PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

Internationales Büro
INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁵: C07D 295/18, 295/22, 311/70, A61K 31/495

(11) Internationale Veröffentlichungsnummer:

WO 94/18185

(43) Internationales
Veröffentlichungsdatum:

18. August 1994 (18.08.94)

(21) Internationales Aktenzeichen:

PCT/CH94/00026

A1

(22) Internationales Anmeldedatum: 9. Februar 1994 (09.02.94)

(30) Prioritätsdaten:

405/93-0 2827/93-2 10. Februar 1993 (10.02.93) CH 20. September 1993 (20.09.93) CH

(71) Anmelder (für alle Bestimmungsstaaten ausser US): PEN-TAPHARM AG [CH/CH]; Engelgasse 109, CH-4052 Basel (CH).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): STÜRZEBECHER, Jörg [DE/DE]; Hubertusstrasse 38, D-99094 Erfurt-Rhoda (DE). VIEWEG, Helmut [DE/DE]; In den Grundmatten 36, D-79618 Rheinfelden (DE). WIKSTROEM, Peter [CH/CH]; Stallenmattstrasse 5, CH-4104 Oberwil (CH). ADLER, Christoph [CH/CH]; Tschäppeliring 2, CH-4153 Reinach (CH).
- (74) Anwalt: BRAUN, André; Murtengasse 5, CH-4051 Basel (CH).

(81) Bestimmungsstaaten: AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, ES, FI, GB, HU, JP, KP, KR, KZ, LK, LU, LV, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SK, UA, US, UZ, VN, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

- (54) Title: PIPERAZIDES OF SUBSTITUTED PHENYLALANINE DERIVATES AS THROMBIN INHIBITORS
- (54) Bezeichnung: PIPERAZIDE VON SUBSTITUIERTEN PHENYLALANIN-DERIVATIVEN ALS THROMBIN INHIBITOREN
- (57) Abstract

D,L-, L- and D-phenylalanine piperazides of formula (I) defined in the claim have been discovered which are clotting or thrombin and/or trypsin inhibitors. The compounds are easily absorbed orally, intraduodenally and especially rectally and are only slightly toxic.

(57) Zusammenfassung

Es wurden D,L-,L- und D-Phenylalanin-piperazide der im Patentanspruch definierten Formel (I) gefunden, die blutgerinnungshemmend resp. thrombin- und/oder trypsinhemmend sind. Die Verbindungen sind oral, intraduodenal und insbesondere rektal ausgezeichnet resorbierbar und weisen nur eine geringe Toxizität auf.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AΤ	Österreich	GA	Gabon	MR	Mauretanien
ΑÜ	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungarn	NZ	Neuseeland
BJ	Benin	ne	Irland	PL	Polen
BR	Brasilien	IT	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumänien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF '	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo .	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali	UZ	Usbekistan
FR	Frankreich	MN	Mongolei	VN	Vietnam

WO 94/18185 PCT/CH94/00026

- 1 -

PIPERAZIDE VON SUBSTITUIERTEN PHENYLALANIN-DERIVATIVEN ALS THROMBIN INHIBITOREN

Die vorliegende Erfindung betrifft neue Proteinasen-Inhibitoren, die als Grundstruktur Phenylalanin enthalten, wobei der aromatische Rest in meta-Stellung eine basische Gruppe besitzt und die α -Aminogruppe mit unterschiedlichen Resten sulfonyliert ist. Durch C-terminale Einführung verschiedenartig N-substituierter Piperazin-Reste wurden hochwirksame Inhibitoren mit verbesserter Bioverfügbarkeit gefunden.

Proteinase-Inhibitoren sind potentielle Arzneimittel, die zur Steuerung physiologischer Prozesse, welche durch Proteinasen ausgelöst und unterhalten werden, verwendet werden können. Für zahlreiche endogene bzw. natürlich vorkommende Hemmstoffe ist gezeigt worden, dass sie in vivo die Aktivität von Proteinasen beeinflussen und hyperproteolytische Zustände dämpfen können [Siehe Hörl, W.H. Design of Enzyme Inhibitors as Drugs, S. 573-581, M. and Smith, H.J., Eds.) Oxford, New York, Tokyo: University Press, 1989]. Der therapeutische Einsatz dieser relativ hochmolekularen Hemmstoffe ist allerdings wegen ihrer besonderen Proteinstruktur begrenzt. Da diese Hemmstoffe einerseits nach oraler Verabreichung im Darm nicht resorbierbar sind und andererseits eine antigene Aktivität

ausüben, wurde nach synthetischen kleinmolekularen Enzym-Inhibitoren Ausschau gehalten.

Die vier Klassen von Enzymen, die für Proteinasen-abhängige Prozesse verantwortlich sind, umfassen die Serin-, Thiol-, Metallo- und Aspartat-Proteinasen. Serin-Proteinasen sind proteolytische Enzyme, die einen reaktiven Serin-Rest im aktiven Zentrum besitzen. Zur Trypsin-Familie der Serin-Proteinasen gehören Enzyme, die wie Trypsin als solches C-terminale Peptidbindungen der basischen Aminosäuren Arginin und Lysin spalten. In dieser Gruppe sind diejenigen Enzyme von besonderer physiologischer Bedeutung, welche im Blut Gerinnung und Fibrinolyse auslösen, Kinin freisetzen und die Komplement-Aktivierung bewirken oder solche, die selber Komponenten der genannten Enzymsysteme sind.

Die Blutgerinnung wird über zwei unterschiedliche Wege durch Zymogen-Aktivierung ausgelöst. Der erste, führt über eine durch Blutkomponenten vermittelte Reaktionskette zur Blutgerinnung. Der zweite, exogene Weg, führt über eine kürzere, auf einer Wechselwirkung zwischen Blut- und Gewebekomponenten beruhenden Reaktionskette Gerinnung. Beide Wege bewirken die Aktivierung des Faktor X zur Serin-Proteinase Faktor Xa, welche ihrerseits die Aktivierung des Prothrombins zur Fibrinogen-koagulierenden Serin-Proteinase Thrombin katalysiert. Als gemeinsames Produkt sowohl des endogenen als auch des exogenen Aktivierungsablaufs wurde Faktor X zunächst als ein bevorzugtes Zielenzym für hemmende Eingriffe in den Blutgerinnungsvorgang angesehen (Tidwell, R. R. et al., Thromb. 19, 339-349, 1980). In jüngster Zeit wurde aber nachgewiesen, dass synthetische Inhibitoren des Faktors Xa vitro und in vivo nicht gerinnungshemmend (Stürzebecher, et al., Thromb. Res. 54, 245-252, 1989) und antithrombotisch wirksam sind (Hauptmann, J. et al., Thromb. Haemostas. <u>63</u>, 220-223, 1990). Aus diesem Grund konzentriert sich Entwicklung von antikoagulativ wirkenden Hemmstoffen auf die Auffindung von Inhibitoren des Thrombins.

Zur Entwicklung von synthetischen Inhibitoren für Thrombin sind Derivate des Benzamidins vielfach untersucht worden (Stürzebecher, J. et al., Acta Biol. Med. Germ. 35, 1665-1676, 1976). Dabei haben sich Aminosäurederivate mit Benzamidin-Struktur und para-ständiger Amidinogruppe als günstige Grundstrukturen für die Entwicklung von wirksamen Hemmstoffen erwiesen. So ist das Aminosäure-Derivat Na-(2-Naphthylsulfonyl)-glycyl-4-amidinophenylalanin-piperidid (NAPAP) der bisher stärkste, beschriebene Thrombin-Hemmstoff (K_i = 6 x 10^{-9} Mol/Liter) vom Benzamidintyp (Stürzebecher, J. et al., Thromb. Res. 29, 635-642, 1983).

Es sind noch weitere Typen von Inhibitoren bekannt, die Thrombin ebenfalls wirksam hemmen: Eine erste Gruppe beinhaltet Peptidyl-arginin-chlormethylketone, z.B. H-D-Phe-Pro-Arg-CH₂Cl (Kettner, C. et al., Thromb. Res. <u>14</u>, 969-973, 1979). Eine zweite Gruppe beinhaltet Peptidylargininaldehyde, z.B. Boc-D-Phe-Pro-Arg-H und H-D-Phe-Pro-Arg-H (Bajusz, S., Int. J. Peptide Protein Res. <u>12</u>, 217-221, 1978).

Diese Inhibitoren, die Trypsin und Thrombin mit vergleichbarer Affinität hemmen, sind jedoch schwierig zu synthetisieren, instabil und könnten wegen ihrer grossen Reaktionsfähigkeit unerwünschte Nebenreaktionen verursachen. Thrombin, aber auch Trypsin, wird in einer zeitabhängigen Reaktion ebenfalls durch das Boronsäurederivat Boc-D-Phe-Pro-Boro-Arg-C $_{10}$ H $_{16}$ (s. Europ. Patentanmeldung No. 0 293 881) gehemmt. Dagegen hat der selektive Thrombininhibitor (2R,4R)-4-Methyl-1-[N $_{10}$ -(3-methyl-1,2,3,5-tetrahydro-8-chinolinsulfonyl)-L-arginin]-2-pipecolincarbonsäure praktisch keine Trypsin-hemmende Aktivität (Kikumoto, R. et al., Biochemistry 23, 85-90, 1984).

Alle bisher geprüften Benzamidinderivate besitzen für eine therapeutische Anwendung ungünstige pharmakodynamische und pharmakokinetische Eigenschaften. Sie werden bei oraler Applikation nicht im Darm resorbiert, werden schnell aus der Zirkulation eliminiert und ihre Toxizität ist relativ hoch. Das gilt sowohl für die Amide des $N-\alpha$ -arylsulfonylierten

(Markwardt, F. et al., Thromb. Res. <u>17</u>, 425-431, 1980), als auch für Amide des N- α -aryl-sulfonylaminoacylierten 4-Amidinophenylalanins (s. Patentanmeldung No. DD-A-235 Verantwortlich für die unzureichenden pharmakologischen Eigenschaften ist die stark basische Amidinofunktion (Kaiser, B. et al., Pharmazie <u>42</u>, 119-121, 1987). Versuche, stark basische Amidinofunktion in hochwirksamen durch schwächer basische Gruppen zu ersetzen, hatten zunächst wenig Erfolg, da sie einen bedeutenden Verlust an Wirkungsstärke zur Folge hatten (Stürzebecher, J. et al., Pharmazie 43, 782-783, 1988). Auch die Einführung einer Carboxylgruppe in den Inhibitor zur Verminderung der zität der Amidinofunktion führte zum Abfall der Inhibitoraktivität. So sind Derivate des 4-Amidinophenylalanins, C-terminal eine Aminosäure mit freier Carboxylgruppe besitzen, inhibitorisch völlig wirkungslos (Wagner, G. al., Pharmazie 39, 16-18, 1984; Vieweg, H. et al., Pharmazie <u>39</u>, 82-86, 1984).

Auch die Abwandlung von NAPAP durch Einführung eines Substituenten am α -Stickstoff, die zu einer geringen Erhöhung der Antithrombinaktivität führte (s. Europ. Patentanmeldung No. FR-A-2 593 812) erbrachte keine Verbesserung der pharmakologischen Eigenschaften (Cadroy, Y. et al., Thromb. Haemostas. 58, 764-767, 1987).

Ausgehend von Nα-substituiertem 3-Amidinophenylalanin wurde die Entwicklung selektiver Hemmstoffe des Thrombins weitergeführt und gefunden, dass sowohl Amide vom Typ des Nα-2-naphthylsulfonylierten 3-Amidinophenylalanins mit einer Carboxylgruppe im Amidteil als auch solche Derivate, bei denen die Amidinofunktion durch eine andere basische Gruppe ausgetauscht war, verbesserte pharmakologische Eigenschaften aufwiesen. Insbesondere war erstmalig bei Benzamidinderivaten eine gewisse Resorption nach oraler Applikation gefunden worden (PCT/CH 9100235).

