PTAS for Euclidean Traveling Salesman and Other Geometric Problems

Sanjeev Arora

Journal of the ACM, 45(5):753-782, 1998

PTAS

→ same as LTAS, with "Linear" replaced by "Polynomial"

Def Given a problem P and a cost function |.|, a PTAS of P is a one-parameter family of PT algorithms, $\{A_{\varepsilon}\}_{{\varepsilon}>0}$, such that, for all ${\varepsilon}>0$ and all instance I of P, $|A_{\varepsilon}(I)| \leq (1+{\varepsilon}) \, |\mathrm{OPT}(I)|$.

PTAS

→ same as LTAS, with "Linear" replaced by "Polynomial"

Def Given a problem P and a cost function |.|, a PTAS of P is a one-parameter family of PT algorithms, $\{A_{\varepsilon}\}_{{\varepsilon}>0}$, such that, for all ${\varepsilon}>0$ and all instance I of P, $|A_{\varepsilon}(I)| \leq (1+O({\varepsilon})) |\mathrm{OPT}(I)|$.

- ullet PT means time complexity $n^{O(1)}$, where the constant may depend on 1/arepsilon and on the dimension d (when pb in \mathbb{R}^d)
- ullet As far as we get $n^{O(1)}$, we do not care about the constant
- ullet the constant in (1+O(arepsilon)) must not depend on I nor on arepsilon

Given a complete graph G=(V,E) with non-negative weights, find the Hamiltonian tour of minimum total cost.

Given a complete graph G=(V,E) with non-negative weights, find the Hamiltonian tour of minimum total cost.

|OPT| = 36.2

Given a complete graph G=(V,E) with non-negative weights, find the Hamiltonian tour of minimum total cost.

TSP is NP-hard \Rightarrow no PT algorithm, unless P = NP.

|OPT| = 36.2

Given a complete graph G=(V,E) with non-negative weights, find the Hamiltonian tour of minimum total cost.

TSP is NP-hard \Rightarrow no PT algorithm, unless P = NP.

Thm For all PT computable function $\alpha(n)$, TSP cannot be approximated in PT within a factor of $(1 + \alpha(n))$, unless P = NP.

Given a complete graph G=(V,E) with non-negative weights, find the Hamiltonian tour of minimum total cost.

TSP is NP-hard \Rightarrow no PT algorithm, unless P = NP.

Thm For all PT computable function $\alpha(n)$, TSP cannot be approximated in PT within a factor of $(1 + \alpha(n))$, unless P = NP.

Proof Reduction of Hamiltonian Cycle:

Let G = (V, E) unweighted, incomplete $\rightarrow G' = (V', E')$ where:

- \bullet V' = V
- $\forall e \in E$, add (e, 1) to E'
- $\forall e \notin E$, add $(e, (1 + \alpha(n))n)$ to E'

Given a complete graph G=(V,E) with non-negative weights, find the Hamiltonian tour of minimum total cost.

TSP is NP-hard \Rightarrow no PT algorithm, unless P = NP.

Thm For all PT computable function $\alpha(n)$, TSP cannot be approximated in PT within a factor of $(1 + \alpha(n))$, unless P = NP.

Proof Reduction of Hamiltonian Cycle:

Let G = (V, E) unweighted, incomplete $\rightarrow G' = (V', E')$ where:

- \bullet V' = V
- $\forall e \in E$, add (e, 1) to E'
- $\forall e \notin E$, add $(e, (1 + \alpha(n))n)$ to E'

The weights of G(V,E) now satisfy the triangle inequality

- 2-approximation algorithm:
 - (1) build MST M of G (Kruskal)

- 2-approximation algorithm:
 - (1) build MST M of G (Kruskal)
 - (2) double edges $\to M^+$ Eulerian

- (1) build MST M of G (Kruskal)
- (2) double edges $\to M^+$ Eulerian
- (3) build greedily a Eulerian tour T^+ on M^+

- (1) build MST M of G (Kruskal)
- (2) double edges $\rightarrow M^+$ Eulerian
- (3) build greedily a Eulerian tour T^+ on M^+
- (4) Trim edges of $T^+ \to T$

2-approximation algorithm:

- (1) build MST M of G (Kruskal)
- (2) double edges $\rightarrow M^+$ Eulerian
- (3) build greedily a Eulerian tour T^+ on M^+
- (4) Trim edges of $T^+ \to T$

Thm
$$|T| \le 2|OPT|$$

$$\mathbf{proof} \quad |T| \le |T^+|$$

tri. ineq.

