Ковальков Антон 577гр

Задача 1.

Построим НКА A:

Докажем, что \mathcal{A} распознаёт язык L_3 .

1) $\forall \omega \in L_3 \; \omega = \omega_1 1 \omega_2, \; \text{где} \; |\omega_2| = 2$

На слове ω_1 в множестве состояний автомата будет состояние q_0 . После 1 во множестве состояний гарантированно будет q_1 . И, наконец, так как $|\omega_2|=2$ после обработки подслова ω_2 во множестве состояний автомата будет принимающее состояние q_3 . Значит автомат принимает все слова из L_3 .

2) Докажем теперь, что автомат не принимает слова у которых на третьем с конца месте не 1. Очевидно, что слова длины меньшей 3 автомат не принимает. Так же автомат не принимает слова длины 3 начинающиеся на 0. Разделим все слова длины большей 3 у которых на третьем с конца месте не 1 на 3 части : $\omega = \omega_1 0 \omega_2$, где $|\omega_2| = 2$. Чтобы автомат завершил работу он должен оказаться в состоянии q_3 . Что не возможно.

	Макросост.	сост НКА	0	1
	Q_0	q_0	Q_0	Q_1
	Q_1	q_0,q_1	Q_2	Q_3
	Q_2	q_0, q_2	Q_4	Q_5
По автомату \mathcal{A} построим ДКА \mathcal{B} :	Q_3	q_0,q_1,q_2	Q_6	Q_7
	Q_4	q_0, q_3	Q_6 Q_0	Q_1
	Q_5	q_0, q_1, q_3	Q_2	Q_3
	Q_6	q_0, q_2, q_3	Q_4	Q_5
	Q_7	q_0, q_1, q_2, q_3	Q_6	Q_7

Задача 3.

1. Язык $A = \{a^{2013k+5}, k \geqslant 0\}$ Регулярный, так как можно построить автомат, который его распознаёт.

Так же построим автомат для языка $B = \{a^{503n+29}, n \geqslant 0\}$

Теперь сделаем автоматы всюду определёнными добавляя отсутствующие переходы в дополнительное непринимающее состояние q_k . В том числе из q_k в q_k .

Теперь построим автомат $\mathcal C$ для языка $L=A\cap B$. Используя следующую конструкцию:

- $Q_{\mathcal{C}} = Q_{\mathcal{A}} \times Q_{\mathcal{B}};$
- $q_0^{\mathcal{C}} = (q_0^{\mathcal{A}}, q_0^{\mathcal{B}});$
- $\forall \sigma \in \Sigma : \delta_{\mathcal{C}}((q_{\mathcal{A}}, q_{\mathcal{B}}), \sigma) = (\delta_{\mathcal{A}}(q_{\mathcal{A}}, \sigma), \delta_{\mathcal{B}}(q_{\mathcal{B}}, \sigma));$
- $F_{\mathcal{C}} = F_{\mathcal{A}} \times Q_{\mathcal{B}} \cup Q_{\mathcal{A}} \times F_{\mathcal{B}}$.

Так как существует ДКА распознающий L, то L является регулярным языком.

2. Этот язык регулярный, так как в регулярном языке разность длин двух последовательных слов из регулярного языка ограниченна линейной функцией, что следует из леммы о накачке. Рассмотрим эту разность: $200(n+1)^2+1-200n^2-1=400n+200$.

Задача 4.

Макросост.	сост НКА	0	1
Q_0	q_0	Q_1	Q_0
Q_1	q_0, q_1	Q_1	Q_2
Q_2	q_0,q_2	Q_3	Q_0
Q_3	q_0, q_1, q_3	Q_4	Q_2
Q_4	q_0, q_1, q_4	Q_4	Q_5
Q_5	q_0, q_2, q_4	Q_6	Q_7
Q_6	q_0, q_1, q_3, q_4	Q_4	Q_5
Q_7	q_0, q_4	Q_4	Q_7

Задача 6.

Определим КМП-автомат для слова *abaa*:

- $\bullet \ \ Q=\{\ \varepsilon,\ a,\ ab,aba,\ abaa\ \};$
- $q_0 = \varepsilon$;
- $\delta: \\ \delta(\varepsilon,a) = a \\ \delta(\varepsilon,b) = \varepsilon \\ \delta(a,a) = a \\ \delta(a,b) = ab \\ \delta(ab,a) = aba$

$$\delta(ab,b) = \varepsilon$$

$$\delta(aba,a) = abaa$$

$$\delta(aba,b) = ab$$

$$\delta(abaa,a) = abaa$$

$$\delta(abaa,b) = abaa$$

•
$$F = \{abaa\}.$$

Построим этот автомат.

Задача 8.

Алгоритм будет работать со строкой $\omega = abba\#abbababab$. На каждом шаге он будет заполнять одну клетку таблицы длины 16. В i ую клетку таблицы заносится значение длины префикс-функции от слова $\omega[0,i]$. Заполним такую таблицу:

_	_	_	-1	_	-1	_		_	-1	_	-1	_		4	_
(1)	1 (1)	1 (1		()		· · ·	'\	()		٠,		ı •,	١ '٧	1 /1	1 (1)
U	1 0	l U	L	l U	I		U	l U	L T		_ T		U	1	0
		l		l	l .	l	l .	l			l .	l	l .	l	

Длина искомого подслова 4, в получившейся таблице есть 4ка, значит, подслово входит в слово.