Dr. Miriam Sorace

www.miriamsorace.net

15 February 2023

Sentiment Analysis: Definitions & Examples

**Dictionaries** 

The Naive Bayes Algorithm

Sentiment Analysis in R

#### Sentiment Analysis What for?

- Detecting the attitude of a text
  - positive/negative ...
  - left/right ...
  - ► anti-EU/pro-EU ...
- A classification exercise, but sentiment analysis can also be continuum/scale

Dictionaries

### Sentiment Analysis Methods

- Dictionaries
  - Generating lists of words for each sentiment category
- 2. Machine Learning
  - Training an algorithm via pre-labeled documents (e.g. Naive Bayes)

Example 1: Laver, M., Garry, J. (2000) "Estimating Policy Positions from Political Texts" American Journal of Political Science



Example 1: Laver, M., Garry, J. (2000) "Estimating Policy Positions from Political Texts" American Journal of Political Science

- Economy
- Institutions
- Values
- Law and Order
- Environment
- Culture
- Groups
- Rural
- Urban

Example 1: Laver, M., Garry, J. (2000) "Estimating Policy Positions from Political Texts" American Journal of Political Science

- Economy
  - ► + State
  - $\triangleright$  = State
  - State
- Institutions
- Values
- Law and Order
- Environment
- Culture
- Groups
- Rural
- Urban



Example 1: Laver, M., Garry, J. (2000) "Estimating Policy Positions from Political Texts" *American Journal of Political Science* 

### Economy

- **▶** + State
  - accommodation; age; ambulance; assist; benefit; care; class; clinics; deprivation; disabilities; disadvantaged; elderly; establish; hardship; hunger; invest; patients; pensions; poor; poverty; school; child; collective; contribution ...
- ightharpoonup = State
- State
- Institutions
- Values
- Law and Order
- Environment
- Culture
- Groups
- Rural
- Urban



Example 2: Benoit, K., Matsuo, A. (2018) "Brexit Discussion on Social Media" The EUEngage Working Paper Series



Example 3: Müller, S (forthcoming) "The Temporal Focus of Campaign Communication" Journal of Politics

Figure 1: The emphasis on the past, present, and future, conditional on incumbency status





## Sentiment Analysis Engage with the Examples

1. Explore the Laver/Garry Dictionary yourself at: http://yoshikoder.sourceforge.net/code/ yoshikoder/dictionaries/LaverGarryAJPS.ykd

Dictionaries

2. Watch Ken Benoit's presentation of the Brexit project here https://www.youtube.com/watch?v=IVayXmtI2VM

## **Dictionaries**

#### Dictionary Analysis How it Works

- Both qualitative and quantitative
  - Contextual knowledge needed: validation crucial
  - Once defined, the dictionary will be automated: perfectly reliable
- Identify key concepts/categories (or "keys")
- ▶ Identify words/n-grams (the "values") associated with each key
  - From Laver & Garry:
    - more state: assist, benefit, care, disabilities, educat\*, invest, pension
    - less state: autonomy, bidders, choice\*, controls, market.

# Dictionary Analysis

#### How to build one

- 1. Order your concepts/keys hierarchically
  - 1.1 Domain Economy
  - 1.2 Sub-Domain Labour Law
  - 1.3 Sentiment Categories/Poles Pro-Business/Neutral/Pro-Worker
- Identify extreme texts among the texts with known positions: the "archetypes"
- Identify words/n-grams that are statistically associated with the various archetypes
  - Chi-square tests
- 4. Examine these words/n-grams for their specificity: are they polysemes?
- 5. Examine these words to decide whether stemming is necessary
- 6. Create word/n-grams lists for the relevant dictionary key
- 7. Investigate whether the dictionary is sensitive enough: will it capture all instances of [key]?

