Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) A compound of formula (I)

$$R^2$$
 R^3
 R^4
 R^4
 R^4

or a salt thereof;

where X is O, or S, S(O), S(O)₂ or NR^6 where R^6 is hydrogen or C_{1-6} alkyl;

R⁵ is a group of sub-formula (iii) or (v)

where R⁸⁰ is a group of sub-formula (II)

$$(CH_2)_{s'}$$
 X^{12} $(CH_2)_{q'}$ R^{70} R^{99} (II)

where q' is 0, 1, 2, 3 or 4;

s' is 0 or 1;

 X^{12} is C(O) or $S(O_2)$,

R⁷⁰ is C₃₋₇cycloalkyl,

or R⁷⁰ is of the Formula (III):

more groups of the Formula (IV):

wherein J is aryl, heteroaryl or heterocyclyl and K is a bond, oxy, imino, N-(C₁₋₆alkyl)imino, oxyC₁₋₆alkylene, iminoC₁₋₆alkylene, N-(C₁₋₆alkyl)iminoC₁₋₆alkylene, -NHC(O)-, -SO₂NH-, -NHSO₂- or -NHC(O)-C₁₋₆alkylene-,

or -NHC(O)-C₁₋₆alkylene-, and any aryl, heteroaryl or heterocyclyl group in a R⁷⁰ group is optionally substituted by one or more groups selected from hydroxy, oxo, halo, trifluoromethyl, cyano, mercapto, nitro, amino, carboxy, carbamoyl, formyl, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, -O-(C₁₋₃alkyl)-O-, C₁₋₆alkylS(O)_n- wherein n is 0-2, *N*-C₁₋₆alkylamino, *N*,*N*-(C₁₋₆alkyl)₂amino, C₁₋₆alkoxycarbonyl, *N*-C₁₋₆alkylcarbamoyl, *N*,*N*-(C₁₋₆alkyl)₂carbamoyl, C₂₋₆alkanoyl, C₁₋₆alkanoyloxy, C₁₋₆alkanoylamino, *N*-C₁₋₆alkylsulphamoyl, *N*,*N*-(C₁₋₆alkyl)₂sulphamoyl, C₁₋₆alkylsulphonylamino and C₁₋₆alkylsulphonyl-*N*-(C₁₋₆alkyl)amino, or any aryl, heteroaryl or heterocyclyl group in a R⁷⁰ group is optionally substituted with one or

$$-B^{-1}(CH_2)_{p}-A^{-1}$$
 (IV)

wherein A^1 is halo, hydroxy, C_{1-6} alkoxy, cyano, amino, $N-C_{1-6}$ alkylamino, $N,N-(C_{1-6}$ alkyl)₂amino, carboxy, C_{1-6} alkoxycarbonyl, carbamoyl, $N-C_{1-6}$ alkylcarbamoyl or $N,N-(C_{1-6}$ alkyl)₂carbamoyl, p is 1 - 6, and B^1 is a bond, oxy, imino, $N-(C_{1-6}$ alkyl)imino or -NHC(O)-, with the proviso that p is 2 or more unless B^1 is a bond or -NHC(O)-;

or any aryl, heteroaryl or heterocyclyl group in a R⁷⁰ group is optionally substituted with one or more groups of the Formula (V):

$$--E$$
 $-D$ 1 (V)

wherein D¹ is aryl, heteroaryl or heterocyclyl and E¹ is a bond, C_{1-6} alkylene, oxy C_{1-6} alkylene, oxy, imino, N-(C_{1-6} alkyl)imino, imino C_{1-6} alkylene, N-(C_{1-6} alkyl)-imino C_{1-6} alkylene,

