TASK GOAL

Use machine learning methods to understand drivers of popular news stories on the news website and develop a predictive model for optimizing marketing spends as well as predicting future popular news articles.

DATA PREPARATION

A csv file containing data attributes that we are interested in examining is first loaded into Rapid Miner.

Row No.	url	timedelta	n_tokens_tit	n_tokens_c	n_unique_to	n_non_stop	n_non_stop
1	http://mashab	731	12	219	0.664	1.000	0.815
2	http://mashab	731	9	255	0.605	1.000	0.792
3	http://mashab	731	9	211	0.575	1.000	0.664
4	http://mashab	731	9	531	0.504	1.000	0.666
5	http://mashab	731	13	1072	0.416	1.000	0.541
6	http://mashab	731	10	370	0.560	1.000	0.698
7	http://mashab	731	8	960	0.418	1.000	0.550
8	http://mashab	731	12	989	0.434	1.000	0.572
9	http://mashab	731	11	97	0.670	1.000	0.837
10	http://mashab	731	10	231	0.636	1.000	0.797
11	http://mashab	731	9	1248	0.490	1.000	0.732
12	http://mashab	731	10	187	0.667	1.000	0.800
13	http://mashab	731	9	274	0 609	1.000	0 708

Then we filter the data so that we can only do the analysis on category of technology where the attribute data_channel_is_tech = 1.

average_tok	num_keywo	data_chann	data_chann	data_chann	data_chann	data_chann	data_chann	kw_min_min
4.683	7	0	0	0	0	1	0	0
4.359	9	0	0	0	0	1	0	0
4.618	9	0	0	0	0	1	0	0
4.856	7	0	0	0	0	1	0	0
4.717	8	0	0	0	0	1	0	0
4.687	10	0	0	0	0	1	0	0
4.630	7	0	0	0	0	1	0	0
4.259	10	0	0	0	0	1	0	0
4.782	9	0	0	0	0	1	0	0
4.636	9	0	0	0	0	1	0	0
4.986	7	0	0	0	0	1	0	0
4.069	9	0	0	0	0	1	0	0
4.752	10	0	0	0	0	1	0	0
4.728	9	0	0	0	0	1	0	0
	-	-	L -		_	L.		

An outcome variable name popular (added as an attribute to the results table) indicating whether the new channel is popular or not is generated using the function call ("if(shares>=2000,TRUE,FALSE)".

avg_negativ	min_negativ	max_negati	title_subject	title_sentim	abs_title_su	abs_title_se	shares	popular
-0.220	-0.500	-0.050	0.455	0.136	0.045	0.136	505	false
-0.195	-0.400	-0.100	0.643	0.214	0.143	0.214	855	false
-0.243	-0.500	-0.050	1	0.500	0.500	0.500	891	false
-0.125	-0.125	-0.125	0.125	0	0.375	0	3600	true
-0.227	-0.500	-0.050	0.500	0	0	0	17100	true
-0.207	-0.500	-0.050	0	0	0.500	0	2800	true
-0.230	-0.500	-0.050	0	0	0.500	0	445	false
-0.117	-0.200	-0.050	0.900	0.400	0.400	0.400	783	false
-0.264	-0.500	-0.125	0	0	0.500	0	1500	false
-0.202	-0.500	-0.050	0.500	0.500	0	0.500	1800	false
-0.342	-0.800	-0.100	0	0	0.500	0	3900	true
-0.178	-0.400	-0.008	0	0	0.500	0	480	false
-0.230	-0.600	-0.050	1	-0.600	0.500	0.600	7700	true
-0.215	-0.500	-0.050	0	0	0.500	0	1100	false
-	_							

ExampleSet (7,346 examples, 0 special attributes, 62 regular attributes)

