simplex法の基礎

January 20, 2019

1 基礎事項

この section では、線形計画問題に関する基礎事項を述べる。入りとして、数理計画問題の分類からスタートし、simplex 法の立ち位置について述べる。そののちに、以降の準備として、線形計画問題の基本形や基礎用語について述べる。

1.1 simplex 法の立ち位置

一般に数理計画問題は以下のように表すことができる.

$$min_{x,y} f(x,y)$$

$$s.t. g_i(x,y) \le 0 (i \in \{1, \dots, m\})$$

$$x \in \mathbb{R}^n, y \in \mathbb{Z}^\ell . (1)$$

日本語に直すと、「コスト f(x,y) を最小にする連続変数 x と整数変数 y の組み合わせを見つけたい。ただし、m 個の条件 $g_k(x,y) \le 0$ を全て満足する x,y でなければならない」となる。言葉だけの問題だが、コストのことを数理計画では目的関数 (objective) と呼び、条件のことを制約 (costraint) と呼ぶので、今後はこの言葉を使っていくものとする。

さて, (1) 式が数理計画問題の最も一般的な問題であるが,まずはこれを 分類する.分類の仕方は簡単で,以下の三つの観点で分類される.

- 整数変数があるかどうか. 同じだが $\ell = 0$ or $\ell \neq 0$ か.
- 目的関数 f(x,y) が linear か quadoratic か nonlinear か.
- 制約式 $g_k(x,y)$ が linear か nonlinear か.

具体的に分類すると以下のようになり、それぞれ以下のような名前が付いている.

- 整数変数がない $(\ell=0)$.
 - 目的関数と制約式全てが linear → Linear Programming(LP)
 - 目的関数が quadratic で制約式全てが linear → Quadoratic Programming(QP)
 - それ以外 \rightarrow Non-linear Programming(NLP)
- 整数変数がある $(\ell \neq 0)$.
 - 目的関数と制約式全てが linear → Mixed Integer Linear Programming(MILP)
 - 目的関数が quadratic で制約式全てが linear → Mixed Integer quadoratic Programming(MIQP)
 - それ以外 → Mixed Intger Non-linear Programming(MINLP)

このうちで、LP, QP, NLP, MILP, MIQP については一般的なアルゴリズムが知られている。つまり、数式に落とすことさえできれば、とりあえず解くこと自体は可能である 1 . この中で、LP についてはいくつか効率的なアルゴリズムが知られているが、そのうちの一つが simplex 法であり、今回紹介するアルゴリズムである。

1.2 線形計画問題の基本形

先に述べたように、simplex 法は LP を解くアルゴリズムであるが、特に以下の形の問題を解くアルゴリズムである.

$$\min_{x} c^{T} x$$

$$s.t. \sum_{j} A_{ij} x_{j} = b_{i} \ (i \in \{1, \dots, m\}),$$

$$x \ge 0, x \in \mathbb{R}^{n}$$
(2)

勿論, $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ は constant な parameter で,解きたい問題に応じて与えるものである.なお,この形で書く場合,通常 m < n を仮定することが常である.例えば m = n かつ A が full rank であれば,(2) 式はもうすでに解けているので².

¹勿論、十分高速に解けるかどうかは微妙である.

 $^{^2}$ 勿論,これはこの形で書いた場合.不等式制約が残っている場合には m < n を満たす必然性は存在しない

このような書き方をすると、「おいおい、これは一般的な形なのかよ?」と感じる人も多いかと思うが、実はこれで一般的な形である.以下ではそのことを確認する.

まず、今回は LP を考えている、つまり、objective も constraint も線形なので、大雑把には (2) 式のようになるのは想像できるかと思う。ということで気になるのは以下の三点かと思われる。

- 1. objective 最大化はできないの?
- 2. x > 0 は限定しすぎでは?
- 3. 等号制約しか考えれないの?

まずは、1 から、これについては簡単で、f(x) 最大化は -f(x) の最小化と思えば良いので、最小化問題に帰着させることができる.

続いて 2 について. これも比較的簡単で $x \in \mathbb{R}^n$ については, 二つの postive な変数 x', x'' ($x' \ge 0, x'' \ge 0$) を使って x = x' - x'' と表してやれば やっぱり (2) 式の形に帰着できる.

