Programming Language Principles

Programming Language Theory

Topics

- What is a Computer?
- Turing Machine
- How to implement a PL?
 - Compiler & Interpreter

Turing Machine

- Turing machine consists of a control unit and an infinite tape.
- Tape: an infinite tape, each cell contains one symbol.
- Read-write Head: read the current symbol, or write a symbol to the current cell.
- Control unit: a unit defines internal states and transition function.

How does it work?

- Based on the current state and a symbol read by head,
 - Move Head: Left, Right, Stay.
 - Print to Tape: PX → X is a symbol, e.g.) P0, Pa, Pb
 - Decided the next state.
- All these are defined in transition function δ, which should be stored in control unit.
- The tape works as an input.

An Example

- A Turing machine computes a sequence 01010101...
- '#' indicates a blank.
- Let's consider that the input is a blank tape ########
- We will use Stay operation this was not in the original example of Turing's paper.

current state	symbol	operations	final state
b	#	P0, R	С
С	#	S	е
е	#	P1, R	f
f	#	S	b
		6	

current state	symbol	operations	final state
b	#	P0, R	С
С	#	S	е
е	#	P1, R	f
f	#	S	b

current state	symbol	operations	final state
b	#	P0, R	С
С	#	S	е
е	#	P1, R	f
f	#	S	b

current state	symbol	operations	final state
b	#	P0, R	С
С	#	S	е
е	#	P1, R	f
f	#	S	b

current state	symbol	operations	final state
b	#	P0, R	С
С	#	S	е
е	#	P1, R	f
f	#	S	b

C	urrent state	symbol	operations	final state
	b	#	P0, R	С
	С	#	S	е
	е	#	P1, R	f
	f	#	S	b

curr	ent state	symbol	operations	final state
	b	#	P0, R	С
	С	#	S	е
	е	#	P1, R	f
	f	#	S	b

curr	ent state	symbol	operations	final state
	b	#	P0, R	С
	С	#	S	е
	е	#	P1, R	f
	f	#	S	b

current state	symbol	operations	final state
b	#	P0, R	С
С	#	S	е
е	#	P1, R	f
f	#	S	b
		10	

current state	symbol	operations	final state
b	#	P0, R	С
С	#	S	е
е	#	P1, R	f
f	#	S	b

More Compact Transition

current state	symbol	operations	final state
b	#	P0, R	е
е	#	P1, R	b

Formal Definition

- A Turing machine M is defined by
 - $M = (Q, \Sigma, \Gamma, \delta, q_0, \#, H)$

- Q: the set of internal states
- Σ : the input alphabet
- Γ : the tape alphabet

- δ : the transition function
- $q_0 \in Q$: the initial state
- #: blank symbol
- $H \subseteq Q$: a set of final states

Formal Definition

- Transition Function $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R, S\}$
- $Q \times \Gamma$: current state & symbol
- $Q \times \Gamma \times \{L, R, S\}$: next state & new symbol + head movement
 - Left, Right, Stay
- Machine halts (or at halting state) if there is no available transition.

Formal Definition

- $\delta(q_0, a) = (q_1, b, R)$
 - current state: q0, head: 'a'
 - change state to q_1 , replace 'a' with 'b' and move head to Right.
- $\delta(q_1, b) = (q_0, a, R)$

current state	symbol	operations	final state
q_0	a	Pb, <i>R</i>	q_I
q_I	b	Pa, <i>R</i>	q_0

Accepting Languages

- We can design a Turing machine which accepts a specific language.
- A string is given as an input (appeared in the tape).
- Turing machine examines the input string, and verifies whether the string follows a specific rule or not.

Language L

- $L = \{ a^n b^n : n >= 1 \}$
 - A string belongs to language L starts with 'a'.
 - 'a' repeats n times.
 - Then 'b' follows 'a's, repeat exactly n times too.
- e.g.)
 - aabb, ab, aaabbb in L.
 - abb, #, aaabb, ba not in *L*.

How to Design M?

