Rachunek różniczkowy i całkowy. T. 1 / G. M. Fichtenholz. – Wyd. 12, (8 dodr.). – Warszawa, 2012

Spis treści

Wstęp	
LICZBY RZECZYWISTE	
§ 1. Liczby wymierne	
1. Uwagi wstępne	5
2. Uporządkowanie zbioru liczb wymiernych	6
3. Dodawanie i odejmowanie liczb wymiernych	6
4. Mnożenie i dzielenie liczb wymiernych	8
5. Aksjomat Archimedesa	9
§ 2. Wprowadzenie liczb wymiernych. Relacja uporządkowania	
w zbiorze liczb rzeczywistych	
6. Definicja liczby rzeczywistej	10
7. Relacja uporządkowania liczb rzeczywistych	12
8. Tezy pomocnicze	
9. Przedstawienie liczby rzeczywistej nieskończonym ułamkiem	
dziesiętnym	14
10. Ciągłość zbioru liczb rzeczywistych	16
11. Krańce zbiorów liczbowych	17
§ 3. Działania arytmetyczne na liczbach rzeczywistych	
12. Określenie sumy liczb rzeczywistych	19
13. Własności sumy	20
14. Definicja iloczynu liczb rzeczywistych	22
15. Własności mnożenia	23
16. Uwagi dodatkowe	25
17. Wartości bezwzględne	25
§ 4. Dalsze własności i zastosowania liczb rzeczywistych	
18. Istnienie pierwiastka. Potęga o wykładniku wymiernym	26
19. Potęga o dowolnym wykładniku rzeczywistym	27
20. Logarytmy	29
21. Mierzenie odcinków	30
Rozdział I	
TEORIA GRANIC	
§ 1. Ciąg i jego granica	22
22. Wielkość zmienna, ciąg	33
23. Granica ciągu	35
24. Ciągi zbieżne do zera	36
25. Przykłady	37
26. Pewne twierdzenia o ciagu mającym granice	41

	40
27. Granice nieskończone	42
§ 2. Twierdzenia o granicach ułatwiające znajdowanie granic	4.4
28. Przejście do granicy w równości i w nierówności	44
29. Lematy o ciągach zbieżnych do zera	46
30. Działania arytmetyczne na ciągach	47
31. Wyrażenia nieoznaczone	48
32. Przykłady znajdowania granic	50
33. Twierdzenie Stolza i jego zastosowania	55
§ 3. Ciąg monotoniczny	50
34. Granica ciągu monotonicznego	58
35. Przykłady	59
36. Liczba e	64
37. Przybliżone obliczenie liczby e	64
38. Lemat o przedziałach zstępujących	69
§ 4. Kryterium zbieżności. Punkty skupienia	7.0
39. Zasada zbieżności	70
40. Podciągi i punkty skupienia	72
41. Lemat Bolzano-Weierstrassa	73
42. Granice górna i dolna	75
Rozdział II	
FUNKCJE JEDNEJ ZMIENNEJ	
§ 1. Pojęcie funkcji	
43. Zmienna i obszar jej zmienności	78
44. Zależność funkcyjna między zmiennymi. Przykłady	79
45. Definicja pojęcia funkcji	80
46. Analityczny sposób określenia funkcji	82
47. Wykres funkcji	84
48. Ważniejsze klasy funkcji	86
49. Pojęcie funkcji odwrotnej	90
50. Funkcje cyklometryczne (kołowe)	91
51. Superpozycja funkcji. Uwagi końcowe	95
§ 2. Granica funkcji	
52. Definicja granicy funkcji	96
53. Sprowadzenie do przypadku ciągu	97
54. Przykłady	99
55. Rozszerzenie teorii granic	106
56. Przykłady	109
57. Granica funkcji monotonicznej	111
58. Ogólne kryterium Bolzano-Cauchy'ego	112
59. Granice górna i dolna funkcji	113
§ 3. Klasyfikacja wielkości nieskończenie małych i nieskończenie dużych	
60. Porównywanie nieskończenie małych	114
61. Skala nieskończenie małych	115
62. Nieskończenie małe równoważne	116
	-

