

Prof. Dr.-Ing. Timo Gerkmann

Fundamentals of Data Analytics

November 7, 2024

- 1. Introduction
- 2. Prerequisites from Matrix Analysis
- 3. Multivariate Distributions and Moments
- 4. Dimensionality Reduction
- 5. Classification and Clustering
- 6. Support Vector Machines
- 7. Machine Learning

Introduction to Data Analytics and Data Science

- Data Analytics is an interdisciplinary field combining:
 - Exploratory Statistics
 - Algorithms and Information Theory
- Aim: Reveal hidden structures in large datasets.
- Key Domains:
 - Computer Science
 - Statistics
 - Domain-specific Expertise

Data Science is Interdisciplinary

5 0.0. :

Gerkmann: FDA

Mandatory Courses in DSAI

- Total: 54 CP
- Moduls:
 - InfM-FDA: Foundations of Data Analytics (6 CP)
 - InfM-EP: Ethics and Privacy (6 CP)
 - InfM-Proj: Project Data Science and Artificial Intelligence (9 CP)
 - InfM-Sem: Seminar Data Science (3 CP)
 - InfM-MA/DSAI: Thesis Data Science (30 CP)

Fundamentals of DSAI

Total: 24 CP

Moduls:

InfM-DE: Introduction to Data Engineering (6 CP)

InfM-DIS: Databases and Information Systems (9 CP)

InfM-ALG: Algorithmik (9 CP)

InfM-ML: Machine Learning (9 CP)

InfM-STSP: Statistical Signal Processing (9 CP)

InfM-SWA: Software Architecture (6 CP)

InfM-NN: Neural Networks (6 CP)

Advanced Topics in DSAI

- Total: 18 CP
- Moduls:
 - InfM-BAI: Bioinspirierte Künstliche Intelligenz (Bio-Inspired Artificial Intelligence) (6 CP)
 - InfM-BKIM: Biostatistik und Künstliche Intelligenz in der Medizin (6 CP)
 - InfM-CV 1: Computer Vision I (6 CP)
 - InfM-CV 2: Computer Vision II (6 CP)
 - InfM-IR: Intelligente Roboter (Intelligent Robotics) (6 CP)
 - InfM-LT: Sprachtechnologie (Language Technology) (6 CP)
 - InfM-NCP: Natürliche Sprachverarbeitung und das Web (6 CP)
 - InfM-RT: Robot Technology (6 CP)
 - InfM-SSV: Sprachsignalverarbeitung (Speech Signal Processing) (6 CP)
 - InfM-WV: Wissensverarbeitung (Knowledge Processing) (6 CP)

Domain Knowledge in DSAI

- Total: 24 CP from at least 2 Domains and at least 6 CP per domain
- Domains:
 - Mathematics
 - Informatics
 - Physics
 - Chemistry
 - Biology
 - Earth System Sciences

Essentials for Successful Data Science

- Successful data science requires:
 - Machine Learning proficiency
 - Strong Statistical Analysis skills
 - Tailored applications in specific fields
- Significance of:
 - Computational advances allowing high-dimensional data analysis
 - Parallel and distributed algorithms

Applications and Impacts of Data Analytics

- Applications are manyfold:
 - Speech and Language Processing
 - Computational imaging
 - Computer vision
 - Recommender systems
 - Domain-specific applications
- Typical Techniques:
 - Classification and pattern recognition
 - Supervised and unsupervised learning

Current Trends and Demands

- Data explosion due to:
 - Digitization and Internet of Things (IoT)
 - Social media and internet-based data and data transmission
- Challenges include:
 - Handling diverse, large-scale data
 - Drawing meaningful conclusions quickly

Purpose and Structure of the Course

- Aim: To provide a comprehensive overview of data analytics fundamentals, including mathematical foundations.
- Content Highlights:
 - Matrix analysis and optimization
 - Optimization and statistical learning

- 1. Introduction
- 1.1 Parallel Programming and MapReduce

- 4. Dimensionality Reduction

What is Data Analytics?

Data Analytics is the science of exploring big data and designing methods and algorithms for detecting structures and information. Key points include:

- Exploration and analysis of large (often unstructured) data.
- Creation of models to understand data behavior and drive decisions.
- Multidisciplinary approach incorporating statistics, machine learning, and more.

Models in Data Analytics

Understanding models in Data Analytics:

- Statistical Models: Assumes an underlying data distribution; focuses on estimating parameters.
 - **E**.g. $\mathcal{N}(\mu, \sigma^2)$, independent samples
- Machine Learning Models: Uses data as training sets; includes algorithms like neural networks, Bayesian inference models, support vector machines
- Dimensionality Reduction: Extract most prominent features, ignore the rest; includes methods like PCA or manifold learning.
- Summarization Models: Aggregates data into comprehensive formats; common in clustering applications.

Statistical Models

Example: Gaussian Distribution

- Assume data are independent samples from a Gaussian distribution $N(\mu, \sigma^2)$.
- Model captures distribution via estimators for mean (μ) and variance (σ^2) .

Gerkmann: FDA

Bonferroni's Principle

In large randomn data sets, unusual features occur purely by chance.

Example 1.1

Consider finding evil-doers by screening people visiting the same hotel twice:

- 10⁵ hotels.
- each individual visits a hotel once in 100 days.
- 10⁹ individuals
- People pick days and hotels independently.
- Examined over 1000 days.

Bonferroni's Principle

In large randomn data sets, unusual features occur purely by chance.

Example 1.1

Consider finding evil-doers by screening people visiting the same hotel twice:

- 10⁵ hotels.
- each individual visits a hotel once in 100 days.
- 10⁹ individuals
- People pick days and hotels independently.
- Examined over 1000 days.
- \rightarrow Probability for same hotel on two days: 10^{-18} .
- But: Expected number of such events: 250,000.

Without a solid model, large datasets can lead to misinterpretation due to randomness.

Solution:

- Probability that any two people visit a hotel on the same day is $\frac{1}{100} \frac{1}{100} = 10^{-4}$
- Probability that they pick the same hotel on the same day: $\frac{1}{10^4} \frac{1}{10^5} = 10^{-9}$
- The probability that two people visit the same hotel on two different days are $10^{-9} \cdot 10^{-9} = 10^{-18}$
- Cardinality of the event space, with $\binom{n}{2} = \frac{n!}{2!(n-2)!} \approx \frac{n^2}{2}$ for $n \gg 2$
 - pairs of people: $\binom{10^9}{2} \approx 5 \cdot 10^{17}$
 - pairs of days: $\binom{1000}{2} \approx 5 \cdot 10^5$
- Expected number of such events:
 - → $5 \cdot 10^{17} \cdot 5 \cdot 10^5 \cdot 10^{-18} = 25 \cdot 10^4 = 250.000$ pairs of people and days, probability that they pick the same hotel on two different days,
 - → We need to screen 250,000 events

While we are considering an unlikely event, still the number of events is large as there are so many people.

