Scilab Textbook Companion for Electronic Communications: Principles and Systems

by W. D. Stanley & J. M. Jeffords¹

Created by
Manish Rajput
B.tech
Others
Shri Mata Vaishno Devi University,Katra,J&K
College Teacher
Rakesh Kumar Jha
Cross-Checked by
Chaya Ravindra

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Electronic Communications: Principles and Systems

Author: W. D. Stanley & J. M. Jeffords

Publisher: Cengage Learning, New Delhi

Edition: 2

Year: 2009

ISBN: 9788131503546

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Introduction	5
2	Spectral Analysis I Fourier Series	12
3	Spectral Analysis II Fourier Transform and Pulse Spectra	20
4	Communication Filters and Signal Transmission	28
5	Frequency Generation and Translation	30
6	Amplitude Modulation Methods	40
7	Angle modulation methods	50
8	Pulse modulation and Time division multiplexing	61
9	Digital communication I Binary Systems	67
10	Digital communication II M ary system	74
11	Computer Data communication	77
12	Noise in Communication systems	7 9
13	Performance of Modulation systems with noise	90
11	Transmission lines and waves	99

15 Introduction to Antennas	107
16 Communication link analysis and Design	112
17 Satellite communication	120
19 Wireless Network communication	127
20 Optical communication	131
21 Consumer communication systems	135

List of Scilab Codes

Exa 1.1	Determine Wavelength
Exa 1.2	Determine Wavelength
Exa 1.3	dB Power gain
Exa 1.4	Absolute Power gain
Exa 1.5	Voltage gain
Exa 1.6	dB gain and loss
Exa 1.7	Signal Level
Exa 1.8	Calculate gains
Exa 1.9	Power level
Exa 1.10	Signal level and gain
Exa 1.11	S N ratio
Exa 2.1	Signal terminology
Exa 2.2	Express function
Exa 2.3	Spectral process
Exa 2.4	Fourier series
Exa 2.5	Power in a Fourier series
Exa 2.6	Spectral Rollof
Exa 2.7	Table of fourier series
Exa 2.8	Spectral component
Exa 2.9	Two sided spectrum
Exa 3.1	Fourier Transform
Exa 3.2	Fourier Transform
Exa 3.3	Amplitude spectrum
Exa 3.4	Baseband pulse function
Exa 3.5	Sketch spectrum
Exa 3.6	RF pulse functions
Exa 3.7	RFpulse amplitude spectrum
Exa 3.8	Spectrum analyser

Exa 4.5	Amplitude response	28
Exa 4.6	Parrale resonant circuit	28
Exa 4.7	Determine Bandwidth	29
Exa 5.1	Oscillator circuits	30
Exa 5.2	Crystal controlled portable transmitter	31
Exa 5.3	PLL loop	31
Exa 5.5	mixer	32
Exa 5.6	Frequency conversion	33
Exa 5.7	Frequency conversion	33
Exa 5.8	Frequency conversion	35
Exa 5.9	Double conversion system	36
Exa 5.10	Reciever	38
Exa 5.11		38
Exa 5.12	Commercial FM reciever	38
Exa 6.1	Transmission Bandwidth	40
Exa 6.2		40
Exa 6.3	SSB	41
Exa 6.4		41
Exa 6.5	Product Detectio of DSB and SSB	42
Exa 6.6	Product Detection	42
Exa 6.7	Product detection of DSB and SSB	43
Exa 6.8	Envelop Detection of conventional FM	43
Exa 6.9	Envelop detection of conventionall FM	44
Exa 6.10	Modulation Factor	44
Exa 6.11	Determine Amplitude of sidebands	45
Exa 6.12	Envelop detector	45
Exa 6.14	Determine power	46
Exa 6.15		46
Exa 6.16	Determine power	47
Exa 6.17		48
Exa 7.1	single tone angle modulation	50
Exa 7.2	Spectrum of tone modulated FM signal	51
Exa 7.3	Maximum phase deviation	51
Exa 7.4	Equation for FM signal	52
Exa 7.5	Equation for signal	52
Exa 7.6	Expression for composite FM	52
Exa 7.7	Expression for PM signal	53
Exa 7.8		53

Exa 7.9	Transmission bandwidth
Exa 7.10	Approximate transmission bandwidth 54
Exa 7.11	Transmission bandwidth
Exa 7.12	Determine transmission bandwidth
Exa 7.13	Determine bandwidth
Exa 7.14	Frequency tripler
Exa 7.16	Instantaneous frequency 5
Exa 7.17	Transmitter design 5
Exa 7.18	Determine output frequency
Exa 7.19	Frequency division modulation 60
Exa 8.1	sampling rate 6
Exa 8.2	Sampling rate 6
Exa 8.3	Determine total number of samples 62
Exa 8.5	List frequencies
Exa 8.6	Pulse amplitude modulation 65
Exa 8.7	Minimum bandwidth for PAM 64
Exa 8.8	Nyquist rate based 69
Exa 8.9	PWM minimum nyquist rate 69
Exa 9.1	possible PCM words 6'
Exa 9.2	Minimum number of bits 6
Exa 9.3	Quantization
Exa 9.4	Quantization error
Exa 9.5	A to D converter
Exa 9.6	Micro compression law encoder
Exa 9.7	PCM TDM system
Exa 9.8	NRZ L PCM
Exa 9.9	NRZ L PCM
Exa 9.10	NRZ L PCM bandwidth
Exa 10.1	Channel capcity
Exa 10.2	Maximum channel capacity
Exa 10.5	Shannon limit
Exa 10.6	QPSK
Exa 11.7	Processor bandwidth
Exa 11.8	DDR SDRAM bandwidth 7
Exa 11.9	Memory bandwidth
Exa 12.1	Mean square and rms values
Exa 12.2	rms voltage
Exa 12.3	net rms voltage 80

Exa 12.4	Noise power	80
Exa 12.5	output noise power	81
Exa 12.6	rms noise voltage	81
Exa 12.7	Power spectral density	82
Exa 12.8	white noise	82
Exa 12.9	output noise power	83
Exa 12.10	low noise amplifier	83
Exa 12.11	effective noise temperature	84
Exa 12.12	RF amplifier	84
Exa 12.13	output S to ratio	85
Exa 12.14	Equivalent noise temperature	86
Exa 12.15	Net noise figure	87
Exa 12.16	Cascaded system	87
Exa 12.17	Noise temperature and noise figure	88
Exa 13.1	AC system comparison	90
Exa 13.2	Receiver processing gain	91
Exa 13.3	signal to noise ratio	92
Exa 13.4	signal to noise ratio	93
Exa 13.5	Minimum number of bits	93
Exa 13.6	Binary digital communication system	94
Exa 13.7	PSK signal to noise ratio	95
Exa 13.8	input average carrier power	96
Exa 13.9	1	97
Exa 14.1	Length of line	99
Exa 14.2	Length of line	99
Exa 14.3	Length of line	.00
Exa 14.4	Characteristic impedance	.00
Exa 14.5	v 1 1 0	01
Exa 14.6	Dielectric costant	01
Exa 14.6.1	Coaxial cable	.02
Exa 14.7	mismached load impedance	.02
Exa 14.8	Load power	.03
Exa 14.9	Lossless transmission line	04
Exa 14.10	Loss less transmission line	04
Exa 14.11	Lossless transmission line	05
Exa 14.12	Plane wave propagation	05
Exa 15.2	Distance of boundary	07
Exa 15.3	max dB gain	.07

Exa 15.4	Power gain
Exa 15.5	Power density
Exa 15.6	satellite system
Exa 15.7	Radiation resistance
Exa 15.11	Parabolic reflector
Exa 15.12	Effective area
Exa 16.1	Recieived power
Exa 16.2	dB approach
Exa 16.3	Path loss
Exa 16.4	path loss
Exa 16.5	Minimum transmitted power required 115
Exa 16.6	Required transmitted power
Exa 16.7	range of transmission
Exa 16.8	Received power
Exa 16.9	Distance to the target
Exa 16.10	Pulse radar system
Exa 16.11	Doppler shift
Exa 16.12	Speed of automobile
Exa 16.13	Angle of refraction
Exa 17.1	Satellite
Exa 17.2	Declination offset angle
Exa 17.3	Satellite transmitter
Exa 17.4	Gain required
Exa 17.5	Gain required
Exa 17.6	Diameter of ground station uplink antenna 122
Exa 17.7	Distance from earth station
Exa 17.8	Determine C to N ratio
Exa 17.9	Determine C to N ratio
Exa 19.2	First 10 channel in hop sequence
Exa 19.4	Part of FHSS frame
Exa 19.5	FHSS frame
Exa 19.6	Waveform of DBPSK
Exa 19.7	Waveform of DQPSK
Exa 20.1	Frequency of the laser
Exa 20.2	Angle of refraction
Exa 20.3	Critical angle
Exa 20.4	Responsivity of photodiode
Exa 20.5	Responsivity of photodiode
	0
	9

Exa 20.6	Loss in cable	133
Exa 20.7	Loss of multimode cable	133
Exa 21.1	difference between stereo FM and monaural FM	135
Exa 21.2	Monochrome TV	136
Exa 21.3	Deviation ratio in TV channel	136
Exa 21.4	Transmission bandwidth of monaural television FM	136

Chapter 1

Introduction

Scilab code Exa 1.1 Determine Wavelength

```
1 clc;
2 //page 4
3 //ex-1.1
4 c=3*10^8; //in m/s
5 f=1*10^6; //in Hz
6 lembda=c/f;
7 disp(lembda, 'Wavelength (in m):');
```

Scilab code Exa 1.2 Determine Wavelength

```
1 clc;
2
3 //page 4
4 //ex-1.2
5 c=3*10^8; //in m/s
6 f=100*10^6; //in Hz
7 lembda=c/f;
8 disp(lembda, 'Wavelength (in m): ');
```

Scilab code Exa 1.3 dB Power gain

Scilab code Exa 1.4 Absolute Power gain

```
1 clc;
2 //page 9
3 //ex-1.4
4 Gdb=28; //decibell gain
5 G=10^(Gdb/10); //Absolute power gain
6 disp(G,'The absolute power gain is:');
```

Scilab code Exa 1.5 Voltage gain

```
1 clc;
2 //page 10
3 //ex-1.5
4
5 Gdb=28; //decibell gain
6 G=10^(Gdb/10); //Absolute power gain
7 Av=G^0.5; //Voltage gain
8 disp(Av, 'The voltage gain is:');
```

Scilab code Exa 1.6 dB gain and loss

```
1 clc;
2 //page 10
3 //ex-1.6
4
5 G=0.28; //Absolute gain
6 Gdb=10*log10(G);
7 disp('dB',Gdb,+'Decibell gain is');
8 P1=1;
9 P2=.28; //28 % of input power
10 Ldb=10*log10(P1/P2); //dB loss
11 disp('dB',Ldb,+'Decibell loss is:');
```

Scilab code Exa 1.7 Signal Level

```
1 clc;
2 //page 11
3 //ex-1.7
4
5 PmW=100; //power in mW
6 PdBm=10*log10(PmW/1); //P in dBm level
7 disp('dBm',PdBm,+'(a). Power in dBm level is:');
8 PdBW=PdBm-30; //P in dBW level
9 disp('dBW',PdBW,+'(b). Power in dBW level is:');
10 PdBf=PdBm+120; //Pin dBf level
11 disp('dBf',PdBf,+'(c) Power in dBf level is:');
```

Scilab code Exa 1.8 Calculate gains

```
1 clc;
2
3 / page 13
4 // ex - 1.8
5
6 G1=5000;
7 L=2000;
8 G2 = 400;
9 G=G1*(1/L)*G2; //Absolute gain
10 disp(G, '(a) Net absolute gain is: ');
11 GdB=10*log10(G); //System decibell gain
12 disp('dB',GdB,+'(b) System Decibel gain is:');
13 G1dB=10*log10(G1);
14 LdB=10*log10(L);
15 G2dB=10*log10(G2);
              Individual stage gains are: ');
16 disp('(c)
17 disp(G1dB, 'G1dB=');
18 disp(LdB, 'LdB=');
19 disp(G2dB, 'G2dB=');
20 GdB=G1dB-LdB+G2dB;
21 disp('dB',GdB,+'The net dB gain is:');
```

Scilab code Exa 1.9 Power level

```
1 clc;
2 //page 13
3 //ex-1.9
4
5 G1=5000;
6 L=2000;
7 G2=400;
8 Ps=0.1; //in mW
9 P1=G1*Ps; //in mW
10 disp('mW',P1,'(a) Power level P1 is:');
11 P2=P1/L; //in mW
```

Scilab code Exa 1.10 Signal level and gain

```
1 clc;
3 //page 14
4 // ex - 1.10
5 function [V]=voltage(PdBm)
       P=1*10^{(-3)}*(10^{(PdBm/10)});
7
       V = (75*P)^0.5;
8 endfunction
9 S = 10;
          //\mathrm{dBm}
           //dB
10 G1 = 13;
11 L1=26;
            //dB
12 G2 = 20;
           //dB
           //dB
13 L2=29;
14 disp('(a) The output levels are');
15 PdBm=S;
16 V=voltage(PdBm);
17 disp(V, 'in Volts:', PdBm, '1. Signal source in dBm:');
18 PdBm=S+G1;
```

```
19 V=voltage(PdBm);
20 disp(V, 'in Volts: ', PdBm, '2. Line Amplifier in dBm: ')
21 \quad PdBm=S+G1-L1;
22 V=voltage(PdBm);
23 disp(V, 'in Volts: ', PdBm, '3. Cable section A in dBm: '
      );
24 \quad PdBm = S + G1 - L1 + G2;
25 V=voltage(PdBm);
26 disp(V, 'in Volts: ', PdBm, '4. Booster amplifier in dBm
27 \text{ PdBm} = S + G1 - L1 + G2 - L2;
28 V=voltage(PdBm);
29 disp(V, 'in Volts: ', PdBm, '5. Cable section B in dBm: '
      );
                 The output power to get a voltage of 6V'
30 disp('(b).
      );
           //volts
31 V = 6;
          //ohm
32 R = 75;
33 Po = (V^2)/R;
34 disp('W', Po,);
35 PodBm = 10 * log10 (Po * 1000/1);
36 disp('dBm', PodBm, 'power in dBm');
37 GrdB=PodBm-PdBm;
38 disp('dB',GrdB,'The required gain is');
```

Scilab code Exa 1.11 S N ratio

```
1 clc;
2 //page 17
3 //ex-1.11
4
5 P=5; //In mW
6 N=100*10^-6; //in mW
7 S2N=P/N;
```

```
8 disp(S2N,'(a) Absolute signal to noise ratio :');
9 S2NdB=10*log10(S2N);
10 disp('dB',S2NdB,'(b) dB signal to noise ratio is:'
    )
11 PdBm=10*log10(P/1);
12 disp('dBm',PdBm,'(c) Signal Power is');
13 NdBm=10*log10(N/1);
14 disp('dBm',NdBm,'Noise power is');
15 S2NdB=PdBm-NdBm;
16 disp('dB',S2NdB,'Decinel S/N ratio is');
```

Chapter 2

Spectral Analysis I Fourier Series

Scilab code Exa 2.1 Signal terminology

```
1 clc;
2
3 //page no 31
4 //problem 2.1
5 //v(t)=12coos(2pi*2000t)
6 A=12; //in volts
7 disp('V',A,'(a) The amplitude is idetified as');
8 w=2*%pi*2000;
9 disp('rad/s',w,'(b) The radian frequincy is');
10 f=w/(2*%pi);
11 disp('Hz',f,'(c) The cyclic frequency is');
12 T=1/f;
13 disp('s',T,'(d) The period is');
```

Scilab code Exa 2.2 Express function

```
1 clc;
2
3 //page no 32
4 //problem 2.2
5 //i(t) = 4\cos 50t + 3\sin 50t
6 \quad A = 4;
7 B=3;
8 C=sqrt(A^2+B^2); //right triangle
9 theta=-1*atan(3/4); //in rad
10 disp('rad', theta, '(a) The current is expressed as 5
      \cos (50t + theta), where theta is');
11 phi=acot(3/4); //from figure 2.5 in radian
12 disp('rad', phi, '(b) The current is expressed as 5
      \sin(50t+phi), where phi is');
13 phi=phi*180/%pi;
14 disp('degree',phi,'or');
```

Scilab code Exa 2.3 Spectral process

```
1 clc;
2
3 //page no 37
4 //problem 2.3
5 T=12.5*10^-6; //in sec
6 f0=0; //dc
7 f1=1/T*10^-3; //in kHz
8 f2=f0+2*f1;
9 f3=f0+3*f1;
10 f4=f0+4*f1;
11 disp('kHz',f4,f3,f2,f1,f0,'The lowest five frequencies are (in kH)');
```

