Моделі статистичного навчання: класифікація

Розглянемо три методи класифікації:

Логістична регресія;

Лінійний дискримінантний аналіз;

Метод К-найближчих сусідів.

Розглянемо три методи класифікації:

Логістична регресія;

Лінійний дискримінантний аналіз;

Метод К-найближчих сусідів.

Нехай нам задано n даних, тобто пар $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$, ми хочемо побудувати модель класифікації, яка б працювала добре не лише на навчальних даних, але й на тестових.

Чи можна використати метод фіктивних змінних для залежної мінної?

```
Y = \begin{cases} 1 & \text{if stroke;} \\ 2 & \text{if drug overdose;} \\ 3 & \text{if epileptic seizure.} \end{cases}
```

Чи можна використати метод фіктивних змінних для залежної мінної?

$$Y = \begin{cases} 1 & \text{if stroke;} \\ 2 & \text{if drug overdose;} \\ 3 & \text{if epileptic seizure.} \end{cases}$$

$$Y = \begin{cases} 1 & \text{if epileptic seizure;} \\ 2 & \text{if stroke;} \\ 3 & \text{if drug overdose.} \end{cases}$$

Чи можна використати метод фіктивних змінних для залежної мінної?

$$Y = \begin{cases} 1 & \text{if stroke;} \\ 2 & \text{if drug overdose;} \\ 3 & \text{if epileptic seizure.} \end{cases} \qquad Y = \begin{cases} 1 & \text{if epileptic seizure;} \\ 2 & \text{if stroke;} \\ 3 & \text{if drug overdose.} \end{cases}$$

$$Y = \begin{cases} 0 & \text{if stroke;} \\ 1 & \text{if drug overdose.} \end{cases}$$

Логістична регресія

Залежною змінною є умовна імовірність, наприклад, $P(default=Yes \mid balance) = P(Y=1 \mid X) = P(X)$

Логістична регресія

Залежною змінною є умовна імовірність, наприклад, $P(\text{default=Yes} \mid \text{balance}) = P(Y = 1 \mid X) = P(X)$

Розглянемо модель:

$$p(X) = \beta_0 + \beta_1 X$$

Логістична регресія

Залежною змінною є умовна імовірність, наприклад, $P(default=Yes \mid balance) = P(Y=1 \mid X) = P(X)$

Розглянемо модель:

$$p(X) = \beta_0 + \beta_1 X$$

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} \qquad \frac{p(X)}{1 - p(X)} = e^{\beta_0 + \beta_1 X}$$

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} \qquad \frac{p(X)}{1 - p(X)} = e^{\beta_0 + \beta_1 X} \qquad \log\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X$$

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}} \qquad \frac{p(X)}{1 - p(X)} = e^{\beta_0 + \beta_1 X} \qquad \log\left(\frac{p(X)}{1 - p(X)}\right) = \beta_0 + \beta_1 X$$

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'}))$$

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'}))$$

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'}))$$

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

Передбачення ймовірності дефолту при balance = 1000

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1,000}}{1 + e^{-10.6513 + 0.0055 \times 1,000}} = 0.00576$$

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i':y_{i'}=0} (1 - p(x_{i'}))$$

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.6513	0.3612	-29.5	< 0.0001
balance	0.0055	0.0002	24.9	< 0.0001

Передбачення ймовірності дефолту при balance = 1000

$$\hat{p}(X) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 X}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 X}} = \frac{e^{-10.6513 + 0.0055 \times 1,000}}{1 + e^{-10.6513 + 0.0055 \times 1,000}} = 0.00576$$

при balance = 2000, отримаємо 0.586!

За наявності якісних незалежних змінних

За наявності якісних незалежних змінних, використовуємо метод фіктивних змінних.

За наявності якісних незалежних змінних, використовуємо метод фіктивних змінних.

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

За наявності якісних незалежних змінних, використовуємо метод фіктивних змінних.

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

$$\begin{split} \widehat{\Pr}(\texttt{default=Yes}|\texttt{student=Yes}) &= \frac{e^{-3.5041 + 0.4049 \times 1}}{1 + e^{-3.5041 + 0.4049 \times 1}} = 0.0431, \\ \widehat{\Pr}(\texttt{default=Yes}|\texttt{student=No}) &= \frac{e^{-3.5041 + 0.4049 \times 0}}{1 + e^{-3.5041 + 0.4049 \times 0}} = 0.0292. \end{split}$$

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

	Coefficient	Std. error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Прогнозне значення імовірності дефолту для студента з balance = 1500 та income = 40000 дорівнює

$$\hat{p}(X) = \frac{e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 1}}{1 + e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 1}} = 0.058$$

Прогнозне значення імовірності дефолту для студента з balance = 1500 та іпсоте = 40000 дорівнює

$$\hat{p}(X) = \frac{e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 1}}{1 + e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 1}} = 0.058$$

А для не студента з тими ж даними

$$\hat{p}(X) = \frac{e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 0}}{1 + e^{-10.869 + 0.00574 \times 1,500 + 0.003 \times 40 - 0.6468 \times 0}} = 0.105$$

Лінійний дискримінантний аналіз

На відміну від логістичної регресії, тут моделюється розподіл предикторів в окремих класах відносно залежної змінної.

