

DISCRETE MATHEMATICS IN COMPUTER SCIENCE

HSIEN-CHIH CHANG FEBRUARY 9, 2022

DIRECTED ACYCLIC GRAPHS

DEPENDENCY GRAPH

RECURSION TREE

RECURSION DAG

DEPENDENCY GRAPH Git commits

Sumit Saha, "A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way"

Krut Patel, "MNIST Handwritten Digits Classification using a Convolutional Neural Network"

DEPENDENCY GRAPH

Neural networks

INCLUSION GRAPH

Complexity classes

master dev fix

No Pre-req Theorem

Every directed acyclic graph must have a source.

ELIMINATION ORDER

There is a way to direct the edges of T so that every non-root vertex has out-degree 1.

Every tree can be rooted.

Jargon

chain anti-chain height width

IF DAG D HAS HEIGHT t, THEN D DECOMPOSES INTO t ANTICHAINS.

MIRSKY'S THEOREM

FOR ANY DAG D AND ANY POSITIVE INTEGER T, EITHER HEIGHT(D) > T, OR WIDTH(D) \geq N/T

Every dag D has either a chain of size $> \sqrt{N}$, or an antichain of size $\geq \sqrt{N}$.

COROLLARY

COMPARISON

Mirsky's Theorem

If dag D has height t, then D decomposes into t antichains.

Dilworth's Theorem

If dag D has width t, then D decomposes into t chains.

DAG IS WHERE THE INDUCTION FAIRY IS.

NEXT TIME.
RELATION, PARTIAL ORDER, EQUIVALENCE

