4,94	.1			9) 7,-/	-2 1	
$G) J_a = \int_a^6 \frac{3}{\sqrt{1+2}}$		$\int_0^\infty e^{x} dx$ $= \int_0^\infty e^{x} dx = 1$	~ē` + C	9) I ₁ = J		On a 170-
= 3-217-2 J2 = 607-2 16	<u> </u>	10 = (1,m-			- + - 172 + - 172	=+5
= 60 - 10 60 - 60 0	d	= 1				danc sy drunge
= 12						
f) Ja Nina dr		1 - d= = lu(u) +c	1) 500 -	e d.		
$= \lim_{t \to \infty} \int_{a}^{t} \frac{1}{x \ln b} dx$	= 10(In(=)) = Cha I = =================================	100 m (m (r)) /2	= J ^G e'	e-do t Jo	1+e30 dx	
(e=), ch = La		(In(t)) - In(In(t)) If covere	= ln ? - 5 f	E d. + lu		
5,2			on a du =			orda (ey - arda (e))
(1) = -2 x 2 x 1 (10) = -3 x (2x -95) (20) = (1(x) = 9(x), W)	A= Sa6 (81+ ->		= \int_{1442} a	in = croten (cr) + c = coxten(cr) + c		r= た + 元 > み
$b_1 = c_1 c_2 s_3 s_4 = c_3 t_1$)x, (Ja)-ga	7,604L	$= \lim_{t \to \infty} \int_{t}^{c}$ $= \operatorname{Gidan}(e^{c}) - \int_{t}^{c}$	er cutante	() ()	
			= cretan(1) - c			
S-3 Ray - 7 of g-2-1-1 2. the day to K a glogh	T = [4]	(()) dia				
notice down to be a graph on where by the self	In = 1/2 (2004) -	(-14-5-//				
3,400						
x2+55=9						
2 = { (150 2 (15 - 2)) by						

5.4	of Syrx About	
c)	c ({ } y = x 2	3x2)db 4 5
1 2	9=9 On charle a tel com	
	$\int_{-1}^{\infty} \left(\chi_{a} + \chi_{a} \right) \mathcal{O}_{\tau} = \int_{0}^{\infty} dt$	a (9, x+35) ar, a) -16 a 62 C=1/2
		1-/2
S, 7 v	Jean 12 de Sulua (g = 2-46), x)	chosis of Sa (3-15-y))dy
OT V	ba-to =	Jol 2 // = 1/2
0	7-4,2 Cg = 4-4 Co x = \(\frac{36-96}{2} = \frac{1}{2} \)	
SN 9 = 4	Le clisgo scart vadaccour	S-(x=g ² (1:1) (4:-2)
4 1 G =	$v = \int_{e}^{e} \pi r^{2} dr \qquad r = \frac{1}{4} - \frac{1}{2} r^{2}$	$I = \int_{c}^{a} \sqrt{1 + \frac{d^{2}}{65}} \int_{c}^{a} ds$
- 2	$e_{\perp} = \lambda$ the $e_{\perp} = \lambda$	J. (1+(2,5)) ds
5.20	J. 1 44 dp 87 ts	
a 8	523	
J 6 V (4 (25) A5	J(x): = 2c08(3x	-9)
1 (4 (27) de	g(x) = 1,0 - & 3,0) a	
00	Solve (Ja) = g(0) k k, % (h(x): = g(4)	^
	0	=> \int (gh=)-9(h))ch
	G:= 1%	Olongueor 1+/organia

				195 C	G/ 1+ 4	(J(Go)))	>		
				Ja					