(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 20 February 2003 (20.02.2003)

PCT

C12Q 1/68,

(10) International Publication Number WO 03/014307 A3

A01N 43/04, C07H 21/04, A61K 31/07

(51) International Patent Classification⁷:

- (21) International Application Number: PCT/US02/24920
- (22) International Filing Date: 5 August 2002 (05.08.2002)
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data: 09/923,515 7 August 2001 (07.08.2001) Us
- (71) Applicant (for all designated States except US): ISIS PARMACEUTICALS, INC. [US/US]; 2292 Faraday Avenue, Carlsbad, CA 92008 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): CROOKE, Rosanne, M. [US/US]; 3211 Piraqua Street, Carlsbad, CA 92009 (US). GRAHAM, Mark, J. [US/US]; 2305 S. Ola Vista, San Clemente, CA 92672 (US).
- (74) Agents: LICATA, Jane, Massey et al.; Licata & Tyrrel P.C., 66 E. Main Street, Marlton, NJ 08053 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (88) Date of publication of the international search report: 23 October 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

3/014307 A3

(54) Title: ANTISENSE MODULATION OF APOLIPOPROTEIN(A) EXPRESSION

(57) Abstract: Antisense compounds, compositions and methods are provided for modulating the expression of apolipoprotein(a). The compositions comprise antisense compounds, particularly antisense oligonucleotides, targeted to nucleic acids encoding apolipoprotein(a). Methods of using these compounds for modulating of apolipoprotein(a) expression and for treatment of diseases associated with expression of apolipoprotein(a) are provided.

ANTISENSE MODULATION OF APOLIPOPROTEIN(A) EXPRESSION

FIELD OF THE INVENTION

The present invention provides compositions and methods for modulating the expression of apolipoprotein(a). 5 In particular, this invention relates to compounds, particularly oligonucleotides, specifically hybridizable with nucleic acids encoding apolipoprotein(a). Such compounds have been shown to modulate the expression of apolipoprotein(a).

10 BACKGROUND OF THE INVENTION

25

Lipoproteins are globular, micelle-like particles that consist of a non-polar core of acylglycerols and cholesteryl esters, surrounded by an amphiphilic coating consisting of protein, phospholipid and cholesterol.

15 Lipoproteins have been classified into five broad categories on the basis of their functional and physical properties: chylomicrons (which transport dietary lipids from intestine to tissues), very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), low

20 density lipoproteins (LDL), (all of which transport triacylglycerols and cholesterol from the liver to tissues), and high density lipoproteins (HDL) (which transport endogenous cholesterol from tissues to the liver).

Lipoprotein particles undergo continuous metabolic processing and have variable properties and compositions. Lipoprotein densities increase without decreasing particle diameter because the density of their outer coatings is less than that of the inner core. The protein components of 30 lipoproteins are known as apolipoproteins. At least nine apolipoproteins are distributed in significant amounts among the various human lipoproteins.

Lipoprotein(a) (also known as Lp(a)) is a cholesterol

- 2 -

rich particle of the pro-atherogenic LDL class. Because Lp(a) is found only in Old World primates and European hedgehogs, it has been suggested that it does not play an essential role in lipid and lipoprotein metabolism. Most studies have shown that high concentrations of Lp(a) are strongly associated with increased risk of cardiovascular disease (Rainwater and Kammerer, J. Exp. Zool., 1998, 282, 54-61). These observations have stimulated numerous studies in humans and other primates to investigate the factors that control Lp(a) concentrations and physiological properties (Rainwater and Kammerer, J. Exp. Zool., 1998, 282, 54-61).

Lp(a) contains two disulfide-linked distinct proteins, apolipoprotein(a) (or ApoA) and apolipoprotein B

15 (or ApoB) (Rainwater and Kammerer, J. Exp. Zool., 1998, 282, 54-61). Apolipoprotein(a) is a unique apolipoprotein encoded by the LPA gene which has been shown to exclusively control the physiological concentrations of Lp(a) (Rainwater and Kammerer, J. Exp. Zool., 1998, 282, 54-61).

20 It varies in size due to interallelic differences in the number of tandemly repeated Kringle 4-encoding 5.5 kb sequences in the LPA gene (Rainwater and Kammerer, J. Exp. Zool., 1998, 282, 54-61).

Cloning of human apolipoprotein(a) in 1987 revealed
homology to human plasminogen (McLean et al., Nature, 1987,
330, 132-137). The gene locus LPA encoding
apolipoprotein(a) was localized to chromosome 6q26-27, in
close proximity to the homologous gene for plasminogen
(Frank et al., Hum. Genet., 1988, 79, 352-356).

Transgenic mice expressing human apolipoprotein(a) were found to be more susceptible than control mice to the development of lipid-staining lesions in the aorta and, consequently, apolipoprotein(a) is co-localized with lipid deposition in the artery walls (Lawn et al., Nature, 1992,

- 3 -

360, 670-672). As an extension of these studies, it was established that the major in vivo action of apolipoprotein(a) is inhibition of the conversion of plasminogen to plasmin which causes decreased activation of latent transforming growth factor-beta. Because transforming growth factor-beta is a negative regulator of smooth muscle cell migration and proliferation, inhibition of plasminogen activation indicates a possible mechanism for apolipoprotein(a) induction of atherosclerotic lesions (Grainger et al., Nature, 1994, 370, 460-462).

Elevated plasma levels of Lp(a), caused by increased expression of apolipoprotein(a), are associated with increased risk for atherosclerosis and its manifestations, which include hypercholesterolemia (Seed et al., N. Engl.

15 J. Med. 1990, 322, 1494-1499), myocardial infarction
(Sandkamp et al., Clin. Chem., 1990, 36, 20-23), and
thrombosis (Nowak-Gottl et al., Pediatrics, 1997, 99, E11).

Moreover, the plasma concentration of Lp(a) is strongly influenced by heritable factors and is refractory to most drug and dietary manipulation (Katan and Beynen, Am. J. Epidemiol., 1987, 125, 387-399; Vessby et al., Atherosclerosis, 1982, 44, 61-71). Pharmacologic therapy of elevated Lp(a) levels has been only modestly successful and apheresis remains the most effective therapeutic modality (Hajjar and Nachman, Annu. Rev. Med., 1996, 47, 423-442).

Morishita et al. have reported the use of ribozyme oligonucleotides against apolipoprotein(a) for inhibition of apolipoprotein(a) expression in HepG2 cells (Morishita et al., Circulation, 1998, 98, 1898-1904).

Disclosed and claimed in US patent 5,721,138 are nucleotide sequences encoding the human apolipoprotein(a) gene 5'-regulatory region and isolated nucleotide sequences comprising at least thirty consecutive complementary nucleotides from human apolipoprotein(a) from nucleotide

- 4 -

position -208 to -1448 (Lawn, 1998).

To date, investigative and therapeutic strategies aimed at inhibiting apolipoprotein(a) function have involved the previously cited use of Lp(a) apheresis and ribozyme oligonucleotides. Consequently, there remains a long-felt need for additional agents capable of effectively inhibiting apolipoprotein(a) function.

Antisense technology is emerging as an effective means of reducing the expression of specific gene products and may therefore prove to be uniquely useful in a number of therapeutic, diagnostic and research applications involving modulation of apolipoprotein(a) expression.

The present invention provides compositions and methods for modulating apolipoprotein(a)expression.

15 SUMMARY OF THE INVENTION

The present invention is directed to compounds, particularly antisense oligonucleotides, which are targeted to a nucleic acid encoding apolipoprotein(a), and which modulate the expression of apolipoprotein(a).

Pharmaceutical and other compositions comprising the compounds of the invention are also provided. Further provided are methods of modulating the expression of apolipoprotein(a) in cells or tissues comprising contacting said cells or tissues with one or more of the antisense compounds or compositions of the invention. Further provided are methods of treating an animal, particularly a human, suspected of having or being prone to a disease or condition associated with expression of apolipoprotein(a), by administering a therapeutically or prophylactically effective amount of one or more of the antisense compounds or compositions of the invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention employs oligomeric compounds, particularly antisense oligonucleotides, for use in modulating the function of nucleic acid molecules encoding

- 5 -

apolipoprotein(a), ultimately modulating the amount of apolipoprotein(a) produced. This is accomplished by providing antisense compounds which specifically hybridize with one or more nucleic acids encoding apolipoprotein(a). 5 As used herein, the terms "target nucleic acid" and "nucleic acid encoding apolipoprotein(a)" encompass DNA encoding apolipoprotein(a), RNA (including pre-mRNA and mRNA) transcribed from such DNA, and also cDNA derived from such RNA. The specific hybridization of an oligomeric 10 compound with its target nucleic acid interferes with the normal function of the nucleic acid. This modulation of function of a target nucleic acid by compounds which specifically hybridize to it is generally referred to as The functions of DNA to be interfered with "antisense". 15 include replication and transcription. The functions of RNA to be interfered with include all vital functions such as, for example, translocation of the RNA to the site of protein translation, translation of protein from the RNA, splicing of the RNA to yield one or more mRNA species, and 20 catalytic activity which may be engaged in or facilitated by the RNA. The overall effect of such interference with target nucleic acid function is modulation of the expression of apolipoprotein(a). In the context of the present invention, "modulation" means either an increase 25 (stimulation) or a decrease (inhibition) in the expression of a gene. In the context of the present invention, inhibition is the preferred form of modulation of gene

It is preferred to target specific nucleic acids for antisense. "Targeting" an antisense compound to a particular nucleic acid, in the context of this invention, is a multistep process. The process usually begins with the identification of a nucleic acid sequence whose function is to be modulated. This may be, for example, a cellular gene (or mRNA transcribed from the gene) whose

expression and mRNA is a preferred target.

- 6 -

expression is associated with a particular disorder or disease state, or a nucleic acid molecule from an infectious agent. In the present invention, the target is a nucleic acid molecule encoding apolipoprotein(a). 5 targeting process also includes determination of a site or sites within this gene for the antisense interaction to occur such that the desired effect, e.g., detection or modulation of expression of the protein, will result. Within the context of the present invention, a preferred 10 intragenic site is the region encompassing the translation initiation or termination codon of the open reading frame (ORF) of the gene. Since, as is known in the art, the translation initiation codon is typically 5'-AUG (in transcribed mRNA molecules; 5'-ATG in the corresponding DNA 15 molecule), the translation initiation codon is also referred to as the "AUG codon," the "start codon" or the "AUG start codon". A minority of genes have a translation initiation codon having the RNA sequence 5'-GUG, 5'-UUG or 5'-CUG, and 5'-AUA, 5'-ACG and 5'-CUG have been shown to 20 function in vivo. Thus, the terms "translation initiation codon" and "start codon" can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine (in eukaryotes) or formylmethionine (in prokaryotes). It is also known in the 25 art that eukaryotic and prokaryotic genes may have two or more alternative start codons, any one of which may be preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set In the context of the invention, "start of conditions. 30 codon" and "translation initiation codon" refer to the codon or codons that are used in vivo to initiate translation of an mRNA molecule transcribed from a gene encoding apolipoprotein(a), regardless of the sequence(s) of such codons.

It is also known in the art that a translation

35

- 7 -

termination codon (or "stop codon") of a gene may have one of three sequences, i.e., 5'-UAA, 5'-UAG and 5'-UGA (the corresponding DNA sequences are 5'-TAA, 5'-TAG and 5'-TGA, respectively). The terms "start codon region" and 5 "translation initiation codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation codon. Similarly, the terms "stop codon region" and "translation termination 10 codon region" refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation termination codon.

The open reading frame (ORF) or "coding region," 15 which is known in the art to refer to the region between the translation initiation codon and the translation termination codon, is also a region which may be targeted effectively. Other target regions include the 5' untranslated region (5'UTR), known in the art to refer to 20 the portion of an mRNA in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA or corresponding nucleotides on the gene, and the 3' untranslated region (3'UTR), known in 25 the art to refer to the portion of an mRNA in the 3' direction from the translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA or corresponding nucleotides on the gene. The 5' cap of an mRNA comprises an N7-methylated 30 guanosine residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage. The 5' cap region of an mRNA is considered to include the 5' cap structure itself as well as the first 50 nucleotides adjacent to the cap. The 5' cap region may also be a preferred target region. Although some eukaryotic mRNA transcripts are

35

- 8 -

directly translated, many contain one or more regions, known as "introns," which are excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as "exons" and are spliced together to form a continuous mRNA sequence. mRNA splice sites, i.e., intron-exon junctions, may also be preferred target regions, and are particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular mRNA splice product is implicated in disease. Aberrant fusion junctions due to rearrangements or deletions are also preferred targets. It has also been found that introns can also be effective, and therefore preferred, target regions for antisense compounds targeted, for example, to DNA or pre-mRNA.

Once one or more target sites have been identified, oligonucleotides are chosen which are sufficiently complementary to the target, i.e., hybridize sufficiently well and with sufficient specificity, to give the desired effect.

15

In the context of this invention, "hybridization" 20 means hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleoside or nucleotide bases. For example, adenine and thymine are complementary nucleobases which 25 pair through the formation of hydrogen bonds. "Complementary," as used herein, refers to the capacity for precise pairing between two nucleotides. For example, if a nucleotide at a certain position of an oligonucleotide is capable of hydrogen bonding with a nucleotide at the same 30 position of a DNA or RNA molecule, then the oligonucleotide and the DNA or RNA are considered to be complementary to each other at that position. The oligonucleotide and the DNA or RNA are complementary to each other when a sufficient number of corresponding positions in each 35 molecule are occupied by nucleotides which can hydrogen

- 9 -

bond with each other. Thus, "specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity or precise pairing such that stable and specific binding occurs between the 5 oligonucleotide and the DNA or RNA target. It is understood in the art that the sequence of an antisense compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable. antisense compound is specifically hybridizable when 10 binding of the compound to the target DNA or RNA molecule interferes with the normal function of the target DNA or RNA to cause a loss of utility, and there is a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-target sequences under 15 conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays or therapeutic treatment, and in the case of in vitro assays, under conditions in which the assays are performed.

Antisense and other compounds of the invention which hybridize to the target and inhibit expression of the target are identified through experimentation, and the sequences of these compounds are hereinbelow identified as preferred embodiments of the invention. The target sites to which these preferred sequences are complementary are hereinbelow referred to as "active sites" and are therefore preferred sites for targeting. Therefore another embodiment of the invention encompasses compounds which hybridize to these active sites.

Antisense compounds are commonly used as research reagents and diagnostics. For example, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used by those of ordinary skill to elucidate the function of particular genes. Antisense compounds are also used, for example, to

- 10 -

distinguish between functions of various members of a biological pathway. Antisense modulation has, therefore, been harnessed for research use.

For use in kits and diagnostics, the antisense

5 compounds of the present invention, either alone or in
combination with other antisense compounds or therapeutics,
can be used as tools in differential and/or combinatorial
analyses to elucidate expression patterns of a portion or
the entire complement of genes expressed within cells and
10 tissues.

Expression patterns within cells or tissues treated with one or more antisense compounds are compared to control cells or tissues not treated with antisense compounds and the patterns produced are analyzed for differential levels of gene expression as they pertain, for example, to disease association, signaling pathway, cellular localization, expression level, size, structure or function of the genes examined. These analyses can be performed on stimulated or unstimulated cells and in the presence or absence of other compounds which affect expression patterns.

Examples of methods of gene expression analysis known in the art include DNA arrays or microarrays (Brazma and Vilo, FEBS Lett., 2000, 480, 17-24; Celis, et al., FEBS

25 Lett., 2000, 480, 2-16), SAGE (serial analysis of gene expression) (Madden, et al., Drug Discov. Today, 2000, 5, 415-425), READS (restriction enzyme amplification of digested cDNAs) (Prashar and Weissman, Methods Enzymol., 1999, 303, 258-72), TOGA (total gene expression analysis)

30 (Sutcliffe, et al., Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 1976-81), protein arrays and proteomics (Celis, et al., FEBS Lett., 2000, 480, 2-16; Jungblut, et al., Electrophoresis, 1999, 20, 2100-10), expressed sequence tag (EST) sequencing (Celis, et al., FEBS Lett., 2000, 480, 2-

- 11 -

16; Larsson, et al., J. Biotechnol., 2000, 80, 143-57), subtractive RNA fingerprinting (SuRF) (Fuchs, et al., Anal. Biochem., 2000, 286, 91-98; Larson, et al., Cytometry, 2000, 41, 203-208), subtractive cloning, differential display (DD) (Jurecic and Belmont, Curr. Opin. Microbiol., 2000, 3, 316-21), comparative genomic hybridization (Carulli, et al., J. Cell Biochem. Suppl., 1998, 31, 286-96), FISH (fluorescent in situ hybridization) techniques (Going and Gusterson, Eur. J. Cancer, 1999, 35, 1895-904) and mass spectrometry methods (reviewed in (To, Comb. Chem. High Throughput Screen, 2000, 3, 235-41).

The specificity and sensitivity of antisense is also harnessed by those of skill in the art for therapeutic uses. Antisense oligonucleotides have been employed as therapeutic moieties in the treatment of disease states in animals and man. Antisense oligonucleotide drugs, including ribozymes, have been safely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that oligonucleotides can be useful therapeutic modalities that can be configured to be useful in treatment regimes for treatment of cells, tissues and animals, especially humans.

In the context of this invention, the term
"oligonucleotide" refers to an oligomer or polymer of
ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or
mimetics thereof. This term includes oligonucleotides
composed of naturally-occurring nucleobases, sugars and
covalent internucleoside (backbone) linkages as well as
oligonucleotides having non-naturally-occurring portions
which function similarly. Such modified or substituted
oligonucleotides are often preferred over native forms
because of desirable properties such as, for example,
enhanced cellular uptake, enhanced affinity for nucleic

- 12 -

acid target and increased stability in the presence of nucleases.

While antisense oligonucleotides are a preferred form of antisense compound, the present invention comprehends

5 other oligomeric antisense compounds, including but not limited to oligonucleotide mimetics such as are described below. The antisense compounds in accordance with this invention preferably comprise from about 8 to about 50 nucleobases (i.e. from about 8 to about 50 linked

10 nucleosides). Particularly preferred antisense compounds are antisense oligonucleotides, even more preferably those comprising from about 12 to about 30 nucleobases. Antisense compounds include ribozymes, external guide sequence (EGS) oligonucleotides (oligozymes), and other short catalytic

15 RNAs or catalytic oligonucleotides which hybridize to the target nucleic acid and modulate its expression.

As is known in the art, a nucleoside is a base-sugar combination. The base portion of the nucleoside is normally a heterocyclic base. The two most common classes 20 of such heterocyclic bases are the purines and the pyrimidines. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be 25 linked to either the 2', 3' or 5' hydroxyl moiety of the sugar. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. In turn the respective ends of this linear polymeric structure can be further joined to 30 form a circular structure, however, open linear structures are generally preferred. Within the oligonucleotide structure, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of RNA and 35 DNA is a 3' to 5' phosphodiester linkage.

- 13 -

Specific examples of preferred antisense compounds useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this

5 specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides

10 that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.

Preferred modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkyl15 phosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates, 5'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thiono20 alkylphosphonates, thionoalkylphosphotriesters, selenophosphates and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein one or more internucleotide linkages is a 3' to 3', 5' to 5' or 2' to 2' linkage.
25 Preferred oligonucleotides having inverted polarity comprise a single 3' to 3' linkage at the 3'-most

comprise a single 3' to 3' linkage at the 3'-most internucleotide linkage i.e. a single inverted nucleoside residue which may be abasic (the nucleobase is missing or has a hydroxyl group in place thereof). Various salts, 30 mixed salts and free acid forms are also included.

Representative United States patents that teach the preparation of the above phosphorus-containing linkages include, but are not limited to, U.S.: 3,687,808; 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131;

- 14 -

5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; 5,194,599; 5,565,555; 5,527,899; 5,721,218; 5,672,697 and 5,625,050, certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl 10 internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); 15 siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; riboacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino 20 backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH2 component parts.

Representative United States patents that teach the preparation of the above oligonucleosides include, but are not limited to, U.S.: 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 30 5,663,312; 5,633,360; 5,677,437; 5,792,608; 5,646,269 and 5,677,439, certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage, i.e., the backbone,

- 15 -

of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has 5 been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). compounds, the sugar-backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are 10 retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S.: 5,539,082; 5,714,331; and 5,719,262, each of 15 which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science, 1991, 254, 1497-1500.

Most preferred embodiments of the invention are oligonucleotides with phosphorothicate backbones and oligonucleosides with heteroatom backbones, and in particular -CH2-NH-O-CH2-, -CH2-N(CH3)-O-CH2- [known as a methylene (methylimino) or MMI backbone], -CH2-O-N(CH3)-CH2-, -CH2-N(CH3)-N(CH3)-CH2- and -O-N(CH3)-CH2-CH2- [wherein the native phosphodiester backbone is represented as -O-P-O-CH2-] of the above referenced U.S. patent 5,489,677, and the amide backbones of the above referenced U.S. patent 5,602,240. Also preferred are oligonucleotides having morpholino backbone structures of the above-referenced U.S. patent 5,034,506.

Modified oligonucleotides may also contain one or more substituted sugar moieties. Preferred oligonucleotides comprise one of the following at the 2' position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S- or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may be substituted or unsubstituted C1

- 16 -

to C₁₀ alkyl or C₂ to C₁₀ alkenyl and alkynyl. Particularly preferred are $O[(CH_2)_nO]_mCH_3$, $O(CH_2)_nOCH_3$, $O(CH_2)_nNH_2$, $O(CH_2)_nCH_3$, $O(CH_2)_nONH_2$, and $O(CH_2)_nON[(CH_2)_nCH_3)]_2$, where n and m are from 1 to about 10. Other preferred oligonucleotides 5 comprise one of the following at the 2' position: C_1 to C_{10} lower alkyl, substituted lower alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, CF₃, OCF₃, SOCH₃, SO₂CH₃, ONO₂, NO₂, N₃, NH₂, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, 10 polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar 15 properties. A preferred modification includes 2'methoxyethoxy (2'-O-CH₂CH₂OCH₃, also known as 2'-O-(2methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504) i.e., an alkoxyalkoxy group. A further preferred modification includes 2'-dimethylaminooxyethoxy, 20 i.e., a O(CH₂)₂ON(CH₃)₂ group, also known as 2'-DMAOE, as described in examples hereinbelow, and 2'-dimethylaminoethoxyethoxy (also known in the art as 2'-O-dimethylaminoethoxyethyl or 2'-DMAEOE), i.e., 2'-O-CH₂-O-CH₂-N(CH₂)₂, also described in examples hereinbelow.-

25 A further prefered modification includes Locked Nucleic Acids (LNAs) in which the 2'-hydroxyl group is linked to the 3' or 4' carbon atom of the sugar ring thereby forming a bicyclic sugar moiety. The linkage is preferably a methelyne (-CH₂-)_n group bridging the 2' oxygen 30 atom and the 4' carbon atom wherein n is 1 or 2. LNAs and preparation thereof are described in WO 98/39352 and WO 99/14226.

