PROPOSITION 2.1: The set A SIR is bounded if and only if there exists some M>0 such that |a| < M for all a < A. →: Assume A is bounded.

There exist M₁, M₂ ∈ IR such $M_2 \leq \alpha \leq M_1$, for all $a \in A$. Set $M = \max\{|M_1|, |M_2|\}$, then: $\begin{array}{c} \alpha \leq M_{1} \leq |M_{1}| \leq M \\ \alpha \geq M_{2} \geq -|M_{2}| \geq -M \end{array} \right\} \rightarrow -M \leq \alpha \leq M \quad \forall \alpha \in A$ so we have shown that lal < M YasA. ← If |a| ≤ M VaEA, then -M ≤ a ≤ M for all a ∈ A, so A is both bounded from above and below, so A is bounded.

Example: The following sets are bounded:

• [0,2), an upper bound is 2- and also 3 will do.

• [-1,0] $\cup \{2,3\}$, an upper bound is 3, a lower is -2.

• $\{-2,-1,0,1,2,3\}$, 5 is an upper bound, -4 is a lower bound.

The following Sets are not bounded: $[0,\infty)$, [-1,0) $U(1,\infty)$, (-0,5).

Let $A \subseteq \mathbb{R}$. We say that M is the modernum of A and we write $M = \max A$, if:

(i) $M \in A$ (ii) $\alpha \leq M$ for all $\alpha \in A$.

We say that m is the minimum of A and we write m = minA if:

(i) $m \in A$ (ii) $m \leq a$ for all $a \in A$.

E.g. if $A = \{1, 2, 4\}$, $\max A = 4$ and $\min A = 1$ if B = [0, 1], $\max B = 1$ and $\min B = 0$.

Not all sets have maximum and minimum.

Not all sets have maximum and minimum, for example $A = (1, \infty)$, $B = (-\infty, 0]$. Even bounded sets might not have maximum and minimum, take for example the set A = (0, 1).

Suppose A has a maximum, $M = \max A$. Then $M \in A \Rightarrow M \in (0,1) \Rightarrow M < 1$. Set X = 1 + M. Then $0 < X = \frac{1 + M}{2} < \frac{1 + 1}{2} = 1$ $0 \land A = \frac{1}{2}$

50 $\times \in A$. Also x = 1 + M > M + M = M; a contradiction.

3:there exists V: for all Let ASR. We say MER is the supremum (or least upper bound) of A and we write $M = \sup A$, if · M is an upper bound of A, and · for any upper bound M' of A we have M & M'. This definition has an equivalent tormulation. $M = \sup A$ if and only if: (i) $X \le M$ for all $X \in A$, and (ii) $\forall E > 0$ $\exists X = X_E \in A$ such that M - E < X. M=E Example: $sup(-\infty, 1) = 1$. Indeed: (i) x < 1 for all $x \in (-\infty, 1)$. (ii) Take an arbitrary $\varepsilon > 0$. Set $\chi = 1 - \frac{\varepsilon}{2}$. Then $1 - \varepsilon < x < 1$. We have shown that for any E>0 there exists $X=X_{E}\in(-\infty,1)$ Such that $1-\epsilon < X$. Thus $sup(-\infty, 1) = 1$.

We say mEIR is the infimum of A SIR (or greatest lower bound) and we write $m = \inf A$ if , m is a lower bound of A, and . for any lower bound m' of A, we have $m' \in m$.

Equivalently: $m = \inf A$ if and only if: (i) $m \le z$ for all $x \in A$ (ii) $\forall \varepsilon > 0$ $\exists x = x_{\varepsilon} \in A$ such that $x < m + \varepsilon$.

for example, $\inf(0,\infty) = 0$. Indeed: (i) 0 < x for all $x \in (0,\infty)$.

(ii) For any $\varepsilon > 0$, the element $x = \frac{\varepsilon}{2}$ is in (0, 0) and $0 < x < 0 + \varepsilon$.

* If a set is not bounded from above, we sometimes write SupA = ∞ .

We have seen that there exist subsets of R

that do not have max and min (even some bounded sets). But what happens with the supremum and the infimum?

The answer to this follows from the definition / construction of the set 12 trom the nationals.

