Zusammenfassung: Dependable Systems

Inhaltsverzeichnis

Basics Allgemeine Begriffe und Definitionen	. 1 . 2
Mathematische Modelle Blockdiagramm	. 3
An dieser Zusammenfassung und der zugehörigen Formelsammlung kann auf Github mitgewirkt werden!	gerne

Basics

Allgemeine Begriffe und Definitionen

- Definition von Dependability¹:
 - original: Dependability ist die Fähigkeit, Dienste anzubieten, auf die gerechtfertigterweise vertraut werden kann.
 - alternativ: Dependability eines Systems beschreibt die Fähigkeit, Ausfälle zu verhindern, die frequenter auftreten oder gravierendere Folgen haben, als zulässig.
- System: Eine Einheit, die mit anderen Einheiten (i.e. Systemen) interagiert.
- Umgebung/Umfeld: Alle Systeme, mit denen ein bestimmtes System interagiert.
- Systemgrenze: Die Schnittstelle zwischen einem System und dessen Umgebung.
- Funktion eines Systems: gibt an, was ein System tun soll, d.h. seine Intention.
- Verhalten eines Systems: gibt an, was ein System unternimmt, um seine Funktion zu erfüllen. Wird als Folge von Zuständen angegeben.
- Struktur eines Systems: gibt an, was einem System sein Verhalten ermöglicht -> Komponenten.
- Service Interface: der Teil der Systemgrenze zu einem von möglicherweise mehreren Benutzern.

¹IEEE: "Basic concepts and taxonomy of dependable and secure computing", (Link)

- externe Zustände: die Teilmenge an Zuständen eines Systems, die über das Service Interface wahrnehmbar sind.
- interne Zustände: alle Zustände eines Systems, die nicht extern sind.

Attribute von Dependability:

- Zuverlässigkeit (reliability): die Wahrscheinlichkeit, dass ein System über eine gewisse Periode hinweg seine Funktion erfüllt
- Verfügbarkeit (availability): prozentueller Anteil der Zeit, in der das System seine Funktion erfüllt
- Wartbarkeit (maintainability)
- Sicherheit (safety): Wahrscheinlichkeit, dass ein System während einer gewissen Zeitperiode kein spezifiziertes, unerwünschtes Verhalten zeigt.
 - oft wird Security zu Safety dazu gezählt. Wichtigste Schutzziele: CIA-Triade
- Integrität

Lebensphasen eines Systems:

- Entwicklungsphase
 - Konzeption
 - Design, Entwicklung, Validation, Verifikation
- Benutzungsphase
 - service delivery
 - service outage
 - service shutdown
 - maintainance

Klassifikation von Faults durch:

- Phase of creation or occurrence (development vs. use phase)
- System boundaries (internal vs. external)
- Phenomenological cause (natural vs. human-made)
- Dimension (hardware vs. software)
- Objective (malicious vs. non-malicious)
- Intent (deliberate vs. non-deliberate)
- Capability (accident vs. incompetence)
- Persistence (permanent vs. transient)

Means to attain dependability (and security)

Fault Prevention: takes place in both hardware and software Fault Tolerance: error detection, damage confinement, recovery, fault treatment Fault Removal: verification, diagnosis, correction Fault Forecasting

Mathematische Modelle

Reliability and Failure Probability: Q(t) ... Failure probability: the probability that a system will *not* conform to its specification throughout [0,t] R(t) ... Reliability: the probability that a system will conform to its specification throughout [0,t]

$$R(0) = 1$$
, $R(\inf) = 0$, $R(t) = 1 - Q(t)$

Failure Probability Density Function:
$$f(t) = \frac{dQ(t)}{dt} = -\frac{dR(t)}{dt}$$

Failure Rate:
$$\lambda(t)=\frac{f(t)}{R(t)}=-\frac{dR(t)}{dt}\cdot\frac{1}{R(t)}$$
 Unit: FIT (failures in time) := 1 failure in 10⁹ hours

Constant Failure Rate:
$$\lambda(t)=\lambda$$
 (const.) $\Rightarrow f(t)=\lambda e^{-\lambda \cdot t} \Rightarrow R(t)=e^{-\lambda \cdot t}$

Weibull distribute failure rate:
$$\lambda(t) = \lambda$$
 (const.) $\Rightarrow f(t) = \lambda e^{-\lambda t} \Rightarrow R(t) = e^{-\lambda t}$
 $\Rightarrow R(t) = e^{-(\lambda t)^{\alpha}}$

Blockdiagramm

Serienschaltung:
$$R_{ser.}(t) = \prod_{i=0}^{n} R_i(t) = 1 - \prod_{i=0}^{n} (1 - Q_i(t))$$

Parallelschaltung:
$$Q_{ser.}(t) = \prod_{i=0}^{n} Q_i(t) = 1 - \prod_{i=0}^{n} (1 - R_i(t))$$