Rakieta 1 BSK 2017

1. Szyfrogram o prezydenta Kennedy został złożony z prostego podstawienia: C = RGJJG MVKTO TZPGT STBGP CATJW PGOCM GJS Co to jest odpowiednie zwykłego tekstu?

Na czuja, ale podobno trzeba policzyć która litera najczęściej występuje ($G \rightarrow 6$) i próbować podstawić coś z {A,E,I,O}

RGJJGMV KTO T ZPGTS TBGPCATJ WPGOCMGJS M = KENNEDY WAS A GREAT AMERICAN PRESIDENT

 $\underline{https://books.google.pl/books?}$

id=j0LxBwAAQBAJ&pg=PA25&lpg=PA25&dq=RGJJG+MVKTO+TZPGT+STBGP+CATJW+PGOCM+GJS&source=bl&ots=N48F8UrJM_&sig=W VRd4Pc97mBMNRZMTF-C7HKRGSM&hl=pl&sa=X&ved=0ahUKEwjxjo7j0qLTAhUSIIAKHQt9AKAQ6AEIIzAA#v=onepage&q=RGJJG %20MVKTO%20TZPGT%2

2. Poniższy tekst tajny C został otrzymany za pomocą algorytmu "rail-fence" C=IFRAINNOMTO

Jak wygląda odpowiadający mu tekst jawny M?

I		F		R		A		I		N
	N		О		M		T		О	

M = INFORMATION

3. Niech dany będzie następujący tekst jawny M=IT IS A SECRET MESSAGE oraz szyfr przestawieniowy o następujących regułach:

Reguła "Write-in" (zapisu): Tekst jawny jest zapisywany w kolejnych wierszach macierzy (macierz o wymiarach: 3 wiersze oraz 6 kolumny)

Reguła "Take-off" (odczytu): Odczytywanie kolumn w kolejności 2-1-3-6-4-5. Jaki jest odpowiadający dla M szyfrogram C?

1	2	3	4	5	6
I	Т	I	S	A	S
Е	С	R	Е	T	M
Е	S	S	A	G	Е

C = TIISASCERMETSESEAG

4. Zwykły tekst M = CRYPTPGRAPHY I BEZPIECZEŃSTWO DANYCH powinny być szyfrowane z szyfrem transpozycji "turning grille", z kluczem Co to jest odpowiedni szyfrogram C?

1				
				2
3		7	6	
			5	
	4			

1	2	3	4	1
4	5	6	5	2
3	6	7	6	3
2	5	6	5	4
1	4	3	2	1

1	2	3	4	1	
4	5	6	5	2	4
3	6	7	6	3	
2	5	6	5	4	
1	4	3	2	1	

1	2	3	4	1
4	5	6	5	2
3	6	7	6	3
2	5	6	5	4
1	4	3	2	1

1	2	3	4	1
4	5	6	5	2
3	6	7	6	3
2	5	6	5	4
1	4	3	2	1

W utworzone miejsca wstawiamy kolejno litery z hasła

C				
				R
Y		P	T	
			P	
	G			

С		R		A
P				R
Y		P	T	
	Ж	Y	P	
	G		I	

	C		R	В	A
	P	E			R
	Y	Z	P	T	P
	I	Ħ	Y	P	
		G		I	Е

C	С	R	В	A
P	Е	Z	E	R
Y	Z	P	T	P
I	Ħ	Y	P	Ń
S	G	T	I	Е

Jeśli zapełnimy miejsce tworzymy nową macierz i robimy wszystko od początku.

W				
				O
D		A	N	
			Y	
	С			

	W		Ħ		
					O
	D		A	N	
				Y	
		С			

_					
	W	\$	Ħ	\$	\$
	\$	\$	\$	\$	O
	D	\$	A	N	\$
	\$	\$	\$	Y	\$
	\$	С	\$	\$	\$

Jak coś zostanie to wrzucamy \$, ażeby deszyfrowanie przyjemniejszym było :)

 $C = CCRBAPEZERYZPTPIHYP\acute{N}SGTIEW\$H\$\$\$\$\$OD\$AN\$\$\$\$Y\$\$C\$\$\$$

5. Niech F odwzorowuje standardowy alfabet angielski $M=\{A,B,...,Z\}$ w alfabet szyfrogramu $C=\{A,B,...,Z\}$ zgodnie z zależnością:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
A	В	C	D	Е	F	G	Н	I	J	K	L	M	N	О	P	Q	R	S	T	U	V	W	X	Y	Z
В	С	D	Е	F	G	Н	J	N	P	Y	A	R	M	О	L	I	K	Q	S	Т	U	V	W	X	Z

Niech C = QFQQNXB jest szyfrogramem otrzymanym z odpowiadającego mu tekstu jawnego M. Jaki jest tekst jawny M?

Zaznaczamy Q,F,N,X,B i podstawiamy litery wyżej

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
A	В	C	D	E	Ĕ	G	Ħ	Ι	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	X	Y	Z
В	С	D	Е	Ę	G	Ħ	J	N	P	Y	A	R	M	0	L	Ι	K	Q	S	Т	U	V	W	X	Z

M = SESSIYA

6. Jaki jest tekst jawny M dla szyfrogramu C=XYZIJSY, otrzymanego za pomocą szyfru podstawienowego $c=(a+k) \mod n$ dla klucza k=5 oraz standardowego alfabetu angielskiego?

