- **5** Data is stored in the array NameList[1:10]. This data is to be sorted.
 - (a) (i) Complete the pseudocode algorithm for an insertion sort.

© UCLES 2015 9608/42/M/J/15

(ii)

(b) An alternative sort algorithm is a bubble sort:

(i) As in part (a)(ii), a special case is when NameList is already in order. The algorithm in part (b) is applied to this special case.

Explain how many iterations are carried out for each of the loops.
[0]
[2]

Rewrite the algorithm in part (b) , using pseudocode , to reduce the number of unnecessary comparisons. Use the same variable names where appropriate.
rel

3 The arrays PollData[1:10] and CardData[1:10] store data.

PollData	12	85	52	57	25	11	33	59	56	91
CardData	11	12	25	33	52	56	57	59	91	85

An insertion sort sorts these data.

09

10 ENDFOR

(a)	State why it will take less time to complete an insertion sort on CardData than on PollData.
	[1]
(b)	The following pseudocode algorithm performs an insertion sort on the CardData array.
	Complete the following pseudocode algorithm.
01	ArraySize ← 10
02	FOR Pointer ← 2 TO
03	ValueToInsert ← CardData[Pointer]
04	HolePosition ←
05	WHILE (HolePosition > 1 AND ())
06	CardData[HolePosition] ← CardData[]
07	HolePosition ←
08	ENDWHILE

CardData[HolePosition] ←

[7]

© UCLES 2018 9608/42/M/J/18

(c)	(i)	A binary search algorithm is used to find a specific value in an array.
		Explain why an array needs to be sorted before a binary search algorithm can be used.
		[2]
	(ii)	The current contents of CardData are shown.
		11 12 25 33 52 56 57 59 85 91
		Explain how a binary search will find the value 25 in CardData.
		Explain flow a binary scaron will find the value 23 in Carabaca.
		[4]
		IAI

(d) Complete this procedure to carry out a binary search on the array shown in part (c)(ii).

```
PROCEDURE BinarySearch(CardData, SearchValue)
  DECLARE Midpoint : INTEGER
  First \leftarrow 1
  Last ← ARRAYLENGTH(.....)
  Found ← FALSE
  WHILE (First <= Last) AND NOT(Found)</pre>
    Midpoint ← .....
    IF CardData[Midpoint] = SearchValue
       THEN
         Found ← TRUE
       ELSE
         IF SearchValue < CardData[Midpoint]</pre>
           THEN
           ELSE
              First ← .....
         ENDIF
       ENDIF
  ENDWHILE
ENDPROCEDURE
```

[4]

© UCLES 2018 9608/42/M/J/18

5 The following procedure performs an insertion sort on the global array TheArray that has 10 elements.

Complete the pseudocode for the procedure InsertionSort().

ENDPROCEDURE

[5]

© UCLES 2021 9608/42/M/J/21 **[Turn over**

4 (a) The array Numbers [0 : Max] stores numbers. An insertion sort can be used to sort these numbers into ascending order.

Complete the following **pseudocode** for the insertion sort algorithm.

	FOR Pointer \leftarrow 1 TO (Max - 1)
	<pre>ItemToInsert ←</pre>
	CurrentItem ←
	WHILE (CurrentItem > 0) AND (Numbers[CurrentItem - 1] > ItemToInsert)
	Numbers[] ← Numbers[CurrentItem - 1]
	CurrentItem ← CurrentItem - 1
	ENDWHILE
	$\texttt{Numbers[CurrentItem]} \leftarrow \dots$
	ENDFOR [4]
(b)	Identify two features of the array Numbers that would have an impact on the performance of this insertion sort algorithm.
	1
	2[2]

3	A bubble sort algorithm is used to sort an integer array, List. This algorithm can process arrays
	of different lengths.

(a)	Write	pseudocode	to complete	the bubble	sort algorithm	shown
(u)	VVIILO	Dacudocode	to combiete	LITE DUDDIE	JOIL GIGOTILITI	1 3110 111

	01	FOR Outer \leftarrow TO 0 STEP - 1
	02	FOR Inner \leftarrow 0 TO ()
	03	IF >
	04	THEN
	05	$\texttt{Temp} \leftarrow \dots$
	06	List[Inner] ←
	07	List[Inner + 1] ←
	08	ENDIF
	09	ENDFOR
	10	ENDFOR [7]
(b)	(i)	State the order of the sorted array.
		[1]
	(ii)	State which line of the algorithm you would change to sort the array into the opposite order.
		State the change you would make.
		Line
		Change
		[1]

