

Chapter 6

Advanced Encryption Standard

Outline

- AES: introduction
- AES parameters
- AES Encryption
 - Overview
 - Data structures
 - Round functions
 - Key Expansion
- Decryption
- Implementation

Using slides from "Understanding Cryptography, by Christof Paar and Jan Pelzl, www.crypto-textbook.com"

AES: introduction

Some Basic Facts

- AES is the most widely used symmetric cipher today
- The algorithm for AES was chosen by the US National Institute of Standards and Technology (NIST) in a multi-year selection process
- The requirements for all AES candidate submissions were:
 - Block cipher with 128-bit block size
 - Three supported key lengths: 128, 192 and 256 bit
 - · Security relative to other submitted algorithms
 - Efficiency in software and hardware

Rijndael (pronounced **rain-dahl**) is named after its two creators:

Vincent **Rij**men and Joan **Dae**men

Chronology of the AES Selection

- The need for a new block cipher announced by NIST in January, 1997
- 15 candidates algorithms accepted in August, 1998
- . 5 finalists announced in August, 1999:
 - Mars IBM Corporation
 - RC6 RSA Laboratories
 - Rijndael J. Daemen & V. Rijmen
 - Serpent Eli Biham et al.
 - Twofish B. Schneier et al.
- In October 2000, Rijndael was chosen as the AES
- AES was formally approved as a US federal standard in November 2001

© 2017 Pearson Education, Ltd., All rights reserved.

Finite Field Arithmetic

- In the Advanced Encryption Standard (AES) all operations are performed on 8-bit bytes
 - i.e. byte operations
- The arithmetic operations of addition, multiplication, and division are performed over the finite field GF(28)
 - A field is a set in which we can do addition, subtraction, multiplication, and division without leaving the set
 - Division is defined with the following rule:
 - $a/b = a(b^{-1})$
- An example of a finite field (one with a finite number of elements) is the set Z_p consisting of all the integers $\{0, 1, \ldots, p-1\}$, where p is a prime number and in which arithmetic is carried out modulo p

Finite Field Arithmetic: review

If one of the operations used in the algorithm is division, then we need to work in arithmetic defined over a field

 Division requires that each nonzero element have a multiplicative inverse For convenience and for implementation efficiency we would like to work with integers that fit exactly into a given number of bits with no wasted bit patterns

Integers in the range o through
 2ⁿ - 1, which fit into an n-bit word

The set of such integers, Z₂ⁿ, using modular arithmetic, is not a field

For example, the integer 2 has no multiplicative inverse in Z₂ⁿ, that is, there is no integer b, such that 2b mod 2ⁿ = 1

A finite field containing 2ⁿ elements is referred to as GF(2ⁿ)

 Every polynomial in GF(2ⁿ) can be represented by an n-bit number

AES vs. DES

	DES	AES
Structure	Feistel	permutation- substitution-network
Key Size (s)	56 bits	128,192 or 256 bits
Number of Rounds	16	10, 12, 14
Block size	64 bits	128 bits
Security	Proven inadequate Breakable Small key size	Considered secure Unbreakable Large key size

AES Has Larger Block Size, Larger Key Size and Better Round Functions

AES Parameters

- Structure: permutation-substitution-network (PSN)
- Key sizes: 128, 192 or 256 bits
 - Number of rounds (depends on key size): 10, 12 or 14
 - Key is expanded to: [Number_of_Rounds+1] × 4 words
- Block size (input and output): 128 bits
- Our discussion will focus on 128-bit key (i.e. 10-round algorithm)

	128-bit key	192-bit key	256-bit key
	10 Rounds	12 Rounds	14 Rounds
Key Size (words/bytes/bits)	4/16/128	6/24/192	8/32/256
Plaintext Block Size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Number of Rounds	10	12	14
Round Key Size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Expanded Key Size (words/bytes)	44/176	52/208	60/240

AES Overview

- Key expansions
- N rounds (+initial transformation)
 - N is 10, 12 or 14
- Round includes four stages: 1
 permutation and 3 substitutions.
 - Substitute bytes: Uses an Sbox to perform a byte-by-byte substitution of the block
 - ShiftRows: A simple permutation
 - MixColumns: A substitution that makes use of arithmetic over GF(2⁸)
 - AddRoundKey: A simple bitwise XOR of the current block with a portion of the expanded key
- Once it is established that all four stages are reversible.

Figure 6.1 AES Encryption Process

Data Structure: Blocks and States

- Input and outputs are 128-bit blocks of data.
- Algorithm is based on state array of 4x4 bytes.
- Input is copied to state array, then processed.
- Final state array is copied to output.
- Key is expanded to linear array of 32bit (4-byte) words.

Encryption/Decryption

- AES is <u>reversible</u>
- Decrypt reverses steps of encryption

Last round: No Mix Columns

AES Round-Transformation Functions

- There are 4 Round Transformation Functions:
 - Substitute Bytes (SubBytes) Transformation
 - uses an S-box to perform a byte-by-byte substitution of the block
 - 2. ShiftRows Transformation
 - a simple permutation
 - 3. MixColumns Transformation
 - a substitution that makes use of arithmetic over GF(2⁸)
 - 4. AddRoundKey Transformation
 - a simple bitwise XOR of the current block with a portion of the expanded key
- All functions has two flavors:
 - FORWARD TRANSFORMATION (for encryption)
 - INVERSE TRANSFORMATION (for decryption)

S-Box Rationale

- The S-box is designed to be resistant to known cryptanalytic attacks
- The Rijndael developers sought a design that has a low correlation between input bits and output bits and the property that the output is not a linear mathematical function of the input
- The nonlinearity is due to the use of the multiplicative inverse

