Convex Algebras for Probabilistic Systems

Ana Sokolova

algebras

algebras

$$(A, \sum_{i=1}^{n} p_i(-)_i)$$

algebras

$$(A, \sum_{i=1}^{n} p_i(-)_i)$$

$$(A, \sum_{i=1}^{n} p_i(-)_i) \qquad p_i \in [0, 1], \sum_{i=1}^{n} p_i = 1$$

infinitely many finitary operations

algebras

$$(A, \sum_{i=1}^{n} p_i(-)_i)$$

$$p_i \in [0, 1], \sum_{i=1}^n p_i = 1$$

infinitely many finitary operations

convex combinations

algebras

$$(A, \sum_{i=1}^{n} p_i(-)_i)$$

$$p_i \in [0, 1], \sum_{i=1}^n p_i = 1$$

infinitely many finitary operations

convex combinations

binary ones "suffice"

algebras

$$(A, \sum_{i=1}^{n} p_i(-)_i)$$

$$p_i \in [0, 1], \sum_{i=1}^n p_i = 1$$

infinitely many finitary operations

convex combinations

binary ones "suffice"

algebras

$$(A, \sum_{i=1}^{n} p_i(-)_i)$$

$$p_i \in [0, 1], \sum_{i=1}^n p_i = 1$$

$$h\left(\sum_{i=1}^{n} p_i a_i\right) = \sum_{i=1}^{n} p_i h(a_i)$$

infinitely many finitary operations

convex combinations

binary ones "suffice"

algebras

$$(A, \sum_{i=1}^{n} p_i(-)_i)$$

$$p_i \in [0, 1], \sum_{i=1}^n p_i = 1$$

convex (affine) maps

$$h\left(\sum_{i=1}^{n} p_i a_i\right) = \sum_{i=1}^{n} p_i h(a_i)$$

satisfying

$$\sum_{i=1}^{n} p_i a_i = a_k, \quad p_k = 1$$

$$\sum_{i=1}^{n} p_i \left(\sum_{j=1}^{m} p_{i,j} a_j \right) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} p_i p_{i,j} \right) a_j$$

/*

Eilenberg-Moore Algebras

convex algebras abstractly

objects

satisfying

$$A \xrightarrow{\eta} \mathcal{D}A$$

$$\downarrow a$$

$$A$$

$$\begin{array}{ccc}
\mathfrak{D} \mathfrak{D} A & \xrightarrow{\mu} & \mathfrak{D} A \\
\mathfrak{D} a & & \downarrow a \\
\mathfrak{D} A & \xrightarrow{a} & A
\end{array}$$

morphisms

$$\begin{array}{ccc}
\mathfrak{D}A & \xrightarrow{\mathfrak{D}h} \mathfrak{D}B \\
a \downarrow & & \downarrow b \\
A & \xrightarrow{h} B
\end{array}$$

What is \mathcal{D} ?

Probability distribution functor on **Sets**

$$\mathcal{D}X = \{\mu \colon X \to [0,1] \mid \sum_{x \in X} \mu(x) = 1\}$$

$$\mathbb{D}_X = (\mathfrak{D}X, \sum_{i=1}^n p_i(-)_i)$$

$$\left(\mathbb{D}_X = (\mathcal{D}X, \sum_{i=1}^n p_i(-)_i) \right) \quad p_i \in [0, 1], \sum_{i=1}^n p_i = 1$$

$$p_i \in [0, 1], \sum_{i=1}^n p_i = 1$$

carried by distributions

$$\mathbb{D}_X = (\mathcal{D}X, \sum_{i=1}^n p_i(-)_i) \qquad p_i \in [0, 1], \sum_{i=1}^n p_i = 1$$

$$p_i \in [0, 1], \sum_{i=1}^n p_i = 1$$

carried by distributions

convex combinations as expected

$$\mathbb{D}_X = (\mathcal{D}X, \sum_{i=1}^n p_i(-)_i) \qquad p_i \in [0, 1], \sum_{i=1}^n p_i = 1$$

$$p_i \in [0, 1], \sum_{i=1}^n p_i = 1$$

carried by distributions

convex combinations as expected

$$\mathbb{D}_X = (\mathcal{D}X, \sum_{i=1}^n p_i(-)_i) \qquad p_i \in [0, 1], \sum_{i=1}^n p_i = 1$$

$$p_i \in [0, 1], \sum_{i=1}^n p_i = 1$$

$$\sum p_i \xi_i = \xi \quad \Leftrightarrow \quad \forall x \in X. \ \xi(x) = \sum p_i \xi_i(x)$$

