Predicting Perovskite Formability Using Machine Learning

CHEM404 Project Presentation

Tom Hou Eleanor Liu Leo Xie Luke Yang

The Perovskite Structure

- Strictly a mineral of formula CaTiO₃
- Now used to refer to crystalline structures of ABX₃ of the same crystal structure
 - A = Large metal cation
 - B = Small metal cation
 - X = Electronegative anion (F, Cl, Br, I, O)

Perovskite Applications

- Cheaper, safer, thinner, lighter solar arrays
 - Good absorbance coefficient in visible and near UV ranges
 - Long diffusion distances for excitons
 - Possibility to be made of cheap, non-toxic materials
- >20% solar conversion efficiency
 - GaAs is more efficient but expensive and potentially toxic

Crystal Structure

- Not all structures of formula ABX₃ form perovskites
 - Dependent on spatial parameters: radii of ions
- Tolerance, ⊤, defined as:

$$\tau = \frac{r_A + r_X}{\sqrt{2}(r_B + r_X)}$$

- τ = 1 defines ideal sphere packing of cubic perovskite
 - \circ Formability probable in range 0.813 < τ < 1.107
- Octahedral, o_f , factor defined as: $o_f = \frac{r_B}{r_X}$

What combinations of A, B, X, will form a perovskite crystal structure?

Classification in Machine Learning

- In machine learning, classification refers to a predictive modeling problem of predicting the class of given data points.
- In mathematical language, the task is to approximate a model function $f(\mathbf{x})$ that maps the input variables \mathbf{x} (features) to discrete output variables \mathbf{y} (labels).
- Model parameters of ML govern the position of decision boundaries, and optimal parameters are selected by evaluating the model performance (or prediction accuracy) on unseen data.

Workflow

Workflow

Support Vector Machine (SVM)

Support Vector Machine (SVM) - Linear

Support Vector Machine (SVM) - Non-Linear

Support Vector Machine (SVM) - Kernel Trick

Radial Basis Function (RBF):

$$k(\mathbf{x}_i,\mathbf{x}_j) = \exp\left(-\gamma |\mathbf{x}_i - \mathbf{x}_j|^2
ight)$$

 \mathbf{x}_i --- Feature vector

$$\gamma=rac{1}{2\sigma^2}$$

Training Sets vs Test Sets

- Data
 - Contain the parameters and results given by experiments
- Training Set
 - Used to construct and optimize the prediction model
- Test Set
 - Used to evaluate the accuracy of the model

Feature Combination & Accuracy

Confusion Matrix of

- Diagonal quadrants: number of correctly classified data
- Off-diagonal quadrants: number of incorrectly classified data
- Classifies all non-Perovskite compounds correctly
- Classified 13/17 Perovskite compounds correctly

Contour of Tolerance & Octahedral Factor

- 0.8

- 0.6

- 0.4

- 0.2

Best Performing Features

1: Ionic Radii of Large Metal (r,)

2: Ionic Radii of Small Metal (r_B)

4: Tolerance (T)

5: Octahedral Factor ($O_h = r_B/r_\chi$)

10: Ratio of the sum of the s and p orbital radii $r^{s+p}_{A}/r^{s+p}_{\chi}$

Misclassifications

Most of the misclassifications are perovskite classified as non-perovskite

- Occur at the boundary
 - Predicted probabilities close to 50%
 - Non-perovskite can be synthesized in a long-lived metastable perovskite phase through non-equilibrium high pressure synthesis route.

Misclassifications

- Non-boundary misclassifications
 - CsMnF₃ non-perovskite as perovskite
 - Hexagonal antiferromagnetic structure of CsMnF₃ can be easily transformed to cubic perovskite at high pressure

Implication

- Small dataset
 - 640 possible compositions
 - o 185 know data
 - 8 A-site, 20 B-site, 4 X-site

New tolerance, **T**, factor

$$au = rac{r_X}{r_B} - n_A igg(n_A - rac{r_A/r_B}{\ln(r_A/r_B)} igg)$$

 n_A : oxidation state of A R_A : ionic radius of ion A R_B : ionic radius of ion B - $r_A > r_B$ by definition

Bartel C., Sutton C., et al. *Materials science* **2019** New tolerance factor to predict the stability of perovskite oxides and halides. 5,2, eaav0693

New tolerance, **⊤**, factor

$$au = rac{r_X}{r_B} - n_A igg(n_A - rac{r_A/r_B}{\ln(r_A/r_B)} igg)$$

Why it's better?

