固相萃取技术在维生素分析中的应用

汇报人 赵小阳 2024.12.11

主要内容

- ② 国标修订进展
- ② 固相萃取柱的选择
- ② 试验验证的分析、综述报告
- ② 预期的经济效果

一.国标修订进展

任务来源

- 批准文件:《国家标准化管理委员会关于下达2020年第三批推荐性国家标准计划的通知》
 (国标委发 [2020] 48号)。下达时间: 2020.11.19。
- 修订项目: "饲料中维生素A的测定高效液相色谱法" (GB/T 17817 - 2010)。
- 项目计划编号: 20203891-T-469。
- 修订项目: "饲料中维生素D3的测定高效液相色谱法" (GB/T 17817 - 2010)。
- 项目计划编号: 20203889-T-469。

工作过程

一、国标修订进展

- 中国农业科学院农业质量标准与检测技术研究所[国家饲料质量检验检测中心(北京)];
- 山东省畜产品质量安全中心;
- 帝斯曼维生素 (上海) 有限公司;
- 四川威尔检测技术股份有限公司;
- 中牧实业股份有限公司;
- 广州爱保农生物科技有限公司。

起草单位

一、国标修订进展

关键点:

- ✓ 维生素检测方法现行国标11项;
- ✓ 独立标准可以同时检测 (A、D₃、E、B₁、B₂、B₆);
- ✓ 补充在线固相萃取和离线固相萃取方法;
- ✓ 固相萃取柱的选择需兼顾A、D3、E的富集;
- ✓ 方法定量限满足法规要求。

✔ 反相固相萃取原理

化合物和吸附剂键合相有非极性特性 两者官能团之间以范德华力结合 反相吸附剂有聚合物和硅胶基体两大类 硅胶基体吸附剂pH 耐受范围一般为2~8

✓ 应选择聚合物反相填料的吸附剂

- 实现富集和净化
- 能去除皂化液强碱性溶剂,以保护色谱柱
- 复杂饲料基质的共吸附 , 选择 200 mg/6 mL; 以避免上样过载
- 填料为聚苯乙烯-二乙烯基苯聚合物(耐受pH 范围0~14)
- 洗脱溶剂的体积适中3mL 左右洗脱
- 同时兼顾A、D3、E的富集

- ✓ 实验中比较了5种不同品牌的聚合物反相固相萃取SPE柱:
 - ① Agilent Bond Elut HLB (200mg, 6mL);
 - ② Bond Elut Plexa (200mg, 6mL);
 - 3 Thermo PEP (200mg, 6mL);
 - Waters Oasis HLB (200mg, 6mL);
 - ⑤ 纳谱 PSS((200mg, 6mL)。
- ✓ Oasis HLB和Bond Elut HLB均为二乙烯苯和N-乙烯基吡咯烷酮共聚物反相吸附材料,
- ✓ PEP和PSS均为聚苯乙烯和二乙烯基苯聚合物填料。
- ✓ Bond Elut Plexa为 表面羟基化苯乙烯和二乙烯基苯聚合物填料

✓ 回收率

取6mL均匀分散的皂化液,分别加入等量VA视黄醇、VD3和VE生育酚的标准样品,混合均匀后过柱,经10mL水淋洗后,5mL乙腈洗脱。针对VA,五种色谱柱均可达到满意的回收率结果。

✓ 回收率:

综合考虑维生素A、D3、E的回收率结果, Agilent Bond Elut Plexa和Thermo PEP固相萃取柱回收率满足方法要求。

由于VD3、VE因在反相柱上保留强,出峰靠后,聚苯乙烯-二乙烯基苯-吡咯烷酮聚合物填料的类型,最终洗脱溶剂需增加。

淋洗条件的选择:

分别比较了采用8mL 5%、10%, 20%, 30%, 40%, 50% 甲醇水溶液进行淋洗, 考察在保证回收率的前提下, 淋洗去除碱液的效果, 几种淋洗条件均可保证三种维生素的回收率, 考虑到高水相对碱液的良好淋洗去除效果, 综合不同淋洗溶剂对于共萃取基质干扰物的去除, 最终选择8mL10%的甲醇溶液作为固相萃取的淋洗溶剂。

固相萃取柱洗脱溶剂优化

- ✓ 取6mL均匀分散的皂化液,分别加入等量VA视黄醇标准样品,混合均匀后过柱,8mL 10% 甲醇溶液充分淋洗后,抽干小柱;
- ✓ 选择甲醇,乙腈,乙酸乙酯三种不同的溶剂各5mL 进行洗脱,乙腈洗脱可以满足回收率的要求。
- ✓ 并在此基础上进行乙腈洗脱体积的优化。为保证良好洗脱效果,实际操作采用3mL乙腈分三次洗脱方式(每次1mL),合并洗脱液,并根据饲料中维生素的含量,进行氮吹浓缩。

