Homework 1

PM522b Introduction to the Theory of Statistics Part 2

Due: January 23, 2018

Order Statistics

- 1. Let $X_1, X_2, ..., X_n \stackrel{iid}{\sim} \mathrm{U}[0, \, \theta]$
 - a. Find the density function of $X_{(j)}$ where j is an integer $1 \le j \le n$.
 - b. Given your result in a, find $E(X_{(j)})$ and $Var(X_{(j)})$.
 - c. Find the mean difference between two successive order statistics, namely $E(X_{(j)}) X_{(j-1)}$ and interpret this result.
 - d. Find the joint density function of $X_{(j)}$ and $X_{(k)}$ where j and k are integers $1 \le j < k \le n$.
 - e. Given your result in d, find $Cov(X_{(i)}, X_{(k)})$.
 - f. Find the variance between the difference of the two order statistics, $Var(X_{(k)} X_{(j)})$.
- 2. Suppose a machine uses 10 batteries that have U[1/2, 1] distribution (in years), and it shuts off when 1/2 of the batteries are dead.
 - a. What is the expected time when the 5th battery will die?
 - b. What is the probability that the machine will shut off before 3/4 of a year?
 - c. The machine's efficiency is lost when there are 3 dead batteries. It costs \$1 per day to run the machine at this point. How much money will the company spend before the machine shuts off? (Hint: This is a joint probability problem!)
- 3. For $X_1, X_2, ..., X_n \stackrel{iid}{\sim} \text{Unif}[0, 1]$, write a function in R to draw random samples of size 15, and take the maximum of each sample.
 - a. Graphically examine the sampling distribution of the maximum and describe your results.
 - b. Derive the pdf of the sampling distribution of the maximum.

- 4. Using kids.RData posted on Blackboard (this is the CHS data used in PM511a), construct Q-Q plots in R comparing the wt variable (weight in lbs) to the normal, log-normal, gamma, and Weibull distributions. Do not use a package to create these plots. Label all axes accordingly. To what distribution do the data follow most closely?
- 5. The median absolute deviation (MAD) of a random variable X is defined as the median of the absolute deviations between the observations and their median, i.e. MAD=median($|x_i|$ median(x_i)). The interquartile range (IQR) of a random variable X is the difference between the upper quartile and the lower quartile.
 - a. Show that for a symmetric continuous random variable with a strictly positive pdf that $\rm MAD = \rm IQR/2$
 - b. Calculate the MAD for a standard normal distribution
 - c. Calculate the MAD for a standard Cauchy distribution
 - d. Using R, generate a random sample from a uniform distribution and calculate the MAD.
- 6. Complete the proof that \bar{X} and S^2 are independent by looking at the n-1 deviations $(X_1 \bar{X}, X_2 \bar{X}, ..., X_n \bar{X})$.