Remarks

Claims 1-18 are pending. Applicants propose amending claims 1, 4, 5 and 9 to address a prior art rejection by eliminating a group from the definition of Ar_1 and a number of 112 issues. Claim 1 has been amended to eliminate the C_6 - C_{20} aryloyl groups and to remove the reference to unsubstituted in the definition for Ar_1 . Claims 4 and 5 have been amended to rearrange a substituent condition and to remove the reference to unsubstituted for the definition of Ar_1 . Claim 9 has been amended to change its dependency. No new matter has been added. Applicants submit that the amendments further prosecution by addressing a number of rejections and placing the case in condition for allowance. For these reasons, Applicants submit that good cause exists to enter the amendments even though presented after final rejection.

The Examiner objects to claim 9 for failing to further limit the subject matter of a preceding claim. The Examiner believes that claim 9 should depend from claim 8, rather than claim 7. Claim 9 has been amended accordingly.

The Examiner rejects claims 1-18 under 35 U.S.C. 112(2) as being indefinite. The Examiner maintains that the definition of Ar_1 is unclear. With respect to lines 10 and 11, the Examiner proposes an additional "or", which has been adopted. Further, the definition for Ar_1 has been amended as follows: "...or C_6 - C_{20} aryloyl group or with one of the carbon atoms of the aryl ring of the C_6 - C_{20} aryloyl group; or,

provided that R_1 is acetyl, Ar_1 is C_3 - C_9 heteroaryl, which is unsubstituted or substituted 1 to 7 times by..." This wording clearly indicates that any heteroaryl, unsubstituted or substituted, is only defined for the case that R_1 is acetyl. Corresponding amendments have to be made in claims 4 and 5.

The Examiner rejects claims 1, 6, 7, 17 under the judicially created doctrine of obviousness-type double patenting over claims 6, 11, 12 and 17 of copending case 09/734,625. This rejection is provisional. Applicant shall submit a terminal disclaimer in the event this becomes the only remaining rejection, subject to a final comparison of the allowable claims herein and the scope of the copending claims.

The Examiner rejects claims 1-10, 12-16 and 18 under 35 U.S.C. 102(b) as being anticipated by U.S. Pat. No. 4,282,309 ("Laridon et al."). The Examiner acknowledges that the Laridon does not exemplify the claimed compounds, but argues that the suggested substitutions can be used for anticipation. Applicants respectfully traverse this rejection.

Laridon specifically only discloses compounds corresponding to oximes with $Ar_1 = aroyl$ $[Ar_1-C(R)=N-O-R_1]$. In the present claims, Applicants have deleted "aroyl" from the definition of Ar_1 , which even further distinguishes the presently claimed compounds from the ones as specifically disclosed by Laridon. Applicants request that the Examiner reconsider and withdraw her anticipation rejection of claims 1-10, 12-16 and 18 in view of Laridon.

The Examiner rejects claim 17 under 35 U.S.C. 103 as being unpatentable over Laridon. Applicants respectfully traverse this rejection.

Laridon does not specifically disclose any "aldoxime" compound. In Laridon, the specific oxime ester compounds are found in col. 3, lines 20-45. In order to give a demonstration of the inventive step for the subject matter claimed in the present application, Applicants enclose a Declaration under Rule 132 of Hidetaka Oka. H. Oka compared a "ketoxime" compound as specifically disclosed in Laridon, i.e. compound A, col. 3, line 20, with two "aldoxime" compounds according to the present invention.

Compound	accordi	ng to
"Laridon", US	Patent	4282309,
col. 3, compour	nd (A)	

Compounds according to application Serial No. 09/734,635

$$A \qquad \qquad \begin{array}{c} O & CH_3 & O \\ \hline \\ CH_3O & \\ \hline \\ A & \\ \hline \\ CH_3O & \\ \hline \\ CH$$

The experimental procedures are discussed more fully in the Declaration. Compounds B1 and B2 are believed to represent the closest point in view of the scope of amended claim 1. These compounds are significantly more reactive as measured using a Stouffer Wedge. The results are reproduced below show an unexpected superiority of the presently claimed compounds in resist compositions.

Compound	Number of steps reproduced after exposure time of		
	40 sec.	80 sec.	160 sec.
А	2	4	6
B1	4	7	9
B2	5	6	8

The prior art does not suggest that the selected aldoxime-type compounds would exhibit such a degree of improved performance. Thus, an inventive step is clearly given for the claimed subject matter. Applicants request that the Examiner reconsider and withdraw her obviousness rejection of claim 17 in view of Laridon.