© UCLES 2018 9608/42/O/N/18

n the list is fully			
			[/

- 1 There are several different searching and sorting algorithms.
 - (a) Identify two sorting algorithms.

```
1 ......
2 ......
[2]
```

(b) Consider the following pseudocode algorithm.

```
LowerBound \leftarrow 0
UpperBound ← LengthOfList - 1
\texttt{ValueFound} \leftarrow \texttt{FALSE}
OUTPUT "Value to find: "
INPUT ValueToFind
WHILE ValueFound = FALSE AND UpperBound <> LowerBound
    MidPoint ← (LowerBound + UpperBound) DIV 2
    IF List[MidPoint] = ValueToFind
        THEN
             ValueFound \leftarrow TRUE
        ELSE
             IF List[MidPoint] < ValueToFind</pre>
                 THEN
                     LowerBound ← MidPoint + 1
                 ELSE
                     UpperBound ← MidPoint - 1
             ENDIF
    ENDIF
ENDWHILE
IF ValueFound = FALSE
    THEN
        MidPoint ← (LowerBound + UpperBound) DIV 2
        IF List[MidPoint] = ValueToFind
             THEN
                OUTPUT "Item in position " & MidPoint & " in list"
             ELSE
                OUTPUT "Not in list"
        ENDIF
    ELSE
        OUTPUT "Item in position " & MidPoint & " in list"
ENDIF
```

Note: DIV is an operator that performs integer division.

The array List contains the following values:

```
2, 5, 21, 25, 36, 48, 51, 59, 65, 70
```

© UCLES 2020 9608/42/O/N/20

(i) Complete the trace table to show a dry run of the algorithm, when the value 21 is input.

LowerBound	UpperBound	ValueFound	ValueToFind	MidPoint

					[3]
Identify this	s type of searching	algorithm.			
					[1]
The value	59 is input.				
State the n	number of times the	while loop condition	on is executed.		
					[1]
		f times the while lo	oop condition will b	e executed to s	earch
					[1]
MidPoint	is calculated and	checked again afte	r the while loop is t	erminated.	
Explain wh	y this additional ca	lculation and checl	k is necessary.		
					[2]
	The value State the r State the r for a value MidPoint Explain wh	The value 59 is input. State the number of times the state the minimum number of for a value. MidPoint is calculated and of Explain why this additional calculated and of the state of th	The value 59 is input. State the number of times the while loop condition	The value 59 is input. State the number of times the while loop condition is executed. State the minimum number of times the while loop condition will be for a value. MidPoint is calculated and checked again after the while loop is to explain why this additional calculation and check is necessary.	The value 59 is input. State the number of times the while loop condition is executed. State the minimum number of times the while loop condition will be executed to sfor a value. MidPoint is calculated and checked again after the while loop is terminated.

5, 9, 10, 12, 15, 13, 17, 19, 20, 2

Explain why the algorithm will not find the value 2 in this data set.	
[ž	2]

© UCLES 2020 9608/42/O/N/20

	array, NumberArray, stores 100 integer values. The array needs to be sorted into ascending nerical order.
(a)	Describe how an insertion sort will sort the data in NumberArray.

© UCLES 2021 9608/42/O/N/21

(b) Another type of sorting algorithm is a bubble sort.

The procedure <code>Bubble()</code> takes an array as a parameter. It performs a bubble sort on the array. The sorting algorithm stops as soon as all the elements are in ascending order.

Complete the procedure Bubble().

```
PROCEDURE Bubble (BYREF NumberArray : ARRAY[0 : 99] OF INTEGER)
   DECLARE Outer : INTEGER
   DECLARE Swap : BOOLEAN
   DECLARE Inner: INTEGER
   DECLARE Temp : INTEGER
   Outer ← LENGTH (NumberArray) - 1
   REPEAT
      Inner ← .....
      Swap \leftarrow FALSE
      REPEAT
         IF NumberArray[Inner] > NumberArray[Inner + 1]
            THEN
               Temp ← NumberArray[Inner]
               NumberArray[Inner] \leftarrow NumberArray[Inner + 1]
               NumberArray[Inner + 1] ← Temp
               Swap ← .....
         ENDIF
         Inner \leftarrow Inner + 1
      UNTIL Inner = .....
      Outer ← Outer - 1
   UNTIL Swap = ...... OR Outer = .....
ENDPROCEDURE
```

[5]