

http://aofa.cs.princeton.edu

2. Recurrences

http://aofa.cs.princeton.edu

2. Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem

2a.Recur.Values

What is a recurrence?

Def. A recurrence is an equation that recursively defines a sequence.

Familiar example 1: Fibonacci numbers

recurrence

$$F_N = F_{N-1} + F_{N-2}$$
 for $N \ge 2$ with $F_0 = 0$ and $F_1 = 1$

sequence

MUST specify for all N with initial conditions

Q. Simple formula for sequence (function of *N*)?

What is a recurrence?

Recurrences directly model costs in programs.

Familiar example 2: Quicksort (see lecture 1)

recurrence

$$C_N = N + 1 + \sum_{0 \le k \le N-1} \frac{1}{N} (C_k + C_{N-k-1})$$

for $N \ge 1$ with $C_0 = 0$

sequence

```
0, 2, 5, 8 2/3, 12 5/6, 17 2/5,...
```

program

```
public class Quick
   private static int partition(Comparable[] a, int lo, int hi)
      int i = lo, j = hi+1;
      while (true)
         while (less(a[++i], a[lo])) if (i == hi) break;
         while (less(a[lo], a[--j])) if (j == lo) break;
         if (i >= j) break;
         exch(a, i, j);
      exch(a, lo, j);
      return j;
   }
   private static void sort(Comparable[] a, int lo, int hi)
      if (hi <= lo) return;</pre>
      int j = partition(a, lo, hi);
      sort(a, lo, j-1);
      sort(a, j+1, hi);
}
```

Common-sense rule for solving any recurrence

Use your computer to compute values.
$$F_N = F_{N-1} + F_{N-2}$$
 for $N \ge 2$ with $F_0 = 0$ and $F_1 = 1$

Use a recursive program?

```
public static void F(int N)
    if (N == 0) return 0:
    if (N == 1) return 1;
    return F(N-1) + F(N-2);
```

NO, NO, NO: Takes exponential time!

Instead, save all values in an array.

```
long[] F = new long[51];
F[0] = 0; F[1] = 1;
if (N == 1) return 1;
for (int i = 2; i \le 50; i++)
   F[i] = F[i-1] + F[i-2];
```

Use your computer to compute initial values.

First step: Download "standard model" from Algorithms, 4th edition booksite.

StdIn	Standard Input
StdOut	Standard Output
StdDraw	Standard Drawings
StdRandom	Random Numbers
	(Several other libraries)

http://algs4.cs.princeton.edu

Use your computer to compute initial values (modern approach).

```
Ex. 1: Fibonacci F_N = F_{N-1} + F_{N-2} with F_0 = 0 and F_1 = 1
    Fib.java public class Fib implements Sequence
                private final double[] F;
                public Fib(int maxN)
                                                  Compute all values
                   F = new double[maxN+1];
                                                   in the constructor
                   F[0] = 0; F[1] = 1;
                   for (int N = 2; N \le \max N; N++)
                       F[N] = F[N-1] + F[N-2];
                public double eval(int N)
                { return F[N]; }
                public static void main(String[] args)
                   int maxN = Integer.parseInt(args[0]);
                   Fib F = new Fib(maxN);
                   for (int i = 0; i < maxN; i++)
                      StdOut.println(F.eval(i));
            }
```

Sequence.java

```
public interface Sequence
{
    public double eval(int N);
}
```

```
% java Fib 15
0.0
1.0
1.0
2.0
3.0
5.0
8.0
13.0
21.0
34.0
55.0
89.0
144.0
233.0
377.0
```

Ex. 2: Quicksort NC,

```
NC_N = (N+1)C_{N-1} + 2N
```

QuickSeq.java

```
public class QuickSeq implements Sequence
{
    private final double[] c;

    public QuickSeq(int maxN)
    {
        c = new double[maxN+1];
        c[0] = 0;
        for (int N = 1; N <= maxN; N++)
             c[N] = (N+1)*c[N-1]/N + 2;
    }

    public double eval(int N)
    {       return c[N];    }

    public static void main(String[] args)
    {
        // Similar to Fib.java.
    }
}</pre>
```

```
% java QuickSeq 15
  0.000000
  2.000000
  5.000000
  8.666667
 12.833333
 17.400000
 22.300000
 27.485714
 32.921429
 38.579365
 44.437302
 50.477056
 56.683478
 63.043745
 69.546870
```

Use your computer to plot initial values.

