Đồ Thị Tính Toán

Bùi Tiến Lên

Biểu thức và Tính toán

• Xét biểu thức

$$e \leftarrow (a+b) \times (b+1)$$

- Chuyển biểu thức thành các biểu thức đơn
 - *1.* a ←?
 - *2. b* ←?
 - 3. $c \leftarrow a + b$
 - 4. $d \leftarrow b + 1$
 - 5. $e \leftarrow c \times d$
- Viết một **hàm** tính toán

Nhận xét

- Cài đặt nhanh và dễ hiểu
- Tuy nhiên, nếu biểu thức có rất nhiều biến, được sử dụng nhiều lần và với các mục đích khác thì cách biểu diễn như vậy chưa hiệu quả

Đồ thị tính toán

- Đồ thị tính toán (computational graph) là cấu trúc dữ liệu đồ thị DAG (directed acyclic graph) biểu diễn một mô hình tính toán (ví dụ, mạng nơ-ron, mạng Bayes).
- Đồ thị tính toán được cài đặt sẵn trong các thư viện TensorFlow, PyTorch .v.v.

BIỂU DIỄN VÀ TÍNH TOÁN

Biểu diễn

Input Layer $\in \mathbb{R}^4$ Hidden Layer $\in \mathbb{R}^{10}$ Hidden Layer $\in \mathbb{R}^8$ Output Layer $\in \mathbb{R}^3$

6

Cấu trúc

- Mỗi đỉnh
 - Tương ứng với một biến (variable) hoặc tham số (parameter)
 - Tương ứng với một hàm, phép toán, cổng (function, operator, gate)
- Các cạnh có hướng nối đỉnh biến với đỉnh phép toán
- Cấu trúc đồ thị dùng để tính toán giá trị các biến và đạo hàm (gradient)

Xây dựng đồ thị tính toán đầy đủ

- *b* ←?
- $c \leftarrow a + b$
- $d \leftarrow b + 1$
- $e \leftarrow c \times d$

Đồ thị tính toán rút gọn

- Rút gọn đỉnh gate
- Đỉnh

• Cạnh

$$a \rightarrow c$$

$$b \rightarrow c$$

$$b \rightarrow d$$

$$c \rightarrow e$$

$$d \rightarrow e$$

Đồ thị tính toán rút gọn

Đỉnh biến thành cạnh biến

- *a* ←?
- *b* ←?
- $c \leftarrow a + b$
- $d \leftarrow b + 1$
- $e \leftarrow c \times d$

Một số công thức tính đạo hàm

$$f(x) = f_1(x) + f_2(x)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f_1}{\partial x} + \frac{\partial f_2}{\partial x}$$

$$f(x) = f_1(x) - f_2(x)$$

$$\frac{\partial f}{\partial x} = \frac{\partial f_1}{\partial x} - \frac{\partial f_2}{\partial x}$$

$$f(x) = f_1(x) \cdot f_2(x)$$

$$\frac{\partial f}{\partial x} = f_2 \frac{\partial f_1}{\partial x} + f_1 \frac{\partial f_2}{\partial x}$$

$$f(x) = \frac{f_1(x)}{f_2(x)}$$

$$\frac{\partial f}{\partial x} = \frac{1}{f_2} \frac{\partial f_1}{\partial x} - \frac{f_1}{f_2^2} \frac{\partial f_2}{\partial x}$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial x}$$

(chain rule)

Một số công thức tính đạo hàm

$$y = x^{n}$$

$$\frac{\partial y}{\partial x} = n \cdot x^{n-1}$$

$$y = \sin(x)$$

$$\frac{\partial y}{\partial x} = \cos(x)$$

$$y = \cos(x)$$

$$\frac{\partial y}{\partial x} = -\sin(x)$$

$$\frac{\partial y}{\partial x} = -\sin(x)$$

$$\frac{\partial y}{\partial x} = y$$

$$y = \tan(x)$$

$$\frac{\partial y}{\partial x} = \frac{1}{\cos(x)^{2}}$$

$$y = \sin(x)$$

$$\frac{\partial y}{\partial x} = -\sin(x)$$

$$\frac{\partial y}{\partial x} = \frac{1}{\cos(x)^{2}}$$

$$y = \tan(x)$$

$$\frac{\partial y}{\partial x} = \frac{1}{\cos(x)^{2}}$$

$$y = \tan(x)$$

$$\frac{\partial y}{\partial x} = 1 - y^{2}$$

$$\frac{\partial y}{\partial x} = y(1 - y)$$

Tính toán

• Cho a=2, b=1, tính giá trị các biến và đạo hàm cục bộ

Cập nhật

• Cập nhật a=4

TÍNH ĐẠO HÀM TỪNG PHẦN

Phương pháp tính đạo hàm/vi phân

• Phương pháp đạo hàm số (numerical differentiation)

$$\frac{\partial f(x_0)}{\partial x} \approx \frac{f(x_0 + h) - f(x_0)}{h} \approx 0.333$$

