

Sistemas Gráficos e Interacção

Época Especial	2018-09-04
N.º	Nome
Duração da prova	
•	ergunta: assinalada com parêntesis rectos
Perguntas de esco	Iha múltipla: cada resposta incorrecta desconta 1/3 do valor da pergunta

Parte Teórica 20%

- a. [2.5] Considere dois pontos genéricos P e Q (não coincidentes) e o ponto R = P + α * (Q P)
 - i. Se $0.0 < \alpha < 1.0$ então o ponto R pertence ao segmento PQ
 - ii. Se α = 0.0 então o ponto R coincide com o ponto Q
 - iii. Se α = 1.0 então o ponto R coincide com o ponto P
 - iv. Se α = 2.0 então o ponto R coincide com o ponto médio do segmento PQ
- b. **[2.5]** Num sistema gráfico, a aplicação de uma transformação linear ou linear afim a um ponto *P* expresso em coordenadas homogéneas é efectuada da seguinte maneira
 - i. Se a transformação for uma escala, com uma adição de matrizes: P' = T + P
 - ii. Se a transformação for uma translação, com uma multiplicação de matrizes: $P' = T \times P$
 - iii. Se a transformação for uma rotação, com uma multiplicação e uma adição de matrizes: $P' = A \times P + D$
 - iv. Nenhuma das anteriores
- c. **[2.5]** A qual das seguintes sequências de transformações corresponde uma matriz de transformação composta igual à matriz identidade?

```
i. glTranslated(1.0, 2.5, 4.0); glTranslated(4.0, 2.5, 1.0);
ii. glRotated(30.0, 1.0, 0.0, 0.0); glRotated(30.0, -1.0, 0.0, 0.0);
iii. glScaled(2.0, 4.0, 8.0); glScaled(8.0, 4.0, 2.0);
```

- iv. Nenhuma das anteriores
- d. **[2.5]** O sistema de equações $x = \cos(u)$, $y = \sin(u)$, z = v, em que $0 \le u < 2\pi$ e $-0.5 \le v \le 0.5$, constitui uma parametrização válida da superfície de
 - i. Um cubo unitário centrado na origem
 - ii. Um cilindro de raio e altura unitários centrado na origem
 - iii. Uma esfera unitária centrada na origem
 - iv. Nenhuma das anteriores

- e. [2.5] Nas representações de objectos por BSP-trees
 - i. O espaço é dividido em cubos de igual dimensão
 - ii. O espaço é dividido em cubos cujos lados são potências de 2
 - iii. O espaço é dividido em poliedros convexos, não necessariamente cúbicos
 - iv. Nenhuma das anteriores
- f. [2.5] Para iluminar uma cena com um projector, deverá
 - i. Especificar para a posição da fonte de luz um conjunto de coordenadas homogéneas tal que w = 0
 - ii. Especificar para o ângulo de cutoff um valor de 180º
 - iii. Definir um valor elevado para a componente especular da luz emitida pela fonte
 - iv. Nenhuma das anteriores
- g. **[2.5]** Em OpenGL um objecto delimitado por uma superfície rugosa pode ser simulado usando um material
 - i. Com uma elevada componente de emissão
 - ii. Que reflicta significativamente a componente de luz especular
 - iii. Com um coeficiente de especularidade elevado
 - iv. Nenhuma das anteriores
- h. [2.5] A correcção perspectiva permite
 - i. Corrigir o efeito de diminuição da dimensão aparente de um objecto quando a distância do mesmo à câmara aumenta
 - ii. Corrigir o efeito de deformação que decorre da utilização de técnicas simples de interpolação linear no mapeamento de texturas em polígonos
 - iii. Corrigir o efeito de discretização (*aliasing*) que decorre da utilização de *frame buffers* de baixa resolução
 - iv. Nenhuma das anteriores

