

Europäisches Patentamt

European Patent Office

Office européen des brevets

932 SZ.

(11)

EP 0 892 047 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 20.01.1999 Patentblatt 1999/03

(21) Anmeldenummer: 98112470.4

(22) Anmeldetag: 06.07.1998

(51) Int. Cl.⁶: **C12N 15/12**, C07K 14/47, A61K 48/00, G01N 33/50

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Benannte Erstreckungsstaaten:

Benannte Erstreckungsstaaten: AL LT LV MK RO SI

(30) Priorität: 09.07.1997 DE 19729211 11.02.1998 DE 19805371 (71) Anmelder:

Hoechst Marion Roussel Deutschland GmbH 65929 Frankfurt am Main (DE)

(72) Erfinder:

- Fleckenstein, Bernhard, Prof. Dr. 91369 Wlesenthau (DE)
- Ensser, Armin, Dr.
 90419 Nürnberg (DE)

(54) Humanes und murines Semaphorin L

(57) Humanes Semaphorin L(H-SemaL) und korrespondierende Semaphorine in anderen Spezies.

Gegenstand der Erfindung sind neuen Semaphorine, die sich durch eine besondere Domänenstruktur auszeichnen und deren Derivate, Nukleinsäuren (DNA, RNA, cDNA), die für diese Semaphorine kodieren und deren Derivate sowie die Verwendung derselben.

Gegenstand der vorliegenden Erfindung sind Semaphorine mit einer neuen, bisher nicht bekannten und nicht zu erwartenden Domänenstruktur, denen eine biochemische Funktion im Immunsystem zukommt (immunmodulierende Semaphorine). Die erfindungsgemäßen Semaphorine werden als Semaphorine vom Typ L (SemaL) bezeichnet. Sie enthalten ein N-terminales Signalpeptid, eine charakteristische Sema-Domäne und im C-terminalen Bereich des Proteins eine Immunglobulin-ähnliche Domäne und eine hydrophobe Domäne, die eine potentielle Transmembrandomäne darstellt.

Beschreibung

30

40

Humanes Semaphorin L(H-SemaL) und korrespondierende Semaphorine in anderen Spezies.

Gegenstand der Erfindung sind neue Semaphorine, die sich durch eine besondere Domänenstruktur auszeichnen und deren Derivate, Nukleinsäuren (DNA, RNA, cDNA), die für diese Semaphorine kodieren und deren Derivate sowie die Herstellung und Verwendung derselben.

Semaphorine wurden erstmals von Koldokin (Kolodkin et al. (1993) Cell 75:1389-1399) als Mitglieder einer konservierten Genfamilie beschrieben.

Inzwischen wurden die Gene bzw. Teile der Gene weiterer Semaphorine kloniert und teilweise charakterisiert. Bisher waren insgesamt 5 humane (H-Sema III, H-Sema V, H-Sema IV, H-SemaB und H-SemaE) (Koldokin et al. (1993); Roche et al. (1996) Onkogene 12:1289-1297; Sekido et al. (1996) Proc. Natl. Acad. Sci. USA 93:4120-4125; Xiang et al. (1996) Genomics 32:39-48; Hall et al. (1996) Proc. Natl. Acad. Sci. USA 39:11780-11785; Yamada et al. (1997) (GenBank Zuordnungs-Nr. AB000220)), 8 rnurine (Gene der Maus; M-Sema A bis M-SemaH) (Püschel et al. (1995) Neuron 14:941-948; Messerschmidt et al. (1995) Neuron 14:949-959; Inigaki et al. (1995) FEBS Letters 370:269-272; Adams et al. (1996) Mech. Dev. 57:33-45; Christensen et al. (1996) (Genbank Zuordnungs-Nr. Z80941, Z93948)), 5 galline (Huhn) (Collapsin-1 bis -5) (Luo et al. (1993); Luo et al. (1995) Neuron 14:1131-1140), und Gene von Ratte (R-Sema III) (Giger et al. (1996) J. Comp. Neurol. 375:378-392), Zebrafisch, Insekten (Fruchtfliege (Drosophila melanogaster: D-Sema I und D-Sema II), Käfer (Tribolium confusum: T-Sema I), Grasshüpfer (Schistocerca americana: G-Sema II)) (Kolodkin et al. (1993)), und Nematoden (C.elegans: Ce-Sema) (Roy et al. (1994) (GenBank Zuordnungs-Nr. U15667)) bekannt. Weiterhin besitzen zwei Poxviren (Vaccinia (ORF-A39) und Variola (ORFA39-homolog)) (Kolodkin et al. (1993)) sowie der Alcelaphine Herpesvirus Typ 1 (AHV-1) (AHV-Sema) (Ensser und Fleckenstein (1995) Gen. Virol. 76:1063-1067) zu Semaphorinen homologe Gene.

Einen Überblick über die bisher identifizierten Semaphorine in verschiedenen Spezies gibt Tabelle 1. In Tabelle 1 sind die Namen der Semaphorine (Spalte 1), die verwendeten Synonyme (Spalte 2), die Spezies aus der das jeweilige Semaphorin isoliert wurde (Sparte 3) sowie, soweit bekannt, Daten zur Domänenstruktur des kodierten Proteins und zur chromosomalen Lokalisation (Spalte 4 in Tabelle 1), die Zuordnungsnummer unter der die Sequenz des Gens in Gendatenbanken, z.B. in einer EST (expressed sequence tags) Datenbank, EMBL (European Molecular Biology Laboratory, Heidelberg) oder NCBI (National Center for Biotechnology Information, Maryland, USA) gespeichert ist und die entsprechende Referenz unter der diese Daten publiziert wurden (Spalte 5 in Tabelle 1), angegeben.

Alle Genprodukte (kodierte Semaphorine) der bisher bekannten Semaphorin Gene weisen ein N-terminales Signalpeptid auf, an dessen C-terminalem Ende sich eine charakteristische Sema-Domäne mit einer Länge von etwa 450 bis 500 Aminosäuren befindet Innerhalb der Sema-Domäne finden sich stark konservierte Aminosäuremotive und eine Anzahl hochkonservierter Cysteinreste. Die Genprodukte (Semaphorine) unterscheiden sich in den auf die Sema-Domäne folgenden C-terminalen Sequenzen, die aus einer oder mehreren Domänen aufgebaut sind. Sie weisen beispielsweise in diesen C-terminalen Aminosäuresequenzen Transmembrandomänen (TM), Immunoglobulin-ähnliche Domänen (Ig) (konstanter Teil des Immunoglobulins), zytoplasmatische Sequenzen (CP), Prozessierungssignale (P) (beispielsweise mit der Konsensussequenz (RXR), wobei R für die Aminosäure Arginin und X für eine beliebige Aminosäure steht) und/oder hydrophile C-Termini (HPC) auf. Auf der Basis der unterschiedlichen Domänenstruktur im C-Terminus lassen sich die bisher bekannten Semaphorine in 5 verschiedene Untergruppen einteilen (I bis V):

I Sezerniert, ohne weitere Domäne (z.B. ORF-A49)
II Ig Sezerniert (ohne Transmembrandomäne) (z.B. AHV-Sema)
III Ig, TM, CP Membranverankert mit zytoplasmatischer Sequenz (z.B. CD100)
IV Ig, (P), HPCSezerniert mit hydrophilem C-Terminus (z.B. H-Sema III, M-SemaD, Collapsin-1)
Ig, TM, CP Membranverankert mit C-terminalem 7 Thrombospondin-Motiv (z.B. M-SemaF und G)

Ein Rezeptor oder extrazellulärer Ligand für Semaphorine wurde bisher nicht beschrieben. Im Zusamrnenhang mit Semaphorin-vermittelten Effekten wurden intrazelluläre, heterotrimere GTP-bindende Proteinkomplexe beschrieben. Als ein Bestandteil dieser Proteinkomplexe wurden bei Hühnern sogenannte CRMP-Proteine (Collapsin response mediator protein) identifiziert, welche vermutlich Bestandteil der Semaphorin-induzierten intrazellulären Signalkaskade sind (Goshima et al. (1995) Nalure 376: 509-514). Das CRMP62 beispielsweise besitz: Homologie zu unc-33, einem für das gerichtete Axonwachstum essentiellen Nemaloden-Protein. Ein humanes Protein mit 98% Aminosäure-Identität zu CRMP62 ist ebenfalls bekannt (Hamajima et al. (1996) Gene 180: 157-163. In Ratten wurden ebenfalls mehrere CRMP-verwandte Gene beschrieben (Wang et al. (1996) Neurosci. 16: 6197-6207.

Die sezernierten oder transmembrahen Semaphorine vermitteln repulsive Signale für wachsende Nervenknospen. Sie spielen eine Rolle bei der Entwicklung des zentralen Nervensystems (ZNS) und werden vor allem in Muskel- und Nervengewebe exprimiert (Koldokin et al. (1993); Luo et al. (1993) Cell 75:217-227.

Außer im ZNS konnte eine deutliche Expression von M-SemaG auch auf Zellen des lymphatischen und hämato-

poetischen Systems beobachtet werden, im Gegensatz zum nahe verwandten M-SemaF (Furuyima et al. (1996) J. Biol. Chem. 271: 33376-33381).

Kürzlich wurden zwei weitere humane Semaphorine identifiziert, H-Sema IV und H-Sema V und zwar in einer Region auf Chromosom 3p21.3, deren Deletion mit verschiedenen Formen von Bronchialkarzinomen assoziiert ist H-Sema IV (Roche et al. (1996), Xiang et al. (1996), Sekido et al. (1996)) ist auf Aminosäureebene etwa zu 50% identisch mit M-SemaE, während H-Sema V (Sekido et al. (1996)) das direkte Homolog zu M-Sema-A ist (86% Aminosäureidentität). Da diese Gene (H-Sema IV und V) im Rahmen von DNA-Sequenzierungs-Projekten der deletierten 3p21.3 Loci gefunden wurden, ist die komplexe Intron-Exon-Struktur dieser beiden Gene bekannt. Die beiden Gene werden in verschiedenen neuronalen und nicht neuronalen Geweben exprimiert.

Ebenfalls erst vor kurzem wurde das zelluläre Oberflächenmolekül CD100 (human), exprimiert und induziert auf aktivierten T-Zellen, als Semaphorin identifiziert (ebenfalls in Tabelle 1 aufgeführt). Es unterstützt die Interaktion mit B-Zellen über den Rezeptor CD40 und den entsprechenden Liganden CD40L. CD100 ist ein membranverankertes Glykoprotein-Dimer von 150kd (Kilodalton). Es wurde eine Assoziation des intrazytoplasmatischen C-Terminus von CD100 mit einer noch unbekannten Kinase beschrieben {Hall et al. (1996)}. Damit ist CD100 das erste und bisher einzige Semaphorin, dessen Expression in Zellen des Immunsystems nachgewiesen werden konnte.

Unter der Fragestellung "Transformierende Gene von Rhadinoviren" wurde das komplette Genom des Alcelaphinen Herpesvirus Typ 1 (AHV-1) kloniert und sequenziert (Ensser et al. (1995)). AHV-1 ist der Erreger des bösartigen Katarrhalfiebers, einer mit einem lymphoproliferativen Syndrom einhergehenden, meist fatalen Erkrankung verschiedener Wiederkäuer. Bei der Analyse wurde an einem Ende des viralen Genoms ein offener Leserahmen mit entfernter, aber signifikanter Homologie zu einem Gen von Vacciniavirus (ORF-A39 entspricht VAC-A39 in Ensser et al. (1995)) J. Gen. Virol. 76:1063-1067), welches der Genfamilie der Semaphorine zugerechnet wurde, gefunden. Während das AHV-1 Semaphorin (AHV-Sema) eine gut konservierte Semaphorin-Struktur besitzt, sind die Poxvirus-Gene (ORF-A39 und ORF-A39-homolog, siehe Tabelle 1) C-terminal verkürzt, d.h. bei ihnen ist die konservierte Sema-Domäne nur unvollständig vorhanden.

Ein Datenbankvergleich des gefundenen AHV-Sema mit dbEST (EST (expressed sequence tags)-Datenbank (db)) lieferte jeweils 2 EST-Sequenzen von 2 unabhängigen cDNA-Klonen aus humaner Plazenta (Zuordnungsnummern H02902, H03806 (Klon 151129), Zuordnungsnummern R33439 und R33537 (Klon 135941)). Diese wiesen deutlich höhere Homologie zum AHV-1 Semaphorin auf, als zu den bis dahin beschriebenen neuronalen Semaphorinen.

Gegenstand der vorliegenden Erfindung sind Semaphorine mit einer neuen, bisher nicht bekannten und nicht zu erwartenden Domänenstruktur, denen eine biochemische Funktion im Immunsystem zukommt (immunmodulierende Semaphorine). Die erfindungsgemäßen Semaphorine werden als Semaphorine vom Typ L (SemaL) bezeichnet. Sie enthalten ein N-terminales Signalpeptid, eine charakteristische Sema-Domäne und im C-terminalen Bereich des Proteins eine Immunglobulinähnliche Domäne und eine hydrophobe Domäne, die eine potentielle Transmembrandomäne darstellt

Die Aminosäure-Sequenz des Signalpeptids kann weniger als 70, vorzugsweise weniger als 60 Aminosäuren und mehr als 20, vorzugsweise mehr als 30 Aminosäuren aufweisen, besonders bevorzugt ist eine Länge von etwa 40 bis 50 Aminosäuren. In einer speziellen Ausführungsform der Erfindung hat das Signalpeptid eine Länge von 44 Aminosäuren, d.h. zwischen den Aminosäuren 44 und 45 befindet sich eine Spaltstelle für eine Signalpeptidase.

Die Sema-Domäne kann eine Länge von 300 bis 700 oder mehr, vorzugsweise von etwa 400 bis 600 Aminosäuren aufweisen. Bevorzugt sind Sema-Domänen mit einer Länge von 450 bis 550 Aminosäuren, vorzugsweise von etwa 500 Aminosäuren. In einer besonderen Ausführungsform der Erfindung schließt sich die Sema-Domäne an das Signalpeptid an, wobei sich die Sema-Domäne vorzugsweise bis zur Aminosäure 545 erstreckt.

Die Immunglobulin-ähnliche Domäne kann eine Länge von etwa 30 bis 110 oder mehr Aminosäuren aufweisen, bevorzugt sind Längen zwischen 50 und 90, besonders bevorzugt etwa 70 Aminosäuren.

Die Transrnembrandomäne kann eine Länge von etwa 10 bis 35, vorzugsweise von etwa 15 bis 30, besonders bevorzugt von etwa 20 bis 25 Aminosäuren aufweisen.

Gegenstand der Erfindung sind Semaphorine vom Typ L aus verschieden Spezies, insbesondere aus Wirbeltieren, beispielsweise aus Vögeln und/oder Fischen, vorzugsweise aus Säugetieren, beispielsweise aus Primaten, Ratte, Kanninchen, Hund, Katze, Schaf, Ziege, Kuh, Pferd, Schwein, besonders bevorzugt aus Mensch und Maus. Gegenstand der Erfindung sind auch entsprechende Semaphorine aus Mikroorganismen, insbesondere aus pathogenen Mikroorganismen, beispielsweise aus Bakterien, Hefen und/oder Viren, z.B. aus Retroviren, insbesondere aus humanpathogenen Mikroorganismen.

Eine Ausführungsform der Erfindung ist ein entsprechendes humanes Semaphorin (H-SemaL), das ein Signalpeptid, eine Sema-Domäne, eine Immunglobulin-ähnliche Domäne und eine Transmembrandomäne aufweist Eine spezielle Ausführungsform ist das Semaphorin, das durch die Aminosäuresequenz gemäß Tabelle 4 gegeben ist.

Eine weitere Ausführungsform der Erfindung sind korrespondierende Semaphorine in anderen Spezies, die im Bereich der Sema-Domäne eine Aminosäureidentität größer als 40 %, vorzugsweise größer 50 %, besonders bevorzugt größer 60 % im Bezug auf die Sema-Domäne von H-SemaL (Aminosäuren 45 bis 545 der Sequenz in Tabelle 4)

aufweisen. Aus näher verwandten Spezies (z.B. Primaten, Maus) können die korrespondierenden Semaphorine durchaus Aminosäureidentitäten größer als 70%, vorzugsweise größer als 80 %, besonders bevorzugt größer als 90 % aufweisen. Prozentuale Homologien können beispielsweise mit dem Programm GAP (GCG Programm-Paket, Genetic Computer Group (1991)) bestimmt bzw. berechnet werden.

Eine derartige Ausführungsform der Erfindung ist ein korrespondierendes Semaphorin der Maus (murines Semaphorin (M-SemaL)). Beispielsweise enthält dieses die partielle Aminosäuresequenz gemäß Tabelle 5 (murines Semaphorin (M-SemaL)).

Die Erfindung betrifft auch korrespondierende Semaphorine, die eine Aminosäureidentität (über die Gesamtlänge der Aminosäuresequenz des Protein betrachtet) von nur etwa 15 bis 20% bei wenig verwandten Spezies (phylogenetisch weit voneinander entfernt), vorzugsweise 25 bis 30%, besonders bevorzugt 35 bis 40 % oder eine höhere Identität im Bezug auf die gesamte Aminosäuresequenz von H-SemaL gemäß Tabelle 4 aufweisen.

Die Gene, die für Semaphorine von Typ L kodieren, weisen eine komplexe Exon-Intron-Struktur auf. Diese Gene können beispielsweise zwischen 10 und 20 Exons, vorzugsweise etwa 11 bis 18, besonders bevorzugt 12 bis 16 Exons und eine entsprechende Anzahl von Introns aufweisen. Sie können aber auch die gleiche Anzahl Exons und Introns aufweisen wie das Gen von H-Semal. (13 oder 15 Exons, vorzugsweise 14 Exons). Eine besondere Ausführungsform der Erfindung betrifft das Gen von H-Semal. Dieses Gen hat vorzugsweise eine Länge von 8888 bis 10000 oder mehr Nukleotiden. Das humane Semaphorin-Gen enthält vorzugsweise die Nukleotid-Sequenz, die in Tabelle 14 gegeben ist oder die Nukleotidsequenz, die in der Datenbank GenBank[®] unter der Zugangsnummer AF030697 hinterlegt wurde. Diese Nukleotidsequenzen enthalten mindestens 13 Introns. Darüber hinaus weist das humane Semaphorin-Gen am 5'-Ende einen zusätzlichen Sequenzbereich auf. Dieser Bereich enthält gegebenfalls weitere kodierende und nichkodierende Sequenzen, z.B. ein oder zwei weitere Introns bzw. Exons.

Die Versuche zur chromosomalen Lokalisation des humanen Semaphorins vom Typ L ergaben, daß das entsprechende Gen an Position 15q22.3-23 lokalisiert ist Entsprechend wurde das Gen für M-SemaL an Position 9A3.3-B lokalisiert

Als Folge der komplexen Intron-Exon Struktur kann das Primärtranskript der Semaphorin mRNA unterschiedlich gespliced werden, wodurch unterschiedliche Splicevarianten der Semaphorine entstehen. Die aus diesen Splicevarianten translatierten Proteine sind Derivate der erfindungsgemäßen Semaphorine. Sie entsprechen in ihrer Aminosäuresequenz und auch weitgehend in ihrer Domänenstruktur den beschriebenen, erfindungsgemäßen Semaphorinen vom Typ L, sind jedoch gegebenenfalls gegenüber diesen verkürzt. Beispielsweise können Splicevarianten, denen die Transmembrandomäne ganz oder teilweise fehlt, gebildet werden. Ein Semaphorin-Derivat, welches keine oder keine vollständige Transmembrandomäne, aber ein Signalpeptid enthält, kann sezerniert werden und auf diese Weise außerhalb der Zelle lokal oder auch über größere Entfernungen wirken, beispielsweise auf andere Zellen. Eine andere Splicevariante kann beispielsweise keine Sequenz mehr enthalten, die für ein Signalpeptid kodiert und gegebenfalls auch keine Sequenz, die für eine für hydrophobe Aminosäuresequenz kodiert, die eine potentielle Transmembrandomäne darstellt. Eine Folge wäre, daß dieses Semaphorin-Derivat weder in die Membran eingebaut, noch sezerniert wird (es sei denn über sekretorische Vesikel). Ein solches Semaphorin-Derivat kann an intrazellulären Prozessen, beispielsweise an Signaltransduktionsprozessen beteiligt sein. Auf diese Weise können mit dem gleichen Grundmoleküle (Semaphorine vom Typ L) und den davon abgeleiteten Derivaten (beispielsweise Splicevarianten) vielfälltige intra- und extrazelluläre Prozesse reguliert und/oder aufeinander abgestimmt werden.

Eine besondere Ausführungsform der Erfindung betrifft Semaphorin-Derivate, die sich von den erfindungsgemäßen Semaphorinen vom Typ L ableiten, die aber keine oder keine vollständige Transmembrandomäne enthalten. Eine weitere Ausführungsform der Erfindung betrifft Semaphorin-Derivate, die sich von den erfindungsgemäßen Semaphorinen vom Typ L ableiten, die aber kein Signalpeptid enthalten.

Das Signalpeptid kann auch posttranslational abgespalten werden. Dadurch wird ein membranständiges (mit TM-Domäne) oder ein sezerniertes (Splicevariante ohne TM-Domäne) Semaphorin-Derivat mit verkürzter Domänenstruktur gebildet. Ein auf diese Weise posttranslational prozessiertes Semaphorin-Derivat enthält nur noch Sema-Domäne, Ig-Domäne und gegebenfalls Transmembrandomäne. Eine Signalpeptidschnittstelle kann beispielsweise direkt am Ende des Signalpeptids liegen, sie kann z.B. 40 bis 50 Aminosäuren oder weiter vom Aminoterminus entfernt lokalisiert sein.

Ein "verkurztes" (d.h. weniger Domänen enthaltendes) Semaphorin L-Derivat ist von anderen Semaphorinen, die sich nicht von den Semaphorinen vom Typ L ableiten, dadurch zu unterscheiden, daß es eine sehr große (> 90 %) Aminosäureidentität oder eine identische Aminosäuresequenz mit den Semaphorinen vom Typ L in den vorhandenen Domänen aufweist.

Die erfindungsgemäßen Semaphorine können auch in anderer Weise posttranslational modifiziert sein. Beispielsweise können sie ein-, zwei-, drei-, vier- fünf, sechs-, sieben-, acht-, neun- zehn- oder mehrfach glykosyliert (Nund/oder O-glykosyliert) vorliegen. Die Aminosäuresequenzen der Semaphorine können dann ebenso viele oder mehr Konsensussequenzen für potentielle Glykosylierungsstellen aufweisen, vorzugsweise fünf derartige Stellen. Eine Ausführungsform der Erfindung betrifft Semaphorine, bei denen die Glykosylierungsstellen an Positionen lokalisiert sind,

die den Positionen 105, 157, 258, 330 und 602 der H-SemaL Aminosauresequenz entsprechen (Tabelle 4).

Darüber hinaus können die Semaphorine in Form ihrer phosphorylierten Derivate vorliegen. Semaphorine können die Substrate unterschiedlicher Kinasen sein, beispielsweise können die Aminosäuresequenzen Konsensussequenzen für Protein Kinase C, Tyrosin Kinase und/oder Kreatin Kinasen aufweisen. Weiterhin können die Aminosäuresequenzen der Semaphorine Konsensussequenzen für potentielle Myristylierungsstellen aufweisen. An diesen Stellen können entsprechende Semaphorin-Derivate mit Myristinsäure verestert sein.

Die erfindungsgemäßen Semaphorine vom Typ L und deren Derivate können in Form von Monomeren, Dimeren und/oder Multimeren vorliegen, beispielsweise können zwei oder mehr Semaphorine bzw. deren Derivate über intermolekulare Disulfidbrücken miteinander verbunden sein. Darüber hinaus können sich intramolekulare Disulfidbrücken ausbilden.

Derivate der erfindungsgemäßen Semaphorine sind weiterhin Fusionsproteine. Ein solches Fusionsprotein enthält einerseits ein Semaphorin vom Typ L oder Teile desselben und darüber hinaus ein weiteres Peptid oder Protein bzw. ein Teil desselben. Peptide oder Proteine bzw. Teile derselben können z.B. Epitope-Tags (z.B. His-Tag (6xHistidin), Myc-Tag, flu-Tag), die z.B. zur Aufreinigung der Fusionsproteine verwendet werden können, oder solche, die zur Markerung der Fusionsproteine verwendet werden können, z.B. GFP (green fluorescent protein), sein. Beispiele für Derivate der Semaphorine vom Typ L sind z. B. durch die in den Beispielen beschriebenen Konstrukte gegeben. Die Sequenzen dieser Konstrukte können aus den Tabellen 7 bis 15 gegebenenfalls unter Berücksichtigung der Annotationen zu den Plasmiden entnommen werden.

Weiterer Gegenstand der Erfindung sind Nukleinsäure-Sequenzen, vorzugsweise DNA- und RNA-Sequenzen, die für die erfindungsgemäßen Semaphorine vom Typ L und/oder deren Derivate kodieren, beispielsweise die entsprechenden Gene, die unterschiedlichen Splicevarianten der mRNA, die dazu korrespondierenden cDNAs sowie deren Derivate, z.B. Salze der DNA bzw. RNA Derivate im Sinne der Erfindungen sind Sequenzen oder Teile davon, die z.B. mit molekularbiologischen Methoden verändert und an die jeweiligen Anforderungen angepaßt werden, beispielsweise verkürzte Gene oder Teile der Gene (z. B. Promotorsequenzen, Terminatorsequenzen), cDNAs oder Chimäre derselben, Konstrukte für Expressionen und Klonierungen und deren Salze.

Eine Ausführungsforrn betrifft die genomischen Sequenzen (Gene) der Semaphorine vom Typ L Die Erfindung betrifft die Intron- und Exon-Sequenzen und genregulatorische Sequenzen, beispielsweise Promotor-, Enhancer- und Silencer-Sequenzen.

Ein Gegenstand dieser Ausführungsform ist das Gen von H-SemaL bzw. dessen Derivate. Ein Gegenstand der Erfindung ist ein Gen, das die Nukleotidsequenz, die in Tabelle 14 gegeben ist, enthält. Ein weiterer Gegenstand der Erfindung ist das Gen, das die Nukleotidsequenz, die in der Datenbank GenBank[®] unter der Zugangsnummer AF030697 hinterlegt ist, enthält.

Ein weiterer Gegenstand dieser Ausführungsform ist das Gen von M-SemaL bzw. dessen Derivate.

Ein weiterer Gegenstand der Erfindung ist die cDNA von H-SemaL oder deren Derivate (z. B. Teile der cDNA). Eine besondere Ausführungsform ist die cDNA von H-SemaL gemäß der Nukleotidsequenz in Tabelle 2. Ein weiterer Gegenstand der Erfindung ist die cDNA von H-SemaL, die in der Datenbank GenBank[®] unter der Zugangsnummer AF030698 hinterlegt ist Gegenstand der Erfindung sind auch die zu diesen cDNAs korrespondierenden mRNAs bzw. Teile derselben.

Ein weiterer Gegenstand der Erfindung ist die cDNA von M-SemaL oder deren Derivate (z. B. Teile der cDNA). Eine besondere Ausführungsform ist die partielle cDNA-Sequenz von M-SemaL gemäß Tabelle 3 sowie cDNA-Sequenzen, die diese partielle cDNA-Sequenz enthalten. Eine weitere Ausführungsform der Erfindung betrifft die cDNA von M-SemaL, die in der Datenbank GenBank unter der Zugangsnummer AF030699 hinterlegt ist. Gegenstand der Erfindung sind auch die zu diesen cDNAs korrespondierenden mRNAs bzw. Teile derselben.

Die Erfindung beinhaltet auch Allele und/oder individuelle Ausprägungsformen der Gene/mRNAs/cDNAs, die sich nur geringfügig von den hier beschriebenen Semaphorin-Sequenzen unterscheiden und für ein individuelle Ausprägungsformen der Gene/mRNAs/cDNAs, die sich nur geringfügig verändertes Protein (Abweichung in der Aminosäure-Sequenz kleiner oder gleich 10%) kodieren (weiteres Beispiel für Derivate). Weitere Beispiele für die Derivate sind durch die in den Beispielen angegebenen Konstrukte gegeben. Die Sequenzen dieser Konstrukte sind in den Tabellen 7 bis 14 dargestellt und können unter Berücksichtigung der Annotation für Plasmide interpretiert werden.

Ein weiterer Gegenstand der Erfindung sind Plasmide, die DNA, die für die Semaphorine des Typs L bzw. deren Derivate kodiert, enthalten. Solche Plasmide können beispielsweise Plasmide mit hohen Replikationsraten sein, die für eine Amplifikation der DNA, z.B. in E. coli geeignet sind.

Eine spezielle Ausführungsform sind Expressionsplasmide, mit denen die Semaphorine bzw. Teile davon oder deren Derivate in prokaryoten und/oder eukaryoten Expressions-Systemen exprimiert werden können. Es sind sowohl Expressionsplasmide die konstitutive als auch solche, die induzierbare Promotoren enthalten, geeignet.

Gegenstand der Erfindung sind auch Verfahren zur Herstellung von Nukleinsäuren, die für Semaphorine vom Typ L oder Derivate derselben kodieren.

Beispielsweise können diese Nukleinsäuren, z B. DNA oder RNA auf chemischem Weg synthetisiert werden. Insbeson-

dere können diese Nukleinsäuren, z. B. die entsprechenden Gene oder cDNAs bzw. Teile derselben mit der PCR unter Verwendung von spezifischen Primern und geeignetem Ausgangsmaterial als Template (z. B. cDNA aus einem geeigneten Gewebe oder genomische DNA) amplifiziert werden.

Ein konkretes Verfahren zur Herstellung von Semophorin L cDNA bzw. des H SemaL Gens ist in den Beispielen beschrieben.

Die Erfindung betrifft auch Verfahren zur Herstellung der Semaphorine vom Typ L. Beispielsweise kann ein Semaphorin L oder ein Derivat desselben dadurch hergestellt werden, daß eine entsprechende Nukleinsäure-Sequenz, die für ein Semaphorin vom Typ L oder ein Derivat desselben kodiert, in einen Expressionsvektor kloniert und mit diesem rekombinanten Vektor eine geeignete Zelle transformiert wird. Es können beispielsweise prokaryote oder eukaryote Zellen verwendet werden. Die Semaphorine vom Typ L oder deren Derivate können gegebenenfalls auch auf chemischem Weg hergestellt werden.

Darüber hinaus können die Semaphorine vom Typ L bzw. deren Derivate als Fusionsproteine exprimiert werden, beispielsweise mit Proteinen oder Peptiden, die einen Nachweis des exprimierten Fusionsproteins erlauben, z.B. als Fusionsprotein mit GFP (green fluorescent protein). Die Semaphorine können auch als Fusionsproteine mit einem, zwei, drei oder mehreren Epitop-Tags, beispielsweise mit Myc- und/oder His-(6xHistidin) und/oder flu-Tags exprimiert werden. Entsprechend können Plasmide verwendet oder hergestellt werden, die DNA-Sequenzen enthalten, die für diese Fusionsproteine kodieren. Beispielsweise können Semaphorin kodierende Sequenzen in Plasmide kloniert werden, die DNA-Sequenzen enthalten, die für GFP und/oder Epitop-Tags, z.B. Myc-Tag, His-Tag, flu-Tag kodieren. Konkrete Beispiele dafür sind durch die Beispiele und die in den Tabellen aufgeführten Sequenzen ggfs. unter Zuhilfenahme der Annotation zu den Plasmiden gegeben.

Ein weiterer Gegenstand der Erfindung sind Antikörper, die spezifisch die Semaphorine vom Typ L, deren Derivate oder Teile davon binden bzw. erkennen. Dies können beispielsweise polyklonale oder monoklonale Antikörper, die z.B. in Maus, Kaninchen, Ziege, Schaf, Huhn usw. hergestellt werden können, sein.

Eine besondere Ausführungsforrn dieses Gegenstandes der Erfindung sind Antikörper, die gegen die Epitope die den Aminosäuresequenzen von Position 179 bis 378 bzw. 480 bis 666 der H-SemaL Sequenz gemäß Tabelle 4 entsprechen, gerichtet sind. Die Erfindung betrifft auch ein Verfahren zur Herstellung von spezifischen Anti-Semaphorin L Antikörpern, wobei für die Herstellung Antigene verwendet werden, die genannten Epitope enthalten.

Die Erfindung betrifft auch Verfahren zur Herstellung der Antikörper, vorzugsweise wird dazu ein Fusionsprotein, bestehend aus einem charakteristischen Semaphorin Epitop und einem Epilop-Tag, welches für die anschließende Aufreinigung des rekombinanten Fusionsproteins verwendet werden kann. Das aufgereinigte Fusionsprotein kann anschließend für die Immunisierung verwendet werden. Zur Herstellung des rekombinanten Fusionsproteins wird ein entsprechender rekombinanter Expressionsvektor hergestellt und mit diesem eine geeignete Zelle transformiert. Aus dieser Zelle kann das rekombinante Fusionsprotein isoliert werden. Die Durchführung kann beispielsweise wie in Beispiel 8 beschrieben erfolgen.

Diese Antikörper können beispielsweise zur Aufreinigung der entsprechenden Semaphorine, z.B. von H-Semal und dessen Derivaten z.B. über Affinitätssäulen oder zum immunologischen Nachweis der Proteine, z.B. im ELISA, im Western-Blot und/oder in der Immunhistochemie verwendet werden. Die Antikörper können auch zur Analyse der Expression von H-Semal, z.B. in verschiedenen Zelltypen bzw. Zellinien verwendet werden.

Die cDNA von H-SemaL hat eine Länge von 2636 Nukleotiden (Tabelle 2). Das Genprodukt der H-SemaL-cDNA hat eine Länge von etwa 666 Aminosäuren (Tabelle 4) und weist die typische Domänenstruktur eines Semaphorins vom Typ L auf. Das Genprodukt weist ein N-terminales Signalpeptid (Aminosäuren 1 bis 44), Sema-Domäne (Aminosäure 45 bis ungefähr Aminosäure 545) und Ig (Immunglobulin)-Domäne (etwa Aminosäuren 550 bis 620) sowie am C-terminalen Ende eine hydrophobe Aminosäuresequenz auf, die eine potentielle Transmembrandomäne darstellt. Diese Domänen-Struktur wurde bisher für Semaphorine noch nie beschrieben. Es handelt sich um ein membranassoziiertes, wahrscheinlich an der Zelloberfläche lokalisiertes Glykoprotein einer neuen Untergruppe. Aufgrund dieser bisher nicht bekannten Domänenstruktur können die Semaphorine nun in VI Untergruppen eingeteilt werden:

```
Sezerniert, ohne weitere Domäne (z.B. ORF-A49)

Il lg Sezerniert (ohne Transmembrandomäne) (z.B. AHV-Sema)

Ill lg, TM, CP Membranverankert mit zytoplasmatischer Sequenz (z.B. CD100)

IV lg, (P), HPCSezerniert mit hydrophilem C-Terminus (z.B. H-Sema III, M-SemaD, Collapsin-1)

V lg, TM, CP Membranverankert mit C-terminalem 7 Thrombospondin-Motiv (z.B. M-Sema-F und G)

VI lg, TM Membranverankert (z.B. H-SemaL, M-SemaL)
```

35

Die nichtglykosylierte, nichtprozessierte Form von H-SemaL hat ein errechnetes Molekulargwicht von etwa 74,8 kD (74823 Dalton) (berechnet mit PeptideSort, GCG-Programm-Paket). Der Isoelektrische Punkt berechnet sich zu pH= 7.56.

Eine mögliche Signalpeptid-Schnittstelle liegt zwischen den Aminosäuren 44 und 45 (Tabelle 3; berechnet mit SignalP

(http://www.cbs.dtu.dk/services/Signal P), einem auf neuronalen Netzwerken basierenden Programm zur Analyse von Signalsequenzen (Nielsen H. et al. (1997) Protein Engineering 10:1-6)). Dies ergibt für das prozessierte Protein (ohne Signalpeptid) ein Molekulargewicht (MW) von 70,3 kD (70323 Dalton) und einen Isoelektrischen Punkt von pH=7.01.

Die genomische Struktur ist ebenfalls weitgehend geklärt. Das H-SemaL-Gen weist 13 oder 15 oder mehr Exons, vorzugsweise 14 Exons und 12 oder 14 Introns, vorzugsweise 13 Introns auf. Aufgrund dieser komplexen Exon-Intron-Struktur sind unterschiedliche Splice-Varianten möglich. Die mRNA des transkribierten H-SemaL-Gens findet sich im Northern-Blot vor allem in Placenta, Keimdrüsen, Thymus und Milz. Es wurde keine mRNA in neuronalem Gewebe oder in Muskelgewebe nachgewiesen. Ein Hinweis auf eine spezifisch regulierte Expression in Endothelzellen liegt vor.

Durch alternatives Splicing können auch Formen von H-SemaL mit intrazytoplasmatischen Sequenzen entstehen, die eine Rolle in der intrazellulären Signaltransduktion spielen, ähnlich wie z.B. bei CD100. Ebenfalls möglich wären durch alternatives Splicing entstehende, sezernierte Formen von H-SemaL, analog zum vira-

ien AHV-Sema.

Nukleotid- und Aminosauresequenzanalysen wurden mit Hilfe des GCG Programm-Pakets (Genetics Computer Group (1991) Program manual for the GCG package, version 7, 575 Science Drive, Wisconsin, USA 53711), FASTA (Pearson und Lipman (1988) Proc. Natl. Acad. Sci. 85, 2444-2448) und BLAST-Program (Gish und States (1993) Nat. Genet.3, 266-272; Altschul et al. (1990) J. Mol. Biol. 215, 403-410) durchgeführt. Diese Programme wurden auch für Sequenzvergleiche mit GenBank (Version 102.0) und Swiss Prof (Version 34.0) verwendet.

Posttranslationale Modifikationen wie Glykosylierung und Myristylierung von H-SemaL sind ebenfalls möglich. Konsensus-Sequenzen für N-Glykosylierungsstellen wurden mit Hilfe des Programms Prosite (GCG Programm-Paket) an den Positionen 105, 157, 258, 330, 602 der Aminosäuresequenz von H-SemaL (gemäß Tabelle 4) gefunden, solche für Myristylierung an den Positionen 114, 139, 271, 498, 499, 502, 654 (Konsensus-Sequenz: G~(E, D, R, K, H, P, F, Y, W) x (S, T, A,G, C, N)~(P)). Darüber hinaus enthält die Aminosäuresequenz von H-SemaL mehrere Konsensus-Sequenzen für potentielle Phosphorylierungsstellen durch unterschiedliche Kinasen. Deshalb kann davon ausgegangen werden, daß H-SemaL das Substrat unterschiedlicher Kinasen sein kann, z.B. Phosphorylierungsstellen für Krea-

tin-Kinase 2, Protein-Kinase C und Tyrosin-Kinase.

Vorausgesagte Kreatin-Kinase 2-Phosphorylierungs-Stellen (Konsensussequenz Ck2: (S,T)x2(D,E)) (Prosite, GCG) an den Positionen 119, 131, 173, 338, 419, 481 der Aminosäuresequenz. Vorausgesagte Protein-Kinase-C-Phosphorylierungs-Stellen (Konsensussequenz PkC: (S,T)x(R,K)) (Prosite, GCG) an den Positionen 107, 115, 190, 296, 350, 431, 524, 576 der Aminosäuresequenz. Vorausgesagte Tyrosin-Kinase-Phosphorylierungs-Stelle (Konsensussequenz: (R,K)x(2,3)(D,E)x(2,3)Y) (Prosite GCG) an Position 205 der Aminosäuresequenz.

Die Konsensussequenzen sind im Einbuchstabencode für Aminosäuren angegeben.

Ein für Integrine charakteristisches "RGD"-Motiv (Arginin-Glycin-Asparaginsäure) findet sich an Position 267. Die Glykosylierungsstellen sind gut konserviert zwischen viralem AHV-Sema, H-SemaL und (soweit bekannt) M-SemaL.

Eine Di- oder Multimerisierung von H-SemaL ist möglich und wurde bei anderen Semaphorinen wie CD100 beschrieben {Hall et al. (1996)}. Das CD100 Molekül ist ebenfalls ein membranverankertes Glykoprotein-Dimer von 150kd. CD100 ist jedoch nicht nahe verwandt mit dem erfindungsgemäßen humanen Semaphorin (H-SemaL).

Die partielle cDNA-Sequenz von M-SemaL hat eine Länge von 1195 Nukleotiden. Diese Sequenz kodiert für ein Protein mit 394 Aminosäuren. Diese 394 Aminosäuren entsprechen den Aminosäuren 1 bis 396 von H-SemaL. Das Signalpeptid im M-SemaL ersteckt sich über die Aminosäuren 1 bis 44 (genau wie im H-SemaL). Die Sema-Domäne beginnt bei der Aminosäure 45 und erstreckt sich bis zum Ende bzw. wahrscheinlich über das Ende der Sequenz gemäß Tabelle 4 hinaus.

Multiple Alignments wurden mit Hilfe des Programms Clustal W (Thompson et al. (1994)) durchgeführt Diese Alignments wurden manuell weiterbearbeitet mit Hilfe von SEAVIEW (Galtier et al. (1996) Comput Appl. Biosci 12, 543-548). Die phylogenetischen Entfernungen wurden mit Clustal W (Thompson et al. (1994)) bestimmt.

Ein Vergleich der Proteinsequenzen der bekannten und der neuen Semaphorine und eine phylogenetische Analyse dieser Sequenzen zeigt, daß sich die Gene entsprechend ihrer phylogenetischen Verwandschalt einteilen lassen. Hier fließt natürlich die C-terminale Domänenstruktur der entsprechenden Semaphorin-Subtypen als entscheidender Faktor mit ein, weshalb Semaphorine der gleichen Untergruppen in der Regel auch phylogenetisch näher verwandt sind, als Semaphorine unterschiedlicher Untergruppen. Einfluß hat auch, aus welcher Spezies das Semaphorin isoliert wurde, d.h. ob die entsprechenden Spezies phylogenetisch nahe miteinander verwandt sind oder nicht.

Eine phylogenetische Analyse (vergl. Figur 3) der bekannten Semaphorin Aminosäuresequenzen (vollständige Sequenzen und/oder Teilsequenzen, wobei die Aminosäuresequenzen für H-SemaL und M-SemaL gemäß den Tabellen 4 und 5 verwendet wurden, für alle anderen Sequenzen, die unter den Zugangsnummern gespeicherten Sequenzen bzw. die von diesen Sequenzen abgeleiteten Aminosäuresequenzen)) mittels des Programms CLUSTALW (Thompson J.D. et al. (1994) Nucleic Acids Res. 22:4673-4680) zeigt, daß die Aminosäuresequenzen von H-SemaL und M-SemaL phylogenetisch nahe miteinander verwandt sind und eine eigene phylogenetische Gruppe bilden. H-SemaL und M-SemaL wiederum sind phylogenetisch am nächsten verwandt mit AHV-Sema und Vac-A39. Sie sind

untereinander deutlich näher verwandt, als mit irgendeinem anderen bisher bekannten Semaphorin. Die Analyse zeigt weiterhin, daß auch andere Semaphorine phylogenetisch nahe miteinander verwandt sind und eigene Gruppen innerhalb der Semaphorine bilden. Beispielsweise fallen die Semaphorine, die sezerniert werden, z.B. H-Sema III, IV, V, und E in eine phylogenetische Gruppe. Zu dieser Subfamilie gehören auch deren Homologe in anderen Spezies, während das humane (transmembrane) CD100 mit dem entsprechenden Maus-Homologen (M-Sema G2) und mit Collapsin-4 in eine phylogenetische Gruppe fällt.

Im Bezug auf die gesamten Aminosäuresequenzen liegen die beobachteten Homologien innerhalb der phylogenetischen Gruppen zwischen etwa 90% und 80% Aminosäureidentität im Bezug auf sehr nahe verwandte Gene wie z.B. H- und M-SemaE oder -III/D und etwas weniger als 40% bei wenig verwandten Genen der Semaphorine. Innerhalb der Sema-Domäne liegt die beobachtete Aminosäureidentität um einige Prozent höher, und durch ihren großen Anteil am Gesamtprotein (50-80% des Proteins gehören zur Sema-Domäne) der Aminosäuresequenz beinflußt diese wesentlich die Gesamtidentität.

H-SemaL ist, über das Gesamtprotein berechnet, zu 46% identisch mit AHV-Sema, wird dagegen die Sema-Domäne allein betrachtet, dann beträgt die Aminosäureidentität 53%. Dies ist höher als z.B. zwischen den verwandten M-SemaB und -C (37% Identität im Bezug auf das Gesamtprotein, 43% Identität im Bezug auf die Sema-Domäne), ähnlich wie M-SemaA und -E (43% Gesamtprotein, 53% Sema-Domäne). Die Aminosäureidentität zwischen der partiellen M-SemaL Sequenz (Tabelle 6) und H-SemaL (Tabelle 5) liegt im Bereich der Sema-Domäne bei 93%, so daß davon ausgegangen werden kann, daß es sich um das entsprechend homologe Gen der Maus handelt.

Korrespondierende Semaphorine zu H-SemaL und M-SemaL in anderen Spezies können innerhalb der Sema-Domäne eine Aminosäureidentität größer als 40% im Bezug auf H-SemaL aufweisen. Bei den nahe verwandten Wirbeltieren (Säuger, Vögel) können sogar Aminosäureidentitäten über 70% angetroffen werden.

Es handelt sich um eine neue Subfamilie von Semaphorinen mit größerer Aminosäureidentität zu dem viralen AHV-Sema als zu den bisher bekannten humanen bzw. murinen Semaphorinen, und mit einer für humane Semaphorine bisher nicht bekannten C-terminalen Struktur. Diese neuen Semaphorine (Mitglieder der Subfamilie) zeichnen sich dadurch aus, daß sie aufgrund ihrer Domänen-struktur in die Untergruppe IV fallen und/oder die gleiche phylogenetische Gruppe fallen wie H-SemaL und M-SemaL und/oder im Bezug auf die gesamte Aminosäuresequenz zu H-SemaL eine Aminosäureidentität von mindestens 30 bis 40 %, vorzugsweise 50 bis 60 %, besonders bevorzugt 70 bis 80 % oder eine größere Identität aufweisen und/oder im Bezug auf die Sema-Domäne eine Aminosäureidentität mit H-SemaL von mindestens 70 %, vorzugsweise größer 80 %, besonders bevorzugt größer 90 % aufweisen.

Den Semaphorinen vom Typ L kommt auch eine andersartige biochemische Funktion zu. Eine neue Funktion dieser Semaphorine liegt in der Modulation des Immunsystems.

Das nächste Verwandte von H-SemaL ist das virale AHV-Semaphorin (AHV-Sema). Dieses ist von ähnlicher Größe, besitzt aber im Gegensatz zum H-SemaL keine Transmembrandomäne. Das AHV-Sema wird vermutlich von virusinfizierten Zellen sezerniert, um den H-SemaL äquivalenten Rezeptor (Semaphorin von Typ L im Streifengnu) im natürlichen Wirt (Streifengnu) zu blockieren, und so dem Angriff des Immunsystems zu entgehen. Ferner ist eine Funktion als repulsives Agens (Chemorepellent) für Zellen des Immunsystems denkbar.

Die biochemische Funktion der neuen Semaphorine vom Typ L und deren Derivate ist als generell immunmodulierend und/oder entzündungsmodulierend anzusehen. Einerseits können sie

40

45

50

55

A) als die Immunantwort hemmende Moleküle entweder lokal, z.B. als Transmembranprotein an der Oberfläche von Zellen oder auch über größere Entfernungen, z.B. wenn sie durch Prozessierung (z.B. Proteasen) oder alternatives Splicing sezerniert werden, z.B. durch Diffusion im Gewebe, ihre Wirkung als Chemorepellent und/oder Immunsuppressivum entfalten.

Beispielsweise kann die Expression dieser neuen Semaphorine vom Typ L z.B. an der Oberfläche der Zellen der Gefäßendothelien das Leukozyten-Attachment und deren Migration durch die Gefäßwand verhindern. Den neuen Semaphorinen kann eine Rolle bei der Aufrechterhaltung von Schrankenwirkungen, z.B. zur Verhindung von Infektionen in besonders "wichtigen" oder exponierten Organen, beispielsweise zur Aufrechterhaltung der Blut-Hirn-Schranke, des Plazentarkreislaufs und/oder anderen immunologisch priviligierten Orten (z.B. Pancreas-Inseln) und/oder beim Schutz vor Autoimmunerkrankungen zukommen. Darüber hinaus können die neuen Semaphorine und/oder ihre Derivate in verschiedenen Geweben auch an repulsiven Signalen, beispielsweise für Zellen des Immunsystems (z.B. Leukozyten) als Schutz gegen versehentliche Aktivierung von Abwehrmechanismen beteiligt sein.

B) Weiterhin können den neuen Semaphorinen und/oder deren Derivaten Funktionen als akzessorische Moleküle zukommen. An der Zelloberfläche exprimiert können sie beispielsweise an der Interaktion mit Zellen des Immunsystems im Rahmen der Aktivierung von Abwehrmechanismen z. B. bei Virusinfektionen beteiligt sein.

Dadurch ergeben sich mehrere Verwendungsmöglichkeiten für die neuen Sempahorine vom Typ L und deren Deri-

vaten sowie den für diese Proteine kodierenden Nukleinsäuren.

30

Funktion A): Es handelt sich um ein immunsuppressives und/oder entzündungshemmendes Prinzip: Zahlreiche potentielle Anwendungsmöglichkeilen liegen in den Bereichen Organtransplantation, Entzündungstherapie, Immuntherapie und Gentherapie.

Beispielsweise können mit Hilfe der Semaphorin-kodierenden DNA oder Derivaten derselben nichthumane, transgene Tiere hergestellt werden.

Eine Anwendungsmöglichkeit dieser Tiere liegt in der Hemmung der Transplantatabstoßung in transgenen Modellen für Organtransplantationen. Beispielsweise können transgene, gegen Abstoßung geschützte tierische Organe für Xenotransplantationen hergestellt werden. Dies sollte z.B. auch zusammen mit anderen Transgenen (z.B. Komplementregulatoren wie DAF oder CD59) möglich sein.

Eine weitere Anwendung liegt in der Herstellung von nicht-humanen Knock-out Tieren, beispielsweise von Knock-out Mäusen ("Laboratory Protocols for Gene-Targeting", Torres and Kühn (1997) Oxford University Press, ISBN 0-19-963677-X): Durch Knock-out des Mausgens M-Semal können z.B. weitere Funktionen des Gens aufgefunden werden. Sie stellen auch potentielle Modellsysteme für entzündliche Erkrankungen dar, falls die Mäuse ohne Semaphorin-Gen lebensfähig sind. Sollte M-Semal für die Immunmodulation wichtig sein, so sind vermehrt solche Mäuse zu erwarten. Weiterhin können nicht-humane Knock-in-Tiere, beispielsweise Mäuse, hergestellt werden. Dabei wird z.B. M-Semal durch normales/verändertes H-Semal oder verändertes M-Semal (z.B. Integration der neuen Semaphorin-Subtypen unter der Kontrolle von konstitutiven und/oder induzierbaren Promotoren) ersetzt. Solche Tiere können z.B. für die Suche nach weiteren Funktionen der neuen Semaphorine, z.B. Funktionen des humanen Gens oder Derivaten dieser Gene dienen oder zur Identifizierung und Charakterisierung von immunmodulierenden Wirkstoffen benutzt werden.

Verwendung von z. B. Nukleinsäuren, die für Semaphorine vom Typ L oder Derivate derselben kodieren, zur Herstellung von z.B. rekombinanten Immunsuppressiven, anderen löslichen Proteinen oder Peptiden die sich von der Amnosäuresequenz der Semaphorine vom Typ L, z.B. Von H-SemaL oder den entsprechenden Nukleinsäuren, z.B. Genen ableiten. In ähnlicher Weise können auch Agonisten mit struktureller Ähnlichkeit hergestellt werden. Diese immunsuppressiven Wirkstoffe/Agonisten können bei Autoimmunerkrankungen und entzündlichen Erkrankungen und/oder Organtransplantationen eingesetzt werden.

Gentherapie mit Semaphorinen vom Typ L, z.B. mit Nukleinsäuren, die für H-SemaL oder deren Derivate kodieren, z.B. mittels viraler oder nichtviraler Methoden. Einsatz bei Autoimmunerkrankungen und entzündlichen Erkrankungen, der Transduktion von Organen sowie vor/während/nach Transplantationen zur Verhinderung der Transplantatabsto-Bung.

Insbesondere können die neuen Semaphorine und/oder die für diese Semaphorine kodierenden Nukleinsäuren und Derivate derselben, insbesondere H-SemaL, für H-SemaL kodierende DNA und Derivate derselben in einem Verfahren zum Screening von Wirkstoffen, insbesondere zur Identifizierung und Charakterisierung von immunnodulierenden Wirkstoffen, eingesetzt werden.

Funktion B): H-SemaL ist ein akzessorisches Molekül, das an der Zelloberfläche exprimiert wird und an der Interaktion mit Zellen, z.B. des Immunsystems, z.B. als akzessorisches Molekül in der Aktivierung von Signalwegen, beteiligt ist Ein virales Gen bzw. das Genprodukt eines viralen oder anderen pathogenen Gens z.B. mikrobilogischen Ursprunges könnte z.B. als kompetitiver Inhibitor dieses akzessorischen Moleküls wirken. Eine Anwendung für die neuen Semaphorine liegt bei dieser Funktion ebenfalls im Bereich der Organtransplantation, Entzündungstherapie, Irnmuntherapie und/oder Gentherapie.

Beispielsweise können die neuen Semaphorine in einem Verfahren zum Screening von antagonistischen Wirkstoffen bzw. Inhibitoren verwendet werden. Auf diese Weise identifizierte Wirkstoffe können dann z.B. zur Blockade des Semaphorin-Rezeptors eingesetzt werden. Lösliche und/oder sezernierte H-SemaL Antagonisten bzw. Inhibitoren können beispielsweise chemische Substanzen oder die neuen Semaphorine bzw. Derivate derselben selbst sein (z.B. Teile/verkürzte Formen derselben, beispielsweise ohne Membrandomäne oder als Ig-Fusionsproteine oder von diesen abgeleitete Peptide, die geeignet sind, den korrespondierenden Rezeptor zu blockieren). Auf diese Weise identifizierte, spezifische Antagonisten und/oder Inhibitoren können beispielsweise kompetitiv wirken und bei der Hemmung der Abstoßung z.B. in transgenen Modellen für Organtransplantationen und bei Autoimmunerkrankungen, entzündlichen Erkrankungen und Organtransplantationen eingesetzt werden. Nukleinsäuren, z.B. DNA, die für die neuen Semaphorine kodieren bzw. deren mit Hilfe von molekularbiologischen Methoden erzeugte Derivate können beispielsweise für die Herstellung nichthumaner, transgener Tiere verwendet werden. Eine Überexpression von H-SemaL kann in diesen transgenen Tieren zu vermehrter Anfälligkeit für Autoimmunerkrankungen und/oder entzündlichen Erkrankungen führen. Solche transgenen Tiere eignen sich damit zum Screening von neuen, spezifischen, immunmodulierenden Wirkstoffen.