Diese Stoffklasse wurde nun weiterentwickelt. So zeigte sich beispielsweise bei der Einführung von neuen Substituenten am N-4-Atom von N- α -sulfonylierten 3-Amidinophenylala-

nin-piperaziden, insbesondere bei der Einführung von Acyl- (-CO-X), Sulfonyl (-SO₂-Y), Carbamoyl- (-CO-NR'R") oder funktionalisierten Alkyl-Resten, wobei X, Y sowie R',R" im günstigen Falle Methylgruppen darstellen und der funktionalisierte Alkylrest (C₁-C₃) eine OH-Gruppe trägt, dass die inhibitorische Wirksamkeit gegenüber Thrombin erheblich gesteigert werden konnte und überraschenderweise eine ausserordentliche Erhöhung der Resorptionsfähigkeit festzustellen war. Das war insbesondere nach rektaler aber auch nach intraduodenaler Applikation der Derivate, die sowohl in der Salzform als auch als freie Basen angewendet wurden, zu verzeichnen.

Dabei wurden nicht nur die razemischen Gemische stellt, sondern auch die reinen optischen Antipoden. diesem Rahmen wurde beispielsweise Na-(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanin-4-acetylpiperazid hergestellt. Es wurde festgestellt, dass diese Verbindung nicht starker Thrombinhemmstoff ist und die Gerinnung wirksam beeinflusst, sondern überraschenderweise verbesserte pharmakokinetische Eigenschaften besitzt. Sie wird sondere nach rektaler Verabreichung an Ratten durch den Darm resorbiert und ist im Blut über einen längeren Zeitraum blutgerinnungshemmender und antithrombotisch Konzentration verfügbar. Dies trifft auch für Verbindungen mit anderen N-terminalen Schutzgruppen zu, die als ein N-substituiertes Piperazin tragen.

Neben wirksamen und biologisch verfügbaren Thrombin-Hemmstoffen wurden in der vorgestellten Stoffklasse unter Derivaten, die am Piperazid-Stickstoff beispielsweise einen Heteroaryl- oder einen Acyl-Rest (-CO-X) tragen, bei dem X einen geradkettigen oder verzweigten Alkyl- (${\rm C_3-C_{10}}$), einen Aralkyl- oder einen Cycloalkyl-Rest (${\rm C_3-C_{10}}$) darstellt, bei Abnahme der Thrombinaktivität sehr wirksame Trypsin-Inhibitoren gefunden, die ebenfalls nach rektaler Applikation in erheblichem Umfang resorbiert werden. Die Ausschaltung der Trypsinaktivität durch Inhibitoren bei hyperproteolytischen

WO 94/18185 PCT/CH94/00026

- 6 -

Zuständen im Pankreas ist durchaus von therapeutischem Interesse.

Die vorliegende Erfindung betrifft neue Proteinasenhemmende Phenylalanin-piperazide der allgemeinen Formel I,

die als Racemate sowie als L- bzw. D-konfigurierte Verbindungen vorliegen können und in denen \mathbb{R}^1 eine basische Gruppe der Formel

(a) $HN=C-NH_2$ oder (b) $-CH_2-NH_2$ Aminomethyl

darstellt,

R² einen (un)substituierten Aryl- oder Heteroarylrest wie beispielsweise Phenyl, 4-Methyl-phenyl, 2,4,6-Trimethyl-bzw. -Triisopropyl-phenyl, 4-Methoxy-2,3,6-trimethyl-phenyl, 2,2-Dimethyl-6-methoxy- bzw. 2,2,5,7,8-Pentamethyl-chromanyl, Anthrachinonyl, 1- bzw. 2-Naphthyl, Chinolyl- bzw. Isochinolyl oder einen Campherrest darstellt, und

 R^3 einen Acylrest der Formel -COX darstellt, wobei X = H, unverzweigt oder verzweigt, ggf. substituiert Alkyl, vorzugsweise niedrig Alkyl, insbesondere Methyl, (un)substituiert Aryl oder Cycloalkyl, vorzugsweise C_3-C_{10} , bedeutet,

einen Aralkylrest darstellt, in dem der aromatische Rest mit beispielsweise einem Halogenatom, einer Alkyl-, Alkoxy-, Hydroxy- oder Nitrogruppe substituiert sein kann,

einen Carbonsäureamidrest der Formel -CONR'R", Thio-carbonsäureamidrest -CSNR'R" oder einen Essigsäureamidrest -CH₂-CONR'R" darstellt, wobei R' = R" = H; R' = R" = Alkyl; R' = H, R'' = Alkyl; R' = H, R'' = Aryl sein kann oder R' und

R" mit dem Stickstoffatom einen cycloaliphatischen oder heterocycloaliphatischen Ring bilden kann,

einen SO₂-Y-Rest darstellt, in dem Y (un)substituiert Alkyl, vorzugsweise Methyl, Trifluor-methyl, (un)substituiert Aryl oder Heteroaryl methyl, wie z.B. 4-Methyl-phenyl, 2,4,6-Trimethyl- bzw. -Triisopropyl-phenyl, 4-Methoxy-2,3,6-trimethyl-phenyl, 2,2-Di-2,2,5,7,8-Pentamethyl-chromanyl, methyl-6-methoxybzw. Anthrachinonyl, Naphthyl oder Chinolyl bzw. O-Aryl, vorzugsweise Phenyl, oder -NR'R", wobei R' und R" = H gleich oder ungleich niedrig Alkyl C,-C, sein kann, bedeutet,

einen cycloaliphatischen Ring mit 5 bis 8 C-Atomen darstellt, der ggf. mit einer Hydroxyl- oder Oxogruppe substituiert sein kann,

einen (un)substituierten Heteroarylrest wie z.B. Pyridyl oder Pyrimidyl bzw. einen heterocycloaliphatischen Rest beispielsweise N-Methylpiperidyl darstellt,

einen funktionalisierten Alkylrest der Formel $-(CH_2)_n$ -X darstellt, wobei die Alkylkette unverzweigt oder verzweigt sein kann, n = 1 bis 8 bedeutet und der funktionelle Rest X

eine Hydroxylgruppe darstellt, deren H-Atom durch eine Alkyl-, Aralkyl-, Aryl-, Hydroxyalkyl- oder Acylgruppe substituiert sein kann,

ein Halogenatom bedeutet,

eine tertiäre Aminogruppe der Formel -N(Alk)₂ darstellt, wobei die Alkylgruppen 1 bis 3 C-Atome sowie die gleiche Bedeutung besitzen und das Stickstoffatom ausserdem einem cycloaliphatischen Ring mit 5 bis 7 Ringgliedern angehören kann, wobei ggf. ein oder zwei weitere Ringe anelliert sein können,

eine Acylaminomalonsäurediestergruppe der Formel $Achn-C(COOAlk)_2$, eine Achn-Ch-COOH-Gruppe, wobei Ac in der Regel Formyl oder Actyl und Alk = niedrig Alkyl bedeuten oder eine $H_2N-CH-COOH-Gruppe$ darstellt,

und deren Salze mit Mineralsäuren oder organischen Säuren.

Von den in den allgemeinen Ansprüchen definierten Phenylalanin-piperaziden sind Verbindungen, bei denen R^1 eine basische Gruppe der Formel (a) = Amidino darstellt, R^2 eine B-Naphthyl-, Anthrachinon-, 2,4,6-Triisopropylphenyl- sowie 2,2,5,7,8-Pentamethylchromangruppe bedeutet und R^3 einen Acylrest, insbesondere Formyl und Acetyl, einen funktionalisierten Alkylrest, beispielsweise 2-Hydroxyethyl, einen SO_2 -Y-Rest, einen Carbonsäureamidrest sowie Heteroarylreste wie 2-Pyridyl oder 2-Pyrimidyl darstellt, von besonderer Bedeutung.

Die Verbindungen der allgemeinen Formel I mit R^1 = Amidino (a) werden nach den nachfolgend beschriebenen, prinzipiell bekannten Methoden dargestellt.

(D,L)-3-Cyanphenylalanin-alkylester der allgemeinen Formel II werden in einem geeigneten Lösungsmittel mit einem Sulfochlorid der allgemeinen Formel III, in welcher R² die in der allgemeinen Formel I beschriebenen Bedeutungen besitzt, zu den racemischen Verbindungen der allgemeinen Formel IV umgesetzt, aus denen durch saure oder alkalische Hydrolyse die Racemate der sulfonylierten Cyanphenylalanine V erhalten werden.

Durch enzymatische Esterhydrolyse der Verbindungen IV mittels Chymotrypsin in einer Acetonitril/Wasser-Mischung sind die L-konfigurierten sulfonylierten Aminosäuren V erhältlich. Die bei diesem Verfahren anfallenden sulfony-lierten Aminocarbonsäure-alkylester mit D-Konfiguration IV werden durch saure Hydrolyse in einer Mischung aus 1 N HCl und Eisessig durch rückfliessendes Erhitzen in die D-konfigurierten sulfonylierten Aminocarbonsäuren V übergeführt.

Die Cyanverbindungen mit Piperazid-Struktur VI, die als Racemate bzw. in L- oder D-Form vorliegen können, sind nach üblichen Kopplungsverfahren aus den entsprechend konfigurierten Verbindungen V mit einem Piperazin-Derivat der allgemeinen Formel VII erhältlich.

Ausserdem können die Piperazide VI auf prinzipiell bekannte Weise gewonnen werden, indem racemisches, L- oder D-3-Cyanphenylalanin zunächst durch Einführung einer Boc-Gruppe an der Aminofunktion geschützt wird. Die erhaltene

Carbonsäure V, mit der Boc-Gruppe anstelle von ${\rm SO_2-R^2}$, wird durch Umsetzung mit einem Piperazin-Derivat VII in eine entsprechende Boc-geschützte Verbindung VI übergeführt, aus der nach saurer Abspaltung der Boc-Gruppe und Umsetzung mit einem Sulfochlorid der allgemeinen Formel III die Cyanverbindungen mit Piperazid-Struktur VI erhalten werden.

Durch Addition von H₂S an die Cyanfunktion können daraus die Thioamide VIII gewonnen werden, die durch Umsetzung mit einem Alkylhalogenid in die Thioimidsäureesterhalogenide IX übergeführt werden. Ausserdem können aus den Cyanverbindungen VI in bekannter Weise die Imidsäureesterhalogenide X erhalten werden.

Zur Darstellung der Zielverbindungen der allgemeinen Formel I mit R^1 = Amidino (a), die als Racemate bzw. in Loder D-Form erhalten werden können und bei denen R^2 und R^3 die in der allgemeinen Formel I genannten Bedeutungen besitzen und X = Halogen, vorzugsweise Chlor, darstellt, werden die Thioimidsäureestersalze IX in alkoholischer Lösung mit Ammoniumacetat oder die Imidsäureestersalze X in alkoholischer Ammoniaklösung zu I umgesetzt. Die dabei erhaltenen Amidinsalze können in geeigneter Weise in die freien Basen übergeführt werden.

Die Verbindungen der allgemeinen Formel I mit R¹ = Aminomethyl (b) werden durch katalytische Hydrierung, beispielsweise Raney-Nickel/Wasserstoff in geeigneten Lösungsmitteln in Gegenwart von Ammoniak, aus den Cyanverbindungen VI erhalten.

Die biologische Aktivität der erfindungsgemässen Verbindungen wurde sowohl <u>in vitro</u> als auch <u>in vivo</u> bestimmt. Zur Charakterisierung der Inhibitoraktivität <u>in vitro</u> wurden die Dissoziationskonstanten K_i für die Hemmung von Thrombin bzw. der verwandten Enzyme Trypsin, Plasmin, Faktor X_a , Faktor XII $_a$, Plasmakallikrein, glanduläres Kallikrein und tPA nach der Formel

$$K_{i} = \frac{[E] \cdot [I]}{[EI]}$$

bestimmt, in welcher [E] die Konzentration an freiem Enzym, [I] die Konzentration an freiem Inhibitor und [EI] die Konzentration an Enzym-Inhibitor-Komplex bezeichnen (Dixon, Biochem. J. 55, 170-173 [1953]). Je kleiner der K_i-Wert für ein geprüftes Enzym ist, desto grösser ist die Affinität des Inhibitors für das Enzym und desto kleiner ist die zur Hemmung des Enzyms, z.B. Thrombin, benötigte Menge Inhibitor.

In vitro wurden verschiedene Gerinnungstests benutzt, um die Wirksamkeit der Hemmstoffe gegenüber der durch Thrombin ausgelösten Gerinnung seines natürlichen Substrates Fibrinogen zu bestimmen. Dazu wurde in Human-Plasma die Thrombinzeit (TT), die aktivierte partielle Thromboplastinzeit (aPTT) und die Prothrombinzeit (PT, Quickwert) bestimmt.

