Technical Report: A Systematic Mapping Study on the Combination of Information Retrieval and Requirements Traceability: Models, Strategies, Datasets, Measures and Baselines

1. Extracted Data

1.1. Extracted Data for RQ1

Index	Data for RQ1 Title	Author	Year	Venue	Publication type
Inuca	THE		Icai	venue	1 ublication type
S1	An empirical study on recovering requirement-to-code links	Zhang Yuchen Wan Chengcheng Jin Bo	2016	SNPD	Conference
S2	An Empirical Study on Source Code Feature Extraction in Preprocessing of IR-Based Requirements Traceability	Bangchao Wang Yang Deng Ruiqi Luo Huan Jin	2022	QRS	Conference
S3	Configuring Latent Semantic Indexing for Requirements Tracing	Sebastian Eder Henning Femmer Benedikt Hauptmann Maximilian Junker	2015	RET	Conference
S4	IRRT: An Automated Software Requirements Traceability Tool based on Information Retrieval Model	Sen Zhang Hongyan Wan Yong Xiao Ziruo Li	2022	QRS	Conference
S5	Analyzing closeness of code dependencies for improving IR-based Traceability Recovery	Hongyu Kuang Jia Nie Hao Hu Patrick Rempel Jian Lü Alexander Egyed Patrick Mäder	2017	SANER	Conference
S6	An empirical study on the importance of source code entities for requirements traceability	Nasir Ali Zohreh Sharafi Yann-Gaël Guéhéneuc Giuliano Antoniol	2014	ESE	Journal
S7	Analyzing close relations between target artifacts for improving IR-based requirement traceability recovery	Haijuan Wang Guohua Shen Zhiqiu Huang Yaoshen Yu Kai Chen	2021	FITEE	Journal
S8	A Complete Traceability Methodology Between UML Diagrams and Source Code Based on Enriched Use Case Textual Description	Wiem Khlif Dhikra Kchaou Nadia Bouassida	2022	IJCAI	Journal
S9	Achieving better requirements to code traceability: which refactoring should be done first?	Farina Faiz Rubaida Easmin Alim Ul Gias	2016	QUATIC	Conference
S10	Using Consensual Biterms from Text Structures of Requirements and Code to Improve IR-Based Traceability Recovery	Hui Gao Hongyu Kuang Kexin Sun Xiaoxing Ma Alexander Egyed Patrick Mäder Guoping Rong Dong Shao He Zhan	2022	ASE	Conference
S11	Requirements Traceability: Recovering and Visualizing Traceability Links Between Requirements and Source Code of Object-oriented Software Systems	Ra'Fat Al-Msie'deen	2023	IJCDS	Journal
S12	An IR-based Artificial Bee Colony Approach for Traceability Link Recovery	Danissa V. Rodriguez Doris L. Carver	2020	ICTAI	Conference

		Hui Gao Hongyu Kuang			
		Xiaoxing Ma			
S13	Propagating frugal user feedback through closeness of code	Hao Hu	2022	ESE	Journal
	dependencies to improve IR-based traceability recovery	Jian Lü			
		Patrick Mäder			
		Alexander Egyed			
		Raúl Lapeña			
S14	Leveraging BPMN particularities to improve traceability	Francisca Pérez	2022	RE	Conference
517	links recovery among requirements and BPMN models	Carlos Cetina	2022	KL	Conference
		Óscar Pastor			
		Bangchao Wang			
	Combining VSM and BTM to improve requirements trace	Rong Peng			
S15	links generation		2019	SEKE	Conference
	man generation	Zhuo Wang			
		Yaxin Zhao	-		
		Hui Gao			
		Hongyu Kuang			
		Wesley K. G. Assunção			
S16	TRIAD: Automated Traceability Recovery based on Biterm-enhanced Deduction of Transitive Links among	Christoph Mayr-Dorn	2023	ICSE	Conference
510	Artifacts	Guoping Rong	2023	ICSE	Conterence
	Attracts	He Zhang			
		Xiaoxing Ma			
		_			
		Alexander Egyed			
		Kadir Ersoy			
S17	Visualizing Software Repositories through Requirements	Ecenur Sezer	2023	RE	Conference
	Trace Links	Susan Üsküdarlı			
		Fatma Ba sak Aydemir			
G10	Multi-Objective Information Retrieval-Based NSGA-II	Danissa V. Rodriguez	2020	EIT	G C
S18	Optimization for Requirements Traceability Recovery	Doris L. Carver	2020	EIT	Conference
	Filtering of false positives from IR-based traceability links	Jyoti			
S19	among software artifacts	Jitender Kumar Chhabra	2017	I2CT	Conference
	Quality improvements for trace links between source code	Jilender Kumar Chnabra			
S20	and requirements	Paul Hübner	2016	REFSQ	Conference
	•	Christopher D. Laliberte			
S21	Evaluation of Natural Language Processing for	Ronald E. Giachetti	2022	SOSE	Conference
	Requirements Traceability	Mathias Kolsch			
	Requirements Traceability Through Information Retrieval				
S22	Using Dynamic Integration of Structural and Co-change	Jyoti	2017	ICAICR	Journal
	Coupling	Jitender Kumar Chhabra			
		Wang Bangchao			
		Peng Rong			
S23	An Automated Hybrid Approach for Generating	Wang Zhuo	2020	IJSEKE	Journal
523	Requirements Trace Links	- C	2020	IJSERE	Journal
		Wang Xiaomin			
		Li Yuanbang	1		
S24	Evaluating the Effectiveness of Various IR Models for	Manpreet Kaur	2021	ICCMST	Conference
	Requirements Traceability	Harpreet Kaur	1		
		Adnane Ghannem			
925	Search-Based Requirements Traceability Recovery: A	Mohamed Salah Hamdi	2017	CEC	Conference and
S25	Multi-Objective Approach	Marouane Kessentini	2017	CEC	Workshop Papers
		Hany H. Ammar			
		Guohua Shen			
026	Supporting Requirements to Code Traceability Creation by	Haijuan Wang	2021	Herer	, ,
S26	Code Comments	Zhiqiu Huang	2021	IJSEKE	Journal
		YaoShen Yu			
		Kai Chen			
	SANAYOJAN A framework for traceability link recovery	Ritika Jain			
S27	between use-cases in software requirement specification and	Smita Ghaisas	2014	RAISE	Conference
	regulatory documents	Ashish Sureka			
	Evolving Software Trace Links between Requirements and	Mona Rahimi			
S28	Source Code		2018	ESE	Journal
1	Source Code	Jane Cleland-Huang			

