МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра ЕОМ

МЕТОДИЧНІ ВКАЗІВКИ

до лабораторної роботи №2

з дисципліни

" МОДЕЛЮВАННЯ КОМП'ЮТЕРНИХ СИСТЕМ "

для студентів першого (бакалаврського) рівня вищої освіти спеціальності

123 "Комп'ютерна інженерія"

Укладачі:

Юрчук А. Ф. асистент каф. ЕОМ Цигилик Л.О., ст. викл. каф.ЕОМ

Львів – 2020

Тема роботи:

Структурний опис цифрового автомата. Перевірка роботи автомата за допомогою стенда *Elbert V2 – Spartan 3A FPGA*.

Мета роботи:

На базі стенда *Elbert V2 – Spartan 3A FPGA*, реалізувати цифровий автомат світлових ефектів згідно наступних вимог:

- 1. Інтерфейс пристрою та функціонал реалізувати згідно отриманого варіанту завдання. Дивись розділ *Завдання*.
- 2. Логіку переходів реалізувати з використанням мови опису апаратних засобів *VHDL*. Заборонено <u>використовуючи оператори</u> *if, switch, for, when*.
- 3. Логіку формування вихідних сигналів реалізувати з використанням мови опису апаратних засобів *VHDL*. Заборонено використовуючи оператори *if. switch. for. when*.
- 4. Згенерувати *Schematic* символи для *VHDL* описів логіки переходів та логіки формування вихідних сигналів.
- 5. Зінтегрувати всі компоненти (логіку переходів, логіку формування вихідних сигналів та пам'ять станів) в єдину систему за допомогою ISE WebPACK™ Schematic Capture.
 Пам'ять станів реалізувати за допомогою графічних компонентів з бібліотеки.
- 6. Промоделювати роботу окремих частин автомата та автомата вцілому за допомогою симулятора *ISim*.
- 7. Інтегрувати створений автомат зі стендом *Elbert V2 Spartan 3A FPGA* (додати подільник частоти для вхідного тактовового сигналу, призначити фізичні виводи на *FPGA*).
- 8. Згенерувати *BIT* файал та перевірити роботу за допомогою стенда *Elbert V2 Spartan 3A FPGA*.
- 9. Підготувати і захистити звіт.

ЗАВДАННЯ:

Варіант – 1:

Стан#	LED_0	LED_1	LED_2	LED_3	LED_4	LED_5	LED_6	LED_7
0	1	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0
2	0	0	1	0	0	0	0	0
3	0	0	0	1	0	0	0	0
4	0	0	0	0	1	0	0	0
5	0	0	0	0	0	1	0	0
6	0	0	0	0	0	0	1	0
7	0	0	0	0	0	0	0	1

- Пристрій повинен використовувати 12MHz тактовий сигнал від мікроконтролера IC1 і знижувати частоту за допомогою внутрішнього подільника. Мікроконтролер IC1 є частиною стенда $Elbert\ V2 Spartan\ 3A\ FPGA$. Тактовий сигнал заведено нв вхід $LOC = P129\ FPGA\ (див.\ \textbf{Додаток}-1)$.
- Інтерфейс пристрою повинен мати вхід синхронного скидання (*RESET*).
- Інтерфейс пристрою повинен мати вхід керування режимом роботи (МОДЕ):
 - \circ Якщо MODE=0 то стан пристрою інкрементується по зростаючому фронту тактового сигналу пам'яті станів (0->1->2->3->4->5->6->7->0...).
 - \circ Якщо *MODE=1* то стан пристрою декрементується по зростаючому фронту тактового сигналу пам'яті станів (0->7->6->5->4->3->2->1->0...).
- Інтерфейс пристрою повинен мати однорозрядний вхід керування швидкістю роботи(*SPEED*):
 - Якщо *SPEED=0* то автомат працює зі швидкістю, визначеною за замовчуванням.
 - \circ Якщо *SPEED=1* то автомат працює зі швидкістю, <u>В 2 РАЗИ ВИЩОЮ</u> ніж в режимі (*SPEED= 0*).
- Для керування сигналом *MODE* використати будь який з 8 *DIP* перемикачів (див. **Додаток** 1).
- Для керування сигналами *RESET/SPEED* використати будь якI з *PUSH BUTTON* кнопок (див. **Додаток** 1).

