StructuRL Bridge Maintenance Leveraging RL

Punna Chowdhury, Jane Slagle, and Diana Krmzian CS 138 - Reinforcement Learning Instructor - Yash Shukla December 16, 2024

Table of contents

01 Problem

Challenges facing bridge infrastructure

04 SMDP

Application of SMDP RL approach and results 02

Solution

Implementing RL with SMDP, Deep SARSA and Deep Q-learning

Deep SARSA

Application of Deep

SARSA RL approach

and results

06

Deep Q-Learning

Application of Deep Q-learning RL approach and results 03

Environment

Existing working environment and modifications

07

Key Takeaways

Discuss how our approaches are beneficial in bridge maintenance

Problem

Challenges facing bridge infrastructure

221,800

of America's 623,147 bridges need repair, which span over 6,100 miles

Aging, Usage & Deterioration

Maintenance & Intervention

Inspection and Monitoring Accuracy

Remarks

Solution

Implementing RL with SMDP, Deep SARSA and Deep Q-learning

Inspiration for Solution

Research Paper on Bridge Maintenance

Hierarchical reinforcement learning for transportation infrastructure maintenance planning

by Zachary Hamida and James-A. Goulet

Key Considerations of Paper

- Adaptive decision-making
- Resource optimization
- Policy for long-term planning and cost savings

Project solution

Decision-Making

Simulate various bridge
maintenance tasks that mirror
real-world scenarios, addressing
pragmatic considerations in
decision-making such as
budget constraints and the
tracking of improvement
progress

Reward for Prioritization

Assign rewards based on the bridge's current condition, its improvement over time, and effective budget management to prioritize both maintenance and long-term improvement

Cost-Efficient Model

Apply penalties for actions that worsen bridge condition or exceed the budget, and rewards for improvements within budget, ensuring a cost-efficient solution

03 Environment

Existing working environment

Inspiration for Environment

Hierarchical reinforcement learning for transportation infrastructure maintenance planning GitHub: InfraPlanner environment

Key Aspects of InfraPlanner Environment:

- Action space
- Action costs
- Budget limitations

Custom Implementation of InfraPlanner Environment

A simulation environment for bridge infrastructure maintenance on one bridge over a 100 year period

- Incorporate budget constraints
- Cost assigned to each action
- Determination of reward:
 Bridge condition improvement over time

 Budget management over time

State Space

Condition of the bridge

- integer value between 0-100
 0 = completely deteriorated & unsafe
 100 = perfect condition
- initialized as 40

Action Space

3 possible actions related to bridge maintenance tasks

- do nothing neglect maintenance cost of 0, worsens condition by 1%
- maintenance cost of 2, improves condition by 1%
- replace fixed cost of 5, sets condition to 100

Reward Function

Based on:

(1) current condition of bridge

80 & over: incentivize +10 20 & below: penalize -10

- (2) improvement from previous condition incentivize +3
- (3) budget

exceeds: penalize -5 else: incentivize +2

SMDP

Application of SMDP RL approach and results

Semi-Markov decision processes (SMDP)

- Model sequential decision making
- Handle actions over time intervals with varying duration
- Accommodate temporal flexibility

All leads to more realistic representation

Methodology

Combination of Techniques

Q learning - agent observes results, interacts with environment, gets feedback in form of rewards

ı _

SMDP - variable action duration length

Policy for Action Section

Epsilon Greedy Policy

Variable Time Interval Durations

In env step & agent Q value updates, incorporates variable time interval durations, decided from a set range randomly, for each action to best simulate real-world scenarios

Training Goal

Uses Q learning scaled by the variable action duration lengths to update Q-values, balancing immediate and future rewards

SMDP: Results over 10,000 episodes

Average Cumulative Reward:

354.49

SMDP: Results over 10,000 episodes

Total Budget Spent:

31.0%

Bridge Condition improved:

75.0%

SMDP Results over 10,000 episodes

Improved condition by 75.0% from 40 to 85

Spent 31.0% of total budget

 Cost efficiency (ratio of average cumulative reward to total cost spent) = 11.44

Actions taken:

do nothing: 93.23% of time maintenance: 3.35% of time

replace: 3.42% of time

→ prioritized waiting out situations where bridge conditions were sufficient enough to deter maintenance interventions

05 Deep SARSA

Application of Deep SARSA RL approach and results

Deep SARSA

- Combination of Deep Learning and SARSA (State-Action-Reward-State-Action)
- Update Q-values using the SARSA rule
- Uses neural networks to approximate Q-values in continuous state spaces

Leads to a stable and adaptable **on-policy** learning approach for complex tasks

Methodology

Combination of Techniques

Deep learning - neural network forQ-values state-action pairsSARSA - updates Q-values

