

SF1625 Envariabelanalys Lösningsförslag till tentamen 2015-01-12

DEL A

- 1. Betrakta funktionen f som ges av $f(x) = xe^{1/x}$.
 - A. Bestäm definitionsmängden till f.
 - B. Beräkna de fyra gränsvärdena $\lim_{x\to\pm\infty} f(x)$ och $\lim_{x\to 0^{\pm}} f(x)$
 - C. Bestäm alla lokala extrempunkter till f.
 - D. Skissa med hjälp av ovanstående kurvan y = f(x)

Lösning. A. Definitionsmängden består av alla reella tal x för vilka $xe^{1/x}$ är definierat, dvs alla $x \neq 0$.

B. Alla dessa gränsvärden är standardgränsvärden. Vi får

$$\lim_{x\to\infty} f(x) = \infty, \quad \lim_{x\to -\infty} f(x) = -\infty, \quad \lim_{x\to 0^+} f(x) = \infty, \quad \lim_{x\to 0^-} f(x) = 0.$$

C. Vi deriverar och får

$$f'(x) = e^{1/x} + xe^{1/x} \left(-\frac{1}{x^2} \right) = e^{1/x} \left(1 - \frac{1}{x} \right)$$

som existerar för alla $x \neq 0$ och är 0 om och endast om x = 1. Ett teckestudium av derivatan ger

Om x < 0 så är f'(x) > 0. Det följer att f är strängt växande här. Det finns alltså inga lokala extrempunkter på intervallet x < 0.

Om 0 < x < 1 så är f'(x) < 0. Det följer att f är strängt avtagande här.

Om x = 1 så är f'(x) = 0.

Om x > 1 så är f'(x) > 0. Det följer att f är strängt växande här.

Av ovanstående följer att f har exakt en lokal extrempunkt, närmare bestämt en lokal minpunkt i x = 1. Värdet i minpunkten är f(1) = e.

D. Nu kan vi rita kurvan:

Svar: Se lösningen.

2. Beräkna integralen

$$\int_{\pi^2/4}^{\pi^2} \cos\sqrt{x} \, dx$$

genom att göra följande:

- A. Skriv om integralen med hjälp av substitutionen $\sqrt{x} = t$ (glöm inte gränserna).
- B. Beräkna, med hjälp av partiell integration, integralen du fått fram i uppgift A.

Lösning. A. Vi använder substitutionen $\sqrt{x} = t$, eller $x = t^2$, med dx = 2t dt och nya gränser $\pi/2$ och π , och får

$$\int_{\pi^{2}/4}^{\pi^{2}} \cos \sqrt{x} \, dx = \int_{\pi/2}^{\pi} 2t \cos t \, dt.$$

B. Vi beräknar integralen från uppgift A med hjälp av partiell integration och får

$$\int_{\pi/2}^{\pi} 2t \cos t \, dt = [2t \sin t]_{\pi/2}^{\pi} - \int_{\pi/2}^{\pi} 2 \sin t = -\pi - 2.$$

Svar: A. $\int_{\pi/2}^{\pi} 2t \cos t \, dt$. B. $-\pi - 2$

3. En plåtburk som rymmer 1 liter ska tillverkas i form av en cylinder med botten och lock. Bestäm höjden och bottenytans radie så att materialåtgången blir så liten som möjligt.

Lösning. Låt r vara bottenytans radie och h höjden. Volymen av cylindern är då $\pi r^2 h$ och att volymen ska vara 1 ger då att $\pi r^2 h = 1$ eller $h = 1/\pi r^2$.

Cylinderns begränsningsarea, som ska minimeras, ges av $2\pi r^2 + 2\pi rh$. Om vi i detta uttryck substituerar $h = 1/\pi r^2$ får vi att vi ska minimera funktionen

$$A(r) = 2\pi r^2 + \frac{2}{r}$$

där r > 0. Vi deriverar och får

$$A'(r) = 4\pi r - \frac{2}{r^2}$$

som existerar för alla r > 0. Vi ser att $A'(r) = 0 \iff 2r = 1/\pi r^2 = h$. Ett teckenstudium av derivatan ger vid handen att detta är en lokal och global minpunkt. Teckenstudium:

Om $0 < r < 1/(2\pi)^{1/3}$ så är A'(r) < 0 och det följer att A är strängt avtagande här.

Om
$$r=1/(2\pi)^{1/3}$$
 så är $A'(r)=0$.

Om $r>1/(2\pi)^{1/3}$ så är A'(r)>0 och det följer att A är strängt växande här.

Materialåtgången minimeras alltså om höjden i cylindern är lika med diametern. \Box **Svar:** Höjden i cylindern ska vara lika med diametern, dvs $r=1/(2\pi)^{1/3}$ och $h=2/(2\pi)^{1/3}$.