Outline

- 1. Introduction
- 1.1 Parallel Programming and MapReduce

MapReduce for Linear Algebra MapReduce for Relational Algebra

- 2. Prerequisites from Matrix Analysis
- 3. Multivariate Distributions and Moments
- 4. Dimensionality Reduction
- 5. Classification and Clustering
- 6. Support Vector Machines
- 7. Machine Learning

Parallel Programming and MapReduce I

- We briefly discuss fundamentals of implementations to deal with big data sets
- Note: For huge datasets hardware errors will occur almost surely
- Key Idea: instead of one super-computer, use many computers to process data in parallel

Parallel Programming and MapReduce II

- Software stack
 - Distributed file system (DFS)
 - large blocks
 - redundancy by replication
 - Programming system: MapReduce
 - tolerant to hardware errors
 - able to handle large dara efficiently
 - Map: process data in parallel
 - Reduce: combine results
- Architecture
 - Compute node stored in a rack, each with its own processor and storage device
 - The racks are connected by switches (Gigabit links)

Parallel Programming and MapReduce III

Principles

- Files are stored redundantly to protect against failures
- Computations are divided into independent tasks. If one fails it can be restarted without affecting others

Distributed Files System (DFS)

- Files are divided into large chunks (e.g. 64MB)
- chunks are replicated to protect against hardware failures (e.g. 3 times on different racks)
- there is a file-master node or name-node that keeps track of the location of the chunks
- MapReduce (computing paradigm)
 - System manages parallel execution, coordination of tasks
 - Two functions are written by the user: map and reduce
 - Implementations
 - MapReduce (Google, internal)
 - Hadoop (Apache, open source)

Outline

- 1. Introduction
- 1.1 Parallel Programming and MapReduce
 MapReduce for Linear Algebra
 MapReduce for Relational Algebra
- 2. Prerequisites from Matrix Analysis
- 3. Multivariate Distributions and Moments
- 4. Dimensionality Reduction
- 5. Classification and Clustering
- 6. Support Vector Machines
- 7. Machine Learning

🦍 MapReduce for Linear Algebra I

Matrix-Vector Multiplication

Multiply matrix $\mathbf{M} \in \mathbb{R}^{m \times n}$ with vector $\mathbf{v} \in \mathbb{R}^n$.

$$\mathbf{x} = \mathbf{M}\mathbf{v},$$
 i.e. $x_i = \sum_{j=1}^n m_{ij}v_j$

Example (Example 1.2)

Suppose matrix dimensions are large for $n=10^7\,$

Direct computation requires storing entire matrix. Inefficient for such large matrices.

MapReduce implementation:

- Store matrix **M** as $((i, j), m_{ij})$ and vector **v** as (i, v_i) .
- Map Function: Emit key-value pairs $(i, m_{ij}v_j)$.
- **Reduce Function:** Sum values $m_{ij}v_j$ for key i to find x_i .

MapReduce for Linear Algebra II

Matrix-Vector Multiplication

- While the computation of $(i, m_{ij}v_j)$ may be implemented as a vector multiplication, this would require storing the entire vector.
- If vector v is too large, split into blocks and process in parallel.
- lacktriangle The matrix M is divided into horizontal stripes and the vector ${f v}$ is divided into vertical stripes of same size.
- ullet Then, the map function computes the product of the stripe of ${f M}$ and the stripe of ${f v}$.
- The reduce function sums the results to obtain the final product.
- → This allows for parallel computation and is more efficient for large datasets.

MapReduce for Linear Algebra

Matrix-Matrix Multiplication Example

Example (Example 1.3)

Given two matrices $\mathbf{M} \in \mathbb{R}^{n \times m}$ and $\mathbf{N} \in \mathbb{R}^{m \times r}$, compute their product $\mathbf{M} \mathbf{N} \in \mathbb{R}^{n \times r}$.

Map Function

- For each m_{ij} of \mathbf{M} , create r key-value pairs $((i,k),(\mathbf{M},j,m_{ij}))$ for $k=1,\ldots,r$.
- For each n_{jk} of \mathbf{N} , create n key-value pairs $((i,k),(\mathbf{N},j,n_{jk}))$ for $i=1,\ldots,n$.

Reduce function computes multiplication as follows

- For each key (i, k) find the values with the same j
- lacksquare Multiply m_{ij} and n_{jk}
- sum $m_{ij}n_{jk}$ over j to get $\sum_{j=1}^{m}m_{ij}n_{jk}$

- 1. Introduction
- 1.1 Parallel Programming and MapReduce

MapReduce for Relational Algebra

- 2. Prerequisites from Matrix Analysis
- 3. Multivariate Distributions and Moments
- 4. Dimensionality Reduction
- 5. Classification and Clustering
- 6. Support Vector Machines
- 7. Machine Learning

MapReduce for Relational Algebra

Introduction

- Relational algebra involves operations that search, select, or group data samples based on their relationships.
- A relation $R(A_1, \ldots, A_k)$ is defined by a sequence of attributes, known as a schema.
- In a directed graph, relationships like "being connected" can be modeled with attributes such as a starting vertex and target vertex.

MapReduce for Relational Algebra

Common Operations

Common operations in relational algebra include:

- Selection
- Projection
- Union
- Intersection
- Natural Join
- Grouping and Aggregation

This section focuses on selection and projection.

MapReduce for Relational Algebra I

Selection Operation and Implementation

- lacksquare For a relation R and a condition C, a selection operation returns tuples in R that satisfy C.
- Denoted as $\sigma_C(R)$.
- **Example:** Finding vertices closer than r in a geometric graph.

Map Function

■ For each tuple t in R, if t satisfies C, generate a key-value pair (t, t).

Reduce Function

• For each pair (t, t), return the same key-value pair (t, t).

The selection operation is completed in the Map phase.

MapReduce for Relational Algebra I

Projection Operation and Implementation

- Extracts a subset S of attributes from each tuple in relation R.
- Denoted as $\pi_S(R)$.
- Example: Find vertices with at least one outgoing edge in a directed graph.

Map Function

For each tuple t in R, return only those attributes in S as t', and generate key-value pair (t', t').

Reduce Function

• For all pairs (t', t'), return a single key-value pair (t', t').

Duplicates are removed in the Reduce phase.

