Stat 134 Fall 2025: Homework 7 – SOLUTIONS

Shobhana Stoyanov

- 1. [#20 from Chapter 4] Let $X \sim \text{Bin}(100, 0.9)$. For each part, either construct a coupling that works or explain why it is impossible. Here Y is on the same probability space as X (not necessarily independent).
 - (a) $Y \sim \text{Pois}(0.01)$ with $\mathbb{P}(X \geq Y) = 1$? **Answer:** Impossible. If $\mathbb{P}(X \geq Y) = 1$, then $Y \leq 100$ a.s. since $X \leq 100$. But Pois(0.01) assigns positive mass to all nonnegative integers; in particular $\mathbb{P}(Y > 100) > 0$. Hence $\mathbb{P}(X \geq Y) < 1$.
 - (b) $Y \sim \text{Bin}(100, 0.5)$ with $\mathbb{P}(X \geq Y) = 1$? **Answer:** Possible. Couple trial-by-trial with i.i.d. $U_i \sim \text{Unif}(0, 1)$ for i = 1, ..., 100. Set

$$X_i = \mathbf{1}\{U_i \le 0.9\}, \qquad Y_i = \mathbf{1}\{U_i \le 0.5\}.$$

Then $X_i \sim \text{Bern}(0.9)$, $Y_i \sim \text{Bern}(0.5)$ and $Y_i \leq X_i$ pointwise, so $X = \sum X_i \geq Y = \sum Y_i$ a.s., with $Y \sim \text{Bin}(100, 0.5)$.

- (c) $Y \sim \text{Bin}(100, 0.5)$ with $\mathbb{P}(X \leq Y) = 1$? **Answer:** *Impossible.* If $X \leq Y$ a.s., then $\mathbb{E}[X] \leq \mathbb{E}[Y]$. But $\mathbb{E}[X] = 90$ and $\mathbb{E}[Y] = 50$, a contradiction.
- **2.** [#64 from Chapter 4] If $X \sim \text{Geom}(p)$ on $\{1, 2, \dots\}$, find $\mathbb{E}(e^{tX})$.

Answer: For
$$|(1-p)e^t| < 1$$
 (i.e. $t < -\ln(1-p)$),

$$\mathbb{E}(e^{tX}) = \sum_{k=1}^{\infty} e^{tk} p(1-p)^{k-1} = \frac{pe^t}{1 - (1-p)e^t}.$$

3. [#22 from Chapter 4] Raindrops arrive at rate 20 drops/in²/min. For a 5 in² region over t minutes, suggest a distribution and compute $\mathbb{P}(\text{no drops in 3 seconds})$.

Answer: By the Poisson model for independent counts in space-time, $N \sim \text{Pois}(\lambda)$ with $\lambda = 20 \times 5 \times t = 100t$. For t = 3/60 = 0.05 minutes, $\lambda = 5$, so

$$\mathbb{P}(N=0) = e^{-5} \approx 0.0067.$$

4. [#29 from Chapter 4] Let $X \sim \text{Geom}(p)$ on $\{1, 2, \dots\}$ and define $f(x) = \mathbb{P}(X = x)$. Find $\mathbb{E}[f(X)]$.

Answer: For integers $k \ge 1$, $f(k) = p(1-p)^{k-1}$. Hence

$$\mathbb{E}[f(X)] = \sum_{k=1}^{\infty} \underbrace{p(1-p)^{k-1}}_{P(X=k)} \cdot \underbrace{p(1-p)^{k-1}}_{f(k)} = p^2 \sum_{k=1}^{\infty} (1-p)^{2k-2} = \frac{p^2}{1-(1-p)^2} = \frac{p}{2-p}.$$

5. [#32 from Chapter 4] Memoryless A discrete distribution is memoryless if

$$\mathbb{P}(X \ge j + k \mid X \ge j) = \mathbb{P}(X \ge k)$$
 for all integers $j, k \ge 0$.

(a) Express $\mathbb{P}(X \geq j + k)$ in terms of F and/or p_j .

Answer: Write $S(m) = \mathbb{P}(X \ge m) = 1 - F(m-1)$. The property gives S(j+k) = S(j)S(k), i.e.

$$1 - F(j + k - 1) = (1 - F(j - 1))(1 - F(k - 1)).$$

- (b) Name a discrete distribution with the memoryless property and justify. **Answer:** The geometric distribution. If $X \sim \text{Geom}(p)$ on $\{1, 2, ...\}$, then $S(m) = \mathbb{P}(X \geq m) = (1-p)^{m-1}$ and S(j+k) = S(j)S(k). Uniqueness follows from S(m+1) = cS(m) for all m, forcing $S(m) = c^{m-1}$ and thus geometric.
- **6.** $X \sim \text{Unif}[2, 10].$
 - (a) Density and $\mathbb{P}(X \in [a, b] \subseteq [2, 10])$?

