

Course > Week 1 > Proble... > Proble...

Problem: Discrete Display

Discrete Systems

0.0/20.0 points (graded)

For a univariate dynamic system $\dot{x} = f(x)$ we have seen via graphical analysis that x^* is a locally stable equilibrium if the following conditions hold

1.
$$f(x^*) = 0$$

2.
$$\frac{\partial f}{\partial x}(x^*) < 0$$

Otherwise stated, that f(x) has a zero-crossing at x^* with negative slope.

Now, consider a simple discretization of this continuous system, where for some fixed time step \boldsymbol{h} we have:

$$x\left[k+1
ight]=x\left[k
ight]+hf\left(x\left[k
ight]
ight)$$

For arbitrary h, the two conditions above are *not* sufficient for stability of the discrete system. Provide a counterexample demonstrating this by giving values for x_star , f(x), and h below.

```
1 syms x

2 x_star =

3 h =

4 f =

5
```

Unanswered

Run Code

Find the upper bound h^* such that all $h < h^*$ results in a stable discrete system. Write your answer in terms of G, where $G = \left| \frac{\partial f}{\partial x}(x^*) \right| > 0$

Submit

You have used 0 of 3 attempts

© All Rights Reserved