

- A network needs to have an input and an output
 - Two definitions for output:
 - Approximated output ("Predicted output" in TensorFlow syntax)
 - Labeled, target output
 - Target output calculated: model-free
 - Target output given: use labeled data
 - How close the predicted/approximated is from the labeled/target output is a loss function, and its value is the loss value
 - Optimization: using mathematical operations to reduce the loss value using gradients.

- Loss functions (to calculate loss):
 - Take two parameters: Approximated/predicted output and target output
 - Some commonly used loss functions are:
 - MSELoss: (mean square error):
 - Typical for regression and approximation problems
 - Calculates differences between target and predicted/approximated outputs

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y^i - \hat{y}^i)^2$$

Categorical Cross-Entropy: Typical for classification/categories problems

$$CEL = -\frac{1}{n} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} \cdot log p_{ij} \text{ or } -\frac{1}{n} \sum_{i=1}^{N} log_{P_{model}} \left[y_i \in C_{yi} \right]$$

- Now that we have a loss value, we need to optimize to improve the model in training.
 - Gradients: vector that denotes the fastest increase and direction
- The optimization process:
 - Take the gradients of model parameters
 - Weights and biases
 - Change these parameters in order to decrease the loss value
 - Once the parameters are recalculated:
 - Update the parameters through **backpropagation**

- Typical optimization methods:
 - SGD: stochastic gradient descent
 - Stochastic: randomly choose from the batch
 - Variable parameter: learning rate

- RMSProp (Root mean squared propagation):
 - Based on AdaGrad (adaptive gradient)
 - Calculation of the step size (learning rate, LR) is "automatic". Adapts the LR according to each parameter
 - Can slow down the process
 - RMSProp: uses a decay for learning rate using moving average (or weighted average)

- Adam (adaptive moment)
 - Combination of AdaGrad and RMSProp
 - The learning rate is adapted in two calculations (moments):
 - Uses the average of the second moment (through the exponential moving average of gradients and square gradients)
 - Controlled decay: beta 1 & beta 2

