脱机烧录使用手册 V2.2

目录

1. 烧录文件加载步骤	3
1.1 hexf 文件制作	3
1.2 下载 Hexf 文件至离线烧录器	5
2. 硬件概述	8
3. 面板显示	9
3.1 配置信息	9
3.2 烧录信息	10
3.3 统计结果	13
3.4 时间和进度条	13
4. 拨码开关配置	13
4.1 波特率配置	14
4.2 时钟配置	14
5. 按键	15
5.1 烧录按键	15
5.2 拨码配置确认	
5.3 自动烧录控制台接线	16

1. 烧录文件加载步骤

1.1 hexf 文件制作

程序编译后,获得 HEX 文件。然后打开串口烧录工具 OMOSTEK.exe , 点击 Settings , 选择 Configuration 。在 Start Flash address 与 Base Run Address 参数栏 填好正确参数,完成后点击 OK 。如下图:

串口烧录工具主界面

回到主界面,点击 HEX Merge 选项卡。

接下来的操作分带 BOOT 程序与不带 BOOT 程序:

有 BOOT 程序:点击 BOOT 本 右边的文件框,在弹出的窗口中选择 BOOT 程序。文件框 再往右的选项卡需要选择为 Dual No FCT 。

无 BOOT 程序: BOOT ▼ 右边不用选择程序(留空)再往右的选框选择

No OTA ▼

双击 APP 右边的文件框,在弹出的窗口中选择编译好的 HEX 文件,文件框再往右的选项卡需要选择为 即可。下图分别为带 BOOT 程序与不带 BOOT 程序的主界面:

带 BOOT 程序主界面

无 BOOT 程序主界面

以上操作完成后,点击 Hexf 右边的空白窗口能看到如下图所示的信息,接着在存放烧录代码的文件夹找到新生成的 HEXF 文件,关闭当前软件。

```
Load AppHEx Done[-NO-ENC-]!

IV BLOCK GEN [-NO-ENC-]
[hexPack]: 1FFF0800 40c
[hexPack]: 1FFF4800 53c4
[App HexPack Size]: 2

>> BOOT======0x00002100-----0x0000211c======
>> APP======0x00010000-----0x000157d8======

[HEXF Generation] Success: C:/Users/Administrator/
Desktop/temp/HPXLX04-4502-V1.1.hexf !!!
[HEXF Generation]::DONE !!!
```

Hexf 文件制作成功输出信息

1.2 下载 Hexf 文件至离线烧录器

打开桌面的 CMTwriter, USB 处自动识别到烧录器, Channel Enable 处按照实际需要选择通道勾选, Beep Control 选 Open, LanguageSel 选中文, FCT Mode EN 选 Open。接下来在

Application file 右边的 Open 点击打开选择新生成的 HEXF 文件, 加载完成后, 旁边的 checksum 窗口即可看到校验和。

配置好的主界面(参考)

离线烧录器加载完成图

2. 硬件概述

本硬件由五部分组成,外接 DUT,测试天线,面板,拨码和按键,如图 1 所示:

图 1 硬件概述

外接 DUT 用于连接需要待测的设备,接线顺序:

蓝(VDD); 白(P9 TXD); 黄(P10 RXD); 红(GND); 黑(TM);

外接天线用于测试 RF, 需要配合 RF 拨码使用

面板显示配置详情、测试的信息以及结果等信息(详见第二章节)

拨码包括:波特率拨码,时钟(DUT clock)拨码,RF channel 拨码(详见第三章节)

按键包括: 烧录确认按键和拨码配置确认键(详见第四章节)

3. 面板显示

面板信息包括:配置信息、烧录信息、结果信息、进度条和时间,如图 2 所示:

图 2 面板信息

3.1 配置信息

芯片名称: 烧录 DUT 的名称,由 CMTWriter 软件配置
HEXF 文件校验码:应用程序文件校验码,由 CMTWriter 软件配置
CSV 文件校验码:配置文件校验码,由 CMTWriter 软件配置

Mac: mac 地址范围,由 CMTWriter 软件配置

Step: mac 地址步进值,由 CMTWriter 软件配置

IncSeg: mac 地址增加的最低 byte, 由 CMTWriter 软件配置

Action: 烧录项目,由CMTWriter软件配置

时钟: DUT 的系统时钟, 由拨码开关配置

波特率: 烧录速度, uart 的波特率, 由拨码开关配置

频段 1: 测试的 RF 频段 1,由拨码开关配置

频段 2: 测试的 RF 频段 2, 由拨码开关配置

校准: 烧录器是否进行过校准, 出厂设置 蜂鸣器: 蜂鸣器开关, 由 CMTWriter 软件配置 FCT: FCT mode 开关, 由 CMTWriter 软件配置 版本号: 目前固件版本号, 出厂设置

3.2 烧录信息

分为四个 channel,包括编号,烧录信息和烧录结果 正在烧录时,会有相应项目的信息打印出来,如图 3,

图 3 烧录信息

烧录成功,结果栏为绿色,如图 4 所示,如果蜂鸣器打开,烧录结束会发出一声哔

图 4 烧录成功

烧录失败,结果栏为红色,如图 5,所示,如果蜂鸣器打开,烧录结束后会发出三声急 促的哔哔哔

图 5 烧录失败

烧录失败原因如表 1:

错误代码	错误原因
0x01	EEPROM 硬件错误
0x02	SPIFLASH 硬件错误
0x03	烧录次数超出限制
0x04	设备未校准
0x05	设置信息错误
0x06	HEX 文件无效
0x07	HEX 文件 CRC32 错误
0x08	CSV 文件 CRC32 错误
0x09	IC 型号错误
0x0A	MAC 地址限制
0x0B	CSV 配置文件限制
0x0C	未检测到设备
0x0D	擦除失败
0x0E	4K 擦除失败
0x0F	cpnum 命令失败
0x10	cpbin 命令失败
0x11	HEX 文件下载失败
0x12	HEX 文件校验失败
0x13	写 FLASH 失败
0x14	读操作失败
0x15	串口波特率更改失败
0x16	DUT 主频更改失败
0x17	DUT FIFO 更改失败
0x18	写寄存器失败
0x19	读寄存器失败
0x1A	PWM 输出失败
0x1B	频偏错误

0x1C	晶振校准失败
Ox1D	golden 未检测到设备
Ox1E	RF 测试未收到数据
0x1F	RF 测试未通过
0x20	FCT 配置写错误
0x21	FCT 配置读错误

表1 失败代码

3.3 统计结果

总成功次数:下载配置后总烧录成功次数(包括断电)

当前成功次数: 此次上电烧录成功次数

总剩余次数:剩余次数

当前失败次数:此次上电烧录失败次数

3.4 时间和进度条

如图 6 所示

图 6 时间和进度条

- 1, 烧录的时间
- 2, 上电运行的时间
- 3, 烧录进度

4. 拨码开关配置

拨码开关包括三部分:波特率,时钟和RF channel,分布如图7所示,ON代

表 1, 否则代表 0

图 7 拨码开关

4.1 波特率配置

如表2

拨码值 (从右往左)	波特率(bit/s)
00	115200
01	500000
10	1000000
11	1500000

表 2 波特率配置

4.2 时钟配置

如表 3

拨码值	时钟(MHz)
0	16
1	48

表 3 时钟配置

5. 按键

按键包括烧录按键和拨码配置确认按键,如图 8 所示

图8按键

5.1 烧录按键

烧录器准备就绪,按下此键即可进行烧录

5.2 拨码配置确认

拨码开关配置完成后,按下此键配置即可生效,在面板会显示刚刚刷新的配置信息

5.3 自动烧录控制台接线

输出控制信号如下:

//dut1 ok pin: DUT1_OK

//dut1 fail pin: DUT1_FAIL

dut1 manu ok pin: Float1

dut1 manu fail pin: Float2

dut1 manu busy pin: Float9

//dut2 ok pin: DUT2_OK

//dut2 fail pin: DUT2_FAIL

dut2 manu ok pin: Float3

dut2 manu fail pin: Float4

dut2 manu busy pin: Float10

//dut3 ok pin: DUT3_OK

//dut3 fail pin: DUT3_FAIL

dut3 manu ok pin: Float5

dut3 manu fail pin: Float6

dut3 manu busy pin: Float11

```
//dut4 ok pin: DUT4_OK
```

//dut4 fail pin: DUT4_FAIL

dut4 manu ok pin: Float7

dut4 manu fail pin: Float8

dut4 manu busy pin: Float12

烧录成功 manu_ok 会输出高, fail, manu_fail 输出高, 如果正在烧录 busy 输出高