Classical (Symmetric) Cryptography

Applied Cryptography

1

Cryptography: terminology (1/2)

- Cryptography
 - · Art or science of hidden writing
 - from Gr. kryptós, hidden + graph, r. of graphein, to write
 - It was initially used to maintain the confidentiality of information
 - Steganography
 - from Gr. steganós, hidden + graph, r. of graphein, to write
- Cryptanalysis
 - Art or science of breaking cryptographic systems or encrypted information
- - Cryptography + cryptanalysis

Applied Cryptography

Cryptanalysis: goals

- Discover original plaintext
 - · Which originated a given ciphertext
- Discover a cipher key
 - Allows the decryption of ciphertexts created with the same key
- Discover the cipher algorithm
 - Or an equivalent algorithm...
 - · Usually algorithms are not secret, but there are exceptions
 - · Lorenz, A5 (GSM), RC4 (WEP), Crypto-1 (Mifare)
 - · Algorithms for DRM (Digital Rights Management)
 - Reverse engineering

Applied Cryptography

Cryptography: computational security

- > The number of possible keys is finite
 - And much less than the number os possible messages
 - #K << #M
- > Thus, security ultimately depends on the computing power of cryptanalysts go through all keys
 - · Computations per time period
 - Storage capacity
 - · Resistance time is mainly given by key length
- Provable security
 - The computational security can be demonstrated by comparing it with known hard problems

Applied Cryptography

9

Key dimensions in perspective

- $> 2^{32}$ (4 Giga)
 - IPv4 address space
 - World population
 - Years for the Sun to become $\triangleright 2^{265}$ a white dwarf
- > 2⁶⁴
 - Virtual address space of current CPU architectures
- > 2¹²⁸
 - IPv6 address space

- \triangleright 2¹⁶⁶
 - Earth atoms
- - Hydrogen atoms in the known universe
- - Only cryptography uses them

© André Zúguete / Tomás Oliveira e Silva

Applied Cryptography

Cryptanalysis attacks: approaches

- Exhaustive search along the key space until finding a suitable key
- Usually infeasible for a large key space
 - e.g. 2¹²⁸ random keys (or keys with 128 bits)
 - · Randomness is fundamental!

 Reduce the search space to a smaller set of potential candidates

Applied Cryptography

11

Cryptography: practical approaches (1/4)

- > Theoretical security vs. practical security
 - Expected use ≠ practical exploitation
 - · Defective practices can introduce vulnerabilities
 - · Example: reuse of keys

Computational security

- Computational complexity of break-in attacks
 - Using brute force
- Security bounds:
 - Cost of cryptanalysis
 - · Availability of cryptanalysis infra-structure
 - · Lifetime of ciphertext

Applied Cryptography

Cryptography: practical approaches (2/4)

- The amount of offered secrecy
 - e.g. key length
- · Complexity of key selection
 - · e.g. key generation, detection of weak keys
- · Implementation simplicity
- Error propagation
 - · Relevant in error-prone environments
 - · e.g. noisy communication channels
- · Dimension of ciphertexts
 - · Regarding the related plaintexts

Applied Cryptography

Cryptography: practical approaches (3/4)

- Complex relationship between the key, plaintext and the ciphertext
 - Output bits (ciphertext) should depend on the input bits (plaintext + key) in a very complex way

▶ Diffusion

- Plaintext statistics are dissipated in the ciphertext
 - If one plaintext bit toggles, then the ciphertext changes substantially, in an unpredictable or pseudorandom manner
- Avalanche effect

Applied Cryptography

15

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

Cryptography: practical approaches (4/4)

- > Always assume the worst case
 - Cryptanalysts know the algorithm
 - · Security lies in the key
 - Cryptanalysts know/have many ciphertext samples produced with the same algorithm & key
 - · Ciphertext is not secret!
 - Cryptanalysts partially know original plaintexts
 - · As they have some idea of what they are looking for
 - · Know-plaintext attacks
 - · Chosen-plaintext attacks

Applied Cryptography

17

Cryptographic robustness

- > The robustness of algorithms is their resistance to attacks
 - No one can evaluate it precisely
 - Only speculate or demonstrate using some other robustness assumptions
 - · They are robust until someone breaks them
 - There are public guidelines with what should/must not be used
 - · Sometimes antecipating future problems
- Algorithms with longer keys are probably stronger
 - And usually slower ...
- Public algorithms w/o known attacks are probably stronger
 - More people looking for weaknesses

Applied Cryptography

Cryptographic guidelines

- □ Guideline for Using Cryptographic Standards in the Federal Government: Cryptographic Mechanisms, NIST Special Publication 800-175B Rev. 1, July 2019
- Cryptographic Storage Cheat Sheet, OWASP Cheat Sheets (last revision: 6/Jun/2020)
- □ Guidelines on cryptographic algorithms usage and key management, European Payments Council, EPC342-08 v9.0, 9/Mar/2020
- △ Algorithms, Key Size and Protocols Report, ECRYPT Coordination
 & Support Action, Deliverable D5.4, H2020-ICT-2014 Project 645421,
 28/Feb/2018

Applied Cryptography

- > Transposition
 - Original cleartext is scrambled
 Onexcl raatre ilriad gctsm ilesb
 - Block permutations
 (13524) → boklc pruem ttoai ns

- Each original symbol is replaced by another
 - · Original symbols were letters, digits and punctuation
 - · Actually they are blocks of bits
- Substitution strategies
 - Mono-alphabetic (one→one)
 - · Polyalphabetic (many one→one)
 - Homophonic (one→many)

Applied Cryptography

21

ONEXCL

G C T S M

Ciphers: basic types (2/3): Mono-alphabetic

- Use a single substitution alphabet
 - With #α elements
- - Additive (translation)
 - crypto-symbol = (symbol + key) mod # α
 - symbol = (crypto-symbol key) mod # α
 - Possible keys = $\#\alpha$
 - Caesar Cipher (ROT-x)
 - With sentence key ABCDEFGHIJKLMNOPQRSTUVWXYZ
 - QRUVWXZSENTCKYABDFGHIJLMOP
 Possible keys = $\# \alpha ! \rightarrow 26! \approx 2^{88}$
- ▶ Problems
 - Reproduce plaintext pattern
 - · Individual characters, digrams, trigrams, etc.
 - Statistical analysis facilitates cryptanalysis
 - · "The Gold Bug", Edgar Alan Poe

Applied Cryptography

53+++305))6*;4826)4+.)
4+);806*;48+860))85;1+
(;:+*8+83(88)5*+;46(;8
8*96*?;8)*+(;485);5*+2
:**(;4956*2(5*-4)88*;4
69285);)6+8)4+;1(+9;
48081;8:8+1;48+85;4)48
5+528806*81(49;48;(88;4(234;48)4+;161;:188;*?;

A good glass in the bishop's hostel in the devil's seat fifty-one degrees and thirteen minutes northeast and by north main branch seventh limb east side shoot from the left eye of the death's-head a bee line from the tree through the shot forty feet out

© André Zúquete / Tomás Oliveira e Silva

Ciphers: basic types (3/3): Polyalphabetic

- - · Periodical ciphers, with period N
- Example
 - Vigenère cipher
- ▶ Problems
 - Once known the period, are as easy to cryptanalyze as N monoalphabetic ones
 - The period can be discovered using statistics
 - · Kasiski method
 - · Factoring of distances between equal ciphertext blocks
 - Coincidence index
 - · Factoring of self-correlation offsets that yield higher coincidences

Applied Cryptography

Cryptanalysis of a Vigenère cryptogram: **Example (1/2)** Plaintext: Eles não sabem que o sonho é uma constante da vida tão concreta e definida como outra coisa qualquer, como esta pedra cinzenta em que me sento e descanso, como este ribeiro manso, em serenos sobressaltos como estes pinheiros altos ▷ Cipher with the Vigenère square and key "poema" $\verb|plaintext| eles na osabem que oson hoeuma constante da vidata o concreta e definida a concreta e definida e definida a concreta e definida a concreta e definida e definida$ $\verb|cryptogram|| \verb|tzienpcwmbtaugedgszhdsyyarcretpbxqdpjmpaiosoocqvqtpshqfxbmpa||$ Kasiski test · With text above: mpa $20 = 2 \times 2 \times 5$ $20 = 2 \times 2 \times 5$ tp • With the complete poem: $175 = 5 \times 5 \times 7$ $105 = 3 \times 5 \times 7$ $35 = 5 \times 7$ $20 = 2 \times 2 \times 5$ © André Zúquete / Tomás Oliveira e Silva Applied Cryptography 25

Rotor machines

- > Rotor machines implement complex polyalphabetic ciphers
 - Each rotor contains a permutation
 - · Same as a set of substitutions
 - The position of a rotor implements a substitution alphabet
 - Spinning of a rotor implements a polyalphabetic cipher
 - Stacking several rotors and spinning them at different times adds complexity to the cipher
- - The set of rotors used
 - The relative order of the rotors
 - The position of the spinning ring The original position of all the rotors
- Symmetrical (two-way) rotors allow decryption by "double encryption"
 - Using a reflection disk (half-rotor)

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

Stream ciphers

- Keystream may be infinite but with a finite period
 - The period depends on the generator
- Practical security issues
 - Each keystream should be used only once!
 - · Otherwise, the sum of cryptograms yields the sum of plaintexts

 $C1 = P1 \oplus Ks$, $C2 = P2 \oplus Ks \rightarrow C1 \oplus C2 = P1 \oplus P2$

- Plaintext length should be smaller than the keystream period
 - · Total keystream exposure under know/chosen plaintext attacks
 - · Keystream cycles help the cryptanalysts knowing plaintext samples
- Integrity control is mandatory
 - · No diffusion! (only confusion)
 - · Ciphertexts can easily be changed deterministically

Applied Cryptography

Cryptanalysis of Tunny in Bletchley Park: The mistake (30 August 1941)

- - He set up his Lorenz and sent a 12 letter indicator (wheel setup) to the receiver
 - After ~4,000 characters had been keyed, by hand, the receiver said "send it again"
- > The operator resets the machine to the same initial setup
 - · Same keystream! Absolutely forbidden!
- > The sender began to key in the message again (by hand)
 - But he typed a slightly different message!

```
C = M \oplus Ks

C' = M' \oplus Ks \rightarrow M' = C \oplus C' \oplus M \rightarrow text variations
```

Know parts of the initial text M reveal the variations, M'

Applied Cryptography

35

Cryptanalysis of Tunny in Bletchley Park: Breakthrough

- ▶ Messages began with SPRUCHNUMMER "msg number"
 - The first time the operator typed S P R U C H N U M M E R
 - The second time he typed S P R U C H N R
 - Thus, immediately following the N the two texts were different!
- ▷ John Tiltman at Bletchley Park was able to fully decrypt both messages (called *Depths*) using an additive combination of them
 - The 2nd message was ~500 characters shorter than the first one
 - Tiltman managed to discover the correct message for the 1st ciphertext
- ▷ They got for the 1st time a long stretch of the Lorenz keystream
 - They did not know how the machine did it, ...
 - ... but they knew that this was what it was generating!

Applied Cryptography

Cryptanalysis of Tunny in Bletchley Park: Colossus

- ▷ The cipher structure was determined from the keystream
 - But deciphering it required knowing the initial position of rotors
- □ Germans started using numbers for the initial wheels' state
 - Bill Tutte invented the double-delta method for finding that state
 - The Colossus was built to apply the double-delta method
- - Design started in March 1943
 - The 1,500 valve Colossus Mark 1 was operational in January 1944
 - Colossus reduced the time to break Lorenz from weeks to hours

Applied Cryptography

Modern Symmetric Cryptography

Applied Cryptography

1

Modern ciphers: types

- > Concerning operation
 - Block ciphers (mono-alphabetic)
 - Stream ciphers (poli-alphabetic)
- - Symmetric ciphers (secret key or shared key ciphers)
 - Asymmetric ciphers (or public key ciphers)
- > Arrangements

	Block ciphers	Stream ciphers
Symmetric ciphers		
Asymmetric ciphers		

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

Symmetric ciphers

- Secret key
 - Shared by 2 or more peers
- - Confidentiality among the key holders
 - Limited authentication of messages
 - · When block ciphers are used
- Advantages
 - Performance (usually very efficient)
- Disadvantages
 - N interacting peers, pairwise secrecy ⇒ N x (N-1)/2 keys
- ▶ Problems
 - Key distribution

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

3

Symmetric block ciphers

- Usual approaches
 - Large bit blocks for input, output and key
 - · 64, 128, 256, etc.
 - Diffusion & confusion
 - · Permutation, substitution, expansion, compression
 - · Feistel networks, substitution-permutation networks
 - Iterations
 - · Sub-keys (key schedules, round keys, etc.)
- > Most common algorithms
 - DES (Data Enc. Stand.),
 D=64
 K=56
 K=120
 D=64
 K=120
 - IDEA (Int. Data Enc. Alg.), D=64 K=128
 AES (Adv. Enc. Stand., aka Rijndael) D=128 K=128, 192, 256
 - · Other (Blowfish, CAST, RC5, etc.)

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

DES (Data Encryption Standard)

- ▶ 1970: the need of a standard cipher for civilians was identified
- ▶ 1972: NBS opens a contest for a new cipher, requiring:
 - The cryptographic algorithm must be secure to a high degree
 - Algorithm details described in an easy-to-understand language
 - The details of the algorithm must be publicly available
 - \cdot So that anyone could implement it in software or hardware
 - The security of the algorithm must depend on the key
 - · Not on keeping the method itself (or part of it) secret
 - The method must be adaptable for use in many applications
 - Hardware implementations of the algorithm must be practical
 - · i.e. not prohibitively expensive or extremely slow
 - The method must be efficient
 - · Test and validation under real-life conditions
 - The algorithm should be exportable

Applied Cryptography

DES: proposal and adoption

- ▶ 1974: new contest
 - Proposal based on Lucifer from IBM
 - 64-bit blocks
 - 56-bit keys
 - · 48-bit subkeys (key schedules)
 - Diffusion & confusion
 - · Feistel networks
 - · Permutations, substitutions, expansions, compressions
 - 16 iterations
 - Several modes of operation
 - ECB (Electronic Code Book), CBC (Cypher Block Chaining)
 - OFB (Output Feedback), CFB (Cypher Feedback)
- > 1976: adopted at US as a federal standard

Applied Cryptography

9

DES as a milestone

DES ruled in the land for over 20 years. Academics studied him intently. For the first time, there was something specific to look at. The modern field of cryptography was born.

in to the best of our knowledge, DES is free from any statistical or mathematical weakness.

http://www.moserware.com/2009/09/stick-figure-quide-to-advanced.html

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

DES: offered security

Key selection

- Most 56-bit values are suitable
- 4 weak, 12 semi-weak keys, 48 possibly weak keys
 - Equal key schedules (1, 2 or 4)
 - Easy to spot and avoid

Known attacks

Exhaustive key space search

- 56 bits are actually too few
- Exhaustive search is technically possible and economically interesting

Multiple encryption

- Double encryption
 - · Theoretically not more secure
- Triple DES (3DES)
 - · With 2 or 3 keys
 - Equivalent key length of 112 or 168 bits
 - · Secure but ...slow!
- DES-X
 - $K_1 \oplus DES(K_2) \oplus K_3$
 - Total key length = 64 + 56 + 64 = 184 bits

Applied Cryptography

AES (Advanced Encryption Standard)

- - NIST publicly asked interested parties to propose a criteria to choose a DES successor
 - Many submissions received during 3 months
- ▶ 12/Sep/1997: Call for new algorithms
 - Block ciphers
 - 128-bit blocks
 - 128, 192, and 256-bit keys
 - · Such ciphers were rare at the time of the call

Applied Cryptography

15

My creators, Vincent Rijmen and Joan Daemen, were among these crypto wizards. They combined their last names to give me my birth name: Rijndael.*

* That's pronounced "Rhine Dahl" for the non-Belgians out there.

