Simulation Exercise with Exponential distribution

Kaung Myat Khant

2025-02-23

Overview

In this exercise, there will be a demonstration of a simulation of a distribution of a small sample to approximate the population parameter. And the demonstration will use an exponential distribution.

Simulation

Here, we will let the lambda (rate parameter of the distribution) be 0.2. For an exponential distribution, $mean = Standard\ deviation = 1/lambda$. Let's set the lambda = 0.2 for all the simulation and we will simulate the average of 40 exponential samples a thousand time.

```
## [1] 4.811212 5.360077 4.592871 4.900051 5.516619 5.612835
```

The distribution of simulated data of 1000 are shown in the following histogram.

```
hist(sim_vec,
    main = "Distribution of the simulated data",
    xlab = "Sample means",
    col = "maroon")
```

Distribution of the simulated data

Sample mean versus Theorectical mean

```
## Calculate the means
sample_mean <- mean(sim_vec)
theoretical_mean <- 1/lambda</pre>
```

Here:

- The sample mean from average of 1000 simulation is 5
- Theoretical mean = 5.

You can see that the sample mean is equal to theoretical mean.

```
par(mfrow = c(1,2), mar = c(5,2,2,2))
hist(sim_vec, main = "Sample mean", xlab = "Sample mean", col = "grey80")
abline(v = sample_mean, lwd = 2.5, lty= 1, col = "navy")
hist(rexp(40,0.2), main = "Theoretical mean", xlab = "Exponential samples", col = "grey80")
abline(v = theoretical_mean, lwd = 2.5, lty= 2, col = "darkgreen")
```


Sample Variance vs Theoretical Variance

```
sample_variance <- var(sim_vec) # sample standard deviation
theoretical_variance <- 1/lambda^2/n # theoretical standard deviation</pre>
```

- Sample variance = 0.6004928
- Theoretical variance = 0.625Both the sample variance and theoretical variance are approximately 0.6

Distribution

We will see if the distribution of simulated sample means are normal through visualization.

The figure shows that the sample means are distributed normally.

Probability density funtion of the sample means

Sample mean

Figure 1: Probabilty density function of the sample means with normal density curve