Section 10.4 Vectors

$$\mathbf{v} = \overrightarrow{PQ}$$

Two vectors v and w are equal, written

$$\mathbf{v} = \mathbf{w}$$

if they have the same magnitude and the same direction.

Adding Vectors

Vector addition is **commutative**.

That is, if v and w are any two vectors, then

$$\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$$

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Vector addition is also **associative**.

That is, if **u**, **v**, and **w** are vectors, then

$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

$$\mathbf{v} + \mathbf{0} = \mathbf{0} + \mathbf{v} = \mathbf{v}$$

$$\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$$

If v and w are two vectors, we define the difference v — w as

$$\mathbf{v} - \mathbf{w} = \mathbf{v} + (-\mathbf{w})$$

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Multiplying Vectors by Numbers

If α is a scalar and v is a vector, the scalar product α v is defined as follows:

- **1.** If $\alpha > 0$, the product $\alpha \mathbf{v}$ is the vector whose magnitude is α times the magnitude of \mathbf{v} and whose direction is the same as \mathbf{v} .
- **2.** If $\alpha < 0$, the product $\alpha \mathbf{v}$ is the vector whose magnitude is $|\alpha|$ times the magnitude of \mathbf{v} and whose direction is opposite that of \mathbf{v} .
- 3. If $\alpha = 0$ or if $\mathbf{v} = \mathbf{0}$, then $\alpha \mathbf{v} = \mathbf{0}$.

Scalar products have the following properties:

$$0\mathbf{v} = \mathbf{0} \qquad 1\mathbf{v} = \mathbf{v} \qquad -1\mathbf{v} = -\mathbf{v}$$
$$(\alpha + \beta)\mathbf{v} = \alpha\mathbf{v} + \beta\mathbf{v} \qquad \alpha(\mathbf{v} + \mathbf{w}) = \alpha\mathbf{v} + \alpha\mathbf{w}$$
$$\alpha(\beta\mathbf{v}) = (\alpha\beta)\mathbf{v}$$

1 Graph Vectors

EXAMPLE Graphing Vectors

Use the vectors illustrated in Figure 52 to graph each of the following vectors:

(a)
$$\mathbf{v} - \mathbf{w}$$

(b)
$$2v + 3w$$

(a)
$$v - w$$
 (b) $2v + 3w$ (c) $2v - w + u$

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Magnitudes of Vectors

Properties of ||v||

If **v** is a vector and if α is a scalar, then

(a)
$$\|\mathbf{v}\| \ge 0$$

(b)
$$\|\mathbf{v}\| = 0$$
 if and only if $\mathbf{v} = \mathbf{0}$

$$(c) \|-\mathbf{v}\| = \|\mathbf{v}\|$$

(d)
$$\|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\|$$

A vector **u** for which $\|\mathbf{u}\| = 1$ is called a **unit vector**.

2 Find a Position Vector

An algebraic vector v is represented as

$$\mathbf{v} = \langle a, b \rangle$$

where *a* and *b* are real numbers (scalars) called the **components** of the vector **v**.

Theorem

Suppose that \mathbf{v} is a vector with initial point $P_1 = (x_1, y_1)$, not necessarily the origin, and terminal point $P_2 = (x_2, y_2)$. If $\mathbf{v} = \overrightarrow{P_1 P_2}$, then \mathbf{v} is equal to the position vector

$$\mathbf{v} = \langle x_2 - x_1, y_2 - y_1 \rangle$$

Finding a Position Vector

Find the position vector of the vector $\mathbf{v} = \overrightarrow{P_1P_2}$ if $P_1 = (-1, 2)$ and $P_2 = (4, 6)$.

