

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1 Claim 1 (currently amended): A method of determining an optimum bit load per subchannel
2 in a multicarrier system with forward error correction, comprising:

3 computing one or more values of a number of bit positions b of a
4 quadrature-amplitude-modulation symbol, a maximum number of symbol errors that can
5 be corrected t , and based on one or more values of a number of symbols in the
6 information field K , and one or more values of a number of control code symbols per
7 discrete-mult-tone symbol z , to provide one or more determined values of b , to determine
8 the optimum bit load per subchannel in accordance with the following relationship:

$$1 - \left(1 - W(s, z, K) \varepsilon_s^{\frac{1}{0.5 \cdot sz + 1}} \right)^{1/\alpha} \\ = \omega(b(\gamma_{\text{eff}}, s, z)) \left(1 - 2^{-b(\gamma_{\text{eff}}, s, z)/2} \right) \operatorname{erfc} \left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10} / (2^{b(\gamma_{\text{eff}}, s, z)+1} - 2)} \right), \text{ and} \\ \times \left[2 - \left(1 - 2^{-b(\gamma_{\text{eff}}, s, z)/2} \right) \operatorname{erfc} \left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10} / (2^{b(\gamma_{\text{eff}}, s, z)+1} - 2)} \right) \right]$$

$$W(s, z, K) = \left[\frac{\Gamma(K + s + sz)}{\Gamma(K + s + 0.5 \cdot sz) \Gamma(0.5 \cdot sz + 1)} \right]^{-1/(0.5 \cdot sz + 1)}$$

$$W(s, z, K) = \left[\frac{\Gamma(K + \rho s + sz)}{\Gamma(K + \rho s + 0.5 \cdot sz) \Gamma(0.5 \cdot sz + 1)} \right]^{-1/(0.5 \cdot sz + 1)}$$

$$\text{wherein } \omega(b) = \frac{4}{2b + 3},$$

16

17 | $I(x) = (x-1)!$, and

18

19 | $b(\gamma_{eff}, s, z) = \frac{\alpha}{sn_{eff}} (K + \rho s + zs)$

20

21 | s represents a number of discrete-multi-tone symbols in a frame, ϵ_s represents a symbol
22 | error rate, α represents the size of a code symbol, ρ represents a framing mode index, z
23 | represents a number of control code symbols per discrete multi-tone symbol, b represents
24 | a number of bit positions of a quadrature-amplitude-modulation symbol, $\omega(b)$ represents
25 | an average fraction of erroneous bits in an erroneous b -sized
26 | quadrature-amplitude-modulation symbol, γ_{eff} represents an effective signal-to-noise
27 | ratio, and n_{eff} represents an effective number of subchannels; and
28 | selecting the value of K and the value of z which provides a maximum number of
29 | bit positions based on the one or more determined values of b the maximum number of
30 | symbol errors that can be corrected t , and the number of symbols in the information field
31 | K such that the uncoded bit error rate p_b that produces a symbol error rate that is less than
32 | or equal to the target symbol error rate is increased.

1 | Claim 2 (original): The method of claim 1 wherein the effective signal-to-noise ratio γ_{eff}
2 | is an average signal-to-noise ratio of at least a subset of the channels.

1 | Claim 3 (currently amended): The method of claim 1 wherein the size of the frame ranges
2 | from 0 to $N_{max}s-zs$ symbols, where N_{max} is a predetermined value.

1 | Claim 4 (currently amended): The method of claim 1 further comprising:
2 | determining a difference $\Theta(K)$ between a bit error rate prior to decoding and the a
3 | target bit error rate (p_e) based on one or more values of a length of an information field K

4 | within a range from 0 to $N_{max}\cdot\alpha\cdot s\cdot z_s$, where N_{max} is a predetermined value, in accordance
5 | with the following relationship:

6 |
7 |
$$\Theta(K) = \omega(b(\gamma_{eff}, s, z))p_{QAM} - p_e, \text{ and}$$

8 |
9 |
$$\begin{aligned} & \omega(b(\gamma_{eff}, s, z))p_{QAM} \\ &= \omega\left(\frac{\alpha}{sn_{eff}}(K + s + zs)\right) \left[1 - 2^{-\frac{\alpha}{2sn_{eff}}(K+s+zs)} \right] erfc\left(\sqrt{3 \cdot 10^{\gamma_{eff}/10} / \left(2^{\frac{\alpha}{sn_{eff}}(K+s+zs)+1} - 2\right)}\right) \\ & \quad \times \left[2 - \left(1 - 2^{-\frac{\alpha}{2sn_{eff}}(K+s+zs)}\right) erfc\left(\sqrt{3 \cdot 10^{\gamma_{eff}/10} / \left(2^{\frac{\alpha}{sn_{eff}}(K+s+zs)+1} - 2\right)}\right) \right] \end{aligned}$$