Лінійний дискримінантний аналіз

На відміну від логістичної регресії, тут моделюється розподіл предикторів в окремих класах відносно залежної змінної.

Обгрунтування

Лінійний дискримінантний аналіз

На відміну від логістичної регресії, тут моделюється розподіл предикторів в окремих класах відносно залежної змінної.

Обгрунтування

Коли класи добре розділені, оцінки параметрів моделі логістичної регресії є нестійкі.

Лінійний дискримінантний аналіз

На відміну від логістичної регресії, тут моделюється розподіл предикторів в окремих класах відносно залежної змінної.

Обгрунтування

Коли класи добре розділені, оцінки параметрів моделі логістичної регресії є нестійкі.

Якщо n мале і розподіл предикторів X є приблизно нормальний для кожного з класів, то результати лінійної дискримінантної моделі також є стійкіші, ніж для моделі логістичної регресії.

Лінійний дискримінантний аналіз

На відміну від логістичної регресії, тут моделюється розподіл предикторів в окремих класах відносно залежної змінної.

Обгрунтування

Коли класи добре розділені, оцінки параметрів моделі логістичної регресії є нестійкі.

Якщо n мале і розподіл предикторів X є приблизно нормальний для кожного з класів, то результати лінійної дискримінантної моделі також є стійкіші, ніж для моделі логістичної регресії.

Лінійний дискримінантний аналіз використовується частіше коли ми маємо більше двох класів для залежної змінної.

Теорема Байеса для класифікації

Нехай π_k – імовірність, що випадково вибране спостереження належить класу k.

Нехай $f_k(X) = P(X = x \mid Y = k)$ – густина розподілу X в межах класу k.

Теорема Байеса для класифікації

Нехай π_k – імовірність, що випадково вибране спостереження належить класу k.

Нехай $f_k(X) = P(X = x \mid Y = k)$ — густина розподілу X в межах класу k.

З теореми Байеса отримуємо

$$\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

Теорема Байеса для класифікації

Нехай π_k – імовірність, що випадково вибране спостереження належить класу k.

Нехай $f_k(X) = P(X = x \mid Y = k)$ – густина розподілу X в межах класу k.

З теореми Байеса отримуємо

$$\Pr(Y = k | X = x) = \frac{\pi_k f_k(x)}{\sum_{l=1}^K \pi_l f_l(x)}$$

Нехай p=1, припустимо, що $f_k(X)$ є густиною нормального розподілу, тобто

$$f_k(x) = \frac{1}{\sqrt{2\pi}\sigma_k} \exp\left(-\frac{1}{2\sigma_k^2}(x-\mu_k)^2\right)$$

$$p_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_k)^2\right)}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_l)^2\right)}$$

$$p_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_k)^2\right)}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_l)^2\right)}$$

Спостереження X = x попадає в той клас, для якого попередня імовірність є найбільшою.

$$p_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_k)^2\right)}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_l)^2\right)}$$

Спостереження X = x попадає в той клас, для якого попередня імовірність є найбільшою. Взявши логарифм, отримаємо

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

$$p_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_k)^2\right)}{\sum_{l=1}^K \pi_l \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x - \mu_l)^2\right)}$$

Спостереження X = x попадає в той клас, для якого попередня імовірність є найбільшою. Взявши логарифм, отримаємо

$$\delta_k(x) = x \cdot \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$$

Наприклад, нехай K=2, $\pi_1=\pi_2=1/2$, тоді якщо $2x\left(\mu_1-\mu_2\right)>\mu_1^2-\mu_2^2$ то спостереження попадає в клас 1, інакше – 2.

$$x = \frac{\mu_1^2 - \mu_2^2}{2(\mu_1 - \mu_2)} = \frac{\mu_1 + \mu_2}{2}$$

Оцінки невідомих параметрів отримуємо з:

$$\hat{\mu}_k = \frac{1}{n_k} \sum_{i:y_i = k} x_i$$

$$\hat{\sigma}^2 = \frac{1}{n - K} \sum_{k=1}^K \sum_{i:y_i = k} (x_i - \hat{\mu}_k)^2$$

$$\hat{\delta}_k(x) = x \cdot \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k)$$

$$\hat{\delta}_k(x) = x \cdot \frac{\hat{\mu}_k}{\hat{\sigma}^2} - \frac{\hat{\mu}_k^2}{2\hat{\sigma}^2} + \log(\hat{\pi}_k)$$

Тестова помилка становить 11,1 % в порівнянні з мінімальним значенням 10,5 %

Нехай тепер p > 1.