 Answer: $f_X(x) = \frac{1}{8}$ for $x \in [2, 10]$ and 0 otherwise. For $[a, b] \subseteq [2, 10]$,

$$\mathbb{P}(X \in [a, b]) = \frac{b - a}{8}.$$

- (b) Compute $\mathbb{P}(X > 5)$, $\mathbb{P}(5 < X < 7)$, and $\mathbb{P}(X^2 12X + 35 > 0)$. **Answer:** $\mathbb{P}(X > 5) = \frac{10 - 5}{8} = \frac{5}{8}$; $\mathbb{P}(5 < X < 7) = \frac{7 - 5}{8} = \frac{1}{4}$. Since $x^2 - 12x + 35 = (x - 5)(x - 7) > 0$ on $(-\infty, 5) \cup (7, \infty)$, within [2, 10] the favorable length is 3 + 3 = 6, so $\mathbb{P} = 6/8 = 3/4$.
- **7.** Y on [2, 10] with density $f_Y(y) = c y$.
 - (a) Find c. **Answer:** $1 = \int_2^{10} cy \, dy = c \left[\frac{y^2}{2} \right]_2^{10} = c \cdot 48 \Rightarrow c = \frac{1}{48}$.
 - (b) For $[a, b] \subseteq [2, 10]$, compute $\mathbb{P}(Y \in [a, b])$. **Answer:** $\mathbb{P}(Y \in [a, b]) = \int_a^b \frac{y}{48} \, dy = \frac{b^2 a^2}{96}$.
 - (c) Compute $\mathbb{P}(Y > 5)$, $\mathbb{P}(5 < Y < 7)$, and $\mathbb{P}(Y^2 12Y + 35 > 0)$. **Answer:** $\mathbb{P}(Y > 5) = \frac{100 - 25}{96} = \frac{75}{96} = \frac{25}{32}$; $\mathbb{P}(5 < Y < 7) = \frac{49 - 25}{96} = \frac{24}{96} = \frac{1}{4}$; and over $[2, 5] \cup [7, 10]$ we get $\frac{25 - 4}{96} + \frac{100 - 49}{96} = \frac{21}{96} + \frac{51}{96} = \frac{72}{96} = \frac{3}{4}$.
- **8.** [#1 from Chapter 5] Rayleigh If X has PDF $f(x) = xe^{-x^2/2}$ for x > 0:
 - (a) $\mathbb{P}(1 < X < 3)$? **Answer:** The CDF is $F(x) = 1 e^{-x^2/2}$. Thus

$$\mathbb{P}(1 < X < 3) = F(3) - F(1) = e^{-1/2} - e^{-9/2}.$$

- (b) Quartiles: find q_j with $\mathbb{P}(X \leq q_j) = j/4$. Answer: Solve $1 e^{-q^2/2} = j/4 \Rightarrow q_j = \sqrt{-2\ln(1-j/4)}$ for j=1,2,3.
- **9.** [#3 from Chapter 5] Let F be a CDF with PDF f = F'.
 - (a) Show g(x) = 2F(x)f(x) is a valid PDF.

Answer: $g(x) \ge 0$. Also

$$\int_{-\infty}^{\infty} 2F(x)f(x) \, dx = \int 2F \, dF = \left[F(x)^2 \right]_{-\infty}^{\infty} = 1 - 0 = 1.$$

(b) Show $h(x) = \frac{1}{2}f(-x) + \frac{1}{2}f(x)$ is a valid PDF.

Answer:

$$\int_{-\infty}^{\infty} h(x) dx = \frac{1}{2} \int f(x) dx + \frac{1}{2} \int f(-x) dx = \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = 1,$$

using the substitution u = -x for the second integral.

10. [#5 from Chapter 5] Random radius $R \sim \text{Unif}(0,1)$; area $A = \pi R^2$.

- (a) Mean and variance of A (without first finding CDF/PDF). **Answer:** $\mathbb{E}[A] = \pi \mathbb{E}[R^2] = \pi \cdot \frac{1}{3} = \frac{\pi}{3}$, since $\mathbb{E}[R^2] = \int_0^1 r^2 dr = 1/3$. Also $\operatorname{Var}(A) = \pi^2 \operatorname{Var}(R^2)$, and $\mathbb{E}[R^4] = \int_0^1 r^4 dr = \frac{1}{5}$, so $\operatorname{Var}(R^2) = \frac{1}{5} - \left(\frac{1}{3}\right)^2 = \frac{4}{45}$. Hence $\operatorname{Var}(A) = \frac{4\pi^2}{45}$.
- (b) CDF or PDF of A. **Answer:** For $a \in [0, \pi]$,

$$F_A(a) = \mathbb{P}(A \le a) = \mathbb{P}\left(R \le \sqrt{a/\pi}\right) = \sqrt{a/\pi}.$$

Thus
$$f_A(a) = F'_A(a) = \frac{1}{2\sqrt{\pi a}}, \quad 0 < a < \pi.$$