MATEMÁTICA UNINOVE

Módulo - IV

Trigonometria

Equações trigonométricas

Objetivo: Resolver equações trigonométricas no conjunto dos números reais.

Este material faz parte da UNINOVE. Acesse atividades, conteúdos, encontros virtuais e fóruns diretamente na plataforma.

Pense no meio ambiente: imprima apenas se necessário.

Situação-problema

Em certa cidade litorânea, a altura h da maré, medida em metros, em função do tempo t, é dada pela função $h(t)=1+0,5.\cos\left(\frac{\pi}{4}.t\right)$, na qual o tempo é medido em horas, a partir da meia-noite. Em quais horários, a altura da maré é igual a 1 metro.

Solução

Como a altura da maré deve ser igual a 1 metro, então h(t)=1.

Assim, temos:

$$1 + 0.5 \cdot \cos\left(\frac{\pi}{4} \cdot t\right) = 1 \quad \Rightarrow \quad 0.5 \cdot \cos\left(\frac{\pi}{4} \cdot t\right) = 0 \quad \Rightarrow \quad \cos\left(\frac{\pi}{4} \cdot t\right) = 0$$

Sabemos que os arcos cujo cosseno é igual zero são: $\frac{\pi}{2}+k\Pi$. Logo,

$$\frac{\pi}{4}.\,t = \frac{\pi}{2} + k\pi \quad \Rightarrow \quad t = \frac{4}{\pi} \left(\frac{\pi}{2} + k\pi \right) = 2 + 4k \quad \Rightarrow \quad t = 2 + 4k, \qquad \mathbf{k} \in \mathbf{Z}.$$

Como t é medido em horas, então devemos atribuir valores para k, de modo que t $\in [0,24]$ t $\in [0,24]$.

Assim, temos:

$$k = 0 \implies t = 2 + 4.0 = 2$$

$$k = 1 \Rightarrow t = 2 + 4.1 = 6$$

$$k = 2 \Rightarrow t = 2 + 4.2 = 10$$

$$k = 3 \Rightarrow t = 2 + 4.3 = 14$$

$$k = 4 \Rightarrow t + 2 + 4.4 + 18$$

$$k = 5 \Rightarrow t + 2 + 4.5 = 22$$

Dessa forma, concluímos que a altura da maré é igual a 1 metro nos seguintes horários: 2h, 6h, 10h, 14h, 18h e 22h.

Para resolver estes tipos de problemas, precisamos saber resolver equações trigonométricas no conjunto dos números reais.

Equações trigonométricas

Uma equação trigonométrica é toda aquela em que aparecem funções trigonométricas com arco de medida desconhecida.

IMPORTANTE:

Para que uma equação seja trigonométrica, é necessário que a incógnita seja a medida de um arco. Dessa forma, as equações $\cos\frac{\pi}{3}$ -2x=1 e $\sin\frac{\pi}{2}$ -2x=1 não são equações trigonométricas.

As equações trigonométricas fundamentais com incógnita *x* podem ser classificadas em três tipos distintos e todas as demais devem ser reduzidas a um deles:

1º sen $x = \text{sen } \alpha$ ou sen x = a, α é constante.

2° $\cos x = \cos \alpha$ ou $\cos x = a$, a é constante.

3° $\operatorname{tg} x = \operatorname{tg} \alpha$ ou $\operatorname{tg} x = a$, $a \in \text{constante}$.

Antes de aprendermos a resolver equações trigonométricas, vamos relembrar que o eixo dos senos é o y, o dos cossenos é x, e o das tangentes é a reta perpendicular ao eixo x, passando pelo ponto A(1,0), conforme a figura:

Além disso, é importante saber o valor do seno, do cosseno e da tangente dos seguintes ângulos: 0, $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$ e 2π , conforme o quadro:

Ângulo	Seno	Cosseno	Tangente
0	0	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{2}$	1	0	₹
π	0	-1	0
$\frac{3\pi}{2}$	-1	0	₹
2π	0	1	0

Observe que colocamos apenas arcos α pertencentes ao primeiro quadrante ou cujas extremidades são intersecções dos eixos com o ciclo trigonométrico. Para obtermos os arcos pertencentes aos demais quadrantes, basta considerarmos os arcos simétricos a α em relação aos eixos x e y, e em relação à origem dos eixos:

- **Segundo quadrante:** simetria em relação ao eixo y: pi a. $\pi \alpha$.
- **Terceiro quadrante:** simetria em relação à origem: $\pi + \alpha$.
- **Quarto quadrante:** simetria em relação ao eixo *x*: $2\pi \alpha$.

Por outro lado, já vimos também que os valores do seno, do cosseno e da tangente destes arcos também são obtidos a partir destas simetrias.

