

Time and Order

slide credits: H. Kopetz, P. Puschner

Why do we need a notion of time?

- Event identification and generation
 - State before vs. after the event
- Event ordering
 - Causal order (e.g., a may only have caused b if a happened before b)
 - Temporal order (e.g., flight booking: who was first, A in VIE or B in LA?)
- Coordination coordinated action at specified time
- Duration measurement / control
 (e.g., X-ray: exposure time, video: gap between frames)
- Modeling of physical time
 - Comply to laws/dynamics of physics (second, physical time, real time)
 - Read input, produce output "at the right time" (e.g., control loops)

Causal and Temporal Order

Causal Order

- Deduced from "causal dependency" between events
- Reichenbach: "If event e1 is a cause of event e2, then a small variation (a mark) in e1 is associated with a small variation in e2, whereas small variations in e2 are not necessarily associated with small variations in e1."
- Bunge: "If a Cause happens, then (and only then) the Event is always produced by it."

Temporal Order

Deduced from timestamps of physical time

Causal and Temporal Order (2)

Example

Two events

```
e1 ... someone enters a room
```

e2 ... the telephone starts to ring

Two cases

```
e1 occurs after e2 \rightarrow causal dependency possible
```

e2 occurs after e1 → causal dependency unlikely

- Causal order implies temporal order
- Temporal order is necessary but not sufficient to establish causal order

Causal Order of Computer-generated Events

Partial order for computer-generated events

 $a \rightarrow b \dots a$ causes b (happened before, causal dependence)

- 1. If $a, b \dots$ events within a sequential process and a is executed before b then: $a \rightarrow b$
- 2. If a ... send event of a message by process p_i and b ... receive event of the message by process p_k then: $a \rightarrow b$
- 3. \rightarrow is transitive

Causal Order of Computer-generated Events (2)

Logical Clocks

- Represent information about causal dependency
- Do not use physical time
- Events are "time"-stamped using monotonically increasing counters

Events a, b with $a \rightarrow b$ Timestamps C(a), C(b)

Desirable properties

- $a \rightarrow b \Rightarrow C(a) < C(b)$... monotonicity, consistency
- $a \rightarrow b \Leftrightarrow C(a) < C(b)$... strong consistency

Lamport's Logical Clocks

- Logical clocks of processes p_i represent the local views of global time
- Non-negative integer C_i represents the local clock of p_i
- Clock update rules:

R1: p_i increments C_i for each local event (e.g., event, send): $C_i = C_i + 1$;

R2: each message transports the value of the sender's clock, C_{msg}

R3: when p_i receives a message with timestamp Cmsg:

$$C_i = \max (C_i, C_{msq}); C_i = C_i + 1;$$

Lamport's Logical Clocks (2)

- Consistency: $a \rightarrow b \Rightarrow C(a) < C(b)$
- Total ordering: timestamps (t, i): t ... time, i ... process number total order relation < on events a, b with timestamps (t, i), (u, j) a < b ⇔ (t < u or (t = u and i < j))
- No strong consistency: $C(a) < C(b) \not\Rightarrow a \rightarrow b$

Vector Time (Fidge, Mattern, Schmuck)

- n-dimensional vector V_i[1..n] at p_i with
 V_i[i] ... value of local logical clock of p_i
 V_i[k] ... p_i's knowledge about local time at p_k
- Clock update rules:

```
R1: p_i updates V_i[i] for each local event (e.g., event, send): V_i[i] = V_i[i] + 1;
```

R2: each message transports sender's clock values

R3: when p_i receives a message with timestamp V:

$$1 \le k \le n$$
: $V_i[k] = \max(V_i[k], V[k])$; $V_i[i] = V_i[i] + 1$;

Vector Time (2)

Vector Time (3)

Event relations

- event a on p_i with timestamp Va event b on p_k with timestamp Vb
- $a \rightarrow b \Leftrightarrow \forall i: Va[i] \leq Vb[i]$ and $\exists i: Va[i] < Vb[i]$
- $a \parallel b \Leftrightarrow \exists i,k$: Va[i] > Vb[i] and Va[k] < Vb[k]
- Vector clocks are strongly consistent:
 By examining the timestamps of two events a and b one can determine if a and b are causally related

Temporal Order

Continuum of real time modeled by

- a directed timeline, consisting of
- an infinite set {T} of instants with
 - i. {T} is an ordered set,
 i.e., for any two instants p and q either: p and q are simultaneous, p precedes q, or q precedes p
 - ii. $\{T\}$ is a dense set, for any instants $p \neq r$ there is at least one q between p and r

