Chapitre 3 - Opérations sur les relatifs

Activité Introduction

Dans un immeuble les nombres relatifs sont souvent utilisés pour désigner les étages. On utilise alors les nombres négatifs pour indiquer les étages en sous-sol.

- **1.** Depuis le rez-de-chaussée (étage 0) de combien d'étages dois-je monter pour arriver au :
 - a. 1er étage?
 - **b.** 4ème étage ?
 - c. 2ème parking?
- **2.** Depuis le 2ème étage de combien d'étages dois-je descendre pour arriver au :
 - a. Sous-sol des caves ?
 - **b.** 3ème étage ?
- **3.** A l'aide des questions précédentes, compléter les calculs suivants :
 - **a.** 0 + = 1
 - **b.** 0 + = 4
 - **c.** 0 + = -2
 - **d.** 2 = -1
 - **e.** 2 = 3

I - Rappels sur les sommes de deux nombres relatifs :

La distance à zéro d'un nombre relatif correspond à la distance sur axe gradué entre ce nombre et l'origine.

On parle aussi de valeur absolue.

L'opposé d'un nombre relatif est le nombre de signe contraire et de même **valeur absolue**.

1) Somme de deux nombres relatifs :

La **somme** de deux nombres relatifs de <u>même signe</u> a le <u>même signe</u> que ces deux nombres. On <u>ajoute</u> alors les <u>valeurs absolues</u>.

Exemples:

$$\blacktriangleright$$
 (+4) + (+7) = +(4 + 7) = +11

$$\blacktriangleright$$
 (-3) + (-4) = -(3 + 4) = -7

La **somme** de deux nombres relatifs de <u>signes contraires</u> a le <u>signe du nombre relatif qui a la plus</u> grande valeur absolue. On effectue la différence des valeurs absolues.

Exemples:

$$\blacktriangleright$$
 (+4) + (-7) = -(7 - 4) = -3

$$\blacktriangleright$$
 (-9) + (+15) = +(15 - 9) = +6

2) <u>Différence de deux nombres relatifs :</u>

Pour **soustraire** un nombre relatif, on **ajoute** son **opposé**.

Exemples:

$$\blacktriangleright$$
 (+15) - (+9) = (+15) + (-9) = +6

$$\blacktriangleright$$
 (+15) - (+9) = (+15) + (-9) = +6 \blacktriangleright (+20) - (-11) = (+20) + (+11) = +31

$$\blacktriangleright$$
 (-6) - (+7) = (-6) + (-7) = -13

$$\blacktriangleright$$
 (-12) - (-3) = (-12) + (+3) = -9

3) Simplification d'une suite de sommes :

Propriété:

Dans une somme ou une différence, on peut supprimer un couple de parenthèses et le signe qui le précède à condition :

- de ne **rien changer** lorsque le signe qui précède les parenthèses est «+».
- de **prendre l'opposé** de tous les nombres situés **à l'intérieur** de ces parenthèses lorsque le signe qui les précède est «-».

Exemples:

$$+(+3) + (-5) - (+6) - (-7)$$

On supprime les parenthèses précédées d'un signe +

$$+(+3) + (-5) - (+6) - (-7)$$

 $+3 - 5 - (+6) - (-7)$

On supprime les parenthèses précédées d'un signe – en prenant l'opposé des nombres dans la parenthèse

$$+3 - 5 - (+6) - (-7)$$

 $+3 - 5 - 6 + 7$

Autre exemple avec plusieurs termes

$$-5 + (-2 + 3 - 4) = -5 - 2 + 3 - 4$$

 $12 - (+3 - 5 + 2) = 12 - 3 + 5 - 2$

II - Produit de nombres relatifs :

1) Produit de deux nombres relatifs :

Pour calculer le produit de deux nombres relatifs, on multiplie les valeurs absolues et :

- Si les deux nombres sont de **même signe**, le produit est **positif**.
- Si les deux nombres sont de **signes contraires**, le produit est **négatif**.

Exemples:

$$\blacktriangleright$$
 (+9) × (+7) = +63 \blacktriangleright (-6) × (-4) = +24 \blacktriangleright (-8) × (+5) = -40 \blacktriangleright (+3) × (-6) = −18

2) Signe d'un produit de plusieurs facteurs :

Lorsqu'on multiplie plusieurs nombres relatifs, on multiplie les valeurs absolues des facteurs.

- Le produit est **positif** si le nombre de facteurs négatifs est **pair**.
- Le produit est **négatif** si le nombre de facteurs négatifs est **impair**.

Exemples:

$$\blacktriangleright (-1) \times (-1) = -1$$

3) Quotient de nombres relatifs :

Exemples:

►
$$5 \times 7 = 35$$
 donc $35 \div 7 = 5$ ou $35 \div 5 = 7$

►
$$-6 \times 7 = -42$$
 donc $-42 \div 7 = -6$ ou $-42 \div (-6) = 7$

►
$$-5 \times (-8) = 40$$
 donc $40 \div (-5) = -8$ ou $40 \div (-8) = -5$

Le quotient de deux nombres relatifs a le même signe que leur produit.

La valeur absolue du quotient est égale au quotient des valeurs absolues.