

군집화

2025.10.24 김자영 강사

군집화

clustering

비지도학습

유사성 기반

- **K-means** clustering 중심 기반 군집화
- **DBSCAN**(Density-Based Spatial Clustering of Application with Noise) 밀도기반 군집화
- Hierarchical clustering 계층적 군집화

■ 개념 및 특징

- 원형 클러스터를 구분하는 데 적합하다.
- 작은 데이터셋에서 잘 작동한다.
- 구현하기 쉽고, 다른 군집 알고리즘에 비해 계산 효율성이 높다.
- 사전에 클러스터의 개수 k를 지정해야 한다.
- 특성의 **스케일**이 필요하다.
- 평가방법
 - 엘보우 방법(elbow method)
 - 실루엣 그래프(silhouette plot)

https://www.lancaster.ac.uk/stor-i-student-sites/harini-jayaraman/k-means-clustering/

■ 동작 원리

 $\frac{https://preview.redd.it/wodjl2e8ffw71.png?width=1121\&format=png\&auto=webp\&s=1}{a723f05e981efee1519c4999c95c6611c587c0f}$

- ① Step1: 군집 수(k값) 선택
- ② Step2: 초기 군집 중심(Centroid) 설정
- ③ Step3: 각 데이터 포인트를 가장 가까운 군집 중심에 할당
- ④ Step4: 각 군집의 평균값 계산 후 군집 중심 이동
- ⑤ Step5: 군집 중심이 변하지 않을 때까지 반복

■ 데이터 준비

■ 특성의 중요도

```
# 라이브러리 불러오기
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

■ 데이터 준비

■ 3개의 군집을 가지는 테스트데이터 생성

■ 데이터 준비

■ 데이터프레임으로 만들기

```
# 생성된 테스트데이터로 DataFrame 만들기
cluster_df = pd.DataFrame(features, columns=['feature1','feature2'])
cluster_df['target'] = targets
cluster_df.head(3)
```

	feature1	feature2	target
0	-1.692427	3.622025	2
1	0.697940	4.428867	0
2	1.100228	4.606317	0

■ 데이터 준비

66

■ 데이터프레임으로 만들기

Name: count, dtype: int64

```
# target 데이터의 빈도수
cluster_df['target'].value_counts()

target
1 67
0 67
```

■ 데이터 준비

■ 데이터 시각화

```
# 데이터 시각화
sns.scatterplot(data=cluster_df, x='feature1', y='feature2', hue='target', palette='muted')
plt.title('original Data')
                                                                 original Data
plt.show()
                                                                                   target
                                              feature2
                                                                   feature1
```

■ 클러스터링

■ 클러스터링

```
# 클러스터링 객체 생성
from sklearn.cluster import KMeans
km= KMeans(n_clusters=3)
# 학습 및 클러스터링 결과 예측
# km.fit(features)
# kmeans cluster = km.predict(features)
kmeans cluster = km.fit predict(features)
                               [1 2 2 1 2 1 0 0 2 1 2 1 2 2 2 1 0 0 2 1 1 0 2 2 1 2 0 1 1 1 2 2 1 2 0 0 2
print(kmeans_cluster)
                                  2 1 0 2 2 1 1 0 0 0 0 1 0 2 0]
```

k-means clustering

■ 클러스터링 결과 확인

```
# 데이터프레임에 군집과 결과인 kmeans_cluster 컬럼 추가 cluster_df['kmeans_cluster'] = kmeans_cluster cluster_df.head(3)
```

	feature1	feature2	target	kmeans_cluster
0	-1.692427	3.622025	2	1
1	0.697940	4.428867	0	2
2	1.100228	4.606317	0	2

k-means clustering

■ 클러스터의 중심

```
# 클러스터의 중심
km.cluster_centers_
array([[ 1.95763312, 0.81041752],
        [-1.70636483, 2.92759224],
        [ 0.990103 , 4.44666506]])
```

k-means clustering

■ 군집 결과 시각화