Solche Nukleinsäuren können ebenso für die Herstellung von nicht-humanen Knock-out Tieren, beispielsweise Knock-out Mäusen, bei denen das Mausgen M-SemaL ausgeschaltet wird, verwendet werden. Solche Knock-out Tiere können für die Suche nach weiteren biochemischen Funktionen des Gens eingesetzt werden. Sie stellen auch potentielle Modellsysteme für entzündliche Erkrankungen dar, falls die Mäuse ohne das M-SemaL Gen lebensfähig sind.

Diese DNA kann ebenso zur Herstellung von nicht-humanen Knock-in Tieren, beispielsweise Mäusen verwendet werden. Dabei wird das M-SemaL-Gen durch ein verändertes M-SemaL Gen/cDNA oder ein gegebenfalls verändertes, z.B. mutiertes Semaphorin Typ L Gen/cDNA einer anderen Spezies, z.B. von H-SemaL ersetzt, Solche transgenen Tiere können für die Suche nach weiteren Funktionen der erfindungsgemäßen Semaphorine verwendet werden.

Die Erfindung betrifft auch die Verwendung der Semaphorine vom Typ L und deren Derivate, sowie der für diese Proteine kodierenden Nukleinsäuren, z. B. Gene/cDNAs und deren Derivate und/oder mit Hilfe dieser Semaphorine identifizierter Wirkstoffe zur Herstellung von Arzneimitteln. Beispielsweise können Arzneimittel hergestellt werden, die in der Gentherapie angewendet werden können und die Agonisten und/oder Antagonisten der Expression der Semaphorine vom Typ L, beispielsweise von H-SemaL, enthalten. Dazu können z. B. virale und/oder nichtvirale Methoden verwendet werden. Diese Arzneimittel können z.B. bei Autoimmunerkrankungen und entzündliche Erkrankungen, Organtransplantationen vor und/oder während und/oder nach der Transplantation zur Verhinderung der Abstoßung eingesetzt werden.

Die für die neuen Semaphorine kodierenden Nukleinsäuren, z. B. Gene, cDNAs und deren Derivate können auch als Hilfsmittel in der Molekularbiologie eingesetzt werden.

Darüberhinaus können die neuen Semaphorine, insbesondere H-SemaL und Nukleinsäuren, z. B. Gene/cDNAs derselben in Verfahren zum Screening neuer Wirkstoffe eingesetzt werden. Modifizierte Proteine und/oder Peptide, die sich z. B. von H-SemaL und/oder M-SemaL ableiten, können zur Suche nach dem entsprechenden Rezeptor und/oder dessen Antagonisten bzw. Agonist in funktionellen Tests, beispielsweise mittels Expressionskonstrukten von H-SemaL und Homologen eingesetzt werden.

Die Erfindung betrifft auch die Verwendung eines Semaphorins vom Typ L oder einer Nukleinsäure-Sequenz, die für ein Semaphorin vom Typ L kodiert in einem Verfahren zur Identifizierung von pharmakologischen Wirkstoffen, insbesondere von immunmodulierenden Wirkstoffen.

Die Erfindung betrifft auch Verfahren zur Identifizierung von Wirkstofen, wobei ein Semaphorin vom Typ L oder ein Derivat derselben bzw. eine Nukleinsäure-Sequenz, die für ein Semaphorin vom Typ L kodiert oder ein Derivat derselben eingesetzt wird, um pharmakologische Wirkstoffe, z. B. immunmodulierende Wirkstoffe zu identifizieren. Beispielsweise betrifft die Erfindung ein Verfahren, bei dem ein Semaphorin vom Typ L unter definierten Bedingungen mit einem zu untersuchenden Wirkstoff inkubiert wird und parallel ein zweiter Ansatz ohne den zu untersuchenden Wirkstoff, aber unter ansonsten gleichen Bedingungen durchgeführt wird und dann die inhibierende bzw. aktivierende Wirkung des zu untersuchenden Wirkstoffs bestimmt wird.

Beispielsweise betrifft die Erfindung auch Verfahren zur Identifizierung von Wirkstoffen, wobei eine Nukleinsäure-Sequenz, die für ein Semaphorin vom Typ L kodiert oder ein Derivat derselben unter definierten Bedingungen in Gegenwart eines zu untersuchenden Wirkstoffs exprimiert wird und das Ausmaß der Expression bestimmt wird. Gegebenenfalls können auch in einem solchen Verfahren zwei oder mehrere Ansätze parallel unter gleichen Bedingungen durchgeführt werden, wobei die Ansätze aber unterschiedliche Mengen des zu untersuchenden Wirkstoffs enthalten. 5 Beispielsweise kann der zu untersuchende Wirkstoff die Transkription und/oder die Translation inhibieren oder aktivie-

Das Semaphorin vom Typ L kann wie seine viralen Homologen an das neu beschriebene Rezeptormolekül VESPR (Comeau et al, (1998) Immunity, Vol. 8, 473-482) binden und kann vermutlich in Monozyten eine Induktion von Zell-Adhäsionsmolekülen wie ICAM-1 und Zytokinen wie Interleukin-6 und Interleukin-8 bewirken. Dies kann zu deren Aktivierung und zur Zellaggregation führen. Das Expressionsmuster des VESPR-Rezeptors zeigt teilweise interessante Paralleln zu H-Senal, z.B. eine starke Expression in Placenta und eine deutliche Expression in Milzgewebe. Interaktionen mit weiteren, noch unbekannten Rezeptoren der Plexin-Familie, oder anderen Rezeptoren sind möglich. Auch eine Interaktion mit sich selbst oder anderen semaphorinähnlichen Molekülen ist möglich. Eine Interaktion der Semaphorine vom Typ L kann insbesondere Ober eine konservierte Domäne im C-terminalen Bereich der Sema-Domäne stattfinden.

Zu den Annotation Plasmiden:

50

55

pMelBacA-H-SemaL (6622bp) in pMelBacA (Invitrogen, De Schelp, NL)(SEQ ID NO.42). Nukleotid 96-98 ATG - Startkodon, Nukleotid 96-168 Mellitin Signal-Sequenz, Nukleotid 168-173 BamHI Schnittstelle (PCR/Klonierung), Nukleotid

171-1998 Leserahmen SemaL Aminosäuren 42-649 (ohne eigene Signal-Sequenz und ohne Transmembransequenz), Nukleotid 1993-1998 EcoRI Schnittstelle (PCR/Klonierung) und Nukleotid 1992-1994 Stop Codon

Plasmid pCDNA3.1-H-SemaL-MychisA (7475 bp) (SEQ ID NO. 35):

Nukleotid 954-959 BamHI Schnittstelle (Klonierung),

Nukleotid 968-970 ATG SemaL, Nukleotid 968-2965 Leserahmen SemaL, Nukleotid 2963-2968 Pml I Schnittstelle, Nukleotid 2969-2974 HindIII Schnittstelle,

Nukleotid 2981-3013 Myc-Tag, Nukleotid 3026-3033 6xHis-Tag, Nukleotid 3034-3036 Stop Codon,

Plasmid pCDNA3.1-H-SemaL-EGFP-MychisA (8192 bp): (SEQ ID NO. 36):

Nukleotid 954-959 BamHI Schnittstelle (Klonierung), Nukleotid 968-970 ATG SemaL, Nukleotid 968-2965 Leserahmen SemaL, Nukleotid 2963-2965 halbe Pml I Schnittstelle, Nukleotid 2966-3682 Leserahmen EGFP (in Pml I Kloniert), Nukleotid 3683-3685 halbe Pml I Schnittstelle, Nukleotid 3685-3691 HindIII, Nukleotid 3698-3730 Myc-Tag, Nukleotid 3743-3760 6xHis-Tag, und Nukleotid 3761-3763 Stop Codon

Plasmid plND-H-SemaL-EA (7108 bp) in Vektor plND (Invitrogen, De Schelp, NL) (SEQ ID No. 38): Nukleotid 533-538 BamHl Schnittstelle (Klonierung), Nukleotid 546-548 ATG SemaL, Nukleotid 546-Leserahmen SEMAL, Nukleotid 2542-2547 Pml I Schnittstelle, Nukleotid 2546-2553 Hindlil Schnittstelle und Nukleotid 2563-2565 Stop Codon.

Plasmid pIND-H-SemaL-EE (Gesamtlänge 7102 bp) in Vektor pIND (Invitrogen, De Schelp, NL) (SEQ ID No. 37): Nukleotid 533-538 BamHI Schnittstelle (Klonierung), Nukleotid 546-548 ATG SemaL, Nukleotid 546-Leserahmen SemaL, Nukleotid 2542-2547 Pml I Schnittstelle, Nukleotid 2548-2553 HindIII Schnittstelle, Nukleotid 2560-2592 Myc-Tag, Nukleotid 2605-2622 6xHis-Tag und Nukleotid 2623-2625 Stop Codon.

Plasmid pQE30-H-SemaL-179-378.seq (4019 bp) in Vektor pQE30 (Qiagen, Hilden) entspricht pQE30-H-SemaLBH (SEQ ID No. 39):

Nukleotid 115-117 ATG, Nukleotid 127-144 6xHis-Tag, Nukleotid 145-750 BamHI-HindIII PCR-Fragment SemaL Aminosäuren (aa) 179-378 und Nukleotid 758-760 Stop Codon.

Plasmid pQE31-H-SemaL- (SH (3999 bp) in Vektor pQE31 (Qiagen, Hilden) (SEQ ID No. 40): Nukleotid 115-117 ATG, Nukleotid 127-144 6xHis-Tag, Nukleotid 147-152 BamHI, Nukleotid 159-729 SacI-HindIII Fragment SemaL (C-terminal) aa480-666 und Nukleotid 734-736 Stop Codon.

Beispiele:

5

10

15

25

Versuchsbedingungen, die in den Beispielen Anwendung finden:

30 Verwendete PCR-Programme:

Taq52-60 (mit Ampli-Taq^R-Polymerase, Perkin Elmer, Weil der Stadt, Deutschland)

35	96°C/60s 96°C/15s-52°C/20s-70°C/60s 70°C/60s	1 Zyklus 40 Zyklen 1 Zyklus
	Taq60-30	
40 ·	96°C/60s 96°C/15s-60°C/20s-70°C/30s 70°C/60s	1 Zyklus 35 Zyklen 1 Zyklus

Taq60-60

96°C/60s 1 Zyklus 96°C/15s-60°C/20s-70°C/60s 35 Zyklen 70°C/60s 1 Zyklus

50 Taq62-40

45

96°C/60s 1 Zyklus 96°C/15s-62°C/20s-70°C/40s 35 Zyklen 70°C/60s 1 Zyklus

Verwendete Reaktionsbedingungen für PCR mit Taq-Polymerase:

50μl Reaktionsansätze mit 100-200ng Template, 200μM dNTP, 0,2-0,4 μM je Primer, 2.5U Ampli-Tag^R, 5μl des mit-

gelieferten 10x Reaktionspuffers

Verwendete Programme für:

1. XL62-6 (mit Expand-Long Template PCR System^R, Boehringer Mannheim, Deutschland)

94°C/60s 1 Zyklus 94°C/15s-62°C/30s-68°C/6min 10 Zyklen 94°C/15s-62°C/30s-68°C/(6min+15s/Zyklus) 25 Zyklen 68°C/7min 1 Zyklus

2. XL62-12 (mit Expand-Long Template PCR System^R, Boehringer Mannheim, Deutschland)

94°C/60s 1 Zyklus 94°C/15s-62°C/30s-68°C/12min 10 Zyklen 94°C/15s-62°C/30s-68°C/(12min+15s/Zyklus) 25 Zyklen 68°C/7min 1 Zyklus

Reaktionsbedingungen für PCR mit Expand-Long Template PCR System

50μl Reaktionsansätze mit 100-200ng Template, 500μM dNTP, 0,2-0,4 μM je Primer, 0,75μl Enzym-Mix, 5μl des mitgelieferten 10x Reaktionspuffers Nr. 2.

Beispiel 1:

25

5

10

15

20

Ausgehend von Sequenzen des AHV-Sema (Ensser u. Fleckenstein (1995), J. General Virol. 76: 1063-1067) wurden PCRs und RACE-PCRs durchgeführt. Als Ausgangsmaterial hierfür diente humane cDNA aus Plazenta-Gewebe, an welche Adapter zur RACE-Amplifikation ligiert wurden (Marathon™-cDNA Amplification Kit, Clontech Laboratories GmbH, Tullastraße 4, 69126 Heidelberg, Deutschland). Zunächst wurde mittels spezifischer Primer (Nr. 121234 + Nr. 121236, Tabelle 6) ein PCR-Fragment mit einer Länge von etwa 800bp (Basenpaaren) amplifiziert (PCR-Programm: (Taq60-60)). Dieses wurde kloniert und sequenziert (Taq-Dye-Deoxy-Terminator Sequenzierungs-Kit, Applied Biosystems, Foster: City, CA USA) Brunnenweg 13, Weilderstadt). Die Sequenzierung des PCR-Produkts ergab eine Sequenz, die eine hohe Homologie zu der DNA-Sequenz von AHV-Sema aufweist, identisch zu der Sequenz der beiden ESTs.

Ein PCR-Fragment von 600bp wurde mit dem Primerpaar (Nr. 121237 + Nr. 121239, Tabelle 6) identifiziert. Es zeigte sich, das es sich um Klone mit DNA-Sequenzen des selben Gens handelte.

Beispiel 2:

Das 800bp PCR-Fragment aus Beispiel 1 wurde radioaktiv markiert (Random-Priming nach der Methode von {Feinberg (1983) Anal. Biochem. 132:6-13}, mit ³²P-α-dCTP) und als Sonde für einen Multi-Tissue Northern-Blot (Human Multiple Tissue Northern Bot II, Clontech, Heidelberg, Germany), der mRNA-Proben aus den Geweben Milz, Thymus, Prostata, Testis, Ovarien, Dünndarm, Dickdarm und Leukozyten (PBL) enthält, verwendet. Dabei Zeigte sich deutlich die Expression einer mRNA mit einer Länge von etwa 3.3kb in Milz und Keimdrüsen (Hoden, Eierstöcken), sowie schwächer in Thymus und Darm. Eine Hybridisierung eines Master-Blots (Dotblot mit RNA aus zahlreichen Geweben (Human RNA Master Blot™, Clontech) bestätigte dieses Ergebnis und zeigte auch eine starke Expression in Plazenta-Gewebe.

Die Hybridisierung wurde für 16 Stunden unter stringenten Bedingungen (5xSSC, 50 mM Na-Phosphat pH 6.8, 50 % Formamid, 100 µg/ml Hefe-RNA) bei 42°C durchgeführt. Die Blots wurden stringent gewaschen (65°C, 0,2XSSC, 0.1 % SDS) und einem Fuji BAS2000 Phosphoimager ™ exponiert

Beispiel 3:

Eine cDNA-Bibliothek aus humaner Milz, kloniert in dem Bakteriophagen Lambda gt10 (Human Spleen 5' STRETCH PLUS cDNA, Clontech) wurde mit dieser Sonde durchsucht und ein Lambda-Klon identifiziert. Die in diesem Klon inserierte cDNA mit einer Länge von 1.6kb wurde mittels PCR (Expand™ Long Template PCR System, Boehringer Mannheim GmbH, Sandhofer Straße 116, 68305 Mannheim) amplifiziert wobei die vektorspezifischen Primer Nr. 207608 + Nr. 207609 (Tabelle 6) verwendet wurden (flankierend der EcoRI-Klonierungsstelle) und das erhaltene PCR-

Fragment sequenziert. Dieser Klon enthielt das 5' Ende der cDNA und erweiterte die bekannte cDNA Sequenz auch nach 3'. Ausgehend von den neuen Teilsequenzen der cDNA wurden neue Primer für die RACE-PCR entwickelt (Nr. 232643, Nr. 232644, Nr. 233084, Tabelle 6). Zusammen mit einer verbesserten Thermocyclertechnik (PTC-200 von MJ-Research, Biozym Diagnostik GmbH, 31833 Hess. Oldendorf) mit deutlich besseren Leistungsdaten (Heiz- und Kühlrate) wurde ein 3'-RACE PCR-Produkt amplifiziert wobei die Primer Nr. 232644 bzw. Nr. 232643 und AP1 verwendet wurden und in den Vektor pCR2.1 (Invitrogen, De Schelp 12, 9351 NV Leek, Niederlande) kloniert. Das 3'-RACE PCR-Produkt wurde Sequenziert und auf diese Weise das 3'Ende der cDNA identifiziert. Eine RACE-Amplifikation nach 5' (Primer Nr. 131990 bzw. Nr. 233084 und AP1) erweiterte das 5' Ende der cDNA um wenige Nukleotide und bestätigte den im identifizierten Lambda-Klon gefundenen Aminoterminus des H-SemaL.

Beispiel 4:

Ausgehend von einem kurzen murinen EST (Zuordnungs-Nr. AA260340) und einem daraus abgeleiteten Primer Nr. 260813 (Tabelle 6) und dem H-SemaL spezifischen Primern Nr. 121234 (Tabelle 6) wurde mittels PCR (Bedingungen: Taq52-60) ein DNA-Fragment mit einer Länge von ca. 840 bp muriner cDNA amplifiziert und in den Vektor pCR2.1 kloniert. Das dieses DNA-Fragment enthaltende Gen wurde M-SemaL genannt. Mit dem erhaltenen M-SemaL DNA-Fragment eine cDNA-Bank aus Mäuse-Milz (Mouse Spleen 5' STRETCH cDNA, Clontech) untersucht, wobei bereits mehrere Klone identifiziert werden konnten.

PCR (Taq60-30) mit den Primern Nr. 260812, Nr.260813 aus muriner, endothelialer cDNA lieferte ein PCR-Fragment mit einer Länge von 244 Basenpaaren. Die PCR-Ergebnisse zeigten, daß eine deutliche basale Expression in murinen Endothelzellen vorhanden ist, welche nach Stimulation mit dem Zytokin Interferon-γ und Lipopolysacchariden zurückgeht.

Beispiel 5:

25

10

Untersuchungen zur Chromosomalen Lokalisation wurden mittels Fluoreszenz in-situ Hybridisierung (FISH) durchgeführt. Dazu wurden Metaphase Chromosomen von Mensch und Maus, ausgehend von einer humanen Blutprobe bzw. der Mauszellinie BINE 4.8 (Keyna et al. (1995) J. Immunol. 155, 5536-5542), hergestellt (Kraus et al. (1994) Genomics 23, 272-274). Die Objektträger wurden mit RNase und Pepsin behandelt (Liehr et al. (1995) Appl. Cytogenetics 21, 185-188). Für die Hybridisierung wurden 120 mg humane Nick-translatierte Semaphorin-Probe bzw. 200 mg einer entsprechenden Mausprobe verwendet. Die Hybridisierung wurde jeweils in Gegenwart von 4.0 µg COT1-DNA und 20 µg STD bei 37°C (3 Tage) in einer befeuchteten Kammer durchgeführt.

Die Objektträger wurden mit 50% Formamid/2x SSC (3 mal je 5 min bei 45°C) und dann mit 2 x SSC (3 mal je 5 min bei 37°C) gewaschen und die biotinylierte Probe mit dem FITC-Avidin-System (Liehr et al. (1995)), detektiert. Die Objektträger wurden mit Hilfe eines Fluoreszenz-Mikroskops ausgewertet. Es wurden 25 Metaphasen/Probe ausgewertet, wobei jedes Experiment doppelt durchgeführt wurde. Es zeigt sich, daß H-SemaL auf Chromosom 15q23 lokalisiert ist Chromosomal benachbart liegen der Locus für das Bardet-Biedl-Sydrom und Tay-Sachs Erkrankung (Hexosaminidase A).

40 Beispiel 6:

Die genomische Intron-Exon Struktur des H-SemaL Gens ist zum größten Teil aufgeklärt.

Genomische DNA Fragmente wurden ausgehend von 250 mg humaner genomischer DNA, die aus PHA stimmulierten pheripheren Lymphozyten (Blut) isoliert worden waren, amplifiziert. Kürzere Fragmente wurden mit Ampli Taq^R (Perkin Elmer), längere Fragmente mit dem Expanded Long Templat PCR System^R (Boehringer Mannheim) amplifiziert

Durch PCR-Amplifikation konnte bisher fast der vollständige genomische Locus des H-SemaL kloniert und charakterisiert werden. Insgesamt konnten bereits mehr als 8888 bp der genomischen Sequenz bestimmt werden und so die Intron-Exon-Struktur des Gens weitgehend aufgeklärt werden.

Beispiel 7:

50

Expressionsklonierungen:

Da kein kompletter Klon des Semaphoringens aus der Lambda-gt10 cDNA-Bank isoliert werden konnte, und auch mittels PCR ein vollständiger Klon nicht zu erhalten war, wurde der kodierende Bereich der cDNA in 2 überlappenen Subfragmenten mittels PCR (XL62-6) mit Hilfe der Primer Nr. 240655 und Nr. 121339 für das N-terminale DNA-Fragment, sowie den Primern Nr. 240656 (enthält HindIII und Pmel Schnittstellen) und Nr. 121234 für das C-terminale DNA-Fragment amplifiziert. Die erhaltenen DNA-Fragmente (Subfragmente) wurden in den Vektor pCR21 kloniert. Die beiden

Subfragmente wurden komplett sequenziert und schließlich die vollständige H-SemaL cDNA durch Insertion eines 0.6kb C-terminalen Sstl-HindIII Restriktions-Fragments in das mit den Restriktionsenzymen Sstl und HindIII geschnittene, das N-terminale DNA-Fragment enthaltende Plasmid, hergestellt. Aus diesem Plasmid pCR2.1-H-SemaL (gemäß Sequenz in Tabelle 7, SEQ ID NO. 34) wurde das komplette Gen mittels der EcoRI-Schnittstelle (in pCR2.1) und Hindlll-Schnittstelle (in Primer Nr. 240656, Tabelle 6) herausgeschnitten und in einen entsprechend geschnittenen, konstitutiven Expressionsvektor pCDNA3.1(-)MycHisA (Invitrogen) ligiert. Aus dem resultierenden rekombinanten Plasmid pCDNA3.1(-)H-SemaL-MycHisA (gemäß Sequenz in Tabelle 8) wurde das EcoRI-Apal Fragment (ohne Myc-His-Tag) herausgeschnitten und in den induzierbaren Vektor pIND ligiert (Ecdysone-Inducible Mammalian Expression System, Invitrogen), der zuvor ebenfalls mit EcoRI-Apal geschnitten worden war. Das rekombinante Plasmid wurde mit pIND-H-SemaL-EA (Sequenz gemäß Tabelle 11) bezeichnet Ein EcoRI-Pmel-Fragment (mit Myc-His-Tag) aus pCDNA3.1(-)H-SemaL-Myc-HisA (Sequenz gemäß Tabelle 9) wurde in einen mit EcoRI-EcoRV geschnittenen Vektor pIND eingesetzt. Das rekombinante Plasmid wurde mit pIND-H-SemaL-EE (Sequenz gemäß Tabelle 10) bezeichnet. Ein Fusionsgen von H-SemaL mit Enhanced Green Fluorescent Protein (EGFP) wurde hergestellt durch Ligation des mit PCR amplifizierten EGFP-Leserahmens (aus dem Vektor pEGFP-C1 (Clontech), mit Hilfe der Primer Nr. 243068 + Nr. 243069, Taq52-60) in die Prnel-Schnittstelle des Plasmids pCDNA3.1(-)H-SemaL-MycHisA wodurch das Plasmid pCDNA3.1(-)H-SemaL-EGFP-MycHisA (Sequenz gemåß Tabelle 9) erhalten wurde.

In den Tabellen 7 bis 13 bedeuten kleine Buchstaben die Sequenz von H-SemaL, Teilen oder Derivaten derselben und große Buchstaben die Sequenz des Plasmids.

20 Beispiel 8:

30

35

45

Zur Herstellung von H-SemaL spezifischen Antikörpern wurden cDNA-Fragmente von H-SemaL in prokaryotische Expressionsvektoren integriert, in E. coli exrimiert und die Semaphorin-Derivate aufgereinigt. Die Semaphorin-Derivate wurden als Fusionsproteine mit einem His-Tag exprimiert Dementsprechend wurden Vektoren verwendet, die die Sequenz für ein His-Tag enthalten und eine Integration des Semaphorin cDNA-Fragments im Leserahmen ermöglichten. Ein N-terminales 6xHistidin-Tag ermöglicht z.B. eine Aufreinigung mittels Nickel-Chelat-Affinitätschromalographie (Qiagen GmbH, Max-Volmer Straße 4, 40724 Hilden):

- Der für die Aminosäuren 179-378 kodierende Teil der H-SemaL cDNA wurde mittels PCR mit den Primern Nr. 150788 und Nr. 150789 amplifiziert und dieses DNA-Fragment in den Vektor pQE30 (Qiagen), der zuvor mit den Restriktionsenzymen BarnHI und HindIII geschnitten worden war, ligiert (Konstrukt pQE39-H-SemaL-BH (Sequenz gemäß Tabelle 12)).
- 2. Der für die C-terminalen Aminosäuren 480-666 kodierende Abschnitt der H-SemaL cDNA wurde mit den Restriktionsenzymen Sstl und HindIII aus dem Plasmid pCR 2.1 geschnitten und in den Vektor pQE31 (Qiagen), der zuvor mit Sstl und HindIII geschnitten worden war ligiert (Konstrukt pQE31-H-SemaL-SH (Sequenz gemäß Tabelle 13)).

Die korrekte Integration der Sequenzen im richtigen Leserahmen wurde durch DNA-Sequenzierung überprüft. Die Fusionsproteine, bestehend aus einem N-terminalen 6xHistidin-Taq und einem Teil des Semaphorins H-SemaL wurden mittels Ni²⁺-Affinitätschromatographie aufgereinigt. Die aufgereinigten Fusionsproteine wurden zur Immunisierung von verschiedenen Tieren (Hase, Huhn, Maus) benutzt

Beispiel 9:

FACS-Analyse verschiedener Zelltypen (Figuren 4 und 5)

Die Zellen (ca. 0.2-0.5 x 10⁶) wurden mit FACS-Puffer gewaschen (Phosphate-buffered Saline (PBS) mit 5% fötalem Kälberserum (FCS) und 0.1% Na-Azid) und dann jeweils (auf Eis) für 1 Stunde mit den Antiseren inkubiert.

Als primäre Antikorper dienten für die Kontrolle (Overlay Hühner-Präimmunserum (1 : 50) und für den spezifischen Nachweis (Spezifische Färbung) ein H-SemaL spezifisches Hühner-Antiserum (1 : 50).

Das spezifische Antiserum mit Antikörpern gegen Aminosäuren (Aa) 179-378 (mit N-terminalem His-Tag) von H-SemaL wurde durch Immunisierung von Hühnern mit dem durch Ni-Chelat-Affinitätschromatographie gereinigten Protein erzeugt (wie in Beispiel 8 beschrieben).

Als zweiter Antikörper wurde ein FITC-markierter anti-Huhn F(ab') Antikörper aus Kaninchen verwendet (Dianova Jackson Laboratories, Best.-Nr. 303-095-006, Hamburg, Deutschland) (1 mg/ml).

Für die CD100-Färbung: wurde ein Rabbit-anti-Maus IgG, FITC-markiert verwendet. Der zweite Antikörper wurde jeweils in 1:50 Verdünnung in FACS-Puffer eingesetzt.

Dann wurden die Zellen gewaschen, in PBS resuspendiert und im FACS analysiert. Die FACS-Analyse wurde mit

einem FACS-Trak Gerät (Becton—Dickinson) durchgeführt Prinzip: Eine Einzelzellsuspension wird in einen Messkanal vorbeigeleitet, dort werden die Zellen mit Laserlicht von 488nm bestrahlt und so Fluoreszenzfarbstoffe (FITC) angeregt. Gemessen werden Streulicht nach vorne (forward scatter, FSC: korreliert mit der Zellgröße), zur Seite (sideward scatter, SSC: korreliert mit dem Granulargehalt: bei unterschiedlichen Zelltypen unterschiedlich) und Fluoreszenz im Kanal 1 (FL 1) (für Wellenlängen im FITC Emissionsbereich, max. bei 530nm). Auf diese Weise wurden je 10000 Ereignisse (Zellen) gemessen.

Der Dotplot (Figuren 4a - k) (jeweils linke Abbildung): FSC gegen SSC (Größe gegen Granulargehalt/Streuung), darin eingegrenzt ist die im rechten Fenster (jeweils zugehörige rechte Abbildung) analysierte (einheitliche) Zellpopulation von ähnlicher Größe und Granulargehalt. Das rechte Fenster zeigt die Intensität von FL1 (X-Achse) gegen die Zahl der

10 Ereignisse (Y-Achse), also eine Häufigkeitsverteilung.

Hierbei istjeweils das Ergebnis mit dem Kontrollserum (nichtgefüllte Kurve) dem Ergebnis der spezifischen Färbung (ausgefüllte Kurve) überlagert. Eine Verschiebung der Kurve für die spezifische Färbung gegenüber der Kontrolle nach rechts entspricht einer Expression von H-SemaL in den entsprechenden Zellen. Je weiter die Verschiebung, desto stärker ist die Expression.

15 Für FACS Analyse verwendete Zellinien:

a) Zellinie I 1937

American Type Culture Collection ATCC; ATCC Nummer: CRL-1593 Name: U-937

Gewebe: lymphoma; histiocytic; Monozytenähnlich

20 Species: human;

Hinterleger: H. Koren

b) Zellinie THP-1

ATCC Nummer: TIB-202

Gewebe: monocyte; acute monocytic leukemia

25 Species: human

Hinterleger: S. Tsuchiya

c) Zellinie K-562

ATCC Nummer: CCL-243

Gewebe: chronic myelogenous leukemia

30 Species: human;

Hinterleger H.T. Holden

d) Zellinie L-428

DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, DSMZ Nr: ACC 197

Zelltyp: human Hodgkin's lymphoma

e) Zellinie Jurkat

DSMZ-Deutsche Sammlung von Mikroorganismen und zellkulturen GmH, DSMZ Nr: ACC 282

Zelltyp: human T cell leukemia

f) Zellinie Daudi

ATCC Number: CCL-213

40 Gewebe: Burkitt's lymphoma; B lymphoblast; B Zellen

Species : human Hinterleger: G. Klein

g) Zellinie LCL

EBV-transformierte lymphoblastoide B-Zellinie.

h) Zellinie Jiyoye (P-2003) ATCC Number: CCL-87

Gewebe: Burkitt's lymphoma; B Zellen; B lymphocyte

Species: human Hinterleger: W. Henle

i) CBL-Mix57

humane T-Zellinie (isoliert aus Blut) transformiert mit rekombinantem H. Saimiri (Wild-typ ohne Deletion)

j) CBL-Mix59

humane T-Zellinie (isoliert aus Blut) transformiert mit H. Samiri (Deletion von ORF71).

55 Beispiel 10: Proteingel und Western-Blot

Sekretierbare humane SemaL (Aminosäuren 42-549 in Tabelle 4 (ohne Signalpeptid und ohne Transmembrandomäne) wurde in das Plasmid pMelBac-A (Invitrogen, De Sehelp, Leck, Niederlande, Cv 1950-20) kloniert und auf diese

Weise das Plasmid pMelBacA-H-SemaL (Länge 6622bp) erzeugt (Tabelle 15,Figur 8). Das H-SemaL Derivat wurde im Baculovirus-System (Bac-N-Blue, Invitrogen) exprimiert. Die Expression wurde in den Insekten-Eizellen abgeleiteten Zellinien Sf9 (von Spodoptera flugiperda) und High FiveTM (von Trichoplusia ni, U.S. Pat. No. 5,300,435, gekauft von Invitrogen) durch Infektion mit den rekombinanten, plaquegereinigten Baculoviren ausgeführt.

Die Expression wurde nach den Angaben des Herstellers durchgeführt.

Anschließend wurden die Proteine in einem Gel aufgetrennt und das H-SemaL Derivat im Western-Blot nachgewiesen.

Die Detektion wurde mit dem H-SemaL spezifischen Hühnerantiserum (vergl. Beispiel 8 und Figur 7) (Verdünnung: 1:100) durchgeführt. Der spezifische Hühnerantikörper wurde mit anti-IgY-HRP Konjugat (Verdünnung: 1:3000, vom Kaninchen; Dianova Jackson Laberatories) nach Angaben des Herstellers nachgewiesen.

Beispiel 11: Herstellung von pMelBacA-HSEMAL

Der rekombinante Vektor (pMelBacA-HSEMAL, 6622bp) wurde hergestellt, indem ein entsprechendes DNA-Fragment, das für die Aminosäuren 42-649 von H-SemaL kodiert, in den Vektor pMelBacA (4,8 kb, Invitrogen) kloniert wurde (vergl. Annotation zu pMelBacA-H-SemaL). Die Klonierung erfolgte über BamHI und EcoRI in frame hinter die in dem Vektor vorliegende Signalsequenz ("honeybee melittin signal sequence"). Ein entsprechendes H-SemaL DNA-Fragment wurde mit dem Primerpaar H-Sema 1 baculo 5' und H-Sema 1 baculo 3' amplifiziert.

Primer zur Amplifikation (TaKaRa Ex Taq-Polymerase) und Klonierung:

"H-Sema 1 baculo 5", zur Amplifikation ohne Signalsequenz und zur Einführung einer BamHI-Schnittstelle 5'-CCGGATCCGCCCAGGGCCACCTAAGGAGCGG-3' (SEQ ID NO: 43)

"H-Sema 1 baculo 3', zur Amplifikation ohne Transmembrandomäne und zur Einführung einer EcoRI-Schnittstelle 5'-CTGAATTCAGGAGCCAGGGCACAGGCATG-3' (SEQ ID NO: 44).

Abbildungen:

Figur 1:

25

35

Gewebespezifische Expression von H-SemaL

A) Mehrfach-Gewebe Northern Blot (Clontech, Heidelberg, Deutschland). Von links nach rechts sind aufgetragen: Je 2 µg Poly-A-RNA pro Spur aus Milz, Thymus, Prostata, Hoden, Eierstöcken, Dünndarm, Dickdarm Mukosa, pheripheren (Blut-) Leukozyten. Größenstandards sind markiert.

Die Blots wurden unter stringenten Bedingungen mit einer 800 Basenpaaren langen H-SemaL Probe hybridisiert.

Figur 2:

Schematische Darstellung der Klonierung der H-SemaL cDNA und der genomischen Organisation der H-SemaL kodierenden Sequenzen (H-SemaL Gen)

Oben: Lokalisation der EST-Sequenzen (Zugangsnummern; Lage der EST-Sequenzen ist relativ zur AHV-Sema Sequenz dargestellt).

Darunter: Amplifizierte PCR- und RACE-Produkte sowie die Position der cDNA Klone im Bezug auf die Lokalisation in der vollständigen H-SemaL cDNA und dem offenen Leserahmen (ORF) für das kodierte Protein.
Unten: Relative Position der Exons im H-SemaL Gen im Bezug auf die genomische Sequenz.

45 Die Position der verwendeten Oligonukleotid Primer ist durch Pfeile angezeigt

Figur 3:

Phylogenetischer Baum: Erhalten durch mehrfaches Alignment der aufgeführten Semaphorin Sequenzen. Aufgrund der Gruppierung der Semaphorine in dem phylogenetischen Baum kann auf deren phylogenetische Verwandtschaft geschlossen werden.

Figur 4:

FACS Analyse der H-SemaL Expression in verschiedenen Zellinien bzw. verschiedenen Zelltypen (vergl. Beispiel 8).

Figur 5:

15

25

30

40

45

50

55

Vergleichende Analyse der CD 100 und H-Semal. Expression (vergl. Beispiel 9).

5 Figur 6: Expression von sekretierbarem humanen SEMAL (H-SemaL) in HiFive und Sf3-Zellen (vergl. Beispiel 10).

(Aa 42-649 in pMelBac-A (Invitrogen) im Baculovirus-System (Bac-N-Blue, Invitrogen) Detektion mit spezifischem Hühner-Antiserum (1:100) und anti-IgY-HRP Konjugat (1:3000, vom Kaninchen, Jackson Lab.) 1,4,6 uninfizierte HiFive Zellen (serumfrei)

10 2,3,5,7,8 mit rekombinantem Baculovirus infizierte HiFive Zellen (serumfrei) M Rainbow molecular weight marker (Amersham RPN756)

9,10 infizierte Sf9 Zellen (serumhaltiges Medium).

Figur 7: Spezifität des Antiserums

Spuren 1-3: Huhn 1; Spuren 4-6: Huhn 2

Spuren 1 und 4: Präimmunserum

Spuren 2 und 5: 60. Immunisierungstag

Spuren 4 und 6: 105. Immunisierungstag

Immunisiert wurde mit den Aminosauren 179-378 von H-SemaL (mit aminoterminalem His-Tag) (vergl. Beispiel 8, Punkt 1.)

Figur 8: Abbildung der Plasmidkarte von pMelBacA-HSEMAL.

Das rekombinante Plasmid wurde wie in Beispiel 11 beschrieben, hergestellt.

Spezies
rschiedenen
aus ve
emaphorinen
n Sema
e Subtypen vo
Verschiedene S
abelle 1:
-

Name	Synonym	Spezies		Referenz
H-Sema III	(H-SemaD)	Mensch	Sez.	(Kolodkin et al. 1993)
CD-100		Mensch	TM, IC; CD45 assoziert, InT-Zellen exprimiert	(Hall et al. 1996)
H-Sema V	(H-SemaA)	Mensch	Sez; Locus 3p21.3	(Sekido et al. 1996: Roche et al. 1996)
H-Sema IV	(H-Sema 3F)	Mensch	Sez.; Locus 3p21,3	(Xiang et al. 1996: Sekido et al. 1996)
Н-ЅетаЕ		Mensch	Sez.; am 3 Ende von M-SemaE divergierend (Leserahmen im Alignment verbessert)	
H-SemaK	KIAA0331	Mensch	Sez.;	(Nagase et al. 1997)
H-Semal	SEMAL	Mensch	TM, kein IC	Diese Anmeldung
M-SemaA		Maus	Sez.	(Püschel et al. 1995)
М-ЅетаВ		Maus	TM, IC	(Püschel et al. 1995)
M-SemaC		Maus	TM, IC	(Püschel et al. 1995)
М-ЅетаD	M-Sema III	Maus	Sez	(Messersmith et al. 1995; Püschel et al. 1995)
M-SemaE		Maus	Sez.; 5'partielle Sequenz	(Púschel et al. 1995)
M-SemaF1	M-SemaF	Maus	TM, IC	(Inagaki et al. 1995)
M-SemaG2	M-SemaG	Maus	TM, IC; exprimient in Lymphoiden Zellen, Maus-Homolog zu CD100	(Funyama et al. 1996)

Name	Synonym	Spezies		Referenz
M-Sema-F2	M-Sema-F	Maus	TM, IC; Thrombospondin-Moliv	(Adams et al. 1996)
M-SemaG1	M-SemaG	Maus	TM, IC; Thrambospondin-Mativ	(Adams et al. 1996)
М-ЅетаН		Maus	Sez.	(Christensen 1996 unpub) Z80941
M-SemaVla		Maus	TM, IC	(Zhou et al. 1997)
M-Semal.	Semal	Maus	Partielle Sequenz	Diese Anmeldung
Collapsin-1		Huhn	Sez	(Luo et al. 1993)
Collapsin-2		Huhn	Sez	(Luo et al. 1995)
Collapsin-3		Huhn	Sez.	(Luo et al. 1995)
Collapsin-4		Huhn	Partielle Sequenz	(Luo et al. 1995)
Collapsin-5		Huhn	Sez.	(Luo et al. 1995)
R-Sema III		Ratte	ZeZ	(Giger et al. 1996)
T-Sema l		Tribolium confusum	TM, IC	(Kolodkin et al. 1993)
Ce-Sema I		C.elegans	TM, IC	U15667 (Roy1994 unpublished)
G-Sema l	Fascidin-IV	Grashűpfer	TM, IC	(Kolodkin et al. 1992)
D-Sema l		Drosophila	TM, IC	(Kolodkin et al. 1993)
D-Sema II	-	Drosophila	Sez	(Kolodkin et al. 1993)
AHV-Sema		AHV-1	Sez.	(Ensser and Fleckenstein, 1995)

Name	Synonym	Spezies		Referenz
ORF-A39		Vaccinia	Sez.	(Kolodkin et al. 1993)
ORF-A39-homolog		Variofa	Sez;	(Kolodkin et al. 1993)

Transmembrandomäne

sezerniert

vermutlich intrazelluläres zytoplasmatisches Sequenz-Motiv Sez:

Tabelle 2: cDNA-Sequenz von H-SemaL (2636 Nukleotide) (SEQ ID NO.: 1)

```
5
           1
                 cggggccacg ggatgacgcc tcctccgccc ggacgtgccg cccccagcgc
           51
                 accgcgcgcc cgcgtccctg gcccgccggc tcggttgggg cttccgctgc
           101
                 ggctgcggct gctgctgctg ctctgggcgg ccgccgcctc cgcccagggc
           151
                 cacctaagga goggaccoog catottogoo gtotggaaag gocatgtagg
 10
           201
                 gcaggaccgg gtggactttg gccagactga gccgcacacg gtgcttttcc
           251
                 acgagecagg cageteetet gtgtgggtgg gaggaegtgg caaggtetae
           301
                 ctctttgact tccccgaggg caagaacgca tctgtgcgca cggtgaatat
           351
                 cggctccaca aaggggtcct gtctggataa gcgggactgc gagaactaca
15
           401
                 tcactctcct ggagaggcgg agtgaggggc tgctggcctg tggcaccaac
           451
                 gcccggcacc ccagctgctg gaacctggtg aatggcactg tggtgccact
           501
                 tggcgagatg agaggctacg ccccttcag cccggacgag aactccctgg
20
           551
                 ttctgtttga aggggacgag gtgtattcca ccatccggaa gcaggaatac
           601
                 aatgggaaga tooctoggtt cogcogcato oggggogaga gtgagotgta
           651
                 caccagtgat actgtcatgc agaacccaca gttcatcaaa gccaccatcg
           701
                 tgcaccaaga ccaggcttac gatgacaaga tctactactt cttccgagag
25
           751
                 gacaatcctg acaagaatcc tgaggctcct ctcaatgtgt cccgtgtggc
           801
                 ccagttgtgc aggggggacc agggtgggga aagttcactg tcagtctcca
           851
                 agtggaacac ttttctgaaa gccatgctgg tatgcagtga tgctgccacc
30
           901
                 aacaagaact tcaacagget gcaagacgte tteetgetee etgaceecag
           951
                 cggccagtgg agggacacca gggtctatgg tgttttctcc aacccctgga
                 actactcagc cgtctgtgtg tattccctcg gtgacattga caaggtcttc
           1001
           1051
                 cgtacctcct cactcaaggg ctaccactca agccttccca acccgcggcc
35
           1101
                 tggcaagtgc ctcccagacc agcagccgat acccacagag accttccagg
           1151
                 tggctgaccg tcacccagag gtggcgcaga gggtggagcc catggggcct
           1201
                 ctgaagacgc cattgttcca ctctaaatac cactaccaga aagtggccgt
40
           1251
                 tcaccgcatg caagccagcc acggggagac ctttcatgtg ctttacctaa
           1301
                 ctacagacag gggcactatc cacaaggtgg tggaaccggg ggagcaggag
           1351
                cacagetteg cetteaacat catggagate cagecettee geogegege
           1401
                 tgccatccag accatgtcgc tggatgctga gcggaggaag ctgtatgtga
45
           1451
                gctcccagtg ggaggtgagc caggtgcccc tggacctgtg tgaggtctat
           1501
                ggcgggggct gccacggttg cctcatgtcc cgagacccct actgcgqctq
           1551
                ggaccagggc cgctgcatct ccatctacag ctccqaacgg tcagtgctgc
           1601
                aatccattaa tccagccgag ccacacaagg agtgtcccaa ccccaaacca
50
                gacaaggccc cactgcagaa ggtttccctg gccccaaact ctcgctacta
          1651
          1701
                cctgagctgc cccatggaat cccgccacgc cacctactca tggcgccaca
```

```
1751
                   aggagaacgt ggagcagagc tgcgaacctg gtcaccagag ccccaactgc
             1801
                   atcctgttca tcgagaacct cacggcgcag cagtacggcc actacttctg
             1851
                   cgaggcccag gagggctcct acttccgcga ggctcagcac tggcagctgc
5
             1901
                   tgcccgagga cggcatcatg gccgagcacc tgctgggtca tgcctgtgcc
             1951
                   ctggctgcct ccctctggct gggggtgctg cccacactca ctcttggctt
             2001
                   gctggtccac tagggcctcc cgaggctggg catgcctcag gcttctgcag
             2051
                   cccagggcac tagaacgtct cacactcaga gccggctggc ccgggagctc
10
             2101
                  cttgcctgcc acttcttcca ggggacagaa taacccagtg gaggatgcca
             2151
                   ggcctggaga cgtccagccg caggcggctg ctgggcccca ggtggcgcac
             2201
                  ggatggtgag gggctgagaa tgagggcacc gactgtgaag ctggggcatc
15
             2251
                   gatgacccaa gactttatct tctggaaaat atttttcaga ctcctcaaac
             2301
                  ttgactaaat gcagcgatgc tcccagccca agagcccatg ggtcggggag
             2351
                  tgggtttgga taggagagct gggactccat ctcgaccctg gggctgaggc
            2401
                  ctgagtcctt ctggactctt ggtacccaca ttgcctcctt ccctccctc
20
                  tctcatggct gggtggctgg tgttcctgaa gacccagggc taccctctgt
             2451
            2501
                  ccagccctgt cctctgcagc tccctctctg gtcctgggtc ccacaggaca
            2551
                  gccgccttgc atgtttattg aaggatgttt gctttccgga cggaaggacg
            2601 gaaaaagctc tgaaaaaaaa aaaaaaaaa aaaaaa
25
```

Tabelle 3: Nukleotidsequenz der cDNA von M-SemaL (partiell, 1195 Nukleotide) (SEQ ID NO.: 2)

1 cggggctgcg ggatgacgcc tcctcctccc ggacgtgccg cccccaqcqc 51 accgcgcgcc cgcgtcctca gcctgccggc tcggttcggg ctcccgctgc 35 101 ggctgcggct tctgctggtg ttctgggtgg ccgccgcctc cgcccaaggc 151 cactogagga goggacocog catotocgoo gtotggaaag ggcaggacoa 201 tgtggacttt agccagcctg agccacacac cgtgcttttc catgagccgg 251 gcagcttctc tgtctgggtg ggtggacgtg gcaaggtcta ccacttcaac 40 301 ttccccgagg gcaagaatgc ctctgtgcgc acggtgaaca tcggctccac 351 aaaggggtcc tgtcaggaca aacaggactg tgggaattac atcactcttc 401 tagaaaggcg gggtaatggg ctgctggtct gtggcaccaa tgcccggaag 451 cccagctgct ggaacttggt gaatgacagt gtggtgatgt cacttggtga 45 501 gatgaaaggc tatgccccct tcagcccgga tgagaactcc ctggttctgt 551 ttgaaggaga tgaagtgtac tctaccatcc ggaagcagga atacaacggg 601 aagatccctc ggtttcgacg cattcggggc gagagtgaac tgtacacaag 651 tgatacagtc atgcagaacc cacagttcat caaggccacc attgtgcacc 50 701 aagaccaagc ctatgatgat aagatctact acttcttccg agaagacaac 751 cctgacaaga accccgaggc tcctctcaat gtgtcccgag tagcccagtt

55

	801	gtgcaggggg	gaccagggtg	gtgagagttc	gttgtctgtc	tccaagtgga
	851	acaccttcct	gaaagccatg	ttggtctgca	gcgatgcagc	caccaacagg
5	901	aacttcaatc	ggctgcaaga	tgtcttcctg	ctccctgacc	ccagtggcca
	951	gtggagagat	accagggtct	atggcgtttt	ctccaacccc	tggaactact
	1001	cagctgtctg	cgtgtattcg	cttggtgaca	ttgacagagt	cttccgtacc
	1051	tcatcgctca	aaggctacca	catgggcctt	tccaaccctc	gacctggcat
10	1101	gtgcctccca	aaaaagcagc	ccatacccac	agaaaccttc	caggtagctg
	1151	atagtcaccc	agaggtggct	cagagggtgg	aacctatggg	gcccc
					•	
15	Tabelle	4: Aminosā	iuresequenz von H	l-SemaL (666 Ami	inosāuren)	
		(SEQ ID	NO.: 3)			
		•	·	•	•	
	1	MTPPPPGRAA	PSAPRARVPG	PPARLGLPLR	LRLLLLLWAA	AASAOGHLRS
20	51				EPGSSSVWVG	
	101			_	TLLERRSEGL	
	151				LFEGDEVYST	
25	201	PRFRRIRGES	ELYTSDTVMQ	NPQFIKATIV	HQDQAYDDKI	YYFFREDNPD
	251	KNPEAPLNVS	RVAQLCRGDQ	GGESSLSVSK	WNTFLKAMLV	CSDAATNKNF
	301	NRLQDVFLLP	DPSGQWRDTR	VYGVFSNPWN	YSAVCVYSLG	DIDKVFRTSS
	351	LKGYHSSLPN	PRPGKCLPDQ	QPIPTETFQV	ADRHPEVAQR	VEPMGPLKTP
30	401	LFHSKYHYQK	VAVHRMQASH	GETFHVLYLT	TDRGTIHKVV	EPGEQEHSFA
	451	FNIMEIQPFR	RAAAIQTMSL	DAERRKLYVS	SQWEVSQVPL	DLCEVYGGGC
	501	HGCLMSRDPY	CGWDQGRCIS	${\tt IYSSERSVLQ}$	SINPAEPHKE	CPNPKPDKAP
	551	LQKVSLAPNS	RYYLSCPMES	RHATYSWRHK	ENVEQSCEPG	HOSPNCILFI
35	601	ENLTAQQYGH	YFCEAQEGSY	FREAQHWQLL	PEDGIMAEHL	LGHACALAAS
	651	LWLGVLPTLT	LGLLVH			
	•					
40						
40	Tabelle 5	5: (Partielle) Aminosäuresequ	enz von M-Semal	. (394 Aminosäure	n, entspricht Position 1-396 von
		H-Semal	.) (SEQ ID NO.: 4)			
45	1	MTPPPPGRAA	PSAPRARVLS	LPARFGLPLR	LRLLLVFWVA	AASAOGHSRS
	51				SFSVWVGGRG	
	101		_		ERRGNGLLVC	
	151				EGDEVYSTIR	
50	201				DQAYDDKIYY	_
	251		- 20-		TFLKAMLVCS	
			-	· · - ·	· · ·	

LQDVFLLPDP SGQWRDTRVY GVFSNPWNYS AVCVYSLGDI DRVFRTSSLK

	351 GY	HMGLSNPR	PGMCLPKKQP	IPTETFQVAD	SHPEVAQRVE	2 PMGP		
5								
	Tabelle 6:	Synthetis	sche Oligonukleoti	ide, (Eurogentec, S	Seraing, Belgien)			
10	Nummer d	es	Nukleoti	idsequenz de	es Primers	(der syn	thetis	chen
	Primers/	Bezeichn	ing Oligon	ukleotide)				
	91506/AP	2	ac	tcactataggg	ctcgagcggc	(SEQ II	о мо.:	5)
15	121234		agccg	cacacggtgct	tttc	(SEQ I	NO.:	6)
	121235/E	st 2	gcac	agatgcgttct	tgccc	(SEQ I	ONO.:	7)
	121236/E	st 3	ac	catagaccctg	gtgtccc	(SEQ I	NO.:	8)
	121237/E	st 4	gcagtg	atgctgccacc	aac	(SEQ I	NO.:	9)
20	121238			atgtcgctgga		(SEQ I	D NO.:	10)
25								

```
121239/Est 6
                             acatgaggcaaccgtggcag
                                                            (SEQ ID NO.: 11)
                                                            (SEQ ID NO.: 12)
         131989/AP1
                             ccatcctaatacgactcactatagggc
                                                            (SEQ ID NO.: 13)
         131990/Est 7
                             aggtagaccttgccacgtcc
5
                                                            (SEQ ID NO.: 14)
         131991
                              gaacttcaacaggctgcaagacg
         131992
                              atgctgagcggaggaagctg
                                                            (SEQ ID NO.: 15)
                                                            (SEQ ID NO.: 16)
         131993
                             ccgccatacacctcacacag
                                                            (SEQ ID NO.: 17)
                              ctggaagctttctgtgggtatcggctgc
         150788
10
                                                            (SEO ID NO.: 18)
         150789
                              tttggatccctggttctgtttgaag
         167579/cDNA
         15
         Synthese Primer
                             (SEQ ID NO.: 19)
                             ggggaaagttcactgtcagtctccaag
                                                            (SEQ ID NO.: 20)
         168421
         168422
                             gggaatacacacagacggctgagtag
                                                            (SEQ ID NO.: 21)
                                                            (SEQ ID NO.: 22)
         207608/
                             agcaagttcagcctggttaagt
20
         Amplifikation von Agt10 Insert
                                                            (SEQ ID NO.: 23)
         207609/
                              ttatgagtatttcttccaggg
         Amplifikation von Agt 10 Insert
                                                            (SEQ ID NO.: 24)
         232643/Est 13
                              ccattaatccagccgagccacacaag
25
         232644/Est 14
                              catctacagctccgaacggtcagtg
                                                            (SEQ ID NO.: 25)
                                                            (SEQ ID NO.: 26)
         233084
                             cagcggaagccccaaccgag
         240655/hs 5
                              gggatgacgcctcctccgcccgg
                                                            (SEQ ID NO.: 27)
                              aagcttcacgtggaccagcaagccaagagtg (SEQ ID NO.: 28)
         240656/hs 3
30
                                                            (SEQ ID NO.: 29)
                              aagctttttccgtccttccgtccgg
         240657/hs 3c
                                                            (SEO ID NO.: 30)
         243068
                             atggtgagcaagggcgaggagctg
                                                            (SEQ ID NO.: 31)
         243069
                             cttgtacagctcgtccatgccgag
                             GGGTGGTGAGAGTTCGTTGTCTGTC
                                                            (SEQ ID NO.: 32)
         260812
35
                                                            (SEQ ID NO.: 33)
                             GAGCGATGAGGTACGGAAGACTCTG
         260813
                    Nukleotidsequenz des rekombinanten Plasmids pCR2.1-H-SemaL (SEQ ID NO.: 34)
         Tabelle 7:
40
             1 AGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCATTAA
            51 TGCAGCTGGC ACGACAGGTT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA
           101 CGCAATTAAT GTGAGTTAGC TCACTCATTA GGCACCCCAG GCTTTACACT
45
           151 TTATGCTTCC GGCTCGTATG TTGTGTGGAA TTGTGAGCGG ATAACAATTT
           201 CACACAGGAA ACAGCTATGA CCATGATTAC GCCaagcttc acgtggacca
           251 gcaagccaag agtgagtgtg ggcagcaccc ccagccagag ggaggcagcc
           301 agggcacagg catgacccag caggtgctcg gccatgatgc cgtcctcggg
50
           351 caqcaqctqc caqtqctqag cctcqcggaa gtaggagccc tcctgggcct
           401 cgcagaagta gtggccgtac tgctgcgccg tgaggttctc gatgaacagg
```

