AI in the Sciences and Engineering HS 2025: Lecture 6

Siddhartha Mishra

Computational and Applied Mathematics Laboratory (CamLab) Seminar for Applied Mathematics (SAM), D-MATH (and), ETH AI Center (and) Swiss National AI Institute (SNAI), ETH Zürich, Switzerland.

What we have learnt so far?

- ► AIM: Learn/Solve PDEs using Deep Neural Networks
- PINNs have limitations.
- ► Use Data-driven Operator Learning instead.

What is Operator Learning?

- ▶ Operator: $\mathcal{G}: \mathcal{X} \mapsto \mathcal{Y}$, dim $(\mathcal{X}, \mathcal{Y}) = \infty$.
- ► Learn PDE Solution Operators from Data
- ▶ Underlying Data Distribution $\mu \in \text{Prob}(\mathfrak{X})$
- ▶ Draw *N* i.i.d samples $(a_i, \mathcal{G}(a_i))$ with $a_i \sim \mu$.
- ▶ Operator Learning Task: Find approximation to $g_{\#}\mu$

Solution I: Discretize, then Learn !!

- ▶ Discretization → MLP → Interpolation
- ▶ Solution operator $\mathcal{G}: \mathcal{X} \mapsto \mathcal{X}$
- ▶ Discretization: $\mathcal{E}: \mathcal{X} \mapsto \mathcal{X}^{\Delta} \sim \mathbb{R}^{N}$
- ightharpoonup MLP: $\mathcal{L}^*: \mathbb{R}^N \mapsto \mathbb{R}^N$
- ▶ Interpolation: $\mathcal{R}: \mathbb{R}^N \mapsto \mathfrak{X}$
- ▶ Operator Learning: $\mathfrak{G}^* = \mathcal{R} \circ \mathcal{L}^* \circ \mathcal{E}$

Deep Neural networks Recalled

- ▶ At the *k*-th Hidden layer: $z^{k+1} := \sigma(C_k z^k) = \sigma(W_k z^k + B_k)$
- ► Trainable Parameters: $\theta = \{W_k, B_k\} \in \Theta$,
- $ightharpoonup \sigma$: scalar Activation function: ReLU, Tanh
- ▶ Random Training set: $S = \{z_i\}_{i=1}^N \in Z \subset \mathbb{R}^N$, with i.i.d z_i
- ▶ Use GD: $\theta_{k+1} = \theta_k \eta_k \nabla_{\theta} J(\theta_k)$, to find

$$heta^* := rg \min_{ heta \in \Theta} \sum_{i=1}^N |\mathcal{L}(z_i) - \mathcal{L}^*_{ heta}(z_i)|^p,$$

• with $G = \mathcal{R} \circ \mathcal{L} \circ \mathcal{E}$

Issues

- ► Large Model Size:
 - For discretization on a 64² grid.
 - ▶ $N = 4096 \Rightarrow$ Single Hidden Layer of dimension $\mathcal{O}(10^8)$.
 - Too large models even for shallow MLPs.
- Spatial Structure is not incorporated !!
- ▶ Not possible to evaluate on a Different Resolution
- Not genuine operator learning.

Solution I (Refined)

Use CNNs instead of MLP.

Key elements are Discrete Convolutions with fixed Kernel:

$$K_c[m] = \sum_{i=-s}^{s} k_i c[m-i]$$

► Weight matrices are very Sparse

Operator Learning with CNNs

- Tractable Model sizes.
- Respect Spatial structure of underlying Data.
- ► Possible to Evaluate on any grid resolution

Does this work?

▶ Shear flow with Navier-Stokes with Re >> 1

CNN + Interpolation Results:

- ► Consistent with Zhu, Zabaras, 2019.
- Desiderata for Operator Learning:
- ► Input + Output are functions.
- Learn underlying Operator, not just a discrete Representation

Solution II: Learn, then Discretize !!

- Use Neural Operators
- Formalized in Kovachki et al, 2021.
- ▶ Recall: DNNs are $\mathcal{L}_{\theta} = \sigma_K \odot \sigma_{K-1} \odot \ldots \sigma_1$
- ▶ Single hidden layer: $\sigma_k(y) = \sigma(A_k y + B_k)$
- Neural Operators generalize DNNs to ∞-dimensions:
- ▶ NO: $\mathcal{N}_{\theta} = \mathcal{N}_{L} \odot \mathcal{N}_{L-1} \odot \ldots \mathcal{N}_{1}$
- ▶ Single hidden layer; $\mathcal{N}_{\ell}: \mathcal{X} \mapsto \mathcal{X}$
- Need to find Function Space versions of
 - Bias Vector
 - Weight Matrix
 - Activation function

Neural Operators (Contd..)