- (1) build MST M of G (Kruskal)
- (2) double edges $\rightarrow M^+$ Eulerian
- (3) build greedily a Eulerian tour T^+ on M^+
- (4) Trim edges of $T^+ \to T$

Thm
$$|T| \le 2|OPT|$$

$$|T| \leq |T^+| = |M^+|$$
 tri. ineq.

- (1) build MST M of G (Kruskal)
- (2) double edges $\rightarrow M^+$ Eulerian
- (3) build greedily a Eulerian tour T^+ on M^+
- (4) Trim edges of $T^+ \to T$

Thm
$$|T| \le 2|OPT|$$

$$|T| \leq |T^+| = |M^+| = 2|M|$$
 tri. ineq.

- (1) build MST M of G (Kruskal)
- (2) double edges $\rightarrow M^+$ Eulerian
- (3) build greedily a Eulerian tour T^+ on M^+
- (4) Trim edges of $T^+ \to T$

Thm
$$|T| \le 2|OPT|$$

proof
$$|T| \leq |T^+| = |M^+| = 2|M| \leq 2|\mathrm{OPT}|$$
 tri. ineq.
$$\mathrm{OPT}=\mathrm{``tree+edge''}$$

2-approximation algorithm:

- (1) build MST M of G (Kruskal)
- (2) double edges $\rightarrow M^+$ Eulerian
- (3) build greedily a Eulerian tour T^+ on M^+
- (4) Trim edges of $T^+ \to T$

Replace (2) by adding to M a min cost perfect matching of its odd-valenced vertices $\to \frac{3}{2}$ -approximation [Christofides76]

Q Can we do better?

2-approximation algorithm:

- (1) build MST M of G (Kruskal)
- (2) double edges $\rightarrow M^+$ Eulerian
- (3) build greedily a Eulerian tour T^+ on M^+
- (4) Trim edges of $T^+ \to T$

Replace (2) by adding to M a min cost perfect matching of its odd-valenced vertices $\to \frac{3}{2}$ -approximation [Christofides76]

Q Can we do better?

Thm [ALMSS92] There is no PTAS for Metric TSP, unless P = NP

Conjecture best approximation factor: 4/3

 $V\subset\mathbb{R}^d$, E is the set of all pairs weighted by Euclidean distances

4

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let n = |V|

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let n = |V|

(1) rescale/snap V

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let n = |V|

- (1) rescale/snap V
- (2) subdivide the grid with a quadtree

- level 1
- level 2
- level 3

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let n = |V|

- (1) rescale/snap V
- (2) subdivide the grid with a quadtree
- (3) place portals on grid lines

- level 1
- level 2
- level 3

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let n = |V|

- (1) rescale/snap V
- (2) subdivide the grid with a quadtree
- (3) place portals on grid lines

level 3

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let
$$n = |V|$$

- (1) rescale/snap V
- (2) subdivide the grid with a quadtree
- (3) place *portals* on grid lines

(5) Trim the edges of OPT_p and output the result T

(1) rescale V

Let V_s be V scaled by a factor of s.

$$\forall T$$
, $|T|_s = s |T|$

 \Rightarrow OPT for V_s is the same as OPT for V

 \Rightarrow solving the pb for V_s is the same as solving the pb for V

(1) rescale V

Let V_s be V scaled by a factor of s.