Варіант – 2:

Стан#	LED_0	LED_1	LED_2	LED_3	LED_4	LED_5	LED_6	LED_7
0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0
2	1	1	1	0	0	0	0	0
3	1	1	1	1	0	0	0	0
4	1	1	1	1	1	0	0	0
5	1	1	1	1	1	1	0	0
6	1	1	1	1	1	1	1	0
7	1	1	1	1	1	1	1	1

- Пристрій повинен використовувати 12MHz тактовий сигнал від мікроконтролера IC1 і знижувати частоту за допомогою внутрішнього подільника. Мікроконтролер IC1 є частиною стенда $Elbert\ V2 Spartan\ 3A\ FPGA$. Тактовий сигнал заведено нв вхід $LOC = P129\ FPGA\ (див.\ Додаток 1)$.
- Інтерфейс пристрою повинен мати вхід синхронного скидання (*RESET*).
- Інтерфейс пристрою повинен мати вхід керування режимом роботи (МОДЕ):
 - \circ Якщо *MODE=0* то стан пристрою інкрементується по зростаючому фронту тактового сигналу пам'яті станів (0->1->2->3->4->5->6->7->0...).
 - \circ Якщо *MODE=1* то стан пристрою декрементується по зростаючому фронту тактового сигналу пам'яті станів (0->7->6->5->4->3->2->1->0...).
- Інтерфейс пристрою повинен мати однорозрядний вхід керування швидкістю роботи(*SPEED*):
 - Якщо SPEED=0 то автомат працює зі швидкістю, визначеною за замовчуванням.
 - \circ Якщо *SPEED=1* то автомат працює зі швидкістю, <u>В 2 РАЗИ НИЖЧОЮ</u> ніж в режимі (*SPEED= 0*).
- Для керування сигналом MODE використати будь який з 8 DIP перемикачів (див. **Додаток** 1).
- Для керування сигналами *RESET/SPEED* використати будь якI з *PUSH BUTTON* кнопок (див. **Додаток** 1).

Варіант – 3:

Стан#	LED_0	LED_1	LED_2	LED_3	LED_4	LED_5	LED_6	LED_7
0	1	1	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0
2	0	0	1	1	0	0	0	0
3	0	0	0	1	1	0	0	0
4	0	0	0	0	1	1	0	0
5	0	0	0	0	0	1	1	0
6	0	0	0	0	0	0	1	1
7	0	0	0	0	0	0	0	1

- Пристрій повинен використовувати 12MHz тактовий сигнал від мікроконтролера IC1 і знижувати частоту за допомогою внутрішнього подільника. Мікроконтролер IC1 є частиною стенда $Elbert\ V2 Spartan\ 3A\ FPGA$. Тактовий сигнал заведено нв вхід $LOC = P129\ FPGA\ (див.\ Додаток 1)$.
- Інтерфейс пристрою повинен мати вхід синхронного скидання (*RESET*).
- Інтерфейс пристрою повинен мати вхід керування режимом роботи (МОДЕ):
 - \circ Якщо *MODE=0* то стан пристрою інкрементується по зростаючому фронту тактового сигналу пам'яті станів (0->1->2->3->4->5->6->7->0...).
 - \circ Якщо *MODE=1* то стан пристрою декрементується по зростаючому фронту тактового сигналу пам'яті станів (0->7->6->5->4->3->2->1->0...).
- Інтерфейс пристрою повинен мати однорозрядний вхід керування швидкістю роботи(*SPEED*):
 - Якщо SPEED=0 то автомат працює зі швидкістю, визначеною за замовчуванням.
 - \circ Якщо *SPEED=1* то автомат працює зі швидкістю, <u>В 4 РАЗИ ВИЩОЮ</u> ніж в режимі (*SPEED= 0*).
- Для керування сигналом *MODE* використати будь який з 8 *DIP* перемикачів (див. **Додаток** 1).
- Для керування сигналами *RESET/SPEED* використати будь якI з *PUSH BUTTON* кнопок (див. **Додаток** 1).