Theorem

Equality of Vectors

Two vectors **v** and **w** are equal if and only if their corresponding components are equal. That is,

If
$$\mathbf{v} = \langle a_1, b_1 \rangle$$
 and $\mathbf{w} = \langle a_2, b_2 \rangle$
then $\mathbf{v} = \mathbf{w}$ if and only if $a_1 = a_2$ and $b_1 = b_2$.

$$\mathbf{v} = \langle a, b \rangle = a\langle 1, 0 \rangle + b\langle 0, 1 \rangle = a\mathbf{i} + b\mathbf{j}$$

3 Add and Subtract Vectors Algebraically

In Words

To add two vectors, add corresponding components. To subtract two vectors, subtract corresponding components.

Let $\mathbf{v} = a_1 \mathbf{i} + b_1 \mathbf{j} = \langle a_1, b_1 \rangle$ and $\mathbf{w} = a_2 \mathbf{i} + b_2 \mathbf{j} = \langle a_2, b_2 \rangle$ be two vectors, and let α be a scalar. Then

$$\mathbf{v} + \mathbf{w} = (a_1 + a_2)\mathbf{i} + (b_1 + b_2)\mathbf{j} = \langle a_1 + a_2, b_1 + b_2 \rangle$$
 (2)

$$\mathbf{v} - \mathbf{w} = (a_1 - a_2)\mathbf{i} + (b_1 - b_2)\mathbf{j} = \langle a_1 - a_2, b_1 - b_2 \rangle$$
 (3)

$$\alpha \mathbf{v} = (\alpha a_1)\mathbf{i} + (\alpha b_1)\mathbf{j} = \langle \alpha a_1, \alpha b_1 \rangle$$
 (4)

$$\|\mathbf{v}\| = \sqrt{a_1^2 + b_1^2} \tag{5}$$

$$\mathbf{v} + \mathbf{w} = (a_1 + a_2)\mathbf{i} + (b_1 + b_2)\mathbf{j} = \langle a_1 + a_2, b_1 + b_2 \rangle$$

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

$$\alpha \mathbf{v} = (\alpha a_1)\mathbf{i} + (\alpha b_1)\mathbf{j} = \langle \alpha a_1, \alpha b_1 \rangle$$

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

$$\|\mathbf{v}\| = \sqrt{a_1^2 + b_1^2}$$

$$|| \mathbf{v} || = \text{Distance from } O \text{ to } P_1$$

 $|| \mathbf{v} || = \sqrt{a_1^2 + b_1^2}$

Adding and Subtracting Vectors

If
$$\mathbf{v} = 2\mathbf{i} + 3\mathbf{j} = \langle 2, 3 \rangle$$
 and $\mathbf{w} = 3\mathbf{i} - 4\mathbf{j} = \langle 3, -4 \rangle$, find:
(a) $\mathbf{v} + \mathbf{w}$ (b) $\mathbf{v} - \mathbf{w}$

(a)
$$\mathbf{v} + \mathbf{w} = (2\mathbf{i} + 3\mathbf{j}) + (3\mathbf{i} - 4\mathbf{j}) = (2 + 3)\mathbf{i} + (3 - 4)\mathbf{j} = 5\mathbf{i} - \mathbf{j}$$

or

$$\mathbf{v} + \mathbf{w} = \langle 2, 3 \rangle + \langle 3, -4 \rangle = \langle 2 + 3, 3 + (-4) \rangle = \langle 5, -1 \rangle$$

(b)
$$\mathbf{v} - \mathbf{w} = (2\mathbf{i} + 3\mathbf{j}) - (3\mathbf{i} - 4\mathbf{j}) = (2 - 3)\mathbf{i} + [3 - (-4)]\mathbf{j} = -\mathbf{i} + 7\mathbf{j}$$
 or

$$\mathbf{v} - \mathbf{w} = \langle 2, 3 \rangle - \langle 3, -4 \rangle = \langle 2 - 3, 3 - (-4) \rangle = \langle -1, 7 \rangle$$

Finding Scalar Multiples and Magnitudes

If $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j} = \langle 2, 3 \rangle$ and $\mathbf{w} = 3\mathbf{i} - 4\mathbf{j} = \langle 3, -4 \rangle$, find:

(a)
$$3\mathbf{v}$$
 (b) $2\mathbf{v} - 3\mathbf{w}$ (c) $\|\mathbf{v}\|$

(a)
$$3\mathbf{v} = 3(2\mathbf{i} + 3\mathbf{j}) = 6\mathbf{i} + 9\mathbf{j}$$

or
$$3\mathbf{v} = 3\langle 2, 3 \rangle = \langle 6, 9 \rangle$$

(b)
$$2\mathbf{v} - 3\mathbf{w} = 2(2\mathbf{i} + 3\mathbf{j}) - 3(3\mathbf{i} - 4\mathbf{j}) = 4\mathbf{i} + 6\mathbf{j} - 9\mathbf{i} + 12\mathbf{j}$$

= $-5\mathbf{i} + 18\mathbf{j}$

or

$$2\mathbf{v} - 3\mathbf{w} = 2\langle 2, 3 \rangle - 3\langle 3, -4 \rangle = \langle 4, 6 \rangle - \langle 9, -12 \rangle$$

 $= \langle 4 - 9, 6 - (-12) \rangle = \langle -5, 18 \rangle$

(c)
$$\|\mathbf{v}\| = \|2\mathbf{i} + 3\mathbf{j}\| = \sqrt{2^2 + 3^2} = \sqrt{13}$$

5 Find a Unit Vector

Theorem

Unit Vector in the Direction of v

For any nonzero vector **v**, the vector

$$\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$$

is a unit vector that has the same direction as v.

Finding a Unit Vector

Find a unit vector in the same direction as $\mathbf{v} = 4\mathbf{i} - 3\mathbf{j}$.

We find $\|\mathbf{v}\|$ first.

$$\|\mathbf{v}\| = \|4\mathbf{i} - 3\mathbf{j}\| = \sqrt{16 + 9} = 5$$

Now we multiply **v** by the scalar $\frac{1}{\|\mathbf{v}\|} = \frac{1}{5}$. A unit vector in the same direction as **v** is

$$\frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{4\mathbf{i} - 3\mathbf{j}}{5} = \frac{4}{5}\mathbf{i} - \frac{3}{5}\mathbf{j}$$

$$\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$$
 or $\mathbf{v} = \|\mathbf{v}\|\mathbf{u}$

$$\mathbf{v} = \|\mathbf{v}\|(\cos\alpha\,\mathbf{i}\,+\,\sin\alpha\,\mathbf{j})$$

Writing a Vector When Its Magnitude and Direction Are Given

A ball is thrown with an initial speed of 25 miles per hour in a direction that makes an angle of 30° with the positive *x*-axis. Express the velocity vector **v** in terms of **i** and **j**. What is the initial speed in the horizontal direction? What is the initial speed in the vertical direction?

The magnitude of \mathbf{v} is $\|\mathbf{v}\| = 25$ miles per hour, and the angle between the direction of \mathbf{v} and \mathbf{i} , the positive x-axis, is $\alpha = 30^{\circ}$. By equation (8),

$$\mathbf{v} = \|\mathbf{v}\|(\cos\alpha\mathbf{i} + \sin\alpha\mathbf{j}) = 25(\cos30^\circ\mathbf{i} + \sin30^\circ\mathbf{j}) = 25\left(\frac{\sqrt{3}}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}\right) = \frac{25\sqrt{3}}{2}\mathbf{i} + \frac{25}{2}\mathbf{j}$$

The initial speed of the ball in the horizontal direction is the horizontal component of \mathbf{v} , $\frac{25\sqrt{3}}{2}\approx 21.65$ miles per hour. The initial speed in the vertical direction is the vertical component of \mathbf{v} , $\frac{25}{2}=12.5$ miles per hour. See Figure 57.

Writing a Vector When Its Magnitude and Direction Are Given

A ball is thrown with an initial speed of 25 miles per hour in a direction that makes an angle of 30° with the positive *x*-axis. Express the velocity vector **v** in terms of **i** and **j**. What is the initial speed in the horizontal direction? What is the initial speed in the vertical direction?

