Interest Rate Modelling and Derivative Pricing

Sebastian Schlenkrich

HU Berlin, Department of Mathematics

WS, 2019/20

Part VI

Model Calibration

Yield Curve Calibration

Calibration Methodologies for Hull-White Model

Yield Curve Calibration

Calibration Methodologies for Hull-White Mode

Yield Curve Calibration

General Calibration Problem

Market Instruments and Multi-Curve Setups

What is the goal of yield curve calibration?

We aim at finding a set of yield curves that allows re-pricing a set of market instruments.

We start with a single-curve setting example to illustrate the general principle

Consider Vanilla swaps as market instruments with the pricing formula (single-curve setting, $t \leq T_0$)

$$\mathsf{Swap}^{\mathbf{k}}(t) = \underbrace{[P(t, T_0) - P(t, T_{n_k})]}_{\mathsf{float leg}} - \underbrace{\sum_{i=1}^{n_k} R \cdot \tau_i \cdot P(t, T_i)}_{\mathsf{fixed Leg}}.$$

A market swap quote R_k for a T_{n_k} -maturing (and spot-starting) Vanilla swap is the fixed rate that prices the swap at par, i.e.

$$\underbrace{0}_{\mathsf{Market}(R_k)} = \mathsf{Swap}^{k}(0) = [P(0, T_0) - P(0, T_{n_k})] - \sum_{i=1}^{n_k} \frac{R_k \cdot \tau_i \cdot P(0, T_i)}{\mathsf{Model}[P](R_k)}.$$

We associate a calibration helper operator $\mathcal{H}_k = \mathcal{H}_k[P]$ with each market instrument which takes as input a yield curve P(0, T) and calculates (for a market quote)

$$\mathcal{H}_k[P](R_k) = \mathsf{Model}[P](R_k) - \mathsf{Market}(R_k).$$

Yield curve calibration is formulated as minimisation problem

(Single-Curve) Yield Curve Calibration Problem

For a given set of market quotes $\{R_k\}_{k=1,\ldots q}$ with corresponding instruments and calibration helpers $\mathcal{H}_k[P]$, the yield curve calibration problem is given by

$$\min_{P} \left\| \left[\mathcal{H}_1 \left[P \right] \left(R_1 \right), \dots, \mathcal{H}_q \left[P \right] \left(R_q \right) \right]^\top \right\|.$$

- Effectively, we only need a finite set of $P(0, T_i)$.
- Without further constraints there are multiple yield curves P(0, T) that give optimal solution

$$\left[\mathcal{H}_1\left[P\right]\left(R_1\right),\ldots,\mathcal{H}_q\left[P\right]\left(R_q\right)\right]^{\top}=0\in\mathbb{R}^q.$$

- We need to add sensible regularisation to
 - make calibration problem tractable, in particular finite dimensional domain,
 - ensure unique, accurate and sensible solution,
 - allow for efficient computation.

Regularisation is achieved by discretisation and interpolation of the yield curve

Order market quotes R_k and calibration helpers $\mathcal{H}_k\left[P\right]$ by increasing final maturity T_{n_k} $(k=1,\ldots,q)$ of underlying instruments. Set

$$R = [R_1, \dots, R_q]$$
 and $\mathcal{H}[P] = [\mathcal{H}_1[P], \dots, \mathcal{H}_q[P]]$.

Define a vector of yield curve parameters $z = [z_1, \dots, z_q]^{\top} \in \mathbb{R}^q$ which specify the yield curve via

$$P = P[z]$$
.

- ▶ Typically, z_k are zero, forward rates or discount factors for maturities T_{n_k} .
- Compare with interpolation traits in QuantLib.

Specify P[z](0, T) via interpolation/extrapolation based on curve parameters z.

E.g. monoton cubic spline interpolation.

We re-formulate the calibration problem in terms of model parameters

Finite Dimensional Yield Curve Calibration Problem

The yield curve calibration problem in terms of yield curve model parameters is given by

$$\min_{z} \|\mathcal{H}\left[P\left[z\right]\right](R)\|$$

where

$$z = [z_1, \dots, z_q]^{\top}$$
, $R = [R_1, \dots, R_q]^{\top}$ and $\mathcal{H}[P] = [\mathcal{H}_1[P], \dots, \mathcal{H}_q[P]]$.

- In general, parametrised calibration problem can be solved by general purpose optimisation methods.
- This can be computationally expansive if number of inputs and parameters q is large.
- We can also exploit the structure of the problem to reduce computational complexity.

The multi-dimensional calibration problem can be reduced to a sequence of one-dimensional calibration problems I

Lemma

Consider our parametrised calibration problem setting. Assume a yield curve parametrisation P[z] such that discount factors P[z] (0,T) are continuously differentiable w.r.t. z for all maturities T, and parametrised locally in the sense that

$$\frac{\partial}{\partial z_k} P\left[z\right](0,T) = 0 \quad \text{for} \quad T \leq T_{n_{k-1}}.$$

Then the Jacobi matrix $\frac{d}{dz}\mathcal{H}\left[P\left[z\right]\right]\left(R\right)$ is of lower triangular form.

Proof:

Consider a component of the Jacobi matrix

$$\begin{split} \frac{d}{dz_{l}}\mathcal{H}_{k}\left[P\left[z\right]\right]\left(R\right) &= \frac{d}{dz_{l}}\mathsf{Model}[P\left[z\right]]\left(R_{k}\right) \\ &= \frac{d}{dz_{l}}\left[P(0,T_{0}) - P(0,T_{n_{k}}) - \sum_{i=1}^{n_{k}} R_{k} \cdot \tau_{i} \cdot P(0,T_{i})\right] \\ &= \frac{d}{dz_{l}}P(0,T_{0}) - \frac{d}{dz_{l}}P(0,T_{n_{k}}) - \sum_{i=1}^{n_{k}} R_{k} \cdot \tau_{i} \cdot \frac{d}{dz_{l}}P(0,T_{i}). \end{split}$$

The multi-dimensional calibration problem can be reduced to a sequence of one-dimensional calibration problems II

The largest maturity is T_{n_k} . Thus, due to local parametrisaion property, for $l > k \frac{d}{dz_l} P(0, T_{n_k}) = 0$. Same holds for maturities $T_i \leq T_{n_k}$. Consequently,

$$\frac{d}{dz_{l}}\mathcal{H}_{k}\left[P\left[z\right]\right]\left(R_{k}\right)=0\quad\text{for}\quad l>k$$

and

$$\frac{d}{dz}\mathcal{H}[P[z]](R) = \begin{bmatrix} \star & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ \star & \dots & \dots & \star \end{bmatrix}.$$

- Solve calibration problem row-by-row.
- For each row k leave z_l fixed for l < k and only use z_k for optimisation.