10 |
11 |
12 |
$$\begin{aligned} & \omega(b(\gamma_{eff}, s, z))p_{QAM} \\ &= \omega\left(\frac{\alpha}{sn_{eff}}(K + \rho s + zs)\right) \left[1 - 2^{-\frac{\alpha}{2sn_{eff}}(K+\rho s+zs)} \right] erfc\left(\sqrt{3 \cdot 10^{\gamma_{eff}/10} / \left(2^{\frac{\alpha}{sn_{eff}}(K+\rho s+zs)+1} - 2\right)}\right) \\ & \quad \times \left[2 - \left(1 - 2^{-\frac{\alpha}{2sn_{eff}}(K+\rho s+zs)}\right) erfc\left(\sqrt{3 \cdot 10^{\gamma_{eff}/10} / \left(2^{\frac{\alpha}{sn_{eff}}(K+\rho s+zs)+1} - 2\right)}\right) \right] \end{aligned}$$

13 |
14 |
$$p_e = \left[1 - \left(1 - W(s, z, K) \varepsilon_S^{\frac{1}{0.5 \cdot s \cdot z_s + 1}} \right)^{1/\alpha} \right]$$

15 |
16 | wherein p_{QAM} represents a probability of error in transmitting a
17 | quadrature-amplitude-modulation waveform representing a 2^b point constellation, and p_e
18 | represents a channel symbol error rate; and
19 | comparing the value of $\Theta(0)$ and $\Theta(N_{max}\cdot s \cdot z_s)$ to 0; and
20 | setting the value of K to a predetermined value in response to the comparing.

1 | Claim 5 (currently amended): The method of claim 4 further comprising: wherein
2 | when $\Theta(0) < 0$ and $\Theta(N_{max}-s-sz) < 0$, setting $K = N_{max}-s-zs$.

1 | Claim 6 (currently amended): The method of claim 4 further comprising:
2 | setting $b(\gamma_{eff}, s, z)$ equal to $(\alpha N_{max})/(s n_{eff})$ for all values of γ_{eff} and z .

3 |
$$\frac{\alpha N_{max}}{s n_{eff}}$$

1 | Claim 7 (currently amended): The method of claim 4 wherein when $\Theta(0) > 0$ and
2 | $\Theta(N_{max}-s-sz) > 0$, setting $K = N_{max}-1$.

1 | Claim 8 (currently amended): The method of claim 7 further comprising:
2 | setting $b(\gamma_{eff}, s, z)$ equal to $b(\gamma_{eff}, 1, \theta)$ $s=1$ and $z=0$.

1 | Claim 9 (currently amended): A method of selecting forward error correction parameters
2 | in a channel having a plurality of subchannels in a multicarrier communications system,
3 | comprising:
4 | determining a signal-to-noise ratio representing a subset of the subchannels to
5 | provide said a representative performance measurement;

6 | storing, in a table, the number (s) of discrete multi-tone symbols in a
7 | forward-error-correction frame, the number (z) of forward-error-correction control
8 | symbols in the discrete multi-tone symbol associated with the signal-to-noise ratio, and
9 | the number of subchannels associated with the signal-to-noise ratio, and a net coding gain
10 | for different values of s, z, signal-to-noise ratios and numbers of subchannels; and
11 | selecting forward error correction parameters of the channel based on the net
12 | coding gain by applying an approximation to a subset of values in the table.

1 | Claim 10 (original): The method of claim 9 wherein the approximation is a bilinear
2 | approximation.

1 Claim 11 (currently amended): A method of selecting forward error correction
2 parameters in a channel having a plurality of subchannels in a multicarrier
3 communications system, comprising:

4 determining a signal-to-noise ratio representing a subset of the subchannels to
5 provide said a representative performance measurement;
6 storing, in a table, the number (s) of discrete multi-tone symbols in a
7 forward-error-correction frame, the number (z) of forward-error-correction control
8 symbols in the discrete multi-tone symbol associated with the signal-to-noise ratio, the
9 maximum number of transmissions (k) and the number of subchannels associated with
10 the signal-to-noise ratio, and a net coding gain for different values of s, z, signal-to-noise
11 ratios and numbers of subchannels; and
12 selecting forward error correction parameters of the channel based on the net
13 coding gain by applying an approximation to a subset of values in the table.

1 Claim 12 (original): The method of claim 11 wherein the approximation is a bilinear
2 approximation.

1 Claim 13 (original): The method of claim 11 wherein and the values of s and z are in
2 accordance with the G.dmt standard.

1 Claim 14 (original): The method of claim 13 wherein the values of s and z are in
2 accordance with the G.lite standard, such that a subset of the tables associated with the
3 values of s and z in accordance with the G.dmt standard are used when the channel uses
4 the G.lite standard.

