Изучение методов и решения задач тропической алгебры

А.А. Воеводская, 422 гр.

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

> Научный руководитель: Н.К. Кривулин Рецензент: И.В. Романовский

Идемпотентная алгебра

- Идемпотентная алгебра занимается изучением полуколец с идемпотентным сложением.
- Изучению идемпотентной математики посвящены работы Н.Н. Воробьева, И.В. Романовского, В.П. Маслова, П. Клемперера, а также других российских и зарубежных учёных.
- Алгоритмы с использованием тропической математики применяются в национальном банке Великобритании.

Экономическая модель

Рассмотрим динамическую систему, которая может находиться в одном из n состояний.

- Стратегия правило, которое определяет выбор следующей вершины на каждом шаге.
- c_{ij} прибыль, которую приносит переход из вершины i в вершину j.
- u_i дисконтированная прибыль для оптимальной траектории, которая начинается в вершине i.
- ullet eta коэффициент дисконтирования.

Для поиска оптимальной стратегии нужно решить уравнение Беллмана:

$$u_i = \max_{1 < j < n} (c_{ij} + \beta u_j), \qquad i = 1, \dots, n.$$

Постановка задачи

- Рассмотреть алгебраическую структуру идемпотентного полуполя пар с некоммутативным умножением.
- Изучить уравнение Беллмана при помощи идемпотентного полуполя пар.
- Исследовать другие матричные уравнения в данном полуполе.

Полуполе пар с некоммутативным умножением

- Множество-носитель множество пар $\mathbb{X} = \{(u,\xi)|u\in\mathbb{R}\cup\{-\infty\}, \xi\in\mathbb{R}_+\}$, где \mathbb{R} множество вещественных чисел и $\mathbb{R}_+ = \{r\in\mathbb{R}|r\geq 0\}$.
- На множестве заданы операции сложения и умножения: для любых $x=(u,\xi)\in\mathbb{X}$ и $y=(v,\eta)\in\mathbb{X}$ имеем

$$x \oplus y = (\max\{u, v\}, \max\{\xi, \eta\}),$$

$$x \otimes y = (u + \xi \times v, \xi \times \eta).$$

Свойства операций

Свойства операции сложения:

- Ассоциативность: $(x \oplus y) \oplus z = x \oplus (y \oplus z)$.
- Коммутативность: $x \oplus y = y \oplus x$.
- Идемпотентность: $x \oplus x = x$.
- ullet Существование нейтрального элемента: $\mathbb{0}=(-\infty,0).$

Свойства операции умножения:

- Ассоциативность: $(x \otimes y) \otimes z = x \otimes (y \otimes z)$.
- ullet Существование нейтрального элемента: $\mathbb{1}=(0,1).$
- Отсутствие коммутативности: $x \otimes y \neq y \otimes x$.
- Существование обратного элемента: для любого ненулевого $x=(u,\xi)$ определен

$$x^{-1} = (-\xi^{-1} \times u, \xi^{-1}).$$

• Дистрибутивность:

$$x \otimes (y \oplus z) = x \otimes y \oplus x \otimes z,$$

$$(x \oplus y) \otimes z \neq x \otimes z \oplus y \otimes z.$$

Дополнительные свойства полуполя пар

• Операция смешения: для $x = (u, \xi)$ и $y = (v, \eta)$ имеем $x \setminus y = (u, \eta).$

• Идемпотентное вычитание левых частей: для любых $x=(u,\xi)$ и $y=(v,\eta)$ выполняется

$$x \ominus_l y = (\min(u, v), 1).$$

- Частичный порядок: $x \le y \Leftrightarrow x \oplus y = y$.
- Биномиальное тождество: для любых $x, y \in X$

$$(x \oplus y)^n \le x^n \oplus y^n \oplus (x \backslash y)^n \oplus (y \backslash x)^n,$$

причём равенство достигается, когда $x \ominus_l y \geq 1$.

Скалярные уравнения

- Если $k \neq 0$, решением уравнения kx = m будет $x=k^{-1}m$. Если $k=\mathbb{O}$ и $m=\mathbb{O}$, то x может быть любым. В остальных случаях решений не существует.
- ullet Если $k \neq 0$, решением уравнения xk = m будет $x=mk^{-1}$. Если $k=\mathbb{O}$ и $m=\mathbb{O}$, то x может быть любым. В остальных случаях решений не существует.
- У уравнения kx = x решение будет любым, если k = 1. В остальных случаях оно будет тривиальным.
- У уравнения xk = x решение будет любым, если k = 1. В остальных случаях оно будет тривиальным.

Матрицы в полуполе

$$ullet$$
 $m{A} = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$ — матрица в полуполе, где $a_{ij} = (c_{ij}, \beta ij) \in \mathbb{X}$.

