نبذة عن عالم

عرف القرن التاسع عشر اهتماما واسعا بالدّ قة الرياضية المؤدية إلى تحديد المفاهيم الأساسية للتحليل . و كان عالم الرياضيات و الفيزياء الفرنسي أوغستان لوي كوشي (1857–1789م) Augustin – Louis Cauchy من بين رموز هذا التوجه .

دخل كوشي مدرسة الهندسة (مدرسة الجسور و الطرق) وأشرف عليه بيير جيرارد Pierre في مشروع قناة Ourcq ، وأسهم في انشاء ميناء بحري في شيربوغ عام 1810.

تميز كوشي بأعماله في الرياضيات ، وحلَّ مجموعة مسائل تحد طُرَّ عليه لأغراُنج Lagrange ، وفي عام 1814 نشر بحثا عن التكاملات المحدودة ، وعين كوشي في هذا العام أستاذا مساعدا في التحليل في مدرسة البوليتكنيك . درَّس طرق التكامل في كلية العلوم ، ووضع تعاريف دقيقة للنهايات والاتصال و التكامل و لتقارب المتتاليات و المتسلسلات . و ساهم في تعريف الاتصال على مجال [a,b] .

a في متصلة غير f

La notion de continuité nous est familière : le temps s'écoule d'une manière continue, on ne passe pas brutalement de 12h à 12h01s, il n'y pas de saut. C'est en ce sens que l'expression fonction continue est employée en mathématiques.

بطاقة تقنية رقم : 02		
المستوى : الثانية باكلوريا علوم تجريبية درس : النهايات و الاتصال التذبير الزمني : 15 ساعة	ثانوية : الفتح التأهيلية السنة الدراسية : 2016–2015 الأستاذ : عادل بناجي	
4 الاتصال في نقطة - الاتصال على 1 مبرهنة القيم الوسطية عجال 2 الدالة العكسية لدالة متصلة 5 العمليات على الدوال المتصلة 3 دالة الجذر من الرتبة n صورة مجال بدالة متصلة 6	فقرات الدرس	
• عموميات حول الدوال العددية • مفاهيم أساسية في درس • دراسة الدوال العددية النهايات و الاشتقاق	المكتسبات القبلية	
 تحديد صورة قطعة أو مجال بدالة متصلة و بدالة متصلة و رتيبة قطعا ؛ تطبيق مبرهنة القيم الوسيطية في دراسة بعض المعادلات و المتراجحات أو دراسة إشارة بعض التعابير؛ استعمال طريقة التفرع الثنائي (ladichotomie) في تحديد قيم مقربة لحلول المعادلة أو لتأطير هذه الحلول ؛ تطبيق مبرهنة القيم الوسيطية و مبرهنة الدالة التقابلية في حالة دالة متصلة و رتيبة قطعا على مجال ؛ 	الكفاءات المستهدفة	
• يتم اعتماد التعريف التالي : نقول إن دالة f متصلة في النقطة x_0 إذا كان $\lim_{x \to x_0} f(x) = f(x_0)$ ب $\lim_{x \to x_0} f(x) = f(x_0)$ ب نقبل النتائج المتعلقة باتصال الدوال الحدودية والجذرية و الدوال المثلثية والدالة جذر مربع ويتم التركيز على تطبيقاتها ؛ • نقبل أن صورة قطعة بدالة متصلة هي قطعة وأن صورة مجال بدالة متصلة هي مجال ثم نستنتج مبرهنة القيم الوسطية ؛ • نقبل خاصيات العمليات على الدوال المتصلة و اتصال مركب دالتين • نقبل خاصيات العمليات على الدوال المتصلة و اتصال مركب دالتين •	التوجيهات التربوية	
• نقبل خاصيات العمليات على الدوال المتصلة و اتصال مركب دالتين . سلسلة أنشطة - سلسلة تمارين - الكتاب المدرسي - ملخص المكتسبات السابقة ؛	الوسائل الديداكتيكية	

