

Digital Date Processing Novembre 2024

1 Algèbre de Boole

- 1. Pourquoi peut-on construire un algèbre de Boole à partir de l'ensemble $A_2 = \{a, b\}$?
- 2. Donner la définition de l'opérateur complément
- 3. Donner la définition de l'opérateur ET
- 4. Donner la définition de l'opérateur OU

2 Propriétés de l'algèbre de boole

- 1. Démontrer la version $\prod \sum$ de la distributivité de + sur .
- 2. Démontrer la règle du consensus version $\prod \sum$
- 3. Démontrer que l'opérateur XOR applique à un vecteur de dimension quelconque donne la valeur "vrai" pour tout monôme comportant un nombre impair de variables non complémentées.
- 4. Démontrer que l'opérateur NOR est un opérateur complet

3 Egalité d'expressions algébriques

1. Démontrer que

$$\overline{x_2}.\overline{x_1}.\overline{x_0} + \overline{x_2}.x_1.\overline{x_0} + x_1.\overline{x_0} + x_2.x_0 = \overline{x_2}.\overline{x_0} + x_2.(x_1 + x_0)$$

2. Démontrer que

$$\overline{x_3}.\overline{x_2}.\overline{x_1}.\overline{x_0} + \overline{x_3}.\overline{x_2}.\overline{x_1}.x_0 + \overline{x_3}.x_2.\overline{x_0} + x_3.\overline{x_2}.\overline{x_1}.x_0 + \overline{x_3}.x_2.\overline{x_0} = \overline{x_3}.\overline{x_1} + \overline{x_3}.x_2.\overline{x_0} + \overline{x_2}.\overline{x_1}.x_0$$

- 3. Démontrer par transformation algébrique la version $\sum \prod$ de la règle du consensus.
- 4. Démontrer par transformation algébrique que $x_1 + \overline{x_1}.x_0 = x_1 + x_0$

4 Expressions algébriques remarquables

- 1. Soit $X=(x_1,x_0)$, donner l'ensemble des monômes pouvant être construits à partir de X
- 2. Soit $X = (x_2, x_1, x_0)$, donner l'ensemble des monals pouvant être construits à partir de X et ne contenant pas la composante x_0
- 3. Donner l'ensemble des maxtermes pouvant être construits à partir de $X=(x_1,x_0)$
- 4. Donner l'ensemble des mintermes pouvant être construits à partir de $X=(x_1,x_0)$
- 5. Donner l'ensemble des diviseurs de $\overline{x_3}.\overline{x_2}.\overline{x_1}.x_0$

5 Fonctions logiques simples

- 1. Donner un exemple de fonction logique comportant 5 points vrais
- 2. Donner un exemple de fonction logique simple comportant 7 points vrais et 5 point faux
- 3. Combien de points vrais comporte la fonction $XOR(x_2, x_1, x_0)$

6 Représentation des fonctions logiques simples

Soit f^* une fonction logique comportant trois point vrais (0,0,0),(0,1,1),(1,1,1) et deux points non spécifiés (0,0,1),(1,1,0)

- 1. Donner trois représentations numériques de cette fonction f^*
- 2. Donner la table de vérité de cette fonction f^*
- 3. Donner la table de Karnaugh de cette fonction f^*
- 4. Donner les fonctions f_{min}^* et f_{max}^* de cette fonction f^*
- 5. Combien de représentations numériques existe-t-il pour cette fonction f^* . Les donner exhaustivement si cela est possible.
- 6. Donner la représentation spatiale de cette fonction f^*

7 Changement de représentation d'une fonction logique

Soit $f^* = f_1^* \{0, 1, 2, 10\}_{10} + f_0^* \{5, 6, 7, 14\}_{10}$

- 1. Combien de composantes dans le vecteur X sur laquelle est formée cette fonction f^* ?
- 2. Donner la table de vérité de cette fonction f^*
- 3. Donner la table de Karnaugh de cette fonction f^*
- 4. Donner les fonctions f_{min}^* et f_{max}^* de cette fonction f^*
- 5. Donner une représentation algébrique correcte de cette fonction f^*
- 6. Combien de fonctions représentent correctement cette fonction f^* ?

8 Tableaux de Karnaugh

1. Soit la fonction logique f définie par la table suivante

	x_1, x_0					
		00	01	11	10	
	00	0	1	1	0	
x_3, x_2	01	0	1	0	0	
	11	0	1	1	1	
	10	1	1	1	1	

Donner une représentation algébrique de cette fonction f

2. Soit la fonction logique f^* définie par la table suivante

	x_1,x_0					
		00	01	11	10	
	00	0	1	1	0	
x_3, x_2	01	*	*	0	0	
	11	0	1	1	*	
	10	*	1	1	0	

- (a) Donner une représentation algébrique de cette fonction f^*
- (b) Donner la représentation algébrique de f_{\max}^*
- (c) Donner la représentation algébrique de f_{min}^*