Exercice 1: Résoudre une inéquation du second degré

Résoudre dans R les inéquations suivantes :

1.
$$-3x^2 - 12x - 17 < 0$$

2.
$$2x^2 - 8x - 10 \le 0$$

1. Soit P le polynôme défini pour tout x de $\mathbb R$ par $P(x)=-3x^2-12x-17$. On cherche à résoudre P(x)<0.

Pour cela, on cherche ses racines éventuelles.

$$\Delta = (-12)^2 - 4 \times (-3) \times (-17) = -60$$

 $\Delta < 0$ donc le polynôme ${\cal P}$ n'admet pas de racine.

Il est toujours du signe de a = -3 < 0, donc P(x) < 0 pour tout x de \mathbb{R} .

On en déduit $S = \mathbb{R}$.

2. Soit P le polynôme défini pour tout x de \mathbb{R} par $P(x)=2x^2-8x-10$.

On cherche à résoudre $P(x) \leq 0$.

Pour cela, on cherche ses racines éventuelles.

$$\Delta = (-8)^2 - 4 \times 2 \times (-10) = 144$$

$$\Delta>0$$
 donc le polynôme admet deux racines : $x_1=\frac{-b-\sqrt{\Delta}}{2a}$ et $x_2=\frac{-b+\sqrt{\Delta}}{2a}$.

$$x_1 = \frac{8 - \sqrt{144}}{4} = -1$$

$$x_2 = \frac{8 + \sqrt{144}}{4} = 5$$

On sait q_u^4 un polynôme du second degré est du signe de a à l'extérieur de ses racines.

Comme a = 2 > 0:

On peut résumer le signe du polynôme dans un tableau de signes :

x	$-\infty$		-1		5		$+\infty$
$2x^2 - 8x - 10$		+	0	_	0	+	

Finalement S = [-1; 5].