BT ÔN TẬP KTTX1

Phần I. Mỗi câu hỏi học sinh chon một trong bốn phương án A, B, C, D.

- **CÂU 1.** Trong các khẳng định sau, khẳng định nào là **sai**?
 - $(\mathbf{A})\sin(\pi-\alpha)=\sin\alpha.$

- $\mathbf{B})\cos(\pi \alpha) = \cos\alpha.$
- $(\mathbf{C})\sin(\pi+\alpha) = -\sin\alpha.$
- $(\mathbf{D})\cos(\pi+\alpha)=-\cos\alpha.$

CÂU 2. Cho góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo $\frac{2\pi}{3}$. Cho góc lượng giác (O'u', O'v') có tia đầu $O'u' \equiv Ou$, tia cuối $O'v' \equiv Ov$. Viết công thức biểu thị số đo góc lượng giác (O'u', O'v').

CÂU 3. Rút gọn biểu thức $M = \cos(a+b)\cos(a-b) - \sin(a+b)\sin(a-b)$, ta được

- **(B)** $M = 1 2\cos^2 a$. **(C)** $M = 1 2\sin^2 a$. **(D)** $M = \cos 4a$.

CÂU 4. Tập nghiệm của phương trình $3\cos\left(3x-\frac{\pi}{3}\right)=0$ là

- \bigcirc $\left\{\frac{5\pi}{18} + \frac{k2\pi}{2}, k \in \mathbb{Z}\right\}.$

CÂU 5. Phương trình $\sqrt{3}\sin x + \cos x = 1$ tương đương với phương trình nào sau đây?

 $(\mathbf{A}) \cos \left(x + \frac{\pi}{6}\right) = \frac{1}{2}.$

 $\mathbf{B}\sin\left(x+\frac{\pi}{2}\right)=\frac{1}{2}.$

 $\mathbf{C}\cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}.$

 $(\mathbf{D})\sin\left(x-\frac{\pi}{6}\right) = \frac{1}{2}.$

CÂU 6. Tìm điều kiện xác định của hàm số $y = \cot x$.

(B) $x \neq k2\pi, k \in \mathbb{Z}$.

 $(\mathbf{c}) x \neq k\pi, k \in \mathbb{Z}.$

CÂU 7. Hàm số nào sau đây đồng biến trên khoảng $(0; \pi)$?

- \bigcirc $y = x^2$.
- \bigcirc $y = \cos x$.
- $(\mathbf{C}) y = \sin x.$
- (**D**) $y = \tan x$.

CÂU 8. Cho góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo $-\frac{5\pi}{6}$. Cho góc lượng giác (O'u', O'v') có tia đầu $O'u' \equiv Ou$, tia cuối $O'v' \equiv Ov$. Viết công thức biểu thị số đo góc lượng giác (O'u', O'v').

- (A) $(O'u', Ov') = \frac{\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$ (B) $(O'u', Ov') = \frac{4\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$
- $\mathbf{C} (O'u', Ov') = -\frac{\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$ $\mathbf{D} (O'u', Ov') = -\frac{5\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$

CÂU 9. Hình bên dưới là đồ thị của hàm số nào dưới đây?

ĐIỂM:

"It's not how much time you have, it's how you use it."

QUICK NOTE

٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
																																	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	٠	•	٠	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠

 	• • • • • • • • • • • • • • • • • • • •

							•																								
							•																								
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠

\sim			
All	IICK	NO	

Κ	м				
	IXI	OI			
\mathbf{r}					

 $\mathbf{A} y = -3\cos x.$

(B) $y = -2 - \cos x$. **(C)** $y = 2 + |\cos x|$. **(D)** $y = \cos x - 4$.

CÂU 10. Điều kiện xác định của hàm số $y = \cot x$ là

(A) $x \neq \frac{\pi}{8} + k\frac{\pi}{2}$. **(B)** $x \neq \frac{\pi}{2} + k\pi$. **(C)** $x \neq k\pi$.

CÂU 11. Cho hàm số $y = \sin^2 x - \sin x + 2$. Gọi M, N lần lượt là GTLN và GTNN của hàm số đã cho. Khi đó M+N bằng

(A) $k = -\frac{1}{2}$.

(D) 6.

CÂU 12. Trong các hàm số sau đây, hàm số nào là hàm tuần hoàn?

(A) $y = \tan x + x$. **(B)** $y = x^2 + 1$.

(**c**) $y = \cot x$.

CÂU 13. Góc 18° có số đo bằng rađian là bao nhiêu?

CÂU 14. Biểu diễn các góc lượng giác $\alpha=-\frac{5\pi}{6},\ \beta=\frac{\pi}{3},\ \gamma=\frac{25\pi}{3},\ \delta=\frac{17\pi}{6}$ trên đường tròn lượng giác. Các góc nào có điểm biểu diễn trùng nhau?

(A) β và γ .

(B) α , β , γ .

(C) β , γ , δ .

(**D**) α và β .

CÂU 15. Cho góc lượng giác (Ou,Ov) có số đo là $\frac{3\pi}{4}$, góc lượng giác (Ou,Ow) có số đo là $\frac{5\pi}{4}$. Số đo của góc lượng giác (Ov,Ow) là

CÂU 16. Cho góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo 45° . Cho góc lượng giác (O'u', O'v') có tia đầu $O'u' \equiv Ou$, tia cuối $O'v' \equiv Ov$. Công thức biểu thị số đo góc lượng giác (O'u', O'v') là

(A) $(O'u', Ov') = -45^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$

(B) $(O'u', Ov') = 45^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$

(**c**) $(O'u', Ov') = 135^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$

(**D**) $(O'u', Ov') = -135^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$

CÂU 17. Hàm số $y = 3 - 5 \sin x$ có giá trị lớn nhất bằng

CÂU 18. Rút gọn biểu thức $M=\sin(\pi-a)+\tan\left(\frac{\pi}{2}-a\right)+\sin(-a)+\cot(\pi+a)$ được

 $(\mathbf{A}) M = 2\cos a.$

(B) $M=2\tan a$.

(**C**) $M = 2 \cot a$.

(D) M = 0.

CÂU 19. Đồ thị hàm số $y = \cos x$ đi qua điểm nào sau đây?

(A) $P(-1;\pi)$.

(B) $M(\pi;1)$.

(**c**) $Q(3\pi;1)$.

(**D**) N(0;1).

CÂU 20. Tập xác định của hàm số $y = 2017 \tan^{2018} \left(2x + \frac{\pi}{2}\right)$ là

 $(\mathbf{B}) \, \mathscr{D} = \mathbb{R} \setminus \Big\{ \frac{\pi}{2} + k \frac{\pi}{2}, k \in \mathbb{Z} \Big\}.$

 \bigcirc $\mathscr{D} = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k \frac{\pi}{2}, k \in \mathbb{Z} \right\}.$

CÂU 21. Tìm khẳng đinh đúng (với điều kiện các hệ thức đã xác đinh).

(A) $\cos(\pi - \alpha) = \cos \alpha$.

(B) $\cos(-\alpha) = \cos \alpha$.

 $(\mathbf{C})\sin(\pi-\alpha)=-\sin\alpha.$

 $(\mathbf{D})\sin(-\alpha) = \sin\alpha.$

Phần II. Trong mỗi ý a), b), c) và d) ở mỗi câu, học sinh chọn đúng hoặc sai. **CÂU 22.** Cho phương trình lượng giác $\sin^2 2x + \cos^2 5x = 1$, vậy:

Mệnh đề	Ð	S
a) Phương trình đã cho tương đương với phương trình $\frac{1-\cos 4x}{2}+\frac{1+\cos 10x}{2}=1.$		
b) Nghiệm dương nhỏ nhất của phương trình là: $x = \frac{\pi}{7}$.		

