A	optimization, 200–203
Angiotensin II,	pressing steps, 203
quantum dot conjugate preparation,	pressing surface preparation, 199, 200
materials, 52, 53	spin tube preparation, 198, 199
synthesis, 53, 54	synthesis,
receptor imaging with conjugated	catalyst deposition, 194
quantum dots,	excess metal removal, 194, 195
Chinese hamster ovary cell culture,	growth, 195, 196
54, 57, 58	materials, 192
fluorescence imaging, 55–58	overview, 193
labeling conditions, 55, 58	substrate patterning, 193
Antibody-conjugated quantum dots, See	CD, See Circular dichroism
Fluoroimmunoassay	Circular dichroism (CD), peptide-
·	encapsulated nanoclusters, 137,
В	138, 140, 141
Beads, quantum dot encoding,	Colloidal gold, See Gold nanoparticles;
fluorescence imaging and spectroscopy,	Gold nanoshells
66–69	Combinatorial peptide library screening,
materials, 62	See Nanoclusters
multicolor quantum dot preparation, 62,	Computers, DNA-based, 161, 152
63, 67	Cytosensor TM Microphysiometer,
overview, 61, 62	cycles, 211
porous microbead synthesis,	electrodes and oxidase reactions, 211–213
polystyrene-based mesoporous	living cells as nanoscale analytical
microbeads, 64	detectors, 209, 210
polystyrene-based nanobeads, 63, 64	metabolism analytes, 210
silica-based mesoporous microbeads,	multianalyte determination,
64	calibration curve, 219, 220
tagging and surface functionalization,	metabolic agent addition, 219, 221
64–68	overview, 211–214
	programming parameters, 218, 219, 221
C	sensor head modification,
Carbon nanofibers,	attachment to instrument, 218
microinjection approaches, 191, 192	materials, 214, 216
vertically aligned nanofibers,	oxidase coating, 216–218, 221
applications, 192, 203–206	physical modifications, 216, 220, 221
DNA delivery in cells,	
materials, 192, 193	quality assessment, 218
plasmid DNA spotting and	D
covalent modification, 196–198	
fiber-DNA penetration of cells using	DNA delivery, See Carbon nanofibers
microcentrifugation,	DNA nanotechnology,

branched DNA,	sticky-end cohesion, 146, 147
combination with sticky ends, 150	structure probing with nanoparticles,
inexact complementarity, 144-146	binding kinetics studies, 185, 186
sequence symmetry minimization,	CdS nanoparticles,
151, 152	activation with Cd(II), 181, 187
computation principles, 161, 162	mercaptoethanol capping, 181,
conformational transitions, 157, 158	182, 187
DNA object generation, 151, 153	synthesis, 180, 181, 187
double crossover, 149	DNA purification, 182, 183, 187
helix structure, 143, 144, 179	materials, 180
Holliday junction, 149, 150, 155	overview, 179, 180
interhelical cohesion, 147–150	reverse salt titrations, 186, 187
nanomechanical devices, 155–160	titration of quantum dots with duplex
periodic arrays,	DNA and photoluminescence
applications, 144, 145, 154, 155	microscopy, 183–185, 187
integrity, 155	triple crossover, 149
tiling with crossover patterns, 155, 156	Drug delivery nanoparticles,
polarity crossover, 149, 150	controlled release, 122
prospects, 162, 163	size optimization, 121, 122
reciprocal exchange of strands, 148, 149	surface functionalization and con-jugation,
semiconductor nanoparticle templates,	characterization of nanoparticles,
materials, 168	127, 129
overview, 167, 168	materials, 122
plasmid,	nanoparticle functionalization, 126
maps, 169	-
template synthesis and	nanoparticle preparation,
purification, 168, 170	dialysis, 125, 126
quantum-confined cadmium sulfide	emulsification-diffusion, 124, 126
nanoparticle/plasmid network	nanoprecipitation, 124, 126
preparation,	overview, 122, 123
deposition by floating grids in	poly(lactide-coglycolic acid)-
solutions, 173, 177	tetracycline conjugation, 125–128
mixing of cadmium and DNA, 172	E
reactant adsorption onto solid	E
supports, 173, 177	Enzyme electrodes, See Cytosensor TM
sequential addition of DNA and	Microphysiometer
cadmium to metal, 173, 174,	
177, 178	F
*	Fluorescence microscopy, See Angiotensin
solution preparation, 171, 172	II; Beads, quantum dot encoding;
sulfide reaction, 173	Immunocytochemistry;
transmission electron microscopy,	Nanobarcodes® particles