© André Zúquete / Tomás Oliveira e Silva http://www.moserware.com/2009/09/stick-figure-quide-to-advanced.html

Applied Cryptography

AES: evaluation rounds

- 15 candidate algorithms were evaluated by the community
- Conferences were organized for the evaluation
- · Cryptographic weakness were found
- · Performance issues were identified
 - · In a variety of hardware
 - · PCs, smart cards, hardware implementations
- · Constrained environment were evaluated
 - · Limited memory smart cards, low gate count circuits, FPGAs

• MARS, RC6, Rijndael, Serpent, and Twofish

Applied Cryptography

AES: evaluation rounds ▷ 2nd round The 5 finalists continued to be evaluated In a final conference the proposal of each algorithm presented their advantage against the other ▷ 2/Oct/2000: AES algorithm was announced · Rijndael was selected Proposed by Vincent Rijmen and Joan Daemen • Family of ciphers with different key and block sizes ≥ 26/Nov/2001: AES was approved by NIST • FIPS PUB 197 • Subset of Rijndael (3 family members) Now part of the ISO/IEC 18033-3 standard © André Zúquete / Tomás Oliveira e Silva 19 Applied Cryptography

AES in CPU instruction sets

AESENC	Perform one round of an AES encryption flow
AESENCLAST	Perform the last round of an AES encryption flow
AESDEC	Perform one round of an AES decryption flow
AESDECLAST	Perform the last round of an AES decryption flow
AESKEYGENASSIST	Assist in AES round key generation
AESIMC	Assist in AES Inverse Mix Columns

- > ARMv8 Cryptographic Extension

Applied Cryptography

23

Stream ciphers

- Approaches
 - Cryptographically secure pseudo-random generators (PRNG)
 - · Using linear feedback shift registers (LFSR)
 - · Using block ciphers
 - · Other (families of functions, etc.)
 - · Usually not self-synchronized
 - · Usually without uniform random access
 - No immediate setup of generator's state for a given plaintext/cryptogram offset
- Most common algorithms
 - A5/1 (US, Europe), A5/2 (GSM)
 - RC4 (802.11 WEP/TKIP, etc.)
 - E0 (Bluetooth BR/EDR)
 - SEAL (w/ uniform random access)

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

Cipher modes

Applied Cryptography

1

Deployment of (symmetric) block ciphers: Cipher modes

- - ECB (Electronic Code Book)
 - CBC (Cipher Block Chaining)
 - OFB (Output Feeback)
 - CFB (Cipher Feedback)
- - In principle ...
- > Some other modes do exist
 - CTR (Counter Mode)
 - GCM (Galois/Counter Mode)

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

Cipher modes: Pros and cons					
		Block		Stream	
	ECB	СВС	OFB	CFB	CTR
Input pattern hiding		✓	✓	✓	✓
Confusion on the cipher input		1		✓	Secret counter
Same key for different messages	1	✓	other IV	other IV	other IV
Tampering difficulty	✓	√ ()		✓	
Pre-processing			✓		✓
Parallel processing		Decryption	w/ pre-	Decryption	
Uniform random access		Only	processin g	only	✓
Error propagation	Same block	Same block Next block		Some bits afterward s	
Capacity to recover from losses André Zúquete / losses Tomás Oliveira e Silva	Block	Block		•	10

Cryptographic Hashing

Applied Cryptography

1

Digest functions

- - Sort of text "fingerprint"
- ▶ Produce very different values for similar texts
 - Cryptographic one-way hash functions
- > Relevant properties:
 - Preimage resistance
 - · Given a digest, it is infeasible to find an original text producing it
 - 2nd-preimage resistance
 - Given a text, it is infeasible to find another one with the same digest
 - Collision resistance
 - It is infeasible to find any two texts with the same digest
 - · Birthday paradox

Applied Cryptography

Rainbow tables

- > We can invert a digest function with a table
 - For all possible input, we compute and store the digest
 - But the table size is given by the digest length
 - · Not usually applicable
- > Solution: rainbow tables
 - Trade space with time
 - Store only part of the outputs
 - · For direct matching
 - · Find for more matches using computation

Applied Cryptography

5

Rainbow tables

- - Which is not the inverse of H
 - The goal of R is to produce a new input given a hashing result

- - But we can use many different R functions
 - · Collisions scan still occur
 - But will not create a problem unless occurring at the exact same column
 - · And that case can be identified (and discarded) by identical outputs
- A table with m k-length rows can invert k×m hashes
 - At most
 - Only I₀ and I_k is stored per row

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

Rainbow tables: exploitation

- A set of **m** random inputs is generated
 - $I_0 = \{I_{0,1}, \dots I_{0,m}\}$
- ▷ A set of m k-length chain outputs is computed
 - $I_k = \{I_{k,1}, ..., I_{k,m}\}$
- - Look for R(o) in I_k
 - If found in row r, compute chain from I_{0.r}
 - until finding i such that H(i) = 0
 - If not found, compute o_r from o using H and R for each row r
 - and see if $o_r = I_{k,r}$
 - · H and R are applied 1 to k times, using different R functions

Applied Cryptography

Authenticated encryption

- > Encryption mixed with integrity control
 - Error propagation
 - Authentication tags
- - GCM (Galois/Counter Mode)
 - CCM (Counter with CBC-MAC)

Applied Cryptography

Criptografia Aplicada, 2022/2023

The Magic Words are Squeamish Ossifrage

Guess who contributed a modest amount of computation time to this collaborative effort

Table of Contents

- 1. Goals
- 2. Means
- 3. Programming languages you may use
- 4. Modular arithmetic
- 5. Fast modular multiplication
- 6. The greatest common divisor
- 7. Linear maps (Merkle-Hellman cryptosystem)
- 8. Fermat's little theorem
- 9. Chinese remainder theorem
- 10. Fermat's little theorem (revisited)
- 11. Modular exponentiation
- 12. Multiplicative order
- 13. Discrete logarithms (modular arithmetic)

- 14. Primality tests
- 15. The Diffie-Hellman key exchange protocol
- 16. ElGamal public key cryptosystem
- 17. The Rivest-Shamir-Adleman cryptosystem
- 18. Finite fields
- 19. Elliptic curves
- 20. Discrete logarithms (elliptic curves)
- 21. Secret sharing
- 22. Quadratic residues
- 23. Zero-knowledge
- 24. Homomorphic encryption
- 25. Bibliography

Goals

- Public-key cryptography
- Sharing secrets
- Doing things without leaking information

Public Key (spoiler)

Means

- Number theory.
- In particular, modular arithmetic. Why? Because:
 - we will be performing computations with a finite set of integers (for example, there is no need to worry about round-off errors);
 - modular arithmetic can be done efficiently in almost all computing devices;
 - and last, but not least, because there exist many number theoretic theorems that have cryptographic applications.

Mathematics is the queen of the sciences and number theory is the queen of mathematics.

Carl Friedrich Gauss

The Theory of Numbers has always been regarded as one of the most obviously useless branches of Pure Mathematics. The accusation is one against which there is no valid defence; and it is never more just than when directed against the parts of the theory which are more particularly concerned with primes. A science

is said to be useful if its development tends to accentuate the existing inequalities in the distribution of wealth, or more directly promotes the destruction of human life. The theory of prime numbers satisfies no such criteria. Those who pursue it will, if they are wise, make no attempt to justify their interest in a subject so trivial and so remote, and will console themselves with the thought that the greatest mathematicians of all ages have found in it a mysterious attraction impossible to resist.

Godfrey Harold Hardy

Programming languages you may use

- C, in particular the GNU MP library, also known as libgmp
- C++, using also the GNU MP library, but with classes and arithmetic operator overloading!
- Python
- Java, in particular the BigInteger class
- pari-gp (get it here), because it has everything we will need
- SageMath (get it here), because it has everything we will need and its interface uses the Python programming language (but its a big download)

Modular arithmetic

notation	meaning
$egin{array}{c c} m \mid n \ m \nmid n \end{array}$	$m{m}$ divides $m{n}$. $m{m}$ does not divide $m{n}$.
$n \equiv r \pmod m$	$m\mid (n-r)$, that is, as m divides $n-r$, n and r have the same remainder when divided by m .
$\lfloor x floor$	floor function: largest integer not larger than $oldsymbol{x}$.
n mod m	(binary operator) remainder of n when divided by m (m is called the modulus, which we assume here to be a positive integer). Equal to $n-m\lfloor \frac{n}{m} \rfloor$. Note that $0 \leqslant r < m$. In C, Python, Java, and pari-gp, it can be computed using the % binary operator (applied to unsigned integers).
$\gcd(a,b)$	greatest common divisor of $oldsymbol{a}$ and $oldsymbol{b}$.
$\operatorname{lcm}(a,b)$	least common multiple of a and b ; equal to $ab/\gcd(a,b)$.
$\mathbb{Z}_{m{m}}$	set of equivalence classes modulo m ; slightly abusing the mathematical notation for equivalence classes, $\mathbb{Z}_m=\set{0,1,\ldots,m-1}.$

Modular arithmetic examples

- 1 | 10, 5 | 20, 7 | 7, 11 | 44, 3 ∤ 5
- $17 \equiv 7 \pmod{10}$, $27 \equiv 17 \pmod{10}$, $27 \equiv 7 \pmod{10}$
- $\lfloor 1.1 \rfloor = 1$, $\lfloor 7/3 \rfloor = 2$, $\lfloor -1.1 \rfloor = -2$
- 17 mod 6 = 5, 7 mod 6 = 1, (17×7) mod $6 = (5 \times 1)$ mod 6 = 5
- ullet $\gcd(15,25)=5$, $\gcd(7,6)=1$, when n is a positive integer, $\gcd(n,n+1)=1$
- lcm(15, 25) = 75, lcm(7, 6) = 42
- modulo m, the set of the integers \mathbb{Z} is partitioned into m equivalence classes; we can choose as representative for each equivalence class an integer from the set \mathbb{Z}_m ; for example, for m=5, we have

equivalence class with representative $0: \ldots, -5, \underline{0}, 5, 10, \ldots$ equivalence class with representative $1: \ldots, -4, \underline{1}, 6, 11, \ldots$ equivalence class with representative $2: \ldots, -3, \underline{2}, 7, 12, \ldots$ equivalence class with representative $3: \ldots, -2, \underline{3}, 8, 13, \ldots$ equivalence class with representative $4: \ldots, -1, \underline{4}, 9, 14, \ldots$

The binary mod operator we defined in the previous slide computes this representative.

More modular arithmetic examples

Tables for addition (on the left) and multiplication (on the right) modulo 7.

+	a ackslash b							
	0	0	1	2	3	4	5	6
	1	1	2	3	4	5	6	0
	2	2	3	4	5	6	0	1
	3	3	4	5	6	0	1	2
	4	4	5	6	0 1	1	2	3
	5	5	6	0	1	2	3	4
	6	6	0	1	2	3	4	5

X	$a \backslash b$	0	1	2	3	4	5	6
	0	0	0	0	0	0	0	0
	1	0	1	2	3	4	5	6
	2	0	2	4	6	1	3	5
	3	0	3	6	2	5	1	4
	$egin{array}{c c} a \setminus b \ \hline 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ \end{array}$	0	4	1	5	2	6	3
	5	0	5	3	1	6	4	2
	6	0	6	5	4	3	2	1

- All elements of \mathbb{Z}_7 have a symmetric value; given any a it is also possible to find a b, which is unique, such that $a+b\equiv 0\pmod m$. This is so in general.
- In this case all non-zero elements of \mathbb{Z}_7 have inverses. However, this is **not** general. An element a of \mathbb{Z}_m has an inverse if and only if $\gcd(a,m)=1$. The inverse of a, if it exists, is the (unique in \mathbb{Z}_m) b such that $ab\equiv 1\pmod{m}$.

Modular arithmetic in C

Addition, for small integers:

```
long add_mod(long a,long b,long m)
{ // assuming that 0 <= a,b < m, return (a+b) mod m
 long r = a + b;
 if(r >= m)
   r -= m;
 return r;
```

Addition, for arbitrary precision integers (using the GNU MP library):

```
#include <gmp.h>
void add_mod(mpz_t r,mpz_t a,mpz_t b,mpz_t m)
{ // assuming that 0 \le a,b \le m, compute r = (a+b) \mod m
 mpz_add(r,a,b); // r = a+b
  if(mpz_cmp(r,m) >= 0)
   mpz_sub(r,r,m); // r -= m
}
```

Modular arithmetic exercises

Use a program (and perhaps brute force) to compute:

- $(1122334455 \times 6677889900) \mod 349335433$
- $3^{-1} \mod 7$ (this one does not require a program but do it anyway, it can be used to check if your program is working properly)
- $4^{-1} \mod 7$ (neither does this one)
- $3^{-1} \mod 10$ (neither does this one)
- $271828^{-1} \mod 314159$ (just to warm up)
- \bullet 271828183⁻¹ mod 314159265 (now we're cooking!)
- \bullet 2718281828459⁻¹ mod 3141592653590 (can you handle this one?)
- \bullet 27182818284590452353602875 $^{-1}$ mod 31415926535897932384626434 (is the teacher sane?)

Fast modular multiplication

A modular multiplication requires a remainder operation, which is a slow operation if the modulus is a general integer. For example, contemporary processors can multiply two 64-bit integers, producing a 128-bit result, with a latency of 3 or 4 clock cycles. But, dividing a 128-bit integer by a 64-bit integer, producing a 64-bit quotient and a 64-bit remainder, is considerably slower (tens of clock cycles). [For more information about how many clock cycles elementary arithmetic operations take on Intel/AMD processors, take a look at Agner Fog's instruction tables.]

If the modulus is a power of two, say 2^n , the remainder operation is very fast; the remainder is just the last n bits of the number being remaindered. In 1985, Peter Montgomery came up with a beautiful way to explore this to efficiently perform general remaindering operations without performing an expensive division.

Homework: Read Peter's paper Modular Multiplication Without Trial Division. You can get extra information by searching the internet for "Montgomery modular multiplication".