25

	451	atgcagttgg	ggctctggtg	accaggttcg	cagctctgct	ccacgttctc
	50i	cttgtggcgc	catgagtagg	tggcgtggcg	ggattccatg	gggcagctca
5	551	ggtagtagcg	agagtttggg	gccagggaaa	ccttctgcag	tggggccttg
-	601	tctggtttgg	ggttgggaca	ctccttgtgt	ggctcggctg	gattaatgga
	651	ttgcagcact	gaccgttcgg	agctgtagat	ggagatgcag	cggccctggt
	701	cccagccgca	gtaggggtct	cgggacatga	ggcaaccgtg	gcagcccccg
10	751	ccatagacct	cacacaggtc	caggggcacc	tggctcacct	cccactggga
	801	gctcacatac	agcttcctcc	gctcagcatc	cagcgacatg	gtctggatgg
	851	cagccgcgcg	gcggaagggc	tggatctcca	tgatgttgaa	ggcgaagctg
	901	tgctcctgct	ccccggttc	caccaccttg	tggatagtgc	ccctgtctgt
15	951	agttaggtaa	agcacatgaa	aggtctcccc	gtggctggct	tgcatgcggt
	1001	gaacggccac	tttctggtag	tggtatttag	agtggaacaa	tggcgtcttc
	1051	agaggcccca	tgggctccac	cctctgcgcc	acctctgggt	gacggtcagc
	1101	cacctggaag	gtctctgtgg	gtatcggctg	ctggtctggg	aggcacttgc
20	1151	caggccgcgg	gttgggaagg	cttgagtggt	agcccttgag	tgaggaggta
	1201	cggaagacct	tgtcaatgtc	accgagggaa	tacacacaga	cggctgagta
	1251	gttccagggg	ttggagaaaa	caccatagac	cctggtgtcc	ctccactggc
25	1301	cgctggggtc	agggagcagg	aagacgtctt	gcagcctgtt	gaagttcttg
20	1351	ttggtggcag	catcactgca	taccagcatg	gctttcagaa	aagtgttcca
	1401	cttggagact	gacagtgaac	tttccccacc	ctggtccccc	ctgcacaact
	1451	gggccacacg	ggacacattg	agaggagcct	caggattctt	gtcaggattg
30	1501	tcctctcgga	agaagtagta	gatcttgtca	tcgtaagcct	ggtcttggtg
	1551	cacgatggtg	gctttgatga	actgtgggtt	ctgcatgaca	gtatcactgg
	1601	tgtacagctc	actctcgccc	cggatgcggc	ggaaccgagg	gatcttccca
	1651	ttgtattcct	gcttccggat	ggtggaatac	acctcgtccc	cttcaaacag
35	1701	aaccagggag	ttctcgtccg	ggctgaaggg	ggcgtagcct	ctcatctcgc
	1751	caagtggcac	cacagtgcca	ttcaccaggt	tccagcagct	ggggtgccgg
	1801	gcgttggtgc	cacaggccag	cagcccctca	ctccgcctct	ccaggagagt
	1851	gatgtagttc	tcgcagtccc	gcttatccag	acaggacccc	tttgtggagc
40	1901	cgatattcac	cgtgcgcaca	gatgcgttct	tgccctcggg	gaagtcaaag
	1951	aggtagacct	tgccacgtcc	tcccacccac	acagaggagc	tgcctggctc
	2001	gtggaaaagc	accgtgtgcg	gctcagtctg	gccaaagtcc	acccggtcct
45	2051	gccctacatg	gcctttccag	acggcgaaga	tgcggggtcc	gctccttagg
45	2101	tggccctggg	cggaggcggc	ggccgcccag	agcagcagca	gcagccgcag
	2151	ccgcagcgga	agccccaacc	gagccggcgg	gccagggacg	cgggcgcgcg
	2201	gtgcgctggg	ggcggcacgt	ccgggcggag	gaggcgtcat	cccaagccga
50	2251	attcTGCAGA	TATCCATCAC	ACTGGCGGCC	GCTCGAGCAT	GCATCTAGAG
	2301	GGCCCAATTC	GCCCTATAGT	GAGTCGTATT	ACAATTCACT	GGCCGTCGTT
	2351	TTACAACGTC	GTGACTGGGA	AAACCCTGGC	GTTACCCAAC	TTAATCGCCT

	2401	TGCAGCACAT	CCCCCTTTCG	CCAGCTGGCG	TAATAGCGAA	GAGGCCCGCA
	2451	CCGATCGCCC	TTCCCAACAG	TTGCGCAGCC	TGAATGGCGA	ATGGGACGCG
5	2501	CCCTGTAGCG	GCGCATTAAG	CGCGGCGGGT	GTGGTGGTTA	CGCGCAGCGT
•	2551	GACCGCTACA	CTTGCCAGCG	CCCTAGCGCC	CGCTCCTTTC	GCTTTCTTCC
	2601	CTTCCTTTCT	CGCCACGTTC	GCCGGCTTTC	CCCGTCAAGC	TCTAAATCGG
	2651	GGGCTCCCTT	TAGGGTTCCG	ATTTAGAGCT	TTACGGCACC	TCGACCGCAA
10	2701	AAAACTTGAT	TTGGGTGATG	GTTCACGTAG	TGGGCCATCG	CCCTGATAGA
	2751	CGGTTTTTCG	CCCTTTGACG	TTGGAGTCCA	CGTTCTTTAA	TAGTGGACTC
	2801	TTGTTCCAAA	CTGGAACAAC	ACTCAACCCT	ATCGCGGTCT	ATTCTTTTGA
	2851	TTTATAAGGG	ATTTTGCCGA	TTTCGGCCTA	TTGGTTAAAA	AATGAGCTGA
15	2901	TTTAACAAAT	TCAGGGCGCA	AGGGCTGCTA	AAGGAACCGG	AACACGTAGA
	2951	AAGCCAGTCC	GCAGAAACGG	TGCTGACCCC	GGATGAATGT	CAGCTACTGG
•	3001	GCTATCTGGA	CAAGGGAAAA	CGCAAGCGCA	AAGAGAAAGC	AGGTAGCTTG
	3051	CAGTGGGCTT	ACATGGCGAT	AGCTAGACTG	GGCGGTTTTA	TGGACAGCAA
20	3101	GCGAACCGGA	ATTGCCAGCT	GGGGCGCCCT	CTGGTAAGGT	TGGGAAGCCC
	3151	TGCAAAGTAA	ACTGGATGGC	TTTCTTGCCG	CCAAGGATCT	GATGGCGCAG
	3201	GGGATCAAGA	TCTGATCAAG	AGACAGGATG	AGGATCGTTT	CGCATGATTG
25	3251	AACAAGATGG	ATTGCACGCA	GGTTCTCCGG	CCGCTTGGGT	GGAGAGGCTA
20	3301	TTCGGCTATG	ACTGGGCACA	ACAGACAATC	GGCTGCTCTG	ATGCCGCCGT
	3351	GTTCCGGCTG	TCAGCGCAGG	GGCGCCCGGT	TCTTTTTGTC	AAGACCGACC
					AGGCAGCGCG	
30					GTGCTCGACG	
					AGTGCCGGGG	
					TATCCATCAT	
					ACCTGCCCAT	
<i>35</i>					TCGGATGGAA	
					AGGGGCTCGC	
					GACGGCGAGG	
					CATGGTGGAA	
40					GTGTGGCGGA	
					GAAGAGCTTG	
					CGCCGCTCCC	
45					TCTTCTGAAT	
₩					CCCTTATTCC	
					GAAACGCTGG	
					GGGTTACATC	
50					GCCCGAAGA	
					CATACACTAT	
	4301	TGACGCCGGG	CAAGAGCAAC	TCGGTCGCCG	GGCGCGGTAT	TCTCAGAATG

	4351	ACTTGGTTGA	GTACTCACCA	GTCACAGAAA	AGCATCTTAC	GGATGGCATG
	4401	ACAGTAAGAG	AATTATGCAG	TGCTGCCATA	ACCATGAGTG	ATAACACTGC
5	4451	GGCCAACTTA	CTTCTGACAA	CGATCGGAGG	ACCGAAGGAG	CTAACCGCTT
	4501	TTTTGCACAA	CATGGGGGAT	CATGTAACTC	GCCTTGATCG	TTGGGAACCG
	4551	GAGCTGAATG	AAGCCATACC	AAACGACGAG	AGTGACACCA	CGATGCCTGT
	4601	AGCAATGCCA	ACAACGTTGC	GCAAACTATT	AACTGGCGAA	CTACTTACTC
10	4651	TAGCTTCCCG	GCAACAATTA	ATAGACTGGA	TGGAGGCGGA	TAAAGTTGCA
	4701	GGACCACTTC	TGCGCTCGGC	CCTTCCGGCT	GGCTGGTTTA	TTGCTGATAA
	4751	ATCTGGAGCC	GGTGAGCGTG	GGTCTCGCGG	TATCATTGCA	GCACTGGGGC
	4801	CAGATGGTAA	GCCCTCCCGT	ATCGTAGTTA	TCTACACGAC	GGGGAGTCAG
15	4851	GCAACTATGG	ATGAACGAAA	TAGACAGATC	GCTGAGATAG	GTGCCTCACT
	4901	GATTAAGCAT	TGGTAACTGT	CAGACCAAGT	TTACTCATAT	ATACTTTAGA
	4951	TTGATTTAAA	ACTTCATTTT	TAATTTAAAA	GGATCTAGGT	GAAGATCCTT
	5001	TTTGATAATC	TCATGACCAA	AATCCCTTAA	CGTGAGTTTT	CGTTCCACTG
20	5051	AGCGTCAGAC	CCCGTAGAAA	AGATCAAAGG	ATCTTCTTGA	GATCCTTTTT
	5101	TTCTGCGCGT	AATCTGCTGC	TTGCAAACAA	AAAAACCACC	GCTACCAGCG
	5151	GTGGTTTGTT	TGCCGGATCA	AGAGCTACCA	ACTCTTTTTC	CGAAGGTAAC
25	5201	TGGCTTCAGC	AGAGCGCAGA	TACCAAATAC	TGTCCTTCTA	GTGTAGCCGT
25	5251	AGTTAGGCCA	CCACTTCAAG	AACTCTGTAG	CACCGCCTAC	ATACCTCGCT
	5301	CTGCTAATCC	TGTTACCAGT	GGCTGCTGCC	AGTGGCGATA	AGTCGTGTCT
	5351	TACCGGGTTG	GACTCAAGAC	GATAGTTACC	GGATAAGGCG	CAGCGGTCGG
30	5401	GCTGAACGGG	GGGTTCGTGC	ACACAGCCCA	GCTTGGAGCG	AACGACCTAC
	5451	ACCGAACTGA	GATACCTACA	GCGTGAGCAT	TGAGAAAGCG	CCACGCTTCC
	5501	CGAAGGGAGA	AAGGCGGACA	GGTATCCGGT	AAGCGGCAGG	GTCGGAACAG
	5551	GAGAGCGCAC	GAGGGAGCTT	CCAGGGGGAA	ACGCCTGGTA	TCTTTATAGT
35	5601	CCTGTCGGGT	TTCGCCACCT	CTGACTTGAG	CGTCGATTTT	TGTGATGCTC
	5651	GTCAGGGGG	CGGAGCCTAT	GGAAAAACGC	CAGCAACGCG	GCCTTTTTAC
	5701	GGTTCCTGGC	CTTTTGCTGG	CCTTTTGCTC	ACATGTTCTT	TCCTGCGTTA
	5751	TCCCCTGATT	CTGTGGATAA	CCGTATTACC	GCCTTTGAGT	GAGCTGATAC
40	5801	CGCTCGCCGC	AGCCGAACGA	CCGAGCGCAG	CGAGTCAGTG	AGCGAGGAAG
	5851	CGGAAG				

Tabelle 8: Nukleotidsequenz des rekombinanten Expressionsplasmids pCDNA3.1(-)H-SemaL-MycHlsA (SEQ ID NO.: 35)

50 1 GACGGATCGG GAGATCTCCC GATCCCCTAT GGTCGACTCT CAGTACAATC
51 TGCTCTGATG CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT
101 GGAGGTCGCT GAGTAGTGCG CGAGCAAAAT TTAAGCTACA ACAAGGCAAG

		151	GCTTGACCGA	CAATTGCATG	AAGAATCTGC	TTAGGGTTAG	GCGTTTTGCG
		201	CTGCTTCGCG	ATGTACGGGC	CAGATATACG	CGTTGACATT	GATTATTGAC
	5	251	TAGTTATTAA	TAGTAATCAA	TTACGGGGTC	ATTAGTTCAT	AGCCCATATA
		301	TGGAGTTCCG	CGTTACATAA	CTTACGGTAA	ATGGCCCGCC	TGGCTGACCG
		351	CCCAACGACC	CCCGCCCATT	GACGTCAATA	ATGACGTATG	TTCCCATAGT
		401	AACGCCAATA	GGGACTTTCC	ATTGACGTCA	ATGGGTGGAC	TATTTACGGT
	10	451	AAACTGCCCA	CTTGGCAGTA	CATCAAGTGT	ATCATATGCC	AAGTACGCCC
		501	CCTATTGACG	TCAATGACGG	TAAATGGCCC	GCCTGGCATT	ATGCCCAGTA
		551	CATGACCTTA	TGGGACTTTC	CTACTTGGCA	GTACATCTAC	GTATTAGTCA
		601	TCGCTATTAC	CATGGTGATG	CGGTTTTGGC	AGTACATCAA	TGGGCGTGGA
	15	651	TAGCGGTTTG	ACTCACGGGG	ATTTCCAAGT	CTCCACCCA	TTGACGTCAA
		701	TGGGAGTTTG	TTTTGGCACC	AAAATCAACG	GGACTTTCCA	AAATGTCGTA
		751	ACAACTCCGC	CCCATTGACG	CAAATGGGCG	GTAGGCGTGT	ACGGTGGGAG
		801	GTCTATATAA	GCAGAGCTCT	CTGGCTAACT	AGAGAACCCA	CTGCTTACTG
	20	851	GCTTATCGAA	ATTAATACGA	CTCACTATAG	GGAGACCCAA	GCTGGCTAGC
		901	GTTTAAACGG	GCCCTCTAGA	CTCGAGCGGC	CGCCACTGTG	CTGGATATCT
		951	GCAgaattcg	gcttgggatg	acgcctcctc	cgcccggacg	tgccgccccc
	25	1001	agcgcaccgc	gcgcccgcgt	ccctggcccg	ccggctcggt	tggggcttcc
20		1051	gctgcggctg	cggctgctgc	tgctgctctg	ggcggccgcc	gcctccgccc
		1101	agggccacct	aaggagcgga	ccccgcatct	tcgccgtctg	gaaaggccat
		1151	gtagggcagg	accgggtgga	ctttggccag	actgagccgc	acacggtgct
	30	1201	tttccacgag	ccaggcagct	cctctgtgtg	ggtgggagga	cgtggcaagg
		1251	tctacctctt	tgacttcccc	gagggcaaga	acgcatctgt	gcgcacggtg
		1301	aatatcggct	ccacaaaggg	gtcctgtctg	gataagcggg	actgcgagaa
		1351	ctacatcact	ctcctggaga	ggcggagtga	ggggctgctg	gcctgtggca
	35	1401	ccaacgcccg	gcaccccagc	tgctggaacc	tggtgaatgg	cactgtggtg
		1451	ccacttggcg	agatgagagg	ctacgccccc	ttcagcccgg	acgagaactc
		1501	cctggttctg	tttgaagggg	acgaggtgta	ttccaccatc	cggaagcagg
		1551	aatacaatgg	gaagatccct	cggttccgcc	gcatccgggg	cgagagtgag
	40	1601	ctgtacacca	gtgatactgt	catgcagaac	ccacagttca	tcaaagccac
		1651	catcgtgcac	caagaccagg	cttacgatga	caagatctac	tacttcttcc
		1701	gagaggacaa	tcctgacaag	aatcctgagg	ctcctctcaa	tgtgtcccgt
		1751	gtggcccagt	tgtgcagggg	ggaccagggt	ggggaaagtt	cactgtcagt
	45	1801	ctccaagtgg	aacacttttc	tgaaagccat	gctggtatgc	agtgatgctg
		1851	ccaccaacaa	gaacttcaac	aggctgcaag	acgtcttcct	gctccctgac
		1901	cccagcggcc	agtggaggga	caccagggtc	tatggtgttt	tctccaaccc
	50	1951	ctggaactac	tcagccgtct	gtgtgtattc	cctcggtgac	attgacaagg
	-	2001	tcttccgtac	ctcctcactc	aagggctacc	actcaagcct	tcccaacccg
		2051	cggcctggca	agtgcctccc	agaccagcag	ccgataccca	cagagacctt

	2101	ccaggtggct	gaccgtcacc	cagaggtggc	gcagagggtg	gagcccatgg
•	2151	ggcctctgaa	gacgccattg	ttccactcta	aataccacta	ccagaaagtg
5	2201	gccgttcacc	gcatgcaagc	cagccacggg	gagacctttc	atgtgcttta
	2251	cctaactaca	gacaggggca	ctatccacaa	ggtggtggaa	ccgggggagc
	2301	aggagcacag	cttcgccttc	aacatcatgg	agatccagcc	cttccgccgc
	2351	gcggctgcca	tccagaccat	gtcgctggat	gctgagcgga	ggaagctgta
10	2401	tgtgagctcc	cagtgggagg	tgagccaggt	gcccctggac	ctgtgtgagg
	2451	tctatggcgg	gggctgccac	ggttgcctca	tgtcccgaga	cccctactgc
	2501	ggctgggacc	agggccgctg	catctccatc	tacagctccg	aacggtcagt
	2551	gctgcaatcc	attaatccag	ccgagccaca	caaggagtgt	cccaacccca
15	2601	aaccagacaa	ggccccactg	cagaaggttt	ccctggcccc	aaactctcgc
	2651	tactacctga	gctgccccat	ggaatcccgc	cacgccacct	actcatggcg
	2701	ccacaaggag	aacgtggagc	agagctgcga	acctggtcac	cagagcccca
	2751	actgcatcct	gttcatcgag	aacctcacgg	cgcagcagta	cggccactac
20	2801	ttctgcgagg	cccaggaggg	ctcctacttc	cgcgaggctc	agcactggca
	2851	gctgctgccc	gaggacggca	tcatggccga	gcacctgctg	ggtcatgcct
	2901	gtgccctggc	tgcctccctc	tggctggggg	tgctgcccac	actcactctt
25	2951	ggcttgctgg	tccacgtgaa	gcttGGGCCC	GAACAAAAAC	TCATCTCAGA
23	3001	AGAGGATCTG	AATAGCGCCG	TCGACCATCA	TCATCATCAT	CATTGAGTTT
	3051	AAACCGCTGA	TCAGCCTCGA	CTGTGCCTTC	TAGTTGCCAG	CCATCTGTTG
	3101	TTTGCCCCTC	CCCCGTGCCT	TCCTTGACCC	TGGAAGGTGC	CACTCCCACT
30	3151	GTCCTTTCCT	AATAAAATGA	GGAAATTGCA	TCGCATTGTC	TGAGTAGGTG
	3201	TCATTCTATT	CTGGGGGGTG	GGGTGGGGCA	GGACAGCAAG	GGGGAGGATT
	3251	GGGAAGACAA	TAGCAGGCAT	GCTGGGGATG	CGGTGGGCTC	TATGGCTTCT
	3301	GAGGCGGAAA	GAACCAGCTG	GGGCTCTAGG	GGGTATCCCC	ACGCGCCCTG
35	3351	TAGCGGCGCA	TTAAGCGCGG	CGGGTGTGGT	GGTTACGCGC	AGCGTGACCG
	3401	CTACACTTGC	CAGCGCCCTA	GCGCCGCTC	CTTTCGCTTT	CTTCCCTTCC
	3451	TTTCTCGCCA	CGTTCGCCGG	CTTTCCCCGT	CAAGCTCTAA	ATCGGGGCAT
	3501	CCCTTTAGGG	TTCCGATTTA	GTGCTTTACG	GCACCTCGAC	CCCAAAAAAC
40 .	3551	TTGATTAGGG	TGATGGTTCA	CGTAGTGGGC	CATCGCCCTG	ATAGACGGTT
	3601	TTTCGCCCTT	TGACGTTGGA	GTCCACGTTC	TTTAATAGTG	GACTCTTGTT
	3651	CCAAACTGGA	ACAACACTCA	ACCCTATCTC	GGTCTATTCT	TTTGATTTAT
	3701	AAGGGATTTT	GGGGATTTCG	GCCTATTGGT	TAAAAAATGA	GCTGATTTAA
45	3751	CAAAAATTTA	ACGCGAATTA	ATTCTGTGGA	ATGTGTGTCA	GTTAGGGTGT
	3801	GGAAAGTCCC	CAGGCTCCCC	AGGCAGGCAG	AAGTATGCAA	AGCATGCATC
	3851	TCAATTAGTC	AGCAACCAGG	TGTGGAAAGT	CCCCAGGCTC	CCCAGCAGGC
50	3901	AGAAGTATGC	AAAGCATGCA	TCTCAATTAG	TCAGCAACCA	TAGTCCCGCC
JU	3951	CCTAACTCCG	CCCATCCCGC	CCCTAACTCC	GCCCAGTTCC	GCCCATTCTC
	4001	CGCCCCATGG	CTGACTAATT	TTTTTTATTT	ATGCAGAGGC	CGAGGCCGCC

	405	1 TCTGCCTCT	G AGCTATTCC	A GAAGTAGTG	A GGAGGCTTT	T TTGGAGGCCT
	410	1 AGGCTTTTG	C AAAAAGCTC	C CGGGAGCTT	G TATATCCAT	T TTCGGATCTG
5	415	1 ATCAAGAGA	C AGGATGAGG	A TCGTTTCGC	A TGATTGAAC	A AGATGGATTG
	420	1 CACGCAGGI	T CTCCGGCCG	C TTGGGTGGA	G AGGCTATTC	GCTATGACTG
	425	1 GGCACAACA	G ACAATCGGC	T GCTCTGATG	C CGCCGTGTTC	CGGCTGTCAG
	430	1 CGCAGGGGC	G CCCGGTTCT	T TTTGTCAAG	A CCGACCTGTC	CGGTGCCCTG
10	435	1 AATGAACTG	C AGGACGAGG	C AGCGCGGCT	A TCGTGGCTGG	CCACGACGG
	440	1 CGTTCCTTG	C GCAGCTGTGG	C TCGACGTTG	T CACTGAAGCG	GGAAGGGACT
	445	1 GGCTGCTAT	T GGGCGAAGT	G CCGGGGCAG	G ATCTCCTGTC	ATCTCACCTT
	450	1 GCTCCTGCC	G AGAAAGTATO	CATCATGGC	T GATGCAATGC	GGCGGCTGCA
15	455	1 TACGCTTGA	T CCGGCTACC1	r gcccattcg	A CCACCAAGCG	AAACATCGCA
	460	1 TCGAGCGAG	C ACGTACTCG	ATGGAAGCC	GTCTTGTCGA	TCAGGATGAT
					A GCCGAACTGT	
20	470	1 CAAGGCGCGG	C ATGCCCGACG	GCGAGGATCT	CGTCGTGACC	CATGGCGATG
20	475]	CCTGCTTGC	C GAATATCATO	GTGGAAAAT	GCCGCTTTTC	TGGATTCATC
	4801	L GACTGTGGC	C GGCTGGGTGI	GGCGGACCGC	TATCAGGACA	TAGCGTTGGC
	4851	L TACCCGTGAT	T ATTGCTGAAG	AGCTTGGCGG	CGAATGGGCT	GACCGCTTCC
25	4901	TCGTGCTTT	A CGGTATCGCC	GCTCCCGATI	CGCAGCGCAT	CGCCTTCTAT
	4951	CGCCTTCTTC	ACGAGTTCTT	CTGAGCGGGA	CTCTGGGGTT	CGAAATGACC
	5001	GACCAAGCGA	CGCCCAACCT	GCCATCACGA	GATTTCGATT	CCACCGCCGC
	5051	. CTTCTATGAA	AGGTTGGGCT	TCGGAATCGT	TTTCCGGGAC	GCCGGCTGGA
30	5101	TGATCCTCCA	GCGCGGGGAT	CTCATGCTGG	AGTTCTTCGC	CCACCCCAAC
					TAAAGCAATA	
					TTCTAGTTGT	
					TACCGTCGAC	
35					CCTGTGTGAA	
	5351	GCTCACAATT	CCACACAACA	TACGAGCCGG	AAGCATAAAG	TGTAAAGCCT
					TAATTGCGTT	
40					CAGCTGCATT	
•					TGGGCGCTCT	
					GGCTGCGGCG	
	5601	GCTCACTCAA	AGGCGGTAAT	ACGGTTATCC	ACAGAATCAG	GGGATAACGC
15					AAAGGCCAGG	
					TCCGCCCCCC	
	5751	CACAAAAATC	GACGCTCAAG	TCAGAGGTGG	CGAAACCCGA	CAGGACTATA
					CCTCGTGCGC	
o	5851	CGACCCTGCC	GCTTACCGGA	TACCTGTCCG	CCTTTCTCCC	TTCGGGAAGC
	5901	GTGGCGCTTT	CTCAATGCTC	ACGCTGTAGG	TATCTCAGTT	CGGTGTAGGT
					ACCCCCGTT	

		6001	GCTGCGCCTT	ATCCGGTAAC	TATCGTCTTG	AGTCCAACCC	GGTAAGACAC
		6051	GACTTATCGC	CACTGGCAGC	AGCCACTGGT	AACAGGATTA	GCAGAGCGAG
5	i	6101	GTATGTAGGC	GGTGCTACAG	AGTTCTTGAA	GTGGTGGCCT	AACTACGGCT
		6151	ACACTAGAAG	GACAGTATTT	GGTATCTGCG	CTCTGCTGAA	GCCAGTTACC
		6201	TTCGGAAAAA	GAGTTGGTAG	CTCTTGATCC	GGCAAACAAA	CCACCGCTGG
		6251	TAGCGGTGGT	TTTTTTGTTT	GCAAGCAGCA	GATTACGCGC	AGAAAAAAAG
1	o	6301	GATCTCAAGA	AGATCCTTTG	ATCTTTTCTA	CGGGGTCTGA	CGCTCAGTGG
		6351	AACGAAAACT	CACGTTAAGG	GATTTTGGTC	ATGAGATTAT	CAAAAAGGAT
		6401	CTTCACCTAG	ATCCTTTTAA	ATTAAAAATG	AAGTTTTAAA	TCAATCTAAA
		6451	GTATATATGA	GTAAACTTGG	TCTGACAGTT	ACCAATGCTT	AATCAGTGAG
1	5	6501	GCACCTATCT	CAGCGATCTG	TCTATTTCGT	TCATCCATAG	TTGCCTGACT
		6551	CCCCGTCGTG	TAGATAACTA	CGATACGGGA	GGGCTTACCA	TCTGGCCCCA
		6601	GTGCTGCAAT	GATACCGCGA	GACCCACGCT	CACCGGCTCC	AGATTTATCA
		6651	GCAATAAACC	AGCCAGCCGG	AAGGGCCGAG	CGCAGAAGTG	GTCCTGCAAC
2	o	6701	TTTATCCGCC	TCCATCCAGT	CTATTAATTG	TTGCCGGGAA	GCTAGAGTAA
		6751	GTAGTTCGCC	AGTTAATAGT	TTGCGCAACG	TTGTTGCCAT	TGCTACAGGC
		6801	ATCGTGGTGT	CACGCTCGTC	GTTTGGTATG	GCTTCATTCA	GCTCCGGTTC
_	_	6851	CCAACGATCA	AGGCGAGTTA	CATGATCCCC	CATGTTGTGC	AAAAAAGCGG
2		6901	TTAGCTCCTT	CGGTCCTCCG	ATCGTTGTCA	GAAGTAAGTT	GGCCGCAGTG
		6951	TTATCACTCA	TGGTTATGGC	AGCACTGCAT	AATTCTCTTA	CTGTCATGCC
		7001	ATCCGTAAGA	TGCTTTTCTG	TGACTGGTGA	GTACTCAACC	AAGTCATTCT
30	2	7051	GAGAATAGTG	TATGCGGCGA	CCGAGTTGCT	CTTGCCCGGC	GTCAATACGG
J	,	7101	GATAATACCG	CGCCACATAG	CAGAACTTTA	AAAGTGCTCA	TCATTGGAAA
		7151	ACGTTCTTCG	GGGCGAAAAC	TCTCAAGGAT	CTTACCGCTG	TTGAGATCCA
		7201	GTTCGATGTA	ACCCACTCGT	GCACCCAACT	GATCTTCAGC	ATCTTTTACT
35	5	7251	TTCACCAGCG	TTTCTGGGTG	AGCAAAAACA	GGAAGGCAAA	ATGCCGCAAA
		7301	AAAGGGAATA	AGGGCGACAC	GGAAATGTTG	AATACTCATA	CTCTTCCTTT
		7351	TTCAATATTA	TTGAAGCATT	TATCAGGGTT	ATTGTCTCAT	GAGCGGATAC
		7401	ATATTTGAAT	GTATTTAGAA	AAATAAACAA	ATAGGGGTTC	CGCGCACATT
40)	7451	TCCCCGAAAA	GTGCCACCTG	ACGTC		

Tabelle 9: Nukleotidsequenz des rekombinanten Plasmids pcDNA 3.1-H-SemaL-EGFP-MychisA (SEQ ID NO.: 36)

1 GACGGATCGG GAGATCTCCC GATCCCCTAT GGTCGACTCT CAGTACAATC
51 TGCTCTGATG CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT
101 GGAGGTCGCT GAGTAGTGCG CGAGCAAAAT TTAAGCTACA ACAAGGCAAG
151 GCTTGACCGA CAATTGCATG AAGAATCTGC TTAGGGTTAG GCGTTTTGCG
201 CTGCTTCGCG ATGTACGGGC CAGATATACG CGTTGACATT GATTATTGAC

55

	25	1 TAGTTATTA	TAGTAATCAA	TTACGGGGTC	ATTAGTTCAT	AGCCCATATA
	30	1 TGGAGTTCC	CGTTACATAA	CTTACGGTAA	ATGGCCCGCC	TGGCTGACCG
5	35	1 CCCAACGACC	CCCGCCCATT	GACGTCAATA	ATGACGTATG	TTCCCATAGT
	40	l AACGCCAATA	GGGACTTTCC	ATTGACGTCA	ATGGGTGGAC	TATTTACGGT
	45	1 AAACTGCCCA	CTTGGCAGTA	CATCAAGTGT	ATCATATGCC	AAGTACGCCC
	50	1 CCTATTGAC	TCAATGACGG	TAAATGGCCC	GCCTGGCATT	ATGCCCAGTA
10	55	l CATGACCTTA	TGGGACTTTC	CTACTTGGCA	GTACATCTAC	GTATTAGTCA
	60	1 TCGCTATTAC	CATGGTGATG	CGGTTTTGGC	AGTACATCAA	TGGGCGTGGA
	65	1 TAGCGGTTTG	ACTCACGGGG	ATTTCCAAGT	CTCCACCCCA	TTGACGTCAA
	70	l TGGGAGTTTG	TTTTGGCACC	AAAATCAACG	GGACTTTCCA	AAATGTCGTA
15	75	l ACAACTCCGC	CCCATTGACG	CAAATGGGCG	GTAGGCGTGT	ACGGTGGGAG
	80:	l gtctatataa	GCAGAGCTCT	CTGGCTAACT	AGAGAACCCA	CTGCTTACTG
	85	l GCTTATCGAA	ATTAATACGA	CTCACTATAG	GGAGACCCAA	GCTGGCTAGC
	90:	l GTTTAAACGG	GCCCTCTAGA	CTCGAGCGGC	CGCCACTGTG	CTGGATATCT
20	95	GCAgaattcg	gcttgggatg	acgcctcctc	cgcccggacg	tgccgcccc
	100	agcgcaccgc	gcgcccgcgt	ccctggcccg	ccggctcggt	tggggcttcc
	105	gctgcggctg	cggctgctgc	tgctgctctg	ggcggccgcc	gcctccgccc
25	1101	agggccacct	aaggagcgga	ccccgcatct	tcgccgtctg	gaaaggccat
	1151	gtagggcagg	accgggtgga	ctttggccag	actgagccgc	acacggtgct
	1201	. tttccacgag	ccaggcagct	cctctgtgtg	ggtgggagga	cgtggcaagg
	1251	tctacctctt	tgacttcccc	gagggcaaga	acgcatctgt	gcgcacggtg
30	1301	. aatatcggct	ccacaaaggg	gtcctgtctg	gataagcggg	actgcgagaa
	1351	. ctacatcact	ctcctggaga	ggcggagtga	ggggctgctg	gcctgtggca
	1401	ccaacgcccg	gcaccccagc	tgctggaacc	tggtgaatgg	cactgtggtg
	1451	. ccacttggcg	agatgagagg	ctacgccccc	ttcagcccgg	acgagaactc
35	1501	cctggttctg	tttgaagggg	acgaggtgta	ttccaccatc	cggaagcagg
	1551	aatacaatgg	gaagatccct	cggttccgcc	gcatccgggg	cgagagtgag
	1601	. ctgtacacca	gtgatactgt	catgcagaac	ccacagttca	tcaaagccac
		catcgtgcac				
40	1701	gagaggacaa	tcctgacaag	aatcctgagg	ctcctctcaa	tgtgtcccgt
	1751	gtggcccagt	tgtgcagggg	ggaccagggt	ggggaaagtt	cactgtcagt
	1801	ctccaagtgg	aacacttttc	tgaaagccat	gctggtatgc	agtgatgctg
	1851	ccaccaacaa	gaacttcaac	aggctgcaag	acgtcttcct	gctccctgac
45	1901	cccagcggcc	agtggaggga	caccagggtc	tatggtgttt	tctccaaccc
	1951	ctggaactac	tcagccgtct	gtgtgtattc	cctcggtgac	attgacaagg
	2001	tcttccgtac	ctcctcactc	aagggctacc	actcaagcct	tcccaacccg
50		cggcctggca				
30	2101	ccaggtggct	gaccgtcacc	cagaggtggc	gcagagggtg	gagcccatgg
	2151	ggcctctgaa	gacgccattg	ttccactcta	aataccacta	ccagaaagtg

	2201	gccgttcacc	gcatgcaagc	cagccacggg	gagacctttc	atgtgcttta
•	2251	cctaactaca	gacaggggca	ctatccacaa	ggtggtggaa	ccgggggagc
5	2301	aggagcacag	cttcgccttc	aacatcatgg	agatccagcc	cttccgccgc
	2351	gcggctgcca	tccagaccat	gtcgctggat	gctgagcgga	ggaagctgta
	2401	tgtgagctcc	cagtgggagg	tgagccaggt	gcccctggac	ctgtgtgagg
	2451	tctatggcgg	gggctgccac	ggttgcctca	tgtcccgaga	cccctactgc
10	2501	ggctgggacc	agggccgctg	catctccatc	tacagctccg	aacggtcagt
	2551	gctgcaatcc	attaatccag	ccgagccaca	caaggagtgt	cccaacccca
	2601	aaccagacaa	ggccccactg	cagaaggttt	ccctggcccc	aaactctcgc
	2651	tactacctga	gctgccccat	ggaatcccgc	cacgccacct	actcatggcg
15	2701	ccacaaggag	aacgtggagc	agagctgcga	acctggtcac	cagagcccca
	2751	actgcatcct	gttcatcgag	aacctcacgg	cgcagcagta	cggccactac
	2801	ttctgcgagg	cccaggaggg	ctcctacttc	cgcgaggctc	agcactggca
	2851	gctgctgccc	gaggacggca	tcatggccga	gcacctgctg	ggtcatgcct
20	2901	gtgccctggc	tgcctccctc	tggctggggg	tgctgcccac	actcactctt
	2951	ggcttgctgg	tccacATGGT	GAGCAAGGGC	GAGGAGCTGT	TCACCGGGGT
	3001	GGTGCCCATC	CTGGTCGAGC	TGGACGGCGA	CGTAAACGGC	CACAAGTTCA
	3051	GCGTGTCCGG	CGAGGGCGAG	GGCGATGCCA	CCTACGGCAA	GCTGACCCTG
25	3101	AAGTTCATCT	GCACCACCGG	CAAGCTGCCC	GTGCCCTGGC	CCACCCTCGT
	3151	GACCACCCTG	ACCTACGGCG	TGCAGTGCTT	CAGCCGCTAC	CCCGACCACA
	3201	TGAAGCAGCA	CGACTTCTTC	AAGTCCGCCA	TGCCCGAAGG	CTACGTCCAG
30	3251	GAGCGCACCA	TCTTCTTCAA	GGACGACGGC	AACTACAAGA	CCCGCGCCGA
50	3301	GGTGAAGTTC	GAGGGCGACA	CCCTGGTGAA	CCGCATCGAG	CTGAAGGGCA
	3351	TCGACTTCAA	GGAGGACGGC	AACATCCTGG	GGCACAAGCT	GGAGTACAAC
	3401	TACAACAGCC	ACAACGTCTA	TATCATGGCC	GACAAGCAGA	AGAACGGCAT
3 <i>5</i>	3451	CAAGGTGAAC	TTCAAGATCC	GCCACAACAT	CGAGGACGGC	AGCGTGCAGC
	3501	TCGCCGACCA	CTACCAGCAG	AACACCCCCA	TCGGCGACGG	CCCCGTGCTG
	3551	CTGCCCGACA	ACCACTACCT	GAGCACCCAG	TCCGCCCTGA	GCAAAGACCC
	3601	CAACGAGAAG	CGCGATCACA	TGGTCCTGCT	GGAGTTCGTG	ACCGCCGCCG
40	3651	GGATCACTCT	CGGCATGGAC	GAGCTGTACA	Aggtgaagct	tGGGCCCGAA
	3701	CAAAAACTCA	TCTCAGAAGA	GGATCTGAAT	AGCGCCGTCG	ACCATCATCA
	3751	TCATCATCAT	TGAGTTTAAA	CCGCTGATCA	GCCTCGACTG	TGCCTTCTAG
	3801	TTGCCAGCCA	TCTGTTGTTT	GCCCTCCCC	CGTGCCTTCC	TTGACCCTGG
45	3851	AAGGTGCCAC	TCCCACTGTC	CTTTCCTAAT	AAAATGAGGA	AATTGCATCG
	3901	CATTGTCTGA	GTAGGTGTCA	TTCTATTCTG	GGGGGTGGGG	TGGGGCAGGA
	3951	CAGCAAGGGG	GAGGATTGGG	AAGACAATAG	CAGGCATGCT	GGGGATGCGG
	4001	TGGGCTCTAT	GGCTTCTGAG	GCGGAAAGAA	CCAGCTGGGG	CTCTAGGGGG
50	4051	TATCCCCACG	CGCCCTGTAG	CGGCGCATTA	AGCGCGGCGG	GTGTGGTGGT
	4101	TACGCGCAGC	GTGACCGCTA	CACTTGCCAG	CGCCCTAGCG	CCCGCTCCTT

	4151	TCGCTTTCTT	CCCTTCCTTT	CTCGCCACGT	TCGCCGGCTT	TCCCCGTCAA
	4201	GCTCTAAATC	GGGGCATCCC	TTTAGGGTTC	CGATTTAGTG	CTTTACGGCA
5	4251	CCTCGACCCC	AAAAAACTTG	ATTAGGGTGA	TGGTTCACGT	AGTGGGCCAT
	4301	CGCCCTGATA	GACGGTTTTT	CGCCCTTTGA	CGTTGGAGTC	CACGTTCTTT
	4351	AATAGTGGAC	TCTTGTTCCA	AACTGGAACA	ACACTCAACC	CTATCTCGGT
	4401	CTATTCTTTT	GATTTATAAG	GGATTTTGGG	GATTTCGGCC	TATTGGTTAA
10	4451	AAAATGAGCT	GATTTAACAA	AAATTTAACG	CGAATTAATT	CTGTGGAATG
	4501	TGTGTCAGTT	AGGGTGTGGA	AAGTCCCCAG	GCTCCCCAGG	CAGGCAGAAG
	4551	TATGCAAAGC	ATGCATCTCA	ATTAGTCAGC	AACCAGGTGT	GGAAAGTCCC
	4601	CAGGCTCCCC	AGCAGGCAGA	AGTATGCAAA	GCATGCATCT	CAATTAGTCA
15	4651	GCAACCATAG	TCCCGCCCCT	AACTCCGCCC	ATCCCGCCCC	TAACTCCGCC
	4701	CAGTTCCGCC	CATTCTCCGC	CCCATGGCTG	ACTAATTTTT	TTTATTTATG
	4751	CAGAGGCCGA	GGCCGCCTCT	GCCTCTGAGC	TATTCCAGAA	GTAGTGAGGA
	4801	GGCTTTTTTG	GAGGCCTAGG	CTTTTGCAAA	AAGCTCCCGG	GAGCTTGTAT
20	4851	ATCCATTTTC	GGATCTGATC	AAGAGACAGG	ATGAGGATCG	TTTCGCATGA
	4901	TTGAACAAGA	TGGATTGCAC	GCAGGTTCTC	CGGCCGCTTG	GGTGGAGAGG
	4951	CTATTCGGCT	ATGACTGGGC	ACAACAGACA	ATCGGCTGCT	CTGATGCCGC
25	5001	CGTGTTCCGG	CTGTCAGCGC	AGGGGCGCCC	GGTTCTTTTT	GTCAAGACCG
25	5051	ACCTGTCCGG	TGCCCTGAAT	GAACTGCAGG	ACGAGGCAGC	GCGGCTATCG
	5101	TGGCTGGCCA	CGACGGGCGT	TCCTTGCGCA	GCTGTGCTCG	ACGTTGTCAC
	5151	TGAAGCGGGA	AGGGACTGGC	TGCTATTGGG	CGAAGTGCCG	GGGCAGGATC
30	5201	TCCTGTCATC	TCACCTTGCT	CCTGCCGAGA	AAGTATCCAT	CATGGCTGAT
	5251	GCAATGCGGC	GGCTGCATAC	GCTTGATCCG	GCTACCTGCC	CATTCGACCA
	5301	CCAAGCGAAA	CATCGCATCG	AGCGAGCACG	TACTCGGATG	GAAGCCGGTC
	5351	TTGTCGATCA	GGATGATCTG	GACGAAGAGC	ATCAGGGGCT	CGCGCCAGCC
35	5401	GAACTGTTCG	CCAGGCTCAA	GGCGCGCATG	CCCGACGGCG	AGGATCTCGT
	545İ	CGTGACCCAT	GGCGATGCCT	GCTTGCCGAA	TATCATGGTG	GAAAATGGCC
	5501	GCTTTTCTGG	ATTCATCGAC	TGTGGCCGGC	TGGGTGTGGC	GGACCGCTAT
	5551	CAGGACATAG	CGTTGGCTAC	CCGTGATATT	GCTGAAGAGC	TTGGCGGCGA
40	5601	ATGGGCTGAC	CGCTTCCTCG	TGCTTTACGG	TATCGCCGCT	CCCGATTCGC
	5651	AGCGCATCGC	CTTCTATCGC	CTTCTTGACG	AGTTCTTCTG	AGCGGGACTC
	5701	TGGGGTTCGA	AATGACCGAC	CAAGCGACGC	CCAACCTGCC	ATCACGAGAT
	5751	TTCGATTCCA	CCGCCGCCTT	CTATGAAAGG	TTGGGCTTCG	GAATCGTTTT
45	5801	CCGGGACGCC	GGCTGGATGA	TCCTCCAGCG	CGGGGATCTC	ATGCTGGAGT
	5851	TCTTCGCCCA	CCCCAACTTG	TTTATTGCAG	CTTATAATGG	TTACAAATAA
	5901	AGCAATAGCA	TCACAAATTT	CACAAATAAA	GCATTTTTT	CACTGCATTC
50	5951	TAGTTGTGGT	TTGTCCAAAC	TCATCAATGT	ATCTTATCAT	GTCTGTATAC
50	6001	CGTCGACCTC	TAGCTAGAGC	TTGGCGTAAT	CATGGTCATA	GCTGTTTCCT
	6051	GTGTGAAATT	GTTATCCGCT	CACAATTCCA	CACAACATAC	GAGCCGGAAG

5		6151 6201 6251 6301	TTGCGTTGCG CTGCATTAAT GCGCTCTTCC	CTCACTGCCC GAATCGGCCA	GCTTTCCAGT	CGGGAAACCT	CTCACATTAA GTCGTGCCAG TGCGTATTGG
5		6201 6251 6301	CTGCATTAAT GCGCTCTTCC	GAATCGGCCA			
5		6251 6301	GCGCTCTTCC		ACGCGCGGG	AGAGGCGGTT	TGCGTATTGG
		6301		GCTTCCTCGC			
			TGCGGCGAGC		TCACTGACTC	GCTGCGCTCG	GTCGTTCGGC
		6351		GGTATCAGCT	CACTCAAAGG	CGGTAATACG	GTTATCCACA
			GAATCAGGGG	ATAACGCAGG	AAAGAACATG	TGAGCAAAAG	GCCAGCAAAA
10		6401	GGCCAGGAAC	CGTAAAAAGG	CCGCGTTGCT	GGCGTTTTTC	CATAGGCTCC
	1	6451	GCCCCCTGA	CGAGCATCAC	AAAAATCGAC	GCTCAAGTCA	GAGGTGGCGA
		6501	AACCCGACAG	GACTATAAAG	ATACCAGGCG	TTTCCCCCTG	GAAGCTCCCT
	ı	6551	CGTGCGCTCT	CCTGTTCCGA	CCCTGCCGCT	TACCGGATAC	CTGTCCGCCT
15		6601	TTCTCCCTTC	GGGAAGCGTG	GCGCTTTCTC	AATGCTCACG	CTGTAGGTAT
	•	6651	CTCAGTTCGG	TGTAGGTCGT	TCGCTCCAAG	CTGGGCTGTG	TGCACGAACC
	(6701	CCCCGTTCAG	CCCGACCGCT	GCGCCTTATC	CGGTAACTAT	CGTCTTGAGT
	•	6751	CCAACCCGGT	AAGACACGAC	TTATCGCCAC	TGGCAGCAGC	CACTGGTAAC
20	•	5801	AGGATTAGCA	GAGCGAGGTA	TGTAGGCGGT	GCTACAGAGT	TCTTGAAGTG
	(851	GTGGCCTAAC	TACGGCTACA	CTAGAAGGAC	AGTATTTGGT	ATCTGCGCTC
	(5901	TGCTGAAGCC	AGTTACCTTC	GGAAAAAGAG	TTGGTAGCTC	TTGATCCGGC
25	•	951	AAACAAACCA	CCGCTGGTAG	CGGTGGTTTT	TTTGTTTGCA	AGCAGCAGAT
	7	7001	TACGCGCAGA	AAAAAAGGAT	CTCAAGAAGA	TCCTTTGATC	TTTTCTACGG
	7	7051	GGTCTGACGC	TCAGTGGAAC	GAAAACTCAC	GTTAAGGGAT	TTTGGTCATG
	7	101	AGATTATCAA	AAAGGATCTT	CACCTAGATC	CTTTTAAATT	AAAAATGAAG
30	7	151	TTTTAAATCA	ATCTAAAGTA	TATATGAGTA	AACTTGGTCT	GACAGTTACC
	7	201	AATGCTTAAT	CAGTGAGGCA	CCTATCTCAG	CGATCTGTCT	ATTTCGTTCA
	7	251	TCCATAGTTG	CCTGACTCCC	CGTCGTGTAG	ATAACTACGA	TACGGGAGGG
	7	301	CTTACCATCT	GGCCCCAGTG	CTGCAATGAT	ACCGCGAGAC	CCACGCTCAC
35	7	351	CGGCTCCAGA	TTTATCAGCA	ATAAACCAGC	CAGCCGGAAG	GGCCGAGCGC
	. 7	401	AGAAGTGGTC	CTGCAACTTT	ATCCGCCTCC	ATCCAGTCTA	TTAATTGTTG
	7	451	CCGGGAAGCT	AGAGTAAGTA	GTTCGCCAGT	TAATAGTTTG	CGCAACGTTG
	· 7	501	TTGCCATTGC	TACAGGCATC	GTGGTGTCAC	GCTCGTCGTT	TGGTATGGCT
40	. 7	551	TCATTCAGCT	CCGGTTCCCA	ACGATCAAGG	CGAGTTACAT	GATCCCCCAT
	7	601	GTTGTGCAAA	AAAGCGGTTA	GCTCCTTCGG	TCCTCCGATC	GTTGTCAGAA
	7	651	GTAAGTTGGC	CGCAGTGTTA	TCACTCATGG	TTATGGCAGC	ACTGCATAAT
	7	701	TCTCTTACTG	TCATGCCATC	CGTAAGATGC	TTTTCTGTGA	CTGGTGAGTA
45	7	751	CTCAACCAAG	TCATTCTGAG	AATAGTGTAT	GCGGCGACCG	AGTTGCTCTT
	7	801	GCCCGGCGTC	AATACGGGAT	AATACCGCGC	CACATAGCAG	AACTTTAAAA
	7	851	GTGCTCATCA	TTGGAAAACG	TTCTTCGGGG	CGAAAACTCT	CAAGGATCTT
50	. 7	901	ACCGCTGTTG	AGATCCAGTT	CGATGTAACC	CACTCGTGCA	CCCAACTGAT
50	7	951	CTTCAGCATC	TTTTACTTTC	ACCAGCGTTT	CTGGGTGAGC	AAAAACAGGA
	8	001	AGGCAAAATG	CCGCAAAAA	GGGAATAAGG	GCGACACGGA	AATGTTGAAT

8051 ACTCATACTC TTCCTTTTC AATATTATTG AAGCATTTAT CAGGGTTATT 8101 GTCTCATGAG CGGATACATA TTTGAATGTA TTTAGAAAAA TAAACAAATA 8151 GGGGTTCCGC GCACATTCC CCGAAAAGTG CCACCTGACG TC

Tabelle 10: Nukleotidsequenz des rekombinanten Plasmids pIND-H-SemaL-EE (SEQ ID NO.: 37)

1 AGATCTCGGC CGCATATTAA GTGCATTGTT CTCGATACCG CTAAGTGCAT 51 TGTTCTCGTT AGCTCGATGG ACAAGTGCAT TGTTCTCTTG CTGAAAGCTC 101 GATGGACAAG TGCATTGTTC TCTTGCTGAA AGCTCGATGG ACAAGTGCAT 151 TGTTCTCTTG CTGAAAGCTC AGTACCCGGG AGTACCCTCG ACCGCCGGAG 201 TATAAATAGA GGCGCTTCGT CTACGGAGCG ACAATTCAAT TCAAACAAGC 251 AAAGTGAACA CGTCGCTAAG CGAAAGCTAA GCAAATAAAC AAGCGCAGCT 301 GAACAAGCTA AACAATCTGC AGTAAAGTGC AAGTTAAAGT GAATCAATTA 351 AAAGTAACCA GCAACCAAGT AAATCAACTG CAACTACTGA AATCTGCCAA 401 GAAGTAATTA TTGAATACAA GAAGAGAACT CTGAATACTT TCAACAAGTT 451 ACCGAGAAAG AAGAACTCAC ACACAGCTAG CGTTTAAACT TAAGCTTGGT 501 ACCGAGCTCG GATCCACTAG TCCAGTGTGG TGgaattcgg cttgggatga 551 egectectee geoeggacgt geogeceeca gegeacegeg egecegegte 601 cetggeege eggeteggtt ggggetteeg etgeggetge ggetgetget 651 gctgctctgg gcggccgccg cctccgccca gggccaccta aggagcggac 701 cccgcatctt cgccgtctgg aaaggccatg tagggcagga ccgggtggac 751 tttggccaga ctgagccgca cacggtgctt ttccacgagc caggcagctc 801 ctctgtgtgg gtgggaggac gtggcaaggt ctacctcttt gacttccccg 851 agggcaagaa cgcatctgtg cgcacggtga atatcggctc cacaaagggg 901 teetgtetgg ataageggga etgegagaae tacateacte teetggagag 951 gcggagtgag gggctgctgg cctgtggcac caacgcccgg caccccagct 1001 gctggaacct ggtgaatggc actgtggtgc cacttggcga gatgagaggc 1051 tacgccccct tcagcccgga cgagaactcc ctggttctgt ttgaagggga 1101 cgaggtgtat tccaccatcc ggaagcagga atacaatggg aagatccctc 1151 ggttccgccg catccggggc gagagtgagc tgtacaccag tgatactgtc 1201 atgcagaacc cacagttcat caaagccacc atcgtgcacc aagaccaggc 1251 ttacgatgac aagatctact acttcttccg agaggacaat cctgacaaga 1301 atcctgaggc tcctctcaat gtgtcccgtg tggcccagtt gtgcaggggg 1351 gaccagggtg gggaaagttc actgtcagtc tccaagtgga acactttct 1401 gaaagccatg ctggtatgca gtgatgctgc caccaacaag aacttcaaca 1451 ggctgcaaga cgtcttcctg ctccctgacc ccagcggcca gtggagggac 1501 accagggtct atggtgtttt ctccaacccc tggaactact cagccgtctg 1551 tgtgtattcc ctcggtgaca ttgacaaggt cttccgtacc tcctcactca

