1. Four Fundamental Subspaces	2
1.1. Column Space	2
1.2. Null Space	3
1.3. Row Space	5
1.4. Left Null Space	6
1.5. Important Notes	7
2. Least Squares	8
2.1. Norm of a vector	8
2.2. Orthogonal vectors	
2.3. Orthonormal Vectors	10
2.4. Orthogonal subspaces	10
2.5. Orthogonality wrt to Four Fundamentals subspace	11
2.6. Projections	13
2.7. Least Squares and Projections onto a subspace	16

1. Four Fundamental Subspaces

1.1. Column Space

• Denoted by C(A)

$$A = \begin{bmatrix} | & | & & | \\ u_1 & u_2 & \cdots & u_n \\ | & | & & | \end{bmatrix}$$

 $C(A) = span\{u_1, u_2, \dots, u_n\} = Linear combination of vectors u_1, u_2, \dots, u_n\}$

Question: For what b does Ax = b have a solution?

 \rightarrow For all b $\in C(A)$

Question: How to find Column space given a matrix?

- \rightarrow Let A be a matrix.
- \rightarrow Find R = RREF(A)
- \rightarrow Identify the pivot columns and pick the corresponding column vector in the original matrix A.

Example:

$$A = \begin{bmatrix} 15 & 12 & 9 \\ -5 & -4 & -3 \\ 11 & 8 & 5 \end{bmatrix}$$

$$R = RREF(A) = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Now, as we can see only 1st and 2nd cols are pivot column so

$$C(A) = span\{(15, -5, 11), (12, -4, 8)\}$$

1.2. Null Space

$$\to N(A) = \left\{ x \mid Ax = 0, \ x \in \mathbb{R}^n \right\}$$

 \rightarrow Null space is a set of all solutions of a system of homogeneous equation Ax = 0.

Question: Why N(A) is a subspace?

 \rightarrow Because of 2 reasons

Question: How do we interpret Null space?

 \rightarrow Find x such that Ax = 0

OR

 \rightarrow Linear combination of the columns of A should result in $\vec{0}$. Example:

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \end{bmatrix}$$

$$col_1 + col_2 - col_3 = 0$$

Remark:

- \rightarrow If A is invertible, then N(A) has "zero" only and C(A) is the whole space.
- \rightarrow In this case, Ax = b has $x_n \notin 0$ and Ax = b solution are of the form $x = x_p + x_g$ where $Ax_p = b$ and $Ax_n = 0$.

Question: How to find Null space given A?

- → A is a matrix given
- \rightarrow Find R = RREF(A)
- → Find dependent and indpendent variable from R.
- \rightarrow Assign t_1, t_2, \cdots, t_n to independent variable and solve for dependent variable
- → Equate the R to 0 and Find basis
- → For more clarity Look these two examples.

Example-1:

$$A = \begin{bmatrix} 15 & 12 & 9 \\ -5 & -4 & -3 \\ 11 & 8 & 5 \end{bmatrix}$$

$$R = RREF(A) = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

 $x_1, x_2 \rightarrow dependent variable$ $x_3 \rightarrow Independent variable$

$$x_3 = t$$

$$x_2 = -2t$$

$$x_1 = t$$

$$N(A) = \{(t, -2t, t)\}\$$

 $N(A) = t(1, -2, 1)$
 $N(A) = span\{(1, -2, 1)\}$

Example-2:

$$A = \begin{bmatrix} -2 & 2 & 4 & -4 \\ 3 & -3 & -6 & -2 \\ 6 & -6 & -12 & 5 \end{bmatrix}$$

$$R = RREF(A) = \begin{bmatrix} 1 & -1 & -2 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $x_1, x_4 \rightarrow$ dependent variable $x_2, x_3 \rightarrow$ independent variable

$$x_2 = t_1$$

$$x_3 = t_2$$

$$x_4 = 0$$

$$x_1 = t_1 + 2t_2$$

$$N(A) = \{(t_1 + 2t_2, t_1, t_2, 0)\}$$

$$N(A) = \{(t_1, t_1, 0, 0), (2t_2, 0, t_2, 0)\}$$

$$N(A) = span\{(1, 1, 0, 0), (2, 0, 1, 0)\}$$

1.3. Row Space

- \rightarrow Column space of $A^T \Leftrightarrow$ span of rows of A
- → Non zero rows of row space

Note:

- \rightarrow Col rank = dim(C(A))
- \rightarrow row rank = dim(R(A))
- \rightarrow col rank = row rank

Question: How to find Row space of A?