- ▶ Replace Bias vector by Bias function $B_{\ell}(x)$
- Replace Matrix-Vector multiply by Kernel Integral Operators:

$$A_{\ell}y \to \int\limits_{D} K_{\ell}(x,y)v(y)dy$$

▶ Pointwise activations results in:

$$(\mathcal{N}_{\ell}v)(x) = \sigma \left(\int\limits_{D} K_{\ell}(x,y)v(y)dy + B_{\ell}(x) \right)$$

▶ Learning Parameters in B_{ℓ}, K_{ℓ}

Discrete Realization

- Caveat: Computational Complexity
- ▶ Different Kernels ⇒ Low-Rank NOs, Graph NOs, Multipole NOs,

Fourier Neural Operators

- FNO proposed in Li et al, 2020.
- ▶ Translation invariant Kernel K(x, y) = K(x y)
- ▶ Kernel Integral Operator is $\int_D K(x,y)v(y)dy = K * v$
- Key Trick: Perform Convolution in Fourier space
- ► Fourier Transform: $\mathcal{F}: L^2(D,\mathbb{C}^n) \mapsto l^2(\mathbb{Z}^d,\mathbb{C}^n)$

$$(\mathfrak{F}v_j)(k) = \int\limits_D v_j(x)\Psi_k(x)dx, \quad \Psi_k(x) = Ce^{-2\pi i \langle k, x \rangle}$$

▶ Inverse Fourier Transform: $\mathcal{F}^{-1}: I^2(\mathbb{Z}^d, \mathbb{C}^n) \mapsto L^2(D, \mathbb{C}^n)$

$$(\mathfrak{F}^{-1}w_k)(x) = \sum_{k \in \mathbb{Z}^d} w_k \Psi_k(x)$$

FNO Details

Use Fourier and Inverse Fourier Transform to define the KIO:

$$\int\limits_{D} K_{\ell}(x,y)v(y)dy = \mathcal{F}^{-1}(\mathcal{F}(K)\mathcal{F}(v))(x)$$

- Parametrize Kernel in Fourier space.
- With Fixed Number of Fourier Modes
- Fast implementation through FFT

Theory for FNOs

- FNO is very widely used in Practice.
- Theoretical Results of Kovachki, Lanthaler, SM, 2021
- ▶ Universal Approximation Thm: For $\mu \in Prob(L^2(D))$ and any measurable $\mathcal{G}: H^r \mapsto H^s$ and $\epsilon > 0$, $\exists \mathcal{N}$ (FNO): $\hat{\mathcal{E}} < \epsilon$
- ► With Error:

$$\hat{\mathcal{E}}^2 = \int_X \int_U |\mathcal{G}(u)(y)| - \mathcal{N}(u)(y)|^2 \, dy d\mu(u)$$

Is there a Catch?

- ► A Synthetic Example: Random Assignment
- ► The underlying Operator:

Errors:

A Practical Example

► FNO Results:

► Learn underlying Operator, not just a discrete Representation !!

Why is this a challenge?

▶ In principle, Operator maps functions to functions.

Input Output

► In practice, both inputs and outputs are Discrete

- ► Multiple Discrete Representations !!
- Only discrete operations on Digital Computers.
- ► A proper notion of Continuous-Discrete Equivalence (CDE)

On Continuous-Discrete Equivalence

Continuous-Discrete Equivalence (Contd...)

- ▶ Discretize, then Learn ⇔ Learn, then Discretize
- ► Following Bartolucci et al SM, 2023
- ▶ Aliasing error: $\varepsilon(\mathfrak{G}, G) = \mathfrak{G} \mathfrak{R} \circ G \circ \mathcal{E}$
- Representation Equivalent Neural Operator alias ReNO:

$$\varepsilon(\mathfrak{G},G)\equiv 0.$$

▶ Concept is instantiated Layerwise: $\mathcal{G} = \mathcal{G}_L \circ \cdots \mathcal{G}_\ell \cdots \mathcal{G}_1$:

$$g_{\ell} - \Re \circ G_{\ell} \circ \mathcal{E}$$

A ReNO on different Grids

- ► A Natural change of representation (Grid) Formula:
- As $\varepsilon(\mathfrak{G}, G) \equiv 0 \equiv \varepsilon(\mathfrak{G}, G')$.
- ► Aliasing ⇒ Discrepancies between Resolutions !!

A Concrete Example: 1-D on a Regular Grid

- \blacktriangleright $\mathfrak{X}, \mathfrak{Y}$ are Bandlimited Functions: i.e., supp $\hat{u} \subset [-\Omega, \Omega]$
- ▶ Encoding is Pointwise evaluation: $\mathcal{E}(u) = \{u(x_j)\}_{j=1}^n$
- ► Reconstruction in terms of sinc basis:

$$\Re(v)(x) = \sum_{j=1}^{n} v_j \operatorname{sinc}(x - x_j)$$

- Nyquist-Shannon \Rightarrow bijection between \mathcal{X}, X on sufficiently dense grid.
- ► Classical Aliasing Error: $\varepsilon(\mathfrak{G}, G) = \mathfrak{G} \mathfrak{R} \circ G \circ \mathcal{E}$

CNNs are not ReNOs!

CNNs rely on Discrete Convolutions with fixed Kernel:

$$K_c[m] = \sum_{i=-s}^{s} k_i c[m-i]$$

Pointwise evaluations with Sinc basis

Easy to check that CNNs are Resolution dependent as:

$$g' \neq \mathcal{E}' \circ \mathcal{R} \circ \mathcal{G} \circ \mathcal{E} \circ \mathcal{R}'$$

Are FNOs ReNOs?

- lacktriangle Convolution in Fourier space \mathcal{K} + Nonlinearity σ
- \triangleright K is ReNO wrt Periodic Bandlimited functions \mathcal{P}_K :

What about activations?

- ▶ Nonlinear activation σ can break bandlimits: $\sigma(f) \notin \mathcal{P}_K$
- ► FNOs are not necessarily ReNOs!!

A Synthetic Example: Random Assignment

► The underlying Operator:

► Errors:

A Practical Example

► FNO Results:

► Challenge: Design a ReNO