Sequential yield curve calibration is also called yield curve bootstrapping

If there is an exact solution z such that $\mathcal{H}[P[z]](R) = 0$ then we can find it by solving sequence of one-dimensional equations

$$h_k(z_k) = \mathcal{H}_k \left[P\left[z_1, \dots z_{k-1}, z_k, z_k, \dots \right] \right] (R_k) = 0 \quad \text{for} \quad k = 1, 2, \dots, q.$$

If there is no exact solution, we can still exploit lower triangular form of Jacobi matrix in efficiently solving

$$\min_{z} \|\mathcal{H}\left[P\left[z\right]\right](R)\|.$$

- Local parametrisation is achieved e.g. by spline interpolation methods that are fully specified by two neighboring points (e.g. linear interpolation).
- Note that local parametrisations typically yield less smooth forward rate curves than parametrisations where a change in a single parameter impacts a broader range of discount factors.

Do we really need the restriction to local parametrisation?

In many curve parametrisations/interpolations sensitivity $\frac{\partial}{\partial z_k} P[z](0, T)$ is small for $T \leq T_{n_{k-1}}$.

Example: Interpolated forward rates f(0, T) with cubic C^2 -splines bumped by 1% at 10v:

- ▶ 10y rate bump does affect curve before 9y time point.
- ► However, impact is small compared to impact around 10y maturity.

We can extend the bootstrapping method to non-local parametrisations

Iterative Bootstrapping Method

Suppose we have a calibration problem set up via

$$\mathcal{H}\left[P\left[z\right]\right] = \left[\mathcal{H}_1\left[P\left[z\right]\right], \dots, \mathcal{H}_q\left[P\left[z\right]\right]\right].$$

The iterative bootstrapping solves the calibration problem $\mathcal{H}[P[z]] = 0$ via the following steps:

- 1. Set initial solution $z^0 = \begin{bmatrix} z_1^0, \dots z_q^0 \end{bmatrix}$ via standard bootstrapping.
- 2. If $\mathcal{H}\left[P\left[z^{0}\right]\right] \neq 0$ repeat the fixpoint iteration:
 - 2.1 For k = 1, 2, ..., q find z_k^i such that

$$h_k(z_k^i) = \mathcal{H}_k\left[P\left[z_1^i, \dots z_{k-1}^i, z_k^i, z_{k+1}^{i-1}, \dots, z_q^{i-1}\right]\right](R_k) = 0.$$

- 2.2 Stop iteration if $||z^i z^{i-1}|| < \varepsilon$.
- lterative bootstrapping method usually converges in a few iterations.

Yield Curve Calibration

General Calibration Problem

Market Instruments and Multi-Curve Setups

Single-curve calibration procedure is typically applied to discount curves from OIS swaps

Recall

$$\mathsf{CompSwap}(t) = \underbrace{\sum_{j=1}^m L(t; T_{j-1}, T_j) \cdot \tau_j \cdot P(t, T_j)}_{\mathsf{compounding leg}} - \underbrace{\sum_{j=1}^m R \cdot \tau_j \cdot P(t, T_j)}_{\mathsf{fixed leg}},$$

$$L(t, T_{j-1}T_j) = \left[\frac{P(t, T_{j-1})}{P(t, T_i)} - 1\right] \frac{1}{\tau_i} \quad \mathsf{(compounded OIS rate)}.$$

Compounding swap rate helper can be defined solely in terms of discount curve P via

$$\mathcal{H}^{CS}[P](K) = \mathsf{CompSwap}(0) - 0.$$

Single curve calibration procedure can be applied straight away.

OIS discount curves can be derived from OIS swaps via single-curve calibration procedure.

Forward rate agreements (FRA) can be used to specify short end of projection curves

Market quote of FRA with start date T_0 and tenor δ is the fixed rate K that prices the FRA at par as of today. Consider present value

$$\mathsf{FRA}(t) = \underbrace{P(t, T_0)}_{\mathsf{discounting to}} \cdot \underbrace{\left[L^{\delta}(t; T_0, T_0 + \delta) - K \right] \cdot \tau}_{\mathsf{payoff}} \cdot \underbrace{\frac{1}{1 + \tau \cdot L^{\delta}(t; T_0, T_0 + \delta)}}_{\mathsf{discounting from}} \cdot \underbrace{1}_{\mathsf{T}_0 + \delta}$$

Condition FRA(t) = 0 yields FRA calibration helper

$$\mathcal{H}^{\mathsf{FRA}}\left[P^{\delta}
ight](K) = L^{\delta}(0; T_0, T_0 + \delta) - K = \left[rac{P^{\delta}(0, T_0)}{P^{\delta}(0, T_0 + \delta)} - 1
ight]rac{1}{ au} - K.$$

- Typical tenors δ are 1m, 3m, 6m and 12m (corresponding to Libor rate indices).
- ightharpoonup Typical expiries T_0 are up to 2y.
- Both, available tenors and expiries, depend on the market (or currency).
- Note that FRA rate helper only depends on projection curve $P^{\delta}(0, T_0)$.

