trees

are lists enough?

for correctness — sure

want to efficiently access items

better than linear time to find something

want to represent relationships more naturally

inter-item relationships in lists

List: *nodes* related to predecessor/successor

trees

```
trees: allow representing more relationships
(but not arbitrary relationships — see graphs later in semester)
```

restriction: single path from *root* to every node implies single path from every node to every other node (possibly through root)

natural trees: phylogenetic tree

natural trees: phylogenetic tree (zoom)

natural trees: Indo-European languages

list to tree

list — up to 2 related nodes

binary tree — up to 3 related nodes (list is special-case)

more general trees

tree — any number of relationships (binary tree is special case) at most one parent

tree terms (1)

paths and path lengths

internal path length: sum of depth of nodes example: 6 = 1 + 2 + 3

tree/node height

tree/node depth

first child/next sibling

another tree representations

```
class TreeNode {
  private:
    string element;
    vector<TreeNode *> children;
  public:
    ...
};

// and more --- see when we talk about graphs
```

tree traversal


```
pre-order: / * + 1 2 - 3 4 * 5 6 in-order: (((1+2) * (3-4)) / (5*6)) (parenthesis optional?) post-order: 1 2 + 3 4 - * 5 6 * /
```

pre/post-order traversal printing

```
(this is pseudocode)
TreeNode::printPreOrder() {
    this->print();
    for each child c of this:
        c->printPreOrder()
TreeNode::printPostOrder() {
    for each child c of this:
        c->printPostOrder()
    this->print();
```

in-order traversal printing

```
(this is pseudocode)
BinaryTreeNode::printInOrder() {
    if (this->left)
        this->left->printInOrder();
    cout << this->element << "_";
    if (this->right)
        this->right->printInOrder();
}
```

post-order traversal counting

```
(this is pseudocode)
int numNodes(TreeNode *tnode) {
  if ( tnode == NULL )
      return 0;
  else {
      sum=0;
      for each child c of thode
          sum += numNodes(c);
      return 1 + sum;
```

expression tree and traversals

expression tree and traversals


```
infix: (a + ((b + c) * d))
postfix: a b c + d * +
prefix: + a * + b c d
```

postfix expression to tree

```
use a stack of trees \operatorname{number} n \to \operatorname{push}(\underline{n}) \operatorname{operator} OP \to \operatorname{pop into} A, B; \operatorname{then} \operatorname{push} OP \to A
```

a b + c d e + * *

a b + c d e + * *

a b + c d e + * *

a b + c d e + * *

ab + c d e + * *

binary trees

all nodes have at most 2 children class BinaryNode { int element; BinaryNode *left; BinaryNode *right;

binary trees

all nodes have at most 2 children class BinaryNode { element = 2left = NULLint element; right = addr of node 3BinaryNode *left; BinaryNode *right;

2

binary trees

all nodes have at most 2 children

```
class BinaryNode {
  int element;
  BinaryNode *left;
  BinaryNode *right;
               3
```


binary search trees

binary tree and...

each node has a key

for each node:

keys in node's left subtree are less than node's keys in node's right subtree are greater than node's

binary search trees

binary tree and...

each node has a key

for each node:

keys in node's left subtree are less than node's keys in node's right subtree are greater than node's

binary search trees

binary tree and...

each node has a key

for each node:

keys in node's left subtree are less than node's keys in node's right subtree are greater than node's

not a binary search tree

binary search tree versus binary tree

binary search trees are a kind of binary tree

...but — often people say "binary tree" to mean "binary search tree"

BST: find

```
(pseudocode)
find(node, key) {
    if (node == NULL)
        return NULL;
    else if (key < node->key)
        return find(node->left, key)
    else if (key > node->key)
        return find(node->right, key)
    else // if (key == node->key)
        return node;
```

BST: insert

```
(pseudocode)
insert(Node *&node, key) {
    if (node == NULL)
        node = new BinaryNode(key);
    else if (key < node->key)
        insert(node->left, key);
    else if (key < root->key)
        insert(node->right, key);
    else // if (key > root->key)
        ; // duplicate -- no new node needed
```

BST: findMin

```
(pseudocode)
findMin(Node *node, key) {
   if (node->left == NULL)
      return node;
   else
      insert(node->left, key);
}
```

BST: remove (1)

BST: remove (2)

