6.0 Why RF?

- Single decision tree does not perform well, but it is super fast.
- Random forest is an ensemble classifier that
 - · combines many decision trees,
 - outputs the class that is the mode of the class's output by individual trees

6.1 Algorithm

6.1.1 Training

Given:

- D: The set of training data.
 - $D=\{\langle X_1,y_1
 angle,\langle X_2,y_2
 angle,\langle X_3,y_3
 angle,\cdots,\langle X_N,y_N
 angle\}$, where
 - $ullet \ \ orall i \in [1,N], X_i = \{x_{i1}, x_{i2}, \cdots, x_{iM}\}.$
- *N*: The number of training data.
 - |D|=N
- M: The number of variables in each data.
 - $orall i \in [1,n], \; |X_i| = M$

Do:

- For each tree:
 - Bootstrap to get n data from entire N training data.
 - The selected n data forms the training set $TR \subset D$.
 - The unselected N-n' data forms the testing set $TE\subset D$.
 - The bootstrap process is performed in a "replace-inclusive" way.
 - The n data sets may contain same ones. That is, $n' \leq n$.
 - For each node:
 - Randomly select m feature variables, calculate the best split based on these m variables in the training set TR.

Note:

• Each tree is fully grown and not pruned.

6.1.2 Bootstrapping 引导

- Reserve a tiny set TR as the training set.
- Reserve a large set TE as the test set.
- Do *n* times:
 - Select a sample $\langle X_i, y_i
 angle \in D$
 - Copy this sample into TR.
 - Put this sample back to D.

Output:

- Training set TR, where |TR| = n.
- $\bullet \ \ \text{Test set TE, where $|TE|=N-n',n'\in[1,n]$.}$

Note:

- Since we only copy whatever we selected from D and put it back again in each iteration, it is possible that we pick a $\langle X_i, y_i \rangle$ from D twice.
- Suppose we have N-n' records left in D that's never been chosen, then $n' \leq n$.

6.1.3 Selection of n and m

How to select n?

Build trees until the error no longer decreases.

How to select m?

- Try to recommend defaults.
 - Half of them, twice of them, ...
 - Pick the best.

6.2 Pros and Cons

6.2.1 Advantages

Performance

- High accuracy.
- High efficiency.
 - Especially on large datasets.

Good for high dimensional samples

- Good tolerance on high dimension data samples.
 - Handle thousands of input variables without variable deletion.
- Highlights important variables.

Good in error estimate and exception handling

- Generates internal unbiased estimate of generalization error during the building process of the forest.
- Effective in estimating missing data.
 - Maintains accuracy when a large proportion of the data is missing.
- Balances error in datasets with unbalanced class population.