Vanilla swaps are used to specify projection curves for longer maturities

Multi-curve swap price is given by

$$\mathsf{Swap}(t) = \underbrace{\sum_{j=1}^{m} L^{\delta}(t, \tilde{T}_{j-1}, \tilde{T}_{j-1} + \delta) \cdot \tilde{\tau}_{j} \cdot P(t, \tilde{T}_{j})}_{\mathsf{float leg}} - \underbrace{\sum_{i=1}^{n} K \cdot \tau_{i} \cdot P(t, T_{i})}_{\mathsf{fixed Leg}}.$$

Vanilla swap rate helper becomes

$$\mathcal{H}^{VS}\left[P^{\delta},(P)\right](K) = \sum_{j=1}^{m} L^{\delta}(0,\tilde{T}_{j-1},\tilde{T}_{j-1}+\delta) \cdot \tilde{\tau}_{j} \cdot P(t,\tilde{T}_{j}) - \sum_{i=1}^{n} K \cdot \tau_{i} \cdot P(0,T_{i}).$$

- Rate helper depends on forward curve P^{δ} via forward Libor rates $L^{\delta}(0, \tilde{T}_{i-1}, \tilde{T}_{i-1} + \delta)$.
- Rate helper also depends on discount curve P via discount factors $P(t, \tilde{T}_j)$ and $P(0, T_i)$.
 - ▶ This is reflected by notation $\mathcal{H}^{VS}[\cdot, (P)]$.
 - ▶ We put dependence in parentheses (*P*) because usually discount curve *P* is calibrated earlier already from OIS swaps.

Projection curve calibration is analogous to single curve calibration I

- Specify projection curve parameters z^{δ} and projection curve $P^{\delta} = P^{\delta} \left[z^{\delta} \right]$.
 - Use methodologies/interpolations analogous to discount curves.
- ightharpoonup Set up calibration problem in terms of z^{δ} via

$$\mathcal{H}^{\delta}\left[P^{\delta}\left[z^{\delta}
ight]
ight] = \left[egin{array}{c} \mathcal{H}_{1}^{\mathsf{FRA}}\left[P^{\delta}\left[z^{\delta}
ight]
ight] \\ dots \\ \mathcal{H}_{q_{\mathsf{FRA}}}^{\mathsf{FRA}}\left[P^{\delta}\left[z^{\delta}
ight]
ight] \\ \mathcal{H}_{1}^{\mathsf{VS}}\left[P^{\delta}\left[z^{\delta}
ight],(P)
ight] \\ dots \\ \mathcal{H}_{q_{\mathsf{VS}}}^{\mathsf{VS}}\left[P^{\delta}\left[z^{\delta}
ight],(P)
ight] \end{array}
ight]$$

where calibration helpers are ordered by last cash flow date.

Obtain a set of market quotes

$$R^{\delta} = \begin{bmatrix} R_1^{\mathsf{FRA}}, \dots, R_{q_{\mathsf{FRA}}}^{\mathsf{FRA}}, R_1^{\mathsf{VS}}, \dots, R_{q_{\mathsf{VS}}}^{\mathsf{VS}} \end{bmatrix}^{\top}.$$

Projection curve calibration is analogous to single curve calibration II

Depending on curve parametrisation solve

$$\min_{z}\left\|\mathcal{H}^{\delta}\left[P^{\delta}\left[z^{\delta}\right],(P)\right]\left(R^{\delta}\right)\right\|$$

via iterative bootstrapping or multi-dimensional optimisation method.

In principle, discount curve P and projection curve P^{δ} could also be solved simultaneously by augmented optimisation problem

$$\min_{z,z^{\delta}} \left\| \hat{\mathcal{H}} \left[P[z], P^{\delta}[z^{\delta}] \right] \left(R, R^{\delta} \right) \right\|.$$

 However, keep in mind increased computational effort and complexity.

Basis swaps are further instruments which are liquidely traded and also used for curve calibration I

Tenor Basis Swap

Floating rate payments of a longer Libor tenor are exchanged against floating rate payments of a shorter Libor tenor plus fixed spread,

$$\begin{aligned} \mathsf{TenorSwap}(t) &= \sum_{j=1}^{m_1} L^{\delta_1}(t,\tilde{T}_{j-1},\tilde{T}_{j-1}+\delta_1) \cdot \tilde{\tau}_j \cdot P(t,\tilde{T}_j) \\ &- \sum_{j=1}^{m_2} \left[L^{\delta_2}(t,\hat{T}_{j-1},\hat{T}_{j-1}+\delta) + \boldsymbol{s} \right] \cdot \hat{\tau}_j \cdot P(t,\hat{T}_j). \end{aligned}$$

- For example, $\delta_1 = 6m$ and $\delta_2 = 3m$.
- Market quote is spread s (corresponding to maturity) which prices swap at par.
- ► Typical use case: USD curves:
 - In USD the following swap instruments are quoted:
 - OIS vs. fixed.

Basis swaps are further instruments which are liquidely traded and also used for curve calibration II

- 3m Libor vs. fixed,
- 6m Libor vs. 3m Libor plus spread.
- First calibrate OIS discount curve P and 3m projection curve P^{3m} .
- Then use P and P^{3m} and calibrate P^{6m} from quoted tenor basis spreads.

Cross currency basis swaps reference Libor rates in two currencies

Cross Currency Basis Swap

In a (constant notional) cross currency basis swap floating rate payments of a Libor rate in one currency are exchanged against floating rate payments of a Libor rate in another currency plus fixed spread,

$$\begin{split} \mathsf{XCcySwap}(t) &= \mathit{N}_1 \left\{ \sum_{j=1}^{m_1} L^{\delta_1}(t,\tilde{T}_{j-1},\tilde{T}_{j-1}+\delta_1) \tilde{\tau}_j P^1(t,\tilde{T}_j) + P^1(t,\tilde{T}_{m_1}) \right\} \\ &- \mathit{Fx}(t) \mathit{N}_2 \left\{ \sum_{j=1}^{m_2} \left[L^{\delta_2}(t,\hat{T}_{j-1},\hat{T}_{j-1}+\delta) + \mathbf{s} \right] \hat{\tau}_j P^2(t,\hat{T}_j) + P^2(t,\hat{T}_{m_2}) \right\}. \end{split}$$

- \triangleright N_1 domestic currency notional, N_2 foreign currency notional.
- Fx(t) spot FX rate CCY2 / CCY1.
- At trade date t_d notionals N_1 and N_2 are exchanged at time- t_d spot FX rate, i.e. $N_1 = Fx(t_d)N_2$.