Phương pháp đạo hàm ký hiệu (symbolic differentiation)

$$\cos(x)' = -\sin(x)$$

Phương pháp đạo hàm tự động (automatic differentiation)

đạo hàm số + đạo hàm ký hiệu

Phương pháp đạo hàm tự động

• Xét chuỗi quan hệ hàm giữa các biến x, y, z, w

$$x \to y \to z \to w$$

Phương pháp tiến

Tính đạo hàm bằng phương pháp tiến (chain rule)

$$\frac{\partial w}{\partial x} = ? = \begin{array}{cccc} \overline{\partial x} & \partial y & \partial z & \partial w \\ \overline{\partial x} & \overline{\partial x} & \overline{\partial y} & \overline{\partial z} & \overline{\partial z} \end{array}$$

Phương pháp lùi

Tính đạo hàm bằng phương pháp lùi (chain rule)

$$\frac{\partial w}{\partial x} = ? = \begin{array}{ccc} \overline{\partial y} & \overline{\partial z} & \overline{\partial w} & \overline{\partial w} \\ \overline{\partial x} & \overline{\partial y} & \overline{\partial z} & \overline{\partial w} \end{array}$$

Phương pháp tổng

Tính tổng các đường đi đạo hàm

Phương pháp tổng (cont.)

Tính tổng các đường đi (9 đường)

$$\frac{\partial z}{\partial x} = \alpha_1 \beta_1 + \alpha_1 \beta_2 + \alpha_1 \beta_3 + \alpha_2 \beta_1 + \alpha_2 \beta_2 + \alpha_2 \beta_3 + \alpha_3 \beta_1 + \alpha_3 \beta_2 + \alpha_3 \beta_3$$

Phương pháp tổng (cont.)

Tính tổng đường đi từng chặng (2 chặng – mỗi chặng 3 đường)

VÍ DỤ TÍNH ĐẠO HÀM TỪNG PHẦN

Đạo hàm tiến – ví dụ

• Cho đồ thị tính toán dưới, tính đạo hàm $\frac{\partial e}{\partial b}$ tại a=2, b=1

Đạo hàm tiến – tính toán

Đạo hàm tiến – tính đạo hàm

Đạo hàm lùi – ví dụ

• Cho đồ thị tính toán dưới, tính đạo hàm $\frac{\partial e}{\partial b}$, $\frac{\partial e}{\partial a}$ tại a=2, b=1

Đạo hàm lùi – tính toán

Đạo hàm lùi – tính đạo hàm

Một số mẫu trong tính toán đạo hàm lùi

• Xét một đồ thị tính toán **đầy đủ** cho biểu thức $a = 2 \times (x \times y + \max(z, w))$

Một số mẫu trong tính toán đạo hàm lùi (cont.)

• Tính giá trị các biến và đạo hàm cục bộ x=3,y=-4,z=2,w=-1

Một số mẫu trong tính toán đạo hàm lùi (cont.)

• Tính đạo hàm riêng phần của biến lpha với các biến còn lại

Cổng scale ($\times k$): khuếch đại luồng gradient

Cổng add (+): phân phối luồng gradient

Cổng **mul** (×): chuyển đổi luồng gradient

Cổng max: định tuyến luồng gradient

TÍNH TOÁN TRÊN TENSOR

Tensor

Các biến, tham số được biểu diễn bằng tensor:

- Số (tensor 0 chiều)
- Vector (tensor 1 chiều)
- Ma trận (tensor 2 chiều)

• ...

2

$$\begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

Các phép toán trên tensor

- Các phép toán element-wise
 - Cộng, trừ, nhân (Hadamard), chia, ...
 - Hàm: sigmoid (σ) , tanh, cos, sin, ...
 - ...
- Các phép toán không phải element-wise
 - Nhân ma trận với vector
 - Nhân ma trận với ma trận
 - ...