DEL B

- 4. Betrakta differentialekvationen $y''(t) + y(t) = \sin t$.
 - A. Lös differentialekvationen.
 - B. Avgör om det finns någon lösning till differentialekvationen som är begränsad.

Lösning. A. Den allmänna lösningen till differentialekvationen fås som $y_h + y_p$ där y_h är allmänna lösningen till motsvarande homogena ekvation, dvs y'' + y = 0, och y_p är någon partikulärlösning.

Först söker vi y_h . Den karaktäristiska ekvationen $r^2 + 1 = 0$ har lösningarna $\pm i$ varför

$$y_h(t) = A\cos t + B\sin t,$$

där A och B är godtyckliga konstanter.

Sedan söks y_p . Ett första förslag till ansättning vore $a\cos t + b\sin t$ men detta är en del av den homogena lösningen och fungerar därför inte. Vi ansätter därför

$$y_p = t(a\cos t + b\sin t).$$

I så fall är

$$y_p' = a\cos t + b\sin t + t(-a\sin t + b\cos t)$$

och

$$y_p'' = -a\sin t + b\cos t - a\sin t + b\cos t + t(-a\cos t - b\sin t).$$

Vi ser att $y_p'' + y_p = \sin t \iff a = -1/2 \text{ och } b = 0$. Vi har alltså bestämt en partikulärlösning

$$y_p = -\frac{t}{2}\cos t.$$

Sammantaget får vi därför att lösningen till differentialekvationen i uppgiften är

$$y(t) = A\cos t + B\sin t - \frac{t}{2}\cos t$$
, A, B godtyckliga konstanter.

För $t=n2\pi$ så gäller att $y(t)=A-n\pi$ som går mot $-\infty$ när heltalet $n\to\infty$, oavsett val av konstanter A och B. Det finns alltså ingen lösning som är begränsad.

Svar: A. $y(t) = A\cos t + B\sin t - \frac{t}{2}\cos t$, A, B godtyckliga konstanter. B. Nej.

5. Bestäm Taylorpolynomet av grad 2 kring punkten x=100 till funktionen $f(x)=\sqrt{x}$ och använd det för att beräkna ett närmevärde till $\sqrt{104}$. Avgör sedan också om ditt närmevärde har ett fel som till absolutbeloppet är mindre än 10^{-4} .

Lösning. Vi deriverar och får

$$f'(x) = \frac{1}{2\sqrt{x}}, \quad f''(x) = -\frac{1}{4x\sqrt{x}}, \quad f'''(x) = \frac{3}{8x^2\sqrt{x}}$$

som existerar för alla x > 0. Taylorpolynomet av grad 2 till f kring x = 100 är därför

$$p(x) = 10 + \frac{1}{20}(x - 100) - \frac{1}{8000}(x - 100)^{2}.$$

Om vi använder detta för approximation av $\sqrt{104}$ får vi

$$\sqrt{104} = f(104) \approx p(104) = 10 + \frac{1}{20}(104 - 100) - \frac{1}{8000}(104 - 100)^2 = 10.198.$$

Absolutbeloppet av felet i approximationen är, för något c mellan 100 och 104:

$$\left| \frac{3/(8c^2\sqrt{c})}{3!} 4^3 \right| \le \frac{4}{100000} \le 10^{-4}$$

Svar: Det sökta Taylorpolynomet är $p(x)=10+\frac{1}{20}(x-100)-\frac{1}{8000}(x-100)^2$. $\sqrt{104}\approx 10.198$ med ett fel som till beloppet är mindre än 10^{-4}

6. Avgör om den generaliserade integralen

$$\int_{1}^{\infty} \frac{dx}{x^2 + x}$$

är konvergent eller divergent. Om den är konvergent, beräkna den.

$$\textit{Tips: N\"ar } x \geq 1 \text{ s\'a \"ar } \frac{1}{x^2} \geq \frac{1}{x^2+x} = \frac{1}{x} - \frac{1}{x+1} \ .$$

Lösning. Eftersom

$$0 \le \frac{1}{x^2 + x} \le \frac{1}{x^2}$$
, för $x \ge 1$,

så är

$$0 \le \int_1^\infty \frac{dx}{x^2 + x} \le \int_1^\infty \frac{dx}{x^2} = 1$$

och det följer att vår integral är konvergent. Vi beräknar den:

$$\int_{1}^{\infty} \frac{dx}{x^{2} + x} = \int_{1}^{\infty} \left(\frac{1}{x} - \frac{1}{x+1}\right) dx$$

$$= \lim_{R \to \infty} \int_{1}^{R} \left(\frac{1}{x} - \frac{1}{x+1}\right) dx$$

$$= \lim_{R \to \infty} [\ln x - \ln(x+1)]_{1}^{R}$$

$$= \lim_{R \to \infty} \left[\ln \frac{x}{x+1}\right]_{1}^{R}$$

$$= \ln 2.$$

Svar: Integralen är konvergent med värdet $\ln 2$.

