

Collide+Power

The Evolution of Software-based Power Side-Channels Attacks

Andreas Kogler

Graz University of Technology

6th December 2023

• Andreas Kogler

• Andreas Kogler

Andreas Kogler

• PhD-Candidate - Graz University of Technology

Andreas Kogler

- PhD-Candidate Graz University of Technology
 - Software-based power side channels
 - Software-based fault attacks.
 - Trusted execution environments

- PhD-Candidate Graz University of Technology
 - Software-based power side channels
 - Software-based fault attacks
 - Trusted execution environments

Software-based Power Side Channels

Software-based Power Side Channels

• Specific targets: Algorithms

Software-based Power Side Channels

- **Specific** targets: Algorithms
- Leak edge cases

Software-based Power Side Channels

- Specific targets: Algorithms
- Leak edge cases
- Limited to a side channels

Software-based Power Side Channels

- Specific targets: Algorithms
- Leak edge cases
- Limited to a side channels

Transient Execution Attacks

Software-based Power Side Channels

- **Specific** targets: Algorithms
- Leak edge cases
- Limited to a side channels

Transient Execution Attacks

• Generic targets: CPU components

Software-based Power Side Channels

- **Specific** targets: Algorithms
- Leak edge cases
- Limited to a side channels

Transient Execution Attacks

- Generic targets: CPU components
- Leak arbitrary data

Software-based Power Side Channels

- Specific targets: Algorithms
- Leak edge cases
- Limited to a side channels

Transient Execution Attacks

- Generic targets: CPU components
- Leak arbitrary data
- Agnostic to side channels

- Specific targets: Algorithms
- Leak edge cases
- Limited to a side channels

- Generic targets: CPU components
- Leak arbitrary data
- Agnostic to side channels

Can we build a **generic** software-based power side-channel attack **independent** of the targeted application?

• Complementary Metal Oxide Semiconductor

- Complementary Metal Oxide Semiconductor
- Low power consumption

- Complementary Metal Oxide Semiconductor
- Low power consumption
- Depends on:

Andreas Kogler

■ andreas.kogler@iaik.tugraz.at

- Complementary Metal Oxide Semiconductor
- Low power consumption
- Depends on:
 - Instruction that is executed

- Complementary Metal Oxide Semiconductor
- Low power consumption
- Depends on:
 - Instruction that is executed
 - Data that is being processed

Traditional Power Side Channels

Power Side Channel - Setup

How can we measure the power consumption of a modern CPU?

How would we ever do this remotely?

cat	/sys/class/powercap/intel-rapl:0/intel-rapl:0:0/energy_u	ıj

PLATYPUS¹

¹Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon, Claudio Canella, and Daniel Gruss. PLATYPUS: Software-based Power Side-Channel Attacks on x86. In: S&P. 2021.

Running Average Power Limit (RAPL)

Unprivileged power meter

Running Average Power Limit (RAPL)

Unprivileged power meter

No physical access

Running Average Power Limit (RAPL)

Unprivileged power meter

No physical access

Low refresh rate

• Full Control

- Full Control
- **High** timing resolution

- Full Control
- **High** timing resolution
- → Multiple samples per instruction

- Full Control
- **High** timing resolution
- → Multiple samples per instruction

• No control, just a register

External Measurement Equipment vs RAPL

- Full Control
- **High** timing resolution
- Multiple samples per instruction

- No control, just a register
- Low timing resolution

External Measurement Equipment vs RAPL

- Full Control
- **High** timing resolution
- → Multiple samples per instruction

- No control, just a register
- Low timing resolution
- \rightarrow Single sample per multiple instructions

Distinguishing Instructions

• Measure the energy consumption of different instructions

Distinguishing Operands

• Measure the energy consumption of different operands

Andreas Kogler

cat	/sys/class/por	wercap/intel-	rapl:0/intel-	rapl:0:0/energy_uj

→	<u>sudo</u>	cat	/sys/class/	oowercap	/intel-ra	pl:0/inte	l-rapl	:0:0/energ	gy_uj

Hertzbleed²³

²Yingchen Wang, Riccardo Paccagnella, Elizabeth He, Hovav Shacham, Christopher W. Fletcher, and David Kohlbrenner. Hertzbleed: Turning Power Side-Channel Attacks Into Remote Timing Attacks on x86. In: USENIX Security. 2022.

³Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and Neer Roggel. Frequency throttling side-channel attack. In: CCS. 2022.

• CPU power management is complex

- CPU power management is complex
- In order to save power, you can . . .

- CPU power management is complex
- In order to save power, you can . . .

Shut down resources

- CPU power management is complex
- In order to save power, you can ...

Shut down resources

Reduce voltage

- CPU power management is complex
- In order to save power, you can . . .

