COMP3005 - Look Inna Book Project

Name: Krishna Mathiyaparanam Student Number: 101101802

2.1 Conceptual Design (25%)

Assumptions:

- A book only has one publisher and a publisher can publish many books.
- A book can have many authors and an author can write many books.
- A book must be written by someone and published by someone.
- A book has one owner and an owner can have many books. A book must have an owner.
- An owner has many reports and a report has one owner. A report must have an owner.
- A basket can have many books and a book can only have many baskets (different customers).
- A customer only has one basket and a basket only has one customer.
- A customer can have many orders and an order only has one customer. An order must have one customer.
- All customers are already registered in the system.

- Billing and shipping information is not needed to register and can be added/saved when checking out.
- Database only manages books currently owned by an owner.

2.2 Reduction to Relational Schemas (15%)

```
publisher(publisher_id, name, address, email, banking_account)
book(ISBN, publisher_id, owner_id, name, genre, number_of_pages, price)
writes(author_id, ISBN)
author(author_id, name)
owner(owner_id, name)
report(report_id, owner_id, sales_vs_expidentures, sales_per_genre, sales_per_author)
basket(basket_id)
contains(basket_id, ISBN, copies)
has(customer_id, basket_id)
customer(customer_id, name, address, birth_date, billing_address, shipping_address)
order(customer_id, order_no, status, expected_delivery)
phone_number(publisher_id, phone_number, type)
```

2.3 Normalization of Relation Schemas (20%)

```
pub\ ID \rightarrow pub\ name,\ pub\ address,\ email,\ banking\ acct,\ phone\ number
pub_id, phone_number \rightarrow type
ISBN \rightarrow pub\_ID, author_ID, book_name, genre
author_ID → author_name, book_name, genre, number_of_pages
owner\_ID \rightarrow owner\_name, price, report\_ID
owner\_ID, report\_ID \rightarrow sales\_vs\_expidentures, sales\_per\_genre, sales\_per\_author
customer_ID \rightarrow cust\_name, \ cust\_address, \ birth\_date, \ billing\_address, \ shipping\_address, \ basket_ID
customer_ID, order_no \rightarrow status, expected_delivery
```

 $R = \{ISBN(A), pub_id(B), author_id(C), book_name(D), genre(E), number_of_pages(F), \}$ $author_name(G)$

$$F = \{A \rightarrow BCDE, C \rightarrow DEFG\}$$

Computing A^{+}

Computing C^+

result = A

 $A \rightarrow BCDE$: result = ABCDE

 $C \rightarrow DEFG$: result = ABCDEFG = A^{+}

result = C

 $C \rightarrow DEFG$: result = CDEFG

 $A \rightarrow BCDE$: result = CDEFG = C^+

R is not in BCNF because C is not a superkey.

$$F_C = \{A \rightarrow BC, C \rightarrow DEFG\}$$

Therefore, R can be decomposed into $R_1({\rm C,D,E,F,G})$ and $R_2({\rm A,B,C})$

 R_1 contains dependency $C \to DEFG$, therefore it is in BCNF.

 \boldsymbol{R}_2 contains dependency $A \to B\mathcal{C}$, therefore it is in BCNF.

$$R_1 \cap R_2 = \{C\}$$

$$C \rightarrow R_1$$
?

 $C \rightarrow CDEFG$?

We know that $C \to C$ because C always determines itself and there already exists a functional dependency in F that says $C \to DEFG$. Therefore, we can conclude that this decomposition is lossless.

 $R = \{pub_id(A), pub_name(B), address(C), email(D), banking_acct(E), phone_number(F)\}$

type (G)}	
$F = \{A \to BCDEF, AF \to G\}$	
Computing A ⁺	Computing AF ⁺
result = A $A \rightarrow BCDEF$: $result = ABCDEF$ $AF \rightarrow G$: $result = ABCDEFG = A^+$	result = AF $A \rightarrow BCDEF$: $result = ABCDEF$ $AF \rightarrow G$: $result = ABCDEFG = AF^+$

Therefore, R is in BCNF because A and AF are superkeys.

$$R = \{owner_id\ (A),\ owner_name\ (B),\ report_id\ (C),\ price\ (D),\ sales_vs_expidentures\ (E),\ sales_per_genre\ (F),\ sales_per_author\ (G)\}$$
 $F = \{A \to BCD,\ AC \to EFG\}$

Computing A^+
 $result = A$
 $A \to BCD$: $result = ABCD$
 $AC \to EFG$: $result = ABCDEFG = A^+$
 $result = ABCDEFG = AC^+$

Therefore, R is in BCNF because A and AC are superkeys.

Therefore, R is in BCNF because A and AH are superkeys.

```
R = \{cust\_id\ (A),\ cust\_name\ (B),\ cust\_address\ (C),\ birth\_date\ (D),\ billing\_address\ (E),\ shipping\_address\ (F),\ basket\_id\ (G),\ order\_no\ (H),\ status\ (I),\ expected\_delivery\ (J)\}
F = \{A \to BCDEFGH,\ AH \to IJ\}
Computing\ A^+
result\ = A
A \to BCDEFGH:\ result\ = ABCDEFGH
AH \to IJ:\ result\ = ABCDEFGHIJ\ = A^+
AH \to IJ:\ result\ = ABCDEFGHIJ\ = AH^+
```

2.4 Database Schema Diagram (10%)

2.5 Implementation (30%)

Due to exams for other courses and responsibilities, I was not able to complete the implementation portion of the project. I have created a DDL and Insertions file for my database and have added all my diagrams to the GitHub repository.

2.7 GitHub Repository

Link: https://github.com/krishmathi/Look-Inna-Book

2.8 Appendix

I am available to demo anytime after 12 PM on December 20th.