上节课内容

- 排序问题复杂度下界
- 冒泡排序
- 堆排序
- 决策树确定下界

选择算法的时间 复杂度分析

下界证明方法:构造最坏输入

- 任意给定一个算法A,A对于任意输入x都存在一个确定的操作序列 τ
- · τ中的操作分成两类:
 - 决定性的: 能够对确定输出结果提供有效信息
 - 非决定性的:对确定结果没有帮助的冗余操作
- 根据算法A构造某个输入实例 x, 使得A对x 的操作序列 τ 包含尽量多的非决定性操作.
- 给出冗余操作+必要的操作的计数公式

选择算法的有关结果

	算法	最坏情况	空间
选最大	顺序比较	n-1	O (1)
选最大	顺序比较	2 <i>n</i> -3	O (1)
和最小	算法	$\lceil 3n/2 \rceil - 2$	<i>O</i> (1)
	FindMaxMin		
选第二大	顺序比较	2 <i>n</i> -3	O (1)
	锦标赛方法	$n+\lceil \log n \rceil -2$	O(n)
选中位数	排序后选择	$O(n\log n)$	O (1)
	算法Select	$O(n) \sim 2.95n$	$O(\log n)$

选最大算法 Findmax 是最优的算法

选最大与最小算法

定理6 任何通过比较找最大和最小的算法至少需要[3n/2]-2次比较.

证明思路: 任给算法A,根据算法A 的比较结果构造输入T,使得A 对 T 至少做 $\lceil 3n/2 \rceil$ -2 次比较.

证:不妨设n个数彼此不等,A为任意找最大和最小的算法. max是最大,A必须确定有n-1个数比max小,通过与max的比较被淘汰. min是最小,A也必须确定有n-1个数比min大,通过与min的比较而淘汰.总共需要2n-2个信息单位.

基本运算与信息单位

数的状态标记及其含义:

N: 没有参加过比较 W: 赢

L: 输 WL: 赢过且至少输1次

如果比较后数的状态改变,则提供信息单位,状态不变不提供信息单位,每增加1个W提供1个信息单位 每增加1个L提供1个信息单位.

两个变量通过一次比较增加的信息单位个数不同: 0,1,2

case1: N,N → W,L: 增加2个信息单位

case2: W,N → W,L: 增加1个信息单位

case3: W,L → W,L: 增加0个信息单位

算法输出与信息单位

算法输出的条件:

n-2 个数带有 W 和 L 标记,最大数只带 W 标记,最小数只带 L 标记,总计 2n-2个信息单位

对于任意给定的算法,构造输入的原则是:

根据算法的比较次序,针对每一步参与比较的两个变量的状态,调整对参与比较的两个变量的赋值,使得每次比较后得到的信息单位数达到最小. 从而使得为得到输出所需要的2*n*-2个信息单位,该算法对所构造的输入至少要做「3*n*/2]-2次比较.

对输入变量的赋值原则

x 与 y 的状态	赋值策略	新状态	信息单位	
N,N	<i>x>y</i>	W,L	2	
W,N; WL,N	<i>x>y</i>	W,L; WL,L	1	
L,N	<i>x</i> < <i>y</i>	L,W	1	
W,W	<i>x>y</i>	W,WL	1	
L,L	<i>x>y</i>	WL,L	1	
W,L; WL,L; W,WL	<i>x>y</i>	不变	0	
WL,WL	保持原值	不变	0	

一个赋值的实例

$$x_1, x_2, \dots, x_1 > x_2; x_1, x_5, \dots, x_1 > x_5; x_3, x_4, \dots, x_3 > x_4; x_3, x_6, \dots, x_3 > x_6; x_4, \dots, x_4 > x_5 > x_6; x_6, x_4, \dots, x_6 > x_4 \dots$$

	x_1		x_2	ı	x_3		x_4		x_5		x_6	
	状态	值	状态	值	状态	值	状态	值	状态	值	状态	值
	N	*	N	*	N	*	N	*	N	*	N	*
<i>x</i> ₁ > <i>x</i> ₂	W	20	L	10								
$x_1 > x_5$	W	20							L	5		
					W	15	L	8				
$\begin{array}{c} x_3 > x_4 \\ \hline x_3 > x_6 \end{array}$					W	15					L	12
<i>x</i> ₃ > <i>x</i> ₁	WL	<u>20</u>			W	<u>25</u>						
x ₂ >x ₄			WL	<u>10</u>			L	8				
$x_5 > x_6$									WL	<u>5</u>	L	3
$\begin{array}{c} x_2 > x_4 \\ x_5 > x_6 \\ \hline x_6 > x_4 \end{array}$							L	<u>2</u>			WL	3

构造的输入为(20, 10, 25, 2, 5, 3)

问题复杂度的下界

为得到2n-2个信息单位,对上述输入A至少做 $\lceil 3n/2 \rceil - 2$ 次比较.

