Wstep do teorii grafów-zadania

Wojciech Wróblewski

Zad17. Pokaż, że graf $\overline{L(K_5)}$ jest izomorficzny z grafem Petersena.

$$L\left(K_{5}\right) = \left(\left\{0, 1, 2, 3, 4\right\}^{2}, \left\{\left\{a, b\right\} \in \left[\left[0, 1, 2, 3, 4\right]^{2}\right]^{2} : a \neq b \land a \neq \phi\right\}\right)$$

$$\overline{L\left(K_{5}\right)} = \left(\left\{0, 1, 2, 3, 4\right\}^{2}, \left\{\left\{a, b\right\} \in \left[\left[0, 1, 2, 3, 4\right]^{2}\right]^{2} : a \neq b \land a \cap b \neq \phi\right\}\right)$$

Krawedzie w grafie K_5 z definicji beda wierzchołkami w $L\left(K_5\right)$. Zbiory krawedzi X i Y.

$$X = \{k, k+1 : k = 0, ..., 4\} = \{\{0, 1\}, \{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 0\}\}$$

$$Y = \{k, k+2 : k = 0, ..., 4\} = \{\{0, 2\}, \{1, 3\}, \{2, 4\}, \{3, 0\}, \{4, 1\}\}\}$$

Gdy wybierzemy wierzchołek $\{4,0\}$ to możemy zauważyć, z jakimi innymi wierzchołkami może być połaczony. Wynika to z powyższych założeń. W tym wypadku $\{1,2\},\{2,3\},\{1,3\}$. Niech $\overline{L(K_5)}=(V,E)$, wówczas

$$(\forall u \in V) deg(u) = 3$$

Wiec graf $\overline{L(K_5)}$ jest 3- regularny, wiec jest izomorficzny z grafem Petersena.

Zad18. Załóżmy, że długość każdego cyklu prostego w danym grafie jest podzielna przez liczbe k. Pokaż, że długość dowolnego cyklu w tym grafie jest podzielna przez liczbe k.

Załóżmy istnienie cyklu nieprostego,
którego długość jest niepodzielna przez k
 . Weźmy najkrótszy cykl c_1 nieprosty,
którego długość jest niepodzielna przez k
. $c_1\to x_0,e_1,x_1...,e_n,x_n,e_{n+1},x_{n+1}$

Ten cykl jest nieprosty, wedle definicji istnieje wobec tego jakiś wierzchołek x_i , który sie powtarza. Weźmy teraz cykl zawierający sie od x_i do x_i . Nazwijmy go c_2

Jeśli długość tego cyklu nie dzieli sie przez k. To mamy sprzeczność, bo dostaliśmy krótszy cykl niepodzielny przez k, a w założniach braliśmy najkrótszy. Jesli ten cykl dzieli sie przez k . Wówczas z naszego pierwotnego cyklu c_1 wycinamy cykl zawierajacy sie miedzy powtórzonym wierzchołkiem x_i (c_2). Otrzymujemy wówczas cykl krótszy, którego długość jest dalej nie podzielna przez k, co znowu jest sprzecznościa .

Zad20.

1.Ile wierzchołków ma barycentryczny podpodział grafu G

Skoro barycentrycznym podpodziałem grafu G=(V,E) nazywamy graf otrzymany z grafu G po zastosowaniu operacji elementarnego podpodziału do każdej krawedzi ze zbioru E. Ostateczna liczba wieczchołków bedzie |E|+|V| bo formalnie zachowamy stara liczbe wierzchołków i powiekszymy ja przez wierzchołki dodane do każdej z krawedzi G.

2.Ile krawedzi ma barycentryczny podpodział grafu G?

Poprzez zastosowanie barycentrycznego podziału, dodaniu nowego wierzchłka wewnatrz danej krawedzi sprawimy że ostateczna liczba krawedzi sie podwoi |2E|.

3. Pokaż, że po dwukrotnym zastosowaniu operacji podziału barycentrycznego otrzymujemy graf prosty

Fakt z wykładu .graf (V, E, φ) jest prosty, jeżli $\varphi: E \to [V]^2 \left([V]^2 = \{A \subseteq V: |A| = 2\} \right)$ jest różnowartościowa . Zastanówmy sie co łamie nam uzyskanie grafu prostego. Sa to petle własne oraz krawedzie wielokrotne. Można zauważyć, że po zastosowaniu barycentrycznego jednokrotnie pozbywamy sie problemu wielokrotnych krawedziz wcześniejszego układu . Jednak jeśli istniały jakieś petle własne to teraz utworzyły wielokrotne krawedzie, wobec tego drugie zastosowanie barycentrycznego podpodziału spowoduje, że uzyskamy graf prosty.