نشاط

1 أحسب النهايات التالية

$$\lim_{x \to -\infty} x^2 + 3x^5 - 4$$

$$\lim_{x \to -\infty} \frac{27x^7 - x^3}{11x^5 - 2x^2 - 15}$$

$$\lim_{x \to +\infty} 2x^2 - 5x^3 - x^5 - 3$$

$$\lim_{x \to -\infty} \frac{3x^4 - 4x}{8x^4 + 2x^3}$$

$$\lim_{x \to -\infty} x^2 - 3x^3 + x$$

$$\lim_{x \to +\infty} \frac{x^2 + x - 30}{x^3 - 7x^2 - 5x + 75}$$

$$\lim_{x \to +\infty} 27x^7 - x^3 - 4x$$

$$\lim_{x \to -\infty} \frac{2x^2 + 6x + 4}{-x^3 + x^2 + 5x + 3}$$

2 أحسب النهايات التالية

$$\lim_{x \to 3^{+}} \frac{20 - x^{3}}{11x - 2x^{2} - 15}$$

$$\lim_{x \to 3^{-}} \frac{20 - x^{3}}{11x - 2x^{2} - 15}$$

$$\lim_{x \to -2^{+}} \frac{x^{2} + 4}{x + 2}$$

$$\lim_{x \to -2^{-}} \frac{x^{2} + 4}{x + 2}$$

$$\lim_{x \to -4^+} \frac{x^2 + x - 4}{x^2 + 6x + 8}$$

$$\lim_{x \to -4^-} \frac{x^2 + x - 4}{x^2 + 6x + 8}$$

$$\lim_{x \to 3^{+}} \frac{-5x - 3}{-3x^{2} + 11x - 6}$$

$$\lim_{x \to 3^{-}} \frac{-5x - 3}{-3x^{2} + 11x - 6}$$

3 أحسب النهايات التالية

$$\lim_{x \to 0} \frac{x^2 - 3x^3 + x}{2x - x^2}$$

$$\lim_{x \to 5} \frac{x^2 + x - 30}{x^3 - 7x^2 - 5x + 75}$$

$$\lim_{x \to 3} \frac{27 - x^3}{11x - 2x^2 - 15}$$

$$\lim_{x \to -1} \frac{2x^2 + 6x + 4}{-x^3 + x^2 + 5x + 3}$$

$$\lim_{x \to -\sqrt{5}} \frac{x + \sqrt{5}}{5 - x^2}$$

$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x - 1}$$

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$$

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} \qquad \qquad \lim_{x \to 25} \frac{x - 25}{\sqrt{x} - 5}$$

$$\lim_{x \to 4} \frac{\sqrt{2x+1} - 3}{x-4}$$

التالية التالية التالية
$$\lim_{x \to 0} \frac{\sqrt{4-x} - \sqrt{4+x}}{x}$$

5 أحسب النهايات التالية

$$\lim_{x \to -\infty} \sqrt{3x^2 - 4x + 7} - 3x + 8$$
$$\lim_{x \to -\infty} -\sqrt{x^2 - 6x - 2} - x + 12$$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} -4x^2 - 1 - 12x + \sqrt{4x + 7}$$
$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} x^3 - \sqrt{8x - 3} + 2x^4 - 1$$

$$\lim_{\substack{x \to +\infty \\ x \to -\infty}} \sqrt{7x - 9} + 8x^5 - 4x^3 + 2$$
$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} -\sqrt{-9x - 4} - 8x^2 - 3x - 1$$

الأشكال غير محددة

$$\frac{1}{1}$$
" " $\frac{\infty}{\infty}$ " " $0 \times \infty$ " " $+\infty - \infty$ "

الأشكال غير المحددة هي : "∞−∞+" "∞×0"

خاصيات النهايات

نهايات دوال اعتيادية في ∞±

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$
$$\lim_{x \to -\infty} \sqrt{|x|} = +\infty$$

$$\lim_{x \to +\infty} x^3 = +\infty$$
$$\lim_{x \to -\infty} x^3 = -\infty$$

$$\lim_{x \to +\infty} x^2 = +\infty$$
$$\lim_{x \to -\infty} x^2 = +\infty$$

$$\lim_{\substack{x \to +\infty \\ \lim_{x \to -\infty}}} x = +\infty$$

خاصية

نهايات دوال اعتيادية في ∞±

$$\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$$

$$\lim_{x \to -\infty} \frac{1}{\sqrt{|x|}} = 0$$

$$\lim_{x \to +\infty} \frac{1}{x^3} = 0$$

$$\lim_{x \to 6\infty} \frac{1}{x^3} = 0$$

$$\lim_{x \to +\infty} \frac{1}{x^2} = 0$$

$$\lim_{x \to 6\infty} \frac{1}{x^2} = 0$$

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$
$$\lim_{x \to 6\infty} \frac{1}{x} = 0$$