We have a look at the curves involved

projection curve from CCY-1 Libor swaps

discount curve from CCY-1 OIS swaps

$$\mathsf{XCcySwap}(t) = N_1 \left\{ \sum_{j=1}^{m_1} L^{\delta_1}(t, \tilde{T}_{j-1}, \tilde{T}_{j-1} + \delta_1) \tilde{\tau}_j P^1(t, \tilde{T}_j) + P^1(t, \tilde{T}_{m_1}) \right\}$$

$$- \mathit{Fx}(t) N_2 \left\{ \sum_{j=1}^{m_2} \left[L^{\delta_2}(t, \hat{T}_{j-1}, \hat{T}_{j-1} + \delta) + s \right] \hat{\tau}_j P^2(t, \hat{T}_j) + P^2(t, \hat{T}_{m_2}) \right\}$$

projection curve from CCY-2 Libor swaps

discount curve specific to XCCY discounting in CCY-2

- Cross currency swaps require particular discount curves.
- Cross currency discount curves (here P^2) are calibrated from quoted cross currency swap spreads (here s).
- ► Theoretical background is established via Collateralised Discounting.
- For details, see e.g. M. Fujii and Y Shimada and A. Takahashi, Collateral Posting and Choice of Collateral Currency Implications for Derivative Pricing and Risk Management. https://ssrn.com/abstract=1601866.

In summary multi-curve calibration leads to a hierarchy of discount and projection curves

Yield Curve Calibration

Calibration Methodologies for Hull-White Model

What are the parameters we need to calibrate in Hull-White model?

forward rate from initial discount curve P(0,t)

mean reversion e.g. from other exotic option prices

- Short rate volatility $\sigma(t)$ mainly impacts overall variance of the rates.
- Mean reversion a impacts forward volatility (and other related properties).

We first focus on volatility calibration (assuming mean reversion externally specified) and then look into mean reversion calibration.

Calibration Methodologies for Hull-White Model Volatility Calibration

Mean Reversion Calibration Summary of Hull-White model calibration

Market instruments for Volatility calibration are European swaptions

EUR ATM Swaption Please cal	Straddles - BP Volatilities (Calendar day vols)
1Y 2Y 3	17 44 (0)20 732 3080 101 11181 details 17 47 57 77 107 157 207 257 307 3.0 53.8 55.3 61.6 70.1 78.6 85.2 88.7 90.0
2M Opt 38.8 40.9 44	1.8] 48.3 51.4 58.6 67.0 76.3 82.5 84.5 85.5 1.7 46.8 50.9 58.3 66.7 75.0 80.5 82.5 84.1
6M Opt 34.9 37.7 42	2.1 46.9 51.0 59.3 66.3 74.1 78.7 80.1 81.3
	3.1 47.3 51.5 59.1 66.9 73.8 77.5 78.7 79.0 4.3 48.1 52.4 59.8 67.0 73.2 76.0 77.2 77.4
	3.0 50.6 55.0 61.6 68.3 72.6 74.8 75.7 76.1 2.6 55.0 58.2 63.9 69.8 73.0 74.2 75.1 75.5
3Y Opt 56.9 58.8 60	0.6 62.5 64.4 68.3 72.6 73.2 72.9 73.4 73.7
5Y Opt 68.7 69.2 70	0.0 70.8 71.5 73.0 74.7 71.8 70.2 69.3 69.0
7Y Opt 73.0 73.3 73 OY Opt 73.2 73.8 74	8.61.73.81.74.11.74.51.74.81.70.11.67.61.66.41.66.01 EUR Vega - Normal Vol Skews
5Y Opt 70.8 71.2 71 OY Opt 67.7 68.4 68	Receivers Payers
5Y Opt 64.6 64.8 64	1929
	1959 0.20 -2.25 -2.44 -1.59 52.79 2.29 5.14 11.97 19.60 1910 0.24 -1.69 -2.09 -1.40 67.86 2.10 4.80 11.53 19.32
	1ý20ý 13.45 7.57 2.33 0.63 76.97 0.67 2.64 9.62 18.89 1y30y 7.75 4.34 1.43 0.46 79.14 0.16 1.00 4.59 10.15
	2929 11.95 6.40 1.54 0.14 49.98 1.32 3.90 11.32 19.98
	2y5y -3.21 -3.26 -2.23 -1.28 58.62 1.61 3.52 8.09 13.38 2y10y -3.50 -2.97 -1.83 -1.01 70.41 1.21 2.63 6.04 10.10
	2ý20ý 1.10 0.20 -0.30 -0.28 75.04 0.57 1.44 4.09 7.81
	2y30y 4.86 2.51 0.58 0.07 76.50 0.46 1.48 5.08 10.29 5y2y -1.06 -1.41 -1.15 -0.70 69.84 0.95 2.14 5.18 8.91
	5ý20ý -1.66 -1.12 -0.68 -0.38 70.67 0.49 1.10 2.72 4.85
	5y30y -1.51 -0.99 -0.61 -0.35 69.54 0.47 1.07 2.69 4.86 10y2y -3.45 -2.56 -1.43 -0.75 74.34 0.83 1.74 3.79 6.11
	10ý5ý -4.90 -3.28 -1.70 -0.87 74.37 0.92 1.89 4.00 6.33 10y10y -3.04 -1.95 -1.03 -0.54 73.36 0.60 1.29 2.91 4.89
	10ý20ý -2.31 -1.32 -0.64 -0.33 65.38 0.36 0.78 1.79 3.08
	109309 -1.95 -1.17 -0.65 -0.36 63.77 0.46 1.02 2.53 4.54

