

AD-A104 899

PRC CONSOER TOWNSEND INC ST LOUIS MO

NATIONAL DAM SAFETY PROGRAM, FOREST LAKE DAM (MO 10128), GRAND --ETC(U)
DEC 78

F/G 13/13

DACW43-78-C-0160

NL

UNCLASSIFIED

1 OF 2
ADA
134899

ADA104899

LEVEL II

GRAND CHARITON RIVER BASIN

FOREST LAKE DAM
ADAIR COUNTY, MISSOURI
MO 10128

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

This document has been approved
for public release and sale; its
distribution is unlimited.

DTIC
ELECTED
SEP 29 1981
S D
F

DTIC FILE COPY

PREPARED BY: U. S. ARMY ENGINEER DISTRICT, ST. LOUIS

FOR: STATE OF MISSOURI

DECEMBER 1978

81 9 28 118

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
	AD-HIC4 899	
4. TITLE (and Subtitle) Phase I Dam Inspection Report National Dam Safety Program Forest Lake Dam (MO 10128) Adair County, Missouri	5. TYPE OF REPORT & PERIOD COVERED Final Report.	
7. AUTHOR(s) Consoer, Townsend and Associates, Ltd.	6. PERFORMING ORG. REPORT NUMBER DACW43-78-C-0160	
9. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Engineer District, St. Louis Dam Inventory and Inspection Section, LMSED-PD 210 Tucker Blvd., North, St. Louis, Mo. 63101	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Engineer District, St. Louis Dam Inventory and Inspection Section, LMSED-PD 210 Tucker Blvd., North, St. Louis, Mo. 63101	12. REPORT DATE December 1978	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES Approximately 80	
	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) Approved for release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) National Dam Safety Program, Forest Lake Dam (MO 10128), Grand Chariton River Basin, Adair County, Missouri.		
18. SUPPLEMENTARY NOTES Phase I Inspection Report.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Dam Safety, Lake, Dam Inspection, Private Dams		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report was prepared under the National Program of Inspection of Non-Federal Dams. This report assesses the general condition of the dam with respect to safety, based on available data and on visual inspection, to determine if the dam poses hazards to human life or property.		

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

INSTRUCTIONS FOR PREPARATION OF REPORT DOCUMENTATION PAGE

RESPONSIBILITY. The controlling DoD office will be responsible for completion of the Report Documentation Page, DD Form 1473, in all technical reports prepared by or for DoD organizations.

CLASSIFICATION. Since this Report Documentation Page, DD Form 1473, is used in preparing announcements, bibliographies, and date banks, it should be unclassified if possible. If a classification is required, identify the classified items on the page by the appropriate symbol.

COMPLETION GUIDE

General. Make Blocks 1, 4, 5, 6, 7, 11, 13, 15, and 16 agree with the corresponding information on the report cover. Leave Blocks 2 and 3 blank.

Block 1. Report Number. Enter the unique alphanumeric report number shown on the cover.

Block 2. Government Accession No. Leave Blank. This space is for use by the Defense Documentation Center.

Block 3. Recipient's Catalog Number. Leave blank. This space is for the use of the report recipient to assist in future retrieval of the document.

Block 4. Title and Subtitle. Enter the title in all capital letters exactly as it appears on the publication. Titles should be unclassified whenever possible. Write out the English equivalent for Greek letters and mathematical symbols in the title (see "Abstracting Scientific and Technical Reports of Defense-sponsored RDT/E," AD-667 000). If the report has a subtitle, this subtitle should follow the main title, be separated by a comma or semicolon if appropriate, and be initially capitalized. If a publication has a title in a foreign language, translate the title into English and follow the English translation with the title in the original language. Make every effort to simplify the title before publication.

Block 5. Type of Report and Period Covered. Indicate here whether report is interim, final, etc., and, if applicable, inclusive dates of period covered, such as the life of a contract covered in a final contractor report.

Block 6. Performing Organization Report Number. Only numbers other than the official report number shown in Block 1, such as series numbers for in-house reports or a contractor/grantee number assigned by him, will be placed in this space. If no such numbers are used, leave this space blank.

Block 7. Author(s). Include corresponding information from the report cover. Give the name(s) of the author(s) in conventional order (for example, John R. Doe or, if author prefers, J. Robert Doe). In addition, list the affiliation of an author if it differs from that of the performing organization.

Block 8. Contract or Grant Number(s). For a contractor or grantee report, enter the complete contract or grant number(s) under which the work reported was accomplished. Leave blank in in-house reports.

Block 9. Performing Organization Name and Address. For in-house reports enter the name and address, including office symbol, of the performing activity. For contractor or grantee reports enter the name and address of the contractor or grantee who prepared the report and identify the appropriate corporate division, school, laboratory, etc., of the author. List city, state, and ZIP Code.

Block 10. Program Element, Project, Task Area, and Work Unit Numbers. Enter here the number code from the applicable Department of Defense form, such as the DD Form 1498, "Research and Technology Work Unit Summary" or the DD Form 1634, "Research and Development Planning Summary," which identifies the program element, project, task area, and work unit or equivalent under which the work was authorized.

Block 11. Controlling Office Name and Address. Enter the full, official name and address, including office symbol, of the controlling office. (Equates to funding/sponsoring agency. For definition see DoD Directive 5200.20, "Distribution Statements on Technical Documents.")

Block 12. Report Date. Enter here the day, month, and year or month and year as shown on the cover.

Block 13. Number of Pages. Enter the total number of pages.

Block 14. Monitoring Agency Name and Address (if different from Controlling Office). For use when the controlling or funding office does not directly administer a project, contract, or grant, but delegates the administrative responsibility to another organization.

Blocks 15 & 15a. Security Classification of the Report: Declassification/Downgrading Schedule of the Report. Enter in 15 the highest classification of the report. If appropriate, enter in 15a the declassification/downgrading schedule of the report, using the abbreviations for declassification/downgrading schedules listed in paragraph 4-207 of DoD 5200.1-R.

Block 16. Distribution Statement of the Report. Insert here the applicable distribution statement of the report from DoD Directive 5200.20, "Distribution Statements on Technical Documents."

Block 17. Distribution Statement (of the abstract entered in Block 20, if different from the distribution statement of the report). Insert here the applicable distribution statement of the abstract from DoD Directive 5200.20, "Distribution Statements on Technical Documents."

Block 18. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with . . . Translation of (or by) . . . Presented at conference of . . . To be published in . . .

Block 19. Key Words. Select terms or short phrases that identify the principal subjects covered in the report, and are sufficiently specific and precise to be used as index entries for cataloging, conforming to standard terminology. The DoD "Thesaurus of Engineering and Scientific Terms" (TEST), AD-672 000, can be helpful.

Block 20. Abstract. The abstract should be a brief (not to exceed 200 words) factual summary of the most significant information contained in the report. If possible, the abstract of a classified report should be unclassified and the abstract to an unclassified report should consist of publicly-releasable information. If the report contains a significant bibliography or literature survey, mention it here. For information on preparing abstracts see "Abstracting Scientific and Technical Reports of Defense-Sponsored RDT&E," AD-667 000.

IN REPLY REFER TO

DEPARTMENT OF THE ARMY
ST. LOUIS DISTRICT, CORPS OF ENGINEERS
210 NORTH 12TH STREET
ST. LOUIS, MISSOURI 63101

SUBJECT: Forest Lake Dam (Mo. 10128), Phase I Inspection Report

This report presents the results of field inspection and evaluation of Forest Lake Dam (Mo. 10128).

It was prepared under the National Program of Inspection of Non-Federal Dams.

This dam has been classified as unsafe, non-emergency by the St. Louis District as a result of the application of the following criteria:

- 1) Spillway will not pass 50 percent of the Probable Maximum Flood.
- 2) Overtopping could result in dam failure.
- 3) Dam failure significantly increases the hazard to loss of life downstream.

SUBMITTED BY:

SIGNED

Chief, Engineering Division

28 FEB 1979

(Date)

APPROVED BY:

ARMED

Colonel, CE, District Engineer

28 FEB 1979

(Date)

Accension For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification	
By _____	
Distribution/ _____	
Availability Codes _____	
Dist	Avail and/or Special
A	27

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Name of Dam: Forest Lake Dam, Missouri Inv. No. 10128
State Located: Missouri
County Located: Adair
Stream: Big Creek
Date of Inspection: September 29, and October 6, 1978

Forest Lake Dam No. Mo. 10128 was inspected using the "Recommended Guidelines for Safety Inspection of Dams". These guidelines were developed by the Chief of Engineers, U.S. Army, Washington, D.C., with the help of Federal and state agencies, professional engineering organizations, and private engineers. The resulting guidelines are considered to represent a consensus of the engineering profession.

Based on the criteria in the guidelines, the dam is in the high hazard potential classification, which means that loss of life and appreciable property loss could occur in the event of failure of the dam. Four farmouses with associated farm buildings and two improved road crossings would be subjected to flooding, with possible damage and/or destruction, and possible loss of life. Forest Lake Dam is in the intermediate size classification since it is more than 40 feet, but less than 100 feet high, and impounds more than 1,000 acre-feet, but less than 50,000 acre-feet of water.

Our inspection and evaluation indicates that the spillway of Forest Lake Dam does not meet the criteria set forth in the guidelines for a dam having the above size and hazard potential. Forest Lake Dam is an intermediate size dam with a high hazard potential required by the guidelines to pass the Probable Maximum Flood without overtopping. It was determined that the spillway will pass 25 percent of the Probable Maximum Flood without overtopping the dam. Our evaluation indicates that the spillway will pass the 100-year flood; that is, a flood having a 1 percent chance of being equalled or exceeded during any given year.

The Probable Maximum Flood is defined as the flood discharge that may be expected from the most severe combination of critical meteorological and hydrologic conditions that are reasonably possible in the region.

Other deficiencies noted by the inspection team were a need for an annual inspection by a qualified professional engineer; lack of a maintenance schedule; extensive brush and tree growth on the embankment; seepage at the right side of the dam; rodent activity on the embankment; deteriorated concrete on the spillway crest and damage to the channel banks; vegetative growth in the spillway channel; and inoperable gate valves in the valve vault. The lack of stability and seepage analysis on record is also a deficiency that should be corrected.

It is recommended that the owner take action to correct or control the deficiencies described above.