固相萃取柱洗脱溶剂优化

样品前处理操作过程及注意事项

注意事项:

- ✓ 不同品牌固相萃取小柱的填料会有差 异,从而导致分析的目标物在固相萃 取小柱上的保留能力不尽相同。
- ✓ 文件中给出的淋洗条件和洗脱条件适用于Bond Elut Plexa 萃取小柱和Thermo PEP萃取小柱。
- ✓ 给出这两款商品化萃取小柱的信息不 表示对该产品的认可,而是说明文本 中的淋洗条件和洗脱条件并不适用于 所有的固相萃取小柱,这些条件允许 调整。
- ✓ 建议使用者在使用固相萃取小柱前, 先对固相萃取小柱的适用性做出评估。 不论何种品牌的固相萃取小柱,在满 足分析目标物回收率要求的前提下是 可以使用的。
- ✓ 每次取样时需要对样液进行混匀操作

仪器条件

	第一维 (VA, VE)			第二维 (VD3)		
泵的配置	G7111B			G1312B		
色谱柱	分析柱: Poroshell HPH-C8, 4.6 × 50 mm, 2.7 μm(部件号 699975-706) 捕获柱: Poroshell 120 EC-C18, 4.6 × 5 mm,2.7 μm(部件号 820750-911)			Zorbax Eclipse PAH, 2.1 × 100 mm, 3.5 µm (部件号 959793-918)		
进样量	10 μL					
柱温	35 °C					
流动相	A: 0.1% 甲酸水; B: 乙腈; C: 甲醇			A: 乙腈; B: 甲醇		
流速	1 mL/min			0.3 mL/min		
梯度	时间 (min) 0.0 1.0 12.0 14.0 19.0 20.0 25.0	30	C% 70 75 100 0 0 70		时间 (min) 0.0 3.0 3.1 7.0 15.0 15.5 25.0	B% 100 100 0 0 50 100
检测器	VWD				DAD	
检测波长	0-3.5 min: 326 nm; 3.5-20.0 min: 285 nm			264 nm		

名称	线性回归方程	R ²	标准曲线图
维生素 A	y = 30.4780*x + 0.4383 0.2~50 IU/mL	0.9999	1800 1600 1400 1200 年 1000 800 600 400 200 0 20 40 60 浓度 (ILI/mL)
维生素 D3	y = 11.0310*x - 0.4483 0.1~50 IU/mL	0.9999	600 500- 400- 300- 200- 100- 0 20 40 60 浓度 (ILI/mL)
维生素 E	y = 4144.8604*x + 0.8089 0.005~0.5 IU/mL	0.9997	2500 2000 1500 0 0.2 0.4 0.6 浓度 (IJ/mL)

回收率结果

饲料品种	化合物	加标浓度 (IU/kg)	平均回收率 (%)	RSD (%)
	VA	1000	108.2	2.2
		2000	96.8	7.3
		10000	103.2	1.5
	VD3	500	98.4	3.4
复合预混料 (原料)		1000	87.4	5.0
1021117		5000	102.3	1.7
	VE	1	90.1	3.9
		2	94.5	3.9
		10	98.5	1.4
	VA	1000	100.6	1.6
		2000	94.1	1.1
		10000	103.3	4.9
	VD3	150	122.9	2.0
配合饲料		500	101.7	1.8
(原料)		1000	98.9	1.3
		5000	101.8	0.5
	VE	1	95.8	8.2
		2	89.4	2.8
		10	110.5	5.8

饲料品种	化合物	加标浓度 (IU/kg)	平均回收。	,%)
	VA	4000	110.2	1.6
		8000	105.9	1.1
		30000	102.5	8.5
	VD3	800	97.8	5.0
配合饲料 (猪)		1600	98.2	3.6
OH)		10000	97.1	2.0
	VE	20	107.7	2.9
		40	114.4	2.7
		150	101.4	0.9
	VA	3600	110.7	2.1
		7200	103.0	1.8
		36000	100.6	2.1
	VD3	1500	106.2	10.5
精料补充料 (奶牛)		3000	91.1	6.6
0,317		15000	108.3	1.7
	VE	30	114.3	1.1
		60	112.1	3.3
		300	107.9	2.5
	VA	15000	102.2	11.5
		30000	96.0	6.4
		150000	112.1	1.0
	VD3	8000	111.7	3.7
浓缩饲料 (猪)		16000	119.0	0.2
		80000	104.4	0.3
	VE	150	100.3	9.0
		300	94.9	1.6
		1500	99.7	5.6