1 Claim 15 (original): A method of increasing a bit load of a multicarrier system
2 comprising a channel having a plurality of subchannels, comprising:
3 determining a bit load for at least one subchannel based on a target symbol error rate
4 ϵ_s , a maximum number of symbol errors that can be corrected t , a number of symbols in an

5 information field K , and a maximum number of transmissions k , and a number of bits per
6 subchannel; and

7 selecting the maximum number of symbol errors t , the number of symbols in the
8 information field K and the maximum number of transmissions k , such that a net coding gain
9 is increased, and wherein t , K and k are also selected such that no forward error correction is
10 applied when the number of subchannels exceeds a predetermined threshold number of
11 subchannels.

1 Claim 16 (original): The method of claim 15 wherein the channel uses the G.dmt
2 standard.

1 Claim 17 (original): The method of claim 15 wherein the channel uses the G.lite standard.

1 Claim 18 (currently amended): A method of determining an optimum bit load per subchannel
2 in a multicarrier system with forward error correction, comprising:

3 computing one or more values of a number of bit positions b of a
4 quadrature-amplitude-modulation symbol based on one or more values of a number of
5 symbols in an information field K , one or more values of a number of control code
6 symbols per discrete-multi-tone symbol z , and a maximum number of transmissions k , to
7 provide one or more determined values of b , maximum number of symbol errors that can
8 be corrected t , and a number of symbols in the information field K to determine the
9 optimum bit load per subchannel in accordance with the following relationship:

$$1 - \left(1 - W(s, z, K) \varepsilon_s^{\frac{1}{0.5 \cdot sz + 1}} \right)^{1/\alpha}$$
$$= \omega(b(\gamma_{eff}, s, z)) \left(1 - 2^{-b(\gamma_{eff}, s, z)/2} \right) erfc \left(\sqrt{3 \cdot 10^{\gamma_{eff}/10} / (2^{b(\gamma_{eff}, s, z)+1} - 2)} \right), \text{ and}$$
$$\times \left[2 - \left(1 - 2^{-b(\gamma_{eff}, s, z)/2} \right) erfc \left(\sqrt{3 \cdot 10^{\gamma_{eff}/10} / (2^{b(\gamma_{eff}, s, z)+1} - 2)} \right) \right]$$

$$\begin{aligned}
 & 1 - \left(1 - W(s, z, K, k) \varepsilon_s^{\frac{1}{k(0.5sz+1)}} \right)^{1/\alpha} \\
 13 & = \omega(b(\gamma_{\text{eff}}, s, z)) \left[1 - 2^{-b(\gamma_{\text{eff}}, s, z)/2} \operatorname{erfc}\left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10}} / (2^{b(\gamma_{\text{eff}}, s, z)+1} - 2)\right) \right. \\
 & \quad \times \left. \left[2 - \left(1 - 2^{-b(\gamma_{\text{eff}}, s, z)/2} \operatorname{erfc}\left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10}} / (2^{b(\gamma_{\text{eff}}, s, z)+1} - 2)\right) \right) \right]
 \end{aligned}$$

$$\begin{aligned}
 14 & \\
 15 & W(s, z, K) = \left[\frac{\Gamma(K + \rho s + sz)}{\Gamma(K + \rho s + 0.5 \cdot sz) \Gamma(0.5 \cdot sz + 1)} \right]^{-1/(0.5 \cdot sz + 1)}
 \end{aligned}$$

$$\begin{aligned}
 16 & \\
 17 & \\
 18 & W(s, z, K, k) = \left[\frac{\Gamma(K + \rho s + sz)}{\Gamma(K + \rho s + 0.5 \cdot sz) \Gamma(0.5 \cdot sz + 1)} \right]^{-1/(0.5 \cdot sz + 1)} \left[\frac{\Gamma(K + \rho s + sz + 1)}{\Gamma(K + \rho s + 0.5 \cdot sz) \Gamma(0.5 \cdot sz + 2)} \right]^{-(k-1)/(0.5 \cdot sz + 1)k} \\
 19 & \\
 20 & \text{wherein } \omega(b) = \frac{4}{2b+3}, \\
 21 & \\
 22 & \underline{I(x)=(x-1)!}, \text{ and} \\
 23 & \\
 24 & b(\gamma_{\text{eff}}, s, z) = \frac{\alpha}{sn_{\text{eff}}} (K + \rho s + sz)
 \end{aligned}$$

25
 26 s represents a number of discrete-multi-tone symbols in a frame, z represents a number of
 27 control code symbols per discrete multi-tone symbol, b represents a number of bit
 28 positions of a quadrature-amplitude-modulation symbol, ε_s represents a symbol error rate,
 29 α represents the size of a code symbol, $\omega(b)$ represents an average fraction of erroneous
 30 bits in an erroneous b -sized quadrature-amplitude-modulation symbol, γ_{eff} represents an
 31 effective signal-to-noise ratio, and ρ represents a number of overhead symbols per
 32 discrete multi-tone symbol framing mode index; and n_{eff} represents an effective number of
 33 subchannels; and

34 selecting the value of K and the value of z which provides a maximum number of
35 bit positions based on the one or more determined values of b the maximum number of
36 symbol errors that can be corrected t , and the number of symbols in the information field
37 K such that the uncoded bit error rate p_b that produces a symbol error rate that is less than
38 or equal to the target symbol error rate is increased.