Temporal order: total order of instants on the timeline

Events and Durations

Event ... is happening at an instant of time

Duration ... section of the timeline

Note

- An event does not have a duration
- If two events occur at the identical instant they are called simultaneous
- Events are partially ordered
 In a distributed system, a total order can be established by using process numbers (see Lamport's order)

Physical Clocks

Clock

- Counter plus oscillator
- Microticks are generated by periodical increments of the counter, following some law of physics

Reference clock (z)

- Perfect clock of an external observer
- Duration between two ticks is much smaller than duration of any interval to be observed with our clocks (e.g., 10⁻¹⁵ sec)

Granularity of a clock c: nominal number of microticks of z between any consecutive microticks of c

$$g^c = z(microtick^c_{i+1}) - z(microtick^c_i)$$

Physical Clocks (2)

Timestamp

- The timestamp of an event is the state of the clock immediately after the occurrence of the event
- Notation: clock(event), e.g., z(event)
- Digitalization error of timestamps due to clock granularity

Clock Drift

Real clocks deviate from the reference clock

Clock drift

$$drift^{k}_{i} = \frac{z(microtick^{k}_{i+1}) - z(microtick^{k}_{i})}{g^{k}}$$

Drift rate

$$\rho^{k_{i}} = \left| \frac{z(microtick^{k_{i+1}}) - z(microtick^{k_{i}})}{g^{k}} - 1 \right|$$

Drift rate of perfect clock: 0

Drift rate of real clocks: 10⁻⁸...10⁻²

Failure Modes of Clocks

Precision

Offset between two clocks *j* and *k* at tick *i*

offset^{jk}_i =
$$\left| z(microtick^{j}_{i}) - z(microtick^{k}_{i}) \right|$$

Precision of an ensemble of clocks {1,...,n} at macrotick i

$$\Pi_i = \max_{j, k} \{ offset^{jk}_i \}$$

Internal clock synchronization: mutual resynchronization of an ensemble of clocks in order to maintain a bounded precision

Accuracy

Offset between clock k and the reference clock z at tick i

offset
$$k, z(k)_i = \left| z(microtick_i^k) - z(microtick_i^k) \right|$$

Accuracy denotes the maximum offset of a given clock from the reference clock during a time interval of interest

External clock synchronization: resynchronization of a clock with the reference clock

If all clocks of an ensemble are externally synchronized with accuracy A, then the ensemble is internally synchronized with a precision $\Pi \le 2A$.

Time Standards

International Atomic Time (TAI)

- physical time standard
- defines the second as the duration of 9 192 631 770 periods of the radiation of a specified transition of the Cesium 133 atom.
- chronoscopic timescale, i.e., a timescale without discontinuities.
- defines the epoch, the origin of time measurement, as Jan. 1, 1958 at 00:00:00 hours

Time Standards (2)

Universal Time Coordinated (UTC)

- astronomical time standard, basis for the time on the "wall clock".
- duration of the second conforms to the TAI standard
- number of seconds in an hour occasionally modified by inserting a leap second into UTC to maintain synchrony between the wall-clock time and the astronomical phenomena, like day and night.

Adjusting Time can be Tricky ...

Insertion of a leap second at midnight, New Year's Eve 1995, caused a glitch that affected the time signal for the AP radio broadcast network for hours.

Sequence of events:

- 1. The day increments to January 1, 1996, 00:00:00.
- 2. The clock is set back one second, to 23:59:59.
- 3. The clock continues running.
- 4. The day changes again. Suddenly it is January 2, 00:00:00.

Global Time

In a distributed system we need a global notion of time to generate event timestamps ⇒ "Global Time"

- Global time is an abstract notion, real clocks are not prefect
- Local clocks of nodes approximate global time
- Macroticks form the local representation of global time with granularity g^{global}

Absence of a Global Timebase

- n independent local time references
 ⇒ only timestamps from the same clock can be related.
- Interval measurements between events observed at different nodes are limited by the end-to-end communication jitter.
- Delay jitter of communication system determines the jitter in non-local control loops
 - unacceptable for many real-time control applications.
- No knowledge of precise point in time of measurement of process variables
 - state estimation is very difficult

Requirements for a Global Timebase

- Chronoscopic behaviour

 (i.e., no discontinuities, even at points of resynchronization)
- Known precision Π
- High dependability
- Metric of physical second

Choosing the Right Granularity

Reasonableness Condition

Global time *t* is reasonable if for all local implementations:

$$g^{global} > \Pi$$

The reasonableness condition ensures that:

- the synchronization error is less than one macrogranule
- for any event e: | t^j(e) t^k(e) | ≤ 1

Timestamps and Temporal Order

$$z(e1.9) < z(e2.3)$$
 $z(e6.9) - z(e6.3) = 0.6$
 $t^{k}(e1.9) > t^{j}(e2.3)$ $t^{k}(e6.9) - t^{j}(e6.3) = 2$

To reconstruct the temporal order of two events, the (global) timestamps of the events have to differ by at least two ticks.

