# **EC Sensor Calibration**

• Highly recommended to calibrate sensors individually (Repeat procedure for each sensor)

| Materials                | 1 |
|--------------------------|---|
| Procedure                | 1 |
| Setup                    | 1 |
| Process                  | 3 |
| Data Analysis            | 3 |
| Quick Accuracy Check     | 4 |
| Extensive Accuracy Check | 5 |

## Materials

- Deionized (DI) water
- 23 uS/cm solution
- 84 uS/cm solution
- 200 uS/cm solution
- 447 uS/cm solution
- 1413 uS/cm solution
- Small cups
- Disposable Pipette
- Digital Thermometer
- EC sensor
- SmartRock boards
- Arduino IDE

## Procedure

#### Setup

1. Transfer the 5 solutions into 5 clean small cup



- 2. Rinse the inside of the EC sensor as well as the pipette and the digital thermometer with DI water and dry with a paper towel
- 3. Plug the EC sensor into the SmartRock board (JST connector), and your laptop/computer into the Feather board (USB to micro USB)
  - a. You should see a red light flash every 4 seconds on the board



- 4. Place the EC sensor in a vice, or another stand, to hold the sensor upright and still
- 5. Setup the serial monitor for the Feather M0 in the Arduino IDE
  - a. In the Arduino IDE go to File -> Preferences
  - b. Paste this link in the box labeled "Additional Boards Manager URLs:" and click OK

- i. https://adafruit.github.io/arduino-board-index/package\_adafruit\_in dex.json,https://github.com/OPEnSLab-OSU/Loom\_Auxiliary/raw/master/package\_loom\_index.json
- c. Next, go to Tools -> Board:" "-> Boards Manager
- d. Install "Arduino SAMD Boards" (version 1.6.11 or later), "Adafruit SAMD Boards", and "Loom SAMD Boards"
- e. Close the boards manager and go to Tools -> Board"\_\_\_" -> Adafruit Boards and select "Loomified Feather M0"
- f. Setup is now complete, to see data from the sensor, go to Tools -> Serial Monitor, the sensor should output its signal to Analog1

#### **Process**

1. Insert the 23 uS/cm solution into the sensor using the disposable pipette (Fill to the top)



- 2. Insert the thermometer into the solution inside of the sensor and wait for the thermometer to read a constant value
- 3. Begin recording the temperature and Analog1 value on the serial monitor at constant intervals (try to get at least 10-20 data points for best accuracy)
- 4. Once data collection is complete, empty the water from the EC sensor and rinse the sensor, pipette, and thermometer with DI water.
- 5. Repeat steps 1-4 with each solution (not DI water)
- 6. Put data in excel for analysis

#### Data Analysis

- 1. Find linear relation between temperature and conductivity (need slope & intercept for each solution)
  - a. Use Electrical Conductivity Temp Adjustment\_2022-06-29 or find relation between temperature and conductivity online for each solution
- 2. Calculate the theoretical conductivity of the solution for each data point
  - a. y=mx+b, where x is temperature, m is the slope for each solution, b is the intercept for each solution, and y is the theoretical conductivity at the actual temperature
- 3. Make a table of the average analog values, average temperatures, and average conductivity at the actual temperature for each solution

| Solution value at 25°C (μS/cm) | Average Analog<br>Value | Average<br>Temperature | Average EC @ Temp<br>(μS/cm) |
|--------------------------------|-------------------------|------------------------|------------------------------|
| 23                             | 7013                    | 22.917                 | 21.98                        |
| 84                             | 7071                    | 23.121                 | 81.01                        |
| 200                            | 8163                    | 23.111                 | 192.44                       |
| 447                            | 8926                    | 22.974                 | 430.35                       |
| 1413                           | 9725                    | 23.177                 | 1364.32                      |

- 4. Plot a graph of the average analog values (x) vs the average conductivity at the actual temperature (y)
- 5. Add an exponential trendline and show the equation. This equation is your calibration curve to convert from sensor values to electrical conductivity



- 6. Copy the coefficients of the equation somewhere in the sheet to use for calculations
  - a. Try to get as many decimal places as possible in the coefficients (at least 10) for maximum accuracy

### Quick Accuracy Check

7. Check accuracy by calculating the EC for the average analog value for each solution and comparing it to the average conductivity at the actual temperature

| Solution value at 25°C (μS/cm) | Average Analog<br>Value | Average<br>Temperature | Average EC @ Temp<br>(μS/cm) | Calculated<br>value<br>(µS/cm) |
|--------------------------------|-------------------------|------------------------|------------------------------|--------------------------------|
| 23                             | 7013                    | 22.917                 | 21.98                        | 40.67                          |
| 84                             | 7071                    | 23.121                 | 81.01                        | 43.82                          |
| 200                            | 8163                    | 23.111                 | 192.44                       | 178.35                         |
| 447                            | 8926                    | 22.974                 | 430.35                       | 476.09                         |
| 1413                           | 9725                    | 23.177                 | 1364.32                      | 1329.50                        |

8. To look for patterns or inconsistencies, calculate the EC for each data point and plot analog value (x) vs calculated EC value (y)



### Extensive Accuracy Check

- 1. Insert various known solutions into sensor with the pipette
- 2. Confirm that the output value is within an acceptable range of the expected value (adjusted for temperature)
- 3. If not, recalibrate