Math Lectures

Objective:

Combine NLP with supervised and unsupervised learning to classify math lectures

And we'll talk about the applications at the end of class. In its simplest form of a matching problem, you have a graph where the edges represent compatibility. Two nodes can be paired together, or married, and the goal is to create the maximum number of compatible pairs. So let's define a matching, given a graph, G, with nodes, V, and edges, E. In matching, you can think of it as

Use closed captioning from 92 / lectures

Save XML file in a directory

Objective: Use supervised and unsupervised learning techniques to best classify math lectures.

(Clean the data)

Part 1

Clustering and Similarity

- Train Doc2Vec Model
- Dimensionality Reduction for Visualization
 - Clustering the data
 - KMeans Silhouette Scores
 - -9, 10, and 11 clusters
 - -Topic Extraction (NMF and LDA)

Part 2 Modeling

- Tf-idf vectorization
 - Initial model
- Parts of Speech
- Parameter Search
 - Final Model

Clean and tokenize the text

lecture id	str	label label	Spacy Doc

	filename	raw_text	Professor	Subject	sdoc
0	aurouxmcalc1	So let us start right away with stuff that we	Auroux	Calculus	(So, let, us, start, right, away, with, stuff,
1	aurouxmcalc11	to So far we have learned about partial	Auroux	Calculus	(, to,, So, far, we, have, learned, ab
2	aurouxmcalc2	So , So, yesterday we learned about the questi	Auroux	Calculus	(So, ,, So, ,, yesterday, we, learned, about,

- extract lemmas, remove punctuation and stop words

	filename	Professor	Subject	sdoc	sents	text
0	aurouxmcalc1	Auroux	Calculus	(So, let, us, start, right, away, with, stuff,	[[so, let, start, right, away, stuff, need, ad	so let start right away stuff need advanced th
1	aurouxmcalc11	Auroux	Calculus	(, to,, So, far, we, have, learned, ab	[[,], [so, far, learn, partial, deriva	so far learn partial derivative use f
2	aurouxmcalc2	Auroux	Calculus	(So, ,, So, ,, yesterday, we, learned, about,	[[so, so, yesterday, learn, question, plane, t	so so yesterday learn question plane think 3x3

Use Doc2Vec to vectorize each lecture

- Converts each lecture into a 65 dimensional vector

```
X = np.array(sentences['text'])
y = np.array(sentences[['filename', 'Professor', 'Subject']]) #keep both labels

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.25, random_state=43)
X_train.shape

(69,)
```

```
#tag the data
tagged_data = [TaggedDocument(words=word_tokenize(_d.lower()), tags=[str(i)]) for i, _d in enumerate(X_train)]
```



```
[x_i1, x_i2 ... x_i64, x_i65]
```


Extract the numerical representation for each lecture

Calculate cosine similarity of lectures

lecture = y train[:,0][0] d2v fullsim[[lecture, 'Original Sentence', 'Professor', 'Subject', 'filenames', 'mean similarity']].sort values(by=[lecture], ascending=False)[:5] manningnlp8 Original_Sentence Professor Subject filenames mean_similarity 1.000000 all right hello everybody welcome lecture se.. 0.080441 manningnlp8 manningnlp8 sochernlp5 0.680272 > > about propagation algorithm and promise... Socher sochemip5 0.073998 0.554571 alright hello everybody welcome lecture ric... 0.086428 sochernip3 sochernlp3 0.342864 NLP manningnlp10 0.105305 okay cs224n. so let so term go to today me ... manningnlp10 0.109334 0.304359 okay let go welcome second class cs224n /l 2...

Metrics for clustering and determining similarity

The silhouette value is a measure of how similar an object is to its own cluster (cohesion) compared to other clusters (separation). The silhouette ranges from -1 to +1, where a high value indicates that the object is well matched to its own cluster and poorly matched to neighboring clusters.

Silhouette (clustering) - Wikipedia

https://en.wikipedia.org/wiki/Silhouette (clustering)

Cosine similarity is a measure of similarity between two non-zero vectors of an inner product space that measures the cosine of the angle between them. The cosine of 0° is 1, and it is less than 1 for any angle in the interval $(0,\pi]$ radians.

