

TD 1: Fondements de la sécurité

Exercice 1

Soit le cryptogramme suivant : H A W U D R U G L Q D L U H

1. En utilisant l'algorithme de césar, le cryptanalyste teste l'ensemble des clés possibles pour essayer de déchiffrer le cryptogramme.

Au bout de combien d'essai, le cryptanalyste parvient à identifier la bonne clé ? Justifier votre réponse ?

26 clés si l'espace est comptabilisé dans la clé

25 clés si l'espace est n'est pas comptabilisé dans la clé

2. Utiliser l'algorithme de César (clé = 3) pour déchiffrer le cryptogramme ci-dessus.

EXTRAORDINAIRE

3. L'algorithme de César est un crypto-système mono alphabétique ou polyalphabétique ? Justifier votre réponse ?

mono alphabétique car chaque lettre du message est remplacé par une autre lettre de l'alphabet de manière unique

4. Quels sont les inconvénients du crypto-système de César ?

Le langage du message clair est connu et facilement identifiable

Maximum 26 possibilités de clé à essayer

La distribution fréquentielle des symboles est préservée dans le *ciphertext*.

Vulnérabilité aux attaques de cryptanalyse statistique : il suffit de calculer la fréquence d'apparition de chaque symbole dans le *ciphertext* et de le comparer aux fréquences d'apparition des lettres de l'alphabet dans une langue particulière.

- → cryptanalyse possible facilement : n'est pas sécuritaire :
- **5.** Soit **F** la fonction de cryptage suivante :

lettre	A	В	С	D	E	F	G	Н	Ι	J	K	L	M	N	o	P	Q	R	S	Т	U	V	W	X	Y	Z
F(lettre)	I	P	A	R	J	Q	В	V	K	C	L	D	U	E	W	S	Т	N	Z	M	F	G	Y	0	Н	X

a. Trouver la fonction **F**⁻¹ de décryptage ?

lettre	Ι	P	A	R	J	Q	В	v	K	C	L	D	U	E	w	S	T	N	Z	M	F	G	Y	0	Н	X
F(lettre)	A	В	C	D	E	F	G	Н	Ι	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z

- b. Crypter le texte « resource reservation » avec la fonction F
 njzwfnaj njzjngimkwe
- c. Quel est l'avantage de cet algorithme (F) par rapport à celui de césar ?
 Il est plus sécurisé car le nombre de clés est beaucoup plus élevé(26 !)→donc plus résistant à la cryptanalyse
- d. L'algorithme F est un crypto-système mono alphabétique ou polyalphabétique? Justifier votre réponse?
 mono alphabétique car chaque lettre du message est remplacé par une autre lettre
- **6.** Utiliser la clé « BCDE » (1234) pour déchiffrer avec le crypto système de Vignère le cryptogramme suivant : **D T B T U C Q E M A V I**

D	T	В	T	U	C	Q	Е	M	A	V	Ι
В	C	D	Е	В	C	D	Е	В	C	D	E
С	R	Y	P	T	A	N	A	L	Y	S	E

de l'alphabet de manière unique

7. Déduire à partir de la question précédente si le crypto-système de Vignère est polyalphabétique ou non ? Justifier votre réponse ?

Oui le crypto-système de Vignère est poly-alphabétique, car chaque lettre de l'alphabet peut être remplacé par plusieurs possibilités et non pas de manière unique exemple la lettre A est remplacée la première fois par C et la deuxième fois par E

Exercice 2

_Soit le texte clair suivant : M : Examen de cryptographie

- 1. Soit f une fonction de substitution (code césar). La notation M'=f(M,k) consiste à chiffrer le message M en utilisant le code césar avec la clé k.
 - a) Calculer M1=f1(M,4) Ibeqir hi gvctxskvetlmi
 - b) Calculer M2=f2(M1,3) Lehtlu kl jyfwavnyhwopl
- 2. Expliquer la réalisation de 3-DES avec une clé de taille 112 bits.