Applicants submit that the present application is now in condition for allowance. In the event that minor amendments will further prosecution, Applicants request that the Examiner contact the undersigned representative.

Respectfully submitted,

David R. Crichton **Attorney for Applicants**

Reg. No. 37,300

Ciba Specialty **Chemicals Corporation** 540 White Plains Road P.O. Box 2005 Tarrytown, New York 10591-9005

Tel: (914) 785-7124 Fax: (914) 785-7102

DRC/

Encl.: Declaration Under Rule 1.132, dated 18 November 2002, by H. Oka

Amended Claims with underlining and bracketing

- 1. (amended) Alkaline developable, photosensitive composition comprising
- (A) at least one alkaline soluble binder resin, prepolymer or monomer component;
- (B) at least one compound of formula I or II

 R_1 is C_4 - C_9 cycloalkanoyl, C_3 - C_{12} alkenoyl; C_1 - C_{20} alkanoyl which is unsubstituted or substituted by one or more halogen, CN or phenyl; or R_1 is benzoyl which is unsubstituted or substituted by one or more C_1 - C_9 alkyl, halogen, CN, OR_3 , SR_4 or NR_5R_6 ; or R_1 is C_2 - C_{12} alkoxycarbonyl or benzyloxycarbonyl; or phenoxycarbonyl which is unsubstituted or substituted by one or more C_1 - C_2 alkyl or halogen;

Ar₁ is C_6 - C_{20} aryl $\frac{1}{100}$ or $\frac{1}{$

provided that R_1 is acetyl, or Ar_1 is C_3 - C_9 heteroaryl, provided that R_1 is acetyl, said C_3 - C_9 heteroaryl which is unsubstituted or substituted 1 to 7 times by halogen, C_1 - C_{20} alkyl, benzyl, C_1 - C_{20} alkanoyl, or C_3 - C_8 cycloalkyl; or said C_3 - C_9 heteroaryl is substituted by phenyl or benzoyl, each of which optionally is substituted by one or more OR_3 , SR_4 or NR_5R_6 ; or said C_3 - C_9 heteroaryl is substituted by C_2 - C_{12} alkoxycarbonyl optionally interrupted by one or more -O-and/or optionally substituted by one or more hydroxyl groups; or said C_6 - C_{20} aryl or C_6 - C_{20} aryloyl C_3 - C_9 heteroaryl is substituted by phenoxycarbonyl, OR_3 , SR_4 , SOR_4 , SO_2R_4 or NR_5R_6 ; x is 2 or 3;

$$M_1$$
 when x is 2, is M_2 , M_2 , M_3 , M_2 , M_3 , M_4 , M_2 , M_2 , M_3 , M_4 , M_5 , M_5 , M_5 , M_5 , M_5 , M_6 , M_6 , M_8 ,

halogen, C_1 - C_{12} alkyl, C_3 - C_8 cycloalkyl, benzyl; phenyl which is unsubstituted or substituted by one or more OR_3 , SR_4 or NR_5R_6 ; benzoyl which is unsubstituted or substituted by one or more OR_3 , SR_4 or NR_5R_6 ; C_1 - C_{12} alkanoyl; C_2 - C_{12} alkoxycarbonyl optionally interrupted by one or more O- and/or optionally substituted by one or more OH, phenoxycarbonyl, OR_3 , SR_4 , SOR_4 , SO_2R_4 or NR_5R_6 ;

substituted 1 to 12 times by halogen, C_1 - C_{12} alkyl, C_3 - C_8 cycloalkyl; phenyl which is unsubstituted or substituted by one or more OR_3 , SR_4 or NR_5R_6 ; benzyl, benzoyl, C_1 - C_{12} alkanoyl; C_2 - C_{12} alkoxycarbonyl optionally interrupted by one or more -O- and/or optionally substituted by one or more hydroxyl groups, phenoxycarbonyl, OR_3 , SR_4 , SOR_4 , SO_2R_4 or NR_5R_6 ;

 M_2 is a direct bond, -O-, -S-, -SS-, -NR₃-, -(CO)-, C_1 - C_{12} alkylene, cyclohexylene, phenylene, naphthylene, -(CO)O-(C_2 - C_{12} alkylene)-O(CO)-, -(CO)O-(C_2 - C_{12} -alkylene)-(CO)-; or M_2 is C_4 - C_{12} alkylene or C_4 - C_{12} alkylenedioxy-, each of which is optionally interrupted by 1 to 5 -O-, -S- and/or -NR₃-;

M, is a direct bond, -CH,-, -O-, -S-, -SS-, -NR₃- or -(CO)-;

$$M_4$$
 is N , N or ;

