Cambios de variables, Teoría de Lie y EDO

Fernando Mazzone

Depto de Matemática Facultad de Ciencias Exactas Físico-Químicas y Naturales Universidad Nacional de Río Cuarto

9 de abril de 2018

Índice

- Introducción histórica
- FORMAS DIFERENCIALES, IDEA VAGA
- CAMBIOS DE VARIABLES
- 4 GRUPOS
- **S** GRUPOS CONTINUOS DE SIMETRÍAS
- **6** ÓRBITAS, TANGENTES Y CURVAS INVARIANTES
- O CONDICIÓN DE SIMETRÍA LINEALIZADA
- ® COORDENADAS CANÓNICAS
- RESOLVIENDO EDO CON GRUPOS DE LIE DE SIMETRÍAS

Índice

- Introducción histórica
- 2 FORMAS DIFERENCIALES, IDEA VAGA
- 3 CAMBIOS DE VARIABLES
- 4 GRUPOS
- 5 GRUPOS CONTINUOS DE SIMETRÍAS
- 6 ÓRBITAS, TANGENTES Y CURVAS INVARIANTES
- O CONDICIÓN DE SIMETRÍA LINEALIZADA
- **8** COORDENADAS CANÓNICAS
- RESOLVIENDO EDO CON GRUPOS DE LIE DE SIMETRÍAS

SOPHUS LIE

Marius Sophus Lie fue un matemático noruego (17 de diciembre de 1842-18 de febrero de 1899) que creó en gran parte la teoría de la simetría continua, y la aplicó al estudio de la geometría y las ecuaciones diferenciales. La herramienta principal de Lie, y uno de sus logros más grandes fue el descubrimiento de que los grupos continuos de transformación (ahora llamados grupos de Lie), podían ser

entendidos mejor "linealizándolos", y estudiando los correspondientes campos vectoriales generadores (los, así llamados, generadores infinitesimales). Los generadores obedecen una versión linealizada de la ley del grupo llamada el corchete o conmutador, y tienen la estructura de lo que hoy, en honor suyo, llamamos un álgebra de Lie. (Wikipedia)

Índice

- Introducción histórica
- 2 FORMAS DIFERENCIALES, IDEA VAGA
- CAMBIOS DE VARIABLES
- 4 GRUPOS
- 5 GRUPOS CONTINUOS DE SIMETRÍAS
- 6 ÓRBITAS, TANGENTES Y CURVAS INVARIANTES
- O CONDICIÓN DE SIMETRÍA LINEALIZADA
- **8** COORDENADAS CANÓNICAS
- RESOLVIENDO EDO CON GRUPOS DE LIE DE SIMETRÍAS

DISTINTAS FORMAS PARA UNA ECUACIÓN

ECUACIÓN DIFERENCIAL GENERAL DE PRIMER ORDEN

$$\frac{dy}{dx} = f(x, y) \tag{1}$$

FORMA DIFERENCIAL

$$M(x,y)dx + N(x,y)dy = 0 (2)$$

La primera expresión es más asimétrica, entre las variables x e y una de ellas es independiente (x) y la otra independiente (y). La segunda expresión es más simétrica, las dos variables tienen el mismo estatus.

Las expresiones del tipo (2) representan un ente matemático importante llamado forma diferencial

FORMAS DIFERENCIALES, IDEA SOMERA

- Como los polinomios, las formas diferenciales tienen grado.
- ② Dadas dos (pueden ser mas) variables x, y una 0-forma diferencial es una función g(x, y) de x, y.
- Section La expresión (2) es una 1-forma diferencial.
- Hay un operador llamado diferencial y denotado por d. Si ω es una k-forma diferencial $d\omega$ es una k+1 forma diferencial.
- **Solution** En el caso de 0-forma (función) g(x, y) el diferencial se define

$$dg = \frac{\partial M}{\partial x} dx + \frac{\partial N}{\partial v} dy.$$

Una k-forma diferencial se llama exacta cuando es el diferencial de una k-1-forma.

Índice

- Introducción histórica
- 2 FORMAS DIFERENCIALES, IDEA VAGA
- CAMBIOS DE VARIABLES
- 4 GRUPOS
- 5 GRUPOS CONTINUOS DE SIMETRÍAS
- 6 ÓRBITAS, TANGENTES Y CURVAS INVARIANTES
- O CONDICIÓN DE SIMETRÍA LINEALIZADA
- **8** COORDENADAS CANÓNICAS
- RESOLVIENDO EDO CON GRUPOS DE LIE DE SIMETRÍAS

IDEA BÁSICA

Supongamos la ecuación (1) o (2) en las variables x, y. La idea es encontrar nuevas variables $\hat{x} = \hat{x}(x, y)$ y $\hat{y} = \hat{y}(x, y)$ tales que la ecuación se transforme en una más sencilla de resolver.

CÓMPUTOS DE CAMBIAMOS VARIABLES

Cambio de la variable dependiente $y = h(x, \hat{y})$ manteniendo la independiente

$$\frac{dy}{dx} = \frac{\partial h}{\partial x} + \frac{\partial h}{\partial \hat{y}} \frac{d\hat{y}}{dx}.$$
 (3)

La ecuación se convierte

$$\frac{\partial h}{\partial x} + \frac{\partial h}{\partial \hat{y}} \frac{d\hat{y}}{dx} = f(x, h(x, \hat{y})).$$

Que es una expresión sólo en \hat{y} y x. Parece más complicada, pero en un ejemplo concreto puede ser más simple.

CÓMPUTOS DE CAMBIOS DE VARIABLES, EJEMPLO

Ejemplo 1 Hacer el cambio de variable en la ecuación

$$y = \frac{e^{\hat{y}}}{x} \quad \text{en} \quad y' = [\ln(xy)]^2 \, xy - \frac{y}{x}. \tag{4}$$

1) Expresemos dy/dx sólo con x, \hat{y} y $d\hat{y}/dx$.

$$\frac{dy}{dx} = -\frac{e^{\hat{y}}}{x^2} + \frac{e^{\hat{y}}}{x} \frac{d\hat{y}}{dx}.$$

2) Remplacemos y' e y en la ecuación

$$-\frac{e^{\hat{y}}}{x^2} + \frac{e^{\hat{y}}}{x} \frac{d\hat{y}}{dx} = \left[\ln \left(x \frac{e^{\hat{y}}}{x} \right) \right]^2 x \frac{e^{\hat{y}}}{x} - \frac{\frac{e^{\hat{y}}}{x}}{x}.$$

3) Simplifiquemos

$$\frac{d\hat{y}}{dx} = \hat{y}^2 x. \tag{5}$$

CÓMPUTOS DE CAMBIOS DE VARIABLES, EJEMPLO

Lo podemos hacer con SymPy

```
from sympy import *
x,y,y_n=symbols('x,y,y_n')
y=Function('y')(x)
y_n=Function('y_n')(x)
y=exp(y_n)/x
eq=Eq(y.diff(x)-(ln(x*y))**2*x*y+y/x,0)
simplify(eq)
```

Obtenemos la ecuación

$$\frac{1}{x}\left(-x\log^{2}\left(e^{y_{n}\left(x\right)}\right)+\frac{d}{dx}y_{n}\left(x\right)\right)e^{y_{n}\left(x\right)}=0$$

que SymPy no simplifica a nuestro gusto

CÓMPUTOS DE CAMBIOS DE VARIABLES

Cambio de la variable independiente $\hat{x} = h(x)$ manteniendo la dependiente

$$\frac{dy}{dx} = \frac{dy}{d\hat{x}}\frac{dh}{dx} = \frac{dy}{d\hat{x}}h'(x). \tag{6}$$

Suponiendo *h* biyectiva, la ecuación se convierte

$$\frac{dy}{d\hat{x}}h'(h^{-1}(\hat{x})) = f(h^{-1}(\hat{x}), y).$$

Que es una expresión sólo en \hat{x} e y.