carbon substrate fabrication, 170,	
171, 177	Fluoroimmunoassay,
carbon substrate preparation on	basic zipper fusion protein preparation,
copper grids, 171, 177	G protein vector construction and
characterization, 174, 175	expression, 27–29

maltose-binding protein vector	nanoshell growth, 105, 110
construction and expression, 25–27	principles, 103, 104
purification, 29, 30	silica cores,
coating of quantum dots,	amination, 104
MBP-zb/avidin/IgG, 30, 32, 33	coating with colloidal gold, 105
PG-zbMBP-zb/IgG, 30, 31, 33	growth, 104, 110
materials, 20–22	rinsing, 105
overview of quantum dot assay, 19, 20	immunoassay of whole blood,
quantum dot synthesis,	absorbance spectroscopy, 109
CdSe core, 22, 23, 32	analysis, 109, 110
dihydrolipoic acid capping and water	antibody conjugation to nanoshells,
solubilization, 24, 25	antibody binding to polyethylene
purification, 23	glycol tethers, 106
ZnS overcoating, 23, 24	assembly, 107, 108, 111
sandwich immunoassay, 31–33	polyethylene glycol-thiol
single-chain fragment variable antibody	synthesis and concentration
screening, See Single-chain	optimization, 106, 107, 111
fragment variable antibody	stability of conjugates, 111
screening	materials, 102, 103
FMAT TM , See Single-chain fragment	overview, 101, 102
variable antibody screening	sample preparation, 108, 109
	standards, 109
G	plasmon resonance, 102, 103, 110
Gold nanoparticles,	structure, 102
	TT
applications of bioconjugates, 85, 86	H H H H H H H H H H H H H H H H H H H
applications of bioconjugates, 85, 86 bioconjugate preparation,	Holliday junction, DNA nanotechnology,
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide	
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates,	Holliday junction, DNA nanotechnology,
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates, albumin-crosslinker	Holliday junction, DNA nanotechnology, 149, 150, 155
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates, albumin-crosslinker characterization, 89, 90, 97	Holliday junction, DNA nanotechnology, 149, 150, 155 I Immunocytochemistry,
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates, albumin-crosslinker characterization, 89, 90, 97 conjugation conditions, 90	Holliday junction, DNA nanotechnology, 149, 150, 155 I Immunocytochemistry, quantum dot applications, 9–11, 35
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates, albumin-crosslinker characterization, 89, 90, 97	Holliday junction, DNA nanotechnology, 149, 150, 155 I Immunocytochemistry, quantum dot applications, 9–11, 35 streptavidin quantum dot labeling of
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates, albumin-crosslinker characterization, 89, 90, 97 conjugation conditions, 90 peptide conjugation to albumin, 87–89	Holliday junction, DNA nanotechnology, 149, 150, 155 I Immunocytochemistry, quantum dot applications, 9–11, 35 streptavidin quantum dot labeling of cell-surface proteins,
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates, albumin-crosslinker characterization, 89, 90, 97 conjugation conditions, 90 peptide conjugation to albumin, 87–89 direct peptide conjugation, 90, 91	Holliday junction, DNA nanotechnology, 149, 150, 155 I Immunocytochemistry, quantum dot applications, 9–11, 35 streptavidin quantum dot labeling of cell-surface proteins, biotinylation,
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates, albumin-crosslinker characterization, 89, 90, 97 conjugation conditions, 90 peptide conjugation to albumin, 87–89 direct peptide conjugation, 90, 91 characterization of peptide conjugates,	Holliday junction, DNA nanotechnology, 149, 150, 155 I Immunocytochemistry, quantum dot applications, 9–11, 35 streptavidin quantum dot labeling of cell-surface proteins, biotinylation, antibodies, 39–41, 47, 48
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates, albumin-crosslinker characterization, 89, 90, 97 conjugation conditions, 90 peptide conjugation to albumin, 87–89 direct peptide conjugation, 90, 91 characterization of peptide conjugates, 91, 92	Holliday junction, DNA nanotechnology, 149, 150, 155 I Immunocytochemistry, quantum dot applications, 9–11, 35 streptavidin quantum dot labeling of cell-surface proteins, biotinylation, antibodies, 39–41, 47, 48 cell surfaces, 39–41, 48