MapReduce for Relational Algebra II

Projection Operation and Implementation

Example: Directed Graph

- The relation R as two attributes: the starting and target vertices of an edge.
- To find vertices with at least one outgoing edge, it suffices to select the first attribute.
- $lue{}$ Done via projection by selectying only subset S at the attributes from each tuple in R
- The output is denoted by $\pi_S(R)$

Projection Operation and Implementation

Map Phase: Generate (1', 1'), (1', 1'), (2', 2')

Reduce Phase: Remove duplicate (1', 1')

Grouping and Aggregation

- Grouping: Partitions tuples in relation R based on common attributes G.
 - Example: Listing neighbors of each vertex in a directed graph.
 - → Map Function
- Aggregation: Reduces groups to a single value
 - Example: counting the neighbors of each vertex.
 - → Reduce Function
 - Map Function: For each tuple g with attributes in G, and for each tuple t in R, return those attributes in G^C as t', and generate key-value pair (g, t').
 - **Reduce Function:** For all (g, t') pairs, return a single key-value pair $(g, \gamma(t'))$ with the aggregation function $\gamma(\cdot)$.
- Integral in machine learning for summarizing data.

Natural Join

- **Objective:** Construct tuples from relations *R* and *S* that share common attributes.
- **Example:** Identify all paths of length two in a directed graph, e.g. (u, v, w), using tuples (u, v) in R and (v, w) in S.
 - Representation via natural join of R(U, V) and S(V, W).
- General: MapReduce for the natural join $R \bowtie S$ of R(A, B) and S(B, C):
 - Map Function:
 - **R**: Generate key-value pair (b, (R, a)) for each tuple (a, b).
 - S: Generate key-value pair (b, (S, c)) for each tuple (b, c).
 - **Reduce Function:** For all key-value pairs, with key b, take all a from values (R, a) and all c from values (S, c). Return all pairs (a, b, c).

Executing Set Operations

- Handles union, intersection, difference across relational data.
- Union: Combines all tuples from relations with shared schema.
- Intersection/Difference: Requires subset filtering, computed similarly with variations in conditions.
- Straightforward with MapReduce, maintains data integrity.

Facilitates efficient processing of set operations in large datasets.

Practical Example: Data Clustering

- **Scenario:** Classify data points $\{x_i\}$ closer to means μ_1 or μ_2 .
- **Map:** Generate (i, x_j) if proximity to μ_i is met.
- **Reduce:** Average all x_i to update means.
- Enables scalable execution in line with clustering algorithms.
- → critical for k-means.

Key Takeaways

- MapReduce transforms complex relational operations into manageable tasks across distributed systems.
- Facilitates execution of grouping, aggregation, and joins within machine learning workflows.
- Empowers handling of large relational datasets effectively, integral in modern data analytics.

2. Prerequisites from Matrix Analysis

Outline

- 2. Prerequisites from Matrix Analysis
- Decomposition of Matrices and Eigenvalues
- Matrix Norms, Trace and Partitioned Matrices
- Matrix Ordering and Matrix Monotone Functions
- 4. Dimensionality Reduction

Notation I

- The set of natural, integer, real, and complex numbers are denoted by $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \text{and } \mathbb{C}$, respectively, while \mathbb{R}_+ , indicates the set of nonnegative reals.
- The sets (a, b), [a, b), and [a, b] denote open, half-open, and closed intervals.
- Other sets are normally written by calligraphic letters.
- The union, the intersection, and the set theoretic difference of \mathcal{A} and \mathcal{B} are denoted by $\mathcal{A} \cup \mathcal{B}$, $\mathcal{A} \cap \mathcal{B}$, and $\mathcal{A} \setminus \mathcal{B}$, respectively.
- $lue{}$ The optimal value of an optimization variable x is highlighted by a superscript asterisk as x^*
- We write λ^+ for the positive part of a real number λ , i.e., $\lambda^+ = \max\{0, \lambda\}$.
- Vectors are denoted by boldface lowercase letters.
- $lue{0}$ and $lue{1}_n$ are the all-zero and all-one vector of dimension n, respectively.
- lacksquare The canonical basis vectors of \mathbb{R}^m are written as $\mathbf{e}_1,\ldots,\mathbf{e}_m$
- lacksquare The Euclidean norm of $\mathbf{x} \in \mathbb{R}^m$ is denoted by $\|\mathbf{x}\|$ or $\|\mathbf{x}\|_2$
- Boldface uppercase characters indicate matrices

Notation II

- A matrix **A** of size $m \times n$ with entries a_{ij} is written as $\mathbf{A} = \mathbf{A}_{m \times n} = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n}$
- \mathbf{A}^T and \mathbf{A}^{-1} are the transpose and the inverse of some matrix \mathbf{A} .
- The determinant of A is denoted by det(A), alternatively also by |A|.
- Some special matrices are the all-zero matrix $\mathbf{0}_{m \times n}$, the all-one matrix $\mathbf{1}_{m \times n}$, and the identity matrix \mathbf{I}_n .
- lacksquare Diagonal matrices with all nondiagonal entries zero are denoted by $m{\Lambda}=\mathrm{diag}(\lambda_1,\lambda_2,\ldots,\lambda_m)$
- A matrix $\mathbf{U} \in \mathbb{R}^{m \times m}$ is called orthogonal (or sometimes orthonormal) if $\mathbf{U}\mathbf{U}^T = \mathbf{U}^T\mathbf{U} = \mathbf{I}_m$ holds.
- We denote the set of orthogonal matrices of size $m \times m$ by \mathcal{O}_m , i.e., $\mathcal{O}_m = \left\{ \mathbf{U} \in \mathbb{R}^{m \times m} \mid \mathbf{U}\mathbf{U}^T = \mathbf{U}^T\mathbf{U} = \mathbf{I}_m \right\}$
- The image or column space of some matrix $\mathbf{M} \in \mathbb{R}^{m \times n}$ is defined as $\operatorname{Img}(\mathbf{M}) = \{\mathbf{M}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$
- The kernel or null space of some matrix $\mathbf{M} \in \mathbb{R}^{m \times n}$ is defined as $\mathrm{Ker}(\mathbf{M}) = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{M}\mathbf{x} = \mathbf{0}_m\}$

- The orthogonal complement of a subspace \mathcal{V} of \mathbb{R}^n is denoted by $\mathcal{V}^{\perp} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{y}^T\mathbf{x} = 0 \text{ for all } \mathbf{y} \in \mathcal{V}\}$ Hence, any two vectors $\mathbf{x} \in \mathcal{V}$ and $\mathbf{y} \in \mathcal{V}^{\perp}$ are orthogonal
- The linear span or linear hull of vectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n \in \mathbb{R}^m$ is the linear subspace formed of all linear combinations $\mathrm{Span}(\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}) = \{\sum_{i=1}^n \alpha_i \mathbf{v}_i \mid \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}\} \subseteq \mathbb{R}^m$
 - The spanning vectors may be linearly dependent, so the dimension of the linear span is at most $\min\{m, n\}$.