1 Claim 19 (original): The method of claim 18 wherein the effective signal-to-noise
2 ratio γ_{eff} is an average signal-to-noise ratio of at least a subset of the channels.

1 Claim 20 (currently amended): The method of claim 18 wherein the size of the frame
2 ranges from 0 to N_{\max} -ps-sz symbols, where N_{\max} is a predetermined value.

1 Claim 21 (currently amended): The method of claim 18 further comprising:

2 determining a difference $\Theta(K)$ between a bit error rate prior to decoding and ~~at the~~
3 target bit error rate (p_e) ~~based on one or more values of a length of an information field K~~
4 ~~within a range from 0 to N_{\max} -ps-sz, where N_{\max} is a predetermined value~~, in accordance
5 with the following relationship:

6

7
$$\Theta(K) = \omega(b(\gamma_{\text{eff}}, s, z)) p_{QAM} - p_e, \text{ and}$$

8

9
$$\begin{aligned} & \omega(b(\gamma_{\text{eff}}, s, z)) p_{QAM} \\ &= \omega\left(\frac{\alpha}{sn_{\text{eff}}}(K + \rho s + z s)\right) \left(1 - 2^{-\frac{\alpha}{2sn_{\text{eff}}} (K + \rho s + z s)}\right) \operatorname{erfc}\left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10} / \left(2^{\frac{\alpha}{sn_{\text{eff}}} (K + \rho s + z s) + 1} - 2\right)}\right) \\ & \quad \times \left[2 - \left(1 - 2^{-\frac{\alpha}{2sn_{\text{eff}}} (K + \rho s + z s)}\right) \operatorname{erfc}\left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10} / \left(2^{\frac{\alpha}{sn_{\text{eff}}} (K + \rho s + z s) + 1} - 2\right)}\right)\right] \end{aligned}$$

$$\Theta(K) = \omega \left(\frac{\alpha}{sn_{eff}} (K + \rho s + z s) \right) \left(1 - 2^{-\frac{\alpha}{2sn_{eff}}(K + \rho s + z s)} \right) erfc \left(\sqrt{3 \cdot 10^{\gamma_{eff}/10} / \left(2^{\frac{\alpha}{sn_{eff}}(K + \rho s + z s) + 1} - 2 \right)} \right)$$

$$11 \quad \times \left[2 - \left(1 - 2^{-\frac{\alpha}{2sn_{eff}}(K + \rho s + z s)} \right) erfc \left(\sqrt{3 \cdot 10^{\gamma_{eff}/10} / \left(2^{\frac{\alpha}{sn_{eff}}(K + \rho s + z s) + 1} - 2 \right)} \right) \right]$$

$$- \left[1 - \left(1 - W(s, z, K, k) \varepsilon_s^{\frac{1}{k(0.5 \cdot sz + 1)}} \right)^{1/\alpha} \right]$$

12
 13 wherein p_{QAM} represents a probability of error in transmitting a
 14 quadrature-amplitude-modulation waveform representing a 2^b point constellation, and p_e
 15 represents a channel symbol error rate; and
 16 comparing the value of $\Theta(0)$ and $\Theta(N_{max}-\rho s-sz)$ to 0; and
 17 setting the value of K to a predetermined value in response to the comparing.

1 | Claim 22 (currently amended): The method of claim 21-18 wherein when $\Theta(0) < 0$ and
 2 | $\Theta(N_{max}-\rho s-sz) < 0$, setting $K = N_{max}-\rho s-sz$.

1 | Claim 23 (currently amended): The method of claim 18 further comprising:
 2 | setting $b(\gamma_{eff}, s, z)$ equal to $(\alpha N_{max})/(s n_{eff})$ for all values of γ_{eff} and z .
 3 |

$$4 \quad \frac{\alpha N_{max}}{s n_{eff}}.$$

1 | Claim 24 (original): The method of claim 18 wherein when $\Theta(0) > 0$ and
 2 | $\Theta(N_{max}-\rho s-sz) > 0$, setting $K = N_{max}-\rho$.

1 | Claim 25 (currently amended): The method of claim 24 further comprising:
 2 | setting $s=1$ and $z=0$ $b(\gamma_{eff}, s, z)$ equal to $b(\gamma_{eff}, 1, 0)$.

