CS 225

Symbols and Formulas

Fall 2020

Logic

Symbols: $\geq \leq \neq \neg \sim \land \lor \oplus \equiv \rightarrow \leftrightarrow \Box \exists \forall$

Identities:

$\sim (\sim p) \equiv p$	Double Negation
$p \wedge \mathbb{T} \equiv p p \vee \mathbb{F} \equiv p$	Identity
$p \vee \mathbb{T} \equiv \mathbb{T} p \wedge \mathbb{F} \equiv \mathbb{F}$	Domination
$p \wedge p \equiv p p \vee p \equiv p$	Idempotent
$p \vee \sim p \equiv \mathbb{T} \ p \wedge \sim p \equiv \mathbb{F}$	Negation
$p\vee q\equiv q\vee p \ p\wedge q\equiv q\wedge p$	Commutative
$(p\vee q)\vee r\equiv p\vee (q\vee r)$	Associative
$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	Associative
$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$	Distributive
$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	Distributive
$\sim (p \land q) \equiv \sim p \lor \sim q$	DeMorgan's
$\sim (p \vee q) \equiv \sim p \wedge \sim q$	DeMorgan's
$p\vee(p\wedge q)\equiv p$	Absorption
$p \wedge (p \vee q) \equiv p$	Absorption
$p \to q \equiv \sim q \to \sim p$	Contrapositive
$p\oplus q\equiv q\oplus p$	Contrapositive
$p \to q \equiv \sim p \vee q$	Implication
$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$	Biconditional Equivalence
$(p \land q) \to r \equiv p \to (q \to r)$	Exportation
$(p \to q) \land (p \to \sim q) \equiv \sim p$	Absurdity
$p \vee q \equiv \sim p \to q$	Alternate Implication
$p \land q \equiv \sim (p \to \sim q)$	Alternate Implication
$\sim (p \to q) \equiv p \wedge \sim q$	Alternate Implication
$\sim (\forall x P(x)) \equiv \exists x \sim P(x)$	DeMorgan's for Quantifiers
$\sim \left(\exists \ x \ Q(x)\right) \equiv \ \forall \ x \ \sim Q(x)$	DeMorgan's for Quantifiers

A conditional statement $p \to q$ can also be read as:

- If p then q
- p implies q
- If p, q
- p only if q
- *q* if *p*
- q unless $\sim p$
- q when p
- ullet q whenever p
- q follows from p
- p is a sufficient condition for q (p is sufficient for q)
- q is a necessary condition for p (q is necessary for p)

Proofs:

- Direct: Assume P and prove Q.
- Contrapositive: Assume Not Q and prove Not P.
- Contradiction: Assume P and Not Q and prove a contradiction.
- Induction: Prove base(s), assume P(m), prove P(m+1).

Sets

 $\mathbf{Symbols:} \in \not\in \subseteq \subset \supseteq \supset \varnothing \ \cup \ \cap \times$

Common Sets:

$$\begin{split} \mathbb{N} &= \{0,1,2,3,\dots\} & \text{natural numbers} \\ \mathbb{Z} &= \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\} & \text{integers } (\mathbb{Z} \text{ for German Zahlen, meaning "numbers"}) \\ \mathbb{Z}^+ &= \{1,2,3,\dots\} & \text{positive integers} \\ \mathbb{Q} &= \left\{\frac{p}{q} \;\middle|\; p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0\right\} & \text{rational numbers} \\ \mathbb{U} &= \{*\} & \text{universal set} \\ \varnothing &= \{\} & \text{empty set (the set with no elements)} \end{split}$$

Identities:

$(A^c)^c = A$	Double Complement
$A \cup \varnothing = A$ $A \cap \mathbb{U} = A$	Identity
$A \cup \mathbb{U} = \mathbb{U}$ $A \cap \varnothing = \varnothing$	Domination
$A \cup A = A$ $A \cap A = A$	Idempotent
$A \cup A^c = \mathbb{U} A \cap A^c = \emptyset$	Complement
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative
$(A \cup B) \cup C = A \cup (B \cup C)$	Associative
$(A \cap B) \cap C = A \cap (B \cap C)$	Associative
$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$	Distributive
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	Distributive
$(A \cup B)^c = A^c \cap B^c$	DeMorgan's
$(A \cap B)^c = A^c \cup B^c$	DeMorgan's
$A \cup (A \cap B) = A$	Absorption
$A \cap (A \cup B) = A$	Absorption
$\mathbb{U}^c = \varnothing \varnothing^c = \mathbb{U}$	Complement of \mathbb{U}, \varnothing
$A - B = A \cap B^c$	Set difference law

Series and Sums

Symbols: \sum .

Geometric Progression	$a_k = a \cdot r^k$
Arithmetic Progression	$a_k = a + d \cdot k$

Sum Formulas:

Formula #	Sum	Closed Form
1	$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, \ r \neq 1$
2	$\sum_{k=i}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1} - ar^i}{r - 1}, \ r \neq 1$
3	$\sum_{k=i}^{n} c$	$c \cdot (n-i+1)$
4	$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
5	$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
6	$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$

Counting

Symbols: λ

Equations:

• Sum Rule:

if S is the union of m disjoint sets S_1, S_2, \ldots, S_m , then the number of elements in S is:

$$S = |S_1| + |S_2| + \dots + |S_m|$$

• Product Rule:

for a sequence of m choices the total number of elements is:

$$P(m) = |P_1| \cdot |P_2| \cdot \cdot \cdot \cdot |P_m|$$

• Subset Exclusion:

if C = A - B is the difference of two sets, where $B \subseteq A$, then the number of elements in C is:

$$|C| = |A| - |B|$$

• Inclusion/Exclusion:

when a set D to be counted is the union of non-disjoint sets A and B, the number of elements in D is:

$$|D| = |A| + |B| - |A \cap B|$$

Permutations and Combinations:

- r-permutations: $P(n,r) = \frac{n!}{(n-r)!}$
- r-permutations with repetition allowed: n^r
- The number of different permutations of n objects, where there are n_1 indistinguishable objects of type 1, and n_2 indistinguishable objects of type 2, ... and n_k indistinguishable objects of type k is $\frac{n!}{n_1!n_2!\dots n_k!}$
- r-combinations $C(n,r) = \frac{n!}{r!(n-r)!}$
- r-combinations with repetition allowed:

$$C(n+r-1,r) = \frac{(n+r-1)!}{r!(n+r-1-r)!} = \frac{(n+r-1)!}{r!(n-1)!}$$

4