Описание алгоритмов к домашнему заданию № 4

Алгоритм построения бинарного кода Грея

Описанный далее алгоритм генерирует последовательность всех подмножеств n-элементного множества таким образом, что каждое последующее множество получается из предыдущего добавлением или удалением одного элемента.

Код Грея называется так же отраженным кодом. Рассмотрим построение кода на примере n=4.

Будем считать старшим разрядом нулевой разряд. Он может принимать значения 0 и 1.

1 Далее старший разряд первый, который принимает значения 1, а младший разряд (нулевой) принимает значения в обратном порядке от предыдущего

0010 Далее аналогичным образом: (старший разряд выделен размером, отражаемая часть жирным шрифтом)

110

101

111

010

Пронумеруем полученные наборы от 0 до 14.

	r J rr J		
0	0000	7	0 100
1	000 1	8	1100
2	00 11	9	1 101
3	00 10	10	1 111
4	0 110	11	1 110
5	0 111	12	1 010
6	0 101	13	1 011
		14	1001

В первом наборе инвертировался разряд с номером 0, во втором – разряд с номером 1, в третьем – разряд с номером 0, в четвертом разряд с номером 2 и т.д.. Разложим числа от 1 до 14 на простые множители и подсчитаем количество двоек в разложении числа. В итоге получена та же самая последовательность.

Число	Разложение	Количество	Число	Разложение	Количество
		двоек в			двоек в
		разложении			разложении
		числа			числа
1	1	0	8	2*2*2*2	3
2	2	1	9	3*3	0
3	3	0	10	2*5	1
4	2*2	2	11	11	0
5	5	0	12	2*2*3	2
6	2*3	1	13	13	0
7	7	0	14	2*7	1

- 1. Задать A множество из n элементов.
- 2. Задать M = [000..]- подмножество булеана.
- 3. Вывести *М*;
- 4. Цикл $(i = \overline{1;2^n 1})$
 - 4.1. Найти k количество двоек в разложении числа i;
 - 4.2. Если M[k] = 0 То $\{M[k] = 1$ Иначе M[k] = 0;
 - 4.3. Вывести *М*;
- 5. Конец цикла
- 6. Конец

Реализация кода Грея с помощью стека.

- 1. СТЕК ← пустой стек
- 2. Цикл ($j = \overline{n-1;0}$)

$$2.1. g_i = 0$$

2.2. CTEK ←
$$j$$

- 3. Конен пикла
- 4. Печать $(g_{n-1}, g_{n-2}, ..., g_0)$
- 5. Пока (СТЕК не пуст);

5.1. CTEK
$$\rightarrow a$$

5.2.
$$g_a := \overline{g_a}$$
 {Инвертировать g_a }

5.3.Печать
$$(g_{n-1},g_{n-2},...,g_0)$$
 5.4. Цикл ($j=\overline{a-1;0}$) 5.4.1. СТЕК $\leftarrow j$ 5.5. Конец цикла

6. Конец цикла

«Алгоритмы порождения комбинаторных объектов»

Генерация сочетаний

Генерация сочетаний в лексикографическом порядке

Будем рассматривать в качестве множества $X = \{1, 2, ..., n\}$. Требуется сгенерировать все подмножества мощности $k, (0 \le k \le n)$ множества X.

Определим отношение лексикографического порядка (<) следующим образом. Пусть $a=(a_1,a_2,\dots a_n)$, $b=(b_1,b_2,\dots b_m)$. Будем говорить, что набор a предшествует набору $b\colon a \prec b \iff \exists r \geq 1\colon a_r < b_r$ и $\forall i=\overline{1,r-1}\,;\ a_i=b_i$.

Будем рассматривать сочетания k элементов из множества X как вектор $(c_1,c_2,...,c_k)$, компоненты которого расположены в порядке возрастания слева направо (т.е. $c_i < c_{i+1}$ для любого i). Начиная с сочетания (1,2,...,k), следующие будем строить, просматривая текущее справа налево, чтобы найти самый первый элемент, не достигший максимального значения; этот элемент увеличим на единицу, а всем элементам справа от него присвоим номинальные наименьшие значения.

Лексикографический порядок порождения сочетаний не является алгоритмом с минимальными изменениями.

