EXERCISES FOR LIE GROUPS AND LIE ALGEBRAS, MATH 229A

- 1. Show that a normal discrete subgroup of a connected topological group is central.
- 2. Show that $GL_n(\mathbf{C})$ is connected
- 3. Using quaternions, construct a surjective morphism of Lie groups $SU(2) \times SU(2) \rightarrow SO(4)$ and a surjective morphism of Lie groups $SO(4) \rightarrow SO(3) \times SO(3)$ that are both local isomorphisms.
- 4. Show that a Lie group is commutative if and only if its Lie algebra is commutative (i.e. the Lie bracket vanishes).
 - 5. Show that there are two isomorphism classes of 2-dimensional Lie algebras over a field
- 6. Identify the algebra of real quaternions \mathbf{H} with its standard basis $\{1, i, j, k\}$ with \mathbf{R}^4 , so that $SO(4) \subset GL_4(\mathbf{R})$ acts on \mathbf{H} . Recall that the group $U(\mathbf{H})$ of unit quaternions identifies with SU(2). Show that the morphism $U(\mathbf{H}) \times U(\mathbf{H}) \to GL_4(\mathbf{R})$, $(a, b) \mapsto (h \mapsto ahb^{-1})$ defines a morphism of Lie groups with image contained in SO(4). Show that the resulting morphism $SU(2) \times SU(2) \to SO(4)$ is the universal cover of SO(4).