Detecting Rumours in Disasters: An Imbalanced Learning Approach

Amir E Fard

Majid Mohammadi

Bartel van de Walle

Overview

- Motivations
- Data
- Features
- Algorithm
- Feature Selection
- Experiments

Motivations

- There is a latent assumption in rumour detection literature
 - The context does not matter and rumour detection over different contexts is the same
- There are a few manuscripts on rumour detection in particular context
 - The context is usually captured by only data.
- In this study, we capture context based on three main components of machine learning:
 - Data + Feature + Algorithm

Data

- For this study, we prepared two datasets regarding the Kerala flood and Hurricane Florence.
- The 2018 Kerala flood was the worst monsoon flooding in a century in Southern India with 400 fatalities and \$2.7bn worth of damages.
- The Hurricane Florence was a category four hurricane hit Carolinas in the south-east of the United States. The hurricane caused more than 50 fatalities and up to \$22bn damages.

Data

- Incident tweet collection: Setting up a streaming API of Twitter
 - We could collect 100,880 tweets regarding Kerala flood and 101,844 tweets for Hurricane florence.
- Rumours finding: Searching several credible news outlets and fact-checking websites (e.g. Snopes, The Washington Post, The Hindu, and Indian Express).
 - Three rumours in Kerala flood + four rumours in Hurricane Florence with a high level of consistency among different news outlets and fact-checking sources.
- Building the signal set: Extraction of the rumour-related tweets corresponding to these events if the tweet contains the keyword relevant to the rumour. The tweets without explicit keywords would carry non-rumour label.
 - Kerala dataset => 2,000 rumour related and 98,880 non-rumour-related tweets.
 - Florence dataset => 2,382 rumours and 99,462 non-rumour tweets.

Features

- 83 features (linguistic, user, and meta)
- They are related to disaster and either taken from the literature of computational rumour detection or introduced in this work Early-available features
- No changing feature

Number of exclamation marks in a tweet Number of question marks in a tweet Number of characters in a tweet Number of words in a tweet Number of uppercase letters in a tweet Number of lowercase letters in a tweet Number of first person pronoun in a tweet Number of second person pronoun in a tweet Number of third person pronoun in a tweet Number of capital words in a tweet Average word complexity in a tweet Number of vulgar words in a tweet Number of abbreviations in a tweet Number of emojis in a tweet Polarity of a tweet Subjectivity of a tweet Tone of a tweet Positive words score of a tweet Negative words score of a tweet † Frequency of Part of Speech (POS) tags in a tweet (19 features) ♦ Frequency of Name Entity Recognition (NER) tags in a tweet (17 features) Opinion and insight score Anxiety score Tentativeness score

♦ Certainty score

Sentence complexity

Profile description (binary) Verified account (binary) Number of Statuses Influence Number of following User role ♦ Attention Account age (day) ♦ Openness (binary) Profile location (binary) † Profile picture (binary) Profile URL (binary) ♦ Average follow speed Average being followed speed ♦ Average like speed Average tweet speed † Screen name length † Number of digits in screen name

Number of hashtags in a tweet

Number of mentions in a tweet

Tweet URL (Binary)

Number of multimedia in a tweet

\$\delta\$ Location sharing (binary)

Algorithm

- Due to the imbalance nature of the annotated dataset, we use imbalance learing.
- There are different approaches for imabalnce learning. We choose to use oversampling using synthetic minority oversampling technique (SMOTE) technique.

Feature selection

- Feature score => using random forest, XGBoost, adaptive boosting, regression tree, and extremely randomized trees as classification algorithms with an embedded feature selection mechanism.
- By summing up the features weights we obtain the degree of significance for each feature.
- To find the significant features we determine a threshold for the features score (τ =0.001).
 - If a feature_score < τ then feature is insignificant
 - If a feature_score $\geq = \tau$ then feature is significant
 - If a feature_score in both datasets $\geq = \tau$ then feature is consistently significant.

Feature selection

Feature selection

• The following Figure illustrates the number of significant and consistently significant features as well as the total number of features for each feature category.

- In this study we use seven classifiers belonging to different learning paradigms:
 - multi-Layer perceptron (MLP) as a neural network,
 - support vector machine (SVM) as a kernel machine,
 - classification and regression trees (CART) as a decision tree,
 - random forest (RF) as an ensemble of trees,
 - XGBoost as a boosting approach, and
 - maximum entropy (MaxEnt) as an exponential model.
- We use oversampling on the training set (It is only for training data, in other words, the test dataset is still intact and preserves its imbalanced shape.)
- We use one of our datasets for training and the other one for testing; then we switch the training and test set to assess the robustness of the proposed approach

Classifiers	PR	RE	F1-Score
CART	90.5%	91.7%	91.1%
SVM	92.6%	55.5%	69.4%
RF	93.9%	92.4%	93.1%
MLP	92.6%	90.6%	91.6%
MaxEnt	91.2%	79%	84.7%
XGBoost	95%	94.4%	94.7%
CRF [34]	66.7%	55.6%	60.7%

Florence (Kerala \Rightarrow Florence)

rence (Kerala \Rightarrow Florence)

Training: Kerala => Test: Florence

Training: Florence => Test: Kerala

	Classifiers	Training with imbalanced data	Training with balanced data
		(AUPRC)	(AUPRC)
	CART	54.2%	56.8%
	SVM	94.6%	97.8%
$Kerala \Rightarrow$	RF	71.5%	94.3%
Florence	MLP	80.9%	93.3%
	MaxEnt	95.9%	96.5%
	XGBoost	98.7%	98.8%
	CART	41.4%	44.6%
	SVM	97.7%	97%
Florence \Rightarrow	RF	81.3%	85.5%
Kerala	MLP	96.3%	96.4%
	MaxEnt	97.6%	97.2%
	XGBoost	83.9%	89.2%

Future directions

In order to have a universal system for rumour detection, we need to know the behaviour of rumours in different subject domains. Performing domain specific rumour analysis on various subject domains would be a practical step toward discovering the behaviour of rumours.

Thank you!

