FSAB1402: Informatique 2 Programmer avec des Types Abstraits

Département d'Ingénierie Informatique, UCL

pvr@info.ucl.ac.be

- Programmer avec des types abstraits
- Quelques abstractions importantes avec et sans état
 - Tuple et enregistrement (sans état)
 - Tableau et dictionnaire (avec état)
 - Ces structures seront données comme des types abstraits
- Ecrire des algorithmes avec les modèles déclaratifs et avec état
 - En définissant des opérations sur des matrices avec plusieurs représentations
 - (Autre exemple: fermeture transitive sur un graphe orienté)
- L'autre manière de faire une abstraction de données, l'objet, sera expliquée la semaine prochaine

Lecture pour la huitième séance

- Chapitre 3 (section 3.5)
 - Les types abstraits
- Chapitre 5 (sections 5.4 et 5.7)
 - L'abstraction de données
 - Exercices!

Résumé du dernier cours

La sémantique

- Il est important de comprendre comment s'exécute un programme
 - Celui qui ne comprend pas quelque chose est l'esclave de cette chose
- Il faut pouvoir exécuter vous-mêmes un programme selon la machine abstraite
 - Concepts importants: environnement ("lien entre instruction et mémoire"), pile sémantique ("ce qu'il reste à faire"), définition et appel de procédure, environnement contextuel ("la valise d'une procédure")
- Pour les exercices: attention aux détails!
 - Il suffit de montrer tous les détails une fois; ensuite vous pouvez faire des raccourcis (comme par exemple, sauter des pas, utiliser des abréviations pour des environnements qui reviennent, etc.)

L'état

- L'état explicite (la cellule): un concept à double tranchant
 - Avantageux pour la modularité des programmes
 - Etendre une partie sans devoir changer le reste
 - Désavantageux pour l'exactitude des programmes
 - Un programme qui marche aujourd'hui peut être cassé demain
 - La solution pour avoir le meilleur des deux modèles: faire une grande partie du programme en modèle déclaratif avec des endroits isolés qui utilisent l'état
- La sémantique des cellules
 - Une mémoire à affectation multiple, qui contient des cellules
 - Une cellule est une paire: le nom et le contenu
 - Le nom de la cellule est aussi appelé l'adresse

- L'encapsulation et l'abstraction
 - L'encapsulation: protéger l'intérieur
 - L'abstraction: définir une interface pour une interaction contrôlée avec l'intérieur, ce qui garantit un bon comportement
- Motivations de l'abstraction de données
 - Donner des garanties
 - Réduire la complexité
 - Faire de grands programmes en équipe
- Les deux formes principales
 - Le type abstrait et l'objet

Collections indexées

Collections indexées

- Une collection indexée regroupe un ensemble de valeurs
- Chaque élément est accessible par l'indexe
- Dans le modèle déclaratif il y a deux types de collections indexées:
 - Les tuples, par exemple date(17 mars 2005)
 - Les enregistrements, par exemple date(jour:17 mois:mars annee:2005)
- Avec l'état on peut définir d'autres types de collections:
 - Tableaux ("arrays")
 - Dictionnaires

Tableaux ("arrays")

- Un tableau est une correspondance entre entiers et valeurs
 - C'est-à-dire, un ensemble de valeurs indexé par des entiers
- Le domaine du tableau est un ensemble d'entiers consécutifs, avec une borne inférieure et une borne supérieure
 - Le domaine ne peut pas être changé
 - Le contenu (les éléments) peut être changé
- On peut considérer un tableau comme un tuple de cellules

Opérations sur les tableaux

- A={Array.new LB UB V}
 - Créé un tableau A avec borne inférieure LB et borne supérieure UB
 - Tous les éléments sont initialisés a V
- Les autres opérations
 - Accès et mise à jour des éléments
 - Obtenir les bornes
 - Convertir un tableau en tuple et inversément
 - Tester le type d'un tableau

- A={MakeArray L H F}
- Créé un tableau A où chaque élément I a la valeur {F I}
- Remarquez que le tableau est un type abstrait en Oz

```
fun {MakeArray L H F}
    A={Array.new L H 0}
in
    for I in L..H do
        A.I := {F I}
    end
    A
end
```


