HW3

September 28, 2020

1. Let $Q = (Q_0, Q_1, h, t)$ be a quiver $Q = (1 \xrightarrow{a} 2 \xrightarrow{b} 3)$. Consider the following representations:

$$P = (0 \xrightarrow{0} \mathbb{C} \xrightarrow{[1]} \mathbb{C})$$

$$P = (0 \xrightarrow{0} \mathbb{C} \xrightarrow{[1]} \mathbb{C})$$

$$Q = (\mathbb{C} \xrightarrow{[1]} \mathbb{C} \xrightarrow{[5]} \mathbb{C})$$

$$S_2 = (0 \xrightarrow{0} \mathbb{C} \xrightarrow{0} 0)$$

$$S_2 = (0 \xrightarrow{0} \mathbb{C} \xrightarrow{0} 0)$$

$$I = (\mathbb{C} \xrightarrow{[1]} \mathbb{C} \xrightarrow{0} 0)$$

(a) Define representation morphisms $g: P \to Q \oplus S_2$ and $f: Q \oplus S_2 \to I$ such that

$$0 \longrightarrow P \xrightarrow{g} Q \oplus S_2 \xrightarrow{f} I \longrightarrow 0$$

is a short exact sequence.

- (b) Remember to prove that g and f are representation morphism.
- (c) Prove that the sequence is exact.
- 2. Let Λ be a finite dimensional \mathbb{C} -algebra. Let $0 \longrightarrow A \xrightarrow{g} B \xrightarrow{f} C \longrightarrow 0$ be a short exact sequence of left Λ -modules. Prove that $(f \text{ is split epi}) \iff (g \text{ is split mono}).$