- 3. Quel est l'avantage de l'algorithme 3-DES par rapport à l'algorithme DES. Le 3DES permet d'augmenter significativement la sécurité du DES Résiste plus aux attaques brute force en augmentant l'espace des clés possibles
- 4. Décrire les étapes d'un tour de l'algorithme AES-128.
 - a) **SubBytes():** Il s'agit d'une étape de substitutions appliquée indépendamment à chacun des octets de l'état en utilisant une table de substitution (Sbox) prédéfinie
 - b) **ShiftRows**() : Il s'agit d'une étape de Permutation cyclique des octets sur les lignes de l'état. Le décalage des octets correspond à l'indice de la ligne considérée
 - c) **MixColumns**(): Transformation appliquée à un état colonne après colonne: un produit matriciel. Chaque octet de la colonne est remplacé par une valeur qui dépend des 4 octets de la colonne: Cette valeur est obtenue en multipliant la colonne par une matrice prédéfinie.
 - d) AddRoundKey: Addition de la sous-clé : ajout de la clé (initiale ou de la clef lors de la ronde) à l'état considéré (l'addition étant prise au sens ou exclusif).
 Un XOR (au niveau bit) est appliqué entre chacun des octets de l'état et de la clef de ronde.
- 5. L'opération SubByte de l'algorithme AES consiste à appliquer à chaque $m_{i,j}$ la fonction de substitution S.

										v							
		0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	A0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
x	7	51	A3	40	8F	92	9D	38	F5	BC	В6	DA	21	10	FF	F3	D2
	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

Appliquez SubBytes à l'octet (00001001)

0000 : 0x0 1001 :0x9 →01

6. Expliquez la procédure inverse de chacune des procédures SubBytes, et AddRoundKey.

La procédure de la procédure SubBytes est :

InvSubBytes() : Inverse de la transformation SubBytes()

									3	7							
		0	1	2	3	4	5	6	7	8	9	a	b	С	đ	е	f
	0	52	09	6a	đ5	30	36	a5	38	bf	40	a3	9 e	81	f3	d7	fb
	1	7c	e3	39	82	9b	2f	ff	87	34	8e	43	44	c4	de	e9	cb
	2	54	7b	94	32	a 6	c2	23	3d	ee	4c	95	0b	42	fa	с3	4 e
	3	08	2e	a1	66	28	đ9	24	b2	76	5b	a2	49	6d	8b	d1	25
	4	72	f8	f6	64	86	68	98	16	d4	a4	5c	CC	5d	65	b6	92
	5	60	70	48	50	fd	ed	b9	da	5e	15	46	57	a 7	8d	9d	84
	6	90	d8	ab	00	8c	bc	d3	0a	f7	e4	58	05	b8	b3	45	06
x	7	đ0	2c	1e	8f	ca	3f	0f	02	c1	af	bd	03	01	13	8a	6b
^	8	3a	91	11	41	4f	67	dc	ea	97	f2	cf	ce	f0	b4	e6	73
	9	96	ac	74	22	e7	ad	35	85	e2	f9	37	e8	1c	75	df	6e
	a	47	f1	1a	71	1d	29	с5	89	6f	b7	62	0e	aa	18	be	1b
	b	fc	56	3e	4b	С6	d2	79	20	9a	db	c0	fe	78	cd	5a	f4
	С	1f	dd	a8	33	88	07	c7	31	b1	12	10	59	27	80	ec	5f
	đ	60	51	7f	a 9	19	b5	4a	0d	2d	e5	7a	9f	93	c9	9c	ef
	Ф	a0	о Ф	3b	4 d	ae	2a	f5	b0	c8	eb	bb	3c	83	53	99	61
	f	17	2b	04	7e	ba	77	d6	26	e1	69	14	63	55	21	0c	7d

Pour
$$s_{i,j} = \{ed\}$$

 $s'_{i,j} = InvSubBytes(s_{i,j}) = \{53\}$

La procédure inverse de chacune de la procédure AddRoundKey est la meme que AddRoundKey sauf que les clefs de ronde sont utilisées dans l'ordre inverse de celui du chiffrement.

Exercice 3

On souhaite réaliser un système de messagerie sécurisée à l'intérieur d'une société (employant N personnes). Pour cela, on utilise des « messages électroniques ».

A) Supposons que les N personnes souhaitent communiquer avec chacune des N-1 autres en utilisant un système à clés publiques (chiffrement asymétrique).

On note KA_{Pub} la clé publique de A et kA_{Pri} la clé privée de A.

On note aussi KB_{Pub} la clé publique $de\ B\ et\ kB_{Pri}$ la clé privée de B.

1. Avec le chiffrement asymétrique, comment assurer l'authentification de l'expéditeur d'un message ?

Par une signature numérique associée au message envoyé

2. Comment assurer la confidentialité d'une information M envoyée par l'expéditeur A au destinataire B ?

Par la clé publique de B

3. Comment assurer l'intégrité d'une information M envoyée par l'expéditeur A ? Par la vérification de la signature numérique de M envoyé avec M.

B) Supposons que les N personnes souhaitent communiquer avec chacune des N-1 autres en utilisant un chiffrement à clé symétrique. Toute communication entre deux personnes i et j est invisible de toutes les autres. De combien de clés a-t-on besoin en tout ?

N (N-1)/2