Лекции по математическому анализу для 1 курса ФН2, 3

Власова Елена Александровна 2024-2025 год.

Содержание

1	Вве	дение	4	
	1.1	Элементы теории множеств	4	
	1.2	Кванторные операции	4	
	1.3	Метод математической индукции	4	
2	Множество действительных чисел			
	2.1	Аксиоматика действительных чисел	4	
	2.2	Геометрическая интерпретация \mathbb{R}	5	
	2.3	Числовые промежутки	5	
	2.4	Бесконечные числовые промежутки	5	
	2.5	Окрестности точки	5	
	2.6	Принцип вложенных отрезков (Коши-Кантора)	5	
	2.7	Ограниченные и неограниченные числовые множества	6	
	2.8	Точные грани числового множества	6	
	2.9	Принцип Архимеда	6	
3	Фун	кции или отображения	6	
	3.1	Понятие функции	6	
	3.2	Ограниченные и неограниченные числовые множества	6	
	3.3	Обратные функции	6	
	3.4	Чётные и нечётные функции	6	
	3.5	Периодические функции	6	
	3.6	Сложная функция (композиция)	6	
	3.7	Основные элементарные функции	6	
4	Чис	ловые последовательности и их пределы	6	
	4.1	Ограниченные и неограниченные числовые последователь-		
		ности	6	
	4.2	Предел числовой последовательности	7	
	4.3	Бесконечные пределы	7	
	4.4	Свойства сходящихся последовательностей	7	
	4.5	Монотонные числовые последовательности	8	
	4.6	Число е	Ö	
	4.7	Гиперболические функции	S	
	4.8	Предельные точки числового множества	g	
	4.9	Предельные точки числовых последовательностей	13	
	4.10	• • • •	15	
		Пределы функций. Определение предела по Коши	18	
		Бесконечно малые функции	20	

4.13	Свойства бесконечно малых функций	21
4.14	Арифметические операции с функциями, имеющими пре-	
	делы	22

Элементарные функции и их пределы

- 1 Введение
- 1.1 Элементы теории множеств
- 1.2 Кванторные операции
- 1.3 Метод математической индукции
- 2 Множество действительных чисел

2.1 Аксиоматика действительных чисел

Определение 2.1.1. *Множесство* \mathbb{R} называется множеством действительных чисел, если элементы этого множества удовлетворяют следующему комплексу условий:

- 1. На множестве \mathbb{R} определена операция сложения "+", то есть задано отображение, которое каждой упорядоченной паре $(x,y) \in \mathbb{R}^2$ ставит в соответствие элемент из \mathbb{R} , называемый суммой x+y и удовлетворяющий следующим аксиомам:
 - (a) $\exists 0 \in \mathbb{R}, \ makoŭ, \ \forall mo \ \forall x \in \mathbb{R} : x + 0 = 0 + x = x;$
 - (b) $\forall x \; \exists \; npomuвonоложный элемент "-x", такой, что <math>x+(-x)=(-x)+x=0;$
 - (c) Ассоциативность. $\forall x, y, z \in \mathbb{R} : (x+y) + z = x + (y+z);$
 - (d) Коммутативность. $\forall x, y \in \mathbb{R} : x + y = y + x$.
- 2. На \mathbb{R} определена операция умножения "·", то есть $\forall (x,y) \in \mathbb{R}^2$ ставится в соответствие элемент $(x \cdot y) \in \mathbb{R}$.
 - (a) \exists нейтральный элемент $1 \in \mathbb{R}$, такой, что $\forall x \in \mathbb{R} : 1 \cdot x = x \cdot 1 = x$;
 - $(b) \ \forall x \in \mathbb{R} \setminus \{0\} \ \exists \ обратный элемент "x^{-1}", такой, что <math>x \cdot x^{-1} = x^{-1} \cdot x = 1;$
 - (c) Ассоциативность. $\forall x, y, z \in \mathbb{R} \setminus \{0\} : (x \cdot y) \cdot z = x \cdot (y \cdot z);$
 - (d) Коммутативность. $\forall x, y \in \mathbb{R} \setminus \{0\} : x \cdot y = y \cdot x$.

Операция умножения дистрибутивна по отношению к сложению.

$$\forall x, y, z \in \mathbb{R} : (x+y)z = xz + yz$$

- 3. Отношения порядка. Для \mathbb{R} определено отношение " \leq ".
 - (a) $\forall x \in \mathbb{R} : x \leq x$;
 - (b) $\forall x, y \in \mathbb{R} : (x \le y \land y \le x) \implies x = y;$
- 2.2 Геометрическая интерпретация $\mathbb R$
- 2.3 Числовые промежутки
- 2.4 Бесконечные числовые промежутки
- 2.5 Окрестности точки
- 2.6 Принцип вложенных отрезков (Коши-Кантора)

Определение 2.6.1. Пусть $\{x_n\}_{n=1}^{\infty}$ — последовательность некоторых множеств. Если $\forall n \in \mathbb{N} : X_n \supset X_{n+1}$, то эта последовательность называется последовательностью вложенных отрезков.

- 2.7 Ограниченные и неограниченные числовые множества
- 2.8 Точные грани числового множества
- 2.9 Принцип Архимеда
- 3 Функции или отображения
- 3.1 Понятие функции
- 3.2 Ограниченные и неограниченные числовые множества
- 3.3 Обратные функции
- 3.4 Чётные и нечётные функции
- 3.5 Периодические функции
- 3.6 Сложная функция (композиция)
- 3.7 Основные элементарные функции
- 4 Числовые последовательности и их пределы

Определение 4.0.1. $f: \mathbb{N} \to \mathbb{R}$ — числовая последовательность, т.е. $\{x_n\}_{n=1}^{\infty}, x_n \in \mathbb{R}$.

4.1 Ограниченные и неограниченные числовые последовательности

Определение 4.1.1. Числовая последовательность $\{x_n\}_{n=1}^{\infty}$ называется

- 1. ограниченной сверху, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : x_n \leq M$;
- 2. ограниченной снизу, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : x_n \geq M$;
- 3. ограниченной, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : |x_n| \leq M;$
- 4. неограниченной, если $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : |x_n| > M;$

4.2 Предел числовой последовательности

Определение 4.2.1. Число $a \in \mathbb{R}$ называется пределом числовой последовательности, если $\forall \varepsilon > 0$ существует такой номер n, зависящий от ε , что \forall натурального числа N > n верно неравенство $|x_n - a| < \varepsilon$.

$$\lim_{n \to \infty} x_n = a$$

4.3 Бесконечные пределы

4.4 Свойства сходящихся последовательностей

Теорема 4.4.1 (о единственности предела). Любая сходящаяся последовательность имеет только один предел.

