

Part 3: Building an NDT for Next-Generation WLANs with Graph Neural Networks (GNNs)

Miguel Camelo

Agenda

- Part 0 Network Digital Twins 6G-TWIN vision
 - Motivation
 - Technology enablers
 - Architectural concept
- Part I Introduction to Wireless Networking Management
 - Background in Wi-Fi and its medium access mechanisms.
 - Background in Channel Bonding
 - Challenges in Channel Bonding
 - Necessity for digital twins
- Part II Hands-on: Building an NDT for Next-Generation WLANs with traditional AI/ML/DL
 - Introduction to dataset
 - Introduction to Al/ML/DL techniques
 - Hands-on: Building an NDT with traditional Al/ML/DL
- Part III Hands-on: Building an NDT for Next-Generation WLANs using Graph Neural Networks
 - Motivation for using Graph Neural Networks (GNNs) in topology-based problems
 - Introduction to GNNs
 - Hands-on: Building an NDT for Next-Generation WLANs using GNNs
- Part IV What is next?

Why GNNs

GNNs are good working with relational data

Different Neural Networks

Type of NN	Information structure
Fully Connected	Arbitrary
Convolutional	Spatial
Recurrent	Sequential
Graph	Relational

Source: https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications

Introduction to GNNs

What is a graph?

- A graph is 2-tuple G=(V, E) where V are the nodes and E are the links.
- Each node has its own set of features.
- Optionally, each link has its own set of features

Source: https://www.freecodecamp.org/news/graph-neural-networks-explained-with-examples/

How GNNs work?

Aggregating information – Message passing

- Adjacency matrix: a mathematical way to express the graph.
- Exploit locality information.
- Order-invariant aggregators
 - Sum
 - Average
 - Maximum

Determine node

computation graph

Propagate and transform information

Source: https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications

GNNs for solving topology-based problems

GNNs applied to WLANs

GNNs

Basic Model

- Access Point (AP)
- Station (STA)
- AP-AP Link
- -- AP-STA Link

- GNB³: Graph Neural Block
 - Node attributes: node type, x-y coordinate, channel configuration
 - AP: mean airtime,
 - STA: SINR
 - Edge attributes: edge type, distance
 - AP-AP: interference
 - AP-STA: RSSI
 - Architecture
 - Node model
 - Edge model

Hands – On

Link

Notebook: Building an NDT for next-generation WLANs using GNNs

Google Colab

This tutorial can also run in Google Colab. There are two main notebooks, one for building the NDT - GNN and another to build the NDT - ML.

To access the notebook regarding the NDT - ML, please enter here.

To access the notebook regarding the NDT - GNN, please enter here.

mec

embracing a better life

