# STAT 593 Duality / Conjugacy

#### Joseph Salmon

http://josephsalmon.eu

Télécom Paristech, Institut Mines-Télécom & University of Washington, Department of Statistics (Visiting Assistant Professor)

# **Outline**

Backgrounds on convexity

Conjugacy

Duality gap and stopping criterion

# **Table of Contents**

Backgrounds on convexity

Conjugacy

Duality gap and stopping criterion

## **Convex function**

A function  $f:\mathbb{R}^d \to \overline{\mathbb{R}}$  is **convex** if for all  $x,y\in\mathbb{R}^d$  and  $\alpha\in[0,1]$ 

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

# \_ Proposition \_\_\_

The function f is convex iff epi(f) is a convex set.

## **Convex function**

A function  $f:\mathbb{R}^d \to \overline{\mathbb{R}}$  is **convex** if for all  $x,y\in\mathbb{R}^d$  and  $\alpha\in[0,1]$ 

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

# Proposition =

The function f is convex iff epi(f) is a convex set.



Non-convex

## **Convex function**

A function  $f:\mathbb{R}^d \to \overline{\mathbb{R}}$  is **convex** if for all  $x,y\in\mathbb{R}^d$  and  $\alpha\in[0,1]$ 

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

# Proposition =

The function f is convex iff epi(f) is a convex set.







Convex

## Convex hull of a function

## Definition

The **convex hull** of a function  $f: \mathbb{R}^d \to \overline{\mathbb{R}}$  is the function  $\mathrm{conv}(f)$  whose epigraph is the convex hull of the epigraph of f:

$$\mathrm{epi}(\mathrm{conv}(f)) = \mathrm{conv}(\mathrm{epi}(f))$$

## Convex hull of a function

## Definition

The **convex hull** of a function  $f: \mathbb{R}^d \to \overline{\mathbb{R}}$  is the function  $\mathrm{conv}(f)$  whose epigraph is the convex hull of the epigraph of f:

$$epi(conv(f)) = conv(epi(f))$$



## Convex hull of a function

## Definition

The **convex hull** of a function  $f: \mathbb{R}^d \to \overline{\mathbb{R}}$  is the function  $\mathrm{conv}(f)$  whose epigraph is the convex hull of the epigraph of f:

$$epi(conv(f)) = conv(epi(f))$$



## **Closed function**

Definition

A function  $f: \mathbb{R}^d \to \overline{\mathbb{R}}$  is **closed** if its epigraph  $\mathrm{epi}(f)$  is a (topologically) closed set.

## **Closed function**

#### Definition

A function  $f: \mathbb{R}^d \to \overline{\mathbb{R}}$  is **closed** if its epigraph  $\mathrm{epi}(f)$  is a (topologically) closed set.



Non-closed function

## **Closed function**

#### Definition

A function  $f: \mathbb{R}^d \to \overline{\mathbb{R}}$  is **closed** if its epigraph  $\mathrm{epi}(f)$  is a (topologically) closed set.



Non-closed function



Closed function

## Closure of a function

## Definition

The closure  ${\rm cl}(f)$  of the function f is defined as the function having for epigraph the closure of the epigraph of f :

$${\operatorname{epi}}({\operatorname{cl}}(f)) := {\operatorname{cl}}({\operatorname{epi}}(f))$$

## Closure of a function

#### Definition

The closure  $\mathrm{cl}(f)$  of the function f is defined as the function having for epigraph the closure of the epigraph of f:

$${\operatorname{epi}}({\operatorname{cl}}(f)) := {\operatorname{cl}}({\operatorname{epi}}(f))$$



## Closure of a function

#### Definition

The **closure**  $\mathrm{cl}(f)$  of the function f is defined as the function having for epigraph the closure of the epigraph of f:

$${\operatorname{epi}}({\operatorname{cl}}(f)) := {\operatorname{cl}}({\operatorname{epi}}(f))$$



