Question 1.

Hint:

- See pages L-106 and L-107 of the lecture notes for formulas and a similar example.
- Because only treatment c is replicated more than once, its variance 42.72 is automatically the MSE with 3-1=2 df.
- Do not forget to ignore "c" when you interpret the fitted effects.

Scientists conducted a half fractional factorial experiment involving factors A, B and C

using the generator C=AB. Summary data are given below.

Treatment	Responses	Treatment Sample Size	Treatment Sample Mean	Treatment Sample Variance
С	88.8, 94.4, 82.1	3	87.7	42.72
а	69.6	1	69.6	NA
b	32.6	1	32.6	NA
abc	83.2	1	83.2	NA

Notice that the treatments in the table are in (Yates) standard order if we ignore "c". Yates algorithm produces the following values (p=3, q=1, p-q=2 cycles):

Treatment	Means	Cycle 1	Cycle 2	Fitted effect
С	87.7	157.3	273.1	68.275
а	69.6	115.8	32.5	8.125
b	32.6	-18.1	-41.5	-10.375
abc	83.2	50.6	68.7	17.175

Also note that treatment c was replicated 3 times. This means that we can compute $r(\alpha)$ which we can use to determine which fitted effects are significant. Set the significance level at α =0.05. A. Perform some calculations to show that r(0.05) = 12.84.

B. The defining relation in this experiment is **I=ABC**. Use this and r(0.05)=12.84 to determine which fitted effects are significant at the α =0.05 level. Just fill in the blanks in the table below to complete this exercise.

Fitted Effect	Sum of Effects Estimated	Significant? Enter YES or NO below.
8.125		
-10.375		
17.175		

C. If **all** interactions are negligible, which of factors A, B and C are most important?

Question 2. An experiment has 6 factors with 2 levels each. Researchers can only run 1/8 of the 26 = 64 treatments due to costs and time constraints. Let's pick factor A, B, and C as the independent factors. Design 1 chooses the generators as D=A, E=B, E=C. Design 2 picks the generators as D=ABC, E=AB, and F=BC. Explain why design 2 is better than design 1.

Question 3. In biofiltration of wastewater, air discharged from a treatment facility is passed through a damp porous membrane that causes contaminants to dissolve in water and be transformed into harmless products. The accompanying data on x= inlet temperature (°C) and y= removal efficiency (%) was the basis for a scatter plot that appeared in the article "Treatment of Mixed Hydrogen Sulfide and Organic Vapors in a Rock Medium Biofilter" (Water Environment Research, 2001: 426–435). The scatter plot and the summary statistics are given below.

- A. Identify the dependent and independent variables.
- B. From the scatter plot, do you think the two variables are linearly correlated? Why.