Zachary Seymour MATH 506 Homework 4 March 27, 2014

1

Let X be a real linear space, p a sublinear functional on X, Y a subspace of X, and f_0 a linear functional on Y such that $f_0 \leq p(x)$ for all $x \in Y$. Then there exists a linear functional f on X such that $f(x) \leq p(x)$ for all $x \in X$ and $f|_Y = f_0$.

• Here for all $x, y \in X$ and $a \ge 0$, $p: X \to \mathbb{R}$ satisfies

$$p(x+y) \le p(x) + p(y)$$
 and $p(ax) = ap(x)$.

Proof. Let E be the set of all linear extensions g of f_0 with $g(x) \leq p(x)$, with $E \neq \emptyset$, since $f_0 \in E$. If we define an ordering on E where $g \leq h$ means h is an extension of g, then for each $C \subset E$, we can define $\hat{g}(x) = g(x)$ if $x \in \mathcal{D}(g)$ for $g \in C$, which is a linear functional with $\mathcal{D}(\hat{g}) = \bigcup_{g \in C} \mathcal{D}(g)$. Then, we have $g \leq \hat{g}$ for all $g \in C$, and since C was arbitrary, Zorn's lemma allows us to choose an maximal element of E, which we will call f. By definition of E, we also have $f(x) \leq p(x)$.

Now, we must show that $\mathcal{D}(f) = X$. Suppose this is not true. Then, we can pick a $y_1 \in X \setminus \mathcal{D}(f)$ and consider the subspace Y_1 , where any $x \in Y_1$ can be written $x = y + \alpha y_1$ and define a functional g_1 on Y_1 by $g_1(y + \alpha y_1) = f(y) + \alpha c$, where $c \in \mathbb{R}$. By this then, we have $f(x) \leq g_1(x)$, thus contradicting the maximality of f.

(Note: this is the Hahn-Banach Theorem as appearing in the book.)

2

Let X be a real linear space and $A, B \subset X$ be nonempty, disjoint, convex subsets. If A is also open, then there exists $f \in X^*$ and $a \in \mathbb{R}$ such that

$$f(x) < a < f(y), \qquad x \in A, y \in B.$$

Hint: For $C = z_0 + A - B := \{z_0 + x - y : x \in A, y \in B\}$, define Minkowski functional of C by $p_C(x) = \inf \{\alpha > 0 : \alpha^{-1}x \in C\}$, for all $x \in X$. The result follows from Problem 1 and the facts that p_C is a sublinear functional on X with $C = \{x : p_C(x) < 1\}$, and that there exists c > 0 such that $0 \le p_C(x) \le c ||x||$. You do not have to prove these two facts.

Proof. Assuming we have such a p_C , we must find an f_0 such that $f_0(x) \leq p_C(x), \forall x \in M \subset X$. We'll define $f_0(az_0) := a$. Since $z_0 \notin C$, we have $a^{-1}z_0 \notin C$ if $a \in (0,1)$. So we have $p_C(z_0) \geq 1$ so $f_0(az_0) \leq p_C(az_0)$ if $a \geq 0$. Otherwise, $a < 0 \leq p(az_0)$. So $f_0(x) \leq p_C(x)$ holds, so by Problem 1, we can extend f_0 to an $f \in X^*$.

Now, let $x \in A, y \in B$ and $z_0 + x - y \in C$. Since C is an open set, $\exists \varepsilon > 0$ such that $(1+\varepsilon)(z_0 + x - y) \in C$. Thus, it follows that

$$p_C(z_0 + x - y) \le \frac{1}{1 + \varepsilon}$$

Thus, we have $f(x) - f(y) + 1 = f(z_0 + x - y) \le \frac{1}{1+\varepsilon}$, so f(x) - f(y) < 0. Let $a = \sup \{f(x) : s \in A\}$, then we have

$$f(x) \le a \le f(y)$$

for all $x \in A, y \in B$.

 $\mathbf{3}$

Explain that the completeness of X in Theorem 6.5.11 (principle of uniform boundedness) cannot be removed.

Hint: For example, consider $X = \{x = (x_n) \in \ell^2 : x_n \neq 0 \text{ for only finite many } n\}$.

If we had X not Banach, we may have a sequence $\{x_n\} \in X$ that is bounded in norm but that does not converge to an x inX.

Consider the set $X = \{x = (x_n) \in \ell^2 : x_n \neq 0 \text{ for only finite many } n\}$. Let x_n be the sequence such that the nth element is $\frac{1}{n^2}$ with all others nonzero. Then, $\sum_{n=1}^{\infty} \|x_n\| < \infty$, but $\sum x_n$ does not converge to a sequence in X.

4

Let $T: X \to Y$ be a bounded linear operator, where X and Y are Banach spaces. If T is bijective, then there are two constants a, b > 0 such that $a ||x|| \le ||Tx|| \le b ||x||$, where ||x|| and ||Tx|| stand for the norms on X and Y respectively.

Proof. By definition, since T is bounded, there exists $c \in \mathbb{R}$ such that $||Tx|| \le c ||x||$. We will call this b. Furthermore, as a consequence of the open mapping theorem, if T is bijective, there exists a T^{-1} that is also continuous and bounded. Call the bound on T^{-1} a and the desired result follows.

5

Let X = C[0,1] with sup-norm and Y be the subspace of functions $x \in X$ which have a continuous derivative. Define $T: Y \to X$ by Tx = x', where the prime denotes differentiation. Then T is closed in the sense that its graph is closed.

Proof. We can use an application of the Closed Graph Theorem here to show T is closed. Let $\{x_n\} \in \mathcal{D}(x)$ be such that $\{x_n\}$ and $\{Tx_n\}$ converge to

$$x_n \to x$$
 and $Tx_n = x'_n \to y$.

Since convergence on the norm of C[0,1] is uniform, from $x'_n \to y$, we have

$$\int_0^t y(t) dt = \int_0^t \lim_{n \to \infty} x'_n(t) dt = \lim_{n \to \infty} \int_0^t x'_n(t) dt = x(\tau) - x(0),$$

which gives

$$x(\tau) = x(0) + \int_0^t y(t) dt.$$

This means $x \in \mathcal{D}(x)$ and x' = y, so from our closed linear operator theorem, we conclude T is closed.

6

Suppose that $S = \{s_{\alpha} : \alpha \in A\}$ is a set of points in X such that $\overline{\text{span}}\{S\} = X$. If $\{f_n\}$ is a bounded sequence in X^* and $\{f_n(s_{\alpha})\}$ converges for all $\alpha \in A$, then there exists $f \in X^*$ such that $\lim_{n \to \infty} f_n(x) = f(x)$ for all $x \in X$.

Proof. We have as a corollary to the Uniform Boundedness principle, that if a sequence of bounded operators converges pointwise for all $x \in X$, the limits define an operator T. Taking $\{f_n\}$ as our operators and $f \in X^*$ our limit, since S is dense in X, the existence of f follows.

7

Let X be a finite-dimensional space, then for sequences $\{x_n\} \subset X$ and $\{f_n^*\} \subset X^*$, if there exist $x \in X$ and $f \in X^*$ such that $x_n \rightharpoonup x$ and $f_n \xrightarrow{*} f$, then we have $x_n \to x$ and $f_n \to f$.

Proof. From the proof of Theorem 4.8-4, we have that strong convergence and weak convergence are equivalent is dim $X < \infty$. Thus, if we have $x \in X$ and $f \in X^*$ such that $x_n \rightharpoonup x$ and $f_n \stackrel{*}{\rightharpoonup} f$, we also have $x_n \to x$ and $f_n \to f$.