Prof. Dr. Jan Bender Dynamische Simulation von Mehrkörpersystemen

MEHRKÖRPERSYSTEME

Interne/Externe Kräfte

- Externe Kräfte wirken von außen auf das System als Ganzes (z.B. Gravitation).
- Interne Kräfte wirken dagegen zwischen einzelnen Körpern des Systems (z.B. wenn diese untereinander mit Gelenken verbunden sind).
- Die Energie im Mehrkörpersystem muss konstant bleiben. Daher muss die Summe aller internen Kräfte Null sein.

Zwangsbedingungen

 Die Bewegungsfreiheit eines K\u00f6rpers kann durch Zwangsbedingungen eingeschr\u00e4nkt werden.

 Man unterscheidet dabei zwischen holonomen und nichtholonomen Zwangsbedingungen.

Holonome Zwangsbedingungen

 Eine holonome Zwangsbedingung beschränkt die Bewegung der Körper in Form einer impliziten Funktion

$$\mathbf{C}(\mathbf{x},t) = 0$$

- Diese Funktion hängt nur von der aktuellen Lage der Körper und von der Zeit t ab.
- Beispiel:

$$C(s_1, s_2) = s_1 - s_2 = 0$$

Video

Geschwindigkeitsänderung durch einen Impuls

Punktgeschwindigkeit

$$\mathbf{u}_a = \mathbf{v}_k + \boldsymbol{\omega}_k \times \mathbf{r}_{as}$$

 Änderung der Schwerpunktgeschwindigkeit

$$\mathbf{\Delta v}_k = \frac{1}{m_k} \, \mathbf{p}$$

Änderung der Winkelgeschwindigkeit

$$oldsymbol{\Delta \omega}_k = \mathbf{J}_k^{-1} \left(\mathbf{r}_{bs} imes \mathbf{p}
ight)$$

Matrix K

$$\mathbf{K}_{a,b}(t) := \begin{cases} \frac{1}{m_k} \mathbf{E}_3 - \mathbf{r}_{as}^*(t) \mathbf{J}_k^{-1}(t) \mathbf{r}_{bs}^*(t) & \text{falls K\"orper } k \text{ dynamisch} \\ \mathbf{0} & \text{sonst} \end{cases}$$

$$\mathbf{\Delta u}_a(t) = \mathbf{K}_{a,b}(t) \cdot \mathbf{p}$$

Gelenke

- Bei der impulsbasierten Simulation wird für jedes Gelenk eine Gelenk- und eine Geschwindigkeitsbedingung definiert.
- Die Gelenkbedingung reduziert die Freiheitsgrade der Körper.
- Die Geschwindigkeitsbedingung eliminiert die relative Geschwindigkeit des reduzierten Freiheitsgrades.

Beispiel: Kugelgelenk

Gelenkbedingung

$$|\mathbf{a}(t) - \mathbf{b}(t)| \le \varepsilon_{pos}$$

Geschwindigkeitsbedingung

$$|\mathbf{u}_a(t) - \mathbf{u}_b(t)| \le \varepsilon_v$$

Simulation von Gelenken

Rotation eines Vektors

Die Veränderung eines Ortsvektors

$$\mathbf{r}_p = \mathbf{p} - \mathbf{s}_k$$

in einem Starrkörper k wird durch die folgende Differentialgleichung beschrieben:

$$\dot{\mathbf{r}}(t) = \boldsymbol{\omega}(t) \times \mathbf{r}(t)$$

Gelenkbedingung

Bestimmen des Abstands

$$\mathbf{d}(t_0 + h) = \mathbf{b}(t_0 + h) - \mathbf{a}(t_0 + h)$$

 \Rightarrow Approximation der Geschwindigkeitsänderung:

$$\frac{1}{h}\,\mathbf{d}(t_0+h)$$

Gelenkbedingung

Berechnen des Korrekturimpulses

Der gesuchte Impuls **p** wird durch Lösen der folgenden Gleichung bestimmt:

$$\mathbf{K}(t) = \mathbf{K}_{a,a}(t) + \mathbf{K}_{b,b}(t)$$
$$\mathbf{K}(t_0) \cdot \mathbf{p} = \frac{1}{h} \mathbf{d}(t_0 + h).$$

