

(Autonomous Institute, Affiliated to VTU) (Approved by AICTE, New Delhi & Govt. of Karnataka) Accredited by NBA & NAAC with 'A+' Grade

SEMESTER END EXAMINATIONS - MAY 2023

Program

: B.E :- Common to ME / IM / CH

Max. Marks

: I s: 100

Course Name Course Code Advanced Calculus

Duration

3 Hrs

Instructions to the Candidates:

Answer one full question from each unit.

UNIT - I

1. a) Find the angle between radius vector and the tangent for $r = a(1 + \cos\theta)$ CO1 (02)

b) Find $\frac{ds}{dt}$ for the curve $x = e^t \sin t$, $y = e^t \cos t$.

c) Find the angle of intersection of the pairs of curves $r^2 \sin 2\theta = 4$ CO1 (07) and $r^2 = 16\sin 2\theta$.

d) Show that the radius of curvature of the curve $r^n = a^n \cos n\theta$ varies CO1 (07) inversely as r^{n-1} .

a) Write the formula to find derivative of Arc length in cartesian and CO1 (02) parametric forms.

b) Prove that the radius of curvature of the curve $x^4 + y^4 = 2$ at the point CO1 (04) (1, 1) is $\frac{\sqrt{2}}{3}$.

c) Find the pedal equation to the curve $r^2 = a^2 \sin 2\theta$. CO1 (07)

d) Find the length of perpendicular from pole to the tangent to the curves CO1 (07) $r^2\cos 2\theta = a^2$ at $\theta = \frac{\pi}{6}$.

UNIT - II

3. a) State Euler's Theorem for function of 2 variables and 3 variables. CO2 (02)

b) Find $div\vec{F}$ at the point (1,2,3) where CO2 (04)

 $\vec{F} = (y^2 + z^2 - x^2)\hat{i} + (z^2 + x^2 - y^2)\hat{j} + (x^2 + y^2 - z^2)\hat{k}.$

c) If u = x + y + z, v = y + z, w = z + x then find $\frac{\partial(u, v, \omega)}{\partial(x, y, z)}$.

d) If the directional derivative of $\phi = axy^2 + byz + cz^3x^3$ at (-1,1,2) has a CO2 (07) maximum magnitude of 32 units in the direction parallel to y-axis then find a,b,c.

4. a) Define Solenoidal and irrotational vectors. CO2

b) If $u = x \log(x y)$ where $x^3 + y^3 + 3xy = 1$ then find $\frac{du}{dx}$.

c) If z = f(x, y) and $x = e^{u} + e^{-v}$, $y = e^{-u} - e^{v}$ then show that CO2 (07) $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}.$

(02)

MAM11

d) Show that $\vec{F}=(x^2-y^2+x)\hat{i}-(2xy+y)\hat{j}$ is irrotational. Also find a CO2 (07) scalar function ϕ such that $\vec{F}=\nabla\phi$.

UNIT - III

- 5. a) Evaluate $\int_{0}^{\frac{\pi}{2}} Sin^{5}(x)dx$. CO3 (02)
 - b) Write the limits of integration with respect to r, θ while evaluating CO3 (04) the integrals: $\int_{0}^{a} \int_{\sqrt{ax-x^2}}^{\sqrt{a^2-x^2}} f(x,y) \, dy \, dx$.
 - c) Evaluate $\iint_R xy dx dy x$ where R is the region bounded by $\frac{x}{a} + \frac{y}{b} = 1$, x = 0 CO3 (07) and y = 0.
 - d) Evaluate $\iiint (x^2 + y^2 + z^2) dx dy dz$ taken over the volume enclosed by CO3 (07) the sphere $x^2 + y^2 + z^2 = 1$, by transforming into spherical polar coordinates.
- 6. a) Evaluate $\iint_{0}^{1} \iint_{0}^{1} xyz \ dxdydz$. CO3 (02)
 - b) Evaluate $\int_{0}^{\pi} \frac{Sin^4x}{(1+Cosx)^2} dx$. CO3 (04)
 - c) Show that $\int_{0}^{6} \int_{\frac{\pi}{2}}^{3} \frac{1}{x} e^{\frac{y}{x}} dy dx = 3(e^2 1)$ by changing the order of integration. CO3 (07)
 - d) Find the area bounded by the curves $y^2 = 4x$ and $x^2 = 4y$. CO3 (07)

UNIT- IV

- 7. a) State Gauss divergence theorem. CO4 (02)
 - b) If $\vec{F} = 3xy\hat{i} 5y^2\hat{j}$ evaluate $\int_c \vec{F} \cdot d\vec{r}$ where c is the curve $y = 2x^2$ in CO4 (04) xy-plane from (0,0) to (1,2).
 - c) State and prove Green's theorem in a plane. CO4 (07)
 - d) Using Stoke's theorem evaluate $\int_c (x+y)dx + (2x-z)dy + (y+z)dz$ CO4 (07) where c is the boundary of the triangle with vertices at (2,0,0),(0,3,0) and (0,0,6).

(02)CO4 a) State Stoke's theorem. 8. b) If $\vec{F} = xy\hat{i} + yz\hat{j} + zx\hat{k}$ then evaluate $\int \vec{F} d\vec{r}$ where c is the curve CO4 (04)

represented by x=t, $y=t^2$, $z=t^2$, $-1 \le t \le 1$.

- c) Evaluate $\int_{i}^{\infty} \vec{F} \cdot \hat{n} ds$ where $\vec{F} = yz\hat{i} + 2y^{2}\hat{j} + xz^{2}\hat{k}$ and S is the surface of CO4 (07) the cylinder $x^2 + y^2 = 9$ contained in the first octant between z = 0 and z=2 using Gauss divergence theorem.
- d) By using Green's theorem evaluate $\int xy dx + xy^2 dy$ where 'c' is the CO4 (07) square in the xy-plane with vertices (1,0),(0,1),(-1,0) and (0,-1).

UNIT - V

- (02)CO5 a) Write any two properties of eigen values of a square matrix A. 9.
 - (04)CO5 b) Test for consistency of the system of linear equations and solve
 - $3x_1 + 2x_2 + 4x_3 = 7$; $2x_1 + x_2 + x_3 = 4$; $x_1 + 3x_2 + 5x_3 = 2$. CO5 (07) c) Solve the system of equations 5x+2y+z=12; x+4y+2z=15;

x + 2y + 5z = 20 using Gauss-Seidel method taking (1, 0, 0) as initial approximation. (Perform two iterations).

- d) Diagonalize the matrix $\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$ and hence find A⁵. (07)CO5
- 10. a) Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$. CO5 (02)
 - b) Apply Gauss Elimination method to solve the systems of equations (04)x + y + z = 9; x - 2y + 3z = 8; 2x + y - z = 3.
 - c) Find the values of λ and μ such that the equations 2x+3y+5z=9 COS (07)7x + 3y - 2z = 8; $2x + 3y + \lambda z = \mu$ have (i) no solution (ii) unique solution (iii) an infinite number of solutions.
 - d) Find the Eigenvector corresponding to the largest Eigenvalue of the (07) CO5

matrix $\begin{bmatrix} -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ by taking $\begin{bmatrix} 1 & 1 \end{bmatrix}^T$ as the initial approximation by

using Rayleigh's Power method. (Perform four iterations).