Théorèmes TIPE

Younes-Jihad Boumoussou

1 Théorème 1 : Matrices de Metzler

1.1 Définitions :

Soit
$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 < j < m}} \in M_{n,m}(\mathbb{R}),$$

- A est une matrice non négative si $\forall i \in \{1,..,n\}$, $\forall j \in \{1,..,m\}$ on a $a_{i,j} \geq 0$, c'est à dire que toute ses entrées non négatives. Nous notons une telle matrice $A \geq 0$.
- A est une matrice positive si A est non-négative et $\exists i \in \{1,..,n\}$, $\exists j \in \{1,..,m\}$ tel que $a_{k,l} > 0$, c'est à dire ayant au moins un coefficient strictement positif.
- A est une matrice strictement positive si $\forall i \in \{1,..,n\}$, $\forall j \in \{1,..,m\}$ on a $a_{i,j} > 0$, c'est à dire tous ses coefficients sont strictement positifs. Nous noterons une telle matrice A >> 0.
- On dit que A est une matrice de Metzler si $\forall (i,j) \in \{1,...,n\}^2$ tels que $i \neq j$ on a $a_{i,j} \geq 0$.
- On dit qu'une matrice M est asymptotiquement stable si $\rho(M) < 1$ avec ρ le rayon spectral.

1.2 Théorème de Metzler :

Si A est une matrice de Metzler, les conditions suivantes sont équivalentes :

- La matrice de Metzler A est asymptotiquement stable.
- La matrice de Metzler A est inversible et $-A^{-1} \ge 0$.
- Si b est un vecteur tel que b >> 0 alors il existe x >> 0 tel que Ax + b = 0.
- Il existe c > 0 tel que Ac << 0.
- Il existe c >> 0 tel que Ac << 0.

2 Théorème 2 : Théorème de Perron-Frobenius

Le rayon spectral ρ d'une matrice positive $A \ge 0$ est une valeur propre à laquelle est associé un unique vecteur x de norme 1 à coordonnées strictement positives tel que $Ax = \rho x$.

Ce vecteur est unique, à un coefficient multiplicatif près car ρ est une valeur propre simple c'est à dire d'espace propre de dimension 1.

3 Théorème 3 : Critère de Stabilité de Lyapunov

3.1 Définitions :

Soit $\Omega \subset \mathbb{R}^n$ ouvert, connexe et $f: \Omega \to \mathbb{R}^n$ fonction de classe C^1 et $x: t \in \mathbb{R}^+ \to \mathbb{R}^n$ Soit un système différentiel autonome défini par $\dot{x}(t) = f(x(t))$.

— Nous appelons x^* un point d'équilibre ou fixe si $f(x^*) = 0$.

— Soit t_0 l'origine des temps, on dit que x^* est stable si,

$$\forall \epsilon > 0, \exists \delta > 0, \forall t \ge t_0, \|x(t_0) - x^*\| < \delta \implies \|x(t) - x^*\| < \epsilon$$

— On dit que x^* est asymptotiquement stable si,

$$x^*$$
 est stable et $\exists \delta > 0, \|x(t_0) - x^*\| < \delta \implies x(t) \xrightarrow{t \to +\infty} x^*$

Remarquer que les points stables ne sont pas forcément asymptotiquement stables.

3.2 Théorème de Lyapunov :

Soit x^* un point d'équilibre ie $f(x^*) = 0$. Si $f \in C^1(\Omega, \mathbb{R}^n)$ tel que $Df(x^*) \in M_n(\mathbb{R})$ a toutes ses valeurs propres complexes de partie réelle strictement négative, alors x^* est un point d'équilibre attractif.

C'est à dire que, $\exists r > 0$ tel que pour $x_0 \in \mathbb{R}^n$ proche de x^* tel que $||x_0 - x^*|| \le r$, la solution de :

$$\begin{cases} u'(t) = f(u(t)) \\ u(t_0) = x_0 \end{cases}$$

vérifie $u(t) \xrightarrow{t \to +\infty} x^*$, x^* est donc asymptotiquement stable. De plus, cette convergence se fait à une vitesse exponnentielle.

4 Théorème 4 : Théorème de Varga

Soit une matrice de Metzler A. Alors pour toute décomposition de A de la forme A=F+V, où $F\geq 0$ et V une matrice de Metzler asymptotiquement stable, les deux propositions suivantes sont équivalentes :

- A est asymptotiquement stable.
- $--\rho(-FV^{-1}) < 1.$

5 Développement du calcul de R_0

D'après le système différentiel, pour x = (S, R, M, I):

$$\phi(x) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ (1 - u_1)\beta SI \end{pmatrix}, \phi^+(x) = \begin{pmatrix} 0 \\ (1 + u_2)\gamma I \\ (1 - u_3)\mu I \\ 0 \end{pmatrix}, \phi^-(x) = \begin{pmatrix} (1 - u_1)\beta SI \\ 0 \\ 0 \\ (1 + u_2)\gamma I + (1 - u_3)\mu I \end{pmatrix}$$

Pour un point d'équilibre sans maladies $x^* = (S^*, R^*, M^*, 0)$ En appliquant le théorème :

$$\mathbb{F} = (1 - u_1)\beta S^* \text{ et } \mathbb{V} = -((1 + u_2)\gamma + (1 - u_3)\mu)$$

Ainsi:

$$R_0 = \frac{(1-u_1)\beta}{(1+u_2)\gamma + (1-u_3)\mu} S^*$$

Commentaires:

— Il en découle ainsi que pour un équilibre avec plus d'individus sains, il est nécessaire d'adopter des paramètres de contrôle plus grands pour assurer cet équilibre.

