

BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR

Matematika szigorlati tételsor

Matematika G1, G2, G3 (BMETE94BG01, BMETE94BG02, BMETE94BG03)

Készítette:

Kis Erhard, Kun László Ákos

Matematika G1 szóbeli beugró kérdések - 2023

Halmazelmélet és komplex számok

- 1. Halmaz, metszet, unió, különbség
- 2. Descartes-szorzat, hatványhalmaz
- 3. Csoport, gyűrű, test
- 4. Komplex számok algebrai, exponenciális, trigonometrikus alakja
- 5. Komplex számok hatványozása
- 6. Komplex számok gyökvonása

Numerikus sorozatok

- 1. Numerikus sorozat fogalma és határértéke
- 2. Konvergens, divergens sorozat
- 3. Nevezetes sorozatok
- 4. Cauchy-sorozat
- 5. Torlódási pont

Függvények, derivált

- 1. Függvény, értelmezési tartomány, értékkészlet
- 2. Függvény határértéke
- 3. Függvény folytonossága
- 4. Inverz függvény
- 5. Derivált
- 6. Lokális szélsőérték definíciója és feltétele
- 7. L'Hospital szabály
- 8. Taylor-polinom

Középértéktételek és integrálás

- 1. Lagrange-féle középértéktétel
- 2. Rolle-féle középérték tétel
- 3. Cauchy-féle középérték tétel
- 4. Riemann-integrálhatóság
- 5. Newton-Leibniz-formula
- 6. Improprius integrálok

Numerikus sorok

- 1. Numerikus sor fogalma
- 2. Numerikus sor konvergenciája (feltételes is),
- 3. Numerikus sor divergenciája
- 4. Konvergenciatesztek

Halmazelmélet és komplex számok:

1. Halmaz, unió, metszet, különbség

Halmaz: Közös tulajdonságú elemek összessége.

Unió: Két vagy több halmaz uniója mindazon elemek halmaza, amelyek legalább az egyik halmaznak elemei.

$$A \cup B = \{x \in X \mid x \in A \lor x \in B\}$$

Metszet: Két vagy több halmaz metszete pontosan azoknak az elemeknek a halmaza, melyek mindegyik halmaznak elemei

$$A \cap B = \{ x \in X \mid x \in A \land x \in B \}$$

Különbség: A és B halmaz különbsége az A halmaz mindazon elemeinek halmaza, amelyek a B halmaznak nem elemei

$$A \setminus B = \{ x \in X \mid x \in A \land x \ni B \}$$

Set Operation	Venn Diagram	Interpretation
Union	A B	$A \cup B$, is the set of all values that are a member of A , or B , or both.
Intersection	A B	$A \cap B$, is the set of all values that are members of both A and B .
Difference	A B	A \ B, is the set of all values of A that are not members of B

2. Descartes-szorzat, hatványhalmaz

Az A és B Halmazok Descartes-szorzatán az A és B Halmazok elemeiből alkotott összes rendezett elempárok halmazát értjük.

$$A \times B := \{(a, b) \mid a \in A \land b \in B\}$$

Hatványhalmaz: Egy halmaz összes részhalmazainak halmazát a Halmaz hatványhalmazának hívjuk.

3. Csoport, gyűrű, test

Félcsoport: olyan halmaz, melyben a kétváltozós műveletek asszociatívak (pl. természetes számok esetén az összeadás)

Csoport: Legyen $G \neq 0$ és egy \circ művelet (szorzás). Ekkor (G, \circ) csoport, ha teljesülnek az alábbiak:

- 1. $(a \circ b) \circ c = a \circ (b \circ c)$ minden $a, b, c \in G$ esetén
- 2. bármely $e \in G$, hogy $a \circ e = e \circ a = a$ minden $a \in G$ esetén (létezik az egységelem, e, amely asszociatív)
- 3. minden $a \in G$ esetén létezik $a' \in G$, hogy $a \circ a' = a' \circ a = e$ (létezik inverzelem)

Ábel-csoport: olyan halmaz, melyben a kétváltozós műveletek asszociatívak és kommutatívak is ill. létezik a zérus elem és az inverz elem

Gyűrű: Legyen $R \neq 0$ és $+, \circ$ két művelet. Ekkor $(R, +, \circ)$ gyűrű ha teljesülnek az alábbiak:

- 1. (R, +) Ábel csoportot alkot (Ábel csoport = kommutatív csoport)
- 2. A művelet asszociatív (csoportosítható) $(a \circ b) \circ c = a \circ (b \circ c)$ minden $a, b, c \in R$ esetén
- 3. A o művelet disztributív +-ra nézve (összekapcsolható) $(a+b)\circ c=a\circ c+b\circ c$ minden $a,b,c\in R$ esetén

Test: Legyen $T \neq 0$ és $+, \circ$ két művelet. Ekkor $(T, +, \circ)$ test ha teljesülnek az alábbiak:

- 1. (T, +) Ábel csoportot alkot
- 2. A o művelet legyen asszociatív (csoportosítható) $(a \circ b) \circ c = a \circ (b \circ c)$ minden $a,b,c \in R$ esetén
- 3. A o művelet legyen disztributív azaz $(a+b) \circ c = a \circ c + b \circ c$ minden $a,b,c \in R$ esetén
- 4. Létezik $e \in G$, hogy $a \circ e = e \circ a = a$ minden $a \in T$ esetén (létezik egységelem a második műveletre)
- 5. A + műveletekhez tartozó egységelem kivételével bármely $a \in G$ esetén létezik $a' \in G$, hogy $a \circ a' = a' \circ a = e$ (létezik az inverz elem, kivéve az első művelethez (+) tartozó egységelem esetében)

4. Komplex számok algebrai, trigonometrikus, exponenciális alakja

- Algebrai alak: $z = a + b \cdot i$ (z valós része a, képzetes része pedig b)
 - konjugált: $\overline{z} = a b \cdot i$
 - abszolút érték: $|z| = \sqrt{a^2 + b^2}$ (Pitagorasz-tételből), és mivel: $z \cdot \overline{z} = (a + b \cdot i)(a b \cdot i) = a^2 (b \cdot i)^2 = a^2 + b^2$, ezért $|z| = \sqrt{z \cdot \overline{z}}$
- Trigonometrikus (polár) alak: $z = r(cos(\varphi) + i \cdot sin(\varphi))$, mivel

$$\cos(\varphi) = \frac{a}{r}$$

$$sin(\varphi) = \frac{b}{r}$$

Tehát $a = r \cdot cos(\varphi)$ és $b = r \cdot sin(\varphi)$, innen már egyértelműen következik a trigonometrikus alak az algebraiból r-t kiemelve $(a = r \cdot cos(\varphi)$ és $b \cdot i = r \cdot i \cdot sin(\varphi))$

• Exponenciális alak: $z = r \cdot e^{i \cdot \varphi}$ - ez csak egy szimbólum, rövidítés, ami megkönnyíti a számolást a komplex számokkal, lényegében a trigonometrikus alak kicsit rövidebben.

5. Komplex számok hatványozása

de Moivre-képlet:

$$z^{n} = [r(\cos(\varphi) + i \cdot \sin(\varphi))]^{n} = r^{n}(\cos(n\varphi) + i \cdot \sin(n\varphi))$$

Bizonyítás: Teljes indukció használatával

- 1. n = 1-re és n = 2-re **igaz**
- 2. indukciós feltétel: n = k
- 3. Ekkor $z^k = r^k(\cos(k\varphi) + i \cdot \sin(k\varphi))$
- 4. ha n = k + 1, akkor:

$$\begin{split} z^{k+1} &= z^k \cdot k = r^k (\cos(k\varphi) + i \cdot \sin(k\varphi)) \cdot r(\cos(\varphi) + i \cdot \sin(\varphi)) \\ &= r^{k+1} [\cos(k\varphi + \varphi) + i \cdot \sin(k\varphi + \varphi)] = \\ &\qquad \qquad r^{k+1} [\cos((k+1)\varphi) + i \cdot \sin((k+1)\varphi)] \end{split}$$

és k+1 az n volt, tehát a bizonyítás kész.

6. Komplex számok gyökvonása

$$z_1^n = z_2 = r_1^n \cdot (\cos(n\varphi_1) + i \cdot \sin(n\varphi_1)) = r_2 \cdot (\cos(\varphi_2) + i \cdot \sin(\varphi_2))$$
$$z_1 = \sqrt[n]{z_2}$$

Két komplex szám akkor egyenlő, ha a hosszuk és argumentumuk is egyenlő:

- $r_1 = \sqrt[n]{r_2}$ (hossz)
- $n \cdot \varphi_1 = \varphi_2 + k \cdot 2\pi$ (argumentum) \rightarrow forgásszög, periodicitás miatt $p = 2\pi$
- Így $\varphi_1 = \frac{\varphi_2 + k \cdot 2\pi}{n}$ $k \in \{0, 1, 2, ..., n-1\}$
- Tehát:

$$\sqrt[n]{z} = \sqrt[n]{r}(\cos(\frac{\varphi + k \cdot 2\pi}{n}) + i \cdot \sin(\frac{\varphi + k \cdot 2\pi}{n}))$$

Az n-edik gyökvonás után olyan komplex számokat kapunk, amik egy szabályos sokszög (n-szög) csúcsai! Tehát n-edik gyökvonás esetén n db komplex szám a megoldás.

Numerikus sorozatok:

1. Numerikus sorozat határértéke

Az (a_n) sorozatot konvergens és határértéke az $a \in R$ akkor és csak akkor, ha bármely $\varepsilon > 0$ értékhez létezik olyan $N(\varepsilon)$ küszöbindex, hogy a sorozat $N(\varepsilon)$ -nél nagyobb indexű elemei az az ε sugarú környezetében vannak. Az (a_n) sorozatot konvergens és határértéke az $a \in R$ akkor és csak akkor, ha bármely $\varepsilon > 0$ sugarú környezetén kívül a sorozatnak csak véges sok eleme van.

2. Konvergens, divergens sorozat

• **Definíció:** Az (a_n) konvergens, ha van olyan $a \in R$ szám, hogy minden $\varepsilon > 0$ valós szám esetén létezik $N(\varepsilon)$ valós küszöbszám, hogy

$$|a_n - a| < \varepsilon, \ ha \ n > N(\varepsilon)$$

- Az "a" számot az (a_n) határértékének hívjuk, és a $\lim_{n\to\infty} a_n = a$ vagy az $a_n \to a$, ha $n\to\infty$ jelölést használjuk.
- Az (a_n) divergens, ha nem konvergens.