# Why closed functions?

#### Motivation: close function convenient for minimization

➤ a closed function, defined on a nonempty closed and bounded set, is bounded below and attains its infimum

# Why closed functions?

#### Motivation: close function convenient for minimization

► a closed function, defined on a nonempty closed and bounded set, is bounded below and attains its infimum



Closed function: inf is reached

# Why closed functions?

#### Motivation: close function convenient for minimization

➤ a closed function, defined on a nonempty closed and bounded set, is bounded below and attains its infimum



Closed function: inf is reached

Non closed function: inf is not reached

## **Table of Contents**

Backgrounds on convexity

## Conjugacy

Duality gap and stopping criterion

# Convex conjugate

# \_\_\_\_\_ Definition \_\_\_\_\_

The convex **conjugate** (a.k.a. the **Legendre-Fenchel transform**) of f is the function  $f^*$  defined by

$$f^*: \mathbb{R}^d \to \overline{\mathbb{R}}$$
$$s \mapsto \sup \{ \langle s, x \rangle - f(x) : x \in \text{dom } f \}$$

<u>Rem</u>: equivalently  $\mapsto f^*(s) = -\inf\{f(x) - \langle s, x \rangle : x \in \text{dom } f\}$ 

Rem:  $f^*$  is convex as a  $\sup$  of convex (affine) functions

https://people.ok.ubc.ca/bauschke/Research/68.pdf

#### Caracterisation

Legendre caracterisation https://annals.math.princeton.edu/wp-content/uploads/annals-v169-n2-p08.pdf

#### Intuition

$$f^*(s) = \sup \{ \langle s, x \rangle - f(x) : x \in \text{dom } f \}$$

Interpretation : in the smooth case and when  $\nabla f$  is one-one and  $\operatorname{dom} f = \mathbb{R}^d$ , let us define :

$$x(s) = \underset{x \in \mathbb{R}^d}{\operatorname{arg\,max}} \langle s, x \rangle - f(x)$$

Then,

$$\nabla f(x(s)) = s \iff (\nabla f)^{-1}(s) = x(s)$$
  
 $\iff \nabla (f^*)(s) = x(s)$ 

All in all:

$$\nabla(f^*) = (\nabla f)^{-1}$$

(1)

<sup>(1).</sup> J.-B. HIRIART-URRUTY et C. LEMARÉCHAL. Convex analysis and minimization algorithms. II. T. 306. Berlin: Springer-Verlag, 1993, Chapter X.

# Intermission

Movies on conjugacy insights (see associated notebook)

Remind: 
$$f^*(s) = \sup \{ \langle s, x \rangle - f(x) : x \in \text{dom } f \}$$

#### Fenchel's inequality:

$$\forall (x,s) \in \mathbb{R}^d \times \mathbb{R}^d, \quad f(x) + f^*(s) \ge \langle x, s \rangle$$

$$s \in \partial f(x) \iff x \in \operatorname*{arg\,max}\langle s,y \rangle - f(y) \qquad \text{(Fermat's rule w.r.t. } x)$$

Remind: 
$$f^*(s) = \sup \{ \langle s, x \rangle - f(x) : x \in \text{dom } f \}$$

#### Fenchel's inequality:

$$\forall (x,s) \in \mathbb{R}^d \times \mathbb{R}^d, \quad f(x) + f^*(s) \ge \langle x, s \rangle$$

$$\begin{split} s \in \partial f(x) &\iff x \in \underset{y \in \mathbb{R}^d}{\arg\max} \langle s, y \rangle - f(y) & \qquad \text{(Fermat's rule w.r.t. } x) \\ &\iff f(x) + f^*(s) = \langle \, x \, , \, s \, \rangle & \qquad \text{(maximum achieved)} \end{split}$$

Remind: 
$$f^*(s) = \sup \{ \langle s, x \rangle - f(x) : x \in \text{dom } f \}$$