Scilab code Exa 2.4 Fourier series

```
1 clc;
2
3 //page no 40
4 //problem 2.4
5 // all frequencies are in Hz
6 	 f = 0;
7 f1=500; //fundamental freq.
8 f2=1000; f3=1500; //harmonics
9 disp(f3,f2,f1,f,'(a) The frequencies in signal are'
     );
10 // for plot
11 fHz=[0:1600];
12 Cn=[5 zeros(1:f1-1) 8 zeros(f1+1:f2-1) 6 zeros(f2+1:
     f3-1) 3 zeros(f3+1:1600)]
13 clf
14 plot2d(fHz,Cn,[3],rect=[-0.5,0,1550,10])
15 xtitle('Linear amplitude spectrum', 'f, Hz', 'Cn(V)')
16 xgrid
17 disp('(c) The required bandwidth is 1500 Hz');
```

Scilab code Exa 2.5 Power in a Fourier series

```
1 clc;
2
3 //page no 43
4 //problem 2.5
5 //All voltages are in V
6 //All power in watts
7 R=5; //ohm
8 C0=5; //dc value
9 C1=8;
10 C2=6;
11 C3=3; //volts
12 Vrms=sqrt(C0^2+0.5*(C1^2+C2^2+C3^2)); //rms voltage
13 disp(Vrms, '(a) The rms value of voltage is ');
```

```
14 P=Vrms^2/R; //watts
15 disp('W',P,'(b) The average power dissipated in
      resistor is')
16 P0 = C0^2/R;
17 \operatorname{disp}(P0, '(c)) The dc power is ');
18 P1=C1^2/(2*R);
19 disp(P1, 'The power in fundamental is');
20 P2=C2^2/(2*R);
21 P3=C3^2/(2*R);
22 disp(P3, P2, 'The second and third harmonics are');
23 //for plot
24 \text{ fHz} = [0:1600];
25 f1=500; //fundamental freq.
26 f2=1000; f3=1500;
27 Pn=[P0 zeros(1:f1-1) P1 zeros(f1+1:f2-1) P2 zeros(f2
      +1:f3-1) P3 zeros(f3+1:1600)]
28 clf
29 plot2d(fHz,Pn,[3],rect=[0,0,1600,8])
30 xtitle('Power spectrum', 'f, Hz', 'Pn(W)')
31 xgrid
```

Scilab code Exa 2.6 Spectral Rollof

```
1 clc;
2
3 //page no 48
4 //problem 2.6
5 //All frequencies in Hz
6 //There is no dc component
7 T=4*10^-3;
8 f1=1/T;
9 disp(f1, 'The fundmental frequency is');
10 //The function have only odd numbered components
11 disp(9*f1,7*f1,5*f1,3*f1,f1,'The five lowest frequencies are');
```

```
12 disp('(b) The rolloff rate is -6dB/octave');
```

Scilab code Exa 2.7 Table of fourier series

```
1 clc;
2
3 //page no 51
4 //problem 2.7
5 // All frequencies in kHz
6 //The time is in ms
7 //Power in WATTS
8 // All voltage in volts
9 T=0.2; //ms
10 f1=1/T;
11 disp(f1, 'The fundamental frequency is');
12 //There are only odd numbered harmonics
13 Ap2p=40; // peak to peak
14 R=50; //ohm
15 A = Ap2p/2;
16 C1 = 4 * A / \% pi;
17 C3=4*A/(3*\%pi);
18 C5=4*A/(5*\%pi);
19 disp('respectively', C5, C3, C1, 'The magnitude of
      fundamental, third and fifth harmonics are ');
20 function [Pn] = Power (Cn, R)
21
       Pn = Cn^2/(2*R);
22 endfunction
23 P1=Power(C1,R);
24 P3=Power(C3,R);
25 P5=Power(C5,R);
26 //power is calculated using the function Power
      defined above
27 disp ('Frequency
                    Amplitude
                                  Power')
28 table={f1,C1,P1;3*f1,C3,P3;5*f1,C5,P5};
29 disp(table);
```

Scilab code Exa 2.8 Spectral component

```
1 clc;
2
3 //page no 52
4 //problem 2.8
5 // All frequencies in kHz
6 //The time is in ms
7 //Power in WATTS
8 // All voltage in volts
9 //following values are copied from Ex2-7
10 T = 0.2;
           //\mathrm{ms}
11 f1=1/T;
12 //There are only odd numbered harmonics
13 Ap2p=40; // peak to peak
14 R=50; //ohm
15 A = Ap2p/2;
16 C1 = 4 * A / \% pi;
17 C3=4*A/(3*\%pi);
18 C5=4*A/(5*\%pi);
19 function [Pn] = Power (Cn, R)
20
       Pn = Cn^2/(2*R);
21 endfunction
22 P1=Power(C1,R);
23 \text{ P3=Power}(C3,R);
24 \text{ P5=Power(C5,R)};
25
26
27 / Ex2 - 8
28 \text{ Vrms} = A;
29 P=Vrms^2/R;
30 disp('W',P,'Total power is');
31 P135=P1+P3+P5
32 disp(P135, 'Power of fundamental, third and fifth
```

```
harmonics is');
33 prcnt=P135/P*100;
34 disp(prcnt,'The percent of power is');
```

Scilab code Exa 2.9 Two sided spectrum

```
1 clc;
2 clear all;
3 //page no 54
4 //problem 2.9
5 f0=0;
6 f1=500; //fundamental freq.
7 f2=1000; f3=1500; //harmonics
9 //Values from ex 2.4
10 C=[5 8 6 3]// Values in Volts
11 // Values from ex 2.5
12 P=[5 6.4 3.6 .9]; //poweer in watts
13 clf;
14 // plot two sided linear amplitude spectrum
15 fHz=-1510:10^-2:1510;
                             //x-axis matrix
16 //Y-axis matrix
17 Cn = [C(1)]
18 \text{ for } i=2:4
       Cn = [zeros(-500+10^2-2:10^2-2:0-10^2)] Cn zeros
19
          (0+10^-2:10^-2:500-10^-2)
       Cn = [C(i)/2 Cn C(i)/2];
20
21 end
22 Cn=[zeros(-10+10^-2:10^-2:0) Cn zeros
      (0:10^-2:10-10^-2)
23 subplot (211)
24 \text{ plot2d}(fHz,Cn,[2],rect=[-2000,0,2000,6])
25 xtitle('Two-sided Linear amplitude spectrum', 'f, Hz',
      'Vn(V)'
26 xgrid
```

```
27
28 // plot two power spectrum
29 fHz=-1510:10^-2:1510; //x-axis matrix
30 //Y-axis matrix
31 Pn=[P(1)]
32 \text{ for } i=2:4
       Pn=[zeros(-500+10^-2:10^-2:0-10^-2) Pn zeros
33
          (0+10^{-2}:10^{-2}:500-10^{-2})
34
       Pn = [P(i)/2 Pn P(i)/2];
35 end
36 Pn=[zeros(-10+10^-2:10^-2:0) Pn zeros
      (0:10^-2:10-10^-2)
37 subplot (212)
38 \text{ plot2d}(fHz,Pn,[6],rect=[-2000,0,2000,6])
39 xtitle('Two-sided power] spectrum', 'f, Hz', 'Pn(W)')
40 \text{ xgrid}
```

Chapter 3

Spectral Analysis II Fourier Transform and Pulse Spectra

Scilab code Exa 3.1 Fourier Transform

```
1 clc;
2 clear all;
3 //chapter 3
4 // page no 75
5 //example 3.1
         //arbitrary value provided
6 \quad A = 1
          //T represents tau (arbitrary value provided
7 T = 10
8 //plot for non periodic pulse
9 t = -2*T : .001 : 2*T;
10 vt = [zeros(-2*T:.001:-T/2) A*ones(-T/2+.001:.001:T
      /2-.001) zeros (T/2:.001:2*T)
11 clf
12 subplot (211)
13 plot2d(t,vt,[2],rect=[-2*T,0,2*T,A+1])
14 xtitle('(a) Non periodic pulse', 't', 'v(t)')
15
16 //plot for amplitude spectum
17 f = -4/T : .001 : 4/T;
```

```
18 Vf = []
19 for i=1:length(f)
       if f(i) == 0 then
21
            Vf = [Vf A*T]; //according to L'Hopitals
               rule \sin(x)/x=1 at \lim x\to 0
22
            else
23
                Vf = [Vf A*T*sin(%pi*f(i)*T)/(%pi*f(i)*T)]
24 end
25 end
26 subplot (212)
27 plot2d(f, Vf, [5])
28 xtitle('(b) Amplitude spectrum', 'f', 'V(f)')
29 xgrid
```

Scilab code Exa 3.2 Fourier Transform

```
1 clc;
2 clear all;
3 / \text{chapter } 3
4 //page no 76
5 // \text{example } 3.2
6 //plot for impulse function
7 t = -2:.001:2;
8 vt = [zeros(-2:.001:0-.001) 1 zeros(0+.001:.001:2)]
          //impulse function matrix
9 clf
10 subplot (211)
11 plot2d(t,vt,[2],rect=[-2,0,2,2])
12 a=gca(); // Handle on axes entity
13 a.x_location = "origin";
14 a.y_location = "origin";
15
16 xtitle('(a) Unit Impulse function', 't', 'v(t)')
17
18 //plot for amplitude spectum
```

```
19  f = -2:.001:2;
20  Vf = [ones(-2:.001:2)]
21  subplot(212)
22  plot2d(f,Vf,[5])
23  a = gca(); // Handle on axes entity
24  a.x_location = "origin";
25  a.y_location = "origin";
26
27  xtitle('(b) Amplitude spectrum', 'f', 'V(f)')
28  xgrid
```

Scilab code Exa 3.3 Amplitude spectrum

```
1 clc;
2 clear all;
3 / chapter 3
4 //page no 82
5 // \text{example } 3.3
6 \quad A = 20;
          //Volts
7 T=1*10^-3;
                //second
8 function Vf=Fourier_transform(f,T,A)
9
       if f == 0 then
10
           Vf = A * T;
11
       else
12
           Vf = A * T * sin(%pi * f * T) / (%pi * f * T);
13
14
       end
15 endfunction
=\%.2 f * sin (\%.3 f * pi * f) / (\%.3 f * pi * f) ', A*T, T, T);
17 // Part b Calculation
18 f = [0 500 1000 1500];
19 for i=1:4
20
       Vf(i)=Fourier_transform(f(i),T,A)
21 end
```

Scilab code Exa 3.4 Baseband pulse function

```
1 clc;
2 clear all;
3 //chapter 3
4 //page no 85
5 // \text{example } 3.4
6 A=20; //Volts
7 T=1*10^-3; //seconds
8 f = [-3/T:3/T];
                  //in kHz
9 Vf = []
10 for i=1:length(f)
11
       if f(i) == 0 then
            Vf = [Vf A*T];
12
13
       else
            Vf = [Vf A*T*sin(%pi*f(i)*T)/(%pi*f(i)*T)];
14
15
16 \, \text{end}
17 end
18 clf;
19 plot2d(f, Vf, [5])
20 a=gca(); // Handle on axes entity
21 a.x_location = "origin";
22 a.y_location = "origin";
23
24 xtitle('Amplitude Spectrum', 'f, Hz', 'V(f)');
```

Scilab code Exa 3.5 Sketch spectrum

```
1 clc;
2 clear all;
3 / chapter 3
4 //page no 86
5 //example 3.5
6 \quad A = 20;
            //Volts
7 T=5*10^-3;
                  //period in seconds
                  //pulse width in second
8 tau=1*10^-3;
9 d=tau/T;
                    //duty cycle
10 f1=1/T;
                   //Fundamental frequency in Hz
11
12 //for plot
13 n = [-14:15];
                  //in Hz
14 Vf=[]
15 for i=1:length(n)
       if n(i) == 0 then
16
17
            Vf(i*200) = A*d;
18
       else
           Vf(i*200) = A*d*sin(%pi*d*n(i))/(%pi*d*n(i))
19
20
       end
       //to get the magnitudes of components
21
       if Vf(i*200)<0 then
22
23
            Vf(i*200) = -Vf(i*200)
24
       end
25
26 \text{ end}
27 \quad f = -3000:3000-1
28 clf;
29 plot2d(f, Vf, [5], rect = [-3000,0,3000,5])
30 a=gca(); // Handle on axes entity
31 a.x_location = "origin";
```

```
32 a.y_location = "origin";
33
34 xtitle('Amplitude Spectrum', 'f, Hz', 'Vn');
35 xgrid
```

Scilab code Exa 3.6 RF pulse functions

```
1 clc;
2 clear all;
3 //chapter 3
4 //page no 89
5 // \text{example } 3.6
6 A=1
         //arbitrary value provided
                 //in seconds
7 Tau = 10^{-3}
8 fc=30*10^6; //centre frequency in Hz
9 // plot for amplitude spectum
10 f = -3/Tau:3/Tau;
11 Vf = []
12 for i=1:length(f)
       if f(i) == 0 then
13
14
            Vf = [Vf A * Tau];
                                //according to L'Hopitals
               rule \sin(x)/x=1 at \lim x\to 0
15
            else
16
                Vf = [Vf A*Tau*sin(\%pi*f(i)*Tau)/(\%pi*f(i)
                   *Tau)]
17 \text{ end}
18 end
19 f=f+fc // shifting
20 f = f .*10^-6 //MHz
21 clf
22 plot2d(f, Vf, [5])
23
24 xtitle('Amplitude spectrum', 'f, MHz', 'Vrf(f)')
25 xgrid
```

Scilab code Exa 3.7 RFpulse amplitude spectrum

```
1 clc;
2 clear all;
3 / chapter 3
4 //page no 89
5 // \text{example } 3.7
6 A=1; //arbitrary vaule
7 T=(1+4)*10^-3;
                      //period in seconds
8 tau=1*10^-3; //pulse width in second
                   //centre frequency in Hz
9 \text{ fc}=30*10^6;
10 d=tau/T;
                   //duty cycle
11 f1=1/T;
                   //Fundamental frequency in Hz
12
13 //for plot
14 n = [-14:15]; //in Hz
15 Vf = []
16 for i=1:length(n)
17
      if n(i) == 0 then
           Vf(i*200) = A*d;
18
19
       else
          Vf(i*200) = A*d*sin(%pi*d*n(i))/(%pi*d*n(i))
20
21
       end
22
23 end
24 \quad f = -3000:3000-1
25 f=f+fc; //Shifting by fc
26 \text{ f=f*10^--6}; //in MHz
27 clf;
28 plot2d(f, Vf, [5])
29 xtitle('Amplitude Spectrum', 'f, MHz', 'Vn');
30 xgrid
```

Scilab code Exa 3.8 Spectrum analyser

```
1 clc;
2 clear all;
3 //chapter 3
4 //page no 90
5 //example 3.8
6 mprintf('(a) The RF burst frequency is 500 MHz\n');
7 mprintf(' (b) The pulse repetition rate is 1 MHz\n');
;
8 f0=10*10^6; //Zero crossing frequency in Hz
9 tau=1/f0; //in second
10 mprintf(' (c) The pulse width is %.1f micro second\n', tau*10^6);
```

Chapter 4

Communication Filters and Signal Transmission

Scilab code Exa 4.5 Amplitude response

```
1 clc;
2 clear all;
3 //chapter 4
4 //page no 120
5 //example 4.5
6 f=[500 2000 10000]; //frequency in Hz
7 Af=1 ./sqrt(1+(f./1000)^8); //Linear amplitude
    response
8 AdBf=20*log10(Af);
9 mprintf(' f, Hz A(f) AdB(f)\n')
10 for i=1:3
11    mprintf(' %5i Hz %.5f %.3f dB\n',f(i),Af(i),AdBf(i))
12 end
```

Scilab code Exa 4.6 Parrale resonant circuit

```
1 clc;
2 clear all;
3 / \text{chapter } 4
4 //page no 123
5 // \text{example } 4.6
6 L=4*10^-6;
                  //Henry
7 C=9*10^-12;
                 //Farad
                  //ohm
8 R = 20 * 10^3;
9
10 f0=1/(2*\%pi*sqrt(L*C)); //frequency in Hz
11 mprintf('(a) The resonant frequency is f0=\%.2 f
                                                         MHz
      n',f0*10^-6)
12 Q=R*sqrt(C/L)
13 mprintf(' (b) The Q is \%i \setminus n', Q);
14 B=f0/Q;
15 mprintf('(c) The 3-dB bandwidth is B=\%i KHz\n',B
      *10^-3);
```

