#### **Plan**

- Schur Unitary Triangularization
- Spectral Theorem
- Cayley-Hamilton Theorem

•  $\sigma(A) := \{\lambda_1, \dots, \lambda_n\}$  (a multi-set), where  $\lambda_1, \dots, \lambda_n$  are the eigenvalues (not necessarily distinct) of A.

•  $\sigma(A) := \{\lambda_1, \dots, \lambda_n\}$  (a multi-set), where  $\lambda_1, \dots, \lambda_n$  are the eigenvalues (not necessarily distinct) of A. This  $\sigma(A)$  is called the spectrum of A.

- $\sigma(A) := \{\lambda_1, \dots, \lambda_n\}$  (a multi-set), where  $\lambda_1, \dots, \lambda_n$  are the eigenvalues (not necessarily distinct) of A. This  $\sigma(A)$  is called the spectrum of A.
- If  $\lambda$  is an eigenvalue of A with corresponding eigenvector  $\mathbf{v}$ , then  $(\lambda, \mathbf{v})$  is called an eigenpair of A.

- $\sigma(A) := \{\lambda_1, \dots, \lambda_n\}$  (a multi-set), where  $\lambda_1, \dots, \lambda_n$  are the eigenvalues (not necessarily distinct) of A. This  $\sigma(A)$  is called the spectrum of A.
- If  $\lambda$  is an eigenvalue of A with corresponding eigenvector  $\mathbf{v}$ , then  $(\lambda, \mathbf{v})$  is called an eigenpair of A.
- If  $A = (a_{ij})$ , then  $Tr(A) = a_{11} + ... + a_{nn}$  is called the trace of A.

- $\sigma(A) := \{\lambda_1, \dots, \lambda_n\}$  (a multi-set), where  $\lambda_1, \dots, \lambda_n$  are the eigenvalues (not necessarily distinct) of A. This  $\sigma(A)$  is called the spectrum of A.
- If λ is an eigenvalue of A with corresponding eigenvector v, then (λ, v) is called an eigenpair of A.
- If  $A = (a_{ij})$ , then  $Tr(A) = a_{11} + ... + a_{nn}$  is called the trace of A.
- A is called a normal matrix if  $A^*A = AA^*$ . For example,  $\begin{bmatrix} i & 0 \\ 0 & 2 \end{bmatrix}$ ,  $\begin{bmatrix} i & 2 \\ 2 & i \end{bmatrix}$ .

- $\sigma(A) := \{\lambda_1, \dots, \lambda_n\}$  (a multi-set), where  $\lambda_1, \dots, \lambda_n$  are the eigenvalues (not necessarily distinct) of A. This  $\sigma(A)$  is called the spectrum of A.
- If λ is an eigenvalue of A with corresponding eigenvector v, then (λ, v) is called an eigenpair of A.
- If  $A = (a_{ij})$ , then  $Tr(A) = a_{11} + ... + a_{nn}$  is called the trace of A.
- A is called a normal matrix if  $A^*A = AA^*$ . For example,  $\begin{bmatrix} i & 0 \\ 0 & 2 \end{bmatrix}$ ,  $\begin{bmatrix} i & 2 \\ 2 & i \end{bmatrix}$ .
- A is called a unitary matrix if  $A^*A = I = AA^*$ . For example,  $\begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}$ ,  $\frac{1}{2} \begin{bmatrix} i & 1 \\ 1 & i \end{bmatrix}$ .

- $\sigma(A) := \{\lambda_1, \dots, \lambda_n\}$  (a multi-set), where  $\lambda_1, \dots, \lambda_n$  are the eigenvalues (not necessarliy distinct) of A. This  $\sigma(A)$  is called the spectrum of A.
- If λ is an eigenvalue of A with corresponding eigenvector v, then (λ, v) is called an eigenpair of A.
- If  $A = (a_{ij})$ , then  $Tr(A) = a_{11} + ... + a_{nn}$  is called the trace of A.
- A is called a normal matrix if  $A^*A = AA^*$ . For example,  $\begin{bmatrix} i & 0 \\ 0 & 2 \end{bmatrix}$ ,  $\begin{bmatrix} i & 2 \\ 2 & i \end{bmatrix}$ .
- A is called a unitary matrix if  $A^*A = I = AA^*$ . For example,  $\begin{bmatrix} i & 0 \\ 0 & 1 \end{bmatrix}$ ,  $\frac{1}{2} \begin{bmatrix} i & 1 \\ 1 & i \end{bmatrix}$ .
- A is called an orthogonal matrix if A is real and  $A^t A = I = AA^t$ . For example,  $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ .



Th. Let  $A \in \mathcal{M}_n(\mathbb{C})$ .

Th. Let  $A \in \mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T = U^*AU$  is upper triangular.

Th. Let  $A \in \mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T = U^*AU$  is upper triangular. Further, if A and  $\sigma(A)$  are real,

Pr. Use induction on n.

Pr. Use induction on n. Case n=1 is trivial.

