Single Variable Regression: Inference

EC420 MSU Spring 2021

Justin Kirkpatrick Last updated January 16, 2021

This lecture

Goal:

- 1. Review where we are in single-variable regression
- 2. Review statistical inference
- 3. Expectation of the estimate \hat{eta}
- 4. Variance of the estimate, $\hat{\beta}$
- 5. Homoskedasticity assumption
- 6. An example

Review

Review single-variable OLS

We have a linear-in-parameters single-variable model:

$$y = \beta_0 + \beta_1 x + u$$

- ullet "In terms of the random sample" (W2.5a): $y_i=eta_0+eta_1x_i+u_i$
- "Fitting a line"
 - The PRF and the SRF

•
$$\hat{eta}_1 = \frac{\widehat{Cov}(x,y)}{\widehat{Var}(x)}$$

- $\hat{eta}_0 = ar{y} \hat{eta}_1 ar{x}$
- ullet SST (Sum of Squares Total) = $\sum_{i=1}^N (y_i ar{y})^2$
 - \circ SSE (Sum of Squares Explained) = $\sum_{i=1}^{N}(\hat{y}_i-ar{y})^2$
 - \circ SSR (Sum of Squares Residual) = $\sum_{i=1}^{N} \hat{u}_i^2$

Review statistical inference

When we have a random variable with a population characteristic of interest

ullet X with population mean μ_X

And a sample x_i of observed draws from the RV, then we can make a *hypothesis* about μ_X :

• $H_0: \mu_X = 0$ and $H_A: \mu_X \neq 0$

Then, we can develop a sample test statistic for the population characteristic:

•
$$ar{X} = rac{1}{N} \sum x_i$$

And we know two things about $ar{X}$:

•
$$E[\bar{X}] = E[X] = \mu_X$$

•
$$Var(ar{X})=rac{\sigma_X^2}{N}$$

If we're smart, we make a sample test statistic with a distribution that we know:

$$rac{ar{X}-H_0}{\sqrt{rac{\hat{\sigma}^2}{N}}}\sim N(0,1)$$

or if we don't know σ_X^2

$$rac{ar{X}-H_0}{\sqrt{rac{\hat{s}^2}{N}}}\sim t_{df}$$

We can test our hypothesis by comparing our sample test statistic result to the hypothesized value.

ullet If observed $ar{X}=4$ and observed $rac{\hat{\sigma}_X}{\sqrt{N}}=1$, is $H_0:\mu_X=0$ likely to be rejected?

Review statistical inference

We can think of eta_1 as the test statistic for the relationship between x and y

What do we need to test a hypothesis?

A distribution

- $E[\hat{eta}_1]$
- $Var(\hat{\beta}_1)$
- $oldsymbol{\hat{eta}}_1 \sim N(?,?)$ (let's assume we know it's Normal for now)

If we did know these three things, we could test any interesting $H_{
m 0}$

Anyone know one that might be interesting?

Now, remember that we are looking at $\hat{\beta}$, not β itself.

- β is a population parameter,
 - It is unobserved
 - It is a constant
 - \circ Because it is a constant, it can move in and out of Expectations and variances as a constant would.
- \hat{eta} depends on the sample. It is therefore a random variable.
 - It has an expected value
 - It has a variance
 - \circ We can use a statistical test on hypothesis about \hat{eta} .

These are two different things, we are interested in whether or not they are the same in \boldsymbol{E}

Review statistical inference

We will need to make the following four assumptions to get $E[\hat{eta}]$

Gauss-Markov Assumptions

- 1. SLR.1: In the population, y is a linear function of the parameters, x, and u: $y=eta_0+eta_1x+u$
- 2. SLR.2: the sample $(y_i,x_i):i=1,2,\cdots,n$ follows the population model and are independent.
- 3. SLR.3: "Sample Variation in the Explanatory (X) Variable". That is, x_i is not the same for all i's.
- 4. SLR.4: "Zero conditional mean". E[u|x]=0 for all x.

File these away for a minute. We'll need them.