Cosine similarity - Wikipedia https://en.wikipedia.org/wiki/Cosine_similarity

About this result

□ Feedback

Reducing the Dimensionality

Thick to Learn About 1-SNL

for Visualization

4. Tourchoned Stochastic Neighbor Zeibridding in HNEs is a gazing minimized berbeitiger the dissessionality reduction that is particularly well swited for the risualization of high-dissessional datasets. The inclinates are be implemented via Barnet-His approximations, allowing it to be applied on high prevaisations, allowing it to be applied on high prevaisations, allowing the best applied on the particular activities and the inclinate examples. The technique and to serialize are introduced in the following pages.

Using PCA

Y = pca.fit_transform(vecs)

Using t-SNE

Yt = tsne.fit_transform(vecs)

The scatter plot of the t-SNE components is much easier to interpret.

For this reason t-SNE was chosen as the prefered method for reducing the dimensionality

Clustering the Data

Agglomerative Clustering - 10 Clusters

Mean Shift (all bandwidth)

Spectral Clustering (damping .8)

KMeans - 10 Clusters

Clustering the Data with KMeans

KMeans 9 Clusters

KMeans 10 clusters

KMeans 11 Clusters

Actual labels

9 clusters by Subject

10 Clusters by Subject

11 Clusters by Subject

Results of Clustering 9 Clusters 10 Clusters

11 Clusters

By Subject	85.5%	31.88%	39.13%
By Professor	46.37%	10.14%	33%

	precision	recall	f1-score	support
AI	1.00	1.00	1.00	6
Algorithms	0.00	0.00	0.00	5
CS Math	1.00	1.00	1.00	10
Calculus	1.00	1.00	1.00	9
Data	0.50	1.00	0.67	5
Diff. Eq.	1.00	1.00	1.00	7
Linear Algebra	1.00	1.00	1.00	8
Mech. Eng	1.00	1.00	1.00	5
NLP	1.00	1.00	1.00	5
Statistics	1.00	1.00	1.00	9
micro avg	0.93	0.93	0.93	69
macro avg	0.85	0.90	0.87	69
weighted avg	0.89	0.93	0.90	69

Score is based on cluster completeness. (Only lectures perfectly in their true label group are scored)

But wait...

clusters9

Why can't the KMeans discern between data structures and algorithms?

This calculus lecture ended up far from its cluster during the t-SNE decomposition

Why does this Al lecture get clustered to Differential Equations?

Math for Computer Science, Artificial
Intelligence, Algorithms, Data Structures
in this context are more closely related to
one another than the others. This
relationship is captured in coordinates of
the lectures

Topic Extraction using Non negative matrix factorization

Data Structures

Algorithms

-				
To	D7/	-	#61	
10	$\sigma = \sigma$		#U	
		_		-

log divide epsilon square sort query word size factor subtree base s pace bind afford time achieve overall fit update pay

Topic #1:

time constant number access touch key build linear compute operation know algorithm update trie need sequence travel change order cost

Topic #2:

tree search binary know way model fast build good problem optimal ba lanced basically actually obvious nice start question turn black

Topic #3:

node pointer store touch array want root subtree visit path version new tree ancestor particular let old know leaf rotation

Topic #4:

emde van boas thing size sort root word use think algorithm author w ay kind number ram happen square basically cache

Topic #5:

item insert want right word interval array list order delete guy sto re size promote buffer sort small cluster half shift

Topic #6:

like point look set add level rectangle picture kind right mean gues s want past thing path guy ok access equal

Topic #0:

tree binary search lg height insert structure balance actually avl d elete need leaf thing lecture happen check sorted let good

Topic #1:

heap max build heapify property min run invariant structure array no de maintain child trivial extract root unordered different violate b ig

Topic #2:

minus divide plus square equal xi sub root epsilon compute great lik e raise lg newton let method comma function xn

Topic #3:

algorithm complexity problem shall class python talk different set g ood efficient version correspond comparison input peak write correct term analyze

Topic #4:

time constant order word item operation case lg linear spend array w ork run bad sum et cetera landing think bunch

Topic #5:

sort insertion merge like way array use look thing count place theta example run auxiliary turn structure space kind particular

Topic #6:

log theta base raise write step swap alpha way equal compare complex ity bound squared mean insertion end cost time prove

Topic Extraction using LDA

(Latent Dirichlet Allocation)

AI

Winston Al 10

Differential Equations

e question answer	goal behavior program know build kind forward
way work backward	probability shall leave 80 base particular
ic #1:	

le bit talk want course day subject tell start shall solution le

ch path depth want use breadth queue extend goal node good beam

olem solve kind need work transformation way order talk final met

giunction right boundary way label object arrow draw constraint

ange possibility street form face fork discover try possible worl

idea table test slagle algorithm program think today huffman

intelligence model type maybe example artificial turn look

tead quiz order close heuristic pretty british museum

is plus alpha equal square sub negative sum integral sample fourt itter function dx time close oh different situation likewise

