A Simple Framework for Contrastive Learning of Visual Representation

"SimCLR"

The Contrastive Learning Framework

The Contrastive Learning Framework (1)

stochastic data augmentation module

$$\tilde{x}_i$$

$$\tilde{\chi}_{j}$$

 \mathcal{X}

The Contrastive Learning Framework (2)

base encoder that extracts representation vectors

The Contrastive Learning Framework (1)

small neural network projection head

The Contrastive Learning Framework (4)

maximize agreement via contrastive loss

contrastive prediction task:

```
given \{\widetilde{x}_k\}
identify \tilde{\mathcal{X}}_j in \{\tilde{x}_k\}_{k \neq i} for a given \tilde{\mathcal{X}}_i
```

NT-Xent Loss Function

$$l_{i,j} = -\log \frac{exp(sim(z_i, z_j) \tau)}{\sum_{k=1}^{2N} 1_{k \neq i} exp(sim(z_i, z_j) / \tau}$$

indicator function

randomly sample a minibatch of N examples

the final loss is computed across all positive pairs, both (i,j) and (j,i)

SimCLR main learning algorithm

```
1: input: batch size N, structure of f, g, \mathcal{T}
2: for all sampled minibatch \{x_k\}_{k=1}^N do
      for all k do
3:
          draw two augmentation functions t \sim \mathcal{T}, t' \sim \mathcal{T}
4:
         the first augmentation
5:
6: representation f
7: projection g
8: the second augmentation
9: representation f
10: projection g
11: end for
12: end for
13: for all i, j \in \{1, ..., 2N\} do
14: calculate loss
15: update networks f, g to minimize loss
16: end for
```