Die Toxizität der erfindungsgemässen Verbindungen wurde durch Bestimmung der ${\rm LD}_{50}$ (= Dosis, die bei 50% der Versuchstiere während einer Beobachtungsdauer von einer Woche zum Tode führt) an der Maus nach intravenöser bzw. peroraler Verabreichung ermittelt.

Zur pharmakokinetischen Charakterisierung wurde die Plasmakonzentration ausgewählter Derivate nach intravenöser (i.v.), peroraler (p.o.), intraduodenaler (i.d.) und rektaler Applikation an Ratten nach folgendem dreistufigem Verfahren bestimmt:

- 1. Eine Lösung der zu prüfenden Substanz in physiologischer Kochsalzlösung wurde der Flüssigkeits-Hochdruckchromatographie (HPLC = high pressure liquid chromatography) unterworfen, um den für die Substanz charakteristischen Peak bei der unter den gewählten Versuchsbedingungen substanzspezifischen Retentionszeit zu ermitteln.
- 2. Die zu prüfende Substanz wurde in vitro in Rattenplasma gelöst. Diese Lösung wurde ebenfalls der HPLC unterworfen, um festzustellen, ob der für die Substanz charakteristische Peak bei der substanzspezifischen Retentionszeit erneut erscheinen würde.
- 3. Die zu prüfende Substanz wurde in physiologischer Kochsalzlösung gelöst und in einer Dosis von 1, 50 bzw. 100 mg pro kg Körpergewicht i.v., p.o., i.d. bzw. rektal an Ratten verabreicht. In Zeitintervallen von 15 Minuten wurden Blutproben entnommen, aus denen durch Zentrifugation Plasmaproben hergestellt wurden, welche ihrerseits der HPLC unterworfen wurden, um festzustellen, ob der für die Substanz charakteristische Peak bei der substanzspezifischen Retentionszeit wiederum in Erscheinung treten würde.

Zum Nachweis der pharmakologischen Wirksamkeit wurde die zu prüfende Substanz in physiologischer Kochsalzlösung gelöst und in einer Dosis von 5 bzw. 20 mg pro kg Körpergewicht rektal an Ratten verabreicht. In Zeitintervallen wurden Blutproben entnommen, aus denen durch Zentrifugation Plasmaproben hergestellt und im Gerinnungstest (Thrombinzeit TT und aktivierte partielle Thromboplastinzeit aPTT) geprüft wurden.

Die antithrombotische Aktivität der Verbindungen wurde am Modell der Stase-induzierten Thrombose bei der Ratte nach Wessler et al. (J. Appl. Physiol. 14, 943-946, 1959) bestimmt. Der Thrombus wurde 30 min nach Applikation des Hemmstoffs durch Serum induziert und nach weiteren 10 min makroskopisch bewertet.

Die erfindungsgemässen Verbindungen können als Diagnostika oder in geeigneter Applikationsform in Gestalt ihrer Salze oder der freien Basen als Arzneimittel zur Anwendung kommen.

Die Erfindung soll an vier Ausführungsbeispielen näher erläutet werden.

Beispiel 1

Nα-(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanin-4-acetyl-piperazid

 $N\alpha-(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalaninmethyl-ester (Formel IV; Alk = -CH₃, R² = <math>\beta$ -Naphthyl)

24.1 g (0.1 mol) 3-Cyan-(D,L)-phenylalaninmethylester-hydrochlorid wurden in 200 ml Dioxan suspendiert, unter Rühren 20.6 g (0.204 mol) N-Methylmorpholin zugefügt und eine Lösung von 23.6 g (0.104 mol) 2-Naphthylsulfonylchlorid 200 ml Ethylacetat zugetropft. Es wurde 16 Std. bei temperatur gerührt, ausgefallenes N-Methylmorpholin-hydrochlorid abfiltriert und das Lösungsmittel abdestilliert. Der Rückstand wurde in 50 ml Methanol gelöst, 50 ml Diethylether zugegeben und zur Kristallisation stehengelassen. gebildete Niederschlag wurde abgesaugt, mit Diethylether gewaschen und im Vakuum-Exsikkator (KOH/H₂SO₄) getrocknet. Ausbeute: 36 g (91.3%). Smp.: 122-123°C.

DC: $R_f = 0.65$ (Chloroform 40/Methanol 4/Eisessig 1//v/v/)

 $N\alpha-(2-Naphthylsulfonyl)-3-cyan-(L)-phenylalanin (Formel V; R² = \beta-Naphthyl)$

17.4 g (0.044 mol) N α -(2-Naphthylsulfonyl)-3-cyan-(D,L)-phenylalaninmethylester wurden in 260 ml Acetonitril gelöst, 130 ml Wasser, 100 mg Chymotrypsin sowie 0.785 g Kalium-chlorid zugefügt und der pH-Wert der Lösung mit 2 N NaOH auf 6.8-7 gestellt. Der Ansatz wurde 24 Std. bei Raumtemperatur gerührt, wobei nach 5 und 10 Std. noch jeweils 50 mg

Chymotrypsin zugegeben und der oben angegebene pH-Wert der Lösung durch kontrollierte Zugabe von insgesamt 11 ml 2 NaOH gehalten wurde. Anschliessend wurde filtriert, Acetonitril im Vakuum abdestilliert und die wässrige Lösung mehrfach mit Ethylacetat extrahiert. Nach Ansäuern wässrigen Phase mit 1 N HCl wurde diese wiederholt Ethylacetat ausgeschüttelt, die vereinigten Phasen mit gesättigter Natriumchloridlösung gewaschen, Magnesiumsulfat getrocknet und das Lösungsmittel abdestilliert, wobei gegen Ende der Destillation das Produkt auszukristallisieren begann. Die Destillation wurde unterbrochen, 30 ml Diethylether und 70 ml Hexan zugefügt, der mit wenig Diethylether gewaschen und schlag abgesaugt, getrocknet. Ausbeute: 7.2 g (85.8%). Smp.: 192-193°C. $[\alpha]_{D}^{20}$ $= + 11.9^{\circ} (C = 3, in Methanol)$

DC: $R_f = 0.25$ (Chloroform 40/Methanol 4/Eisessig 1//v/v/v)

 $N\alpha-(2-Naphthylsulfonyl)-3-cyan-(L)-phenylalanin-4-acetyl-piperazid (Formel VI; <math>R^2=\beta-Naphthyl$, $R^3=-COCH_3$)

1.59 g (13.2 mmol) 1-Acetylpiperazin wurden in 10 ml THF und 20 ml DMF gelöst, die Lösung mit 1.28 g (7.9 mmol) HOBt und 2.5 g (6.6 mmol) Na-(2-Naphthylsulfonyl)-3-cyan-(L)-phenyl-alanin versetzt und auf 0°C gekühlt. Nach Zugabe von 1.5 g (7.3 mmol) DCC wurde noch 2 Std. bei 0°C und anschliessend 22 Std. bei Raumtemperatur gerührt. Der ausgefallene Dicy-clohexylharnstoff wurde abfiltriert und das Lösungsmittel im Vakuum abdestilliert. Der Rückstand wurde in Chloroform gelöst und säulenchromatographisch über Kieselgel 60 mit Chloroform/Methanol 93:7 als Eluierungsmittel gereinigt. Man erhielt 2.9 g (90%) eines amorphen Produktes.

 $[\alpha]_{D}^{20} = + 46.3^{\circ} (C = 1, in Methanol)$

DC: $R_f = 0.36$ (Chloroform 40/Methanol 4/Eisessig 1//v/v/v)

 $N\alpha-(2-Naphthylsulfonyl)-3-thiocarboxamido-(L)-phenylalanin-4-acetylpiperazid (Formel VIII; <math>R^2=\beta-Naphthyl, R^3=-COCH_3$)

2.75 g (5.6 mmol) N α -(2-Naphthylsulfonyl)-3-cyan-(L)-phe-nylalanin-4-acetylpiperazid wurden in 25 ml Pyridin gelöst, die Lösung mit 20 Tropfen TEA versetzt und durch 10-min. Einleiten mit H_2S gesättigt. Der Ansatz wurde 2 Tage bei Raumtemperatur stehengelassen, anschliessend das Lösungsmittel abdestilliert, der Rückstand in Ethylacetat gelöst und mit 1 N HCl ausgeschüttelt. Die organische Phase wurde mit gesättigter Natriumchloridlösung gewaschen, über Magnesiumsulfat getrocknet und das Lösungsmittel abdestilliert. Es wurden 2.6 g (88%) gelbes, amorphes Produkt erhalten, das in dieser Form weiterverarbeitet wurde.

Na-(2-Naphthylsulfonyl)-3-S-methyliminothiocarbonyl-(L)-phenylalanin-4-acetylpiperazid-hydroiodid (Formel IX; Alk = $-CH_3$, X = I, R^2 = B-Naphthyl, R^3 = $-COCH_3$)

2.6 g (4.96 mmol) des vorstehend beschriebenen Thioamids wurden in 60 ml Aceton gelöst, die Lösung mit 6 g (42.3 mmol) Methyliodid versetzt und der Ansatz 20 Std. bei Raumtemperatur unter Lichtschutz stehengelassen. Danach wurde das Lösungsmittel abdestilliert, der ölige Rückstand mit Isopropanol/Diethylether durchgearbeitet, das dabei erhaltene Pulver abgesaugt, mit Diethylether gewaschen und getrocknet. Ausbeute: 3.1 g (94%).

 $N\alpha-(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanin-4-ace-tylpiperazid-hydrochlorid (Formel I; X = Cl, R² = B-Naphthyl, R³ = -COCH₃)$

3.0 g (4.5 mmol) Thioimidsäuremethylester-hydroiodid wurden in 100 ml Methanol gelöst, die Lösung mit 0.8 g (10.4 mmol) Ammoniumacetat versetzt und der Ansatz 3 Std. bei 60°C im Wasserbad erwärmt. Anschliessend wurde das Lösungsmittel abdestilliert, der Rückstand in heissem Isopropanol gelöst und das Amidinhydroiodid mit Ethylacetat ausgefällt, abgesaugt, mit Ethylacetat und Diethylether gewaschen und getrocknet. Zur Überführung in das Hydrochlorid wurde das

erhaltene Produkt in Methanol gelöst und die Lösung über einen stark basischen Ionenaustauscher (Amberlite IRA-410, Cl beladen) gegeben. Das Hydrochlorid wurde aus der eingengten methanolischen Lösung mit Ethylacetat/Diethylether 1:1 ausgefällt. Ausbeute: 1.8 g (73.5%). $\left[\alpha\right]_{D}^{20}$ = + 61.8° (C = 1, in Methanol)

DC: $R_f = 0.2$ (organische Phase von Ethylacetat 4/Eisessig 1/Wasser 2//v/v)

Die spezifische Drehung der entsprechenden (D)-konfigurierten Verbindung: $\left[\alpha\right]_{D}^{20} = -62.2^{\circ}$ (C = 1, in Methanol)

Beispiel 2

$N\alpha-(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanin-4-(2-hydroxyethyl)-piperazid$

Na-(2-Naphthylsulfonyl)-3-cyan-(L)-phenylalanin-4-(2-hydro-xyethyl)-piperazid-hydrochlorid (Formel VI; R^2 = B-Naphthyl, R^3 = -CH₂CH₂OH)

2.0 g $N\alpha-(2-Naphthylsulfonyl)-3-cyan-(L)-phenylalanin wurden$ in 10 ml Thionylchlorid eingetragen und der Ansatz 30 Min. unter Rückfluss erhitzt. Die erhaltene Lösung wurde nach dem Erkalten mit Hexan bis zur starken Trübung versetzt, nach 1 das auskristallisierte Säurechlorid abgesaugt, mit Hexan gewaschen und im Vakuum getrocknet. 1.7 g (4.26 mmol) dieses Produktes wurden in 25 ml THF gelöst und im Verlauf von 15 Min. unter Rühren in eine Lösung von 1.16 g (8.9 mmol) 1-(2-Hydroxyethyl)-piperazin in 15 ml THF getropft. Es wurde noch 1 Std. gerührt, anschliessend ausgefallenes 1-(2-Hydroxyethyl)-piperazin-hydrochlorid abfiltriert das Lösungsmittel abdestilliert. Der verbleibende Rückstand wurde in 15 ml Methanol gelöst, Wasser bis Trübung hinzugefügt und über Nacht stehengelassen, sich das Piperazid als Öl abgeschieden hatte. Nach Abgiessen des überstehenden Lösungsmittels wurde das Öl in 100 Ethylacetat aufgenommen, die Ethylacetatlösung mit

gesättigter Natriumchloridlösung gewaschen, getrocknet und das Lösungsmittel zur Hälfte abdestilliert. Die verbleibende Lösung wurde mit N Ethylacetat/HCl 2 angesäuert, 50 ml Diethylether zugefügt, der Niederschlag nach 1 Std. Stehen abgesaugt, mit Diethylether gewaschen und im Vakuum getrocknet. Ausbeute: 1.65 g (73%). $[\alpha]_{n}^{20} = -5.4^{\circ} (C = 1, in Methanol)$ DC: $R_f = 0.43$ (organische Phase von Ethylacetat 4/Eisessig

1/Wasser 2//v/v/v)

 $N\alpha-(2-Naphthylsulfonyl)-3-methoxyiminocarbonyl-(L)-phenyl$ alanin-4-(2-hydroxyethyl)-piperazid-dihydrochlorid (Formel X; Alk = $-CH_3$, X = Cl, $R^2 = B-Naphthyl$, $R^3 = -CH_2CH_2OH$)

1.4 g (2.65 mmol) der vorher beschriebenen Cyanverbindung wurden in einer Mischung aus 7.5 ml abs. Methanol und 10 abs. Dioxan gelöst, in die Lösung unter Eiskühlung 5.2 g (0.143 mol) getrocknetes HCl-Gas eingeleitet und der Ansatz 3 Tage im Kühlschrank aufbewahrt. Anschliessend wurde in 150 ml Diethylether gegossen, der gebildete Niederschlag nach Abgiessen des überstehenden Lösungsmittels mit 40 ml Ethanol durchgearbeitet, das Kristallpulver abgesaugt, Ethanol und Diethylether gewaschen und getrocknet. Ausbeute: 1.44 g (91%).

