Sažetak predavanja: Arhitektura računala 1 (Ugradbeni sustavi)

1. Taksonomija računalne arhitekture

- Von Neumann vs. Harvard arhitektura
 - Von Neumann: dijele istu memoriju za instrukcije i podatke.
 - Harvard: koristi odvojene memorijske sabirnice (bolje za DSP i ugradbene sustave).
 - · Harvard arhitektura često se koristi za obradu signala (DSP), gdje su važni brzina i paralelna obrada podataka.

· RISC vs. CISC arhitektura

- CISC (Complex Instruction Set Computing)
 - Starija arhitektura s kompleksnim instrukcijama (više mikroinstrukcija u jednoj).
 - Manje instrukcija u memoriji, ali sporije izvođenje.
 - Prikladna za aplikacije gdje je optimizacija memorije važna.
- RISC (Reduced Instruction Set Computing)
 - Jednostavnije i brže instrukcije.
 - Load-store arhitektura više memorijskog prostora, ali brža obrada.
 - Omogućuje pipeline obradu (više instrukcija u isto vrijeme).

· Instrukcijski skup i procesorska svojstva

- o Definira kako softver komunicira s hardverom.
- o Ključne razlike:
 - Fiksna vs. varijabilna dužina instrukcija
 - Način adresiranja instrukcija
 - Broj operanada
 - Brzina takta, cache memorija, sabirnica i sustav prekida utječu na izbor arhitekture.

2. Mikroprocesor i njegove komponente

- Mikroprocesor = "mozak" računala, upravlja izvršavanjem instrukcija.
- Glavni dijelovi:
 - 1. Registri
 - Programsko brojilo (PC) pokazuje na sljedeću instrukciju.
 - Kazaljka stoga (SP) upravlja memorijom poziva funkcija.
 - Registar stanja (SR) sadrži zastavice (carry, zero, overflow).
 - Registri opće namjene (R0 RN) privremeno pohranjuju podatke.
 - 2. **Aritmetičko-logička jedinica (ALU)** izvršava matematičke i logičke operacije.
 - 3. **Upravljačka jedinica** dekodira instrukcije i generira upravljačke signale.
 - 4. Međuspremnici:
 - Adresni međuspremnik služi za adresiranje memorije.
 - Podatkovni međuspremnik posreduje u prijenosu podataka.
 - Instrukcijski međuspremnik privremeno pohranjuje dekodirane instrukcije.

3. Izvršavanje instrukcija (Simulacija rada mikroprocesora)

- Primjer: Izvršavanje instrukcije INC \$05FF
 - 1. Dohvaćanje instrukcije iz memorije pomoću programskog brojila (PC).
 - 2. Dekodiranje instrukcije u upravljačkoj jedinici.
 - 3. Dohvaćanje operanada i njihovo spremanje u privremeni registar.
 - 4. Izvršavanje operacije (inkrementacija vrijednosti u memoriji).
 - 5. Pohrana rezultata na memorijsku lokaciju.

4. Ulazno/izlazni (I/O) uređaji

- Mikrokontroler = mikroprocesor + I/O uređaji na istom čipu.
- I/O uređaji koriste registre:
 - o Podatkovni registri za prijenos podataka između CPU-a i uređaja.
 - Statusni registri sadrže informacije o stanju uređaja.
- Načini komunikacije CPU-a i I/O uređaja:
 - 1. Isolated I/O (izolirani I/O)
 - Odvojen adresni prostor za memoriju i I/O uređaje.
 - Efikasnija implementacija, ali zahtijeva dodatne instrukcije.
 - 2. Memory-Mapped I/O (memorijski mapiran I/O)
 - I/O uređaji koriste isti adresni prostor kao memorija.
 - Brže izvođenje, ali smanjuje kapacitet dostupne memorije.

Karakteristika	Isolated I/O	Memory-Mapped I/O
Adresni prostor	Odvojen za memoriju i I/O	Dijele isti adresni prostor
Performanse	Sporije izvođenje I/O operacija	Brže I/O operacije
Programiranje	Složenije (posebne instrukcije)	Jednostavnije (isti set instrukcija za memoriju i I/O)
Fleksibilnost	Veća – može se dodavati I/O uređaje bez utjecaja na memoriju	Manja – adresni prostor memorije se smanjuje
Primjena	Ugradbeni sustavi, mikrokontroleri, real-time sustavi	Grafičke kartice, mrežni uređaji, DMA

• Primjena Memory-Mapped I/O:

- o Grafičke kartice CPU može brzo pristupati podacima kao da su u memoriji.
- Mrežni uređaji koristi se za efikasan prijenos podataka preko mreže.
 DMA (Direct Memory Access) omogućuje direktan prijenos podataka bez CPU intervencije.

• Primjena Isolated I/O:

- Mikrokontroleri svaki uređaj ima poseban port.
- Real-time sustavi precizno upravljanje uređajima bez utjecaja na memoriju.

Ključni koncepti za učenje

- Nazumijevanje Harvard vs. Von Neumann arhitekture
- Nazlike između RISC i CISC arhitekture
- ☑ Uloga mikroprocesora i njegovih registara ☑ Koraci izvršavanja instrukcija
- Nazlike između Isolated I/O i Memory-Mapped I/O
- Nako CPU komunicira s I/O uređajima
- Primjene različitih arhitektura u realnim sustavima