Values.java

```
public class Values
{
   public static void show(Sequence f, int maxN)
   {
      double max = 0;
      for (int N = 0; N < maxN; N++)
            if (f.eval(N)>max) max = f.eval(N);
      for (int N = 0; N < maxN; N++)
      {
            double x = 1.0*N/maxN;
            double y = 1.0*f.eval(N)/max;
            StdDraw.filledCircle(x, y, .002);
      }
      StdDraw.show();
   }
}</pre>
```

QuickSeq.java

```
public class QuickSeq implements Sequence
{
    // Implementation as above.

public static void main(String[] args)
    {
      int maxN = Integer.parseInt(args[0]);
      QuickSeq q = new QuickSeq(maxN);
      Values.show(q, maxN);
    }
}
```


% java QuickSeq 1000

http://aofa.cs.princeton.edu

2. Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem

2a.Recur.Values

http://aofa.cs.princeton.edu

2. Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem

2b.Recur.Telescope

Telescoping a (linear first-order) recurrence

Linear first-order recurrences telescope to a sum.

Challenge: Need to be able to evaluate the sum.

Elementary discrete sums

geometric series	$\sum_{0 \le k < n} x^k = \frac{1 - x^n}{1 - x}$
arithmetic series	$\sum_{0 \le k < n} k = \frac{n(n-1)}{2} = \binom{n}{2}$
binomial (upper)	$\sum_{0 \le k \le n} \binom{k}{m} = \binom{n+1}{m+1}$
binomial theorem	$\sum_{0 \le k \le n} \binom{n}{k} x^k y^{n-k} = (x+y)^n$
Harmonic numbers	$\sum_{1 \le k \le n} \frac{1}{k} = H_n$
Vandermonde convolution	$\sum_{0 \le k \le n} \binom{n}{k} \binom{m}{t-k} = \binom{n+m}{t}$

see Knuth volume I for many more

Telescoping a (linear first-order) recurrence (continued)

When coefficients are not 1, multiply/divide by a summation factor.

Challenge: How do we find the summation factor?

Telescoping a (linear first-order) recurrence (continued)

Q. What's the summation factor for $a_n = x_n a_{n-1} + \dots$?

A. Divide by $X_nX_{n-1}X_{n-2}...X_1$

Example 3.

$$a_n = \left(1 + \frac{1}{n}\right)a_{n-1} + 2$$
 for $n > 0$ with $a_0 = 0$

summation factor:

$$\frac{n+1}{n} \frac{n}{n-1} \frac{n-1}{n-2} \dots \frac{3}{2} \frac{2}{1} = n+1$$

Divide by n+1

$$\frac{a_n}{n+1} = \frac{a_{n-1}}{n} + \frac{2}{n+1}$$

$$=2\sum_{1\leq k\leq n}\frac{1}{k+1}=2H_{n+1}-1$$

$$a_n = 2(n+1)(H_{n+1}-1)$$

Challenge: Still need to be able to evaluate sums.

In-class exercise 1.

Verify the solution for *Example 3*.

Check initial values

$$a_n = \left(1 + \frac{1}{n}\right)a_{n-1} + 2$$
 for $n > 0$ with $a_0 = 0$

$$a_1 = 2a_0 + 2 = 2$$

$$a_2 = \frac{3}{2}a_1 + 2 = 5$$

$$a_3 = \frac{4}{3}a_2 + 2 = 26/3$$
 $a_n = 2(n+1)(H_{n+1} - 1)$

$$a_1 = 4(H_2 - 1) = 2$$

$$a_2 = 6(H_3 - 1) = 5$$

$$a_3 = 8(H_4 - 1)$$

$$= 8(1/2 + 1/3 + 1)$$

$$a_n = 2(n+1)(H_{n+1} - 1)$$

$$a_1 = 4(H_2 - 1) = 2$$

$$a_2 = 6(H_3 - 1) = 5$$

$$a_3 = 8(H_4 - 1)$$

$$= 8(1/2 + 1/3 + 1/4)$$

$$= 26/3$$

Proof
$$a_{n-1}$$

$$(1 + \frac{1}{n})2n(H_n - 1) + 2 = 2(n+1)(H_n - 1) + 2$$

$$= 2(n+1)(H_{n+1} - 1)$$

$$a_n$$

In-class exercise 2.

