Legyen

$$P := \{ f : \mathbb{N} \to \mathbb{R} : \exists N \in \mathbb{N}, \forall n \in \mathbb{N}, n > N \text{ esetén } f(n) > 0 \}.$$

Más szavakkal $f \in P$ pontosan akkor, ha f egy $\mathbb{N} \to \mathbb{R}$ típusú függvény (sorozat) és f majdnem minden (m.m.) n-re pozitív értékeket vesz fel. P az aszimptotikusan pozitív $f: \mathbb{N} \to \mathbb{R}$ függvények (sorozatok) halmaza.

Definíció. Legyen $g \in P$, és az O(g), $\Omega(g)$ szimbólumok jelöljék a alábbi függvényhalmazokat.

$$O(g) := \{ f \in \mathbb{P} : \exists d > 0, \text{ hogy } d \cdot g(n) \ge f(n) \text{ m.m. } n\text{-re} \}.$$

Azaz ha $f \in O(g)$, akkor létezik egy d > 0 pozitív szám, hogy majdnem minden n-re f alulról becsüli $d \cdot g$ -t.

$$\Omega(g) := \{ f \in P : \exists c > 0, \text{ hogy } c \cdot g(n) \leq f(n) \text{ m.m. } n\text{-re} \}.$$

Azaz ha $f \in \Omega(g)$, akkor létezik egy c > 0 pozitív szám, hogy majdnem minden n-re f felülről becsüli $c \cdot q$ -t.

Legyen adott egy $g \in P$ aszimptotikusan pozitív függvény és legyen

$$\mathscr{U} := O(g) \setminus \Omega(g).$$

Azaz $\mathscr U$ egy olyan halmaz, amiben olyan $f\in \mathcal P$ függvények vannak, amik benne vannak O(g)-ben, azaz

$$\exists d > 0$$
, hogy $d \cdot g(n) \ge f(n)$ (m.m. $\mathbb{N} \ni n$ -re),

de nincsenek benne $\Omega(g)$ -ben, azaz

$$\forall c > 0 \text{ eset\'en } c \cdot q(n) > f(n) \pmod{m.m. } \exists n \text{-re}.$$

Minden az jelenti, hogy

$$\mathscr{U} = \{ f \in \mathcal{P} : \forall c > 0 \text{ eset\'en } c \cdot g(n) > f(n) \text{ m.m. } n\text{-re} \}$$

Definíció. Adott $g \in P$ függvény esetén legyen

$$o(g) := \left\{ f \in \mathcal{P} : \lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0 \right\}.$$

Az előző definícióban, mivel $g \in P$ aszimptotikusan pozitív függvény, ezért fel lehet tenni, hogy elég nagy n-ek esetén az $\frac{f}{g}$ hányados értelmes. Azt akarjuk belátni, hogy akármilyen $g \in P$ függvényt veszünk, akkor

$$o(g) = \mathscr{U}.$$

Legyen adott egy $f \in o(g)$, ekkor

$$\lim_{n \to +\infty} \frac{f(n)}{g(n)} = 0,$$

azaz

$$\forall \varepsilon > 0$$
-hoz $\exists N \in \mathbb{N}, \text{ hogy } \left| \frac{f(n)}{g(n)} \right| < \varepsilon \quad (n \in \mathbb{N}, n > N).$

Mivel $f,\,g\in\mathcal{P},$ ezért N-rőlaz is feltehető, hogy $f,\,g$ értékei pozitívak

$$f(n) < \varepsilon \cdot g(n) \quad (n \in \mathbb{N}, n > N).$$

Azaz

$$\forall c > 0$$
 esetén $c \cdot g(n) > f(n)$ (m.m. n-re).

Tehát valóban, ha $f \in o(g)$, akkor $f \in \mathcal{U}$ is igaz.

Most azt tegyük fel, hogy $f \in \mathcal{U}$, azaz

$$\forall c>0 \text{ eset\'en } c\cdot g(n)>f(n) \quad \text{(m.m. n-re)}.$$

Mivel $g \in P$ ezért m.m. n-re g pozitív, tehát

$$\forall c > 0$$
 esetén $c > \frac{f(n)}{g(n)}$ (m.m. n -re).

Ez pedig azt jelenti, hogy $\lim_{n\to +\infty} \frac{f(n)}{g(n)} = 0$, azaz $f\in o(g)$.