S29	Interactive recovery of requirements traceability links using user feedback and configuration management logs	Ryosuke Tsuchiya Hironor Washizakii Yoshiaki Fukazawa Keishi Oshima Ryota Mibe	2015	CAiSE	Conference
S30	Supporting requirements to code traceability through refactoring	Anas Mahmoud Nan Niu		RE	Journal
S31	Recovering traceability links between requirements and source code using the configuration management log	Ryosuke Tsuchiya Hironori Washizaki Yoshiaki Fukazawa Tadahisa Kato Masumi Kawakami Kentaro Yoshimura	2015	IEICE	Journal
S32	Exploiting Parts-of-Speech for Effective Automated Requirements Traceability	Nasir Ali Haipeng Cai Abdelwahab Hamou-Lhadj Jameleddine Hassine	2018	IST	Journal
S33	Using Frugal User Feedback with Closeness Analysis on Code to Improve IR-Based Traceability Recovery	Hongyu Kuang Hui Gao Hao Hu Xiaoxing Ma Jian Lü Patrick Mäder Alexander Egyed	2019	ICPC	Conference
S34	Adaptive User Feedback for IR-Based Traceability Recovery	Annibale Panichella Andrea De Lucia Andy Zaidman	2015	SST	Conference

1.2. Extracted Data for RQ2

Index	Title	IR Model	Stage
S1	An empirical study on recovering requirement-to-code links	VSM	Preprocessing Stage
S2	An Empirical Study on Source Code Feature Extraction in Preprocessing of IR-Based Requirements Traceability	VSM LSI	Preprocessing Stage
S3	Configuring Latent Semantic Indexing for Requirements Tracing	LSI	Links Generation Stage
S4	IRRT: An Automated Software Requirements Traceability Tool based on Information Retrieval Model	VSM	Links Generation Stage Links Refinement Stage
S5	Analyzing closeness of code dependencies for improving IR-based Traceability Recovery	VSM LSI JS	Links Refinement Stage
S6	An empirical study on the importance of source code entities for requirements traceability	LSI TM(LDA)	Preprocessing Stage
S7	Analyzing close relations between target artifacts for improving IR-based requirement traceability recovery	VSM	Links Generation Stage
S8	A Complete Traceability Methodology Between UML Diagrams and Source Code Based on Enriched Use Case Textual Description	LSI	Preprocessing Stage
S9	Achieving better requirements to code traceability: which refactoring should be done first?	VSM LSI	Preprocessing Stage
S10	Using Consensual Biterms from Text Structures of Requirements and Code to Improve IR-Based Traceability Recovery	VSM LSI JS	Links Refinement Stage Preprocessing Stage
S11	Requirements Traceability: Recovering and Visualizing Traceability Links Between Requirements and Source Code of Object-oriented Software Systems	LSI	Links Generation Stage
S12	An IR-based Artificial Bee Colony Approach for Traceability Link Recovery	IR-based+	Links Generation Stage
S13	Propagating frugal user feedback through closeness of code dependencies to improve IR-based traceability recovery	VSM LSI JS	Links Refinement Stage Preprocessing Stage
S14	Leveraging BPMN particularities to improve traceability links recovery among	LSI	Links Generation Stage

	requirements and BPMN models		
S15	Combining VSM and BTM to improve requirements trace links generation	VSM TM(BTM)	Links Generation Stage
S16	TRIAD: Automated Traceability Recovery based on Biterm-enhanced Deduction of Transitive Links among Artifacts	VSM LSI JS	Links Generation Stage
S17	Visualizing Software Repositories through Requirements Trace Links	IR-based+	Links Generation Stage
S18	Multi-Objective Information Retrieval-Based NSGA-II Optimization for Requirements Traceability Recovery	IR-based+	Links Generation Stage
S19	Filtering of false positives from IR-based traceability links among software artifacts	VSM	Links Refinement Stage
S20	Quality improvements for trace links between source code and requirements	IR-based+	Links Generation Stage
S21	Evaluation of Natural Language Processing for Requirements Traceability	VSM	None
S22	Requirements Traceability Through Information Retrieval Using Dynamic Integration of Structural and Co-change Coupling	VSM	Links Refinement Stage
S23	An Automated Hybrid Approach for Generating Requirements Trace Links	VSM TM(BTM)	Links Generation Stage
S24	Evaluating the Effectiveness of Various IR Models for Requirements Traceability	VSM LSI JS	None
S25	Search-Based Requirements Traceability Recovery: A Multi-Objective Approach	IR-based+	Links Generation Stage
S26	Supporting Requirements to Code Traceability Creation by Code Comments	VSM	Preprocessing Stage
S27	SANAYOJAN A framework for traceability link recovery between use-cases in software requirement specification and regulatory documents	TM(LDA)	Links Generation Stage
S28	Evolving Software Trace Links between Requirements and Source Code	VSM LSI	Links Generation Stage
S29	Interactive recovery of requirements traceability links using user feedback and configuration management logs	VSM	Links Generation Stage Links Refinement Stage
S30	Supporting requirements to code traceability through refactoring	VSM LSI	Preprocessing Stage
S31	Recovering traceability links between requirements and source code using the configuration management log	VSM	Preprocessing Stage Links Generation Stage Links Refinement Stage
S32	Exploiting Parts-of-Speech for Effective Automated Requirements Traceability	VSM JS	Links Refinement Stage
S33	Using Frugal User Feedback with Closeness Analysis on Code to Improve IR-Based Traceability Recovery	VSM LSI JS	Links Refinement Stage
S34	Adaptive User Feedback for IR-Based Traceability Recovery	VSM	Links Refinement Stage
	• • •		