DC: $R_f = 0.15$ (organische Phase von Ethylacetat 4/Eisessig 1/Wasser 2//v/v/v)

DC: $R_f = 0.95$ (Chloroform 70/Methanol 42/Eisessig 0.5/ Wasser 10/(v/v/v)

 $N\alpha-(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanin-4-(2$ hydroxyethyl)-piperazid-dihydrochlorid (Formel I; X = Cl, R^2 = β -Naphthyl, R^3 = -CH₂CH₂OH)

1.3 g (2.18 mmol) des davor beschriebenen Imidsäuremethylester-dihydrochlorids wurden in 30 ml Methanol suspendiert und unter Rühren bis zu einem pH-Wert von 8.7 ethanolische Ammoniaklösung zugefügt, wobei eine klare Lösung erhalten wurde. Der Ansatz wurde 3 Std. bei 60°C im Wasserbad erwärmt, anschliessend das Lösungsmittel abdestilliert, der Rückstand in 15 ml abs. Ethanol gelöst und nach Zugabe von 20 Tropfen 2 N Ethylacetat/HCl das Amidin-dihydrochlorid mit Ethylacetat ausgefällt, abgesaugt, mit Ethylacetat und Diethylether gewaschen und getrocknet. Ausbeute: 1.02 g (80.3%). $[\alpha]_D^{20} = +14.2^\circ$ (C = 1, in Methanol)

DC: $R_f = 0.18$ (organische Phase von Ethylacetat 4/Eisessig 1/Wasser 2//v/v/v)

DC: $R_f = 0.6$ (Chloroform 70/Methanol 42/Eisessig 0.5/Wasser 10//v/v/v)

Die spezifische Drehung der entsprechenden (D)-konfigurierten Verbindung: $[\alpha]_D^{20} = -15.0^{\circ}$ (C = 1, in Methanol)

Zur Gewinnung der freien Base wurden 0.5826 g (1 mmol) Amidindihydrochlorid in 20 ml Methanol gelöst, die Lösung mit der äquimolaren Menge 0.1 N NaOH (20.00 ml) versetzt und das Lösungsmittel abdestilliert. Zur Entfernung noch vorhandener Wasserspuren wurde mehrfach mit Toluol/Isopropanol kodestilliert. Die auf diese Weise erhaltene Base enthält noch NaCl. Zur Beseitigung des anorganischen Bestandteiles wurde eine Mischung aus 15 ml abs. Ethanol und je 10 ml Chloroform und Diethylether zugefügt und gerührt, wobei sich die Base löste. Ungelöstes NaCl wurde abfiltriert und das Lösungsmittel abdestilliert. Der verbleibende Rückstand wurde beim Anreiben mit Diethylether fest.

Ausbeute: 0.48 g (94%)

Beispiel 3

Na-(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanin-4-methylsulfonylpiperazid

 $N\alpha-(2-Naphthylsulfonyl)-3-cyan-(L)-phenylalanin-4-methyl-sulfonylpiperazid (Formel VI, <math>R^2=B-Naphthyl$, $R^3=-SO_2CH_3$)

1.56 g (7.8 mmol) 1-Methylsulfonylpiperazin·HCl wurden in 15 ml DMF suspendiert, die Suspension unter Rühren mit 0.86 ml (7.8 mmol) NMM, 1.16 g (7.8 mmol) HOBt, 2.7 g Nα-(2-Naph-thylsulfonyl)-3-cyan-(L)-phenylalanin (7.1 mmol) sowie 70 ml THF versetzt und auf 0°C gekühlt. Nach Zugabe von 1.61 g DCC (7.8 mmol) wurde noch 20 Std. bei Raumtemperatur gerührt. Danach wurde der ausgefallene Dicyclohexylharnstoff abgesaugt und das Lösungsmittel im Vakuum abdestilliert. Der Rückstand wurde in Chloroform gelöst und säulenchromatographisch über Kieselgel 60 mit Chloroform als Eluierungsmittel gereinigt. Es wurden 3.34 g (89%) eines amorphen Produktes erhalten.

 $[\alpha]_D^{20}$ = + 47.3° (C = 1, in Methanol) DC: R_f = 0.36 (Chloroform 40/Methanol 4/ Eisessig 1//v/v/v)

Na-(2-Naphthylsulfonyl)-3-thiocarboxamido-(L)-phenylalanin-4-methylsulfonylpiperazid (Formel VIII; $R^2 = \beta$ -Naphthyl, $R^3 = SO_2CH_3$)

2.9 g (5.2 mmol) der vorstehend beschriebenen Cyanverbindung wurden in 35 ml Pyridin gelöst, 15 Tropfen TEA zugefügt die Lösung durch 10-min. Einleiten mit H_2 S gesättigt. Der Tage bei Raumtemperatur stehengelassen, Ansatz wurde 2 anschliessend das Lösungsmittel abdestilliert und der Rückstand in Ethylacetat gelöst, wobei das Thioamid mählich auskristallisierte. Der Niederschlag wurde saugt, mit Ethylacetat gewaschen und getrocknet. Ausbeute: 2.98 g (96%).

Na-(2-Naphthylsulfonyl)-3-S-methyliminothiocarbonyl-(L)-phenylalanin-4-methylsulfonylpiperazid (Formel IX; Alk = CH_3 , X = I, R^2 = B-Naphthyl, R^3 = $-SO_2CH_3$)

2.95 g (5.26 mmol) des beschriebenen Thioamids wurden unter Erwärmen in 4 ml DMF gelöst, die Lösung mit 50 ml Aceton und 7.1 g (50 mmol) Methyliodid versetzt und der Ansatz 20 Std. bei Raumtemperatur unter Lichtschutz aufbewahrt.

Anschliessend wurde in 400 ml Diethylether gegossen, der gebildete Niederschlag abgesaugt, mit Diethylether gewaschen und getrocknet.

Ausbeute: 3.25 g (88%).

Na-(2-Naphthylsulfonyl)-3-amidino-(L)-phenylalanin-4-methylsulfonylpiperazid-hydrochlorid (Formel I; X = Cl, R^2 = B-Naphthyl, R^3 = -SO₂CH₃)

3.23 g (4.6 mmol) Thioimidsäuremethylester-hydroiodid wurden in 110 ml Methanol gelöst, die Lösung mit 0.58 g (7.5 mmol) Ammoniumacetat versetzt und der Ansatz 3 Std. bei 60°C im Wasserbad erwärmt. Anschliessend wurde das Lösungsmittel abdestilliert, der Rückstand in Methanol gelöst und das Amidinhydroiodid mit Ethylacetat/Diethylether 9:1 ausgefällt, abgesaugt, mit Diethylether gewaschen und getrocknet. Zur Überführung in das Hydrochlorid wurde das erhaltene Produkt in Methanol gelöst und die Lösung über einen stark basischen Ionenaustauscher (Amberlite IRA-410, Cl-beladen) gegeben. Das Hydrochlorid wurde aus der eingeengten methanolischen Lösung mit Diethylether ausgefällt.

Ausbeute: 2.1 g (79%). $[\alpha]_D^{20} = +70.0^{\circ}$ (C = 1, in Methanol).

DC: $R_f = 0.32$ (organische Phase von Ethylacetat 4/Eisessig 1/Wasser 2//v/v)

Die spezifische Drehung der entsprechenden (D)-konfigurierten Verbindung: $[\alpha]_D^{20} = -70.5^{\circ}$ (C = 1, in Methanol)

Beispiel 4

Pmc-3-amidino-(L)-phenylalanin-4-methylsulfonylpiperazid

Boc-3-cyan-(L)-phenylalanin

6 g (26.5 mmol) 3-Cyan-(L)-phenylalanin-hydrochlorid und 9.1 ml (53.2 mmol) N-Ethyldiisopropylamin wurden in 17 ml Wasser suspendiert, die Suspension mit einer Lösung von 7.2 g (29.2

mmol) 2-(Boc-oxyimino)-2-phenylacetonitril in 20 ml Dioxan versetzt und 16 Std. bei Raumtemperatur gerührt. Nach anschliessender Zugabe von 50 ml Wasser wurde die Lösung mit 50 ml Ethylacetat ausgeschüttelt, die organische Phase abgetrennt und die wässrige Phase mit verdünnter Salzsäure auf pH 3 gebracht. Es wurde 3 mal mit je 100 ml Ethylacetat extrahiert, die vereinigten organischen Lösungen mit ges. Natriumchloridlösung gewaschen, über Magnesiumsulfat getrocknet und das Lösungsmittel abdestilliert.

Ausbeute: 6.2 g (81%)

Boc-3-cyan-(L)-phenylalanin-4-methylsulfonylpiperazid

4.92 g (24.5 mmol) 1-Methylsulfonylpiperazin-hydrochlorid und 2.7 ml (24.5 mmol) NMM wurden in 50 ml DMF gelöst, 4 (29.6-mmol) HOBt sowie eine Lösung von 5.93 g (20.4 mmol) Boc-3-cyan-(L)-phenylalanin in 200 ml THF zugefügt und Ansatz auf O°C abgekühlt. Nach Zugabe von 5.1 g (24.7 mmol) DCC wurde 48 Std. bei Raumtemperatur gerührt. Danach wurde der ausgefallene Dicyclohexylharnstoff abgesaugt, THF-Anteil der Lösung im Vakuum abdestilliert, filtriert und das Filtrat in eine Mischung aus 100 ml 5proz. bicarbonatlösung und 200 ml Eiswasser gegossen. Der fallene Niederschlag wurde abgesaugt, mit Wasser gewaschen, in Methanol gelöst und das Lösungsmittel abdestilliert. Entfernung des noch vorhandenen Wassers wurde mehrfach Toluol/Isopropanol kodestilliert. Das nur verunreinigte Produkt wurde in der Form weiterverarbeitet. Ausbeute: 7.9 g (89%)

3-Cyan-(L)-phenylalanin-4-methylsulfonylpiperazid-hydrochlorid

7.9 g des vorstehend beschriebenen Rohproduktes wurden in 70 ml Ethylacetat und 30 ml Diethylether gelöst, die Lösung mit 50 ml 2.5 N HCl in Ethylacetat versetzt und die Lösung 48 Std. bei Raumtemperatur gerührt, wobei das gewünschte

Hydrochlorid auskristallisierte. Anschliessend wurden noch 200 ml Diethylether zugefügt, 1 Std. gerührt, der Niederschlag abgesaugt, mit Diethylether gewaschen und getrocknet. Ausbeute: 4.95 g (73%).