C₁₋₆alkylene-oxyC₁₋₆alkylene, C₁₋₆alkylene-iminoC₁₋₆alkylene,

C₁₋₆alkylene-N-(C₁₋₆alkyl)-iminoC₁₋₆alkylene, -NHC(O)-, -NHSO₂-, -SO₂NH- or

-NHC(O)- C_{1-6} alkylene-, and any aryl, heteroaryl or heterocyclyl group in a R^{70} group is optionally substituted with one or more groups selected from hydroxy, halo, C_{1-6} alkyl, C_{1-6} alkoxy, carboxy, C_{1-6} alkoxycarbonyl, carbamoyl, N- C_{1-6} alkylcarbamoyl, N- C_{1-6} alkyl C_{1-6} a

and any C_{3-7} cycloalkyl or heterocyclyl group in a R^{70} group is optionally substituted with one or two oxo or thioxo substituents,

and any of the R^{70} groups defined hereinbefore which comprises a CH_2 group which is attached to 2 carbon atoms or a CH_3 group which is attached to a carbon atom may optionally bear on

each said CH_2 or CH_3 group a substituent selected from hydroxy, amino, C_{1-6} alkoxy, $N-C_{1-6}$ alkylamino, $N,N-(C_{1-6}$ alkyl)₂amino and heterocyclyl; or R^{70} may be cycloalkenyl;

and R^{99} is hydrogen or a group $C(O)R^{70}$ where R^{70} is as defined above; and

 R^{81} is hydrogen, halo, C_{1-4} alkoxy, cyano, trifluoromethyl, or phenyl, and R^1 , R^2 , R^3 , R^4 are independently selected from halogeno, cyano, nitro, C_{1-3} alkylsulphanyl, $-N(OH)R^7$ - wherein R^7 is hydrogen, or C_{1-3} alkyl, or R^9X^1 - wherein X^1 represents a direct bond, -O-, $-CH_2$ -, -OC(O)-, -C(O)-, -S-, -SO-, $-SO_2$ -, $-NR^{10}C(O)$ -, $-C(O)NR^{11}$ -, $-SO_2NR^{12}$ -, $-NR^{13}SO_2$ - or $-NR^{14}$ -, wherein R^{10} , R^{11} , R^{12} , R^{13} and R^{14} each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl, provided that at least one of R^1 , R^2 , R^3 and R^4 is a group R^9X^1 - and R^9 is selected from one of the following groups: provided that at least one of R^2 or R^3 is other than hydrogen;

- 1) hydrogen or C₁₋₅alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, oxiranyl, fluoro, chloro, bromo and amino;
- 2) $-R^aX^2C(O)R^{15}$ wherein X^2 represents -O- or $-NR^{16}$ in which R^{16} represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl and R^{15} represents C_{1-3} alkyl, $-NR^{17}R^{18}$ or $-OR^{19}$ wherein R^{17} , R^{18} and R^{19} which may be the same or different each represents hydrogen, C_{1-5} alkyl, hydroxy C_{1-5} alkyl; C_{1-3} alkoxy C_{2-3} alkyl;
- 3) $-R^b X^3 R^{20}$ wherein X^3 represents -O-, C(O) -S-, $-SO_-$, $-SO_2$ -, -OC(O)-, $-NR^{21}C(O)_s$ -, $-C(O)NR^{22}$ -, $-SO_2NR^{23}$ -, $-NR^{24}SO_2$ or $-NR^{25}$ wherein R^{21} , R^{22} , R^{23} , R^{24} and R^{25} each independently represents hydrogen, C_{1-3} alkyl, hydroxy C_{1-4} alkyl or C_{1-3} alkoxy C_{2-3} alkyl and s is 1 or 2 and R^{20} represents hydrogen, C_{1-6} alkyl, C_{2-6} alkenyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl or a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C_{1-6} alkyl group may bear 1, 2 or 3 substituents selected from oxo, hydroxy, halogeno, cyclopropyl, amino, C_{1-4} alkylamino, C_{1-4} alkoxylamino, C_{1-4} alkylthio, C_{1-4} alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C_{1-4} cyanoalkyl, C_{1-4} alkyl, C_{1-4} alkoxycarbonyl, C_{1-4} alkoxy, C_{1-4} alkylamino, di(C_{1-4} alkylsulphonyl C_{1-4} alkyl, C_{1-4} alkoxycarbonyl, C_{1-4} alminoalkyl, C_{1-4} alkylamino, di(C_{1-4} alkyl)amino, C_{1-4} alkylamino C_{1-4} alkylamino, di(C_{1-4} alkyl)amino, di(C_{1-4} alkyl

