INFO-F408: Computability & complexity

Rémy Detobel 2 Octobre, 2017

1 Turing machine suite

1.1 Non déterministe

$$\delta: Q \times \Gamma \to \mathcal{P}(Q \times \times \Gamma \times \{L, R\})$$

Voir livre : théorème 3.16 : Chaque NTM as un équivalent DTM. On va donc faire un parcours de l'arbre en largeur (et non en profondeur).

1.2 Reconnaitre un langage de Turing

Voir théorème 3.21:

Un langage est "Turing-recognizable" si et seulement si un "enumerator" l'énumère.

1.2.1 Démonstration

(⇐) Supposons qu'il existe un tel énumérateur "E" : Soit la machine de Turing M. Informellement : "lorsque l'entrée est w

- 1. Exécuter E, et chaque fois que E écrit(/output) un string, on le compare avec w
- 2. si le string contient w, on accepte."
- (\Rightarrow) Supposons qu'il existe une machine de Turing qui reconnaisse le langage L. E = "ignorer l'entrée"
 - 1. Répéter pour $i = \mathbb{N}^*$:

Exécuter M pour i étapes, sur les entrées S_1, S_2, \ldots, S_i .

Si une exécution est acceptée, on affiche le S_i correspondant.

Au pire on fera i étapes pour afficher un mot, mais il pourra être affiché avant l'étape i

step/input	S_1	S_2	S_3	S_4	S_5
1	Х				
2	X	Х			
3	х	X	X		
4	х	X	X	Х	
5	х	X	Х	X	<u></u>

1.3 Langages réguliers (regular languages)

Langage régulier = reconnaissable par un automate fini (FA : finite automaton)
Langage décidable (= decidable = recursively) = décidable par une machine de Turing.
Langage reconnaissable (recognizable languages = recursively enumerable = RE) =

- reconnaissable par une machine de Turing,
- et admet un enumerateur ("enumerator")

Régulier < décidable < reconnaissable / recognizable

2 The Church-Turing thesis

C'est une thèse, pas une preuve.

⇒ La notion intuitive d'un algorithme est égal à un algorithme d'une machine de turing

2.1 Hilbert Problem

Est-ce qu'il existe un algorithme qui décide si un polynôme admet une racine composée uniquement de nombre entiers.

Exemple:

$$P(x) = x_1^2 + x_2 x_3^4 - 6x_1 x_2^3 x_3 x_4^2 + 7x_1$$

Et on cherche donc des nombres entier x_1, x_2, x_3, x_4

Il s'agit ici d'un problème "recognizable" (reconnaissable). Car si il y a une solution, on pourra la voir. Par contre, il n'est pas "décidable" parce que s'il n'y a pas de solution, il tournera à l'infini.

L'indécidabilité de ce problème à été prouvé en 1970 par Matijasevic.

3 Halting problème (problème de l'arrêt)

Point 4.2.

Diagonalization (cantor) $f : A \rightarrow B$ est :

"un à un" (injective) si tous les élément de A sont projeté de manière distincte sur des éléments de B.

"dans" (surjective) lorsque tous les éléments de B admettent une préimage dans A, i.e. :

$$\forall b \in B : \exists a \in A | f(a) = b.$$

"one-to-one" (un à un) ET "onto" (dans) = "one-to-one correspondance" C'est équivalent à une bijection.

Une ensemble A est "countable" (dénombrable) s'il existe une correspondance un à un ("one-to-one correspondence") entre A et $\mathbb N$ (ce qui est équivalent à dire qu'il a la même "taille" que $\mathbb N$). Un ensemble est "at most countable" (au plus dénombrable) s'il est fini OU dénombrable.

Exemple : est-ce que :

- les nombres paires sont dénombrable?
 - \rightarrow Oui (N/2)
- les nombres rationnels (ℚ) sont dénombrable?
 - \rightarrow Oui (pour cela il faut juste mettre un ordre. Pour se faire, on peut parcourir un tableau à double entrées représentant les numérateurs et dénominateurs. Il suffirait donc de simplement définir l'ordre de lecture qui logiquement se ferait plutôt en diagonal). De manière un brin formelle, $\mathbb{N} \rightarrow \mathbb{Q}$: $\mathfrak{m} \mapsto \frac{\mathfrak{m}}{1}$ est

une injection de \mathbb{N} dans \mathbb{Q} , donc $|\mathbb{N}| \leq |\mathbb{Q}|$. De même $\mathbb{Q} \to \mathbb{Z} \times \mathbb{N} : \frac{a}{b} \mapsto (a,b)$ est une injection de \mathbb{Q} dans $\mathbb{Z} \times \mathbb{N}$, donc $|\mathbb{Q}| \leq |\mathbb{Z} \times \mathbb{N}|$. Or $|\mathbb{Z}| = \mathbb{N}$, et $|\mathbb{N}^2| = |\mathbb{N}|$. Donc :

$$|\mathbb{N}| \leqslant |\mathbb{Q}| \leqslant |\mathbb{Z} \times \mathbb{N}| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}^2| = |\mathbb{N}|.$$

On en déduit que toutes les quantités ici sont égales, et donc $|\mathbb{Q}| = \mathbb{N}$. (Pour démontrer cela rigoureusement, il faudrait expliciter les bijections $\mathbb{Z} \to \mathbb{N}$ et $\mathbb{N}^2 \to \mathbb{N}$ et les composer; puisqu'une composée de bijections est une bijection, on a finalement une bijection de \mathbb{Q} dans \mathbb{N} .)

- \mathbb{Z} est dénombrable?
 - \rightarrow Oui (nombre négatif étant des paires, nombre positif étant des impaires. De cette manière on compte tous les nombres) :

$$\phi: \mathbb{Z} o \mathbb{N}: \mathfrak{n} \mapsto egin{cases} 2\mathfrak{n}+1 & \text{ si } \mathfrak{n} \in \mathbb{N} \\ -2\mathfrak{n} & \text{ sinon.} \end{cases}$$

3.1 Cantor's Diagonal

Théorème : \mathbb{R} est non-dénombrable ("not countable").

Prouvons cela par contradiction:

Supposons donc que \mathbb{R} est dénombrable. On a donc une liste qui fait correspondre tous les nombres naturels (\mathbb{N}) à un nombre présent dans \mathbb{R}). On va donc prouver qu'il existe un $x \in [0,1)$ qui n'est pas dans cette liste. Pour construire le x, on va prendre le

nom à la position i et l'incrémenter. Ici x vaut donc : x = 0,41427... Donc, par construction, il ne peut pas être dans la liste car il diffère de tous les éléments de la liste.

Prenons \mathcal{L} comme étant l'ensemble des langages sur l'alphabet Σ Prouver que \mathcal{L} est indénombrable ("uncountable").