QUICK NOTE

Mệnh đề	Ð	S
c) Nghiệm âm lớn nhất của phương trình nhỏ hơn $-\frac{\pi}{3}$.		
d) Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất bằng 0.		

CÂU 23. Cho phương trình lượng giác $(\sin x + \cos x)^2 = 2\cos^2 3x$, vậy:

Mệnh đề	Ð	S
a) Phương trình đã cho tương đương với phương trình $1+\sin 2x=3+\cos 6x.$		
b) Nghiệm dương nhỏ nhất của phương trình lớn hơn $\frac{\pi}{7}$.		
c) Nghiệm âm lớn nhất của phương trình là $x = -\frac{\pi}{8}$.		
d) Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất bằng 0.		

CÂU 24. Cho $\cos a = \frac{1}{3}$, $\cos b = \frac{1}{4}$. Khi đó:

Mệnh đề	Đ	S
a) $\sin^2 a = \frac{8}{9}$.		
b) $\sin^2 a > \sin^2 b$.		
c) $\sin^2 a + \sin^2 b > 1$.		
d) $\cos(a+b) \cdot \cos(a-b) = \frac{11}{14}$.		

CÂU 25. Cho phương trình lượng giác $\sin\left(3x + \frac{\pi}{3}\right) = \cos\left(2x - \frac{\pi}{4}\right)$, vậy:

Mệnh đề	Ð	\mathbf{S}
a) Phương trình có nghiệm là $x = \frac{\pi}{12} + \frac{k2\pi}{5}$ hoặc $x = -\frac{\pi}{12} +$		
$k2\pi, k \in \mathbb{Z}.$		
b) Trong khoảng $(-\pi,\pi)$ phương trình có 3 nghiệm.		
c) $x = -\frac{\pi}{12}$ là một nghiệm của phương trình thuộc khoảng $(-\pi, \pi)$.		
d) Tổng các nghiệm trong $(-\pi, \pi)$ bằng $\frac{\pi}{4}$.		

CÂU 26. Một đường tròn có bán kính 36 m. Khi đó:

Mệnh đề	Ð	\mathbf{S}
a) Cung tròn bán kính R có số đo α $(0 \le \alpha \le 2\pi)$, có số đo a° $(0 \le a \le 360^{\circ})$ và có độ dài là l thì: $l = R\alpha = \frac{a}{180} \cdot \pi R$.		
b) Độ dài cung tròn trên đường tròn có số đo $\frac{3\pi}{4}$ là 84,8 m.		
c) Độ dài cung tròn trên đường tròn có số đo 51° là $32,04\mathrm{m}$.		
d) Độ dài cung tròn trên đường tròn có số đo $\frac{1}{3}$ là 22 m.		

CÂU 27. Cho phương trình lượng giác $\sin^2 2x = \cos^2 \left(3x - \frac{\pi}{8}\right)$, vậy:

Mệnh đề	Ð	\mathbf{S}
a) Phương trình đã cho tương đương với phương trình $\cos\left(6x - \frac{\pi}{4}\right) = \cos(\pi + 4x)$.		
b) Trong khoảng $(-\pi,\pi)$ phương trình có 11 nghiệm.		
c) $x = \frac{37\pi}{40}$ là một nghiệm của phương trình thuộc khoảng $(-\pi, \pi)$.		

ng khoảng $(-\pi,\pi)$ phương trình có 11 nghiệm.		
$\frac{37\pi}{40}$ là một nghiệm của phương trình thuộc khoảng $(-\pi,\pi)$.		

• • • • • • • • • • • • • • • • • • •
QUICK NOTE
QUICK NOTE

Mệnh đề	Đ	S
d) Tổng các nghiệm trong $(-\pi,\pi)$ bằng $\frac{7\pi}{9}$.		

Phần IV. Câu hỏi tư luân.

CÂU 28. Giải phương trình:

a)
$$\sin\left(2x - \frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$$

b)
$$\sin\left(3x + \frac{\pi}{4}\right) = -\frac{1}{2};$$

a)
$$\sin\left(2x - \frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2};$$
 b) $\sin\left(3x + \frac{\pi}{4}\right) = -\frac{1}{2};$ c) $\cos\left(\frac{x}{2} + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2};$

d)
$$2\cos 3x + 5 = 3$$
;

e)
$$3 \tan x = -\sqrt{3}$$

d)
$$2\cos 3x + 5 = 3$$
; e) $3\tan x = -\sqrt{3}$; f) $\cot x - 3 = \sqrt{3}(1 - \cot x)$.

CÂU 29. Giải phương trình:

a)
$$\sin\left(2x + \frac{\pi}{4}\right) = \sin x$$
;

b)
$$\sin 2x = \cos 3x$$

a)
$$\sin\left(2x + \frac{\pi}{4}\right) = \sin x;$$
 b) $\sin 2x = \cos 3x;$ c) $\cos^2 2x = \cos^2\left(x + \frac{\pi}{6}\right).$

CÂU 30. Giải các phương trình sau

a)
$$\sin 2x - \cos x + 2\sin x = 1;$$

b)
$$2\sin^2 x - 5\sin x + 3 = 0$$
;

c)
$$\sqrt{3}\tan^2 x - 2\tan x + \sqrt{3} = 0$$
;

d)
$$2\cos^2 2x - 5\cos 2x + 2 = 0$$
;

e)
$$\sin^2 \frac{x}{2} + \sin \frac{x}{2} - 2 = 0$$
.

CÂU 31. Tìm tập xác định của các hàm số sau

a)
$$y = \frac{1 + \cos x}{\sin 2x}$$

a)
$$y = \frac{1 + \cos x}{\sin 2x}$$
. b) $y = \sqrt{\frac{1 + \cos x}{2 + \cos x}}$. c) $y = \frac{\cos x}{1 - \sin x}$.

$$c) y = \frac{\cos x}{1 - \sin x}$$

$$d) y = \frac{1}{\tan x}$$

d)
$$y = \frac{1}{\tan x}$$
. e) $y = \frac{\sqrt{1 - \sin x}}{2 \cos x - \sqrt{3}}$.

CÂU 32. Tìm tập giá trị của các hàm số sau:

a)
$$y = 2\sin\left(x + \frac{\pi}{4}\right) + 3;$$

b)
$$y = \sqrt{2 + \cos x} - 5$$
.

c)
$$y = 2\cos\left(x - \frac{\pi}{4}\right) - 7;$$

$$d) y = 3 - \sqrt{2 + \sin x}$$

CÂU 33. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = 2(\sin x + \cos x) + \sin 2x + 3$.

CÂU 34. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \sqrt{3}\sin x - \cos x + 5$.

BT ÔN TẬP KTTX1

Phần I. Mỗi câu hỏi học sinh chọn một trong bốn phương án A, B, C, D.

CÂU 1. Trong các khẳng định sau, khẳng định nào là **sai**?

$$(\mathbf{A})\sin(\pi - \alpha) = \sin \alpha.$$

$$\mathbf{B}\cos(\pi-\alpha)=\cos\alpha.$$

$$\mathbf{C}\sin(\pi+\alpha)=-\sin\alpha.$$

$$\mathbf{D}\cos(\pi+\alpha)=-\cos\alpha.$$

🗭 Lời giải.