نهايات دوال اعتيادية في 0

$$\lim_{\substack{x>0\\x\to 0}} \frac{1}{\sqrt{x}} = +\infty$$

$$\lim_{\substack{x<0\\x\to 0}} \frac{1}{\sqrt{|x|}} = +\infty$$

$$\lim_{\substack{x>0\\x\to 0}}\frac{1}{x^3}=+\infty$$

$$\lim_{\substack{x>0 \\ x \to 0}} \frac{x^3}{x}$$

$$\lim_{\substack{x<0 \\ x \to 0}} \frac{1}{x^3} = -\infty$$

$$\lim_{\substack{x>0\\x\to 0}}\frac{1}{x^2}=+\infty$$

$$\lim_{\substack{x>0\\x\to 0}} \frac{x^2}{x^2}$$

$$\lim_{\substack{x<0\\x\to 0}} \frac{1}{x^2} = +\infty$$

$$\lim_{\substack{x>0\\x>0}} \frac{1}{x} = +\infty$$

خاصية

$$\lim_{\substack{x < 0 \\ x \to 0}} \frac{1}{x} = -\infty$$

نهايات الدوال الجذرية والحدودية

حديها الأكبر درجة
$$\lim_{x \to \pm \infty} \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0}{b_m x^m + b_{m-1} x^{m-1} + \ldots + b_0} = \lim_{x \to \pm \infty} \frac{a_n x^n}{b_m x^m}$$

ا نهایة دالة حدودیة عند $\infty+$ أو $\infty-$ هي نهایة حدها 1

$$\lim_{x \to \pm \infty} a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = \lim_{x \to \pm \infty} a_n x^n$$

 $\Rightarrow \lim_{x \to a} f(x) = l$

نهايات الدوال المثلثية

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$$

$$\lim_{x\to 0}\frac{tan(x)}{x}=1$$

$$(a\neq 0); \lim_{x\to 0}\frac{sin(ax)}{x}=a$$

$$\lim_{x \to 0} \frac{sin(x)}{x} = 1$$

النهايات و الترتيب

 $\int f(x) \leq g(x)$

$$\int_{0}^{\infty} u(x) \leq f(x)$$

$$\lim_{x \to a} u(x) = +\infty$$

 $\Rightarrow \lim_{x \to a} f(x) = l$

$$\Rightarrow \lim_{x \to a} f(x) = 0$$

$$\Rightarrow \lim_{x \to a} f(x) = +\infty$$

 $g(x) \le f(x) \le h(x)$

$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = l$$

$$\begin{cases} |f(x) - l| \le u(x) \end{cases}$$

$$\lim_{x \to a} u(x) = l$$

$$\begin{cases} f(x) \le u(x) \end{cases}$$

$$\lim_{x \to a} u(x) = -\infty$$

 $\Rightarrow \lim_{x \to a} f(x) = l$

$$\lim_{x \to a} f(x) = -\infty$$

لاتصال لا

1 الاتصال في نقطة - الاتصال على مجال

1.1 الاتصال في نقطة

نشاط

$$\begin{cases} f(x) = \frac{x^2 - 4}{x - 2} & ; x \neq 2 \\ f(2) = 4 \end{cases}$$
 : $x \neq 2$: $x \neq 2$: $x \neq 2$: $x \neq 2$: $x \neq 3$:

- f عدد D_f مجموعة تعريف الدالة
 - $\lim_{x \to 2} f(x) = \frac{1}{2}$
- f أنشئ التمثيل المبياني للدالة f $\lim_{x\to 2} f(x) = f(2)$ % نلاحظ أن f(x) = f(2) نقول إن الدالة f(x) = f(2)