BST: remove (3)

replace with minimum of right subtree (alternately: maximum of left subtree, ...)

binary tree: worst-case height

 $n{ ext{-}}{ ext{node BST: worst-case height/depth }}n-1$

binary tree: best-case height

height h: at most $2^{h+1}-1$ nodes

binary tree: proof best-case height is possible

proof **by induction**: can have $2^{h+1}-1$ nodes in h-height tree

$$h = 0$$
: $h = 0$: exactly one node; $2^{h+1} - 1 = 1$ nodes

start with $\emph{two copies}$ of a maximum tree of height \emph{k}

create a new tree as follows:

the number of nodes is

 $h = k \rightarrow h = k + 1$:

create a new root node add edges from the root node to the roots of the copies

the height of this new tree is k+1 path of length k in old tree + either new edge

2(2k+1) 1) 1 2k+1+1 2 1 2k+1+1 1

binary tree: best-case height is best

```
(informally)
property of trees in root:
    except for the leaves, every node in tree has 2 children
no way to add nodes without increasing height
    add below leaf — longer path to root — longer height
    add above root — every old node has longer path to root
```

binary tree height formula

n: number of nodes

h: height

$$n+1 \le 2^{h+1}$$

 $\log_2(n+1) \le \log_2(2^{h+1})$
 $\log(n+1) \le h+1$
 $h \ge \log_2(n+1) - 1$

shortest tree of n nodes: $\sim \log_2(n)$ height

perfect binary trees

a binary tree is perfect if all leaves have same depth

all nodes have zero children (leaf) or two children

exactly the trees that achieve $2^{h+1}-1$ nodes

AVL animation tool

```
http://webdiis.unizar.es/asignaturas/EDA/
AVLTree/avltree.html
```

AVL tree idea

AVL trees: one of many balanced trees — search tree balanced to keep height $\Theta(\log n)$ avoid "tree is just a long linked list" scenarios

gaurentees $\Theta(\log n)$ for find, insert, remove

AVL = Adelson-Velskii and Landis

AVL gaurentee

the height of the left and right subtrees of *every node* differs by at most one

AVL state

```
normal binary search tree stuff:
data; and left, right, parent pointers
```

additional AVL stuff:

```
height of right subtree minus height of left subtree called "balanced factor" -1, 0, +1
```

(kept up to date on insert/delete — computing on demand is too slow)

example AVL tree

example AVL tree

example non-AVL tree

AVL tree algorithms

find — exactly the same as binary search tree just ignore balance factors

insert — two extra steps:
 update balance factors
 "fix" tree if it became unbalanced

AVL tree algorithms

find — exactly the same as binary search tree just ignore balance factors

insert — two extra steps:
 update balance factors
 "fix" tree if it became unbalanced

runtime for both $\Theta(d)$ where d is depth of node found/inserted max balance factor ± 1 at root max depth of node is $\Theta(\log_2 n + 1) = \Theta(\log n)$

AVL insertion cases

simple case: tree remains balanced

otherwise:

let x be deepest imbalanced node (+2/-2 balance factor) insert in left subtree of left child of x: single rotation right insert in right subtree of right child of x: single rotation left insert in right subtree of left child of x: double left-right rotation insert in left subtree of right child of x: double right-left rotation

AVL: simple right rotation

just inserted 0 unbalanced root becomes new left child

just inserted 0 unbalanced root becomes new left child

AVL: simple left rotation

just inserted 1 deepest unbalanced node is 3

AVL rotation: up and down

at least one node moves up (this case: 1 and 2) at least one node moves down (this case: 3)

general single rotation

double rotation

general double rotation

general double rotation

double rotation names

```
sometimes "double left" first rotation left, or second?
```

us: "double left-right"

rotate child tree left

rotate parent tree right

"double right-left"
rotate child tree right
rotate parent tree left

AVL insertion cases

simple case: tree remains balanced

otherwise:

let x be deepest imbalanced node (+2/-2 balance factor) insert in left subtree of left child of x: single rotation right insert in right subtree of right child of x: single rotation left insert in right subtree of left child of x: double left-right rotation insert in left subtree of right child of x: double right-left rotation

AVL insert cases (revisited)

AVL insert cases (revisited)

choose rotation based on **lowest imbalanced node** and on *direction of insertion* (inserted node is green+dashed)

AVL insert case: detail (1)

AVL insert case: detail (2)

There are 4 cases in all, choosing which one is made by seeing the direction of the first 2 nodes from the unbalanced node to the newly inserted node and matching them to the top most row.

