Ian Piper CSCI203

Algorithms and Data Structures

Week 6 – Lecture A

Hashing – Picking *m*

Hashing: Picking m

- As we saw last week we want m, the number of slots in the dictionary, to be $\Theta(n)$, where n is the number of entries in the dictionary.
- Remember: operations on a dictionary are O(1+n/m), so if n grows too large we get less and less efficient.
- The problem we face is that, often, we do not know how many records we will need to store.
 - \blacktriangleright If m is too small, the dictionary becomes inefficient.
 - \blacktriangleright If m is too large, we waste storage (memory or disc).
- \blacktriangleright How do we get the right value for m?
- ▶ Let's say we want $m \ge n$ at all times.

Lucky Guess?

- If we have no knowledge of the ultimate size of *n*, what can we do?
 - Guess.
 - \blacktriangleright Pick m based on an optimistic assessment of the likely size of n.
 - ➤ No idea?
 - ➤ Pick your favourite small number ②.
 - $\rightarrow m = 8$, say.
 - Now what?
 - ▶ What if *n* turns out to be greater than 8?
 - Make *m* bigger.
 - ▶ How much bigger?

Changing m

- ▶ Hang on a sec.
- If we change *m* we have problems:
 - Our hash array is too small.
 - ➤ Our hashed keys will be wrong.
 - \triangleright They depend on the value of m.
- Does this mean that we have to recreate the hash table from scratch?
 - It sure does.
- ▶ Isn't this a BAD THING™?

Growing a Hash Table

Growing a Hash Table

- ▶ What exactly has to happen if we change *m*?
 - \blacktriangleright Let's say the new table size is m'.
- ▶ We now need a new array with *m*′ elements.
 - We also need to move all of the existing elements from the old table to the new one.
- ▶ Build a new hash function h'.
 - \triangleright Remember, the hash function depends on m.
- ▶ Insert the existing data into the new table.
 - This involves re-hashing every key.
- So, the first question is:
 - ► How much do we grow *m*?

 $W_1 = \dot{s}$

- ▶ Each time we grow the table we perform $\Theta(m+n+m')$ operations.
 - This is $\Theta(n)$.
- ▶ Let's look at some options:
 - M' = m+1.
 - ▶ What is the cost of *n* insertions?
 - $\blacktriangleright \Theta(1)$ for the first m insertions.
 - $\blacktriangleright \Theta(m')$ for each insertion after that.
 - ► Overall Θ(n²)

$$M_1 = \dot{s}$$

- $\rightarrow m' = 2m$
 - $\blacktriangleright \Theta(1)$ for the first *m* insertions.
 - $\triangleright \Theta(m)$ for the next insertion.
 - $\triangleright \Theta(1)$ for the next m-1 insertions.
 - $\triangleright \Theta(2m)$ for the next insertion.
 - \triangleright $\Theta(1)$ for the next 2m-1 insertions.
- ► Overall $\Theta(n+(n/2)+(n/4)+...) = \Theta(2n) = \Theta(n)$
- ► The cost of expanding the table gets spread over the extra elements we are making room for.
- ▶ This is known as *Amortized* cost.
- Note: an amortized cost of $\Theta(1)$ per operation does not mean that ε every operation has this cost.
 - ▶ Just that this is the average cost per operation.

Amortized Cost

- ▶ We say an operation has a cost of "T(k) Amortized" if k operations take a total of $k \times T(k)$ time.
- ▶ Table doubling takes $\Theta(n)$ operations for n insertions so the amortized cost is $\Theta(1)$.
- ightharpoonup This is, actually, a good thingTM.
- Note: we can use table doubling to implement any solution where we do not know the size of the data structure in advance and it grows in a "well behaved" way.
- ➤ Table doubling minimizes the cost associated with dynamic data structures.

Deletions

- ▶ What about deletions?
 - \triangleright Each deletion is still $\Theta(1)$.
 - They simply increase the number of operations (insertions and deletions) we can perform between doublings.
- ➤ What if it's all deletions?
 - In this case the table becomes progressively less and less full.
 - Solution: Shrink the table.
- ► How, exactly?

Shrinking a Hash Table

Shrinking Tables

- What should our strategy for reducing the size of the table be?
- Now about "if n < m/2 make m' = m/2"?
 - ➤ What if the next operation is an insertion?
 - ▶ Double the table size!
 - Then a deletion?
 - ► Halve the table!
 - ▶ Insertion?
 - Double...
 - \blacktriangleright We now have $\Theta(n)$ operations for each change in the data.
- Instead use "if n < m/4 make m' = m/2".

Constant Time?