Доказательство. "От противного". Пусть $\{x_n\}_{n=1}^{\infty}$ — сходящаяся последовательность. Предположим, что $\exists \lim_{n\to\infty} x_n = a$ и $\exists \lim_{n\to\infty} x_n = b$, причем $a \neq b$. Пусть для определенности a < b.

$$\lim_{n \to \infty} x_n = a \iff \forall \varepsilon > 0 \quad \exists N_1 = N_1(\varepsilon) \in \mathbb{N} : \forall n > N_1 : |x_n - a| < \varepsilon,$$

$$\lim_{n \to \infty} x_n = b \iff \forall \varepsilon > 0 \quad \exists N_2 = N_2(\varepsilon) \in \mathbb{N} : \forall n > N_2 : |x_n - b| < \varepsilon.$$

$$N = \max\{N_1, n_2\} \implies \forall n > N : \begin{cases} |x_n - a| < \varepsilon, \\ |x_n - b| < \varepsilon. \end{cases}$$

Выберем $\varepsilon=\frac{b-a}{4}>0$. Найдем $N_1(\varepsilon),N_2(\varepsilon),N=\max\{N_1,N_2\},$ тогда

$$\forall n > N \quad |x_n - a| < \frac{b - a}{4}, \quad |x_n - b| < \frac{b - a}{4}.$$

Следовательно,

$$0 < b - a = |b - a| = |b - x_n + x_n - a| \le |x_n - b| + |x_n - a| < \frac{b - a}{2},$$

то есть

$$0 < b - a < \frac{b - a}{2}.$$

Мы пришли к противоречию, следовательно, $a = b \implies \{x_n\}_{n=1}^{\infty}$ имеет единственный предел. \square

Теорема 4.4.2 (об ограниченности сходящейся последовательности). Любая сходящаяся последовательность является ограниченной.

 \mathcal{A} оказательство. Если $\{x_n\}_{n=1}^\infty$ сходится, то

$$\exists \lim_{n \to \infty} = a \in \mathbb{R} \implies \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N : |x_n - a| < \varepsilon$$

Пусть
$$\varepsilon=1 \implies \exists N=N(1) \quad \forall n>N: |x_n-a|<1.$$
 Следовательно,

$$|x_n| = |x_n - a + a| \le |x_n - a| + |a| < 1 + |a|.$$

Пусть
$$M_0=1+|a|\Longrightarrow \forall n>N: x_n< M_0.$$
 Пусть $M=\max\{|x_1|,|x_2|,\dots,|x_n|,M_0\},$ тогда $\forall n\in\mathbb{N}: x_n\leq M\Longrightarrow \{x_n\}_{n=1}^\infty$ является ограниченной.

Замечание. Ограниченность является необходимым условием сходимости числовой последовательности. В то же время условие ограниченности не является достаточным для сходимости числовой последовательности. Например, $\{(-1)^n\}_{n=1}^{\infty}$ — ограниченная, но не сходящаяся числовая последовательность.

4.5 Монотонные числовые последовательности

Определение 4.5.1. Числовая последовательность $\{x_n\}_{n=1}^{\infty}$ называется

- 1. возрастающей, если $\forall n \in \mathbb{N} : x_n < x_{n+1}$;
- 2. убывающей, если $\forall n \in \mathbb{N} : x_n > x_{n+1};$
- 3. неубывающей, если $\forall n \in \mathbb{N} : x_n \leq x_{n+1}$;
- 4. невозрастающей, если $\forall n \in \mathbb{N} : x_n \geq x_{n+1}$

Для монотонных числовых последовательностей ограниченность является достаточным условием для сходимости.

Теорема 4.5.1 (Вейерштрасса о сходимости монотонных числовых последовательностей). Если последовательность не убывает и ограничена сверху, то она является сходящейся. Если последовательность не возрастает и ограничена снизу, то она является сходящейся. В общем, любая монотонная последовательность сходится.

 \mathcal{A} оказательство. Пусть $\{x_n\}_{n=1}^{\infty}$ не убывает и ограничена сверху \Longrightarrow $\exists M \in \mathbb{R} : \forall n \in \mathbb{N} : x_n \leq M \Longrightarrow$

- \Longrightarrow множество значений этой последовательности $\{x_1,x_2,\ldots,x_n,\ldots\}=A$ является ограниченным сверху числовым множеством \Longrightarrow $\exists \sup A \in \{x_n\}_{n=1}^{\infty}=a$, то есть
- 1. $\forall n \in \mathbb{N} : x_n \leq a$;
- 2. $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : x_N > a \varepsilon$.

 $\{x_n\}_{n=1}^{\infty}$ — неубывающая последовательность, то есть

$$\forall n > N = N(\varepsilon) : x_n \ge x_N \implies$$

$$\implies a - \varepsilon < x_N \le x_n \le a < a + \varepsilon \implies$$

$$\implies a - \varepsilon < x_n < a + \varepsilon \implies |x_n - a| < \varepsilon \implies$$

$$\implies \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} : \forall n > N : |x_n - a| < \varepsilon \implies$$

$$\implies \exists \lim_{n \to \infty} x_n = a \in \mathbb{R} \implies \{x_n\}_{n=1}^{\infty} \text{ сходится.}$$

Если $\{x_n\}_{n=1}^{\infty}$ — невозрастающая и ограниченная снизу последовательность, то

$$\exists \lim_{n \to \infty} x_n = \inf A, A = \{x_1, x_2, \dots, x_n, \dots\}.$$

Доказательство аналогично.

4.6 Число *e*

4.7 Гиперболические функции

4.8 Предельные точки числового множества

Определение 4.8.1. Точка $a \in \mathbb{R}$ называется предельной точкой множества $X \subset \mathbb{R} \iff$ любая окрестность U(a) содержит бесконечно

много элементов множества X.

Замечание. Множество A называется бесконечным или содержащим бесконечно много элементов, если при вычитании из A любого его конечного подмножества получается непустое множество.

