$f_2(2300)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

f₂(2300) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
2297±28	1 ETKIN	88	MPS	$22 \pi^- p \rightarrow \phi \phi n$	
 • • We do not use the following data for averages, fits, limits, etc. • • 					
$2243 + 7 + 3 \\ -6 - 29$				$\gamma\gamma \rightarrow \kappa_S^0 \kappa_S^0$	
2270 ± 12	VLADIMIRSK.	06	SPEC	40 $\pi^- p \rightarrow K_S^0 K_S^0 n$	
$2327 \pm 9 \pm 6$	ABE	04	BELL	10.6 $e^+e^- \rightarrow e^+e^-K^+K^-$	
2231 ± 10	воотн	86	OMEG	85 π^- Be $\rightarrow 2\phi$ Be	
$2220^{m{+}90}_{m{-}20}$	LINDENBAUM	84	RVUE		
2320 ± 40	ETKIN	82	MPS	$22 \pi^- p \rightarrow 2\phi n$	

 $^{^1}$ Includes data of ETKIN 85. The percentage of the resonance going into $\phi\phi$ 2 $^+$ + S_2 , D_2 , and D_0 is 6 $^+_ ^1_5$, 25 $^+_ ^1_4$, and 69 $^+_ ^1_7$, respectively.

f₂(2300) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
149±41	² ETKIN	88	MPS	$22 \pi^- p \rightarrow \phi \phi n$	
• • • We do not use the following data for averages, fits, limits, etc. • • •					
$145\pm12^{+27}_{-34}$				$\gamma\gamma \rightarrow \kappa_S^0 \kappa_S^0$	
$90\!\pm\!29$	VLADIMIRSK.	06	SPEC	40 $\pi^- p \to K_S^0 K_S^0 n$ 10.6 $e^+ e^- \to e^+ e^- K^+ K^-$	
$275 \pm 36 \pm 20$	ABE	04	BELL	10.6 $e^+e^- \rightarrow e^+e^-K^+K^-$	
133 ± 50	BOOTH	86	OMEG	85 π^- Be $ ightarrow$ 2 ϕ Be	
200 ± 50	LINDENBAUM	84	RVUE		
220 ± 70	ETKIN	82	MPS	$22 \pi^- p \rightarrow 2\phi n$	
² Includes data of ETKIN 85.					

$f_2(2300)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ_1	$\phi \phi$	seen
Γ_2	$K\overline{K}$	seen
Γ ₃	$\gamma\gamma$	seen

Created: 5/30/2017 17:21

$f_2(2300) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

$\Gamma(K\overline{K}) \times \Gamma(\gamma\gamma)/\Gamma_{\text{total}}$

 $\Gamma_2\Gamma_3/\Gamma$

TECN_ COMMENT VALUE (eV) DOCUMENT ID • • • We do not use the following data for averages, fits, limits, etc. • •

 $3.2^{+0.5}_{-0.4} - {\overset{1.3}{2.2}}$

UEHARA

 $44 \ \pm 6 \ \pm 12$

 $^{3}\,\mathrm{ABE}$

13 BELL $\gamma\gamma \rightarrow \kappa^0_S \kappa^0_S$ 04 BELL 10.6 $e^+e^- \rightarrow e^+e^- \kappa^+ \kappa^-$

$f_2(2300)$ REFERENCES

UEHARA VLADIMIRSK	13 . 06	PTEP 2013 123C01 PAN 69 493	S. Uehara <i>et al.</i> V.V. Vladimirsky <i>et al.</i>	(BELLE Collab.) (ITEP, Moscow)
		Translated from YAF	69 515.	
ABE	04	EPJ C32 323	K. Abe <i>et al.</i>	(BELLE Collab.)
ETKIN	88	PL B201 568	A. Etkin <i>et al.</i>	(BNL, CUNY)
BOOTH	86	NP B273 677	P.S.L. Booth et al.	(LIVP, GLAS, CERN)
ETKIN	85	PL 165B 217	A. Etkin <i>et al.</i>	` (BNL, CUNY)
LINDENBAUM	84	CNPP 13 285	S.J. Lindenbaum	` (CUNY)
ETKIN	82	PRL 49 1620	A. Etkin <i>et al.</i>	(BNL, `CUNY)
				,

Created: 5/30/2017 17:21

³ Assuming spin 2.