Pmc-3-cyan-(L)-phenylalanin-4-methylsulfonylpiperazid (Formel VI; $R^2 = -Pmc$, $R^3 = -SO_2CH_3$)

4.76 g (12.8 mmol) 3-Cyan-(L)-phenylalanin-4-methylsulfonyl-piperazid-hydrochlorid und 1.29 g (12.8 mmol) NMM wurden in 25 ml DMF gelöst, 4.64 g (15.3 mmol) Pmc-Chlorid und 1.55 g (15.3 mmol) NMM zugefügt und 48 Std. bei Raumtemperatur gerührt. Anschliessend wurde ausgefallenes NMM-hydrochlorid abfiltriert und das Lösungsmittel im Vakuum abdestilliert. Der Rückstand wurde in Ethylacetat aufgenommen und die organische Phase mit 0.1 N HCl sowie ges. Natriumchloridlösung gewaschen. Nach Trocknen über Magnesiumsulfat wurde das Lösungsmittel abdestilliert. Das erhaltene Produkt wurde säulenchromatographisch über Kieselgel 60 mit Chloroform als Eluierungsmittel gereinigt.

Ausbeute: 6.45 g (84%). $[\alpha]_{D}^{20} = +10.4^{\circ} (C = 1, in Methanol)$

DC: $R_f = 0.66$ (Chloroform 40/ Methanol 4/Eisessig 1//v/v/v)

Pmc-3-thiocarboxamido-(L)-phenylalanin-4-methylsulfonyl-piperazid (Formel VII; $R^2 = -Pmc$, $R^3 = -SO_2CH_3$)

6.34 g (10.5 mmol) der vorstehende beschriebenen Cyanverbindung wurden in 40 ml Pyridin gelöst, 20 Tr. TEA zugefügt und die Lösung durch 10-min. Einleiten mit H₂S gesättigt. Der Ansatz wurde 2 Tage bei Raumtemperatur stehengelassen, anschliessend das Lösungsmittel abdestilliert, der feste Rückstand in 100 ml Ethylacetat suspendiert, kurz aufgekocht, abgesaugt, mit Ethylacetat gewaschen und getrocknet. Ausbeute: 5.86 g (88%).

Pmc-3-S-methyliminothiocarbonyl-(L)-phenylalanin-4-methyl-

sulfonylpiperazid (Formel IX; Alk = $-CH_3$, X = I, $R^2 = -Pmc$, $R^3 = -SO_2CH_3$)

5.86 g (7.52 mmol) des vorher beschriebenen Thioamids wurden unter Erwärmen in 11 ml DMF gelöst, 250 ml Aceton und 13 g (92 mmol) Methyliodid zugefügt und der Ansatz über Nacht bei Raumtemperatur unter Lichtschutz aufbewahrt. Anschliessend wurde in 1 l Diethylether gegossen, 1 Std. gerührt, der gebildete Niederschlag abgesaugt, mit Diethylether gewaschen und getrocknet.

Ausbeute: 6.23 g (87%).

Pmc-3-amidino-(L)-phenylalanin-4-methylsulfonylpiperazid-hydrochlorid (Formel I; X = Cl, $R^2 = -Pmc$, $R^3 = -SO_2CH_3$)

6.23 g (8 mmol) Thioimidsäureesterhydroiodid wurden in 350 ml abs. Methanol gelöst, zunächst 1 g (13 mmol) acetat zugefügt und der Ansatz bei 60°C im Wasserbad unter Rühren erwärmt, wobei sich zunächst ein Niederschlag abschied, der sich erst nach 4 Std. wieder vollständig gelöst hatte. Der Reaktionsverlauf wurde dünnschichtchromatographisch verfolgt und nach 2, 4 bzw. 6 Std. noch insgesamt 1 g (13 mmol) Ammoniumacetat in Portionen von 0.2, 0.5 und 0.3 q zugefügt. Nach 8 Std. war dünnschichtchromatographisch keine Ausgangsverbindung mehr nachzuweisen. Das Lösungsmittel wurde jetzt abdestilliert, der Rückstand in Ethanol gelöst und das Amidinhydroiodid mit Ethylacetat/Diethylether ausgefällt. Zur Überführung in das Hydrochlorid wurde erhaltene Produkt in Methanol gelöst und die Lösung über einen stark basischen Ionenaustauscher (Amberlite IRA-410, Cl beladen) gegeben. Das Hydrochlorid wurde aus der eingeengten methanolischen Lösung mit Diethylether ausgefällt. Ausbeute: 3.34 g (64%). $[\alpha]_D^{20} = +47.7^{\circ}$ (C = 1, in Metha-

DC: $R_f = 0.5$ (organische Phase von Ethylacetat 4/Eisessig 1/Wasser 2/(v/v))

PCT/CH94/00026

- 25 -

Die spezifische Drehung der entsprechenden (D)-konfigurierten Verbindung: $\left[\alpha\right]_{D}^{20}=-48.3^{\circ}$ (C = 1, in Methanol). Alle Amidinhydrochloride wurde säulenchromatographisch über Sephadex LH-20 mit Methanol als Eluierungsmittel gereinigt.

<u>Abkürzungen</u>

Ac Acetyl

ACONHIPT -CH₂CONHCH(CH₃)₂ BOC t-Butyloxycarbonyl

Bzl Benzyl

cBu Cyclobutyl
cHex Cyclohexyl
cPr Cyclopropyl

DCC Dicyclohexylcarbodiimid

DMF Dimethylformamid

Et Ethyl

EtOH Hydroxyethyl

EtOEtOH Hydroxyethyl-ethoxy

For Formyl

HOBt Hydroxybenzotriazol

Me Methyl

NMM N-Methylmorpholin

Ph Phenyl

TEA Triethylamin
THF Tetrahydrofuran

LEGENDE ZU DEN TABELLEN 1 - 2

 R_1

 R_2

AMD = Amidino

Mtr = 2,3,6-Methyl-4-methoxy-phenyl

AMe = Aminomethyl

TIPP = 2,4,6-Triisopropyl-phenyl

TMeP = 2,4,6-Trimethyl-phenyl

Tol = 4-Methyl-phenyl

2-Naph = B-Naphthyl

 $1-Naph = \alpha-Naphthyl$

Pmc = 2,2,5,7,8-Pentamethylchroman

H³C O CH³

Cm = Campher-10

AC = Anthrachinon

R₃

Im folgenden sind die biologischen Eigenschaften von repräsentativen erfindungsgemässen Verbindungen aufgeführt:

In Tabelle 1 ist die Hemmung des Gerinnungsenzyms Thrombin im Vergleich zu Trypsin anhand der Dissoziationskonstante K; (ausgedrückt in µmol/l) durch die genannten Verbindungen angegeben. Alle untersuchten Verbindungen hemmen die durch beide Enzyme bewirkte Substratspaltung kompetitiv. Unter den in Tabelle 1 aufgeführten Derivaten 3-Amidinophenylalanins finden sich eine Reihe Verbindungen mit hoher Antithrombinaktivität, d.h. K;-Werten zwischen 0.1 und 0.001 μmol/l. Die Thrombinhemmung ist bei der Mehrzahl der Verbindungen stärker als die Hemmung von Trypsin. Die K,-Werte für die Hemmung von Trypsin liegen bis zu einer Grössenordnung höher als die für Thrombinhemmung. Eine Reihe von Verbindungen hemmt allerdings Thrombin und Trypsin mit vergleichbarer Affinität, einige Derivate, insbesondere solche mit bestimmten Acyl- oder Heteroaryl-Resten am Piperazin-Stickstoff sind wirksame Trypsinhemmstoffe.

Darüberhinaus wird in Tabelle 1 auch die Hemmwirkung gegenüber Plasmin, Faktor X_a, Faktor XII_a, Plasmakallikrein, glandulärem Kallikrein und tPA dargestellt. Gewöhnlich werden Plasmin, Faktor X_a und Plasmakallikrein sehr viel schwächer gehemmt, die K_i-Werte sind 1-2 Grössenordnungen höher. Praktisch unwirksam sind die Derivate gegenüber Faktor XII_a, tPA und glandulärem Kallikrein. Für eine Reihe von Verbindungen kann man daher von selektiven Thrombinhemmstoffen sprechen, andere Derivate bevorzugen Trypsin.

Die Toxizität bei einer Reihe von erfindungsgemässen Verbindungen liegt in der gleichen Grössenordnung wie bei früher geprüften Derivaten von Benzamidin-enthaltenden Aminosäuren (LD_{50} 10 - 50 mg/kg nach i.v.-Applikation).

Bei einigen Derivaten wurden die optischen Antipoden dargestellt und auf ihre Hemmwirkung geprüft. Entsprechend den Befunden von Turk, D. et al. (FEBS Letters 287, 133 - 138, 1991) erwiesen sich die L-Enantiomere als die wirksame Form, im Vergleich zu den Isomerengemischen ist ihre

Hemmwirkung um den Faktor 2 erhöht. Die Hemmwirkung der D-Formen liegt um 2 Grössenordnungen niedriger.

Die 2-Naphthylsulfonyl-Schutzgruppe kann durch einen $AC-SO_2-$, $Pmc-SO_2 Mtr-SO_2-$, $Cm-SO_2-$ oder $TIPP-SO_2-Rest$ ersetzt werden. Es werden ebenfalls sehr wirksame Inhibitoren gefunden.

Die in Tabelle 1 nicht mit (L) oder (D) gekennzeichneten Verbindungen sind Racemate und NAPS-F(3AMD)-Pzd(N-COOEt) bedeutet N- α -(2-Naphthylsulfonyl)-(D,L)-3-amidinophenylalanin-4-ethoxycarbonylpiperazid.

Hemmung verschiedener Trypsin-ähnlicher Serinproteinasen durch substituierte Piperazide von

							K	, pmol/1	1			
۳ ₁	R ²	R ³	Nr	Thrombin	Trypsin	Plasmin	Faktor Xa	Faktor XIIa	Plasma Kallikr.	Gland	d. ikr.	tPA
NAPS-F(N A P A	N A P A P NAPS-F(3AMD)-Pzd(N-COOEt)	×	0.006	0.69	30 2.5	7.9	450 210	14 30	, 1000	mo	70
AMD	2-Naph	For		സ	. 2		19	83	16	1 4	^	1001
AMD(L)	2-Naph	For		0.011	0.073	3.3	9.7	42	3.6	, 100(120
AMD	2-Naph	Ac	_	.02	. 14	•	48	210	28	\circ	^	1000
AMD(L)	2-Naph	Ac	7	12	0.	•	35	2	15	\sim	0	
AMD	2-Naph	50_{2} Me		00.	9.		22	98	77	\sim	^	1000
AMD(L)	2-Naph	SO ₂ Me	വ	.002	0.	9.0	19	52	9.5	\sim	0	190
AMD	2-Naph	SOZEt		. 04	Έ.	ж •	24		58	\sim	0	820
AMD	2-Naph	50°_{2} -Ph		.04	۳.		24	120	36	\sim	^	1000
AMD	2-Naph	50^{2}_{2} -rol		.02	. 2		24 >	0	30	\sim		1000
AMD	2-Naph	50°_{2} -2-Naph	ے	.02	4.		25	06	22	$\overline{}$		1000
AMD	2-Naph	SO2-TMeP				31	13	069			^	1000
AMD	2-Naph	SO2-Mtr		.05			25	7.6	6.9			1000
AMD	2-Naph	CO=N(Me)		0	.17	•	24	200	47			1000
AMD(L)	2-Naph	$CO-N(Me)^2$	9	00.	0	4.9	15	51	7.3			1000
AMD	2-Naph	$CS-N(Me)^{2}$		-	.04	•	22	\sim	28	$\overline{}$	^	1000
AMD	2-Naph	EtoH .		.05		42	35 >	1000	74		^	1000
AMD(L)	2-Naph	ЕСОН	ന	\sim			22	~	25	\sim	_	190
AMD	1-Naph	50° Me	_	\sim	۳.	5.0	9.7 >	0	79	$\overline{}$	^	0001
AMD	1-Naph	$CO^{2}N(Me)_{2}$			7	•	•	72	37	$\overline{}$	_	270

Fortsetzung Tabelle 1 Hemmung verschiedener Trypsin-ähnlicher Serinproteinasen durch substituierte Piperazide von Na-geschützten 3-substituierten Phenylalaninen