63. Wydzielenie części głównej	118
64. Zadania	119
65. Klasyfikacja nieskończenie dużych	121
§ 4. Ciągłość (i punkty nieciągłości) funkcji	
66. Określenie ciągłości funkcji w punkcie	122
67. Działania arytmetyczne na funkcjach ciągłych	124
68. Przykłady funkcji ciągłych	124
69. Ciągłość jednostronna. Klasyfikacja nieciągłości	126
70. Przykłady funkcji nieciągłych	127
71. Ciągłość i nieciągłości funkcji monotonicznej	129
72. Ciągłość funkcji elementarnych	130
73. Superpozycja funkcji ciągłych	131
74. Rozwiązanie pewnego równania funkcyjnego	132
75. Charakterystyka funkcyjna funkcji wykładniczej, logarytmicz	nej
i potęgowej	133
76. Charakterystyka funkcyjna kosinusa trygonometrycznego	
i hiperbolicznego	135
77. Wykorzystanie ciągłości funkcji dla obliczania granic	137
78. Wyrażenia oznaczone i nieoznaczone w postaci potęgi	140
79. Przykłady	141
§ 5. Własności funkcji ciągłych	
80. Twierdzenie o zerowaniu się funkcji	142
81. Zastosowanie do rozwiązywania równań	144
82. Twierdzenie o wartości średniej	145
83. Istnienie funkcji odwrotnej	146
84. Twierdzenie o ograniczoności funkcji	148
85. Największa i najmniejsza wartość funkcji	149
86. Pojęcie ciągłości jednostajnej	151
87. Twierdzenie Cantora	152
88. Lemat Borela	153
89. Nowe dowody podstawowych twierdzeń	155
Rozdział III	
POCHODNE I RÓŻNICZKI	
§ 1. Pochodna i jej obliczanie	
90. Zadanie obliczenia prędkości poruszającego się punktu	158
91. Zadanie znalezienia stycznej do krzywej	159
92. Definicja pochodnej	161
93. Przykłady obliczania pochodnych	164
94. Pochodna funkcji odwrotnej	167
95. Zestawienie wzorów na pochodne	169
96. Wzór na przyrost funkcji	170
97. Najprostsze reguły obliczania pochodnych	171
98. Pochodna funkcji złożonej	173
99. Przykłady	174

100. Pochodne jednostronne	180
101. Pochodne nieskończone	181
102. Dalsze przykłady przypadków specjalnych	181
§ 2. Różniczka	
103. Definicja różniczki	182
104. Związek między różniczkowalnością a istnieniem pochodnej	184
105. Podstawowe wzory i reguły różniczkowania	185
106. Niezmienniczość wzoru na różniczkę	187
107. Różniczki jako źródło wzorów przybliżonych	189
108. Zastosowanie różniczek do szacowania błędów	191
§ 3. Podstawowe twierdzenie rachunku różniczkowego	
109. Twierdzenie Fermata	193
110. Twierdzenie Darboux	194
111. Twierdzenie Rolle'a	195
112. Wzór Lagrange'a	196
113. Granica pochodnej	198
114. Wzór Cauchy'ego	199
§ 4. Pochodne i różniczki wyższych rzędów	
115. Definicja pochodnych wyższych rzędów	200
116. Wzory ogólne na pochodne dowolnego rzędu	202
117. Wzór Leibniza	205
118. Przykłady	206
119. Różniczki wyższych rzędów	209
120. Niezachowywanie niezmienniczości wzoru na różniczkę wyższych	
rzędów	210
121. Różniczkowanie parametryczne	210
122. Różnice skończone	212
§ 5. Wzór Taylora	
123. Wzór Taylora dla wielomianów	214
124. Rozwinięcie dowolnej funkcji; Reszta w postaci Peana	215
125. Przykłady	218
126. Inne postacie reszty	221
127. Wzory przybliżone	224
§ 6. Interpolacja	
128. Najprostsze zagadnienie interpolacji. Wzór Lagrange'a	229
129. Reszta we wzorze interpolacyjnym Lagrange'a	230
130. Interpolacja z krotnymi węzłami. Wzór Hermite'a	231
Rozdział IV	
BADANIE FUNKCJI ZA POMOCĄ POCHODNYCH	
§ 1. Badanie przebiegu funkcji	
131. Warunek stałości funkcji	234
132. Warunek monotoniczności funkcji	236
133. Dowód pewnych nierówności	238
134. Maksima i minima; warunki konieczne	241

