第五章

目标规划

Goal Programming

线性规划:单一目标

目标规划:多目标(Multiple-objetives)

考虑优先次序、综合规划

5.1 问题的提出和数学模型 字子 / M

- 一、引例:某企业生产I、II两种产品,其生产的参数如表中所示。在制定生产计划时要考虑如下内容:
- (1) 依据市场反馈信息, I 产品出现滞销, 预测表明, 两种产品的生产比例大致保持1:1为宜;
- (2)设备能力尚有机动的余地,B设备必要时可以加班,但希望加班时间愈少愈好;A设备较为重要,所以既希望能力能够被充分利用,同时又尽量少加班;
 - (3) 企业将利润指标定为12元,并力求超过。

企业认为,在上述考虑的目标中,利润要求最为重要;产量比例次之;A设备的重要性是B设备的三倍。

试建立该问题的数学模型。

二、建立模型

设 x_1 ——I产品的产量

x₂——II产品的产量

产品	A	В	C	D	利润
I	2	1	4	0	2
II	2	2	0	4	3
加工能力	12	8	16	12	

经刑刘始

다수의 목표가 존재하는 문제 상황을 체계적으로 해결한 수 있는 기법 ·晔(外数龄,现此岭)

- ·吴姓子·彭 Min
- ·바람진하지 않은 떤가 반들의 형을 취소화
- ・相字なせ(八点型 川中工せ | 写玉刈中全せ)

· 对我 对对 军董 里对教堂 亚党 乳 又的 भाग यमके प्रेमें हमा याष्ट्रस्य में में स्म

· 珂补比个 d- , d+ 미연분 소가부

在 ≥ 百 → 미안制 0代型 X

"三"一句说明"

「紀斜神朝: 予は斜明なめ P, J, + + P, J, + -、 一般神朝: 水和朝 の ち:3:2 等等

Pi——优先级系数, i越小, 则级别越高。

三、模型的特点

- (1) 引进偏差变量,表示实际值与目标值之间的差距。 其中, d_i⁻表示负偏差, 体现实际值低于目标的大小; d_i⁺表示正偏差, 体现实际值高于目标的大小。
 - (2) 约束分两种形式:

系统约束——刚性约束,严格限制;可以不出现;目标约束——柔性约束,弹性限制。必须存在。

- (3) 目标函数只出现偏差变量,而不含决策变量。
- (4) 模型引进优先级系数的概念。

1181000±03 尹峻大英

۵.

min
$$Z = P_1 J_1^+ + P_2 J_3^+ + P_3 J_3^+$$

Sit? $20 \chi_A + 20 \chi_B + J_1^- - J_1^+ = 400$
 $40 - 3 \chi_A + J_2^- - J_2^+ = 5$
 $50 - 4 \chi_B + J_3^- - J_3^+ = 5$
 $\chi_A, \chi_B, J_1^-, J_1^+ \ge 0$ ($\hat{\lambda} = 1.233$)

b. mins = Polt+ pol++ Pol+

$$\begin{cases} 20x_{A} + 20t_{B} + d_{1}^{-} - d_{1}^{+} = 400 \\ 40 - 3x_{A} + d_{2}^{-} - d_{2}^{+} = t_{5} \\ 50 - 4x_{13} + d_{3}^{-} - d_{3}^{+} = t_{5} \\ t_{A}, t_{B}, d_{5}, d_{5}^{+} \neq 0 \ (l = 1, 3, 3) \end{cases}$$

5.2 目标规划模型的图解分析

- ① 作平面直角坐标系;
- ② 作出系统约束所在直线;
- ③ 作出目标约束所在直线,标出偏差方向;
- ④ 按优先级次序,确定满意解。

例:有目标规划模型如下,用图解分析求解

Min
$$z=P_1(d_1^-+d_1^+)+P_2(d_2^-+d_2^+)$$

St.
$$\begin{cases}
4x_1 & \leq 16 & & \\
4x_2 & \leq 12 & & \\
2x_1+3x_2 & \leq 12 & & \\
2x_1+2x_2+d_1^--d_1^+=12 & & \\
x_1+2x_2+d_2^--d_2^+=8 & & \\
x_1,x_2\geq 0, d_i^-, d_i^+\geq 0, (i=1,2,3)
\end{cases}$$

5.3 目标规划的单纯形法

目标规划的单纯形法与线性规划单纯形法类似。

最优性判定准则:

- (1) 所有检验数均≥0,则该表为最优解 表;
- (2) 若某行具有负值检验数,但负检验 数列较高优先级中具有正检验数, 则该表为最优解表。

例:

Min
$$z=P_1d_1^-+P_1d_2^++P_2d_3^-$$

St.
$$x_1^++d_1^--d_1^+=10$$

$$2x_1^++x_2^-+d_2^--d_2^+=40$$

$$3x_1^++2x_2^-+d_3^--d_3^+=100$$

$$x_1, x_2 \ge 0, d_i^-, d_i^+ \ge 0, (i=1,2,3)$$

4) - (B. ZLÓ)								
		7		7		7		
$C_j \rightarrow$	0 0	p_1	0	0,	p_1	\mathbf{p}_2	0	
$C_B X_B b$	$\mathbf{x}_1 \mathbf{x}_2$	d_1^-	d_1^+	d_2^-	d_2^+	d_3^-	d_3^+	
$p_1 d_1^- 10$	(1) 0	1	-1	0	0	0	0	
$\begin{array}{cccc} 0 & d_2^- & 40 \\ p_2 & d_3^- & 100 \end{array}$	$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$0 \\ 0$	1	-1 0	0	0	
	/ 12	2 + P2·3)	1		1		<u></u> -1	
$c_j - z_j$ $\frac{p_1}{p_2}$	-3 -2		98		93		1	
$0 x_1 10$	0	1	-1	0	0	0	0	
$0 d_2^- 20 $		-2	2	1	-1	0	0	10
$p_2 d_3^- 70 $	0 2	-3	3	0	0	1	-1	23.33
(p)				19 a.C.	(1)	HS all		
$c_j - z_j$ p_2	$0 \begin{pmatrix} -2 \end{pmatrix}$	3	-3				1	
			4					
	ROHS	至北门	水记?	46	5003	W2-		

--第5章 目标规划--

C_j	>	0	0	p ₁	0	0	p_1	p ₂	0
C_B X_B	b	\mathbf{x}_1	\mathbf{x}_2	d_1^-	d_1^+	d_2^-	d_2^+	d ₃ -	d_3^+
$0 \mathbf{x}_1$	20	1 -	1/2	0	0	1/2	-1/2	0	0
$0 d_2^+$	10	0	$\left[1/2\right]$	-1	1	1/2	-1/2	0	0
p_2 d_3^-	40	0	1/2	0	0	-3/2	3/2	1	-1
C 7.	$p_1 \geq$	C		1			1		
$c_j - z_j$	p_2		-1/2			3/2	-3/2		1
$0 x_1$	10	1	0	1	-1	0	0	0	0
$0 \mathbf{x}_2$	20	0	1	-2	2	1	-1	0	0
p_2 d_3^-	30	0	0	1	-1	-2	2	1	-1
C - 7	p_1			1 3	0		12	d	
c _j - z _j	p_2			$\left(-1\right)$	1	2	(-2)		1
			1	P,-P, 20			2P, - P	=0	

5.4 目标规划模型的实际应用

例1: 某计算机公司欲制定购买年度所需的计算机芯片(chip集成电路块)的策略。公司选择的供应商有三家,芯片按质量的差异可分为一级、二级和三级,一级最好,三级最低。在本年度里,公司估计可需要一级芯片5000块,二级芯片3000块,三级芯片1000块。来自每个供应商的芯片构成情况如表示(芯片成组供应,100块为一组),公司年度采购芯片的预算为28000元。若公司没获得足够的各级芯片,它还需要额外零散购买缺少的芯片,价格为一级芯片10元,二级芯片6元,三级芯片4元。若采购资金超过预算,则超额部分将承担30%的融资费,所以应使融资费尽可能的少。公司欲使用目标规划模型来帮助决策,优先考虑的顺序为:

(1) 预算要求;

- (2) 一级芯片的需求量;
- (3) 二级芯片的需求量;
- (4) 三级芯片的需求量。

芯片组等级数量构成及价格

供应游级	一级	二级	三级	每组价格				
供应商A	60	20	20	400				
供应商B	50	35	15	300				
供应商C	40	20	40	250				

模型:

设x_i ——购买第j个供应商芯片组数

约束方程:

一级芯片: $60x_1+50x_2+40x_3+d_1-d_1+=5000$

二级芯片: $20x_1+35x_2+20x_3+d_2-d_2+=3000$

三级芯片: $20x_1+15x_2+40x_3+d_3-d_3+1=1000$

预算要求: $400x_1+300x_2+250x_3+10d_1^-+6d_2^-+4d_3^-+d_4^--d_4^+=28000$

目标函数:

Min
$$z=P_1d_4^++P_2d_1^-+P_3d_2^-+P_4d_3^-$$

变量符号限制:

$$x_i \ge 0$$
 (j=1,2,3), $d_i \ge 0$, $d_i^+ \ge 0$ (i=1,...,4)

5.5 目标规划的灵敏度分析

☆ 一般只做 c_i 、 b_i 的变化分析

☆ 只能用单纯形法分析计算

复习思考题

- 1. 为何提出目标规划问题? 安色 空叹吧
- 2. 目标规划模型的特点是什么? 人 人
- 3. 目标规划的图解分析与线性规划?
- 4. 解目标规划单纯形法与解线性规划单纯形法有什么不同?
- 5. 目标规划的灵敏度分析通常都做那些内容?

本章知识。点

- 1. 目标规划模型的结构特点
- 2. 目标规划问题的建模思路
- 3. 目标规划模型的图解分析法
- 4. 目标规划模型的单纯形法
- 5. 目标规划的敏感度分析内容