Powerset

Let A be any set. Then the power set of A, written \wp A, is the set of all subsets of A, i.e.

$$\wp A \triangleq \{ V \mid V \subseteq A \}$$

This is assumed to be a set.

Examples

The power set of the empty set is not empty!

Let A be a finite set with |A| = n. Then $|\wp A| = 2^n$

Proof: Let $A = \{a_1, \ldots, a_n\}$. Form a subset X of A by taking each element a_i in turn and deciding whether or not to include it in X. This gives us n independent choices between two possibilities: in X or not.

We can therefore represent each subset X of A by a binary number $b = b_1 \cdots b_n$, where $b_i = 1$ if $a_i \in X$, and $b_i = 0$ if $a_i \notin X$.

The number of different subsets we can form is therefore the same as the number of binary numbers representable with n bits, which is 2^n .