

,	Project 1155 SAINT L	OUIS GALLERIA	Job Ref.				
	Section				Sheet no./rev.		
	Calc. by	Date 13/02/2025	Chk'd by	Date	App'd by	Date	

WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2021 allowable stress design

Tedds calculation version 1.2.11

Panel details

Structural wood panel sheathing on one side

Panel height h = 12 ftPanel length b = 20 ft

Total area of wall $A = h \times b = 240 \text{ ft}^2$

Panel construction

2" x 8" Nominal stud size 1.5" x 7.25" Dressed stud size Cross-sectional area of studs $A_s = 10.875 \text{ in}^2$ Stud spacing s = 16 inNominal end post size 2" x 8" Dressed end post size 1.5" x 7.25" $A_e = 10.875 \text{ in}^2$ Cross-sectional area of end posts Dia = 1 in Hole diameter Net cross-sectional area of end posts $A_{en} = 9.375 \text{ in}^2$ Nominal collector size 2 x 2" x 8" Dressed collector size 2 x 1.5" x 7.25"

Service condition Dry

 $\begin{array}{ll} \text{Temperature} & 100 \text{ degF or less} \\ \text{Anchor location} & \text{Inside face} \\ \text{Anchor offset} & \text{e}_{\text{anchor}} = \textbf{0} \text{ in} \\ \end{array}$

Project 1155 SAINT LO	OUIS GALLERIA	Job Ref.				
Section				Sheet no./rev.		
Calc. by	Date 13/02/2025	Chk'd by	Date	App'd by	Date	

Vertical anchor stiffness k_a = **30000** lb/in

From NDS Supplement Table 4B - Reference design values for visually graded Southern Pine dimension lumber (2" - 4" thick)

Species, grade and size classification Southern Pine, stud grade, 8" wide

 $\begin{tabular}{lll} Specific gravity & G = 0.55 \\ Tension parallel to grain & F_t = 325 lb/in^2 \\ Compression parallel to grain & F_c = 775 lb/in^2 \\ Compression perpendicular to grain & F_{c_perp} = 565 lb/in^2 \\ Modulus of elasticity & E = 1300000 lb/in^2 \\ Minimum modulus of elasticity & E_{min} = 470000 lb/in^2 \\ \end{tabular}$

Sheathing details

Sheathing material 5/16" wood panel oriented strandboard sheathing

Fastener type 6d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity $v_n = 505 \text{ lb/ft}$ Apparent shear wall shear stiffness $G_a = 13 \text{ kips/in}$

Loading details

Dead load acting on top of panel D = 21 lb/ftFloor live load acting on top of panel $L_f = 150 \text{ lb/ft}$ Self weight of panel $S_{wt} = 12 \text{ lb/ft}^2$ In plane seismic load acting at head of panel $E_q = 1000 \text{ lbs}$ Design spectral response accel. par., short periods $S_{DS} = 1$

From ASCE 7-22 - cl.2.4.1 and cl. 2.4.5 Basic combinations

Load combination no.7 0.6D + 0.6WLoad combination no.8 0.6D + 0.7E

Adjustment factors

Wet service factor for modulus of elasticity - Table 4B

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3 $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity – Table 2.3.3

 $C_{tE} = 1.00$

Project 1155 SAINT LO	OUIS GALLERIA	Job Ref.				
Section				Sheet no./rev.		
Calc. by	Date 13/02/2025	Chk'd by	Date	App'd by	Date	

 $\label{eq:continuous} \begin{array}{ll} \text{Incising factor} - \text{cl.}4.3.8 & & & & & & & & \\ \text{Buckling stiffness factor} - \text{cl.}4.4.2 & & & & & \\ \text{Bearing area factor} - \text{cl.} \ 3.10.4 & & & & \\ \text{C}_b = \textbf{1.0} & & & & \\ \end{array}$

Adjusted modulus of elasticity $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 470000$ psi

Critical buckling design value $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 979 \text{ psi}$

Reference compression design value $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 1240$ psi