1 Claim 26 (currently amended): An apparatus for determining an optimum bit load per
2 subchannel in a multicarrier system with forward error correction, comprising:

3 means for computing a number of bit positions b of a
4 quadrature-amplitude-modulation symbol based on one or more values of one or more
5 values of a maximum number of symbol errors that can be corrected t , and a number of
6 symbols in the information field K and one or more values of a number of control code
7 symbols per discrete-multi-tone symbol z , to provide one or more determined values of b ,
8 to determine the optimum bit load per subchannel in accordance with the following
9 relationship:

$$1 - \left(1 - W(s, z, K) \varepsilon_s^{\frac{1}{0.5 \cdot sz + 1}} \right)^{1/\alpha} \\ = \omega(b(\gamma_{\text{eff}}, s, z)) \left(1 - 2^{-b(\gamma_{\text{eff}}, s, z)/2} \right) \operatorname{erfc} \left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10} / (2^{b(\gamma_{\text{eff}}, s, z)+1} - 2)} \right), \text{ and} \\ \times \left[2 - \left(1 - 2^{-b(\gamma_{\text{eff}}, s, z)/2} \right) \operatorname{erfc} \left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10} / (2^{b(\gamma_{\text{eff}}, s, z)+1} - 2)} \right) \right]$$

$$W(s, z, K) = \left[\frac{\Gamma(K + s + sz)}{\Gamma(K + s + 0.5 \cdot sz) \Gamma(0.5 \cdot sz + 1)} \right]^{-1/(0.5 \cdot sz + 1)}$$

$$W(s, z, K) = \left[\frac{\Gamma(K + \rho s + sz)}{\Gamma(K + \rho s + 0.5 \cdot sz) \Gamma(0.5 \cdot sz + 1)} \right]^{-1/(0.5 \cdot sz + 1)}$$

$$\text{wherein } \omega(b) = \frac{4}{2b + 3}, \text{ and}$$

$$\Gamma(x) = (x-1)!,$$

21 s represents a number of discrete-multi-tone symbols in a frame, ε_s represents a symbol
22 error rate, α represents the size of a code symbol, ρ represents a framing mode index, z

23 represents a number of control code symbols per discrete multi-tone symbol, b represents
24 a number of bit positions of a quadrature-amplitude-modulation symbol, $\omega(b)$ represents
25 an average fraction of erroneous bits in an erroneous b -sized
26 quadrature-amplitude-modulation symbol, γ_{eff} represents an effective signal-to-noise
27 ratio, and n_{eff} represents an effective number of subchannels; and
28 means for selecting the value of K and the value of z which provides a maximum
29 number of bit positions based on the one or more determined values of b the maximum
30 number of symbol errors that can be corrected t , and the number of symbols in the
31 information field K such that the uncoded bit error rate p_b that produces a symbol error
32 rate that is less than or equal to the target symbol error rate is increased.

1 Claim 27 (original): The apparatus of claim 26 wherein the effective signal-to-noise
2 ratio γ_{eff} is an average signal-to-noise ratio of at least a subset of the channels.

1 Claim 28 (currently amended): The apparatus of claim 26 wherein the size of the frame
2 ranges from 0 to N_{max} -s-zs symbols, where N_{max} is a predetermined value.

1 Claim 29 (currently amended): The apparatus of claim 26 further comprising:
2 means for determining a difference $\Theta(K)$ between a bit error rate prior to
3 decoding and ~~at~~ the target bit error rate (p_e) based on one or more values of a length of an
4 information field K within a range from 0 to N_{max} -ps-sz, where N_{max} is a predetermined
5 value, in accordance with the following relationship:

$$\Theta(K) = \omega(b(\gamma_{eff}, s, z))p_{QAM} - p_e, \text{ and}$$

9

$$\omega(b(\gamma_{\text{eff}}, s, z)) p_{QAM}$$

$$= \omega\left(\frac{\alpha}{sn_{\text{eff}}}(K + s + zs)\right) \left(1 - 2^{-\frac{\alpha}{2sn_{\text{eff}}}(K+s+zs)}\right) \operatorname{erfc}\left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10} / \left(2^{\frac{\alpha}{sn_{\text{eff}}}(K+s+zs)+1} - 2\right)}\right)$$

$$\times \left[2 - \left(1 - 2^{-\frac{\alpha}{2sn_{\text{eff}}}(K+s+zs)}\right) \operatorname{erfc}\left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10} / \left(2^{\frac{\alpha}{sn_{\text{eff}}}(K+s+zs)+1} - 2\right)}\right)\right]$$

10

11

$$\omega(b(\gamma_{\text{eff}}, s, z)) p_{QAM}$$

$$= \omega\left(\frac{\alpha}{sn_{\text{eff}}}(K + \rho s + zs)\right) \left(1 - 2^{-\frac{\alpha}{2sn_{\text{eff}}}(K+\rho s+zs)}\right) \operatorname{erfc}\left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10} / \left(2^{\frac{\alpha}{sn_{\text{eff}}}(K+\rho s+zs)+1} - 2\right)}\right)$$

$$\times \left[2 - \left(1 - 2^{-\frac{\alpha}{2sn_{\text{eff}}}(K+\rho s+zs)}\right) \operatorname{erfc}\left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10} / \left(2^{\frac{\alpha}{sn_{\text{eff}}}(K+\rho s+zs)+1} - 2\right)}\right)\right]$$