- A Turing machine M accepting L = { aⁿbⁿ: n >= 1}.
- $Q = \{ q_0, q_1, q_2, q_3, q_4 \}$
- $H = \{ q_4 \}$
- $\Sigma = \{ a, b \}$
- $\Gamma = \{ a, b, x, y, \# \}$

Basic Idea

- 1. Replace leftmost **a** with an **x**.
- 2. Move head to right until the first **b**, replace it with **y**.
- 3. Go back to left until **x** is found.
- 4. Repeat 1~3 until no more a, b.

Transition Function δ

•
$$\delta$$
 (q₀, a) = (q₁, x, R)

•
$$\delta$$
 (q₁, a) = (q₁, a, R)

•
$$\delta$$
 (q₁, y) = (q₁, y, R)

•
$$\delta$$
 (q₀, b) = (q₂, y, L)

Finding leftmost 'a'

•
$$\delta$$
 (q₀, a) = (q₁, x, R)

•
$$\delta$$
 (q₁, a) = (q₁, a, R)

•
$$\delta$$
 (q₁, y) = (q₁, y, R)

• δ (q₁, b) = (q₂, y, L)

Replace it with 'x'

•
$$\delta$$
 (q₀, a) = (q₁, x, R)

•
$$\delta$$
 (q₁, a) = (q₁, a, R)

•
$$\delta$$
 (q₁, y) = (q₁, y, R)

•
$$\delta$$
 (q₁, b) = (q₂, y, L)

Replace it with 'x'

•
$$\delta$$
 (q₀, a) = (q₁, x, R)

•
$$\delta$$
 (q₁, a) = (q₁, a, R)

•
$$\delta$$
 (q₁, y) = (q₁, y, R)

•
$$\delta$$
 (q₁, b) = (q₂, y, L)

•
$$\delta$$
 (q₀, a) = (q₁, x, R)

•
$$\delta$$
 (q₁, a) = (q₁, a, R)

•
$$\delta$$
 (q₁, y) = (q₁, y, R)

•
$$\delta$$
 (q₁, b) = (q₂, y, L)

Finding first 'b' on the right

•
$$\delta$$
 (q₀, a) = (q₁, x, R)

•
$$\delta$$
 (q₁, a) = (q₁, a, R)

•
$$\delta (q_1, y) = (q_1, y, R)$$

•
$$\delta$$
 (q₁, b) = (q₂, y, L)

Finding first 'b' on the right

•
$$\delta$$
 (q₀, a) = (q₁, x, R)

- δ (q₁, a) = (q₁, a, R)
- δ (q₁, y) = (q₁, y, R)
- δ (q₁, b) = (q₂, y, L)

Replace it with 'y'

Go back to 'x'

- δ (q₂, y) = (q₂, y, L)
- δ (q₂, a) = (q₂, a, L)
- δ (q₂, x) = (q₀, x, R)

Go back to 'x'

•
$$\delta$$
 (q₂, y) = (q₂, y, L)

- δ (q₂, a) = (q₂, a, L)
- δ (q₂, x) = (q₀, x, R)

Go back to 'x'

- δ (q₂, y) = (q₂, y, L)
- δ (q₂, a) = (q₂, a, L)
- δ (q₂, x) = (q₀, x, R)

Now it's back to the initial state

•
$$\delta$$
 (q₂, y) = (q₂, y, L)

•
$$\delta$$
 (q₂, a) = (q₂, a, L)

•
$$\delta$$
 (q₂, x) = (q₀, x, R)

Finding leftmost 'a'

•
$$\delta$$
 (q₀, a) = (q₁, x, R)

•
$$\delta$$
 (q₁, a) = (q₁, a, R)

•
$$\delta$$
 (q₁, y) = (q₁, y, R)

•
$$\delta$$
 (q₁, b) = (q₂, y, L)

Replace it with 'x'

- δ (q₀, a) = (q₁, x, R)
- δ (q₁, a) = (q₁, a, R)
- δ (q₁, y) = (q₁, y, R)
- δ (q₁, b) = (q₂, y, L)

Replace it with 'x'

•
$$\delta$$
 (q₀, a) = (q₁, x, R)

•
$$\delta$$
 (q₁, a) = (q₁, a, R)

•
$$\delta$$
 (q₁, y) = (q₁, y, R)

•
$$\delta$$
 (q₁, b) = (q₂, y, L)