CÓMPUTOS DE CAMBIOS DE VARIABLES, EJEMPLO

Ejemplo 2 Hacer el cambio de variable en la ecuación

$$x = \cos \hat{x}$$
 en $-\frac{dy}{dx} + \frac{1}{\sqrt{1 - x^2}}y = 0.$ (7)

1) $h(x) = \arcsin x$

$$\frac{dy}{dx} = \frac{dy}{d\hat{x}}h'(x) = -\frac{1}{\sqrt{1-x^2}}\frac{dy}{d\hat{x}}.$$

2) Remplacemos x e y' en la ecuación

$$\frac{1}{\sqrt{1-x^2}} \frac{dy}{d\hat{x}} + \frac{1}{\sqrt{1-x^2}} y = 0$$

3) Simplificando

$$\frac{dy}{d\hat{x}} + y = 0. ag{8}$$

CÓMPUTOS DE CAMBIOS DE VARIABLES, EJEMPLO

Lo podemos hacer con SymPy

```
from sympy import *
x,x_n=symbols('x,x_n')
x_n=acos(x)
y=Function('y')(x_n)
Ecuacion=-y.diff()+1/(sqrt(1-x**2))*y
```

Obtenemos la ecuación

$$\frac{1}{\sqrt{-x^2+1}}\left(y(a\cos(x))+\frac{d}{d\xi_1}y(\xi_1)\Big|_{\xi_1=a\cos(x)}\right)=0$$

Nuevamente SymPy no simplifica a nuestro gusto

Cambio de variable general $\hat{x} = \hat{x}(x, y), \ \hat{y} = \hat{y}(x, y)$

1) Calculamos $d\hat{y}/d\hat{x}$ en las variables x, y

$$\frac{d\hat{y}}{d\hat{x}} = \frac{\frac{d\hat{y}}{dx}}{\frac{d\hat{x}}{dx}} = \frac{\frac{\partial\hat{y}}{\partial x} + \frac{\partial\hat{y}}{\partial y}y'}{\frac{\partial\hat{x}}{\partial x} + \frac{\partial\hat{x}}{\partial y}y'} = \frac{\frac{\partial\hat{y}}{\partial x} + \frac{\partial\hat{y}}{\partial y}f(x,y)}{\frac{\partial\hat{x}}{\partial x} + \frac{\partial\hat{x}}{\partial y}f(x,y)}.$$
 (9)

2) En la expresión resultante sustituir x, y por las tansformaciones inversas $x = x(\hat{x}, \hat{y})$ y $y = y(\hat{x}, \hat{y})$

Ejemplo 3. Transformar a polares: $\frac{dy}{dx} = \frac{y^3 + x^2y - x - y}{x^3 + xy^2 - x + y}$. Dado que el cálculo es extenso lo haremos sólo con SymPy

```
from sympy import *
x=symbols('x')
y=Function('y')(x)
r = sqrt(x**2+y**2)
theta=atan(y/x)
Expr2=r.diff(x)/theta.diff(x)
Expr3=Expr2.subs(y.diff(x),\setminus
(y**3+x**2*y-x-y)/(x**3+x*y**2-x+y))
r, theta=symbols ('r, theta', positive=True)
Expr4=Expr3.subs([(y,r*sin(theta)), \
(x, r*cos(theta)))
Expr5=simplify(Expr4)
```

Encontramos que en polares la ecuación es mucho más simple

$$\frac{dr}{d\theta} = -r^3 + r. \tag{10}$$

Quizás usar la notación como forma diferencial sea más efectivo. Como r y θ son funciones de x e y, ellas son 0-formas. Usando las reglas de la diferencial, hay que reemplazar

$$x = r \cos \theta;$$
 $dx = \cos \theta dr - \sin \theta r d\theta$
 $y = r \sin \theta;$ $dy = \sin \theta dr + \cos \theta r d\theta$ (11)

en la 1-forma:

$$(y^3 + x^2y - x - y)dx - (x^3 + xy^2 - x + y)dy$$
 (12)

SAGE Y FORMAS DIFERENCIALES

Encontramos a SAGE más cómodo para operar con formas diferenciales que SymPy

```
sage: r,theta=var('r,theta')
sage: U = CoordinatePatch((r,theta))
                                                    3
sage: F = DifferentialForms(U)
sage: x= DifferentialForm(F, 0, r*cos(theta))
sage: y= DifferentialForm(F, 0, r*sin(theta))
sage: w = (x^3 + x * y^2 - x + y) * y . diff() - (y^3 + x^2 * y - x - 6)
   y) *x.diff()
sage: w[0].simplify_full()
r
                                                    8
sage: w[1].simplify_full()
                                                    9
r^4 - r^2
                                                    10
```

La forma obtenida es $rdr + (r^4 - r^2)d\theta$.

Índice

- Introducción histórica
- 2 FORMAS DIFERENCIALES, IDEA VAGA
- 3 CAMBIOS DE VARIABLES
- 4 GRUPOS
- 5 GRUPOS CONTINUOS DE SIMETRÍAS
- 6 ÓRBITAS, TANGENTES Y CURVAS INVARIANTES
- O CONDICIÓN DE SIMETRÍA LINEALIZADA
- **8** COORDENADAS CANÓNICAS
- RESOLVIENDO EDO CON GRUPOS DE LIE DE SIMETRÍAS

GRUPOS, REPASO

GRUPOS

Sean G un conjunto y α una función tal que $\alpha: G \times G \to G$. En el contexto de grupos es más usual la notación $\alpha(g_1, g_2) = g_1g_2$. El par (G, α) se llama un grupo si se satisface

- $lackbox{0}\ (g_1g_2)g_3=g_1(g_2g_3), \ \text{para todos}\ g_1,g_2,g_3\in G,$
- 2 Existe $e \in G$ tal que eg = ge = g, para todo $g \in G$.
- **3** Para todo $g \in G$ existe $h \in G$ tal que gh = hg = e. Se acostumbra denotar $h = g^{-1}$.

EJEMPLOS DE GRUPOS

Ejemplo 1 Sea Π un plano euclideano y G el conjunto de todas las transformaciones rígidas de Π en si mismo. Entonces G es un grupo con la operación de composición. Se llama el grupo de transformaciones rígidas

Ejemplo 2 Sea $X = \{x_1, \dots, x_n\}$ un conjunto de n elementos y S_n definido por

$$S_n = \{ \sigma | \sigma : X \to X \text{ y } \sigma \text{ es biyectiva } \}$$

Entonces S_n es un grupo con la operación de composición. Se denomina grupo simétrico

<u>Ejemplos de</u> grupos

Ejemplo 3 Sea Δ un polígono regular de *n* lados en un plano euclideano Π y D_{2n} el conjunto de todas las transformaciones rígidas de Π en si mismo que llevan Δ en si mismo. D_{2n} se llama el grupo diedral de orden 2*n*. Para un triángulo equilatero:

TEORÍA DE GRUPOS COMPUTACIONAL: SAGE Y GAP

GAP - Groups, Algorithms, Programming Lenguaje de programación para algebra discreta SAGE: es un sistema de software de matemáticas libre de código abierto bajo la licencia GPL. Se basa en muchos paquetes de código abierto existentes: NumPy, SciPy, matplotlib, SymPy, Maxima, GAP, FLINT, R y muchos más. Acceda a su poder combinado a través de un lenguaje común, basado en Python Misión: Creación de una alternativa libre de código abierto viable a Magma, Maple, Mathematica y Matlab.

