

Mohammed Hannan Capstone Project

Bengali Characters

Accents can exist below the root, on the left or the right, or on both the left and right

There are over 10,000 combinations of root, vowel and consonant accents. The aim is to use approximately 1000 different combinations to be able to classify the other 9000+ combinations.

Model performance

How well are the characters identified?

First Model

	predicted										true	
	root	r_comp	vowel	v_comp	consonant	c_comp	root	r_comp	vowel	v_comp	consonant	c_comp
image_0	72	দ	2	ਿ	2	র্	124	ল	2	ਿ	2	র্
image_1	119	ন্ত	1	of	0	0	119	ম্ভ	1	of	0	0
image_2	132	ल	4	Q	0	0	132	ल	4	Q	0	0
image_3	71	থ	9	ো	2	র্	86	ন্ত	9	ো	0	0
image_4	153	স্প	7	(0	0	0	101	क्ष	7	(0	0	0

Final Model

	predicted										true	
	root	r_comp	vowel	v_comp	consonant	c_comp	root	r_comp	vowel	v_comp	consonant	c_comp
image_0	71	থ	7	()	4	া	71	থ	7	(0	4	্য
image_1	132	朗	0	0	0	0	132	झ	0	0	0	0
image_2	56	ড	2	ਿ	5	Q	56	ড	2	ਿ	5	Q
image_3	115	ম	9	ো	0	0	115	ম	9	ো	0	0
image_4	38	ъ	2	ি	0	0	38	Б	2	ਿੰ	0	0

92.15%
Root prediction accuracy

98.00%

Vowel prediction accuracy

97,84% Consonant prediction accuracy

- Handwriting recognition systems can help digitally input information to streamline operations (bank cheques, postal addresses)
- Can also be used in translation applications

Thanks!

Any questions?

Jetwork Structure

Appendix

```
inputs = Input(shape = (64, 64, 1))
model = Conv2D(filters=32, kernel_size=(3, 3), padding='SAME', activation='relu', input_shape=(64, 64, 1))(inputs)
model = Conv2D(filters=32, kernel_size= (3,3), padding='SAME', activation='relu')(model)
model = BatchNormalization(momentum=0.15)(model)
model = MaxPool2D(pool size=(2, 2))(model)
model = Conv2D(filters=32, kernel_size= (5,5), padding='SAME', activation='relu')(model)
model = BatchNormalization(momentum=0.15)(model)
model = Dropout(rate=0.2)(model)
model = Conv2D(filters=64, kernel size=(3, 3), padding='SAME', activation='relu')(model)
model = BatchNormalization(momentum=0.15)(model)
model = MaxPool2D(pool size=(2, 2))(model)
model = Conv2D(filters=64, kernel_size= (5,5), padding='SAME', activation='relu')(model)
model = BatchNormalization(momentum=0.15)(model)
model = Dropout(rate=0.2)(model)
model = Conv2D(filters=128, kernel size=(3, 3), padding='SAME', activation='relu')(model)
model = BatchNormalization(momentum=0.15)(model)
model = Conv2D(filters=128, kernel_size= (5,5), padding='SAME', activation='relu')(model)
model = BatchNormalization(momentum=0.15)(model)
model = MaxPool2D(pool_size=(2, 2))(model)
model = Dropout(rate=0.2)(model)
model = Flatten()(model)
model = Dense(1024, activation = "relu")(model)
model = Dropout(rate=0.3)(model)
dense = Dense(512, activation = 'relu')(model)
root = Dense(168, activation = 'softmax')(dense)
vowel = Dense(11, activation = 'softmax')(dense)
consonant = Dense(7, activation = 'softmax')(dense)
model = Model(inputs=inputs, outputs=[root, vowel, consonant])
```


Network improvement

12.5

Epoch #

15.0

17.5

train_loss
train_root_loss
train_root_loss
train_consonant_loss
val_train_loss
val_train_root_loss
val_train_root_loss
val_train_consonant_loss

2.5