The greatest common divisor

- ullet Let p_k be the k-th prime number, so that $p_1=2$, $p_2=3$, $p_3=5$, and so on.
- Each positive integer can the factored into prime factors in a unique way (this is the fundamental theorem of arithmetic).
- Let $a=\prod_{k=1}^\infty p_k^{a_k}$, where a_k is the number of times p_k divides a. Since a is a finite number, almost all of the a_k values will be zero.
- ullet Likewise of b, let $b=\prod_{k=1}^\infty p_k^{b_k}$.
- Then,

$$\gcd(a,b) = \prod_{k=1}^\infty p_k^{\min(a_k,b_k)}$$

and

$$ext{lcm}(a,b) = \prod_{k=1}^{\infty} p_k^{\max(a_k,b_k)}$$

- If gcd(a,b) = 1 then a and b are said to be relatively prime (or coprime).
- The greatest common divison can be generalized to polynomials with integer coefficients!

The greatest common divisor (algorithm)

Assume that $a\geqslant 0$ and that $b\geqslant 0$. Then:

- $\gcd(a,b)=\gcd(b,a)$, and so $\gcd(a,b)=\gcd(\max(a,b),\min(a,b))$. Thus, by exchanging a with b if necessary, we may assume that $a\geqslant b$.
- as any positive integer divides 0 we have gcd(a,0) = a for a > 0. The mathematicians say that gcd(0,0) = 0, and so we can say that gcd(a,0) = a as long as $a \ge 0$.
- If $a\geqslant b$ then $\gcd(a,b)=\gcd(a-b,b)$. We can keep subtracting b from (the updated) a until it becomes smaller than b, and so $\gcd(a,b)=\gcd(a\bmod b,b)=\gcd(b,a\bmod b)$.

These observations give rise to the following so-called Euclid's algorithm (coded in C, but it can easily be translated to another programming language):

```
long gcd(long a,long b)
{
  while(b != 0) { long c = a % b; a = b; b = c; } return a;
}
```

The GNU MP library has a function, mpz_gcd, for this; pari-gp does this with the gcd function.

The greatest common divisor (example)

Goal: to compute gcd(273,715).

- Step 1: gcd(273,715) = gcd(715,273).
- Step 2: $\gcd(715, 273) = \gcd(715 2 \times 273, 273) = \gcd(169, 273)$.
- Step 3: gcd(169, 273) = gcd(273, 169) = gcd(273-169, 169) = gcd(104, 169).
- Step 4: gcd(104, 169) = gcd(169, 104) = gcd(169-104, 104) = gcd(65, 104).
- Step 5: $\gcd(65, 104) = \gcd(104, 65) = \gcd(104 65, 65) = \gcd(39, 65)$.
- Step 6: $\gcd(39,65) = \gcd(65,39) = \gcd(65-39,39) = \gcd(26,39)$.
- Step 7: gcd(26,39) = gcd(39,26) = gcd(39-26,26) = gcd(13,26).
- Step 8: $\gcd(13, 26) = \gcd(26, 13) = \gcd(26 2 \times 13, 13) = \gcd(0, 13)$.
- Step 9: gcd(0,13) = gcd(13,0) = 13.

It is known that the computational complexity of computing $\gcd(a,b)$ is $\mathcal{O}(\log \max(a,b))$. Compute $\gcd(1538099040171999308, 1505213291912594821)$.

The extended Euclid's algorithm

- ullet The Euclid's algorithm starts a sequence with a and b and proceeds by doing modular reductions on consecutive terms of the sequence until zero is reached.
- But it is possible to do more!
- ullet Let the sequence begin with $x_0=a$ and $x_1=b$. At any time, let $x_k=s_ka+t_kb$. So, $s_0=t_1=1$, and $s_1=t_0=0$.
- ullet The next term of the sequence is given by $x_k=x_{k-2} mod x_{k-1}$. Let $q_k=\left\lfloor rac{x_{k-2}}{x_{k-1}}
 ight
 floor$. Then,

$$x_k = x_{k-2} - q_k x_{k-1}, \quad s_k = s_{k-2} - q_k s_{k-1}, \quad ext{and} \quad t_k = t_{k-2} - q_k t_{k-1}.$$

ullet We have to stop when $x_k=0$, at which time $\gcd(a,b)=x_{k-1}$. But here we know more:

$$x_{k-1} = s_{k-1}a + t_{k-1}b$$
.

If $\gcd(a,b)=1$ then $x_{k-1}=1$, and this formula allows us to compute easily

$$a^{-1} mod b = s_{k-1} mod b$$
 and $b^{-1} mod a = t_{k-1} mod a$.

The extended Euclid's algorithm (example)

Goal: apply the extended Euclid's algorithm to compute gcd(77, 54).

• The following table illustrates the computations done by the extended Euclid's algorithm.

$oldsymbol{k}$	x_k	q_k	s_k	$oldsymbol{t_k}$
0	77		1	0
1	54		0	1
2	23	1	1	-1
3	8	2	-2	3
4	7	2	5	-7
5	1	1	-7	10
6	0	7	54	-77

ullet Because $x_6=0$, the information we seek corresponds to the row with k=5. We have $\gcd(77,54)=1$, $77^{-1} mod 54=-7 mod 54=47$, and $54^{-1} mod 77=10$.

The GNU MP library has a function, mpz_gcdext, for this; pari-gp also has a function, gcdext, for this. Let a=830150497265848419 and b=472332647410202896. Compute $a^{-1} \bmod b$ and $b^{-1} \bmod a$.

Linear maps

- When working modulo m it suffices to work with integers in the range $0, 1, \ldots, m-1$, i.e., it suffices to work with \mathbb{Z}_m .
- Let

$$f(x; m, a) = (ax) \mod m$$

be the linear map $x\mapsto (ax) mod m$ from \mathbb{Z}_m into itself.

- Recall that a function f(x) is said to be linear if $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$ for all α , β , x, and y.
- ullet For example, for m=4 the linear map with a=2 (on the left) is **not** invertible, but the linear map with a=3 (on the right) is invertible.

map for $m=4$ and $a=2$	map for $m=4$ and $a=3$
$0\mapsto 0$	$0\mapsto 0$
$1\mapsto 2$	$1\mapsto 3$
$2\mapsto 0$	$2\mapsto 2$
$3\mapsto 2$	$3\mapsto 1$

Linear maps (continuation)

- Why are we interested in inverting the map? Because the map **scrambles** the elements of \mathbb{Z}_m and we may be interested in unscrambling them (think in cryptographic terms).
- So, what is the inverse map?
- It turns out that the inverse map, if it exists, is also a linear map.
- More specifically, the inverse map of $f(x,m,a \mod m)$ is $f(x,m,a^{-1} \mod m)$, where $a^{-1} \mod m$ is the modular inverse of $a \mod m$. Indeed, if $y = f(x;m,a) = ax \mod m$ then $x = a^{-1}y \mod m$.
- Since the modular inverse of a modulo m only exists when $\gcd(a,m)=1$ the linear map is invertible if and only if $\gcd(a,m)=1$.
- Keep in mind that we wish to devise a way to encrypt information by providing public data to do so (in this case it would be m and a).
- Alas, this way of scrambling information is very easy to unscramble, so useless from a cryptography point of view.
- ullet Modular multiplication scrambles the information but it is easy to undo if we known m and a. What about modular exponentiation?

Linear maps (a failed cryptosystem)

The Merkle-Hellman knapsack cryptosystem keeps the following information secret:

- ullet a set $W=\set{w_1,w_2,\ldots,w_n}$ of n positive integers, such that w_k is a super-increasing sequence, i.e., $w_k>\sum_{i=1}^{k-1}w_i$ for $2\leqslant k\leqslant n$,
- ullet a modulus m such that $m>\sum_{i=1}^n w_i$,
- ullet a scrambling integer a such that $\gcd(a,m)=1$,

and publishes the following information:

ullet set $W'=\{w'_1,w'_2,\ldots,w'_n\}$, where $w'_i=(aw_i) mod m$, for $1\leqslant i\leqslant n$.

Actually, it is **much** better to publish a random permutation of W'. (Homework: why?). To send a message composed by the n bits α_k , $1 \leqslant k \leqslant n$, compute and send

$$C = \sum_{k=1}^n lpha_k w_k'.$$

This is a hard knapsack problem (in this case a subset sum problem). To decipher transform it into a trivial knapsack problem by computing $a^{-1}C \mod m$, which is equal to $\sum_{k=1}^{n} \alpha_k w_k$ and so can be solved by a greedy algorithm.

Linear maps (Merkle-Hellman knapsack example)

The following example shows the Merkle-Hellman cryptosystem in action.

- ullet Secret data: $W=\set{1,3,5,12,22,47}$, m=100, and a=13.
- ullet Public data: $W' = \{\,13, 39, 65, 56, 86, 11\,\}$,
- Unencrypted message to be sent: $A = \{0, 0, 1, 1, 0, 1\}$.
- \bullet Encrypted message sent: $C=0\times 13+0\times 39+1\times 65+1\times 56+0\times 86+1\times 11=132.$
- To decrypt compute $132 \times 13^{-1} \mod 100 = 32 \times 77 \mod 100 = 64$ and then reason as follows [greedy algorithm for the easy subset sum problem]:
 - 1. 47 must be used to form the sum because 64>47. Hence $\alpha_6=1$. The rest of the sum is 64-47=17.
 - 2. 22 cannot be used to form the sum because 17 < 22. Hence $\alpha_5 = 0$.
 - 3. 12 must be used to form the sum because 17>12. Hence $\alpha_4=1$. The rest of the sum is 17-12=5.
 - 4. As so on. In this particular case, the next iteration finishes the deciphering process.

Fermat's little theorem

- The elements of \mathbb{Z}_m that have an inverse are called the **units** of \mathbb{Z}_m . The set containing all these units is denoted by \mathbb{Z}_m^* . When m is a prime number, $\mathbb{Z}_m^* = \set{1,2,\ldots,m-1}$.
- ullet Euler's totient function arphi(m) counts how many integers in \mathbb{Z}_m are relatively prime to m, i.e., it counts the number of elements of \mathbb{Z}_m^* . It can be computed using the formula

$$arphi(m) = m \prod_{p \mid m} \left(1 - rac{1}{p}
ight),$$

where the product is over the distinct **prime** factors of m.

- $ullet \varphi(m)$ can be computed in pari-gp with the eulerphi function.
- ullet Let $P=\prod_{k\in\mathbb{Z}_m^*}k$. P has to be relatively prime to m because each of its factors is relatively prime to m. [When m is prime then $P+1\equiv 0\pmod m$ — that's Wilson's theorem — but we will not use this fact here.]
- ullet Now assume that $a\in \mathbb{Z}_m^*$, i.e., that $\gcd(a,m)=1$, and let us now consider what the map f(x; m, a) does to the elements of \mathbb{Z}_m^* .
- It scrambles them! Because everything is relatively prime to m, \mathbb{Z}_m^* is mapped into itself! $[au \equiv av \pmod m$ implies $u \equiv v \pmod m$.] Furthermore, it is a bijection (a one-to-one map).

Fermat's little theorem (continuation)

ullet So, since the map $x\mapsto ax mod m$ when applied to \mathbb{Z}_m^* just reorders its elements, it follows that

$$Q \equiv \left(\prod_{k \in \mathbb{Z}_m^*} ak
ight) \equiv \left(a^{arphi(m)} \prod_{k \in \mathbb{Z}_m^*} k
ight) \equiv (a^{arphi(m)}P) \pmod m,$$

but also that (because of the reordering!)

$$Q \equiv P \pmod{m}$$
.

ullet Since $\gcd(P,m)=1$, $P^{-1} mod m$ exists, and so we can say that, for any $a\in \mathbb{Z}_m^*$, we have (this is Fermat's little theorem)

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$
.

ullet For a prime number p we have arphi(p)=p-1, and Fermat's little theorem takes the form $a^{p-1}\equiv 1\pmod p,$ for all a with $\gcd(a,p)=1.$

We can take care of the case $a \equiv 0 \pmod{p}$ by multiplying both sides by a:

$$a^p \equiv a \pmod{p}$$
, for all a .

Fermat's little theorem (examples)

ullet Let's see what happens for three distinct values of m (all exponentiations are done modulo m):

$$m = 7$$
, $e = \varphi(m) = 6$:

\boldsymbol{k}	k^e	k^{e+1}
0	0	0
1	1	1
2	1	2
3	1	3
4	1	4
5	1	5
6	1	6

(The values of k for which $\gcd(k,m)=1$ have a gray background.)

$$m = 10, e = \varphi(m) = 4$$
:

$oldsymbol{k}$	$m{k}^{m{e}}$	k^{e+1}
0	0	0
1	1	1
2	6	2
3	1	3
4	6	4
5	5	5
6	6	6
7	1	7
8	6	8
9	1	9

$$m=12$$
, $e=arphi(m)=4$:

$oldsymbol{k}$	$oldsymbol{k^e}$	\pmb{k}^{e+1}
0	0	0
1	1	1
2	4	8
3	9	3
4	4	4
5	1	5
6	0	0
7	1	7
8	4	8
9	9	9
10	4	4
11	1	11

- What happens for $m=2\times 3\times 5?$
- It looks like $a^{\varphi(m)+1} \equiv a \pmod{m}$ when m does not have repeated prime factors!

Chinese remainder theorem

- ullet Supose that you know that $x\equiv a\pmod m$ and that $x\equiv b\pmod n$.
- ullet From the first condition x has to be equal to a+km for some integer k.
- ullet But $a+km\equiv b\pmod n$, and so $k\equiv m^{-1}(b-a)\pmod n$. The modular inverse exists for sure if gcd(m, n) = 1, which we assume is the case here.
- ullet Therefore, we know that k=ln+c for some integer l, where $c=m^{-1}(b-a) mod n$. Note that c=0 when b=a.
- ullet Finally, we get x=a+cm+lmn, i.e., $x\equiv a+cm\pmod{mn}$.
- It is possible to reach the same conclusion more quickly:

$$x \equiv a(n^{-1} \bmod m)n + b(m^{-1} \bmod n)m \pmod {mn}.$$

ullet In general, if we know that $x\equiv a_k\pmod{m_k}$, for $1\leqslant k\leqslant K$, with the moduli m_k pairwise coprime (i.e., $\gcd(m_i, m_j) = 1$ when i
eq j) then, with $M = \prod_{k=1}^K m_k$ and $M_k=M/m_k$, we have

$$x \equiv \sum_{k=1}^K a_k (M_k^{-1} mod m_k) M_k \pmod M.$$

Chinese remainder theorem (problems)

Solve the following systems of congruences:

```
\begin{cases} x \equiv 0 \pmod{8} \\ x \equiv 1 \pmod{9} \end{cases} \qquad \begin{cases} x \equiv 1 \pmod{2} \\ x \equiv 2 \pmod{3} \\ x \equiv 4 \pmod{5} \end{cases} \\ \begin{cases} x \equiv 0 \pmod{8} \\ x \equiv 8 \pmod{16} \\ x \equiv 3 \pmod{5} \end{cases} \qquad \begin{cases} x \equiv 1 \pmod{2} \\ x \equiv 2 \pmod{5} \\ x \equiv 10 \pmod{7} \end{cases} \\ \begin{cases} x \equiv 1 \pmod{5} \\ x \equiv 2 \pmod{5} \\ x \equiv 2 \pmod{5} \end{cases} \end{cases} \qquad \begin{cases} x \equiv 1 \pmod{2} \\ x \equiv 10 \pmod{7} \\ x \equiv 10 \pmod{11} \\ x \equiv 12 \pmod{13} \end{cases} \\ \begin{cases} x \equiv 1 \pmod{3} \\ x \equiv 2 \pmod{5} \\ x \equiv 2 \pmod{5} \end{cases} \end{cases} \qquad \begin{cases} x \equiv 12345 \pmod{2718281828} \\ x \equiv 67890 \pmod{3141592653} \end{cases}
```

• Hint: pari-gp groks the chinese remainder theorem (chinese function). For example, the first problem on be solved in pari-gp by

```
chinese(Mod(0,8),Mod(1,9))
```

Fermat's little theorem (revisited)

ullet Let p be any prime number. By Fermat's little theorem we know that

$$x^{arphi(p)} \equiv x^{p-1} \equiv 1 \pmod p,$$
 when $\gcd(x,p) = 1$.

ullet It follows that for any integers r and x we have

$$x^{r(p-1)+1} \equiv x \pmod{p}$$
.