```
# 군집화 결과 시각화
sns.scatterplot(data=cluster_df,
               x='feature1',
               y='feature2',
               hue='kmeans_cluster',
               palette='muted')
# 개별 군집의 중심 좌표
sns.scatterplot(x=km.cluster centers [:,0],
               y=km.cluster_centers_[:,1],
               color='magenta',
               marker='X')
plt.title('k-means Clustering')
plt.show()
```


■ 최적의 군집 개수를 찾는 법

■ 엘보우(elbow) 기법

✓ 클러스터 개수를 늘려가면서 이너셔의 변화를 관찰하여 최적의 클러스터 개수를 찾는 방법

※ 이너셔(inertia)

- 클러스터 중심과 클러스터에 속한 샘플 사이의 거리 제곱 합
 - → 클러스터의 샘플이 얼마나 가깝게 있는지를 나타내는 값
- 일반적으로 클러스터 개수가 늘어나면 클러스터 개개의 크기는 줄어들기 때문에 이너셔도 줄어든다.
- 이너셔가 감소하는 속도가 꺾이는 지점을 지나면, 클러스터 개수를 늘려도 클러스 터에 밀집된 정도가 개선되지 않는다.

■ 최적의 군집 개수를 찾는 법

■ 군집의 개수를 2부터 7까지 늘려가며 이너셔 구하기

```
inertia = []
for n in range(2,7):
    km = KMeans(n_clusters=n)
    km.fit(features)
    print(km.inertia_)
    inertia.append(km.inertia_)

548.0904569461312
240.0078759459446
```

207.92537140645015

181.42054425243245

162.71105860290865

■ 최적의 군집 개수를 찾는 법

■ 이너셔 시각화

```
plt.plot(range(2,7), inertia, marker='o')
plt.xticks(range(2,7))
plt.xlabel('k')
plt.ylabel('inertia')
plt.show()
```


■ 실루엣 분석(Silhouette analysis)

- 각 군집들이 얼마나 효율적으로 분리되어 있는지 분석한다.
- 다른 군집과의 거리는 떨어져 있고 동일 군집끼리의 데이터는 서로 가깝게 잘 뭉쳐 있는가?
- 실루엣 분석은 실루엣 계수를 기반으로 한다.
- 실루엣 계수(Silhouette coefficient)
 - 군집화의 품질을 평가하는 지표.
 - <mark>각 개별 데이터 포인트</mark>가 <u>자신의 군집에 얼마나 잘 속해 있는지, 다른 군집과는 얼마나 잘 분리되어 있는지</u> 측정한다.
 - -1에서 1 사이의 값을 가지며, 1에 가까울수록 군집화가 잘 되었다고 해석할 수 있다.
 - ✓ 1에 가까워질수록 근처의 군집과 더 멀리 떨어져 있다는 의미이다.
 - ✓ 0에 가까워질수록 가까운 군집과 가까워진다는 의미이다.
 - ✓ -값은 아예 다른 군집에 데이터포인트가 할당되었음을 뜻한다.

■ 실루엣 계수(Silhouette coefficient)

- ① a(i): i번째 데이터에서 군집 내 다른 데이터들까지의 평균 거리
 - a(1) = mean([a12, a13, a14])
- (2) $\mathbf{b}(\mathbf{i})$: i번째 데이터에서 가장 가까운 다른 군집과의 평균거리

$$b(1) = mean([b15, b16, b16, b17])$$

$$\mathfrak{S}(\mathbf{i}) := \frac{b(\mathbf{i}) - a(\mathbf{i})}{\max(a(\mathbf{i}), b(\mathbf{i}))}$$

$$s(1) = \frac{b(1) - a(1)}{b(1)}$$

■ 실루엣 분석(Silhouette analysis)

■ 개별 실루엣 계수

```
# 개별 실루엣 계수

from sklearn.metrics import silhouette_samples

cluster_df['silhouette'] = silhouette_samples(features, kmeans_cluster)

cluster_df.head()
```

	feature1	feature2	target	kmeans_cluster	silhouette
0	-1.692427	3.622025	2	0	0.598109
1	0.697940	4.428867	0	1	0.658958
2	1.100228	4.606317	0	1	0.704928
3	-1.448724	3.384245	2	0	0.609202
4	1.214861	5.364896	0	1	0.658057

- 실루엣 분석(Silhouette analysis)
 - 개별 실루엣 계수

```
# 다른 군집에 클러스터가 할당된 데이터가 있는지 확인 cond = cluster_df['silhouette'] < 0 cluster_df.loc[cond]
```

feature1 feature2 target kmeans_cluster silhouette

- 실루엣 분석(Silhouette analysis)
 - 평균 실루엣 계수

