Joshua Croasdale Spring 2024

Capstone Project

Predicting NHL Player Performance Using Linear Regression and Neural Networks

Capstone Overview

- Gain the upper hand in sports analysis
 - Beat the markets!
 - Sports betting is big business in North America
 - A reliable model that outperforms the 'money lines' is a highly valuable tool

- Use machine modelling to make predictions on <u>impactful</u> statistical categories in NHL hockey
 - Train on available data → predict future data

Dataset Overview

- All player data was provided by: https://www.hockey-reference.com
- Various statistics for all NHL players from 2005 to 2023 (2024 ongoing)
- ➤ Initial EDA:
 - Checked for null values, dropped irrelevant features, renamed some features
 - Feature engineering → Created some new feature columns by manipulating already present data
- Created different "versions" of my dataset
 - o <u>Career numbers</u> (groupby 'Player' and sum)
 - <u>Career per Game Played</u> (career numbers for all feature categories divided by games played)
 - This "levels the playing field" by comparing every player on a per-game basis
 - Three-year weighted average (taking the most recent three seasons applying weights of relative importance to each)
 - This provides a dataset that is more indicative of future performance for a given player.

Initial Findings

- A lot of multicollinearity between independent features
 - PCA feature reduction more powerful than manual feature reduction
- Problem: How best to arrange the data for modelling?
 - Which data set "version" will best represent my data for modelling?
 - Career-long approach introduces the problem of age curves and experience
 - Three year weighted average dataset has the inherent advantage of placing the most importance on the most predictive samples

Three Year Weighted Average

- The algorithm introduced null values
 - Problem if I simply drop these nulls → small sample size
- Filled all the nulls by systematically replacing with the single season data for the given player's most recent season
 - Sample size back up!
 - Caveat → these manually adjusted samples (players) have just one season's worth of data
- After all this work...still decided to drop a certain amount of samples that had too few games played

Context Matters!

Manual Feature Reduction

StandardScaler with PCA

Career_per_game (fit on all features)

Career_per_game
(fit with pipeline → StandardScaler, PCA)

Three_year_weighted (fit with pipeline → StandardScaler, PCA)

LWMA =
$$\frac{(P_n * W_1) + (P_{n-1} * W_2) + (P_{n-2} * W_3) \dots}{\sum W}$$

Where:

- P = Goals/game for that year
- n = The most recent year, n-1 is the prior
 year, and n-2 is two years prior
- W = The assigned weight to each year, with the highest weight assigned to the most recent year and descending from there

Neural Network fit to Per-Game Dataset

Neural Network fit to 3 Year Weighted Dataset

<u>Updated Metrics Table</u>

Train Set Score Test Set Score Adjusted Reguared RMSE

0.931

0.972

0.943

0.929

0.972

0.941

0.029

0.016

0.027

Career Totals 0.990 0.990 0.990	7.299
Career Totals w/ manual feature reduction 0.862 0.813 0.812	32.192
Per Game w/ all features 0.998 0.998 0.998	0.004
Per Game w/ Pipeline & GridSearch 0.993 0.993 0.992	0.008
3 Year Weighted Avg w/ Pipeline & GridSearch 0.981 0.969 0.968	0.020
3 Year Weighted Avg w/ Pipeline & 0 G/GP filter 0.979 0.972 0.971	0.020

1.000

0.978

0.981

KNN model w/ StandardScaler (3 yr dataset)

Neural Network - Per Game Dataset

Neural Network - 3 Yr Weighted Dataset

Assumptions of Linear Regression

Linear Relationship Between Variables?

Multicollinearity

Which is the best model?

- Three Year Weighted Average fit with Linear Regression using PCA dimensionality reduction and GridSearch
- Adjusted R² of 0.968
- Root Mean Squared Error of 0.020
- Overall, this model seems to be the most robust
 - There is less evidence of overfitting to the training data
 - Low overall error
 - Strong performance on predictions

Next Steps...

- > Repeat my entire modelling process (at least the best models) with Assists as the target
- To create a tangible, real-world result I want to train my model on data up to the 2023 season, and use the trained model to predict results for the 2024 season
 - Complications arise around curating the datasets so that the shapes match
 (X_train/y_train = 3_year_weighted_average & X_test/y_test = 2024 data)
- Productizing:
 - Create interactive tables
 - There are Python packages that do this...
 - Streamlit application for user input → 2024 prediction comparison

Thank You