一次比较得到2个信息单位只有case1. A至多有 $\lfloor n/2 \rfloor$ 个 case1,至多得到 $2 \lfloor n/2 \rfloor \le n$ 个信息单位. 其它case, 1次比较至多获得1个信息单位,至少还需要 n-2次比较.

当 n 为偶数,A做的比较次数至少为 $\lfloor n/2 \rfloor + n-2 = 3n/2 - 2 = \lceil 3n/2 \rceil - 2$ 当 n 为奇数,A做的比较次数至少为 $\lfloor n/2 \rfloor + n-2 + 1 = (n-1)/2 + 1 + n-2 = \lceil 3n/2 \rceil - 2$

结论: FindMaxMin是最优算法

找第二大问题

元素x的权: w(x),表示以x为根的子树中的结点数

初始, $w(x_i)=1$, $i=1,2,\ldots,n$;

赋值原则: 在比较的时候进行赋值或者调整赋值.只对没有失败过的元素(权大于0的元素)进行赋值. 权大者胜,原来胜的次数多的仍旧胜,输入值也大.

- 1. w(x), w(y) > 0:
 - 若 w(x)>w(y), 那么x的值大于y 的值; //权大者胜 若 w(x)=w(y), 那么x的值大于y 的值; //权等,任意分配
- 2. w(x)=w(y)=0, 那么x, y值不变; // x与 y 比较对于确定第二大无意义

实例

	$w(x_1)$	$w(x_2)$	$w(x_3)$	$w(x_4)$	$w(x_5)$	值
初始	1	1	1	1	1	*, *, *, *
第1步 x ₁ >x ₂	2	0	1	1	1	20, 10, *, *, *
第2步 x ₁ >x ₃	3	0	0	1	1	20, 10, 15, *, *
第3步 x ₅ >x ₄	3	0	0	0	2	20, 10, 15, 30, 40
第4步 x ₁ >x ₅	5	0	0	0	0	41, 10, 15, 30, 40

构造树

根据算法A的比较次序,在比最大的过程中如下构造树:

- 1. 初始是森林,含有n个结点;
- 2. 如果 x, y 是子树的树根,则算法比较 x, y;
- 3. 若 x, y 以前没有参加过比较,任意赋值给 x, y,比如 x>y; 那么将 y 作为 x 的儿子;
- 4. 若 x, y已经在前面的比较中赋过值,且 w(x)>w(y), 那 么把 y 作为 x 的儿子,以 y 为根的子树作为 x 的子树;

找第二大问题复杂度下界

针对这个输入,估计与max比较而淘汰的元素数根的权为n,其它的结点权为0,根为max

 w_k 表示 max 在它第 k 次比较后形成以max为根子树的结点总数,则 $w_k \leq 2w_{k-1}$,设 K 为max最终与权不为0的结点的比较次数,则

$$n = w_K \le 2^K w_0 \le 2^K \Rightarrow K \ge \log n \Rightarrow K \ge \lceil \log n \rceil$$

这 K 个元素彼此不同,因为同一个元素不可能被 计数 2 次. 其中为确定第二大,要淘汰K-1个元素, 至少用 $\lceil \log n \rceil$ -1 次比较.

结论: 锦标赛方法是找第二大的最优算法.

找中位数问题

定理8 设n为奇数,任何通过比较运算找n个数的中位数 (median) 的算法在最坏情况下至少做 3n/2-3/2 次比较

证 首先定义决定性的比较与非决定性的比较.

决定性的比较: 建立了x与 median 的关系的比较.

 $\exists y (x>y 且 y \ge median), x满足上述条件的第一次比较$

 $\exists y (x < y 且 y \leq median), x 满足上述条件的第一次比较$

(比较时 y 与median的关系可以不知道)

非决定性的比较: 当x>median, y<median, 这时x>y的比较不是决定性的.

为找到中位数,必须要做 n-1 次决定性的比较. 针对算法构造输入,使得非决定性比较达到(n-1)/2次.

输入构造方法

- 1. 分配一个值给中位数 median;
- 2. 如果A比较x与y,且x与 y 没有被赋值,那么赋值x,y 使得 x>median, y<median;
- 3. 如果A比较x与y,且x>median,y没被赋值,则赋值 y 使得 y<median;
- 4. 如果A比较x与y,且x<median,y没被赋值,则赋值y 使得 y>median;
- 5. 如果存在 (n-1)/2个元素已得到小于median的值,则对未赋值的全部分配大于median的值;
- 6. 如果存在 (n-1)/2个元素已得到大于median的值,则对未赋值的全部分配小于median的值.
- 7. 如果剩下1个元素则分配median给它.

构造实例

$$x_1,x_2--x_1>x_2;$$
 $x_3,x_4--x_3>x_4;$ $x_5,x_6--x_5>x_6;$ $x_1,x_3--x_1>x_3;$ $x_3,x_7--x_3>x_7;$ $x_7,x_4--x_7>x_4;$...