```
# 평균 실루엣 계수
from sklearn.metrics import silhouette_score
silhouette_score(features, kmeans_cluster)
```

np.float64(0.5764726251866076)

■ 실루엣 분석(Silhouette analysis)

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import silhouette samples, silhouette score
from sklearn.cluster import KMeans
def silhouette plot(X, n clusters):
   X: 데이터 (ndarray 또는 DataFrame)
   n_clusters: 클러스터의 수 (k 값)
    # KMeans 모델 학습
    kmeans = KMeans(n clusters=n clusters, random state=10)
    cluster labels = kmeans.fit predict(X)
   # 실루엣 점수 계산
    silhouette avg = silhouette score(X, cluster labels)
    sample silhouette values = silhouette samples(X, cluster labels)
   fig, ax1 = plt.subplots(1, 1)
   fig.set size inches(10, 6)
   # 그래프의 y축은 클러스터의 개수만큼 높이 설정
    ax1.set xlim([-0.1, 1])
    ax1.set ylim([0, len(X) + (n clusters + 1) * 10])
```

실루엣 시각화 silhouette_analysis.py

■ 실루엣 분석(Silhouette analysis)

```
y lower = 10
for i in range(n clusters):
    ith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i]
    ith cluster silhouette values.sort()
    size cluster i = ith cluster silhouette values.shape[0]
    y upper = y lower + size cluster i
    color = plt.cm.nipy_spectral(float(i) / n clusters)
    ax1.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values,
                      facecolor=color, edgecolor=color, alpha=0.7)
    ax1.text(-0.05, y lower + 0.5 * size cluster i, str(i))
    y lower = y upper + 10  # 10 for spacing between clusters
ax1.set title("The silhouette plot for the various clusters.")
ax1.set xlabel("Silhouette coefficient values")
ax1.set ylabel("Cluster label")
ax1.axvline(x=silhouette avg, color="red", linestyle="--")
plt.show()
```

실루엣 시각화 silhouette_analysis.py

- 실루엣 분석(Silhouette analysis)
 - 최적의 실루엣 찾기

```
# 최적의 실루엣 찾기
import silhouette_analysis as s
for k in range(2,7):
    s.silhouette_plot(features, k)
```

- · 전체 실루엣 계수의 평균값이 1에 가까울수록 좋다.
- 개별 군집의 평균값의 편차가 크지 않은 것이 좋다.
- 각 군집 별 실루엣 계수 평균값이 전체 실루엣 계수 평균값과 크게 벗어나지 않아야 좋다.

■ DBSCAN 기본 개념

- Density-Based Spatial Clustering of Application with Noise
- 데이터의 **밀도**가 높은 영역을 클러스터로 정의
- 주요 파라미터
 - **Epsilon**(ε): 입실론. 한 점을 중심으로 하는 반경의 크기.
 - MinPts: 민포인트. 입실론 주변 영역 내에 포함되어야 할 최소 데이터 포인트 수(자신 포함).
- 포인트 분류
 - Core Point : ε 반경 내에 MinPts 이상의 포인트가 있는 점
 - **Border Point** : Core Point는 아니지만 Core Point의 ε 반경 내에 있는 점
 - Noise Point : Core Point도 Border Point도 아닌 점으로, 이상치로 간주함

■ DBSCAN 기본 개념

• ε 반경 내의 데이터 수가 자신 포함하여 $\min Pts$ 개 이상이면 군집으로 인정

■ 알고리즘 작동 방식

- 1. 임의의 포인트에서 시작하여 ε 반경 내의 이웃을 찾는다.
- 2. 이웃의 수가 MinPts 이상이면 새로운 클러스터를 형성한다.
- 3. 클러스터에 속한 모든 포인트에 대해 같은 과정을 반복하여 클러스터를 확장한다.
- 4. 모든 포인트를 처리할 때까지 1~3 과정을 반복한다.

■ DBSDAN의 장점 및 한계

■ 장점

- ✓ 클러스터 개수를 사전에 지정할 필요가 없다.
- ✓ 불규칙한 모양의 클러스터도 찾아낸다.
- ✓ 이상치(Noise)를 효과적으로 식별한다.