Outline

- 1. Introduction
- 2. Prerequisites from Matrix Analysis
- 2.1 Decomposition of Matrices and Eigenvalues
- 2.2 Matrix Norms, Trace and Partitioned Matrices
- 2.3 Matrix Ordering and Matrix Monotone Functions
- 3. Multivariate Distributions and Moments
- 4. Dimensionality Reduction
- 5. Classification and Clustering
- 6. Support Vector Machines
- 7. Machine Learning

Motivation

Consider

$$\mathbf{M}\mathbf{v}=\lambda\mathbf{v}$$

with $\mathbf{M} \in \mathbb{R}^{m \times m}$, $\lambda \in \mathbb{R}$ and $\mathbf{v} \in \mathbb{R}^m$, $\mathbf{v} \neq \mathbf{0}$.

- Geometric interpretation: Under transformation by M, vector v experiences only a change in length or sign.
- lacktriangle The direction of Mv is the same as that of v, so that v is stretched or shrunk or flipped.
- ullet Vectors with this property are called eigenvectors, the scaling factor λ is called eigenvalue.
- It is clear that with any eigenvector v all multiples are also eigenvectors.
 - → eigenvectors mostly considered to be normalized to length one.
- In this section we will deal with the problem of finding eigenvalues and eigenvectors of a given matrix M.

Motivation

- Obviously the equation $M\mathbf{v} = \lambda \mathbf{v}$ is equivalent to the so called eigenvalue equation $(\mathbf{M} \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$.
- This is equivalent to finding some λ such that $\det(\mathbf{M} \lambda \mathbf{I}) = 0$. (This means that the matrix $\mathbf{M} \lambda \mathbf{I}$ considered as a linear transformation reduces the dimensionality. Only then it is possible that $(\mathbf{M} \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$ for some \mathbf{v})
- With the so obtained λ we can find the corresponding eigenvectors ${\bf v}$ by solving the equation $({\bf M} \lambda {\bf I}){\bf v} = {\bf 0}$.
- We will see that solution pairs (λ, \mathbf{v}) always exist, if the matrix \mathbf{M} is symmetric.
- As a generalization, we will also consider the so-called singular value equation $\mathbf{M}\mathbf{w} \sigma\mathbf{u} = 0$ with potentially rectangular \mathbf{M} , and find solutions $(\sigma, \mathbf{u}, \mathbf{w})$.
- The eigenvalue and singular value equations will be shown to be closely related.

Eigenvalue Decomposition

Theorem (2.1: Eigenvalue Decomposition)

Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then there exists an orthogonal matrix $V \in \mathcal{O}_n$ and a diagonal matrix $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_n) \in \mathbb{R}^{n \times n}$ such that

$$\mathbf{M} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$$

The diagonal entries of Λ are the eigenvalues of M, and the columns \mathbf{v}_i of V are the corresponding eigenvectors, satisfying

$$\mathbf{M}\mathbf{v}_i = \lambda_i \mathbf{v}_i$$

for all
$$i = 1, \ldots, n$$
.

■ The decomposition into V and Λ is called the eigenvalue decomposition and sometimes also calles spectral decomposition of M.

Eigenvalue Decomposition

Remark 2.2

• Some number λ is an eigenvalue of the square matrix \mathbf{M} if $\det(\mathbf{M}-\lambda\mathbf{I})=\mathbf{0}$. Zero determinant means that $\mathbf{M}-\lambda\mathbf{I}$ is singular. Hence there exists some vector $\mathbf{v}\neq\mathbf{0}$ with $(\mathbf{M}-\lambda\mathbf{I})\mathbf{v}=\mathbf{0}$.

Remark 2.3:

■ From $\mathbf{M} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$ it follows that a square matrix \mathbf{M} can be written as a superposition of rank-one matrices in the form

$$\mathbf{M} = \sum_{i=1}^{n} \lambda_i \mathbf{v}_i \mathbf{v}_i^T.$$

- The set of eigenvalues defined by $\{\lambda \in \mathbb{C} \mid \det(\mathbf{M} \lambda \mathbf{I}) = 0\}$ is called the **spectrum** of \mathbf{M} .
- The eigenvalues of a symmetric matrix are always real-valued.

Eigenvalue Decomposition

Lemma (2.4: Positive and Nonnegative Definite)

Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$.

- (a) M is called positive definite, if $\lambda_i > 0$ for all i = 1, ..., n.
- (b) M is called positive semidefinite (nonnegative definite), if $\lambda_i \geq 0$ for all $i = 1, \ldots, n$.
- (c) If M is positive (semi-)definite, there exists a decomposition

$$oldsymbol{M} = oldsymbol{V}oldsymbol{\Lambda}oldsymbol{V}^T = oldsymbol{V}oldsymbol{\Lambda}^{rac{1}{2}}ig(oldsymbol{V}oldsymbol{\Lambda}^{rac{1}{2}}ig)^T = oldsymbol{C}oldsymbol{C}^T$$

with $\mathbf{\Lambda}^{1/2} = \operatorname{diag}(\lambda_1^{1/2}, \cdots, \lambda_n^{1/2})$ and $\mathbf{C} = \mathbf{V}\mathbf{\Lambda}^{\frac{1}{2}}$. \mathbf{CC}^T is called Cholesky decomposition.

- \Rightarrow If M is positive semidefinite then $\mathbf{x}^T \mathbf{M} \mathbf{x} = \mathbf{x}^T \mathbf{C} \mathbf{C}^T \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^n$.
- → If M is positive definite then $\mathbf{x}^T M \mathbf{x} = \mathbf{x}^T \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T \mathbf{x} = \mathbf{y}^T \mathbf{\Lambda} \mathbf{y} = \sum_{i=1}^n \lambda_i y_i^2 > 0$ for all $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}.$

Eigenvalue Decomposition

Lemma (2.4: Positive and Semipositive Definite – continued)

Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$.

(d) The identity matrix \mathbf{I}_n is positive definite. The system of canonical unit vectors \mathbf{e}_i , $i=1,\dots,n$ forms a corresponding system of orthonormal eigenvectors, each with eigenvalue one. The columns of any other orthogonal matrix can also serve as a system of eigenvectors to eigenvalue 1.

Eigenvalue Decomposition

Example (2.5)

- Let $\mathbf{M} = \mathbf{A} + \mathbf{I}_n \in \mathcal{R}^{n \times n}$ be a real symmetric matrix and μ_1, \dots, μ_n be the eigenvalues of \mathbf{A} with corresponding eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$.
- Then

$$\mathbf{M}\mathbf{v}_i = \mathbf{A}\mathbf{v}_i + \mathbf{v}_i = \mu_i\mathbf{v}_i + \mathbf{v}_i = (\mu_i + 1)\mathbf{v}_i, \ \nabla i = 1, \ \cdots, n,$$

such that M and A have the same eigenvectors, and the eigenvalues of M are $\lambda_i = \mu_i + 1$, $i = 1, \ldots, n$.

