ML Problem Solving

Discrete Convolutions
Given is a single 4x4 image I and a 2x2 kernel K , both stored as 2D arrays. For centering the kernel w.r.t. the image, consider the top-left pixel of the kernel to be its center. The discrete convolution is given by $C(x, y, m, n) = \sum_{M} \sum_{n} I(x+m, y+n) \cdot K(m, n)$.
I = [[255, 128, 128, 0], [51, 255, 0, 128], [51, 128, 128, 0], [0, 128, 0, 0]], K = [[1,2],[0,2]]
1. Normalize the pixels of I to the $[0,1]$ range.
2. Calculate the output array of the 2-D discrete convolution of I and K , assuming same padding and stride of 1.

3. Calculate the output array of the 2-D discrete convolution of I and K, assuming valid padding and stride of 1.

4. Calc	culate the output array of the 2-D discrete convolution of I and K , assuming valid padding and stride of 2.
	en the following NN architecture, and the original shape of $x = [4,1,28,28]$, what is the size of the output tensor for a layer? Layers:
(1)	$nn.Conv2d (in_channels=1, \ out_channels=16, \ kernel_size=3, \ padding=valid, \ stride=1)$
(2)	${ m nn.ReLU}()$
(3)	$nn. Conv2d (in_channels = 16, \ out_channels = 64, \ kernel_size = 3, \ padding = valid, \ stride = 2)$
(4)	$\mathrm{nn.ReLU}()$
(5)	$nn.MaxPool2d(kernel_size=2)$
(6)	nn.Dropout(p=0.5)