1.3. Extracted Data for RQ3

Index	Title	Enhancement strategy
S1	An empirical study on recovering requirement-to-code links	Verb-object Phrases
S2	An Empirical Study on Source Code Feature Extraction in Preprocessing of IR-Based	Code Feature Extraction, Annotation Importance Assessment,
52	Requirements Traceability	and Annotation Redundancy Removal
S3	Configuring Latent Semantic Indexing for Requirements Tracing	Heuristic Measures
S4	IRRT: An Automated Software Requirements Traceability Tool based on Information Retrieval Model	Code Class Structure
S5	Analyzing closeness of code dependencies for improving IR-based Traceability Recovery	Analyzing Close Relations of Code Dependencies
S6	An empirical study on the importance of source code entities for requirements traceability	Improved Term Weighting Scheme
S7	Analyzing close relations between target artifacts for improving IR-based requirement traceability recovery	Analyzing Close Relations
S8	A Complete Traceability Methodology Between UML Diagrams and Source Code Based on Enriched Use Case Textual Description	Traceability Rules
S9	Achieving better requirements to code traceability: which refactoring should be done first?	Refactoring

S10	Using Consensual Biterms from Text Structures of Requirements and Code to Improve IR-Based Traceability Recovery	Consensual Biterms Global and Local Weight
S11	Requirements Traceability: Recovering and Visualizing Traceability Links Between Requirements and Source Code of Object-oriented Software Systems	Formal Concept Analysis (FCA)
S12	An IR-based Artificial Bee Colony Approach for Traceability Link Recovery	Artificial Bee Colony (ABC) Algorithm
S13	Propagating frugal user feedback through closeness of code dependencies to improve IR-based traceability recovery	Frugal User Feedback with Closeness Analysis on Code Analyzing Closeness of Code Dependencies
S14	Leveraging BPMN particularities to improve traceability links recovery among requirements and BPMN models	BPMN-specific approaches
S15	Combining VSM and BTM to improve requirements trace links generation	Hybrid Method
S16	TRIAD: Automated Traceability Recovery based on Biterm-enhanced Deduction of Transitive Links among Artifacts	Consensual Biterms and Transitive Relationships
S17	Visualizing Software Repositories through Requirements Trace Links	None
S18	Multi-Objective Information Retrieval-Based NSGA-II Optimization for Requirements Traceability Recovery	Non-dominated Sorting Genetic Algorithm (NSGA-II)
S19	Filtering of false positives from IR-based traceability links among software artifacts	Correlation Among Classes
S20	Quality improvements for trace links between source code and requirements	Non-dominated Sorting Genetic Algorithm (NSGA-II)
S21	Evaluation of Natural Language Processing for Requirements Traceability	None
S22	Requirements Traceability Through Information Retrieval Using Dynamic Integration of Structural and Co-change Coupling	Dynamic Integration of Structural Co-change Coupling
S23	An Automated Hybrid Approach for Generating Requirements Trace Links	Hybrid Method Genetic Algorithm
S24	Evaluating the Effectiveness of Various IR Models for Requirements Traceability	None
S25	Search-Based Requirements Traceability Recovery: A Multi-Objective Approach	Non-dominated Sorting Genetic Algorithm (NSGA-II)
S26	Supporting Requirements to Code Traceability Creation by Code Comments	Code Comments
S27	SANAYOJAN A framework for traceability link recovery between use-cases in software requirement specification and regulatory documents	None
S28	Evolving Software Trace Links between Requirements and Source Code	Trace Link Evolver
S29	Interactive recovery of requirements traceability links using user feedback and configuration management logs	Configuration Management Log User Feedback
S30	Supporting requirements to code traceability through refactoring	Refactoring
S31	Recovering traceability links between requirements and source code using the configuration management log	Configuration Management Log Commonality and Variability Analysis (CVA) Classification
S32	Exploiting Parts-of-Speech for Effective Automated Requirements Traceability	ConPOS approach
332	Using Frugal User Feedback with Closeness Analysis on Code to Improve IR-Based	сонгоз арргоаси
S33	Traceability Recovery	Frugal User Feedback with Closeness Analysis on Code
S34	Adaptive User Feedback for IR-Based Traceability Recovery	Adaptive User Feedback