Нехай тепер p > 1.

$$f(x) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \mathbf{\Sigma}^{-1}(x-\mu)\right)$$

Спостереження X=x попадає в той клас, для якого наступна величина є найбільшою.

$$\delta_k(x) = x^T \mathbf{\Sigma}^{-1} \mu_k - \frac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + \log \pi_k$$

Спостереження X = x попадає в той клас, для якого наступна величина є найбільшою.

$$\delta_k(x) = x^T \mathbf{\Sigma}^{-1} \mu_k - \frac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + \log \pi_k$$

$$\hat{\mu}_k = \sum_{g_i = k} x_i / N_k;$$

$$\hat{\mathbf{\Sigma}} = \sum_{k=1}^K \sum_{g_i = k} (x_i - \hat{\mu}_k) (x_i - \hat{\mu}_k)^T / (N - K)$$

Спостереження X = x попадає в той клас, для якого наступна величина є найбільшою.

$$\delta_k(x) = x^T \mathbf{\Sigma}^{-1} \mu_k - \frac{1}{2} \mu_k^T \mathbf{\Sigma}^{-1} \mu_k + \log \pi_k$$
$$\hat{\mu}_k = \sum_{g_i = k} x_i / N_k;$$
$$\hat{\mathbf{\Sigma}} = \sum_{k=1}^K \sum_{g_i = k} (x_i - \hat{\mu}_k) (x_i - \hat{\mu}_k)^T / (N - K)$$

Приклад з даними Default.

Приклад з даними Default. Отримали помилки на навчальних даних на рівні 2.75%.

Перш за все, рівень помилок у навчальній вибірці зазвичай буде нижчим, ніж помилки у тестових даних.

Приклад з даними Default. Отримали помилки на навчальних даних на рівні 2.75%.

Перш за все, рівень помилок у навчальній вибірці зазвичай буде нижчим, ніж помилки у тестових даних.

По-друге, оскільки лише 3,33% осіб дефолтували у вибірці для навчання, то простий класифікатор, який завжди передбачає, що кожна особа не матиме дефолту, незалежно від даних, призведе до рівня помилок 3,33%.

Приклад з даними Default. Отримали помилки на навчальних даних на рівні 2.75%.

Перш за все, рівень помилок у навчальній вибірці зазвичай буде нижчим, ніж помилки у тестових даних.

По-друге, оскільки лише 3,33% осіб дефолтували у вибірці для навчання, то простий класифікатор, який завжди передбачає, що кожна особа не матиме дефолту, незалежно від даних, призведе до рівня помилок 3,33%.

		True default status		
		No	Yes	Total
Predicted	No	9,644	252	9,896
$default\ status$	Yes	23	81	104
	Total	9,667	333	10,000

Чутливість моделі дорівнює відсотку ідентифікованих осіб, що дефолтнули серед тих, що справді дефолтнули і становить всього 24,3 %.

Чутливість моделі дорівнює відсотку ідентифікованих осіб, що дефолтнули серед тих, що справді дефолтнули і становить всього 24,3 %.

Специфікація моделі дорівнює відсотку ідентифікованих осіб, що не дефолтнули серед тих, що справді не дефолтнули і становить аж 99,8 %.

Чутливість моделі дорівнює відсотку ідентифікованих осіб, що дефолтнули серед тих, що справді дефолтнули і становить всього 24,3 %.

Специфікація моделі дорівнює відсотку ідентифікованих осіб, що не дефолтнули серед тих, що справді не дефолтнули і становить аж 99,8 %.

Для покращення результатів передбачення дефолту доцільно змінити межу імовірності, тобто замість

$$\Pr(\texttt{default} = \texttt{Yes}|X = x) > 0.5$$

використати, наприклад,

$$P(\texttt{default} = \texttt{Yes}|X = x) > 0.2$$

		True default status		
		No	Yes	Total
Predicted	No	9,432	138	9,570
$default\ status$	Yes	235	195	430
	Total	9,667	333	10,000

Тепер помилково ідентифіковані особи, що дефолтнули становлять 41,4 % в порівнянні з 75,7 % в попередньому випадку.

		True default status		
		No	Yes	Total
Predicted	No	9,432	138	9,570
$default\ status$	Yes	235	195	430
	Total	9,667	333	10,000

Тепер помилково ідентифіковані особи, що дефолтнули становлять 41,4 % в порівнянні з 75,7 % в попередньому випадку.

