离散数学(本) 2016年 10 月份试题

一、单项选择题(每小题 3分,本	
1 . 若集合 A = {1,2,3,4} ,则下列表)	,
A . 1€A	B . {1,2,3} ⊂A
C . {1,2,3} €A	D. ØSA
	, A 到 B 的关系 R = { x, y x=y } , 则 R 为 () .
A. {<1, 2>, <2, 3>}	B. {<1, 1>, <1, 2>, <1, 3>, <1, 4>, <1, 5>}
C. {<1, 1>, <2, 1>} 3.无向图 G 的边数是 10 , 则图 G	D. {<1, 1>, <2, 2>, <3, 3 >}
3. 儿问图 G 的边数是 10, 则图 G A. 10	B. 20
C. 30	D. 5
4.设连通平面图 G 有 v 个结点,(
A . $r + v - e = 2$	B . v + e - r= 4
$C \cdot v + e - r = -4$	D . v + e - r= 2
	∀x∃y (x = y+2)的真值是 ().
A. 不确定	B. T
C. 由 y 的取值确定	D. F
二、填空题(每小题 3分,本题共	15 分)
6.设集合 A={ a, b, c} , B={ b, c, d }	} , C={ c, d, e} , 则 (B∩C) -A 等于
7.设 A={2,3} ,B={1,2} ,C={3,4	4} ,从A到B的函数 f={<2,2>,<3,1>} ,从B到C的
函数 g={<1 , 3>, <2 , 4>} ,则 Dom(g ⁹	f)等于
8. 若图 G= <v, e=""> , 其中 V={ a, b,</v,>	, c, d } , E={ (a, b), (a, d), (b, c), (b, d)} ,则该图中的割
边为	
9.设 G 是汉密尔顿图 , S是其结点	京集的一个子集,若 S的元素个数为 6,则在 G-S中
的连通分支数不超过	
10 .设个体域 D = {1,2, 3, 4} "A(x)为	"x 小于 10 ",则谓词公式 (∀x)A(x)的真值为
三、逻辑公式翻译(每小题 6分,	本题共 12分)
11.将语句"小明是学生,小张是飞行	· 员 . '翻译成命题公式 .
12.将语句 "当大家都进入教室,则论	寸论会开始进行. '翻译成命题公式.
四、判断说明题(判断各题正误,并说!	明理由.每小题 7 分,本题共 14 分)
13. 空集的幂集是空集.	
14.(∀x)(P(x) Q(y) R(z))中的约束	東变元有 x 与 y .
五.计算题(每小题 12 分,本题共	36 分)
15.设 A={1, 2, 3} ,R={< x, y> x∈A	x,y€A 且 x+y=4} ,S={< x, y> x€A,y€A 且 x=y},试求
$R, S, R^{-1}, r(S)$.	

16 . 图 G=<V, E> , 其中 $V=\{$ $a, b, c, d, e \}$, $E=\{$ (a, b), (a, c), (a, d), (b, c), (b, d), (c, d),

- e),(d,e)},对应边的权值依次为 2、3、4、5、6、7,6及2,试
 - (1) 画出 G 的图形;
 - (2)写出 G 的邻接矩阵;
 - (3) 求出 G 权最小的生成树及其权值.
 - 17. 试画一棵带权为 1, 2, 4, 5, 6 的最优二叉树 ,并计算该最优二叉树的权.
 - 六、证明题(本题共 8分)
 - 18. 试证明: P Q⇒ P (¬(¬P ¬Q)).

离散数学(本) 2016年 10 月份试题 参考解答

- 一、单项选择题(每小题 3分,本题共 15分)
- 1. C 2. D 3. B 4. A 5. B
- 二、填空题(每小题 3分,本题共 15分)
- 6 . {d}
- 7 . {2 , 3}
- 8. (b, c)
- 9.6
- 10. 真(或 T,或 1)
- 三、逻辑公式翻译(每小题 6分,本题共 12分)
- 11.设 P:小明是学生, Q:小张是飞行员. (2分)
 - 则命题公式为: PQ. (6分)
- 12.设 P:大家都进入教室, Q:讨论会开始进行. (2分)
 - 则命题公式为: P Q. (6分)
- 四、判断说明题(每小题 7分,本题共 14分)
- 13.错误. (3分)
 - 空集的幂集不为空,为 {∅} (7分)
- 14.错误. (3分)
 - 约束变元仅有 x. (7分)
- 五. 计算题(每小题 12分,本题共 36分)
- 15.解: R={<1,3>,<2,2>,<3,1>} (3分)
- S={<1,1>,<2,2>,<3,3>} (6分)
- $R^{-1} = \{ \langle 3, 1 \rangle, \langle 2, 2 \rangle, \langle 1, 3 \rangle \}$ (9 \(\hat{9} \))
- $r(S)=\{ <1,1>,<2,2>,<3,3> \}$ (12分)
- 说明:对于每一个求解项,如果基本求出了解,可以给对应 1分.
- 16.解:(1)G的图形表示为:

(3分)

(3)粗线表示的图是最小生成树,

权值为 11 (12分)

(10分)

(10分)

17.解: 18 7 11 3 4 5 6

权为 1×3+2×3+4×2+5×2+6×2=39 . (12 分)

六、证明题(本题共 8分)

18.证明:

(1) P Q P (1分)

(2)P P(附加前提) (3分)

T(1)(2)I (5分)

(4)PQ T(2)(3)I (6分)

 $(5) \neg (\neg P \neg Q) T(4) E$ (7分)

(6) P ¬(¬P ¬Q) CP 规则 (8分)

另证:

则 P 为 T , ¬ (¬P ¬Q)为 F , (3 分)

即 P Q 为 F. (4分)

所以 P 为 T , Q 为 F , (5 分)

从而 P Q 也为 F. (6分)

所以 P Q⇒ P $(\neg P \neg Q)$). (8分)

说明: 1、因证明过程中,公式引用的次序可以不同,一般引用前提正确得 1分,利用两个公式得出有效结论得 1或 2分,最后得出结论得 2或 1分。

另,可以用真值表验证。

离散数学(本) 2016年7月份试题

— .	、单项选	择题(每小题	题 3分	,本题共 15	分)				
1.	. 若集合	A = {1,2,3,4	4} , B = {^	1,3,5} ,则下	列表述正确的	是 () .		
А	A . A = B	;		В.В	⊂A				
C	C. B #A			D . B	⊆A				
2.	. 设 A =	{ 1,2,3 }, E	B={2,4,6}	, A 到 B 的	关系 R= { x	(, y 2x=	=y } , 则 R:	= () .	
A	A. {<1,3>	·,<2,4>,<3,5>	>}	B. {<2,	1 >,<4,3>,<6,	5>}			
(C. {<1,1>	·,<2,2>,<3,3	>}	D. {<1,	2>,<2,4>,<3,6	i>}			
3.	. 无向图	G 是棵树,	边数是	I0 , 则 G 的	结点度数之和	是 ().		
	A. 20			B. 9					
	C. 10			D. 11					
4 .	. 下面的抽	作理正确的是	<u> </u>).					
	A . (1)	(∀x) F (x) G(x)	前提引入				
	(2)	F(y) G	S(y)		US (1).				
	B . (1)	(3 x) F (>	() G(x)	前提引入				
	(2)	F(y) 0	G(y)		US (1).				
	C . (1)	(🕏) (F (x) G(x))	前提引入				
	(2)	F(y) G	G(x)		ES (1).				
	D . (1)	(∀x) (F	(x) G	(x))	前提引入				
	(2)	F (y)	G(y)		US (1).				
5.	. 设个体均	或为整数集 ,	则公式	$\forall x \exists y (x+y=$	2)的解释可为	()			
	A. 任一	整数 x ,对任	意整数 y	,满足 x+y=2	B. 对任	E一整数	x ,存在整数	y 满足 x+y	/=2
	C. 存在·	一整数 x , ɔ̈́	对任意整数	y 满足 x+	y=2 D. 存	在一整数	x,有整数	ス y 满足 x+y	/ =2
_	、填空题	!(每小题	3 分,本是	题共 15 分)					
6.	. 设集合	$A=\{1, 2, 3\}$, B={2, 3,	4} , C={3, 4	, 5} ,则 B	(A - €)等∃	F		_ ·
7.	. 设 A={´	1, 2} , B={2	2, 3} , C=	={3 , 4} , 从	A到B的函数	数 f ={<1	, 2>, <2, 3>	·} ,从 B至	IJ C
的函数	$g=\{<2, 3\}$	3>, <3, 4>}	,则 Ran(g°f)等于				_ ·	
8.	. 两个图	司构的必要条	件包括结束	点数相等、边	数相等与				
9.	. 设 G 是	是连通平面图	, v, e,	r 分别表示	G 的结点数,	边数和面数	效 , v 值	.为 5 , e 值》	จ 4
则r的(值为		· ·						
10).设个	`体域 D:	= {1, 2,	3, 4} , 则	谓词公式	$(\exists x) A(x)$	消去量词]后 的 等 值	式
为		·							
三	、逻辑公	式翻译(每点	小题 6:	分,本题共	12分)				
11	. 将语句	〕 "昨天下雨	, 今天仍然	下雨."	翻译成命题公:	t.			
12	2.将语句	〕 '若不下雨	,我们就去	参加比赛.	'翻译成命题	题公式 .			
四	、判断说	朗题(判断	各题正误 ,	并说明理由	. 每小题	7 分,本	题共 14	分)	
13	3.若图 (G 是一个欧拉	立图,则图	G 中存在	欧拉路.				

