Appunti di analisi 1

Alexandru Gabriel Bradatan

Data compilazione: 29 settembre 2019

Indice

1	Insi	iemi
2	Insi	iemi numerici
	2.1	Numeri naturali
		2.1.1 Proprietà
		2.1.2 Operazioni definite
		2.1.3 Principio del minimo intero
		2.1.4 Il principio di induzione
		2.1.5 Fattoriale
		2.1.6 Coefficiente binomiale
		2.1.7 Binomio di Newton
	2.2	Numeri interi relativi
		2.2.1 Costruzione
		2.2.2 Operazioni definite
	2.3	Numeri razionali
		2.3.1 Costruzione
		2.3.2 Operazioni definite
		2.3.3 La rappresentazione decimale
	2.4	I numeri reali
		2.4.1 Operazioni definite
		2.4.2 Assioma di completezza
	2.5	Numeri complessi
		2.5.1 Costruzione
		2.5.2 Operazioni
3	Son	nmatoria
4	La	produttoria
5	Inte	ervalli e intorni
	5.1	Intervallo
	5.2	Intorno
6	Insi	iemi limitati
	6.1	Massimo di un insieme limitato
	6.2	Minimo di un insieme limitato
	6.3	Maggiorante di un insieme limitato
	6.4	Minorante di un insieme limitato
	6.5	Estremo superiore di un insieme limitato
	6.6	Estremo inferiore di un insieme limitato
	6.7	Collegamento tra estremo inferiore (superiore) e l'assioma di completezza

1 Insiemi

Vedi appunti di geometria e algebra lineare.

2 Insiemi numerici

2.1 Numeri naturali

Sono i numeri interi positivi incluso lo 0. Può essere costruito a partire da un solo numero (lo 0) basta aggiungendo un'unità ogni volta.

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}$$

2.1.1 Proprietà

Contiene sempre il successore di ogni suo elemento (principio di induzione). Gode della relazione d'ordine ≤, il che lo rende un insieme ordinato. N, come tutti i suoi sottoinsiemi, godono del principio del minimo intero che lo rende, insieme ai suoi sottoinsiemi, un insieme ben ordinato.

2.1.2 Operazioni definite

In \mathbb{N} sono definite somma e prodotto: in questo modo:

Proprietà delle operazioni

Commutativa $n_1 + n_2 = n_2 + n_1$

Associativa
$$n_1 + (n_2 + n_3) = (n_1 + n_2) + n_3$$

Distributiva
$$n_1 \cdot (n_2 + n_3) = n_1 \cdot n_2 + n_1 \cdot n_3$$

2.1.3 Principio del minimo intero

Ogni sottoinsieme di N ha un elemento minimo (più piccolo di tutti gli altri).

2.1.4 Il principio di induzione

Sia $S \subseteq \mathbb{N}$ un sottoinsieme tale che $0 \in S$ e $\forall n \in S \implies n+1 \in S$. Allora S coincide con \mathbb{N} .

Il principio di induzione nella logica Il principio di induzione può essere usato per dimostrare teoremi in \mathbb{N} . Enunciamolo in questo modo: sia P(n) un predicato che dipende da $n \in \mathbb{N}$ tale che $P(n_0)$ sia vero e che $\forall n \in \mathbb{N} P(n) \implies P(n+1)$. Il predicato sarà vero per tutti gli $n \geq n_0$.

2.1.5 Fattoriale

Preso $n \in N$, il fattoriale di n sarà $n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (n-1) \cdot n$. Una eccezione è lo 0: il fattoriale di 0 è 0! = 1. Il fattoriale è un numero definito che può essere definito induttivamente: n! = n(n-1)!.

2.1.6 Coefficiente binomiale

Già incontrati nella probabilità:

$$\binom{n}{n} = \frac{n!}{k!(n-k)!}$$

con $n \in \mathbb{N}, 0 \le k \le n$. Convenzionalmente $\binom{0}{0} = 1$. Il coefficiente binomiale viene usato nel binomio di Newton.

2.1.7 Binomio di Newton

Il binomio di Newton ci permette di calcolare l'elevamento a qualsiasi potenza di un binomio:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

La formula è dimostrabile per induzione (se sei proprio interessato, vedi gli appunti a penna).