FIGURE 1. LIPSTICK MARKS

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

Forest Lake Dam, I.D. No. 10128

TABLE OF CONTENTS

<u>Sect. No.</u>	<u>Title</u>	<u>Page</u>
SECTION 1	PROJECT INFORMATION	1
	1.1 General	1
	1.2 Description of Project	3
	1.3 Pertinent Data	9
SECTION 2	ENGINEERING DATA	11
	2.1 Design	11
	2.2 Construction	11
	2.3 Operation	11
	2.4 Evaluation	12
SECTION 3	VISUAL INSPECTION	13
	3.1 Findings	13
	3.2 Evaluation	17
SECTION 4	OPERATION PROCECDURES	19
	4.1 Procedures	19
	4.2 Maintenance of Dam	19
	4.3 Maintenance of Operating Facilities	20
	4.4 Description of Any Warning System in Effect .	20
	4.5 Evaluation	20
SECTION 5	HYDRAULIC/HYDROLOGIC	21
	5.1 Evaluation of Features	21

TABLE OF CONTENTS
(Continued)

<u>Sect. No.</u>	<u>Title</u>	<u>Page</u>
SECTION 6	STRUCTURAL STABILITY	24
	6.1 Evaluation of Structural Stability	24
SECTION 7	ASSESSMENT/REMEDIAL MEASURES	27
	7.1 Dam Assessment	27
	7.2 Remedial Measures	29

LIST OF PLATES

	<u>Plate No.</u>
LOCATION MAP	1
PLAN AND ELEVATION OF DAM	2-15
GENERAL GEOLOGIC MAP	16

APPENDICES

- | | | |
|------------|---|-------------------------------------|
| APPENDIX A | - | PHOTOGRAPHS TAKEN DURING INSPECTION |
| APPENDIX B | - | HYDROLOGIC COMPUTATIONS |

PHASE I INSPECTION REPORT
NATIONAL DAM SAFETY PROGRAM

FOREST LAKE DAM, Missouri Inv. No. 10128

SECTION 1: PROJECT INFORMATION

1.1 General

a. Authority

The Dam Inspection Act, Public Law 92-367 of August, 1972, authorizes the Secretary of the Army, through the Corps of Engineers, to initiate a national program of dam inspections. Inspection for the Forest Lake Dam was carried out under Contract DACW 43-78-C-0160 to the Department of the Army, St. Louis District, Corps of Engineers, by the engineering firms of Consoer, Townsend & Associates Ltd., and Engineering Consultants, Inc. (A Joint Venture), of St. Louis, Missouri.

b. Purpose of Inspection

The visual inspection of the Forest Lake Dam was made on September 29 and October 6, 1978. The purpose of the inspection was to make a general assessment as to the structural integrity and operational adequacy of the dam embankment and its appurtenant structures.

c. Scope of Report

This report summarizes available pertinent data relating to the project; presents a summary of visual observations made during the field inspection; presents an evaluation of hydrologic and hydraulic conditions at the site; presents an evaluation as to the structural adequacy of the various project features; and assesses the general condition of the dam with respect to safety.

It should be noted that reference in this report to left or right abutments is as viewed looking downstream. Where left abutment or left side of the dam is used in this report, this also refers to south abutment or side, and right to the north abutment or side.

d. Evaluation Criteria

Criteria used to evaluate the dam were furnished by the Department of the Army, Office of the Chief of Engineers, in "Recommended Guidelines for Safety Inspection of Dams", Appendix D. These guidelines were developed with the help of several Federal agencies and many state agencies, professional engineering organizations, and private engineers.

1.2

Description of the Project

a. Description of Dam and Appurtenances

The dam embankment is a homogeneous earthfill structure. The crest of the embankment has a width of 20 feet and a length of approximately 1,500 feet. The crest elevation is set at 806.0 feet above MSL, and the maximum height of the embankment is 61 feet above the minimum streambed elevation along the centerline of the dam.

The upstream slope of the typical embankment section is constructed with a 1V to 3H slope from the crest to the toe. Two berms, one with a width of 6.3 feet, and one with a width of 20 feet, were constructed at elevations 793.0 and 765.0, respectively. The downstream slope was constructed with a 1V to 3H slope to elevation 771.0, where it flattens out to a 1V to 25H slope to the intersection with the ground surface.

An 18-inch thick layer of dumped rock riprap was placed on the upstream slope from elevation 793.0 to the crest of the dam. No gravel bedding was shown to have been placed under the riprap. The riprap was composed of hard, angular blocks of limestone up to 4 feet in diameter. Most of the blocks were 2 to 3 feet in diameter. The downstream slope of the embankment and the crest is provided with heavy vegetative cover.

A 6-foot wide sand filter was placed at the base of the embankment from a point near the downstream edge of the crest to the downstream toe. The horizontal sand filter was to extend the entire length of the embankment section, including the abutments.

The material to be used for the embankment was specified to be clay in the bid documents. Laboratory testing of the borrow pit material found the material to be silty clays and clayey silts with less than 10% sand. The material would be classified as CL-ML by the Unified Soil Classification System. The sand blanket was to be medium-fine sand for the top and bottom 1-1/2 feet, and medium coarse for the central section of the blanket. The downstream berm was to be constructed of waste materials from excavation of the spillway channel.

Bedrock at the site and within the vicinity is composed of Pennsylvania age, intercalated sandstones, shales and limestones. Meager natural outcrops and man-made excavations at the site expose the above rock types in a cyclic sequence. The soils of the area in which this dam is located are considered to be mixed glacial outwash modified with loessial deposits further modified by weathering.

The abutments and spillway for the dam are founded in the intercalated bedrock sequence. Bedrock bedding planes are near horizontal, and a joint plane was recorded as having an attitude of N29°E, 79°NW.

A cut-off trench with side slopes of 1H to 1V, and a base width of 12 feet, was excavated into the bedrock through the abutments and adjacent to the course of Big Creek. No cut-off trench was constructed below the embankment across the valley.

The spillway is located near the left abutment. The crest of the spillway is an uncontrolled concrete ogee overflow weir, with crest elevation at 800.0 MSL, and a crest length of 150-feet. A horizontal unlined discharge channel is

constructed at elevation 796.50, about 270 feet long, which connects the downstream toe of the crest section and the concrete spillway chute. The spillway chute slopes at 2H to 1V for about 120 feet into a conventional type stilling basin at elevation 743.0. The stilling basin width and length are 100 feet and 60 feet, respectively. On the stilling basin floor there are two rows of 2'-0" x 5'-0" baffle blocks and a 2-foot high end sill at the end of the basin floor. The stilling basin walls are 17 feet high. A cut-off wall and drain under the spillway was designed in 1969 by Larkin & Associates of Kansas City, Missouri, to help alleviate the problem of water seeping under the spillway structures. A complete set of plans of the cut-off wall and the spillway reconstruction has been made available from Larkin & Associates.

The approach channel to the spillway crest consists of the upstream face of the left end of the dam embankment with its stone protection, flanked on the left side by the abutment wall of the natural slope.

A 16-inch cast iron pipe has been installed in a 5' x 5' reinforced concrete conduit through the base of the dam embankment to serve the dual purpose of raw water supply pipe for the pumping plant and a reservoir drain outlet. The concrete conduit served for diversion during the dam construction.

The upstream inlet of the 16-inch pipe is at the base of the intake tower. The intake tower is fitted with seven 12-inch gate valves, each at different levels, so that water may be supplied from the level of best quality. Each gate valve may be operated from the top deck of the tower by a pedestal mounted handwheel connected to a valve stem exten-

sion. Each valve inlet and the inlet to the 16-inch pipe are protected with trash bars. The intake tower sits at the upstream toe of the dam, and its top deck is accessible only by boat.

At the downstream toe of the dam the 16-inch outlet pipe divides to two 16-inch branches for supply of raw water to the pumping plant; one branch to serve as a drain. A 16-inch gate valve is installed at the juncture of each branch with the upstream pipe. The valves are housed in a vault with its entrance opening at ground level. The branch leading to the pumping plant is buried, while the drain branch discharges directly into a 30-inch diameter concrete pressure pipe leading to the watercourse below the dam.

The reservoir at Forest Lake Dam impounds 21,000 acre-feet of water from a tributary area of 16.41 square miles in the Chariton River basin.

b. Location

The Forest Lake Dam is located on Big Creek which is a tributary of the Chariton River, Adair County, Missouri. The nearest downstream community is Youngstown, Missouri, population 25, which is approximately one mile downstream from the dam. Forest Lake is a part of, and surrounded by the Thousand Hills State Park. The reservoir and dam can be reached by travelling west out of Kirksville, Missouri, on State Road 6 for about 2.2 miles, and then south of State Road 157 for 2.5 miles to the sign for Thousand Hills State Park. To reach the dam, turn right on the gravel road just before the main sign, and keep to the left for about 2 miles. Then turn left on the dirt road next to the 6-foot cyclone fence and gate, for roughly 1 mile. The dam and reservoir is

shown on the Kirksville Quadrangle Sheet (15 minute series) in Section 14, Township 62 North, Range 15 West.

c. Size Classification

According to the "Recommended Guidelines for Safety Inspection of Dams", by the U.S. Department of the Army, Office of the Chief Engineer, the dam is classified in the dam size category as being "Intermediate" since its storage is more than 1,000 acre-feet, but less than 50,000 acre-feet. The dam is also classified as "Intermediate" in dam size category because its height is more than 40 feet, but less than 100 feet. The overall size classification is, accordingly, "Intermediate" in size.

d. Hazard Classification

The dam has been classified as having "High" hazard potential in the National Inventory of Dams, on the basis that in the event of failure of the dam or its appurtenances, excessive damage could occur to downstream property, together with the possibility of the loss of life. Our findings concur with the classification. The estimated damage zone extends 10 miles downstream of the dam. Within the damage zone are four farmhouses with associated farm buildings, and two improved roads. The floodplain is farmed.

e. Ownership

Forest Lake Dam is owned by the City of Kirksville, 201 South Franklin Street, Kirksville, Missouri 63501.

f. Purpose of Dam

The main purpose of the dam is to impound water for use in a water supply system operated by the City of Kirksville, Missouri. The impounded water is released by means of the bottom outlet. The lake is also for recreational use.

g. Design and Construction History

The original design for the Forest Lake Dam was done by J. W. Shikles & Company, of Kansas City, Missouri, in 1949 and 1950. Original construction was done by R. G. Albridge of Kansas City, Missouri. A cut-off wall and drain was designed in 1969, and the spillway reconstruction was designed in 1971, both by Larkin & Associates of Kansas City, Missouri.

The spillway reconstruction was done by L. G. Barcus of Kansas City, Missouri, and the cut-off wall and drain was built by Mhalovich Constructions, also of Kansas City, Missouri.

h. Normal Operational Procedures

The dam is used to impound water for use as water supply and for recreation. The reservoir level is controlled by rainfall, runoff, evaporation, and the water supply requirements of the City of Kirksville, Missouri. The reservoir is likely close to full at all times.

1.3

Pertinent Data

a. Drainage Area 10,500 acres

b. Discharge at Damsite All discharge at the damsite is through an uncontrolled spillway and outlet pipe

Estimated experienced maximum flood: 4,500 cfs

Estimated ungated spillway capacity at maximum pool elevation: 8,840 cfs

c. Elevation (Feet above MSL)

Top of dam: 806.0

Spillway crest: 800.0

Minimum streambed elevation at centerline of dam: 745.0

Maximum tailwater: Unknown

d. Reservoir

Length of maximum pool: 14,000 feet +

e. Storage (Acre-Feet)

Top of dam: 15,961

Spillway crest: 12,431

f. Reservoir Surface (Acres)

Top of dam: 646

Spillway crest: 562

g. Dam

Type: Earth embankment

Length: 1,500 feet

Height (maximum): 61 feet

Top width: 20 feet

Side slopes:

Downstream 1V to 3H

Upstream 1V to 3H

Zoning:

None

Impervious core:

None

Cutoff:

Core trench with 12-foot bottom width and 1V to 1H side slopes

Grout curtain:

None

h. Diversion and Regulating Tunnel

Type: 5-foot by 5-foot reinforced concrete conduit

Length: 290 feet

Closure: Blocked during construction, 16-inch C.I. pipe inside of conduit for water supply

i. Spillway

Type: Ogee

Length of weir: 150 feet

Crest Elevation (MSL): 800.0 feet

j. Regulating Outlets

Type: 16-inch diameter cast iron pipe

Length: 285 feet

Closure: 16-inch diameter cast iron gate valve

Maximum Capacity: 36 cfs

SECTION 2: ENGINEERING DATA

2.1 Design

Original design drawings are available for the dam and appurtenant structures. These drawings were made in 1949 and 1950, and are given as plates in this report. Also available are as-built drawings of the spillway reconstruction performed in 1971.

Available design data also includes miscellaneous design calculations, a memorandum entitled "Comments on the Design of Kirksville Dam on Big Muddy Creek", written by the design engineer, and bore hole logs and testing results of sampling performed in the borrow areas and foundation during design. The above described data is available from city offices in the City of Kirksville, Missouri and/or from Larkin and Associates in Kansas City, Missouri.

