AI24BTECH11002 - K. Akshay Teja

2) Let A be a 3×3 matrix such that adj $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & -2 & -1 \end{bmatrix}$ and $B = \operatorname{adj}(adjA)$. If $|A| = \lambda$ and

c) $(3, \frac{1}{21})$

c) $\frac{\pi}{0}$

c) 8

3) Let $a,b,c \in R$ be such that $a^2 + b^2 + c^2 = 1$, if $a\cos\theta = b\cos\left(\theta + \frac{2\pi}{3}\right) = c\cos\left(\theta + \frac{4\pi}{3}\right)$, where $\theta = \frac{\pi}{9}$, then the angle between the vectors $a\hat{i} + b\hat{j} + c\hat{k}$ and $b\hat{i} + c\hat{j} + a\hat{k}$ is:

4) Suppose f(x) is a polynomial of degree four, having critical points at (-1,0,1). If $T=\{x\in R\mid$

b) $\frac{3}{2}\sqrt{e}$ c) $\frac{1}{2} + \sqrt{e}$ d) $\frac{3}{2} + \sqrt{e}$

d) (3,81)

d) 0

d) 4

1) If $x^3dy + xydx = x^2dy + 2ydx$; y(2) = e and x > 1, then y(4) is equal to:

 $\left|\left(B^{-1}\right)^{T}\right|=\mu$, then the ordered pair, $(\left|\lambda\right|,\mu)$ is equal to:

b) $\frac{2\pi}{2}$

b) 2

f(x) = f(0), then the sum of squares of all the elements of T is:

b) $(9, \frac{1}{9})$

a) $\frac{\sqrt{e}}{2}$

a) $(9, \frac{1}{21})$

a) $\frac{\pi}{2}$

a) 6

5) If the value of the integral $\int_0^{\frac{1}{2}} \frac{x^2}{(1-x^2)^{\frac{3}{2}}}$ is $\frac{k}{6}$, then k is equal to:					
a) $2\sqrt{3} + \pi$	b) $3\sqrt{2} + \pi$	c) $3\sqrt{2} - \pi$	d) $2\sqrt{3} - \pi$		
6) If the term independent of x in the expansion of $\left(\left(\frac{3}{2}\right)x^2 - \frac{1}{3x}\right)^9$ is k, then 18k is equal to:					
a) 5	b) 9	c) 7	d) 11		
7) If a triangle ABC has vertices $A(-1,7)$, $B(-7,1)$, and $C(5,-5)$, then its orthocentre has coordinates:					
a) (-3,3)	b) $\left(-\frac{3}{5}, \frac{3}{5}\right)$	c) $\left(\frac{3}{5}, -\frac{3}{5}\right)$	d) (3, -3)		
8) Let e_1 and e_2 be the eccentricities of the ellipse, $\frac{x^2}{25} + \frac{y^2}{b^2} = 1$ (where $b < 5$) and the hyperbola, $\frac{x^2}{16} - \frac{y^2}{b^2} = 1$ respectively, satisfying $e_1e_2 = 1$. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α, β) is equal to:					
a) (8, 12)	b) $\left(\frac{24}{5}, 10\right)$	c) $\left(\frac{20}{3}, 12\right)$	d) (8, 10)		
9) If z_1, z_2 are complex numbers such that $\text{Re}(z_1) = z_1 - 1 $, $\text{Re}(z_2) = z_2 - 1 $ and $\text{arg}(z_1 - z_2) = \frac{\pi}{6}$, then $\text{Im}(z_1 + z_2)$ is equal to:					

a) $2\sqrt{3}$	b) $\frac{2}{\sqrt{3}}$	c) $\frac{1}{\sqrt{3}}$	d) $\frac{\sqrt{3}}{2}$	
	values of λ for which the root in the interval $(0, 1)$	the quadratic equations, (λ^2)	$(x^2 + 1)x^2 - 4\lambda x + 2 = 0$ a	lways
a) $(-3, -1)$	b) (2,4)	c) (1,3)	d) (0, 2)	
11) Let the latus rectum of the parabola $y^2 = 4x$ be the common chord to the circles C_1 and C_2 , each of them having radius $2\sqrt{5}$. Then, the distance between the centres of the circles C_1 and C_2 is:				
a) 8	b) $8\sqrt{5}$	c) $4\sqrt{5}$	d) 12	
12) The plane which bisects the line joining the points (4, -2, 3) and (2, 4, -1) at right angles also passes through the point:				
a) $(0, -1, 1)$	b) (4,0,1)	c) $(4,0,-1)$	d) $(0, 1, -1)$	
13) $\lim_{x\to a} \frac{(a+2x)^{\frac{1}{3}} - (3x)^{\frac{1}{3}}}{(3a+x)^{\frac{1}{3}} - (4a)^{\frac{1}{3}}}$ is equal to:				
a) $\frac{2}{9}\left(\frac{4}{3}\right)$	b) $\frac{2}{3}\left(\frac{4}{3}\right)$	c) $\left(\frac{2}{3}\right)\left(\frac{2}{9}\right)^{\frac{1}{3}}$	d) $\left(\frac{2}{9}\right)\left(\frac{2}{3}\right)^{\frac{1}{3}}$	
14) Let x_i ($1 \le i \le 10$) be ten observations of a random variable X . If $\sum_{i=1}^{10} (x_i - p) = 3$ and $\sum_{i=1}^{10} (x_i - p)^2$ 9 where $0 \ne p \in R$, then the standard deviation of these observations is:				
a) $\frac{7}{10}$	b) $\frac{9}{10}$	c) $\sqrt{\frac{3}{5}}$	d) $\frac{4}{5}$	

15) The probability that a randomly chosen 5-digit number is made from exactly two digits is:

c) $\frac{135}{10^4}$

d) $\frac{50}{10^4}$

b) $\frac{121}{10^4}$

a) $\frac{134}{10^4}$