## Dictionary Analysis Advantages

► Allows for detailed contextual knowledge to be reliably applied to large-scale text analysis

## Dictionary Analysis Disadvantages

- Time-consuming
  - Non-generalisable: often dictionaries do not travel well to new corpuses
    - E.g. freez\* is positive in the context of refrigeration appliances but negative in the context of computing
    - E.g. revolut\* is positive in the context of technology, negative in the context of interior policy
- Difficult to know with certainty how comprehensive/valid the dictionary is

#### Naive Bayes How it Works

Bayes' Rule:

$$P(C_j|W_i) = \frac{P(W_i|C_j)P(C_j)}{P(W_i)}$$

which can be transformed to:

$$P(C|D) = P(C) \prod \frac{P(W_i|C)}{P(W_i)}$$

## Naive Dayes

How it Works: Example

► Training Set:

| Document | Words                       | Class    |
|----------|-----------------------------|----------|
| 1        | like love fantastic perfect | Positive |
| 2        | love love great mean        | Positive |
| 3        | awful terrible worse mean   | Negative |
| 4        | like fantastic great like   | Positive |
| 5        | terrible awful love mean    | ??       |

▶ What is the likelihood that the new document 5 is of class *Positive* vs. the likelihood that it is of class *Negative*?

# Naive Bayes

How it Works: Example

| Document     | Words                                                          | Class    |
|--------------|----------------------------------------------------------------|----------|
| 1            | like love fantastic perfect                                    | Positive |
| 2            | love love great mean                                           | Positive |
| 3            | awful terrible worse mean                                      | Negative |
| 4            | like fantastic great like                                      | Positive |
| 5            | terrible awful love mean                                       | ??       |
| $P(C_{pos})$ | $ D_5) = P(C_{pos}) \frac{\prod P(W_{i5} C_{pos})}{P(W_{i5})}$ | os)      |
| = 0.7        | $5\frac{(0.04*0.04*0.29*0.13)}{(0.09+0.09+0.22+0.16)}$         | _        |
|              | (0.09 + 0.09 + 0.22 + 0.10)                                    | )        |
|              | = 0.00008                                                      |          |

# Naive Bayes

How it Works: Example

| Documen | t Words                                                                | Class    |
|---------|------------------------------------------------------------------------|----------|
| 1       | like love fantastic perfect                                            | Positive |
| 2       | love love great mean                                                   | Positive |
| 3       | awful terrible worse mean                                              | Negative |
| 4       | like fantastic great like                                              | Positive |
| 5       | terrible awful love mean                                               | ??       |
| $P(C_n$ | $P_{leg} D_5) = P(C_{neg}) \frac{\prod P(W_{i5} C_n)}{P(W_{i5})}$      | eg)      |
|         |                                                                        |          |
| = (     | $0.25 \frac{(0.38 * 0.38 * 0.13 * 0.38)}{(0.09 + 0.09 + 0.22 + 0.16)}$ | )        |
|         | = 0.003                                                                |          |

### Naive Bayes Steps

- 1. Obtain a valid and reliable labeled set
  - Expert-coded
  - Label from meta-data e.g. party
  - Crowd-sourced
- 2. Run the Naive Bayes classifier algorithm
- 3. Test the performance via cross-validation
  - Accuracy, Recall, Precision, F-Measure

#### Naive Bayes Advantages

 Outperforms dictionaries in the sensitivity of classification - as long as the training sample is big enough

Dictionaries

Flexible and quick: it can be easily re-applied to new corpuses, provided satisfactory identification of archetypal training texts

- Naive: word order does not count + probability of words/n-grams assumed independent from the class
  - ▶ formula might not correctly model the data-generation process!
- Very reliant on the training set: select a good one!
  - ▶ Make sure this is representative of the extreme points
  - Make sure it is large enough so that language styles/rhetoric does not influence classification
  - Make sure to appropriately pre-process the texts!
- Requires a lot of validation ex post (cross-validation steps).

#### Naive Bayes Performance Metrics

Accuracy: correctly classified texts divided by the total number of texts

Dictionaries

- Precision: How many texts that were predicted as class A were actual class A texts?
- ▶ **Recall**: How many texts that *actually* are of class A were also predicted to be of class A?
- ▶ **F-Measure**: composite measure of precision and recall. Good recall can lead to low precision, so a mix measure is needed.

#### Naive Bayes The Confusion Matrix

#### Predictive Model: Evaluation



$$F = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$
 True Negative Rate =  $\frac{tn}{tn + f_1}$ 

TP: The number of samples of class c are correctly classified into class c FP: The number of samples not belonging to class c misclassified into class c TN: The number of samples not belonging to class c is classified (correctly) FN: The number of samples of class c misclassified (in other classes c)

#### Example from:



# Sentiment Analysis: R code demonstration

- ► R Code
- Use your scraped tweets!

# Naive Bayes Analysis in R

- For a tutorial check out:
- https:

```
//tutorials.quanteda.io/machine-learning/nb/
```