

INSPECTION DEVICE FOR TREATED SURFACE OF BAND-SHAPED METAL

Publication number: JP2002243648 (A)

Publication date: 2002-08-28

Inventor(s): OGAMI HIDEHARU

Applicant(s): SUMITOMO METAL MINING CO

Classification:

- international: G01B11/30; G01N21/892; G01B11/30; G01N21/88; (IPC1-7): G01N21/892; G01B11/30

- European:

Application number: JP20010044045 20010220

Priority number(s): JP20010044045 20010220

Abstract of JP 2002243648 (A)

PROBLEM TO BE SOLVED: To provide an inspection device that can surely inspect a band-like metal for incomplete reflow-soldered states even when the metal is transported in a meandering state.

SOLUTION: This inspection device for the band-like metal 1 uses a fiber line lighting means 3 and a line-scanning camera 2. When the position of one side face of the band-like metal continuously changes inwardly by m pixels or more from the position of the side face in the preceding line for n lines or more and the other side face of the metal continuously changes outward by m pixels or more from the position of the side face in the preceding line for n lines or more, the inspection device discriminates that the position of one side face varies due to meandering transport of the metal.; When the position of the other side face does not change to the outside by m pixels or more from the position of the side face in the preceding line for n lines or more, a device discriminates that a defect, such as an incomplete reflow-soldered state, etc., is formed near the position of one side face of the band-like metal.

(19)日本:特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-243648

(P2002-243648A)

(43)公開日 平成14年8月28日(2002.8.28)

(50)Int.Cl.⁷
 G 0 1 N 21/892
 G 0 1 B 11/30

機別記号

F 1
 G 0 1 N 21/892
 G 0 1 B 11/30

7-35-5 (参考)
 B 2 F 0 6 3
 A 2 G 0 5 1

(21)出願事号 特願2001-44045(P2001-44045)

審査請求 未請求 請求項の数3 O.L. (全 6 頁)

(22)出願日 平成13年2月20日(2001.2.20)

(71)出願人 000183303

住友金属鉱山株式会社

東京都港区新橋5丁目11番3号

(72)発明者 大上 秀晴

千葉県市川市中里分3丁目18番5号 住友
金属鉱山株式会社中央研究所内

(74)代理人 100098223

弁理士 上田 章三

Fターム(参考) F0035 AA49 BB13 BB15 CC00 GX31

FF42 CC14 HH05 HH12 HH17

JJ02 JJ08 JJ25 LL03 QQ24

20051 AA37 AB07 BB17 CM03 CB01

DA06 EA08 EA11 EA12 EA20

EB01 ED09

(54)【発明の名称】 帯状金属処理面の検査装置

(55)【要約】

【課題】 帯状金属が施行して搬送された場合にも未リ

フロー状態を確実に検査できる検査装置を提供する。

【解決手段】 ファイバーライン照明手段3とラインスキャンカメラ2を用いた帯状金属1処理面の検査装置であつて、帯状金属の一方側端面位置が前ラインにおける一方側端面位置よりm画素以上内側に連続してnライン以上変化しかつ他方側端面位置が前ラインにおける他方側端面位置よりm画素以上外側に連続してoライン以上変化した場合には帯状金属の逆行搬送法に伴う一方側端面位置の変動と判定し、帯状金属の他方側端面位置が前ラインにおける他方側端面位置よりm画素以上外側に連続してnライン以上変化しない場合には帯状金属における一方側端面位置近傍に形成されたホリフロー状態等の欠陥と判定するようにしたことを特徴とする。

(A)▲上方から

(B)▲横方向から

1: 帯状金属
 2: ラインスキャンカメラ
 3: ライン照明手段

【特許請求の範囲】

【請求項1】一定の幅寸法を有する帯状金属を一定速度で搬送し、帶状金属処理面の検査部において上記処理面の反射像をラインスキャンカメラにより撮影し、得られた撮影像の画像解析により帯状金属の一方側端面位置を検出すると共に、上記一方側端面位置の変動に追従させてライン方向における帯状金属の検査範囲を変化させる帯状金属処理面において、