Hence, if A is nonnegative definite, then M is positive definite.

Eigenvalue Decomposition

Example (2.6)

- Let $k \in \mathbb{N}$ and $\mathbf{M} \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_1, \dots, \lambda_n$ and corresponding eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$.
- \blacksquare By iterating $\mathbf{M}^k\mathbf{v}_i=\mathbf{M}^{k-1}\mathbf{M}\mathbf{v}_i=\mathbf{M}^{k-1}\lambda_i\mathbf{v}_i$ we obtain

$$\mathbf{M}^k \mathbf{v}_i = \lambda_i^k \mathbf{v}_i, \quad i = 1, \dots, n.$$

■ The eigenvalues of \mathbf{M}^k are λ_i^k , $i=1,\ldots,n$ with the same eigenvectors, i.e.

$$\mathbf{M}^k = \mathbf{V} \operatorname{\mathsf{diag}}(\lambda_1^k, \dots, \lambda_n^k) \mathbf{V}^T.$$

If k is even, then \mathbf{M}^k is nonnegative definite, otherwise \mathbf{M}^k and \mathbf{M} have the same number of negative, positive and zero eigenvalues.

Singular Value Decomposition

Singular value decomposition (SVD) is a generalization of the eigenvalue decomposition for rectangular matrices.

Theorem (2.7: Singular Value Decomposition)

For each $\mathbf{M} \in \mathbb{R}^{m \times n}$ there exist orthogonal matrices $\mathbf{U} \in \mathcal{O}_m$ and $\mathbf{W} \in \mathcal{O}_n$, and $\mathbf{\Sigma} \in \mathbb{R}^{m \times n}$ with nonnegative entries on its diagonal and zeros otherwise such that

$$\mathbf{M} = \mathbf{U} \mathbf{\Sigma} \mathbf{W}^T.$$

The diagonal entries of Σ are the singular values of M, and the columns u_i and w_i of U and W are the corresponding left and right singular vectors, respectively.

Singular Value Decomposition

Remark 2.8

Let $\sigma_1, \sigma_2, \ldots, \sigma_{\min\{m,n\}}$ denote the diagonal entries of Σ and $\mathbf{U} = (\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_m)$ und $\mathbf{W} = (\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_n)$. For all $i = 1, 2, \ldots, \min(m, n)$ it holds that

$$\mathbf{u}_i^T \mathbf{M} = \sigma_i \mathbf{w}_i^T$$
 and $\mathbf{M} \mathbf{w}_i = \sigma_i \mathbf{u}_i$.

- If $m \neq n$ then for all $\min(m, n) < i \leq \max(m, n)$ both right hand sides above are equal to 0.
- We obtain

$$\mathbf{M} = \sum_{i=1}^{\min\{m,n\}} \sigma_i \mathbf{u}_i \mathbf{w}_i^T.$$

Singular Value Decomposition and Eigenvalue Decomposition

Relation

Both the singular value decomposition and the spectral decomposition are closely related as follows.

- Let $\mathbf{M} \in \mathbb{R}^{m \times n}$ and $k = \min\{m, n\}$.
- Using the singular value decomposition $\mathbf{M} = \mathbf{U} \mathbf{\Sigma} \mathbf{W}^T$ with orthogonal matrices \mathbf{U} and \mathbf{W} we obtain

$$\mathbf{M}\mathbf{M}^T = \mathbf{U}\mathbf{\Sigma}\mathbf{W}^T\mathbf{W}\mathbf{\Sigma}^T\mathbf{U}^T = \mathbf{U}\mathrm{diag}\big(\underbrace{\sigma_1^2,\ \cdots \cdot \sigma_k^2,0,\ldots,0}_{m\ \text{entries}}\big)\mathbf{U}^T$$

and

$$\mathbf{M}^T \mathbf{M} = \mathbf{W} \mathbf{\Sigma}^T \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} \mathbf{W}^T = \mathbf{W} \operatorname{diag} \left(\underbrace{\sigma_1^2, \ \cdots \cdot \sigma_k^2, 0, \dots, 0}_{n \text{ entries}} \right) \mathbf{W}^T$$

- \rightarrow U and W are the eigenvectors of MM^T and M^TM, respectively
- \rightarrow The singular values of M are the square roots of the eigenvalues of $\mathbf{M}^T \mathbf{M}$ and $\mathbf{M} \mathbf{M}^T$.
- \rightarrow We can compute the singular value decomposition of any M by computing the eigenvalue decomposition of M^TM and MM^T .

Efficient Computation of Eigenvalues

- In data science, often only a few dominant eigenvalues with corresponding eigenvectors are needed.
- There exist iterative methods, e.g.the von Mises iteration or the power iteration
 - determines solely the largest eigenvalue and the corresponding eigenvector.
 - Von Mises iteration is a very simple algorithm, which may converge slowly.

60

Decomposition of Matrices and Eigenvalues

Theorem (2.9: Von Mises Iteration)

- Let $\mathbf{M} \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_n|$ and corresponding eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n$.
- $lue{}$ Assume that initial vector $\mathbf{y}^{(0)}$ is not orthogonal to the dominant eigenvector \mathbf{v}_1
- Then following iteration over k = 1, 2, ...

$$\mathbf{y}^{(k)} = \mathbf{M}\mathbf{y}^{(k-1)}, \quad \mathbf{x}^{(k)} = \frac{\mathbf{y}^{(k)}}{||\mathbf{y}^{(k)}||}$$

and

$$\mu^{(k)} = \frac{(\mathbf{y}^{(k-1)})^T \mathbf{y}^{(k)}}{||\mathbf{y}^{(k-1)}||^2}$$

yields

$$|\mathbf{v}_1^T \lim_{k \to \infty} \mathbf{x}^{(k)}| = 1$$
 and $\lim_{k \to \infty} \mu^{(k)} = \lambda_1$

• Hence, $\mathbf{x}^{(k)}$ converges to the direction of the dominant eigenvector \mathbf{v}_1 and $\mu^{(k)}$ converges to the dominant eigenvalue λ_1 .

