TD 6

Exercises on: 06: Spectral Representation

6.1 Exercise 1

Find the innovations filter of the process X(t) if

$$S_X(\omega) = \frac{\omega^4 + 64}{\omega^4 + 10\omega^2 + 9}$$

6.2 Exercise 2

Given a non-periodic WSS process X(t), we form the sum $\hat{X}(t) = \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_0 t}$, and set

$$c_n = rac{1}{T} \int_{-T/2}^{T/2} X(t) e^{-jn\omega_0 t} dt, \quad eta_n(lpha) = rac{1}{T} \int_{-T/2}^{T/2} R(au - lpha) e^{-jn\omega_0 au} d au$$

where, $\beta_n(\alpha)$ are the coefficients of the Fourier expansion of $R(\tau - \alpha)$ in the interval (-T/2, T/2). Show that

- a) For |t| < T/2, $E\{|X(t) \hat{X}(t)|^2\} = 0$
- b) $E\{c_nc_m^*\} = \frac{1}{T} \int_{-T/2}^{T/2} \beta_n(t) e^{-jm\omega_0 t} dt$
- c) If T is sufficiently large, then $E\{c_nc_m^*\} \approx \frac{S(n\omega_0)}{T}\delta(n-m)$

6.3 Exercise 3

If
$$E\{X_nX_k\} = \sigma_n^2 \delta[n-k], X(\omega) = \sum_{n=-\infty}^{\infty} X_n e^{-jn\omega}$$
 and $E\{X_n\} = 0$, Find $E\{X(\omega)\}$ and $E\{X(u)X^*(v)\}$.

6.4 Exercise 4

Show that, if the process $X(\omega)$ is white noise with zero mean and auto-covariance $Q(u)\delta(u-v)$, then its inverse Fourier transform X(t) is WSS with power spectrum $Q(\omega)/2\pi$.