Варіант – 4:

Стан#	LED_0	LED_1	LED_2	LED_3	LED_4	LED_5	LED_6	LED_7
0	1	0	0	0	0	0	0	1
1	0	1	0	0	0	0	1	0
2	0	0	1	0	0	1	0	0
3	0	0	0	1	1	0	0	0
4	0	0	1	1	1	1	0	0
5	0	1	1	1	1	1	1	0
6	1	1	1	1	1	1	1	1
7	0	0	0	0	0	0	0	0

- Пристрій повинен використовувати 12MHz тактовий сигнал від мікроконтролера IC1 і знижувати частоту за допомогою внутрішнього подільника. Мікроконтролер IC1 є частиною стенда $Elbert\ V2$ $Spartan\ 3A\ FPGA$. Тактовий сигнал заведено нв вхід LOC = $P129\ FPGA\ (див.\ Додаток$ 1).
- Інтерфейс пристрою повинен мати вхід синхронного скидання (*RESET*).
- Інтерфейс пристрою повинен мати вхід керування режимом роботи (МОДЕ):
 - \circ Якщо *MODE=0* то стан пристрою інкрементується по зростаючому фронту тактового сигналу пам'яті станів (0->1->2->3->4->5->6->7->0...).
 - \circ Якщо MODE=1 то стан пристрою декрементується по зростаючому фронту тактового сигналу пам'яті станів (0->7->6->5->4->3->2->1->0...).
- Інтерфейс пристрою повинен мати однорозрядний вхід керування швидкістю роботи(*SPEED*):
 - Якщо SPEED=0 то автомат працює зі швидкістю, визначеною за замовчуванням.
 - \circ Якщо *SPEED=1* то автомат працює зі швидкістю, <u>В 4 РАЗИ НИЖЧОЮ</u> ніж в режимі (*SPEED= 0*).
- Для керування сигналом MODE використати будь який з 8 DIP перемикачів (див. **Додаток** 1).
- Для керування сигналами *RESET/SPEED* використати будь якI з *PUSH BUTTON* кнопок (див. **Додаток** 1).

Варіант – 5:

Стан#	LED_0	LED_1	LED_2	LED_3	LED_4	LED_5	LED_6	LED_7
0	1	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1
2	0	1	0	0	0	0	0	0
3	0	0	0	0	0	0	1	0
4	0	0	1	0	0	0	0	0
5	0	0	0	0	0	1	0	0
6	0	0	0	1	0	0	0	0
7	0	0	0	0	1	0	0	0

- Пристрій повинен використовувати 12MHz тактовий сигнал від мікроконтролера IC1 і знижувати частоту за допомогою внутрішнього подільника. Мікроконтролер IC1 є частиною стенда $Elbert\ V2$ $Spartan\ 3A\ FPGA$. Тактовий сигнал заведено нв вхід LOC = $P129\ FPGA\ (див.\ Додаток$ 1).
- Інтерфейс пристрою повинен мати вхід синхронного скидання (*RESET*).
- Інтерфейс пристрою повинен мати вхід керування режимом роботи (МОДЕ):
 - \circ Якщо *MODE=0* то стан пристрою інкрементується по зростаючому фронту тактового сигналу пам'яті станів (0->1->2->3->4->5->6->7->0...).
 - \circ Якщо *MODE=1* то стан пристрою декрементується по зростаючому фронту тактового сигналу пам'яті станів (0->7->6->5->4->3->2->1->0...).
- Інтерфейс пристрою повинен мати однорозрядний вхід (TEST) для подачі логічної «1» на всі виходи одночасно:
 - Якщо *TEST=0* то автомат перемикає сигнали на виходах згідно заданого алгоритму.
 - Якщо TEST=1 то на всіх виходах повинна бути логічна «1» (всі LED увімкнені).
- Для керування сигналом *MODE* використати будь який з 8 *DIP* перемикачів (див. **Додаток** 1).
- Для керування сигналами RESET/TEST використати будь якI : PUSH BUTTON кнопок (див. Додаток 1).