→ span of non-zero rows of RREF

Example:

$$x_1 \rightarrow dependent$$

 $x_2, x_3, x_4 \rightarrow independent$

$$Row\ space = \{(1, 2, 3, 4)\}$$

1.4. Left Null Space

- \rightarrow Null space of A^T
- \rightarrow set of all y such that $A^T y = 0$.

$$N(A^T) = \{y|A^Ty = 0\} = \{y|y^TA = 0\}$$

 \rightarrow For a $m \times n$ matrix A,

$$\underbrace{[y_1, \dots, y_m][A]}_{Linear\ combination\ of\ rows\ leading\ to\ zero} = [0, \dots, 0]$$

Remark:

 \rightarrow A is a $m \times n$ matrix

$$\rightarrow$$
 dim(C(A)) + dim(N(A)) = # columns of A = n

$$r + (n - r) = n$$

- $\rightarrow A^T$ is a $n \times m$ matrix
 - \rightarrow dim(C(A^T)) + dim(N(A^T)) = # rows = m

$$r + dim(N(A^T)) = m$$

$$dim(N(A^T)) = m - r$$

1.5. Important Notes

- \rightarrow In general, if $A \in M_{m \times n}(\mathbb{R})$,
 - \rightarrow The row space is a subspace of \mathbb{R}^n .
 - \rightarrow The column space is a subspace of \mathbb{R}^m .
- → The RREF of A allows us to find:
 - → row space (non-zero rows of REF)
 - → column space (pivot column in the original matrix)
 - → Null space (we know, how)
- → Nullity
 - → The Dimension of the null space is called nullity
 - → # Independent variables
- → Rank
 - → # Non-zero rows in RREF
 - → # Dependent variable
 - → # pivots
- → Rank-Nullity Theorem
 - \rightarrow If $A \in M_{m \times n}(\mathbb{R})$, then we have:

$$rank(A) + nullity(A) = n$$

Question: Find all Fundamental subspace for the following matrices.

$$A = \begin{bmatrix} 1 & 3 & 3 & 2 \\ 2 & 6 & 9 & 7 \\ -1 & -3 & 3 & 4 \end{bmatrix}$$

Answer:

$$R = \begin{bmatrix} & & & \\ & & & \end{bmatrix}$$

2. Least Squares

2.1. Norm of a vector

→ Length of a vector

$$||x||^2 = x_1^2 + x_2^2$$
 'Squared Length'

Here,
$$\left| \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right|^2 = 1^2 + 2^2 = 5$$

In general,

$$for x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$

$$||x||^2 = x_1^2 + x_2^2 + \cdots + x_n^2$$

2.2. Orthogonal vectors

 \rightarrow Dot Product or Inner Product: x^Ty

$$x \perp y if x^T y = 0$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, then$$

$$x^T y = \sum x_i y_i$$

From Pythagoras theorem:

$$||x||^{2} + ||y||^{2} = ||x + y||^{2}$$

$$x^{T}x + y^{T}y = (x + y)^{T}(x + y)$$

$$x^{T}x + y^{T}y = x^{T}x + x^{T}y + y^{T}x + y^{T}y$$

$$2x^Ty = 0 \implies x^Ty = 0 \implies x \text{ is orthogonal to } y$$

Remark:

- \rightarrow 0 is orthogonal to every x
- \rightarrow If V = { v_1 , \cdots , v_k } is mutually orthogonal "non-trivial" set of vectors, then V is a linearly independent set.
 - → Why?
 - → suppose

$$c_1v_1 + c_2v_2 + \cdots + c_kv_k = 0$$

$$\Longrightarrow v_1^T(c_1v_1 + \cdots + c_kv_k) = 0$$

$$\Longrightarrow c_1 v_1^T v_1 = 0 \text{ but } ||v_1|| \neq 0 \Longrightarrow c_1 = 0$$

Similarly
$$c_i = 0 \ \forall i$$

2.3. Orthonormal Vectors

 $\rightarrow \{u, v\}$ are orthonormal if $v^T u = 0$ and ||u|| = ||v|| = 1.

2.4. Orthogonal subspaces

U, V are orthogonal subspaces if

$$x^T y = 0 \ \forall \ x \in U, \ y \in V$$

Note:

 \rightarrow {0} is \perp to every subspace

Example:

$$U = \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \right\} V = \left\{ \begin{bmatrix} 0\\0\\2\\1 \end{bmatrix} \right\}$$

$$U \perp V$$

$$W = \left\{ \begin{bmatrix} 0 \\ 0 \\ -1 \\ 2 \end{bmatrix} \right\}$$

Then, $W \perp U$, $W \perp V$

2.5. Orthogonality wrt to Four Fundamentals subspace

Claim-1: $R(A) \perp N(A)$

Proof:

$$A = \begin{bmatrix} - & row_1 & - \\ - & row_2 & - \\ & \cdots \\ - & row_m & - \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \stackrel{\rightarrow}{0} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$x \in N(A)$$
$$Ax = 0$$

The above equation implies:

$$\begin{array}{cccc}
row_1 & \perp & x \\
row_2 & \perp & x \\
& \vdots \\
row_m & \perp & x
\end{array}$$

It is pretty obvious, as we are getting zero when taking the dot product of any row to vector x.

Thus, any linear combination

$$\underbrace{(c_1 row_1 + \cdots + c_m row_m)}_{R(A)} \perp x$$

$$So, R(A) \perp N(A)$$

$$\leftrightarrow C(A^T) \perp N(A)$$

Claim-2: $C(A) \perp N(A^T)$

Proof: follows from claim 1

Example:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{bmatrix}$$

rank(A) = dim(C(A) = 1

$$x = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \in N(A)$$

Row space: $R(A) = line through \begin{bmatrix} 1 & 2 \end{bmatrix}$ Null space: $N(A) = line through \begin{bmatrix} -2 \\ 1 \end{bmatrix}$

$$[1,2]\begin{bmatrix} -2\\1 \end{bmatrix} = 0 \text{ verifies } R(A) \perp N(A)$$

Column space:
$$C(A) = line through \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Left Null space: $N(A^T) = y_1 + 2y_2 + 3y_3 = 0 \leftarrow is \ a \ plane$
 $y^T A = 0$

Dimension check:

$$\rightarrow dim(C(A)) + dim(N(A)) = 2 = number of columns$$

 $\rightarrow dim(C(A^T)) + dim(N(A^T)) = 3 = number of rows$

2.6. Projections

 \rightarrow Want to project b onto the line through x, Or more generally onto the column space of a matrix A.

Question: What is need of Projection?

 \rightarrow Suppose we are given $(x_1, b_1), \dots, (x_n, b_n)$

$$2x = b_1$$
 $x + 2y = 4$
 $e. g. 3x = b_2$ Or $x + 3y = 5$
 $4x = b_3$ $2x + 4y = 6$

These are inconsistent \Longrightarrow No solution that satisfies this system of equations

Matrix View: Ax = b

Inconsistent if

$$b \notin C(A)$$

In such situation, if makes sense to project b onto C(A)).

Question: Given a basis for a subspace S (e.g. spanned by columns of A), if there an easy way to calculate the projection P of b onto S?