Shift Row Rationale

- More substantial than it may first appear
- The State, as well as the cipher input and output, is treated as an array of four 4-byte columns
- On encryption, the first 4 bytes of the plaintext are copied to the first column of State, and so on
- The round key is applied to State column by column
 - Thus, a row shift moves an individual byte from one column to another, which is a linear distance of a multiple of 4 bytes
- Transformation ensures that the 4 bytes of one column are spread out to four different columns

Mix Columns Rationale

- Coefficients of a matrix based on a linear code with maximal distance between code words ensures a good mixing among the bytes of each column
- The mix column transformation combined with the shift row transformation ensures that after a few rounds all output bits depend on all input bits

Inputs for Single Round

Figure 6.8 Inputs for Single AES Round

Figure 6.4 AES Encryption Round

Single Round Functions

(a) Substitute byte transformation

(b) Add round key Transformation

Figure 6.5 AES Byte-Level Operations

1. SubBytes Transformation

Substitute Byte Transformation

S-box is designed to have following properties:

- Low correlation between input bits and output bits
- Output is not a linear mathematical function of input
- No self-inverse.
 - Example : $S(a) \neq IS(a)$
- Invertible.
 - Example: IS [S (a)] = a

S-box

EA	04	65	85
83	45	5D	96
5C	33	98	B0
F0	2D	AD	C5

87 F2 4D 97 EC 6E 4C 90 4A C3 46 E7 8C D8 95 A6

S-box and IS-box

S-box

S S-Boxes

3E B5

7C 77 7B F2 6B 6F C5 30 FE D7 AB 76 FA F0 AD 72 A4 CO 93 26 36 3F F7 CC 34 A5 E5 71 D8 31 15 23 C3 27 B2 18 2C 1A 1B 6E 5A E3 2F 5B CB BE 58 CF ED 20 FC B1 4A 4C D0 EF AA FB 43 4D 33 85 45 F9 02 50 3C 9F A8 A3 8F 92 9D 38 F5 BC B6 DA 21 FF F3 D2 CD 13 EC 5F 97 44 17 C4 A7 7E 3D 5D 19 60 4F DC 22 2A 90 88 EE B8 DE 5E 0B DB 32 3A 24 5C C2 D3 AC 62 95 E4 E0 0A 49 37 6D 8D 4E A9 6C F4 7A AE E7 D5 EA DD 74 BD 8B 25 2E 1C A6 B4 C6 E8 4B

(a) S-box

1E

99 | 2D

E9 | CE | 55 | 28 | DF

IS-box

		p-j (2								y							
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
	0	52	09	6A	D5	30	36	A5	38	BF	40	A3	9E	81	F3	D7	FE
	1	7C	E3	39	82	9B	2F	FF	87	34	8E	43	44	C4	DE	E9	CE
	2	54	7B	94	32	A6	C2	23	3D	EE	4C	95	0B	42	FA	C3	4E
	3	08	2E	A1	66	28	D9	24	B2	76	5B	A2	49	6D	8B	D1	25
	4	72	F8	F6	64	86	68	98	16	D4	A4	5C	CC	5D	65	B6	92
	5	6C	70	48	50	FD	ED	B9	DA	5E	15	46	57	A7	8D	9D	84
	6	90	D8	AB	00	8C	BC	D3	0A	F7	E4	58	05	B8	В3	45	06
	7	D0	2C	1E	8F	CA	3F	0F	02	C1	AF	BD	03	01	13	8A	6E
x	8	3A	91	11	41	4F	67	DC	EA	97	F2	CF	CE	F0	B4	E6	73
	y	90	AC.	74	22	E/	ΛD	33	05	E2	F9	37	E8	1C	75	DF	6E
	A	47	F1	1A	71	1D	29	C5	89	6F	B7	62	0E	AA	18	BE	1E
	В	FC	56	3E	4B	C6	D2	79	20	9A	DB	C0	FE	78	CD	5A	F4
	С	1F	DD	A8	33	88	07	C7	31	B1	12	10	59	27	80	EC	5F
	D	60	51	7F	A9	19	B5	4A	0D	2D	E5	7A	9F	93	C9	9C	EI
	Е	A0	E0	3B	4D	AE	2A	F5	B0	C8	EB	ВВ	3C	83	53	99	61
	F	17	2B	04	7E	BA	77	D6	26	E1	69	14	63	55	21	0C	70

(b) Inverse S-box

$$S(EA) = 87$$

0D BF

48 03 F6 0E 61 35 57 B9

E6

$$IS (87) = EA$$

C1 | 1D | 9E

BB

S-box Generation

- How to generate S-box
- How $S(C_2)=25$?
- Computation is done in two

stages:

- GF(2⁸) inverse
- Affine mapping

Table 4.2 Multiplicative inverse table in $GF(2^8)$ for bytes xy used within the AES S-Box