For Hull-White model calibration we assume that we can already price European swaptions at market level

- In practice, European swaption models depend on available market data (and business case).
- ▶ If only normal ATM volatilities are available (or should be used)⁷
 - interpolate ATM volatilities,
 - ightharpoonup assume normal model $dS = \sigma dW$,
 - use Bachelier formula for Swaption pricing.
- If Swaption smile data is available (in addition to ATM prices/volatilities)
 - calibrate e.g. Shifted SABR models per expiry/swap term to available data,
 - interpolate models (e.g. via SABR model parameters β, ρ, ν),
 - make sure interpolated model fits (interplated) ATM swaption data (e.g. calibrate SABR α individually),
 - use interpolated model to price European swaption.

 $^{^{7}}$ Same holds for (shifted) lognormal volatilities and corresponding basic models. But keep in mind implicit smile assumption!

How can we use European swaption prices to calibrate Hull-White volatility?

$$\begin{split} V^{\mathsf{Swpt}}(T_E) &= \left[\phi\left\{K \cdot \sum_{i=1}^n \tau_i \cdot P(T_E, T_i) - \sum_{j=1}^m L^\delta(T_E, \tilde{T}_{j-1}, \tilde{T}_{j-1} + \delta) \cdot \tilde{\tau}_j \cdot P(T_E, \tilde{T}_j)\right\}\right]^+. \\ V^{\mathsf{CBO}}(T_E) &= \left[\phi\left\{\sum_{k=0}^{n+m+1} C_k \cdot P(T_E, \bar{T}_k)\right\}\right]^+. \\ V^{\mathsf{Swpt}}(t) &= V^{\mathsf{CBO}}(t) = \sum_{k=0}^{n+m+1} C_k \cdot V_k^{\mathsf{ZBO}}(t). \\ V_k^{\mathsf{ZBO}}(t) &= P(t, T_E) \cdot \mathsf{Black}\left(P(t, \bar{T}_k)/P(t, T_E), R_k, \nu_k, \phi\right), \\ \nu_k &= G(T_E, \bar{T}_k)^2 \int_{-T_E}^{T_E} \left[e^{-a(T_E - u)}\sigma(u)\right]^2 du. \end{split}$$

Price of a European swaption depends on short rate volatility $\sigma(t)$ from t=0 to swaption expiry T_E .

We can calibrate a piece-wise constant volatility to a strip of reference European swaptions

Align volatility grid to swaption expiries

We set up calibration helpers

$$\mathcal{H}_{k}\left[\sigma\right]\left(V_{k}^{\mathsf{Swpt}}\right) = \underbrace{V_{k}^{\mathsf{CBO}}(t)}_{\mathsf{Model}\left[\sigma\right]} - \underbrace{V_{k}^{\mathsf{Swpt}}}_{\mathsf{Market}\left(\sigma_{N}^{k}\right)}$$

- $V_k^{\rm CBO}(t)$ Hull-White model price of swaption represented as coupon bond option.
- V_k^{Swpt} (quasi-)market price of swaption obtained from Vanilla model or implied (normal) volatility.

Calibration problem is formulated in terms of short rate volatility values

Set

$$\sigma(t) = \sigma\left[\sigma_1, \ldots, \sigma_{ar{k}}
ight](t) = \sum_{k=1}^k \mathbb{1}_{\left\{\mathcal{T}_{\mathcal{E}}^{k-1} \leq t < \mathcal{T}_{\mathcal{E}}^k
ight\}} \cdot \sigma_k.$$

- Assume distinct expiry/grid dates T_E^k for reference swaptions.
- Assume mean reversion is exogenously given.

Hull-White Volatility Calibration Problem

For a given set of market quotes (or Vanilla model prices) $\left\{V_k^{\mathsf{Swpt}}\right\}_{k=1,\dots,\bar{k}}$ of reference European swaptions with corresponding calibration helpers $\mathcal{H}_k\left[\sigma\left[\sigma_1,\dots,\sigma_{\bar{k}}\right]\right]$ the Hull-White volatility calibration problem is given as

$$\min_{\sigma_{1},\dots,\sigma_{\bar{k}}}\left\|\left[\mathcal{H}_{1}\left[\sigma\right]\left(V_{1}^{\mathsf{Swpt}}\right),\dots,\mathcal{H}_{\bar{k}}\left[\sigma\right]\left(V_{\bar{k}}^{\mathsf{Swpt}}\right)\right]^{\top}\right\|.$$

We analyse the optimisation problem in more detail.

Multi-dimensional calibration problem can be decomposed into sequence of one-dimensional problems

Note that for l > k

$$\frac{d}{d\sigma_l}\mathcal{H}_k\left[\sigma\left[\sigma_1,\ldots,\sigma_{\bar{k}}\right]\right]=0$$

Thus we could write

$$\begin{array}{lll} \mathcal{H}_{1}\left[\sigma\left[\sigma_{1}\right]\right] & = & 0, \\ \mathcal{H}_{2}\left[\sigma\left[\sigma_{1},\sigma_{2}\right]\right] & = & 0, \\ & \vdots & \\ \mathcal{H}_{\bar{k}}\left[\sigma\left[\sigma_{1},\sigma_{2},\ldots,\sigma_{\bar{k}}\right]\right] & = & 0. \end{array}$$

System of equations can be solved row-by-row (i.e. bootstrapping method) via one-dimensional root search method.

Sequentiel Hull-White volatility calibration is analogous to yield curve bootstrapping.

