Algebra

[Algebraische Strukturen] Es sei M eine Menge und $*: M \times M \to M : (a,b) \mapsto a*b$ eine Operation auf M.

(Abgeschlossenheit) $a,b \in M \Rightarrow a*b \in M$ Gruppoid

(Assoziativität) $(\forall a, b, c \in M)(a*b)*c = a*(b*c)$ Halbgruppe

(Neutrales Element) $(\exists e \in S)(\forall a \in M)e*a=a=a*e$ Monoid

(Invertierbare Elemente) $(\forall a \in M)(\exists a^{-1} \in M)a*a^{-1} = e = a^{-1}*a$ Gruppe

(Kommutativität) $(\forall a, b \in M) a * b = b * a$ abelsche Gruppe

 $\operatorname{Ist}(M,+,0)$ abelsche Gruppe und (M,\cdot) Halbgruppe so gibt uns

(Distributivität) $(\forall a, b, c \in M) a \cdot (b+c) = a \cdot b + a \cdot c$

 $(\forall a, b, c \in M)(a+b) \cdot c = a \cdot c + b \cdot c$ Ring

 $\mathsf{Ist}(M,\cdot,1) \ \mathsf{ein} \ \mathit{Monoid} \ \mathsf{so} \ \mathsf{nennt} \ \mathsf{man} \ M^\times := \left\{ a \in M : \left(\exists a^{-1} \in M\right) a \cdot a^{-1} = e = a^{-1} \cdot a \right\} \ \mathsf{die} \ \underline{\mathsf{Einheitengruppe}}.$

 $\operatorname{Ist}(M,+,\cdot,0)$ ein *Ring* dann nennt man $a,b\in M\setminus\{0\}$ für die gilt $a\cdot b=0$ <u>Nullteiler</u>.

 $\operatorname{Ist}(M,\cdot)$ eine *kommutative Halbgruppe*, dann $\operatorname{ist} M$ ein <u>kommutativer Ring</u>.

 $\operatorname{Ist}(M,\cdot,1)$ ein *kommutativer Monoid* und $M^{\times}=M\setminus\{0\}$ und $1\neq 0$ dann ist \mathbb{M} ein <u>Körper</u>.

[Homomorphismen] Es seien (G_1,\cdot,e_1) und (G_2,\circ,e_2) *Gruppen* und $f:G_1\to G_2$ dann ist

(Homomorphie) $(\forall a,b \in G_1) f(a \cdot b) = f(a) \circ f(b)$ Homomorphismus

Es folgen daraus: $f(e_1) = e_2 \land (\forall a \in G_1) f(a^{-1}) = f(a)^{-1}$ Gruppenhomomorphismus

[Vektorraum] Es sei \mathbb{K} ein Körper. V ist ein \mathbb{K} -Vektorraum wenn

(Neutrales Element) $0 \in V$

(Abgeschlossenheit) $v, w \in V \Rightarrow v + w \in V \land \lambda \in \mathbb{K}, v \in V \Rightarrow \lambda v \in V$ Untervektorraum

Ist(V,+,0) eine abelsche Gruppe dann gilt (V1) bis (V4) und

Für alle $u, v, w \in V$ und $\lambda, \mu \in \mathbb{K}$ muss gelten...

(V5) $\lambda(v+w) = \lambda v + \lambda w$ (V6) $(\lambda + \mu)v = \lambda v + \mu v$ (V7) $\lambda(\mu v) = (\lambda \mu)v$ (V8) 1v = v

Daraus folgt dann...

(V9) $u + w = v + w \Rightarrow u = v$ (V10) $0v = 0 \land \lambda 0 = 0$ (V11) $\lambda v = 0 \Rightarrow \lambda = 0 \lor v = 0$

(Dimension) $\dim(U+V) = \dim(U) + \dim(V) - \dim(U \cap V)$

[Lineare Abbildung] Es seien $V, W \mathbb{K}$ -Vektorräume und $\varphi : V \to W$ und für alle $u, v \in V, \lambda \in \mathbb{K}$

(L1) $\varphi(u+v) = \varphi(u) + \varphi(v)$ (L2) $\lambda \varphi(v) = \varphi(\lambda v)$ Lineare Abbildung

Es seien $(v_1,...,v_n)$ eine Basis von V dann weiß man über $\varphi:V\to W$

(Kern) $\operatorname{im} \varphi := \varphi(V) = \{ \varphi(v) : v \in V \} \subseteq W$

(Bild) $\ker \varphi := \varphi^{-1}(0) = \{ v \in V : \varphi(v) = 0 \} \subseteq V$

(Rang) $\operatorname{rank} \varphi := \dim(\operatorname{im} \varphi) = \dim(\varphi(V))$

(Dimensionssatz) $\dim(\operatorname{im}\varphi) + \dim(\ker\varphi) = \dim V$

(Injektiv) $\ker \varphi = \{0\} \vee \operatorname{rank} \varphi = \dim V \vee \varphi(v_1), ..., \varphi(v_n) \text{ l.u.}$

(Surjektiv) $\operatorname{im} \varphi = W \vee \operatorname{rank} \varphi = \operatorname{dim} W$