Other preferred modifications include 2'-methoxy (2'-O-CH₃), 2'-aminopropoxy (2'-OCH₂CH₂CH₂NH₂), 2'-allyl (2'-CH₂-CH₂CH₂CH₂), 2'-O-allyl (2'-O-CH₂-CH=CH₂) and 2'-fluoro (2'-F).

- 17 -

The 2'-modification may be in the arabino (up) position or ribo (down) position. A preferred 2'-arabino modification is 2'-F. Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' 5 position of the sugar on the 3' terminal nucleotide or in 2'-5' linked oligonucleotides and the 5' position of 5' terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents 10 that teach the preparation of such modified sugar structures include, but are not limited to, U.S.: 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 15 5,639,873; 5,646,265; 5,658,873; 5,670,633; 5,792,747; and 5,700,920, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety.

Oligonucleotides may also include nucleobase (often 20 referred to in the art simply as "base") modifications or substitutions. As used herein, "unmodified" or "natural" nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other 25 synthetic and natural nucleobases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and quanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-30 thiocytosine, 5-halouracil and cytosine, 5-propynyl (-C≡C-CH₃) uracil and cytosine and other alkynyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted 35 adenines and guanines, 5-halo particularly 5-bromo, 5-

- 18 -

trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 2-F-adenine, 2amino-adenine, 8-azaguanine and 8-azaadenine, 7deazaquanine and 7-deazaadenine and 3-deazaquanine and 3-5 deazaadenine. Further modified nucleobases include tricyclic pyrimidines such as phenoxazine cytidine(1Hpyrimido[5,4-b][1,4]benzoxazin-2(3H)-one), phenothiazine cytidine (1H-pyrimido[5,4-b][1,4]benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazine cytidine (e.g. 10 9-(2-aminoethoxy)-H-pyrimido[5,4-b][1,4]benzoxazin-2(3H)one), carbazole cytidine (2H-pyrimido[4,5-b]indol-2-one), pyridoindole cytidine (H-pyrido[3',2':4,5]pyrrolo[2,3d]pyrimidin-2-one). Modified nucleobases may also include those in which the purine or pyrimidine base is replaced 15 with other heterocycles, for example 7-deaza-adenine, 7deazaguanosine, 2-aminopyridine and 2-pyridone. nucleobases include those disclosed in United States Patent No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, 20 Kroschwitz, J.I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y.S., Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, S.T. and Lebleu, B., 25 ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyl-30 adenine, 5-propynyluracil and 5-propynylcytosine. 5methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2°C (Sanghvi, Y.S., Crooke, S.T. and Lebleu, B., eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and

- 19 -

are presently preferred base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications.

Representative United States patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. 3,687,808, as well as U.S.: 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 10 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121, 5,596,091; 5,614,617; 5,645,985; 5,830,653; 5,763,588; 6,005,096; and 5,681,941, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference, and United States patent 15 5,750,692, which is commonly owned with the instant application and also herein incorporated by reference.

Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates which 20 enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. The compounds of the invention can include conjugate groups covalently bound to functional groups such as primary or secondary hydroxyl groups. Conjugate groups of the invention include inter-25 calators, reporter molecules, polyamines, polyamides, polyethylene glycols, polyethers, groups that enhance the pharmacodynamic properties of oligomers, and groups that enhance the pharmacokinetic properties of oligomers. Typical conjugates groups include cholesterols, lipids, 30 phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes. Groups that enhance the pharmacodynamic properties, in the context of this invention, include groups that improve oligomer uptake, enhance 35 oligomer resistance to degradation, and/or strengthen

sequence-specific hybridization with RNA. Groups that enhance the pharmacokinetic properties, in the context of this invention, include groups that improve oligomer uptake, distribution, metabolism or excretion.

- 5 Representative conjugate groups are disclosed in International Patent Application PCT/US92/09196, filed October 23, 1992 the entire disclosure of which is incorporated herein by reference. Conjugate moieties include but are not limited to lipid moieties such as a cholesterol moiety (Letsinger et al., Proc. Natl. Acad. Sci. USA, 1989,
- 86, 6553-6556), cholic acid (Manoharan et al., Bioorg. Med. Chem. Let., 1994, 4, 1053-1060), a thioether, e.g., hexyl-S-tritylthiol (Manoharan et al., Ann. N.Y. Acad. Sci., 1992, 660, 306-309; Manoharan et al., Bioorg. Med. Chem.
- 15 Let., 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., Nucl. Acids Res., 1992, 20, 533-538), an aliphatic chain, e.g., dodecandiol or undecyl residues (Saison-Behmoaras et al., EMBO J., 1991, 10, 1111-1118; Kabanov et al., FEBS Lett., 1990, 259, 327-330; Svinarchuk et al.,
- 20 Biochimie, 1993, 75, 49-54), a phospholipid, e.g., dihexadecyl-rac-glycerol or triethylammonium 1,2-di-Ohexadecyl-rac-glycero-3-H-phosphonate (Manoharan et al.,
 Tetrahedron Lett., 1995, 36, 3651-3654; Shea et al., Nucl.
 Acids Res., 1990, 18, 3777-3783), a polyamine or a
- 25 polyethylene glycol chain (Manoharan et al., Nucleosides & Nucleotides, 1995, 14, 969-973), or adamantane acetic acid (Manoharan et al., Tetrahedron Lett., 1995, 36, 3651-3654), a palmityl moiety (Mishra et al., Biochim. Biophys. Acta, 1995, 1264, 229-237), or an octadecylamine or hexylamino-
- 20 carbonyl-oxycholesterol moiety (Crooke et al., J. Pharmacol. Exp. Ther., 1996, 277, 923-937).

 Oligonucleotides of the invention may also be conjugated to active drug substances, for example, aspirin, warfarin, phenylbutazone, ibuprofen, suprofen, fenbufen, ketoprofen,

- 21 -

(S)-(+)-pranoprofen, carprofen, dansylsarcosine, 2,3,5-triiodobenzoic acid, flufenamic acid, folinic acid, a benzothiadiazide, chlorothiazide, a diazepine, indomethicin, a barbiturate, a cephalosporin, a sulfa drug, an antidiabetic, an antibacterial or an antibiotic.
Oligonucleotide-drug conjugates and their preparation are described in United States Patent Application 09/334,130 (filed June 15, 1999) which is incorporated herein by reference in its entirety.

10 Representative United States patents that teach the preparation of such oligonucleotide conjugates include, but are not limited to, U.S.: 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 15 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,587,044; 4,605,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,876,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 20 5,262,536; 5,272,250; 5,292,873; 5,317,098; 5,371,241, 5,391,723; 5,416,203, 5,451,463; 5,510,475; 5,512,667; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941, certain of which are commonly owned with the 25 instant application, and each of which is herein incorporated by reference.

It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also includes antisense compounds which are chimeric compounds.

"Chimeric" antisense compounds or "chimeras," in the context of this invention, are antisense compounds, particularly oligonucleotides, which contain two or more

- 22 -

chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically contain at least one region wherein the oligonucleotide is 5 modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving 10 RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA: DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide inhibition of gene 15 expression. Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothicate deoxyoligonucleotides hybridizing to the same target region. Cleavage of the RNA target can be routinely 20 detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art.

Chimeric antisense compounds of the invention may be formed as composite structures of two or more

25 oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide mimetics as described above. Such compounds have also been referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S.: 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,922, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety.

- 23 -

The antisense compounds used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis.

Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, CA). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives.

The antisense compounds of the invention are synthesized *in vitro* and do not include antisense compositions of biological origin, or genetic vector constructs designed to direct the *in vivo* synthesis of antisense molecules.

15 The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor targeted molecules, oral, rectal, topical or other formulations, for assisting in 20 uptake, distribution and/or absorption. Representative United States patents that teach the preparation of such uptake, distribution and/or absorption assisting formulations include, but are not limited to, U.S.: 5,108,921; 5,354,844; 5,416,016; 5,459,127; 5,521,291; 25 5,543,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534,899; 5,013,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of 30 which is herein incorporated by reference.

The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal including a human, is capable of providing (directly or indirectly) the biologically

- 24 -

active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents.

The term "prodrug" indicates a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions. In particular, prodrug versions of the oligonucleotides of the invention are prepared as SATE [(S-acetyl-2-thioethyl) phosphate] derivatives according to the methods disclosed in WO 93/24510 to Gosselin et al., published December 9, 1993 or in WO 94/26764 and U.S. 5,770,713 to Imbach et al.

The term "pharmaceutically acceptable salts" refers to physiologically and pharmaceutically acceptable salts of the compounds of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto.

Pharmaceutically acceptable base addition salts are formed with metals or amines, such as alkali and alkaline earth metals or organic amines. Examples of metals used as cations are sodium, potassium, magnesium, calcium, and the like. Examples of suitable amines are N,N'-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, dicyclohexylamine, ethylenediamine, N-methylglucamine, and procaine (see, for example, Berge et al., "Pharmaceutical Salts," J. of Pharma Sci., 1977, 66, 1-19). The base addition salts of said acidic compounds are prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the conventional manner. The free acid form may be regenerated by contacting the salt form with an acid and isolating the free acid in the conventional manner. The

WO 03/014307

- 25 -

PCT/US02/24920

free acid forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free acid for purposes of the present 5 invention. As used herein, a "pharmaceutical addition salt" includes a pharmaceutically acceptable salt of an acid form of one of the components of the compositions of the invention. These include organic or inorganic acid salts of the amines. Preferred acid salts are the 10 hydrochlorides, acetates, salicylates, nitrates and phosphates. Other suitable pharmaceutically acceptable salts are well known to those skilled in the art and include basic salts of a variety of inorganic and organic acids, such as, for example, with inorganic acids, such as 15 for example hydrochloric acid, hydrobromic acid, sulfuric acid or phosphoric acid; with organic carboxylic, sulfonic, sulfo or phospho acids or N-substituted sulfamic acids, for example acetic acid, propionic acid, glycolic acid, succinic acid, maleic acid, hydroxymaleic acid, 20 methylmaleic acid, fumaric acid, malic acid, tartaric acid, lactic acid, oxalic acid, gluconic acid, glucaric acid, glucuronic acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, salicylic acid, 4-aminosalicylic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic acid, embonic acid, 25 nicotinic acid or isonicotinic acid; and with amino acids, such as the 20 alpha-amino acids involved in the synthesis of proteins in nature, for example glutamic acid or aspartic acid, and also with phenylacetic acid, methanesulfonic acid, ethanesulfonic acid, 30 2-hydroxyethanesulfonic acid, ethane-1,2-disulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfoic acid, naphthalene-2-sulfonic acid, naphthalene-1,5-disulfonic acid, 2- or 3-phosphoglycerate, glucose-6-phosphate, N-cyclohexylsulfamic acid (with the formation of 35 cyclamates), or with other acid organic compounds, such as

- 26 -

ascorbic acid. Pharmaceutically acceptable salts of compounds may also be prepared with a pharmaceutically acceptable cation. Suitable pharmaceutically acceptable cations are well known to those skilled in the art and include alkaline, alkaline earth, ammonium and quaternary ammonium cations. Carbonates or hydrogen carbonates are also possible.

For oligonucleotides, preferred examples of pharmaceutically acceptable salts include but are not 10 limited to (a) salts formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as spermine and spermidine, etc.; (b) acid addition salts formed with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric 15 acid and the like; (c) salts formed with organic acids such as, for example, acetic acid, oxalic acid, tartaric acid, succinic acid, maleic acid, fumaric acid, gluconic acid, citric acid, malic acid, ascorbic acid, benzoic acid, tannic acid, palmitic acid, alginic acid, polyglutamic 20 acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, polygalacturonic acid, and the like; and (d) salts formed from elemental anions such as chlorine, bromine, and iodine.

25 The antisense compounds of the present invention can be utilized for diagnostics, therapeutics, prophylaxis and as research reagents and kits. For therapeutics, an animal, preferably a human, suspected of having a disease or disorder which can be treated by modulating the expression of apolipoprotein(a) is treated by administering antisense compounds in accordance with this invention. The compounds of the invention can be utilized in pharmaceutical compositions by adding an effective amount of an antisense compound to a suitable pharmaceutically acceptable diluent or carrier. Use of the antisense

- 27 -

compounds and methods of the invention may also be useful prophylactically, e.g., to prevent or delay infection, inflammation or tumor formation, for example.

The antisense compounds of the invention are useful

for research and diagnostics, because these compounds
hybridize to nucleic acids encoding apolipoprotein(a),
enabling sandwich and other assays to easily be constructed
to exploit this fact. Hybridization of the antisense
oligonucleotides of the invention with a nucleic acid

encoding apolipoprotein(a) can be detected by means known
in the art. Such means may include conjugation of an
enzyme to the oligonucleotide, radiolabelling of the
oligonucleotide or any other suitable detection means.
Kits using such detection means for detecting the level of
apolipoprotein(a) in a sample may also be prepared.

The present invention also includes pharmaceutical compositions and formulations which include the antisense compounds of the invention. The pharmaceutical compositions of the present invention may be administered 20 in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmic and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or 25 insufflation of powders or aerosols, including by nebulizer; intratracheal, intranasal, epidermal and transdermal), oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or 30 infusion; or intracranial, e.g., intrathecal or intraventricular, administration. Oligonucleotides with at least one 2'-O-methoxyethyl modification are believed to be particularly useful for oral administration.

Pharmaceutical compositions and formulations for topical administration may include transdermal patches,

- 28 -

ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves 5 and the like may also be useful. Preferred topical formulations include those in which the oligonucleotides of the invention are in admixture with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroids, chelating agents and surfactants. 10 Preferred lipids and liposomes include neutral (e.g. dioleoylphosphatidyl DOPE ethanolamine, dimyristoylphosphatidyl choline DMPC,

distearolyphosphatidyl choline) negative (e.g. dimyristoylphosphatidyl glycerol DMPG) and cationic (e.g.

15 dioleoyltetramethylaminopropyl DOTAP and dioleoylphosphatidyl ethanolamine DOTMA). Oligonucleotides of the invention may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, oligonucleotides may be

20 complexed to lipids, in particular to cationic lipids. Preferred fatty acids and esters include but are not limited arachidonic acid, oleic acid, eicosanoic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid,

25 dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an acylcarnitine, an acylcholine, or a C_{1-10} alkyl ester (e.g. isopropylmyristate IPM), monoglyceride, diglyceride or pharmaceutically acceptable salt thereof. Topical

30 formulations are described in detail in United States patent application 09/315,298 filed on May 20, 1999 which is incorporated herein by reference in its entirety.

Compositions and formulations for oral administration include powders or granules, microparticulates,

35 nanoparticulates, suspensions or solutions in water or non-

- 29 -

aqueous media, capsules, qel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable. Preferred oral formulations are those in which 5 oligonucleotides of the invention are administered in conjunction with one or more penetration enhancers surfactants and chelators. Preferred surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof. Prefered bile acids/salts include 10 chenodeoxycholic acid (CDCA) and ursodeoxychenodeoxycholic acid (UDCA), cholic acid, dehydrocholic acid, deoxycholic acid, glucholic acid, glycholic acid, glycodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate, sodium glycodihydrofusidate,. 15 Prefered fatty acids include arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, an 20 acylcarnitine, an acylcholine, or a monoglyceride, a diglyceride or a pharmaceutically acceptable salt thereof (e.g. sodium). Also prefered are combinations of penetration enhancers, for example, fatty acids/salts in combination with bile acids/salts. A particularly prefered 25 combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. Oligonucleotides of the invention may be delivered orally in granular form including sprayed dried particles, 30 or complexed to form micro or nanoparticles. Oligonucleotide complexing agents include poly-amino acids; polyimines; polyacrylates; polyalkylacrylates, polyoxethanes, polyalkylcyanoacrylates; cationized gelatins, albumins, starches, acrylates, 35 polyethyleneglycols (PEG) and starches;

- 30 -

polyalkylcyanoacrylates; DEAE-derivatized polyimines, pollulans, celluloses and starches. Particularly preferred complexing agents include chitosan, N-trimethylchitosan, poly-L-lysine, polyhistidine, polyornithine, polyspermines, 5 protamine, polyvinylpyridine, polythiodiethylaminomethylethylene P(TDAE), polyaminostyrene (e.g. p-amino), poly(methylcyanoacrylate), poly(ethylcyanoacrylate), poly(butylcyanoacrylate), poly(isobutylcyanoacrylate), poly(isohexylcynaoacrylate), DEAE-methacrylate, DEAE-10 hexylacrylate, DEAE-acrylamide, DEAE-albumin and DEAEdextran, polymethylacrylate, polyhexylacrylate, poly(D,Llactic acid), poly(DL-lactic-co-glycolic acid (PLGA), alginate, and polyethyleneglycol (PEG). Oral formulations for oligonucleotides and their preparation are described in 15 detail in United States applications 08/886,829 (filed July 1, 1997), 09/108,673 (filed July 1, 1998), 09/256,515 (filed February 23, 1999), 09/082,624 (filed May 21, 1998) and 09/315,298 (filed May 20, 1999) each of which is incorporated herein by reference in their entirety.

Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and 25 other pharmaceutically acceptable carriers or excipients.

20

Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but 30 are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.

The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional 35 techniques well known in the pharmaceutical industry. Such

- 31 -

techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

The compositions of the present invention may be formulated into any of many possible dosage forms such as, 10 but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances which increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

In one embodiment of the present invention the pharmaceutical compositions may be formulated and used as 20 foams. Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies and liposomes. While basically similar in nature these formulations vary in the components and the consistency of the final product. The preparation of such 25 compositions and formulations is generally known to those skilled in the pharmaceutical and formulation arts and may be applied to the formulation of the compositions of the present invention.

Emulsions

30 The compositions of the present invention may be prepared and formulated as emulsions. Emulsions are typically heterogenous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 μ m in diameter. (Idson, in *Pharmaceutical Dosage Forms*,

35 Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker,

- 32 -

Inc., New York, N.Y., volume 1, p. 199; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., Volume 1, p. 245; Block in Pharmaceutical Dosage Forms, Lieberman, 5 Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 2, p. 335; Higuchi et al., in Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, PA, 1985, p. 301). Emulsions are often biphasic systems comprising of two immiscible liquid phases 10 intimately mixed and dispersed with each other. general, emulsions may be either water-in-oil (w/o) or of the oil-in-water (o/w) variety. When an aqueous phase is finely divided into and dispersed as minute droplets into a bulk oily phase the resulting composition is called a 15 water-in-oil (w/o) emulsion. Alternatively, when an oily phase is finely divided into and dispersed as minute droplets into a bulk aqueous phase the resulting composition is called an oil-in-water (o/w) emulsion. Emulsions may contain additional components in addition to 20 the dispersed phases and the active drug which may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Pharmaceutical excipients such as emulsifiers, stabilizers, dyes, and anti-oxidants may also be present in emulsions as needed. 25 Pharmaceutical emulsions may also be multiple emulsions that are comprised of more than two phases such as, for example, in the case of oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w) emulsions. Such complex formulations often provide certain advantages that simple 30 binary emulsions do not. Multiple emulsions in which individual oil droplets of an o/w emulsion enclose small water droplets constitute a w/o/w emulsion. Likewise a system of oil droplets enclosed in globules of water stabilized in an oily continuous provides an o/w/o

- 33 -

emulsion.

Emulsions are characterized by little or no thermodynamic stability. Often, the dispersed or discontinuous phase of the emulsion is well dispersed into 5 the external or continuous phase and maintained in this form through the means of emulsifiers or the viscosity of the formulation. Either of the phases of the emulsion may be a semisolid or a solid, as is the case of emulsion-style ointment bases and creams. Other means of stabilizing 10 emulsions entail the use of emulsifiers that may be incorporated into either phase of the emulsion. Emulsifiers may broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (Idson, in 15 Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

Synthetic surfactants, also known as surface active agents, have found wide applicability in the formulation of 20 emulsions and have been reviewed in the literature (Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285; Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), Marcel Dekker, Inc., 25 New York, N.Y., 1988, volume 1, p. 199). Surfactants are typically amphiphilic and comprise a hydrophilic and a hydrophobic portion. The ratio of the hydrophilic to the hydrophobic nature of the surfactant has been termed the hydrophile/lipophile balance (HLB) and is a valuable tool 30 in categorizing and selecting surfactants in the preparation of formulations. Surfactants may be classified into different classes based on the nature of the hydrophilic group: nonionic, anionic, cationic and amphoteric (Rieger, in Pharmaceutical Dosage Forms,

- 34 -

Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285).

Naturally occurring emulsifiers used in emulsion formulations include lanolin, beeswax, phosphatides,

5 lecithin and acacia. Absorption bases possess hydrophilic properties such that they can soak up water to form w/o emulsions yet retain their semisolid consistencies, such as anhydrous lanolin and hydrophilic petrolatum. Finely divided solids have also been used as good emulsifiers

10 especially in combination with surfactants and in viscous preparations. These include polar inorganic solids, such as heavy metal hydroxides, nonswelling clays such as bentonite, attapulgite, hectorite, kaolin, montmorillonite, colloidal aluminum silicate and colloidal magnesium

15 aluminum silicate, pigments and nonpolar solids such as carbon or glyceryl tristearate.

A large variety of non-emulsifying materials are also included in emulsion formulations and contribute to the properties of emulsions. These include fats, oils, waxes, 20 fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives and antioxidants (Block, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335; Idson, in *Pharmaceutical Dosage* 25 Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199).

Hydrophilic colloids or hydrocolloids include naturally occurring gums and synthetic polymers such as polysaccharides (for example, acacia, agar, alginic acid, carrageenan, guar gum, karaya gum, and tragacanth), cellulose derivatives (for example, carboxymethylcellulose and carboxypropylcellulose), and synthetic polymers (for example, carbomers, cellulose ethers, and carboxyvinyl polymers). These disperse or swell in water to form

- 35 -

colloidal solutions that stabilize emulsions by forming strong interfacial films around the dispersed-phase droplets and by increasing the viscosity of the external phase.

Since emulsions often contain a number of ingredients such as carbohydrates, proteins, sterols and phosphatides that may readily support the growth of microbes, these formulations often incorporate preservatives. Commonly used preservatives included in emulsion formulations

10 include methyl paraben, propyl paraben, quaternary ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Antioxidants are also commonly added to emulsion formulations to prevent deterioration of the formulation. Antioxidants used may be free radical

15 scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulfite, and antioxidant synergists such as citric acid, tartaric acid, and lecithin.

20 The application of emulsion formulations via dermatological, oral and parenteral routes and methods for their manufacture have been reviewed in the literature (Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, 25 N.Y., volume 1, p. 199). Emulsion formulations for oral delivery have been very widely used because of reasons of ease of formulation, efficacy from an absorption and bioavailability standpoint. (Rosoff, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, 30 Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Idson, in *Pharmaceutical Dosage Forms*, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 199). Mineral-oil base laxatives, oil-

soluble vitamins and high fat nutritive preparations are

- 36 -

among the materials that have commonly been administered orally as o/w emulsions.