We can also formulate general optimisation problem if short rate volatilities and reference swaptions are not aligned

Suppose time grid $0=t_0,t_1,\ldots,t_n$ and piece-wise constant volatility $\sigma(t)$ via $\bar{\sigma}=\left[\sigma_1,\ldots,\sigma_n\right]^{\top}$

$$\sigma(t) = \sigma\left[\bar{\sigma}\right](t) = \sum_{k=1}^{n} \mathbb{1}_{\{t_{k-1} \leq t < t_k\}} \cdot \sigma_k.$$

Denote $V^{\text{Swpt}} = \left[V_1^{\text{Swpt}}, \dots, V_q^{\text{Swpt}}\right]$ a set of reference European swaption prices with calibration helper

$$\mathcal{H}\left[\sigma\left[\bar{\sigma}\right]\right]\left(V^{\mathsf{Swpt}}\right) = \left[\mathcal{H}_{1}\left[\sigma\left[\bar{\sigma}\right]\right]\left(V_{1}^{\mathsf{Swpt}}\right), \ldots, \mathcal{H}_{q}\left[\sigma\left[\bar{\sigma}\right]\right]\left(V_{q}^{\mathsf{Swpt}}\right)\right].$$

Then calibration problem becomes

$$\min_{\bar{\sigma}} \left\| \mathcal{H} \left[\sigma \left[\bar{\sigma} \right] \right] \left(V^{\mathsf{Swpt}} \right) \right\|.$$

The choice of reference European swaptions is critical for model calibration - What is the usage of your model?

Global calibration to available market data

General purpose calibration for curve simulation or pricing of a variety products with same model.

- Keep in mind model properties and limitations.
- HW model cannot model smile use ATM swaptions because most liquid.
- Do not use too many reference swaptions per expiry HW model has only one volatility parameter per expiry.

Product-specific calibration

Pricing particular exotic product as most as possible consistent to underlying more simple products.

- Identify building blocks of exotic product these are typically priced on simpler models if stand-alone product.
- Calibrate HW model to prices of building blocks obtained from simpler model (or feeder model).

We illustrate market volatilities and global calibration fit

Lower mean reversion appears to yield slightly better global fit.

Building blocks of Bermudan swaption are co-terminal European swaptions

Recall decomposition

$$V^{\mathsf{Berm}}(t) = \max_{\iota} \left\{ V_k^{\mathsf{Swpt}}(t) \, | \, k = 1, \dots, ar{k}
ight\} + \mathsf{SwitchOption}(\mathsf{t})$$

where $V_k^{\text{Swpt}}(t)$ is price of European option to enter into swap at T_E^k (plus spot) with fixed maturity T_n .

- European swaption prices $V_k^{\text{Swpt}}(t)$ can be obtained from Vanilla model.
- Consistent Hull-White model must produce max-European price $\max_k \left\{ V_k^{\text{Swpt}}(t) \mid k = 1, \dots, \bar{k} \right\}$ consistent to Vanilla model.

Hull-White model for Bermudan pricing is calibrated to corresponding co-terminal European swaptions.

20y-nc1y 3% Receiver Bermudan, (Fwd-)Rates at 5% (flat) and Implied Vols at 100bp (flat)

Out-of-the-money option shows concave co-terminal European swaption profile.

20y-nc1y 3% Receiver Bermudan, (Fwd-)Rates at 1% (flat) and Implied Vols at 100bp (flat)

In-the-money option shows decreasing co-terminal European swaption profile.

Outline

Calibration Methodologies for Hull-White Model

Volatility Calibration

Mean Reversion Calibration

Summary of Hull-White model calibration

Mean reversion controls switch option value of Bermudan swaption

Recall decomposition of Bermudan price into max-European price plus residual switch value

$$V^{\mathsf{Berm}}(t) = \max_{k} \left\{ V_k^{\mathsf{CBO}}(t) \, | \, k = 1, \dots, ar{k}
ight\} + \mathsf{SwitchOption}(\mathsf{t}).$$

- $V_k^{\rm CBO}(t)$ is the Hull-White price of the co-terminal European swaptions reformulated as bond option.
- SwitchOption(t) is the Hull-White price of the option to postpone exercise decision.

We get

$$\frac{\partial}{\partial a}V^{\mathsf{Berm}}(t) = \frac{\partial}{\partial a}\max_{k}\left\{V_{k}^{\mathsf{CBO}}(t)\,|\,k=1,\ldots,ar{k}
ight\} + \frac{\partial}{\partial a}\mathsf{SwitchOption(t)}.$$

Our model calibration approach to European swaption market prices partly eliminates mean reversion dependency

We recall

$$\frac{\partial}{\partial a} V^{\mathsf{Berm}}(t) = \frac{\partial}{\partial a} \max_k \left\{ V_k^{\mathsf{CBO}}(t) \, | \, k = 1, \dots, \bar{k} \right\} + \frac{\partial}{\partial a} \mathsf{SwitchOption(t)}.$$

If model is calibrated to match co-terminal swaptions from market prices $V_{\it k}^{\rm Swpt}$ then

$$V_k^{ extsf{CBO}}(t) = V_k^{ extsf{Swpt}} \quad orall a.$$

Thus

$$\frac{\partial}{\partial a} V_k^{\mathsf{CBO}}(t) = 0 \quad (\forall k) \quad \mathsf{and} \quad \frac{\partial}{\partial a} \max_k \left\{ V_k^{\mathsf{CBO}}(t) \, | \, k = 1, \dots, \bar{k} \right\} = 0.$$

Consequently,

$$\frac{\partial}{\partial a}V^{\text{Berm}}(t) = \frac{\partial}{\partial a}\text{SwitchOption(t)}.$$

This is an important result wich shows difference between European and Bermudan Swaptions.

Switch option value (and Bermudan price) increase as mean reversion increases

≥ 20y-nc1y 3% Receiver Bermudan, (Fwd-)Rates $f \in \{1\%, 3\%, 5\%\}$ (flat) and Implied Vols at 100bp (flat):

If prices for reference Bermudan options are available we can use these prices to calibrate mean reversion.

