

Problem R-12N (C₂₂H₂₈ClP₄Pd). Analyze the ¹H decoupled 32.4 MHz ³¹P NMR spectra of a palladium-phosphine complex shown on the next page (Bartsch, R.; Carmichael, D.; Hitchcock, P. B.; Meidine, M. F.; Nixon, J. F.; Sillett, G. J. D. *J. Chem. Soc., Chem. Commun.* **1988**, 1615).

(a) Identify all signals in the low temperature spectrum (-75 °C), and report approximate coupling constants using the form: δ _____, $^{\times}J_{1-2}$ =____ Hz. Use the numberings shown on the structure. For each signal briefly give your reasoning for the assignment.

	$Me_3C \sim P^2 \qquad P^4Et_3$
	$P^1 - Pd - Cl$
	P^3 \downarrow
p1	Me ₃ C
'	$C_{22}H_{28}CIP_4Pd$

P^2			

(b) Identify the process which is responsible for the changes in the NMR spectrum at the higher temperatures (-30 $^{\circ}$ C and +50 $^{\circ}$ C). The signal at -122 ppm in the +50 $^{\circ}$ C spectrum is a triplet. Draw a structure or an equation.

(c) What is the proton frequency (MHz) of the spectrometer which was used for these spectra?

4

Problem R-12N. Analyze the ¹H decoupled 32.4 MHz ³¹P NMR spectra of a palladium-phosphine complex shown on the next page (Bartsch, R.; Carmichael, D.; Hitchcock, P. B.; Meidine, M. F.; Nixon, J. F.; Sillett, G. J. D. *J. Chem. Soc., Chem. Commun.* **1988**, 1615).

(a) Identify all signals in the low temperature spectrum (-75 °C), and report approximate coupling constants using the form: δ ____, $^{\times}J_{1-2}$ =___ Hz. Use the numberings shown on the structure. For each signal briefly give your reasoning for the assignment.

This is the P closest to the two PEt₃ groups, so expect triplet splitting. The dtd (J = 502, 49, 22 Hz) at δ -17 is the only signal that shows a triplet, so this must be P¹, which should also be coupled to both P² And P³, as observed.

$$P^{2}$$
 P^{1}
 P^{1}
 P^{2}
 P^{1}
 P^{2}
 P^{3}
 P^{2}
 P^{3}
 P^{4}
 P^{3}
 P^{5}
 P^{5

$$\delta$$
 -17, ${}^{1}J_{\text{P1-P2}}$ = 502 Hz, ${}^{2}J_{\text{P1-P4/5}}$ = 49 Hz, ${}^{2}J_{\text{P1-P3}}$ = 20 Hz

 P^2 should also show the large 1J to P^1 , so it must be the dd (J = 500, 45 Hz) at δ 18. P^1 and P^2 form an $ABXY_2$ system, would need to do an AB quartet calculation to get accurate chemical shifts

 P^2 δ 18, $^1J_{P1-P2} = 500 \text{ Hz}$, $^2J_{P1-P3} = 40 \text{ Hz}$

³ P³ is coupled to both P¹ and P² (dd, J = 46, 25 Hz), so it has to be the δ 112 signal $\delta 112, {}^{2}J_{P3-P2} = 40 \text{ Hz}, {}^{2}J_{P3-P1} = 20 \text{ Hz}$

This is the signal with double area at δ -122, d, J = 48 Hz $P^4. P^5 \qquad \delta -122, \, ^1J_{P4/5-P1} = 46 \text{ Hz}$

(b) Identify the process which is responsible for the changes in the NMR spectrum at the higher temperatures (-30 $^{\circ}$ C and +50 $^{\circ}$ C). The signal at -122 ppm in the +50 $^{\circ}$ C spectrum is a triplet. Draw a structure or an equation.

The Pd migrates back and forth between P^1 and P^2 , so their chemical shifts are averaged, and both P^3 and P^4/P^5 become triplets, equally coupled to both. Since the two coupling constants are fairly close (expect the P^4/P^5 coupling to be (49+0)/2=25, and P^3 coupling to be (40+20)/2=30 Hz in size, the P^1/P^2 signal becomes an approximate quartet.

The exchange is intramolecular, since the coupling between P¹/P² and P⁴/P⁵ is maintained in the high temperature spectrum

(c) What is the proton frequency (MHz) of the spectrometer which was used for these spectra?

32.4x(100/40.49) = 80 MHz

