《基础物理实验》实验报告

学号 00000000 姓名 我是谁 实验日期 2025.05.06 星期 二 下午

空气比热容比的测定

一、实验目的

- 1. 用绝热膨胀法测定空气的比热容比。
- 2. 观测热力学过程中状态变化及基本物理规律。

二、实验仪器

空气比热容测定仪(含 AD590 温度传感器和扩散硅压力传感器)、温度计(测室温)、气压计(测环境气压)。

三、实验原理

理想气体的压强 P、体积 V 和温度 T 在准静态绝热过程中,遵守绝热过程方程: PV^γ 等于恒量,其中 γ 是气体的定压比热容 C_P 和定容比热容 C_V 之比,通常称 $\gamma = \frac{C_P}{C_V}$ 为该气体的比热容比(亦称绝热指数)。如图 1 所示,我们以贮气瓶内空气(近似为理想气体)作为研究的热学系统,试进行如下实验过程。

- (1) 首先打开放气阀 C_1 , 贮气瓶与大气相通,再关闭 C_1 ,瓶内充满与周围空气同温(设为 T_0) 同压(设为 P_0)的气体。
- (2) 打开充气阀 C_2 用充气球向瓶内打气,充入一定量的气体,然后关闭充气阀 C_2 。此时瓶内空气被压缩,压强增大,温度升高。等待内部气体温度稳定,即达到与周围温度平衡,此时的研究的气体处于状态 $\mathbf{I}(P_1,V_1,T_0)$ 。虽然瓶内气体的体积为贮气瓶容积 V_0 ,而仅有 V_1 部分 $(V_1 < V_0)$ 是实验研究的对象,如图 2。

图 1: 实验装置图

- (3) 迅速打开放气阀 C_1 ,使瓶内气体与大气相通,当瓶内压强降至 P_0 时,立刻关闭放气阀
- C_1 将有体积为 ΔV 的气体喷泻出贮气瓶。由于放气过程较快,瓶内保留的气体来不及与外界进行热交换,可以认为是一个绝热膨胀的过程。在此过程后瓶中的气体由状态 $\mathbf{I}(P_1,V_1,T_0)$ 转变为状态 $\mathbf{II}(P_0,V_0,T_1)$ 。 V_0 为贮气瓶容积, V_1 为保留在瓶中这部分气体在状态 $\mathbf{I}(P_1,T_0)$ 时的体积。
- (4) 由于瓶内气体温度 T_1 低于室温 T_0 ,所以瓶内气体慢慢从外界吸热,直至达到室温 T_0 为止,此时瓶内气体压强也随之增大为 P_2 。则稳定后的气体状态为 $\mathbf{HI}(P_2,V_0,T_0)$;从状态 \mathbf{H} 到状态 \mathbf{HI} 的过程可以看作是一个等容吸热的过程。

图 2: 气体状态变化及 P-V 图

由状态 $I \rightarrow II \rightarrow III$ 的过程如图 2 所示。 $I \rightarrow II$ 是绝热过程,由绝热过程方程得:

$$P_1 V_1^{\gamma} = P_0 V_0^{\gamma} \tag{1}$$

状态 I 和状态 III 的温度均为 T_0 ,由气体状态方程得:

$$P_1V_1 = P_2V_0 (2)$$

合并式 (1)(2),消去 V_0, V_1 ,得:

$$\gamma = \frac{\ln P_1 - \ln P_0}{\ln P_1 - \ln P_2} = \frac{\ln \frac{P_1}{P_0}}{\ln \frac{P_1}{P_2}}$$
(3)

由式 (3) 可以看出,只要测得 P_0, P_1, P_2 就可求得空气的绝热指数 γ 。本实验气瓶内的气压通过扩散硅传感器来测量,压强值通过电压值来显示,其灵敏度为 $20\,mV/kPa$ 。当待测压强为大气压 P_0 时将电压示数调零,当压强显示 读数为 $P\,mV$ 时,实际压强为:

$$P(Pa) = P_0 + 50 \times P(mV) \tag{4}$$

气瓶内温度通过 AD590 温度传感器测量,也是以电压值来显示,其灵敏度为 $5mV/^{\circ}C$,最小可检测 $0.02^{\circ}C$ 的温度变化。