1.4. Extracted Data for RQ4

Index	Title	Source Artifact	Target Artifact	Datasets
				eTour
S1	An empirical study on recovering	Di	C-1-	iBooks
51	requirement-to-code links	Requirements	Code	SMS
				EasyClinic
				iTrust
	An Empirical Study on Source Code Feature	Requirements	Code	eTOUR
S2	Extraction in Preprocessing of IR-Based	Use cases	Code	Albergate
	Requirements Traceability	Use cases	Code	EasyClinic
				SMOS
				MODIS
		Requirements	Requirements	CM-1
62	Configuring Latent Semantic Indexing for	Defect Reports	Use Cases	EasyClinic
S3	Requirements Tracing	Use Cases	Test Cases	MR0
		Change Requests	Use Cases	MR1
				MR2

	T T		T	I
S4	IRRT: An Automated Software Requirements Traceability Tool based on Information Retrieval Model	Requirements	Code	iTrust
S5	Analyzing closeness of code dependencies for improving IR-based Traceability Recovery	Requirements	Code	iTrust Gantt jHotDraw
S6	An empirical study on the importance of source code entities for requirements traceability	Requirements	Code	iTrust Lucene Pooka
S7	Analyzing close relations between target artifacts for improving IR-based requirement traceability recovery	Use Case Requirements Requirements Requirements Use Case	Test Case Design Use Case Requirements Code	EasyClinic CM1-NASA Pine GANNT iTrust
S8	A Complete Traceability Methodology Between UML Diagrams and Source Code Based on Enriched Use Case Textual Description	Use Cases	Code	Car rental Customer Relationships system
S9	Achieving better requirements to code traceability: which refactoring should be done first?	Use Cases	Code	iTrust eTour
S10	Using Consensual Biterms from Text Structures of Requirements and Code to Improve IR-Based Traceability Recovery	Requirements	Code	iTrust GanttProject Maven Pig Infinispan Seam2 Drools Derby Groovy
S11	Requirements Traceability: Recovering and Visualizing Traceability Links Between Requirements and Source Code	Requirements	Code	Mobile Media (MM) Health Watcher (HW) Drawing Shapes (DS)
S12	An IR-based Artificial Bee Colony Approach for Traceability Link Recovery	Requirements Use Cases	Code	EBT Albergate eTour
S13	Propagating frugal user feedback through closeness of code dependencies to improve IR-based traceability recovery	Requirements	Requirements	iTrust GanttProject Maven Pig8 Infinispan Drools Derby Seam Groovy
S14	Leveraging BPMN particularities to improve traceability links recovery among requirements and BPMN models	BPMN models	Requirements	Industrial case study Academic case study
S15	Combining VSM and BTM to improve requirements trace links generation	Use case Requirements Requirements	Test Case Test Case Requirements	WARC EasyClinic EBT
S16	TRIAD: Automated Traceability Recovery based on Biterm-enhanced Deduction of Transitive Links among Artifacts	Requirements Use cases Requirements	Code Code Requirements	Dronology WARC EasyClinic EBT Libest
S17	Visualizing Software Repositories through Requirements Trace Links	Requirements Requirements Requirements	Issues Requests Commits	public GitHub repository of a group of computer engineering students for their software engineering course
S18	Multi-Objective Information Retrieval-Based	Requirements	Code	EBT

	NSGA-II Optimization for Requirements Traceability			Albergate
	Recovery			eTour
S19	Filtering of false positives from IR-based traceability links among software artifacts	Use Cases	Code	iTrust
S20	Quality improvements for trace links between source	Requirements	Code	Mylyn
520	code and requirements	Use Cases	Code	iTrust
S21	Evaluation of Natural Language Processing for	Requirements	Requirements	National Aeronautics and Space Ad-
321	Requirements Traceability	Requirements	Requirements	ministration (NASA)
S22	Requirements Traceability Through Information Retrieval Using Dynamic Integration of Structural and Co-change Coupling	Use Cases	Code	iTrust
		II. C	T. 1 C	WARC subset 1
	An Automated Hybrid Ammacah fan Cananatina	Use Case	Test Case Test Case	WARC subset 2
S23	An Automated Hybrid Approach for Generating	Requirements		EBT
	Requirements Trace Links	Requirements	Requirements	EasyClinic
		Use Cases	Code	eTour
				Activemq
				Cassandra
				Derby
				Hive
	Evaluating the Effectiveness of Various IR Models			Mina
S24	for Requirements Traceability	Requirements	Code	Pig
	Tor requirements traceasinty			Solr
				Synapse Tika
				Xerces2j
	Search-Based Requirements Traceability Recovery:			LEDA
S25	A Multi-Objective Approach	Requirements	Code	Albergate
				ETOUR
S26	Supporting Requirements to Code Traceability	Use Cases	Code	eTour
	Creation by Code Comments			iTrust
	SANAYOJAN A framework for traceability link			The experiments on real-world data obtained
S27	recovery between use-cases in software requirement	Use Cases	Regulatory Documents	from software projects of a large global
52,	specification and regulatory documents	ose cases	Regulatory Becaments	Information Technology (IT) services
	specification and regulatory documents			company
				Domain Analysis App
G20	Evolving Software Trace Links between	D : .	C 1	DOTS File Generator
S28	Requirements and Source Code	Requirements	Code	Apache Cassandra Database System
				Dronology
S29	Interactive recovery of requirements traceability links using user feedback and configuration management logs	Requirements	Code	An enterprise system
				iTrust
S30	Supporting requirements to code traceability through	Requirements	Code	eTour
550	refactoring	requirements	0000	WDS
	Recovering traceability links between requirements			
S31	and source code using the configuration management	Requirements	Code	CUnit
551	log	Requirements	Code	Network Control System
	105			iTrust
	Exploiting Posts of Cassal for Effective Automot			
S32	Exploiting Parts-of-Speech for Effective Automated	Requirements	Code	Lynx
	Requirements Traceability			Pooka
				SIP Communicator
				iTrust
	Using Frugal User Feedback with Closeness Analysis			Maven
S33	on Code to Improve IR-Based Traceability Recovery	Requirements	Code	Pig
	on code to improve ite based fractability recovery			GanttProject
				Infinispan
S34	Adaptive User Feedback for IR-Based Traceability	Use Cases	Code	Easy-Clinic

