第七章 静 电 场

姓名:	学号:	序号:	_
学院:	班级:	成绩:	_
一、单项选择题	(本大题共6小题,每	-题只有一个正确答案,答对	一题得
3分,共18分)			
1. 关于电场,下列	问说法正确的是()	
A. 场强大的地方	,电势一定高		
B. 场强为零的点	电势不一定为零		
C. 场强相等处电	势一定相等		
D. 带正电荷的导位	本, 电势一定是正值		
2. 某电场的电场线	栈分布如右图所示,将	一个负电荷从 M 点移至 N 点	ī,则下
列说法正确的是 ()		
A. 电场力做正功			_
B. M 点的电场强	度大	Nf4/-0	→
$C.\ M$ 点的电势高		// M	r
D. 静电势能增加			
3. 关于带电的孤立	立导体球,下列说法正	确的是()	
A. 导体球内部和	表面的电势高低无法确	定	
B. 导体球内场强	和电势的大小均为零		
C. 导体球内场强	为零,而电势为恒量		
D. 导体球内部的	电势比表面高		

第1页(共4页)

4.	充电后的平行板电容器保持与电源	相连,	若改变两板间距	,则一	下列物	理
量中 ()保持不变					
A.	电容器的电容	B. 两村	扳间电势差			
C.	两板间场强	D. 电	容器储存的电场能			
5.	一个点电荷放在球形高斯面的中心	,下列]情况中通过高斯	面的印	电通量	发
生变化	的是 ()					
A.	将另一点电荷放在高斯面外					
В.	将另一点电荷放进高斯面内					
C.	将球心处的点电荷移开, 但仍在高	斯面内				
D.	将高斯面半径缩小					
6.	将一个实心导体球内部掏出一个球形	形空腔	,电容值将()		
A.	增大	B. 减/	·]/			
C.	不变	D. 大	小关系无法确定			
=	、判断题 (本大题共6小题, 每题	1分,	共6分,答√表	示说	法正确	1.
答×表	示说法不正确,本题只需指出正确与	与错误,	不需要修改)			
7.	空间电荷确定后,周围静电场中某户	点的电	场强度和电势均是	恒定	值。	
					()
8.	电场中某点的场强方向就是点电荷和	在该点	处所受电场力的方	前向。	()
9.	静电场的能量定域在电场中, 有电域	多分布	的区域均储有静电	能。	()
10	. 在充电后断开电源的平行板电容器	两板间	可充入均匀电介质	, 两	极板间	电
位移减	小,场强也减小。				()
11	. 在静电场中取一高斯面,面上任意	一点的	的场强仅与面内的	争电荷	有关。)
					()
12	. 有极分子电介质的极化方式只有取	内极相	40		()
Ξ	、填空题(本大题共8小题,每空2	2分,	共 26 分)			
13	. 分别带电 Q 和 $2Q$ 的两个点电荷相归	距 R ,	现将第三个点电荷	f q 放	在两个	·点
电荷的	连线上,当 q 到 Q 的距离为		时第三个电荷原	f受合	力为零	
14	. 平行板电容器面积为 S , 两板间距	为 d ,	充电后断开电源,	将两	极板缓	慢
拉开至	2d,此时极板间电势差变为原来的			系统值	诸存的	静
电能变	为原来的					

15. 一个半径为 R 的细圆环均匀带电 Q ,其圆心处的电场强度大小为
电势为。(选轴线上无穷远处电势为零)
16. 在极板面积为 S ,两板间距为 d 的平行板电容器两板间插入一块厚度为
$(t \! < \! d)$ 的金属板,则电容器的电容为。
17. 初速度为零的电子在电场力作用下总是从电势处向电
势处运动(填"高"或"低"), 电子的电势能(填"增加"或"减
少")。
18. 电量为 q 的点电荷位于边长为 a 的立方体某一顶点处,则通过立方体—
个侧面的电场强度通量为。
19. 某电场线如右图所示,则 a 、 b 、 c 三点中电势最高的是
(填"正"或"负")。
20. 如右图所示,两个均匀带电的同心球面,半径分别为
R 和 $2R$,所带电荷量分别为+ Q 和- $3Q$,现将一点电荷+ q 从内 $2R$
球面由静止释放,则粒子到达外球面时的动能为
°
四、计算题(本大题共5小题,每题8分,共40分)

- 21. 一对无限长共轴直圆筒,半径分别为 R_1 和 R_2 。筒面上均匀带电,沿轴线单位长度电荷量分别为 λ_1 和 λ_2 (设 λ_1 = $-\lambda_2$ = λ)。求:
 - (1) 空间各区域的电场强度分布, 并画出 E-r 曲线;
 - (2) 两筒面之间的电势差。
 - 22. 半径为R的无限长直圆柱体,电荷体密度为 ρ_e 。求:
 - (1) 空间各区域的电场强度分布;
 - (2) 取轴线上一点为电势零点, 计算空间各区域的电势。

23. 均匀带电球体半径为 R,带电总量为 Q,球外充满相对电容率为 ε 的均匀电介质,试计算系统储存的静电能。

24. 如右图所示, 在 A 、 B 两点间接入 4 个电容器。其中, $C_1 = C_2 = C_3 = 5 \mu F$, $C_4 = 10 \mu F$, 求:

- (1) A、B 两点间的总电容;
- (2) 若A、B 间电压为 10V,则A、D 两点间的电压是多少?

25. 一个带电 q 的空心导体球壳,半径分别为 R_1 和 R_2 ,现在球心处放置一点电荷 q,求:

- (1) 空间各个区域的电场强度大小:
- (2) 空间各个区域的电势分布。

五、证明题 (本大题共1小题, 每题10分, 共10分)

26. 一平行板电容器两板间充满两层厚度分别为 d_1 和 d_2 的电介质,它们的相对电容率分别为 ε_1 和 ε_2 ,极板面积为 S,带电 Q。证明:该平行板电容器的电容为

$$C = \frac{\varepsilon_0 \varepsilon_1 \varepsilon_2 S}{\varepsilon_1 d_2 + \varepsilon_2 d_1}$$