■ 한계

- ✓ 밀도가 다양한(밀도가 오밀조밀한 클러스터와 듬성듬성한 클러스터가 함께 존재하는 경우) 클러스터를 처리하기 어려울울 수 있다.
- ✓ 고차원 데이터에서는 성능이 저하될 수 있다.
- \checkmark ϵ 과 MinPts 파라미터 선택에 결과에 큰 영향을 미친다.

■ DBSDAN의 선택

- 이상치가 있는 대규모 데이터셋에 유용
- 클러스터의 모양이 불규칙하거나 사전에 클러스터 수를 알기 어려운 경우 적합하다.

■ 데이터 준비

feature1	feature2	target
0.519781	-0.015981	1
-0.057719	-0.420279	1
-0.805155	-0.662227	0
0.316549	0.312730	1
-0.304804	0.407563	1
	0.519781 -0.057719 -0.805155 0.316549	0.519781 -0.015981 -0.057719 -0.420279 -0.805155 -0.662227 0.316549 0.312730

■ 데이터 준비

```
sns.scatterplot(data=df, x='feature1', y='feature2', hue='target', palette='muted')
plt.show()
```


■ k-means 클러스터링

■ 클러스터링

```
from sklearn.cluster import KMeans
km = KMeans(n_clusters=2)
df['kmeans'] = km.fit_predict(X)

df.head()
```

	feature1	feature2	target	kmeans
0	0.519781	-0.015981	1	0
1	-0.057719	-0.420279	1	1
2	-0.805155	-0.662227	0	1
3	0.316549	0.312730	1	0
4	-0.304804	0.407563	1	1

■ k-means 클러스터링

■ 클러스터링 결과 확인

```
sns.scatterplot(df, x='feature1', y='feature2', hue='kmeans', palette='muted')
sns.scatterplot(x=km.cluster_centers_[:,0], y=km.cluster_centers_[:,1],
                  marker='D', color='magenta')
plt.title('k-means clustering')
                                                                        k-means clustering
plt.show()
                                                          1.0
                                                          0.5
                                                         -0.5
                                                         -1.0
                                                              -1.0
                                                                     -0.5
                                                                            0.0
                                                                                   0.5
                                                                                          1.0
                                                                           feature1
```

DBSCAN

■ 클러스터링

	feature1	feature2	target	kmeans	dbscan
0	0.519781	-0.015981	1	0	0
1	-0.057719	-0.420279	1	1	0
2	-0.805155	-0.662227	0	1	1
3	0.316549	0.312730	1	0	0
4	-0.304804	0.407563	1	1	0

DBSCAN

■ 클러스터링 결과 확인

```
sns.scatterplot(df, x='feature1', y='feature2', hue='dbscan')
plt.title('DBSCAN')
plt.show()
                                                                      DBSCAN
                                                                                        dbscan
                                                 1.0
                                                 0.5
                                               feature2
                                                -1.0
                                                                                0.5
                                                      -1.0
                                                               -0.5
                                                                       0.0
                                                                                        1.0
```

feature1

프로야구 타자 군집화

■ 라이브러리 불러오기

■ 데이터 불러오기

```
hitter1 = pd.read csv('data/2000 2001 hitter.csv')
hitter2 = pd.read csv('data/2002 2013 hitter.csv')
hitter3 = pd.read csv('data/2014 hitter.csv')
print(f'hitter1 >>> {hitter1.shape}')
print(f'hitter2 >>> {hitter2.shape}')
print(f'hitter3 >>> {hitter3.shape}')
                                                                      SK 0.338 103 452 405 137 ... 0.398664 0.533333 0.931997 0.195062
                                                   3 rows × 36 columns
display(hitter1.head(3))
display(hitter2.head(3))
display(hitter3.head(3))
                                                               3 이승엽 삼성 0.323 133 617 511 123 ... 47 0.331
                                                   3 rows × 39 columns
hitter1 >>> (89, 36)
hitter2 >>> (505, 39)
hitter3 >>> (55, 39)
                                                    2 2014손아섭 2014
                                                               3 손아섭 롯데 0.362 122 570 483 105 ... 54 0.336
                                                   3 rows × 39 columns
```