Eigenschaften

- ullet Die Matrix $\mathbf{K}(t)$ hat die folgenden Eigenschaften:
 - Sie ist konstant für einen Zeitpunkt t,
 - positiv definit,
 - symmetrisch und
 - regulär.
- > Daher ist sie schnell invertierbar.

Gelenkbedingung

Impuls zum Zeitpunkt t_0 anwenden

Durch den Impuls **p** ergibt sich die folgende Geschwindigkeitsänderung für die Körper:

$$\Delta \mathbf{v_1} = \frac{1}{m_1} \mathbf{p}, \ \Delta \boldsymbol{\omega_1} = \tilde{\mathbf{J}}_1^{-1} (\mathbf{r}_a \times \mathbf{p})$$
$$\Delta \mathbf{v_2} = -\frac{1}{m_2} \mathbf{p}, \ \Delta \boldsymbol{\omega_2} = -\tilde{\mathbf{J}}_2^{-1} (\mathbf{r}_b \times \mathbf{p})$$

Geschwindigkeitsbedingung

Geschwindigkeitsdifferenz

Bestimmen der Geschwindigkeitsdifferenz der Gelenkpunkte:

$$\Delta \mathbf{u}(t) = \mathbf{u}_b(t) - \mathbf{u}_a(t).$$

Geschwindigkeitsbedingung

Berechnen des Korrekturimpulses

Der gesuchte Impuls wird durch Lösen der folgenden Gleichung bestimmt:

$$\mathbf{K}(t_0+h)\cdot\mathbf{p}_v=\mathbf{\Delta}\mathbf{u}(t_0+h).$$

Geschwindigkeitsbedingung

Impuls anwenden

Der Impuls \mathbf{p}_v wirkt zum Zeitpunkt t_0+h auf die Körper und ergibt die folgende Geschwindigkeitsänderung:

$$\Delta \mathbf{v_1} = \frac{1}{m_1} \mathbf{p}_v, \ \Delta \boldsymbol{\omega_1} = \tilde{\mathbf{J}_1}^{-1} (\mathbf{r}_a \times \mathbf{p}_v)$$
$$\Delta \mathbf{v_2} = -\frac{1}{m_2} \mathbf{p}_v, \ \Delta \boldsymbol{\omega_2} = -\tilde{\mathbf{J}_2}^{-1} (\mathbf{r}_b \times \mathbf{p}_v)$$

Systeme von Gelenken

- In Systemen mit mehreren Gelenken entstehen Abhängigkeiten zwischen den einzelnen Bedingungen.
- Diese müssen bei der Berechnung der Impulse berücksichtigt werden.

Iteratives Verfahren

Literatur

- David Baraff, "Physically Based Modeling",
 Siggraph 2001 course notes,
 http://www.pixar.com/companyinfo/research/pbm2001
- David Baraff, "Linear-time dynamics using Lagrange multipliers", Siggraph 1996
- Joachim W. Baumgarte, "Stabilization of constraints and integrals of motion in dynamical systems", Computer Methods in Applied Mechanics and Engineering, 1972

Literatur

- Herbert Goldstein, Charles P. Poole und John L.
 Safko, "Klassische Mechanik", 2006
- Friedrich Wagner, "Konzepte und Methoden zu allgemeinen, physikalisch basierten Animationssystemen auf der Grundlage der Lagrange-Faktoren-Methode", Universität Rostock, 2001
- Jan Bender, "Impulsbasierte Dynamiksimulation von Mehrkörpersystemen in der virtuellen Realität", Universität Karlsruhe, 2007