Pr. Use induction on n. Case n=1 is trivial. Let n>1.

- Th. Let  $A\in\mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T=U^*AU$  is upper triangular. Further, if A and  $\sigma(A)$  are real, then U can be real orthogonal.
- Pr. Use induction on n. Case n=1 is trivial. Let n>1. Let  $(\lambda_1,w_1)$  be an eigenpair of A,  $\|w_1\|=1$ .

- Th. Let  $A\in\mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T=U^*AU$  is upper triangular. Further, if A and  $\sigma(A)$  are real, then U can be real orthogonal.
- Pr. Use induction on n. Case n=1 is trivial. Let n>1. Let  $(\lambda_1,w_1)$  be an eigenpair of A,  $\|w_1\|=1$ . Take an orthonormal basis  $\{w_1,\cdots,w_n\}$

- Th. Let  $A\in\mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T=U^*AU$  is upper triangular. Further, if A and  $\sigma(A)$  are real, then U can be real orthogonal.
- Pr. Use induction on n. Case n=1 is trivial. Let n>1. Let  $(\lambda_1,w_1)$  be an eigenpair of A,  $\|w_1\|=1$ . Take an orthonormal basis  $\{w_1,\cdots,w_n\}$  and form  $W=\begin{bmatrix}w_1&\cdots&w_n\end{bmatrix}$ .

- Th. Let  $A\in\mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T=U^*AU$  is upper triangular. Further, if A and  $\sigma(A)$  are real, then U can be real orthogonal.
- Pr. Use induction on n. Case n=1 is trivial. Let n>1. Let  $(\lambda_1,w_1)$  be an eigenpair of A,  $||w_1||=1$ . Take an orthonormal basis  $\{w_1,\cdots,w_n\}$  and form  $W=\begin{bmatrix}w_1&\cdots&w_n\end{bmatrix}$ . Then,  $W^*AW=\begin{bmatrix}\lambda_1&*\\0&A'\end{bmatrix}$ ,  $A'\in\mathcal{M}_{n-1}$ .

- Th. Let  $A\in\mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T=U^*AU$  is upper triangular. Further, if A and  $\sigma(A)$  are real, then U can be real orthogonal.
- Pr. Use induction on n. Case n=1 is trivial. Let n>1. Let  $(\lambda_1,w_1)$  be an eigenpair of A,  $\|w_1\|=1$ . Take an orthonormal basis  $\{w_1,\cdots,w_n\}$  and form  $W=\begin{bmatrix}w_1&\cdots&w_n\end{bmatrix}$ . Then,  $W^*AW=\begin{bmatrix}\lambda_1&*\\0&A'\end{bmatrix}$ ,  $A'\in\mathcal{M}_{n-1}$ .

By induction hypothesis,

- Th. Let  $A \in \mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T = U^*AU$  is upper triangular. Further, if A and  $\sigma(A)$  are real, then U can be real orthogonal.
- Pr. Use induction on n. Case n=1 is trivial. Let n>1. Let  $(\lambda_1,w_1)$  be an eigenpair of A,  $||w_1||=1$ . Take an orthonormal basis  $\{w_1,\cdots,w_n\}$  and form  $W=\begin{bmatrix}w_1&\cdots&w_n\end{bmatrix}$ . Then,  $W^*AW=\begin{bmatrix}\lambda_1&*\\0&A'\end{bmatrix}$ ,  $A'\in\mathcal{M}_{n-1}$ .

- Th. Let  $A \in \mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T = U^*AU$  is upper triangular. Further, if A and  $\sigma(A)$  are real, then U can be real orthogonal.
- Pr. Use induction on n. Case n=1 is trivial. Let n>1. Let  $(\lambda_1,w_1)$  be an eigenpair of A,  $\|w_1\|=1$ . Take an orthonormal basis  $\{w_1,\cdots,w_n\}$  and form  $W=\begin{bmatrix}w_1&\cdots&w_n\end{bmatrix}$ . Then,  $W^*AW=\begin{bmatrix}\lambda_1&*\\0&A'\end{bmatrix}$ ,  $A'\in\mathcal{M}_{n-1}$ .

Put 
$$U = W \begin{bmatrix} 1 & 0 \\ 0 & U' \end{bmatrix}$$
.

- Th. Let  $A \in \mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T = U^*AU$  is upper triangular. Further, if A and  $\sigma(A)$  are real, then U can be real orthogonal.
- Pr. Use induction on n. Case n=1 is trivial. Let n>1. Let  $(\lambda_1,w_1)$  be an eigenpair of A,  $\|w_1\|=1$ . Take an orthonormal basis  $\{w_1,\cdots,w_n\}$  and form  $W=\begin{bmatrix}w_1&\cdots&w_n\end{bmatrix}$ . Then,  $W^*AW=\begin{bmatrix}\lambda_1&*\\0&A'\end{bmatrix}$ ,  $A'\in\mathcal{M}_{n-1}$ .

