6 Kompozitum funkcij

6.1 Naloge za začetnike: Neenačbe

 ${f 1.}$ Graf funkcije $\phi(x)=-rac{4x}{x^2+1}$ je narisan zgoraj levo. Uporabi dani graf in zapišite množico rešitev neenačbe $-rac{4x}{x^2+1}<0$. Utemelji, ali je $\phi(x)$ injektivna funkcija. Tudi izpolnite tabelo spodaj.

2. Graf funkcije $\psi(x) = x^2 - 4|x-1| - 1$ je narisan zgoraj desno. Opazimo da je $\psi(-5) = 0 = \psi(1)$. Uporabi dani graf in zapišite množico rešitev neenačbe $x^2 - 4|x-1| - 1 < 0$. Utemelji, ali je $\psi(x)$ injektivna funkcija. Tudi izpolnite tabelo spodaj.

Kvadratna neenačba je neenačba, ki jo lahko zapišemo v obliki $ax^2 + bx + c < 0$. $(a \neq 0, namesto < lahko tudi >, <math>\leq, \geq)$.

 ${f 3.}$ Dana je kvadratna funkcija $f(x)=6x^2-x-1.$ Zapišite ničle, skicirajte graf in zapišite množico rešitev neenačbe $6x^2-x-1<0.$

4. Dana je kvadratna funkcija $f(x) = -8x^2 - 2x + 1$. Zapišite ničle, skicirajte graf in zapišite množico rešitev neenačbe $-8x^2 - 2x + 1 < 0$.

 ${\bf 5.}$ Dana je funkcije $g(x)=x^3-2x^2-5x+6.$ Opazimo da je g(1)=0. Zapišite množico

rešitev neenačbe $x^3 - 2x^2 - 5x + 6 > 0$.

6. Dana je funkcije $h(x) = -x^3 - 3x^2 - 4x - 4$. Opazimo da je h(-2) = 0. Zapišite množico rešitev neenačbe $-x^3 - 3x^2 - 4x - 4 \le 0$.

6.2 Običajne naloge

Kompozitum funkcij $f: X \to Y$ in $g: Z \to W$, kjer je $f(X) \subseteq Z$, je funkcija

$$g \circ f : X \to W,$$
 $(g \circ f)(x) = g(f(x)).$

Inverz funkcije $f: X \to Y$, kjer je f bijektivna, je funkcija

$$f^{-1}: Y \to X, \qquad f^{-1}(f(x)) = x.$$

Zožitev funkcije $f:X\to Y$ na množico $A\subseteq X,$ je funkcija

$$f|_A: A \to Y,$$
 $(f|_A)(x) = f(x).$

- **1.** Za vsak par funkcij ugotovi, ali sta identični (funkciji f in g sta identični, če imata enaki domeni, enaki zalogi vrednosti in je f(x) = g(x) za vsak x iz domene funkcij).
 - 1. $f(x) = \frac{x}{x}$, g(x) = 1
 - 2. f(x) = x, $g(x) = \sqrt{x^2}$
 - 3. $f(x) = \ln x^2$, $g(x) = 2 \ln x$
- 2. Naj bosta f in g realni funkciji realne spremenljivke, podani s predpisom

$$f(x) = \frac{2x+1}{x-1},$$
 $g(x) = \frac{x+1}{x-2}.$

Določi $f\circ g$ in $g\circ f$

3. Naj bosta f in g realni funkciji realne spremenljivke, podani s predpisom

$$f(x) = \begin{cases} 0 & ; & x < 0 \\ x & ; & x \ge 0 \end{cases},$$
$$g(x) = \begin{cases} 0 & ; & |x| > \frac{\pi}{2} \\ \cos x & ; & |x| \le \frac{\pi}{2} \end{cases}$$

Določi $f \circ g$ in $g \circ f$, $f \circ f$ in $g \circ g$ ter skiciraj grafa.

- **4.** Nariši grafa funkcij $\sin(\arcsin x)$ in $\arcsin(\sin x)$.
- **5.** Za vsako od funkcij, ki so dane s spodnjimi predpisi, utemelji, ali je surjektivna oz. injektivna.
 - 1. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3 x$
 - 2. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^4 + 2$

- 3. $f: \mathbb{R} \to [-1, 1], f(x) = \cos x$
- 4. $f: [0, \pi] \to \mathbb{R}, f(x) = \cos x$
- 5. $f:[0,\pi] \to [-1,1], f(x) = \cos x$
- $\mathbf{6}$. Naj bo funkcija $f: \mathbb{R} \to \mathbb{R}$ dana s predpisom

$$f(x) = \begin{cases} x^2 & ; & x \in \mathbb{R} \setminus \mathbb{Q} \\ x & ; & x \in \mathbb{Q} \end{cases}.$$

Utemelji, ali je f injektivna in ali je f surjektivna.