Ta có $\cos(\pi - \alpha) = -\cos \alpha$ nên $\cos(\pi - \alpha) = \cos \alpha$ là khẳng định sai.

CÂU 2. Cho góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo $\frac{2\pi}{3}$. Cho góc lượng giác (O'u', O'v') có tia đầu $O'u' \equiv Ou$, tia cuối $O'v' \equiv Ov$. Viết công thức biểu thị số đo góc lượng giác (O'u', O'v').

(A)
$$(O'u', Ov') = \frac{\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$$

B
$$(O'u', Ov') = \frac{4\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$$

$$(C)(O'u',Ov') = \frac{2\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$$

$$(\mathbf{D}) \left(O'u', Ov' \right) = -\frac{\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$$

🗭 Lời giải.

Ta có
$$(O'u', Ov') = (Ou, Ov) + k2\pi = \frac{2\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$$

CÂU 3. Rút gọn biểu thức $M = \cos(a+b)\cos(a-b) - \sin(a+b)\sin(a-b)$, ta được

$$(\mathbf{A}) M = \sin 4a.$$

(B)
$$M = 1 - 2\cos^2 a$$
.

$$(\mathbf{c}) M = 1 - 2 \sin^2 a.$$

$$(\mathbf{D}) M = \cos 4a.$$

🗭 Lời giải.

Ta có

$$M = \cos(a+b)\cos(a-b) - \sin(a+b)\sin(a-b)$$

$$= \frac{1}{2}(\cos 2a + \cos 2b) + \frac{1}{2}(\cos 2a - \cos 2b)$$

$$= \cos 2a$$

$$= 1 - 2\sin^2 a.$$

Chọn đáp án \bigcirc

CÂU 4. Tập nghiệm của phương trình $3\cos\left(3x - \frac{\pi}{3}\right) = 0$ là

$$\bigcirc \left\{ \frac{5\pi}{18} + \frac{k2\pi}{3}, k \in \mathbb{Z} \right\}.$$

🗭 Lời giải.

 $3\cos\left(3x-\frac{\pi}{3}\right)=0 \Leftrightarrow 3x-\frac{\pi}{3}=\frac{\pi}{2}+k\pi \Leftrightarrow x=\frac{5\pi}{18}+\frac{k\pi}{3}, k\in\mathbb{Z}. \text{ Tập nghiệm phương trình } S=\left\{\frac{5\pi}{18}+\frac{k\pi}{3}, k\in\mathbb{Z}\right\}.$

Chon đáp án (D).....

CÂU 5. Phương trình $\sqrt{3}\sin x + \cos x = 1$ tương đương với phương trình nào sau đây?

$$(A) \cos\left(x + \frac{\pi}{6}\right) = \frac{1}{2}.$$

$$\mathbf{c}\cos\left(x - \frac{\pi}{3}\right) = \frac{1}{2}.$$

🗭 Lời giải.

Chia hai vế của phương trình cho 2, ta được

$$\sqrt{3}\sin x + \cos x = 1 \quad \Leftrightarrow \frac{\sqrt{3}}{2}\sin x + \frac{1}{2}\cos x = \frac{1}{2}$$

$$\Leftrightarrow \sin\frac{\pi}{3}\sin x + \cos\frac{\pi}{3}\cos x = \frac{1}{2}$$

$$\Leftrightarrow \cos\left(x - \frac{\pi}{3}\right) = \frac{1}{2}.$$

CÂU 6. Tìm điều kiện xác định của hàm số $y = \cot x$.

🗭 Lời giải.

Hàm số $y = \cot x$ xác định khi và chỉ khi $\sin x \neq 0 \Leftrightarrow x \neq k\pi, k \in \mathbb{Z}$.

Chọn đáp án C

CÂU 7. Hàm số nào sau đây đồng biến trên khoảng $(0; \pi)$?

$$(\mathbf{A}) y = x^2.$$

$$B) y = \cos x.$$

$$\bigcirc y = \sin x.$$

$$(\mathbf{D}) y = \tan x.$$

🗭 Lời giải.

Hàm số $y = x^2$ đồng biến khi $x > 0 \Rightarrow$ hàm số đồng biên trên khoảng $(0; \pi)$.

Chọn đáp án $\stackrel{\frown}{\mathsf{A}}$

CÂU 8. Cho góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo $-\frac{5\pi}{6}$. Cho góc lượng giác (O'u', O'v') có tia đầu $O'u' \equiv Ou$, tia cuối $O'v' \equiv Ov$. Viết công thức biểu thị số đo góc lượng giác (O'u', O'v').

$$(A) (O'u', Ov') = \frac{\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$$

B
$$(O'u', Ov') = \frac{4\pi}{3} + k2\pi \ (k \in \mathbb{Z}).$$

$$\bigcirc$$
 $(O'u', Ov') = -\frac{\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$

(D)
$$(O'u', Ov') = -\frac{5\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$$

🗭 Lời giải.

Ta có $(O'u', Ov') = (Ou, Ov) + k2\pi = -\frac{5\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$

Chọn đáp án $\boxed{\mathbb{D}}$

CÂU 9. Hình bên dưới là đồ thị của hàm số nào dưới đây?

$$(\mathbf{A}) y = -3\cos x.$$

$$\mathbf{B} y = -2 - \cos x.$$

(c)
$$y = 2 + |\cos x|$$
.

$$(\mathbf{D}) y = \cos x - 4.$$

🗭 Lời giải.

$$\bigcirc y(0) = -3 \Rightarrow \text{loại } y = \cos x - 4 \text{ và } y = 2 + |\cos x|.$$

$$\Theta$$
 $y(\pi) = 3 \Rightarrow \text{loai } y = -2 - \cos x.$

Chọn đáp án iga(A)....

CÂU 10. Điều kiện xác định của hàm số $y = \cot x$ là

$$\bigcirc x \neq k\pi.$$

🗭 Lời giải.

Hàm số xác định khi và chỉ khi $\sin x \neq 0 \Leftrightarrow x \neq k\pi, k \in \mathbb{Z}$.

Chọn đáp án \bigcirc

CÂU 11. Cho hàm số $y=\sin^2 x-\sin x+2$. Gọi M,N lần lượt là GTLN và GTNN của hàm số đã cho. Khi đó M+N bằng

(A)
$$k = -\frac{1}{2}$$
.

B
$$\frac{23}{4}$$
.

$$\bigcirc \frac{15}{4}$$
.

🗭 Lời giải.

Ta có $y = \sin^2 x - \sin x + 2 = \left(\sin x - \frac{1}{2}\right)^2 + \frac{7}{4}$.

 $\text{Vì } -1 \leq \sin x \leq 1, \, \forall x \in \mathbb{R} \text{ nên } -\frac{3}{2} \leq \sin x - \frac{1}{2} \leq \frac{1}{2}, \, \forall x \in \mathbb{R}.$

Suy ra $0 \le \left(\sin x - \frac{1}{2}\right)^2 \le \frac{9}{4}, \forall x \in \mathbb{R}.$

Suy ra
$$\frac{7}{4} \le \left(\sin x - \frac{1}{2}\right)^2 + \frac{7}{4} \le 4, \, \forall x \in \mathbb{R}.$$

Suy ra $\frac{7}{4} \le y \le 4, \ \forall x \in \mathbb{R}.$

Vậy
$$M + N = \frac{7}{4} + 4 = \frac{23}{4}$$

Chọn đáp án (B).....

CÂU 12. Trong các hàm số sau đây, hàm số nào là hàm tuần hoàn?

$$(A) y = \tan x + x.$$

B
$$y = x^2 + 1$$
.

$$\bigcirc y = \cot x.$$

🗭 Lời giải.

