最大流算法的应用

喻勃洋 2023.4.28 算分小班

- 带需求的流通
 - 。将最大流问题扩展为多个起点(S)和终点(T),每个点都固定的需求 d_v (需求为负则构成供给)
 - 问:是否存在可行流通
 - 。 问题的特性:
 - 流不凭空出现,不凭空消失: 总需求的代数和为0:

$$\sum_{v \in T} d_v = \sum_{v \in S} -d_v$$

- 因此可以可以想象为流从一个地方s*发给S,再从T汇集到一个地方t*,且每条对应线路的上限为 $|d_v|$,只要供满即满足需求
- 。解决:
 - 如上所述,添加超节点s*,t*,并按要求连接所有收发点,构成G'的最大流问题
 - 可以有引理:G中存在一个带需求 d_v 的可行流通,当且仅当G的最大流为D

- 运输问题 (Hitchcock问题)
 - 。将最小费用流问题扩展为多个起点(S)和终点(T),每个点都固定的供给 a_i 或需求 b_i ,如何安排使得总运费最小
 - 。 与"带需求的流通"问题高度相似,其关系就如同传统的最大流与最小费用流问题的关系
 - 。解决
 - 添加超节点 s^*,t^* ,并按每条对应补充线路的容量上限为 a_i 或 b_i ,费用为0
 - ullet 记 $v_0=\sum_i a_i=\sum_j b_j$,则所有补充线路全满等价于总流量 v_0 ,构成G'的满足流量 v_0 问题

- 二部图的最大匹配
 - 。对于给定的二部图G=<A,B,E>,M是其边集的子集,如果M中任意两条边都不相邻,则M为G的一个匹配
 - 通俗的看,即M的选择表示了AB之间的一个单射,每个点只能匹配一个点
 - 问: 尽可能多的匹配
 - 。 增广交错路径
 - 边: 匹配即是否属于M; 点: 饱和即是否已被匹配
 - G 中由匹配边和非匹配边交替构成的路径称为交错路径
 - 起点和终点都是非饱和点的交错路径称为增广交错路径
 - 。增广交错路径的特性
 - 起终点异侧, 共2m个点: 1,2,...,2m-1,2m

- 起终边都是非匹配边,故匹配关系为: 1,(2,3),(4,5),...,(2m-2,2m-1),2m, 共m-1对
- 因此必然可以将此路径上的边和匹配关系改为: (1,2),(3,4),...,(2m-1,2m), 共m对,使得匹配数增加

- 引理12设 M 是二部图 G 的一个匹配, P是一条关于M 的增广交错路径, 则 $M'=M\oplus E(P)$ 是一个匹配 且 $|\mathsf{M}'|$ = $|\mathsf{M}|$ + 1.
- 定理8 二部图的匹配是最大匹配当且仅当不存在关于它的增广交错路径
- 。匈牙利算法
 - 从一个初始匹配 M 开始,每次找一条增广交错路径 P, \Diamond $M' \leftarrow M \oplus E(P)$,直到不存在增广交错路径为止,
 - 复杂度:每次搜索O(|E|),总迭代次数即最大匹配数
- 。与最大流的关系
 - 类比"带需求的流通",同属于多起点多终点问题,可以添加超起点和超终点,并将所有边的容量设为1(只能通过0或1),*A与B间的边全部为A到B的单向边*
 - 则最大匹配即最大流量
 - 可以看出,一条增广交错路径即一个s-t增广链
 - 因此匈牙利算法即FF算法
- 赋权二部图的匹配
 - 。 指派问题: 完全二部图, 给定匹配的权值, 求权和最小的匹配
 - 。 期中考试题目4
 - 。 Kuhn-Munkres Algorithm也即匈牙利算法
 - KM算法 oi-wiki
 - 。 本质上,这种算法与教科书上基于原始-对偶的线性规划算法是一样的
 - 。转化为费用流模型
- 图像分割
 - 。目标:将一个问题的前景背景分离

- 。最优标记
- 。 这个问题从形式上看就很像最小割
 - 想把一部分像素分给前景,一部分像素分给后景,尽量符合事实并且尽量少的分割
 - 也就是在像素间做一个最小割,切断尽可能小的可能性,使得每个元素待在更属于自己的景区里

。 数学语言:

- 最大化: $q(A,B)=\sum_{i\in A}a_i+\sum_{j\in B}b_j-\sum_{i,j$ 不同区 p_{ij} 等价于最小化: $q'(A,B)=\sum_{i\in B}a_i+\sum_{j\in A}b_j+\sum_{i,j$ 不同区 p_{ij} 等价于一个最小割问题