PHASE 3 PRESENTATION

Subject: Tanzanian Water Wells

Data

- Comes from an online competition on <u>www.drivendata.org</u>
- ~59,000 records
- Each record in the data is a single Tanzanian water well
- 40 features
 - 10 numeric features
 - 30 categorical features
- A single target variable

Target Variable – Water well status

- THREE CATEGORIES
 - Functional
 - Non functional
 - Functional needs repair

Stakeholder

- Charity organization with limited funds
 - Their goal is to fix as many water wells as possible in as little time as possible
 - Out of all the water points, the "functional needs repair" and "non functional" wells are the ones that require attention
 - Non functional wells require significantly more resources to fix than functional needs repair wells
 - They need us to predict all three categories with maximum accuracy, so they
 can decide the amount of resources to send to each water well

Data Preprocessing

- Too many features
- Several variables aren't suitable for our models
 - Do not correlate with target variable (e.g., id column)
 - Cause collinearity (e.g., "payment" and "payment_type")
 - Differ in their categories from dataset to dataset

After data pruning

- 18 features 9 numeric, 9 categorical
 - 2 engineered numeric features
- All categorical variables were one-hot encoded
- All numerical variables were scaled

Important numeric features

- Location
 - Longitude, latitude, altitude
- Surrounding population
- Year of construction

Important categorical features

- Location
 - Tanzania was divided into 124 provinces
- Water quality
- Water extraction method
- How it receives payment

Metrics

- F1 score for each status category (balanced average of precision and recall)
 - Precision is how likely you are to be right when you predict a certain category
 - Recall is how many instances of a category you successfully identified
- % of non functional wells incorrectly classified as functional

Estimators used

- Iterative modeling approach started with a very simple model and made improvements to it based on metrics
- Initial model: Logistic Regression, unsatisfactory results
- Best model: Random Forest with 6,860 resampled instances of the "functional needs repair" category

SMOTE explanation

- Creates synthetic data
- Like recycled paper. No new material is used, but a bunch of old material is mixed around and re-used.

Comparing F1 scores: "Functional" category

 F1 Score improved by 0.02 with Random Forest

Comparing F1 scores: "Non functional" category

 F1 Score improved by 0.07 with Random Forest

Comparing F1 scores: "Functional needs repair" category

- F1 Score improved by
 0.16 with Random Forest
- Highest F1-score improvement across all three categories

Confusion Matrix: Base Model (Logistic Regression)

- Blue square is best
- Red square: classifying non functional well as functional

Confusion Matrix: Best Model (Random Forest)

- More grouped on blue diagonal
- Less in red square

Reducing NF -> F error

- Classifying a non-functional well as functional leaves a community without water
- The percentage of non functional wells mistakenly classified as functional was reduced by 11%

Comparing Overall Accuracy

Feature Importances

- The variables that our model deemed most important
- Location, population, construction year critical

Providing the Requested Predictions

- This is where I would provide the requested predictions if necessary
- If it matters, I submitted them on drivendata.org, which is where the original competition is being hosted, and I placed roughly #4600 out of almost #16,000 participants.

Construction year distribution for "functional" category

- Concentrated mostly on right-hand side
- Most of the wells are newer

Construction year distribution for "functional needs repair" category

- The distribution shifted to the left
- More of the wells are older

Construction year distribution for "non functional" category

- Shifted to the left yet again
- Even more of the wells are older

Recommendation #1

Bear in mind that older wells are more likely to be dysfunctional

Heat map for functional wells in Tanzania

Several hotspots along the coast

Heat map for non functional wells in Tanzania

- More evenly distributed across the country
- Major hotspots remain

Heat map for functional needs repair wells in Tanzania

- Less prevalent
- Still several hotspots

Recommendation #2

Consult a heat map to better allocate resources

Average amount of water available to each status category

 More dysfunctional wells have less water available to them

Recommendation #3

Prioritize wells that have less water available to them

Recommendation #4

- Prioritize non-functional over functional-needs-repair wells
- Numerous models were unable to accurately predict functional-needs-repair wells, suggesting an ill-defined category

Thank You!

All questions are welcome.