Множество всех предельных точек множества X называется производным множеством для X и обозначается X'.

Утверждение 4.8.1. Точка $a \in \mathbb{R}$ является предельной для $X \subset \mathbb{R} \iff$ в любой проколотой δ -окрестности точки а содержится хотя бы один элемент множества X, т.е.

$$\forall \delta > 0 \quad \exists x \in X \cap \mathring{U}(a).$$

Доказательство. (\Longrightarrow) Необходимость.

a — предельная для $X \subset \mathbb{R} \implies$

 \Longrightarrow любая U(a) содержит бесконечно много элементов из $X\Longrightarrow$ \Longrightarrow $\mathring{U}(a)$ тоже содержит бесконечно много элементов из $X\Longrightarrow$ \Longrightarrow любая \mathring{U} содержит хотя бы один элемент $x\in X$. (\Longleftrightarrow) Достаточность.

$$\forall \delta > 0 \quad \exists x \in X \cap \mathring{U}(a).$$

Выберем любую U(a). Тогда

$$\exists \delta_1 > 0 : \mathring{U}(a) \subset U(a) \implies \exists x_1 \in X : x_1 \in \mathring{U}_{\delta_1}(a).$$

Пусть $\delta_2 = \frac{|x_1 - a|}{2} > 0$. Тогда

$$\exists x_2 \in \mathring{U}_{\delta_2}(a) : x_2 \neq x_1.$$

Пусть $\delta_3 = \frac{|x_2 - a|}{2} > 0$. Тогда

$$\exists x_3 \in \mathring{U}_{\delta_3}(a) : x_3 \neq x_2$$

и т.д. На шаге n:

$$\delta_n = \frac{|x_{n-1} - a|}{2} > 0 \implies \exists x_n \in \mathring{U}_{\delta_n}(a) : x_n \neq x_k, k = 1, 2, \dots, n-1.$$

Таким образом,

$$\exists \{x_n\}_{n=1}^{\infty} \in U(a) : x_n \in X, x_n \neq x_k, n \neq k,$$

а значит, любая окрестность U(a) содержит бесконечно много элементов из $X \implies a$ — предельная точка.

Утверждение 4.8.2. Если точка $a \in \mathbb{R}$ является предельной точкой для множества $X \subset \mathbb{R}$, то

$$\exists \{x_n\}_{n=1}^{\infty} \subset X : \lim_{n \to \infty} x_n = a.$$

Доказательство. a — предельная точка для $X \subset \mathbb{R} \iff \forall \delta > 0$ $\mathring{U}_{\delta}(a)$ содержит хотя бы одну точку множества X (по утверждению 1). Выберем $\{\delta_n\}_{n=1}^{\infty}, \delta_n = \frac{1}{n} > 0$, тогда

$$\forall n \in \mathbb{N} \quad \exists x_n \in X : x_n \in \mathring{U}_{\delta_n}(a),$$

то есть

$$0<|x_n-a|<\frac{1}{n}.$$

T.к. $\lim_{n\to\infty}\frac{1}{n}=0$,

$$\forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N : \frac{1}{n} < \varepsilon,$$

а значит,

$$|x_n - a| < \frac{1}{n} < \varepsilon \implies \lim_{n \to \infty} x_n = a.$$

Теорема 4.8.1 (принцип Больцано-Вейерштрасса). Любое ограниченное бесконечное числовое множество имеет хотя бы одну предельную точку.

Доказательство. Пусть X — бесконечное ограниченное множество, то есть $\exists I_1 = [a_1, b_1] : X \subset [a_1, b_1]$. Пусть $c_1 = \frac{a_1 + b_1}{2}$, т.е. середина отрезка I_1 .

Так как множество X бесконечное, то либо отрезок $[a_1, c_1]$, либо отрезок $[c_1, b_1]$ содержит бесконечно много элементов множества X. Обозначим ту половину отрезка I_1 , которая содержит бесконечно много элементов множества X через $I_2 = [a_2, b_2], I_2 \subset I_1$. Выразим длину отрезка I_2 :

$$|I_2| = b_2 - a_2 = \frac{b_1 - a_1}{2} = \frac{|I_1|}{2}.$$

На отрезке I_2 содержится бесконечно много элементов множества X. Пусть $c_2 = \frac{a_2+b_2}{2}$ — середина I_2 , тогда либо $[a_2,c_2]$, либо $[c_2,b_2]$ содержит бесконечно много элементов множества X. Обозначим ту половину I_2 , где бесконечно много элементов множества X через $I_3 = [a_3,b_3]$. Тогда

$$|I_3| = \frac{|I_1|}{2^2}$$

и т.д. На шаге n: $I_n = [a_n, b_n], c_n = \frac{a_n + b_n}{2}$ — середина I_n, I_n содержит бесконечно много элементов из X, тогда либо $[a_n, c_n]$, либо $[c_n, b_n]$ содержит бесконечно много элементов из $X \implies I_{n+1} = [a_{n+1}, b_{n+1}] \subset I_n$ и содержит бесконечно много элементов из X. Таким образом, мы получили последовательность вложенных отрезков $\{I_n\}_{n=1}^\infty: I_1\supset I_2\supset\ldots\supset I_n\supset I_{n+1}\supset\ldots$

$$|I_n| = \frac{|I_1|}{2^{n-1}} \implies \lim_{n \to \infty} \frac{|I_1|}{2^{n-1}} = 0 \implies$$

$$\implies \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N : |I_n| < \varepsilon.$$

По принципу Коши-Кантора $\exists !$ общая точка c, т.е. $\forall n \in \mathbb{N} : c \in I_n$.

$$\forall U(c) \quad \exists \varepsilon > 0 \quad U_{\varepsilon}(c) \subset U(c) \implies \exists n \in \mathbb{N} : I_n = [a_n, b_n] \subset U_{\varepsilon}(c)$$
 (например, $|I_n| < \frac{\varepsilon}{2}$).

Отрезок I_n содержит бесконечно много элементов множества X по построению последовательности $\{I_n\}_{n=1}^{\infty} \implies$ окрестность U(c) содержит бесконечно много элементов из $X \implies c$ — предельная.