13

14

$$p_e = \left[1 - \left(1 - W(s, z, K) \varepsilon_s^{\frac{1}{0.5 \cdot sz + 1}}\right)^{1/\alpha}\right]$$

15

16 wherein p_{QAM} represents a probability of error in transmitting a

17 quadrature-amplitude-modulation waveform representing a 2^b point constellation, and p_e

18 represents a channel symbol error rate; and

19 means for comparing the value of $\mathcal{O}(0)$ and $\mathcal{O}(N_{\max}-s-zs)$ to 0; and

20 means for setting the value of K to a predetermined value in response to the

21 means for comparing.

1 Claim 30 (currently amended): The apparatus of claim 2926 wherein when $\mathcal{O}(0) < 0$ and

2 $\mathcal{O}(N_{\max}-s-sz) < 0$, said means for setting sets $K=N_{\max}-s-zs$.

1 Claim 31 (currently amended): The apparatus of claim 30 further comprising:

2 means for setting $b(\gamma_{eff}, s, z)$ equal to $(\alpha N_{max})/(s n_{eff})$ for all values of γ_{eff} and z .

3

4
$$\frac{\alpha N_{max}}{s n_{eff}}$$

1 Claim 32 (currently amended): The apparatus of claim 30 wherein when $\Theta(0) > 0$ and

2 $\Theta(N_{max}-s-sz) > 0$, said means for setting sets $K = N_{max}-1$.

1 Claim 33 (currently amended): The apparatus of claim 32 further comprising wherein

2 said means for setting sets $s=1$ and $z=0$ $b(\gamma_{eff}, s, z)$ equal to $b(\gamma_{eff}, 1, 0)$.

1 Claim 34 (currently amended): An apparatus for selecting forward error correction
2 parameters in a channel having a plurality of subchannels in a multicarrier
3 communications system, comprising:

4 means for determining a signal-to-noise ratio representing a subset of the
5 subchannels to provide ~~said~~ a representative performance measurement;
6 means for storing, in a table, the number (s) of discrete multi-tone symbols in a
7 forward-error-correction frame, the number (z) of forward-error-correction control
8 symbols in the discrete multi-tone symbol associated with the signal-to-noise ratio, and
9 the number of subchannels associated with the signal-to-noise ratio, and a net coding gain
10 for different values of s, z, signal-to-noise ratios and numbers of subchannels; and
11 means for selecting forward error correction parameters of the channel based on
12 the net coding gain by applying an approximation to a subset of values in the table.

1 Claim 35 (original): The apparatus of claim 34 wherein the approximation is a bilinear
2 approximation.

1 Claim 36 (currently amended): An apparatus for selecting forward error correction
2 parameters in a channel having a plurality of subchannels in a multicarrier
3 communications system, comprising:
4 means for determining a signal-to-noise ratio representing a subset of the
5 subchannels to provide said a representative performance measurement;
6 means for storing, in a table, the number (s) of discrete multi-tone symbols in a
7 forward-error-correction frame, the number (z) of forward-error-correction control
8 symbols in the discrete multi-tone symbol associated with the signal-to-noise ratio, the
9 maximum number of transmissions (k) and the number of subchannels associated with
10 the signal-to-noise ratio, and a net coding gain for different values of s, z, signal-to-noise
11 ratios and numbers of subchannels; and
12 means for selecting forward error correction parameters of the channel based on
13 the net coding gain by applying an approximation to a subset of values in the table.

1 Claim 37 (original): The apparatus of claim 36 wherein the approximation is a bilinear
2 approximation.

1 Claim 38 (original): The apparatus of claim 36 wherein the values of s and z are in
2 accordance with the G.dmt standard.

1 Claim 39 (original): The apparatus of claim 38 wherein the values of s and z are in
2 accordance with the G.lite standard, such that a subset of the tables associated with the
3 values of s and z in accordance with the G.dmt standard are used when the channel uses
4 the G.lite standard.

1 Claim 40 (original): An apparatus for increasing a bit load of a multicarrier system
2 comprising a channel having a plurality of subchannels, comprising:
3 means for determining a bit load for at least one subchannel based on a target symbol
4 error rate ϵ_s , a maximum number of symbol errors that can be corrected t, a number of

5 symbols in an information field K, and a maximum number of transmissions k, and a number
6 of bits per subchannel; and

7 means for selecting the maximum number of symbol errors t, the number of symbols
8 in the information field K and the maximum number of transmissions k, such that a net
9 coding gain is increased wherein the means for also selects t, K and k such that no forward
10 error correction is applied when the number of subchannels exceeds a predetermined
11 threshold number of subchannels.