Tételek:

- Konvergens sorozat korlátos.
- Monoton korlátos sorozat konvergens.
- \bullet van határértéke/torlódási pontja
i \rightarrow nem biztos, hogy konvergens
- Bolzano-Weierstrass-tétel: minden korlátos sorozatnak van konvergens részsorozata.

3. Nevezetes sorozatok

Olyan sorozatok, amelyek határértékét nem kell bizonyítani, csak felhasználni!

Bernoulli-féle egyenlőtlenség: ha $x \ge -1$, akkor $(1+x)^n \ge 1 + n \cdot x$

- 1. $a^n \to 0$, ha |a| < 1 $a^n \to 1$, ha a = 1 $a^n \to +\infty$, ha a > 1 a^n divergens, ha a < -1
- 2. $\sqrt[n]{a} \to 1$, ha $n \to \infty (a > 0)$
- 3. $a^n \cdot n^k \to 0$, nullsorozat, ha |a| < 1 és k rögzített természetes szám
- 4. $\sqrt[n]{n} \to 1$, ha $n \to \infty$ $(n \ge 2)$
- 5. $\frac{a^n}{n!} \to 0 (a \in \mathbb{R})$

Legfontosabb:

$$(1 + \frac{\alpha}{n})^n \to e^{\alpha}$$

4. Cauchy sorozat

Definíció: Az (a_n) -t Cauchy-sorozatnak nevezzük, ha minden $\varepsilon > 0$ esetén $\exists N(\varepsilon)$ küszöbindex, hogy:

$$|a_n - a_m| < \varepsilon$$
, ha $n, m > N(\varepsilon)$ $(n, m \in N)$

Tétel: Cauchy-féle konvergencia kritérium (szükséges és elégséges feltétel). Az (a_n) akkor és csak akkor konvergens, ha Cauchy sorozat!

5. Torlódási pont

Definíció: A h a H halmaz torlódási pontja, ha h bármely környezetében van H-nak h-tól különböző eleme. A t szám a sorozat torlódási pontja, ha t akármilyen kicsi környezete a sorozat végtelen sok elemét tartalmazza. Például: $(-1)^n$

Függvények, derivált:

1. Függvények, értelmezési tartomány, értékkészlet

Függvény: ha az A (nemüres) halmaz minden egyes eleméhez hozzárendeljük a B (nemüres) halmaz pontosan egy elemét, akkor ezt a leképezést függvénynek nevezzük.

$$f: A \to B$$

Értelmezési tartomány: azon elemek halmaza, melyekhez a függvény hozzárendel egy-egy elemet a B halmazból, jelen esetben ez az A halmaz.

$$D_f = A$$

Értékkészlet: A képhalmaz, azaz a B halmaz azon elemei, melyeket az f függvény ténylegesen hozzárendel az A valamelyik eleméhez. Az értékkészlet tehát része a képhalmaznak:

$$R_f \subset B$$

2. Függvény határérték

Azt mondjuk, hogy az f függvény határértéke az "a" pontban A, ha minden $\varepsilon>0$ számhoz létezik olyan $\delta(\varepsilon)>0$, hogy ha $0<|x-a|<\delta(\varepsilon)$, akkor $|f(x)-A|<\varepsilon$. /Ez a Cauchy-féle definíció/

$$|x-a| < \delta(\varepsilon)$$
 azt jelenti, hogy:

$$-\delta(\varepsilon) < x - a < \delta(\varepsilon) / + a$$

$$a - \delta(\varepsilon) < x < a + \delta(\varepsilon)$$

Szemléletesesen: azt jelenti, hogy a függvényértékek (f(x) - ek) tetszőlegesen megközelítik az A számot, ha az ε értékek elég közel kerülnek a-hoz. Az f függvénynek az "a" pontban acsa (akkor és csak akkor) van határértéke, ha van bal- és jobboldali határértéke és ez a kettő megegyezik!

• Határérték a végtelenben:

- Az f függvény határértéke +∞-ben A, ha minden $\varepsilon > 0$ esetén van olyan $N(\varepsilon)$, hogy $|f(x) A| < \varepsilon$, ha $x > N(\varepsilon)$.
- Az f függvény határértéke -∞-ben A, ha minden $\varepsilon > 0$ esetén van olyan $N(\varepsilon)$, hogy $|f(x) A| < \varepsilon$, ha $x < N(\varepsilon)$.

• A végtelen, mint határérték:

- Az f függvény határértéke a-ban $+\infty$, ha bármely N>0 esetén van olyan $\delta(N)$, hogy f(x)>N, ha $0<|x-a|<\delta(N)$.
- Az f függvény határértéke a-ban $-\infty$, ha bármely N>0 esetén van olyan $\delta(N)$, hogy f(x)< N, ha $0<|x-a|<\delta(N)$.

3. Függvény folytonosság

Az f függvény az értelmezési tartományának "a" pontjában folytonos, ha ebben a pontban létezik határértéke és ez egyenlő az adott pontbeli helyettesítési értékkel, azaz ha

$$\lim_{x \to a} f(x) = f(a)$$

• **Definíció:** Az f függvényt folytonosnak nevezzük az $a \in D_f$ pontban, ha bármely $\varepsilon > 0$ esetén van olyan $\delta(\varepsilon) > 0$ szám, hogy ha $|x - a| < \delta(\varepsilon)$, akkor $|f(x) - f(a)| < \varepsilon$.

Az f függvény egy intervallumon egyenletesen folytonos, ha bármely $\varepsilon > 0$ számhoz van olyan $\delta > 0$ szám, hogy f értelmezési tartományának bármely x_1 , x_2 elemére, amelyek távolsága egymástól kisebb δ -nál, fennáll az alábbi egyenlőtlenség.

$$|f(x_1) - f(x_2)| < \varepsilon$$

- **Tétel:** Az f függvény pontosan akkor folytonos értelmezési tartományának "a" pontjában, ha ott balról és jobbról is folytonos.
- **Definíció:** Az f függvény folytonos az]a,b[-on, ha folytonos]a,b[minden pontjában. Az f függvény folytonos az [a,b]-on, ha folytonos]a,b[-on és a-ban balról, b-ben jobbról folytonos.

A folytonosság néhány nevezetes következménye:

Ha f folytonos egy zárt intervallumon, akkor ott egyenletesen folytonos.

Bolzano-tétel: ha a függvény a zárt intervallumon folytonos, és az intervallum két végpontjában az értékei különböző előjelűek, akkor az intervallum belsejében van zérushelye. Másképp: felvesz minden f(a) és f(b) közé eső értéket egy folytonos függvény egy zárt intervallumon.

Weierstrass-tétel: Zárt intervallumon folytonos függvény felveszi a minimumát és a maximumát is függvényértékként; továbbá minden olyan értéket, ami a legnagyobb és legkisebb érték közé esik.

4. Inverz függvény

Ha az $f:X\to Y$ függvénynél a leképezés irányát megfordítjuk, vagyis az Y halmaz elemeit képezzük le az X halmaz elemeire, akkor ez a fordított leképezés általában nem függvény, mert nem biztos, hogy egy $y\in Y$ elemnek egyetlen $x\in X$ elem felel meg. Ezért fontos az, hogy f bijektív, azaz kölcsönösen egyértelmű legyen, mert ekkor az f-1-gyel jelölt fordított leképezés is már függvény lesz.

• **Definíció:** Ha az $f: X \to Y$ függvény kölcsönösen egyértelmű, akkor az $f^{-1} = Y \to X$ függvényt f inverz függvényének nevezzük. Ekkor igaz az alábbi összefüggés:

$$f^{-1}(f(x)) = f(f^{-1}(x)) = x$$

5. Derivált

Ha létezik és véges az alábbi differenciálhányados határértéke:

$$Lim_{x\to a} \frac{f(x) - f(a)}{x - a}$$

akkor azt az f függvény deriváltjának vagy "a" pontbeli differenciálhányadosának nevezzük. **Jelölés:**

$$\frac{df(a)}{dx} = f'(a)$$

6. Lokális szélsőérték definíciója és feltétele

Legyen $f: I \subset R \to R; a \subset I$

Azt mondjuk, hogy f függvénynek a pontban lokális maximuma van, ha létezik $\delta > 0$, hogy:

$$f(x) \le f(a) (\forall x \in K)$$

Azt mondjuk, hogy f függvénynek a pontban lokális minimuma van, ha létezik $\delta>0$, hogy:

$$f(x) \ge f(a) (\forall x \in K)$$

Szükséges feltétel:

Ha $f:I\subset R\to R$ differenciálható függvény és f-nek $\alpha\in int.$ I-ben (I belseje) szélsőértéke van, akkor $f'(\alpha)=0$

Elégséges feltétel:

Ha $f:I\subset R\to R$ differenciálható függvény és $\alpha\in int.$ I továbbá létezik r>0, és teljesül az alábbi feltétel, akkor f-nek α -ban lokális minimuma van.

$$f'(x) \le 0 \to x \in](\alpha - r); \alpha[$$

$$f'(x) \ge 0 \to x \in]\alpha; (\alpha + r)[$$

Ha $f:I\subset R\to R$ differenciálható függvény és $\alpha\in int.$ I továbbá létezik r>0, és teljesül az alábbi feltétel, akkor f-nek α -ban lokális maximuma van.

$$f'(x) \ge 0 \to x \in](\alpha - r); \alpha[$$

$$f'(x) \le 0 \to x \in]\alpha; (\alpha + r)[$$

7. L'Hôpital szabály

Legyen f és g differenciálható függvények az α pont egy környezetében, továbbá:

$$Lim_{x\to\alpha}f(x) = Lim_{x\to\alpha}g(x) = 0$$
 vagy $|Lim_{x\to\alpha}f(x)| = |Lim_{x\to\alpha}g(x)| = \infty$ $\alpha \in \{0; \pm \infty\}$

Ekkor:

$$\frac{Lim_{x\to\alpha}f'(x)}{Lim_{x\to\alpha}g'(x)} = \frac{Lim_{x\to\alpha}f(x)}{Lim_{x\to\alpha}f(x)}$$

Középérték tételek és Integrálás:

1. Lagrange középérték tétel

Legyen $f:I\subset R\to R$ folytonos [a;b] intervallumon és differenciálható]a;b[intervallumon. Ekkor létezik olyan $\delta\in]a;b[$ hogy:

$$f'(\delta) = \frac{f(b) - f(a)}{b - a}$$

2. Rolle középérték tétel

Legyen f folytonos [a; b] intervallumon és differenciálható]a; b[intervallumon, továbbá f(a) = f(b) = 0 Ekkor létezik $\xi \in]a; b[$ melyre teljesül, hogy:

$$f'(\xi) = 0$$

3. Cauchy középérték tétel

Legyen f és g függvények folytonosak [a;b] intervallumon és differenciálhatóak]a;b[intervallumon, valamint tegyük fel, hogy $g'(x) \neq 0$ bármely $x \in]a;b[$ esetén. Ekkor létezik olyan $\delta \in]a;b[$ hogy:

$$\frac{f(b) - f(a)}{q(b) - q(a)} = \frac{f'(\delta)}{q'(\delta)}$$

4. Riemann-Integrálhatóság

Az f függvény Riemann-integrálható [a;b] intervallumon, ha a Darboux-féle alsó- és felső-integrálja megegyezik. Ezt a közös értéket az f függvény Riemann-integráljának nevezzük.