In one embodiment of the present invention, the compositions of oligonucleotides and nucleic acids are 5 formulated as microemulsions. A microemulsion may be defined as a system of water, oil and amphiphile which is a single optically isotropic and thermodynamically stable liquid solution (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, 10 Inc., New York, N.Y., volume 1, p. 245). Typically microemulsions are systems that are prepared by first dispersing an oil in an aqueous surfactant solution and . then adding a sufficient amount of a fourth component, generally an intermediate chain-length alcohol to form a 15 transparent system. Therefore, microemulsions have also been described as thermodynamically stable, isotropically clear dispersions of two immiscible liquids that are stabilized by interfacial films of surface-active molecules (Leung and Shah, in: Controlled Release of Drugs: Polymers 20 and Aggregate Systems, Rosoff, M., Ed., 1989, VCH Publishers, New York, pages 185-215). Microemulsions commonly are prepared via a combination of three to five components that include oil, water, surfactant, cosurfactant and electrolyte. Whether the microemulsion is 25 of the water-in-oil (w/o) or an oil-in-water (o/w) type is dependent on the properties of the oil and surfactant used and on the structure and geometric packing of the polar heads and hydrocarbon tails of the surfactant molecules (Schott, in Remington's Pharmaceutical Sciences, Mack 30 Publishing Co., Easton, PA, 1985, p. 271).

The phenomenological approach utilizing phase diagrams has been extensively studied and has yielded a comprehensive knowledge, to one skilled in the art, of how to formulate microemulsions (Rosoff, in *Pharmaceutical*

- 37 -

Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245; Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335). Compared to conventional emulsions, microemulsions offer the advantage of solubilizing water-insoluble drugs in a formulation of thermodynamically stable droplets that are formed spontaneously.

Surfactants used in the preparation of microemulsions 10 include, but are not limited to, ionic surfactants, nonionic surfactants, Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol 15 monooleate (PO310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprate (MCA750), decaglycerol monooleate (MO750), decaglycerol sequioleate (SO750), decaglycerol decaoleate (DAO750), alone or in combination with cosurfactants. The cosurfactant, usually a short-chain 20 alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules. Microemulsions may, however, be prepared 25 without the use of cosurfactants and alcohol-free selfemulsifying microemulsion systems are known in the art. The aqueous phase may typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives 30 of ethylene glycol. The oil phase may include, but is not limited to, materials such as Captex 300, Captex 355, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylated glyceryl fatty acid esters, fatty alcohols, polyglycolized glycerides, 35 saturated polyglycolized C8-C10 glycerides, vegetable oils

- 38 -

and silicone oil.

Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs. Lipid based microemulsions (both o/w 5 and w/o) have been proposed to enhance the oral bioavailability of drugs, including peptides (Constantinides et al., Pharmaceutical Research, 1994, 11, 1385-1390; Ritschel, Meth. Find. Exp. Clin. Pharmacol., 1993, 13, 205). Microemulsions afford advantages of 10 improved drug solubilization, protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, 15 improved clinical potency, and decreased toxicity (Constantinides et al., Pharmaceutical Research, 1994, 11, 1385; Ho et al., J. Pharm. Sci., 1996, 85, 138-143). Often microemulsions may form spontaneously when their components are brought together at ambient temperature. This may be 20 particularly advantageous when formulating thermolabile drugs, peptides or oligonucleotides. Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion 25 compositions and formulations of the present invention will facilitate the increased systemic absorption of oligonucleotides and nucleic acids from the gastrointestinal tract, as well as improve the local cellular uptake of oligonucleotides and nucleic acids 30 within the gastrointestinal tract, vagina, buccal cavity and other areas of administration.

Microemulsions of the present invention may also contain additional components and additives such as sorbitan monostearate (Grill 3), Labrasol, and penetration

- 39 -

enhancers to improve the properties of the formulation and to enhance the absorption of the oligonucleotides and nucleic acids of the present invention. Penetration enhancers used in the microemulsions of the present invention may be classified as belonging to one of five broad categories - surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of these classes has been discussed

Liposomes

10 above.

There are many organized surfactant structures besides microemulsions that have been studied and used for the formulation of drugs. These include monolayers,

15 micelles, bilayers and vesicles. Vesicles, such as liposomes, have attracted great interest because of their specificity and the duration of action they offer from the standpoint of drug delivery. As used in the present invention, the term

20 "liposome" means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers.

Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the composition to be delivered. Cationic liposomes possess the advantage of being able to fuse to the cell wall. Non-cationic liposomes, although not able to fuse as efficiently with the cell wall, are taken up by macrophages in vivo.

In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. Therefore, it is desirable to use a liposome which is highly deformable and able to pass through such fine pores.

- 40 -

Further advantages of liposomes include; liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect

5 encapsulated drugs in their internal compartments from metabolism and degradation (Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 245). Important considerations in the preparation of liposome

10 formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.

Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomes start to merge with the cellular membranes. As the merging of the liposome and cell progresses, the liposomal contents are emptied into the cell where the active agent may act.

Liposomal formulations have been the focus of extensive investigation as the mode of delivery for many drugs. There is growing evidence that for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side-effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer a wide variety of drugs, both hydrophilic and hydrophobic, into the skin.

30 Several reports have detailed the ability of liposomes to deliver agents including high-molecular weight DNA into the skin. Compounds including analgesics, antibodies, hormones and high-molecular weight DNAs have been administered to the skin. The majority of applications resulted in the targeting of the upper

- 41 -

epidermis.

Liposomes fall into two broad classes. Cationic liposomes are positively charged liposomes which interact with the negatively charged DNA molecules to form a stable complex. The positively charged DNA/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang et al., Biochem. Biophys. Res.

10 Commun., 1987, 147, 980-985).

Liposomes which are pH-sensitive or negatively-charged, entrap DNA rather than complex with it. Since both the DNA and the lipid are similarly charged, repulsion rather than complex formation occurs.

15 Nevertheless, some DNA is entrapped within the aqueous interior of these liposomes. pH-sensitive liposomes have been used to deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al., Journal of Controlled Release, 1992, 19, 269-274).

One major type of liposomal composition includes phospholipids other than naturally-derived phosphatidylcholine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, soybean PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.

Several studies have assessed the topical delivery of liposomal drug formulations to the skin. Application of liposomes containing interferon to guinea pig skin resulted

- 42 -

in a reduction of skin herpes sores while delivery of interferon via other means (e.g. as a solution or as an emulsion) were ineffective (Weiner et al., Journal of Drug Targeting, 1992, 2, 405-410). Further, an additional study tested the efficacy of interferon administered as part of a liposomal formulation to the administration of interferon using an aqueous system, and concluded that the liposomal formulation was superior to aqueous administration (du Plessis et al., Antiviral Research, 1992, 18, 259-265).

Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactant and cholesterol. Non-ionic liposomal formulations comprising Novasome™ I (glyceryl

15 dilaurate/cholesterol/polyoxyethylene-10-stearyl ether) and
Novasome™ II (glyceryl distearate/
 cholesterol/polyoxyethylene-10-stearyl ether) were used to
 deliver cyclosporin-A into the dermis of mouse skin.
 Results indicated that such non-ionic liposomal systems
20 were effective in facilitating the deposition of
 cyclosporin-A into different layers of the skin (Hu et al.
 S.T.P.Pharma. Sci., 1994, 4, 6, 466).

Liposomes also include "sterically stabilized"
liposomes, a term which, as used herein, refers to
liposomes comprising one or more specialized lipids that,
when incorporated into liposomes, result in enhanced
circulation lifetimes relative to liposomes lacking such
specialized lipids. Examples of sterically stabilized
liposomes are those in which part of the vesicle-forming
lipid portion of the liposome (A) comprises one or more
glycolipids, such as monosialoganglioside G_{M1}, or (B) is
derivatized with one or more hydrophilic polymers, such as
a polyethylene glycol (PEG) moiety. While not wishing to
be bound by any particular theory, it is thought in the art

- 43 -

that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized liposomes derives from a reduced 5 uptake into cells of the reticuloendothelial system (RES) (Allen et al., FEBS Letters, 1987, 223, 42; Wu et al., Cancer Research, 1993, 53, 3765). Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos et al. (Ann. N.Y. Acad. Sci., 1987, 507, 10 64) reported the ability of monosialoganglioside G_{M1} , galactocerebroside sulfate and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon et al. (Proc. Natl. Acad. Sci. U.S.A., 1988, 85, 6949). U.S. Patent No. 4,837,028 and WO 15 88/04924, both to Allen et al., disclose liposomes comprising (1) sphingomyelin and (2) the ganglioside G_{M1} or a galactocerebroside sulfate ester. U.S. Patent No. 5,543,152 (Webb et al.) discloses liposomes comprising sphingomyelin. Liposomes comprising 1,2-sn-20 dimyristoylphosphatidylcholine are disclosed in WO 97/13499

Many liposomes comprising lipids derivatized with one or more hydrophilic polymers, and methods of preparation thereof, are known in the art. Sunamoto et al. (Bull.

(Lim et al.).

25 Chem. Soc. Jpn., 1980, 53, 2778) described liposomes comprising a nonionic detergent, $2C_{12}15G$, that contains a PEG moiety. Illum et al. (FEBS Lett., 1984, 167, 79) noted that hydrophilic coating of polystyrene particles with polymeric glycols results in significantly enhanced blood

30 half-lives. Synthetic phospholipids modified by the attachment of carboxylic groups of polyalkylene glycols (e.g., PEG) are described by Sears (U.S. Patent Nos. 4,426,330 and 4,534,899). Klibanov et al. (FEBS Lett., 1990, 268, 235) described experiments demonstrating that

- 44 -

liposomes comprising phosphatidylethanolamine (PE) derivatized with PEG or PEG stearate have significant increases in blood circulation half-lives. Blume et al. (Biochimica et Biophysica Acta, 1990, 1029, 91) extended 5 such observations to other PEG-derivatized phospholipids, e.g., DSPE-PEG, formed from the combination of distearoylphosphatidylethanolamine (DSPE) and PEG. Liposomes having covalently bound PEG moieties on their external surface are described in European Patent No. EP 0 10 445 131 B1 and WO 90/04384 to Fisher. Liposome compositions containing 1-20 mole percent of PE derivatized with PEG, and methods of use thereof, are described by Woodle et al. (U.S. Patent Nos. 5,013,556 and 5,356,633) and Martin et al. (U.S. Patent No. 5,213,804 and European 15 Patent No. EP 0 496 813 B1). Liposomes comprising a number of other lipid-polymer conjugates are disclosed in WO 91/05545 and U.S. Patent No. 5,225,212 (both to Martin et al.) and in WO 94/20073 (Zalipsky et al.) Liposomes comprising PEG-modified ceramide lipids are described in WO 20 96/10391 (Choi et al.). U.S. Patent Nos. 5,540,935 (Miyazaki et al.) and 5,556,948 (Tagawa et al.) describe PEG-containing liposomes that can be further derivatized with functional moieties on their surfaces.

A limited number of liposomes comprising nucleic

25 acids are known in the art. WO 96/40062 to Thierry et al.

discloses methods for encapsulating high molecular weight
nucleic acids in liposomes. U.S. Patent No. 5,264,221 to
Tagawa et al. discloses protein-bonded liposomes and
asserts that the contents of such liposomes may include an

30 antisense RNA. U.S. Patent No. 5,665,710 to Rahman et al.
describes certain methods of encapsulating
oligodeoxynucleotides in liposomes. WO 97/04787 to Love et
al. discloses liposomes comprising antisense
oligonucleotides targeted to the raf gene.

- 45 -

Transfersomes are yet another type of liposomes, and are highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles. Transfersomes may be described as lipid droplets which are so highly 5 deformable that they are easily able to penetrate through pores which are smaller than the droplet. Transfersomes are adaptable to the environment in which they are used, e.g. they are self-optimizing (adaptive to the shape of pores in the skin), self-repairing, frequently reach their 10 targets without fragmenting, and often self-loading. make transfersomes it is possible to add surface edgeactivators, usually surfactants, to a standard liposomal Transfersomes have been used to deliver serum composition. albumin to the skin. The transfersome-mediated delivery of 15 serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum albumin.

Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes.

20 The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophile/lipophile balance (HLB). The nature of the hydrophilic group (also known as the "head") provides the most useful means for categorizing the different surfactants used in formulations (Rieger, in Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, NY, 1988, p. 285).

If the surfactant molecule is not ionized, it is

classified as a nonionic surfactant. Nonionic surfactants
find wide application in pharmaceutical and cosmetic
products and are usable over a wide range of pH values. In
general their HLB values range from 2 to about 18 depending
on their structure. Nonionic surfactants include nonionic

seters such as ethylene glycol esters, propylene glycol

- 46 -

esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.

If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.

If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant 20 is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.

If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, Nalkylbetaines and phosphatides.

The use of surfactants in drug products, formulations 30 and in emulsions has been reviewed (Rieger, in
Pharmaceutical Dosage Forms, Marcel Dekker, Inc., New York, NY, 1988, p. 285).

Penetration Enhancers

In one embodiment, the present invention employs 35 various penetration enhancers to effect the efficient

- 47 -

delivery of nucleic acids, particularly oligonucleotides, to the skin of animals. Most drugs are present in solution in both ionized and nonionized forms. However, usually only lipid soluble or lipophilic drugs readily cross cell membranes. It has been discovered that even non-lipophilic drugs may cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs.

Penetration enhancers may be classified as belonging to one of five broad categories, i.e., surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic

15 Drug Carrier Systems, 1991, p.92). Each of the above mentioned classes of penetration enhancers are described below in greater detail.

Surfactants: In connection with the present invention, surfactants (or "surface-active agents") are chemical entities which, when dissolved in an aqueous solution, reduce the surface tension of the solution or the interfacial tension between the aqueous solution and another liquid, with the result that absorption of oligonucleotides through the mucosa is enhanced. In addition to bile salts and fatty acids, these penetration enhancers include, for example, sodium lauryl sulfate, polyoxyethylene-9-lauryl ether and polyoxyethylene-20-cetyl ether) (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p.92); and perfluorochemical emulsions, such as FC-43. Takahashi et al., J. Pharm. Pharmacol., 1988, 40, 252).

Fatty acids: Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid (n-decanoic

- 48 -

acid), myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein (1-monooleoyl-rac-glycerol), dilaurin, caprylic acid, arachidonic acid, glycerol 1-monocaprate, 1-

5 dodecylazacycloheptan-2-one, acylcarnitines, acylcholines, C₁₋₁₀ alkyl esters thereof (e.g., methyl, isopropyl and tbutyl), and mono- and di-glycerides thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (Lee et al., Critical Reviews in

10 Therapeutic Drug Carrier Systems, 1991, p.92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; El Hariri et al., J. Pharm. Pharmacol., 1992, 44, 651-654).

Bile salts: The physiological role of bile includes 15 the facilitation of dispersion and absorption of lipids and fat-soluble vitamins (Brunton, Chapter 38 in: Goodman & Gilman's The Pharmacological Basis of Therapeutics, 9th Ed., Hardman et al. Eds., McGraw-Hill, New York, 1996, pp. 934-935). Various natural bile salts, and their synthetic 20 derivatives, act as penetration enhancers. Thus the term "bile salts" includes any of the naturally occurring components of bile as well as any of their synthetic The bile salts of the invention include, for derivatives. example, cholic acid (or its pharmaceutically acceptable 25 sodium salt, sodium cholate), dehydrocholic acid (sodium dehydrocholate), deoxycholic acid (sodium deoxycholate), glucholic acid (sodium glucholate), glycholic acid (sodium glycocholate), glycodeoxycholic acid (sodium glycodeoxycholate), taurocholic acid (sodium taurocholate), 30 taurodeoxycholic acid (sodium taurodeoxycholate), chenodeoxycholic acid (sodium chenodeoxycholate), ursodeoxycholic acid (UDCA), sodium tauro-24,25-dihydrofusidate (STDHF), sodium glycodihydrofusidate and polyoxyethylene-9-lauryl ether (POE) (Lee et al., Critical

- 49 -

Reviews in Therapeutic Drug Carrier Systems, 1991, page 92; Swinyard, Chapter 39 In: Remington's Pharmaceutical Sciences, 18th Ed., Gennaro, ed., Mack Publishing Co., Easton, PA, 1990, pages 782-783; Muranishi, Critical 5 Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Yamamoto et al., J. Pharm. Exp. Ther., 1992, 263, 25; Yamashita et al., J. Pharm. Sci., 1990, 79, 579-583).

Chelating Agents: Chelating agents, as used in connection with the present invention, can be defined as 10 compounds that remove metallic ions from solution by forming complexes therewith, with the result that absorption of oligonucleotides through the mucosa is enhanced. With regards to their use as penetration enhancers in the present invention, chelating agents have 15 the added advantage of also serving as DNase inhibitors, as most characterized DNA nucleases require a divalent metal ion for catalysis and are thus inhibited by chelating agents (Jarrett, J. Chromatogr., 1993, 618, 315-339). Chelating agents of the invention include but are not 20 limited to disodium ethylenediaminetetraacetate (EDTA), citric acid, salicylates (e.g., sodium salicylate, 5methoxysalicylate and homovanilate), N-acyl derivatives of collagen, laureth-9 and N-amino acyl derivatives of betadiketones (enamines) (Lee et al., Critical Reviews in 25 Therapeutic Drug Carrier Systems, 1991, page 92; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; Buur et al., J. Control Rel., 1990, 14, 43-51).

Non-chelating non-surfactants: As used herein, non-chelating non-surfactant penetration enhancing compounds

30 can be defined as compounds that demonstrate insignificant activity as chelating agents or as surfactants but that nonetheless enhance absorption of oligonucleotides through the alimentary mucosa (Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33). This

- 50 -

class of penetration enhancers include, for example, unsaturated cyclic ureas, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, page 92); and non-steroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita et al., J. Pharm. Pharmacol., 1987, 39, 621-626).

Agents that enhance uptake of oligonucleotides at the cellular level may also be added to the pharmaceutical and other compositions of the present invention. For example, cationic lipids, such as lipofectin (Junichi et al, U.S. Patent No. 5,705,188), cationic glycerol derivatives, and polycationic molecules, such as polylysine (Lollo et al., PCT Application WO 97/30731), are also known to enhance the cellular uptake of oligonucleotides.

Other agents may be utilized to enhance the penetration of the administered nucleic acids, including glycols such as ethylene glycol and propylene glycol, pyrrols such as 2-pyrrol, azones, and terpenes such as 20 limonene and menthone.

Carriers

Certain compositions of the present invention also incorporate carrier compounds in the formulation. As used herein, "carrier compound" or "carrier" can refer to a 25 nucleic acid, or analog thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active 30 nucleic acid or promoting its removal from circulation. The coadministration of a nucleic acid and a carrier compound, typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other

- 51 -

extracirculatory reservoirs, presumably due to competition between the carrier compound and the nucleic acid for a common receptor. For example, the recovery of a partially phosphorothicate oligonucleotide in hepatic tissue can be reduced when it is coadministered with polyinosinic acid, dextran sulfate, polycytidic acid or 4-acetamido-4'isothiccyano-stilbene-2,2'-disulfonic acid (Miyao et al., Antisense Res. Dev., 1995, 5, 115-121; Takakura et al., Antisense & Nucl. Acid Drug Dev., 1996, 6, 177-183).

10 Excipients

In contrast to a carrier compound, a "pharmaceutical carrier" or "excipient" is a pharmaceutically acceptable solvent, suspending agent or any other pharmacologically inert vehicle for delivering one or more nucleic acids to 15 an animal. The excipient may be liquid or solid and is selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition. 20 pharmaceutical carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium 25 sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium 30 acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); and wetting agents (e.g., sodium laury) sulphate, etc.).

Pharmaceutically acceptable organic or inorganic excipient suitable for non-parenteral administration which

- 52 -

do not deleteriously react with nucleic acids can also be used to formulate the compositions of the present invention. Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amylose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like.

Formulations for topical administration of nucleic acids may include sterile and non-sterile aqueous

10 solutions, non-aqueous solutions in common solvents such as alcohols, or solutions of the nucleic acids in liquid or solid oil bases. The solutions may also contain buffers, diluents and other suitable additives. Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration which do not deleteriously react with nucleic acids can be used.

Suitable pharmaceutically acceptable excipients include, but are not limited to, water, salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amylose, 20 magnesium stearate, talc, silicic acid, viscous paraffin, hydroxymethylcellulose, polyvinylpyrrolidone and the like. Other Components

The compositions of the present invention may additionally contain other adjunct components

25 conventionally found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or

30 anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However,

35 such materials, when added, should not unduly interfere

- 53 -

with the biological activities of the components of the compositions of the present invention. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.

Aqueous suspensions may contain substances which

10 increase the viscosity of the suspension including, for
example, sodium carboxymethylcellulose, sorbitol and/or
dextran. The suspension may also contain stabilizers.

Certain embodiments of the invention provide pharmaceutical compositions containing (a) one or more 15 antisense compounds and (b) one or more other chemotherapeutic agents which function by a non-antisense mechanism. Examples of such chemotherapeutic agents include but are not limited to daunorubicin, daunomycin, dactinomycin, doxorubicin, epirubicin, idarubicin, 20 esorubicin, bleomycin, mafosfamide, ifosfamide, cytosine arabinoside, bis-chloroethylnitrosurea, busulfan, mitomycin C, actinomycin D, mithramycin, prednisone, hydroxyprogesterone, testosterone, tamoxifen, dacarbazine, procarbazine, hexamethylmelamine, pentamethylmelamine, 25 mitoxantrone, amsacrine, chlorambucil, methylcyclohexylnitrosurea, nitrogen mustards, melphalan, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-azacytidine, hydroxyurea, deoxycoformycin, 4hydroxyperoxycyclophosphoramide, 5-fluorouracil (5-FU), 5-30 fluorodeoxyuridine (5-FUdR), methotrexate (MTX), colchicine, taxol, vincristine, vinblastine, etoposide (VP-16), trimetrexate, irinotecan, topotecan, gemcitabine,

teniposide, cisplatin and diethylstilbestrol (DES). See, generally, The Merck Manual of Diagnosis and Therapy, 15th

35 Ed. 1987, pp. 1206-1228, Berkow et al., eds., Rahway, N.J.

- 54 -

When used with the compounds of the invention, such chemotherapeutic agents may be used individually (e.g., 5-FU and oligonucleotide), sequentially (e.g., 5-FU) and oligonucleotide for a period of time followed by MTX and 5 oligonucleotide), or in combination with one or more other such chemotherapeutic agents (e.g., 5-FU, MTX and oligonucleotide, or 5-FU, radiotherapy and oligonucleotide). Anti-inflammatory drugs, including but not limited to nonsteroidal anti-inflammatory drugs and 10 corticosteroids, and antiviral drugs, including but not limited to ribivirin, vidarabine, acyclovir and ganciclovir, may also be combined in compositions of the invention. See, generally, The Merck Manual of Diagnosis and Therapy, 15th Ed., Berkow et al., eds., 1987, Rahway, 15 N.J., pages 2499-2506 and 46-49, respectively). Other nonantisense chemotherapeutic agents are also within the scope of this invention. Two or more combined compounds may be used together or sequentially.

In another related embodiment, compositions of the
invention may contain one or more antisense compounds,
particularly oligonucleotides, targeted to a first nucleic
acid and one or more additional antisense compounds
targeted to a second nucleic acid target. Numerous examples
of antisense compounds are known in the art. Two or more
combined compounds may be used together or sequentially.