For $x \equiv 0 \pmod{p}$ this is obvious. For the other cases use Fermat's little theorem to adjust the exponent.

ullet Now consider a second prime, q, different from p. We also have, for any integer s,

$$x^{s(q-1)+1} \equiv x \pmod{q}$$
.

ullet Let t be the least common multiple of p-1 and q-1. If follows that

$$x^{t+1} \equiv x \pmod{p}$$
 and $x^{t+1} \equiv x \pmod{q}$.

• By the chinese remainder theorem this implies that

$$x^{t+1} \equiv x \pmod{pq}$$
.

Fermat's little theorem (conclusion)

- ullet The previous result can be generalized to $oldsymbol{K}$ primes.
- Let p_1, p_2, \ldots, p_K be K distinct primes. Here, p_1 is not necessarily the first prime (two) and so on.
- ullet Let P be their product: $P = \prod_{k=1}^K p_k$.
- ullet Let $oldsymbol{\lambda}(oldsymbol{P})$ be the so-called Carmichael function, given by

$$\lambda(P)=\lambda(p_1p_2\cdots p_K)=\mathrm{lcm}(p_1-1,p_2-1,\ldots,p_K-1).$$

ullet Then, for any integers $oldsymbol{k}$ and $oldsymbol{x}$, we have

$$egin{cases} x^{k\lambda(P)+1} \equiv x \pmod P, & ext{always,} \ x^{\lambda(P)} \equiv 1 \pmod P, & ext{when } \gcd(x,P) = 1. \end{cases}$$

- This result is often presented with $\lambda(P)$ replaced by $\prod_{k=1}^K \varphi(p_k) = \prod_{k=1}^K (p_k 1)$. The later is a multiple of the former.
- This means that in a modular exponentiation we may reduce the exponent modulo $\lambda(P)$ when $\gcd(x,P)=1$. When $\gcd(x,P)\neq 1$ things are more complicated.

Modular exponentiation

ullet The modular exponentiation $a^b \mod m$ can be done recursively using the following two observations:

$$a^{2n} mod m = (a^2)^n mod m$$
 and $a^{2n+1} mod m = a(a^2)^n mod m$.

If follows that it can be done using $\mathcal{O}(\log n)$ modular multiplications.

• Example:

$$13^{21} \mod 71 = 13 \times (13^2)^{10} \mod 71 = 13 \times 27^{10} \mod 71,$$
 $27^{10} \mod 71 = (27^2)^5 \mod 71 = 19^5 \mod 71,$ $19^5 \mod 71 = 19 \times (19^2)^2 \mod 71 = 19 \times 6^2 \mod 71,$ $6^2 \mod 71 = 36 \mod 71,$

backsubstituting...

$$19^5 \mod 71 = 19 \times 36 \mod 71 = 45 \mod 71,$$
 $27^{10} \mod 71 = 45 \mod 71,$ $13 \times 27^{10} \mod 71 = 17 \mod 71,$ $13^{21} \mod 71 = 17 \mod 71 = 17.$

Modular exponentiation (another way)

• Let the exponent n, with N+1 bits, be represented in base-2 as follows:

$$n=\sum_{k=0}^{N}n_k2^k.$$

• Then,

$$a^n mod m = a^{\sum_{k=0}^N n_k 2^k} mod m = \prod_{k=0}^N a^{n_k 2^k} mod m.$$

ullet Using the example of the previous slide, we have $n=21=10101_2$, so N=4. Thus,

$$k \ a^{2^k}$$
 use in the final product?

- 0 13 yes
- 1 27 no; note that $27 = 13^2 \mod 71$
- 2 19 yes; note that $19 = 27^2 \mod 71$
- 3 6 no; in general, each number is the square of the previous number
- 4 26 yes

So,
$$13^{21} \mod 71 = 13 \times 19 \times 26 \mod 71 = 17$$
.

 \bullet Compute $12345^{67890} \mod 123456789$.

Modular exponentiation (a slightly better way)

ullet It is possible to do slightly better (Brauer's algorithm). Let the exponent n, with d+1 base-B digits, be represented in base-B as follows:

$$n=\sum_{k=0}^d n_k B^k=n_0+Big(n_1+Big(n_2+B(\ldots+n_d)ig)ig).$$

The last equality is the Horner's rule to evaluate a polynomial. Note that $0 \leqslant n_k < B$. (Usually, B is a power of 2.)

• Then, $a^n \mod m$ can be evaluated using the following sequence of steps:

$$egin{array}{lll} r_0 = a^{n_d} mod m & r_1 = r_0^B & r_2 = a^{n_{d-1}} r_1 mod m & r_3 = r_2^B \ r_4 = a^{n_{d-2}} r_3 mod m & r_5 = r_4^B & \cdots & \cdots \ r_{2d} = r_{2d-1} a^{n_0} mod m & \end{array} \qquad egin{array}{lll} r_1 = r_0^B & r_2 = a^{n_{d-1}} r_1 mod m & \cdots \ r_5 = r_4^B & \cdots & \cdots \ \end{array}$$

• When B=8, the 8 possible values of $a^{n_k} \mod m$ can be precomputed and stored — in an interleaved way to avoid side-channel attacks — in memory.

first word of a^0	first word of a^1	first word of a^2	first word of a^3	first word of a^4	first word of a^5	first word of a^6	first word of a^7
second word of a^{0}	second word of a^1	second word of a^{2}	second word of a^3	second word of a^4	second word of a^5	second word of a^6	second word of a^7

• To explore further: addition chains.

Multiplicative order

- ullet Fermat's little theorem says that $x^{\lambda(m)} \equiv 1 \pmod m$ for any $x \in \mathbb{Z}_m^*$.
- ullet For a given $x\in \mathbb{Z}_m^*$ what is the least exponent o such that $x^o mod m = 1$?
- This least exponent is called the order of x modulo m (the function znorder computes this in pari-gp).
- The order **has** to be a divisor of $\lambda(m)$.
- ullet For a prime number p, $\lambda(p)=arphi(p)=p-1$.
- It turns out that there are $\varphi(p-1)$ elements of \mathbb{Z}_p^* with maximal order p-1. These elements are called **primitive roots**.
- pari-gp has a function, znprimroot, to compute one of them.
- They generate \mathbb{Z}_p^* multiplicatively. In particular, let r be one primitive root. Then, for $k=0,1,2,\ldots,p-2$, $r^k \bmod p$ takes all values of \mathbb{Z}_p^* (without repetitions).
- We can therefore speak of logarithms (modulo p), with respect to base r. The logarithm of $a = r^x \mod p$ in base r is obviously x. This so-called discrete logarithm problem is currently very hard to solve when p is large.

The discrete logarithm problem for \mathbb{Z}_p^*

- ullet Given a prime p, a primitive root r of p, and a, find x such that $a \equiv r^x mod p$.
- ullet This is a **hard problem** if p-1 has large factors:

ullet But, if p-1 only has small factors, the discrete logarithm problem is easy:

Primality tests

- ullet One way to prove that a given number m is prime is to find one of its primitive roots.
- ullet Choose a random a between 2 and m-2.
- If $gcd(a, m) \neq 1$, then m is not prime. Better yet, the greatest common divisor allow us to partially factor m.
- ullet By Fermat's little theorem we know that $a^{m-1} \equiv 1 \bmod m$. If this is not so, then definitely m is not prime.
- ullet Furthermore, when m is an odd number, we must have either $a^{(m-1)/2} \equiv 1 \mod m$ or $a^{(m-1)/2} \equiv -1 \mod m$.
- Now, it can be shown that a is a primitive root modulo m if, for every prime divisor d of m-1, we have $a^{(m-1)/d} \mod m \neq 1$. If a satisfies these conditions then the order of a modulo m must be m-1, and thus m must be prime.
- If not, try another a.
- These exist composite numbers, called Carmichael numbers, for which $a^{m-1} \mod m = 1$ for all a which are relatively prime to m. For these numbers, $\lambda(m) \mid (m-1)$.

The Miller-Rabin primality test

- ullet Goal: to test if the odd number n, with n>3, is a prime number or not.
- Result of the test: either n is definitely not prime or it may be prime (a probable prime number); in the second case, the probability that the test fails to identify a composite number is at most 0.25.
- How it is done (to increase the confidence on the result, do steps 2 to 6 several times):
 - 1. Let n-1 be written as $n-1=2^rd$, with d an odd number (so r is as large as possible).
 - 2. Select at random an integer a uniformly distributed in the interval $2\leqslant a\leqslant n-2$.
 - 3. If $gcd(a, n) \neq 1$, then n is definitely a composite number.
 - 4. Compute $x_0 = a^d \mod n$. If $x_0 = 1$ or $x_0 = n-1$ then n is a probable prime.
 - 5. Otherwise, for $k=1,2,\ldots,d-1$, compute $x_k=x_{k-1}^2 \mod n$. If $x_k=n-1$ then n is a probable prime.
 - 6. Finally, if we get here, say that n is definitely a composite number (because Fermat's little theorem failed because $a^{(m-1)/2} \equiv \pm 1 \mod m$).
- ullet The composite numbers that pass this test (meaning that the algorithm above says that they are probable primes) for a given a are called base-a strong pseudo-primes.

The Diffie-Hellman key exchange protocol

- Alice and Bob have never met but wish to exchange a secret key (perhaps to be used in the initialization stage of a symmetric-key cipher algorithm).
- They agree, on a public channel, on a prime p and on primitive root r modulo p. (Choose a prime number with an easy to find factorization of p-1, say a safe prime.)
- Alice generates a random number α between 2 and p-2, or, better yet, between $p^{0.8}$ and $p-p^{0.8}$, and sends Bob the integer $A=r^{\alpha} \bmod p$. She keeps α only to herself.
- ullet Likewise, Bob generates a random number eta between 2 and p-2, and sends Alice the integer $B=r^eta mod p$. He keeps eta only to himself.

For extra protection, make sure $\gcd(\alpha, p-1) = \gcd(\beta, p-1) = 1$. This forces A and B to be primitive roots.

- ullet Alice computes $S=B^lpha mod p=r^{etalpha} mod p=r^{lphaeta} mod p$.
- ullet Bob computes $S=A^eta mod p=r^{lphaeta} mod p$.
- They have arrived at the same number, which is their shared secret. They can now discard A, B, α , β , and p (do not reuse p many times).
- Anyone eavesdropping their communications (Eve?, Mallory?) has to either infer α from A or β from B. This is known as the discrete logarithm problem, which is currently a very hard problem to solve.

Diffie-Hellman key exchange protocol (exercises)

- ullet Let p=101 and r=2. Alice chooses lpha=52, and so A=97. Bob chooses eta=46and so B=82. Confirm that the common secret is S=58.
- ullet Let p=3141601 and r=26. Alice chooses lpha=2437429, and so A=1282989. Bob chooses eta = 2988228 and so B = 2426580. The common secret is S =1669355. Try to find lpha given A and to find eta given B.
- ullet Let p=31415926541 and r=10. Alice chooses lpha=29770170945, and so A=5728872032. Bob chooses $\beta=23956179675$ and so B=22727460975. The common secret is S=26991399064. Try to find lpha given A and to find eta given \boldsymbol{R}
- Let p = 3141592653589793239 and r = 6. Alice chooses

$$\alpha = 2459372999633886947$$
, and so $A = 2408130236552768716$.

Bob chooses

$$eta = 2502449096145193611, \qquad ext{and so} \qquad B = 434542471090467423.$$

The common secret is S=1267222359226852228. Can you find by yourself lpha given A and β given B? Hint: pari-gp does this with the znlog function.

Diffie-Hellman key exchange protocol (man-in-the-middle attack)

- Mallory, being a powerful individual, can intercept and replace all messages between Alice and Bob.
- Here's how he can compromise the Diffie-Hellman key exchange protocol.
- Mallory intercepts all messages coming from Alice in the Diffie-Hellman key exchange protocol and impersonates Bob. At the end of the key-exchange protocol he will share a secret key with Alice.
- Likewise, Mallory intercepts all messages coming from Bob in the Diffie-Hellman key exchange protocol and impersonates Alice. At the end of the key-exchange protocol he will share a secret key with Bob (different from the one he shares with Alice).
- From this point on, he decrypts all messages between them, using the appropriate shared secret key, and reencrypts them using the other shared secret key. He may even modify the messages.
- But Alice and Bob can counter this if they send their messages in two or more distinct parts in an interlocked fashion (this assumes that decoding can only be performed after all parts have been received). Also they can, and should, authenticate themselves to the other.

ElGamal public key cryptosystem

- ullet Alice and Bob agree on a large prime number p and on an element g of \mathbb{F}_p^* with a large prime order
- ullet Alice chooses a private key a, with 1 < a < p-1, and publishes $A = g^a mod p$.
- ullet Bob chooses a random ephemeral key $oldsymbol{k}$.
- ullet He uses Alice's public key A to compute $c_1=g^k mod p$ and $c_2=mA^k mod p$, where m is the plaintext.
- ullet He then sends (c_1,c_2) to Alice.
- ullet To recover the plaintext m, Alice computes $m=(c_1^a)^{-1}c_2 mod p$. This works because $(c_1^a)^{-1}c_2=g^{-ak}mg^{ak}=m mod p$.
- ullet An eavesdropper has to find k from c_1 (discrete logarithm problem).
- ullet A middle-man can easily manipulate c_2 ; for example, to replace m by 2m all that is necessary is to replace c_2 by $2c_2 mod p$.
- This public key cryptosystem, implemented exactly as above, has some security problems.

The Rivest-Shamir-Adleman cryptosystem

• The Rivest-Shamir-Adleman cryptosystem (or RSA for short), invented in 1977 on the MIT (but previously invented in 1973 by Clifford Cocks and kept classified by the GCHQ), is based on the observation (Fermat's little theorem) that when N is the product of two distinct prime numbers, i.e., N=pq, then for any x and any y we have

$$x^{k\lambda(N)+1} \equiv x \pmod{N}$$
.

• In particular, the transformation

$$y = x^e mod N$$

can be undone using the transformation

$$x=y^d oxnomean N$$

provided that

$$ed \equiv 1 \pmod{\lambda(N)},$$

i.e., provided that $e = d^{-1} mod \lambda(N)$.

