... Pooh was saying to himself, "If only I could think of something!" For he felt sure that a Very Clever Brain could catch a Heffalump if only he knew the right way to go about it. —A. A. Milne

PROMYS Number Theory

Problem Set #5

Boston University, July 9, 2021

Reading Search

Q1: What are the arithmetic functions $\varphi(n)$, $\mu(n)$, $\tau(n)$, $\sigma(n)$? Find the following values of these functions: $\varphi(7)$, $\varphi(75)$, $\varphi(105)$, $\mu(7)$, $\mu(75)$, $\mu(105)$, $\tau(7)$, $\tau(75)$, $\tau(105)$, $\tau(75)$, $\tau(105)$.

Exploration

P1: We have considered a rational function of the form

$$a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{\ddots}}} + \cfrac{1}{a_n}$$

of the *n* variables a_1, a_2, \dots, a_n . We have called this function a *finite continued fraction*. For this continued fraction we use the convenient notation $[a_1, a_2, \dots, a_n]$. Let

$$\begin{array}{lll} P_1 = a_1, & P_2 = a_2 a_1 + 1, & \dots, & P_k = a_k P_{k-1} + P_{k-2}, & \dots \\ Q_1 = 1, & Q_2 = a_2, & \dots, & Q_k = a_k Q_{k-1} + Q_{k-2}, & \dots \end{array}$$

Then we assert $[a_1, a_2, \dots, a_k] = \frac{P_k}{Q_k}$ (the kth convergent).

P2: Using P1, show that (1) $P_{k-1}Q_k - Q_{k-1}P_k = (-1)^{k-1}$ for k > 1, and that (2) $P_{k-2}Q_k - P_kQ_{k-2} = (-1)^k a_k$ for k > 2.

A Reminder

P3: Make an inventory of properties of Z which you think gives a good description of this mathematical system. Check to see that your inventory suffices to derive everything about Z which you have proved so far.

Prove or Disprove and Salvage if Possible

- P4: Given integers $a, b, c \in \mathbb{Z}$, then $a > b \Leftrightarrow ac > bc$.
- P5: Let a, b be integers with a > 0. Then $ab > 0 \Leftrightarrow b > 0$.
- P6: Given positive integers a, b > 0, then $a > b \Leftrightarrow a^2 > b^2$.
- P7: If $a, b \in \mathbb{Z}$ and (a, b) = 1 then ax + by = 1 has a solution in integers x and y.
- P8: a|bc and $(a,b) = 1 \Rightarrow a|c$. True in Z.
- P9: p is prime $\Leftrightarrow 2^p 1$ is prime.

P10: Let u_1, u_2, \ldots, u_r be all the units in \mathbb{Z}_m . Let $u = u_1 \cdot u_2 \cdot \ldots \cdot u_r$ be the product of all the units. Then $u^2 = 1$.

Numerical Problems (Some food for thought)

P11: Find all the positive integral solutions (x, y) of the Diophantine equation 158x + 57y = 2000.

- P12: Find an integral solution (x, y) of the equation 2689x + 4001y = 17.
- P13: Find all of the solutions of 2017x = 532 in \mathbb{Z}_{4001} . Explain.
- P14: What is the order of 28 in U_{29} ? of 16 in U_{29} ? of 28 · 16 in U_{29} ? Now consider U_{71} . What is the order of 7, of 2, of 7 · 2 = 14, of 54, of 51, of 54 · 51? Any conjectures?
- P15: Expand $\sqrt{3}$ into a simple continued fraction using the results of P14, Set #4. How much do you know about the continued fraction for $\sqrt{3}$ after calculating, say, the first five partial quotients? Any conjectures?

Ingenuity

- P16: Suppose \mathcal{P} is a simple polygon all of whose vertices are lattice points. Let I be the number of lattice points in the interior of \mathcal{P} , and let B be the number of lattice points on the boundary of \mathcal{P} . Find a simple formula in terms of I and B for the area enclosed by \mathcal{P} . Justify your answer.
- P17: Consider a rectangular Cartesian coordinate system in a plane. Points with integral coordinates we call lattice points. Show that there is no regular pentagon all of whose vertices are lattice points.