- 4) -R°X⁴R° X⁵R²⁶ wherein X⁴ and X⁵ which may be the same or different are each -O-, C(O), -S-, -SO-, -SO₂-, -NR²⁷C(O)_s-, -C(O)_sNR²⁸-, -SO₂NR²⁹-, -NR³⁰SO₂- or -NR³¹- wherein R²⁷, R²⁸, R²⁹, R³⁰ and R³¹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl and s is 1 or 2 and R²⁶ represents hydrogen, C₁₋₃alkyl, hydroxyC₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl; 5) R³² wherein R³² is a 4-6-membered cycloalkyl or saturated heterocyclic ring, linked via carbon or nitrogen, with 1-2 heteroatoms, selected independently from O, S and N, which cycloalkyl or heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄alkyl, hydroxyC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl, cyalocyanoC₁₋₄alkyl, cyclopropyl, C_{1-4} alkylsulphonyl C_{1-4} alkyl, C_{1-4} alkoxycarbonyl, carboxamido, C_{1-4} aminoalkyl, C_{1-4} alkylamino, $di(C_{1-4}alkyl)amino, C_{1-4}alkylaminoC_{1-4}alkyl, C_{1-4}alkanoyl, di(C_{1-4}alkyl)aminoC_{1-4}alkyl,$ C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy, nitro, amino, C₁₋₄alkoxy, C₁₋₄hydroxyalkoxy, carboxy, trifluoromethyl, -C(O)NR³⁸R³⁹, -NR⁴⁰C(O)R⁴¹, wherein R³⁸, R³⁹, R⁴⁰ and R^{41} , which may be the same or different, each represents hydrogen, C_{1-4} alkyl, hydroxyC₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl, and a group -(-O-)_f(C₁₋₄alkyl)_gringD wherein f is 0 or 1, g is 0 or 1 and ring D is a cyclic group selected from C₃₋₆cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C₁₋₄alkyl;
- 6) -R^dR³² wherein R³² is as defined hereinbefore;
- 7) -ReR32 wherein R32 is as defined hereinbefore:
- 8) -Rf R32 wherein R32 is as defined hereinbefore:
- 9) R³³ wherein R³³ represents a pyridone group, a phenyl group or a 5-6-membered aromatic heterocyclic group, linked via carbon or nitrogen, with 1-3 heteroatoms selected from O, N and S, which pyridone, phenyl or aromatic heterocyclic group may carry up to 5 substituents selected from hydroxy, nitro, halogeno, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, oxo, cyanoC₁₋₄alkyl, cyclopropyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, C₁₋₄alkanoyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, carboxy, carboxamido, trifluoromethyl, cyano, -C(O)NR³⁸R³⁹, -NR⁴⁰C(O)R⁴¹, wherein R³⁸, R³⁹, R⁴⁰ and R⁴¹, which may be the same or different, each represents hydrogen, C₁₋₄alkyl, hydroxyC₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl, and a group -(-O-)_f(C₁₋₄alkyl)_gringD wherein f is 0 or 1, g is 0 or 1 and ring D is a cyclic group selected from C₃₋₆cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C₁₋₄alkyl;