The formulation of therapeutic compositions and their subsequent administration is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and

- 55 -

repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC50s found to be effective in in vitro and in vivo animal models. 5 general, dosage is from 0.01 ug to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20 years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence 10 times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, 15 ranging from 0.01 ug to 100 g per kg of body weight, once or more daily, to once every 20 years.

While the present invention has been described with specificity in accordance with certain of its preferred embodiments, the following examples serve only to 20 illustrate the invention and are not intended to limit the same.

EXAMPLES

Example 1

Nucleoside Phosphoramidites for Oligonucleotide Synthesis
25 Deoxy and 2'-alkoxy amidites

2'-Deoxy and 2'-methoxy beta-cyanoethyldiisopropyl phosphoramidites were purchased from commercial sources (e.g. Chemgenes, Needham MA or Glen Research, Inc. Sterling VA). Other 2'-O-alkoxy substituted nucleoside amidites are prepared as described in U.S. Patent 5,506,351, herein incorporated by reference. For oligonucleotides synthesized using 2'-alkoxy amidites, the standard cycle for unmodified oligonucleotides was utilized, except the wait step after pulse delivery of tetrazole and base was

- 56 -

increased to 360 seconds.

Oligonucleotides containing 5-methyl-2'-deoxycytidine (5-Me-C) nucleotides were synthesized according to published methods (Sanghvi, et. al., Nucleic Acids

5 Research, 1993, 21, 3197-3203) using commercially available phosphoramidites (Glen Research, Sterling VA or ChemGenes, Needham MA).

2'-Fluoro amidites

2'-Fluorodeoxyadenosine amidites

2'-fluoro oligonucleotides were synthesized as 10 described previously (Kawasaki, et. al., J. Med. Chem., 1993, 36, 831-841) and United States patent 5,670,633, herein incorporated by reference. Briefly, the protected nucleoside N6-benzoyl-2'-deoxy-2'-fluoroadenosine was 15 synthesized utilizing commercially available 9-beta-Darabinofuranosyladenine as starting material and by modifying literature procedures whereby the 2'-alpha-fluoro atom is introduced by a S_N2 -displacement of a 2'-beta-trityl group. Thus N6-benzoyl-9-beta-D-arabinofuranosyladenine 20 was selectively protected in moderate yield as the 3',5'ditetrahydropyranyl (THP) intermediate. Deprotection of the THP and N6-benzoyl groups was accomplished using standard methodologies and standard methods were used to obtain the 5'-dimethoxytrityl-(DMT) and 5'-DMT-3'-25 phosphoramidite intermediates.

2'-Fluorodeoxyguanosine

The synthesis of 2'-deoxy-2'-fluoroguanosine was accomplished using tetraisopropyldisiloxanyl (TPDS) protected 9-beta-D-arabinofuranosylguanine as starting 30 material, and conversion to the intermediate diisobutyryl-arabinofuranosylguanosine. Deprotection of the TPDS group was followed by protection of the hydroxyl group with THP to give diisobutyryl di-THP protected arabinofuranosylguanine. Selective O-deacylation and

WO 03/014307

5

- 57 -

PCT/US02/24920

triflation was followed by treatment of the crude product with fluoride, then deprotection of the THP groups.

Standard methodologies were used to obtain the 5'-DMT- and 5'-DMT-3'-phosphoramidites.

2'-Fluorouridine

Synthesis of 2'-deoxy-2'-fluorouridine was accomplished by the modification of a literature procedure in which 2,2'-anhydro-1-beta-D-arabinofuranosyluracil was treated with 70% hydrogen fluoride-pyridine. Standard procedures were used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-Fluorodeoxycytidine

2'-deoxy-2'-fluorocytidine was synthesized via amination of 2'-deoxy-2'-fluorouridine, followed by 15 selective protection to give N4-benzoyl-2'-deoxy-2'fluorocytidine. Standard procedures were used to obtain the 5'-DMT and 5'-DMT-3'phosphoramidites.

2'-O-(2-Methoxyethyl) modified amidites

2'-O-Methoxyethyl-substituted nucleoside amidites are prepared as follows, or alternatively, as per the methods of Martin, P., Helvetica Chimica Acta, 1995, 78, 486-504.

2,2'-Anhydro[1-(beta-D-arabinofuranosyl)-5-methyluridine]

5-Methyluridine (ribosylthymine, commercially
available through Yamasa, Choshi, Japan) (72.0 g, 0.279 M),
diphenylcarbonate (90.0 g, 0.420 M) and sodium bicarbonate
(2.0 g, 0.024 M) were added to DMF (300 mL). The mixture
was heated to reflux, with stirring, allowing the evolved
carbon dioxide gas to be released in a controlled manner.

30 After 1 hour, the slightly darkened solution was
concentrated under reduced pressure. The resulting syrup
was poured into diethylether (2.5 L), with stirring. The
product formed a gum. The ether was decanted and the

residue was dissolved in a minimum amount of methanol (ca.

- 58 -

400 mL). The solution was poured into fresh ether (2.5 L) to yield a stiff gum. The ether was decanted and the gum was dried in a vacuum oven (60°C at 1 mm Hg for 24 h) to give a solid that was crushed to a light tan powder (57 g, 585% crude yield). The NMR spectrum was consistent with the structure, contaminated with phenol as its sodium salt (ca. 5%). The material was used as is for further reactions (or it can be purified further by column chromatography using a gradient of methanol in ethyl acetate (10-25%) to give a white solid, mp 222-4°C).

2'-O-Methoxyethyl-5-methyluridine

2,2'-Anhydro-5-methyluridine (195 g, 0.81 M), tris(2methoxyethyl)borate (231 g, 0.98 M) and 2-methoxyethanol (1.2 L) were added to a 2 L stainless steel pressure vessel 15 and placed in a pre-heated oil bath at 160°C. After heating for 48 hours at 155-160°C, the vessel was opened and the solution evaporated to dryness and triturated with MeOH (200 mL). The residue was suspended in hot acetone (1 L). The insoluble salts were filtered, washed with acetone (150 20 mL) and the filtrate evaporated. The residue (280 g) was dissolved in CH₃CN (600 mL) and evaporated. A silica gel column (3 kg) was packed in CH₂Cl₂/acetone/MeOH (20:5:3) containing 0.5% Et₃NH. The residue was dissolved in CH₂Cl₂ (250 mL) and adsorbed onto silica (150 g) prior to loading 25 onto the column. The product was eluted with the packing solvent to give 160 g (63%) of product. Additional material was obtained by reworking impure fractions.

2'-0-Methoxyethyl-5'-0-dimethoxytrityl-5-methyluridine

2'-O-Methoxyethyl-5-methyluridine (160 g, 0.506 M) was
30 co-evaporated with pyridine (250 mL) and the dried residue
dissolved in pyridine (1.3 L). A first aliquot of
dimethoxytrityl chloride (94.3 g, 0.278 M) was added and
the mixture stirred at room temperature for one hour. A
second aliquot of dimethoxytrityl chloride (94.3 g, 0.278
35 M) was added and the reaction stirred for an additional one

- 59 -

hour. Methanol (170 mL) was then added to stop the reaction. HPLC showed the presence of approximately 70% product. The solvent was evaporated and triturated with CH₃CN (200 mL). The residue was dissolved in CHCl₃ (1.5 L) and extracted with 2x500 mL of saturated NaHCO₃ and 2x500 mL of saturated NaCl. The organic phase was dried over Na₂SO₄, filtered and evaporated. 275 g of residue was obtained. The residue was purified on a 3.5 kg silica gel column, packed and eluted with EtOAc/hexane/acetone (5:5:1) containing 0.5% Et₃NH. The pure fractions were evaporated to give 164 g of product. Approximately 20 g additional was obtained from the impure fractions to give a total yield of 183 g (57%).

3'-O-Acety1-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine

15

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (106 q, 0.167 M), DMF/pyridine (750 mL of a 3:1 mixture prepared from 562 mL of DMF and 188 mL of pyridine) and acetic anhydride (24.38 mL, 0.258 M) were combined and 20 stirred at room temperature for 24 hours. The reaction was monitored by TLC by first quenching the TLC sample with the addition of MeOH. Upon completion of the reaction, as judged by TLC, MeOH (50 mL) was added and the mixture evaporated at 35°C. The residue was dissolved in CHCl3 (800 25 mL) and extracted with 2x200 mL of saturated sodium bicarbonate and 2x200 mL of saturated NaCl. layers were back extracted with 200 mL of CHCl3. The combined organics were dried with sodium sulfate and evaporated to give 122 g of residue (approx. 90% product). 30 The residue was purified on a 3.5 kg silica gel column and eluted using EtOAc/hexane(4:1). Pure product fractions were evaporated to yield 96 q (84%). An additional 1.5 g was recovered from later fractions.

- 60 -

3'-O-Acety1-2'-O-methoxyethy1-5'-O-dimethoxytrity1-5-methyl-4-triazoleuridine

A first solution was prepared by dissolving 3'-0acetyl-2'-0-methoxyethyl-5'-0-dimethoxytrityl-5-5 methyluridine (96 g, 0.144 M) in CH₃CN (700 mL) and set aside. Triethylamine (189 mL, 1.44 M) was added to a solution of triazole (90 g, 1.3 M) in CH₃CN (1 L), cooled to -5°C and stirred for 0.5 h using an overhead stirrer. POCl₃ was added dropwise, over a 30 minute period, to the stirred 10 solution maintained at 0-10°C, and the resulting mixture stirred for an additional 2 hours. The first solution was added dropwise, over a 45 minute period, to the latter solution. The resulting reaction mixture was stored overnight in a cold room. Salts were filtered from the 15 reaction mixture and the solution was evaporated. residue was dissolved in EtOAc (1 L) and the insoluble solids were removed by filtration. The filtrate was washed with 1x300 mL of NaHCO3 and 2x300 mL of saturated NaCl, dried over sodium sulfate and evaporated. The residue was 20 triturated with EtOAc to give the title compound.

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine

A solution of 3'-O-acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine (103 g, 0.141 M) in dioxane (500 mL) and NH₄OH (30 mL) was stirred at room temperature for 2 hours. The dioxane solution was evaporated and the residue azeotroped with MeOH (2x200 mL). The residue was dissolved in MeOH (300 mL) and transferred to a 2 liter stainless steel pressure vessel. MeOH (400 mL) saturated with NH₃ gas was added and the vessel heated to 100°C for 2 hours (TLC showed complete conversion). The vessel contents were evaporated to dryness and the residue was dissolved in EtOAc (500 mL) and washed once with saturated NaCl (200 mL). The organics were dried over

- 61 -

sodium sulfate and the solvent was evaporated to give 85 g (95%) of the title compound.

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine (85 g, 0.134 M) was dissolved in DMF (800 mL) and
benzoic anhydride (37.2 g, 0.165 M) was added with
stirring. After stirring for 3 hours, TLC showed the
reaction to be approximately 95% complete. The solvent was

10 evaporated and the residue azeotroped with MeOH (200 mL).
The residue was dissolved in CHCl₃ (700 mL) and extracted
with saturated NaHCO₃ (2x300 mL) and saturated NaCl (2x300
mL), dried over MgSO₄ and evaporated to give a residue (96
g). The residue was chromatographed on a 1.5 kg silica

15 column using EtOAc/hexane (1:1) containing 0.5% Et₃NH as the
eluting solvent. The pure product fractions were
evaporated to give 90 g (90%) of the title compound.

N4-Benzoyl-2'-0-methoxyethyl-5'-0-dimethoxytrityl-5-methylcytidine-3'-amidite

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-20 methylcytidine (74 g, 0.10 M) was dissolved in CH₂Cl₂ (1 L). Tetrazole diisopropylamine (7.1 g) and 2-cyanoethoxy-tetra-(isopropyl) phosphite (40.5 mL, 0.123 M) were added with stirring, under a nitrogen atmosphere. The resulting 25 mixture was stirred for 20 hours at room temperature (TLC showed the reaction to be 95% complete). The reaction mixture was extracted with saturated NaHCO3 (1x300 mL) and saturated NaCl (3x300 mL). The aqueous washes were backextracted with CH2Cl2 (300 mL), and the extracts were 30 combined, dried over MgSO4 and concentrated. The residue obtained was chromatographed on a 1.5 kg silica column using EtOAc/hexane (3:1) as the eluting solvent. The pure fractions were combined to give 90.6 g (87%) of the title compound.

- 62 -

2'-O-(Aminooxyethyl) nucleoside amidites and 2'-O-(dimethylaminooxyethyl) nucleoside amidites

2'-(Dimethylaminooxyethoxy) nucleoside amidites

2'-(Dimethylaminooxyethoxy) nucleoside amidites (also known in the art as 2'-O-(dimethylaminooxyethyl) nucleoside amidites) are prepared as described in the following paragraphs. Adenosine, cytidine and guanosine nucleoside amidites are prepared similarly to the thymidine (5-methyluridine) except the exocyclic amines are protected with a benzoyl moiety in the case of adenosine and cytidine and with isobutyryl in the case of guanosine.

5'-O-tert-Butyldiphenylsilyl-O²-2'-anhydro-5-methyluridine

O²-2'-anhydro-5-methyluridine (Pro. Bio. Sint., Varese, 15 Italy, 100.0g, 0.416 mmol), dimethylaminopyridine (0.66g, 0.013eq, 0.0054mmol) were dissolved in dry pyridine (500 ml) at ambient temperature under an argon atmosphere and with mechanical stirring. tert-Butyldiphenylchlorosilane (125.8q, 119.0mL, 1.1eq, 0.458mmol) was added in one 20 portion. The reaction was stirred for 16 h at ambient TLC (Rf 0.22, ethyl acetate) indicated a temperature. complete reaction. The solution was concentrated under reduced pressure to a thick oil. This was partitioned between dichloromethane (1 L) and saturated sodium 25 bicarbonate (2x1 L) and brine (1 L). The organic layer was dried over sodium sulfate and concentrated under reduced pressure to a thick oil. The oil was dissolved in a 1:1 mixture of ethyl acetate and ethyl ether (600mL) and the solution was cooled to -10°C. The resulting crystalline 30 product was collected by filtration, washed with ethyl ether (3x200 mL) and dried (40°C, 1mm Hg, 24 h) to 149g (74.8%) of white solid. TLC and NMR were consistent with pure product.

- 63 -

5'-O-tert-Butyldiphenylsilyl-2'-O-(2-hydroxyethyl)-5-methyluridine

In a 2 L stainless steel, unstirred pressure reactor was added borane in tetrahydrofuran (1.0 M, 2.0 eq, 622 5 mL). In the fume hood and with manual stirring, ethylene glycol (350 mL, excess) was added cautiously at first until the evolution of hydrogen gas subsided. 5'-O-tert-Butyldiphenylsilyl-O²-2'-anhydro-5-methyluridine (149 g, 0.311 mol) and sodium bicarbonate (0.074 g, 0.003 eq) were 10 added with manual stirring. The reactor was sealed and heated in an oil bath until an internal temperature of 160 °C was reached and then maintained for 16 h (pressure < 100 psiq). The reaction vessel was cooled to ambient and opened. TLC (Rf 0.67 for desired product and Rf 0.82 for 15 ara-T side product, ethyl acetate) indicated about 70% conversion to the product. In order to avoid additional side product formation, the reaction was stopped, concentrated under reduced pressure (10 to 1mm Hg) in a warm water bath (40-100°C) with the more extreme conditions 20 used to remove the ethylene glycol. [Alternatively, once the low boiling solvent is gone, the remaining solution can be partitioned between ethyl acetate and water. product will be in the organic phase.] The residue was purified by column chromatography (2kg silica gel, ethyl 25 acetate-hexanes gradient 1:1 to 4:1). The appropriate fractions were combined, stripped and dried to product as a white crisp foam (84g, 50%), contaminated starting material (17.4q) and pure reusable starting material 20g. The yield based on starting material less pure recovered starting 30 material was 58%. TLC and NMR were consistent with 99% pure product.

2'-O-([2-phthalimidoxy)ethyl]-5'-t-butyldiphenylsilyl-5-methyluridine

5'-O-tert-Butyldiphenylsilyl-2'-O-(2-hydroxyethyl)-5-

- 64 -

methyluridine (20g, 36.98mmol) was mixed with triphenylphosphine (11.63g, 44.36mmol) and Nhydroxyphthalimide (7.24g, 44.36mmol). It was then dried over P_2O_5 under high vacuum for two days at 40°C. The 5 reaction mixture was flushed with argon and dry THF (369.8mL, Aldrich, sure seal bottle) was added to get a clear solution. Diethyl-azodicarboxylate (6.98mL, 44.36mmol) was added dropwise to the reaction mixture. rate of addition is maintained such that resulting deep red 10 coloration is just discharged before adding the next drop. After the addition was complete, the reaction was stirred for 4 hrs. By that time TLC showed the completion of the reaction (ethylacetate:hexane, 60:40). The solvent was evaporated in vacuum. Residue obtained was placed on a 15 flash column and eluted with ethyl acetate:hexane (60:40), to get 2'-0-([2-phthalimidoxy)ethyl]-5'-tbutyldiphenylsilyl-5-methyluridine as white foam (21.819 g, 86%).

5'-O-tert-butyldiphenylsilyl-2'-O-[(2-formadoximinooxy)ethyl]-5-methyluridine

20

2'-O-([2-phthalimidoxy)ethyl]-5'-t-butyldiphenylsilyl-5-methyluridine (3.1g, 4.5mmol) was dissolved in dry CH₂Cl₂ (4.5mL) and methylhydrazine (300mL, 4.64mmol) was added dropwise at -10°C to 0°C. After 1 h the mixture was

25 filtered, the filtrate was washed with ice cold CH₂Cl₂ and the combined organic phase was washed with water, brine and dried over anhydrous Na₂SO₄. The solution was concentrated to get 2'-O-(aminooxyethyl) thymidine, which was then dissolved in MeOH (67.5mL). To this formaldehyde (20% aqueous solution, w/w, 1.1 eq.) was added and the resulting mixture was strirred for 1 h. Solvent was removed under vacuum; residue chromatographed to get 5'-O-tert-butyldiphenylsilyl-2'-O-[(2-formadoximinooxy) ethyl]-5-methyluridine as white foam (1.95 g, 78%).

- 65 -

5'-O-tert-Butyldiphenylsilyl-2'-O-[N,N-dimethylaminooxyethyl]-5-methyluridine

5'-0-tert-butyldiphenylsilyl-2'-0-[(2formadoximinooxy)ethyl]-5-methyluridine (1.77g, 3.12mmol) 5 was dissolved in a solution of 1M pyridinium ptoluenesulfonate (PPTS) in dry MeOH (30.6mL). Sodium cyanoborohydride (0.39g, 6.13mmol) was added to this solution at 10°C under inert atmosphere. The reaction mixture was stirred for 10 minutes at 10°C. After that the 10 reaction vessel was removed from the ice bath and stirred at room temperature for 2 h, the reaction monitored by TLC (5% MeOH in CH_2Cl_2). Aqueous NaHCO₃ solution (5%, 10mL) was added and extracted with ethyl acetate (2x20mL). Ethyl acetate phase was dried over anhydrous Na2SO4, evaporated to 15 dryness. Residue was dissolved in a solution of 1M PPTS in MeOH (30.6mL). Formaldehyde (20% w/w, 30mL, 3.37mmol) was added and the reaction mixture was stirred at room temperature for 10 minutes. Reaction mixture cooled to 10°C in an ice bath, sodium cyanoborohydride (0.39g, 6.13mmol) 20 was added and reaction mixture stirred at 10°C for 10 minutes. After 10 minutes, the reaction mixture was removed from the ice bath and stirred at room temperature for 2 hrs. To the reaction mixture 5% NaHCO3 (25mL) solution was added and extracted with ethyl acetate 25 (2x25mL). Ethyl acetate layer was dried over anhydrous Na_2SO_4 and evaporated to dryness . The residue obtained was purified by flash column chromatography and eluted with 5% MeOH in CH₂Cl₂ to get 5'-O-tert-butyldiphenylsilyl-2'-O-[N,N-dimethylaminooxyethyl]-5-methyluridine as a white foam

2'-0-(dimethylaminooxyethyl)-5-methyluridine

30

(14.6g, 80%).

Triethylamine trihydrofluoride (3.91mL, 24.0mmol) was dissolved in dry THF and triethylamine (1.67mL, 12mmol, dry, kept over KOH). This mixture of triethylamine-2HF was

- 66 -

then added to 5'-O-tert-butyldiphenylsilyl-2'-O-[N,N-dimethylaminooxyethyl]-5-methyluridine (1.40g, 2.4mmol) and stirred at room temperature for 24 hrs. Reaction was monitored by TLC (5% MeOH in CH₂Cl₂). Solvent was removed under vacuum and the residue placed on a flash column and eluted with 10% MeOH in CH₂Cl₂ to get 2'-O-

(dimethylaminooxyethyl)-5-methyluridine (766mg, 92.5%).

5'-O-DMT-2'-O-(dimethylaminooxyethyl)-5-methyluridine

2'-O-(dimethylaminooxyethyl)-5-methyluridine (750mg,

- 10 2.17mmol) was dried over P_2O_5 under high vacuum overnight at $40\,^{\circ}\text{C}$. It was then co-evaporated with anhydrous pyridine (20mL). The residue obtained was dissolved in pyridine (11mL) under argon atmosphere. 4-dimethylaminopyridine (26.5mg, 2.60mmol), 4,4'-dimethoxytrityl chloride (880mg,
- 2.60mmol) was added to the mixture and the reaction mixture was stirred at room temperature until all of the starting material disappeared. Pyridine was removed under vacuum and the residue chromatographed and eluted with 10% MeOH in CH₂Cl₂ (containing a few drops of pyridine) to get 5'-O-DMT-20 2'-O-(dimethylamino-oxyethyl)-5-methyluridine (1.13g, 80%).
 - 5'-O-DMT-2'-O-(2-N,N-dimethylaminooxyethyl)-5-methyluridine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite]

5'-O-DMT-2'-O-(dimethylaminooxyethyl)-5-methyluridine (1.08g, 1.67mmol) was co-evaporated with toluene (20mL). To the residue N,N-diisopropylamine tetrazonide (0.29g, 1.67mmol) was added and dried over P_2O_5 under high vacuum overnight at 40°C. Then the reaction mixture was dissolved in anhydrous acetonitrile (8.4mL) and 2-cyanoethyl-

30 N,N,N¹,N¹-tetraisopropylphosphoramidite (2.12mL, 6.08mmol) was added. The reaction mixture was stirred at ambient temperature for 4 hrs under inert atmosphere. The progress of the reaction was monitored by TLC (hexane:ethyl acetate 1:1). The solvent was evaporated, then the residue was

- 67 -

dissolved in ethyl acetate (70mL) and washed with 5% aqueous NaHCO₃ (40mL). Ethyl acetate layer was dried over anhydrous Na₂SO₄ and concentrated. Residue obtained was chromatographed (ethyl acetate as eluent) to get 5'-O-DMT-5 2'-O-(2-N,N-dimethylaminooxyethyl)-5-methyluridine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite] as a foam (1.04g, 74.9%).