Shut down resources

Reduce voltage

Reduce frequency

- CPU power management is complex
- In order to save power, you can . . .

Shut down resources

Reduce voltage

Reduce frequency

• Consumes **more** energy

• Consumes **less** energy

• Reaches power limit after some time

• Consumes **less** energy

- Consumes more energy
- Reaches power limit after some time

- Consumes less energy
- Never reaches power limit

- Consumes more energy
- Reaches power limit after some time
- Throttling occurs

- Consumes less energy
- Never reaches power limit

- Consumes more energy
- Reaches power limit after some time
- Throttling occurs

- Consumes less energy
- Never reaches power limit
- No throttling

- Consumes more energy
- Reaches power limit after some time
- Throttling occurs
- → Slowdown

- Consumes **less** energy
- Never reaches power limit
- No throttling

- Consumes more energy
- Reaches power limit after some time
- Throttling occurs
- → Slowdown

- Consumes less energy
- Never reaches power limit
- No throttling
- → No slowdown

Hertzbleed Effect - Without Power Limit

Hertzbleed Effect - With Power Limit

GPU Throttling⁴⁵

⁴Yingchen Wang, Riccardo Paccagnella, Alan Wandke, Zhao Gang, Grant Garrett-Grossman, Christopher W Fletcher, David Kohlbrenner, and Hovav Shacham. DVFS frequently leaks secrets: Hertzbleed attacks beyond SIKE, cryptography, and CPU-only data. In: S&P. 2023.
⁵Hritvik Taneja, Jason Kim, Jie Jeff Xu, Stephan van Schaik, Daniel Genkin, and Yuval Yarom. Hot Pixels: Frequency, Power, and Temperature Attacks on GPUs and ARM SoCs. In: USENIX Security.

 \bullet Integrated GPUs share power limits with the CPU

- Integrated GPUs share power limits with the CPU
 - \rightarrow CPU throttling indicates high GPU consumption

- Integrated GPUs share power limits with the CPU
 - $\rightarrow \ \textbf{CPU throttling} \ \text{indicates high GPU consumption}$
- **Dedicated** GPUs have power limits too

- Integrated GPUs share power limits with the CPU
 - → **CPU throttling** indicates high GPU consumption
- **Dedicated** GPUs have power limits too
 - → **Observable** by timing a GPU workload

Andreas Kogler

What secrets are "inside" a GPU?

- What secrets are "inside" a GPU?
 - GPU renders windows and screen

- What secrets are "inside" a GPU?
 - GPU renders windows and screen
 - → **Privacy** related information

- What secrets are "inside" a GPU?
 - GPU renders windows and screen
 - → **Privacy** related information
- Pixel color represents the information

• Post-processing without revealing the pixels

- Post-processing without revealing the pixels
- Pixel value is the data operand

- Post-processing without revealing the pixels
- Pixel value is the data operand
- Distinguishable power consumption

Andreas Kogler

- Post-processing without revealing the pixels
- Pixel value is the data operand
- Distinguishable power consumption
 - Bright pixel → less power

- Post-processing without revealing the pixels
- Pixel value is the data operand
- Distinguishable power consumption
 - Bright pixel → less power
 - Dark pixel → more power

- Post-processing without revealing the pixels
- Pixel value is the data operand
- Distinguishable power consumption
 - Bright pixel → less power
 - Dark pixel → more power
- → Measure timing and infer pixel value

How can we transform power side channels towards a broader scope?

Collide+Power⁶

⁶Andreas Kogler, Jonas Juffinger, Lukas Giner, Lukas Gerlach, Martin Schwarzl, Michael Schwarz, Daniel Gruss, and Stefan Mangard. Collide+Power: Leaking Inaccessible Data with Software-based Power Side Channels. In: USENIX Security. 2023.

Attacker

Victim

Andreas Kogler

Hamming Weight: hw(x)

Hamming Weight: hw(x)

Number of set bits

Hamming Weight: hw(x)

Number of set bits

$$hw(11_2) = 2$$

Hamming Weight: hw(x)Number of set bits

 $hw(11_2) = 2$

Hamming Distance: hd(x, y)

Andreas Kogler

Hamming Weight: hw(x)Number of set bits $hw(11_2) = 2$

Hamming Distance: hd(x, y)Number of different bits

Hamming Weight: hw(x)Number of set bits

 $hw(11_2) = 2$

Hamming Distance: hd(x, y)Number of different bits $hd(11_2, 01_2) = 1$

Andreas Kogler

Attacker

Victim

Andreas Kogler

Attacker

Victim

$$\mathcal{P}(\mathcal{G}, \mathcal{V}) \approx \dots$$

$$\mathcal{P}(\mathcal{G},\mathcal{V}) \approx \mathsf{hd}(\mathcal{G},\mathcal{V})$$

$$\mathcal{P}(\mathcal{G},\mathcal{V}) \approx \mathsf{hd}(\mathcal{G},\mathcal{V})$$

$$\underbrace{\mathcal{P}(\mathcal{G},\mathcal{V})}_{\mathsf{model}} pprox \mathsf{hd}(\mathcal{G},\mathcal{V})$$

$$\underbrace{\mathcal{P}(\mathcal{G},\mathcal{V})}_{\text{model}} \approx \underbrace{\mathsf{hd}(\mathcal{G},\mathcal{V})}_{\text{signal}}$$