 R_3 is hydrogen or C_1-C_{20} alkyl; or R_3 is C_2-C_{12} alkyl which is substituted by -OH, -SH, -CN, C_3-C_6 alkenoxy, -OCH₂CH₂CN, -OCH₂CH₂(CO)O(C_1-C_4 alkyl), -O(CO)- C_1-C_4 alkyl, -O(CO)-phenyl, -(CO)OH, -(CO)O(C_1-C_4 alkyl), -N(C_1-C_4 alkyl)₂, -N(CH₂CH₂OH)₂, -N[CH₂CH₂O-(CO)- C_3-C_4 alkyl]₂ or morpholinyl; or R_3 is C_2-C_{12} alkyl which is interrupted by one or more -O-; or R_3 is -(CH₂CH₂O)_{n+1}H, -(CH₂CH₂O)_n(CO)- C_1-C_8 alkyl, C_1-C_8 alkanoyl, C_3-C_{12} alkenyl, C_3-C_6 alkenoyl, C_3-C_8 cycloalkyl; or C_3 is benzoyl which is unsubstituted or substituted by one or more C_1-C_6 alkyl, halogen, -OH or C_1-C_4 alkoxy; or C_3 0 is phenyl or naphthyl each of which is unsubstituted or substituted by halogen, -OH, C_1-C_{12} alkyl, C_1-C_{12} alkoxy, phenyl- C_1-C_3 -alkoxy, phenoxy, C_1 -

 C_{12} alkylsulfanyl, phenylsulfanyl, -N(C_1 - C_{12} alkyl)₂, diphenylamino or -(CO)R₇; or R₃ is phenyl- C_1 - C_1 alkyl, or Si(C_1 - C_2 alkyl),(phenyl)₃,;

- r is 0, 1, 2 or 3;
- n is 1 to 20;
- **R**₄ is hydrogen, C_1-C_{20} alkyl, C_3-C_{12} alkenyl, C_3-C_8 cycloalkyl, phenyl- C_1-C_3 alkyl; C_2-C_8 alkyl which is substituted by -OH, -SH, -CN, C_3-C_6 alkenoxy, -OCH₂CH₂CN, -OCH₂CH₂(CO)O(C_1-C_4 alkyl), -O(CO)- C_1-C_4 alkyl, -O(CO)-phenyl, -(CO)OH or -(CO)O(C_1-C_4 alkyl); or R₄ is C_2-C_{12} alkyl which is interrupted by one or more -O- or -S-; or R₄ is -(CH₂CH₂O)_{n+1}H, -(CH₂CH₂O)_n(CO)- C_1-C_8 alkyl, C_2-C_8 alkanoyl, C_3-C_{12} alkenyl, C_3-C_6 alkenoyl; or R₄ is phenyl or naphthyl each of which is unsubstituted or substituted by halogen, C_1-C_{12} alkyl, C_1-C_{12} alkoxy or -(CO)R₇;
- R_s and R_s independently of each other are hydrogen, C_1 - C_{20} alkyl, C_2 - C_4 hydroxyalkyl, C_3 - C_5 alkenyl, C_3 - C_8 cycloalkyl, phenyl- C_1 - C_3 alkyl, C_1 - C_4 alkanoyl, C_3 - C_1 2alkenoyl, benzoyl; or are phenyl or naphthyl each of which is unsubstituted or substituted by C_1 - C_{12} alkyl or C_1 - C_{12} alkoxy; or R_s and R_s together are C_2 - C_6 alkylene optionally interrupted by -O- or -NR $_3$ -and/or optionally substituted by hydroxyl, C_1 - C_4 alkoxy, C_3 - C_4 alkanoyloxy or benzoyloxy;
- R, is hydrogen, C_1 - C_{20} alkyl; or is C_2 - C_8 alkyl which is substituted by halogen, phenyl, -OH, -SH, -CN, C_3 - C_6 alkenoxy, -OCH₂CH₂CN, -OCH₂CH₂(CO)O(C_1 - C_4 alkyl), -O(CO)- C_1 - C_4 alkyl, -O(CO)-phenyl, -(CO)OH or -(CO)O(C_1 - C_4 alkyl); or R₂ is C_2 - C_{12} alkyl which is interrupted by one or more -O-; or R₂ is -(CH₂CH₂O)_{n+1}H, -(CH₂CH₂O)_n(CO)- C_1 - C_8 alkyl, C_3 - C_8 cycloalkyl; phenyl optionally substituted by one or more halogen, -OH, C_1 - C_{12} alkyl, C_1 - C_{12} alkylsulfanyl, phenylsulfanyl, -N(C_1 - C_{12} alkyl)₂, or diphenylamino; and
- (D) a photopolymerizable compound.
- 2. (amended) Photosensitive composition according to claim 1, wherein compound (A) is an oligomeric or polymeric compound.
- 3. Photosensitive composition according to claim 2, wherein the photopolymerizable compound (C) is a liquid.
- 4. (amended) Photosensitive composition according to claim 1, wherein component (B) is a compound of formula I or II, wherein
- R_1 is C_2 - C_6 alkanoyl or \dot{C}_2 - C_5 alkoxycarbonyl; or R_1 is benzoyl which is unsubstituted or substituted by one or more C_1 - C_6 alkyl or halogen;
- Ar₁ is phenyl or naphthyl, each of these radicals is tinsubstituted or substituted 1 to 5 times by halogen, C_1 - C_{20} alkyl, benzyl or C_1 - C_{20} alkanoyl; or said phenyl or naphthyl is substituted by phenyl or benzoyl, each of which optionally is substituted by one or more OR_3 , SR_4 or NR_5R_6 ; or said phenyl or naphthyl is substituted by C_2 - C_{12} alkoxycarbonyl optionally interrupted by one or more -O- and/or optionally substituted by one or more OH; or said phenyl or naphthyl is substituted by OR_3 , SR_4 or NR_5R_6 , wherein the substituents OR_3 , SR_4 or NR_5R_6 optionally form 5- or 6-membered rings via the radicals R_3 , R_4 , R_5 and/or R_6 with further substituents on the phenyl or naphthyl ring or with one of the carbon atoms of the phenyl or naphthyl ring;
- or, provided that R_1 is acetyl, Ar_1 is furyl, pyrrolyl, thienyl, benzofuranyl, indolyl, benzothiophenyl or pyrridyl, provided that R_1 is acetyl; wherein each of these radicals is unsubstituted or substituted 1 to 4 times by halogen, C_1 - C_2 0 alkyl, benzyl, C_3 - C_4 0 cycloalkyl,

