Kidney Disease Classification

Team Members: Shriya Gandotra, Swayam Mehta, Smit Patel, Luis Funes

INTRODUCTION

Proposal Changes:

Revised original dataset from 1 class - kidney stone classification to multi-class dataset.

This project employs classical and modern learning techniques to classify kidney diseases from CT images, differentiating normal, cyst, tumor, and stone conditions. By leveraging convolutional neural networks (CNN) and support vector machine (SVM), we aim to enhance diagnostic accuracy and support timely medical intervention, advancing medical imaging technology in healthcare.

<u>Impact:</u>

Enhanced Diagnostic Accuracy, Automated Image Analysis, Predictive Analytics, Cost Reduction.

NORMAL

STONES

DATASET - 4 Classes

The dataset was collected from PACS (Picture archiving and communication system) from different hospitals in Dhaka, Bangladesh where patients were already diagnosed with having a kidney tumor, cyst, normal or stone findings. Both the Coronal and Axial cuts were selected from both contrast and non-contrast studies with protocol for the whole abdomen and urogram.

<u>Normal</u>

Cyst

Stone

Tumor

PRE-PROCESSING

No need to Grayscale: CT images were already B/W

Reduced image size from 705x569 to 96x96 for processing efficiency.

SVM:

Randomly flipped images and rotated images to introduce noise and variable complexity to the learning model.

CNN:

Random flip/rotation, tilt 10°, change image brightness, contrast, and saturation.

Horizontal

<u>Cyst</u>

Vertical

SVM (Support Vector Machine)

```
print("Training the SVM model...")
start_time = time.time()
svm_model = svm.SVC(kernel='poly')
svm_model.fit(X_train, y_train)
print("SVM model trained.")
```

Classificatio	on Report:			
	precision	recall	f1-score	support
	25746	227320	22.7524	10.00
Cyst	0.72	0.97	0.82	737
Normal	0.87	0.90	0.89	1001
Stone	0.76	0.32	0.45	280
Tumor	0.83	0.59	0.69	471
accuracy			0.80	2489
macro avg	0.79	0.70	0.71	2489
weighted avg	0.80	0.80	0.78	2489

- Between rbf, linear, poly and sigmoid, 'poly' gave the best metrics across the board
- Poly can handle higher dimensional spaces without computing new feature space
- Poly also works well with regularization over simpler models like linear

Model evaluation completed.

Accuracy: 0.798
Precision: 0.804
Recall: 0.798
F1 Score: 0.782

CONFUSION MATRIX

Stone class was the most difficult to classify by our model. This is due to the fact that each stone variety in size, position and overall resolution.

96x96 Stone Image

SVM VALIDATION

Predicted: Normal Actual: Tumor

Predicted: Cyst Actual: Normal

Predicted: Normal Actual: Normal

Predicted: Cyst Actual: Normal

Predicted: Cyst Actual: Normal

Predicted: Normal Actual: Tumor

Predicted: Cyst Actual: Cyst

Predicted: Normal Actual: Cyst

Predicted: Cyst Actual: Cyst

Predicted: Cyst Actual: Normal

Predicted: Tumor Actual: Cyst

Predicted: Cyst Actual: Cyst

Predicted: Cyst Actual: Normal

Predicted: Cyst Actual: Stone

Predicted: Normal

Predicted: Cyst Actual: Cyst

Predicted: Cyst Actual: Cyst

Predicted: Tumor Actual: Stone

Predicted: Normal Actual: Cyst

Predicted: Normal Actual: Normal

The best value for K is: 9

13/20

CNN (Convolutional Neural Network)

```
num classes = 4
def cnn_model(num_classes):
   model = nn.Sequential(
        nn.Conv2d(3, 64, kernel size=3, padding=1),
        nn.Tanh(),
        nn.Conv2d(64, 128, kernel_size=3, padding=1),
        nn.Tanh(),
        nn.MaxPool2d(2, 2),
        nn.Flatten(),
        nn.Linear(128 * 16 * 16, 256),
        nn.Tanh(),
        nn.Dropout(0.5),
        nn.Linear(256, num classes)
    return model
```

Kernel Size:

Fine-grained details and are computationally more efficient.