Scilab code Exa 4.7 Determine Bandwidth

```
1 clc;
2 clear all;
3 / \text{chapter } 4
4 //page no 125
5 // example 4.7
6 //misprinted example number
7 pulse_width=2*10^-6;
                           //second
                            //second
8 rise_time=10*10^-9;
9 B=.5/pulse_width;
                            //in Hz
10 mprintf('(a) The aproximate bandwidth for coarse
     reproduction is B=\%i KHz\n', B*10^-3)
11 B=.5/rise_time;
12 mprintf('(b) The aproximate bandwidth for fine
     reproduction is B=\%i MHz\n', B*10^-6)
```

Chapter 5

Frequency Generation and Translation

Scilab code Exa 5.1 Oscillator circuits

```
1 clc;
2 //page no 147
3 //prob no. 5.1
4 // refer fig 5.7
5 //The capacitance in pF
6 C1 = 200;
7 C2 = 2400;
8 C3=8;
9 t=1/C1+1/C2+1/C3; //temperary variable
10 Ceq=1/t; //pF
11 Ceq=Ceq*10^-12; //In Farad
12 L=2*10^-6; //In H
13 f0=1/(2*%pi*sqrt(L*Ceq))*10^-6; // IN MHz
14 disp('MHz',f0,'(a) The oscillation frequency is');
15 f0=1/(2*\%pi*sqrt(L*C3*10^-12))*10^-6; // IN MHz
16 disp('MHz',f0,'(b) Assuming Ceq~C3, the
      oscillation frequency is');
17 B=-C1/C2; //based on eq 5.3
18 disp(B, '(c) The feedback fraction is ');
```

```
19 A=1/B;
20 disp(A, 'The gain is');
```

Scilab code Exa 5.2 Crystal controlled portable transmitter

```
1 clc;
2 //page no 148
3 //prob no. 5.2
4 function [f]=frequency(f0,k,T,T0)
5    f=f0+k*f0*(T-T0);
6 endfunction;
7 k=40*10^-6;
8 f=148;
9 fmax=frequency(f,k,32,20);
10 fmin=frequency(f,k,-8,20);
11 disp('Mhz',fmax,'The maximum possible frequency, fmax=');
12 disp('Mhz',fmin,'The maximum possible frequency, fmin=');
```

Scilab code Exa 5.3 PLL loop

```
1 clc;
2 //page no 150
3 //prob no. 5.3
4 //Refer figure 5-10
5 N=5;
6 M=8;
7 fi=4; // in MHz
8 f0=M/N*fi;
9 disp('MHz',f0,'(a) The output frequency is f0=');
10 f1=fi/N;
11 disp('MHz',f1,'(b) The frequency f1 is');
```

```
12 f2=f0/M;
13 disp('MHz',f2,' The frequency f2 is ');
14 //The two frequencies are same as required
```

Scilab code Exa 5.5 mixer

```
1 clc;
2 clear all;
3 //page no 152
4 //prob no. 5.5
6 //for input spectrum
7 f = [-20:.001:20];
                      //x axis
8 V=[1 zeros(-20+.001:.001:20-.001) 1]; //y axis
9 clf;
10 subplot (211);
11 plot2d(f,V,[5],rect=[-130,0,130,2])
12 a=gca(); // Handle on axes entity
13 a.x_location = "origin";
14 a.y_location = "origin";
15 xtitle('Input Spectrum', 'f, kHz', ');
16 xgrid
17
18 //for output spectrum
19 f = [-120:.01:120];
                          //x axis
20 V=[1 zeros(-120+.01:.01:-80-.01) 1 zeros
      (-80+.01:0.01:80-0.01) 1 zeros
      (80+.01:.01:120-.01) 1]
21 subplot (212);
22 \text{ plot2d}(f,V,[5],rect=[-130,0,130,2])
23 a=gca(); // Handle on axes entity
24 a.x_location = "origin";
25 a.y_location = "origin";
26 xtitle('Output Spectrum', 'f, kHz', '');
27 xgrid
```

Scilab code Exa 5.6 Frequency conversion

```
1 clc;
2 clear all;
3 //page no 157
4 //prob no. 5.6
6 fLO=110;
               //MHz
7 //for V2(f)
8 f = [0:.01:231+.01];
                        //x axis
9 function V=pulse()
10
       V = []
       for i=1:.005:1.5
11
12
           V = [V i]
13
       end
14 endfunction
15 V2=[zeros(0:.01:120-fL0-.01) pulse() zeros(121-fL0
      +.01:.01:120+fL0-.01) pulse() 0];
                                                //y axis
16 clf;
17 subplot (211);
18 plot2d(f, V2, [5], rect = [0,0,240,2])
19 xtitle('Spectral diagram', 'f, MHz', 'V2(f)');
20
21 / for V3(f)
22 f = [0:.01:11+.01]; //x axis
                                                     //y
23 V3=[zeros(0:.01:120-fL0-.01) pulse() 0];
      axis
24 subplot (212);
25 plot2d(f, V3, [5], rect = [0,0,20,2])
26 xtitle('Spectral Diagram', 'f, MHz', 'V3(f)');
```

Scilab code Exa 5.7 Frequency conversion

```
1 clc;
2 clear all;
3 //page no 158
4 //prob no. 5.7
5
6 \text{ fLO} = 40;
              //MHz
7 //function for ascending pulse
8 function V=pulse_a()
       V = []
9
       for i=1:.005:2
10
           V = [V i]
11
12
       end
13 endfunction
14 //function for descending pulse
15 function V=pulse_d()
16
       V = []
       for i=2:-.005:1
17
           V = [V i]
18
19
       end
20 endfunction
21
22 // for V2(f)
23 f = [0:.01:48+.01]; //x axis
24
25 V2=[zeros(0:.01:-8+fL0-.01) pulse_d() zeros(-6+fL0
      +.01:.01:6+fL0-.01) pulse_a() 0];
                                            //y axis
26 clf;
27 subplot (211);
28 plot2d(f, V2, [5], rect = [0,0,50,2])
29 xtitle('Spectral diagram', 'f, MHz', 'V2(f)');
30
31 / for V3(f)
32 f = [0:.01:48+.01]; //x axis
33
34 V3=[zeros(0:.01:6+fL0-.01) pulse_a() 0];
                                                   //y
      axis
35 subplot (212);
36 plot2d(f, V3, [5], rect = [0,0,50,2])
```

Scilab code Exa 5.8 Frequency conversion

```
1 clc;
2 clear all;
3 //page no 159
4 //prob no. 5.8
6 //function for ascending pulse
7 function V=pulse_a()
       V = []
9
       for i=1:.005:1.5
10
            V = [V i]
11
       end
12 endfunction
13 //function for descending pulse
14 function V=pulse_d()
       V = []
15
16
       for i=1.5:-.005:1
17
            V = [V i]
18
       end
19 endfunction
20 \text{ fLO} = 200 - 10;
21
22 //for fLO=190 MHz
23 f = [0:.01:10.5+.01]; //x axis
24
                                                         //y
25 V=[zeros(0:.01:199.5-fL0-.01) pulse_a() 0];
       axis
26 clf;
27 subplot (211);
28 plot2d(f, V, [5], rect = [0,0,12,2])
29 xtitle('Spectral diagram: for fLO=190', 'f, MHz', 'V(f)'
      );
```

Scilab code Exa 5.9 Double conversion system

```
1 clc;
2 clear all;
3 //page no 160
4 //prob no. 5.9
6 //function for ascending pulse
7 function V=pulse_a()
8
       V = []
9
       for i=1:.005:1.5
10
            V = [V i]
11
       end
12 endfunction
13 //function for descending pulse
14 function V=pulse_d()
15
       V = []
       for i=1.5:-.005:1
16
            V = [V i]
17
18
       end
19 endfunction
20 //plots of page 161
21 //spectrum at point 1
```

```
22 f1 = [17.5 - .01 : .01 : 20.5 + .01]; //x axis
23
24 V1=[0 pulse_d() zeros(18.5+.01:.01:19.5-.01) pulse_a
      () 0];
                  //y axis
25 clf;
26 subplot (221);
27 plot2d(f1,V1,[5],rect=[17,0,21,2])
28 xtitle('Spectrum at Point 1', 'f, MHz', '');
29
30 //spectrum at point 2
                                   //x axis
31 f2 = [17.5 - .01 : .01 : 20.5 + .01];
32
33 V2=[0 zeros(17.5:.01:19.5-.01) pulse_a() 0];
                                                           //
      y axis
34 subplot (222);
35 plot2d(f2, V2, [5], rect = [17, 0, 21, 2])
36 xtitle('Spectrum at Point 2', 'f, MHz', '');
37
38 //spectrum at point 3
                                    //x axis
39 \quad f3 = [359.5 - .01 : .01 : 400.5 + .01];
40
41 V3=[0 pulse_d() zeros(360.5+.01:.01:399.5-.01)
      pulse_a() 0];
                           //y axis
42 subplot (223);
43 plot2d(f3, V3, [5], rect = [359, 0, 401, 2])
44 xtitle('Spectrum at Point 3', 'f, MHz', '');
45
46 //spectrum at point 4
47 f4 = [359.5 - .01 : .01 : 400.5 + .01];
                                      //x axis
48
49 V4=[0 zeros(359.5:.01:399.5-.01) pulse_a() 0];
      //y axis
50 subplot (224);
51 plot2d(f4, V4, [5], rect = [359, 0, 401, 2])
52 xtitle('Spectrum at Point 4', 'f, MHz', '');
```

Scilab code Exa 5.10 Reciever

```
1 clc;
2 //page no 167
3 //prob no. 5.10
4 //All frequencies in MHz
5 fc=40;
6 fIF=5
7 fLO=fc+fIF;
8 disp(fLO,'(a) The LO frequency is ');
9 fImage=fLO+fIF;
10 disp(fImage,'(b) The image frequency is ');
```

Scilab code Exa 5.11 Reciever

```
1 clc;
2 //page no 167
3 //prob no. 5.11
4 //All frequencies in MHz
5 fc=40;
6 fIF=5
7 fLO=fc-fIF;
8 disp(fLO,'(a) The LO frequency is ');
9 fImage=fLO-fIF;
10 disp(fImage,'(b) The image frequency is ');
```

Scilab code Exa 5.12 Commercial FM reciever

```
1 clc;
```

```
2 //page no 167
3 //prob no. 5.12
4 // All frequencies in Hz
5 B=200*10^3; //The bandwidth allocated by FCC (in Hz)
6 fl=88*10^6; fh=108*10^6; //FM broadcast band low and
      high end freq
7 Q=f1/B;
8 disp(Q,'(a) At the low end of FM band, Q required
     is');
9 Q=fh/B;
10 disp(Q,'
               At the high end of FM band ,Q required
     is');
11 fIF=10.7*10^6; // IF frequency (in Hz)
12 Q = fIF/B;
13 disp(Q, '(b) At the IF frequency ,Q required is ');
14 disp('(c)
               Signal freq = 88 to 108 MHz')
15 disp('
              LO freq = 98.7 to 118.7 MHz')
16 disp('
              Image freq = 109.4 to 129.4MHz')
               Signal freq = 88 to 108 MHz')
17 disp('(d)
18 disp('
              LO freq = 77.3 to 97.3 MHz')
              Image freq = 66.6 to 86.6MHz')
19 disp('
```

Chapter 6

Amplitude Modulation Methods

Scilab code Exa 6.1 Transmission Bandwidth

```
1 clc;
2 //page no 186
3 //prob no. 6.1
4 //All frequencies in kHz
5 fc=1*10^3; //in kHz
6 W=15;
7 DSBl=fc-W; //lowest freq of DSB signal
8 DSBh=fc+W; //highest freq of DSB signal
9 disp(DSBh, 'to', DSBl, '(a) The range of freq is from ');
10 BT=2*W;
11 disp(BT, '(b) Transmission bandwidth is ');
```

Scilab code Exa 6.2 Transmission Bandwidth

```
1 clc;
```

```
2 close();
3 clear();
4 //page no 186
5 //prob no. 6.2
6 //All frequencies in kHz
7 fi=250; //input freq
8 LSB=[fi-1;fi-3;fi-5];
9 USB=[fi+1;fi+3;fi+5];
10 disp(LSB, 'and LSB: ',USB, '(a) The upper sideband and lower sideband ,USB: ');
11 BT=2*5;
12 disp(BT, 'The net transmission bandwidth is ');
```

Scilab code Exa 6.3 SSB

```
1 clc;
2 //page no 190
3 //prob no. 6.3
4 // All frequencies in kHz
5 fc=1*10^3; //in \text{ kHz}
6 W = 15;
7 LSB1=fc-W; //lowest freq of LSB
8 USBh=fc+W; //highest freq of USB
9 disp(fc, 'to', LSB1, '(a) The range of freq(in kHz)
      for LSB is from ');
10 disp(USBh, 'to',fc,'(b)
                            The range of freq (in kHz)
      for USB is from ');
11 BT=W;
                  Transmission bandwidth is ');
12 disp(BT, '(b)
```

Scilab code Exa 6.4 SSB

```
1 clc;
```

```
//page no 190
//prob no. 6.4
//All frequencies in kHz
fi=250; //input freq
LSB=[fi-1 fi-3 fi-5];
USB=[fi+1 fi+3 fi+5];
disp(LSB,'(a) For LSB transmission freq are');
disp(USB,'(b) For USB transmission freq are');
W=5;
BT=W;
disp(BT,'(c) The transmission bandwidth is ');
```

Scilab code Exa 6.5 Product Detectio of DSB and SSB

```
1 clc;
2 //page no 195
3 //prob no. 6.5
4 // All frequencies in kHz
5 //refer Ex 6.4
6 fi=250; //input freq
7 LSB=[fi-1 fi-3 fi-5]; //from Ex 6.4
8 //
9 fc=250; //carrier freq
10 f0sum=fc+LSB;
11 f0diff=fc-LSB;
12 disp(f0sum,f0diff,'(a) The output frequencies (in kHz) are ');
13 disp(f0diff,'(b) At low pass filter, the actual frequencies (in kHz) are ');
```

Scilab code Exa 6.6 Product Detection

```
1 clc;
```

```
//page no 195
//prob no. 6.6
//All frequencies in kHz
fi=250; //input freq
USB=[fi+1 fi+3 fi+5]; //from Ex 6.4
///
fc=250; //carrier freq
fosum=fc+USB;
fodiff=USB-fc;
disp(fosum,fodiff,'(a) The output frequencies (in kHz) are ');
disp(fodiff,'(b) At low pass filter, the actual frequencies (in kHz) are ');
```

Scilab code Exa 6.7 Product detection of DSB and SSB

```
1 clc;
2 //page no 195
3 //prob no. 6.7
4 //All frequencies in kHz
5 //refer Ex 6.4
6 fi=250; //input freq
7 LSB=[fi-1 fi-3 fi-5]; //from Ex 6.7
8 //
9 fc=250.1; //carrier freq
10 f0sum=fc+LSB;
11 f0diff=fc-LSB;
12 disp(f0sum,f0diff,'(a) The output frequencies (in kHz) are ');
13 disp(f0diff,'(b) At low pass filter, the frequencies (in kHz) are ');
```

Scilab code Exa 6.8 Envelop Detection of conventional FM

```
1 clc;
2 close();
3 //page no 200
4 //prob no. 6.8
5 //All frequencies in kHz
6 fc=250; //carrier freq
7 LSB=[fc-1 fc-3 fc-5];
8 USB=[fc+1 fc+3 fc+5];
9 disp(fc, 'carrier: ',USB, 'USB: ',LSB, '(a) The spectrum contains following freq.LSB: ');
10 W=5;
11 BT=2*W;
12 disp(BT, 'The transmission bandwidth is ');
```

Scilab code Exa 6.9 Envelop detection of conventionall FM

```
1 clc;
2 close();
3 //page no 200
4 //prob no. 6.9
5 //All voltage in V
6 m=0.6; //modulation factor
7 A=100; //peak carrier level (in V)
8 Vmax=A*(1+m);
9 Vmin=A*(1-m);
10 disp(Vmin, 'Vmin: ', Vmax, 'Vmax: ', 'The maximum and minimum values of positive envelope is')
```

Scilab code Exa 6.10 Modulation Factor

```
1 clc;
2 close();
3 //page no 201
```

```
4 //prob no. 6.10
5 //All voltage in V
6 Ratio=.5/2; // Ratio=Vmin/Vmax
7 m=(1-Ratio)/(1+Ratio); //modulation factor
8 disp(m,'The modulation factor is ');
9 disp(m*100,'The %age modulation is ');
```

Scilab code Exa 6.11 Determine Amplitude of sidebands

```
1 clc;
2 close();
3 //page no 201
4 //prob no. 6.11
5 // All voltage in V
6 function {As]=sideband_amplitude(m,A)
7
       As=m*A/2; //As: sideband amplitude
8
                   //m: modulation factor
9
                   //A: carrier amplitude
10 endfunction
11 A = 10;
12 m = 0;
13 disp(sideband\_amplitude(m,A), '(a) For m=0, sideband
      amplitude is ');
14 m = 0.5;
15 disp(sideband_amplitude(m,A),'(b) For m=0.5,
      sideband amplitude is ');
16 \, m=1;
17 disp(sideband\_amplitude(m,A), '(c) For m=1, sideband
      amplitude is ');
```