Root is the initial parent before a rotation and Pivot is the child to take the root's place.

AVL tree: runtime

worst depth of node: $\Theta(\log_2 n + 2) = \Theta(\log n)$

find: $\Theta(\log n)$

worst case: traverse from root to worst depth leaf

insert: $\Theta(\log n)$

worst case: traverse from root to worst depth leaf

then back up (update balance factors) then perform constant time rotation

remove: $\Theta(\log n)$

left as exercise (similar to insert)

print: $\Theta(n)$

visit each of n nodes

other types of trees

many kinds of *balanced trees*not all binary trees
different ways of tracking balance factors, etc.
different ways of doing tree rotations or equivalent

red-black trees

each node is **red** or **black**null leafs considered nodes to aid analysis (still null pointers...)

64

red-black tree rules

root is **black**

counting null pointers as nodes, leaves are black

a red node's children are black

 \rightarrow a **red** node's parents are **black**

every simple path from node to leaf under it contains same number of black nodes

(property holds regardless of whether null pointers are considered nodes)

worst red-black tree imbalance

same number of black nodes on paths to leaves

 \rightarrow factor of 2 imbalance max


```
default: insert as red, but...
```

- (1) if new node is root: color **black**
- (2) if parent is black: keep child red
- (3) if parent and uncle is **red**: adjust several colors
- (4) if parent is **red**, uncle is **black**, new node is right child perform a rotation, then go to case 5
- (5) if parent is **red**, uncle is **black**, new node is left child perform a rotation

```
default: insert as red, but...
```

- (1) if new node is root: color **black**
- (2) if parent is black: keep child red
- (3) if parent and uncle is **red**: adjust several colors
- (4) if parent is **red**, uncle is **black**, new node is right child perform a rotation, then go to case 5
- (5) if parent is property: "children of **red** node are **black**" no change in # of **black** nodes on paths

```
default: insert as red, but...
```

- (1) if new node is root: color **black**
- (2) if parent is black: keep child red
- (3) if parent and uncle is **red**: adjust several colors
- (4) if parent is **red**, uncle is **black**, new node is right child perform a rotation, then go to case 5
- (5) if parent is **red**, uncle is **black**, new node is left child perform a rotation

case 3: parent, uncle are red

make grandparent **red**, parent and uncle **black**(property: every path to leaf has same number of black nodes)
just swapped grandparent and parent/uncle in those paths

70

case 3: parent, uncle are red

make grandparent **red**, parent and uncle **black** (property: every path to leaf has same number of black nodes) just swapped grandparent and parent/uncle in those paths

but...what if grandparent's parent is red?

(property: children of red node are black)
solution: recurse to the grandparent, as if it was just inserted

case 3: parent, uncle are red

make grandparent **red**, parent and uncle **black** (property: every path to leaf has same number of black nodes) just swapped grandparent and parent/uncle in those paths

but...what if grandparent's parent is red?

(property: children of red node are black)
solution: recurse to the grandparent, as if it was just inserted

- default: insert as **red**, but...
- (1) if new node is root: color **black**
- (2) if parent is black: keep child red
- (3) if parent and uncle is **red**: adjust several colors
- (4) if parent is **red**, uncle is **black**, new node is right child perform a rotation, then go to case 5
- (5) if parent is **red**, uncle is **black**, new node is left child perform a rotation

case 4: parent red, uncle black, right child

perform left rotation on parent subtree and new node now case 5 (but new node is P, not N)

- default: insert as **red**, but...
- (1) if new node is root: color **black**
- (2) if parent is black: keep child red
- (3) if parent and uncle is **red**: adjust several colors
- (4) if parent is **red**, uncle is **black**, new node is right child perform a rotation, then go to case 5
- (5) if parent is **red**, uncle is **black**, new node is left child perform a rotation

case 5: parent red, uncle black, left child

perform right rotation of grandparent and parent

(property: red parent's children are black)

(property: every path to leaf has same number of black nodes)