帶状金属の一方側端面位置が前ラインにおける帯状金属の一方側端面位置よりm画素以上内側に連続してロライン以上変化し、かつ、帯状金属の一方側端面位置が前ラインにおける帯状金属の一方側端面位置よりm画素以上外側に連続してロライン以上変化した場合には上記一方側端面位置の変動と判定し、上記帯状金属の一方側端面位置が前ラインにおける帯状金属の一方側端面位置よりm画素以上内側に連続してロライン以上変化し、かつ、帯状金属の一方側端面位置が前ラインにおける帯状金属の一方側端面位置よりm画素以上外側に連続してロライン以上変化しない場合には帯状金属における一方側端面位置近傍の塑形面に形成された欠陥と判定するようにしたことを特徴とする帯状金属処理面の検査装置。

【請求項2】上記請求項が3画素でありかつ上記ロラインが3ラインであることを特徴とする請求項1記載の帯状金属処理面の検査装置。

【請求項3】メキシ処理と炎に晒す光沢処理が施された帯状金属処理面の上記欠陥が、光沢処理が不十分になされた未リフロー状態であることを特徴とする請求項1または2記載の帯状金属処理面の検査装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、錫メッキなどの連續メキシ処理において炎に晒す光沢処理が施された鋼などの帶状金属における処理面の検査装置に係り、特に、帶状金属が蛇行して搬送された場合にも帶状金属処理面に形成された欠陥を確実に検出できる検査装置の改良に関するものである。

【0002】

【従来の技術】従来、鋼などの帶状金属に対し錫メッキなどのメキシ処理を連続してを行い、次いでメキシ処理面を炎であることにより光沢を施す加工法が知られており、加工された金属材料は、例えば装饰品の材料等に利用されている。

【0003】この加工法において上記メキシ処理面を炎であるがる処理が不十分(未リフロー状態)の場合、帶状金属表面の光沢が不完全になるため装饰品等の材料としては通用困難となる。

【0004】そこで、従来においては上記帶状金属における処理部の搬送下流側に検査部を設け、この検査部に図3(A)～(E)に示すように帯状金属の処理面を照射するライン照明手段3と上記処理面の反射像を撮影

するラインスキャンカメラ2を配置すると共に、このラインスキャンカメラ2で撮影された画像を解析することにより上記未リフロー状態(欠陥)を検査する方法が掲げられている。

【0005】ところで、この検査方法においてライン方向における帯状金属の検査範囲を固定し、かつその検査範囲を帯状金属の幅寸法と同一苦しくは若干長めに設定すると、検査対象である帯状金属1が図3(A)に示すように蛇行して搬送されるような場合、上記ライン方向における帯状金属1の搬送有効範囲より帯状金属1の端面位置が内側に入ってしまうことがあるため、帯状金属1は処理面に欠陥が無いにも拘らず欠陥ありとの判断をしてしまう問題があつた。

【0006】そこで、図3(A)の一点鎖線で示すように上記検査範囲を帯状金属1の幅寸法より若干狭く設定して上記欠点を防ぐ方法も一部において採られているが、このような方法を探った場合、未検査範囲が大きくなるため帯状金属処理面の欠陥を見逃し易い問題が懸念されている。

【0007】このような技術的背景の下、上記ラインスキャンカメラ2で撮影された撮影像の画像解析により帯状金属1の端面位置を検知し、かつ、必ず設定された基準位置から上記端面位置の変化を検出すると共に、上記端面位置の変動に追従させてライン方向における帯状金属1の検査範囲を変化させる方法が開発されている。

