UMA205: Introduction to Algebraic Structures

Naman Mishra

January 2024

Contents

.1 In Other Rings	
IThe Study of Primes7I.1Arithmetic Functions7	Lecture
Corollary .0.1. Let $a, b \in \mathbb{Z}$. If $(a, b) = (d)$, then $d = \gcd(a, b)$.	21: Wed 28 Feb
<i>Proof.</i> Since $a,b\in(d)$, d is a common divisor of both a and b . Let c be another common divisor. Then $c\mid ax+by$, so $c\mid d$. Thus d is the greatest common divisor. \Box	'24
Notation. We will write (a,b) for the gcd of a and b . Whether this refers to the gcd or the ideal will (should) be clear from the context.	
Definition .0.2 (Coprime). Two integers are said to be <i>coprime</i> if their only common divisors are ± 1 .	
Thus a and b are coprime iff $(a,b)=1$. There is a generalization of this to other rings, where instead of ± 1 we say that two elements are coprime if their only common divisors are $units$.	
Proposition .0.3. Suppose $(a,b) = 1$ and $a \mid bc$. Then $a \mid c$.	
<i>Proof.</i> There exist x, y such that $ax + by = 1$. Then $c = cax + cby$. But $a \mid cb$, so $a \mid c$.	
Corollary .0.4. If p is a prime and $p \mid bc$, then $p \mid b$ or $p \mid c$. Equivalently, if $p \nmid b$ and $p \nmid c$, then $p \nmid bc$.	
<i>Proof.</i> Since p is a prime, its only divisors are ± 1 and $\pm p$. Thus, either $(p,b)=1$ or $p\mid b$. If $p\mid b$, then we are done. Otherwise, by the previous proposition, $p\mid c$.	
Corollary .0.5. Suppose p is a prime and $a, b \in \mathbb{Z}$. Then $\operatorname{ord}_p(ab) = \operatorname{ord}_p(a) + \operatorname{ord}_p(b)$.	

Proof. Let $\alpha = \operatorname{ord}_p(a)$, $\beta = \operatorname{ord}_p(b)$ so that $a = p^{\alpha}a'$ and $b = p^{\beta}b'$ where $p \nmid a', b'$. Then $ab = p^{\alpha+\beta}a'b'$. By the previous corollary, $p \nmid cd$. Thus $\operatorname{ord}_p(ab) = \alpha + \beta$.

Lemma .0.6 (Existence of prime factorization). Every integer $n \neq 0, \pm 1$ has a prime factorization.

Proof. Let n be the smallest positive integer without a prime factorization. Then n is not prime, so n = ab for some $a, b \in \mathbb{Z}$. But a, b < n have prime factorizations, so n has a prime factorization.

If every positive integer has a prime factorization, then so will the negative of any such integer, by taking an additional factor of -1.

Theorem .0.7 (Fundamental theorem of arithmetic). Every integer $n \neq 0$ has a unique prime factorization.

Proof. Write n as

$$n = (-1)^{\epsilon(n)} \prod_{\substack{p \text{ prime} \\ p>0}} p^{a(p)}.$$

For any prime q, apply ord_q to both sides. Then

$$\operatorname{ord}_q(n) = \epsilon(n)\operatorname{ord}_q(-1) + \sum_{p}^q a(p)\operatorname{ord}_q(p)$$

by corollary .0.5. But by the definition of ord_q , $\operatorname{ord}_q(-1) = 0$ and $\operatorname{ord}_q(p) = \delta_{pq}$. Thus $a(q) = \operatorname{ord}_q(n)$ is uniquely determined.

.1 In Other Rings

Definition .1.1 (Field). A *field* is a commutative ring with identity $1 \neq 0$, where all non-zero elements have multiplicative inverses.

Example. \mathbb{Q} , \mathbb{R} , \mathbb{C} , finite fields \mathbb{F}_q , where q is a prime power.

Definition .1.2 (Ring of polynomials). For a field k, k[x] is the *ring of polynomials* in x with coefficients from k. There is a notion of divisibility in k[x]. We thus write $f \mid g$ if g = fp for some $p \in k[x]$.

A non-constant polynomial p is *irreducible* if $q \mid p$ only when q is constant or a multiple of p.