- Better sum of ionic radii estimates the interatomic bond distances for the structure
- Refined input radii and increased the dimensionality of the descriptor
- Monotonic dependency

New tolerance, **⊤**, factor

$$au = rac{r_X}{r_B} - n_A igg(n_A - rac{r_A/r_B}{\ln(r_A/r_B)} igg)$$

How it's better?

- Reduce false-positive prediction occurrence
- Increase the overall classification accuracy

New Feature Combination & Accuracy New tolerance

New Feature Combination & Accuracy Ionization energy

- 0.9

- 0.8

- 0.7

- 0.6

- 0.5

Limitations

- Data are highly repetitive
 - Only 4 different X-sites and a few A-sites and B-sites
- Data are similar
 - Close in periodic table, has similar structure and properties

No	System	Formabil	li Assignme	1. Ra	2. Rb	3. Rx	4. t	5. of	miu	Ax	Bx	Xx	E(A-X)	8.(Ra
	1 LiF-MgF2	No	0	1.13	0.72	1.33	0.849	0.54135	0.541	0.9	1.31	3.78	-2.88	-2.0
	2 LiF-ZnF2	No	0	1.13	0.74	1.33	0.84	0.55639	0.556	0.9	1.44	3.78	-2.88	-1.9
	3 LiF-MnF2	No	0	1.13	0.83	1.33	0.805	0.62406	0.624	0.9	2.04	3.78	-2.88	-1.4
	4 LiF-CaF2	No	0	1.13	1	1.33	0.747	0.75188	0.752	0.9	1.17	3.78	-2.88	-2.2
	5 LiF-PbF2	No	0	1.13	1.19	1.33	0.69	0.89474	0.895	0.9	1.92	3.78	-2.88	-1.5
	6 NaF-NiF2	Yes	1	1.39	0.69	1.33	0.952	0.5188	0.519	0.89	1.76	3.78	-2.89	-2.:
	7 NaF-MgF	Yes	1	1.39	0.72	1.33	0.938	0.54135	0.541	0.89	1.31	3.78	-2.89	-2.
	8 NaF-CuF2	Yes	1	1.39	0.73	1.33	0.934	0.54887	0.549	0.89	1.08	3.78	-2.89	-2.
	9 NaF-ZnF2	Yes	1	1.39	0.74	1.33	0.929	0.55639	0.556	0.89	1.44	3.78	-2.89	-2.
	10 NaF-CoF2	Yes	1	1.39	0.745	1.33	0.927	0.56015	0.56	0.89	1.72	3.78	-2.89	-2.
	11 NaF-FeF2	Yes	1	1.39	0.78	1.33	0.912	0.58647	0.586	0.89	1.67	3.78	-2.89	-2.:
	12 NaF-VF2	Yes	1	1.39	0.79	1.33	0.907	0.59398	0.594	0.89	2.22	3.78	-2.89	-1.0
	13 NaF-CrF2	Yes	1	1.39	0.8	1.33	0.903	0.6015	0.602	0.89	2	3.78	-2.89	-1.
	14 NaF-MnF	Yes	1	1.39	0.83	1.33	0.89	0.62406	0.624	0.89	2.04	3.78	-2.89	-1.