2.2 Numeri interi relativi

É l'insieme \mathbb{Z} . Non esiste un minimo, di conseguenza non valgono il principio del minimo intero e il principio di induzione. É definita la relazione d'ordine \leq , quindi è un insieme ordinato ma a causa della mancata validità dei due principi nominati precedentemente, non è un insieme ben ordinato. \mathbb{Z} è, inoltre, più grande di \mathbb{N} : $N \subset \mathbb{Z}$.

2.2.1 Costruzione

Per costruire il numeri relativi, definiamo una relazione di equivalenza \sim in $\mathbb{N} \times \mathbb{N}$ tale che:

$$(a,b) \sim (h,k) \iff a+k=b+h$$

Questa relazione di equivalenza ci permette di descrivere tutti i numeri negativi che sono la differenza dei numeri a e b o h e k: per esempio -1 è la classe di equivalenza $[(2,3)]_{\sim}$. \mathbb{Z} viene, quindi, definito come $\mathbb{Z} = (\mathbb{N} \times \mathbb{N})/\sim$

Dimostrazione che \sim è una relazione di equivalenza Per dimostrare che \sim è una relazione di equivalenza, verifichiamo che soddisfi i requisiti:

- è riflessiva: $(m,n) \sim (m,n) \implies m+n=n+m$
- è simmetrica: $(a,b) \sim (c,d) = (c,d) \sim (a,b)$
- è transitiva: $(a,b) \sim (c,d), (c,d) \sim (e,f) \implies (a,b) \sim (e,f)$ Infatti:

$$a+d=b+c, \quad c+f=d+e$$

$$a-b=c-d, \quad c-d=e-f$$

$$a-b=e-f$$

$$a+f=b+e$$

2.2.2 Operazioni definite

Le operazioni sono le stesse di N ma aggiornate:

$$+: \quad \mathbb{Z} \times \mathbb{Z} \quad \to \quad \mathbb{Z} \quad \cdot: \quad \mathbb{Z} \times \mathbb{Z} \quad \to \quad \mathbb{Z}$$
$$((a,b)_{\sim},(h,k)_{\sim}) \quad \mapsto \quad (a+h,b+k)_{\sim} \quad ((a,b)_{\sim},(h,k)_{\sim}) \quad \mapsto \quad (ah+bk,bh+ak)_{\sim}$$

Proprietà delle operazioni Mantnengono le stesse proprietà che avevano in \mathbb{N} .

2.3 Numeri razionali

É l'insieme \mathbb{Q} . Non esiste un minimo, di conseguenza non valgono il principio del minimo intero e il principio di induzione. É definita la relazione d'ordine \leq , quindi è un insieme ordinato ma a causa della mancata validità dei due principi nominati precedentemente, non è un insieme ben ordinato.

2.3.1 Costruzione

Per costruire il numeri razionali, definiamo una relazione di equivalenza \approx in $\mathbb{Z} \times (\mathbb{Z} - \{0\})$ tale che:

$$(a,b) \approx (h,k) \iff ak = bh$$

Questa relazione di equivalenza ci permette di descrivere tutti i numeri razionali che sono divisione dei numeri a e b o h e k: per esempio $^2/_3$ è la classe di equivalenza $[(2,3)]_{\approx}$. $\mathbb Q$ viene, quindi, definito come $\mathbb Z = (\mathbb Z \times (\mathbb Z - \{0\})/\approx$

Dimostrazione che \approx è una relazione di equivalenza Per dimostrare che \approx è una relazione di equivalenza, verifichiamo che soddisfi i requisiti:

- è riflessiva: $(m,n) \approx (m,n) \implies mn = nm$
- è simmetrica: $(a,b) \approx (c,d) = (c,d) \approx (a,b)$
- è transitiva: $(a,b) \approx (c,d), (c,d) \approx (e,f) \implies (a,b) \approx (e,f)$ Infatti:

$$ad = bc, \quad cf = de$$

$$\frac{a}{b} = \frac{c}{d}, \quad \frac{c}{d} = \frac{e}{f}$$

$$\frac{a}{b} = \frac{e}{f}$$

$$af = be$$

2.3.2 Operazioni definite

Le operazioni sono le stesse che sono definite in \mathbb{Z} ma aggiornate:

$$+: \quad \mathbb{Q} \times \mathbb{Q} \quad \to \quad \mathbb{Q} \quad \cdot: \quad \mathbb{Q} \times \mathbb{Q} \quad \to \quad \mathbb{Q}$$
$$((a,b)_{\approx},(h,k)_{\approx}) \quad \mapsto \quad (ak+bh,b+k)_{\sim} \quad ((a,b)_{\approx},(h,k)_{\approx}) \quad \mapsto \quad (ah,bk)_{\approx}$$

Proprietà delle operazioni Mantengono le stesse proprietà che avevano in \mathbb{Z} .

2.3.3 La rappresentazione decimale

La rappresentazione decimale di un numero non è nient'altro che un allineamento di cifre. Le rappresentazioni decimali che si trovano nei razionali sono limitate, illimitate periodiche. Esistono anche rappresentazioni illimitate, ma non sono contenute in \mathbb{Q} .

É costituita da una parte intera (necessariamente finita) e una parte decimale che può essere finita o illimitata (si ricorda che in $\mathbb Q$ solo illimitati periodici). Può essere scritta come:

$$x = \pm \sum_{j=0}^{k} c_j \cdot 10^j + \sum_{l=0}^{m} d_l 10^{-l}$$

Dove la prima sommatoria rappresenta la parte intera e la seconda la parte decimale.

2.4 I numeri reali

L'insieme dei numeri reali contiente qualsiasi rappresentazione decimale possibile, limitata o illimitata. Di conseguenza, \mathbb{R} contiene tutti gli insiemi visti fino ad ora. Nell'insieme dei reali è definita la relazione d'ordine \leq , rendolo un insieme ordinato. Inoltre, vale anche l'assioma di completezza, che rende \mathbb{R} un insieme ordinato e completo.

2.4.1 Operazioni definite

Le operazioni definite sono sempre le stesse trovate negli insiemi precedenti:

Proprietà delle operazioni Mantengono le stesse proprietà che avevano in Q.

2.4.2 Assioma di completezza

Siano $A, B \subseteq R$ tali che:

- $A, B \neq \emptyset$
- $A \cap B = \emptyset$
- $A \cup B = R$
- $\forall a \in A, \forall b \in B \ a < b$

allora esiste un unico numero reale tale che $\forall a \in A, \forall b \in B \ a \leq s \leq b$. s è detto elemento separatore.

2.5 Numeri complessi

É l'insieme che completa i numeri reali: ci permettono di risolvere le equazioni polinomiali che non riuscivamo nei reali (chiusura algebrica).

2.5.1 Costruzione

É un insieme di coppie ordinate di numeri reali appartenenti a $\mathbb{R} \times \mathbb{R}$.

2.5.2 Operazioni

Le operazioni sono sempre le stesse che in \mathbb{R} ma aggiornate:

$$\begin{array}{cccc} +: & \mathbb{C} \times \mathbb{C} & \to & \mathbb{C} \\ & somma((a,b),(c,d)) & \mapsto & (a+c,b+d) \in \mathbb{R} \\ \\ \cdot: & \mathbb{C} \times \mathbb{C} & \to & \mathbb{C} \\ & prodotto((a,b),(c,d)) & \mapsto & (ac-bd,ad+bc) \in \mathbb{R} \end{array}$$

3 Sommatoria

Si indica con la sigma maiuscola:

$$\sum_{i \in I} a_i$$

Dove:

- I è un insieme finito. I suoi elementi sono chiamati indici
- $(a_i), i \in I$ è una famiglia di numeri che dipendono da i

Alcune sommatorie famose

Formula di Gauss $\sum_{i=1}^{n} (i) = \frac{n \cdot (n-1)}{2}$

Somma di una progressione geometrica

$$\sum_{i=0}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q}$$

$$= n + 1 \text{ per } q = 1$$

Dimostrazione:

Tesi:
$$(1-q)\sum_{i=0}^{n} q^{i} = 1 - q^{n+1}$$

$$(1-q)\sum_{i=0}^{n} q^{i} = \sum_{i=0}^{n} q^{i} - q\sum_{i=0}^{n} q^{i}$$

$$= \sum_{i=0}^{n} q^{i} - \sum_{i=0}^{n} q^{i+1} \text{ prendiamo } k = i+1$$

$$= \sum_{i=0}^{n} q^{i} - \sum_{k=1}^{n+1} q^{k}$$

$$= (q^{0} + \sum_{i=1}^{n} q^{i}) - (\sum_{k=1}^{n} q^{k} + q^{n+1})$$

$$= q^{0} + \sum_{i=1}^{n} q^{i} - \sum_{k=1}^{n} q^{k} - q^{n+1}$$

$$= 1 - q^{n+1}$$

Le proprietà della sommatoria

- La sommatoria è un operatore lineare
- l'indice è muto: non importa il nome dell'indice
- traslando gli indici, la sommatoria non cambia: è importante che il numero di elementi sia uguale

7

- si definiscono sommatorie anche su due o più famiglie di indici: $\sum_{i \in I, j \in J} a_{ij} = \sum_{i \in I} \sum_{j \in J} a_{ij}$
- vale la proprietà dissociativa: $\sum_{i \in I} (a_i + b_i) = \sum_{i \in I} (a_i) + \sum_{i \in I} (b_i)$
- le costanti possono essere portate fuori: $\sum_{i \in I} Ka_i = K \cdot \sum_{i \in I} a_i$
- può essere scomposta in sommatorie più piccole: $\sum_{i=1}^n a_i = \sum_{i=1}^k a_i + \sum_{i=k+1}^n a_i$
- riflessione degli indici: $\sum_{i=0}^{n} = \sum_{i=0}^{n} a_{n-i}$

4 La produttoria

Si indica con un grande pi greco. E' uguale alla sommatoria ma al posto di fare la somma fa il prodotto.

Proprietà

- $\prod_{i \in I} k a_i = k^{\#i} \prod_{i \in I} a_i$
- Non vale la dissociativa

5 Intervalli e intorni

5.1 Intervallo

Per intervallo di estremi $a \in b$ si intende un sottoinsieme di \mathbb{R} di diversi tipi:

- $(a;b) = \{x \in \mathbb{R} \mid a < x < b\}$
- $[a;b] = \{x \in \mathbb{R} \mid a \le x \le b\}$
- $[a;b) = \{x \in \mathbb{R} \mid a \le x < b\}$
- $(a; b] = \{x \in \mathbb{R} \mid a < x \le b\}$

Gli intervalli possono essere anche illimitati: $(a; +\infty)$.

5.2 Intorno

Preso $x_0 \in \mathbb{R}$, di dice intorno di x_0 di raggio δ l'insieme dei valori x tali che:

$$|x-x_0|<\delta$$

In generale un intorno è un intervallo $(x_0 - \delta; x_0 + \delta)$, ma un intervallo non per forza è un intorno.

6 Insiemi limitati

Sia $E \subseteq \mathbb{R}$. E è detto insieme limitato se $\exists m, M \in \mathbb{R} \mid \forall x \in E \ m \leq x \leq M$. L'insieme E è detto superiormente limitato se esiste solo M, mentre è detto inferiormente limitato se esiste solo m.

Un insieme limitato può avere un massimo e un minimo, però non è detto che li contenga. Un esempio di insieme dei questo tipo è (-1;1). Infatti gli elementi, si continuano ad avvicinare a un valore, ma a causa della completezza di \mathbb{R} , non lo raggiungeranno mai poichè esisterà sempre un sepratore tra l'elemento e il "bordo". Ciò sarà ancora più apparente dalla definizione di massimo e minimo. Per descrivere appieno insiemi come (-1;1) vengono aggiunti i concetti di maggiorante, minorante, estremo superiore e inferiore che completano quello di massimo e minimo.

6.1 Massimo di un insieme limitato

Viene detto M massimo per un insieme limitato superiormente E se

- $\forall x \in E, x \leq M$
- $M \in E$

6.2 Minimo di un insieme limitato

Viene detto m minimo per un insieme limitato inferiormente E se:

- $\forall x \in E, x \geq M$
- $m \in E$

6.3 Maggiorante di un insieme limitato

Viene detto \overline{M} maggiorante di un insieme limitato superiormente E se $\forall x \in E, x \geq \overline{M}$.