- 10) -R⁹R³³ wherein R³³ is as defined hereinbefore;
- 11) -RhR³³ wherein R³³ is as defined hereinbefore;
- 12) -Rⁱ R³³ wherein R³³ is as defined hereinbefore;
- 13) $-R^j X^6 R^{33}$ wherein X^6 represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -OC(O)-, -NR^{38'}C(O)-, -C(O)NR^{39'}-, -SO₂NR^{40'}-, -NR^{41'}SO₂- or -NR^{42'}-, wherein R^{38'}, R^{39'}, R^{40'}, R^{41'} and R^{42'} each independently represents hydrogen, C₁₋₃alkyl, hydroxyC₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl, and R³³ is as defined hereinbefore:
- 14) -R^kX⁷R³³ wherein X⁷ represents -O-, C(O), -S-, -SO-, -SO₂-, -NR⁴³C(O)-, -C(O)NR⁴⁴-, -SO₂NR⁴⁵-, -NR⁴⁶SO₂- or -NR⁴⁷-, wherein R⁴³, R⁴⁴, R⁴⁵, R⁴⁶ and R⁴⁷ each independently represents hydrogen, C₁₋₃alkyl, hydroxyC₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl, and R³³ is as defined hereinbefore;
- 15) -R^mX⁸R³³ wherein X⁸ represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -NR⁴⁸C(O)-, -C(O)NR⁴⁹-, -SO₂NR⁵⁰-, -NR⁵¹SO₂- or -NR⁵²-, wherein R⁴⁸, R⁴⁹, R⁵⁰, R⁵¹ and R⁵² each independently represents hydrogen, C₁₋₃alkyl, hydroxyC₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl, and R³³ is as defined hereinbefore;
- 16) -RⁿX⁹R^{n'}R³³ wherein X⁹ represents -O-, -C(O)-, -S-, -SO-, -SO₂-, -NR⁵³C(O)-, -C(O)NR⁵⁴-, -SO₂NR⁵⁵-, -NR⁵⁶SO₂- or -NR⁵⁷-, wherein R⁵³, R⁵⁴, R⁵⁵, R⁵⁶ and R⁵⁷ each independently represents hydrogen, C₁₋₃alkyl, hydroxyC₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl, and R³³ is as defined hereinbefore;
- 17) -R^pX⁹-R^pR³² wherein X⁹ and R³² are as defined hereinbefore:
- 18) C₂₋₅alkenyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C₁₋₄alkylamino, N,N-di(C₁₋₄alkyl)amino, aminosulphonyl, N-C₁₋₄alkylaminosulphonyl and N,N-di(C₁₋₄alkyl)aminosulphonyl;
- 19) C_{2-5} alkynyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro, amino, C_{1-4} alkylamino, N,N-di(C_{1-4} alkyl)amino, aminosulphonyl, N- C_{1-4} alkylaminosulphonyl and N,N-di(C_{1-4} alkyl)aminosulphonyl;
- 20) -R^tX⁹R^tR³² wherein X⁹ and R³² are as defined hereinbefore;
- 21) -R^uX⁹ R^uR³² wherein X⁹ and R³² are as defined hereinbefore; and
- 22) $-R^{v}R^{58}(R^{v'})_{q}(X^{9})_{r}R^{59}$ wherein X^{9} is as defined hereinbefore, q is 0 or 1, r is 0 or 1, and R^{58} is a C_{1-3} alkylene group or a cyclic group selected from cyclopropyl, cyclobutyl, cyclopentylene, cyclohexylene or a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C_{1-3} alkylene group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C_{1-4} alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C_{1-4} cyanoalkyl, C_{1-4} alkyl, C_{1-4} hydroxyalkyl,