- 14. 无向图 G 的结点数比边数多 1,则 G 是树.
- 五. 计算题(每小题 12分,本题共 36分)
- 15. 设集合 A={1, 2, 3, 4} 上的关系:

 $R=\{<1 , 2>, <2 , 3>, <3 , 4>\} , S=\{<1 , 1>, <2 , 2>, <3 , 3>\} ,$

试计算(1) R⋅S; (2) R⁻¹; (3) r(R∩S).

16 . 图 G=<V, E> , 其中 $V=\{a,b,c,d\}$, $E=\{(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)\}$, 对应 边的权值依次为 1、1、5、2、3 及 4,请画出 G 的图形、写出 G 的邻接矩阵并求出 G 权最小的生成树及其权值 .

17. 求 ¬(PQ) R的析取范式与主合取范式.

六、证明题(本题共 8分)

18.设 A, B, C均为任意集合,试证明: A ∩ (B - C) = (A ∩ B) - (A ∩ C).

离散数学(本) 2016年1月份试题

参考解答

一、单项选择题(每小题 3分,本题共 15分)	
1.C 2.D 3.A 4.D 5.B	
二、填空题(每小题 3 分,本题共 15 分)	
6 . {1,2,3, 4}	
7. {3, 4}	
8.度数相同的结点数相等	
9.1	
10 . A(1) A(2) A(3) A(4)	
三、逻辑公式翻译(每小题 6分,本题共 12分)	
11.设 P:昨天下雨, Q:今天下雨.	(2分
则命题公式为: P Q.	(6分)
12.设 P:下雨, Q:我们去参加比赛.	(2分
则命题公式为: ¬P Q. (或 ¬Q P)	(6分
四、判断说明题(每小题 7分,本题共 14分)	
13.正确.	(3分)
因为若图 G 是一个欧拉图,则图中存在欧拉回路.	(5分
按定义知,欧拉回路也是欧拉路.	(7分)
14.错误.	(3分)
反例:如图 G 的结点数比边数多 1 , 但不是树 .	
<u>^</u> °	
(或:按定义有:无向图 G是树当且仅当无向图 G是连通图且边数比结点数少	1.)
	(7分
说明:举出符合条件的反例均给分.	

五. 计算题 (每小题 12 分,本题共 36 分)

15.解: (1) R •S =={<1 , 2> , <2 , 3>}; (4分)

(2) R ⁻¹={<2 , 1>, <3 , 2>, <4 , 3>} ; (8分)

(3) r(ROS) ={<1, 1>, <2, 2>, <3, 3>, <4, 4>} (12分)

16.解:G的图形表示为:

(3分)

邻接矩阵:

粗线表示的图是最小的生成树,权为 5: (9分)

(12分)

17.解: ¬(PQ) R

$$\Leftrightarrow (\neg P R) (\neg Q R) \tag{7分}$$

$$\Leftrightarrow ((\neg P R) (Q \neg Q)) (\neg Q R)$$
 (9分)

$$\Leftrightarrow ((\neg P R) (Q \neg Q)) ((\neg Q R) (P \neg P))$$
 (10分)

$$\Leftrightarrow$$
 (¬P R Q) (¬P R ¬Q) (¬Q R P) (¬Q R ¬P) (11分)

六、证明题(本题共 8分)

18.证明:

设 S= A ∩(B −C) , T=(A∩ B) -(A ∩C) ,

另,可以用恒等式替换的方法证明.

离散数学数理逻辑部分综合练习

本课程综合练习共分 3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这 3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次是数理逻辑部分的综合练习。

	一、单项选择题	
	1.设 P:我将去市里, Q:我有时间.a	命题"我将去市里,仅当我有时间时"符号化为
()	
	$A \;.\; Q \to \; P \qquad \qquad B \;.\; P \to \; Q$	$C . P \leftrightarrow Q$ $D . \neg P \lor \neg Q$
	2.设命题公式 G: ¬P→ (Q∧R),则使:	公式 G 取真值为 1 的 P , Q , R 赋值分别是 ()
	A . 0, 0, 0 B . 0, 0, 1	C . 0, 1, 0 D . 1, 0, 0
	3.下列公式 ()为重言式.	
	A . ¬P∧¬Q↔ P∨Q	B. $(Q \rightarrow (P \lor Q)) \leftrightarrow (\neg Q \land (P \lor Q))$
	$C: (P \rightarrow (\neg Q \rightarrow P)) \leftrightarrow (\neg P \rightarrow (P \rightarrow Q))$	D. $(\neg P \lor (P \land Q)) \leftrightarrow Q$
	4.下列等价公式成立的为 ().	
	A . $\neg P \land \neg Q \rightleftharpoons P \lor Q$ B	$P \rightarrow (\neg Q \rightarrow P) \Leftrightarrow \neg P \rightarrow (P \rightarrow Q)$
	$C : Q \rightarrow (P \lor Q) \Leftrightarrow \neg Q \land (P \lor Q)$ D	$. \ \neg P \lor (P \land Q) \Leftrightarrow Q$
	 5.命题公式 ¬(P→ Q)的主析取范式是 	
	A. P^¬Q B. ¬P^Q	C.¬P∨Q D.P∨¬Q
	6.命题公式(P Q) R的析取范式是	,
	A.¬(PQ) R	B.(PQ) R
建壮	7.设 C(x): x 是国家级运动页 , G(x): x t的 " 可符号化为	是健壮的,则命题"没有一个国家级运动员不是
	A. $\neg \forall x(C(x) \land \neg G(x))$	B. $\neg \forall x(C(x) \rightarrow \neg G(x))$
	C. $\neg \exists x (C(x) \rightarrow \neg G(x))$	D. $\neg \exists x(C(x) \land \neg G(x))$
	8 . 设 A(x) :x 是人,B(x) :x 是学生,则	l命题 " 不是所有人都是学生 " 可符号化为 () .
		B. $(\overline{\exists}x)(A(x) B(x))$
	C. $(\forall x)(A(x) B(x))$	D. $(\overline{\exists}x)(A(x) B(x))$
	9 . 表达式	(x, y) → ∀zQ(z)) 中 ∀x 的辖域是().
	A. $P(x, y)$ B. $P(x, y) \lor Q(z)$	C . $R(x, y)$ D . $P(x, y) \land R(x, y)$
	二、填空题	
	1.命题公式 P→ (Q∨P)的真值是	·

2.设 P:他生病了, Q:他出差了. R:我同意他不参加学习 . 则命题"如果他生病或

出差了,我就同意他不参加学习"符号化的结果为
3.含有三个命题变项 P,Q,R 的命题公式 P∧Q 的主析取范式是 .
4.设 F(x):x 是鸟, G(x):x 会飞翔.则命题" 鸟会飞"符号化为
5.设个体域 D={1, 2},那么谓词公式 ∃xA(x) √∀yB(y)消去量词后的等值式
为
6.设个体域 D = { a, b, c} ,则谓词公式 (▼x)A(x)消去量词后的等值式为.
7.设个体域 D = {a, b} ,则谓词公式 (▼x)A(x) (∃x) B(x)消去量词后的等 值式为.
A (a) A (b)) (B (a) B (b)
8.设个体域 D = {1, 2} ,则谓词公式 ∃xA(x) 消去量词后的等值式为
A(1) √A(2)
9.谓词命题公式 (∀x)(P(x) Q(x) R(x , y))中的约束变元为
10 . (∀x)(P(x) Q(x) R(x , y))中的自由变元为

三、公式翻译题

- 1.请将语句"今天不是天晴"翻译成命题公式
- 2. 将语句"今天没有下雨."翻译成命题公式.
- 3. 将语句"今天没有人来." 翻译成命题公式.
- 4. 将语句"他不去学校."翻译成命题公式.
- 5. 将语句"尽管他接受了这个任务,但他没有完成好."翻译成命题公式.
- 6. 将语句"小王去旅游,小李也去旅游."翻译成命题公式.
- 7. 将语句"他去旅游,仅当他有时间."翻译成命题公式.
- 8. 请将语句"我去书店,仅当天不下雨"翻译成命题公式
- 9.将语句"如果所有人今天都去参加活动,则明天的会议取消."翻译成命题公式.
 - 10 . 将语句"如果你去了,那么他就不去."翻译成命题公式.
 - 11.请将语句 "有人不去工作"翻译成谓词公式
 - 12. 将语句"有人去上课." 翻译成谓词公式.
 - 13.请将语句"所有人都努力工作."翻译成谓词公式 .
 - 14. 将语句"所有人都去工作."翻译成谓词公式.
 - 15. 将语句"所有的人都学习努力."翻译成命题公式.

- 四、判断说明题 (判断下列各题,并说明理由.)
- 1. 命题公式 ¬(Q → P) ∧ P 为永假式.
- 2. 命题公式 P (P Q) P为永真式.
- 3. 下面的推理是否正确, 试予以说明.
 - (1) (∀x)F(x) G(x) 前提引入
 - (2) F(y) G(y) US(1).

五.计算题

- 1.(1) 求命题公式 $\neg(P \rightarrow Q) \land (P \rightarrow \neg Q)$ 的主析取范式、主合取范式; (2) 求该命题公式的成假赋值.
- 2. 求公式 (P ∧ Q) → R 的析取、合取、主析取、主合取范式.
- 3. 求 $P \rightarrow Q \sqrt{R}$ 的析取范式,合取范式、主析取范式,主合取范式.
- 4. 试求出(PQ) R的析取范式, 合取范式, 主合取范式.
- 5. 求(PQ) (RQ)的合取范式.
- 6. 设谓词公式 ∃x(P(x, y) → ∀zQ(y, x, z)) ∧∀yR(y, z)↔ F(y). 试
- (1)写出量词的辖域;
- (2)指出该公式的自由变元和约束变元.

