IN THE IPEA/EP

International Application No.:	International Filing Date:		Priority Date Claimed:		ed:
PCT/US03/18952	17/06/2003	17/06/2003		20/06/2002	
Title of Invention ANTENNA CORE					ITY
MEASURE	EMENTS AND N	MR MEA	SUREME	NTS	
Applicant: Baker Hughes In	****	T	SUREME 9 amendm		

AMENDMENTS UNDER ARTICLE 19

Attention: Authorized Officer International Bureau of WIPO 34, chemin des Colombettes 1211 Geneva 20 Switzerland

BY FACSIMILE: 41 22 740 14 35

Dear Sir or Madam:

The Applicant requests that the amendments in the attached pages be entered. New pages 19-27 replace original pages 19-27

Comments on claim amendments

In claim 1, line 12, the word "non-ferritic" has been added.

In claim 1, lines 12-13 the words "at least one of (I) high internal magnetostrictive damping, and, (II)" have been deleted.

In claim 10, line 12, the word "non-ferritic" has been added.

In claim 10, lines 12-13 the words "at least one of (I) high internal magnetostrictive damping, and, (II)" have been deleted.

Timothy M. Donoughue Baker Hughes Incorporated

3900 Essex Lane

Suite 1200

Houston, TX 77027.

10/518125 OT12 Rec'd PCT/PTO 15 DEC 2004

1	1.	A nuclear magnetic resonance (NMR) logging apparatus for use in a
2		borehole for determining properties of an earth formation surrounding the
3		borehole, the apparatus comprising:
4		(a) a magnet for inducing a static magnetic field in a region of interest in
5		the earth formation;
6		(b) a transmitting antenna assembly for inducing a radio frequency
7		magnetic field within said region of interest and producing signals
8		from materials in the region of interest; and
9 10		(c) a receiving antenna assembly for detecting said signals from said region of interest;
l 1		wherein at least one of the antenna assemblies includes at least one magnetic
12		core formed from a non-ferritic material having low magnetostriction.
13		<u>.</u>
1	2.	The NMR logging apparatus of claim 1 wherein said material has a
2		high internal damping and further comprises a powdered soft magnetic
3		material.
4		•
1	3.	The NMR logging apparatus of claim 2 wherein the powdered soft magnetic
2		material is non-conductive and has a maximum grain size to
3		substantially reduce intragranular power loss at a frequency of said radio
4		frequency magnetic field.
5		
1	4.	The NMR logging apparatus of claim 2 wherein the powdered soft
2		magnetic material has a maximum grain size less than half a wavelength of a
3		acoustic wave having a frequency of said radio frequency magnetic field.
4		
1	5.	The NMR logging apparatus of claim 1 wherein said material has a
2		high internal damping and further has a large area within a hysteresis loop
3		associated with magnetostrictive deformation of the material.
4		
1	6.	The NMR logging apparatus of claim 2 wherein said at least one antenna

2		core	further comprises a non-conductive bonding agent having substantial		
3		acous	stic decoupling between grains.		
4					
1	7.	The NMR logging apparatus of claim 1 wherein said logging apparatus is			
2		adapt	ed to be conveyed on one of (i) a wireline, and, (ii) a drilling tubular.		
3					
1	8.	The N	NMR logging apparatus of claim 1 wherein said material has a low		
2		magn	etostriction and comprises an amorphous metal.		
3					
1	9.	The N	NMR logging apparatus of claim 1 wherein the transmitting antenna		
2		assen	ably and the receiving antenna assembly are the same.		
3					
1	10.	A me	thod of determining properties of an earth formation surrounding a		
2		boreh	ole, the method comprising:		
3		(a)	using a magnet on a nuclear magnetic resonance (NMR) logging		
4			apparatus conveyed in the borehole for inducing a static magnetic field		
5			in a region of interest in the earth formation;		
6		(b)	using a transmitting antenna assembly for inducing a radio frequency		
7			magnetic field within said region of interest and producing signals		
8			from materials in the region of interest; and		
9		(c)	using a receiving antenna assembly for detecting said signals from said		
0			region of interest;		
1		the m	ethod further comprising using a core for at least one of the antenna		
2		assem	ablies formed from a non ferritic_material having low magnetostriction.		
3					
1	11.	The n	nethod of claim 10 wherein said material has a high internal damping,		
2		the m	ethod further comprising using a powdered soft magnetic material as		
3		said n	naterial with high internal damping.		
4					
1	12.	The m	nethod of claim 11 further comprising selecting the powdered soft		
2		magn	etic material to be substantially non-conductive and having a maximum		