→ Projection onto a line

$$P = \widehat{x}a$$

$$e = b - p = b - \widehat{x}a$$

$$e \perp a$$

$$(b-\widehat{x}a) \perp a$$

$$a(b-\widehat{x}a) = 0$$
 leading to $\widehat{x} = \frac{a^Tb}{a^Ta} \Longrightarrow P = \widehat{x}a = \left(\frac{a^Tb}{a^Ta}\right)a$

Cauchy-Schwarz inequality:

$$||e||^{2} = ||b - p|| \ge 0$$

$$||b - \left(\frac{a^{T}b}{a^{T}a}\right)a||^{2} = b^{T}b - 2\frac{\left(a^{T}b\right)^{2}}{a^{T}a} + \left(\frac{a^{T}b}{a^{T}a}\right)^{2}a^{T}a$$

$$= \frac{\left(b^{T}b\right)\left(a^{T}a\right) - \left(a^{T}b\right)^{2}}{\left(a^{T}a\right)} \ge 0$$

$$= \left(b^{T}b\right)\left(a^{T}a\right) \ge \left(a^{T}b\right)^{2}$$

$$= |a^{T}b| \le ||a|| \, ||b|| \to cauchy schwarz inequality$$

Projection Matrix:

$$P = \left(\frac{a^T b}{a^T a}\right) a = \left(\frac{a a^T}{a^T a}\right) b$$

Let
$$\mathbb{P} = \frac{aa^T}{a^Ta}$$
. Then

Projection of b onto a is

 $\mathbb{P}b$

To project any vector b, just left multiply by the projectio matrix \mathbb{P} .

Example:

$$a = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\mathbb{P} = \begin{pmatrix} aa^{T} \\ \overline{a^{T}a} \end{pmatrix} = \frac{1}{a^{T}a} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Observe that

 $\rightarrow \mathbb{P}$ is symmetric

→
$$\mathbb{P}^2 = \mathbb{P}$$
 i.e. $\mathbb{P}^2b = \mathbb{P}b$
→ $C(\mathbb{P}) = line through a$
→ $N(\mathbb{P}) = plane orthogonal to a$
→ rank $r(\mathbb{P}) = 1$

Note:

- $\rightarrow \mathbb{P}^2 = \mathbb{P}$ implies that if you again left multiply a with Projection matrix then you will get a.
- \rightarrow The idea is $\mathbb{P}b$ is already on the line through a. So, another round of projection won't change it.

Example-2:

$$a = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$$

$$\mathbb{P} = \begin{pmatrix} aa^{T} \\ \overline{a^{T}a} \end{pmatrix} = \frac{1}{a^{T}a} \begin{bmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix} = \frac{1}{12} \begin{bmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \\ 4 & 4 & 4 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

2.7. Least Squares and Projections onto a subspace

Consider this system of equations:

$$2x = b_1$$
$$3x = b_2$$
$$4x = b_3$$

when this system is solvable: if b is on the line through $\begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$

- → Suppose we have a vector "b" that leads to an "inconsistent" system.
- → We could pick a subset of equations & solve it exactly
 - → The Problem with approach: large error in some inputs & no error in others.

REASONABLE ALTERNATIVE: minimise the avg error.

$$E^2 = (2x - b_1)^2 + (3x - b_2)^2 + (4x - b_3)^2$$

 \rightarrow We want to minimize the sum of squares E^2 .

$$\frac{dE^2}{dx} = 0$$

$$2(2x-b1)(2) + 2(3x-b_2)(3) + 2(4x-b_3)(4) = 0$$

$$2[2(2x - b_1) + 3(3x - b_2) + 4(4x - b_3)] = 0$$

leading to

$$\hat{x} = \frac{2b_1 + 3b_2 + 4b_3}{2^2 + 3^2 + 4^2} = \frac{a^T b}{a^T a} \text{ with } a = \begin{bmatrix} 2\\3\\4 \end{bmatrix}$$

Bottom line: Taking derivative & finding the minima turns out to be the same as performing a projection.