Andreas Kogler

$$\mathcal{P}(\mathcal{G}, 0101_2) pprox \mathsf{hd}(\mathcal{G}, 0101_2)$$

$$\mathcal{P}(1000_2, 0101_2) pprox \mathsf{hd}(\mathbf{1}000_2, \mathbf{0}101_2) = 3$$

$$\mathcal{P}(0100_2, 0101_2) \approx \mathsf{hd}(0\mathbf{1}00_2, 0\mathbf{1}01_2) = 1$$

$$\mathcal{P}(0010_2, 0101_2) \approx \mathsf{hd}(00\mathbf{1}0_2, 01\mathbf{0}1_2) = 3$$

$$\mathcal{P}(0001_2,0101_2) pprox \mathsf{hd}(000m{1}_2,010m{1}_2) = 1$$

Leakage Analysis - Generalization

Aligned Leakage

Leakage Analysis - Generalization

Leakage Analysis - Generalization

Leakage Analysis: Results

	Evict.	Effectiveness		Aligned Leakage		Cross Leakage		Self Leakage		Weights			
Inst.		$\hat{ ho}$ $\cdot 1$	SNR _A ·10 ^{−3}	$hd(v_L, g_L)$ $a_0 \text{ in } \mu W$	$hd(v_U, g_U)$ $a_1 \text{ in } \mu W$	$hd(v_L, g_U)$ $c_0 \text{ in } \mu W$	$hd(v_U, g_L)$ $c_1 \text{ in } \mu W$	$hd(v_L, v_U)$ $s_0 \text{ in } \mu W$	$hd(g_L, g_U)$ $s_1 \text{ in } \mu W$	hw(v _I)	T _W	$hw(g_L)$ w_2 in μW	$hw(g_U)$ w_3 in μW
Load	None L1 L1+L2	0.311 0.907 0.822	72.004 7.873 5.632	544.5 598.3 339.3	4.2 278.8 141.7	1.1 0.0 106.6	0.5	rea	ling	0.0	0.0 0.0	362.6 6124.4 3750.7	0.0 2696.9 1435.0
Prefetch	None L1 L1+L2	0.003 0.370 0.300	0.000 11.365 5.294	0.0	no	st	art 43.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	1.7 454.1 334.0	2.8 455.5 332.5
Store	None L1 L1+L2	0.003 0.241 0.450	0.000 3.876 6.457	63.3 133.7	0.0 74.5 169.0	0.0 4.9 84.7	3.1 9.6 86.2	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	7.0 204.6 347.1	0.0 303.2 1130.5

Generic Attacks

This must be slow?

It is EXTREMELY slow!⁷

⁷With the current state-of-the-art.

4.82 bit/h

- MDS-style:
 - 4.82 bit/h
- Meltdown-style (RSB):
 - 0.84 bit/h

- MDS-style: 4.82 bit/h
- Meltdown-style (RSB): 0.84 bit/h

• MDS-style: 0.065 to 0.68 bit/h

- MDS-style: 4.82 bit/h
- Meltdown-style (RSB): 0.84 bit/h

- MDS-style: 0.065 to 0.68 bit/h
- Meltdown-style estimate (PHT): 99.95 days/bit to 2.86 years/bit

Mitigations

Mitigations

• Preventing data collisions:

- Redesign of the complete shared data path
- Costly to deploy

Andreas Kogler

• Missed components re-enable Collide+Power

Mitigations

- Preventing observable power consumption:
 - Restricting all direct power interfaces
- Mitigating Hertzbleed is challenging
 - Thermal and power management is required
- → Collide+Power is slow but unmitigated on modern CPUs!

• Unrestricted power interfaces are a threat for system security

- Unrestricted power interfaces are a threat for system security
- Indirect interfaces still expose exploitable information

- Unrestricted power interfaces are a threat for system security
- Indirect interfaces still expose exploitable information
- Software-based power side channels can leak arbitrary data

- Unrestricted power interfaces are a threat for system security
- Indirect interfaces still expose exploitable information
- Software-based power side channels can leak arbitrary data
- Many more details in the papers

```
https://collidepower.com
```

https://hertzbleed.com

https://platypusattack.com/