Hàm số $y = \cot x$ là hàm số tuần hoàn với chu kỳ $T = \pi$.

Chọn đáp án (C).....

CÂU 13. Góc 18° có số đo bằng rađian là bao nhiêu?

$$\mathbf{A}$$
 π .

B
$$\frac{\pi}{360}$$
.

$$\bigcirc \frac{\pi}{10}$$
.

$$\bigcirc \frac{\pi}{18}.$$

🗭 Lời giải.

Ta có
$$18^{\circ} = \frac{\pi}{10}$$
 rad.

CÂU 14. Biểu diễn các góc lượng giác $\alpha = -\frac{5\pi}{6}$, $\beta = \frac{\pi}{3}$, $\gamma = \frac{25\pi}{3}$, $\delta = \frac{17\pi}{6}$ trên đường tròn lượng giác. Các góc nào có điểm biểu diễn trùng nhau?

$$(\mathbf{A}) \beta \text{ và } \gamma.$$

$$(\mathbf{B}) \alpha, \beta, \gamma.$$

$$(\mathbf{c}) \beta, \gamma, \delta.$$

$$\bigcirc$$
 α và β .

🗭 Lời giải.

Ta có
$$\beta + 8\pi = \frac{\pi}{3} + 8\pi = \frac{25\pi}{3} = \gamma$$
.

Do đó, β và γ có điểm biểu diễn trùng nhau trên đường tròn lượng giác.

CÂU 15. Cho góc lượng giác (Ou, Ov) có số đo là $\frac{3\pi}{4}$, góc lượng giác (Ou, Ow) có số đo là $\frac{5\pi}{4}$. Số đo của góc lượng giác (Ov, Ow) là

$$(Ov, Ow) = \frac{\pi}{2} + k2\pi \ (k \in \mathbb{Z}).$$

$$(Ov, Ow) = 2\pi + k2\pi \ (k \in \mathbb{Z}).$$

$$\mathbf{C}(Ov, Ow) = -\frac{\pi}{2} + k2\pi \ (k \in \mathbb{Z}).$$

$$(Ov, Ow) = -\frac{\pi}{6} + k2\pi \ (k \in \mathbb{Z}).$$

🗭 Lời giải.

Theo hệ thức Chasles, ta có

$$(Ov, Ow) = (Ou, Ow) - (Ou, Ov) + k2\pi$$
$$= \frac{5\pi}{4} - \frac{3\pi}{4} + k2\pi$$
$$= \frac{\pi}{2} + k2\pi \ (k \in \mathbb{Z}).$$

CÂU 16. Cho góc lượng giác gốc O có tia đầu Ou, tia cuối Ov và có số đo 45° . Cho góc lượng giác (O'u', O'v') có tia đầu $O'u' \equiv Ou$, tia cuối $O'v' \equiv Ov$. Công thức biểu thị số đo góc lượng giác (O'u', O'v') là

(A)
$$(O'u', Ov') = -45^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$$

(B)
$$(O'u', Ov') = 45^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$$

$$\bigcirc$$
 $(O'u', Ov') = 135^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$

$$(\mathbf{D}) (O'u', Ov') = -135^{\circ} + k360^{\circ} (k \in \mathbb{Z}).$$

🗭 Lời giải.

Ta có $(O'u', Ov') = (Ou, Ov) + k360^{\circ} = 45^{\circ} + k360^{\circ} \ (k \in \mathbb{Z}).$

Chọn đáp án (B).....

CÂU 17. Hàm số $y = 3 - 5 \sin x$ có giá trị lớn nhất bằng

$$\bigcirc$$
 4.

🗭 Lời giải.

Ta có

$$-1 \le \sin x \le 1 \Leftrightarrow 5 \ge -5\sin x \ge -5 \Leftrightarrow 8 \ge 3 - 5\sin x \ge -2 \Rightarrow -2 \le y \le 8.$$

Suy ra giá trị lớn nhất của hàm số là 8, đạt được khi $x=\frac{\pi}{2}+k2\pi, k\in\mathbb{Z}.$

Chọn dap an \bigcirc

CÂU 18. Rút gọn biểu thức $M=\sin(\pi-a)+\tan\left(\frac{\pi}{2}-a\right)+\sin(-a)+\cot(\pi+a)$ được

$$(A) M = 2 \cos a.$$

$$\mathbf{B}) M = 2 \tan a.$$

$$\bigcirc M = 2 \cot a.$$

🗭 Lời giải.

Ta có $M = \sin a + \cot a - \sin a + \cot a = 2 \cot a$.

Chọn đáp án \bigcirc

CÂU 19. Đồ thị hàm số $y = \cos x$ đi qua điểm nào sau đây?

A
$$P(-1;\pi)$$
.

$$(\mathbf{B}) M(\pi; 1).$$

©
$$Q(3\pi;1)$$
.

$$(\mathbf{D}) N(0;1).$$

🗭 Lời giải.

Điểm N(0;1) thuộc đồ thị hàm số.

Chọn đáp án \bigcirc

CÂU 20. Tập xác định của hàm số $y=2017\tan^{2018}\left(2x+\frac{\pi}{3}\right)$ là

🗭 Lời giải.

Hàm số xác định khi $2x + \frac{\pi}{3} \neq \frac{\pi}{2} + k\pi \Leftrightarrow x \neq \frac{\pi}{12} + k\frac{\pi}{2}, k \in \mathbb{Z}.$

Chọn đáp án old A.....

CÂU 21. Tìm khẳng định đúng (với điều kiện các hệ thức đã xác định).

$$(\mathbf{A})\cos\left(\pi - \alpha\right) = \cos\alpha.$$

$$\mathbf{c}\sin\left(\pi-\alpha\right)=-\sin\alpha.$$

$$\mathbf{D}\sin\left(-\alpha\right) = \sin\alpha.$$

🗭 Lời giải.

Ta có

$$\Theta$$
 $\sin(-\alpha) = -\sin\alpha$.

$$\Theta$$
 $\cos(\pi - \alpha) = -\cos\alpha$.

$$\Theta$$
 $\cos(-\alpha) = \cos \alpha$.

$$\Theta$$
 sin $(\pi - \alpha) = \sin \alpha$.

Chọn đáp án B......

Phần II. Trong mỗi ý a), b), c) và d) ở mỗi câu, học sinh chọn đúng hoặc sai.

CÂU 22. Cho phương trình lượng giác $\sin^2 2x + \cos^2 5x = 1$, vậy:

Mệnh đề	Ð	S
a) Phương trình đã cho tương đương với phương trình $\frac{1-\cos 4x}{2} + \frac{1+\cos 10x}{2} = 1$.	X	
b) Nghiệm dương nhỏ nhất của phương trình là: $x = \frac{\pi}{7}$.	X	
c) Nghiệm âm lớn nhất của phương trình nhỏ hơn $-\frac{\pi}{3}$.		X
d) Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất bằng 0.	X	

🗭 Lời giải.

a) D Phương trình tương đương với

$$\frac{1 - \cos 4x}{2} + \frac{1 + \cos 10x}{2} = 1.$$

b) D Phương trình tương đương với

$$\frac{1-\cos 4x}{2} + \frac{1+\cos 10x}{2} = 1 \Leftrightarrow \cos 10x = \cos 4x \Leftrightarrow \begin{bmatrix} 10x = 4x + k2\pi \\ 10x = -4x + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{k\pi}{3} \\ x = \frac{k\pi}{7} \end{bmatrix}$$

Vậy nghiệm dương nhỏ nhất của phương trình là $x = \frac{\pi}{7}$.

