ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA EN SISTEMAS

Nombre: Stiv Quishpe

Asignatura: Métodos Numéricos Fecha de entrega: 10/11/2024

CONJUNTO DE EJERCICIOS 1

Resuelva los siguientes ejercicios, tome en cuenta que debe mostrar el desarrollo completo del ejercicio.

- 1. Calcule los errores absoluto y relativo en las aproximaciones de p por p^* .
 - a. $p = \pi, p^* = \frac{22}{7}$
 - $p = \pi \approx 3.14159265$
 - $p^* = 22/7 \approx 3.14285714$
 - $Error_{absoluto} = |p p^*| = |3.14159265 3.14285714| = 1.2645 \times 10^{-3} \approx$ 0.0012645
 - $Error_{relativo} = \frac{|p-p^*|}{|p|} = \left| \frac{0.00126449}{3.14159265} \right| = 4.0245 \times 10^{-4} \approx 0.00040245$
 - b. $p = \pi, p^* = 3.1416$
 - $p = \pi \approx 3.14159265$
 - $p^* = 3.1416$
 - $Error_{abs} = |p p^*| = |3.14159265 3.1416| = 7.35 \times 10^{-6} \approx 0.00000735$
 - $Error_{rel} = \frac{|p-p^*|}{|p|} = \left| \frac{0.00000735}{3.14159265} \right| = 2.34 \times 10^{-6} \approx 0.00000234$
 - c. $p = e, p^* = 2.718$
 - $p = e \approx 2.71828183$
 - $p^* = 2.718$
 - $Error_{abs} = |p p^*| = |2.71828183 2.718| = 2.8183 \times 10^{-4} \approx 0.00028183$
 - $Error_{rel} = \frac{|p-p^*|}{|p|} = \left| \frac{0.00028183}{2.71828183} \right| = 1.037 \times 10^{-4} \approx 0.0001037$
 - d. $p = \sqrt{2}, p^* = 1.414$
 - $p = \sqrt{2} \approx 1.41421356$
 - $p^* = 1.414$
 - $Error_{abs} = |p p^*| = |1.41421356 1.414| = 2.136 \times 10^{-4} \approx 0.0002136$
 - $Error_{rel} = \frac{|p-p^*|}{|p|} = \left| \frac{0.0002136}{1.41421356} \right| = 1.51001 \times 10^{-4} \approx 0.00015101$
- 2. Calcule los errores absoluto y relativo en las aproximaciones de p por p^* .
 - a. $p = e^{10}, p^* = 22000$
 - $p = e^{10} \approx 22026.47$
 - $p^* = 22000$

 - $Error_{abs} = |p p^*| = |22026.47 22000| = 26.47$ $Error_{rel} = \frac{|p p^*|}{|p|} = \left| \frac{26.47}{22026.47} \right| = 1.202 \times 10^{-3} \approx 0.001202$
 - b. $p = 10^{\pi}, p^* = 1400$
 - $p = 10^{\pi} \approx 1385.46$
 - $p^* = 1400$
 - $Error_{abs} = |p p^*| = |1385.46 1400| = 14.54$
 - $Error_{rel} = \frac{|p-p^*|}{|p|} = \left| \frac{14.54}{1385.46} \right| = 0.010495$
 - c. $p = 8!, p^* = 39900$
 - $p = 8! \approx 40320$
 - $p^* = 39900$
 - $Error_{abs} = |p p^*| = |40320 39900| = 420$
 - $Error_{rel} = \frac{|p-p^*|}{|p|} = \left| \frac{420}{40320} \right| = 0.010417$
 - d. $p = 9!, p^* = \sqrt{18\pi}(9/e)^9$

