Liste der zu erfassenden Datenpunkte:

Test Fernwärmestation

- Vorgabe T(Rücklauf) ≤55 °C
- Setpoint variiert sich von 0% bis zu 100% und von Stellung von 100% wieder bis zu 0%, komplette Hysterese (in Schritten von 10% je 1 Stunde)
- Funktionaler Zusammenhang T(Verteiler)=f(X(Set,Fernwärme)) ermitteln
- Zusammenhang aufgrund von linearer Interpolation: percentage setpoint→voltage→raw integer value →set temperature between max and min

Control Mode Manual als Voraussetzung oder? Rücklauftemperatur von DHS \rightarrow TempSensors.TempDHSRetPrim Verteilerstemperatur \rightarrow TempSensors.TempCCASupPrim (falls CCA in Betribe) Setpoint \rightarrow FB_DistrictHeatingStation.TSetVal (manuell eingeben und variieren) $0\% \rightarrow 20^{\circ}\text{C}$, $10\% \rightarrow 26^{\circ}\text{C}$, $20\% \rightarrow 32^{\circ}\text{C}$, $30\% \rightarrow 38^{\circ}\text{C}$, $40\% \rightarrow 44^{\circ}\text{C}$, $50\% \rightarrow 50^{\circ}\text{C}$, $60\% \rightarrow 56^{\circ}\text{C}$, $70\% \rightarrow 62^{\circ}\text{C}$, $80\% \rightarrow 68^{\circ}\text{C}$, $90\% \rightarrow 74^{\circ}\text{C}$, $100\% \rightarrow 80^{\circ}\text{C}$

Test Betonkerntemperierung:

- Vorgabe Vorlauftemperatur ≤50 °C
- -Ventil Setpoint variiert von 0% bis zu 100% dann wieder auf 0%, in Schritten von 10% für je 1 Tag
- prüfen ob die Ventilrückmeldung den Setpoint folgt
- -Funktionaler ZusammenhangT(Vorlauf)=f(X(Set, Ventil), T(Rücklauf)) ermitteln

Control Mode Manual als Voraussetzung oder?

Vorlauftemperatur von CCA → TempSensors.TempCCASup

Rücklauftemperatur von CCA → TempSensors.TempCCARet

CCA Ventil Setpoint → FB_CCA_OOP.fbValve.OpenPercSet (manuell eingeben und variieren)

CCA Ventil Feedback → ValvePos.ValPosCCA