Scilab code Exa 6.12 Envelop detector

```
1 clc;
```

```
2 close();
3 //page no 203
4 //prob no. 6.12
5 fc=455; //in kHz
6 Tc=(1/fc)*10^3; //in micro sec
7 disp('micro s',Tc,'(a) The carrier period is');
8 tau=10*Tc; //in micro sec
9 disp('micro s', tau, 'The time constant is selected 10
     Tc: ');
10 C=0.01*10^-6; //in F
11 R = (tau * 10^- - 6) / C; //ohm
12 disp('ohm', R, 'R is determined');
13 W=5; //in kHz
14 \text{ Tm} = 1/W * 10^3;
                 //micro sec
15 disp('micro sec', Tm, 'The shortest modulation period
     Tm=');
```

Scilab code Exa 6.14 Determine power

```
1 clc;
2 close();
3 //page no 208
4 //prob no. 6.14
5 A=200; // in Volts
6 R=50; //in ohm
7 P=A^2/(4*R); //in W
8 disp('W',P,'(a) The sverage power is ');
9 Pp=A^2/(2*R); //in W
10 disp('W',Pp,'(b) The peak envelop power is ');
```

Scilab code Exa 6.15 Antenna rms voltage and current

```
1 clc;
```

```
2 close();
3 //page no 208
4 //prob no. 6.15
5 P=1000; //in watts
6 R=50; //in ohm
7 Vrms=sqrt(R*P); //in V
8 Irms=sqrt(P/R); //in A
9 disp('V', Vrms, 'The unmodulated rms carrier voltage is ');
10 disp('A', Irms, 'The unmodulated rms carrier current is ');
```

Scilab code Exa 6.16 Determine power

```
1 clc;
2 close();
3 //page no 209
4 //prob no. 6.16
5 // All power in Watts
6 global('Pc')
7 Pc = 1000;
8 funcprot(0) //to avoid function warnings
9 function [P] = avg_P(m)
                                     //function for total
       average power
10
       P = (1 + (m^2/2)) * Pc;
11 endfunction
12 function [Pp]=peak_P(m)
                                      //function for peak
       power
13
       Pp = (1+m)^2 * Pc;
14 endfunction
                                     //function for SB
15 function [Psb]=SB_P(m)
     power
       Psb=avg_P(m)-Pc;
16
17 endfunction
18 function display(m)
                                  //function for
```

```
displaying table
       table=[m*100 avg_P(m) peak_P(m) SB_P(m)];
19
20
       disp(table);
21 endfunction
22
23 disp('Summary for the result is displayed in the
      table ');
24 disp('Mod^n_% Avg_Pwr Peak_Pwr SB_Pwe');
25 \text{ m=0}; // \text{for m=0}
26 display(m);
          // for m=0.5
27 m = 0.5;
28 display(m);
29 m=1; // for m=1
30 display(m);
```

Scilab code Exa 6.17 rms voltage and current

```
1 clc;
2 close();
3 //page no 210
4 //prob no. 6.17
5 // All power in Watts
6 // All voltage in volts
7 // All current in ampere
8 R=50;
9 m = 0.5;
10 P=1125; //for m=0.5
11 Vrms=sqrt(R*P);
12 Irms=sqrt(P/R);
13 \mbox{\tt disp}\mbox{('A',Irms,'V',Vrms,'(a))} \quad For \ m{=}\,0.5\,, \ Vrms \ and
      Irms are: ');
14 \, \text{m} = 1;
15 P=1500; //For m=1
16 Vrms=sqrt(R*P);
17 Irms=sqrt(P/R);
```

Chapter 7

Angle modulation methods

Scilab code Exa 7.1 single tone angle modulation

```
1 clc;
2 close();
3 //page no 227
4 //prob no. 7.1
5 t=linspace(0,20);
6 function {theta]=theta(t)
                                 //function for
     instantanious phase
       theta=3*%pi*t^2;
8 endfunction
9 function {fs]=frequency(t) //function for
     instantanious phase
       Ws=6*\%pi*t;
10
11
       fs=Ws/(2*\%pi);
12 endfunction
13 subplot(2,1,1)
14 plot(t,theta,1);
15 xtitle('Plot1:Instantanious signal phase', 't', 'theta
     ',1);
16 fs=frequency(t);
17 subplot (2,1,2)
18 plot(t,fs,2);
```

```
19 xtitle('Plot2: Frequency', 't', 'fs',1);
```

Scilab code Exa 7.2 Spectrum of tone modulated FM signal

```
1 clc;
2 close();
3 //page no 230
4 //prob no. 7.2
5 //v(t) = 80*cos[(2*\%pi*10^8*t) + 20*sin(2*\%pi*10^3*t)]
6 //v(t) = A*cos[Wc*t+Bsin(Wm*t)] --eq7-27
7 //comparing the above 2 equations we get
8 A = 80;
             //volts
9 fc=10<sup>8</sup>;
             //Hz
10 fm=10<sup>3</sup>;
            //Hz
11 B=20;
12 disp('Hz',fc,'(a) The carrier cyclic frequency is ')
13 disp('Hz',fm,'(b) The modulating frequency is ');
14 disp(B, '(c) The modulation index is ');
15 delta_f=B*fm;
16 disp('Hz', delta_f,'(d) The frequency deviation is ')
17 R=50; //ohm
18 P=A^2/(2*R);
19 disp('W',P,'(e) The average power is ');
```

Scilab code Exa 7.3 Maximum phase deviation

```
1 clc;
2 close();
3 //page no 230
4 //prob no. 7.3
```

Scilab code Exa 7.4 Equation for FM signal

```
1 clc;
2 close();
3 //page no 231
4 //prob no. 7.4
5 disp('The equation becomes');
6 disp('v(t)=80*cos[(2*%pi*10^8*t)+10*sin(4*%pi*10^3*t)]');
```

Scilab code Exa 7.5 Equation for signal

```
1 clc;
2 close();
3 //page no 231
4 //prob no. 7.5
5 disp('The equation becomes');
6 disp('v(t)=80*cos[(2*%pi*10^8*t)+20*sin(4*%pi*10^3*t)]');
```

Scilab code Exa 7.6 Expression for composite FM

```
1 clc;
2 close();
3 //page no 231
4 //prob no. 7.6
5 delta_f=12; //kHz
6 fm=4; //kHz
7 B=delta_f/fm; //modulating index for FM
8 disp('The expression is');
9 mprintf('v(t)=A*cos[(2*pi*10^8*t)+%i*sin(%i*2*pi*10^3*t)]',B,fm);
```

Scilab code Exa 7.7 Expression for PM signal

```
1 clc;
2 close();
3 //page no 231
4 //prob no. 7.7
5 delta_theta=6; //kHz
6 fm=5; //kHz
7 disp('The expression is');
8 mprintf('v(t)=A*cos[(2*pi*10^8*t)+%i*sin(%i*2*pi*10^3*t)]',delta_theta,fm);
```

Scilab code Exa 7.8 Transmission bandwidth

```
1 clc;
2 close();
3 //page no 235
4 //prob no. 7.8
5 delta_f=400; //Hz
6 fm=2000; //Hz
7 B=delta_f/fm; //
8 disp(B, 'The modulation index is');
```

```
9 disp('(For B<=2.5 , the signal is NBFM)');
10 Bt=2*fm;
11 mprintf('The transmission bandwidth Bt= %i Hz', Bt)
```

Scilab code Exa 7.9 Transmission bandwidth

```
1 clc;
2 close();
3 //page no 235
4 //prob no. 7.9
5 delta_f=8000; //Hz
6 fm=100; //Hz
7 B=delta_f/fm; //
8 disp(B, 'The modulation index is ');
9 disp('(For B>=50 , the signal is VWBFM)');
10 Bt=2*delta_f;
11 mprintf('The transmission bandwidth Bt= %i Hz ',Bt)
```

Scilab code Exa 7.10 Approximate transmission bandwidth

```
1 clc;
2 close();
3 //page no 238
4 //prob no. 7.10
5 delta_f=6; //kHz
6 W=2; //kHz
7 D=delta_f/W; //deviation ratio
8 disp(D,'The deviation ratio is');
9 Bt=2*(delta_f+W); //carsom's rule is applicable
10 mprintf('The transmission bandwidth Bt= %i kHz', Bt)
```

Scilab code Exa 7.11 Transmission bandwidth

```
1 clc;
2 clear all;
3 close();
4 //page no 239
5 //prob no. 7.11
6 W=2; //kHz (as in ex 7.10)
7 delta_theta=3;
8 Bt=2*(1+delta_theta)*W; //applying carsom's rule
9 mprintf('The transmission bandwidth Bt= %i kHz', Bt)
```

Scilab code Exa 7.12 Determine transmission bandwidth

```
1 clc;
2 close();
3 //page no 239
4 //prob no. 7.12
5 delta_f=75; //kHz
6 fm=[.025 .075 .75 1.5 5 10 15]
                                  //in kHz
7 function B=Beta(fm,delta_f)
8 B=delta_f *(1 ./fm);
9 endfunction
10 function Bt=Bandwidth(fm,delta_f)
11 Bt(1:3) = 2 *delta_f;
12 for i=4:7
     Bt(i) = 2 *(delta_f + fm(i));
13
14 end
15 endfunction
16 B=Beta(fm,delta_f);
17 Bt=Bandwidth(fm,delta_f); //applying carsom's rule
18 disp('Table - 7.2');
                          Bt(kHz)');
19 disp('fm(kHz)
                     Beta
20 \text{ for } i=1:7
                         ',fm(i));
21 mprintf('%4.3 f
```

```
22 mprintf('%4.1 f ',B(i));
23 mprintf('%i\n',Bt(i));
24 end
25 plot(fm,Bt);
26 xtitle('Bandwidth of FM','fm,kHz','Bt,kHz')
```

Scilab code Exa 7.13 Determine bandwidth

Scilab code Exa 7.14 Frequency tripler

```
1 clc;
2 close();
3 //page no 242
4 //prob no. 7.14
5 delta_f1=2; //kHz
6 fc1=100; //kHz
7 W=5; //kHz
8 fc2=3*fc1;
9 disp(fc2,'(a) The output center frequency =');
10 delta_f2=3*delta_f1;
```

```
disp(delta_f2,'(b) The output frequency deviation='
);
12 D1=delta_f1/W;
13 D2=3*D1;
14 disp(D2,'(c) The output deviation ratio =');
```

Scilab code Exa 7.16 Instantaneous frequency

```
1 clc;
2 close();
3 //page no 248
4 //prob no. 7.16
          //\mathrm{kHz/V}
5 \text{ Kf} = 4;
6 f0=100; //kHz
7 // Part a
8 \text{ vm}=2; //\text{Volts}
9 delta_f=Kf*vm; //kHz
10 f=f0+delta_f;
                        //kHz
11 disp(f, 'Corresponding frequency to this input is',
      delta_f, '(a) The change in frequency is');
12 // Part b
13 vm = -3;
            //Volts
14 delta_f=Kf*vm; //kHz
                       //kHz
15 f=f0+delta_f;
16 disp(f, 'Corresponding frequency to this input is',
      delta_f, '(b) In this case, the change in
      frequency is');
```

Scilab code Exa 7.17 Transmitter design

```
1 clc;
2 close();
3 clear();
```

```
4 //page no 248
5 //prob no. 7.17
6 // All frequencies in kHz
7 fci=100;
            //basic center frequency
8 fco=100000; //output center frequency
9 delta_f = (3000/3072) *0.025; //maximum frequency
      deviation at modulator
10 W = 15;
11 D=delta_f/W;
12 Bt = 2 * W;
13 table_row1=[fci delta_f D Bt]; //At point A
14 function [table] = table(table_row, multiplier)
15
      table = [table_row(1:3)*multiplier ,table_row(4)]
16
17 endfunction
18 table_row2=[table(table_row1,4)];
                                         //at point B
                                         //at point C
19 table_row3=[table(table_row2,4)];
20 table_row4=[table(table_row3,4)];
                                         //at point D
21
22 function [table1] = table1(table_row, multiplier)
      table1(1:3) = [table_row(1:3)*multiplier];
23
24
       Bt=2*(table1(2)+W);
                            //Applying carsons rule Bt
          =2*(delta_f+W)
      table1(4) = [Bt];
25
26
27 endfunction
28 table_row5=[table1(table_row4,3)];
                                          //at point E
         , carsons rule applied from here
29 table_row6=[(fco/16) table_row5(2:4)];
                                              //at point
     F, center frequency after mixer
30 table_row7=[table1(table_row6,4)];
                                          //at point G
                                          //at point H
31 table_row8=[table1(table_row7,4)];
32 table_row9=table_row8;
                                          //at point I
                                       D
                                                    Bt');
33 disp('Point
                  fс
                           delta_f
34 function display(Point,t_row)
       mprintf(" %c
                      \%8.0 i", Point, t_row(1));
35
       for i=2:4
36
                   \%3.4 \, f", t_row(i));
37
      mprintf("
```

```
38 end
39 mprintf("\n")
40 endfunction
41 display('A',table_row1());
42 display('B',table_row2());
43 display('C',table_row3());
44 display('D',table_row4());
45 display('E',table_row5());
46 display('F',table_row6());
47 display('G',table_row7());
48 display('H',table_row8());
49 display('I',table_row9());
```

Scilab code Exa 7.18 Determine output frequency

```
1 clc;
2 close();
3 clear();
4 //page no 258
5 //prob no. 7.18
6 // All frequencies in kHz
7 \text{ Kd}=2;
            //V/kHz
8 \text{ fc} = 100;
9 // part a
10 f = 102.5;
11 delta_f=f-fc;
12 vd=Kd*delta_f;
                      //V
13 disp(vd, '(a) The first case result is');
14 // part b
15 f=98.5;
16 delta_f=f-fc;
17 vd=Kd*delta_f; //V
18 disp(vd, '(a) The second case result is');
```

Scilab code Exa 7.19 Frequency division modulation

```
1 clc;
2 close();
3 clear();
4 //page no 261
5 //prob no. 7.19
6 // All frequencies in Hz
        //deviation ratio
7 D=5;
8 fc=[400 560 730 960]; //Center frequency
9 delta_f=0.075 .*fc; //frequency deviation
10 W=delta_f ./D; //modulating frequenc
                             //modulating frequency
11 Bt=2 .*(delta_f + W); //Bandwidth
                            //Lower frequency
12 fl = fc - Bt/2;
                            //Higher frequency
13 fh=fc + Bt/2;
14 figure
15 x = [301:1100];
16 y = [1.5];
17 y = [y \ zeros(302:fl(1))]
18 for i=1:3
19 y=[y ones(fl(i):fh(i))];
20 y = [y \ zeros(fh(i)+1:fl(i+1))];
21 end
22 y = [y \text{ ones}(fl(4):fh(4))];
23 y = [y \ zeros(fh(4):1100)];
24 plot(x,y);
25 xtitle('Composite baseband spectrum', 'f, Hz');
26 \text{ delta_frt=D*1046};
27 Brt=2*(delta_frt+1046);
28 disp('Hz', Brt,'(b) The RF transmission bandwidth is
       ');
```

Chapter 8

Pulse modulation and Time division multiplexing

Scilab code Exa 8.1 sampling rate

```
1 clc;
2 close();
3 clear();
4 //page no 277
5 //prob no. 8.1
6 W=5000; //Hz
7 fs=2*W;
8 mprintf('(a) The minimum sampling rate is %i samples per second.\n',fs);
9 T=1/fs; //second
10 mprintf('(b) Maximum interval between samples is %f seconds',T);
```

Scilab code Exa 8.2 Sampling rate

```
1 clc;
```

```
2 close();
3 clear();
4 //page no 277
5 //prob no. 8.2
6 W=5000; //Hz
7 fs=1.25*2*W;
8 mprintf('(a) The sampling rate is %i Hz.\n',fs);
9 T=1/fs; //second
10 mprintf('(b) Maximum interval between samples is %f seconds',T);
```

Scilab code Exa 8.3 Determine total number of samples

```
1 clc;
2 close();
3 clear();
4 //page no 277
5 //prob no. 8.3
6 W=5000; //Hz
7 fs=1.25*2*W;
8 tp=30*60; //seconds
9 N=fs*tp; //samples
10 mprintf('Total number of samples is %i ',N);
```