1 Claim 41 (currently amended): An apparatus for determining an optimum bit load per
2 subchannel in a multicarrier system with forward error correction, comprising:

3 means for computing one or more values of a number of bit positions b of a
4 quadrature-amplitude-modulation symbol based on one or more values of a number of
5 symbols in an information field K, one or more values of a number of control code
6 symbols per discrete-multi-tone symbol z, and a maximum number of transmissions k, to
7 provide one or more determined values of b, maximum number of symbol errors that can
8 be corrected t, and a number of symbols in the information field K to determine the
9 optimum bit load per subchannel in accordance with the following relationship:

$$1 - \left(1 - W(s, z, K) \epsilon_s^{\frac{1}{0.5 \cdot sz + 1}} \right)^{1/\alpha}$$

11 $= \omega(b(\gamma_{eff}, s, z)) \left(1 - 2^{-b(\gamma_{eff}, s, z)/2} \right) erfc \left(\sqrt{3 \cdot 10^{\gamma_{eff}/10}} / \left(2^{b(\gamma_{eff}, s, z)+1} - 2 \right) \right), \text{ and}$
 $\times \left[2 - \left(1 - 2^{-b(\gamma_{eff}, s, z)/2} \right) erfc \left(\sqrt{3 \cdot 10^{\gamma_{eff}/10}} / \left(2^{b(\gamma_{eff}, s, z)+1} - 2 \right) \right) \right]$

12

$$13 W(s, z, K) = \left[\frac{\Gamma(K + \rho s + sz)}{\Gamma(K + \rho s + 0.5 \cdot sz) \Gamma(0.5 \cdot sz + 1)} \right]^{-1/(0.5 \cdot sz + 1)}$$

$$\begin{aligned}
 & 1 - \left(1 - W(s, z, K, k) \varepsilon_s^{\frac{1}{k(0.5sz+1)}} \right)^{1/\alpha} \\
 & = \omega(b(\gamma_{\text{eff}}, s, z)) \left[1 - 2^{-b(\gamma_{\text{eff}}, s, z)/2} \right] \operatorname{erfc} \left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10}} / \left(2^{b(\gamma_{\text{eff}}, s, z)+1} - 2 \right) \right) \\
 & \quad \times \left[2 - \left(1 - 2^{-b(\gamma_{\text{eff}}, s, z)/2} \right) \operatorname{erfc} \left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10}} / \left(2^{b(\gamma_{\text{eff}}, s, z)+1} - 2 \right) \right) \right]
 \end{aligned}$$

$$W(s, z, K, k) = \left[\frac{\Gamma(K + \rho s + sz)}{\Gamma(K + \rho s + 0.5 \cdot sz) \Gamma(0.5 \cdot sz + 1)} \right]^{-1/(0.5 \cdot sz + 1)} \left[\frac{\Gamma(K + \rho s + sz + 1)}{\Gamma(K + \rho s + 0.5 \cdot sz) \Gamma(0.5 \cdot sz + 2)} \right]^{-(k-1)/(0.5 \cdot sz + 1)k}$$

$$b(\gamma_{\text{eff}}, s, z) = \frac{\alpha}{sn_{\text{eff}}} (K + \rho s + sz)$$

wherein $\omega(b) = \frac{4}{2b+3}$, and

$$\Gamma(x) = (x-1)!, \quad x > 0$$

s represents a number of discrete-multi-tone symbols in a frame, z represents a number of control code symbols per discrete multi-tone symbol, b represents a number of bit positions of a quadrature-amplitude-modulation symbol, ε_s represents a symbol error rate, α represents the size of a code symbol, $\omega(b)$ represents an average fraction of erroneous bits in an erroneous b-sized quadrature-amplitude-modulation symbol, γ_{eff} represents an effective signal-to-noise ratio, and ρ represents a number of overhead symbols per discrete multi-tone symbol framing mode index; and n_{eff} represents an effective number of subchannels; and

means for selecting the value of K and z to provide a maximum number of bit positions based on the one or more determined values of b the maximum number of symbol errors that can be corrected t, and the number of symbols in the information field

36 | ~~K such that the uncoded bit error rate p_b that produces a symbol error rate that is less than~~
 37 | ~~or equal to the target symbol error rate is increased.~~

1 Claim 42 (original): The apparatus of claim 41 wherein the effective signal-to-noise ratio
 2 γ_{eff} is an average signal-to-noise ratio of at least a subset of the channels.

1 Claim 43 (currently amended): The apparatus of claim 41 wherein the size of the frame
 2 ranges from 0 to $N_{\max}\cdot\rho s\cdot sz$ symbols, where N_{\max} is a predetermined value.