- ▶ Although, in our example, T(n) is in $\Theta(1)$; for some operations the actual cost is in $\Theta(n)$.
- What does this mean if we have a real-time application?
 - Every so often we get an insertion /deletion that takes a really loooong time.
 - \blacktriangleright Can we remedy this so that **every** operation is in $\Theta(n)$?
- ▶ The answer is Yes!
 - ➤ We simply adopt the following strategy...
 - ...when a table starts to become full—perform the table doubling in the background.
 - Keep two sets of the data until you either actually need the double size or until the panic is over.

Hashing With Chaining Considered Bad

- ▶ There is still one small issue with this method.
 - ► We have a hybrid data structure—an array of linked lists.
- A second approach uses just a simple array.
- Clearly, we still have a potential problem with collision two keys which hash to the same value.
- ➤ We resolve this with a technique known as *Open Addressing*.

Open Addressing

An alternative to chaining

Open Addressing

- \blacktriangleright We wish to hash n items into an array with m slots.
- ▶ We may only store one item per slot.
- ► Clearly, $m \ge n$.
- ► We insert an item into the table using an iterative technique known as *probing*.

Probing

- ▶ This process works as follows: (for insertion)
- Set hash function to starting value, h0 repeat

```
calculate probe=hash(key)
if table(probe) contains data then
go to the next hash function
else
store the item in table(probe)
fi
until we have stored the item
```

- ► This means we must have a sequence of hash functions, h0, h1, h2...
- ... or a hash function which produces a sequence of values.

The Hash Function

- ▶ Our new hash function requires two arguments:
 - ► The key;
 - ▶ The iteration count.
- ► Thus: probe=OpenHash(key, count)
- ► Here:
 - **key** is a valid element of U, the universe of keys;
 - **count** is a non-negative integer.
- As usual, $0 \le probe < m-1$.

- ► In addition, we want our hash function to have the following property:
- \blacktriangleright For any arbitrary key k the sequence of m probes:
 - \blacktriangleright h(k, 0), h(k, 1), h(k, 2), ...,h(k, m-1);
- Must be a permutation of the integers:
 - ▶ 0, 1, 2, ..., *m*-1.
- ▶ This property guarantees that we must eventually find a vacant slot to insert the item into.
- Clearly, the sequence of probes must be different for different keys.
- ▶ We can see this with an example.

Example: Insertion with Open Addressing

➤ Consider the following table:

	k	h(0,k)	h(1,k)	h(2,k)	h(3,k)	h(4,k)	h(5,k)	h(6,k)	h(7,k)	h(8,k)	h(9,k)
8	899	9	8	5	6	0	7	8	2	4	1
	950	5	7	4	9	2	3	1	6	8	0
	12	3	8	7	2	5	9	1	6	0	4
	367	7	1	2	3	4	5	6	8	9	0
,	359	2	1	9	5	6	7	3	8	0	4
(980	4	7	1	8	9	3	0	5	2	6
4	229	0	8	2	7	1	6	3	9	4	5
į,	598	8	6	3	5	0	7	9	1	4	2
8	838	6	2	6	7	1	3	8	2	0	2
· ·	549	9	8	4	6	7	5	0	1	2	3

Let us insert the keys into our hash table in order

	k	h(0,k)	h(1,k)	h(2,k)	h(3,k)	h(4,k)	h(5,k)	h(6,k)	h(7,k)	h(8,k)	h(9,k)
$\qquad \Longrightarrow \qquad$	899	9	8	5	6	0	7	8	2	4	1
\longrightarrow	950	5	7	4	9	2	3	1	6	8	0
	12	3	8	7	2	5	9	1	6	0	4
	367	7	1	2	3	4	5	6	8	9	0
\longrightarrow	359	2	1	9	5	6	7	3	8	0	4
\longrightarrow	980	3	7	1	8	9	4	0	5	2	6
\longrightarrow	229	0	8	2	7	1	6	3	9	4	5
\Longrightarrow	598	8	6	3	5	0	7	9	1	4	2
	838	6	2	4	7	1	3	8	2	0	2
─	549	9	8	4	6	7	5	0	1	2	3

WANTED TO SERVICE STREET, STRE	0	1	2	3	4	5	6	7	8	9
NAME AND ADDRESS OF THE PARTY O	229	980	359	12	549	950	838	367	598	899

Search with Open Addressing

► The procedure used to search using open addressing is similar to insertion.

▶ This is pretty straightforward.

Deletion with Open Addressing

▶ When we get to deletion we have a new problem.

▶ How, exactly, do we delete the item?

Deletion...