نشاط

- لتكن f دالة عددية و C_f منحناها في معلم متعامد ممنظم (\vec{i} , \vec{j}) (أنظر الشكل جانبه) .
- من خلال الشكل كيف ترى المنحنى C_f عند النقطة ذات الأفصول C_f عند النقطة ذات الأفصول C_f
- بانیا f(3) و $\lim_{x\to 3} f(x)$ استنتج ?
- ب. أوجد مبيانيا f(-1) ونهاية f عند f(-1) ماذا تستنج ؟

 $\lim_{x \to a} f(x) = f(a)$: كان f و f عنصر من f ، تكون f متصلة في g إذا وفقط إذا كان f عنصر من f عنصر من f متصلة في g إذا وفقط إذا كان f

a غير متصلة في f

مثال

. 1 في متصلة في
$$f(x) = \frac{2x^2 - 2}{x - 1}$$
 $(x \neq 1)$ نعتبر الدالة العددية $f(x) = 4$ المعرفة بمايلي $(x \neq 1)$ المعرفة بمايلي $(x \neq 1)$ المعرفة بمايلي $(x \neq 1)$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{2x^2 - 2}{x - 1}$$

$$= \lim_{x \to 1} \frac{2(x^2 - 1)}{x - 1}$$

$$= \lim_{x \to 1} \frac{2(x - 1)(x + 1)}{x - 1}$$

$$= \lim_{x \to 1} 2(x - 1)$$

$$= 4 = f(2)$$

• 1 في المتصلة في اf(x) = f(1) بيا أن ال

ملاحظة

. a في متصلة a فإننا نقول إن a غير متصلة a أو منقصلة a

• 3 في تعتبر الدالة العددية
$$f$$
 المعرفة بمايلي : $x \neq 3$: $f(x) = \frac{x^2 - 9}{x - 3}$: $f(x) = 6$

• 3 في متصلة في
$$\begin{cases} f(x) = \frac{x^2 - 9}{x - 3} & ; x \neq 3 \\ f(3) = 6 \end{cases}$$
 : $\begin{cases} f(x) = \frac{x^2 - 9}{x - 3} & ; x \neq 3 \\ f(3) = 6 \end{cases}$: $\begin{cases} f(x) = \frac{\sqrt{x} - 1}{x - 1} & ; x \neq 1 \\ f(1) = 3 \end{cases}$ and $\begin{cases} f(x) = \frac{\sqrt{x} - 1}{x - 1} & ; x \neq 1 \\ f(1) = 3 \end{cases}$

الاتصال على اليمين - الاتصال على اليسار

تعريف

التكن f دالة عددية معرفة على مجال من نوع $[a,a+\alpha]$ حيث $(\alpha>0)$ تكون f متصلة على اليمين في a إذا وفقط إذا كان : $\lim_{x\to a^+} f(x) = f(a)$ x دالة عددية معرفة على مجال من نوع $x = a - \alpha$ حيث $x = a - \alpha$ تكون x = a متصلة على اليسار في x = a إذا وفقط إذا كان $\lim_{x \to a^{-}} f(x) = f(a)$

لتكن f دالة عددية معرفة على مجال مفتوح I و a عنصر من I ، تكون f متصلة في a إذا وفقط إذا كانت متصلة على اليمين $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a)$: يأ اليسار في a أي اليسار أي الي

> ذ. عادل بناجي الصفحة: 7

تطبيقي تمرين

$$\begin{cases} f(x) = \sqrt{x+3} & ; x > 1 \\ & : \\ f(x) = x+1 & ; x \leqslant 1 \end{cases}$$
 ; $x > 1$

 $^{\circ}$ هل الدالة $^{\circ}$ متصلة فى 1 $^{\circ}$

1 أدرس اتصال f على اليمين وعلى اليسار في 1

تطبيقي تمرين

$$\begin{cases} f(x) = \frac{\sqrt{x+2}-2}{x-2} & ; x>2 \\ f(x) = \frac{x^2-4x+3}{x-3} & ; x \leqslant 2 \end{cases}$$

 $\frac{2}{2}$ أدرس اتصال f في 2

f(2) أحسب أ

3.1 الاتصال على مجال

تعریف

•••

- a,b[المخال المفتوح a,b[إذا كانت متصلة في كل نقطة من المجال المفتوح a,b[
- b^- و a^+ و متصلة على a,b و متصلة على a,b و أذا كانت متصلة على a,b و متصلة في a^+