Jaka jest wartość k' dla procesu deszyfracji na podstawie poniższego wzoru?

$$a=(c+k') \mod n$$
.
 $k'=(n-k) => k' = 21$
 $X = 23$, wiec $(23 + 21) \mod 26 = 18 => S$
Wersja dla leniwych? W alfabecie 5 liter do tyłu.

7. Jaki jest tekst jawny M dla szyfrogramu C=CFIJMNF, otrzymanego za pomocą szyfru podstawienowego c=(kxa) mod n dla klucza k=3 oraz standardowego alfabetu angielskiego?

Jaka jest wartość k' dla procesu deszyfracji na podstawie poniższego wzoru? $a=(c_xk')$ mod n.

Wygenerowana para kluczy (jeśli k = 3 to k' = 9 i odwrotnie)

Jakby ktoś nie zapamiętał i na kolosie chciał odpalić ideone:

8. Jaka jest wartość k_1 ' i k_0 ' dla procesu deszyfracji $a=(k_1'c+k_0')$ mod n na podstawie poniższego wzoru szyfracji c=(7xa+3) mod n?

$$k_0' = 26-3 = 23$$

 $k_1' = 15$

9. Zakoduj następujący tekst jawny M=SESSION, w oparciu o algorytm Playfair dla klucza przedstawionego poniżej.

Н	A	R	P	S
Е	F	G	K	L
Ι	C	О	D	В
M	N	Q	T	U
V	W	X	Y	Z

- 1. Dzielimy słowo do zaszyfrowania na pary → SE-SS-IO-N
- 2. Jeśli sąsiednie litery się powtarzają wstawiamy pomiędzy nie $X \rightarrow SE-SX-SI-ON$
- 3. Jeśli mamy nieparzystą liczbę i na końcu litera nie ma pary dodajemy X (nie dotyczy)
- 4. Dzielimy otrzymane pary na sektory SE-SX-SI-ON

Ħ	Α	R	P	S
Ē	Ę	G	K	L
Ι	C	О	D	В
M	N	Q	T	U
V	W	X	Y	Z

	R	P	S
	G	K	L
Ī	O	D	В
	Q	T	U
	X	Y	Z

Otrzymane hasło \rightarrow C = XL-RZ-HB-CQ

10. Zakoduj następujący tekst jawny M= IT IS A SECRET MESSAGE, w oparciu o algorytm Bifid Cipher dla klucza przedstawionego poniżej.

	1	2	3	4	5
1	Н	Α	R	P	S
2	Е	F	G	K	L
3	I	C	О	D	В
4	M	N	Q	T	U
5	V	W	X	Y	Z

Dzielimy tekst na 5 ITISA SECRE TMESS AGE Wpisujemy

	I	T	I	S	A	S	Е	C	R	Е	Т	M	Е	S	S	A	G	Е
W	3	4	3	1	1	1	2	3	1	2	4	4	2	1	1	1	2	2
K	1	4	1	5	2	5	1	2	3	1	4	1	1	5	5	2	3	1

Spisujemy wiersz → kolumna, wiersz → kolumna itd. 3431114152 1231251231 4421141155 122231 Dzielimy otrzymany ciąg co dwa 34-31-11-41-52-12-31-25-12-31-44-21-14-11-55-12-22-31 Otrzymujemy nowe koordynaty liter

C=DIHMWAILAHLAITEPHZAFI

11. Zakoduj następujący tekst jawny *M*=MESSAGE, w oparciu o algorytm The Stradding Checkerboard dla klucza

	9	8	2	7	0	1	6	4	3	5
	Α	T		O	N	Е		S	Ι	R
2	В	C	D	F	G	Н	J	K	L	M
6	P	Q	U	V	W	X	Y	Z		/

25-1-4-4-9-20-1

C = 251449201

12. Zakoduj następujący tekst jawny M=VIGENERE, w oparciu o algorytm Vigenere dla klucza:

- 12.1. Straight klucz k=SIX;
- 12.2. *Progressive* klucz *k*=SEVEN;
- 12.3. Auto klucz k=FIVE.

VIGENERE

SIXSIXSI

SEVENTFW(bo S+1 = T, E+1 = F, V+1 = W)

FIVEVIGE

I juz normalny Vigenere V+S mod 26 itd.

13. Zawartość dla *rotor mashine* są przy użyciu dla procesu szyfracji. Co to jest odpowiednie zawartość dla *rotor mashine* przy użyciu dla procesu deszyfracji?

Coś podobnego było o Enigmie u Mazurka. Wchodzi przez 00 i wychodzi 11

Aby odszyfrować droga musi być powrotna więć $\rightarrow 11,00,10,01$

14. Jaka jest wartość entropii dla trzech zdarzenia A, B, C z odpowiednimi prawdopodobieństwami P(A) = 1/4 and P(B) = P(C) = 3/8.

To jest minus z sumy P(x) * log2 (P(x))

Równanie :
$$-\left(\frac{1}{4}\log_2\left(\frac{1}{4}\right) + \frac{3}{8}\log_2\left(\frac{3}{8}\right) + \frac{3}{8}\log_2\left(\frac{3}{8}\right)\right)$$

Po prostych przekształceniach :
$$-\frac{\log_2(\frac{27}{2048})}{4}$$

Dla tych z wolphramem lub kalkulatorem na kolosie : 1.561278124459132863909695792039137618430139194230639204658