If we don't have Bermudan prices available we can resort to alternative objectives to calibrate mean reversion

- Ratio of short-tenor and long-tenor option volatilities.
- Auto-correlation (or inter-temporal correlation) of historical rates.
- Payment-delay convexity adjustment.

Mean reversion impacts the slope of short-tenor volatilities versus long-tenor volatilities

- For the analysis of short- vs. long-tenor volatilities we make several approximations.
- Consider continuous forward yield

$$F(t,T_0,T_M)=\ln\left[\frac{P(t,T_0)}{P(t,T_M)}\right]\frac{1}{T_M-T_0}.$$

We will analyse standard deviation ratio for a $T_M - T_0$ forward yield and a $T_N - T_0$ forward yield,

$$\lambda = \frac{\sqrt{\mathsf{Var}\left[F(T_0, T_0, T_M) \mid \mathcal{F}_t\right]}}{\sqrt{\mathsf{Var}\left[F(T_0, T_0, T_N) \mid \mathcal{F}_t\right]}}.$$

How are forward yields (and standard dev's) related to forward swap rates (and implied volatilities)?

We approximate swap rate by continuous forward yield I

Consider swap rate with start date T_0 and maturity T_M

$$S(t) = rac{\sum_{j} L_{j}^{\delta}(t) ilde{ au}_{j} P(t, ilde{T}_{j})}{\sum_{i} au_{i} P(t, ilde{T}_{i})}.$$

First we rewrite swap rate in terms of single-curve rate plus basis spread)

$$S(t) = \frac{\sum_{j} L_{j}(t)\tilde{\tau}_{j}P(t,\tilde{T}_{j})}{\sum_{i} \tau_{i}P(t,T_{i})} + \underbrace{\frac{\sum_{j} \left[D_{j}^{\delta}-1\right]\tilde{\tau}_{j}P(t,\tilde{T}_{j-1})}{\sum_{i} \tau_{i}P(t,T_{i})}}_{b(t)}.$$

Assume b(t) is deterministic (similar to assuming D_j^{δ} are deterministic). Simplifying single-curve swap rate yields

$$S(t) = \frac{P(t, T_0) - P(t, T_M)}{\sum_i \tau_i P(t, T_i)} + b(t).$$

We approximate swap rate by continuous forward yield II

Approximate annuity with only single long fixed-leg period T_0 to T_M with $au_1=T_M-T_0$.

Then

$$S(t) pprox rac{P(t, T_0) - P(t, T_M)}{(T_M - T_0) P(t, T_M)} + b(t) = \left[rac{P(t, T_0)}{P(t, T_M)} - 1
ight] rac{1}{T_M - T_0} + b(t).$$

First-order Taylor-approximation $\ln(x) \approx x - 1$ leads to

$$S(t) pprox \ln \left[rac{P(t,T_0)}{P(t,T_M)}
ight] rac{1}{T_M-T_0} + b(t) = F(t,T_0,T_M) + b(t).$$

Deterministic basis spread assumption for b(t) yields

$$Var[S(T_0) \mid \mathcal{F}_t] \approx Var[F(T_0, T_0, T_M) \mid \mathcal{F}_t].$$

Also we approximate implied ATM volatility with standard deviation

Swap rate S(t) is approximately normally distributed in Hull-White model.

Thus

$$dS(t) \approx \sigma_S(t) dW^A(t)$$

for a deterministic volatility function $\sigma_S(t)$ depending on Hull-White model parameters.

Ito-isometry yields

$$u^2 = \operatorname{Var}\left[S(T_0) \mid \mathcal{F}_t\right] = \int_t^{T_0} \left[\sigma_S(t)\right]^2 dt.$$

Vanilla options depend only on terminal distribution of swap rate. Thus an alternative swap rate with

$$d\tilde{S}(t) \approx \sigma_N dW^A(t)$$
 with $\sigma_N^2 = v^2/(T_0 - t)$

yields same Vanilla option prices.

However, by construction σ_N is also the implied normal volatility of $\tilde{S}(T_0)$ and $S(T_0)$. This yields the relation

$$\operatorname{Var}\left[S(T_0) \mid \mathcal{F}_t\right] = \sigma_N^2 \left(T_0 - t\right).$$

We get the relation of the volatility ratio I

$$\lambda = \frac{\sqrt{\mathsf{Var}\left[F(T_0, T_0, T_M) \mid \mathcal{F}_t\right]}}{\sqrt{\mathsf{Var}\left[F(T_0, T_0, T_N) \mid \mathcal{F}_t\right]}} \approx \frac{\sqrt{\left[\sigma_N^{T_0, T_M}\right]^2 (T_0 - t)}}{\sqrt{\left[\sigma_N^{T_0, T_N}\right]^2 (T_0 - t)}} = \frac{\sigma_N^{T_0, T_M}}{\sigma_N^{T_0, T_N}}.$$

It remains to calculate $Var[F(T_0, T_0, T_M) \mid \mathcal{F}_t]$ with

$$F(T_0, T_0, T_M) = \ln \left[\frac{1}{P(T_0, T_M)} \right] \frac{1}{T_M - T_0} = -\frac{\ln \left[P(T_0, T_M) \right]}{T_M - T_0}.$$

From
$$P(T_0, T_M) = \frac{P(t, T_M)}{P(t, T_0)} e^{-G(T_0, T_M)x(T_0) - \frac{1}{2}G(T_0, T_M)^2y(T_0)}$$
 we get

$$F(T_0, T_0, T_M) = -\left\{ \ln \left[\frac{P(t, T_M)}{P(t, T_0)} \right] - G(T_0, T_M) \times (T_0) - \frac{1}{2} G(T_0, T_M)^2 y(T_0) \right\} / (T_M - T_0)$$

$$= F(t, T_0, T_M) + \frac{G(T_0, T_M) \times (T_0) - \frac{1}{2} G(T_0, T_M)^2 y(T_0)}{T_M - T_0}.$$