#### Fenchel's inequality:

$$\forall (x,s) \in \mathbb{R}^d \times \mathbb{R}^d, \quad f(x) + f^*(s) \ge \langle x, s \rangle$$

$$s \in \partial f(x) \iff x \in \operatorname*{arg\,max}_{y \in \mathbb{R}^d} \langle s, y \rangle - f(y) \qquad \text{(Fermat's rule w.r.t. } x)$$
 
$$\iff f(x) + f^*(s) = \langle \, x \, , \, s \, \rangle \qquad \qquad \text{(maximum achieved)}$$
 
$$\iff s \in \operatorname*{arg\,max}_{t \in \mathbb{R}^d} \langle t, x \rangle - f^*(t) \qquad \qquad \text{(maximum achieved)}$$

Remind: 
$$f^*(s) = \sup \{ \langle s, x \rangle - f(x) : x \in \text{dom } f \}$$

#### Fenchel's inequality:

$$\forall (x,s) \in \mathbb{R}^d \times \mathbb{R}^d, \quad f(x) + f^*(s) \ge \langle x, s \rangle$$

$$s \in \partial f(x) \iff x \in \operatorname*{arg\,max}\langle s,y \rangle - f(y) \qquad \text{(Fermat's rule w.r.t. } x)$$
 
$$\iff f(x) + f^*(s) = \langle \, x \,, \, s \, \rangle \qquad \text{(maximum achieved)}$$
 
$$\iff s \in \operatorname*{arg\,max}\langle t,x \rangle - f^*(t) \qquad \text{(maximum achieved)}$$
 
$$s \in \partial f(x) \iff x \in \partial f^*(s) \qquad \text{(Fermat's rule w.r.t. } s)$$

$$f^{**}(x) = \sup_{s} \{ \langle s, x \rangle - f^{*}(s) \}$$
$$= \sup_{s} \{ \langle s, x \rangle - \sup_{z} \{ \langle s, z \rangle - f(z) \} \}$$

$$\begin{split} f^{**}(x) &= \sup_{s} \{ \langle \, s \,, \, x \, \rangle - f^{*}(s) \} \\ &= \sup_{s} \left\{ \langle \, s \,, \, x \, \rangle - \sup_{z} \{ \langle \, s \,, \, z \, \rangle - f(z) \} \right\} \\ &= \sup_{s} \left\{ \langle \, s \,, \, x \, \rangle - r | r = \sup_{z} \{ \langle \, s \,, \, z \, \rangle - f(z) \} \right\} \end{split}$$

$$\begin{split} f^{**}(x) &= \sup_{s} \left\{ \left\langle \, s \,,\, x \, \right\rangle - f^{*}(s) \right\} \\ &= \sup_{s} \left\{ \left\langle \, s \,,\, x \, \right\rangle - \sup_{z} \left\{ \left\langle \, s \,,\, z \, \right\rangle - f(z) \right\} \right\} \\ &= \sup_{s} \left\{ \left\langle \, s \,,\, x \, \right\rangle - r | r = \sup_{z} \left\{ \left\langle \, s \,,\, z \, \right\rangle - f(z) \right\} \right\} \\ &= \sup_{s,r} \left\{ \left\langle \, s \,,\, x \, \right\rangle - r | r \geq \sup_{z} \left\{ \left\langle \, s \,,\, z \, \right\rangle - f(z) \right\} \right\} \end{split}$$

$$\begin{split} f^{**}(x) &= \sup_{s} \left\{ \left\langle s \,,\, x \right\rangle - f^{*}(s) \right\} \\ &= \sup_{s} \left\{ \left\langle s \,,\, x \right\rangle - \sup_{z} \left\{ \left\langle s \,,\, z \right\rangle - f(z) \right\} \right\} \\ &= \sup_{s} \left\{ \left\langle s \,,\, x \right\rangle - r | r = \sup_{z} \left\{ \left\langle s \,,\, z \right\rangle - f(z) \right\} \right\} \\ &= \sup_{s,r} \left\{ \left\langle s \,,\, x \right\rangle - r | r \geq \sup_{z} \left\{ \left\langle s \,,\, z \right\rangle - f(z) \right\} \right\} \\ &= \sup_{s,r} \left\{ \left\langle s \,,\, x \right\rangle - r | r \geq \left\langle s \,,\, z \right\rangle - f(z), \forall z \right\} \end{split}$$