5. Newton-Leibniz formula

Legyen f függvény Riemann-integrálható [a;b] intervallumon és $F:[a;b] \to \mathbb{R}$ olyan primitív függvény, hogy F folytonos [a;b] intervallumon, F differenciálható]a;b[intervallumon és F'(x) = f(x) bármely $x \in]a;b[$ Ekkor:

$$\int_{a}^{b} f = F(b) - F(a)$$

6. Improprius integrál

Legyen $(a; b) \in \mathbb{R}_b$ és (a < b) valamint

- 1. minden $[x;y] \subset a; b$ esetén f Riemann-int. [x;y] intervallumon és $(x;y) \subset \mathbb{R}$
- 2. létezik olyan $c \in \mathbb{R}(a < c < b)$, hogy az alábbi határértékek léteznek és végesek:

$$\lim_{x\to\alpha} \int_x^c f(t) dt$$
 és $\lim_{y\to b} \int_c^y f(t) dt$

Ekkor az $I:=Lim_{x\to\alpha}\int_x^c f(t)\,dt+Lim_{y\to b}\int_c^y f(t)\,dt$ összeget az f függvény improprius integráljának nevezzük]a;b[intervallumon és $\int_a^b f(b)\,dt$ jelöljük.

Azt is mondjuk, hogy az f függvény improprius Riemann-integrálja az]a;b[intervallumon konvergens. Ha az 1. feltétel teljesül, de a 2. feltétel nem, akkor az f függvény improprius Riemann-integrálja divergens.

Numerikus sorok:

1. Numerikus sor fogalma

Az a_n numerikus sorozat tagjaiból képzett végtelen összeget numerikus sornak nevezzük. Jelölése:

$$\sum_{n=1}^{\infty} a_n$$

2. Numerikus sor konvergenciája

A $\sum_{n=1}^{\infty} a_n$ numerikus sor konvergens, akkor és csak akkor, ha bármely $\varepsilon>0$ esetén létezik olyan $N(\varepsilon)$ hogy:

$$|a_{n+1} + a_{n+2} + \dots + a_m| < \varepsilon \qquad (n, m > N_{(\varepsilon)})$$

Feltételes konvergencia:

Ha $\sum a_n$ sor konvergens, de nem abszolút konvergens (abszolút konvergens, ha $\sum |a_n|$ konvergens), akkor feltételes konvergenciáról beszélünk.

3. Numerikus sor divergenciája

Ha a numerikus sor nem konvergens, akkor divergens.

4. Konvergencia tesztek

• Majorálás/minorálás:

Legyen $\sum a_n$ és $\sum b_n$ nemnegatív tagú sorok, melyekre teljesül az hogy $a_n < b_n$ bármely $n \in N$ esetén, ekkor:

- Minorálás: Ha $\sum a_n$ divergens, akkor $\sum b_n$ is az
- **Majorálás:** Ha $\sum b_n$ konvergens, akkor $\sum a_n$ is az

• D'Alambert-féle hányadosteszt:

Legyen $\sum a_n$ egy pozitív tagú sor, ha létezik olyan 0 < q < 1 valós szám, amelyre az $n \in N$ feltétel mellett az alábbi egyenlet teljesül, akkor konvergens:

$$\frac{a_n + 1}{a_n} < q$$

• Cauchy-féle gyökteszt:

Legyen $\sum a_n$ egy nemnegatív tagú sor, ha létezik olyan 0 < q < 1 valós szám, amelyre az $n \in N$ feltétel mellett az alábbi egyenlet teljesül, akkor konvergens:

$$\sqrt[n]{a_n} < q$$

Matematika G2 szóbeli beugró kérdések - 2023

Lineáris algebra I.

- 1. Csoport, gyűrű, test
- 2. Euklideszi tér
- 3. Vektortér
- 4. Vektorok lineáris függősége és függetlensége
- 5. Lineáris egyenletrendszer
- 6. Lineáris egyenletrendszer megoldhatóságának szükséges és elégséges feltétele
- 7. Mátrix, determináns
- 8. Mátrix inverze
- 9. Mátrix rangja

Lineáris algebra II.

- 1. Lineáris leképezés fogalma
- 2. Rang-nullitás tétele
- 3. Magtér, képtér
- 4. Sajátvektor, sajátérték
- 5. Bázistranszformáció
- 6. Hasonló mátrix
- 7. Ortogonális mátrix

Függvénysorozatok, függvénysorok

- 1. Függvénysorozat
- 2. Függvénysor
- 3. Függvénysorozat, függvénysor konvergenciája, egyenletes konvergenciája
- 4. Weierstrass-tétel
- 5. Cauchy-Hadamard-tétel
- 6. Hatványsor
- 7. Taylor-polinom, Taylor-sor
- 8. Konvergencia sugár, konvergencia tartomány
- 9. Fourier-sor

Többváltozós függvények

- 1. Primitív függvény
- 2. $\mathbb{R}^n \to \mathbb{R}^k$ leképezés differenciálhatósága
- 3. Iránymenti derivált
- 4. Parciális derivált
- 5. Gradiens
- 6. Jakobi-mátrix
- 7. Szélsőérték, feltételes szélsőérték
- 8. Kvadratikus formák definitsége
- 9. Riemann-integrálhatóság (alsó-felső Darboux-integrál)

Lineáris algebra I:

1. Csoport, gyűrű, test

Félcsoport: olyan halmaz, melyben a kétváltozós műveletek asszociatívak (pl. természetes számok esetén az összeadás)

Csoport: Legyen $G \neq 0$ és egy o művelet (szorzás). Ekkor (G, \circ) csoport, ha teljesülnek az alábbiak:

- 1. $(a \circ b) \circ c = a \circ (b \circ c)$ minden $a, b, c \in G$ esetén
- 2. bármely $e \in G$, hogy $a \circ e = e \circ a = a$ minden $a \in G$ esetén (létezik az egységelem, e, amely asszociatív)
- 3. minden $a \in G$ esetén létezik $a' \in G$, hogy $a \circ a' = a' \circ a = e$ (létezik inverzelem)

Ábel-csoport: olyan halmaz, melyben a kétváltozós műveletek asszociatívak és kommutatívak is ill. létezik a zérus elem és az inverz elem

Gyűrű: Legyen $R \neq 0$ és $+, \circ$ két művelet. Ekkor $(R, +, \circ)$ gyűrű ha teljesülnek az alábbiak:

- 1. (R, +) Ábel csoportot alkot (Ábel csoport = kommutatív csoport)
- 2. A művelet asszociatív (csoportosítható) $(a \circ b) \circ c = a \circ (b \circ c)$ minden $a, b, c \in R$ esetén
- 3. A o művelet disztributív +-ra nézve (összekapcsolható) $(a+b) \circ c = a \circ c + b \circ c$ minden $a,b,c \in R$ esetén

Test: Legyen $T \neq 0$ és $+, \circ$ két művelet. Ekkor $(T, +, \circ)$ test ha teljesülnek az alábbiak:

- 1. (T, +) Ábel csoportot alkot
- 2. A o művelet legyen asszociatív (csoportosítható) $(a\circ b)\circ c=a\circ (b\circ c)$ minden $a,b,c\in R$ esetén
- 3. A o művelet legyen disztributív azaz $(a+b) \circ c = a \circ c + b \circ c$ minden $a,b,c \in R$ esetén
- 4. Létezik $e \in G$, hogy $a \circ e = e \circ a = a$ minden $a \in T$ esetén (létezik egységelem a második műveletre)
- 5. A + műveletekhez tartozó egységelem kivételével bármely $a \in G$ esetén létezik $a' \in G$, hogy $a \circ a' = a' \circ a = e$ (létezik az inverz elem, kivéve az első művelethez (+) tartozó egységelem esetében)

2. Euklideszi tér

Euklideszi térnek nevezzük azon T számtest feletti vektortereket, amelyekben a verktorterek axiómái értelmezve vannak, valamint az ún. skaláris szorzást:

1. A skaláris szorzat V-beli rendezett párokhoz egy T-beli nemnegatív elemet rendelő függvény, vagyis:

$$\forall a, b \in V, \langle a, b \rangle : V \times V \to T$$

2. a skaláris szorzat kommutatív:

$$\forall \underline{a}, \underline{b} \in V, \langle \underline{a}, \underline{b} \rangle = \langle \underline{b}, \underline{a} \rangle$$

3. A skalárszorzás kiemelhető:

$$\forall \underline{a},\underline{b} \in V, \lambda \in T, <\lambda \underline{a},\underline{b}> = \lambda <\underline{a},\underline{b}>$$

4. Az összeg asszociatív:

$$\forall \underline{a}, \underline{b}, \underline{c} \in V, \langle \underline{a} + \underline{b}, \underline{c} \rangle = \langle \underline{a}, \underline{c} \rangle + \langle \underline{b}, \underline{c} \rangle$$

3. Vektortér

Legyen V nem üres halmaz, $+, \circ$ műveletek, T test. $(V, +, \circ)$ T test feletti vektortér, ha:

- 1. (V, +) Ábel-csoport
- 2. valamint:

$$\forall \alpha, \beta \in T$$
, és $x \in V : (\alpha \circ \beta) \circ x = a \circ (\beta \circ x)$

3. Ha ϵ a T-beli egység, akkor:

$$\forall x \in V : \epsilon \circ x = x$$

$$\forall \alpha, \beta \in T \text{ és } \underline{x}, y \in V : (\alpha + \beta) \circ \underline{x} = \alpha \circ \underline{x} + \beta \circ \underline{x} \text{ (rendes +)}$$

valamint:

$$\alpha \circ (\underline{x} + y) = \alpha \circ \underline{x} + \alpha \circ y \ (V \text{-beli} +)$$

4. Vektorok lineáris függősége és függetlensége

 $\{b_1, b_2, ..., b_n\}$ vektor lineárisan független, amennyiben az alábbi egyenletnek csak a triviális megoldása létezik, ellenkező esetben lineárisan függő:

$$\lambda_1 \underline{b}_1 + \dots + \lambda_n \underline{b}_n = 0$$

5. Lineáris egyenletrendszer

A véges sok elsőfokú egyenletet és véges sok ismeretlent tartalmazó egyenletrendszert **lineáris egyenletrendszernek** nevezzük.

