Lecture 29: Personal genomics

Milestones in genomic sciences & genomic medicine

First-in-human testing of immunotherapy against

sequencing-defined patient-specific neoantigens

(Ott et al., 2017; Sahin et al., 2017)

Medicine

Science

Maturation of human genome-wide polygenic risk scores (Khera et al., 2018)

Schendure (2019) Cell

Genomic-medicine throughout the human life cycle

Exponential growth in genomic testing

Direct to consumer testing

Non-invasive prenatal testing

Genome sequencing

Govt-funded national genomic medicine initiatives

Govt-funded national genomic medicine initiatives

ML applications across the human lifespan

Embryo selection for IVF Genome interpretation sick newborns

Voice medical coach via a smart speaker (like Alexa)

K+

Mental health Paramedic dx of heart attack, stroke Assist reading of scans, slides, lesions

Prevent blindness

Classify cancer, identify mutations

Promote patient safety

Predict death in-hospital

FDA-approved ML algorithms

Company	FDA Approval	Indication
Apple	September 2018	Atrial fibrillation detection
Aidoc	August 2018	CT brain bleed diagnosis
iCAD	August 2018	Breast density via mammography
Zebra Medical	July 2018	Coronary calcium scoring
Bay Labs	June 2018	Echocardiogram EF determination
Neural Analytics	May 2018	Device for paramedic stroke diagnosis
IDx	April 2018	Diabetic retinopathy diagnosis
Icometrix	April 2018	MRI brain interpretation
Imagen	March 2018	X-ray wrist fracture diagnosis
Viz.ai	February 2018	CT stroke diagnosis
Arterys	February 2018	Liver and lung cancer (MRI, CT) diagnosis
MaxQ-AI	January 2018	CT brain bleed diagnosis
Alivecor	November 2017	Atrial fibrillation detection via Apple Watch
Arterys	January 2017	MRI heart interpretation

ML/AI-driven personalized health guidance

Social, behavioral Genomics and -omic layers Biosensors Immune system Gut microbiome Anatome Environmental Physical activity, sleep, nutrition Medication, alcohol, drugs Labs, plasma DNA, RNA Family history Communication, speech Cognition, state of mind All medical history World's medical literature, continually updated

Personal genomics @ MSU

George Mias

Polygenic risk score

$$PRS_i = \sum_{j \in SNPS} d_{ij}$$
 $PRS_i = \sum_{j \in SNPS} \beta_j d_{ij}$

Polygenic risk score

Polygenic risk score @ MSU

Gustavo de los Campos & Stephen Hsu

Grand challenges in genomic sciences & genomic medicine

- A spatiotemporally resolved molecular atlas of all human cell types, throughout the lifecycle, and in both health and disease
- · A comprehensive catalog of common genetic variants in which all human populations, as well as all classes of genetic variation, are well represented
- A "telomere-to-telomere" ungapped reference representation of the human genome

Science

 A functionally validated catalog of human regulatory elements, annotated with the gene(s) that they regulate and the cellular, developmental, and/or disease contexts in which they are active

- The definitive identification of causal variants and genes for thousands of **GWAS** associations
- A comprehensive understanding of the genetic basis of all Mendelian disorders
- A basic understanding of the primary function(s) of every human gene
- Algorithms that can accurately predict the consequences of arbitrary genetic variants at the molecular/cellular level

- A database of whole genome sequences for at least 0.1% of living humans, integrated with electronic medical records and other phenotypes, and broadly accessible for research
- The routine use of exome or genome sequencing to diagnose the vast majority of suspected cases of Mendelian disease
- The routine use of genomewide genotyping and polygenic risk scores for common disease risk prediction

- The generation of catalogs of clinically meaningful functional scores for all possible SNVs in all "clinically actionable" genes
- The routine use of exome or genome sequencing to quide cancer treatment, including for patient-specific immunotherapy
- Medicine
- The successful exploitation of cell-free DNA for early (or at least earlier) detection of common cancers
- Algorithms that can accurately predict the consequences of arbitrary genetic variants at the organismal level