Dessa forma, para resolvermos uma equação trigonométrica, procuramos os arcos, pertencentes ao intervalo $[0,2\pi]$, que satisfaçam a igualdade desejada. Em seguida, consideramos os demais arcos obtidos completando-se k voltas no sentido horário ou anti-horário no ciclo trigonométrico. Lembre-se que cada volta equivale a um arco de

 2π . Portanto, para representarmos k voltas, escrevemos simplesmente $2k\pi$, em que k positivo indica voltas no sentido anti-horário e negativo, no sentido horário. Dessa forma, temos $k \in \mathbb{Z}$.

Equações trigonométricas do primeiro tipo

EXEMPLO

1. Resolva a equação sen $x = \operatorname{sen} \frac{\pi}{3}$:

Resposta

O ângulo $\frac{\pi}{3}$ pertence ao primeiro quadrante. Sabemos que existe um ângulo no segundo quadrante cujo seno é igual ao seno de $\frac{\pi}{3}$. Para obtermos este ângulo, basta fazer $\pi - \frac{\pi}{3} = \frac{2\pi}{3}$. Logo, se sen $x = \sin \frac{\pi}{3}$, então $x = \frac{\pi}{3}$ ou $x = \frac{2\pi}{3}$. Considerando os demais ângulos obtidos completando-se k voltas no sentido horário ou anti-horário, podemos concluir que o conjunto solução é:

$$S = \left\{ x \in R | x = \frac{\pi}{3} + 2k\pi \text{ ou } x = \frac{2\pi}{3} + 2k\pi, k \in Z \right\}$$

2. Resolva a equação sen $x = -\frac{\sqrt{2}}{2}$:

Resposta

Sabemos que sen $\frac{\pi}{4}=\frac{\sqrt{2}}{2}$. Como o seno é negativo nos terceiro e quarto quadrantes, temos que os arcos cujo seno vale $-\frac{\sqrt{2}}{2}$ são: $\pi+\frac{\pi}{4}=\frac{5\pi}{4}$ e $2\pi-\frac{\pi}{4}=\frac{7\pi}{4}$.

Logo, se sen $x=-\frac{\sqrt{2}}{2}$, então $x=\frac{5\pi}{4}$ ou $x=\frac{7\pi}{4}$. Considerando os demais ângulos obtidos completando-se k voltas no sentido horário ou antihorário, podemos concluir que o conjunto solução é:

$$S = \left\{ x \in R | x = \frac{5\pi}{4} + 2k\pi \text{ ou } x = \frac{7\pi}{4} + 2k\pi, k \in Z \right\}$$

3. Resolva a equação $sen^2x - sen x = 0$:

Resposta

Podemos fatorar esta expressão, colocando sen \boldsymbol{x} em evidência. Assim temos:

$$sen^2x - sen x = 0 \implies sen x. (sen x - 1) = 0$$

Para que o produto de dois fatores seja igual a zero, é necessário que um dos fatores seja igual a zero. Nesta equação, isto implica que $\operatorname{sen} x = 0$ ou $\operatorname{sen} x - 1 = 0$. Logo, $\operatorname{sen} x = 0$ ou $\operatorname{sen} x = 1$. Portanto, os valores de x que procuramos são aqueles que satisfaçam uma das duas igualdades.

Sabemos que o seno de um ângulo vale zero para todo ângulo cuja extremidade está no eixo x (0, π , 2π , 3π , ...). Assim, podemos afirmar que:

$$sen x = 0 \ \Rightarrow \ x = k\pi, k \in Z.$$

Por outro lado, sabemos que sen $\frac{\pi}{2} = 1$. Assim, podemos afirmar que:

$$sen x = 1 \ \Rightarrow \ x = \frac{\pi}{2} + 2k\pi, k \in Z$$

Dessa forma, concluímos que o conjunto solução é:

$$S = \left\{ x \in R | x = k\pi \text{ ou } x = \frac{\pi}{2} + 2k\pi, k \in Z \right\}$$

Equações trigonométricas do segundo tipo

EXEMPLO

1. Resolva a equação
$$\cos\left(x - \frac{\pi}{4}\right) = \cos\frac{3\pi}{4}$$

Resposta

O ângulo $\frac{3\pi}{4}$ pertence ao segundo quadrante. Sabemos que existe um ângulo no terceiro quadrante cujo cosseno é igual ao cosseno de $\frac{3\pi}{4}$. Para obtermos este ângulo, basta fazer $2\pi - \frac{3\pi}{4} = \frac{5\pi}{4}$.

DICA:

Observe que para obter o ângulo do terceiro quadrante, poderíamos ter encontrado primeiramente o ângulo, no primeiro quadrante, simétrico a $\frac{3\pi}{4}$ em relação ao eixo y, fazendo $\frac{3\pi}{4}$ = π - α . Assim, encontraríamos o ângulo $\frac{\pi}{4}$. Em seguida, obteríamos o simétrico a π + $\frac{\pi}{4}$ = $\frac{5\pi}{4}$.