TEORÍA DE GRUPOS COMPUTACIONAL: SAGE Y GAP

sage:	G=SymmetricGroup(5)	11
sage:	sigma=G([(1,2,3),(4,5)])	12
sage:	sigma^2	13
(1,3,	2)	14
sage:	sigma^3	15
(4,5)		16
sage:	sigma^6	17
()		18
sage:	G.order()	19
120		20
sage:	<pre>H=G.subgroup([sigma])</pre>	21
sage:	H.order()	22
6		23

TEORÍA DE GRUPOS COMPUTACIONAL: SAGE Y GAP

```
sage: H.list()
                                                  24
[(), (1,2,3)(4,5), (1,3,2), (4,5), (1,2,3),
                                                  25
   (1,3,2)(4,5)
sage: H.is normal()
                                                  26
False
                                                  27
sage: G1=DihedralGroup(3)
                                                  28
sage: G1[-2]
                                                  29
(1,3,2)
                                                  30
sage: H1=G1.subgroup(G1[-2])
                                                  31
sage: H1.is_normal()
                                                  32
                                                  33
True
sage: G1.quotient(H1)
                                                  34
Permutation Group with generators [(1,2)]
                                                  35
```

Índice

- Introducción histórica
- 2 FORMAS DIFERENCIALES, IDEA VAGA
- CAMBIOS DE VARIABLES
- 4 GRUPOS
- **S** GRUPOS CONTINUOS DE SIMETRÍAS
- 6 ÓRBITAS, TANGENTES Y CURVAS INVARIANTES
- O CONDICIÓN DE SIMETRÍA LINEALIZADA
- **8** COORDENADAS CANÓNICAS
- RESOLVIENDO EDO CON GRUPOS DE LIE DE SIMETRÍAS

GRUPOS DE SIMETRÍAS

GRUPOS DE SIMETRÍAS

Los cambios de variables de un conjunto de dos variables, digamos x e y, son funciones Γ , invertibles, de clase C^{∞} , donde $\Gamma: \Omega_1 \to \Omega_2$, con Ω_1, Ω_2 abiertos de \mathbb{R}^2 .

Acostumbraremos escribir $(\hat{x}, \hat{y}) = \Gamma(x, y)$ y diremos que (\hat{x}, \hat{y}) son la variables nuevas e (x, y) las viejas.

Llamaremos \mathscr{T} al conjunto de todas los cambios de variables Γ . El conjunto \mathscr{T} tiene una estructura de grupo con la operación de composición.

El grupo de las transformaciones rígidas, los grupos diedrales D_{2n} , el grupo de todas las rotaciones alrededor del orígen son subgrupos de \mathscr{T} .

GRUPOS DE SIMETRÍAS, EJEMPLOS

Ejemplo, polares: Es más facil describir la transformación que lleva coordenadas polares en cartesinas. En este caso $(x, y) = \Gamma(r, \theta)$ y

$$\begin{array}{ll} \Gamma(r,\theta) &= (r\cos(\theta),r\sin(\theta)),\\ \Omega_1 &= (0,\infty)\times(-\pi,\pi),\\ \Omega_2 &= \mathbb{R}^2 - \{(x,y)|y=0,x\leq 0\} \end{array}$$

GRUPOS DE LIE UNIPARAMÉTRICOS

GRUPOS UNIPARAMÉTRICOS DE SIMETRÍAS

Sea \mathscr{T} el grupo de cambios de variables. Supongamos dado un homomorfismo de grupos $\Gamma:(\mathbb{R},+)\to(\mathscr{T},\circ)$.

Notación:

- **1** Para $\varepsilon \in \mathbb{R}$ escribiremos $\Gamma_{\varepsilon} = \Gamma(\varepsilon)$
- ② Si $(x, y) \in \mathbb{R}^2$ escribimos $(\hat{x}, \hat{y}) = \Gamma_{\varepsilon}(x, y)$. Notar que \hat{x}, \hat{y} son funciones de x, y y ε .

Si $\Gamma_{\varepsilon}(x,y)$ es diferenciable, con inversa diferenciable, respecto a (x,y) y analítica respecto a ε diremos que $\{\Gamma_{\varepsilon}|\varepsilon\in\mathbb{R}\}$ es un grupo de Lie uniparamétrico de simetrías.

GRUPOS DE LIE UNIPARAMÉTRICOS

Propiedades de Γ_{ε}

- Γ_{ε} es biyectiva y diferenciable sobre su dominio de definición.

- る Si Γ_ε(x, y) = (\hat{x} , \hat{y}), entonces \hat{x} (x, y, ε) y \hat{y} (x, y, ε) son diferenciables respecto (x, y) y se desarrollan en serie de potencias respecto a ε. Es decir para todo ε₀ ∈ ℝ

$$\hat{x}(x,y,\varepsilon) = a_0(x,y) + a_1(x,y)(\varepsilon - \varepsilon_0) + \cdots$$

$$\hat{y}(x,y,\varepsilon) = b_0(x,y) + b_1(x,y)(\varepsilon - \varepsilon_0) + \cdots$$

EJEMPLOS GRUPOS DE LIE UNIPARAMÉTRICOS

Ejercicio: Demostrar que las siguientes aplicaciones inducen grupos de Lie uniparamétricos

EJEMPLOS GRUPOS DE LIE UNIPARAMÉTRICOS

Podemos usar SymPy para la tarea

```
from sympy import *
T=lambda x,y,epsilon: Matrix([x+epsilon,y])
x,y,epsilon1,epsilon2=\
symbols('x,y,epsilon1,epsilon2')
PropGrupo=T(T(x,y,epsilon1)[0],\
T(x,y,epsilon1)[1],epsilon2)-\
T(x,y,epsilon1+epsilon2)
```

El resultado es $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

EJEMPLOS GRUPOS DE LIE UNIPARAMÉTRICOS

El mismo ejemplo lo podemos desarrollar usando expresiones en lugar del operador lambda.

```
from sympy import *
x,y,epsilon,epsilon1,epsilon2=\
symbols('x,y,epsilon,epsilon1,epsilon2')
T=Matrix([x+epsilon,y])
PropGrupo=T.subs([(\
x,T.subs(epsilon,epsilon1)[0]),\
(1,T.subs(epsilon,epsilon1)[1]),\
(epsilon,epsilon2)\
])\
-T.subs(epsilon,epsilon1+epsilon2)
```

El resultado es $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Grupo de simetrías de una ecuación

DEFINICIÓN

Consideremos una ecuación

$$y' = f(x, y). (13)$$

Una transformación $\Gamma \in \mathscr{T}$ se denomina una simetría de la ecuación si el cambio de variables dado por $(\hat{x}, \hat{y}) = \Gamma(x, y)$ deja invariante la ecuación.

El conjunto de todas las simetría de una ecuación es un subgrupo de (\mathscr{T}, \circ) . Lo llamaremos grupo de simetrías de la ecuación.

Grupo de simetrías de una ecuación

De acuerdo con (9) para que $(\hat{x}, \hat{y}) = \Gamma(x, y)$ sea una simetría de (13) se debe cumplir que

$$\frac{\frac{\partial \hat{y}}{\partial x} + \frac{\partial \hat{y}}{\partial y} f(x, y)}{\frac{\partial \hat{x}}{\partial x} + \frac{\partial \hat{x}}{\partial y} f(x, y)} = f(\hat{x}, \hat{y})$$
(14)

Esta ecuación se llama condición de simetría. Es una ecuación en derivadas parciales, en principio más compleja que la ecuación original. Tiene varios grados de libertad, por lo que suele haber muchas simetrías. Es común que encontremos soluciones a traves de un ansatz.

EJEMPLOS SIMETRÍAS ECUACIONES

Consideremos la ecuación

$$y'=0 (15)$$

La condición de simetría se reduce a

$$\frac{\frac{\partial \hat{y}}{\partial x}}{\frac{\partial \hat{x}}{\partial x}} = 0$$

Debemos tener que $\frac{\partial \hat{y}}{\partial x} = 0$. Vale decir \hat{y} es independiente de x. La forma general de una simetría es

$$\hat{x} = \hat{x}(x, y) \quad \hat{y} = \hat{y}(y). \tag{16}$$

EJEMPLOS SIMETRÍAS ECUACIONES

Hay muchas simetrías. Las traslaciones en cualquier dirección $(x, y) \mapsto (x + \alpha, y + \alpha, y)$ β) $(\alpha, \beta \in \mathbb{R})$. Cambios de escala en ambos ejes $(x,y) \mapsto (e^{\varepsilon}x,y), (x,y) \mapsto$ $(x, e^{\varepsilon}y)$. Reflexiones respecto ambos ejes $(x, y) \mapsto$ $(-x,y), (x,y) \mapsto (x,-y).$ Observar que el gráfico de las soluciones posee las mismas simetrías, pues en general las simetrías de una ecuación llevan soluciones en soluciones.

SIMETRÍAS TRIVIALES

De todas las simetrías encontradas $\Gamma_{\varepsilon}(x,y)=(e^{\varepsilon}x,y)$, $\Gamma_{\varepsilon}(x,y)=(x+\varepsilon,y)$ y $\Gamma_{\varepsilon}(x,y)=(x+\varepsilon,y)$ se llaman triviales pues llevan una curva solución en si misma.

