#### Homework No. 1 - Introduction & Growth of Functions

## Neha Goud Baddam 11519516

Q1. Suppose we are comparing implementations of insertion sort and merge sort on the same machine. For inputs of size n, insertion sort runs in 8n 2 steps, while merge sort runs in 64nlg n steps. For which values of n does insertion sort beat merge sort? (Exercise 1.2-2)

To compare implementations of insertion sort and merge sort on the same machine., we need to compare the time complexities of insertion and merge sort

Solution 1: Insertion sort beats merge sort (for input sizen), when 8n² (insertion sort steps) is less than canlogn (merge sort steps)

Then 8n² × 64n logn

8n² × 64n logn

n × 8 logn

n × 8 logn

n × 100 logn

hets substitute in value to balance the equation

Firstly less assume that n=8, then 24× × n

When we keep substituting n values, we notice that for n=43, insertion sort starts to beat merge sort

For n=43, 218 = 42.4 × n

Therefore for in × 43, insertion sort heats merge sort 2

for n=44, 211/2 = 44.8 > n

#### Homework No. 1 - Introduction & Growth of Functions

## Neha Goud Baddam 11519516

Q2. We can express insertion sort as a recursive procedure as follows. In order to sort A [1 .. n], we recursively sort A [1 .. n-1] and then insert A [n] into the sorted array A [1 .. n-1]. Write a recurrence T(n) for the running time of this recursive version of insertion sort. (Exercise 2.3-4)

Q3. Describe a  $\Theta$  (n lg n) - time algorithm that, given a set S of n integers and another integer x, determines whether there exist two elements in S whose sum is exactly x. (Exercise 2.3-7) we can sort the array with merge sort  $\Theta$  (n log n) and then for each element (say y) in the array, we can do a binary search for (x - y) on the sorted array. So, the algorithm will run in  $\Theta$ (nlog n).

### Homework No. 1 - Introduction & Growth of Functions

## Neha Goud Baddam 11519516



Q4. Sort all the functions below in increasing order of asymptotic (big-O) growth. If some have the same asymptotic growth, then be sure to indicate that. As usual, lg means base 2.

- 1. 5n
- $2. n^4$
- 3. 4 lg n
- 4. n<sup>n/4</sup>
- 5.  $n^{1/2}log_n^4$

Answer:  $4 lgn < 5n < n^4 < n^{1/2} log_n^4 < n^{n/4}$ 

Solution 4: Time complexities for Big-O are in the following order  $O(\log n) < O(n) < O$ 

## Homework No. 1 - Introduction & Growth of Functions

# Neha Goud Baddam 11519516

Q5. Prove that 2 n+1 = O(2n). (Exercise 3.1-4) (Hint: Try to satisfy the definition of O-notation with some constants c, n0 > 0)

Solution 5: Prove that 
$$2^{n+1} \ge O(2^n)$$
 $0$  -notation:  $f(n) \ge O(g(n))$ , if there exists

constants  $c > 0$ ,  $n_0 > 0$  such that

 $constants c > 0$ ,  $n_0 > 0$  such that

 $0 \le f(n) \le cg(n)$  for all  $n \ge n_0$ 
 $2^{n+1} \ge O(2^n)$ 
 $2^{n+1} \le c \cdot 2^n$ 
 $c \ge 3$ ,  $2^{n+1} \le 0 \cdot 2^n$ 
 $c \ge 3$ ,  $2^{n+1} \le 0 \cdot 2^n$ 
 $c \ge 7$ ,  $2^{n+1} \le 0 \cdot 2^n$ 
 $c \ge 7$ ,  $2^{n+1} \le 0 \cdot 2^n$ 

Hence  $2^{n+1} \ge O(2^n)$  for all values of  $c \ge 2$