- ullet $oldsymbol{A}_l$ матрица, состоящая левых частей элементов матрицы $oldsymbol{A}_l$.
- Для любых матриц $\mathbf{A} = (a_{ij})$, $\mathbf{B} = (b_{ij})$, и $\mathbf{C} = (c_{ij})$ и числа x определим сложение, перемножение и умножение на число при помощи формул:

$$\{\mathbf{A} \oplus \mathbf{B}\}_{ij} = a_{ij} \oplus b_{ij}, \ \{\mathbf{BC}\}_{ij} = \bigoplus_{k} b_{ik} c_{kj}, \ \{x\mathbf{A}\}_{ij} = x a_{ij},$$

где $\{{m A}\}_{ij}$ — элемент матрицы ${m A}$, стоящий на i-ой строке и j-ом столбце.

Уравнение Беллмана

ullet Дано уравнение $oldsymbol{A}oldsymbol{x}=oldsymbol{x}$, где

$$\mathbf{A} = \begin{pmatrix} (c_{11}, \beta_{11}) & (c_{12}, \beta_{12}) \\ (c_{21}, \beta_{21}) & (c_{22}, \beta_{22}) \end{pmatrix}, \ \mathbf{x} = \begin{pmatrix} (u_1, \xi_1) \\ (u_2, \xi_2) \end{pmatrix}.$$

- ullet Для случая n=1 было решено скалярное уравнение.
- ullet Был рассмотрен случай при n=2 с равными eta_{ij} .
- ullet Найдена зависимость значений ξ_i от значения eta.
- ullet Поиск u_i привел к рассмотрению 9 случаев.
- Были сделаны выводы о группировке решений.

Уравнение Беллмана. Численный пример

Проиллюстрируем один из таких случаев.

• Пример.

$$\mathbf{A} = \begin{pmatrix} (-1,2) & (3,2) \\ (7,2) & (1,2) \end{pmatrix}.$$

Так как $\beta > 1$, то $\xi = 0$.

Заметим, что выполняются условия одного из полученных подслучаев:

$$3+2\times 7>-1+2\times (-1),\ 7+2\times 3>1+2\times 1,$$
 тогда $u_1=(7\times 2+3)/(1-2^2)=-17/3,$ $u_2=(3\times 2+7)/(1-2^2)=-13/3.$

Соответственно решением этого примера будет:

$$x = \begin{pmatrix} (-17/3, 0) \\ (-13/3, 0) \end{pmatrix}.$$

Ax = b

$$\boldsymbol{A} = \begin{pmatrix} (c_{11}, \beta_{11}) & (c_{12}, \beta_{12}) \\ (c_{21}, \beta_{21}) & (c_{22}, \beta_{22}) \end{pmatrix}, \ \boldsymbol{x} = \begin{pmatrix} (u_1, \xi_1) \\ (u_2, \xi_2) \end{pmatrix}, \ \boldsymbol{b} = \begin{pmatrix} (d_1, \delta_1) \\ (d_2, \delta_2) \end{pmatrix}.$$

- Решено в явном виде для n = 2.
- Решение привело к рассмотрению 9 случаев.
- Выведено, что $u_i \leq \{a_{1i}^{-1}b_1\ominus_l\ldots\ominus_l a_{ni}^{-1}b_n\}_l$, где $i=1\ldots n,\ u_i$ элемент ${\pmb x}_l,\ a_{ij}$ элемент матрицы ${\pmb A},\ b_i$ элемент вектора ${\pmb b}.$
- ullet Доказано, что ξ_i находятся при помощи уравнений в полукольце $R_{\max, imes}.$

Ax=b. Численный пример

Проиллюстрируем уравнение примером. Пусть заданы данные матрица и вектор:

$$m{A} = \begin{pmatrix} (1,2) & (2,3) \\ (3,4) & (5,2) \end{pmatrix}, \ m{b} = \begin{pmatrix} (7,5) \\ (3,6) \end{pmatrix}.$$

При заданных условиях будет выполняться один из полученных подслучаев: $3>0,\ 5/3>-1,$ а значит вектор левых частей будет равняться $\begin{pmatrix} 0\\-1 \end{pmatrix}$.

Результаты

- Рассмотрено и изучено идемпотентное полуполе пар с некоммутативным умножением.
- Рассмотрены и доказаны свойства введенных операций.
- Изучено биномиальное тождество.
- Исследованы скалярные уравнения и найдены их решения.
- Рассмотрены матрицы, изучено уравнение Беллмана ${m A}{m x}={m x}$ в двумерном случае, построен числовой пример.
- Решено уравнение ${m A}{m x}={m b}$ в двумерном случае, сделаны выводы о решении в общем случае, построен числовой пример.