Scilab code Exa 8.5 List frequencies

```
1 clc;
2 close();
3 clear();
4 //page no 281;
5 //prob no. 8.5;
6 // All frequencies in kHz;
7 f=1;
```

```
//\mathrm{ms}
8 T = 0.1;
9 fs=1/T;
10 mprintf('The positive frequencies below 45 kHz are \
      n \%i \ n ',f);
11
  for i=1:1:100
12
       x=fs*i; //x is a variable
       if((x+f) < 45)
13
            mprintf('\%i ,\%i\n',x-f,x+f);
14
15
       else
16
            break();
17
            end
18 \, end
```

Scilab code Exa 8.6 Pulse amplitude modulation

```
1 clc;
2 close();
3 clear();
4 //page no 284
5 //prob no. 8.6
6 // All time in milli second
7 // All frequencies in kHz
8 \text{ fs=5};
9 tau=0.04;
                //ms
                  //ms
10 T=1/fs;
11 d=tau/T;
12 // for plot
13 f = [-2:.1:28-.1];
14 Pn1=[ones(1,50)];
15 Pn=[Pn1];
16 for i=1:5
17
       Pn = [Pn Pn1*(1-d*i)];
18 end
19 ps1=[ones(1,20)];
20 \quad for \quad i=1:10
```

```
21
        ps1=[1-i*0.1 ps1 1-i*0.1];
22 \text{ end}
23 ps1=[ps1 zeros(1:10)];
24 ps=[ps1];
25 \text{ for } i=1:5
26
        ps=[ps ps1];
27 end
28 \text{ Vs=ps.*Pn};
29 clf;
30 plot2d(f, Vs, [5]);
31 xtitle('(a) Spectrum of signal after sampling', '$f,
      kHz\$', ', '$Vs(f)\$');
32 \text{ K1=0.5};
33 Bt=K1/tau;
34 mprintf('(b) Bandwidth required for K1=%i is %0.1 f
      kHz \setminus n', K1, Bt);
35 \text{ K1}=1;
36 Bt=K1/tau;
37 mprintf('Bandwidth required for K1=%i is %i kHz', K1,
      Bt);
```

Scilab code Exa 8.7 Minimum bandwidth for PAM

```
1 clc;
2 close();
3 clear();
4 //page no 288
5 //prob no. 8.7
6 //All frequencies in kHz
7 k=7;
8 W=1;
9 Bt=k*W;
10 printf('Minimum Bandwidth is %i kHz',Bt);
```

Scilab code Exa 8.8 Nyquist rate based

```
1 clc;
2 close();
3 clear();
4 //page no 288
5 //prob no. 8.8
6 // All frequencies in kHz
7 W = 1;
8 fs=1.25*2*W;
9 Tf=1/fs;
10 mprintf('(a) The sampling rate is \%.1 \text{ f kHz/n',fs});
11 mprintf('The frame time is \%.1 \text{ f ms} \ ', \text{Tf});
12 tau=Tf/16; //ms
13 Bt=0.5/tau;
14 mprintf('The pulse width is %i micro second\n',tau
      *10^3);
15 mprintf('The composite baseband bandwidth is %i kHz\
      n',Bt);
16 Bt = 2*Bt;
17 mprintf('(b)) The RF bandwidth is %i kHz\n',Bt);
```

Scilab code Exa 8.9 PWM minimum nyquist rate

```
1 clc;
2 close();
3 clear();
4 //page no 290
5 //prob no. 8.9
6 //All frequencies in kHz
7 W=10;
8 fs=2*W;
```

```
9 Tf=1/fs;
10 mprintf('(a) The minimum sampling rate is %i kHz\n',
    fs);
11 mprintf('The frame time is %i micro second\n', Tf
    *10^3);
12 tr=0.01*Tf //ms
13 Bt=0.5/tr;
14 mprintf('The maximum rise time is %.1f micro second\
    n',tr*10^3);
15 mprintf('The approximate transmission bandwidth is
    %i kHz\n', Bt);
```

Digital communication I Binary Systems

Scilab code Exa 9.1 possible PCM words

```
1 clc;
2 close();
3 clear();
4 //page no 304
5 //prob no. 9.1
6 bits=4;
7 printf('(a) M=%i values\n',2^bits);
8 bits=8;
9 printf('(b) M=%i values\n',2^bits);
10 bits=16;
11 printf('(c) M=%i values\n',2^bits);
```

Scilab code Exa 9.2 Minimum number of bits

```
1 clc;
2 close();
```

```
3 clear();
4 //page no 304
5 //prob no. 9.2
6 N=log2(100);
7 printf('(a) N=%.2 f bits\n',N);
```

Scilab code Exa 9.3 Quantization

```
1 clc;
2 close();
3 clear();
4 //page no 309
5 //prob no. 9.3
6 //input graph
7 t = [0:.1:15-.1];
8 y=[(1/9)*(0:.1:1)^2 (1/8)*(1.1:.1:1.9)^2.1];
9 y=[y (7/8)*sin(2*%pi*t(21:150)/18.5)];
10 plot(t,y);
11 y = 8 * y;
12 //quantized form
13 y1=[];
14 for i=1:10:150
15
       for m = -7:7
16
            if y(i) < m+0.5 then
17
                break();
18
            end
19
        end
20
21
       y1 = [y1 m*ones(1:10)]
22 end
23 \text{ y} 1 = \text{y} 1./8;
24 plot2d(t,y1,[5]);
25 a=gca(); // Handle on axes entity
26 a.x_location = "origin";
27 a.y_location = "origin";
```

Scilab code Exa 9.4 Quantization error

```
1 clc;
2 close();
3 clear();
4 //page no 310
5 //prob no. 9.4
6 N = 8;
7 Vfs=20; // Volts
8 \text{ delta_Xu=2^-N};
9 mprintf('(a) The normalised unipolar step size is
      %f\n ',delta_Xu);
10 delta_vu=delta_Xu*Vfs;
11 mprintf('(b) The actual step size is \%.2 \text{ f mV} \cdot \text{n}',
      delta_vu*10^3);
12 Xumax=1-delta_Xu;
13 mprintf('(c) The normalized maximum quantized level
       is %f \ n ', Xumax);
14 vumax = Xumax * Vfs;
15 mprintf('(d) The actual maximum quantized level is
      %f V n ', vumax);
16 Eu=delta_Xu/2;
17 mprintf('(e) The normalized peak error is \%f \setminus n', Eu
      );
18 eu=Eu*Vfs;
19 mprintf('(f)
                  The actual peak error is %.2 f mV ', eu
      *10^3);
```

Scilab code Exa 9.5 A to D converter

```
1 clc;
2 close();
3 clear();
4 //page no 311
5 //prob no. 9.5
6 Vfs=10; // Volts
7 N = 8;
8 \text{ delta_Xb=2^(-N+1)};
9 mprintf('(a) The normalised bipolar step size is %f
     n, delta_Xb);
10 delta_vb=delta_Xb*Vfs;
11 mprintf('(b) The actual step size is \%.2 \text{ f mV} \cdot \text{n}',
      delta_vb*10^3);
12 Xbmax=1-delta_Xb;
13 mprintf('(c) The normalized maximum quantized level
       is %f n, Xbmax);
14 vbmax=Xbmax*Vfs;
15 mprintf('(d) The actual maximum quantized level is
      %f V n ', vbmax);
16 Eb=delta_Xb/2;
17 mprintf('(e) The normalized peak error is \%f \ ', Eb
      );
18 eb=Eb*Vfs;
19 mprintf('(f) The actual peak error is %.2 f mV', eb
      *10^3);
```

Scilab code Exa 9.6 Micro compression law encoder

```
1 clc;
```

```
2 close();
3 clear();
4 //page no 313
5 //prob no. 9.6
6 Vimax=16; //Volts
7 Vomax=2; //Volts
8 m=255; //meu
9 vi=[2 4 8 16];
10 vo=Vomax*log(1+m*vi/Vimax)/log(1+m);
11 table=[vi' vo'];
12 mprintf(' vi(V) vo(V)');
13 disp(table);
```

Scilab code Exa 9.7 PCM TDM system

```
1 clc;
2 close();
3 clear();
4 //page no 319
5 //prob no. 9.7
6 // all time in ms
7 // all frequencies in kHz
8 W = 5;
9 N=8; //bits
10 k=19+1; //word
11 fs=2*W;
12 mprintf('fs=\%i kHz\n',fs);
13 Tf=1/fs;
14 mprintf(' Tf=\%.1 f ms n', Tf);
15 Tw=Tf/k;
16 mprintf(' Tw=\%i micro second\n', Tw*10^3);
17 tau=Tw/N;
18 mprintf(' tau=\%.3f micro second\n', tau*10^3);
19 Bt = 0.5/tau;
20 mprintf('Bt=\%ikHz',Bt);
```

Scilab code Exa 9.8 NRZ L PCM

```
1 clc;
2 close();
3 clear();
4 //page no 323;
5 //prob no. 9.8;
6 //all frequencies in kHz;
7 R=200; //kbits/s
8 Bt=R; //kHz;
9 mprintf(' Bt=%ikHz',Bt);
```

Scilab code Exa 9.9 NRZ L PCM

```
1 clc;
2 close();
3 clear();
4 //page no 326
5 //prob no. 9.9
6 //all frequencies in kHz
7 R=200; //kbits/s
8 delta_f=150; //f1-f0
9 Bt=delta_f+R; //kHz
10 mprintf(' Bt=%ikHz', Bt);
```

Scilab code Exa 9.10 NRZ L PCM bandwidth

```
1 clc;
2 close();
```

```
3 clear();
4 //page no 329
5 //prob no. 9.10
6 //all frequencies in kHz
7 R=200; //kbits/s
8 Bt=R; //kHz
9 mprintf(' Bt=%ikHz',Bt);
```

Digital communication II M ary system

Scilab code Exa 10.1 Channel capcity

```
1 clc;
2 close();
3 clear();
4 //page no 350
5 //prob no. 10.1
6 B=4; //kHz
7 C=2*B;
8 mprintf('(a) C=%ikbits/s\n',C);
9 C=2*B*log2(4);
10 mprintf(' (b) for 4-level encoding ,C=%ikbits/s\n',C
);
11 C=2*B*log2(128);
12 mprintf(' (c) for 128-level encoding ,C=%ikbits/s',C
);
```

Scilab code Exa 10.2 Maximum channel capacity

```
1 clc;
2 close();
3 clear();
4 //page no 351
5 //prob no. 10.2
6 B=4; //kHz
7 SNdb=[20 30 40]; //S/N in db
8 SN=10 .^(SNdb./10); //absolute S/N
9
10 C=B .*log2(1+SN);
11 mprintf(' S/N(db) C(kbits/s)\n');
12 out=[SNdb' C'];
13 disp(out);
```

Scilab code Exa 10.5 Shannon limit

```
1 clc;
2 close();
3 clear();
4 //page no 352;
5 //prob no. 10.5;
6 B=20; //kHz;
7 C=160; //kb/s;
8 M=2^(C/B/2);
9 mprintf('(a) Number of encoding levels ,M= %i\n',M);
10 SN=2^(C/B)-1;
11 SNdb=10*log10(SN) //S/N in db
12
13 mprintf('(b) S/N= %i S/N(db)=%.2f dB',SN,SNdb);
```

Scilab code Exa 10.6 QPSK

```
1 clc;
```

```
2 close();
3 clear();
4 //page no 356
5 //prob no. 10.6
6 R=1; //Mb/s
7 Bt=R/2; //MHz
8 mprintf('Bt= %i kHz', Bt*10^3);
```

Computer Data communication

Scilab code Exa 11.7 Processor bandwidth

```
1 clc;
2 close();
3 clear();
4 //page no 379
5 //prob no. 11.7
6
7 B=800*64; //Mb/s
8 mprintf('Bandwidth= %i Mb/s or %i MB/s',B,B/8);
```

Scilab code Exa 11.8 DDR SDRAM bandwidth

```
1 clc;
2 close();
3 clear();
4 //page no 379
5 //prob no. 11.8
6
7 B=400*64; //Mb/s
```

```
8 mprintf('Memory bus bandwidth = %i Mb/s or %i MB/s ',B,B/8);
```

Scilab code Exa 11.9 Memory bandwidth

```
1 clc;
2 close();
3 clear();
4 //page no 379
5 //prob no. 11.9
6
7 B=128*400; //Mb/s
8 mprintf('Memory bus bandwidth = %i Mb/s or %i MB/s
',B,B/8);
```

Noise in Communication systems

Scilab code Exa 12.1 Mean square and rms values

```
1 clc;
2 close();
3 clear();
4 //page no 400
5 //prob no. 12.1
6 B=10^6; //Hz
7 R=[1 100 10000] .*10^3 //ohm
8 Vrms=(16*10^-21*B .*R)^0.5; //volts
9 mprintf(' R (K-ohm) Vrms (micro-V)');
10 out=[R'.*10^-3 Vrms'.*10^6];
11 disp(out);
```

Scilab code Exa 12.2 rms voltage

```
1 clc;
2 close();
```

```
3 clear();
4 //page no 401
5 //prob no. 12.2
6 B=10^6; //Hz
7 R=10^7; //ohm
8 Vrms=(16*10^-21*B*R)^0.5; //volts
9 G=5000; //gain
10 vorms=Vrms*G;
11 mprintf('vorms=%.1 f V',vorms);
```

Scilab code Exa 12.3 net rms voltage

```
1 clc;
2 close();
3 clear();
4 //page no 403
5 //prob no. 12.3
6 B=2*10^6; //Hz
7 Req=6*10^6; //ohm
8 Vrms=(16*10^-21*B*Req)^0.5; //volts
9 mprintf('vrms=%.1 f micro-V', Vrms*10^6);
```

Scilab code Exa 12.4 Noise power

```
1 clc;
2 close();
3 clear();
4 //page no 405
5 //prob no. 12.4
6 B=2*10^6; //Hz
7 R=50; //ohm
8 kT0=4*10^-21;
```

```
10 Nav=kT0*B;
11 mprintf('Noise power=%.0 f fW', Nav*10^15);
```

Scilab code Exa 12.5 output noise power

```
1 clc;
2 close();
3 clear();
4 //page no 406
5 //prob no. 12.5
6 B=2*10^6; //Hz
7 R=50; //ohm
8 G=10^6; //gain
9 kT0=4*10^-21;
10
11 Nav=kT0*B;
12 No=G*Nav;
13 mprintf('output Noise power=%.0f nW', No*10^9);
```

Scilab code Exa 12.6 rms noise voltage

```
1 clc;
2 close();
3 clear();
4 //page no 406
5 //prob no. 12.6
6 //data from ex 12.5
7 B=2*10^6; //Hz
8 R=50; //ohm
9 G=10^6; //gain
10 kT0=4*10^-21;
11
12 Nav=kT0*B;
```

```
13 No=G*Nav;
14 //ex12.6
15 Vrms=(No*50)^0.5;
16 mprintf('Vrms=%.1 f micro-V', Vrms*10^6);
```

Scilab code Exa 12.7 Power spectral density

Scilab code Exa 12.8 white noise

Scilab code Exa 12.9 output noise power

```
1 clc;
2 close();
3 clear();
4 //page no 409
5 //prob no. 12.9
6 Gdb1=10;
7 Gdb2=15;
8 Gdb3=25;
9 Gdb=Gdb1+Gdb2+Gdb3; // net gain in dB
10 G=10^(Gdb/10);
11 mprintf('Absolute gain G=%i\n',G);
12 B=10^4; //Hz
13 ni=10^-12; //pW/Hz
14 No=ni*G*B;
15 mprintf('Output Noise power ,No=%i mW',No*10^3);
```

Scilab code Exa 12.10 low noise amplifier

```
1 clc;
```

```
2 close();
3 clear();
4 //page no 412
5 //prob no. 12.10
6 Te=50; //K
7 T0=290; //K
8 F=1+Te/T0;
9 mprintf('(a) Noise figure, F=%.3f\n',F);
10 Fdb=10*log10(F);
11 mprintf('(b) Decibel value, Fdb=%.3f dB',Fdb);
```

Scilab code Exa 12.11 effective noise temperature

```
1 clc;
2 close();
3 clear();
4 //page no 412
5 //prob no. 12.11
6 Fdb=5;
7 T0=290; //K
8 F=10^(Fdb/10);
9 mprintf('Noise figure, F=\%.3f\n',F);
10 Te=(F-1)*T0;
11 mprintf(' Noise Temperature, Te=\%i K ',Te);
```