Cualquier cambio de la forma $\hat{x} = \hat{x}(x, y)$ $\hat{y} = y$ es trivial.

Estamos interesados en hallar grupos de Lie uniparamétricos de simetrías no triviales.

SIMETRÍAS TRIVIALES

Las reflexiones $\Gamma(x,y)=(-x,y)$ no pertenecen a tal tipo de grupo. Para demostrar esto supongamos que Γ es alguna instancia de un tal grupo $\Gamma \varepsilon$, supongamos por ejemplo que $\Gamma = \Gamma \varepsilon_0$. Consideramos el jacobiano de la transformación:

$$J(\varepsilon) := \det \begin{pmatrix} \frac{\partial \hat{x}}{\partial x} & \frac{\partial \hat{x}}{\partial y} \\ \frac{\partial \hat{y}}{\partial x} & \frac{\partial \hat{y}}{\partial y} \end{pmatrix}$$

Tenemos que J(0)=1 y $J(\varepsilon_0)=-1$. Y $J(\varepsilon)$ es continua respecto a ε . Por ende existiría ε' con $J(\varepsilon')=0$. Esto implica que la matriz jacobiana $D\Gamma$ es singular y esto contradice que $\Gamma:\mathbb{R}^2\to\mathbb{R}^2$ es difeomorfismo ($D\Gamma D\Gamma^{-1}=I$).

Γ genera un grupo discreto, ya que $\Gamma^2 = \Gamma \circ \Gamma = I$. Luego Γ genera el grupo $G = \{I, \Gamma\}$ que es isomorfo a \mathbb{Z}_2 . En este caso diremos que $\{I, \Gamma\}$ es un grupo discreto de simetrías.

Ejemplo: hallar simetrías de

$$\frac{dy}{dx} = f(x).$$

De acuerdo con (9) se debe cumplir que

$$\frac{\frac{\partial \hat{y}}{\partial x} + \frac{\partial \hat{y}}{\partial y} f(x)}{\frac{\partial \hat{x}}{\partial x} + \frac{\partial \hat{x}}{\partial y} f(x)} = f(\hat{x})$$

La forma de la ecuación sugiere el ansatz

$$[\hat{x} = x], \quad \frac{\partial \hat{y}}{\partial x} = \frac{\partial \hat{x}}{\partial y} = 0, \quad \frac{\partial \hat{y}}{\partial y} = \frac{\partial \hat{x}}{\partial x}.$$

Luego

$$\frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{y}} = \mathbf{1} \Rightarrow \hat{\mathbf{y}} = \mathbf{y} + \varepsilon$$

con ε constante arbitraria.

Hallamos que

$$\Gamma_{\varepsilon}(x,y)=(x,y+\varepsilon)$$

es un grupo de Lie uniparamétrico de simetrías. De manera similar

$$\Gamma_{\varepsilon}(x,y)=(x+\varepsilon,y)$$

es un grupo uniparamétrico de simetrías para

$$\frac{dy}{dx} = f(y).$$

Geométricamente en el primer caso todas las soluciones se obtienen trasladando una cualquiera verticalmente y en el segundo caso horizontalmente.

Soluciones de $y' = x^3 - x$ Soluciones de $y' = y^3 - y$

Demostrar que las rotaciones alrededor del origen es un grupo de Lie uniparamétrico de simetrías de

$$\frac{dy}{dx} = \frac{y^3 + x^2y - x - y}{x^3 + xy^2 - x + y}.$$

Sea Γ_{ε} la transformación que rota un ángulo ε alrededor del origen. Era un ejercicio demostrar que $\{\Gamma_{\varepsilon}|\varepsilon\in\mathbb{R}\}$ es un grupo uniparamétrico de simetrías. Se tiene la representación matricial

$$\Gamma_{\varepsilon}(x,y) = \begin{pmatrix} \hat{x} \\ \hat{y} \end{pmatrix} = \begin{pmatrix} \cos(\varepsilon) & -\sin(\varepsilon) \\ \sin(\varepsilon) & \cos(\varepsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\Gamma_{\varepsilon}^{-1}(\hat{x},\hat{y}) = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos(\varepsilon) & \sin(\varepsilon) \\ -\sin(\varepsilon) & \cos(\varepsilon) \end{pmatrix} \begin{pmatrix} \hat{x} \\ \hat{y} \end{pmatrix}$$

Para el cálculo recurrimos a SymPy (usamos x_n en lugar de \hat{x})

```
from sympy import *
x, theta=symbols('x, theta')
y=Function('y')(x)
x_n=cos(theta)*x-sin(theta)*y
y n=sin(theta)*x+cos(theta)*y
Expr2=y n.diff(x)/x n.diff(x)
Expr3=Expr2.subs(y.diff(),\
(y**3+x**2*y-x-y) / (x**3+x*y**2-x+y))
x n, y n=symbols('x n, y n')
Expr4=Expr3.subs([(y, -\sin(theta)*x n+\cos(theta)]
(x, \cos(theta) * x n + \sin(theta) * y n))
Expr5=simplify(Expr4)
```

Tiene problemas para simplificar, lo tenemos que ayudar

```
Expr6=Expr5.subs(sin(2*theta + pi/4),\
sin(2*theta)*sqrt(2)+cos(2*theta)*sqrt(2))
Expr7=Expr6.subs(cos(2*theta),\
1+(cos(theta))**2
)
Expr8=Expr7.subs(cos(2*theta),\
1+(cos(theta))**2)
Expr9=Expr8.subs(sin(2*theta),\
1-(cos(theta))**2)
```

La ecuación resultante es la misma

$$\frac{dy_n}{dx_n} = \frac{x_n^2 y_n - x_n + y_n^3 - y_n}{x_n^3 + x_n y_n^2 - x_n + y_n}.$$
 (17)

A la misma conclusión arribábamos si recordabamos que en en coordenadas polares la ecuación se escribe

$$\frac{dr}{d\theta} = r - r^3$$

y que esta ecuación tiene las simetrías $\Gamma_{\varepsilon}: (r, \theta) \mapsto (r, \theta + \varepsilon)$.

Si rotamos un ángulo fijo el gráfico de una solución obtenemos el gráfico de otra solución.

SIMETRÍAS RESUELVEN ECUACIONES

Ejemplo: Supongamos que y' = f(x, y) tiene el grupo de Lie uniparamétrico de simetrías

$$(\hat{x}, \hat{y}) = \Gamma_{\varepsilon}(x, y) = (x, y + \varepsilon)$$
 (18)

Usando la condición de simetrías (14) tenemos

$$f(x, y) = f(\hat{x}, \hat{y}) = f(x, y + \varepsilon).$$

Luego

$$\frac{\partial f(x,y)}{\partial y} = \lim_{\varepsilon \to 0} \frac{f(x,y+\varepsilon) - f(x,y)}{\varepsilon} = 0$$

Asi f es independiente de y: f(x, y) = f(x) y la ecuación

$$y'=f(x)$$
.

se resuelve simplemente integrando.

Índice

- Introducción histórica
- 2 FORMAS DIFERENCIALES, IDEA VAGA
- 3 CAMBIOS DE VARIABLES
- 4 GRUPOS
- GRUPOS CONTINUOS DE SIMETRÍAS
- 6 ÓRBITAS, TANGENTES Y CURVAS INVARIANTES
- O CONDICIÓN DE SIMETRÍA LINEALIZADA
- **8** COORDENADAS CANÓNICAS
- RESOLVIENDO EDO CON GRUPOS DE LIE DE SIMETRÍAS

ÓRBITAS

DEFINICIÓN

Dado un grupo uniparamétrico de simetrías $G = \{\Gamma_{\varepsilon} | \varepsilon \in \mathbb{R}\}$, y $(x_0, y_0) \in \mathbb{R}^2$ llamamos órbita (x_0, y_0) bajo la acción de G (simplemente órbita si es claro quien es G) a la curva

$$\{\Gamma_{\varepsilon}(x_0,y_0)|\varepsilon\in\mathbb{R}\}$$

Si G es un grupo de simetrías no trivial, entonces es de esperar que la órbita de (x_0, y_0) cruza transversalmente las curvas solución. La órbita se usará como una nueva coordenada.