Policy for Action Section

Epsilon-Greedy Policy - balances exploration and exploitation during training, converging at optimal policies

Continuous State
Spaces

Leverages neural networks to handle continuous state spaces, with Q-values updating based on variable time intervals

Training Goal

Uses TD learning with the SARSA rule to update Q-values, balancing immediate and future rewards

Deep SARSA: Results over 10,000 episodes

Average Cumulative Reward:

268.28

Deep SARSA: Results over 10,000 episodes

Total Budget Spent:

5.00%

Bridge Condition improved:

46.67%

Deep SARSA Results over 10,000 episodes

Improved condition by 46.67% from 40 to 68

Spent 5% of total budget

53.66 cost efficiency

Actions taken:

do nothing: 98.44% of time maintenance: 0.76% of time

replace: 0.80% of time

→ prioritized waiting out situations where bridge conditions were sufficient enough to deter maintenance interventions

06

Deep Q-Learning

Application of Deep Q-learning RL approach and results

Deep QL

- Addresses complexity of large state-action spaces
- Handles Continuous Learning
- Better Performance with limited data
- Provides scalable alternative to tabular Q-learning

Makes capable of generalizing from experiences, efficiently solving problems in complex environments → like bridge maintenance

MINIS

Methodology

Combination of Techniques

Policy for Action Section

Training Process

Scalability and Efficiency

Use of neural networks to approximate Q-values instead of using the traditional Q-tables. It allows learning in large-state action spaces where Q-learning fails

Epsilon-Greedy Policy - balances exploration and exploitation and also helps the agent explore efficiently while improving decisions over time

Leverages neural networks to handle continuous state spaces, with Q-values updating based on variable time intervals

DQL is capable of handling large state-action spaces. By using fixed time intervals, the training process stays stable to implement ensuring consistent outcomes

Deep QL: Results over 10,000 episodes

Cumulative Rewards:

- Steadily increases over the 10,000 episodes showing consistent learning and improvement by the agent
- The linearity shows that the agent is successfully maximizing rewards over time

Rewards Per Episode:

- Individual rewards fluctuate across episodes but stabilize over time.
- The smoothed average(window=100), is consistent showing the agent's performance is steady as it learns the environment

Deep QL: Results over 10,000 episodes

Remaining Budget Over Episodes

- The remaining budget fluctuates but stays high over the 10,000 episodes averaging between 50 and 100 units
- This shows us that the agent is managing the budget effectively and avoiding overspending, balancing actions like "do nothing", "maintenance" and "replace"

Deterioration over Episodes

- It shows abnormal values
- Could suggest a possible issue in how deterioration is being recorded or calculated leading to unrealistic results

Deep QL Results over 10,000 episodes

- Improved condition by 28.33% from 40 to 57
- Spent 16.0% of total budget
- Cost efficiency = 45.2
- Actions taken:

do nothing: 93.32% of time maintenance: 3.35% of time

replace: 3.34% of time

→ prioritized waiting out situations where bridge conditions were sufficient enough to deter maintenance interventions

Improving our Algorithms

Key Takeaways

Comparison of algorithms and discuss how our approaches are beneficial in bridge maintenance

Algorithm Performance

Algorithm	Avg. Cumulative Reward	Cost Efficiency	Bridge Improvement (%)	Key Takeaways
SMDP	354.49	11.44	75.00%	Balances actions, performing best in maintaining bridge condition but inefficient in rewards and cost
Deep SARSA (on-policy)	268.28		46.67%	Balances condition and reward well, but heavily relies on do nothing, limiting improvements
Deep Q-Learning (off-policy)	723.23	45.20	28.33%	Maximizes rewards and efficiency with greedy updates, but struggles with long-term condition

Next steps & project extensions

Future improvements

Advanced Model

Integrate a hierarchical RL framework to prioritize bridge components (e.g., beams, pavement, slabs) based on urgency and condition, ensuring critical tasks are addressed first

Optimization Goals

Costs

Reduce costs and maximize budget use

Policies

Improve policies for dynamic environment

Scalability

Implement framework to real bridge systems

Objectives

- Save money: Plan repairs better to optimize budget usage and reduce the unnecessary costs
- Fixing Urgent issues: Address the urgent issues before they cause serious damage.
- Make easier decisions: use the automated tools to manage large bridge networks efficiently
- Handle bigger systems: use methods that work well for large and complex tasks.

The Benefits

- Reduces disruptions by planning smarter repairs
- Provides clear, easy to understand policies
- Works well for large and complex systems
- Tracks damage to make fast decisions

RL helps prevent costly breakdowns, improves safety and makes sure everything works well by fixing the most important things in a timely manner.

Conclusion and Future Potential

Thank you!