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates, albumin-crosslinker characterization, 89, 90, 97 conjugation conditions, 90 peptide conjugation to albumin, 87–89 direct peptide conjugation, 90, 91 characterization of peptide conjugates, 91, 92 intracellular imaging of colloidal gold	Holliday junction, DNA nanotechnology, 149, 150, 155 I Immunocytochemistry, quantum dot applications, 9–11, 35 streptavidin quantum dot labeling of cell-surface proteins, biotinylation, antibodies, 39–41, 47, 48 cell surfaces, 39–41, 48 detection with biotinylated
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates, albumin-crosslinker characterization, 89, 90, 97 conjugation conditions, 90 peptide conjugation to albumin, 87–89 direct peptide conjugation, 90, 91 characterization of peptide conjugates, 91, 92 intracellular imaging of colloidal gold using video-enhanced differential	Holliday junction, DNA nanotechnology, 149, 150, 155 I Immunocytochemistry, quantum dot applications, 9–11, 35 streptavidin quantum dot labeling of cell-surface proteins, biotinylation, antibodies, 39–41, 47, 48 cell surfaces, 39–41, 48 detection with biotinylated antibodies, 41, 48
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates, albumin-crosslinker characterization, 89, 90, 97 conjugation conditions, 90 peptide conjugation to albumin, 87–89 direct peptide conjugation, 90, 91 characterization of peptide conjugates, 91, 92 intracellular imaging of colloidal gold using video-enhanced differential interference contrast microscopy,	Holliday junction, DNA nanotechnology, 149, 150, 155 I Immunocytochemistry, quantum dot applications, 9–11, 35 streptavidin quantum dot labeling of cell-surface proteins, biotinylation, antibodies, 39–41, 47, 48 cell surfaces, 39–41, 48 detection with biotinylated antibodies, 41, 48 imaging, 42, 43, 45, 48, 49
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates, albumin-crosslinker characterization, 89, 90, 97 conjugation conditions, 90 peptide conjugation to albumin, 87–89 direct peptide conjugation, 90, 91 characterization of peptide conjugates, 91, 92 intracellular imaging of colloidal gold using video-enhanced differential interference contrast microscopy, image acquisition, 95, 97	Holliday junction, DNA nanotechnology, 149, 150, 155 I Immunocytochemistry, quantum dot applications, 9–11, 35 streptavidin quantum dot labeling of cell-surface proteins, biotinylation, antibodies, 39–41, 47, 48 cell surfaces, 39–41, 48 detection with biotinylated antibodies, 41, 48 imaging, 42, 43, 45, 48, 49 materials, 36, 37
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates, albumin-crosslinker characterization, 89, 90, 97 conjugation conditions, 90 peptide conjugation to albumin, 87–89 direct peptide conjugation, 90, 91 characterization of peptide conjugates, 91, 92 intracellular imaging of colloidal gold using video-enhanced differential interference contrast microscopy, image acquisition, 95, 97 instrumentation, 93–95	Holliday junction, DNA nanotechnology, 149, 150, 155 I Immunocytochemistry, quantum dot applications, 9–11, 35 streptavidin quantum dot labeling of cell-surface proteins, biotinylation, antibodies, 39–41, 47, 48 cell surfaces, 39–41, 48 detection with biotinylated antibodies, 41, 48 imaging, 42, 43, 45, 48, 49 materials, 36, 37 overview, 35, 36
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates, albumin-crosslinker characterization, 89, 90, 97 conjugation conditions, 90 peptide conjugation to albumin, 87–89 direct peptide conjugation, 90, 91 characterization of peptide conjugates, 91, 92 intracellular imaging of colloidal gold using video-enhanced differential interference contrast microscopy, image acquisition, 95, 97 instrumentation, 93–95 peptide conjugates, 96	Holliday junction, DNA nanotechnology, 149, 150, 155 I Immunocytochemistry, quantum dot applications, 9–11, 35 streptavidin quantum dot labeling of cell-surface proteins, biotinylation, antibodies, 39–41, 47, 48 cell surfaces, 39–41, 48 detection with biotinylated antibodies, 41, 48 imaging, 42, 43, 45, 48, 49 materials, 36, 37 overview, 35, 36 streptavidin quantum dot and
