PDE NOTES

TOLIBJON ISMOILOV

Contents

1.	Theory of Distributions	2
	1.1. Speae of test functions	2
2.	Dirichlet problem for Poisson equation	3

 $E\text{-}mail\ address: \verb|tolibjon.iismoilov@gmail.com||}. \\ Date: February\ 9,\ 2023.$

1. Theory of Distributions

Taqsimotlar nazariyasi (yohud umumlashgan funksiyalar nazariyasi)

1.1. Spcae of test functions. Test funksiyalar fazolari

Ushbu boʻlimda biz ixtiyoriy $\Omega \subseteq \mathbb{R}^n$ ochiq toʻplam uchun bir nechta funksiyanal fazolarni qaraymiz. $\Omega = \mathbb{R}^n$ boʻlgan hollarda biz ayrim belgilashlarda shunchaki \mathbb{R}^n tushurib ketamiz.

Ta'rif 1.1. $f: \Omega \to \mathbb{C}$ funksiyaning supporti dastagi deb

$$\{x \in \Omega : f(x) = 0\} \tag{1.1}$$

toʻplamning \mathbb{R}^n fazodagi yopilmasiga aytiladi va supp f bilan belgilanadi.

Agar supp f kompakt toʻplam boʻlsa, f funkisya kompakt dastakli deb ataladi.

Istalgan $k \geq 0$ butun son uchun $\Omega \subseteq \mathbb{R}^n$ toʻplamda quyidagi funksiyalar sinflarini qaraymiz.

(i) $\mathscr{E}^k(\Omega) = \{ f : \Omega \to \mathbb{C} \mid f \in C^k(\Omega) \}$ ya'ni k marta uzliksiz differensiallanuvchi funksiyalar toʻplami. Agar k = 0 boʻlsa, $\mathscr{E}^0(\Omega)$ shunchaki uzliksiz funkiyalar toʻplamini anglatadi.

$$\mathscr{E}^{\infty}(\Omega) = \bigcap_{k=0}^{\infty} \mathscr{E}^{k}(\Omega) \tag{1.2}$$

T.Ismoilov

2. DIRICHLET PROBLEM FOR POISSON EQUATION