Topic #1: say feature vector come day way worth invent compare recognition h rt slope cosine integral theorem times sort y2 room appen easy good library value guy decision control world robot

Topic #2: area total cover want like concert hole electrical guy custodian a ttempt come sort include shall measure maximum idea knowledge let

Topic #3: stuff velocity acceleration guy want know ball think sleep speed p articular trajectory need associate movement value position look t alk arm

Topic #4:

Topic #0:

ory position

little good variance particular piece movement try 100 record asso ciate want shall just stuff think table easy prime right time

Topic #5:

perpendicular divide bisector human space article area maximum sim ple instead use construct boundary line decision thing talk comput er want equal

Topic #6:

10 pitch sleep need want memory try 25 know day original 20 record hour likely run simple time worth guess

Topic #0:

talk stuff thing learning near like pattern neighbor word recognit value plus negative minus form want equal answer prime way zero w ion computer straight today base magazine lot town country traject ite real general number positive time standard law course

Topic #1:

point y1 calculate mean word factor curve minute zero omega angle

Topic #2:

number theta complex exponential cosine unit vector angle know si e high word involve case product formula hand euler expression la

Topic #3:

solution curve initial word constant equation condition start for half equal salt steady concentration long particular differential geometric state term

Topic #4:

let little constant temperature good euler method example concent ation want use formula bit work model step equation external size try

Topic #5:

function want equal word number way talk spring method use think requency respect slope mass good draw like complex okay

Topic #6:

equation hand solve differential linear right solution left term omogeneous kind talk form prime like method function time bernoul i think

c #6: for sample partial dot function respect product time street decis p2 depend great discover want performance value derivative width nitude

c #2:

c #3:

C #4:

LC #5:

Modeling with TF-IDF vectorization

```
#Split the data into train and test set.
X = np.array(sentences['text'])
y = np.array(sentences[['Professor', 'Subject', 'filename']]) #keep all labels
#As we are modeling, vectorize all of the lectures, before splitting the data
#Instantiate tf-idf vectorizer
vectorizer = TfidfVectorizer(max df=0.50, # drop words that occur in more 50% of the sentences
                           min df=25, # only use words that appear at least 25
                           stop words='english',
                           lowercase=True,
                           use idf=True,
                           norm=u'l2',
                           smooth idf=True)
Xt = vectorizer.fit transform(X)
tfidf vecs = pd.DataFrame(Xt.todense())
print(tfidf vecs.shape)
tfidf vecs.head()
  (92, 334)
0 0.014227 0.0 0.014004 0.0 0.00000 0.011054 0.000000 0.000000 0.013378 0.00000 ... 0.00000 0.000000 0.000000
1 0.000000 0.0 0.015423 0.0 0.00000
                               0.048699 0.000000
                                                              0.00000
2 0.000000 0.0 0.000000 0.0 0.00000 0.016340 0.000000 0.000000 0.000000 0.000000
4 0.000000 0.0 0.000000 0.0 0.00785 0.015006 0.003477 0.003925 0.000000 0.00338 ... 0.00798 0.000000 0.007374
```


(So, let, us, start, right, away, with, stuff,... (, to, , So, far, we, have, learned, ab...

Other feature generation

TAGS

DET

PREP

VERB

True .

NOUN

pos count = get pos(sentences.sdoc, True)

```
#iterate over each lecture extracting lists of POS for each sentence
           def get pos (doc list, norm):
WORDS
               #start timer, creat lists
               t1 = time.time()
               pos list = [] #list of all POS
               poss list = []#list of sentences as POS
waiter
               #iterate over list of spacy docs
cleared !
               for lecture in doc list:
 the-
                   pss = []
                   #Extract POS
plates
                   for token in lecture:
 from-
                       pss.append(token.pos)
 the-
                       pos list.append(token.pos )
                   poss list.append(pss)
table
               #Set up up a DataFrame to count occurance of POS per lecture
               pos df = pd.DataFrame(columns=set(pos list))
               pos df['pos sent'] = poss list
               pos df.loc[:, pos list] = 0
               for i, sentence in enumerate(pos df['pos sent']):
                       # Convert the sentence words to POS
                                                                                False-
                       words = pos df.pos sent[i]
                                                                   norm=
                       # Populate the row with word counts.
                       for word in words:
                           pos df.loc[i, word] += 1
                   # get total pos count in the lecture
               pos df['length'] = pos df.drop(['pos sent'],1).sum(axis=1)
               if norm == True:
                   #if True, divids POS count by length (total POS count)
                   for col in pos df.drop(['pos sent', 'length'],1).columns:
                               pos df[col] = pos df[col]/pos df.length
               pos df.drop(['pos sent'],1,inplace=True)
               print("time: {} minutes".format((time.time()-t1)/60))
               return pos df
```