- 1. 初始 median=4
- 2. $x_1 > x_2$ $x_1 = 7$, $x_2 = 1$
- 3. $x_3 > x_4$ $x_3 = 5, x_4 = 2$
- 4. $x_5 > x_6$ $x_5 = 6, x_6 = 3$
- 5. $x_7 = 4$
- 6. $x_1 > x_3$
- 7. $x_3 > x_7$
- 8. ...

非决定性比较

决定性比较

复杂性分析

元素状态 N: 未分配值; S: 得到小于median值;

L: 得到大于median值

比较前的状态	分配策略
N, N	一个大于median,一个小于median
L,N或N,L	分配给状态N的元素的值小于median
S, N 或 N, S	分配给状态N的元素的值大于median

这样赋值的输入使得A在这个输入下所进行的上述比较都是非决定性的. 这样的比较至少有(n-1)/2个. 因此总比较次数至少为

$$(n-1)+(n-1)/2 = 3n/2-3/2$$

结论: Select算法在阶上达到最优.

几种选择算法的总结

问题	算法	最坏情况	问题下界	最优性
找最大	Findmax	n-1	n-1	最优
找最大最小	FindMaxMin	$\lceil 3n/2 \rceil - 2$	$\lceil 3n/2 \rceil - 2$	最优
找第二大	锦标赛	$n+\lceil \log n \rceil-2$	$n+\lceil \log n \rceil-2$	最优
找中位数	Select	O(n)	3n/2-3/2	阶最优
找第k小	Select	O(n)	$n+\min$ $\{k,n-k+1\}-2$	阶最优

通过归约确认问题计算复杂度的下界

问题P, 问题Q 问题Q的复杂度已知(至少线性) $\Omega(g(n))$

存在变换f将Q的任何实例转换成P的实例,f的时间为线性时间 f(n)=O(n),解的反变换s(n)也是线性时间

解**Q**的算法: $T_Q(n) = f(n) + T_p(n) + s(n)$

- 1. 将Q的实例 I 变成 f(I), f(n)
- 2. 用解 P 的算法作为子程序解 f(I),时间与解 P 的时间为同样的阶 $T_p(n)$
- 3. 将解变换成原问题的解 s(n)

解P的算法可以解Q. 且时间的阶一样,因此 P至少与Q一样难. $Q \leq_l P$ (l表示线性时间)

$$f(n)+T_p(n)+s(n)=T_Q(n)=\Omega(g(n))$$

因子分解与素数测试

• 问题:

因子分解 factor: 输入正整数n, factor(n)是多重集 (全部素因子)规定factor(1)={1} 素数测试 testp: 输入正整数n, test(n)为 "Yes"或者 "No"

- ・ 归约: testp ≤ factor 假设 testp问题的难度是W(n). 素数测试算法 A(n)
 - 1. if n=1 then return "No"
 - 2. else $p \leftarrow factor(n)$
 - 3. if $|p| \ge 2$ then return "No"
 - 4. else return "Yes"
- 结论: $\Omega(W(n)) = T_{\text{testp}}(n) \le T_{\text{factor}}(n)$

元素唯一性问题

- 问题: 给定n个数的集合S,判断S中的元素是否存在相同元素.
- 元素唯一性问题的复杂度为 $\Theta(n\log n)$ 输入: 多重集 $S = \{ n_1 \cdot a_1, n_2 \cdot a_2, \dots, n_k \cdot a_k \}$ 构造决策树,树叶为 S 的全排列数

$$\frac{n!}{n_1! n_2! \dots n_k!}$$

最坏情况下树深为

$$\Theta(\log n!) = \Theta(n \log n)$$

最邻近点对与唯一性问题

· P问题与Q问题:

P: 平面直角坐标系中n个点的最邻近点对问题Close

Q: 元素的唯一性问题Uniqueness $\Omega(n \log n)$

· 变换 f:

Q的实例: $x_1, x_2, ..., x_n$, 变成点 $(x_1,0), (x_2,0), ..., (x_n,0)$

- 解Q算法:
 - 1. 利用求最邻近点对算法 P 计算最短距离 d.
 - 2. if d=0 then return "No"
 - 3. else return "Yes"
- 结论: 计算平面直角坐标系中n个点的最邻近点对问题的时间是 $\Omega(n\log n)$, 其中算法以比较为基本运算

最小生成树与唯一性问题

北京大学

· P问题与Q问题:

P: 平面直角坐标系中n个点的最小生成树问题;

Q: 元素的唯一性问题Uniqueness $\Omega(n \log n)$

· 变换 f:

Q的实例: $x_1, x_2, ..., x_n$, 变成X 轴上的n个点,

- 解Q算法:
 - 1. 利用求最小生成树算法P构造树T,确定T的最短边e.
 - 2. 检测e的长度是否为0
 - 3. if |e|=0 then 不唯一,else 是唯一的.
- 结论: 计算平面直角坐标系 n点最小生成树时间是 $\Omega(n\log n)$,其中算法以比较为基本运算