Solve this recurrence:

$$na_n = (n-2)a_{n-1} + 2$$
 for $n > 1$ with $a_1 = 1$

Hard way:

summation factor:
$$\frac{n-2}{n} \frac{n-3}{n-1} \frac{n-4}{n-2} \cdots = \frac{1}{n(n-1)}$$

Easy way:
$$2a_2 = 2$$
 so $a_2 = 1$ therefore $a_n = 1$ \uparrow WHY?

http://aofa.cs.princeton.edu

Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem

2b.Recur.Telescope

http://aofa.cs.princeton.edu

Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem

2c.Recur.Types

Types of recurrences

first order	linear	$a_n = na_{n-1} - 1$
	nonlinear	$a_n = 1/(1 + a_{n-1})$
second order	linear	$a_n = a_{n-1} + 2a_{n-2}$
	nonlinear	$a_n = a_{n-1}a_{n-2} + \sqrt{a_{n-2}}$
	variable coefficients	$a_n = na_{n-1} + (n-1)a_{n-2} + 1$
higher order		$a_n = f(a_{n-1}, a_{n-2}, \dots, a_{n-t})$
full history		$a_n = n + a_{n-1} + a_{n-2} \dots + a_1$
divide-and-c	onquer	$a_n = a_{\lfloor n/2 \rfloor} + a_{\lceil n/2 \rceil} + n$

Nonlinear first-order recurrences

Example. (Newton's method)

$$c_N = \frac{1}{2} \left(c_{N-1} + \frac{2}{c_{N-1}} \right)$$

[Typical in scientific computing]

SqrtTwo.java

quadratic convergence: number of significant digits doubles for each iteration

```
% java SqrtTwo 10
1.0
1.5
1.4166666666666665
1.4142156862745097
1.4142135623746899
1.414213562373095
1.414213562373095
1.414213562373095
1.414213562373095
1.414213562373095
```

Higher-order linear recurrences

[Stay tuned for systematic solution using generating functions (next lecture)]

Example 4.

$$a_n = 5a_{n-1} - 6a_{n-2}$$
 for $n \ge 2$ with $a_0 = 0$ and $a_1 = 1$

Postulate that $a_n = x^n$ $x^n = 5x^{n-1} - 6x^{n-2}$

Divide by x^{n-2} $x^2 - 5x + 6 = 0$

Factor (x-2)(x-3) = 0

Form of solution must be $a_n = c_0 3^n + c_1 2^n$

Use initial conditions to $a_0 = 0 = c_0 + c_1$ solve for coefficients $a_1 = 1 = 3c_0 + 2c_1$

Solution is $c_0 = 1$ and $c_1 = -1$ $a_n = 3^n - 2^n$

Note dependence on initial conditions

Higher-order linear recurrences

[Stay tuned for systematic solution using generating functions (next lecture)]

Example 5. Fibonacci numbers

$$a_n = a_{n-1} + a_{n-2}$$
 for $n \ge 2$ with $a_0 = 0$ and $a_1 = 1$

Postulate that $a_n = x^n$ $x^n = x^{n-1} + x^{n-2}$

Divide by x^{n-2} $x^2 - x - 1 = 0$

Factor $(x - \phi)(x - \hat{\phi}) = 0$

Form of solution must be $a_n = c_0 \phi^n + c_1 \hat{\phi}^n$

Use initial conditions to solve for coefficients

Solution

$$a_0 = 0 = c_0 + c_1$$

$$a_1 = 1 = \phi c_0 + \hat{\phi} c_1$$

$$a_n = \frac{\phi^n}{\sqrt{5}} - \frac{\hat{\phi}^n}{\sqrt{5}}$$

$$\phi = \frac{1 + \sqrt{5}}{2}$$

$$\hat{\phi} = \frac{1 - \sqrt{5}}{2}$$

Note dependence on initial conditions

Higher-order linear recurrences (continued)

Procedure amounts to an algorithm.