We know how to calculate, from our sample, \hat{eta}

We would hope (and will now prove) that $E[\hat{eta}]=eta$

- ullet This is the first step in deriving the distribution of \hat{eta}
- Section 2.5a of Wooldridge
 - \circ If $E[\hat{eta}]=eta$, then the estimator is **unbiased**. Let's see if this is the case:

$${\hat eta}_1 = rac{\widehat{Cov}(X,Y)}{\widehat{Var}(X)} = rac{rac{1}{N-1}\sum(x_i - ar{x})(y_i - ar{y})}{rac{1}{N-1}\sum(x_i - ar{x})^2} = rac{\sum(x_i - ar{x})y_i}{\sum(x_i - ar{x})^2}$$

- The first equality is from our definition two lectures ago.
- The second uses the definition of Covariance and Variance
- The third cancels out the $\frac{1}{N-1}$ and does some simplification of the numerator (see Appendix A of Wooldridge)

Let's rewrite, then take expectations to see what the expectation of the estimate is:

$${\hateta}_1 = rac{\sum (x_i - ar x) y_i}{\sum (x_i - ar x)^2}$$

- Rewrite $\sum (x_i \bar{x})^2$ as SST_x . After all, it's the total sum of squared deviations from \bar{x} .
 - We are just adding that subscript to make sure we remember where it come from.
 - \circ Remember, we originally introduced SST as the Sum of Squares Total in a regression and it referred to the total variance in Y, the left-hand-side (LHS) of our regression.
- Substitute our model for y_i : $y_i = eta_0 + eta_1 x_i + u_i$, our model:
- ullet Rename $x_i ar{x}$ as d_i , for **d**eviations from $ar{x}$.
 - This will make it easier to work with.

$${\hat eta}_1 = rac{\sum (x_i - ar{x})(eta_0 + eta_1 x_i + u_i)}{\sum (x_i - ar{x})^2} = rac{\sum (d_i eta_0) + \sum (d_i eta_1 x_i) + \sum (d_i u_i)}{SST_x}$$

Let's take a second and make sure everyone is on board here. Remember, $d_i = x_i - ar{x}$.

Take the β 's out as they are constants:

$$\hat{eta}_1 = rac{eta_0 \sum (d_i) + eta_1 \sum (d_i x_i) + \sum (d_i u_i)}{SST_x}$$

In that numerator, $eta_0 \sum (d_i)$ must be 0 since $\sum (x_i - ar{x}) = 0$. We can ignore it!

$$\hat{eta}_1 = rac{0}{SST_x} + rac{eta_1 \sum (d_i x_i)}{SST_x} + rac{\sum (d_i u_i)}{SST_x}$$

The second term:

$$rac{eta_1\sum(d_ix_i)}{SST_x} = rac{eta_1\sum((x_i-ar{x})x_i)}{SST_x} = rac{eta_1\sum((x_i-ar{x})(x_i-ar{x}))}{SST_x} = rac{eta_1SST_x}{SST_x}$$

And since SST_x is in the denominator and cancels, we will end up with β_1 .

This is very important: notice that we now have the true value of beta in there.

 β_1 is the true beta. It is part of $\hat{\beta}_1$, but there's still the third term:

$$rac{\sum (d_i u_i)}{SST_x} = rac{\sum ((x_i - ar{x})u_i)}{SST_x}$$

$$\hat{eta}_1 = eta_1 + rac{\sum ((x_i - ar{x})u_i)}{SST_x}$$

We will say that the estimate of β_1 , $\hat{\beta}_1$ is the true β plus some term.

$$\hat{eta}_1 = eta_1 + rac{\sum ((x_i - ar{x})u_i)}{SST_x}$$

Conditional on the x_i 's (our sample), the entire source of randomness here is in u_i .

Now, we take the last step to show that the $E[\hat{eta}_1]=eta_1$.

We will need our four assumptions. Specifically, the fourth.

Our assumptions from before:

Gauss-Markov Assumptions (fancy name for what you already know)

- 1. SLR.1: In the population, y is a linear function of the parameters, x, and u: $y=eta_0+eta_1x+u$
- 2. SLR.2: the sample $(y_i,x_i):i=1,2,\cdots,n$ follows the population model and are independent.
- 3. SLR.3: "Sample Variation in the Explanatory (X) Variable". That is, x_i is not the same for all i's.
- 4. SLR.4: "Zero conditional mean". E[u|x]=0 for all x.

