```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
```

```
!gdown 1ERwQ5odiK1Zvi1LtjpkzCMUswYsAX8_K # train.csv
!gdown 1fGw_-RFwvn_LEdt91Jq-7A-wzG6mmH8r # test.csv
!gdown 199Mt4OYZNaelT83U-HGDsEYs2YcUGQ6y # submission.csv

Downloading...
From: https://drive.google.com/uc?id=1ERwQ5odiK1Zvi1LtjpkzCMUswYsAX8_K
To: /content/train.csv
100% 664k/664k [00:00<00:00, 19.0MB/s]
Downloading...
From: https://drive.google.com/uc?id=1fGw_-RFwvn_LEdt91Jq-7A-wzG6mmH8r
To: /content/test.csv
100% 218k/218k [00:00<00:00, 21.8MB/s]
Downloading...
From: https://drive.google.com/uc?id=199Mt4OYZNaelT83U-HGDsEYs2YcUGQ6y
To: /content/submission.csv
100% 14.7k/14.7k [00:00<00:00, 22.8MB/s]</pre>
```

```
data = pd.read_csv('./train.csv')
```

```
# Числовые признаки
num_cols = [
    'ClientPeriod',
    'MonthlySpending',
    'TotalSpent'
]
# Категориальные признаки
cat_cols = [
    'Sex',
    'IsSeniorCitizen',
    'HasPartner',
    'HasChild',
    'HasPhoneService',
    'HasMultiplePhoneNumbers',
    'HasInternetService',
    'HasOnlineSecurityService',
    'HasOnlineBackup',
    'HasDeviceProtection',
    'HasTechSupportAccess',
    'HasOnlineTV',
    'HasMovieSubscription',
    'HasContractPhone',
    'IsBillingPaperless',
    'PaymentMethod'
]
```

```
feature_cols = num_cols + cat_cols
target_col = 'Churn'
```

data.describe().T	ca.describe().T										
	count	mean	std	min	25%	50%	75%	max			
ClientPeriod	5282.0	32.397009	24.550326	0.00	9.0000	29.0	55.00	72.00			
MonthlySpending	5282.0	64.924754	30.176464	18.25	35.4625	70.4	90.05	118.75			
IsSeniorCitizen	5282.0	0.159409	0.366092	0.00	0.0000	0.0	0.00	1.00			
Churn	5282.0	0.262022	0.439776	0.00	0.0000	0.0	1.00	1.00			

data.head(10)										
	ClientPeriod	MonthlySpending	TotalSpent	Sex	IsSeniorCitizen	HasPartne				
0	55	19.50	1026.35	Male	0	Y				
1	72	25.85	1872.2	Male	0	Y				
2	1	75.90	75.9	Male	0	1				
3	32	79.30	2570	Female	1	Y				
4	60	115.25	6758.45	Female	0	Y				
5	25	19.80	475.2	Female	0	١				
6	27	90.15	2423.4	Female	0	Y				
7	1	45.70	45.7	Male	0	١				
8	50	105.95	5341.8	Male	0	Y				
9	72	61.20	4390.25	Male	0	١				

```
cellLoc='center',
loc='center')

table.auto_set_font_size(False)
table.set_fontsize(12)
table.scale(1, 2)

plt.title('Количество NaN значений по столбцам')
plt.show()

Показать скрытые выходные данные
```

```
empty_string_counts = data.applymap(lambda x: isinstance(x, str) and x.strip()

print("Количество пустых строк:")

print(empty_string_counts)

Показать скрытые выходные данные
```

```
mask = data['TotalSpent'].apply(lambda x: isinstance(x, str) and x.strip() == '
```

```
data['TotalSpent'] = pd.to_numeric(data['TotalSpent'])
```

```
q_string_counts = data.applymap(lambda x: isinstance(x, str) and x.strip() == '
print("Количество пустых строк:")
print(q_string_counts)
```

data.loc[mask, 'TotalSpent'] = 0

```
data_origin = data.copy()
```

Начнём с категориальных признаков. Пойдём по порядку расположения в таблице.

```
value_counts = data['ClientPeriod'].value_counts()

plt.figure(figsize=(10, 6))
plt.bar(value_counts.index, value_counts.values, color='skyblue', alpha=0.7)
plt.title('Распределение Периода клиентов')
plt.xlabel('Период')
plt.ylabel('Количество клиентов')
plt.grid(axis='y', alpha=0.3)

plt.show()
Показать скрытые выходные данные
```