									7	ζ							
		0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F
	0	00	01	8D	F6	CB	52	7в	D1	E8	4F	29	C0	B0	E1	E5	C7
	1	74	В4	AA	4B	99	2в	60	5F	58	3F	FD	CC	FF	40	EE	B2
	2	3A	6E	5A	F1	55	4D	Α8	C9	C1	0A	98	15	30	44	A2	C2
	3	2C	45	92	6C	F3	39	66	42	F2	35	20	6F	77	BB	59	19
	4	1D	FΕ	37	67	2D	31	F5	69	Α7	64	AΒ	13	54	25	E9	09
	5	ED	5C	05	CA	4C	24	87	$_{\mathrm{BF}}$	18	3E	22	F0	51	EC	61	17
	6	16	5E	AF	D3	49	Α6	36	43	F4	47	91	DF	33	93	21	3B
	7	79	в7	97	85	10	В5	BA	3C	В6	70	D0	06	Α1	FΑ	81	82
Х	8	83	7E	7F	80	96	73	BE	56	9B	9E	95	D9	F7	02	В9	A4
	9	DE	6A	32	6D	D8	8A	84	72	2A	14	9F	88	F9	DC	89	9A
	Α	FΒ	7c	2E	C3	8F	В8	65	48	26	C8	12	4A	CE	E7	D2	62
	В	0C	E0	1F	$_{\rm EF}$	11	75	78	71	Α5	8E	76	3D	$^{\mathrm{BD}}$	BC	86	57
	C	0в	28	2F	Α3	DA	D4	E4	0F	Α9	27	53	04	1в	FC	AC	E6
	D	7A	07	ΑE	63	C5	$_{\mathrm{DB}}$	E2	EΑ	94	8B	C4	D5	9D	F8	90	6B
	Е	В1	0D	D6	$_{\rm EB}$	С6	0E	CF	ΑD	80	4E	D7	E3	5D	50	1E	B3
	F	5B	23	38	34	68	46	03	8C	DD	9C	7D	Α0	CD	1A	41	1C

S-box Generation

- How to generate S-box
- How $S(C2_{HEX})=25_{HEX}$?
- Computation is done in two stages:
 - GF(2⁸) inverse
 - Affine mapping

- Example: let us compute S(C2)
 - B'=F2_{HEX}
 - B=25_{HEX}

2. ShiftRows Transformation

- ShiftRows performs left rotations on the bytes of each row as follows:
 - First row: nothing

```
    Second row: rotate-left(1); note: rotate-left (1) = rotate-right(3)
```

- Third row: rotate-left(2); note: rotate-left (2) = rotate-right(2)
- Fourth row: rotate-left(3); note: rotate-left (3) = rotate-right(1)
- So, ShiftRows moves an individual byte from one column to another.

Example

3. MixColumns

- MixColumns, operates on each column individually.
- Each byte of a column is mapped into a new value that is a function of all four bytes in that column.

$$\begin{aligned} s_{0,j}' &= (2 \cdot s_{0,j}) \oplus (3 \cdot s_{1,j}) \oplus s_{2,j} \oplus s_{3,j} \\ s_{1,j}' &= s_{0,j} \oplus (2 \cdot s_{1,j}) \oplus (3 \cdot s_{2,j}) \oplus s_{3,j} \\ s_{2,j}' &= s_{0,j} \oplus s_{1,j} \oplus (2 \cdot s_{2,j}) \oplus (3 \cdot s_{3,j}) \\ s_{3,j}' &= (3 \cdot s_{0,j}) \oplus s_{1,j} \oplus s_{2,j} \oplus (2 \cdot s_{3,j}) \end{aligned}$$

Example

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A6	8C	D8	95

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED,	A5	A6	BC

$$\begin{pmatrix} 47 \\ 37 \\ 94 \\ ED \end{pmatrix} = \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \begin{pmatrix} 87 \\ 6E \\ 46 \\ A6 \end{pmatrix}$$

$$(\{02\} \cdot \{87\}) \oplus (\{03\} \cdot \{6E\}) \oplus \{46\} \oplus \{A6\}$$

 $\{87\} \oplus (\{02\} \cdot \{6E\}) \oplus (\{03\} \cdot \{46\}) \oplus \{A6\}$

$$\oplus (\{02\} \cdot \{46\}) \oplus (\{03\} \cdot \{A6\}) = \{94\}$$

 $\oplus \{46\} \oplus (\{02\} \cdot \{A6\}) = \{ED\}$

 $= \{47\}$

 $= \{37\}$

For the first equation, we have $\{02\} \cdot \{87\} = (0000\ 1110) \oplus (0001\ 1011) = (0001\ 0101)$ and $\{03\} \cdot \{6E\} = \{6E\} \oplus (\{02\} \cdot \{6E\}) = (0110\ 1110) \oplus (1101\ 1100) = (1011\ 0010)$. Then,

$$\{02\} \cdot \{87\} = 0001 \ 0101$$

$$\{03\} \cdot \{6E\} = 1011 \ 0010$$

$$\{46\}$$
 = 0100 0110

$$\begin{array}{rcl}
\{A6\} & = & \underline{1010 \ 0110} \\
& & 0100 \ 0111 \ = \{47\}
\end{array}$$

MixColumns Computations

- Computations follows GF(2⁸)
- For results that have more than 8 bits (i.e., x⁸ or lager), use irreducible polynomial:
 - $x^8 + x^4 + x^3 + x + 1$
 - Which maps to: 11B_{HEX}

```
{02} • {87} = {15}

{02} corresponds to : f1(x) = x

{87} corresponds to : f2(x) = x^7 + x^2 + x + 1

{02} • {87} = f1(x) • f2(x) = x^8 + x^3 + x^2 + x

f1(x) • f2(x) mod(m(x)) = x^4 + x^2 + 1 = {15}
```

```
\{02\} \cdot \{87\} = 0001 \ 0101

\{03\} \cdot \{6E\} = 1011 \ 0010

\{46\} = 0100 \ 0110

\{A6\} = \frac{1010 \ 0110}{0100 \ 0111} = \{47\}
```

```
0110 1110 {6E}
0000 0011 {03}
------
1011 0010 {B2}
```

Review of FG(28) Mathematics

AES uses special polynomials in GF(2⁸)

