x_1	x_2
1.2	1.2
3.2	5.4
4.3	6.4
3.2	5.4
:	

X_1	x_2
1.2	1.2
3.2	5.4
4.3	6.4
3.2	5.4

x_1	x_2
1.2	1.2
3.2	5.4
4.3	6.4
3.2	5.4

Mean

Center the data

$$u_{j} = \frac{1}{n} \sum_{i=1}^{n} x_{j}^{(i)} \longrightarrow x_{j}^{(i)} \leftarrow x_{j}^{(i)} - \mu_{j}$$

x_1	x_2
1.2	1.2
3.2	5.4
4.3	6.4
3.2	5.4

Mean

Center the data

$$u_{j} = \frac{1}{n} \sum_{i=1}^{n} x_{j}^{(i)} \longrightarrow x_{j}^{(i)} \leftarrow x_{j}^{(i)} - \mu_{j}$$

x_1	x_2
1.2	1.2
3.2	5.4
4.3	6.4
3.2	5.4

Data can be **projected**On axis of highest variation: u_1

x_1	X_2
1.2	1.2
3.2	5.4
4.3	6.4
3.2	5.4

Data can be **projected**On axis of highest variation: u_1

$x_1 \mid x_2$	2 1.2	2 5.4	3 6.4	2 5.4	
x_1	1.2	3.2	4.3	3.2	

Dataset

x_1	x_2
1.2	1.2
3.2	5.4
4.3	6.4
3.2	5.4

Error can be computed from distances in direction of u_2

How do we find u_1 and u_2 ?

U, S, Vt = np.linalg.svd(data_centered)

What's the Major Axis (Direction) of Variation?

x_1	x_2
1.2	1.2
3.2	5.4
4.3	6.4
3.2	5.4

What's the Major Axis (Direction) of Variation?

x_1	x_2
1.2	1.2
3.2	5.4
4.3	6.4
3.2	5. 4

What's the Major Axis (Direction) of Variation?

x_1	x_2
1.2	1.2
3.2	5.4
4.3	6.4
3.2	5.4

What's the Major Axis (Direction) of Variation?

x_1	x_2
1.2	1.2
3.2	5.4
4.3	6.4
3.2	5.4

What's the Major Axis (Direction) of Variation?

x_1	x_2
1.2	1.2
3.2	5.4
4.3	6.4
3.2	5.4

Maximize Variance of Projections

Maximize
s.t.
$$||u||_2 = 1$$

$$= \frac{1}{n} \sum_{i=1}^n \left(x^{(i)^T} u \right)^2$$

$$= \frac{1}{n} \sum_{i=1}^n u^T x^{(i)} x^{(i)T} u$$

$$= u^T \left(\frac{1}{n} \sum_{i=1}^n x^{(i)} x^{(i)T} \right) u.$$
Covariance

Matrix

$$\max_{\|u\|=1} u^T \sum u$$

Dataset

x_1	x_2
1.2	1.2
3.2	5.4
4.3	6.4
3.2	5.4

Lagrange Multipliers

$$L(u,\lambda) = u^T \Sigma u - \lambda (u^T u - 1)$$

$$\frac{\partial L}{\partial u} = 2\Sigma u - 2\lambda u = 0$$

$$\Sigma u = \lambda u$$

To Maximize Variance of Projections

Solve

$$\Sigma u = \lambda u$$

Derive The SVD decomposition of Σ

x_1	x_2
1.2	1.2
3.2	5.4
4.3	6.4
3.2	5.4

To Maximize Variance of Projections

Solve

$$\Sigma u = \lambda u$$

Given $x \in R^d$, project on lower dimensions R^k

$$y^{(i)} = \begin{bmatrix} u_1^T x^{(i)} \\ u_2^T x^{(i)} \\ \vdots \\ u_k^T x^{(i)} \end{bmatrix} \in \mathbb{R}^k$$

x_1	x_2
1.2	1.2
3.2	5.4
4.3	6.4
3.2	5.4

To Maximize Variance of Projections

Solve

$$\Sigma u = \lambda u$$

Percentage of Variance Preserved

$$\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{d} \lambda_i} \times 100$$

x_1	x_2
1.2	1.2
3.2	5.4
4.3	6.4
3.2	5.4