phenyl, C_1 - C_{20} alkanoyl, benzoyl, C_2 - C_{12} alkoxycarbonyl, phenoxycarbonyl, OR_3 , SR_4 , SOR_4 , SO_2R_4 or NR_4R_5 ;

x is 2;

$$M_2$$

, each of which optionally is substituted 1 to 4 times by halogen,

 C_1 - C_{12} alkyl, benzyl, OR_3 , SR_4 or NR_5R_6 ; or by phenyl which is unsubstituted or substituted by one or more OR_3 , SR_4 or NR_5R_6 ; or by benzoyl which is unsubstituted or substituted by one or more OR_3 , SR_4 or NR_5R_6 ; or by C_1 - C_{12} alkanoyl; or by C_2 - C_{12} alkoxycarbonyl optionally interrupted by one or more -O- and/or optionally substituted by one or more hydroxyl groups;

 M_2 is a direct bond, -O-, -S-, -SS-, -NR₃-, -(CO)-, C_1 - C_{12} alkylene, phenylene, -(CO)O-(C_2 - C_{12} alkylene)-O(CO)-, -(CO)O-(C_1 - C_1 -alkylene)-(CO)-; or M_2 is C_3 - C_1 -alkylene or C_4 - C_1 -alkylenedioxy-, each of which is optionally interrupted by 1 to 5 -O-, -S- and/or -NR₃-;

 M_1 is a direct bond, -CH₂-, -O-, -S-, -NR₃- or -(CO)-;

R₃ is hydrogen or C_1 - C_{20} alkyl; or R_3 is C_2 - C_{12} alkyl which is substituted by -OH, -SH, -O(CO)- C_1 - C_4 alkyl, -O(CO)-phenyl, -(CO)O(C_1 - C_4 alkyl), -N(C_1 - C_4 alkyl)₂, -N(CH₂CH₂OH)₂, -N[CH₂CH₂O-(CO)- C_1 - C_4 alkyl]₂ or morpholinyl; or R_3 is C_2 - C_{12} alkyl which is interrupted by one or more -O-; or R_3 is -(CH₂CH₂O)_{n+1}H, -(CH₂CH₂O)_n(CO)- C_1 - C_8 alkyl, phenyl- C_1 - C_3 alkyl, C_2 - C_8 alkanoyl, C_3 - C_{12} alkenyl or C_3 - C_6 alkenoyl; or C_3 is benzoyl which is unsubstituted or substituted by one or more C_1 - C_6 alkyl, halogen or C_1 - C_4 alkoxy; or C_1 is phenyl or naphthyl each of which is unsubstituted or substituted by halogen, C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, phenyl- C_1 - C_3 -alkoxy, phenoxy, C_1 - C_{12} alkylsulfanyl, phenylsulfanyl, -N(C_1 - C_{12} alkyl)₂, diphenylamino or -(CO) C_1 - C_2 - C_3 -alkoxy,