2.2 Construction

The dam was constructed in 1950 by R. G. Albridge, of Kansas City, Missouri. Specifications for construction are available, however, no records of the construction period were found.

2.3 Operation

No operation records for Forest Lake Dam are available.

2.4

Evaluation

a. Availability

The availability of data is considered good for this project. Complete design drawings and specifications are available, along with some design calculations and soil testing results.

b. Adequacy

The engineering data available is adequate to aid in evaluating the adequacy of the hydraulic and hydrologic capabilities and stability of the dam for Phase I investigations.

Seepage and stability analyses comparable to the requirements of the "Recommended Guidelines for Safety Inspection of Dams", Appendix D. These seepage and stability analyses should be performed for appropriate loading conditions (including earthquake loads) and made a matter of record.

c. Validity

The dam and appurtenant structures appeared to be constructed in accordance with the design and reconstruction drawings, and all other engineering data appears to be valid.

SECTION 3: VISUAL INSPECTION

3.1 Findings

a. General

A visual inspection of Forest Lake Dam was made on September 29, and October 6, 1978. The following persons were present during the inspection:

Name	Affiliation	Discipline
Yin Au-Yeung	Engineering Consultants, Inc.	Project Engineer, Hydraulics and Hydrology
David Bramwell	Engineering Consultants, Inc.	Geology
Jon Diebel	Engineering Consultants, Inc.	Soils
John Ismert	Engineering Consultants, Inc.	Mechanical
Kevin Blume	Consoer, Townsend & Assoc., Ltd.	Civil & Structural

Specific observations are discussed below.

b. Dam

The crest of the dam has a heavy vegetative cover which adequately protects the embankment material. The grass appeared to have been recently cut. Some evidence of vehicular traffic can be seen on the crest, but does not appear to be extensive. Some small desiccation cracks were seen in the clay embankment material on the crest.

The upstream embankment slope is adequately protected by the large rock riprap. No degradation due to weathering of the blocks was seen. Many small trees were observed on the upstream slope. The majority of these trees were growing approximately 4 to 5 feet above the water surface, where the riprap was somewhat thinner.

The downstream embankment slope is heavily covered with brush and trees, making inspection difficult. Stumps of large trees which had been previously cut were numerous on the slope, with some of stumps up to 2 feet in diameter. Many smaller trees up to 6 inches in diameter are currently growing on the slope. Some rodent activity was observed on the downstream slope.

Seepage was noted in several areas on the downstream slope. One area was observed along the abutment contact at the right side of the dam approximately one-half way up the slope. This location is at the fill/bedrock contact, as limestone could be seen on the natural slope adjacent to the seepage. The seep was at a low rate without measurable flow. Other seepage areas were noted 50 to 100 feet upstream of the pump house, again along the fill/abutment contact. This area was approximately 20 feet in diameter, and was boggy with phreatophytes growing. No measurable flow could be seen. Just upstream and to the left (looking downstream) of this area an area 55 feet by 35 feet was observed, with similar characteristics to the above described area. An area 20-feet by 20-feet, exhibiting phreatophytes and ponding water, was observed approximately 500 feet north of the left abutment, and 50 feet west of the downstream toe of the dam.

Some surface erosion was occurring along each abutment contact. This condition had not progressed to a significant stage at the time of inspection.

No signs of past or present instability were seen on the embankment or in the foundation at any location.

c. Appurtenant Structures

(1) Spillway

The top of the ogee spillway crest is seriously eroded. The crest is fairly level, and no variations were detected. Minor horizontal and vertical cracking was visible on the downstream face. There is some local spalling of concrete on the spillway chute slab, and minor vertical cracks on the stilling basin walls. The horizontal spillway channel between the crest structure and the spillway chute is covered with heavy vegetative growth for the entire length. There is a 3' x 3' hole on the right wall of the spillway channel approximately 30 feet upstream of the spillway chute.

(2) Outlet Works

The decks of the intake tower with the valve operators was reached by boat. The concrete and operators were found to be weathered, but in satisfactory condition.

The conduit under the dam was entered through the valve vault and inspected throughout its length. The conduit, as well as the 16-inch pipe, were dry and in good condition.

Attempted operation of the two gate valves in the valve vault was unsuccessful. Both valves were stuck. The valve in the line to the pump station was open, and the drain valve was closed. The maintenance man advised that they had not been operated in 4 or 5 years.

The outlet of the 30-inch concrete drain pipe from the valve vault was inspected. The pipe terminates in a concrete headwall structure which is in satisfactory condition, but partially covered with vegetation. An 8-inch pipe drain from the pumping plant also terminates in the headwall. The lower one-third of the 30-inch drain pipe was submerged under the water standing in the outlet ditch.

d. Reservoir Area

The water surface elevation was 799.5 feet above MSL at the time of inspection.

No wave wash, excessive erosion, or slides were observed along the reservoir rim. The reservoir rim is generally gentle to moderately sloping, with trees and woods at the left shore and relatively more grass and brush at the right shore.

e. Downstream Channel

The channel is trapezoidal in shape and well-defined with a rock streambed, a bottom width of approximately 15 feet, and side slopes of 1V to 3H. There is no sign of erosion or undercutting of banks downstream of the stilling basin.

3.2 Evaluation

The visual inspection did not exhibit any items which are sufficiently significant to indicate a need for immediate remedial action.

- The following problems were observed which could affect the safety of the dam, or which will require maintenance within a reasonable period of time.

1. Heavy brush and trees on the upstream and downstream embankment slope.
2. Rodent activity on the downstream embankment slope.
3. The seepage occurring at the right abutment contact and downstream of the toe of the embankment 500 feet north of the left abutment.
4. Concrete erosion on the ogee spillway crest.
5. A 3-foot by 3-foot hole on the right wall of the spillway channel 30 feet upstream of the spillway chute.
6. Vegetation in the spillway channel between the ogee and the spillway chute.
7. Inability to operate the two 16-inch gate valves in the valve vault.

SECTION 4: OPERATIONAL PROCEDURES

4.1 Procedures

The dam is used to impound water from Big Creek for water supply and recreation. The only operating facility at the dam is the water supply intake and appurtenant piping. The intake is supplied with 7 gate valves at various levels to provide water with the best quality. Each gate valve is operated from the top deck of the tower by a pedestal mounted handwheel connected to a stem extension.

Both valves for controlling the flow into the two branch lines of the outlet pipe are manually operated, the valve to the pumping plant normally being kept open, and the valve to the drain normally being kept closed. The drain valve would be opened to draw down the reservoir for dam or spillway maintenance, or in event of an emergency situation.

Operation and maintenance records are not available.

4.2 Maintenance of Dam

The dam is maintained by the City of Kirksville, Missouri. The large amount of brush on the downstream embankment slope, and trees on the upstream and downstream embankment slope demonstrates a need for more regular maintenance. Other maintenance problems observed with the dam or appurtenant structures include rodent activity on the embankment slopes, concrete erosion on the spillway crest, and minor problems with the spillway discharge channel.

4.3 Maintenance of Operating Facilities

The two 16-inch gate valves in the water supply piping are apparently inoperable, with one being stuck open, and the other closed. These should be repaired in the near future for use in case problems develop with the dam or appurtenant structures.

4.4 Description of Any Warning System in Effect

The inspection team is not aware of any existing warning system in effect.

4.5 Evaluation

The observations described above indicate a need for further maintenance at the damssite. The operation procedures appear to be satisfactory.

SECTION 5: HYDRAULIC/HYDROLOGIC

5.1 Evaluation of Features

a. Design

Forest Lake Dam has a watershed of approximately 10,500 acres, mostly covered with dense wooded forest. Land gradients are fairly steep, ranging from 7 to 10 percent. Forest Lake (formerly Big Creek Reservoir) is located on Big Creek, which is a tributary of the Chariton River.

Elevations within the watershed range from approximately 800 feet above MSL at the damsite to over 980 feet above MSL in the upper portion of the watershed.

A drainage map showing the watershed area is included in Appendix B.

Evaluation of the hydraulic and hydrologic features of Forest Lake Dam was based on criteria set forth in the Corps of Engineers' Recommended Guidelines for Safety Inspection of Dams, and additional guidance provided by the St. Louis District of the Corps of Engineers. The Probable Maximum Flood (PMF) was calculated from the Probable Maximum Precipitation (PMP) using the methods outlined in the U.S. Weather Bureau Publication, Hydrometeorological Report No. 33. The probable maximum storm duration was set at 48 hours, and storm rainfall distribution was based on criteria given in EM 1110-2-1411 (Standard Project Storm). The SCS triangular hydrograph, transformed to a curvilinear hydrograph, was adopted for developing the unit hydrograph. A

time interval of 10 minutes was used in the unit hydrograph. The derived unit hydrograph is presented in Appendix B.

Initial and infiltration loss rates were applied to the PMP to obtain rainfall excesses. The rainfall excesses were then applied to the unit hydrograph to obtain the PMF hydrograph, utilizing the Corps of Engineers' computer program HEC-1, (Dam Safety Version), which was prepared specifically for dam safety analysis. The computed peak discharge of the PMF and one-half of the PMF are 97,422 cfs and 48,711 cfs, respectively.

Both the PMF and one-half of the PMF inflow hydrographs were routed through the reservoir by the Modified Puls Method, also utilizing the HEC-1 (Dam Safety Version) computer program. The peak outflow discharges for the PMF and one-half of the PMF are 75,603 cfs and 31,555 cfs, respectively. Both the PMF and one-half of the PMF, when routed through the reservoir, resulted in overtopping of the dam. The hydraulic capacity of the spillway is 8,840 cfs before overtopping of the dam.

The stage-outflow relation for the spillway was prepared from field notes, sketches and limited construction drawings. The reservoir stage-capacity data were based on the U.S.G.S. Kirksville Quadrangle topographic maps (15 minute series) in combination with data given in the National Dam Safety Inventory Table. Reservoir storage capacity included surcharge levels exceeding the top of the dam, and the spillway overtop rating curve assumed that the dam remains intact during routing. In the routing computations, the discharge through the outlet facilities was excluded due to its insignificant magnitude as compared to the spillway discharge and the PMF. The spillway overtop rating curve and the reservoir capacity curve are also presented in Appendix B.

From the standpoint of dam safety, the hydrologic design of a dam aims at avoiding overtopping. Overtopping is especially dangerous for an earth dam because the downrush of waters over the crest will erode the dam face and, if continued long enough, will breach the dam embankment and release all the stored water suddenly into the downstream floodplain. The safe hydrologic design of a dam calls for a spillway discharge capability, in combination with an embankment crest height that can handle a very large and exceedingly rare flood without overtopping.

b. Experience Data

No records of reservoir stage or spillway discharge are maintained for this site. However, according to interviews with local residents, the maximum reservoir level was never higher than the crest of the embankment.

c. Visual Observations

The spillway approach channel is in good condition. However, the spillway crest structure, spillway discharge channel, stilling basin and exit channel are well-defined, but inadequately maintained. Concrete in the ogee section is in a deteriorated condition, exhibiting severely eroded concrete at the crest. The spillway discharge channel floor and banks contain vegetation and tree growth. Some spalling of the concrete was observed on the spillway chute slabs. Minor vertical cracks also appear on the stilling basin walls. Some debris and sediment have accumulated in the stilling basin. The downstream channel is also well-defined, but with some tree growth and vegetative cover.

d. Overtopping Potential

As indicated in Section 5.1-a., both the Probable Maximum Flood and one-half of the Probable Maximum Flood, when routed through the reservoir, resulted in overtopping of the dam. The Probable Maximum Flood (PMF) is defined as the flood discharge that may be expected from the most severe combination of critical meteorological and hydrological conditions that are reasonably possible in the region. The PMF and one-half of the PMF overtopped the dam crest by 5.39 feet and 2.48 feet, respectively. The total duration of embankment overflow is 7.00 hours during the PMF, and 4.33 hours during one-half of the PMF. The spillway for Forest Lake Dam is capable of passing a flood equal to approximately 25 percent of the PMF just before overtopping the dam.