六、证明 题

- 1. 试证明命题公式 (P→(Q√¬R)) ^¬P ^Q 与¬(P√¬Q)等价.
- 2. 试证明($\exists x$)(P(x) R(x)) \Rightarrow ($\exists x$)P(x) ($\exists x$)R(x).

参考解答

- 一、单项选择题
- 1.B 2 . D 3 . C 4 . B 5 . A 6. D 7. D
- 8. C 9 . B
- 二、填空题
- 1.T (或1)
- 2. (P∨Q)→R
- 3. $(P \land Q \land R) \lor (P \land Q \land \overline{R})$
- 4. $(\forall x)(F(x) \rightarrow G(x))$
- 5. $(A(1) \lor A(2)) \lor (B(1) \land B(2))$
- 6 . A (a) A(b) A(c)

- 7. A(a) A(b)) (B(a) B(b)
- 8 . A(1) \(A(2) \)
- 9 . X
- 10 . R(x , y)中的 y

三、公式翻译题

- 1.解:设 P:今天是天晴; 则 ¬P.
- 2.解:设P:今天下雨, 则 ¬P.
- 3.解:设 P:今天有人来,则 ¬P.
- 4.解:设 P:他去学校,则 ¬ P.
- 5.解:设 P:他接受了这个任务 , Q:他完成好了这个任务 , 则 $P^{\neg}Q$.
- 6.解:设 P:小王去旅游, Q:小李去旅游,则 P∧Q.
- 7.解:设 P:他去旅游, Q:他有时间, 则 P→Q.
- 8.解:设 P:我去书店, Q:天不下雨,则 P→Q.
- 9.解:设 P:所有人今天都去参加活动, Q:明天的会议取消, 则 P→ Q.
- 10 .解:设 P:你去, Q:他去, 则 P→¬Q.
 - 11.解:设 P(x):x 是人 , Q(x):x 去工作 , 则 (→x)(P(x) ∧ Q(x)) .
 - 12.解:设 P(x): x 是人, Q(x): x 去上课,则(∃x)(P(x) ∧Q(x)).
 - 13.解:设 P(x): x 是人, Q(x): x 努力工作. 则 (∀x)(P(x)→ Q(x)).
 - 14.解:设 P(x): x 是人, Q(x): x 去工作, 则(∀x)(P(x)→ Q(x)).
 - 15.解:设 P(x):x 是人, Q(x):x 学习努力,

则 ($\forall x$) ($P(x) \rightarrow Q(x)$).

四、判断说明题 (判断下列各题,并说明理由.)

1.解:正确因为,由真值表

Р	Q	Q→P	¬(Q→ P)	$\neg (Q \rightarrow P) \land P$
0	0	1	0	0
0	1	0	1	0
1	0	1	0	0
1	1	1	0	0

可知,该命题公式为永假式.

- 2.解:正确.
 - P (P Q) P是由 P (P Q)与 P组成的析取式,

如果 P的值为真,则 P (P Q) P为真,

如果 P的值为假,则 P与 P Q为真,即 P (P Q)为真,

也即 P (P Q) P为真,

所以 P (P Q) P是永真式.

另种说明:

P (P Q) P是由 P (P Q)与 P组成的析取式,

只要其中一项为真,则整个公式为真.

可以看到,不论 P的值为真或为假, P (P Q)与 P总有一个为真,

所以 P (P Q) P是永真式.

或用等价演算 P (P Q) P⇔ T

- 3.解:错误.
- (2)应为 F(y) G(x),换名时,约束变元与自由变元不能混淆.

五.计算题

1.
$$\mathbf{H}: (1) \ \neg (P \rightarrow Q) \land (P \rightarrow \neg Q) \Leftrightarrow \ \neg (\neg P \lor Q) \land (\neg P \lor \neg Q)$$

$$\Leftrightarrow (P \land \neg Q) \land (\neg P \lor \neg Q) \Leftrightarrow (P \land \neg Q \land \neg P) \lor (P \land \neg Q \land \neg Q)$$

$$\Leftrightarrow$$
 (P \vee (Q \wedge \neg Q)) \wedge ((P \wedge \neg P) \vee \neg Q)

$$\Leftrightarrow (P \lor Q) \land (P \lor \neg Q) \land (P \lor \neg Q) \land (\neg P \lor \neg Q)$$

(2)因为命题公式的成真赋值是 (1,0),

所以它的成假赋值是 (0,0),(0,1),(1,1).

2.
$$\mathbf{R}$$
: $(\mathbf{P} \wedge \mathbf{Q}) \rightarrow \mathbf{R} \Leftrightarrow \neg(\mathbf{P} \wedge \mathbf{Q}) \vee \mathbf{R}$
 $\Leftrightarrow (\neg \mathbf{P} \vee \neg \mathbf{Q}) \vee \mathbf{R}$

Р

ES(1)

T(2)I

R(x)

2.证明:(1)(氢)(P(x)

R(a)

(2)P(a)

(3)P(a)

$$(4)(3x) P(x)$$
 EG(3)
 $(5) R(a)$ T(2)I
 $(6)(3x) R(x)$ EG(5)
 $(7)(3x) P(x)$ (3x) R(x) T(5)(6)I

离散数学图论部分综合练习

本课程综合练习共分 3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习, 这 3 次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己 检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次是图论部分的综合 练习。

- 一、单项选择题
- 1. 设图 G 的邻接矩阵为

则 G 的边数为 ().

- A . 6
- B.5
- C. 4
- D . 3

2. 已知图 G 的邻接矩阵为

$$\begin{pmatrix}
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{pmatrix}$$

则 G有(

- A.5点,8边
- B.6点,7边
- C.6点,8边
- D.5点,7边
- 3. 设图 G = <V, E> ,则下列结论成立的是
- A . deg(V)=2 E B . deg(V)= E
- C. $\sum_{v \in V} deg(v) = 2 | E$
 - D. $\sum_{v \in V} deg(v) = |E|$
- 4.图 G 如图一所示,以下说法正确的是 ().
- A . {(a,d)} 是割边
- B. {(a,d)}是边割集
- C. {(d, e)} 是边割集

- D. {(a, d),(a, c)} 是边割集
- 5. 如图二所示,以下说法正确的是
- A.e是割点
- B. {a, e} 是点割集
- C . { b, e}是点割集
- D. {d}是点割集
- 6. 如图三所示,以下说法正确的是
- () .

A. {(a,e)} 是割边

- B. {(a, e)} 是边割集
- C. {(a, e),(b, c)} 是边割集
- D. {(d, e)} 是边割集

图三

7. 设有向图(a)(b)(c)与(d)如图四所示,则下列结论成立的是

图四

A . (a) 是强连通的

B .(b) 是强连通的

C.(c)是强连通的

D .(d) 是强连通的

应该填写: D

- 8. 设完全图 K_n 有 n 个结点 (n-2) , m 条边 , 当 (m-1) 时 , M_n 中存在欧拉回路 .
- A.m 为奇数
- B.n 为偶数
- C.n 为奇数
- D.m为偶数

- 9.设 G 是连通平面图,有 v 个结点, e 条边, r 个面,则 r=(A).
- A.e-v+2 B.v+e-2 C.e-v-2
- D. e + v + 2
- 10. 无向图 G 存在欧拉通路, 当且仅当 ().
 - A.G中所有结点的度数全为偶数
 - B. G 中至多有两个奇数度结点
 - C. G 连通且所有结点的度数全为偶数
 - D. G 连通且至多有两个奇数度结点
- 11. 设 G 是有 n 个结点 , m 条边的连通图 , 必须删去 G 的 () 条边 , 才能确定 G 的 -棵生成树.
 - A. m-n+1
- B. m-n C. m+n+1 D. n-m+1
- 12. 无向简单图 G 是棵树, 当且仅当 ().
- A.G连通且边数比结点数少 1 B.G连通且结点数比边数少 1

C.G的边数比结点数少 1 D.G中没有回路.

二、填空题

- 1. 已知图 G 中有 1 个 1 度结点 , 2 个 2 度结点 , 3 个 3 度结点 , 4 个 4 度结点 ,则 G 的 边数是 _____
- 2. 设给定图 G(如图四所示),则图 G 的点割 集是 ______.
- 3. 若图 G=<V, E>中具有一条汉密尔顿回路, 则对于结点集 V 的每个非空子集 S,在 G 中删除 S 中的所有结点得到的连通分支数为 W,则S中结点 数 |S|与 W 满足的关系式为 ______

5. 设有向图 D 为欧拉图,则图 D 中每个结点的入度 ______ 应该填写:等于出度

- 6.设完全图 K_n有 n 个结点 (n≥2), m 条边,当 ______时, K_n中存在欧拉回路.
- 7. 设 G 是连通平面图 , v, e, r 分别表示 G 的结点数 , 边数和面数 , 则 v , e 和 r 满足的 关系式
 - 8. 设连通平面图 G的结点数为 5, 边数为 6,则面数为 ______ .
 - 9. 结点数 v 与边数 e 满足 _________关系的无向连通图就是树.
 - 10. 设图 G 是有 6 个结点的连通图,结点的总度数为 18,则可从 G 中删去

______条边后使之变成树.

- 11. 已知一棵无向树 T中有 8 个结点, 4 度, 3 度, 2 度的分支点各一个, T 的树叶数为
- 12.设 G = <V, E>是有 6 个结点, 8 条边的连通图,则从 G 中删去 ______条边, 可以确定图 G 的一棵生成树 .
- 13.给定一个序列集合 {000,001,01,10,0},若去掉其中的元素 ______,则 该序列集合构成前缀码.

