Pitch Analysis Workshop

Johanna Devaney School of Music The Ohio State University

Historical Methods

University of Iowa

- Carl Seashore (1938) and colleagues studied timing, dynamics, intonation, and vibrato in pianists, violinists, and singers
 - Equipment: piano rolls, films of the movement of piano hammers during performance, phono-photographic apparati

Wave recorder for use with disk phonograph; the lever, acting like a pantograph, traces the waves on a revolving smoked drum

The tonoscope for analyzing the pitch of the tones on a disk phonograph record

Historical Methods

Phonophotography technique

Henrici Harmonic Analyzer

Seashore (1937)

- Frequency graphed in 10 cent units
- Intensity graphed in decibels
- Timing information as a function of linear space

Manual Annotation by Tapping

Manual Annotation with Software

Audio Sculpt + Open Music

Manual Annotation with Software

PRAAT

Manual Annotation with Software

Audacity

Automatic Annotation

Sonic Visualiser

Automatic Annotation

Melodyne

Identify Note Onsets and Offsets

Fundamental Frequency (F₀) Estimation

Perceived Pitch

Evolution of F₀

Score-guided performance data extraction

Monophonic and quasi-polyphonic

- Timing information is available via MIDI/audio alignment
- ► Fundamental frequency (F₀), and amplitude can be reliably extracted

Score-guided performance data extraction

Polyphonic

- Timing information (including asynchronies between lines) is available in the alignment
- ▶ F₀ and amplitude are harder to extract
- Currently exploring the using High Resolution methods with Roland Badeau for the task of scoreguided extracting of frequency and loudness information in polyphonic audio
 Devaney and Ellis

Perceived Pitch

Possible calculation methods

Shonle and Horan (1980)	•Geometric mean over the duration of the note
Iwamiya, Kosugi, and Kitamura (1983)	 Center frequency between peaks and troughs in vibratos and symmetrical trills In asymmetrical trills pitch shifts according to the direction of the asymmetry
D'Alessandro and Castellengo (1994, 1995)	 F₀ at the end of the note was more significant for the pitch perception than the beginning of the note. Mean of the steady-state portion oft he note rather than the mid-point between the maximum and minimum frequencies
Gockel, Moore, and Carlyon (2001)	 Weighted mean based on the fundamental frequencies' rate of change, with higher weightings for frames that had a smaller rate of change

Evolution of F₀

Modeling note trajectories

- Characterizing F₀ trajectories is under-studied
- One option is to decompose of F₀ trace with the Discrete Cosine Transform to estimate slope and curvature

AMPACT

Automatic Music Performance and Comparison Toolkit

www.ampact.org