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA EN SISTEMAS

- $p = 9! \approx 362880$
- $p^* = \sqrt{18\pi}(9/e)^9 \approx 359536.87$
- $Error_{abs} = |p p^*| = |362880 359536.87| = 3343.13$
- $Error_{rel} = \frac{|p-p^*|}{|p|} = \left| \frac{3343.13}{362880} \right| = 9.2128 \times 10^{-3} \approx 0.0092128$
- 3. Encuentre el intervalo más largo en el que se debe encontrar p^* para aproximarse a p con error relativo máximo de 10^{-4} para cada valor de p.
 - a. π $p = \pi \approx 3.14159265$ $\left|\frac{p p^*}{p}\right| \le 10^{-4}$ $-10^{-4} \le \frac{p p^*}{p} \le 10^{-4}$ $-10^{-4} \cdot p \le p p^* \le 10^{-4} \cdot p$ $p 10^{-4} \cdot p \le p^* \le p + 10^{-4} \cdot p$ $p \cdot (1 10^{-4}) \le p^* \le p \cdot (1 + 10^{-4})$ $3.14159265 \cdot (1 10^{-4}) \le p^* \le 3.14159265 \cdot (1 + 10^{-4})$ Intervalo $p^* = [3.14128, 3.14191]$
 - b. e $p = e \approx 2.71828183$ $\left|\frac{p-p^*}{p}\right| \leq 10^{-4}$ $-10^{-4} \leq \frac{p-p^*}{p} \leq 10^{-4}$ $-10^{-4} \cdot p \leq p-p^* \leq 10^{-4} \cdot p$ $p-10^{-4} \cdot p \leq p^* \leq p+10^{-4} \cdot p$ $p\cdot (1-10^{-4}) \leq p^* \leq p\cdot (1+10^{-4})$ $2.71828183 \cdot (1-10^{-4}) \leq p^* \leq 2.71828183 \cdot (1+10^{-4})$ Intervalo $p^* = [2.71801, 2.71855]$
 - c. $\sqrt{2}$ $p = \sqrt{2} \approx 1.41421356$ $\left|\frac{p p^*}{p}\right| \le 10^{-4}$ $-10^{-4} \le \frac{p p^*}{p} \le 10^{-4}$ $-10^{-4} \cdot p \le p p^* \le 10^{-4} \cdot p$ $p 10^{-4} \cdot p \le p^* \le p + 10^{-4} \cdot p$ $p \cdot (1 10^{-4}) \le p^* \le p \cdot (1 + 10^{-4})$ $1.41421356 \cdot (1 10^{-4}) \le p^* \le 1.41421356 \cdot (1 + 10^{-4})$ Intervalo $p^* = [1.41407, 1.41435]$
 - d. $\sqrt[3]{7}$ $p = \sqrt[3]{7} \approx 1.91293118$ $\left|\frac{p-p^*}{p}\right| \leq 10^{-4}$ $-10^{-4} \leq \frac{p-p^*}{p} \leq 10^{-4}$ $-10^{-4} \cdot p \leq p p^* \leq 10^{-4} \cdot p$ $p 10^{-4} \cdot p \leq p^* \leq p + 10^{-4} \cdot p$ $p \cdot (1 10^{-4}) \leq p^* \leq p \cdot (1 + 10^{-4})$ $1.91293118 \cdot (1 10^{-4}) \leq p^* \leq 1.91293118 \cdot (1 + 10^{-4})$ $Intervalo p^* = [1.91274, 1.91312]$
- 4. Use la aritmética de redondeo de tres dígitos para realizar lo siguiente. Calcule los errores absoluto y relativo con el valor exacto determinado para por lo menos cinco dígitos.

ESCUELA POLITÉCNICA NACIONAL **FACULTAD DE INGENIERÍA EN SISTEMAS**

a.
$$\frac{\frac{13}{14} - \frac{6}{7}}{2e - 5.4}$$

	Real	Aproximado
13/14	0.92857	0.929
6/7	0.85714	0.857
2e	5.4365	5.44
5.4	5.4	5.4

$$\frac{13}{14} - \frac{6}{7}$$

$$\frac{13}{2e - 5.4} = \frac{0.929 - 0.857}{5.44 - 5.4} = \frac{0.072}{0.04} = 1.8 \rightarrow Aprox. \quad 1.9569 \rightarrow Real$$