ملاحظات

• • •

- $-\infty$ و $[a,+\infty[$ و [a,b] و [a,b] و المجالات [a,b] و المثل الاتصال على المجالات
- (b,f(b)) و (a,f(a)) التمثيل المبياني لدالة متصلة على [a,b] هو خط متصل طرفاه النقطتان والمبياني لدالة متصلة على المبياني المبياني الدالة متصلة على المبياني المبيني المبياني المبياني المبياني المبياني المبياني الم

مثال

دالة الجزء الصحيح

 $(n \in \mathbb{Z}$ حيث E(x) = n إذا كان E(x) = n حيث E(x) = n و التي تحقق E(x) = n إذا كان E(x) = n حيث E(x) = n مثلا :

- $3 \le 3, 5 < 3 + 1$ \checkmark (3,5) = 3
 - $5 \le 5 < 5 + 1$ کُن E(5) = 5 •
- $-3 \le -2, 4 < -3 + 1$ $\bigvee_{i=1}^{4} E(-2, 4) = -3$ •
- - [0,4] مثل مبيانيا الدالة E على المجال
- 2 أدرس اتصال الدالة E على المجالات [0,1] ، [0,2] ، [1,3] و [3,3.5] و [3,3.5]

خاصية

•••

- كل دالة حدودية متصلة على ¤
- كل دالة جذرية متصلة على مجموعة تعريفها
- \mathbb{R} الدالتين $x \mapsto cos(x)$ و $x \mapsto sin(x)$ متصلتين على
- الدالة $x \mapsto tan(x)$ متصلة على كل مجال ضمن مجموعة تعريفها
 - \mathbb{R}^+ الدالة $x \mapsto \sqrt{x}$ متصلة على

أمثلة

•••

- (لأنها دالة حدودية) الدالة $f(x) = x^3 4x^2 + 5x + 7$
 - الدالة $f(x) = \frac{x^2 + 3}{x 1}$ الدالة جذرية) $\mathbb{R} \{1\}$ متصلة على الدالة جذرية
- ($[3,+\infty[\subset \mathbb{R}-\{1\} \] -\infty,1[\subset \mathbb{R}-\{1\} \] -\infty,1[\$

4.1 قصور دالة عددية

تعريف

إذا كانت f دالة معرفة على مجال I و g دالة معرفة على مجال I ضمن I بحيث g(x) = g(x) ، فإننا نقول إن الدالة g قصور الدالة f على المجال g .

2 العمليات على الدوال المتصلة

خاصية

خاصية مقبولة

لتكن f و g دالتين متصلتين على مجال I و g عددا حقيقيا . الدوال g و

مثال

• • •

$$(\mathbb{R}^+$$
 المتصلتين على $x\mapsto x^2$ و $x\mapsto \sqrt{x}$ المتصلتين على \mathbb{R}^+ (لأنها مجموع الدالة $x\mapsto x^2+\sqrt{x}$ المتصلتين على المتحدد الدالة الدالة المتحدد المتحدد على المتحدد على المتحدد المتحدد المتحدد على المتحدد على المتحدد على المتحدد المتحد

$$(10,+\infty[$$
 على $]0,+\infty[$ و لا تنعدم على $]0,+\infty[$ و الدالة $x\mapsto\sqrt{x}$ المتصلة على $]0,+\infty[$ و لا تنعدم على $]0,+\infty[$

$$x\mapsto \sqrt{x}+x^2$$
 المتصلة على $x\mapsto \sqrt{x}+x^2$ المتصلة على $x\mapsto \sqrt{x}+x^2$