$$\forall T$$
, $|T|_s = s |T|$

 \Rightarrow OPT for V_s is the same as OPT for V

- \Rightarrow solving the pb for V_s is the same as solving the pb for V
- \rightarrow wlog, we assume that the smallest square containing V has sidelength $n^2\sqrt{2}$

$$g:v\in V\mapsto v_g\in \mathsf{grid}$$
 closest to v

 $g:v\in V\mapsto v_g\in \mathsf{grid}$ closest to v

$$\forall T = (v_1, v_2, \dots, v_n), \ g(T) := (g(v_1), g(v_2), \dots, g(v_n))$$

Through g, a vertex is moved by at most $\sqrt{2}/2$

 \Rightarrow an edge is elongated/shortened by at most $\sqrt{2}$

$$\Rightarrow \forall T$$
, $||g(T)| - |T|| \le n\sqrt{2}$

$$\Rightarrow |\mathrm{OPT}_g| \le |g(\mathrm{OPT})| \le |\mathrm{OPT}| + n\sqrt{2}$$

 $g: v \in V \mapsto v_g \in \mathsf{grid} \mathsf{closest} \mathsf{to} v$

Q How to construct a path for V from OPT_g ?

 $g^{-1}(OPT_g)$ is not defined uniquely (several nodes of V may be mapped to a same grid point)

 $g:v\in V\mapsto v_g\in \mathsf{grid}$ closest to v

Q How to construct a path for V from OPT_g ?

 $g^{-1}(OPT_g)$ is not defined uniquely (several nodes of V may be mapped to a same grid point)

- ightarrow Define $g^{-1}(\mathrm{OPT}_g)$ as follows: for each vertex v_g of OPT_g ,
 - order the vertices of V mapped to v_{g} and connect them to v_{g} twice

$$(+n\sqrt{2})$$

 $g:v\in V\mapsto v_g\in \mathsf{grid}$ closest to v

Q How to construct a path for V from OPT_g ?

 $g^{-1}(OPT_g)$ is not defined uniquely (several nodes of V may be mapped to a same grid point)

- ightarrow Define $g^{-1}(\mathrm{OPT}_g)$ as follows: for each vertex v_g of OPT_g ,
 - order the vertices of V mapped to v_g and connect them to v_g twice
 - trim the resulting path

 $(+n\sqrt{2})$

$$g:v\in V\mapsto v_g\in \mathrm{grid}$$
 closest to v
$$|\mathrm{OPT}|\geq 2n^2\sqrt{2}$$

$$|g^{-1}(OPT_g)| \le |OPT_g| + n\sqrt{2} \le |g(OPT)| + n\sqrt{2} \le |OPT| + 2n\sqrt{2}$$

 $\le |OPT| \left(1 + \frac{1}{n}\right)$

 $\to g^{-1}(\mathrm{OPT}_g) \ (1+\varepsilon)$ -approximates OPT for $n \ge \frac{1}{\varepsilon}$

$$|g^{-1}(OPT_g)| \le |OPT_g| + n\sqrt{2} \le |g(OPT)| + n\sqrt{2} \le |OPT| + 2n\sqrt{2}$$

 $\le |OPT| \left(1 + \frac{1}{n}\right)$

 \rightarrow wlog, we assume that the points of V have integer coordinates

Let
$$k$$
 s.t. $2^{k-1} \le n^2 \sqrt{2} \le 2^k \le 2n^2 \sqrt{2}$

Let
$$k$$
 s.t. $2^{k-1} \le n^2 \sqrt{2} \le 2^k \le 2n^2 \sqrt{2}$

level 1

Let k s.t. $2^{k-1} \le n^2 \sqrt{2} \le 2^k \le 2n^2 \sqrt{2}$

- level 1
 - level 2

Let k s.t. $2^{k-1} \le n^2 \sqrt{2} \le 2^k \le 2n^2 \sqrt{2}$ $2^k \le 2n^2\sqrt{2}$ level 1 level 2 level 3

$$O(n^4)$$
 leaves \Rightarrow size $= O(n^4)$

(3) Portals

Let
$$m = \left| \frac{\log n}{\varepsilon} \right|$$

On each level i line, place 2^im equally-spaced portals, plus one at each grid point