6. Lineáris egyenletrendszer megoldhatóságának szükséges és elégséges feltétele

A lineáris egyenletrendszer megoldásának szükséges és elégséges feltétele, az $A\underline{x}=\underline{b}$ lineáris egyenletrendszer pontosan akkor megoldható, ha $rg(A\mid\underline{b})=rg(A)$

7. Mátrix determináns

Tekintsük az \mathbb{R}^n tér $\underline{a}_1,...,\underline{a}_n$ vektorait és ehhez hozzárendelünk egy valós számot amit determinánsnak nevezünk és $det(\underline{a}_1;\underline{a}_2,...,\underline{a}_n)$ -nel jelöljük.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \longrightarrow det(A) = |A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$Determinant of a 3 \times 3 Matrix$$

$$B = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \longrightarrow det(B) = |B| = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

8. Mátrix inverze

Az $A \in M_{n \times n}$ mátrix inverzén A^{-1} -gyel jelölt $n \times n$ -es mátrixot értünk, amelyre igaz, hogy:

$$\underline{\underline{A}} * \underline{\underline{A}}^{-1} = \underline{\underline{A}}^{-1} * \underline{\underline{A}} = \underline{\underline{E}}$$

$$\mathsf{A}^{\scriptscriptstyle{-1}} = \frac{1}{|\mathsf{A}|} \begin{pmatrix} \mathbf{d} & -\mathbf{b} \\ -\mathbf{c} & \mathbf{a} \end{pmatrix}$$

9. Mátrix rangja

A mátrix rangjának nevezzük a mátrix vektorai közül lineárisan függetlenek maximális számát.

$$\begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix} \xrightarrow{2R_1 + R_2 \to R_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 3 & 5 & 0 \end{bmatrix} \xrightarrow{-3R_1 + R_3 \to R_3} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & -1 & -3 \end{bmatrix}$$
$$\xrightarrow{R_2 + R_3 \to R_3} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{-2R_2 + R_1 \to R_1} \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

Az alábbi mátrix rangja 2.

Lineáris algebra II:

1. Lineáris leképezés fogalma

 V_1 és V_2 ugyanazon test $(\mathbb{R};\mathbb{C})$ feletti vektortérnek. Legyen $V_1 \to V_2$ leképezés, melyet lineáris leképezésnek nevezzük, ha:

$$\varphi(\underline{a} + \underline{b}) = \varphi(\underline{a}) + \varphi(\underline{b})$$

$$\varphi(\alpha \underline{a}) = \alpha \varphi(\underline{a})$$

Megjegyzés:

$$\varphi(\underline{0}) = \underline{0}$$

2. Rang-nullitás tétele

Tetszőleges $\varphi: V_1 \to V_2$ leképezés esetén igaz, hogy: $def(\varphi) + rg(\varphi) = dim(V_1)$. Ebből $def(\varphi)$ a magtér rangja. A magtér V_1 részhalmaza, és a benne lévő elemek képe nullvektor. A képtér V_2 részhalmaza, és a benne lévő elemek a képei V_1 elemeinek.

3. Magtér

Magtér: Legyen $\varphi: V_1 \to V_2$ lineáris leképezés:

$$Ker(\varphi) := \{ \underline{v} \mid \underline{v} \in V_1 \land \varphi(\underline{v} = \underline{0}) \}$$

a φ magtere.

4. Sajátvektor, sajátérték

- 1. A mátrixnak λ a sajátértéke, ha létezik olyan \underline{v} nem nulla vektor, hogy: $\underline{A}*\underline{v}=\lambda*\underline{v}$
- 2. Képlet:

$$A' = \underline{\underline{C}}^{-1} * \underline{\underline{A}} * \underline{\underline{C}}$$

3. $\varphi:V\to V$ keressünk azon vektorokat, amelyekre igaz: $(A-\lambda\underline{\underline{E}})*\underline{v}=0$. Ennek akkor van megoldása, ha:

$$det(\underline{\underline{A}} - \lambda \underline{\underline{E}}) = 0$$

- 4. Egy vektornak ∞ saját vektora van. Lineárisan független egyenletrendszerek száma: $\underline{\underline{A}}_{m\times n}\to max$ n db
- 5. α -t a v sajátvektorhoz tartozó sajátértéknek mondjuk.

5. Bázistranszformáció

Legyen $\{\underline{b}_1,...,\underline{b}_n\}$ és $\{\underline{\hat{b}}_1,...,\underline{\hat{b}}_n\}$ bázis V-ben, ekkor az egyikről a másikra való áttérés S mátrixa:

$$\hat{\underline{b}}_1 = \sum_{i=1}^n s_i \underline{b}_i$$

$$\underline{\hat{b}}_1 = \sum_{i=1}^n s_{ij}\underline{b}_i$$

$$\hat{\underline{b}}_1 = \sum_{i=1}^n s_{in}\underline{b}_i$$

$$\begin{pmatrix} s_{1,1} & s_{1,2} & \dots & s_{1,n} \\ s_{2,1} & s_{2,2} & \dots & s_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ s_{n,1} & s_{n,2} & \dots & s_{n,n} \end{pmatrix}$$

6. Hasonló mátrix

Aés B mátrixok hasonlóak, ha létezik olyan X reguláris mátrix, hogy:

$$\underline{\underline{A}} = \underline{\underline{X}}^{-1} * \underline{\underline{B}} * \underline{\underline{X}}$$

7. Ortogonális mátrix

Egy mátrix ortogonális, amennyiben inverze megegyezik a transzponáltjával.

Függvénysorozatok, függvénysorok:

1. Függvénysorozat

Az $f_n: I \subset \mathbb{R} \to \mathbb{R}$ sorozatot függvénysorozatnak nevezünk.

2. Függvénysor

Az $f_n: I \subset \mathbb{R} \to \mathbb{R}$ függvény sorozat előállítható a:

$$s_1(x) := f_1(x)$$

$$s_2 := f_1(x) + f_2(x)$$

$$s_n(x) := \sum_{i=1}^{i} f_n(x)$$

az így előállított s_n sorozatot az f_n sorozatból képzett függvény sornak hívjuk, és $\sum F_n$ -nel jelöljük.

3. Függvénysorozat, függvénysor konvergenciája, egyenletes konvergenciája

A $\sum f_n$ függvény sor egyenletesen konvergens az $E \subset H$ halmazon \iff ha bármely $\varepsilon > 0$ esetén létezik olyan $N(\varepsilon)$: $|s_n(x) - s_m(x)| < \varepsilon$; ha $n; m > N(\varepsilon)$; $\forall x \in E$ esetén.

4. Weierstrass-tétel

Bármely $f_n: I \subset \mathbb{R}$ és $\sum f_n$ a belőle képzett függvénysor, $\sum a_n$ olyan konvergens numerikus sor, amelyre igaz: $|f_n(x)| \leq a_n$; $\forall x \in J$ esetén teljesül bármely $x \in \mathbb{N}$ vagy egy bizonyos n-től, ekkor $\sum f_n$ függvénysor egyenletesen konvergens J-n.

5. Cauchy-Hadamard-tétel

Legyne r a $\sum_{n} x^{n}$ hatványsor konvergenciasugara:

- 1. Ha r=0 ebben az esetben a hatványsor csak az x_0 pontban konvergens
- 2. Ha $r = \infty$ a hatványsor bármyel $x_0 \in \mathbb{R}$ esetén konvergens
- 3. Hat $0 < r < \infty$, akkor a hatványsor abszolúz konvergens, ha | x |< r, és divergens, amennyiben | x |> r
- 4. Bizonyítás: az a, b rész bizonyítása az előző tétel alapján könnyen adódik:

$$!\mid x_{0}\mid < r, limsup\sqrt[n]{\mid a_{n}x_{0}^{n}\mid} = \mid x_{0}\mid limsup\sqrt[n]{\mid a_{n}\mid} = \frac{|x_{0}|}{r}, \text{ ami }\mid x\mid > r \Rightarrow$$

Létezik olya 0 < r < 1, hogy a $\sum a_x x_0^n$ hatványsor a gyökteszt miatt konvergens. Mivel $\mid x_0 \mid < r$ tetszőleges volt, így $\forall \mid x_0 \mid < r$ esetén igaz, hogy $\sum a_n x_0^n$ hatványsor konvergens, amennyiben $\mid x \mid > r$, akkor a hatványsor divergens.

6. Hatványsor

Tegyük fel, hogy egy f függvény $\sum a_n x^b$ hatványsor alakban előállítható. Akkor az ezt leíró hatványsor alakja az alábbi:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^n(0)}{n!} * x^n$$

7. Taylor-polinom, Taylor-sor

Legyen $f:I\subset\mathbb{R}\to\mathbb{R}$ függvény, az $x_0\in I$ pontban legfeljebb p-szer differenciálható, ekkor az f függvények x_0 körüli p-edik Taylor polinomja:

$$T_{f,P}(x) = \sum_{k=0}^{P} \frac{f^{(k)}}{k!} * (x - x_0)^k$$

Tétel: ha az f függvény legalább (r+1)-szer differenciálható az (x,x_0) intervallumon, és $f^{(k)}, k \in 1, 2, 3, ... r$ folytonos és az x és x_0 pontokban, akkor létezik olyan $\xi \in (x; x_0)$, hogy:

$$f(x) = \sum_{k=1}^{r} \frac{f^{(k)}x_0}{k!} * (x - x_0)^k + \frac{f^{(r+1)}\xi}{(r+1)!} (x - x_0)^{r+1}$$

Ahol a masodik tag a Lagrange-féle maradéktag

8. Konvergencia sugár, konvergencia tartomány

Konvergencia sugár nagyságának kiszámítása:

$$\frac{1}{r} = \lim_{m \to \infty} \mid \frac{a_{k+1}}{a_k} \mid$$

9. Fourier-sor

Legyen $f: \mathbb{R} \to \mathbb{R}$ 2*l* szerint periodikus függvény, amely a [0, 2l] intervallumon Reimann integrálható, ekkor f Fourier során az alábbi függvénysort értjük:

$$a_0 + \sum_{k=0}^{\infty} a_k \cdot \cos(\frac{k\pi x}{l}) + b_k \cdot \sin(\frac{k\pi x}{l})$$

$$a_0 = \frac{1}{2l} \int_0^{2l} f(x) \, dx; \quad b_0 = 0$$

$$a_k = \frac{1}{l} \int_0^{2l} f(x) * \cos(\frac{k\pi x}{l}) \, dx;$$

$$b_k = \frac{1}{l} \int_0^{2l} f(x) * \sin(\frac{k\pi x}{l}) \, dx;$$

 $\mathbf{Megjegyz\acute{e}s}$: ha az f függvény összeáll a fenti típusú függvénysor összegeként, akkor az együtthatók csak ilyenek lehetnek.