1.
$$c_0 \coloneqq -1$$
2. Цикл ($i \coloneqq \overline{1,k}$)
2.1. $c_i \coloneqq i$
3. Конец цикла
4. $j \coloneqq 1$
5. Пока ($j \ne 0$)
5.1.Печать (c_1, c_2, \dots, c_k)

$$5.2.\ j\coloneqq k$$
 $5.3.\ Пока\ (\ c_j=n-k+j\)$ $5.3.1\ j\coloneqq j-1$ $5.4.\ Конец цикла$ $5.5.\ c_j\coloneqq c_j+1$ $5.6.\ Цикл\ (\ i\coloneqq \overline{j+1,k})$ $5.6.1.\ c_i\coloneqq c_{i-1}+1$

- 5.7. Конец цикла
- 6. Конец цикла
- 7. Конеп

Генерация сочетаний с помощью кодов Грея

При генерации сочетаний из n элементов по k наименьшим возможным изменением при переходе от текущего сочетания к следующему является замена одного элемента другим. В терминах Грея это означает, что мы хотим выписать все n-разрядные кодовые слова, содержащие ровно k единиц, причем последовательные наборы отличаются ровно в двух разрядах (в одном из разрядов 0 заменяется на 1, а в другом — 1 на 0).

Пусть G(n) — двоично-отраженный код Грея, а G(n,k) ($0 \le k \le n$) — последовательность кодовых слов ровно с k единицами:

$$G(n,k)^{T} = (G(n,k)_{1}, G(n,k)_{2}, ..., G(n,k)_{C_{n}^{k}})^{T}.$$

Эту последовательность можно рекурсивно определить следующим образом:

$$G(n,0) = (0 \ 0 \dots 0);$$

$$G(n,n) = (1 \ 1 \dots 1);$$

$$G(n,k) = \begin{pmatrix} 0 & G(n-1,k) \\ 1 & \overline{G(n-1,k-1)} \end{pmatrix},$$
(1.1)

где 0 — вектор-столбец размерности $C_{n-1}^k \times 1$, состоящий из нулей;

1 — вектор-столбец размерности $C_{n-1}^{k-1} \times 1$, состоящий из единиц;

G(n-1,k) — матрица $C_{n-1}^k \times (n-1)$ кодовых слов, содержащих ровно k единиц;

 $\overline{G(n-1,k-1)}$ — матрица $C_{n-1}^{k-1} \times (n-1)$ кодовых слов, содержащих ровно k-1 единиц, причем кодовые слова записаны в порядке, обратном порядку G(n-1,k-1) (\overline{G} — «перевернутая» матрица G).

На рис. 1.1 приведен пример построения кодовых слов Грея для генерации сочетаний из 4 элементов по 2.

Рис. 1.1. Кодовые слова Грея для сочетаний из 4 по 2

Индукцией по n доказывается, что последовательность кодовых слов G(n,k) получается удалением из кода Грея G(n) всех кодовых слов с числом единиц, не равным k, причем в этой последовательности любые два соседних кодовых слов различаются только в двух позициях (обратите внимание – алгоритм рекурсивный).

Генерация перестановок

Генерация перестановок в лексикографическом порядке

Будем рассматривать исходное множество $X = \{1,2,...,n\}$, и в качестве начальной перестановки возьмем $\pi' = (1,2,...,n)$. Условие окончания работы — порождение перестановки $\pi'' = (n,n-1,...,2,1)$, которая является последней в лексикографическом смысле среди всех перестановок множества X. Переход от текущей перестановки $\pi = (\pi_1, \pi_2, ..., \pi_n)$ к следующей за ней будем осуществлять таким образом:

- 1) просматривая перестановку π справа налево, ищем самую первую позицию i такую, что $\pi_i < \pi_{i+1}$ (если такой позиции нет, значит текущая подстановка $\pi = \pi''$ и процесс генерации завершается);
- 2) просматривая π от π_i слева направо, ищем наименьший из элементов π_j такой, что $\pi_i < \pi_j (i < j)$;
- 3) меняем местами элементы π_i и π_j ; затем все элементы $\pi_{i+1},\pi_{i+2},...\pi_n$ записываем в обратном порядке (т.е. меняем местами симметрично расположенные элементы π_{i+1+t} и π_{n-t}).

Пример. Пусть текущая перестановка π имеет вид $\pi=(3,5,7,6,4,2,1)$. На первом шаге найдены $\pi_i=5, i=2$; на втором — $\pi_j=6, j=4$; на третьем шаге меняем местами π_i и $\pi_j:(3,6,7,5,4,2,1)$ и меняем местами элементы, начиная с третьей позиции: (3,6,1,2,4,5,7) — получили подстановку, следующую за текущей в лексикографическом порядке.