R₄ is hydrogen, C_1-C_{20} alkyl, C_3-C_{12} alkenyl, phenyl- C_1-C_3 alkyl; C_2-C_8 alkyl which is substituted by -OH, -SH, -O(CO)- C_1-C_4 alkyl, -O(CO)-phenyl or -(CO)O(C_1-C_4 alkyl); or R_4 is C_2-C_{12} alkyl which is interrupted by one or more -O- or -S-; or R_4 is -(CH₂CH₂O)_{n+1}H, -(CH₂CH₂O)_n(CO)- C_1-C_8 alkyl, C_2-C_8 alkanoyl, C_3-C_{12} alkenyl, C_3-C_6 alkenoyl; or R_4 is phenyl or naphthyl each of which is unsubstituted or substituted by halogen, C_1-C_{12} alkyl, C_1-C_{12} alkoxy or -(CO) R_7 ;

 \mathbf{R}_s and \mathbf{R}_6 independently of each other are hydrogen, C_1-C_{20} alkyl, C_2-C_4 hydroxyalkyl, C_2-C_{10} alkoxyalkyl, phenyl- C_1-C_3 alkyl, C_1-C_4 alkanoyl, C_3-C_{12} alkenoyl, benzoyl; or are phenyl or naphthyl each of which is unsubstituted or substituted by C_1-C_{12} alkyl or C_1-C_{12} alkoxy; or C_3 and C_4 together are C_2-C_6 alkylene optionally interrupted by C_3-C_4 alkoxy, C_3-C_4 alkanoyloxy or benzoyloxy; and

R₇ is hydrogen, C_1 - C_{20} alkyl; or is C_2 - C_8 alkyl which is substituted by halogen, phenyl, -OH, -SH, C_3 - C_6 alkenoxy, -O(CO)- C_1 - C_4 alkyl, -O(CO)-phenyl or -(CO)O(C_1 - C_4 alkyl); or R₇ is C_2 - C_{12} alkyl which is interrupted by one or more -O-; or R₇ is -(CH₂CH₂O)_{n+1}H, -(CH₂CH₂O)_n(CO)- C_1 - C_8 alkyl or C_3 - C_{12} alkenyl; or is phenyl optionally substituted by one or more halogen, C_1 - C_{12} alkyl, C_1 - C_{12} alkoxy, phenoxy, C_1 - C_{12} alkylsulfanyl, phenylsulfanyl, -N(C_1 - C_{12} alkyl)₂, or diphenylamino.

n

is 1 to 20;

5. (amended) Photosensitive composition according to claim 1, wherein component (B) is a compound of formula I or II, wherein

R, is C,-C,alkanoyl;

 Ar_1 is phenyl or naphthyl, each of which is unsubstituted or substituted by halogen, C_1 - C_8 alkyl, NR_5R_6 or OR_3 , wherein the substituents OR_3 , optionally form 5- or 6-membered rings via the radicals R_3 with further substituents on the phenyl or naphthyl ring; or provided that R_1 is acetyl, Ar_1 is 2-furyl, 2-pyrrolyl, 2-thienyl, 3-indolyl, provided that R_3 is acetyl;

 M_1 is

x is 2

 R_3 is C_1-C_{20} alkyl; or R_3 is C_2-C_{12} alkyl which is substituted by OH, $-O(CO)-C_1-C_4$ alkyl, $-N(C_1-C_4$ alkyl)₂, $-N(CH_2CH_2OH)_2$, $-N[CH_2CH_2O-(CO)-C_1-C_4$ alkyl or morpholinyl; or R_3 is C_2-C_{12} alkyl which is interrupted by one or more -O-; or R_3 is $-(CH_2CH_2O)_{n+1}H$ or $-(CH_2CH_2O)_n(CO)-C_1-C_4$ alkyl;

n is 1 to 3; and

 \mathbf{R}_{4} and \mathbf{R}_{4} are \mathbf{C}_{1} - \mathbf{C}_{4} alkyl.

9. Photosensitive composition according to claim $\underline{8}$ 7, comprising 100 parts by weight of component (A), 0.015 to 120 parts by weight of component (B), 5 to 500 parts by weight of component (C) and 0.015 to 120 parts by weight of component (D).