C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C_{1-4} alkylamino, di(C_{1-4} alkyl)amino, C_{1-4} alkylamino C_{1-4} alkyl, di(C_{1-4} alkyl)amino C_{1-4} alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)_f(C₁₋₄alkyl)_oringD, wherein f is 0 or 1, g is 0 or 1 and ring D is a cyclic group selected from C₃-cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C₁₋₄alkyl; and R⁵⁹ is hydrogen, C₁₋₃alkyl, or a cyclic group selected from cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C_{1.3}alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, cyano, C₁₋₄cyanoalkyl, C₁₋₄alkyl, C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkoxyC₁₋₄alkyl, C₁₋₄alkylsulphonylC₁₋₄alkyl, C₁₋₄alkoxycarbonyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, C₁₋₄alkylaminoC₁₋₄alkyl, di(C₁₋₄alkyl)aminoC₁₋₄alkyl, C₁₋₄alkylaminoC₁₋₄alkoxy, di(C₁₋₄alkyl)aminoC₁₋₄alkoxy and a group -(-O-)_f(C₁₋₄alkyl)_qringD wherein f is 0 or 1, g is 0 or 1 and D is a cyclic group selected from C₃₋₆cycloalkyl, aryl or 5-6-membered saturated or unsaturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which cyclic group may bear one or more substituents selected from halo and C₁₋₄alkyl; and wherein Ra, Rb, Rb', Rc, Rc', Rd, Rg, Rj, Rn, Rn' Rp, Rp', Rt', Ru', Rv and Rv' are independently

and wherein R^a, R^b, R^c, R^c, R^c, R^c, R^q, R^q and R^q are independently selected from C₁₋₈alkylene groups optionally substituted by one or more substituents selected from hydroxy, halogeno, amino,

R^e R^h, R^k and R^t are independently selected from C₂₋₈alkenylene groups optionally substituted by one or more substituents selected from hydroxy, halogeno, amino, and R^t may additionally be a bond; and

 R^f , R^i , R^m and R^u are independently selected from by C_{2-8} alkynylene groups optionally substituted by one or more substituents selected from hydroxy, halogeno, amino; and where a functional group is selected from nitro, cyano, halo, oxo, $=CR^{78}R^{79}$, $C(O)_xR^{77}$, OR^{77} , $S(O)_yR^{77}$, $NR^{78}R^{79}$, $C(O)NR^{78}R^{79}$, $OC(O)NR^{78}R^{79}$, $=NOR^{77}$, $=NR^{77}C(O)_xR^{78}$, $=NR^{77}CONR^{78}R^{79}$, $=NR^{77}CONR^{78}R^{79}$, $=NR^{77}CONR^{78}R^{79}$, $=NR^{77}CONR^{78}R^{79}$, $=NR^{77}CONR^{78}R^{79}$, $=NR^{78}CONR^{78}R^{79}$, $=NR^{78}CONR$

perhaloalkyl, mercapto, alkylthio, hydroxy, carboxy, alkoxy, heteroaryl, heteroaryloxy, cycloalkyl, cycloalkenyl, cycloalkynyl, alkenyloxy, alkynyloxy, alkoxyalkoxy, aryloxy where the aryl group may be substituted by halo, nitro, or hydroxy, cyano, nitro, amino, mono- or di-alkyl amino, oximino or $S(O)_yR^{90}$ where y is 0 or an integer of 1-3 and R^{90} is a alkyl; and wherein hydrocarbyl is selected from alkyl, alkenyl, alkynyl, aryl, aralkyl, cycloalkyl, cycloalkenyl, or combinations thereof.

2-5. (Canceled)