Now, we can go to our equation for $\hat{\beta}_1$:

$${\hateta}_1 = eta_1 + rac{\sum ((x_i - ar{x})u_i)}{SST_x}$$

We can take E of each side:

$$E[\hat{eta}_1] = E[eta_1] + E\left[rac{\sum ((x_i - ar{x})u_i)}{SST_x}
ight]$$

$$E[\beta_1] = \beta_1$$
.

For any value of x, E[u|x]=0 under SLR.4.

• No matter what x or $(x_i - \bar{x})$ is, once we condition on x, the second term is zero in expectation.

$$\Rightarrow E[\hat{eta}_1] = eta_1.$$

Hooray, our estimator, $\hat{\beta}_1$ is unbiased, and we know it is distributed with mean of $\beta_{16/32}$

 $E[\hat{eta}_0]=eta_0$ is shown in Wooldridge 2.5a.

• " \hat{eta}_0 is an unbiased estimator of eta_0 "

Now, we simply need to fill in the variance of $\hat{\beta}$ to have a test statistic for β .

A brief interlude about proofs

Question: have you had proofs in your previous classes?

Gauss-Markov Assumptions

- 1. SLR.1: In the population, y is a linear function of the parameters, x, and u: $y=eta_0+eta_1x+u$
- 2. SLR.2: the sample $(y_i,x_i):i=1,2,\cdots,n$ follows the population model and are independent.
- 3. SLR.3: "Sample Variation in the Explanatory (X) Variable". That is, x_i is not the same for all i's.
- 4. SLR.4: "Zero conditional mean". E[u|x]=0 for all x.

Add one more assumption:

Add SLR.5: $Var[u|x] = \sigma_u^2$ for all x.

• This is similar to the conditional mean, but says that every u_i is drawn from a variable whose distribution has the same value for σ^2 .

SLR.5:
$$Var[u|x] = \sigma_u^2$$
 for all x

- This is similar to the conditional mean, but says that every u_i is drawn from a variable whose distribution has the same value for σ^2 .
- ullet We do **not** need this assumption to show that \hat{eta} is an unbiased estimator for eta
 - \circ But we do need this assumption to calculate the variance of \hat{eta} .
- It does not mean that we know σ_u^2 .

Start with where we left off on β_1 :

$$\hat{eta}_1 = eta_1 + rac{\sum ((x_i - ar{x})u_i)}{SST_x}$$

Instead of taking the expectation as we did for proving unbiasedness, we take the **variance**:

$$Var(\hat{eta_1}) = Var(eta_1) + Var\left[rac{\sum ((x_i - ar{x})u_i)}{SST_x}
ight] + 2Cov\left(eta_1, \left[rac{\sum ((x_i - ar{x})u_i)}{SST_x}
ight]
ight)$$

- Because the variance of any constant (like eta_1) is 0, we can drop that 1st term.
- ullet Because Cov(c,X)=0 when c is a constant, we can drop the $2Cov(\cdots)$ term.

This leaves us with:

$$Var(\hat{eta}_1) = Var\left[rac{\sum ((x_i - ar{x})u_i)}{SST_x}
ight] = Var\left[rac{1}{SST_x}\sum ((x_i - ar{x})u_i)
ight]$$

We can condition on x_i 's again, and make the same argument that, conditional on x_i , we can take them out of the Var term.

• When we do this, we must **square** what we remove:

$$egin{align} Var(\hat{eta}_1) &= rac{1}{SST_x^2} imes Var\left[\sum (x_i - ar{x})u_i
ight] = rac{1}{SST_x^2} imes \left[\sum (x_i - ar{x})^2
ight] Var(u_i) \ &= rac{SST_x}{SST_x^2} \sigma_u^2 = rac{1}{SST_x} \sigma_u^2 \end{aligned}$$

So variance is:

$$Var(\hat{eta}_1) = rac{\sigma_u^2}{SST_x}$$

For any realization of $oldsymbol{x}$

- Variance of the estimator is increasing in σ_u^2 .
- ullet Variance of the estimator is decreasing in SST_x , variation in X.

