ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

Отчёт по лабораторной работы 3.4.1 Диа- и парамагнетики.

Выполнил студент:

Сериков Василий Романович

группа: Б03-102

Аннотация

Цель работы:

Измерение магнитной восприимчивости диа- и парамагнитного образцов.

В работе используются:

Электромагнит, аналитические весы, милливеберметр, регулируемый источник постоянного тока, образцы.

Теоретические сведения:

Магнитная восприимчивость тел может быть определена по измерению сил, действующих на тела в магнитном поле. В данной работе измерения проводятся классическим методом Гюи. Суть этого метода состоит в использовании тонкого и длинного стержня, один из концов которого помещают в зазор электромагнита (обычно в область однородного поля), а другой конец — вне зазора, где величиной магнитного поля можно пренебречь. Закон изменения поля — от максимального до нулевого — в этом случае несуществен.

Рис. 1: Схема для вывода формулы.

При смещении образца на расстояние dx магнитная сила, действующая на него, равна

$$F = \left(\frac{\partial W}{\partial l}\right)_I,\tag{1}$$

где dW – изменение магнитной энергии системы при постоянном токе в обмотке электромагнита и, следовательно, при постоянной величине магнитного поля в зазоре.

Магнитная энергия рассчитывается по формуле

$$W = \frac{1}{2} \int HBdV = \frac{1}{2\mu_0} \int \frac{B^2}{\mu} dV,$$
 (2)

где интеграл распространён на всё пространство. При смещении образца магнитная энергия меняется только в области зазора (в объёме площади s и высоты dx), а около верхнего конца стержня остаётся неизменной, поскольку магнитного поля там практически нет. В области I вне электромагнита поле мало $B_1=0$ и его вкладом в энергию можно пренебречь. В части стержня II, погружённой в электромагнит, поле приближённо равно $B_2=\mu B_0$. В области III вдали от стержня поле мало отличается от $B_3=B_0$, получим

$$dW = \frac{1}{2\mu_0} \frac{B_2^2}{\mu} S dx - \frac{1}{2\mu_0} B_3^2 S dx = -\frac{(\mu - 1)}{2\mu_0} B_0^2 S dx.$$
 (3)

Следовательно, на образец действует сила

$$F = -\frac{\chi}{2\mu_0} B_0^2 S. {4}$$

Знак силы, действующей на образец, зависит от знака χ : образцы из парамагнитных материалов ($\chi>0$) втягиваются в зазор электромагнита, а диамагнитные образцы ($\chi<0$) выталкиваются из него. Измерив силу, действующую на образец в магнитном поле B_0 , можно рассчитать магнитную восприимчивость образца.

Экспериментальная установка и методика измерений:

Рис. 2: Схема экспериментальной установки.

Схема установки изображена на рис. 2. Магнитное поле с максимальной индукцией ≈1 Тл создаётся в зазоре электромагнита, питаемого постоянным током. Диаметр полюсов существенно превосходит ширину зазора, поэтому поле в средней части зазора достаточно однородно. Величина тока, проходящего через обмотки электромагнита, задаётся регулируемым источником постоянного напряжения. Градуировка электромагнита (связь между индукцией магнитного поля В в зазоре электромагнита и силой тока I в его обмотках) производится при помощи милливеберметра.

При измерениях образцы поочерёдно подвешиваются к аналитическим весам так, что один конец образца оказывается в зазоре электромагнита, а другой — вне зазора, где индукцией магнитного поля можно пренебречь. При помощи весов определяется перегрузка $\Delta P = F$ — сила, действующая на образец со стороны магнитного поля.

Результаты измерений и обработка данных:

1. Начальные данные и погрешности.

 $SN=72{
m cm}^2$ - произведение площади сечения пробной катушки на число витков в ней.

 $\sigma_{mWb} = 0.1 \text{ мВб}$ - систематическая погрешность измерения потока Φ .

 $\sigma_A = 0.05 \; {
m A}$ - систематическая погрешность измерения силы тока.

 $d_{Cu}=10,10\pm0,05$ мм - диаметр медного стержня. $d_{Al}=9,90\pm0,05$ мм - диаметр алюминиево стержня.

2. Проведем градуировку электромагнита. Для этого с помощью милливеберметра снимем зависимость магнитного потока Φ , пронизывающего пробную катушку, находящуюся в зазоре, от тока $I(\Phi = BSN)$ $\varepsilon_B = \varepsilon_\Phi => \sigma_B \approx 13$ мТл. Полученные данные занесем в таблицу 1.