三、判断说明题

G 存在一条欧拉回路. 1. 如图六所示的图

2.给定两个图 G_1 , G_2 (如图七所示) :

- (1)试判断它们是否为欧拉图、汉密尔顿图?并说明理由.
- (2) 若是欧拉图,请写出一条欧拉回路.

图 G₂

图七

- 3. 判别图 G(如图八所示)是不是平面图 , 并说明理由.
- 4.设G是一个有6个结点14条边的连 通图,则 G 为平面图.

四、计算题

- 1.设图 G ⇒ V, E > , 其中 V ╡ a₁, a₂, a₃, a₄, a₅ }, $E = \{ \langle a_1, a_2 \rangle, \langle a_2, a_4 \rangle, \langle a_3, a_1 \rangle, \langle a_4, a_5 \rangle, \langle a_5, a_2 \rangle \}$
- (1)试给出 G 的图形表示;
- (2) 求 G 的邻接矩阵;
- (3)判断图 G 是强连通图、单侧连通图还是弱连通图?
- 2. 设图 G=<V, E>, V={ v1, v2, v3, v4, v5}, E={(v1, v2), (v1, v3), (v2, v3), (v2, v4), (v3, v4), (v3, v5)} V₄), (V₃, V₅), (V₄, V₅)},试
 - (1)画出 G 的图形表示;
- (2)写出其邻接矩阵;
- (2) 求出每个结点的度数;
- (4) 画出图 G 的补图的图形.
- 3.设G=<V, E>, V={ v1, v2, v3, v4, v5}, E={(v1, v3), (v2, v3), (v2, v4), (v3, v4), (v3, v5), (V₄,V₅)},试
 - (1) 给出 G 的图形表示;
- (2)写出其邻接矩阵;
- (3) 求出每个结点的度数;
- (4)画出其补图的图形.
- 4.图 G=<V, E>,其中 V={ a, b, c, d, e} ,E={ (a, b), (a, c), (a, e), (b, d), (b, e), (c, e), (c, d), (d, e) } , 对应边的权值依次为 2、1、2、3、6、1、4及5, 试
 - (1) 画出 G 的图形;
 - (2)写出 G的邻接矩阵;
 - (3) 求出 G 权最小的生成树及其权值.
 - 5. 设有一组权为 2,3,5,7,11,13,17,19,23,29,31,试
 - (1) 画出相应的最优二叉树; (2) 计算它们的权值.
 - 6. 画一棵带权为 1, 2, 2, 3, 4 的最优二叉树 , 计算它的权 .

五、证明题

1. 若无向图 G 中只有两个奇数度结点,则这两个结点一定是连通的.

- 2.设 G 是一个 n 阶无向简单图 , n 是大于等于 2 的奇数 . 证明图 G 与它的补图 $\overline{\mathbf{G}}$ 中的奇数度顶点个数相等 .
- 3 . 设连通图 G 有 k 个奇数度的结点,证明在图 G 中至少要添加 $\frac{k}{2}$ 条边才能使其成为欧拉图 .

参考解答

一、单项选择题

- 1.B 2.D 3.C 4.C 5.A 6.D 7.D 8.C
- 9. A 10. D 11. A 12. A

二、填空题

- 1.15 2.{f}, {c, e} 3. W≤S|
- 4. 所有结点的度数全为偶数 5. 等于出度
- 6.n 为奇数 7.v-e+r =2 8.3
- 9 . e=v-1 10 . 4 11 . 5
- 12.3 13.0

三、判断说明题

1.解:正确.

因为图 G 为连通的,且其中每个顶点的度数为偶数.

2.解:(1)图 G₁是欧拉图.

因为图 G1 中每个结点的度数都是偶数.

图G₂是汉密尔顿图.

因为图 G_2 存在一条汉密尔顿回路(不惟一) :

a(a, b)b(b, e) e(e, f) f (f, g) g(g, d) d(d, c) c(c, a)a

问题 : 请大家想一想,为什么图 G_1 不是汉密尔顿图,图 G_2 不是欧拉图。

(2)图 G_1 的欧拉回路为: (不惟一):

V1(V1, V2) V2(V2, V3) V3(V3, V4) V4(V4, V5)V5
(V5, V2) V2(V2, V6)V6(V6, V4) V4(V4, V1)V1

3.解:图 G是平面图.

因为只要把结点 v_2 与 v_6 的连线 (v_{2, V_6}) 拽 到结点 v_1 的外面 , 把把结点 v_3 与 v_6 的连线 (v_{3, V_6}) 拽到结点 v_{4, V_5} 的外面 , 就得到一个平面图 , 如图九所示 .

4.解:错误.

不满足"设 G 是一个有 v 个结点 e 条边的连通简单平面图,若 v 3,则 e 3v-6."

四、计算题

1.解:(1)图 G 是有向图:

(2)邻接矩阵如下:

$$A(D) = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix},$$

(3)图 G 是单侧连通图, 也是弱连通图.

2.解:(1)图 G 如图十

图十

(2)邻接矩阵为

 $(3) \deg(v_1)=2$

 $deg(v_2)=3$

 $deg(v_3)=4$

 $deg(v_4)=3$

 $deg(v_5)=2$

(4)补图如图十一

3.解:(1)G的图形如图十二

(2)邻接矩阵:

图十二

- (3) V₁, V₂, V₃, V₄, V₅ 结点的度数依次为 1,2,4,3,2
- (4)补图如图十三:

图十三

4.解:(1)G的图形表示如图十四:

图十四

(2)邻接矩阵:

(3)粗线表示最小的生成树,如图十五

如图十五

最小的牛成树的权为 1+1+2+3=7:

5.解:(1)最优二叉树如图十六所示:

方法(Huffman):从 2,3,5,7,11,13,17,19,23,29,31中选 2,3 为最低层结点,并从权数中删去,再添上他们的和数,即5,5,7,11,13,17,19,23,29,31;

再从 5,5,7,11,13,17,19,23,29,31中选 5,5 为倒数第 2层结点,并从上述数列中 删去,再添上他们的和数,即 7,10,11,13, 17,19,23,29,31;

然后,从 7,10,11,13,17,19,23,29,31中选 7,10 和 11,13 为倒数第 3 层结点,并从上述数列中删去,再添上他们的和数,即 17,17,24,19,23,29,31;

如图十六

,,

(2)权值为: 2×6+3×6+5×5+7×4+11×4+13×4+17×3+19×3+23×3+29×3+31×2 =12+18+25+28+44+52+51+57+69+87+62=505

6.解:最优二叉树如图十七

它的 权为: 1×3+2×3+2×2+3×2+4×2=27

五、证明题

1.证明: 用反证法.设 G 中的两个奇数度结点分别为 u 和 v . 假设 u 和 v 不连通,即它们之间无任何通路,则 G 至少有两个连通分支 G_1 , G_2 , 且 u 和 v 分别属于 G_1 和 G_2 ,于是 G_1 和 G_2 各含有一个奇数度结点.这与定理 3.1.2 的推论矛盾.因而 u 和 v 一定是连通的.

个数相等.

(

则

A. 自反的

3.证明:由定理 3.1.2,任何图中度数为奇数的结点必是偶数,可知 k是偶数. 又根据定理 4.1.1的推论,图 G是欧拉图的充分必要条件是图 G不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图 G的所有结点的度数变为偶数,成为欧拉图.

故最少要加 $\frac{k}{2}$ 条边到图 G 才能使其成为欧拉图 .

离散数学集合论部分综合练习

本课程综合练习共分 3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这 3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次是集合论部分的综合练习。

一、单项选择题	
1. 若集合 A={ a , b} , B={ a , b , { a	a,b}},则().
A . A⊂B , 且 A ∈B	B . A∈B , 但 A⊄B
C . A⊂B , 但 A ∉B	D . A⊄B , 且 A∉B
2.若集合 A = {2 , a , { a } , 4} ,则 ⁻	下列表述正确的是 ().
A . {a , { a }} ∈ A	B . { a }⊆A
C. {2} [€] A	D . ∅ ∈ A
3.若集合 A = { a , {a} , {1 , 2}} ,见	则下列表述正确的是 ().
A . {a , {a}} ∈A	B . {2} ⊆A
C . { a}⊆A	D . ∅€A
4. 若集合 A={ a , b , { 1 , 2 }} , B={	1,2},则().
A.B⊂A,且B€A	B . B ∈ A , 但 B ⊄ A
C.B⊂A,但B∉A	D.B⊄A,且B∉A
5.设集合 A={1, a},则 P(A)=().
A . {{1}, { a}}	B . {Ø ,{1}, { a}}
C . { Ø ,{1}, { a}, {1, a }}	D . {{1}, { a}, {1, a}}
6. 若集合 A的元素个数为 10,则其	幂集的元素个数为().
A . 1024 B . 10	C . 100 D . 1
7.集合 A={1, 2, 3, 4, 5, 6, 7, 8} 上的	关系 R={< x , y> x+y=10 且 x, y ∈ A} ,则 R 的性质为
).	
A.自反的	B.对称的
	D . 反自反且传递的
8. 设集合 A = {1 , 2 , 3 , 4 , 5 , 6 }.	上的二元关系 R={ <a ,="" b=""> a , b ∈ A , 且 a +b = 8} ,
R 具有的性质为 ().	