(3) Portals

Let
$$m = \left| \frac{\log n}{\varepsilon} \right|$$

On each level i line, place 2^im equally-spaced portals, plus one at each grid point

Each level i line is incident to 2^i pairs of level i squares $\Rightarrow m$ portals per pair (w/o corners)

Each level i square has a boundary made of level $j \leq i$ lines \Rightarrow at most 4m+4 portals per square

Def A tour is *portal-respecting* if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded

Def A tour is *portal-respecting* if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded

Def a tour is k-light if each portal is visited at most k times

Def A tour is *portal-respecting* if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded

Def a tour is k-light if each portal is visited at most k times

Def A tour is *portal-respecting* if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded

Def a tour is k-light if each portal is visited at most k times

Def A tour is *portal-respecting* if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded

Def a tour is k-light if each portal is visited at most k times

$$(a, a', b', b, c, c')$$

Def A tour is *portal-respecting* if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded

Def a tour is k-light if each portal is visited at most k times

Def A tour is *portal-respecting* if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded

Def a tour is k-light if each portal is visited at most k times

Prop OPT $_p$ is 2-light

(a, c, a', c')

Def A tour is *portal-respecting* if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded

Def a tour is k-light if each portal is visited at most k times

Prop OPT $_p$ is 2-light

(a, c, a', c')

Def A tour is *portal-respecting* if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded

Def a tour is k-light if each portal is visited at most k times

Prop OPT $_p$ is 2-light

Prop OPT_p does not self-intersect, except at portals

Def A tour is *portal-respecting* if it crosses the grid only at portals

Pb: an exhaustive search has considers infinitely many instances, since the number of passes through a portal is unbounded

Def a tour is k-light if each portal is visited at most k times

Prop OPT $_p$ is 2-light

Prop OPT_p does not self-intersect, except at portals

Goal: find shortest tour that is:

- portal-respecting
- 2-light
- non self-intersecting (except at portals)
- → divide-and-conquer approach, using the quadtree

Goal: find shortest tour that is:

- portal-respecting
- 2-light
- non self-intersecting (except at portals)
- → divide-and-conquer approach, using the quadtree

For any square s, interface is defined by:

- a number of passes through each portal of \boldsymbol{s}
- a paring between selected portals

$$3^{O(m)} = n^{O(1/\varepsilon)}$$

$$\Omega(m!) = \Omega(n^{\log n})$$

Goal: find shortest tour that is:

- portal-respecting
- 2-light
- non self-intersecting (except at portals)
- \rightarrow divide-and-conquer approach, using the quadtree

For any square s, interface is defined by:

- a paring between selected portals

$$3^{O(m)} = n^{O(1/\varepsilon)}$$

$$O(C_m) = O\left(2^{2m}\right) = n^{O(1/\varepsilon)}$$

With the ordering of portals along the boundary, valid pairings are mapped injectively to balanced arrangements of parentheses

Goal: find shortest tour that is:

- portal-respecting
- 2-light
- non self-intersecting (except at portals)
- → divide-and-conquer approach, using the quadtree

Pb: a simple recursion is not sufficient (optimum for square s is not concatenation of optima of sons of s)

→ dynamic programming

Lookup table:

size: $O\left(n^4 \ n^{O(1/\varepsilon)}\right)$

∀ (leaf,interface),

report total length of pairing w/ straight-line segments
 (nodes are portals) ← ○(1)

∀ (node, interface),

- select interface for every son $n^{O(1/\varepsilon)}$
- retrieve best tour for each selected (son, interface) O(1)

total running time: $O\left(n^4 \ n^{O(1/\varepsilon)}\right)$

Output is the shortest tour that is portal-respecting (and 2-light and non self-intersecting)

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let
$$n = |V|$$

- (1) rescale/snap V
- (2) subdivide the grid with a quadtree
- (3) place portals on grid lines

(5) Trim the edges of OPT_p and output the result T

level 3

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let
$$n = |V|$$

- (1) rescale/snap V
- (2) subdivide the grid with a quadtree
- (3) place *portals* on grid lines

- (5) Trim the edges of OPT_p and output the result T
 - **Q** Do we have $|T| |OPT| \le O(\varepsilon) |OPT|$?