Варіант – 6:

Стан#	LED_0	LED_1	LED_2	LED_3	LED_4	LED_5	LED_6	LED_7
0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0
2	1	1	1	0	0	0	0	0
3	1	1	1	1	0	0	0	0
4	0	0	0	0	1	0	0	0
5	0	0	0	0	1	1	0	0
6	0	0	0	0	1	1	1	0
7	0	0	0	0	1	1	1	1

- Пристрій повинен використовувати 12MHz тактовий сигнал від мікроконтролера IC1 і знижувати частоту за допомогою внутрішнього подільника. Мікроконтролер IC1 є частиною стенда $Elbert\ V2$ $Spartan\ 3A\ FPGA$. Тактовий сигнал заведено нв вхід LOC = $P129\ FPGA\ (див.\ \textbf{Додаток}\ 1)$.
- Інтерфейс пристрою повинен мати вхід синхронного скидання (*RESET*).
- Інтерфейс пристрою повинен мати вхід керування режимом роботи (МОДЕ):
 - \circ Якщо *MODE=0* то стан пристрою інкрементується по зростаючому фронту тактового сигналу пам'яті станів (0->1->2->3->4->5->6->7->0...).
 - \circ Якщо *MODE=1* то стан пристрою декрементується по зростаючому фронту тактового сигналу пам'яті станів (0->7->6->5->4->3->2->1->0...).
- Інтерфейс пристрою повинен мати однорозрядний вхід (*TEST*) для подачі логічної «1» на всі непарні виходи одночасно:
 - \circ Якщо *TEST=0* то автомат перемикає сигнали на виходах згідно заданого алгоритму.
 - \circ Якщо *TEST=1* то на непарних виходах (7, 5, 3, 1) повинна бути логічна «1» (непарні *LED* увімкнені).
- Для керування сигналом MODE використати будь який з 8 DIP перемикачів (див. **Додаток** 1).
- Для керування сигналами RESET/TEST використати будь якI з PUSH BUTTON кнопок (див. Додаток 1).

МЕТОДИЧНІ ВКАЗІВКИ:

- Даний розділ надає покрокові інструкції реалізації Варіанту №1 завдання з наступними обмеженнями:
- Пристрій реалізує 4 стани замісь 8.
- Пристрій реалізує лише 4 сигнали керування для LED_7..LED_4.
- Інтерфейс пристрою не містить входів SPEED/TEST/RESET.

Покрокові інструкції:

- Створити новий проект, користуючись методичними вказівками до лабораторної роботи №1.
- 2. Додати до проекту новий *VHDL* файл, в якому буде реалізовано логіку формування вихідних сигналів.
 - Виконати команду Project->New Source.
 - У New Project Wizard обрати тип файла VHDL Module. В полі File Name вказати назву файла. Увімкнути опцію Add to Project.

3. У наступному вікні вказати ім'я інтерфейса і архітектури. Решту полів можна залишити порожніми.

Натиснути Next. Завершити створення проекту, слідуючи підказкам.

- 4. У створеному файлі (файл *OutputLogic.vhd* в проекті *Lab_2_Example*) імплементувати інтерфейс логіки формування вихідних сигналів, а також логічні вирази для формування кожного вихідного сихналу, залежно від поточного стану автомата.
- 5. Промоделювати роботу схеми формування вихідних сигналів з усіма можливими наборами вхідних сигналів (див. процес симуляції описано в методичних вказівках до лабораторної роботи №1)

3. Аналогічним чином описати і промоделювати логіку формування переходів (файл TransitionLogic.vhd в проекті $Lab_2_Example$).

