Endogenous Financial Networks: Diversification and Intermediation

Felix Corell

European University Institute

September 25, 2020

The Paper in a Nutshell

How to explain the core-periphery structures of financial networks?

- Method:
 - ► Strongly stable equilibria of a network formation game
 - ▶ Intuitive structural interpretation of value and allocation rule
- ► Contribution: Endogenous weighted, directed networks
 - Links represent actual flows of funds, not just binary relationships
- Answer: Diversification and Intermediation
 - ▶ Banks want to spread investment across many counterparties
 - ► Core banks give peripheral banks access to a diversified portfolio ...
 - in exchange for intermediation rents.

Outline

- 1. Introduction
- 2. Related Literature
- 3. Model
- 4. Discussion
- 5. Conclusion

Motivation

- ▶ Network approaches became popular after the financial crisis
- Many problems cannot be analyzed in representative bank models
- Real-world (OTC) interbank networks ...
 - are formed endogenously,
 - ► feature (directed) borrowing/lending contracts, ...
 - ▶ specifying heterogenous credit amounts (weights) along each link
- ► Network architecture has strong implications for financial stability
- We need a theory of how these networks form
 - ▶ Predict endogenous reaction to policy changes (regulation, bailouts, ...)

Implicit Requirement: Core-periphery Structure

Sources: Bech and Atalay (2010), Hollifield et al. (2016)

Literature Gap

- Financial networks literature mostly takes network structure as given
- Resilience to shocks, risk-sharing properties, economic efficiency
 - Allen and Gale (2000), Eisenberg and Noe (2001), Rogers and Veraart (2013) Acemoglu et al. (2015a), Elliott et al. (2014), Gai and Kapadia (2010), ...
- ► Endogenous networks: *Undirected* /-weighted trading relationships
 - ▶ Babus (2016), Di Maggio and Tahbaz-Salehi (2014), ?, Wang (2018)
- Notable exceptions:
 - Farboodi (2017), Acemoglu et al. (2015b)
- ► This paper combines ...
 - ▶ intermediation à la Farboodi (2017) with the
 - diversification motive of Cabrales et al. (2017)

Additional Literature

- ► Robust empirical finding: Core-periphery networks
 - ▶ Bech and Atalay (2010), Hollifield et al. (2016), Craig and Von Peter (2014), in 't Veld and van Lelyveld (2014), ...
- ► Trading/Bargaining in (non-financial) networks
 - Choi et al. (2017), Condorelli et al. (2016), Goyal and Vega-Redondo (2007), Manea (2018) ...
- Endogenous (non-financial) core-periphery networks
 - ► Hojman and Szeidl (2008)
- Delegated monitoring
 - Diamond (1984)

Environment

- ightharpoonup Three periods t = 0, 1, 2
- ► Set of banks *N*, risk-neutral, profit-maximizing
- lacktriangle N partitioned into (ex ante known) subsets ${\mathbb I}$ and ${\mathbb D}$
- $lacktriangleq \mathbb{I}$ banks receive risky, proprietary investment project in t=1
- ightharpoons D banks raise funds d from depositors in t=0 ($r_D=0$ w.l.o.g.)
- ▶ In t = 2, projects (linearly scalable) yield i.i.d. per-unit return

Network Formation Game

- ▶ **Network formation:** In t = 0 banks open credit lines $b_{ij} \ge 0$
 - ► Feasibility: $\sum_{i\neq i} b_{ij} \leq \sum_{i\neq i} b_{ji} + d \times \mathbb{1}_{i\in\mathbb{D}} \quad \forall i \in N$
 - \blacktriangleright For each link, lending bank pays fixed management utility cost κ
 - ▶ Volume of outflowing funds is spread *equally* across lending links
- **Bargaining:** In t=1 counterparties bargain over interest rates r_{ij}
 - ► For now: Symmetric Nash bargaining
 - Outside options depend on position in network
 - Complete information about bank types and network structure
- **Payoffs:** In t=2 asset returns realize, debt is paid back (if possible)
- In case of insolvency:
 - ▶ Bankruptcy (utility) cost δ per unit of defaulted *principle*
 - Pro-rata repayment of creditors