- Extract parts of speech (POS)

['PRON', 'ADV', 'ADJ'], 'ADV', 'VERB', 'NOUN', 'NOUN', 'NOUN', 'NOUN', 'NOUN'], 'ADV', 'ADV', 'ADV', 'NOUN', 'VERB', 'NOUN', 'NOUN', 'ADP', 'INTJ'], 'CCONJ', 'NOUN', 'VERB', 'NOUN'], ['CCONJ', 'NOUN', 'VERB', 'NOUN', 'NOUN', 'ADV', 'VERB', 'NOUN', 'NOUN'],

- Count occurrence of POS by lecture

	ADP	PART	PUNCT	PRON	NOUN	NUM	VERB	SPACE
0	524	104	1001	467	891	137	964	0
1	677	151	783	573	1071	51	1144	2
2	629	104	1113	476	941	169	1139	0
3	632	116	1152	599	898	127	1143	2
4	1128	322	1935	1125	2300	140	2769	2

- Divide each POS by lecture length

lecture	length	SYM	DET	PROPN	ADV	х	CCONJ
aurouxmcalc1	5758.0	0.00277874	0.096214	0.0109413	0.0793678	0.000521014	0.0310872
aurouxmcalc11	6444.0	0.00481068	0.0853507	0.00574178	0.0856611	0.011018	0.040658
aurouxmcalc2	6474.0	0.0021625	0.0946864	0.0114303	0.0875811	0	0.0305839
aurouxmcalc5	6668.0	0.00524895	0.0920816	0.00419916	0.0911818	0.00479904	0.0359928
demainedata1	14360.0	0.000139276	0.103273	0.00473538	0.0983287	0.00111421	0.0323816

Parameter Search

Cross Validation 5 folds [0.95, 0.86, 0.95, 0.94, 0.93]

tf-idf df_min = 25

mean 0.93

Random Forest (n_estimators=200, max_depth=4, min_samples_leaf=4, random_state=43, class_weight='balanced')

48	precision	recall	f1-score	support	2	0	0	0	0	0	0	0	0	0
AI	1.00	1.00	1.00	2	0	4	0	0	0	0	0	0	0	0
Algorithms	1.00	1.00	1.00	4	0	0	1	0	0	0	0	0	0	0
CS Math	1.00	1.00	1.00	1	0	U		-		0	U	0	O	O
Calculus	1.00	1.00	1.00	4	0	0	0	4	0	0	0	0	0	0
Data	1.00	1.00	1.00	2	0	0	0	0	2	•	0	^	0	0
Diff. Eq.	1.00	1.00	1.00	2	0	0	0	0	2	0	0	0	0	0
Linear Algebra	1.00	1.00	1.00	2	0	0	0	0	0	2	0	0	0	0
Mech. Eng	1.00	1.00	1.00	3			•	•	0		_	_	•	0
NLP	1.00	1.00	1.00	2	0	0	0	0	0	0	2	0	0	0
Statistics	1.00	1.00	1.00	1	0	0	0	0	0	0	0	3	0	0
micro avg	1.00	1.00	1.00	23	0	0	0	0	0	0	0	0	2	0
macro avg	1.00	1.00	1.00	23			0	0	0	- 52	0	0		0
weighted avg	1.00	1.00	1.00	23	0	0	0	0	0	0	0	0	0	1

Clustering:

- + Able to identify similar subjects.
- Unable to decipher closely related subjects
 - Unable to decipher professors

Modeling:

- + Very accurate
- + able to decipher professors

For further study

- Scale the data collection
 - Programmatically obtain lecture subtitles from youtube's API

- Generate an overall rating of each lecture
 - Youtube ratings, comments, view counts
 - Create new features based on sentiment analysis of comments
- Predict the quality of newly posted content
 - match most relevant new content for a given user