Internal State: q₁

• δ (q₀, a) = (q₁, x, R)

•
$$\delta$$
 (q₁, a) = (q₁, a, R)

•
$$\delta$$
 (q₁, y) = (q₁, y, R)

•
$$\delta$$
 (q₁, b) = (q₂, y, L)

Finding first 'b' on the right

• δ (q₀, a) = (q₁, x, R)

•
$$\delta$$
 (q₁, a) = (q₁, a, R)

•
$$\delta$$
 (q₁, y) = (q₁, y, R)

•
$$\delta$$
 (q₁, b) = (q₂, y, L)

Finding first 'b' on the right

•
$$\delta$$
 (q₀, a) = (q₁, x, R)

•
$$\delta$$
 (q₁, a) = (q₁, a, R)

•
$$\delta$$
 (q₁, y) = (q₁, y, R)

•
$$\delta$$
 (q₁, b) = (q₂, y, L)

Replace it with 'y'

Go back to 'x'

•
$$\delta$$
 (q₂, y) = (q₂, y, L)

•
$$\delta$$
 (q₂, a) = (q₂, a, L)

•
$$\delta$$
 (q₂, x) = (q₀, x, R)

Go back to 'x'

- δ (q₂, y) = (q₂, y, L)
- δ (q₂, a) = (q₂, a, L)
- δ (q₂, x) = (q₀, x, R)

Go back to 'x'

•
$$\delta$$
 (q₂, y) = (q₂, y, L)

•
$$\delta$$
 (q₂, a) = (q₂, a, L)

•
$$\delta$$
 (q₂, x) = (q₀, x, R)

Now it's back to the initial state

•
$$\delta$$
 (q₂, y) = (q₂, y, L)

•
$$\delta$$
 (q₂, a) = (q₂, a, L)

•
$$\delta$$
 (q₂, x) = (q₀, x, R)

Internal State: q₀

No more b → Finish

•
$$\delta$$
 (q₀, y) = (q₃, y, R)

•
$$\delta$$
 (q₃, y) = (q₃, y, R)

•
$$\delta$$
 (q₃, #) = (q₄, #, R)

Internal State: q₀

No more b → Finish

•
$$\delta$$
 (q₀, y) = (q₃, y, R)

•
$$\delta$$
 (q₃, y) = (q₃, y, R)

•
$$\delta$$
 (q₃, #) = (q₄, #, R)

Internal State: q₃

No more b → Finish

•
$$\delta$$
 (q₀, y) = (q₃, y, R)

•
$$\delta$$
 (q₃, y) = (q₃, y, R)

•
$$\delta$$
 (q₃, #) = (q₄, #, R)

No more b → Finish

•
$$\delta$$
 (q₀, y) = (q₃, y, R)

•
$$\delta$$
 (q₃, y) = (q₃, y, R)

•
$$\delta$$
 (q₃, #) = (q₄, #, R)

q₄ is a halting state!

Table Notation

• δ (q₀, a) = (q₁, x, R)

• δ (q₁, a) = (q₁, a, R)

• δ (q₁, y) = (q₁, y, R)

• δ (q₁, b) = (q₂, y, L)

• $\delta(q_2, y) = (q_2, y, L)$

• δ (q₂, a) = (q₂, a, L)

• $\delta(q_2, x) = (q_0, x, R)$

• δ (q₀, y) = (q₃, y, R)

• δ (q₃, y) = (q₃, y, R)

• δ (q₃, #) = (q₄, #, R)

No transition for q₄ since it is a final state.

⊢ Notation

- We can represent transition with '⊢', indicating a move from one configuration to another configuration.
- δ (q0, a) = (q1, x, R), head at the first a of "aabb"
 - q₀aabb ⊢ xq₁abb
- Put state name in front of a symbol which the head is pointing.
- We can also combine many transitions into one.
 - q₀aabb ⊢* xxyy#q₄#

Universal Turing Machine

- What if we can provide a Turing machine *M* as an input to another Turing machine *U*?
- Then *U* can compute the same as *M*.
- We can think that *U* is a computer, *M* is a program.
- This is the idea of a stored-program computer.

Summary

- Turing Machine
- Accepting Languages
- Universal Turing Machine