Put 
$$U=W\begin{bmatrix}1&0\\0&U'\end{bmatrix}$$
. Note:  $U$  is unitary.

- Th. Let  $A \in \mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T = U^*AU$  is upper triangular. Further, if A and  $\sigma(A)$  are real, then U can be real orthogonal.
- Pr. Use induction on n. Case n=1 is trivial. Let n>1. Let  $(\lambda_1,w_1)$  be an eigenpair of A,  $\|w_1\|=1$ . Take an orthonormal basis  $\{w_1,\cdots,w_n\}$  and form  $W=\begin{bmatrix}w_1&\cdots&w_n\end{bmatrix}$ . Then,  $W^*AW=\begin{bmatrix}\lambda_1&*\\0&A'\end{bmatrix}$ ,  $A'\in\mathcal{M}_{n-1}$ .

Put 
$$U=W\begin{bmatrix}1&0\\0&U'\end{bmatrix}$$
. Note:  $U$  is unitary. Now

- Th. Let  $A \in \mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T = U^*AU$  is upper triangular. Further, if A and  $\sigma(A)$  are real, then U can be real orthogonal.
- Pr. Use induction on n. Case n=1 is trivial. Let n>1. Let  $(\lambda_1,w_1)$  be an eigenpair of A,  $\|w_1\|=1$ . Take an orthonormal basis  $\{w_1,\cdots,w_n\}$  and form  $W=\begin{bmatrix}w_1&\cdots&w_n\end{bmatrix}$ . Then,  $W^*AW=\begin{bmatrix}\lambda_1&*\\0&A'\end{bmatrix}$ ,  $A'\in\mathcal{M}_{n-1}$ .

Put 
$$U=W\begin{bmatrix}1&0\\0&U'\end{bmatrix}$$
. Note:  $U$  is unitary. Now

$$U^*AU = \begin{bmatrix} 1 & 0 \\ 0 & U'^* \end{bmatrix} W^*AW \begin{bmatrix} 1 & 0 \\ 0 & U' \end{bmatrix}$$

- Th. Let  $A \in \mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T = U^*AU$  is upper triangular. Further, if A and  $\sigma(A)$  are real, then U can be real orthogonal.
- Pr. Use induction on n. Case n=1 is trivial. Let n>1. Let  $(\lambda_1,w_1)$  be an eigenpair of A,  $\|w_1\|=1$ . Take an orthonormal basis  $\{w_1,\cdots,w_n\}$  and form  $W=\begin{bmatrix}w_1&\cdots&w_n\end{bmatrix}$ . Then,  $W^*AW=\begin{bmatrix}\lambda_1&*\\0&A'\end{bmatrix}$ ,  $A'\in\mathcal{M}_{n-1}$ .

Put 
$$U=W\begin{bmatrix}1&0\\0&U'\end{bmatrix}$$
. Note:  $U$  is unitary. Now

$$U^*AU = \begin{bmatrix} 1 & 0 \\ 0 & U'^* \end{bmatrix} W^*AW \begin{bmatrix} 1 & 0 \\ 0 & U' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & U'^* \end{bmatrix} \begin{bmatrix} \lambda_1 & * \\ 0 & A' \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & U' \end{bmatrix}$$

- Th. Let  $A \in \mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T = U^*AU$  is upper triangular. Further, if A and  $\sigma(A)$  are real, then U can be real orthogonal.
- Pr. Use induction on n. Case n=1 is trivial. Let n>1. Let  $(\lambda_1,w_1)$  be an eigenpair of A,  $\|w_1\|=1$ . Take an orthonormal basis  $\{w_1,\cdots,w_n\}$  and form  $W=\begin{bmatrix}w_1&\cdots&w_n\end{bmatrix}$ . Then,  $W^*AW=\begin{bmatrix}\lambda_1&*\\0&A'\end{bmatrix}$ ,  $A'\in\mathcal{M}_{n-1}$ .

Put 
$$U=W\begin{bmatrix}1&0\\0&U'\end{bmatrix}$$
 . Note:  $U$  is unitary. Now

$$U^*AU = \begin{bmatrix} 1 & 0 \\ 0 & U'^* \end{bmatrix} W^*AW \begin{bmatrix} 1 & 0 \\ 0 & U' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & U'^* \end{bmatrix} \begin{bmatrix} \lambda_1 & * \\ 0 & A' \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & U' \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 & * \\ 0 & U'^*A'U' \end{bmatrix}$$

- Th. Let  $A \in \mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T = U^*AU$  is upper triangular. Further, if A and  $\sigma(A)$  are real, then U can be real orthogonal.
- Pr. Use induction on n. Case n=1 is trivial. Let n>1. Let  $(\lambda_1,w_1)$  be an eigenpair of A,  $\|w_1\|=1$ . Take an orthonormal basis  $\{w_1,\cdots,w_n\}$  and form  $W=\begin{bmatrix}w_1&\cdots&w_n\end{bmatrix}$ . Then,  $W^*AW=\begin{bmatrix}\lambda_1&*\\0&A'\end{bmatrix}$ ,  $A'\in\mathcal{M}_{n-1}$ .

