On the center of the cohomology algebra of closed orientable 3-manifolds and a theorem of Sullivan

Qiu Shi Wang

McGill University

January 9, 2021

Closed orientable manifolds

Definition

A Hausdorff topological space M is an n-manifold or manifold of dimension n, if for all $x \in M$, there is a neighbourhood of x homeomorphic to \mathbb{R}^n .

- 2-manifolds are also known as surfaces.
- Connected manifolds.
- Compact manifolds without boundary are said to be closed.
- Orientable manifolds.

Cohomology algebra

Definition

Let k be a field. A k-algebra is a k-vector space equipped with a bilinear product.

Definition

An algebra A is a **graded algebra** if it can be decomposed into a direct sum $A = \bigoplus_{n=0}^{\infty} A_n$ such that for $a_1 \in A_p$ and $a_2 \in A_q$, $a_1a_2 \in A_{p+q}$. The highest n for which $A_n \neq 0$ is the **degree** of the graded algebra.

- $H^*(X; k) \equiv \bigoplus_{n=0}^{\infty} H^n(X; k)$ is the **cohomology algebra** of X. The cup product $\smile: H^p(X; k) \times H^q(X; k) \to H^{p+q}(X; k)$ makes it into an associative graded algebra.
- For simplicity denote $H^n(X; k) \equiv H^n$ and $H^*(X; k) \equiv H^*$.
- The cohomology algebra is also **graded commutative**: for $x \in H^p$ and $y \in H^q$, $xy = (-1)^{pq}yx$.

Closed orientable manifolds and Frobenius algebras

Definition

A bilinear form f on a finite-dimensional vector space V is said to be nondegenerate if f(x,y) = 0 for all $y \in V$ implies that x = 0.

Definition

An associative finite-dimensional k-algebra with unit A equipped with a nondegenerate bilinear form $\sigma: A \times A \to k$ satisfying $\sigma(xy, z) = \sigma(x, yz)$ for all $x, y, z \in A$ is said to be a **Frobenius algebra**.

The following is equivalent to Poincaré duality.

Theorem

The cohomology algebra of a closed orientable n-manifold is a graded Frobenius algebra of degree n.

3-manifolds, cup product 3-form and Sullivan's theorem

Let M be a closed orientable manifold of dimension 3.

Definition

Define the cup product 3-form $\mu_M: H^1 \times H^1 \times H^1 \to k$ by $\mu_M(x,y,z) = \sigma(xy,z)$, where σ is the Frobenius form of $H^*(M;k)$.

A calculation shows that μ_M is indeed an antisymmetric 3-form. In fact, μ_M determines the graded Frobenius algebra structure on $H^*(M; k)$.

Theorem (Sullivan)

Let μ be an antisymmetric 3-form on a finite dimensional k-vector space V. Then there exists a closed orientable 3-manifold M such that $\mu=\mu_M$ and $H^1(M;k)=V$.

Choice of bases

Let n be the degree of the graded Frobenius algebra.

Proposition

Given a basis $\{x_1, \dots, x_b\}$ for H^p , there is a basis $\{\overline{x_1}, \dots, \overline{x_b}\}$ for H^{n-p} dual to it in the sense that $\sigma(x_i, \overline{x_i}) = \delta_{ij}$.

For a 3-manifold M such that $\dim_k(H^1(M;k)) = \beta$,

- $H^0 \cong H^3 \cong k$.
- $H^1 \cong H^2 \cong k^{\beta}$.

Choose a basis $\{1, x_1, \cdots, x_{\beta}, \overline{x_1}, \cdots, \overline{x_{\beta}}, e\}$ for $H^* = H^0 \oplus H^1 \oplus H^2 \oplus H^3$.

Center of the cohomology algebra

- Center Z(A) of an algebra A.
- H^0 , H^2 and H^3 are subsets of $Z(H^*)$ since the algebra is graded commutative.

Lemma

Let $x \in H^1$. Then $x \in Z(H^*)$ if and only if $\mu_M(x, y, z) = 0$ for all $y, z \in H^1$.

Theorem

Let M be a closed orientable 3-manifold. Define the map $\iota_{\mu}: H^1 \to \Lambda^2(H^1)$ by $\iota_{\mu}(x) = \mu_M(x,\cdot,\cdot)$. Then

$$Z(H^*(M;k)) \cong H^0 \oplus \ker(\iota_\mu) \oplus H^2 \oplus H^3 \cong k^{2+\dim H^1} \oplus \ker(\iota_\mu)$$

Hochschild cohomology

Let A be a k-algebra. Define the Hochschild cochain complex

$$CC^n(A) = \operatorname{Hom}_k(A^{\otimes n}, A)$$

Where $A^{\otimes n}$ is the tensor product of A with itself n times and $A^{\otimes 0} = k$.

- Hochschild codifferential $d : CC^n(A) \to CC^{n+1}(A)$.
- For n = 0, $df(a_1) = a_1 f(1) f(1)a_1$.

Define the Hochschild cohomology vector spaces

$$HH^n(A) = \frac{\ker(d:CC^n(A) \to CC^{n+1}(A))}{\operatorname{im}(d:CC^{n-1}(A) \to CC^n(A))}.$$

Proposition

$$HH^0(A) \cong Z(A)$$

Acknowledgements

This project was completed during Spring to Summer 2020 under Dr. François Charette of Marianopolis College. Funding was provided by the Fonds de recherche du Québec - Nature et technologies (FRQNT).