Bài toán tính đạo hàm từng phần

Giả định L là biến **mất mát (loss)** đầu cuối của đồ thị tính toán. L là biến tensor 0 chiều. **Bài toán**: Tính đạo hàm từng phần (gradient) L với các biến tensor

Thử mở rộng nguyên tắc "nhân"

Nhận xét

- Jacobian matrix có kích thước rất lớn 1024 imes 1024, nhưng lại rất thưa
- Thực tế tính toán sẽ như thế nào?
 Không đủ bộ nhớ,

MỘT SỐ CÁCH TÍNH ĐẠO HÀM TỪNG PHÂN CHO MỘT SỐ PHÉP TOÁN

Lưu ý chung

Khi tính đạo hàm từng phần của L đối với các biến tensor

- Sử dụng phương pháp đạo hàm lùi
- Nguyên tắc "nhân" không còn đúng do tính đa dạng của phép toán trên tensor
- Nguyên tắc cộng vẫn đúng

Cổng phép cộng

Cổng max (element-wise)

$$z_i = \max(0, x_i)$$
$$\mathbf{z} = \max(0, \mathbf{x})$$

Cổng sigmoid (element-wise)

$$\mathbf{z} = \sigma(\mathbf{x})$$

$$\frac{\partial L}{\partial x} = (1 - \mathbf{z})\mathbf{z} \frac{\partial L}{\partial \mathbf{z}}$$

element wise multiplication

Cổng L_2

$$z = L_2(\mathbf{x}) = \sum_{i=1}^n x_i^2$$

Lưu ý: có thể mở rộng phép toán L_2 cho tensor bất kỳ

$$\frac{\partial z}{\partial x_i} = 2x_i$$

$$\frac{\partial L}{\partial x_i} = 2x_i \frac{\partial L}{\partial z}$$

$$\frac{\partial L}{\partial x} = 2x \frac{\partial L}{\partial z}$$

Cổng nhân ma trận và vector

Cổng nhân ma trận và ma trận

Cổng softmax

$$p_i = \sum_{k=1}^n \frac{e^{z_i}}{e^{z_k}}$$

$$\frac{\partial p_i}{\partial z_i} = p_i (1 - p_i)$$
và
$$\frac{\partial p_j}{\partial z_i} = -p_i p_j, i \neq j$$

TÍNH ĐẠO HÀM TỪNG PHẦN CHO KHỐI PHÉP TOÁN

Khối MLP

Khối softmax + cross-entropy (CE)

Ví dụ

• Cho một đồ thị tính toán của hàm $L = L_2(\boldsymbol{W} \cdot \boldsymbol{x})$

Cài đặt API: forward/backward

Cài đặt API: forward/backward


```
class MultiplyGate:
    def forward(x, y):
        z = x * y
        self.dzdx = y # local gradient
        self.dzdy = x # local gradient
        return z

def backward(dz): # upstream gradient
        dx = self.dzdx * dz
        dy = self.dzdy * dz
        return [dx, dy]
```

BÀI TẬP

Bài tập 1

• Xét biểu thức và tính đạo hàm từng phần của z với các biến tại $x=\frac{\pi}{4}$, y=4

- *x* ←?
- *y* ←?
- $a \leftarrow x \cdot y$
- $b \leftarrow \sin(x)$
- $z \leftarrow a + b$

Bài tập 2: logistic regression

Xét biểu thức

$$f(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + w_2 x_2)}} = \sigma(w_0 + w_1 x_1 + w_2 x_2)$$

• Tính đạo hàm từng phần của f với các biến tại $w_0=-3, w_1=$

$$2, w_2 = -3, x_1 = -1, x_2 = -2$$

Bài tập 2: logistic regression

Bài tập 3

• Xây dựng cách tính đạo hàm từng phần cho các cổng phép toán +,-,

*, / cho các tensor:

Bài tập 4

• Xây dựng cách tính đạo hàm từng phần cho các cổng hàm (elementwise) cos(x), sin(x):

Bài tập lập trình

Xây dựng và huấn luyện các mạng nơ-ron bằng dữ liệu Mnist với các kiến trúc sau.

- 2 lớp $y = W \cdot x + b$
- 3 lớp $y = W_2 \cdot \max(W_1 \cdot x + b_1) + b_2$
- 4 lớp $y = W_3 \cdot \max(W_2 \cdot \max(W_1 \cdot x + b_1) + b_2) + b_3$

Tài liệu tham khảo

Calculus on Computational Graphs: Backpropagation

https://colah.github.io/posts/2015-08-Backprop/

Lecture 4 of Stanford 231n