Module 10A: Integer sequences

MTH 225 11 November 2020

The triangular numbers are the integers in the sequence 1, 3, 6, 10, 15, 21, ... A closed formula for this sequence is $T(n)=\frac{n(n+1)}{2}$. What is the next (seventh) term of the sequence?

The triangular numbers are *also* the number of dots in each stage of the visual pattern you see here. Based on this visual pattern, a recursive definition for T(n) would be

$$T(1) = 1$$
 and $T(2) = 3$, and $T(n) = T(n-1) + T(n-2)$ when $n > 2$

$$T(1) = 1$$
, and $T(n) = T(n-1)$ when $n > 1$

$$T(1) = 1$$
, and $T(n) = T(n-1) + n$ when $n > 1$

$$T(1) = 1$$
, and $T(n) = n \cdot T(n-1)$ when $n > 1$

A sequence b_n is defined recursively by $b_1=2$ and $b_n=2^n\cdot b_{n-1}$ when n>1. The value of b_5 is

Discovered by accident:

$$b_1 = 1, b_n = 2^n b_{n-1}$$

2	$2^2 * 2 = 2^3$	$2^3 * 2^3 = 2^6$	$2^4 * 2^6 = 2^{10}$	$2^5 * 2^{10} = 2^{15}$
n=1	n=2	n=3	n=4	n=5

Exponents are 1, 3, 6, 10, 15...

$$b_n=2^{T(n)}$$

$$b_n=2^{rac{n(n+1)}{2}}$$

Why does the closed formula for T(n) work?

Combinatorial proof: T(n) is the number of dots in a right triangle with side lengths equal to n:

← Make a "green" copy of this and stack it on the right of the red copy:

← This gives a rectangle with dimensions n(n+1). The number of red dots is half of this, so T(n) = n(n+1)/2.

Partial sums

Sequences of partial sums

Given any sequence (a_i) , we can form a new sequence (b_n) by adding up the first n terms of (a_i) : The **sequence of partial sums**.

Example: The triangular numbers 1, 3, 6, 10, 15, ...

n	1	2	3	4	5
Nth term of original	1	3	6	10	15
Nth partial sum	1	1+3 = 4	1+ 3 + 6 = 10	1 + 3 + 6 + 10 = 20	1 + 3 + 6 + 10 + 15 = 35

Jamboard:

a(1)=3, a(n) = 0.5*a(n-1) when n > 1 Find the first 10 terms and the first 10 partial sums. Notice anything?

