THE BLUEPRINT FOR FORMALIZING GEOMETRIC ALGEBRA IN LEAN

ERIC WIESER, UTENSIL SONG

Introduction. The goal of this document is to provide a detailed account of the formalization of Geometric Algebra (GA) a.k.a. Clifford Algebra [Hestenes and Sobczyk(1984)] in the Lean 4 theorem prover and programming language [Moura and Ullrich(2021), de Moura et al.(2015)] and using its Mathematical Library [The mathlib Community(2020)].

1. Preliminaries

This section introduces the algebraic environment of Clifford Algebra, covering vector spaces, groups, algebras, representations, modules, multilinear algebras, quadratic forms, filtrations and graded algebras.

The material in this section should be familiar to the reader, but it is worth reading through it to become familiar with the notation and terminology that is used, as well as their counterparts in Lean, which usually require some additional treatment, both mathematically and technically (probably applicable to other formal proof verification systems).

No details will be given as these are given in standard textbooks such as [Mac Lane and Birkhoff(1999)], or see the references in corresponding section.

1.1. **Basics.** In this section, we follow [Jadczyk(2019), Garling(2011)], with modifications to match the counterparts in Lean.

Definition 1.1.1 (Group). A group is a non-empty set G together with a law of composition, a mapping $(g,h) \to gh$ from $G \times G$ to G, which satisfies:

- (1) (gh)j = g(hj) for all $g, h, j \in G$ (associativity)
- (2) there exists e in G such that eg = ge = g for all $g \in G$
- (3) for each $g \in G$ there exists $g^{-1} \in G$ such that $gg^{-1} = g^{-1}g = e$

Remark 1.1.2 — It then follows that e, the **identity element**, is unique, and that for each $g \in G$ the **inverse** g^{-1} is unique.

A group G is abelian, or **commutative**, if gh = hg for all $g, h \in G$.

Definition 1.1.3 (Monoid). A **monoid** is a set R with a law of composition, usually denoted multiplicatively, satisfying the following conditions:

- (1) (ab)c = a(bc) for all $a, b, c \in R$ (associativity),
- (2) There is an element $1 \in R$ such that 1a = a1 = a for all a in R (that is 1 is the multiplicative identity (neutral element).

Definition 1.1.4 (Ring). A ring is a set R with two laws of composition,

- addition, denoted +;
- multiplication, denoted by juxtaposition, or * in Lean,

which satisfy the following conditions:

Date: October 14, 2023.

- (1) The elements of R form a **commutative group** under addition;
- (2) The elements of R form a **monoid** under multiplication;
- (3) If a, b, c are elements of R, we have

$$a(b+c) = ab + ac, (a+b)c = ac + bc.$$

(left and right **distributivity** over addition)

Definition 1.1.5 (Division ring). A ring containing at least two elements, in which every nonzero element a has a multiplicative inverse a^{-1} is called a **division ring** (sometimes also called a "skew field").

Definition 1.1.6 (Field). A commutative division ring is called a **field**.

Remark 1.1.7 — In applications to Clifford algebras R will be always assumed to be **commutative**.

Definition 1.1.8 (Characteristic). Let R be a ring with unit element 1. The **characteristic** of R is the smallest positive number n such that

$$\underbrace{1+\ldots+1}_{n \text{ summands}} = 0.$$

If such a number does not exist, the characteristic is defined to be 0.

Remark 1.1.9 — Equivalently, it can be defined to be the unique $p \in \mathbb{N}$ satisfying:

$$\forall x \in \mathbb{N}, x = 0 \iff p \mid x$$

where

- $p \mid x$ is defined as $\exists y \in \mathbb{N}, x = py$
- x = 0 asks that there exists a map $f : \mathbb{N} \to R$ such that $0 \in \mathbb{N} \mapsto 0 \in R$.

This is how the characteristic of R is defined in Lean.

Definition 1.1.10 (Module). Let R be a commutative ring. A **module** over R (in short R-module) is a set M such that

- (1) M has a structure of an additive group,
- (2) For every $\alpha \in R$, $a \in M$ an element $\alpha a \in M$ called scalar multiple is defined, and we have

i
$$\alpha(x+y) = \alpha x + \alpha y$$
,

ii
$$(\alpha + \beta)x = \alpha x + \beta x$$
,

iii
$$\alpha(\beta x) = (\alpha \beta)x$$
,

iv
$$1 \cdot x = x$$
.

