INTORO(640-821)

2007년 6월 7일 목요일 오전 12:05

1. 네트워크 란?

한대 이상의 컴퓨터가 논리적 또는 물리적으로 연결되어 통신이 가능한 상태라고 말 할 수 있으면 요즘은 Internetworking 의 약조로 인터넷(internet)이라고 합니다.

- a. 네트워크의 분류
 - i. Server & Client
 - ii. Peer to Peer
- b. 네트워크의 서비스 영역에 따른 구분
 - i. LAN(Local Area Newtwork)
 - 1) LAN 규모가 작은 학교, 회사, 건물 네트워크를 말합니다.
 - ii. WAN(Wide Area Newtork)
 - 1) WAN은 여러 개의 LAN을 연결한 네트워크를 말합니다.

사실상 요즘 LAN의 기술적 발전으로 인하여 LAN과 WAN를 구분하기가 모호한 경우가 많이 있습니다.

2. Protocol 이란 무엇인가?

말이 통하지 않는 두 장비가 의사소통을 하기 위한 절차나 규칙등을 체계적으로 정리해 놓은 것

3. OSI 7 Layers

OSI 참조 모델은 실제 네트워크 프로토콜을 이해하기 쉽도록 만들어, 네트워크 프로토콜의 역할과 구조, 나아가 네트워크의 동작 방식을 쉽게 이해 할 수 있도록 해 주기 때문 입니다.

OSI 7 Layers 총 7계의 층으로 이루어져 있습니다. 우리는 각 층을 계층이라고 부르고 각 층은 하위 계층을 통해서 서비스를 받고, 상위 계층으로 서비스를 제공하도록 이루어져 있습니다.

또한 각 계층별도 데이터를 전송하기 위한 기본 단위를 우리는 PDU(Protocol Data Unit) 합니다.

- a. Application Layer(7 Layer)
 - i. End -User 가 네트워크 자원을 최대한 효율적으로 사용 할 수 있도록 제공해 주는 인터페이스 계층이라고 할 수 있습니다
 - ii. 예) 철수와 순이 가 메신저를 하고 있습니다. 철수가 컴퓨터 메신저에 "안녕" 이라고 치면

순이 컴퓨터에서 메신저 인터페이스를 통해서 "안녕" 데이터를 받아 볼 수 있습니다.

- b. Presentation Layer(6 Layer)
 - i. 네트워크 자원을 호출하여 응용 프로그램의 영역인 Application 계층에 전달하는 기능(API)
 - ii. Application Layer에서 받은 데이터를 모든 컴퓨터가 이해 할 수 있는 형식(Format)으로 변환하는 것.
 - 1) 그래픽 표준 : JPG, gif
 - 2) 음성과 영상정보 : MIDI , MPEG
 - 3) 문자나 숫자 : ASCII
 - iii. 데이터의 전송의 효율성을 높이기 위해서 Application에서 받은 데이터를 압축(extraction) 할 수 있다.
 - iv. 데이터의 보안상의 목적으로 암호화(encryption) 할 수 있다. 암호화/복호화 (DES, RAS,AES 등 암호화 프로토콜)
- c. Session Layer(5계층)
 - i. Session 확립. 내 Application과 상대방 Application 의 연결을 유지하고 데이터 전송을 제어 하는 역할을 한다.
 - ii. 너무 큰 용량에 데이터를 전송할 때 일정 단위로 나누어 데이터를 전송하기 위한 패킷으로 만드는 기능을 수행한다.
 - iii. Session 계층은 데이터 패킷의 전송에서 데이터의 본래의 위치를 인하여 완성된 형태의 데이터를 재구성하도록 하고, 네트워크의 오류가 발생하여 전송측의 컴퓨터는 오류시 전송 장애가 발생한 특정 데이터 패킷만을 재전송하는 역할을 한다.

d. Transport Layer(4계층)

Trnasport Layer에는 신뢰서 있는 전송을 담당하는 TCP(Transmission Control Protocol)과 신뢰성은 없지만 빠른 전송을 담당하는 UDP(User Datagram Protocol)이 존재한다.

