Semaine du 16/03 au 20/03

1 Cours

Polynômes

Polynômes à une indéterminée à coefficients dans \mathbb{K} Définitions : polynôme à coefficients dans \mathbb{K} , ensemble $\mathbb{K}[X]$. Deux polynômes sont égaux si et seulement si leurs coefficients sont égaux. Polynômes pairs, impairs. $(\mathbb{K}[X], +, \times)$ est un anneau intègre commutatif. $(\mathbb{K}[X], +, \cdot)$ est un \mathbb{K} -espace vectoriel. Base canonique de $\mathbb{K}[X]$. Degré d'un polynôme. Degré d'une combinaison linéaire, d'un produit. Définition de $\mathbb{K}_n[X]$. $\mathbb{K}_n[X]$ est un sous-espace vectoriel de $\mathbb{K}[X]$. Base canonique de $\mathbb{K}_n[X]$. Famille de polynômes à degrés échelonnés. Fonction polynomiale associée à un polynôme. Racine d'un polynôme. Cas des polynômes pairs/impairs et des polynômes à coefficients réels. Polynôme dérivé. La dérivation est linéaire. Formule de Leibniz. Formule de Taylor.

Arithmétique de $\mathbb{K}[X]$ Relation de divisibilité. Division euclidienne. Algorithme de division euclidienne. Un polynôme P admet a pour racine **si et seulement si** il est divisible par X - a. Existence et unicité d'un PGCD unitaire ou nul. Algorithme d'Euclide pour les polynômes. Théorème de Bézout. Polynômes premiers entre eux. Lemme de Gauss. Un polynôme de degré n admet au plus n racines. Polynômes interpolateurs de Lagrange. Existence et unicité d'un PPCM unitaire ou nul.

Racines multiples Définition. Un polynôme de degré *n* admet au plus *n* racines comptées avec multiplicité. Caractérisation de la multiplicité d'une racine par les dérivées successives.

Factorisation Polynômes irréductibles. Définition et décomposition en facteurs irréductibles. Théorème de d'Alembert-Gauss. Polynômes irréductibles de $\mathbb{C}[X]$ et $\mathbb{R}[X]$. Polynôme scindé. Un polynôme est scindé si et seulement si il possède autant de racines comptées avec multiplicité que son degré. Lien coefficients/racines.

Fractions rationnelles

Corps des fractions rationnelles Définition. Opérations. Degré. Dérivation. $\mathbb{K}(X)$ est un \mathbb{K} -espace vectoriel et un corps.

Fonctions rationnelles, zéros et pôles Fonction rationnelle associée à une fraction rationnelle. Zéros et pôles d'une fraction rationnelle. Multiplicité d'un zéro ou d'un pôle.

Décomposition en éléments simples Partie entière. Décomposition en éléments simples sur \mathbb{C} et sur \mathbb{R} . Décomposition en éléments simples de $\frac{P'}{P}$ où P est scindé.

2 Méthodes à maîtriser

- Pour résoudre des équations d'inconnue polynomiale, chercher dans un premier temps à déterminer le degré du polynôme inconnu.
- Déterminer le reste d'une division euclidienne (utiliser les racines du diviseur).
- Montrer qu'un polynôme est nul en montrant qu'il admet une infinité de racines.
- Caractériser la multiplicité d'une racine via les dérivées successives.
- Passer de la décomposition en facteurs irréductibles sur $\mathbb{C}[X]$ à celle sur $\mathbb{R}[X]$ (regrouper les racines conjuguées).
- Utiliser la parité et le fait qu'un polynôme est à coefficients réels pour obtenir de nouvelles racines à partir d'une racine donnée.
- Savoir résoudre des équations polynomiales de degré 2 à coefficients complexes.
- Savoir déterminer des racines $n^{\text{èmes}}$ d'un nombre complexe.
- Résoudre des systèmes polynomiaux symétriques en les inconnues.
- Exprimer une somme et un produit de racines à l'aide des coefficients du polynôme.
- Décomposition en éléments simples d'une fraction rationnelle irréductible F=P/Q:
 - Calculer la partie entière.
 - Factoriser le dénominateur en produit de facteurs irréductibles.
 - Écrire la décomposition en éléments simples à l'aide de coefficients inconnus.
 - Déterminer des coefficients ou des relations entre ceux-ci :
 - * Le coefficient associé à un pôle simple a et P(a)/Q'(a);
 - * Évaluer $(X a)^p$ F en un pôle a (DES dans \mathbb{C}) ou $(X^2 + aX + b)^p$ F en un racine de $X^2 + aX + b$ (DES dans \mathbb{R});
 - * Utiliser le fait que $F \in \mathbb{R}(X)$: les coefficients de la DES dans \mathbb{C} sont conjugués;
 - * Utiliser la parité éventuelle de la fraction rationnelle;
 - * Utiliser la limite de xF(x) quand x tend vers $+\infty$;