6 Démonstration du théorème de la matrice de prochaine génération

- Sachant que R_0 est le nombre d'infections secondaires produites par une seule infection typique dans une population sensible, alors comment définir R_0 lorsqu'il existe plusieurs types d'individus infectés. Le concept clé est que nous devons maintenant faire la moyenne du nombre prévu de nouvelles infections sur tous les types d'infections possibles.
- Supposons que nous ayons un système dans lequel plusieurs individus sont infectés, la matrice de la prochaine génération est définie comme la matrice carrée K dans laquelle l'élément $k_{i,j}$, est le nombre attendu d'infections secondaires de type i causées par un seul individu infecté par le type j.
- Ayant la matrice K, il est naturel de penser que R₀ représentera la plus grande entrée de K. le nombre de base de la reproduction est donné par le rayon spectral de K, la valeur propre dominante de K.

Soit x^* un point d'équilibre sans maladies, en posant $\nu = \phi^+ - \phi^-$,

$$Df(x^*) = D\phi(x^*) + D\nu(x^*)$$

$$D\phi(x^*) = \begin{pmatrix} 0 & 0 \\ 0 & \mathbb{F} \end{pmatrix}, D\nu(x^*) = \begin{pmatrix} J_1 & J_2 \\ 0 & \mathbb{V} \end{pmatrix}$$

Avec:

$$\mathbb{F} = \left(\frac{\partial \phi_i}{\partial x_j}(x^*)\right)_{p+1 \le i, j \le n}, \mathbb{V} = \left(\frac{\partial \nu_i}{\partial x_j}(x^*)\right)_{p+1 \le i, j \le n}, J_1 = \left(\frac{\partial \nu_i}{\partial x_j}(x^*)\right)_{1 \le i, j \le p}, J_2 = \left(\frac{\partial \nu_i}{\partial x_j}(x^*)\right)_{1 \le i \le p \atop p+1 \le j \le r}$$

Remarquons que $\mathbb{F} \geq 0$ et comme x^* point d'équilibre , \mathbb{V} est une matrice de Metzler.

Approximation au voisinnage de l'équilibre :

De plus $\phi = 0$, car x^* est sans maladies, nous sommes près de l'équilibre le comportement du système est approximé par le système linéarisé, on se place ainsi dans le cadre de cette approximation.

$$\dot{x} = D\nu(x^*)(x - x^*)$$

$$(\dot{x}_1,...,\dot{x}_n)^T = \begin{pmatrix} J_1 & J_2 \\ 0 & \mathbb{V} \end{pmatrix} (x_1 - x_1^*,...,x_m - x_m^*,x_{m+1},...,x_n)^T$$

En posant $x_{infectés}(t) = (x_{m+1}, ..., x_n)^T$,

$$\dot{x}_{infect\'es}(t) = \mathbb{V} \ x_{infect\'es}(t)$$

$$x_{infectés}(t) = exp(Vt) \ x_{infectés}(0)$$

Les individus infectés de l'état initial jusqu'à l'équilibre est :

$$\int_0^{+\infty} x_{infect\'es}(t) dt = \int_0^{+\infty} exp(\mathbb{V}t) dt \ x_{infect\'es}(0) = -\mathbb{V}^{-1} x_{infect\'es}(0)$$

Ces individus cont générer d'autres cas selon la matrice d'infection \mathbb{F} , le nombre total d'infections produites est :

$$\int_0^{+\infty} \mathbb{F} \ x_{infect\'es}(t) \, \mathrm{d}t = -\mathbb{F} \mathbb{V}^{-1} x_{infect\'es}(0)$$

D'où:

$$K = -\mathbb{FV}^{-1} \implies R_0 = \rho(-\mathbb{FV}^{-1})$$

7 Démonstration du théorème de Stabilité d'un système épidémiologique

Notons pour $A \in M_n(\mathbb{R})$,

$$\alpha(A) = max\{Re(\lambda), \forall \lambda \in Sp_{\mathbb{C}}(A)\}$$

D'après le théorème 1 de Metzler, $-\mathbb{FV}^{-1}$ est positive, alors par le théorème 2 de Perron-Frobenius, $R_0 = \rho(-\mathbb{FV}^{-1})$ est une valeur propre de $-\mathbb{FV}^{-1}$. En utilisant le théorème 3 de Lyapunov, alors soit un point d'équilibre sans maladies x^* , c'est un point asymptotiquement stable si $\alpha(Df(x^*)) < 0$ et asymptotiquement instable si $Df(x^*) \geq 0$. Sachant $f = \phi + \nu$, $\alpha(\mathbb{V}) < 0$ et $\alpha(J_1) < 0$

Alors par le théorème 4 de Varga :

$$\alpha(\mathbb{F} + \mathbb{V}) < 0 \iff R_0 < 1 \implies \alpha(Df(x^*)) < 0 \iff R_0 < 1$$

Ainsi la stabilité équivaut $R_0 < 1$.