Multiple roots? Add $n\alpha^n$ terms (see text)

Example 5. Fibonacci numbers

$$a_n = a_{n-1} + a_{n-2}$$
 for $n \ge 2$ with $a_0 = 0$ and $a_1 = 1$

Postulate that $a_n = x^n$ $x^n = x^{n-1} + x^{n-2}$

Divide by x^{n-2} $x^2 - x - 1 = 0$

Factor $(x - \phi)(x - \hat{\phi}) = 0$

Form of solution must be $a_n = c_0 \phi^n + c_1 \hat{\phi}^n$

Use initial conditions to solve for coefficients $a_0 = 0 = c_0 + c_1$ $a_1 = 1 = \phi c_0 + \hat{\phi} c_1$

Solution $a_n = \frac{\phi^n}{\sqrt{5}} - \frac{\hat{\phi}^n}{\sqrt{5}}$

 $\hat{\phi} = \frac{1 - \sqrt{5}}{2}$

Note dependence on initial conditions

Need to compute roots? Use symbolic math package.

sage: realpoly.<z> = PolynomialRing(CC)

sage: factor(z^2-z-1)

(z - 1.61803398874989) * (z + 0.618033988749895)

Complex roots? Stay tuned for systematic solution using GFs (next lecture)

Divide-and-conquer recurrences

Divide and conquer is an effective technique in algorithm design.

Recursive programs map directly to recurrences.

Classic examples:

- Binary search
- Mergesort
- Batcher network
- Karatsuba multiplication
- Strassen matrix multiplication

http://aofa.cs.princeton.edu

Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem

2c.Recur.Types

http://aofa.cs.princeton.edu

Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem

2d.Recur.Mergesort

Warmup: binary search

Everyone's first divide-and-conquer algorithm

Number of compares in the worst case

$$B_N = B_{\lfloor N/2 \rfloor} + 1$$
 for $N > 1$ with $B_1 = 1$

Analysis of binary search (easy case)

$$B_N = B_{|N/2|} + 1$$
 for $N > 1$ with $B_1 = 1$

Exact solution for $N = 2^n$.

$$a_n \equiv B_{2^n}$$

$$a_n = a_{n-1} + 1 \quad \textit{for } n > 0 \; \textit{with} \; \; a_0 = 1$$

$$a_n = \sum_{1 \le k \le n} 1 = n$$
 Telescope to a sum

$$B_N = \lg N$$
 when N is a power of 2

Check. IgN = Ig(N/2) + 1

Analysis of binary search (general case)

Easy by correspondence with binary numbers

Define B_N to be the number of bits in the binary representation of N.

- $B_1 = 1$.
- Removing the rightmost bit of N gives $\lfloor N/2 \rfloor$.

Therefore
$$B_N = B_{\lfloor N/2 \rfloor} + 1$$
 for $N > 1$ with $B_1 = 1$

same recurrence as for binary search

Example.

1101011	110101	1
107	53	
N	<i>LN</i> /2 <i>J</i>	

Theorem.
$$B_N = \lfloor \lg N \rfloor + 1$$

Proof. Immediate by definition of $\lfloor \rfloor$.

$$B_N = n + 1$$
 for $2^n \le N < 2^{n+1}$
or $n \le \lg N < n + 1 \implies n = \lfloor \lg N \rfloor$

N	1	2	3	4	5	6	7	8	9
binary	1	10	11	100	101	110	111	1000	1001
lg N	0	1.0	1.58	2.0	2.32	2.58	2.80	3	3.16
Llg N⅃	0	1	1	2	2	2	2	3	3
_lg <i>N</i> _ +1	1	2	2	3	3	3	3	4	4

Mergesort

Everyone's second divide-and-conquer algorithm

For simplicity, assume merge implementation uses N compares

Number of compares for sort: $C_N = C_{\lfloor N/2 \rfloor} + C_{\lceil N/2 \rceil} + N$ for N > 1 with $C_1 = 1$

Analysis of mergesort (easy case)

Number of compares for sort: $C_N = C_{\lfloor N/2 \rfloor} + C_{\lceil N/2 \rceil} + N$ for N > 1 with $C_1 = 1$

Already solved for $N = 2^n$

$$a_n = 2a_{n-1} + 2^n$$
 with $a_0 = 0$

Divide by 2ⁿ

$$\frac{a_n}{2^n} = \frac{a_{n-1}}{2^{n-1}} + 1$$

Telescope to a sum

$$\frac{a_n}{2^n} = \sum_{1 \le k \le n} 1 = n$$

$$a_n = n2^n$$

Solution: $C_N = N \lg N$ when N is a power of 2

Analysis of mergesort (general case)

Number of compares for sort: $C_N = C_{\lfloor N/2 \rfloor} + C_{\lceil N/2 \rceil} + N$ for N > 1 with $C_1 = 1$

Solution: $C_N = N \lg N$ when N is a power of 2

Q. For quicksort, the number of compares is $\sim 2N \ln N - 2(1-\gamma)N$

Is the number of compares for mergesort $\sim N \lg N + \alpha N$ for some constant α ?