Recovery	Test Cases	Code	i-Trust
	Code	JSP	Modis
	UML	Code	
	Requirements	Requirements	

1.5. Extracted Data for RO5, RO6, RO7 and RO8

Index	Title	Intercept points	Measure	Evidence level
S1	An empirical study on recovering requirement-to-code links	Threshold	Recall Precision F-Measure	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S2	An Empirical Study on Source Code Feature Extraction in Preprocessing of IR-Based Requirements Traceability	Threshold	Recall Precision F-Measure	Level 3. Evidence obtained from academic studies (e.g., controlled lat experiments).
S3	Configuring Latent Semantic Indexing for Requirements Tracing	Not write	MAP AP	Level 4. Evidence obtained from industrial studies (e.g., causal case studies in an industrial setting).
S4	IRRT: An Automated Software Requirements Traceability Tool based on Information Retrieval Model	Threshold	Recall Precision F-Measure	Level 3. Evidence obtained from academic studies (e.g., controlled lal experiments).
S5	Analyzing closeness of code dependencies for improving IR-based Traceability Recovery	Thresholds	Recall Precision F-Measure, MAP AP	Level 3. Evidence obtained from academic studies (e.g., controlled la experiments).
S6	An empirical study on the importance of source code entities for requirements traceability	Threshold	Recall Precision F-Measure	Level 4. Evidence obtained from industrial studies (e.g., causal case studies in an industrial setting).
S7	Analyzing close relations between target artifacts for improving IR-based requirement traceability recovery	Threshold	Recall Precision MAP AP	Level 3. Evidence obtained from academic studies (e.g., controlled la experiments).
S8	A Complete Traceability Methodology Between UML Diagrams and Source Code Based on Enriched Use Case Textual Description	Threshold	Recall Precision	Level 3. Evidence obtained from academic studies (e.g., controlled la experiments).
S9	Achieving better requirements to code traceability: which refactoring should be done first?	Threshold	None	Level 3. Evidence obtained from academic studies (e.g., controlled la experiments).
S10	Using Consensual Biterms from Text Structures of Requirements and Code to Improve IR-Based Traceability Recovery	Threshold	Precision Recall F- Measure AP MAP	Level 3. Evidence obtained from academic studies (e.g., controlled la experiments).
S11	Requirements Traceability: Recovering and Visualizing Traceability Links Between Requirements and Source Code	Threshold	Recall Precision	Level 4. Evidence obtained from industrial studies (e.g., causal case studies in an industrial setting).
S12	An IR-based Artificial Bee Colony Approach for Traceability Link Recovery	Iteration	Recall Precision F-Measure	Level 3. Evidence obtained from academic studies (e.g., controlled la experiments).
S13	Propagating frugal user feedback through closeness of code dependencies to improve IR-based traceability recovery	Threshold	Recall Precision F-Measure AP MAP	Level 3. Evidence obtained from academic studies (e.g., controlled la experiments).
S14	Leveraging BPMN particularities to improve traceability links recovery among requirements and BPMN models	Not write	Recall Precision F-Measure MCC AUC	Level 4. Evidence obtained from industrial studies (e.g., causal case studies in an industrial setting).
S15	Combining VSM and BTM to improve requirements trace links generation	Threshold	Recall Precision	Level 3. Evidence obtained from academic studies (e.g., controlled la experiments).
S16	TRIAD: Automated Traceability Recovery based on Biterm-enhanced Deduction of Transitive Links among Artifacts	Threshold	Recall Precision F-Measure AP MAP	Level 3. Evidence obtained from academic studies (e.g., controlled la experiments).
S17	Visualizing Software Repositories through Requirements Trace Links	Threshold	Recall Precision F-Measure	Level 3. Evidence obtained from academic studies (e.g., controlled la experiments).
	Malti Ohiastiaa Informatian Dataiaaal Daast		Recall	Level 3. Evidence obtained from
S18	Multi-Objective Information Retrieval-Based NSGA-II Optimization for Requirements Traceability Recovery Filtering of false positives from IR-based	Iteration	Precision F-Measure	academic studies (e.g., controlled la experiments).