Operation	Description	Example
Addition	bitwise XOR	
Multip. by 02: { 02 } • { B }	 1-bit left shift Followed by a conditional bitwise XOR with (0001 1011) if the leftmost bit of the original value (prior to the shift) is 1. 	{ 02 } • { 87 } = (0000 1110) ⊕(0001 1011) = (0001 0101) = { 15 }
{03} • {B}	$\{03\} \bullet \{B\} = \{B\} \oplus (\{02\} \bullet \{B\})$	{03} • {6E} ={6E} ⊕ ({02} • {6E}) =(0110 1110) ⊕ (1101 1100) = (1011 0010) = {B2}

Explaining Calculation in Finite Field GF(28)

- AES uses arithmetic in finite field GF(2⁸)
 - Polynomial based math.
 - Polynomial are expressed as binary
 - $m(x) = x^8 + x^4 + x^3 + x + 1$ (expression)
 - $m(x) = 1 0001 1011 = 11B_{HEX}$ (binary/Hex)
 - Add/Sub: XOR operation
 - Multiply: AND operation
- In GF(2⁸) field:
 - Additions and multiplications are performed on polynomials
 - Polynomials are multiplied /added,
 - Then divided by m(x) to compute remainder (i.e., modulus operation)
 - $m(x) = x^8 + x^4 + x^3 + x + 1$

MixColumns: Encryption and Decryption

• Encryption:

$$MixColumn(B) = C$$

$$\begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix} = \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \begin{pmatrix} B_0 \\ B_5 \\ B_{10} \\ B_{15} \end{pmatrix}$$

Decryption:

InverseMixColumn(C) =B

$$\begin{pmatrix} B_0 \\ B_1 \\ B_2 \\ B_3 \end{pmatrix} = \begin{pmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{pmatrix} \begin{pmatrix} C_0 \\ C_1 \\ C_2 \\ C_3 \end{pmatrix}$$

MixColumns: Encryption and Decryption

Encryption

1	87	F2	4D	97
![6E	4C	90	EC
ï	46	E7	4A	C3
١	A6	8C	D8	95
ı	-			

/	47	40	A3	4C
	37	D4	70	9F
	94	E4	3A	42
	ED,	A5	A6	BC

$$\begin{pmatrix} 47 \\ 37 \\ 94 \\ ED \end{pmatrix} = \begin{pmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{pmatrix} \begin{pmatrix} 87 \\ 6E \\ 46 \\ A6 \end{pmatrix}$$

For the first equation, we have $\{02\} \cdot \{87\} = (0000\ 1110) \oplus (0001\ 1011) = (0001\ 0101)$ and $\{03\} \cdot \{6E\} = \{6E\} \oplus (\{02\} \cdot \{6E\}) = (0110\ 1110) \oplus (1101\ 1100) = (1011\ 0010)$. Then,

```
\{02\} \cdot \{87\} = 0001 \ 0101

\{03\} \cdot \{6E\} = 1011 \ 0010

\{46\} = 0100 \ 0110

\{A6\} = \frac{1010 \ 0110}{0100 \ 0111} = \{47\}
```

DecryptionInverseMixColumn (C) = B

/47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED,	A5	A6	BC

/87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A6	8C	D8	95

$$\begin{pmatrix} 87 \\ 6E \\ 46 \\ A6 \end{pmatrix} = \begin{pmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{pmatrix} \begin{pmatrix} 47 \\ 37 \\ 94 \\ ED \end{pmatrix}$$

```
{0E}.{47}=87 → 1000 0111

{0B}.{37}=FA → 1111 1010

{0D}.{94}=3E → 0011 1110

{09}.{ED}]=C4→ 1100 0100

1000 0111→87
```

MixColumns: One Issue You Should Know

- If all state bytes are the same, then applying MixComlumns step will produce the same state!
- Why? Because XOR operation cancels identical terms:
 - {03}.{A9} cancels {02}{A9} and {01}{A9}
 - there is one term left {01}.{A9}={A9}

$$\begin{pmatrix}
A9 \\
A9 \\
A9 \\
A9
\end{pmatrix} = \begin{pmatrix}
02 & 03 & 01 & 01 \\
01 & 02 & 03 & 01 \\
01 & 01 & 02 & 03 \\
03 & 01 & 01 & 02
\end{pmatrix} \cdot \begin{pmatrix}
A9 \\
A9 \\
A9 \\
A9
\end{pmatrix}$$

4. AddRoundKey Transformation

 AddRoundKey is byte-leve XOR-ing between state array and round key

128-bit state

128-bit key

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A6	BC

AddRoundKey Transformation

- The 128 bits of State are bitwise XORed with the 128 bits of the round key
- Operation is viewed as a columnwise operation between the 4 bytes of a State column and one word of the round key
 - Can also be viewed as a byte-level operation

Rationale:

Is as simple as possible and affects every bit of State

The complexity of the round key expansion plus the complexity of the other stages of AES ensure security

AES Key Expansion

- Takes as input a four-word (16 byte) key and produces a linear array of 44 words (176) bytes
 - This is sufficient to provide a four-word round key for the initial AddRoundKey stage and each of the 10 rounds of the cipher
- Key is copied into the first four words of the expanded key
 - The remainder of the expanded key is filled in four words at a time
- Each added word w[i] depends on the immediately preceding word, w[i-1], and the word four positions back, w[i-4]
 - In three out of four cases a simple XOR is used
 - For a word whose position in the w array is a multiple of 4, a more complex function is used

Key Expansion Rationale

- The Rijndael developers designed the expansion key algorithm to be resistant to known cryptanalytic attacks
- Inclusion of a rounddependent round constant eliminates the symmetry between the ways in which round keys are generated in different rounds

The specific criteria that were used are:

- Knowledge of a part of the cipher key or round key does not enable calculation of many other round-key bits
- An invertible transformation
- Speed on a wide range of processors
- Usage of round constants to eliminate symmetries
- Diffusion of cipher key differences into the round keys
- Enough nonlinearity to prohibit the full determination of round key differences from cipher key differences only
- Simplicity of description

Key Expansion

- The AES key expansion algorithm takes as input a four-word (16-byte) key and outputs a linear array of 44 words (176 bytes).
- This is sufficient to provide a four-word round key for the initial AddRoundKey stage and each of the 10 rounds of the cipher.