Funkcja φ ewaluowana na krawedzi zwraca wierzchołki tworzace dana krawedź. Załóżmy, że istnieje petla własna. Czyli istnieje krawedź e taka, że

 $\varphi\left(e\right)=\{v\},$ gdzie v jest wierzchołkiem. Stosujac podział barycentryczny
. Uzyskamy nowe dwie krawedzie, takie że

$$\varphi\left(e_{1}\right)=\left\{ v,w\right\} \wedge \varphi\left(e_{2}\right)=\left\{ w,v\right\}$$

Można zauważyć, że funkcja φ w takim przypadku nie jest różnowartościowa. Innymi słowy zrobiliśmy teraz krawedź wielokrotna. Zastosujmy jeszcze raz podział tym razem na e_1 oraz e_2 . Uzyskamy

$$\varphi(e_{1,1}) = \{v, k\}$$

$$\varphi(e_{1,2}) = \{k, w\}$$

$$\varphi(e_{2,1}) = \{ w, l \}$$

$$\varphi(e_{2,2}) = \{ l, v \}$$

Teraz pozbywamy sie ostatecznie krawedzi wielokrotnych. Nie mamy rówież petli własnych, bo gdyby takie były to pierwszy podział już je eliminuje, wiec stawierdzamy,że po dwukrotnym podziale otrzymujemy graf prosty.

Zad21

Dla jakich n
 grafy K_n sa eulerowskie, a dla jakich n sa one hamiltonowskie?

Możemy pokazać że dla $n \geq 3$ zawiera cykl hamiltona wiec jest grafem hamiltonowskim. Uzasadnić, to można korzystajac z twierdzenia Diracka mówiacego:

Twierdzenie Diracka

Jeśli w grafie prostym G, który ma n wierzchołków ($n \ge 3$), $\deg(v) \ge n/2$ dla każdego wierzchołka v, to graf G jest hamiltonowski.

Własność ta wynika z twierdzenia Ore:

Jeśli dla każdego wierzchołka v:

 $deg(v) \ge \frac{n}{2}$, to $deg(v) + deg(u) \ge n$

dla każdego wierzchołka v i u, a wiec G spełnia założenia twierdzenia Ore, wiec jest hamiltonowski.

Możemy pokazać, że dla n nieparzystych K_n sa eulerowskie. Uzasadnić to można korzystajac z tego że dla K_n gdzie n jest liczba nieparzysta, stopień każdego wierzchołka wynosi n - 1 czyli jest liczba parzysta. Korzystajac z twierdzenie Eulera, które mówi, że jeśli stopień każdego wierzchołka grafu G jest liczba parzysta to graf G jest eulerowski, co udowadnia spostrzeżenie.

Dla jakich par liczb n, m grafy $K_{n,m}$ sa eulerowskie lub zawieraja ścieżka Eulera?

Pełny graf dwudzielny $K_{n,m}$ jego wszystkie wierzchołki maja stopień n lub m. Zatem graf K_{nm} jest eulerowski wtedy i tylko wtedy gdy m oraz n sa parzyste. Wówczas powołujemy sie na twierdzenie Eulera.

Graf pełny dwudzielny K_{nm} wszystkie jego wierzchołki maja rzad m lub n. Zatem graf jest półeulerowski wtedy i tylko wtedy gdy m = n = 1 lub w przypadku gdy jedno m lub n jest nieparzyste a drugie jest równe 2.

Dla jakich par liczb n, m grafy K_{nm} sa hamitonowskie lub zawieraja ścieżka Hamiltona?

Dla K_{11} graf nie jest hamiltonowski, jednak zawiera ścieżke Hamiltona . Warunkiem koniecznym aby K_{nm} był hamiltonowski jest to aby m = n. Udowodnijmy, że tak jest. Niech G=(A|B,E) bedzie grafem dwudzielnym . Chcac przeprowadzić ścieżke Hamiltona bedziemy chcieli przejść przez wszystkie wierzchołki grafu G. Krawedź grafu G łaczy wierzchołek z A z wierzchołkiem z B. Załóżmy że A ma wiecej wierzchołków niż B.

|A|=m, |B|=n, |A|>|B| Załóżmy że istnieje cykl Hamiltona i zaczyna sie od wierzchołka $v\in B$. Po przejściu 2n krawedzi odwiedzimy już wszystkie wierzchołki z B ale nadal pozostanie m - n wierzchołków nieodwiedzonych wiec cykl ten nie może być hamiltonowski. Dla K_{11} oraz K_{22} graf nie jest hamiltonowski. Dla K_{nm} gdzie m = n oraz n \geq 2 graf jest hamiltonowski. Takie grafy

maja wiecej niż 3 wierzchołki (2n wierzchołków) oraz stopień każdego z nich jest wiekszy równy niż połowa wszystkich wierzchołków (2n/2=n), wiec na podstawie twierdzenia Diracka takie grafy sa hamiltonowskie.

W przypadku szukanie grafów półhamiltonowskich to dla grafu $K_{m,n}$ bedzie to gdy m=n=1 oraz w przypadkach gdy n=m+1 \vee m=n+1 . W pierwszym przypadku gdy m=n=1 wystarczy graf narysować. W przypadku gdy m=n+1. Dowód można skonstruować podobnie jak powyżej. Załóżmy, że istnieje graf dwudzielny pełny i podzielmy jego wierzchołki na dwa zbiory o mocach n oraz m . Wówczas istnieje ścieżka Hamiltona $(u_1, v_1, ..., u_n, v_n, u_m)$, gdzie $u_m = u_{n+1}$. Podobnie postepujemy w przypadku n=m+1.

Zad 24. Załóżmy, że $n>3, A,B\subseteq\{2,...,n-1\}$ sa zbiorami niepustymi oraz|A|+|B|>n. Pokaż,że istnieje i $\in\{1,...,n-1\}$ takie, że i $\in B$ oraz $i+1\in A$.

```
Korzystamy z zasady właczeń i wyłaczeń
|X \cup Y| = |X| + |Y| - |X \cap Y|
|X \cap Y = |X| + |Y| - |X \cup Y|
korzystajac ze wskazówki
X = \{a - 1 : a \in A\} \land Y = B
|X| = |A|
|Y| = |B|
|X \cap Y| = |X| + |Y| - |X \cup Y| \ge n - |X \cup Y| \ge 2
dlatego, że
|X \cup Y| \le n-2
co wynika z tego, że
|X \cup Y| \subseteq \{2, ..., n-1\}
maksymalnie ten zbiór może mieć moc |X \cup Y| = n - 2
coś zaś wynika z zadania bo
X \subseteq \{2, ..., n-1\}
Y \subseteq \{2, ..., n-1\}
```

Pokazujac, że cześć wspólna jest niepusta kończy dowód, bo udowadniamy wówczas, że istnieje takie i z treści zadania.

Zad
26. Niech G = (V, E) bedzie grafem prostym. Załóżmy, że
v \in V jest wierzchołkiem o stopniu nieparzystym. Pokaż, że istnieje inny wierzchołek u
 V o rzedzie nieparzystym od którego jest jakaś droga od v. Wskazówka: Zajmij sie komponenta spójna grafu G do której należy wierzchołek v.

Niech G = (V, E) bedzie grafem prostym. Zadajmy relacje, $x \sim y \Leftrightarrow$ istnieje droga pomiedzy wierzchołkami x oraz y. Wtedy rozbijajac G przez te relacje otrzymamy podgrafy spójne G_1, G_2, G_3, \ldots Mamy powiedziane, że istnieje wierzchołek v o stopniu nieparzystym. Powiedzmy, że znajduje sie on v jedym z podgrafów grafu v czyli v v v v czyli v v czyli v v v czyli v czyli v v czyli v v czyli v

$$\sum_{v \in V} deg(v) = 2|E|$$

Obserwujamy że liczba wierzchołków o stopniach nieparystych jest parzysta, wiec istnieje taki wierzchołek u w zadanym podgrafie G_1 o stopniu nieparzystym, że istnieje droga miedzy u i v.

Zad
30. Wyznacz drzewa rozpinajace grafów C_n . Wyznacz kilka drzew rozpinajacych w grafach W
n, Kn,m. Spróbuj znaleźć w sieci dokładne wzory na liczbe drzew rozpinajacych w grafach K_n , W_n ,
 $K_{n,m}$

Drzewo rozpinajace jest to takie drzewo, które zawiera wszystkie wierzchołki grafu G, zaś zbiór krawedzi drzewa jest podzbiorem zbioru krawedzi grafu. Przykłady dla $W_7, W_8, K_{3,4}, K_{2,3}$

Dla grafów cyklicznych C_n drzewami rozpinajacymi beda grafy liniowe. Przy rozróżnianiu wierzcholków bedziemy mieli n różnych drzew rozpinajacych.

Oznaczajac liczbe drzew rozpinajacych grafu G jako $t\left(G\right)$

dla K_n mamy: $t(K_n) = n^{n-2}$

dla $K_{n,m}$ mamy : $t(K_{n,m}) = m^{n-1}n^{m-1}$

dla
$$W_n$$
 mamy : $t\left(W_n\right) = \left(\frac{3+\sqrt{5}}{2}\right)^n + \left(\frac{3-\sqrt{5}}{2}\right)^n - 2$