# Network Layer

#### **Objectives:**

- To introduce packet switching as the mechanism of data delivery in the network layer.
- To discuss two distinct types of services a packet-switch network can provide: connectionless and connection-oriented services.
- To introduce the concept of an address space in general and the address space of IPv4 in particular.
- To discuss the idea of hierarchical addressing and how it has been implemented in classful addressing.
- To discuss some special blocks and some special addresses in each block.

## **Introduction**

- The network layer was designed to solve the problem of delivering packet through several links.
- The network layer is responsible for host-to-host delivery and for routing the packets through the routers.

#### **Packet Switching**

• A message from the upper layer is divided into manageable packets and each packet is sent through the network

## **Connectionless Service**

- Network layer was designed to provide a connectionless service.
- Network layer protocol treats each packet independently with each packet having no relationship to any other packet.
- When the Internet started, it was decided to make the network layer a connectionless service to make it simple.
- Each packet is routed based on the information contained in its header: source and destination address.

#### Illustration: Connectionless Service



## **Connection-Oriented Service**

- In connection-oriented service, there is a relation between all packets belonging to a message.
- Before all datagrams in a message can be sent, a virtual connection should be setup to define the path for the datagrams.
- After connection setup, the datagrams can follow the same path.

#### **Illustration: Connection-Oriented**



#### **IPv4 Address**

#### Introduction

- Internet protocol (IP) is used to identify each device connected to the Internet.
- An IPv4 address is a 32-bit address that uniquely and universally defines the connection of a host or a router to the Internet.

## **Notation**

• There are two common notations to show an IPv4 address:

- Binary notation (base 2)
- Dotted-decimal notation (base 256)

## **Binary Notation (Base 2)**

- In binary notation, an IPv4 address is displayed as 32 bits.
- To make the address more readable, one or more spaces is usually inserted between each octet (8 bits)
- Each octet is often referred to as a byte.
  - Example: 01110101 10010101 00011101 11101010

#### **Dotted-Decimal Notation: Base 256**

- An IPv4 address is usually written in decimal form with a decimal point (dot) separating the bytes.
- Each number in the dotted-decimal notation is between 0 and 255.



## **Example Binary to Dotted-Decimal**

- Change the following IPv4 addresses from binary notation to dotted-decimal notation.
  - 1. 10000001 00001011 00001011 11101111
  - 2 11000001 10000011 00011011 11111111
  - 3. 11100111 11011011 10001011 01101111
  - 4. 11111001 10011011 111111011 00001111

## Classful Addressing

• IP address space is divided into five classes: A, B, C, D, and E.



Class A:  $2^{31} = 2,147,483,648$  addresses, 50%

Class B:  $2^{30} = 1,073,741,824$  addresses, 25%

Class C:  $2^{29} = 536,870,912$  addresses, 12.5%

Class D:  $2^{28}$  = 268,435,456 addresses, 6.25%

Class E:  $2^{28}$  = 268,435,456 addresses, 6.25%

# **Recognizing Classes**

|          | Octet 1         | Octet 2 | Octet 3 | Octet 4                 |          | Byte 1  | Byte 2 | Byte 3 | Byte 4 |
|----------|-----------------|---------|---------|-------------------------|----------|---------|--------|--------|--------|
| C lass A | 0               |         |         |                         | C lass A | 0-127   |        |        | Λ.     |
| C lass B | 10              |         |         |                         | C lass B | 128-191 |        |        |        |
| C lass C | 110             |         |         |                         | C lass C | 192-223 |        |        |        |
| C lass D | 1110            |         |         |                         | C lass D | 224-299 |        |        |        |
| C lass E | 1111            |         |         |                         | C lass E | 240-255 |        |        |        |
|          | Binary notation |         |         | Dotted-decimal notation |          |         |        |        |        |

## Example

- Find the class of each address:
  - 1. 00000001 00001011 00001011 11101111
  - 2. 11000001 10000011 00011011 11111111
  - 3. 10100111 11011011 10001011 01101111
  - 4. 11110011 10011011 111111011 00001111
  - 5. 227.12.14.87
  - 6. 193.14.56.22
  - 7. **14.23.120.8**
  - 8. 252.5.15.111

#### **Netid and Hostid**

• In classful addressing, an IP address in classes A, B, and C is divided into netid and hostid.



#### **Network Address and Network Mask**

• The network address is the identifier of a network.



## Special Addresses

- All-Zeros Address
  - The block 0.0.0/32 is reserved for communication when a host needs to send an IPv4 packet but it does not know its own address.
- All-Ones Address
  - 255.255.255/32 which contains one single address, is reserved for limited broadcast address in the current network.
- Loopback Addresses
  - The block 127.0.0.0/8 is used to test the software on a machine.

#### **Private Addresses**

• A number of blocks are assigned for private use. They are not recognized globally.

| Block         | Number of addresses | Block          | Number of addresses |
|---------------|---------------------|----------------|---------------------|
| 10.0.0.0/8    | 16,777,216          | 192.168.0.0/16 | 65,536              |
| 172.16.0.0/12 | 1,047,584           | 169.254.0.0/16 | 65,536              |

## Address Resolution Protocol (ARP)

- To delivery a packet to a host or a router requires two levels of addressing:
  - -Logical address
  - -Physical address
- ARP maps a logical address to its corresponding physical address and vice versa.
- These can be done using either static or dynamic mapping

## Static Mapping

- Static mapping means creating a table that associates logical address with a physical address.
- Each machine that knows, the IP address of another machine but not its physical address can look it up in the table.
- This has some limitations:
  - A machine could change its NIC.
  - In some LANs, such as LocalTalk, the physical address changes every time the computer is turned on.

# **Dynamic Mapping**

- In dynamic mapping each time a machine knows the logical address of another machine it can use a protocol to find the physical address.
- Two protocols have been designed to perform dynamic mapping: Address Resolution Protocol (ARP) and Reverse Address Resolution Protocol (RARP)
- ARP maps logical address to physical address
- RARP maps physical address to logical address

## The ARP Protocol

- ARP sends query packets, the packet includes the physical and IP address of the sender and the IP address of the receiver.
- Because the sender does not know the physical address of the receiver, the query is broadcast over the network.
- Every host or router on the network receives and processes the ARP query packet, but only the intended recipient recognizes its IP and sends back an ARP response packet.

## Illustration: ARP Query



a. A R P request is multicast

## Illustration: ARP Reply



#### **Internet Control Message Protocol (ICMP)**

- ICMP was designed to provide error-reporting or error-correcting mechanisms.
- ICMP messages are divided into two broad categories: errorreporting messages and query messages.
- Error-reporting messages reports problems that a router or a host may encounter when it process an IP packet.
- The query messages, which occur in pairs, help a host or a network manager get specific information from a router or another host.

# ICMP Messages

| C ategory        | Туре     | M essage                   |  |
|------------------|----------|----------------------------|--|
|                  | 3        | Destination unreachable    |  |
|                  | 4        | Source quench              |  |
| E rror-reporting | 11       | Time exceeded              |  |
| messages         | 12       | Parameter problem          |  |
|                  | 5        | Redirection                |  |
| Query            | 8 or 0   | E cho request or reply     |  |
| messages         | 13 or 14 | Timestamp request or reply |  |

## **Debugging Tools**

- There are several tools that can be used in the Internet for debugging.
  - Ping: can be used to find if a host is alive and responding.
  - > The source host send ICMP echo request messages, if the destination is alive responds with echo reply message.
  - Fraceroute: can be used to trace the route of the packet from the source to the destination.

# End of Chapter 4 :)