Note: In diatomic molecules with lighter elements than oxygen σ_{2p} & π_{2p} ENERGY LEVELS INVERT!

DUE TO MIXING OF s & p ORBITALS

MO diagram for O₂ to F₂

MO diagram for Li₂ to N₂ (sigma MOs only)

MO diagram for Li₂ to N₂ (sigma and pi MO)

MO diagram for Li₂ to N₂

Compared to MO diagram for O_2 and F_2 , mixing of 2s and 2p orbitals result in lower energy of π 2p orbitals as compared to σ 2p orbital

MO diagram for N₂

N 1s² 2s² 2p³ N 2s² 2p³

5 electrons in the valence shell and in total we have 10 electrons

Heteronuclear diatomic molecules

Bond Order = $\frac{1}{2}$ (no. of bonding electrons – no. of antibonding electrons)

BO in HF = $\frac{1}{2}$ (2-0) = 1

Heteronuclear diatomic molecules