3		grain size to substantially reduce intragranular power loss at a frequency of
4		said radio frequency magnetic field.
5		
1	13.	The method of claim 11 further comprising selecting the powdered soft
2		magnetic material as having a maximum grain size less than half a
3		wavelength of an acoustic wave having a frequency of said radio frequency
4		magnetic field.
5		
1	14.	The method of claim 10 wherein said material has high internal damping, the
2		method further comprising selecting said material as having a large area
3		within a hysteresis loop associated with magnetostrictive deformation of the
4		material.
5		
1	15.	The method of claim 11 further comprising using in said at least one antenna
2		core a non-conductive bonding agent having substantial acoustic decoupling
3		between grains.
4		•
1	16.	The method of claim 10 further comprising conveying said NMR logging
2 .		apparatus into said borehole on one of (i) a wireline, and, (ii) a drilling
3		tubular.
4		
l	17.	The method of claim 10 wherein said material has a low magnetostriction, the
2		method further comprising selecting an amorphous metal for use as said
3		material.
4		
l	18.	The method of claim 10 further comprising using the same antenna for the
2		transmitting antenna and the receiving antenna.
3		
l	19.	An apparatus for evaluating electrical properties of an earth formation
2		surrounding a borehole, the apparatus comprising:
3		(a) a transmitting antenna assembly for conveying a radio frequency
		· · · · · · · · · · · · · · · · · · ·

4		electromagnetic field into said earth formation; and
5		(b) a receiving antenna assembly for receiving a signal resulting from
6		interaction of said electromagnetic field with said earth formation;
7		wherein at least one of the antenna assemblies includes at least one of: (I) a
8		magnetic core formed from a material having high internal magnetostrictive
9		damping, and, (II) low magnetostriction.
10		
1	20.	The apparatus of claim 19 wherein said material has a high internal damping
2		and further comprises a powdered soft magnetic material.
3		
1	21.	The apparatus of claim 20 wherein the powdered soft magnetic material is
2		non-conductive and has a maximum grain size to substantially reduce
3		intragranular power loss at a frequency of said radio frequency magnetic field.
4		
1	22.	The apparatus of claim 20 wherein the powdered soft magnetic material has a
2		maximum grain size less than half a wavelength of an acoustic wave having a
3		frequency of said radio frequency magnetic field.
4		
1	23.	The apparatus of claim 19 wherein said material has a high internal damping
2		and further has a large area within a hysteresis loop associated with
3		magnetostrictive deformation of the material.
4		·
1	24.	The apparatus of claim 20 wherein said at least one antenna core further
2		comprises a non-conductive bonding agent having substantial acoustic
3		decoupling between grains.
4		
1	25.	The apparatus of claim 19 wherein said apparatus is adapted to be conveyed
2		on one of (i) a wireline, and, (ii) a drilling tubular.
3		
1	26.	The apparatus of claim 19 wherein said material has a low magnetostriction
2		and comprises an amorphous metal.

3		
1	27.	A method of determining a resistivity parameter of an earth formation
2		surrounding a borehole, the method comprising:
3		(a) using a transmitting antenna assembly on a tool conveyed in said
4		borehole for transmitting a radio frequency electromagnetic field into
5		said earth formation;
6		(b) using a receiving antenna assembly for receiving a signal resulting
7		from interaction of said electromagnetic field with said earth
8		formation;
9		(c) using a core for at least one of the antenna assemblies for enhancing
10		the received signals, said core formed from a material having at least
11		one of (I) high internal magnetostrictive damping, and, (II) low
12		magnetostriction.
13	• •	
1	28.	The method of claim 27 wherein said material has a high internal damping,
2		the method further comprising using a powdered soft magnetic material as
3		said material with high internal damping.
4		
1	29.	The method of claim 28 further comprising selecting the powdered soft
2	•	magnetic material to be substantially non-conductive and having a maximum
3		grain size to substantially reduce intragranular power loss at a frequency of
4		said radio frequency magnetic field.
5		
1	30.	The method of claim 28 further comprising selecting the powdered soft
2		magnetic material as having a maximum grain size less than half a wavelength
3		of an acoustic wave having a frequency of said radio frequency magnetic
4		field.
5		
1	31.	The method of claim 27 wherein said material has high internal damping, the
2		method further comprising selecting said material as having a large area
3		within a hysteresis loop associated with magnetostrictive deformation of the