	traceability links among software artifacts		Precision F-Measure	academic studies (e.g., controlled lab experiments).
S20	Quality improvements for trace links between source code and requirements	Threshold	Recall Precision	Level 1. Evidence obtained from demonstration or working out with toy examples.
S21	Evaluation of Natural Language Processing for Requirements Traceability	Threshold	Recall Precision F-Measure	Level 4. Evidence obtained from industrial studies (e.g., causal case studies in an industrial setting).
S22	Requirements Traceability Through Information Retrieval Using Dynamic Integration of Structural and Co-change Coupling	Threshold	Recall Precision F-Measure	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S23	An Automated Hybrid Approach for Generating Requirements Trace Links	Selectivity	Recall Precision F-Measure Selectivity	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S24	Evaluating the Effectiveness of Various IR Models for Requirements Traceability	Not write	Recall Precision F-Measure	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S25	Search-Based Requirements Traceability Recovery: A Multi-Objective Approach	Iteration	Recall Precision	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S26	Supporting Requirements to Code Traceability Creation by Code Comments	Not write	Recall Precision MAP AP	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S27	SANAYOJAN A framework for traceability link recovery between use-cases in software requirement specification and regulatory documents	Not write	AP MAP	Level 4. Evidence obtained from industrial studies (e.g., causal case studies in an industrial setting).
S28	Evolving Software Trace Links between Requirements and Source Code	Not write	Recall Precision F-Measure	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S29	Interactive recovery of requirements traceability links using user feedback and configuration management logs	Threshold	Recall Precision F-Measure	Level 4. Evidence obtained from industrial studies (e.g., causal case studies in an industrial setting).
S30	Supporting requirements to code traceability through refactoring	Threshold	Recall Precision MAP DiffAR	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S31	Recovering traceability links between requirements and source code using the configuration management log	Threshold	Recall Precision F-Measure	Level 4. Evidence obtained from industrial studies (e.g., causal case studies in an industrial setting).
S32	Exploiting Parts-of-Speech for Effective Automated Requirements Traceability	Not write	Recall Precision MAP AP	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S33	Using Frugal User Feedback with Closeness Analysis on Code to Improve IR-Based Traceability Recovery	Threshold	Recall Precision F-Measure MAP AP	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).
S34	Adaptive User Feedback for IR-Based Traceability Recovery	Threshold	Recall Precision	Level 3. Evidence obtained from academic studies (e.g., controlled lab experiments).

Table 1. List of enhancement strategies for IR-based requirements trace recovery approaches

	Table 1. List of enhancement strategies for IR-based requirer					gies for	nents trace recovery approaches		
Strategy	IR model VSM	LSI	JS	LDA	втм	RTM	ВМ	Applying Phrase	Strategy Characteristics
Verb-object Phrases [S1]	•		13	LDA		1	Divi	P	Extracting verb-object phrases as main information and essential meaning.
Context- based [S2][S4]	•							Р	Separating intent from context in requirements.
Improved Term Weighting Scheme								Р	Proposing an improved term weighting scheme, namely, Developers
[S6]		_		ļ .					Preferred Term Frequency/Inverse Document Frequency (DPTF/IDF) .
									Defining traceability rules to determine correspondences between the
Traceability Rules [S8]		•						P	requirement modeled with the use case diagram based on the enriched
								+	textual description and design diagrams modeled
Refactoring [S9][S26][S30]	•	•						Р	Solving the problem of missing symbols, misplaced symbols and repeated symbols.
Syntax Tree [S21]								P	Primary identifier keywords are converted to comment keywords by their
					-			+	similarity in appearance in the syntax tree location. Introducing different types of comments to some extent compensate for
Code Comments [S36]								P	vocabulary mismatches between requirements and source code to improve
code comments [550]								'	the accuracy of tracing links.
Commonality and Variability								1_	Analyzing to which products elements (e.g., requirements, code elements)
Analysis (CVA) [S31]	•							P	belong.
Term Classification [S11]		•						P	Categorizing class names, comments, and all other terms in code.
Consensual Biterms [S10]	•	•	•						Extracting consensual biterms to first enrich the corpus for IR techniques.
Heuristic Measures [S3]								G	A fully automated technique to determine appropriate configurations for LSI
								1	to recover links between requirements artifacts.
Hybrid Method [S15][S23]	•				•			G	Combing VSM and BTM which can help relieve data sparsity caused by short text.
Genetic Algorithm [S23]					•			G	Configuring initial parameters of BTM by introducing Genetic Algorithm
BPMN-specific approaches [S14]								G	An approach that improves the results of TLR between requirements and
								9	BPMN models.
Historical Co-change Information [S17]	•		•					G	Taking the processed corpora and co-change information of classes as input to reorder and filter baseline links.
Configuration Management Log								G	Restoring links by finding revisions in the configuration management log
[S29][S31]					1				that contain words related to requirements.
									Determining whether and how to apply relevant feedback based on the
Adaptive User Feedback [S34]	•							G	verbosity of the software artifacts and the number of correct links and false
									positives that have been categorized. The accuracy is improved by combining the judgment provided by users on classified links.
									Proposing a TLE, which relies on a set of heuristics combined with
Trace Link Evolver (TLE) [\$35]	•	•						G	refactoring detection tools and IR algorithms, to detect predefined change
									scenarios that occur between successive versions of a software system.
									Using source code ownership information to capture relationships between
Code Ownership [S37]	•						•	G	source code artifacts to improve recovery of trace links between documents
									and source code.
Mining Software Repositories									An expert is introduced to discard/reorder the baseline traceability links.
[S16]	•		•					G	The expert can submit messages and bugs reports by mining CVS/SVN in the software repository, and store all recovered requirements and links between
[510]									the software repository in a dedicated set.
Analyzing Close Relations [S7]	•							R	Calculating the close relations (semantic similarity) between target artifacts
Global and Local Weight[S10]								R	Using consensual biterms to adjust global and local weight to adjust the
Global and Local Weight[510]	<u> </u>		ļ .					Ν.	ranking of candidate lists.
Dynamic Integration of Structural								R	Retrieving indirect links based on weighted integration of structural coupling
and Co-change Coupling [S22]									and class coupling based on change history.
Cluster Hypothesis [S24]								R	By discovering appropriate clustering mechanisms, distinguish between high quality and low-quality clusters, filter links in low quality clusters, catch all
Cluster Hypothesis [324]	•							^	possible correct traceability links, and reduce false links.
Frugal User Feedback with									
Closeness Analysis on Code	•		•					R	Introducing only a small amount of user feedback into the closeness analysis
[S33][S13]									on call and data dependencies in code.
User Feedback [S29]	•							R	Introducing user validation for candidate links to improve accuracy
Analyzing Closeness of Code								P,R	Quantifying the interaction degree of call dependency and data dependency
Dependencies [S5][S13]	-				1	1	-	ļ ·	between two code classes.
Class Clustering [S11]		•		1		1	-	R	The products in the clustering have similar trace relationships.
Correlation Among Classes [S19]	•							R	Using structural or co-changing dependencies or both to find correlations
					 	1			between classes and use these dependencies to verify traceability links. Information about the cohesion of artifacts within a level of refinement
Graph Clustering [S28]	•							R	helps improve the trace retrieval process between levels of refinement.
CarDOC Arrange [Card]							1	 	Pruning trace links using the primary POS classification and apply constraints
ConPOS Approach [S32]	•		•		1			R	to recovery as a filtering process.
Classification [S31]								R	Classifying traceability links into 5 five types using the CVA results, then
1.11366.6[551]	-							"	using the classification to refine links.