ReLU:

Introduces non-linearity into the model.

Tanh:

Distinguishes features, provided better benchmark results as a whole (**Selected Activation**).

Dropout:

Prevents Overfitting.

TRAINING

Training and Validation Accuracy Over Epochs

Training and Validation Loss Over Epochs

CNN VALIDATION

Our model was overall successful in classify the correct class. The main issue came across when the class feature was overall weak and even hard to detect by eye. This is due to the resolution of 96x96 that reduces the overall clarity of the images causing the model to miss some of the key class elements.

Finished Training in 1722.88 seconds Evaluating model...

Accuracy: 0.876 Precision: 0.875

Recall: 0.876

F1 Score: 0.872

Classification	n Report:			
	precision	recall	f1-score	support
Cyst	0.86	0.95	0.90	726
Normal	0.91	0.94	0.93	1041
Stone	0.85	0.59	0.70	253
Tumor	0.83	0.77	0.80	470
accuracy			0.88	2490
macro avg	0.86	0.81	0.83	2490
weighted avg	0.87	0.88	0.87	2490

CONFUSION MATRIX

CNN VALIDATION

First Iteration

Predicted: Stone Actual: Stone

Predicted: Normal Actual: Normal

Predicted: Tumor Actual: Tumor

Predicted: Cyst Actual: Cyst

Predicted: Normal Actual: Normal

Predicted: Normal Actual: Normal

Predicted: Cyst Actual: Cvst

Predicted: Tumor Actual: Tumor

Predicted: Cyst Actual: Cyst

Predicted: Tumor Actual: Tumor

Predicted: Normal Actual: Normal

Predicted: Cyst Actual: Cyst

Predicted: Cyst Actual: Cyst

Actual: Normal

Predicted: Cyst Actual: Cyst

Predicted: Normal Actual: Normal

Predicted: Tumor Actual: Tumor

Predicted: Tumor Actual: Tumor

Predicted: Normal Actual: Normal

Predicted: Cyst Actual: Cyst

CNN VALIDATION

Second Iteration

Predicted: Cyst Predicted: Normal Predicted: Normal Actual: Cyst

Actual: Normal Actual: Normal

Predicted: Cyst Actual: Cyst

Predicted: Stone

Predicted: Cyst Predicted: Normal Predicted: Tumor Actual: Cyst

Actual: Normal

Actual: Tumor

Predicted: Cyst Predicted: Normal Actual: Cyst Actual: Normal

Predicted: Normal Predicted: Cyst Predicted: Stone Predicted: Normal

Actual: Cyst

Actual: Stone

Predicted: Cyst

Actual: Stone

Predicted: Cyst Actual: Cyst

Actual: Normal

Actual: Cyst

Predicted: Cyst Predicted: Stone

Predicted: Tumor Predicted: Normal Actual: Tumor Actual: Normal

COMPARISON

SVM: Training Time - 11.5 mins	CNN: Training Time - 28 mins	
Recall: 0.798	Recall: 0.876	
Precision: 0.804	Precision: 0.875	
Accuracy: 0.798	Accuracy: 0.876	
F1 Score: 0.782	F1 Score: 0.872	

CNN model outperformed SVMs in image classification due to their use of the Tanh activation function and their structured architecture. Tanh helps CNNs model complex data patterns, and the layered design effectively extracts features from raw images, a capability SVMs with polynomial kernels lack

APPLICATION

This model can be implemented into any hospital or lab where CT image analysis is required. CT analysis can expedited using machine learning to process and detect kidney diseases given ample data. This could cut overall medical costs and improve disease outlook.

AREAS OF IMPROVEMENT

- Increase resolution of images during pre-processing. Given more capable hardware
- Implement more modern ML techniques(Real-time, unsupervised learning)
- Include a variety of CT images from different sources.
- Kidney stone showed to have scored lowest across precision, recall, f1 score. This could
 be improved if more images were implemented into the data set and resolution used
 during preprocessing is increased.

GITHUB

https://github.com/Swayyum/Intro-to-ML--4105/tree/main/Final%20Project

Thank You!

Any questions?