Примітки:

• Перед запуском симулятора переконайтесь що вибрано саме той файл, для якого збираєтесь проводити симуляцію.

- 7. Додати до проекту новий *Schematic* (файл *LightController.sch* в проекті *Lab_2_Example*), в якому реалізувати пам'ять стану автомата та зв'язати між яобою всі його частини.
- 8. На вкладці *Design* менеджера проектів виділити новостворений файл та виконати для нього команду *Set as Top Module* з контекстного меню.

9. Згенерувати Schematic символи для файлів OutputLogic.vhd та TransitionLogic.vhd, виконавши команду Create Schematic Symbol для кожного файла:

10. У менеджері проектів відкрити файл *LightController.sch*. Далі перейти до бібліотеки компонентів і переконатись, що символи для файлів *OutputLogic.vhd* та *TransitionLogic.vhd* згенеровано:

11. У файлі *LightController.sch* реалізувати пам'ять стану автомата, а також – інтегрувати всі його компоненти між собою:

Примітки:

- Всі варіанти завдань мають вимогу реалізувати вхід синхронного скидання(*RESET*). На цьому рівне його легко можна реалізувати.
- 12. Промоделювати роботу автомата:

- 13. Створити Schematic файл верхнього рівня (файл TopLevel.sch в проекті Lab_2 Example).
- 14. На вкладці *Design* менеджера проектів виділити новостворений файл та виконати для нього команду *Set as Top Module* з контекстного меню.
- 15. Виконати команду *Create Schematic Symbol* для файла *LightController.sch* та згенерувати символ.

16. В файлі *TopLevel.sch* реалізувати подільник вхідної частоти та інтегрувати його зі створеним автоматом (використовуючи символ, створений зі схеми автомата):

Примітки:

- Всі варіанти завдань мають вимогу реалізувати вхід скидання *SPEED* або вхід *TEST*. На цьому рівне їх легко можна реалізувати.
- 17. Запустіть симулятор для файла *TopLevel.sch.* Встановіть період 83ns (12MHz) для сигналу *CLOCK*:

18. Встановіть значення *2s* для часу симуляції та виконайте симуляцію системи вцілому з різними значеннями сигналів *MODE/RESET/SPEED/TEST*:

Примітки:

- Якщо симуляція триває занадто довго то можна тимчасово(на час симуляції) зменшити значення подільника вхідної частоти і час симуляції.
- 19. Додати файл *Constraints.ucf* та призначити виводам схеми фіхзичні виводи цільової FPGA. *Додаток-1* містить таблиці відповідності між позначеннями в оригінальному *UCF* файлі (elbertv2.ucf) і елементами на стенді *Elbert V2 Spartan 3A FPGA*, а також малюнок з розміщенням елементів на платі.
 - Перейти на вклвдку *Design*, відкрити створений файл і скопіювати до нього вміст elberty2.ucf.

```
#***
                           UCF for ElbertV2 Development Board
10 #************
11 CONFIG VCCAUX = "3.3";
12
  # Clock 12 MHz
                    LOC = P129 | IOSTANDARD = LVCMOS33 | PERIOD = 12MHz;
14
15
  16
18
19
    NET "OUT BUS (0) "
                     LOC = P46
                           | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
20
    NET "OUT_BUS(1)"
                     LOC = P47
                           | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
21
    NET "OUT_BUS(2)"
                     LOC = P48
                           | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
                     LOC = P49
    NET "OUT BUS (3) "
                           | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
23
24
  25
  28
               LOC = P70 | PULLUP | IOSTANDARD = LVCMOS33 | SLEW = SLOW | DRIVE = 12;
29
30
```