2'-(Aminooxyethoxy) nucleoside amidites

15

2'-(Aminooxyethoxy) nucleoside amidites (also known in 10 the art as 2'-O-(aminooxyethyl) nucleoside amidites) are prepared as described in the following paragraphs. Adenosine, cytidine and thymidine nucleoside amidites are prepared similarly.

N2-isobutyryl-6-O-diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine-3'[(2-cyanoethyl)-N,N-diisopropylphosphoramidite]

The 2'-O-aminooxyethyl quanosine analog may be obtained by selective 2'-O-alkylation of diaminopurine riboside. Multigram quantities of diaminopurine riboside 20 may be purchased from Schering AG (Berlin) to provide 2'-O-(2-ethylacetyl) diaminopurine riboside along with a minor amount of the 3'-O-isomer. 2'-O-(2-ethylacetyl) diaminopurine riboside may be resolved and converted to 2'-O-(2-ethylacetyl) quanosine by treatment with adenosine 25 deaminase. (McGee, D. P. C., Cook, P. D., Guinosso, C. J., WO 94/02501 Al 940203.) Standard protection procedures should afford 2'-O-(2-ethylacetyl)-5'-O-(4,4'dimethoxytrityl) guanosine and 2-N-isobutyryl-6-0diphenylcarbamoyl-2'-O-(2-ethylacetyl)-5'-O-(4,4'-30 dimethoxytrityl) quanosine which may be reduced to provide 2-N-isobutyryl-6-0-diphenylcarbamoyl-2'-0-(2-hydroxyethyl)-5'-O-(4,4'-dimethoxytrityl)guanosine. As before the hydroxyl group may be displaced by N-hydroxyphthalimide via a Mitsunobu reaction, and the protected nucleoside may

- 68 -

phosphitylated as usual to yield 2-N-isobutyryl-6-0-diphenylcarbamoyl-2'-O-([2-phthalmidoxy]ethyl)-5'-O-(4,4'-dimethoxytrityl)guanosine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite].

5 2'-dimethylaminoethoxyethoxy (2'-DMAEOE) nucleoside amidites

2'-dimethylaminoethoxyethoxy nucleoside amidites (also known in the art as 2'-O-dimethylaminoethoxyethyl, i.e., 2'-O-CH₂-O-CH₂-N(CH₂)₂, or 2'-DMAEOE nucleoside amidites) are prepared as follows. Other nucleoside amidites are prepared similarly.

2'-O-[2(2-N,N-dimethylaminoethoxy)ethyl]-5-methyl uridine

2[2-(Dimethylamino)ethoxy]ethanol (Aldrich, 6.66 g, 50 15 mmol) is slowly added to a solution of borane in tetrahydrofuran (1 M, 10 mL, 10 mmol) with stirring in a 100 mL Hydrogen gas evolves as the solid dissolves. O^2 -, 2'anhydro-5-methyluridine (1.2 g, 5 mmol), and sodium bicarbonate (2.5 mg) are added and the bomb is sealed, 20 placed in an oil bath and heated to 155°C for 26 hours. bomb is cooled to room temperature and opened. The crude solution is concentrated and the residue partitioned between water (200 mL) and hexanes (200 mL). The excess phenol is extracted into the hexane layer. The aqueous 25 layer is extracted with ethyl acetate (3x200 mL) and the combined organic layers are washed once with water, dried over anhydrous sodium sulfate and concentrated. residue is columned on silica gel using methanol/methylene chloride 1:20 (which has 2% triethylamine) as the eluent. 30 As the column fractions are concentrated a colorless solid forms which is collected to give the title compound as a white solid.

- 69 -

5'-O-dimethoxytrityl-2'-O-[2(2-N,N-dimethylaminoethoxy) ethyl)]-5-methyl uridine

To 0.5 g (1.3 mmol) of 2'-O-[2(2-N,N-dimethylamino-ethoxy)ethyl)]-5-methyl uridine in anhydrous pyridine (8 5 mL), triethylamine (0.36 mL) and dimethoxytrityl chloride (DMT-Cl, 0.87 g, 2 eq.) are added and stirred for 1 hour. The reaction mixture is poured into water (200 mL) and extracted with CH₂Cl₂ (2x200 mL). The combined CH₂Cl₂ layers are washed with saturated NaHCO₃ solution, followed by saturated NaCl solution and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by silica gel chromatography using MeOH:CH₂Cl₂:Et₃N (20:1, v/v, with 1% triethylamine) gives the title compound.

5'-O-Dimethoxytrityl-2'-O-[2(2-N,N-

dimethylaminoethoxy)ethyl)]-5-methyl uridine-3'-0(cyanoethyl-N,N-diisopropyl)phosphoramidite

Diisopropylaminotetrazolide (0.6 g) and 2-cyanoethoxy-N,N-diisopropyl phosphoramidite (1.1 mL, 2 eq.) are added to a solution of 5'-O-dimethoxytrityl-2'-O-[2(2-N,N-20 dimethylaminoethoxy)ethyl)]-5-methyluridine (2.17 g, 3 mmol) dissolved in CH₂Cl₂ (20 mL) under an atmosphere of argon. The reaction mixture is stirred overnight and the solvent evaporated. The resulting residue is purified by silica gel flash column chromatography with ethyl acetate as the eluent to give the title compound.

Example 2

15

Oligonucleotide synthesis

Unsubstituted and substituted phosphodiester (P=O) oligonucleotides are synthesized on an automated DNA synthesizer (Applied Biosystems model 380B) using standard phosphoramidite chemistry with oxidation by iodine.

Phosphorothicates (P=S) are synthesized as for the phosphodiester oligonucleotides except the standard oxidation bottle was replaced by 0.2 M solution of 3H-1,2-

- 70 -

benzodithiole-3-one 1,1-dioxide in acetonitrile for the stepwise thiation of the phosphite linkages. The thiation wait step was increased to 68 sec and was followed by the capping step. After cleavage from the CPG column and deblocking in concentrated ammonium hydroxide at 55°C (18 h), the oligonucleotides were purified by precipitating twice with 2.5 volumes of ethanol from a 0.5 M NaCl solution. Phosphinate oligonucleotides are prepared as described in U.S. Patent 5,508,270, herein incorporated by reference.

Alkyl phosphonate oligonucleotides are prepared as described in U.S. Patent 4,469,863, herein incorporated by reference.

3'-Deoxy-3'-methylene phosphonate oligonucleotides are 15 prepared as described in U.S. Patents 5,610,289 or 5,625,050, herein incorporated by reference.

Phosphoramidite oligonucleotides are prepared as described in U.S. Patent, 5,256,775 or U.S. Patent 5,366,878, herein incorporated by reference.

Alkylphosphonothioate oligonucleotides are prepared as described in published PCT applications PCT/US94/00902 and PCT/US93/06976 (published as WO 94/17093 and WO 94/02499, respectively), herein incorporated by reference.

3'-Deoxy-3'-amino phosphoramidate oligonucleotides are 25 prepared as described in U.S. Patent 5,476,925, herein incorporated by reference.

Phosphotriester oligonucleotides are prepared as described in U.S. Patent 5,023,243, herein incorporated by reference.

Borano phosphate oligonucleotides are prepared as described in U.S. Patents 5,130,302 and 5,177,198, both herein incorporated by reference.

Example 3

Oligonucleoside Synthesis

35 Methylenemethylimino linked oligonucleosides, also

- 71 -

identified as MMI linked oligonucleosides, methylenedimethylhydrazo linked oligonucleosides, also identified as
MDH linked oligonucleosides, and methylenecarbonylamino
linked oligonucleosides, also identified as amide-3 linked
oligonucleosides, and methyleneaminocarbonyl linked oligonucleosides, also identified as amide-4 linked oligonucleosides, as well as mixed backbone compounds having, for
instance, alternating MMI and P=O or P=S linkages are
prepared as described in U.S. Patents 5,378,825, 5,386,023,
5,489,677, 5,602,240 and 5,610,289, all of which are
herein incorporated by reference.

Formacetal and thioformacetal linked oligonucleosides are prepared as described in U.S. Patents 5,264,562 and 5,264,564, herein incorporated by reference.

Ethylene oxide linked oligonucleosides are prepared as described in U.S. Patent 5,223,618, herein incorporated by reference.

Example 4

PNA Synthesis

Peptide nucleic acids (PNAs) are prepared in accordance with any of the various procedures referred to in Peptide Nucleic Acids (PNA): Synthesis, Properties and Potential Applications, Bioorganic & Medicinal Chemistry, 1996, 4, 5-23. They may also be prepared in accordance with U.S. Patents 5,539,082, 5,700,922, and 5,719,262, herein incorporated by reference.

Example 5

Synthesis of Chimeric Oligonucleotides

Chimeric oligonucleotides, oligonucleosides or mixed oligonucleotides/oligonucleosides of the invention can be of several different types. These include a first type wherein the "gap" segment of linked nucleosides is positioned between 5' and 3' "wing" segments of linked nucleosides and a second "open end" type wherein the "gap"

- 72 -

segment is located at either the 3' or the 5' terminus of the oligomeric compound. Oligonucleotides of the first type are also known in the art as "gapmers" or gapped oligonucleotides. Oligonucleotides of the second type are also known in the art as "hemimers" or "wingmers".

[2'-O-Me] -- [2'-deoxy] -- [2'-O-Me] Chimeric Phosphorothicate Oligonucleotides

Chimeric oligonucleotides having 2'-O-alkyl phosphorothicate and 2'-deoxy phosphorothicate oligo-10 nucleotide segments are synthesized using an Applied Biosystems automated DNA synthesizer Model 380B, as above. Oligonucleotides are synthesized using the automated synthesizer and 2'-deoxy-5'-dimethoxytrityl-3'-O-phosphoramidite for the DNA portion and 5'-dimethoxytrityl-2'-O-15 methyl-3'-O-phosphoramidite for 5' and 3' wings. standard synthesis cycle is modified by increasing the wait step after the delivery of tetrazole and base to 600 s repeated four times for RNA and twice for 2'-O-methyl. fully protected oligonucleotide is cleaved from the support 20 and the phosphate group is deprotected in 3:1 ammonia/ethanol at room temperature overnight then lyophilized to dryness. Treatment in methanolic ammonia for 24 hrs at room temperature is then done to deprotect all bases and sample was again lyophilized to dryness. 25 pellet is resuspended in 1M TBAF in THF for 24 hrs at room temperature to deprotect the 2' positions. The reaction is then quenched with 1M TEAA and the sample is then reduced to 1/2 volume by rotovac before being desalted on a G25 size exclusion column. The oligo recovered is then 30 analyzed spectrophotometrically for yield and for purity by capillary electrophoresis and by mass spectrometry.

- 73 -

[2'-0-(2-Methoxyethyl)]--[2'-deoxy]--[2'-0-(Methoxyethyl)] Chimeric Phosphorothioate Oligonucleotides

[2'-O-(2-methoxyethyl)]--[2'-deoxy]--[-2'-O-(methoxy-5 ethyl)] chimeric phosphorothicate oligonucleotides were prepared as per the procedure above for the 2'-O-methyl chimeric oligonucleotide, with the substitution of 2'-O-(methoxyethyl) amidites for the 2'-O-methyl amidites.

[2'-0-(2-Methoxyethyl)Phosphodiester]--[2'-deoxyPhosphorothioate]--[2'-0-(2-Methoxyethyl)Phosphodiester]Chimeric Oligonucleotides

[2'-O-(2-methoxyethyl phosphodiester]--[2'-deoxy phosphorothioate]--[2'-O-(methoxyethyl) phosphodiester] chimeric oligonucleotides are prepared as per the above procedure for the 2'-O-methyl chimeric oligonucleotide with the substitution of 2'-O-(methoxyethyl) amidites for the 2'-O-methyl amidites, oxidization with iodine to generate the phosphodiester internucleotide linkages within the wing portions of the chimeric structures and sulfurization utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage Reagent) to generate the phosphorothioate internucleotide linkages for the center gap.

Other chimeric oligonucleotides, chimeric oligonucleosides sides and mixed chimeric oligonucleotides/oligonucleosides are synthesized according to United States patent 5,623,065, herein incorporated by reference.

Example 6

10

Oligonucleotide Isolation

After cleavage from the controlled pore glass column (Applied Biosystems) and deblocking in concentrated ammonium hydroxide at 55°C for 18 hours, the oligonucleotides or oligonucleosides are purified by precipitation twice out of 0.5 M NaCl with 2.5 volumes ethanol. Synthesized oligonucleotides were analyzed by

- 74 -

polyacrylamide gel electrophoresis on denaturing gels and judged to be at least 85% full length material. The relative amounts of phosphorothioate and phosphodiester linkages obtained in synthesis were periodically checked by ³¹P nuclear magnetic resonance spectroscopy, and for some studies oligonucleotides were purified by HPLC, as described by Chiang et al., *J. Biol. Chem.* 1991, 266, 18162-18171. Results obtained with HPLC-purified material were similar to those obtained with non-HPLC purified

Example 7

Oligonucleotide Synthesis - 96 Well Plate Format

Oligonucleotides were synthesized via solid phase
P(III) phosphoramidite chemistry on an automated
synthesizer capable of assembling 96 sequences
simultaneously in a standard 96 well format.
Phosphodiester internucleotide linkages were afforded by
oxidation with aqueous iodine. Phosphorothicate
internucleotide linkages were generated by sulfurization
utilizing 3,H-1,2 benzodithiole-3-one 1,1 dioxide (Beaucage
Reagent) in anhydrous acetonitrile. Standard baseprotected beta-cyanoethyldiisopropyl phosphoramidites were
purchased from commercial vendors (e.g. PE-Applied
Biosystems, Foster City, CA, or Pharmacia, Piscataway, NJ).
Non-standard nucleosides are synthesized as per known
literature or patented methods. They are utilized as base
protected beta-cyanoethyldiisopropyl phosphoramidites.

Oligonucleotides were cleaved from support and deprotected with concentrated NH₄OH at elevated temperature 30 (55-60°C) for 12-16 hours and the released product then dried in vacuo. The dried product was then re-suspended in sterile water to afford a master plate from which all analytical and test plate samples are then diluted utilizing robotic pipettors.

- 75 -

Example 8

Oligonucleotide Analysis - 96 Well Plate Format

The concentration of oligonucleotide in each well was assessed by dilution of samples and UV absorption

5 spectroscopy. The full-length integrity of the individual products was evaluated by capillary electrophoresis (CE) in either the 96 well format (Beckman P/ACE™ MDQ) or, for individually prepared samples, on a commercial CE apparatus (e.g., Beckman P/ACE™ 5000, ABI 270). Base and backbone

10 composition was confirmed by mass analysis of the compounds utilizing electrospray-mass spectroscopy. All assay test plates were diluted from the master plate using single and multi-channel robotic pipettors. Plates were judged to be acceptable if at least 85% of the compounds on the plate

15 were at least 85% full length.

Example 9

Cell culture and oligonucleotide treatment

The effect of antisense compounds on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable levels. This can be routinely determined using, for example, PCR or Northern blot analysis. The following 7 cell types are provided for illustrative purposes, but other cell types can be routinely used, provided that the target is expressed in the cell type chosen. This can be readily determined by methods routine in the art, for example Northern blot analysis, Ribonuclease protection assays, or RT-PCR.

T-24 cells:

The human transitional cell bladder carcinoma cell line T-24 was obtained from the American Type Culture Collection (ATCC) (Manassas, VA). T-24 cells were routinely cultured in complete McCoy's 5A basal media (Gibco/Life Technologies, Gaithersburg, MD) supplemented

- 76 -

with 10% fetal calf serum (Gibco/Life Technologies,
Gaithersburg, MD), penicillin 100 units per mL, and
streptomycin 100 micrograms per mL (Gibco/Life
Technologies, Gaithersburg, MD). Cells were routinely
passaged by trypsinization and dilution when they reached
90% confluence. Cells were seeded into 96-well plates
(Falcon-Primaria #3872) at a density of 7000 cells/well for
use in RT-PCR analysis.

For Northern blotting or other analysis, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

A549 cells:

The human lung carcinoma cell line A549 was obtained

15 from the American Type Culture Collection (ATCC) (Manassas,

VA). A549 cells were routinely cultured in DMEM basal

media (Gibco/Life Technologies, Gaithersburg, MD)

supplemented with 10% fetal calf serum (Gibco/Life

Technologies, Gaithersburg, MD), penicillin 100 units per

20 mL, and streptomycin 100 micrograms per mL (Gibco/Life

Technologies, Gaithersburg, MD). Cells were routinely

passaged by trypsinization and dilution when they reached

90% confluence.

NHDF cells:

Human neonatal dermal fibroblast (NHDF) were obtained from the Clonetics Corporation (Walkersville MD). NHDFs were routinely maintained in Fibroblast Growth Medium (Clonetics Corporation, Walkersville MD) supplemented as recommended by the supplier. Cells were maintained for up to 10 passages as recommended by the supplier.

HEK cells:

Human embryonic keratinocytes (HEK) were obtained from the Clonetics Corporation (Walkersville MD). HEKs were routinely maintained in Keratinocyte Growth Medium

35 (Clonetics Corporation, Walkersville MD) formulated as

- 77 -

recommended by the supplier. Cells were routinely maintained for up to 10 passages as recommended by the supplier.

HepG2 cells:

5 The human hepatoblastoma cell line HepG2 was obtained from the American Type Culture Collection (Manassas, VA).

HepG2 cells were routinely cultured in Eagle's MEM supplemented with 10% fetal calf serum, non-essential amino acids, and 1 mM sodium pyruvate (Gibco/Life Technologies, 10 Gaithersburg, MD). Cells were routinely passaged by

trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

For Northern blotting or other analyses, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

AML12 cells:

35

AML12 (alpha mouse liver 12) cell line was established from hepatocytes from a mouse (CD1 strain, line MT42) transgenic for human TGF alpha. Cells are cultured in a 1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F12 medium with 0.005 mg/ml insulin, 0.005 mg/ml transferrin, 5 ng/ml selenium, and 40 ng/ml dexamethasone, and 90%; 10% fetal bovine serum. For subculturing, spent medium is removed and fresh media of 0.25% trypsin, 0.03% EDTA solution is added. Fresh trypsin solution (1 to 2 ml) is added and the culture is left to sit at room temperature until the cells detach.

Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

For Northern blotting or other analyses, cells may be

- 78 -

seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

Primary mouse hepatocytes:

Primary mouse hepatocytes were prepared from CD-1 mice purchased from Charles River Labs (Wilmington, MA) and were routinely cultured in Hepatoyte Attachment Media (Gibco) supplemented with 10% Fetal Bovine Serum (Gibco/Life Technologies, Gaithersburg, MD), 250nM dexamethasone (Sigma), and 10nM bovine insulin (Sigma). Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 10000 cells/well for use in RT-PCR analysis.

For Northern blotting or other analyses, cells are plated onto 100 mm or other standard tissue culture plates coated with rat tail collagen (200ug/mL) (Becton Dickinson) and treated similarly using appropriate volumes of medium and oligonucleotide.

Treatment with antisense compounds:

When cells reach 80% confluency, they are treated with oligonucleotide. For cells grown in 96-well plates, wells are washed once with 200 µL OPTI-MEM™-1 reduced-serum medium (Gibco BRL) and then treated with 130 µL of OPTI-MEM™-1 containing 3.75 µg/mL LIPOFECTIN™ (Gibco BRL) and the desired concentration of oligonucleotide. After 4-7 hours of treatment, the medium is replaced with fresh medium. Cells are harvested 16-24 hours after oligonucleotide treatment.

The concentration of oligonucleotide used varies from cell line to cell line. To determine the optimal oligonucleotide concentration for a particular cell line, the cells are treated with a positive control oligonucleotide at a range of concentrations. For human cells the positive control oligonucleotide is ISIS 13920, TCCGTCATCGCTCCTCAGGG, SEQ ID NO: 1, a 2'-O-methoxyethyl gapmer (2'-O-methoxyethyls shown in bold) with a

- 79 -

phosphorothioate backbone which is targeted to human H-ras. For mouse or rat cells the positive control oligonucleotide is ISIS 15770, ATGCATTCTGCCCCCAAGGA, SEQ ID NO: 2, a 2'-0methoxyethyl gapmer (2'-O-methoxyethyls shown in bold) with 5 a phosphorothicate backbone which is targeted to both mouse and rat c-raf. The concentration of positive control oligonucleotide that results in 80% inhibition of c-Ha-ras (for ISIS 13920) or c-raf (for ISIS 15770) mRNA is then utilized as the screening concentration for new 10 oligonucleotides in subsequent experiments for that cell line. If 80% inhibition is not achieved, the lowest concentration of positive control oligonucleotide that results in 60% inhibition of H-ras or c-raf mRNA is then utilized as the oligonucleotide screening concentration in 15 subsequent experiments for that cell line. If 60% inhibition is not achieved, that particular cell line is deemed as unsuitable for oligonucleotide transfection experiments.

Example 10

20 Analysis of oligonucleotide inhibition of apolipoprotein(a) expression

Antisense modulation of apolipoprotein(a) expression can be assayed in a variety of ways known in the art. For example, apolipoprotein(a) mRNA levels can be quantitated

25 by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR (RT-PCR). Real-time quantitative PCR is presently preferred. RNA analysis can be performed on total cellular RNA or poly(A) + mRNA.

Methods of RNA isolation are taught in, for example,

30 Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.1.1-4.2.9 and 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993. Northern blot analysis is routine in the art and is taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume

- 80 -

pp. 4.2.1-4.2.9, John Wiley & Sons, Inc., 1996. Realtime quantitative (PCR) can be conveniently accomplished using the commercially available ABI PRISM™ 7700 Sequence Detection System, available from PE-Applied Biosystems,
 Foster City, CA and used according to manufacturer's instructions.

Protein levels of apolipoprotein(a) can be quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis 10 (immunoblotting), ELISA or fluorescence-activated cell sorting (FACS). Antibodies directed to apolipoprotein(a) can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, MI), or can be prepared via conventional 15 antibody generation methods. Methods for preparation of polyclonal antisera are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.12.1-11.12.9, John Wiley & Sons, Inc., 1997. Preparation of monoclonal antibodies is taught in, for 20 example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.4.1-11.11.5, John Wiley & Sons, Inc., 1997.

Immunoprecipitation methods are standard in the art and can be found at, for example, Ausubel, F.M. et al.,

25 Current Protocols in Molecular Biology, Volume 2, pp.
10.16.1-10.16.11, John Wiley & Sons, Inc., 1998. Western blot (immunoblot) analysis is standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.8.130 10.8.21, John Wiley & Sons, Inc., 1997. Enzyme-linked immunosorbent assays (ELISA) are standard in the art and can be found at, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.2.111.2.22, John Wiley & Sons, Inc., 1991.