B. 对称的

	C .	对称	和传递	色的			D . 反	(自反和传	递的				
	9.	如果	R ₁ 和	R₂是 A	A 上的自反	关系,则	R_1	R_2 , R_1	R_2 , I	R₁- R₂ 中自反	关系有()
个.													
	Α.	0		E	3.2		C . 1			D . 3			
	10	. 设集	e 合 A	√= {1 , 2 ,	3,4} 上的	二元关系	•						
			F	R = { <1	, 1 > , <	2,2>,	<2,3	3>, <4	, 4 > }	,			
			S	= { <1 ,	, 1 > , <2	2,2>,	<2,3	> , <3,	2>,	<4,4>},			
则 S	是	R的() 闭包									
	Α.	自反		В	. 传递		C.对	称	I	D . 以上都不	对		
	11	. 设集	合 A	x = {1 , 2	, 3 , 4 , 5}	上的偏序	关系			1			
的哈	斯图	到如图-	一所示	;若	A 的子集	B = {3, 4	4 , 5}	,		^	\ .		
则元	素	3 为 E	3 的 ().						2			
	Α.	下界			B.最大T	界				48		5	
	С.	最小.	上界		D.以上智	答案都不对	ţ			图-	_		
最小				2, 3, 4, 5 ¹ 依次为		, R 是 A	上的整	除关系,	B={2	,4,6} ,则复	集合 B的	分最大	元、
	Α.	8, 2	2、8、	2			В.	无、 2、	无、 2				
	С.	6, 2	2、6、	2			D.	8、1、6	、1				
	13	. 设 A	λ={ a,	b} , B={	{1, 2} , R ₁	, R ₂ , R ₃	₃是 A ∄	到 B 的二	元关系	,且 R _{1={<}	a , 2>,	<b ,="" 2<="" td=""><td>:>} ,</td>	:>} ,
R2={	< a	, 1>,	<a ,="" :<="" td=""><td>2>, <b ,<="" td=""><td>1>} , R3=</td><td>={< a , 1></td><td>>, <b ,<="" td=""><td>2>},则</td><td>(</td><td>) 不是从 A</td><td>A到B的</td><td>函数</td><td>•</td></td></td>	2>, <b ,<="" td=""><td>1>} , R3=</td><td>={< a , 1></td><td>>, <b ,<="" td=""><td>2>},则</td><td>(</td><td>) 不是从 A</td><td>A到B的</td><td>函数</td><td>•</td></td>	1>} , R3=	={< a , 1>	>, <b ,<="" td=""><td>2>},则</td><td>(</td><td>) 不是从 A</td><td>A到B的</td><td>函数</td><td>•</td>	2>},则	() 不是从 A	A到B的	函数	•
	Α.	. R₁和	R_2		B . R ₂		С.	Rз		D.R₁和	R_3		
		ı 											
		填空											
	1.	设集部	合 A [∶]	有 n 个示	元素,那么	A 的幂氧	集合 F	'(A) 的元氢	素个数划	ั้ง	·		
<u> </u>		_				合 A的幂	幂集是					•	
巡该				b},{ a},{		. 0 4 5)	D.E		66 — —	¥ 75			
	3.				3} , B={2	-			町	大杀 ,			
		R =	={ < ;	x, y > x	x∈ A且y	∈ B且x,	y ∈ A	∩ B}					
则 F	的	有序对	集合	为									
	4 .	设集部	≙ A=	={0, 1, 2}	, B={0, 2	2, 4}, R 是	星 A 到	B 的二元	关系 ,				
				R	$X = \{ \langle x, y \rangle$	$ x \leq x \in \mathcal{L}$	∆∃∨€	B目xv	, ∈ Δ <i>ſ</i>) B)			
				, ,	(\	- X	. y	Б 11 А, у	y /\	D)			
则下	的	关系矩	ipe N	/I _R =									
	5.	设集部	≙ A=	={ a,b,c}	,A 上的二	元关系							
				R	R={< a, b>,	<c.a>} ,</c.a>	S={<	a, a>, <a,< td=""><td>b>,<c,< td=""><td>C>}</td><td></td><td></td><td></td></c,<></td></a,<>	b>, <c,< td=""><td>C>}</td><td></td><td></td><td></td></c,<>	C>}			

6. 设集合 A= { a,b,c }, A 上的二元关系 R={< a, b>, < b, a>, < b, c>, < c, d>},则二元关系 R

则(R **6**) - 1_{=_____}.

具有的性质是

- 7. 若 A={1,2} , R={< x, y>|x∈A, y∈A, x+y=10} ,则 R 的自反闭包为 ______.
- 8. 设集合 A={1, 2} , B={ a, b} , 那么集合 A 到 B 的双射函数是 ______
- 9.设 A={ a, b, c}, B={1, 2}, 作 f: A B,则不同的函数个数为 ______
- 三、判断说明题 (判断下列各题,并说明理由.)
- 1.设 A、B、C 为任意的三个集合,如果 A B=A C,判断结论 B=C 是否成立?并说 明理由 .
- 2. 如果 R₁和 R₂是 A上的自反关系,判断 结论:" R⁻¹₁、 R₁ R₂、 R₁∩R₂ 是自反的 " 是否 成立?并说明理由.
- 3. 若偏序集 <A, R>的哈斯图如图一所示, 则集合 A 的最大元为 a,最小元不存在.
- 4. 若偏序集 <A,R>的哈斯图如图二所示, 则集合 A的最大元为 a,最小元不存在.
 - 5.设 N、R 分别为自然数集与实数集 , f:N R , f (x)=x+6 , 则 f 是单射 .

四、计算题

- 1. 设集合 A = {a, b, c} , B={b, d, e} , 求

- (1) $B \cap A$; (2) $A \cup B$; (3) A B; (4) $B \oplus A$.
- 2.设 A={{ a, b}, 1, 2} , B={ a, b, {1}, 1} , 试计算

- (1)(A-B) (2)(A B) (3)(A B)-(A B).
- 3. 设集合 A={{1},{2},1,2} , B={1,2,{1,2}} , 试计算
- (1)(A-B); (2)(AB); $(3)A\times B.$
- 4.设 A={0 ,1,2,3,4},R={< x,y>|x∈A,y∈A 且 x+y<0},S={< x,y>|x∈A, y ∈ A 且 x+y≤3} , 试求 R , S , R • S , R • S , R • 1 , S · 1 , r(R) .
 - 5.设 A={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} , R是 A 上的整除关系 , B={2, 4, 6} .
 - (1)写出关系 R的表示式;
- (2)画出关系 R的哈斯图;
- (3) 求出集合 B 的最大元、最小元.
- 6. 设集合 A = { a, b, c, d} 上的二元关系 R 的关系图 如图三所示.

图三

- (1)写出 R的表达式;
- (2)写出 R的关系矩阵;
- (3) 求出 R².
- 7. 设集合 A={1 , 2 , 3 , 4} , R={< x, y>|x, y ∈ A ; |x−y|=1 或 x−y=0} , 试
- (1)写出 R的有序对表示;
- (2) 画出 R 的关系图;
- (3) 说明 R满足自反性,不满足传递性.

五、证明题

- 1. 试证明集合等式: A∪ (B∩C)=(A∪B) ∩ (A∪C).
- 2. 试证明集合等式 A∩ (B∪C)=(A∩B) ∪ (A∩C).
- 3.设 R 是集合 A 上的对称关系和传递关系,试证明:若对任意 a ∈ A , 存在 b ∈ A , 使得 <a, b> ∈ R , 则 R 是等价关系 .
- 4. 若非空集合 A 上的二元关系 R 和 S 是偏序关系,试证明: R \cap S 也是 A 上的偏序关系.

参考解答

- 一、单项选择题
- 1.A 2.B 3.C 4.B 5.C 6.A 7.B 8.B
- 9.B 10.C 11.C 12.B 13.B
- 二、填空题
- 1.2ⁿ
- 2. $\{\emptyset, \{a,b\}, \{a\}, \{b\}\}$
- 3 . {<2, 2> , <2, 3> , <3, 2>} , <3, 3>

- 5 . {< a. c>, <b, c>}
- 6. 反自反的
- 7 . {<1, 1>, <2, 2>}
- 8. $\{<1, a>, <2, b>\}$, $\{<1, b>, <2, a>\}$
- 9.8
- 三、判断说明题 (判断下列各题,并说明理由.)
- 1.解:错.
- 设 A={1, 2} , B={1} , C={2} ,则 A B=A C,但 B≠C.
- 2.解:成立.

因为 R_1 和 R_2 是 A 上的自反关系,即 $I_A \subseteq R_1$, $I_A \subseteq R_2$ 。

由逆关系定义和 I_A⊆R₁ , 得 I_A⊆ R₁-1;

由 $I_A \subseteq R_1$, $I_A \subseteq R_2$, 得 $I_A \subseteq R_1$ R₂ , $I_A \subseteq R_1 \cap R_2$ 。

所以, R₁⁻¹、R₁ R₂、R₁∩R₂是自反的。

3.解:正确.

对于集合 A 的任意元素 x , 均有 <x, a> €R

(或 xRa), 所以 a是集合 A中的最大元.

按照最小元的定义,在集合 A 中不存在最

小元.

4.解:错误.

集合 A 的最大元不存在 , a 是极大元 .

5.解:正确.

设 X_1 , X_2 为自然数且 $X_1 \neq X_2$,则有 $f(X_1) = X_1 + 6 \neq X_2 + 6 = f(X_2)$,故 f为单射.

