Math 445 Number Theory

September 22-24, 2008

One tool that we need to add to our toolbox is the existence of *primitive roots of 1 mod a prime p*: that is, the existence of integers a for which $\operatorname{ord}_p(a) = p-1$. In the language of groups, this says that the group of units in \mathbb{Z}_p is cyclic, when p is prime. In order to prove this, we need a bit of machinery:

Lagrange's Theorem: If f(x) is a polynomial with integer coefficients, of degree n, and p is prime, then the equation $f(x) \equiv 0 \pmod{p}$ has at most n mutually incongruent solutions, unless $f(x) \equiv 0 \pmod{p}$ for all x.

To see this, do what you would do if you were proving this for real or complex roots; given a solution a, write f(x)=(x-a)g(x)+r with r=constant (where we understand this equation to have coefficients in \mathbb{Z}_p) using polynomial long division. This makes sense because \mathbb{Z}_p is a field, so division by non-zero elements works fine. Then 0=f(a)=(a-a)g(a)+r=r means r=0 in \mathbb{Z}_p , so f(x)=(x-a)g(x) with g(x) a polynomial with degree n-1. Structuring this as an induction argument, we can assume that g(x) has at most n-1 roots, so f has at most f(a) and the roots of f(a), so f(a) roots, because, since f(a) is f(a) for f(b) for

This in turn leads us to

Corollary: If p is prime and d|p-1 , then the equation $x^d-1\equiv 0\pmod p$ has exactly d solutions mod p.

This is because, writing p-1=ds, $f(x)=x^{p-1}-1\equiv 0$ has exactly p-1 solutions (namely, 1 through p-1), and $x^{p-1}=(x^d-1)(x^{d(s-1)}+x^{d(s-2)}+\cdots+x^d+1)=(x^d-1)g(x)$. But g(x) has at most d(s-1)=(p-1)-d roots, and x^d-1 has at most d roots, and together (since p is prime) they make up the p-1 roots of f. So in order to have enough, they both must have exactly that many roots.

We introduce the notation $p^k||N$, which means that $p^k|N$ but $p^{k+1}\not|N$.

For each prime p_i dividing $n-1, 1 \leq i \leq s$, we let $p_i^{k_i} || n-1$. Then the equation (*) $x^{p_i^{k_i}} \equiv 1 \pmod{n}$ has $p_i^{k_i}$ solutions, while (†) $x^{p_i^{k_i-1}} \equiv 1 \pmod{n}$ has only $p_i^{k_i-1} < p_i^{k_i}$ solutions; pick a solution, a_i to (*) which is not a solution to (†). [In particular, $\operatorname{ord}_n(a_i) = p_i^{k_i}$.] Then set $a = a_1 \cdots a_s$. Then a computation yields that, mod n, $a^{\frac{n-1}{p_i}} \equiv a_i^{\frac{n-1}{p_i}} \not\equiv 1$, since otherwise $\operatorname{ord}_n(a_i) | \frac{n-1}{p_i}$, and so $\operatorname{ord}_n(a_i) | \gcd(p_i^{k_i}, \frac{n-1}{p_i}) = p_i^{k_i-1}$, a contradiction. So $p_i^{k_i} || \operatorname{ord}_n(a)$ for every i, so $n-1 |\operatorname{ord}_n(a)$, so $\operatorname{ord}_n(a) = n-1$.

This result is fine for theoretical purposes (and we will use it many times), but it is somewhat less than satisfactory for computational purposes; this process of finding such an a would be very laborious.