- 81 -

Example 11

Poly(A) + mRNA isolation

Poly(A) + mRNA can be isolated according to Miura et al., Clin. Chem., 1996, 42, 1758-1764. Other methods for 5 poly(A) + mRNA isolation are taught in, for example, Ausubel, F.M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993. Briefly, for cells grown on 96-well plates, growth medium is removed from the cells and each well is 10 washed with 200 $\mu \rm L$ cold PBS. 60 $\mu \rm L$ lysis buffer (10 mM Tris-HCl, pH 7.6, 1 mM EDTA, 0.5 M NaCl, 0.5% NP-40, 20 mM vanadyl-ribonucleoside complex) is added to each well, the plate is gently agitated and then incubated at room temperature for five minutes. 55 μL of lysate is 15 transferred to Oligo d(T) coated 96-well plates (AGCT Inc., Irvine CA). Plates are incubated for 60 minutes at room temperature, washed 3 times with 200 μL of wash buffer (10 mM Tris-HCl pH 7.6, 1 mM EDTA, 0.3 M NaCl). After the final wash, the plate is blotted on paper towels to remove 20 excess wash buffer and then air-dried for 5 minutes. 60 μL of elution buffer (5 mM Tris-HCl pH 7.6), preheated to 70°C is added to each well, the plate is incubated on a 90°C hot plate for 5 minutes, and the eluate is then transferred to a fresh 96-well plate.

Cells grown on 100 mm or other standard plates may be treated similarly, using appropriate volumes of all solutions.

Example 12

Total RNA Isolation

Total RNA can be isolated using an RNEASY $96^{\rm M}$ kit and buffers purchased from Qiagen Inc. (Valencia CA) following the manufacturer's recommended procedures. Briefly, for cells grown on 96-well plates, growth medium is removed from the cells and each well is washed with $200~\mu{\rm L}$ cold

- 82 -

PBS. 100 μ L Buffer RLT is added to each well and the plate vigorously agitated for 20 seconds. 100 μ L of 70% ethanol is then added to each well and the contents mixed by pipetting three times up and down. The samples are then 5 transferred to the RNEASY 96^{M} well plate attached to a OIAVAC™ manifold fitted with a waste collection tray and attached to a vacuum source. Vacuum is applied for 15 seconds. 1 mL of Buffer RW1 was added to each well of the RNEASY 96™ plate and the vacuum again applied for 15 10 seconds. 1 mL of Buffer RPE is then added to each well of the RNEASY 96™ plate and the vacuum applied for a period of 15 seconds. The Buffer RPE wash was then repeated and the vacuum is applied for an additional 10 minutes. The plate is then removed from the QIAVAC $^{\mathsf{TM}}$ manifold and blotted dry 15 on paper towels. The plate is then re-attached to the QIAVAC™ manifold fitted with a collection tube rack containing 1.2 mL collection tubes. RNA is then eluted by pipetting 60 μ L water into each well, incubating 1 minute, and then applying the vacuum for 30 seconds. The elution 20 step is repeated with an additional 60 μL water.

The repetitive pipetting and elution steps may be automated using a QIAGEN Bio-Robot 9604 (Qiagen, Inc., Valencia CA). Essentially, after lysing of the cells on the culture plate, the plate is transferred to the robot deck where the pipetting, DNase treatment and elution steps are carried out.

Example 13

Real-time Quantitative PCR Analysis of apolipoprotein(a) mRNA Levels

Quantitation of apolipoprotein(a) mRNA levels can be determined by real-time quantitative PCR using the ABI PRISM™ 7700 Sequence Detection System (PE-Applied Biosystems, Foster City, CA) according to manufacturer's instructions. This is a closed-tube, non-gel-based, fluorescence detection system which allows high-throughput

- 83 -

quantitation of polymerase chain reaction (PCR) products in real-time. As opposed to standard PCR, in which amplification products are quantitated after the PCR is completed, products in real-time quantitative PCR are 5 quantitated as they accumulate. This is accomplished by including in the PCR reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR primers, and contains two fluorescent dyes. A reporter dye (e.g., JOE, FAM, or VIC, obtained from either Operon 10 Technologies Inc., Alameda, CA or PE-Applied Biosystems, Foster City, CA) is attached to the 5' end of the probe and a quencher dye (e.g., TAMRA, obtained from either Operon Technologies Inc., Alameda, CA or PE-Applied Biosystems, Foster City, CA) is attached to the 3' end of the probe. 15 When the probe and dyes are intact, reporter dye emission is quenched by the proximity of the 3' quencher dye. During amplification, annealing of the probe to the target sequence creates a substrate that can be cleaved by the 5'exonuclease activity of Taq polymerase. During the 20 extension phase of the PCR amplification cycle, cleavage of the probe by Taq polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequence-specific fluorescent signal is generated. With each cycle, additional reporter dye 25 molecules are cleaved from their respective probes, and the fluorescence intensity is monitored at regular intervals by laser optics built into the ABI PRISM™ 7700 Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from 30 untreated control samples generates a standard curve that is used to quantitate the percent inhibition after antisense oligonucleotide treatment of test samples.

Prior to quantitative PCR analysis, primer-probe sets specific to the target gene being measured are evaluated for their ability to be "multiplexed" with a GAPDH

- 84 -

amplification reaction. In multiplexing, both the target gene and the internal standard gene GAPDH are amplified concurrently in a single sample. In this analysis, mRNA isolated from untreated cells is serially diluted. Each 5 dilution is amplified in the presence of primer-probe sets specific for GAPDH only, target gene only ("singleplexing"), or both (multiplexing). Following PCR amplification, standard curves of GAPDH and target mRNA signal as a function of dilution are generated from both 10 the single-plexed and multiplexed samples. If both the slope and correlation coefficient of the GAPDH and target signals generated from the multiplexed samples fall within 10% of their corresponding values generated from the single-plexed samples, the primer-probe set specific for 15 that target is deemed multiplexable. Other methods of PCR are also known in the art.

PCR reagents are obtained from PE-Applied Biosystems,
Foster City, CA. RT-PCR reactions are carried out by
adding 25 µL PCR cocktail (1x TAQMAN™ buffer A, 5.5 mM

20 MgCl₂, 300 µM each of dATP, dCTP and dGTP, 600 µM of dUTP,
100 nM each of forward primer, reverse primer, and probe,
20 Units RNAse inhibitor, 1.25 Units AMPLITAQ GOLD™, and
12.5 Units MuLV reverse transcriptase) to 96 well plates
containing 25 µL total RNA solution. The RT reaction is
25 carried out by incubation for 30 minutes at 48°C. Following
a 10 minute incubation at 95°C to activate the AMPLITAQ
GOLD™, 40 cycles of a two-step PCR protocol are carried
out: 95°C for 15 seconds (denaturation) followed by 60°C for
1.5 minutes (annealing/extension).

Gene target quantities obtained by real time RT-PCR can be normalized using either the expression level of GAPDH, a gene whose expression is constant, or by quantifying total RNA using RiboGreen™ (Molecular Probes, Inc. Eugene, OR). GAPDH expression is quantified by real time RT-PCR, by being run simultaneously with the target,

- 85 -

multiplexing, or separately. Total RNA is quantified using RiboGreen[™] RNA quantification reagent from Molecular Probes (Eugene, OR). Methods of RNA quantification by RiboGreen[™] are taught in Jones, L.J., et al, *Analytical Biochemistry*, 5 1998, 265, 368-374.

In this assay, 175 µL of RiboGreen™ working reagent (RiboGreen™ reagent diluted 1:2865 in 10mM Tris-HCl, 1 mM EDTA, pH 7.5) is pipetted into a 96-well plate containing 25uL purified, cellular RNA. The plate is read in a 10 CytoFluor 4000 (PE Applied Biosystems) with excitation at 480nm and emission at 520nm.

Probes and primers to human apolipoprotein(a) are designed to hybridize to a human apolipoprotein(a) sequence, using published sequence information (GenBank accession number NM_005577, incorporated herein as SEQ ID NO: 3).

For human GAPDH the standard PCR primers are: forward primer: GAAGGTGAAGGTCGGAGTC (SEQ ID NO: 4) reverse primer: GAAGATGGTGATGGGATTTC (SEQ ID NO: 5) and the PCR probe is: 20 5' JOE-CAAGCTTCCCGTTCTCAGCC-TAMRA 3' (SEQ ID NO: 6) where JOE (PE-Applied Biosystems, Foster City, CA) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, CA) is the quencher dye.

Example 14

25 Northern blot analysis of apolipoprotein(a) mRNA levels

Eighteen hours after antisense treatment, cell monolayers are washed twice with cold PBS and lysed in 1 mL RNAZOL™ (TEL-TEST "B" Inc., Friendswood, TX). Total RNA is prepared following manufacturer's recommended protocols.

- 30 Twenty micrograms of total RNA is fractionated by electrophoresis through 1.2% agarose gels containing 1.1% formaldehyde using a MOPS buffer system (AMRESCO, Inc. Solon, OH). RNA is transferred from the gel to HYBOND™-N+ nylon membranes (Amersham Pharmacia Biotech, Piscataway,
- 35 NJ) by overnight capillary transfer using a

- 86 -

Northern/Southern Transfer buffer system (TEL-TEST "B"
Inc., Friendswood, TX). RNA transfer is confirmed by UV
visualization. Membranes are fixed by UV cross-linking
using a STRATALINKER™ UV Crosslinker 2400 (Stratagene, Inc,
5 La Jolla, CA) and then probed using QUICKHYB™ hybridization
solution (Stratagene, La Jolla, CA) using manufacturer's
recommendations for stringent conditions.

To detect human apolipoprotein(a), a human apolipoprotein(a) specific probe is prepared by PCR using a 10 forward and a reverse primer. To normalize for variations in loading and transfer efficiency, membranes are stripped and probed for human glyceraldehyde-3-phosphate dehydrogenase (GAPDH) RNA (Clontech, Palo Alto, CA).

Hybridized membranes are visualized and quantitated

15 using a PHOSPHORIMAGER™ and IMAGEQUANT™ Software V3.3

(Molecular Dynamics, Sunnyvale, CA). Data are normalized to GAPDH levels in untreated controls.

Example 15

Chimeric phosphorothioate oligonucleotides having 2'-MOE 20 wings and a deoxy gap targeting human apolipoprotein(a)

In accordance with the present invention, a series of oligonucleotides were designed to target different regions of the human apolipoprotein(a) RNA, using published sequence (GenBank accession number NM_005577, incorporated herein as SEQ ID NO: 3). The oligonucleotides are shown in Table 1. "Target site" indicates the first (5'-most) nucleotide number on the particular target sequence to which the oligonucleotide binds. All compounds in Table 1 are chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by five-nucleotide "wings". The wings are composed of 2'-methoxyethyl (2'-MOE)nucleotides. The internucleoside (backbone) linkages are phosphorothicate

- 87 -

residues are 5-methylcytidines.

Table 1

Chimeric phosphorothicate oligonucleotides having 2'-MOE wings and a deoxy gap targeting human apolipoprotein(a)

5	ISIS #	REGION	TARGET	TARGET	SEQUENCE	SEQ
			SEQ ID	SITE		ID
			МO			NO
	144367	Coding	3	174	GGCAGGTCCTTCCTGTGACA	7
	144368	Coding	3	352	TCTGCGTCTGAGCATTGCGT	8
	144369	Coding	3	522	AAGCTTGGCAGGTTCTTCCT	9
	144370	Coding	3	1743	TCGGAGGCGCGACGCAGTC	10
10	144371	Coding	3	2768	CGGAGGCGCGACGCAGTCC	11_
	144372	Coding	3	2910	GGCAGGTTCTTCCTGTGACA	12
	144373	Coding	3	3371	ATAACAATAAGGAGCTGCCA	13
	144374	Coding	3	4972	GACCAAGCTTGGCAGGTTCT	14
	144375	Coding	3	5080	TAACAATAAGGAGCTGCCAC	15
15	144376	Coding	3	5315	TGACCAAGCTTGGCAGGTTC	16
	144377	Coding	3	5825	TTCTGCGTCTGAGCATTGCG	17
	144378	Coding	3	6447	AACAATAAGGAGCTGCCACA	18
	144379	Coding	3	7155	ACCTGACACCGGGATCCCTC	19
	144380	Coding	3	7185	CTGAGCATTGCGTCAGGTTG	20
20	144381	Coding	3	8463	AGTAGTTCATGATCAAGCCA	21
	144382	Coding	3	8915	GACGGCAGTCCCTTCTGCGT	22
	144383	Coding	3	9066	GGCAGGTTCTTCCAGTGACA	23
	144384	Coding	3	10787	TGACCAAGCTTGGCAAGTTC	24
	144385	Coding	3	11238	TATAACACCAAGGACTAATC	25
25	144386	Coding	3	11261	CCATCTGACATTGGGATCCA	26
	144387	Coding	3	11461	TGTGGTGTCATAGAGGACCA	27
	144388	Coding	3	11823	ATGGGATCCTCCGATGCCAA	28
	144389	Coding	3	11894	ACACCAAGGGCGAATCTCAG	29
	144390	Coding	3	11957	TTCTGTCACTGGACATCGTG	30
30	144391	Coding	3	12255	CACACGGATCGGTTGTGTAA	31
	144392	Coding	3	12461	ACATGTCCTTCCTGTGACAG	32
	144393	Coding	3	12699	CAGAAGGAGGCCCTAGGCTT	33
	144394	Coding	3	13354	CTGGCGGTGACCATGTAGTC	34
	144395	3 'UTR	3	13711	TCTAAGTAGGTTGATGCTTC	35
35	144396	3'UTR	3	13731	TCCTTACCCACGTTTCAGCT	36
	144397	3'UTR	3	13780	GGAACAGTGTCTTCGTTTGA	37
	144398	3'UTR	3	13801	GTTTGGCATAGCTGGTAGCT	38
	144399	3'UTR	3	13841	ACCTTAAAAGCTTATACACA	39
	144400	3'UTR	3	13861	ATACAGAATTTGTCAGTCAG	40
40	144401	3'UTR	3	13881	GTCATAGCTATGACACCTTA	41

Example 16

Western blot analysis of apolipoprotein(a) protein levels

Western blot analysis (immunoblot analysis) is carried out using standard methods. Cells are harvested 16-20 h

- 88 -

after oligonucleotide treatment, washed once with PBS, suspended in Laemmli buffer (100 ul/well), boiled for 5 minutes and loaded on a 16% SDS-PAGE gel. Gels are run for 1.5 hours at 150 V, and transferred to membrane for western blotting. Appropriate primary antibody directed to apolipoprotein(a) is used, with a radiolabelled or fluorescently labeled secondary antibody directed against the primary antibody species. Bands are visualized using a PHOSPHORIMAGER™ (Molecular Dynamics, Sunnyvale CA).

- 89 -

PCT/US02/24920

What is claimed is:

WO 03/014307

- 1. A compound 8 to 50 nucleobases in length targeted to a nucleic acid molecule encoding human apolipoprotein(a), wherein said compound specifically hybridizes with a nucleic acid molecule encoding human apolipoprotein(a) and inhibits the expression of human apolipoprotein(a).
- 2. The compound of claim 1 which is an antisense oligonucleotide.
- 3. The compound of claim 2 wherein the antisense oligonucleotide has a sequence comprising SEQ ID NO: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 or 41.
- 4. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified internucleoside linkage.
- 5. The compound of claim 4 wherein the modified internucleoside linkage is a phosphorothicate linkage.
- 6. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified sugar moiety.
- 7. The compound of claim 6 wherein the modified sugar moiety is a 2'-O-methoxyethyl sugar moiety.
- 8. The compound of claim 2 wherein the antisense oligonucleotide comprises at least one modified nucleobase.
- 9. The compound of claim 8 wherein the modified nucleobase is a 5-methylcytosine.
- 10. The compound of claim 2 wherein the antisense oligonucleotide is a chimeric oligonucleotide.
- 11. A compound 8 to 50 nucleobases in length which specifically hybridizes with at least an 8-nucleobase portion of an active site on a nucleic acid molecule encoding human apolipoprotein(a).

- 90 -

- 12. A composition comprising the compound of claim 1 and a pharmaceutically acceptable carrier or diluent.
- 13. The composition of claim 12 further comprising a colloidal dispersion system.
- 14. The composition of claim 12 wherein the compound is an antisense oligonucleotide.
- 15. A method of inhibiting the expression of human apolipoprotein(a) in cells or tissues comprising contacting said cells or tissues with the compound of claim 1 so that expression of human apolipoprotein(a) is inhibited.
- 16. A method of treating a human having a disease or condition associated with human apolipoprotein(a) comprising administering to said human a therapeutically or prophylactically effective amount of the compound of claim 1 so that expression of human apolipoprotein(a) is inhibited.
- 17. The method of claim 16 wherein the condition involves abnormal lipid metabolism.
- 18. The method of claim 16 wherein the condition involves abnormal cholesterol metabolism.
- 19. The method of claim 16 wherein the condition is atherosclerosis.
- 20. The method of claim 16 wherein the disease is cardiovascular disease.

-1-

SEQUENCE LISTING

```
<110> Isis Pharmaceuticals, Inc.
      Rosanne M. Crooke
      Mark J. Graham
<120> ANTISENSE MODULATION OF APOLIPOPROTEIN(A) EXPRESSION
<130> ISPH-0690
<150> 09/923,515
<151> 2001-08-07
<160> 41
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Antisense Oligonucleotide
                                                                   20
tccgtcatcg ctcctcaggg
<210> 2
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Antisense Oligonucleotide
<400> 2
atgcattctg cccccaagga
                                                                   20
<210> 3
<211> 13938
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (46)...(13692)
<400> 3
ctgggattgg gacacacttt ctggacactg ctggccagtc ccaaa atg gaa cat aag 57
                                                   Met Glu His Lys
                                                    1
gaa gtg gtt ctt cta ctt ctt tta ttt ctg aaa tca gca gca cct gag
                                                                   105
Glu Val Val Leu Leu Leu Leu Phe Leu Lys Ser Ala Ala Pro Glu
                                          15
                     10
```

								-2	2 -							
caa Gln	agc Ser	cat His	gtg Val	gtc Val 25	cag Gln	gat Asp	tgc Cys	tac Tyr	cat His 30	ggt Gly	gat Asp	gga Gly	cag Gln	agt Ser 35	tat Tyr	153
				tcc Ser												201
				cca Pro												249
				atc Ile												297
				tat Tyr												345
aac Asn	ctg Leu	acg Thr	caa Gln	tgc Cys 105	tca Ser	gac Asp	gca Ala	gaa Glu	999 Gly 110	act Thr	gcc Ala	gtc Val	gcg Ala	cct Pro 115	ccg Pro	393
				gtt Val												441
				cct Pro												489
				aca Thr												537
				atg Met												585
			_	ggc Gly 185	_		_			_				_	_	633
				tat Tyr												681
	_		_	acg Thr		_		_	_	_			_	_		729
cct Pro	ccg Pro 230	act Thr	gtt Val	acc Thr	ccg Pro	gtt Val 235	cca Pro	agc Ser	cta Leu	gag Glu	gct Ala 240	cct Pro	tcc Ser	gaa Glu	caa Gln	777

-3-

					agg Arg 250											825
					gly ggc											873
					tct Ser										cca Pro	921
					gct Ala											969
					cct Pro											1017
			_		ctg Leu 330	_		_		_	_	_			_	1065
					gtt Val											1113
					gag Glu											1161
					tat Tyr											1209
_		_		_	tgg Trp			_				_		_		1257
		_			cca Pro 410		_		_		_			_		1305
aat Asn	cca Pro	gat Asp	gct Ala	gtg Val 425	gca Ala	gct Ala	cct Pro	tat Tyr	tgt Cys 430	tat Tyr	acg Thr	agg Arg	gat Asp	ccc Pro 435	ggt Gly	1353
_					tgc Cys		_	_		_		_	_	_		1401
					ccg Pro											1449
cct	tcc	gaa	caa	gca	ccg	act	gag	caa	agg	cct	a aa	gtg	cag	gag	tgc	1497

-4-

Pro	Ser 470	Glu	Gln	Ala	Pro	Thr 475	Glu	Gln	Arg	Pro	Gly 480	Val	Gln	Glu	Cys	
														act Thr		1545
														tcg Ser 515		1593
														aac Asn		1641
														agg Arg		1689
														gac Asp		1737
														agc Ser		1785
														gtg Val 595		1833
														tcc Ser		1881
														cca Pro		1929
														atc Ile		1977
														tat Tyr		2025
														tgc Cys 675		2073
														gtt Val		2121
														cct Pro		2169

-5-

		695					700					705				
			tgc Cys													2217
tcc Ser 725	acc Thr	act Thr	gtc Val	aca Thr	gga Gly 730	aga Arg	acc Thr	tgc Cys	caa Gln	gct Ala 735	tgg Trp	tca Ser	tct Ser	atg Met	aca Thr 740	2265
			cat His													2313
			tac Tyr 760													2361
tat Tyr	acg Thr	agg Arg 775	gat Asp	ccc Pro	ggt Gly	gtc Val	agg Arg 780	tgg Trp	gag Glu	tac Tyr	tgc Cys	aac Asn 785	ctg Leu	acg Thr	caa Gln	2409
			gca Ala													2457
			cta Leu													2505
			cag Gln													2553
			acc Thr 840													2601
			cac His													2649
			atg Met													2697
tat Tyr 885	tgt Cys	tat Tyr	acg Thr	agg Arg	gat Asp 890	ccc Pro	ggt Gly	gtc Val	agg Arg	tgg Trp 895	gag Glu	tac Tyr	tgc Cys	aac Asn	ctg Leu 900	2745
			tca Ser													2793
acc Thr	ccg Pro	gtt Val	cca Pro 920	agc Ser	cta Leu	gag Glu	gct Ala	cct Pro 925	tcc Ser	gaa Glu	caa Gln	gca Ala	ccg Pro 930	act Thr	gag Glu	2841

-6-

caa aq Gln A	gg cct rg Pro 935	Gly	gtg Val	cag Gln	gag Glu	tgc Cys 940	tac Tyr	cat His	ggt Gly	aat Asn	gga Gly 945	cag Gln	agt Ser	tat Tyr	2889
Arg G	gc aca ly Thr 50														2937
	ct atg er Met														2985
	ct ggc la Gly			Met					Asn					Ala	3033
gct co Ala P	ct tat ro Tyr	tgt Cys 100	Tyr	acg Thr	agg Arg	gat Asp	ccc Pro 1009	Gly	gtc Val	agg Arg	tgg Trp	gag Glu 1010	Tyr	tgc Cys	3081
	tg acg eu Thr 101	Gln					Glu					Ala			3129
Thr Va	tt acc al Thr 030					Leu					Glu				3177
	ag caa lu Gln				Val					His					3225
agt ta Ser T	at cga yr Arg	ggc	aca Thr 106	Tyr	tcc Ser	acc Thr	act Thr	gtc Val 1070	Thr	gga Gly	aga Arg	acc Thr	tgc Cys 1079	Gln	3273
	gg tca rp Ser		Met					His					Glu		3321
	ca aat ro Asn 109	Āla					Asn					Pro			3369
Val A	ca gct la Ala 110					Thr					Val				3417
tac to Tyr C	gc aac ys Asn	ctg Leu	acg Thr	caa Gln 1130	Cys	tca Ser	gac Asp	gca Ala	gaa Glu 113	Gly	act Thr	gcc Ala	gtc Val	gcg Ala 1140	3465
cct c Pro P	cg act ro Thr	gtt Val	acc Thr 114	Pro	gtt Val	cca Pro	agc Ser	cta Leu 1150	Glu	gct Ala	cct Pro	tcc Ser	gaa Glu 115	Gln	3513

