# Appetizer to Rotating Machinery Diagnostics 29 November 2006 – 3 days Hands-on Brüel & Kjaer Headquarter Denmark Brüel & Kjær 拳

































| Use of Weighting Functions in <i>Signal</i> Analysis |                  |           |           |                  |                   |             |  |
|------------------------------------------------------|------------------|-----------|-----------|------------------|-------------------|-------------|--|
|                                                      | Weighting        |           |           |                  |                   |             |  |
|                                                      | Rect-<br>angular | Hanning   | Transient | Expo-<br>nential | Kaiser-<br>Bessel | Flat<br>Top |  |
| Transients:                                          |                  |           |           |                  |                   |             |  |
| General purpose                                      | ~                |           |           |                  |                   |             |  |
| Short transient                                      |                  |           | <b>V</b>  |                  |                   |             |  |
| Long decaying transients                             |                  |           |           | V                |                   |             |  |
| <ul> <li>Very long transients</li> </ul>             |                  | + overlap |           |                  |                   |             |  |
| Continuous signals:                                  |                  |           |           |                  |                   |             |  |
| General purpose                                      |                  | <b>V</b>  |           |                  |                   |             |  |
| Two-tone separation                                  |                  |           |           |                  | ~                 |             |  |
| Calibration                                          |                  |           |           |                  |                   | <b>V</b>    |  |
| (Pseudo random)                                      | <b>V</b>         |           |           |                  |                   |             |  |
| 18 Rotating Machinery Appetizer Brüel & Kjær 👙       |                  |           |           |                  |                   |             |  |

































## **Loose Journal Bearing**

### LOOSE BEARING COMPONENTS

Vibration: mainly radial

Frequencies: increase in low harmonics plus

sub-harmonics and interharmonics

Rotating Machinery Appetizer

Brüel & Kjær 🛶





## Vibration from Gears Vibration from gears comes from several sources, including: Tooth deflection under load Uniform wear around the gear Local effects such as cracked teeth



































## **Operating Deflection Shapes**

- Operating Deflection Shapes documented in terms of
  - Animated geometry
  - Tables of Acceleration, Velocity, Displacement

Measurements at different points and directions (Degrees-of-freedom, **DOFs**)

Ex.: ODS of a frequency (order) component (i.e. sinusoid)



| DOFs     | Shape 1<br>Accel. (m/s^2) | Shape 1<br>Vel. (m/s) | Shape 1<br>Disp. (m) |
|----------|---------------------------|-----------------------|----------------------|
| +1Y:-1Y  | 1,2596                    | 368,51E-6             | 107,81E-9            |
| +2Y>1Y   | 19,427E-3                 | 5,6837E-6             | 1,6629E-9            |
| +3Y:-1Y  | 0,42542                   | 124,46E-6             | 36,413E-9            |
| +4Y:-1Y  | 6,0324E-3                 | 1,7649E-6             | 516,34E-12           |
| +5Y:-1Y  | 0,74126                   | 216,87E-6             | 63,447E-9            |
| +6Y:-1Y  | 34,6630-3                 | 10,141E-6             | 2,9669E-9            |
| +7Y:-1Y  | 0,49648                   | 145,25E-6             | 42,495E-9            |
| +8Y:-1Y  | 0,18884                   | 55,247E-6             | 16,163E-9            |
| +26Y:-1Y | 0,47658                   | 139,43E-6             | 40,792E-9            |
| +27Y:-1Y | 8,9399E-3                 | 2,6155E-6             | 765,2E-12            |
| +28Y:-1Y | 0,47475                   | 130,96-6              | 40,636E-9            |
| +29Y:-1Y | 1,9376E-3                 | 566,89E-9             | 165,85E-12           |
| +30Y:-1Y | 0,6873                    | 201,08E-6             | 58,829E-9            |
| +31Y:-1Y | 8,1696E-3                 | 2,3901E-6             | 699,26E-12           |
| +32Y:-1Y | 0,50681                   | 148,28E-6             | 43,38E-9             |
| +33Y:-1Y | 2,48446-3                 | 726,86E-9             | 212,65E-12           |

55 Rotating Machinery Appetizer

Brüel & Kjær 🛶