							-	K, 1	μmo1/1					
_ل م	R ²	ж ₃	Nr	Thrombin	Trypsin	Plasmin	Faktor Xa	Fal	ktor IIa	Plasma Kallikr.	G1 Ka	and. 11ikr		tPA
AMD	Pmc	Ac		.07	9.					44		9		670
AMD	Pmc	SOMe		.007	.7	0				140	^ _	00	\ _	000
AMD(L)	Pmc	SO ² Me	10	0.0053	0.32	10.3	37	10	00	110	^	000		009
AMD	Pmc	Me)		.03	5					93	^	00	•	000
AMD	Pmc	EtoH 2		.05	•			10		ω	^	00	<u>`</u>	000
AMD	Mtr	SO,Me		.03	•					150	^	00	•	000
_	Mtr	SO, Me	δ	.02	ω.	8.2				7	^	00		009
AMD(L)	(-)Cm	SO ² Me	7	.01	.2	14	•			25	^	00		20
_	(+) Cm	SO ² Me	ω	.03	4.		•			130	^	00		82
AMD	TIPP	Ac ²		60	•	•				7.3		0		17
AMD	AC	Ac	4	.01	.02	8.6	•		~	7.	^	00	~	000
AMD	AC	For		.03	.03	13	•				^	00		84
AMD	2-Naph	2-Pyl		.5	0.	•		•	84	19	^	00	<u>_</u>	000
AMD	2-Naph	2-Pym		1.8	90.	•		,			^	00		320
AMD	2-Naph	COCH (Me)		0.26	.06		84				^	00		440
AMD	2-Naph	COCH,OMe		•	90.	•					<u>^</u>	00	` _	0
AMD	2-Naph	co(cff.),CH		6.5	90.	•					^	00	<u>`</u>	0
AMD	2-Naph	CO-CPÉ 4	า	0.14	.04	•					^	00		170
AMD	2-Naph	CO-cBu		2.5	.02	•		× 10			<u>^</u>	00	<u>ر</u>	0
AMD	2-Naph	CO-cHex	ſ	36	.07	•					\ 	00	<u>`</u>	0
AMD	2-Naph	$co-cH_2-\sqrt{c}$	<u></u>	2.5	.08	•					^	00		170
Ame	2-Naph	2-Py1		24	0.53	56	130	> 10	00	94	^	000	,	000
													ŀ	

Tabelle 2 stellt eine Übersicht aller synthetisierten und in vitro geprüften Verbindungen, die nicht in Tabelle 1 enthalten sind, dar.

<u>Tabelle 2</u>

Zusammenstellung der synthetisierten Verbindungen der allgemeinen Formel I,
die nicht in Tabelle 1 aufgeführt sind

	T																									
R ³	SO ₂ Et	502CF	$202^{\rm N}$ (Me) 2	SOTol	TIPP	SO2-2-Naph	2-fym	Ac	Ac	$SO_{\lambda}Me$	Ac ²	EtoH	$SO_{2}Me$	2-fy1	Ac	For	Ac	H	COEt	CON(Me),	SO ₂ Me 2	;	CH_2CO-N	7		
R ²	2-Naph	2 Naph	2-Naph 2-Naph	2-Naph	2-Naph	2-Naph	2-Naph	Tol	Mtr	Mtr	Pmc	Pmc	Pmc	Pmc	AC	2-Naph	2-Naph	2-Naph	2-Naph	2-Naph	2-Maph		2-Naph			
R	AMe	AMO	AMA	AMP AMP	AMe	AMe	AMe	AMe	AMe	Аше	AMe	AMe	AMe	AMe	AMe	AMe	AMe	AMe	AMe	AMe	AMe		AMe			
R ³	SO ₂ CF ₃	502N(Me)2	TTED TTED	SOLPMC	SO2-(-)Cm	Bzf	Ac	ЕСОН	CON(Me),	SO, Me 2	SO2-2-Naph	Ac ²	ЕСОН	CON(Me),	SO,-2-Naph	Ac ²	EtoH	SO, Me	S02-2-Naph	2-fyl	Ac	(CO-N-O	CH, CH	7	
R ²	2-Naph	Z-Naph	2-Naph	2-Naph	2-Naph	2-Naph	Tol	TIPP	TIPP	TIPP	TIPP	Mtr	Mtr	Mtr	Mtr	1-Naph	1-Naph	Pmc	Pmc	Pmc	Cm		2-Naph	2-Naph		
R ₁	AMD	AMD	AMD GM	AMD	AMD	AMD	AMD	AMD	AMD	AMD	AMD	AMD	AMD	AMD	AMD	AMD	AMD	AMD(D)	AMD	AMD	AMD		AMD	AMD		
R3	Ac	ETOH ETOH	FOR	AC A	ACONHIPE	SO,CH(Me),	EtGEtOH 4	H	CH,CO-N	7	COEt	COCH,CH(Ph),	coc(Me), 2	CO-Ph	CO-Ph-OMe(p)	CO-(2)-Naph	CO-CH,-NH,	CO-CH2NHCCCOMe	CO-CH2NHBOC	cocoowe	сн,сооме	3		$CO-N(Me)_2$ $CO-N(Et)_2$		SO ₂ Me
R ²	2-Naph	Z-Naph	z-Napn		2-Naph	2-Naph	2-Naph	2-Naph	2-Naph		2-Naph	2-Naph	2-Naph	2-Naph	2-Naph	2-Naph	2-Naph	2-Naph	2-Naph	2-Naph	2-Naph			2-Naph	: : :	2-Naph
R	AMD(D)	AMD(D)	AMD(D)	AMD	AMD AMD	AMD	AMD	AMD	AMD		AMD	AMD	AMD	AMD	AMD	AMD	AMD	AMD	AMD	AMD	AMD			AMD(D)	}	AMD(D)

In Tabelle 3 - 5 sind die Ergebnisse von Untersuchungen zur Pharmakokinetik von repräsentativen, erfindungsgemässen Verbindungen und als Vergleich dazu die Werte mit NAPAP zusammengestellt, Tabelle 6 enthält die Ergebnisse ausgewählter Verbindungen nach intraduodenaler Applikation. Die zu prüfenden Verbindungen wurden intravenös (Tabelle 3), peroral (Tabelle 4), rektal (Tabelle 5) bzw. intraduodenal (Tabelle 6) an Ratten verabreicht. Nach der Verabreichung wurde den Versuchstieren in Zeitabständen von 2 bis maximal 360 Minuten Blutproben entnommen, in welchen der Blutspiegel der zu prüfenden Verbindungen mittels HPLC bestimmt wurde.

Tabelle 3

Konzentration (ng/ml) ausgewählter Verbindungen im Plasma
von Ratten nach intravenöser Verabreichung von 1 mg/kg

7-4-			,	Verbindu	ng		
Zeit (min)	NAPAP	Nr. X	Nr. 1	Nr. 2	Nr. 3	Nr. 5	Nr. 6
5	1150	812	1058	780	2210	879	823
15	428	169	394	224	145	367	289
30	376	40	150	95	313	151	194
60	192	8	89	38	112	50	141
120	84	0	74	12	0	0	86
180	106	0	51	10	0	0	70

- 34 -

 $\frac{\text{Tabelle 4}}{\text{Konzentration (ng/ml) ausgewählter Verbindungen im Plasma}}$ von Ratten nach oraler Verabreichung von 50 mg/kg

		Verl	pindung	
Zeit (min)	NAPAP	Nr. X	Nr. 1	Nr. 2
30	0	. 33	87	1197
60	0	10	63	873
120	0	0	57	333
180	0	0	69	124
240	0	0	91	44
300	0	0	61	. 46

 $\frac{\text{Tabelle 5}}{\text{Konzentration (ng/ml) ausgewählter Verbindungen im Plasma}}$ von Ratten nach rektaler Verabreichung

Zeit					Verbind	ung		
(min)	Dosis mg/kg	NAPAP	Nr.X 100	Nr.1 100	Nr.2 100	Nr.3 20	Nr.5* 20	Nr.6 20
30		18	3255	31406	32448	7260	1650	1179
60		0	2371	17862	23132	3800	958	449
120		0	1804	3776	5302	1740	299	850
180		0	898	1075	2696	814	192	272
240		0	626	438	1263	215		46
300		0	592	220	810	61		
360		0	448	158	508	34		

^{* =} freie Base der Verbindung

- 35 -

Tabelle 6

Konzentration (ng/ml) ausgewählter Verbindungen im Plasma
von Ratten nach intraduodenaler Verabreichung von 100 mg/kg

Zeit (min)			Ve	rbindun	g	•
	Nr.2	Nr.3	Nr.3*	Nr.5	Nr.5*	Nr.6
30	21691	3824	2262	8744	1576	20460
60	15152	2172	795	9314	1900	6495
120	4275	1457	361	8612	1763	3284
180	2598	945	228		297	2064
240	2185	1277	144		530	1500
300	2195	1400	276		137	1203
360	2847				119	1437

^{* =} freie Base der Verbindung

Die geprüften Derivate zeigen nicht nur im Vergleich zu NAPAP ein verbessertes pharmakokinetisches Verhalten, sondern auch zu dem früher beschriebenen Piperazid X. werden die erfindungsgemässen Verbindungen 1, 2, 3, 5 und 6 nach intravenöser Gabe mit vergleichbarer Geschwindigkeit eliminiert und nach oraler Applikation nur in geringerem Masse resorbiert, nach rektaler Verabreichung werden z.T. sehr hohe, 1 bis 2 Stunden andauernde Blutspiegel gefunden. Nach rektaler Gabe kann NAPAP nicht im Plasma nachgewiesen werden, während einige der beispielhaft geprüften erfindungsmässigen Verbindungen ausserordentlich hohe Konzentrationen erreichen. Verbindung 1, 2 und 3 sind bis zu 6 Stunden im Plasma nachzuweisen. Die nach rektaler Applikation erreichten Plasmaspiegel liegen deutlich denen des früher beschriebenen Piperazids X. Auch die intraduodenaler Applikation gemessenen Plasmakonzentrationen, z.T. über mehrere Stunden, sind beträchtlich.

<u>In vitro</u> sind eine Reihe von repräsentativen erfindungsgemässen Verbindungen gerinnungshemmend

ausserordentlich wirksam. In allen Fällen wurde die Thrombinzeit (TT) am effektivsten verlängert. Dies entspricht der Selektivität dieser Inhibitoren, die unter den Gerinnungsfaktoren Thrombin am stärksten hemmen. Beispielhaft ist das für die Verbindungen 1 bis 11 in Tabelle 7 gezeigt. Eine Verlängerung der aktivierten partiellen Thromboplastinzeit (aPTT), bei der neben Thrombin auch die an der Frühphase der Gerinnung beteiligten Enzyme zum Tragen kommen, wird durch höhere Konzentrationen der Inhibitoren erreicht. Das gilt auch für die Beeinflussung der Prothrombinzeit (PT), die den extrinsischen Gerinnungsweg repräsentiert. In Tab. 7 die Konzentrationen aufgeführt, die zur Verdopplung der Gerinnungszeiten notwendig sind. Für die wirksamen Thrombinhemmstoffe 1, 2, 4, 5, 6 und 7 liegt der Wert unter mol/l für die Verlängerung der TT, bei 1 µmol/l für die Verlängerung von aPTT und PT. Die vergleichsweise geprüften wirksamen Hemmstoffe NAPAP und Verbindung Х sind entsprechend ihrem K,-Wert effektiv.

Im Plasma sind die Hemmstoffe vom Piperazin-Typ (absolut) stabil. Bei Inkubation im Human-Plasma bei 37°C trat über 5 h keine Veränderung der Hemmwirkung auf.,

WO 94/18185 PCT/CH94/00026

- 37
<u>Tabelle 7</u>

Gerinnungshemmung im menschlichen Plasma
durch ausgewählte Verbindungen

	Thrombin- Hemmung	Konzentr. [µmc	Konzentr. [µmol/1] zur Verdopplung von				
Nr.	K _i , μmol/l	Thrombinzeit	аРТТ	Prothrombinzeit			
NAPAP	0.006	0.048	0.50	1.0			
x	0.67	4.1	20	45			
1	0.023	0.095	0.90	2.5			
2	0.012	0.055	0.36	0.90			
3	0.036	0.14	0.65	1.3			
4	0.014	0.085	1.2	2.0			
5	0.0021	0.034	0.26	0.39			
6	0.004	0.042	0.3	0.65			
7	0.012	0.075	0.55	1.0			
8	0.031	0.13	1.2	2.0			
9	0.020	0.12	0.57	1.1			
10	0.0053	0.10	0.44	0.8			
11	0.026	0.22	1.8	3.1			

Die antikoagulierende Wirkung der Verbindungen lässt sich auch <u>in vivo</u> nachweisen. Nach rektaler Verabreichung der zu prüfenden Verbindungen wurde im Plasma der Versuchstiere der gerinnungshemmende Effekt bestimmt. Beispielhaft ist das für die Verbindungen 2, 3, 5 und 6 in Tabelle 8 gezeigt. Ganz entsprechend dem mittels HPLC bestimmten Konzentrationsverlauf im Plasma ist die Antithrombinwirkung im Gerinnungstest nachzuweisen.