$\mathcal{N}_{ar{o}}$	1	2	3	4	5	6	7	8
I, A	0	0,4	0,8	1,2	1,6	2,0	2,4	2,8
Ф, мВб	0,3	0,65	1,25	1,6	2,0	2,65	3,1	3,4
В, мТл	42	90	173	222	277	368	430	472

Таблица 1: Результаты измерений Ф

3. По полученным данным построим градуировочную прямую B(I)

Рис. 3: График зависимости B(I)

4. Измерим силы, действующие на образцы меди и алюминия в магнитном поле. Запишем полученные значения в таблицы 2 и 3. ($\varepsilon_{\Delta P} = \varepsilon_m \approx 1 \cdot 10^{-5} << \varepsilon_{B^2} = 2\varepsilon_B$)

$\mathcal{N}_{ar{0}}$	1	2	3	4	5	6	7	8
$I, A \nearrow$	0	0,4	0,8	1,2	1,6	2,0	2,4	2,8
$\Delta P, \cdot 10^{-5} \text{ H}$	0	2,0	4,9	9.8	16,6	24,5	33,3	43,1
$B^2, \cdot 10^{-3} \text{ Tr}^2$	1,7	8,2	30,1	49,4	77,1	135,5	185,4	222,9
$I, A \searrow$	0	0,4	0,8	1,2	1,6	2,0	2,4	2,8
$\Delta P, \cdot 10^{-5} \text{ H}$	0	2,0	3,9	9,8	17,6	23,5	32,3	40,1
$B^2, \cdot 10^{-3} \text{ Тл}^2$	1,7	8,2	30,1	49,4	77,1	135,5	185,4	222,9

Таблица 2: Результаты измерений для алюминиево стержня при увеличении и уменьшении I.

$N_{ar{o}}$	1	2	3	4	5	6	7	8
$I, A \nearrow$	0	0,4	0,8	1,2	1,6	2,0	2,4	2,8
$\Delta P, \cdot 10^{-5} \text{ H}$	0	-1,0	-2,0	-3,9	-6,8	-10,7	-14,7	-18,6
$B^2, \cdot 10^{-3} \text{ Тл}^2$	1,7	8,2	30,1	49,4	77,1	135,5	185,4	222,9
$I, A \searrow$	0	0,4	0,8	1,2	1,6	2,0	2,4	2,8
ΔP , $\cdot 10^{-5}$ H	0	-1,0	-2,0	-4,9	-8,8	-12,7	-17,6	-20,5
$B^2, \cdot 10^{-3} \text{ Тл}^2$	1,7	8,2	30,1	49,4	77,1	135,5	185,4	222,9

Таблица 3: Результаты измерений для медного стержня при увеличении и уменьшении I.

5. Построим графики зависимости $|\Delta P|(B^2)$ для меди и алюминия. По графикам определим коэффициент наклона прямых и рассчитаем магнитную восприимчивость χ по формуле (4). $\varepsilon_{\frac{\Delta P}{B^2}} = \varepsilon_{B^2} = 2\varepsilon_B = 0, 3 >> \varepsilon_{\frac{\Delta P}{B^2}}^{\text{мHK}}$

$$\frac{\Delta P}{B^2} = \frac{\chi}{2\mu_0} S. \tag{5}$$

$$\chi^{\text{\tiny YA}} = \frac{\Delta P}{B^2} \frac{2\mu_0}{\rho S}.\tag{6}$$

$$\sigma_{\chi^{\text{yA}}} = \chi^{\text{yA}} \sqrt{\varepsilon_{\frac{\Delta P}{B^2}}^2 + \varepsilon_S^2} \tag{7}$$

6. Получим значения магнитной восприимчивости для наших образцов.

$$\chi_{Al}^{\rm ya} = (2, 2 \pm 0, 7) \cdot 10^{-8} \,\,{\rm m}^3/{\rm K}$$
г $\chi_{Cu}^{\rm ya} = -(3, 2 \pm 0, 8) \cdot 10^{-9} \,\,{\rm m}^3/{\rm K}$ г

Рис. 4: График зависимости $\Delta P(B^2)$

Обсуждение результатов:

В данной работе мы определили значения магнитной восприимчивости χ двух образцов: диа- и парамагнетиков на примере медного и алюминиево стержней. Однако полученные значения χ больше табличных в 37 раз ($\chi_{Al}^{\rm yg}=0.061\cdot 10^{-8}~{\rm m}^3/{\rm kr},~\chi_{Cu}^{\rm yg}=-0.086\cdot 10^{-9}~{\rm m}^3/{\rm kr}$) Наибольший вклад в погрешность χ внесла погрешность измерения магнитного потока Φ , так как измерения проводились на стрелочном миливеберметре, а показания находились в первой половине шкалы из-за чего погрешность измерений была высока.

Выводы:

В ходе работы мы смогли определить магнитную восприимчивость диа- и парамагнетиков методом Гюи, но полученные результаты отличаются от табличных.