535514: Reinforcement Learning Lecture 11 — Value Function Approximation and A2C Algorithm

Ping-Chun Hsieh

March 28, 2024

Quick Review

1. (Incremental) Monte-Carlo update:

$$V_{k+1}(s_t) \leftarrow V_k(s_t) + \alpha(\underline{\hspace{1cm}} - V_k(s_t))$$

2. TD(0) update:

$$V_{k+1}(s_t) \leftarrow V_k(s_t) + \alpha(\underline{\hspace{1cm}} - V_k(s_t))$$

3. *n*-step TD update:

$$V_{k+1}(s_t) \leftarrow V_k(s_t) + \alpha(\underline{} - V_k(s_t))$$

4. $TD(\lambda)$ update:

$$V_{k+1}(s_t) \leftarrow V_k(s_t) + \alpha(\underline{\hspace{1cm}} - V_k(s_t))$$

Next Question: How to Estimate $A^{\pi}(s, a)$?

Generalized Advantage Estimator (GAE): Using $TD(\lambda)$ to Estimate $A^{\pi}(s, a)$

Let V(s) be the current estimate of true value $V^{\pi}(s)$

$$\hat{A}_{t}^{(1)} := r_{t+1} + \gamma V(s_{t+1}) - V(s_{t}) \qquad (= \delta_{t})$$

$$\hat{A}_{t}^{(2)} := r_{t+1} + \gamma r_{t+2} + \gamma^{2} V(s_{t+2}) - V(s_{t}) \qquad (= \delta_{t} + \gamma \delta_{t+1})$$

$$\hat{A}_{t}^{(3)} := r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \gamma^{3} V(s_{t+3}) - V(s_{t}) \qquad (= \delta_{t} + \gamma \delta_{t+1} + \gamma^{2} \delta_{t+2})$$

$$\hat{A}_{t}^{(k)} := r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{k} V(s_{t+k}) - V(s_{t}) \qquad (= \sum_{\ell=0}^{k-1} \gamma^{\ell} \delta_{t+\ell})$$

Fact:
$$\hat{A}_t^{(\infty)} = \sum_{\ell=0}^{\infty} \gamma^{\ell} \delta_{t+\ell} = G_t - V(s_t)$$

GAE Estimator:

$$\hat{A}_t^{GAE(\gamma,\lambda)} = (1-\lambda)\left(\hat{A}_t^{(1)} + \lambda\hat{A}_t^{(2)} + \lambda^2\hat{A}_t^{(3)} + \cdots\right) = \sum_{\ell=0}^{\infty} (\gamma\lambda)^{\ell} \delta_{t+\ell}$$

Schulman et al., High-Dimensional Continuous Control Using Generalized Advantage Estimation, ICLR 2016

Algorithm: REINFORCE With GAE

Recall: (P5) REINFORCE with advantage

$$\nabla_{\theta} V^{\pi_{\theta}}(\mu) = \mathbb{E}_{\tau \sim P_{\mu}^{\pi_{\theta}}} \left[\sum_{t=0}^{\infty} \gamma^{t} A^{\pi_{\theta}}(s_{t}, a_{t}) \nabla_{\theta} \log \pi_{\theta}(a_{t} | s_{t}) \right]$$

REINFORCE with GAE

Step 1: Initialize θ_0 and step size η

Step 2: Sample a trajectory $au \sim P_{\mu}^{\pi_{\theta}}$ and make the update as

$$\theta_{k+1} = \theta_k + \eta \left(\sum_{t=0}^{\infty} \gamma^t \hat{A}_t^{GAE(\gamma,\lambda)} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right)$$

where $\hat{A}_t^{GAE(\gamma,\lambda)}$ is constructed from V(s) learned by TD

(Repeat Step 2 until termination)

Some Discussions on GAE

1. Do we need to wait until the end of a trajectory to construct GAE?

2. How to efficiently calculate GAE for different t of the same trajectory?

```
def calculate_advantages(rewards, values, discount_factor, trace_decay, normalize = True):
    advantages = []
    advantage = 0
    next_value = 0

for r, v in zip(reversed(rewards), reversed(values)):
    td_error = r + next_value * discount_factor - v
    advantage = td_error + advantage * discount_factor * trace_decay
    next_value = v
    advantages.insert(0, advantage)

advantages = torch.tensor(advantages)
```

