

\sim			<u> </u>		
Mo 1	Tu \	Ne T	h F	r Sa	Su

Memo No.		
Date	1	1

Homogeneous systems: Ax=0 has non-trinal
solutions (3/10)=0

In the magazine systems: Ax = b thus the unique $\text{Olution } X = A^{-1}b$, if $|A| \neq 0$

proof for 22:

Ax=0 (24)

Ax =0, 18/20, has non-trivial

A = Ka, as do three vector

 $\vec{a}_1 \cdot \vec{\chi} = 0$, $\vec{a}_2 \cdot \vec{\chi} = 0$, $\vec{a}_3 \cdot \vec{\chi} = 0$

IAI=0, so the parallelepiped has zero volume, so it is a plane, so all non-zero vector X which is orthogonal to a; of ond as, and therefore will be a slution to (24), this prove (22) if |X| = 0, the $|A| \cdot X = 0$ has a non-trivial solution

Mo Tu We Th Fr Sa Su	Memo No
Sty Smyuler Matrices	(新知阵)
square A mutrix A is	singular if 181 =0 (3.3
peause At exist only	nertible if 18140 程序 15连1 if 18140
, Y	x homogeneous homogeneous homogeneous homogeneous homogeneous homogeneous
	homogeneous homogeneous
Problems:	
1. ×+ y+ 2==0	[1127
x+y+c= = 0	210
3x + y +6 = 0	[3 1 6]
и) ф 'C=	112
T1127	21, 1, 27 = -j+3j-k
$\begin{bmatrix} 2 & 1 & 1 \\ 3 & 1 & 6 \end{bmatrix} X = \vec{0}$	22,1,12 -3+3-6 31,62 = 6
$\frac{\det(\vec{R})}{\det(\vec{R})} = 5 - 9 + 1 - 2$	$=-6$ $\times X = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
also can, but detay better (b) c=4 det []	$\chi = \begin{pmatrix} 2\eta \\ g \end{pmatrix}$
[] [] [] = +	2 平 - 2 = 0
$\leq l_1 l_1 2 > x$	$(2,1,4) = 13 ^{2} = 21 - R$