تطبيقي تمرين

بين أن الدالة f متصلة على المجال I في كل حالة من الحالات التالية :

$$I = [0, +\infty[$$
 $f(x) = 2x + \sqrt{x}$ 1

$$I = \mathbb{R} \ \mathbf{g} \ f(x) = \frac{x^2 + 1}{x^2 + 2}$$

$$I =]0, +\infty[$$
 $g(x) = \frac{x^2 - 1}{\sqrt{x}}$

$$I = [0, +\infty[\ end{subscript{0.5em} 0} f(x) = sin(x) + \sqrt{x}$$

$$I = \mathbb{R} \quad \mathfrak{g} \quad f(x) = \frac{\cos(x)}{x^2 + 1}$$

تمرين

$$f(x) = x + a$$
 ; $x < 1$ $f(x) = 2x - 3$; $1 \le x \le 3$; $x < 1$ $f(x) = 2x - 3$; $1 \le x \le 3$; $x < 3$. $x < 1$ $f(x) = bx + 1$; $x > 3$

نشاط

 $g(x) = \sqrt{x}$ و $f(x) = x^2 + x + 1$: و الدالتين العدديتين المعرفتين ب

- $g \circ f$ دد الدالة
- f(0) في g ادرس اتصال f في g و اتصال g
 - 3 ادرس اتصال الدالة g · f في 0

فاصية

 $f(I) \subset J$ و g دالة متصلة على g و g دالة متصلة على $g \circ f$ الدالة : $g \circ f$ متصلة على $g \circ f$

مثال

 D_f على $f(x) = \sin\left(\frac{3}{x}\right)$: لندرس اتصال الدالة f المعرفة ب

- $D_f = \mathbb{R}^*$ لدينا
- $h(x) = \sin(x)$ و $g(x) = \frac{3}{x}$ کیٹ f(x) = h(g(x)) نضع •

لدينا g دالة جذرية إذن فهي متصلة على مجموعة تعريفها \mathbb{R} ؛ و h دالة متصلة على \mathbb{R} وبالخصوص على \mathbb{R} وبالتالي فإن f متصلة على \mathbb{R} (لأنها مركب دالتين متصلتين على \mathbb{R})

تطبيقي تمرين

•••

- \mathbb{R} على $f(x) = \sin(x^3 3x + 2)$: باستعمال مركب دالتين ادرس اتصال الدالة f المعرفة بمايلي
 - [-1,1] على $f(x)=\sqrt{1-x^2}$: باستعمال مركب دالتين ادرس اتصال الدالة f المعرفة بمايلي

• • •

- I الجال الجال $x\mapsto \sqrt{f}$: فإن الدالة f الجال f متصلة على مجال الجال الجال الجال الدالة على الجال الجال الجال الحالة على الجال الجال الحالة على الحالة الحالة الحالة على الحالة الحالة
 - I المجال المنا $x\mapsto cos(f(x))$: فإن الدالة المجال $x\mapsto cos(f(x))$ متصلة على المجال المجال
 - I المجال المتصلة على مجال المجال المجال المجال $x\mapsto \sin(f(x))$ المجال ا

تطبيقي تمرين

•••

- $]1,+\infty[$ المعرفة بمايلي : $f(x)=\sqrt{\frac{3x-1}{x-1}}$ على المجال الدالة $f(x)=\sqrt{\frac{3x-1}{x-1}}$
 - $\mathbb{R} \text{ l. } f(x) = \cos\left(\frac{x-1}{x^2+1}\right) : \text{ l. } f \text{ l. } f \text{ l. } f$
 - 3 صورة مجال بدالة متصلة
 - 1.3 صورة قطعة صورة مجال

خاصية

خاصية مقبولة

. . .

- صورة قطعة بدالة متصلة هي قطعة
- صورة مجال بدالة متصلة هي مجال

ملاحظة

إذا كانت f دالة متصلة على مجال [a,b] فإن [m,M]=([a,b])=(m,m] حيث m هي القيمة الدنيا ل f على [a,b] ، و m هي القيمة القصوى للدالة f على [a,b]

2.3 صورة مجال بدالة متصلة ورتيبة قطعا

لتكن f دالة متصلة ورتيبة قطعًا على مجال I لدينا النتائج التالية :