Convertir un tuple en tableau

```
fun {Tuple2Array T}
    H={Width T}
in
    {MakeArray
    1 H
    fun {$ I} T.I end}
end
```

Convertir un tableau en enregistrement

- R={Array2Record L A}
 - Prend une étiquette L et un tableau A, renvoie un enregistrement R don't l'étiquette est L et dont les noms des champs sont des entiers de la borne inférieure jusqu'à la borne supérieure de A
 - Pour définir cette fonction, nous devons savoir comment construire un enregistrement
- R={Record.make L Fs}
 - Construit un enregistrement R avec étiquette L et une liste de noms de champs Fs, et les champs contiennent des variables libres
- L={Array.low A} et H={Array.high A}
 - Renvoyer les bornes inférieure et supérieure de A


```
fun {Array2Record LA A}
  L={Array.low A}
  H={Array.high A}
  R={Record.make LA {From L H}}
in
  for I in L..H do
                           Attention! Ceci n'est pas
    RJ = AJ
                           une affectation de cellule
  end
                           (":="), mais une affectation
  R
                           de variable ("=").
                           Affectation unique alors!
end
```

© 2007 P. Van Roy. All rights reserved.

Conversions entre collections

- On peut convertir n'importe quel tuple en tableau
- Mais on ne peut pas convertir n'importe quel tableau en tuple
 - Pourquoi?
- On peut convertir n'importe quel tableau en enregistrement
- Une conversion de tableau en tuple ou en enregistrement est une "photographie instantanée"
 - Pourquoi on dit ça?

Dictionnaires (tables de hachage)

- Un dictionnaire est une correspondance entre valeurs simples (des littéraux: entiers ou atomes) et des valeurs quelconques
 - C'est-à-dire, un ensemble de valeurs indexé par des littéraux
- Une paire (littéral, valeur) s'appelle un item
 - Le littéral s'appelle la clé
- Le domaine peut être changé
 - On peut ajouter de nouveaux items et enlever des items
 - Le temps pour ces opérations est un temps constant amorti
 - C'est-à-dire, n opérations prennent un temps O(n)

Opérations sur les dictionnaires

- D={Dictionary.new}
 - Créé un nouveau dictionnaire vide
- Les autres opérations
 - Accès et mise à jour des éléments
 - Ajout et enlèvement d'un item
 - Tester si une clé est dans le dictionnaire
 - Convertir un dictionnaire en enregistrement et inversément
 - Tester le type d'un dictionnaire
- Remarquez que le dictionnaire est un type abstrait en Oz

Implémentation des dictionnaires

- L'accès à un élément se fait en un temps constant
- Les opérations d'ajout et d'enlèvement se font en un temps constant amorti
- Qu'est-ce que cela veut dire exactement?
 - n opérations se font en un temps O(n)
- Pourquoi l'ajout et l'enlèvement ne se font pas tout bêtement en temps constant?
 - L'espace mémoire utilisé par un dictionnaire est proportionnel au nombre d'éléments
 - Pour garder un temps constant d'accès, le dictionnaire est organisé comme une table de hachage
 - Quand on ajoute ou enlève un élément, il faut parfois reorganiser cette table pour garantir le temps constant d'accès

Hierarchie des collections indexées

 Voici un diagramme qui montre les relations entre les différents types de collections indexées

- Collections déclaratives
 - Listes
 - Flots (listes sans fin)
 - Piles (en type abstrait)
 - Files (en type abstrait)
- Collections avec état
 - Piles (en objet)
 - Files (en objet)

Matrices

Comparaison des représentations des matrices

- Nous allons regarder des implémentations de quelques algorithmes sur les matrices
 - L'algorithme dépendra fortement de la représentation d'une matrice
 - Les représentations peuvent être déclaratives ou avec état
- Nous allons commencer par donner une description abstraite des opérations à implémenter indépendante de tout modèle
- Les matrices sont implémentées ici comme des types abstraits (valeurs + opérations)

 Une matrice A est un ensemble A=[A_{ij}] de mxn éléments organisé en un rectangle avec m rangées et n colonnes:

Opérations sur les matrices

- Les matrices sont beaucoup utilisées dans différents domaines
- Aujourd'hui, nous allons définir deux opérations sur les matrices, l'addition et la multiplication
- Nous allons définir chaque opération avec plusieurs représentations
 - Une représentation peut être déclarative ou avec état
 - Attention, nos deux représentations seront toutes les deux des types abstraits!