ROC крива для класифікатора LDA для Default даних. Відображає два типи помилок. True positive rate - це чутливість: частка осіб, що дефолтнули, які правильно визначені. False positive rate - 1 — специфічність: частка осіб, що не дефолтнули, яких ми класифікуємо, як особи, що дефолтнули.

ROC крива для класифікатора LDA для Default даних. Відображає два типи помилок. True positive rate - це чутливість: частка осіб, що дефолтнули, які правильно визначені. False positive rate - 1 — специфічність: частка осіб, що не дефолтнули, яких ми класифікуємо, як особи, що дефолтнули.

		Predicted class		
		– or Null	+ or Non-null	Total
True	– or Null	True Neg. (TN)	False Pos. (FP)	N
class	+ or Non-null	False Neg. (FN)	True Pos. (TP)	P
•	Total	N^*	P*	

		$Predicted\ class$		
		– or Null	+ or Non-null	Total
True	– or Null	True Neg. (TN)	False Pos. (FP)	N
class	+ or Non-null	False Neg. (FN)	True Pos. (TP)	Р
•	Total	N^*	P^*	

Name	Definition	Synonyms
False Pos. rate		Type I error, 1—Specificity
True Pos. rate	TP/P	1—Type II error, power, sensitivity, recall
Pos. Pred. value	TP/P^*	Precision, 1—false discovery proportion
Neg. Pred. value	TN/N^*	

Квадратичний дискримінантний аналіз

$$\delta_k(x) = -\frac{1}{2}(x - \mu_k)^T \mathbf{\Sigma}_k^{-1}(x - \mu_k) + \log \pi_k$$

$$= -\frac{1}{2}x^T \mathbf{\Sigma}_k^{-1} x + x^T \mathbf{\Sigma}_k^{-1} \mu_k - \frac{1}{2}\mu_k^T \mathbf{\Sigma}_k^{-1} \mu_k + \log \pi_k$$

Квадратичний дискримінантний аналіз

$$\delta_k(x) = -\frac{1}{2}(x - \mu_k)^T \mathbf{\Sigma}_k^{-1}(x - \mu_k) + \log \pi_k$$

$$= -\frac{1}{2}x^T \mathbf{\Sigma}_k^{-1} x + x^T \mathbf{\Sigma}_k^{-1} \mu_k - \frac{1}{2}\mu_k^T \mathbf{\Sigma}_k^{-1} \mu_k + \log \pi_k$$

Порівняння логістичної регресії, лінійного та квадратичного дискримінантного аналізу та методу К-найближчих сусідів.

Порівняння логістичної регресії, лінійного та квадратичного дискримінантного аналізу та методу К-найближчих сусідів.

Для лінійного дискримінантного аналізу маємо

$$\log\left(\frac{p_1(x)}{1 - p_1(x)}\right) = \log\left(\frac{p_1(x)}{p_2(x)}\right) = c_0 + c_1 x$$

Порівняння логістичної регресії, лінійного та квадратичного дискримінантного аналізу та методу К-найближчих сусідів.

Для лінійного дискримінантного аналізу маємо

$$\log\left(\frac{p_1(x)}{1 - p_1(x)}\right) = \log\left(\frac{p_1(x)}{p_2(x)}\right) = c_0 + c_1 x$$

Для логістичної регресії:

$$\log\left(\frac{p_1}{1-p_1}\right) = \beta_0 + \beta_1 x$$

Розглянемо 6 сценаріїв. У трьох сценаріях межа рішення Баєса є лінійною, а в інших сценаріях – нелінійною.

Для кожного сценарію згенеруємо 100 випадкових навчальних наборів даних. На кожному з цих навчальних наборів ми оцінимо кожен з методів та обчислимо результуючу тестову помилку на великому наборі тестових даних.

Ми використаємо метод К-найближчих сусідів з двома значеннями K: K = 1, та оціненим значенням.

Сценарій 1: У кожному з двох класів ϵ 20 навчальних спостережень. Спостереження в кожному класі ϵ некорельованими випадковими нормальними величинами з різним середнім значенням у кожному класі.

Сценарій 2: Вся як і в сценарії 1, за винятком, що в межах кожного з класів предиктори мають кореляцію -0,5.

- Сценарій 3: Обидва предиктори згенеруємо з t-розподілу по 50 спостережень на клас.
- Сценарій 4: Дані згенеровані з нормального розподілу, з кореляцією 0,5 між предикторами першого класу, і кореляцією –0,5 між предикторами другого класу.
- Сценарій 5: В межах кожного класу спостереження згенеровані на основі нормального розподіл з некорельованими предикторами. Однак значення залежної змінної взяті з логістичної функції з предикторами $X_1^2, X_2^2, \ X_1 \times X_2$.
- Сценарій 6: Як і в сценарії 5, але значення залежної змінної отримані на основі більш складної нелінійної функції.