У ClientPeriod сильный перекос влево, то есть нормализовать логарифмом или корнем или возведением в квадрат бессмысленно (возможно станет хуже). Оставлю как есть

```
data['Sex'] = data['Sex'].replace({'Male':1, 'Female':0})

/tmp/ipython-input-4038858295.py:1: FutureWarning: Downcasting behavior in `repl
   data['Sex'] = data['Sex'].replace({'Male':1, 'Female':0})
```

```
n_{cols} = 2
n_rows = (len(cat_cols) + n_cols - 1) // n_cols
fig, axes = plt.subplots(n_rows, n_cols, figsize=(15, 5*n_rows))
axes = axes.flatten() if n_rows > 1 else [axes]
for i, col in enumerate(cat_cols):
    if i < len(axes):</pre>
        value_counts = data[col].value_counts()
        bars = axes[i].bar(value_counts.index, value_counts.values,
                          color=plt.cm.Set3(np.linspace(0, 1, len(value_counts)
        axes[i].set_title(f'Pacпределение: {col}', fontsize=14, fontweight='bol
        axes[i].set_xlabel(col)
        axes[i].set_ylabel('Количество')
        if len(value_counts) > 5:
            axes[i].tick_params(axis='x', rotation=45)
        for bar in bars:
            height = bar.get_height()
            axes[i].text(bar.get_x() + bar.get_width()/2., height + 0.1,
                        f'{int(height)}', ha='center', va='bottom', fontsize=9)
plt.tight layout()
plt.show()
```



```
value_counts = data[target_col].value_counts()

# Строим график
plt.figure(figsize=(10, 6))
plt.bar(value_counts.index, value_counts.values, color='skyblue', alpha=0.7)
plt.title('Распределение признака: Churn')
plt.xlabel('Категории')
plt.ylabel('Количество')
plt.grid(axis='y', alpha=0.3)
plt.show()
```


Классы Таргета несбаланисированны. В категориальных признаках с >2 классами по большому счёту везде сбалансированное распределение - нет каких то сильных выбросов, поэтому можно просто воспользоваться Ohe. А вот в двух бинарных признаках есть несбалансированное распределение. Поэтому на обучении воспользуюсь class_weight='balanced'.

```
to_num_columns = ['HasPartner', 'HasChild', 'HasPhoneService', 'IsBillingPaper]
for col in to_num_columns:
    if col in data.columns:
        data[col] = data[col].replace({'Yes': 1, 'No': 0})
```

```
data.head()
```

```
data.info()
```