Definition 1.1.11 (Vector space). If R is a division ring, then a module M over R is called a vector space.

Remark 1.1.12 — In Lean 4, for generality, Mathlib uses **Module** throughout for vector spaces, particularly, for a vector space V, it's usually declared as

variable [DivisionRing K] [AddCommGroup V] [Module K V]

for definitions and theorems about it, and most of them can be found under Mathlib.LinearAlgebra

2. Foundations

2.1. Clifford algebras - definition. Throughout this section:

Let M be a module over a commutative ring R, equipped with a quadratic form $Q: M \to R$.

Let $\iota: M \to_{l[R]} T(M)$ be the canonical R-linear map for the tensor algebra T(M).

Let $\iota_a: R \to_{+*}^{-} T(M)$ be the canonical map from R to T(M), as a ring homomorphism.

Definition 2.1.1 (Clifford relation). $\forall m \in M, \iota(m)^2 \sim \iota_a(Q(m))$

We say that ι is Clifford if this relation holds.

Definition 2.1.2 (Clifford algebra). A **Clifford algebra** over M, denoted $\mathcal{C}\ell(M)$, is the quotient of the tensor algebra T(M) by the equivalence relation 2.1.1.

Remark 2.1.3 — In literatures, M is often written V, and the quotient is taken by the two-sided ideal I_Q generated from the set $\{v \otimes v - Q(v) \mid v \in V\}$.

As of writing, mathlib does not have direct support for two-sided ideals, but it does support the equivalent operation of taking the quotient by a suitable closure of a relation like $v \otimes v \sim Q(v)$.

Hence the definition above.

Example 2.1.4 (Clifford algebra over a vector space)

Let V be a vector space \mathbb{R}^n over \mathbb{R} , equipped with a quadratic form Q.

Since \mathbb{R} is a commutative ring and V is a module, definition 2.1.2 of Clifford algebra applies.

- 2.1.1. Involutions.
- 2.2. Structure of Clifford algebras.
- 2.3. Classifying Clifford algebras.
- 2.4. Representing Clifford algebras.
- 2.5. **Spin.**

3. Geometric Algebra

- 3.1. Axioms.
- 3.2. Operations and properties.
 - 4. Concrete algebras Definition

- 4.1. **CGA**.
- 4.2. **PGA**.
- 4.3. **STA.**

5. Applications

5.1. Geometry.

References

[de Moura et al.(2015)] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The Lean Theorem Prover (System Description). In *Automated Deduction - CADE-25*, Amy P. Felty and Aart Middeldorp (Eds.). Lecture Notes in Computer Science, Vol. 9195. Springer International Publishing, Cham, 378–388. https://doi.org/10.1007/978-3-319-21401-6_26

[Garling(2011)] David JH Garling. 2011. Clifford algebras: an introduction. Vol. 78. Cambridge University Press.

[Hestenes and Sobczyk(1984)] David Hestenes and Garret Sobczyk. 1984. Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. Vol. 5. Springer Science & Business Media. https://www.springer.com/gp/book/9789027716736

[Jadczyk(2019)] Arkadiusz Jadczyk. 2019. Notes on Clifford Algebras. (2019).

[Mac Lane and Birkhoff(1999)] Saunders Mac Lane and Garrett Birkhoff. 1999. Algebra. Vol. 330. American Mathematical Soc. [Moura and Ullrich(2021)] Leonardo de Moura and Sebastian Ullrich. 2021. The lean 4 theorem prover and programming language. In Automated Deduction—CADE 28: 28th International Conference on Automated Deduction, Virtual Event, July 12–15, 2021, Proceedings 28. Springer, 625–635.

[The mathlib Community(2020)] The mathlib Community. 2020. The Lean Mathematical Library. In *Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs* (New Orleans, LA, USA, 2020-01-20) (CPP 2020). Association for Computing Machinery, 367–381. https://doi.org/10.1145/3372885.3373824