	15 NaF-CdF2	No	0	1.39	0.95	1.33	0.844	0.71429	0.714	0.89	1.4	3.78	-2.89	-2.
	16 NaF-CaF	No	0	1.39	1	1.33	0.825	0.75188	0.752	0.89	1.17	3.78	-2.89	-2.
	17 NaF-PbF2	No	0	1.39	1.19	1.33	0.763	0.89474	0.895	0.89	1.92	3.78	-2.89	-1.
	18 NaF-BaF	No	0	1.39	1.35	1.33	0.718	1.01504	1.01	0.89	1.08	3.78	-2.89	-2.
	19 AgF-CoF2	Yes	1	1.49	0.65	1.33	1.007	0.48872	0.489	1.07	1.72	3.78	-2.71	-2.
	20 AgF-NiF2	Yes	1	1.49	0.69	1.33	0.987	0.5188	0.519	1.07	1.76	3.78	-2.71	-2
	21 AgF-MgF	Yes	1	1.49	0.72	1.33	0.973	0.54135	0.541	1.07	1.31	3.78	-2.71	-2.
	22 AgF-ZnF2	Yes	1	1.49	0.74	1.33	0.963	0.55639	0.556	1.07	1.44	3.78	-2.71	-2.
	23 AgF-MnF	Yes	1	1.49	0.83	1.33	0.923	0.62406	0.624	1.07	2.04	3.78	-2.71	-1.
	24 AgF-PbF2	No	0	1.49	1.19	1.33	0.791	0.89474	0.895	1.07	1.92	3.78	-2.71	-2.
	25 KF-CoF2	Yes	1	1.64	0.65	1.33	1.061	0.48872	0.489	0.8	1.72	3.78	-2.98	-2.
	26 KF-NiF2	Yes	1	1.64	0.69	1.33	1.04	0.5188	0.519	0.8	1.76	3.78	-2.98	-2.
	27 KF-MgF2	Yes	1	1.64	0.72	1.33	1.024	0.54135	0.541	0.8	1.31	3.78	-2.98	-3.
	28 KF-CuF2	Yes	1	1.64	0.73	1.33	1.019	0.54887	0.549	0.8	1.08	3.78	-2.98	-3.
	29 KF-ZnF2	Yes	1	1.64	0.74	1.33	1.015	0.55639	0.556	0.8	1.44	3.78	-2.98	-2.
	30 KF-FeF2	Yes	1	1.64	0.78	1.33	0.995	0.58647	0.586	0.8	1.67	3.78	-2.98	-2.
	31 KF-VF2	Yes	1	1.64	0.79	1.33	0.991	0.59398	0.594	0.8	2.22	3.78	-2.98	-1.
	32 KF-CrF2	Yes	1	1.64	0.8	1.33	0.986	0.6015	0.602	0.8	2	3.78	-2.98	-2.
	33 KF-MnF2	Yes	1	1.64	0.83	1.33	0.972	0.62406	0.624	0.8	2.04	3.78	-2.98	-2.
	34 KF-CdF2	Yes	1	1.64	0.95	1.33	0.921	0.71429	0.714	0.8	1.4	3.78	-2.98	-2.
	B5 KF-CaF2	Yes	1	1.64	1	1.33	0.901	0.75188	0.752	0.8	1.17	3.78	-2.98	-3.
	36 KF-HgF2	Yes	1	1.64	1.02	1.33	0.894	0.76692	0.767	0.8	1.49	3.78	-2.98	-2.
	37 KF-BaF2	No	0	1.64	1.35	1.33	0.784	1.01504	1.015	0.8	1.08	3.78	-2.98	-3.
	OF TIE C-ES	V		4.7	OCE	4 22	1 000	0.40073	0.400	1.00	4 70	2.70	1 00	2.