55

50

5

10

15

20

25

30

35

	1601	agggctacca	ctcaagcctt	cccaacccgc	ggcctggcaa	gtgcctccca
	1651	gaccagcagc	cgatacccac	agagaccttc	caggtggctg	accgtcaccc
5	1701	agaggtggcg	cagagggtgg	agcccatggg	gcctctgaag	acgccattgt
	1751	tccactctaa	ataccactac	cagaaagtgg	ccgttcaccg	catgcaagcc
	1801	agccacgggg	agacctttca	tgtgctttac	ctaactacag	acaggggcac
	1851	tatccacaag	gtggtggaac	cgggggagca	ggagcacagc	ttcgccttca
10	1901	acatcatgga	gatccagccc	ttccgccgcg	cggctgccat	ccagaccatg
	1951	tcgctggatg	ctgagcggag	gaagctgtat	gtgagctccc	agtgggaggt
	2001	gagccaggtg	cccctggacc	tgtgtgaggt	ctatggcggg	ggctgccacg
	2051	gttgcctcat	gtcccgagac	ccctactgcg	gctgggacca	gggccgctgc
15	2101	atctccatct	acagctccga	acggtcagtg	ctgcaatcca	ttaatccagc
	2151	cgagccacac	aaggagtgtc	ccaaccccaa	accagacaag	gccccactgc
	2201	agaaggtttc	cctggcccca	aactctcgct	actacctgag	ctgccccatg
	2251	gaatcccgcc	acgccaccta	ctcatggcgc	cacaaggaga	acgtggagca
20	2301	gagctgcgaa	cctggtcacc	agagccccaa	ctgcatcctg	ttcatcgaga
	2351	acctcacggc	gcagcagtac	ggccactact	tctgcgaggc	ccaggagggc
	2401	tcctacttcc	gcgaggctca	gcactggcag	ctgctgcccg	aggacggcat
	2451	catggccgag	cacctgctgg	gtcatgcctg	tgccctggct	gcctccctct
25	2501	ggctgggggt	gctgcccaca	ctcactcttg	gcttgctggt	ccacgtgaag
	2551	cttGGGCCCG	TTTAAACCCG	CTGATCAGCC	TCGACTGTGC	CTTCTAGTTG
	2601	CCAGCCATCT	GTTGTTTGCC	CCTCCCCGT	GCCTTCCTTG	ACCCTGGAAG
30	2651	GTGCCACTCC	CACTGTCCTT	TCCTAATAAA	ATGAGGAAAT	TGCATCGCAT
30	2701	TGTCTGAGTA	GGTGTCATTC	TATTCTGGGG	GGTGGGGTGG	GGCAGGACAG
	2751	CAAGGGGGAG	GATTGGGAAG	ACAATAGCAG	GCATGCTGGG	GATGCGGTGG
	2801	GCTCTATGGC	TTCTGAGGCG	GAAAGAACCA	GCTGGGGCTC	TAGGGGGTAT
35	2851	CCCCACGCGC	CCTGTAGCGG	CGCATTAAGC	GCGGCGGGTG	TGGTGGTTAC
	2901	GCGCAGCGTG	ACCGCTACAC	TTGCCAGCGC	CCTAGCGCCC	GCTCCTTTCG
	2951	CTTTCTTCCC	TTCCTTTCTC	GCCACGTTCG	CCGGCTTTCC	CCGTCAAGCT
	3001	CTAAATCGGG	GCATCCCTTT	AGGGTTCCGA	TTTAGTGCTT	TACGGCACCT
40	3051	CGACCCCAAA	AAACTTGATT	AGGGTGATGG	TTCACGTAGT	GGGCCATCGC
	3101	CCTGATAGAC	GGTTTTTCGC	CCTTTGACGT	TGGAGTCCAC	GTTCTTTAAT
	3151	AGTGGACTCT	TGTTCCAAAC	TGGAACAACA	CTCAACCCTA	TCTCGGTCTA
	3201	TTCTTTTGAT	TTATAAGGGA	TTTTGGGGAT	TTCGGCCTAT	TGGTTAAAAA
45	3251	ATGAGCTGAT	TTAACAAAAA	TTTAACGCGA	ATTAATTCTG	TGGAATGTGT
	3301	GTCAGTTAGG	GTGTGGAAAG	TCCCCAGGCT	CCCCAGGCAG	GCAGAAGTAT
	3351	GCAAAGCATG	CATCTCAATT	AGTCAGCAAC	CAGGTGTGGA	AAGTCCCCAG
	3401	GCTCCCCAGC	AGGCAGAAGT	ATGCAAAGCA	TGCATCTCAA	TTAGTCAGCA
50	3451	ACCATAGTCC	CGCCCCTAAC	TCCGCCCATC	CCGCCCCTAA	CTCCGCCCAG
	3501	TTCCGCCCAT	TCTCCGCCCC	ATGGCTGACT	AATTTTTTT	ATTTATGCAG

	3551	AGGCCGAGGC	CGCCTCTGCC	TCTGAGCTAT	TCCAGAAGTA	GTGAGGAGGC
	3601	TTTTTTGGAG	GCCTAGGCTT	TTGCAAAAAG	CTCCCGGGAG	CTTGTATATC
5	3651	CATTTTCGGA	TCTGATCAAG	AGACAGGATG	AGGATCGTTT	CGCATGATTG
	3701	AACAAGATGG	ATTGCACGCA	GGTTCTCCGG	CCGCTTGGGT	GGAGAGGCTA
	3751	TTCGGCTATG	ACTGGGCACA	ACAGACAATC	GGCTGCTCTG	ATGCCGCCGT
	3801	GTTCCGGCTG	TCAGCGCAGG	GGCGCCCGGT	TCTTTTTGTC	AAGACCGACC
10	3851	TGTCCGGTGC	CCTGAATGAA	CTGCAGGACG	AGGCAGCGCG	GCTATCGTGG
	3901	CTGGCCACGA	CGGGCGTTCC	TTGCGCAGCT	GTGCTCGACG	TTGTCACTGA
	3951	AGCGGGAAGG	GACTGGCTGC	TATTGGGCGA	AGTGCCGGGG	CAGGATCTCC
	4001	TGTCATCTCA	CCTTGCTCCT	GCCGAGAAAG	TATCCATCAT	GGCTGATGCA
15	4051	ATGCGGCGGC	TGCATACGCT	TGATCCGGCT	ACCTGCCCAT	TCGACCACCA
	4101	AGCGAAACAT	CGCATCGAGC	GAGCACGTAC	TCGGATGGAA	GCCGGTCTTG
	4151	TCGATCAGGA	TGATCTGGAC	GAAGAGCATC	AGGGGCTCGC	GCCAGCCGAA
	4201	CTGTTCGCCA	GGCTCAAGGC	GCGCATGCCC	GACGGCGAGG	ATCTCGTCGT
20	4251	GACCCATGGC	GATGCCTGCT	TGCCGAATAT	CATGGTGGAA	AATGGCCGCT
	4301	TTTCTGGATT	CATCGACTGT	GGCCGGCTGG	GTGTGGCGGA	CCGCTATCAG
	4351	GACATAGCGT	TGGCTACCCG	TGATATTGCT	GAAGAGCTTG	GCGGCGAATG
	4401	GGCTGACCGC	TTCCTCGTGC	TTTACGGTAT	CGCCGCTCCC	GATTCGCAGC
25	4451	GCATCGCCTT	CTATCGCCTT	CTTGACGAGT	TCTTCTGAGC	GGGACTCTGG
	4501	GGTTCGAAAT	GACCGACCAA	GCGACGCCCA	ACCTGCCATC	ACGAGATTTC
	4551	GATTCCACCG	CCGCCTTCTA	TGAAAGGTTG	GGCTTCGGAA	TCGTTTTCCG
30	4601	GGACGCCGGC	TGGATGATCC	TCCAGCGCGG	GGATCTCATG	CTGGAGTTCT
30	4651	TCGCCCACCC	CAACTTGTTT	ATTGCAGCTT	ATAATGGTTA	CAAATAAAGC
	4701	AATAGCATCA	CAAATTTCAC	AAATAAAGCA	TTTTTTTCAC	TGCATTCTAG
	4751	TTGTGGTTTG	TCCAAACTCA	TCAATGTATC	TTATCATGTC	TGTATACCGT
35	4801	CGACCTCTAG	CTAGAGCTTG	GCGTAATCAT	GGTCATAGCT	GTTTCCTGTG
	4851	TGAAATTGTT	ATCCGCTCAC	AATTCCACAC	AACATACGAG	CCGGAAGCAT
	4901	AAAGTGTAAA	GCCTGGGGTG	CCTAATGAGT	GAGCTAACTC	ACATTAATTG
	4951	CGTTGCGCTC	ACTGCCCGCT	TTCCAGTCGG	GAAACCTGTC	GTGCCAGCTG
40	5001	CATTAATGAA	TCGGCCAACG	CGCGGGGAGA	GGCGGTTTGC	GTATTGGGCG
	5051	CTCTTCCGCT	TCCTCGCTCA	CTGACTCGCT	GCGCTCGGTC	GTTCGGCTGC
	5101	GGCGAGCGGT	ATCAGCTCAC	TCAAAGGCGG	TAATACGGTT	ATCCACAGAA
	5151	TCAGGGGATA	ACGCAGGAAA	GAACATGTGA	GCAAAAGGCC	AGCAAAAGGC
45	5201	CAGGAACCGT	AAAAAGGCCG	CGTTGCTGGC	GTTTTTCCAT	AGGCTCCGCC
	5251	CCCCTGACGA	GCATCACAAA	AATCGACGCT	CAAGTCAGAG	GTGGCGAAAC
	5301	CCGACAGGAC	TATAAAGATA	CCAGGCGTTT	CCCCTGGAA	GCTCCCTCGT
	5351	GCGCTCTCCT	GTTCCGACCC	TGCCGCTTAC	CGGATACCTG	TCCGCCTTTC
50	5401	TCCCTTCGGG	AAGCGTGGCG	CTTTCTCAAT	GCTCACGCTG	TAGGTATCTC
	5451	AGTTCGGTGT	AGGTCGTTCG	CTCCAAGCTG	GGCTGTGTGC	ACGAACCCCC

		5501	CGTTCAGCCC	GACCGCTGCG	CCTTATCCGG	TAACTATCGT	CTTGAGTCCA
		5551	ACCCGGTAAG	ACACGACTTA	TCGCCACTGG	CAGCAGCCAC	TGGTAACAGG
	_	5601	ATTAGCAGAG	CGAGGTATGT	AGGCGGTGCT	ACAGAGTTCT	TGAAGTGGTG
5	,	5651	GCCTAACTAC	GGCTACACTA	GAAGGACAGT	ATTTGGTATC	TGCGCTCTGC
		5701	TGAAGCCAGT	TACCTTCGGA	AAAAGAGTTG	GTAGCTCTTG	ATCCGGCAAA
		5751	CAAACCACCG	CTGGTAGCGG	TGGTTTTTT	GTTTGCAAGC	AGCAGATTAC
	10	5801	GCGCAGAAAA	AAAGGATCTC	AAGAAGATCC	TTTGATCTTT	TCTACGGGGT
		5851	CTGACGCTCA	GTGGAACGAA	AACTCACGTT	AAGGGATTTT	GGTCATGAGA
		5901	TTATCAAAAA	GGATCTTCAC	CTAGATCCTT	TTAAATTAAA	AATGAAGTTT
		5951	TAAATCAATC	TAAAGTATAT	ATGAGTAAAC	TTGGTCTGAC	AGTTACCAAT
	15	6001	GCTTAATCAG	TGAGGCACCT	ATCTCAGCGA	TCTGTCTATT	TCGTTCATCC
		6051	ATAGTTGCCT	GACTCCCCGT	CGTGTAGATA	ACTACGATAC	GGGAGGGCTT
		6101	ACCATCTGGC	CCCAGTGCTG	CAATGATACC	GCGAGACCCA	CGCTCACCGG
					AACCAGCCAG		
	20				CGCCTCCATC		
					CGCCAGTTAA		
					GTGTCACGCT		
					ATCAAGGCGA		
	25				CCTTCGGTCC		
					CTCATGGTTA		
					AAGATGCTTT		
					AGTGTATGCG		
	30				ACCGCGCCAC		
					TTCGGGGCGA		
					TGTAACCCAC		
	35				AGCGTTTCTG		
					AATAAGGGCG		
					ATTATTGAAG		
					GAATGTATTT		
	40	6951	GTTCCGCGCA	CATTTCCCCG	AAAAGTGCCA	CCTGACGTCG	ACGGATCGGG

Tabelle 11: Nukleotidsequenz des rekombinanten Plasmids pIND-H-SemaL-EA (SEQ ID NO.: 38)

1 AGATCTCGGC CGCATATTAA GTGCATTGTT CTCGATACCG CTAAGTGCAT
51 TGTTCTCGTT AGCTCGATGG ACAAGTGCAT TGTTCTCTTG CTGAAAGCTC
101 GATGGACAAG TGCATTGTTC TCTTGCTGAA AGCTCGATGG ACAAGTGCAT
151 TGTTCTCTTG CTGAAAGCTC AGTACCCGGG AGTACCCTCG ACCGCCGGAG
201 TATAAATAGA GGCGCTTCGT CTACGGAGCG ACAATTCAAT TCAAACAAGC

55

	251	AAAGTGAACA	CGTCGCTAAG	CGAAAGCTAA	GCAAATAAAC	AAGCGCAGCT
	301	GAACAAGCTA	AACAATCTGC	AGTAAAGTGC	AAGTTAAAGT	GAATCAATTA
5	351	AAAGTAACCA	GCAACCAAGT	AAATCAACTG	CAACTACTGA	AATCTGCCAA
	401	GAAGTAATTA	TTGAATACAA	GAAGAGAACT	CTGAATACTT	TCAACAAGTT
	451	ACCGAGAAAG	AAGAACTCAC	ACACAGCTAG	CGTTTAAACT	TAAGCTTGGT
	501	ACCGAGCTCG	GATCCACTAG	TCCAGTGTGG	TGgaattcgg	cttgggatga
10	551	cgcctcctcc	gcccggacgt	gccgccccca	gcgcaccgcg	cgcccgcgtc
	601	cctggcccgc	cggctcggtt	ggggcttccg	ctgcggctgc	ggctgctgct
	651	gctgctctgg	gcggccgccg	cctccgccca	gggccaccta	aggagcggac
	701	cccgcatctt	cgccgtctgg	aaaggccatg	tagggcagga	ccgggtggac
15	751	tttggccaga	ctgagccgca	cacggtgctt	ttccacgagc	caggcagctc
	801	ctctgtgtgg	gtgggaggac	gtggcaaggt	ctacctcttt	gacttccccg
	851	agggcaagaa	cgcatctgtg	cgcacggtga	atatcggctc	cacaaagggg
22	901	tcctgtctgg	ataagcggga	ctgcgagaac	tacatcactc	tcctggagag
20	951	gcggagtgag	gggctgctgg	cctgtggcac	caacgcccgg	caccccagct
	1001	gctggaacct	ggtgaatggc	actgtggtgc	cacttggcga	gatgagaggc
	1051	tacgccccct	tcagcccgga	cgagaactcc	ctggttctgt	ttgaagggga
25	1101	cgaggtgtat	tccaccatcc	ggaagcagga	atacaatggg	aagatccctc
	1151	ggttccgccg	catccggggc	gagagtgagc	tgtacaccag	tgatactgtc
	1201	atgcagaacc	cacagttcat	caaagccacc	atcgtgcacc	aagaccaggc
	1251	ttacgatgac	aagatctact	acttcttccg	agaggacaat	cctgacaaga
30	1301	atcctgaggc	tcctctcaat	gtgtcccgtg	tggcccagtt	gtgcaggggg
	1351	gaccagggtg	gggaaagttc	actgtcagtc	tccaagtgga	acacttttct
	1401	gaaagccatg	ctggtatgca	gtgatgctgc	caccaacaag	aacttcaaca
	1451	ggctgcaaga	cgtcttcctg	ctccctgacc	ccagcggcca	gtggagggac
35	1501	accagggtct	atggtgtttt	ctccaacccc	tggaactact	cagccgtctg
	1551	tgtgtattcc	ctcggtgaca	ttgacaaggt	cttccgtacc	tcctcactca
·	1601	agggctacca	ctcaagcctt	cccaacccgc	ggcctggcaa	gtgcctccca
40	1651	gaccagcagc	cgatacccac	agagaccttc	caggtggctg	accgtcaccc
***	1701	agaggtggcg	cagagggtgg	agcccatggg	gcctctgaag	acgccattgt
	1751	tccactctaa	ataccactac	cagaaagtgg	ccgttcaccg	catgcaagcc
	1801	agccacgggg	agacctttca	tgtgctttac	ctaactacag	acaggggcac
45	1851	tatccacaag	gtggtggaac	cgggggagca	ggagcacagc	ttcgccttca
	1901	acatcatgga	gatccagccc	ttccgccgcg	cggctgccat	ccagaccatg
	1951	tcgctggatg	ctgagcggag	gaagctgtat	gtgagctccc	agtgggaggt
	2001	gagccaggtg	cccctggacc	tgtgtgaggt	ctatggcggg	ggctgccacg
50	2051	gttgcctcat	gtcccgagac	ccctactgcg	gctgggacca	gggccgctgc
	2101	atctccatct	acagctccga	acggtcagtg	ctgcaatcca	ttaatccagc
	2151	cgagccacac	aaggagtgtc	ccaaccccaa	accagacaag	gccccactgc

						g ctgccccatg
						a acgtggagca
5	230	1 gagctgcga	a cctggtcac	c agagcccca	a ctgcatcctg	ttcatcgaga
	235	1 acctcacgg	c gcagcagta	c ggccactac	t tctgcgaggd	ccaggagggc
	240	1 tcctacttc	c gcgaggctc	a gcactggca	g ctgctgcccg	aggacggcat
	245	1 catggccga	g cacctgctg	g gtcatgcct	g tgccctggct	geeteectet
10	250	1 ggctggggg	t gctgcccac	a ctcactctt	g gcttgctggt	ccacgtgaag
						ATAGCGCCGT
	260	1 CGACCATCA	T CATCATCAT	C ATTGAGTTT	A TCCAGCACAG	TGGCGGCCGC
	265	1 TCGAGTCTA	G AGGGCCCGT	TAAACCCGC1	GATCAGCCTC	GACTGTGCCT
15	270	1 TCTAGTTGC	C AGCCATCTG	r TGTTTGCCCC	TCCCCCGTGC	CTTCCTTGAC
	275	1 CCTGGAAGG	T GCCACTCCC	A CTGTCCTTTC	CTAATAAAAT	GAGGAAATTG
	2801	L CATCGCATTO	G TCTGAGTAG	G TGTCATTCTA	TTCTGGGGG	TGGGGTGGGG
	2851	L CAGGACAGC	A AGGGGGAGG	TTGGGAAGAC	AATAGCAGGC	ATGCTGGGGA
20	2901	TGCGGTGGG	TCTATGGCTT	CTGAGGCGGA	AAGAACCAGC	TGGGGCTCTA
					CATTAAGCGC	
					GCCAGCGCCC	
25					CACGTTCGCC	
20					GGTTCCGATT	
					GGTGATGGTT	
					TTTGACGTTG	
30					GAACAACACT	
					TTGGGGATTT	
					TAACGCGAAT	
					CCCAGGCTCC	
35					TCAGCAACCA	
					GCAAAGCATG	
					CGCCCATCCC	
					GGCTGACTAA	
40					TGAGCTATTC	
					GCAAAAAGCT	
					ACAGGATGAG	
					TTCTCCGGCC	
45					AGACAATCGG	
					CGCCCGGTTC	
50					GCAGGACGAG	
					GCGCAGCTGT	
					TTGGGCGAAG	
					CGAGAAAGTA	

	4151	CTGATGCAAT	GCGGCGGCTG	CATACGCTTG	ATCCGGCTAC	CTGCCCATTC
	4201	GACCACCAAG	CGAAACATCG	CATCGAGCGA	GCACGTACTC	GGATGGAAGC
5	4251	CGGTCTTGTC	GATCAGGATG	ATCTGGACGA	AGAGCATCAG	GGGCTCGCGC
-	4301	CAGCCGAACT	GTTCGCCAGG	CTCAAGGCGC	GCATGCCCGA	CGGCGAGGAT
	4351	CTCGTCGTGA	CCCATGGCGA	TGCCTGCTTG	CCGAATATCA	TGGTGGAAAA
	4401	TGGCCGCTTT	TCTGGATTCA	TCGACTGTGG	CCGGCTGGGT	GTGGCGGACC
10	4451	GCTATCAGGA	CATAGCGTTG	GCTACCCGTG	ATATTGCTGA	AGAGCTTGGC
	4501	GGCGAATGGG	CTGACCGCTT	CCTCGTGCTT	TACGGTATCG	CCGCTCCCGA
	4551	TTCGCAGCGC	ATCGCCTTCT	ATCGCCTTCT	TGACGAGTTC	TTCTGAGCGG
	4601	GACTCTGGGG	TTCGAAATGA	CCGACCAAGC	GACGCCCAAC	CTGCCATCAC
15	4651	GAGATTTCGA	TTCCACCGCC	GCCTTCTATG	AAAGGTTGGG	CTTCGGAATC
	4701	GTTTTCCGGG	ACGCCGGCTG	GATGATCCTC	CAGCGCGGG	ATCTCATGCT
	4751	GGAGTTCTTC	GCCCACCCCA	ACTTGTTTAT	TGCAGCTTAT	AATGGTTACA
	4801	AATAAAGCAA	TAGCATCACA	AATTTCACAA	ATAAAGCATT	TTTTTCACTG
20	4851	CATTCTAGTT	GTGGTTTGTC	CAAACTCATC	AATGTATCTT	ATCATGTCTG
	4901	TATACCGTCG	ACCTCTAGCT	AGAGCTTGGC	GTAATCATGG	TCATAGCTGT
	4951	TTCCTGTGTG	AAATTGTTAT	CCGCTCACAA	TTCCACACAA	CATACGAGCC
95	5001	GGAAGCATAA	AGTGTAAAGC	CTGGGGTGCC	TAATGAGTGA	GCTAACTCAC
25	5051	ATTAATTGCG	TTGCGCTCAC	TGCCCGCTTT	CCAGTCGGGA	AACCTGTCGT
	5101	GCCAGCTGCA	TTAATGAATC	GGCCAACGCG	CGGGGAGAGG	CGGTTTGCGT
	5151	ATTGGGCGCT	CTTCCGCTTC	CTCGCTCACT	GACTCGCTGC	GCTCGGTCGT
30	5201	TCGGCTGCGG	CGAGCGGTAT	CAGCTCACTC	AAAGGCGGTA	ATACGGTTAT
	5251	CCACAGAATC	AGGGGATAAC	GCAGGAAAGA	ACATGTGAGC	AAAAGGCCAG
	5301	CAAAAGGCCA	GGAACCGTAA	AAAGGCCGCG	TTGCTGGCGT	TTTTCCATAG
	5351	GCTCCGCCCC	CCTGACGAGC	ATCACAAAAA	TCGACGCTCA	AGTCAGAGGT
35	5401	GGCGAAACCC	GACAGGACTA	TAAAGATACC	AGGCGTTTCC	CCCTGGAAGC
	5451	TCCCTCGTGC	GCTCTCCTGT	TCCGACCCTG	CCGCTTACCG	GATACCTGTC
	5501	CGCCTTTCTC	CCTTCGGGAA	GCGTGGCGCT	TTCTCAATGC	TCACGCTGTA
	5551	GGTATCTCAG	TTCGGTGTAG	GTCGTTCGCT	CCAAGCTGGG	CTGTGTGCAC
40	5601	GAACCCCCCG	TTCAGCCCGA	CCGCTGCGCC	TTATCCGGTA	ACTATCGTCT
	5651	TGAGTCCAAC	CCGGTAAGAC	ACGACTTATC	GCCACTGGCA	GCAGCCACTG
	5701	GTAACAGGAT	TAGCAGAGCG	AGGTATGTAG	GCGGTGCTAC	AGAGTTCTTG
	5751	AAGTGGTGGC	CTAACTACGG	CTACACTAGA	AGGACAGTAT	TTGGTATCTG
4 5	5801	CGCTCTGCTG	AAGCCAGTTA	CCTTCGGAAA	AAGAGTTGGT	AGCTCTTGAT
	5851	CCGGCAAACA	AACCACCGCT	GGTAGCGGTG	GTTTTTTGT	TTGCAAGCAG
	5901	CAGATTACGC	GCAGAAAAA	AGGATCTCAA	GAAGATCCTT	TGATCTTTTC
50	5951	TACGGGGTCT	GACGCTCAGT	GGAACGAAAA	CTCACGTTAA	GGGATTTTGG
50	6001	TCATGAGATT	ATCAAAAAGG	ATCTTCACCT	AGATCCTTTT	AAATTAAAA
	6051	TGAAGTTTTA	AATCAATCTA	AAGTATATAT	GAGTAAACTT	GGTCTGACAG

6101 TTACCAATGC TTAATCAGTG AGGCACCTAT CTCAGCGATC TGTCTATTTC 6151 GTTCATCCAT AGTTGCCTGA CTCCCCGTCG TGTAGATAAC TACGATACGG 6201 GAGGGCTTAC CATCTGGCCC CAGTGCTGCA ATGATACCGC GAGACCCACG 6251 CTCACCGGCT CCAGATTTAT CAGCAATAAA CCAGCCAGCC GGAAGGGCCG 6301 AGCGCAGAAG TGGTCCTGCA ACTTTATCCG CCTCCATCCA GTCTATTAAT 6351 TGTTGCCGGG AAGCTAGAGT AAGTAGTTCG CCAGTTAATA GTTTGCGCAA 6401 CGTTGTTGCC ATTGCTACAG GCATCGTGGT GTCACGCTCG TCGTTTGGTA 10 6451 TGGCTTCATT CAGCTCCGGT TCCCAACGAT CAAGGCGAGT TACATGATCC 6501 CCCATGTTGT GCAAAAAAGC GGTTAGCTCC TTCGGTCCTC CGATCGTTGT 6551 CAGAAGTAAG TTGGCCGCAG TGTTATCACT CATGGTTATG GCAGCACTGC 6601 ATAATTCTCT TACTGTCATG CCATCCGTAA GATGCTTTTC TGTGACTGGT 15 6651 GAGTACTCAA CCAAGTCATT CTGAGAATAG TGTATGCGGC GACCGAGTTG 6701 CTCTTGCCCG GCGTCAATAC GGGATAATAC CGCGCCACAT AGCAGAACTT 6751 TAAAAGTGCT CATCATTGGA AAACGTTCTT CGGGGCGAAA ACTCTCAAGG 20 6801 ATCTTACCGC TGTTGAGATC CAGTTCGATG TAACCCACTC GTGCACCCAA 6851 CTGATCTTCA GCATCTTTTA CTTTCACCAG CGTTTCTGGG TGAGCAAAAA 6901 CAGGAAGGCA AAATGCCGCA AAAAAGGGAA TAAGGGCGAC ACGGAAATGT 6951 TGAATACTCA TACTCTTCCT TTTTCAATAT TATTGAAGCA TTTATCAGGG 25 7001 TTATTGTCTC ATGAGCGGAT ACATATTTGA ATGTATTTAG AAAAATAAAC 7051 AAATAGGGGT TCCGCGCACA TTTCCCCGAA AAGTGCCACC TGACGTCGAC 7101 GGATCGGG

30

35

40

45

50

5

Tabelle 12: Sequenz des rekombinanten Plasmids pQE30-H-SemaL-BH (SEQ ID NO.: 39)

1 CTCGAGAAAT CATAAAAAAT TTATTTGCTT TGTGAGCGGA TAACAATTAT 51 AATAGATTCA ATTGTGAGCG GATAACAATT TCACACAGAA TTCATTAAAG 101 AGGAGAAATT AACTATGAGA GGATCGCATC ACCATCACCA TCACGGAtcc 151 ctqqttctqt ttqaaqqqqa cqaqqtqtat tccaccatcc ggaagcagga atacaatggg aagatccctc ggttccgccg catccggggc gagagtgagc 201 tgtacaccag tgatactgtc atgcagaacc cacagttcat caaagccacc atogtgcacc aagaccaggo ttacgatgac aagatotact acttottccg 301 351 agaggacaat cctgacaaga atcctgaggc tcctctcaat gtgtcccgtg 401 tggcccagtt gtgcaggggg gaccagggtg gggaaagttc actgtcagtc tccaagtgga acacttttct gaaagccatg ctggtatgca gtgatgctgc 451 caccaacaag aacttcaaca ggctgcaaga cgtcttcctg ctccctgacc ccagcggcca gtggagggac accagggtct atggtgtttt ctccaacccc tggaactact cagccgtctg tgtgtattcc ctcggtgaca ttgacaaggt 601 cttccgtacc tcctcactca agggctacca ctcaagcctt cccaacccgc

	701	ggcctggcaa	gtgcctccca	gáccagcagc	cgatacccac	agaAAGCTTA
	751	ATTAGCTGAG	CTTGGACTCC	TGTTGATAGA	TCCAGTAATG	ACCTCAGAAC
5	801	TCCATCTGGA	TTTGTTCAGA	ACGCTCGGTT	GCCGCCGGGC	GTTTTTTATT
	851	GGTGAGAATC	CAAGCTAGCT	TGGCGAGATT	TTCAGGAGCT	aaggaagcta
	901	AAATGGAGAA	AAAAATCACT	GGATATACCA	CCGTTGATAT	ATCCCAATGG
	951	CATCGTAAAG	AACATTTTGA	GGCATTTCAG	TCAGTTGCTC	AATGTACCTA
10	1001	TAACCAGACC	GTTCAGCTGG	ATATTACGGC	CTTTTTAAAG	ACCGTAAAGA
	1051	AAAATAAGCA	CAAGTTTTAT	CCGGCCTTTA	TTCACATTCT	TGCCCGCCTG
	1101	ATGAATGCTC	ATCCGGAATT	TCGTATGGCA	ATGAAAGACG	GTGAGCTGGT
	1151	GATATGGGAT	AGTGTTCACC	CTTGTTACAC	CGTTTTCCAT	GAGCAAACTG
15	1201	AAACGTTT T C	ATCGCTCTGG	AGTGAATACC	ACGACGATTT	CCGGCAGTTT
	1251	CTACACATAT	ATTCGCAAGA	TGTGGCGTGT	TACGGTGAAA	ACCTGGCCTA
	1301	TTTCCCTAAA	GGGTTTATTG	AGAATATGTT	TTTCGTCTCA	GCCAATCCCT
	1351	GGGTGAGTTT	CACCAGTTTT	GATTTAAACG	TGGCCAATAT	GGACAACTTC
20	1401	TTCGCCCCCG	TTTTCACCAT	GGGCAAATAT	TATACGCAAG	GCGACAAGGT
	1451	GCTGATGCCG	CTGGCGATTC	AGGTTCATCA	TGCCGTCTGT	GATGGCTTCC
	1501	ATGTCGGCAG	AATGCTTAAT	GAATTACAAC	AGTACTGCGA	TGAGTGGCAG
25	1551	GGCGGGGCGT	AATTTTTTA	AGGCAGTTAT	TGGTGCCCTT	AAACGCCTGG
25	1601	GGTAATGACT	CTCTAGCTTG	AGGCATCAAA	TAAAACGAAA	GGCTCAGTCG
	1651	AAAGACTGGG	CCTTTCGTTT	TATCTGTTGT	TTGTCGGTGA	ACGCTCTCCT
	1701	GAGTAGGACA	AATCCGCCGC	TCTAGAGCTG	CCTCGCGCGT	TTCGGTGATG
30	1751	ACGGTGAAAA	CCTCTGACAC	ATGCAGCTCC	CGGAGACGGT	CACAGCTTGT
	1801	CTGTAAGCGG	ATGCCGGGAG	CAGACAAGCC	CGTCAGGGCG	CGTCAGCGGG
	1851	TGTTGGCGGG	TGTCGGGGCG	CAGCCATGAC	CCAGTCACGT	AGCGATAGCG
	1901	GAGTGTATAC	TGGCTTAACT	ATGCGGCATC	AGAGCAGATT	GTACTGAGAG
35	1951	TGCACCATAT	GCGGTGTGAA	ATACCGCACA	GATGCGTAAG	GAGAAAATAC
	2001	CGCATCAGGC	GCTCTTCCGC	TTCCTCGCTC	ACTGACTCGC	TGCGCTCGGT
	2051	CTGTCGGCTG	CGGCGAGCGG	TATCAGCTCA	CTCAAAGGCG	GTAATACGGT
	2101	TATCCACAGA	ATCAGGGGAT	AACGCAGGAA	AGAACATGTG	AGCAAAAGGC
40	2151	CAGCAAAAGG	CCAGGAACCG	TAAAAAGGCC	GCGTTGCTGG	CGTTTTTCCA
	2201	TAGGCTCCGC	CCCCTGACG	AGCATCACAA	AAATCGACGC	TCAAGTCAGA
	2251	GGTGGCGAAA	CCCGACAGGA	CTATAAAGAT	ACCAGGCGTT	TCCCCCTGGA
	2301	AGCTCCCTCG	TGCGCTCTCC	TGTTCCGACC	CTGCCGCTTA	CCGGATACCT
45	2351	GTCCGCCTTT	CTCCCTTCGG	GAAGCGTGGC	GCTTTCTCAA	TGCTCACGCT
	2401	GTAGGTATCT	CAGTTCGGTG	TAGGTCGTTC	GCTCCAAGCT	GGGCTGTGTG
	. 2451	CACGAACCCC	CCGTTCAGCC	CGACCGCTGC	GCCTTATCCG	GTAACTATCG
EC.	2501	TCTTGAGTCC	AACCCGGTAA	GACACGACTT	ATCGCCACTG	GCAGCAGCCA
50	2551	CTGGTAACAG	GATTAGCAGA	GCGAGGTATG	TAGGCGGTGC	TACAGAGTTC
	2601	TTGAAGTGGT	GGCCTAACTA	CGGCTACACT	AGAAGGACAG	TATTTGGTAT

	2651 CTGCGCTCTG CTGAAGCCAG TTACCTTCGG AAAAAGAGTT GG	TAGCTCTT
	2701 GATCCGGCAA ACAAACCACC GCTGGTAGCG GTGGTTTTTT TG	TTTGCAAG
5	2751 CAGCAGATTA CGCGCAGAAA AAAAGGATCT CAAGAAGATC CT	TTGATCTT
	2801 TTCTACGGGG TCTGACGCTC AGTGGAACGA AAACTCACGT TA	AGGGATTT
	2851 TGGTCATGAG ATTATCAAAA AGGATCTTCA CCTAGATCCT TT	TAAATTAA
	2901 AAATGAAGTT TTAAATCAAT CTAAAGTATA TATGAGTAAA CT	rggycyga
10	2951 CAGTTACCAA TGCTTAATCA GTGAGGCACC TATCTCAGCG ATC	
	3001 TTCGTTCATC CATAGCTGCC TGACTCCCCG TCGTGTAGAT AAC	CTACGATA
	3051 CGGGAGGGCT TACCATCTGG CCCCAGTGCT GCAATGATAC CGC	GAGACCC
	3101 ACGCTCACCG GCTCCAGATT TATCAGCAAT AAACCAGCCA GCC	GGAAGGG
15	3151 CCGAGCGCAG AAGTGGTCCT GCAACTTTAT CCGCCTCCAT CCA	GTCTATT
	3201 AATTGTTGCC GGGAAGCTAG AGTAAGTAGT TCGCCAGTTA ATA	GTTTGCG
	3251 CAACGTTGTT GCCATTGCTA CAGGCATCGT GGTGTCACGC TCG	TCGTTTG
	3301 GTATGGCTTC ATTCAGCTCC GGTTCCCAAC GATCAAGGCG AGT	TACATGA
20	3351 TCCCCCATGT TGTGCAAAAA AGCGGTTAGC TCCTTCGGTC CTC	CGATCGT
	3401 TGTCAGAAGT AAGTTGGCCG CAGTGTTATC ACTCATGGTT ATG	GCAGCAC
	3451 TGCATAATTC TCTTACTGTC ATGCCATCCG TAAGATGCTT TTC	TGTGACT
25	3501 GGTGAGTACT CAACCAAGTC ATTCTGAGAA TAGTGTATGC GGC	GACCGAG
20	3551 TTGCTCTTGC CCGGCGTCAA TACGGGATAA TACCGCGCCA CAT	AGCAGAA
	3601 CTTTAAAAGT GCTCATCATT GGAAAACGTT CTTCGGGGCG AAA	ACTCTCA
	3651 AGGATCTTAC CGCTGTTGAG ATCCAGTTCG ATGTAACCCA CTC	GTGCACC
30	3701 CAACTGATCT TCAGCATCTT TTACTTTCAC CAGCGTTTCT GGG	rgagcaa -
	3751 AAACAGGAAG GCAAAATGCC GCAAAAAAGG GAATAAGGGC GAC	ACGGAAA
	3801 TGTTGAATAC TCATACTCTT CCTTTTTCAA TATTATTGAA GCAT	TTATCA
	3851 GGGTTATTGT CTCATGAGCG GATACATATT TGAATGTATT TAGA	VAAAATA
35	3901 AACAAATAGG GGTTCCGCGC ACATTTCCCC GAAAAGTGCC ACCI	'GACGTC
	3951 TAAGAAACCA TTATTATCAT GACATTAACC TATAAAAATA GGCG	TATCAC
	4001 GAGGCCCTTT CGTCTTCAC	
40	·	
	Tabelle 13: Sequenz des rekombinanten Plasmids pQE31-H-SemaL-SH (SEQ ID NO.: 4	n) .
		<i>'</i> I
45	1 CTCGAGAAAT CATAAAAAAT TTATTTGCTT TGTGAGCGGA TAACA	
45	51 AATAGATTCA ATTGTGAGCG GATAACAATT TCACACAGAA TTCA	ATTAT
	101 AGGAGAAATT AACTATGAGA GGATCGCATC ACCATCACCA TCAC	TAAAG
	151 CCGCATGCga gctcccagtg ggaggtgagc caggtgccc tggac	ACGGAT
50	201 tgaggtctat ggcgggggct gccacggttg cctcatgtcc cgaga	ctgtg
·=	251 actgcggctg ggaccagggc cgctgcatct ccatctagag at an	icccct

55

251 actgcggctg ggaccagggc cgctgcatct ccatctacag ctccgaacgg 301 tcagtgctgc aatccattaa tccagccgag ccacacaagg agtgtcccaa

	351	ccccaaacca	gacaaggccc	cactgcagaa	ggtttccctg	gccccaaact
	401	ctcgctacta	cctgagctgc	cccatggaat	cccgccacgc	cacctactca
5	451	tggcgccaca	aggagaacgt	ggagcagagc	tgcgaacctg	gtcaccagag
	501	ccccaactgc	atcctgttca	tcgagaacct	cacggcgcag	cagtacggcc
	551	actacttctg	cgaggcccag	gagggctcct	acttccgcga	ggctcagcac
	601	tggcagctgc	tgcccgagga	cggcatcatg	gccgagcacc	tgctgggtca
10	651	tgcctgtgcc	ctggctgcct	ccctctggct	gggggtgctg	cccacactca
	701	ctcttggctt	gctggtccac	gtgaagcttA	ATTAGCTGAG	CTTGGACTCC
	751	TGTTGATAGA	TCCAGTAATG	ACCTCAGAAC	TCCATCTGGA	TTTGTTCAGA
	801	ACGCTCGGTT	GCCGCCGGGC	GTTTTTTATT	GGTGAGAATC	CAAGCTAGCT
15	851	TGGCGAGATT	TTCAGGAGCT	AAGGAAGCTA	AAATGGAGAA	AAAAATCACT
	901	GGATATACCA	CCGTTGATAT	ATCCCAATGG	CATCGTAAAG	AACATTTTGA
	951	GGCATTTCAG	TCAGTTGCTC	AATGTACCTA	TAACCAGACC	GTTCAGCTGG
	1001	ATATTACGGC	CTTTTTAAAG	ACCGTAAAGA	AAAATAAGCA	CAAGTTTTAT
20 •	1051	CCGGCCTTTA	TTCACATTCT	TGCCCGCCTG	ATGAATGCTC	ATCCGGAATT
	1101	TCGTATGGCA	ATGAAAGACG	GTGAGCTGGT	GATATGGGAT	AGTGTTCACC
	1151	CTTGTTACAC	CGTTTTCCAT	GAGCAAACTG	AAACGTTTTC	ATCGCTCTGG
	1201	AGTGAATACC	ACGACGATTT	CCGGCAGTTT	CTACACATAT	ATTCGCAAGA
25	1251	TGTGGCGTGT	TACGGTGAAA	ACCTGGCCTA	TTTCCCTAAA	GGGTTTATTG
	1301			GCCAATCCCT		
	1351	GATTTAAACG	TGGCCAATAT	GGACAACTTC	TTCGCCCCCG	TTTTCACCAT
	1401	GGGCAAATAT	TATACGCAAG	GCGACAAGGT	GCTGATGCCG	CTGGCGATTC
30	1451	AGGTTCATCA	TGCCGTCTGT	GATGGCTTCC	ATGTCGGCAG	AATGCTTAAT
	1501	GAATTACAAC	AGTACTGCGA	TGAGTGGCAG	GGCGGGGCGT	AATTTTTTTA
	1551			AAACGCCTGG		
35	1601	AGGCATCAAA	TAAAACGAAA	GGCTCAGTCG	AAAGACTGGG	CCTTTCGTTT
	1651	TATCTGTTGT	TTGTCGGTGA	ACGCTCTCCT	GAGTAGGACA	AATCCGCCGC
	1701			TTCGGTGATG		
	1751	ATGCAGCTCC	CGGAGACGGT	CACAGCTTGT	CTGTAAGCGG	ATGCCGGGAG
40	1801		*	CGTCAGCGGG		
	1851			AGCGATAGCG		
	1901	ATGCGGCATC	AGAGCAGATT	GTACTGAGAG	TGCACCATAT	GCGGTGTGAA
	1951	ATACCGCACA	GATGCGTAAG	GAGAAAATAC	CGCATCAGGC	GCTCTTCCGC
45	2001	TTCCTCGCTC	ACTGACTCGC	TGCGCTCGGT	CTGTCGGCTG	CGGCGAGCGG
	2051	TATCAGCTCA	CTCAAAGGCG	GTAATACGGT	TATCCACAGA	ATCAGGGGAT
	2101	AACGCAGGAA	AGAACATGTG	AGCAAAAGGC	CAGCAAAAGG	CCAGGAACCG
	2151	TAAAAAGGCC	GCGTTGCTGG	CGTTTTTCCA	TAGGCTCCGC	CCCCTGACG
50	2201					CCCGACAGGA
	2251	CTATAAAGAT	ACCAGGCGTT	TCCCCCTGGA	AGCTCCCTCG	TGCGCTCTCC

	2301	TGTTCCGACC	CTGCCGCTTA	CCGGATACCT	GTCCGCCTTT	CTCCCTTCGG
	2351	GAAGCGTGGC	GCTTTCTCA	TGCTCACGCT	GTAGGTATCT	CAGTTCGGTG
5	2401	TAGGTCGTTC	GCTCCAAGCT	GGGCTGTGTG	CACGAACCCC	CCGTTCAGCC
	2451	CGACCGCTGC	GCCTTATCC	GTAACTATCG	TCTTGAGTCC	AACCCGGTAA
	2501	GACACGACTI	ATCGCCACTG	GCAGCAGCCA	CTGGTAACAG	GATTAGCAGA
	2551	GCGAGGTATG	TAGGCGGTGC	TACAGAGTTC	TTGAAGTGGT	GGCCTAACTA
10	2601	CGGCTACACT	AGAAGGACAG	TATTTGGTAT	CTGCGCTCTG	CTGAAGCCAG
	2651	TTACCTTCGG	AAAAAGAGTT	GGTAGCTCTT	GATCCGGCAA	ACAAACCACC
	2701	GCTGGTAGCG	GTGGTTTTTT	TGTTTGCAAG	CAGCAGATTA	CGCGCAGAAA
	2751	AAAAGGATCT	CAAGAAGATC	CTTTGATCTT	TTCTACGGGG	TCTGACGCTC
15	2801	AGTGGAACGA	AAACTCACGT	TAAGGGATTT	TGGTCATGAG	ATTATCAAAA
	2851	AGGATCTTCA	CCTAGATCCT	TTTAAATTAA	AAATGAAGTT	TTAAATCAAT
	2901	CTAAAGTATA	TATGAGTAAA	CTTGGTCTGA	CAGTTACCAA	TGCTTAATCA
20	2951	GTGAGGCACC	TATCTCAGCG	ATCTGTCTAT	TTCGTTCATC	CATAGCTGCC
20	3001	TGACTCCCCG	TCGTGTAGAT	AACTACGATA	CGGGAGGGCT	TACCATCTGG
	3051	CCCCAGTGCT	GCAATGATAC	CGCGAGACCC	ACGCTCACCG	GCTCCAGATT
	3101	TATCAGCAAT	AAACCAGCCA	GCCGGAAGGG	CCGAGCGCAG	AAGTGGTCCT
25	3151	GCAACTTTAT	CCGCCTCCAT	CCAGTCTATT	AATTGTTGCC	GGGAAGCTAG
	3201	AGTAAGTAGT	TCGCCAGTTA	ATAGTTTGCG	CAACGTTGTT	GCCATTGCTA
	3251	CAGGCATCGT	GGTGTCACGC	TCGTCGTTTG	GTATGGCTTC	ATTCAGCTCC
	3301	GGTTCCCAAC	GATCAAGGCG	AGTTACATGA	TCCCCCATGT	TGTGCAAAAA
30	3351	AGCGGTTAGC	TCCTTCGGTC	CTCCGATCGT	TGTCAGAAGT	AAGTTGGCCG
	3401	CAGTGTTATC	ACTCATGGTT	ATGGCAGCAC	TGCATAATTC	TCTTACTGTC
	3451	ATGCCATCCG	TAAGATGCTT	TTCTGTGACT	GGTGAGTACT	CAACCAAGTC
	3501	ATTCTGAGAA	TAGTGTATGC	GGCGACCGAG	TTGCTCTTGC	CCGGCGTCAA
35	3551	TACGGGATAA	TACCGCGCCA	CATAGCAGAA	CTTTAAAAGT	GCTCATCATT
	3601	GGAAAACGTT	CTTCGGGGCG	AAAACTCTCA	AGGATCTTAC	CGCTGTTGAG
	3651	ATCCAGTTCG	ATGTAACCCA	CTCGTGCACC	CAACTGATCT	TCAGCATCTT
40	3701	TTACTTTCAC	CAGCGTTTCT	GGGTGAGCAA	AAACAGGAAG	GCAAAATGCC
	3751	GCAAAAAAGG	GAATAAGGGC	GACACGGAAA	TGTTGAATAC	TCATACTCTT
	3801	CCTTTTTCAA	TATTATTGAA	GCATTTATCA	GGGTTATTGT	CTCATGAGCG
	3851	GATACATATT	TGAATGTATT	TAGAAAAATA	AACAAATAGG	GGTTCCGCGC
45	3901	ACATTTCCCC	GAAAAGTGCC	ACCTGACGTC	TAAGAAACCA	TTATTATCAT
	3951	GACATTAACC	ATAAAAATA	GGCGTATCAC	GAGGCCCTTT	CGTCTTCAC

Tablelle 14: (Partielle) Nukleotidsequenz des humanen Semaphorin L Gens. (8888 Nukleotide) (SEQ ID NO.: 41):

55

5

10

15

20

25

30

35

40

45

50

55

GGCAAGGTCTACCTCTTTGACTTCCCCGAGGGCAAGAACGCATCTGTGCGCACGGTGAGC CTCTCTCTCCCCCAACACCCCCCCTACCCTCTTATCTCCCCTCTGGCCCTGCCAAGGGT CCTCAGGGAATCCGAGGGAGCTGGCTTCTCTTCCTAAACTGCCCCCACCTCCGTATCCTA TAAATGGCTCCTGGGGGAGGCTCCCTAAAGGTAGTCCAGATTGGAGTGGGGAGCTGGGGC GGTGTGGAGAAAACAGGAGCTAATGGGCCTGGCCAGCTGGGCAGCGCTGCTGCGGAAAG CCCAGGCTGGAAGCTGGGCCCCAGAGCCCATGCCTGGTCTTCTGAACCCTCTGGGCCTCA TTGCTCATCTGTCAGATGAGAATAATGGTTGCTTCCTTTGGGGCTTATCCTGAGGCTGTG TGGAAAGCATTTCAGGGGTACCTCACCCCTGGCAGATTGAACTAATGCTTCTCCCCTTCC CCAGGTGAATATCGGCTCCACAAAGGGGTCCTGTCTGGATAAGCGGGTGAGCGGGGGAGG GATCTGGAGGGGTCTGAGCCACTTGGTAAAGGGAGAGAGCCCTGAGGGTCTAAGGAAG GAAGCATGCCCTGCCCCACGAGTCCCAGACTGATGGGGAGACGTGGTCCTCTGTGCTTA GGGGATGGCGTCACCTCACACACTCTGGGCTGTCCCGGGAGGCTGTCACCTATGCTAAG CCCTTCTGACACCTTCTTCCCTGATCCTGGGGGTCCTAGTGCTAGGCTTGCCAGGGCCTT CCAGCAACCAATTCTCTCTCCCTTCTCTCTCTCCCGGGCAGGACTGCGAGAACTACAT CACTCTCCTGGAGAGGGGGGTGAGGGGGCTGCTGGCCTGTGGCACCAACGCCCGGCACCC CAGCTGCTGGAACCTGGTGAGAAGGCTGCTCCCCATGTGCCTGATCAGCTCACCTTCTAC TGCGTGGGCTTCTGCCCCTCATGGTGGGAAGGAGATGCCGAGACTCCAATGCTGGCCTTG CCCTGGGAGGATGGGGCTCCTGGCCGAGAAACTGGCCGTCATGGGAGGCAGTGGCTGTGG GATTATGTGGCCATCCAACCCTCTGGATCTCCCACAGGTGAATGGCACTGTGGTGCCACT TGGCGAGATGAGAGGCTACGCCCCTTCAGCCCGGACGAGAACTCCCTGGTTCTGTTTGA AGGTTGGGGCATGCTTCGGAACTGGGCTGGGAGCAGGATGGTCAGCTCTTTGTCCAGTGT AGGGGACGAGGTGTATTCCACCATCCGGAAGCAGGAATACAATGGGAAGATCCCTCGGTT AGGCTCCGCTGGGCTGAGGGTGGGCAAGGGGGTGTGAGCACTTAAGGTGGCAGATGGGA TCCTGATGTTTCTGGGAGGGCTCCCTGAGGGCCGCTGGGGCCCATGCAGGAAAGCAGGACC GTGGGATGGGCCCAGCCCTCTTCAGGAACACAAACAGAGGGAGCCCCAGACCCAGTGCAG GGTCCCCAGGAGCCAAAGTTTATCCTCTGCTGAGTTCACGTGGAGGCAGCCCCCCAACTC CCTCCTCATCAGGGCTCTGCCAATTGAGCAGAAGTGACATAGGGGCCCCCAGGGACCTTC CCCCACTCCCAGGCATGAAGTCATTGCTCCTGGGCCGATGACATCTTTGTAGGAAGAGG GCAAAACAGGTGTGGGGTGGAGGTGCAGGGTCTAGGGCCCCTCGGGGAGTTGGACCTGAT AGAGTGTGCAGGGTTGGAATGGTCTCCCGGGCAAGCTTCCCAGCCTTACGCCCATTCGCT TCTGTGCCCTGGCAGACCCACAGTTCATCAAAGCCACCATCGTGCACCAAGACCAGGCTT ACGATGACAAGATCTACTACTTCTCCGAGAGGACAATCCTGACAAGAATCCTGAGGCTC CTCTCAATGTGTCCCGTGTGGCCCAGTTGTGCAGGGTGAACACGGGCGTGAGGGCTGCTG

5

10

15

20

25

30

35

40

45

50

55

GCTACGTGTCTGTGCATGAATAGGCCTGAGTGAGGGTGAGTTCTGTGTGTCCGTGTGCAT **GTAGAAGTTGTGTGGATGTATGAGTGGGTCTGTGTCAGGGACTGTGGGAGCAGCTGTGTG** TGCATGGAGCATCATGTGTGTGTGTGGGTAAAGGTGGCTGAGCTCCTGTGCACGTATG GTGTGAATGTGCCACGTATGTGGGTGCGTGAGTCAGTAAATGTGTGTCTGAGTCC GTCTGCTCTGTGGGGACCTGGCACTCTCACCTGCCCTGACCCTGGGCACTGCTGGCCCTG GGCTCTGGATCAGCCAGGCCTGCTTGCAGGAGTCTCATCTGGAGACCTGCCCTGAGTCCT GGGGCACCCCGGCAGGTCCTGGCCCTCGCAGCCTGCCTTCCTCTCTGGGCCCAGGTG TTGATATTGCTGGCAGTGGTTTCCTGGGGTGTGTGGGGAAGCCCGGGCAGGTGCTGAGGG GCCTCTTCTCCCCTCTACCCTTCCAGGGGGACCAGGGTGGGGAAAGTTCACTGTCAGTCT CCAAGTGGAACACTTTTCTGAAAGCCATGCTGGTATGCAGTGATGCTGCCACCAACAAGA ACTTCAACAGGCTGCAAGACGTCTTCCTGCTCCCTGACCCCAGCGGCCAGTGGAGGGACA CCAGGGTCTATGGTGTTTTCTCCAACCCCTGGTGAGTGGCCCTTGTCCTGGGGCCGGGC TGGCATTGGTTCAGTGTCCAGTAGGGACAGGAGGCCTTGGGCCCTGCTGAGGGCCTCCCT GGTGTGGCAGGACCAGGGCTGCAGGCTCAAGAGGCTGGGCTGTTGCTGGGTGTGGGGTG TGTGCATGCCCTATATGCACACTCATGACTGCACTTGTGCCTGTGTGTCCCACCACCTGC TTGTGCCGAGAGTGGACACTGGGCCCAGGAGGAAGCTGCTGAAGCATCTCTCGGGGAGCT GGGTGCTATTACACCTGCTCAGGCACTGCCTGAGCCCGATAATTCACACTTCTTAATCAC TAGAGTGGAGGAAGCCAAGACCCTGCTCTGTGGCTCCTGGGTGAGTGGGTCCCCCAGGCT GGGAAGGGGTTGGGGTCTGGCCTCCTGGGGCATCAGCACCCCACAGCCTGTGCCCAGGG AGGGCTAGAGAACTGCTCAGCCTATGATGGGGTTCCTCCTGCCTTGGGGTTGGGTAGAGC **AGATGGCCTCTAGACTCAGTGATTCTGTAACAGGATACAAGTTTGTGGTTTTAAATTGCA** TGGTGGTTGGCAACTCAGTGCCAGGCACAAGGCTGGCCTGGGTGAGTGGAGGTGGATGGG TGGGTTCTGGGCCCCCATTGAGCTGGTCTCCATGTCACTGCAGGAACTACTCAGCCGTC CACTCAAGCCTTCCCAACCCGCGGCCTGGCAAGGTGAGCGTGACACCAGCCGTGGCCCAG GCCCAGCCCTCCTTCTGCCTCACCTCCCACCACCCCACTGACCTGGGCCTGCTCTCCTTG CCCAGTGCCTCCCAGACCAGCAGCCGATACCCACAGAGACCTTCCAGGTGGCTGACCGTC ACCCAGAGGTGGCGCAGAGGGTGGAGCCCATGGGGCCTCTGAAGACGCCATTGTTCCACT TTCATGTGCTTTACCTAACTACAGGTGAGAGGCTACCCCGGGACCCTCAGTTTGCTTTGT **AAAAACGGGCATGAAAGGTGTAAGGAATAATGTAGTTAACATCTGGTTGGATCTTTACAT** GCCAGGCAGGGAGAGCTTCCTGGAGGAGGTAGGGGCAAGAGGGGAAAGGGGGATGGGAGAA AAGCAAGCACTGGGATTTGGAGGCGGAAATCTGGAGAGTCTGAGCAAAGCCAGGTGCACC TTTGGTCCAGATGTCTGACTCAGGGAAGAAGATGGTAGGAAGAGACGTGGCAAATGAGGA

