COMPARATIVE STUDY BETWEEN DIFFERENT ARCHITECTURE OF CNN FOR POTATO DISEASES CLASSIFICATION

TEAM 4 BEHAVIOUR OF MODEL

IIT Madras

DEPARTMENT OF MATHEMATICS MARCH.11.2023

Outline

- LEARNING CURVE
- TRAINING LOSS
- VALIDATION LOSS
- MPLICATIONS OF TRAINING AND VALIDATION LOSS
- MODEL BEHAVIOR

- LEARNING CURVE
- 2 TRAINING LOSS
- 3 VALIDATION LOSS
- 4 IMPLICATIONS OF TRAINING AND VALIDATION LOSS
- MODEL BEHAVIOR

LEARNING CURVE

DEFINATION

A learning curve is just a plot showing the progress over the experience of a specific metric related to learning during the training of a machine learning model. They are just a mathematical representation of the learning process.

It is used to detect model behaviour.

- Underfit Model
- Overfit Model
- GoodFit Model

- LEARNING CURVE
- TRAINING LOSS
- WALIDATION LOSS
- 4 IMPLICATIONS OF TRAINING AND VALIDATION LOSS
- MODEL BEHAVIOR

TRAINING LOSS

- The training loss is a metric used to assess how a deep learning model fits the training data.
- That is to say, it assesses the error of the model on the training set. Note that, the
 training set is a portion of a dataset used to initially train the model. Computationally, the
 training loss is calculated by taking the sum of errors for each example in the training set.
- It is also important to note that the training loss is measured after each batch. This is usually visualized by plotting a curve of the training loss.

- LEARNING CURVE
- 2 TRAINING LOSS
- VALIDATION LOSS
- 4 IMPLICATIONS OF TRAINING AND VALIDATION LOSS
- MODEL BEHAVIOR

VALIDATION LOSS

- validation loss is a metric used to assess the performance of a deep learning model on the validation set.
- The validation set is a portion of the dataset set aside to validate the performance of the model. The validation loss is similar to the training loss and is calculated from a sum of the errors for each example in the validation set.
- Additionally, the validation loss is measured after each epoch. This informs us as to
 whether the model needs further tuning or adjustments or not. To do this, we usually plot
 a learning curve for the validation loss

- LEARNING CURVE
- 2 TRAINING LOSS
- WALIDATION LOSS
- IMPLICATIONS OF TRAINING AND VALIDATION LOSS
- MODEL BEHAVIOR

IMPLICATIONS OF TRAINING AND VALIDATION LOSS

The training and validation loss is usually visualized together on a graph. The purpose of this is to diagnose the model's performance.

Now we will explain Model behaviour:

- Under Fit Model
- Over Fit Model
- Good Fit Model

- LEARNING CURVE
- 2 TRAINING LOSS
- 3 VALIDATION LOSS
- 4 IMPLICATIONS OF TRAINING AND VALIDATION LOSS
- MODEL BEHAVIOR

MODEL BEHAVIOR

Underfitting
 When the algorithm is not able to model either training data or new data, consistently obtaining high error values that don't decrease over time

MODEL BEHAVIOR

Overfitting
 The algorithm captures well the training data, but it performs poorly on new data, so it's not able to generalize

MODEL BEHAVIOR

GoodFit

The algorithm captures well on training data, and also it performs good on new data, so it's able to generalize

THANK YOU