ÓRBITAS

La órbita atraves de (x, y) es el conjunto de puntos de coordenadas

$$(\hat{x}(x,y,\varepsilon),\hat{y}(x,y,\varepsilon)) = \Gamma_{\varepsilon}(x,y), \tag{19}$$

donde

$$(\hat{x}(x,y,0),\hat{y}(x,y,0))=(x,y).$$

(19) son ecuaciones parámetricas (parámetro ε) de una curva en el plano.

PUNTOS INVARIANTES

Un punto (x, y) se llama invariante si su órbita se reduce a $\{(x, y)\}$, vale decir

$$(x, y) = \Gamma_{\varepsilon}(x, y), \quad \forall \varepsilon > 0$$

ÓRBITAS

Ejemplo: La órbita de (x, y) bajo la acción del grupo de Lie uniparamétrico

$$\Gamma_{\varepsilon}(x,y) = \begin{pmatrix} \hat{x} \\ \hat{y} \end{pmatrix} = \begin{pmatrix} \cos(\varepsilon) & -\sin(\varepsilon) \\ \sin(\varepsilon) & \cos(\varepsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Son circunsferencias con centro en el origen. El punto (0,0) es invariante.

CAMPO VECTORIAL DE TANGENTES

DEFINICIÓN

Dado un grupo de Lie uniparamétrico $(\hat{x}(x, y, \varepsilon), \hat{y}(x, y, \varepsilon)) = \Gamma_{\varepsilon}(x, y)$ definimos el campo vectorial

$$(\xi(\hat{\mathbf{x}},\hat{\mathbf{y}}),\eta(\hat{\mathbf{x}},\hat{\mathbf{y}})) = \left(\frac{d\hat{\mathbf{x}}}{d\varepsilon}\bigg|_{\varepsilon=0},\frac{d\hat{\mathbf{y}}}{d\varepsilon}\bigg|_{\varepsilon=0}\right)$$

 ξ y η se llaman símbolos infinitesimales.

Como \hat{x} , \hat{y} eran analíticas respecto a ε :

$$\hat{\mathbf{x}} = \mathbf{x} + \varepsilon \xi(\mathbf{x}, \mathbf{y}) + O(\varepsilon^2)
\hat{\mathbf{y}} = \mathbf{y} + \varepsilon \eta(\mathbf{x}, \mathbf{y}) + O(\varepsilon^2)$$

En un punto invariante $\xi(x, y) = \eta(x, y) = 0$.

CAMPO VECTORIAL DE TANGENTES

```
x, y, epsilon = var('x, y, epsilon')
x_n=cos(epsilon)*x-sin(epsilon)*y
y n=sin(epsilon)*x+cos(epsilon)*y
xi=x n.diff(epsilon)(epsilon=0)
eta=v n.diff(epsilon)(epsilon=0)
p=plot([])
for x abs in srange (0,1,.2):
    p+=parametric plot([x n(x=x abs, y=0), \setminus
y n(x=x abs, y=0)], (epsilon, 0, 2*pi))
p+= plot_vector_field((xi, eta), (x, -1, 1), \setminus
(\nabla, -1, 1)
```

CAMPO VECTORIAL DE TANGENTES

CURVAS INVARIANTES

DEFINICIÓN

Una curva plana C se dice invariante por un grupo uniparamétrico de simetrías de Lie si y sólo si la tangente a C en cada punto (x,y) es paralela a $(\xi(x,y),\eta(x,y))$. Si C es el gráfico de una función $x\mapsto y(x)$, como (1,y'(x)) es un vector tangente a la gráfica, la condición que C es invariante se escribe

$$Q(x, y, y') \stackrel{\text{def}}{=} \eta(x, y) - y'\xi(x, y) \equiv 0$$
 (20)

Esta se llama ecuación característica.

CURVAS INVARIANTES

SOLUCIONES INVARIANTES

Si Γ_{ε} es un grupo de Lie de simetrías de y' = f(x, y) entonces una solución y(x) es una curva invariantes si y sólo si

$$\overline{Q}(x,y) = \eta(x,y) - f(x,y)\xi(x,y) \equiv 0$$
 (21)

Se llaman ecuación característica reducida.

Nos conviene tener soluciones no invariantes

Ejemplo: La EDO

$$\mathbf{v}' = \mathbf{v}$$

Tiene simetrías de escala

$$(\hat{x},\hat{y}) = \Gamma_{\varepsilon}(x,y) = (x,e^{\varepsilon}y).$$

Luego

$$(\xi,\eta) = \left(\frac{d\hat{x}}{d\varepsilon}\Big|_{\varepsilon=0}, \frac{d\hat{y}}{d\varepsilon}\Big|_{\varepsilon=0}\right) = (0,y)$$

Cualquier punto en el conjunto $\{(x,0)|x\in\mathbb{R}\}$ es invariante. La ecuación característica reducida es.

$$\overline{Q}(x,y)=0 \Rightarrow y=0$$

Esta formada enteramente por puntos invariantes.

Ejercicio: demostrar que la siguiente expresión es un grupo de Lie uniparamétrico de simetrías

$$(\hat{x},\hat{y}) = \Gamma_{\varepsilon}(x,y) = (e^{\varepsilon}x,e^{(e^{\varepsilon}-1)x}y).$$

Para este grupo tenemos

$$(\xi,\eta)=(x,xy)$$

Todo punto en x = 0 es invariante. La ecuación característica reducida es

$$\overline{Q}(x,y)=0\Rightarrow xy-xy=0$$

De modo que estas simetrías actuan trivialmente sobre las soluciones. Llevan una solución en si misma. Chequeemos esta afirmación de manera directa.

Buscamos el cambio de variables inverso

Las soluciones son $y = ke^x$, sustituímos en esta expresión, luego de unas operaciones, llegamos a $\hat{y} = ke^{\hat{x}}$.

Ejemplo. La ecuación de Riccati

$$y' = xy^2 - \frac{2y}{x} - \frac{1}{x^3}, \quad x \neq 0$$

Tiene el grupo de Lie de simetrías

$$(\hat{x},\hat{y}) = \Gamma_{\varepsilon}(x,y) = (e^{\varepsilon}x,e^{-2\varepsilon}y).$$

Tenemos

$$(\xi,\eta)=(x,-2y).$$

La característica reducida

$$\overline{Q}(x,y) = \frac{1}{y^2} - x^2 y^2 = 0.$$

Tenemos dos soluciones invariantes

$$y=\pm\frac{1}{\mathbf{v}^2}.$$

Infinitesimales→Simetrías

La mayoría de los métodos de simetría usan (ξ, η) en lugar de las simetrías en si mismas. Por otra parte $(\xi(\hat{x}, \hat{y}), \eta(\hat{x}, \hat{y}))$ determinan las simetrías a traves de las ecuaciones

$$\begin{cases}
\frac{d\hat{x}}{d\varepsilon} &= \xi(\hat{x}, \hat{y}) \\
\frac{d\hat{y}}{d\varepsilon} &= \eta(\hat{x}, \hat{y}) \\
\hat{x}(x, y, 0) &= x \\
\hat{y}(x, y, 0) &= y
\end{cases} (22)$$

Justificación de las ecuaciones. Si ponemos $(\hat{x}, \hat{y}) = \Gamma_{\varepsilon}(x, y)$, de la propiedad de grupo $(\Gamma_{\Delta\varepsilon} \circ \Gamma_{\varepsilon} = \Gamma_{\varepsilon + \Delta\varepsilon})$, deducimos

$$\hat{x}(\Gamma_{\varepsilon}(x,y),\Delta\varepsilon) = \hat{x}(x,y,\varepsilon+\Delta\varepsilon).$$

Infinitesimales→Simetrías

Luego

$$\begin{split} \frac{d\hat{x}}{d\varepsilon} &= \lim_{\Delta\varepsilon \to 0} \frac{\hat{x}(x,y,\varepsilon + \Delta\varepsilon) - \hat{x}(x,y,\varepsilon)}{\Delta\varepsilon} \\ &= \lim_{\Delta\varepsilon \to 0} \frac{\hat{x}(\Gamma_{\varepsilon}(x,y),\Delta\varepsilon) - \hat{x}(x,y,\varepsilon)}{\Delta\varepsilon} \\ &= \lim_{\Delta\varepsilon \to 0} \frac{\hat{x}(\hat{x}(x,y,\varepsilon),\hat{y}(x,y,\varepsilon),\Delta\varepsilon) - \hat{x}(\hat{x}(x,y,\varepsilon),\hat{y}(x,y,\varepsilon),0)}{\Delta\varepsilon} \\ &= \frac{d\hat{x}}{d\varepsilon} \bigg|_{\varepsilon=0} = \xi(\hat{x},\hat{y}) \end{split}$$

Infinitesimales→Simetrías

El sistema de ecuaciones (22) pueden ser dificiles de resolver.

