Trascendentes

Algebraicas

Polinónicas: Su dominio es R es decir, cualquier número real tiene imagen.

$f(x) = a_0 + a_1 x + a_1 x^2 + a_1 x^3 + \cdots + a_n x^n$

Racionales: El dominio lo forman todos los números reales excepto los valores de x que anulan el denominador.

$$f(x) = \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n}{b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m}$$

Constantes de primer grado cuadráticas:

Funciones polinómica de primer grado

$$f(x) = mx + n$$

Funciones cuadráticas

$$f(x) = ax^2 + bx + c$$

Son funciones polinómicas es de segundo grado, siendo su gráfica una parábola.

Exponenciales: $f(x) = a^x$

Sea a un número real positivo. La función que a cada número real x le hace corresponder la potencia a* se llama función exponencial de base a y exponente x.

Logarítmicas: La función logarítmica en base a es la función inversa de la exponencial en base a.

$$f(x) = \log_a x$$

Trigonométricas: asocian a cada número real, x, el valor de la razón trigonométrica del ángulo cuya medida en radianes es x.

Función seno
$$f(x) = \operatorname{sen} x$$
 Función coseno $f(x) = \operatorname{cosen} x$
Función tangente $f(x) = \operatorname{tg} x$ Función cosecante $f(x) = \operatorname{cosec} x$
Función secante $f(x) = \operatorname{sec} x$ Función cotangente $f(x) = \operatorname{cotg} x$

LÍMITES

Piscina Todos los días se disuelven 28 onzas de cloro en el agua de una piscina. En la gráfica se muestra la cantidad de cloro f(t) en esa agua luego de t días.

LÍMITES

LEY DE ENFRIAMIENTO DE NEWTON

La temperatura de cierto objeto a $90^{\circ}F$ que se deja enfriar en un cuarto donde la temperatura es de $20^{\circ}F$. Se determina como una función del tiempo t (en minutos) de acuerdo con

$$T = 20 + 70e^{-0.056t}$$

- a. ¿Cuál es la temperatura inicial del objeto?
- b. ¿Cuál es la temperatura del objeto 10 segundos después de estar en el cuarto?
- c. ¿Cuánto tiempo transcurre, aproximadamente, para que la temperatura del cuerpo sea de $20.5^{\circ}F$?
- d. ¿Cuál será la temperatura del objeto a lo largo del tiempo?

LÍMITE DE UNA FUNCIÓN

La función f tiene el límite L conforme x se aproxima $a\ a$, al escribir :

$$\lim_{x \to a} f(x) = L.$$

si el valor de f(x) puede estar tan cerca del número L como se desee al tomar a x lo suficientemente cerca de (pero no igual a) a.

LÍMITE POR IZQUIERDA

Sea f una función definida en un intervalo (c, a). Entonces

$$\lim_{x \to a^{-}} f(x) = L_1$$

Significa que f(x) puede acercarse arbitrariamente a L_1 escogiendo x suficientemente cerca de a, con x < a.

LÍMITE POR DERECHA

Sea f una función definida en un intervalo (a, c). Entonces

$$\lim_{x \to a^+} f(x) = L_2$$

Significa que f(x) puede acercarse arbitrariamente a L_2 escogiendo x suficientemente cerca de a, con x > a.

TEOREMA

Sea a un punto contenido en un intervalo abierto y f una función definida en todo el intervalo, excepto posiblemente en a.

Entonces
$$\lim_{x \to a} f(x) = L$$
 si y sólo si
$$\lim_{x \to a^{-}} f(x) = L$$
 y $\lim_{x \to a^{+}} f(x) = L$

Ejemplo:
$$\lim_{x \to 1} f(x)$$

$$f(x) = \begin{cases} 2 - x & para \ x < 1 \\ x^2 + 1 & para \ x > 1 \end{cases}$$

Ejemplo:

De la gráfica de la función f, halle los siguientes límites,

si existen:

En los ejercicios 15-20 refiérase a la gráfica de la función f y determine si cada pronunciamiento es verdadero o falso.

15.
$$\lim_{x \to -3^+} f(x) = 2$$

17.
$$\lim_{x\to 2} f(x) = 1$$

19.
$$\lim_{x \to 4^+} f(x)$$
 no existe.

16.
$$\lim_{x\to 0} f(x) = 2$$

18.
$$\lim_{x \to 4^{-}} f(x) = 3$$

20.
$$\lim_{x\to 4} f(x) = 2$$

Ejemplo:

Esboce el gráfico de una función f con dominio R que cumpla con las siguientes condiciones:

$$\lim_{x \to -\infty} f(x) = 1; f(-1) = 2$$

$$\lim_{x \to 0^{-}} f(x) = 1; \lim_{x \to 0^{+}} f(x) = 0$$

$$\lim_{x \to 1^{-}} f(x) = +\infty; \lim_{x \to 1^{+}} f(x) = -\infty$$

$$\lim_{x \to 1^{-}} f(x) = 0; f(1) = 1$$

 Utilice la gráfica de la siguiente funciór f(x) para halla un valor aproximado d los límites pedidos.