Examples.

- 3 | 1 + x.
- Linear polynomials are always irreducible.
- $x^2 + 1$ is irreducible in $\mathbb{Q}[x]$ but not in $\mathbb{C}[x]$.

Lemma .1.3. Every non-constant polynomial is a product of irreducible polynomials.

Proof idea. Same as for \mathbb{Z} , but we use induction on the degree of the polynomial.

Definition .1.4 (Monic polynomial). A polynomial is *monic* if its leading coefficient is 1.

Definition .1.5 (Order). Let $f, p \in k[x]$, p irreducible. Then $\operatorname{ord}_p(f) = a$ if $f = p^a q$ for some $q \in k[x]$ and $p \nmid q$.

Theorem .1.6 (Unique factorization of polynomials). Let $f \in k[x]$. Then we can write

$$f = c \prod_{n} p^{a(p)}$$

where the product runs over all monic irreducible polynomials, $a(p) = \operatorname{ord}_p(f)$ and $c \in k$.

Lecture 22: Fri
01 Mar
'24

Definition .1.7 (Integral domain). An *integral domain* is a commutative ring with no zero divisors.

For integral domains, the cancellation law holds. $ac = bc \land c \neq 0 \implies a = b$. Example. \mathbb{Z} , k[x].

Definition .1.8 (Euclidean domain). A *Euclidean domain* is an integral domain R together with a function $\lambda \colon R^* \to \mathbb{N}$ such that if $a, b \in R$ with $b \neq 0$, there exist $c, d \in R$ with a = cb + d, then either d = 0 or $\lambda(d) < \lambda(b)$.

Recall that for $a_1, \ldots, a_n \in R$,

$$(a_1, \dots a_n) = \{x_1 a_1 + \dots x_n a_n \mid x_1, \dots, x_n \in R\}$$

is the ideal generated by a_1, \ldots, a_n .

Definition .1.9 (Principal ideals). If an ideal I can be written as $I = (a_1, \ldots, a_n)$, we say I is *finitely generated*. If I = (a), we say that I is a *principal ideal*. An integral domain is called a *principal ideal domain* (PID) if all finitely generated ideals are principal.

Example. \mathbb{Z} is a PID.

Proposition .1.10. Every Euclidean domain is a principal ideal domain.

Proof. Let I be an ideal in a Euclidean domain R. Consider the set $\{\lambda(b) \mid b \in I^*\} \subseteq \mathbb{N}$. So there exists a minimal element $a \in I^*$ such that $\lambda(a) \leq \lambda(b)$ for all $b \in I^*$.

We claim that $I=(a)=Ra=\{ra\mid r\in R\}$. Since $a\in I$ and I is an ideal, $Ra\subseteq I$. Let $b\in I$. Then there exist $q,r\in R$ such that b=qa+r with r=0 or $\lambda(r)<\lambda(a)$. But $r=b-qa\in I$. Since $\lambda(a)$ is minimal, r=0, which gives $b=qa\in Ra$ and $I\subseteq Ra$.

The converse is false, but it is hard to find a counterexample.

Definition .1.11. Let R be a principal ideal domain.

- For $a \in R$, $b \in R^*$, we say that a divides b (denoted $a \mid b$) if b = ac for some $c \in R$. In other words, $(b) \subseteq (a)$.
- An element $u \in R$ is called a *unit* if $u \mid 1$. In other words, (u) = R.
- Two elements $a, b \in R$ are called associates if a = bu for some unit $u \in R$. In other words, (a) = (b).
- A non-unit $p \in R$ is called a *prime* if $p \neq 0$ and for all $a, b \in R$, $p \mid ab$ only if $p \mid a$ or $p \mid b$. In other words, if $ab \in (p)$, then $a \in (p)$ or $b \in (p)$.

Exercise .1.12. Prove the "in other words" above.

.1.1 Unique factorization for PIDs

- Show that the greatest common divisor of $a, b \in R$ exists and is unique up to associates, and (a, b) = (d).
- We can find for every a and p prime, the $order \operatorname{ord}_p(a)$, which satisfies $\operatorname{ord}_p(ab) = \operatorname{ord}_p(a) + \operatorname{ord}_p(b)$.