最後に 3 について、例えば、ある i については、 $\sum_j A_{ij} x_j \geq b_i$ という不等式制約であったとする、この制約式は補助変数 s_i を導入すると以下のように書き換えることができる。

$$\sum_{j} A_{ij} x_j - s_i = b_i, s_i \ge 0 \ . \tag{3}$$

よって,不等式制約も (2) 式の形にまとめて書くことができる.なお,この等式が成り立つと思うと,元の不等式制約を見てやればわかるように, s_i がその不等式に関する x の「余裕度」を表している.

以上より、(2) 式は LP の一般的な形であり、これを解くことができる simplex 法は LP の一般的な解法の一つと言える.

1.3 基底解, 実行可能基底解

(今回は出てくる行列がとりあえず full rank だと思って話をします... そうでない場合はまたいづれ...)

この subsection でも、これまで通り、変数の数を n、制約式の数を m と する、勿論、これまで述べたように n > m とする.

(2) の制約式 Ax = b について考える. n > m であるから,解くことはできない. が,n 個の変数のうち n - m 個を選び,その変数を 0 としてやれば Ax = b を満たすような解を得ることができる.このような解を基底解と呼ぶ.ただし,基底解は Ax = b しか見ていないので,x > 0 を満たすかど

うかは不明である.基底解のうちで $x \ge 0$ も満たすようなものを実行可能基底解と呼ぶ.

以上が基底解と実行可能基底解の言葉での定義となってしまうが、simplex 法の説明にも使うので、数式でも説明しておく.

まず、変数の index 集合 $\{1,\cdots,n\}$ を m 個と n-m 個の集合に分割する. 前者を B_{index} 、後者を N_{index} と呼ぶことにする 3 . すると、

$$b_i = \sum_j A_{ij} x_j = \sum_{j \in B_{index}} A_{ij} x_j + \sum_{j \in N_{index}} A_{ij} x_j$$
 (4)

と書くことができる. この右辺を以下のように書くことにする.

$$b = Bx_B + Nx_N . (5)$$

これは,A の列を適当に並び替えた上で $A=[B|N](B\in\mathbb{R}^{m\times m},N\in\mathbb{R}^{m\times n-m})$ と分割し、さらに x を適当に並び替えて $x=(x_B,x_N)^T(x_B\in\mathbb{R}^m,x_N\in\mathbb{R}^{n-m})$ と分割して

$$b = Ax = \begin{bmatrix} B \mid N \end{bmatrix} \begin{bmatrix} x_B \\ x_N \end{bmatrix} = Bx_B + Nx_N \tag{6}$$

と考えれば同じものであることが確認できる.

このような分割 (6) を考えれば、基底解は $x_N=0$ で特徴付けられるので、基底解は

$$x_B = B^{-1}b, x_N = 0 (7)$$

と書くことができる. さらに, $x_B \ge 0$ つまり $B^{-1}b \ge 0$ が成立する場合 (あるいは成立するような分割の場合) にそれを実行可能基底解と呼ぶ.

1.3.1 基底解,実行可能基底解の例

ここまで、LP の一般的な形と基底解,実行可能基底解と言葉ばかり並べてきたので、一つ例を紹介する.

以下のような制約を考えてみよう.

$$3x_1 + 2x_2 \le 12$$

 $x_1 + 2x_2 \le 8$
 $x_i \ge 0$. (8)

³Basic と Non-Basic の略. simplex 法を見ると、個人的には Non-Basic の方が Basic な感じがするが...

こいつをイコール制約に直すと

$$3x_1 + 2x_2 + s_1 = 12$$

$$x_1 + 2x_2 + s_2 = 8$$

$$x_i, s_i \ge 0$$
(9)

となる. これを行列表記に直すと

$$\begin{bmatrix} 3 & 2 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \end{bmatrix} = \begin{bmatrix} 12 \\ 8 \end{bmatrix}$$
 (10)

となるので,

$$A = \begin{bmatrix} 3 & 2 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 12 \\ 8 \end{bmatrix}$$
 (11)

であることがわかる.

この系は変数の数 n=4 であり、制約式の数 m=2 であるので、基底解を作るための 0 に選べる変数の数は n-m=2 個だから基底解は $_4C_2=6$ 通りだけある。

1. $N_{index} = \{x_1, x_2\}, B_{index} = \{s_1, s_2\}$

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, N = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}$$
 (12)

このとき, $x_1 = x_2 = 0$ であるから, s = b となる. 元の変数の空間 (x_1, x_2) で見れば原点である. 図からも s が「余裕度」であることがわかると思う.