四、实验内容

- **1.** 用气压计测定大气压强 $P_0(Pa)$,用温度计测环境室温 $T_0(^{\circ}C)$ 。打开放气阀 C_1 ,开启电源,让电子仪器部件 预热一段时间,然后将压强指示值调到"0",并记录此时温度指示值 $T_0(\bigcup mV)$ 为单位)。
- **2.** 关闭放气阀 C_1 ,打开充气阀 C_2 ,用充气球向瓶内打气,使压强升高到 $100 \, mV 120 \, mV$ 。然后关闭充气阀 C_2 ,当瓶内气体压强和温度的指示值不变时,气体处于状态 I,记下压强 P_1 和温度 T_1 (以 mV 为单位)。
- 3. 迅速打开放气阀 C_1 ,当放气声消失时立刻关闭放气阀 C_1 ,此时瓶内空气压强降至大气压强 P_0 ,气体温度降低,气体处于状态 II。
- 4. 待瓶内气体的温度上升稳定,且压强也稳定后,此时瓶内气体近处于状态 III,记录压强 P_2 和温度 T_2 。
- 5. 打开放气阀 C_1 使贮气瓶与大气相通,以便于下一次测量。
- 6. 重复步骤 2-4,重复 10 次测量,比较多次测量中气体的状态变化有何异同,并计算 $\overline{\gamma}$,分析误差,利用统计规律公式 $\sqrt{\frac{\sum_{i=1}^n(x_i-\overline{x})^2}{n-1}}$,计算实验结果的随机涨落偏差。
- 7. 放气时间过长,重复步骤 2-4,重复 5 次测量,计算 $\overline{\gamma_1}$ 。
- 8. 放气时间不充分,重复步骤 2-4,重复 5 次测量,计算 $\overline{\gamma_2}$ 。
- 9. 比较三种情况的测量平均值,与理论值 1.40 比较,计算与理论值对比的相对误差 $E_r = \frac{\overline{\gamma_i} 1.40}{1.40} \times 100\%$,并分析偏离原因。

五、数据记录

原始数据见附页。

六、数据处理

实验开始时 $P_{0_1}=99880$ Pa,实验结束时 $P_{0_2}=99850$ Pa,计算平均值得到 $P_0=\frac{P_{0_1}+P_{0_2}}{2}=\frac{99880$ Pa+99850 Pa=99865 Pa。通过使用 Origin 软件对实验数据进行处理计算 P_1,P_2,γ ,得到:

长名称	P1/mV	P2/mV	P1/Pa	P2/Pa	gamma
单位	mV	mV	Pa	Pa	
注释					
F(x)=			99865+A*50	99865+B*50	ln(C/99865)/ln(C/D)
1	123	30. 4	106015	101385	1. 33828
2	122	29. 4	105965	101335	1. 32707
3	126. 1	30. 9	106170	101410	1. 3347
4	124	30. 4	106065	101385	1. 33474
5	122. 2	30. 1	105975	101370	1. 33669
6	121. 7	29. 9	105950	101360	1. 33551
7	121	29. 6	105915	101345	1. 33354
8	120. 2	28. 9	105875	101310	1. 32595
9	122. 3	29. 6	105980	101345	1. 32896
10	119. 1	28. 9	105820	101310	1. 32984
11	120. 1	13	105870	100515	1. 12499
12	120.8	15. 6	105905	100645	1. 15272
13	121. 3	11	105930	100415	1. 10272
14	117. 1	12.8	105720	100505	1. 12628
15	121. 1	13. 6	105920	100545	1. 1303
16	117. 8	65. 3	105755	103130	2. 27994
17	119. 5	67. 6	105840	103245	2. 34088
18	123. 4	55. 9	106035	102660	1. 85336
19	122.8	54. 5	106005	102590	1. 82213
20	120.8	51.8	105905	102455	1. 77311

图 3: 实验数据处理结果

计算正常测量的空气比热容比的平均值

$$\overline{\gamma} = \frac{1.33828 + 1.32707 + 1.33470 + 1.33474 + 1.33669 + 1.33551 + 1.33354 + 1.32595 + 1.32896 + 1.32984 + 1.32595 + 1.32896 + 1.328$$

