Spectral Clustering

Wei Wang @ CSE, UNSW

May 7, 2018

Quadratic Form

- Let **A** be some $n \times n$ matrix.
- What is Ax? What's the type of the output? What may x represent?
 - Some numeric assignment on all nodes in G.
 - E.g., what if $x_i \in \{0,1\}$? $x_i \in [0,1]$? $x_i \in \Re$?
- What is x^TAx? What's the type of the output? Why it is called a qudratic form?

Quadratic Form

- Let **A** be some $n \times n$ matrix.
- What is Ax? What's the type of the output? What may x represent?
 - Some numeric assignment on all nodes in G.
 - E.g., what if $x_i \in \{0,1\}$? $x_i \in [0,1]$? $x_i \in \Re$?
- What is x^TAx? What's the type of the output? Why it is called a qudratic form?
 - $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \sum_{i,j} A_{ij} \cdot (x_i x_j)$

Unnormalized Graph Laplacian

- Let **A** is the adjacency matrix of a "normal" (unweighted) undirected graph G. $\mathbb V$ are the vertices of G and $\mathbb E$ are the edges of G
 - An edge between v_i and v_j is modelled as (i,j) and (j,i), i.e., $A_{ij} = A_{ji} = 1$.
 - $A_{ii} = \underline{\hspace{1cm}}?$
- What about $\mathbf{x}^{\top}\mathbf{I}\mathbf{x}$?
- What about $\mathbf{x}^{\top}\mathbf{D}\mathbf{x}$, where $\mathbf{D} = \mathrm{Diag}(d_1, d_2, \dots, d_n)$ and $d_i = deg(v_i)$?
- What about $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$?
- Now what about $2(\mathbf{x}^{\top}\mathbf{D}\mathbf{x} \mathbf{x}^{\top}\mathbf{A}\mathbf{x})$?

Example

$$\mathbf{x}^{ op} \mathbf{L} \mathbf{x} = rac{1}{2} \cdot \sum_{\mathbf{e}_{ij} \in \mathbb{E}} (x_i - x_j)^2$$
 , where $\mathbf{L} = \mathbf{D} - \mathbf{A}$.

ullet ℓ_2 differences between assignments on the two ends of an edge, summed over all edges.

Example

	n_1	n_2	n ₃	n ₄	<i>n</i> ₅	n ₆
n_1						
n_2						
<i>n</i> ₃						
n_4						
n ₅						
<i>n</i> ₆						

- 1 is the one vector.
- L1 = (NB: $L^{\top} = L$) \Longrightarrow $\lambda_1 = 0, \nu_1 = 1$

$$\implies \lambda_1 = 0, v_1 = 1$$

 $\mathbf{o} \mathbf{x}^{\mathsf{T}} \mathbf{L} \mathbf{x} =$

Binary x induces a Clustering /1

- x =
- $\mathbf{o} \mathbf{x}^{\mathsf{T}} \mathbf{L} \mathbf{x} =$

Binary x induces a Clustering /2

- x =
- \bullet $\mathbf{x}^{\top}\mathbf{L}\mathbf{x} =$
- $\bullet \ \mathbf{x}^{\top}\mathbf{x} =$

Min Cut vs. Normalized Cut

- Min cuts are not always desirable.
 - Biased towards cutting small sets of isolated nodes.

- Cut: $cut(A, B) = \sum_{v_i \in A, v_i \in B} w_{ij}$.
- Normalized cut:

$$ncut(A, B) = \frac{cut(A, B)}{vol(A)} + \frac{cut(A, B)}{vol(B)},$$

where
$$vol(A) = \sum_{v_i \in A} d_i) = \sum_{v_i \in A, v_j \in \mathbb{V}} w_{i,j}$$
.