Rivest-Shamir-Adleman cryptosystem (continuation)

- ullet The key observation is that this is easy to do only when $oldsymbol{\lambda}(oldsymbol{N})$ is known.
- ullet In turn, $oldsymbol{\lambda}(N)$ can be computed easily only when the factorization of N is known: $oldsymbol{\lambda}(N)=oldsymbol{\lambda}(pq)=\mathrm{lcm}(p-1,q-1).$
- Since the factorization of a large number is considered to be a hard problem for example RSA-250 was factored in 2020 using about 2700 core years given N and e it is hard to compute d, and thus to recover y given x.
- ullet It is thus possible to publish N and e without revealing too much information.
- ullet So, anyone using the RSA public key cryptosystem **publishes** hers/his own $oldsymbol{N}$ and $oldsymbol{e}$.
- ullet Sending a ciphered message to someone entails using that person's public modulus (N) and exponent (e)
- About the choice of the primes p and q:
 - 1. They should be random (**do not** reuse primes!)
 - 2. p-1 and q-1 should not have small prime factors

Rivest-Shamir-Adleman cryptosystem (continuation)

- ullet Alice wants to send a message M to Bob.
- ullet First, she fetches Bob's public encription data: a modulus $N_{
 m bob}$ and an encryption exponent $e_{
 m bob}$.
- ullet Then, she computes the ciphered message $C=M^{e_{
 m bob}} mod N_{
 m bob}$, and sends it to Bob.
- ullet Bob knows that $N_{
 m bob}=p_{
 m bob}q_{
 m bob}$ (the secret information that only he knows), and so he can compute $d_{
 m bob}$, the decryption exponent, such that $e_{
 m bob}d_{
 m bob}\equiv 1\pmod{\lambda(N_{
 m bob})}$.
- ullet Using $d_{
 m bob}$ he can decipher C: $M=C^{d_{
 m bob}} mod N_{
 m bob}$.
- This works because

$$C^{d_{ ext{bob}}} mod N_{ ext{bob}} = M^{e_{ ext{bob}}d_{ ext{bob}}} mod N_{ ext{bob}} = M^{k\lambda(N_{ ext{bob}})+1} mod N_{ ext{bob}} = M$$

• Note that the decryption can be done more efficiently using the Chinese remainder theorem (instead of doing one modular exponentiation modulo N do, perhaps in parallel, two modular exponentiations, one modulo p and another modulo q, and at the end combine them using the Chinese remainder theorem) — but, be aware of side-channel attacks...

Rivest-Shamir-Adleman cryptosystem (conclusion)

- The RSA cryptosystem can do even more: it is possible to ensure that the message came from a specified sender (that makes virtually impossible to forge a properly signed message)
- ullet Main idea: Alice computes a message digest (hash) S of the message she wants to send to Bob and enciphers it using her own modulus and **private** decryption exponent:

$$S_{
m alice} = S^{d_{
m alice}} mod N_{
m alice}$$

ullet Bob can recover $oldsymbol{S}$ using Alice's **public** data:

$$S_{ ext{alice}}^{e_{ ext{alice}}} mod N_{ ext{alice}} = S^{e_{ ext{alice}}d_{ ext{alice}}} mod N_{ ext{alice}} = S^{k\lambda(N_{ ext{alice}})+1} mod N_{ ext{alice}} = S$$

- ullet So, Bob decodes the message Alice sent him, computes its message digest, and compares it with the S obtained from the $S_{
 m alice}$ data. If they match it is almost certain that it was indeed Alice that has sent the message. Otherwise, someone else was trying to impersonate Alice.
- For this to actually **work**, Bob has to trust Alice's public data. So, that data has to be signed by a party trusted by everyone. Homework: Find out how certification chains and certification authorities work.

Rivest-Shamir-Adleman cryptosystem (big example)

In August 1977, in his Scientific American Mathematical games column, Martin Gardner posed the following RSA challenge.

- Character encoding: space is 00, A to Z are 01 to 26. Other two digits combinations are illegal.
- ullet The plain text is obtained by concatenating the two digits of each character encoding; the result is a large base-10 integer M.
- The plain text was then encoded using the modulus

N = 1143816257578888676692357799761466120102182967212423625625618429 35706935245733897830597123563958705058989075147599290026879543541

and the exponent e=9007. The encoded message is $C=M^e mod N$, with

 $C = 9686961375462206147714092225435588290575999112457431987469512093 \\ 0816298225145708356931476622883989628013391990551829945157815154.$

• What is M?

Rivest-Shamir-Adleman cryptosystem (solution of the big example)

• It took more than 10 years until N=pq was factored (in 1977 it was estimated that the factorization would take much more time!):

```
p{=}3490529510847650949147849619903898133417764638493387843990820577 q{=}32769132993266709549961988190834461413177642967992942539798288533.
```

ullet That made possible the computation of $d=e^{-1} mod \mathrm{lcm}(p-1,q-1)$;

```
d{=}2091239505016137369094193634681019577304618409300609087930484232 2045608569697121472257875853682203172258717888678557376735780271.
```

- ullet Once d was known, M was recovered from $M=C^d mod N$:
 - M = 200805001301070903002315180419000118050019172105011309190800151919090618010705.
- ullet 20 o T, 08 o H, 05 o E, and so on. (The complete decryption is in the first slide.)
- Any decryption exponent of the form $d + k \operatorname{lcm}(p-1, q-1)$ works. Try a few values of k to find the exponent with the smallest sideways addition (population count).

and

Rivest-Shamir-Adleman cryptosystem (padding)

Data source: section 7 of RFC 8017 (PKCS #1 RSA Cryptography Specifications Version v2.2).

• PKCS #1 v1.5 — avoid:

0	2	padding string (random non-zero bytes)	0	message
1	1	$\geqslant 8$, depends on the message size	1	$\geqslant 0$

Optimal Asymmetric Encryption Padding (OAEP) — use:

Finite fields

- It is now time to generalize the modular arithmetic concept.
- In the so-called **finite fields** we do arithmetic on integers modulo a **prime** number p and we work with **polynomials** with coefficients in \mathbb{Z}_p .
- There is one extra twist: we also work modulo a polynomial!
- So our modular arithmetic will have two different aspects:
 - \circ all integer arithmetic is done modulo a prime number p, and
 - \circ all polynomial arithmetic is done modulo a polynomial of degree d.
- Not all polynomials of degree d can be used as the modulus: only those that are irreducible can be used. Just like a prime number, a polynomial is irreducible modulo p if it is not possible to factor it modulo p.
- The irreducibility of the polynomial modulus is fundamental. It ensures that the only polynomial of degree smaller than that of the modulus polynomial that does not have an inverse is the zero polynomial (and that is a fundamental property of a field).

Finite fields (more info)

- The modulus polynomial can (and should) be a **monic** polynomial; the leading coefficient of a monic polynomial is one.
- Indeed, let P(x) be the modulus polynomial, and let A(x) be any polynomial. Then $A(x) \bmod P(x)$ is the remainder R(x) of the division of A(x) by P(x). We have A(x) = Q(x)P(x) + R(x), where Q(x) is the quotient:

$$egin{array}{c} A(x) \ P(x) \ R(x) \ Q(x) \end{array}$$

- Now, if we replace P(x) by $\alpha P(x)$, where α belongs to \mathbb{Z}_p^* recall that all integer arithmetic is done modulo p and that all elements of \mathbb{Z}_p^* are invertible then we have $A(x) = (\alpha^{-1}Q(x))(\alpha P(x)) + R(x)$, so the remainder is the case no matter how α was selected.
- When the (irreducible) modulus polynomial has degree k the finite field is usually denoted by \mathbb{F}_{p^k} or by $GF(p^k)$; in publications involving finite fields, p^k is often replaced by the easier to write q (if so, q has to be the power of a prime).
- ullet For the particular case k=1 we have that \mathbb{F}_p is the same as \mathbb{Z}_p .

Finite fields (example)

- Let us work with the prime p=5.
- Let us work with the irreducible polynomial (modulo 5):

$$P(x) = x^3 + x^2 + 3x + 4.$$

This irreducible polynomial was found using the following pari-gp code (tutorial):

(x.p gives the integer modulus, in this case 5).

ullet Each element of the finite field $\mathbb{F}(5^3)$ is a polynomial of the form

$$a_2x^2 + a_1x + a_0$$

where $a_0, a_1, a_2 \in \mathbb{F}_5$.

- \bullet Addition and subtraction of polynomials is done in the usual way (modulo 5).
- ullet Multiplications is done in the usual way, but replacing x^3 by $-x^2-3x-4$, i.e., by $4x^2+2x+1$. (Why?)

Finite fields (example)

- ullet Continuing the example of the previous slide, the quotient of the division of x^3 by P(x) is Q(x)=1, and so $x^3 mod P(x)=x^3-P(x)=-x^2-3x-4=4x^2+2x+1$.
- In pari-gp, this can be confirmed by doing
 x^3
- Here is a larger example:

pari-gp confirmation (the modulo arithmetic is done automatically):

$$x^5+4*x^4+3*x^3+x+3$$

Finite fields (useful algorithms)

- Euclid's algorithm works!
- In particular, the extended Euclid's algorithm can be used to compute inverses.
- The modular exponentiation algorithm also works.
- ullet Since in the finite field \mathbb{F}_q recall that $q=p^k$ we have

$$a^q=a$$
 for all $a\in\mathbb{F}_q$

(this is similar to Fermat's little theorem), the inverse can also be computed using

$$a^{-1} = a^{q-2}$$

- ullet Note that the exponents can be reduced modulo q-1.
- ullet The factorization of q-1 is something that is useful to know.

Finite fields (primitive elements)

- The invertible elements (the units) of \mathbb{F}_q form a set, denoted by \mathbb{F}_q^* .
- ullet For a finite field we have $\mathbb{F}_q^* = \mathbb{F}_q ackslash \{0\}$.
- ullet The order of an element of \mathbb{F}_q^* is the smallest exponent o for which $a^o=1$.
- ullet The order has to divide q-1, which is the number of elements of \mathbb{F}_q^* .
- A primitive element has maximal order.
- Repeated multiplication by the same primitive element **generates** \mathbb{F}_q^* ; when that happens the field is said to be a multiplicative cyclic group.
- There exist $\varphi(q-1)$ primitive elements: if r is a primitive element then r^e will also be a primitive element if and only if $\gcd(e,q-1)=1$.
- Therefore, there exist lots of primitive elements if q is large, so finding one is easy (if the factorization of q-1 is known, see next slide).
- In pari-gp we can compute a primitive element using the function ffprimroot().

Finite fields (one way to find a primitive polynomial)

Just like in standard modular arithmetic, r is a primitive element of \mathbb{F}_q^* if and only if

- $r^{q-1} = 1$, and
- ullet for every prime divisor d of q-1, we have $r^{(q-1)/d}
 eq 1$.

One way to find an irreducible polynomial is to find one of the primitive roots of the finite field it generates. So, to compute an irreducible polynomial of degree $m{k}$ when we are working modulo $m{p}$ — finite field \mathbb{F}_q with $q=p^k$ — do the following:

- 1. Choose a monic polynomial of degree k.
- 2. Choose a desired primitive element r, say, r=x (that choice is particularly useful, read the slide about cyclic redundancy checksums).
- 3. Check if r is a primitive element.
- 4. If so, the polynomial is irreducible, and we are done.
- 5. If not, then the polynomial may be irreducible but r is not a primitive element or it is not irreducible; go back to the beginning and try another polynomial.
- 6. Since there exist $\varphi(q-1)$ primitive elements when the polynomial is irreducible, and there exist $rac{1}{k}\sum_{d|k}\mu(d)p^d$ irreducible polynomials of degree k modulo p, this procedure finds one of them in a reasonable amount of time.

Applications of finite fields

The Diffie-Hellman key exchange protocol can be trivially extended to finite fields.

- Unique difference: Alice and Bob, instead of agreeing on a prime and on one of its primitive roots, have to agree on a finite field (prime p, irreducible monic polynomial of degree k) and on one of its primitive elements.
- Anyone wishing to infer the shared secret has to solve the discrete logarithm problem, in this case for finite fields.

Elliptic curves (discussed later in this course) also work in finite fields.

Shamir's secret sharing scheme also works in finite fields (discussed later in this course).

• Unique difference: the coefficients of the polynomials, instead of belonging to \mathbb{F}_p , belong to \mathbb{F}_{p^k} . Nice! Here we have polynomials whose coefficients are other polynomials (in another variable and subjected to modulo arithmetic in two distinct ways!)

Finite fields and Cyclic Redundancy Checksums (CRCs)

- The so-called cyclic redundancy checksum (CRC) is a way to compute a "signature" of a data set (used at the hardware level as a simple way to perform error detection).
- The data is transformed into a polynomial, and the CRC is just the remainder of that polynomial when divided by a known polynomial.
- ullet Usually, the modulus polynomial is an irreducible polynomial having x as one of its primitive elements (a so-called primitive polynomial).
- Furthermore, this is done with p=2, i.e., in the finite field \mathbb{F}_{2^k} . This is so because in the base field, $\mathbb{F}_2=\mathbb{Z}_2$, addition and multiplication are particularly simple: addition is the **exclusive-or** binary logic operator and multiplication is the **and** binary logic operator.
- They are not useful (i.e., unsafe) in cryptographic applications as a way to compute message hashes (due to its linear nature, it is trivial to forge a message having a specific message hash).
- But it can be used as a hash function in an implementation of a hash table.

Elliptic curves

- Now we get to play with some weird stuff.
- We will do addition is a strange way.
- The addition operator + is a binary operator; it takes two elements of a group and produces a third element of the same group.
- Addition properties (in any group):

commutative law
$$x+y=y+x$$
 associative law $x+(y+z)=(x+y)+z$

- Idea: suppose we have a plane curve with the following property: any straight line intersects it in exactly three points, counted with multiplicity. If so, the addition of two points on that line can be the third point!
- To make this work, it is necessary to treat the point at infinity as a legitimate point (use homogeneous coordinates, also known as projective coordinates). The point at infinity is the **neutral element**, and so it plays a fundamental role.
- Three intersection points ⇒ cubic equation.

Elliptic curves (cubic equation)

• The cubic equations we will consider have in the following form (Weierstrass parameterization):

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$$
.

- ullet Both $oldsymbol{x}$ and $oldsymbol{y}$ belong to a field $oldsymbol{F}$ (or are the point at infinity).
- With a change of variables (which in some cases cannot be done due to divisions by zero), the equation above can be put in the so-called Weierstrass form

(*)
$$y^2 = x^3 + ax + b$$
.

ullet The so-called discriminant of the curve E, whose points satisfy equation (*), is the quantity

$$\Delta(E) = -16(4a^3 + 27b^2).$$

To avoid degenerate curves this discriminant cannot be zero.

Elliptic curves (homogeneous coordinates)

- In homogeneous coordinates we add a third coordinate: z.
- (x,y) becomes (X,Y,Z).
- \bullet (X,Y,Z), for any $Z\neq 0$, corresponds to the two-dimensional point $(\frac{X}{Z},\frac{Y}{Z})$ [it's an equivalence class.
- ullet Z=0 represents the "points at infinity"; X and Y then specify the direction.
- ullet For an elliptic curve in Weierstrass form, $y^2=x^3+ax+b$, for very large x we have $ypprox\pm x^{3/2}$
- ullet So, very far from the origin, $oldsymbol{y}$ will be considerably larger than $oldsymbol{x}$.
- The homogeneous coordinates of the point at infinity (there are two but only one gets to be used) are (0, 1, 0).