- У файлі закоментувати або видалити все, крім наступних розділів:
 - о Розділ глобальних налаштувань (Clk, VCCAUX).
 - o LED.
 - o DP Switches.
- Перейти до розділу *LED*. Переіменувати *LED[0], LED[1], LED[2]* і *LED[3]* на *OUT_BUS(0), OUT_BUS(1), OUT_BUS(2)* і *OUT_BUS(3),* відповідно до назв виходів на схемі. Решту виводів закоментувати.
- Перейти до розділу *DP Switches*. Переіменувати *DPSwitch[o]* на *MODE*, відповідно до назв входів на схемі. Решту виводів закоментувати.

- 20. Згенерувати бінарний файл та запрограмувати стенд.
- 21. Перевірити роботу системи на стенді. Змінюючи положення *DIP* перикача #8 переконатись що автомат перемикається між інкрементним да декрементним режимами роботи.

Додаток – 1.

Розміщення елементів на стенді:

- 1. Світлодіоди D1-D8. Конфігурацію виводів FPGA, до яких приєднано світлодіоди, описано в розділі LED оригінального UCF файла (elbertv2.ucf). Світлодіоди вмикаються подачею логічної «1» на відповідний вивід FPGA.
- 2. Регістр з 8 *DIP* перемикачів. В положенні *ON* перемикач приєднує вивід *FPGA* до *GND*. В положенні *OFF* коло розірване і вивід нікуди не підключений. Конфігурацію виводів *FPGA*, до яких приєднано світлодіоди, описано в розділі *DP Switches* оригінального *UCF* файла (elberty2.ucf).
 Оскільки *UCF* конфігурує виводи як *PULL UP* то положення *ON* (вивід приєднано до *GND*) буде сприйматись як логічний «0», а положення *OFF* (коло розірване, проте вивід підтягнутий до *VDD* за допомогою внутрішнього резистора), буде сприйматись як логічна «1».
- 3. 5 кнопок PUSH BUTTON. В положенні ON перемикач приєднує вивід FPGA до GND. В положенні OFF коло розірване і вивід нікуди не підключений. Конфігурацію виводів FPGA, до яких приєднано світлодіоди, описано в розділі Switches оригінального UCF файла (elbertv2.ucf).
 Оскільки UCF конфігурує виводи як PULL UP то положення ON (вивід приєднано до GND) буде сприйматись як логічний «0», а положення OFF (коло розірване, проте вивід підтягнутий до VDD за допомогою внутрішнього резистора), буде сприйматись як логічна «1».
- 4. Мікроконтролер, який призначений для програмування стенда і генерування тактового сигналу для *FPGA*. Частота генерованого тактового сигналу становить 12MHz. Конфігурацію виводу *FPGA*, до якого приєднано сигнал *Clk* від мікроконтролера, описано в розділі *UCF for ElbertV2 Development Board* оригінального *UCF* файла (elbertv2.ucf).

Більше інформації та схему електричну принципову можна знайти за наступрим посиланням:

 $\underline{https://numato.com/product/elbert-v2-spartan-3a-fpga-development-board}$

Таблиці відповідності між позначеннями в оригінальному UCF файлі (elbertv2.ucf) і елементами на стенді Elbert V2 – Spartan 3A FPGA.

Розділ *LED*

Позначення в UCF файлі	Маркування на стенді Elbert V2
LED[0]	D8
LED[1]	D7
LED[2]	D6
LED[3]	D5
LED[4]	D4
LED[5]	D3
LED[6]	D2
LED[7]	D1

Розділ *DP Switches*

Позначення в UCF файлі	Маркування на стенді Elbert V2
DPSwitch[0]	P7[8]
DPSwitch[1]	P7[7]
DPSwitch[2]	P7[6]
DPSwitch[3]	P7[5]
DPSwitch[4]	P7[4]
DPSwitch[5]	P7[3]
DPSwitch[6]	P7[2]
DPSwitch[7]	P7[1]