Assessing and optimizing Phase 2 muon reconstruction

Joseph Touzet master internship Supervised by Florian Damas and Matthew Nguyen

Particle identification in CMS

Muon reconstruction in CMS

Figures kindly made by Batoul Diab 👑

Reconstruction only based on hits and segments in the muon chambers

- ✓ unambiguous identification and crucial for fast trigger decision
- × poor momentum resolution
- not used in physics analyses

Tracker muon reconstruction

Figures kindly made by Batoul Diab

Tracker tracks with $p_T > 0.5$ GeV and p > 2.5 GeV extrapolated to the muon system if at least one matching muon segment is found

lowest momentum muons

- \bigoplus p_T resolution of the tracker ($\mathcal{O}(1\%)$)
- e minimal track quality criteria
- charged hadrons misreconstructed as muons from accidental matches (fake muons)

Global muon reconstruction

Figures kindly made by Batoul Diab

Outside-in reconstruction by fitting a standalone muon candidate to a matching tracker track

- pure signal combined with the p_T resolution of the inner tracker
- less efficient than tracker muons at low momenta

Global muon

Phase 1, run 2-3 reconstruction performance

Run 2 muon reconstruction efficiency

Run 3 muon reconstruction efficiency

Phase-2 upgrade of the muon system [CMS-TDR-016]

Main modifications in the forward region where the detection conditions are the most challenging

- additional chambers to enhance the hit redundancy for track reconstruction (already at trigger level!!!)
- improved RPCs and GEM chambers with better time and spatial resolutions
 (where the magnetic bending is the weakest)
- new station ME0 (six layers of triple-GEMs)
 increasing the η acceptance from 2.4 to 2.8
 (benifiting from the extension of the tracker)

Phase 2 improvement over Run 3 for proton-proton collision: tracker muons

Phase 2 improvement over Run 3 for proton-proton collision: global muons

Phase 2 improvement over Run 3 for Pb-Pb collision: tracker muons

Phase 2 vs Run 3 embedded, 10% highest track count

Phase 2 vs Run 3 embedded, 10% lowest track count

Phase 2 improvement over Run 3 for Pb-Pb collision: global muons

Phase 2 vs Run 3 embedded, 10% highest track count

Phase 2 vs Run 3 embedded, 10% lowest track count

Phase 2 improvement over Run 3: GEM muons

GEM and tracker muons, phase 2

GEM muons only

Phase 2 improvement over Run 3: J/Ψ reconstruction

J/Ψ reconstruction for run3

J/Ψ reconstruction for phase 2*

*J/Ψ of Pt>2.4 are cut, this should be resolved later on

Phase 2 improvement over Run 3: J/Ψ mass resolution

J/Ψ reconstructed invariant mass resolution

For J/Ψ with y<1

Run 3: σ =22MeV Phase 2: σ =18MeV

Improving the fake rate of GEM muons: TMVA Results

Variables used for classification:

- Reco_mu_nMuValHits*
- Reco mu nTrkHits
- Reco mu nPixValHits
- Reco mu localChi2
- Reco_mu_pt
- Reco mu eta
- Reco mu dxy
- Reco_mu dz
- nPV
- Reco_mu_nMatches*

^{*}not well defined as they don't included data from GEM for now

Improving the fake rate of GEM muons: Muon reconstruction improvements

GEM reconstruction efficiency and fake rate after ID

Reconstruction efficiency and fake rate after ID for all muons

Improving the fake rate of GEM muons: J/Ψ reconstruction improvements

J/Ψ reconstruction for phase 2 Without ID*

J/Ψ reconstruction for phase 2 With ID*

Improving the fake rate of GEM muons: J/Ψ reconstruction improvements

