[2017] Simple Online and Realtime Tracking with a Deep Association Metric

2021年5月25日 16:33

Tags: 多目标跟踪; 实时; 单摄像头; DeepSORT

基本信息

```
@inproceedings{wojke2017simple, title={Simple online and realtime tracking with a deep association metric}, author={Wojke, Nicolai and Bewley, Alex and Paulus, Dietrich}, affiliation={University of Koblenz-Landau, Queensland University of Technology}, booktitle={2017 IEEE international conference on image processing (ICIP)}, pages={3645--3649}, year={2017}, organization={IEEE}}
```

主要贡献

1. 针对 Sort 算法容易出现跟踪失败,频繁切换标签的问题,引入了 外观特征,使得在较长时间的生命周期中,当目标对象受到遮挡,也能有较好的跟踪性能,有效缩减标签切换频次。

主要方法

Track Handling and State Estimation

假设: 摄像头是校准的, 不会自移动

状态估计

- 1. 目的: 预测对象在下一帧的位置信息。
- 2. 主要方法: Kalman filtering 卡尔曼滤波
- 3. 跟踪场景的定义: 8 维的状态空间 $(u, v, \gamma, h, \dot{x}, \dot{y}, \dot{\gamma}, \dot{h})$ 边界框的中心位置 (u, v), 长宽比 γ ,高度 h,以及它们各自的速度
- 4. 模型:标准的 kalman filter (匀速运动模型) + 线性观测模型
- 5. 说明: 当检测与轨迹关联时,使用预测值与观测值进行最优估计,更新目标状态;否则,使用 线性匀速模型更新状态

轨迹处理

- 1. 目的:确定什么时候产生新的轨迹,什么时候轨迹终止
- 2. 方法:
 - (1) 轨迹消亡:设定最大生命周期阈值: A_{max} 。对于任一 track k,从最后一次被成功关联帧开始计数,记为 a_k 。 a_k 在 Kalman filter预测时增加,当该 track 被成功关联时置 a_k = 0。当 a_k 大于阈值 A_{max} ,则认为轨迹离开消失,从 track set 中删除该轨迹信息
 - (2) 轨迹产生:出现无法与已有track 匹配的新 track 时,这些无法关联的 track 将在它们存在的前三帧中被认为是 暂时的。在此期间,若能成功关联,则认为是已有 track 的更新,否则,认为产生了一个新的 track。

Assignment Problem

- 1. 目的:将预测的目标状态 与 已有的目标 进行关联操作,融合 动作信息 和 外观信息
- 2. 方法: 匈牙利算法 (Hungarian algorithm) , 分配问题
- 3. 代价矩阵:
 - (1) 位置关联度:基于Kalman预测位置与检测位置,马氏距离

$$\begin{aligned} &d^{(1)}(i,j) = \left(d_j - y_i\right)^T S_i^{-1}(d_j - y_i) \\ &b^{(1)}_{i,j} = \mathbf{1} \big[d^{(1)}(i,j) \le t^{(1)} \big] \end{aligned}$$

设定阈值 $t^{(1)}$, 基于卡方分布 0.95 分位点, 对于 4 个自由度, $t^{(1)} = 9.4877$

(2) 外观关联度:深度神经网络抽取,余弦距离

与最后关联的 $L_k = 100$ 个track的外观进行匹配

$$\begin{split} & d^{(2)}(i,j) = mi \, n \, \Big\{ 1 - r_j^T r_k^{(i)} \Big| r_k^{(i)} \in R_i \Big\}, \ \, \big\| r_j \big\| = 1 \\ & b_{i,j}^{(2)} = \mathbf{1} \big[d^{(2)}(i,j) \leq t^{(2)} \big] \end{split}$$

(3) 信息融合: 马氏距离提供短时的位置信息, 余弦距离提供长时的外观信息

$$c_{i,j} = \lambda d^{(1)}(i,j) + (1 - \lambda)d^{(2)}(i,j)$$
$$b_{i,j} = \prod_{m=1}^{2} b_{i,j}^{m}$$

