$$\Gamma(\tau) = \overline{U} = W$$

$$\Gamma(\tau) = W$$

$$\Gamma($$

Save weak interaction for e ->

$$\frac{\Gamma(f \rightarrow c \overline{\nu}e M)}{\Gamma(T \rightarrow c \overline{\nu}e M)} = \frac{BF(f \rightarrow c \overline{\nu}e M)}{BF(T \rightarrow c \overline{\nu}e M)} \frac{\Gamma_{tot}}{\Gamma_{tot}} = \frac{BF(f \rightarrow c)}{BF(T \rightarrow c)} \frac{T_{tot}}{T_{tot}}$$

$$\frac{1}{(3\pi)^2} \frac{1}{m_{\pi}^2} \frac{P(f \rightarrow c)}{P(T \rightarrow c)}$$

$$= \frac{(3^n)^2}{(3\pi)^2} \frac{1}{m_{\pi}^2} \frac{P(f \rightarrow c)}{P(T \rightarrow c)}$$

$$= \frac{(3^n)^2}{(3\pi)^2} \frac{1}{m_{\pi}^2} \frac{P(f \rightarrow c)}{P(T \rightarrow c)}$$

$$= \frac{(3^n)^2}{(3\pi)^2} \frac{1}{m_{\pi}^2} \frac{P(f \rightarrow c)}{P(T \rightarrow c)}$$

$$= \frac{1}{(3\pi)^2} \frac{1}{m_{\pi}^2} \frac{1}{(3\pi)^2} \frac{1}{m_{\pi}^2} \frac{1}{P(T \rightarrow c)} \frac{1}{(3\pi)^2} \frac{1}{m_{\pi}^2} \frac{$$

weak interaction of hedrons rey: N-> Pere go back to B- decay: Ferm:

V-17

N gw P Weak propagator

W-22 e Vermi Ve MN gutp ru(1-85) fu = 2 - 45m(1-85) te 9 2 MN CC MUI initial state n: Ve: That (n-) perve) = Theory => 1 = 1318 S Experimentally: There = 878 s =) hedrous believe lifterently. = 2 Vo My (YM(CU+(AYT))()(YM(-Y)() g~ r~(1-85) (CV+CA8) Cv: vector Coupling CH: axial coupling AX -> 2+1 Y E Ve measure Cuica from BIBT decays. -> A y et le

Gammour-Teller trensitions. Fermi transitions CUICA C_{V} d? (x→YEV2) = GFF(Cu(CA). Experimental picture today? CV = 1.000 oxial part CA depends on five Stefes. neutron delays ICAI = 1.867 polonited neutron decays CA = -1.267CA/CV = - 1. 276. n→ péle OS=1 delay. = -0.718invite ~ = +0.340 Sin ve De = -0.25 I - 1 e Ve => better to consider weak intercetion of querks + Strong corrections. & delay = sew; leplanic week delay. π→ π° e Ve Seuilephonic

M70 = 135 MeV.

π^+ DECAY MODES

 π^- modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the section on Searches for Axions and Other Very Light Bosons.

	Mode	Fraction (Γ_i /	Γ) Confidence le	Confidence level			
$\overline{\Gamma_1}$	$\mu^+ u_{\mu}$	[a] (99.98770 =	[a] (99.98770±0.00004) %				
Γ_2	$\mu^{\dot{+}} u_{\mu}\gamma$	[b] (2.00 =	±0.25) × 10 ^{−4}				
Γ_3	$e^+ u_e$	[a] (1.230 =	±0.004) × 10 ^{−4}				
Γ_4	$e^+ u_e\gamma$	[b] (7.39 =	±0.05) × 10 ^{−7}				
Γ_5	$e^+ u_e\pi^0$	(1.036	±0.006) × 10 ^{−8}				
	$e^+ u_ee^+e^-$	(3.2	±0.5) × 10 ^{−9}				
Γ_7	$\mu^+ u_{\mu} u\overline{ u}$	< 9	$\times 10^{-6}$ 9	0%			
Γ ₈	$e^+ u_e u\overline{ u}$	< 1.6	\times 10 ⁻⁷ 9	0%			
Lepton Family number (LF) or Lepton number (L) violating modes							
Γ_9	$\mu^+ \overline{\nu}_e$	[c] < 1.5	$\times 10^{-3}$ 9	0%			
				-01			

		, ,		` '	
Γ_9	$\mu^+\overline{ u}_e$	L	[c] < 1.5	\times 10 ⁻³	
Γ_{10}	$\mu^+ u_e$	LF	[c] < 8.0	$\times 10^{-3}$	
Γ_{11}	$\mu^-e^+e^+ u$	LF	< 1.6	\times 10 ⁻⁶	90%

Bf

$$A \times \longrightarrow A \times e^{\uparrow} / e^{\uparrow} / e^{\downarrow}$$

NOT

 $Q = m_X - m_Y - m_e =$ = $-B_X(A_12) + B_Y(A_12-1) - m_e$

For AZ valves with a>0 => Bt delay.

See Bethe-Weizsacker brank for nuclear binding every and segie plot.

mx = m(A 2)

= Zu1>+(A-7)mn

- BCA(2)

Binding Every