carried by distributions

convex combinations as expected

wherever there are distributions, there is convexity

$$\mathbb{D}_X = (\mathfrak{D}X, \sum_{i=1}^n p_i(-)_i) \qquad p_i \in [0, 1], \sum_{i=1}^n p_i = 1$$

$$p_i \in [0, 1], \sum_{i=1}^n p_i = 1$$

$$\sum p_i \xi_i = \xi \quad \Leftrightarrow \quad \forall x \in X. \ \xi(x) = \sum p_i \xi_i(x)$$

carried by distributions

convex combinations as expected

wherever there are distributions, there is convexity

$$\mathbb{D}_X = (\mathfrak{D}X, \sum_{i=1}^n p_i(-)_i) \qquad p_i \in [0, 1], \sum_{i=1}^n p_i = 1$$

$$p_i \in [0, 1], \sum_{i=1}^n p_i = 1$$

$$\sum p_i \xi_i = \xi \quad \Leftrightarrow \quad \forall x \in X. \ \xi(x) = \sum p_i \xi_i(x)$$

finitely generated free convex algebras are simplexes

Convexity in Probabilistic Systems Semantics

Traces

Generative PTS

$$D(1 + A \times (-))$$

$$tr(x_1)(ab) = \frac{1}{6}$$
 $tr(x_1)(ac) = \frac{1}{8}$

$$\operatorname{tr}: X \to \mathcal{D}A^*$$

Traces via determinisation

Generative PTS

$$D(1 + Ax(-))$$

$$a, \frac{1}{2}$$
 x_1
 $a, \frac{1}{4}$
 x_2
 x_3
 $b, \frac{1}{3}$ \forall
 x_4
 x_5
 1 \forall
 x_5
 x_4
 x_5

$$\operatorname{tr}(x_1)(ab) = \frac{1}{6} \quad \operatorname{tr}(x_1)(ac) = \frac{1}{8}$$

$$\operatorname{tr}\colon X\to \mathcal{D}A^*$$

Happens in convex algebra

trace = bisimilarity after determinisation

Axioms for bisimilarity

$$p \cdot a \cdot (p_1 \mathsf{E}_1 \oplus p_2 \mathsf{E}_2) \equiv p_1 \cdot a \cdot p \mathsf{E}_1 \oplus p_2 \cdot a \cdot p \mathsf{E}_2 \quad (D)$$

Axioms for bisimilarity

$$p \cdot a \cdot (p_1 \mathsf{E}_1 \oplus p_2 \mathsf{E}_2) \equiv p_1 \cdot a \cdot p \mathsf{E}_1 \oplus p_2 \cdot a \cdot p \mathsf{E}_2 \quad (D)$$

[Silva, S. MFPS'11]

Axioms for bisimilarity

$$p \cdot a \cdot (p_1 \mathsf{E}_1 \oplus p_2 \mathsf{E}_2) \equiv p_1 \cdot a \cdot p \mathsf{E}_1 \oplus p_2 \cdot a \cdot p \mathsf{E}_2 \quad (D)$$

Happens in convex algebra

[Silva, S. MFPS'11]

Axioms for bisimilarity

$$p \cdot a \cdot (p_1 \mathsf{E}_1 \oplus p_2 \mathsf{E}_2) \equiv p_1 \cdot a \cdot p \mathsf{E}_1 \oplus p_2 \cdot a \cdot p \mathsf{E}_2 \quad (D)$$

soundness and completeness

Happens in convex algebra

[Silva, S. MFPS'11]

Generative PTS

$$D(1 + Ax(-))$$

$$a, \frac{1}{2} \qquad a, \frac{1}{4}$$

$$\bullet \qquad \bullet$$

$$b, \frac{1}{3} \qquad \forall c, \frac{1}{2}$$

$$\bullet \qquad \bullet$$

$$1 \qquad \forall 1$$

$$* \qquad *$$

$$\begin{array}{c} \bullet \\ a, \frac{1}{2} \psi \\ b, \frac{1}{3} & \bullet & c, \frac{1}{4} \\ \bullet & \bullet & \bullet \\ 1 \psi & & \psi 1 \\ * & * & * \end{array}$$

$$\frac{1}{4} \cdot a \cdot \frac{1}{2} \cdot c \cdot 1 \cdot * \stackrel{(D)}{=} \frac{1}{2} \cdot a \cdot \frac{1}{4} \cdot c \cdot 1 \cdot *$$

$$\begin{pmatrix} \frac{1}{2} \cdot a \cdot \frac{1}{3} \cdot b \cdot 1 \cdot * \end{pmatrix} \oplus \begin{pmatrix} \frac{1}{4} \cdot a \cdot \frac{1}{2} \cdot c \cdot 1 \cdot * \end{pmatrix} \stackrel{(Cong)}{\equiv} \begin{pmatrix} \frac{1}{2} \cdot a \cdot \frac{1}{3} \cdot b \cdot 1 \cdot * \end{pmatrix} \oplus \begin{pmatrix} \frac{1}{2} \cdot a \cdot \frac{1}{4} \cdot c \cdot 1 \cdot * \end{pmatrix}$$

$$\stackrel{(D)}{\equiv} \frac{1}{2} \cdot a \cdot \begin{pmatrix} \frac{1}{3} \cdot b \cdot 1 \cdot * \oplus \frac{1}{4} \cdot c \cdot 1 \cdot * \end{pmatrix}$$