$$\begin{split} f^{**}(x) &= \sup_{s} \left\{ \left\langle \, s \,,\, x \, \right\rangle - f^{*}(s) \right\} \\ &= \sup_{s} \left\{ \left\langle \, s \,,\, x \, \right\rangle - \sup_{z} \left\{ \left\langle \, s \,,\, z \, \right\rangle - f(z) \right\} \right\} \\ &= \sup_{s} \left\{ \left\langle \, s \,,\, x \, \right\rangle - r | r = \sup_{z} \left\{ \left\langle \, s \,,\, z \, \right\rangle - f(z) \right\} \right\} \\ &= \sup_{s,r} \left\{ \left\langle \, s \,,\, x \, \right\rangle - r | r \geq \sup_{z} \left\{ \left\langle \, s \,,\, z \, \right\rangle - f(z) \right\} \right\} \\ &= \sup_{s,r} \left\{ \left\langle \, s \,,\, x \, \right\rangle - r | r \geq \left\langle \, s \,,\, z \, \right\rangle - f(z), \forall z \right\} \\ &= \sup_{s,r} \left\{ \left\langle \, s \,,\, x \, \right\rangle - r | f(z) \geq \left\langle \, s \,,\, z \, \right\rangle - r, \forall z \right\} \end{split}$$

$$\begin{split} f^{**}(x) &= \sup_{s} \left\{ \left\langle s \,,\, x \right\rangle - f^{*}(s) \right\} \\ &= \sup_{s} \left\{ \left\langle s \,,\, x \right\rangle - \sup_{z} \left\{ \left\langle s \,,\, z \right\rangle - f(z) \right\} \right\} \\ &= \sup_{s} \left\{ \left\langle s \,,\, x \right\rangle - r | r = \sup_{z} \left\{ \left\langle s \,,\, z \right\rangle - f(z) \right\} \right\} \\ &= \sup_{s,r} \left\{ \left\langle s \,,\, x \right\rangle - r | r \geq \sup_{z} \left\{ \left\langle s \,,\, z \right\rangle - f(z) \right\} \right\} \\ &= \sup_{s,r} \left\{ \left\langle s \,,\, x \right\rangle - r | r \geq \left\langle s \,,\, z \right\rangle - f(z), \forall z \right\} \\ &= \sup_{s,r} \left\{ \left\langle s \,,\, x \right\rangle - r | f(z) \geq \left\langle s \,,\, z \right\rangle - r, \forall z \right\} \end{split}$$

Hence :  $f^{**}$  is the **closed convex hull** of f (whose epigraph is obtained as the intersection of all supporting half spaces)

<sup>(2).</sup> J.-J. MOREAU. "Proximité et dualité dans un espace hilbertien". In : Bull. Soc. Math. France 93 (1965), p. 273-299.

$$\blacktriangleright \ \, \text{Let} \,\, p,q>0 \,\, \text{s.t.} \,\, \frac{1}{p}+\frac{1}{q}=1, \,\, \text{then} \, \left|\, f=\frac{1}{p}\, \|\cdot\|_p^p \Rightarrow f^*=\frac{1}{q}\, \|\cdot\|_q^q\, \right|$$

Let 
$$\iota_{\mathcal{C}}(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ +\infty & \text{if } x \notin \mathcal{C} \end{cases}$$
Constant case :  $\forall c \in \mathbb{R}^d, \boxed{f \equiv c \Rightarrow f^* = \iota_{\{-c\}}}$ 

<sup>(2).</sup> J.-J. MOREAU. "Proximité et dualité dans un espace hilbertien". In : Bull. Soc. Math. France 93 (1965), p. 273-299.