1 Claim 44 (currently amended): The apparatus of claim 41 further comprising:
 2 means for determining a difference $\Theta(K)$ between a bit error rate prior to
 3 decoding and ~~at~~ the target bit error rate (p_e) in accordance with the following relationship:

$$\Theta(K) = \omega(b(\gamma_{\text{eff}}, s, z)) p_{QAM} - p_e,$$

$$\begin{aligned} & \omega(b(\gamma_{\text{eff}}, s, z)) p_{QAM} \\ &= \omega\left(\frac{\alpha}{sn_{\text{eff}}}(K + \rho s + z s)\right) \left(1 - 2^{-\frac{\alpha}{2sn_{\text{eff}}}(K + \rho s + z s)}\right) \operatorname{erfc}\left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10} / \left(2^{\frac{\alpha}{sn_{\text{eff}}}(K + \rho s + z s)+1} - 2\right)}\right) \\ & \quad \times \left[2 - \left(1 - 2^{-\frac{\alpha}{2sn_{\text{eff}}}(K + \rho s + z s)}\right) \operatorname{erfc}\left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10} / \left(2^{\frac{\alpha}{sn_{\text{eff}}}(K + \rho s + z s)+1} - 2\right)}\right)\right] \end{aligned}$$

$$\begin{aligned} \Theta(K) &= \omega\left(\frac{\alpha}{sn_{\text{eff}}}(K + \rho s + z s)\right) \left(1 - 2^{-\frac{\alpha}{2sn_{\text{eff}}}(K + \rho s + z s)}\right) \operatorname{erfc}\left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10} / \left(2^{\frac{\alpha}{sn_{\text{eff}}}(K + \rho s + z s)+1} - 2\right)}\right) \\ & \quad \times \left[2 - \left(1 - 2^{-\frac{\alpha}{2sn_{\text{eff}}}(K + \rho s + z s)}\right) \operatorname{erfc}\left(\sqrt{3 \cdot 10^{\gamma_{\text{eff}}/10} / \left(2^{\frac{\alpha}{sn_{\text{eff}}}(K + \rho s + z s)+1} - 2\right)}\right)\right] \\ & \quad - \left[1 - \left(1 - W(s, z, K, k) e_s^{\frac{1}{k(0.5 \cdot sz + 1)}}\right)^{1/\alpha}\right] \end{aligned}$$

9
10 wherein p_{QAM} represents a probability of error in transmitting a
11 quadrature-amplitude-modulation waveform representing a 2^b point constellation, and p_e
12 represents a channel symbol error rate;
13 comparing the value of $\Theta(0)$ and $\Theta(N_{max}-\rho s-zs)$ to 0; and
14 setting the value of K to a predetermined value in response to the comparing.

1 Claim 45 (currently amended): The apparatus of claim 44[[41]] wherein when $\Theta(0)<0$
2 and $\Theta(N_{max}-\rho s-zs)<0$, said means for setting sets $K=N_{max}-\rho s-zs$.

1 Claim 46 (currently amended): The apparatus of claim 45 further comprising:
2 means for setting $b(\gamma_{eff}, s, z)$ equal to $(\alpha N_{max})/(s n_{eff})$ for all values of γ_{eff} and z .
3
4
$$\frac{\alpha N_{max}}{s n_{eff}}$$
.

1 Claim 47 (currently amended): The apparatus of claim 41 wherein when $\Theta(0)>0$ and
2 $\Theta(N_{max}-\rho s-zs)>0$, said means for setting sets $K=N_{max}-\rho$.

1 Claim 48 (currently amended): The apparatus of claim 47 further comprising wherein
2 said means for setting sets $s=1$ and $z=0$ $b(\gamma_{eff}, s, z)$ equal to $b(\gamma_{eff}, 1, 0)$.

1 Claim 49 (new): A method of selecting forward error correction parameters in a channel
2 having a plurality of subchannels in a multicarrier communications system, comprising:
3 storing, in one or more tables, a net coding gain for a plurality of values of
4 signal-to-noise ratios and numbers of subchannels, the net coding gain being based on a
5 one or the values of the signal-to-noise ratios and one of the numbers of subchannels, a
6 number (s) of discrete multi-tone symbols in a forward-error-correction frame, a

7 number (z) of forward-error-correction control symbols in a discrete multi-tone symbol, a
8 maximum number of transmissions (k), for different values of s, z and k;
9 determining a signal-to-noise ratio representing a subset of the subchannels to
10 provide a representative performance measurement; and
11 selecting values of s, z and k based on the representative performance
12 measurement and the net coding gain by applying an approximation to a subset of the
13 values in the table.

1 Claim 50 (new): The method of claim 49 wherein the approximation is a bilinear
2 approximation.

1 Claim 51 (new): The method of claim 49 wherein and the values of s and z are in
2 accordance with the G.dmt standard.