三、试验验证的分析、综述报告

• 现行标准定量限设置

- 现行标准第一法定量限为500 IU/kg, 2625号公告中猪的VD3推荐量为 150~500IU/kg与我国饲料行业实际生产 中的添加量并不相同。
- 公告中推荐量借鉴引用美国国家科学院 (NRC)发布的一系列标准中《猪的营 养需求》第10版(1998)标准。即使有 后续的最新版本(第11版,2012),但 涉及VD3部分内容并没有被更新。
- 这类数据以动物不出现VD₃缺乏症为原则,并不包括养殖动物维持正常生长水平的需要,属于学术研究性基础数据。
- 因此,国内外饲料行业生产实际中并不使用,即在工业饲料产品中的实际添加量一般都在1000 IU/kg或以上,即按照公告中规定的最高限量范围添加,没有低于500 IU/kg的情况。

——源自张若寒老师提供文献资料

定量限更改依据

- 在GB/T 17818-2010标准中设定的方法 定量限为500 IU/kg,即公告中推荐量的 上限,在实施过程中可以满足日常检测 的各种需求。
- 按照2625号公告中配合饲料或全混合 日粮推荐添加量(以维生素计),猪、 羊为150~500 IU/kg,现行标准定量限 为500 IU/kg不能满足推荐添加量为 150~500 IU/kg分析的需求。
- 编制说明中增加检测500 IU/kg以下样品的分析手段,降低标准的定量限,以满足150~500 IU/kg这类低含量样品的检测要求,从而使法规和标准的要求达到统一。
- 经过验证VD3含量在500IU/kg以下检测 方法,定量限可以达到公告中推荐量范 围。

三、试验验证的分析、综述报告

定量限

称取10 g未加维生素的空白配合饲料,分别添加100IU/kg、150 IU/kg、200 IU /kg、500 IU/kg的维生素D3标准溶液,同时做空白样品溶液制备。如信噪比大于10,则用适量的空白溶液稀释加标溶液后,测定加标溶液稀释后的信噪比,若信噪比不为10,继续调空白溶液和加标溶液的比例,直至信噪比为10。当溶液色谱图中维生素D3的峰面积为1.313时,信噪比为10.4。将峰面积1.313代入标准曲线的回归方程,得到对应的维生素D3的浓度为0.1 IU/mL。若样品的称样量为10g,稀释体积为10 mL时,计算得到的定量限为100 IU/kg。

三. 试验验证的分析、综述报告

- ✓ 还有一点需要注意的是,维生素D3的测定,样品基质中主要是植物性材料,所含维生素D含量很少,主要注重的是为保证、促进动物生长而添加的维生素D。
- ✓ 根据2625号公告,尽管维生素D2和D3均属饲料添加剂,但 养殖动物的饲料中维生素D2与维生素D3不得同时使用,而 实际生产中和市场上饲料中添加的主要是维生素D3。
- ✓ 而食品中不管是食品本身还是配方食品都要测定维生素D2与维生素D3,柱切换二维液相色谱净化检测可以将维生素D2与维生素D3分离。

三. 试验验证的分析、综述报告

四、预期的经济效果

- 1.离线固相萃取法,采用固相萃取柱净化提取,减少有机溶剂使用量,降低环境污染,通过一维色谱柱分离杂质,在二维色谱柱上检测D₃,提高了检测灵敏度和样品分析效率,解决了杂质干扰维生素D₃检测的困扰。
- 2.在线固相萃取方法的样品前处理只需做样品皂化这一步,净化提取由仪器完成,具有操作简便,节省试剂,仪器自动化程度高的特点。对于碱性溶液的洗脱及目标分析物转移至分析色谱柱,均是通过在线固相萃取系统完成。
- 3.对于饲料中维生素含量检测方法,二维液相色谱具有广泛的应用前景。

标准研制成果

应用简报

食品与农业检测

使用反相聚合物离线固相萃取技术 结合二维液相色谱分析饲料中的 维生素 A、D3、E

作者

赵小阳

中国农业科学院农业质量标准与检测 技术研究所

张子豪,吴翠玲,邢占磊,周洁,安蓉 安捷伦科技(中国)有限公司

摘要

本文介绍了使用二维液相色谱同时检测饲料中维生素 A、D3、E的分析方法。前处理使用安捷伦表面亲水反相苯乙烯二乙烯基苯聚合物 Bond Elut Plexa 对饲料碱性皂化液进行富集和净化,方法简单,高效、环保。在相应的浓度范围内,维生素 A、D3、E 的线性相关系数均大于 0.999。5 种饲料在不同的加标浓度下,维生素 A、D3、E 的平均加标回收率分别在 91.9%-112.1%、87.4%-122.9% 和 89.4%-116.7% 之间,相对标准偏差分别在 1.0%-11.5%、0.2%-10.5% 和 0.9%-9% 之间,准确度和精密度良好,该方法适用于同时检测饲料中的维生素 A、D3、E。

谢谢

2024.12.11杭州