## Akira ARAI and Hiroshi KATO MAGNET POWDER AND ISOTROPIC BONDE MAGNET Attorney Docket No. 9319A-00018.

## **TABLE1**

| Sample No.         | ≥ .   | р<br>(Мg/m³) | .Er  | H <sub>cJ</sub><br>(kA/m) | (BH) <sub>max</sub><br>(kJ/m³) | Br/ρ<br>(x10 <sup>-6</sup> T·m³/g) | Xin<br>(x10 <sup>7</sup> H/m) | Irreversible<br>Flux Loss |
|--------------------|-------|--------------|------|---------------------------|--------------------------------|------------------------------------|-------------------------------|---------------------------|
| 1 (Comp.Ex.)       | 0.1   | 6.27         | 0.83 | 345                       | 75.6                           | 0.132                              | 7.5                           | -6.5                      |
| 2 (This Invention) | 0.2   | 6.26         | 0.87 | 415                       | 104.8                          | 0.139                              | 4.8                           | -4.7                      |
| 3 (This Invention) | 0.5   | 6.32         | 06.0 | 478                       | 113.2                          | 0.142                              | 3.7                           | 4.0                       |
| 4 (This Invention) | (2:2) | 6.29         | 0.92 | (B)                       | 115.9                          | 0.146                              | 3.2                           | -3.6                      |
| 5 (This Invention) | 2.5   | 6.30         | 0.30 | 530                       | 112.0                          | 0.143                              | 3.0                           | -3.2                      |
| 6 (This Invention) | 3.3   | 6.33         | 0.81 | 561                       | 102.7                          | 0.128                              | 2.7                           | -2.7                      |
| 7 (Comp.Ex.)       | 3.6   | 6.31         | 92.0 | 253                       | 79.1                           | 0.120                              | 3.3                           | -3.5                      |

## Akira ARAI and Hiroshi KATO MAGNET POWDER AND ISOTROPIC BONDY Attorney Docket No. 9319A-00018

| C | 1 |
|---|---|
| Ш | ļ |
| = | į |
|   | ļ |
| ř | _ |
| • |   |
|   |   |

|                                                                                         |                  | -                    |                      |                      |                      |                       |                       |                       |
|-----------------------------------------------------------------------------------------|------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|-----------------------|-----------------------|
| Irreversible<br>Flux Loss                                                               | (%)              | -2.2                 | -2.5                 | -2.9                 | -3.1                 | -3.4                  | -3.7                  | -4.2                  |
| χir<br>(×10. <sup>7</sup> H/m)                                                          | (** 10 14111)    | 2.1                  | 2.3                  | 2.5                  | 2.7                  | 2.9                   | 3.2                   | 3.8                   |
| Br/ρ χ <sub>ir</sub><br>/×10. <sup>6</sup> T·m <sup>3</sup> /α) (×10. <sup>7</sup> H/m) | (8/ III 1 61 × ) | 0.147                | 0.146                | 0.145                | 0.144                | 0.143                 | 0.142                 | 0.142                 |
| H <sub>cl</sub> (BH) <sub>max</sub> (kA/m) (kJ/m <sup>3</sup> )                         | ,                | 83.4                 | 88.3                 | 95.6                 | 96.2                 | 100.5                 | 108.8                 | 118.4                 |
| H <sub>c</sub> J<br>(kA/m)                                                              | , , , , , ,      | 563                  | 551                  | 542                  | <u> 285</u>          | 531                   | 212                   | 510                   |
| ă                                                                                       |                  | 0.78                 | 0.80                 | 0.82                 | 0.84                 | 0.85                  | 88.0                  | 0.92                  |
| Molding p                                                                               | ,,,              | 5.30                 | 5.50                 | 2.67                 | 5.80                 | 5.95                  | 6.21                  | 6.48                  |
| Molding<br>Temp.                                                                        | <u>ရ</u>         | 230                  | 245                  | 260                  | 275                  | 210                   | 215                   | 220                   |
| Molding<br>Method                                                                       |                  | Injection<br>Molding | Injection<br>Molding | Injection<br>Molding | Injection<br>Molding | Compaction<br>Molding | Compaction<br>Molding | Compaction<br>Molding |
| Kneading<br>Temp.                                                                       | (Q               | 200                  | 203                  | 211                  | 216                  | 220                   | 224                   | . 530                 |
| Sample No.                                                                              |                  | 8 (This Invention)   | 9 (This Invention)   | 1.0 (This Invention) | 11 (This Invention)  | 12 (This Invention)   | 13 (This Invention)   | 14 (This Invention)   |

Fig. 1



Fig. 2



Fig. 3





Fig. 5





Fig. 7



No.1: Demagnetization Curve

No.2: Straight Line

(3 |±

Having a Gradient of -3.8 x 10<sup>-6</sup>H/m in the J-H diagram

No.3: Tangential Line at Intersectioning Point P

No.4: Recoil Curve

No.5: Straight Line

Representing a Gradient of the Recoil Curve