Elliptic curves (pari-gp)

• In pari-gp, the general curve

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

can be specified using the command

• In pari-gp, the special curve

$$y^2 = x^3 + ax + b$$

can obviously be specified using the command

The shortcut

can also be used.

Elliptic curves over finite fields (pari-gp)

- In pari-gp it is also possible to specify the **field** over which all computations will be performed.
- This is specified in a second (optional) argument to ellinit.
- If this second argument
 - \star is missing or is the integer 1, the field will be $\mathbb Q$
 - \star is the integer p, a prime number, or is a Mod(*,p), the field will be \mathbb{F}_p
 - \star is the value returned by ffgen([p,k]), the field will be the finite field \mathbb{F}_{p^k}
 - \star is a real number, the field will be $\mathbb C$

It may also be a more exotic object.

- The number of points on the elliptic curve can be computed using the ellcard function.
- In the specific case of the field \mathbb{F}_p the number of points on the elliptic curve can also be computed using the more efficient ellsea function.

Playing with elliptic curves (pari-gp)

- To get a list of official pari-gp tutorials consult this web page.
- In particular, read the elliptic curves tutorial.
- Better yet, read the elliptic curves over finite fields tutorial.
- You can also look at the list of functions related to elliptic curves.
- Let's play!

Elliptic curves (adding two points — geometric interpretation)

• elliptic curve over \mathbb{Q} :

$$y^2 = x^3 - 5x + 4.$$

• pari-gp code:

```
E=ellinit([0,0,0,-5,4]);
P1=[0,2];
P2=[1,0];
ellisoncurve(E,P1)
ellisoncurve(E,P2)
P3=elladd(E,P1,P2);
```

- ullet Draw the line that passes through P_1 and P_2
- ullet That line intersects the elliptic curve at a third point: $-P_3$
- ullet Reflect it on the x axis to get the sum of P_1 and P_2

Elliptic curves (adding the point at infinity)

• elliptic curve over \mathbb{Q} :

$$y^2 = x^3 - 5x + 4.$$

• pari-gp code (the point at infinity is represented by [0]):

```
E=ellinit([0,0,0,-5,4]);
P1=[0,2];
ellisoncurve(E,P1)
ellisoncurve(E,[0])
P2=elladd(E,P1,[0]);
```

- The point of infinity is the **neutral** element (the zero).
- Adding to a point the point at infinity (intersection with a vertical line) leaves it unchanged.
- ullet Adding a point to its symmetric (its reflection on the x axis) gives rise to the point at infinity.

Elliptic curves (adding the same point — geometric interpretation)

• elliptic curve over \mathbb{Q} :

$$y^2 = x^3 - 5x + 4.$$

• pari-gp code:

We have

$$2P1 = \left(\frac{25}{16}, \frac{-3}{64}\right)$$
 $3P1 = \left(\frac{96}{625}, \frac{-28106}{15625}\right)$ $4P1 = \left(\frac{352225}{576}, \frac{209039023}{13824}\right)$

Elliptic curves (adding two points — some formulas)

ullet The equation of a straight line that passes through two distinct points (x_1,y_1) and (x_2,y_2) is

$$(x-x_1)(y_2-y_1)=(x_2-x_1)(y-y_1).$$

- ullet It can be put in the form Ax+By+C=0.
- ullet If the inverse of B exists (i.e., the line is not a **vertical** line), then we can say that y=Dx+E.
- ullet Putting this in the cubic equation $y^2=x^3+ax+b$ gives rise to a polynomial equation of third degree in x of the general form

$$x^3 + \alpha x^2 + \beta c + \gamma = 0.$$

- It has three solutions. Two of them must be x_1 and x_2 . The third one is the x coordinate of the point we are looking for.
- When we are working with rational numbers (\mathbb{Q}) because the sum of the roots is $-\alpha$ it follows that this third root must also be a rational number!

Multiplication by an integer (adding a point to itself several times)

- We can now define the mathematical operation that is useful for cryptographic purposes: multiplication of a point by an integer.
- This corresponds to adding a point with itself several times.
- In terms of cryptographic applications this corresponds roughly to the modular exponentiation done in finite fields.
- ullet Example: to compute, say, 11P we can proceed as follows:
 - 1. 11 = 1 + 2 + 8
 - 2. compute 2P = P + P
 - 3. compute 4P = (2P) + (2P)
 - 4. compute 8P = (4P) + (4P)
 - 5. finally, compute 11P = (1P) + (2P) + (8P)
- This multiplication algorithm is similar in spirit to the algorithm presented in the modular exponentiation slides.
- ullet Hard problem (on some elliptic curves): given $oldsymbol{P}$ and $oldsymbol{k}oldsymbol{P}$ find $oldsymbol{k}$.

Elliptic curves (aspect of the "curve" on a finite field)

• elliptic curve over \mathbb{F}_{199} :

$$y^2 = x^3 - 5x + 4.$$

• it has 218 points (including the point "at infinity"):


```
p=199;
E=ellinit([0,0,0,-5,4],p);
N=ellsea(E)
                 /* 218 */
P=Mod([41,57],p);
ellisoncurve(E,P) /* 1
Q=Mod([83,131],p);
ellisoncurve(E,Q) /* 1
R=elladd(E,P,Q);
lift(Q[1])
                 /* 167 */
lift(Q[2])
                  /* 119 */
```

Diffie-Hellman using elliptic curves

- We can now explain how the Diffie-Hellman secret sharing scheme can be done using elliptic curves.
- ullet Alice and Bob agree on an elliptic curve and on a point P of large order of that elliptic curve.
- ullet Alice chooses a private random integer k_A and sends $k_A P$ to Bob.
- ullet Bob chooses a private random integer k_B and sends $k_B P$ to Alice.
- The shared secret S is the point $k_A k_B P$; Alice and Bob can compute it easily using the private information they have and the information each received from the other one.
- A third party will have to attempt to compute k_A from the information Alice sent to Bob (over a possibly compromised channel) or to compute k_B from the information Bob sent to Alice. This can be a very hard problem (discrete logarithm for elliptic curves).

Let's play some more with elliptic curves in pari-gp

ullet Let's see how long it takes to compute $oldsymbol{k}$ given $oldsymbol{P}$ and $oldsymbol{k}oldsymbol{P}$:

```
#
bits=50;
p=nextprime(random([2^(bits-1)+1,2^bits-1]));
E=ellinit([0,0,0,1,1],p);
P=random(E);
o=ellorder(E,P)
k=random([2,o-2])
Q=ellmul(E,P,k);
elllog(E,Q,P)
```

Can we do RSA-like things with elliptic curves?

No...

```
bits=100:
p=nextprime(random([2^(bits-1)+1,2^bits-1]));
E=ellinit([0,0,0,1,1],p);
P=random(E);
o=ellorder(E,P);
k=0; while (gcd(k,o)!=1,k=random([2,o-2]);); /* public multiplier */
Q=ellmul(E,P,k);
kInv=lift(1/Mod(k,o)); /* private multiplier used for decoding
                                                                 */
R=ellmul(E,Q,kInv) /* we recover P
                                                                 */
```

- But here we do not have any hidden secret.
- We would need a point in an elliptic curve for which it would be extremely difficult to compute its order without knowing the "secret".

If you want to know more

- Edwards curves (alternative parameterization of elliptic curves) paper about them
- "Safe" elliptic curves
- Curve 25519, wikipedia

The discrete logarithm problem for elliptic curves

ullet Given points $oldsymbol{P}$ and $oldsymbol{Q}$ on an elliptic curve, find $oldsymbol{k}$ such that

$$Q = kP$$
.

• This is a **hard problem** if the order of **P** (number of times we have to add P to itself until reaching the point at infinity) is large and has large factors:

Secret sharing

Problem:

- n persons what to share a secret.
- **Any** group of *t* persons can recover the secret.
- ullet Obviously, $n\geqslant 1$ and $1\leqslant t\leqslant n$.
- On a computer program, the secret will ultimately be an integer.

How to do it:

• A trusted central entity prepares and distributes part of the secret (a secret share) to each person.

Hurdle to overcome:

ullet Knowing t-1 shares of the secret **must** not give **any** information about the secret.

Resilience to tampering:

ullet To completely destroy the secret n-t+1 secret shares have to be corrupted.

Secret sharing (how to do it, idea 1, when n=t)

- ullet Let the secret be the integer S, and let it have k bits.
- ullet Let the first n-1 shares of the secret, s_1 to s_{n-1} , be random integers with k bits.
- Let the last share of the secret be the exclusive-or of the secret with all the other shares of the secret (\oplus denotes here the bit-wise exclusive-or binary operator):

$$s_n = S \oplus s_1 \oplus s_2 \oplus \cdots \oplus s_{n-1}$$
.

• To recover the secret it is only necessary to perform an exclusive-or of all secret shares:

$$S=s_1\oplus s_2\oplus\cdots\oplus s_n.$$

- ullet Knowledge of n-1 secret shares does not give any information about the secret.
- It is possible to replace the bit-wise exclusive-or operations by addition and subtractions modulo m. In this case, the first n-1 secret shares are random integers from 0 to m-1, and the last secret share is $(S-s_1-s_2-\cdots s_{n-1}) \mod m$. To recover the secret it is only necessary to add all secret shares (modulo m, of course). If m is a prime number, we can replace addition by multiplication.

Secret sharing (how to do it, idea 2)

Blakley's secret sharing scheme:

- ullet The secret is a point P in a t-dimensional space.
- ullet Each share of the secret is a linear equation (with t unknowns) that has P has one of its solutions.
- ullet Putting together $oldsymbol{t}$ equations allows us to find $oldsymbol{P}$.
- It is necessary to ensure that the system of equations has a unique solution for all possible $C_t^n = \frac{n!}{t!(n-t)!}$ possible combinations of t equations chosen from the n equations, and that is cumbersome.
- ullet Each share of the secret is composed by t+1 numbers.
- ullet Improved security: the secret is kept **only** in one of the coordinates of the point P.
- Modular arithmetic should be used (why?).

Secret sharing (how to do it, idea 3)

Shamir's secret sharing scheme:

ullet The secret in the independent coefficient a_0 of a polynomial of degree t-1,

$$A(x)=\sum_{k=0}^{t-1}a_kx^k.$$

- ullet Each secret share in the pair $(x_k,A(x_k))$.
- ullet It is necessary to ensure that distinct values of x_k are used.
- Again, modular arithmetic should be used (why?).
- Each share of the secret is composed by only 2 numbers.

Things to think about:

- ullet Can we do it using square matrices for the a_k coefficients?
- ullet And how about for the a_k coefficients and for the x_k values?

Secret sharing (polynomial interpolation)

Given points (x_k, y_k) , for k = 0, 1, ..., n, with $x_i \neq x_j$ for $i \neq j$, compute the unique polynomial of degree n that passes through these points.

• Newton's interpolation formula:

$$P_0(x)=y_0,$$
 and, for $k=1,2,\ldots,n$,

$$P_k(x) = P_{k-1}(x) + ig(y_k - P_{k-1}(x_k)ig) rac{(x-x_0)\cdots(x-x_{k-1})}{(x_k-x_0)\cdots(x_k-x_{k-1})}.$$

• Lagrange's interpolation formula:

$$P_n(x) = \sum_{k=0}^n y_k \prod_{\substack{i=0\i
eq k}}^n rac{x-x_i}{x_k-x_i}.$$

If arithmetic modulo p is used we must have $x_i \not\equiv x_j \pmod{p}$ for $i \neq j$. If so, all modular inverses needed by Newton's or Lagrange's intepolation formulas exist.

Quadratic residues

- ullet Let n be a positive integer and let a be an integer such that $\gcd(a,n)=1$.
- ullet a is said to be a quadratic residue modulo n if and only if there exists a x such that $x^2 \equiv a \pmod n$.
- ullet When n is a prime number (n=p) there exist three cases:
 - 1. either a is a multiple of p, or
 - 2. a is a quadratic residue, or
 - 3. a is a not a quadratic residue (a quadratic nonresidue).
- The **Legendre** symbol $\left(\frac{a}{p}\right)$ captures this as follows

Quadratic residues (Legendre symbol)

ullet For p>2 the Legendre symbol satisfies the equation

$$\left(rac{a}{p}
ight)\equiv a^{rac{p-1}{2}}\pmod{p}.$$

(Recall that from Fermat's little theorem we know that $a^{p-1} \equiv 1 \pmod p$ when p does not divide a.)

- ullet So, $\left(rac{a}{p}
 ight)=\left(rac{a mod p}{p}
 ight)$ and, if a is not divisible by p, $\left(rac{a^2}{p}
 ight)=1$.
- In particular, it is possible to prove that

$$\left(rac{-1}{p}
ight)=(-1)^{rac{p-1}{2}}, \quad ext{that} \quad \left(rac{2}{p}
ight)=(-1)^{rac{p^2-1}{8}}, \quad ext{and that} \quad \left(rac{ab}{p}
ight)=\left(rac{a}{p}
ight)\left(rac{b}{p}
ight).$$

ullet If q is an odd prime, we also have (this is the famous law of quadratic reciprocity)

$$\left(rac{oldsymbol{q}}{oldsymbol{p}}
ight)=(-1)^{rac{(p-1)(q-1)}{4}}igg(rac{oldsymbol{p}}{oldsymbol{q}}igg).$$

ullet These properties allow us to easily compute the Legendre symbol for any a and p (if the factorization of a is known).

Quadratic residues (Legendre symbol computation)

- Example: Compute $\left(\frac{-14}{73}\right)$.
- $\bullet (\frac{-14}{73}) = (\frac{-1}{73})(\frac{2}{73})(\frac{7}{73})$
- $\bullet \ \left(\frac{-1}{73}\right) = (-1)^{36} = +1.$
- $\left(\frac{2}{73}\right) = (-1)^{666} = +1$.
- $\left(\frac{7}{73}\right) = (-1)^{108} \left(\frac{73}{7}\right) = \left(\frac{3}{7}\right)$.
- $ullet \left(rac{3}{7}
 ight) = (-1)^3 \left(rac{7}{3}
 ight) = \left(rac{1}{3}
 ight) = -1.$ (Obviously, $\left(rac{1}{p}
 ight) = +1.$)
- ullet So, putting it all together, we have $\left(rac{-14}{73}
 ight)=-1$
- pari-gp agrees (in pari-gp the Legendre symbol can be computed with the kronecker function):

kronecker(-14,73) /* returns -1 */

Quadratic residues (Jacobi symbol)

- The **Jacobi** symbol is an extension of the Legendre symbol to the case where the modulus is not a prime number.
- ullet Let $n=p_1^{m_1}p_2^{m_2}\cdots p_k^{m_k}$.
- The Jacobi symbol $\left(\frac{a}{n}\right)$ yes, it is denoted in exactly the same way as the Legendre symbol is given by

$$\left(rac{a}{n}
ight)=\left(rac{a}{p_1}
ight)^{m_1}\!\left(rac{a}{p_2}
ight)^{m_2}\cdots\left(rac{a}{p_k}
ight)^{m_k}.$$

(The right-hand side of this formula uses Legendre symbols!)