■ 테이블 병합

	YrPlayer	Year	Rank	Player	Team	AVG	G	PA	AB	н	•••	TA	RC	RC/27	wOBA	XR	R	SAC	МН	RISP	PH- BA
644	2014이범 호	2014	51	이범 호	KIA	0.269	105	406	350	94		0.884328	64.894286	6.441712	0.369291	63.468	47.0	0.0	24.0	0.293	0.000
645	2014모창 민	2014	52	모창 민	NC	0.263	122	468	419	110		0.676647	53.028291	4.138046	0.319970	55.644	62.0	8.0	22.0	0.263	0.667
646	2014오지 환	2014	53	오지 환	LG	0.262	113	464	397	104		0.818182	64.147759	5.463689	0.336344	63.404	72.0	6.0	21.0	0.359	0.000
647	2014조동 화	2014	54	조동 화	SK	0.262	125	522	443	116		0.539359	48.898621	3.520701	0.293759	48.544	74.0	28.0	26.0	0.328	0.143
648	2014김재 호	2014	55	김재 호	두산	0.252	122	421	341	86		0.620818	41.969406	3.867488	0.304498	44.468	50.0	13.0	21.0	0.298	0.000

5 rows × 41 columns

■ 변수 선택

```
# 변수 선택
X = hitter_concat[['OPS','ISO','SECA','TA','RC','RC/27','wOBA','XR']]
y = hitter_concat['YrPlayer']
                                                                  (649, 8) (649,)
print(X.shape, y.shape)
                                                                        OPS
                                                                                ISO
                                                                                       SECA
                                                                                                 TA
                                                                                                                RC/27
                                                                                                                        wOBA
                                                                                                                                  XR
display(X.head())
                                                                            0.149660
                                                                                     0.297052
                                                                                            0.976667
                                                                                                     100.354529
                                                                                                               8.286154
                                                                                                                       0.400138
                                                                                                                                92.804
display(y.head())
                                                                                             1.063830
                                                                                                     115.473840
                                                                                                               9.306847
                                                                                                                      0.431993
                                                                                                                               105.000
                                                                  2 0.931997
                                                                             0.195062
                                                                                     0.274074
                                                                                             0.931655
                                                                                                      86.204956
                                                                                                               8.224501
                                                                                                                       0.400969
                                                                                                                               77.820
                                                                             0.284188
                                                                                    0.423077
                                                                                            1.110092
                                                                                                     119.916981
                                                                                                              9.811389
                                                                                                                      0.436688
                                                                                                                               107.594
                                                                    0.932665 0.231504 0.324582 0.923588
                                                                                                      82.605677
                                                                                                              7.125729
                                                                                                                      0.394586
                                                                                                                               80.284
                                                                      2000박종호
                                                                      2000김동주
                                                                      2000브리또
                                                                      2000송지만
                                                                      2000데이비스
                                                                 Name: YrPlayer, dtype: object
```

■ 데이터 분포 확인

■ 데이터 스케일링

```
# 데이터 스케일링
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X.loc[:,'OPS':'XR'] = scaler.fit_transform(X)
X.head()
```

	OPS	ISO	SECA	TA	RC	RC/27	wOBA	XR
0	0.976149	-0.074229	0.104176	1.108646	1.248725	1.204841	1.118807	1.214334
1	1.897116	1.679891	1.054165	1.654227	1.929967	1.758231	1.894866	1.857449
2	1.107616	0.619910	-0.160485	0.826902	0.611178	1.171415	1.139040	0.424202
3	2.027750	1.982543	1.555727	1.943794	2.130165	2.031780	2.009248	1.994235
4	1.113814	1.177062	0.421269	0.776410	0.449003	0.575692	0.983538	0.554133

■ 엘보우 기법

```
# 엘보우 기법으로 최적의 k 찾기

from sklearn.cluster import KMeans
inertia = []
for n in range(2,7):
    km = KMeans(n_clusters=n)
    km.fit(X)
    print(km.inertia_)
    inertia.append(km.inertia_)
```

2225.953572555236 1335.4311472249044 1022.911428117714 866.5429996546825 738.1526654441549

■ 엘보우 기법

■ 군집화

```
Cluster label
k = 3
# k-means clustering
from sklearn.cluster import KMeans
km = KMeans(n_clusters=k, random_state=10)
                                                           100
kmeans_cluster = km.fit_predict(X)
                                                                          0.2
                                                                                                    0.8
# 실루엣 점수
                                                                                Silhouette coefficient values
from sklearn.metrics import silhouette score
print(f'실루엣 점수:{silhouette_score(X, kmeans_cluster)}')
# 실루엣 시각화
import silhouette_analysis as s
s.silhouette_plot(X, k)
```

실루엣 점수:0.4295317550526677

The silhouette plot for the various clusters.