3. Where does V(s) in GAE come from?

This Lecture: Let's discuss 1 Fundamental Concept + 1 Algorithm

1. Value Function Approximation

2. Advantage Actor Critic (A2C)

References:

Richard Sutton and Andrew Barto, Reinforcement Learning: An Introduction, 2019

Mnih et al., Asynchronous Methods for Deep Reinforcement Learning, ICML 2016

Schulman et al., High-Dimensional Continuous Control Using Generalized Advantage Estimation, ICLR 2016

So far, we presume that $V^{\pi}(s)$ and $Q^{\pi}(s,a)$ can be predicted accurately via model-free prediction.

But, is this always true?

Tabular Methods for Large RL Problems?

- So far: Value functions (V(s)) or Q(s,a) are represented by a lookup table
- Such tabular methods may be impractical for large RL problems
 - Too many states (or actions) to store in memory
 - It is slow to learn V(s) or Q(s,a) for each state separately

Examples:

Tetris: ~2²⁰⁰ states

Go: $\sim 10^{170}_{9}$ states

Cartpole: continuous state space

Value Function Approximation (VFA)

- To scale up the model-free methods, function approximation is commonly used to learn value functions
- Idea: Approximate a value function by a parametric function

Motivation: Generalize from seen states to unseen states

2 Commonly-Used Function Approximators

1. Linear combinations of features

2. Neural networks

Both are differentiable function approximators (Why?)

How to Quantify the Accuracy of VFA?

For each state s, the squared error between $V^{\pi}(s)$ and $\hat{V}(s; \mathbf{w})$:

$$(V^{\pi}(s) - \hat{V}(s; \mathbf{w}))^2$$

► To jointly consider all states, we use mean squared error (MSE):

$$F(\mathbf{w}) := \sum_{s \in \mathcal{S}} \rho(s) \left(V^{\pi}(s) - \hat{V}(s; \mathbf{w}) \right)^{2}$$

- $\rho(s)$ are the weights for mixing the MSE of the states
- If $\rho(s)$ is a probability distribution, then the objective becomes:

$$F(\mathbf{w}) := \mathbb{E}_{s \sim \rho(s)} \left[\left(V^{\pi}(s) - \hat{V}(s; \mathbf{w}) \right)^{2} \right]$$

Some Natural Choices of $\rho(s)$

For continuing environments:

1. choose
$$\rho(s) \equiv d_{\mu}^{\pi}(s) := \mathbb{E}_{s_0 \sim \mu} \Big[(1 - \gamma) \sum_{t=0}^{\infty} \gamma^t P(s_t = s \,|\, s_0, \pi) \Big]$$

- 2. choose $\rho(s) \equiv$ undiscounted stationary state distribution
- For episodic environments:

1. choose
$$\rho(s) \equiv d_{\mu}^{\pi}(s) := \frac{\mathbb{E}_{s_0 \sim \mu} \left[\sum_{t=0}^T \gamma^t P(s_t = s \mid s_0, \pi) \right]}{\text{normalization constant}}$$

• Remark: $\rho(s)$ usually corresponds to the <u>sampling strategy</u> (will be discussed momentarily)

Value Function Approximation via GD

• Goal: find w that minimizes MSE between $V^{\pi}(s)$ and $\hat{V}(s; \mathbf{w})$

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \mathbb{E}_{s \sim \rho(s)} \left[\left(V^{\pi}(s) - \hat{V}(s; \mathbf{w}) \right)^2 \right]$$

$$=: F(\mathbf{w})$$

- Suppose: We are given an <u>oracle</u> for querying $V^{\pi}(s)$
- Iterative GD update:

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \alpha_k \nabla_{\mathbf{w}} F(\mathbf{w})$$

$$= \mathbf{w}_k + \alpha_k \mathbb{E}_{s \sim \rho(s)} \left[\left(V^{\pi}(s) - \hat{V}(s; \mathbf{w}) \right) \nabla_{\mathbf{w}} \hat{V}(s; \mathbf{w}) \right]$$

- GD finds a <u>local minimum</u> under proper step sizes α_k (Why?)

Value Function Approximation via SGD

Iterative GD update:

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \alpha_k \mathbb{E}_{s \sim \rho(s)} \left[\left(V^{\pi}(s) - \hat{V}(s; \mathbf{w}_k) \right) \nabla_{\mathbf{w}} \hat{V}(s; \mathbf{w}_k) \right]$$

• Iterative SGD update by the sampled state $S \sim \rho$:

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \alpha_k \left[\left(V^{\pi}(S) - \hat{V}(S; \mathbf{w}_k) \right) \nabla_{\mathbf{w}} \hat{V}(S; \mathbf{w}_k) \right]$$

The SGD update converges to a <u>local minimum</u> under stochastic approximation conditions of α_k (even for NN)

In practice, we don't have an oracle for $V^{\pi}(s)$. What shall we do?

Monte-Carlo Value Function Approximation

▶ Recall: Iterative SGD update by the sampled state $S \sim \rho$:

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \alpha_k \left[\left(V^{\pi}(S) - \hat{V}(S; \mathbf{w}_k) \right) \nabla_{\mathbf{w}} \hat{V}(S; \mathbf{w}_k) \right]$$

▶ Idea: Use MC, i.e. sample return G_t to estimate $V^{\pi}(S)$

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \alpha_k \left[\left(\mathbf{G}_t - \hat{V}(S; \mathbf{w}_k) \right) \nabla_{\mathbf{w}} \hat{V}(S; \mathbf{w}_k) \right]$$

 G_t is an unbiased estimate of $V^{\pi}(S)$

Equivalent to supervised learning with (noisy) training data as

$$(s_0, G_0), (s_1, G_1), \dots, (s_t, G_t) \dots$$

Monte-Carlo Value Function Approximation (Cont.)

First-Visit MC Value Function Approximation:

Step 1: Initialize
$$\mathbf{w} = 0$$
 and $k = 1$

Step 2: Sample
$$\tau_k=(s_0,a_0,r_1,\cdots,s_{L_k-1},a_{L_k-1},r_{L_k})\sim P_\mu^{\pi_\theta}$$
 For each step of the current episode $t=0,1,\cdots L_k-1$

If First visit to state s in episode k

$$G_t(s) = \sum_{i=t+1}^{L_k} r_i$$

$$\Delta \mathbf{w}_k \leftarrow \Delta \mathbf{w}_k + \alpha_k \left[\left(G_t(s) - \hat{V}(S; \mathbf{w}_k) \right) \nabla_{\mathbf{w}} \hat{V}(S; \mathbf{w}_k) \right]$$

$$\mathbf{w}_{k+1} \leftarrow \mathbf{w}_k + \Delta \mathbf{w}_k, \ k \leftarrow k+1$$

• Convergence to a local minimum can be achieved with proper step sizes α_k , for general function approximators (Why?)

Temporal-Difference Value Function Approximation

▶ Recall: Iterative SGD update by the sampled state $S \sim \rho$:

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \alpha_k \left[\left(V^{\pi}(S) - \hat{V}(S; \mathbf{w}_k) \right) \nabla_{\mathbf{w}} \hat{V}(S; \mathbf{w}_k) \right]$$

• Idea: Use bootstrapping (e.g.TD(0)) to estimate $V^{\pi}(S)$

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \alpha_k \left[\left(r + \gamma \hat{V}(S'; \mathbf{w}_k) - \hat{V}(S; \mathbf{w}_k) \right) \nabla_{\mathbf{w}} \hat{V}(S; \mathbf{w}_k) \right]$$

 $r + \gamma \hat{V}(S'; \mathbf{w}_k)$ is a biased estimate of $V^{\pi}(S)$

Equivalent to supervised learning with (noisy) training data as

$$(s_0, r_1 + \gamma \hat{V}(s_1; \mathbf{w})), \dots, (s_t, r_{t+1} + \gamma \hat{V}(s_{t+1}; \mathbf{w})) \dots$$

▶ This can be easily extended to the more general $TD(\lambda)$

TD Value Function Approximation (Cont.)

TD(0) Value Function Approximation:

Step 1: Initialize $\mathbf{w} = 0$ and k = 1

Step 2: Sample
$$\tau_k = (s_0, a_0, r_1, \dots, s_{L_k-1}, a_{L_k-1}, r_{L_k}) \sim P_{\mu}^{\pi_{\theta}}$$

For each step of the current episode $t = 0, 1, \dots L_k - 1$

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left[\left(\mathbf{r}_{t+1} + \gamma \hat{V}(\mathbf{s}_{t+1}; \mathbf{w}) - \hat{V}(\mathbf{s}_t; \mathbf{w}) \right) \nabla_{\mathbf{w}} \hat{V}(\mathbf{s}_t; \mathbf{w}) \right]$$

Put Everything Together: PG + TD + VFA = Advantage Actor-Critic (A2C)

Recall: Advantage Actor-Critic (A2C) via TD

- An example of actor-critic algorithm:
 - Critic: estimate $Q^{\pi_{\theta}}$ by TD(0) bootstrapping
 - Actor: updates policy parameters θ by policy gradient
- Advantage Actor-Critic (A2C):

Step 1: Initialize θ_0 and step size α

Step 2: Sample a trajectory
$$\tau = (s_0, a_0, r_1, \cdots) \sim P_{\mu}^{\pi_{\theta}}$$

For each step of the current trajectory $t = 0, 1, 2, \cdots$

$$\Delta \theta_k \leftarrow \Delta \theta_k + \alpha \gamma^t \left(r_t + \gamma \hat{V}(s_{t+1}) - \hat{V}(s_t) \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

Update value function $\hat{V}(s_t)$ by TD(0)

$$\theta_{k+1} \leftarrow \theta_k + \Delta \theta_k$$

A2C With Value Function Approximation

- $\hat{V}_w(s)$ is learned by value function approximation (e.g. by using a neural network or linear combinations of features)
- Advantage Actor-Critic (A2C) with Value Function Approximation:

Step 1: Initialize
$$\theta_0$$
, w_0 and step sizes α_θ , α_w
Step 2: Sample a trajectory $\tau = (s_0, a_0, r_1, \cdots) \sim P_\mu^{\pi_\theta}$
For each step of the current trajectory $t = 0, 1, 2, \cdots$

$$\Delta \theta_k \leftarrow \Delta \theta_k + \alpha_\theta \gamma^t (r_t + \gamma \hat{V}_{w_k}(s_{t+1}) - \hat{V}_{w_k}(s_t)) \nabla_\theta \log \pi_\theta(a_t | s_t)$$

$$\Delta w_k \leftarrow \Delta w_k + \alpha_w (r_t + \gamma \hat{V}_{w_k}(s_{t+1}) - \hat{V}_{w_k}(s_t)) \nabla_w \hat{V}_w(s_t)|_{w = w_k}$$

$$\theta_{k+1} \leftarrow \theta_k + \Delta \theta_k, w_{k+1} \leftarrow w_k + \Delta w_k$$

Mnih et al., "Asynchronous Methods for Deep Reinforcement Learning", ICML 2016

Another Interpretation of A2C

In A2C, the policy parameters θ are updated as:

$$\Delta \theta_k \leftarrow \Delta \theta_k + \alpha_{\theta} \gamma^t \left(r_t + \gamma \hat{V}_{w_k}(s_{t+1}) - \hat{V}_{w_k}(s_t) \right) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

 $\hat{A}^{\pi\theta}(s_t,a_t)$

Step 1: Estimate $A^{\pi_{\theta}}(s_t, a_t)$ for the current policy

Step 2: Use $\hat{A}^{\pi_{\theta}}(s_t, a_t)$ to improve the policy

Fit a model to estimate value functions

Sample a trajectory under the policy

Question: Have we seen anything similar?
Policy iteration!

Improve the policy

Step 1: Policy evaluation for the current policy (i.e. find $Q^{\pi}(s,a)$)

Step 2: Policy improvement based on Bellman optimality equations

(Slide Credit: Sergey Levine)

A2C ≈ Policy Iteration, But With Slight Difference

Policy iteration:

Step 1: Policy evaluation for the current policy (i.e. find $Q^{\pi}(s,a)$)

Step 2: Policy improvement based on Bellman optimality equations

<u>A2C:</u>

Step 1: Estimate $A^{\pi_{\theta}}(s_t, a_t)$ for the current policy

Step 2: Use $\hat{A}^{\pi_{\theta}}(s_t, a_t)$ to improve the policy

Question: Is policy guaranteed to be improved in Step 2 of A2C?