Показать скрытые выходные данные

<class 'pandas.core.frame.DataFrame'>

```
new_categ_cols = ["HasMultiplePhoneNumbers", "HasInternetService", "HasOnlineSe
```

```
from sklearn.preprocessing import StandardScaler, RobustScaler, LabelEncoder, C
  ohe = OneHotEncoder(sparse_output=False, drop='first')

encoded_array = ohe.fit_transform(data[new_categ_cols])
  encoded_columns = ohe.get_feature_names_out(new_categ_cols)
  data_encoded = pd.DataFrame(encoded_array, columns=encoded_columns, index=data.

numerical_columns = data.select_dtypes(include=['int64', 'float64']).columns[:-data_final = pd.concat([data[numerical_columns], data_encoded], axis=1)
```

```
data_final = pd.concat([data_final, data[target_col]], axis=1)
data_final.info()
```

```
RangeIndex: 5282 entries, 0 to 5281
Data columns (total 31 columns):
#
    Column
                                                  Non-Null Count Dtype
---
    _____
                                                  -----
 0
    ClientPeriod
                                                  5282 non-null
                                                                  int64
    MonthlySpending
                                                  5282 non-null
                                                                  float64
 1
 2
    TotalSpent
                                                  5282 non-null
                                                                  float64
 3
                                                  5282 non-null
                                                                  int64
    Sex
    IsSeniorCitizen
                                                  5282 non-null
                                                                  int64
 5
    HasPartner
                                                  5282 non-null
                                                                  int64
 6
                                                  5282 non-null
    HasChild
                                                                  int64
 7
    HasPhoneService
                                                  5282 non-null
                                                                  int64
8
    IsBillingPaperless
                                                  5282 non-null
                                                                  int64
9
    HasMultiplePhoneNumbers_No phone service
                                                  5282 non-null
                                                                  float64
 10 HasMultiplePhoneNumbers Yes
                                                  5282 non-null
                                                                  float64
 11 HasInternetService Fiber optic
                                                  5282 non-null
                                                                  float64
 12 HasInternetService No
                                                  5282 non-null
                                                                  float64
 13 HasOnlineSecurityService_No internet service 5282 non-null
                                                                  float64
 14 HasOnlineSecurityService_Yes
                                                  5282 non-null
                                                                  float64
15 HasOnlineBackup_No internet service
                                                  5282 non-null
                                                                  float64
 16 HasOnlineBackup Yes
                                                  5282 non-null
                                                                  float64
 17 HasDeviceProtection_No internet service
                                                  5282 non-null
                                                                  float64
 18 HasDeviceProtection_Yes
                                                  5282 non-null
                                                                  float64
 19 HasTechSupportAccess_No internet service
                                                  5282 non-null
                                                                  float64
 20 HasTechSupportAccess Yes
                                                  5282 non-null
                                                                  float64
 21 HasOnlineTV_No internet service
                                                  5282 non-null
                                                                  float64
 22 HasOnlineTV Yes
                                                  5282 non-null
                                                                  float64
 23 HasMovieSubscription_No internet service
                                                  5282 non-null
                                                                  float64
 24 HasMovieSubscription_Yes
                                                  5282 non-null
                                                                  float64
                                                                  float64
    HasContractPhone One year
                                                  5282 non-null
```

```
float64
 26 HasContractPhone_Two year
                                                 5282 non-null
 27 PaymentMethod_Credit card (automatic)
                                                 5282 non-null
                                                                 float64
 28 PaymentMethod Electronic check
                                                 5282 non-null
                                                                 float64
29 PaymentMethod_Mailed check
                                                 5282 non-null
                                                                 float64
 30 Churn
                                                 5282 non-null
                                                                 int64
dtypes: float64(23), int64(8)
memory usage: 1.2 MB
```

```
import seaborn as sns
target_correlations = data_final.corr()[['Churn']].sort_values('Churn', ascendi

print("Корреляции с таргетной переменной:")
print(target_correlations)

plt.figure(figsize=(8, 10))
sns.heatmap(target_correlations, annot=True, cmap='RdYlBu', center=0, fmt='.2f'
plt.title('Корреляции признаков с таргетной переменной')
plt.tight_layout()
plt.show()

Показать скрытые выходные данные
```

Применение линейных моделей

```
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler, RobustScaler, LabelEncoder, C
from sklearn.pipeline import make_pipeline
```

```
data_final.describe().T
```