• Its properties are similar to those of the Legendre symbol, but we also have

$$\left(rac{a}{mn}
ight)=\left(rac{a}{m}
ight)\left(rac{a}{n}
ight).$$

• If $(\frac{a}{n})=-1$ then a is **not** a quadratic residue modulo nm. But, if $(\frac{a}{n})=+1$ then a may, or may not, be a quadratic residue modulo nm.

Quadratic residues (counts)

• For a prime p, the number of integers belonging to the set $\{1, 2, \ldots, p-1\}$ that are quadratic residues is exactly (p-1)/2.

```
a(n)=local(v,s);v=vector(eulerphi(n));s=0;\
    for(k=1,n,if(gcd(k,n)==1,s=s+1;v[s]=k;););return(v);
qr(n)=local(v);v=a(n); /* number (#) of true quadratic residues */\
    return(length(Set(vector(length(v),k,(v[k]^2)%n))));
j(n)=local(v,c);v=a(n); /* # of true or fake quadratic residues */\
    return(sum(k=1,length(v),kronecker(v[k],n)==1));
f(n)=return([eulerphi(n),qr(n),j(n)]);
f(101) /* returns [100,50,50] */
f(103) /* returns [102,51,51] */
f(107) /* returns [106,53,53] */
f(109) /* returns [108,54,54] */
```

• How about composite numbers that are the product of two distinct prime numbers?

```
f(13*17) /* returns [192,48,96] --- half are fakes! */
f(11*13) /* returns [120,30,60] --- half are fakes! */
f(11*19) /* returns [180,45,90] --- half are fakes! */
```


Quadratic residues (square roots)

- ullet Let p be a prime number of the form 4k+3 and let a be a quadratic residue modulo p, i.e., $\left(rac{a}{p}
 ight)=+1$.
- Then a has two square roots.
- They are given by the formula $r=\pm a^{\frac{p+1}{4}} \mod p$. This is so because if a is a quadratic residue we must have, by Fermat's little theorem, that $a^{\frac{p-1}{2}}=1 \mod p$, and so $a^{\frac{p+1}{2}}=a \mod p$. But (p+1)/2 is an even number so the square roots can be computed easily as stated above.
- If n is the product of two primes p and q of the form 4k+3 and if a is a quadratic residue modulo n then a will have **four** square roots. They can be easily computed using the Chinese remainder theorem. Two of them will have a Jacobi symbol of +1 and two will have a Jacobi symbol of -1.

• Example:

```
 p=11; \ q=19; \ n=p*q; \ r=20; \ a=lift(Mod(r^2,n)); \\ rp=lift(Mod(a,p)^((p+1)/4)); \ rq=lift(Mod(a,q)^((q+1)/4)); \\ r1=lift(chinese(Mod(rp,p),Mod(rq,q))); \ /* \ 20, \ (r1/p)=+1, \ (r1/q)=+1 */r2=lift(chinese(Mod(rp,p),Mod(-rq,q))); \ /* \ 75, \ (r2/p)=+1, \ (r2/q)=-1 */r3=lift(chinese(Mod(-rp,p),Mod(rq,q))); \ /* \ 134, \ (r3/p)=-1, \ (r3/q)=+1 */r4=lift(chinese(Mod(-rp,p),Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(chinese(Mod(-rp,p),Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rp,p),Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rp,p),Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rp,p),Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rp,p),Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rp,p),Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rp,p),Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rp,p),Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rp,p),Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rp,p),Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1 */r4=lift(range(Mod(-rq,q))); \ /* \ 189, \ (r4/p)=-1, \ (r4/q)=-1, \ (
```


Quadratic residues (square roots and factorization)

- Let n be the product of two primes.
- ullet Let a be a quadratic residue modulo n.
- Then, it will have four square roots.
- ullet Let x and y be two of then.
- ullet Then $x^2=y^2 mod n$, i.e., $x^2-y^2=(x-y)(x+y)=0 mod n$.
- ullet If y=x or y=-x, then the above equation gives us nothing.
- ullet Otherwise, we can factor n. Just compute $\gcd(x-y,n)$ and $\gcd(x+y,n)$.
- Example (continuation of the code of the previous slide):

```
p=11; q=19; n=p*q;
r1=20; r2=75; r3=134; r4=189; /* square roots of 191 */
gcd(r1-r2,n); /* 11 */
gcd(r1+r2,n); /* 19
```

• pari-gp can only compute square roots when the modulus is prime:

```
sqrt(Mod(5,11)) /* ok (because 5 is a quadratic residue) */
sqrt(Mod(9,14)) /* error (because the modulus is not prime) */
```


Zero-Knowledge proofs

- In a zero-knowledge proof one party (the prover) proves to another party (the verifier) that she/he knows a secret without revealing any information about it.
- Usually, the proof is probabilistic, i.e., the zero-knowledge proof has several rounds. The larger the number or rounds, the smaller the probability of an impostor faking the proof.

One of two oblivious transfer

- ullet Alice holds two items of information, say m_0 and m_1 .
- Bob wants to know one of these two items of information, but does not want Alice to know which one he wants.
- This problem is known as the oblivious transfer problem (in the case, one of two).
- It can be solved in several ways. We will do it here using RSA techniques.
- ullet N is Alice's public RSA modulus and e is the corresponding public exponent; d is the corresponding private decryption exponent.
- ullet At Bob's request, Alice generates two random messages x_0 and x_1 (random numbers smaller than N) and sends then to Bob.
- ullet Bob wants m_b , where $b \in \set{0,1}$. So, Bob generates a random k and computes and sends to Alice $v = (x_b + k^e) mod N$.
- Alice computes $m_0' = m_0 + (v x_0)^d \mod N$ and $m_1' = m_1 + (v x_1)^d \mod N$ and sends both to Bob. Either $(v x_0)^d \mod N$ or $(v x_1)^d \mod N$ will be equal to k, but Alice has no way of knowing which one is the case.
- ullet Bob computes $m_b=m_b'-k mod N$. He can not infer m_{1-b} from m_{1-b}'

Coin flipping

- Alice and Bob want to flip a coin (by telephone in Manuel Blum's 1981 paper) to decide who wins (in Blum's paper, who gets the car after a divorce).
- Actually, each one flips a coin and if they came out equal (two heads or two tails) Bob wins.
- How can this be done **fairly** and **without cheating** when the two are far apart?
- Using computers: square roots of quadratic residues!
 - 1. One of the two, say Bob, selects two large random primes p and q of the form 4k+3 (Blum primes!) and then computes n=pq. He then sends n to Alice.
 - 2. Alice chooses a random b and sends $a = b^2 \mod n$ to Bob.
 - 3. Bob computes the 4 square roots $\pm x$ and $\pm y$ of a, chooses one of then, let us call it r, and sends it to Alice.
 - 4. Alice checks if $\pm r = b$. If so, then Bob wins. If not, he looses.
 - 5. Alice proves her claims by disclosing b. (Observe that if Alice does not like the outcome she may simply do not finish the execution of this protocol, but that would be cheating.)
- To flip m coins, do step 2 m times, then step 3 m times and so on. It has to be done in this way because as soon as Alice receives the square roots from Bob she will likely be able to factor n (and so be able to change her choice of the b).

Zero-knowledge proofs of identity (main idea)

- Let us introduce two new protagonists:
 - 1. **Peggy**, who wishes to prove to Victor that she knows a secret
 - 2. **Victor**, who wishes to verify that Peggy knows the secret
- The proof will be based on challenge-response pairs and it will be probabilistic in nature.
- The probability that an impersonator is accepted (false proof) decreases as more challenge-response pairs are used.
- One of the first published ways to do it uses (again) the hardness of factoring large integers.
- ullet Again, the underlying problem is computing **square roots** modulo n=pq.

Zero-knowledge proofs of identity (Feige-Fiat-Shamir scheme)

Preparatory steps (disclosure of public information):

- ullet Peggy chooses a large number n that is the product of two primes of the form 4k+3 (such a number is called a Blum number). The interesting thing here is that -1 is not a quadratic residue modulo n but its Jacobi symbol has value +1; $x^2 \equiv -1 \pmod {pq}$ implies $x^2 \equiv -1 \pmod p$ and $x^2 \equiv -1 \pmod q$, so -1 can only be a quadratic residue modulo pq if it is a quadratic residue modulo both p and q, which is not the case here because -1 is not a quadratic residue for primes of the form 4k+3.
- ullet She also chooses k large random numbers S_1, S_2, \ldots, S_k coprime to n.
- ullet Finally, she also chooses each I_j (randomly and independently) as $\pm S_j^{-2} mod n$. The interesting thing here is that no matter which choice was made we always have $(\frac{I_j}{n}) = +1$, so without computing square roots an external observer cannot determine which choice was made. The S_j are witnesses of the quadratic character of the I_i .
- ullet She publishes n and the $I=I_1,I_2,\ldots,I_k$ (but keeps $S=S_1,S_2,\ldots,S_k$ secret).

Instead of publishing n herself, Peggy could have used any Blum integer computed by a trusted entity (the factors of n are not used anywhere in this scheme.)

Zero-knowledge proofs of identity (Feige-Fiat-Shamir scheme)

To generate and verify a proof of identity, Peggy and Victor execute the following T times (the higher T is the harder it will be to fake the proof of identity):

- Peggy chooses a random R and sends to Victor $X=\pm R^2 \mod n$. Here she also chooses the sign, either + or randomly, so X is, or isn't a quadratic residue. (Remember, zero knowledge leaked!)
- [The challenge] Victor send to Peggy the random vector of bits $E=E_1,E_2,\ldots,E_k$; each E_j is either 0 or 1.
- [The reply] Peggy computes and sends to Victor $Y=\pm R\prod_{E_j=1}S_j\mod n$; here, again, she chooses the sign in a random way.
- [The verification] Victor checks if $X=\pm Y^2\prod_{E_j=1}I_j\mod n$, and rejects immediately the proof if this is not so.
- Anyone trying to impersonate Peggy (Eve?) could try to guess the E_j let the guesses be E'_j them precompute the next round of the protocol by selecting a random Y and by presenting $X=\pm Y^2\prod_{E'_j=1}I_j$ when so requested. The probability of success of this cheating attempt is 2^{-k} per round (so, 2^{-kT} overall).

Schnorr Non-interactive Zero-Knowledge Proof

(To be explained in the next school year, but you can look at it now!)

Homomorphic encryption

- Idea: do some useful operation, or operations, using only encrypted data
- Example: in the RSA cryptosystem with unpadded messages, multiplication of the ciphertexts corresponds to multiplication of the plaintexts.
- Using a lot of processing power (and using somewhat cumbersome methods), it is possible to apply an arbitrary function (a logic function described by a boolean circuit) to the encrypted data (to know more, search for fully homomorphic encryption schemes and lattice-based cryptography).

Homomorphic encryption (Paillier cryptosystem)

- ullet Choose two large primes p and q. Ensure that p is not a factor of q-1, and vice-versa.
- ullet Compute n=pq and $\lambda=\mathrm{lcm}(p-1,q-1)$.
- ullet Select a random integer g in the interval $]0,n^2[$ that is coprime to n.
- ullet Compute $u=g^{\lambda} mod n^2$. It must be of the form u=vn+1.
- ullet Compute $\mu = \left((u-1)/n
 ight)^{-1} mod n$.
- The public key is (n,g).
- The private key is (λ, μ) .
- ullet To encrypt the plaintext m, with $0 \leqslant m < n$, select a random r such that 0 < r < n, and compute the ciphertext $c = g^m r^n \mod n^2$.
- ullet To decrypt, compute $x=c^\lambda mod n^2$. Them $m=((x-1)/n)\mu mod n$.

Bibliography (work in progress)

- 1. Eric Bach and Jeffrey Shallit, Algorithmic Number Theory, Volume 1, Efficient Algorithms, MIT Press, 1996.
- 2. Richard Crandall and Carl Pomerance, **Prime Numbers. A Computational Perspective**, second edition, Springer-Verlag, 2005.
- 3. Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno, **Cryptography Engineering. Design Principles and Practical Applications**, Wiley, 2010.
- 4. Steven Galbraith, Mathematics of Public Key Cryptography. Version 2.0, 2018.
- Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of Applied Cryptography, fifth printing, CRC Press, 2001.
- 6. Richard A. Mollin, Advanced Number Theory with Applications, CRC Press, 2009.
- 7. Richard A. Mollin, Codes. The Guide to Secrecy from Ancient to Modern Times, Chapman & Hall/CRC, 2005.
- 8. Bruce Schneier, Applied Cryptography. Protocols, Algorithms, and Source Code in C, second edition, Wiley, 1996.

Asymmetric key management

Applied Cryptography

1

Asymmetric key management : Goals

- - When and how should they be generated
- Exploitation of private keys
 - How can they be kept private
- Distribution of public keys
 - How can them be distributed correctly worldwide
- Lifetime of key pairs
 - Until when should they be used
 - How can one check the obsoleteness of a key pair

Applied Cryptography

Generation of key pairs: Design principles

- Good random generators for producing secrets
 - Bernoulli 1/2 generator
 - · Memoryless generator, unpredictability is crucial!!
 - P(b=1) = P(b=0) = 1/2
- Facilitate without compromising security
 - Efficient RSA public keys
 - Few bits, typically 2^k+1 values (3, 17, 65537 = $2^{16} + 1$)
 - · Accelerates operations with public keys
 - · No security issues
- ▷ Self-generation of private keys
 - To maximize privacy
 - This principle can be relaxed when not involving signatures

Applied Cryptography

3

Exploitation of private keys

- - The private key represents a subject
 - · Its compromise must be minimized
 - · Physically secure backup copies can exist in some cases
 - · The access path to the private key must be controlled
 - · Access protection with password or PIN
 - · Correctness of applications
- ▶ Confinement
 - Protection of the private key inside a (reduced) security domain (ex. cryptographic token)
 - · The token generates key pairs
 - The token exports the public key but never the private key
 - · The token internally encrypts/decrypts with the private key

Applied Cryptography

- Distribution to all **senders** of confidential data
 - Manual
 - Using a shared secret
 - · Ad-hoc using digital certificates
- Distribution to all **receivers** of digital signatures
 - · Ad-hoc using digital certificates
- > Trustworthy dissemination of public keys
 - Transitive trust paths / graphs
 If entity A trusts entity B and B trust in K_X⁺,
 then A trusts in K_X⁺
 - · Certification hierarchies / graphs

Applied Cryptography

Public key (digital) certificates

- Documents issued by a Certification Authority (CA)
 - · Bind a public key to an entity
 - Person, server or service
 - · Are public documents
 - · Do not contain private information, only public one
 - Are cryptographically secure
 - · Digitally signed by the issuer, cannot be changed
- - · A certificate receiver can validate it
 - · With the CA's public key
 - If the signer (CA) public key is trusted, and the signature is correct, then the receiver can trust the (certified) public key
 - As the CA trust the public key, if the receiver trusts on the CA public key, the receiver can trust on the public key