Put 
$$U=W\begin{bmatrix}1&0\\0&U'\end{bmatrix}$$
. Note:  $U$  is unitary. Now

$$U^*AU = \begin{bmatrix} 1 & 0 \\ 0 & U'^* \end{bmatrix} W^*AW \begin{bmatrix} 1 & 0 \\ 0 & U' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & U'^* \end{bmatrix} \begin{bmatrix} \lambda_1 & * \\ 0 & A' \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & U' \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 & * \\ 0 & U'^*A'U' \end{bmatrix} = \begin{bmatrix} \lambda_1 & * \\ 0 & T' \end{bmatrix}.$$

- Th. Let  $A \in \mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T = U^*AU$  is upper triangular. Further, if A and  $\sigma(A)$  are real, then U can be real orthogonal.
- Pr. Use induction on n. Case n=1 is trivial. Let n>1. Let  $(\lambda_1,w_1)$  be an eigenpair of A,  $||w_1||=1$ . Take an orthonormal basis  $\{w_1,\cdots,w_n\}$  and form  $W=\begin{bmatrix}w_1&\cdots&w_n\end{bmatrix}$ . Then,  $W^*AW=\begin{bmatrix}\lambda_1&*\\0&A'\end{bmatrix}$ ,  $A'\in\mathcal{M}_{n-1}$ .

Put 
$$U=W\begin{bmatrix}1&0\\0&U'\end{bmatrix}$$
. Note:  $U$  is unitary. Now

$$U^*AU = \begin{bmatrix} 1 & 0 \\ 0 & U'^* \end{bmatrix} W^*AW \begin{bmatrix} 1 & 0 \\ 0 & U' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & U'^* \end{bmatrix} \begin{bmatrix} \lambda_1 & * \\ 0 & A' \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & U' \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 & * \\ 0 & U'^*A'U' \end{bmatrix} = \begin{bmatrix} \lambda_1 & * \\ 0 & T' \end{bmatrix}.$$

The rest follows from: 'if  $A, \lambda$  are real then  $\exists x \neq 0$  real, s.t.  $Ax = \lambda x$ '.

 $\boldsymbol{A}$ 

A

Th. Let  $A \in \mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T = U^*AU$  is upper triangular. Further, if A and  $\sigma(A)$  are real, then U can be real orthogonal.

$$W^*AW$$

$$\begin{array}{c|c} \lambda_1 & * \\ \hline 0 & A_1 \end{array}$$

Th. Let  $A \in \mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T = U^*AU$  is upper triangular. Further, if A and  $\sigma(A)$  are real, then U can be real orthogonal.

$$\begin{bmatrix} 1 & 0 \\ 0 & U_1^* \end{bmatrix} W^*AW \begin{bmatrix} 1 & 0 \\ 0 & U_1 \end{bmatrix}$$

$$\begin{bmatrix} \lambda_1 & 0 & * \\ 0 & \lambda_2 & * \\ \hline 0 & 0 & A_2 \end{bmatrix}$$

Th. Let  $A \in \mathcal{M}_n(\mathbb{C})$ . Then  $\exists U$  unitary, s.t.  $T = U^*AU$  is upper triangular. Further, if A and  $\sigma(A)$  are real, then U can be real orthogonal.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & U_2^* \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & U_1^* \end{bmatrix} W^*AW \begin{bmatrix} 1 & 0 \\ 0 & U_1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & U_2 \end{bmatrix}$$

$$\begin{bmatrix}
\lambda_1 & 0 & 0 & * \\
0 & \lambda_2 & 0 & * \\
0 & 0 & \lambda_3 & * \\
\hline
0 & 0 & 0 & A_3
\end{bmatrix}$$

# Applications: Schur unitary triangularization (SUT)

Remark. In SUT, as  $U^*AU=T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Remark. In SUT, as  $U^*AU=T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Remark. In SUT, as  $U^*AU=T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
.

Remark. In SUT, as  $U^*AU=T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$ 

Remark. In SUT, as  $U^*AU=T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

Remark. In SUT, as  $U^*AU=T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\text{DET} A = \prod \lambda_i$  and  $\text{TR } A = \sum \lambda_i$ .

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU = T$  is upper triangular.

Remark. In SUT, as  $U^*AU = T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

Remark. In SUT, as  $U^*AU = T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

Pr. By SUT, 
$$\exists U$$
 unitary, s.t.  $U^*AU=T$  is upper triangular. So  $\sigma(T)=\sigma(A)$ .