Connection to L

$$ncut(A, B) = cut(A, B) \left(\frac{1}{vol(A)} + \frac{1}{vol(B)}\right)$$

- Let $x_i = \frac{1}{vol(A)}$ if $v_i \in A$, and $= \frac{-1}{vol(B)}$ otherwise.
- $\mathbf{x}^{\top} \mathbf{L} \mathbf{x} = \sum_{e} w_{ij} (x_i x_j)^2 = 0 + \sum_{v_i \in A, v_j \in B} \left(\frac{1}{vol(A)} + \frac{1}{vol(B)} \right)^2$
- $\mathbf{x}^{\top} \mathbf{D} \mathbf{x} = (\mathbf{x}^{\top} D) \mathbf{x} = \sum_{E} d_{i} x_{i}^{2} = \sum_{v_{i} \in A} \frac{d_{i}}{vol(A)^{2}} + \sum_{v_{j} \in B} \frac{d_{j}}{vol(B)^{2}} = \frac{1}{vol(A)} + \frac{1}{vol(B)}$

$$ncut(A, B) = \frac{\mathbf{x}^{\top} \mathbf{L} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{D} \mathbf{x}}$$

Relaxation and Optimization

Minimize
$$ncut(A, B) = \frac{\mathbf{x}^{\top} \mathbf{L} \mathbf{x}}{\mathbf{x}^{\top} \mathbf{D} \mathbf{x}}$$
 Subject to $x_i \in \left\{ \frac{1}{vol(A)}, \frac{-1}{vol(B)} \right\}$

- NP-hard to optimize under the discrete constraint.
- Relaxation: grow the feasible region of x and find the minimum value within the enlarged region.
 - allow x to be a real vector?
 - Yes, but too large.
 - This gives the constraint: $\mathbf{x}^{\mathsf{T}}\mathbf{D}\mathbf{1} = 0$ or equivalently $\mathbf{x}^{\mathsf{T}}\mathbf{D} \perp \mathbf{1}$ (You can verify this by plugging in any discrete vectors)
- Solution: the second smallest eigenvector of the generalized eigen value problem $\mathbf{L}\mathbf{x} = \lambda \mathbf{D}\mathbf{x}$.
- Normalized Laplacian:

$$\mathbf{L}' = \mathbf{D}^{-\frac{1}{2}}(\mathbf{D} - \mathbf{W})\mathbf{D}^{-\frac{1}{2}} = \mathbf{I} - \mathbf{D}^{-\frac{1}{2}}\mathbf{W}\mathbf{D}^{-\frac{1}{2}}$$

Spectral Clustering Algorithm Framework

- Algorithm SC_recursive_bin_cut(data, k)
 - Construct the weighted graph G
 - Construct the special graph laplacian *L* for *G*.
 - Compute the smallest non-zero eigenvector for L. This is the new representation of vertices in a new 1-dimensional space (i.e., embedding).
 - Cluster the vertices in the embedding space according to the objective function.
 - For each cluster, recursively call the algorithm if more clusters are needed

Spectral Clustering Algorithm Framework

- Algorithm SC_k_way_cut(data, k)
 - ullet Construct the weighted graph G
 - Construct the special graph laplacian *L* for *G*.
 - Compute the smallest t non-zero eigenvector for L. This is the new representation of vertices in a new t-dimensional space (i.e., embedding).
 - Cluster the vertices in the embedding space using another clustering algorithm (e.g., k-means)

Notes on the Algorithms

- How to construct the weighted graph if only n objects are given?
 - Be based on the similarity or distance among objects.
 - E.g., $w_{ij} = \exp(\frac{\|f(o_i) f(o_j)\|}{2\sigma^2})$ where f(o) is the feature vector of object o. One can also induce a sparse graph if one caps the raw weights by a threshold.
- Which Laplacian to use?
 - Unnormalized graph laplacian $\mathbf{L} = \mathbf{D} \mathbf{W}$.
 - Normalized graph laplacian $\mathbf{L} = \mathbf{D}^{-\frac{1}{2}}(\mathbf{D} \mathbf{W})\mathbf{D}^{-\frac{1}{2}}$.

Comments on Spectral Clustering

Pros:

- Usually better quality than other methods.
- Can be thought of (non-linear) dimensionality reduction or embedding.
- Freedom to construct a (sparse) G to preserve local similarity/connectivity.
- Only requires some similarity measure.
- Could be more efficient than k-means for high-dimensional sparse vectors (esp. if k-means is not fully optimized for such case).

Cons:

- Still need to determine k
- Assumes clusters are of similar sizes.
- Does not scale well with large datasets; but more scalable variants exist.
- One of the relaxation of the original NP-hard problem may not be the tightest relaxation.