Lab 10 Output

Kartik Sethi Roll no – 170123057

Q1. Using monte Carlo methods without variance reduction techniques

Asian call options with S0 = 100, r = 0.05, σ = 0.2, number of trials = 1000

K	Call Option	Put Option
90 105	12.6367 3.3614	0.7690 6.1233
110	1.8670	9.5054

Sensitivity wrt to volatility σ 8 Call Put 7 0.1 0.15 0.2 0.25 0.3

Q2. Using antithetic variance reduction

$$\theta = E[Y] = E[g(X)]$$

where θ is the quantity we want to estimate,

we can generate two sample Y_1 and Y_2 s.t. the new unbiased estimator of θ is

$$\hat{\theta} = \frac{Y_1 + Y_2}{2}$$

Hence we have

$$Var(\theta) = \frac{var(Y_1) + var(Y_2) + 2Cov(Y_1, Y_2)}{4}$$

It is obvious that we could get a variance reduction if we have the two samples negatively correlated.

If $X \sim \mathcal{N}(0,1)$ then we can apply the following algorithm

$$\hat{ heta} = rac{1}{n} \sum_{i=1}^N rac{g(X_i) + g(-X_i)}{2}$$
 with i.i.d. $X_i \sim \mathcal{N}(0,1)$

Asian call options with S0 = 100, r = 0.05, σ = 0.2, number of trials = 1000 K Call Option Put Option 90 12.2192 0.0000 105 0.0000 2.4104 110 0.0000 7.2870