4		material.
5		
1	32.	The method of claim 28 further comprising using in said at least one antenna
2		core a non-conductive bonding agent having substantial acoustic decoupling
3		between grains.
4		
1	33.	The method of claim 27 wherein said material has a low magnetostriction, the
2		method further comprising selecting an amorphous metal for use as said
3		material.
4		
1	34.	The method of claim 27 wherein said tool is conveyed into the borehole on
2		one of (i) a wireline, and, (ii) a drilling tubular.
3 .		
1	35.	An apparatus for evaluating electrical properties of an earth formation
2		surrounding a borehole, the apparatus comprising:
3		(a) a transmitting antenna assembly for conveying an electromagnetic
4		field into said earth formation; and
5		(b) a receiving antenna assembly for receiving a signal resulting from
6	•	interaction of said electromagnetic field with said earth formation;
7		wherein at least one of said antenna assemblies includes at least one magnetic
8		core formed from a non-ferritic powdered soft magnetic material having high
9		saturation flux density and a non-conductive bonding agent, said magnetic
10		core having a magnetic permeability: _m less than 500 and wherein said
11		saturation flux density is greater than about 0.4 T.
12		
1	36.	The apparatus of claim 35, wherein the magnetic core further comprising
2		dimensions which are related to the direction of an RF magnetic field
3		produced by the transmitter coil and to the magnetic permeability of the
4		powdered soft magnetic material.
5		
1	37.	The apparatus of claim 35 wherein the powdered soft magnetic material is

of the ed soft ility, μ, ation, contal
ed soft ility, μ, ation,
ility, μ, ation,
ility, μ, ation,
ility, μ, ation,
ility, μ, ation,
ation, zontal
ation, zontal
zontal
zontal
zontal
zontal
tic:
etic
etic
mined
ofa
field
al.
h .
of a

7		(0)	using a transmitter antenna assembly on the logging tool for
5			conveying an electromagnetic field into the earth formation;
6		(c)	using a receiver antenna assembly for detecting signals resulting from
7			interaction of said electromagnetic field with said earth formation, and
8		(d)	including in at least one of the antenna assemblies a magnetic core
9			formed from a non-ferritic powdered soft magnetic material having
10			high saturation flux density and a non-conductive bonding agent, said
11			magnetic core having a magnetic permeability: _m less than 500 and a
12			saturation flux density greater than about 0.4T.
13			
1	44.	The m	nethod of claim 43 further comprising selecting dimensions for the
2		magne	etic core which are related to the direction of the magnetic field and to
3		the ma	agnetic permeability of the powdered soft magnetic material.
4			
1	45.	The m	ethod of claim 43 further comprising selecting relative dimensions for
2		the ma	agnetic core which are related to the direction of the magnetic field and
3		to the	magnetic permeability of the powdered soft magnetic material
4			•
.1	46.		ethod of claim 43 wherein the powdered soft magnetic material is
2			ctive, the method further comprising selecting a maximum grain size for
3		the sof	t magnetic material to substantially prevent intragranular power loss of
4		said ra	dio frequency magnetic field.
5			·
1	47.		ethod of claim 43 wherein an effective demagnetizing factor of the
2			tic core in the direction of the magnetic field substantially exceeds the
3		inverse	e magnetic permeability of the powdered soft magnetic material.
4			
1	48.		ethod of claim 47, wherein the core has an effective permeability, μ,
2		less tha	an 5, as defined by a first equation,
3			$\mu = 1 + (\mu_m - 1) / ((\mu_m - 1) \cdot D + 1),$
4		wherei	n D, the demagnetizing factor can be estimated from an elliptic