Timing

Bargaining Stage I

- Not the main topic of the paper, but an important ingredient
- ▶ In simple bilateral relationship $(|\mathbb{D}| = |\mathbb{I}| = 1, d = 1)$

$$1 \longrightarrow 2$$

$$\mathbb{E}\pi_1 = pr - (1-p)\delta - \kappa$$
$$\mathbb{E}\pi_2 = p(R-1-r) - (1-p)\delta$$

▶ Without deal both earn zero, maximizing Nash product w.r.t. r yields

$$r = \frac{1}{2} \left(R - 1 + \frac{\kappa}{p} \right)$$

▶ Trade only happens if $p(R-1) \ge 2(1-p)\delta + \kappa$

Bargaining Stage II

lacktriangle With an *intermediary* \mathbb{D} -bank ($d_1 = 0$ for simplicity)

$$0 \xrightarrow{1} 1 \xrightarrow{2}$$

$$\mathbb{E}\pi_0 = pr_1 - (1-p)\delta - \kappa$$

 $\mathbb{E}\pi_1 = p(r_2 - r_1) - (1-p)\delta - \kappa$
 $\mathbb{E}\pi_2 = p(R - 1 - r_2) - (1-p)\delta$

Outside options are zero, Nash bargaining yields

$$r_1 = rac{1}{3}\left(R - 1 + rac{\kappa}{
ho}
ight), \quad r_2 = rac{2}{3}\left(R - 1 + rac{\kappa}{
ho}
ight)$$

- ► Trade only happens if $p(R-1) \ge 3(1-p)\delta + 2\kappa$
 - ⇒ Parameters pin down maximal length of intermediation chain

Equilibrium Concept: Strong Stability

- ► Credit lines require consent of *both* contracting parties
 - \rightarrow Nash equilibria not appropriate

Definition

A deviation from network g to g' by a coalition $S \subseteq N$ is *feasible* if

- 1. $b_{ij}^{g'} > 0$ and $b_{ij}^{g'} \neq b_{ij}^{g}$ implies $\{i, j\} \subseteq S$, and
- 2. $b^{g}_{ij} > 0$ and $b^{g'}_{ij} = 0$ implies $\{i, j\} \cap S \neq \emptyset$

A network g is strongly stable if no coalition of banks $S \subseteq N$ has a feasible deviation that makes all banks in S strictly better off.

Dutta and Mutuswami (1997), Jackson and Van den Nouweland (2005)

Diversification I

- ▶ Project returns are i.i.d. ⇒ Scope for diversification
- **Example:** Compare the following two situations $(d = 1, \kappa = 0)$

▶ If one \mathbb{I} -bank's repayment is sufficient for \mathbb{D} 's survival $(\frac{1}{2}(1+r) \geq 1)$:

$$\mathbb{E}\pi_{\mathbb{D}} = \rho^{2}r + 2p(1-p)\left[\frac{1}{2}(1+r) - 1\right] - (1-p)^{2}\delta > pr - (1-p)\delta$$

as long as $\delta>1$

▶ Reduce probability of states in which the lender becomes insolvent

Diversification II

- lacktriangle Optimal degree of diversification, decreasing in κ
- ▶ Principle also applies to I-banks (see Cabrales et al. (2017))
- A well-diversified bank is an attractive investment for other banks
 - ► Low default probability
 - Pay κ only once ("delegated diversification")
- ► Rationale for core-periphery networks in equilibrium
 - Core intermediaries give peripheral banks access to diversification

Core-periphery Networks

Figure: The star as a special CP network

- No incentive to deviate for D-banks.
- Core I-bank is optimally diversified
- ▶ Intermediation margin compensates for management cost 2κ

Summary and Outlook

Key idea

- Diversification motive + intermediation rents = CP financial network
- Endogenous, weighted, directed network
- Strongly stable equilibrium of network formation game

Limitations

- ► Integer/divisibility problems as in many endogenous network models
- ► Equilibrium will probably not be unique
- Ex ante heterogeneous banks