الججال f(I)	المجال 1	رتابة الدالة f
[f(a), f(b)]	[<i>a</i> , <i>b</i>]	
$f(a), \lim_{x \to b^-} f(x)$	[<i>a</i> , <i>b</i> [I تزایدیة قطعا علی f
$\lim_{x \to a^+} f(x), \lim_{x \to +\infty} f(x)$] <i>a</i> ,+∞[
$\lim_{x \to -\infty} f(x), \lim_{x \to +\infty} f(x)$	\mathbb{R}	
[f(b), f(a)]	[<i>a</i> , <i>b</i>]	
$\lim_{x \to b^{-}} f(x), f(a)$	[a,b[I تناقصية قطعا على f
$\lim_{x \to +\infty} f(x), \lim_{x \to a^+} f(x)$] <i>a</i> ,+∞[
$\lim_{x \to +\infty} f(x), \lim_{x \to -\infty} f(x)$	\mathbb{R}	

4 مبرهنة القيم الوسطية

لتكن f دالة عددية متصلة على مجال [a,b] ينتميان إلى القطعة [m,M] و لكل عدد حقيقي k محصور بين f(a) و f(a) لدينا f(b) و f(a) فإن f(a) و f(a) ينتميان إلى القطعة f(c) و f(c) الدينا f(c) د يوجد على الأقل عنصر f(c) من f(c) المجيث f(c)

مبرهنة القيم الوسطية

مبرهنة

 \cdot I لتكن f دالة متصلة على مجال I و a و b عنصرين من المجال

f(c)=k: كيث (a,b) من (a,b) عنصر من الأقل عنصر (a,b) عنصر (a,b) عنصر الأقل عدد حقيقي

نشاط

نعتبر الدالة f المعرفة على \mathbb{R} ب : x^3-3 و ليكن (C_f) منحناها في معلم متعامد ممنظم $(O, \overrightarrow{i}, \overrightarrow{f})$ منحناها أي معلم متعامد ممنظم (أنظر الشكل جانبه).

- [0,2] بين أن f تزايدية و متصلة على [0,2]
- f([0,2]) أحسب f(0) و f(2) ثم استنتج
- ربين أن المعادلة f(x) = 0 تقبل حلا وحيدا في المجال [0,2]

ملاحظة

إذا كانت f دالة متصلة على مجال [a,b] بحيث f(a) < 0 و f(a) < 0

نتيجة

...

- a,b[في اللأقل حل في a,b] فإن المعادلة a,b0 تقبل على اللأقل حل في a,b1 في المعادلة a,b2 أذا كانت a,b3 دالة متصلة على مجال
- و إذا كانت f(x) = 0 تقبل على اللأقل على الله متصلة و رتيبة قطعا على مجال [a,b]

تطبيقي تمرين

 $f(x) = x^4 + x^2 + 4x - 1$: لتكن f الدالة العددية المعرفة بمايلي اللأقل حل في f(x) = 0 بين أن المعادلة f(x) = 0 تقبل على اللأقل حل في

تطبيقي تمرين

 $f(x) = x^3 + x^2 + 4x - 1$: لتكن f الدالة العددية المعرفة بمايلي العادلة $\left[-1, \frac{1}{2}\right]$ بين أن المعادلة f(x) = 0 تقبل حلا وحيدا في

5 طريقة التفرع الثنائي

نشاط

 $f(x) = x^3 + x + 1$: is its interest is its interest in the state of the state of

- [0,1] يين أن f متصلة على [0,1]
- بين أن المعادلة f(x)=0 تقبل حلا وحيدا α محصورا بين 0 و 1
 - $\alpha \in \left[\frac{1}{2}, 1\right]$ أحسب $f\left(\frac{1}{2}\right)$ وتحقق أن
 - $\alpha \in \left[\frac{1}{2}, \frac{3}{4}\right]$ أحسب $f\left(\frac{3}{4}\right)$ وتحقق أن $\left(\frac{3}{4}\right)$

- $\alpha \in \left[\frac{5}{8}, \frac{3}{4}\right]$ أحسب $f\left(\frac{5}{8}\right)$ وتحقق أن $\left[\frac{5}{8}\right]$
- α أحسب $f\left(\frac{11}{16}\right)$ واستنتج تأطيرا للعدد
- f(0,683) و f(0,683) واستنتج تأطيرا للعدد α

هناك بعض المعادلات من نوع f(x)=0 لا يمكن حلها جبريا ؛ لكن يمكن تحديد قيمة مقربة لحل هذه المعادلة وذلك باستعمال طريقة التفرع الثنائي .