135. Warunki dostateczne. Reguła pierwsza	243
136. Przykłady	244
137. Reguła druga	248
138. Wykorzystanie pochodnych wyższych rzędów	250
139. Znajdowanie wartości największych i najmniejszych	252
140. Zadania	253
§ 2. Funkcje wypukłe i wklęsłe	
141. Definicja funkcji wypukłej (wklęsłej)	256
142. Najprostsze twierdzenia o funkcjach wypukłych	258
143. Warunki wypukłości funkcji	260
144. Nierówność Jensena i jej zastosowania	263
145. Punkty przegięcia	264
§ 3. Konstrukcja wykresów funkcji	
146. Postawienie zagadnienia	266
147. Schemat konstrukcji wykresu. Przykłady	267
148. Nieciągłości nieskończone, przedział nieskończony. Asymptoty	269
149. Przykłady	272
§ 4. Obliczenie nieoznaczoności	
150. Wyrażenia nieoznaczone typu 0/0	275
151. Wyrażenia nieoznaczone typu ∞/∞	279
152. Inne typy nieoznaczoności	282
§ 5. Przybliżone rozwiązywanie równań	
153. Uwagi wstępne	284
154. Reguła części proporcjonalnych (metoda siecznej)	285
155. Reguła Newtona (metoda stycznej)	288
156. Przykłady i ćwiczenia	289
157. Metoda kombinowana	293
158. Przykłady i ćwiczenia	294
Rozdział V	
FUNKCJE WIELU ZMIENNYCH	
§ 1. Pojęcia podstawowe	
159. Zależność funkcyjna między zmiennymi. Przykłady	298
160. Funkcje dwóch zmiennych i obszary zmienności ich argumentów	299
161. Arytmetyczna przestrzeń n-wymiarowa	302
162. Przykłady obszarów w przestrzeni n-wymiarowej	305
163. Ogólna definicja obszaru otwartego i obszaru domkniętego	307
164. Funkcje n zmiennych	309
165. Granica funkcji wielu zmiennych	310
166. Związek z teorią ciągów	312
167. Przykłady	314
168. Granice iterowane	316
§ 2. Funkcje ciągłe	
169. Ciągłość i nieciągłości funkcji wielu zmiennych	318
170. Działania na funkcjach ciągłych	320

171. Funkcje ciągłe w obszarze. Twierdzenie Bolzano-Cauchy'ego	0 321
172. Lemat Bolzano-Weierstrassa	322
173. Twierdzenie Weierstrassa	324
174. Ciągłość jednostajna	325
175. Lemat Borela	327
176. Nowe dowody podstawowych twierdzeń	328
§ 3. Pochodne i różniczki funkcji wielu zmiennych	
177. Pochodne cząstkowe i różniczki cząstkowe	329
178. Przyrost zupełny funkcji	332
179. Różniczka zupełna	335
180. Interpretacja geometryczna w przypadku funkcji dwóch zmi	iennych 336
181. Pochodne funkcji złożonych	339
182. Przykłady	340
183. Wzór Lagrange'a	343
184. Pochodna kierunkowa	344
185. Niezmienniczość wzoru na pierwszą różniczkę	346
186. Zastosowanie różniczki zupełnej do rachunków przybliżonyc	ch 348
187. Funkcje jednorodne	351
188. Wzór Eulera	352
§ 4. Pochodne i różniczki wyższych rzędów	
189. Pochodne wyższych rzędów	353
190. Twierdzenia o pochodnych mieszanych	356
191. Uogólnienie	359
192. Pochodne wyższych rzędów funkcji złożonej	360
193. Różniczki wyższych rzędów	361
194. Różniczki funkcji złożonych	364
195. Wzór Taylora	365
§ 5. Ekstrema, wartości największe i najmniejsze	
196. Ekstrema funkcji wielu zmiennych. Warunki konieczne	367
197. Warunki dostateczne (przypadek funkcji dwu zmiennych)	369
198. Warunki dostateczne (przypadek ogólny)	372
199. Warunki nieistnienia ekstremów	375
200. Największe i najmniejsze wartości funkcji. Przykłady	376
201. Zadania	380
Rozdział VI	
WYZNACZNIKI FUNKCYJNE I ICH ZASTOSOWANIA	
§ 1. Własności formalne wyznaczników funkcyjnych	
202. Definicja wyznaczników funkcyjnych (jakobianów)	389
203. Mnożenie jakobianów	390
204. Mnożenie macierzy funkcyjnych (macierzy Jacobiego)	392
§ 2. Funkcje uwikłane	
205. Pojęcie funkcji uwikłanej jednej zmiennej	395
206. Istnienie funkcji uwikłanej	396
207. Różniczkowalność funkcji uwikłanej	398