- Let  $\mathcal{B}_{\|\cdot\|}(0,1)$  be a unit ball associated to a norm  $\|\cdot\|$  and  $\|\cdot\|_*$  is the dual norm associated to it where  $\|x\|_* = \sup_{y:\|y\| \le 1} \langle\, x\,,\, y\, \rangle.$

Then, 
$$f = \iota_{\mathcal{B}_{\|\cdot\|}(0,1)} \Rightarrow f^* = \|\cdot\|_*$$

<sup>(2).</sup> J.-J. MOREAU. "Proximité et dualité dans un espace hilbertien". In : Bull. Soc. Math. France 93 (1965), p. 273-299.

# Simple properties

$$\forall \alpha > 0, \qquad (\alpha f)^* = \alpha f^* \Big(\frac{\cdot}{\alpha}\Big) \qquad \text{(Scaling)}$$
 
$$\forall \alpha > 0, \qquad \Big(\alpha f \Big(\frac{\cdot}{\alpha}\Big)\Big)^* = \alpha f^* \qquad \text{(Scaling)}$$
 
$$\forall x \in \mathbb{R}^d, \qquad \Big(f(\cdot - x)\Big)^* = f^* + \langle x \,, \, \cdot \rangle \qquad \text{(Shifting)}$$
 
$$\forall \tau \in \mathbb{R}, \qquad (f + \tau)^* = f^* - \tau \qquad \text{(Shifting)}$$
 
$$\forall x \in \mathbb{R}^d, \qquad (f + \langle x \,, \, \cdot \rangle)^* = f^* (\cdot - x) \qquad \text{(Shifting)}$$
 
$$\forall L \in \mathbb{R}^{d \times d}, \qquad (f \circ L)^* = f^* \circ (L^{-1})^\top \qquad \text{(Linear composition)}$$
 
$$\text{(when $L$ invertible)}$$

## **Table of Contents**

Backgrounds on convexity

Conjugacy

Duality gap and stopping criterion

# Fenchel duality (3)

$$\underline{\text{Optimization}}: \quad \underset{x \in \mathbb{R}^d}{\arg \min} \mathcal{P}(x) \quad \text{where } \mathcal{P}(x) = f(Lx) + g(x)$$

- $f: \mathbb{R}^n \to \mathbb{R}$  closed convex
- $ightharpoonup g: \mathbb{R}^d 
  ightarrow \mathbb{R}$  closed convex
- ightharpoonup L: n imes dmatrix

#### Theorem

$$\sup_{s} \{ -f^*(s) - g^*(-L^{\top}s) \} \le \inf_{x} \{ f(Lx) + g(x) \}$$

Moreover, under mild assumptions, equality holds (strong duality)

<sup>(3).</sup> H. H. BAUSCHKE et P. L. COMBETTES. Convex analysis and monotone operator theory in Hilbert spaces. New York: Springer, 2011, p. xvi+468.

# Duality gap / vocabulary

**Primal** function :  $\mathcal{P}(x) = f(Lx) + g(x)$  (to **minimize**)

Primal solution :  $x^* \in \arg\min_{x} \mathcal{P}(x)$ 

**Dual** function :  $\mathcal{D}(s) = -f^*(s) - g^*(-L^{\top}s)$  (to maximize)

Dual solution :  $s^* \in \arg\max_s \mathcal{D}(s)$ 

**Duality gap**:  $\Delta(x,s) = \mathcal{P}(x) - \mathcal{D}(s)$ 

#### Theorem

$$\forall (x, s), \quad 0 \le \mathcal{P}(x) - \mathcal{P}(x^*) \le \Delta(x, s)$$

Also  $\Delta(x,s) = 0$  implies that  $\mathcal{P}(x) = \mathcal{P}(x^*)$  and  $\mathcal{P}(s) - \mathcal{P}(s^*)$ 

# **Duality gap for stopping algorithms**

$$\Delta(x,s) = \mathcal{P}(x) - \mathcal{D}(s)$$

Stopping criterion for iterative solver :

Fix  $\varepsilon > 0$  (small). Whenever one has point x, s then

$$\Delta(x,s) \le \varepsilon \Rightarrow \mathcal{P}(x) - \mathcal{P}(x^*) \le \varepsilon$$

Hence, stopping with duality gap criterion leads to a precise statement on the sub-optimality of the solution obtained.

