《信息光学》(第二次印刷)第1章勘误表

页	行 (式)	原 文	勘 正	备注
10	1.1.24	$ \operatorname{tri}\left(\frac{x-x_0}{a}\right) = \begin{cases} 1 + \left x-x_0\right /a & -1 \le \left x-x_0\right /a \le 0 \\ 1 - \left x-x_0\right /a & 0 < \left x-x_0\right /a \le 1 \\ 0 & \sharp \text{ th} \end{cases} $	$\operatorname{tri}\left(\frac{x-x_0}{a}\right) = \begin{cases} 1 + (x-x_0)/a & -1 \le (x-x_0)/a \le 0\\ 1 - (x-x_0)/a & 0 < (x-x_0)/a \le 1\\ 0 & \text{ 其他} \end{cases}$	
12	1.1.30b	tri(x) = R(x+1) - 2R(x)[step(x+1) - step(x-1)]	tri(x) = [R(x+1)-2R(x)][step(x+1)-step(x-1)]	
13	1.1.33	$\operatorname{circ}\left(\sqrt{(x-x_0)^2 + (y-x_0)^2} / a\right)$ $= \begin{cases} 1 & 0 < \sqrt{(x-x_0)^2 + (y-x_0)^2} < a \\ \frac{1}{2} & \sqrt{(x-x_0)^2 + (y-x_0)^2} = a \\ 0 & \sqrt{(x-x_0)^2 + (y-x_0)^2} > a \end{cases}$	$\operatorname{circ}\left(\sqrt{(x-x_0)^2 + (y-y_0)^2} / a\right)$ $= \begin{cases} 1 & 0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < a \\ \frac{1}{2} & \sqrt{(x-x_0)^2 + (y-y_0)^2} = a \\ 0 & \sqrt{(x-x_0)^2 + (y-y_0)^2} > a \end{cases}$	
31	1.3.21	$g(\alpha, \beta) = f[\alpha(x, y), \beta(x, y)]$	$g(\alpha, \beta) = f[x(\alpha, \beta), y(\alpha, \beta)]$	
32	1.3.26	$\beta = -\frac{a_1}{b_1} x + \left(\frac{\pm (1/2) - c_1}{b_1} \right)$	$\beta = -\frac{a_1}{b_1}\alpha + \left(\frac{\pm(1/2) - c_1}{b_1}\right)$	
32	13 行	y 轴	$oldsymbol{eta}$ 轴	
32	14 行	x 轴	<i>α</i> 轴	
32	倒数第 一行	左移 右移	右移 左移	
37	1.4.9	$\lim_{m\to\infty}\int_{-\infty}^{\infty}g_m(x)\psi(x)\mathrm{d}x = \int_{ x >\varepsilon}\psi(x)g_m(x)\mathrm{d}x = \psi(0)$	$\int_{ x >\varepsilon} \psi(x) g_m(x) \mathrm{d}x = 0$	
37	7	那么它就是 δ 式函数序列。	对任何 $\varepsilon > 0$ 成立(不必要求对 $x \neq 0$, $m \to \infty$, $g_m(x) \to 0$), 那么它就是 δ 式函数序列, 即 $\delta(x) = \lim_{m \to \infty} g_m(x) \stackrel{\text{i}}{=} \lim_{m \to \infty} \int_{-\infty}^{\infty} g_m(x) \psi(x) dx = \psi(0)$	
38	1.4.21	$\begin{cases} \lim_{n \to \infty} g_m(x, y) = \begin{cases} \infty & x = 0, y = 0 \\ 0 & x \neq 0, y \neq 0 \end{cases}, \\ \lim_{n \to \infty} \int_{-\infty}^{\infty} g_m(x, y) dx dy = 1 \end{cases}$	$\begin{cases} \lim_{m \to \infty} g_m(x, y) = \begin{cases} \infty & x = 0, y = 0 \\ 0 & x \neq 0, y \neq 0 \end{cases}, \\ \lim_{m \to \infty} \int_{-\infty}^{\infty} g_m(x, y) dx dy = 1 \end{cases}$	
40	12	r	r	
45	1.4.66	$\delta\left(\frac{x-x_0}{a}\right) = \frac{1}{ a }\delta(x-x_0)$	$\delta\left(\frac{x-x_0}{a}\right) = a \delta\left(x-x_0\right)$	

53	倒数 4	整数	$m+\frac{1}{2}$
53	倒数 3	$2\pi m\xi_0 x - \phi_0 = m\pi$	$2\pi m\xi_0 x - \phi_0 = \left(m + \frac{1}{2}\right)\pi$
53	倒数 3	$\frac{(m\pi + \phi_0)L_0}{2\pi m}$	$\frac{\left[m + \left(\frac{1}{2}\right)\pi + \phi_0\right]L_0}{2\pi m}$
55	4	向左	向右
64	1.6.26	$e^{\pm i\pi/2}=i$	$e^{\pm i\pi/2}=\pm i$
66	2	$\delta(x) = \lim_{k \to \infty} \frac{\sin(kx)}{kx}$ $\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \cos(kx) dx$	$\delta(x) = \lim_{k \to \infty} \frac{\sin(kx)}{\pi x}$
66	4	$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \cos(kx) dx$	$\delta(x) = \lim_{k \to \infty} \frac{\sin(kx)}{\pi x}$ $\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \cos(kx) dk$