Key Expansion Algorithm

RC, table

g-function

Key **Expansion:** Example

Key Expansion: Example

Key Words	Auxiliary Function
w0 = 0f 15 71 c9	RotWord (w3) = 7f 67 98 af = x1
w1 = 47 d9 e8 59	SubWord (x1) = d2 85 46 79 = y1
w2 = 0c b7 ad	Rcon(1) = 01 00 00 00
w3 = af 7f 67 98	y1 Rcon(1) = d3 85 46 79 = z1
$w4 = w0$ \oplus $z1 = dc$ 90 37 b0	RotWord (w7) = 81 15 a7 38 = x2
$w5 = w4$ \oplus $w1 = 9b$ 49 df e9	SubWord (x4) = 0c 59 5c 07 = y2
$w6 = w5$ \oplus $w2 = 97$ fe 72 3f	Rcon(2) = 02 00 00 00
$w7 = w6$ \oplus $w3 = 38$ 81 15 a7	y2 \oplus Rcon(2) = 0e 59 5c 07 = z2
$w8 = w4 \oplus z2 = d2 \text{ c9 6b b7}$	RotWord (w11) = ff d3 c6 e6 = x3
$w9 = w8 \oplus w5 = 49 \text{ 80 b4 5e}$	SubWord (x2) = 16 66 b4 83 = y3
$w10 = w9 \oplus w6 = de \text{ 7e c6 61}$	Rcon(3) = 04 00 00 00
$w11 = w10 \oplus w7 = e6 \text{ ff d3 c6}$	y3 ⊕ Rcon(3) = 12 66 b4 8e = z3
$w12 = w8 \oplus z3 = c0$ af df 39	RotWord(w15) = ae 7e c0 b1 = x4
$w13 = w12 \oplus w9 = 89$ 2f 6b 67	SubWord(x3) = e4 f3 ba c8 = y4
$w14 = w13 \oplus w10 = 57$ 51 ad 06	Rcon(4) = 08 00 00 00
$w15 = w14 \oplus w11 = b1$ ae 7e c0	y4 Rcon(4) = ec f3 ba c8 = 4

Detailed Calculations

Key Words	Auxiliary Function
w16 = w12 \(\pm \) z4 = 2c 5c 65 f1	RotWord(w19) = 8c dd 50 43 = x5
w17 = w16 \oplus w13 = a5 73 0e 96	SubWord(x4) = 64 c1 53 1a = y5
w18 = w17 \oplus w14 = f2 22 a3 90	Rcon(5) = 10 00 00 00
w19 = w18 \oplus w15 = 43 8c dd 50	y5 \(\propto \text{Rcon(5)} = 74 \text{ c1 53 1a} = z5
w20 = w16 \(\oplus z5 = 58 9d 36 eb	RotWord (w23) = 40 46 bd 4c = x6
w21 = w20 \oplus w17 = fd ee 38 7d	SubWord (x5) = 09 5a 7a 29 = y6
w22 = w21 \oplus w18 = 0f cc 9b ed	Rcon(6) = 20 00 00 00
$w23 = w22 \oplus w19 = 4c \ 40 \ 46 \ bd$	y6 ⊕ Rcon(6) = 29 5a 7a 29 = z6
w24 = w20 \(\phi\) z6 = 71 c7 4c c2	RotWord (w27) = a5 a9 ef cf = x7
w25 = w24 () w21 = 8c 29 74 bf	SubWord (x6) = 06 d3 bf 8a = y7
w26 = w25 \oplus w22 = 83 e5 ef 52	Rcon (7) = 40 00 00 00
$w27 = w26 \oplus w23 = cf a5 a9 ef$	y7
$w28 = w24 \oplus z7 = 37 14 93 48$	RotWord (w31) = 7d a1 4a f7 = x8
w29 = w28 \oplus w25 = bb 3d e7 f7	SubWord (x7) = ff 32 d6 68 = y8
w30 = w29 \oplus w26 = 38 d8 08 a5	Rcon (8) = 80 00 00 00
w31 = w30 ⊕ w27 = f7 7d a1 4a	y8 ⊕ Rcon(8) = 7f 32 d6 68 = z8
w32 = w28 \oplus z8 = 48 26 45 20	RotWord (w35) = be 0b 38 3c = x9
w33 = w32 \oplus w29 = f3 1b a2 d7	SubWord (x8) = ae 2b 07 eb = y9
w34 = w33 \oplus w30 = cb c3 aa 72	Rcon (9) = 1B 00 00 00
$w35 = w34 \oplus w32 = 3c$ be 0b 3	y9 ⊕ Rcon (9) = b5 2b 07 eb = z9
w36 = w32 ⊕ z9 = fd 0d 42 cb	RotWord (w39) = 6b 41 56 f9 = x10
w37 = w36 \oplus w33 = 0e 16 e0 1c	SubWord (x9) = 7f 83 b1 99 = y10
w38 = w37 ⊕ w34 = c5 d5 4a 6e	Rcon (10) = 36 00 00 00
w39 = w38 \oplus w35 = f9 6b 41 56	y10 ⊕ Rcon (10) = 49 83 b1 99 = z10
w40 = w36 \oplus z10 = b4 8e f3 52	
w41 = w40 \oplus w37 = ba 98 13 4e	
w42 = w41 \oplus w38 = 7f 4d 59 20	
w43 = w42 \oplus w39 = 86 26 18 76	

