1. Gebhard Boeckle's lectures

1.1. Galois representations and congruences. We first discuss profinite groups. Let G be a topological group.

Theorem 1. The following are equivalent:

- (a) G is compact, Hausdorff, and totally disconnected.
- (b) G is compact, and admits a neighborhood basis of the identity by open normal subgroups.
- (c) There is a directed poset I and an inverse system (G_i) of finite (discrete) groups such that $G = \varprojlim_I G_i$.

We say that G is *profinite* if the above conditions hold. The topology on $\varprojlim G_i$ is that obtained by regarding it as a closed subgroup of the product $\prod G_i$. Constructions:

- (a) If G is discrete, then we equip it with the profinite topology $G^{\mathrm{pf}} := \varprojlim G/N$, where N runs over the finite index subgroups.
- (b) If $G = \underline{\lim} G_i$ is profinite, then
 - (i) The abelianization is given by

$$G^{ab} = G/\overline{[G,G]} = \lim_{i \to \infty} G_i^{ab},$$

and in particular, is profinite.

(ii) For H finite, write H_p for its maximal p-group quotient. Then

$$G_p = \underline{\lim}(G_i)_p$$

is a pro-p-group (and in particular, profinite).

(iii) If N < G is closed and normal, then G/N is profinite.

Example 2. (a) Let F be a field. Set $G_F := \operatorname{Aut}_F(F^{\text{sep}}) = \operatorname{Gal}(F^{\text{sep}}/F)$ profinite. Define the poset

$$\mathcal{I}_F := \{ L \subseteq F^{\text{sep}} : L \supseteq F \text{ finite Galois}, \subseteq \}.$$

Then

$$G_F \xrightarrow{\cong} \varprojlim_{L \in \mathcal{I}_F} \operatorname{Gal}(L/F).$$

(b) Let $F'\subseteq F^{\rm sep}$ be a normal extension of F. Then $G_{F'}\subseteq G_F$ is closed and normal. We may thus write

$$\operatorname{Gal}(F'/F) \cong G_F/G_{F'} = \lim_{\substack{L \in \mathcal{I}_F, \\ L \subseteq F'}} \operatorname{Gal}(L/F).$$

(c) Let N denote the natural numbers, ordered by divisibility. Then

$$\hat{\mathbb{Z}} = \varprojlim \mathbb{Z}/n = \prod_{p} \mathbb{Z}_{p},$$

where the last step is the Chinese remainder theorem. We sometimes need a slight modification:

$$\hat{\mathbb{Z}}^{(p)} = \varprojlim_{p \nmid n} \mathbb{Z}/n = \prod_{\ell \text{ prime}, \ell \neq p} \mathbb{Z}_{\ell}.$$

Let's fix some notation:

(a) Let K be a number field, \mathcal{O}_K its ring of integers. Let $\operatorname{Pl}_K = \operatorname{Pl}_K^\infty \sqcup \operatorname{Pl}_K^{\operatorname{fin}}$ denote the set of places v of K. Let v be a finite place. We may then attach to it a maximal ideal \mathfrak{q}_v of \mathcal{O}_K , giving a bijection

$$\operatorname{Pl}_K^{\operatorname{fin}} \leftrightarrow \operatorname{Max}(\mathcal{O}_K).$$

We may form the residue field $k_v := \mathcal{O}_K/\mathfrak{q}_v$. We denote q_v for the cardinality of k_v . We write $\operatorname{char}(v)$ for the characteristic of k_v . We denote by $\mathcal{O}_v = \varprojlim \mathcal{O}/\mathfrak{q}_v^n$, with fraction field K_v . Also, we have a short exact sequence

$$1 \to I_v \to G_v := \operatorname{Gal}_{K_v} \to \operatorname{Gal}_{k_v} \to 1.$$

A topological generator for Gal_{k_n} is given by

$$\operatorname{Fr}_v: \alpha \mapsto \alpha^{q_v}.$$

We denote by $\operatorname{Frob}_v \in G_v$ some lift of Fr_v .

We write $S_{\infty} := \operatorname{Pl}_{K}^{\infty}$ for the set of archimedean places, so that $K \otimes_{\mathbb{Q}} \mathbb{R} \cong \prod_{v \in S_{\infty}} K_{v}$. For a rational prime p, we write S_{p} for the set of places v of K such that $v \mid p$.

(b) We also need some local analogues for $E \supseteq \mathbb{Q}_p$ a p-adic field. Let $\mathcal{O} = \mathcal{O}_E$ denote the ring of integers, $\pi = \pi_E$ a uniformizer, and $\mathbb{F} = \mathcal{O}_E/\pi$ the residue field, with $q = \#\mathbb{F}$. Then $E \supseteq \mathbb{Q}_q = \mathbb{Q}_p[\zeta_{q-1}] \supseteq \mathbb{Q}_p$. We have $W(\mathbb{F}) = \mathbb{Z}_q = \mathbb{Z}_p[\zeta_{q-1}]$.