208. Funkcje uwikłane wielu zmiennych	400
209. Obliczanie pochodnych funkcji uwikłanych	406
210. Przykłady	409
§ 3. Niektóre zastosowania teorii funkcji uwikłanych	
211. Ekstrema warunkowe	413
212. Metoda czynników nieoznaczonych Lagrange'a	416
213. Warunki dostateczne istnienia ekstremum warunkowego	417
214. Przykłady i zadania	418
215. Pojęcie niezależności funkcji	423
216. Rząd macierzy Jacobiego	425
§ 4. Zamiana zmiennych	
217. Funkcje jednej zmiennej	428
218. Przykłady	431
219. Funkcje wielu zmiennych. Zamiana zmiennych niezależnych	434
220. Metoda obliczania różniczek	436
221. Przypadek ogólny zamiany zmiennych	437
222. Przykłady	439
D 1:11/77	
Rozdział VII	
ZASTOSOWANIA RACHUNKU RÓŻNICZKOWEGO DO GEOMETRII	
§ 1. Przedstawienie analityczne krzywych i powierzchni	440
223. Krzywa na płaszczyźnie we współrzędnych prostokątnych	448
224. Przykłady	450 453
225. Krzywe pochodzenia mechanicznego	453 456
226. Krzywe na płaszczyźnie we współrzędnych biegunowych	456 460
227. Powierzchnie i krzywe w przestrzeni	460 461
228. Przedstawienie parametryczne	
229. Przykłady	463
§ 2. Prosta styczna i płaszczyzna styczna	466
230. Styczna do krzywej płaskiej we współrzędnych prostokątnych 231. Przykłady	468
231. Frzykłady 232. Styczna we współrzędnych biegunowych	400
233. Przykłady	470
234. Styczna do krzywej przestrzennej. Płaszczyzna styczna	4/1
do powierzchni	472
235. Przykłady	476
236. Punkty osobliwe krzywej płaskiej	470
237. Przypadek parametrycznego przedstawienia krzywej	482
§ 3. Styczność krzywych	402
238. Obwiednia rodziny krzywych	483
239. Przykłady	486
240. Punkty charakterystyczne	490
241. Rząd styczności dwóch krzywych	490
242. Przypadek, gdy jedna z krzywych jest dana równaniem uwikłanym	493
243. Krzywa ściśle styczna	494
2 13. IN 29 Wa Scisic Stycena	-T 2 -T

244. Inne podejście do krzywych ściśle stycznych	496
§ 4. Długość krzywej płaskiej	
245. Lematy	497
246. Zwrot na krzywej	498
247. Długość krzywej. Addytywność długości łuku	499
248. Warunki dostateczne prostowalności. Różniczka łuku	501
249. Łuk jako parametr. Zwrot dodatni stycznej	504
§ 5. Krzywizna krzywej płaskiej	
250. Pojęcie krzywizny	506
251. Koło krzywiznowe i promień krzywizny	509
252. Przykłady	511
253. Współrzędne środka krzywizny	515
254. Definicja ewoluty i ewolwenty; znajdowanie ewoluty	516
255. Własności ewolut i ewolwent	519
256. Znajdowanie ewolwenty	521
Uzupełnienie	
ZAGADNIENIE PRZEDŁUŻANIA FUNKCJI	
257. Przypadek funkcji jednej zmiennej	523
258. Postawienie zagadnienia w przypadku dwóch zmiennych	524
259. Twierdzenia pomocnicze	526
260. Podstawowe twierdzenie o przedłużaniu	529
261. Uogólnienie	530
262. Uwagi końcowe	532
Skorowidz	535

oprac. BPK