International Rectifier

IRF3710PbF

HEXFET® Power MOSFET

- Advanced Process Technology
- Ultra Low On-Resistance
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Lead-Free

Description

Advanced HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

	Parameter	Max.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	57		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	40	Α	
I _{DM}	Pulsed Drain Current ①	180		
P _D @T _C = 25°C	Power Dissipation	200	W	
	Linear Derating Factor	1.3	W/°C	
V _{GS}	Gate-to-Source Voltage	± 20	V	
I _{AR}	Avalanche Current①	28	Α	
E _{AR}	Repetitive Avalanche Energy①	20	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	5.8	V/ns	
T _J	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.75	
R _{θCS}	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.13		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			23	mΩ	V _{GS} = 10V, I _D =28A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
9fs	Forward Transconductance	32			S	V _{DS} = 25V, I _D = 28A⊕
I _{DSS}	Drain-to-Source Leakage Current			25	μΑ	V _{DS} = 100V, V _{GS} = 0V
צצטי	Brain to Godice Leakage Guilent			250	μΛ	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
lasa	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
Qg	Total Gate Charge			130		I _D = 28A
Q _{gs}	Gate-to-Source Charge			26	nC	$V_{DS} = 80V$
Q_{gd}	Gate-to-Drain ("Miller") Charge			43		V_{GS} = 10V, See Fig. 6 and 13
t _{d(on)}	Turn-On Delay Time		12			$V_{DD} = 50V$
t _r	Rise Time		58			$I_D = 28A$
t _{d(off)}	Turn-Off Delay Time		45		ns	$R_G = 2.5\Omega$
t _f	Fall Time		47			V _{GS} = 10V, See Fig. 10 ⊕
L _D	Internal Drain Inductance		4.5			Between lead,
					nH	6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact
C _{iss}	Input Capacitance		3130			$V_{GS} = 0V$
C _{oss}	Output Capacitance		410			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		72		pF	f = 1.0MHz, See Fig. 5
E _{AS}	Single Pulse Avalanche Energy2		1060 ©	280⑥	mJ	$I_{AS} = 28A, L = 0.70mH$

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			57		MOSFET symbol
	(Body Diode)		57	Α	showing the	
I _{SM}	Pulsed Source Current		,	000	, ,	integral reverse
	(Body Diode)①		230		p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 28A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		140	220	ns	$T_J = 25^{\circ}C, I_F = 28A$
Q _{rr}	Reverse Recovery Charge		670	1010	nC	di/dt = 100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- $\label{eq:starting} \begin{array}{ll} \text{ Starting T}_{J} = 25^{\circ}\text{C}, \ L = 0.70\text{mH} \\ \text{R}_{G} = 25\Omega, \ \text{I}_{AS} = 28\text{A}, \ \text{V}_{GS} = 10\text{V} \ \text{(See Figure 12)} \end{array}$
- $\label{eq:loss} \begin{array}{l} \text{ } 3 \text{ } I_{SD} \leq 28A, \text{ di/dt} \leq 380A/\mu s, \text{ } V_{DD} \leq V_{(BR)DSS}, \\ T_{J} \leq 175^{\circ}C \end{array}$
- 4 Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ⑤ This is a typical value at device destruction and represents operation outside rated limits.
- $^{\circ}$ This is a calculated value limited to $T_J=175^{\circ}C$.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

7

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 14. For N-channel HEXFET® power MOSFETs

International IOR Rectifier

TO-220AB Package Outline

TO-220AB Part Marking Information

TO-220AB package is not recommended for Surface Mount Application

- 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
- 2. For the most current drawing please refer to IR website at http://www.irf.com/package/

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.07/2010

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.