GENERATING TORELLI

Goal: I(Sg) is gen. by BP maps (and Dehn twists about sep curves)

Original proof: 1971 Birman gives presentation for Spzg (7L) 1978 Powell interprets relations 1980 Johnson, lantern relation

Want a proof analogous to Mod(Sg) case.

Complex of homologous curves

Fix (primitive) $X \in H_1(Sg; Z)$ $C_X(Sg) = \text{subgraph of } C(Sg) \text{ spanned by}$ (unoriented) reps of X.

goal: Connected.

borrowing "complex"

Will use auxilliary complex $B_{x}(S_{g})$, the complex of cycles. Points of $B_{x}(S_{g})$ are simple, irredundant reps of x.

The Complex of Cycles

C = oriented multicurve, n components

$$A(S_9) = \coprod_{c} O(c) /\sim$$

example

The cells of Ax(Sg) are not necessarily compact:

If $[C_1] = X$ then $[C_1 + bC_2] = X \forall b \in \mathbb{R}$

An oriented multicurve is reduced if

(1) the corresponding cell is compact (2) it has no homologically trivial subset

(3) the dual directed graph is recurrent

Dual graphs:

The complex of cycles Bx (Sg) is the subcomplex of Ax (Sg) whose cells correspond to reduced oriented multicurves.

Well show Bx(Sq) is contractible.

Q. Which polytopes arise?

Properties of Cells

Prop. The dim. of a cell = # compl. comp.'s -1.

Pf. Defn of homology.

⇒ vertices <>> nonsep. multicurves.

Prop. Vertices of Bx(Sg) are oriented multicurves with integral weights.

Pf. Given a vertex, consider a loop intersecting in one point.

Prop. Dim Bx (Sg) = 2g-3.

Pf

x = [c,].

~ Bx (S2) is a graph.

CONTRACTIBILITY

Theorem. Bx (Sg) is contractible.

Surgery on 1-cycles

Say c,d & Ax(Sg). Thicken c,d according to weights and then:

If [c] = [d] = X, this procedure will result in a 1-cycle rep'ing X. Why?

H, (Sg; Z) = H'(Sg; Z)= Hom(H, (Sg; Z), Z) = [Sg, S']

The original c,d give maps $S_g \rightarrow S'$ by integrating against width of annuli. The surgered picture corresponds to the map $S_g \rightarrow S'$ obtained by integrating against both widths.

Prop. Ax (Sg) is contractible

Pf. Fix some C & Ax (Sg). Consider:

$$F_t(d) = Surger(tc + (1-t)d)$$

Draining 1-cycles

Suppose $c \in A_X(S_g)$ is not reduced. $\rightarrow \{R_i\}$ subsurfaces with $\partial R_i \subseteq C$ $\operatorname{Drain}_{t}(c) = C - t \not\subseteq \partial R_i$

Prop. Ax(Sg) def. retracts to Bx(Sg). In partic. Bx(Sg) is contractible.

Pf. Drain

In particular, Bx(S2) is a tree.