Sistemas Gráficos e Interacção

N.º	Nome

Resolução: No próprio enunciado

Época Especial

Parte Teórico-Prática

Perguntas de escolha múltipla: cada resposta incorrecta desconta 1/3 do valor da pergunta **Nota:** Em todas as perguntas, a menos que algo seja dito em contrário, assuma a posição da câmara por omissão

a. [3.0] Aplique a textura apresentada na Figura 1 a um quadrado, de modo a ficar com o aspecto apresentado na Figura 2 (a grelha serve apenas de referência; não é desenhada pelo OpenGL).

b. **[3.0]** Pretende-se modelar os edifícios de uma cidade que são exclusivamente paralelepípedos de variadas dimensões alinhados com os eixos dos X, Y e Z. Que tipo de polígonos e qual das primitivas de desenho do OpenGL serão mais indicados para realizar a modelação?

```
Tipo de polígonos:

Primitiva de desenho:
```

c. [3.0] Considerando as definições por omissão do OpenGL, pretende-se definir a normal para o quadrilátero desenhado pelo seguinte extracto de código. Qual a normal, não necessariamente unitária, perpendicular ao plano do polígono?

Nota: Pode usar funções trigonométricas com ângulos expressos em graus ou em radianos.

```
glBegin(GL_QUADS);
    glNormal3f(___, ___, ___);
    glVertex3f(1.0, 2.0, 0.0);
    glVertex3f(1.0, -2.0, 1.0);
    glVertex3f(0.0, -2.0, 1.0);
    glVertex3f(0.0, 2.0, 0.0);
glEnd();
```

2018-09-04

30%

d. [3.0] Na implementação de um jogo FPS (*First Person Shooter*) vão ser implementadas duas câmaras. A câmara "A" está centrada na cabeça do personagem e a olhar para a frente na horizontal. A câmara "B" está em frente à cabeça do personagem apontada para a cabeça do mesmo. Considere que o chão é o plano OXY e que a personagem está segundo o semieixo positivo dos Z. A posição da personagem é dada por modelo.x, modelo.y e modelo.z, a direcção em que está orientada é dada por modelo.dir, a altura da cabeça relativamente à posição da personagem é dada por modelo.cabeca e a distância desta posição à câmara por CAM DIST. Complete as instruções seguintes de modo a obter o resultado pretendido.

Câmara A		
gluLookAt(
);
Câmara B		
gluLookAt(
	 	·
		,

e. Considere o objecto representado na Figura 3 e a existência da função caixa() que desenha um cubo com 1 unidade de lado, centrado na origem.

As dimensões dos elementos são Lx, Ax e Px, em que x designa o nome do elemento.

Considere o seguinte:

- O elemento A desloca-se ao longo de um eixo paralelo ao eixo dos Z;
- O elemento B aumenta ou diminui o seu comprimento em X, estando fixo a A;
- O elemento C roda em torno de um eixo paralelo ao eixo dos X, centrado no objecto B;
- Os elementos D e E deslocam-se simultaneamente ao longo de C a distâncias opostas do seu centro;
- A secção de todos os objetos é quadrada.

Sistemas Gráficos e Interacção

Época	Especial	2018-09-04
V.º	Nome	
i.	[4.0] Construa a árvore de cena do objeto apresenta colocar as transformações que garantam o movimento	ado na Figura 3. Não se esqueça de dos elementos A, B, C, D e E.

ii. [4.0] Pretende-se controlar o movimento dos elementos D e E com as teclas do cursor (GLUT_KEY_UP e GLUT_KEY_DOWN). Complete o código que se segue de modo a implementar o controlo do movimento pretendido, directamente no callback glutSpecialFunc(). Considere que os objectos D e E só se podem tocar (e não cruzarse) e que se devem deslocar até que o seu extremo coincida com o extremo do objeto C. Use as constantes e variáveis que entender relevantes.

vo {	id Speci	.alKey(i	nt key,	int :	x, int	λ)		
}								