- a) $\lim_{x\to -2^-} f(x)$
- b) $\lim_{x\to -2^+} f(x)$
- c) $\lim_{x\to -2} f(x)$
- d) $\lim_{x\to 3^-} f(x)$
- e) $\lim_{x\to 3^+} f(x)$
- f) $\lim_{x\to 3} f(x)$
- g) $\lim_{x\to 1^-} f(x)$
- h) $\lim_{x\to 1^+} f(x)$
- i) $\lim_{x\to 1} f(x)$

MÉTODOS PARA CALCULAR LÍMITES

• $\lim_{x \to a} c = c$

• $\lim_{x \to a} x = a$

• Si m, b y a son números arbitrarios, entonces $\lim_{x\to a} mx + b = ma + b$

MÉTODOS PARA CALCULAR LÍMITES

• Si f es un polinomio y a es un número real entonces $\lim_{x\to a} f(x) = f(a)$

• Si q es una función racional y a está en el dominio de q entonces $\lim_{x\to a}q(x)=q(a)$

Leyes de los limites

LEYES DE LOS LÍMITES Suponga que c es una constante y que los límites

$$\lim_{x \to a} f(x) \qquad \text{y} \qquad \lim_{x \to a} g(x)$$

existen. Entonces

1.
$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

2.
$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

3.
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

4.
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \quad \text{si } \lim_{x \to a} g(x) \neq 0$$

6 -Para n entero positivo tenemos
$$\lim_{x \to a} (f(x))^n = \left(\lim_{x \to a} f(x)\right)^n$$

$$\forall \lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)},$$

es válido siempre en el caso de n impar y si n es par podemos garantizarlo si $\lim_{x \to a} f(x) > 0$.

FORMAS INDETERMINADAS

1. Reemplace la función dada con una apropiada que tome los mismos valores de la función original en todas partes excepto en x = a.

2. Evalúe el límite de esta función conforme x se acerque a α

Ejemplo:

$$\lim_{x \to 2} \frac{4(x^2 - 4)}{x - 2}$$

LÍMITES AL INFINITO

Si los valores de la función f(x) tienden al número L cuando x aumenta indefinidamente, se escribe:

$$\lim_{x \to +\infty} f(x) = L$$

De manera similar, valores de la función f(x) tienden al número M cuando x disminuye indefinidamente, se escribe:

$$\lim_{x \to -\infty} f(x) = M$$

Ejemplo:

$$\lim_{x \to \infty} \frac{2x^2}{1 + x^2} = 2$$

TEOREMA

Sea *k* un número racional positivo y *c* un número real arbitrario. Entonces

$$\lim_{x \to \infty} \frac{c}{x^k} = 0 \quad \text{y} \quad \lim_{x \to -\infty} \frac{c}{x^k} = 0$$

Siempre y cuando x^k esté definido .

LÍMITE AL INFINITO PARA FUNCIONES RACIONALES

$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

Si f es una función racional, pueden calcularse los límites cuando $x \to \infty$ o bien cuando $x \to -\infty$ dividiendo el numerador y el denominador de f(x) entre una potencia adecuada de x y aplicando después el teorema anterior .

LÍMITE AL INFINITO PARA FUNCIONES RACIONALES

Sea $f(x) = \frac{g(x)}{h(x)}$. Si el grado k de h(x) es mayor que o igual al de g(x), hay que dividir el numerador y el denominador entre x^k .

Si el grado de g(x) es mayor que el de h(x), puede demostrarse que f(x) no tiene límite cuando $x \to \infty$ o cuando $x \to -\infty$

Ejemplo: Analizar:
$$\lim_{x \to -\infty} \frac{2x^2 - 5}{3x^2 + x + 2}$$

LÍMITES INFINITOS

• $\lim_{x \to a} f(x) = \infty$, significa que f(x) se puede hacer tan grande como se quiera escogiendo x suficientemente cerca de a. (de forma análoga para $\lim_{x \to a} f(x) = -\infty$).

CASOS ESPECIALES

•
$$\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$$
 y $\lim_{x \to 0^{+}} \frac{1}{x} = \infty$

• Si n es un entero positivo par , entonces

$$\lim_{x \to a} \frac{1}{(x-a)^n} = \infty$$

• Si n es un entero positivo impar, entonces

$$\lim_{x \to a^{-}} \frac{1}{(x-a)^{n}} = -\infty \ y \ \lim_{x \to a^{+}} \frac{1}{(x-a)^{n}} = \infty$$

TEOREMA

• Si $\lim_{x\to a} f(x) = \infty$ y $\lim_{x\to a} g(x) = c$, para algún número c, entonces:

$$\lim_{x \to a} \left[f(x) + g(x) \right] = +\infty$$

$$\lim_{x\to a} \left[f(x) \cdot g(x) \right] = +\infty \quad \mathbf{y} \qquad \lim_{x\to a} \frac{f(x)}{g(x)} = +\infty \quad \text{si } c>0$$

$$\lim_{x \to a} \left[f(x) \cdot g(x) \right] = -\infty \quad \mathbf{Y} \quad \lim_{x \to a} \frac{f(x)}{g(x)} = -\infty \quad \text{ si } c < 0$$

$$\lim_{x \to a} \frac{g(x)}{f(x)} = 0$$
 De manera análoga para si $\lim_{x \to a} f(x) = -\infty$

Ejercicios: Calcule los siguientes límites

$$\lim_{x\to+\infty}\frac{4x^2+5}{2x^2+3}$$

$$\lim_{x\to+\infty}\frac{x+7}{x^2-3}$$

Continuidad de una función en un número

Una función f es continua en un número x = a si se cumplen los siguientes requisitos.