Többváltozós függvények:

1. Primitív függvény

Egy $f: \mathbb{R}^n \to \mathbb{R}^k$ függvénynek $F: \mathbb{R}^n \to \mathbb{R}$ primitív függvénye, ha F' = f.

2. $\mathbb{R}^n \to \mathbb{R}^k$ leképezés differenciálhatósága

Legyen $U \subset \mathbb{R}^n$ nyílt halmaz, $f: U \to \mathbb{R}^k$ leképezés. Azt mondjuk, hogy f differenciálható, az $\underline{a} \in D_f$ pontban, ha létezik $A: \mathbb{R}^n \to \mathbb{R}^k$ lineáris leképezés, $\omega: \mathbb{R}^n \to \mathbb{R}^k$ leképezés, melyre $\omega(\underline{0}) = \underline{0}, \ Lim_{||\underline{h}|| \to 0} \frac{||\omega(\underline{h})||}{||h||}$, hogy:

$$f(\underline{x}) - f(\underline{a}) = A(\underline{x} - \underline{a}) + \omega(\underline{x} - \underline{a}).$$

Az "A"-nak megfelel egy $M_{k\times n}$ -es mátrix. A deriválás egy leképezés.

3. Iránymenti derivált

Az iránymenti derivált, az adott irány által kimetszett függvény deriváltja. Közelebbről:

$$\frac{\partial f}{\partial \underline{e}} = Lim_{\lambda \to 0} \frac{f(\underline{x}) + \lambda \underline{e} - f(\underline{x})}{\lambda} = <\underline{e}, gradf>, \text{ ahol } \mid e \mid = 1$$

4. Parciális derivált

Parciális deriváltnak nevezzük a többváltozós függvények olyan deriváltját, amikor a függvényt egy rögzített változ ójának függvényeként fogjuk fel, eszerint deriválunk, miközben a többi változójelet konstans értéknek tekintjük. (A koordináta-tengelyek mentén lévő irány menti derivált.)

$$\frac{\partial f}{\partial x_i} = f'(x_i)$$

5. Gradiens

A z = f(x;y) függvény gradiense a parciális deriváltakból, mint koordinátákból alkotott vektor: $gradf(x;y) = (f'_x(x;y); f_y(x;y))$. A gradiens legfontosabb tulajdonságai:

- Minden pontban a gradiens merőleges a ponton áthaladó szimmetriavonalra.
- A gradiens a függvény legnagyobb növekedésének irányába mutat.

$$gradf = \nabla f = [f'x_1, ..., f'x_n]$$

6. Jacobi-mátrix

A parciális deriváltak vektora vektor értékű függvényekre is defniálható. Ha $\underline{F}: \mathbb{R}^n \to \mathbb{R}^m$ vektor értékű függvény, és koordinátafüggvényei rendre $F_1; ...; F_m$, akkor:

$$\underline{F}(x_1,...x_n) = (F_1(x_1,...,x_n),...F_m(x_1,...,x_n))$$

Ekkor F deriváltja az F_i (sorvektor) gradiensek oszlopvektoraként definiálható. Ennek a mezőnek a vektorgradiense a Jacobi -mátrix:

$$\mathcal{J}_{\underline{F}} = grad\underline{F} = \nabla \underline{F} = \partial(F_1, ..., F_m) \partial(x_1, ..., x_n) = \begin{pmatrix} \frac{\partial F_1}{\partial x_1} & ... & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1} & ... & \frac{\partial F_m}{\partial x_n} \end{pmatrix}$$

m=n-re az eredmény egy másodfokú tenzor. Eféle tenzorok írják le például a fizikában a mechanikai feszültséget és az elaszticitást.

7. Szélsőérték, feltételes szélsőérték

A lokális szélsőérték létezésének szükséges feltétele, hogy az első rendű parciális deriváltak eltűnjenek az adott pontban. Emellett a létezés elégséges feltétel, hogy az adott a pontban a következő determináns értéke pozitív.

$$H = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix}$$

Egy $f: \mathbb{R}^n \to \mathbb{R}$ függvénynek lokális minimuma van a-ban, ha a-nak van olyan K környezete, melyre $f(a) \leq f(x) \forall x \in K$.

Ha egy $f \in c^1(\mathbb{R}^n;\mathbb{R})$ függvénynek lokális szélső értéke van a-ban, akkor f'(a)=0 a nullvektor, azaz $\partial_i f(a)=0 (\forall i=1;\ldots;n)$

Legyen egy $f \in C^2(\mathbb{R}^n; \mathbb{R})$ függvényre f'(a) = 0

- Ha F''(a) sajátértékei $> 0 \Rightarrow f$ -nek lokális minimuma van a-ban
- Ha F''(a) sajátértékei $< 0 \Rightarrow f$ -nek lokális maxima van a-ban

Megjegyzés: Többdimenziós jelenség ha f''(a)-nak van + és – sajátértéke is, akkor nincs szélsőértéke, hanem ún. nyeregpontja: egy irányban minimum és egy másik irányban maximum van.

8. Kvadratikus formák definitsége

Egy n változós q kvadratikus alakot:

- 1. **pozitív definitnek** nevezünk, ha bármely $x_1; \ldots; x_n$ esetén $q(x_1; \ldots; x_n) \geq 0$, és $q(x_1; \ldots; x_n) = 0$ csak akkor, ha $x_1 = \ldots = x_n = 0$
- 2. **pozitív szemidefinitnek** nevezzük, ha bármely $x_1; ...; x_n$ esetén $q(x_1; ...; x_n) \ge 0$, és van olyan $(x_1; ...; x_n) \ne 0$, melyre igaz hogy: $q(x_1; ...; x_n) = 0$
- 3. **negatív definitnek** nevezzük, ha bármely x1; ...; xn esetén $q(x_1; ...; x_n) \leq 0$, és $q(x_1; ...; x_n) = 0$, csak akkor ha: $x_1 = ... = x_n = 0$
- 4. **negatív szemidefinitnek** nevezünk, ha bármely $x_1; \ldots; x_n$ esetén $q(x_1; \ldots; x_n) \leq 0$ és van olyan $(x_1; \ldots; x_n) \neq 0$ melyre $q(x_1; \ldots; x_n) = 0$
- 5. indefinitnek nevezünk, ha felvesz pozitív és negatív értékeket is.

9. Riemann-integrálhatóság (alsó-felső Darboux-integrál)

- 1. $\underline{S}(f) = \inf\{\underline{S}(f,d) \mid d \text{ beosztása } I\text{-nek}\}$
- 2. \underline{S} neve: alsó Darboux-integrál
- 3. $\overline{S}(f) = \sup{\overline{S}(f, d) \mid d \text{ beosztása } I\text{-nek}}$
- 4. \overline{S} neve: felső Darboux-integrál

Megjegyzés:

$$\underline{S}(f,d) \le \underline{S}(f) \le \overline{S}(f) \le \overline{S}(f,d) \forall d$$

Legyen $f: \mathbb{R}^n \to \mathbb{R}$ korlátos függvény. f-et Riemann-integrálhatónak mondjuk, ha $\underline{S}f = \overline{S}f$. Ezt a közös értéket jelöljük.

Alsó (zöld) és felső (zöld plusz levendula) Darboux összegek négy részintervallumra

Matematika G3 szóbeli beugró kérdések - 2023

Vektoranalízis 1.

- 1. Duális tér
- 2. Leképezés adjungáltja, szimmetrikus és antiszimmetrikus leképezés
- 3. Mátrix vektorinvariánsa és nyoma (trace, spur)
- 4. Gradiens, divergencia és rotáció
- 5. Nabla vektor
- 6. Laplace operátor, harmonikus függvény

Vektoranalízis 2.

- 1. Skalárpotenciálos vektormező
- 2. Vektorpotenciálos vektormező
- 3. Görbe
- 4. Görbe ívhossza
- 5. Felület
- 6. Felszínszámítás
- 7. Stokes-tétel
- 8. Gauss-Osztrogradszkij-tétel
- 9. Green-tételek

Differenciálegyenletek 1.

- 1. Közönséges n-edrendű differenciálegyenlet
- 2. Differenciálegyenlet megoldásának típusai (általános, partikuláris, szinguláris)
- 3. Cauchy-feladat
- 4. Lipschitz-feltétel
- 5. Picard-Lindelöf tétel
- 6. Iránymező

Differenciálegyenletek 2.