Note: • " represents support; "P" represents Preprocessing Stage, "G" represents Links Generation Stage, "R" represents Links Refinement Stage.

Table 2. Dataset's information and the studied papers which used the datasets

		taset's informati	on and u		† ·	licii use	d the datasets	
Dataset Name	Source Artifacts (Number)	(Number)	Space	True Links	Scale	Freq.	Resource links	Reference
	Use cases (34)	Code (243)	8262	603	1			[S2][S5][S6][S7][S10][S9]
iTrust	Requirements (50)	Code (299)	14950	314	Large	17	http://www.coest.org/	[S13][S17][S19][S20][S22]
	Use cases (33)	JSP (47)	1551	58	Small			[S26][S30][S33][S34][S35] [S37]
	Use cases (58)	Code (116)	6728	308				[S1][S2][S9][S12][S18]
eTour	Requirements (58)	Code (116)	6728	366	Large	11	http://www.coest.org/	[S23][S25][S26][S30]
	Requirements (30)	Code (47)	1410	83				[S37][S38]
EasyClinic	Use cases (30)	Test cases (63)	1890	63	Small	7	http://www.coest.org/	[S1][S3][S7][S15][S23]
zasy ciii iic	UML interaction diagram (20)	Code classes (47)	940	69	J 5111411	'	p.,/	[S28][S35]
	Description (17)	C-d- (FF)	025	F4			http://www.ganttprojec	
GanttProject	Requirements (17)	Code (55)	935	54	Small	6	t.biz	[S5][S7][S14][S34][S10]
	Requirements (16)	Code (124)	1984	315			https://github.com/bar dsoftware/ganttproject	[S13]
	Requirements (41)	Test Cases (25)	1025	51				
Pooka					Large	4	http://www.suberic.net /pooka/	[S6][][S16][S17][S33]
	Requirements (90)	Code (298)	26820	546			/роска/	
EBT	Requirements (40) Requirements (16)	Code (50) Code (124)	2000 1173	98 315	Small	4	http://www.coest.org/	[S12][S15][S18][S23]
	Requirements							
Diα	(Unclear)	Code (Unclear)	Unclear	Unclear	Largo	1	https://pig.apache.org/	[402] [012] [402]
Pig	Requirements (87)	Code (289)	25143	547	Large	4	https://github.com/apa	[S34] [S10] [S13] [S24]
	Requirements (58) High-level Requirements (235)	Code (754)	51700	Unclear 361			che/pig	
CM-1	Requirements (235)	Design (220) Use Case (Unclear)	Unclear	Unclear	Large	3	http://www.coest.org/	[S3][S7][S28]
	Requirement (298)	Code (90)	26820	546	8-		,p.,,	(colfor liceo)
Albergate	Requirements (82)	Code (1771)	145222	871	Small	3	http://www.coest.org/	[S12][S18][S25]
SIP	Non-functional Requirements	Software	4000	F0	1		h	[646][647][622]
Communicator	(21)	Requirements Specification (89)	1869	58	Large	3	http://www.jitsi.org	[S16][S17][S33]
	p : (200)		22222	2245				
Derby	Requirements (390)	Code (611)	238290	2315	Large	3	https://github.com/apa	[S10] [S13] [S24]
Derby	Requirements (133)	Code (2184)		Unclear	Large	'	che/derby	[310] [313] [324]
	nequirements (155)			ondied.	Lange			
	Functional requirements (43)	Software requirements	3827	78	Small			
WARC	runctional requirements (43)	specification (89)	3627	76	Siliali	2	http://www.coest.org/	[S15][S23]
	High-level Requirements (17)	Low-level	1173	68	Large	1		
	1 1	Requirements (69)			_		1 15.5.	[00.4]
Infinispan	Requirements (116)	Code (413)	47908	744	Large	3	http://infinispan.org/ https://github.com/infi	[S34]
шшаран	Requirements (232)	Code (319)	74008	1116	Large		nispan/infinispan	[S10] [S13]
	Requirements (68)	Code (236)	16048	356			http://maven.apache.or	[S34]
Maven	nequirements (66)	0000 (200)	100.0	330	Large	3	g/	[55.1]
	Requirements (36)	Code (82)	2880	151			https://github.com/apa che/maven	[S10] [S13]
Seam2	Paguiraments (190)	Code (150)	28350	463	Large	2	http://www.seamframe	[610] [612]
3ea1112	Requirements (189)	Code (150)	20550	403	Large	2	work.org/Seam2.html	[S10] [S13]
Drools	Requirements (183)	Code (248)	45384	841	Large	2	https://github.com/kieg roup/drools	[S10] [S13]
Canana	Description (104)	Cada (100)	10400	100	Laura	1	https://github.com/apa	[040] [040]
Groovy	Requirements (104)	Code (100)	10400	180	Large	2	che/groovy	[S10] [S13]
MODIS	Requirements (26)	Code (521)	13,546	229	Small	2		[S3] [S35]
WDS	Requirements (8)	Code (408)	3240	3240	Large	2		[S26] [S30]
GANNT	Use cases (67)	Code (100)	6700	1044	Small	1	http://www.coest.org/	[S7]
SMOS	Requirements (34)	Code (483)	16422	Unclear	Large	1	http://www.coest.org/	[S38]
jEdit v4.3	Requirements (237)	Code (388)	91956	1515	Large	1	http://www.jedit.org. http://lucene.apache.or	[S16]
Lucene	Requirements (268)	Code (138)	36984	Unclear	Large	1	g	[S6]
Rhino v1.6	Requirements (90)	Code (298)	26820	507	Large	1	http://www.mozilla.org /rhino/	[S16]
Mylyn	Requirements (16)	Code (144)	2,304	221	Unclear	1	http://www.eclipse.org /mylyn/developers	[S20]
Lynx	Requirements (128)	Code (unclear)	Unclear	376	Unclear	1	http://lynx.isc.org/	[S33]
jHotDraw (JHD)	High-level Requirements (19)	Low-level	931	567	Small	1		[S5]
iRobot	Use cases (24)	Requirements (49) Code (14)	336	37	Small	1		[54]
INUUUL	USE Cases (24)	Code (14)	330	3/	SIIIdii	1		[34]
iTruck	Use cases (18)	Code (54)	872	51	Small	1		[\$4]
iSudoku	Requirements (64)	Code (102)	6,528	1,071	Small	1		[S4]
SMS	Use cases (24)	test cases (60)	1,440	711	Small	1		[S1]
MR0	Defect reports (135)	Use cases (28)	3,780	Unclear	Small	1		[S3]
MR1	Change requests (28)	Use cases (21)	588	Unclear	Small	1		[S3]
MR2	Requirements (49)	Use Cases (51)	2,499	Unclear	Small	1		[S3]