Von Mises Iteration I

Proof

• With $\mathbf{M}^k = \sum_{i=1}^n \lambda_i^k \mathbf{v}_i \mathbf{v}_i^T$ it follows that

$$\mathbf{y}^{(k)} = \mathbf{M}^k \mathbf{y}^{(0)} = \sum_{i=1}^n \lambda_i^k \mathbf{v}_i \underbrace{\mathbf{v}_i^T \mathbf{y}^{(0)}}_{=\alpha_i} = \sum_{i=1}^n \lambda_i^k \alpha_i \mathbf{v}_i$$

• Since $\mathbf{v}^{(0)}$ is not orthogonal to $\mathbf{v}_1, \, \alpha_1 \neq 0$ holds and thus

$$\lim_{k \to \infty} \mathbf{x}^{(k)} = \lim_{k \to \infty} \frac{\sum_{i=1}^{n} \lambda_i^k \alpha_i \mathbf{v}_i}{\|\sum_{i=1}^{n} \lambda_i^k \alpha_i \mathbf{v}_i\|} = \lim_{k \to \infty} \frac{\lambda_1^k \alpha_1 \mathbf{v}_1 + \sum_{i=2}^{n} \lambda_i^k \alpha_i \mathbf{v}_i}{\|\lambda_1^k \alpha_1 \mathbf{v}_i + \sum_{i=2}^{n} \lambda_i^k \alpha_i \mathbf{v}_i\|}$$
(1)

$$= \lim_{k \to \infty} \frac{\lambda_1^k}{|\lambda_1^k|} \frac{\alpha_1 \mathbf{v}_1 + \sum_{i=2}^n (\lambda_i / \lambda_1)^k \alpha_i \mathbf{v}_i}{\|\alpha_1 \mathbf{v}_1 + \sum_{i=2}^n (\lambda_i / \lambda_1)^k \alpha_i \mathbf{v}_i\|} = \lim_{k \to \infty} \frac{\lambda_1^k \alpha_1 \mathbf{v}_1}{|\lambda_1^k| |\alpha_1| \|\mathbf{v}_1\|}$$
(2)

as
$$|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_n|$$

• Hence, $\mathbf{x}^{(k)}$ converges to the direction of the dominant eigenvector \mathbf{v}_1 and $|\mathbf{v}_1^T \lim_{k \to \infty} \mathbf{x}^{(k)}| = 1.$

Furthermore

$$\lim_{k \to \infty} \mu^{(k)} = \lim_{k \to \infty} \frac{(\mathbf{y}^{(0)})^T \mathbf{M}^{k-1} \mathbf{M}^k \mathbf{y}^{(0)}}{||\mathbf{M}^{k-1} \mathbf{y}^{(0)}||^2} = \lim_{k \to \infty} \frac{\sum_{i=1}^n \lambda_i^{2k-1} \alpha_i^2}{\sum_{i=1}^n \lambda_i^{2k-2} \alpha_i^2}$$
(3)

$$= \lambda_1 \lim_{k \to \infty} \frac{\alpha_1 + \sum_{i=2}^n (\lambda_i / \lambda_1)^{2k-1} \alpha_i^2}{\alpha_1 + \sum_{i=2}^n (\lambda_i / \lambda_1)^{2k-2} \alpha_i^2}$$
(4)

$$=\lambda_1\tag{5}$$

qed.

63

Von Mises Iteration

Further Iterations

• Once the dominant eigenvalue λ_1 and the corresponding eigenvector \mathbf{v}_1 are determined, we can compute

$$\mathbf{M}_1 = \mathbf{M} - \hat{\boldsymbol{\lambda}}_1 \hat{\mathbf{v}}_1 \hat{\mathbf{v}}_1^T = \left(\lambda_1 \mathbf{v}_1 \mathbf{v}_1^T - \hat{\boldsymbol{\lambda}}_1 \hat{\mathbf{v}}_1 \hat{\mathbf{v}}_1^T\right) + \sum_{i=2}^n \lambda_i \mathbf{v}_i \mathbf{v}_i^T$$

and apply the power iteration to \mathbf{M}_1 for computing λ_2

- This can be iterated further as long as $|\lambda_t| > |\lambda_{t-1}|$.
- Care must be taken about numerical errors which build up iteratively because of the deviation between the numerically approximated and the true values.

Approximate Eigenvalues for Big Matrices I

- When dealing with big data, the computation of eigenvalues and eigenvectors is computationally expensive.
- In such cases, the computation of approximate eigenvalues and eigenvectors is often sufficient.
- Gershgorin's theorem provides a useful tool for bounding the eigenvalues by the sum of nondiagonal elements.

Approximate Eigenvalues for Big Matrices II

Theorem (2.10: Gershgorin's theorem)

Let $\mathbf{M} \in \mathbb{C}^{n \times n}$ with spectrum $\mathcal{S} = \{\lambda \in \mathbb{C} \mid \det(\mathbf{M} - \lambda \mathbf{I}_n) = 0\}$. For $i = 1, \dots n$ define

Gershgorin circles

$$\mathcal{R}_i = \left\{ z \in \mathbb{C} \mid |z - m_{ii}| \le \sum_{j=1, j \ne i}^n |m_{ij}| \right\}$$

and

$$\mathcal{C}_j = \left\{z \in \mathbb{C} \mid |z - m_{jj}| \leq \sum_{i=1, i
eq j}^n |m_{ij}|
ight\}$$

Then it holds that

$$\mathcal{S} \subseteq \bigcup_{i=1}^n (\mathcal{R}_i \cap C_i),$$

i.e., all eigenvalues of ${\bf M}$ are contained in at least one of the intersection of row- and column-wise Gershgorin circles.

Approximate Eigenvalues for Big Matrices

Corollary

Corollary (2.11)

If $\mathbf{M} = (m_{ii}) \in \mathbb{R}^{n \times n}$ is symmetric, then every eigenvalue of \mathbf{M} lies within at least one of the intervals. $i = 1, \ldots, n$.

$$[m_{ii} - \sum_{\substack{j=1\\j \neq i}} m_{ij}, m_{ii} + \sum_{\substack{j=1\\j \neq i}} m_{ij}].$$

Example (2.12)

$$\mathbf{M} = \left(\begin{array}{ccc} 2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 4 \end{array} \right)$$

- Spectrum $S = \{1.27, 3.00, 4.73\}.$
- The Gerschgorin bounds are derived from $[1,3] \cup [1,5] \cup [3,5] = [1,5]$, such that $1 \le \lambda_i \le 5$ for all $\lambda_i \in \mathcal{S}$ can be derived without computing the full spectrum.
- The bounds also show that M is positive definite.

- 1. Introduction
- 2. Prerequisites from Matrix Analysis
- 2.1 Decomposition of Matrices and Eigenvalues
- 2.2 Matrix Norms, Trace and Partitioned Matrices
- 2.3 Matrix Ordering and Matrix Monotone Functions
- 3. Multivariate Distributions and Moments
- 4. Dimensionality Reduction
- 5. Classification and Clustering
- 6. Support Vector Machines
- 7. Machine Learning

Matrix Norms, Trace and Partitioned Matrices

Motivation

- The set of $m \times n$ matrices is obviously a linear vector space.
- Addition of matrices and multiplication by scalars is clearly defined.
- In this section we will endow this linear space by more structure.
- The trace operator will serve as a tool to introduce an inner product and a norm.
- This will allow for the concept of distance between matrices.
- Matrix computations become often much easier if the concept of partitioned matrices and corresponding calculus are available, so that we also introduce this basic tool.
- We commence by introducing two different norms, both of great importance for low-dimensional space approximations in data analytics.