4.9 Предельные точки числовых последовательностей

Определение 4.9.1. Точка $a \in \mathbb{R}$ называется предельной точкой числовой последовательно $\{x_n\}_{n=1}^{\infty} \iff$ любая окрестность U(a) содержит бесконечно много элементов последовательности $\{x_n\}_{n=1}^{\infty}$.

Замечание. Если a — предельная точка $\{x_n\}_{n=1}^{\infty}$, то любая U(a) содержит какую-либо подпоследовательность $\{x_n\}_{n=1}^{\infty}$.

Пример: $\{x_n\}_{n=1}^{\infty}, x_n = (-1)^n$.

$$\begin{array}{c|c}
x_{2n-1} & x_{2n} \\
 \hline
-1 & 1
\end{array}$$

Теорема 4.9.1. Точка $a \in \mathbb{R}$ является предельной для $\{x_n\}_{n=1}^{\infty} \iff \exists \{x_{n_k}\}_{k=1}^{\infty} : \lim_{k \to \infty} x_{n_k} = a.$

Доказательство. Докажем необходимость. Пусть a — предельная точка последовательности $\{x_n\}_{n=1}^{\infty}$. Выберем $\{\varepsilon_n\}_{n=1}^{\infty}, \varepsilon_n = \frac{1}{n} > 0$.

Для n=1 $U_{\varepsilon_1=1}(a)$ содержит ∞ много элементов \Longrightarrow $\exists x_{n_1} \in U_{\varepsilon_1}(a)$, т.е. $|x_{n_1}-a|<1$.

Для n=2 $U_{\varepsilon_2=\frac12}(a)$ содержит ∞ много элементов $\implies \exists n_2>n_1: x_{n_2}\in U_{\varepsilon_2}(a),$ т.е. $|x_{n_2}-a|<\frac12.$

Для n=3 $U_{\varepsilon_3=\frac{1}{3}}(a)$ содержит ∞ много элементов $\Longrightarrow \exists n_3>n_2: x_{n_3}\in U_{\varepsilon_3}(a)$, т.е. $|x_{n_3}-a|<\frac{1}{3}$ и т.д. Для n=k $U_{\varepsilon_k=\frac{1}{k}}(a)$ содержит ∞ много элементов $\Longrightarrow \exists n_k>n_{k-1}:$

Для n=k $U_{\varepsilon_k=\frac{1}{k}}(a)$ содержит ∞ много элементов $\Longrightarrow \exists n_k > n_{k-1}: x_{n_k} \in U_{\varepsilon_k}(a)$, т.е. $|x_{n_k}-a|<\frac{1}{k} \Longrightarrow \{x_{n_k}\}_{k=1}^{\infty}$ является подпоследователь-

ностью последовательности $\{x_n\}_{n=1}^{\infty} \implies \forall k \in \mathbb{N} : |x_{n_k} - a| < \frac{1}{k}.$

$$\lim_{k \to \infty} \frac{1}{k} = 0 \implies \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall k > N : \frac{1}{k} < \varepsilon \implies$$

$$\implies \forall k > N \quad |x_{n_k} - a| < \frac{1}{k} < \varepsilon \implies \exists \lim_{k \to \infty} x_{n_k} = a.$$

Докажем достаточность.

Пусть $\exists \{x_{n_k}\}_{k=1}^{\infty}: \lim_{k\to\infty} x_{n_k}=a$. Выберем любую U(a) и найдем такое $\varepsilon>0$, что $U_{\varepsilon}(a)\subset U(a)$:

$$\exists N = N_{\ell}(\varepsilon) \in \mathbb{N} \quad \forall k > N : |x_{n_k} - a| < \varepsilon \implies x_{n_k} \in U_{\varepsilon}(a) \subset U(a).$$

Следовательно, U(a) содержит бесконечно много элементов $\{x_n\}_{n=1}^{\infty}$, а значит a — предельная.

Теорема 4.9.2. Если $\exists \lim_{n\to\infty} x_n = a$, то а является предельной точкой для $\{x_n\}_{n=1}^{\infty}$, причем единственной.

Доказательство. a — предельная, если $\lim_{n\to\infty} x_n = a$ (по теореме 1).

Докажем единственность предельной точки для $\{x_n\}_{n=1}^{\infty}$ "от противного". Пусть $\exists b \neq a, b$ — предельная точка $\{x_n\}_{n=1}^{\infty}$, тогда $|b-a| \geq \delta > 0$. Т.к. $a = \lim_{n \to \infty} x_n$, любая ε -окрестность точки содержит бесконечно много элементов $\{x_n\}_{n=1}^{\infty}$, а именно все, начиная с номера $N(\varepsilon)+1$, т.е. $\forall n > n(\varepsilon)$. Вне $U_{\varepsilon}(a)$ может содержаться не более конечного числа элементов $\{x_n\}_{n=1}^{\infty}$ (возможно x_n с номерами $1, 2, \ldots, N(\varepsilon)$).

Выберем $\varepsilon = \frac{\delta}{4} > 0$. Тогда $\forall n > N(\varepsilon) : x_n \in U_{\varepsilon}(a)$.

Но $U_{\varepsilon}(a) \cap U_{\varepsilon}(b) = \emptyset$, что противоречит тому, что b — предельная точка для $\{x_n\}_{n=1}^{\infty}$, т.е. $U_{\varepsilon}(b)$ должна содержать бесконечно много элементов $\{x_n\}_{n=1}^{\infty}$, а туда может попасть не более конечного. Следовательно, a = b.

Теорема 4.9.3. Любая ограниченная числовая последовательность имеет хотя бы одну предельную точку.

Доказательство. $\{x_n\}_{n=1}^{\infty}$ — ограниченная, $X = \{x_1, x_2, \dots, x_n, \dots\} \subset \mathbb{R}$, X — множество значений числовой последовательность $\{x_n\}_{n=1}^{\infty}$. Т.к. $\{x_n\}_{n=1}^{\infty}$ — ограниченная числовая последовательность, X — ограниченное числовое множество. Рассмотрим два случая.

Первый: X — бесконечное числовое множество. Тогда X по принципу Больцано-Вейерштрасса имеет хотя бы одну предельную точку a, т.е. в любую U(a) попадает бесконечно много элементов множества X, а значит и бесконечно много элементов $\{x_n\}_{n=1}^{\infty}$. Следовательно, a — предельная точка последовательности $\{x_n\}_{n=1}^{\infty}$.