So 
$$\sum \lambda_i =$$

Remark. In SUT, as  $U^*AU = T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

So 
$$\sum \lambda_i = \sum t_{ii} =$$

Remark. In SUT, as  $U^*AU=T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{TR}(T) =$$

Remark. In SUT, as  $U^*AU = T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{Tr}(T) = \operatorname{Tr}(U^*AU) =$$

Remark. In SUT, as  $U^*AU = T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{tr}(T) = \operatorname{tr}(U^*AU) = \operatorname{tr}(AUU^*) =$$

Remark. In SUT, as  $U^*AU = T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{tr}(T) = \operatorname{tr}(U^*AU) = \operatorname{tr}(AUU^*) = \operatorname{tr}(A)$$
.

Remark. In SUT, as  $U^*AU = T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{tr}(T) = \operatorname{tr}(U^*AU) = \operatorname{tr}(AUU^*) = \operatorname{tr}(A)$$
.

And 
$$\prod \lambda_i =$$

Remark. In SUT, as  $U^*AU=T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{tr}(T) = \operatorname{tr}(U^*AU) = \operatorname{tr}(AUU^*) = \operatorname{tr}(A)$$
.

And 
$$\prod \lambda_i = \prod t_{ii} =$$

Remark. In SUT, as  $U^*AU = T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{tr}(T) = \operatorname{tr}(U^*AU) = \operatorname{tr}(AUU^*) = \operatorname{tr}(A)$$
.

And 
$$\prod \lambda_i = \prod t_{ii} = \det T =$$

Remark. In SUT, as  $U^*AU = T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{tr}(T) = \operatorname{tr}(U^*AU) = \operatorname{tr}(AUU^*) = \operatorname{tr}(A)$$
.

And 
$$\prod \lambda_i = \prod t_{ii} = \det T = \det U^*AU =$$

Remark. In SUT, as  $U^*AU=T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{tr}(T) = \operatorname{tr}(U^*AU) = \operatorname{tr}(AUU^*) = \operatorname{tr}(A)$$
.

And 
$$\prod \lambda_i = \prod t_{ii} = \det T = \det U^*AU = \det A$$
.

Remark. In SUT, as  $U^*AU = T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. So  $\sigma(T)=\sigma(A)$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{tr}(T) = \operatorname{tr}(U^*AU) = \operatorname{tr}(AUU^*) = \operatorname{tr}(A)$$
.

And 
$$\prod \lambda_i = \prod t_{ii} = \det T = \det U^*AU = \det A$$
.

• By DIAG A we denote the diagonal  $\{a_{11},\ldots,a_{nn}\}$  of A.

Remark. In SUT, as  $U^*AU=T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. So  $\sigma(T)=\sigma(A)$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{Tr}(T) = \operatorname{Tr}(U^*AU) = \operatorname{Tr}(AUU^*) = \operatorname{Tr}(A)$$
. And  $\prod \lambda_i = \prod t_{ii} = \operatorname{DET} T = \operatorname{DET} U^*AU = \operatorname{DET} A$ .

• By DIAG A we denote the diagonal  $\{a_{11},\ldots,a_{nn}\}$  of A. By DIAG v we denote the diagonal matrix A with  $a_{11}=v_1,\ldots,a_{nn}=v_n$ .

Remark. In SUT, as  $U^*AU = T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. So  $\sigma(T)=\sigma(A)$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{tr}(T) = \operatorname{tr}(U^*AU) = \operatorname{tr}(AUU^*) = \operatorname{tr}(A)$$
.

And 
$$\prod \lambda_i = \prod t_{ii} = \det T = \det U^*AU = \det A$$
.

• By DIAG A we denote the diagonal  $\{a_{11},\ldots,a_{nn}\}$  of A. By DIAG v we denote the diagonal matrix A with  $a_{11}=v_1,\ldots,a_{nn}=v_n$ .

Th[spectral Theorem]. Let A be normal  $(AA^* = A^*A)$ .

Remark. In SUT, as  $U^*AU=T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{Tr}(T) = \operatorname{Tr}(U^*AU) = \operatorname{Tr}(AUU^*) = \operatorname{Tr}(A)$$
.

And 
$$\prod \lambda_i = \prod t_{ii} = \det T = \det U^*AU = \det A$$
.

- By DIAG A we denote the diagonal  $\{a_{11},\ldots,a_{nn}\}$  of A. By DIAG v we denote the diagonal matrix A with  $a_{11}=v_1,\ldots,a_{nn}=v_n$ .
- Th[spectral Theorem]. Let A be normal ( $AA^*=A^*A$ ). Then  $\exists U$  unitary, s.t.  $U^*AU=D$  is diagonal.

Remark. In SUT, as  $U^*AU = T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{tr}(T) = \operatorname{tr}(U^*AU) = \operatorname{tr}(AUU^*) = \operatorname{tr}(A)$$
.

And 
$$\prod \lambda_i = \prod t_{ii} = \det T = \det U^*AU = \det A$$
.

- By DIAG A we denote the diagonal  $\{a_{11},\ldots,a_{nn}\}$  of A. By DIAG v we denote the diagonal matrix A with  $a_{11}=v_1,\ldots,a_{nn}=v_n$ .
- Th[spectral Theorem]. Let A be normal ( $AA^*=A^*A$ ). Then  $\exists U$  unitary, s.t.  $U^*AU=D$  is diagonal. Further, diag  $D=\sigma(A)$ .