Addition des matrices

- Voici la définition de l'addition de deux matrices [A_{ii}] et [B_{ii}] de taille mxn:
 - $[A_{ij}]+[B_{ij}] = [A_{ij}+B_{ij}]$
- Pour implémenter cette définition, nous allons choisir deux représentations d'une matrice:
 - Représentation en liste: une liste de listes [[A11 A12 ... A1n] ... [Am1 Am2 ... Amn]]
 - Représentation en tableau: un tableau dont les éléments sont des tableaux, l'élément A_{ij} est A.I.J

Addition pour la représentation en liste


```
fun {AddM A B}
  case A#B of nil#nil then nil
  [] (AR|A2)#(BR|B2) then
      {AddRow AR BR}|{AddM A2 B2}
  end
end
fun {AddRow AR BR}
  case AR#BR of nil#nil then nil
  [] (AE|AR2)#(BE|BR2) then
      (AE+BE)|{AddRow AR2 BR2}
  end
end
```

Addition pour la représentation en tableau


```
fun {AddM A B}
  M={Array.high A}
  N={Array.high A.1}
  C={Array.new 1 M 0}
in
  for I in 1..M do
       C.I:={Array.new 1 N 0}
       for J in 1..N do
              C.I.J:=A.I.J+B.I.J
       end
  end
end
```

Comparaison des deux définitions

- Les définitions ont une complexité comparable
 - Le temps et l'espace d'exécution sont comparables aussi
 - La définition en liste est néanmoins plus difficile à lire, pourquoi?
- Dans la définition en liste, chaque boucle est une fonction récursive. Deux boucles imbriquées deviennent deux fonctions récursives, dont la première appelle la seconde.
- Dans la définition en tableau, il faut plus d'effort pour initialiser les structures, avec des appels à Array.high et Array.new

Multiplication des matrices

- Voici la définition de la multiplication de deux matrices [A_{ii}] et [B_{ii}] de taille mxp et pxn:
- Cette fois nous aurons besoin de trois boucles imbriquées: deux pour les rangées et les colonnes, et une pour la somme intérieure
- Pour implémenter cette définition, nous allons choisir deux représentations d'une matrice:
 - Représentation en tuple (déclarative): un tuple dont les éléments sont des tuples, l'élément A_{ii} est A.I.J
 - Représentation en tableau (avec état): un tableau dont les éléments sont des tableaux, l'élément A_{ii} est A.I.J

Multiplication pour la représentation en tuple (1)


```
fun {MulM A B}
   M={Width A} P={Width A.1} N={Width B.1}
  C={Tuple.make m M}
in
   for I in 1..M do
     C.I={Tuple.make r N}
     for J in 1. N do
        C.I.J = (Somme de (A.I.K*B.K.J) pour K=1..P)
     end
  end
end
```

Multiplication pour la représentation en tuple (2)


```
fun {MulM A B}
   M={Width A} P={Width A.1} N={Width B.1}
   C={Tuple.make m M}
in
   for I in 1. M do
     C.I={Tuple.make r N}
      for J in 1...N do
         fun {Sum K Acc}
            if K>P then Acc else {Sum K+1 (A.I.K*B.K.J)+Acc} end
         end
      in
         C.I.J={Sum 1 0}
      end
   end
end
```

Multiplication pour la représentation en tableau


```
fun {MulM A B}
   M={Array.high A} P={Array.high A.1} N={Array.high B.1}
   C={Array.new 1 M 0}
in
   for I in 1..M do
        C.I:={Array.new 1 N 0}
        for J in 1. N do
          for K in 1..P do
                C.I.J:=(A.I.K*B.K.J)+C.I.J
          end
        end
   end
end
```