For sawn lumber c = 0.8

Column stability factor – eqn.3.7-1 $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / c)$

0.60

From SDPWS Table 4.3.3 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio 3.5

Shear wall length b = 20 ft

Shear wall aspect ratio h/b = 0.6

Segmented shear wall capacity

Maximum shear force under seismic loading $V_{s_max} = 0.7 \times E_q = 0.7$ kips Shear capacity for seismic loading $V_s = v_s \times b / 2.8 = 3.607$ kips

 $V_{s max} / V_{s} = 0.194$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2

Shear wall aspect ratio h/b = 0.6

Effective length for chord forces $b_{eff} = b - 3 / 2 \times b_{EndPost} - e_{anchor} = 19.81 \text{ ft}$

Load combination 8

Shear force for maximum tension $V = 0.7 \times E_q = 0.7$ kips

Axial force for maximum tension $P = (0.6 \times (D + S_{wt} \times h) - 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h)) \times s / 2 = 0.051 \text{ kips}$

Maximum tensile force in chord $T = V \times h / b_{eff} - P = 0.373$ kips

Maximum applied tensile stress $f_t = T / A_{en} = 40 \text{ lb/in}^2$

Design tensile stress $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 520 \text{ lb/in}^2$

 $f_t / F_t' = 0.077$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 2

Shear force for maximum compression $V = 0.7 \times E_q = 0.7 \text{ kips}$

Axial force for maximum compression $P = ((D + S_{wt} \times h) + 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h)) \times s / 2 = \textbf{0.125} \text{ kips}$

Maximum compressive force in chord $C = V \times h / b_{eff} + P = 0.549 \text{ kips}$

Maximum applied compressive stress $f_c = C / A_e = 51 \text{ lb/in}^2$

Design compressive stress $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = \textbf{750 lb/in}^2$

 $f_c / F_c' = 0.067$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 565 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.089$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Hold down force

Chord 1 $T_1 = 0.373$ kips Chord 2 $T_2 = 0.373$ kips

Project 1155 SAINT L	OUIS GALLERIA	Job Ref.				
Section				Sheet no./rev.		
Calc. by	Date 13/02/2025	Chk'd by	Date	App'd by	Date	

Seismic deflection

Design shear force $V_{\delta s} = E_q = 1$ kips

Deflection limit $\Delta_{s \text{ allow}} = 0.020 \times h = 2.88 \text{ in}$

Induced unit shear $v_{\delta s} = V_{\delta s}$ / b = 50 lb/ft

Anchor tension force $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h \times b \text{ } / \text{ } b_{\text{eff}} \text{ } - (0.6 \text{ } - 0.2 \times S_{DS}) \times (D \text{ } + S_{\text{wt}} \times h) \times s \text{ } / 2) \text{ } =$

0.562 kips

Chord compression force $C_{\delta} = \max(0 \text{ kips,} v_{\delta s} \times h \times b \text{ / } b_{eff} + (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times s \text{ / } 2) = 0.00 \times 10^{-5} \text{ cm}$

0.650 kips

Vertical elongation at anchor $\Delta_T = T_\delta / k_a = 0.019$ in

 $\Delta_{\text{C}} = 0.04 \text{ in} \times C_{\delta} / \left(A_{\text{e}} \times F_{\text{c_perp}}\right) = \textbf{0.004} \text{ in}$

Total vertical deflection $\Delta_a = (\Delta_T + \Delta_C) \times (b / b_{eff}) = 0.023$ in

Shear wall elastic deflection – Eqn. 4.3-1 $\delta_{\text{swse}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.062} \text{ in}$

Deflection ampification factor $C_{d\delta}$ = 4 Seismic importance factor I_e = 1.25

Amp. seis. deflection – ASCE7 Eqn. 12.8-15 $\delta_{\text{sws}} = C_{\text{d}\delta} \times \delta_{\text{swse}} \, / \, I_{\text{e}} = \textbf{0.2} \text{ in}$

 δ_{sws} / $\Delta_{\text{s_allow}}$ = **0.069**

PASS - Shear wall deflection is less than deflection limit