Remark. In SUT, as  $U^*AU = T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{tr}(T) = \operatorname{tr}(U^*AU) = \operatorname{tr}(AUU^*) = \operatorname{tr}(A)$$
.

And 
$$\prod \lambda_i = \prod t_{ii} = \det T = \det U^*AU = \det A$$
.

- By DIAG A we denote the diagonal  $\{a_{11},\ldots,a_{nn}\}$  of A. By DIAG v we denote the diagonal matrix A with  $a_{11}=v_1,\ldots,a_{nn}=v_n$ .
- Th[spectral Theorem]. Let A be normal ( $AA^*=A^*A$ ). Then  $\exists U$  unitary, s.t.  $U^*AU=D$  is diagonal. Further, diag  $D=\sigma(A)$ .
- Pr. By SUT,  $\exists U$  unitary, s.t  $U^*AU=T$  is upper triangular.

Remark. In SUT, as  $U^*AU=T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{Tr}(T) = \operatorname{Tr}(U^*AU) = \operatorname{Tr}(AUU^*) = \operatorname{Tr}(A)$$
.

And 
$$\prod \lambda_i = \prod t_{ii} = \det T = \det U^*AU = \det A$$
.

- By DIAG A we denote the diagonal  $\{a_{11},\ldots,a_{nn}\}$  of A. By DIAG v we denote the diagonal matrix A with  $a_{11}=v_1,\ldots,a_{nn}=v_n$ .
- Th[spectral Theorem]. Let A be normal ( $AA^*=A^*A$ ). Then  $\exists U$  unitary, s.t.  $U^*AU=D$  is diagonal. Further, DIAG  $D=\sigma(A)$ .
- Pr. By SUT,  $\exists U$  unitary, s.t  $U^*AU=T$  is upper triangular. As  $A^*A=AA^*$ , we get  $T^*T=TT^*$ .

Remark. In SUT, as  $U^*AU = T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{Tr}(T) = \operatorname{Tr}(U^*AU) = \operatorname{Tr}(AUU^*) = \operatorname{Tr}(A)$$
.

And 
$$\prod \lambda_i = \prod t_{ii} = \det T = \det U^*AU = \det A$$
.

- By DIAG A we denote the diagonal  $\{a_{11},\ldots,a_{nn}\}$  of A. By DIAG v we denote the diagonal matrix A with  $a_{11}=v_1,\ldots,a_{nn}=v_n$ .
- Th[spectral Theorem]. Let A be normal ( $AA^*=A^*A$ ). Then  $\exists U$  unitary, s.t.  $U^*AU=D$  is diagonal. Further, DIAG  $D=\sigma(A)$ .
- Pr. By SUT,  $\exists U$  unitary, s.t  $U^*AU = T$  is upper triangular. As  $A^*A = AA^*$ , we get  $T^*T = TT^*$ . Note:  $\sum |t_{1i}|^2 = (TT^*)_{11} = (T^*T)_{11} = |t_{11}|^2$ .

Remark. In SUT, as  $U^*AU=T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{tr}(T) = \operatorname{tr}(U^*AU) = \operatorname{tr}(AUU^*) = \operatorname{tr}(A)$$
.

And 
$$\prod \lambda_i = \prod t_{ii} = \det T = \det U^*AU = \det A$$
.

- By DIAG A we denote the diagonal  $\{a_{11},\ldots,a_{nn}\}$  of A. By DIAG v we denote the diagonal matrix A with  $a_{11}=v_1,\ldots,a_{nn}=v_n$ .
- Th[spectral Theorem]. Let A be normal ( $AA^*=A^*A$ ). Then  $\exists U$  unitary, s.t.  $U^*AU=D$  is diagonal. Further, diag  $D=\sigma(A)$ .
- Pr. By SUT,  $\exists U$  unitary, s.t  $U^*AU = T$  is upper triangular. As  $A^*A = AA^*$ , we get  $T^*T = TT^*$ . Note:  $\sum |t_{1i}|^2 = (TT^*)_{11} = (T^*T)_{11} = |t_{11}|^2$ . So  $t_{12} = \cdots = t_{1n} = 0$ .

Remark. In SUT, as  $U^*AU = T$ , we have

$$\{\lambda_1,\ldots,\lambda_n\}=\sigma(A)=\sigma(T)=\{t_{11},\ldots,t_{nn}\}.$$

Further, we can get the  $\lambda_i$ s in the diagonal of T in any prescribed order.  $\Upsilon$ 

Cor. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
. Then  $\det A = \prod \lambda_i$  and  $\det A = \sum \lambda_i$ .

So 
$$\sum \lambda_i = \sum t_{ii} = \operatorname{tr}(T) = \operatorname{tr}(U^*AU) = \operatorname{tr}(AUU^*) = \operatorname{tr}(A)$$
.