Второй: X — конечное числовое множество. Тогда хотя бы один элемент последовательности $\{x_n\}_{n=1}^{\infty}$ повторяется бесконечно много раз, т.е. \exists подпоследовательность $\{x_{n_k}\}_{k=1}^{\infty}$ (постоянная $\forall k \in \mathbb{N}$), $x_{n_k} = a \in X \Longrightarrow$ а — предельная точка $\{x_n\}_{n=1}^{\infty}$, $\lim_{k \to \infty} x_{n_k} = a$.

Теорема 4.9.4. Для того, чтобы точка $a \in \mathbb{R}$ была пределом $\{x_n\}_{n=1}^{\infty}$, $m.e. \lim_{n\to\infty} x_n = a$, необходимо и достаточно, чтобы $\{x_n\}_{n=1}^{\infty}$ была ограниченной и имела единственную предельную точку.

Доказательство. Докажем необходимость. $\exists \lim_{n\to\infty} x_n = a \in \mathbb{R} \implies \{x_n\}_{n=1}^{\infty}$ ограниченна (по свойству сходящейся последовательности), а значит, $\{x_n\}_{n=1}^{\infty}$ имеет единственную предельную точку (по теореме 2).

Докажем достаточность. Пусть a — единственная предельная точка ограниченной последовательности $\{x_n\}_{n=1}^{\infty}$.. Докажем, что $\lim_{n\to\infty} x_n = a$

T.K.
$$a = .$$

4.10 Фундаментальные последовательности

Определение 4.10.1. Последовательность $\{x_n\}_{n=1}^{\infty} \subset \mathbb{R}$ называется фундаментальной \iff

$$\forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \forall n > N, \forall m > N : |x_n - x_m| < \varepsilon.$$

Теорема 4.10.1. Если числовая последовательность $\{x_n\}_{n=1}^{\infty}$ фундаментальна, то она ограниченна.

Доказательство. $\{x_n\}_{n=1}^{\infty}$ фундаментальная $\Longrightarrow \forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N}$ $\forall n > N, \forall m > N: |x_n - x_m| < \varepsilon$. Пусть $\varepsilon = 1 \implies \exists N = N(1) \implies \forall n > N$ и $m = N+1: |x_n - x_{N+1}| < 1$ $\implies \forall n > N: |x_n| = |x_n - x_{N+1} + x_{N+1}| \le |x_n - x_{N+1}| + |x_{N+1}| < 1 + |x_{N+1}| = M_0 \implies \forall n > N: |x_n| < M_0.$

Пусть $M = \max\{|x_1|, |x_2|, \dots, |x_N|, M_0\} \implies \forall n \in \mathbb{N} : |x_n| \le M \implies \{x_n\}_{n=1}^{\infty}$ ограниченна.

Теорема 4.10.2 (Критерий Коши сходимости числовой последовательности). Числовая последовательность $\{x_n\}_{n=1}^{\infty}$ сходится тогда и только тогда, когда она фундаментальна.

Доказательство. Докажем необходимость.

По условию $\{x_n\}_{n=1}^{\infty}$ сходится $\implies \exists \lim_{n\to\infty} x_n = a \in \mathbb{R}$, тогда

$$\forall \varepsilon > 0 \quad \exists N = N(\varepsilon) \in \mathbb{N} \quad \forall n > N, \forall m > N : |x_n - a| < \frac{\varepsilon}{2}; |x_m - a| < \frac{\varepsilon}{2}.$$

Рассмотрим $|x_n-x_m|=|x_n-a+a-x_m|\leq |x_n-a|+|a-x_m|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$

$$\forall n > N, \forall m > N \quad (N = N(\varepsilon) \in \mathbb{N}) : |x_n - x_m| < \varepsilon \implies \{x_n\}_{n=1}^{\infty}.$$

Следовательно, $\{x_n\}_{n=1}^{\infty}$ фундаментальна.

Докажем достаточность.

По условию $\{x_n\}_{n=1}^{\infty}$ фундаментальна \Longrightarrow ограниченна \Longrightarrow \exists хотя бы одна предельная точка. Докажем, что эта предельная точка единственна "от противного". Предположим, что \exists две предельные точки последовательности $\{x_n\}_{n=1}^{\infty}: b$ и $b_1, b \neq b_1$. По определению предельной точки $\forall \varepsilon > 0$ $U_{\varepsilon}(b)$ и $U_{\varepsilon}(b_1)$ содержит бесконечно много членов последовательности $\{x_n\}_{n=1}^{\infty}$.

 $\{x_n\}_{n=1}^\infty$ фундаментальна $\Longrightarrow \forall \varepsilon>0 \quad \exists N=N(\varepsilon)\in \mathbb{N} \quad \forall n,m>N: |x_n-x_m|<\varepsilon.$

Т.к. $b_1 \neq b \implies \varepsilon = \frac{|b_1 - b|}{6} > 0$. Для выбранного ε найдем соответствующий номер $N = N(\varepsilon)$

$$\forall n, m > N : |x_n - x_m| < \frac{|b_1 - b|}{6}.$$

Т.к. в $U_{\varepsilon}(b)$ и $U_{\varepsilon}(b_1)$ попадает бесконечно много элементов $\{x_n\}_{n=1}^{\infty},$ то

$$\exists n_1 > N, x_{n_1} \in U_{\varepsilon}(b)$$
и $\exists m_1 > N : x_{m_1} \in U_{\varepsilon}(b_1).$

$$0 < |b-b_1| = |b-x_{n_1} + x_{n_1} - x_{m_1} + x_{m_1} - b_1| \le |x_{n_1} - b| + |x_{n_1} - x_{m_1}| + |x_{m_1} - b_1| < 3\varepsilon = \frac{3|b-b_1|}{6} = \frac{|b-b_1|}{6}$$
$$0 < |b-b_1| < \frac{|b-b_1|}{2}.$$

Противоречие, следовательно, $b = b_1$, а значит, $\{x_n\}_{n=1}^{\infty}$ имеет единственную предельную точку $\Longrightarrow \{x_n\}_{n=1}^{\infty}$ сходится (по теореме 4 о предельной точке последовательности).