- i. TCP(Transmission Control Protocol)
 - 1) 서로간의 인사를 통해서 관계 즉 신회성 확인하고 데이터를 전송한다.
 - 2) 문자 Data, 그림 Data 즉 인터넷 에 적합하다.
- ii. UDP(User Datagram Protocol)
 - 1) 빠른 전송을 목적으로 한다.
 - 2) Vocie, Media 에 적합하다.
- iii. 포트주소(=서비스 지점 주소지정): Transport Layer은 패킷을 정확하게 상대방 컴퓨터의 서비스에 전달하기 위해서 헤더에 포트주소를 포함 한다.
- iv. 분할과 재조립 : 상위 계층에서 받은 데이터를 전송 할 수 있는 세그먼트 단위로 나무어 각 세그먼트에 번호를 할당하여 목적지에 정확하게 도착하면 세그먼트 번호를 보고 세그먼트를 제조립 한다.

전송 중에 손실된 패킷을 발견하고 대처 할 수 있도록 한다.

- v. 흐름제어: 세그먼트가 번호를 확인하여 목적지에 정확하게 도착하도록 제어 한다.
- vi. 오류제어: 세그먼트 번호를 확인하여 손실된 패킷을 확인하고 송신 측에 재전송을 요구 한다.
- vii. 4 계층 PDU: Segment
- viii. 4 계층 장비 : L4 Switch(SLB, GLB)

e. Network Layer(3계층)

Network Layer 프로토콜은 IP, ARP, ICMP, IGMP 프로토콜이 존재한다.

- i. Network Layer은 IP 주소 즉 논리적 주소를 가지고 발신지로부터 최종 목적지까지 경로를 결정하다..
- ii. 논리적 주소로는 IP / IPX / AppleTalk 존재하면 Ethernet 망에서는 IP 주소를 사용한다.
- iii. 3 계층 PDU: Packet
- iv. 3 계층 장비 : Router, L3 Switch(Switch + Router)

f. Data link Layer(2계층)

- i. 모든 네트워크의 연결을 지원한다.
 - 1) BMA(Broadcast Multiple Access) : Ethernet
 - 2) NBMA(Non-Broadcast Multi-Access) : Frame Relay, ATM, X.25
 - 3) Point to Point : PPP, HDLC
- ii. 상위 계층으로 부터 받은 데이터를 프레임 단위로 나눈다.
- iii. 물리주소(MAC)를 프레임 헤더에 추가 하여 노드 대 노드 전달을 책임 집니다.
- iv. CRC 체크를 통하여 손상된 프레임을 검출하여 재전송함으로써 신뢰성을 높일 수 있다.
- v. 2계층 PDU : Frame vi. 2계층 장비 : Switch
- g. Physical Layer(1계층)
 - i. 데이터의 정보를 전기적인 볼트(Volt)로 변환하여 매개체를 통하여 상대방의 수신 장치로 보내는 역할 한다.
 - ii. 물리적인 접속 형태, 전송방식 를 규정하고 있습니다.
 - iii. 인터페이스와 매체의 물리적인 특정 즉 케이블을 정의 하고 있습니다.
 - iv. 1 계층 장비: Hub, Repeater, Transceiver

4. TCP/IP 탄생 배경

- a. 1960년 대 미 국방성(DOD)의 ARPA(Advanced Research Project Agency)의 연구원들이 비용도 줄이고, 중복연구를 피하기 위해 연구내용을 공유하자 서로에 컴퓨터를 연결하는 방법을 연구하였으며, 1969년 ARPA는 IMP(Interface Message Processor)라는 장치를 이용하여 4개의 노드인 LA에 있는 캘리포니아 주립대학/산타바바라에 있는 캘리포니아 주립대학/스탠포드연구소/유타대학을 연결하여 네트워크를 구성하였다. 이때 NCP(Network Control Protocol)라는 Protocol이 호스트간 통신을 제공 하였습니다.
- b. 1997년 ARPANET 핵심 연구가 Vint Cerf와 Bob Kahn이 새로운 버전의 NCP 프로토콜을 제안 하였으며, 향후 TCP/IP로 이름이 변경되었습니다.