- If we simply replace the item with our empty value we will have an issue:
 - What if the key we next search for is after the probe corresponding to the deleted key's location.
 - ▶ If, in our previous example, we delete 899, where h(899,0)=9, and then search for 549, where the sequence of hash values are 9, 8, 4...
 - ▶ We test D(9) and discover it has the value **empty**.
 - ▶ We conclude that 549 is not in the table.
 - ▶ Wrong! It is in D(4).
- To fix this we need a second special value, deleted.

Deletion concluded

Our deletion process becomes:

▶ This fixes search but introduces a problem with insertion.

Insertion Revisited.

We note that we can insert a new item into the dictionary in two circumstances:

```
D(i)==empty
D(i)==deleted
```

We modify our insert process as follows:

Now we can insert into the first vacant slot, empty or deleted, that we find in the table.

Search Revisited

- ▶ Because **empty** and **deleted** are different, we do not have to modify our search procedure.
- The search will skip over deleted records because they do not match the key but will still terminate when it reaches an empty record.

Hash Functions

Open Addressing Hash Functions

- ▶ One question remains.
- \blacktriangleright Can we find a function h(k, l) which is:
 - Easy to compute;
 - ▶ Produces a permutation of {0, 1, ..., m-1} as i varies over {0, 1, ..., m-1}?
- Let us examine two possible strategies.

Strategy I: Linear Probing

- In this approach we simply take a standard hash function, h(k) and compute the probe p(k, l) as follows:
 - \triangleright p(k, i)=(h(k)+i) mod m
- In other words, we simply look at sequential entries in the dictionary starting at the entry corresponding to h(k).
 - ► This is certainly easy to compute.
 - It does satisfy the permutation.
- ▶ Is it any good?
 - No!
 - ▶ It produces sets of consecutive occupied slots.
 - ► Clustering.
- The bigger the cluster, the more likely it is to be hit...
 - ...and it gets even bigger!

Strategy II: Double Hashing

- In this strategy we have two standard hash functions, $h_1(k)$ and $h_2(k)$.
- \blacktriangleright We compute p(k), our probe value as follows:
 - $ightharpoonup p(k, i) = (h_1(k) + i \times h_2(k)) \mod m.$
- ▶ Do we still satisfy our requirements?
 - This is still easy to compute.
 - ▶ Do we always get a permutation?
 - No.
 - \triangleright Unless we are clever in how we define h_2 .

Choosing h₂

- ▶ We need $h_2(k)$ to be relatively prime to m.
- ▶ I.e. $h_2(k)$ and m must have no common factors except 1.
- ▶ This is easy in many cases.
- If we select m to be a power of 2; say $m = 2^r$ then all we need is for $h_2(k)$ to always be an odd number.
- ▶ For example, if we have a standard hash function h'(k), we can create $h_2(k)$ as follows:
 - $h_2(k) = (2h'(k) + 1) \mod m$

Table Doubling.

- Once again, we need to expand the dictionary whenever it becomes too full.
- What does "too full" mean in this case?
- ▶ We define the occupancy of a table, α , to be the ratio of n, the number of entries to m, the number of slots.
 - $\rightarrow \alpha = n/m$
 - $\triangleright 0 \le \alpha \le 1$
- ▶ We can show that the average cost of an operation on a table with occupancy α is in $\Theta(1/(1-\alpha))$.
- In practice we want this value to be reasonably close to 1 so we double as soon as α exceeds 0.5 or thereabouts.
- ▶ This keeps operations between $\Theta(1)$ and $\Theta(2)$.

An Important Note on α

- When calculating the occupancy value, α, we must count slots with a value of deleted as containing data.
- This is because some operations, notably searching, treat deleted records as still containing data.
- ▶ Slots containing deleted may be removed in two ways:
 - ▶ Being overwritten with valid data as a result of an insert operation;
 - ▶ Being cleaned up when the table is expanded.
- If we did not count **deleted** records in calculating α we could have a notionally empty table in which every slot was **deleted**.
- ▶ Search (and delete) in this table would be $\Theta(m)$, not $\Theta(1)$, as we might expect.

Chaining vs. Open Addressing

- So, which is the better scheme?
- > Open Adressing:
 - Uses less memory—no need for pointers;
 - ls faster—provided α is kept below 0.5;
 - ls a little harder to implement and understand.
 - Is clean—one data structure, the array.
- ▶ Chaining:
 - ▶ Uses more memory;
 - ls faster—if we are not careful with open addressing.
 - ls a little easier to implement and understand.
 - ls a bit messy—arrays of linked lists.
- I know where my vote goes!