Let S be a set of primes in R satisfying

- (i) every prime in R is associate to some prime in S, and
- (ii) no two primes in S are associates.

Theorem .1.13 (Unique factorization theorem). Let R be a principal ideal domain and S be as above. Then for all $a \in R^*$, we can write

$$a = u \prod_{p \in S} p^{e(p)}$$

where $e(p) = \operatorname{ord}_{p}(a)$ and u is a unit. Further, this is unique.

Definition .1.14 (Unique factorization domain). A domain R for which unique factorization holds is called a *unique factorization domain* (UFD).

Examples.

- \mathbb{Z} is a UFD.
- $k[x_1, \ldots, x_n]$ is a UFD but not a PID.
- $\mathbb{Z}[\sqrt{3}i]$ is a ring. It is also an integral domain by virtue of being a subring of \mathbb{C} . $2, 1 \pm \sqrt{3}i$ are primes (absolute value 2 is minimal). The only units are ± 1 , so no two are associates of each other. But $4 = 2 * 2 = (1 + \sqrt{3}i)(1 \sqrt{3}i)$. Thus $\mathbb{Z}[\sqrt{3}i]$ is not a UFD.
- $\mathbb{Z}[\sqrt{7}]$ has $6 = 2 * 3 = (\sqrt{7} + 1)(\sqrt{7} 1)$. But 2 and 3 are not prime! (exercise) $\mathbb{Z}[\sqrt{7}]$ does turn out to be a UFD.

Fact .1.15 (Gauss' conjecture). Let d be a square-free positive integer. Consider $\mathbb{Q}[i\sqrt{d}]$. The subring of algebraic integers in it is a UFD iff d is a Heegner number. That is,

$$d \in \{1, 2, 3, 7, 11, 19, 43, 67, 163\}.$$

If d=1, this subring is $\mathbb{Z}[i]$. But if d=3, it is $\mathbb{Z}[e^{i\pi/3}]$, not $\mathbb{Z}[i\sqrt{3}]$. Examples (UFD).

Lecture 23: Mon 04 Mar '24

- $\mathbb{Z}[i]$, the Gaussian integers.
- $\mathbb{Z}[\omega]$, the *Eisenstein integers*, where $\omega = e^{\frac{2\pi i}{3}}$.

Proposition .1.16. $\mathbb{Z}[i]$ is a Euclidean domain.

Proof. Define $\lambda\colon\mathbb{Z}[i]\to\mathbb{N}$ as $\lambda(a+ib)=a^2+b^2$. Let $\alpha=a+ib,\,\gamma=c+id\neq 0$. Write $\frac{\alpha}{\gamma}=r+is$, where $r,s\in\mathbb{Q}$. Choose $m,n\in\mathbb{Z}$ such that $|r-m|\leq\frac{1}{2}$ and $|s-n|\leq\frac{1}{2}$. Let $\delta=m+in$. Then $\lambda(\frac{\alpha}{\gamma}-\delta)=(r-m)^2+(s-n)^2\leq\frac{1}{2}$. Define $\rho=\alpha-\gamma\delta$, Either $\rho=0$, or

$$\lambda(\rho) = \lambda(\gamma)\lambda\left(\frac{\alpha}{\gamma} - \delta\right)$$

$$\leq \frac{1}{2}\lambda(\gamma)$$

$$< \lambda(\gamma).$$

Corollary .1.17. $\mathbb{Z}[i]$ is a PID and hence a UFD.

Exercise .1.18. Prove that $\mathbb{Z}[\omega]$ is a Euclidean domain.

Chapter I

The Study of Primes

Theorem I.0.1 (Euclid). There are infinitely many primes in \mathbb{Z} .

Proof. Suppose not. Label the positive primes p_1, p_2, \ldots, p_n . Define $N = p_1 p_2 \ldots p_n + 1$. Clearly, N is not divisible by any p_i . But N must be a product of primes. This is a contradiction.

Remark. Check out the proofs of this theorem in Proofs from THE BOOK.

Exercise I.0.2. There are infinitely many monic irreducible polynomials in k[x], assuming k is infinite.

Proof.
$$x + a$$
 for each $a \in k$.