Full AES Example (1)

Pla	intex	t (inp	ut)		Key (input)	Ciphertext (output)							
01	89	FE	76	0F	47	0C	AF	FF	80	69	64				
23	AB	DC	54	15	D9	В7	7F	0B	53	34	14				
45	CD	ВА	32	71	E8	AD	67	84	BF	AB	8F				
67	EF	98	10	C9	59	D6	98	4A	7C	43	В9				

ShiftRows

Start of Round

SubBytes

	String Representations	
Plaintext:	0123456789ABCDEFFEDCBA9876543210	
	0F1571C947D9E8590CB7ADD6AF7F6798	
Ciphertex t:	FF0B844A0853BF7C6934AB4364148FB9	

Key Schedule

Round Constant

AddRoundKey

Round 0	01	89	FE	76													0E	CE	F2	D9	0F	47	0C	AF	
	23	AB	DC	54													36	72	6B	2B	15	D9	В7	7F	
	45	CD	ВА	32													34	25	17	55	71	E8	AD	67	
	67	EF	98	10										11:			AE	В6	4E	88	C9	59	D6	98	
Round 1	0E	CE	F2	D9	АВ	8B	89	35	AB	8B	89	35	В9	94	57	75	65	0F	CO	4D	DC	9B	97	38	01
	36	72	6B	2B	05	40	7F	F1	40	7F	F1	05	E4	8E	16	51	74	C7	E8	D0	90	49	FE	81	
	34	25	17	55	18	3F	F0	FC	F0	FC	18	3F	47	20	9A	3F	70	FF	E8	2A	37	DF	72	15	
6 42 10	AE	B6	4E	88	E4	4E	2F	C4	C4	E4	4E	2F	C5	D6	F5	3B	75	3F	CA	9C	ВО	E9	3F	A7	
Round 2	65	0F	C0	4D	4D	76	ВА	E3	4D	76	ВА	E3	8E	22	DB	12	5C	6B	05	F4	D2	49	DE	E6	02
	74	C7	E8	D0	92	C6	9B	70	C6	9B	70	92	B2	F2	DC	92	7B	72	A2	6D	C9	80	7E	FF	
	70	FF	E8	2A	51	16	9B	E5	9B	E5	51	16	DF 39	80	F7	C1	В4	34	31	12	6B	B4	C6	D3	
	75	3F	CA	9C	9D	75	74	DE	DE	9D	75	74	2D	C5	1E	52	9A	9B	7F	94	B7	5E	61	C6	

MixColumns

Full AES Example (2)

	Sta	art o	f Rou	ınd		SubE	Byte:	s	s	hiftl	Row	s	Mi	ixCo	lum	ns	Add	dRo	undl	Key	Ke	y Sc	hed	ule	Round Constant
Round 3	5C	6B	05	F4	4A	7F	6B	BF	4A	7F	6B	BF	B1	C1	0B	СС	71	48	5C	7D	C0	89	57	B1	04
	7B	72	A2	6D	21	40	ЗА	3C	40	ЗА	3C	21	ВА	F3	8B	07	15	DC	DA	A9	AF	2F	51	AE	
	B4	34	31	12	8D	18	C7	C9	C7	C9	8D	18	F9	1F	6A	СЗ	26	74	C7	BD	DF	6B	AD	7E	
	9A	9B	7F	94	В8	14	D2	22	22	B8	14	D2	1D	19	24	5C	24	7E	22	9C	39	67	06	C0	
Round 4	71	48	5C	7D	АЗ	52	4A	FF	А3	52	4A	FF	D4	11	FE	OF	F8	B4	0C	4C	2C	A5	F2	43	08
	15	DC	DA	A9	59	86	57	D3	86	57	D3	59	3B	44	06	73	67	37	24	FF	5C	73	22	8C	
	26	74	C7	BD	F7	92	C6	7A	C6	7A	F7	92	СВ	AB	62	37	ΑE	A5	C1	EA	65	0E	А3	DD	
	24	7E	22	9C	36	F3	93	DE	DE	36	F3	93	19	B7	07	EC	E8	21	97	вс	F1	96	90	50	
Round 5	F8	B4	оС	4C	41	8D	FE	29	41	8D	FE	29	2A	47	C4	48	72	ВА	СВ	04	58	FD	0F	4C	10
	67	37	24	FF	85	9A	36	16	9A	36	16	85	83	E8	18	ВА	1E	06	D4	FA	9D	EE	СС	40	
	AE	A5	C1	EA	E4	06	78	87	78	87	E4	06	84	18	27	23	B2	20	вс	65	36	38	9B	46	
	E8	21	97	вс	9B	FD	88	65	65	9B	FD	88	ЕВ	10	0A	F3	00	6D	E7	4E	ЕВ	7D	ED	BD	
Round 6	72	ВА	СВ	04	40	F4	1F	F2	40	F4	1F	F2	7B	05	42	4A	0A	89	C1	85	71	8C	83	CF	20
	1E	06	D4	FA	72	6F	48	2D	6F	48	2D	72	1E	D0	20	40	D9	F9	C5	E5	C7	29	E5	A5	
	B2	20	вс	65	37	B7	65	4D	65	4D	37	B7	94	83	18	52	D8	F7	F7	FB	4C	74	EF	A9	
	00	6D	E7	4E	63	3C	94	2F	2F	63	3C	94	940	C4	43	FB	56	7B	11	14	C2	BF	52	EF	