2. $N_{index} = \{x_1, s_1\}, B_{index} = \{x_2, s_2\}$

$$B = \begin{bmatrix} 3 & 1 \\ 1 & 0 \end{bmatrix}, N = \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix}$$
 (13)

このとき、基底解は $(x_1,s_1)=x_B=B^{-1}b=(8,-12)^T$ となっている. 勿論 $x_2=s_2=0$ である. これを元の (x_1,x_2) 空間で考えてみる. まず $x_2=0$ である. さらに、 $s_2=0$ なので (8) の二つ目の不等式は等式となっている. そのため、この基底解は $x_2=0$ と $x_1+2x_2=8$ との交点に対応している. (以降、同じような話の場合は答えだけ書く.)

3. $N_{index} = \{x_1, s_2\}, B_{index} = \{x_2, s_1\}$

$$B = \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix}, N = \begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix}$$
 (14)

このとき、基底解は $(x_1, s_2) = x_B = B^{-1}b = (4, 4)^T$ となっている. 勿論 $x_2 = s_1 = 0$ である.

4. $N_{index} = \{x_2, s_1\}, B_{index} = \{x_1, s_2\}$

$$B = \begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix}, N = \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix}$$
 (15)

このとき、基底解は $(x_2, s_1) = x_B = B^{-1}b = (4, 4)^T$ となっている. 勿論 $x_1 = s_2 = 0$ である.

5. $N_{index} = \{x_2, s_2\}, B_{index} = \{x_1, s_1\}$

$$B = \begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix}, N = \begin{bmatrix} 3 & 1 \\ 1 & 0 \end{bmatrix} \tag{16}$$

このとき、基底解は $(x_2, s_2) = x_B = B^{-1}b = (6, -4)^T$ となっている。 勿論 $x_1 = s_1 = 0$ である。

6. $N_{index} = \{s_1, s_2\}, B_{index} = \{x_1, x_2\}$

$$B = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}, N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{17}$$

このとき,基底解は $(x_1,x_2)=x_B=B^{-1}b=(2,3)^T$ となっている.勿論 $s_1=s_2=0$ である.これは (x_1,x_2) 平面上で (8) の二つの不等式が共に等号が成り立つ線の交点に対応しているが,それは $s_1=s_2=0$ と符号している.

この例からもわかるように、実行可能基底解は、元の空間で見ると、不等 式制約が定める凸集合の端点に相当している.

2 simplex 法

準備が整ったので、LP の一般的な解法である simplex 法について述べる. ここで見るように、simplex 法は「実行可能基底解を input として、最適な実行可能基底解を output する」algorithm である. これを聞くと「input となる実行可能規定解はどう得るんだ?」と思う人も多いかと思うが、それについての答えは次の二段階 simplex の section で述べる. (この状況ではちょっと tortological に聞こえると思うが、input の実行可能基底解を作るのにもsimplex を使うため.)

2.1 simplex 法の気分

今回考えている問題は線形な問題である。ということは、必ず「領域の端」で 最適解を取るはずである。つまり、前 section の言葉を使えば「実行可能基底 解のいずれかが、最適解を与える」となる。

さらに、良いことに、今回の objective は線形なのである. つまり、local minimum が存在しない. そのため、「今見ている実行可能基底解の『隣』の実行可能基底解で、objective が下がるものを探し続ければ最適解に辿りつく」という戦略が思いつく. そして、実は simplex 法が行っていることはほぼこれである. 以下では、simplex 法の一般的な algorithm を述べた上で、この気分が正しいことを例(といっても添付の jupyter notebook だが)で確認する.

2.2 simplex 法

2.2.1 最適性の条件, pricing rule

ある実行可能基底解 $x_B=B^{-1}b\geq 0, x_N=0$ が与えられたとする. このときに、この解の近くで、制約を満たすように x_N を non-zero にしていくことを考える. そうした場合に、やっぱり $x_N=0$ が objective を最小に与える、つまり、与えられた実行可能基底解が最適である条件を考える.

