Distributed Algorithms CPSC-561 Assignment 2

Michael McCulloch

1 LL/SC

For all of the following algorithms, they are each wait-free, as they do not contain a loop.

A) CAS from SCAS

```
public class CAS_FROM_SCAS {
    public boolean CAS(Object prev, Object succ) {
        Object last = SCAS.scas(prev, succ);
        return last == prev;
}
```

Let the invocation of SCAS.scas() be the linearization point X. Claim: If a process P executes X before another process Q executes X, then the invocation of P is ordered before the invocation of Q. Proof: By the definition of SCAS, if it returns the same value as it's first argument, it must have succeeded. If this value is different, another process Q must have finished it's invocation before the P's invocation of SCAS and after the assignment of it's result to last, a contradiction.

B) SCAS from CAS

```
public class SCAS_FROM_CAS {
    public Object SCAS(Object prev, Object succ) {
    boolean success = CAS.cas(prev, succ);
    if (success) {
        return prev;
    } else {
        return CAS.read();
    }}
```

Let the invocation of CAS.cas() be the linearization point X. Claim: see above. Proof: If CAS is successful, then the old value passed in must be the old value. If CAS is unsuccessful, then a different value must have been the old value, which can only have been cause if another process executed X first. A contradiction.

C) CAS from LL/SC

```
public class CAS_FROM_LLSC {
    public boolean CAS(Object prev, Object succ){
        Object old = LLSC.ll();
        if (old != prev){
            return false;
        } else {
            return LLSC.sc(succ);
        }}}
```

Let the invocation of LLSC.11() be the linearization point X. Claim: If a process P executes X after another process Q, then it is ordered after Q. Proof: If any process P executes LLSC.11() at t, then the only next successfull invocation of LLSC.sc() will be its own at t', unless another process Q has executed LLSC.11() between t and t', in which case Q will be the successfull one.

2 \mathbb{Z}_k -Counter

Claim: There is no Consensus-3 solution using \mathbb{Z}_k -counters. Proof by cases for 3 processes: A, B and C.

2.1 Case: Different \mathbb{Z}_k -counters

w.l.o.g. assume A and B increment different \mathbb{Z}_k -counters. Let K be a bivalent configuration, π_A and π_b be the steps that A and B take, respectively,

to increment their own counters ...FILL IN THE BLANK... then $\pi_A(K)$ and $\pi_A\pi_B(K)$ are indistinguishable to A

2.2 Case: Different/Same Registers

See proof in lecture notes.

2.3 Case: Same \mathbb{Z}_k -counters

A and B increment A \mathbb{Z}_k -counters. Let K be a bivalent configuration, π_A and π_B be the steps that A and B take, respectively, to increment the counter. Assume for contradiction that π_R causes the configuration to be R-univalent. If the counter's initial value is c, then $\pi_A(K)$ causes it to be $c+1 \mod k$, the same is true for $\pi_B(K)$. Hence, after $\pi_A\pi_B(K)$, the value of the counter is $c+2 \mod k$ and the same is true for $\pi_B\pi_A(K)$. Therefor, to a third process C, these two states are identical, and therefor are not univalent, yielding a contradiction.

3 SRSW

3.1 A

Run W_1 , W_2 : if $c \ge 5$ then run R_1 , W_3 else run W_3 , R_1 There are two ways in which r may read 5, but no ways it may read 6 Expected Value = (1/6) * 1 + (1/6) * 2 + (1/6) * 3 + (1/6) * 4 + (2/6) * 5Expected Value = (1/6) * 10 + (2/6) * 5 Expected Value = 20/6 = 3.3

3.2 B