(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-264035 (P2001 - 264035A)

(43)公開日 平成13年9月26日(2001.9.26)

(51) Int.Cl.7

識別記号

FI

テーマコート*(参考)

G01B 11/24

11/245

G01B 11/24

K 2F065

N

審查請求有 請求項の数2 OL (全 6 頁)

(21)出願番号

特願2000-77357(P2000-77357)

(22)出顧日

平成12年3月21日(2000.3.21)

(71)出願人 500124552

株式会社ネットウェーブ

東京都新宿区新宿1-11-3

(71)出願人 500124781

山岡 嘉剛

埼玉県上尾市緑丘5-10-10

(71)出顧人 500124253

下村 勝則

東京都多摩市永山3-1-4-203

(72)発明者 梶谷 哲也

東京都日野市百草920-115

(74)代理人 100075144

弁理士 井ノロ 帯

最終頁に続く

(54) 【発明の名称】 立体表面計測方法および装置

(57)【要約】

【課題】 人体のような立体表面形状を短時間で高い精 度で計測する方法および装置を提供する。

【解決手段】 被測定物体(Ob) 2に向けて配置され ている複数のビデオ計測ヘッド A_1, B_1, C_1, D_1 と、前 記計測ヘッドの計測時間を制御するとともに、計測デー タを処理して蓄積する制御部分と、を用いる非接触立体 計測方法である。前記被測定物体を仮想中心軸 (IA) 1を軸にして配置するステップと、前記被測定物体の仮 想中心軸(IA) 1に交わるn(≥1)段の平面P,の 各段に、その光軸を前記仮想中心軸に向け、前記物体の 表面の各環状帯状部を前記m (≥3) 個の計測ヘッドA ₁, B₁, C₁, D₁ の視野で覆うように配置するステップ と、前記計測ヘッドのうち視野が実質的に重ならない複 数のヘッドを同時に動作させ、続いて、他の視野が実質 的に重ならない複数のヘッドを動作させるステップを含 んでいる。前記ステップで得たn×m組の取得データを 処理して立体データを得る。

【特許請求の範囲】

【請求項1】 被測定物体に向けて配置されている複数のビデオ計測ヘッドと、前記計測ヘッドの計測時間を制御するとともに、計測データを処理して蓄積する制御部分とを用いる非接触立体計測方法であって、前記被測定物体を仮想中心軸を軸にして配置するステップと、前記被測定物体を仮想中心軸に交わるn(≥1)段の平面の各段に、その光軸を前記仮想中心軸に向け、前記物体の表面の各環状帯状部を前記m(≥3)個の計測ヘッドの視野で覆うように配置するステップと、前記計測ヘッドの切りも視野が実質的に重ならない複数のヘッドを同時に動作させ、続いて、他の視野が実質的に重ならない複数のヘッドを動作させるステップと、前記ステップで得たn×m組の取得データを処理して立体データを得るステップと、から構成した立体表面計測方法。

【請求項2】 被測定物体を仮想中心軸回りに配置するための空間と、前記被写体の表面を重なりを持つが分担して撮影するように前記空間外に配置されている複数の計測へッドと、前記複数の計測へッドのうち視野の重ならない複数の計測へッドを動作させ、続いて、他の視野の重ならない複数の計測へッドを動作させて取得した複数組の取得データを処理して、立体データを得る制御装置とから構成した立体表面計測装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば身体のような立体表面形状を高い精度でかつ効率的に計測する方法 および装置に関する。

[0002]

【従来の技術】人体のような立体の表面形状を測定する 装置については、医療の分野、アパレル業界を中心とし て、必要な精度で効率的に計測したいという強い要請が ある。しかしながら、人体のような複雑な形状をデータ として活用するためには、全身形状をくまなく計測する とともに、計測中に静止しているのが条件となるために 高速で計測できることが条件となる。静止物体の表面形 状の測定については、数多くの提案があり、人体等の三 次元形状計測装置についても提案がある。特開平10-122850号公報には、PSDを用いた三次元形状計 測装置についての提案が記載されている。しかしなが ら、この装置は、計測空間を囲う形に配置された移動枠 とこの移動枠の対抗する2つの側面に向かい合うように 配置され、光を水平方向に操作して人体までの距離を計 測する複数のセンサと、移動枠を移動させる駆動機構を 必要とし装置が複雑である。その上人体の生理的な移動 による変動の影響を避けるだけの計測時間を確保するこ とは困難であると思われる。

[0003]

【発明が解決しようとする課題】本発明は、例えば人体 の計測を課題として以下の課題を設定した。 計測範囲(高さ):900mm~2000mm
計測範囲(径):600mm~15001mm

3. 計測時間(全身):1秒

4. 計測数値許容範囲(絶対誤差): 1 mm (好ましくは0.2 mm)

5. 計測データ処理時間:30秒

本発明の目的は、前記課題を解決できる人体のような立 体表面形状を高い精度でかつ効率的に計測する方法およ び装置を提供することにある。

[0004]