The computed one percent chance flood using 100-year, 24 hour rainfall data was routed through the reservoir, and is given in the last section in Appendix B. The routing results indicate the spillway will pass the 100-year flood with a freeboard of 1.03 feet.

The effect from rupture of the dam could extend approximately 10 miles downstream of the dam. There are four farmhouses with associated farm buildings, and two improved roads within this ten miles of floodplain area. The floodplain is farmed.

Without extensive field surveys and downstream hydraulic routings, the impact on the town of Youngstown that failure of Forest Lake Dam would have cannot be ascertained. Youngstown, Missouri is located on the west bank of the Chariton River, while Forest Lake Dam is located on a tributary approximately 1.5 miles east of the Chariton River.

SECTION 6: STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. Visual Observations

There were no signs of settlement or distress observed on the embankment or foundation during the visual inspection. The upstream slope, crest, and downstream slope are well protected by either riprap or vegetation.

The seepage observed at its current condition is not felt to be sufficiently serious to indicate an unsafe condition. However, the seepage should be monitored and any changes in quantity, location or color should be reported and investigated.

The upstream slope, crest, and downstream slope are well protected by either riprap or vegetation. However, the trees and large brush growing on the slopes could eventually pose a hazard to the embankment. Surface erosion is not yet a problem for the embankment section.

Concrete in the ogee crest section shows signs of deterioration due to severe erosion. This condition should be corrected as soon as possible before the condition progresses further. The spillway channel banks are in good condition, except for a damaged portion at the grouted blocks on the right bank near the spillway chute. This damaged portion of the channel bank should be repaired. Spalling of concrete in the spillway chute slab and minor vertical cracking in the stilling basin walls do not pose any danger to the structural integrity of the spillway or the embankment.

The gate valves on the water supply piping should be made operable in case emergency operation of the valves is required.

b. Design and Construction Data

Design calculations found included computations for the stability of the dam foundation. Also found were gradations and Atterberg limits for the foundation soils and borrow pit material. No design data relating to seepage and stability analysis are known to exist.

c. Operating Records

No operating records are available relating to the stability of the dam. Water level on the day of inspection was 6 inches below the spillway crest, and it is assumed that the reservoir remains close to full at all times. The only operating facility at the dam is the intake for the water supply, pump house, and appurtenant piping.

d. Post Construction Changes

A cut-off wall and drain under the spillway was designed in 1969 by Larkin & Associates of Kansas City, Missouri, to alleviate the problem of water seeping under the spillway structure.

Spillway reconstruction, which indicated under-drains, a cut-off wall extension, and reconstruction of parts of the stilling basin and retaining walls, was designed and performed in 1971.

The reconstruction work was performed by L. G. Barcus of Kansas City, Missouri, and the cut-off wall and drain was built by Mhalovic Constructions, also of Kansas City, Missouri.

e. Seismic Stability

In general, projects located in Seismic Zones 0, 1 and 2 may be assumed to present no hazard from earthquake, provided the static stability conditions are satisfactory and conventional safety margins exist. Forest Lake Dam is located in Seismic Zone 1. A detailed seismic analysis is not felt to be necessary for this embankment.

SECTION 7: ASSESSMENT/REMEDIAL MEASURES

7.1 Dam Assessment

The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I investigation; however, the investigation is intended to identify any need for such studies.

It should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team.

It is also important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that an unsafe condition could be detected.

a. Safety

The dam appears to be in generally good condition, with a spillway that will pass only 24 percent of the PMF without overtopping of the dam.

The heavy brush and trees on the embankment slope pose a potential hazard to the dam. The extensive tree growth is considered unsatisfactory in terms of dam safety for several reasons: First, trees toppled by wind expose holes

that invite rapid erosion, and second, decay of large existing root systems could form channels for eventual piping. Rodent activity also should be eliminated on the embankment.

The seepage observed at the abutment contact and downstream of the toe of the dam is not felt to indicate an unsafe condition at its current extent. This seepage should be monitored for changes indicating a potential hazard.

Other observations made during the visual inspection, although not jeopardizing the safety of the dam, should be repaired within a reasonable period of time.

b. Adequacy of Information

Information concerning operation and maintenance of the dam and appurtenant structures is somewhat lacking. It is recommended that the following programs be initiated to help alleviate this problem:

1. Annual inspection of the dam by a professional engineer experienced in the design and construction of earthen dams should be made and this inspection report made a matter of record.
2. Set up a maintenance schedule and log all visits to the dam for operation, repairs and maintenance.
3. Perform seepage and stability analyses comparable to the "Recommended Guidelines for Safety Inspection of Dams".

The engineering data, together with performance history and visual inspection findings is felt to be adequate information to support the conclusions presented in this report.

c. Urgency

The remedial measures recommended in Paragraph 7.2 should be accomplished within a reasonable period of time.

Increasing the spillway capacity is certainly of a more urgent nature than the other recommended actions.

d. Necessity for Phase II Inspection

Based on results of the Phase I inspection, a Phase II inspection is not felt to be necessary.

7.2 Remedial Measures

a. Alternatives

Possible alternatives for increasing the spillway capacity of the dam include:

1. Lowering the ogee crest of the spillway.
2. Raising the height of the dam crest.
3. Widening the spillway crest length.

4. A combination of the above items.

b. O & M Maintenance Procedures

The owner should initiate the following programs:

1. Annual inspection of the dam by a professional engineer experienced in the design and construction of earthen dams.
2. Set up a maintenance schedule and log all visits to the dam for operation, repairs and maintenance.
3. Clear the upstream and downstream embankment slope of all trees and large brush. Future growth should be prevented following original clearing.
4. Monitor seepage at the right abutment contact and downstream of the toe of the dam for changes in quantity, location or color of the seepage. Any changes should be reported.
5. Patch concrete on the ogee spillway crest.
6. Repair the hole on the right side of the spillway channel.
7. Clean off all vegetation and tree growth in the spillway channel between the ogee crest and the spillway chute.

8. Repair the gate valves for the water supply pipe located in the valve vault.
9. Seepage and stability analyses should be performed by a professional engineer experienced in the design and construction of dams.

PLATES

LOCATION MAP
FOREST LAKE DAM
ADAIR COUNTY, MISSOURI

PROPOSED IMPOUNDING RESERVOIR
BIG CREEK
KIRKSVILLE, MISSOURI

17A

PROFILES
BIG CREEK RESERVOIR
MURKINVILLE MISSOURI
L.W. SCHAFFER & CO. P.C. MC
CARTER

(5)

Typical Valley Section

TOE OF SAND BLANKET

Typical Abutment Section

TYPICAL CROSS SECTIONS
OF DAM
BIG CREEK RESERVOIR
KIRKSVILLE, MISSOURI
W.M. HUBER & CO
E. S. COOPER

⑥

SPILLWAY PROFILE
BIG CREEK RESERVOIR
KIRKSVILLE, MISSOURI
J.W. REED & CO. D.C. 1960

(2)

SPILLWAY CHANNEL
BIG CREEK RESERVOIR
RUMKSVILLE, MISSOURI
U.S. SURVEY & CO
E.C. HOGG

Typical Section
Scale 1:100

ENGINEERING CONSULTANTS, INC.

Forest Lake (Big Creek Reservoir) - Missouri

SHEET NO. / OF _____

JOB NO. 1223

Rating Curve for Drain Outlet

BY J.C.F. DATE 10/14/78

Significant losses are pipe entrance loss, pipe friction, exit velocity head.
At higher reservoir levels all gate valves in intake tower can be opened, therefore
losses in tower will be nil.

1. EST. LAKE (BIG CREEK RESERVOIR) - MISSOURI

SHEET NO. 2 OF

JOB NO. 1223

BY J.G.E. DATE 10/14/78

Pipe friction

From Hyd. Institute Tables $F \approx 1.15$ where $h_f = F \frac{V^2}{2g}$ per 100'

Increase about 15% for ageing $F = 1.15 \times 1.15 \times \frac{2.85}{100} = 3.77$

$$h_f = 3.8 \frac{V^2}{2g}$$

Entrance Loss

Bellmouth type $K \approx 0.2$

$$h_f = 0.2 \frac{V^2}{2g}$$

$$\text{Exit Vel Head} = 1.0 \frac{V^2}{2g}$$

Total

$$3.8 \frac{V^2}{2g}$$

$$0.2$$

$$1.0$$

$$5.0 \frac{V^2}{2g}$$

$$H_{\text{total}} = 5.0 \frac{V^2}{2g} = \frac{5 Q^2}{A^2 (2g)} = \frac{5 Q^2}{(1.4)^2 (2g)}$$

$$Q = 1.4 \sqrt{\frac{2g}{5} (H)} = 5.02 \sqrt{H} \text{ CFS}$$

Drawdown rate at design pool elevation.

EL - FT	H - FT	Q-CFS
764.4	9	15.06
771.4	16	20.08
780.4	25	25.10
791.4	36	30.12
804.4	49	35.14
819.4	64	40.16

Surface area = 703 a.

time to drawdown one foot

$$= 703 \text{ a} \times 43,560 \text{ ft}^2/\text{a}$$

$$33.7 \text{ ft}^{1/3} \times 60 \times 60 \times 24$$

$$= 10.5 \text{ days}$$

About 9 days if pumping plant
is at 1' (2600 cu.m.)

ECI-4 ENGINEERING CONSULTANTS, INC.

FOREST LAKE (BIG CREEK RESERVOIR) - MISSOURI

SHEET NO. 3 OF _____

JOB NO. 1328

BY TCE DATE 10/14/28

806 - Dam Crest

Explanation

Pennsylvanian System

P_{kc} - Kansas City group: cyclic deposits with numerous limestones.

P_{pw} - Pleasanton group: sandstone channel member.

P_m - Marmaton group: cyclic deposits with limestones.

P_{cc} - Cherokee group: cyclic deposits, predominately shale, sandstone and coal beds.

Mississippian System

M_m - sandy, oolitic, fossiliferous, lithographic, or cherty limestones.

M_o - cherty, crinoidal limestone, with some shale.

M_k - intercalated limestones and shales.

Reference: Geologic Map of Missouri, 1961, Division of Geological Survey and Water Resources, State of Missouri.

APPENDIX A

PHOTOGRAPHS TAKEN DURING INSPECTION

FOREST LAKE DAM

- Photo 1 - View across spillway and of downstream slope of dam taken at left abutment.
- Photo 2 - View along downstream slope of dam taken at left of dam near spillway.
- Photo 3 - Picture of downstream slope of dam taken downstream of dam at left side.
- Photo 4 - View along crest of dam taken at left side of dam.
- Photo 5 - Picture of typical condition of upstream slope showing riprap and vegetation.
- Photo 6 - Picture of intake structure for outlet works.
- Photo 7 - Picture of pump house taken from dam crest near right abutment.
- Photo 8 - View of spillway channel taken from upstream.
- Photo 9 - View of spillway channel taken from downstream.
- Photo 10 - Picture of concrete ogee crest section of spilway. Note erosion of concrete.
- Photo 11 - Picture of vegetation in spillway channel downstream of ogee section.
- Photo 12 - Hole in grouted block wall on right side of spillway channel downstream of ogee section.
- Photo 13 - Picture of stilling basin with baffle blocks at base of concrete chute.
- Photo 14 - Concrete wall of spillway at right side of stilling basin.
- Photo 15 - Seepage in spillway channel about half-way down slope on right side. Seepage is occurring in bedrock slope cut.
- Photo 16 - View of discharge channel downstream of spillway.

