Tuần 5

Chương 3: Không gian vevtor

Không gian vector, Không gain vector con

I Khái niệm

1 Định nghĩa

Cho $V \neq \emptyset$ với các phần tử $v \in V$ được gọi là vector. K là một trường

Giả sử trên
$$V$$
 có
$$\begin{cases} \text{Phép cộng vector: } u,v\in V\Rightarrow u+v\in V\\ \text{Phép nhân một só với vector: } k\in\mathbb{K},v\in V\Rightarrow kv\in V \end{cases}$$

V được gọi là một k<mark>hông gian vect</mark>or (KGVT) trên K nếu thỏa mãn 8 điều kiện sau

- (1) (Giao hoán) x + y = y + x
- (2) (Kết hợp) x + (y+z) = (x+y) + z
- (3) (Phần tử trung hòa) Có vector không θ : $\theta + v = v + \theta = x$
- (4) (Phần tử đối xứng) Có vector đối (-v): $v + (-v) = (-v) + v = \theta$
- (5) k(x+y) = kx + ky
- $(6) (k_1 + k_2)x = k_1 x + k_2 x$
- $(7) (k_1 k_2) x = k_1 (k_2 x)$
- (8) 1x = x

VD

- (1) V là tập hợp các vector hình học, với phép cộng vector v
fa phép nhân vector với một số thì V là không gian vector trên
 $\mathbb R$
- (2) Với tập số phức \mathbb{C} , xét

$$\mathbb{C}^{n} = \left\{ \left. (x_{1}, x_{2}, ..., x_{n}) \right| x_{i} \in \mathbb{C}, \forall i = \overline{1, n} \right\}$$

Trang bị phép toán "+" và "." như sau:

Với
$$x=(x_1,x_2,...,x_n)\in\mathbb{C}^n$$
 và $y=(y_1,y_2,...,y_n)\in\mathbb{C}^n$ thì
$$x+y=(x_1+y_1,x_2+y_2,...,x_n+y_n)\in\mathbb{C}^n$$

$$kx=(kx_1,kx_2,...,kx_n)$$

Dễ kiểm tra 8 tính chất của KGVT đều thỏa mãn, vậy \mathbb{C}^n là KGVT trên \mathbb{C}

2 Các tính chất đơn giản

Tính chất 1 V là \mathbb{K} -KGVT, khi đó vector θ là duy nhất

Tính chất 2 V là \mathbb{K} -KGVT, khi đó

(1)
$$\theta x = k\theta = \theta$$

(2)
$$(-1)x = -x$$

(3)
$$kx = \theta \Rightarrow \begin{bmatrix} k = 0 \\ x = \theta \end{bmatrix}$$

II Không gian vector con

1 Định nghĩa

► Không gian vector con

Cho V là \mathbb{K} -KGVT, $\emptyset \neq W \subset V$. Với các phép toán của V áp dụng cho W mà W trở thành KGVt thì W được gọi là KGVT con

▶ Đóng kín

Cho $W \subset V$

- (1) W được gọi là đóng kín với phép cộng nếu $x, y \in W$ thì $x + y \in W$
- (2) W được gọi là đóng kín với phép nhân với một số nếu $x \in W$, $k \in \mathbb{R}$ thì $kx \in W$

Định lý V là \mathbb{K} -KGVT, $\emptyset \neq W \subset V$. Điều kiện cần và đủ để W là KGVT con của V là

- (1) Đóng kín đối với phép cộng vector
- (2) Đóng kín đối với phép nhân một số với một vector

VD Trong
$$\mathbb{R}^3$$
, cho $W = \left\{ (x_1, x_2, 0) \middle| x_1, x_2 \in \mathbb{R} \right\}$

Hiển nhiên $W \neq \emptyset$

Dễ thấy với
$$x = (x_1, x_2, 0)$$
 và $y = (y_1, y_2, 0)$ thì

$$x + y = (x_1 + y_1, x_2 + y_2, 0) \in W$$

Do đó W đóng kín với phép toán cộng

Ta cũng có W đóng kín với phép toán nhân với một số. Vậy W là một KGVT con

2 Không gian sinh bởi vector

► Tổ hợp tuyến tính

Với V là \mathbb{K} -KGVT, xét hệ vector $\{v_1,v_2,...,v_n\}$, $v_i\in V$. Ta gọi $v\in V$ là một tổ hợp tuyến tính của $\{v_1,v_2,...,v_n\}$ nếu tồn tại $k_1,k_2,...,k_n\in\mathbb{K}$ sao cho

$$v = k_1 v_1 + k_2 v_2 + \dots + k_n v_n = \sum_{i=1}^{n} k_i v_i$$

Định lý Trong KGVT V, gọi W là tập hợp các tổ hợp tuyến tính của hệ vector đã cho $\{v_1, v_2, ..., v_n\}$. Khi đó W là KGVT con của V

▶ Không gian con sinh bởi hệ vector

Trong KGVT V cho hệ $\{v_1, v_2, ..., v_n\}$. Không gian con W gồm các tổ hợp tuyến tính của hệ vector đã cho được gọi là không gian con sinh bởi hệ vector $\{v_1, v_2, ..., v_n\}$

Kí hiệu: $W = \text{span}\{v_1, v_2, ..., v_n\}$

VD Trong
$$\mathbb{R}^3$$
 cho $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)$. Chứng minh rằng
$$\mathbb{R}^3 = \operatorname{span}\{e_1, e_2, e_3\}$$

 $Gi \dot{a} i$

Để chứng minh $\mathbb{R}^3 = \operatorname{span}\{e_1, e_2, e_3\}$, ta sẽ chứng minh

$$\mathbb{R}^3 \subset \operatorname{span}\{e_1, e_2, e_3\}$$

và

$$\mathbb{R}^3 \supset \operatorname{span}\{e_1, e_2, e_3\}$$

$$\left(\mathbb{R}^3 \subset \operatorname{span}\{e_1, e_2, e_3\}\right)$$

Giả sử $x = (x_1, x_2, x_3) \in \mathbb{R}^3$. Khi đó ta có thể viết

$$x = (x_1, x_2, x_3) = x_1(1, 0, 0) + x_2(1, 0, 1) + x_3(0, 0, 1) = x_1e_1 + x_2e_2 + x_3e_3$$

Do đó $x \in \text{span}\{e_1, e_2, e_3\}$. Vậy $\mathbb{R}^3 \subset \text{span}\{e_1, e_2, e_3\}$

$$\left(\mathbb{R}^3 \supset \operatorname{span}\{e_1, e_2, e_3\}\right)$$

Giả sử $x \in \text{span}\{e_1, e_2, e_3\}$, hay

$$x = x_1e_1 + x_2e_2 + x_3e_3$$

Thay $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1),$ ta được

$$x = x_1(1,0,0) + x_2(1,0,1) + x_3(0,0,1) = (x_1, x_2, x_3) \in \mathbb{R}^3$$

 $V_{ay} \mathbb{R}^3 \supset \operatorname{span}\{e_1, e_2, e_3\}$