And 
$$\prod \lambda_i = \prod t_{ii} = \det T = \det U^*AU = \det A$$
.

- By DIAG A we denote the diagonal  $\{a_{11},\ldots,a_{nn}\}$  of A. By DIAG v we denote the diagonal matrix A with  $a_{11}=v_1,\ldots,a_{nn}=v_n$ .
- Th[spectral Theorem]. Let A be normal ( $AA^*=A^*A$ ). Then  $\exists U$  unitary, s.t.  $U^*AU=D$  is diagonal. Further, diag  $D=\sigma(A)$ .
- Pr. By SUT,  $\exists U$  unitary, s.t  $U^*AU=T$  is upper triangular. As  $A^*A=AA^*$ , we get  $T^*T=TT^*$ . Note:  $\sum |t_{1i}|^2=(TT^*)_{11}=(T^*T)_{11}=|t_{11}|^2$ . So  $t_{12}=\cdots=t_{1n}=0$ . Repeating the process, T is diagonal.

 $\operatorname{Cor.}$  Let A be Hermitian.

Cor. Let A be Hermitian. Then  $\exists U$  unitary, s.t.  $U^*AU=D$  is <u>real</u> diagonal.

Cor. Let A be Hermitian. Then  $\exists U$  unitary, s.t.  $U^*AU = D$  is <u>real</u> diagonal.

Further, if A is real, then U can be chosen real orthogonal.

Cor. Let A be Hermitian. Then  $\exists U$  unitary, s.t.  $U^*AU=D$  is <u>real</u> diagonal. Further, if A is real, then U can be chosen real orthogonal.

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU = T$  is upper triangular.

- Cor. Let A be Hermitian. Then  $\exists U$  unitary, s.t.  $U^*AU=D$  is <u>real</u> diagonal. Further, if A is real, then U can be chosen real orthogonal.
- Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ .

- Cor. Let A be Hermitian. Then  $\exists U$  unitary, s.t.  $U^*AU=D$  is <u>real</u> diagonal. Further, if A is real, then U can be chosen real orthogonal.
- Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

Cor. Let A be Hermitian. Then  $\exists U$  unitary, s.t.  $U^*AU=D$  is <u>real</u> diagonal. Further, if A is real, then U can be chosen real orthogonal.

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

- Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

- Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

- Cor. Let A be Hermitian. Then  $\exists U$  unitary, s.t.  $U^*AU=D$  is <u>real</u> diagonal. Further, if A is real, then U can be chosen real orthogonal.
- Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

• Multiply  $\begin{bmatrix} 0 & 0 & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{bmatrix}$ 

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU = T$  is upper triangular. As  $A^* = A$ , we get  $T^* = T$ . So T is real diagonal.

• Multiply 
$$\begin{bmatrix} 0 & 0 & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{bmatrix} \begin{bmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & * \end{bmatrix}$$

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU = T$  is upper triangular. As  $A^* = A$ , we get  $T^* = T$ . So T is real diagonal.

• Multiply 
$$\begin{bmatrix} 0 & 0 & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{bmatrix} \begin{bmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & 0 & * \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

Multiply

| 0 | 0 | * | *  | $\lceil * \rceil$ | * | * | * |   | 0 | 0 |
|---|---|---|----|-------------------|---|---|---|---|---|---|
| 0 |   | * |    | 0                 | * | * | * | _ | 0 | 0 |
| 0 | 0 | * | *  | 0 0 0 *           | * | _ | 0 | 0 |   |   |
|   |   |   | *_ | 0                 | 0 | 0 | * |   | 0 | 0 |

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

Multiply

| $\int_{0}^{\infty}$ | 0 | * | * | $\lceil * \rceil$ | * | * | * |   | $\lceil 0 \rceil$ | 0 | 0 |  |
|---------------------|---|---|---|-------------------|---|---|---|---|-------------------|---|---|--|
| 0                   | 0 | * | * | 0                 | * | * | * | _ | 0                 | 0 | 0 |  |
| 0                   | 0 | * | * | 0                 | 0 | 0 | * | _ | 0                 | 0 | 0 |  |
| 0                   | 0 | 0 | * | 0                 | 0 | 0 | * |   | 0                 | 0 | 0 |  |

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

Multiply

| 0 | 0 | * | *     | $\lceil * \rceil$ | * | * | *  |             | 0 | 0 | 0 | *  |
|---|---|---|-------|-------------------|---|---|----|-------------|---|---|---|----|
| 0 | 0 | * | *     | 0                 | * | * | *  | _           | 0 | 0 | 0 | *  |
| 0 | 0 | * | *     | 0                 | 0 | 0 | *  | <del></del> | 0 | 0 | 0 | *  |
| 0 | 0 | 0 | $*$ _ | 0                 | 0 | 0 | *_ |             | 0 | 0 | 0 | *_ |

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU = T$  is upper triangular. As  $A^* = A$ , we get  $T^* = T$ . So T is real diagonal.

• Multiply 
$$\begin{bmatrix} 0 & 0 & 0 & * \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & * \\ 0 & 0 & 0 & * \end{bmatrix}$$

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU = T$  is upper triangular. As  $A^* = A$ , we get  $T^* = T$ . So T is real diagonal.

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

Cor[Cayley-Hamilton]. Every matrix satisfies its characteristic equation.

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

Cor[Cayley-Hamilton]. Every matrix satisfies its characteristic equation.

Pr. Let 
$$\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$$
.

- Cor. Let A be Hermitian. Then  $\exists U$  unitary, s.t.  $U^*AU=D$  is <u>real</u> diagonal. Further, if A is real, then U can be chosen real orthogonal.
- Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

• So 
$$\begin{bmatrix} 0 & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = 0.$$

Cor[Cayley-Hamilton]. Every matrix satisfies its characteristic equation.

Pr. Let  $\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$ . By SUT,  $\exists U$  unitary, s.t.  $U^*AU = T$  is upper triangular;  $t_{ii} = \lambda_i$  for each i.

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

$$\bullet \quad \text{So} \begin{bmatrix} 0 & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = 0.$$

Cor[Cayley-Hamilton]. Every matrix satisfies its characteristic equation.

Pr. Let  $\sigma(A) = \{\lambda_1, \dots, \lambda_n\}$ . By SUT,  $\exists U$  unitary, s.t.  $U^*AU = T$  is upper triangular;  $t_{ii} = \lambda_i$  for each i. Let p(x) be the characteristic polynomial of A.

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

Cor[Cayley-Hamilton]. Every matrix satisfies its characteristic equation.

Pr. Let  $\sigma(A)=\{\lambda_1,\ldots,\lambda_n\}$ . By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular;  $t_{ii}=\lambda_i$  for each i. Let p(x) be the characteristic polynomial of A. So  $p(x)=\prod(x-\lambda_i)$ .

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

• So 
$$\begin{bmatrix} 0 & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ \end{bmatrix} \begin{bmatrix} * & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & * & * \\ \end{bmatrix} \begin{bmatrix} * & * & * & * & * \\ 0 & * & * & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * \\ \end{bmatrix} = 0.$$

Cor[Cayley-Hamilton]. Every matrix satisfies its characteristic equation.

Pr. Let  $\sigma(A)=\{\lambda_1,\ldots,\lambda_n\}$ . By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular;  $t_{ii}=\lambda_i$  for each i. Let p(x) be the characteristic polynomial of A. So  $p(x)=\prod(x-\lambda_i)$ . So

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

Cor[Cayley-Hamilton]. Every matrix satisfies its characteristic equation.

Pr. Let 
$$\sigma(A)=\{\lambda_1,\ldots,\lambda_n\}$$
. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular;  $t_{ii}=\lambda_i$  for each  $i$ . Let  $p(x)$  be the characteristic polynomial of  $A$ . So  $p(x)=\prod(x-\lambda_i)$ . So  $p(A)=\prod(A-\lambda_i I)$ 

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

Cor[Cayley-Hamilton]. Every matrix satisfies its characteristic equation.

Pr. Let 
$$\sigma(A)=\{\lambda_1,\ldots,\lambda_n\}$$
. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular;  $t_{ii}=\lambda_i$  for each  $i$ . Let  $p(x)$  be the characteristic polynomial of  $A$ . So  $p(x)=\prod(x-\lambda_i)$ . So 
$$p(A)=\prod(A-\lambda_i I)=\prod(UTU^*-\lambda_i UIU^*)$$

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

Cor[Cayley-Hamilton]. Every matrix satisfies its characteristic equation.

 $= U \left[ (T - \lambda_1 I)(T - \lambda_2 I) \cdots (T - \lambda_n I) \right] U^*$ 

Pr. Let  $\sigma(A)=\{\lambda_1,\ldots,\lambda_n\}$ . By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular;  $t_{ii}=\lambda_i$  for each i. Let p(x) be the characteristic polynomial of A. So  $p(x)=\prod(x-\lambda_i)$ . So  $p(A)=\prod(A-\lambda_i I)=\prod(UTU^*-\lambda_i UIU^*)$ 

Pr. By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular. As  $A^*=A$ , we get  $T^*=T$ . So T is real diagonal.

Cor[Cayley-Hamilton]. Every matrix satisfies its characteristic equation.

Pr. Let  $\sigma(A)=\{\lambda_1,\ldots,\lambda_n\}$ . By SUT,  $\exists U$  unitary, s.t.  $U^*AU=T$  is upper triangular;  $t_{ii}=\lambda_i$  for each i. Let p(x) be the characteristic polynomial of A. So  $p(x)=\prod(x-\lambda_i)$ . So  $p(A)=\prod(A-\lambda_i I)=\prod(UTU^*-\lambda_i UIU^*)$ 

$$= U \Big[ (T - \lambda_1 I)(T - \lambda_2 I) \cdots (T - \lambda_n I) \Big] U^* = U 0 U^* = 0.$$