- 6. (Currently amended) A compound according to claim 1 wherein R^1 , R^2 , R^3 , R^4 are independently selected from, halo, cyano, nitro, trifluoromethyl, C_{1-3} alkyl, or other groups from formula - X^1R^9 wherein X^1 represents a direct bond, -O-, -CH₂-, -OCO-, carbonyl, -S-, -SO-, -SO₂-, -NR¹⁰CO-, -CONR¹¹-, -SO₂NR¹²-, -NR¹³SO₂- or -NR¹⁴-, wherein R^{10} , R^{11} , R^{12} , R^{13} and R^{14} each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl, and R^9 is selected from one of the following groups:
- 1') hydrogen or C₁₋₅alkyl which may be unsubstituted or which may be substituted with one or more groups selected from hydroxy, fluoro or amino,
- 2') C_{1-5} alkyl $X^2C(O)R^{15}$ wherein X^2 represents -O- or -NR 16 In which $R^{16}[[1^{15}]]$ represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl and R^{15} represents C_{1-3} alkyl, -NR $^{17}R^{18}$ or -OR 19 wherein R^{17} , R^{18} and R^{19} which may be the same or different each represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl;
- 3') C₁₋₅alkylX³R²⁰ wherein X³ represents -O-, -S-, -SO-, -SO₂-, -OCO-, -NR²¹CO-, -CONR²²-, -SO₂NR²³-, -NR²⁴SO₂- or -NR²⁵-, wherein R²¹, R²², R²³, R²⁴ and R²⁵ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl and R²⁰ represents hydrogen, C₁₋₃alkyl, cyclopentyl, cyclohexyl or a 5-6-membered saturated heterocyclic group with 1-2 heteroatoms, selected independently from O, S and N, which C₁₋₃alkyl group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno and C₁₋₄alkoxy and which cyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C₁₋₄alkyl, C₁₋₄hydroxyalkyl and C₁₋₄alkoxy; 4') C₁₋₅alkylX⁴C₁₋₅alkylX⁵R²⁶ wherein X⁴ and X⁵ which may be the same or different are each -O-, -S-, -SO-, -SO₂-, -NR²⁷CO-, -CONR²⁸-, -SO₂NR²⁹-, -NR³⁰SO₂- or -NR³¹-, wherein R²⁷, R²⁸, R²⁹, R³⁰ and R³¹ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkyl and R²⁶ represents hydrogen or C₁₋₃alkyl;
- 5') R³² wherein R³² is a 5-6-membered saturated heterocyclic group, linked via carbon or nitrogen, with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic

group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C_{1-4} alkyl, C_{1-4} hydroxyalkyl, C_{1-4} alkoxy, C_{1-4} alkoxy, and C_{1-4} alkylsulphonyl C_{1-4} alkyl;

- 6') C₁₋₅alkylR³² wherein R³² is as defined in (5') above;
- 7') C₂₋₅alkenylR³² wherein R³² is as defined in (5') above;
- 8') C₂₋₅alkynylR³² wherein R³² is as defined in (5') above;
- 9') R³³ wherein R³³ represents a pyridone group, a phenyl group or a 5-6-membered aromatic heterocyclic group, linked via carbon or nitrogen, with 1-3 heteroatoms selected from O, N and S, which pyridone, phenyl or aromatic heterocyclic group may carry up to 5 substituents on an available carbon atom selected from hydroxy, halogeno, amino, C₁₋₄alkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, carboxy, trifluoromethyl, cyano, -CONR³⁸R³⁹ and –NR⁴⁰COR⁴¹, wherein R³⁸, R³⁹, R⁴⁰ and R⁴¹, which may be the same or different, each represents hydrogen, C₁₋₄alkyl or C₁₋₃alkoxyC₂₋₃alkyl;
- 10') C₁₋₅alkylR³³ wherein R³³ is as defined in (9') above;
- 11') C₂₋₅alkenylR³³ wherein R³³ is as defined in (9') above;
- 12') C₂₋₅alkynylR³³ wherein R³³ is as defined in (9') above;
- 13') C₁₋₅alkylX⁶R³³ wherein X⁶ represents -O-, -S-, -SO-, -SO₂-, -NR³⁸'CO-, -CONR³⁹-, -SO₂NR⁴⁰'-, -NR⁴¹'SO₂- or -NR⁴²'-, wherein R³⁸', R³⁹', R⁴⁰', R⁴¹' and R⁴²' each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl, and R³³ is as defined hereinbefore; 14') C₂₋₅alkenylX⁷R³³ wherein X⁷ represents -O-, -S-, -SO-, -SO₂-, -NR⁴³CO-, -CONR⁴⁴-, -SO₂NR⁴⁵-, -NR⁴⁶SO₂- or -NR⁴⁷-, wherein R⁴³, R⁴⁴, R⁴⁵, R⁴⁶ and R⁴⁷ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl, and R³³ is as defined hereinbefore; 15') C₂₋₅alkynylX⁸R³³ wherein X⁸ represents -O-, -S-, -SO-, -SO₂-, -NR⁴⁸CO-, -C(O)NR⁴⁹-, -SO₂NR⁵⁰-, -NR⁵¹SO₂- or -NR⁵²-, wherein R⁴⁸, R⁴⁹, R⁵⁰, R⁵¹ and R⁵² each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl, and R³³ is as defined hereinbefore; 16') C₁₋₃alkylX⁹C₁₋₃alkylR³³ wherein X⁹ represents -O-, -S-, -SO-, -SO₂-, -NR⁵³CO-, -C(O)NR⁵⁴-, -SO₂NR⁵⁵-, -NR⁵⁶SO₂- or -NR⁵⁷-, wherein R⁵³, R⁵⁴, R⁵⁵, R⁵⁶ and R⁵⁷ each independently represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl, and R³³ is as defined hereinbefore; and 17') C₁₋₃alkylX⁹C₁₋₃alkylR³² wherein X⁹ and R³² are as defined in (5') above, provided that at least one of R² or R³ is other than hydrogen.
- 7. (Previously presented) A compound according to claim 1, where R^1 is hydrogen and R^4 is hydrogen, halo, C_{1-4} alkyl or C_{1-4} alkoxy.
- 8-9. (Canceled)

