

et planifier pour percevoir:

intégration fine et duale de sources d'information imprécises et de décisions séquentielles dans l'incertain.

Nicolas Drougard
Doctorant 3ème année ONERA, Département DCSD

Directeurs de thèse: Didier Dubois, Florent Teichteil-Königsbuch

Encadrant ONERA: Jean-Loup Farges

retour sur innovation

Plan

- 1 Contexte et problématique
- 2 Objectifs de la thèse
- 3 Démarche et résultats
- 4 Conclusions/Perspectives
- 5 Production scientifique

Plan

- 1 Contexte et problématique
- 2 Objectifs de la thèse
- 3 Démarche et résultats
- 4 Conclusions/Perspectives
- 5 Production scientifique

Processus Decisionnels Markoviens Partiellement Observables (POMDPs)

 a_t

Contexte et problématique Règle de Bayes, Polique, Critère.

$$b_{t+1}(s') = \textit{nextBelief}(b_t, a, \tilde{o}) = \frac{p(\tilde{o}|s', a). \sum_s p(s'|s, a)b_t(s)}{\sum_{\underline{s}, \overline{s}} p(\tilde{o}|\overline{s}, a). p(\overline{s}|\underline{s}, a)b_t(\underline{s})}$$

Contexte et problématique Règle de Bayes, Polique, Critère.

$$b_{t+1}(s') = \textit{nextBelief}(b_t, a, \tilde{o}) = \frac{p(\tilde{o}|s', a). \sum_s p(s'|s, a)b_t(s)}{\sum_{\underline{s}, \overline{s}} p(\tilde{o}|\overline{s}, a). p(\overline{s}|\underline{s}, a)b_t(\underline{s})}$$

Choix des actions: politique $d_t^*(b) = a_t \in \mathcal{A}$

maximisant $\mathbb{E}\left[\sum_{t=0}^{+\infty} \gamma^t r(s_t, d_t(b_t)) | b_0\right], \ 0 < \gamma < 1.$

Plan

- 1 Contexte et problématique
- 2 Objectifs de la thèse
- 3 Démarche et résultats
- 4 Conclusions/Perspectives
- 5 Production scientifique

Problèmes pratiques: Résolution, Vision et Croyance initiale.

■ Calcul d'une politique = PSPACE complet:

Problèmes pratiques: Résolution, Vision et Croyance initiale.

- Calcul d'une politique = PSPACE complet:
- → optimalité pour les problèmes "petits" ou "structurés";
- → résolution approchée (optimalité non garantie).

Problèmes pratiques: Résolution, Vision et Croyance initiale.

- Calcul d'une politique = PSPACE complet:
- → optimalité pour les problèmes "petits" ou "structurés";
- → résolution approchée (optimalité non garantie).
 - Vision artificielle, apprentissage statistique: $\mathbf{p}(o' | s', a)$

Problèmes pratiques: Résolution, Vision et Croyance initiale.

- Calcul d'une politique = PSPACE complet:
- → optimalité pour les problèmes "petits" ou "structurés";
- → résolution approchée (optimalité non garantie).
 - Vision artificielle, apprentissage statistique: $\mathbf{p}(o' | s', a)$
- \rightarrow grande variabilité d'images? \Rightarrow classifieur dur à extraire;
- \rightarrow plus d'observations? \Rightarrow POMDP plus complexe.

Problèmes pratiques: Résolution, Vision et Croyance initiale.

- Calcul d'une politique = PSPACE complet:
- → optimalité pour les problèmes "petits" ou "structurés";
- → résolution approchée (optimalité non garantie).
 - Vision artificielle, apprentissage statistique: $\mathbf{p}(o' | s', a)$
- \rightarrow grande variabilité d'images? \Rightarrow classifieur dur à extraire;
- \rightarrow plus d'observations? \Rightarrow POMDP plus complexe.

croyance initiale b_0 (a priori sur l'état du système).

Problèmes pratiques: Résolution, Vision et Croyance initiale.

- Calcul d'une politique = PSPACE complet:
- → optimalité pour les problèmes "petits" ou "structurés";
- → résolution approchée (optimalité non garantie).
 - Vision artificielle, apprentissage statistique: $\mathbf{p}(o' | s', a)$
- \rightarrow grande variabilité d'images? \Rightarrow classifieur dur à extraire;
- \rightarrow plus d'observations? \Rightarrow POMDP plus complexe.

croyance initiale b_0 (a priori sur l'état du système). uniforme = subjectif, mélangé à des fréquences!

