Indian Institute of Technology Guwahati Department of Mathematics

MA 101 - MATHEMATICS-I

Date: 17-Aug-2015 Tutorial Sheet-3 **Time:** 08:00 - 09:00

Linear Algebra

Topics Covered:

Linear independence, subspace, row/column space, null space, basis, dimension, linear transformations.

- 1. State TRUE or FALSE. Give a brief justification.
 - (a) For a matrix A in its row echelon form, the non-zero rows are linearly independent.
 - (b) If v_1 and v_2 are linearly independent vectors, and if $\{v_1, v_2, v_3\}$ is a linearly dependent set, then $v_3 \in$ $Span\{v_1,v_2\}$.
 - (c) The vectors u, v and w are in Span(u, u + v, u + v + w).
 - (d) If all the columns of an $m \times n$ nonzero matrix (it has at least one nonzero entry) A are equal then rank(A) = 1.
 - (e) If A and B are square matrices such that AB is invertible then both A and B are invertible.
 - (f) If the equation AX = b has at least one solution for each $b \in \mathbb{R}^n$, then the solution is unique for each b.
 - (g) Let A be an invertible matrix. If the vectors $\{x_1, x_2, \dots, x_r\}$ are linearly independent then the vectors $\{Ax_1, Ax_2, \dots, Ax_r\}$ are linearly independent.
 - (h) Let $\{v_1,\ldots,v_n\}$ be a linearly independent set. Suppose there exists scalars α_i and β_i such that

$$\sum_{i=1}^{n} \alpha_i v_i = \sum_{i=1}^{n} \beta_i v_i.$$

Then for each i, $\alpha_i = \beta_i$.

- 2. Examine whether the following sets are subspaces of \mathbb{R}^n .
 - (a) For $n \geq 3$, $S_1 = \{ [x_1, \dots, x_n]^T \in \mathbb{R}^n : x_1 + x_2 = 4x_3 \}$
 - (b) For $n \ge 3$, $S_1 = \{ [x_1, \dots, x_n]^T \in \mathbb{R}^n : x_1 + x_2 \le 4x_3 \}$
 - (c) A line given by equation y = mx + c in \mathbb{R}^2 .
 - (d) For a linear transformation $T: \mathbb{R}^m \to \mathbb{R}^n$, the range of T.
- 3. Show that the matrix

$$A = \begin{bmatrix} 2 & 5 & 2 & 2 & 7 \\ 0 & 3 & 5 & 0 & 8 \\ 6 & 2 & 7 & 9 & 4 \\ 0 & 2 & 5 & 2 & 2 \\ 4 & 7 & 5 & 7 & 1 \end{bmatrix}$$

is equivalent to another matrix B whose last row is $\begin{bmatrix} 20604 & 53227 & 25755 & 20927 & 78421 \end{bmatrix}$.

4. Compute the null space of the matrix

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}.$$

What is $\dim(null(A))$?

- 5. Under what conditions on the scalars α such that the vectors $[1 + \alpha \quad 1 \alpha]^T$ and $[1 \alpha \quad 1 + \alpha]^T$ in \mathbb{R}^2 are linearly independent.
- 6. Let A be a 3×3 matrix such that rank(A) = 2 and the columns of A satisfy the relation $C_3 = C_1 + C_2$. Then show that there exists a matrix X, not equal to identity matrix, such that AX = A.
- 7. Let A be an $n \times m$ matrix and let B be an $m \times n$ matrix. Prove that the matrix $I_m BA$ is invertible if and only if the matrix $I_n - AB$ is invertible.

- 8. Show that if A is a $m \times n$ and B is an $n \times p$ matrix then:
 - (a) $col(AB) \subseteq col(A)$.
 - (b) $row(AB) \subseteq row(B)$. If m = n and A is invertible, what can you say in addition?
- 9. Let A be an $m \times n$ matrix with entries in \mathbb{R} . Let T be the corresponding linear transformation. Then find out the domain and codomain of T.
- 10. Show that in \mathbb{R}^2 , the rotation by 90° is a linear transformation.
- 11. Examine whether the following maps $T: V \to W$ are linear transformations.

(a)
$$V = W = \mathbb{R}^3$$
. $T(\begin{bmatrix} x & y & z \end{bmatrix}^T) = \begin{bmatrix} 3x + y & z & |x| \end{bmatrix}^T$

(b)
$$V = W = \mathbb{R}^2$$
. T is the reflection in the line $y = -x$.

(c)
$$V = \mathbb{R}^2, W = \mathbb{R}^3$$
. $T(\begin{bmatrix} x & y \end{bmatrix}^T) = \begin{bmatrix} x - y + 5 & z^2 & xyz \end{bmatrix}^T$.

$$\text{(d)} \ \ V = \mathbb{R}^3, W = \mathbb{R}^3. \ T \left(\begin{bmatrix} x & y & z \end{bmatrix}^T \right) = \begin{bmatrix} x - y + z & 2z - 3y + x \end{bmatrix}^T.$$

- (e) $V = W = \mathbb{R}^2$. T is the projection onto Y-axis.
- 12. In the previous exercise, if the map T is a linear transformation, then compute its standard matrix.