【0008】例えば、図3(A)～(E)に示すように帯状金属1処理面の垂線方向にラインスキャンカメラ2を配置しカーブライン照明手段3を垂線から4.5度以上の角度で照射して角や未リフロー状態等の欠陥を検出する斜照明と呼ばれている方法では、上記帯状金属1の一方側端面をエッジ検出により検出し、その端面位置の変動に追従させてライン方向における帯状金属の検査範囲を変化させ手が採られている。

【0009】また、図3(A)～(B)に示すように検査対象である帯状金属1の垂線のみ反反射条件を満たすように等しい角度でラインスキャンカメラ2とライン照明手段3が配置される正反射照明と呼ばれる今までにも、上記帯状金属1の一方側端面をエッジ検出により検知し、その端面位置の変動に追従させてライン方向における帯状金属の検査範囲を変化させる手法が採られている。

【0010】

【発明が解決しようとする課題】ところで、上記斜照明と呼ばれる方法では、図3(C)に示すように光沢を有する帯状金属の他の部分や未リフロー状態等の欠陥部位だけが散乱によりラインスキャンカメラ2に入り易くなるため明るい画像となり、また、上記正反射照明と呼ばれる方法では、図3(C)に示すように光沢を有する帯状金属の他の部分や未リフロー状態等の欠陥部位が暗くなるため明るな像となり、また、上記正反射照明と呼ばれる方法では、図3(C)に示すように光沢を有する帯状金属の他の部分や未リフロー状態等の欠陥部位が暗くなる

ため暗い画像となる。

【0011】このため、上記斜照灯と呼ばれる方法並びに正反射照明と呼ばれる方法を採用しかつ帶状金属1の一方側端面をエッジ検出により検知してそのライン方向における帯状金属の検査範囲を追従させる方法においては、帶状金属1の端面近傍に上述した傷や未リフロー状態等の欠陥が存在した場合、上述した画像解析では帶状金属のエッジ部と側端との区別が困難となり、帶状金属処理面の上記欠陥を見逃してしまう問題点を依然として有していた。

【0012】本発明はこのような問題点に着目してなされたもので、その課題とするところは、帶状金属が航行して搬送された場合にも帶状金属処理面に形成された欠陥を確実に検出できる検査装置を提供することにある。

【0013】

【課題を解決するための手段】すなわち、請求項1に係る発明は、一定の幅寸法を有する帯状金属を一定速度で搬送し、帯状金属処理面の検査部において上記処理面の反射像をラインスキャンカメラにより撮影し、得られた撮影像の画像解析により帶状金属の一方側端面位置を検出すると共に、上記一方側端面位置の変動に追従させてライン方向における帯状金属の検査範囲を変化させる帯状金属処理面の検査装置を前提とし、帶状金属の一方側端面位置が前ラインにおける帯状金属の一方側端面位置よりm画素以上内側に遷移してnライン以上変化し、かつ、帶状金属の他方側端面位置が前ラインにおける帯状金属の他方側端面位置よりm画素以上外側に遷移してnライン以上変化した場合には上記一方側端面位置の変動と判定し、上記帯状金属の一方側端面位置が前ラインにおける帯状金属の一方側端面位置よりm画素以上内側に遷移してnライン以上変化し、かつ、帶状金属の他方側端面位置が前ラインにおける帯状金属の他方側端面位置よりm画素以上外側に遷移してnライン以上変化しない場合には帯状金属における一方側端面位置近傍の処理面に形成された欠陥と判定するようにしたことを特徴とし、また、請求項2に係る発明は、請求項1記載の発明に係る帯状金属処理面の検査装置を前提とし、上記m画素が3画素でありかつ上記nラインが3ラインであることを特徴とし、請求項3に係る発明は、請求項1または2記載の発明に係る帯状金属処理面の検査装置を前提とし、メカニカル処理と並に晒す光沢処理が施された帶状金属処理面の上記欠陥が、光沢処理が不十分になされた未リフロー状態であることを特徴とするものである。