I.1 Arithmetic Functions

- $\nu(n)$ = number of positive divisors of n.
- $\sigma(n) = \text{sum of positive divisors of } n$.
- The Möbius function

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } n \text{ is not square-free} \\ (-1)^{\# \text{ prime factors of } n} & \text{otherwise} \end{cases}$$

• The Euler totient function

$$\phi(n) = \#\{1 \le m \le n \mid \gcd(m, n) = 1\}$$

Examples.

- $\nu(3) = 2$, $\sigma(3) = 4$, $\mu(3) = -1$, $\phi(3) = 2$.
- $\nu(6) = 4$, $\sigma(6) = 12$, $\mu(6) = 1$, $\phi(6) = 2$.
- $\sigma(28) = 56$, since it is a perfect number.

Proposition I.1.1. Write n as $n = p_1^{a_1} p_2^{a_2} \dots p_l^{a_l}$ in terms of its prime factors. Then

(i)
$$\nu(n) = (a_1 + 1)(a_2 + 1) \dots (a_l + 1).$$

(ii)
$$\sigma(n) = (1 + p_1 + \dots p^{a_l}) \dots (1 + p_l + \dots + p_l^{a_l}).$$

Proof. For the first part, every l-tuple (b_1, \ldots, b_l) can be transformed bijectively to a divisor of n.

For the second, write

$$\begin{split} \sigma(n) &= \sum_{d \mid n} d \\ &= \sum_{\substack{0 \le b_i \le a_i \\ 1 \le i \le l}} p_1^{b_1} \dots p_l^{b_l} \\ &= \prod_{i=1}^l \sum_{0 \le b_i \le a_i} p_i^{b_i} \\ &= \prod_{i=1}^l \frac{p_i^{a_i+1} - 1}{p_i - 1}. \end{split}$$

Proposition I.1.2. $\sum_{d|n} \mu(d) = \delta_{n,1}$.

Proof. True for n = 1. For n > 1, write n as $p_1^{a_1} \dots p_l^{a_l}$. Since $\mu(d) = 0$ whenever d is not square-free, we have

$$\sum_{d|n} \mu(d) = \sum_{\substack{b_i \in \{0,1\}\\1 \le i \le l}} \mu(p_1^{b_1} \dots p_l^{b_l})$$

$$= \sum_{k=0}^{l} \binom{l}{k} (-1)^k$$

$$= (1-1)^k$$

$$= 0$$

Definition I.1.3 (Dirichlet convolution). Let $f, g: \mathbb{N}^* \to \mathbb{C}$. Then the *Dirichlet convolution* of f and g is

$$(f \circ g)(n) = \sum_{d|n} f(d)g(\frac{n}{d}) = \sum_{d_1d_2=n} f(d_1)g(d_2)$$

Exercise I.1.4. $(f \circ g) \circ h = f \circ (g \circ h)$.

Let $\varepsilon(n)$ be the multiplicative identity. That is, $\varepsilon(n) = \delta_{n,1}$. Check that $f \circ \varepsilon = \varepsilon \circ f = f$. Let $\mathbb{1}$ be the constant function $\mathbb{1}(n) = 1$ for all n. Then $f \circ \mathbb{1} = \mathbb{1} \circ f = \sum_{d|\cdot} f(d)$.

Lemma I.1.5. $1 \circ \mu = \mu \circ 1 = \varepsilon$.

Proof. First,

$$(1 \circ \mu)(1) = (\mu \circ 1)(1) = \sum_{d|1} \mu(d)$$

= $\mu(1)$
= 1.

For n > 1,

$$(\mathbb{1} \circ \mu)(n) = (\mu \circ \mathbb{1})(n) = \sum_{d|n} \mu(d)$$
$$= 0$$

by proposition I.1.2.

Theorem I.1.6 (Möbius inversion formula). Let $F(n) = \sum_{d|n} f(d)$. Then $f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d})$.

Proof. Note that $F = f \circ 1$. So

$$\sum_{d|\cdot} \mu(d) F\left(\frac{\cdot}{d}\right) = F \circ \mu$$

$$= (f \circ 1) \circ \mu$$

$$= f \circ (1 \circ \mu)$$

$$= f \circ \varepsilon$$

$$= f$$