(4) 当镜头存在大量运动时,设置 $\lambda = 0$ 是合理的

Matching Cascade

- 1. 全局最优匹配存在的问题: 当一个 track 被长时间遮挡时,基于 Kalman Filter 的位置预测的不确定性将会增加。但当两个 track 匹配同一个 detection 时,马氏距离会更倾向于具有较大不确定性的track。这将导致跟踪更容易被中断以及不稳定的跟踪。
- 2. 级联匹配 Matching Cascade

Listing 1 Matching Cascade

Input: Track indices $\mathcal{T}=\{1,\ldots,N\}$, Detection indices $\mathcal{D}=\{1,\ldots,M\}$, Maximum age A_{\max}

- 1: Compute cost matrix $C = [c_{i,j}]$ using Eq. 5
- 2: Compute gate matrix $B = [b_{i,j}]$ using Eq. 6
- 3: Initialize set of matches $\mathcal{M} \leftarrow \emptyset$
- 4: Initialize set of unmatched detections $\mathcal{U} \leftarrow \mathcal{D}$
- 5: **for** $n \in \{1, ..., A_{\max}\}$ **do**
- 6: Select tracks by age $\mathcal{T}_n \leftarrow \{i \in \mathcal{T} \mid a_i = n\}$
- 7: $[x_{i,j}] \leftarrow \min_{\text{cost_matching}}(C, \mathcal{T}_n, \mathcal{U})$
- 8: $\mathcal{M} \leftarrow \mathcal{M} \cup \{(i,j) \mid b_{i,j} \cdot x_{i,j} > 0\}$
- 9: $\mathcal{U} \leftarrow \mathcal{U} \setminus \{j \mid \sum_{i} b_{i,j} \cdot x_{i,j} > 0\}$
- 10: end for
- 11: return \mathcal{M}, \mathcal{U}

3. 匹配算法描述:

- (1) 对于 confirmed track, 使用 级联匹配
- (2) 对于 unconfirmed track & unmatched track,使用 IOU 匹配,解决由于遮挡引起的外观急剧变化 造成的影响

Deep Appearance Descriptor

1. 网络结构:

Name	Patch Size/Stride	Output Size			
Conv 1	$3 \times 3/1$	$32 \times 128 \times 64$			
Conv 2	$3 \times 3/1$	$32\times128\times64$			
Max Pool 3	$3 \times 3/2$	$32 \times 64 \times 32$			
Residual 4	$3 \times 3/1$	$32 \times 64 \times 32$			
Residual 5	$3 \times 3/1$	$32 \times 64 \times 32$			
Residual 6	$3 \times 3/2$	$64 \times 32 \times 16$			
Residual 7	$3 \times 3/1$	$64 \times 32 \times 16$			
Residual 8	$3 \times 3/2$	$128\times16\times8$			
Residual 9	$3 \times 3/1$	$128\times16\times8$			
Dense 10		128			
Batch and ℓ_2 norm	128				

2. 训练数据集:基于 大规模 person re-identification dataset,超过 1,100,000张图片,以及 1,261个行人

实验结果

		MOTA ↑	MOTP ↑	MT↑	ML↓	ID↓	FM↓	FP↓	FN↓	Runtime ↑
KDNT [16]*	BATCH	68.2	79.4	41.0%	19.0%	933	1093	11479	45605	0.7 Hz
LMP_p [17]*	BATCH	71.0	80.2	46.9%	21.9%	434	587	7880	44564	$0.5\mathrm{Hz}$
MCMOT_HDM [18]	BATCH	62.4	78.3	31.5%	24.2%	1394	1318	9855	57257	35 Hz
NOMTwSDP16 [19]	BATCH	62.2	79.6	32.5%	31.1%	406	642	5119	63352	3 Hz
EAMTT [20]	ONLINE	52.5	78.8	19.0%	34.9%	910	1321	4407	81223	12 Hz
POI [16]*	ONLINE	66.1	79.5	34.0%	20.8%	805	3093	5061	55914	10 Hz
SORT [12]*	ONLINE	59.8	79.6	25.4%	22.7%	1423	1835	8698	63245	60 Hz
Deep SORT (Ours)*	ONLINE	61.4	79.1	32.8%	18.2%	781	2008	12852	56668	$40\mathrm{Hz}$

Table 2: Tracking results on the MOT16 [15] challenge. We compare to other published methods with non-standard detections. The full table of results can be found on the challenge website. Methods marked with * use detections provided by [16].