-7-

gca ccg act g Ala Pro Thr G 1	ag caa agg lu Gln Arg 160	cct ggg Pro Gly	gtg cag Val Glr 1165	gag tgo Glu Cys	tac cat Tyr His 117	${ t Gly}$	aat Asn	3561
gga cag agt t Gly Gln Ser T 1175			Ser Thr					3609
tgc caa gct te Cys Gln Ala T 1190	gg tca tct rp Ser Ser	atg aca Met Thr 1195	cca cac Pro His	tcg cat Ser His 120	Ser Arg	acc Thr	cca Pro	3657
gaa tac tac c Glu Tyr Tyr P 1205		Gly Leu						3705
gat gct gtg g Asp Ala Val A				Arg Asp			Arg	3753
tgg gag tac to Trp Glu Tyr C						Thr		3801
gtc gcg cct c Val Ala Pro P 1255			Val Pro					3849
gaa caa gca c Glu Gln Ala P 1270	cg act gag ro Thr Glu	caa agg Gln Arg 1275	cct ggg Pro Gly	gtg cag Val Gln 128	Glu Cys	tac Tyr	cat His	3897
ggt aat gga c Gly Asn Gly G 1285	ag agt tat ln Ser Tyr 129	Arg Gly	aca tac Thr Tyr	tcc acc Ser Thr 1295	act gtc Thr Val	aca Thr	gga Gly 1300	3945
aga acc tgc c Arg Thr Cys G				Pro His			Arg	3993
acc cca gaa t Thr Pro Glu T 1	ac tac cca yr Tyr Pro 320	aat gct Asn Ala	ggc ttg Gly Leu 1325	atc atg	aac tac Asn Tyr 133	Cys	agg Arg	4041
aat cca gat g Asn Pro Asp A 1335			Tyr Cys					4089
gtc agg tgg g Val Arg Trp G 1350					Asp Ala			4137
act gcc gtc g Thr Ala Val A 1365	cg cct ccg la Pro Pro 137	Thr Val	acc ccc Thr Pro	gtt cca Val Pro 1375	agc cta Ser Leu	gag Glu	gct Ala 1380	4185
cct tcc gaa c	aa gca ccg	act gag	caa agg	rcct ggg	gtg cag	gag	tgc	4233

-8-

Pro	Ser	Glu	Gln	Ala 1389		Thr	Glu	Gln	Arg 1390		Gly	Val	Gln	Glu 1395		
	cat His			Gly					Gly					Thr		4281
	gga Gly		Thr					Ser					His			4329
	cgg Arg 1430	Thr					Pro					Ile				4377
tgc Cys 144!	agg Arg 5	aat Asn	cca Pro	gat Asp	gct Ala 1450	Val	gca Ala	gct Ala	cct Pro	tat Tyr 145	Cys	tat Tyr	acg Thr	agg Arg	gat Asp 1460	4425
ccc Pro	ggt Gly	gtc Val	agg Arg	tgg Trp 1469	Glu	tac Tyr	tgc Cys	aac Asn	ctg Leu 1470	Thr	caa Gln	tgc Cys	tca Ser	gac Asp 1475	Ala	4473
	Gly aaa			Val					Val					Ser		4521
gag Glu	gct Ala	cct Pro 149	Ser	gaa Glu	caa Gln	gca Ala	ccg Pro 1500	Thr	gag Glu	caa Gln	agg Arg	cct Pro 1505	Gly	gtg Val	cag Gln	4569
gag Glu	tgc Cys 1510	Tyr	cat His	ggt Gly	aat Asn	gga Gly 151!	Gln	agt Ser	tat Tyr	cga Arg	ggc Gly 1520	Thr	tac Tyr	tcc Ser	acc Thr	4617
	gtc Val 5					Cys					Ser					4665
tcg Ser	cat His	agt Ser	cgg Arg	acc Thr 154!	Pro	gaa Glu	tac Tyr	tac Tyr	cca Pro 1550	Asn	gct Ala	ggc	ttg Leu	atc Ile 1559	Met	4713
	tac Tyr			Asn					Ala					Tyr		4761
agg Arg	gat Asp	ccc Pro 157!	Gly	gtc Val	agg Arg	tgg Trp	gag Glu 1580	Tyr	tgc Cys	aac Asn	ctg Leu	acg Thr 158	Gln	tgc Cys	tca Ser	4809
gac Asp	gca Ala 1590	Glu	gly aaa	act Thr	gcc Ala	gtc Val 159	Ala	cct Pro	ccg Pro	act Thr	gtt Val 1600	Thr	ccg Pro	gtt Val	cca Pro	4857
	cta Leu										gag Glu					4905

-9-

1605	1610	1615	1620
gtg cag gag tgc tac Val Gln Glu Cys Tyr 162	His Gly Asn Gly Gln	agt tat cga ggc aca Ser Tyr Arg Gly Thr 0 1635	Tyr
		gct tgg tca tct atg Ala Trp Ser Ser Met 1650	
		tac cca aat gct ggc Tyr Pro Asn Ala Gly 1665	
		gtg gca gct cct tat Val Ala Ala Pro Tyr 1680	
		tac tgc aac ctg acg Tyr Cys Asn Leu Thr 1695	
	Gly Thr Ala Val Ala	cct ccg act gtt acc Pro Pro Thr Val Thr 0 1715	Pro
		gca ccg act gag caa Ala Pro Thr Glu Gln . 1730	
		gga cag agt tat cga Gly Gln Ser Tyr Arg 1745	
		tgc caa gct tgg tca Cys Gln Ala Trp Ser 1760	
		gaa tac tac cca aat g Glu Tyr Tyr Pro Asn 1775	
Gly Leu Ile Met Asn		gat gct gtg gca gct Asp Ala Val Ala Ala) 1795	Pro
		tgg gag tac tgc aac Trp Glu Tyr Cys Asn 1 1810	
		gtc gcg cct ccg act y Val Ala Pro Pro Thr 1825	
		gaa caa gca ccg act g Glu Gln Ala Pro Thr 1840	

-10-

caa agg cct g Gln Arg Pro G 1845	gg gtg cag ly Val Gln 1850	gag tgc tac Glu Cys Tyr	cat ggt aat His Gly Asn 1855	gga cag a Gly Gln S	igt tat 5625 Ser Tyr 1860
cga ggc aca t Arg Gly Thr T				Cys Gln A	
tca tct atg a Ser Ser Met T 1			Arg Thr Pro		
aat gct ggc t Asn Ala Gly L 1895					
gct cct tat t Ala Pro Tyr C 1910	ys Tyr Thr			Trp Glu T	
aac ctg acg c Asn Leu Thr G 1925					
act gtt acc c Thr Val Thr P				Glu Gln A	
act gag caa a Thr Glu Gln A 1			Cys Tyr His		
agt tat cga g Ser Tyr Arg G 1975					
gct tgg tca t Ala Trp Ser S 1990	er Met Thr			Thr Pro G	
tac cca aat g Tyr Pro Asn A 2005					
gtg gca gct c Val Ala Ala P	ct tat tgt ro Tyr Cys 2025	Tyr Thr Arg	gat ccc ggt Asp Pro Gly 2030	Val Arg T	gg gag 6153 rp Glu 035
tac tgc aac c Tyr Cys Asn L 2			Ala Glu Gly		
cct ccg act g Pro Pro Thr V 2055	_	-		_	

-11-

gca ccg act Ala Pro Thr 2070	gag caa a Glu Gln	agg cct Arg Pro 2075	Gly Val	cag gag Gln Gl	g tgc tac u Cys Tyr 2080	cat ggt His Gly	aat 629 Asn	∍7
gga cag agt Gly Gln Ser 2085	Tyr Arg				r Val Thr			15
tgc caa gct Cys Gln Ala							Pro	€3
gaa tac tac Glu Tyr Tyr				Met Ası				11
gat gct gtg Asp Ala Val 213	Ala Ala	Pro Tyr				Gly Val		39
tgg gag tac Trp Glu Tyr 2150	_		Gln Cys	_	-		_	37
gtc gcg cct Val Ala Pro 2165	Pro Thr				r Leu Glu			35
gaa caa gca Glu Gln Ala							His	33
ggt aat gga Gly Asn Gly				Tyr Se:				31
aga acc tgc Arg Thr Cys 221	Gln Ala '	Trp Ser				His Ser		29
acc cca gaa Thr Pro Glu 2230	tac tac Tyr Tyr	cca aat Pro Asn 2235	Ala Gly	ttg ato	c atg aac e Met Asn 2240	tac tgc Tyr Cys	agg 677 Arg	77
aat cca gat Asn Pro Asp 2245	Ala Val				r Thr Arg			25
gtc agg tgg Val Arg Trp		Cys Asn					Gly	73
act gcc gtc Thr Ala Val				Pro Va				21
cct tcc gaa	caa gca	ccg act	gag caa	agg cc	t ggg gtg	cag gag	tgc 696	59

-12-

Pro Ser	Glu Gln 2295	Ala Pro	Thr	Glu 2300		Arg	Pro	Gly	Val 230		Glu	Cys	
	ggt aat Gly Asn O			Tyr					Ser				7017
	aga acc Arg Thr		ı Ala					Thr					7065
agt cgg Ser Arg	acc cca Thr Pro	gaa ta Glu Ty: 2345	tac Tyr	cca Pro	aat Asn	gct Ala 2350	${ t Gly}$	ttg Leu	atc Ile	atg Met	aac Asn 235!	Tyr	7113
tgc agg Cys Arg	aat cca Asn Pro 236	Asp Ala	gtg Val	gca Ala	gct Ala 236	Pro	tat Tyr	tgt Cys	tat Tyr	acg Thr 2370	Arg	gat Asp	7161
	gtc agg Val Arg 2375				Asn					Ser			7209
	act gcc Thr Ala 0			Pro					Val				7257
	cct tcc Pro Ser		ı Ala					Arg					7305
gag tgc Glu Cys	tac cat Tyr His	ggt aat Gly Ası 2425	gga Gly	cag Gln	agt Ser	tat Tyr 2430	Arg	Gly ggc	aca Thr	tac Tyr	tcc Ser 243	Thr	7353
	aca gga Thr Gly 244	Arg Th				Trp					Pro		7401
	agt cgg Ser Arg 2455				Tyr					Leū			7449
	tgc agg Cys Arg O			Ala					Tyr				7497
	ccc ggt Pro Gly		J Trp					Leu					7545
gac gca Asp Ala	gaa ggg Glu Gly	act gcd Thr Ala 2505	gtc Val	gcg Ala	cct Pro	ccg Pro 2510	Thr	gtt Val	acc Thr	ccg Pro	gtt Val 2519	Pro	7593
	gag gct Glu Ala												7641

-13-

2520)	2525	2530	
	Tyr His Gly As		tat cga ggc aca Tyr Arg Gly Thr 2545	
tcc acc act gtc Ser Thr Thr Val 2550	aca gga aga ad Thr Gly Arg Th 2555	cc tgc caa gct hr Cys Gln Ala	tgg tca tct atg Trp Ser Ser Met 2560	aca 7737 Thr
			cca aat gct ggc Pro Asn Ala Gly	
atc atg aac tac Ile Met Asn Tyr	tgc agg aat co Cys Arg Asn Pi 2585	ca gat gct gtg ro Asp Ala Val 2590	gca gct cct tat Ala Ala Pro Tyr 2595	tgt 7833 Cys
	Pro Gly Val A		tgc aac ctg acg Cys Asn Leu Thr 2610	
tgc tca gac gca Cys Ser Asp Ala 2615	Glu Gly Thr A	cc gtc gcg cct la Val Ala Pro 620	ccg act gtt acc Pro Thr Val Thr 2625	ccg 7929 Pro
gtt cca agc cta Val Pro Ser Leu 2630	gag gct cct to Glu Ala Pro Se 2635	cc gaa caa gca er Glu Gln Ala	ccg act gag cag Pro Thr Glu Gln : 2640	agg 7977 Arg
cct ggg gtg cag Pro Gly Val Gln 2645	gag tgc tac ca Glu Cys Tyr H: 2650	ac ggt aat gga is Gly Asn Gly 2655	cag agt tat cga Gln Ser Tyr Arg	ggc 8025 Gly 2660
			caa gct tgg tca Gln Ala Trp Ser 2675	
	Ser His Ser A		tac tac cca aat Tyr Tyr Pro Asn . 2690	
	Asn Tyr Cys A		gct gtg gca gct Ala Val Ala Ala 2705	
tat tgt tat acg Tyr Cys Tyr Thr 2710	agg gat ccc gg Arg Asp Pro G 2715	gt gtc agg tgg ly Val Arg Trp	gag tac tgc aac Glu Tyr Cys Asn 2720	ctg 8217 Leu
acg caa tgc tca Thr Gln Cys Ser 2725	gac gca gaa g Asp Ala Glu G 2730	gg act gcc gtc ly Thr Ala Val 2735	gcg cct ccg act Ala Pro Pro Thr	gtt 8265 Val 2740
			caa gca ccg act Gln Ala Pro Thr 2755	

-14-

				Val					His					agt Ser)		8361
			Tyr					Thr					Gln	gct Ala		8409
		Met					His					Glu		tac Tyr		8457
	Āla					Asn					Pro			gtg Val		8505
					Thr					Val				tac Tyr 2835	Cys	8553
aac Asn	ctg Leu	acg Thr	caa Gln 284	Cys	tca Ser	gac Asp	gca Ala	gaa Glu 284!	Gly	act Thr	gcc Ala	gtc Val	gcg Ala 2850	cct Pro)	ccg Pro	8601
			Pro					Glu					Gln	gca Ala		8649
act Thr	gag Glu 2870	Gln	agg Arg	cct Pro	61 y 89 g	gtg Val 287	Gln	gag Glu	tgc Cys	tac Tyr	cat His 2880	Gly	aat Asn	gga Gly	cag Gln	8697
	Tyr					Ser					ĞĪу			tgc Cys		8745
					Thr					Ser				gaa Glu 291	Tyr	8793
				Gly					Tyr					gat Asp)		8841
			Pro					Arg					Arg	tgg Trp	gag Glu	8889
		Asn					Ser					Thr		gtc Val		8937
	Pro					Val					Āla			gaa Glu		8985

-15-

gca Ala	ccg Pro	act Thr	gag Glu	cag Gln 2985	agg Arg	cct Pro	Gly 333	gtg Val	cag Gln 2990	Glu	tgc Cys	tac Tyr	cac His	ggt Gly 2995	Asn	9033
gga Gly	cag Gln	agt Ser	tat Tyr 3000	Arg	gly ggc	aca Thr	tac Tyr	tcc Ser 3005	Thr	act Thr	gtc Val	act Thr	gga Gly 3010	Arg	acc Thr	9081
tgc Cys	caa Gln	gct Ala 3015	Trp	tca Ser	tct Ser	atg Met	aca Thr 3020	Pro	cac His	tcg Ser	cat His	agt Ser 3025	Arg	acc Thr	cca Pro	9129
gaa Glu	tac Tyr 3030	Tyr	cca Pro	aat Asn	gct Ala	ggc ggc	Leu	atc Ile	atg Met	aac Asn	tac Tyr 3040	Cys	agg Arg	aat Asn	cca Pro	9177
gat Asp 3045	Ala	gtg Val	gca Ala	gct Ala	cct Pro 3050	Tyr	tgt Cys	tat Tyr	acg Thr	agg Arg 3055	Asp	ccc Pro	ggt Gly	gtc Val	agg Arg 3060	9225
tgg Trp	gag Glu	tac Tyr	tgc Cys	aac Asn 3069	ctg Leu 5	acg Thr	caa Gln	tgc Cys	tca Ser 3070	Asp	gca Ala	gaa Glu	gly aaa	act Thr 3075	Ala	9273
				Thr	gtt Val				Pro					Pro		9321
gaa Glu	caa Gln	gca Ala 3099	Pro	act Thr	gag Glu	cag Gln	agg Arg 3100	Pro	gly aaa	gtg Val	cag Gln	gag Glu 310	Cys	tac Tyr	cac His	9369
ggt Gly	aat Asn 3110	Gly	cag Gln	agt Ser	tat Tyr	cga Arg 311	Gly	aca Thr	tac Tyr	tcc Ser	acc Thr 312	Thr	gtc Val	act Thr	gga Gly	9417
aga Arg 312	Thr	tgc Cys	caa Gln	gct Ala	tgg Trp 3130	Ser	tct Ser	atg Met	aca Thr	cca Pro 313	His	tcg Ser	cat His	agt Ser	cgg Arg 3140	9465
acc Thr	cca Pro	gaa Glu	tac Tyr	tac Tyr 314!	cca Pro	aat Asn	gct Ala	ggc Gly	ttg Leu 3150	Ile	atg Met	aac Asn	tac Tyr	tgc Cys 3155	Arg	9513
aat Asn	cca Pro	gat Asp	gct Ala 316	Val	gca Ala	gct Ala	cct Pro	tat Tyr 316	Cys	tat Tyr	acg Thr	agg Arg	gat Asp 3170	Pro	ggt Gly	9561
gtc Val	agg Arg	tgg Trp 317	Glu	tac Tyr	tgc Cys	aac Asn	ctg Leu 3180	Thr	caa Gln	tgc Cys	tca Ser	gac Asp 318	Ala	gaa Glu	gly aaa	9609
act Thr	gcc Ala 319	Val	gcg Ala	cct Pro	ccg Pro	act Thr 319	Val	acc Thr	ccg Pro	gtt Val	cca Pro 320	Ser	cta Leu	gag Glu	gct Ala	9657
cct	tcc	gaa	caa	gca	ccg	act	gag	cag	agg	cct	999	gtg	cag	gag	tgc	9705

-16-

Pro 3205		Glu	Gln	Ala	Pro 321		Glu	Gln	Arg	Pro 3215	Gly 5	Val	Gln	Glu	Cys 3220	
tac Tyr	cac His	ggt Gly	aat Asn	gga Gly 3229	Gln	agt Ser	tat Tyr	cga Arg	ggc Gly 3230	Thr	tac Tyr	tcc Ser	acc Thr	act Thr 3235	Val	9753
act Thr	gga Gly	aga Arg	acc Thr 3240	Cys	caa Gln	gct Ala	tgg Trp	tca Ser 3245	Ser	atg Met	aca Thr	cca Pro	cac His 3250	Ser	cat His	9801
			${\tt Pro}$					Asn			ttg Leu		Met			9849
		Asn					Ala				tgt Cys 3280	Tyr				9897
ccc Pro 328	Gly	gtc Val	agg Arg	tgg Trp	gag Glu 3290	Tyr	tgc Cys	aac Asn	ctg Leu	acg Thr 3295	caa Gln 5	tgc Cys	tca Ser	gac Asp	gca Ala 3300	9945
					Ala					Thr	ccg Pro				Leu	9993
gag Glu	gct Ala	cct Pro	tcc Ser 3320	Glu	caa Gln	gca Ala	ccg Pro	act Thr 3325	Glu	cag Gln	agg Arg	cct Pro	3330 Gly Ggg	Val	cag Gln	10041
gag Glu	tgc Cys	tac Tyr 3335	His	ggt Gly	aat Asn	gga Gly	cag Gln 3340	Ser	tat Tyr	cga Arg	ggc	aca Thr 3345	Tyr	tcc Ser	acc Thr	10089
		Thr					Gln				tct Ser 3360	Met				10137
tcg Ser 336	His	agt Ser	cgg Arg	acc Thr	cca Pro 3370	Glu	tac Tyr	tac Tyr	cca Pro	aat Asn 3375	gct Ala 5	ggc Gly	ttg Leu	atc Ile	atg Met 3380	10185
aac Asn	tac Tyr	tgc Cys	agg Arg	aat Asn 338	Pro	gat Asp	cct Pro	gtg Val	gca Ala 3390	Ala	cct Pro	tat Tyr	tgt Cys	tat Tyr 339	Thr	10233
				Val					Cys		ctg Leu			Cys		10281
gac Asp	gca Ala	gaa Glu 341	Gly	act Thr	gcc Ala	gtc Val	gcg Ala 3420	Pro	cca Pro	act Thr	att Ile	acc Thr 3425	Pro	att Ile	cca Pro	10329
agc Ser	cta Leu	gag Glu	gct Ala	cct Pro	tct Ser	gaa Glu	caa Gln	gca Ala	cca Pro	act Thr	gag Glu	caa Gln	agg Arg	cct Pro	gly aaa	10377

-17-

	3430)				3435	;				3440)				
gtg Val 3445	cag Gln	gag Glu	tgc Cys	tac Tyr	cac His 3450	${ t Gly}$	aat Asn	gga Gly	cag Gln	agt Ser 3455	Tyr	caa Gln	ggc Gly	aca Thr	tac Tyr 3460	10425
ttc Phe	att Ile	act Thr	gtc Val	aca Thr 3465	Gly	aga Arg	acc Thr	tgc Cys	caa Gln 3470	Ala	tgg Trp	tca Ser	tct Ser	atg Met 3475	\mathtt{Thr}	10473
cca Pro	cac His	tcg Ser	cat His 3480	Ser	cgg Arg	acc Thr	cca Pro	gca Ala 3485	Tyr	tac Tyr	cca Pro	aat Asn	gct Ala 3490	Gly	ttg Leu	10521
atc Ile	aag Lys	aac Asn 3495	Tyr	tgc Cys	cga Arg	aat Asn	cca Pro 3500	Asp	cct Pro	gtg Val	gca Ala	gcc Ala 3505	Pro	tgg Trp	tgt Cys	10569
tat Tyr	aca Thr 3510	Thr	gat Asp	ccc Pro	agt Ser	gtc Val 3515	Arg	tgg Trp	gag Glu	tac Tyr	tgc Cys 3520	Asn	ctg Leu	aca Thr	cga Arg	10617
tgc Cys 352!	tca Ser	gat Asp	gca Ala	gaa Glu	tgg Trp 3530	Thr	gcc Ala	ttc Phe	gtc Val	cct Pro 3535	Pro	aat Asn	gtt Val	att Ile	ctg Leu 3540	10665
gct Ala	cca Pro	agc Ser	cta Leu	gag Glu 3545	Ala	ttt Phe	ttt Phe	gaa Glu	caa Gln 3550	Ala	ctg Leu	act Thr	gag Glu	gaa Glu 355!	Thr	10713
ccc Pro	Gly 999	gta Val	cag Gln 3560	Asp	tgc Cys	tac Tyr	tac Tyr	cat His 356!	Tyr	gga Gly	cag Gln	agt Ser	tac Tyr 3570	Arg	ggc Gly	10761
aca Thr	tac Tyr	tcc Ser 3579	Thr	act Thr	gtc Val	aca Thr	gga Gly 3580	Arg	act Thr	tgc Cys	caa Gln	gct Ala 358!	Trp	tca Ser	tct Ser	10809
atg Met	aca Thr 3590	Pro	cac His	cag Gln	cat His	agt Ser 359	Arg	acc Thr	cca Pro	gaa Glu	aac Asn 360	Tyr	cca Pro	aat Asn	gct Ala	10857
ggc Gly 360	ctg Leu 5	acc Thr	Arg	Asn	Tyr	Cys	Arg	Asn	Pro	Asp	Ala	Glu	att Ile	Arg	cct Pro 3620	10905
tgg Trp	tgt Cys	tac Tyr	acc Thr	atg Met 362	Asp	ccc Pro	agt Ser	gtc Val	agg Arg 363	\mathtt{Trp}	gag Glu	tac Tyr	tgc Cys	aac Asn 363	Leu	10953
aca Thr	caa Gln	tgc Cys	ctg Leu 364	Val	aca Thr	gaa Glu	tca Ser	agt Ser 364	Val	ctt Leu	gca Ala	act Thr	ctc Leu 365	Thr	gtg Val	11001
gtc Val	cca Pro	gat Asp 365	Pro	agc Ser	aca Thr	gag Glu	gct Ala 366	Ser	tct Ser	gaa Glu	gaa Glu	gca Ala 366	Pro	acg Thr	gag Glu	11049

