Exercice 3:

1ère question:

F et G sont équivalents : F est une couverture de G et G est une couverture de F

On a F = $\{A \rightarrow B (1), CE \rightarrow H (2), C \rightarrow E (3), A \rightarrow CH (4)\}$

 $G = \{C \rightarrow EH (5), A \rightarrow BC (6)\}$

F couverture de G:

 $C \rightarrow EH : C \rightarrow E$ existe dans DF 3

 $A \rightarrow B$: existe dans DF 1

 $A \rightarrow C$: existe dans DF 4

 $C \rightarrow H : C \rightarrow E$ par augmentation $C \rightarrow CE$ et $CE \rightarrow H$ alors $C \rightarrow H$ (ou par pseudo transitivité)

G couverture de F:

 $A \rightarrow B$: existe dans DF 6

 $C \rightarrow E$: existe dans DF 5

 $A \rightarrow C$: existe dans DF 6

 $A \rightarrow H : A \rightarrow C$ et $C \rightarrow H$ donc par transitivité $A \rightarrow H$

 $CE \rightarrow H : C \rightarrow H$ par augmentation $CE \rightarrow EH$ alors par décomposition $CE \rightarrow H$

Alors F et G sont équivalents

2ème question:

Clé candidate de R:

A une clé candidate ? vérifie l'unicité et l'irréductibilité

1. Unicité:

$$A \rightarrow B$$
, $A \rightarrow C$, $A \rightarrow H$, $A \rightarrow E$

2. Irréductibilité:

A est élémentaire

Clé primaire : A, c'est la seule clé candidate

```
Trouver la clé candidate avec la Super clé :
```

ABCEH

 $CE \rightarrow H : A B C E$

 $C \rightarrow E : A B C$

 $A \rightarrow BC$ (par décomposition $A \rightarrow B$ et $A \rightarrow C$) : A

Exercice 4:

Les DFs:

 $AB \rightarrow C$,

 $C \rightarrow A$,

 $BC \rightarrow D$,

 $ACD \rightarrow B$,

BE \rightarrow C,

 $CF \rightarrow BD$,

 $CE \rightarrow FA$,

 $\mathsf{D}\to\!\mathsf{EF}$

1ère étape: Singleton à droite

 $AB \rightarrow C$, 1

 $C \rightarrow A, 2$

 $BC \rightarrow D$, 3

ACD \rightarrow B, 4

BE \rightarrow C, 5

 $CF \rightarrow B$, 6

 $CF \rightarrow D$, 7

 $CE \rightarrow F$, 8

 $CE \rightarrow A, 9$

 $D \rightarrow E$, 10

 $D \rightarrow F$, 11

2ème étape: Irréductibilité à gauche

 $C \rightarrow A : DF 2 donc DF 4 devient CD \rightarrow B$

3ème étape : Enlever les DFs redondantes

 $C \rightarrow A$ par augmentation $CE \rightarrow AE$ et par décomposition $CE \rightarrow A$, enlever DF 9 $CF \rightarrow B$ par augmentation $CF \rightarrow BC$ et $BC \rightarrow D$ par transitivité $CF \rightarrow D$, enlever DF 7 $D \rightarrow F$ par augmentation $CD \rightarrow CF$ et $CF \rightarrow B$ par transitivité $CD \rightarrow B$, enlever $CD \rightarrow B$

 $CF \rightarrow D$ par augmentation $CF \rightarrow CD$ et $CD \rightarrow B$ par transitivité $CF \rightarrow B$, enlever $DF \rightarrow B$

Il existe 2 couvertures minimales:

1^{ère}:

- $AB \rightarrow C$
- $C \rightarrow A$
- $BC \rightarrow D$
- $BE \rightarrow C$
- $CF \rightarrow B$
- $CE \rightarrow F$
- $D \rightarrow E$
- $D \rightarrow F$

<mark>2^{ème}∶</mark>

- $AB \rightarrow C$
- $C \rightarrow A$
- $BC \rightarrow D$
- $BE \rightarrow C$
- $CD \rightarrow B$
- $\mathsf{CE} \to \mathsf{F}$
- $\mathsf{D}\to\!\mathsf{E}$
- $D \rightarrow F$

Exercice 5:

Soit une relation R(A,B,C,D,E,F,G) et l'ensemble des DFs : $\{A \rightarrow EG, B \rightarrow D, EF \rightarrow G, CD \rightarrow F, E \rightarrow C, C \rightarrow B\}$

- 1. Donner la ou les clés candidates de R : A clé candidate ?
 - a. Unicité : $A \rightarrow E$, $A \rightarrow G$, $A \rightarrow B$, $A \rightarrow D$, $A \rightarrow C$, $A \rightarrow F$

b. Irréductibilité: vérifiée A est élémentaire

A est une clé primaire, c'est la seule clé candidate

2. Calculer la couverture minimale :

1^{ère} étape : Singleton à droite

- A→E, 1
- $A \rightarrow G$, 2
- $B \rightarrow D$, 3
- EF→G, 4
- $CD \rightarrow F, 5$
- E →C, 6
- C→B, 7

2ème étape: Irréductibilité à gauche

- $C \to B$ et $B \to D$ par transitivité $C \to D$, DF 5 devient $C \to F$
- $E \rightarrow C$ et $C \rightarrow F$ par transitivité $E \rightarrow F$, DF 4 devient $E \rightarrow G$
- A→E, 1
- $A \rightarrow G$, 2
- $B \rightarrow D$, 3
- E→G, 4
- $C \rightarrow F$, 5
- $E \rightarrow C$, 6
- C→B, 7

3ème étape : Enlever les DFs redondantes

 $A \rightarrow E$ et $E \rightarrow G$ par transitivité $A \rightarrow G$, enlever DF 2

Couverture minimale:

- $A \rightarrow E$
- $\mathsf{B} \to \! \mathsf{D}$
- $E \rightarrow G$
- $C \rightarrow F$
- $E \rightarrow C$
- $C \rightarrow B$