This yields

$$Var[F(T_0, T_0, T_M) \mid \mathcal{F}_t] = \frac{G(T_0, T_M)^2}{(T_M - T_0)^2} Var[x(T_0) \mid \mathcal{F}_t]$$

We get the relation of the volatility ratio II

and

$$\lambda = \frac{\sqrt{\mathsf{Var}\left[F(T_0, T_0, T_M) \mid \mathcal{F}_t\right]}}{\sqrt{\mathsf{Var}\left[F(T_0, T_0, T_N) \mid \mathcal{F}_t\right]}} = \frac{G(T_0, T_M)/\left(T_M - T_0\right)}{G(T_0, T_N)/\left(T_N - T_0\right)}.$$

Substituting $G(T_0,T_1)=\left\lceil 1-e^{-a(T_1-T_0)}
ight
ceil$ /a yields

$$\lambda = \frac{\left[1 - e^{-s(T_M - T_0)}\right] / (T_M - T_0)}{\left[1 - e^{-s(T_N - T_0)}\right] / (T_N - T_0)}.$$

Note that

- \triangleright λ is independent of short rate volatility $\sigma(t)$,
- λ only depends on mean reversion and time differences (i.e. swap terms) $T_M T_0$ and $T_N T_0$.

Further simplification gives a relation only depending on $T_M - T_N$

Consider second order Taylor approximation

$$e^{-a(T_M-T_0)}\approx 1-a\,(\,T_M-\,T_0)+\frac{1}{2}a^2\,(\,T_M-\,T_0)^2\,.$$

This yields

$$\lambda \approx \frac{\left[a(T_M - T_0) - \frac{1}{2}a^2(T_M - T_0)^2\right] / (T_M - T_0)}{\left[a(T_N - T_0) - \frac{1}{2}a^2(T_N - T_0)^2\right] / (T_N - T_0)}$$

$$= \frac{1 - \frac{1}{2}a(T_M - T_0)}{1 - \frac{1}{2}a(T_N - T_0)} \approx \frac{e^{-\frac{1}{2}a(T_M - T_0)}}{e^{-\frac{1}{2}a(T_N - T_0)}}$$

$$= e^{-\frac{1}{2}a(T_M - T_N)}.$$

Finally, we end up with

$$\frac{\sigma_N^{T_0,T_M}}{\sigma_N^{T_0,T_N}} \approx e^{-\frac{1}{2}a(T_M - T_N)}.$$

The relation $\sigma_N^{T_0,T_M}/\sigma_N^{T_0,T_N}\approx e^{-\frac{1}{2}a(T_M-T_N)}$ can be verified numerically

- Use flat short rate volatility σ calibrated to 10y-10y swaption with 100bp volatility.
- ► Mean reversion $a \in \{-5\%, 0\%, 5\%\}$:

We can use volatility ratio property with co-terminal swaption volatility calibration

- Consider improvement of overall fit to ATM volatility surface as general calibration objective.
- Calibrate mean reversion to ratio of
 - first exercise and co-terminal swap rate and
 - first exercise and short-term swap rate.

Another calibration objective is time-stationarity of the model

Based on mean reversion the calibrated term-structure of short rate volatilities changes:

We can choose mean reversion such that calibrated short rate volatility is as close to constant as possible.

An alternative view on mean reversion is obtained via auto-correlation

Consider

$$F(T_0, T_0, T_M) = F(t, T_0, T_M) + \frac{G(T_0, T_M) \times (T_0) - \frac{1}{2} G(T_0, T_M)^2 y(T_0)}{T_M - T_0}.$$

Then

$$Corr[F(T_0, T_0, T_M), F(T_1, T_1, T_N)] = Corr[x(T_0), x(T_1)].$$

We have

$$x(T) = e^{-a(T-t)} \left[x(t) + \int_t^T e^{a(u-t)} \left(y(u) du + \sigma(u) dW(u) \right) \right].$$

It follows for $T_1 > T_0$ (see exercises or literature)

$$\mathsf{Corr}\left[x(T_0),x(T_1)\right] = e^{-2a(T_1-T_0)}\sqrt{\frac{1-e^{-2aT_0}}{1-e^{-2aT_1}}}.$$

Auto-correlation (or inter-temporal correlation) is independent of volatility $\sigma(t)$ and maturities T_M and T_N .

Auto-correlation property is sometimes used to calibrate mean reversion to interest rate time series

Consider limit $T_0 \to \infty$ then

Corr
$$[x(T_0), x(T_1)] \approx e^{-2a(T_1 - T_0)}$$
.

- Use a time-series of proxy rates $\{R(t_k)\}_{k=1,2,...}$ and estimate $\rho(\Delta)$ =Corr $[R(t_k), R(t_k + \Delta)]$.
- Find mean reversion a such that

$$\rho(\Delta) \approx e^{-2a\Delta}$$
.

- However, method strongly depends on the choice of proxy rate and estimation time window.
- Also, mean reversion in risk-neutral measure needs to be distinguished from mean reversion in real-world measure, see e.g. Sec. 18 in
 - R. Rebonato. Volatility and Correlation.
 John Wiley & Sons, 2004

Outline

Calibration Methodologies for Hull-White Model

Volatility Calibration
Mean Reversion Calibration

Summary of Hull-White model calibration

Summary on Hull-White model calibration

- Hull-White model calibration is distinguished between
 - short rate volatility calibration,
 - mean reversion parameter calibration.
- Short rate volatility is calibrated product-specific to match relevant Vanilla options.
 - For Bermudan swaptions these are co-terminal European swaptions.
- Mean reversion calibration involves subjective judgement regarding calibration objective.
 - Fit to reference exotic prices (e.g. Bermudans) if available.
 - Improve overall calibration fit to ATM swaption volatilities or time-stationarity of model.

Contact

Dr. Sebastian Schlenkrich Office: RUD25, R 1.211

Mail: sebastian.schlenkrich@hu-berlin.de

d-fine GmbH

Mobile: +49-162-263-1525

Mail: sebastian.schlenkrich@d-fine.de