【課題を解決するための手段】前記目的を達成するため に、本発明による立体表面形状を高い精度でかつ効率的 に計測する方法は、被測定物体に向けて配置されている 複数のビデオ計測ヘッドと、前記計測ヘッドの計測時間 を制御するとともに、計測データを処理して蓄積する制 御部分と、を用いる非接触立体計測方法であって、前記 被測定物体を仮想中心軸を軸にして配置するステップ と、前記被測定物体を仮想中心軸に交わるn (≥1)段 の平面の各段に、その光軸を前記仮想中心軸に向け、前 記物体の表面の各環状帯状部を前記m (≥3) 個の計測 ヘッドの視野で覆うように配置するステップと、前記計 測ヘッドのうち視野が実質的に重ならない複数のヘッド を同時に動作させ、続いて、他の視野が実質的に重なら ない複数のヘッドを動作させるステップと、前記ステッ プで得たn×m組の取得データを処理して立体データを 得るステップと、から構成されている。また前記立体表 面計測方法を実施するための装置は、被測定物体を仮想 中心軸回りに配置するための空間と、前記被写体の表面 を重なりを持つが分担して撮影するように前記空間外に 配置されている複数の計測ヘッドと、前記複数の計測へ ッドのうち視野の重ならない複数の計測ヘッドを動作さ せ、続いて、他の視野の重ならない複数の計測ヘッドを 動作させて取得した複数組の取得データを処理して、立 体データを得る制御装置とから構成されている。

[0005]

【発明の実施の形態】以下図面等を参照して本発明による装置の実施の形態を説明する。図1は、本発明による立体表面計測方法および装置実施例の概念を説明するための略図的斜視図である。図5は、本発明による立体表面計測方法および装置の実施例における撮影フレームに対する計測へッドの配列を示す斜視図である。図1に示す略図は、図5に示す撮影フレームの台3に被測定物体(Ob) 2 (例えば人体を起立させたもの)、仮想中心軸(IA) 1を中心に配置した状態を、任意の段のCCDカメラとの関係を略図で示したものである。

【0006】 CCDカメラ 4_{Ai} , 4_{Bi} , 4_{Ci} , 4_{Di} は、図1に示す仮想中心軸 (IA) 1に交わる平面 P_{1} にその光軸を前記仮想中心軸に向け、前記物体 (Ob) 2の環状帯状部を4個の計測ヘッドの視野で覆うように配置されている。図2に各カメラ 4_{Ai} , 4_{Bi} , 4_{Ci} , 4_{Di} の

視野の重なりと被測定物体 (Ob) の関係を示す平面略 図を示す。

【0007】図3に、計測へッドの構成と光学操作の動作原理を示す。図4は、計測へッドの構成と投影パターンを示すさらに他の略図である。任意の計測へッドA₁, B₁, C₁, D₁ はそれぞれ、CCDカメラ4、ポリゴンミラー5、光源であるレーザ6およびシリンドリカルレンズ7を含んでいる。CCDカメラ4、ポリゴンミラー5は、一定の距離(基線長)離れて配置され、時系列変調された光源であるレーザ6からの光はシリンドリカルレンズ7によりポリゴンミラー5上に集光され、ポリゴンミラー5の回転により走査され、物体Ob上に物体Obの表面形状に対応する図4に示すような縞のパターンを形成する。この像が、CCDカメラ4により撮像される。

【0008】図6は、本発明による前記実施例装置で使用するビデオ計測へッドの高さ方向の配列と視野の重なりを説明するための略図である。図6は、図5に示した計測へッド A_2 , A_3 , A_4 を取り出して示してある。例えば計測へッド A_3 は、ポリゴンミラー 5_{A3} により、走査された物体(図示せず)の表面を撮像する。

【0009】図7は、本発明による前記立体表面計測装置の実施例装置のシステムブロック図である。計測へッドは4台4列計16台を用いる。計測へッド A_1 , A_2 , A_3 , A_4 は、図5に示すように一列に配置されている。他の計測へッド B_1 $\sim B_4$, $C_1 \sim C_4$, D_1 $\sim D_4$ も同様である。制御PC(I)11、制御PC(II)12は、前記A、B列の制御へッド出力の処理を、制御PC(II)13、制御PC(IV)14は、前記A、B列の制御へッド出力の処理をしている。これらの制御PC11~14からのデータは、データ処理パソコン18でデータ処理される。処理されたデータはハブ17を介して外部のコンピュータに接続される。

【0010】図8は、前記本発明による立体表面計測装置の実施例の計測、データ転送、データ処理のシーケンス図である。前記実施例に係るシステムは、データの取得とデータ前処理の計測期間を2.0秒、データ転送に2.0秒、データの統合処理に60秒を予定している。当初の0.5秒内に計測ヘッド A_1 , A_3 と C_1 , C_3 が動作させられる。このときこれらのいずれかと共通の視野を有する A_2 , A_4 と C_2 , C_4 と B_1 , B_2 , B_3 , B_4 と D_1 , D_2 , D_3 , D_4 は不作動の状態にある。