Показать скрытые выходные данные

```
cols_to_scale = ["ClientPeriod", "MonthlySpending", "TotalSpent"]
scaler = StandardScaler()

data_scaled = data_final.copy()
data_scaled[cols_to_scale] = scaler.fit_transform(data_final[cols_to_scale])
```

```
X_train, X_val, y_train, y_val = train_test_split(data_scaled.drop('Churn',axis
```

```
refit=True,
    class_weight='balanced',
    penalty='l2',
)

model.fit(X_train, y_train)

print(f"Лучший параметр C: {model.C_[0]}")
print(f"Bce tested C: {model.Cs_}")
print(f"Средние ROC-AUC для каждого C: {model.scores_[1].mean(axis=0)}")

Лучший параметр C: 10.0
Все tested C: [1.e+02 1.e+01 1.e+00 1.e-01 1.e-02 1.e-03]
Средние ROC-AUC для каждого C: [0.84851283 0.84879276 0.84836086 0.84746824 0.84
```

Лучший С = 10

```
best_log_model = LogisticRegressionCV(
    Cs=[10],
    cv=5,
    scoring='roc_auc',
    random_state=42,
    max_iter=1000,
    refit=True,
    class_weight='balanced',
    penalty='12',
)
best_log_model.fit(X_train, y_train)
print(f"Cредние ROC-AUC: {best_log_model.scores_[1]}")
Средние ROC-AUC: [[0.82964961]
 [0.83634992]
 [0.85520362]
 [0.86195469]
 [0.86034228]]
```

```
np.mean(best_log_model.scores_[1])
np.float64(0.8487000266875959)
```

0.8487000266875959

При C=10, class_weight='balanced'.

Применение градиентного бустинга

```
!pip install catboost
```

```
val_auc = roc_auc_score(y_val_origin, y_val_predicted)
print(val_auc)

0.8228013224850159
```

Со стандартными параметрами гос_auc вышел 0.82 (что меньше, чем у логистической регрессии)

0.8327453569878372

Я немного времени подбирал вручную параметры n_estimators (100,200,300,400), learning_rate (0.01,0.03,0.05,0.1) и depth (3,4,5,7,8) и пришел к выводу, что лучше параметров, чем n_estimators=300,depth=4,learning_rate = 0.03 я не получил.

Обработаю тестовые данные

```
X_test = pd.read_csv('./test.csv')
X_test.info()
```

```
empty_string_counts_test = X_test.applymap(lambda x: isinstance(x, str) and x.s
print("Количество пустых строк:")
print(empty_string_counts_test)
```

Показать скрытые выходные данные

```
mask_test = X_test['TotalSpent'].apply(lambda x: isinstance(x, str) and x.strip
X_test.loc[mask_test, 'TotalSpent'] = 0
X_test['TotalSpent'] = pd.to_numeric(X_test['TotalSpent'])
```

```
X_test.info()
```

Показать скрытые выходные данные

```
X_new_test = X_test.copy()
```

```
X_new_test['Sex'] = X_new_test['Sex'].replace({'Male':1, 'Female':0})

for col in to_num_columns:
    if col in X_new_test.columns:
        X_new_test[col] = X_new_test[col].replace({'Yes': 1, 'No': 0})
```

Показать скрытые выходные данные

```
encoded_array_test = ohe.transform(X_new_test[new_categ_cols])
data_encoded_test = pd.DataFrame(encoded_array_test, columns=encoded_columns, i

test_numerical_columns = X_new_test.select_dtypes(include=['int64', 'float64'])
data_final_test = pd.concat([X_new_test[test_numerical_columns], data_encoded_t
```

```
data_test_scaled = data_final_test.copy()
```

```
data_test_scaled[cols_to_scale] = scaler.transform(data_final_test[cols_to_scal
```

Предсказания

```
best_catboost_model = boosting_model

submission = pd.read_csv('./submission.csv')
```

```
submission['Churn'] = best_catboost_model.predict_proba(X_test)[:, 1]
submission.to_csv('./my_submission.csv', index=False)
```

```
best_logistic_model = best_log_model
```

```
submission['Churn'] = best_logistic_model.predict_proba(data_test_scaled)[:, 1]
submission.to_csv('./my_submission2.csv', index=False)
```

ИТОГО:

Лучшая модель на train - LogisticRegression (0.84606)

Лучшая модель на test - Catboost (0.85278)