Analisi dell'HH-tree

Luigi Foscari

1 Parametri e metriche

I parametri della struttura dati sono

- \bullet m la dimensione massima delle foglie.
- \bullet b la taglia delle tabelle di hash nei nodi.
- n il numero di elementi inseriti (spesso sconosciuto a priori).

Le metriche analizzate sono

- Usage o utilizzo è la percentuale $\in [0,1]$ di riempimento delle foglie rispetto ad m.
- Depth è la profondità $\in \mathbb{N}$ dell'albero.

2 Relazione tra i parametri e le metriche

Le seguenti analisi hanno mostrano come gli unici valori sensati per m e b sono quelli minori di n e che conviene allontanarsi da valori troppo bassi per entrambi.

È necessario distinguere due implementazioni, nella prima, chiamata rigida, il parametro m rimane inalterato in tutta la struttura, nella seconda, chiamata adattiva, m è incrementato di 1 per ogni figlio, quindi una foglia a prodondità t avrà una lunghezza massima m+t.

2.1 Implementazione rigida

L'implementazione in question presenta una condizione sui parametri, nel caso in cui b=1 e m< n è invevitable una ricorsione infinita alla prima scissione, perchè non è possibile inserire tutti gli elementi in un solo bucket, ma non è neanche possibile utilizzare più di un bucket. Perciò b>1 o, meno efficientemente, $m\geq n$.

- \bullet Riguardo a b possiamo dire che
 - Se b=2 l'albero è binario, considerando che l'hashing è universale il valore atteso di utilizzo delle foglie è 1/2, la profondità è

 $\log_2\left(\frac{m}{2}+1\right)-1.$

- Se $b \ge n$ in valore atteso la profondità è 1 e l'utilizzo è n/b.
- Riguardo ad *m* possiamo dire che
 - Se m=1 ogni foglia contiene al massimo un elemento, quindi in valore atteso l'utilizzo è 1/b e la profondità è al massimo n.
 - Se m=n l'utilizzo è sempre uguale a m/b, mentre la profondità è sempre 1.

2.2 Implementazione adattiva

- Riguardo a *b* possiamo dire che
 - Se b=1 l'utilizzo è sempre 1, perchè c'è una scissione ad ogni inserimento dopo l'm-esimo, mentre la profondità è n-m+1.
 - Se b=n l'utilizzo ha un valore atteso pari a n/me la profondità 1, ipotizzando che l'hashing utilizzato sia universale.
- \bullet Riguardo ad m possiamo dire che
 - Al crescere di m da 1 ad n la profondità e l'utilizzo tendono a scendere.
 - Dal momento in cui m=n non avvengono scissioni, perciò la profondità sarà sempre 1 e l'utilizzo al 100%.

3 Valutazione struttura dati

Le seguenti valutazioni valgono per l'implementazione rigida. Consideriamo inoltre n > m, per cui la radice è sempre un nodo e ha b figli.

Consideriamo una struttura dati con solo n=m+1 elementi quindi è presente solo la radice e b foglie. Una foglia è scissa, e quindi diventa nodo, se contiene più di m elementi. La probabilità che in un inserimento una foglia venga scelta rispetto ai suoi fratelli è 1/b, quindi il numero di scissioni è descritto bene da una variabile aleatoria binomiale $X \sim B(1/b, n)$. Abbiamo che

$$E[X] = \frac{n}{b}$$

Generalizzando se consideriamo un nodo e le sue b foglie vuote, dopo i primi n inserimenti c'è da aspettarsi di avere effettuato n/b scissioni.

Per la radice questo vale senza eccezioni, però per un nodo a profondità maggiore n è diverso, perchè bisogna considerare solo i valori che effettivamente lo raggiungono. In particolare un nodo a profondità l ha probabilità $1/b^l$ di essere selezionato, rispetto a tutti i nodi al suo livello e a quelli sopra. Quindi in generale al livello l dopo n inserimento bisogna aspettarsi n/b^l scissioni, chiamiamo queste variabili aleatorie X_l .

Se definiamo S la variabile aleatorie che descrive il numero di scissioni in base a b, il numero totale di scissioni dopo n inserimenti è

$$E[S] = \sum_{l=0}^{\infty} E[X_l] = \sum_{l=0}^{\infty} \frac{n}{b^l} = n \sum_{l=0}^{\infty} \left(\frac{1}{b}\right)^l = \frac{n}{1 - 1/b}$$

Ma questo non ha senso perchè al crescere di n il numero di scissioni dovrebbe calare. C'è un errore. Ad esempio per b=2 devo aspettarmi 2n scissioni per ogni n elementi inseriti, che non ha senso.

Proviamo a non usare la binomiale, ma l'ipergeometrica, dopo n inserimento voglio che almeno m siano stati effettuati in una foglia precisa, e questo avviene con probabilità 1/b, quindi $X \sim H(b,1,n)$. Questa rappresentazione è analoga perchè E[X] = n/b.

4 Strutture dati analoghe

Un HH-tree con k mappe di feature su un universo \mathcal{X} permette di fare ricerca su più campi, espressi come feature degli elementi di \mathcal{X} . Vediamo ora due strutture dati naïve che permettono di effettuare le stesse operazioni. Assumiamo sempre di avere a disposizione le mappe di feature per estrarre i valori per le ricerche.

4.1 Forma lineare

Gli elementi inseriti $S \subseteq \mathcal{X}$ sono conservati in una lista A. La ricerca, come la cancellazione, è effettuata elemento per elemento, calcolando i valori necessari per verificare se l'elemento è quello che si cerca e richiede tempo O(|S|). L'inserimento è costante O(1). Non c'è una grande differenza tra la ricerca su una singola chiave o su molteplici.

4.2 Tabelle di hash

Gli elementi inseriti $S \subseteq \mathcal{X}$ sono conservati in un array A e sono create k tabelle di hash di taglia b con bucket, ad ognuna è associata una delle mappe.

- L'inserimento di un valore $x \in \mathcal{X}$ è effettuato aggiungendo all'array x e per ognuna delle tabelle di hash calcolare la posizione di x e inserire nella lista di collisione la posizione di x all'interno dell'array.
- La ricerca su un insieme di chiavi è definita nel seguente algoritmo

```
Data: A insieme degli elementi, C chiavi, T tabelle Output: Risultato della ricerca su c chiavi Sia R una copia di A for i=1,\ldots,|T| do | for j=1,\ldots,|C| do | Rimuovi da R ogni elemento che non compare in T[i][j] end end return R
```

• La cancellazione di effettua rimuovendo l'indice dell'elemento da ogni tabella di hash e l'elemento da A.

Quindi l'inserimento è lineare su k, mentre la ricerca con un insieme di chiavi C è $O(|T||C|+n) = O(|T|k+n)^1$. Lo spazio occupato è invece O(n+|T|n). Inoltre l'inserimento occupa spazio O(n).

 $^{^{1}|}C|\leq k$