School of Computing and Information Systems The University of Melbourne

COMP90049 Knowledge Technologies (Semester 2, 2018)

Workshop exercises: Week 9

1. For the following dataset:

apple	ibm	lemon	sun	CLASS			
Training Instances							
4	0	1	1	FRUIT			
5	0	5	2	FRUIT			
2	5	0	0	COMPUTER			
1	2	1	7	COMPUTER			
Test Instances							
2	0	3	1	?			
1	0	1	0	?			

- (a) Using the Euclidean distance measure, classify the test instances using the 1-NN method.
- (b) Using the **cosine similarity** measure, classify the test instances using the 3-NN method. Extend this to the **weighted** 3-NN method.

2. For the following dataset:

$_apple$	ibm	lemon	sun	CLASS			
Training Instances							
Y	N	Y	Y	FRUIT			
Y	N	Y	Y	FRUIT			
Y	Y	N	N	COMPUTER			
Y	Y	Y	Y	COMPUTER			
Test Instances							
Y	N	Y	Y	?			
Y	N	Y	N	?			

Use the method of **Naive Bayes** classification, as shown in lectures, to classify the test instances. Revise some of the assumptions that are built into the model.

- (a) [EXTENSION] Revise the **multinomial distribution**. Naive Bayes can be extended to account for integer frequencies in the data (like in Question 1) using this model. Read up on so-called **multinomial Naive Bayes**.
- 3. Revise Support Vector Machines, paying particular attention to the terms "linear separability" and "maximum margin".
 - (a) What are "soft margins", and when are they desirable?
 - (b) Why are we interested in "kernel functions" here?
 - (c) Why are SVMs "binary classifiers", and how can we extend them to "multi-class classifiers"?