Applied Cryptography

Public key (digital) certificates

- - Mandatory fields
 - Version
 - Subject
 - · Public key
 - · Dates (issuing, deadline)
 - Issuer
 - Signature
 - · etc.
 - Extensions
 - · Critical or non-critical
- ▷ PKCS #6
 - Extended-Certificate Syntax Standard

- Binary formats
 - ASN.1 (Abstract Syntax Notation)
 - DER, CER, BER, etc.
 - PKCS #7
 - · Cryptographic Message Syntax Standard
 - PKCS #12
 - · Personal Information Exchange Syntax Standard
- Other formats
 - PEM (Privacy Enhanced Mail)
 - base64 encodings of X.509

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

Key pair usage

- > A key pair is bound to a usage profile by its public key certificate
 - · Public keys are seldom multi-purpose
- > Typical usages
 - Authentication / key distribution
 - Digital signature, Key encipherment, Data encipherment, Key agreement
 - Document signing
 - · Digital signature, Non-repudiation
 - · Certificate issuing
 - · Certificate signing, CRL signing
- Public key certificates have an extension for this
 - Key usage (critical)

© André Zúguete / Tomás Oliveira e Silva

Applied Cryptography

Certification Authorities (CA)

- Organizations that manage public key certificates
- Define policies and mechanisms for
 - Issuing certificates
 - · Revoking certificates
 - · Distributing certificates
 - Issuing and distributing the corresponding private keys
- Manage certificate revocation lists
 - Lists of revoked certificates

Applied Cryptography

Refreshing of asymmetric key pairs

- - · Because private keys can be lost or discovered
 - To implement a regular update policy
- ▶ Problem
 - · Certificates can be freely copied and distributed
 - The universe of certificate holders is unknown!
 - · Thus, cannot be told to eliminate specific certificates
- Solutions
 - · Certificates with a validity period
 - · Certificate revocation lists
 - · To revoke certificates before expiring their validity

Applied Cryptography

17

Certificate revocation lists (CRL)

- Base or delta
 - Complete / differences
- Signed list of identifyers of prematurely invalidated certificates
 - Can tell the revocation reason
 - · Must be regurlarly fetched by verifiers
 - e.g. once a day
- Single certificate validations
 - OCSP (RFC 6960) query/response
 - OCSP stappling (RFCs 6066, 6961, 8446)
- Publication and distribution of CRLs
 - Each CA keeps its CRL and allows public access to it
 - CAs exchange CRLs to facilitate their widespreading

RFC 3280

unspecified (0) keyCompromise (1) CACompromise (2) affiliationChanged (3) superseded (4) cessationOfOperation (5) certificateHold (6)

removeFromCRL (8) privilegeWithdrawn (9) AACompromise (10)

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

Distribution of public key certificates

- > Integrated with systems or applications
- Directory systems
 - Large scale
 - ex. X.500 through LDAP
 - Organizational
 - · ex. Windows 2000 Active Directory (AD)
- > Together with signatures
 - Within protocols using certificates for peer authentication
 - e.g. secure communication protocols (SSL, IPSec, etc.)
 - · As part of document signatures
 - · PDF/Word/XML, etc. documents, MIME mail messages

Applied Cryptography

21

Distribution of public key certificates

- □ User request to a service for getting a required certificate
 - e.g. request sent by e-mail
 - e.g. access to a personal HTTP page
- Useful for creating certification chains for frequently used terminal certificates
 - e.g. certificate chains for authenticating with the Cartão de Cidadão

Applied Cryptography

PKI (Public Key Infrastructure)

- ▷ Infrastructure for enabling the use of keys pairs and certificates
 - · Creation of asymmetric key pairs for each enrolled entity
 - · Enrolment policies
 - · Key pair generation policies
 - Creation and distribution of public key certificates
 - Enrolment policies
 - · Definition of certificate attributes
 - Definition and use of certification chains (or paths)
 - · Insertion in a certification hierarchy
 - · Certification of other CAs
 - Update, publication and consultation of CRLs
 - · Policies for revoking certificates
 - · Online CRL distribution services
 - · Online OCSP services
 - Use of data structures and protocols enabling inter-operation among components / services / people

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

PKI entities: Registration Authority (RA)

- ▷ The actual interface with certificate owners
 - Identification and authentication of certificate applicants
 - Approval or rejection of certificate applications
 - Initiating certificate revocations or suspensions under certain circumstances
 - Processing subscriber requests to revoke or suspend their certificates
 - Approving or rejecting requests by subscribers to renew or re-key their certificates

Image src: https://en.wikipedia.org/wiki/Public_key_infrastructu

Applied Cryptography

25

PKI entities: Validation Authority (VA)

- > A service that helps to validate certificates
 - OCSP service

Image src: https://en.wikipedia.org/wiki/Public key.infrastructure

Applied Cryptography

PKI:

Example: Cartão de Cidadão policies

• In loco, personal enrolment

- One for authentication
- One for signing data
- Generated in smartcard, not exportable
- Require a PIN in each operation

▷ Certificate usage (authorized)

- Authentication
 - SSL Client Certificate, Email (Netscape cert. type)
 - Signing, Key Agreement (key usage)
- Signature
 - · Email (Netscape cert. type)
 - Non-repudiation (key usage)

- PT root CA below global root (before 2020)
- PT root CA (after 2020)
- CC root CA below PT root CA
- CC Authentication CA and CC signature CA below CC root CA

- Signature certificate revoked by default
 - Removed if owner explicitly requires the usage of signatures
- Certificates revoked upon a owner request
 - · Requires a revocation PIN
- CRL distribution points explicitly mentioned in each certificate

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

27

PKI:

Trust relationships

- > A PKI defines trust relationships in two different ways
 - By issuing certificates for the public key of other CAs
 - · Hierarchically below; or
 - · Not hierarchically related
 - · By requiring the certification of its public key by another CA
 - · Above in the hierarchy; or
 - · Not hierarchically related

Usual trust relationships

- Hierarchical
- Crossed (A certifies B and vice-versa)
- Ad-hoc (mesh)
 - More or less complex certification graphs

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

Additional documentation

- ▷ [RFC 5280] Internet X.509 Public Key Infrastructure: Certificate and CRL Profile
 - Updated by RFCs 6818, 8398 and 8399
- Other RFCs

[RFC 4210] Internet X.509 Public Key Infrastructure Certificate Management Protocol (CMP) (+ RFC 6712)

[RFC 4211] Internet X.509 Public Key Infrastructure Certificate Request Message Format (CRMF) (+ RFC 9045)

[RFC 3494] Lightweight Directory Access Protocol version 2 (LDAPv2) to Historic Status

[RFC 6960] X.509 Internet Public Key Infrastructure Online Certificate Status Protocol – OCSP (+ RFC 8954)

[RFC 2585] Internet X.509 PKI Operational Protocols: FTP and HTTP

[RFC 4523] Internet X.509 PKI LDAPv2 Schema

[RFC 5519] Internet X.509 PKI Data Validation and Certification Server Protocols

[RFC 3161] Internet X.509 PKI Time-Stamp Protocol (TSP) (+ RFC 5816)

[RFC 3279] Algorithms and Identifiers for the Internet X.509 PKI Certificate and Certificate Revocation List (CRL) Profile (+ RFCs 4055, 5756, 4491, 5480, 8813, 5758 and 8692)

[RFC 5755] An Internet Attribute Certificate Profile for Authorization

[RFC 3647] Internet X.509 PKI Certificate Policy and Certification Practices Framework

[RFC 3709] Internet X.509 PKI: Logotypes in X.509 Certificates (+ RFC 3709)

[RFC 3739] Internet X.509 PKI: Qualified Certificates Profile

[RFC 3779] X.509 Extensions for IP Addresses and AS Identifiers

[RFC 3820] Internet X.509 PKI Proxy Certificate Profile

Applied Cryptography

Digital signatures

Applied Cryptography

1

Digital signatures: goals

- > Authenticate the contents of a document
 - Ensure its integrity
- > Authenticate its author
 - Ensure the identity of the creator/originator
- ⊳ Non-repudiation
 - Prevent signing repudiation

Applied Cryptography

Digital signatures: fundamental approach

> Signature generation

- Production of a value using a private key
- Signer (or signatory) is the private key owner

> Signature verification

- Validation of an expression using the signature and a public key
- Anyone can verify
 - · Since public keys can be universally known
- Signature can be linked to the public key owner

Applied Cryptography

3

Signature schemes

- The message is fully recovered upon a signature validation
- Signature validation is mandatory prior to message observation

- The signature is detached from the message
- The message can be observed anytime

Applied Cryptography

Key elements of a digital signature

- > The message (or document)
 - It only makes sense with the signed object
- > The signature date
 - Because is usually required
 - Because key pairs have validity periods
- > The identity of the signatory
 - · Otherwise it would not mean anything

Applied Cryptography

5

The document to sign

- ▷ It may accommodate digital signatures as appendixes
 - PDF, XML
 - DOCX (archive of XML components)
- Other formats may group document and signature
 - S/MIME (mail)
 - JOSE (JSON Object Signing and Encryption)

Applied Cryptography

The signature date

- ▷ It may be given by the signatory machine
 - Does not protect against time forgery attacks by the signatory
- It may be given by a Time Stamping Authority (TSA)
 - Does not protect against the future discovery of the private keys used

Applied Cryptography

7

The identity of the signatory

- □ Usually provided by a X.509 public key certificate
 - It provides several attributes of the identity
 - It provides the public key for signature validation
 - It provides the acceptable signing time frame
 - · Together with the respective CRL

Applied Cryptography

Optional elements of a digital signature

- > Attributes that can help to interpret it
 - Location
 - · Where it was signed
 - Reason
 - · Why it was signed
 - Appearance
 - Handwritten signature (usually without legal value)
 - Name of the signatory
 - · Date of signature
 - · Some kind of logo

Applied Cryptography

9

Digital signatures' algorithms

- Message recovery scheme
 - Asymmetric encryption and decryption
 - Only for RSA
- Verification info→K_x
 D(K_x, A_x(doc))

Check integrity of doc

- Message appendix scheme
 - Digest functions
 - Asymmetric signature and validation
 - RSA, ElGamal (DSA), EC
- ⊳ Signing

 $A_x(doc) = info + E(K_x^{-1}, h(doc+info))$ $A_x(doc) = info + S(K_x^{-1}, h(doc+info))$

Verification
 info→K_x

 $D(K_x, A_x(doc)) \equiv h(doc + info)$ $V(K_x, A_x(doc), h(doc + info)) = True$

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

RSA signatures

- ▷ Creation with private key
 - Validation with the corresponding public key
- ▷ Special padding for Signature Scheme w/ Appendix
 - RSASSA-PKCS#1 (v1.5)
 - Deterministic
 - RSASSA-PSS (Probabilistic Signature Scheme)
 - · Randomized (EMSA-PSS)
- - ASN.1 algorithm OID

Applied Cryptography

11

ASN.1 digest algorithm prefixes

Digest	ASN.1 OID	Perfix (bytes)																		
MD5	1.2.840.113549.2.5	30	20	30	0C	06	08	2A	86	48	86	F7	0D	02	05	05	00	04	10	
RIPEMD-160	1.3.36.3.2.1	30	21	30	09	06	05	2B	24	03	02	01	05	00	04	14				
SHA-1	1.3.14.3.2.26	30	21	30	09	06	05	2B	0E	03	02	1A	05	00	04	14				
SHA-224	2.16.840.1.101.3.4.2.4	30	2D	30	0D	06	09	60	86	48	01	65	03	04	02	04	05	00	04	1C
SHA-256	2.16.840.1.101.3.4.2.1	30	31	30	0D	06	09	60	86	48	01	65	03	04	02	01	05	00	04	20
SHA-384	2.16.840.1.101.3.4.2.2	30	41	30	0D	06	09	60	86	48	01	65	03	04	02	02	05	00	04	30
SHA-512	2.16.840.1.101.3.4.2.3	30	51	30	0D	06	09	60	86	48	01	65	03	04	02	03	05	00	04	40

© André Zúquete / Tomás Oliveira e Silva

Applied Cryptography

Blind signatures

- Signatures made by a "blinded" signer
 - Signer cannot observe the contents it signs
 - Similar to a handwritten signature on an envelope containing a document and a carbon-copy sheet
- □ Useful for ensuring anonymity of the signed information holder, while the signed information provides some extra functionality
 - Signer X knows who requires a signature (Y)
 - X signs T₁, but Y afterwards transforms it into a signature over T₂
 - Not any T_2 , a specific one linked to T_1
 - Requester Y can present T₂ signed by X
 - But it cannot change T₂
 - \cdot X cannot link T_2 to the T_1 that it observed when signing

Applied Cryptography

Chaum Blind Signatures

- > Implementation using RSA
 - Blinding
 - Random blinding factor K
 - $\mathbf{k} \times \mathbf{k}^{-1} \equiv 1 \pmod{N}$
 - $m' = k^e \times m \mod N$
 - Ordinary signature (encryption w/ private key)
 - $\cdot A_x (m') = (m')^d \mod N$
 - Unblinding
 - $\cdot A_x (m) = k^{-1} \times A_x (m') \mod$

Applied Cryptography

15

Qualified electronic signature

- An electronic signature compliant with the EU eIDAS Regulation
 - Regulation No 910/2014
- - · Over long periods of time

Applied Cryptography

Qualified electronic signature

- > Three main requirements:
 - The signatory must be linked and uniquely identified to the signature
 - The data used to create the signature must be under the sole control of the signatory
 - Must have the ability to identify if the data that accompanies the signature has been tampered with since the signing of the message

Applied Cryptography

17

Qualified electronic signature

- - This device uses specific hardware and software that ensures that the signatory only has control of their private key
- > A qualified trust service provider manages the signature creation data that is produced
 - But the signature creation data must remain unique, confidential and protected from forgery

Applied Cryptography

Signature devices

- - Smartcards
 - Cartão de Cidadão
- - Mainly for mobile devices
 - Chave Móvel Digital

Applied Cryptography

19

PKCS #11

- > Crypto tokens' standard interface
 - Cryptoki
- Enables applications to use arbitrary PKCS #11 libraries
 - Developed for a specific set of crypto tokens
- > Specification in C
 - There are interfaces for other languages

Applied Cryptography

Microsoft Cryptographic API (CAPI)

- - Applications use the abstractions it provides
- - Target-specific software module under the CAPI
 - It enables a particular functionality
 - Signature capabilities can be added with CSPs
 - For local crypto tokens
 - · For remote, cloud-based HSMs

Applied Cryptography

21

Long-Term Validation (LTV)

- > A document signature may become invalid upon an initial verification
 - Due to a late certification revocation
- > Signature algorithms may become vulnerable
 - Allowing signatures with old credentials to be forged
- > LTV attempts to handle both issues
 - With successive signature layers
 - · Performed by signed documents' holders

Applied Cryptography

LTV Advanced Electronic Signatures (AdES)

- > PAdES
 - PDF Advanced Electronic Signature
- - Cryptographic Message Syntax Advanced Electronic Signatures
- > XAdES
 - XML Advanced Electronic Signatures

Applied Cryptography