Problèmes pratiques: Résolution, Vision et Croyance initiale.

- Calcul d'une politique = PSPACE complet:
- → optimalité pour les problèmes "petits" ou "structurés";
- → résolution approchée (optimalité non garantie).
 - Vision artificielle, apprentissage statistique: $\mathbf{p}(o' | s', a)$
- → grande variabilité d'images? ⇒ classifieur dur à extraire;
- \rightarrow plus d'observations? \Rightarrow POMDP plus complexe.

croyance initiale b_0 (a priori sur l'état du système). uniforme = subjectif, mélangé à des fréquences!

Théorie des Possibilités Qualitatives:

→ simplification, modélisation de la méconnaissance.

Plan

- 1 Contexte et problématique
- 2 Objectifs de la thèse
- 3 Démarche et résultats
- 4 Conclusions/Perspectives
- 5 Production scientifique

Théorie des Possibilités Qualitatives

$$\mathcal{L}$$
 échelle finie, ex: $\left\{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\right\}$.

événements $e \subset \Omega$ (univers des possibles) classés à l'aide de degrés de possibilité $\pi(e) \in \mathcal{L}$, \neq quantifiés avec des fréquences $\mathbf{p}(e) \in [0,1]$ (probabilités).

Théorie des Possibilités Qualitatives

$$\mathcal{L}$$
 échelle finie, ex: $\left\{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\right\}$.

événements $e \subset \Omega$ (univers des possibles) classés à l'aide de degrés de possibilité $\pi(e) \in \mathcal{L}$, \neq

quantifiés avec des fréquences $p(e) \in [0,1]$ (probabilités).

$$e_1 \neq e_2$$
, deux évènements $\subset \Omega$

■
$$\pi(e_1) \leqslant \pi(e_2) \Leftrightarrow$$
 " e_1 est moins plausible que e_2 ";

Théorie des Possibilités Qualitatives

$$\mathcal{L}$$
 échelle finie, ex: $\left\{0, \frac{1}{n}, \frac{2}{n}, \dots, 1\right\}$.

événements $e \subset \Omega$ (univers des possibles) classés à l'aide de degrés de possibilité $\pi(e) \in \mathcal{L}$, \neq

quantifiés avec des fréquences $p(e) \in [0,1]$ (probabilités).

$$e_1
eq e_2$$
, deux évènements $\subset \Omega$

■ $\pi(e_1) \leqslant \pi(e_2) \Leftrightarrow$ " e_1 est moins plausible que e_2 ";

Probabilités (\mathbb{P}) / Possibilités (Π):		
<i>e</i> ₁ ou <i>e</i> ₂	$\mathbf{p}(e_1) + \mathbf{p}(e_2 \cap \overline{e_1})$	$\max\left\{\pi(e_1),\pi(e_2)\right\}$
<i>e</i> ₁ et <i>e</i> ₂	$\mathbf{p}(e_1).\mathbf{p}\left(\left.e_2\left \right.\right.e_1\right)$	$\min \{\pi(e_1), \pi(e_2 e_1)\}$

π -MOMDPs et Horizon Infini

POMDPs possibilistes (π -POMDPs): Sabbadin 98.

• espace des croyances fini $\#\mathcal{B} = \#\mathcal{L}^{\#\mathcal{S}} - (\#\mathcal{L} - 1)^{\#\mathcal{S}}$

π -MOMDPs et Horizon Infini

POMDPs possibilistes (π -POMDPs): Sabbadin 98.

■ espace des croyances fini $\#\mathcal{B} = \#\mathcal{L}^{\#\mathcal{S}} - (\#\mathcal{L} - 1)^{\#\mathcal{S}}$ contributions (UAI13):

Observabilité mixte: état du système $s \in \mathcal{S} = \mathcal{S}_v \times \mathcal{S}_h$ i.e. état s = composante visible s_v & composante cachée s_h .

π -MOMDPs et Horizon Infini

POMDPs possibilistes (π -POMDPs): Sabbadin 98.

