Санкт-Петербургский государственный университет

Математическое обеспечение и адмиистрирование информационных систем

Гусев Егор Игоревич Вычислительный практикум Отчет по заданию №8

Преподователь: Т.О. Евдокимова

Содержание

1.	Ссылка на код	3
2.	Постановка задачи	3
3.	Теория	3
4.	Численный эксперимент	4
	4.1. Результаты	4

1. Ссылка на код

Код доступен по ссылке на github.

2. Постановка задачи

- 1. Необходимо реализовать метод Галеркина решения краевой задачи ОДУ.
- 2. Вывести полученные приближения в виде графика.

3. Теория

Краевая задача вида

$$L[u] = k(x)u''(x) + p(x)u'(x) + q(x)u(x) = f(x), \quad a < x < b$$

с краевыми условиями первого рода

$$u(a) = u_a, \quad u(b) = u_b.$$

Основа метода Галёркина — проекционная постановка.

$$\Phi = \{$$
кусочно-дифференцируемые $\varphi : \varphi(a) = \varphi(b) = 0\}.$

Умножим наше уравнение на произвольную функцию $\varphi \in \Phi$ и проинтегрируем по x от a до b, получим интегральное тождество

$$\int_{a}^{b} L[u]\varphi dx = \int_{a}^{b} f\varphi dx.$$

Если функция u — решение дифференциального уравнения, то она удовлетворяет интегральному тождеству. И наоборот, если интегральное тождество выполняется для любой φ , то L[u]=f.

Сформулируем нашу задачу в проекционной постановке: необходимо найти функцию u, которая удовлетворяет интегральному тождеству для произвольной $\varphi \in \Phi$ и для которой выполнены краевые условия.

Решение ищем в виде

$$u = \sum_{i=0}^{N} \alpha_i \varphi_i,$$

где φ_i — некоторые базисные функции.

Подставим общий вид решения в наше уравнение

$$k(x) \sum_{i=0}^{N} \alpha_i \varphi_i'' + p(x) \sum_{i=0}^{N} \alpha_i \varphi_i' + q(x) \sum_{i=0}^{N} \alpha_i \varphi_i - f = 0,$$

4. Численный эксперимент

4.1 Результаты

Краевая задача из учебника Пакулиной А.Н. (6 вариант)

$$-\frac{4-x}{5-2x}u''(x) + \frac{1-x}{2}u'(x) + \frac{1}{2}\ln(3+x)u(x) = 1 + \frac{x}{3},$$
$$u(-1) = u(1) = 0.$$

Рис. 1: Приближенное решение при N равном 3, 8

Краевая задача из учебника Пакулиной А.Н. (8 вариант)

$$-\frac{x-2}{-2x+5}u''(x) + \left(\frac{1-x}{2}\right)u'(x) + 0.5\ln 3 + xu(x) = 1 - \frac{x}{3},$$
$$u(-1) = u(1) = 0.$$

Рис. 2: Приближенное решение при N равном 3, 8

Краевая задача из учебника Пакулиной А.Н. (11 вариант)

$$-\frac{7-x}{8+3x}u''(x) + \left(1+\frac{x}{3}\right)u'(x) + \left(1-\frac{1}{2}\exp\frac{x}{2}\right)u(x) = \frac{1}{2} - \frac{x}{3},$$
$$u(-1) = u(1) = 0.$$

Рис. 3: Приближенное решение при N равном 3, 8