Pero en algunos casos sencillos puede ser fácil.

Ejemplo: Encontrar el grupo de simetrías para los infinitesimales $\xi(x, y), \eta(x, y) = (x^2, xy)$.

$$\frac{d\hat{x}}{d\varepsilon} = \xi(\hat{x}, \hat{y}) = \hat{x}^2 \text{ y } \hat{x}(x, y, 0) = x \Rightarrow \hat{x} = \frac{x}{1 - \varepsilon x}$$

у

$$\frac{d\hat{y}}{d\varepsilon} = \eta(\hat{x}, \hat{y}) = \hat{x}\hat{y} \text{ y } \hat{y}(x, y, 0) = y \Rightarrow \hat{y} = \frac{y}{1 - \varepsilon x}$$

Índice

- Introducción histórica
- 2 FORMAS DIFERENCIALES, IDEA VAGA
- CAMBIOS DE VARIABLES
- 4 GRUPOS
- 5 GRUPOS CONTINUOS DE SIMETRÍAS
- 6 ÓRBITAS, TANGENTES Y CURVAS INVARIANTES
- O CONDICIÓN DE SIMETRÍA LINEALIZADA
- **8** COORDENADAS CANÓNICAS
- RESOLVIENDO EDO CON GRUPOS DE LIE DE SIMETRÍAS

HALLANDO SIMETRÍAS DE ECUACIONES

Desarrollando en serie de Taylor las funciones \hat{x} e \hat{y} en ε alrededror de $\varepsilon = 0$

$$\hat{x} = x + \varepsilon \xi + \mathcal{O}(\varepsilon^2)$$

 $\hat{y} = y + \varepsilon \eta + \mathcal{O}(\varepsilon^2)$

Reemplazando en la condición de simetría, que recordemos es

$$\frac{\frac{\partial \hat{y}}{\partial x} + \frac{\partial \hat{y}}{\partial y} f(x, y)}{\frac{\partial \hat{x}}{\partial x} + \frac{\partial \hat{x}}{\partial y} f(x, y)} = f(\hat{x}, \hat{y}),$$

obtenemos

$$\frac{f + \varepsilon \{\eta_X + f\eta_Y\} + \mathcal{O}(\varepsilon^2)}{1 + \varepsilon \{\xi_X + f\xi_Y\} + \mathcal{O}(\varepsilon^2)} = f(X + \varepsilon \xi + \mathcal{O}(\varepsilon^2), Y + \varepsilon \eta + \mathcal{O}(\varepsilon^2))$$

Desarrollando en serie de Taylor para x e y el segundo miembro y luego de algunas operaciones

$$f + \varepsilon \{\eta_X + (\eta_Y - \xi_X)f - \xi_Y f^2\} + \mathcal{O}(\varepsilon^2) = f + \varepsilon \{\xi f_X + \eta f_Y\} + \mathcal{O}(\varepsilon^2)$$

Cancelando f dividiendo por ε y haciendo $\varepsilon \to 0$ llegamos a la Condición de Simetría Linealizada

$$\eta_X + (\eta_y - \xi_X)f - \xi_y f^2 = \xi f_X + \eta f_y$$
 (23)

Recordando la característica reducida $\overline{Q} = \eta - f\xi$, la fórmula anterior se escribe más sintéticamente

$$\overline{Q}_X + f \overline{Q}_Y = f_Y \overline{Q} \tag{24}$$

Cada solución de (24) conlleva una infinita cantidad de grupos de Lie de simetrías, porque si \overline{Q} resueleve (24) entonces para toda función ξ el par $(\xi, \overline{Q} + f\xi)$ son infinitesimales para un grupo de Lie de simetrías de la ecuación. La solución trivial $\overline{Q} \equiv 0$ de (24) se corresponde con simetrías triviales. En principio podríamos utilizar el método de características, que hemos visto en la unidad anterior, para resolver la ecuación lineal en derivadas parciales de primer orden (24) que, recordando lo visto, se puede escribir

$$\frac{dx}{1} = \frac{dy}{f} = \frac{d\overline{Q}}{f_y \overline{Q}}.$$

La primera igualdad en la ecuación anterior equivales a dy/dx = f, que es al fin y al cabo, la ecuación que queremos resolver. Así estas consideraciones parecen habernos llevado al origen de nuestro problema. No obstante, algunas veces es posible encontrar una solución de (23) recurriendo a un ansatz.

Ejemplo. Encontrar un grupo de Lie de simetrías no trivial de $y' = \frac{y}{x} + x$.

y − - x + ∧. La condición de simetría linealizada es

$$\eta_x + (\eta_y - \xi_x) \left(\frac{y}{y} + x\right) - \xi_y \left(\frac{y}{y} + x\right)^2 = \xi \left(1 - \frac{y}{x^2}\right) + \frac{\eta}{x},$$

que luce intimidante. Hagamos el ansatz $\xi=0$ y $\eta=\eta(x)$. Conseguimos

$$\eta_X - \frac{\eta}{X} = 0$$

Cuya solucion general es $\boxed{\eta = cx}$. Ahora podemos encontrar simetrías de la ecuación. Recordando (22), tenemos

$$\begin{cases} \frac{d\hat{x}}{d\varepsilon} &= 0\\ \frac{d\hat{y}}{d\varepsilon} &= c\hat{x}\\ \hat{x}(x,y,0) &= x\\ \hat{y}(x,y,0) &= y \end{cases} \Rightarrow \begin{cases} \hat{x} &= x\\ \hat{y} &= c\varepsilon x + y \end{cases}$$

Podemos constatar de manera directa que $\hat{x} = x$ e $\hat{y} = c\varepsilon x + y$ constituyen un grupo de Lie uniparamétrico de simetrías de la ecuación, para el cual $\overline{Q} \neq 0$.

Completación de la demostración del Teorema \ref{Q} ?. Restaba demostrar que si y(x) resuelve la ecuación $\overline{Q}(x,y(x))=0$ y $\overline{Q}_y \neq 0$ en los puntos a lo largo de la curva (x,y(x)) entonces y(x) es solución invariante de la ecuación y'=f. Por el Teorema de la función implícita, la condición de simetría linealizada (24) y $\overline{Q}=0$

$$y'(x) = -\frac{\overline{Q}_x}{\overline{Q}_y} = f - f_y \frac{\overline{Q}}{\overline{Q}_y} = f$$

Luego y es solución de la ecuación. El hecho de que es

invariante es simplemente la igualdad $\overline{Q} = 0$.