■ espace des croyances fini $\#\mathcal{B} = \#\mathcal{L}^{\#\mathcal{S}} - (\#\mathcal{L} - 1)^{\#\mathcal{S}}$ contributions (UAI13):

Observabilité mixte: état du système $s \in \mathcal{S} = \mathcal{S}_v \times \mathcal{S}_h$ i.e. état s = composante visible s_v & composante cachée s_h .

- \blacksquare croyance uniquement sur S_h (composante s_v observée),
- calculs sur $S_v \times B_h$ de taille $\#S_v \times (\#\mathcal{L}^{\#S_h} (\#\mathcal{L} 1)^{\#S_h})$

π -MOMDPs et Horizon Infini

POMDPs possibilistes (π -POMDPs): Sabbadin 98.

■ espace des croyances fini $\#\mathcal{B} = \#\mathcal{L}^{\#\mathcal{S}} - (\#\mathcal{L} - 1)^{\#\mathcal{S}}$ contributions (UAI13):

Observabilité mixte: état du système $s \in S = S_v \times S_h$ i.e. état s = composante visible s_v & composante cachée s_h .

- \blacksquare croyance uniquement sur S_h (composante s_v observée),
- calculs sur $S_v \times B_h$ de taille $\#S_v \times (\#\mathcal{L}^{\#S_h} (\#\mathcal{L} 1)^{\#S_h})$

Résolution en horizon infini

Résolution Symbolique et Factorisation

```
contribution (AAAI14): \pi-MOMDP factorisés \Leftrightarrow espace d'états \mathcal{S}_{\nu} \times \mathcal{B}_{h} = variables booléennes (X_{1}, \ldots, X_{n}) + hypothèses d'indépendances \Leftarrow modèle graphique.
```


Résolution Symbolique et Factorisation

contribution (AAAI14): π -MOMDP factorisés \Leftrightarrow espace d'états $\mathcal{S}_{\nu} \times \mathcal{B}_{h} = \text{variables booléennes } (X_{1}, \dots, X_{n}) + \text{hypothèses d'indépendances} \Leftarrow \text{modèle graphique}.$

■ fonctions de transition

 T_i^a = π (X_i' | parents(X_i), a)
 representé par des Diagrammes de
 Décision Algébriques (ADD).
 (SPUDD - Hoey et al., UAI-99).

Solver π -MOMDP résultant: PPUDD

- modèle probabiliste: + et $\times \Rightarrow$ nouvelles valeurs créées, nombre de feuilles des **ADDs potentiellement énorme**.
- modèle possibiliste: min et max \Rightarrow valeurs $\in \mathcal{L}$ fini, nombre de feuilles borné, **ADDs plus petits**.

Solver π -MOMDP résultant: PPUDD

- modèle probabiliste: + et $\times \Rightarrow$ nouvelles valeurs créées, nombre de feuilles des **ADDs potentiellement énorme**.
- modèle possibiliste: min et max \Rightarrow valeurs $\in \mathcal{L}$ fini, nombre de feuilles borné, **ADDs plus petits**.

PPUDD: Possibilistic Planning Using Decision Diagrams

11 return (V^*, δ) ;

implémentation avec CU Decision Diagram Package;

Solver π -MOMDP résultant: PPUDD

- modèle probabiliste: + et $\times \Rightarrow$ nouvelles valeurs créées, nombre de feuilles des **ADDs potentiellement énorme**.
- modèle possibiliste: min et max \Rightarrow valeurs $\in \mathcal{L}$ fini, nombre de feuilles borné, **ADDs plus petits**.

PPUDD: Possibilistic Planning Using Decision Diagrams

```
 \begin{array}{lll} 1 & V^* \leftarrow 0 \; ; \, V^c \leftarrow \mu \; ; \, \delta \leftarrow \overline{a} \; ; \\ \mathbf{2} & \mathbf{while} \; V^* \neq V^c \; \mathbf{do} \; & & & & & \\ \mathbf{3} & V^* \leftarrow V^c \; ; & & & & \Rightarrow & \\ \mathbf{4} & V^* \leftarrow V^c \; ; & & & \Rightarrow & & \\ \mathbf{5} & \mathbf{6} & V^* \leftarrow \mathbf{3} & \mathbf{4} & & & & \Rightarrow \\ \mathbf{6} & \mathbf{7} & & \mathbf{7}
```

implémentation avec CU Decision Diagram Package;

Solver π -MOMDP résultant: PPUDD

- modèle probabiliste: + et $\times \Rightarrow$ nouvelles valeurs créées, nombre de feuilles des **ADDs potentiellement énorme**.
- modèle possibiliste: min et max \Rightarrow valeurs $\in \mathcal{L}$ fini, nombre de feuilles borné, **ADDs plus petits**.