$$Error_{abs} = |p - p^*| = |1.9569 - 1.8| = 0.1569$$

$$Error_{rel} = \left|\frac{p - p^*}{p}\right| = \left|\frac{0.1569}{1.9569}\right| = 0.0801778$$
b. $10\pi + 6e - \frac{3}{61}$

b.
$$10\pi + 6e - \frac{3}{61}$$

		Real	Aproximado
Ī	10π	31.415	31.4
Ī	6e	16.309	16.3
Ī	3/61	0.049180	0.0492

$$-10\pi + 6e - \frac{3}{61} = -31.4 + 16.3 - 0.0492 = -15.1492 \rightarrow Aprox. -15.15518$$

$$\rightarrow Real$$

$$Error_{abs} = |p - p^*| = |-15.15518 - (-15.1492)| = 5.98 \times 10^{-3} \approx 0.00589$$

$$Error_{abs} = |p - p^*| = |-15.15518 - (-15.1492)| = 5.98 \times 10^{-3} \approx 0.00589$$

$$Error_{rel} = \left| \frac{p - p^*}{p} \right| = \left| \frac{0.00589}{-15.15518} \right| = 3.9458 \times 10^{-4} \approx 0.00039458$$

c.
$$\left(\frac{2}{9}\right) \cdot \left(\frac{9}{11}\right)$$

	Real	Aproximado
2/9	0.22222	0.222
9/11	0.81818	0.818

$$\frac{9/11}{\left(\frac{9}{9}\right) \cdot \left(\frac{9}{11}\right)} = 0.222 * 0.818 = 0.181596 \rightarrow Aprox. \quad 0.1818159596 \rightarrow Real$$

$$Error_{abs} = |p - p^*| = |0.1818159596 - 0.181596| = 2.1995 \times 10^{-4} \approx 0.00021995$$

$$Error_{rel} = \left|\frac{p - p^*}{p}\right| = \left|\frac{0.00022}{0.1818159596}\right| = 1.20979 \times 10^{-3} \approx 0.00120979$$

d.
$$\frac{\sqrt{13} + \sqrt{11}}{\sqrt{13} - \sqrt{11}}$$

	Real	Aproximado
$\sqrt{13}$	3.6055	3.61
$\sqrt{11}$	3.3166	3.32

$$\frac{\sqrt{13} + \sqrt{11}}{\sqrt{13} - \sqrt{11}} = \frac{3.61 + 3.32}{3.61 - 3.32} = 23.89655172 \rightarrow Aprox. \quad 23.96019384 \rightarrow Real$$

$$Error_{abs} = |p - p^*| = |23.96019384 - 23.89655172| = 0.063642$$

$$Error_{rel} = \left|\frac{p - p^*}{p}\right| = \left|\frac{0.063642}{23.96019384}\right| = 2.6562 \times 10^{-3} \approx 0.0026562$$

5. Los primeros tres términos diferentes a cero de la serie de Maclaurin para la función arcotangente son: $x - \left(\frac{1}{3}\right) x^3 + \left(\frac{1}{5}\right) x^5$. Calcule los errores absoluto y relativo en las siguientes aproximaciones de π mediante el polinomio en lugar del arcotangente:

$$p = \pi \approx 3.14159265$$
a. $4\left[arctan\left(\frac{1}{2}\right) + arctan\left(\frac{1}{3}\right)\right]$

$$C\'{a}lculo\ de\ arctan\left(\frac{1}{2}\right) : \frac{1}{2} - \left(\frac{1}{3}\right)\left(\frac{1}{2}\right)^3 + \left(\frac{1}{5}\right)\left(\frac{1}{2}\right)^5 \approx 0.464583$$

$$C\'{a}lculo\ de\ arctan\left(\frac{1}{3}\right) : \frac{1}{3} - \left(\frac{1}{3}\right)\left(\frac{1}{3}\right)^3 + \left(\frac{1}{5}\right)\left(\frac{1}{3}\right)^5 \approx 0.321811$$

$$p^* = 4(0.464583 + 0.321811) = 3.145576$$

$$Error_{abs} = |p - p^*| = |3.14159265 - 3.145576| = 3.9834 \times 10^{-3} \approx 0.0039834$$