- 1. Szeparábilis és arra visszavezethető DE
- 2. Bernoulli-féle DE
- 3. Riccati-féle DE
- 4. Egzakt DE
- 5. Lineáris állandó együtthatós DE
- 6. Lineárisan független függvényrendszer
- 7. Wronski-determináns
- 8. Differenciálegyenlet-rendszer

Vektoranalízis I:

1. Duális tér

 $\mathbf{V}^* := Hom(V, \mathbb{R})$, ahol $(V, +, \lambda)$ vektortér, \mathbf{V}^* elemei pedig lineáris formák, azaz:

$$\underline{v} \to \varphi(\underline{v})$$

$$\varphi(\alpha \underline{v} + \beta \underline{w}) = \alpha \varphi(\underline{v}) + \beta \varphi(\underline{w})$$

- Homomorfizmus: Két algebrai struktúra közötti művelettartó leképezés. Pl. ha az egyik struktúrában valamely elemek közt valamilyen reláció áll fenn, akkor ezen elemeiknek képei a másik struktúrában is ebben a relációban állnak.
- \bullet Endomorfizmus: A képhalmaz részhalmaza az alaphalmaznak. pl
: $\mathbb{Z} \to \mathbb{N}$

 V^* halmazt természetes módon vektortérré tehetjük a következőképpen:

$$(\alpha + \beta)\underline{v} = \alpha\underline{v} + \beta\underline{v} \qquad \alpha, \beta \in \mathbf{V}^*$$

$$(\rho \cdot \varphi)\underline{v} = \rho \cdot \varphi(\underline{v}) \qquad \rho \in \mathbb{R}, \varphi \in \mathbf{V}^*$$

Így $(\mathbf{V}^*, +, \lambda)$ már vektortér, amit V duális terének is nevezünk. Vektortér és duális terének dimenziója megegyezik.

2. Leképezés adjungáltja, szimmetrikus és antiszimmetrikus leképezés

Leképezés adjungáltja:

Legyen E=(V,<,>) adott euklédeszi tér és $\varphi:V\to V$ egy lineáris leképezés. Ekkor $\varphi^*:V\to V$ a leképezés adjungáltja ha $\forall\;\underline{v_1},\underline{v_2}\in V$ esetén:

$$< v_1; \varphi(v_2) > = < \varphi^*(v_1); v_2 >$$

• Idempotens: Az adjungált adjungáltja megegyezik az eredeti leképezéssel. $(\varphi^*)^* = \varphi$

Szimmetrikus leképezés:

Egy leképezés szimmetrikus, ha adjungáltja önmaga $\varphi^* = \varphi$ ekkor:

$$\langle v_1; \varphi(v_2) \rangle = \langle \varphi(v_1); v_2 \rangle \quad \forall v_1, v_2 \in V$$

Antiszimmetrikus leképezés:

Egy leképezés antiszimmetrikus, ha $\varphi^* = -\varphi$ ekkor:

$$- < v_1; \varphi(v_2) > = < \varphi(v_1); v_2 > \qquad \forall \ v_1, v_2 \in V$$

3. Mátrix vektorinvariánsa és nyoma (trace, spur)

Vektorinvariáns:

Tekintsük a következő, 3x3-as antiszimmetrikus mátrixnak és a \underline{w} vektornak a szorzatát:

$$\begin{bmatrix} 0 & a_{12} & a_{13} \\ -a_{12} & 0 & a_{23} \\ -a_{13} & -a_{23} & 0 \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} a_{12}w_2 + a_{13}w_3 \\ -a_{12}w_1 + a_{23}w_3 \\ -a_{13}w_1 - a_{23}w_2 \end{bmatrix}$$

Egy antiszimmetrikus lineáris transzformáció mindig leírható egy rögzített vektorral való vektoriális szorzatként. Ezt a vektort nevezzük a mátrix vektorinvariánsának.

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \times \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} v_2w_3 - v_3w_2 \\ v_3w_1 - v_1w_3 \\ v_1w_2 - v_2w_1 \end{bmatrix}$$

$$\underline{A} \cdot \underline{w} = \underline{v} \times \underline{w}$$

 \underline{w} együtthatóinak meg kell egyeznie, tehát a vektorinvariáns:

$$\underline{v} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} -a_{23} \\ a_{13} \\ -a_{12} \end{bmatrix}$$

A vektorinvariáns csak ortogonális transzformációkkal szemben invariáns.

Nyom /Spur /Trace:

Egy lineáris transzformáció mátrixának főátlójában lévő elemek összege minden koordinátarendszerben ugyanannyi, tehát a koordináta-transzformációkkal szemben invariáns. Ezt az összeget a lineáris transzformáció $(V_1 = V_2)$ első skalárinvariánsának /nyomának /spurjának /tracejének nevezzük. (És ez a sajátértékek összege.)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
$$Tr(A) = 1 + 5 + 9 = 15$$

4. Gradiens, divergencia, rotáció I.

Gradiens:

A gradiens csak skalármező (azaz skalár-vektor függvény) esetében értelmezhető.

$$\begin{aligned} u: \mathbb{R}^3 &\to \mathbb{R} \\ grad \ u &= \frac{\partial u}{\partial x} \mathbf{i} + \frac{\partial u}{\partial y} \mathbf{j} + \frac{\partial u}{\partial z} \mathbf{k} \end{aligned}$$

A gradienst tehát úgy kapjuk, hogy a skalármezőt az összes változója szerint, külön-külön (parciálisan) lederiváljuk, és egy oszlopvektorba rendezzük.

$$grad \ u = \begin{pmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \\ \frac{\partial u}{\partial z} \end{pmatrix}$$

A gradiens tehát vektormennyiség. Ha bevezetjük az úgynevezett nabla vektort:

$$\underline{\nabla} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}$$

Akkor grad u a nabla vektornak és az u skalármezőnek a szorzataként írható fel:

$$grad\ u = \underline{\nabla} \cdot u$$

Skalármező gradiense, illetve vektormező divergenciája és rotációja független a koordinátarendszertől.

Divergencia:

A divergencia csak vektormező (azaz vektor-vektor függvény) esetében értelmezhető. Eredménye skalármennyiség.

$$\underline{v}:\mathbb{R}^3\to\mathbb{R}^3$$

Definíció szerint $div \ \underline{v} = sp(\mathcal{J}_v)$, tehát \underline{v} Jakobi-mártixának a nyoma:

$$div \ \underline{v} = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial y} + \frac{\partial f_3}{\partial z}$$

Ahol f_i a \underline{v} vektormező i-edik komponensfüggvénye. div \underline{v} a nabla vektornak és a \underline{v} vektormezőnek a (skaláris) szorzataként írható fel:

$$div \ v = \nabla \cdot v(r)$$

Ha $div \ v = 0$, akkor a vektormező forrásmentes.

Rotáció:

A rotáció csak vektormező (azaz vektor-vektor függvény) esetében értelmezhető. Eredménye viszont vektormennyiség.

Definíció szerint $\frac{1}{2}rot \ f = \frac{1}{2}(Df - Df^*)$, ahol Df a derivált mátrix (Jakobi-mátrix), aminek a soraiban az egyes komponensfüggvények gradiensei vannak. Df^* pegid Df transzponáltja. $rot \ \underline{v}$ a nabla vektornak és a \underline{v} vektormezőnek a vektoriális szorzataként írható fel:

$$rot \ v = \nabla \times v(r)$$

4. Gradiens, divergencia, rotáció II.

 $v: \mathbb{R}^3 \to \mathbb{R}^3$ esetén:

$$rot \ \underline{v} = \begin{pmatrix} \frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z} \\ \frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x} \\ \frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \end{pmatrix}$$

Fontosabb azonosságok: $\underline{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

$$div \ \underline{r} = 3$$
$$rot \ \underline{r} = 0$$

Zérus azonosságok:

$$rot grad u = \underline{0}$$
$$div rot v = 0$$

5. Nabla vektor

Igazából nem vektor, hanem operátor, de vektorként kezelve a legtöbb művelet könnyebben elvégezhető a segítségével.

$$\underline{\nabla} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix}$$

6. Laplace operátor, harmonikus függvény

Laplace operátor:

$$\Delta = \underline{\nabla} \cdot \underline{\nabla} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

Harmonikus függvény:

Akkor harmonikus például az u skalár-vektor ($\mathbb{R}^3 \to \mathbb{R}$) függvény, ha:

$$\Delta u = 0 = \underline{\nabla} \cdot \underline{\nabla} u = \underline{\nabla} \cdot \operatorname{grad} u = \operatorname{div} \operatorname{grad} u = 0$$

Tehát kielégíti az úgynevezett Laplace-egyenletet. (Feltétel: legyen kétszeresen differenciálható az u függvény.)

Vektoranalízis II:

1. Skalárpotenciálos vektormező

Egy $\underline{v}:V\to V$ vektormező skalárpotenciálos, ha $\exists~u:V\to\mathbb{R}$ skalármező, hogy $\underline{v}=grad~u.$ (Fizikai) erőtér esetén a vektortér más néven konzervatív, ha ez teljesül.

Ekkor u-t \underline{v} potenciálfüggvényének nevezzük. Feltétel: $rot \underline{v} = \underline{0}$ (örvénymenteség)

Ha egy vektormező előáll egy skalármező gradienseként, akkor a vektormező bármely görbe menti skalárértékű vonalintegrálja csak a kezdő- és a végponttól függ, tehát független az úttól. Egy vektortérnek végtelen sok skalárpotenciálja van (a konstans miatt).

A skalárértékű vonalintegrál értéke (a munka) a potenciálkülönbséggel egyenlő:

$$\int_{A}^{B} \langle \underline{v}(\underline{r}(\underline{t})), \underline{\dot{r}}(t) \rangle = u(B) - u(A)$$

A potenciálfüggvénynek a vonalintegrállal kapcsolatban az a szerepe, mint egy egyváltozós függvény határozott integráljával kapcsolatban a primitív függvénynek.

2. Vektorpotenciálos vektormező

Egy $\underline{v}:V\to V$ vektormező vektorpotenciálos, ha $\exists\ \underline{w}:V\to V$ vektormező, hogy $\underline{v}=rot\ \underline{w}$, azaz előáll egy másikmező rotációjaként. (\underline{w} vektor tetszőleges koordinátáját nullának választjuk a megoldás során.) Feltétele: $div\ \underline{v}=0$. (forrásmenteség)

3. Görbe

Legyen $I \in \mathbb{R}$ egy nem feltétlenül korlátos intervallum. Ekkor az $\underline{r}: I \to \mathbb{R}^3$ leképezést reguláris görbének hívjuk, ha r immerzió, azaz a derivált leképezése injektív (a képek egyenlőségéből következik az ősképek egyenlősége: $\varphi(a) = \varphi(b) \to a = b$).

4. Görbe ívhossza

A pályasebesség I fölötti integrálját a térgörbe ívhosszának nevezzük (sebesség idő szerinti vonalintegrálját):

$$L(\underline{r}) = \int_{I} ||\underline{\dot{r}}(\tau)|| \, d\tau$$

Más definíció szerint, amikor egy tetszőleges síkgörbe ívhosszát olyan húrok összegével közelítjük, amik0-hoztartanak.