Scilab code Exa 12.12 RF amplifier

```
1 clc;
2 close();
3 clear();
4 //page no 413;
5 //prob no. 12.12;
6 T0=290; //K
```

```
7 \text{ Fdb} = 9;
8 F=10^(Fdb/10);
9 mprintf('Absolute Noise figure, F=\%.3 f=8(Approx) \setminus n',
      F);
10 F=8;
           //Approximate
11 Te=(F-1)*T0;
12 mprintf(' Noise Temperature, Te=%i K \n',Te);
13 Ti=T0;
14 k=1.38*10^-23;
                       //Boltzmann's Constant
15 B=2*10^6; //Hz
16 Ni=k*Ti*B; //W
17 mprintf('(a) Input source Noise ratio, Ni=%i fW\n
      ',Ni*10^15);
18 Pi=8*10^-12;
19 SNinput=Pi/Ni;
20 mprintf('(b) Input source signal to noise ratio S:
      Ninput=\%.0 \text{ f} \setminus n', SNinput);
21 mprintf(' Corresponding dB value S; Ninput(db)=\%.0 f
      dB \setminus n', 10*log10(SNinput));
22 \text{ Gdb} = 50;
23 G=10^{(Gdb/10)};
24 Po=G*Pi; //W
25 mprintf('(c) The output signal power, Po=\%i nW\n', Po
      *10^9);
26 \text{ Tsys} = \text{Ti} + \text{Te};
27 No=G*k*Tsys*B; /W
28 mprintf('(d) output noise power No=\%.2 \text{ f nw/n'}, No
      *10^9);
29 SNoutput=Po/No;
30 mprintf('(e) Output signal to noise ratio S: Noutput=
      \%.0 \text{ f} \setminus n', SNoutput);
31 mprintf(' Corresponding dB value S; Noutput(db)=\%.0 f
       dB/n', 10*log10(SNoutput));
```

Scilab code Exa 12.13 output S to ratio

```
1 clc;
2 close();
3 clear();
4 //page no 414
5 //prob no. 12.13
6 / Data from ex-12
7 T0=290; //K
8 \text{ Fdb=9};
9 F=10^{(Fdb/10)};
10 F=8; //Approximate
11 Te=(F-1)*T0;
12 Ti = T0;
13 k=1.38*10^-23;
                    //Boltzmann's Constant
14 B=2*10^6; //Hz
15 Ni=k*Ti*B; //W
16 Pi=8*10^-12;
                 //W
17 SNinput=Pi/Ni;
18 SNinputdb=10*log10(SNinput);
19 //Ex13 calculation
20 SNoutputdB=SNinputdb-Fdb;
21 mprintf(' S: Noutput(db) = \%.0 f dB \ ', SNoutputdB);
```

Scilab code Exa 12.14 Equivalent noise temperature

```
1 clc;
2 close();
3 clear();
4 //page no 418
5 //prob no. 12.14
6 //Absolute gains
7 G1=20;
8 G2=15;
9 G3=12;
10 //Temp in K
11 Te1=100;
```

```
12 Te2=200;
13 Te3=300;
14 Te=Te1+Te2/G1+Te3/G1/G2
15
16 mprintf('Noise Temperature ,Te=%.0f K\n',Te);
```

Scilab code Exa 12.15 Net noise figure

```
1 clc;
2 close();
3 clear();
4 //page no 418
5 //prob no. 12.15
6 //Absolute gains
7 G1 = 20;
8 G2=15;
9 G3=12;
10 //Temp in K
11 Te1=100;
12 Te2=200;
13 Te3=300;
14 // Noise figures
15 F1=1+Te1/290;
16 F2=1+Te2/290;
17 F3=1+Te3/290;
18 F=F1+(F2-1)/G1+(F3-1)/G1/G2;
19 mprintf('Noise figure ,F=%.4 f n',F);
20 Te=(F-1)*290;
21
22 mprintf('Noise Temperature ,Te=%.0f K\n',Te);
```

Scilab code Exa 12.16 Cascaded system

```
1 clc;
2 close();
3 clear();
4 //page no 419
5 //prob no. 12.16
6 Ldb=6.02; //db
7 L=10^(Ldb/10);
8 mprintf('Absloute loss, L=\%.0 f n', L);
9 Tp=290; //K
10 // Noise temp
                  (K)
11 TeL=(L-1)*Tp;
12 Tepre=50;
13 Terec=200;
14 Gpre=10^(20/10);
15 Te=TeL+L*Tepre+L*Terec/Gpre;
16 mprintf('Noise Temperature ,Te=\%.0 f K n', Te);
17
18 // Noise figures
19 F=1+Te/290;
20 mprintf('Noise figure ,F=\%.4 \, f \, n',F);
21 mprintf('Noise figure ,F(dB)=\%.3 f dB n',10*log10(F)
      );
```

Scilab code Exa 12.17 Noise temperature and noise figure

```
1 clc;
2 close();
3 clear();
4 //page no 419
5 //prob no. 12.17
6 Ldb=6.02; //db
7 L=10^(Ldb/10);
8 mprintf('Absloute loss ,L=%.0f\n',L);
9 Tp=290; //K
10 //Noise temp (K)
```

```
11  TeL=(L-1)*Tp;
12  Tepre=50;
13  Terec=200;
14  Gpre=10^(20/10);
15  Te=Tepre+TeL/Gpre+L*Terec/Gpre;
16  mprintf(' (a) Noise Temperature ,Te=%.1 f K\n',Te);
17
18  //Noise figures
19  F=1+Te/290;
20  mprintf(' (b) Noise figure ,F=%.2 f\n',F);
21  mprintf('Noise figure ,F(dB)=%.3 f dB\n',10*log10(F));
```

Performance of Modulation systems with noise

Scilab code Exa 13.1 AC system comparison

```
1 clc;
2 close();
3 clear();
4 //page no 442
5 //prob no. 13.1
6 \text{ Gb} = 1;
7 mprintf('(a) SSB: Gb=\%i \n',Gb);
8 mprintf(' GbdB=\%i dB n',10*log10(Gb));
9 mprintf('(b) DSB: Gb=\%i \ n', Gb);
10 mprintf(' GbdB=\%i dB n', 10*log10(Gb));
11 m = 0.5;
12 Gb=m^2/(2+m^2);
13 mprintf('(c) AM(m=.5): Gb=\%.3 f \setminus n', Gb);
               GbdB=\%.3 f dB n',10*log10(Gb));
14 mprintf('
15 \, \text{m} = 1;
16 Gb=m^2/(2+m^2);
                            Gb=\%.3 f \setminus n', Gb);
17 mprintf('(d) AM(m=1):
18 mprintf(' GbdB=%.3 f
                            dB \setminus n',10*log10(Gb));
19 delta_phi=5;
```

```
20 Gb=delta_phi^2/2;
21 mprintf('(e) FM(delta phi=5)): Gb=%.1 f \n',Gb);
22 mprintf(' GbdB=%.3 f dB\n',10*log10(Gb));
23 D=5;
24 Gb=3*D^2/2;
25 mprintf('(f) FM(D=5): Gb=%.1 f \n',Gb);
26 mprintf(' GbdB=%.3 f dB\n',10*log10(Gb));
27 Wf1=7.07;
28 Gb=3/2*D^2*%pi/6*Wf1;
29 mprintf('(g) FM(D=5, W/f1=7.07): Gb=%.1 f \n',Gb);
30 mprintf(' GbdB=%.2 f dB\n',10*log10(Gb));
```

Scilab code Exa 13.2 Receiver processing gain

```
1 clc;
2 close();
3 clear();
4 //page no 443
5 //prob no. 13.2
6 \text{ GR}=1;
7 mprintf('(a) SSB: GR=\%i \setminus n', GR);
8 mprintf(' GRdB=\%i dB n',10*log10(GR));
9 \text{ GR}=2;
10 mprintf('(b) DSB: GR=\%i \setminus n', GR);
11 mprintf(' GRdB=\%.2 f dB n', 10*log10(GR));
12 m = 0.5;
13 GR = 2 * m^2/(2 + m^2);
14 mprintf('(c) AM(m=.5): GR=\%.4 f \setminus n', GR);
15 mprintf(' GRdB=\%.3 f dB n',10*log10(GR));
16 \, \text{m} = 1;
17 GR = 2 * m^2/(2 + m^2);
18 mprintf('(d) AM(m=1): GR=\%.3 f \setminus n', GR);
19 mprintf(' GRdB=\%.2 f dB n', 10*log10(GR));
20 delta_phi=5;
21 GR=(1+delta_phi)*delta_phi^2;
```

```
22 mprintf('(e) FM(delta phi=5)): GR=%.1f \n',GR);
23 mprintf(' GRdB=%.3f dB\n',10*log10(GR));
24 D=5;
25 GR=3*D^2*(1+D);
26 mprintf('(f) FM(D=5): GR=%.1f \n',GR);
27 mprintf(' GRdB=%.3f dB\n',10*log10(GR));
28 Wf1=7.07;
29 GR=3*(1+D)*D^2*%pi/6*Wf1;
30 mprintf('(g) FM(D=5, W/f1=7.07): GR=%.1f \n',GR);
31 mprintf(' GRdB=%.2f dB\n',10*log10(GR));
```

Scilab code Exa 13.3 signal to noise ratio

```
1 clc;
2 close();
3 clear();
4 //page no 447
5 //prob no. 13.3
6 k=1.38*10^-23;
                    //Boltzmann's const
7 //Temperatures in K
8 \text{ Ti} = 150;
9 Te = 325;
10 Tsys=Ti+Te;
11 mprintf(' Tsys=\%i K \setminus n', Tsys);
12 D=5;
13 W = 15;
          //kHz
14 B=2*(1+D)*W;
15 mprintf(' B=\%i \text{ kHz/n',B});
16 Nsys=k*Tsys*B*10^3; //W
17 mprintf(' Nsys=\%.3 f fW n', Nsys*10^15);
18 PR = 50 * 10^{-12};
                     / /W
19 SNsys=PR/Nsys;
20 mprintf(' (S/N) sys=%i n', SNsys);
21 GR = 3*(1+D)*D^2
22 mprintf(' GR=\%.0 f \setminus n', GR);
```

Scilab code Exa 13.4 signal to noise ratio

```
1 clc;
2 close();
3 clear();
4 //page no 450;
5 //prob no. 13.4;
6 N=16; //bit
7 SNoutdB=1.76+6.02*N;
8 mprintf('(S/N)output,dB=%.2 f dB \n',SNoutdB);
```

Scilab code Exa 13.5 Minimum number of bits

```
1 clc;
2 close();
3 clear();
4 //page no 450;
5 //prob no. 13.5;
6 SNoutdB=53;
7 N=(SNoutdB-1.76)/6.02;
8 mprintf(' N=\%.2 f bits \n',N);
9 N=9; //roundup
10 mprintf(' N=\%i bits \n',N);
```

Scilab code Exa 13.6 Binary digital communication system

```
1 clc;
2 close();
3 clear();
4 //page no 453
5 //prob no. 13.6
           //bits per word
6 N=6;
7 M=2^N;
8 mprintf('M⊨%i
                      n', M);
9 Pr = 200 * 10^{-15};
                      / /W
10 R=2*10^6; // bits/s
11 Eb=Pr/R;
12 mprintf(' Bit energy ,Eb=\%.0 \, f*10^-21 \, n',Eb*10^21);
13 k=1.38*10^-23;
                      //Boltzmann cons
14 Ti=300;
             //K
15 Te=425;
              //K
16 Tsys=Ti+Te;
17 nsys=k*Tsys;
18 mprintf(' Noise power spectral density ,nsys=\%.0f
      *10^--20 \text{ W/Hz } \text{n',nsys*10^20)};
19 rho=Eb/nsys;
20 mprintf(' Bit energy , rho=\%.0 \,\mathrm{f} \, \setminus \mathrm{n',rho});
21 rhodB=10*log10(rho);
22 mprintf(' Bit energy in db, rho, dB=\%.0 f dB \n', rhodB
      );
23 //part a
24 \text{ Pe}=4*10^-6;
25 SNout=1.5*M^2/(1+4*M^2*Pe);
26 mprintf(' \setminus n(a) (S/N) output=\%.0 f (or \%0.2 f dB) \setminus n',
      SNout, 10*log10(SNout));
27 //part b
28 \text{ Pe} = 2.3 * 10^{-5};
29 SNout=1.5*M^2/(1+4*M^2*Pe);
```

Scilab code Exa 13.7 PSK signal to noise ratio

```
1 clc;
2 close();
3 clear();
4 //page no 455
5 //prob no. 13.7
6 //data from ex 13.6
7 M = 2^6;
8 Pr = 200 * 10^{-15};
                     / /W
9 R=8*10^6; //bits/s (changed)
10 Eb=Pr/R;
11
12 k=1.38*10^-23; //Boltzmann cons
13 Ti = 300;
             //K
14 Te=425;
15 Tsys=Ti+Te;
16 nsys=k*Tsys;
17 //mprintf(' Noise power spectral density ,nsys=%.0f
      *10^-20 \text{ W/Hz } \text{ n', nsys} *10^20);
18 rho=Eb/nsys;
19 mprintf(' Bit energy , rho=\%.1 \, \text{f} \, \text{n',rho};
```

Scilab code Exa 13.8 input average carrier power

```
1 clc;
2 close();
3 clear();
4 //page no 455
5 //prob no. 13.8
6 Pe=10^-5;
7 R=1*10^6; //bits/s
8 k=1.38*10^-23; //Boltzmann cons
9 Ti = 475;
           //K
10 Te=250;
11 Tsys=Ti+Te;
                 //W/Hz
12 nsys=k*Tsys;
13 function Eb=E(rhodb)
                            //function for Eb
       rho=10^(rhodb/10);
14
15
       Eb=nsys*rho;
16 endfunction
17 function Pr=P(E) //function for Pr
18
       Pr=R*Eb;
19 endfunction
20 function display(rhodb,pt)
21
       Eb=E(rhodb);
22
       Pr=P(E);
23 mprintf('\n(\%c) Bit energy, Eb=\%.2 \text{ f}*10^--21 \text{ J} \n', pt,
      Eb*10^21);
```

```
24 mprintf(' Required reciver carrier power, Pr=\%.2f
      fW \ n', Pr*10^15);
25
26 endfunction
27 // Part a
28 rhodb=9.6;
29 display(rhodb, 'a');
30
31 // Part b
32 rhodb=10.3;
33 display(rhodb, 'b');
34
35 // Part c
36 rhodb=12.6;
37 display(rhodb, 'c');
38
39 // Part d
40 rhodb=13.4;
41 display(rhodb, 'd');
```

Scilab code Exa 13.9 PSK required reciever power

```
1 clc;
2 close();
3 clear();
4 //page no 456;
5 //prob no. 13.9;
6
7 //Data form ex13.8
8 Pe=10^-5;
9 R=2*10^6; //bits/s (changed);
10 k=1.38*10^-23; //Boltzmann cons;
11 Ti=475; //K
12 Te=250; //K
13 Tsys=Ti+Te;
```

```
14 nsys=k*Tsys; //W/Hz
15 function Eb=E(rhodb)
                            //function for Eb
       rho=10^(rhodb/10);
16
17
       Eb=nsys*rho;
18 endfunction
                     //function for Pr
19 function Pr=P(E)
20
       Pr=R*Eb;
21 endfunction
22
23 rhodb=9.6;
24
   Eb=E(rhodb);
25
   Pr=P(E);
26 mprintf('\nBit energy , Eb=\%.2 \, f*10^--21 \, J \, n', Eb
      *10^21);
27 mprintf(' Required reciver carrier power, Pr=\%.2f
     fW \setminus n', Pr*10^15);
```

Transmission lines and waves

Scilab code Exa 14.1 Length of line

```
1 clc;
2 close();
3 clear();
4 //page no 471
5 //prob no. 14.1
6 f=1*10^6; //Hz
7 lembda=3*10^8/f; //m
8 mprintf('The free space wavelength is = %i m \n', lembda);
9 l=.1*lembda;
10 mprintf(' Length , l= %i m',1);
```

Scilab code Exa 14.2 Length of line

```
1 clc;
2 close();
3 clear();
4 //page no 471
```

Scilab code Exa 14.3 Length of line

```
1 clc;
2 close();
3 clear();
4 //page no 472
5 //prob no. 14.3
6 f=1*10^9; //Hz
7 lembda=3*10^8/f; //m
8 mprintf('The free space wavelength is = %i cm \n', lembda*100);
9 l=.1*lembda;
10 mprintf(' Length , l= %i cm', l*100);
```

Scilab code Exa 14.4 Characteristic impedance

```
1 clc;
2 close();
3 clear();
4 //page no 474
5 //prob no. 14.4
6 L=320*10^-9; //H/m
7 C=90*10^-12; //F/m
8 R0=sqrt(L/C);
```

```
9 mprintf('The characteristc impedance, R0 = \%.2\,\mathrm{f} ohm \ n',R0);
```

Scilab code Exa 14.5 Velocity of propagation

Scilab code Exa 14.6 Dielectric costant

```
1 clc;
2 close();
3 clear();
4 //page no 476
5 //prob no. 14.6
6 L=320*10^-9; //H/m
7 C=90*10^-12; //F/m
8 v=1/sqrt(L*C); //from Ex14.5
9 Er=(3*10^8/v)^2;
10 mprintf('The dielectic constant is, Er = %.2f \n', Er);
```