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA EN SISTEMAS

$$Error_{rel} = \left| \frac{p - p^*}{p} \right| = \left| \frac{0.0039834}{3.14159265} \right| = 1.2679 \times 10^{-3} \approx 0.0012679$$

b.
$$16 \arctan\left(\frac{1}{5}\right) - 4 \arctan\left(\frac{1}{239}\right)$$
 $C\'{a}lculo\ de\ \arctan\left(\frac{1}{5}\right) : \frac{1}{5} - \left(\frac{1}{3}\right) \left(\frac{1}{5}\right)^3 + \left(\frac{1}{5}\right) \left(\frac{1}{5}\right)^5 \approx 0.197397$ $C\'{a}lculo\ de\ \arctan\left(\frac{1}{239}\right) : \frac{1}{239} - \left(\frac{1}{3}\right) \left(\frac{1}{239}\right)^3 + \left(\frac{1}{5}\right) \left(\frac{1}{239}\right)^5 \approx 4.1841 \times 10^{-3}$ ≈ 0.0041841 $p^* = 16(0.197397) - 4(0.0041841) = 3.1416156$ $Error_{abs} = |p - p^*| = |3.14159265 - 3.1416156| = 2.295 \times 10^{-5} \approx 0.00002295$ $Error_{rel} = \left|\frac{p - p^*}{p}\right| = \left|\frac{0.00002295}{3.14159265}\right| = 7.3052 \times 10^{-6} \approx 0.0000073052$

6. El número e se puede definir por medio de $e = \sum_{n=0}^{\infty} \left(\frac{1}{n!}\right)$, donde $n! = n(n-1) \cdots 2 \cdot 1$ para $n \neq 0$ y 0! = 1. Calcule los errores absoluto y relativo en la siguiente aproximación de e:

$$p = e \approx 2.71828$$

a.
$$\sum_{n=0}^{5} \left(\frac{1}{n!}\right)$$

$$\sum_{n=0}^{5} \left(\frac{1}{n!}\right) = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!}$$

$$= 1 + 1 + 0.5 + 0.1667 + 0.04167 + 0.008333 \approx 2.7167$$

$$Error_{abs} = |p - p^*| = |2.71828 - 2.7167| = 1.58 \times 10^{-3} \approx 0.00158$$

$$Error_{rel} = \left|\frac{p - p^*}{p}\right| = \left|\frac{0.00158}{2.71828}\right| = 5.8125 \times 10^{-4} \approx 0.00058125$$

7. Suponga que dos puntos (x_0, y_0) y (x_1, y_1) se encuentran en línea recta con $y_1 \neq y_0$. Existen dos fórmulas para encontrar la intersección x de la línea:

$$x = \frac{x_0y_1 - x_1y_0}{y_1 - y_0} \quad y \quad x = x_0 - \frac{(x_1 - x_0)y_0}{y_1 - y_0}$$
 Use los datos $(x_0, y_0) = (1.31, 3.24)y \quad (x_1, y_1) = (1.93, 5.76)$ y la aritmética de redondeo

a. Use los datos $(x_0, y_0) = (1.31, 3.24)y$ $(x_1, y_1) = (1.93, 5.76)$ y la aritmética de redondeo de tres dígitos para calcular la intersección con x de ambas maneras. ¿Cuál método es mejor y por qué?

Primera fórmula

$$x = \frac{(1.31)(5.76) - (1.93)(3.24)}{5.76 - 3.24} = \frac{7.5456 - 6.2532}{2.52} = \frac{1.2924}{2.52} \approx 0.5128571429$$

Segunda fórmula

$$x = 1.31 - \frac{(1.93 - 1.31)3.24}{5.76 - 3.24} = 1.31 - \frac{(0.62)3.24}{2.52} = 1.31 - \frac{2.0088}{2.52}$$

$$x = 1.31 - 0.7971428571 \approx 0.5128571429$$