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let
$$n = |V|$$

- (1) rescale/snap V
- (2) subdivide the grid with a quadtree
- (3) place *portals* on grid lines

- (5) Trim the edges of OPT_p and output the result T
 - **Q** Do we have $|\mathrm{OPT}_p| |\mathrm{OPT}| \leq O(\varepsilon) |\mathrm{OPT}|$?

Thm [Arora96] Euclidean TSP admits a PTAS

Overview Let
$$n = |V|$$

- (1) rescale/snap V
- (2) subdivide the grid with a quadtree
- (3) place *portals* on grid lines

- (5) Trim the edges of OPT_p and output the result T
 - **Q** Do we have $|p(OPT)| |OPT| \le O(\varepsilon) |OPT|$?

Pb: $|OPT_p|$ can be made arbitrarily large compared to |OPT|

$$|V| = 2n$$

Pb: $|OPT_p|$ can be made arbitrarily large compared to |OPT|

$$|V| = 2n$$

$$|OPT| \le 2\frac{n}{2}n + 2\frac{n}{2}2\sqrt{2} + 2n^2\frac{\sqrt{2}}{2} = n^2(1+\sqrt{2}) + 2n\sqrt{2}$$

Pb: $|OPT_p|$ can be made arbitrarily large compared to |OPT|

$$|V| = 2n$$

$$|OPT| \le 2\frac{n}{2}n + 2\frac{n}{2}2\sqrt{2} + 2n^2\frac{\sqrt{2}}{2} = n^2(1+\sqrt{2}) + 2n\sqrt{2}$$

At level 2, 4m portals \Rightarrow interportal distance $\delta = \frac{n^2 + 2n}{8m} > n$

One crossing every $n\Rightarrow$ overhead per consecutive portals $\geq 2\frac{\delta}{4}=\frac{\delta}{2}$ \Rightarrow total overhead $\geq 4m\frac{\delta}{2}=\frac{(n^2+2n)^2}{4}=\Omega(|\mathrm{OPT}|)$ (indep. of ε)

(same for tours close to OPT)

Pb: $|OPT_p|$ can be made arbitrarily large compared to |OPT|

Patch: randomize the algorithm:

Choose random integers $0 \le x,y \le 2^k$, then apply (2)-(5) to square of sidelength 2^{k+1} shifted by (-x,-y).

Thm The expectation (over x, y) of $|OPT_g| - |OPT|$ is at most

 $\frac{k+1}{m}$ |OPT|

For any vertical line l in domain, $P_x(l ext{ is at level } i) = \frac{2^{i-2}}{1+2^k}$

 $\sqrt{2^{i-1}}$ level i lines, half of which reach l $\sqrt{1+2^k}$ possible values for x

Thm The expectation (over x, y) of $|OPT_g| - |OPT|$ is at most

 $\frac{k+1}{m}$ |OPT|

 \rightarrow transform OPT into a portal-respecting tour:

Thm The expectation (over x,y) of $|OPT_g| - |OPT|$ is at most

 $\frac{k+1}{m}$ |OPT|

 \rightarrow transform OPT into a portal-respecting tour:

Thm The expectation (over x,y) of $|\mathrm{OPT}_g| - |\mathrm{OPT}|$ is at most $\frac{k+1}{m} |\mathrm{OPT}|$

 \rightarrow transform OPT into a portal-respecting tour:

For every crossing, overhead ≤ 2 times half the interportal distance $= \frac{2^{k+1}}{m \ 2^i}$

$$P_x(\text{level i}) = \frac{2^{i-2}}{1+2^k}$$
 (same for y)

Expected overhead: $\sum_{i=1}^{k+1} \frac{2^{i-2}}{1+2^k} \frac{2^{k+1}}{m \ 2^i} \leq \sum_{i=1}^{k+1} \frac{2^{i-2}}{2^k} \frac{2^{k+1}}{m \ 2^i} = \frac{k+1}{2m}$

