Math 55, Handout 24.

HAMILTONIAN PATHS AND CIRCUITS.

- 1.1. A **Hamiltonian circuit** in a graph G is a simple circuit that reaches every vertex exactly once.
- 1.2. A Hamiltonian path in a graph G is a simple path that reaches every vertex exactly once.
- 1.3. Unlike the Eulerian path/circuit problem, the Hamiltonian path/circuit problem is **NP-complete**.
- Q1. Which trees have a Hamiltonian path?

 Linear trees: because if any vertex has degree 3, moving through that vertex will disconnect the graph.
- Q2. For which values of n do the following graphs have a Hamiltonian circuit? $K_n: n > 2, C_n: \text{All n}, W_n: \text{All n}, Q_n: n > 1$
- 1.3. [Dirac's Theorem] If G is a simple graph with $n \ge 3$ vertices such that the degree of every vertex is at least n/2, then G has a Hamiltonian circuit.
- 1.4. [Ore's Theorem] If G is a simple graph with $n \geq 3$ vertices such that $\deg(u) + \deg(v) \geq n$ for every pair of non-adjacent vertices u and v in G, then G has a Hamiltonian circuit.
- Q3. One of these theorems is a corollary of the other. Which one? Why? Direac's theorem: if each vertex has degree at least n/2, then the sum of two vertices's degrees is at least n.
- Q4. Construct a proof of Ore's Theorem following the following outline. Suppose that the assumptions of Ore's Theorem hold for a graph G but that G does not have a Hamiltonian circuit.
 - (a) Show that by adding edges to G if necessary, we can construct another simple graph H with the same vertices as G such that H does not have a Hamiltonian circuit but the addition of a single edge to H would produce a Hamiltonian circuit in H.
 - We can add edges until every edge that doesn't exist will make a Hamiltonian circuit. This method terminates since K_n has a circuit.
 - (b) Show that there is a Hamiltonian path in H.
 - We can simply add an edge, find the Hamiltonian circuit and then remove the edge added recently (and it becomes the Hamiltonian path).
 - (c) $v_1, v_2, ..., v_n$ be a Hamiltonian path in H. Show that $\deg(v_1) + \deg(v_n) \ge n$ and that there are at most $\deg(v_1)$ vertices not adjacent to v_n (including v_n itself).
 - The first half can be proven using the assumption: since adding edges maintains the property and v_1, v_n are not adjacent; the second half can be proven henceforth, because we know that there are a total of n vertices.
 - (d) Let S be the set of vertices preceding each neighbor of v_1 in our Hamiltonian path. Show that S contains $\deg(v_1)$ vertices and $v_n \notin S$.
 - Each vertex except v_1 has exactly one preceding vertex, therefore, they form a set of $deg(v_1)$ vertices (the group of preceding vertices of v_1 's neighbors). Since there is no succeeding vertex of v_n , it is not in S.

(e) Show that S contains a vertex v_k which is adjacent to v_n , implying that there are edges connecting v_1 to v_{k+1} and v_k to v_n .

We know from the previous questions that v_n is not in S and at most $deg(v_1) - 1$ vertices in S are not adjacent to v_n (this is because at most $deg(v_1)$ vertices are not adjacent to v_n), we can conclude that at least on vertex in S is adjacent to v_n .

(f) Show that part (e) implies that $v_1, v_2, ..., v_{k-1}, v_k, v_n, v_{n-1}, ..., v_{k+1}$ is a Hamiltonian circuit in H. Conclude from this contradiction that Ore's Theorem holds.

 v_{k+1} is adjacent to v_1 and so v_k is adjacent to v_n . Since the reverse of a path is still a path, it's a circuit. Since it also goes through every vertex, it's a Hamiltonian circuit.