PPUDD: Possibilistic Planning Using Decision Diagrams

implémentation avec CU Decision Diagram Package;

Factorisation naturelle: Indépendance des Croyances.

contribution (AAAI14): π -MOMDP respectant les hypothèses d'indépendances du modèle graphique: $\Rightarrow (s_v, \beta) = (s_{v,1}, \dots, s_{v,m}, \beta_1, \dots, \beta_I), \beta_i$ croyance sur $s_{h,i}$.

Factorisation naturelle: Indépendance des Croyances.

contribution (AAAI14): π -MOMDP respectant les hypothèses d'indépendances du modèle graphique: $\Rightarrow (s_v, \beta) = (s_{v,1}, \dots, s_{v,m}, \beta_1, \dots, \beta_l), \beta_i$ croyance sur $s_{h,i}$.

Factorisation naturelle: Indépendance des Croyances.

contribution (AAAI14): π -MOMDP respectant les hypothèses d'indépendances du modèle graphique:

$$\Rightarrow$$
 $(s_v, \beta) = (s_{v,1}, \dots, s_{v,m}, \beta_1, \dots, \beta_l), \beta_i$ croyance sur $s_{h,i}$.

hypothèses: capteurs, états cachés indépendants...

Expérimentations: problème 1 – agent = robot.

PPUDD vs SPUDD (Hoey et al.)

Navigation benchmark: atteindre but; risque de disparaître.

2 traductions possibilistes: M1 (optimiste) et M2 (pessimiste).

Expérimentations: problème 1 - agent = robot.

PPUDD vs SPUDD (Hoey et al.)

Navigation benchmark: atteindre but; risque de disparaître. 2 traductions possibilistes: M1 (optimiste) et M2 (pessimiste).

Performances, fonction de la taille du problème

fréquence de succès

PPUDD M1 PPUDD M2 PPUDD M3

temps de déplacement

Expérimentations: problème 1 – agent = robot.

taille max des ADDs

- PPUDD + M2 (traduction pessimiste) plus rapide et mêmes performances que SPUDD;
- SPUDD ne résoud que les 5 premières instances;
- intuition vérifiée: ADDs plus petits.

Expérimentations: problème 2 – agent = robot.

PPUDD vs APPL (*Kurniawati et al.*, solver MOMDP); symbolic HSVI (*Sim et al., solver POMDP*). RockSample benchmark: doit reconnaître pierres à sampler;

Expérimentations: problème 2 – agent = robot.

PPUDD vs APPL (*Kurniawati et al.*, solver MOMDP); symbolic HSVI (*Sim et al.*, solver POMDP). RockSample benchmark: doit reconnaître pierres à sampler;

temps de calcul:

solvers probabilistes, prec. 1; PPUDD, résolution exacte.

récompense moyenne

APPL arrêté lorsque

- modèle approché + algorithme de résolution exacte → bénéfique en temps de calculs et performances.
 - ONERA
 THE FEENCH AEROSPACE LAS

IPPC 2014 – MDP track. Approches symboliques: PPUDD vs symbolic LRTDP (*Bonet et al.*)

PPUDD + masque BDD sur les états atteignables.

Figure : moyenne des récompenses sur les simulations.

Plan

- 1 Contexte et problématique
- 2 Objectifs de la thèse
- 3 Démarche et résultats
- 4 Conclusions/Perspectives
- 5 Production scientifique

Conclusions/Perspectives vers un POMDP hybride

- Possibilités: bonne discrétisation des croyances,
 - simplification efficace du problème (PPUDD 2× meilleur que LRTDP avec ADDs);

Conclusions/Perspectives vers un POMDP hybride

Possibilités: • bonne discrétisation des croyances,

• simplification efficace du problème (PPUDD 2× meilleur que LRTDP avec ADDs);

version avec croyances atteignables stockées dans un ADD: benchmarks du track PO, choix critères qualitatifs.

methodes symboliques \prec d'exploration de l'espace d'états (gagnants d'IPPC 2014, PROST et GOURMAND)

