

<u>UE MATH 101</u> SEMESTRE HARMATTAN DURÉE: 2 heures

EXERCICE 1 (7 pts)

On considère l'espace vectoriel \mathbb{R}^3 , sur \mathbb{R} , muni de sa base canonique $\mathcal{B}=(e_1,e_2,e_3)$. Soient g

l'application définie, sur \mathbb{R}^3 , par $g(x,y,z)=(x+3y-3z,x-y+z,x+y-z)$.
1. Déterminer le noyau de g et sa dimension. En déduire le rang de g .
2. g est-elle bijective? Justifier votre réponse.
EXERCICE 2 (5 pts)
Etudier le système $S = \{u, v, w\}$ où $u = (a^2, 1, 1), v = (1, a^2, 1)$ et $w = (1, 1, a^2)$, et déterminer son rang en fonction du paramètre réel $a \in \mathbb{R}$.

EXERCICE 3 (8 pts)		
Soit E un \mathbb{K} -ev de dimension finie. ontrer que pour tout endomorphisme f de E , on a: ($Im f = Im f^2) \Leftrightarrow (E = Ker f \oplus Im f)$	").