

Dartmouth

Unimodal Face Classification with Multimodal Training

FG 2021

Jodhpur, India December 15 - 18, 2021

Wenbin Teng¹ Chongyang Bai²

¹ Boston University ² Dartmouth College

Goal: Train classification model with both 2D and 3D face data and test with single modality.

Why Multimodal Training Unimodal Testing (MTUT)?

(b) Low quality RGB

B (c) Point cloud

• MT: Low quality of RGB image/point cloud lack of texture features.

• UT: Not both modalities are available in practice.

Contributions

- Propose MTUT framework for face classification.
- Establish cross-modal autoencoders to learn embeddings containing information of both the available and missing modalities during test.
- Develop adaptive embedding divergence (AED) loss to avoid interference from any potential noisy modality.

Cross-modal Autoencoder

Encoder. We encode 2D RGB images I into $\mathbf{x}' \in \mathbb{R}$ with ResNet-18 [1] and encode 3D point clouds \mathbf{P} into $\mathbf{x}^P \in \mathbb{R}$ with PointNet [2]. Encoded features are concatenated with face attribute vector $\mathbf{a} \in \mathbb{R}$:

$$\mathbf{x}'' = f(enc'(\mathbf{I}), \mathbf{a}), \ \mathbf{x}'^P = f(enc^P(\mathbf{P}), \mathbf{a})$$
 (1)

where f is a fully-connected neural network.

Decoder. There are two cases based on the available modality during test and we perform optimization of reconstruction loss:

- Case 1: 3D available and 2D missing. Both \mathbf{x}'^I and \mathbf{x}'^P are decoded into $\hat{\mathbf{I}}$ and $\hat{\mathbf{P}}$ to reconstruct \mathbf{I} :

$$\hat{\mathbf{I}} = dec^{\prime}(\mathbf{x}^{\prime\prime}), \ \hat{\mathbf{P}} = dec^{\prime}(\mathbf{x}^{\prime\prime}), \ \mathcal{L}_{RE}^{\prime} = \|\hat{\mathbf{I}} - \mathbf{I}\|_{2} + \|\hat{\mathbf{P}} - \mathbf{I}\|_{2}$$
 (2)

- Case 2: 2D available and 3D missing. Both \mathbf{x}'^I and \mathbf{x}'^P are decoded into $\hat{\mathbf{I}}$ and $\hat{\mathbf{P}}$ to reconstruct \mathbf{P} :

$$\hat{\mathbf{I}} = dec^P(\mathbf{x}''), \ \hat{\mathbf{P}} = dec^P(\mathbf{x}'^P), \ \mathcal{L}_{RE}^P = \|\hat{\mathbf{I}} - \mathbf{P}\|_2 + \|\hat{\mathbf{P}} - \mathbf{P}\|_2$$
 (3)

Cross-modal Autoencoder (cont'd)

3D Autoencoder. According to [2], PointNet extracts a 1024-dimension node embedding for each vertex $v \in \mathbf{P}$. The global point features are aggregated by a max pooling operator:

$$\mathbf{x}^P = enc^P(\mathbf{P}) = \max_{i=1}^n h(\mathbf{x}_i) \tag{4}$$

where h is a set of graph convolutional neural networks. The max pooling operation is reversed by applying a Gaussian sampling with the maximum value is set as \mathbf{x}^P :

$$\hat{\mathbf{P}}_{i,k}^{0} = \min \left\{ \mathcal{N}(0,1), \mathbf{x}_{k}^{P} \right\}, \text{ where } k = 1, 2, ..., 1024$$

