Quantum Mechanics

José R. Valverde EMBnet/CNB

Introduction

- ~A molecule is not a string/network of atoms
 - ~It is a cloud of electrons in a field of nuclei
 - ~Molecular orbitals
- ~QM deals with electrons and nuclei
 - May account for bond-breaking / formation
 - ~Explore the fine structure of species
 - ~Explores electronic behaviour (excited states)
- ~Quantum Dynamics may explore system evolution in time

The wave equation

- ∼A particle is a wave is a particle is a wave is...
- The core of QM is Schroedinger's equation

$$H\Psi = E\Psi$$

- ~Ψ is a continuous natural function (3D [+ time]) in *all* the space
- ~In practice we have a <u>system of equations</u> with many Ψ for many E levels
- ∼Given Ψ we can compute observables
 - ~Observable = $\int \Psi^*$ Operator $\Psi d\tau / \int \Psi^* \Psi d\tau$ **FreeBIT**

Atomic orbitals: H

- ~Schroedinger equation can be solved for H (1s¹)
 - ~Electrons are in orbitals
 - ~Orbitals are probabilistic *electron density clouds*

~Higher probability regions have a higher *charge*

density

Atomic orbitals: polielectronic

- ∼We consider each electron separately:
 - →With its own wave function X_i
 - The total wave function is $\Psi = X_i X_2 \cdots X_n$
 - ~Electrons have spin ($\frac{1}{2}$ - $\frac{1}{2}$, α β)
 - ightharpoonupHe: $1s^2 = 1s^{\alpha} 1s^{\beta} \rightarrow \Psi = X^{\alpha} X^{\beta}$
 - ~Pauli's exclusion principle: if we exchange two electrons the function must change sign
 - Rewrite the equation as *a determinant* to account for all combinations and normalize with $1/\sqrt{n!}$
 - **Simplify notation** as Ψ = X1 X2 ... Xn

Solving the equation

- ~Assign a value to orbitals (e. g. STO functions defined by Hartree and simplified by Slater)
- ~Apply the *variational principle*:
 - ∼As the function gets better, the energy will be lower
- Orbitals should be ortonormal
 - $\sim \int XiXj d\tau = 0 \text{ if } i \neq j$
 - ~But as we use approximations we must account for overlap integrals:

$$\sim \int XiXj d\tau = Sij$$

Molecular orbitals

The total wave function for the molecule will be again the product of individual electron wave functions

$$\Psi = \Phi 1 \Phi 2 ... \Phi n$$

~Invidual orbital wave functions are computed from atomic orbitals X_k as a LCAO

$$\Phi_{i} = \sum_{k} c_{ik} X_{k}$$

- ∼We know X_k so we need to find c_{ik}
 - ~Use variational principle

Computing **Y**

∼We have

- $\Psi = \Phi_1 \Phi_2 ... \Phi_n$ (a normalized determinant) where $\Phi_i = \sum_k c_{ik} X_k$, with X_i known and the only unknowns are c_{ik} .
- ~Can be written as a system of equations
 - ∼In matrix form
 - \sim We can solve the system of equations to find c_{ik}
- ~Born-Oppenheimer approximation
 - ~Nuclear movement is too slow w.r.t. Electrons
 - ~Nuclear movement effects can be ignored.

The Self Consistent Field

~We can exploit the variational principle:

- ∼Start we a guess for c_{ik}
- ~Substitute guessed values into the set of equations
- Compute energy
- ∼Use this energy to define a new set of values for c_{ik}
- Continue until the set of values stabilizes (becomes self-consistent)

~Problems

- There are factors we haven't considered
- ∼We start from approximations to atomic a

Relativity

- ~In general we ignore it
 - Its effects are negligible for most biological atoms/molecules
- ~Relevant for heavy atoms
 - External electrons repel internal electrons towards the nucleus
 - Inner electrons speed increases and becomes relativistic
 - ~Cr, Fe, Zn... owe relevant properties to relativity

Basis sets

~LCAO: MOs as a linear combination of AOs

$$\mathbf{\Phi}_{i} = \sum_{k} c_{ik} X_{k}$$

- ~X_k are represented by approximate functions:
 - ∼Basis functions/basis set
- ~STO: spherical harmonics
 - ~Good for diatomics and semiempirical methods
- **~GTO:** Gaussian curves
 - → Bad close and far from nucleus
 - ~Can be enhanced by sums of gaussians [FreeBIT

