Back-Propagation over CNN

Xenuts

October 5, 2014

Contents

1	Notations	1
2	Shapes 2.1 Conv and Pooling layers	2 2 2
3		2 3
4	Fully-Connected Layer l	3
5		4 4
6	Pooling Layer l	4
1	Notations	
	• K : Number of classes. $k = 1 \to K$	
	• N: Number of training examples. $n = 1 \rightarrow N$	
	• L: Layer number. $l = 1 \rightarrow L$	
	• \mathbf{z}^l : The activation of layer l . \mathbf{z}^1 is exactly the input, and \mathbf{z}^L is exact the output \mathbf{y} .	tly

- y: Output. Shape = $K \times N$
- **t**: Target (one-hot scheme). Shape = $K \times N$
- $f(\cdot)$: Activation function / non-linearity function
- ullet Weights for fully-connected and output layers and filters for conv layers.
- \mathbf{b}^l : Bias.
- S_l : The size of fully-connected layers l or the number of feature maps of conv and pooling layers. For output layer, $K = S_L$
- $[r_l, c_l]$: The shape of feature maps of conv and pooling layers.

2 Shapes

2.1 Conv and Pooling layers

- \mathbf{z}^l : $[r_l \times c_l \times S_l \times N]$
- W^l : $[r_f \times c_f \times S_{l-1} \times S_l]$
- \mathbf{b}^l : $S_l \times 1$

2.2 Fully-connected and Output layers

- \mathbf{z}^l : $[S_l \times N]$
- W^l : $[S_{l-1} \times S_l]$
- \mathbf{b}^l : $S_l \times 1$

3 Output Layer L

- Input: \mathbf{z}^{L-1}
- Output: $\mathbf{y} = \mathbf{z}^L = f(\mathbf{u}^L), \mathbf{u}^L = W^L \mathbf{z}^{L-1} + \mathbf{b}^L$
- Target: t is one-hot fashion
- Gradients using delta rule:

- Weights:

$$\nabla W^L = \frac{1}{N} \cdot \mathbf{z}^{L-1} (\delta^L)^\top + \lambda W^L$$

- Bias:

$$\nabla \mathbf{b}^L = \frac{1}{N} \cdot \sum_{n=1}^{N} \delta_{\cdot,n}^L$$

3.1 Squared-Error Loss (i.e. sigmoid)

• Method: f(x) = sigmoid(x)

• Squared-Error Loss:

$$J = \frac{1}{2} \sum_{n=1}^{N} \sum_{k=1}^{K} (\mathbf{t}_{k,n} - \mathbf{y}_{k,n})^{2}$$

• Error Sensitivity (see details):

$$\delta^L = f'(\mathbf{u}^L) \odot (\mathbf{y} - \mathbf{t})$$

3.2 Cross-Entropy Loss (Softmax)

• Method: $f(x) = \operatorname{softmax}(x)$

• Cross-Entropy Loss:

$$J = -\sum_{n=1}^{N} \sum_{k=1}^{K} \mathbf{t} \odot \log \mathbf{y} + \frac{\lambda}{2} \sum_{l=1}^{L} ||W^{l}||_{2}^{2}$$

• Error Sensitivity (see details):

$$\delta^L = \mathbf{y} - \mathbf{t}$$

4 Fully-Connected Layer l

A fully-connected layer can only be followed by an output layer or another fully-connected layer.

• Input: \mathbf{z}^{l-1}

• Output: $\mathbf{z}^l = f(\mathbf{u}^l), \mathbf{u}^l = W^l \mathbf{z}^{l-1} + \mathbf{b}^l$

- Gradients using delta rule:
 - Weights:

$$\nabla W^l = \frac{1}{N} \cdot \mathbf{z}^{l-1} (\delta^l)^\top + \lambda W^l$$

- Bias:

$$\nabla \mathbf{b}^l = \frac{1}{N} \cdot \sum_{n=1}^{N} \delta^l_{\cdot,n}$$

• Error Sensitivity (see details): shape is $S_l \times N$

$$\delta^l = W^{l+1} \delta^{l+1} \odot f'(\mathbf{u}^l)$$

- Derivative of Common Non-Linearity Function
 - Sigmoid:

$$f(x) = \frac{1}{1 + \exp(-x)} \Rightarrow f'(x) = f(x)(1 - f(x))$$

- tanh:

$$f(x) = \tanh(x) \Rightarrow f'(x) = 1 - (f(x))^2$$

- ReLU:

$$f(x) = \max(x, 0) \Rightarrow f'(x) = (f(x) > 0)$$

5 Convolution Layer l

A convolution layer can be followed by layer 'p', 'c', 'f', 'o'.

- Gradients $(1 \le i \le S_{l-1}, 1 \le j \le S_l)$:
 - Weights:

$$\nabla W_{i,j}^l = \frac{1}{N} \cdot (\mathbf{z}_{\cdot,\cdot,i,\cdot}^{l-1} \circledast_{valid} \operatorname{rot} 180(\delta_{\cdot,\cdot,j,\cdot}^l)) + \lambda W_{i,j}^l$$

- Bias:

$$\nabla \mathbf{b}_{j}^{l} = \frac{1}{N} \cdot \sum_{n=1}^{N} \sum_{u,v} \delta_{u,v,j,n}^{l}$$

5.1 Followed by a Pooling Layer

• Error Sensitivity:

$$\delta^l = f'(\mathbf{u}^l) \odot \operatorname{unpool}(\delta^{l+1})$$

5.2 Followed by a Convolution Layer

• Error Sensitivity:

$$\delta^l = f'(\mathbf{u}^l) \odot (\delta^{l+1} \circledast_{full} W^{l+1})$$

6 Pooling Layer l

A pooling layer can be followed by layer 'c', 'f', 'o'. The error sensitivity δ 's computation is the same as above but here $f'(\mathbf{u}^l) = 1$.