Inspired lots of new research:

A. S., H. Woracek Congruences of convex algebras JPAA'15

• S. Milius Proper functors CALCO'17

Inspired lots of new research:

• A. S., H. Woracek Congruences of convex algebras JPAA'15

• S. Milius Proper functors CALCO'17

Inspired lots of new research:

• A. S., H. Woracek Congruences of convex algebras JPAA'15

• S. Milius Proper functors CALCO'17

Inspired lots of new research:

A. S., H. Woracek Congruences of convex algebras JPAA'15

• S. Milius Proper functors CALCO'17

our axiomatisation would be proven complete if only one particular convex functor were proper

Inspired lots of new research:

A. S., H. Woracek Congruences of convex algebras JPAA'15

• S. Milius Proper functors CALCO'17

our axiomatisation would be proven complete if only one particular convex functor were proper it works! if f.p. = f.g. and
then completeness

does not hold

Inspired lots of new research:

A. S., H. Woracek Congruences of convex algebras JPAA'15

• S. Milius Proper functors CALCO'17

our axiomatisation would be proven complete if only one particular convex functor were proper

it works!

if f.p. = f.g. and
then completeness

does not hold

[S., Woracek :-)'17]

Finitely generated, finitely presentable

Finitely generated, finitely presentable

finitely generated (f.g.) = quotients of free finitely generated ones

Finitely generated, finitely presentable

finitely generated (f.g.) = quotients of free finitely generated ones

finitely presentable (f.p.) = quotients of free finitely generated ones under finitely generated congruences

Finitely generated, finitely presentable

finitely generated (f.g.) = quotients of free finitely generated ones

finitely presentable (f.p.) = quotients of free finitely generated ones under finitely generated congruences

smallest congruence containing a finite set of pairs

Finitely generated, finitely presentable

finitely generated (f.g.) = quotients of free finitely generated ones

finitely presentable (f.p.) = quotients of free finitely generated ones under finitely generated congruences

smallest congruence containing a finite set of pairs

Theorem

Every congruence of convex algebras is f.g. Hence f.p. = f.g.

Finitely generated, finitely presentable

finitely generated (f.g.) = quotients of free finitely generated ones

finitely presentable (f.p.) = quotients of free finitely generated ones under finitely generated congruences

smallest congruence containing a finite set of pairs

Theorem

Every congruence of convex algebras is f.g. Hence f.p. = f.g.

[S., Woracek JPAA'15]

Generative PTS

$$X \rightarrow \mathcal{D} (1 + A \times X)$$

Generative PTS

$$X \rightarrow \mathcal{D} (1 + A \times X)$$

Generative PTS

$$X \rightarrow \mathcal{D} (1 + A \times X)$$

Generative PTS

$$X \rightarrow \mathcal{D} (1 + A \times X)$$

[Silva, S. MFPS'11]

[Jacobs, Silva, S. JCSS'15]

Generative PTS

$$X \rightarrow \mathcal{D} (1 + A \times X)$$

belief-state transformer

[Silva, S. MFPS'11]

[Jacobs, Silva, S. JCSS'15]

$$\frac{\frac{1}{3}x_1 + \frac{2}{3}x_2}{\sqrt{7}} \qquad \dots$$

$$\frac{7}{9}x_2 + \frac{1}{18}x_3 + \frac{1}{6}x_4$$

$$\frac{\frac{1}{3}x_1 + \frac{2}{3}x_2}{\sqrt{7}} \dots$$

$$\frac{7}{9}x_2 + \frac{1}{18}x_3 + \frac{1}{6}x_4$$

MC

belief-state transformer

$$\frac{\frac{1}{3}x_1 + \frac{2}{3}x_2}{\sqrt{7}} \dots \\
\frac{\frac{7}{9}x_2 + \frac{1}{18}x_3 + \frac{1}{6}x_4}{\sqrt{7}}$$