- 10. (Previously presented) A compound according to claim 1 or claim 7 wherein R^3 is a group X^1R^9 where X^1 is oxygen.
- 11. (Cancelled)
- 12. (Previously presented) A compound according to claim 7 wherein R⁹ is selected from a group (1), (3), (6) or (10).
- 13. (Previously presented) A compound according to claim 12 wherein X is NH or O.
- 14-17. (Canceled)
- 18. (Previously presented) A compound according to claim 13 wherein R⁵ is a group of formula (iii).

19-20. (Canceled)

21. (Previously presented) A compound according to claim 13 wherein R⁸⁰ is a group of sub formula (II) which is a group of formula (IIA)

$$(CH_2)_{s'}$$
 N $(CH_2)_{q'}$ R^{70} (IIA)

where q' is 0, 1, 2, 3 or 4;

s' is 0 or 1;

R⁷⁰ is C₃₋₇cycloalkyl,

or R⁷⁰ is of the Formula (III):

wherein J is aryl, heteroaryl or heterocyclyl and K is a bond, oxy, imino, N-(C₁₋₆alkyl)imino, oxyC₁₋₆alkylene, iminoC₁₋₆alkylene, N-(C₁₋₆alkyl)iminoC₁₋₆alkylene, -NHC(O)-, -SO₂NH-, -NHSO₂-or -NHC(O)-C₁₋₆alkylene-,

and any aryl, heteroaryl or heterocyclyl group in a R⁷⁰ group is optionally substituted by one or more groups selected from hydroxy, oxo, halo, trifluoromethyl, cyano, mercapto, nitro, amino,

carboxy, carbamoyl, formyl, sulphamoyl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} alkoxy, $-O-(C_{1-3}$ alkyl)-O-, C_{1-6} alkylS($O)_n$ - wherein n is 0-2, $N-C_{1-6}$ alkylamino, $N,N-(C_{1-6}$ alkyl)₂amino, C_{1-6} alkoxycarbonyl, $N-C_{1-6}$ alkylcarbamoyl, $N,N-(C_{1-6}$ alkyl)₂carbamoyl, C_{2-6} alkanoyl, C_{1-6} alkanoyloxy, C_{1-6} alkanoylamino, $N-C_{1-6}$ alkylsulphamoyl, $N,N-(C_{1-6}$ alkyl)₂sulphamoyl, C_{1-6} alkylsulphonylamino and C_{1-6} alkylsulphonyl- $N-(C_{1-6}$ alkyl)amino, or any aryl, heteroaryl or heterocyclyl group in a R^{70} group is optionally substituted with one or more groups of the Formula (IV):

$$-B^{-1}(CH_2)_{p}-A^{-1}$$
 (IV)