Egy y = f(x) egyenlettel adott, szakaszonként sima görbe $a \le x \le b$ határok közötti ívhossza:

$$s = \int_{x=a}^{b} ds = \int_{x=a}^{b} \sqrt{1 + y'^2} \, dx$$

A "töröttvonalak" hosszának az összege is az ívhossz, minden határon túli finomítás esetén:

$$\sum_{i} ||\underline{r}(t_i) - \underline{r}(t_{i-1})||$$

5. Felület

Legyen $S \subset \mathbb{R}^3$, ekkor S-t reguláris (szabályos) felületnek mondjuk, ha $\forall p \in S$ ponthoz létezik p-nek olyan $V \subset \mathbb{R}^3$ környezete, hogy a $\varphi : U \subset \mathbb{R}^2 \to V \cap S$ leképezés:

- differenciálható homeomorfizmus (diffeomorfizmus, azaz differenciálható bijekció)
- és φ immerzió, azaz a $\varphi_q':\mathbb{R}^2\to\mathbb{R}^3$ (q pontban) injektív lineáris leképezés φ neve: parametrizáció, $p\in V\cap S$ neve: p koordinátakörnyezete

6. Felszínszámítás

Triangularizáció (felszín lefedése háromszögekkel) helyett kicsi, elemi, érintő paralelogrammákkal közelítjük a felszínt, amik már nem tudnak elválni a felülettől (ez az alapelve).

Skaláris felületelem:

$$dS = \left| \left| \frac{\partial \underline{r}}{\partial u} \times \frac{\partial \underline{r}}{\partial v} \right| \right| \Delta u \Delta v$$

Ahol $\frac{\partial \underline{r}}{\partial u}$ és $\frac{\partial \underline{r}}{\partial v}$ a paramétervonalak P pontbeli érintővektorai. (A felületen a P pontot az u és v úgynevezett paramétervonalak metszéseként vettük fel; \underline{r} a P pontba mutató vektor). A skaláris felületelem a két differenciálvektor által kifeszített elemi paralelogramma területe. Amit, ha minden határon túl finomítunk, akkor a következő integrál megadja a teljes felszínt:

$$S = \iint_T dS = \iint_T \left| \left| \frac{\partial \underline{r}}{\partial u} \times \frac{\partial \underline{r}}{\partial v} \right| \right| du dv$$

7. Stokes-tétel

A görbe menti és a felületi integrálok közötti kapcsolatot írja le. "Kétdimenziós Newton-

Leibnizformulának" is szokták nevezni. Legyen $F:[a,b]\times[a,b]\to\mathbb{R}^3$ jobbkéz-szabály szerint irányított, parametrizált peremes felület Továbbá, legyen $v: \mathbb{R}^3 \to \mathbb{R}^3$ legalább egyszer folytonosan differenciálható vektormező, ekkor:

$$\oint_{\mathcal{G}} <\underline{v}(\underline{r}), d\underline{s} > \iint_{F} < rot \ \underline{v}, d\underline{F} >$$

Tehát a \mathcal{G} görbe menti vonalintegrál megegyezik az F felületen vett felületi integrállal. $d\underline{F} = \underline{n}$ Ezáltal is belátható, hogy ha a vektormező örvénymentes, akkor bármely zárt görbe menti integrálja zérus, hiszen, ha rot v = 0, akkor a skalárszorzat nulla a kettős integrálban. Megjegyzések:

- Kétoldalú, zárt felület legyen adott, amit egy zárt görbe határol
- \bullet Azonos peremmel rendelkező S_1 és S_2 felületek esetén az integrálok megegyeznek
- Perem nélküli felület esetén nulla a kettős integrál értéke
- Ha nem irányítható a felület, akkor felbontjuk irányítható részekre
- Fizikai alkalmazás pl. gerjesztési törvény

8. Gauss-Osztrogradszkij-tétel

A felületi integrál és a térfogati integrál között teremt kapcsolatot. Szükséges egy korlátos, zárt felület és egy kifelé mutató normálvektor. Legyen $V:[a,b]^3\to\mathbb{R}^3$ irányított, paraméterezett elemi tértartomány és $\underline{v}:\mathbb{R}^3\to\mathbb{R}^3$ V-n legalább egyszer differenciálható vektormező, ekkor:

$$\iint_F <\underline{v}(\underline{r}), d\underline{F}> = \iiint_V div(\underline{v}(\underline{r})) dV$$

Ahol F a határfelülete V-nek. A tételből látható, hogy forrásmentes (div v = 0) vektortér zárt felületre vett integrálja (avagy átáramlási feleslege) nulla.

9. Green-tételek

Legyenek $\varphi, \psi: \mathbb{R}^3 \to \mathbb{R}$ kétszeresen folytonosan differenciálható skalármezők. A Gauss-Osztrogradszkij-tételben vegyük fel a \underline{v} vektorteret $\underline{v} = \varphi \cdot grad \ \psi$ alakban.

$$div \ \underline{v} = \underline{\nabla} \cdot \underline{v} = \underline{\nabla} (\varphi \cdot \underline{\nabla} \psi) = \underline{\nabla} \varphi \underline{\nabla} \psi + \varphi \Delta \psi = grad \ \varphi grad \ \psi + \varphi \Delta \psi$$

Aszimmetrikus Green-tételt:

Az első Green-tételben φ és ψ szerepét felcseréljuk, és az így kapott egyenletet kivonjuk az első tétel egyenletéből.

Szimmetrikus Green-tétel:

$$\iint_{F} \langle \varphi \cdot \operatorname{grad} \psi - \psi \cdot \operatorname{grad} \varphi, d\underline{F} \rangle = \iiint_{V} (\varphi \Delta \psi - \psi \Delta \varphi) dV$$

Differenciálegyenletek I:

1. Közönséges n-edrendű differenciálegyenlet

Differenciálegyenletnek az olyan egyenletet nevezzük, melyben ismeretlen függvények, ezek deriváltjai, valamint független változó(k) fordul(nak) elő.

Közönséges: csak egyetlen független (x) változó van benne (nem parciális, ahol több)

Rend: az ismeretlen (y', y'', ...) legmagasabb fokszámú deriváltja

Definíció:

 $y: \mathbb{R} \to \mathbb{R}$ n-szer folytonosan differenciálható függvény, $y=y^{(0)}, y'=y^{(1)}, \dots, y^{(n)}$ deriváltfüggvények szintén folytonosak és jelölje x a független változót.

$$F(x, y, y', y'', \dots, y^{(n)}) = 0$$

egyenlet az y-ra vonatkozó, n-edrendű, közönséges differenciálegyenlet. (A fenti megadást implicit megadásnak is hívjuk, mivel a legmagasabb fokszámú derivált nem fejezhető ki egyértelműen, expliciten.)

2. Differenciálegyenlet megoldásának típusai

Általános:

Amely kielégíti a differenciálegyenletet (DE-t) és pontosan annyi, egymástól független, tetszőleges konstanst tartalmaz, ahányad rendű a DE. Az általános megoldás a homogén és az inhomogén rész összege: $y_{\acute{a}} = y_H + y_{IH}$

Partikuláris:

Amely az általános megoldásból úgy származtatható, hogy az abban szereplő konstansoknak meghatározott értéket adunk. (pl. Cauchy kezdetiérték-feladat) Általánosabban: partikuláris megoldás, ha a megoldásfüggvény legalább 1-gyel kevesebb egymástól független állandót tartalmaz, mint ahányad rendű a DE.

Szinguláris:

Olyan megoldás, amely NEM kapható meg az általános megoldásból az állandók megfelelő választásával. (pl. szeparábilis DE esetén)

3. Cauchy-feladat

Az n-edrendű DE olyan megoldását keressük, amely kielégíti:

$$y(x_0) = y_0, y'(x_0) = y'_0, \dots, y^{(n-1)}(x_0) = y_0^{(n-1)}$$

kezdeti feltételt, ahol $x_0, y_0, y_0', \ldots, y_0^{(n-1)}$ adott számok. Egy DE megoldása során meg van adva megfelelő számú peremfeltétel (PF), amikkel az integrálás során feltűnő állandók értéke meghatározható. Annyi PF kell, ahányad rendű a DE.

4. Lipschitz-feltétel

Ha az f függvény teljesíti a Lipschitz-feltételt az adott tértartományon, akkor a megoldásgörbék nem metszik egymást (azaz létezik egyértelmű megoldás, egy ponton csak egy darab integrálgörbe halad át).

Definíció:

Az f függvény a D tartományon az y változóra nézve kielégíti a Lipschitz-feltételt, ha létezik M pozitív valós szám:

$$|f(x,y_2) - f(x,y_1)| \le M |y_2 - y_1| \quad \forall (x,y_1), (x,y_2) \in D$$

5. Picard-Lindelöf tétel

Ez egyben egzisztencia- és unicitástétel is. Legyen y'=f(x,y) explicit alakban adott DE, és $D=I_1\times I_2$ nyílt téglalap tartomány, ahol I_1,I_2 nyílt intervallumok és legyen $(x_0,y_0)\in D$, továbbá:

- \bullet f folytonos mindkét változójában D-n.
- \bullet f elégítse ki a Lipschitz-feltételt y változóra D-n.

Egyértelműen létezik $\varphi:(x_0-\varepsilon,x_0+\varepsilon)\to\mathbb{R}$ függvény melyre,

$$\varphi'(x) = f(x, \varphi(x))$$

$$\varphi'(x_0) = y_0$$

egyaránt teljesül, azaz a φ megoldás egyértelmű.

Megjegyzések:

- Ha f függvényről csak a folytonosságot feltételezzük: Peano-feltétel.
- Hasonlóan a Cauchy-feltételhez (ott I. feltétel ugyanaz, II. feltétel, hogy az f függvény y szerinti parciális deriváltja korlátos \forall D-beli pontban), a Picard-Lindelöf tétel is erősebb, szigorúbb tétel. Hiszen, a tételben elegendő, de nem szükséges feltételek vannak, ezáltal lehet, hogy nem teljesül mindkét feltétel, mégis van egyértelmű megoldás!

6. Iránymező

Az iránymező a differenciálegyenlet megoldásairól ad szemléletes képet. Az y'=f(x,y) DE megoldása geometriailag a következőképpen szemléltethető. Az f függvény értelmezési tartományának minden egyes (x,y) pontjához rendeljük hozzá a rajta átmenő, y'=f(x,y) iránytangensű (meredekségű) egyenesnek (megoldásgörbének) a pontot tartalmazó kicsiny szakaszát. E szakaszok összessége alkotja a differenciálegyenlet iránymezőjét; a szakaszokból elég sokat ábrázolva kapjuk a DE megoldásának geometriai képét.