Contiuing the examples, which may serve as exercises:

- (d) Let ζ_t be a primitive tth root of 1. For k a finite field, we have $G_k \cong \hat{\mathbb{Z}} = \overline{\langle \operatorname{Fr}_k \rangle}$, where $\operatorname{Fr}_k : \alpha \mapsto \alpha^{|k|}$.
- (e) Let $E \supseteq \mathbb{Q}_p$ (finite extension). Then G_E (Jannsen-Wingberg for $p \ge 2$). Local class field theory: the Artin map $E^\times \to G_E^{ab}$ is a continuous inclusion with dense image. Writing $E^\times = \pi_E^{\mathbb{Z}} \times \mathcal{O}_E^\times = \pi_E^{\mathbb{Z}} \times \mathbb{F}^\times \times \mathcal{U}_E^1$. Since the units are known to be a finitely generated \mathbb{Z}_p -module, we get as a corollary that

$$\operatorname{Hom}_{\operatorname{cts}}(G_E, \mathbb{F}_p) = H^1_{\operatorname{cts}}(G_E, \mathbb{F}_p)$$

is finite.

(f) We turn to the case of a number field K. We fix an embedding $K^{\text{sep}} \subseteq K_v^{\text{sep}}$ for each place v, which gives an embedding of Galois groups $G_v \to G_K$. For $S \subseteq \text{Pl}_K$ finite, we write

$$K_S := \{ \alpha \in K^{\text{sep}} : K(\alpha) \text{ is unramified outside } S \},$$

which is a normal (typically infinite) extension of K. We write

$$G_{K,S} := \operatorname{Gal}(K_S/K) = G_K/G_{K_S}$$

for its Galois group. We remark that if we take $v \notin S$, then since v does not ramify in K_S , we know that the map $G_v \to G_{K,S}$ factors via the quotient $G_v/I_v \cong G_{k_v}$, so that $\operatorname{Frob}_v \in G_{K,S}$ is independent of the choice of lift. On the other hand, if $v \in S$, then we might ask whether the map $G_v \hookrightarrow G_{K,S}$ (see the work of Cheniever–Clozel). The structure of $G_{K,S}$ is unknown, but global class field theory describes $G_{K,S}^{\operatorname{ab}}$. A corollary is that

$$H^1_{\mathrm{cts}}(G_{K,S}, \mathbb{F}_p) = \mathrm{Hom}_{\mathrm{cts}}(G_{K,S}, \mathbb{F}_p)$$

is finite whenever S is finite. (One can appeal to Hermite–Minkowski, or class field theory.)

(g) Consider the tame quotient of G_E , for $E \supseteq \mathbb{Q}_p$. Given $E \supseteq \mathbb{Q}_p$, we form the tower of extensions $E^{\text{tame}}/E^{\text{unr}}/E$, where

$$E^{\text{unr}} = \bigcup \{ E(\zeta_n) : p \nmid n \},$$

$$E^{\text{tame}} = \bigcup \{ E^{\text{unr}}(\sqrt[n]{\pi_E}) : p \nmid n \}.$$

It's a fact that G_E^{tame} may be expressed as the profinite completion of $\langle st :$ $sts^{-1} = t^q \rangle.$

We finally come to Galois representations. They will typically be called $\rho: G \to \mathrm{GL}_n(A)$, where G is a topological group, A is a topological ring, and ρ is a continuous map. The topology on $\mathrm{GL}_n(A)$ is the subspace topology coming from embedding inside $M_n(A) \times A$ via $g \mapsto (g, \det(g)^{-1})$, for instance. We call ρ a Galois representation if $G = G_F$ for some field F. The main examples of interest for A will be \mathbb{C} , finite fields, and p-adic fields, to interpolate $\mathrm{CNL}_{\mathcal{O}}$ (complete Noetherian local \mathcal{O} -algebras).

Exercise 1. Let G be profinite, and ρ as above.

- (a) If $A = \mathbb{C}$, then $\rho(G)$ is finite.
- (b) If $A = \overline{\mathcal{O}_p}$, then there is a finite extension $E \supseteq \mathbb{Q}_p$ such that $\rho(G) \subseteq \mathrm{GL}_n(E)$ up to conjugation.
- (c) If $A = E \supseteq \mathbb{Q}_p$ (finite extension), then after conjugation, we can assume that $\rho(G) \subseteq \mathrm{GL}_n(\mathcal{O}).$

In case (c), we have a G-stable lattice $\Lambda \cong \mathcal{O}^n \subseteq E^n$. We can apply reduction $\mathcal{O} \to \mathbb{F}$. This gives a reduction

$$\overline{\rho}_{\Lambda}: G \to \mathrm{GL}_n(\mathbb{F}).$$

Let's use the notation $\operatorname{cp}_{\alpha}$ for the characteristic polynomial of $\alpha \in M_n(A)$.