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates, albumin-crosslinker characterization, 89, 90, 97 conjugation conditions, 90 peptide conjugation to albumin, 87–89 direct peptide conjugation, 90, 91 characterization of peptide conjugates, 91, 92 intracellular imaging of colloidal gold using video-enhanced differential interference contrast microscopy, image acquisition, 95, 97 instrumentation, 93–95	Holliday junction, DNA nanotechnology, 149, 150, 155 I Immunocytochemistry, quantum dot applications, 9–11, 35 streptavidin quantum dot labeling of cell-surface proteins, biotinylation, antibodies, 39–41, 47, 48 cell surfaces, 39–41, 48 detection with biotinylated antibodies, 41, 48 imaging, 42, 43, 45, 48, 49 materials, 36, 37 overview, 35, 36 streptavidin quantum dot and fluorophore incubation conditions
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates, albumin-crosslinker characterization, 89, 90, 97 conjugation conditions, 90 peptide conjugation to albumin, 87–89 direct peptide conjugation, 90, 91 characterization of peptide conjugates, 91, 92 intracellular imaging of colloidal gold using video-enhanced differential interference contrast microscopy, image acquisition, 95, 97 instrumentation, 93–95 peptide conjugates, 96 stability, 96, 97	Holliday junction, DNA nanotechnology, 149, 150, 155 I Immunocytochemistry, quantum dot applications, 9–11, 35 streptavidin quantum dot labeling of cell-surface proteins, biotinylation, antibodies, 39–41, 47, 48 cell surfaces, 39–41, 48 detection with biotinylated antibodies, 41, 48 imaging, 42, 43, 45, 48, 49 materials, 36, 37 overview, 35, 36 streptavidin quantum dot and
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates, albumin-crosslinker characterization, 89, 90, 97 conjugation conditions, 90 peptide conjugation to albumin, 87–89 direct peptide conjugation, 90, 91 characterization of peptide conjugates, 91, 92 intracellular imaging of colloidal gold using video-enhanced differential interference contrast microscopy, image acquisition, 95, 97 instrumentation, 93–95 peptide conjugates, 96 stability, 96, 97 synthesis, 87	Holliday junction, DNA nanotechnology, 149, 150, 155 I Immunocytochemistry, quantum dot applications, 9–11, 35 streptavidin quantum dot labeling of cell-surface proteins, biotinylation, antibodies, 39–41, 47, 48 cell surfaces, 39–41, 48 detection with biotinylated antibodies, 41, 48 imaging, 42, 43, 45, 48, 49 materials, 36, 37 overview, 35, 36 streptavidin quantum dot and fluorophore incubation conditions for labeling, 41, 42, 48
applications of bioconjugates, 85, 86 bioconjugate preparation, bovine serum albumin-peptide conjugates, albumin-crosslinker characterization, 89, 90, 97 conjugation conditions, 90 peptide conjugation to albumin, 87–89 direct peptide conjugation, 90, 91 characterization of peptide conjugates, 91, 92 intracellular imaging of colloidal gold using video-enhanced differential interference contrast microscopy, image acquisition, 95, 97 instrumentation, 93–95 peptide conjugates, 96 stability, 96, 97 synthesis, 87 transmission electron microscopy, 92	Holliday junction, DNA nanotechnology, 149, 150, 155 I Immunocytochemistry, quantum dot applications, 9–11, 35 streptavidin quantum dot labeling of cell-surface proteins, biotinylation, antibodies, 39–41, 47, 48 cell surfaces, 39–41, 48 detection with biotinylated antibodies, 41, 48 imaging, 42, 43, 45, 48, 49 materials, 36, 37 overview, 35, 36 streptavidin quantum dot and fluorophore incubation conditions for labeling, 41, 42, 48 tissue culture,

M	Nanoshells, See Gold nanoshells
Microbeads, See Beads, quantum dot encoding	NBCs, See Nanobarcodes® particles
Microinjection, See Carbon nanofibers	P
Microphysiometer, <i>See</i> Cytosensor™ Microphysiometer	pUCLeu4, See Semiconductor nanoparticles