Projection onto a subspace

$$Ax = b$$
, A is $m \times n$, $m > n$

want: Projection of b onto column space C(A).

$$S = span(columns of A)$$

Projection of b onto S is $P = A\hat{x}$

Orthogonal vector
$$e = b - p = b - A\hat{x}$$

O: How to find \hat{x} ?

- \rightarrow Observe e \perp every vector in C(A).
- \rightarrow Recall that $C(A) \perp N(A^T)$, *i.e.* $N(A^T)$ is the orthogonal complement of C(A). i.e. every vector in C(A) is orthogonal to every vector in $N(A^T)$ & any given vector is in either C(A) or $N(A^T)$.

→ Where does e belong?

$$e \in N(A^T) \implies A^T e = 0 \implies A^T (b - A\hat{x}) = 0$$

leading to

$$A^T A \hat{x} = A^T b$$

equation to solve to obtain the projection of b onto C(A).

Note: Even if Ax = b is not solvable, $A^{T}A\hat{x} = A^{T}b$ has a solution.

Alternative Route to above equation:

$$A = \begin{bmatrix} | & | & & | \\ a_1 & a_2 & \cdots & a_n \\ | & | & & | \end{bmatrix} \qquad \begin{array}{c} a_1^T e = 0 & a_1^T (b - A \widehat{x}) = 0 \\ \vdots & & \vdots \\ a_n^T e = 0 & a_n^T (b - A \widehat{x}) = 0 \end{array}$$

$$\begin{bmatrix} a_1^T \\ \vdots \\ a_n^T \end{bmatrix} \begin{bmatrix} b - A\hat{x} \end{bmatrix} = 0$$

$$A^T(b - A\widehat{x}) = 0$$

leading to

$$A^T A \widehat{x} = A^T b$$

Bottom line: $A^T A \hat{x} = A^T b$ leads to that \hat{x} that minimises $||Ax - b||^2$ This is connection of projections to least squares.

Remarks:

• Suppose columns of A are linearly independent (l.i.) Then,

$$A^{T}A$$
 is invertible

- $\rightarrow A^T A$ is square and symmetric
- \rightarrow Solving $A^T A \hat{x} = A^T b$ when $A^T A$ is invertible

$$\rightarrow \hat{x} = (A^T A)^{-1} A^T b$$

$$\rightarrow$$
 Projection $\mathbb{P} = A\hat{x} = A(A^TA)^{-1}A^Tb$

• $b \in C(A)$ i. e., b = Ax

$$P = A(A^{T}A)^{-1}A^{T}b = A(A^{T}A)^{-1}A^{T}Ax = AIx = Ax = b$$

• $b \in N(A^T)$

$$P = A(A^{T}A)^{-1}A^{T}b = 0$$
 since $A^{T}b = 0$

• A is square & invertible $\rightarrow C(A) = \mathbb{R}^n$

$$P = A (A^{T}A)^{-1}A^{T}b = AA^{-1}(A^{T})^{-1}A^{T}b = b$$

• A is rank one i.e., $A = \begin{bmatrix} 1 \\ a \\ 1 \end{bmatrix}$ Then,

$$\widehat{x} = \frac{a^T b}{a^T a}$$

coincides with what we derived earlier for projection onto a line.

Projection matrix: $P = A(A^TA)^{-1}A^T$

Symmetric

$$\mathbb{P}^{T} = \mathbb{P}$$

$$\left(A(A^{T}A)^{-1}A^{T}\right)^{T} = (A^{T})^{T}\left((A^{T}A)^{-1}\right)^{T}(A)^{T}$$

$$= A(A^{T}A)^{-1}A^{T} = \mathbb{P}$$

The middle term comes as it as because $A^{T}A$ is a symmetric matrix so it is going to be itself.

•
$$\mathbb{P}^2 = \mathbb{P}$$

$$A(A^{T}A)^{-1}A^{T}A(A^{T}A)^{-1}A^{T}$$
$$= A(A^{T}A)A^{T} = \mathbb{P}$$

So, Projection matrix is symmetric & satisfies $\mathbb{P}^2 = \mathbb{P}$ The converse is also true.

$$If \, \mathbb{P}^2 \, = \, \mathbb{P} \, \& \, P^T \, = \, \mathbb{P}$$

then \mathbb{P} is a projection matrix.