ÍNDICE

- Introducción histórica
- PORMAS DIFERENCIALES, IDEA VAGA
- CAMBIOS DE VARIABLES
- 4 GRUPOS
- 5 GRUPOS CONTINUOS DE SIMETRÍAS
- 6 ÓRBITAS, TANGENTES Y CURVAS INVARIANTES
- O CONDICIÓN DE SIMETRÍA LINEALIZADA
- COORDENADAS CANÓNICAS
- RESOLVIENDO EDO CON GRUPOS DE LIE DE SIMETRÍAS

COORDENADAS CANÓNICAS

DEFINICIÓN

Diremos que las coordenadas (r,s) son canónicas respecto a el grupo de Lie de simetrías $\Gamma \varepsilon$ si en las coordenadas (r,s) la acción de grupo es la traslación

$$(\hat{r},\hat{s}) \stackrel{\mathsf{def}}{=} (r(\hat{x},\hat{y}), s(\hat{x},\hat{y})) = (r(x,y), s(x,y) + \varepsilon). \tag{25}$$

Ejemplo: Las coordenadas polares son canónicas respecto al grupo de Lie de rotaciones. Las rotaciones en coordenadas cartesianas y polares se escriben

$$\begin{pmatrix} \hat{x} \\ \hat{y} \end{pmatrix} = \begin{pmatrix} \cos(\varepsilon) & -\sin(\varepsilon) \\ \sin(\varepsilon) & \cos(\varepsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \quad \hat{r} = r \\ \hat{\theta} = \theta + \varepsilon$$

COORDENADAS CANÓNICAS

Derivando las ecuaciones (25) respecto a ε obtenemos

$$\xi(x,y)\frac{\partial r}{\partial x} + \eta(x,y)\frac{\partial r}{\partial y} = 0$$

$$\xi(x,y)\frac{\partial s}{\partial x} + \eta(x,y)\frac{\partial s}{\partial y} = 1$$
 (26)

Los cambios de coordenadas deben ser invertibles, de modo que pediremos la condición de no degeneración

$$\frac{\partial r}{\partial x}\frac{\partial s}{\partial y} - \frac{\partial r}{\partial y}\frac{\partial s}{\partial x} \neq 0$$
 (27)

EXTENSIÓN DEFINICIÓN

Cualquier par de coordenadas que satisfacen (26) y (27) se llaman canónicas.

COORDENADAS CANÓNICAS

OBSERVACIONES

- El vector tangente en cualquier punto no invariante es paralelo a la curva r = cte que pasa por ese punto. Luego esa curva es una órbita. Las órbitas son invariantes, así r se llama la coordenada invariante. Las curvas s = cte son transversales a las órbitas.
- **2** Las coordenadas canónicas no estan definidas en un punto (x, y) invariante pues en esos puntos $\xi(x, y) = \eta(x, y) = 0$.
- Las coordenadas canónicas estan definidas en un entorno de cualquier punto no invariante.
- Las coordenadas canónicas no son únicas. De hecho si (r, s) son canónicas $(\tilde{r}, \tilde{s}) = (F(r), G(r) + s)$ lo son para cualquier F y G con $F'(r) \neq 0$ para la no degeneración.

COORDENADAS CANÓNICAS

GENERADOR INFINITESIMAL

Al operador diferencial

$$X = \xi(x, y) \frac{\partial}{\partial x} + \eta(x, y) \frac{\partial}{\partial y}$$
 (28)

se lo suele denominar Generador Infinitesimal. La acción del operador sobre una función f diferenciable es tomar la derivada direccional en la dirección del campo (ξ, η) .

Las ecuaciones (26) se escriben de manera compacta

$$\begin{array}{rcl}
Xr &= 0 \\
Xs &= 1
\end{array}
\tag{29}$$

La primera expresa que r no cambia en la dirección del campo.

INTEGRALES PRIMERAS

Una integral primera de la EDO y' = f(x, y) es una función $\phi(x, y)$ que es constante a lo largo de una curva solución de la EDO.

TEOREMA

Si (r, s) son coordenadas canónicas de una grupo de Lie de simetrías entonces r es una integral primera de la ecuación

$$\frac{dy}{dx} = \frac{\eta(x, y)}{\xi(x, y)}. (30)$$

Dem. Supongamos y(x) solución de la EDO, es suficiente demostrar que $\frac{d}{dx}r(x,y(x)) = 0$. En efecto

$$\frac{d}{dx}r(x,y(x)) = \frac{\partial r}{\partial x} + \frac{\partial s}{\partial y}y'$$
 (regla cadena)
= $\frac{\partial r}{\partial x} + \frac{\partial s}{\partial y}\frac{\eta(x,y)}{\xi(x,y)}$ (Ec. (30))
= 0 (Ec. (26))

Hallar una integral primera implica resolver la ecuación. **Ejemplo** Ya conocemos las coordenadas canónicas de las rotaciones,

$$\begin{pmatrix} \hat{x} \\ \hat{y} \end{pmatrix} = \begin{pmatrix} \cos(\varepsilon) & -\sin(\varepsilon) \\ \sin(\varepsilon) & \cos(\varepsilon) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \Rightarrow \begin{pmatrix} \xi \\ \eta \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}$$

hallemosla por el método propuesto. Hay que resolver

$$\frac{dy}{dx} = -\frac{x}{y} \Rightarrow ydy = -xdx \Rightarrow y^2 + x^2 = C$$

Luego $r = \sqrt{x^2 + y^2}$ es una integral primera.

La coordenada r es constante sobre los puntos en la gráfica de una solución de (30). Sobre esos puntos (x, y(x)), la coordenada s satisface:

$$\begin{array}{ll} \frac{ds}{dx} &= \frac{\partial s}{\partial x} + \frac{\partial s}{\partial y} y'(x) & \text{(Regla cadena)} \\ &= \frac{\partial s}{\partial x} + \frac{\partial s}{\partial y} \frac{\eta}{\xi} & \text{(30)} \\ &= \frac{1}{\xi} & \text{(26)}. \end{array}$$

Ahora podemos aprovechar que ya conocemos r y expresar y como función de r, x. Luego

TEOREMA: EXPRESIÓN PARA S

$$s = \int \frac{ds}{dx} dx = \int \frac{dx}{\xi(x, y(r, x))}.$$
 (32)

En la igualdad resultante puede ser necesario reemplazar r por su expresión en las variables x, y.

Si ocurriese que $\xi=0$ y $\eta\neq 0$. Entonces por (30) $r_y=0$, de modo que r es sólo función de x. Se puede asumir r=x. Además $\eta s_v=1$, entonces

$$s = \int \frac{dy}{\eta(r, y)}.$$
 (33)

Ejemplo Retornando al ejemplo de las rotaciones, donde hallamos que $r = \sqrt{(x^2 + y^2)}$, vemos que

$$s = \int \frac{dx}{-y} = -\int \frac{dx}{\sqrt{r^2 - y^2}} = \arccos\left(\frac{x}{r}\right).$$

Por consiguiente s es el ángulo polar.

Ejemplo Encontrar coordenadas canónicas para el grupo de Lie de simetrías

$$(\hat{x},\hat{y})=(e^{\varepsilon}x,e^{k\varepsilon}y)\quad k>0.$$

El vector tangente es

$$(\xi,\eta) = \left(\frac{d\hat{x}}{d\varepsilon}\Big|_{\varepsilon=0}, \frac{d\hat{y}}{d\varepsilon}\Big|_{\varepsilon=0}\right) = (x,ky).$$

Resolvamos la ecuación (30)

$$\frac{dy}{dx} = \frac{ky}{x} \Rightarrow y = Cx^k.$$

Luego $\Phi = y/x^k$ es integral primera. Entonces podemos tomar $r = v/x^k$.

Para s

$$s = \int \frac{dx}{\xi} = \frac{dx}{x} = \ln|x|.$$

Entonces $(r, s) = (yx^{-k}, \ln |x|)$ son coordenadas canónicas. No estan definidas en x = 0. Podemos encontrar coordenadas canónicas definidas en x = 0 del siguiente modo. Recordamos que para todas F y G

$$(\tilde{r}, \tilde{s}) = (F(r), G(r) + s) = (F(x^{-k}y), G(x^{-k}y) + \ln|x|).$$

So canónicas también. Si tomamos F(r) = 1/r y $G(r) = \frac{1}{k} \ln |r|$, evitamos la singularidad. Luego

$$(\tilde{r},\tilde{s})=(x^ky^{-1},\frac{1}{k}\ln|y|).$$

Son canónicas, están definidas en x = 0 pero no en y = 0.

Ejemplo Encontrar coordenadas canónicas para

$$(\hat{x}, \hat{y}) = \left(\frac{x}{1 - \varepsilon x}, \frac{y}{1 - \varepsilon x}\right).$$

$$(\xi, \eta) = \left(\frac{d\hat{x}}{d\varepsilon}\Big|_{\varepsilon=0}, \frac{d\hat{y}}{d\varepsilon}\Big|_{\varepsilon=0}\right) = (x^2, xy).$$

$$\frac{dy}{dx} = \frac{\eta}{\xi} = \frac{y}{x} \Rightarrow \frac{y}{x} = \text{cte}.$$

Podemos tomar r = y/x. Para s

$$s=\int\frac{dx}{x^2}=-\frac{1}{x}.$$

Luego $(r, s) = (\frac{y}{x}, -\frac{1}{x})$ son canónicas.

