Applications linéaires et intégration – corrections

Feuille n° 21

Exercice 8 Une équation paramétrique de E est $\begin{cases} x_1 = -x_2 - x_3 - x_4 \\ x_2 = x_2 \\ x_3 = x_3 \end{cases}$. Ainsi $E = x_4 = x_4$.

$$\text{Vect} \left(\begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right), \text{ qui est bien un sev. Et une famille génératrice de } E \text{ est donc}$$

$$\left(\begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right).$$

Exercice 14

1) Soit
$$(x,y,z) \in \mathbb{R}^3$$
. Alors : $(x,y,z) \in F$ ssi $x = z$ ssi $\begin{cases} x = x \\ y = y \end{cases}$ ssi $(x,y,z) \in z$

$$\operatorname{Vect}\left(\begin{pmatrix}1\\0\\1\end{pmatrix},\begin{pmatrix}0\\1\\0\end{pmatrix}\right), \text{ et donc } F = \operatorname{Vect}\left(\begin{pmatrix}1\\0\\1\end{pmatrix},\begin{pmatrix}0\\1\\0\end{pmatrix}\right). \text{ Cette dernière famille est libre car échelonnée, donc c'est une base de } F.$$

Il nous reste à montrer que $\mathbb{R}^3 = F \oplus G$, et à décomposer un vecteur de \mathbb{R}^3 en une somme d'un vecteur de F et d'un vecteur de G. Nous pouvons répondre à ces deux questions en une seule fois, en montrant que la concaténation des bases de F et G est une base de \mathbb{R}^3 , car tout vecteur de \mathbb{R}^3 s'écrit de manière unique comme combinaison linéaire de ces vecteurs :

Soit
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$$
, et soit $a, b, c \in \mathbb{R}$. Alors

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = a \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + c \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} a + b & = x \\ a & +c = y \\ b & = z \end{cases}$$

$$\Leftrightarrow \begin{cases} a = x & -z \\ b = & z \\ c = -x + y + z \end{cases} .$$

Puisque tout vecteur de \mathbb{R}^3 s'écrit de manière unique comme combinaison linéaire des vecteurs d'une base de F concaténée à ceux d'une base de G, alors $\mathbb{R}^3 = F \oplus G$.

2) Enfin, la décomposition précédente assure que
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = (x-z) \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + (-x+y+z) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
,

où
$$(x-z) \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \in G$$
 et $z \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + (-x+y+z) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \in F$, donc si p est la projection sur F parallèlement à G , $p \begin{pmatrix} x \\ y \\ z \end{pmatrix} = z \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + (-x+y-z) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, soit p : $\mathbb{R}^3 \to \mathbb{R}^3$.
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} z \\ -x+y+z \\ z \end{pmatrix}.$$

Feuille n° 22

Exercice 1 Soit f, g uniformément continues. Soit $\varepsilon > 0$, il existe donc $\alpha > 0$ tel que

$$\forall (x,y) \in \mathbb{R}^2, |x-y| \leqslant \alpha \Rightarrow |f(x) - f(y)| \leqslant \varepsilon.$$

Il existe donc $\eta > 0$ tel que

$$\forall (x,y) \in \mathbb{R}^2, |x-y| \leqslant \eta \Rightarrow |g(x) - g(y)| \leqslant \alpha.$$

On vérifie que

$$\forall (x,y) \in \mathbb{R}^2, |x-y| \leqslant \eta \Rightarrow |f(g(x)) - f(g(y))| \leqslant \varepsilon.$$

Exercice 6 Si pour tout $x \in]0,1[$, f(x) > x alors, comme $x \mapsto f(x) - x$ est continue et strictement positive, $\int_0^1 (f(x) - x) \, \mathrm{d}x > 0$ i.e. $\int_0^1 f > \int_0^1 x \, \mathrm{d}x = 1/2$: c'est exclu. Même chose pour : $\forall x \in]0,1[$, f(x) > x.

Et alors, f(x) - x change de signe sur]0,1[, et par le TVI il existe un $c \in]0,1[$ tel que f(c) = c. On pouvait aussi appliquer le théorème de Rolle à $x \mapsto \int_0^x (f(t) - t) dt$ sur [0, 1].

Exercice 9

- 1) La fonction $f: x \mapsto \sqrt{1+x^n}$ est croissante, donc si $x \in \left[1, 1+\frac{1}{n}\right], f(1) \leqslant f(x) \leqslant f\left(1+\frac{1}{n}\right)$.
- 2) Avec la première question, $\frac{1}{n} \leqslant u_n \leqslant \frac{1}{n} \sqrt{1 + (1 + 1/n)^n}$ puis $\lim (1 + 1/n)^n = e$ et donc par le théorème des gendarmes, $u_n \xrightarrow[n \to +\infty]{} 0$.