LOOP CALLERS

Relating chromatin loops to GWAS studies in CLL
CARLOS MADARIAGA ARAMENDI
François Serra – Alba Lepore – Jon Sánchez

Chromatin loops

- What are they?
- How they occur?
- What is it function?
- When they happen?
- Types of looped structures

The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension

Chromatin loops

Definition and purpose

Tools that implement an algorithm which detects chromatin loops

This is made using Hi-C data; protocol derived from Chromosome Conformation Capture (3C) and its successors (4C & 5C), that allows to study the 3D structure of genomes

Using Hi-C data we can create an interaction map of the chromatin ,so we can infer the chromatin loops reflecting interactions of promoters & enhancers, gene loops, etc.

Hi-C interaction map for assembled A. Funestus scaffolds generated using the Juicebox Hi-C visualization program

Different Tools Available

- The different tools detect different loops
- Also the number of loops detected is different
- More accuracy analyzing the intersecting loops

HOMER

Detected Loops by different Software tools

HOMER

- Hypergeometric Optimization of Motif EnRichment
- Set of Motif Discovery and next-gen sequencing analysis too
- Analyze ChIP-Seq, GRO-Seq, RNA-Seq, DNase-Seq and Hi-C
- Installation: Using perl by command line
- Procedure: Trim FASTQ files, align them to the reference genome and assembly them into a HOMER-style tag directory. After that, the analysis is carried out to find the loops and regions of our interest.
- We can also use Hi-C Summary files (tab-delimired text files)

HiCCUPS

- Juicer tool that implements an algorithm for finding chromatin loops
- Juicer: one-click pipeline for processing Hi-C datasets
- Installation: It requires Juicer, which also requires some dependencies, as GNU, BWA or CUDA and NVIDIA GPU
- Usage: You need to specify the matrix size, the chromosomethie resolution(s), the Hi-C file to analyze and the output dire
- It outputs several files; the 'merged_loops' file is what we

MUSTACHE

- Multi-scale Detection of Chromatin Loops from Hi-C and Micro-C Maps using Scale-Space Representation
- Tool for multi-scale detection of chromatin loops from Hi-C and Micro-C contact maps in high resolutions
- Several ways to install it: Conda (recommended), Docker, PIP or Github.
- Input: Text format, Juicer .hic files, Cooler .cool and .mcool files. Output: TSV format
- Subject chromosome and resultion also need it to run the tool.

PEAKACHU

- Unveil Hi-C Anchors and Peaks
- Takes genome-wide contact data as input and returns coordinates of likely interactions such as chromatin loops.
- ML framework based on sklearn to generate random forest models trained on example interactions predicted by an arbitrary experiment
- Designed to accept any genome-wide contact map (Micro-C...)
- Requires several packages. Conda recommended to install
- Input: .cool or .hic files. Also .bedpe text file with training data.
- It can work as a regular loop caller with the 'score_genome' function

Traditional vs Modern Loop Callers

- Stephan Kadauke and Gerd A. Blobel. *Chromatin loops in gene regulation* Biochim Biophys Acta. 17–25 (2008)
- Joachim Wolff, Rolf Backofen, Björn Grüning. Loop detection using Hi-C data with HiCExplorer. bioRxiv. (2020)
- Salameh, T.J., Wang, X., Song, F. et al. A supervised learning framework for chromatin loop detection in genome-wide contact maps. Nat Commun 11, 3428 (2020)

References

THANK YOU FOR YOUR ATTENTION! ANY QUESTIONS?