Tehát sok-sok pontban berajzoljuk az érintők egy kicsiny darabját, ezek lesznek a képen is látható vonalelemek, amik összessége az iránymező.

Izoklina: Az a görbe, amelynek pontjaihoz azonos irányú, vagyis párhuzamos vonalelemek tartoznak.

Differenciálegyenletek II:

1. Szeparábilis és arra visszavezethető DE

Definíció:

Az olyan y' = f(x, y) elsőrendű DE-et, amely $y' = h(x) \cdot g(y)$ alakra hozható, szeparábilis (változóiban szétválasztható) differenciálegyenletnek nevezzük. Feltesszük, hogy h és g valamely, alkalmas I és J intervallumon folytonosak.

Megoldás:

$$\frac{dy}{dx} = y' = h(x) \cdot g(y)$$
$$\int \frac{1}{g(y)} dy = \int h(x) dx$$

Szinguláris megoldás: g(y) = 0, amivel osztani kell

Nem szinguláris megoldás: $g(y) \neq 0$

Szeparábilis differenciálegyenletre visszavezethetőek más DE-ek is u helyettesítéssel:

$$y' = f(ax + by + c)$$

$$u := ax + by + c$$

$$u' = \frac{du}{dx} = a + by' = a + b \cdot f(u)$$

$$y' = f(1, \frac{y}{x})$$

$$u = \frac{y}{x}$$

illetve

$$u' = \frac{du}{dx} = \frac{y'x - y \cdot 1}{x^2} = \frac{y'}{x} - \frac{y}{x^2} = \frac{y' - \frac{y}{x}}{x}$$

Továbbá, fontos még az is, hogy az elsőrendű, lineáris differenciálegyenleteknek a homogén része is szétválasztható DE-re vezethető vissza.

2. Bernoulli-féle DE

Definíció

Az $y' + p(x) \cdot y = q(x) \cdot y^n (n \neq 0, n \neq 1)$ alakú, elsőrendű, nemlineáris DE-et. Bernoulli-féle differenciálegyenletnek nevezzük, ahol $p, q : I \subset \mathbb{R} \to \mathbb{R}$ folytonos függvények. **Megoldás helyettesítéssel:**

$$z(x) = z = y^{1-n}$$
 (eredeti DE)
 $z' = \frac{dz}{dx} = (1-n) \cdot y^{-n} \cdot y'$ (1)

Ahonnan az eredeti DE-et y^n -nel leosztva, a (1) egyenletet pedig 1-n-nel leosztva és felhasználva a helyettesítést, azt kapjuk, hogy:

$$z' + (1-n)p(x) \cdot z = (1-n)q(x)$$

Ami már egy lineáris DE z-re nézve, tehát megoldható homogén-inhomogén módon.

3. Riccati-féle DE

Definíció: Az $a(x)\cdot y'+b(x)\cdot y+c(x)\cdot y^2=r(x)$ alakú elsőrendű, nemlineáris DE-et Riccatiféle differenciálegyenletnek nevezzük, ahol $a,b,c,r:I\subset\mathbb{R}\to\mathbb{R}$ folytonos függvények.

Megoldás:

A Riccati-féle nemlineáris DE integrálással általában nem oldható meg. Akkor, és csak akkor tudjuk integrálással előállítani a megoldását, ha ismerjük egy partikuláris megoldását.

- Ha r(x) = 0, akkor Bernoulli-féle DE-et kapunk
- Ha c(x) = 0, akkor a DE lineáris

 $y(x) = \frac{1}{z(x)} + y_p(x)$ alakban bevezetett új függvény segítségével z-re már lineáris DE-et kapunk, vagy $y(x) = z(x) + y_p(x)$ típusú helyettesítéssel Bernoulli-típusúra redukálható a Riccati-féle

Megoldás helyettesítéssel:

 $y' = x + z \rightarrow y' = 1 + z'$, amit visszaírva a DE-be, leegyszerűsödik Bernoulli-ra.

4. Egzakt DE

Definíció:

Egy P(x,y)dx + Q(x,y)dy = 0 lakú DE-et, melyben $P,Q:D \subset \mathbb{R}^2 \to \mathbb{R}$ folytonos függvények, egzakt DE-nek nevezzük, ha az alábbi két parciális derivált folytonos és egyenlőek:

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

Megoldás:

DE megoldása F(x,y) = C alakú (a skalárpotenciál kereséséhez hasonló). Létezik olyan F(x,y),

$$\frac{\partial F}{\partial x} = P$$
 és $\frac{\partial F}{\partial y} = Q$

Egzaktra visszavezethető: P(x,y)dx + Q(x,y)dy = 0 alakú DE általában nem egzakt (vagyis a bal oldala nem teljes differenciál), azaz:

$$\frac{\partial P(x,y)}{\partial y} \neq \frac{\partial Q(x,y)}{\partial x}$$

Ilyen esetben kísérletet tehetünk egy olyan $M(x,y) \neq 0$ függvény megkeresésére, amellyel a differenciálegyenletet beszorozva az új DE már egzakt lesz:

$$\ln|M(x)| = \int \frac{P_y' - Q_x'}{Q} dx$$

$$\ln|M(y)| = \int \frac{Q'_x - P'_y}{P} dy$$

Azt a multiplikátort kell használni, ami csak az egyik változótól függ (amit ki lehet integrálni).

5. Lineáris állandó együtthatós DE

Lineáris: az ismeretlen függvény és annak deriváltjai csak első hatványon szerepelnek és ezek szorzatai sem fordulnak elő az egyenletben. (Ellenkező esetben nemlineáris.)

Definíció: Az $a_n \cdot y^{(n)} + a_{n-1} + \ldots + a_1 \cdot y' + a_0 \cdot y = 0$ DE-et, ahol $a_i \in \mathbb{R}, i \in \{0, 1, \ldots n\}$ n-edrendű $(a_n \neq 0)$, állandó (konstans) együtthatós, lineáris differenciálegyenletnek hívjuk.

Egy n-edrendű, állandó együtthatós lineáris differenciálegyenlet megoldásai n-dimenziós, valós vektorteret alkotnak a $\mathbb R$ fölött. Ezért elegendő n darab lineárisan független megoldást megtalálni. Ezeket elemi megoldásoknak, más szóval alaprendszernek nevezzük.

6. Lineárisan független függvényrendszer

Legyen $y_1, y_2, \dots, y_n : (a, b) \to \mathbb{R}; (a, b)$ -n n-1-szer folytonosan differenciálható függvénynrendszer. Ez az n db függvény lineárisan független ha:

$$c_1y_1(x) + c_2y_2(x) + \ldots + c_ny_n(x) \equiv 0$$

azonosság csakis a $c_1=c_2=\ldots=c_n=0$ esetben áll fenn. Ellenkező esetben a függvények lineárisan függők.

7. Wronski-determináns

A c_i konstans értékek miatt végtelen sok megoldása (alaprendszere) létezne egy n-edrendű differenciálegyenletnek:

$$y(x) = \sum c_i y_i = c_1 y_1 + c_2 y_2 + \ldots + c_n y_n$$

A Wronski-determináns segítségével is meg tudjuk állapítani, hogy egy függvényrendszer lineárisan független-e. Az n db valós függvényt lineárisan függetlennek mondjuk, ha az ún. Wronski-determináns nem nulla, és lineárisan függőnek, ha nulla.

$$\det \underline{\underline{W}} = \begin{vmatrix} y_1 & y_2 & y_3 & \dots & y_n \\ y'_1 & y'_2 & y'_3 & \dots & y'_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ y_1^{n-1} & y_2^{n-1} & y_3^{n-1} & \dots & y_n^{n-1} \end{vmatrix}$$

Tehát ha adott a DE egy alaprendszere, akkor ezzel meg tudjuk határozni, hogy az alaprendszer és annak tetszőleges lineáris kombinációja megoldása-e a differenciálegyenletnek. (Visszafelé nem igaz, lehet, hogy a függvényrendszer lineárisan független, de $det\ W=0$)

8. Differenciálegyenlet-rendszer

A következő alakban adott egy elsőrendű differenciálegyenlet-rendszer:

$$\begin{cases} y_1' = f_1(x, y_1, y_2, \dots, y_n) \\ y_2' = f_2(x, y_1, y_2, \dots, y_n) \\ \vdots \\ y_n' = f_n(x, y_1, y_2, \dots, y_n) \end{cases}$$

Ahol y_1, y_2, \dots, y_n a keresendő függvények és x a független változó. Általános alak:

$$\underline{\dot{x}} = \underline{\underline{\underline{A}}} \cdot \underline{x}$$

$$\underline{x} = \begin{bmatrix} x(t) \\ y(t) \\ \vdots \end{bmatrix}_{n}$$

Ahol \underline{A} az együtthatómátrix és most t a független változó.

Egy ilven DE-rendszer megfeleltethető egy állandó együtthatós n-edrendű, lineáris DE-nek. Az alaphalmaz vagy ún. hipermátrix:

$$\underline{\underline{X}}(t) = [e^{\lambda_1 t} \cdot \underline{s}_1, e^{\lambda_2 t} \cdot \underline{s}_2, \dots e^{\lambda_n t} \cdot \underline{s}_n]_{1 \times n}$$

Ahol λ_n : <u>A</u> sajátértékei

És \underline{s}_n : \underline{A} sajátvektorai

$$\underline{x}(t) = \begin{bmatrix} C_1 \cdot e^t + C_2 \cdot e^{5t} \\ -C_1 \cdot e^t + 3C_2 \cdot e^{5t} \end{bmatrix}$$

Ha a sajátértékek $\lambda_1=5$ és $\lambda_2=1$ És a sajátvektorok $\underline{s}_1=\begin{bmatrix}1\\-1\end{bmatrix}$ és $\underline{s}_2=\begin{bmatrix}1\\3\end{bmatrix}$

Komplex sajátértékek esetén:

$$\underline{x}(t) = C_1 \cdot [e^{\lambda t} \cos(\beta t) \cdot \underline{v}_1 - e^{\lambda t} \cdot \sin(\beta t) \cdot \underline{v}_2] + C_2 \cdot [e^{\lambda t} \cos(\beta t) \cdot \underline{v}_2 - e^{\lambda t} \cdot \sin(\beta t) \cdot \underline{v}_1]$$