Logo, se
$$\cos\left(x - \frac{\pi}{4}\right) = \cos\frac{3\pi}{4}$$
, então:

$$x - \frac{\pi}{4} = \frac{3\pi}{4} \implies x = \frac{3\pi}{4} + \frac{\pi}{4} = \pi$$
 ou

$$x - \frac{\pi}{4} = \frac{5\pi}{4}$$
 \Rightarrow $x = \frac{5\pi}{4} + \frac{\pi}{4} = \frac{3\pi}{2}$

Considerando os demais ângulos obtidos completando-se *k* voltas no sentido horário ou anti-horário, podemos concluir que o conjunto solução é:

$$S = \left\{ x \in R | x = \pi + 2k\pi \text{ ou } x = \frac{3\pi}{2} + 2k\pi, k \in Z \right\}$$

2. Resolva a equação $\cos x = \frac{1}{2}$

Resposta

Sabemos que $\cos\frac{\pi}{3}=\frac{1}{2}$. Como o cosseno é positivo nos primeiro e quarto quadrantes, temos que os arcos cujo cosseno vale $\frac{1}{2}$ são: $\frac{\pi}{3}$ e $2\pi-\frac{\pi}{3}=\frac{5\pi}{3}$.

Logo, se $\cos x = \frac{1}{2'}$ então $x = \frac{\pi}{3}$ ou $x = \frac{5\pi}{3}$. Considerando os demais ângulos obtidos completando-se k voltas no sentido horário ou antihorário, podemos concluir que o conjunto solução é:

$$S = \left\{ x \in R | x = \frac{\pi}{3} + 2k\pi \text{ ou } x = \frac{5\pi}{3} + 2k\pi, k \in Z \right\}.$$

3. Resolva a equação $\cos^2 x - 3\cos x + 2 = 0$

Para resolvermos esta equação, é necessário utilizar uma variável auxiliar, substituindo $\cos x$ por y. Assim, obtemos: $y^2 - 3y + 2 = 0$

Resolvendo esta equação de segundo grau por Bhaskara, encontramos: $y = \frac{-(-3) \pm \sqrt{3^2 - 4.1.2}}{2.1} = \frac{3 \pm \sqrt{1}}{2}$. Logo, y = 1 y = 1 ou y = 2 y = 2. Como cos x = y cosx = y, concluímos que cos x = 1 ou cos x = 2 cosx = 1 ou cosx = 2.

DICA:

Fórmula de Báskara para resolver a equação: $ax^2 + bx + c = 0$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Portanto, para encontrar os valores de x que satisfaçam a equação $\cos^2 x - 3\cos x + 2 = 0$, basta encontramos os valores de x, tais que $\cos x = 1$ ou $\cos x = 2$.

Sabemos que o cosseno de um arco varia entre -1 e 1. Logo, não existe nenhum número real tal que cosx = 2, ou seja, a equação cosx = 2 não tem solução.

Portanto, só precisamos resolver cosx=1. No entanto, sabemos ainda que cos0=1 e $cos2\pi=1$. Assim, podemos afirmar que: cosx=1 $\Rightarrow x=2k\pi, k\in Z$.

Dessa forma, podemos concluir que o conjunto solução é:

$$S = \{x \in R | x = 2k\pi, k \in Z\}.$$

Equações trigonométricas do terceiro tipo

EXEMPLO

1. Resolva a equação $tg x = tg \frac{3\pi}{5}$:

Resposta

O ângulo $\frac{3\pi}{5}$ pertence ao segundo quadrante. Sabemos que existe um ângulo no quarto quadrante cuja tangente é igual à tangente de $\frac{3\pi}{5}$. Para obtermos este ângulo, basta fazer $\pi + \frac{3\pi}{5} = \frac{8\pi}{5}$.

Observe na figura que toda vez que completarmos meia-volta no ciclo trigonométrico a partir de $\frac{3\pi}{5}$, ou seja, $x=\frac{3\pi}{5}+k\pi$, obteremos um ângulo de mesma tangente. Dessa forma, o conjunto solução é:

$$S = \left\{ x \in R | x = \frac{3\pi}{5} + k\pi, k \in Z \right\}$$

2. Resolva a equação tg $3 x = \sqrt{3}$:

Resposta

Sabemos que $tg\frac{\pi}{3}=\sqrt{3}$. Logo, podemos concluir que $tg\,3\,x=tg\frac{\pi}{3}\,$ e, portanto, $3x=\frac{\pi}{3}+k\pi$ \Rightarrow $x=\frac{\frac{\pi}{3}+k\pi}{3}=\frac{\pi}{9}+\frac{k\pi}{3}$.

Dessa forma, o conjunto solução é:

$$S = \left\{ x \in R | x = \frac{\pi}{9} + \frac{k\pi}{3}, k \in Z \right\}.$$

Agora é a sua vez! Resolva os exercícios, verifique seu conhecimento e acesse o espaço online da UNINOVE para assistir à videoaula referente ao conteúdo assimilado.

REFERÊNCIAS

IEZZI, Gelson. *Fundamentos da Matemática Elementar* - Ensino Médio. 8. ed. São Paulo: Saraiva, 2004. v. 3.

MELLO, José Luiz Pastore – *Matemática*: construção e significado – Ensino Médio. São Paulo: Moderna, 2005.