A. NO!

Coefficient of the linear term for mergesort

```
public class MergeLinearTerm implements Sequence
  private final double[] c;
  public MergeLinear(int maxN)
      c = new double[maxN+1];
      c[0] = 0;
      for (int N = 1; N \le \max N; N++)
         c[N] = N + c[N/2] + c[N-(N/2)];
      for (int N = 1; N \le \max N; N++)
          c[N] = N*Math.log(N)/Math.log(2) + N;
   }
  public double eval(int N)
   { return c[N]; }
  public static void main(String[] args)
      int maxN = Integer.parseInt(args[0]);
     MergeLinearTerm M = new MergeLinearTerm(maxN);
     Values.show(M, maxN);
```

% java MergeLinearTerm 512

Analysis of mergesort (general case)

Number of compares for sort: $C_N = C_{\lfloor N/2 \rfloor} + C_{\lceil N/2 \rceil} + N$ for N > 1 with $C_1 = 1$

Theorem. $C_N = N - 1 + number of bits in binary representation of numbers < N$

Combinatorial correspondence

 S_N = number of bits in the binary rep. of all numbers < N

		$S_{\lfloor N/2 \rfloor}$	2	$S_{\lceil N/2 \rceil}$]	N-1
1		1		1		1
10		10		10		10
11		11		11		11
100		100		100		100
101		101		101		101
110		110		110		110
111		111		111		111
1000	=	1000	+	1000	+	1000
1001		1001		1001		1001
1010		1010		1010		1010
1011		1011		1011		1011
1100		1100		1100		1100
1101		1101		1101		1101
1110		1110		1110		1110

$$S_N = S_{\lfloor N/2 \rfloor} + S_{\lceil N/2 \rceil} + N - 1$$

Same recurrence as mergesort (except for -1): $C_N = S_N + N - 1$

Number of bits in all numbers < N (alternate view)

Analysis of mergesort (summary)

Number of compares for sort: $C_N = C_{\lfloor N/2 \rfloor} + C_{\lceil N/2 \rceil} + N$ for N > 1 with $C_1 = 1$

Solution: $C_N = N \lg N$ when N is a power of 2

Theorem. Number of compares for mergesort is $N\lfloor\lg N\rfloor-2^{\lfloor\lg N\rfloor+1}+2N$

Alternate formulation (Knuth). $C_N = N \lg N + N\alpha(N)$

Notation: $|\lg N| = \lg N - \{\lg N\}$

$$1 - \{\lg N\} + 1 - 2^{1 - \{\lg N\}} = 2 - \{\lg N\} - 2^{1 - \{\lg N\}}$$

http://aofa.cs.princeton.edu

Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem

2d.Recur.Mergesort

http://aofa.cs.princeton.edu

Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem

2e.Recur.Master

Divide-and-conquer algorithms

Suppose that an algorithm attacks a problem of size N by

- Dividing into α parts of size about N/β .
- Solving recursively.
- Combining solutions with extra cost $\Theta(N^{\gamma}(\log N)^{\delta})$

Example 1 (mergesort):
$$\alpha = 2$$
, $\beta = 2$, $\gamma = 1$, $\delta = 0$

Example 2 (Batcher network):
$$\alpha = 2$$
, $\beta = 2$, $\gamma = 1$, $\delta = 1$

Example 3 (Karatsuba multiplication):
$$\alpha = 3$$
, $\beta = 2$, $\gamma = 1$, $\delta = 0$

Example 4 (Strassen matrix multiply):
$$\alpha = 7$$
, $\beta = 2$, $\gamma = 1$, $\delta = 0$

$$C_N = 2C_{N/2} + N$$

$$C_N = 2C_{N/2} + N \lg N$$

$$C_N = 3C_{N/2} + N$$

$$C_N = 7C_{N/2} + N$$

"Master Theorem" for divide-and-conquer algorithms

Suppose that an algorithm attacks a problem of size n by dividing into α parts of size about n/β with extra cost $\Theta(n^{\gamma}(\log n)^{\delta})$

