COL352: Assignment 2

Sachin 2019CS10722 Saurabh Verma 2019CS50129 Sriram Verma

March, 2022

1 Question 1

We say that a context-free grammar G is self-referential if for some non-terminal symbol X we have $X \to^* \alpha X \beta$, where $\alpha, \beta \neq \varepsilon$. Show that a CFG that is not self-referential is regular.

Prove that the class of context-free languages is closed under intersection with regular languages. That is, prove that if L_1 is a context-free language and L_2 is a regular language, then $L_1 \cap L_2$ is a context-free language. Do this by starting with a DFA

Let us suppose there is a CFL L and a regular language R. The pushdown automata that accepts L be $P=(S_1, \Sigma, \Gamma, \delta_1, s_1, F_1)$ and the DFA accepting R be $D=(S_2, \Sigma, \delta_2, s_2, F_2)$. Now we have to show that the language $L \cap R$ is CFL. To show this it is enough to provide a PDA that accepts it. So we will construct such a PDA to prove that $L \cap R$ is CFL.

To Prove: $L \cap R$ is CFL.

Proof: We will the above hypothesis by construction. The main idea behind the construction of the PDA is that we will run both the original PDA P for L and the DFA D in parallel on the input string and will only accept when the we reach an accepting state both in P and D. The construction of the PDA is described below:

Construction: Let the PDA which accepts $L \cap R$ be $M = (S, \Sigma, \Gamma, \delta, (s_1, s_2), F)$. Here S is $S_1 * S_2$ and F is $F_1 * F_2$. The transition function δ is described as follow:

For all the transitions $((p_1, a, \alpha), (p_2, \beta)) \in \delta_1$ and $(q_1, a, q_2) \in \delta_2$ add the transition $(((p_1, q_1), a, \alpha), ((p_2, q_2), \beta))$ in δ .

Also, for all the transitions $((p_1, \epsilon, \alpha), (p_2, \beta)) \in \delta_1$ and $\forall q \in S_2$ add the transition $(((p_1, q), a, \alpha), ((p_2, q), \beta))$ in δ .

Here $p_1, p_2 \in S_1$ $q_1, q_2 \in S_2$ $a \in \Sigma$ $\alpha, \beta \in \Gamma$

The accepting condition is that the final state reached after reading the input must belong to F.

Now our claim is that PDA M exactly recognises every string that is in $L \cap R$. Claim: The PDA M constructed above exactly recognises strings in $L \cap R$.

Proof: We will have to show two things first that every string in $L \cap R$ is accepted by M. Lets prove this. Choose any string $w \in L \cap R$. Then its run on the DFA D would be something like s_2, q_1, \ldots, q_k where $q_k \in F_2$, also w would take the PDA M from start configuration(s_1) to an accepting configuration($q_{k'}$) in some steps. By the way we have constructed the PDA M the computions of M and D will happen in parallel. So (s_1,s_2) is the start configuration of the PDA. First state in the tuple denotes the state that would have been in the PDA P and second state denotes the state that would have been in the DFA D after reading input upto some point. So when the PDA gets to wun on w. It would take M from from (s_1,s_2) to ($q_k,q_{k'}$). Now this is an accepting configuration in M by the way we defined $F(F_1 * F_2)$. So all the string $w \in L \cap R$ are accepted by M.

Also we have to prove that all the strings say w that are accepted by M should also be present in $L \cap R$. We will accept w if it takes PDA M from (s_1, s_2) to (q_1, q_2) , $q_1 \in F_1$ and $q_2 \in F_2$. Also we have showed that M is parallely running P and D where first state in the tuple means the state reached in P and second

state means the state reached in D after reading the input uptill that point. So after reading w if the M is in state (q_1, q_2) , it would mean that after reading w P would have been in q_1 and D would be in q_2 . $q_1 \in F_1$, so $w \in L$ also $q_2 \in F_2$ so $w \in R$ which implies $w \in L \cap R$.

Thus we have successfully constructed a PDA M which accepts $L \cap M$. Thus CFL's are closed under intersection with regular languages. Hence proved.

Given two languages L, L', denote by

$$L||L' := \{x_1y_1x_2y_2\dots x_ny_n \mid x_1x_2\dots x_n \in L, y_1y_2\dots y_n \in L'\}$$

Show that if L is a CFL and L' is regular, then L||L' is a CFL by constructing a PDA for L||L'. Is L||L' a CFL if both L and L' are CFLs? Justify your answer.

For $A \subseteq \Sigma^*$, define $cycle(A) = \{yx \mid xy \in A\}$ For example if $A = \{aaabc\}$, then $cycle(A) = \{aaabc, aabca, abcaa, bcaaa, caaab\}$ Show that if A is a CFL then so is cycle(A)

Let us suppose that we do have a CFG M=(V,T,P,S) for the langauge A in chomsky normal form. We know for a fact that since A is CFL it will have a CSG. Now to prove that cycle(A) is also a CFL. So we will construct a CFG for cycle(A) that would show that cycle(A) is CFL.

To Prove: Cycle(A) is CFL.

Proof Idea: Let us consider any string w in language A of the form x_1x_2 . Lets look at the parse tree of w. If we turn the parse tree upside down from the leftmost non terminal leaf from where x_2 starts then we will get the parse tree for x_2x_1 , which is exactly what we are after. So through the construction described below we try to achieve this affect.

Construction: Let us consider the new grammar $M' = (V', T, P', S_0)$ to accept cycle(A). Now here, $V' = V \cup \{Z' \text{ for } Z \in V\} \cup \{S_0\}$ P is defined as follow:

- All the rules in P
- $S_0 \rightarrow S$
- $S' \to \epsilon$
- if P contained $Z \to a$ add $S_0 \to aZ'$
- if P has $Z \to XY$ add $Y^{'} \to Z^{'}X$ and $X^{'} \to YX^{'}$

Now we have constructed the grammar M'. Whats left is to show that $\mathcal{L}(M')$ is exactly $\operatorname{cycle}(\mathcal{A})$.