6.3 Naloge z izpita

- **1.** Naj bo $f(x) = \frac{3x-2}{x+1}$. Določi definicijsko območje \mathcal{D}_f funkcije f. Dokaži, da je f injektivna na \mathcal{D}_f in določi inverzno funkcijo. Nalogo reši računsko in grafično. Podobno obravnajvaj še funkcijo $g(x) = \arcsin \frac{x-3}{2}$.
- **2.** Naj bo funkcija $f: \mathbb{R} \to \mathbb{R}$ dana s predpisom

$$f(x) = \arcsin(||x| - 1| + |x + 2|).$$

Določi definicijsko območje \mathcal{D}_f in zalogo vrednosti \mathcal{Z}_f funkcije f. Nato poišči funkcijo $g: \mathcal{Z}_f \to \mathcal{D}_f$, za katero velja $f \circ g = \mathrm{id}_{\mathcal{Z}_f}$, kjer je $\mathrm{id}_{\mathcal{Z}_f}(x) = x$ za vsak $x \in \mathcal{Z}_f$. Ali je funkcija g inverz funkcije f?

3. Naj bosta f in g realni funkciji realne spremenljivke, ki sta podani s predpisoma

$$f(x) = \begin{cases} -\frac{x^3 + 1}{x + 1}, & x < 0 \\ e^{2x} - 1, & x \ge 0 \end{cases}$$

$$g(x) = \begin{cases} -\frac{x}{x + 1}, & x < -1 \\ 0, & -1 \le x \le 0 \\ \arctan(x + 1), & x > 0 \end{cases}$$

Zapišite predpis po katerem slika funkcija $g\circ f.$

4. Naj bosta f in g realni funkciji realne spremenljivke, ki sta podani s predpisoma

$$f(x) = \begin{cases} -x^2 + 1, & x \ge 0 \\ e^x, & x < 0 \end{cases},$$
$$g(x) = \begin{cases} 1, & x < 1 \\ -x + 2, & x \ge 1 \end{cases}.$$

Določite kompozitum $g \circ f$ in $f \circ g$.

Navodila.

Običajne naloge.

1. (a) Ne. (b) Ne. (c) Ne.

2.
$$f \circ g : \mathbb{R} \setminus \{2\} \to \mathbb{R} \setminus \{1\}, (f \circ g)(x) = x$$

 $g \circ f : \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{2\}, (g \circ f)(x) = x$

3.
$$f \circ g = g$$

3.
$$f \circ g = g$$

$$(g \circ f)(x) = \begin{cases} 1 & ; & x < 0 \\ \cos x & ; & 0 \le x \le \frac{\pi}{2} \\ 0 & ; & x > \frac{\pi}{2} \end{cases}$$

$$f \circ f = f$$

$$f \circ f = f$$

$$(g \circ g)(x) = \begin{cases} 1 & ; |x| \ge \frac{\pi}{2} \\ \cos(\cos x) & ; |x| < \frac{\pi}{2} \end{cases}$$

4. Definicijsko območje funkcije $\sin(\arcsin x)$ je [-1, 1].

Definicijsko območje funkcije $\arcsin(\sin x)$ je \mathbb{R} .

5.

- 1. Je surjektivna, ni injektivna.
- 2. Ni surjektivna, ni injektivna.
- 3. Je surjektivna, ni injektivna.
- 4. Ni surjektivna, je injektivna.
- 5. Bijekcija.
- 6. Ni injektivna, ni surjektivna.

Naloge z izpita

1.
$$\mathcal{D}_f = \mathbb{R} \setminus \{-1\}$$
, inverzna funkcija f^{-1} je definirana na $\mathbb{R} \setminus \{3\}$ in dana s predpisom $x+2$

$$f^{-1}(x) = \frac{x+2}{3-x}$$

 $\mathcal{D}_g = [1,5]$, inverzna funkcija g^{-1} je definirana na intervalu $[-\frac{\pi}{2},\frac{\pi}{2}]$ in dana s predpisom $g^{-1}(x) = 3 + 2\sin x.$

2. $\mathcal{D}_f = [-2, -1], \, \mathcal{Z}_f = \left\{\frac{\pi}{2}\right\}$. Za funkcijo g je več možnosti, npr.: $g(\frac{\pi}{2}) = -2$. g ni inverz funkcije f, saj f ni injektivna.

Zanimive povezave:

- [a] Kvadratna funkcija
- [b] Graf kvadratne funkcije
- [c] Ali je f(x) = g(x), če sta $f(x) = \frac{x}{x}$ in g(x) = 1?