wherein A^1 is halo, hydroxy, C_{1-6} alkoxy, cyano, amino, $N-C_{1-6}$ alkylamino, $N,N-(C_{1-6}$ alkyl)₂amino, carboxy, C_{1-6} alkoxycarbonyl, carbamoyl, $N-C_{1-6}$ alkylcarbamoyl or $N,N-(C_{1-6}$ alkyl)₂carbamoyl, p is 1 - 6, and B^1 is a bond, oxy, imino, $N-(C_{1-6}$ alkyl)imino or -NHC(O)-, with the proviso that p is 2 or more unless B^1 is a bond or -NHC(O)-;

or any aryl, heteroaryl or heterocyclyl group in a R⁷⁰ group is optionally substituted with one or more groups of the Formula (V):

$$--E$$
 $\frac{1}{D}$ $\frac{1}{(V)}$

wherein D^1 is aryl, heteroaryl or heterocyclyl and E^1 is a bond, C_{1-6} alkylene, oxy C_{1-6} alkylene, oxy, imino, N- $(C_{1-6}$ alkyl)imino, imino C_{1-6} alkylene, N- $(C_{1-6}$ alkyl)-imino C_{1-6} alkylene,

 C_{1-6} alkylene-oxy C_{1-6} alkylene, C_{1-6} alkylene-imino C_{1-6} alkylene,

C₁₋₆alkylene-N-(C₁₋₆alkyl)-iminoC₁₋₆alkylene, -NHC(O)-, -NHSO₂-, -SO₂NH- or

-NHC(O)- C_{1-6} alkylene-, and any aryl, heteroaryl or heterocyclyl group in a R^{70} group is optionally substituted with one or more groups selected from hydroxy, halo, C_{1-6} alkyl, C_{1-6} alkoxy, carboxy, C_{1-6} alkoxycarbonyl, carbamoyl, N- C_{1-6} alkylcarbamoyl, N- C_{1-6} alkylamino and N, N- C_{1-6} alkyl $)_2$ amino,

and any C_{3-7} cycloalkyl or heterocyclyl group in a R^{70} group is optionally substituted with one or two oxo or thioxo substituents,

and any of the R^{70} groups defined hereinbefore which comprises a CH_2 group which is attached to 2 carbon atoms or a CH_3 group which is attached to a carbon atom may optionally bear on each said CH_2 or CH_3 group a substituent selected from hydroxy, amino, C_{1-6} alkoxy,

N-C₁₋₆alkylamino, N,N-(C₁₋₆alkyl)₂amino and heterocyclyl; or R^{70} may be cycloalkenyl.

22. (Previously presented) A compound according to claim 1 or claim 21 wherein R⁸⁰ includes a group R⁷⁰ and said group is phenyl optionally substituted by halo.

23-25. (Cancelled)

26. (Withdrawn) A method for preparing a compound of formula (I) as defined in claim 1, which method comprises reacting a compound of formula (VII)

where R¹′, R²″, R³″, and R⁴′ are equivalent to a group R¹, R², R³ and R⁴ as defined in relation to formula (I), and R⁸⁵ is a leaving group, with a compound of formula (VIII)

where X and R⁵ are as defined in relation to formula (I).

27-28. (Canceled)

- 29. (Previously presented) A pharmaceutical composition comprising a compound according to any one of claims 1, 7, 12, 18, 21 or 32 or salt thereof, in combination with a pharmaceutically acceptable carrier.
- 30. (Canceled)
- 31. (Previously presented) A compound according to claim 1 wherein both R¹ and R⁴ are hydrogen.
- 32. (Previously presented) A compound according to claim 12 wherein one of R² or R³ is 3-morpholinopropoxy.

33-36. (Cancelled)

37. (Previously presented) A method for treating colorectal or breast cancer in a warm blooded animal, such as man, in need of such treatment, which comprises administering to said animal an effective amount of a compound according to claim 1, or salt thereof.