Разбор задачи «Диманово»

Решение на 60 баллов: для каждой точки переберем все отрезки, найдем ответ (точка должна лежать на отрезке и длина максимальна). Получим решение за O(nm).

Так как координаты точек большие, то воспользуемся методом сжатия координат: отсортируем все координаты и занумеруем их в таком порядке, затем будем использовать их номера вместо самой координаты. Легко понять, что номер координаты не превысит 10^5 . Затем, построим дерево отрезков на них. Отсортируем отрезки по длине (по неубыванию), если длины равны, то раньше должен идти отрезок с большим номером. Пройдемся в этом порядке по отрезкам и будем делать присвоение на отрезке индексом отрезка. Это можно делать с помощью запаздывающих обновлений. В самом конце для каждой камеры посмотрим в дереве отрезков, какое значение ей присвоено последнее, и выведем его. Описание алгоритмов построения и использования структуры «дерево отрезков» можно найти в интернете на популярных ресурсах, посвященных олимпиадным задачам.

Разбор задачи «Стрелки»

Пусть Тарас находится в точке T. Для каждого разбойника B переберем все ключевые точки K. Можно определить минимальную скорость, которую должна иметь стрела Тараса, чтобы прилететь в точку K не позже стрелы разбойника. Эта скорость — $\frac{TK}{BK}v$, где v — скорость разбойника. Теперь, максимум по всем таким скоростям и будет ответом. Такое решение работает за O(nq) времени, что, конечно, чрезвычайно долго.

Рассмотрим более оптимальное решение. Заметим, что дорога узка — всего 101 различная координата по оси y. Разобьем все ключевые точки на классы по равенству y-координаты. Будем обозначать максимальную y-координату по всем ключевым точкам y_{max} . Разбиение и сортировка обойдутся нам в $O(q \log q)$ времени.

Теперь можно перебрать для каждого разбойника B целый класс ключевых точек. Осталось понять, как в классе ключевых точек найти такую точку K, что отношение $\frac{TK}{BK}$ было бы наибольшим. Все точки внутри одного класса лежат на горизонтальной прямой. Можно исследовать вид функции $\frac{TK}{BK}$, зависящей от x-координаты точки K. Несложно понять, что при удалении точки K на бесконечность отношение будет стремиться к 1. Само же значение 1 может быть достижимо только на срединном перпендикуляре отрезка TB. Слева и справа от значения 1 функция будет иметь точку максимума и точку минимума.

Как показать, что функция будет иметь точки локального максимума и минимума? Можно выписать отношение $\frac{TK}{BK}$ в координатном виде и приравнять производную выражения к 0. Получится квадратное уравнение, имеющее два корня — это и есть точки максимума и минимума. Есть и другой путь. Заметим, что Γ MT точек таких, что $\frac{TK}{BK} = k$ есть окружность Аполлония, либо прямая при k=1. Горизонтальная прямая пересекает эти окружности в двух точках, но только одну из окружностей касается. В это окружности будет точка минимума(максимума).

Как же теперь решать задачу? Бинарным поиском разделим точки на прямой на два множества. Для первого множества (для определенности находится слева) выполнено $\frac{TK}{BK} \leqslant 1$, для второго (справа) $\frac{TK}{BK} > 1$. Если второе множество пусто, то Тарасу не нужна скорость большая скорости рассматриваемого разбойника. Вспомним, что максимум $\frac{TK}{BK}$ в левой части находится на концах отрезка. Тогда просто проверим концы отрезка и обновим ответ. Теперь предположим, что второе множество не пусто, тогда первое множество рассматривать не надо совсем. Ответ в правом множестве есть точка максимума. Можно найти ее тернарным поиском по ответу, а можно и бинарным по дискретной производной. Тогда итоговая оценка времени работы $O((ny_{max}+q)\log q)$.

Разбор задачи «Ярмарка»

По условию нас интересуют только товары с ярлыком «Суперцена», а значит, если мы зафиксируем позиции минимумов, то остальные элементы можем расставить произвольно.

Пусть $a=a_1,a_2,...,a_n$ - ответ на задачу. Тогда какой-то из элементов $a_1,a_2,...,a_k$ будет равен минимуму. Давайте покажем, что оптимально поставить минимум в качесте элемента a_k . Элемент a_k входит в отрезки $[a_1,...,a_k], [a_2,...,a_{k+1}], ..., [a_k,...,a_{2k-1}]$. Если мы вместо a_k выберем некоторый другой элемент из $a_1,...,a_{k-1}$, то количество отрезков, которым принадлежит этот минимум, может только уменьшиться. Рассуждая аналогичным образом получаем, что оптимальным будет поставить минимумы на позиции k, 2k, 3k и т.д. Если в какой-то момент нам нужно поставить элемент, а минимумы закончились, значит ответ - Impossible.

Разбор задачи «Bomberman на дереве»

Сначала вычислим таблицу d[i][j] кратчайших расстояний от каждой вершины до каждой (например, можно сделать это за $O(N^2)$, запустив поиск в ширину из каждой вершины). С помощью этой таблицы найдём, какое нужно время, чтобы дойти до a_1 (первого бункера, который надо взорвать). Теперь мы закладываем бомбу в этот бункер и двигаемся в следующий a_2 за минимальное возможное время так, чтобы нас не задело взрывом. Как же нам его вычислить? Для этого переберём номер вершины k, в которой мы находимся в момент взрыва. С одной стороны, $d[a_1][k]$ должно

быть больше p (чтобы мы не пострадали). А с другой стороны $d[a_1][k] \leqslant t$ (иначе мы не успеем добежать в эту вершину). Понятно, что из всех вершин, подходящих под данное условие, мы должны выбрать ту, у которой $d[k][a_2]$ минимальное. Суммарное время на подрыв вершины a_1 и путь до следующей будет занимать $t+d[k][a_2]$. Ясно, что если таких вершин k нет, то наша миссия обречена на провал (нам просто негде скрыться от взрыва).

Теперь проделаем эти вычисления для всех остальных пар бункеров $(a_2 \, \text{и} \, a_3, \ldots, a_{m-1} \, \text{и} \, a_m)$.

С последним бункером надо разобраться отдельно: также переберём вершину k, в которой мы будем прятаться в момент взрыва. Если она существует, то время, которые мы истратим на последний бункер, равно t. А если её не существует — то в любом случае мы будем задеты взрывом. Итоговый ответ будет равен сумме всех вычисляемых нами времен или равен —1 в случае, если на каком-то этапе провал неизбежен.

Разбор задачи «Спецзадание»

Пусть у нас есть только один охранник. В таком случае, это стандартная задача на поиск в ширину: мы добавляем в очередь позицию этого охранника, помечаем расстояние до этой позиции равным нулю, далее, добавляем в очередь все смежные с этим охранником позиции и определяем расстояние равным единицы, и так далее. В конце получаем расстояние от этого охранника до всех позиций.

Для того, чтобы набрать 60 баллов, достаточно было производить поиск в ширину последовательно для каждого охранника. Время работы такого решения: $O(n^2m^2)$.

Чтобы улучшить время работы, попробуем запустить поиск в ширину для всех охранников одновременно. Мы можем сделать точно такой же поиск в ширину, но теперь изначально в очередь нужно добавить позиции всех охранников и проинициализировать расстояния до них нулями. Далее, выполняем обычный поиск в ширину, таким образом, сначала мы добавим в очередь все позиции, смежные с первым охранником, потом со вторым и т. д. Итоговая асимптотика: O(nm).