 $\mathbb{P}b = \text{projection of b onto the column space of } \mathbb{P}.$

Examples: Least Squares

Simple case: One dimension

Dataset: $(x_1, b_1), \cdots, (x_m, b_m)$

$$b_i = \theta x_i + \theta' \tag{1}$$

Here, θ is scaling factor and θ' is constant offset and the above equation is a Linear fit

We want to find such a fit for all $i = 1, \dots, m$ i.e. for all data points

System of equations 1 is equivalent to

$$\begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_m & 1 \end{bmatrix} \begin{bmatrix} \theta' \\ \theta'' \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

This is like

$$A\theta = b$$
, where $\theta = \begin{bmatrix} \theta' \\ \theta'' \end{bmatrix}$

 $A\theta = b$ may be inconsistent.

Least squares approach:

minimize
$$E^{2} = ||b - A\theta||^{2}$$
$$= (b_{1} - \theta'x_{1} - \theta'')^{2} + \cdots + (b_{m} - \theta'x_{m} - \theta'')^{2}$$

$$(\widehat{\theta}', \widehat{\theta}'') = argmin ||b - A\theta||^2$$

We want to find the line that minimises the sum of the square distance.

If the point b_1 , b_2 , b_3 , b_4 lie on a line Then,

$$P_1 = b_1, P_2 = b_2, P_3 = b_3, P_4 = b_4$$
 & $E^2 = 0$

& Ax = b can be solved.

If not then minimise the square error

$$min E^2 = ||A\theta - b||^2$$

Example:

$$A\theta = b$$

$$\begin{bmatrix} -1 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} \theta' \\ \theta'' \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$$

Is $A\theta = b$ consistent? or does b belong to C(A)?

→ We can check this by using Gaussian elimination

$$[A|b] = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$

$$[R|c] = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

Since last entry of last column has non-zero value this system of equations cannot be solved. (Inconsistent or b does not belong to C(A))

First we have to cheeck if given a system is it even consistent?

 \rightarrow If it is already consistent, there is no point going and solving an alternative equation, the original set of equations is already solvable.

So, Now we will do Least Squares:

$$A^{T}A\widehat{\theta} = A^{T}b$$
, where $\widehat{\theta} = \begin{bmatrix} \widehat{\theta}' \\ \widehat{\theta}'' \end{bmatrix}$

$$A^T A = \begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix}$$
 and $A^T b = \begin{bmatrix} 6 \\ 5 \end{bmatrix}$

$$\begin{bmatrix} 6 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} \widehat{\theta}' \\ \widehat{\theta}'' \end{bmatrix} = \begin{bmatrix} 6 \\ 5 \end{bmatrix}$$

Solving this system of equations we have:

$$\widehat{\theta}' = \frac{4}{7}$$
 and $\widehat{\theta}'' = \frac{9}{7}$

$$\widehat{\theta} = \begin{bmatrix} 4/7 \\ 9/7 \end{bmatrix}$$

The Best Line (in the least square sense through the given data is:

$$\frac{4}{7}x + \frac{9}{7}$$

What are the Projections?

$$P_{1} = \frac{4}{7}(-1) + \frac{9}{7} = \frac{5}{7}$$

$$P_{2} = \frac{4}{7}(1) + \frac{9}{7} = \frac{13}{7}$$

$$P_{3} = \frac{4}{7}(2) + \frac{9}{7} = \frac{17}{7}$$

The Original data is not on a line, so $E^2 > 0$

$$E^{2} = ||b - A\widehat{\theta}||^{2} = ||e||^{2}$$

$$e = \left[1 - \left(\frac{-4}{7} + \frac{9}{7}\right)\right], \left[1 - \left(\frac{4}{7} + \frac{9}{7}\right)\right], \left[3 - \left(\frac{8}{7} + \frac{9}{7}\right)\right]$$

$$e = \frac{2}{7}, \frac{-6}{7}, \frac{4}{7}$$

IMPORTANT POINTS OF THIS WEEK

Least Squares Method

Where are we going to use this Least squares method \rightarrow to find the line of best fit for a set of data.

