Stochastic Gradient Descent STAT 672 Project

Tom Wallace

George Mason University

Spring 2018

Optimization is everywhere, and sometimes is easy

Many statistical procedures involve minimizing or maximizing some function applied to data

In **parametric** statistics, we often make assumptions that make this optimization "nice":

• Example: in OLS, we do not need to check every possible value of $\hat{\beta}$ to see if it minimizes the loss function, we (typically) can just evaluate $(X'X)^{-1}X'Y$

Other times, optimization is not so easy

Suppose that we have a typical supervised classification problem:

- Non-parametric: no assumptions about distribution of data
- Feature vector \mathbf{X}_i , label Y_i
- ullet Want to find best prediction function f^* from class ${\cal F}$
- ullet f has parameter vector $oldsymbol{ heta}$
- ullet Optimization: pick values for $oldsymbol{ heta}$ that minimize empirical risk according to some loss function L
- Assume L is convex (if not, problem is much harder)

Our lack of assumptions requires a different approach to optimization

- Cannot analytically identify stationary point
- Need to numerically search for it

Gradient descent is a numerical approach to optimization

Reminder: gradient is multidimensional version of 1st derivative

- $\nabla f(\mathbf{X}) = (\frac{\partial f}{x_1}, \frac{\partial f}{x_2}...)$
- So if the gradient is (approximately) 0 at some point, that point is (approximately) a stationary point
- Since we know the loss function is convex, that stationary point must be the global minimum

Give basic idea: take guess, step, evaluate, stop once below epsilon

Batch gradient descent, animated

Batch gradient descent is computationally expensive

Elaborate

Stochastic gradient descent (SGD) is more efficient

Overview of how it works

SGD, visualized

Choice of hyper-parameters is important

Reminder of what they are

Step size from Bottou

Learning parameter

SGD has nice properties for high-dimensional data

Theoretical explanation

Empirical performance

Applications of SGD

If a Silicon Valley press release uses any of the following phrases...

- "Neural networks"
- "Machine learning"
- "AI"

...SGD probably is involved. Example: Google's AlphaGo program.