Common Basis sets

- ~STO-3G
 - ~Minimal basis set
- ~3-21G:
 - ~core is a contraction of 3 PGTOs, valence is divided in two parts, one uses 2 PGTOs and the other 1 GTO
 - Similar to STO-3G but uses double PGTOs in the valence section
- ~6-31G
 - ~Similar to 3-21G but higher precision ***FreeBIT**

Common basis sets

- ~6-311G
 - ~Splits valence in three levels, with 3 PGTOs for inner valence orbital and two levels for variation
- \sim 6-311++G(3d,2p)
 - ~6 PGTOs for contracted (compute once) core
 - ~3 GTOs for inner valence
 - ~ 2 additional valence levels
 - ~2 diffusion functions (++)
 - ~3 polarization functions for d orbitals and 2 for p orbitals

Ab initio methods

Hartree-Fock

- ~SCF or HF uses the variational principle as described. N⁴
- ~RHF: use same orbitals irrespective of spin
 - Good for full occupancy (singlet)
- ~UHF: different orbitals for different spins
 - ~Good for unpaired electrons (doublet..)
 - ~Spin contamination
- ~ROHF: compute spins separately by force same orbitals
- ~Recovers 99% of the energy

Electron correlation

- ~Electron clouds do not consider correlation
- ~Picture a single voxel:
 - There is a probability that two electrons will be there simultaneously at any time
 - ∼But it is unlikely as they repel each other
 - ~Electron movement is correlated
- Including correlation increases precision
 - ~But takes more time

Localized methods

- \sim As we have seen we move in N⁵-N⁸
- Most interactions are mainly local
 - Consider only local contributions of atomic orbitals to MOs
 - ∼Used for MP and CC
 - ∼May scale linearly

Semiempirical methods

Semiempirical methods

- ~Based on valence bond
 - ~Substitute known values to speed up calculus
 - ∼From experimental data (includes correlation)
 - ~From previous *ab initio* calculations
 - ~Hückel
 - ~Very simple, imprecise, good start guess
 - ~NDO: neglect of differential overlap
 - ~CNDO (complete neglect of differential overlap)
 - →MNDO (modified neglect)
 - ~AM1 (Austin Model 1)
 - ~PM1, PM2, PM3... PM6 (Parameter mode) FreeBIT

As a rule

CNDO < MNDO < AM1 < PM3 < PM6

Density Functional Theory

The basics

- ~Energy may be computed from electron density (Hoenburg and Kohn) using a *functional*
 - ~A function that takes functions as arguments
- Density may be computed as a linear combination of *orbitals* (Kohn and Sham)
- We need to identify the function of density that is to be feeded the functional to compute the energy

Applications

Electronic structure

- ~Orbitals
- ~HOMO (highest occupied)
 - ~nucleophiles
- ~LUMO (lowest unoccupied)
 - ~electrophiles
- ~Frontier orbital theory

Population analysis

- ~Charge distribution in space
- ~Assignment to nuclei (atoms)
 - Theory of atoms in molecules
 - ~Partial charges
 - ~Bond order
- ~Mulliken
- ~Lowdin
- ~NBO

Charge distribution

- ~Simplifications:
 - ~Dipoles
 - ~Multipoles
 - ∼Used in QSAR
- ~Electrostatic field
 - ∼Map over VdW surface
 - ~ESP
- ~ChelpG method

Other properties

- ~Structure
- Molecular size and dimensions
- ~Energy and tensions
 - Vibration states (phonons)
 - ~Forces for MD simulations
- ~Electroaffinity
- ~Additive properties (to build molecules)...

Reactions

- ~Saddle point calculations
- ~Transition state calculations
- ~IRC (Internal reaction coordinates)
- ~Reaction coordinate path

QM/MM QM/MD QD

- ~QM/MM
 - Minimize complex structures
- ~QM/MD
 - Model dynamical behavior of complex structures
 - ~Interest region modeled by QM
 - ~Rest modeled by MD
 - ∼Border region needs special treatment (ghost atoms)
 - ∼ONIOM, Carr-Parrinello
- ~QD
 - ~Full quantum dynamical modeling

In practice

- ~Select a basis set approximation to AOs
- Select a method to compute MOs
 - ~Ab initio
 - ~Semiempirical
- ~Build model
- ~Launch program
- ∼Wait...

