Assignment #1

Name answer Key.

Due 16 January 2015

- 1. Let $f(x) = x^2 + 5$.
 - (a) Show that f(x) is one-to-one on the restricted domain $D = [0, \infty)$.

f(x) = 2x

f'(x) > 0 on $(o_1 too)$.

3

fix increasing on [o, too) thus fix one-to-onc.

(b) What is the range of f on the set D?

 $R = [5, +\infty).$

(c) Let f^{-1} denote the inverse of f on the set D. Find an algebraic formula for $f^{-1}(x)$. What are the domain and range of f^{-1} .

 $X = y^2 + 5$

X-5 = y2

y = ± 1 x -5.

- The range g f?

 is [o, too), the domain g f f thus, $f^{-1}(x) = \sqrt{x-5}$.
- 2. The graph of a function y = f(x) is pictured below. Graph $y = f^{-1}(x)$ on the same axes.

3. Let f be a one-to-one and invertible function whose graph contains the point P(1,3). If the tangent line to the curve y = f(x) at P is given by the equation $y = \frac{1}{2}x + \frac{5}{2}$, then find $(f^{-1})'(3)$.

2
$$(f^{-1})'(3) = \frac{1}{f'(1)}$$
, since $f(1) = 3$.
But $f'(1) = \frac{1}{2}$, according to the slope g the tangent line. Huma $(f^{-1})'(3) = \frac{1}{(1/2)} = 2$.

- 4. Let $f(x) = x^5 + x^3 + 2x$.
- \gtrsim (a) Show that f is invertible and find $f^{-1}(-4)$.

$$f'(x) = 5x^4 + 3x^2 + 2 \ge 2$$
.
Thus f' is increasing on $(-\infty, \infty)$
hence one-to-me.
 $f(x) = x^5 + x^3 + 2x = -4$
has $x = -1$ as its solution i. $f^{-1}(-4) = -1$

(b) Evaluate $(f^{-1})'(-4)$.

$$(f^{-1})'(-A) = \frac{1}{f'(-1)} = \frac{1}{10}$$

side calculation:

$$f'(-1) = 5(-1)^4 + 3(-1)^2 + 2$$

= $5+3+2$