四、计算题

- 1.解:(1) $B \cap A = \{a, b, c\} \cap \{b, d, e\} = \{b\}$
- (2) $A \cup B = \{a, b, c\} \cup \{b, d, e\} = \{a, b, c, d, e\}$
- $(3) A B={a,b,c} {b,d,e}={a,c}$
- (4) $B \oplus A = A \cup B B \cap A = \{a, b, c, d, e\} \{b\} = \{a, c, d, e\}$
- 2.解:(1)(A-B)={{ a, b}, 2}
 - (2) $(A B) = {\{a, b\}, 1, 2, a, b, \{1\}\}}$
 - $(3)(AB)-(AB)=\{\{a,b\}, 2, a, b, \{1\}\}\}$
- 3.解:(1)A-B={{1},{2}}
 - $(2) A B = \{1,2\}$
 - (3) $A \times B = \{ <\{1\}, 1>, <\{1\}, 2>, <\{1\}, \{1,2\}>, <\{2\}, 1>, <\{2\}, 2>, <\{2\}, \{1,2\}>, <1, 1>, <1, 2>, <1, \{1,2\}>, <2, 1>, <2, 2>, <2, \{1,2\}> \}$

4.解:R=∅,

 $S=\{<0,0>,<0,1>,<0,2>,<0,3>,<1,0>,<1,1>,<1,2>,<2,0>,<2,1>,<3,0>\}$

 $R \cdot S = \emptyset$,

$$R^{-1} = \emptyset$$

$$S^{-1} = S$$
,

 $r(R)=I_A$.

- 5.解:(1) R=I∪{<1,2>, <1,3>, , ,<1,12>,
- <2,4>, <2,6>, <2,8>, <2,10>, <2,12>, <3,6>, <3,9> ,
- <3,12>, <4,8>, <4,12>, <5,10>, <6,12>}
 - (2)关系 R的哈斯图如图四
 - (3)集合 B没有最大元,最小元是: 2
 - 6.解:R={< a, a>, <a, c>, <b, c>, <d,d>}

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $= \{ < a, a>, < a, c>, < d, d> \}$

 $R^{2} = \{ \langle a, a \rangle, \langle a, c \rangle, \langle b, c \rangle, \langle d, d \rangle \} \bullet \{ \langle a, a \rangle, \langle a, c \rangle, \langle b, c \rangle, \langle d, d \rangle \}$

7.解:(1)R={<1,1>,<2,2>,<3,3>,<4,4>,

<1,2>,<2,1>,<2,3>,<3,2>,<3,4>,<4,3>}

(2)关系图如图五

(3)因为 <1,1>,<2,2>,<3,3>,<4,4> 均属于 R,

图四:关系 R的哈

斯图

即 A 的每个元素构成的有序对均在 R 中,故 R 在 A 上是自反的。

因有 <2,3> 与 <3,4>属于 R,但 <2,4>不属于 R, 所以 R在 A上不是传递的。

五、证明题

1.证明:设,若 x A ∪ (B ∩ C),则 x A 或 x B ∩ C,

即 x A或x B且 x A或x C.

即x AUB且x AUC,

即 $X T=(A\cup B)\cap (A\cup C)$,

所以 A∪(B∩C)⊆(A∪B) ∩ (A∪C).

反之,若 x (A∪B) ∩ (A∪C),则 x A∪B 且 x A∪C,

即x A或x B且x A或x C,

即x A或x BへC,

即 x A (BC),

所以 $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$.

因此 . A∪(B∩C)=(A∪B) ∩ (A∪C) .

2.证明:设S=A (B C), T=(A B) (A C), 若x S,则x A且x B C,即x A且x B或x A且x C,

也即 x A B 或 x A C ,即 x T ,所以 S⊆T.

反之,若x T,则x A B 或 x A C,

即x A且x B或x A且x C

也即 x A且 x B C, 即 x S, 所以 T⊆S.

因此 T=S.

3.设 R 是集合 A 上的对称关系和传递关系,试证明:若对任意 a ∈ A,存在 b ∈ A,使得 <a, b> ∈ R,则 R 是等价关系 .

证明:已知 R是对称关系和传递关系,只需证明 R是自反关系.

又 R 是传递的,即当 <a, b> ∈R, <b, a> ∈R⇒ <a, a> ∈R;

由元素 a 的任意性,知 R 是自反的.

所以, R是等价关系.

4. 若非空集合 A上的二元关系 R和S是偏序关系,试证明: R○S也是 A上的偏序关系.

证明 : . ∀x ∈ A, < x, x > ∈ R, < x, x > ∈ S ⇒ < x, x > ∈ R ∩ S , 所以 R ∩ S 有自反性; ∀x, y ∈ A, 因为 R , S 是反对称的 ,

 $<x, y>R \cap S \land < y, x>R \cap S \Leftrightarrow (<x, y> \in R \land < x, y> \in S) \land (<y, x> \in R \land < y, x> \in S)$ $\Leftrightarrow (<x, y> \in R \land < y, x> \in R) \land (<x, y> \in S \land < y, x> \in S) \Leftrightarrow x=y \land y=x \Leftrightarrow x=y$ 所以,R\caps 有反对称性.

∀x, y, z ∈ A , 因为 R , S 是传递的 ,

 $\langle x, y \rangle \in R \cap S \land \langle y, z \rangle \in R \cap S$

 $\Leftrightarrow < x, y > \in R \land < x, y > \in S \land < y, z > \in R \land < y, z > \in S$

 $\Leftrightarrow < x, y > \in R \land < y, z > \in R \land < x, y > \in S \land < y, z > \in S$

 $\Rightarrow < x, z > \in R \land < x, z > \in S \Leftrightarrow < x, z > \in R \cap S$

所以 , R ∩ S 有传递性 .

总之 ,R 是偏序关系 .

离散数学(本) 2016年3月份试题

一、单项选择题(每小题 3分,本题共	15分)
1.设 A={1,3,5,7}, B={2,4,6}, A到	B 的关系 R={< x, y> y=x+3} ,则 R 为 ().
A. {<3, 2>, <5, 4>, <7, 6>}	B. {<1, 4>, <3, 6>}
C. {<1, 2>, <3, 4>, <5, 6>}	D. {<1, 3>, <3, 3>, <5, 3>, <7, 3>}
2 . 若集合 A = {a, b, c} , 则下列表述不正	确的是 ().
A . ∅⊆A	B . a∈A
C . {a} ∈ A	D . {a, b, c}⊆A
3 . 设 A(x): x 是学生 , B(x): x 是大	学生,则命题 "不是所有的学生都是大学生 "可符
号化为().	
A. $(A(x) B(x))$	B . (
C. $\overline{\mathcal{L}}(A(x))$ $B(x)$	D. $\forall (A(x) B(x))$
4.设 G 为连通无向图,则()时	, G 中存在欧拉回路 .
A . G 不存在奇数度数的结点	B.G存在偶数度数的结点
C . G 存在一个奇数度数的结点	D . G 存在两个奇数度数的结点
5.n 阶无向完全图 Kn 的边数是()	•
A. n(n-1),	B. n(n-1)/2
C. n-1	D. n(n-1)
二、填空题(每小题 3分,本题共 15分	分)
	3, 4, 5} ,则 A (C ─B)等于.
	从 A 到 B 的函数 f={< a, 1>, <b, 2="">} , 从 B 到 C 的</b,>
函数 g={<1, b>, <2, a >} ,则 g°f等于	·
8.对于任意的无向图,其所有结点的度数之	之和等于该图的边数的
9.设 G 是具有 n 个结点 m 条边 k 个面的	的连通平面图,则 n+k <i>—</i> 2 等于.
10 .设个体域 D = {1, 2, 3, 4} ,A(x)为 "x等	于 4 ",则谓词公式 (∃x)A(x)真值为
三、逻辑公式翻译(每小题 6分,本题	
11.将语句"如果小王来学校,则他会参加	
12.将语句"今天天晴,昨天下雨."翻	译成命题公式:
四、判断说明题(判断各题正误,并说明理	
	,2 > ,<2 ,1 >, <3 ,3 >} ,则 R 是等价关系.
14 . (▽x)P(x) Q(y) R(x)中量词 ▽的辖域	· · · · · · · · · · · · · · · · · · ·
五. 计算题(每小题 12 分, 本题共 36	
15. 设集合 A={ a, b, c} , B={{ a, b}, b}	
(1) $A \cap B$; (2) $A - B$; (3)) A x B .
16. 设 G= <v, e="">, V={ v1, v2, v3, v4, v5}</v,>	, E={(V1,V3) , (V1,V5) , (V2,V3) , (V3,V4) , (V4,V5) } , 试

(1)给出 G 的图形表示; (2)写出其邻接矩阵;

(3) 求出每个结点的度数; (4) 画出其补图的图形.

17. 试利用 Kruskal 算法求出如下所示赋权图中的最小生成树(要求写出求解步骤) , 并求此最小生成树的权.

六、证明题(本题共 8分)

18. 试证明: (P→Q) R (Q→R) ⇒ P.