Comparaison des deux définitions

- Les définitions ont une complexité comparable
 - Le temps et l'espace d'exécution sont comparables aussi
 - La définition de Sum utilise un accumulateur: c'est un peu plus compliqué
- Dans la définition déclarative, il faut faire attention à n'affecter chaque élément du tuple qu'une seule fois
 - C'est pourquoi il faut parfois des définitions récursives (comme la définition de Sum avec son accumulateur)
- Si le programme est concurrent (il y a un autre programme qui utilise [C_{ij}] en même temps qu'il est calculé), la définition déclarative marchera sans changements. La définition avec état devrait être changée (utilisation des verrouillages).

Exercice 1 (simple)

- Les types abstraits que nous avons donnés ne sont pas protégés
 - Les repésentations sont accessibles depuis l'extérieur des abstractions
- Etendez la définition de l'addition et la multiplication des matrices pour protéger la représentation interne
 - En utilisant Wrap et Unwrap, comme la définition de la pile la semaine dernière
 - Il faut créer Wrap et Unwrap avec NewWrapper

Exercice 2 (compliquée)

- Remarquez qu'on n'a plus utilisé la première représentation (liste des listes) pour la multiplication
 - On a préféré deux représentations plus ou moins semblables: tuple de tuples et tableau de tableaux
- Ecrivez une définition avec la première représentation (liste des listes)
 - C'est nettement plus compliqué parce qu'une liste ne permet pas un accès immédiat à n'importe quel élément. Il faut manipuler les listes pour qu'on puisse faire les calculs en traversant les listes du début à la fin.


```
fun {MulM A BT}
   case A of nil then nil
   AR|A2 then {MulRowM AR BT}|{MulM A2 BT}
   end
end
fun {MulRowM AR BT}
   case BT of nil then nil
   BC|BT2 then {RowColM AR BC 0}|{MulRowM AR BT2}
   end
end
fun {RowColM AR BC Acc}
   case AR#BC of nil#nil then Acc
   [] (A|AR2)#(B|BC2) then {RowColM AR2 BC2 Acc+A*B}
   end
end
```

© 2007 P. Van Roy. All rights reserved.

Exercice 2 (tuyau: partie 2)

- Il faut la transposition de B, qu'on note comme BT, comme argument à MulM
- Il suffit alors de définir une fonction qui fait la transposition d'une matrice
 - fun {TransM B} --> BT
- Pour définir TransM il faut deux fonctions récursives parce qu'il y a deux boucles imbriquées
 - Exercice!
- Après il faut tester votre définition complète pour vérifier qu'elle marche comme prévu

Un autre exemple (supplément)

Un autre exemple: la fermeture transitive

- Nous pouvons calculer la fermeture transitive d'un graphe orienté
- La structure choisie est un graphe orienté
 - Un graphe orienté est un ensemble de noeuds et des arêtes entre les noeuds
- L'algorithme choisi est la fermeture transitive
 - La fermeture transitive construit un autre graphe tel que chaque arête correspond avec un chemin dans le graphe original
- Cet exemple est expliqué en détail dans la version anglaise du livre
 - Voir la section 6.8.1

Fermeture transitive d'un graphe

Les noeuds: {1,2,3,4,5,6}

Les arêtes: { (1,2), (2,3), (3,4), (4,5), (5,6), (6,2), (1,2) }

- Fermeture transitive: à partir d'un graphe G, calculer un autre graphe T, avec les mêmes noeuds mais d'autres arêtes
- S'il y a un chemin entre deux noeuds en G, alors il y a un arête entre les deux noeuds en T

Résumé

Résumé

- Nous avons donné plusieurs exemples de types abstraits: des collections indexées et des matrices
- Collections indexées
 - Tuple
 - Enregistrement
 - Tableau (avec état, indexes sont des entiers)
 - Dictionnaire (avec état, indexes sont des litéraux)
- Matrices
 - Addition et multiplication
 - Avec plusieurs représentations
 - Comparaison des algorithmes