

planetmath.org

Math for the people, by the people.

lattice of fields

Canonical name LatticeOfFields
Date of creation 2013-03-22 17:13:26
Last modified on 2013-03-22 17:13:26

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 5

Author CWoo (3771) Entry type Definition Classification msc 12F99 Let K be a field and \overline{K} be its algebraic closure. The set Latt(K) of all intermediate fields E (where $K \subseteq E \subseteq \overline{K}$), ordered by set theoretic inclusion, is a poset. Furthermore, it is a complete lattice, where K is the bottom and \overline{K} is the top.

This is the direct result of the fact that any topped intersection structure is a complete lattice, and $\operatorname{Latt}(K)$ is such a structure. However, it can be easily proved directly: for any collection of intermediate fields $\{E_i \mid i \in I\}$, the intersection is clearly an intermediate field, and is the infimum of the collection. The compositum of these fields, which is the smallest intermediate field E such that $E_i \subseteq E$, is the supremum of the collection.

It is not hard to see that $\operatorname{Latt}(K)$ is an algebraic lattice, since the union of any directed family of intermediate fields between K and \overline{K} is an intermediate field. The compact elements in $\operatorname{Latt}(K)$ are the finite algebraic extensions of K. The set of all compact elements in $\operatorname{Latt}(K)$, denoted by $\operatorname{Latt}_F(K)$, is a lattice ideal, for any subfield of a finite algebraic extension of K is finite algebraic over K. However, $\operatorname{Latt}_F(K)$, as a sublattice, is usually not complete (take the compositum of all simple extensions $\mathbb{Q}(\sqrt{p})$, where $p \in \mathbb{Z}$ are rational primes).