

Elementos de Aritmética

Lista de Aprofundamento

 $2^{\underline{a}}$ Avaliação

Prof^a Karla Lima 2024.1

\mathbf{E}	leme	ntos de Aritmética 2024	2024.1		
K	arla	Lima Matemáti	Matemática		
\mathbf{S}	uma	ário			
1	Os	Números Inteiros	4		
	1.1	Múltiplos de Números Inteiros	4		
	1.2	Divisores de um Número Inteiro	5		

Resumo

"A Arte de Resolver Problemas (1945)" é um livro clássico escrito por George Pólya, que oferece uma abordagem sistemática e prática para resolver problemas matemáticos e, por extensão, problemas em diversas áreas da vida.

Ele destaca estratégias heurísticas, como divisão em subproblemas, analogia, tentativa e erro, e trabalhar de trás para frente.

Além disso, o autor enfatiza a importância de persistência, criatividade e flexibilidade mental na resolução de problemas.

Abaixo, segue o esquema introduzido por Pólya para a resolução de problemas. Use-o para ajudar no processo de aprendizado.

01. Conexões

Encontre a conexão entre os dados e a incógnita. É possível que seja obrigado a considerar problemas auxiliares se não puder encontrar uma conexão imediata.

Elabore um **PLANO**

02. Questione

Já viu este problema antes? Ou o mesmo problema apresentado ligeiramente diferente?

Conhece um problema correlato ou que poderia ser útil?

04. Entenda

Entenda as soluções de problemas resolvidos. . São eles que vão te dar a bagagem necessária para se aventurar nos exercícios propostos.

02. Questione

03. Relacione

Procure pensar num problema conhecido que tenha a mesma incógnita ou outra semelhante.

01. Mão na Massa

Em geral, você só precisa de cuidado e paciência, desde que tenha as habilidades necessárias.

Persista com o plano que você escolheu e execute.

Execute o PLANO

02. Descarte

Se continuar sem funcionar, descarte-o e escolha outro. Não se deixe enganar, é assim que a matemática é feita, mesmo por profissionais.

03. Verfique

É possível verificar claramente que os passo está correto? É possível demonstrar que ele está correto?

04. Retropecto

Examine a solução obtida. Reserve um tempo para refletir e olhar para trás, para o que você fez, o que funcionou e o que não funcionou.

04. Retrospecto

Isso permitirá que você preveja qual estratégia usar para resolver problemas futuros.

1 Os Números Inteiros

1.1 Múltiplos de Números Inteiros

Exercício 1

O Problema 3.7 de [1] (Hefez, A.) pede para mostrar as seguintes propriedades, para um elemento $a \in \mathbb{Z}$:

- i) 0 é múltiplo de a.
- ii) Se m é um múltiplo de a, então -m é um múltiplo de a.
- iii) Um múltiplo de um múltiplo de a é um múltiplo de a.
- iv) Se m e m' são múltiplos de a, então m + m' e m m' são também múltiplos de a.
- v) Se m e m' são múltiplos de a, então $e \cdot m + f \cdot m'$ é múltiplo de a, quaisquer que sejam os inteiros e e f.
- vi) Se m + m' ou m m' é múltiplo de a e m é múltiplo de a, então m' também é múltiplo de a.

Resolva os itens a seguir.

- a) Para cada item, faça um caso particular, escolhendo valores adequados para a, m, m', e e f.
- b) Demonstre, formalmente, cada um dos itens de (i) até (vi).

Exercício 2 Faça o mesmo para o Problema 3.8 de [1] (Hefez, A.) .

1.2 Divisores de um Número Inteiro

Exercício 3 Mostre que se a é um inteiro não nulo, os divisores de a são em número finito.

Exercício 4 Mostre que se a e b são números naturais não nulos, então $a \mid b$ e $b \mid a$ se, e somente se, a = b.

Exercício 5 Em cada item, escolha casos particulares adequados de a, b e d e verifique as propriedades. Depois, demonstre-as formalmente.

- a) Se $d \mid a \in d \mid b$, então $d \mid b + a \in d \mid (b a)$.
- b) Se $d \mid b + a$ ou $d \mid (b a)$ e $d \mid a$, então $d \mid b$.

Exercício 6 O que é o máximo divisor comum de dois números inteiros a e b?

Exercício 7 Mostre que:

- a) $O \ mdc(0,0)$ não existe.
- b) Se $b \neq 0$, então

$$mdc(0,b) = \begin{cases} b, & se \ b > 0, \\ -b, & se \ b < 0. \end{cases}$$

c) Mostre que se $a \neq 0$ ou $b \neq 0$, então

$$mdc(a,b) = mdc(-a,b) = mdc(a,-b) = mdc(-a,-b).$$

Exercício 8 Um número d é divisor comum de a e b, ambos não nulos, se, e somente se, ele é um divisor comum de a e b-a.

Exercício 9 O que são números primos entre si?

Referências

[1] A. Hefez. *Iniciação à Aritmética*. IMPA, 2015.

Referências

[1] A. Hefez. *Iniciação à Aritmética*. IMPA, 2015.