Si può notare come il maggiorante sia una generalizzazione del concetto di massimo. Infatti, per un insieme superiormente limitato possono esistere ∞ maggioranti.

6.4 Minorante di un insieme limitato

Viene detto \bar{m} minorante di un insieme limitato inferiormente E se $\forall x \in E, x \leq \bar{m}$.

Si può notare come il minorante sia una generalizzazione del concetto di minimo. Infatti, per un insieme inferiormente limitato possono esistere ∞ minoranti.

6.5 Estremo superiore di un insieme limitato

Definiamo Sup(E) estremo superiore di un insieme limitato superiormente E il minimo dei maggioranti, ossia un numero che:

- $\forall x \in Ex \leq a$
- $a = Min(\mathcal{M})$

dove \mathcal{M} è l'insieme dei maggioranti di E.

Un insieme limitato superiormente possiede sempre un estremo superiore: esso può essere sia interno all'insieme che esterno ad esso.

6.6 Estremo inferiore di un insieme limitato

Definiamo Inf(E) estremo inferiore di un insieme limitato inferioremente E il massimo dei minoranti, ossia un numero che:

- $\forall x \in Ex \ge a$
- a = Max(m)

dove m è l'insieme dei minoranti di E.

Un insieme limitato inferiormente possiede sempre un estremo inferiore: esso può essere sia interno all'insieme che esterno ad esso.

6.7 Collegamento tra estremo inferiore (superiore) e l'assioma di completezza

Ogni insieme $E \subseteq \mathbb{R}$ limitato inferiormente (superiormente) ammette estremo inferiore (superiore).

Dimostrazione Prendiamo un insieme E limitato superiormente. Allora E ammette maggioranti. Indichiamo con \mathcal{M} l'insieme di tutti i maggioranti ($\mathcal{M} = \{x \in R \mid \forall e \in E \ e \leq x\}$). L'insieme \mathcal{M} così definito è limitato inferiormente (tutti gli elementi di E sono minoranti di \mathcal{M}). Definiamo, allora, $\mathcal{N} = \mathbb{R} - \mathcal{M}$ l'insieme di tutti gli elementi che non sono maggioranti di E. Osserviamo che:

- $\mathcal{N} \neq \emptyset$
- $\mathcal{M} \cup \mathcal{N} = \mathbb{R}$
- $\mathcal{M} \cap \mathcal{N} = \emptyset$
- $\forall y \in \mathcal{N} \exists \bar{e} \in E \mid \bar{e} > y, \forall x \in \mathcal{M} \exists \bar{e} \in E \mid x > \bar{e} \text{ quindi } y < \bar{e} < x$

Le osservazioni che abbiamo fatto non sono altro che le ipotesi dell'assioma di completezza (vedi 2.4.2). Quindi possiamo affermare che $\forall y \in \mathcal{N}, \forall x \in \mathcal{M} \exists s \mid y \leq s \leq x$. Questo elemento, però, dovrà essere unico in quanto dovrà essere o il minimo di \mathcal{M} o il massimo di \mathcal{N} . Per dimostrare il teorema dobbiamo dimostrare che s appartiene a \mathbb{M} .

L'assurdo Per assurdo, supponiamo che s appartenga a \mathcal{N} . Ciò significa che s non è un maggiorante e che $\exists \bar{e} \in E \mid \bar{e} > s$. Posso, allora, costruire un elemento $s < \frac{s+\bar{e}}{2} < \bar{e}$. Questo numero è una contraddizione perché sarebbe come dire che $\frac{s+\bar{e}}{2} \in \mathcal{N}$ e quindi $y \leq s < \frac{s+\bar{e}}{2} < \bar{e} \leq x$. Così esisterebbero due elementi separatori, ciò però è un assurdo perché in questo caso l'assioma di completezza permette l'esistenza di un solo separatore. Allora $s \in \mathcal{M}$ e di conseguenza $\exists Sup(E)$.