Forest Lake Dam

Photo 1 - View across spillway and of downstream slope of dam taken at left abutment.

Photo 2 - View along downstream slope of dam taken at left of dam near spillway.

Forest Lake Dam

Photo 3 - Picture of downstream slope of dam taken downstream of dam at left side.

Photo 4 - View along crest of dam taken at left side of dam.

Forest Lake Dam

Photo 5 - Picture of typical condition of upstream slope showing riprap and vegetation.

Photo 6 - Picture of intake structure for outlet works.

Forest Lake Dam

Photo 7 - Picture of pump house taken from dam crest near right abutment.

Photo 8 - View of spillway channel taken from upstream.

Forest Lake Dam

Photo 9 - View of spillway channel taken from downstream.

Photo 10 - Picture of concrete
ogee crest section
of spillway. Note
spalling of concrete.

Forest Lake Dam

Photo 11 - Picture of vegetation in spillway channel downstream of ogee section.

Photo 12 - Hole in grouted block wall on right side of spillway channel downstream of ogee section.

Forest Lake Dam

Photo 13 - Picture of stilling basin with baffle blocks at base of concrete chute.

Photo 14 - Concrete wall of spillway at right side of stilling basin.

Forest Lake Dam

Photo 15 - Seepage in spillway channel about half-way down slope on right side. Seepage is occurring in bedrock slope cut.

Photo 16 - View of discharge channel downstream of spillway.

APPENDIX B
HYDROLOGIC COMPUTATIONS

SCALE 1:62500

Contour interval 20 feet
10 foot contours added in dashed lines
NATIONAL GEODETIC VERTICAL DATUM OF 1929

DRAINAGE BOUNDARY —————

FOREST LAKE DAM
DRAINAGE BASIN

FOREST LAKE DAM
RESERVOIR CAPACITY CURVE

FOREST LAKE DAM
SPILLWAY & OVERTOP RATING CURVE

ECI ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION - MISSOURI

SHEET NO. 1 OF

FOREST LAKE DAM

JOB NO. 1223-001-1

RESERVOIR AREA CAPACITY

BY KLB DATE 10-16-78

UP

FOREST LAKE DAM

AREA - CAPACITY DATA

DATA FROM CURVE PRESENTED WITH PLANS

ELEV (FT)	SURFACE AREA (ACRES)	STORAGE MILLION GALLONS	STORAGE (AG-FT)	REMARKS
750	0	0	0	INVERT
760	72	140	430	
770	174	540	1657	
780	290	1290	3959	
790	420	2440	7489	
800	562	4050	12431	SPILLWAY CREST
806	646	5200	15961	TOP OF DAM
810	700	6080	18662	
820	835	8100	24861	EXTRAPOLATED POINT

This curve was based on USGS Lexington & Indraagle Street
(15 minute series) in combination with data given in the National
Dam Safety Inventory Guide.

ECI-4 ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION/MISCELLANEOUS

FOREST LAKE DAM

SHEET NO. 1 OF

JOB NO. 1223-001

SPILLWAY & OVERTOP DISCHARGE CAPACITY BY MAS DATE 10-16-78

4 m

UPPER W.E. E=V CROSS foot	L_1	C_0	C_1/C_0	C_1	H_2	C_2	$Q_T = C_1 L_1 H_1^{1.5} + C_2 L_2 H_2^{1.5}$
800	3.89	0.85	3.31				0
801	"	0.90	3.50				4.97
802	"	0.94	3.66				1.485
803	"	0.97	3.77				28.53
804	"	1.00	3.89				45.24
805	"	1.03	4.01				65.24
806	"	1.05	4.08				88.40
807	1	1.07	4.16				113.34 + 40.24 = 153.58
808	2	1.10	4.28				141.20 + 113.81 = 255.01
809	3	1.10	4.28				173.34 + 20.98 = 382.43
810	4	1.10	4.28				203.02 + 32.19 = 524.93
811	5	1.10	4.28				264.87 + 59.39 = 858.26
812	6	1.10	4.28				372.97 + 108.45 = 459.42
813	7	1.10	4.28				574.22 + 210.84 = 268206
814	8	1.10	4.28				
815	9	1.10	4.28				
816	10	1.10	4.28				
817	11	1.10	4.28				
818	12	1.10	4.28				
819	13	1.10	4.28				
820	14	1.10	4.28				

EDC ENGINEERING CONSULTANTS, INC.

DAM SAFETY INSPECTION - MISSOURI

FOREST LAKE DAM

UNIT HYDROGRAPH PARAMETERS

SHEET NO. 1 OF 3

JOB NO. 1223-001-1

BY KLB DATE 12-18-78

$$1. \text{ DRAINAGE} = 10500 \text{ AC} = 16.41 \text{ SQ. MI.}$$

$$2. \text{ LENGTH OF STREAM} = L = 2.27 \text{ mi}$$

$$3. \text{ DIFFERENCE IN ELEVATION : } \Delta H$$

$$\Delta H = 980 - 520 = 160 \text{ FT.}$$

$$4. \text{ TIME OF CONCENTRATION, } T_c$$

$$T_c = \left(\frac{11.9 \times L^3}{\Delta H} \right)^{0.385}$$

$$T_c = \left(\frac{11.9 \times 2.27^3}{160} \right)^{0.385}$$

$$T_c = \underline{0.95 \text{ HR.}}$$

$$5. \text{ LAG TIME } L_t = 0.6 \times T_c$$

$$L_t = 0.6 \times 0.95 = \underline{0.57 \text{ HR}}$$

$$6. \text{ RAINFALL UNIT DURATION, } \Delta$$

$$\text{USE } \Delta = 10 \text{ MIN.} = 0.166 \text{ HR}$$

(MINIMUM ALLOWABLE FOR 48HR PMP
CALCULATIONS USING HEC108)

$$7. \text{ TIME TO PEAK, } T_p$$

$$T_p = \frac{\Delta}{2} + 0.6 \times T_c$$

$$T_p = \frac{0.166}{2} + 0.6 \times 0.95 = \underline{0.65 \text{ HR}}$$

$$8. Q_p = \frac{484 \times A}{T_p} = \frac{484 \times 16.41}{0.65} = \underline{12219 \text{ CFS}}$$

DAM SAFETY INSPECTION - MISSOURI

SHEET NO. 2 OF

FOREST LAKE DAM

JOB NO. 1223-001-1

SCS UNIT HYDROGRAPH DERIVATION

BY ALB DATE 12-18-78

9) CURVILINEAR UNIT HYDROGRAPH

TIME T/T _p	DISCHARGE RATIO 8/8 _p	UNIT HYDROGRAPH	
		TIME, T (HRS)	DISCHARGE (CFS)
0.0	0.000	0.00	0.000
0.1	0.015	0.07	183.29
0.2	0.075	0.13	916.44
0.3	0.16	0.20	1995.06
0.4	0.28	0.26	3421.36
0.5	0.45	0.33	5498.61
0.6	0.60	0.39	7331.18
0.7	0.71	0.46	8675.59
0.8	0.87	0.52	10630.65
0.9	0.97	0.59	11852.56
1.0	1.00	0.65	12219.19
1.1	0.98	0.72	11974.76
1.2	0.92	0.78	11241.61
1.3	0.84	0.85	10264.08
1.4	0.75	0.91	9164.35
1.5	0.66	0.98	8064.63
1.6	0.56	1.04	6842.72
1.8	0.42	1.17	5132.04
2.0	0.32	1.30	3910.12
2.2	0.24	1.43	2932.59
2.4	0.18	1.56	2199.44
2.6	0.13	1.69	1588.49
2.8	0.098	1.82	1197.48
3.0	0.075	1.95	916.44
3.5	0.036	2.28	439.89
4.0	0.018	2.60	219.94
4.5	0.009	2.93	109.97
5.0	0.004	3.25	48.88

FOREST LAKE DAM
10 MINUTE UNIT HYDROGRAPH

DAM SAFETY INSPECTION / SULLIVAN
 FOREST LAKE DAM
 PROBABLE MAXIMUM STORM (PMS) SHEET NO. 1 OF
 BY MAS DATE

FOREST LAKE DAM

DETERMINATION OF PMS

1. Determine drainage area of the basin

$$D.A. = 10,500 \text{ acres} = 16.41 \text{ sq. mi}$$

2. Determine S.M.P. Index rainfall:

Location of centroid of basin:

Long. $92^{\circ} 63'$; Lat.: $40^{\circ} 18'$

→ PMP for 200 Sq. mi & 24 hrs duration
 $= 23.9''$ (from Fig 1, HMR No 33)

3. Determine basin rainfall in terms of percentage of PMP, Index rainfall for various durations:

Location: Long. $92^{\circ} 63'$; Lat. $40^{\circ} 18'$

⇒ Zone-7

Duration (Hrs.)	Percent of Index rainfall (%)	Total rainfall (Inches)	Rainfall increments (Inches)	Duration of incre- ment (hrs.)
6	98	23.4	23.4	6
12	116	27.7	4.3	6
24	126	30.1	2.4	12
48	140	33.5	3.4	<u>24</u>

DAM SAFETY INSPECTION / MISSOURI
 FOREST LAKE DAM
100-YEAR FLOOD BY REGRESSION EQ. SHEET NO. 1 OF 1
 JOB NO. 1233-001
 BY MAS DATE 10-17-78

FOREST LAKE DAM100-YEAR FLOOD BY REGRESSION EQ.

Regression equation for 100-year flood for
 Missouri:-

$$Q_{100} = 85.1 A^{0.934} S^{-0.02}$$

where A = drainage area in Sq. mi.