En este caso los puntos sobre x = 0 son invariantes, no podemos definir coordenadas canónicas allí.

Lo podemos desarrollar con SymPy.

```
36
sage: from sympy import *
sage: x,y,epsilon=symbols('x,y,epsilon')
                                                  37
sage: T=Matrix([x/(1-epsilon*x),y/(1-epsilon*x)]
   ) ] )
sage: xi=T[0].diff(epsilon).subs(epsilon,0)
                                                  39
sage: xi
                                                  40
x**2
                                                  41
sage: eta=T[1].diff(epsilon).subs(epsilon,0)
                                                  42
sage: eta/xi
                                                  43
v/x
                                                  44
sage: y=Function('y')(x)
                                                  45
sage: dsolve(y.diff(x)-y/x,y)
                                                  46
Eq(y(x), C1*x)
                                                  47
```

sage:	Integral(1/	xi,x).doit()	48
_1 /			40

Infinitesimales \rightarrow Simetrías (Revisitado)

Las coordenadas canónicas nos dan otra manera de encontrar simetrías a partir de los infinitesimales siguiendo el procedimiento:

- Determinar las coordenadas canónicas (sólo necesitamos conocer los infinitesimales).
- **2** Expresamos las relaciones $\hat{r} = r$ y $\hat{s} = s + \varepsilon$ en las coordenadas x, y.

Ejemplo: Hallar el grupo de simetrías asociado al generador infinitesimal

$$X = x^2 \frac{\partial}{\partial x} + xy \frac{\partial}{\partial y}.$$

Infinitesimales \rightarrow Simetrías (Revisitado)

Las coordenadas canónicas nos dan otra manera de encontrar simetrías a partir de los infinitesimales siguiendo el procedimiento:

- En la página 79 hallamos las coordenadas canónicas asociadas a los infinitesimales $(r, s) = (\frac{y}{x}, -\frac{1}{x})$
- Ahora

$$(\hat{r}, \hat{s}) = (r, s + \varepsilon) \Rightarrow \frac{\hat{y}}{\hat{x}} = \frac{y}{x}, -\frac{1}{\hat{x}} = -\frac{1}{x} + \varepsilon$$
$$\Rightarrow \hat{x} = \frac{x}{1 - \varepsilon x}, \hat{y} = \frac{y}{1 - \varepsilon x}.$$

Índice

- Introducción histórica
- 2 FORMAS DIFERENCIALES, IDEA VAGA
- 3 CAMBIOS DE VARIABLES
- 4 GRUPOS
- 5 GRUPOS CONTINUOS DE SIMETRÍAS
- 6 ÓRBITAS, TANGENTES Y CURVAS INVARIANTES
- O CONDICIÓN DE SIMETRÍA LINEALIZADA
- **8** COORDENADAS CANÓNICAS
- RESOLVIENDO EDO CON GRUPOS DE LIE DE SIMETRÍAS

Supongamos dado un grupo de Lie de simetrías (\hat{x}, \hat{y}) de la ecuación

$$y' = f(x, y) \tag{34}$$

Supongamos que las simetrías son no triviales. Según (21) debemos tener

$$\eta(x,y) \not\equiv f(x,y)\xi(x,y)$$

La razón de esta condición es que si fuese falsa entonces la ecuación (30) es la misma que la ecuación (34) y el método es inútil.

Supongamos (r, s) coordenadas canónicas. La ecuación en las coordenadas (r, s), según (9), se escribirá

$$\frac{ds}{dr} = \hat{f}(r,s) := \frac{s_x + f(x,y)s_y}{r_x + f(x,y)r_y}.$$
 (35)

Las coordenadas canónicas se definen por (25) de modo que el grupo de simetrías actúe por traslación $(\hat{r}, \hat{s}) = (r, s + \varepsilon)$. Por los resultados de la página 48, \hat{f} es independiente de s. Y la ecuación se reduce a

$$\frac{ds}{dr} = \hat{f}(r) \tag{36}$$

que se resuelve integrando.

Ejemplo: Resolver

$$y' = xy^2 - \frac{2y}{x} - \frac{1}{x^3}, \quad x \neq 0,$$

sabiendo que la ecuación es invariante para el grupo de simetrías

$$(\hat{x}, \hat{y}) = (e^{\varepsilon}x, e^{-2\varepsilon}y).$$

Por los resultados de las páginas 77 y 78:

$$(r, s) = (x^2y, \ln |x|)$$

son canónicas.

Según (35) la ecuación en (r, s) es:

$$\frac{dr}{ds} = \frac{\frac{1}{x}}{2xy + x^2 \left(xy^2 - \frac{2y}{x} - \frac{1}{x^3}\right)} = \frac{1}{x^4y^2 - 1} = \frac{1}{r^2 - 1}$$

Como sabíamos que debía suceder el resultado del segundo miembro ndepende sólo de *r*. Integrando

$$s = \frac{1}{2} \ln \left(\frac{r-1}{r+1} \right) + C.$$

Sustituyendo

$$\ln |x| = \frac{1}{2} \ln \left(\frac{x^2 y - 1}{x^2 y + 1} \right) + C.$$

Despejando

$$y = -\frac{x^2 + C}{x^2(x^2 - C)} \tag{37}$$

La ecuación característica reducida (21) es para la ecuación de este ejemplo:

$$0 = \overline{Q} = -2y - \left(xy^2 - \frac{2y}{x} - \frac{1}{x^3}\right)x = -x^2y^2 + \frac{1}{x^2}$$

Cuyas soluciones son

$$y=\pm\frac{1}{x^2}.$$

Que además son solución de la ecuación diferencial. La curva $y = -1/x^2$ se obtiene de (37) con C = 0. La curva $y = -1/x^2$

Las curvas azules y naranjas se corresponden con las gráficas de (37) con c > 0 y c < 0 respectivamente. La verde es la de $y = 1/x^2$ y la roja de $y = -1/x^2$.

Ejemplo: Resolver

$$y'=\frac{y+1}{x}+\frac{y^2}{x^3},\quad x\neq 0,$$

sabiendo que la ecuación es invariante para el grupo de simetrías

$$(\hat{x}, \hat{y}) = (\frac{x}{1 - \varepsilon x}, \frac{y}{1 - \varepsilon x}).$$

Ya hemos computado las coordenadas canónicas en página 79:

$$(r,s)=\left(\frac{y}{x},\frac{1}{x}\right).$$

Por (35) la ecuación se escribe

$$\frac{dr}{ds} = \frac{-\frac{1}{x^2}}{-\frac{y}{x^2} + \frac{1}{x}\left(\frac{y+1}{x} + \frac{y^2}{x^3}\right)} = \frac{1}{1+r^2}$$

Cuya solución es

$$s = \arctan(r) + C \Rightarrow y = -x \tan\left(\frac{1}{x} + C\right).$$

ECUACIONES HOMOGÉNEAS

Ejemplo: Resolver la ecuación

$$y' = F\left(\frac{y}{x}\right). \tag{38}$$

Aquí tenemos el Grupo de Lie de simetrías de cambio de escalas

$$(\hat{x}, \hat{y}) = (e^{\varepsilon}x, e^{\varepsilon}y).$$

Por los resultados de páginas 77 y 78, $(r, s) = (y/x, \ln |x|)$ son canónicas y la ecuación se escribe

$$\frac{ds}{dr} = \frac{\frac{1}{x}}{-\frac{y}{v^2} + \frac{F(\frac{y}{x})}{x}} = \frac{1}{F(r) - r}.$$

La solución general es

$$\ln|x| = \int_{-\infty}^{y/x} \frac{dr}{F(r) - r} + c.$$

MÉTODO DE LIE Y SYMPY

SymPy Incorpora distintas estrategías para resolver ecuaciones por el método de Lie. Hay mucho por indagar al respecto, pero sólo vamos a mencionar una función para calcular los infinitesimales (ξ, η) . Aprovechamos para mostrar como luce una consola de ipython, otra manera de usar Python y SymPy.