Next steps

- ► Connect bargaining and network formation problem properly
- ▶ Welfare properties + comparative statics (e.g. size of core/periphery)
- What happens with anticipated bailouts?
- ▶ Interbank data (ECB? SRB? Bundesbank?) for empirical counterparts

References I

- Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi (2015a). Systemic Risk and Stability in Financial Networks. *The American Economic Review 105*(2), 564–608.
- Acemoglu, D., A. Ozdaglar, and A. Tahbaz-Salehi (2015b). Systemic Risk in Endogenous Financial Networks. Working Paper.
- Allen, F. and D. Gale (2000). Financial Contagion. *Journal of Political Economy* 108(1), 1–33.
- Babus, A. (2016). The Formation of Financial Networks. *The RAND Journal of Economics* 47(2), 239–272.
- Bech, M. L. and E. Atalay (2010). The Topology of the Federal Funds Market. *Physica A: Statistical Mechanics and its Applications 389* (22), 5223–5246.

References II

- Cabrales, A., P. Gottardi, and F. Vega-Redondo (2017). Risk Sharing and Contagion in Networks. *The Review of Financial Studies* 30(9), 3086–3127.
- Choi, S., A. Galeotti, and S. Goyal (2017). Trading in Networks: Theory and Experiments. *Journal of the European Economic Association* 15(4), 784–817.
- Condorelli, D., A. Galeotti, and L. Renou (2016). Bilateral Trading in Networks. *The Review of Economic Studies* 84(1), 82–105.
- Craig, B. and G. Von Peter (2014). Interbank Tiering and Money Center Banks. *Journal of Financial Intermediation* 23(3), 322–347.
- Di Maggio, M. and A. Tahbaz-Salehi (2014). Financial Intermediation Networks. *Columbia Business School Research Paper*, 14–40.
- Diamond, D. W. (1984). Financial Intermediation and Delegated Monitoring. *The Review of Economic Studies* 51(3), 393–414.

References III

- Dutta, B. and S. Mutuswami (1997). Stable Networks. *Journal of Economic Theory* 76(2), 322–344.
- Eisenberg, L. and T. H. Noe (2001). Systemic Risk in Financial Systems. *Management Science* 47(2), 236–249.
- Elliott, M., B. Golub, and M. O. Jackson (2014). Financial Networks and Contagion. *The American Economic Review 104*(10), 3115–3153.
- Farboodi, M. (2017). Intermediation and Voluntary Exposure to Counterparty Risk. Working Paper.
- Gai, P. and S. Kapadia (2010). Contagion in Financial Networks. In *Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences*, Volume 466, pp. 2401–2423. The Royal Society.
- Goyal, S. and F. Vega-Redondo (2007). Structural Holes in Social Networks. *Journal of Economic Theory* 137(1), 460–492.

References IV

- Hojman, D. A. and A. Szeidl (2008). Core and Periphery in Networks. Journal of Economic Theory 139(1), 295–309.
- Hollifield, B., A. Neklyudov, and C. Spatt (2016). Bid-Ask Spreads, Trading Networks and the Pricing of Securitizations. Swiss Finance Institute.
- in 't Veld, D. and I. van Lelyveld (2014). Finding the Core: Network Structure in Interbank Markets. *Journal of Banking & Finance 49*, 27–40.
- Jackson, M. O. and A. Van den Nouweland (2005). Strongly Stable Networks. *Games and Economic Behavior* 51(2), 420–444.
- Manea, M. (2018). Intermediation and Resale in Networks. *Journal of Political Economy* 126(3).
- Rogers, L. C. and L. A. Veraart (2013). Failure and Rescue in an Interbank Network. *Management Science* 59(4), 882–898.
- Wang, C. (2018). Core-Periphery Trading Networks. Working Paper.

This Paper vs. Farboodi (2017)

- Endogenous surplus sharing rule (bargaining)
- No random allocation of all funds along just one link
- ▶ Diversification: Funds don't have to flow through *shortest path* from lenders to projects

Example with 4 Banks: Possible Configurations

When \mathbb{D} banks *don't* diversify:

Example with 4 Banks: Possible Configurations

When \mathbb{D} banks *do* diversify:

