可视化数据结构 软件文档

- 可视化数据结构 软件文档
 - 。可行性研究报告
 - 开发目标
 - 可行性分析
 - 。项目开发计划
 - 开发人员
 - 开发环境
 - 开发进度
 - 。软件需求说明书
 - 功能简述
 - 性能要求
 - 。测试计划
 - 。 软件设计说明
 - Visibility
 - GUIFramework (class)
 - GUILangSupporter (class)
 - LangString (class)
 - DrawablePane (abstract class)
 - CanvasPairController (abstract class)
 - ButtonPairShapeConstructor (interface)
 - CanvasPairControllerConstructor (interface)
 - VisibleStructure
 - ArrowLine
 - StructureNodeController
 - GenenalLinkedListController
 - GeneralLinkedNodeController
 - GeneralBinaryTreeController
 - GeneralBinaryTreeNodeController
 - SinglyLinkedListController
 - DoublyLinkedListController
 - CommonBinaryTreeController
 - TraversalBinaryTreeController

- NLRBinaryTreeController
- LNRBinaryTreeController
- LRNBinaryTreeController
- 。 使用说明
- 。项目开发总结

可行性研究报告

开发目标

旨在开发一个用于演示数据结构的轻量级软件,用于演示基本数据结构及其增删改查的变化,最终开发出一个教学演示用途的实用性软件.

可行性分析

- 1. 本软件采用JAVA编程语言进行开发. JAVA提供了简单的标准图形包AWT与Swing, 因此可视化演示可行.
- 2. 本软件采用JAVA编程语言进行开发. JAVA是支持面向对象范式的编程语言, 因此可以对数据结构进行抽象归类, 尽可能提高代码复用率并降低工程复杂度, 因此该工程可行.

项目开发计划

开发人员

@19373372 **叶焯仁**: 北京航空航天大学计算机学院2019级本科生.

开发环境

• JDK版本: 13.0.1

• IDE软件: Jetbrains IntelliJ IDEA Community Edition 2020.2.1

开发进度

• 开发时间: 2020.9.1 - 2020.11.28

• 开发记录: Github-link

• 总代码行: 2297 (除去GUI框架, 约2000行)

软件需求说明书

功能简述

- 1. 提供简易的用户界面, 大小固定为 1250 * 750 像素.
 - 。 用户界面分为左右两侧, 左侧用于选择演示何种数据结构, 右侧用于绘图控制.
 - 。右侧分为上下两部分,上部用于展示数据结构,下部分用于展示控制按钮与所选结点信息.
 - 。 下部分为左右两块, 左块用于排放控制按钮, 右块用于展示目前所选的结点信息.
- 2. 提供两种基本数据结构的教学演示,包括链表与二叉树. 均提供完备的*增删改*功能. 具体的*增删改*功能 能如下:
 - 。 链表提供增加与删减结点, 修改结点数据三大功能.
 - 。 二叉树提供增加与删减结点, 修改结点数据, 旋转结点三大功能.
- 3. 关于修改结点数据, 首先点击所需要修改的结点, 随后在右下角直接修改其数据.
- 4. 提供语言切换功能, 支持中英双语.

性能要求

- 1. 必要时限制用户的操作,避免演示图形溢出显示区域.
- 2. 要求能够同时讲行缓存多个数据结构的演示图. 以方便来回切换查看.

测试计划

对软件进行如下的顺序测试:

- 1. 对所有对话框的按钮逻辑进行测试: 点击确认, 取消, 直接强制关闭对话框. 考察此三种方法是否引发程序不可预测或异常行为.
- 2. 分别对每种数据结构进行结点的增删测试, 主要体现随机性增删.
- 联合所有数据结构进行结点的增删改测试,随时切换数据结构看数据是否丢失,以及是否引发异常, 主要体现统筹性测试.
- 4. 发布内测版本, 邀请数为未参与开发的人员进行测试, 接受漏洞反馈并予以修正.

软件设计说明

本软件使用面向对象范式进行编程, 主要分为两个包, 下面分别介绍:

Visibility

此包提供如下类,抽象类与接口:

GUIFramework (class)

提供生成用户界面的唯一通道,即实例化 GUIFramework,其中此实例化必须提供两个参数,用于指示需要生成的数据结构及其控制类.

GUILangSupporter (class)

提供双语界面的静态成员. 采用 LangString 以实现双语结构与切换.

LangString (class)

提供双语类,应用于 GUILangSupporter 中. 并提供 toString 方法,用于获取当前语言下的字符串.

DrawablePane (abstract class)

提供所有数据结构演示面板的抽象父类,应用于 CanvasPairController 的实现中.

CanvasPairController (abstract class)

提供所有数据结构演示面板控制器的抽象父类,有且仅有此类的非抽象子类可用于 GUIFramwork 的实例 化.

ButtonPairShapeConstructor (interface)

提供所有结点的按钮形状控制器的接口, 有且仅有此类的子类能添加到 DrawablePane 的内部并借其展示.

CanvasPairControllerConstructor (interface)

提供演示控制面板 CanvasPairController 的生成接口, 用于 Main 函数中的引用并加载到 GUIFramwork 中.

VisibleStructure

此包提供如下类,抽象类与接口:

ArrowLine

提供箭头的绘制手段, 实例化时传入起点与终点以及方向, 调用其 getShapeArray 方法即可得到所有须绘制的 Shape.

StructureNodeController

此抽象类的内部抽象类 StructureNodeButtonPairShape 实现了 ButtonPairShapeConstructor , 并声明了一系列结点有关的属性与方法. 是后面所有结点的公共父类.

GenenalLinkedListController

此抽象类继承了 CanvasPairController, 声明了一系列有关链表的属性与方法, 为后续**链表**数据结构的公共父类.

GeneralLinkedNodeController

此抽象类继承了 StructureNodeController,声明了一系列有关链表结点的属性与方法,为后续的**链表结点**的公共父类.

GeneralBinaryTreeController

此抽象类继承了 CanvasPairController, 声明了一系列有关二叉树的属性与方法, 为后续的**二叉树**数据结构的公共父类.

GeneralBinaryTreeNodeController

此抽象类继承了 StructureNodeController, 声明了一系列有关二叉结点的属性与方法, 为后续的二叉结点的公共父类.

SinglyLinkedListController

此类继承于 GenenalLinkedListController, 内部类 SinglyLinkedNodeController 继承于 GeneralLinkedNodeController. 实现了单向不循环链表的绘制与控制, 可用于实例化.

DoublyLinkedListController

此类继承于 GeneralLinkedListController,内部类 DoublyLinkedNodeController 继承于 GeneralLinkedNodeController.实现了双向不循环链表的绘制与控制,可用于实例化.

CommonBinaryTreeController

此类继承于 GeneralBinaryTreeController,内部类 CommonBinaryTreeNodeController 继承于 GeneralBinaryTreeNodeController.实现了一般的二叉树绘制与控制,可用于实例化.

TraversalBinaryTreeController

此抽象类继承了 CommonBinaryTreeController, 内部类 TraversalBinaryTreeNodeController 继承于 GeneralBinaryTreeNodeController,将用于实现各类遍历的图形绘制控制.详见以下三种具体实现.

NLRBinaryTreeController

此类继承于 TraversalBinaryTreeController, 实现了先序遍历的绘制手段, 可用于实例化.

LNRBinaryTreeController

此类继承于 TraversalBinaryTreeController, 实现了中序遍历的绘制手段, 可用于实例化.

LRNBinaryTreeController

此类继承于 TraversalBinaryTreeController, 实现了后序遍历的绘制手段, 可用于实例化.

使用说明

保证配置好Java环境后,双击JAR包即可运行该程序. 界面解析如下:

- 菜单栏说明
 - 。文件

- 新建 新建窗口
- 语言 切换语言
- 退出 退出程序
- 。关于
 - 资助 资助作者
 - 作者 开发者信息
 - 反馈 反馈与建议
- 选择项说明
 - 。二叉树
 - 普通二叉树 提供二叉树的普通演示
 - 先序线索二叉树 提供二叉树的先序遍历演示(隐藏父子结点链接)
 - 中序线索二叉树 提供二叉树的中序遍历演示(隐藏父子结点链接)
 - 后序线索二叉树 提供二叉树的后序遍历演示(隐藏父子结点链接)
 - 。链式线件表
 - 单向不循环链表 提供单向不循环链表的演示
 - 双向不循环链表 提供双向不循环链表的演示

部分越界行为说明:

- 1. 当结点数目过多时, 将不能再添加结点
- 2. 当结点数目过少时, 将不能再删除结点
- 3. 当二叉树的高度达到限制时, 某些旋转操作将被禁止.

项目开发总结

本软件为开发者@19373372 叶焯仁 的面向对象程序的设计初探. 在软件开发之初, 由于对JAVA的不熟悉以及**面向对象**编程范式的不熟练, 为了提高代码复用率以及程序的可扩展性, 开发者对本软件进行了多次重构, 最终形成了如今的框架结构. 开发以来, 成就感十足.

但也由于专业课课业繁重,以及课程时间的限制,本软件并未做得尽善尽美,精妙绝伦,也是一个小遗憾.此外开发者提出以下的反思与愿景:

- 1. 关于增量开发: 由于本软件采用了较好的代码架构, 因此扩展性增量开发不是问题.
- 2. 关于文件转储: 此功能将在可预见的未来上线. 上线后, 将极大提高演示方便性以及远程传输的便捷度.
- 3. 关于用户界面: 本软件采用的界面为原生的**Swing**, 并不十分美观. 后续将改换为其他GUI架构进行维护.