Attributes that are not relevant to the analysis shown below are excluded

- a. url
- b. timedelta
- c. weekday_is_monday: Was the article published on a Monday?
- d. weekday_is_tuesday: Was the article published on a Tuesday?
- e. weekday_is_wednesday: Was the article published on a Wednesday?
- f. weekday_is_thursday: Was the article published on a Thursday?
- g. weekday_is_friday: Was the article published on a Friday?
- h. weekday_is_saturday: Was the article published on a Saturday?
- i. weekday_is_sunday: Was the article published on a Sunday?
- j. LDA_00
- k. LDA_01
- I. LDA_02
- m. LDA_03
- n. LDA 04
- o. rate_positive_words
- p. rate_negative_words
- q. shares

max_positiv	avg_negativ	min_negativ	max_negati	title_subject	title_sentim	abs_title_su	abs_title_se	popular
1	-0.220	-0.500	-0.050	0.455	0.136	0.045	0.136	false
0.600	-0.195	-0.400	-0.100	0.643	0.214	0.143	0.214	false
1	-0.243	-0.500	-0.050	1	0.500	0.500	0.500	false
0.800	-0.125	-0.125	-0.125	0.125	0	0.375	0	true
1	-0.227	-0.500	-0.050	0.500	0	0	0	true
1	-0.207	-0.500	-0.050	0	0	0.500	0	true
1	-0.230	-0.500	-0.050	0	0	0.500	0	false
0.350	-0.117	-0.200	-0.050	0.900	0.400	0.400	0.400	false
1	-0.264	-0.500	-0.125	0	0	0.500	0	false
1	-0.202	-0.500	-0.050	0.500	0.500	0	0.500	false
0.600	-0.342	-0.800	-0.100	0	0	0.500	0	true
1	-0.178	-0.400	-0.008	0	0	0.500	0	false
1	-0.230	-0.600	-0.050	1	-0.600	0.500	0.600	true
1	-0.215	-0.500	-0.050	0	0	0.500	0	false

Since the predictive analysis is done on the attribute popular, we specify popular variable as the "label" variable.

Row No.	popular	n_tokens_tit	n_tokens_c	n_unique_to	n_non_stop	n_non_stop	num_hrefs	num_self_h	num
1	false	13	1072	0.416	1.000	0.541	19	19	20
2	false	10	370	0.560	1.000	0.698	2	2	0
3	false	12	989	0.434	1.000	0.572	20	20	20
4	true	11	97	0.670	1.000	0.837	2	0	0
5	true	8	1207	0.411	1.000	0.549	24	24	42
6	true	13	1248	0.391	1.000	0.523	21	19	20
7	false	11	1154	0.427	1.000	0.573	20	20	20
8	false	8	266	0.573	1.000	0.721	5	2	1
9	false	8	331	0.563	1.000	0.724	5	3	1
10	false	12	1225	0.385	1.000	0.509	22	22	28
11	true	10	633	0.476	1.000	0.580	2	2	19
12	false	14	290	0.612	1.000	0.762	0	0	14
13	true	10	1244	0.418	1.000	0.563	27	22	20
14	false	10	1036	0.430	1.000	0.560	21	21	20
<		-						1.	>

The initial data preparation design is shown below:

Logistic Regression

Logistic Regression

In designing our logistic regression after the role is set, a split of the data is done into a training set(70%) and a testing set(30%) and use the Logistic regression operator to build the model (with the training partition connected to our model operator). Finally the model is applied to both the testing set to measure the performance.

To check how well the model does, performance(classification) operator is used: P2

P1 Results

Row No.	popular	prediction(p	confidence(f	confidence(t	n_tokens_tit	n_tokens_c	n_unique_to	n_non_stop	n_nc
1	false	false	0.889	0.111	6	174	0.692	1.000	0.90
2	false	false	0.924	0.076	13	1024	0.428	1.000	0.55
3	false	false	0.744	0.256	9	268	0.477	1.000	0.58
4	false	false	0.709	0.291	7	925	0.428	1.000	0.54
5	false	false	0.742	0.258	9	965	0.435	1.000	0.56
6	false	false	0.615	0.385	12	981	0.434	1.000	0.57
7	true	false	0.649	0.351	10	951	0.437	1.000	0.57
8	true	false	0.628	0.372	11	1364	0.388	1.000	0.53
9	false	false	0.501	0.499	12	1298	0.413	1.000	0.60
10	false	false	0.528	0.472	9	652	0.532	1.000	0.72
11	false	false	0.647	0.353	8	633	0.464	1.000	0.59
12	false	false	0.715	0.285	13	109	0.663	1.000	0.73
13	false	false	0.601	0.399	10	364	0.519	1.000	0.68
14	true	false	0.575	0.425	12	193	0.591	1.000	0.70