PCT/CH94/00026

- 38
<u>Tabelle 8</u>

Gerinnungshemmung im Plasma der Ratte nach rektaler

Applikation der Verbindungen 2, 3, 5 und 6

Zeit	Konzentration im Plasma	Gerinnungszeit	(sec)
(min)	(ng/ml)	Thrombinzeit	aPTT
	Verbindung 2	20 mg/kg	
0	0	64	28
30	5440	> 300	120
60	2090	> 300	87
120	812	> 300	59
180	660	> 300	50
-	Verbindung 2	5 mg/kg	
0	0	32	22.5
30	296	> 300	37
60	160	224	33
120	60	176	30
180	40	107	26.4
	Verbindung 3	5 mg/kg	
0	0	45	23.5
30	897	> 300	39.8
60	462	298	32.8
120	355	165	27.4
180	49	114	26.0

PCT/CH94/00026

- 39 - Tabelle 8 (Fortsetzung)

Zeit	Konzentration im Plasma	Gerinnungszeit (sec)
(min)	(ng/ml)	Thrombinzeit	aPTT
	Verbindung 5	20 mg/kg	
0	0	153	22
30	1572	> 300	65
60	983	> 300	62.5
120 -	380	> 300	36
180	195	> 300	29.7
	Verbindung 5	5 mg/kg	
0 .	0	51.5	21.2
30	168	> 300	34.5
60	65	255	30.5
120	82	137.5	27.5
180	10	95	25.3
	Verbindung 6	5 mg/kg	
0	0	55.3	22.3
30	648	> 300	34.5
60	362	> 300	31.5
120	157	> 300	28.4
180	83	213	26

Die erfindungsgemässen Verbindungen werden nach rektaler Applikation in einer Grössenordnung resorbiert, die zu antithrombotisch wirksamen Plasmaspiegeln führt. Das wurde am Modell der Stase-induzierten venösen Thrombose bei der Ratte nach Wessler et al. gezeigt. Dazu wurden die in den Jugularvenensegmenten durch Serum ausgelösten Thromben

anhand eines Scores (0 = flüssiges Blut, 1 = ein oder mehrere kleine Thromben, 2 = Gefässsegment nicht vollständig verschlossen, 3 = Gefässsegment vollständig verschlossen) makroskopisch bewertet. Die antithrombotische Wirkung ist deutlich dosis-abhängig. Bei einer Dosis von 100 bzw. 20 mg/kg wird die Thrombusbildung vollständig unterdrückt, und noch bei der niedrigen Dosierung von 5 mg/kg wird ein Gefässverschluss weitgehend verhindert resp. die Thrombusbildung weitgehend zurückgedrängt.

Tabelle 9

Dosisabhängige antithrombotische Wirksamkeit nach rektaler Applikation von Verbindung 2 am Modell der Stase-induzierten venösen Thrombose bei der Ratte

Dosis		Plasma-Spie	egel (ng/ml) Thro	mbus-	Score		elative: hrombus-
(mg/kg)	n	30 min	60 min	0	1	2	3	Score
0	5	0	0	0	0	1	9	1
100	3	28698	16118	6	0	0	0	0
20	4	1617	998	6	1	0	0	0.05
5	5	228	160	0	8	2	0	0.41

n = Anzahl der Versuchstiere mit in der Regel je 2 ausgewerteten Venensegmenten.

Der relative Thrombus-Score ist der Quotient aus der mittleren Thrombus-Grösse der behandelten Gruppe (z.B. beträgt der mittlere Score bei 5 mg/kg 1,2) und der mittleren Thrombus-Grösse der Kontrollgruppe (2,9).

Unter Verwendung geeigneter Hilfs- bzw. Trägerstoffe können die nach den erfindungsgemässen Verfahren hergestellten Piperazide als solche oder als Salze physiologisch verträglicher anorganischer oder organischer Säuren in geeignete Applikationsformen übergeführt werden, wobei entsprechend dem pharmakologischen Verhalten Tabletten, Dragees, Suppositorien und Lösungen von besonderer Bedeutung sind.

Die Dosierung richtet sich vor allem nach der Antithrombinaktivität, den erreichbaren Blutspiegelwerten bei
entsprechender Applikationsform, der Bioverfügbarkeit sowie
der Allgemeinkonstitution des Patienten, wobei mit Dosierungen zwischen 0.5 und 50 mg/kg eine ausreichende antithrombotische Aktivität erreicht werden kann.

Anhand von $N\alpha-(2-Naphthylsulfonyl)-(L)-3-amidinophenyl-alanin-4-acetylpiperazid-hydrochlorid (Verbindung 2) soll die Überführung in 3 pharmazeutische Applikationsformen beispielhaft gezeigt werden.$

Beispiel 1

Tabletten mit 20 mg der Verbindung 2 als Wirkstoff, überzogen mit einem magensaftresistenten Schutzlack.

Zusammensetzung:

Tablettenkern: 20 mg Wirkstoff, 96 mg Lactose, 3 mg Talcum und 1 mg Magnesiumstearat.

Lack: 23.92 mg Eudragit S 12.5P (Röhm Pharma, Darmstadt), 0.266 mg Dibutylphthalat, 0.744 mg Talcum, 23.92 mg Aceton/Ethanol 1+1.

<u>Herstellungsverfahren:</u>

Der mit den Hilfsstoffen vermischte Wirkstoff wird durch ein Sieb der Maschenweite 0.5 mm gedrückt und in trockener Form zu ovalen Tablettenkernen gepresst. Anschliessend wird in einem Wirbelschichtgranulator der Schutzlack aufgesprüht und die lackierten Kerne danach getrocknet.

Beispiel 2

Suppositorien (Zäpfchen) mit 10 mg der Verbindung 2 als Wirkstoff.

Zusammensetzung:

1 Zäpfchen enthält 10 mg Wirkstoff und 1 g Witepsol W45 $\,$ als Grundlage.

Herstellungsvorschrift für 10 Zäpfchen:

100 mg des feinst gepulverten Wirkstoffs werden mit 1 g der verflüssigten Grundlage verrieben. Die Verreibung wird mit dem Rest der verflüssigten Grundlage anteilweise gemischt und bis zur gleichmässigen Beschaffenheit bearbeitet. Nahe der Grenze der Giessbarkeit wird die Mischung in eine geeignete Form gegossen und bis zum Erkalten stehengelassen.

Beispiel 3

Injektions- bzw. Infusionslösung mit 2.5 mg/ml der Verbindung 2 als Wirkstoff.

<u>Herstellungsverfahren:</u>

0.25 g Wirkstoff werden in 100 ml Aqua ad injectionem gelöst, die Lösung filtriert und gegebenenfalls in Ampullen zu je 2 ml abgefüllt. Die mit der Wirkstofflösung gefüllten und verschlossenen Gefässe (Infusionsflaschen, Ampullen) werden der Dampfsterilisation bei 121 bis 124°C unterzogen.

<u>PATENTANSPRÜCHE</u>

1. D,L-, L- oder D-Phenylalanin-piperazide der Formel

in denen R¹ eine basische Gruppe der Formel

(a) HN=C-NH₂ oder (b) -CH₂-NH₂
Amidino Aminomethyl

darstellt,

 R^2 einen (un)substituierten Aryl- oder Heteroarylrest darstellt, und

R³ einen Acylrest der Formel -COX darstellt, wobei X = H, unverzweigt oder verzweigt und gegebenenfalls substituiert Alkyl oder (un)substituiertes Aryl oder Cycloalkyl darstellt,

einen Aralkylrest darstellt, in dem der aromatische Rest gegebenenfalls substituiert ist,

einen Carbonsäureamidrest der Formel -CONR'R", Thio-carbonsäureamidrest -CSNR'R" oder einen Essigsäureamidrest -CH2-CONR'R" darstellt, wobei R' = R" = H; R' = R" = Alkyl; R' = H, R" = Aryl ist oder R' und R" mit dem Stickstoffatom einen cycloaliphatischen oder heterocycloaliphatischen Ring bildet,

einen SO_2 -Y-Rest darstellt, in dem Y (un)substituiert Alkyl, (un)substituiert Aryl oder Heteroaryl oder -NR'R" bedeutet, wobei R' und R" jeweils = H und/oder gleich oder ungleich niedrig Alkyl C_1 - C_3 ist,

einen cycloaliphatischen Ring mit 5 bis 8 C-Atomen darstellt, der gegebenenfalls mit einer Hydroxyl- oder Oxogruppe substituiert ist,

einen (un)substituierten Heteroarylrest bzw. einen heterocycloaliphatischen Rest darstellt,

einen funktionalisierten Alkylrest der Formel $-(CH_2)_n$ -X darstellt, wobei die Alkylkette unverzweigt oder verzweigt ist, n = 1 bis 8 bedeutet und der funktionelle Rest X

eine Hydroxylgruppe darstellt, deren H-Atom gegebenenfalls substituiert ist,

ein Halogenatom bedeutet,

eine tertiäre Aminogruppe der Formel -N(Alk)₂ darstellt, wobei die Alkylgruppen 1 bis 3 C-Atome sowie die gleiche Bedeutung besitzen und das Stickstoffatom gegebenenfalls einem cycloaliphatischen Ring mit 5 bis 7 Ringgliedern angehört, wobei gegebenenfalls ein oder zwei weitere Ringe annelliert sind,

eine Acylaminomalonsäurediestergruppe der Formel AcHN-C(COOAlk)2, eine AcHN-CH-COOH-Gruppe oder eine H_2N -CH-COOH-Gruppe darstellt,

und deren Salze mit Mineralsäuren oder organischen Säuren.

2. Phenylalanin-piperazide gemäss Patentanspruch 1, dadurch gekennzeichnet, dass der (un)substituierte Aryl- oder Heteroarylrest in R₂ Phenyl, 4-Methyl-phenyl, 2,4,6-Trimethyl- bzw. -Triisopropyl-phenyl, 4-Methoxy-2,3,6-trimethyl-phenyl, 2,2-Dimethyl-6-methoxy- bzw. 2,2,5,7,8-Pentamethyl-chromanyl, Anthrachinonyl, 1- bzw. 2-Naphthyl, Chinolyl- bzw. Isochinolyl oder einen Campherrest darstellt.

- 3. Phenylalanin-piperazide gemäss Patentanspruch 1 oder 2, dadurch gekennzeichnet, dass X im Acylrest in R_3 niedrig Alkyl, insbesondere Methyl, oder falls Cycloalkyl, vorzugsweise C_3-C_{10} , bedeutet.
- 4. Phenylalanin-piperazide gemäss Patentanspruch 1 oder 2, dadurch gekennzeichnet, dass der aromatische Rest des Aralkylrests in R₃ mit einem Halogenatom, einer Alkyl-, Alkoxy-, Hydroxy- oder Nitrogruppe substituiert ist.
- 5. Phenylalanin-piperazide gemäss Patentanspruch 1 oder 2, dadurch gekennzeichnet, dass der Alkylrest im SO₂-Y-Rest Methyl, Trifluor-methyl, Trichlor-methyl ist.
- 6. Phenylalanin-piperazide gemäss Patentanspruch 1 oder 2, dadurch gekennzeichnet, dass der Aryl- oder Heteroarylrest im SO₂-Y-Rest Phenyl, 4-Methyl-phenyl, 2,4,6-Trimethyl- bzw. -Triiso-propyl-phenyl, 4-Methoxy-2,3,6-trimethyl-phenyl, 2,2-Di- methyl-6-methoxy- bzw. 2,2,5,7,8
 -Penta-methyl-chromanyl, Anthrachinonyl, Naphthyl oder
 Chinolyl bzw. O-Aryl ist.
- 7. Phenylalanin-piperazide gemäss Patentanspruch 1 oder 2, dadurch gekennzeichnet, dass der (un) substituierte Heteroarylrest in R³ Pyridyl oder Pyrimidyl bzw. der heterocycloaliphatische Rest in R³ N-Methylpiperidyl darstellt.
- 8. Phenylalanin-piperazide gemäss Patentanspruch 1 oder 2, dadurch gekennzeichnet, dass das H-Atom der Hydroxylgruppe im funktionalisierten Alkylrest in R3 durch eine Alkyl-, Aralkyl-, Aryl-, Hydroxyalkyl- oder Acylgruppe substituiert ist.
- 9. Phenylalanin-piperazide gemäss Patentanspruch 1-8, dadurch gekennzeichnet, dass Ac in der Acylaminomalon-säurediestergruppe der Formel AcHN-C(COOAlk)₂ und

46

in der AcHN-CH-COOH-Gruppe des funktionalisierten Alkylrests Formyl oder Acetyl und Alk = niedrig Alkyl C_1-C_3 bedeuten.