- c) S Nghiệm âm lớn nhất của phương trình là $x = -\frac{\pi}{7}$.
- d) $\textcircled{\mathbf{D}}$ Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất là $-\frac{\pi}{7}+\frac{\pi}{7}=0.$

Chọn đáp án a đúng b đúng c sai d đúng

CÂU 23. Cho phương trình lượng giác $(\sin x + \cos x)^2 = 2\cos^2 3x$, vậy:

Mệnh đề	Ð	S
a) Phương trình đã cho tương đương với phương trình $1 + \sin 2x = 3 + \cos 6x$.		X
b) Nghiệm dương nhỏ nhất của phương trình lớn hơn $\frac{\pi}{7}$.		X
c) Nghiệm âm lớn nhất của phương trình là $x = -\frac{\pi}{8}$.	X	
d) Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất bằng 0.		X

🗭 Lời giải.

- a) S Ta có $(\sin x + \cos x)^2 = 2\cos^2 3x \Leftrightarrow 1 + 2\sin x \cdot \cos x = 1 + \cos 6x \Leftrightarrow 1 + \sin 2x = 1 + \cos 6x.$
- b) S Ta có

$$(\sin x + \cos x)^2 = 2\cos^2 3x \Leftrightarrow 1 + 2\sin x \cdot \cos x = 1 + \cos 6x$$

$$\Leftrightarrow 1 + \sin 2x = 1 + \cos 6x \Leftrightarrow \cos 6x = \sin 2x = \cos\left(\frac{\pi}{2} - 2x\right)$$

$$\Leftrightarrow \begin{bmatrix} 6x = \frac{\pi}{2} - 2x + k2\pi \\ 6x = -\frac{\pi}{2} + 2x + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{16} + \frac{k\pi}{4} \\ x = -\frac{\pi}{8} + \frac{k\pi}{2} \end{bmatrix} (k \in \mathbb{Z}).$$

Vậy nghiệm dương nhỏ nhất của phương trình lớn hơn $\frac{\pi}{16}$

- c) D Nghiệm âm lớn nhất của phương trình là $x = -\frac{\pi}{8}$
- d) S Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất bằng $\frac{\pi}{16} \frac{\pi}{8} = -\frac{\pi}{16}$

Chọn đáp án a sai b sai c đúng d sai

CÂU 24. Cho $\cos a = \frac{1}{3}$, $\cos b = \frac{1}{4}$. Khi đó:

Mệnh đề	Đ	S
a) $\sin^2 a = \frac{8}{9}$.	X	
b) $\sin^2 a > \sin^2 b$.		X

Mệnh đề	Ð	S
c) $\sin^2 a + \sin^2 b > 1$.	X	
d) $\cos(a+b) \cdot \cos(a-b) = \frac{11}{14}$.		X

🗭 Lời giải.

- \bullet Ta có $\sin^2 a = 1 \cos^2 a = 1 \frac{1}{9} = \frac{8}{9}$, $\sin^2 b = 1 \cos^2 b = 1 \frac{1}{16} = \frac{15}{16}$.
- $\mbox{\Large \Theta}$ So sánh: $\frac{8}{9}=\frac{128}{144}$ và $\frac{15}{16}=\frac{135}{144}\Rightarrow \sin^2 a < \sin^2 b$ nên b
) Sai.
- $\Theta \sin^2 a + \sin^2 b = \frac{8}{9} + \frac{15}{16} = \frac{128}{144} + \frac{135}{144} = \frac{263}{144} > 1$ nên c) Đúng.

0

 $\cos(a+b)\cdot\cos(a-b) = (\cos a\cos b - \sin a\sin b)(\cos a\cos b + \sin a\sin b) = \cos^2 a\cos^2 b - \sin^2 a\sin^2 b$

$$= \left(\frac{1}{3}\right)^2 \cdot \left(\frac{1}{4}\right)^2 - \frac{8}{9} \cdot \frac{15}{16} = \frac{1}{9} \cdot \frac{1}{16} - \frac{8}{9} \cdot \frac{15}{16} = \frac{1}{144} - \frac{120}{144} = -\frac{119}{144}.$$

Khác $\frac{11}{14}$ nên d) Sai.

Chọn đáp án a đúng b sai c đúng d sai

CÂU 25. Cho phương trình lượng giác $\sin\left(3x + \frac{\pi}{3}\right) = \cos\left(2x - \frac{\pi}{4}\right)$, vậy:

Mệnh đề	Ð	S
a) Phương trình có nghiệm là $x = \frac{\pi}{12} + \frac{k2\pi}{5}$ hoặc $x = -\frac{\pi}{12} + k2\pi$, $k \in \mathbb{Z}$.	X	
b) Trong khoảng $(-\pi,\pi)$ phương trình có 3 nghiệm.		X
c) $x = -\frac{\pi}{12}$ là một nghiệm của phương trình thuộc khoảng $(-\pi, \pi)$.	X	
d) Tổng các nghiệm trong $(-\pi,\pi)$ bằng $\frac{\pi}{4}$.		X

🗭 Lời giải.

❷ Giải phương trình:

$$\sin\left(3x + \frac{\pi}{3}\right) = \sin\left(\frac{3\pi}{4} - 2x\right)$$

$$\Leftrightarrow \begin{cases} 3x + \frac{\pi}{3} = \frac{3\pi}{4} - 2x + k2\pi \\ \text{hoặc} \\ 3x + \frac{\pi}{3} = \pi - \left(\frac{3\pi}{4} - 2x\right) + k2\pi \end{cases}$$

Giải ra được:

$$x = \frac{\pi}{12} + \frac{k2\pi}{5}$$
 hoặc $x = -\frac{\pi}{12} + k2\pi$, $k \in \mathbb{Z}$.

Vậy a) Đúng.

- $oldsymbol{\Theta}$ Với k=-2,-1,0,1,2, kiểm tra các nghiệm trong khoảng $(-\pi,\pi)$, được tổng cộng 5 nghiệm nên b) Sai.
- $oldsymbol{\Theta}$ Trong đó có nghiệm $x=-\frac{\pi}{12}$ thuộc $(-\pi,\pi)$ nên c) Đúng.
- $\mbox{\Large \varpi}$ Tổng các nghiệm trong $(-\pi,\pi)$ tính được bằng $\frac{\pi}{3}$ nên khác $\frac{\pi}{4}$ nên d) Sai.

Chọn đáp án a đúng b sai c đúng d sai

CÂU 26. Một đường tròn có bán kính 36 m. Khi đó:

Mệnh đề	Ð	S
a) Cung tròn bán kính R có số đo α $(0 \le \alpha \le 2\pi)$, có số đo a° $(0 \le a \le 360^{\circ})$ và có độ dài là l thì: $l = R\alpha = \frac{a}{180} \cdot \pi R$.		X
b) Độ dài cung tròn trên đường tròn có số đo $\frac{3\pi}{4}$ là 84,8 m.	X	
c) Độ dài cung tròn trên đường tròn có số đo 51° là $32,04\mathrm{m}$.	X	
d) Độ dài cung tròn trên đường tròn có số đo $\frac{1}{3}$ là $22 \mathrm{m}$.		X

🗭 Lời giải.