Пример: $\{x_n\}_{n=1}^{\infty}, x_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$. Существует ли $\lim_{n \to \infty} x_n \in \mathbb{R}$? $\forall n \in \mathbb{N} \quad m = 2n > n$

$$|x_n - x_{2n}| = |x_{2n} - x_n| = |1 + \frac{1}{2} + \dots + \frac{1}{2n} - 1 - \frac{1}{2} - \dots - \frac{1}{n}| = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n} = \frac{1}{2}.$$

Следовательно, $\{x_n\}_{n=1}^{\infty}$ не является фундаментальной.

$$\exists \varepsilon = \frac{1}{2} \quad \forall N \in \mathbb{N} \exists n > N \exists m = 2n > N : |x_n - x_{2n}| > \frac{1}{2}.$$

Значит, не существует конечный $\lim_{n\to\infty} x_n$, т.е. последовательность не является сходящейся.

Определение 4.10.2. Число b или $+\infty(-\infty)$ называют частичным пределом числовой последовательности $\{x_n\}_{n=1}^{\infty}$ \iff

$$\exists \{x_n\}_{n=1}^{\infty} : \lim_{k \to \infty} x_{n_k} = b(+-\infty)..$$

Если частичный предел есть конечное число, то это число является предельной точкой $\{x_n\}_{n=1}^{\infty}$.

 $(-1)^n$ - +-1 - частичные пределы. Наибольший частичный предел (может быть $+-\infty$) называют верхним пределом числовой последовательности и обозначают $\overline{\lim}_{n\to\infty} x_n$. Наименьший частичный предел (может быть $+-\infty$) называют нижним пределом числовой последовательности и обозначают $\lim_{n\to\infty} x_n$.

$$\lim_{n \to \infty} x_n \le \overline{\lim_{n \to \infty} x_n}.$$

Пример: $\{(-1)^n n\}_{n=1}^{\infty} = x_n$. $\underline{\lim_{n\to\infty} x_n} = +\infty$. $\underline{\lim_{n\to\infty} x_n} = -\infty$.

Теорема 4.10.3. Последовательность $\{x_n\}_{n=1}^{\infty}$ сходится \iff

$$\overline{\lim_{n\to\infty} x_n} = \lim_{n\to\infty} x_n.$$

и является конечным числом.

4.11 Пределы функций. Определение предела по Koши

*: $a; a+0; a-0; \infty; +\infty; -\infty$ **: $b; \infty; +\infty; -\infty$ Пусть функция f(x) определена в некоторой проколотой окрестности *

Определение 4.11.1.

$$\lim_{x \to *} f(x) = ** \iff \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}(*) \implies f(x) \in U_{\varepsilon}(**).$$

 $a \in \mathring{U}_d elta(a).$

$$a \in \mathring{U}_{\delta}(a+0).$$

$$a \in \mathring{U}_{\delta}(a-0).$$

$$a \in \mathring{U}_{\delta}(\infty).$$

$$a \in \mathring{U}_{\delta}(+\infty).$$

$$a \in \mathring{U}_{\delta}(-\infty).$$

$$a \in \mathring{U}_{\delta}(-a).$$

 $\lim_{n\to a} f(x) = b \iff$

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathbb{R} : 0 < |x - a| < \delta.$$

Следовательно, $|f(x) - b| < \varepsilon$

 $x \approx a$ с точностью $< \delta = \delta(\varepsilon) \implies f(x) \approx b$ с точностью $< \varepsilon$.

Рассмотрим $\lim_{x\to\infty} f(x) = b \iff$

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathbb{R} : x > \delta.$$

Следовательно, $|f(x) - b| < \varepsilon$.

Рассмотрим $\lim_{x\to\infty} f(x) = b \iff$

$$\forall \varepsilon > 0 \exists \delta = \delta(\varepsilon) \quad \forall x \in \mathbb{R} : x < -\delta.$$

Следовательно, $|f(x) - b| < \varepsilon$ Пример: $\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}$

Если $*=a;\infty$, то $\lim_{x\to *}f(x)$ называют двусторонним пределом. Если $*=a+0;a-0;+\infty;-\infty$, то $\lim_{x\to *}f(x)$ называют односторонним пределом. Если **=b (конечные числа), то $\lim_{x\to *}f(x)=b$ называют конечным пределом. Если $**=\infty;+\infty;-\infty$

Теорема 4.11.1 (о связи двустороннего предела с односторонними).

$$\lim_{x \to a} f(x) = b \iff \exists \lim_{x \to a+0} f(x) = b \ u \ \exists \lim_{x \to a-0} f(x) = b.$$

Доказательство. Докажем необходимость.

По условию $\exists \lim_{x\to a} f(x) = b \implies$

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) \quad \forall x \in \mathbb{R} : 0 < |x - a| < \delta \implies .$$

$$\implies |f(x) - b| < \varepsilon.$$

Тогда

$$0 < |x - a| < \delta \iff x \in (a - \delta, a) \cup (a; a + \delta) \implies .$$

$$\begin{cases} \forall x \in \mathbb{R} : a < x < a + \delta, \\ \forall x \in \mathbb{R} : a - \delta < x < a. \end{cases}$$

 \Longrightarrow

Докажем достаточность. $\lim_{x\to a+0} f(x) = b \iff \forall \varepsilon > 0 \quad \exists \delta_1 = \delta_1(\varepsilon) > 0 \quad \forall x \in \mathbb{R} : a < x < a + \delta_1 \implies |f(x) - b| < \varepsilon \lim_{x\to a-0} f(x) = b \iff \forall \varepsilon > 0 \quad \exists \delta_2 = \delta_2(\varepsilon) > 0 \quad \forall x \in \mathbb{R} : a - \delta_2 < x < a \implies |f(x) - b| < \varepsilon$

Пусть
$$\delta = \min\{\delta_1, \delta_2\} > 0$$
. Тогда $\mathring{U}_{\delta}(a) \subset$

Замечание. 1.

$$\lim_{x \to a} f(x) = \infty \iff \lim_{x \to a+0} f(x) = \infty.$$

Определение 4.11.2 (Определение предела по Гейне). *Пусть* f(x) *определена в некоторой* $\mathring{U}(*)$

$$\lim_{x \to *} f(x) = ** \iff$$

$$\forall \{x_n\}_{n=1}^{\infty}.$$

Теорема 4.11.2 (об эквивалентности определений предела по Коши и Гейне). Определения предела по Коши и по Гейне эквивалентны.