- **1.** f(a) está definida.
- **2.** El $\lim_{x \to a} f(x)$ existe. **3.** $\lim_{x \to a} f(x) = f(a)$

Todos los días se disuelven 28 onzas de cloro en el agua de una piscina. En la gráfica se muestra la cantidad de cloro f(t) en esa agua luego de t días.

Ejercicios 2.6

- 1. Explique con sus propias palabras el significado de cada uno de los siguientes límites

 - a) $\lim_{x \to \infty} f(x) = 5$ b) $\lim_{x \to -\infty} f(x) = 3$
- **2.** a) ¿Puede la gráfica de y = f(x) intersecar una asíntota vertical? ¿Puede intersecar una asíntota horizontal? Ilustre trazando gráficas.
 - b) ¿Cuántas asíntotas horizontales puede tener la gráfica de y = f(x)? Trace gráficas que muestren las posibilidades.
- 3. Para la función f cuya gráfica está dada, establezca lo siguiente:

 - a) $\lim_{x \to \infty} f(x)$ b) $\lim_{x \to -\infty} f(x)$
 - c) $\lim_{x \to 1} f(x)$
- d) $\lim_{x \to 3} f(x)$
- e) Las ecuaciones de las asíntotas

- 4. Para la función g cuya gráfica está dada, establezca lo siguiente.
 - a) $\lim_{x\to\infty} g(x)$

b) $\lim_{x \to -\infty} g(x)$

c) $\lim g(x)$

d) $\lim_{x \to 2^-} g(x)$

- e) $\lim_{x \to 2^+} g(x)$
- f) Las ecuaciones de las asíntotas

5-10 Trace la gráfica de un ejemplo de una función f que satisfaga todas las condiciones dadas

5.
$$\lim_{x \to 0} f(x) = -\infty$$
, $\lim_{x \to -\infty} f(x) = 5$, $\lim_{x \to \infty} f(x) = -5$

6.
$$\lim_{x \to 2} f(x) = \infty$$
, $\lim_{x \to -2^+} f(x) = \infty$, $\lim_{x \to -2^-} f(x) = -\infty$, $\lim_{x \to -\infty} f(x) = 0$, $\lim_{x \to \infty} f(x) = 0$, $f(0) = 0$

7.
$$\lim_{x \to 2} f(x) = -\infty, \quad \lim_{x \to \infty} f(x) = \infty, \quad \lim_{x \to -\infty} f(x) = 0,$$
$$\lim_{x \to 0^+} f(x) = \infty, \quad \lim_{x \to 0^-} f(x) = -\infty$$

8.
$$\lim_{x\to\infty} f(x) = 3$$
, $\lim_{x\to 2^-} f(x) = \infty$, $\lim_{x\to 2^+} f(x) = -\infty$, fes impar

9.
$$f(0) = 3$$
, $\lim_{x \to 0^{-}} f(x) = 4$, $\lim_{x \to 0^{+}} f(x) = 2$, $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to 4^{-}} f(x) = -\infty$, $\lim_{x \to 4^{+}} f(x) = \infty$, $\lim_{x \to \infty} f(x) = 3$

10.
$$\lim_{x \to 3} f(x) = -\infty$$
, $\lim_{x \to \infty} f(x) = 2$, $f(0) = 0$, f es par

15.
$$\lim_{x \to \infty} \frac{3x - 2}{2x + 1}$$

17.
$$\lim_{x \to -\infty} \frac{x-2}{x^2+1}$$

19.
$$\lim_{t \to \infty} \frac{\sqrt{t} + t^2}{2t - t^2}$$

21.
$$\lim_{x \to \infty} \frac{(2x^2 + 1)^2}{(x - 1)^2(x^2 + x)}$$

41-46 Encuentre las asíntotas horizontal y vertical de cada curva. Si tiene un dispositivo graficador, verifique su trabajo graficando la curva y estimando las asíntotas.

41.
$$y = \frac{2x+1}{x-2}$$

42.
$$y = \frac{x^2 + 1}{2x^2 - 3x - 2}$$

43.
$$y = \frac{2x^2 + x - 1}{x^2 + x - 2}$$

44.
$$y = \frac{1+x^4}{x^2-x^4}$$

45.
$$y = \frac{x^3 - x}{x^2 - 6x + 5}$$