COMPLETENESS AXIOM: Every bounded set A SIR has a supremum (and an infimum) Using the completeness Axiom we can prove Properties which otherwise seem profound THEOREM 2.2 (Archimedean Property): The set IN SIR is not bounded. PROOF Assume IN SIR is bounded. By the (ompleteness Axiom, there exists M=SUPINER.

Now M-1 is not an upper bound of IN, so there exists $n \in \mathbb{N}$ such that

 $M-1 < n \Rightarrow n+1 > M$

But $n+1 \in \mathbb{N}$; a contradiction.

COROLLARY 23 (Archimedean Property): For any EZO, there exists nEIN Such that 1 < E.

PROOF Consider the number =>0 Since IN is not bounded, there exists neIN such that $n > \frac{1}{\varepsilon} \iff \frac{1}{n} < \varepsilon$.

Consider the set

 $A = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\} = \{\frac{1}{n} : n \in \mathbb{N}\}.$ Now we can show that inf A =0. · n >0 for all new

• Take an arbitrary $\varepsilon>0$. By the Archimedean Property (Corollary 9.3) there exists $n\in\mathbb{N}$ such that $\frac{1}{n}<\varepsilon$, i.e. $0 < \frac{1}{n} < 0 + \varepsilon$.

So $\inf \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} = 0.$ (Here, of ourse, $\sup\{\frac{1}{n}: n \in \mathbb{N}\}=1$).

· SEQUENCES AND LIMITS OF SEQUENCES. A sequence is a function with domain of definition equal to IN.

Instead of writing a: IN -> 1R, n -> a(n) for a sequence of real numbers, we denote by an for the n-th term of the sequence Prather than a(n)),

and the Sequence itself is written as $(a_n)_{n=1}^{\infty}$, $(a_n)_{n \in \mathbb{N}}$, $(a_n)_{n \in \mathbb{N}}$ or $\{a_n\}_{n \in \mathbb{N}}$.

The sequence itself is a function, while the set {an: neIN} of all terms of the sequence is a set of real numbers. However we often call both objects

However we orten call both objects

The sequence $(a_n)_{n=1}^{\infty}$.

E.g. When $a_n = \frac{1}{n}$, n = 1, 2, ...

We have the sequence $\left(\frac{1}{n}\right)_{n=1}^{\infty} = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \dots\right)$ When $b_n = (-1)^n = \cos(nn)$, $n = 1, 2, \dots$ then the sequence $(b_n)_{n=1}^{\infty}$ is the sequence $((-1)^n)_{n=1}^{\infty} = (-1, +1, -1, +1, \dots)$.

Although we often have an explicit formula for a sequence, e.g. $a_n = 2^n + 1$ $\forall n \in \mathbb{N}$ Sometimes a sequence $(a_n)_{n=1}^\infty$ might be defined through a recursive relation, for example: $\int a_1 = 1$, $a_{n+1} = 2a_n + 1$, n=1,2,3,...

Here we can find: $a_2 = 2a_1 + 1 = 3$, $a_3 = 2a_2 + 1 = 7$, ...

The most common example of a recursively defined sequence is the sequence (Fn)n=0 of Fibonacci numbers: $\begin{cases} F_1 = F_2 = 1 \\ F_{n+2} = F_{n+1} + F_n, & n = 1, 2, ... \end{cases}$ We can calculate F3 = 2, F4 = 3, etc. We say that the sequence $(a_n)_n \in \mathbb{R}$ is: (i) bounded above by M, if $a_n \in M$ for all $n \ge 1$.

lii) bounded below by m, if an > m for all not. (iii) bounded, if it is both bounded from above and below by some M, m e IR respectively.

(iv) increasing if ant 7 an for all not, and strictly increasing if ant 200 for all not.

(v) decreasing if any for all nz1, and strictly decreasing if any < an for all nz1

A sequence (an)no is called constant if anti=an for all new

(e.g. an = 0 Ynell).

We know that the limit of a sequence (an) is equal to the number life "finally all terms of the sequence become arbitrarily close to l". We want to give a formal definition for this. We say that the sequence (an) no SIR and we write $\lim_{n\to\infty} a_n = \ell$, if: VE>0 In_=no(E) EIN such that: for all n=no, lan-e|<E. However small [Choose 820) there will exist some no EIN such

 $\frac{1}{n}$ that $1-\epsilon < a_n < \ell + \epsilon \quad \forall n \geqslant n_b$.

E.g. We can show $\lim_{n\to\infty}\frac{1}{n}=0$.