 $m{\Theta}$ Công thức tính độ dài cung tròn: $l=R\alpha=\frac{\pi a}{180}\cdot R$ (với a° là số đo góc).

a)
$$l = 36 \cdot \frac{3\pi}{4} = 27\pi \approx 84, 8 \,\mathrm{m} \to \text{Dúng}.$$

b)
$$l = \frac{\pi \cdot 51}{180} \cdot 36 = \frac{51\pi}{5} \approx 32,04 \,\mathrm{m} \to \text{Dúng}.$$

c) $l = 36 \cdot \frac{1}{3} = 12 \,\mathrm{m} \rightarrow \mathrm{Sai}$ (vì kết quả không khớp với $22 \,\mathrm{m}$).

Chọn đáp án a sai b đúng c đúng d sai

CÂU 27. Cho phương trình lượng giác $\sin^2 2x = \cos^2 \left(3x - \frac{\pi}{8}\right)$, vậy:

Mệnh đề	Ð	S
a) Phương trình đã cho tương đương với phương trình $\cos\left(6x - \frac{\pi}{4}\right) = \cos(\pi + 4x)$.	X	
b) Trong khoảng $(-\pi,\pi)$ phương trình có 11 nghiệm.	X	
c) $x = \frac{37\pi}{40}$ là một nghiệm của phương trình thuộc khoảng $(-\pi, \pi)$.	X	
d) Tổng các nghiệm trong $(-\pi, \pi)$ bằng $\frac{7\pi}{9}$.		X

🗭 Lời giải.

❷ Phương trình đã cho tương đương với

$$\cos\left(6x - \frac{\pi}{4}\right) = \cos(\pi + 4x)$$

nên a) Đúng.

❷ Giải phương trình được các nghiệm:

$$x = \frac{5\pi}{8} + k\pi, \quad x = \frac{37\pi}{40} + \frac{k\pi}{5}, \quad k \in \mathbb{Z}.$$

Đếm được 11 nghiệm trong $(-\pi,\pi)$ nên b) Đúng.

- Θ $x = \frac{37\pi}{40}$ là một nghiệm đúng nằm trong $(-\pi, \pi)$ nên c) Đúng.
- $\mbox{\Large \varpi}$ Tổng các nghiệm đã cho là $\frac{7\pi}{8}$ nên khác với $\frac{7\pi}{9}$ nên d) Sai.

Chọn đáp án $\boxed{ a \ \text{đúng} \ | \ b \ \text{đúng} \ | \ c \ \text{đúng} \ | \ d \ \text{sai} }$

Phần IV. Câu hỏi tự luận.

CÂU 28. Giải phương trình:

a)
$$\sin\left(2x - \frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2};$$

b)
$$\sin\left(3x + \frac{\pi}{4}\right) = -\frac{1}{2};$$

c)
$$\cos\left(\frac{x}{2} + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2};$$

d)
$$2\cos 3x + 5 = 3$$
;

e)
$$3 \tan x = -\sqrt{3}$$
;

f)
$$\cot x - 3 = \sqrt{3} (1 - \cot x)$$
.

🗭 Lời giải.

a) Ta có

$$\sin\left(2x - \frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$$

$$\Leftrightarrow \sin\left(2x - \frac{\pi}{3}\right) = \sin\left(-\frac{\pi}{3}\right)$$

$$\Leftrightarrow \left[2x - \frac{\pi}{3} = -\frac{\pi}{3} + k2\pi\right]$$

$$\Leftrightarrow \left[2x - \frac{\pi}{3} = \pi + \frac{\pi}{3} + k2\pi\right]$$

$$\Leftrightarrow \left[2x = k2\pi\right]$$

$$\Leftrightarrow \left[2x = k2\pi\right]$$

$$\Leftrightarrow \left[2x = k\pi\right]$$

$$\Leftrightarrow \left[x = k\pi\right]$$

$$\Leftrightarrow \left[x = k\pi\right]$$

$$\Leftrightarrow \left[x = k\pi\right]$$

$$\Leftrightarrow \left[x = k\pi\right]$$

b) Ta có

$$\sin\left(3x + \frac{\pi}{4}\right) = -\frac{1}{2}$$

$$\Leftrightarrow \sin\left(3x + \frac{\pi}{4}\right) = \sin\left(-\frac{\pi}{6}\right)$$

$$\Leftrightarrow \left[3x + \frac{\pi}{4} = -\frac{\pi}{6} + k2\pi\right]$$

$$\Rightarrow \left[3x + \frac{\pi}{4} = \pi - \left(-\frac{\pi}{6}\right) + k2\pi\right]$$

$$\Leftrightarrow \left[3x = -\frac{5\pi}{12} + k2\pi\right]$$

$$\Rightarrow \left[3x = \frac{11\pi}{12} + k2\pi\right]$$

$$\Leftrightarrow \left[x = -\frac{5}{36} + \frac{k2\pi}{3}\right]$$

$$\Leftrightarrow \left[x = \frac{11\pi}{36} + \frac{k2\pi}{3}\right]$$

$$\Leftrightarrow \left[x = \frac{11\pi}{36} + \frac{k2\pi}{3}\right]$$

c) Ta có

$$\cos\left(\frac{x}{2} + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$$

$$\Leftrightarrow \cos\left(\frac{x}{2} + \frac{\pi}{4}\right) = \cos\frac{\pi}{6}$$

$$\Leftrightarrow \left[\frac{x}{2} + \frac{\pi}{4} = \frac{\pi}{6} + k2\pi\right]$$

$$\Leftrightarrow \left[\frac{x}{2} + \frac{\pi}{4} = -\frac{\pi}{6} + k2\pi\right]$$

$$\Leftrightarrow \left[\frac{x}{2} = -\frac{\pi}{12} + k2\pi\right]$$

$$\Leftrightarrow \left[\frac{x}{2} = -\frac{5\pi}{12} + k2\pi\right]$$

$$\Leftrightarrow \left[x = -\frac{5\pi}{6} + k4\pi\right]$$

$$\Leftrightarrow \left[x = -\frac{5\pi}{6} + k4\pi\right]$$

- d) Ta có $2\cos 3x + 5 = 3 \Leftrightarrow \cos 3x = -1 \Leftrightarrow 3x = \pi + k2\pi \Leftrightarrow x = \frac{\pi}{3} + \frac{k2\pi}{3} \ (k \in \mathbb{Z}).$
- e) Ta có $3\tan x = -\sqrt{3} \Leftrightarrow \tan x = -\frac{\sqrt{3}}{3} \Leftrightarrow \tan x = \tan\left(-\frac{\pi}{6}\right) \Leftrightarrow x = -\frac{\pi}{6} + k\pi \ (k \in \mathbb{Z}).$
- f) Ta có

$$\cot x - 3 = \sqrt{3} (1 - \cot x)$$

$$\Leftrightarrow \cot x - 3 = \sqrt{3} - \sqrt{3} \cot x$$

$$\Leftrightarrow (1 + \sqrt{3}) \cot x = \sqrt{3} (1 + \sqrt{3})$$

$$\Leftrightarrow \cot x = \sqrt{3}$$

$$\Leftrightarrow \cot x = \cot \frac{\pi}{6}$$

$$\Leftrightarrow x = \frac{\pi}{6} + k\pi \ (k \in \mathbb{Z}).$$

CÂU 29. Giải phương trình:

a)
$$\sin\left(2x + \frac{\pi}{4}\right) = \sin x;$$

b)
$$\sin 2x = \cos 3x$$
;

c)
$$\cos^2 2x = \cos^2 \left(x + \frac{\pi}{6}\right)$$
.