Pine	Requirements (13)	Code (169)	2,197	Unclear	Small	1	[S7]
Waterloo	Requirements (88)	Code (208)	18,304	Unclear	Unclear	1	[S28]
LEDA	Requirements (49)	Code (unclear)	Unclear	Unclear	Unclear	1	[S25]
network control system	Requirements (9)	Code (4)	36	11	Unclear	1	[S32]
Domain Analysis App	Requirements (7)	Code (5)	35	7	Small	1	[S36]
Car rental system	Use cases (9)	Code (98)	882	Unclear	Small	1	[S8]
Customer Relationships system	Use cases (7)	Code (65)	455	Unclear	Small	1	[58]
ActiveMQ	Requirements (93)	Code (2761)		Unclear	Large	1	[S24]
Cassandra	Requirements (65)	Code (328)		Unclear	Large	1	[S24]
Hive	Requirements (92)	Code (732)		Unclear	Large	1	[S24]
Mina	Requirements (48)	Code (272)		Unclear	Large	1	[S24]
Solr	Requirements (59)	Code (74)		Unclear	Large	1	[S24]
Synapse	Requirements (44)	Code (877)		Unclear	Large	1	[S24]
Tika	Requirements (45)	Code (78)		Unclear	Large	1	[S24]
Xerces2j	Requirements (26)	Code (705)		Unclear	Large	1	[S24]
the National Aeronautics and Space Administration (NASA)	Requirements	Requirement	Unclear	Unclear	Unclear	1	[521]

2. Search process record

Database	Number of searches	Number of repetitions in each database	Number of each database (After deleting repetitions)	Number of repetitions in all 6 databases	Total number (After deleting repetitions)
IEEE Xplore	165	33	112		
Engineering Village	1195	501	694		
Springer	429	147	282	256	1832
Science Direct	45	0	45		
ACM	35	0	35		
Google scholar	1256	421	920		

2.1. Search records

Search terms:

P1	requirement traceability
P2	requirement trace
Р3	requirement tracing
P4	requirement traceability recovery
I1	information retrieval
I2	IR
I3	semantic

(1) IEEE Xplore

	Title	Abstract	Index terms
(I1 OR I2) AND (P1 OR P2 OR P3 OR P4 OR P5	8	94	63
OR P6 OR P7 OR P8 OR P9 OR P10)			
Total		165	

The screenshot of search process in IEEE Xplore:

(2) Engineering Village

	Abstract + Title + Keywords (Index term)
(p1 or p2 or p3 or p4) and	1195
(I1 or I2 or I3)	1193

The screenshots of search process in EI

(3) Springer

	Abstract + Title + Keywords (Index term)
(p1 or p2 or p3 or p4) and	429
(I1 or I2 or I3)	429

The screenshots of search process in Springer:

(4) Science Direct

		Abstract + Title + Keywords (Index term)
An	(p1 or p2 or p3 or p4) and	45
exa	(I1 or I2 or I3)	45
mpl		

e screenshots of search process in Science Direct

(5) ACM Digital Library

Anywhere

```
(p1 or p2 or p3 or p4) and
(I1 or I2 or I3)

35
```

An example screenshots of search process in ACM Digital Library:

(6) Google Scholar

	Title	Abstract	Full text
(p1 or p2 or p3 or p4) and (I1 or I2 or I3)	241	7	1010
Total	1250	6	

An example screenshots of search process in Google Scholar intitle:

