Apprentissage par renforcement RL

☐ Les fondamentaux cognitifs et comportementaux

☐ Upper Confidence Bound Algorithm

Learning by doing

- Agent intelligent
- Actions
- Exploration
- Iterations
- Strategie

Agent intelligent apprend à partir d'expériences successives.

A chaque iteration il doit choisir un comportement pour trouver la meilleure solution. Il decouvre les regles en faisant les actions.

Apprentissage classique

Behavioral & Cognitive Sciences

- 1. Renforcement classique
- Renforcement instrumental
- 3. Theorie du language
- 4. Apprentissage social par observation

Pavlow,

Skinner,

Chomsky,

Bandura

Comment a-t-il appris?

Comment j'ai appris à marcher?

Données:

Rayon de la Terre : R ≈

6400 km,

masse de la Terre: M

I) Lois de la gravitation entre deux corps

 A. Attraction entre deux corps de masse M et m, séparés par une distance r (entre le centre des masses)

i = constante gravitationnelle (m/kg % º) M dépend de chaque autre considéré

CM = K = paramètre gravitationnel (lon/s/l) v = vitesse de m par rapport au centre de M r = distance de m par rapport au centre de M

B. D'après les deux premières lois de Kepler

Si en suppose la maco: N bien plus grande que m. En prenant **pour repère le centre de R**, la maco: m dètrit une ceurbe appelée » **centque** » d'équation générale en ceordonnées polaires : $Y = \frac{4(1-\delta^2)}{(m-\delta^2)}$

Selon la valeur de e (encentricité) en a les 3 types de coniques el emitre.

Si M est le seleil, le repère est héliecentrique.

Si M est la terre, le repire est glocentrique

La vitesse V de la masse m sur sa trajectoire est fournie par la relation très importante

$$V = \sqrt{K(\frac{2}{r} - \frac{1}{\alpha})}$$

Sia > 0 Certuro Ellipso, dont a estio demi grand and

Sig = r Cost un Carello, dont a-est le rayon.

St. a - in Cest une Parabale, sorte d'ellipse infinte, cas limite

Size 0 Centure hyperbole

La distance l'est toajours celle entre les centres de chaque masse.

.

Comment j'ai appris à parler?

Les "synonimes" du RL?

- Apprentissage on line
- Apprentissage interactif
- Learning by doing
- Programmation dynamique

Supervised

$$y = f(x1, x2, x3)$$

Non supervised

f (x1, x2, x3)

By reinforcement

$$y(A) = f(x1, x2, x3)$$

 $y(B) = f(x1, x2, x3)$

Par exemple ?

- Apprendre une machine à jouer au jeu: go, echecs
- Piloter un agent à travers un labyrinthe
- Apprendre un robot à marcher en terrain difficile,
- Apprendre une voiture autonome à conduire

Multi – armed bandit problem

source: Microsoft Research

Website Optimisation

Solutions

- Classic Sampling
- Home made algorithm

- Upper Confidence Bound Algorithm
- Thompson Sampling

Confidence Interval

Confidence Interval

Intervalle de confiance de la moyenne lorsque la variance de la population est connue. La moyenne d'un échantillon (Mx), étant une variable aléatoire, est rarement égale à la moyenne réelle de la population (µ) dont l'échantillon est issu. Elle s'en rapproche d'autant plus que la taille de l'échantillon (n) est grande.

Intervalles de confiance

webapps.fundp.ac.be/umdb/biostats/?q=book/export/html/217

Upper Confidence Bound

Calculer Delta (interval)

Step 1. At each round n, we consider two numbers for each ad i:

- $N_i(n)$ the number of times the ad i was selected up to round n,
- $R_i(n)$ the sum of rewards of the ad i up to round n.

Step 2. From these two numbers we compute:

• the average reward of ad i up to round n

$$\bar{r}_i(n) = \frac{R_i(n)}{N_i(n)}$$

• the confidence interval $[\bar{r}_i(n) - \Delta_i(n), \bar{r}_i(n) + \Delta_i(n)]$ at round n with

$$\Delta_i(n) = \sqrt{\frac{3}{2} \frac{\log(n)}{N_i(n)}}$$

Step 3. We select the ad i that has the maximum UCB $\bar{r}_i(n) + \Delta_i(n)$.

Pseudo-code 1

```
// variables
int number_ads = 3; // number of action types
int iterations = 1000; // number of iterations,
int[] nombre_affichages = new int[actions]; // number of choices for each action type
int[] nombre_clicks = new int[actions]; // number of rewards for each action type
int[] taux_clicks = new int[actions]; // average reward for each action type
Dataset simulation = read('fichier');
// algo
for (int iter = 0; iter < iterations; iter ++) {
   int ad_index = random(0, actions);
   int result = simulation.get(iter, ad_index);
   nombre_affichages[ad_index]++;
   nombre_clicks[ad_index] =+ result;
   average[ad index] = nombre clicks[ad index] / nombre affichages[ad index];
}
// affichage de resultat
 afficher(nombre_affichages);
 afficher(nombre_clicks);
 afficher(taux_clicks);
```

Pseudo-code 2

```
// variables supplementaires
int[] delta = new int [actions]; // interval de confiance
int[] ucb = new int [actions]; // average + interval
int best_ucb = 0 ;
// algo
for (int iter = 0; iter < iterations; iter ++) {
    int best_ad = random(0, actions);
   // re-choisir une publicite d'apres le meilleur ucb
   for (int index = 0; index < actions; index ++){</pre>
       delta[index] = formule_magique();
       ucb[index] = taux_clicks[index] + delta [index];
       if (ucb[index] > best ucb) {
           best_ucb = ucb[index];
           best_ad = index;
    }
    int result = simulation_dataset.get(iter, ad_index);
   nombre affichages[ad index]++;
   nombre_clicks[ad_index] =+ result;
   taux_clicks[ad_index] = nombre_clicks[ad_index] / nombre_affichages[ad_index];
}
// affichage de resultat
```