🗭 Lời giải.

a) Ta có

$$\sin\left(2x + \frac{\pi}{4}\right) = \sin x \Leftrightarrow \begin{bmatrix} 2x + \frac{\pi}{4} = x + k2\pi \\ 2x + \frac{\pi}{4} = \pi - x + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{4} + k2\pi \\ 3x = -\frac{\pi}{4} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -\frac{\pi}{4} + k2\pi \\ x = -\frac{\pi}{12} + \frac{k2\pi}{3} \end{bmatrix}, (k \in \mathbb{Z}).$$

b) Ta có

$$\sin 2x = \cos 3x \quad \Leftrightarrow \quad \cos 3x = \cos \left(\frac{\pi}{2} - 2x\right)$$

$$\Leftrightarrow \quad \begin{bmatrix} 3x = \frac{\pi}{2} - 2x + k2\pi \\ 3x = \pi - \left(\frac{\pi}{2} - 2x\right) + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \quad \begin{bmatrix} 5x = \frac{\pi}{2} + k2\pi \\ x = \frac{\pi}{2} + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \quad \begin{bmatrix} x = \frac{\pi}{12} + \frac{k2\pi}{5} \\ x = \frac{\pi}{2} + k2\pi \end{bmatrix} \quad (k \in \mathbb{Z}).$$

c) Ta có
$$\cos^2 2x = \cos^2 \left(x + \frac{\pi}{6}\right) \Leftrightarrow \begin{bmatrix} \cos 2x = \cos \left(x + \frac{\pi}{6}\right) & (1) \\ \cos 2x = -\cos \left(x + \frac{\pi}{6}\right) & (2) \end{bmatrix}$$

$$+) (1) \Leftrightarrow \begin{bmatrix} 2x = x + \frac{\pi}{6} + k2\pi \\ 2x = -\left(x + \frac{\pi}{6}\right) + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ 3x = -\frac{\pi}{6} + k2\pi \end{cases} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = -\frac{\pi}{18} + \frac{k2\pi}{3} \end{bmatrix} (k \in \mathbb{Z}).$$

$$+) (2) \Leftrightarrow \cos 2x = \cos \left[\pi - \left(x + \frac{\pi}{6}\right)\right] \Leftrightarrow \begin{bmatrix} 2x = \pi - \left(x + \frac{\pi}{6}\right) + k2\pi \\ 2x = -\left[\pi - \left(x + \frac{\pi}{6}\right)\right] + k2\pi \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 3x = \frac{5\pi}{6} + k2\pi \\ x = -\frac{5\pi}{6} + k2\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{5\pi}{18} + \frac{k2\pi}{3} \\ x = -\frac{5\pi}{6} + k2\pi \end{bmatrix} (k \in \mathbb{Z}).$$

CÂU 30. Giải các phương trình sau

a)
$$\sin 2x - \cos x + 2\sin x = 1$$
;

b)
$$2\sin^2 x - 5\sin x + 3 = 0$$
;

c)
$$\sqrt{3} \tan^2 x - 2 \tan x + \sqrt{3} = 0$$
;

d)
$$2\cos^2 2x - 5\cos 2x + 2 = 0$$
;

e)
$$\sin^2 \frac{x}{2} + \sin \frac{x}{2} - 2 = 0$$
.

🗭 Lời giải.

a)
$$\sin 2x - \cos x + 2\sin x = 1 \Leftrightarrow 2\sin x \cos x - \cos x + 2\sin x - 1 = 0 \Leftrightarrow (2\sin x - 1)(\cos x + 1) = 0$$

$$\Leftrightarrow \begin{bmatrix} \sin x = \frac{1}{2} \\ \cos x = -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \sin x = \sin \frac{\pi}{6} \\ x = (2k+1)\pi \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = \frac{\pi}{6} + k2\pi \\ x = \frac{5\pi}{6} + k2\pi \end{cases} (k \in \mathbb{Z});$$

$$x = (2k+1)\pi$$

b)
$$2\sin^2 x - 5\sin x + 3 = 0 \Leftrightarrow (2\sin x - 3)(\sin x - 1) = 0 \Leftrightarrow \begin{bmatrix} \sin x = \frac{3}{2} > 1 \text{ (VN)} \\ \sin x = 1 \end{bmatrix} \Leftrightarrow x = \frac{\pi}{2} + k2\pi, (k \in \mathbb{Z})$$

c)
$$\sqrt{3}\tan^2 x - 2\tan x + \sqrt{3} = 0 \Leftrightarrow \sqrt{3}\left(\tan x - \frac{1}{\sqrt{3}}\right)^2 + \frac{2}{\sqrt{3}} = 0 \text{ (VN)};$$

d)
$$2\cos^2 2x - 5\cos 2x + 2 = 0 \Leftrightarrow \begin{bmatrix} \cos 2x = 2 > 1 \text{ (VN)} \\ \cos 2x = \frac{1}{2} \end{bmatrix} \Leftrightarrow \cos 2x = \cos \frac{\pi}{3} \Leftrightarrow 2x = \pm \frac{\pi}{3} + k2\pi \Leftrightarrow x = \pm \frac{\pi}{6} + k\pi, \ (k \in \mathbb{Z});$$

e)
$$\sin^2 \frac{x}{2} + \sin \frac{x}{2} - 2 = 0 \Leftrightarrow \begin{bmatrix} \sin \frac{x}{2} = 1 \\ \sin \frac{x}{2} = -2 < -1 \text{ (VN)} \end{bmatrix} \Leftrightarrow \frac{x}{2} = \frac{\pi}{2} + k2\pi \Leftrightarrow x = \pi + k4\pi, (k \in \mathbb{Z}).$$

CÂU 31. Tìm tập xác định của các hàm số sau

a)
$$y = \frac{1 + \cos x}{\sin 2x}.$$

$$b) y = \sqrt{\frac{1 + \cos x}{2 + \cos x}}.$$

c)
$$y = \frac{\cos x}{1 - \sin x}$$

$$d) y = \frac{1}{\tan x}.$$

e)
$$y = \frac{\sqrt{1 - \sin x}}{2\cos x - \sqrt{3}}$$
.

🗭 Lời giải.

a)
$$y = \frac{1 + \cos x}{\sin 2x}$$

Hàm số $y = \frac{1 + \cos x}{\sin 2x}$ xác định $\Leftrightarrow \sin 2x \neq 0 \Leftrightarrow x \neq \frac{k\pi}{2}, k \in \mathbb{Z}$.
Vậy $D = \mathbb{R} \setminus \left\{ k \frac{\pi}{2}, k \in \mathbb{Z} \right\}$.

b)
$$y = \sqrt{\frac{1+\cos x}{2+\cos x}}$$

Hàm số $y = \sqrt{\frac{1+\cos x}{2+\cos x}}$ xác định $\Leftrightarrow \frac{1+\cos x}{2+\cos x} \geq 0$
Ta có:
$$\begin{cases} 1+\cos x \geq 0 \ , \ \forall x \in \mathbb{R} \\ 2+\cos x > 0 \ , \ \forall x \in \mathbb{R} \end{cases} \Rightarrow \frac{1+\cos x}{2+\cos x} \geq 0 \ , \forall x \in \mathbb{R}$$
Vậy $D = \mathbb{R}$.