-18-

caa Gln	agc Ser 3670	Pro	gly aaa	gtc Val	cag Gln	gat Asp 3675	Cys	tac Tyr	cat His	ggt Gly	gat Asp 3680	Gly	cag Gln	agt Ser	tat Tyr	11097
cga Arg 3685	ggc Gly	tca Ser	ttc Phe	tct Ser	acc Thr 3690	Thr	gtc Val	aca Thr	gga Gly	agg Arg 3695	Thr	tgt Cys	cag Gln	tct Ser	tgg Trp 3700	11145
tcc Ser	tct Ser	atg Met	aca Thr	cca Pro 3705	His	tgg Trp	cat His	cag Gln	agg Arg 3710	Thr	aca Thr	gaa Glu	tat Tyr	tat Tyr 3715	Pro	11193
aat Asn	ggt Gly	gly ggc	ctg Leu 3720	Thr	agg Arg	aac Asn	tac Tyr	tgc Cys 3725	Arg	aat Asn	cca Pro	gat Asp	gct Ala 3730	Glu	att Ile	11241
agt Ser	cct Pro	tgg Trp 3735	Cys	tat Tyr	acc Thr	atg Met	gat Asp 3740	Pro	aat Asn	gtc Val	aga Arg	tgg Trp 3745	Glu	tac Tyr	tgc Cys	11289
aac Asn	ctg Leu 3750	Thr	caa Gln	tgt Cys	cca Pro	gtg Val 3755	Thr	gaa Glu	tca Ser	agt Ser	gtc Val 3760	Leu	gcg Ala	acg Thr	tcc Ser	11337
acg Thr 376	gct Ala 5	gtt Val	tct Ser	gaa Glu	caa Gln 3770	Ala	cca Pro	acg Thr	gag Glu	caa Gln 377	Ser	ccc Pro	aca Thr	gtc Val	cag Gln 3780	11385
gac Asp	tgc Cys	tac Tyr	cat His	ggt Gly 378!	Asp	gga Gly	cag Gln	agt Ser	tat Tyr 3790	Arg	ggc Gly	tca Ser	ttc Phe	tcc Ser 379	Thr	11433
act Thr	gtt Val	aca Thr	gga Gly 380	Arg	aca Thr	tgt Cys	cag Gln	tct Ser 380!	${\tt Trp}$	tcc Ser	tct Ser	atg Met	aca Thr 3810	Pro	cac His	11481
tgg Trp	cat His	cag Gln 381!	Arg	acc Thr	aca Thr	gaa Glu	tac Tyr 3820	Tyr	cca Pro	aat Asn	ggt Gly	ggc Gly 3825	Leu	acc Thr	agg Arg	11529
aac Asn	tac Tyr 3830	Cys	agg Arg	aat Asn	cca Pro	gat Asp 383!	Ala	gag Glu	att Ile	cgc Arg	cct Pro 3840	Trp	tgt Cys	tat Tyr	acc Thr	11577
ato																
Met 384	gat Asp 5	ccc Pro	agt Ser	gtc Val	aga Arg 385	${\tt Trp}$	gag Glu	tac Tyr	tgc Cys	aac Asn 385	Leu	acg Thr	caa Gln	tgt Cys	cca Pro 3860	11625
Met 384	Asp	Pro	Ser	Val act	Arg 385 ctc Leu	Trp 0 ctc	Glu	Tyr	Cys	Asn 385 acg Thr	Leu 5 gtg	Thr	Gln	Cys	Pro 3860 cca Pro	11625 11673

-19-

gtc Val	cag Gln	gac Asp 3895	Cys	tac Tyr	cga Arg	ggt Gly	gat Asp 3900	Gly	cag Gln	agt Ser	tat Tyr	cga Arg 3905	Gly	aca Thr	ctc Leu	11769
tcc Ser	acc Thr 3910	Thr	atc Ile	aca Thr	gga Gly	aga Arg 3915	Thr	tgt Cys	cag Gln	tct Ser	tgg Trp 3920	Ser	tct Ser	atg Met	aca Thr	11817
cca Pro 3925	His	tgg Trp	cat His	cgg Arg	agg Arg 3930	Ile	cca Pro	tta Leu	tac Tyr	tat Tyr 3935	Pro	aat Asn	gct Ala	ggc Gly	ctg Leu 3940	11865
acc Thr	agg Arg	aac Asn	tac Tyr	tgc Cys 394	Arg	aat Asn	cca Pro	gat Asp	gct Ala 3950	Glu	att Ile	cgc Arg	cct Pro	tgg Trp 3955	Cys	11913
tac Tyr	acc Thr	atg Met	gat Asp 3960	Pro	agt Ser	gtc Val	agg Arg	tgg Trp 3965	Glu	tac Tyr	tgc Cys	aac Asn	ctg Leu 397(aca Thr)	cga Arg	11961
tgt Cys	cca Pro	gtg Val 3975	Thr	gaa Glu	tcg Ser	agt Ser	gtc Val 3980	Leu	aca Thr	act Thr	ccc Pro	aca Thr 3985	Val	gcc Ala	ccg Pro	12009
gtt Val	cca Pro 3990	Ser	aca Thr	gag Glu	gct Ala	cct Pro 3995	Ser	gaa Glu	caa Gln	gca Ala	cca Pro 4000	Pro	gag Glu	aaa Lys	agc Ser	12057
cct Pro 4005	Val	gtc Val	cag Gln	gat Asp	tgc Cys 4010	Tyr	cat His	ggt Gly	gat Asp	gga Gly 4015	Arg	agt Ser	tat Tyr	cga Arg	ggc Gly 4020	12105
ata Ile	tcc Ser	tcc Ser	acc Thr	act Thr 402!	Val	aca Thr	gga Gly	agg Arg	acc Thr 4030	Cys	caa Gln	tct Ser	tgg Trp	tca Ser 403	Ser	12153
atg Met	ata Ile	cca Pro	cac His 4040	Trp	cat His	cag Gln	agg Arg	acc Thr 404	Pro	gaa Glu	aac Asn	tac Tyr	cca Pro 4050	aat Asn)	gct Ala	12201
ggc Gly	ctg Leu	acc Thr 405	Glu	aac Asn	tac Tyr	tgc Cys	agg Arg 4060	Asn	cca Pro	gat Asp	tct Ser	999 Gly 406	Lys	caa Gln	ccc Pro	12249
tgg Trp	tgt Cys 4070	Tyr	aca Thr	acc Thr	gat Asp	ccg Pro 407	Cys	gtg Val	agg Arg	tgg Trp	gag Glu 4080	Tyr	tgc Cys	aat Asn	ctg Leu	12297
aca Thr 408!	Gln	tgc Cys	tca Ser	gaa Glu	aca Thr 409	Glu	tca Ser	ggt Gly	gtc Val	cta Leu 409	Glu	act Thr	ccc Pro	act Thr	gtt Val 4100	12345
gtt Val	cca Pro	gtt Val	cca Pro	agc Ser 410	Met	gag Glu	gct Ala	cat His	tct Ser 411	Glu	gca Ala	gca Ala	cca Pro	act Thr 411	Glu	12393
caa	acc	cct	gtg	gtc	cgg	cag	tgc	tac	cat	ggt	aat	ggc	cag	agt	tat	12441

-20-

Gln Thr Pro	Val Val Arg 4120		yr His Gly 125	Asn Gly Gln 413		
	ttc tcc acc Phe Ser Thr 5					12489
	aca cca cac Thr Pro His					12537
	ctg aca atg Leu Thr Met 417	Asn Tyr C		Pro Asp Ala	_	12585
	tgt ttt acc Cys Phe Thr 4185					12633
	cga tgc tca Arg Cys Ser 4200	Asp Thr G			Pro Pro	12681
	cag gtt cca Gln Val Pro 5					12729
	aat ggg aaa Asn Gly Lys					12777
act ggg acg Thr Gly Thr 4245	cca tgc cag Pro Cys Gln 425	Glu Trp Al	ct gcc cag la Ala Gln 4255	Glu Pro His	aga cac Arg His 4260	12825
	att cca ggg Ile Pro Gly 4265					12873
	aac cct gat Asn Pro Asp 4280	Gly Asp I			Tyr Thr	12921
_	aga aaa ctt Arg Lys Leu 5	. •		_		12969
tcc tct tca Ser Ser Ser 4310	ttt gat tgt Phe Asp Cys	ggg aag co Gly Lys Pr 4315	ct caa gtg ro Gln Val	gag ccg aag Glu Pro Lys 4320	aaa tgt Lys Cys	13017
	att gta ggg Ile Val Gly 433	Gly Cys Va		Pro His Ser		13065
	agt ctc aga Ser Leu Arg					13113

-21-

	4345	43	350	4355	
acc tta ata tcc Thr Leu Ile Ser 436	Pro Glu Trp				13161
aag tcc tca agg Lys Ser Ser Arg 4375				Ala His Gln	13209
gaa gtg aac ctc Glu Val Asn Leu 4390		Val Gln G			13257
ttc ttg gag ccc Phe Leu Glu Pro 4405					13305
cct gcc gtc atc Pro Ala Val Ile		Val Met Pi			13353
gac tac atg gtc Asp Tyr Met Val 444	Thr Ala Arg		ys Tyr Ile Thr		13401
gaa acc caa ggt Glu Thr Gln Gly 4455					13449
ctt gtt att gag Leu Val Ile Glu 4470		Cys Asn Hi			13497
gag cat ttg gcc Glu His Leu Ala 4485					13545
cct ctg gtt tgc Pro Leu Val Cys		Asp Lys Ty			13593
tct tgg ggt ctt Ser Trp Gly Leu 4520	Gly Cys Ala		sn Lys Pro Gly		13641
cgt gtt tca agg Arg Val Ser Arg 4535	ttt gtt act Phe Val Thr	tgg att ga Trp Ile G 4540	ag gga atg atg lu Gly Met Met 4545	aga aat aat Arg Asn Asn	13689
taa ttggacggga g	gacagagtga ag	gcatcaacc t	tacttagaag ctga	aacgtg	13742
ggtaaggatt tagca ctaccagcta tgcca gactgacaaa ttctg acttattttg atttg	aaacct tggcat gtatta aggtgt	tttt ggtat	tttttg tgtataag	ct tttaaggtct	13862

-22-

<210> 4 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 4 gaaggtgaag gtcggagtc	19
<210> 5 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Primer	
<400> 5 gaagatggtg atgggatttc	20
<210> 6 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> PCR Probe	
<400> 6 caagetteec gtteteagee	20
<210> 7 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 7 ggcaggtcct tcctgtgaca	20
<210> 8 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 8 totgogtotg agcattgogt	20
<210> 9 <211> 20	

-23-

<212> <213>	DNA Artificial Sequence	
<220> <223>	Antisense Oligonucleotide	
<400> aagctt	9 Eggca ggttetteet	20
<210><211><212><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> tcggag	10 ggcgc gacggcagtc	20
<210> <211> <212> <213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> cggagg	11 gegeg aeggeagtee	20
<210><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> ggcagg	12 gttct tcctgtgaca	20
<210><211><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> ataac	13 aataa ggagctgcca	20
<210><211><212><212><213>	20	

-24-

<220> <223> Antisense Oligonucleotide	
<400> 14 gaccaagctt ggcaggttct	20
<210> 15 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 15 taacaataag gagctgccac	20
<210> 16 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 16 tgaccaagct tggcaggttc	20
<210> 17 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 17 ttctgcgtct gagcattgcg	20
<210> 18 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 18 aacaataagg agctgccaca	20
<210> 19 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	

-25-

<400> 19 acctgacacc gggatccctc	20
<210> 20 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 20 ctgagcattg cgtcaggttg	20
<210> 21 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 21 agtagttcat gatcaagcca	20
<210> 22 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 22 gacggcagtc ccttctgcgt	20
<210> 23 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 23 ggcaggttct tccagtgaca	20
<210> 24 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 24 tgaccaagct tggcaagttc	20

-26-

<210><211><212><213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> tataad	25 cacca aggactaatc		20
<210> <211> <212> <213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> ccatct	26 tgaca ttgggatcca		20
<210><211><212><212><213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> tgtggt	27 tgtca tagaggacca		20
<210><211><212><212><213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> atggg:	28 atcct ccgatgccaa		20
<210><211><212><213>	20		
<220> <223>	Antisense Oligonucleotide		
<400> acacca	29 aaggg cgaatctcag	Ÿ	20
<210> <211>			

-27-

<212> : <213> :	DNA Artificial Sequence	
<220> <223>	Antisense Oligonucleotide	
<400> ttctgt		20
<210> <211> <212> <213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> cacacg		20
<210> <211> <212> <213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> acatgt		20
<210><211><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> cagaag		20
<210><211><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> ctggcg		20
<210><211><212><212><213>	20	

-28-

<220> <223>	Antisense Oligonucleotide	
<400> tctaag	35 gtagg ttgatgcttc	20
<210><211><212><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> tcctta	36 accca cgtttcagct	20
<210><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> ggaaca	37 agtgt cttcgtttga	20
<210><211><212><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> gtttgg	38 gcata gctggtagct	20
<210><211><212><212><213>	20	
<220> <223>	Antisense Oligonucleotide	
<400> acctta	39 aaaag cttatacaca	20
<210><211><212><213>	20	
<220> <223>	Antisense Oligonucleotide	

-29-

<400> 40 atacagaatt tgtcagtcag	20
<210> 41 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Antisense Oligonucleotide	
<400> 41 gtcatagcta tgacacctta	20
1	
1	

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/24920

A. CLASSIFICATION OF SUBJECT MATTER IPC(7) : C12Q 1/68; A01N 43/04; C07H 21/04, A61K 31/07 US CL : 435/6, 325, 91.1, 375; 536/24.5, 23.1, 24.3, 24.1; 514/44 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED					
Minimum documentation searched (classification system followed by classification symbols) U.S.: 435/6, 325, 91.1, 375; 536/24.5, 23.1, 24.3, 24.1; 514/44					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Biosis, Medline, CaPlus, Embase, Cancerlit					
C. DOC	UMENTS CONSIDERED TO BE RELEVANT				
Category *	Citation of document, with indication, where ap			Relevant to claim No.	
Α	KOSTNER et al. Lipoprotein (a): Still an enigma? 2002, Vol. 13, pages 391-396.			15-20	
A	JEN ET AL. Suppression of Gene Expression by T RNA: Available Options and Current Strategies. S	tem Cells	, 2000 Vol. 18, pages 307-	15-20	
A	BRANCH, A. A Good Antisense Molecule is Hard 23, pages 45-50.	to Find.	TIBS. February 1998, Vol.	15-20	
Y	McLEAN et al. cDNA sequence of human apolipo plasminogen. Nature. 1987, Vol. 330, pages 132-	137.	-	1-15	
Y	WEINTRAUB, H.M. Antisense RNA and DNA. Scientific American. January 1990, pages 40-46, see entire article.			1-15	
Y	MILLIGAN et al. Current Concepts in Antisense I 1993, Vol. 36, pages 1923-1937.	Orug Desi	gn. Medicinal Chemistry.	1-15	
Y US 5,801,154 A (BARACCHINI et al) 01 Septemb and column 8 line 12; column 6 lines 12-17 and (column 6 lines 12-17)			see column 7 lines 6 and 22 nes 26-30.	1-15	
FRITZ et al. Cationic Polystyrene Nanoparticles: Preparation and Characterization Model Drug Carrier System for Antisense Oligonucleotides. Journal of Colloid and Interface Science. 1997, Vol. 195, pages 272-288.			on and Characterization of a	1-15	
Further	r documents are listed in the continuation of Box C.		See patent family annex.		
	special categories of cited documents: t defining the general state of the art which is not considered to be	"T"	later document published after the inte date and not in conflict with the applic principle or theory underlying the inve	ation but cited to understand the	
of particu	application or patent published on or after the international filing date		document of particular relevance; the considered novel or cannot be considered.	claimed invention cannot be	
"L" documen	t which may throw doubts on priority claim(s) or which is cited to	«Y"	when the document is taken alone		
establish the publication date of another citation or other special reason (as specified)		considered to involve an inventive step when the document is combined with one or more other such documents, such combinati		when the document is documents, such combination	
"O" documen	t referring to an oral disclosure, use, exhibition or other means		being obvious to a person skilled in the		
"P" document published prior to the international filing date but later than the priority date claimed			"&" document member of the same patent family		
Date of the actual completion of the international search			Date of mailing of the international search report 16 JUL 2003		
	2003 (03.02.2003) nailing address of the ISA/US	zed officer			
Commissioner of Patents and Trademarks Box PCT			Terra C. Gibbs Jakel Forex		
Washington, D.C. 20231 Facsimile No. (703)305-3230 Telephone No. (703) 308-0196				101	
Form PCT/ISA/210 (second sheet) (July 1998)					

$-\mathbf{p}_{CT}$	711S02	/24920

INTERNATIONAL SEARCH REPORT

tegory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
X	FRANK et al. Adenovirus-mediated apo(a) antisense RNA expression efficiently inhibits apo(a) synthesis in vitro and in vivo. Gene Therapy. 2001, Vol. 8, pages 425-430.	1-15
X	MORISHITA et al. Novel Therapeutic Strategy for Atherosclerosis: Ribozyme Oligonucleotides against apo(a) selectively inhibit apo(a) but not plasminogen gene expression. Circulation. 1998, vol. 98, pages 1898-1904.	1-15
X	WO 96/009392 A1 (RIBOZYME PHARMACEUTICALS, INC.) 28 March 1996.	1-15

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US02/24920

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)			
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:			
1.		Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:	
2.		Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:	
3.	6.4(a).	Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule	
Box	ı Ot	oservations where unity of invention is lacking (Continuation of Item 2 of first sheet)	
		cional Searching Authority found multiple inventions in this international application, as follows:	
1.		As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.	
2.		As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite	
3.		payment of any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: Claims 1-20, SEQ ID NOs 7, 8, 19 and 36	
4. Rer	nark on	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: Protest The additional search fees were accompanied by the applicant's protest.	
Rei	nai k uli	No protest accompanied the payment of additional search fees.	

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

n	JTEDN	ATIONA	I. SEA	RCHI	REPORT
H.	NI PURIN	A I IV./IVA	משכיש		

PCT/US02/24920

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This application contains the following inventions or groups of inventions which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claims 1-20, SEQ ID NO: 7

Group II, claims 1-20, SEQ ID NO: 8

Group III, claims 1-20, SEQ ID NO: 9

Group IV, claims 1-20, SEQ ID NO: 10

Group V, claims 1-20, SEQ ID NO: 11

Group VI, claims 1-20, SEQ ID NO: 12

Group VII, claims 1-20, SEQ ID NO: 13

Group VIII, claims 1-20, SEQ ID NO: 14

Group IX, claims 1-20, SEQ ID NO: 15

Group X, claims 1-20, SEQ ID NO: 16

Group XI, claims 1-20, SEQ ID NO: 17

Group XII, claims 1-20, SEQ ID NO: 18

Group XIII, claims 1-20, SEQ ID NO: 19

Group XIV, claims 1-20 SEQ ID NO: 20

Group XV, claims 1-20, SEQ ID NO: 21

Group XVI, claims 1-20, SEQ ID NO: 22

Group XVII, claims 1-20, SEQ ID NO: 23

Group XVIII, claims 1-20, SEQ ID NO: 24

Group XIX, claims 1-20, SEQ ID NO: 25

Group XX, claims 1-20, SEQ ID NO: 26

Group XXI, claims 1-20, SEQ ID NO: 27

Group XXII, claims 1-20, SEQ ID NO: 28

Group XXIII, claims 1-20, SEQ ID NO: 29

Group XXIV, claims 1-20, SEQ ID NO: 30

Form PCT/ISA/210 (second sheet) (July 1998)

PCT/US02/24920

INTERNATIONAL SEARCH REPORT

Group XXV, claims 1-20, SEQ ID NO: 31

Group XXVI, claims 1-20, SEQ ID NO: 32

Group XXVII, claims 1-20, SEQ ID NO: 33

Group XXVIII, claims 1-20, SEQ ID NO: 34

Group XXIX, claims 1-20, SEQ ID NO: 35

Group XXX, claims 1-20, SEQ ID NO: 36

Group XXXI, claims 1-20, SEQ ID NO: 37

Group XXXII, claims 1-20, SEQ ID NO: 38

Group XXXIII, claims 1-20, SEQ ID NO: 39

Group XXXIV, claims 1-20, SEQ ID NO: 40

Group XXXV, claims 1-20, SEQ ID NO: 41

As outlined above, this international searching authority has found 35 inventions claimed in the International Application covered by the claims indicated: Claims 1-20 which specifically claim sequences listed as SEQ ID NOs 7-41, which are intended to modulate the function and/or expression of human apolipoprotein a.

This international searching authority considers that the international application does not comply with the requirements of unity of invention (Rules 13.1, 13.2 and 13.3) for the reasons indicated below:

The inventions listed as Groups 1-XXXV do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

According to the guidelines in Section (f)(i)(a) of Annex B of the PCT Administrative Instructions, the special technical feature as defined by PCT Rule 13.2 shall be considered to be met when all the alternatives of a Markush-group are of similar nature. For chemical alternatives, such as the claimed antisense sequences, the Marksuh group shall be regarded as being of similar nature when (A) all alternatives have a common property or activity and

(B)(1) a common structure is present, i.e, a signficant structure is shared by all of the alternatives or

(B)(2) in cases where the common structure cannot be the unifying criteria, all alternatives belong to an art recognized class of compounds in the art to which the invention pertains.

The instant antisense sequences are considered to be each separate inventions for the following reasons:

The sequences do not meet the criteria of (A), common property or activity or (B)(2), art recognized class of compounds. Although the sequence target and modulate expression of the same gene, each antisense sequence behaves in a different way in the context of the claimed invention. Each sequence targets a different and specific region of gene Y and each sequence modifies (either increases or decreases) the expression of the gene to varying degrees (per Applicants' Table I in the specification). Each member of the class cannot be substituted, one for the other, with the expectation that the same intended result would be acheived.

Further, although the sequence target the same gene, the sequences do not meet the criteria of (B)(1), as they do not share, one with another, a common core structure. Accordingly, unity of invention between the antisense sequences is lacking and each antisense sequence claimed is considered to constitute a special technical feature.

Applicants will obtain a search of the first sequence listed in the first invention. For every other sequence applicants wish to have searched, applicants need to elect the sequence and pay an additional fee.