Timestamps and Temporal Order (2)

$$z(e4.3) - z(e1.9) = 2.4$$

 $t^{j}(e4.3) - t^{k}(e1.9) = 1$

A time distance of $2g^{global}$ between two events is not sufficient to determine their temporal order (if $t^{j}(a) - t^{k}(b) = 1$).

Measurement of Durations

Real duration: $d_{obs} - 2g^{global} < d_{true}^z < d_{obs} + 2g^{global}$

Temporal Relationship between Generated Events

Assumption: nodes generate events at clock ticks

An external observer cannot reconstruct whether local timestamps of generated events are equal or not

π/Δ -Precedence of Sets of Events

Given durations π and Δ (π << Δ), a set of events $E=\{e_i\}$ is π/Δ -precedent, if the following condition holds for all e_j , $e_k \in E$:

$$(|z(e_j) - z(e_k)| \le \pi)$$
 or $(|z(e_j) - z(e_k)| > \Delta)$

Dense Time and Sparse Time

Dense timebase: events are allowed to occur at any time.

Sparse timebase (π/Δ -sparse timebase):

events are only allowed to occur within the time intervals of activity π , followed by an interval of silence Δ .

Agreement on Observed Events – Dense Time

Nodes *j* and *m* observe *e1*, node *k* observes *e2*. Node *k* reports observation about *e2* to nodes *j* and *m*.

⇒ Nodes *j* and *m* draw different conclusions about event order.

35

Agreement on Observed Events – Dense Time

Conclusions from observations made so far:

- If a single event is observed by two nodes, the local timestamps for the event may differ by one tick.
 - ⇒ an explicit agreement protocol (communication between the nodes) is needed to establish a consistent view about the global time of the event occurrence.
- If two events occur on a dense timeline, then it is impossible to deduce the temporal order in all cases if the events occur within an interval of duration $< 3g^{global}$.
 - explicit agreement is needed for arbitrary event sets.

Agreement on Event Order – Sparse Time

Assume: 2 computation clusters A, B

- within each cluster clocks are synchronized $(g = g^{global})$
- no synchronization between A and B
- Cluster A generates events that have to be ordered by B:
 B must be able to determine order resp. simultaneity of all observed events
- ⇒ Timebase of *A* has to be 1*g*/4*g*-sparse; a 1*g*/3*g*-sparse timebase is not sufficient (see next slide)

Agreement on Event Order – Sparse Time (2)

e1, e2 ... generated in same activity interval: $t^n(e2) - t^m(e1) = 2$

e2, e3 ... gen. in different activity interval: $t^m(e3) - t^n(e2) = 2$

Fundamentals in Time Measurement

Given a distributed system with a reasonable global timebase, with granularity g^{global} :

- If a single event is observed by two nodes, the local timestamps for the event may differ by one tick.
- Duration measurement: $d_{obs} 2g^{global} < d_{true}^z < d_{obs}^z + 2g^{global}$
- The temporal order of two events e_1 , e_2 can be deduced from their timestamps if $|t^j(e_1) t^k(e_2)| \ge 2$.
- The temporal order of events can always be deduced if the event set is 0/3g^{global}-precedent.

Synchronization Condition

To keep the clocks internally synchronized with precision Π , the synchronization condition must hold:

$$\Phi + \Gamma \leq \Pi$$

 Φ ... convergence function: max. offset after synchronization; depends on synchronization algorithm and message latency jitter ϵ , the transmission-time difference between fastest and slowest message; $\epsilon = d_{max} - d_{min}$

 Γ ... drift offset: divergence of free-running clocks; Γ = 2 ρ R_{int} ... resynchronization interval

Central Master Algorithm

- Master node sends periodic synchronization messages, containing its local time
- Slaves adjust local clocks
 - Record local arrival time of sync. message
 - Compute difference master clock local clock
 - Correct difference by latency (local parameter)
 - Correct local clock
- Precision of Central Master Algorithm

$$\Pi_{central} = \varepsilon + \Gamma$$

Distributed Clock Synchronization

Use of distributed algorithms to provide fault tolerance; Typically three phases:

- Nodes exchange messages and acquire information about global-time counters at other nodes.
- Every node analyzes collected information (error detection) and executes the convergence function to compute a correction term for its local global-time counter
- Every node adjusts its local time counter by its correction term

Malicious (Byzantine) Clocks

For clock synchronization in the presence of k Byzantine clocks the number of clocks N must be: $N \ge 3k + 1$

Fault-Tolerant Average (FTA) Algorithm

Computation of correction term:

- Calculation of differences between local clock and all other clocks
- Sorting of clock-difference values
- Elimination of k smallest and k largest values
 (k ... max number of erroneous clocks)
- Correction term: average of remaining N 2k time differences

FTA Algorithm – Effect of Byzantine Clock

Worst-case effect of a Byzantine node:

- Byzantine time values at different ends of precision window
- Error term of a Byzantine error: $E_{bvz} = \Pi / (N 2k)$

... good value ... malicious val. ... rejected val. ... calc. average 46

Precision of the FTA Algorithm

Convergence Function

$$\Phi(N, k, \varepsilon) = k \Pi / (N - 2k) + \varepsilon$$

Precision

$$\Pi(N, k, \varepsilon, \Gamma) = (\varepsilon + \Gamma) \frac{N - 2k}{N - 3k} = (\varepsilon + \Gamma) \mu(N, k)$$

 $\mu(N, k)$ is called the Byzantine error term

number of nodes N

	$\mu(N, k)$	4	5	6	7	10	15	20
k	1	2	1.5	1.33	1.25	1.14	1.08	1.06
	2				3	1.5	1.22	1.14
	3					4	1.5	1.27

Interactive Consistency Algorithm

Eliminates Byzantine error term

- After collecting the time values of all other clocks, every node sends its view of the clock ensemble to all other clocks
 ⇒ extra communication round!
- Nodes have global view; can identify Byzantine nodes
- Correction based on matrix of time vectors of all views
- $\mu(N, k) = 1$

Limit to Internal Clock Synchronization

Lundelius and Lynch show limits of clock synchronization:

The best achievable precision even with perfect clocks is

$$\Pi_{opt} = \varepsilon (1 - 1/N)$$

Clock-Synchronization Quality Parameters

- Drift offset $\Gamma = 2 \rho R_{int}$
- Delay jitter $\varepsilon = d_{max} d_{min}$
- Byzantine failures: rare events
- Clock synchronization algorithms: effect on sync. quality is small compared to delay jitter

Keeping the Drift Offset Small

Minimize relative drift rates of clocks

- Use rate master with precise clock in each cluster
- Adjust rates of local clocks to rate of the master
- Use state correction in FTA
 - mask errors in rate correction of local clocks

Jitter of Synchronization Messages

Message jitter ϵ depends on where message timestamps are inserted and interpreted

Message assembly/interpretation	appr. range of jitter		
Application software level	500 μs 5 ms		
Operating system kernel	10 μ s 100 μ s		
Hardware: communication controller	< 10 µs		

Quality Attributes of a Global Time Base

- Precision
- Accuracy
- Fault tolerance: number and types of faults the system of clocks can tolerate
- Blackout survivability: blackout duration that can be tolerated without losing synchronism

Cristian's Algorithm

Request time and evaluate reply

Time-request from p_2 to p_1 at t_0

Reply from p_1 arrives at t_3 : contains T_2 , round-trip time $d = t_3 - t_0$

Clock sync: p_2 sets local time to T + d/2Clock sync. error $\leq d/2$

Network Time Protocol (NTP)

- Built on idea of Christian's algorithm
- Hierarchy of time servers
 - Class 1: connected to atomic clocks, GPS clocks
 - Class 2: receive time from Class 1 servers, synchronize with other Class 2 devices
 - Class 3: receive time from Class 2 servers, ...
- Clock correction based on statistical analysis of $t_0 \dots t_3$ of multiple clock readings

Precision Time Protocol (PTP) builds on NTP; PTP uses hardware support for clock synchronization

External Clock Synchronization

Synchronize clock ensemble to an external time reference Example: GPS, achievable accuracy below 1µs

Complementary properties of internal/external synchronization:

- Internal clock synchronization: high availability, good short-time stability
- External clock synchronization: long-term stability, possibly lower availability

Promising combination:

gateway to external time reference = rate master for internal synchronization

Lessons Learned

- Why we need time ...
- Temporal and causal order
- Logical time (Lamport time, vector time)
- Event, duration
- Global time and clocks
- Internal clock synchronization
- External clock synchronization