- * Évaluer en des valeurs particulières.
- Simplifier par télescopage de somme du type $\sum F(k)$ où F est une fraction rationnelle via une DES.
- Calculer une intégrale du type $\int F(t) dt$ où F est un fraction rationnelle via une DES.

3 Questions de cours

BCCP 85 1. Soient $n \in \mathbb{N}^*$, $P \in \mathbb{R}_n[X]$ et $a \in \mathbb{R}$.

- (a) Donner sans démonstration, en utilisant la formule de Taylor, la décomposition de P(X) dans la base $((X a)^k)_{0 \le k \le n}$ de $\mathbb{R}_n[X]$.
- (b) Soit $r \in \mathbb{N}$. En déduire que a est une racine de P d'ordre de multiplicité r si et seulement si $P^{(r)}(a) \neq 0$ et $\forall k \in [0, r-1]$, $P^{(k)}(a) = 0$.
- 2. Déterminer deux réels a et b pour que 1 soit racine double du polynôme $P = X^5 + aX^2 + bX$ et factoriser alors ce polynôme dans $\mathbb{R}[X]$.

BCCP 87 Soient $a_0, ..., a_n$ des réels deux à deux distincts.

- 1. Montrer que si $(b_0, \dots, b_n) \in \mathbb{R}^{n+1}$, il existe un unique polynôme P tel que deg $P \le n$ et $P(a_i) = b_i$ pour tout $i \in [0, n]$.
- 2. Soit $k \in [0, n]$. Expliciter ce polynôme P, que l'on notera L_k lorsque $b_i = \begin{cases} 0 & \text{si } i \neq k \\ 1 & \text{sinon} \end{cases}$.
- 3. Prouver que pour tout $p \in [0, n]$, $\sum_{k=0}^{n} a_k^p L_k = X^p$.

BCCP 90 Soient a_1, a_2, a_3 trois scalaires distincts donnés d'un corps \mathbb{K} .

- 1. Montrer que Φ : $\begin{cases} \mathbb{K}_2[X] & \longrightarrow & \mathbb{K}^3 \\ P & \longmapsto & (P(a_1, P(a_2), P(a_3)) \end{cases}$ est un isomorphisme d'espaces vectoriels.
- 2. On note e_1, e_2, e_3 la base canonique de \mathbb{K}^3 et on pose $L_k = \Phi^{-1}(e_k)$ pour $k \in \{1, 2, 3\}$.
 - (a) Justifier que (L_1, L_2, L_3) est une base de $\mathbb{K}_2[X]$.
 - (b) Exprimer les polynômes L_1 , L_2 et L_3 en fonction de a_1 , a_2 et a_3 .
 - (c) Soit $P \in \mathbb{K}_2[X]$. Déterminer les coordonnées de P dans la base (L_1, L_2, L_3) .
- 3. On se place dans \mathbb{R}^2 muni d'un repère orthonormé et on considère les trois points A(0,1), B(1,3) et C(2,1). Déterminer une fonction polynomiale de degré 2 dont la courbe passe par les points A, B et C.

Retour sur \mathbb{U}_n

Factoriser $X^n - 1$ en produits de polynômes irréductibles de $\mathbb{C}[X]$. En déduire la décomposition en éléments simples de $\frac{1}{X^n - 1}$.