Full AES Example (3)

	Start of Round		SubE	Bytes	3		Shiftl	Row	s	M	lixCo	lumi	าร	Ad	dRo	undk	Кеу	Ke	y Sc	hed	ule	Round Constant			
Round 7	0A	89	C1	85	67	A7	78	97	67	A7	78	97	EC	1A	C0	80	DB	A1	F8	77	37	ВВ	38	F7	40
	D9	F9	C5	E5	35	99	A6	D9	99	A6	D9	35	0C	50	53	C7	18	6D	8B	ВА	14	3D	D8	7D	
	D8	F7	F7	FB	61	68	68	0F	68	0F	61	68	3B	D7	00	EF	A8	30	08	4E	93	E7	08	A1	
	56	7B	11	14	В1	21	82	FA	FA	B1	21	82	B7	22	72	E0	FF	D5	D7	AA	48	F7	A5	4A	
Round 8	DB	A1	F8	77	В9	32	41	F5	В9	32	41	F5	B1	1A	44	17	F9	E9	8F	2B	48	F3	СВ	3C	80
	18	6D	8B	ВА	AD	3C	3D	F4	3C	3D	F4	AD	3D	2F	EC	B6	1B	34	2F	08	26	1B	C3	BE	
	A8	30	08	4E	C2	04	30	2F	30	2F	C2	04	0A	6B	2F	42	4F	C9	85	49	45	A2	AA	0B	
	FF	D5	D7	AA	16	03	0E	AC	AC	16	03	0E	9F	68	F3	B1	BF	BF	81	89	20	D7	72	38	
Round 9	F9	E9	8F	2B	99	1E	73	F1	99	1E	73	F1	31	30	ЗА	C2	СС	3E	FF	3B	FD	0E	C5	F9	1B
	1B	34	2F	08	AF	18	15	30	18	15	30	AF	AC	71	8C	C4	A1	67	59	AF	0D	16	D5	6B	
	4F	C9	85	49	84	DD	97	3B	97	3B	84	DD	46	65	48	ЕВ	04	85	02	AA	42	E0	4A	41	
	BF	BF	81	89	08	08	0C	A7	A7	08	08	0C	6A	1C	31	62	A1	00	5F	34	СВ	1C	6E	56	
Round 10	СС	3E	FF	3B	4B	B2	16	E2	4B	B2	16	E2					FF	08	69	64	B4	ВА	7F	86	36
	A1	67	59	AF	32	85	СВ	79	85	СВ	79	32					0B	53	34	14	8E	98	4D	26	
	04	85	02	AA	F2	97	77	AC	77	AC	F2	97					84	BF	AB	8F	F3	13	59	18	
	A1	00	5F	34	32	63	CF	18	18	32	63	CF	41				4A	7C	43	B9	52	4E	20	76	
						SubE	Bytes	3		Shiftl	Row	s	M	ixCo	lumi	าร	Ad	dRo	undk	Key	Ke	y Sc	hedi	ule	Round Constant

Summary of AES Example

(Table is located on page 177 in textbook)