N	Q
Nanobarcodes® particles (NBCs),	Quantum dots, See also Semiconductor
applications, 74, 75	nanoparticles,
avidin coating,	absorbance characteristics, 2, 4
NeutrAvidin conjugation, 77, 78	applications,
quality control, 78	fluoroimmunoassay, See
bioassay community needs, 73, 74	Fluoroimmunoassay
concentration determination and	immunohistochemistry, 9–11
counting, 78, 79	in vivo applications, 11, 12
fluorescence imaging,	live cell labeling, 11
acquisition, 80–82	microtiter plate assays, 12, 13
processing, 82, 83	prospects, 15
oligonucleotide-conjugated particles,	small-molecule conjugates, 12
hybridization conditions, 76, 77	bead encoding, See Beads, quantum dot
preparation, 76, 83	encoding
striping patterns, 74	composition, 8
Nanoclusters,	definition, 1
combinatorial peptide library screening	dihydrolipoic acid capping, See
for synthesis,	Fluoroimmunoassay
evaluation criteria, 138-140	DNA structure probing with
materials, 136	nanoparticles,
peptide-encapsulated nanocluster	binding kinetics studies, 185, 186
characterization, 138, 140, 141	CdS nanoparticles,
rationale, 133, 134	activation with Cd(II), 181, 187
secondary structure studies, 137, 140	mercaptoethanol capping, 181,
synthesis,	182, 187
condensation synthesis of titanium	synthesis, 180, 181, 187
oxide nanoclusters, 137	DNA purification, 182, 183, 187
materials, 134, 135, 139	materials, 180
reductive synthesis of silver and gold	overview, 179, 180
nanoclusters, 136, 140	reverse salt titrations, 186, 187
reproducibility, 139, 140	titration of quantum dots with duplex
sulfide addition synthesis of ZnS and	DNA and photoluminescence
CdS nanoclusters, 136, 137	microscopy, 183–185, 187
Nanoparticles, See Beads, quantum dot	emission characteristics,
encoding; DNA nanotechnology;	lifetime, 5
Drug delivery nanoparticles; Gold	photostability, 4, 5, 51
nanoparticles; Nanobarcodes®	quantum yield, 4
particles; Quantum dots;	shape of spectrum, 2–4, 51, 52
Semiconductor nanoparticles;	encoding principles, 13–15
Single-chain fragment variable	immunocytochemistry, See
antibody screening	Immunocytochemistry

peptide conjugation, See Angiotensin II	Single-chain fragment variable antibody
size, 8	(ScFv) screening,
structure, 5, 7, 8, 51	rationale, 113, 114
_	silver nanoparticle binding assays,
R	antibody preparation, 114
Receptor imaging, See Angiotensin II	colony lift assay, 116-118, 120
	FMAT™ analysis, 118, 119
S	materials, 115, 116
ScFv, See Single-chain fragment variable	overview, 114, 115
antibody	Streptavidin-conjugated quantum dots, See
Semiconductor nanoparticles, DNA	Immunocytochemistry
templates,	Structural DNA nanotechnology, See DNA
materials, 168	nanotechnology
overview, 167, 168	<i>C.</i>
	T
plasmids,	TEM, See Transmission electron
maps, 169	microscopy
template synthesis and purification, 168, 170	Tetracycline, See Drug delivery
quantum-confined cadmium sulfide	nanoparticles
	Transmission electron microscopy (TEM),
nanoparticle/plasmid network	gold nanoparticles, 92
preparation,	semiconductor nanoparticles from DNA
deposition by floating grids in	templates,
solutions, 173, 177	characterization, 174, 175
mixing of cadmium and DNA, 172	grid preparation,
reactant adsorption onto solid	carbon substrate fabrication, 170,
supports, 173, 177	171, 177
sequential addition of DNA and	carbon substrate preparation on
cadmium to metal, 173, 174, 177, 178	copper grids, 171, 177
solution preparation, 171, 172	copper grids, 1/1, 1//
sulfide reaction, 173	V
transmission electron microscopy,	·
characterization, 174, 175	VECDIC, See Video-enhanced differential
grid preparation,	interference contrast microscopy
carbon substrate fabrication, 170,	Video-enhanced differential interference
171, 177	contrast microscopy (VECDIC),
carbon substrate preparation on	intracellular imaging of colloidal
copper grids, 171, 177	gold,
Silica-gold nanoshells, See Gold nanoshells	image acquisition, 95, 97
Silver nanoparticles, See Single-chain fragment	instrumentation, 93–95
variable antibody screening	peptide conjugates, 96