Math. - CC
$$_{06/03/2023}$$
 -

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

PROBLÈME

On note $I = I_3$ la matrice identité de $\mathcal{M}_3(\mathbb{R})$, et M la matrice :

$$M = \begin{pmatrix} -7 & 0 & -8 \\ 4 & 1 & 4 \\ 4 & 0 & 5 \end{pmatrix}$$

On cherche à calculer les puissances entières M^n de M par trois méthodes différentes.

PARTIE 1 : Première méthode

- 1. Soit la matrice $A = \frac{1}{4}(M-I)$. Calculer A^2 , et exprimer M en fonction de A et I.
- 2. En déduire, à l'aide d'un raisonnement par récurrence, qu'il existe une suite réelle (u_n) telle que

$$\forall n \in \mathbb{N}, \quad M^n = I + u_n A$$

- 3. Vérifier que (u_n) est une suite arithmético-géométrique, et exprimer son terme général u_n en fonction de $n \in \mathbb{N}$.
- **4.** En déduire l'expression de M^n pour $n \in \mathbb{N}$.

PARTIE 2 : Deuxième méthode

- 1. Soit la matrice $J = \frac{1}{4}(M+3I)$. Calculer J^2 puis J^n pour $n \ge 1$.
- **2.** Déterminer, à l'aide du binôme de Newton, une expression de M^n en fonction de n, I et J pour $n \ge 1$.
- 3. Vérifier la validité de ce résultat avec la première méthode.

PARTIE 3: Troisième méthode

- 1. On considère le système linéaire homogène S_{λ} de matrice associée $M \lambda I$.
 - **a.** Résoudre S_{-3} et montrer que les solutions $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ s'écrivent sous la forme zC_1 où $C_1 = \begin{pmatrix} \bullet \\ \bullet \\ 1 \end{pmatrix}$, et où les \bullet sont des entiers relatifs à déterminer.
 - **b.** Résoudre S_1 et montrer que les solutions $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ s'écrivent sous la forme $yC_2 + zC_3$ où $C_2 = \begin{pmatrix} \bullet \\ 1 \\ \bullet \end{pmatrix}$ et $C_3 = \begin{pmatrix} \bullet \\ 1 \\ 1 \end{pmatrix}$, et où les \bullet sont des entiers relatifs à déterminer.
- **2.** Soit P la matrice de $\mathcal{M}_3(\mathbb{R})$ dont les colonnes dans l'ordre sont C_1, C_2 et C_3 .
 - a. Montrer que P est inversible. On ne demande pas de calculer P^{-1} .
 - b. Rappeler la valeur de $P^{-1}P$. Sans calculer P^{-1} , en déduire $P^{-1}C_1$, $P^{-1}C_2$ et $P^{-1}C_3$.
 - c. Que valent MC_1 , MC_2 et MC_3 ? En déduire MP puis $D = P^{-1}MP$, sans calculer P^{-1} .
 - **d.** Calculer D^n , puis en déduire une expression de M^n en fonction de D^n pour $n \in \mathbb{N}$.

T.S.V.P. ▶

EXERCICE 1

On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = \begin{cases} \frac{x}{e^x - 1} & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}$$

et la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 = 1, \quad \forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$$

- **1. a.** Justifier que f est du classe C^1 sur $]-\infty,0[$ et sur $]0,+\infty[$ et déterminer f'(x) pour $x\in\mathbb{R}^*$.
 - **b.** Montrer que f est continue et dérivable en 0, et que $f'(0) = -\frac{1}{2}$.
 - **c.** f est-elle de classe C^1 sur \mathbb{R} ? Justifier la réponse.
- 2. On admet que

$$\forall x \in \mathbb{R}^+, \quad -\frac{1}{2} \le f'(x) < 0$$

- a. Montrer que f admet un unique point fixe α et le déterminer.
- **b.** Montrer que $\forall n \in \mathbb{N}, |u_{n+1} \alpha| \le \frac{1}{2}|u_n \alpha|$, puis que $\forall n \in \mathbb{N}, |u_n \alpha| \le \frac{1}{2^n}(1 \alpha)$
- c. Que peut-on en déduire?

EXERCICE 2

Soit g la fonction définie sur $\mathbb R$ par

$$g(x) = \begin{cases} \frac{\operatorname{ch}(x) - 1}{x} & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

- 1. Montrer que g est continue et dérivable en 0.
- **2.** Montrer que g est de classe C^1 sur \mathbb{R} .
- **3.** On note \mathscr{C} la courbe représentative de la fonction g dans un repère du plan. Déterminer une équation de la tangente à \mathscr{C} en 0, ainsi que leur position relative.

EXERCICE 3

f désigne une fonction de classe C^{n+1} sur \mathbb{R} , avec $n \in \mathbb{N}$.

On suppose que $f^{(k)}(0) = 0$ pour $k \in [0, n+1]$, et on pose pour $x \in \mathbb{R}$:

$$g(x) = \begin{cases} \frac{f(x)}{x} & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

- **1.** Montrer que g est de classe C^0 sur \mathbb{R} .
- **2.** Soient $x \in \mathbb{R}^*$, et $p \in [0, n]$. Démontrer l'égalité

$$g^{(p)}(x) = \sum_{k=0}^{p} {p \choose k} (-1)^k k! \frac{f^{(p-k)}(x)}{x^{k+1}}$$

3. Justifier que pour $0 \le k \le p \le n$ il existe une fonction $\varepsilon_{p,k}$ telle que $\lim_{x\to 0} \varepsilon_{p,k}(x) = 0$ et

$$\forall x \in \mathbb{R}, f^{(p-k)}(x) = x^{k+1} \varepsilon_{p,k}(x)$$

- **4.** Montrer que $\lim_{x\to 0} g^{(p)}(x) = 0$ pour $p \in [0, n]$.
- 5. En déduire que la fonction g est de classe C^n sur \mathbb{R} et donner toutes ses dérivées en 0 jusqu'à l'ordre n.

Fin de l'énoncé