Claim: L(M') is same as cycle(A).

Proof:

Let

$$A = \{wtw^R \mid w, t, \in \{0, 1\}^* \text{ and } |w| = |t|\}$$

Show that A is not a CFL.

We will prove that A is not CFL by contrapositive of pumping lemma. i.e. we need to show the following:-

 $\forall p \geq 0$

 $\exists s \in A : |s| \ge p$

 $\forall uvxyz = s : |vy| > 0, |vxy| \le p$

 $\exists i : uv^i xy^i z \notin A$

Let $s = 0^n 1^{\frac{n}{2}} 0^{\frac{n}{2}} 0^n$ ($w = w^R = 0^n, t = 1^{\frac{n}{2}} 0^{\frac{n}{2}}, n = \text{any even number more}$ than p)

Now, lets divide s in 3 parts = wab, where $a = 1^{\frac{n}{2}}$ and $b = 0^{\frac{n}{2}}0^n$

Considering all partitions of s = uvxyz such that |vy| > 0, $|vxy| \le p \le n$

1. Case 1: $vxy \subseteq w$

Considering s' = uxz i.e. i = 0

For s' to be in A, its should be divided into 3 halves = w't'd' of equal length such that first and third are reverse.

Since, we have removed characters from w only, w' will have all the characters of w left after removal of v,y and also some 1's from t for it to have same length as other subparts of equal length (see fig).

Hence, $1 \in w'$, but $d' \subset w^R = 0^n = 1 \notin d' = d' \neq w'^R$

Hence, $s' \notin A$

2. Case 2: $vxy \subseteq b$

Considering $s' = uv^2xy^2z$ i.e. i = 2

Let, |s| = l, |s'| = l', l' < l

 $|w| = \frac{l}{3} < \frac{l'}{3}$ => $w \subset w'$ => w' will overflow towards t => $1 \in w'$

But, $d' \subset w^R$ (after pumping) that only has 0 (see fig)

 $=>d'\neq w'^R$

Hence, $s' \notin A$

3. Case 3: $vxy \cap a \neq \phi$

(a) $w \mid \exists vxy = \phi$

Considering $s' = uv^2xy^2z$ i.e. i = 2

This case is similar to case 2, as length of string is increased but w remains unchanged, hence $w'[1:n] = w = 0^n$ and w'[n+1] = 1. But $(n+1)^{th}$ of d' from last = last bit of t = 0. => $d' \neq w'^R$ Hence, $s' \notin A$

(b) $w \bigcup vxy \neq \phi$ Considering s' = uxz i.e. i = 0This case is similar to case 1, as length of string is decreased (all from w). Hence, $1 \in w'$, but $1 \notin d'$ (from case 1) $=> d' \neq w'^R$ Hence, $s' \notin A$

Hence A is not CFL.

Prove the following stronger version of pumping lemma for CFLs: If A is a CFL, then there is a number k where if s is any string in A of length at least k then s may be divided into five pieces s = uvxyz, satisfying the conditions:

- 1. for each $i \geq 0$, $uv^i x y^i z \in A$
- **2.** $v \neq \varepsilon$, and $y \neq \varepsilon$, and
- **3.** $|vxy| \le k$.

Give an example of a language that is not a CFL but nevertheless acts like a CFL in the pumping lemma for CFL (Recall we saw such an example in class while studying pumping lemma for regular languages).

Consider the following languages:-

 $1. L_1 = ab^n c^n d^n$

Claim: L_1 is not CFL

Proof: Suppose L_1 is CFL, consider the language $L' = L_1 \cap b^*c^*d^* = b^nc^nd^n$

Then, L' would also be regular since it is intersection of a CFL and a regular language (proved in ques 2 that intersection of regular language and CFL is CFL). But it is proved in class that L' is not a CFL. Hence by contradiction L_1 is not CFL.

2. $L_2 = a^{k_1}b^{k_2}c^{k_3}d^{k_4}: k_1 \neq 1$

 L_2 is CFL because it is union of 2 regular languages : $b^*c^*d^* \bigcup a^2a^*b^*c^*d^*$ that is regular and all regular languages are CFL.

3. $L_3 = L_1 \bigcup L_2$

 L_3 is not a CFL as $L_3 \cap ab^*c^*d^* = L_1$ that is not a CFL and if L_3 were CFL, it should have been CFL by closure of union on CFL.

Now, lets try to apply pumping lemma on L_3 .

Let p=2

Consider $\forall s \in L_3$

There are only 2 choices, either s is in L_1 or L_2 (as both have no intersection). Lets consider both of the cases separately.

1. $s \in L_1$

Consider the partition of s = uvxyz, where $u = v = x = \epsilon, y = a, z = b^n c^n d^n (n > 0as|s| \ge 2)$

Now, $\forall i \geq 0 : s' = uv^i x y^i z = a^i b^n c^n d^n$

If i = 1 then $s'=s\in L_1=>s'\in L_3$ otherwise s' is of the form $a^{k_1}b^{k_2}c^{k_3}d^{k_4}:k_1\neq 1$ i.e. $s'\in L_2=>S'\in L_3$

 $=> \forall i \geq 0 s' \in L_3$

Hence L_3 satisfies pumping lemma.

 $2. \ s \in L_2$

This case is simple as L_2 is CFL, it should satisfy pupming lemma. Hence we are done.

Hence provided an NCFL that satisfies pumping lemma.