytime when B is reduced			
$B \rightarrow B_1 L B_2$	$ \frac{B_1.ps = B.ps}{L.i = B.ps} \\ \frac{B_2.ps = L.s}{B.ht = max(B_1.ht, B_2.ht)} \\ B.dp = max(B_1.dp, B_2.dp) $ B.ps is immediately under length of the control o			
$L \to \epsilon$	L.s = L.i			
$B \rightarrow B_1$ sub M B_2	$\begin{array}{l} \underline{B_1.ps} = \underline{B.ps} \\ \underline{M.i} = \underline{B.ps} \\ \underline{B_2.ps} = \underline{M.s} \\ \underline{B.ht} = \max(B_1.ht, B_2.ht - B.ps \times 25\%) \\ \underline{B.dp} = \max(B_1.dp, B_2.dp + B.ps \times 25\%) \end{array}$			
$M \to \epsilon$	M.s = M.i × 70%			
$B \to (N \; B_1)$	$\frac{B_1.ps = B.ps}{N.i = B.ps}$ $B.ht = B_1.ht$ $B.dp = B_1.dp$			
$N \to \epsilon$	N.s = N.i			
B → text	B.ht = getHight(B.ps, text .lexval) B.dp = getDepth(B.ps, text .lexval)			

A Practical Example (cont')

Productions		Code			
S → K B			ps is treated as a synthesized attribute		
$K \to \epsilon$	stack[nto	stack[ntop].ps = 10; 直接赋值			
$B \rightarrow B_1 L B_2$	stack[ntop].ht = max(stack[top - 2].ht, stack[top].ht); stack[ntop].dp = max(stack[top - 2].dp, stack[top].dp);				
$L \rightarrow \epsilon$	stack[ntop].ps = stack[top - 1].ps;				
$B \rightarrow B_1$ sub M B_2	$stack[ntop].ht = max(stack[top - 3].ht, stack[top].ht - stack[top - 4].ps \times 25\%); \\ stack[ntop].dp = max(stack[top - 3].dp, stack[top].dp + stack[top - 4].ps \times 25\%); \\$				
$M \to \epsilon$	stack[ntop].ps = stack[top - 2].ps × 70%				
$B \rightarrow (N B_1)$	stack[ntop].ht = stack[top - 1].ht stack[ntop].dp = stack[top - 1].dp				
$N \to \epsilon$	stack[ntop].ps = stack[top - 1].ps;				
$B \rightarrow \textbf{text}$	<pre>stack[ntop].ht = getHight(stack[top - 1].ps, stack[top].lexval); stack[ntop].dp = getDepth(stack[top - 1].ps, stack[top].lexval);</pre>				

Remove all calculations for inherited attributes

Exercise 8.1

- Given the translation scheme for the EQN language (see pp.40 in this lecture), calculate the height and depth of the input: text sub text sub text.
 - Suppose that for each text,
 - o getHeight(ps, text.lexval) = 8 * ps
 - o getDepth(ps, text.lexval) = 0

Further Reading

- Dragon Book, 2nd Edition (DBv2)
 - Comprehensive Reading:
 - Section 5.1-5.3 on introduction to syntaxdirected translation.
 - Section 5.4-5.5 on the implementation of translation schemes in top-down and bottomup LR parsing.
 - Skip Reading:
 - DBv1 Section 5.8-5.10 on advanced implementation of translation schemes.

Enjoy the Course!