= 1.33253 略小于理论值1.40

计算实验结果的随机涨落偏差

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

$$= \sqrt{\frac{(1.33828 - 1.33253)^2 + (1.32707 - 1.33253)^2 + (1.33470 - 1.33253)^2}{+ (1.33474 - 1.33253)^2 + (1.33669 - 1.33253)^2 + (1.33551 - 1.33253)^2}$$

$$= \sqrt{\frac{(1.33354 - 1.33253)^2 + (1.32595 - 1.33253)^2 + (1.32896 - 1.33253)^2}{10 - 1}}$$

$$= 0.004254$$

计算放气时间过长的空气比热容比的平均值

$$\frac{\gamma_1}{\gamma_1} = \frac{1.12499 + 1.15272 + 1.10272 + 1.12628 + 1.13030}{5}$$
$$= 1.12741 \quad 远小于理论值1.40$$

计算放气时间不充分的空气比热容比的平均值

$$\overline{\gamma_2} = \frac{2.27994 + 2.34088 + 1.85336 + 1.82213 + 1.77311}{5}$$
$$= 2.01388 \quad 远大于理论值1.40$$

计算与理论值对比的相对误差

正常操作:
$$E_r = \frac{|\overline{\gamma} - 1.40|}{1.40} \times 100\%$$

$$= \frac{|1.33253 - 1.40|}{1.40} \times 100\% = 4.82\%$$
放气过久: $E_{r_1} = \frac{|\overline{\gamma_1} - 1.40|}{1.40} \times 100\%$

$$= \frac{|1.12741 - 1.40|}{1.40} \times 100\% = 19.47\%$$
放气不充分: $E_{r_2} = \frac{|\overline{\gamma_2} - 1.40|}{1.40} \times 100\%$

$$= \frac{|2.01388 - 1.40|}{1.40} \times 100\% = 43.85\%$$

正常操作时,气体与外界存在热交换,使测量得到的 P_2 偏小,导致计算得到的 γ 偏小。放气时间过长,气体有充足的时间与外界热交换,导致测量得到的 P_2 偏小,计算得到的 γ 偏小。放气时间不充分,内外气压未达到平衡,导致测量得到的 P_2 偏大,计算得到的 γ 偏大。

七、误差分析

- 1. 温度传感器和压力传感器的灵敏度有限,可能导致测量误差;
- 2. 无法精准控制放气时间,放气时间过长或过短都会影响实验结果:
- 3. 装置无法完全绝热,气体在放气以及等待平衡过程中与外界有热交换,影响了实验结果;
- 4. 实验室的空调影响环境温度,导致实验室温度不稳定;
- 5. 实验前后的气压与温度有变化,可能导致实验结果不准确:
- 6. 平衡过程时间较长,可能提前读取结果导致结果不准确;
- 7. 气体不是理想气体,实际气体的行为与理想气体有所不同,可能导致实验结果偏差。

八、思考题

- 1. 为什么在实验中不需要测量状态 II 的压强和温度值?请简述理由。答:
 - 状态 II 是绝热膨胀的中间态,不稳定,难以测量;并且由公式 (3) 可知,状态 II 的压强和温度在计算 γ 时不需要,因此不需要测量。
- 2. 在放气瞬间, 瓶内气体温度有无变化? 试通过热力学定律分析原因。答:
 - 有变化。根据热力学第一定律 $\Delta U = Q + W$,绝热膨胀过程中,内能的变化等于做功的量,在放气瞬间,气体体积膨胀,对外做功,所以内能减少,即温度降低。

九、实验结论

本实验采用绝热膨胀法,测定空气的比热容比。在三种情况下分别测得正常操作时的比热容比 $\overline{\gamma}=1.33253$,放气时间过长时的比热容比 $\overline{\gamma_1}=1.12741$,放气时间不充分时的比热容比 $\overline{\gamma_2}=2.01388$ 。与理论值 1.40 相比,正常操作时的相对误差为 4.82%,放气时间过长时的相对误差为 19.47%,放气时间不充分时的相对误差为 43.85%。实验结果表明,放气时间过长或不充分偏差较大,正常操作与理论值误差较小,实验结果的随机涨落偏差为 0.004254,测量结果合理。