5

10

15

20

25

30

35

45

50

55

GGAGGGGCCTGAACCACAGGGATACTGGCCTCTGCCAGGCAGAATGAGGGAGTCAGGCCC TGCGCCTGTCTTTGGGATTGTGCAGGTGAGAAGAACATTTGAGGAGTTGATGGGGCACA AATTAGGTATGGGGAAGGAGTTCCAGGGGGCAGAACCTTTGCCATCTCACAGAGGACAGG GGCAGCTTCTCTTCTTCCCTGGAGTAGGCCCTGCTGGGGGAAGCTGGGTGGAATGCCGTG GGAGATGCTCCTGCTTTCTGGAAAGCCACAGGACACGGAGGAGCCAGTCCTGAGTTGGGT TTGTCGCAGCTTCCCATGCCAGCTGCCTTCCTTGAGACTGGAAAGGGCCTCTAGCACCCC TGGGGCCATTCAATTCAGGCCCAGGCGCCCCAACCTCAGTTGTTCACATTCCCCATGTGAT CTCCTGTTGCTGCTTCACCTTGGGACTGTCTCGGCTTTGGTGACCTTGTAGGAAACTGGA ACCCCAGCACCATTGTTTGGCTCCTGGAAGCCTTGGGGAGAGGAATTTCCCACAGGGCAG GGCCTGGGTCCTGATTCCCTGCCTCTTTACTCCCTATTCATCCCGGCTACACCCCTTGGGC CCCCATCCTTGCTTGGCTCCAGTACTGGCTGGCACAGCTGTTGTGGTCATCCAGGGATGG CAGGGCACTGGGGAACAGAAGAGAGAGGTCACACAGTGCGGAACTGGGAGCAGGAGCTAG GACAAGGAAGGCTGGACTTGGGCCATGGATTCCCTTCCTGCAGACTTGGGAAGTGAGCAC ACTTGAGTGATTAGAGAAGGTGTCTTCGTTCTAAGGGCAGTGGAGGAGGCACCATTTTGG AGCCTGCATCATTCGTATTTGGGCTAGATTGAAAAATAGAGCTTTCTAAGTCCTCTGCAG AGAATGGGAGGCTCTCACAACTGGGAGAAGTATTGGCTCTTTTCCTGAGAATTTTGCCAA GGGTATGCTGTTACTGGGGCTGGTTTGGAAGGAGTATAGGGCATTATGTCTGTGAAGGCA GTGGCTGGGGTGGGGCCTTATCAGGCCCAAGGAGCATCTGGCCACATCTCAGAGTCCACA AGAAACTGGGAGAGCAGGTGAGGTAGGATTGGGAGGACCAGGGGTCAGGGTCCCCATTGG TTGGGAACTCTTGATTTAGAATCCAAGATCCTTTTTAGATCTAGGATTTTATAAAATTAA GATATCCCCTAAGATCAAATGCAACGTGGAGTCCTGAATTGGATCCTAGAACAGAAGAAG GACATTTGTGGAAAAACTAGTGAAATCCAAATAAAGTCTGTAGTTTTGTTAATAGTAATG CACCAATGTCAGTTGCCTAGTTGTGACAAATATACCGTGGTTATGTAAGATGGTAACATT AGGGGGAACTGGAGAAGGGTAGATTGGAGCTCTCTGTACTATCTTTGCAACTTTTCTGGG AATCTAAAATTACTCCAAAATAAAAAAAAATGTATTTAAAGTAAATATATTCCCTAAGA GTCCAGGAGGCAGGGGAGTTGTAGAAGCAGCTGAGTGGTTGGGTTCTGACAGATTTGGTT CCAACTCGGTCTCTGCTGCTCACCAGCTGTGTGACCTTGAGCAAGTGGCTTAGCCTTTCT GAGCCTGATTTCCTTATCTGTGGAGTGGGGAAGATGACAGCCACCTCGCAGGGCTGTGGA GGGTTAAACGAGGTGATGCATGGACAGCAGCCGCACTGACCTTGCTGGTGTGGGGGCTCCT GCTTCTGTTCTTCCCGTGCAGCCTTGGGAATGTTGGAGGCCGTATCCAGGGACCCCTGGG CCTCCTGGGATGGCCTCTCTGGATCAGCCTTGGAAGGTTCCAGGCTGCCCTTAGGCTCCC ACATTCTTCCCCAGTCACGCTCTCCTCGCCCTGCCCACACCAGTCCTGTGACCCTTGCCT GAGTTGTGACTTCCCACCCCTCCCCGGCCTAGAGGAAAGCTGCCTGGCCCCTCAGTGGGA CTCCCGCCCACTGACCCTCTGTCCACCATACACAGACAGGGGGCACTATCCACAAGGTGGT GGAACCGGGGGAGCAGGAGCACAGCTTCGCCTTCAACATCATGGAGATCCAGCCCTTCCG CCGCGCGGCTGCCATCCAGACCATGTCGCTGGATGCTGAGCGGGTGAGCCTTCCCCCACT

GCGTCCCATGGGCTATGCAGTGACTGCAGCTGAGGACAGGGCTCCTTTGCATGTGATTTG TGTGTTCTTTTAAGAGCTTCTAGGCCTTAGGGCCTGGACATTTAGGACTGAGTGTGGGGT GGGGCCCGGGCCTGACCCAATCCTGCTGTCCTTCCAGAGGAAGCTGTATGTGAGCTCCCA GTGGGAGGTGAGCCAGGTGCCCCTGGACCTGTGTGAGGTCTATGGCGGGGGCTGCCACGG TTGCCTCATGTCCCGAGACCCCTACTGCGGCTGGGACCAGGGCCGCTGCATCTCCATCTA CAGCTCCGAACGGTACGTTGGCCGGGATCCCTCCGTCCCTGGGACAAGGTGGGCATGGGA CAGGGGGAGGTGTTGTCGGGCTGGAAGAGGTGGCGGTACTGGGCCTTTCTTGTGGGACCT CCTCTCTACTGGAACTGCACTAGGGGTAAGGATATGAGGGTCAGGTCTGCAGCCTTGTAT CTGCTGATCCTCTTCGTCCTTCCCACTCCAGGTCAGTGCTGCAATCCATTAATCCAGCC GAGCCACACAAGGAGTGTCCCAACCCCAAACCAGGTACCTGATCTGGCCCTGCTGGCGGC TGTGGCCCAATGAGTGGGGTACTGCCCTGCCCTGATTGTCCTGGTCTGAGGGAAACATGG CCTTGTCCTGTGGGCCCCAGGTACATGGGGCAGGATACAGTCCTGCAGAGGGAGCCCTCT TGGTGGGATGAGCGAGACGGGAGAAAAAAGGAGGACGCTGAGGGCTGGGTTCCCCACGTT CATTCAGAAGCCTTGTCCTGGGATCCCAGTCGGTGGGGAGGACACATCCTCCCCTGGGAG CTCTTTGTCCCTCACGGCTGCTTCCCCACTGCCTCCCCAGACAAGGCCCCACTGCAG AAGGTTTCCCTGGCCCCAAACTCTCGCTACTACCTGAGCTGCCCCATGGAATCCCGCCAC GCCACCTACTCATGGCGCCACAAGGAGAACGTGGAGCAGAGCTGCGAACCTGGTCACCAG AGCCCCAACTGCATCCTGTTCATCGAGAACCTCACGGCGCAGCAGTACGGCCACTACTTC TGCGAGGCCCAGGAGGGCTCCTACTTCCGCGAGGCTCAGCACTGGCAGCTGCCGCAG CTGGGGGTGCTGCCCACACTCACTCTTGGCTTGCTGGTCCACTAGGGCCTCCCGAGGCTG GGCATGCCTCAGGCTTCTGCAGCCCAGGGCACTAGAACGTCTCACACTCAGAGCCGGCTG GCCCGGGAGCTCCTTGCCTGCCACTTCTTCCAGGGGACAGAATAACCCAGTGGAGGATGC CAGGCCTGGAGACGTCCAGCCGCAGGCGGCTGCTGGGCCCCAGGTGGCGCACGGATGGTG AGGGGCTGAGAATGAGGGCACCGACTGTGAAGCTGGGGCATCGATGACCCAAGACTTTAT CTTCTGGAAAATATTTTTCAGACTCCTCAAACTTGACTAAATGCAGCGATGCTCCCAGCC CAAGAGCCCATGGGTCGGGGAGTGGGTTTGGATAGGAGAGCTGGGACTCCATCTCGACCC TGGGGCTGAGGCCTGAGTCCTTCTGGACTCTTGGTACCCACATTGCCTCCTTCCCCTCCC TCTCTCATGGCTGGGTGGTGTTCCTGAAGACCCAGGGCTACCCTCTGTCCAGCCCT GTCCTCTGCAGCTCCCTCTCTGGTCCTGGGTCCCACAGGACAGCCGCCTTGCATGTTTAT AAAAAAA

Tabelle 15: Nukleotidsequenz von pMelBacA-HSEMAL (6622bp) (SEQ ID NO: 42)

- 1 GATATCATGG AGATAATTAA AATGATAACC ATCTCGCAAA TAAATAAGTA \Box
- 51 TTTTACTGTT TTCGTAACAG TTTTGTAATA AAAAAACCTA TAAATATGAA

5**5**

5

10

15

20

25

30

35

40

45

50

	10	1 ATTCTTAGT	C AACGTTGCC	TTGTTTTTA	GGTCGTATA	CATTTCTTAC
5	15	1 TCTATGCGG	A TCGATGG	a tecacecaa	gecacetaa	gagcggacco
	20	1 cgcatcttc	g ccgtctggaa			
	25		t gagccgcaca			
10	30		t gggaggacgt			
	35:		g catctgtgcg			
	40:		t aagcgggact			•
15	45:		g gctgctggcc			
	501	JJ J-J-J5.	g tgaatggcac			
	551	-55	agcccggacg			
20	601	•	caccatccgg			
	651		tccggggcga			
	701		cagttcatca			
25	751	, ,	gatctactac			
	801		ctctcaatgt			
	851		gaaagttcac			
30	901	303 333	ggtatgcagt			
	951		tcttcctgct			
	1001		ggtgttttct			
35	1051	333	cggtgacatt			
	1101		caagccttcc			
40	1151	,,	atacccacag			
40	1201		gagggtggag			
	1251	33-33-3	accactacca			
45	1301		acctttcatg			
-10	1351		ggtggaaccg			
	1401					
50	1451		tccagccctt			
	1501		gagcggagga cctggacctg			
	1301	goodyguguu	Judgaculg	cycyaggtct	acygeggggg	cuqccacqqt

		1551	tgcctcatgt	cccgagaccc	ctactgcggc	tgggaccagg	gccgctgcat
		1601	ctccatctac	agctccgaac	ggtcagtgct	gcaatccatt	aatccagccg
	5	1651	agccacacaa	ggagtgtccc	aaccccaaac	cagacaaggc	cccactgcag
	•	1701	aaggtttccc	tggccccaaa	ctctcgctac	tacctgagct	gccccatgga
		1751	atcccgccac	gccacctact	catggcgcca	caaggagaac	gtggagcaga
	10	1801	gctgcgaacc	tggtcaccag	agccccaact	gcatcctgtt	catcgagaac
		1851	ctcacggcgc	agcagtacgg	ccactacttc	tgcgaggccc	aggagggctc
	15	1901	ctacttccgc	gaggctcagc	actggcagct	gctgcccgag	gacggcatca
	15	1951	tggccgagca	cctgctgggt	catgcctgtg	ccctggctgc	ctgaattc GA
		2001	AGCTTGGAGT	CGACTCTGCT	GAAGAGGAGG	AAATTCTCCT	TGAAGTTTCC
	20	2051	CTGGTGTTCA	AAGTAAAGGA	GTTTGCACCA	GACGCACCTC	TGTTCACTGG
		2101	TCCGGCGTAT	TAAAACACGA	TACATTGTTA	TTAGTACATT	TATTAAGCGC
		2151	TAGATTCTGT	GCGTTGTTGA	TTTACAGACA	ATTGTTGTAC	GTATTTTAAT
	25	2201	AATTCATTAA	ATTTATAATC	TTTAGGGTGG	TATGTTAGAG	CGAAAATCAA
		2251	ATGATTTTCA	GCGTCTTTAT	ATCTGAATTT	AAATATAAA	TCCTCAATAG
	30	2301	ATTTGTAAAA	TAGGTTTCGA	TTAGTTTCAA	ACAAGGGTTG	TTTTTCCGAA
		2351	CCGATGGCTG	GACTATCTAA	TGGATTTTCG	CTCAACGCCA	CAAAACTTGC
		2401	CAAATCTTGT	AGCAGCAATC	TAGCTTTGTC	GATATTCGTT	TGTGTTTTGT
	35	2451	TTTGTAATAA	AGGTTCGACG	TCGTTCAAAA	TATTATGCGC	TTTTGTATTT
		2501	CTTTCATCAC	TGTCGTTAGT	GTACAATTGA	CTCGACGTAA	ACACGTTAAA
		2551	TAAAGCCTGG	ACATATTTAA	CATCGGGCGT	GTTAGCTTTA	TTAGGCCGAT
	40	2601	TATCGTCGTC	GTCCCAACCC	TCGTCGTTAG	AAGTTGCTTC	CGAAGACGAT
		2651	TTTGCCATAG	CCACACGACG	CCTATTAATT	GTGTCGGCTA	ACACGTCCGC
		2701	GATCAAATTT	GTAGTTGAGC	TTTTTGGAAT	TATTTCTGAT	TGCGGGCGTT
4	45	2751	TTTGGGCGGG	TTTCAATCTA	ACTGTGCCCG	ATTTTAATTC	AGACAACACG
		2801	TTAGAAAGCG	ATGGTGCAGG	CGGTGGTAAC	ATTTCAGACG	GCAAATCTAC
50		2851	TAATGGCGGC	GGTGGTGGAG	CTGATGATAA	ATCTACCATC	GGTGGAGGCG
	50	2901	CAGGCGGGGC	TGGCGGCGGA	GGCGGAGGCG	GAGGTGGTGG	CGGTGATGCA
		2951	GACGGCGGTT	TAGGCTCAAA	TTGTCTCTTT	CAGGCAACAC	AGTCGGCACC

		3001	TCAACTATTO	G TACTGGTTTC	GGGCGTATGG	TGCACTCTCA	GTACAATCTG
	5	3051	CTCTGATGCC	GCATAGTTAA	GCCAGCCCCG	ACACCCGCCA	ACACCCGCTG
	3	3101	ACGCGCCCTG	ACGGGCTTGT	CTGCTCCCGG	CATCCGCTTA	CAGACAAGCT
		3151	GTGACCGTCT	CCGGGAGCTG	CATGTGTCAG	AGGTTTTCAC	CGTCATCACC
	10	3201	GAAACGCGCG	AGACGAAAGG	GCCTCGTGAT	ACGCCTATTT	TTATAGGTTA
	,,	3251	ATGTCATGAT	AATAATGGTT	TCTTAGACGT	CAGGTGGCAC	TTTTCGGGGA
		3301	AATGTGCGCG	GAACCCCTAT	TTGTTTATTT	TTCTAAATAC	ATTCAAATAT
	15	3351	GTATCCGCTC	ATGAGACAAT	AACCCTGATA	AATGCTTCAA	TAATATTGAA
		3401	AAAGGAAGAG	TATGAGTATT	CAACATTTCC	GTGTCGCCCT	TATTCCCTTT
		3451	TTTGCGGCAT	TTTGCCTTCC	TGTTTTTGCT	CACCCAGAAA	CGCTGGTGAA
	20	3501	AGTAAAAGAT	GCTGAAGATC	AGTTGGGTGC	ACGAGTGGGT	TACATCGAAC
		3551	TGGATCTCAA	CAGCGGTAAG	ATCCTTGAGA	GTTTTCGCCC	CGAAGAACGT
		3601	TTTCCAATGA	TGAGCACTTT	TAAAGTTCTG	CTATGTGGCG	CGGTATTATC
	25	3651	CCGTATTGAC	GCCGGGCAAG	AGCAACTCGG	TCGCCGCATA	CACTATTCTC
		3701	AGAATGACTT	GGTTGAGTAC	TCACCAGTCA	CAGAAAAGCA	TCTTACGGAT
		3751	GGCATGACAG	TAAGAGAATT	ATGCAGTGCT	GCCATAACCA	TGAGTGATAA
	30	3801	CACTGCGGCC	AACTTACTTC	TGACAACGAT	CGGAGGACCG	AAGGAGCTAA
		3851	CCGCTTTTT	GCACAACATG	GGGGATCATG	TAACTCGCCT	TGATCGTTGG
		3901	GAACCGGAGC	TGAATGAAGC	CATACCAAAC	GACGAGCGTG	ACACCACGAT
,	35	3951	GCCTGTAGCA	ATGGCAACAA	CGTTGCGCAA	ACTATTAACT	GGCGAACTAC
		4001	TTACTCTAGC	TTCCCGGCAA	CAATTAATAG	ACTGGATGGA	GGCGGATAAA
		4051	GTTGCAGGAC	CACTTCTGCG	CTCGGCCCTT	CCGGCTGGCT	GGTTTATTGC
1	10	4101	TGATAAATCT	GGAGCCGGTG	AGCGTGGGTC	TCGCGGTATC	ATTGCAGCAC
		4151	TGGGGCCAGA	TGGTAAGCCC	TCCCGTATCG	TAGTTATCTA	CACGACGGGG
	ie.	4201	AGTCAGGCAA	CTATGGATGA	ACGAAATAGA	CAGATCGCTG	AGATAGGTGC
4	15	4251	CTCACTGATT	AAGCATTGGT	AACTGTCAGA	CCAAGTTTAC	TCATATATAC
		4301	TTTAGATTGA	TTTAAAACTT	CATTTTTAAT	TTAAAAGGAT	CTAGGTGAAG
5	o	4351			GACCAAAATC		
J	-	4401			TAGAAAAGAT		
		4451			TGCTGCTTGC		
						,	

					CM3 CC3 3 CMC	ホルホルサイン(こと)
	4501			GGATCAAGAG		
	4551	GGTAACTGGC	TTCAGCAGAG	CGCAGATACC	AAATACTGTT	CTTCTAGTGT
5	4601	AGCCGTAGTT	AGGCCACCAC	TTCAAGAACT	CTGTAGCACC	GCCTACATAC
	4651	CTCGCTCTGC	TAATCCTGTT	ACCAGTGGCT	GCTGCCAGTG	GCGATAAGTC
	4701	GTGTCTTACC	GGGTTGGACT	CAAGACGATA	GTTACCGGAT	AAGGCGCAGC
10	4751	GGTCGGGCTG	AACGGGGGGT	TCGTGCACAC	AGCCCAGCTT	GGAGCGAACG
	4801	ACCTACACCG	AACTGAGATA	CCTACAGCGT	GAGCTATGAG	AAAGCGCCAC
15	4851	GCTTCCCGAA	GGGAGAAAGG	CGGACAGGTA	TCCGGTAAGC	GGCAGGGTCG
	4901	GAACAGGAGA	GCGCACGAGG	GAGCTTCCAG	GGGGAAACGC	CTGGTATCTT
	4951	TATAGTCCTG	TCGGGTTTCG	CCACCTCTGA	CTTGAGCGTC	GATTTTTGTG
20	5001	ATGCTCGTCA	GGGGGGCGGA	GCCTATGGAA	AAACGCCAGC	AACGCGGCCT
	5051	TTTTACGGTT	CCTGGCCTTT	TGCTGGCCTT	TTGCTCACAT	GTTCTTTCCT
	5101	GCGTTATCCC	CTGATTCTGT	GGATAACCGT	ATTACCGCCT	TTGAGTGAGC
25	5151	TGATACCGCT	CGCCGCAGCC	GAACGACCGA	GCGCAGCGAG	TCAGTGAGCG
	5201	AGGAAGCATC	CTGCACCATC	GTCTGCTCAT	CCATGACCTG	ACCATGCAGA
	5251	GGATGATGCT	CGTGACGGTT	AACGCCTCGA	ATCAGCAACG	GCTTGCCGTT
30	5301	CAGCAGCAGC	AGACCATTTT	CAATCCGCAC	CTCGCGGAAA	CCGACATCGC
	5351	AGGCTTCTGC	TTCAATCAGC	GTGCCGTCGG	CGGTGTGCAG	TTCAACCACC
	5401	GCACGATAGA	GATTCGGGAT	TTCGGCGCTC	CACAGTTTCG	GGTTTTCGAC
35	5451	GTTCAGACGI	AGTGTGACGC	GATCGGTATA	ACCACCACGC	TCATCGATAA
	5501	TTTCACCGCC	GAAAGGCGCG	GTGCCGCTGG	CGACCTGCGT	TTCACCCTGC
	5551	CATAAAGAA	A CTGTTACCCG	TAGGTAGTCA	CGCAACTCGC	CGCACATCTG
40	5601	AACTTCAGC	CTCCAGTACAC	GCGGCTGAA	ATCATCATTA	AAGCGAGTGG
	5651	CAACATGGA	A ATCGCTGAT	TGTGTAGTCG	GTTTATGCAG	CAACGAGACG
45	5701	TCACGGAAA	A TGCCGCTCA	r ccgccacata	TCCTGATCTT	CCAGATAACT
	5751	GCCGTCACT	CAACGCAGC	A CCATCACCGC	GAGGCGGTTI	TCTCCGGCGC
	5801	GTAAAAATG	C GCTCAGGTC	A AATTCAGACO	GCAAACGACT	GTCCTGGCCG
50	5851	TAACCGACC	C AGCGCCCGT	T GCACCACAG	TGAAACGCC	AGTTAACGCC
	5901	ATCAAAAAT	A ATTCGCGTC	T GGCCTTCCT	TAGCCAGCT1	TCATCAACAT

	5951	TAAATGTGAG	CGAGTAACAA	CCCGTCGGAT	TCTCCGTGGG	AACAAACGGC
	6001	GGATTGACCG	TAATGGGATA	GGTCACGTTG	GTGTAGATGG	GCGCATCGTA
5	6051	ACCGTGCATC	TGCCAGTTTG	AGGGGACGAC	GACAGTATCG	GCCTCAGGAA
	6101	GATCGCACTC	CAGCCAGCTT	TCCGGCACCG	CTTCTGGTGC	CGGAAACCAG
10	6151	GCAAAGCGCC	ATTCGCCATT	CAGGCTGCGC	AACTGTTGGG	AAGGGCGATC
	6201	GGTGCGGGCC	TCTTCGCTAT	TACGCCAGCT	GGCGAAAGGG	GGATGTGCTG
	6251	CAAGGCGATT	AAGTTGGGTA	ACGCCAGGGT	TTTCCCAGTC	ACGACGTTGT
15	6301	AAAACGACGG	GATCTATCAT	TTTTAGCAGT	GATTCTAATT	GCAGCTGCTC
	6351	TTTGATACAA	CTAATTTTAC	GACGACGATG	CGAGCTTTTA	TTCAACCGAG
20	6401	CGTGCATGTT	TGCAATCGTG	CAAGCGTTAT	CAATTTTTCA	TTATCGTATT
20	6451	GTTGCACATC	AACAGGCTGG	ACACCACGTT	GAACTCGCCG	CAGTTTTGCG
• •	6501	GCAAGTTGGA	cccececec	ATCCAATGCA	AACTTTCCGA	CATTCTGTTG
25	6551	CCTACGAACG	ATTGATTCTT	TGTCCATTGA	TCGAAGCGAG	TGCCTTCGAC
	6601	TTTTTCGTGT	CCAGTGTGGC	TT		

SEQUENZPROTOKOLL

5	(1) ALLGEMEINE INFORMATION:
	(i) ANMELDER:
	(A) NAME: Hoechst Marion Roussel Deutschland GmbH
	(B) STRASSE: -
	(C) ORT: Frankfurt
10	(D) BUNDESLAND: -
	(E) LAND: Deutschland
	(F) POSTLEITZAHL: 65926
	(G) TELEPHON: 069-305-7072
	(H) TELEFAX: 069-35-7175
15	(I) TELEX: -
	(ii) ANMELDETITEL: Humanes Semaphorin L (H-Sema-L) und
	korrespondierende Semaphorine in anderen Spezies
	1 underen opezies
20	(iii) ANZAHL DER SEQUENZEN: 44
	(iv) COMPUTER-LESBARE FORM:
	(A) DATENTRÄGER: Floppy disk
	(B) COMPUTER: IBM PC compatible
	(C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
25	(D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPA)
	The state of the s
	(A) Typopus Trav. Trav. Trav.
	(2) INFORMATION ZU SEQ ID NO: 1:
30	(i) SEQUENZ CHARAKTERISTIKA:
	(A) LÄNGE: 2636 Basenpaare
	(B) ART: Nukleinsäure
	(C) STRANGFORM: Einzel
	(D) TOPOLOGIE: linear
35	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)
	(ix) MERKMALE:
	(A) NAME/SCHLÜSSEL: exon
40	(B) LAGE: 12636
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:
45	CGGGGCCACG GGATGACGCC TCCTCCGCCC GGACGTGCCG CCCCCAGCGC ACCGCGCGCC
	·
	CGCGTCCCTG GCCCGCCGGC TCGGTTGGGG CTTCCGCTGC GGCTGCGGCT GCTGCTGCTG 12
	CTCTGGGCGG CCGCCGCCTC CGCCCAGGGC CACCTAAGGA GCGGACCCCG CATCTTCGCC 18
50	GTCTGGAAAG GCCATGTAGG GGAGGAGGGG GTGGA
	GTCTGGAAAG GCCATGTAGG GCAGGACCGG GTGGACTTTG GCCAGACTGA GCCGCACACG 24
	GTGCTTTTCC ACGAGCCAGG CAGCTCCTCT GTGTGGGTGG GAGGACGTGG CAAGGTCTAC 30
	GIGCIIIICC ACGAGCCAGG CAGCTCCTCT GTGTGGGTGG GAGGACGTGG CAAGGTCTAC 30

58

	CTCTTTGACT TCCCCGAGGG CAAGAACGCA TCTGTGCGCA CGGTGAATAT CGGCTCCAC	
	AAGGGGTCCT CTCTCGATAL AAGGGGGTCCTC	A 360
5	AAGGGGTCCT GTCTGGATAA GCGGGACTGC GAGAACTACA TCACTCTCCT GGAGAGGCG	G 420
	AGTGAGGGC TGCTGGCCTG TGGCACCAAC GCCCGGCACC CCAGCTGCTG GAACCTGGTG	3 480
	AATGGCACTG TGGTGCCACT TGGCGAGATG AGAGGCTACG CCCCCTTCAG CCCGGACGAC	540
10	AACTCCCTGG TTCTGTTTGA AGGGGACGAG GTGTATTCCA CCATCCGGAA GCAGGAATAC	600
	AATGGGAAGA TCCCTCGGTT CCGCCGCATC CGGGGCGAGA GTGAGCTGTA CACCAGTGAT	660
	ACTOTCATGC AGAACCCACA GTTCATCAAA GCCACCATCG TGCACCAAGA CCAGGCTTAC	720
15	GATGACAAGA TCTACTACTT CTTCCGAGAG GACAATCCTG ACAAGAATCC TGAGGCTCCT	780
	CTCAATGTGT CCCGTGTGGC CCAGTTGTGC AGGGGGGACC AGGGTGGGGA AAGTTCACTG	760
	TCAGTCTCCA AGTGGAACAC TTTTCTGAAA GCCATGCTGG TATGCAGTGA TGCTGCCACC	840
20	AACAAGAACT TCAACAGGCT GCAAGACGTC TTCCTGCTCC CTGACCCCAG CGGCCAGTGG	900
	AGGGACACCA GGGTCTATGG TGTTTTCTCC AACCCCTGGA ACTACTCAGC CGTCTGTGTG	960
2.	TATTCCCTCG GTGACATTGA CAAGGTCTTC CGTACCTCCT CACTCAAGGG CTACCACTCA	1020
25	AGCCTTCCCA ACCCGCGGCC TGGCAAGTGC CTCCCAGACC AGCAGCCGAT ACCCACAGAG	1080
	ACCITICIAGG TGGCTGACCG TCACCCAGAG GCAGCCGAT ACCCACAGAG	1140
30	ACCTTCCAGG TGGCTGACCG TCACCCAGAG GTGGCGCAGA GGGTGGAGCC CATGGGGCCT	1200
30	CTGAAGACGC CATTGTTCCA CTCTAAATAC CACTACCAGA AAGTGGCCGT TCACCGCATG	1260
	CAAGCCAGCC ACGGGGAGAC CTTTCATGTG CTTTACCTAA CTACAGACAG GGGCACTATC	1320
35	CACAAGGTGG TGGAACCGGG GGAGCAGGAG CACAGCTTCG CCTTCAACAT CATGGAGATC	1380
	CAGCCCTTCC GCCGCGCGCC TGCCATCCAG ACCATGTCGC TGGATGCTGA GCGGAGGAAG	1440
	CTGTATGTGA GCTCCCAGTG GGAGGTGAGC CAGGTGCCCC TGGACCTGTG TGAGGTCTAT	1500
40	GGCGGGGGCT GCCACGGTTG CCTCATGTCC CGAGACCCCT ACTGCGGCTG GGACCAGGGC	1560
	CGCTGCATCT CCATCTACAG CTCCGAACGG TCAGTGCTGC AATCCATTAA TCCAGCCGAG	1620
	CCACACAAGG AGTGTCCCAA CCCCAAACCA GACAAGGCCC CACTGCAGAA GGTTTCCCTG	1680
15	GCCCCAAACT CTCGCTACTA CCTGAGCTGC CCCATGGAAT CCCGCCACGC CACCTACTCA	1740
	TGGCGCCACA AGGAGAACGT GGAGCAGAGC TGCGAACCTG GTCACCAGAG CCCCAACTGC	
	ATCCTGTTCA TCGAGAACCT CACGGCGCAG CAGTACGGCC ACTACTTCTG CGAGGCCCAG	1800
o	GAGGGCTCCT ACTTCCGCGA GGCTCAGCAC TGGCAGCTGC TGCCCGAGGA CGGCATCATG	,1860
	GCCGAGCACC TGCTGGGTCA TGCCTGTGCC CTGGCTGCCT CCCTCTGGCT GGGGGTGCTG	1920
	COUNTY CO	1000

	CCCACACTCA CTCTTTCCCTTT	
	CCCACACTCA CTCTTGGCTT GCTGGTCCAC TAGGGCCTCC CGAGGCTGGG CATGCCTCAG	2040
5	GCTTCTGCAG CCCAGGGCAC TAGAACGTCT CACACTCAGA GCCGGCTGGC CCGGGAGCTC	2100
	CTTGCCTGCC ACTTCTTCCA GGGGACAGAA TAACCCAGTG GAGGATGCCA GGCCTGGAGA	2160
	CGTCCAGCCG CAGGCGGCTG CTGGGCCCCA GGTGGCGCAC GGATGGTGAG GGGCTGAGAA	2220
10	TGAGGGCACC GACTGTGAAG CTGGGGCATC GATGACCCAA GACTTTATCT TCTGGAAAAT	2280
	ATTTTCAGA CTCCTCAAAC TTGACTAAAT GCAGCGATGC TCCCAGCCCA AGAGCCCATG	2340
	GGTCGGGGAG TGGGTTTGGA TAGGAGAGCT GGGACTCCAT CTCGACCCTG GGGCTGAGGC	2400
15	CTGAGTCCTT CTGGACTCTT GGTACCCACA TTGCCTCCTT CCCCTCCCTC TCTCATGGCT	2460
	GGGTGGCTGG TGTTCCTGAA GACCCAGGGC TACCCTCTGT CCAGCCCTGT CCTCTGCAGC	2520
20	TCCCTCTCTG GTCCTGGGTC CCACAGGACA GCCGCCTTGC ATGTTTATTG AAGGATGTTT	2580
	GCTTTCCGGA CGGAAGGACG GAAAAAGCTC TGAAAAAAAA AAAAAAAAAA	2636
25	(2) INFORMATION ZU SEQ ID NO: 2:	
	(i) SEQUENZ CHARAKTERISTIKA:	
	(A) LÄNGE: 1195 Basenpaare	
	(B) ART: Nukleinsäure	
30	(C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
<u>-</u>	(ix) MERKMALE:	
5	(A) NAME/SCHLÜSSEL: exon	
	(B) LAGE: 11195	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:	
7		
	CGGGGCTGCG GGATGACGCC TCCTCCTCCC GGACGTGCCG CCCCCAGCGC ACCGCGCGCC	60
	CGCGTCCTCA GCCTGCCGGC TCGGTTCGGG CTCCCGCTGC GGCTGCGGCT TCTGCTGGTG	120
•	TTCTGGGTGG CCGCCGCCTC CGCCCAAGGC CACTCGAGGA GCGGACCCCG CATCTCCGCC	180
	GTCTGGAAAG GGCAGGACCA TGTGGACTTT AGCCAGCCTG AGCCACACAC CGTGCTTTTC	240
	CATGAGCCGG GCAGCTTCTC TGTCTGGGTG GGTGGACGTG GCAAGGTCTA CCACTTCAAC	300
	TTCCCCGAGG GCAAGAATGC CTCTGTGCGC ACGGTGAACA TCGGCTCCAC AAAGGGGTCC	360
	TGTCAGGACA AACAGGACTG TGGGAATTAC ATCACTCTTC TAGAAAGGCG GGGTAATGGG	420

	CTGCTGGTCT GTGGCACCAA TGCCCGGAAG CCCAGCTGCT GGAACTTGGT GAATGACAGT	48
5	GTGGTGATGT CACTTGGTGA GATGAAAGGC TATGCCCCCT TCAGCCCGGA TGAGAACTCC	54
J	CTGGTTCTGT TTGAAGGAGA TGAAGTGTAC TCTACCATCC GGAAGCAGGA ATACAACGGG	60
	AAGATCCCTC GGTTTCGACG CATTCGGGGC GAGAGTGAAC TGTACACAAG TGATACAGTC	66
10	ATGCAGAACC CACAGTTCAT CAAGGCCACC ATTGTGCACC AAGACCAAGC CTATGATGAT	720
	AAGATCTACT ACTTCTTCCG AGAAGACAAC CCTGACAAGA ACCCCGAGGC TCCTCTCAAT	780
	GTGTCCCGAG TAGCCCAGTT GTGCAGGGGG GACCAGGGTG GTGAGAGTTC GTTGTCTGTC	840
15	TCCAAGTGGA ACACCTTCCT GAAAGCCATG TTGGTCTGCA GCGATGCAGC CACCAACAGG	900
	AACTTCAATC GGCTGCAAGA TGTCTTCCTG CTCCCTGACC CCAGTGGCCA GTGGAGAGAT	960
20	ACCAGGGTCT ATGGCGTTTT CTCCAACCCC TGGAACTACT CAGCTGTCTG CGTGTATTCG	1020
	CTTGGTGACA TTGACAGAGT CTTCCGTACC TCATCGCTCA AAGGCTACCA CATGGGCCTT	1080
	TCCAACCCTC GACCTGGCAT GTGCCTCCCA AAAAAGCAGC CCATACCCAC AGAAACCTTC	1140
25	CAGGTAGCTG ATAGTCACCC AGAGGTGGCT CAGAGGGTGG AACCTATGGG GCCCC	1195
•	(2) INFORMATION ZU SEQ ID NO: 3:	
30	(i) SEQUENZ CHARAKTERISTIKA:(A) LÄNGE: 666 Aminosäuren(B) ART: Aminosäure	
	(C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
35	(ii) ART DES MOLEKÜLS: Protein	
40	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: Protein (B) LAGE: 1666	
	(b) 100b. 1000	
45	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:	
40	Met Thr Pro Pro Pro Pro Gly Arg Ala Ala Pro Ser Ala Pro Arg Ala 1 5 10 15	
50	Arg Val Pro Gly Pro Pro Ala Arg Leu Gly Leu Pro Leu Arg Leu Arg 20 25 30	
	Leu Leu Leu Leu Tro Ala Ala Ala Ala Ser Ala Glo Gly Hig Leu	

	Arg	Ser 50	Gly	/ Pro	Arg	g Ile	Phe 55	a Ala	a Va	l Tr	Lys	60	y His	s Vai	l Gly	/ Gln
5	Asp 65	Arg	y Val	. Asp	Phe	Gl ₃	Glr	Thi	r Glu	ı Pro	75	Thr	va]	L Le	ı Phe	His 80
10	Glu	Pro	Gly	Ser	Ser 85	Ser	Val	Trp	Val	90	Gly	Arg	g Gly	Lys	95	Tyr
,,	Leu	Phe	Asp	Phe 100	Pro	Glu	. Gly	Lys	Asr 105		Ser	Val	Arg	Thr 110		Asn
15	Ile	Gly	Ser 115	Thr	Lys	Gly	Ser	Cys 120		Asp	Lys	Arg	Asp 125		Glu	Asn
	Tyr	Ile 130	Thr	Leu	Leu	Glu	Arg 135	Arg	Ser	Glu	Gly	Leu 140		Ala	Сув	Gly
20	Thr 145	Asn	Ala	Arg	His	Pro 150	Ser	Cys	Trp	Asn	Leu 155	Val	Asn	Gly	Thr	Val 160
	Val	Pro	Leu	Gly	Glu 165	Met	Arg	Gly	Tyr	Ala 170	Pro	Phe	Ser	Pro	Asp 175	Glu
25				180					185					190	Ile	
30	Lys	Gln	Glu 195	Tyr	Asn	Gly	Lys	Ile 200	Pro	Arg	Phe	Arg	Arg 205	Ile	Arg	Gly
	Glu	210					215					220				
35	11e 225	Lys	Ala	Thr	Ile	Val 230	His	Gln	Asp	Gln	Ala 235	Tyr	Asp	Asp	Lys	Ile 240
	Tyr				245					250					255	
40	Leu .			260					265					270	_	_
45	Glu .		Ser 275	Leu	Ser	Val		Lув 280	Trp	Asn	Thr		Leu 285	Lys	Ala	Met
		290					295					300				
50	Asp 1				:	310					315					320
	Val 7	Cyr (Gly V		Phe :	Ser 2	Asn	Pro '		Asn 330	Tyr	Ser :	Ala		Cys 335	Val

	Tyr	Ser	Leu	Gly 340	Asp	Ile	Asp	Lys	Val 345	Phe	Arg	Thr	Ser	Ser 350	Leu	Lys
5	Gly	Tyr	His 355	Ser	Ser	Leu	Pro	Asn 360	Pro	Arg	Pro	Gly	Lys 365	Сув	Leu	Pro
10	Asp	Gln 370	Gln	Pro	Ile	Pro	Thr 375	Glu	Thr	Phe	Gln	Val 380	Ala	Asp	Arg	His
	Pro 385	Glu	Val	Ala	Gln	Arg 390	Val	Glu	Pro	Met	Gly 395	Pro	Leu	Lys	Thr	Pro 400
15				Ser	405					410					415	
				His 420					425					430		
20			435	Ile				440					445			
		450		Asn			455					460				
25	465			Met		470					475					480
30				Glu	485					490					495	
				Cys 500					505					510		
35			515	Gly				520					525			
		530		Ile			535					540				
40	545			Lys		550					555					560
				Leu	565					570					575	
45	Trp	Arg	His	Lys 580	Glu	Asn	Val	Glu	Gln 585	Ser	Сув	Glu	Pro	Gly 590	His	Gln
50			595	Cys				600					605		·	
	Gly	His 610		Phe	Cys	Glu	Ala 615	Gln	Glu	Gly	Ser	Tyr 620	Phe	Arg	Glu	Ala

	625	nis	пр	GIII	Leu	630	FIG	GIU	Asp	Gly	635	Mec	AIA	GIU	ure	640
5	Leu	Gly	His	Ala	Сув 645	Ala	Leu	Ala	Ala	Ser 650	Leu	Trp	Leu	Gly	Val 655	Leu
10	Pro	Thr	Leu	Thr 660	Leu	Gly	Leu	Leu	Val 665	His						
	(2) INFO	RMAT:	ION :	zu si	II QE	оис	4:									
15	(i)	(B)	LĀI AR' STI	CHAI NGE: I': An RANGI POLOC	394 minos PORM	Amir Sāure Eir	nosāv e uzel			-			-			
20	(ii)	ART	DES	MOLE	KŪLS	5: P1	rote	in								
25	(ix)		IAN	E: ME/SC GE: 1			: Pro	otein	1							
	(xi)	SEQU	JENZI	BESCH	IREIE	BUNG:	SEÇ) ID	NO:	4:						
30	Met 1	Thr	Pro	Pro	Pro 5	Pro	Gly	Arg	Ala	Ala 10	Pro	Ser	Ala	Pro	Arg 15	Ala
	Arg	Val	Leu	Ser 20	Leu	Pro	Ala	Arg	Phe 25	Gly	Leu	Pro	Leu	Àrg 30	Leu	Arg
35	Leu	Leu	Leu 35	Val	Phe	Trp	Val	Ala 40	Ala	Ala	Ser	Ala	Gln 45	Gly	His	Ser
	Arg	Ser 50	Gly	Pro	Arg	Ile	Ser 55	Ala	Val	Trp	Lys	Gly 60	Gln	Asp	His	Val
40	Asp 65	Phe	Ser	Gln	Pro	Glu 70	Pro	His	Thr	Val	Leu 75	Phe	His	Glu	Pro	Gly 80
	Ser	Phe	Ser	Val	Trp 85	Val	Gly	Gly	Arg	Gly 90	Lys	Val	Tyr	His	Phe 95	Asn
45	Phe	Pro	Glu	Gly 100	Lys	Asn	Ala	Ser	Val 105	Arg	Thr	Val	Asn	Ile 110	Gly	Ser
50	Thr	Ĺуs	Gly 115	Ser	Cys	Gln	Asp	Lys 120	Gln	Asp	Сув	Gly	Asn 125	Tyr	Ile	Thr
	Leu	Leu 130	Glu	Arg	Arg	Gly	Asn 135	Gly	Leu	Leu	Val	Cys 140	Gly	Thr	Asn	Ala

	Arg Ly	/s Pro	o Ser	Сув	Trp 150		Leu	Val	Asn	Авр 155		Val	Val	Met	Ser 160
5	Leu G	ly Gli	ı Met	Lys 165		Tyr	Ala	Pro	Phe 170		Pro	Asp	Glu	Asn 175	
10	Leu Va	ıl Leı	1 Phe 180		Gly	Asp	Glu	Val 185		Ser	Thr	Ile	Arg 190	Lys	Gln
	Glu T	r Asr 195		Lys	Ile	Pro	Arg 200		Arg	Arg	Ile	Arg 205	Gly	Glu	Ser
15	Glu Le 21	u Tyr 0	Thr	Ser	Asp	Thr 215	Val	Met	Gln	Asn	Pro 220	Gln	Phe	Ile	ГÀв
	Ala Th 225	r Ile	val	His	Gln 230	Asp	Gln	Ala	Tyr	Asp 235	Asp	Lys	Ile	туг	Tyr 240
20	Phe Ph	e Arg	Glu	Asp 245	Asn	Pro	Asp	Lys	Asn 250	Pro	Glu	Ala	Pro	Leu 255	Asn
25	Val Se	r Arg	Val 260	Ala	Gln	Leu	Сув	Arg 265	Gly	Asp	Gln	Gly	Gly 270	Glu	Ser
	Ser Le	275		Ser	Lys	Trp	Asn 280	Thr	Phe	Leu	Lys	Ala 285	Met	Leu	Val
30	Cys Se 29	r Asp	Ala	Ala	Thr	Asn 295	Arg	Asn	Phe	Asn	Arg 300		Gln	Asp	Val
	Phe Le	ı Leu	Pro	Asp	Pro 310	Ser	Gly	Gln		Arg 315	Asp	Thr	Arg	Val	Tyr 320
35	Gly Va	l Phe	Ser	Asn 325	Pro	Trp	Asn	Tyr	Ser 330	Ala	Val	Сув	Val	Tyr 335	Ser
40	Leu Gl	/ Asp	Ile 340	Asp	Arg	Val	Phe	Arg 345	Thr	Ser	Ser	Leu	Lys 350	Gly	Tyr
	His Met	355	Leu	Ser	Asn		Arg 360	Pro	Gly	Met		Leu 365	Pro	Lys	Lув
45	Gln Pro		Pro	Thr		Thr 375	Phe	Gln	Val :		Asp 380	Ser	His	Pro	Glu
50	Val Ala 385	Gln	Arg		Glu 390	Pro	Met	Gly	Pro		٠				

	(2) INFORMATION ZU SEQ ID NO: 5:	
5	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 23 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
10	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
15	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 123	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:	
	ACTCACTATA GGGCTCGAGC GGC	23
20	(2) INFORMATION ZU SEQ ID NO: 6:	
25	(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 20 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Binzel (D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
30	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 120	
35	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:	
	AGCCGCACAC GGTGCTTTTC	20
40	(2) INFORMATION ZU SEQ ID NO: 7:	
	(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 20 Basenpaare (B) ART: Nukleinsäure	
15	(C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
50	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 120	

	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:	
5	GCACAGATGC GTTCTTGCCC	20
	(2) INFORMATION ZU SEQ ID NO: 8:	
10	(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 20 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
15	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
20	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 120	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:	
25	ACCATAGACC CTGGTGTCCC	20
	(2) INFORMATION ZU SEQ ID NO: 9:	
30	(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 20 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
35	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
40	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 120	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:	
45	GCAGTGATGC TGCCACCAAC	20
	(2) INFORMATION ZU SEQ ID NO: 10:	
50	(i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 20 Basenpaare (B) ART: Nukleinsäure	

	(C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
5	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
10	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 120	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:	
15	CCAGACCATG TCGCTGGATG	20
	(2) INFORMATION ZU SEQ ID NO: 11:	
20	(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 20 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
25	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
30	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 120	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:	
35	ACATGAGGCA ACCGTGGCAG	20
	(2) INFORMATION ZU SEQ ID NO: 12:	
40	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 27 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
50	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:	
	CCATCCTAAT ACGACTCACT ATAGGGC	27

	(2) INFORMATION ZU SEQ ID NO: 13:	
5	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 20 Basenpaare (B) ART: Nukleinsāure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
10	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
15	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 120	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13:	
20	AGGTAGACCT TGCCACGTCC	20
	(2) INFORMATION ZU SEQ ID NO: 14:	
25	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 23 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
30	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
3 <i>5</i>	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 123	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:	
40	GAACTTCAAC AGGCTGCAAG ACG	23
	(2) INFORMATION ZU SEQ ID NO: 15:	
15	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 20 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
50	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
	1300000	

5	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 120	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 15:	
	ATGCTGAGCG GAGGAAGCTG	20
10	(2) INFORMATION ZU SEQ ID NO: 16:	
15	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 20 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
20	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 16:	
25	CCGCCATACA CCTCACACAG	20
	(2) INFORMATION ZU SEQ ID NO: 17:	
30	(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 28 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
35	(ii) ART DES MOLEKŪLS: DNS (genomisch)	
40	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 128	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:	
45	CTGGAAGCTT TCTGTGGGTA TCGGCTGC	28
	(2) INFORMATION ZU SEQ ID NO: 18:	
50	(i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	

	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
5	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 125	
10	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 18:	
	TTTGGATCCC TGGTTCTGTT TGAAG	25
15	(2) INFORMATION ZU SEQ ID NO: 19:	
20	(i) SEQUENZ CHARAKTERISTIKA: (A) LÂNGE: 50 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	. :
9.	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
25	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 150	
30	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 19:	50
35	(2) INFORMATION ZU SEQ ID NO: 20: (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 27 Basenpaare	
40	(B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch)	
45	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 127	
50	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 20:	
	GGGGAAAGTT CACTGTCAGT CTCCAAG	27

	(2) INFORMATION ZU SEQ ID NO: 21:	
5	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 26 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
10	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(x1) SEQUENZBESCHREIBUNG: SEQ ID NO: 21:	
15	GGGAATACAC ACAGACGGCT GAGTAG	26
	(2) INFORMATION ZU SEQ ID NO: 22:	
20	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 22 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Binzel 	
25	(D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch)	
30	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 122	
35	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 22:	
	AGCAAGTTCA GCCTGGTTAA GT	22
40	(2) INFORMATION ZU SEQ ID NO: 23:	
4 5	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 21 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
50	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 121	

	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 23:	
_	TTATGAGTAT TTCTTCCAGG G	2:
5		
	(2) INFORMATION ZU SEQ ID NO: 24:	
10	(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 26 Basenpaare (B) ART: Nukleinsäure	
	(C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
15	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(ix) MERKMALE:	
20	(A) NAME/SCHLÜSSEL: exon (B) LAGE: 126	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 24:	
	CCATTAATCC AGCCGAGCCA CACAAG	26
25		
	(2) INFORMATION ZU SEQ ID NO: 25:	
30	(i) SEQUENZ CHARAKTERISTIKA:(A) LÂNGB: 25 Basenpaare(B) ART: Nukleinsäure	
	(C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
35	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(day) MEDVECTOR	
	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 125	
40		
	(x1) SEQUENZBESCHREIBUNG: SEQ ID NO: 25:	
45	CATCTACAGC TCCGAACGGT CAGTG	25
	(2) INFORMATION ZU SEQ ID NO: 26:	
50	(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 20 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel	
	(D) TOPOLOGIE: linear	

(ii) ART DES MOLEKÜLS: DNS (genomisch)

5	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 120	
10	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 26:	20
	CAGCGGAAGC CCCAACCGAG	
15	(2) INFORMATION ZU SEQ ID NO: 27:	
	(i) SEQUENZ CHARAKTERISTIKA:(A) LÄNGE: 23 Basenpaare(B) ART: Nukleinsäure	
20	(C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
20	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
25	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon	
	(B) LAGE: 123	
30	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 27:	23
	GGGATGACGC CTCCTCCGCC CGG	23
35	(2) INFORMATION ZU SEQ ID NO: 28:	
	(i) SEQUENZ CHARAKTERISTIKA:(A) LÄNGE: 31 Basenpaare(B) ART: Nukleinsäure	
40	(C) STRANGFORM: Einzel (D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
45	(ix) MERKMALE:	
45	(A) NAME/SCHLÜSSEL: exon (B) LAGE: 131	
50	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 28:	
	AAGCTTCACG TGGACCAGCA AGCCAAGAGT G	31

	(2) INFORMATION ZU SEQ ID NO: 29:		
5	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 		
10	(ii) ART DES MOLEKÜLS: DNS (genomisch)		
15	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 125	<i>:</i>	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 29:		
20	AAGCTTTTTC CGTCCTTCCG TCCGG		25
	(2) INFORMATION ZU SEQ ID NO: 30:		
25	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 24 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 		
30	(ii) ART DES MOLEKÜLS: DNS (genomisch)		
35	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 124		
40	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 30:		
	ATGGTGAGCA AGGGCGAGGA GCTG		24
	(2) INFORMATION ZU SEQ ID NO: 31:	•	
4 5	(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 24 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel		
50	(D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: DNS (genomisch)		
	(genomisch)		

	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 124	
5	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 31:	
		24
10	CTTGTACAGC TCGTCCATGC CGAG	23
	(2) INFORMATION ZU SEQ ID NO: 32:	
15	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
20	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
25	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 125	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 32:	
30	GGGTGGTGAG AGTTCGTTGT CTGTC	25
	(2) INFORMATION ZU SEQ ID NO: 33:	
35	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 25 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
40	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
45	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 125	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 33:	
50	GAGCGATGAG GTACGGAAGA CTCTG	25

(2) INFORMATION ZU SEQ ID NO: 34:

- (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 5856 Basenpaare (B) ART: Nukleinsäure

 - (C) STRANGFORM: Einzel
 (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: DNS (genomisch)

(ix) MERKMALE:

- (A) NAME/SCHLÜSSEL: exon
- (B) LAGE: 1..5856

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 34:

60	TGCAGCTGGC	GATTCATTAA	CGCGTTGGCC	CCTCTCCCCG	ACGCAAACCG	AGCGCCCAAT	
120	GTGAGTTAGC	CGCAATTAAT	GTGAGCGCAA	AAAGCGGGCA	TCCCGACTGG	ACGACAGGTT	
180	TTGTGTGGAA	GGCTCGTATG	TTATGCTTCC	GCTTTACACT	GGCACCCCAG	TCACTCATTA	
240	GCCAAGCTTC	CCATGATTAC	ACAGCTATGA	CACACAGGAA	ATAACAATTT	TTGTGAGCGG	• •
300	GGAGGCAGCC	CCAGCCAGAG	GGCAGCACCC	AGTGAGTGTG	GCAAGCCAAG	ACGTGGACCA	
360	CAGCAGCTGC	CGTCCTCGGG	GCCATGATGC	CAGGTGCTCG	CATGACCCAG	AGGGCACAGG	
420	GTGGCCGTAC	CGCAGAAGTA	TCCTGGGCCT	GTAGGAGCCC	CCTCGCGGAA	CAGTGCTGAG	
480	ACCAGGTTCG	GCCTCTCGTG	ATGCAGTTGG	GATGAACAGG	TGAGGTTCTC	TGCTGCGCCG	
540	GGATTCCATG	TGGCGTGGCG	CATGAGTAGG	CTTGTGGCGC	CCACGTTCTC	CAGCTCTGCT	
600	TGGGGCCTTG	CCTTCTGCAG	GCCAGGGAAA	AGAGTTTGGG	GGTAGTAGCG	GGGCAGCTCA	
660	TTGCAGCACT	GATTAATGGA	GGCTCGGCTG	CTCCTTGTGT	GGTTGGGACA	TCTGGTTTGG	
720	GTAGGGGTCT	CCCAGCCGCA	CGGCCCTGGT	GGAGATGCAG	AGCTGTAGAT	GACCGTTCGG	
780	CAGGGGCACC	CACACAGGTC	CCATAGACCT	GCAGCCCCCG	GGCAACCGTG	CGGGACATGA	
840	CAGCGACATG	GCTCAGCATC	AGCTTCCTCC	GCTCACATAC	CCCACTGGGA	TGGCTCACCT	
900	GGCGAAGCTG	TGATGTTGAA	TGGATCTCCA	GCGGAAGGGC	CAGCCGCGCG	GTCTGGATGG	
960	AGTTAGGTAA	CCCTGTCTGT	TGGATAGTGC	CACCACCTTG	CCCCCGGTTC	TGCTCCTGCT	
1020	TTTCTGGTAG	GAACGGCCAC	TGCATGCGGT	GTGGCTGGCT	AGGTCTCCCC	AGCACATGAA	
1080	CCTCTGCGCC	TGGGCTCCAC	AGAGGCCCCA	TGGCGTCTTC	AGTGGAACAA	TGGTATTTAG	
1140	CTGGTCTGGG	GTATCGGCTG	GTCTCTGTGG	CACCTGGAAG	GACGGTCAGC	ACCTCTGGGT	

55

5

10

15

20

30

35

45

	AGGCACTTGC	CAGGCCGCGG	GTTGGGAAGG	CTTGAGTGGT	AGCCCTTGAG	TGAGGAGGTA	1200
_	CGGAAGACCT	TGTCAATGTC	ACCGAGGGAA	TACACACAGA	CGGCTGAGTA	GTTCCAGGGG	1260
5	TTGGAGAAAA	CACCATAGAC	CCTGGTGTCC	CTCCACTGGC	CGCTGGGGTC	AGGGAGCAGG	1320
	AAGACGTCTT	GCAGCCTGTT	GAAGTTCTTG	TTGGTGGCAG	CATCACTGCA	TACCAGCATG	1380
10	GCTTTCAGAA	AAGTGTTCCA	CTTGGAGACT	GACAGTGAAC	TTTCCCCACC	CTGGTCCCCC	1440
	CTGCACAACT	GGGCCACACG	GGACACATTG	AGAGGAGCCT	CAGGATTCTT	GTCAGGATTG	1500
	TCCTCTCGGA	AGAAGTAGTA	GATCTTGTCA	TCGTAAGCCT	GGTCTTGGTG	CACGATGGTG	1560
15	GCTTTGATGA	ACTGTGGGTT	CTGCATGACA	GTATCACTGG	TGTACAGCTC	ACTCTCGCCC	1620
	CGGATGCGGC	GGAACCGAGG	GATCTTCCCA	TTGTATTCCT	GCTTCCGGAT	GGTGGAATAC	1680
20	ACCTCGTCCC	CTTCAAACAG	AACCAGGGAG	TTCTCGTCCG	GGCTGAAGGG	GGCGTAGCCT	1740
	CTCATCTCGC	CAAGTGGCAC	CACAGTGCCA	TTCACCAGGT	TCCAGCAGCT	GGGGTGCCGG	1800
	GCGTTGGTGC	CACAGGCCAG	CAGCCCCTCA	CTCCGCCTCT	CCAGGAGAGT	GATGTAGTTC	1860
25	TCGCAGTCCC	GCTTATCCAG	ACAGGACCCC	TTTGTGGAGC	CGATATTCAC	CGTGCGCACA	1920
	GATGCGTTCT	TGCCCTCGGG	GAAGTCAAAG	AGGTAGACCT	TGCCACGTCC	TCCCACCCAC	1980
	ACAGAGGAGC	TGCCTGGCTC	GTGGAAAAGC	ACCGTGTGCG	GCTCAGTCTG	GCCAAAGTCC	2040
30	ACCCGGTCCT	GCCCTACATG	GCCTTTCCAG	ACGGCGAAGA	TGCGGGGTCC	GCTCCTTAGG	2100
	TGGCCCTGGG	CGGAGGCGGC	GGCCGCCCAG	AGCAGCAGCA	GCAGCCGCAG	CCGCAGCGGA	2160
35	AGCCCCAACC	GAGCCGGCGG	GCCAGGGACG	CGGGCGCGCG	GTGCGCTGGG	GGCGGCACGT	2220
	CCGGGCGGAG	GAGGCGTCAT	CCCAAGCCGA	ATTCTGCAGA	TATCCATCAC	ACTGGCGGCC	2280
	GCTCGAGCAT	GCATCTAGAG	GGCCCAATTC	GCCCTATAGT	GAGTCGTATT	ACAATTCACT	2340
40	GGCCGTCGTT	TTACAACGTC	GTGACTGGGA	AAACCCTGGC	GTTACCCAAC	TTAATCGCCT	2400
	TGCAGCACAT	CCCCCTTTCG	CCAGCTGGCG	TAATAGCGAA	GAGGCCCGCA	CCGATCGCCC	2460
45	TTCCCAACAG	TTGCGCAGCC	TGAATGGCGA	ATGGGACGCG	CCCTGTAGCG	GCGCATTAAG	2520
	CGCGGCGGGT	GTGGTGGTTA	CGCGCAGCGT	GACCGCTACA	CTTGCCAGCG	CCCTAGCGCC	2580
	CGCTCCTTTC	GCTTTCTTCC	CTTCCTTTCT	CGCCACGTTC	GCCGGCTTTC	CCCGTCAAGC	2640
50	TCTAAATCGG	GGGCTCCCTT	TAGGGTTCCG	ATTTAGAGCT	TTACGGCACC	TCGACCGCAA	2700
	ስ ስ ስ ስ ርጥጥር ስ ጥ	ттесетсьте	GTTCACGTAG	TGGGCCATCG	CCCTGATAGA	CGGTTTTTCG	2760

	CCCTTTGACG	TTGGAGTCCA	CGTTCTTTAA	TAGTGGACTC	TIGITCCAAA	CTGGAACAAC	282
	ACTCAACCCT	ATCGCGGTCT	ATTCTTTTGA	TTTATAAGGG	ATTTTGCCGA	TTTCGGCCTA	288
5	TTGGTTAAAA	AATGAGCTGA	TTTAACAAAT	TCAGGGCGCA	AGGGCTGCTA	AAGGAACCGG	294
	AACACGTAGA	AAGCCAGTCC	GCAGAAACGG	TGCTGACCCC	GGATGAATGT	CAGCTACTGG	300
10	GCTATCTGGA	CAAGGGAAAA	CGCAAGCGCA	AAGAGAAAGC	AGGTAGCTTG	CAGTGGGCTT	306
	ACATGGCGAT	AGCTAGACTG	GGCGGTTTTA	TGGACAGCAA	GCGAACCGGA	ATTGCCAGCT	312
	GGGGCGCCCT	CTGGTAAGGT	TGGGAAGCCC	TGCAAAGTAA	ACTGGATGGC	TTTCTTGCCG	318
15	CCAAGGATCT	GATGGCGCAG	GGGATCAAGA	TCTGATCAAG	AGACAGGATG	AGGATCGTTT	324
	CGCATGATTG	AACAAGATGG	ATTGCACGCA	GGTTCTCCGG	CCGCTTGGGT	GGAGAGGCTA	330
	TTCGGCTATG	ACTGGGCACA	ACAGACAATC	GGCTGCTCTG	ATGCCGCCGT	GTTCCGGCTG	3360
20	TCAGCGCAGG	GGCGCCCGGT	TCITTTTGTC	AAGACCGACC	TGTCCGGTGC	CCTGAATGAA	3420
	CTGCAGGACG	AGGCAGCGCG	GCTATCGTGG	CTGGCCACGA	CCCCCTTCC	TTGCGCAGCT	3480
	GTGCTCGACG	TTGTCACTGA	AGCGGGAAGG	GACTGGCTGC	TATTGGGCGA	AGTGCCGGGG	3540
25	CAGGATCTCC	TGTCATCTCG	CCTTGCTCCT	GCCGAGAAAG	TATCCATCAT	GGCTGATGCA	3600
	ATGCGGCGGC	TGCATACGCT	TGATCCGGCT	ACCTGCCCAT	TCGACCACCA	AGCGAAACAT	3660
30	CGCATCGAGC	GAGCACGTAC	TCGGATGGAA	GCCGGTCTTG	TCGATCAGGA	TGATCTGGAC	3720
	GAAGAGCATC	AGGGGCTCGC	GCCAGCCGAA	CTGTTCGCCA	GGCTCAAGGC	GCGCATGCCC	3780
	GACGGCGAGG	ATCTCGTCGT	GATCCATGGC	GATGCCTGCT	TGCCGAATAT	CATGGTGGAA	-3840
35	AATGGCCGCT	TTTCTGGATT	CAACGACTGT	GGCCGGCTGG	GTGTGGCGGA	CCGCTATCAG	3900
	GACATAGCGT	TGGATACCCG	TGATATTGCT	GAAGAGCTTG	GCGGCGAATG	GGCTGACCGC	3960
	TTCCTCGTGC	TTTACGGTAT	CGCCGCTCCC	GATTCGCAGC	GCATCGCCTT	CTATCGCCTT	4020
40	CTTGACGAGT	TCTTCTGAAT	TGAAAAAGGA	AGAGTATGAG	TATTCAACAT	TTCCGTGTCG	4080
	CCCTTATTCC	CTTTTTTGCG	GCATTTTGCC	TTCCTGTTTT	TGCTCACCCA	GAAACGCTGG	4140
45	TGAAAGTAAA	AGATGCTGAA	GATCAGTTGG	GTGCACGAGT	GGGTTACATC	GAACTGGATC	4200
	TCAACAGCGG	TAAGATCCTT	GAGAGTTTTC	GCCCGAAGA	ACGTTTTCCA	ATGATGAGCA	4260
	CTTTTAAAGT	TCTGCTATGT	CATACACTAT	TATCCCGTAT	TGACGCCGGG	CAAGAGCAAC	4320
50	TCGGTCGCCG	GGCGCGGTAT	TCTCAGAATG	ACTTGGTTGA	GTACTCACCA	GTCACAGAAA	4380
	AGCATCTTAC	GGATGGCATG	ACAGTAAGAG	AATTATGCAG	TGCTGCCATA	ACCATGAGTG	4440

	ATAACACTG	C GGCCAACTT	A CTTCTGACA	A CGATCGGAG	G ACCGAAGGAC	G CTAACCGCTT	4500
5	TTTTGCACA	A CATGGGGGA	CATGTAACT	C GCCTTGATC	G TTGGGAACCG	GAGCTGAATG	4560
Ū	AAGCCATACC	AAACGACGAC	AGTGACACC	A CGATGCCTG	T AGCAATGCCA	ACAACGTTGC	4620
	GCAAACTATI	AACTGGCGA	CTACTTACTY	C TAGCTTCCC	GCAACAATTA	ATAGACTGGA	4680
10	TGGAGGCGGA	TAAAGTTGC	GGACCACTTO	TGCGCTCGG	CCTTCCGGCT	GGCTGGTTTA	4740
	TTGCTGATAA	ATCTGGAGCC	: GGTGAGCGTG	GCTCTCGCGC	TATCATTGCA	GCACTGGGGC	4800
	CAGATGGTAA	GCCCTCCCGT	ATCGTAGTTA	TCTACACGAC	GGGGAGTCAG	GCAACTATGG	4860
15	ATGAACGAAA	TAGACAGATO	GCTGAGATAG	GTGCCTCACT	GATTAAGCAT	TGGTAACTGT	4920
	CAGACCAAGT	TTACTCATAT	ATACTTTAGA	TTGATTTAAA	ACTTCATTTT	TAATTTAAAA	4980
20	GGATCTAGGT	GAAGATCCTT	TTTGATAATC	TCATGACCAA	AATCCCTTAA	CGTGAGTTTT	5040
	CGTTCCACTG	AGCGTCAGAC	CCCGTAGAAA	AGATCAAAGG	ATCTTCTTGA	GATCCTTTTT	5100
					GCTACCAGCG		5160
25	TGCCGGATCA	AGAGCTACCA	ACTCTTTTTC	CGAAGGTAAC	TGGCTTCAGC	AGAGCGCAGA	5220
	TACCAAATAC	TGTCCTTCTA	GTGTAGCCGT	AGTTAGGCCA	CCACTTCAAG	AACTCTGTAG	5280
30					GGCTGCTGCC		5340
	,				GGATAAGGCG		5400
					AACGACCTAC		5460
35						AAGGCGGACA	5520
					GAGGGAGCTT		5580
•					CTGACTTGAG		5640
40					CAGCAACGCG		5700
	GGTTCCTGGC						5760
45	CTGTGGATAA				CGCTCGCCGC	AGCCGAACGA	5820
	CCGAGCGCAG (CGAGTCAGTG .	AGCGAGGAAG	CGGAAG	•		5056

(2) INFORMATION ZU SEQ ID NO: 35:

(i) SEQUENZ CHARAKTERISTIKA:(A) LÂNGE: 7475 Basenpaare(B) ART: Nukleinsäure

55

- (C) STRANGFORM: Einzel
- (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: DNS (genomisch)

(ix) MERKMALE:

- (A) NAME/SCHLÜSSEL: exon
- (B) LAGE: 1..7475

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 35:

GACGGATCGG GAGATCTCCC GATCCCCTAT GGTCGACTCT CAGTACAATC TGCTCTGATG 60 15 CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT GGAGGTCGCT GAGTAGTGCG 120 CGAGCAAAAT TTAAGCTACA ACAAGGCAAG GCTTGACCGA CAATTGCATG AAGAATCTGC 180 TTAGGGTTAG GCGTTTTGCG CTGCTTCGCG ATGTACGGGC CAGATATACG CGTTGACATT 20 240 GATTATTGAC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA 300 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG CCCAACGACC 360 25 CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAC TATTTACGGT AAACTGCCCA CTTGGCAGTA CATCAAGTGT 480 ATCATATGCC AAGTACGCCC CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT 540 30 ATGCCCAGTA CATGACCTTA TGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA TAGCGGTTTG 35 ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG TTTTGGCACC 720 AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC CCCATTGACG CAAATGGGCG 780 GTAGGCGTGT ACGGTGGGAG GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA 840 40 CTGCTTACTG GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC 900 GTTTAAACGG GCCTCTAGA CTCGAGCGGC CGCCACTGTG CTGGATATCT GCAGAATTCG 960 GCTTGGGATG ACGCCTCCTC CGCCCGGACG TGCCGCCCCC AGCGCACCGC GCGCCCGCGT 1020 45 CCCTGGCCCG CCGGCTCGGT TGGGGCTTCC GCTGCGGCTG CGGCTGCTGC TGCTGCTCTG 1080 GGCGGCCGCC GCCTCCGCCC AGGGCCACCT AAGGAGCGGA CCCCGCATCT TCGCCGTCTG 1140 50 GAAAGGCCAT GTAGGGCAGG ACCGGGTGGA CTTTGGCCAG ACTGAGCCGC ACACGGTGCT 1200 TTTCCACGAG CCAGGCAGCT CCTCTGTGTG GGTGGGAGGA CGTGGCAAGG TCTACCTCTT 1260

55

5

	TGACTTCCCC	GAGGGCAAGA	ACGCATCTGT	GCGCACGGTG	AATATCGGCT	CCACAAAGGG	1320
	GTCCTGTCTG	GATAAGCGGG	ACTGCGAGAA	CTACATCACT	CTCCTGGAGA	GGCGGAGTGA	1380
	GGGGCTGCTG	GCCTGTGGCA	CCAACGCCCG	GCACCCCAGC	TGCTGGAACC	TGGTGAATGG	1440
	CACTGTGGTG	CCACTTGGCG	AGATGAGAGG	CTACGCCCCC	TTCAGCCCGG	ACGAGAACTC	1500
	CCTGGTTCTG	TTTGAAGGGG	ACGAGGTGTA	TTCCACCATC	CGGAAGCAGG	DETAGOATAA	1560
	GAAGATCCCT	CGGTTCCGCC	GCATCCGGGG	CGAGAGTGAG	CTGTACACCA	GTGATACTGT	1620
	CATGCAGAAC	CCACAGTTCA	TCAAAGCCAC	CATCGTGCAC	CAAGACCAGG	CTTACGATGA	1680
	CAAGATCTAC	TACTTCTTCC	GAGAGGACAA	TCCTGACAAG	AATCCTGAGG	CTCCTCTCAA	1740
	TGTGTCCCGT	GTGGCCCAGT	TGTGCAGGGG	GGACCAGGGT	GGGGAAAGTT	CACTGTCAGT	1800
	CTCCAAGTGG	AACACTTTTC	TGAAAGCCAT	GCTGGTATGC	AGTGATGCTG	CCACCAACAA	1860
	GAACTTCAAC	AGGCTGCAAG	ACGTCTTCCT	GCTCCCTGAC	CCCAGCGGCC	AGTGGAGGGA	1920
	CACCAGGGTC	TATGGTGTTT	TCTCCAACCC	CTGGAACTAC	TCAGCCGTCT	GTGTGTATTC	1980
	CCTCGGTGAC	ATTGACAAGG	TCTTCCGTAC	CTCCTCACTC	AAGGGCTACC	ACTCAAGCCT	2040
	TCCCAACCCG	CGGCCTGGCA	AGTGCCTCCC	AGACCAGCAG	CCGATACCCA	CAGAGACCTT	2100
	CCAGGTGGCT	GACCGTCACC	CAGAGGTGGC	GCAGAGGGTG	GAGCCCATGG	GGCCTCTGAA	2160
	GACGCCATTG	TTCCACTCTA	AATACCACTA	CCAGAAAGTG	GCCGTTCACC	GCATGCAAGC	2220
	CAGCCACGGG	GAGACCTTTC	ATGTGCTTTA	CCTAACTACA	GACAGGGGCA	CTATCCACAA	2280
	GGTGGTGGAA	CCGGGGGAGC	AGGAGCACAG	CTTCGCCTTC	AACATCATGG	AGATCCAGCC	2340
	CTTCCGCCGC	GCGGCTGCCA	TCCAGACCAT	GTCGCTGGAT	GCTGAGCGGA	GGAAGCTGTA	2400
						TCTATGGCGG	2460
-	GGGCTGCCAC	GGTTGCCTCA	TGTCCCGAGA	CCCCTACTGC	GGCTGGGACC	AGGGCCGCTG	2520
						CCGAGCCACA	2580
						CCCTGGCCCC	2640
i	AAACTCTCGC	TACTACCTGA	GCTGCCCCAT	GGAATCCCGC	CACGCCACCT	ACTCATGGCG	2700
						ACTGCATCCT	2760
	•					CCCAGGAGGG	2820
)						TCATGGCCGA	2880
	GCACCTGCTG	GGTCATGCCT	GTGCCCTGGC	TGCCTCCCTC	TGGCTGGGGG	TGCTGCCCAC	2940

	ACTCACTCTT	GGCTTGCTGG	TCCACGTGAA	GCTTGGGCCC	GAACAAAAAC	TCATCTCAGA	3000
	AGAGGATCTG	AATAGCGCCG	TCGACCATCA	TCATCATCAT	CATTGAGTTT	AAACCGCTGA	3060
5	TCAGCCTCGA	CTGTGCCTTC	TAGTTGCCAG	CCATCTGTTG	TTTGCCCCTC	CCCCGTGCCT	3120
	TCCTTGACCC	TGGAAGGTGC	CACTCCCACT	GTCCTTTCCT	AATAAAATGA	GGAAATTGCA	3180
10	TCGCATTGTC	TGAGTAGGTG	TCATTCTATT	CTGGGGGGTG	GGGTGGGGCA	GGACAGCAAG	3240
	GGGGAGGATT	GGGAAGACAA	TAGCAGGCAT	GCTGGGGATG	CGGTGGGCTC	TATGGCTTCT	3300
	GAGGCGGAAA	GAACCAGCTG	GGGCTCTAGG	GGGTATCCCC	ACGCGCCCTG	TAGCGGCGCA	3360
15	TTAAGCGCGG	CGGGTGTGGT	GGTTACGCGC	AGCGTGACCG	CTACACTTGC	CAGCGCCCTA	3420
	GCGCCCGCTC	CTTTCGCTTT	CTTCCCTTCC	TTTCTCGCCA	CGTTCGCCGG	CTTTCCCCGT	3480
20	CAAGCTCTAA	ATCGGGGCAT	CCCTTTAGGG	TTCCGATTTA	GTGCTTTACG	GCACCTCGAC	3540
	CCCAAAAAAC	TTGATTAGGG	TGATGGTTCA	CGTAGTGGGC	CATCGCCCTG	ATAGACGGTT	3600
	TTTCGCCCTT	TGACGTTGGA	GTCCACGTTC	TTTAATAGTG	GACTCTTGTT	CCAAACTGGA	3660
25	ACAACACTCA	ACCCTATCTC	GGTCTATTCT	TTTGATTTAT	AAGGGATTTT	GGGGATTTCG	3720
	GCCTATTGGT	ADTAAAAAT	GCTGATTTAA	CAAAAATTTA	ACGCGAATTA	ATTCTGTGGA	3780
30	ATGTGTGTCA	GTTAGGGTGT	GGAAAGTCCC	CAGGCTCCCC	AGGCAGGCAG	AAGTATGCAA	3840
30	AGCATGCATC	TCAATTAGTC	AGCAACCAGG	TGTGGAAAGT	CCCCAGGCTC	CCCAGCAGGC	3900
	AGAAGTATGC	AAAGCATGCA	TCTCAATTAG	TCAGCAACCA	TAGTCCCGCC	CCTAACTCCG	3960
35	CCCATCCCGC	CCCTAACTCC	GCCCAGTTCC	GCCCATTCTC	CGCCCCATGG	CTGACTAATT	4020
	TTTTTTTTTT	ATGCAGAGGC	CGAGGCCGCC	TCTCCCTCTG	AGCTATTCCA	GAAGTAGTGA	4080
	GGAGGCTTTT	TTGGAGGCCT	AGGCTTTTGC	AAAAAGCTCC	CGGGAGCTTG	TATATCCATT	4140
40	TTCGGATCTG	ATCAAGAGAC	AGGATGAGGA	TCGTTTCGCA	TGATTGAACA	AGATGGATTG	4200
	CACGCAGGTT	CTCCGGCCGC	TTGGGTGGAG	AGGCTATTCG	GCTATGACTG	GGCACAACAG	4260
45	ACAATCGGCT	GCTCTGATGC	CGCCGTGTTC	CGGCTGTCAG	CGCAGGGGCG	CCCGGTTCTT	4320
	TTTGTCAAGA	CCGACCTGTC	CGGTGCCCTG	AATGAACTGC	AGGACGAGGC	AGCGCGGCTA	4380
	TCGTGGCTGG	CCACGACGGG	CGTTCCTTGC	GCAGCTGTGC	TCGACGTTGT	CACTGAAGCG	4440
50	GGAAGGGACT	GGCTGCTATT	GGGCGAAGTG	CCGGGGCAGG	ATCTCCTGTC	ATCTCACCTT	4500
	GCTCCTGCCG	AGAAAGTATC	CATCATGGCT	GATGCAATGC	GGCGGCTGCA	TACGCTTGAT	4560

	CCGGCTACCT	GCCCATTCGA	CCACCAAGCG	AAACATCGCA	TCGAGCGAGC	ACGTACTCGG	462
_	ATGGAAGCCG	GTCTTGTCGA	TCAGGATGAT	CTGGACGAAG	AGCATCAGGG	GCTCGCGCCA	468
5	GCCGAACTGT	TCGCCAGGCT	CAAGGCGCGC	ATGCCCGACG	GCGAGGATCT	CGTCGTGACC	4740
	CATGGCGATG	CCTGCTTGCC	GAATATCATG	GTGGAAAATG	GCCGCTTTTC	TGGATTCATC	4800
10	GACTGTGGCC	GGCTGGGTGT	GGCGGACCGC	TATCAGGACA	TAGCGTTGGĆ	TACCCGTGAT	4860
	ATTGCTGAAG	AGCTTGGCGG	CGAATGGGCT	GACCGCTTCC	TCGTGCTTTA	CGGTATCGCC	4920
	GCTCCCGATT	CGCAGCGCAT	CGCCTTCTAT	CGCCTTCTTG	ACGAGTTCTT	CTGAGCGGGA	4980
15	CTCTGGGGTT	CGAAATGACC	GACCAAGCGA	CGCCCAACCT	GCCATCACGA	GATTTCGATT	5040
	CCACCGCCGC	CTTCTATGAA	AGGTTGGGCT	TCGGAATCGT	TTTCCGGGAC	GCCGGCTGGA	5100
	TGATCCTCCA	GCGCGGGGAT	CTCATGCTGG	AGTTCTTCGC	CCACCCCAAC	TTGTTTATTG	5160
20	CAGCTTATAA	TGGTTACAAA	TAAAGCAATA	GCATCACAAA	TTTCACAAAT	AAAGCATTTT	. 5220
	TTTCACTGCA	TTCTAGTTGT	GGTTTGTCCA	AACTCATCAA	TGTATCTTAT	CATGTCTGTA	5280
25	TACCGTCGAC	CTCTAGCTAG	AGCTTGGCGT	AATCATGGTC	ATAGCTGTTT	CCTGTGTGAA	5340
	ATTGTTATCC	GCTCACAATT	CCACACAACA	TACGAGCCGG	AAGCATAAAG	TGTAAAGCCT	5400
	GGGGTGCCTA	ATGAGTGAGC	TAACTCACAT	TAATTGCGTT	GCGCTCACTG	CCCGCTTTCC	5460
30	AGTCGGGAAA	CCTGTCGTGC	CAGCTGCATT	AATGAATCGG	CCAACGCGCG	GGGAGAGGCG	5520
	GTTTGCGTAT	TEGECECTCT	TCCGCTTCCT	CGCTCACTGA	CTCGCTGCGC	TCGGTCGTTC	5580
	GGCTGCGGCG	AGCGGTATCA	GCTCACTCAA	AGGCGGTAAT	ACGGTTATCC	ACAGAATCAG	5640
35	GGGATAACGC	AGGAAAGAAC	ATGTGAGCAA	AAGGCCAGCA	AAAGGCCAGG	AACCGTAAAA	5700
	AGGCCGCGTT	GCTGGCGTTT	TTCCATAGGC	TCCGCCCCCC	TGACGAGCAT	CACAAAAATC	5760
40	GACGCTCAAG	TCAGAGGTGG	CGAAACCCGA	CAGGACTATA	AAGATACCAG	GCGTTTCCCC	5820
	CTGGAAGCTC	CCTCGTGCGC	TCTCCTGTTC	CGACCCTGCC	GCTTACCGGA	TACCTGTCCG	5880
	CCTTTCTCCC	TTCGGGAAGC	GTGGCGCTTT	CTCAATGCTC	ACGCTGTAGG	TATCTCAGTT	5940
45	CGGTGTAGGT	CGTTCGCTCC	AAGCTGGGCT	GTGTGCACGA	ACCCCCGTT	CAGCCCGACC	6000
	GCTGCGCCTT	ATCCGGTAAC	TATCGTCTTG	AGTCCAACCC	GGTAAGACAC	GACTTATCGC	6060
	CACTGGCAGC	AGCCACTGGT	AACAGGATTA	GCAGAGCGAG	GTATGTAGGC	GGTGCTACAG	6120
50	AGTTCTTGAA	GTGGTGGCCT	AACTACGGCT	ACACTAGAAG	GACAGTATTT	GGTATCTGCG	6180
	CTCTGCTGAA	GCCAGTTACC	TTCGGAAAAA	GAGTTGGTAG	CTCTTGATCC	GGCAAACAAA	6240

	CCACCGCTGG	TAGCGGTGGT	TTTTTTGTTT	GCAAGCAGCA	GATTACGCGC	AGAAAAAAAG	•	6300
	GATCTCAAGA	AGATCCTTTG	ATCTTTTCTA	CGGGGTCTGA	CGCTCAGTGG	AACGAAAACT	(6360
	CACGTTAAGG	GATTTTGGTC	ATGAGATTAT	CAAAAAGGAT	CTTCACCTAG	ATCCTTTTAA	(6420
	ATTAAAAATG	AAGTTTTAAA	TCAATCTAAA	GTATATATGA	GTAAACTTGG	TCTGACAGTT	Ÿ	6480
o	ACCAATGCTT	AATCAGTGAG	GCACCTATCT	CAGCGATCTG	TCTATTTCGT	TCATCCATAG	•	6540
	TTGCCTGACT	CCCCGTCGTG	TAGATAACTA	CGATACGGGA	GGGCTTACCA	TCTGGCCCCA	•	6600
_	GTGCTGCAAT	GATACCGCGA	GACCCACGCT	CACCGGCTCC	AGATTTATCA	GCAATAAACC	•	6660
5	AGCCAGCCGG	AAGGGCCGAG	CGCAGAAGTG	GTCCTGCAAC	TTTATCCGCC	TCCATCCAGT	•	6720
	CTATTAATTG	TTGCCGGGAA	GCTAGAGTAA	GTAGTTCGCC	AGTTAATAGT	TTGCGCAACG	•	6780
ю	TTGTTGCCAT	TGCTACAGGC	ATCGTGGTGT	CACGCTCGTC	GTTTGGTATG	GCTTCATTCA	•	6840
	GCTCCGGTTC	CCAACGATCA	AGGCGAGTTA	CATGATCCCC	CATGTTGTGC	AAAAAAGCGG	•	6900
	TTAGCTCCTT	CGGTCCTCCG	ATCGTTGTCA	GAAGTAAGTT	GGCCGCAGTG	TTATCACTCA	•	6960
5	TGGTTATGGC	AGCACTGCAT	AATTCTCTTA	CTGTCATGCC	ATCCGTAAGA	TGCTTTTCTG	•	7020
	TGACTGGTGA	GTACTCAACC	AAGTCATTCT	GAGAATAGTG	TATGCGGCGA	CCGAGTTGCT	•	7080
ю	CTTGCCCGGC	GTCAATACGG	GATAATACCG	CGCCACATAG	CAGAACTTTA	AAAGTGCTCA	•	7140
	TCATTGGAAA	ACGTTCTTCG	GGGCGAAAAC	TCTCAAGGAT	CTTACCGCTG	TTGAGATCCA		7200
	GTTCGATGTA	ACCCACTCGT	GCACCCAACT	GATCTTCAGC	ATCTTTTACT	TTCACCAGCG	•	7260
5	TTTCTGGGTG	AGCAAAAACA	GGAAGGCAAA	ATGCCGCAAA	AAAGGGAATA	AGGGCGACAC		7320
	GGAAATGTTG	AATACTCATA	CTCTTCCTTT	TTCAATATTA	TTGAAGCATT	TATCAGGGTT		7380
o	ATTGTCTCAT	GAGCGGATAC	ATATTTGAAT	GTATTTAGAA	AAATAAACAA	ATAGGGGTTC		7440
	CGCGCACATT	TCCCCGAAAA	GTGCCACCTG	ACGTC				7475

(2) INFORMATION ZU SEQ ID NO: 36:

45

- (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 8192 Basenpaare

 - (B) ART: Nukleinsäure (C) STRANGFORM: Einzel
 - (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: DNS (genomisch)

55

(ix) MERKMALE:

(A) NAME/SCHLÜSSEL: exon (B) LAGE: 1..8192

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 36:

GACGGATCGG GAGATCTCCC GATCCCCTAT GGTCGACTCT CAGTACAATC TGCTCTGATG	60
CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT GGAGGTCGCT GAGTAGTGCG	120
CGAGCAAAAT TTAAGCTACA ACAAGGCAAG GCITGACCGA CAATTGCATG AAGAATCTGC	180
TTAGGGTTAG GCGTTTTGCG CTGCTTCGCG ATGTACGGGC CAGATATACG CGTTGACATT	240
GATTATTGAC TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA	300
TEGAGTTCCG CETTACATAA CTTACEGTAA ATEGCCCECC TEGCTEACCG CCCAACEACC	360
CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT AACGCCAATA GGGACTTTCC	420
ATTGACGTCA ATGGGTGGAC TATTTACGGT AAACTGCCCA CTTGGCAGTA CATCAAGTGT	480
ATCATATGCC AAGTACGCCC CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT	540
ATGCCCAGTA CATGACCTTA TGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA	600
TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA TAGCGGTTTG	660
ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA TGGGAGTTTG TTTTGGCACC	720
AAAATCAACG GGACTTTCCA AAATGTCGTA ACAACTCCGC CCCATTGACG CAAATGGGCG	780
GTAGGCGTGT ACGGTGGGAG GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA	840
CTGCTTACTG GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC	900
GTTTAAACGG GCCCTCTAGA CTCGAGCGGC CGCCACTGTG CTGGATATCT GCAGAATTCG	960
GCTTGGGATG ACGCCTCCTC CGCCCGGACG TGCCGCCCCC AGCGCACCGC GCGCCCGCGT	1020
CCCTGGCCCG CCGGCTCGGT TGGGGCTTCC GCTGCGGCTG CGGCTGCTGC TGCTGCTCTG	1080
GGCGGCCGCC GCCTCCGCCC AGGGCCACCT AAGGAGCGGA CCCCGCATCT TCGCCGTCTG	1140
GAAAGGCCAT GTAGGGCAGG ACCGGGTGGA CTTTGGCCAG ACTGAGCCGC ACACGGTGCT	1200
TTTCCACGAG CCAGGCAGCT CCTCTGTGTG GGTGGGAGGA CGTGGCAAGG TCTACCTCTT	1260
TGACTTCCCC GAGGGCAAGA ACGCATCTGT GCGCACGGTG AATATCGGCT CCACAAAGGG	1320
GTCCTGTCTG GATAAGCGGG ACTGCGAGAA CTACATCACT CTCCTGGAGA GGCGGAGTGA	1380
GGGGCTGCTG GCCTGTGGCA CCAACGCCCG GCACCCCAGC TGCTGGAACC TGGTGAATGG	1440

	CACTGTGGTG	CCACTTGGCG	agatgagagg	CTACGCCCCC	TTCAGCCCGG	ACGAGAACTC	1500
	CCTGGTTCTG	TTTGAAGGGG	ACGAGGTGTA	TTCCACCATC	CGGAAGCAGG	AATACAATGG	1560
	GAAGATCCCT	CGGTTCCGCC	GCATCCGGGG	CGAGAGTGAG	CTGTACACCA	GTGATACTGT	1620
	CATGCAGAAC	CCACAGTTCA	TCAAAGCCAC	CATCGTGCAC	CAAGACCAGG	CTTACGATGA	1680
•	CAAGATCTAC	TACTTCTTCC	GAGAGGACAA	TCCTGACAAG	AATCCTGAGG	CTCCTCTCAA	1740
0	TGTGTCCCGT	GTGGCCCAGT	TGTGCAGGGG	GGACCAGGGT	GGGGAAAGTT	CACTGTCAGT	1800
	CTCCAAGTGG	AACACTTTTC	TGAAAGCCAT	GCTGGTATGC	AGTGATGCTG	CCACCAACAA	1860
15	GAACTTCAAC	AGGCTGCAAG	ACGTCTTCCT	GCTCCCTGAC	CCCAGCGGCC	AGTGGAGGGA	1920
	CACCAGGGTC	TATGGTGTTT	TCTCCAACCC	CTGGAACTAC	TCAGCCGTCT	GTGTGTATTC	1980
	CCTCGGTGAC	ATTGACAAGG	TCTTCCGTAC	CTCCTCACTC	AAGGGCTACC	ACTCAAGCCT	2040
20	TCCCAACCCG	CGGCCTGGCA	AGTGCCTCCC	AGACCAGCAG	CCGATACCCA	CAGAGACCTT	2100
	CCAGGTGGCT	GACCGTCACC	CAGAGGTGGC	GCAGAGGGTG	GAGCCCATGG	GGCCTCTGAA	2160
	GACGCCATTG	TTCCACTCTA	AATACCACTA	CCAGAAAGTG	GCCGTTCACC	GCATGCAAGC	2220
25	CAGCCACGGG	GAGACCTTTC	ATGTGCTTTA	CCTAACTACA	GACAGGGGCA	CTATCCACAA	2280
	GGTGGTGGAA	CCGGGGGAGC	AGGAGCACAG	CTTCGCCTTC	AACATCATGG	AGATCCAGCC	2340
30	CTTCCGCCGC	GCGGCTGCCA	TCCAGACCAT	GTCGCTGGAT	GCTGAGCGGF	GGAAGCTGTA	2400
	TGTGAGCTCC	CAGTGGGAGG	TGAGCCAGGT	GCCCCTGGAC	CTGTGTGAGG	TCTATGGCGG	2460
	GGGCTGCCAC	GGTTGCCTCA	TGTCCCGAGA	CCCCTACTGC	GGCTGGGAC	AGGCCGCTG	2520
35	CATCTCCATC	TACAGCTCCG	AACGGTCAGT	GCTGCAATCC	ATTAATCCA	CCGAGCCACA	2580
	CAAGGAGTGT	CCCAACCCCA	AACCAGACA	GGCCCCACTC	CAGAAGGTT	r ccctggcccc	2640
40	AAACTCTCGC	TACTACCTGA	GCTGCCCCAT	GGAATCCCG	CACGCCACC	r actcatggcg	2700
40	CCACAAGGAC	AACGTGGAGC	AGAGCTGCG	A ACCTGGTCAC	CAGAGCCCC	A ACTGCATCCT	2760
	GTTCATCGAC	AACCTCACGO	GCAGCAGT	CGGCCACTAC	TTCTGCGAG	G CCCAGGAGGG	2820
45	CTCCTACTT	CGCGAGGCTC	C AGCACTGGC	A GCTGCTGCC	C GAGGACGGC	A TCATGGCCGA	2880
	GCACCTGCT	G GGTCATGCCT	r GTGCCCTGG	C TGCCTCCCT	C TGGCTGGGG	G TGCTGCCCAC	2940
	ACTCACTCT	T GGCTTGCTG	TCCACATGG	r gagcaaggg	C GAGGAGCTG	T TCACCGGGGT	300
50	GGTGCCCAT	C CTGGTCGAG	C TGGACGGCG.	A CGTAAACGG	C CACAAGTTC	A GCGTGTCCGG	306
		a adamstaca	א. הכתום הפפרים	A GCTGACCCT	G AAGTTCATC	T GCACCACCGG	312

	CAAGCTGCCC	GTGCCCTGGC	CCACCCTCGT	GACCACCCTG	ACCTACGGCG	TGCAGTGCTT	3180
	CAGCCGCTAC	CCCGACCACA	TGAAGCAGCA	CGACTTCTTC	AAGTCCGCCA	TGCCCGAAGG	3240
	CTACGTCCAG	GAGCGCACCA	TCTTCTTCAA	GGACGACGGC	AACTACAAGA	CCCGCGCCGA	3300
	GGTGAAGTTC	GAGGGCGACA	CCCTGGTGAA	CCGCATCGAG	CTGAAGGGCA	TCGACTTCAA	3360
0	GGAGGACGGC	AACATCCTGG	GGCACAAGCT	GGAGTACAAC	TACAACAGCC	ACAACGTCTA	3420
	TATCATGGCC	GACAAGCAGA	AGAACGGCAT	CAAGGTGAAC	TTCAAGATCC	GCCACAACAT	3480
	CGAGGACGGC	AGCGTGCAGC	TCGCCGACCA	CTACCAGCAG	AACACCCCCA	TCGGCGACGG	3540
5	CCCCGTGCTG	CTGCCCGACA	ACCACTACCT	GAGCACCCAG	TCCGCCCTGA	GCAAAGACCC	3600
	CAACGAGAAG	CGCGATCACA	TGGTCCTGCT	GGAGTTCGTG	ACCGCCGCCG	GGATCACTCT	3660
20	CGGCATGGAC	GAGCTGTACA	AGGTGAAGCT	TGGGCCCGAA	CAAAAACTCA	TCTCAGAAGA	3720
.0	GGATCTGAAT	AGCGCCGTCG	ACCATCATCA	TCATCATCAT	TGAGTTTAAA	CCGCTGATCA	3780
	GCCTCGACTG	TGCCTTCTAG	TTGCCAGCCA	TCTGTTGTTT	GCCCCTCCCC	CGTGCCTTCC	3840
25	TTGACCCTGG	AAGGTGCCAC	TCCCACTGTC	CTTTCCTAAT	AAAATGAGGA	AATTGCATCG	3900
	CATTGTCTGA	GTAGGTGTCA	TTCTATTCTG	GGGGGTGGGG	TGGGGCAGGA	CAGCAAGGGG	3960
	GAGGATTGGG	AAGACAATAG	CAGGCATGCT	GGGGATGCGG	TGGGCTCTAT	GGCTTCTGAG	4020
30	GCGGAAAGAA	CCAGCTGGGG	CTCTAGGGGG	TATCCCCACG	CGCCCTGTAG	CGGCGCATTA	4080
	AGCGCGGCGG	GTGTGGTGGT	TACGCGCAGC	GTGACCGCTA	CACTTGCCAG	CGCCCTAGCG	4140
35	CCCGCTCCTT	TCGCTTTCTT	CCCTTCCTTT	CTCGCCACGT	TCGCCGGCTT	TCCCCGTCAA	4200
	GCTCTAAATC	GGGGCATCCC	TTTAGGGTTC	CGATTTAGTG	CTTTACGGCA	CCTCGACCCC	4260
	AAAAAACTTG	ATTAGGGTGA	TGGTTCACGT	AGTGGGCCAT	CGCCCTGATA	GACGGTTTTT	4320
40	CGCCCTTTGA	CGTTGGAGTC	CACGTTCTTT	AATAGTGGAC	TCTTGTTCCA	AACTGGAACA	4380
	ACACTCAACC	CTATCTCGGT	CTATTCTTTT	GATTTATAAG	GGATTTTGGG	GATTTCGGCC	4440
45	TATTGGTTAA	AAAATGAGCT	GATTTAACAA	AAATTTAACG	CGAATTAATT	CTGTGGAATG	4500
	TGTGTCAGTI	AGGGTGTGGA	AAGTCCCCAG	GCTCCCCAGG	CAGGCAGAAG	TATGCAAAGC	4560
	ATGCATCTCA	ATTAGTCAGC	AACCAGGTGT	GGAAAGTCCC	CAGGCTCCCC	AGCAGGCAGA	4620
50	AGTATGCAAA	GCATGCATCT	CAATTAGTCA	GCAACCATAG	TCCCGCCCCT	AACTCCGCCC	4680
	>TCCCCCCCC	* TAACTCCCC	CAGTTCCGCC	CATTCTCCGC	CCCATGGCTG	ACTAATTTTT	4740

	TTTATTTATG	CAGAGGCCGA	GGCCGCCTCT	GCCTCTGAGC	TATTCCAGAA	GTAGTGAGGA	4800
	GGCTTTTTTG	GAGGCCTAGG	CTTTTGCAAA	AAGCTCCCGG	GAGCTTGTAT	ATCCATTTTC	4860
5						TGGATTGCAC	4920
							4980
						GGTTCTTTTT	5040
10						GCGGCTATCG	5100
						TGAAGCGGGA	5160
15						TCACCTTGCT	5220
						GCTTGATCCG	5280
						TACTCGGATG	5340
20						CGCGCCAGCC	5400
						CGTGACCCAT	5460
						ATTCATCGAC	5520
25						CCGTGATATT	5580
						3 TATCGCCGCT	5640
						GAGCGGGACTC	5700
30	TGGGGTTCG	A AATGACCGAC	CAAGCGACGC	CCAACCTGC	ATCACGAGA	T TTCGATTCCA	5760
						C GGCTGGATGA	5820
35						G TTTATTGCAG	5880
						A GCATTITIT	5940
						T GTCTGTATAC	6000
40						T GTGTGAAATT	606
						T AAAGCCTGGG	612
						CC GCTTTCCAGT	618
45						G AGAGGCGGTT	624
						CG GTCGTTCGGC	
50						CA GAATCAGGGG	
						AC CGTAAAAAGG	

CCGCGTTGCT GGCGTTTTTC CATAGGCTCC GCCCCCTGA CGAGCATCAC AAAAATCGAC	6480
CCGCGTTGCT GGCGTTTTC CATAGGCTCC GGCGGCG TTCCCCCTG GCTCAAGTCA GAGGTGGCGA AACCCGACAG GACTATAAAG ATACCAGGCG TTTCCCCCTG	6540
GCTCAAGTCA GAGGTGGCGA AACCCGACAG GACTTTACCGGATAC CTGTCCGCCT GAAGCTCCCT CGTGCGCTCT CCTGTTCCGA CCCTGCCGCT TACCGGATAC CTGTCCGCCT	6600
GAAGCTCCCT CGTGCGCTCT CCTGTTCCGA CCCTGCGGTAT CTCAGTTCGG	6660
TTCTCCCTTC GGGAAGCGTG GCGCTTTCTC AATGCTCACG CTGTAGGTAT CTCAGTTCGG	6720
TGTAGGTCGT TCGCTCCAAG CTGGGCTGTG TGCACGAACC CCCCGTTCAG CCCGACCGCT	6780
GCGCCTTATC CGGTAACTAT CGTCTTGAGT CCAACCCGGT AAGACACGAC TTATCGCCAC	6840
TGGCAGCAGC CACTGGTAAC AGGATTAGCA GAGCGAGGTA TGTAGGCGGT GCTACAGAGT	6900
TCTTGAAGTG GTGGCCTAAC TACGGCTACA CTAGAAGGAC AGTATTTGGT ATCTGCGCTC	6960
TGCTGAAGCC AGTTACCTTC GGAAAAAGAG TTGGTAGCTC TTGATCCGGC AAACAAACCA	7020
CCCCTCGTAG CGGTGGTTTT TTTGTTTGCA AGCAGCAGAT TACGCGCAGA AAAAAAGGAT	, , ,
CTCANGANGA TCCTTTGATC TTTTCTACGG GGTCTGACGC TCAGTGGAAC GAAAACTCAC	7080
CTTAAGGGAT TTTGGTCATG AGATTATCAA AAAGGATCTT CACCTAGATC CTTTTAAATT	7140
ANALTGARG TITTARATCA ATCTARAGTA TATATGAGTA AACTTGGTCT GACAGTTACC	7200
AATGCTTAAT CAGTGAGGCA CCTATCTCAG CGATCTGTCT ATTTCGTTCA TCCATAGTTG	7260
CCTGACTCCC CGTCGTGTAG ATAACTACGA TACGGGAGGG CTTACCATCT GGCCCCAGTG	7320
CTGCAATGAT ACCGCGAGAC CCACGCTCAC CGGCTCCAGA TTTATCAGCA ATAAACCAGC	7380
CAGCCGGAAG GGCCGAGCGC AGAAGTGGTC CTGCAACTTT ATCCGCCTCC ATCCAGTCTA	7440
CAGCCGGAAG GGCCGAGGG AGAGTAAGTA GTTCGCCAGT TAATAGTTTG CGCAACGTTG	7500
TTAATTGTTG CCGGGAAGCT AGAGTATOTT TTGCCATTGC TACAGGCATC GTGGTGTCAC GCTCGTCGTT TGGTATGGCT TCATTCAGCT	7560
TTGCCATTGC TACAGGCATC GTGGTGTCAC GTTGTGCAAA AAAGCGGTTA CCGGTTCCCA ACGATCAAGG CGAGTTACAT GATCCCCCAT GTTGTGCAAA AAAGCGGTTA	7620
CCGGTTCCCA ACGATCAAGG CGAGTTACAT GATOOTTACACCATGG GCTCCTTCGG TCCTCCGATC GTTGTCAGAA GTAAGTTGGC CGCAGTGTTA TCACTCATGG	7680
GCTCCTTCGG TCCTCCGATC GTTGTCAGAA GTAACTTCTCTCATCA CGTAAGATGC TTTTCTGTGA	7740
TTATGGCAGC ACTGCATAAT TCTCTTACTG TCATGCCATC CGTAAGATGC TTTTCTGTGA	7800
CTGGTGAGTA CTCAACCAAG TCATTCTGAG AATAGTGTAT GCGGCGACCG AGTTGCTCTT	786
GCCCGGCGTC AATACGGGAT AATACCGCGC CACATAGCAG AACTTTAAAA GTGCTCATCA	792
TTGGAAAACG TTCTTCGGGG CGAAAACTCT CAAGGATCTT ACCGCTGTTG AGATCCAGTT	798
CGATGTAACC CACTCGTGCA CCCAACTGAT CTTCAGCATC TTTTACTTTC ACCAGCGTTT	804
CTGGGTGAGC AAAAACAGGA AGGCAAAAATG CCGCAAAAAA GGGAATAAGG GCGACACGGA	

	AATGTTGAAT ACTCATACTC TTCCTTTTTC AATATTATTG AAGCATTTAT CAGGGTTATT	8100
	GTCTCATGAG CGGATACATA TTTGAATGTA TTTAGAAAAA TAAACAAATA GGGGTTCCGC	8160
5	GCACATITCC CCGAAAAGTG CCACCTGACG TC	B192
	(2) INFORMATION ZU SEQ ID NO: 37:	
10	(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 7000 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel	
	(D) TOPOLOGIE: linear	
15	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
20	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 17000	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 37:	
25	AGATCTCGGC CGCATATTAA GTGCATTGTT CTCGATACCG CTAAGTGCAT TGTTCTCGTT	60
	AGCTCGATGG ACAAGTGCAT TGTTCTCTTG CTGAAAGCTC GATGGACAAG TGCATTGTTC	120
	TCTTGCTGAA AGCTCGATGG ACAAGTGCAT TGTTCTCTTG CTGAAAGCTC AGTACCCGGG	180
30 .	AGTACCCTCG ACCGCCGGAG TATAAATAGA GGCGCTTCGT CTACGGAGCG ACAATTCAAT	240
	TCAAACAAGC AAAGTGAACA CGTCGCTAAG CGAAAGCTAA GCAAATAAAC AAGCGCAGCT	300
35	GAACAAGCTA AACAATCTGC AGTAAAGTGC AAGTTAAAGT GAATCAATTA AAAGTAACCA	360
	GCAACCAAGT AAATCAACTG CAACTACTGA AATCTGCCAA GAAGTAATTA TTGAATACAA	420
	GAAGAGAACT CTGAATACTT TCAACAAGTT ACCGAGAAAG AAGAACTCAC ACACAGCTAG	480
40	CGTTTAAACT TAAGCTTGGT ACCGAGCTCG GATCCACTAG TCCAGTGTGG TGGAATTCGG	540
	CTTGGGATGA CGCCTCCTCC GCCCGGACGT GCCGCCCCCA GCGCACCGCG CGCCCGCGTC	600
	CCTGGCCCGC CGGCTCGGTT GGGGCTTCCG CTGCGGCTGC GGCTGCTGCT GCTGCTCTGG	660
45	GCGGCCGCCG CCTCCGCCCA GGGCCACCTA AGGAGCGGAC CCCGCATCTT CGCCGTCTGG	720
	AAAGGCCATG TAGGGCAGGA CCGGGTGGAC TTTGGCCAGA CTGAGCCGCA CACGGTGCTT	780
50	TTCCACGAGC CAGGCAGCTC CTCTGTGTGG GTGGGAGGAC GTGGCAAGGT CTACCTCTTT	84
	GACTTCCCCG AGGGCAAGAA CGCATCTGTG CGCACGGTGA ATATCGGCTC CACAAAGGGG	90

	TCCTGTCTGG ATAAGCGGGA CTGCGAGAAC TACATCACTC TCCTGGAGAG GCGGAGTGAG	960
•	GGGCTGCTGG CCTGTGGCAC CAACGCCCGG CACCCCAGCT GCTGGAACCT GGTGAATGGC	1020
•	ACTGTGGTGC CACTTGGCGA GATGAGAGGC TACGCCCCCT TCAGCCCGGA CGAGAACTCC	1080
	ACTGTGGTGC CACTTGGCGA GATGACHEO CTGGTTCTGT TTGAAGGGGA CGAGGTGTAT TCCACCATCC GGAAGCAGGA ATACAATGGG	1140
	CTGGTTCTGT TTGAAGGGGA CGAGGTGTAT TOTALACCAG TGATACTGTC AAGATCCCTC GGTTCCGCCG CATCCGGGGC GAGAGTGAGC TGTACACCAG TGATACTGTC	1200
	AAGATCCCTC GGTTCCGCCG CATCCGGGC GACAGTCATCATCAGACCAGGC CACAGTCATCAGACCACCC ATCGTGCACC AAGACCAGGC TTACGATGAC	1260
	ATGCAGAACC CACAGTTCAT CAAAGCCACC ATCGTGCACA ATCCTGAGGC TCCTCTCAAT	1320
	ARGATCTACT ACTTCTTCCG AGAGGACAAT CCTGACAAGA ATCCTGAGGC TCCTCTCAAT	1380
	GTGTCCCGTG TGGCCCAGTT GTGCAGGGGG GACCAGGGTG GGGAAAGTTC ACTGTCAGTC	1440
	TCCAAGTGGA ACACTTTCT GAAAGCCATG CTGGTATGCA GTGATGCTGC CACCAACAAG	1500
	AACTTCAACA GGCTGCAAGA CGTCTTCCTG CTCCCTGACC CCAGCGGCCA GTGGAGGGAC	1560
	ACCAGGGTCT ATGGTGTTTT CTCCAACCCC TGGAACTACT CAGCCGTCTG TGTGTATTCC	1620
	CTCGGTGACA TTGACAAGGT CTTCCGTACC TCCTCACTCA AGGGCTACCA CTCAAGCCTT	1680
	CCCAACCCGC GGCCTGGCAA GTGCCTCCCA GACCAGCAGC CGATACCCAC AGAGACCTTC	1740
	CAGGTGGCTG ACCGTCACCC AGAGGTGGCG CAGAGGGTGG AGCCCATGGG GCCTCTGAAG	
	ACGCCATTGT TCCACTCTAA ATACCACTAC CAGAAAGTGG CCGTTCACCG CATGCAAGCC	1800
	AGCCACGGG AGACCTTTCA TGTGCTTTAC CTAACTACAG ACAGGGGCAC TATCCACAAG	1860
	GTGGTGGAAC CGGGGGAGCA GGAGCACAGC TTCGCCTTCA ACATCATGGA GATCCAGCCC	1920
	TTCCGCCGCG CGGCTGCCAT CCAGACCATG TCGCTGGATG CTGAGCGGAG GAAGCTGTAT	1980
	GTGAGCTCCC AGTGGGAGGT GAGCCAGGTG CCCCTGGACC TGTGTGAGGT CTATGGCGGG	2040
	GGCTGCCACG GTTGCCTCAT GTCCCGAGAC CCCTACTGCG GCTGGGACCA GGGCCGCTGC	2100
	ATCTCCATCT ACAGCTCCGA ACGGTCAGTG CTGCAATCCA TTAATCCAGC CGAGCCACAC	2160
	AAGGAGTGTC CCAACCCCAA ACCAGACAAG GCCCCACTGC AGAAGGTTTC CCTGGCCCCA	2220
	AACTCTCGCT ACTACCTGAG CTGCCCCATG GAATCCCGCC ACGCCACCTA CTCATGGCGC	2280
	CACAAGGAGA ACGTGGAGCA GAGCTGCGAA CCTGGTCACC AGAGCCCCAA CTGCATCCTG	2340
	TTCATCGAGA ACCTCACGGC GCAGCAGTAC GGCCACTACT TCTGCGAGGC CCAGGAGGGC	2400
	TCCTACTCC GCGAGGCTCA GCACTGGCAG CTGCTGCCCG AGGACGGCAT CATGGCCGAG	2460
	CACCTGCTGG GTCATGCCTG TGCCCTGGCT GCCTCCCTCT GGCTGGGGGT GCTGCCCACA	2520
	CACCTGCTGG GTCATGCCTG TGCCCTGAAG CTTGGGCCCG TTTAAACCCG CTGATCAGCC	258
	CTCACTCTTG GCTTGCTGGT CCACGTGTT	

