Lista de Exercícios 2

May 7, 2021

Notação: Sempre que usarmos I, estamos nos referindo a um intervalo (e.g. (a,b), ou [a,b]...).

Questão 1. Dê uma demonstração de que $f'' \ge 0 \implies f$ convexa usando a fórmula de Taylor com resto de Lagrange.

Questão 2. Seja $f:I\to\mathbb{R}$ onde I é um intervalo. Prove que todo mínimo local $c\in I$ é um mínimo global em I

Questão 3. Sejam $f, g: I \to \mathbb{R}$ duas vezes deriváveis no ponto $a \in \text{int} I$. Se f(a) = g(a), f'(a) = g'(a) e $f(x) \ge g(x)$ para todo $x \in I$. Prove que $f''(a) \ge g''(a)$.

Questão 4. Seja $f: I \to \mathbb{R}$ de classe C^{∞} em I. Suponha que exista K > 0 tal que $|f^{(n)}(x)| \le K$ para todo $x \in I$ e todo $n \in \mathbb{N}$. Prove que, para $x_0, x \in I$ quaisquer, vale

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

Questão 5. Seja f dada por

$$f(x) := \begin{cases} e^{-1/x^2}, & \text{se } x \neq 0, \\ 0, & \text{se } x = 0. \end{cases}$$

Calcule a série de Taylor de f centrada em 0. Mostre que a série não converge para f, i.e. $f(x) \neq \sum_{n=0}^{\infty} \frac{f^{(n)(0)}}{n!} x^n$.

Questão 6. Seja f contínua em [a,b] e duas vezes derivável em (a,b). Sejam A:=(a,f(a)) e B:=(b,f(b)). Suponha que se o segmento de reta ligando A e B intersecta o gráfico da f num terceiro ponto (diferente de A e B), então existe $c \in (a,b)$ tal que f''(c)=0

Questão 7. Sejam $P,Q \in \mathcal{P}[a,b]$ e f uma função limitada em [a,b]. Prove que se $P \subset Q$, então

$$I(f;P) \le I(f;Q) \le S(f;Q) \le S(f;P).$$

Questão 8. Prove que se modificarmos uma função integrável f num conjunto enumerável, então a integral pode deixar de existir.

Questão 9. Sejam $f, g : [a, b] \to \mathbb{R}$ contínuas. Prove que f = 0 para todo $x \in [a, b]$ se alguma das seguintes condições é satisfeita:

1

- a) $\int_{a}^{b} |f(x)| dx = 0;$
- b) $\int_x^y f(s)ds = 0$ para todo $x, y \in [a, b]$;

- c) $\int_a^b f(x)g(x)dx=0$ para toda função g;
- d) $\int_a^b f(x)g(x)dx = 0$ para toda função g que satisfaz g(a) = g(b) = 0.

References

Elon Lages Lima. Análise real. Impa, 2004.