Impact of Heavy-Tailed Rewards on Exploration Strategies in Insurance Underwriting

Johann Bartels, Karsten Bruns

1 Motivation

Insurance decision-making involves long-term consequences and uncertainty, making it ideal for RL. Real-world insurance rewards exhibit heavy-tailed distributions (rare, extreme losses) that may fundamentally alter optimal exploration strategies. This project examines how these domain-specific characteristics impact exploration efficiency in Q-learning agents, using a fixed delayed reward structure (k=10) as context to isolate the heavy-tailed effect.

2 Refined Research Question

In a simulated insurance-underwriting task with heavy-tailed rewards and fixed delayed returns, does ez-greedy exploration yield higher discounted return and safer convergence than fixed ϵ -greedy?

3 Key Changes from Feedback

- Exclusive focus on heavy-tailed reward distributions with fixed delay (k = 10)
- Robust Pareto sampling: $x = \max(x_m, x_m/U^{1/\alpha})$
- Clear operationalization of exploration reduction threshold
- Optimized experimental scope with single-seed backup
- Defined analysis methods for insurance-specific insights

4 Experiments

Environment Design

Custom Gym environment with:

- States: 10 discrete customer profiles (3 age groups × 4 risk categories)
- Actions: Accept/reject decisions
- Rewards:
 - Fixed delay (k = 10 timesteps)
 - Heavy-tailed Pareto distribution: $p(x) = \frac{\alpha x_m^{\alpha}}{x^{\alpha+1}}$ with $x_m = 1.0$
 - **Robust sampling:** $x = \max(1.0, 1.0/U^{1/\alpha})$

Compared Strategies

- 1. Fixed ϵ -greedy ($\epsilon = 0.3$)
- 2. ez-greedy:
 - Reduces ϵ to 0.05 when: $\frac{1}{|S|} \sum_{s} |Q_t(s) Q_{t-100}(s)| < 0.01$
 - **Permanent reduction** (no cycling)

Experimental Settings

- Core setting: Extreme heavy-tailedness ($\alpha = 1.5$) with 5 seeds
- Backup: Moderate heavy-tailedness ($\alpha = 2.0$) with 1 seed (sensitivity check)
- Fixed parameters: $\gamma = 0.99, \epsilon_0 = 0.3$, learning rate=0.1

Metrics & Analysis Methods

Primary metrics:

- Discounted return (last 100 episodes)
- **Episodes to threshold**: First episode where $\Delta Q < 0.01$ sustained for 100 episodes

Analysis methods:

- Q-Q plots: Visual verification of reward distributions
- **Boxplots**: Episode-to-threshold distribution across seeds
- Welch's t-test: Statistical comparison of final returns

Scope Limitations

- Compute: 10 core runs + 2 backup runs
- Parallel execution: Joblib with 4 cores (~5 hours worst-case)
- Tabular Q-learning with sensible defaults
- Checkpointing: Automatic experiment recovery

Hypothesis

We hypothesize that **ez-greedy** will:

- Achieve \sim 18% higher discounted return in $\alpha = 1.5$ setting
- Reduce exploration 30% earlier while maintaining policy quality
- Show strongest advantage during extreme loss events

5 Optimized Timeline (11 Days)

- Day 1-2: Environment finalization (robust Pareto sampling, delay buffer)
- Day 3: Implement strategies with ez-greedy algorithm
- Day 4: Smoke tests (1 seed per strategy + extremeness check)
- Day 5-6: Core experiments (parallel execution)
- Day 7-8: Analysis (Q-Q plots, boxplots, statistical tests)
- Day 9-10: Report/poster with domain focus
- Day 11: Buffer and submission

Implementation Details

Report Structure Plan

Algorithm 1 ez-greedy Exploration Management

```
1: Initialize \epsilon \leftarrow 0.3, Q_{prev} \leftarrow \emptyset

2: for episode = 1 to 2000 do

3: if episode100 == 0 then

4: \Delta \leftarrow \frac{1}{|S|} \sum_{s} |Q(s) - Q_{prev}(s)|

5: if \Delta < 0.01 and \epsilon > 0.05 then

6: \epsilon \leftarrow 0.05 \triangleright Permanent reduction

7: end if

8: Q_{prev} \leftarrow Q \triangleright Store current Q-values

9: end if

10: Execute standard Q-learning steps

11: end for
```

Table 1: Page budget allocation

Section	Pages
Introduction & Motivation	0.5
Related Work	0.5
Environment & Methods	1.5
Experiments & Results	1.5
Discussion & Outlook	0.5

Poster Focus

- Central visualization: Combined return curve + convergence boxplot
- Insurance-specific insights: Heavy-tail effects on exploration
- Ez-greedy advantage: Early exploration reduction mechanism