7 Analyze Objects in Static Equilibrium

An Object in Static Equilibrium

A box of supplies that weighs 1200 pounds is suspended by two cables attached to the ceiling, as shown in Figure 61. What is the tension in the two cables?

An Object in Static Equilibrium

$$\mathbf{F}_{1} = \|\mathbf{F}_{1}\|(\cos \frac{150^{\circ}\mathbf{i}}{2} + \sin \frac{150^{\circ}\mathbf{j}}{2}) = \|\mathbf{F}_{1}\|\left(-\frac{\sqrt{3}}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}\right) = -\frac{\sqrt{3}}{2}\|\mathbf{F}_{1}\|\mathbf{i} + \frac{1}{2}\|\mathbf{F}_{1}\|\mathbf{j}$$

$$\mathbf{F}_{2} = \|\mathbf{F}_{2}\|(\cos 45^{\circ}\mathbf{i} + \sin 45^{\circ}\mathbf{j}) = \|\mathbf{F}_{2}\|\left(\frac{\sqrt{2}}{2}\mathbf{i} + \frac{\sqrt{2}}{2}\mathbf{j}\right) = \frac{\sqrt{2}}{2}\|\mathbf{F}_{2}\|\mathbf{i} + \frac{\sqrt{2}}{2}\|\mathbf{F}_{2}\|\mathbf{j}$$

$$\mathbf{F}_3 = -1200\mathbf{j}$$

For static equilibrium, the sum of the force vectors must equal zero.

$$\mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 = -\frac{\sqrt{3}}{2} \|\mathbf{F}_1\| \mathbf{i} + \frac{1}{2} \|\mathbf{F}_1\| \mathbf{j} + \frac{\sqrt{2}}{2} \|\mathbf{F}_2\| \mathbf{i} + \frac{\sqrt{2}}{2} \|\mathbf{F}_2\| \mathbf{j} - 1200 \mathbf{j} = \mathbf{0}$$

The i component and j component will each equal zero. This results in the two equations

$$-\frac{\sqrt{3}}{2}\|\mathbf{F}_1\| + \frac{\sqrt{2}}{2}\|\mathbf{F}_2\| = 0$$
 (9)

$$\frac{1}{2}\|\mathbf{F}_1\| + \frac{\sqrt{2}}{2}\|\mathbf{F}_2\| - 1200 = 0$$
 (10)

We solve equation (9) for $\|\mathbf{F}_2\|$ and obtain

$$\|\mathbf{F}_2\| = \frac{\sqrt{3}}{\sqrt{2}} \|\mathbf{F}_1\|$$

Substituting into equation (10) and solving for $\|\mathbf{F}_1\|$, we obtain

$$\frac{1}{2} \|\mathbf{F}_1\| + \frac{\sqrt{2}}{2} \left(\frac{\sqrt{3}}{\sqrt{2}} \|\mathbf{F}_1\|\right) - 1200 = 0$$

$$\frac{1}{2} \|\mathbf{F}_1\| + \frac{\sqrt{3}}{2} \|\mathbf{F}_1\| - 1200 = 0$$

$$\frac{1 + \sqrt{3}}{2} \|\mathbf{F}_1\| = 1200$$

$$\|\mathbf{F}_1\| = \frac{2400}{1 + \sqrt{3}} \approx 878.5 \text{ pounds}$$

An Object in Static Equilibrium

Substituting this value into equation (11) yields $\|\mathbf{F}_2\|$.

$$\|\mathbf{F}_2\| = \frac{\sqrt{3}}{\sqrt{2}} \|\mathbf{F}_1\| = \frac{\sqrt{3}}{\sqrt{2}} \cdot \frac{2400}{1 + \sqrt{3}} \approx 1075.9 \text{ pounds}$$

The left cable has tension of approximately 878.5 pounds and the right cable has tension of approximately 1075.9 pounds.