18.100B Problem Set 4

Due Friday October 6, 2006 by 3 PM

Problems:

- 1) Give an example of an open cover of the set $E = \{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 < 1\} \subseteq \mathbb{R}^2$ which has no finite subcover. (As usual, \mathbb{R}^2 is equipped with standard Euclidean metric.)
- 2) Consider \mathbb{R}^k and let $\|\mathbf{x}\| = (x_1^2 + \dots + x_k^2)^{1/2}$ be the Euclidean norm. Show that if $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x}\| + \|\mathbf{y}\|$ when $\mathbf{x} \neq \mathbf{y}$ and $d(\mathbf{x}, \mathbf{x}) = 0$, then (\mathbb{R}^k, d) is a metric space.

 Are there open sets in \mathbb{R}^k with this new metric d(x, y) that are not open with respect to the Euclidean metric $d_{\text{Euclid}}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|$ on \mathbb{R}^k ? Or vice versa?
- 3) Let X be an infinite set and consider the metric function on X given by d(x,y) = 1 when $x \neq y$ and d(x,x) = 0. Which sets in X are compact?
- 4) Regard \mathbb{Q} , the set of all rational numbers, as a metric space with d(x,y) = |x-y|. Define the set $E = \{x \in \mathbb{Q} : 2 < x^2 < 3\}$. Show that E is closed and bounded in \mathbb{Q} , but that E is not compact. Is E open in \mathbb{Q} ?
- 5) Prove (e.g., by using results from class or Rudin's book) that the union of two compact sets is always compact. Does this assertion also hold for their intersection?
- 6) The terms limit and limit point are often a source of confusion for people not thoroughly accustomed to them. For instance, the constant sequence $\{1, 1, ..., 1, ...\}$ is convergent with limit 1; but as a subset of the real line its values are just equal to the set $\{1\}$, which cannot have a limit point (why?).

To clarify the notions of limit and limit point, prove the following statement: If a convergent sequence in a metric space has infinitely many distinct points, then its limit is a limit point of the set of points of the sequence.

- 7) Find a sequence $\{x_n\}$ with values in [0,1] that has the following property. For every $x \in [0,1]$, we can find a subsequence $\{x_{n_k}\}$ such that $x_{n_k} \to x$ as $k \to \infty$. Hint: Think about the rational numbers between 0 and 1.
- 8) Are closures and interiors of connected sets always connected? (Look at subsets of \mathbb{R}^2 .)

Extra problems:

- 1) Prove that every open set in \mathbb{R} (with its usual metric) is the union of an at most countable collection of disjoint open intervals $(a, b) = \{x \in \mathbb{R} : a < x < b\}$.
 - *Hint:* First show that \mathbb{R} is *separable*. By this we mean that \mathbb{R} contains a countable dense subset. (A subset $E \subseteq X$ of a metric space X is called dense if the closure of E is equal to X, i. e., we have that $\overline{E} = X$.)
- 2) Consider the following variation of problem 7) above. Is it possible to a find a sequence $\{x_n\}$ with values in [0,1] such that, for any $x \in [0,1]$ with $x \neq 1/2$, we can find a subsequence $\{x_{n_k}\}$ with $x_{n_k} \to x$ as $k \to \infty$, but we cannot find a subsequence $\{x_{m_k}\}$ such that $x_{m_k} \to 1/2$ as $k \to \infty$? Justify your answer.
- 3) Let $\{x_n\}$ be a real-valued sequence. Show that at least one of the following statements must be true.
 - a) There exists a subsequence $\{x_{m_k}\}$ such that $x_{m_k} \geq x_{m_{k+1}}$ holds for all $k \geq 1$.
 - b) There exists a subsequence $\{x_{n_k}\}$ such that $x_{n_k} \leq x_{n_{k+1}}$ holds for all $k \geq 1$.

Hint: Is is useful to consider the set $A = \{m \in \mathbb{N} : x_m \ge x_n \text{ for all } n \ge m\}$.