【0014】

【発明の実施の形態】以下、本発明の実施の形態について詳細に説明する。

【0015】まず、この実施の形態に係る検査装置は、図1(A)～(E)に示すように連続エッジ検出と光沢処理が施された帯状金属1の処理面(検査面)における垂線αに対し等しい角度でかつライン方向が帶状金属1

の幅方向と平行になる正反射条件を満たすようにそれぞれ配置された幅寸法2.5mmで100Wのファイバーライン照明手段3と2048画素のラインスキャンカメラ2との主要部が構成されている。

【0016】尚、上記帶状金属1は、その幅寸法が18mmに設定され、かつ、ライン速度は200mm/sである。

【0017】また、2048画素の上記ラインスキャンカメラの2000画素を有効画素として利用し、レンズ(閉じせず)の先端からラミック検査対象物である帯状金属1までの距離(ワーキングディスタンス)が約200mmのとき、ラインスキャン方向の画面分解能が約10.0μmである。画素になるように光学設計を行った。

【0018】また、ラインスキャン方向と垂直方向(帯状金属の搬送方向)の画面分解能も10.0μm/画素になるようにラインスキャンカメラのラインレートを2kHz(=200mm/sec./10.0μm)に設定した。

【0019】また、画像の取り込みと画像解析は、画像を取り込んでいる間に以前に取り込んだ画像を解析するダブルバッファリング方法を採用した。ここでは、100ライン毎に画像を取り込む設定とした。

【0020】そして、この検査装置においてはファイバーライン照明手段3とラインスキャンカメラ2が上記帯状金属1に対する正反射条件を満たすように配置されているため、マキシ検査対象物である上記帶状金属1は明るい画像になるのに対し、帶状金属1の未リフロー状態部分と帯状金属1の外側部は明るく正反射されないことから暗い画像となる。

【0021】尚、上記未リフロー状態部分を検出するため、黒度閾値3.0以下の画素数が10個以上連続している場合を未リフロー状態部分とする検査アリゴリズムを用いた。

【0022】また、この検査装置においては、航行する帯状金属1の輪郭有効範囲を例えば1.0画素目から1.0画素目までと固定する捉え方を探らずに、帯状金属1の輪郭付近の画像塗り分けしその値がゼロと交差する位置から端面位置を求めるゼロクロス法により両端を1ライン毎に設定しながらその内側と検査有効範囲とする方法を探っている。

【0023】このような方法を採った場合、上記帯状金属1の端面近傍に未リフロー状態部分が存在すると、上述したように帶状金属1のエッジ部とクランプ(未リフロー状態部)との区別が困難になるため、上記検査有効範囲を拡げ設定して欠陥を見逃してしまう問題を生ずる。

【0024】そこで、この検査装置においては、上記帯状金属1における端面位置は航行現況によりその位置を急激に変わることが無いとの考えの下、帶状金属1の一方側端面位置が前ラインにおける帯状金属1の一方側端面位置よりm画素(例えば3画素)以上内側に遷移して

0ライン（例えば3ライン）以上変化し、かつ、帯状金属の一方側端面位置よりm画素（例えば3画素）以上外側に連続して0ライン（例えば3ライン）以上変化しない場合には帯状金属1にむけろ一方側端面位置近傍の処理面に形成された欠陥と判定する検査アリゴリズムを採用することで上記問題の解消を図っている。

【0025】すなはち、図2の城線で示すように帯状金属1の一方側端面位置z2が前ラインにおける帯状金属1の一方側端面位置a1よりm画素（例えば3画素）以上内側に連続してnライン（例えば3ライン）以上変化し、かつ、帯状金属1の一方側端面位置z2が前ラインにおける帯状金属1の一方側端面位置b1よりm画素（例えば3画素）以上外側に連続して0ライン（例えば3ライン）以上変化した場合には帯状金属1の蛇行による位置変動と判定し、また図2の実線で示すように帯状金属1の一方側端面位置z2が前ラインにおける帯状金属1の一方側端面位置c1よりm画素（例えば3画素）以上内側に連続してnライン（例えば3ライン）以上変化し、かつ、帯状金属1の一方側端面位置d1よりm画素（例えば3画素）以上外側に連続してnライン（例えば3ライン）以上変化しない場合には帯状金属1における一方側端面位置近傍の処理面に形成された欠陥（未リフロー部分）と判定するようになっている。