1.3.2. Генерация перестановок с помощью вложенных циклов

Будем говорить, что перестановка
$$\pi = \begin{pmatrix} 1 & 2 & \dots & n \\ a_1 & a_2 & \dots & a_n \end{pmatrix}$$
 является

циклом длины k степени d, если ее элементы a_i , $i=\overline{1,k}$, получены из 1, 2, ..., k циклическим сдвигом вправо на d позиций, остальные n-k элементов стационарны. Например, подстановка

$$\pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 2 & 3 & 5 & 6 \end{pmatrix}$$
 является циклом длины 4 степени 1.

Алгоритм порождения подстановок с помощью вложенных циклов основан на следующей теореме.

Теорема 1. Любую подстановку π на множестве $X = \{1,2,...n\}$ можно представить в виде композиции

$$\pi = \rho_n \circ \rho_{n-1} \circ \dots \circ \rho_1 \tag{1.2}$$

где ho_i — циклическая подстановка порядка i.

Пример. Представим в виде (2.1) подстановку $\pi = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$,

т.е. запишем

$$\pi = \rho_4 \circ \rho_3 \circ \rho_2 \circ \rho_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ a_1 & a_2 & a_3 & a_4 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ b_1 & b_2 & b_3 & 4 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ c_1 & c_2 & 3 & 4 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ d_1 & 2 & 3 & 4 \end{pmatrix}.$$

Очевидно, последний цикл является тождественной подстановкой. Определим ρ_4 : т.к. $\rho_3(4) = 4$, $\rho_2(4) = 4$, то $\rho_4(4) = 1$ следовательно

$$\rho_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$$
 — цикл порядка 4.

Т.к.
$$\rho_2(3)=3$$
 , то $3=\pi(1)=\rho_3(2)=\rho_3(\rho_4(1))=\rho_2(2)$ и
$$\rho_2=\begin{pmatrix}1&2&3&4\\2&1&3&4\end{pmatrix}.$$

Разложение подстановки π имеет вид:

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}$$
 (1.3)
Диаграмма композиции (1.3) приведена на рис. 2.2.

Рис. 2.2. Разложение в произведение вложенных циклов

Из теоремы 1 следует, что все перестановки можно получить систематическим перебором циклических сдвигов. В качестве начальной перестановки берем $\pi'=(1,2,...n)$ и сдвигаем на одну позицию вправо все элементы до тех пор, пока вновь не получим π' ; теперь сдвигаем циклически первые n-1 элементов и снова повторяем сдвиг всех n элементов на одну позицию до тех пор, пока не получим уже имеющуюся перестановку; сдвигаем циклически ее первые n-2 элементов... и т.д., пока не переберем все n! перестановок. Ниже приведен алгоритм вложенных циклов.

Этот алгоритм не является эффективным, т.к. на каждом шаге требует большого количества (не меньше n) транспозиций (транспозиция — обмен местами двух элементов).

Транспозиция соседних элементов

Описанные выше алгоритмы генерации перестановок не являются алгоритмами с минимальными изменениями. Минимальным изменением при переходе от текущей перестановки к следующей является транспозиция двух элементов. Дадим рекурсивное описание такого алгоритма.

Если n=1, то существует единственная перестановка $\pi^{(1)}=(1)$. Пусть n>1 и последовательность перестановок

 $\pi^{(1)}, \pi^{(2)}, \dots \pi^{(r)}, r = (n-1)!$ на множестве $(1,2,\dots n-1)$ построена. Для получения перестановок на множестве $(1,2,\dots n)$ будем вставлять элемент n на «промежутке» между элементами перестановки $\pi^{(i)}$ по следующему правилу: если номер i подстановки $\pi^{(i)}$ — нечетное число, то элемент n вставляется в промежутки справа налево, если I — четное число, то элемент n вставляется в промежутки между элементами $\pi^{(i)}$ слева направо.

Пример генерации перестановки при n = 4 приведен на рис. 1.3.

Рис. 1.3. Генерация перестановок транспозицией соседних элементов (n = 4)

Представленный на рис. 1.3 алгоритм является рекурсивным, не-

рекурсивная реализация называется алгоритмом Джонсона-Троттера (http://neerc.ifmo.ru/wiki/index.php?title=%D0%A3%D1%87%D0%B0%D0%B0%D0%B8%D0%BA:ZeRoGerc)