INSTITUTO TECNOLÓGICO DE AERONÁUTICA MOQ-13: Probabilidade e Estatística

2^{a.} Prova Bimestral (18/10/2019)

Professor: Mauri Aparecido de Oliveira

Instruções

A prova é individual. Não há limite de tempo. É permitida a consulta apenas às notas de aulas, livros e outras publicações. É permitido o uso de calculadora e software R. Em caso de resolução via simulação, o código R (comentado) deverá ser anexado, bem como figuras e demais evidências que substanciem a análise. Todas as questões são obrigatórias.

Devolução: 01/11/2019 às 10h, via representante, em minha sala (F0-213), antes da aula.

Os representantes de turma ficarão responsáveis por:

- 1. Coletar as provas e **assinaturas** dos colegas de suas respectivas turmas.
- 2. Armazenar todas as provas em envelopes.
- 3. Devolver os envelopes no dia 01/11/2019 às 10h, em minha sala (F0-213), **antes da aula**.

Se tiverem algum problema para ter acesso à prova, não hesitem em me contatar.

Boa prova a todos!

Questão – 1 (3,5 Pontos)

Utilizando o R, gere 1000 amostras de tamanho 31 a partir de uma distribuição Normal com média $\mu = 15$ e $\sigma = 5$.

- 1. Demonstre e calcule μ e σ^2 de suas amostras usando o Método dos Momentos.
- 2. Plotar os valores estimados de μ e σ^2 , obtidos no item 1. Utilize as funções plot e density do R conjuntamente. Utilizando a função abline construa linhas verticais para representar os valores de μ e σ^2 dados e os obtidos a partir das amostras. Comente seus resultados.
- 3. Demonstre e calcule μ e σ^2 de suas amostras usando o Método da Máxima Verossimilhança.
- 4. Plotar os valores estimados de μ e σ^2 , obtidos no item 3. Utilize as funções plot e density do R conjuntamente. Utilizando a função abline construa linhas verticais para representar os valores de μ e σ^2 dados e os obtidos a partir das amostras. Comente seus resultados.

Questão – 2 (3,5 Pontos)

- 1. Enuncie o Teorema Limite Central.
- 2. Mostre que a distribuição amostral para $\overline{X} \overline{Y}$ é Normal com média $\mu_X \mu_Y$ e desviopadrão $\sqrt{\frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y}}$, onde n_X e n_Y são os respectivos tamanhos amostrais. Ou seja,

$$\overline{X} - \overline{Y} \sim N \left(\mu_X - \mu_Y, \frac{\sigma_X^2}{n_X} + \frac{\sigma_Y^2}{n_Y} \right). \tag{1}$$

- 3. Através de simulação verifique empiricamente que, se $X \sim N\left(\mu_X, \sigma_X^2\right)$ e $Y \sim N\left(\mu_Y, \sigma_Y^2\right)$, a distribuição amostral resultante de $\overline{X} \overline{Y}$ é a dada por (1). Especificamente, gere e armazene em um vetor denominado X.bar a média de 15.000 amostras de tamanho $n_X = 100$ a partir de uma distribuição Normal com $\mu_X = 100$ e $\sigma_X = 10$. Gere e armazene em um vetor denominado Y.bar a média de 15.000 amostras de tamanho $n_Y = 80$ a partir de uma distribuição Normal com $\mu_Y = 49$ e $\sigma_Y = 8$. Calcule a média e o desvio padrão para a diferença entre X.bar e Y.bar. Calcule a probabilidade empírica $P\left(\overline{X} \overline{Y} < 51\right)$ com base nos dados simulados, bem como a probabilidade teórica $P\left(\overline{X} \overline{Y} < 51\right)$.
- 4. Construa um histograma de densidade das diferenças entre X.bar e Y.bar, e sobreponha ao histograma uma curva de densidade Normal com média e desvio padrão iguais à média e desvio padrão teóricos para $(\overline{X} \overline{Y})$ deste problema.

Questão – 3 (3,0 Pontos)

Considere que Y_1 , Y_2 , ..., Y_n é uma amostra aleatória de uma população $N(\mu, \sigma^2)$: (1) Se a variância for conhecida, encontre um valor mínimo para n que garanta um intervalo de 0,95 para μ que terá comprimento total que não seja superior ao desvio-padrão dividido por cinco (ou seja, $\sigma/5$); (2) Se a variância for desconhecida, encontre um valor mínimo para n que garanta, com probabilidade 90%, que um intervalo de confiança de 95% para μ terá comprimento total que não seja superior ao desvio-padrão dividido por cinco (ou seja, $\sigma/5$). Comente os resultados.

ITA, MOQ-13: 2ª Prova Bimestral (18/10/2019)	
Nome:	Turma:

Questão 01

ITA, MOQ-13: 2 ^a Prova Bimestral (18/10/2019)	
Nome:	Turma:
Questão 02	

ITA, MOQ-13: 2ª Prova Bimestral (18/10/2019)	
Nome:	Turma:

Questão 03