Theorem. The solution to the recurrence

$$a_n = a_{n/\beta + O(1)} + a_{n/\beta + O(1)} + \ldots + a_{n/\beta + O(1)} + \Theta(n^{\gamma}(\log n)^{\delta})$$

is given by

$$a_n = \Theta(n^{\gamma}(\log n)^{\delta})$$
 when $\gamma < \log_{\beta} \alpha$

$$a_n = \Theta(n^{\gamma}(\log n)^{\delta+1})$$
 when $\gamma = \log_{\beta} \alpha$

 α terms

$$a_n = \Theta(n^{\log_\beta \alpha})$$
 when $\gamma > \log_\beta \alpha$

Example: $\alpha = 3$

$$\beta = 2$$

$$\beta = 3$$

$$\beta = 4$$

Typical "Master Theorem" applications

Suppose that an algorithm attacks a problem of size N by

- Dividing into α parts of size about N/β .
- Solving recursively.
- Combining solutions with extra cost $\Theta(N^{\gamma}(\log N)^{\delta})$

Example 1 (mergesort): $\alpha = 2$, $\beta = 2$, $\gamma = 1$, $\delta = 0$

Example 2 (Batcher network): $\alpha = 2$, $\beta = 2$, $\gamma = 1$, $\delta = 1$

Example 3 (Karatsuba multiplication): $\alpha = 3$, $\beta = 2$, $\gamma = 1$, $\delta = 0$

Example 4 (Strassen matrix multiply): $\alpha = 7$, $\beta = 2$, $\gamma = 1$, $\delta = 0$

Master Theorem

$$a_n = \Theta(n^{\gamma}(\log n)^{\delta}$$
 when $\gamma < \log_{\beta} \alpha$
 $a_n = \Theta(n^{\gamma}(\log n)^{\delta+1}$ when $\gamma = \log_{\beta} \alpha$
 $a_n = \Theta(n^{\log_{\beta} \alpha})$ when $\gamma > \log_{\beta} \alpha$

Asymptotic growth rate

$$\Theta(N(\log N)^2)$$

$$\Theta(N^{\log_2 3}) = \Theta(N^{1.585\dots})$$

$$\Theta(N^{\log_2 7}) = \Theta(N^{2.807...})$$

Versions of the "Master Theorem"

Suppose that an algorithm attacks a problem of size N by

- Dividing into α parts of size about N/β .
- Solving recursively.
- Combining solutions with extra cost $\Theta(N^{\gamma}(\log N)^{\delta})$
 - 1. Precise results are available for certain applications in the analysis of algorithms.
 - 2. General results are available for proofs in the theory of algorithms.
 - 3. A full solution using analytic combinatorics was derived in 2011 by Szpankowski and Drmota.

http://aofa.cs.princeton.edu

Recurrences

- Computing values
- Telescoping
- Types of recurrences
- Mergesort
- Master Theorem

2e.Recur.Master

Exercise 2.17

Percentage of three nodes at the bottom level of a 2-3 tree?

Exercise 2.17 [Yao] ("Fringe analysis of 2-3 trees") Solve the recurrence

$$A_N = A_{N-1} - rac{2A_{N-1}}{N} + 2\Big(1 - rac{2A_{N-1}}{N}\Big) \qquad ext{for } N > 0 ext{ with } A_0 = 0.$$

This recurrence describes the following random process: A set of N elements collect into "2-nodes" and "3-nodes." At each step each 2-node is likely to turn into a 3-node with probability 2/N and each 3-node is likely to turn into two 2-nodes with probability 3/N. What is the average number of 2-nodes after N steps?

Exercise 2.69

Details of divide-by-three and conquer?

Exercise 2.69 Plot the periodic part of the solution to the recurrence

$$a_N = 3a_{\lfloor N/3 \rfloor} + N \qquad \text{for } N > 3 \text{ with } a_1 = a_2 = a_3 = 1$$
 for $1 \leq N \leq 972$.

Assignments for next lecture

1. Read pages 41-86 in text.

2. Write up solution to Ex. 2.17.

3. Set up StdDraw from *Algs* booksite

4. Do Exercise 2.69.

http://aofa.cs.princeton.edu

2. Recurrences