Пример: $\lim_{x\to 0} \sin \frac{1}{x}$ не определен.

$$x_n = \frac{1}{\pi n} \quad \lim_{n \to \infty} x_n = 0 \quad \lim_{n \to \infty} \sin x_n = \lim_{n \to \infty} \sin \pi n = 0.$$

$$y_n = \frac{1}{\frac{\pi}{2} + 2\pi n} \quad \lim_{n \to \infty} y_n = 0 \quad \lim_{n \to \infty} \sin y_n = \lim_{n \to \infty} \sin \frac{\pi}{2} + 2\pi n = 1.$$

 $0 \neq 1 \implies$ не существует $\lim_{x \to 0} f(x)$

Теорема 4.11.3 (о единственности предела функции). *Если* $\exists \lim_{x\to *} f(x) = b \in \mathbb{R}$, то этот предел единственный (при $x\to *$)

Доказательство. $\exists \lim_{x\to *} f(x) = b \in \mathbb{R} \implies$ по определению предела по Гейне для любой $\{x_n\}_{n=1}^{\infty}, x_n \neq *, \lim_{n\to\infty} x_n = * \implies \lim_{n\to\infty} f(x_n) = b$. Числовая последовательность $\{f(x_n)\}_{n=1}^{\infty}$ сходится \implies имеет только один предел $b \implies \exists$ и единственнен $\lim_{x\to *} f(x) = b$

Определение 4.11.3. Функция f(x) называется локально ограниченной при $x \to *$ (в точке * или в окрестности *) $\iff \exists \mathring{U}(*), \exists M > 0,$ что f(x) определена в $\mathring{U}(*)$ и \forall

Теорема 4.11.4 (о локальной ограниченности функции, имеющей конечный предел). Пусть $\exists \lim_{x\to *} f(x) = b \in \mathbb{R}$. Тогда f(x) локально ограниченна при $x\to *$.

Доказательство.

$$\lim_{x \to *} f(x) = b \iff \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta}(*) \implies |f(x) - b| < \varepsilon \implies .$$

$$\implies \forall x \in \mathring{U}_{\delta}(*) : |f(x)| = |f(x) - b + b| \le |f(x) - b| + |b| < \varepsilon + |b| = M.$$

Выберем любой $\varepsilon > 0$, например, $\varepsilon = 1$. Найдем соответствующую $\delta > 0 \implies \forall x \in \mathring{U}_{\delta}(*): |f(x)| < 1 + |b| = M \implies f(x)$ локально ограниченна при $x \to *$.

4.12 Бесконечно малые функции

Определение 4.12.1. Функцию $\alpha(x)$ называется бесконечно малой (б.м.) $npu \ x \to * \iff \lim_{x \to *} \alpha(x) = 0 \iff \forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \forall x \in \mathring{U}_{\delta}(*) \implies |\alpha(x)| < \varepsilon$

Пример: $y = 2^{\frac{1}{x}}$

$$x \to 0 + 0$$
 $\lim_{x \to 0 + 0} 2^{\frac{1}{x}} = [2^{+\infty}] = +\infty.$

$$x \to 0-0$$
 $\lim_{x \to 0-0} 2^{\frac{1}{x}} = [2^{-\infty}] = 0 \implies f(x)$ бесконечно малая при $x \to 0-0$.

Теорема 4.12.1 (о связи функции, ее предеела и бесконечно малой).

$$\lim_{x\to *} f(x) = b \iff f(x) = b + \alpha(x), \ \textit{rde } \alpha(x) \text{- } \textit{beckoherhas manas npu } x \to *.$$

Доказательство. Докажем необходимость. По условию

Докажем достаточность. Пусть $f(x)=b+\alpha(x),\ \alpha(x)$ — бесконечно малая при $x\to *$ \Longrightarrow .

$$\implies \alpha(x) = f(x) - b \to 0$$
 при $x \to *$.

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \forall x \in \mathring{U}_{\delta}(*) \implies |\alpha(x)| < \varepsilon.$$

4.13 Свойства бесконечно малых функций

Теорема 4.13.1. Пусть $\alpha(x)$ и $\beta(x)$ - бесконечно малые при $x \to *$. Тогда $\alpha(x) + \beta(x)$ — бесконечно малые при $x \to *$.

Доказательство. $\alpha(x)$ и $\beta(x)$ бесконечно малые при $x \to *$

$$\lim_{x \to *} \alpha(x) \implies \forall \varepsilon > 0 \quad \exists \delta_1 = \delta_1(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta_1}(*) \implies |\alpha(x)| < \frac{\varepsilon}{2}.$$

$$\lim_{x \to *} \alpha(x) \implies \forall \varepsilon > 0 \quad \exists \delta_2 = \delta_2(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta_2}(*) \implies |\beta(x)| < \frac{\varepsilon}{2}.$$

Пусть $\delta = \min\{\delta_1, \delta_2\}$, если *: a; a + 0; a - 0 и $\delta = \max\{\delta_1, \delta_2\}$, если $*: \infty; +\infty, -\infty$.

$$\implies \mathring{U}_{\delta}(*) = \mathring{U}_{\delta_{1}}(*) \cap \mathring{U}_{\delta_{2}}(*) \implies .$$

$$\implies \forall .$$

Следствие 4.13.1.1. Сумма конечного числа бесконечно малой $npu \ x \to ecmb$ бесконечно малая $npu \ x \to *$.

Теорема 4.13.2 (произведение бесконечно малой на ограниченную). Пусть α - бесконечно малая при $x \to *$, f(x) локально ограниченна при $x \to *$. Тогда $\alpha(x) \cdot f(x)$ есть бесконечно малая при $x \to *$.