Scilab code Exa 14.6.1 Coaxial cable

```
1 clc;
2 close();
3 clear();
4 //page no 479
5 //prob no. 14.6; //misprinted example no
6 d=.3; //cm
7 D=1.02; //cm
8 \text{ Er} = 2.25;
9 x = \log(D/d);
                  //variable
10 L=2*10^-7*x;
11 mprintf('(a)The inductance per unit length is, L = \%
      .1 f nH/m \setminus n', L*10^9);
12 C=55.56*10^-12*Er/x;
13 mprintf('(b)) The capacitance per unit length is, C =
       \%.2 \text{ f } \text{ nH/m } \text{ n',C*10^12)};
14 R0=60/sqrt(Er)*x;
15 mprintf('(c)The characteristic impedance is, R0 = \%
      .3 f ohm \ n', RO);
16 c=3*10^8;
17 \text{ v=c/sqrt(Er)};
18 mprintf('(d)The velocity of propagation is, v = \%i
      *10^8 \text{ m/s} / \text{n', v*10^-8};
```

Scilab code Exa 14.7 mismached load impedance

```
1 clc;
2 close();
3 clear();
4 //page no 480
5 //prob no. 14.7;
6 Rin=50 //ohm
7 Rout=50; //ohm
8 Vrms=400; //V
```

```
9 Zin=Rin;
10 mprintf('(a)The input impedance is, Zin = %i ohm\n',
        Zin);
11 Irms=Vrms/(Rin+Rout); //A
12 mprintf('(b)The rms current , Irms = %i A \n',Irms)
    ;
13 Pin=Irms^2*Rin;
14 mprintf('(c)The input power is, Pin = %i W \n',Pin)
    ;
15 Pl=Pin;
16 mprintf('(d)The load power is, Pl = %i W \n',Pl);
```

Scilab code Exa 14.8 Load power

```
1 clc;
2 close();
3 clear();
4 //page no 481
5 //prob no. 14.8
6 Rin=50
           //ohm
7 Rout=50;
              //ohm
8 \text{ Vrms} = 400;
9
10 \ 1=50;
               //m
                //dB
11 Ldb=.01*1;
12 L=10^(Ldb/10);
13 mprintf('The abslute loss is, L = \%f \setminus n', L);
14 Irms=Vrms/(Rin+Rout); //A
15 Pin=Irms^2*Rin;
16
17 PL=Pin/L;
18 mprintf(' The actual Power reaching the load is, PL
      = \%.1 f W \setminus n', PL);
```

Scilab code Exa 14.9 Lossless transmission line

```
1 clc;
2 close();
3 clear();
4 //page no 484
5 //prob no. 14.9
6 ZL = complex(50, 100);
7 R0 = 50;
8 TauL=(ZL-RO)/(ZL+RO);
10 mprintf('(a) The reflection coefficient at load is,')
11 disp(TauL);
12 [R,theta]=polar(TauL);
13 mprintf('OR, \%.4f) angle %i',R,theta*(180/%pi));
14
15 S=(1+R)/(1-R);
16 mprintf('\n (b) The standing wave ratio is, S = \%.3 f
       \n', S);
```

Scilab code Exa 14.10 Loss less transmission line

```
1 clc;
2 close();
3 clear();
4 //page no 484
5 //prob no. 14.10
6 ZL=100; //ohm
7 RL=ZL;
8 R0=300; //ohm
9 TauL=(RL-R0)/(RL+R0);
```

Scilab code Exa 14.11 Lossless transmission line

```
1 clc;
2 close();
3 clear();
4 //page no 485
5 //prob no. 14.11
6 ZL=100; //ohm
7 RL=ZL;
8 R0=300; //ohm
9 TauL=(RL-R0)/(RL+R0);
10 mismatch_loss_dB=-10*log10(1-TauL^2);
11 mprintf(' The mismatch loss (dB), S = %.2 f dB\n', mismatch_loss_dB);
```

Scilab code Exa 14.12 Plane wave propagation

```
1 clc;
2 close();
3 clear();
4 //page no 487;
5 //prob no. 14.12;
6 Ex=3 //V/m;
7 n0=377;
8 Hy=Ex/n0;
```

Introduction to Antennas

Scilab code Exa 15.2 Distance of boundary

```
1 clc;
2 close();
3 clear();
4 //page no 500
5 //prob no. 15.2
6 c=3*10^8; //speed of light
7 f = 2 * 10^9;
              //frequency
                 //wavelength
8 lembda=c/f;
9 mprintf('The wavelength of 2GHz is, = \%.2 \text{ f m/n'},
      lembda);
10 D=15; //m
11 Rff=2*D^2/lembda;
12 mprintf(') The distance to the far field is, Rff = \%i
      m n', Rff);
```

Scilab code Exa 15.3 max dB gain

```
1 clc;
```

```
2 close();
3 clear();
4 //page no 502
5 //prob no. 15.3
6 Gmax=10^5;
7 Gmax_dB=10*log10(Gmax);
8 mprintf('Gmax,dB= %i dB',Gmax_dB);
```

Scilab code Exa 15.4 Power gain

```
1 clc;
2 close();
3 clear();
4 //page no 504
5 //prob no. 15.4
6 d=10^5; //m
7 Pt=100; //W
8 Pd=Pt/(4*%pi*d^2);
9 mprintf('The power density is ,Pd= %.1 f pW/m^2',Pd *10^12);
```

Scilab code Exa 15.5 Power density

```
1 clc;
2 close();
3 clear();
4 //page no 504
5 //prob no. 15.5
6 d=10^5; //m
7 Pt=100; //W
8 Gt=50;
9 Pd=Gt*Pt/(4*%pi*d^2);
```

```
10 \tt mprintf('The power density is ,Pd= \%.2 f nW/m^2',Pd *10^9);
```

Scilab code Exa 15.6 satellite system

```
1 clc;
2 close();
3 clear();
4 //page no 504
5 //prob no. 15.6
6 c=3*10^8; //speed of light
7 f=15*10^9; //frequency
8 lembda=c/f;
                  //wavelength
9 mprintf('The wavelength of 15 GHz is, = \%.2 \text{ f m/n'},
      lembda);
10
11 d=41*10^6;
               //\mathrm{m}
12 Pt=50; //W
13 Gt=10<sup>4</sup>;
14 Gr=10<sup>5</sup>
15 Pr=lembda^2*Gr*Gt*Pt/((4*%pi)^2*d^2);
16 mprintf('The power density is ,Pr= \%.1 f pW',Pr
      *10^12);
```

Scilab code Exa 15.7 Radiation resistance

```
1 clc;
2 close();
3 clear();
4 //page no 506;
5 //prob no. 15.7;
6
7 Pt=2000; //W
```

Scilab code Exa 15.11 Parabolic reflector

```
1 clc;
2 close();
3 clear();
4 //page no 511
5 //prob no. 15.1
6 //misprinted example number
7 c=3*10^8; //speed of light
8 f = 10 * 10^9;
                //frequency
9 lembda=c/f;
                 //wavelength
10 mprintf('The wavelength of 2GHz is, = \%.2 \text{ f m/n}',
      lembda);
11 D=12; //m
12 Ap=\%pi*D^2/4;
13 mprintf('(a)The physical area is ,Ap= %.2f m^2
      ,Ap);
            //efficiency
14 \text{ n1} = .7;
15 Ae=n1*Ap;
               The effective capture area is ,Ae= \%.2 f m
16 mprintf('
      ^2, Ae);
17 G=4*\%pi*Ae/lembda^2;
18 mprintf('\n (b) The gain is G = \%i', G;
19 GdB=10*log10(G);
20 mprintf('\n The gain(dB) is ,GdB= \%.1 \text{ f dB}',GdB);
21 theta_3dB=70*lembda/D;
22 mprintf('\n (c) The 3 dB beamwidth = \%.3 f degrees',
      theta_3dB);
```

Scilab code Exa 15.12 Effective area

```
1 clc;
2 close();
3 clear();
4 //page no 507;
5 //prob no. 15.12;
6 //misprinted example number;
7 c=3*10^8; //speed of light;
8 f=100*10^6; //frequency;
9 lembda=c/f; //wavelength;
10 mprintf('The wavelength of 2GHz is, = %i m\n',lembda);
11 Ac=0.13*lembda^2;
12 mprintf('The capture area is ,Ac= %.2 f m^2',Ac);
```

Communication link analysis and Design

Scilab code Exa 16.1 Recieived power

```
1 clc;
2 close();
3 clear();
4 //page no 518
5 //prob no. 16.1
6 c=3*10^8; //speed of light
7 \text{ Pt}=5
8 GtdB=13; //dB
9 GrdB=17; //dB
10 d=80*10^3; //metre
11 f = 3*10^9; // frequency
12 lembda=c/f; //wavelength
13 \mbox{mprintf('The wavelength is}, = \%.1\,\mbox{f m/n',lembda);}
14
15 Gt=10^{(GtdB/10)};
16 Gr=10^(GrdB/10);
17 mprintf(' Gt=\%.2 f \ n', Gt);
18 mprintf(' Gr=\%.2 f \setminus n', Gr);
19 Pr=lembda^2*Gt*Gr*Pt/((4*%pi)^2*d^2);
```

```
20 mprintf(' Pr=\%.1 f pW \n', Pr*10^12);
```

Scilab code Exa 16.2 dB approach

```
1 clc;
2 close();
3 clear();
4 //page no 520
5 //prob no. 16.2
6 c=3*10^8; //speed of light
         //W
7 \text{ Pt} = 5
8 GtdB=13; //dB
9 GrdB=17; //dB
10 d=80; //in \text{ km}
11 f=3; //frequency in GHz
12
13 PtdBW=10*log10(Pt);
14 alfa1_dB=20*log10(f)+20*log10(d)+92.44; //dB
15 mprintf('The path loss is, alfa_1(dB) = \%.2 \text{ f dB/n'},
      alfa1_dB);
16
17 PrdBW=PtdBW+GtdB+GrdB-alfa1_dB; //calculation of
      recieved power in dB
18 mprintf (' Pr(dBW) = \%.2 f dBW \setminus n', PrdBW)
19
20 Pr=10^(PrdBW/10); //recieved power in Watts 21 mprintf(' Pr=\%.1 f pW', Pr*10^12);
```

Scilab code Exa 16.3 Path loss

```
1 clc;
2 close();
3 clear();
```

```
4 //page no 521
5 //prob no. 16.3
6 d=240000*1.609;
                    //in km
7 //part a
8 f = 100;
            //frequency in MHz
9 alfa1_dB=20*log10(f)+20*log10(d)+32.44; //dB
10 mprintf('(a) The path loss is \%.2 \text{ f dB/n',alfa1_dB});
11 //part b
12 f=1;
        //frequency in GHz
13 alfa1_dB=20*log10(f)+20*log10(d)+92.44; //dB
14 mprintf('(b) The path loss is \%.2 \text{ f dB/n'}, alfa1_dB);
15 //part c
          //frequency in GHz
16 f=10;
17 alfa1_dB=20*\log 10(f)+20*\log 10(d)+92.44; //dB
18 mprintf('(c) The path loss is \%.2 \text{ f dB/n'}, alfa1_dB);
```

Scilab code Exa 16.4 path loss

```
1 clc;
2 close();
3 clear();
4 //page no 522
5 //prob no. 16.4
6 \text{ f=1}; //\text{in GHz}
7 //part a
8 d=1;
         //in Km
9 alfa1_dB=20*\log 10(f)+20*\log 10(d)+92.44; //dB
10 mprintf('(a) The path loss is \%.2 \text{ f dB/n',alfa1_dB});
11 //part b
12 d=10;
           //in km
13 alfa1_dB=20*\log 10 (f)+20*\log 10 (d)+92.44; //dB
14 mprintf('(b) The path loss is \%.2 \text{ f dB/n', alfa1_dB});
15 //part c
16 d=100;
           //in km
17 alfa1_dB = 20*log10(f) + 20*log10(d) + 92.44;
                                                //dB
```

```
18 mprintf('(c) The path loss is \%.2 \, f \, dB \ ', alfa1_dB);
```

Scilab code Exa 16.5 Minimum transmitted power required

```
1 clc;
2 close();
3 clear();
4 //page no 522
5 //prob no. 16.5
                 //in Watts
6 Pr=50*10^-12;
7 GtdB=3; //dB
8 GrdB=4; //dB
9 d=80; //kilo-metre
10 f=500;
          //frequency in MHz
11 PrdBW=10*log10(Pr); //in dB conversion
12 mprintf ('Pr(dBW)=\%.2 \text{ f} dBW\n', PrdBW)
13 alfa1_dB=20*log10(f)+20*log10(d)+32.44; //path loss
      in dB
14 mprintf(' The path loss is, \%.2 \text{ f dB/n',alfa1_dB});
15 PtdBW=PrdBW+alfa1_dB-GtdB-GrdB; //calculation of
     transmitted power in dB
16 mprintf(' Pt(dBW)=\%.2 f dBW n', PtdBW)
17 Pt=10^(PtdBW/10); //transmitted power in Watts
18 mprintf(' Pt=\%.1 f W', Pt);
```

Scilab code Exa 16.6 Required transmitted power

```
1 clc;
2 close();
3 clear();
4 //page no 523;
5 //prob no. 16.6;
6 Pr=200; //in f-Watts
```

```
//dB
7 GtdB=30;
             //dB
8 GrdB=20;
            //kilo-metre
9 d=40000;
         //frequency in GHz
10 f = 4;
11 PrdBf = 10 * log10(Pr);
                        //in dBf conversion
12 mprintf ('Pr(dBf)=\%.2 f dBf\n', PrdBf)
13 alfa1_dB=20*log10(f)+20*log10(d)+92.44; //path loss
      in dB
14 mprintf(' The path loss is, \%.2 \text{ f dB/n'}, alfa1_dB);
15 PtdBf=PrdBf+alfa1_dB-GtdB-GrdB;
                                     //calculation of
      transmitted power in dBf
16 PtdBW=PtdBf-150; //calculation of transmitted
     power in dBW
17 mprintf(' Pt(dBf)=\%.2f dBf OR \%.2f dBW\n', PtdBf,
     PtdBW)
18 Pt=10^(PtdBW/10); //transmitted power in Watts
19 mprintf(' Pt=\%.2 f W', Pt);
```

Scilab code Exa 16.7 range of transmission

```
1 clc;
2 close();
3 clear();
4 //page no 525
5 //prob no. 16.7
6 hT=50; //m
7 hR=5; //m
8 d_km=sqrt(17*hT)+sqrt(17*hR); //in km
9 mprintf(' d(km)=%.2 f Km ',d_km);
```

Scilab code Exa 16.8 Received power

```
1 clc;
```

```
2 close();
3 clear();
4 //page no 528
5 //prob no. 16.8
6 Pt=10000;
             //Watts
7 \text{ Gt} = 25;
               //dB
8 f = 3;
               //GHz
9 d=50;
              //km
10 sigma=20 //radar cross section in m^2
11 alfa2_dB=20*log10(f)+40*log10(d)+163.43-10*log10(
      sigma); // alfa 2 (dB) calculation
12 mprintf(' The two way path loss is, alfa2(dB)= \%.2 f
      dB \setminus n', alfa2_dB);
13 PtdBW=10*log10(Pt);
                          //transmitted power in dB
14 mprintf (' Pt(dBW) = \%i dBW \ ', PtdBW)
15 PrdBW=PtdBW+2*Gt-alfa2_dB //dBW
16 mprintf(' Pr(dBW)=\%.2 f dBW \setminus n', PrdBW);
17 Pr=10^(PrdBW/10);
18 mprintf(' Pr=\%.2 f fW', Pr*10^15);
```

Scilab code Exa 16.9 Distance to the target

```
1 clc;
2 close();
3 clear();
4 //page no 530
5 //prob no. 16.9
6 c=3*10^8; //speed of light in m/s
7 Td=400*10^-6 //s
8 d=c*Td/2 //in m
9 mprintf('d=%.0f Km',d*10^-3);
```

Scilab code Exa 16.10 Pulse radar system

```
1 clc;
2 close();
3 clear();
4 //page no 530
5 //prob no. 16.10
6 c=3*10^8;
               //speed of light in m/s
7 fp=2*10^3;
                //Hz
            //s
8 T=1/fp
                      //in m
9 dmax=c*T/2
10 mprintf('(a) d max=\%.0 f \text{ Km } n', \text{dmax}*10^-3);
11 tau=6*10^-6;
                    //s
12 \text{ dmin=c*tau/2}
                    //m
13 mprintf('(b) d min=\%.0 f m ', dmin);
```