70

Matrix Norms, Trace and Partitioned Matrices

Frobenius Norm and Spectral Norm

Definition (2.13: matrix norms)

(a) For any $\mathbf{M} = (m_{ij}) \in \mathbb{R}^{m \times n}$

$$\|\mathbf{M}\|_{\mathrm{F}} = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} m_{ij}^{2}\right)^{1/2}$$

is called the Frobenius norm of M.

(b) If $\mathbf{M} \in \mathcal{R}^{n \times n}$ is symmetric with eigenvalues $\lambda_1, \dots, \lambda_n$, then

$$\|\mathbf{M}\|_S = \max_{1 \le i \le n} |\lambda_i|$$

is called the **spectral norm** of M.

Matrix Norms, Trace and Partitioned Matrices

Frobenius Norm and Spectral Norm

Lemma (2.14)

(a) For any real vector x and any real matrix M of appropriate dimension

$$\|\mathbf{M}\mathbf{x}\|_{2} \leq \|\mathbf{M}\|_{F/S} \|\mathbf{x}\|_{2}$$

(b) For any two matrices M_1 and M_1 of appropriate dimension

$$\|\mathbf{M}_1\mathbf{M}_2\|_{F/S} \le \|\mathbf{M}_1\|_{F/S} \|\mathbf{M}_2\|_{F/S}$$

(c) For any real matrix M and real orthogonal matrices U and W of appropriate dimension

$$\|\mathbf{U}\mathbf{M}\mathbf{W}\|_{F/S} = \|\mathbf{M}\|_{F/S}$$

Matrix Norms, Trace and Partitioned Matrices

Definition of the Trace of a Matrix

Definition (2.15)

The trace of a matrix $\mathbf{M} = (m_{ij}) \in \mathbb{R}^{n \times n}$ is defined as

$$\mathsf{tr}(\mathbf{M}) = \sum_{i=1}^n m_{ii}$$

Matrix Norms, Trace and Partitioned Matrices

Properties of the Trace of a Matrix

Lemma (2.16)

- The trace is commutative, i.e., tr(AB) = tr(BA).
- The trace is linear, i.e., $tr(\alpha \mathbf{A} + \beta \mathbf{B}) = \alpha tr(\mathbf{A}) + \beta tr(\mathbf{B})$.
- For any symmetric matrix M, the trace is the sum of the eigenvalues, i.e.,

$$\mathsf{tr}(\mathbf{M}) = \sum_{i=1}^n \lambda_i.$$

and the determinant is the product of eigenvalues, i.e.,

$$\det(\mathbf{M}) = \prod_{i=1}^{n} \lambda_i.$$

(d) For $\mathbf{M} \in \mathbb{R}^{n \times n}$ it holds that

$$\mathsf{tr}(\mathbf{M}^T\mathbf{M}) = \|\mathbf{M}\|_F^2$$

73

Matrix Norms, Trace and Partitioned Matrices

Inverse of partitioned matrices

Theorem (2.17: Schur Complement)

• Consider the symmetric and invertible block matrix $\mathbf{M} \in \mathbb{R}^{n \times n}$ partitioned into invertible blocks $\mathbf{A} \in \mathbb{R}^{m \times m}$, $\mathbf{B} \in \mathbb{R}^{m \times (n-m)}$ and $\mathbf{C} \in \mathbb{R}^{(n-m) \times (n-m)}$, m < n, as

$$\mathbf{M} = egin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^T & \mathbf{C} \end{pmatrix}$$

Then

$$\mathbf{M}^{-1} = egin{pmatrix} \mathbf{A}^{-1} + \mathbf{F}\mathbf{E}^{-1}\mathbf{F}^T & -\mathbf{F}\mathbf{E}^{-1} \ -\mathbf{E}^{-1}\mathbf{F}^T & \mathbf{E}^{-1} \end{pmatrix}$$

and

$$det(\mathbf{M}) = det(\mathbf{A}) det(\mathbf{E})$$
,

where the matrix

$$\mathbf{E} = \mathbf{C} - \mathbf{B}^T \mathbf{A}^{-1} \mathbf{B}$$

is called the Schur complement of M, and $\mathbf{F} = \mathbf{A}^{-1}\mathbf{B}$.

74

- 1. Introduction
- 2. Prerequisites from Matrix Analysis
- 2.1 Decomposition of Matrices and Eigenvalues
- 2.2 Matrix Norms, Trace and Partitioned Matrices
- 2.3 Matrix Ordering and Matrix Monotone Functions
- 3. Multivariate Distributions and Moments
- 4. Dimensionality Reduction
- 5. Classification and Clustering
- 6. Support Vector Machines
- 7. Machine Learning

Matrix Ordering and Matrix Monotone Functions

Motivation

- Monotonicity for real functions with real arguments needs the ordering of the arguments.
- We call a real function $f: \mathbb{R} \to \mathbb{R}$ monotonically increasing if $f(a) \leq f(b)$, for all $a \leq b \in \mathbb{R}$.
- In this section we will carry over monotonicity to real functions defined on the set of matrices.
- We cannot expect that a full ordering on the set of matrices exists, in the sense that any two of them are comparable.
- However, if there is an ordering which at least applies to selected matrices, then monotonicity can be partially defined.
- Such orderings are called semi-orderings, saying that not necessarily all elements of a set can be compared w.r.t. the underlying ordering.
- The simple example of ordering matrices (or vectors) by comparing their real components " $\mathbf{A} \leq \mathbf{B}$, if $a_{ij} \leq b_{ij}$, for all entries" demonstrates that only selected matrices are comparable.
- More sophisticated semi-orderings are needed for data analytics. A most useful one was introduced by Karl Löwner in the class of symmetric matrices.

Matrix Ordering and Matrix Monotone Functions I

Matrix Ordering

Definition (2.18: Loewner semi-ordering)

Let $\mathbf{V},\mathbf{W}\in\mathbb{R}^{n imes n}$ be symmetric matrices. The Loewner semi-ordering \geq_{L} is defined by

$$\mathbf{V} \geq_{\mathrm{L}} \mathbf{W}$$

if V - W is nonnegative definite (i.e. positive semidefinite)

- Corresondingly we write $V \ge_L 0$, if V is nonnegative definite.
- \blacksquare The reverse symbol \leq_{L} means $\mathbf{W}-\mathbf{V}\geq_{\mathrm{L}}\mathbf{0}.$
- The extension to positive definite matrices is straightforward: We use the notation $\mathbf{V}>_{\mathrm{L}}\mathbf{W}$, if $\mathbf{V}-\mathbf{W}$ is positive definite.

