Gene Expression and Microarrays

Garrett M. Dancik, Ph.D.

Note: All images from slide 3 on from Campbell Biology, 9th edition,

© 2011 Pearson Education, Inc.

Overview of gene expression

- A gene is a unit of hereditary (DNA) that makes a functional RNA or protein
- The human genome is 3 billion characters long
- The human genome contains ~ 20,000 genes

Overview of gene expression: DNA \rightarrow RNA \rightarrow Protein

- Genes are made of DNA, a nucleic acid made of monomers called nucleotides
- A gene is a unit of inheritance that codes for the amino acid sequence of a polypeptide

(c) Nucleoside components

2011 Pearson Education, Inc.

4

- Complementary base pairing
 - The nitrogenous bases in DNA pair up and form hydrogen bonds: adenine (A) always with thymine (T), and guanine (G) always with cytosine (C)
 - Complementary pairing can also occur between two RNA molecules or between parts of the same molecule
- In RNA, thymine is replaced by uracil (U) so A and U pair

5

 The genetic code is a triplet code where a 3-nucleotide DNA word codes for a 3-nucleotide mRNA word (a codon) which codes for an amino acid

Mutations of one or a few nucleotides can affect protein structure and function

- Mutations are changes in the genetic material of a cell or virus
- Point mutations are chemical changes in just one base pair of a gene
 - May or may not change the protein
- Insertions/deletions may cause frameshift mutations that have a disasterous effect on the protein

Sickle-Cell Disease: A Change in Primary Structure

- A slight change in the amino acid (primary structure) can affect a protein's structure and ability to function
 - What causes a change in the primary structure?
- Sickle-cell disease, an inherited blood disorder, results from a single amino acid substitution in the protein hemoglobin

Point mutation that causes sickle cell disease

Figure 5.21

	Primary Structure	Secondary and Tertiary Structures	Quaternary Structure	Function	Red Blood Cell Shape
Normal hemoglobin	1 Val 2 His 3 Leu 4 Thr 5 Pro 6 Glu 7 Glu	β subunit	Normal hemoglobin α	Molecules do not associate with one another; each carries oxygen.	- 10 μm
Sickle-cell hemoglobin	1 Val 2 His 3 Leu 4 Thr 5 Pro 6 Val 7 Glu	Exposed hydrophobic region β subunit	Sickle-cell hemoglobin	Molecules crystallize into a fiber; capacity to carry oxygen is reduced.	10 μm

Biomarkers and personalized medicine

Gene expression profiles

- Bioinformatics challenges
 - Identification of genes or gene signature
 - Choice of classification method or gene model

	S
	\subseteq
4	_
Ф	0
	S
Ω	U)
	.E
-75	
S	$\boldsymbol{\omega}$
S	
Ų,	Q
0	
\sim	_
\mathbf{L}	_
	$\mathbf{\cap}$

S	Α	В	Biomarker identification (gene or gene signature)		
oarison	Tumor	Normal	Diagnostic: predictive of a clinical variable		
	High risk	Low risk	Prognostic: predictive of disease outcome		
Eos	Responder	Non-responder	Predictive: predictive of therapeutic response		

Microarrays in more detail

Microarray Analysis

- Analysis will be performed using several Bioconductor packages (http://bioconductor.org)
- Data is available from the Gene Expression
 Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/)
 - We will look at how to download raw and processed data from GEO

Gene Expression Omnibus (GEO)

- GEO (http://www.ncbi.nlm.nih.gov/geo/) is a public functional genomics data repository for gene expression (microarray) and sequencebased data.
- There are four kinds of records on GEO (http://www.ncbi.nlm.nih.gov/geo/info/overview.html)

Gene Expression Omnibus (GEO)

- A GEO sample (GSM*) describes an individual sample, including the experimentally conditions in which it was collected, and the gene expression value for each element on the array.
- A GEO platform (GPL*) is a summary of the array used, and links the array probe to a gene
- A GEO series (GSE*) links together a collection of samples with one or more platforms for a particular experiment or study (such as profiling gene expression from 100 patients with lung cancer)
- A GEO dataset is a curated collection of samples that allows for user-friendly analysis. Not all series exist as datasets.