MIDTERM 2

Wednesday, November 13, 2013 12:39 PM

 $Log n < n < n log n < n^2$

- Balanced search trees better because reinforce n log n runtime
 - Binary search trees don't
- Trees

0

- o Preorder: roots first, depth first, left to right
- o Postorder: children first, breadth first
- o Inorder: children first, depth first

```
|\leq|\text{eaves}\leq|^h

h\leq|\text{internal}\leq|^h-1

|\log(n+1)-1\leq|h|\leq|n-1|

For complete tree,

there are 2^{\log(n+1)-1}

=\frac{h+1}{2}\approx\frac{n}{2}|\text{taves}
```

Runtime are between n and log n depending on balanced or branched.

```
/** Node in T containing L,
  * or null if none */
 static BST find(BST T, Key L) {
   if (T == null)
     return T;
   if (L.keyequals (T.label()))
     return T;
   else if (L \prec T.label())
     return find(T.left(), L);
   else
     return find(T.right (), L);
 }
/** Insert L in T, replacing existing
* value if present, and returning
* new tree. */
BST insert(BST T, Key L) {
  if (T == null)
   return new BST(L);
  if (L.keyequals (T.label()))
   T.setLabel (L);
  else if (L \prec T.label())
   T.setLeft(insert (T.left (), L));
  else
    T.setRight(insert (T.right (), L));
  return T;
}
```

CS 61B Page 1

- Queues and Stacks
Stacks: dishes
■ Push, pop
Queues: first in, first out
■ Enqueue, dequeue
■ Front
Constant time
Priority queue
■ Insert
■ Use key
о Неар
■ Sorted by min/max/etc.
 Each level needs to be filled up first
Can be represented as array
Compare/swap
Stick in new spots and bubble up(remove)/down(insert) until property satisfied
- Hash tables
Constant time for inserting, over linkedlist
o chaining
-