一般的な線形計画問題は

$$\min_{x} \quad c^{T} x
s.t. \quad Ax = b, \ x \ge 0, x \in \mathbb{R}^{n}$$
(18)

こうであるが、与えられた実行可能基底解を基礎として、制約式を分解すると

$$Bx_B + Nx_N = b \Leftrightarrow x_B = B^{-1}(b - Nx_N) \tag{19}$$

となるので、これを元の問題に代入すると,objective が

$$c^{T}x = c_{R}^{T}x_{B} + c_{N}^{T}x_{N} = c_{R}^{T}B^{-1}(b - Nx_{N}) + c_{N}^{T}x_{N}$$
(20)

ということに注意すると

$$\min_{x_N} c_B^T B^{-1} b + (c_N - N^T B^{-1T} c_B)^T x_N
s.t. B^{-1} (b - N x_N) \ge 0, x_N \ge 0$$
(21)

という x_N だけの問題に落とすことができる.ちなみに,objective の第一項は $x_N=0$ の場合,つまり与えられた実行可能基底解の objective の値に他ならない.

今後使うので、vector

$$\rho = c_N - N^T B^{-1T} c_B \tag{22}$$

を定義しておく、勿論 (21) の第二項である、ここで、特に $x_N \ge 0$ と この ρ に注目してみる。もし $\rho > 0$ だとしよう。すると、(21) は明らかに $x_N = 0$ のときに最小値を取ることがわかる。つまり、この場合に、与えられた実行可能基底解が最適で、最適値 $c_R^7 B^{-1} b$ を取る。

それに対して $\rho_j < 0 (j \in N_{index})$ となるような j があった場合はどうかというと、そのような j に対して、 x_j を 0 から大きくすることで objective を下げることができる。つまり、このようなケースでは、与えられた実行可能基底解が最適ではなく、もっと objective を下げることができる。

2.2.2 pricing, ratio test

前 subsubsection で $\rho_j < 0 (j \in N_{index})$ となるような j があった場合は,例 えばそのような j から一つ選び, x_j を大きくすると objective を下げること ができることを確認した.以下ではそのような変数を一つ選んだ場合にどう なるかをみる.なお,このような変数の選択を pricing とか pricing rule とか 呼ばれている⁴.

このように選択された j を $k \in N_{index}$ と書くことにしよう. x_N として, k にしか成分がないような状況を考える. $x_k = \xi$ と書けば, (21) は

$$\min_{\xi} c_B^T B^{-1} b + \rho_k \xi
s.t. \sum_{\ell} (B^{-1})_{j\ell} b_{\ell} \ge \sum_{\ell} (B^{-1})_{j\ell} A_{\ell k} \xi \ (j \in B_{index}),
\xi \ge 0$$
(23)

と書き換えることができる. 勿論, これは x_k しか動かしていないローカルな最適化問題で、もとの最適化問題とは異なる.

このローカルな最適化問題を考えるが、実はこれは簡単に解くことができる. objetive を見れば ξ は大きければ大きいほど良いが、制約式を見ると頭打ちに合っていることがわかる. 具体的には

$$\bar{b}_j = \sum_{\ell} (B^{-1})_{j\ell} b_{\ell} > 0, \ y_j = \sum_{\ell} (B^{-1})_{j\ell} A_{\ell k}$$
 (24)

と置いた場合に以下の θ までは増やすことができる5.

$$j_{min} = \arg\min(\bar{b}_j/y_j|y_j > 0), \ \theta = \bar{b}_{j_{min}}/y_{j_{min}}$$
 (25)

勿論 $\bar{b}>0$ は実行可能基底解を持ってきていることによる. よって, ローカルな最適化問題は $\xi=\theta$ のときに最適解を取る.

⁴pricing rule には、一応色々な方法が考案されている.

 $^{^5}$ なお、もし全て $y_i < 0$ ならば、このローカルな問題、ひいては元々の問題の答えは非有界である.

さて、与えられた実行可能基底解の周りについて考えていたが、この実行可能基底解で x_N としてこの k の成分が θ になったときどうなるか、というと $x_B^{mod}=B^{-1}(b-Nx_N)$ に代入して計算すると、

$$x_B^{mod}{}_j = \bar{b}_j - y_j \theta \tag{26}$$

となるが、 θ の選び方から、 $x_B^{mod}{}_j > 0 (j \neq j_{min})$ かつ $x_B^{mod}{}_{j_{min}} = 0$ である.勿論 $x_k = \theta \neq 0$ である.よって、ローカルな最適化問題の最適解は、元の実行可能基底解の B_{index} を利用して書けば、 $B_{index}^{new} = (B_{index} \setminus \{j_{min}\}) \cup \{k\}$ 、 $N_{index}^{new} = (N_{index} \setminus \{k\}) \cup \{j_{min}\}$ で書かれる実行可能基底解である.勿論この新しい実行可能基底解の objective は元の実行可能規定解の objective より小さな値を取っている.さらに、新しいものも実行可能基底解である.よって同じ操作、つまりローカルな問題 (23) を定義して解くこと、を繰り返すことでどんどん objective を下げていくことができる.そして、LP なので、このように下げていっても local minimum にはまることはないので、これで最適解に辿りつくことができるというわけである.