■ 군집화

```
Cluster label
k = 4
# k-means clustering
                                                         200
from sklearn.cluster import KMeans
km = KMeans(n_clusters=k, random_state=10)
                                                         100
kmeans_cluster = km.fit_predict(X)
                                                                                                 0.8
                                                               0.0
                                                                       0.2
                                                                                0.4
                                                                                         0.6
                                                                             Silhouette coefficient values
# 실루엣 점수
from sklearn.metrics import silhouette score
print(f'실루엣 점수:{silhouette_score(X, kmeans_cluster)}')
# 실루엣 시각화
import silhouette_analysis as s
s.silhouette_plot(X, k)
```

600

500

실루엣 점수:0.3686437769255018

The silhouette plot for the various clusters.

■ 군집화 결과 분석

```
# 데이터프레임 생성

df = pd.DataFrame(X, columns=X.columns)

df['kmeans_cluster'] = kmeans_cluster

df.head()
```

	OPS	ISO	SECA	TA	RC	RC/27	wOBA	XR	kmeans_cluster
0	0.976149	-0.074229	0.104176	1.108646	1.248725	1.204841	1.118807	1.214334	1
1	1.897116	1.679891	1.054165	1.654227	1.929967	1.758231	1.894866	1.857449	2
2	1.107616	0.619910	-0.160485	0.826902	0.611178	1.171415	1.139040	0.424202	1
3	2.027750	1.982543	1.555727	1.943794	2.130165	2.031780	2.009248	1.994235	2
4	1.113814	1.177062	0.421269	0.776410	0.449003	0.575692	0.983538	0.554133	1

■ 군집화 결과 분석

```
# 군집별 데이터 특징 분석
cols = df.columns[:-1]

plt.figure(figsize=(15,8))
for i, col in enumerate(cols):
```

kmeans_cluster

____1

RC/27

kmeans_cluster

kmeans_cluster

___1

sns.boxplot(data=df, y=col, hue='kmeans_cluster', palette='muted')

plt.subplot(2,4,i+1)

plt.title(col)

plt.tight layout()

TΑ

■ 실루엣 분석

```
# 개별 데이터 실루엣 계수 컬럼 추가

from sklearn.metrics import silhouette_samples

df['silhouette'] = silhouette_samples(X, cluster)

df.head(3)
```

	OPS	ISO	SECA	TA	RC	RC/27	wOBA	XR	cluster	silhouette
0	0.976149	-0.074229	0.104176	1.108646	1.248725	1.204841	1.118807	1.214334	1	0.433784
1	1.897116	1.679891	1.054165	1.654227	1.929967	1.758231	1.894866	1.857449	2	0.278949
2	1.107616	0.619910	-0.160485	0.826902	0.611178	1.171415	1.139040	0.424202	1	0.365366

■ 실루엣 분석

잘못 군집화 된 클러스트

df.loc[df['silhouette']<0]</pre>

	OPS	ISO	SECA	TA	RC	RC/27	wOBA	XR	cluster	silhouette
106	-0.487238	-0.525068	-0.672578	-0.639331	-0.228069	-0.50102	-0.465956	-0.251185	3	-0.003318

■ 실루엣 분석

```
# 클러스터 별 중심 player

df['player'] = y # player 컬럼 추가

max_idx = df.groupby('cluster')['silhouette'].idxmax()

df.loc[max_idx]
```

	OPS	ISO	SECA	TA	RC	RC/27	wOBA	XR	cluster	silhouette	player
325	-1.099228	-1.007645	-1.334422	-1.194599	-1.091820	-1.073170	-1.098797	-1.185063	0	0.620514	2007김민 재
475	1.070553	0.938210	0.769761	1.190167	0.779519	0.959467	1.112819	0.801445	1	0.565102	2011최정
553	2.099809	1.986463	2.518512	2.502596	2.497083	2.534148	2.085315	2.440240	2	0.533266	2013박병 호
192	-0.023610	0.068359	-0.132569	-0.101811	-0.008476	-0.149790	-0.020237	0.084294	3	0.591658	2004박진 만

