Sr. No.	Volume of NaOH added	Conductance
To replace	m1	△ 1
1.	0	5.6
2.	0.5	5.0
3.	1.0	4.3
ч.	1.5	3.5
5.	2.0	2.9
6.	2.5	2.4
7.	3.0	2.2
8.	3.5	2.4
٩.	4.0	2.5
10.	4.5	2.7
u.	5.0	2·8 3·0
12,	5.5	
13.	6.0	3.2
14.	6.5	3.6
15.	7.0	4.0
16.	7.5	4.5
17.	8.0	4.9
18.	8.5	इ .५
19.	9.0	5.8
20.	9.5	6.3
21.	10.0	G.7
22.	10.5	7.1

Page No. _

DETERMINATION	OF THE	STRENGTH	OF A	MIXTURE
OF ACETIC	ACID	AND HYDRO	CHLORIC	ACID
1 4 8	BY CO	NDUCTOMETI	RY.	200

LAIM -

To estimate the strength of the mixture of acetic acid and hydrochloric acid present in a given mixture by conductometry.

APPARATUS REQUIRED =

Conductivity bridge, conductivity cell, beaker, pipette, micro-burette, glass rod, etc.

REAGENTS -----

- 1) Hydrochloric acid (HCL) 0.1N.
- 2) Acetic acid (CH3COOH) 0.1 N.
- 3) Bodium Hydroxide (NaOH) 0.5N.

PRINCIPLE ===>

The conductivity of the solution is related to the mobility of ions which in turn is related with the size of ions. When a mixture of acids like a strong acid (HC1) and weak acid (CH3COOH) is titrated against a strong base (NaOH). HC1 reacts first followed by CH3COOH. When titration of strong acid and strong base is carried out, there is a decrease in conductivity, as highly mobile H+ ions are replaced by Na+.

NaOH + HC1 — NaC1 + H2O.

Teacher's Signature _

23.	M A 40 11.0 13 11 11 11	30 VOCI 7.5 MARIED
24.	0190 400 (1.5 due of	8.0
25.	12.0	8.4
26.	12.5	8.8
27.	13.0	9.2
28.	13.5	13 otombe 9.6
29.	14.0	Your 10.000 013000
30.	14.5	mediure 10:4 conductor
31.	15.0	10 · 7

CALCULATIONS

1) Strength of HC1.

Volume of mixture $(V_1) = 30 \text{ m}1$ Normality of NaOH $(N_2) = 0.5 \text{ N}$ Volume of NaOH $(V_2) = 2.7 \text{ m}1$

Normality of HCl (Nil) = $\frac{V_2 \times N_2}{V_1}$ = $\frac{2.7 \times 0.5}{20}$

$$= \frac{1.35}{20} = 0.0675 \text{ N}$$

2) Strength of CH3COOH.

Volume of mixeture $(V_1) = 20 \text{ m}2$ Normality of NaOH $(N_1) = 0.5 \text{ N}$ Volume of NaOH $(V_2 - V_1) = 3.3 \text{ m}2$ Normality of CH3COOH $(N_2) = \frac{N_1 \times (V_2 - V_1)}{V_1}$

$$= 0.5 \times 3.3 = 1.65 = 0.0825 \text{ N}$$

When the whole strong acid is consumed, base reacts with weak acid and conductivity increases as unionized weak acid because ionized salt.

CH3COOH + Na+ + OH - CH3COOH

After both the acids are consumed, there is a step increase in conductivity which gain endpoint and this increase in conductivity is due to fast moving OH-ions from NaOH solution.

By the amount of base consumed, amount of acid present is calculated.

PROCEDURE ====>

- The solution is diluted to 100ml, 20ml of which is pipetted out into a clean beaker and 100ml of distilled water is added.
- 2) Conductivity cell is dipped into the test solution and titrated against NaOH with strong conductance is measured for each addition of 0.5 m2 NaOH.
- 3) After neutralization, amount of acid present is determined by amount of NaOH consumption of strong acid and weak acid.
- Volume of base consumed for strong acid and weak acid are determined by plotting a base added first, endpoint corresponds to strong acid into the other is for weak point.

Exp	Page No
41	RESULTS
	The strength of HC1 present in given solution = 0.0675 N.
2}	The strength of CH3COOH present in given whole of the solution = 0.0825 N.
	Teacher's Signature