S = Main channel slope ft./mi.
 (Avg. slope between 0.70 & 0.85)

For Forest Lake Dam:

$$A = 10,500 \text{ acres} = 16.41 \text{ Sq. mi.}$$

$$S = 99 \text{ ft./1.70 mi} = 58.24 \text{ ft./mi}$$

$$\therefore Q_{100} = (85.1)(16.41)^{0.934(16.41)} (58.24)^{-0.02}$$

$$= \underline{\underline{10468 \text{ cfs}}}$$

HEC1DB INPUT DATA

DAW SARAH LYNNE CLEARY

ROUTE HYDROGRAPH THROUGH FOREST LAKE DAM
Y1 000.00
Y2 010.00
Y3 020.00
Y4 030.00
Y5 040.00
Y6 050.00
Y7 060.00
Y8 070.00
Y9 080.00
Y10 090.00
Y11 100.00
Y12 110.00
Y13 120.00
Y14 130.00
Y15 140.00
Y16 150.00
Y17 160.00
Y18 170.00
Y19 180.00
Y20 190.00
Y21 200.00
Y22 210.00
Y23 220.00
Y24 230.00
Y25 240.00
Y26 250.00
Y27 260.00
Y28 270.00
Y29 280.00
Y30 290.00
Y31 300.00
Y32 310.00
Y33 320.00
Y34 330.00
Y35 340.00
Y36 350.00
Y37 360.00
Y38 370.00
Y39 380.00
Y40 390.00
Y41 400.00
Y42 410.00
Y43 420.00
Y44 430.00
Y45 440.00
Y46 450.00
Y47 460.00
Y48 470.00
Y49 480.00
Y50 490.00
Y51 500.00
Y52 510.00
Y53 520.00
Y54 530.00
Y55 540.00
Y56 550.00
Y57 560.00
Y58 570.00
Y59 580.00
Y60 590.00
Y61 600.00
Y62 610.00
Y63 620.00
Y64 630.00
Y65 640.00
Y66 650.00
Y67 660.00
Y68 670.00
Y69 680.00
Y70 690.00
Y71 700.00
Y72 710.00
Y73 720.00
Y74 730.00
Y75 740.00
Y76 750.00
Y77 760.00
Y78 770.00
Y79 780.00
Y80 790.00
Y81 800.00
Y82 810.00
Y83 820.00
Y84 830.00
Y85 840.00
Y86 850.00
Y87 860.00
Y88 870.00
Y89 880.00
Y90 890.00
Y91 900.00
Y92 910.00
Y93 920.00
Y94 930.00
Y95 940.00
Y96 950.00
Y97 960.00
Y98 970.00
Y99 980.00
Y100 990.00
Y101 1000.00

PREVIEW OF SELECTION OF STREAM NETWORK EVALUATIONS

HUNDRED HYDROGRAPH AT
HUNDRED HYDROGRAPH TO
END OF NETWORK

INFLOW PMF AND ONE-HALF PMF HYDROGRAPHS

**RECORDED IN ACCORDANCE WITH THE
FEDERAL HAZARDOUS PACKAGE (MEPCO)
Hazardous Safety Regulation
Last Modification 27 AUG 74**

NUM DATA 10/12/1964

DAM SAFETY INSPECTION - M1899UR1
FOREST LAKE DAM
PHF AND 90 PERCENT PMF DETERMINATION AND BULK

PHF AND 90 PERCENT PHF DETERMINATION AND PUBLISHING

NO	JULY SPECIFICATION									
	NMR	NMTN	ITAY	FMR	TWN	METRC	IPLT	IPRT	NP	0
160	0	-10	0	0	0	0	0	0	0	0
			JUPITER	NMTN	LADPT	TRACE				
			5	0	0	0				

MULTI-PLAN ANALYSIS IN BF PERFORMED
NPLANS 1 ART100 2 ART100 1

卷之三

SUB-AREA RUMBLE COMPUTATION

IMAG	LUNG	TAREA	SNAP	HYDROGRAPH DATA	HATIM	ISNAME	LOCAL
1	16.41	16.41	0.00	TRSDA TRSPC	16.41	0.000	0

SPEE PMS R6 R12 R24 R48 R72 R96
C.00 23.90 98.00 116.00 125.00 149.00 0.00 0.00

UNSF, GRAPH TOTALS 63684. CFS OR 1.00 INCHES OVER THE AREA

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
999
1000

	PEAK	6-31G	24-31G	72-31G	INITIAL VOLUME
1659	97.22%	100.00%	123.2%	645.5%	1045.0%
1449	77.04%	111.7%	153.5%	548.0%	548.0%
INHIBS		22.37	28.20	30.50	30.0%
MW	66.82%	61.71%	71.45%	77.4%	77.4%
ACT%	10.77%	24.61%	26.27%	26.75%	26.75%
TONS, S.C. 1"	2.1376	3.0125	3.7904	3.7904	3.7904

MANUFACTURERS AND IMPORTERS OF
COTTON, SILK, HEMP, LINEN, WOOL, & COTTON
COMBINATION FABRICS.

• 5

PMF FLOOD ROUTING

INCHES	1170.	1160.	1150.	1140.	1130.	1120.	1110.	1100.	1090.	1080.	1070.	1060.	1050.	1040.	1030.	1020.	1010.	1000.	990.	980.	970.	960.	950.	940.	930.	920.	910.	900.	890.	880.	870.	860.	850.	840.	830.	820.	810.	800.	790.	780.	770.	760.	750.	740.	730.	720.	710.	700.	690.	680.	670.	660.	650.	640.	630.	620.	610.	600.	590.	580.	570.	560.	550.	540.	530.	520.	510.	500.	490.	480.	470.	460.	450.	440.	430.	420.	410.	400.	390.	380.	370.	360.	350.	340.	330.	320.	310.	300.	290.	280.	270.	260.	250.	240.	230.	220.	210.	200.	190.	180.	170.	160.	150.	140.	130.	120.	110.	100.	90.	80.	70.	60.	50.	40.	30.	20.	10.	0.																																																																																																																																																																																				
MM	2970.	2960.	2950.	2940.	2930.	2920.	2910.	2900.	2890.	2880.	2870.	2860.	2850.	2840.	2830.	2820.	2810.	2800.	2790.	2780.	2770.	2760.	2750.	2740.	2730.	2720.	2710.	2700.	2690.	2680.	2670.	2660.	2650.	2640.	2630.	2620.	2610.	2600.	2590.	2580.	2570.	2560.	2550.	2540.	2530.	2520.	2510.	2500.	2490.	2480.	2470.	2460.	2450.	2440.	2430.	2420.	2410.	2400.	2390.	2380.	2370.	2360.	2350.	2340.	2330.	2320.	2310.	2300.	2290.	2280.	2270.	2260.	2250.	2240.	2230.	2220.	2210.	2200.	2190.	2180.	2170.	2160.	2150.	2140.	2130.	2120.	2110.	2100.	2090.	2080.	2070.	2060.	2050.	2040.	2030.	2020.	2010.	2000.	1990.	1980.	1970.	1960.	1950.	1940.	1930.	1920.	1910.	1900.	1890.	1880.	1870.	1860.	1850.	1840.	1830.	1820.	1810.	1800.	1790.	1780.	1770.	1760.	1750.	1740.	1730.	1720.	1710.	1700.	1690.	1680.	1670.	1660.	1650.	1640.	1630.	1620.	1610.	1600.	1590.	1580.	1570.	1560.	1550.	1540.	1530.	1520.	1510.	1500.	1490.	1480.	1470.	1460.	1450.	1440.	1430.	1420.	1410.	1400.	1390.	1380.	1370.	1360.	1350.	1340.	1330.	1320.	1310.	1300.	1290.	1280.	1270.	1260.	1250.	1240.	1230.	1220.	1210.	1200.	1190.	1180.	1170.	1160.	1150.	1140.	1130.	1120.	1110.	1100.	1090.	1080.	1070.	1060.	1050.	1040.	1030.	1020.	1010.	1000.	990.	980.	970.	960.	950.	940.	930.	920.	910.	900.	890.	880.	870.	860.	850.	840.	830.	820.	810.	800.	790.	780.	770.	760.	750.	740.	730.	720.	710.	700.	690.	680.	670.	660.	650.	640.	630.	620.	610.	600.	590.	580.	570.	560.	550.	540.	530.	520.	510.	500.	490.	480.	470.	460.	450.	440.	430.	420.	410.	400.	390.	380.	370.	360.	350.	340.	330.	320.	310.	300.	290.	280.	270.	260.	250.	240.	230.	220.	210.	200.	190.	180.	170.	160.	150.	140.	130.	120.	110.	100.	90.	80.	70.	60.	50.	40.	30.	20.	10.	0.

મનુષ્ય પરિવહન

ND-UF-E PERIOD WINDOGRAPH STATION - 1. PLAN 1. PATIN 1
NAME - DAWIN DAWIN
CITY - EXPD 0.
STATE - 0.
ZIP - 0.
PHONE - 0.

卷之三

19 *סִבְתָּא נַעֲלֵה* 1990, 41 (1)

PEAK	6-MIN/HR	24-MIN/HR	92-MIN/HR	TOTAL VOLUME
FES	750.5.	367.4	1190.2	1807.72.
C4S	214.1.	161.1	33.8	511.91.
THIOLIC		29.44	.08	26.47
MN	529.35	647.81	723.04	723.04
ACOF	124.9.	124.9.	236.81	249.01
THIOLIC	274.81	274.81	274.81	307.15.

ONE-HALF PMF FLOOD ROUTING

STATION - 1, PLAT 1, HATTI, >
NON-PROPORTION HYDROGRAPH DERTAILANTS

NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q		R		S		T		U		V		W		X		Y		Z	
NUTRIENT		C		D		E		F		G		H		I		J		K		L		M		N		O		P		Q																			

AD-A104 899

PRC CONSOER TOWNSEND INC ST LOUIS MO

F/6 13/13

NATIONAL DAM SAFETY PROGRAM, FOREST LAKE DAM (MO 10128), GRAND ETC(U)

DEC 78

DACW43-78-C-0160

NL

UNCLASSIFIED

2 of 2

ADA
104899

END
DATE FILMED
10-81
DTIC

PEAK MURKIN IS 31555. AT TIME - 60.05 METERS

SUMMARY OF PMF AND ONE-HALF PMF FLOOD ROUTING

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS
 FLUME IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
 AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION	STATION	AREA	PLAN RATIO		RATIO APPLIED TO FLUMES
			1	2	
HYDROGRAPH AT	2	16.01 (42.50)	1 97422 (2150.69)	1 48711 (1370.35)	
ROUTED TO	1	16.01 (42.50)	1 75603 (2140.45)	1 31555 (893.51)	

SUMMARY OF DAM SAFETY ANALYSIS

PLAN	FLOWING STORAGE CAPACITY	INITIAL VALUE	SPILLWAY CREST	TIME OF DRAIN
	100,000 126310	100,000 126310	800.00 124510	000.00 1961. 0040.
	OUTFLOW	0.	0.	
RATIO	MAXIMUM PERIOD WITH DMF ELEV	MAXIMUM DEPTH FOR DAM	MAXIMUM STABILITY EFFECT	DURATION OVER TOP MINUTES
	4.5.ELEV	1,150 ft	1,150 ft	
	1.00	811.39	5.30	19522.
	.90	811.49	2.44	17632.
				75603.
				31555.
				4.133
				40.67
				40.83
				0.00
				0.00

PERCENT OF PMF FLOOD ROUTING
EQUAL TO SPILLWAY CAPACITY

OVERVIEW OF STRUCTURE OF TRAFFIC NETWORK CALCULATIONS

NUMBER OF DIRECTED EDGES AT
ROUTE MESHGRAPH IN
END OF NETWORK

FLOOD HYDROGRAPH PACKAGE (WFPC1)
DAM SAFETY INSPECTION - JULY 1974
Last Inspection: 21 July 74

RUN DATE: 7/12/74
TIME: 04:32:25

DAW SAFETY INSPECTION - MISSOURI

FRWEST LAKE DAM

PERCENT OF PMP DETERMINATION AND RROUTING

STC	TYPE	MIN	MAX	JHR SPECIFICATION	IPMT	IPRT	NRATN
10	JOINT	0	0	MIN	0	0	0
10	JOINT	0	0	MINT	0	0	0
10	JOINT	0	0	LIMIT	0	0	0
10	JOINT	0	0	TRACE	0	0	0