 \mathcal{A} оказательство. f(x) — локально ограниченна при $x \to * \implies \exists \mathring{U}_{\delta_1}(*) = \exists M > 0 \quad \forall x \in \mathring{U}_{\delta_1}(*) : |f(x)| < M; \ \alpha(x)$ — бесконечно малая при $x \to * \implies \forall \varepsilon > 0 \quad \exists \delta_2 = \delta_2(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta_2}(*) \implies |\alpha(x)| < \frac{\varepsilon}{M} \implies \mathring{U}_{\delta} = \mathring{U}_{\delta_1}(*) \cap \mathring{U}_{\delta_2}(*)$

$$\lim_{x \to 0} x \sin \frac{1}{x} = .$$

$$\lim_{x \to 0} x^2 \arctan \frac{1}{x^{100}} = 0.$$

Теорема 4.13.3 (о произведении двух бесконечно малых). Пусть $\alpha(x)$, $\beta(x)$ — бесконечно малые $npu \ x \to *$. Тогда $\alpha(x)\beta(x)$ — бесконечно малая $npu \ x \to *$

Доказательство. $\beta(x)$ — бесконечно малая при $x \to * \implies \lim_{x \to *} \beta(x) = 0 \implies$ по теореме о локальной ограниченной функции, имеющей конечный предел $\implies \beta(x)$ локально ограниченна при $x \to * \implies \alpha(x) \cdot \beta(x)$ — произведение бесконечно малой на локально ограниченную при $x \to * \implies$ по теореме $2 \alpha \cdot \beta$ — бесконечно малые при.

Следствие 4.13.3.1. Произведение конечного числа бесконечно малых $npu \ x \to * \ ecmb$ бесконечно малая $npu \ x \to *.$

4.14 Арифметические операции с функциями, имеющими пределы

Теорема 4.14.1. Пусть $\exists \lim_{x\to *} f(x) = A \in \mathbb{R}, \lim_{x\to *} g(x) = B \in \mathbb{R}$ Тогда

1.
$$\exists \lim_{x \to *} (f(x) \pm g(x)) = A \pm B$$

2.
$$\exists \lim_{x \to *} (f(x)g(x)) = AB$$

3.
$$B \neq 0 \implies \exists \lim_{x \to *} \frac{f(x)}{g(x)} = \frac{A}{B}$$

Доказательство. $\exists \lim_{x\to *} f(x) = A; \exists \lim_{x\to *} g(x) = B \implies$ по теореме о связи функции, ее предела и бесконечно малой $\implies f(x) = A + \alpha(x), g(x) = B + \beta(x),$ где $\alpha(x), \beta(x)$ — бесконечно малые при $x \to *$.

- 1. $f(x) \pm g(x) = (A + \alpha(x)) \pm (B + \beta(x)) = A \pm B + \alpha(x) \pm \beta(x) = A \pm B + \gamma(x)$, где $\gamma(x)$ бесконечно малая при $x \to *$
- 2. $f(x) \cdot g(x) = (A + \alpha(x))(B + \beta(x)) = AB + B\alpha(x) + A\beta(x) + \alpha(x)\beta(x) = AB + \gamma(x) \implies$ по теореме о связи предела функции, ее предела и бесконечно малой $\implies \lim_{x \to *} f(x)g(x) = AB$

3.
$$\frac{f(x)}{g(x)} = \frac{A+\alpha(x)}{B+\beta(x)} = \frac{A}{B} + \frac{A+\alpha(x)}{B+\beta(x)} - AB$$

$$\gamma(x) = \frac{AB + B\alpha(x) - AB - A\beta(x)}{B(B + \beta(x))} = \frac{B\alpha(x) - A\beta(x)}{B} \cdot \frac{1}{B + \beta(x)}.$$

 $\frac{B\alpha(x)-A\beta(x)}{B}$ — бесконечно малая при $x\to *$ по свойствам бесконечно малых.

Докажем, что $\phi(x)=\frac{1}{B+\beta(x)}$ локально ограниченна при $x\to *$. $\beta(x)$ — бесокнечно малая при $x\to *$ $\Longrightarrow \ \forall \varepsilon>0 \ \exists \delta=\delta(\varepsilon)>0 \ \forall x\in \mathring{U}_{\delta}(*) \Longrightarrow \ |\beta(x)|<\varepsilon.$ Выберем $\varepsilon=\frac{|B|}{2}>0$, найдем соответствующее $\delta=\delta(\varepsilon)>0 \Longrightarrow \ \forall x\in \mathring{U}_{\delta}(*):|\beta(x)|<\frac{|B|}{2}$

$$\implies |B + \beta(x)| \ge |B| - |\beta(x)| > |B| - \frac{|B|}{2} = \frac{|B|}{2} \implies .$$

$$\implies \forall x \in \mathring{U}_{\delta}(*) : |B + \beta(x)| > \frac{|B|}{2} > 0 \implies .$$

$$\frac{1}{B + \beta(x) < \frac{2}{|B|}} \implies .$$

 $\Rightarrow \phi(x) = \frac{1}{B+\beta(x)}$ локально ограниченна при $x \to *\gamma(x)$ — произведение бесконечно малой на локально ограниченную при $x \to *$ \Rightarrow по свойству бесконечно малой является бесконечно малой при $x \to *$.

Теорема 4.14.2 (о знакопостоянстве функции, имеющей ненулевой предел). Пусть $\exists \lim_{x\to *} f(x) = b \neq 0$. Тогда $\exists \mathring{U}_{\delta}(*) \quad \forall x \in \mathring{U}_{\delta}(*) : |f(x)| > \frac{|b|}{2}$ Кроме того, если b > 0, то $\forall x \in \mathring{U}_{\delta}(*) : f(x) > \frac{b}{2} \implies f(x) > 0$, т.е. имеет тот эксе знак, что и предел; если b < 0, то $\forall x \in \mathring{U}_{\delta}(*) : f(x) < \frac{b}{2} \implies f(x) < 0$, т.е. имеет тот эксе знак, что и предел.

Доказательство.

$$\forall \varepsilon > 0 \quad \exists \delta = \delta(\varepsilon) > 0 \quad \forall x \in \mathring{U}_{\delta}(*) \implies |f(x) - b| < \varepsilon.$$

Или $b-\varepsilon < f(x) < b+\varepsilon$. Выберем $\varepsilon=\frac{|b|}{2}>0$, найдем соответствующий $\delta=\delta(\varepsilon)>0$

$$\forall x \in \mathring{U}_{\delta}(*) : |f(x)| = |b + f(x) - b| \ge |b| - |f(x) - b| > |b| - \frac{|b|}{2}.$$

$$\implies |f(x)| > \frac{|b|}{2}.$$

Пусть
$$b>0$$
, тогда $\varepsilon=\frac{|b|}{2}=\frac{b}{2}>0 \implies \forall x\in \mathring{U}_{\delta}(*) \quad f(x)>b-\varepsilon=b-\frac{b}{2}=\frac{b}{2}>0$