Rem: this is a more precise criterion that choices like

$$\frac{\mathcal{P}(x^{t+1}) - \mathcal{P}(x_t)}{\mathcal{P}(x^t)} \le \varepsilon \quad \text{or} \quad |\nabla \mathcal{P}(x^t)| \le \varepsilon$$

# **Example:** duality gap for the standard median

$$\operatorname{Med}_n(\mathbf{x}) \in \operatorname*{arg\,min}_{\theta \in \mathbb{R}} \|\theta \mathbf{1}_n - \mathbf{x}\|_1 = \mathcal{P}(\theta)$$

where 
$$\mathbf{1}_n = (1, \dots, 1)^{\top} \in \mathbb{R}^n$$

$$f = \|\cdot - \mathbf{x}\|_1, \qquad g = 0$$

$$f^* = \iota_{\mathcal{B}_{\|\cdot\|_{\infty}}(0,1)} + \langle \mathbf{x}, \cdot \rangle, \qquad g^* = \iota_{\{0\}}$$

Hence, 
$$\mathcal{D}(s) = \langle \, s \,,\, \mathbf{x} \, \rangle + \iota_{\{s \in \mathbb{R}^n: \|s\|_\infty \leq 1\}} + \iota_{\{s \in \mathbb{R}^n: \mathbf{1}_n^\top s = 0\}}$$

Rem: with iterate  $\theta^t$  aiming at solving the primal problem, following would create dual feasible points:

$$s^{t} = \frac{\theta^{t} \mathbf{1}_{n} - \mathbf{x} - \text{Ave}(\theta^{t} \mathbf{1}_{n} - \mathbf{x})}{\|\theta^{t} \mathbf{1}_{n} - \mathbf{x} - \text{Ave}(\theta^{t} \mathbf{1}_{n} - \mathbf{x})\|_{\infty}}$$

# **Example: duality gap for Lasso**

Lasso objective : 
$$\boxed{\mathcal{P}(\theta) = \frac{1}{2}\|X\theta - y\|_2^2 + \lambda\|\theta\|_1}$$

- $f(z) = \frac{1}{2}||z y||_2^2$ ;  $f^*(s) = \frac{1}{2}||s||_2^2 + \langle s, y \rangle$  (use gradient)
- Duality gap :

$$\Delta(\theta, s) = \mathcal{P}(\theta) + f^*(s) + g^*(-X^{\top}s)$$
$$= \mathcal{P}(\theta) + \frac{1}{2} ||s||_2^2 + \langle s, y \rangle$$

as soon as  $||X^{\top}s||_{\infty} \leq \lambda$ , o.w. the bound is  $+\infty$  (useless)

## More references

► Material mostly inspired by the lecture notes by Pontus Giselsson: http://www.control.lth.se/ls-convex-2015/

► Further reading on an intrinsic property of Fenchel duality: https://annals.math.princeton.edu/wp-content/ uploads/annals-v169-n2-p08.pdf

## References I

- BAUSCHKE, H. H. et P. L. COMBETTES. Convex analysis and monotone operator theory in Hilbert spaces. New York: Springer, 2011, p. xvi+468.
- HIRIART-URRUTY, J.-B. et C. LEMARÉCHAL. Convex analysis and minimization algorithms. II. T. 306. Berlin: Springer-Verlag, 1993.
- ► MOREAU, J.-J. "Proximité et dualité dans un espace hilbertien". In : *Bull. Soc. Math. France* 93 (1965), p. 273-299.