	TCGACTGTGC CTTCTAGTTG CCAGCCATCT GTTGTTTGCC CCTCCCCCGT GCCTTCCTTG	2640
	ACCCTGGAAG GTGCCACTCC CACTGTCCTT TCCTAATAAA ATGAGGAAAT TGCATCGCAT	2700
	TGTCTGAGTA GGTGTCATTC TATTCTGGGG GGTGGGGTGG	2760
	GATTGGGAAG ACAATAGCAG GCATGCTGGG GATGCGGTGG GCTCTATGGC TTCTGAGGCG	2820
	GAAAGAACCA GCTGGGGCTC TAGGGGGTAT CCCCACGCGC CCTGTAGCGG CGCATTAAGC	2880
	GCGGCGGTG TGGTGGTTAC GCGCAGCGTG ACCGCTACAC TTGCCAGCGC CCTAGCGCCC	2940
	GCTCCTTTCG CTTTCTTCCC TTCCTTTCTC GCCACGTTCG CCGGCTTTCC CCGTCAAGCT	3000
	CTABATCGGG GCATCCCTTT AGGGTTCCGA TTTAGTGCTT TACGGCACCT CGACCCCAAA	3060
	AAACTTGATT AGGGTGATGG TTCACGTAGT GGGCCATCGC CCTGATAGAC GGTTTTTCGC	3120
_	CCTTTGACGT TGGAGTCCAC GTTCTTTAAT AGTGGACTCT TGTTCCAAAC TGGAACAACA	3180
,	CTCAACCCTA TCTCGGTCTA TTCTTTTGAT TTATAAGGGA TTTTGGGGAT TTCGGCCTAT	3240
	TGGTTAAAAA ATGAGCTGAT TTAACAAAAA TTTAACGCGA ATTAATTCTG TGGAATGTGT	3300
5	GTCAGTTAGG GTGTGGAAAG TCCCCAGGCT CCCCAGGCAG GCAGAAGTAT GCAAAGCATG	3360
	CATCTCAATT AGTCAGCAAC CAGGTGTGGA AAGTCCCCAG GCTCCCCAGC AGGCAGAAGT	3420
	ATGCAAAGCA TGCATCTCAA TTAGTCAGCA ACCATAGTCC CGCCCCTAAC TCCGCCCATC	3480
30	CCGCCCCTAA CTCCGCCCAG TTCCGCCCAT TCTCCGCCCC ATGGCTGACT AATTTTTTT	3540
	ATTTATGCAG AGGCCGAGGC CGCCTCTGCC TCTGAGCTAT TCCAGAAGTA GTGAGGAGGC	3600 3660
3 <i>5</i>	TTTTTTGGAG GCCTAGGCTT TTGCAAAAAG CTCCCGGGAG CTTGTATATC CATTTTCGGA	3720
	TCTGATCAAG AGACAGGATG AGGATCGTTT CGCATGATTG AACAAGATGG ATTGCACGCA	3720
	GGTTCTCCGG CCGCTTGGGT GGAGAGGCTA TTCGGCTATG ACTGGGCACA ACAGACAATC	3840
40	GGCTGCTCTG ATGCCGCCGT GTTCCGGCTG TCAGCGCAGG GGCGCCCGGT TCTTTTTGTC	3900
	AAGACCGACC TGTCCGGTGC CCTGAATGAA CTGCAGGACG AGGCAGCGCG GCTATCGTGG	396
45	CTGGCCACGA CGGGCGTTCC TTGCGCAGCT GTGCTCGACG TTGTCACTGA AGCGGGAAGG	402
	GACTGGCTGC TATTGGGCGA AGTGCCGGGG CAGGATCTCC TGTCATCTCA CCTTGCTCCT	408
	GCCGAGAAAG TATCCATCAT GGCTGATGCA ATGCGGCGGC TGCATACGCT TGATCCGGCT	414
50	ACCTGCCCAT TCGACCACCA AGCGAAACAT CGCATCGAGC GAGCACGTAC TCGGATGGAA	420
	GCCGGTCTTG TCGATCAGGA TGATCTGGAC GAAGAGCATC AGGGGCTCGC GCCAGCCGAA	

	CTGTTCGCCA GGCTCAAGGC GCGCATGCCC GACGGCGAGG ATCTCGTCGT GACCCATGGC	1200
	GATGCCTGCT TGCCGAATAT CATGGTGGAA AATGGCCGCT TTTCTGGATT CATCGACTGT	4320
5	GGCCGGCTGG GTGTGGCGGA CCGCTATCAG GACATAGCGT TGGCTACCCG TGATATTGCT	4380
	GAAGAGCTTG GCGGCGAATG GGCTGACCGC TTCCTCGTGC TTTACGGTAT CGCCGCTCCC	4440
	GATTCGCAGC GCATCGCCTT CTATCGCCTT CTTGACGAGT TCTTCTGAGC GGGACTCTGG	4500
10	GGTTCGAAAT GACCGACCAA GCGACGCCCA ACCTGCCATC ACGAGATTTC GATTCCACCG	4560
	CCGCCTTCTA TGAAAGGTTG GGCTTCGGAA TCGTTTTCCG GGACGCCGGC TGGATGATCC	4620
15	TCCAGCGCGG GGATCTCATG CTGGAGTTCT TCGCCCACCC CAACTTGTTT ATTGCAGCTT	4680
	ATAATGGTTA CAAATAAAGC AATAGCATCA CAAATTTCAC AAATAAAGCA TTTTTTTCAC	4740
	TGCATTCTAG TTGTGGTTTG TCCAAACTCA TCAATGTATC TTATCATGTC TGTATACCGT	4800
20	CGACCTCTAG CTAGAGCTTG GCGTAATCAT GGTCATAGCT GTTTCCTGTG TGAAATTGTT	4860
	ATCCGCTCAC AATTCCACAC AACATACGAG CCGGAAGCAT AAAGTGTAAA GCCTGGGGTG	4920
05	CCTAATGAGT GAGCTAACTC ACATTAATTG CGTTGCGCTC ACTGCCCGCT TTCCAGTCGG	4980
25	GARACCTGTC GTGCCAGCTG CATTARTGAR TCGGCCARCG CGCGGGGAGA GGCGGTTTGC	5040
	GTATTGGGCG CTCTTCCGCT TCCTCGCTCA CTGACTCGCT GCGCTCGGTC GTTCGGCTGC	5100
30	GGCGAGCGGT ATCAGCTCAC TCAAAGGCGG TAATACGGTT ATCCACAGAA TCAGGGGATA	5160
	ACGCAGGAAA GAACATGTGA GCAAAAGGCC AGCAAAAGGC CAGGAACCGT AAAAAGGCCG	5220
	CGTTGCTGGC GTTTTTCCAT AGGCTCCGCC CCCCTGACGA GCATCACAAA AATCGACGCT	5280
35	CAAGTCAGAG GTGGCGAAAC CCGACAGGAC TATAAAGATA CCAGGCGTTT CCCCCTGGAA	5340
	GCTCCCTCGT GCGCTCTCCT GTTCCGACCC TGCCGCTTAC CGGATACCTG TCCGCCTTTC	5400
	TCCCTTCGGG AAGCGTGGCG CTTTCTCAAT GCTCACGCTG TAGGTATCTC AGTTCGGTGT	5460
40	AGGTCGTTCG CTCCAAGCTG GGCTGTGTGC ACGAACCCCC CGTTCAGCCC GACCGCTGCG	5520
	CCTTATCCGG TAACTATCGT CTTGAGTCCA ACCCGGTAAG ACACGACTTA TCGCCACTGG	5580
45	CAGCAGCCAC TGGTAACAGG ATTAGCAGAG CGAGGTATGT AGGCGGTGCT ACAGAGTTCT	564
	TGAAGTGGTG GCCTAACTAC GGCTACACTA GAAGGACAGT ATTTGGTATC TGCGCTCTGC	570
	TGAAGCCAGT TACCTTCGGA AAAAGAGTTG GTAGCTCTTG ATCCGGCAAA CAAACCACCG	576
50	CTGGTAGCGG TGGTTTTTT GTTTGCAAGC AGCAGATTAC GCGCAGAAAA AAAGGATCTC	582
	AAGAAGATCC TTTGATCTTT TCTACGGGGT CTGACGCTCA GTGGAACGAA AACTCACGTT	588

	AAGGGATTTT	GGTCATGAGA	TTATCAAAAA	GGATCTTCAC	CTAGATCCTT	TTAAATTAAA	5940
	AATGAAGTTT	TAAATCAATC	TAAAGTATAT	ATGAGTAAAC	TTGGTCTGAC	AGTTACCAAT	6000
5	GCTTAATCAG	TGAGGCACCT	ATCTCAGCGA	TCTGTCTATT	TCGTTCATCC	ATAGTTGCCT	6060
	GACTCCCCGT	CGTGTAGATA	ACTACGATAC	GGGAGGGCTT	ACCATCTGGC	CCCAGTGCTG	6120
10	CAATGATACC	GCGAGACCCA	CGCTCACCGG	CTCCAGATTT	ATCAGCAATA	AACCAGCCAG	6180
	CCGGAAGGGC	CGAGCGCAGA	AGTGGTCCTG	CAACTTTATC	CGCCTCCATC	CAGTCTATTA	6240
	ATTGTTGCCG	GGAAGCTAGA	GTAAGTAGTT	CGCCAGTTAA	TAGTTTGCGC	AACGTTGTTG	6300
15	CCATTGCTAC	AGGCATCGTG	GTGTCACGCT	CGTCGTTTGG	TATGGCTTCA	TTCAGCTCCG	6360
	GTTCCCAACG	ATCAAGGCGA	GTTACATGAT	CCCCCATGTT	GTGCAAAAA	GCGGTTAGCT	6420
0.	CCTTCGGTCC	TCCGATCGTT	GTCAGAAGTA	AGTTGGCCGC	AGTGTTATCA	CTCATGGTTA	6480
20	TGGCAGCACT	GCATAATTCT	CTTACTGTCA	TGCCATCCGT	AAGATGCTTT	TCTGTGACTG	6540
	GTGAGTACTC	AACCAAGTCA	TTCTGAGAAT	AGTGTATGCG	GCGACCGAGT	TGCTCTTGCC	6600
25	CGGCGTCAAT	ACGGGATAAT	ACCGCGCCAC	ATAGCAGAAC	TTTAAAAGT	CTCATCATTG	6660
	GAAAACGTTC	TTCGGGGCGA	AAACTCTCAA	GGATCTTACC	GCTGTTGAG	A TCCAGTTCGA	6720
	TGTAACCCAC	TCGTGCACCC	AACTGATCTT	CAGCATCTT	TACTTTCAC	C AGCGTTTCTG	6780
30	GGTGAGCAAA	AACAGGAAGG	CAAAATGCCC	CAAAAAAGG	3 AATAAGGGC	G ACACGGAAAT	6840
	GTTGAATACT	CATACTCTT	CTTTTTCAA	AADTTATTA 1	CATTTATCA	G GGTTATTGTC	6900
35						G GTTCCGCGCA	6960
		B AAAAGTGCC					7000

- (2) INFORMATION ZU SEQ ID NO: 38:
 - (i) SEQUENZ CHARAKTERISTIKA:
 - (A) LÄNGE: 7108 Basenpaare
 - (B) ART: Nukleinsäure
 - (C) STRANGFORM: Einzel
 (D) TOPOLOGIE: linear
 - (ii) ART DES MOLBKÜLS: DNS (genomisch)
 - (ix) MERKMALE:
 - (A) NAME/SCHLÜSSEL: exon
 - (B) LAGE: 1..7108

55

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 38:

•	AGATCTCGGC CGCATATTAA GTGCATTGTT CTCGATACCG CTAAGTGCAT TGTTCTCGTT	60
5	AGCTCGATGG ACAAGTGCAT TGTTCTCTTG CTGAAAGCTC GATGGACAAG TGCATTGTTC	120
	TCTTGCTGAA AGCTCGATGG ACAAGTGCAT TGTTCTCTTG CTGAAAGCTC AGTACCCGGG	180
10	AGTACCCTCG ACCGCCGGAG TÄTAAATAGA GGCGCTTCGT CTACGGAGCG ACAATTCAAT	240
10	TCAAACAAGC AAAGTGAACA CGTCGCTAAG CGAAAGCTAA GCAAATAAAC AAGCGCAGCT	300
	GAACAAGCTA AACAATCTGC AGTAAAGTGC AAGTTAAAGT GAATCAATTA AAAGTAACCA	360
15	GCAACCAAGT AAATCAACTG CAACTACTGA AATCTGCCAA GAAGTAATTA TTGAATACAA	420
	GAAGAGAACT CTGAATACTT TCAACAAGTT ACCGAGAAAG AAGAACTCAC ACACAGCTAG	480
	CGTTTAAACT TAAGCTTGGT ACCGAGCTCG GATCCACTAG TCCAGTGTGG TGGAATTCGG	540
20	CTTGGGATGA CGCCTCCTCC GCCCGGACGT GCCGCCCCCA GCGCACCGCG CGCCCGCGTC	600
	CCTGGCCCGC CGGCTCGGTT GGGGCTTCCG CTGCGGCTGC GGCTGCTGCT GCTGCTCTGG	660
25	GCGGCCGCCG CCTCCGCCCA GGGCCACCTA AGGAGCGGAC CCCGCATCTT CGCCGTCTGG	720
	AAAGGCCATG TAGGGCAGGA CCGGGTGGAC TTTGGCCAGA CTGAGCCGCA CACGGTGCTT	780
	TTCCACGAGC CAGGCAGCTC CTCTGTGTGG GTGGGAGGAC GTGGCAAGGT CTACCTCTTT	840
30	GACTTCCCCG AGGGCAAGAA CGCATCTGTG CGCACGGTGA ATATCGGCTC CACAAAGGGG	900
	TCCTGTCTGG ATAAGCGGGA CTGCGAGAAC TACATCACTC TCCTGGAGAG GCGGAGTGAG	960
35	GGGCTGCTGG CCTGTGGCAC CAACGCCCGG CACCCCAGCT GCTGGAACCT GGTGAATGGC	1020
	ACTGTGGTGC CACTTGGCGA GATGAGAGGC TACGCCCCCT TCAGCCCGGA CGAGAACTCC	1080
	CTGGTTCTGT TTGAAGGGGA CGAGGTGTAT TCCACCATCC GGAAGCAGGA ATACAATGGG	1140
40	AAGATCCCTC GGTTCCGCCG CATCCGGGGC GAGAGTGAGC TGTACACCAG TGATACTGTC	1200
	ATGCAGAACC CACAGTTCAT CAAAGCCACC ATCGTGCACC AAGACCAGGC TTACGATGAC	1260
45	AAGATCTACT ACTTCTTCCG AGAGGACAAT CCTGACAAGA ATCCTGAGGC TCCTCTCAAT	1320
70	GTGTCCCGTG TGGCCCAGTT GTGCAGGGGG GACCAGGGTG GGGAAAGTTC ACTGTCAGTC	1380
	TCCAAGTGGA ACACTTTTCT GAAAGCCATG CTGGTATGCA GTGATGCTGC CACCAACAAG	1440
50	AACTTCAACA GGCTGCAAGA CGTCTTCCTG CTCCCTGACC CCAGCGGCCA GTGGAGGGAC	1500
	ACCAGGGTCT ATGGTGTTTT CTCCAACCCC TGGAACTACT CAGCCGTCTG TGTGTATTCC	1560

55

CTCGGTGACA TTGACAAGGT CTTCCGTACC TCCTCACTCA AGGGCTACCA CTCAAGCCTT	1620
CTCGGTGACA TIGACARGOS CONTROL	1680
CCCAACCCGC GGCCIGGCAT GIGGGTGGCG CAGAGGGTGG AGCCCATGGG GCCTCTGAAG	1740
ACGCCATTGT TCCACTCTAA ATACCACTAC CAGAAAGTGG CCGTTCACCG CATGCAAGCC	1800
ACGCCATTGT TCCACTCTAA ATACCACTAC CADAAGOTOO	1860
AGCCACGGGG AGACCTTTCA TGTGCTTTAC CTAACTACAG ACAGGGGCAC TATCCACAAG	1920
GTGGTGGAAC CGGGGGAGCA GGAGCACAGC TTCGCCTTCA ACATCATGGA GATCCAGCCC	1980
TTCCGCCGCG CGGCTGCCAT CCAGACCATG TCGCTGGATG CTGAGCGGAG GAAGCTGTAT	
GTGAGCTCCC AGTGGGAGGT GAGCCAGGTG CCCCTGGACC TGTGTGAGGT CTATGGCGGG	2040
GGCTGCCACG GTTGCCTCAT GTCCCGAGAC CCCTACTGCG GCTGGGACCA GGGCCGCTGC	2100
ATCTCCATCT ACAGCTCCGA ACGGTCAGTG CTGCAATCCA TTAATCCAGC CGAGCCACAC	2160
ANGGAGTGTC CCAACCCCAA ACCAGACAAG GCCCCACTGC AGAAGGTTTC CCTGGCCCCA	2220
AAGGAGTGTC CCAACCCCAA MOODE AAGGAGTGTC CCAACCCCAACCTA CTCATGGCGC AAGTCTCGCT ACTACCTGAG CTGCCCCATG GAATCCCGCC ACGCCACCTA CTCATGGCGC	2280
AACTCTCGCT ACTACCTGAG CTGCCCCATC CACAAGGAGA ACGTGGAGCA GAGCTGCGAA CCTGGTCACC AGAGCCCCAA CTGCATCCTG	2340
CACAAGGAGA ACGTGGAGCA GAGCTGCGAA CCTOOTTTCTGCGAGGC CCAGGAGGGC	2400
TTCATCGAGA ACCTCACGGC GCAGCAGTAC GGCCACTACT TCTGCGAGGC CCAGGAGGGC	2460
TCCTACTTCC GCGAGGCTCA GCACTGGCAG CTGCTGCCCG AGGACGGCAT CATGGCCGAG	2520
CACCTGCTGG GTCATGCCTG TGCCCTGGCT GCCTCCCTCT GGCTGGGGGT GCTGCCCACA	2580
CTCACTCTTG GCTTGCTGGT CCACGTGAAG CTTGGGCCCG AACAAAAACT CATCTCAGAA	
GAGGATCTGA ATAGCGCCGT CGACCATCAT CATCATCATC ATTGAGTTTA TCCAGCACAG	2640
TGGCGGCCGC TCGAGTCTAG AGGGCCCGTT TAAACCCGCT GATCAGCCTC GACTGTGCCT	2700
TCTAGTTGCC AGCCATCTGT TGTTTGCCCC TCCCCCGTGC CTTCCTTGAC CCTGGAAGGT	2760
GCCACTCCCA CTGTCCTTTC CTAATAAAAT GAGGAAATTG CATCGCATTG TCTGAGTAGG	2820
TGTCATTCTA TTCTGGGGG TGGGGTGGGG CAGGACAGCA AGGGGGAGGA TTGGGAAGAC	2880
TGTCATTCTA TTCTGGGGG TGGGGTGGGC TCTATGGCTT CTGAGGCGGA AAGAACCAGC	2940
AATAGCAGGC ATGCTGGGGA TGCGGTGGGC TCTTTAAGCGC GGCGGGTGTG	3000
TEGGGCTCTA GGGGGTATCC CCACGCGCCC TGTAGCGGCG CATTAAGCGC GGCGGGTGTG	306
GTGGTTACGC GCAGCGTGAC CGCTACACTT GCCAGCGCCC TAGCGCCCGC TCCTTTCGCT	312
TTCTTCCCTT CCTTTCTCGC CACGTTCGCC GGCTTTCCCC GTCAAGCTCT AAATCGGGGC	318
ATCCCTTTAG GGTTCCGATT TAGTGCTTTA CGGCACCTCG ACCCCAAAAA ACTTGATTAG	
GGTGATGGTT CACGTAGTGG GCCATCGCCC TGATAGACGG TTTTTCGCCC TTTGACGTTG	324

	GAGTCCACGT	TCTTTAATAG	TGGACTCTTG	TTCCAAACTG	GAACAACACT	CAACCCTATC	3300
	TCGGTCTATT	CTTTTGATTT	ATAAGGGATT	TTGGGGATTT	CGGCCTATTG	GTTAAAAAAT	3360
	GAGCTGATTT	AACAAAAATT	TAACGCGAAT	TAATTCTGTG	GAATGTGTGT	CAGTTAGGGT	3420
	GTGGAAAGTC	CCCAGGCTCC	CCAGGCAGGC	AGAAGTATGC	AAAGCATGCA	TCTCAATTAG	3480
o	TCAGCAACCA	GGTGTGGAAA	GTCCCCAGGC	TCCCCAGCAG	GCAGAAGTAT	GCAAAGCATG	3540
	CATCTCAATT	AGTCAGCAAC	CATAGTCCCG	CCCCTAACTC	CGCCCATCCC	GCCCCTAACT	3600
	CCGCCCAGTT	CCGCCCATTC	TCCGCCCCAT	GGCTGACTAA	TTTTTTTTAT	TTATGCAGAG	3660
15	GCCGAGGCCG	CCTCTGCCTC	TGAGCTATTC	CAGAAGTAGT	GAGGAGGCTT	TTTTGGAGGC	3720
	CTAGGCTTTT	GCAAAAAGCT	CCCGGGAGCT	TGTATATCCA	TTTTCGGATC	TGATCAAGAG	3780
	ACAGGATGAG	GATCGTTTCG	CATGATTGAA	CAAGATGGAT	TGCACGCAGG	TTCTCCGGCC	3840
20	GCTTGGGTGG	AGAGGCTATT	CGGCTATGAC	TGGGCACAAC	AGACAATCGG	CTGCTCTGAT	3900
	GCCGCCGTGT	TCCGGCTGTC	AGCGCAGGGG	CGCCCGGTTC	TTTTTGTCAA	GACCGACCTG	3960
25	TCCGGTGCCC	TGAATGAACT	GCAGGACGAG	GCAGCGCGGC	TATCGTGGCT	GGCCACGACG	4020
	GGCGTTCCTT	GCGCAGCTGT	GCTCGACGTT	GTCACTGAAG	CGGGAAGGGA	CTGGCTGCTA	4080
	TTGGGCGAAG	TGCCGGGGCA	GGATCTCCTG	TCATCTCACC	TTGCTCCTGC	CGAGAAAGTA	4140
30	TCCATCATGG	CTGATGCAAT	GCGGCGGCTG	CATACGCTTG	ATCCGGCTAC	CTGCCCATTC	4200
	GACCACCAAG	CGAAACATCG	CATCGAGCGA	GCACGTACTC	GGATGGAAGC	CGGTCTTGTC	4260
35	GATCAGGATG	ATCTGGACGA	AGAGCATCAG	GGGCTCGCGC	CAGCCGAACT	GTTCGCCAGG	4320
	CTCAAGGCGC	GCATGCCCGA	CGGCGAGGAT	CTCGTCGTGA	CCCATGGCGA	TGCCTGCTTG	4380
	CCGAATATCA	TGGTGGAAAA	TGGCCGCTTT	TCTGGATTCA	TCGACTGTGG	CCGGCTGGGT	4440
40	GTGGCGGACC	GCTATCAGGA	CATAGCGTTG	GCTACCCGTG	ATATTGCTGA	AGAGCTTGGC	4500
	GGCGAATGGG	CTGACCGCTT	CCTCGTGCTT	TACGGTATCG	CCGCTCCCG	TTCGCAGCGC	4560
45	ATCGCCTTCT	ATCGCCTTCT	TGACGAGTTC	TTCTGAGCGG	GACTCTGGGC	TTCGAAATGA	4620
45	CCGACCAAGO	GACGCCCAAC	CTGCCATCAC	GAGATTTCGA	TTCCACCGC	GCCTTCTATG	4680
	AAAGGTTGGG	CTTCGGAATC	GTTTTCCGGG	ACGCCGGCTG	GATGATCCT	CAGCGCGGGG	474
50	ATCTCATGCT	GGAGTTCTTC	GCCCACCCC	ACTTGTTTAT	TGCAGCTTA	r aatggttaca	480
	DATABAGCAI	A TAGCATCAC	AATTTCACA	ATAAAGCATT	TTTTTCACT	CATTCTAGTT	486

	GTGGTTTGTC CAAACTCATC AATGTATCTT ATCATGTCTG TATACCGTCG ACCTCTAGCT	4920
	AGAGCTTGGC GTAATCATGG TCATAGCTGT TTCCTGTGTG AAATTGTTAT CCGCTCACAA	4980
	TTCCACACAA CATACGAGCC GGAAGCATAA AGTGTAAAGC CTGGGGTGCC TAATGAGTGA	5040
	GCTAACTCAC ATTAATTGCG TTGCGCTCAC TGCCCGCTTT CCAGTCGGGA AACCTGTCGT	5100
	GCCAGCTGCA TTAATGAATC GGCCAACGCG CGGGGAGAGG CGGTTTGCGT ATTGGGCGCT	5160
10	CTTCCGCTTC CTCGCTCACT GACTCGCTGC GCTCGGTCGT TCGGCTGCGG CGAGCGGTAT	5220
	CAGCTCACTC AAAGGCGGTA ATACGGTTAT CCACAGAATC AGGGGATAAC GCAGGAAAGA	5280
15	ACATGTGAGC AAAAGGCCAG CAAAAGGCCA GGAACCGTAA AAAGGCCGCG TTGCTGGCGT	5340
	TTTTCCATAG GCTCCGCCCC CCTGACGAGC ATCACAAAAA TCGACGCTCA AGTCAGAGGT	5400
	GGCGAAACCC GACAGGACTA TAAAGATACC AGGCGTTTCC CCCTGGAAGC TCCCTCGTGC	5460
20	GCTCTCCTGT TCCGACCCTG CCGCTTACCG GATACCTGTC CGCCTTTCTC CCTTCGGGAA	5520
	GCGTGGCGCT TTCTCAATGC TCACGCTGTA GGTATCTCAG TTCGGTGTAG GTCGTTCGCT	5580
	CCAAGCTGGG CTGTGTGCAC GAACCCCCCG TTCAGCCCGA CCGCTGCGCC TTATCCGGTA	5640
25	ACTATOGTOT TGAGTOCAAC COGGTAAGAC ACGACTTATO GCCACTGGCA GCAGCCACTG	5700
	GTAACAGGAT TAGCAGAGCG AGGTATGTAG GCGGTGCTAC AGAGTTCTTG AAGTGGTGGC	5760
30	CTAACTACGG CTACACTAGA AGGACAGTAT TTGGTATCTG CGCTCTGCTG AAGCCAGTTA	5820
00	CCTTCGGAAA AAGAGTTGGT AGCTCTTGAT CCGGCAAACA AACCACCGCT GGTAGCGGTG	5880
	GTTTTTTGT TTGCAAGCAG CAGATTACGC GCAGAAAAAA AGGATCTCAA GAAGATCCTT	5940
35	TGATCTTTC TACGGGGTCT GACGCTCAGT GGAACGAAAA CTCACGTTAA GGGATTTTGG	6000
	TCATGAGATT ATCAAAAAGG ATCTTCACCT AGATCCTTTT AAATTAAAAA TGAAGTTTTA	6060
	AATCAATCTA AAGTATATAT GAGTAAACTT GGTCTGACAG TTACCAATGC TTAATCAGTG	6120
40	AGGCACCTAT CTCAGCGATC TGTCTATTTC GTTCATCCAT AGTTGCCTGA CTCCCCGTCG	6180
	TGTAGATAAC TACGATACGG GAGGGCTTAC CATCTGGCCC CAGTGCTGCA ATGATACCGC	624
45	GAGACCCACG CTCACCGGCT CCAGATTTAT CAGCAATAAA CCAGCCAGCC GGAAGGGCCG	630
4 5	AGCGCAGAAG TGGTCCTGCA ACTTTATCCG CCTCCATCCA GTCTATTAAT TGTTGCCGGG	636
	AAGCTAGAGT AAGTAGTTCG CCAGTTAATA GTTTGCGCAA CGTTGTTGCC ATTGCTACAG	642
50	GCATCGTGGT GTCACGCTCG TCGTTTGGTA TGGCTTCATT CAGCTCCGGT TCCCAACGAT	648
	CAAGGCGAGT TACATGATCC CCCATGTTGT GCAAAAAAGC GGTTAGCTCC TTCGGTCCTC	654

	CGATCGTTGT CAGAAGTAAG TTGGCCGCAG TGTTATCACT CATGGTTATG GCAGCACTGC	6600
	ATAATTCTCT TACTGTCATG CCATCCGTAA GATGCTTTTC TGTGACTGGT GAGTACTCAA	6660
	CCAAGTCATT CTGAGAATAG TGTATGCGGC GACCGAGTTG CTCTTGCCCG GCGTCAATAC	6720
	CCAAGTCATT CTGAGARIAG TOTAL CCAAGARIAG TOTAL TAAAAGTGCT CATCATTGGA AAACGTTCTT	6780
	GGGATAATAC CGCGCCACAT AGCACACACT CGGGGCGAAA ACTCTCAAGG ATCTTACCGC TGTTGAGATC CAGTTCGATG TAACCCACTC	6840
10	CGGGGCGAAA ACTCTCAAGG ATCTTACCOO TOTTCACCAG CGTTTCTGGG TGAGCAAAAA GTGCACCCAA CTGATCTTCA GCATCTTTA CTTTCACCAG CGTTTCTGGG TGAGCAAAAA	6900
	GTGCACCCAA CTGATCTTCA GCATCTTTA GTAGGGCGAC ACGGAAATGT TGAATACTCA CAGGAAGGCA AAATGCCGCA AAAAAGGGAA TAAGGGCGAC ACGGAAATGT TGAATACTCA	6960
	CAGGAAGGCA AAATGCCGCA AAAAAGGGAA TATGCCGGG TTATTGTCTC ATGAGCGGAT TACTCTTCCT TTTTCAATAT TATTGAAGCA TTTATCAGGG TTATTGTCTC ATGAGCGGAT	7020
15	TACTCTTCCT TITTCAATAT TATTGAAGCA TITACCCCGT TCCGCGCACA TTTCCCCGAA	7080
	ACATATTIGA ATGTATTTAG AAAAATAAAC AAATAGGGGT TCCGCGCACA TTTCCCCGAA	7108
	AAGTGCCACC TGACGTCGAC GGATCGGG	
20	(2) INFORMATION ZU SEQ ID NO: 39:	
25	(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 4019 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Binzel (D) TOPOLOGIE: linear	
30	(ii) ART DES MOLEKÜLS: DNS (genomisch)	
	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 14019	
3 <i>5</i>	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 39:	
	(X1) SEQUENZBESCHALL CTCGAGAAAT CATAAAAAAT TTATTTGCTT TGTGAGCGGA TAACAATTAT AATAGATTCA	60
40	CTCGAGAAAT CATAAAAAAT TAACACAGAA TTCATTAAAG AGGAGAAATT AACTATGAGA	120
40	ATTGTGAGGG GATAACAATT TOTGTGAGGGGA CGAGGTGTAT GGATCGCATC ACCATCACCA TCACGGATCC CTGGTTCTGT TTGAAGGGGA CGAGGTGTAT	180
	GGATCGCATC ACCATCACCA TCACGGATCC TCCACCATCC GGAAGCAGGA ATACAATGGG AAGATCCCTC GGTTCCGCCG CATCCGGGGC TCCACCATCC GGAAGCAGGA ATACAATGGG AAGATCCCTC GGTTCCGCCG CATCCGGGGC	240
45	TCCACCATCC GGAAGCAGGA ATACAATGGG AMEETE GAGAGTGAGC TGTACACCAG TGATACTGTC ATGCAGAACC CACAGTTCAT CAAAGCCACC	300
	GAGAGTGAGC TGTACACCAG TGATACTGTC ATGCACTAGC ACTTCTTCCG AGAGGACAAT ATCGTGCACC AAGACCAGGC TTACGATGAC AAGATCTACT ACTTCTTCCG AGAGGACAAT	36
	ATCGTGCACC AAGACCAGGC TTACGATGAC AAGATCTACT TGGCCCAGTT GTGCAGGGGG	42
50	CCTGACAAGA ATCCTGAGGC TCCTCTCAAT GTGTCCCGTG TGGCCCAGTT GTGCAGGGGG	48
	GACCAGGGTG GGGAAAGTTC ACTGTCAGTC TCCAAGTGGA ACACTTTTCT GAAAGCCATG	

	CTGGTATGCA GTGATGCTGC CACCAACAAG AACTTCAACA GGCTGCAAGA CGTCTTCCTG	540
	CTCCCTGACC CCAGCGGCCA GTGGAGGGAC ACCAGGGTCT ATGGTGTTTT CTCCAACCCC	600
5	TGGAACTACT CAGCCGTCTG TGTGTATTCC CTCGGTGACA TTGACAAGGT CTTCCGTACC	660
	TCCTCACTCA AGGGCTACCA CTCAAGCCTT CCCAACCCGC GGCCTGGCAA GTGCCTCCCA	720
_ 10	GACCAGCAGC CGATACCCAC AGAAAGCTTA ATTAGCTGAG CTTGGACTCC TGTTGATAGA	780
. 70	TCCAGTAATG ACCTCAGAAC TCCATCTGGA TTTGTTCAGA ACGCTCGGTT GCCGCCGGGC	840
	GTTTTTTATT GGTGAGAATC CAAGCTAGCT TGGCGAGATT TTCAGGAGCT AAGGAAGCTA	900
15	AAATGGAGAA AAAAATCACT GGATATACCA CCGTTGATAT ATCCCAATGG CATCGTAAAG	960
	AACATTTTGA GGCATTTCAG TCAGTTGCTC AATGTACCTA TAACCAGACC GTTCAGCTGG	1020
20	ATATTACGGC CTTTTTAAAG ACCGTAAAGA AAAATAAGCA CAAGTTTTAT CCGGCCTTTA	1140
-)-	TTCACATTCT TGCCCGCCTG ATGAATGCTC ATCCGGAATT TCGTATGGCA ATGAAAGACG	1200
	GTGAGCTGGT GATATGGGAT AGTGTTCACC CTTGTTACAC CGTTTTCCAT GAGCAAACTG	1260
25	AAACGTTTTC ATCGCTCTGG AGTGAATACC ACGACGATTT CCGGCAGTTT CTACACATAT	1320
	ATTCGCAAGA TGTGGCGTGT TACGGTGAAA ACCTGGCCTA TTTCCCTAAA GGGTTTATTG AGAATATGTT TTTCGTCTCA GCCAATCCCT GGGTGAGTTT CACCAGTTTT GATTTAAACG	1380
30	AGAATATGTT TTTCGTCTCA GCCAATCCCT GGGTGAGTT CHOOL TTTCGCCAAG TTTTCACCAT GGGCAAATAT TATACGCAAG	1440
	TGGCCAATAT GGACAACTTC TTCGCCCCCG TTTTCTTTCTTTTTTTTTT	1500
	GCGACAAGGT GCTGATGCCG C1000011120 AGTACTGCGA TGAGTGGCAG GGCGGGGCGT ATGTCGGCAG AATGCTTAAT GAATTACAAC AGTACTGCGA TGAGTGGCAG GGCGGGGCGT	1560
35	ATTITUTA AGGCAGTTAT TGGTGCCCTT AAACGCCTGG GGTAATGACT CTCTAGCTTG	1620
	AGGCATCAAA TAAAACGAAA GGCTCAGTCG AAAGACTGGG CCTTTCGTTT TATCTGTTGT	1680
40	TTGTCGGTGA ACGCTCTCCT GAGTAGGACA AATCCGCCGC TCTAGAGCTG CCTCGCGCGT	174
	TTCGGTGATG ACGGTGAAAA CCTCTGACAC ATGCAGCTCC CGGAGACGGT CACAGCTTGT	180
	CTGTAAGCGG ATGCCGGGAG CAGACAAGCC CGTCAGGGGC CGTCAGCGGG TGTTGGCGGG	186
45	TGTCGGGGCG CAGCCATGAC CCAGTCACGT AGCGATAGCG GAGTGTATAC TGGCTTAACT	192
	ATGCGGCATC AGAGCAGATT GTACTGAGAG TGCACCATAT GCGGTGTGAA ATACCGCACA	198
50	GATGCGTAAG GAGAAAATAC CGCATCAGGC GCTCTTCCGC TTCCTCGCTC ACTGACTCGC	204
	TGCGCTCGGT CTGTCGGCTG CGGCGAGCGG TATCAGCTCA CTCAAAGGCG GTAATACGGT	210

TATCCACAGA ATCAGGGGAT AACGCAGGAA AGAACATGTG AGCAAAAGGC CAGCAAAAGG	2160
CCAGGAACCG TAAAAAGGCC GCGTTGCTGG CGTTTTTCCA TAGGCTCCGC CCCCCTGACG	2220
AGCATCACAA AAATCGACGC TCAAGTCAGA GGTGGCGAAA CCCGACAGGA CTATAAAGAT	2280
ACCAGGCGTT TCCCCCTGGA AGCTCCCTCG TGCGCTCTCC TGTTCCGACC CTGCCGCTTA	2340
CCGGATACCT GTCCGCCTTT CTCCCTTCGG GAAGCGTGGC GCTTTCTCAA TGCTCACGCT	2400
GTAGGTATCT CAGTTCGGTG TAGGTCGTTC GCTCCAAGCT GGGCTGTGTG CACGAACCCC	2460
CCGTTCAGCC CGACCGCTGC GCCTTATCCG GTAACTATCG TCTTGAGTCC AACCCGGTAA	2520
GACACGACTT ATCGCCACTG GCAGCAGCCA CTGGTAACAG GATTAGCAGA GCGAGGTATG	2580
TAGGCGGTGC TACAGAGTTC TTGAAGTGGT GGCCTAACTA CGGCTACACT AGAAGGACAG	2640
TATTTGGTAT CTGCGCTCTG CTGAAGCCAG TTACCTTCGG AAAAAGAGTT GGTAGCTCTT	2700
GATCCGGCAA ACAAACCACC GCTGGTAGCG GTGGTTTTTT TGTTTGCAAG CAGCAGATTA	2760
CGCGCAGAAA AAAAGGATCT CAAGAAGATC CTTTGATCTT TTCTACGGGG TCTGACGCTC	2820
AGTGGAACGA AAACTCACGT TAAGGGATTT TGGTCATGAG ATTATCAAAA AGGATCTTCA	2880
CCTAGATCCT TTTAAATTAA AAATGAAGTT TTAAATCAAT CTAAAGTATA TATGAGTAAA	2940
CTTGGTCTGA CAGTTACCAA TGCTTAATCA GTGAGGCACC TATCTCAGCG ATCTGTCTAT	3000
TTCGTTCATC CATAGCTGCC TGACTCCCCG TCGTGTAGAT AACTACGATA CGGGAGGGCT	3060
TACCATCTGG CCCCAGTGCT GCAATGATAC CGCGAGACCC ACGCTCACCG GCTCCAGATT	3120
TATCAGCAAT AAACCAGCCA GCCGGAAGGG CCGAGCGCAG AAGTGGTCCT GCAACTTTAT	3180
CCGCCTCCAT CCAGTCTATT AATTGTTGCC GGGAAGCTAG AGTAAGTAGT TCGCCAGTTA	3240
ATAGTTTGCG CAACGTTGTT GCCATTGCTA CAGGCATCGT GGTGTCACGC TCGTCGTTTG	3300
GTATGGCTTC ATTCAGCTCC GGTTCCCAAC GATCAAGGCG AGTTACATGA TCCCCCATGT	3360
TOTGCAAAAA AGCGGTTAGC TCCTTCGGTC CTCCGATCGT TGTCAGAAGT AAGTTGGCCG	3420
CAGTGTTATC ACTCATGGTT ATGGCAGCAC TGCATAATTC TCTTACTGTC ATGCCATCCG	3480
TAAGATGCTT TTCTGTGACT GGTGAGTACT CAACCAAGTC ATTCTGAGAA TAGTGTATGC	3540
GGCGACCGAG TTGCTCTTGC CCGGCGTCAA TACGGGATAA TACCGCGCCA CATAGCAGAA	360
CTTTAAAAGT GCTCATCATT GGAAAACGTT CTTCGGGGCG AAAACTCTCA AGGATCTTAC	366
CGCTGTTGAG ATCCAGTTCG ATGTAACCCA CTCGTGCACC CAACTGATCT TCAGCATCTT	372
TTACTTTCAC CAGCGTTTCT GGGTGAGCAA AAACAGGAAG GCAAAATGCC GCAAAAAAGG	378

		3840
	GALTAAGGGC GACACGGAAA TGTTGAATAC TCATACTCTT CCTTTTCAA TAT	
	CCATTTATCA GGGTTATTGT CTCATGAGCG GATACATATT TGAATGTATT TAGAAAAATA	3900
	AACAAATAGG GGTTCCGCGC ACATTTCCCC GAAAAGTGCC ACCTGACGTC TAAGAAACCA	3960
	TTATTATCAT GACATTAACC TATAAAAATA GGCGTATCAC GAGGCCCTTT CGTCTTCAC	4019
10	(2) INFORMATION ZU SEQ ID NO: 40:	
15	 (i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 3999 Basenpaare (B) ART: Nukleinsäure (C) STRANGFORM: Einzel (D) TOPOLOGIE: linear 	
	(ii) ART DES MOLEKÜLS: DNS (genomisch)	•
20	(ix) MERKMALE: (A) NAME/SCHLÜSSEL: exon (B) LAGE: 13999	
25	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 40:	60
	CTCGAGAAAT CATAAAAAAT TTATTTGCTT TGTGAGCGGA TAACAATTAT AATAGATTCA	120
30	ATTGTGAGCG GATAACAATT TCACACAGAA TTCATTAAAG AGGAGAAATT AACTATGAGA	180
30	GGATCGCATC ACCATCACCA TCACACGGAT CCGCATGCGA GCTCCCAGTG GGAGGTGAGC	240
	CAGGTGCCCC TGGACCTGTG TGAGGTCTAT GGCGGGGGCT GCCACGGTTG CCTCATGTCC	
35	CONGRECCET ACTGCGGCTG GGACCAGGGC CGCTGCATCT CCATCTACAG CTCCGAACGG	300
	TCACTGCTGC AATCCATTAA TCCAGCCGAG CCACACAAGG AGTGTCCCAA CCCCAAACCA	360
	GACAAGGCCC CACTGCAGAA GGTTTCCCTG GCCCCAAACT CTCGCTACTA CCTGAGCTGC	420
40	CCCATGGAAT CCCGCCACGC CACCTACTCA TGGCGCCACA AGGAGAACGT GGAGCAGAGC	480
	TGCGAACCTG GTCACCAGAG CCCCAACTGC ATCCTGTTCA TCGAGAACCT CACGGCGCAG	540
	CAGTACGGCC ACTACTTCTG CGAGGCCCAG GAGGGCTCCT ACTTCCGCGA GGCTCAGCAC	600
45	TGGCAGCTGC TGCCCGAGGA CGGCATCATG GCCGAGCACC TGCTGGGTCA TGCCTGTGCC	660
	CTGGCTGCCT CCCTCTGGCT GGGGGTGCTG CCCACACTCA CTCTTGGCTT GCTGGTCCAC	720
50	GTGAAGCTTA ATTAGCTGAG CTTGGACTCC TGTTGATAGA TCCAGTAATG ACCTCAGAAC	780
55	TCCATCTGGA TTTGTTCAGA ACGCTCGGTT GCCGCCGGGC GTTTTTTATT GGTGAGAATC	840

	CAAGCTAGCT	TGGCGAGATT	TTCAGGAGCT	AAGGAAGCTA	AAATGGAGAA	AAAAATCACT	900
	GGATATACCA	CCGTTGATAT	ATCCCAATGG	CATCGTAAAG	AACATTTTGA	GGCATTTCAG	960
	TCAGTTGCTC	AATGTACCTA	TAACCAGACC	GTTCAGCTGG	ATATTACGGC	CTTTTTAAAG	1020
	ACCGTAAAGA	AAAATAAGCA	CAAGTTTTAT	CCGGCCTTTA	TTCACATTCT	TGCCCGCCTG	1080
)	ATGAATGCTC	ATCCGGAATT	TCGTATGGCA	atgaaagacg	GTGAGCTGGT	GATATGGGAT	1140
	AGTGTTCACC	CTTGTTACAC	CGTTTTCCAT	GAGCAAACTG	AAACGTTTTC	ATCGCTCTGG	1200
	AGTGAATACC	ACGACGATTT	CCGGCAGTTT	CTACACATAT	ATTCGCAAGA	TGTGGCGTGT	1260
5	TACGGTGAAA	ACCTGGCCTA	TTTCCCTAAA	GGGTTTATTG	AGAATATGTT	TITCGTCTCA	1320
	GCCAATCCCT	GGGTGAGTTT	CACCAGTTTT	GATTTAAACG	TGGCCAATAT	GGACAACTIC	1380
o	TTCGCCCCCG	TTTTCACCAT	GGGCAAATAT	TATACGCAAG	GCGACAAGGT	GCTGATGCCG	1440
	CTGGCGATTC	AGGTTCATCA	TGCCGTCTGT	GATGGCTTCC	ATGTCGGCAG	AATGCTTAAT	1500
	GAATTACAAC	AGTACTGCGA	TGAGTGGCAG	GGCGGGGCGT	AATTTTTTTA	AGGCAGTTAT	1560
5	TGGTGCCCTT	AAACGCCTGG	GGTAATGACT	CTCTAGCTTG	AGGCATCAAA	TAAAACGAAA	1620
	GGCTCAGTCG	AAAGACTGGG	CCTTTCGTTT	TATCTGTTGT	TTGTCGGTGA	ACGCTCTCCT	1680
						ACGGTGAAAA	1740
30	CCTCTGACAC	ATGCAGCTCC	CGGAGACGGT	CACAGCTTGT	CTGTAAGCGG	ATGCCGGGAG	1800
	CAGACAAGCC	CGTCAGGGCG	CGTCAGCGGG	TGTTGGCGGG	TGTCGGGGCG	CAGCCATGAC	1860
35	CCAGTCACGT	AGCGATAGCG	GAGTGTATAC	TGGCTTAACT	ATGCGGCATC	AGAGCAGATT	1920
	GTACTGAGAG	TGCACCATAT	GCGGTGTGAA	ATACCGCACA	A GATGCGTAAC	GAGAAAATAC	1980
	CGCATCAGGC	GCTCTTCCGC	TTCCTCGCTC	ACTGACTCG	TGCGCTCGG	CTGTCGGCTG	2040
40	CGGCGAGCGC	TATCAGCTCA	CTCAAAGGC	GTAATACGGT	TATCCACAG	A ATCAGGGGAT	2100
	AACGCAGGA	A AGAACATGTO	AGCAAAAGG	CAGCAAAAG	G CCAGGAACC	TAAAAAGGCC	2160
45	GCGTTGCTG	G CGTTTTTCC#	TAGGCTCCG	CCCCCTGAC	G AGCATCACA	A AAATCGACGC	222
	TCAAGTCAG	A GGTGGCGAA	CCCGACAGG	A CTATAAAGA	T ACCAGGCGT	T TCCCCCTGGA	228
	AGCTCCCTC	G TGCGCTCTCC	TGTTCCGAC	CTGCCGCTT	A CCGGATACC	T GTCCGCCTTT	234
50	CTCCCTTCG	G GAAGCGTGG	C GCTTTCTCA	A TGCTCACGC	T GTAGGTATC	T CAGTTCGGTG	240
			т сесететет	CACGAACCC	C CCGTTCAGC	C CGACCGCTGC	246

GCCTTATCCG GTAACTATCG TCTTGAGTCC AACCCGGTAA GACACGACTT ATCGCCACTG	2520
GCAGCAGCCA CTGGTAACAG GATTAGCAGA GCGAGGTATG TAGGCGGTGC TACAGAGTTC	2580
TTGAAGTGGT GGCCTAACTA CGGCTACACT AGAAGGACAG TATTTGGTAT CTGCGCTCTG	2640
CTGAAGCCAG TTACCTTCGG AAAAAGAGTT GGTAGCTCTT GATCCGGCAA ACAAACCACC	2700
GCTGGTAGCG GTGGTTTTTT TGTTTGCAAG CAGCAGATTA CGCGCAGAAA AAAAGGATCT	2760
CAAGAAGATC CTTTGATCTT TTCTACGGGG TCTGACGCTC AGTGGAACGA AAACTCACGT	2820
TAAGGGATTT TGGTCATGAG ATTATCAAAA AGGATCTTCA CCTAGATCCT TTTAAATTAA	2880
AAATGAAGTT TTAAATCAAT CTAAAGTATA TATGAGTAAA CTTGGTCTGA CAGTTACCAA	2940
TGCTTAATCA GTGAGGCACC TATCTCAGCG ATCTGTCTAT TTCGTTCATC CATAGCTGCC	3000
TGACTCCCCG TCGTGTAGAT AACTACGATA CGGGAGGGCT TACCATCTGG CCCCAGTGCT	3060
GCAATGATAC CGCGAGACCC ACGCTCACCG GCTCCAGATT TATCAGCAAT AAACCAGCCA	3120
GCCGGAAGGG CCGAGCGCAG AAGTGGTCCT GCAACTTTAT CCGCCTCCAT CCAGTCTATT	3180
AATTGTTGCC GGGAAGCTAG AGTAAGTAGT TCGCCAGTTA ATAGTTTGCG CAACGTTGTT	3240
GCCATTGCTA CAGGCATCGT GGTGTCACGC TCGTCGTTTG GTATGGCTTC ATTCAGCTCC	3300
GGTTCCCAAC GATCAAGGCG AGTTACATGA TCCCCCATGT TGTGCAAAAA AGCGGTTAGC	3360
TCCTTCGGTC CTCCGATCGT TGTCAGAAGT AAGTTGGCCG CAGTGTTATC ACTCATGGTT	3420
ATGGCAGCAC TGCATAATTC TCTTACTGTC ATGCCATCCG TAAGATGCTT TTCTGTGACT	3480 3540
GGTGAGTACT CAACCAAGTC ATTCTGAGAA TAGTGTATGC GGCGACCGAG TTGCTCTTGC	3600
CCGGCGTCAA TACGGGATAA TACCGCGCCA CATAGCAGAA CTTTAAAAGT GCTCATCATT	3660
GGAAAACGTT CTTCGGGGCG AAAACTCTCA AGGATCTTAC CGCTGTTGAG ATCCAGTTCG	3720
ATGTAACCCA CTCGTGCACC CAACTGATCT TCAGCATCTT TTACTTTCAC CAGCGTTTCT	.3780
GGGTGAGCAA AAACAGGAAG GCAAAATGCC GCAAAAAAGG GAATAAGGGC GACACGGAAA	3840
TGTTGAATAC TCATACTCTT CCTTTTTCAA TATTATTGAA GCATTTATCA GGGTTATTGT	390
CTCATGAGCG GATACATATT TGAATGTATT TAGAAAAATA AACAAATAGG GGTTCCGCGC	396
ACATTTCCCC GAAAAGTGCC ACCTGACGTC TAAGAAACCA TTATTATCAT GACATTAACC	399
TATAAAAATA GGCGTATCAC GAGGCCCTTT CGTCTTCAC	222

(2)	ANGABEN	zu	SEQ	ID	ио:	41:
-----	---------	----	-----	----	-----	-----

(1) SEOUENZKENNZEICH	EN:
----------------------	-----

- (i) SEQUENZKENNZEICHEN:

 (A) LÄNGE: 8888 Basenpaare

 (B) ART: Nucleotid

 (C) STRANGFORM: Einzelstrang

 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Genom-DNA

(ix) MERKMAL:

- (A) NAME/SCHLÜSSEL: exon
- (B) LAGE:1..8888

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 41:

(22)	т 60°
GAGCCGCACA CGGTGCTTTT CCACGAGCCA GGCAGCTCCT CTGTGTGGGT GGGAGGACG	т 60
GGCAAGGTCT ACCTCTTGA CTTCCCCGAG GGCAAGAACG CATCTGTGCG CACGGTGAG	C 120
CTCTCTCTC CCCCAACACC CCCCCTACCC TCTTATCTCC CCTCTGGCCC TGCCAAGGG	T 180
CCTCAGGGAA TCCGAGGGAG CTGGCTTCTC TTCCTAAACT GCCCCCACCT CCGTATCCT	TA 240
CCTCAGGGAA TCCGAGGGAG CTCCCTAAAG GTAGTCCAGA TTGGAGTGGG GAGCTGGGC	300 go
TARATGGCTC CTGGGGGAGG CTCCCTARAG GTAGTGGTG GGCAGCGCTG CTGCGGAA	AG 360
GGTGTGGAGA AAAACAGGAG CTAATGGGCC TGGCCAGCTG GGCAGCGCTG CTGCGGAA	ra 420
CCCAGGCTGG AAGCTGGGCC CCAGAGCCCA TGCCTGGTCT TCTGAACCCT CTGGGCCT	AG 480
GCTCTGGATA TGAGACCCTG TTTGACCTCA GGTAGATCAC TCACCCTCTC AGAGCCCC	AG 400
TIGCTCATCT GTCAGATGAG AATAATGGTT GCTTCCTTTG GGGCTTATCC TGAGGCTG	TG 540
TGGAAAGCAT TTCAGGGGTA CCTCACCCCT GGCAGATTGA ACTAATGCTT CTCCCCTT	CC 600
CCAGGTGAAT ATCGGCTCCA CAAAGGGGTC CTGTCTGGAT AAGCGGGTGA GCGGGGGA	AGG 660
GATCTGGAGG GGTCTGAGCC ACTTGGTAAA GGGAGAGGAG ACCCTGAGGG TCTAAGGA	AAG 720
GAAGCATGGC CCTGCCCCAC GAGTCCCAGA CTGATGGGGA GACGTGGTCC TCTGTGC	TTA 780
GAAGCATGGC CCTGCCCCAC GAGTCCCAGA CTGATCCCCA AGGCTGTCAC CTATGCT	AAG 840
GGGGATGGCG TCAGCTGCAC ACACTCTGGG CTGTCCCGGG AGGCTGTCAC CTATGCT	਼ ਜ਼ਾ 900
CCCTTCTGAC ACCTTCTTCC CTGATCCTGG GGGTCCTAGT GCTAGGCTTG CCAGGGC	сът 960
CCAGCAACCA ATTTCTCTCC TCCCTTCTCT CTTCCCCGGG CAGGACTGCG AGAACTA	CAI 900
CACTCTCCTG GAGAGGCGGA GTGAGGGGCT GCTGGCCTGT GGCACCAACG CCCGGCA	LCCC 1020
CAGCTGCTGG AACCTGGTGA GAAGGCTGCT CCCCATGTGC CTGATCAGCT CACCTTC	TAC 1080
TGCGTGGGCT TCTGCCCCTC ATGGTGGGAA GGAGATGGCG AGACTCCAAT GCTGGCC	CTTG 1140
1000000	

55

15

20

25

30

CCCTGGGAGG ATGGGGTCC TGGCCGAGAA ACTGGCCGTC ATGGGAGGCA GTGGCTGTGG	1200
GATTATGTGG CCATCCAACC CTCTGGATCT CCCACAGGTG AATGGCACTG TGGTGCCACT	1260
TGGCGAGATG AGAGGCTACG CCCCCTTCAG CCCGGACGAG AACTCCCTGG TTCTGTTTGA	1320
AGGTTGGGGC ATGCTTCGGA ACTGGGCTGG GAGCAGGATG GTCAGCTCTT TGTCCAGTGT	1380
AGETTGGGGC ATGCTTCGGA ACTGGGCTGC CCTTACTCAT TTCTCCCTCC CACTGACCCC	1440
CCGGAGGAGG GACTTCCAGG AGCIGCCIGC COTTO	1500
AGGGGACGAG GTGTATTCCA CCATCCGGAA GCAGCACTAT	1560
CCGCCGCATC CGGGGCGAGA GTGAGCTGTA CACCAGTGAT ACTGTCATGC AGAGTGAGTC	1620
AGGCTCCGGC TGGGCTGAGG GTGGGCAAGG GGGTGTGAGC ACTTAAGGTG GCAGATGGGA	1680
TCCTGATGTT TCTGGGAGGG CTCCCTGAGG GCCGCTGGGG CCATGCAGGA AAGCAGGACC	1740
TTGGTATAGG CCTGAGAAGT TAGGGTTGGC TGGGAGCAGA GGAACAGACA AGGTATAGCA	1800
GTGGGATGGG CCCAGCCCTC TTCAGGAACA CAAACAGAGG GAGCCCCAGA CCCAGTGCAG	1860
GGTCCCCAGG AGCCAAAGTT TATCCTCTGC TGAGTTCACG TGGAGGCAGC CCCCCAACTC	
CCTCCTCATC AGGGCTCTGC CAATTGAGCA GAAGTGACAT AGGGGCCCCC AGGGACCTTC	1920
CCCCACTCCC CAGGCATGAA GTCATTGCTC CTGGGCCGAT GACATCTTTG TAGGAAGAGG	1980
CCANACAGG TGTGGGGTGG AGGTGCAGGG TCTAGGGCCC CTCGGGGAGT TGGACCTGAT	2040
GTTATGAGTC CTATTCCAGA TCTGATTTGC CATGGTTTGT GCAGACCCGA AGGAGGGAGG	2100
AGAGTGTGCA GGGTTGGAAT GGTCTCCCGG GCAAGCTTCC CAGCCTTACG CCCATTCGCT	2160
TCTGTGCCCT GGCAGACCCA CAGTTCATCA AAGCCACCAT CGTGCACCAA GACCAGGCTT	2220
ACGATGACAA GATCTACTAC TTCTTCCGAG AGGACAATCC TGACAAGAAT CCTGAGGCTC	2280
CTCTCAATGT GTCCCGTGTG GCCCAGTTGT GCAGGGTGAA CACGGGCGTG AGGGCTGCTG	2340
CTCTCAATGT GTCCCGTGTG GGGGTGAG TGAGGGTGAG TTCTGTGTGT CCGTGTGCAT	2400
GCTACGTGTC TGTGCATGAX TAGGTGGGTC TGTGTCAGGG ACTGTGGGAG CAGCTGTGTG	2460
GTAGAAGTTG TGTGGATGTA TGAGTGGG TAAAGGTGGC TGAGCTCCTG TGCACGTATG TGCATGGAGC ATCATGTGTC TGTGTGTGGG TAAAGGTGGC TGAGCTCCTG TGCACGTATG	2520
TGCATGGAGC ATCATGTGTC TGTGTGTGGG TATGCTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT	2580
ATGGCGTGTG AGCGTGTGTA TGATGGGGTG TGTGTGTGTGT GTCTGAGTCC	2640
GTGTGAATGT GCTGTGCCAC GTATGTGGGT GCGTGAGTCA GTAAATGTGT GTCTGAGTCC	2700
GTCTGCTCTG TGGGGACCTG GCACTCTCAC CTGCCCTGAC CCTGGGCACT GCTGGCCCTG	2760
GGCTCTGGAT CAGCCAGGCC TGCTTGCAGG AGTCTCATCT GGAGACCTGC CCTGAGTCCT	2820
GGGGCACCCC CGGCAGGTCC TGGCCCCTCG CAGCCTGCCT TCCTCCTCTG GGCCCAGGTG	

TTGATATTGC TGGCAGTGGT TTCCTGGGGT GTGTGGGGAA GCCCGGGCAG GTGCTGAGGG	2000
GCCTCTTCTC CCCTCTACCC TTCCAGGGGG ACCAGGGTGG GGAAAGTTCA CTGTCAGTCT	2940
CCAAGTGGAA CACTTTTCTG AAAGCCATGC TGGTATGCAG TGATGCTGCC ACCAACAAGA	3000
ACTTCAACAG GCTGCAAGAC GTCTTCCTGC TCCCTGACCC CAGCGGCCAG TGGAGGGACA	3060
CCAGGGTCTA TGGTGTTTTC TCCAACCCCT GGTGAGTGGC CCTTGTCCTG GGGCCGGGGC	3120
TGGCATTGGT TCAGTGTCCA GTAGGGACAG GAGGCCTTGG GCCCTGCTGA GGGCCTCCCT	3180
GGTGTGGCAG GAGCAGGGGC TGCAGGCTCA AGAGGCTGGG CTGTTGCTGG GTGTGGGGTG	3240
GGGGGACAGC CAGTGCGATG TATGTACTGT TGTGTGAGTG AGTCTGCACT CATGGGTGTG	3300
TGTGCATGCC CTATATGCAC ACTCATGACT GCACTTGTGC CTGTGTGTCC CACCACCTGC	3360
TTGTGCCGAG AGTGGACACT GGGCCCAGGA GGAAGCTGCT GAAGCATCTC TCGGGGAGCT	3420
GGGTGCTATT ACACCTGCTC AGGCACTGCC TGAGCCCGAT AATTCACACT TCTTAATCAC	3480
TCTCATTGAT TGAACACACG GCAGGCGGAA GTGTTGGGTG TGTGTGGGGA GAGTTAGGGA	3540
TAGAGTGGAG GAAGCCAAGA CCCTGCTCTG TGGCTCCTGG GTGAGTGGGT CCCCCAGGCT	3600
GGGAAGGGT TGGGGGTCTG GCCTCCTGGG GCATCAGCAC CCCACAGCCT GTGCCCAGGG	3660
AGGGCTAGAG AACTGCTCAG CCTATGATGG GGTTCCTCCT GCCTTGGGGT TGGGTAGAGC	3720
AGATGGCCTC TAGACTCAGT GATTCTGTAA CAGGATACAA GTTTGTGGTT TTAAATTGCA	3780
GCACAAAGAA ATTAGGCTGA ACTCCTCTCC TTCCTCCTCT CCATCCCTCC CCATTTTCAG	3840
TEGTEGTTEG CAACTCAGTE CCAEGCACAA EGCTEGCCTE EGTEAGTEGA EGTEGATEGE	3900
THEOTICIES SCCCCCATT SASCISSICT CCATGICACT SCASSAACTA CICAGCCGTC	3960
TGTGTGTATT CCCTCGGTGA CATTGACAAG GTCTTCCGTA CCTCCTCACT CAAGGGCTAC	4020
CACTCAAGCC TTCCCAACCC GCGGCCTGGC AAGGTGAGCG TGACACCAGC CGTGGCCCAG	4080
GCCCAGCCCT CCTTCTGCCT CACCTCCCAC CACCCCACTG ACCTGGGCCT GCTCTCCTTG	4140
CCCAGTGCCT CCCAGACCAG CAGCCGATAC CCACAGAGAC CTTCCAGGTG GCTGACCGTC	4200
ACCCAGAGGT GGCGCAGAGG GTGGAGCCCA TGGGGCCTCT GAAGACGCCA TTGTTCCACT	426
CTAAATACCA CTACCAGAAA GTGGCCGTCC ACCGCATGCA AGCCAGCCAC GGGGAGACCT	432
TTCATGTGCT TTACCTAACT ACAGGTGAGA GGCTACCCCG GGACCCTCAG TTTGCTTTGT	438
AAAAACGGGC ATGAAAGGTG TAAGGAATAA TGTAGTTAAC ATCTGGTTGG ATCTTTACAT	444
•	

	GTGGAAGGAA	TAATTGAGTG	ACTGGAGTTG	TCAGGGGTTA	ATGTGTGTGG	GTGTGGAAGA	4500
	GCCAGGCAGG	GAGAGCTTCC	TGGAGGAGGT	AGGGGCAAGA	GGGAAAGGGG	GATGGGAGAA	4560
5	AAGCAAGCAC	TGGGATTTGG	AGGCGGAAAT	CTGGAGAGTC	TGAGCAAAGC	CAGGTGCACC	4620
	TTTGGTCCAG	ATGTCTGACT	CAGGGAAGAA	GATGGTAGGA	AGAGACGTGG	CAAATGAGGA	4680
10	GGAGGGGCCT	GAACCACAGG	GATACTGGCC	TCTGCCAGGC	agaatgaggg	AGTCAGGCCC	4740
10	TGCGCCTGTC	DTTADDDTTT	TGCAGGTGAG	AAGAAACATT	TGAGGAGTTG	ATGGGGCACA	4800
	AATTAGGTAT	GGGGAAGGAG	TTCCAGGGGG	CAGAACCTTT	GCCATCTCAC	AGAGGACAGG	4860
15	GGCAGCTTCT	CTTCTTCCCT	GGAGTAGGCC	CTGCTGGGGG	AAGCTGGGTG	GAATGCCGTG	4920
	GGAGATGCTC	CTGCTTTCTG	GAAAGCCACA	GGACACGGAG	GAGCCAGTCC	TGAGTTGGGT	4980
	TTGTCGCAGC	TTCCCATGCC	AGCTGCCTTC	CTTGAGACTG	GAAAGGCCT	CTAGCACCCC	5040
20	TGGGGCCATT	CAATTCAGGC	CCAGGCGCCC	AACCTCAGTT	GTTCACATTC	CCCATGTGAT	5100
	CTCCTGTTGC	TGCTTCACCT	TGGGACTGTC	TCGGCTTTGG	TGACCTTGTA	GGAAACTGGA	5160
	ACCCCAGCAC	CATTGTTTGG	CTCCTGGAAG	CCTTGGGGAG	AGGAATTTCC	CACAGGGCAG	5220
25	GGCCTGGGTC	CTGATTCCCT	GCCTCTTTAC	TCCCTATTCA	TCCCGGCTAC	ACCCTTGGGC	5280
	CCCCATCCTT	GCTTGGCTCC	AGTACTGGCT	GGCACAGCTG	TTGTGGTCAT	CCAGGGATGG	5340
30	CAGGGCACTG	GGGAACAGAA	GAGAGAGGTC	ACACAGTGCG	GAACTGGGAG	CAGGAGCTAG	5400
	GACAAGGAAG	GCTGGACTTG	GGCCATGGAT	TCCCTTCCTG	CAGACTTGG	AAGTGAGCAC	5460
	ACTTGAGTGA	TTAGAGAAGG	TGTCTTCGTT	CTAAGGGCAG	TGGAGGAGG	ACCATTITGG	5520
35	AGCCTGCATC	ATTCGTATTT	GGGCTAGATT	GAAAAATAGA	GCTTTCTAAC	TCCTCTGCAG	5580
	AGAATGGGAG	GCTCTCACAA	CTGGGAGAAC	TATTGGCTCT	TTTCCTGAG	ATTTTGCCAA	5640
	GGGTATGCTG	TTACTGGGGC	TGGTTTGGA	GGAGTATAG	GCATTATGT	C TGTGAAGGCA	5700
40	GTGGCTGGGG	TGGGGCCTT	TCAGGCCCA	A GGAGCATCTY	GCCACATCT	C AGAGTCCACA	5760
	GATGAGGATC	ACGGATGTG	AGAGGAAAC	A TCCTAGGCA	G GCAATCATC	T GACTGCTTTT	5820
45	TTGGGGCAGG	TGATGCCCTC	GGAAATTGG	agggagga	G AGAGGGAGG	T AGGCTATTCT	5880
	AGAAACTGGG	AGAGCAGGT	aggtaggat	r gggaggacc.	a ggggtcagg	G TCCCCATTGG	5940
	TCCCTAATTC	AGAACGGAGA	A GAGCATTGG	T CTAGGAGGC	A GGCAGCTCG	G TTATAAGACC	6000
50	TTGGGAACTC	TTGATTTAG	A ATCCAAGAT	C CTTTTTAGA	T CTAGGATTI	T ATAAAATTAA	6060
	GATATCCCCC	AAGATCAAA'	r GCAACGTGG	A GTCCTGAAT	T GGATCCTAG	A ACAGAAGAAG	6120

	GACATTTGTG	GAAAAACTAG	TGAAATCCAA	ATAAAGTCTG	TAGTTTTGTT	DTAATDATAA	6180
	CACCAATGTC	AGTTGCCTAG	TTGTGACAAA	TATACCGTGG	TTATGTAAGA	TGGTAACATT	6240
	AGGGGGAACT	GGAGAAGGGT	AGATTGGAGC	TCTCTGTACT	ATCTTTGCAA	CTTTTCTGGG	6300
	AATCTAAAAT	TACTCCAAAA	AAAAAAAT	ATGTATTTAA	agtaaatata	TTCCCTAAGA	6360
0	GTCCAGGAGG	CAGGGGAGTT	GTAGAAGCAG	CTGAGTGGTT	GGGTTCTGAC	AGATTTGGTT	6420
-	CCAACTCGGT	CTCTGCTGCT	CACCAGCTGT	GTGACCTTGA	GCAAGTGGCT	TAGCCTTTCT	6480
	GAGCCTGATT	TCCTTATCTG	TGGAGTGGGG	AAGATGACAG	CCACCTCGCA	GGGCTGTGGA	6540
15	GGGTTAAACG	AGGTGATGCA	TGGACAGCAG	CCGCACTGAC	CTTGCTGGTG	TGGGGCTCCT	6600
	GCTTCTGTTC	TTCCCGTGCA	GCCTTGGGAA	TGTTGGAGGC	CGTATCCAGG	GACCCCTGGG	6660
		TGGCCTCTCT					6720
20	ACATTCTTCC	CCAGTCACGC	TCTCCTCGCC	CTGCCCACAC	CAGTCCTGTG	ACCCTTGCCT	6780
						CTCAGTGGGA	6840
25	CTCCCGCCCA	CTGACCCTCT	GTCCACCATA	CACAGACAGG	GGCACTATCO	ACAAGGTGGT	6900
						AGCCCTTCCG	6960
						TTCCCCCACT	7020
30	GCGTCCCATG	GGCTATGCAG	TGACTGCAGC	TGAGGACAGG	GCTCCTTTGC	ATGTGATTTG	7080
	TGTGTTCTTT	TAAGAGCTTC	TAGGCCTTAG	GGCCTGGACA	TTTAGGACTO	AGTGTGGGGT	7140
	GGGGCCCGGG	CCTGACCCAA	TCCTGCTGTC	CTTCCAGAGG	AAGCTGTATC	3 TGAGCTCCCA	7200
35	GTGGGAGGTG	AGCCAGGTGC	CCCTGGACCT	GTGTGAGGTC	TATGGCGGGG	G GCTGCCACGG	7260
	TTGCCTCATG	TCCCGAGACC	CCTACTGCGG	CTGGGACCAG	GCCGCTGC	A TCTCCATCTA	7320
40	CAGCTCCGAA	CGGTACGTTG	GCCGGGATCC	CTCCGTCCCT	GGGACAAGG	T GGGCATGGGA	7386
						T TGTGGGACCT	744
	CCTCTCTACT	r GGAACTGCAC	TAGGGGTAAG	GATATGAGG	TCAGGTCTG	C AGCCTTGTAT	750
45	CTGCTGATC	TCTTTCGTCC	TTCCCACTCC	AGGTCAGTG	TGCAATCCA	T TAATCCAGCC	756
	GAGCCACAC!	A AGGAGTGTCC	CAACCCCAA	CCAGGTACC	GATCTGGCC	C TGCTGGCGGC	762
50						G GGAAACATGG	768
30		n macanacan	CTACATGGG	CAGGATACA	G TCCTGCAGA	G GGAGCCCTCT	774

7	GGTGGGATG	AGCGAGACGG	GAGAAAAAAG	GAGGACGCTG	AGGGCTGGGT	TCCCCACGTT	7800
(CATTCAGAAG	CCTTGTCCTG	GGATCCCAGT	CGGTGGGGAG	GACACATCCT	CCCCTGGGAG	7860
(CTCTTTGTCC	CTCCTCACGG	CTGCTTCCCC	ACTGCCTCCC	CAGACAAGGC	CCCACTGCAG	7920
j	AAGGTTTCCC	TGGCCCCAAA	CTCTCGCTAC	TACCTGAGCT	GCCCCATGGA	ATCCCGCCAC	7980
	GCCACCTACT	CATGGCGCCA	CAAGGAGAAC	GTGGAGCAGA	GCTGCGAACC	TGGTCACCAG	8040
				CTCACGGCGC			8100
						GCTGCCCGAG	8160
						CTCCCTCTGG	8220
						CCCGAGGCTG	8280
						GAGCCGGCTG	8340
						TGGAGGATGC	8400
						ACGGATGGTG	8460
						AAGACTTTAT	8520
						GCTCCCAGCC	8580
						2 ATCTCGACCC	8640
						TTCCCCTCCC	8700
						T GTCCAGCCCT	8760
						T GCATGTTTAT	8820
						AAAAAAAA A	8880
	TGAAGGATG	1 110011100					8888

(2) ANGABEN ZU SEQ ID NO: 42:

- (i) SEQUENZKENNZBICHEN:
 - (A) LÄNGE: 6622 Basenpaare
 - (B) ART: Nucleotid
 - (C) STRANGFORM: Einzelstrang
 (D) TOPOLOGIE: linear
- (ii) ART DES MOLEKÜLS: Genom-DNA
- (ix) MERKMAL: 50
 - (A) NAME/SCHLÜSSEL: exon
 - (B) LAGE:1..6622

10

15

20

25

30

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 42:

_	GATATCATGG	AGATAATTAA	AATGATAACC	ATCTCGCAAA	TAAATAAGTA	TTTTACTGTT	60
5	TTCGTAACAG	TTTTGTAATA	AAAAAACCTA	TAAATATGAA	ATTCTTAGTC	AACGTTGCCC	120
	TTGTTTTAT	GGTCGTATAC	ATTTCTTACA	TCTATGCGGA	TCGATGGGGA	TCCGCCCAGG	180
10	GCCACCTAAG	GAGCGGACCC	CGCATCTTCG	CCGTCTGGAA	AGGCCATGTA	GGGCAGGACC	240
	GGGTGGACTT	TGGCCAGACT	GAGCCGCACA	CGGTGCTTTT	CCACGAGCCA	GGCAGCTCCT	300
	CTGTGTGGGT	GGGAGGACGT	GGCAAGGTCT	ACCTCTTTGA	CTTCCCCGAG	GGCAAGAACG	360
15	CATCTGTGCG	CACGGTGAAT	ATCGGCTCCA	CAAAGGGGTC	CTGTCTGGAT	AAGCGGGACT	420
	GCGAGAACTA	CATCACTCTC	CTGGAGAGGC	GGAGTGAGGG	GCTGCTGGCC	TGTGGCACCA	480
20	ACGCCCGGCA	CCCCAGCTGC	TGGAACCTGG	TGAATGGCAC	TGTGGTGCCA	CTTGGCGAGA	540
	TGAGAGGCTA	TGCCCCCTTC	AGCCCGGACG	AGAACTCCCT	GGTTCTGTTT	GAAGGGGACG	600
	AGGTGTATTC	CACCATCCGG	AAGCAGGAAT	ACAATGGGAA	GATCCCTCGG	TTCCGCCGCA	660
25	TCCGGGGCGA	GAGTGAGCTG	TACACCAGTG	ATACTGTCAT	GCAGAACCCA	CAGTTCATCA	720
	AAGCCACCAT	CGTGCACCAA	GACCAGGCTT	ACGATGACAA	GATCTACTAC	TTCTTCCGAG	780
·	AGGACAATCC	TGACAAGAAT	CCTGAGGCTC	CTCTCAATGT	GTCCCGTGTG	GCCCAGTTGT	840
30	GCAGGGGGGA	CCAGGGTGGG	GAAAGTTCAC	TGTCAGTCTC	CAAGTGGAAC	ACTTTTCTGA	900
	AAGCCATGCT	GGTATGCAGT	GATGCTGCCA	CCAACAAGAA	CTTCAACAGG	CTGCAAGACG	960
35	TCTTCCTGCT	CCCTGACCCC	AGCGGCCAGT	GGAGGGACAC	CAGGGTCTAT	GGTGTTTTCT	1020
	CCAACCCCTG	GAACTACTCA	GCCGTCTGTG	TGTATTCCCT	CGGTGACATT	GACAAGGTCT	1080
	TCCGTACCTC	CTCACTCAAG	GGCTACCACT	CAAGCCTTCC	CAACCCGCGG	CCTGGCAAGT	1140
40 -	GCCTCCCAGA	CCAGCAGCCG	ATACCCACAG	AGACCTTCCA	GGTGGCTGAC	CGTCACCCAG	1200
	AGGTGGCGCA	GAGGGTGGAG	CCCATGGGGC	CTCTGAAGAC	GCCATTGTTC	CACTCTAAAT	1260
45	ACCACTACCA	GAAAGTGGCC	GTTCACCGCA	TGCAAGCCAG	CCACGGGGAG	ACCTTTCATG	1320
40	TGCTTTACCT	AACTACAGAC	AGGGGCACTA	TCCACAAGGT	GGTGGAACCG	GGGGAGCAGG	1380
	AGCACAGCTT	CGCCTTCAAC	ATCATGGAGA	TCCAGCCCTT	CCGCCGCGCG	GCTGCCATCC	1440
50	AGACCATGTC	GCTGGATGCT	GAGCGGAGGA	AGCTGTATGT	GAGCTCCCAG	TGGGAGGTGA	1500
	GCCAGGTGCC	CCTGGACCTG	TGTGAGGTCT	ATGGCGGGGG	CTGCCACGGT	TGCCTCATGT	1560

	CCCGAGACCC	CTACTGCGGC	TGGGACCAGG	GCCGCTGCAT	CTCCATCTAC	AGCTCCGAAC	1620
	GGTCAGTGCT	GCAATCCATT	AATCCAGCCG	AGCCACACAA	GGAGTGTCCC	AACCCCAAAC	1680
	CAGACAAGGC	CCCACTGCAG	AAGGTTTCCC	TGGCCCCAAA	CTCTCGCTAC	TACCTGAGCT	1740
	GCCCCATGGA	ATCCCGCCAC	GCCACCTACT	CATGGCGCCA	CAAGGAGAAC	GTGGAGCAGA	1800
0	GCTGCGAACC	TGGTCACCAG	AGCCCCAACT	GCATCCTGTT	CATCGAGAAC	CTCACGGCGC	1860
	AGCAGTACGG	CCACTACTTC	TGCGAGGCCC	AGGAGGGCTC	CTACTTCCGC	GAGGCTCAGC	1920
	ACTGGCAGCT	GCTGCCCGAG	GACGGCATCA	TGGCCGAGCA	CCTGCTGGGT	CATGCCTGTG	1980
5	CCCTGGCTGC	CTGAATTCGA	AGCTTGGAGT	CGACTCTGCT	GAAGAGGAGG	AAATTCTCCT	2040
	TGAAGTTTCC	CTGGTGTTCA	AAGTAAAGGA	GTTTGCACCA	GACGCACCTC	TGTTCACTGG	2100
	TCCGGCGTAT	TAAAACACGA	TACATTGTTA	TTAGTACATT	TATTAAGCGC	TAGATTCTGT	2160
90 ·	GCGTTGTTGA	TTTACAGACA	ATTGTTGTAC	GTATTTTAAT	AATTCATTAA	ATTTATAATC	2220
	TTTAGGGTGG	TATGTTAGAG	CGAAAATCAA	ATGATTTTCA	GCGTCTTTAT	ATCTGAATTT	2280
25	AAATATAAA	TCCTCAATAG	ATTTGTAAAA	TAGGTTTCGA	TTAGTTTCAA	ACAAGGGTTG	2340
	TTTTTCCGAA	CCGATGGCTG	GACTATCTAA	TGGATTTTCG	CTCAACGCCA	CAAAACTTGC	2400
	CAAATCTTGT	AGCAGCAATC	TAGCTTTGTC	GATATTCGTT	TGTGTTTTGT	TTTGTAATAA	2460
30	AGGTTCGACG	TCGTTCAAAA	TATTATGCGC	TTTTGTATIT	CTTTCATCAC	TGTCGTTAGT	2520
	GTACAATTGA	CTCGACGTAA	ACACGTTAAA	TAAAGCCTGG	ACATATITAA	CATCGGGCGT	2580
3 <i>5</i>	GTTAGCTTTA	TTAGGCCGAT	TATCGTCGTC	GTCCCAACCC	TCGTCGTTAG	AAGTTGCTTC	2640
	CGAAGACGAT	TTTGCCATAG	CCACACGACG	CCTATTAATT	GTGTCGGCTA	ACACGTCCGC	2700
	GATCAAATTT	GTAGTTGAGC	TTTTTTGGAAT	TATTTCTGAT	TGCGGGCGTI	TTTGGGCGGG	2760
40	TTTCAATCTA	ACTGTGCCCG	ATTTTAATTC	AGACAACACG	TTAGAAAGCG	ATGGTGCAGG	2820
	CGGTGGTAAC	ATTTCAGACG	GCAAATCTAC	TAATGGCGGC	GGTGGTGGAG	CTGATGATAA	2880
4 5	ATCTACCATO	GGTGGAGGCG	CAGGCGGGGC	TGGCGGCGGA	GGCGGAGGCG	GAGGTGGTGG	2940
~	CGGTGATGCA	GACGGCGGTT	TAGGCTCAAA	TTGTCTCTTI	CAGGCAACAC	AGTCGGCACC	3000
	TCAACTATTG	TACTGGTTTC	GGGCGTATGG	TGCACTCTC	GTACAATCT	CTCTGATGCC	306
50	GCATAGTTAA	GCCAGCCCCG	ACACCCGCCA	ACACCCGCTC	ACGCGCCCTC	ACGGGCTTGT	312
		magagamm	CACACAAGCT	CTCACCGTCT	r ccgggagct	CATGTGTCAG	318

	AGGTTTTCAC	CGTCATCACC	GAAACGCGCG	AGACGAAAGG	GCCTCGTGAT	ACGCCTATTT	3240
	TTATAGGTTA	ATGTCATGAT	aataatggtt	TCTTAGACGT	CAGGTGGCAC	TTTTCGGGGA	3300
5	AATGTGCGCG	GAACCCCTAT	TTGTTTATTT	TTCTAAATAC	ATTCAAATAT	GTATCCGCTC	3360
	ATGAGACAAT	AACCCTGATA	AATGCTTCAA	TAATATTGAA	AAAGGAAGAG	TATGAGTATT	3420
	CAACATTTCC	GTGTCGCCCT	TATTCCCTTT	TTTGCGGCAT	TTTGCCTTCC	TGTTTTTGCT	3480
10	CACCCAGAAA	CGCTGGTGAA	agtaaaagat	GCTGAAGATC	AGTTGGGTGC	ACGAGTGGGT	3540
	TACATCGAAC	TGGATCTCAA	CAGCGGTAAG	ATCCTTGAGA	GTTTTCGCCC	CGAAGAACGT	3600
15	TTTCCAATGA	TGAGCACTTT	TAAAGTTCTG	CTATGTGGCG	CGGTATTATC	CCGTATTGAC	3660
	GCCGGGCAAG	AGCAACTCGG	TCGCCGCATA	CACTATTCTC	AGAATGACTT	GGTTGAGTAC	3720
	TCACCAGTCA	CAGAAAAGCA	TCTTACGGAT	GGCATGACAG	TAAGAGAATT	ATGCAGTGCT	3780
20	GCCATAACCA	TGAGTGATAA	CACTGCGGCC	AACTTACTTC	TGACAACGAT	CGGAGGACCG	3840
	AAGGAGCTAA	CCGCTTTTTT	GCACAACATG	GGGGATCATG	TAACTCGCCT	TGATCGTTGG	3900
	GAACCGGAGC	TGAATGAAGC	CATACCAAAC	GACGAGCGTG	ACACCACGAT	GCCTGTAGCA	3960
25	ATGGCAACAA	CGTTGCGCAA	ACTATTAACT	GGCGAACTAC	TTACTCTAGC	TTCCCGGCAA	4020
	CAATTAATAG	ACTGGATGGA	GGCGGATAAA	GTTGCAGGAC	CACTTCTGCG	CTCGGCCCTT	4080
30	CCGGCTGGCT	GGTTTATTGC	TGATAAATCT	GGAGCCGGTG	AGCGTGGGTC	TCGCGGTATC	4140
	ATTGCAGCAC	TGGGGCCAGA	TGGTAAGCCC	TCCCGTATCG	TAGTTATCTA	CACGACGGGG	4200
	AGTCAGGCAA	CTATGGATGA	ACGAAATAGA	CAGATCGCTG	AGATAGGTGC	CTCACTGATT	4260
35	AAGCATTGGT	AACTGTCAGA	CCAAGTTTAC	TCATATATAC	TTTAGATTGA	TTTAAAACTT	4320
	CATTTTTAAT	TTAAAAGGAT	CTAGGTGAAG	ATCCTTTTTG	ATAATCTCAT	GACCAAAATC	4380
	CCTTAACGTG	AGTTTTCGTT	CCACTGAGCG	TCAGACCCCG	TAGAAAAGAT	CAAAGGATCT	4440
40	TCTTGAGATC	CTTTTTTCT	GCGCGTAATC	TGCTGCTTGC	AAACAAAAA	ACCACCGCTA	4500
	CCAGCGGTGG	TTTGTTTGCC	GGATCAAGAG	CTACCAACTC	TTTTTCCGA	GGTAACTGGC	4560
45	TTCAGCAGAG	CGCAGATACC	AAATACTGTT	CTTCTAGTGT	AGCCGTAGT	AGGCCACCAC	4620
40	TTCAAGAACT	CTGTAGCACC	GCCTACATAC	CTCGCTCTGC	TAATCCTGT	ACCAGTGGCT	4680
	GCTGCCAGTG	GCGATAAGTC	GTGTCTTACC	GGGTTGGACT	CAAGACGAT	A GTTACCGGAT	4740
50	AAGGCGCAGC	GGTCGGGCTG	AACGGGGGGT	TCGTGCACAC	: AGCCCAGCT	r GGAGCGAACG	4800
						C GCTTCCCGAA	4860

	GGGAGAAAGG	CGGACAGGTA	TCCGGTAAGC	GGCAGGGTCG	GAACAGGAGA	GCGCACGAGG	4920
	GAGCTTCCAG	GGGGAAACGC	CTGGTATCTT	TATAGTCCTG	TCGGGTTTCG	CCACCTCTGA	4980
	CTTGAGCGTC	GATTTTTGTG	ATGCTCGTCA	GGGGGGCGGA	GCCTATGGAA	AAACGCCAGC	5040
	AACGCGGCCT	TTTTACGGTT	CCTGGCCTTT	TGCTGGCCTT	TTGCTCACAT	GTTCTTTCCT	5100
0	GCGTTATCCC	CTGATTCTGT	GGATAACCGT	ATTACCGCCT	TTGAGTGAGC	TGATACCGCT	5160
	CGCCGCAGCC	GAACGACCGA	GCGCAGCGAG	TCAGTGAGCG	AGGAAGCATC	CTGCACCATC	5220
	GTCTGCTCAT	CCATGACCTG	ACCATGCAGA	GGATGATGCT	CGTGACGGTT	AACGCCTCGA	5280
5	ATCAGCAACG	GCTTGCCGTT	CAGCAGCAGC	AGACCATTTT	CAATCCGCAC	CTCGCGGAAA	5340
	CCGACATCGC	AGGCTTCTGC	TTCAATCAGC	GTGCCGTCGG	CGGTGTGCAG	TTCAACCACC	5400
20	GCACGATAGA	GATTCGGGAT	TTCGGCGCTC	CACAGTTTCG	GGTTTTCGAC	GTTCAGACGT	5460
	AGTGTGACGC	GATCGGTATA	ACCACCACGC	TCATCGATAA	TTTCACCGCC	GAAAGGCGCG	5520
	GTGCCGCTGG	CGACCTGCGT	TTCACCCTGC	CATAAAGAAA	CTGTTACCCG	TAGGTAGTCA	5580
25	CGCAACTCGC	CGCACATCTG	AACTTCAGCC	TCCAGTACAG	CGCGGCTGAA	ATCATCATTA	5640
	AAGCGAGTGG	CAACATGGAA	ATCGCTGATT	TGTGTAGTCG	GTTTATGCAG	CAACGAGACG	5700
20	TCACGGAAAA	TGCCGCTCAT	CCGCCACATA	TCCTGATCTT	CCAGATAACT	GCCGTCACTC	5760
30	CAACGCAGCA	CCATCACCGC	GAGGCGGTTT	TCTCCGGCGC	GTAAAAATGC	GCTCAGGTCA	5820
	AATTCAGACG	GCAAACGACT	GTCCTGGCCG	TAACCGACCC	AGCGCCCGTT	GCACCACAGA	5880
35	TGAAACGCCG	AGTTAACGCC	ATCAAAAATA	ATTCGCGTCT	GGCCTTCCTG	TAGCCAGCTT	5940
	TCATCAACAT	TAAATGTGAG	CGAGTAACAA	CCCGTCGGAT	TCTCCGTGGG	AACAAACGGC	6000
	GGATTGACCG	TAATGGGATA	GGTCACGTTG	GTGTAGATGG	GCGCATCGTA	ACCGTGCATC	6060
40	TGCCAGTTTG	AGGGGACGAC	GACAGTATCG	GCCTCAGGAA	GATCGCACTC	CAGCCAGCTT	6120
	TCCGGCACCG	CTTCTGGTGC	CGGAAACCAG	GCAAAGCGCC	ATTCGCCATT	CAGGCTGCGC	6180
 45	AACTGTTGGG	AAGGGCGATC	GGTGCGGGCC	TCTTCGCTAT	TACGCCAGCT	GGCGAAAGGG	6240
	GGATGTGCTG	CAAGGCGATT	AAGTTGGGTA	ACGCCAGGGT	TTTCCCAGTC	ACGACGTTGT	6300
	AAAACGACGG	GATCTATCAT	TTTTAGCAGT	GATTCTAATT	GCAGCTGCTC	TTTGATACAA	636
50	CTAATTTTAC	GACGACGATG	CGAGCTTTTA	TTCAACCGAG	CGTGCATGTT	TGCAATCGTG	642
		CA A SECURITION CA		CTTCCD CATC	AACAGGGTGG	ACACCACGTT	64 R

	GAACTCGCCG CAGTTTTGCG GCAAGTTGGA CCCGCCGCGC ATCCAATGCA AACTTTCCGA	6540
	CATTCTGTTG CCTACGAACG ATTGATTCTT TGTCCATTGA TCGAAGCGAG TGCCTTCGAC	6600
5	TTTTTCGTGT CCAGTGTGGC TT	6622
10	(2) ANGABEN ZU SEQ ID NO: 43: (1) SEQUENZKENNZEICHEN:	
15	(A) LÄNGE: 31 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Genom-DNA	*
20	(ix) MERKMAL: (A) NAME/SCHLÜSSEL: exon (B) LAGE:131	
25	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 43: CCGGATCCGC CCAGGGCCAC CTAAGGAGCG G	31
30	(2) ANGABEN ZU SEQ ID NO: 44: (i) SEQUENZKENNZEICHEN:	
35	(A) LÄNGE: 29 Basenpaare (B) ART: Nucleotid (C) STRANGFORM: Einzelstrang (D) TOPOLOGIE: linear (ii) ART DES MOLEKÜLS: Genom-DNA	
40	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 44:	29
45	CTGAATTCAG GAGCCAGGGC ACAGGCATG	
	Patentansprüche	
50	 Semaphorin enthaltend eine charakteristische Sema-Domäne, dadurch gekennzeichnet, daß dat terminales Signalpeptid und im C-terminalen Bereich eine Immunglobulin-ähnliche Domäne und brandomäne aufweist, wobei das Semaphorin als Semaphorin vom Typ L (SemaL) bezeichnet wir des Semaphorins vom Typ L 	eine iransmem-
55	Semaphorin nach Anspruch 1, wobei das Protein (humanes Semaphorin vom Typ L (H-SemaL)) of sequenz SEQ ID NO. 3 hat.	die Aminosäure-

- Semaphorin nach einem oder mehreren der Ansprüche 1 und 2, wobei das Protein im Bereich der Sema-Domäne eine Aminosäureidentität von mindestens 40 % im Bezug auf die Sema-Domäne von H-SemaL aufweist.
- Semaphorin nach einem oder mehreren der Ansprüche 1 bis 2, wobei das Protein die partielle Aminosäureseguenz SEQ ID NO. 4 enthält (murines Semaphorin (M-SemaL)).
 - 5. Nukleinsäure enthaltend eine Nukleinsäure-Sequenz, die für ein Semaphorin vom Typ L gemäß einem oder mehreren der Ansprüche 1 bis 4 kodiert sowie Derivate derselben.
- Nukleinsäure nach Anspruch 5, wobei besagte Nukleinsäure-Sequenz ein Semaphorin L Gen ist.
 - 7. Nukleinsäure nach einem oder mehreren der Ansprüche 5 und 6, wobei besagte Nukleinsäure-Sequenz das Gen von H-SemaL enthält.
- Nukleinsäure nach Anspruch 5, wobei besagte Nukleinsäure-Sequenz die cDNA eines Semaphorins vom Typ L enthält.
 - 9. Nukleinsäure nach Anspruch 8, wobei die cDNA die cDNA von H-SemaL ist.
- 20 10. Nukleinsäure nach Anspruch 8, wobei die cDNA die cDNA von M-SemaL ist.

30

- 11. Verfahren zur Herstellung eines Semaphorins vom Typ L gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß eine Nukleinsäure-Sequenz, die für ein Semaphorin vom Typ L oder ein Derivat derselben kodiert, in einen Expressionsvektor kloniert und exprimiert wird.
- 12. Verfahren gemaß Anspruch 11, wobei für die Expression eine eukaryotische Zelle verwendet wird.
- 13. Verwendung eines Semaphorins vom Typ L oder eines Derivats desselben oder einer Nukleinsäure-Sequenz, die für ein Semaphorin vom Typ L kodiert oder eines Derivats derselben zur Herstellung eines Arzneimittels, das zur Behandlung oder Prävention von immunologischen Erkrankungen verwendet werden kann.
- 14. Verwendung einer Nukleinsäure-Sequenz oder eines Derivats derselben nach Anspruch 13 in der Gentherapie.
- Verwendung eines Semaphorins vom Typ L oder einer Nukleinsäure-Sequenz, die für ein Semaphorin vom Typ L
 kodiert in einem Verlahren zur Identifizierung von immunmodulierenden Wirkstoffen.
 - 16. Verfahren zur Identifizierung von immunmodulierenden Wirkstoffen, dadurch gekennzeichnet, daß ein Semaphorin vom Typ L unter definierten Bedingungen mit einem zu untersuchenden Wirkstoff inkubiert wird, parallel ein zweiter Ansatz ohne den zu untersuchenden Wirkstoff, aber unter ansonsten gleichen Bedingungen durchgeführt wird und dann die inhibierende bzw. aktivierende Wirkung des zu untersuchenden Wirkstoffs bestimmt wird.
 - 17. Verfahren zur Identifizierung von immunmodulierenden Wirkstoffen, dadurch gekennzeichnet, daß eine Nukleinsäure-Sequenz, die für ein Semaphorin vom Typ L kodiert unter definierten Bedingungen und in Gegenwart eines zu untersuchenden Wirkstoffs exprimiert wird und das Ausmaß der Expression bestimmt wird.
 - 18. Verfahren zur Herstellung einer Nukleinsäure, die für ein Semaphorin vom Typ L kodiert, wobei diese Nukleinsäure mit Hilfe der Polymerase Ketten Reaktion unter Verwendung von spezifischen Primern amplifiziert wird.
- Semaphorin Antikörper, dadurch gekennzeichnet, daß er entweder das Epitop von H-SemaL, das den Aminosäuren 179-378 in SED ID NO: 4 entspricht, erkennt oder daß er das Epitop von H-SemaL, das den Aminosäuren 480-666 in SED ID NO: 4 entspricht, erkennt.
 - 20. Verfahren zur Herstellung eines Semaphorin Antikörpers nach Anspruch 19, wobei die Epitope als Fusionsproteine mit einem Epitop-Tag exprimiert und über dieses Epitop-Tag aufgereinigt werden und die aufgereinigten Fusionsproteine zur Immunisierung verwendet werden.

Hig: 1

Beta-Actin Kontrolle

Spezifisches / Antiserum Präimmunserum Histogramm FL1 동 əssingiəi3 Analysierte Population 800 009 **Dotplot FSC/SSC** 400 800--009 200-22C-H\22C-HQµe

Hig. 4b (THP-1)

124

Hig. 4d (L-428)

Fig. 4-e (Jurkat)

Hig. 4-f (Daudi)

Hig. 4g (LCL EBV-Transformierte B-Zellen)

Spezifisches Antiserum Histogramm FL1 Präimmunserum g essingier3 Analysierte Population 800 FSC-H/FSC-Höhe -909 **Dotplot FSC/SSC** 69 200-400-800-009 22C-H\22C-HQµe

Hig. 41 (CBL-Mix57)

Spezifisches Antiserum Präimmunserum Histogramm FL1 Ereignisse 8 Analysierte Population 800 Hig. 4k (CBL-Mix59) **Dotplot FSC/SSC** 800 22C-H\22C-HQpe

Hig: 6

Hig: T

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 892 047 A3

(12)

EUROPÄISCHE PATENTANMELDUNG

(88) Veröffentlichungstag A3: 08.03.2000 Patentblatt 2000/10

(51) Int. Cl.⁷: **C12N 15/12**, C07K 14/47, A61K 48/00, G01N 33/50

(43) Veröffentlichungstag A2: 20.01.1999 Patentblatt 1999/03

(21) Anmeldenummer: 98112470.4

(22) Anmeldetag: 06.07.1998

(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 09.07.1997 DE 19729211 11.02.1998 DE 19805371 (71) Anmelder: Hoechst Marion Roussel Deutschland GmbH 65929 Frankfurt am Main (DE)

(72) Erfinder:

• Fleckenstein, Bernhard, Prof. Dr. 91369 Wiesenthau (DE)

 Ensser, Armin, Dr. 90419 Nürnberg (DE)

(54) Humanes und murines Semaphorin L

(57) Humanes Semaphorin L(H-SemaL) und korrespondierende Semaphorine in anderen Spezies.

Gegenstand der Erfindung sind neuen Semaphorine, die sich durch eine besondere Domänenstruktur auszeichnen und deren Derivate, Nukleinsäuren (DNA, RNA, cDNA), die für diese Semaphorine kodieren und deren Derivate sowie die Verwendung derselben.

Gegenstand der vorliegenden Erfindung sind Semaphorine mit einer neuen, bisher nicht bekannten und nicht zu erwartenden Domänenstruktur, denen eine biochemische Funktion im Immunsystem zukommt (immunmodulierende Semaphorine). Die erfindungsgemäßen Semaphorine werden als Semaphorine vom Typ L (SernaL) bezeichnet. Sie enthalten ein N-terminales Signalpeptid, eine charakteristische Sema-Domäne und im C-terminalen Bereich des Proteins eine Immunglobulin-ähnliche Domäne und eine hydrophobe Domäne, die eine potentielle Transmembrandomäne darstellt.

Europäisches EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 98 11 2470

	EINSCHLÄGIGE		1 - 1 - 1	
ategorie	Kennzeichnung des Dokume der maßgeblicher	ints mit Angabe, soweit erlorderlich, n Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)
D,X		cephaline herpesvirus prin-like gene" 'IROLOGY., 1063-1067,	1,3,5,6,	C12N15/12 C07K14/47 A61K48/00 G01N33/50
D,A	cDNA clone 151129 5 A49069 COLLAPSIN -	3806, -06-22) j39f01.rl Homo sapiens similar to SP:A49069	5	
A	3NME12 5 Mus muscull similar to TR:G1000 GENBANK ACCESSION N	260340, -03-19) 1b02.r1 Soares mouse us cDNA clone 746763 5' 717 G1000717 SIMILAR TO) 	RECHERCHIERTE SACHGEBIETE (Int.Cl.6) C12N C07K A61K G01N
Der v	vorliegende Recherchenbericht wu Recherchenort	rde für alle Patentansprüche erstellt Abschlüddatum der Hecherche		Prider
	DEN HAAG	10. Januar 2000	Le	jeune, R
Y:vo	KATEGORIE DER GENANNTEN DOK on besonderer Bedeutung allein betrach on besonderer Bedeutung in Verbindung inderen Varöffentlichung derseiben Kate ichtschriftliche Offenbarung wischenliteratur	UMENTE	zugrunde liegend dokument, das je neldedatum veröl jung angeführtes Gründen angefühl	ie Theorien oder Grundsätze doch erst am oder fentlicht worden ist Dokument tes Dokument mille,@ereinstimmendes

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 98 11 2470

	EINSCHLÄGIGE DO			W A CONTINUE TO N DEC
Kategorie	Kennzeichnung des Dokuments n der maßgeblichen Teil	nit Angabe, soweit erforderlich, e	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)
T	YAMADA A ET AL: "Molecy glycosylphosphatidylino molecule CDw108" JOURNAL OF IMMUNOLOGY., Bd. 162, 1. April 1999 Seiten 4094-4100, XP002 THE WILLIAMS AND WILKIN US ISSN: 0022-1767 * 99.8% identität zwiscy CDW108 (Abbildung 1) * \$ Seite 4094, Spalte 2,	(1999-04-01), (123609 IS CO. BALTIMORE.,	1-3,5-9, 11,12, 18-20	*
T	LANGE C ET AL: "New ex semaphorins with close semaphorins of viruses' GENOMICS, Bd. 51, 1. August 1998 Seiten 340-350, XP0021 SAN DIEGO., US ISSN: 0888-7543 * 99.8% identität zwisch-Sema-L (Abbildung 3) -& DATABASE EMBL 'Onl Accession Number AF0308. September 1998 (1999 LANGE C ET AL: "Mus mur (Semal) mRNA, partial XP002125537 * M-Semal ist identisc	homology to (1998-08-01), 13887 Then SEQ ID 1 und * ine! 599, 8-09-08) sculus semaphorin L cds."	1-12,18	RECHERCHIERTE SACHGEBIETE (Int.CI.6)
Derv	vorliegende Recherchenbericht wurde fü			
-	Recherchenori	Abschlußdatum der Recherche		Prüler
1	DEN HAAG	10. Januar 2000	Le.	jeune, R
X:vo Y:vo ar A:te	KATEGORIE DER GENANNTEN DOKUMER on besonderer Bedeutung allein betrachtet on besonderer Bedeutung in Verbindung mit deren Veröffentlichung derselben Kategorie ichnologischer Hintergrund ichtschriftliche Offenbarung wischenliteratur	E : älteres Palent nach dem Ann ihrer D : in der Anmeld L : aus anderen C	dokument, das jet neidedatum veröff lung angeführtes (3ründen angeführt	enlicht worden ist Dokument

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 98 11 2470

	EINSCHLÄGIGE			
ategorie	Kennzeichnung des Dokume der maßgebliche	ents mit Angabe, soweit erforderlich, n Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CI.6)
Т	glycosylphosphatidyldefines a new subfamsemaphorins" JOURNAL OF BIOLOGICA Bd. 273, Nr. 35, 28. August 1998 (1992428-22434, XP00211 AMERICAN SOCIETY OF BALTIMORE, MD., US	nily of viral-related NL CHEMISTRY., 18-08-28), Seiten 13886 BIOLOGICAL CHEMISTS, vischen SEQ ID 1 und	1-3,5-9, 11,12,18	·
E	WO 99 45114 A (ZYMOO 10. September 1999	(1999-09-10)	1-3,5-9, 11,12, 18-20	
	SEQ ID 1 von W09945 * Beispiel 4 *			RECHERCHIERTE SACHGEBIETE (Int.Cl.6)
E	WO 99 38885 A (SMIT) 5. August 1999 (1999 * 99.9% identität z SEQ ID 1 von WO9938	9-08-05) wischen SEQ ID 1 und	1-3,5-9, 11,12,18	
E	CORP (US)) 18. Nove	GGS MELANIE K ;IMMUNEX mber 1999 (1999-11-18) zwischen SEQ ID 1 und 676 *	1-3,5-9, 11,12,18	· C
		-/		
	vorliegende Recherchenbericht wu	rde für alle Patentansprüche erstellt		
	Recherchenori	Abschlußdatum der Recherche		Prüfer
	DEN HAAG	10. Januar 2000		jeune, R
X:vo Y:vo ar A:te	KATEGORIE DER GENANNTEN DOK on besonderer Bedeutung allein betrach no besonderer Bedeutung in Verbindung ideren Veröffentlichung derselben Kale chnologischer Hintergrund ichtschriftliche Offenbarung wischentliteratur	tet nach dem Ani g mit einer D ; in der Anmek gorie L : aus anderen (tdokument, das jed meldedatum veröffe dung angeführtes D Gründen angeführt	entlicht worden ist lokument

EPO FORM 1500

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 98 11 2470

	EINSCHLÄGIGE DO			
Categoria	Kennzeichnung des Dokuments der maßgeblichen Te	mit Angabe, sowelt erforderlich, ile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.Cl.6)
Т	DATABASE EMBL 'Online Accession Number AF1767. September 1999 (1999 MINE T ET AL: "Mus muss membrane protein CDw100 mRNA, complete cds." XP002125535 * 99.8% identitat zwisc AF176670 *	570, 9-09-07) culus GPI-anchored B precursor (CDw108)	1,3-6,8, 10-12,18	
Т	DATABASE EMBL 'Online Accession number ab017 15. Mārz 1999 (1999-03 TAKAHASHI H ET AL: "Mu msemK1p, complete cds. XP002125536 * 99.8% identitāt zwis AB017532 *	532, -15) s musculus mRNA for	1,3-6,8, 10-12,18	
				RECHERCHIERTE
				SACHGEBIETE (Int.CL6)
:				
	-		ļ	
				·
	0			
			-	
Der	vorliegende Recherchenbericht wurde	ür alle Patentansprüche erstellt		Prüler
	Recherchenort	10. Januar 2000	Le	jeune, R
	DEN HAAG	T . dos Edinduna	zuozunde liegende	Theorien oder Grundsätze
Y:V	KATEGORIE DER GENANNTEN DOKUME on besonderer Bedeutung allein betrachtet on besonderer Bedeutung in Verbindung mit heter veröffentlichung derseiben Kategorie schnologischer Hintergrund ichtschriftliche Offenbarung	E : âlteres Patent nach dem Ann einer D : in der Anmeld L : aus anderen C	dokument, das jed neldedatum veröff ung angeführtes D Gründen angeführt	entlicht worden ist pokument

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 98 11 2470

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

10-01-2000

Im Recherchenbericht angeführtes Patentdokument			Datum der Veröffentlichung	Mitglied(er) der Patentfamilie			Datum der Veröffentlichung	
	9945114	Α	10-09-1999	AU	2982799	Α	20-09-1999	
MO	9938885	Α	05-08-1999	KEINE				
MO	9958676	Α	18-11-1999	KEINE				
							•	
		*						
	÷							
			,					

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

| BLACK BORDERS
| IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
| FADED TEXT OR DRAWING
| BLURRED OR ILLEGIBLE TEXT OR DRAWING
| SKEWED/SLANTED IMAGES
| COLOR OR BLACK AND WHITE PHOTOGRAPHS
| GRAY SCALE DOCUMENTS
| LINES OR MARKS ON ORIGINAL DOCUMENT
| REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.