c)
$$y = \frac{\cos x}{1 - \sin x}$$

Hàm số $y = \frac{\cos x}{1 - \sin x}$ xác định $\Leftrightarrow 1 - \sin x \neq 0 \Leftrightarrow x \neq \frac{\pi}{2} + k2\pi, \ k \in \mathbb{Z}.$
Vậy $D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k2\pi, k \in \mathbb{Z} \right\}.$

d)
$$y = \frac{1}{\tan x}$$

Hàm số $y = \frac{1}{\tan x}$ xác định $\Leftrightarrow \begin{cases} \tan x \neq 0 \\ \cos x \neq 0 \end{cases} \Leftrightarrow \begin{cases} \sin x \neq 0 \\ \cos x \neq 0 \end{cases} \Leftrightarrow \sin 2x \neq 0 \Leftrightarrow x \neq k \frac{\pi}{2}, k \in \mathbb{Z}.$
Vậy $D = \mathbb{R} \setminus \left\{ k \frac{\pi}{2}, k \in \mathbb{Z} \right\}.$

e)
$$y = \frac{\sqrt{1-\sin x}}{2\cos x - \sqrt{3}}$$

Hàm số $y = \frac{\sqrt{1-\sin x}}{2\cos x - \sqrt{3}}$ xác định $\Leftrightarrow \begin{cases} 1-\sin x \geq 0 \\ 2\cos x - \sqrt{3} \neq 0 \end{cases}$
Ta có: $1-\sin x \geq 0 \Leftrightarrow \sin x \leq 1$, điều này đúng với mọi $x \in \mathbb{R}$.
 $2\cos x - \sqrt{3} \neq 0 \Leftrightarrow \cos x \neq \frac{\sqrt{3}}{2} \Leftrightarrow x \neq \pm \frac{\pi}{6} + k2\pi, \, k \in \mathbb{Z}$.
Vậy $D = \mathbb{R} \setminus \left\{ \pm \frac{\pi}{6} + k2\pi, k \in \mathbb{Z} \right\}$.

CÂU 32. Tìm tập giá trị của các hàm số sau:

a)
$$y = 2\sin\left(x + \frac{\pi}{4}\right) + 3;$$

b)
$$y = \sqrt{2 + \cos x} - 5$$
.

c)
$$y = 2\cos\left(x - \frac{\pi}{4}\right) - 7;$$

$$d) y = 3 - \sqrt{2 + \sin x}$$

🗭 Lời giải.

- a) Tập xác định của hàm số là $D=\mathbb{R}$. Ta có $-1 \leq \sin\left(x+\frac{\pi}{4}\right) \leq 1, \forall x \in \mathbb{R}$ $\Leftrightarrow -2 \leq 2\sin\left(x+\frac{\pi}{4}\right) \leq 2, \forall x \in \mathbb{R}$ $\Leftrightarrow 1 \leq 2\sin\left(x+\frac{\pi}{4}\right) + 3 \leq 5, \forall x \in \mathbb{R}$ hay $1 \leq y \leq 5, \forall x \in \mathbb{R}$. Vậy tập giá trị của hàm số là T=[1;5].
- b) Vì $\cos x \ge -1 \Leftrightarrow 2 + \cos x \ge 1 > 0, \forall x \in \mathbb{R}$ nên tập xác định của hàm số là $D = \mathbb{R}$. Ta có: $-1 \le \cos x \le 1, \forall x \in \mathbb{R} \Leftrightarrow 1 \le 2 + \cos x \le 3, \forall x \in \mathbb{R} \Leftrightarrow 1 \le \sqrt{2 + \cos x} \le \sqrt{3}, \forall x \in \mathbb{R} \Leftrightarrow -4 \le \sqrt{2 + \cos x} 5 \le \sqrt{3} 5, \forall x \in \mathbb{R} \text{ hay } -4 \le y \le \sqrt{3} 5, \forall x \in \mathbb{R}.$

Vậy tập giá trị của hàm số là $T = \left[-4; \sqrt{3} - 5 \right]$.

c) Tập xác định của hàm số là $D = \mathbb{R}$.

Ta có
$$-1 \le \cos\left(x - \frac{\pi}{4}\right) \le 1, \forall x \in \mathbb{R}$$

 $\Leftrightarrow -2 \le 2\cos\left(x - \frac{\pi}{2}\right) \le 2, \forall x \in \mathbb{R}$

$$\Leftrightarrow -2 \le 2 \cos \left(x - \frac{\pi}{4}\right) \le 2, \forall x \in \mathbb{R}$$

$$\Leftrightarrow -9 \le 2 \cos \left(x - \frac{\pi}{4}\right) - 7 \le -5, \forall x \in \mathbb{R}$$

$$\text{hay } -9 \le y \le -5, \forall x \in \mathbb{R}.$$

hay
$$-9 \le y \le -5, \forall x \in \mathbb{R}$$
.

Vậy tập giá trị của hàm số là T = [-9; -5].

d) Vì $2 + \sin x \ge 1 > 0, \forall x \in \mathbb{R}$ nên tập xác định của hàm số là $D = \mathbb{R}$.

Ta có:
$$-1 \le \sin x \le 1, \forall x \in \mathbb{R}$$

$$\Leftrightarrow 1 \leq 2 + \sin x \leq 3, \forall \underline{x} \in \mathbb{R}$$

$$\Leftrightarrow 1 \le \sqrt{2 + \sin x} \le \sqrt{3}, \forall x \in \mathbb{R}$$

$$\Leftrightarrow -1 \ge -\sqrt{2 + \sin x} \ge -\sqrt{3}, \forall x \in \mathbb{R}$$

$$\Leftrightarrow 2 \ge 3 - \sqrt{2 + \sin x} \ge 3 - \sqrt{3}, \forall x \in \mathbb{R}$$

hay
$$3 - \sqrt{3} \le y \le 2, \forall x \in \mathbb{R}$$
.

Vậy tập giá trị của hàm số là $T = \left[3 - \sqrt{3}; 2\right]$.

CÂU 33. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = 2(\sin x + \cos x) + \sin 2x + 3$. 🗭 Lời giải.

Tập xác định $\mathcal{D} = \mathbb{R}$.

Dặt
$$t = \sin x + \cos x = \sqrt{2}\sin\left(x + \frac{\pi}{4}\right), t \in \left[-\sqrt{2}; \sqrt{2}\right].$$

Ta có
$$t^2 = (\sin x + \cos x)^2 = 1 + 2\sin x \cos x = 1 + \sin 2x \Rightarrow \sin 2x = t^2 - 1.$$

Hàm số trở thành $y = g(t) = t^2 + 2t + 2$.

Bảng biến thiên của hàm số y = g(t) trên đoạn $\left| -\sqrt{2}; \sqrt{2} \right|$

Vậy $\max_{x \in \mathbb{R}} y = 4 + 2\sqrt{2}$ và $\min_{x \in \mathbb{R}} y = 1$.

CÂU 34. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số $y = \sqrt{3}\sin x - \cos x + 5$. 🗭 Lời giải.

Tập xác định $\mathscr{D}=\mathbb{R}.$

Biến đổi
$$y = \sqrt{3} \sin x - \cos x + 5 = 2\left(\frac{\sqrt{3}}{2} \cdot \sin x - \frac{1}{2} \cdot \cos x\right) + 5 = 2 \sin\left(x - \frac{\pi}{6}\right) + 5.$$

Với mọi $x \in \mathbb{R}$ ta có

$$-1 \le \sin\left(x - \frac{\pi}{6}\right) \le 1$$

$$\Leftrightarrow -2 \le 2\sin\left(x - \frac{\pi}{6}\right) \le 2$$

$$\Leftrightarrow 3 \le 2\sin\left(x - \frac{\pi}{6}\right) + 5 \le 7.$$

Vậy $\max_{x \in \mathbb{R}} y = 7$ khi $x = \frac{2\pi}{3}$ và $\min_{x \in \mathbb{R}} y = 3$ khi $x = -\frac{\pi}{3}$.