MC

$$X \to \mathcal{D}(X)$$

belief-state transformer

$$\frac{1}{3}\left(\frac{1}{3}x_2 + \frac{1}{6}x_3 + \frac{1}{2}x_4\right) + \frac{2}{3}(1x_2)$$

$$\frac{\frac{1}{3}x_1 + \frac{2}{3}x_2}{\sqrt{7}}$$

$$\frac{7}{9}x_2 + \frac{1}{18}x_3 + \frac{1}{6}x_4$$

$$X \to (\mathcal{PD}(X))^A$$

$$X \to (\mathcal{PD}(X))^A$$

$$X \to (\mathcal{P}\mathcal{D}(X))^A$$

PA

belief-state transformer

PA

belief-state transformer

PA

belief-state transformer

$$\frac{1}{3}\left(\frac{2}{3}x_2 + \frac{1}{3}x_3\right) + \frac{2}{3}(1x_2)$$

PA

foundation?

$$X \to \mathcal{P}(\mathcal{D}(X))^A$$

via a generalised determinisation

LTS on free convex algebra

$$\frac{\frac{1}{3}x_1 + \frac{2}{3}x_2}{\frac{8}{9}x_2 + \frac{1}{9}x_3} \dots \frac{\frac{2}{3}x_2 + \frac{1}{6}x_3 + \frac{1}{6}x_4}{\dots}$$

PA

foundation?

$$X \to \mathcal{P}(\mathcal{D}(X))^A$$

via a generalised determinisation

Minkowski sum LTS on free convex algebra

PA

foundation?

$$X \to \mathcal{P}(\mathcal{D}(X))^A$$

via a generalised determinisation

Minkowski sum LTS on free convex algebra

[Bonchi, SIIva, S. CONCUR'17]

$$\frac{8}{9}x_2 + \frac{1}{9}x_3$$
 ...

$$\frac{a}{\frac{2}{3}x_2 + \frac{1}{6}x_3 + \frac{1}{6}x_4}$$

Can be given different semantics:

- 1. Bisimilarity
- 2. Convex bisimilarity
- 3. Distribution bisimilarity

Can be given different semantics:

Bisimilarity

strong bisimilarity

- 2. Convex bisimilarity
- 3. Distribution bisimilarity

Can be given different semantics:

1. Bisimilarity

2. Convex bisimilarity

3. Distribution bisimilarity

 \sim_d largest distribution bisimulation distribution bisimulation transition in a \boldsymbol{a} the belief-state transformer

 $\sim d$ is LTS bisimilarity on the belief-state transformer

[Bonchi, SIIva, S. CONCUR'17]

[Bonchi, SIIva, S. CONCUR'17]

bisimulation up-to convex hull

R

bisimulation up-to [Bonchi, SIIva, S. CONCUR'17] convex hull Ra \boldsymbol{a} conv-con(R)convex and equivalence closure of R

to prove µ ~d ~/
it suffices to find a
bisimulation up-to
convex hull R
with µ R √

[Bonchi, SIIva, S. CONCUR'17]

bisimulation up-to convex hull

to prove μ ~d ~/
it suffices to find a
bisimulation up-to
convex hull R
with μ R ~/

there always exists a finite one!

convex and equivalence closure of *R*

[Bonchi, SIIva, S. CONCUR'17]

bisimulation up-to convex hull

to prove μ ~d ~/
it suffices to find a
bisimulation up-to
convex hull R
with μ R ~/

there always exists a finite one!

convex and equivalence closure of *R*

by S., Woracek JPAA'15]

 We looked at one-point extensions of convex algebras, for termination.

What are all the possible ways?

 We looked at one-point extensions of convex algebras, for termination.

Every convex algebra can be extended by a single point

What are all the possible ways?

 We looked at one-point extensions of convex algebras, for termination.

Every convex algebra can be extended by a single point

What are all the possible ways?

there are many possible ways

we can give full description for...

single naturally functorial way

 We looked at one-point extensions of convex algebras, for termination.

Every convex algebra can be extended by a single point

What are all the possible ways?

there are many possible ways

we can give full description for...

single naturally functorial way

MC and PA belief-state transformers

 We looked at one-point extensions of convex algebras, for termination.

Every convex algebra can be extended by a single point

What are all the possible ways?

there are many possible ways

we can give full description for...

single naturally functorial way

MC and PA belief-state transformers

[S., Woracek CALCO'17]

Free convex algebras

carrier $X_* = X + 1 = X \cup \{*\}$

Possible extensions X_* are:

- the black-hole extension
- * imitates a point $w \in X$

- px + (1-p)* = *
- px + (1-p)* = px + (1-p)w
- * imitates one of the extremal points $s \in S$ on all other points, and adheres this point

these are all extensions!

$$px + (1-p)* = px + (1-p)s, x \neq s$$

$$ps + (1-p)* = *$$

It's time to terminate this talk...

convexity is
everywhere
in probabilistic systems
sematics

next: algorithms for computing distribution bisimilarity

Thank You!