Scilab code Exa 16.11 Doppler shift

Scilab code Exa 16.12 Speed of automobile

```
1 clc;
2 close();
3 clear();
4 //page no 532
```

```
5 //prob no. 16.12
6 c=186000; //speed of light in mi/s
7 fc=10*10^9; //Hz
8 fD=2*10^3; //frequency shift in Hz
9 v=c*fD/(2*fc); //speed in mi/s
10 mprintf('Speed of automobile , v=%.2f*10^-3 mi/s \n', v*10^3);
11 v=3600*v;
12 mprintf(' v=%.1f mi/hr \n',v);
```

Scilab code Exa 16.13 Angle of refraction

```
1 clc;
2 close();
3 clear();
4 //page no 535
5 //prob no. 16.13
6 n1=1; //refraction index of air
7 E2=4 //material dielectric constant
8 theta_i=50 //angle of incidence in degree (
         misprinted in the solution)
9 n2=sqrt(E2);
10 theta_r=asin(n1/n2*sin(theta_i*%pi/180));
11 mprintf(' The angle of refraction is %.2 f \n (using angle of incidence =50)\n', theta_r*180/%pi);
12 //misprinted angle
```

Satellite communication

Scilab code Exa 17.1 Satellite

```
1 clc;
2 close();
3 clear();
4 //page no 547
5 //prob no. 17.1
6 \text{ H=10^6};
           //meter
7 v=20*10^6/sqrt(H+6.4*10^6); //m/s
8 mprintf('(a) velocity, v=\%i m/s n', v);
               //data rate in bits per second
9 R=6.4*10^6;
10 C=2*%pi*(H+R); //circumference in m
11 mprintf('(b) circumference, C=\%i m\n',C);
      raunded value of C shown in book solution
12 \quad T = C / v;
13 mprintf('(c)) The period is , T=%.2f seconds or %.2f
     minutes', T, T/60);
```

Scilab code Exa 17.2 Declination offset angle

Scilab code Exa 17.3 Satellite transmitter

```
1 clc;
2 close();
3 clear();
4 //page no 552
5 //prob no. 17.3
6 c=3*10^8; //speed of light in m/s
7 f=3.7*10^9; //Hz
8 lembda=c/f;
                   //m
9 mprintf('The wave length is \%.4 \,\mathrm{f} cm \n',lembda*100)
10 theta_3dB=8;
                     //degree
11 D=70*lembda/theta_3dB
                                 //m
12 mprintf('The diameter is, D=\%.4 \, \text{f m } \setminus \text{n',D});
                   //illumination efficiency
13 eta_1=.6;
14 G=eta_1*(\%pi*D/lembda)^2; //gain calculation
15 mprintf ('The Gain is G = \%.2 \, \text{f} \, \text{n',G})
16 G_dB = 10 * log 10 (G); //dB gain
17 mprintf ('The Gain in dB is G(dB) = \%.3 f dB \setminus n', G_dB)
```

Scilab code Exa 17.4 Gain required

```
1 clc;
2 close();
3 clear();
4 //page no 553
5 //prob no. 17.4
6 theta_3dB=1.6; // beamwidth in degree
7 eta_1=.6; //illumination efficiency
8 G=eta_1*48000/(theta_3dB)^2; //gain calculation
9 mprintf('The Gain is G= %.0 f \n',G)
10 G_dB=10*log10(G); //dB gain
11 mprintf('The Gain in dB is G(dB)= %.1 f dB \n',G_dB)
```

Scilab code Exa 17.5 Gain required

```
1 clc;
2 close();
3 clear();
4 //page no 554
5 //prob no. 17.5
6 \text{ theta_3dB=.3};
                     // minimum practical beamwidth in
      degree
7 eta_1=.6;
               //illumination efficiency
8 \text{ G=eta}_1*48000/(\text{theta}_3\text{dB})^2;
                                        //gain calculation
9 mprintf('The Gain is G = \%.0 \, f \, n', G)
10 G_dB = 10 * log10(G);
                        //dB gain
11 mprintf ('The Gain in dB is G(dB) = \%.1 f dB \setminus n', G_dB)
```

Scilab code Exa 17.6 Diameter of ground station uplink antenna

```
1 clc;
2 close();
3 clear();
4 //page no 554
```

```
5 //prob no. 17.6
6 c=3*10^8; //speed of light in m/s
7 f=5.925*10^9; //Hz
8 lembda=c/f; //m
9 mprintf('The wave length is %.3 f cm \n',lembda*100)
10 theta_3dB=1.6; // beamwidth degree
11 D=70*lembda/theta_3dB //m
12 mprintf('The diameter is, D= %.3 f m \n',D);
```

Scilab code Exa 17.7 Distance from earth station

```
1 clc;
2 close();
3 clear();
4 //page no 556
5 //prob no. 17.7
6 l=127-70.2; // Difference in longitude
7 L=40.5 // Latitude of New York
8 d_km=35.786*10^3*sqrt(1+0.42*(1-cos(L*%pi/180)*cos(l*%pi/180)));
9 mprintf('The distance is %.0f km \n',d_km)
```

Scilab code Exa 17.8 Determine C to N ratio

```
1 clc;
2 close();
3 clear();
4 //page no 556;
5 //prob no. 17.8;
6 PtdBW=20;
7 GtdB=55;
8 EIRP_dBW=PtdBW+GtdB;
```

```
9 mprintf('The EIRP for uplink earth station is %.0f
     dBW \setminus n', EIRP_dBW)
10 1=91-70.2; // Difference in longitude
11 L=40.5 //Latitude of New York
12 d_{km}=35.786*10^3*sqrt(1+0.42*(1-cos(L*%pi/180)*cos(1))
      *%pi/180)));
13 mprintf('The distance is \%.0 \text{ f km } \text{ n',d_km})
14
15 f=6.125
                //Uplink frequency in GHz
16 alfa1_dB=20*log10(f)+20*log10(d_km)+92.44; //Path
       loss
17 mprintf('The path loss is %.2f dB \n',alfa1_dB)
18
19 FdB=3; //noise figure in dB
20 F=10^(FdB/10) //absolute noise figure (exact
      value)
21 Te=(F-1)*290; //Noise temperature
22 mprintf ('The Noise temperature of satellite reciever
       is \%.0 f K \setminus n, Te)
23 Ti=300;
            //input noise temperature in K
24 \text{ Tsys} = \text{Ti} + \text{Te}
25 mprintf ('The system temperature of satellite
      reciever is \%.0 \, f \, K \, \backslash n', Tsys)
26 G_dB = 27
                //satellite reciever antwnna gain
27 GT=G_dB-10*log10(Tsys); //G/T ratio in dB
28 mprintf ('The G/T ratio for satellite reciever is \%.2
      f dB/K \setminus n', GT)
29 B=36*10^6 ;// Bandwidth
                                in Hz
30 L_misc=1.6
                   //atmospheric loss
31 CN=EIRP_dBW-alfa1_dB+GT+228.6-10*log10(B)-L_misc;
         //C/N in dB
32 mprintf ('The carrier power to noise ratio at the
      satellite reciever is %.2f dB \n',CN)
33 // Value of F is rouded to 2 in the text
```

Scilab code Exa 17.9 Determine C to N ratio

```
1 clc;
2 close();
3 clear();
4 //page no 557
5 //prob no. 17.9
7 EIRP_dBW=47.8;
                     //\mathrm{dBW}
8 1=91-90;
                 //Difference in longitude
          //Latitude of New York
9 L = 32
10 d_{km}=35.786*10^3*sqrt(1+0.42*(1-cos(L*%pi/180)*cos(1))
      *%pi/180)));
11 mprintf('The distance is \%.0 \text{ f km } \text{ n',d_km})
12
13 f=3.9
             //downlink frequency in GHz
14 alfa1_dB=20*log10(f)+20*log10(d_km)+92.44;
                                                      //Path
       loss
15 mprintf ('The path loss is \%.2 \,\mathrm{f}\ \mathrm{dB}\ \mathrm{n}', alfa1_dB)
16
17 F=1.778 //absolute noise figure
18 Te=(F-1)*290; //Noise temperature
19 mprintf ('The Noise temperature of satellite reciever
       is \%.2 f K \setminus n', Te)
20 \text{ Ti} = 150;
             //input noise temperature in K
21 Tsys=Ti+Te
22 mprintf ('The system temperature of satellite
      reciever is \%.2 f K \setminus n', Tsys)
23 G_dB = 42
                //satellite reciever antwnna gain
24 GT=G_dB-10*log10(Tsys); //G/T ratio in dB
25 mprintf ('The G/T ratio for satellite reciever is \%.2
      f dB/K \setminus n', GT
26 B=36*10^6 ;// Bandwidth
27 L_misc=1 //atmospheric loss
28 CN=EIRP_dBW-alfa1_dB+GT+228.6-10*log10(B)-L_misc;
         //C/N in dB
29 mprintf ('The carrier power to noise ratio at the
      satellite reciever is %.1f dB \n',CN)
```

Wireless Network communication

Scilab code Exa 19.2 First 10 channel in hop sequence

```
1 clc;
2 close();
3 clear();
4 //page no 605
5 //prob no. 19.2
6 b=[0 23 62 8 43 16 71 47 19 61]
7 \text{ for } i=1:10
8
       f9(i) = [b(i) + 9] + 2
       if f9(i)>79 then
9
            f9(i)=f9(i)-79
10
11
       end
       mprintf ('\nFor i=\%i ,b(i)=\%i. Therefore . f9(\%i)=[
12
          \%i+9 \mod (79)+2=\%i',i,b(i),i,b(i),f9(i)
13 end
```

Scilab code Exa 19.4 Part of FHSS frame

```
1 clc;
2 close();
3 clear();
4 //page no 607
5 //prob no. 19.4
6 fd=.160; //in MHz
7 Fc=2411;
8     mprintf('(a) fd=%.2 f MHz. a 0 is represented by % .2 f MHz\n',fd,Fc-fd)
9     mprintf('(b)A 1 is represented by %.2 f MHz\n',Fc +fd)
```

Scilab code Exa 19.5 FHSS frame

```
1 clc;
2 close();
3 clear();
4 //page no 607
5 //prob no. 19.5
6 fd1=.216;
                   //in MHz
7 \text{ fd2} = .072;
                   //in MHz
8 \text{ Fc} = 2400 + 25;
                     /MHz
        mprintf('(a) fd1=\%.2 f MHz. a 00 is represented by
9
            \%.3 \text{ f } MHz \setminus n', fd1, Fc-fd1)
        mprintf('(b)A 01 is represented by \%.3 f MHz\n',
10
           Fc-fd2)
        mprintf('(c)A 10 is represented by \%.3 \text{ f MHz} \ ',
11
           Fc+fd1)
        mprintf('(b)A 11 is represented by \%.3 \text{ f MHz}\n',
12
           Fc+fd2)
  //answer in part a is misprinted in the text
```

Scilab code Exa 19.6 Waveform of DBPSK

```
1 clc;
2 close();
3 clear();
4 //page no 608
5 //prob no. 19.6
6 code=[0 1 0 1 1 0];
7 t = [0:.01:2] // for x-axis
8 a=[\sin(2*\%pi.*t)] //for y-axis
9 y=[]
10 x = []
11 for i=1:length(code)
12
13
       if code(i) == 1 then
14
            a=-a;
15
       end
       y = [y a]
16
       x=[x 2*\%pi.*(t+2*(i-1))]
17
18 \text{ end}
19
20 clf
21 plot(x,y)
22 a=gca(); // Handle on axes entity
23 a.x_location = "origin";
24 a.y_location = "origin";
25 xtitle('DPSK used to encode 010110','Time','
      amplitude')
26 xgrid
```

Scilab code Exa 19.7 Waveform of DQPSK

```
1 clc;
2 close();
3 clear();
4 //page no 609
5 //prob no. 19.7
```

```
6 code=[0 0 1 1 1 0 0 0 0 0 0 1];
7 t = [0:.01:2] // for x-axis
8 y=[]
9 x=[]
10 p = 0
        //phase shift
11 for i=1:2:length(code)
       if code(i) == 0 then
12
13
            if code(i+1) == 0 then
                p=p+0
14
15
            else
16
                p=p+%pi/2
17
            end
18
       else
            if code(i+1)==1 then
19
20
                p=p+%pi
21
            else
22
                p=p+3*\%pi/2
23
            end
24
       end
25
       y = [y \sin(2*\%pi.*t+p)];
26
       x=[x 2*\%pi.*(t+(i-1))];
27 \text{ end}
28
29 clf()
30 plot(x,y);
31 a=gca(); // Handle on axes entity
32 a.x_location = "origin";
33 a.y_location = "origin";
34 xtitle('DQPSK used to encode 001110000001', 'Time','
      amplitude');
35 xgrid
```

Optical communication

Scilab code Exa 20.1 Frequency of the laser

```
1 clc;
2 close();
3 clear();
4 //page no 616
5 //prob no. 20.1
6 lembda=1300*10^-9; //wavwlength in m
7 c=3*10^8; //speed of light in m/s
8 f=c/lembda //in Hz
9 mprintf('frequency of laser is ,f=%.0f THz',f
    *10^-12);
```

Scilab code Exa 20.2 Angle of refraction

```
1 clc;
2 close();
3 clear();
4 //page no 619
5 //prob no. 20.2
```

```
6 theta_i=30; // degree
7 ni=1.00; // incident refraction index
8 nr=1.52; // refeacted ray refraction index
9 theta_r=asin(ni/nr*sin(theta_i*%pi/180)); // in
    radians
10 mprintf('angle of refraction is %.2f degree',
    theta_r*180/%pi);
```

Scilab code Exa 20.3 Critical angle

```
1 clc;
2 close();
3 clear();
4 //page no 620
5 //prob no. 20.3
6 theta_r=90; //degree
                  //refraction index for crown glass
7 \text{ ni} = 1.52;
8 nr=1.00; //refraction index for air
9 theta_i=asin(nr/ni*sin(theta_r*%pi/180));
                                                 //in
     radians
10 mprintf('critical angle is %.2f degree',theta_i
     *180/%pi);
11 //misprinted theta_r in the text
12 //values are raunded up in the text
```

Scilab code Exa 20.4 Responsivity of photodiode

```
1 clc;
2 close();
3 clear();
4 //page no 624
5 //prob no. 20.4
6 eta=.8; //efficiency
```

```
7 lembda=850; //nm  
8 R=eta*lembda/1234; // A/W  
9 mprintf('The responsivity of diode is R= \%.2\,\mathrm{f} A/W', R);
```

Scilab code Exa 20.5 Responsivity of photodiode

Scilab code Exa 20.6 Loss in cable

```
1 clc;
2 close();
3 clear();
4 //page no 627;
5 //prob no. 20.6;
6 L=.4*.8; //loss in dB;
7 mprintf('The loss usong this cable is L= %.2f dB',L);
```

Scilab code Exa 20.7 Loss of multimode cable

```
1 clc;
2 close();
3 clear();
4 //page no 627;
5 //prob no. 20.7;
6 L=2.7*.8; //loss in dB;
7 mprintf('The loss usong multimode cable is L= %.2f dB',L);
```

Consumer communication systems

Scilab code Exa 21.1 difference between stereo FM and monaural FM

```
1 clc;
2 close();
3 clear();
4 //page no 637
5 //prob no. 21.1
6 D1 = 5;
7 GR1=3*D1^2*(1+D1);
8 mprintf('The reciever processing gain is GR1= \%.0 f \
     n', GR1);
9 Bt=200*10^3; //bandwisth in Hz
10 \ W=53*10^3;
                    //highest modulating frequency in
     Hz
11 D2=Bt/(2*W)-1; //deviation ratio
12 mprintf ('D2=\%.3 \text{ f} \ ', D2);
13 GR2=3*D2^2*(1+D2);
14 mprintf ('The reciever processing gain for sterio FM
      is GR2=\%.3 f \ n', GR2);
15 mprintf ('The ratio of the two gains is GR2/GR1= %.4 f
        dB \setminus n', GR2/GR1);
```

```
dBdiffrence=10*log10(GR2/GR1)
mprintf('dB diffrence= %.0 f dB\n',dBdiffrence);
```

Scilab code Exa 21.2 Monochrome TV

```
1 clc;
2 close();
3 clear();
4 //page no 644
5 //prob no. 21.2
6 mprintf('The percentage is %.0f',483/525*100)
```

Scilab code Exa 21.3 Deviation ratio in TV channel

```
1 clc;
2 close();
3 clear();
4 //page no 644
5 //prob no. 21.3
6 D=25/15;
7 mprintf('The deviation ratio is D=%.3f',D)
```

Scilab code Exa 21.4 Transmission bandwidth of monaural television FM

```
1 clc;
2 close();
3 clear();
4 //page no 644
5 //prob no. 21.4
6 delta_f=25 //KHz
```

```
7 W=15; //KHz
8 Bt=2*(delta_f+W) //bandwidth
9 mprintf('The bandwidth is Bt=%i KHz',Bt)
```