Thm The expectation (over x,y) of $|\mathrm{OPT}_g| - |\mathrm{OPT}|$ is at most

 $\frac{k+1}{m}$ |OPT|

 \rightarrow transform OPT into a portal-respecting tour:

For every crossing, overhead ≤ 2 times half the interportal distance $= \frac{2^{k+1}}{m \ 2^i}$

$$P_x(\text{level i}) = \frac{2^{i-2}}{1+2^k}$$
 (same for y)

Expected overhead: $\sum_{i=1}^{k+1} \frac{2^{i-2}}{1+2^k} \frac{2^{k+1}}{m \ 2^i}$ $\leq \sum_{i=1}^{k+1} \frac{2^{i-2}}{2^k} \frac{2^{k+1}}{m \ 2^i} = \frac{k+1}{2m}$

 $\begin{array}{ll}
\text{OPT crosses the grid at most } 2|\text{OPT}|\\
\text{times} &\Rightarrow \text{total expected overhead:}\\
\frac{k+1}{m}|\text{OPT}|
\end{array}$

13

Thm The expectation (over x, y) of $|OPT_g| - |OPT|$ is at most $\frac{k+1}{m} |OPT| \le \frac{2 \log n + 3/2 + 1}{\log n/2\varepsilon} |OPT| \le (4 + 5/\log n) \varepsilon |OPT| \le 9\varepsilon |OPT|$.

$$2^k \le 2n^2\sqrt{2}$$

$$m = \left\lfloor \frac{\log n}{\varepsilon} \right\rfloor \ge \frac{\log n}{2\varepsilon}$$

Thm The expectation (over x,y) of $|OPT_g| - |OPT|$ is at most $\frac{k+1}{m} |OPT| \le \frac{2 \log n + 3/2 + 1}{\log n/2\varepsilon} |OPT| \le (4 + 5/\log n) \varepsilon |OPT| \le 9\varepsilon |OPT|$.

Corollary
$$P_{x,y}\left(|\mathrm{OPT}_g| - |\mathrm{OPT}| \le 18\varepsilon |\mathrm{OPT}|\right) \ge 1/2$$

- ightarrow Monte-Carlo procedure given a constant 0 < c < 1, repeat $\lceil \log(1/c) \rceil$ times the process "randomization + (2)-(5)" and keep the best computed tour T. Then, $P\left(|\mathrm{OPT}_g| |\mathrm{OPT}| \le 18\varepsilon \ |\mathrm{OPT}|\right) \ge 1 c$
- \rightarrow **Derandomization** try all possible choices of (x,y) (there are $O(n^4)$ of those), and keep best tour.

The analysis extends to higher dimensions, except for the *valid pair-ing* argument.

- a paring between selected portals -

The analysis extends to higher dimensions, except for the *valid pairing* argument.

Patch: instead of considering all 2-light tours, consider only those that intersect each side of the boundary of a given square at most l times.

Goal: find shortest tour that is:

- portal-respecting
- 2-light
- non self-intersecting (except at portals)
- → divide-and-conquer approach, using the quadtree

The analysis extends to higher dimensions, except for the valid pairing argument.

Thm $\mathrm{E}_{x,y}\left[|\mathrm{OPT}_p(l)|-|\mathrm{OPT}|\right] \leq \left(\frac{\log{(n)}+1}{m}+\frac{12}{l-5}\right)\,|\mathrm{OPT}|$ \to for $l=\Theta\left(\frac{1}{\varepsilon}\right)$ and $m=\left\lfloor\frac{\log{n}}{\varepsilon}\right\rfloor$: Patch: instead of considering all 2-light tours, consider only those that intersect each side of the boundary of a given square at most

Thm
$$\mathrm{E}_{x,y} \left[|\mathrm{OPT}_p(l)| - |\mathrm{OPT}| \right] \le \left(\frac{\log{(n)} + 1}{m} + \frac{12}{l - 5} \right) |\mathrm{OPT}|$$

$$o$$
 for $l=\Theta\left(rac{1}{arepsilon}
ight)$ and $m=\left\lfloorrac{\log n}{arepsilon}
ight
floor$:

•
$$E_{x,y}[|OPT_p(l)| - |OPT|] \le O(\varepsilon) |OPT|$$

•
$$\forall$$
 square, $\#\{\text{interfaces}\} \leq m^{O(l)} \ l! \leq (\log n)^{O(1/\varepsilon)}$

$$\Rightarrow$$
 space complexity $\leq O\left(n^4(\log n)^{O(1/\varepsilon)}\right)$

$$\Rightarrow$$
 time complexity $\leq O\left(n^4(\log n)^{O(1/\varepsilon)}\right)$

The analysis extends to higher dimensions, except for the valid pairing argument.

Patch: instead of considering all 2-light tours, consider only those that intersect each side of the boundary of a given square at most l times.

$$\begin{split} \bullet \ \forall \ \mathsf{square}, \ \#\{\mathsf{interfaces}\} & \leq m^{O(2dl)} \ l! \leq O\left(\left(\log n\right)^{O\left(\left(\sqrt{d}/\varepsilon\right)^{d-1}\right)}\right) \\ \Rightarrow \mathsf{space} \ \mathsf{complexity} & \leq O\left(n^{2d}(\log n)^{O\left(\left(\sqrt{d}/\varepsilon\right)^{d-1}\right)}\right) \\ \Rightarrow \mathsf{time} \ \mathsf{complexity} & \leq O\left(n^{2d}(\log n)^{O\left(\left(\sqrt{d}/\varepsilon\right)^{d-1}\right)}\right) \end{split}$$

The analysis extends to higher dimensions, except for the *valid pair-ing* argument.

Patch: instead of considering all 2-light tours, consider only those that intersect each side of the boundary of a given square at most l times.

Thm
$$\mathrm{E}_{x,y} \left[|\mathrm{OPT}_p(l)| - |\mathrm{OPT}| \right] \le \left(\frac{\log{(n)} + 1}{m} + \frac{12}{l - 5} \right) |\mathrm{OPT}|$$

Proof \rightarrow key ingredient: patching lemma.

- reduce the # of crossings by dealing w/ several portals at once
- if line of crossings has length s, then path length increased by at most 3s

The analysis extends to higher dimensions, except for the *valid pair-ing* argument.

Patch: instead of considering all 2-light tours, consider only those that intersect each side of the boundary of a given square at most l times.

Thm
$$\mathrm{E}_{x,y} \left[|\mathrm{OPT}_p(l)| - |\mathrm{OPT}| \right] \le \left(\frac{\log{(n)} + 1}{m} + \frac{12}{l - 5} \right) |\mathrm{OPT}|$$

Proof \rightarrow key ingredient: patching lemma.

 \rightarrow use patching lemma repeatedly, to reduce the total # of crossings of OPT when made portal-respecting, while amortizing the cost overhead due to patching.

Other norms

Cannot reduce pb to Euclidean TSP:

Other norms

Cannot reduce pb to Euclidean TSP:

• Algorithm and its analysis hold for any other geometric norm (modulo some constants factors in the optimal values of m and l).

norm $(\neq metric)$ is important for scaling phase embedding in \mathbb{R}^d is also important

Recap

- Euclidean TSP admits a PTAS. *Idem* for TSP in $(\mathbb{R}^d, |.|)$.
- In \mathbb{R}^d , the PTAS given has space and time complexities of $O\left(n^{2d}(\log n)^{O\left(\left(\sqrt{d}/\varepsilon\right)^{d-1}\right)}\right)$
- ullet Complexity is reduced to $O\left(n(\log n)^{O\left(\left(\sqrt{d}/arepsilon
 ight)^{d-1}
 ight)}
 ight)$ if a reduced quadtree is used
- By using a $(1+\varepsilon)$ -spanner of the input nodes to give better "hints" of what portals to use, one reduces the complexity to $O\left(n\left(\log\left(n\right)+2^{\mathsf{poly}(1/\varepsilon)}\right)\right)$ in \mathbb{R}^2 [RaoSmith]