- ① 전체 주성분 계산
- ② 누적 분산 비율로 중요도 확인
- ③ 주요 성분만 선택하여 차원 축소

① 전체 주성분 계산

```
# 모든 특성(컬럼)에 대해 주성분 계산하여 각 데이터포인트를 주성분 공간으로 변환

from sklearn.decomposition import PCA

pca = PCA()

principal_components = pca.fit_transform(X)

principal_components

array([[ 2.48864775, -1.29871071, -0.18369185, ..., 0.11512947, -0.05012084, -0.00542238], [ 4.8638416 , -0.32843484, 0.04378699, ..., 0.02815584, -0.05298553, 0.00816747], [ 2.05850718, -0.4397998 , -0.79470761, ..., 0.02887054, -0.04552095, -0.02742987], ..., [-0.3971905 , 0.69084294, 0.14211226, ..., 0.09606087, -0.0169874 , 0.04994242], [-3.94087277, -0.42488303, 0.27501545, ..., -0.11415355, 0.00769498, 0.00666951], [-3.33227219, 0.22550401, -0.14325161, ..., -0.0513692 , 0.01871363, -0.02078552]], shape=(649, 8))
```

② 누적 분산 비율로 중요도 확인

컬럼별 설명된 분산 비율 확인

```
explained_variance = pca.explained_variance_ratio_
explained_variance
array([0.90514573, 0.05062617, 0.02188854, 0.0184561 , 0.00299299, 0.00055624, 0.00018392, 0.00015031])

# 누적분산 확인
cumulative_variance = explained_variance.cumsum()
cumulative variance
```

array([0.90514573, 0.95577189, 0.97766044, 0.99611654, 0.99910953, 0.99966577, 0.99984969, 1.])

③ 주요 성분만 선택하여 차원 축소

```
# 2개의 주성분 추출

from sklearn.decomposition import PCA

pca = PCA(n_components=2)

principal_components = pca.fit_transform(X_scaled)

principal_components

array([[ 2.48864775, -1.29871071],
        [ 4.8638416 , -0.32843484],
        [ 2.05850718, -0.4397998 ],
```

[-0.3971905 , 0.69084294], [-3.94087277, -0.42488303], [-3.33227219, 0.22550401]])

■ 주성분으로 군집화

```
Cluster label
# 주성분으로 군집화
k = 4
# k-means clustering
from sklearn.cluster import KMeans
                                                          100
km = KMeans(n_clusters=k, random_state=10)
pca_cluster = km.fit_predict(principal_components)
                                                                         0.2
                                                                                 0.4
                                                                                         0.6
                                                                                                  0.8
                                                                0.0
                                                                              Silhouette coefficient values
# 실루엣 점수
from sklearn.metrics import silhouette score
print(f'실루엣 점수:{silhouette score(principal components, pca cluster)}')
# 실루엣 시각화
import silhouette analysis as s
s.silhouette_plot(principal_components, k)
실루엣 점수:0.43183378066194306
```

3

600

1.0

The silhouette plot for the various clusters.

■ 주성분으로 군집화

■ 군집 결과 비교

```
# pca_cluster 컬럼 추가
df['pca_cluster'] = pca_cluster
df.head()
```

	OPS	ISO	SECA	TA	RC	RC/27	wOBA	XR	cluster	silhouette	player	pca_cluster
0	0.976149	-0.074229	0.104176	1.108646	1.248725	1.204841	1.118807	1.214334	1	0.433784	2000박종호	1
1	1.897116	1.679891	1.054165	1.654227	1.929967	1.758231	1.894866	1.857449	2	0.278949	2000김동주	3
2	1.107616	0.619910	-0.160485	0.826902	0.611178	1.171415	1.139040	0.424202	1	0.365366	2000브리또	1
3	2.027750	1.982543	1.555727	1.943794	2.130165	2.031780	2.009248	1.994235	2	0.469111	2000송지만	3
4	1.113814	1.177062	0.421269	0.776410	0.449003	0.575692	0.983538	0.554133	1	0.430869	2000데이비스	1

■ 군집 결과 비교

```
df[['cluster','pca_cluster']].value_counts()
```

cluster	pca_cluster	
3	2	236
0	0	227
1	1	131
2	3	50
1	2	3
3	0	2

Name: count, dtype: int64