Conclusions/Perspectives vers un POMDP hybride

Possibilités: • bonne discrétisation des croyances,

• simplification efficace du problème (PPUDD 2× meilleur que LRTDP avec ADDs);

version avec croyances atteignables stockées dans un ADD: benchmarks du track PO, choix critères qualitatifs.

methodes symboliques ≺ d'exploration de l'espace d'états (gagnants d'IPPC 2014, PROST et GOURMAND)

$POMDP \rightarrow POMDP$ à croyances possibilistes

- fonctions de transition probabilistes précalculées;
- factorisation aux hypothèses moins fortes;
- aggrégation des récompenses: intégrale de Choquet;
- résolution avec solver MDP (PROST).

Vision et Réseaux Convolutionnels (LeCun): Torch7 et NORB dataset

■ apprentissage – entraı̂nement de l'agorithme de vision: input = (image_i, étiquette_i), $1 \le i \le N \sim 10^5$ (dataset);

```
input = (image<sub>i</sub>, étiquette<sub>i</sub>), 1 \le i \le N \sim 10^{\circ} (datase output = W = (w_0, w_1, \dots, w_m), paramètres appris.
```


Vision et Réseaux Convolutionnels (LeCun): Torch7 et NORB dataset

■ apprentissage – entraînement de l'agorithme de vision:

```
input = (image<sub>i</sub>, étiquette<sub>i</sub>), 1 \le i \le N \sim 10^5 (dataset); output = W = (w_0, w_1, \dots, w_m), paramètres appris.
```


Vision et Réseaux Convolutionnels (LeCun):

Torch7 et NORB dataset

■ apprentissage – entraı̂nement de l'agorithme de vision: input = (image_i, étiquette_i), $1 \le i \le N \sim 10^5$ (dataset); output = $W = (w_0, w_1, \dots, w_m)$, paramètres appris.

Vision et Réseaux Convolutionnels (LeCun): Torch7 et NORB dataset

■ apprentissage – entraînement de l'agorithme de vision:

```
input = (image<sub>i</sub>, étiquette<sub>i</sub>), 1 \le i \le N \sim 10^5 (dataset); output = W = (w_0, w_1, \dots, w_m), paramètres appris.
```


Implémenté avec Torch7 (lua,C) Entraîné sur NORB dataset:

Processus π -MOMDPs, outils de diagnostic pour l'Intéraction Homme-Machine (avec Sergio Pizziol)

- **occurrences:** états de la machine et actions humaines;
- évaluation humaine (de l'état de la machine);
- **effets:** transitions, classées par degrés de possibilité.

Processus π -MOMDPs, outils de diagnostic pour l'Intéraction Homme-Machine (avec Sergio Pizziol)

- occurrences: états de la machine et actions humaines;
- évaluation humaine (de l'état de la machine);
- **effets:** transitions, classées par degrés de possibilité.

- **estimation** de l'état selon l'opérateur humain;
- **détection** des erreurs humaines d'évaluation de l'état;
- causes plausibles de ces erreurs (diagnostique).

Plan

- 1 Contexte et problématique
- 2 Objectifs de la thèse
- 3 Démarche et résultats
- 4 Conclusions/Perspectives
- 5 Production scientifique

Publications

- Nicolas Drougard, Jean-Loup Farges, Florent Teichteil-Königsbuch, Didier Dubois. Processus Décisionnels de Markov Possibilistes à Observabilité Mixte, JFPDA-13.
- N.Drougard, J-L.Farges, F.Teichteil-K, D.Dubois.

 Qualitative Possibilistic Mixed-Observable MDPs, UAI-13.
- N.Drougard, F.Teichteil-K, J-L.Farges, D.Dubois. Structured Possibilistic Planning using Decision Diagrams, AAAI-14.
- Sergio Pizziol, N.Drougard, Catherine Tessier, Frédéric Dehais, J-L.Farges, D.Dubois.

 A Possibilistic Estimation of Human Attentional Errors, (en cours), Transactions on Fuzzy Sets.

- N.Drougard, F.Teichteil-K, J-L.Farges, D.Dubois. Hybrid POMDP, (en cours).
- N.Drougard, F.Teichteil-K, J-L.Farges, D.Dubois. Résumé des travaux sur les processus possibilistes, (en cours).

Questions?