これが simplex 法の根本的な考え方であるが,念のため一つだけ指摘をしておくと,実行可能基底解が与えられ pricing で k を選んだのちのローカルな最適化問題 (23) であるが,この問題自体は (24) を計算して (25) を確認するだけの簡単な問題である.特に (25) から ratio test と呼ばれてる作業だが,ほぼ簡単な代数操作をするだけである.よって simplex 法は突き詰めれば,「pricing と ratio test を繰り返す」だけの algorithm とも言える.

2.2.3 algorithm

以上まとめると simplex 法の algorithm は以下の通りである.

2.3 例

以下の問題を考える.

これを解いていく過程が添付の jupyter notebook となっている. これを見ていただければ、

3 二段階 simplex 法

以上に見たように simplex 法は「実行可能基底解を input として,最適実行可能基底解を output する」algorithm であった.ここで勿論気になるのは「input である実行可能規定解をどう作るのか」である.実は,この input も simplex 法で作ることができる.

Require: 実行可能基底解

Ensure: 最適な実行可能基底解

現在の実行可能規定解 ← inpout 実行可能基底解

loop

現在の実行可能基底解と (22) に基づいて ρ を計算する.

if $\rho > 0$ then

return 現在の実行可能基底解解

end if

- pricing -

なんらかのルールで pricing を行って k を選ぶ.

- ratio test -

(24)を計算

(25) によって $B_{index} \rightarrow N_{index}$ となる変数 j_{min} を選択

- 実行可能基底解の更新 -

k, j_{min} を基に現在の実行可能基底解を更新

end loop

まずは、毎度お馴染み LP の一般的な問題からスタートする.

この問題に対して以下のような問題を考えてみよう.

$$\min_{x,s} \quad \sum_{i=1}^{m} s_i$$

$$s.t. \quad \sum_{j} A_{ij}x_j + sign(b_i)s_i = b_i \ (i \in \{1, \dots, m\}),$$

$$x \ge 0, s \ge 0, x \in \mathbb{R}^n, s \in \mathbb{R}^m , \qquad (28)$$

ここに sign(a) = a/|a| である. この問題の意味は次の通りである.

- (28) の気分 ----

x が何か与えられたときに、各制約について s はその破れ具合を表している。今回の objective は破れ具合の和 $\sum_i s_i$ であるから、この問題を解き、その結果が objective =0 な解だった場合には、元問題の実行可能解が得られる。

(28) 式 を simplex 法で解いてみよう. simplex 法は「実行可能基底解を input として,最適実行可能基底解を output する」algorithm であった. (28) 式はありがたいことに,以下の自明な実行可能基底解が存在する.

$$x_j = 0, s_i = |b_i| . (29)$$

つまり,(28) 式の simplex 法の input は問題なく用意できる.なので,こいつを input にして simplex 法を回すことができる.その output は何かと言うと (28) 式の最適な実行可能基底解である.さてその解であるが,(28) の目的関数が元問題の制約式の破れ具合の $\sum_i s_i$ であることから,もし (27) が infeasible でなかった場合は,(28) の最適解 (x,s) は $s_i=0$ であるような実行可能基底解であるはずである.そして $s_i=0$ であることから,(28) を見ればわかるように,そのような実行可能基底解は,元問題 (27) の実行可能基底解となっている.よって (28) を simplex 法で解くことによって (27) の input を作成することができる.

以上のように、input となる実行可能基底解 も simplex 法で作ることができるので、結果的に二回 simplex 法を解くことで一般的な LP を解くことが可能である。そのためこのような解き方を 二段階 simplex 法と呼ばれている。まとめれば、二段階 simplex 法を利用することで一般的な LP を input として、最適解を output できる.

4 まとめ

この資料では、一般的な LP や LP にまつわる用語から始め、simplex 法や 二段階 simplex 法について解説をした. しかし、

- 実は simplex はちょっと遅い (内点法の法が一般的には速い).
- また, 最適解を切り落とすような制約式の追加に弱い (dual simplex であれば問題ない. この性質があるために MILP の一般的解法である branch and bound では dual simplex が使われている.).

といった問題がある、これらの解決は今後このゼミでなされ続けるはずである、