【0011】次の0.5秒内(0.5~1.0秒)に計測ヘッド A_2 , A_4 と C_2 , C_4 が動作させられる。このときこれらのいずれかと共通の視野を有する A_1 , A_2 と C_2 , C_3 と B_1 , B_2 , B_3 , B_4 と D_1 , D_2 , D_3 , D_4 は不作動の状態にある。次の0.5秒内(1.0~1.5秒)に計測ヘッド B_1 , B_3 と D_1 , D_3 が動作させられる。このときこれらのいずれかと共通の視野を有する B_2 , B_4 と D_2 , D_4 と A_1 , A_2 , A_3 , A_4 と C_1 , C_2 , C_3 , C_4 は不作

動の状態にある。

【0012】次の0.5秒内(1.5~2.0秒)に計測へッド B_2 , B_4 と D_2 , D_4 が動作させられる。このときこれらのいずれかと共通の視野を有する B_1 , B_3 と D_1 , D_3 と A_1 , A_2 , A_3 , A_4 と C_1 , C_2 , C_3 , C_4 は不作動の状態にある。 A_2 , A_4 と C_2 , C_4 が動作させられる。このときこれらのいずれかと共通の視野を有する A_1 , A_2 と C_2 , C_3 と B_1 , B_2 , B_3 , B_4 と D_1 , D_2 , D_3 , D_4 は不作動の状態にある。このようにして取得されたデータは、引き続いて前記制御PC(I, II, III, IV) 11, 12, 13, 14 で、前処理(ノイズカット、フイルタリング)が行われ、データ処理パソコン18に転送される。データ転送は、TCP/IPプロトコルにより行われる。データ処理パソコン18では、座標の計算およびデータの合成処理が行われる。

【0013】図9は、前記本発明による立体表面計測装置の実施例の計測、データ転送、データ処理の流れ図である。この流れ図は計測から、最終出力ファイルが出力されるまでの流れを示している。

データ処理PCの流れ

(ステップ20) データ処理PCは、制御PCに計測開始を命令する。

制御PCの流れ

(ステップ30)制御PCは計測ヘッドに計測を開始さ せる

(ステップ31) 制御PCは計測へッドの取得したデータにフィルタリング等の前処理を行う。

(ステップ31) 前処理された結果の出力をデータ処理 PCに出力する。

データ処理PCの流れ

(ステップ21) データ処理PCからの前処理されたデータを受信する。

(ステップ22) 点群データの変換をする。

(ステップ23) 各データの回転・平行移動をする。

(ステップ24) データの合成処理、平滑化処理を行う。

(ステップ 2 5) 等高線データファィルを出力する。 【0 0 1 4】

【発明の効果】以上、説明したように本発明による立体 表面計測方法および装置によれば、人体の立体データ等を極めて短時間 2.0 秒以内に取得することができる。 そしてそのデータを立体表現のデータに変換してただちに出力が可能となる。 前述した実施例は、先に設定した 定量的な課題を完全に解決している。 本発明により、得られたデータを集積して、人体の立体データのデータベースの構築が可能となった。また個人データベースの利用も可能となる。

【図面の簡単な説明】

【図1】本発明による立体表面計測方法および装置の実施例の概念を説明するための略図的斜視図である。

【図2】カメラの視野の重なりと被測定物体の関係を示す平面略図である。

【図3】計測ヘッドの構成と光学操作の動作原理を示す 略図である。

【図4】計測ヘッドの構成と投影をパターン示すさらに 他の略図である。

【図5】本発明による立体表面計測方法および装置の実施例における撮影フレームに対する計測ヘッドの配列を示す斜視図である。

【図6】本発明による装置で使用するビデオ計測ヘッド の高さ方向の配列と視野の重なりを説明するための略図 である。

【図7】本発明による立体表面計測装置の実施例のシステムを示すプロック図である。

【図8】本発明による立体表面計測装置の実施例の計 測、データ転送、データ処理のシーケンス図である。

【図1】

【図9】本発明による立体表面計測装置の実施例の計 測、データ転送、データ処理の流れ図である。

【符号の説明】

- 1 仮想中心軸 (IA)
- 2 被測定物体 (Ob)
- 3 台
- A_i, B_i, C_i, D_i 計測ヘッド
- 4 CCDカメラ
- 5 ポリゴンミラー
- 6 光源レーザ
- 7 シリンドリカルレンズ
- 10 フレーム
- 11~14 制御PC (I~IV)
- 15 制御用モニタ
- 17 ハブ
- 18 データ処理パソコン

【図2】

【図3】

[図4] 【図5]

計測 2.0s データ総合処理 60s程度 データ転送 表示処理 2. 0s 0. 5s 0. 5s 計測ヘッド A1 A2 A3 **A4** 81 **B2 B4** CI M C2 B3 B4 Ŋ ____ D1 D2 D3

フロントページの続き

(72)発明者 山岡 嘉剛

埼玉県上尾市緑丘5-10-10

(72)発明者 下村 勝則

東京都多摩市永山3-1-4-203

Fターム(参考) 2F065 AA53 BB05 CC16 DD06 FF01

FF04 GG04 JJ03 JJ05 JJ07

JJ26 LL08 LL15 LL62 MM16

NN08 PP11 QQ23 QQ33