离散数学(本) 2016年3月份试题

参考解答

—.	单项选择题((每小题	3分.	本题共	15分)
`			U /J ,	T' (EC) / \	10 /

- 1.B 2.C 3.D 4.A 5.B
- 二、填空题(每小题 3分,本题共 15分)
- 6 . {1, 2, 3, 5}
- 7. $\{ < a, b >, < b, a > \}$
- 8.两倍
- 9. m
- 10. 真(或 T,或 1)
- 三、逻辑公式翻译(每小题 6分,本题共 12分)
- 11.设 P:小王来学校, Q:他会参加比赛. (2分)

则命题公式为: $P \rightarrow Q$. (6分)

12.设 P:今天天晴, Q:昨天下雨. (2分)

则命题公式为: P Q. (6分)

四、判断说明题(每小题 7分,本题共 14分)

13.错误. (3分)

R 不是等价关系,因 R 中不包含 <2,2>,故不满足自反性. (7分)

14.错误. (3分)

辖域为紧接与量词 \forall 之后的最小子公式 P(x) . (7分)

五. 计算题(每小题 12 分, 本题共 36 分)

15.解:(1)A∩B={b}; (4分)

(2) $A - B = \{ a, c \} ;$ (8分)

(3) $A \times B = \{ \langle a, \{a, b\} \rangle, \langle a, b \rangle, \langle b, b \rangle, \langle c, \{a, b\} \rangle, \langle c, b \rangle \}$ (12 分)

16.解:(1)G的图形表示如图一所示:

(3分)

(2)邻接矩阵:

- (3) V₁, V₂, V₃, V₄, V₅ 结点的度数依次为 2,1,3,2,2. (9分)
- (4)补图如图二所示:

(12分)

冬二

17.解:用 Kruskal 算法求产生的最小生成树。步骤为:

 $W(v_2,v_6)=1$, 选 (v_2,v_6)

w(v₄,v₅) =1 ,选(v₄,v₅)

w(v₁,v₆) = 2 ,选(v₁,v₆)

w(v3,v5) =2,选(v3,v5)

 $W(v_2,v_3) = 4$, 选 (v_2,v_3) (6分)

最小生成树如图三所示:

冬三

最小生成树的权 w(T)=1+1+2+2+4=10 . (12 分)

六、证明题(本题共 8分)

18.证明:

(1) (P→Q)	Р	(1分)
$(2) P \rightarrow Q$	T (1) E	(3分)
$(3)(Q\rightarrow R)$	Р	(4分)
(4) R	Р	(5分)
(5) Q	T (3)(4) I	(6分)
(6) P	T(2)(5)	(8分)

说明:

- 1.因证明过程中,公式引用的次序可以不同,一般引用前提正确得 1分,利用两个公式得出有效结论得 1或2分,最后得出结论得 2或1分.
- 2.另,可以用真值表验证.

离散数学(本) 2016年1月份试题

一、单项选择题(每小题 3分,本题共 15分)

	1. 若集合 A = {1, 2, 3, 4} , 则下列表述	述正确的]是 ().		
	A . {1, 2} ∈ A	B . {1	, 2, 3 } ⊆ A			
	C . {1, 2, 3} ⊃A	D . {1	, 2, 3} ∈ A			
	2. 已知无向图 G 的结点度数之和为	10,贝	J G 的边数:	为 ().	
	A . 10	B . 20)			
	C. 30	D . 5				
	3. 无向图 G 是棵树,结点数为 10,	则 G 的	的边数是 ().		
	A. 5	B. 10				
	C. 9	D. 12				
	4.设 A(x):x是人,B(x):x是学	学生,则	命题 "有的]人是学生	"可符号化为	().
	$A \cdot (\nabla x)(A(x) B(x))$	В.	∀ x)(A(x)	B(x))		
	C. $(\exists x)(A(x) B(x))$	D.	(∃ x)(A(x)	B(x))		
	5.下面的推理正确的是().					
	A. (1) $(\overline{\exists}x)$ (F(x) G(x))	前提引入			
	(2) F(y) G(y)		ES(1).			
	B. (1) $(\forall x)$ F(x) G(x)		前提引入			
	(2) F (y) G (y)		US (1).			
	C. (1) $(\overline{\exists}x)$ F(x) G(x)		前提引入			
	(2) F (y) G (y)		US (1).			
	D. (1) $(\overline{3}x)(F(x))$ G(x)		前提引入			
	(2) F (y) G (x)		ES(1).			
	二、填空题(每小题 3分,本题共 1	I 5 分)				
	6.设 A={1,2}, B={a,b,c},则 A	×B 的テ	元素个数为 .			
	7.有 n 个结点的无向完全图的边数为					
	8.设无向图 G 中存在欧拉路,则 G	的奇数	度数的结点数	数为		
	9.设 G 是有 10 个结点的连通图,边数	效为 2	20 , 则可从	G 中删去		条边后使
之变	成树.					
	10.设个体域 D={1, 2, 3, 4}	} ,则	谓 词 公 式	$(\forall x)A(x)$	消去量词后	的等值式
为 _	·					
	三、逻辑公式翻译(每小题 6分,本	:题共 1	2分)			
	11.将语句"小明是个学生."翻译成行	命题公司	t.			
	12.将语句"他上午去教室上课,下午去	去体育馆	参加比赛 .	'翻记	译成命题公式 .	
	四、判断说明题(判断各题正误,并说明				、题共 14 分)	
	13 . 存在集合 A 与 B , 可以使得 A €	B与A ^s	=B 同时成立			
	14.完全图 K₄ 不是平面图.					
	工 计管师(复小师 40八 大师士	26 (4)				
	五.计算题(每小题 12 分,本题共	30 万)				
	15.设关系 R 的关系图如下,试					

33 c

- (1)写出 R的关系表达式;
- (2)判断 R是否为等价关系,并说明理由.
- 16.设图 G=<V, E>, V={ v₁, v₂, v₃, v₄}, E={(v₁, v₂), (v₁, v₄), (v₂, v₄)},试
- (1) 画出 G 的图形表示;
- (2)写出其邻接矩阵;
- (3) 求出每个结点的度数;
- (4)画出图 G 的补图的图形.
- 17. 求 ¬P (Q R)的合取范式与主合取范式.
- 六、证明题(本题共 8分)
- 18. 对任意集合 A, B和 C, 试证明 A×(B∪C)=(A×B) ∪ (A×C).

离散数学(本) 2016年1月份试题

参考解答

一、单项选择题(每小题 3分,本题共 15分)	
1.B 2.D 3.C 4.C 5.A	
二、填空题(每小题 3 分,本题共 15 分) 6.6	
7 . n(n-1)/2	
8. 两个或零个 (注:答 '两个 "也给 3 分)	
9.11	
10 . A(1) A(2) A(3) A(4)	
三、逻辑公式翻译(每小题 6分,本题共 12分)	
11.设 P:小明是个学生.	(2分)
则命题公式为: P.	(6分)
12.设 P:他上午去教室上课,	
Q:他下午去体育馆参加比赛.	(2分)
则命题公式为: P Q	(6分)
四、判断说明题(每小题 7分,本题共 14分)	
13.正确.	(3分)
例:设 A={ a} ,B={ a,{a}}	(5分)
则有 A €B 且 A⊆B .	(7分)
说明:举出符合条件的实例均给分.	
14.错误.	(3分)
完全图 K ₄ 是平面图 ,	(5分)
如 K ₄ 可以如下图示嵌入平面.	(7分)
五.计算题(每小题 12 分,本题共 36 分)	
15.解:(1) R={< a, b >,< b, a >,< a, c >,< c, a >,< c, d >,< d, c >} .	(4分)
(2)不是等价关系	(8分)
因为该关系不满足自反性(或答:不满足传递性)	(12分)
16.解:(1)关系图	

(3分)

(2)邻接矩阵

 $(3) \deg(v_1)=2$

 $deg(v_2)=2$

 $deg(v_3)=0$

 $deg(v_4)=2 \tag{9分}$

(4)补图

(12分)

六、证明题(本题共 8分)

18.证明:设 S= A×(B∪C), T=(A×B) ∪ (A×C),

则有
$$\langle x, y \rangle$$
 (A×B) \cup (A×C), 即 $\langle x, y \rangle$ T, (4分)

反之,若 <x, y> T,则有 <x, y> (A×B),或 <x, y> (A×C),

则有
$$x$$
 A 且 y B , 或 x A 且 y C , 即有 x A 且 y B 或 y C , (6分)

则有 x A 且 y (B∪C), 即有 <x, y> S,

得证
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
. (8分)

离散数学(本) 2015年 10 月份试题

一、单项选择题(每小题 3分,本题	题共 15 分)
1.若集合 A = {1,2,3} ,则下列表述〕	E确的是 ().
A . {1} ∈ A	B . {1} △ A
C . {1, 2, 3} ∈ A	D. ∅€A
2. 设 A={1,2,3}, B={1,2,3,4},	A 到 B 的关系 R ={< x, y> x 大于 y } , 则 R = () .
A . {<2, 1>, <3, 1>, <3, 2>}	B . {<1, 1>, <1, 2>, <1, 3>, <1, 4>, <1, 5>}
C . {<1, 1>, <2, 1>}	D . {<1, 2>, <2, 3>}
3. 无向图 G 的结点的度数之和是	10,则图 G的边数为().
A . 10	B . 15
C. 20	D . 5
4.设连通平面图 G有v个结点, e	会条边, r 个面,则().
A . $v + e - r = 2$	B . $v + e - r = 4$
$C \cdot r + v - e = 2$	D . $v + e - r = -4$
5.设个体域 D 是整数集合,则命题	
A . 不确定	B . 由 y 的取值确定
C . F	D.T
二、填空题(每小题 3分,本题共	15 分)
6 . 设集合 A={ a, b, c} , B={ b, c} , C	={ c, d} ,则 A (B C)等于
7.设 A={2,3}, B={1,2}, C={3	, 4},从A到B的函数 f={<2,2>,<3,1>},从B到C
的函数 g={<1 , 3>, <2 , 4>} ,则 Dom(g	ı°f)等于
8 . 若图 G= <v, e=""> , 其中 V={ a, b</v,>	, c, d } , E={ (a, b), (b, c) , (b, d)} , 则该图中的割点
为	
9.设 G 是汉密尔顿图 , S是其结点	集的一个子集,若 S的元素个数为 4,则在 G-S中
的连通分支数不超过	
10.设个体域 D = {1,2, 3, 4},	A(x)为" x 大于 5",则谓词公式 (∀x)A(x)的真值
为	
三、逻辑公式翻译(每小题 6分,	本题共 12 分)
11. 将语句"雪是白色的,但天是蓝色	的. '翻译成命题公式.
12.将语句"如果下雨,则活动取消.	'翻译成命题公式 .
四、判断说明题(判断各题正误,并说	的理由.每小题 7 分,本题共 14 分)
13.集合的元素可以是集合.	
14.(➡x)(P(x) Q(y) R(z))中的自由	l变元为 x .
五.计算题(每小题 12 分,本题共	36分)
15.设 A={1 ,2,3} ,R={< x,y> x	€A,y€A且x+y>4},S={< x,y> x€A,y€A且 x <y},< td=""></y},<>

试求 R, S, R⁻¹, s(S).

