Neural Network Basics

Weizi Li

Department of Computer Science University of Memphis

■ Recall non-linear classifier via feature mapping:

$$h(x; \theta, \theta_0) = sign(\theta \phi(x))$$

- $= x = [x_1, x_2, \dots, x_n]$
- $\bullet \theta = [\theta_1, \theta_2, \dots, \theta_{m}]$

x can be raw data but more commonly, features extracted from raw data

■ If $\sum_{i=0}^{n} x_i w_i > 0$, x is +, otherwise x is -

Perceptron 4

- A simple neural network that delivers a linear classifier for binary classification
- Guarantee to solve any binary classification task if data are linearly separable

Algorithm 1 Perceptron Learning Algorithm

```
Require: \{(X^{(i)}, y^{(i)})\}_{i=1,...,n}; T
for t = 1, \ldots, T do
     for i = 1, \ldots, n do
         if y^{(i)}(wX^{(i)} + w_0) \le 0 then
             w_0 = w_0 + y^{(i)}
             w = w + u^{(i)}X^{(i)}
         end if
     end for
end for
return w_0, w
```

- Use a non-linear activation function instead of simple sign()
- $g(z = \sum_{i=0}^{n} x_i w_i)$: Sigmoid, Tanh, ReLU, etc.

Neural networks with multiple hidden layers; backbone for "deep learning"

- Number of hidden layers
- Number of units of each layer
- Activation function in the units (usually the same function is used for the entire network)
- Ideal architecture is guided by monitoring validation error

■ Playground (link)

- Fully-connected: all units of a layer connect to all units of the next layer
- Convolutional neural networks are not fully connected

- Feedforward: connections among units do not form a cycle
 - Fully-connected, feedforward neural networks are also called multilayer perceptron (MLP)
- Recurrent: connections among units form a cycle

- The concepts of "multiple layers", "connected", and "activation function" are loosely from neuroscience
- Modern neural networks are guided by mathematical and engineering principles
- Better to think modern neural networks as function approximators to achieve statistical generalizability