- 10. Phenylalanin-piperazide gemäss einem der Patentansprüche 1-9, dadurch gekennzeichnet, dass R^1 eine basische Gruppe der Formel (a) = Amidino darstellt, und/oder R^2 eine B-Naphthyl-, Anthrachinon-, 2,4,6-Triisopropylphenyl- sowie 2,2,5,7,8-Pentamethylchromangruppe bedeutet und/oder R^3 einen Acylrest, insbesondere Formyl oder Acetyl, einen funktionalisierten Alkylrest, insbesondere 2-Hydroxyethyl, einen SO_2 -Y-Rest, Carbonsäureamidrest oder Heteroarylreste, insbesondere 2-Pyridyl oder 2-Pyrimidyl, darstellt.
- 11. Verfahren zur Herstellung von Phenylalanin-piperaziden gemäss einem der Patentansprüche 1-10, dadurch gekennzeichnet, dass man einen (D, L)-3-Cyanphenylalanin-alkylester der Formel II

mit einem Sulfochlorid R^2 -SO $_2$ Cl, in dem R^2 die in Patentanspruch 1 oder 2 definierte Bedeutung aufweist, zu einer racemischen Verbindung der Formel IV

umsetzt, aus denen durch Hydrolyse die Racemate der sulfonylierten Cyanphenylalanine der Formel V

erhalten werden, oder die Verbindungen der Formel IV durch enzymatische Esterhydrolyse mittels Chymotrypsin in die L-konfigurierte Aminosäure der Formel V umsetzt und die dabei anfallenden Aminocarbonsäure-alkylester mit D-Konfiguration der Formel IV durch Hydrolyse in die D-konfigurierten Aminocarbonsäuren der Formel V überführt, die Verbindungen der Formel V durch Kupplung mit einem Piperazin-Derivat der Formel VII

in die (D,L)-, D- oder L-Cyanverbindungen mit Piperazid-Struktur der Formel VI

überführt, durch Addition von H₂S an den Cyanrest das Thioamid der Formel VIII

herstellt, durch Umsetzung mit einem Alkylhalogenid ein Thioimidsäureesterhalogenid der Formel IX

herstellt, oder aus den Cyanverbindungen mit Piperazid-Struktur der Formel VI die Imidsäureesterhalogenide der Formel X

herstellt, und die Verbindung der Formel IX mit Ammoniumacetat oder die Verbindung der Formel X in alkoholischer Ammoniaklösung zu Verbindungen der Formel XI

in der X Halogen, vorzugsweise Chlor bedeutet, umsetzt.

- 12. Verfahren gemäss Patentanspruch 11, dadurch gekennzeichnet, dass man ein (D,L), L- oder D-3-Cyanphenylalanin durch Einführen einer Boc-Gruppe an der Aminogruppe schützt, die erhaltene Carbonsäure der Formel V, mit der Boc-Gruppe statt der SO₂-R²-Gruppe, mit einem Piperazin-Derivat der Formel VII in die entsprechende Boc-geschützten (D,L)-, D- oder L-Cyanverbindungen mit Piperazid-Struktur der Formel VI umsetzt, und diese Verbindung nach saurer Abspaltung der Boc-Gruppe und Umsetzung mit einem Sulfochlorid der Formel III in die (D,L)-, D- oder L-Cyanverbindungen mit Piperazid-Struktur der Formel VI überführt.
- 13. Verfahren nach Patentanspruch 11 oder 12, dadurch gekennzeichnet, dass man die Verbindung der Formel I, in der R¹ für Aminomethyl steht, durch Hydrierung, vorzugsweise katalytische Hydrierung, einer Cyanverbindung der Formel VI erhält.
- 14. Verwendung der Phenylalanin-piperazide gemäss einem der Patentansprüche 1-10 in Salzform oder als freie Basen zur Herstellung von subkutan oder intravenös, insbesondere

WO 94/18185 PCT/CH94/00026

50

oral, rektal oder intraduodenal, verabreichbaren antithrombotisch wirksamen Arzneimitteln.

- 15. Subkutan oder intravenös, insbesondere aber oral, rektal oder duodenal, verabreichbares antithrombotisch wirksames Arzneimittel, gekennzeichnet durch eine wirksame Menge mindestens eines Phenylalanin-piperazids gemäss einem der Patentansprüche 1-10 und geeignete Hilfsstoffe.
- 16. Antithrombotisch wirksames Arzneimittel nach Patentanspruch 15, in Form von Tabletten, Dragees, Kapseln, Pellets, Suppositorien, Lösungen, Injektionen oder transdermalen Systemen, wie Pflaster.
- 17. Verfahren zur Blutgerinnungs- resp. Thrombin- und/oder Trypsinhemmung bei Lebewesen, insbesondere bei Menschen, durch Verabreichung einer wirksamen Menge eines Phenylalanin-piperazids nach einem der Patentansprüche 1-10 oder eines antithrombotisch wirksamen Arzneimittels nach einem der Patentansprüche 15 oder 16.

INTERNATIONAL SEARCH REPORT

Intern/ 11 Application No PCT/CH 94/00026

A. CLASSI IPC 5	ification of subject matter C07D295/18 C07D295/22 C07D311/	770 A61K31/495	·
According to	to International Patent Classification (IPC) or to both national classi	fication and IPC	
	S SEARCHED	ireaton and at C	
Minimum d	ocumentation searched (classification system followed by classificat	ion symbols)	
IPC 5	C07D		·
Documentat	tion searched other than minimum documentation to the extent that	such documents are included in the fields a	earched
Tit - vanamin at	iata base consulted during the international search (name of data bas		
Electronic d	ists observed gilling the international scale fugilie of some con-	e and, where processes, see an arms are-,	
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the re	elevant passages	Relevant to claim No.
A	GB,A,2 007 663 (VEB ARZNEIMITTELL) DRESDEN) 23 May 1979	VERK	1-17
į.	see the whole document		
A	EP,A,O 097 630 (KABIVITRIUM AB) 4	January	1-17
•	see the whole document		
A	WO,A,92 08709 (PENTAPHARM AG) 29 cited in the application see the whole document	May 1992	1-17
	2		
		3	
Furt	ther documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
"A" docum	ntegories of cited documents: nent defining the general state of the art which is not lered to be of particular relevance	"T" later document published after the into or priority date and not in conflict wi cited to understand the principle or ti invention	th the application but
filing	document but published on or after the international date ent which may throw doubts on priority claim(s) or	"X" document of particular relevance; the cannot be considered novel or canno involve an inventive step when the do	t be considered to
which citatio	is cited to establish the publication date of another on or other special reason (as specified) then treferring to an oral disclosure, use, exhibition or	"Y" document of particular relevance; the cannot be considered to involve an ir document is combined with one or m	claimed invention eventive step when the core other such docu-
"P" docum	means ent published prior to the international filing date but han the priority date claimed	ments, such combination being obvior in the art. "&" document member of the same patent	
Date of the	actual completion of the international search	Date of mailing of the international se	earch report
2	5 April 1994	-2. 05. 94	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer	
=	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Luyten, H	

1 .

INTERNATIONAL SEARCH REPORT

Interr al Application No
PCT/CH 94/00026

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
GB-A-2007663	23-05-79	DE-A- 2845941 FR-A,B 2407915 JP-A- 54106448 SE-A- 7811454	10-05-79 01-06-79 21-08-79 08-05-79
EP-A-0097630	04-01-84	JP-A- 59031757 US-A- 4537896	20-02-84 27-08-85
WO-A-9208709	29-05-92	AU-A- 8868991 EP-A- 0511347 JP-T- 5503300	11-06-92 04-11-92 03-06-93

INTERNATIONALER RECHERCHENBERICHT

Intern tles Aktenzeichen PCT/CH 94/00026

T . TYT 400			
IPK 5	FIFIZIERUNG DES ANMELDUNGSGEGENSTANDES CO7D295/18 CO7D295/22 CO7D311/	/70 A61K31/495	
	nternationalen Patentklassifikation (IPK) oder nach der nationalen K	Classifikation und der IPK	
	RCHIERTE GEBIETE ter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymb	hole 1	
IPK 5	C07D	,	
Recherchier	te aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, s	soweit diese unter die recherchierten Gebiet	e fallen
Während de	er internationalen Recherche konsultierte elektronische Datenbank (I	Name der Datenbank und evtl. verwendete	Suchbegriffe)
C. ALS W	ESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Anga	be der in Betracht kommenden Teile	Betr. Anspruch Nr.
	-		-
A	GB,A,2 007 663 (VEB ARZNEIMITTEL) DRESDEN) 23. Mai 1979 *Insgesamt*	WERK	1-17
A_			
^	EP,A,O 097 630 (KABIVITRIUM AB) 4 1984 *Insgesamt*	4. Januar	1-17
A	WO,A,92 08709 (PENTAPHARM AG) 29 in der Anmeldung erwähnt *Insgesamt*	. Mai 1992	1-17
(5)			
	,		
		· ·	
	*		
	tere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Patentfamilie	
	Kategorien von angegebenen Veröffentlichungen :	"T" Spätere Veröffentlichung, die nach den oder dem Prioritätsdatum veröffentlich	n internationalen Anmeldedatum
'A' Veröii aber n	entlichung, die den allgemeinen Stand der Technik definiert, icht als besonders bedeutsam anzusehen ist	Anmeldung nicht kollidiert, sondern n Erfindung zugrundeliegenden Prinzips	ur zumVerständnis des der
"E" älteres Anmel	Dokument, das jedoch erst am oder nach dem internationalen Idedatum veröffentlicht worden ist	Theorie angegeben ist	•
"L" Veröffe	entlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- en zu lassen, oder durch die das Veröffentlichungsdatum einer	"X" Veröffentlichung von besonderer Bede kann allein aufgrund dieser Veröffentli erfinderischer Tätigkeit beruhend betra	ichung nicht als neu oder auf
andere	en zu lassen, oder durch die das Veroniehungsbatum einer n im Recherchenbericht genannten Veröffentlichung belegt werden ler die aus einem anderen besonderen Grund angegeben ist (wie	"Y" Veröffentlichung von besonderer Bede	utung; die beanspruchte Erfindung
ausgef	ührt)	kann nicht als auf erfinderischer Tätig werden, wenn die Veröffentlichung mi	keit beruhend betrachtet t einer oder mehreren anderen
eine B 'P' Veröffe	entlichung, die sich auf eine mündliche Offenbarung, enutzung, eine Ausstellung oder andere Maßnahmen bezieht entlichung, die vor dem internationalen Anmeldedatum, aber nach eanspruchten Prioritätsdatum veröffentlicht worden ist	Veröffentlichungen dieser Kategorie in diese Verbindung für einen Fachmann "&" Veröffentlichung, die Mitglied derselbe	naheliegend ist
	Abschlusses der internationalen Recherche	Absendedatum des internationalen Re	cherchenberichts
2	5. April 1994	-2. 05. 94	
Name und	Postanschrift der Internationale Recherchenbehörde	Bevollmächtigter Bediensteter	
	Europäisches Patentamt, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk	,	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Luyten, H	

1

INTERNATIONALER RECHERCHENBERICHT

Interr ales Aktenzeichen
PCT/CH 94/00026

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
GB-A-2007663	23-05-79	DE-A- 2845941 FR-A,B 2407915 JP-A- 54106448 SE-A- 7811454	01-06-79 21-08-79
EP-A-0097630	04-01-84	JP-A- 59031757 US-A- 4537896	
WO-A-9208709	29-05-92	AU-A- 8868991 EP-A- 0511347 JP-T- 5503300	04-11-92