DEL C

- 7. A. Definiera vad som menas med att en funktion f är kontinuerlig i en punkt a.
 - B. Definiera vad som menas med att en funktion f är deriverbar i en punkt a.
 - C. Visa att en funktion f som är deriverbar i en punkt a också måste vara kontinuerlig i a.
 - D. Ge ett exempel som visar att en funktion som är kontinuerlig i en punkt inte måste vara deriverbar i punkten.

Lösning. A. Funktionen f är kontinuerlig i punkten a om f är definierad i a och och har gränsvärde när x närmar sig a och $\lim_{x\to a} f(x) = f(a)$.

B. Funktionen f är deriverbar i punkten a om gränsvärdet

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

existerar ändligt. Detta gränsvärde kallas i så fall derivatan av f i a, vilket skrivs f'(a).

C. Anta att f är deriverbar i a. Vi ska visa att i så fall måste $\lim_{x\to a} f(x) = f(a)$ eller ekvivalent att $\lim_{h\to 0} (f(a+h)-f(a))=0$. Vi har att

$$\lim_{h \to 0} (f(a+h) - f(a)) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \cdot h = f'(a) \cdot 0 = 0.$$

Beviset är klart.

D. Låt f(x) = |x|. Det är klart att f är kontinuerlig i origo, eftersom f(0) = 0 och $\lim_{x\to 0} f(x) = 0$. Funktionen f är dock inte deriverbar i origo eftersom

$$\lim_{h \to 0} \frac{|0+h| - |0|}{h} = \lim_{h \to 0} \frac{|h|}{h}$$

och detta gränsvärde saknas (om h är positivt och går mot noll får vi 1 men om h är negativt och går mot noll får vi -1).

Svar: Se lösningen.

8. Ett hål med radie 1 borras genom centrum av ett klot med radie 2. Hur stor andel av klotets volym är kvar?

Lösning. Låt oss välja koordinatsystem så att origo är klotets medelpunkt och klotet är den rotationsvolym som genereras då kurvan $x^2+y^2=4$ roteras runt x-axeln. Vi kan anta att hålet borras så att x-axeln är centrallinje för borr-cylindern. I så fall är skärningspunkterna mellan cylindern och klotet i xy-planet punkterna $(\pm\sqrt{3},\pm1)$. Den bortborrade delen består då av en cylinder med radie 1 och höjd $2\sqrt{3}$ samt två sfäriska kalotter.

Cylinderns volym är $2\pi\sqrt{3}$. De sfäriska kalotterna fås som rotationsvolymer som genereras då kurvan $x^2+y^2=4$ roteras runt x-axeln, dels på intervallet $[\sqrt{3},2]$, dels på intervallet $[-2,-\sqrt{3}]$. De sfäriska kalotternas volym är tillsammans

$$2\pi \int_{\sqrt{3}}^{2} (4-x^2) \, dx = 2\pi \left(\frac{16}{3} - 3\sqrt{3}\right).$$

Eftersom klotets volym är $32\pi/3$ får vi att andelen som tagits bort är

$$\frac{2\pi\sqrt{3} + 2\pi\left(\frac{16}{3} - 3\sqrt{3}\right)}{32\pi/3} = \frac{32\pi/3 - 4\pi\sqrt{3}}{32\pi/3} \approx 0.35.$$

Ungefär 35 procent av klotets volym har borrats bort och därmed är det ungefär 65 procent kvar.

Svar: Ungefär 65 procent.

9. Visa att funktionen

$$f(x) = x\left(\frac{\pi}{2} - \arctan x\right)$$

är strängt växande.

Lösning. Vi observerar först att funktionen är definierad för alla x. Vi deriverar och får

$$f'(x) = \frac{\pi}{2} - \arctan x - \frac{x}{1+x^2}$$

som existerar för alla x. Vi deriverar en gång till och får

$$f''(x) = -\frac{1}{1+x^2} - \frac{1+x^2-2x^2}{(1+x^2)^2} = \frac{-2}{(1+x^2)^2}$$

som existerar och är negativt för alla x.

Att f''(x) < 0 för alla x medför att f'(x) är strängt avtagande på hela reella axeln. Eftersom $\lim_{x\to\infty} f'(x) = 0$ måste därför f'(x) vara positivt för alla x. Det följer att f är strängt växande.

Svar: Se lösningen.