100% - 100% APPLIED TO THE ROUTING

Q1INCH	Q2INCH	Q3INCH	Q4INCH	Q5INCH	Q6INCH	Q7INCH	Q8INCH	Q9INCH	Q10INCH	Q11INCH	Q12INCH	Q13INCH	Q14INCH	Q15INCH	Q16INCH	Q17INCH	Q18INCH	Q19INCH	Q20INCH	Q21INCH	Q22INCH	Q23INCH	Q24INCH	Q25INCH	Q26INCH	Q27INCH	Q28INCH	Q29INCH	Q30INCH	Q31INCH	Q32INCH	Q33INCH	Q34INCH	Q35INCH	Q36INCH	Q37INCH	Q38INCH	Q39INCH	Q40INCH	Q41INCH	Q42INCH	Q43INCH	Q44INCH	Q45INCH	Q46INCH	Q47INCH	Q48INCH	Q49INCH	Q50INCH	Q51INCH	Q52INCH	Q53INCH	Q54INCH	Q55INCH	Q56INCH	Q57INCH	Q58INCH	Q59INCH	Q60INCH	Q61INCH	Q62INCH	Q63INCH	Q64INCH	Q65INCH	Q66INCH	Q67INCH	Q68INCH	Q69INCH	Q70INCH	Q71INCH	Q72INCH	Q73INCH	Q74INCH	Q75INCH	Q76INCH	Q77INCH	Q78INCH	Q79INCH	Q80INCH	Q81INCH	Q82INCH	Q83INCH	Q84INCH	Q85INCH	Q86INCH	Q87INCH	Q88INCH	Q89INCH	Q90INCH	Q91INCH	Q92INCH	Q93INCH	Q94INCH	Q95INCH	Q96INCH	Q97INCH	Q98INCH	Q99INCH	Q100INCH
0.20	0.21	0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.30	0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.38	0.39	0.40	0.41	0.42	0.43	0.44	0.45	0.46	0.47	0.48	0.49	0.50	0.51	0.52	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.60	0.61	0.62	0.63	0.64	0.65	0.66	0.67	0.68	0.69	0.70	0.71	0.72	0.73	0.74	0.75	0.76	0.77	0.78	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.86	0.87	0.88	0.89	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1.00																		

SURFACE RUNOFF COMPUTATION

THYDE	THMG	TARFA	SNAP	TPSDA	TRATE	RATIO	ISNOW	ISAME	LOCAL	1STAGE	1AITE
1	1K.41	0.00	1K.41	1.00	0.000	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0

SPF	PMS	FB	W12	W24	W48	W72	W96
0.00	23.90	36.00	110.00	125.00	160.00	0.00	0.00

LAIHOT	GTHRA	ULTRD	HTHIL	EDATN	LSNSG DATA	#110K	STRNL	CNSTL	ALSHX	HTEMP
0.00	0.00	1.00	0.00	0.00	0.00	1.00	.05	.07	0.00	0.00

REFSTDS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
REFCSNS	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

MIN,HR,MIN PERIOD	RAIN	FCFS	LOSS	COMP 0	MIN,HR,MIN PERIOD	RAIN	EXCH	LOSS	COMP 0
(050,)	(772.0)	(00000000)	(00000000)	(00000000)	(050,)	(772.0)	(00000000)	(00000000)	(00000000)

SUM	33.46	30.41	3.09	00000000	SUM	33.46	30.41	3.09	00000000
(050,)	(772.0)	(00000000)	(00000000)	(00000000)	(050,)	(772.0)	(00000000)	(00000000)	(00000000)

HYDROGENATION STUDY

PEAK OUTFLOW IS 4885. AT 71MF 42.00 MUNIJS

卷之三

PEAK SHIFTS IN 13C NMR 111

ג' ינואר 1963 מילויים

PEAK DIFFUSION IS 7303, AT TIME 41.043 HOURS

卷之三

PEAK OUTFLUX IS 1000-114E 01-81 HUNAS

CHINESE CULTURE

卷之三

PEAK GROWTH IS 1203. AT 10% 61.03 HOURS

PERIODICALS RECEIVED IN 1977. II (CONT.)

BEAR GULF COAST

תְּנַשֵּׁא עֲמָלָק כִּי יְהוָה אֱלֹהֵינוּ מֶלֶךְ עָלָנוּ

卷之三

PERAK DUNGELOW IN 1933N. AT THE 11.67 MILES

卷之三

卷之三

PEAK FLOW AND STURGE TIME PER PERIOD SUMMARY FOR MULTIPLE PLANE-MATRIX ECONOMIC ENVIRONMENT
 FLUXO MÁXIMO E DURAÇÃO DE STURGE POR PERÍODO PARA O AMBIENTE ECONÔMICO DE MÚLTIPLOS PLANOS

SUMMARY OF DAM SAFETY ANALYSIS

PLAN	ELEVATION STORAGE NUTELLA	INITIAL VALVE OPEN P2431. 0.	SPILLWAY CREST NON 12411. 0.	TOP OF DAM NON 15661. ARJC.	TIME OF FAILURE					
					RATE	MAXIMUM DISCHARGE M.S.E.F.V	MAXIMUM STORAGE AC-FT	DURATION INTO TOP WALLS	MAX DURATION TOP WALLS	TIME OF FAILURE HOURS
1	0.20	Hou.94	0.70	15361.	6455.	0.00	42.00	0.00	0.00	0.00
	0.21	805.14	0.70	15241.	6919.	0.00	0.43	0.43	0.43	0.43
	0.22	805.14	0.71	15591.	7393.	0.00	41.83	41.83	41.83	41.83
	0.23	805.17	0.71	19701.	7840.	0.00	41.83	41.83	41.83	41.83
	0.24	805.76	0.70	15241.	8285.	0.00	0.43	0.43	0.43	0.43
	0.25	805.76	0.70	15412.	8727.	0.00	41.83	41.83	41.83	41.83
	0.26	805.76	0.71	14031.	9530.	1.33	41.67	41.67	41.67	41.67
	0.27	806.11	0.71	14031.	10341.	1.43	41.67	41.67	41.67	41.67
	0.28	806.23	0.73	14117.	10341.	2.00	41.50	41.50	41.50	41.50
	0.29	806.36	0.76	14202.	11162.	2.17	41.50	41.50	41.50	41.50

FOREST LAKE DAM

100 YEAR FLOOD DETERMINATION AND ROUTING
FROM PRECIPITATION DATA

FLOOD WASHINGGRAPH DRAFT
DAM SAFETY SECTION July 1974
LAST WORKSHEET IN 21 APR 74

A. SAFETY INSTITUTIONS • 1153

Fig. 2. 100 YEAR PRECIPITATION AT THE MTS. TIECHUAO

1.0
0.41
0.1

• 112

• 340 . 264 . 142 . 140

卷之三

210° 210° 210° 210° 210° 210° 210° 210° 210° 210°

	6.0	12.0	18.0	24.0	30.0	36.0
6.0	12.0	18.0	18.0	12.0	6.0	0.0
12.0	12.0	18.0	18.0	12.0	6.0	0.0
18.0	18.0	18.0	18.0	12.0	6.0	0.0
24.0	18.0	18.0	18.0	12.0	6.0	0.0
30.0	12.0	12.0	12.0	12.0	12.0	12.0
36.0	6.0	6.0	6.0	6.0	6.0	6.0

卷之三

ROUTE 14 OWNERSHIP TRACTS: FOREST LAKE HAM

0 AR 3,00 14,00 803,00 908,00 4,7

3459. 7450. 12441. 15961. 186

160° 170° 180° 190° 200° 210° 220°

PATIENTS IN STABILITY OF SPERM NETWORK CALCULATIONS

HUNDREDF HYDROGRAPH AT

1 MINUTE HYDROGRAPH TO

END OF NETWORK

PLANO HYDROGRAPH PACKAGE (WPC-1)
DAM SAFETY VERSION
LAGI MODIFICATION 21 AUG 78

RUN DATE: 10/12/78,
TIME: 08:30:56.

DAM SAFETY INSPECTION - MISSION

100 YEAR FLOOD FROM RIVEN 100 YEAR PRECIPITATION VALUES

NQ	NHR	JOHN'S PRECIPITATION			IPRI	HSTAN	ISAO
		MIN	DAY	1HR			
100	0	10	0	0	0	0	0
		Inpdt	0	0	0	0	0
			0	0	0	0	0
			5	0	0	0	0

MULTI-PERIOD ANALYSES TO BE PERFORMED
APLNE 1 MARTIN 1 LPT01 1

GIBSONA RIVERF COMPUTATION

INPUT 24 HR 100 YEAR PRECIPITATION AT 10 MIN INTERVALS
13100 ICUMP IFCON 11APR JPAT INAPF ISAO

TWHDG TWHDG SNAP THSDA TSPT RATIO ISAO LOCAL ISAO

NF	STHW	DAJ	0.00	0.01	0.01	0.01	0.01	0.01
100	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00
101	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
102	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
103	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
104	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
105	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
106	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
107	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
108	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
109	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
110	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
111	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
112	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
113	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
114	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
115	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
116	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
117	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
118	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
119	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
120	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
121	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
122	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
123	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
124	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
125	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
126	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
127	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
128	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
129	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
130	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
131	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
132	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
133	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
134	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
135	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
136	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
137	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
138	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
139	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
140	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
141	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
142	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
143	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
144	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
145	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
146	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
147	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
148	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
149	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
150	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
151	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
152	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
153	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
154	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
155	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
156	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
157	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
158	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
159	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
160	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
161	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
162	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
163	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
164	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
165	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
166	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
167	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
168	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
169	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
170	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
171	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
172	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
173	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
174	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
175	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
176	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
177	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
178	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
179	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
180	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
181	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
182	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
183	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
184	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
185	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
186	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
187	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
188	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
189	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
190	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
191	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
192	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
193	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
194	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
195	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
196	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
197	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
198	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
199	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
200	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
201	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
202	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
203	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
204	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
205	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
206	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
207	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
208	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
209	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
210	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
211	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
212	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
213	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
214	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
215	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08
216	0.08	0.08	0.08					

UNIT GRAPH TOTALS 8900.00. CGR (NO 1,00 INCHES OVER THE AREA)