Matrix Ordering and Matrix Monotone Functions II

Matrix Ordering

For any symmetric matrices $\mathbf{U}, \mathbf{V}, \mathbf{W} \in \mathbb{R}^{n \times n}$ and any real $\alpha \geq 0$ (i.e. $\alpha \in \mathbb{R}^+$) for the Loewner semi-ordering $\leq_{\mathbf{L}}$ the following properties hold:

- (i) Reflexivity: $\mathbf{U} \leq_{\mathrm{L}} \mathbf{U}$.
- (ii) Antisymmetry: $\mathbf{U} \leq_{\mathrm{L}} \mathbf{V}$ and $\mathbf{V} \leq_{\mathrm{L}} \mathbf{U}$ implies $\mathbf{U} = \mathbf{V}$.
- (iii) Transitivity: $\mathbf{U} \leq_{\mathrm{L}} \mathbf{V}$ and $\mathbf{V} \leq_{\mathrm{L}} \mathbf{W}$ implies $\mathbf{U} \leq_{\mathrm{L}} \mathbf{W}$.
- (iv) Additivity: $\mathbf{U} \leq_{\mathrm{L}} \mathbf{V}$ and $\mathbf{W} \geq_{\mathrm{L}} \mathbf{0}$ implies $\mathbf{U} + \mathbf{W} \leq_{\mathrm{L}} \mathbf{V} + \mathbf{W}$.
- (v) Scalability: $\mathbf{U} \leq_L \mathbf{V}$ implies $\alpha \mathbf{U} \leq_L \alpha \mathbf{V}$

Matrix Ordering and Matrix Monotone Functions

Matrix Monotone Functions

Theorem (2.19)

By the Loewner semi-ordering the concept of monotonicity becomes available

Given
$$\mathbf{V}=(v_{ij})\geq_{\mathrm{L}}\mathbf{0}$$
 and $\mathbf{W}=(w_{ij})\geq_{\mathrm{L}}\mathbf{0}$ with $\mathbf{V}\leq_{\mathrm{L}}\mathbf{W}$, and eigenvalues

$$\lambda_1(\mathbf{V}) \geq \lambda_2(\mathbf{V}) \geq \cdots \geq \lambda_n(\mathbf{V})$$
 and $\lambda_1(\mathbf{W}) \geq \lambda_2(\mathbf{W}) \geq \cdots \geq \lambda_n(\mathbf{W})$. Then

- (a) $\lambda_i(\mathbf{V}) < \lambda_i(\mathbf{W})$, for all $i = 1, \ldots, n$.
- (b) $v_{ii} < w_{ii}$ for all i = 1, ..., n.
- (c) $v_{ii} + v_{ij} 2v_{ij} \le w_{ii} + w_{ji} 2w_{ij}$ for all i, j = 1, ..., n
- (d) $tr(\mathbf{V}) < tr(\mathbf{W})$.
- (e) $det(\mathbf{V}) < det(\mathbf{W})$
- (f) tr(MV) < tr(MW) for any $M >_L 0$

Once (a) is proved, the other assertions follow

Matrix Ordering and Matrix Monotone Functions I

Example 2.20

■ For a matrix $\mathbf{M} = \begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix}$ with entries $\alpha, \beta, \gamma \in \mathbb{R}$, the eigenvalues are given by:

$$\lambda_{1/2}(\mathbf{M}) = \frac{\alpha + \gamma}{2} \pm \frac{\sqrt{(\alpha - \gamma)^2 + 4\beta^2}}{2}$$

Consider the matrices:

$$\mathbf{A} = \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 5 & 2 \\ 2 & 2 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 2 & 2 \\ 2 & 5 \end{pmatrix}$$

By the given formula, the eigenvalues are:

$$\lambda_1(\mathbf{A}) = 5,$$
 $\lambda_2(\mathbf{A}) = 0,$ $\lambda_1(\mathbf{B}) = 6,$ $\lambda_2(\mathbf{B}) = 1,$ $\lambda_1(\mathbf{C}) = 6,$ $\lambda_2(\mathbf{C}) = 1.$

Matrix Ordering and Matrix Monotone Functions II

Example 2.20

- Hence
 - Matrix **A** is non-negative definite: $\mathbf{A} \geq_L 0$.
 - Matrices **B** and **C** are positive definite: $\mathbf{B} >_L 0$, $\mathbf{C} >_L 0$.
- Differences between matrices:

$$\mathbf{B} - \mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{C} - \mathbf{A} = \begin{pmatrix} -2 & 0 \\ 0 & 4 \end{pmatrix}, \quad \mathbf{C} - \mathbf{B} = \begin{pmatrix} -3 & 0 \\ 0 & 3 \end{pmatrix}$$

- $\mathbf{B} \mathbf{A}$ is non-negative definite: $\mathbf{B} \geq_L \mathbf{A}$.
- $lue{C}-A$ and C-B are indefinite, so C is not comparable with either A or B.
- This demonstrates that \geq_L is a semi-ordering.

Matrix Ordering and Matrix Monotone Functions III

Example 2.20

- Since $\mathbf{B} \geq_L \mathbf{A}$, all inequalities in Theorem 2.19 are satisfied by \mathbf{A} and \mathbf{B} .
- According to the last inequality in Theorem 2.19:

$$\operatorname{tr}(\mathbf{CA}) = \operatorname{tr}\left(\begin{pmatrix} 2 & 2 \\ 2 & 5 \end{pmatrix} \begin{pmatrix} 4 & 2 \\ 2 & 1 \end{pmatrix}\right) = 21$$

$$\operatorname{tr}(\mathbf{CB}) = \operatorname{tr}\left(\begin{pmatrix} 2 & 2 \\ 2 & 5 \end{pmatrix}\begin{pmatrix} 5 & 2 \\ 2 & 2 \end{pmatrix}\right) = 28$$

3. Multivariate Distributions and Moments

- 1. Introduction
- 2. Prerequisites from Matrix Analysis
- 3. Multivariate Distributions and Moments
- 4. Dimensionality Reduction
- 5. Classification and Clustering
- 6. Support Vector Machines
- 7. Machine Learning

4. Dimensionality Reduction

- 4. Dimensionality Reduction

5. Classification and Clustering

- 4. Dimensionality Reduction
- 5. Classification and Clustering

6. Support Vector Machines

- 4. Dimensionality Reduction
- 6. Support Vector Machines

7. Machine Learning

- 4. Dimensionality Reduction

- 7. Machine Learning