How?

- → By minimising the sum of the offsets or residuals of points from the plotted line.
- → Represents general trend of the data
- → Used for regression analysis
- 1. The column space of the projection matrix of a vector v is \rightarrow a line passing through v.
- 2. The Null space of the projection matrix of a vector v is \rightarrow a plane orthogonal to v.

Questions

1. Let $S = \{(1, 2, 4, 0), (-2, 3, -1, 0), (0, 2, 6, -1)\}$. Which pair(s) of vectors in this given set are orthogonal?

→ Lets assume:

$$a = (1, 2, 4, 0)$$

$$b = (-2, 3, -1, 0)$$

$$c = (0, 2, 6, -1)$$

$$a. b = 0$$

$$a. c \neq 0$$

$$b. c = 0$$

So, only (a,b) and (b,c) are orthogonal pairs.

- 2. (a) Find the projection matrix for $a = [2, -1, 2, 3]^T$
- (b) Obtain the projection of $b = [1, 3, -2, 5]^T$ onto a and compute the error. Answer: (a)

$$\mathbb{P} = \frac{aa^{T}}{a^{T}a}$$

$$aa^{T} = \begin{bmatrix} 4 & -2 & 4 & 6 \\ -2 & 1 & -2 & -3 \\ 4 & -2 & 4 & 6 \\ 6 & -3 & 6 & 9 \end{bmatrix} and a^{T}a = 18$$

So,
$$\mathbb{P} = \begin{bmatrix} 2/9 & -1/9 & 2/9 & 1/3 \\ -1/9 & 1/18 & -1/9 & -1/6 \\ 2/9 & -1/9 & 2/9 & 1/3 \\ 1/3 & -1/6 & 1/3 & 1/2 \end{bmatrix}$$

Answer (b):

$$P = \mathbb{P}.b = \begin{bmatrix} 10/9 \\ -5/9 \\ 10/9 \\ 5/9 \end{bmatrix}$$

Once we have obatined the projection we can compute the error.

$$e = b - p$$

$$= \begin{bmatrix} 1\\3\\-2\\5 \end{bmatrix} - \begin{bmatrix} 10/9\\-5/9\\10/9\\5/9 \end{bmatrix} = 1/9 \begin{bmatrix} -1\\32\\28\\30 \end{bmatrix}$$

3. Build a model that studies the relationship btw x and y given in the table using least squares method.

Х	1	2	3	4	5
у	2.6	3.4	7.1	10.2	13.5

Solution: Least Square Method:
$$A^T A \hat{x} = A^T b$$
 where $\hat{\theta} = \begin{bmatrix} \hat{\theta}' \\ \hat{\theta}'' \end{bmatrix}$

The Matrix A is a matrix containing x_i and last column is of ones.

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \\ 5 & 1 \end{bmatrix} b = \begin{bmatrix} 2.6 \\ 3.4 \\ 7.1 \\ 10.2 \\ 13.5 \end{bmatrix}$$

$$A^T A = \begin{bmatrix} 55 & 15 \\ 15 & 5 \end{bmatrix} A^T b = \begin{bmatrix} 139 \\ 36.8 \end{bmatrix}$$

$$\begin{bmatrix} 55 & 15 \\ 15 & 5 \end{bmatrix} \begin{bmatrix} \widehat{\theta}' \\ \widehat{\theta}'' \end{bmatrix} = \begin{bmatrix} 139 \\ 36.8 \end{bmatrix}$$

Solving the above system of linear equations

$$\widehat{\theta}' = 2.86$$

$$\widehat{\theta}^{"} = -1.22$$

So, the best fit line is:

$$y = 2.86x - 1.22$$