卷之三

HYDROGRAPH AT 911

2 YARD PLATE 10, RT10

TIME	HEAD	DISCHARGE
00	0	0
01	0	0
02	0	0
03	0	0
04	0	0
05	0	0
06	0	0
07	0	0
08	0	0
09	0	0
10	0	0
11	0	0
12	0	0
13	0	0
14	0	0
15	0	0
16	0	0
17	0	0
18	0	0
19	0	0
20	0	0
21	0	0
22	0	0
23	0	0
24	0	0
25	0	0
26	0	0
27	0	0
28	0	0
29	0	0
30	0	0
31	0	0
32	0	0
33	0	0
34	0	0
35	0	0
36	0	0
37	0	0
38	0	0
39	0	0
40	0	0
41	0	0
42	0	0
43	0	0
44	0	0
45	0	0
46	0	0
47	0	0
48	0	0
49	0	0
50	0	0
51	0	0
52	0	0
53	0	0
54	0	0
55	0	0
56	0	0
57	0	0
58	0	0
59	0	0
60	0	0
61	0	0
62	0	0
63	0	0
64	0	0
65	0	0
66	0	0
67	0	0
68	0	0
69	0	0
70	0	0
71	0	0
72	0	0
73	0	0
74	0	0
75	0	0
76	0	0
77	0	0
78	0	0
79	0	0
80	0	0
81	0	0
82	0	0
83	0	0
84	0	0
85	0	0
86	0	0
87	0	0
88	0	0
89	0	0
90	0	0
91	0	0
92	0	0
93	0	0
94	0	0
95	0	0
96	0	0
97	0	0
98	0	0
99	0	0
100	0	0
101	0	0
102	0	0
103	0	0
104	0	0
105	0	0
106	0	0
107	0	0
108	0	0
109	0	0
110	0	0
111	0	0
112	0	0
113	0	0
114	0	0
115	0	0
116	0	0
117	0	0
118	0	0
119	0	0
120	0	0
121	0	0
122	0	0
123	0	0
124	0	0
125	0	0
126	0	0
127	0	0
128	0	0
129	0	0
130	0	0
131	0	0
132	0	0
133	0	0
134	0	0
135	0	0
136	0	0
137	0	0
138	0	0
139	0	0
140	0	0
141	0	0
142	0	0
143	0	0
144	0	0
145	0	0
146	0	0
147	0	0
148	0	0
149	0	0
150	0	0
151	0	0
152	0	0
153	0	0
154	0	0
155	0	0
156	0	0
157	0	0
158	0	0
159	0	0
160	0	0
161	0	0
162	0	0
163	0	0
164	0	0
165	0	0
166	0	0
167	0	0
168	0	0
169	0	0
170	0	0
171	0	0
172	0	0
173	0	0
174	0	0
175	0	0
176	0	0
177	0	0
178	0	0
179	0	0
180	0	0
181	0	0
182	0	0
183	0	0
184	0	0
185	0	0
186	0	0
187	0	0
188	0	0
189	0	0
190	0	0
191	0	0
192	0	0
193	0	0
194	0	0
195	0	0
196	0	0
197	0	0
198	0	0
199	0	0
200	0	0
201	0	0
202	0	0
203	0	0
204	0	0
205	0	0
206	0	0
207	0	0
208	0	0
209	0	0
210	0	0
211	0	0
212	0	0
213	0	0
214	0	0
215	0	0
216	0	0
217	0	0
218	0	0
219	0	0
220	0	0
221	0	0
222	0	0
223	0	0
224	0	0
225	0	0
226	0	0
227	0	0
228	0	0
229	0	0
230	0	0
231	0	0
232	0	0
233	0	0
234	0	0
235	0	0
236	0	0
237	0	0
238	0	0
239	0	0
240	0	0
241	0	0
242	0	0
243	0	0
244	0	0
245	0	0
246	0	0
247	0	0
248	0	0
249	0	0
250	0	0
251	0	0
252	0	0
253	0	0
254	0	0
255	0	0
256	0	0
257	0	0
258	0	0
259	0	0
260	0	0
261	0	0
262	0	0
263	0	0
264	0	0
265	0	0
266	0	0
267	0	0
268	0	0
269	0	0
270	0	0
271	0	0
272	0	0
273	0	0
274	0	0
275	0	0
276	0	0
277	0	0
278	0	0
279	0	0
280	0	0
281	0	0
282	0	0
283	0	0
284	0	0
285	0	0
286	0	0
287	0	0
288	0	0
289	0	0
290	0	0
291	0	0
292	0	0
293	0	0
294	0	0
295	0	0
296	0	0
297	0	0
298	0	0
299	0	0
300	0	0
301	0	0
302	0	0
303	0	0
304	0	0
305	0	0
306	0	0
307	0	0
308	0	0
309	0	0
310	0	0
311	0	0
312	0	0
313	0	0
314	0	0
315	0	0
316	0	0
317	0	0
318	0	0
319	0	0
320	0	0
321	0	0
322	0	0
323	0	0
324	0	0
325	0	0
326	0	0
327	0	0
328	0	0
329	0	0
330	0	0
331	0	0
332	0	0
333	0	0
334	0	0
335	0	0
336	0	0
337	0	0
338	0	0
339	0	0
340	0	0
341	0	0
342	0	0
343	0	0
344	0	0
345	0	0
346	0	0
347	0	0
348	0	0
349	0	0
350	0	0
351	0	0
352	0	0
353	0	0
354	0	0
355	0	0
356	0	0
357	0	0
358	0	0
359	0	0
360	0	0
361	0	0
362	0	0
363	0	0
364	0	0
365	0	0
366	0	0
367	0	0
368	0	0
369	0	0
370	0	0
371	0	0
372	0	0
373	0	0
374	0	0
375	0	0
376	0	0
377	0	0
378	0	0
379	0	0
380	0	0
381	0	0
382	0	0
383	0	0
384	0	0
385	0	0
386	0	0
387	0	0
388	0	0
389	0	0
390	0	0
391	0	0
392	0	0
393	0	0
394	0	0
395	0	0
396	0	0
397	0	0
398	0	0
399	0	0
400	0	0
401	0	0
402	0	0
403	0	0
404	0	0
405	0	0
406	0	0
407	0	0
408	0	0
409	0	0
410	0	0
411	0	0
412	0	0
413	0	0
414	0	0
415	0	0
416	0	0
417	0	0
418	0	0
419	0	0
420	0	0
421	0	0
422	0	0
423	0	0
424	0	0
425	0	0
426	0	0
427	0	0
428	0	0
429	0	0
430	0	0
431	0	0
432	0	0
433	0	0
434	0	0
435	0	0
436	0	0
437	0	0
438	0	0
439	0	0
440	0	0
441	0	0
442	0	0
443	0	0
444	0	0
445	0	0
446	0	0
447	0	0
448	0	0
449	0	0
450	0	0
451	0	0
452	0	0
453	0	0
454	0	0
455	0	0
456	0	0
457	0	0
458	0	0
459	0	0
460	0	0
461	0	0
462	0	0
463	0	0
464	0	0
465	0	0
466	0	0
467	0	0
468	0	0
469	0	

ELON	92491.	497.	1485.	2451.	4524.	4524.	19358.	29901.	36431.
CAPACITIVE	0.	430.	1651.	3950.	7460.	12431.	15461.	14662.	24661.
ELFVATINE	750.	760.	770.	780.	790.	800.	800.	810.	820.
	FUEL	SPWID	CHURN	THRM -	ELEV	CRNL	CAKEA	EXPL	
	A10.0	0.0	0.0	0.0	0.0	0.0	n.n	n.n	

DATA CLOUD EXPD HAMMO
RAD.0 0.0 0.0

STATION - 1. PLAN 1. WAITU 1

TIME	HR. MN	PRECIPID	WATRS	INFILM	WATERLW	STORAGE	STAGE
1.01	0.0	0.0	1	0.17	0	0	12431.
1.01	20	2	2	0.33	0	0	12431.
1.01	30	3	3	0.50	0	0	12431.
1.01	40	4	4	0.67	0	0	12431.
1.01	50	5	5	0.83	0	0	12431.
1.01	60	6	6	1.00	0	0	12431.
1.01	70	7	7	1.17	0	0	12431.
1.01	80	8	8	1.33	0	0	12431.
1.01	90	9	9	1.50	0	0	12431.
1.01	10	10	10	1.67	0	0	12431.
1.01	11	11	11	1.83	0	0	12431.
1.01	12	12	12	2.00	0	0	12431.
1.01	13	13	13	2.17	0	0	12431.
1.01	14	14	14	2.33	0	0	12431.
1.01	15	15	15	2.50	0	0	12431.
1.01	16	16	16	2.67	0	0	12431.
1.01	17	17	17	2.83	0	0	12431.
1.01	18	18	18	3.00	0	0	12431.
1.01	19	19	19	3.17	0	0	12431.
1.01	20	20	20	3.33	0	0	12431.
1.01	21	21	21	3.50	0	0	12431.
1.01	22	22	22	3.67	0	0	12431.
1.01	23	23	23	3.83	0	0	12431.
1.01	24	24	24	4.00	0	0	12431.
1.01	25	25	25	4.17	0	0	12431.
1.01	26	26	26	4.33	0	0	12431.
1.01	27	27	27	4.50	0	0	12431.
1.01	28	28	28	4.67	0	0	12431.
1.01	29	29	29	4.83	0	0	12431.
1.01	30	30	30	5.00	0	0	12431.
1.01	31	31	31	5.17	0	0	12431.
1.01	32	32	32	5.33	0	0	12431.
1.01	33	33	33	5.50	0	0	12431.
1.01	34	34	34	5.67	0	0	12431.
1.01	35	35	35	5.83	0	0	12431.
1.01	36	36	36	6.00	0	0	12431.
1.01	37	37	37	6.17	0	0	12431.
1.01	38	38	38	6.33	0	0	12431.
1.01	39	39	39	6.50	0	0	12431.
1.01	40	40	40	6.67	0	0	12431.

1.02	12.90	221	36.01	12800.
1.02	11.00	222	37.00	12800.
1.02	11.00	223	37.01	12800.
1.02	11.20	224	37.02	12799.
1.02	11.40	225	37.00	12798.
1.02	11.40	226	37.02	12798.
1.02	11.40	227	37.02	12798.
1.02	11.40	228	37.02	12798.
1.02	11.40	229	38.17	12775.
1.02	11.40	230	38.33	12771.
1.02	11.40	231	38.50	12766.
1.02	11.40	232	38.67	12764.
1.02	11.40	233	38.83	12764.
1.02	11.50	234	39.00	12764.
1.02	11.50	235	39.17	12756.
1.02	11.50	236	39.33	12756.
1.02	11.50	237	39.50	12756.
1.02	11.50	238	39.67	12756.
1.02	11.50	239	39.83	12756.
1.02	11.50	240	40.00	12756.
1.02	11.50	241	40.17	12756.
1.02	11.50	242	40.33	12756.
1.02	11.50	243	40.50	12756.
1.02	11.50	244	40.67	12756.
1.02	11.50	245	40.83	12756.
1.02	11.50	246	41.00	12756.
1.02	11.50	247	41.17	12756.
1.02	11.50	248	41.33	12756.
1.02	11.50	249	41.50	12756.
1.02	11.50	250	41.67	12756.
1.02	11.50	251	41.83	12756.
1.02	11.50	252	42.00	12756.
1.02	11.50	253	42.17	12756.
1.02	11.50	254	42.33	12756.
1.02	11.50	255	42.50	12756.
1.02	11.50	256	42.67	12756.
1.02	11.50	257	42.83	12756.
1.02	11.50	258	43.00	12756.
1.02	11.10	259	43.17	12756.
1.02	11.20	260	43.33	12756.
1.02	11.30	261	43.50	12756.
1.02	11.40	262	43.67	12756.
1.02	11.50	263	43.83	12756.
1.02	20.00	264	44.00	12663.
1.02	20.10	265	44.17	12663.
1.02	20.20	266	44.33	12663.
1.02	20.30	267	44.50	12663.
1.02	20.40	268	44.67	12663.
1.02	20.50	269	44.83	12663.
1.02	21.00	270	45.00	12663.
1.02	21.10	271	45.17	12663.
1.02	21.20	272	45.33	12663.
1.02	21.30	273	45.50	12663.
1.02	21.40	274	45.67	12663.
1.02	21.50	275	45.83	12663.
1.02	21.60	276	46.00	12663.
1.02	22.10	277	46.17	12663.
1.02	22.20	278	46.33	12663.
1.02	22.30	279	46.50	12663.
1.02	22.40	280	46.67	12663.

PLAN OUTLINE 19
446P. AT 111F 14.17 unipig

PEAK FLOW AND STORM (END OF PASTURE) QUMBARY FROM MULTIPLE PLAN-RATIO EQUATIONS
FLUX IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
AREA IN SQUARE MILES (SQUARE KILOMETERS)

OPERATION STATION AREA PLAN RATIO 1
1.00

HYDROGRAPH AT	STATION	AREA	PLAN	RATIO
ROUTER	2	16.41 (42.50)	1	50.53 (85.01)
ROUTER	1	16.41 (42.50)	3	64.6 (143.15)

RATIOS APPLIED TO FLUXES

SUMMARY OF DAM SAFETY ANALYSIS

PLAN	ELVATION STORAGE OVERFLOW	INITIAL VALUE	SPILLWAY CREST	TOP OF DAM		
1.00 100-500	800.00 12431. 0.	800.00 12431. 0.	600.00 12431. 0.	800.00 15961. 0040.		
RATING ON RESERVOIR LEVEL	MAXIMUM DEPTH OVERFLOW	MAXIMUM STORAGE ACROSS CFS	MAXIMUM DISCHARGE CFS	DURATION TURB TOP HOURS	TIME OF FAILURE HOURS	TIME OF FAILURE MINUTES
1.00 100-500	800.00 800.00	15356. 6466.	0.00 0.00	0.00 14.17	14.17 0.00	