- **Theorem 3.** (a) Given a representation $r: G \to GL_n(\mathbb{F})$. Then there exists a semisimple representation $r^{ss}: G \to \mathrm{GL}_n(\mathbb{F})$ such that $\mathrm{cp}_r = \mathrm{cp}_{r^{ss}}$ (Brauer-Hesbitt), where r^{ss} is unique up to isomorphism.
- (b) We have $\operatorname{cp}_{\rho} \in \mathcal{O}[X]$ and $\operatorname{cp}_{\bar{\rho}_{\Lambda}} \in \mathbb{F}[X]$, independent of Λ .

Theorem 4. For $\rho, \rho': G_{K,S} \to \mathrm{GL}_n(E)$ semisimple, we have that $\rho \sim \rho'$ (conjugate) if and only if for all $v \in Pl_K^{fin} \setminus S$, we have

$$cp_{\rho(\operatorname{Frob}_v)} = cp_{\rho'(\operatorname{Frob}_v)}.$$

(1) p-adic cyclotomic character $\chi_n^{\text{cyc}}: G_{\mathbb{O}} \to \mathbb{Z}_n^{\times}$. We have Example 5.

$$G_{\mathbb{Q}} \circlearrowleft \mu_{p^n} = \langle \zeta_{p^n} \rangle \cong \mathbb{Z}/p^n,$$

 $(\mathbb{Z}/p^n)^{\times} = \operatorname{Aut}_{\mathbb{Z}}(\mathbb{Z}/p^n)$. Facts:

- $\chi_p^{\text{cyc}}|_{G_K}$: unramified outside $S_p \cup S_{\infty}$. $\chi_p^{\text{cyc}}(\text{Frob}_v) = q_v \in \mathbb{Z}_p^{\times}$.
- (2) The Tate module of an elliptic curve $\mathcal{E}_{/K}$. We again have $G_K \circlearrowleft \mathcal{E}[p^n](\bar{K}) \cong$ $(\mathbb{Z}/p^n)^{\oplus 2}$, which gives rise to $G_K \to \mathrm{GL}_2(\mathbb{Z}/p^n)$. In the limit, we get

$$\rho_{\mathcal{E},p}: G_K \to \mathrm{GL}_2(\mathbb{Z}_p) \hookrightarrow \mathrm{GL}_2(\mathbb{Q}_p).$$

Facts:

• $\rho_{\mathcal{E},p}$ is unramified outside $S_{\infty} \cup S_p \cup \text{Bad}$.

 \bullet For v outside those places, we have

$$cp_{\rho_{\mathcal{E},p}}(Frob_v) = X^2 - a_v(\mathcal{E})X + q_v,$$

where

$$a_v := \# \mathcal{E}(k_v).$$

This shows the geometric meaning of Frobenius.

Part 1. Chris Skinner's lectures

Integral representations, Euler systems, and multiplicity one.

My choice of these topics is motivated by my interest in special values of *L*-functions, and in particular problems like the BSD conjecture. We'll focus on some representation theory, that plays a role in both the analytic and the algebraic sides of these problems. You can possibly view this as a bridge between the talks at the start and at the end of the week.

Let's start by talking about integral representations. It's helpful to think

$$L\text{-function} = \int_{\text{symmetric space } X} (\text{automorphic form}),$$

where perhaps the automorphic form starts on some larger symmetric space $Y \supseteq X$. This is useful because it's our main tool for studying L-functions.

The next part of my title is *Euler systems*. This is going to seem like something different. What are Euler systems? One starts off with a continuous action

$$G_k = \operatorname{Gal}(\bar{k}/k) \circlearrowleft V$$
,

where V is a \mathbb{Q}_p -space of finite dimension (with \mathbb{Q}_p acting linearly and continuously). At least conjecturally, there's a fairly general framework for producing such V from automorphic forms or representations. This Galois representation captures something about the automorphic form that can be expressed in terms of the L-function. All of these things are thus related to one another, even if they are frequently encountered separately. Here V often stabilizes in a \mathbb{Z}_p -submodule (lattice), which might yield a good exercise for later. An Euler system is a collection of classes in Galois cohomology $c_F \in H^1(F,T)$, where F/k are certain abelian extensions of k satisfying certain compatibilities: for $F' \supseteq F$,

$$\operatorname{cores}_{F'/F}(c_{F'}) = ?c_F,$$

where ? often seems the local Euler factors of V (or some L-function attached to V, depending upon the setting).

Both of these settings have been useful for exploring special values of L-functions (Kolyvagin, Gross–Zagier, ...). What we'll focus on in these lectures is the role that multiplicity one plays in seeing these L-functions and in producing these Euler systems. We'll see that they essentially play the same role, which is further evidence for what people say, to the effect that "Euler systems are some sort of algebraic incarnation of L-functions.

References