Домашня робота з курсу "Теорія Ймовірності"

Студента 3 курсу групи МП-31 Захарова Дмитра

30 жовтня 2023 р.

Завдання 26.1.

Відповідь на iте запитання позначатимемо E_i .

1.
$$E_1 = \bigcap_{i=1}^n A_i$$

2.
$$E_2 = \left(\bigcap_{i=1}^n A_i\right) \cup \left(\bigcap_{i=1}^n \overline{A}_i\right)$$

3.
$$E_3 = \bigcup_{i=1}^n A_i$$

4.
$$E_4 = \bigcup_{i=1}^n \left(A_i \cap \bigcap_{j=1, j \neq i}^n \overline{A}_j \right)$$

5. Або всі кулі чорні, тобто $\bigcap_{i=1}^{n} \overline{A}_{i}$, або тільки одна куля біла, тобто $\bigcup_{i=1}^{n} \left(A_{i} \cap \bigcap_{j \neq i}^{n} \overline{A}_{j} \right)$, або рівно 2 кулі білі, тобто $\bigcup_{i,j:i\neq j}^{n} \left(A_{i} \cap A_{j} \cap \bigcap_{k\neq i,j}^{n} \overline{A}_{k} \right)$. Ітого:

$$E_5 = \bigcap_{i=1}^n \overline{A}_i \cup \bigcup_{i=1}^n \left(A_i \cap \bigcap_{j \neq i}^n \overline{A}_j \right) \cup \bigcup_{i,j:i \neq j}^n \left(A_i \cap A_j \cap \bigcap_{k \neq i,j}^n \overline{A}_k \right)$$

6.
$$E_6 = \overline{E}_5$$

7.
$$E_7 = \bigcup_{i,j:i\neq j}^n \left(A_i \cap A_j \cap \bigcap_{k\neq i,j}^n \overline{A}_k \right)$$

Завдання 26.2.

1. Потрібно об'єднати усі події, коли для $A_{1i}A_{2j}$, справедливо j>i. Тобто:

$$E_1 = \bigcup_{i,j:j>i}^n A_{1i} \cap A_{2j}$$

2. Потрібно обрати усі A_{1j} для яких $j \leq k$. Тобто:

$$E_2 = \bigcup_{i=1}^k A_{1j}$$

Завдання 27.6.

Якщо поставити туру у будь-яку клітинку, то "зона ураження" скаладається з 2(n-1) клітин. Тому ймовірність того, що дві тури в цьому випадку поб'ються, дорівнює $\frac{2(n-1)}{n^2-1}=\frac{2}{n+1}$. Щоб побиття було більш ймовірним сценарієм, потрібно виконання $\frac{2}{n+1}>0.5$, тобто n<3. При n=3 отримуємо строгу рівність, тобто обидва випадки рівноймовірні.

Відповідь. При n=2 ймовірніше тури поб'ються, при n=3 однакова ймовірність на обидва випадки, n>3 ймовірність того, що вони не поб'ються, більша.

Завдання 27.8

Позначимо відповідь на питання j як p_j .

- 1. Всього шестизначних чисел $9 \cdot 10^5$. На кожну з позицій можемо поставити 8 довільних цифр, отже всього таких чисел 8^6 . Тому ймовірність $p_1 = 8^6/(9 \cdot 10^5)$
- 2. Маємо 6 способів поставити 9, а на інші можемо поставити 9 5 способами. Тому $p_2=(6\cdot 9^5)/(9\cdot 10^5)$
- 3. Є 5 способів поставити 0 на позиції, 8 способів поставити цифри на першу позицію та 9^4 на інші. Тому $p_3 = (5 \cdot 8 \cdot 9^4)/(9 \cdot 10^5)$
- 4. Протилежне твердженню " ε i 0, i 9" це " ε 0, але нема ε 9 або ε 9, але нема ε 0". Отже, $p_4=1-(p_2+p_3)$.
- 5. Це твердження можна розбити як: "є 9, але немає 0" або "є 0, але немає 9" або "немає 9 та 0". Отже, $p_5=p_1+p_2+p_3$.

Завдання 27.9. Не розумію, що таке "однакові" та "різні" кубики.

Завдання 27.1

Легше порахувати ймовірність, що червоних кульок було рівно 0. Кількість таких подій C_9^3 . Всього 3 кульки можна витягнути C_{14}^3 способами, отже ймовірність C_9^3/C_{14}^3 .

Отже, ймовірність мати хоча б одну червону кульку $1 - C_9^3/C_{14}^3$.

Завдання 27.13.

Всього варіантів дней народжень 12^{12} . Варіантів перестановок 12 місяців існує 12!, тому ймовірність $12!/12^{12}$.

Завдання 27.14

- 1. $1/8^3$.
- $2. 1/8^2.$

- 3. $A_8^3/8^3$
- 4. $A_8^2/8^3$

Завдання 27.16

1. Шанс, що не випаде жодна одиниця у першого гравця, дорівнює $(5/6)^6$. Тому шанс випадіння хоча б однієї дорівнює $p_1 = 1 - (5/6)^6$.

У другого шанс випадіння жодної одиниці $(5/6)^{12}$, а шанс випадіння рівно однієї дорівнює $(12\cdot 5^{11})/6^{12}$, тому загальний шанс $p_2=1-(5/6)^{12}-2\cdot (5/6)^{11}$.

Якщо порівняти, виходить $p_1 > p_2$.

2. Шанс випадіння рівно однієї для першого дорівнює $p_1=(6\cdot 5^5)/6^6\approx 0.402$, а для другого $p_2=(12\cdot 5^{11})/6^{12}\approx 0.269$. Отже знову $p_1>p_2$.

Завдання 27.17

В першому випадку шанс дорівнює $p_1 = 1 - (5/6)^4 \approx 0.517$.

В другому випадку шанс не отримати 2 одиниці за один кидок двох кубиків дорівнює $1 - (1/6)^2 = 35/36$. Отже шанс дорівнює $p_2 = 1 - (35/36)^{24} \approx 0.49$. Отже в першому випадку шанс більший.

Завдання 27.18

Всього варіантів обрати K куль дорівнює C_{a+b}^K . Вважаємо, що в умові мається на увазі "хоча б k білих куль". Тоді існує C_a^k способів обрати k білих куль та C_{a+b-k}^{K-k} інші. Отже, відповідь $\frac{C_a^k C_{a+b-k}^{K-k}}{C_{a+b}^K}$.

Якщо мається на увазі "рівно k білих куль", то $\frac{C_a^k C_b^{K-k}}{C_{a+b}^K}$

Завдання 27.20

Маємо C_{2n}^n варіантів розподілу на команди та C_{2n-2}^{n-2} розподілу 2 гравців в одну команду. Отже, $1-C_{2n-2}^{n-2}/C_{2n}^n$

Завдання 27.26

Або 3 числа парні, або 2 числа непарні, а інше парне. Всього парних чисел k, тому ймовірність першого:

$$p_1 = \frac{k(k-1)(k-2)}{(2k)^3} = \frac{(k-1)(k-2)}{8k^2}$$

Якщо 2 числа непарне, а інше парне, то ймовірність цього:

$$p_2 = \frac{k^2(k-1)}{8k^3} = \frac{k-1}{8k}$$

Отже, загальна ймовірність

$$p = p_1 + p_2 = \frac{(k-1)(k-2) + k^2 - k}{8k^2} = \frac{k^2 - 3k + 2 + k^2 - k}{8k^2} = \frac{(k-1)^2}{4k^2}$$