【0026】

【実施例】以下、この検査装置を用いた場合と従来の検査方法を用いた場合の検査結果について具体的に説明する。

【0027】尚、この検査装置が組込まれた幅180mmの検査ラインでは、±8mmの帯状金属1の蛇行現象が観察された。

【0028】そして、既来の検査方法では、帯状金属1の検査有効範囲を最大でも180画素から1820画素目までの固定設定しかすることができない。従って、帯状金属1における両側の平均8mmの範囲は未検査部分になってしまい、片側では最大16mmの未検査部分が生ずることとなる。

【0029】これに対し、実施例に係る検査装置においては、帯状金属1における一方側端面位置は約120画素目から180画素目まで、他方側端面位置は約1820画素目から1980画素目まで検査有効範囲に自動設定されるため、未検査部分が極めて少なくなる。

【0030】そして、未リフロー検査を評価するため、

意匠的非バーナーの姿を調整しながら未リフロー状態を作り出し、未リフロー部分がある約100mの評価用サンプルを作成して、実施例に係る検査装置を用いた場合と従来の検査方法を用いた場合の検査結果を比較した【0031】この結果、実施例に係る検査装置を用いた場合、S2側の未リフロー状態が検出されたが、従来の検査方法では、未リフロー状態が帯状金属の端面近傍に形成されたトノ開を検出することができます。実施例に係る検査範囲の検出性が確認された。

【0032】

【発明の効果】請求項1～3記載の発明に係る検査装置によれば、帯状金属の一方側端面位置が前ラインにおける帯状金属1の一方側端面位置よりm画素以上内側に連続して0ライン以上変化し、かつ、帯状金属の一方側端面位置が前ラインにおける帯状金属1の一方側端面位置よりm画素以上外側に連続してnライン以上変化した場合には上記一方側端面位置の変動と判定し、上記帯状金属の一方側端面位置が前ラインにおける帯状金属1の一方側端面位置よりm画素以上内側に連続してnライン以上変化し、かつ、帯状金属の一方側端面位置よりm画素以上外側に連続してnライン以上変化しない場合には帯状金属1における一方側端面位置近傍の処理面に形成された欠陥と判定するよくなっているため、帯状金属が蛇行して搬送された場合にも帯状金属処理面に形成された未リフロー状態等の欠陥を確実に検査できる効果を有する。

【国際的選択申の明】

【団1】図1（A）～（B）は本発明の実施例に係る検査装置の説明図。

【団2】実施例に係る検査装置の欠陥検査部の説明図。

【団3】図3（A）～（B）は従来の検査装置の説明図。

【団4】図4（A）～（B）は斜照明と呼ばれている方法が採用された従来の検査装置の説明図、図4（C）はこの装置で検査される未リフロー部分の説明図。

【団5】図5（A）～（B）は正反射照明と呼ばれている方法が採用された従来の検査装置の説明図、図5（C）はこの装置で検査される未リフロー部分の説明図。

【特許の説明】

- 1 帯状金属
- 2 ラインスキャンカメラ
- 3 ライン照明手段

【図1】

(A) 真上方向から

(B) 真横方向から

- 1: 墓碑面
2: ラインセンシングカメラ
3: ライン切替手段

【図2】

【図3】

(A) 真上から

(B) 真横方向から

(A) 真上方向から

(B) 真横方向から

(C)

【図5】

(A) 真上方向から

(B) 真横方向から

(C)