Adaptive Embedding Divergence Loss

Assume \mathcal{M} is the missing modality and \mathcal{A} is the available modality during test mode, where $\mathcal{M}, \mathcal{A} \in \{\mathbf{I}, \mathbf{P}\}$. The AED loss is defined as:

$$\mathcal{L}_{AED} = \rho \left\| \mathbf{x}^{\mathcal{M}} - \mathbf{x}^{\mathcal{A}} \right\|_{2}, \text{ where } \rho^{\mathcal{M}} = \begin{cases} e^{\beta \Delta_{\mathcal{M}} \mathcal{L}} - 1, \, \Delta_{\mathcal{M}} \mathcal{L} > 0 \\ 0, & \text{otherwise} \end{cases}$$
 (6)

where $\Delta_{\mathcal{M}} = \mathcal{L}_{cls}^{\mathcal{M}} - \mathcal{L}_{cls}^{\mathcal{A}}$ is the difference between loss of classification and $\beta > 0$ is a hyper-parameter controlling the impact from the loss difference.

Objective Function

The objective function is similarly separated by two cases based on the availability of testing modality:

• Case 1: 3D available and 2D missing. x^P is used for classification.

$$\mathcal{L} = \mathcal{L}_{cls}^P + \lambda_1 \mathcal{L}_{RE}^I + \lambda_2 \mathcal{L}_{AED}$$
, where $\mathcal{L}_{cls}^P = -\mathbb{E}_{\mathbf{x}^P} \log \mathbb{P}(\mathbf{y}|\mathbf{x}^P)$ (7)

• Case 2: 2D available and 3D missing. x^{l} is used for classification.

$$\mathcal{L} = \mathcal{L}_{cls}^{\prime} + \lambda_1 \mathcal{L}_{RE}^P + \lambda_2 \mathcal{L}_{AED}$$
, where $\mathcal{L}_{cls}^{\prime} = -\mathbb{E}_{\mathbf{x}^{\prime}} \log \mathbb{P}(\mathbf{y}|\mathbf{x}^{\prime})$ (8)

End-to-End Architecture

Figure: An overview of proposed MTUT face recognition framework.

Results

Test Modality	Method	Kinect		CASIA	
		Accuracy (%)	F1-score (%)	Accuracy (%)	F1-score (%)
2D	VGG-11	81.04	80.84	90.87	91.05
	VGG-11+MTUT	84.29	82.92	92.00	92.28
	ResNet-18	94.87	94.65	94.70	94.55
	ResNet-18+MTUT	97.43	97.17	95.24	94.87
	FaceNet	90.66	90.56	91.57	91.43
	FaceNet+MTUT	93.12	92.97	93.42	93.28
	DeepID	63.19	63.19	76.54	76.12
	DeepID+MTUT	67.50	67.49	78.24	77.82
	DeepFace	75.00	74.55	74.38	73.49
	DeepFace+MTUT	80.19	79.21	75.45	74.18
3D	PointNet	79.49	79.17	82.49	81.31
	PointNet+MTUT	86.58	86.34	89.84	89.41

Table: Face classification accuracy and F1-score on Kinect and CASIA datasets. We compare the results of our MTUT methods and model trained with single modality.

Method	Test Modality	Kinect	CASIA
DCC-CAE	2D	91.67	92.64
SSA	2D	93.59	95.03
MTUT (ours)	2D	97.43	95.24
DCC-CAE	3D	73.72	82.81
SSA	3D	85.89	89.08
MTUT (ours)	3D	85.90	89.84

Table: Comparison with other state-of-the-art multimodal learning methods on Kinect and CASIA. The backbone method for 2D and 3D modality are ResNet-18 [1] and PointNet [2]. The scores are reported as accuracy.

Ablation Study

Figure: Ablation study. Our methods are *MTUT+AED+Attr*. UTUT stands for unimodal training unimodal testing. Note AED loss contribute significantly to the overall performance of our architecture.

References

^[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition.

In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.

 ^[2] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
 Pointnet: Deep learning on point sets for 3d classification and segmentation.
 In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 652–660, 2017.

^[3] Claude E. Shannon.

A mathematical theory of communication.

Bell System Technical Journal, 27(3):379–423, 1948.