Limitations

- Data are highly repetitive
 - Only 4 different X-sites and a few A-sites and B-sites
- Data are similar
 - Close in periodic table, has similar structure and properties

	Z LII ZIII Z	110	U	1.13	0.74	1.33	0.04	0.55055	0.550	0.5	1.44	3.70	-2.00	-1.5
	3 LiF-MnF2	No	0	1.13	0.83	1.33	0.805	0.62406	0.624	0.9	2.04	3.78	-2.88	-1.4
9	4 LiF-CaF2	No	0	1.13	1	1.33	0.747	0.75188	0.752	0.9	1.17	3.78	-2.88	-2.2
	5 LiF-PbF2	No	0	1.13	1.19	1.33	0.69	0.89474	0.895	0.9	1.92	3.78	-2.88	-1.5
	6 NaF-NiF2	Yes	1	1.39	0.69	1.33	0.952	0.5188	0.519	0.89	1.76	3.78	-2.89	-2.1
	7 NaF-MgF	Yes	1	1.39	0.72	1.33	0.938	0.54135	0.541	0.89	1.31	3.78	-2.89	-2.5
	B NaF-CuF2	Yes	1	1.39	0.73	1.33	0.934	0.54887	0.549	0.89	1.08	3.78	-2.89	-2.8
	NaF-ZnF2	Yes	1	1.39	0.74	1.33	0.929	0.55639	0.556	0.89	1.44	3.78	-2.89	-2.4
10	NaF-CoF2	Yes	1	1.39	0.745	1.33	0.927	0.56015	0.56	0.89	1.72	3.78	-2.89	-2.1
1	1 NaF-FeF2	Yes	1	1.39	0.78	1.33	0.912	0.58647	0.586	0.89	1.67	3.78	-2.89	-2.2
1	NaF-VF2	Yes	1	1.39	0.79	1.33	0.907	0.59398	0.594	0.89	2.22	3.78	-2.89	-1.6
1	NaF-CrF2	Yes	1	1.39	0.8	1.33	0.903	0.6015	0.602	0.89	2	3.78	-2.89	-1.8
1	4 NaF-MnF	Yes	1	1.39	0.83	1.33	0.89	0.62406	0.624	0.89	2.04	3.78	-2.89	-1.8
1	NaF-CdF2	No	0	1.39	0.95	1.33	0.844	0.71429	0.714	0.89	1.4	3.78	-2.89	-2.4
1	6 NaF-CaF2	No	0	1.39	1	1.33	0.825	0.75188	0.752	0.89	1.17	3.78	-2.89	-2.7
1	7 NaF-PbF2	No No	0	1.39	1.19	1.33	0.763	0.89474	0.895	0.89	1.92	3.78	-2.89	-1.9
1	B NaF-BaF2	No	0	1.39	1.35	1.33	0.718	1.01504	1.01	0.89	1.08	3.78	-2.89	-2.8
19	9 AgF-CoF2	Yes	1	1.49	0.65	1.33	1.007	0.48872	0.489	1.07	1.72	3.78	-2.71	-2.3
2	AgF-NiF2	Yes	1	1.49	0.69	1.33	0.987	0.5188	0.519	1.07	1.76	3.78	-2.71	-2
2	1 AgF-MgF	Yes	1	1.49	0.72	1.33	0.973	0.54135	0.541	1.07	1.31	3.78	-2.71	-2.7
2	2 AgF-ZnF2	Yes	1	1.49	0.74	1.33	0.963	0.55639	0.556	1.07	1.44	3.78	-2.71	-2.6
2	AgF-MnF	Yes	1	1.49	0.83	1.33	0.923	0.62406	0.624	1.07	2.04	3.78	-2.71	-1.9
2	4 AgF-PbF2	No	0	1.49	1.19	1.33	0.791	0.89474	0.895	1.07	1.92	3.78	-2.71	-2.0
2	5 KF-CoF2	Yes	1	1.64	0.65	1.33	1.061	0.48872	0.489	0.8	1.72	3.78	-2.98	-2.5
2	6 KF-NiF2	Yes	1	1.64	0.69	1.33	1.04	0.5188	0.519	0.8	1.76	3.78	-2.98	-2.4
2	7 KF-MgF2	Yes	1	1.64	0.72	1.33	1.024	0.54135	0.541	0.8	1.31	3.78	-2.98	-3.0
2	B KF-CuF2	Yes	1	1.64	0.73	1.33	1.019	0.54887	0.549	0.8	1.08	3.78	-2.98	-3.8
2	9 KF-ZnF2	Yes	1	1.64	0.74	1.33	1.015	0.55639	0.556	0.8	1.44	3.78	-2.98	-2.8
3/	0 KF-FeF2	Yes	1	1.64	0.78	1.33	0.995	0.58647	0.586	0.8	1.67	3.78	-2.98	-2.6
3	1 KF-VF2	Yes	1	1.64	0.79	1.33	0.991	0.59398	0.594	0.8	2.22	3.78	-2.98	-1.9
3	2 KF-CrF2	Yes	1	1.64	0.8	1.33	0.986	0.6015	0.602	0.8	2	3.78	-2.98	-2.1
3	KF-MnF2	Yes	1	1.64	0.83	1.33	0.972	0.62406	0.624	0.8	2.04	3.78	-2.98	-2.:
3	4 KF-CdF2	Yes	1	1.64	0.95	1.33	0.921	0.71429	0.714	0.8	1.4	3.78	-2.98	-2.9
31	5 KF-CaF2	Yes	1	1.64	1	1.33	0.901	0.75188	0.752	0.8	1.17	3.78	-2.98	-3.2
	6 KF-HgF2		1	1.64	1.02	1.33	0.894	0.76692	0.767	0.8	1.49	3.78	-2.98	-2.8
	7 KF-BaF2		0	1.64	1.35	1.33	0.784	1.01504	1.015	0.8	1.08	3.78	-2.98	-3.3
	TIE C-ES		-	4.7	O.CE	1 22	1 000	0.40072	0.400	1.00	4 72	2.70	1.00	

2 LiF-ZnF2 No

Conclusion

- **Best performed features**
 - **Tolerance**
 - Octahedral factor
- **Future study**
 - Double perovskite

Thank you.

Questions?