

planetmath.org

Math for the people, by the people.

arrows relation

Canonical name ArrowsRelation
Date of creation 2013-03-22 17:48:54
Last modified on 2013-03-22 17:48:54

Owner Henry (455) Last modified by Henry (455)

Numerical id 5

Author Henry (455)
Entry type Definition
Classification msc 05A18
Classification msc 03E05

Related topic PartitionsLessThanCofinality

Related topic ErdosRadoTheorem

Defines homogeneous

Defines arrows

Defines homogeneous set
Defines homogeneous subset

Let $[X]^{\alpha} = \{Y \subseteq X \mid |Y| = \alpha\}$, that is, the set of subsets of X of size α . Then given some cardinals κ , λ , α and β

$$\kappa \to (\lambda)^{\alpha}_{\beta}$$

states that for any set X of size κ and any function $f:[X]^{\alpha} \to \beta$, there is some $Y \subseteq X$ and some $\gamma \in \beta$ such that $|Y| = \lambda$ and for any $y \in [Y]^{\alpha}$, $f(y) = \gamma$.

In words, if f is a partition of $[X]^{\alpha}$ into β subsets then f is constant on a subset of size λ (a homogeneous subset).

As an example, the pigeonhole principle is the statement that if n is finite and k < n then:

$$n \to 2^1_k$$

That is, if you try to partition n into fewer than n pieces then one piece has more than one element.

Observe that if

$$\kappa \to (\lambda)^{\alpha}_{\beta}$$

then the same statement holds if:

- κ is made larger (since the restriction of f to a set of size κ can be considered)
- λ is made smaller (since a subset of the homogeneous set will suffice)
- β is made smaller (since any partition into fewer than β pieces can be expanded by adding empty sets to the partition)
- α is made smaller (since a partition f of $[\kappa]^{\gamma}$ where $\gamma < \alpha$ can be extended to a partition f' of $[\kappa]^{\alpha}$ by $f'(X) = f(X_{\gamma})$ where X_{γ} is the γ smallest elements of X)

$$\kappa \nrightarrow (\lambda)^{\alpha}_{\beta}$$

is used to state that the corresponding \rightarrow relation is false.

References

• Jech, T. Set Theory, Springer-Verlag, 2003

• Just, W. and Weese, M. Topics in Discovering Modern Set Theory, II, American Mathematical Society, 1996