Good, but we don't know σ_u^2 , do we?

- ullet \hat{u} seems like a good start.
- In our model, u_i is the *error*, but we observe \hat{u} , which is the residual.

$$\hat{u}_i = u_i - (\hat{eta}_0 - eta_0) - (\hat{eta}_1 - eta_1)x_i \, .$$

$$\circ$$
 So $E[\hat{u_i}] = u_i$

As Wooldridge states: "the error, u, shows up in the equation containing the population parameters, β . The residual shows up in the estimated equation with $\hat{\beta}$.

- Remember, u_i is not observed.
- But \hat{u}_i is observed.

We can use $\sum_{i=1}^N \hat{u}_i^2$ as an estimator for σ_u^2 if we make this small adjustment.

$$ullet \hat{\sigma}_u^2 = rac{1}{(N-2)} \sum_{i=1}^N \hat{u}_i^2 = rac{SSR}{N-2}$$

• This is because we know two things about $\hat{\pmb{u}}$:

$$\sum \hat{u} = 0$$

and

$$\sum x_i \hat{u}_i = 0$$

- We lose two **degrees of freedom**.
 - \circ If we know all but two u_i 's, we could calculate the last two knowing these.
- degrees of freedom will be very important when we get to multiple regression.

This is the Standard Error of the Regression, SER

$$\hat{\sigma} = \sqrt{\hat{\sigma}^2} = \sqrt{rac{\sum \hat{u}_i^2}{(N-2)}}$$

We have used all five assumptions, but we can now say we know the distribution of $\hat{\beta}$:

$$\hat{eta}_1 \sim N(eta_1, rac{\hat{\sigma}_u^2}{SST_x})$$

If we want to test a hypothesis about β_1 , we now can.

But only **if** we assume homoskedasticity - that $Var(u|x) = Var(u) = \sigma_u^2$.

Let's take a look at this assumption briefly.

• Later on, we'll talk about how to adjust the Standard Error of the Regression for heteroskedasticity.

27 / 32

Heteroskedasticity (from Wooldridge)

ID	Outcome	Dose
1	5.9	3
2	15.7	6
3	11.9	2
4	12.6	5
5	4.0	3

Statistic	Value
$ar{y}$	10.02
$ar{x}$	3.8
$SST_y = \sum (y_i - ar{y})^2$	95.668
$SST_x = \sum (x_i - ar{x})^2$	10.8
$\sum (y_i - ar{y})(x_i - ar{x})$	20.32

What is \hat{eta}_1 ?

What is \hat{eta}_0 ?

ID	Outcome	Dose	Fitted	Residual
1	5.9	3		
2	15.7	6		
3	11.9	2		
4	12.6	5		
5	4.0	3		

- ullet Calculate \hat{y} using eta_0 and eta_1
- ullet Calculate \hat{u} using $y_i \hat{y}$
- Calculate $\hat{\sigma}_u^2$
 - \circ Remember to divide by (n-2) for correct degrees of freedom

The formula for $Var(\hat{eta}_1)$ is $rac{\hat{\sigma}_u^2}{SST_x}$

• What is the distribution of $\hat{\beta}_1$?

The formula for $Var(\hat{eta}_0)$ is $\hat{\sigma}_u^2\left[rac{1}{N}+rac{ar{x}^2}{SST_x}
ight]$ (from Wooldridge)

• What is the distribution of $\hat{\beta}_0$?

An example

Check your work here:

```
##
## Call:
## lm(formula = Outcome ~ Dose, data = df)
##
## Residuals:
## 1 2 3 4
## -2.6148 1.5407 5.2667 0.3222 -4.5148
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 2.870 5.425 0.529 0.633
## Dose
       1.881 1.331 1.413 0.253
###
## Residual standard error: 4.376 on 3 degrees of freedom
## Multiple R-squared: 0.3996, Adjusted R-squared: 0.1995
## F-statistic: 1.997 on 1 and 3 DF, p-value: 0.2525
```