南京信息工程大学 试卷

2019-2020 学年 第一学期 线性代数 课程期末试卷(B卷) 本试卷共<u>3</u>页;考试时间<u>120</u>分钟;出卷时间<u>2019</u>年<u>12</u>月

请将所有答案(含填空、选择)写到《试卷答题册》上相应位置!

一、填空题(每小题 3 分, 共 15 分. 请将答案填在答题册上对应题号后面的 横线上)

- (2) 设矩阵 $\mathbf{A} = \begin{pmatrix} 2 & -3 & 1 \\ 1 & a & 1 \\ 5 & 0 & 3 \end{pmatrix}$, 且 \mathbf{A} 的秩为 2,则 $a = \underline{\qquad}$.
- (3) 已知三维向量空间 R^3 的基为 $\boldsymbol{\alpha}_1 = (1,0,0)^{\mathrm{T}}, \boldsymbol{\alpha}_2 = (0,1,0)^{\mathrm{T}}, \boldsymbol{\alpha}_3 = (0,1,1)^{\mathrm{T}}$,则向量 $\beta = (1,1,1)^{\mathrm{T}}$ 在此基下的坐标是
- (4) 设 3 阶矩阵 A 的特征值分别为 1, 2, 3, 则 $|A^2 3E| =$ ______
- (5) 设矩阵 $\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$, 且 $\mathbf{A} + k\mathbf{E}$ 是正定矩阵,则 k 的取值范围是_______
- 二、选择题(每小题 3 分, 共 15 分. 下列每题给出的四个选项中, 只有一个 符合题目要求,请将所选项前的字母填在答题册上对应题号后面的横线上)
- (1) 下列等式正确的是(

(A)
$$\begin{vmatrix} a+x & b+y \\ c+z & d+w \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} x & y \\ z & w \end{vmatrix};$$
 (B) $\begin{vmatrix} a & 2a \\ 3a & 4a \end{vmatrix} = a \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix};$

(B)
$$\begin{vmatrix} a & 2a \\ 3a & 4a \end{vmatrix} = a \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix}$$

(C)
$$\begin{vmatrix} x & y \\ z & 0 \end{vmatrix} = \begin{vmatrix} x & y \\ z & a \end{vmatrix} + \begin{vmatrix} x & y \\ z & -a \end{vmatrix}$$
; (D) $\begin{vmatrix} a & 2 \\ 3a & 4 \end{vmatrix} = -a \begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix}$.

(D)
$$\begin{vmatrix} a & 2 \\ 3a & 4 \end{vmatrix} = -a \begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix}$$

(2) 设向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性无关,则下列向量组中线性无关的是().

(A)
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 - \alpha_1;$$
 (B) $\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_4, \alpha_4 - \alpha_1;$

(B)
$$\alpha_1 - \alpha_2, \alpha_2 - \alpha_3, \alpha_3 - \alpha_4, \alpha_4 - \alpha_1$$
;

(C)
$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1;$$
 (D) $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 - \alpha_4, \alpha_4 - \alpha_1.$

(D)
$$\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2 + \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_3 - \boldsymbol{\alpha}_4, \boldsymbol{\alpha}_4 - \boldsymbol{\alpha}_1$$
.

(3) 设
$$\mathbf{A}$$
为3阶矩阵,且 $\mathbf{B} = \mathbf{A} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$,关于 \mathbf{A}^{T} , \mathbf{B}^{T} 的说法,正确的是().

- (A) A^{T} 的第2行乘以2得到 B^{T} ;
- (B) A^{T} 的第2列乘以2得到 B^{T} :

(C)
$$A^{\mathsf{T}}$$
的第 2 行乘以 $\frac{1}{2}$ 得到 B^{T} ; (D) A^{T} 的第 2 列乘以 $\frac{1}{2}$ 得到 B^{T} .

(D)
$$A^{\mathsf{T}}$$
的第2列乘以 $\frac{1}{2}$ 得到 B^{T}

- (4) 设 $A \in m \times n$ 矩阵,A 的秩R(A) = r,则齐次线性方程组Ax = 0有非零解的 充要条件是(
 - (A) r > n;
- (B) r < n; (C) r > m;
- (5) n 阶方阵 A 有 n 个不同的特征值是与对角阵相似的().
 - (A) 充分必要条件;

(B) 充分非必要条件:

(C) 必要非充分条件:

(D) 既非充分也非必要条件.

三、计算题(每小题 6分,共18分.解答应写出文字说明、证明过程或演算步骤, 请直接在答题册对应题号下面的空白处作答)

(1)
$$abla D = \begin{vmatrix}
1 & 3 & -3 & 0 \\
2 & 0 & 1 & 2 \\
-1 & 1 & 2 & 5 \\
3 & 8 & -8 & 2
\end{vmatrix}, M_{ij} \not\equiv D \mapsto \vec{x} \vec{x} a_{ij} \, \hat{n} \, \hat{x} \, M_{21} + M_{22} + M_{23} + M_{24}.$$

(2) 设矩阵
$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 1 & 3 & 0 \end{pmatrix}$$
, 求 \mathbf{A}^n ($n \ge 3$ 为正整数).

(3) 设 3 阶实对称矩阵 A 的特征值分别为1,-1,0,对应于1,-1的特征向量依次为 $p_1 = (1,2,2)^T$, $p_2 = (2,1,-2)^T$, $\Re A$ 的属于特征值 0 的特征向量.

四、(本题满分 10 分) 设
$$A+B=AB$$
, 且 $A=\begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 2 & 2 \end{pmatrix}$, 求矩阵 B .

五、(本题满分 10 分) 设矩阵 $A = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 1 & 2 & 0 & 1 \\ 2 & 1 & 3 & 0 \\ 2 & 5 & -1 & 4 \end{pmatrix}$, 求该矩阵的秩以及列向量组的

一个极大无关组,并把其余列向量用该极大无关组线性表示.

六、(本题满分 10 分) 当 λ 取何值时,线性方程组 $\begin{cases} (\lambda+3)x_1+x_2+2x_3=\lambda\\ \lambda x_1+(\lambda-1)x_2+x_3=\lambda \end{cases}$ 有 $3(\lambda+1)x_1+\lambda x_2+(\lambda+3)x_3=3$

唯一解、无解、无穷多解? 当方程组有无穷多解时求出它的通解.

七、(本题满分 12 分) 已知二次型 $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + 9x_3^2 - 2x_1x_2 + 6x_1x_3 - 6x_2x_3$,

- (1) 求正交变换 x = Qy 化二次型为标准形;
- (2) 判断此二次型是否正定.

八、(本题满分 10 分) 已知 A 为 n 阶矩阵.

- (1) 若A满足 $A^2 = E$, 证明: R(A+E)+R(A-E)=n.
- (2) $|A| = -1 \perp AA^{T} = E$, 证明: |A + E| = 0.