16.图 G=<V, E>, 其中 V={ a, b, c, d }, E={(a,b), (a, c), (a, d), (b, c), (b, d), (c, d)},对应边的权值依次为 2、3、4、5、6及7,试

- (1) 画出 G 的图形;
- (2)写出 G 的邻接矩阵;
- (3) 求出 G 权最小的生成树及其权值.
- 17. 试画一棵带权为 1, 1, 3, 4, 4 的最优二叉树 ,并计算该最优二叉树的权.

六、证明题(本题共 8分)

18. 试证明: ¬P Q⇒P (¬(¬P ¬Q)).

离散数学(本) 2015年 10 月份试题

参考解答

- 一、单项选择题(每小题 3分,本题共 15分)
- 1.B 2.A 3.D 4.C 5.D
- 二、填空题(每小题 3分,本题共 15分)
- 6. {b, c}
- 7.{2,3} (或A)
- 8.b
- 9.4
- 10.假(或 F,或 O)
- 三、逻辑公式翻译(每小题 6分,本题共 12分)
- 11.设 P:雪是白色的, Q:天是蓝色的. (2分)
 - 则命题公式为: P Q. (6分)
- 12.设 P:下雨, Q:活动取消. (2分)
 - 则命题公式为: P Q. (6分)
- 四、判断说明题(每小题 7分,本题共 14分)
- 13.正确. (3分)
 - 例:集合 {{1}} 中的元素 {1} 是集合. (7分)
- 14.错误. (3分)
 - (➡)(P(x) Q(y) R(z))中的约束变元为 x , 自由变元为 y 与 z . (7分)
- 五. 计算题(每小题 12分,本题共 36分)

15.

$$R^{-1} = \{ \langle 2, 3 \rangle, \langle 3, 2 \rangle, \langle 3, 3 \rangle \}$$
 (9 \(\hat{9} \hat{\pi} \))

16.(1) G 的图形表示为:

(3)粗线与结点表示的是最小生成树,

(10分)

权值为 9 (12 分)

权为 1×3+1×3+3×2+4×2=28 (12分)

六、证明题(本题共 8分)

18.证明:

说明: 1、因证明过程中,公式引用的次序可以不同,一般引用前提正确得 1分,利用两个公式得出有效结论得 1或2分,最后得出结论得 2或1分.

另,可以用真值表验证.采用反证法可参照给分.

离散数学(本) 2015年7月份试题

- 一、单项选择题(每小题 3分,本题共 15分)
- 1. 若集合 A = {1,2,3} ,则下列表述正确的是 ().

A . {1, 2, 3} [€]A

B . A \subseteq {1, 2}

C. $\{1, 2, 3\} \subseteq A$

D . {1, 2} [∈]A

2. 已知无向图 G 有 10 条边,则 G 的结点度数之和为().

A . 10

B . 20

	C. 30	D . 5	
	3. 无向图 G 是棵树,边数为 10,则 G	的结点数是().	
	A . 5	B . 10	
	C. 9	D . 11	
	4.设 A(x):x 是金属, B(x):x 是金子	子,则命题"有的金属是金子"可符号化为()
	$A \cdot (\overline{\exists}x)(A(x) B(x))$	$B . \forall x)(A(x) B(x))$	
	C. $(\forall x)(A(x) B(x))$	D. $\overline{\exists} x)(A(x) B(x))$	
	5.下面的推理正确的是().		
	A. (1) $(\forall x)$ F(x) G(x)	前提引入	
	(2) F(y) G(y)	US (1).	
	B. (1) $(\overline{\exists}x)$ F(x) G(x)	前提引入	
	(2) F(y) G(y)	US (1).	
	C. (1) $(\overline{3}x)$ (F(x) G(x))	前提引入	
	(2) F(y) G(y)	ES(1).	
	D.(1)(3x)(F(x)G(x))	前提引入	
	(2) F(y) G(x)	ES (1).	
	二、填空题(每小题 3分,本题共 15分	分)	
	6.设 A={1,2}, B={a,b,c},作f:	A B,则不同的函数个数为.	
	7.有 n 个结点的无向完全图的边数为 _	·	
	8.设无向图 G 中存在欧拉回路,则 G	的奇数度数的结点数为个.	
	9.设 G 是有 8 个结点的连通图 , 结点的原	复数之和为 24 ,则可从 G 中删去	条
边后	使之变成树.		
	10 . 设个体域 D = {a, b, c} , !	则谓词公式(∀x)A(x)消去量词后的等值:	붗
为			

- 三、逻辑公式翻译(每小题 6分,本题共 12分)
- 11. 将语句 "学生的主要任务是学习 "翻译成命题公式.
- 12. 将语句 '我们下午 2点或者去礼堂看电影或者去教室看书. '翻译成命题公式.
- 四、判断说明题(判断各题正误,并说明理由.每小题 7分,本题共 14分)
- 13 . 不存在集合 A 与 B , 使得 A ∈ B 与 A ⊆ B 同时成立 .
- 14.如下完全图 K₄(如下图)是平面图.

- 五. 计算题(每小题 12分,本题共 36分)
- 15. 设偏序集 <A,R>的哈斯图如下图所示, B 为 A 的子集,其中 $B=\{a,b,c\}$,试

- (1)写出 R的关系表达式;
- (2) 画出关系 R 的关系图;
- (3) 求出 B 的最大元素、极小元素、上界.

16.. 设图 G=<V, E>, V={ v1, v2, v3, v4, v5}, E={(v1, v2), (v1, v4), (v1, v5), (v2, v4), (v3, v5)}, 试

- (1) 画出 G 的图形表示;
- (2)写出其邻接矩阵;
- (3) 求出每个结点的度数;
- (4)画出图 G 的补图的图形.

17. 求 P (Q R)的析取范式与主合取范式.

六、证明题(本题共 8分)

18.设 A, B, C均为任意集合,试证明: A ∩ (B - C) = (A ∩ B) - (A ∩ C).

离散数学(本) 2015年7月份试题

参考解答

一、单项选择题(每小题 3分,本题共 15	每小题 3 分,本题共 [,]	15 分)
-----------------------	---------------------------------	-------

1. C 2. B 3. D 4. A 5. C

- 二、填空题(每小题 3分,本题共 15分)
- 6.9
- 7 . n(n-1)/2
- 8.0
- 9.5
- 10 . A(a) A(b) A(c)
- 三、逻辑公式翻译(每小题 6分,本题共 12分)
- 11.设 P:学生的主要任务是学习. (2分)
 - 则命题公式为: P. (6分)
- 12.设 P:我们下午 2点去礼堂看电影,
 - Q:我们下午 2点去教室看书. (2分)
 - 则命题公式为: ¬(P?Q). (6分)
- 注:或者(¬P Q) (P ¬Q)
- 四、判断说明题(每小题 7分,本题共 14分)
- 13.错误. (3分)
 - 例:设 A={a}, B={a, {a}} (5分)
 - 则有 A ∈B 且 A ⊆B . (7分)
 - 说明:举出符合条件的反例均给分.
- 14.正确. (3分)
- 完全图 K_4 是平面图 , (5分)

五. 计算题(每小题 12分,本题共 36分)

15 . (1) $R=\{ < a, a >, < b, b >, < c, c >, < d, d >, < a, b >, < a, c >, < a, d >, < b, d >, < c, d > \}$.

(4分)

(2)关系图

(3)集合 B 无最大元素、极小元素为 a、上确界为 d (12分) 16.解:

(1)关系图

(3分)

(2)邻接矩阵

 $(3) \deg(v_1)=3$

 $deg(v_2)=2$

 $deg(v_3)=1$

deg(v4)=2

 $deg(v_5)=2 (9分)$

(4)补图

(12分)

17.P (Q R)

 ⇔¬P (Q R)
 析取范式
 (2分)

 ⇔(¬P Q) (¬P R)
 (5分)

 ⇔(¬P Q) (R ¬R) (¬P R)
 (7分)

 ⇔(¬P Q) (R ¬R) (¬P R) (Q ¬Q)
 (9分)

 ⇔(¬P Q R) (¬P Q ¬R) (¬P R Q) (¬P R ¬Q)
 (11分)

 ⇔(¬P Q R) (¬P Q ¬R) (¬P ¬Q R)
 主合取范式
 (12分)

六、证明题(本题共 8分)

18.证明:

设 S= A ∩(B −C) , T=(A ∩ B) −(A ∩ C) ,

若 x S,则 x A且 x B _C,即 x A,并且 x B且 x∉C,	(2分)
所以 x (A∩B)且 x∉(A∩C),得 x T,	(3分)
所以 S⊑T.	(4分)
反之,若 x T,则 x (A∩B) 且 x∉(A ∩C),	(5分)
即 x A, x B,且 x ∉C,则得 x B –C,	(6分)
即得 x A ∩(B _C),即 x S,所以 T⊆S.	(7分)
因此 T=S.	(8分)

另,可以用恒等式替换的方法证明.