RB-tree: removal

```
start with normal BST remove of x, but...
```

```
instead find next highest/lowest node y can choose node with at most one child ("bottom" of a left or right subtree)
```

swap x and y's value, then replace y with its child

several cases for color maintainence/rotations

RB tree: removal cases

- N: node just replaced with child; S: its sibling; P: its parent
- (1): N is new root
- (2): S is **red**
- (3): P, S, and S's children are **black**
- (4): S and S's children are black
- (5): S is black, S's left child is red, S's right child is black, N is left child of P
- (6): S is **black**, S's right child is **red**, N is left child

why red-black trees?

a lot more cases...but

a lot less rotations

...because tree is kept less rigidly balanced

red-black trees end up being faster in practice

splay trees

tree that's fast for recently used nodes self-balancing binary search tree keeps recent nodes near the top

simpler to implement than AVL or RB trees

'splaying'

every time node is accessed (find, insert, delete)...

"splay" tree around that node make the node the new tree root

'splaying'

every time node is accessed (find, insert, delete)...

"splay" tree around that node

make the node the new tree root

 $\Theta(h)$ time — where h is tree height

'splaying'

every time node is accessed (find, insert, delete)...

"splay" tree around that node make the node the new tree root

 $\Theta(h)$ time — where h is tree height worst-case height: $\Theta(n)$ — linked-list case

amortized complexity

```
splay tree insert/find/delete is amortized O(\log n) time informally: average insert/find/delete: O(\log n) more formally: m operations: O(m \log n) time (where n: max size of tree)
```

splay tree pro/con

can be *faster* than AVL, RB-trees in practice take advantage of frequently accessed items

simpler to implement

but worst case find/insert is $\Theta(n)$ time

amortized analysis: vector growth

vector insert algorithm:

if not big enough, double capacity write to end of vector

amortized analysis: vector growth

```
vector insert algorithm:
     if not big enough, double capacity
     write to end of vector
doubling size — requires copying! — \Theta(n) time
\Theta(n) worst case per insert
but average...?
```

counting copies (1)

```
suppose initial capacity 100 + insert 1600 elements
```

```
100 \rightarrow 200: 100 copies 200 \rightarrow 400: 200 copies 400 \rightarrow 800: 400 copies 800 \rightarrow 1600: 800 copies
```

total: 1500 copies

total operations: 1500 copies + 1600 writes of new elements about 2 operations per insert

counting copies (2)

```
more generally: for N inserts
about N copies + N writes
     why? K to 2K elements: K copies
     N inserts: 1 + 2 + 4 + ... + N/4 + N/2 copies
     (and a bit better if initial capacity isn't 1)
\Theta(n) worst case
but \Theta(n) time for n inserts
\rightarrow O(1) amortized time per insert
```

trees are not great for...

```
ordered, unsorted lists list of TODO tasks
```

being easy/simple to implement compare, e.g., stack/queue

 $\Theta(1)$ time compare vector compare hashtables (almost)

programs as trees

```
program
int z;
                                               functions
                                        vars
int foo (int x) {
                                               (foo()
                                                                   main()
                                        (int z)
  for (int y = 0;
                                    params
                                            vars
                                                   body
                                                           params
                                                                   vars
         y < x;
         y++)
                                    (int z)
                                                    for
                                                                   (int z)
     cout << y << endl;
                                                           body
                                                           cout
int main() {
                                                               endl
  int z = 5;
                                                                       body
  cout << "enter x" << endl;</pre>
  cin >> z;
                                                                             foo(
                                                                       cin
                                                                cout
  foo(z);
                                                                endl
                                                     "enter z"
```

programs as trees

```
program
int z;
                                               functions
                                        vars
int foo (int x) {
                                               (foo()
                                                                   main()
                                        (int z)
  for (int y = 0;
                                                   body
                                    params
                                            vars
                                                           params
                                                                   vars
         y < x;
         y++)
                                    (int z)
                                                    for
                                                                   (int z)
     cout << y << endl;
                                            y < x
                                                           body
                                                           cout
int main() {
                                                              endl
  int z = 5;
                                                                       body
  cout << "enter x" << endl;</pre>
  cin >> z;
                                                                             foo(
                                                                       cin
                                                                cout
  foo(z);
                                                                endl
                                                     "enter z"
```

abstract syntax tree

abstract syntax tree

abstract syntax tree

AST applications

using AST to compare programs

comparing trees is a good way to compare programs...

while ignoring:

```
function/method order (e.g. sort function nodes by length) variable names (e.g. ignore variable names when comparing) comments
```

...

part of many software plagerism/copy+paste detection tools