This summary covers the key concepts and examples from Section 11.3 of the textbook.

The Integral Test provides a method to test an infinite series for convergence by comparing it with an improper integral.

The Integral Test Suppose f is a continuous, positive, decreasing function on $[1,\infty)$ and let $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x)dx$ is convergent. In other words: (i) If $\int_{1}^{\infty} f(x)dx$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent. (ii) If $\int_{1}^{\infty} f(x)dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

Note: It is not necessary that f be always decreasing. It is sufficient if f is ultimately decreasing, i.e., decreasing for x larger than some number N.

Test the series $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ for convergence or divergence.

**SOLUTION: ** The function $f(x) = \frac{1}{x^2+1}$ is continuous, positive, and decreasing on $[1, \infty)$. We evaluate the integral:

$$\int_{1}^{\infty} \frac{1}{x^2 + 1} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^2 + 1} dx = \lim_{t \to \infty} [\tan^{-1} x]_{1}^{t}$$
$$= \lim_{t \to \infty} (\tan^{-1} t - \frac{\pi}{4}) = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$

Since the integral is convergent, the series is convergent by the Integral Test.

- The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is called the **p-series**.

 1. Convergence of a p-series The p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1

(a) The series $\sum_{n=1}^{\infty} \frac{1}{n^3}$ is convergent because it is a p-series with p=3>1. (b) The series $\sum_{n=1}^{\infty} \frac{1}{n^{1/3}}$ is divergent because it is a p-series with p=1/3<1. Determine whether the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ converges or diverges.

SOLUTION: The function $f(x) = \frac{\ln x}{x}$ is positive and continuous for x > 1. To check if it's decreasing, we find the derivative:

$$f'(x) = \frac{(1/x)x - \ln x}{x^2} = \frac{1 - \ln x}{x^2}$$

f'(x) < 0 when $\ln x > 1$, or x > e. Thus, f is decreasing for x > e. We can apply the Integral Test:

$$\int_{1}^{\infty} \frac{\ln x}{x} dx = \lim_{t \to \infty} \left[\frac{(\ln x)^2}{2} \right]_{1}^{t} = \lim_{t \to \infty} \frac{(\ln t)^2}{2} = \infty$$

The integral is divergent, so the series is divergent.

For a convergent series $\sum a_n$, we can approximate its sum s with a partial sum s_n . The error in this approximation is the remainder, $R_n = s - s_n$.

2. Remainder Estimate for the Integral Test Suppose $f(k) = a_k$, where f is a continuous, positive, decreasing function for $x \ge n$ and $\sum a_n$ is convergent. If $R_n = s - s_n$, then

$$\int_{n+1}^{\infty} f(x)dx \le R_n \le \int_{n}^{\infty} f(x)dx$$

(a) Approximate the sum of the series $\sum \frac{1}{n^3}$ by using the sum of the first 10 terms. Estimate the error. (b) How many terms are required to ensure the sum is accurate to within 0.0005?

SOLUTION: First, we compute the integral: $\int_n^\infty \frac{1}{x^3} dx = \frac{1}{2n^2}$. (a) The sum of the first 10 terms is $s_{10} \approx 1.1975$. The remainder estimate gives the error:

$$R_{10} \le \int_{10}^{\infty} \frac{1}{x^3} dx = \frac{1}{2(10)^2} = \frac{1}{200} = 0.005$$

The error is at most 0.005.

(b) We need $R_n < 0.0005$. Since $R_n \le \frac{1}{2n^2}$, we set:

$$\frac{1}{2n^2} < 0.0005 \implies n^2 > \frac{1}{0.001} = 1000 \implies n > \sqrt{1000} \approx 31.6$$

We need 32 terms to ensure accuracy to within 0.0005.

We can also get a better estimate for the sum s using the following inequality:

$$s_n + \int_{n+1}^{\infty} f(x)dx \le s \le s_n + \int_{n}^{\infty} f(x)dx$$

Use the inequality above with n=10 to estimate the sum of the series $\sum \frac{1}{n^3}$. **SOLUTION:** Using $s_{10} \approx 1.197532$, we have:

$$s_{10} + \int_{11}^{\infty} \frac{1}{x^3} dx \le s \le s_{10} + \int_{10}^{\infty} \frac{1}{x^3} dx$$

$$1.197532 + \frac{1}{2(11)^2} \le s \le 1.197532 + \frac{1}{2(10)^2}$$

$$1.197532 + 0.004132 \le s \le 1.197532 + 0.005$$

$$1.201664 \le s \le 1.202532$$

If we approximate s by the midpoint of this interval, $s \approx 1.2021$, the error is less than 0.0005.