

University of Zagreb Faculty of Mechanical Engineering and Naval Architecture

www.fsb.hr/see

Energy Sustainability: Island of Hvar, Croatia

Final Report - April 19th, 2006 ZERIC - UNEP

Energy Management – University of Zagreb

Patrick Fowler
Nino Kurtalj
Motalleb Miri
MSc. SEE Students

Outline

- Objective/Purpose
- Energy Model
- Energy Consumption
- Renewable Sources
- Energy Planning
- Favored Concept Homer
- Business Model
- Conclusions

Objective/Purpose

- **ZERIC** Zero Emission Remote Island Challenge
- Recommend a sustainable energy system for the island of Hvar, Croatia
 - "reasonable level" of energy sustainability max.
 0.5 €/kWh
 - Use renewable sources for energy production
 - Storage should be considered (biofuels, hydrogen, etc...)
 - Suggest business model

Location

Statistics

- Total area of 297 km² with 270 km of sea coast
- Largest industry is tourism
- Population: 11 103
- Tourists (2005): 222 781
- Agriculture: Vineyards & Orchards
- Livestock: Sheep & Goats

Energy Model

- Influential Factors: Tourism, Heating Season
- Thermal Energy Sources:
 - Electricity Mainly for heating, hot water and cooking
 - Oil Heating, hot water, other industrial and services use
 - Gas Cooking
 - Wood Heating and some cooking
- End-Users:
 - Locals Usage in the home
 - Tourists Usage in the lodging
 - Industry Food processing & Chemical
 - Services Restaurants, clubs, leisure facilities, pools etc...
- Transportation: Locals, Tourists, Farming & Waste

Energy Consumption

Figure: Hvar Electricity Consumption - Monthly Total, 2005

Total Consumption

Thermal – Elec.	30,898,724 kWh
Thermal - Other	35,991,699 kWh
Non-Thermal	27,708,110 kWh
Total	94,598,803 kWh
Fuel Consumption	816,953 litres

Renewable Sources

- Potential:
 - Sun: 2718 hrs/year of sun
 - Wind: Speeds up to 8.5 m/s at mountain crest
 - Biomass:
 - 3,300 ton/y of Agricultural Waste
 - 4,243 ton/y of MSW & Sewer Sludge
 - 852 ha of Available Arable Land
- No-Potential:
 - Geothermal: 0.049°C/m &Temperature too low
 - Hydro: 778mm rain per year
 - Wave, Tidal: Too little, 12cm
 - OTEC: no more than 100m

Daily Electricity Trend

Solar, Wind & Others

Month	Wind Speed				
MOUNT	(m/s)				
January	3.601				
February	3.087				
March	3.086				
April	4.089				
May	3,599				
June	3.088				
July	3.601				
August	2.572				
September	3.086				
October	3.087				
November	5.143				
December	3,601				
Annual ave	rage: 3.469				

Energy Planning

- Use Solar collectors for DHW
 - saving electricity: 6,612,579 kWh
 - and oil: 2,473,649 kWh
- Use Biomass for biofuels => save gas and oil
 - Biogas use MSW & Agricultural Waste -> Cooking and heat
 - Potential: 34,412 GJ/y or 978,669 m³/y
 - Biofuel use Energy Crops -> Heating and Transportation
 - Potential: 39,903 GJ/y or 1,154,797 litres/y
 - Wood -> Assumed to be renewable
- Electricity Peak: 18.6 MW

Energy Model

Potential Layout

Energy Mix - Homer

- Modeling done with HOMER.
- To obtain the input data for the HOMER, component information was collected from research literature and manufacturers to obtain estimates of costs, like:
 - the technologies investment cost and technical features
 - their useful life and maintenances requirements
 - the quantities of energy required annually
 - the cost of the energy produced by the various plants

Energy Mix - Homer

- Matching environmental conditions with electricity demand -> Optimise Renewables
- Different component combinations
- Details
 - Heating load: Excluded b/c high fossil fuel solution -> treated separately
 - Electrical load: Includes non-thermal, electrical heating (minus savings from solar collectors) and cooling.
 - Diesel: Required for peak shaving
 - Storage: Batteries are primary. Hydrogen too pricey for size of the system
 - Grid connection: With and without considered; With offers much simpler, cheaper solutions; Without was favoured since it's an isolated system

Favoured Concept

ssions	Installed	Share of	Penetration	Hours of
straints	Power	Total		Operation
	[MW]			per year
Solar	20.00	30%	63.8%	4,328
Wind	28.35	63%	135.4%	7,986
Diesel	20.00	7%		672

Best solution

Sensitivity variables

Wind Speed (m/s) 3.47 ▼

Diesel Price (\$/L) 1

Double click on a system below for simulation results.

Categorized

7本3回図	PV (kW)	E48	Gen1 (kW)	Batt.	Conv. (kW)	Initial Capital	Total NPC	COE (\$/kWh)	Ren. Frac.	Diesel (L)	Gen1 (hrs)	Batt. Lf. (yr)
7 本心画図	20000	35	20000	32750	20000	\$ 193,787,168	\$ 249,672,592	0.449	0.93	3,013,059	672	12.0
7 🖰 🗇 🗹	20000		13500	32765	20000	\$ 152,695,840	\$ 317,227,296	0.571	0.51	11,297,766	3,044	12.0

Sensitivity

Diesel Price vs. Wind Speed

- High wind speeds and high fuel prices
 - => wind power
- Very cheap diesel & very light winds
 - => generator, battery,
 PV system

Business Model

- Name Magic Enterprise
- Slogan We convert your poo and give it back to you!! It's like Magic!!

Cost ⁺ [€kWh]	7pm to 7am	7am to 7pm	With Solar Panel (24hrs)
Electricity	0.407	0.448	0.407
	Variable	Dedicated	Or
Oil	0.067	0.074	0.71 €liter
Gas	0.042	0.046	0.17 € m³

^{*}There are no taxes on these rates

Conclusion

- 93.6% Renewable possible
- Further study required
- Grid Connection should be considered
- Mixing Biodiesel would be required, especially for tourists

Source	Previous [kWh/year]	Renewable [kWh/year]	Percentage
Electricity – Non-Thermal	27,708,110	25,768,542	93.0%
Electricity - Thermal	30,898,724	29,198,869	94.5%
Wood	18,258,789	18,258,789	100%
Oil	8,661,451	8,661,451	100%
Gas	9,071,729	9,071,729	100%
Total - Energy	94,598,803	90,959,380	96.2%
Transportation [l/y]	816,953	510,122	62.5%
Total	102,424,026	95,845,607	93.6%