Start of round	After	After	After	Round Key
	SubBytes	ShiftRows	MixColumns	
01 89 fe 76				0f 47 0c af
23 ab dc 54				15 d9 b7 7f
45 cd ba 32				71 e8 ad 67
67 ef 98 10				c9 59 d6 98
0e ce f2 d9	ab 8b 89 35	ab 8b 89 35	b9 94 57 75	dc 9b 97 38
36 72 6b 2b	05 40 7f f1	40 7f f1 05	e4 8e 16 51	90 49 fe 81
34 25 17 55	18 3f f0 fc	f0 fc 18 3f	47 20 9a 3f	37 df 72 15
ae b6 4e 88	e4 4e 2f c4	c4 e4 4e 2f	c5 d6 f5 3b	b0 e9 3f a7
65 Of c0 4d	4d 76 ba e3	4d 76 ba e3	8e 22 db 12	d2 49 de e6
74 c7 e8 d0	92 c6 9b 70	c6 9b 70 92	b2 f2 dc 92	c9 80 7e ff
70 ff e8 2a	51 16 9b e5	9b e5 51 16	df 80 f7 c1	6b b4 c6 d3
75 3f ca 9c 5c 6b 05 f4	9d 75 74 de 4a 7f 6b bf	de 9d 75 74 4a 7f 6b bf	2d c5 1e 52	b7 5e 61 c6 c0 89 57 b1
5c 6b 05 f4 7b 72 a2 6d	4a 7f 6b bf 21 40 3a 3c	4a 7f 6b bf 40 3a 3c 21	b1 c1 0b cc ba f3 8b 07	
b4 34 31 12	8d 18 c7 c9	c7 c9 8d 18	ba f3 8b 07 f9 1f 6a c3	af 2f 51 ae df 6b ad 7e
9a 9b 7f 94	b8 14 d2 22	22 b8 14 d2	1d 19 24 5c	39 67 06 c0
71 48 5c 7d	a3 52 4a ff	a3 52 4a ff	d4 11 fe 0f	2c a5 f2 43
15 dc da a9	59 86 57 d3	86 57 d3 59	3b 44 06 73	5c 73 22 8c
26 74 c7 bd	f7 92 c6 7a	c6 7a f7 92	cb ab 62 37	65 0e a3 dd
24 7e 22 9c	36 f3 93 de	de 36 f3 93	19 b7 07 ec	f1 96 90 50
f8 b4 0c 4c	41 8d fe 29	41 8d fe 29	2a 47 c4 48	58 fd 0f 4c
67 37 24 ff	85 9a 36 16	9a 36 16 85	83 e8 18 ba	9d ee cc 40
ae a5 c1 ea	e4 06 78 87	78 87 e4 06	84 18 27 23	36 38 9b 46
e8 21 97 bc	9b fd 88 65	65 9b fd 88	eb 10 0a f3	eb 7d ed bd
72 ba cb 04	40 f4 1f f2	40 f4 1f f2	7b 05 42 4a	71 8c 83 cf
1e 06 d4 fa	72 6f 48 2d	6f 48 2d 72	1e d0 20 40	c7 29 e5 a5
b2 20 bc 65	37 b7 65 4d	65 4d 37 b7	94 83 18 52	4c 74 ef a9
00 6d e7 4e	63 3c 94 2f	2f 63 3c 94	94 c4 43 fb	c2 bf 52 ef
0a 89 c1 85	67 a7 78 97	67 a7 78 97	ec 1a c0 80	37 bb 38 f7
d9 f9 c5 e5	35 99 a6 d9	99 a6 d9 35	0c 50 53 c7	14 3d d8 7d
d8 f7 f7 fb	61 68 68 Of	68 Of 61 68	3b d7 00 ef	93 e7 08 a1
56 7b 11 14	b1 21 82 fa	fa b1 21 82	b7 22 72 e0	48 f7 a5 4a
db a1 f8 77	b9 32 41 f5	b9 32 41 f5	b1 1a 44 17	48 f3 cb 3c
18 6d 8b ba	ad 3c 3d f4	3c 3d f4 ad	3d 2f ec b6	26 1b c3 be
a8 30 08 4e	c2 04 30 2f	30 2f c2 04	0a 6b 2f 42	45 a2 aa 0b
ff d5 d7 aa	16 03 0e ac	ac 16 03 0e	9f 68 f3 b1	20 d7 72 38
f9 e9 8f 2b 1b 34 2f 08	99 1e 73 f1 af 18 15 30	99 1e 73 f1 18 15 30 af	31 30 3a c2	fd 0e c5 f9
1b 34 2f 08 4f c9 85 49	af 18 15 30 84 dd 97 3b	18 15 30 af 97 3b 84 dd	ac 71 8c c4 46 65 48 eb	0d 16 d5 6b 42 e0 4a 41
bf bf 81 89	08 08 0c a7	a7 08 08 0c	6a 1c 31 62	cb 1c 6e 56
cc 3e ff 3b	4b b2 16 e2	4b b2 16 e2	4b 86 8a 36	b4 ba 7f 86
al 67 59 af	32 85 cb 79	85 cb 79 32	b1 cb 27 5a	8e 98 4d 26
04 85 02 aa	f2 97 77 ac	77 ac f2 97	fb f2 f2 af	f3 13 59 18
al 00 5f 34	32 63 cf 18	18 32 63 cf	cc 5a 5b cf	52 4e 20 76
ff 08 69 64				
0b 53 34 14				
84 bf ab 8f				

Encryption vs Decryption

- AES decryption cipher is not identical to the encryption cipher
 - The sequence of transformations differs although the form of the key schedules is the same
 - Has the disadvantage that two separate software or firmware modules are needed for applications that require both encryption and decryption

Decryption: Equivalent Inverse Cipher

- AES decryption cipher is not identical to the encryption cipher
 - The sequence of transformations differs although the form of the key schedules is the same
 - Has the disadvantage that two separate software or firmware modules are needed for applications that require both encryption and decryption

Two separate changes are needed to bring the decryption structure in line with the encryption structure

The first two stages of the decryption round need to be interchanged

The second two stages of the decryption round need to be interchanged

Interchanging InvShiftRows and InvSubBytes

- InvShiftRows affects the sequence of bytes in State but does not alter byte contents and does not depend on byte contents to perform its transformation
- InvSubBytes affects the contents of bytes in State but does not alter byte sequence and does not depend on byte sequence to perform its transformation

Thus, these two operations commute and can be interchanged

Interchanging AddRoundKey and InvMixColumns

The transformations AddRoundKey and InvMixColumns do not alter the sequence of bytes in State

If we view the key as a sequence of words, then both AddRoundKey and InvMixColumns operate on State one column at a time

These two operations are linear with respect to the column input

AES Implementation Aspects

- AES can be implemented very efficiently on an 8bit processor
- AddRoundKey is a bytewise XOR operation
- ShiftRows is a simple byte-shifting operation
- SubBytes operates at the byte level and only requires a table of 256 bytes
- MixColumns requires matrix multiplication in the field GF(2⁸), which means that all operations are carried out on bytes

Implementation Aspects

- Can efficiently implement on a 32-bit processor
 - Redefine steps to use 32-bit words
 - Can precompute 4 tables of 256-words
 - Then each column in each round can be computed using 4 table lookups + 4 XORs
 - At a cost of 4Kb to store tables
- Designers believe this very efficient implementation was a key factor in its selection as the AES cipher

Summary

- Finite field arithmetic
- AES structure
 - General structure
 - Detailed structure
- AES key expansion
 - Key expansion algorithm
 - Rationale

- AES transformation functions
 - Substitute bytes
 - ShiftRows
 - MixColumns
 - AddRoundKey
- AES implementation
 - Equivalent inverse cipher
 - Implementation aspects