طريقة

[a,b] ليكن f دالة متصلة ورتيبة قطعًا على [a,b] و [a,b] و f(a) إذن يوجد عدد وحيد α حل للمعادلة [a,b] في المجال

- و إذا كان α سعته α فإن $\alpha < b$ فإن $\alpha < b$ وهذا تأطير ل α سعته $\alpha < b$ فإن $\alpha < b$ فإن $\alpha < b$ فإن $\alpha < b$ فإن $\alpha < b$ فيحصل على تاطير سعته بتعويض $\alpha < b$ فيحصل على تاطير سعته $\alpha < b$ فيحصل على تاطير سعته بتعويض $\alpha < b$
- وهذا تأطير ل م سعته $a<\alpha<\frac{a+b}{2}$ فإن $f(a)f(\frac{a+b}{2})<0$ وهذا تأطير ل م سعته $\frac{b-a}{4}$ سعته $\frac{b-a}{4}$ فنحصل على تاطير سعته $\frac{a+b}{2}$...

نعيد هذه العملية ككل إلى أن نحصل على التأطير المرغوب فيه

تطبيقي تمرين

 $\frac{1}{8}$ سعته α سعته α على المعادلة α حدد تأطيرا للعدد α سعته α سعته α بين أن المعادلة α تقبل حلا وحيدا

6 الدالة العكسية لدالة متصلة

1.6 الدالة العكسية

نشاط

 $f(x) = x^3 + x^2 + 4x - 1$: ب $[0, +\infty]$ بالدالة العددية المعرفة على الدالة العددية المعرفة على العربة العربة

- $[0,+\infty]$ بين أن f تزايدية قطعا على
 - $f([0,+\infty[)\subset [-1,+\infty[$ أن]
- $x = \frac{1}{2}\sqrt{y+1}$ و أن كل عنصر y من $[0,+\infty[$ يقبل سابق وحيد x من $[0,+\infty[$ و أن y عنصر y

ملاحظة

• • •

- كل عنصر من]∞+,0] له صورة وحيدة في]∞+,1-] و كل عنصر من]∞+,1-] له سابق وحيد في]∞+,0
 - $[-1,+\infty]$ نقول إن f تقابل من $[0,+\infty]$ نحو •
- و توجد دالة وحيدة يرمز لها ب f^{-1} معرفة على f^{-1} ب f^{-1} ب وتسمى الدالة العكسية للدالة وحيدة يرمز لها ب

خاصة

I إذا كانت f دالة متصلة ورتيبة قطعا على مجال I فإن لكل عنصر V من I = f(I) المعادلة I تقبل حلا وحيدا في I نعبر عن هذا بقولنا I تقابل من I نحو I

تعریف

I من I دالة متصلة ورتيبة قطعا على مجال I و I مجال حيث I حيث I الدالة التي تربط كل عنصر I بالعنصر الوحيد I من I من I حيث I تسمى الدالة العكسية للدالة I نرمز لها بI أن من I الدالة العكسية للدالة I نرمز لها ب

لتكن f دالة متصلة ورتيبة قطعا على مجال I و f^{-1} دالتها العكسية لدينا :

- $(\forall y \in J) \ (\exists! x \in I) : f(x) = y \Leftrightarrow x = f^{-1}(y)$
 - $(\forall x \in I) : (f^{-1} \circ f)(x) = x \bullet$
 - $(\forall y \in J) : (f \circ f^{-1})(y) = y \quad \bullet$

تطبيقي تمرين

 $f(x) = \sqrt{x-1}$: نعتبر الدالة f المعرفة ب

- $[1,+\infty]$ بين أن f متصلة ورتيبة قطعا على $[0,+\infty]$
- استنثج أن f تقبل دالة عكسية معرفة على مجال f يجب تحديده
 - J من $f^{-1}(x)$ من f

تطبيقي تمرين

 $f(x) = x^2$: بالدالة f المعرفة على إ ∞ , المعرفة على المعرفة المعرفة

- $J = [0, +\infty]$ بين أن f تقابل من $[0, +\infty]$ بين أن
 - f الدالة العكسية للدالة f^{-1}
- ? أنشئ في نفس المعلم المتعامد الممنظم (O,\vec{i},\vec{j}) المستقيم (O,\vec{i},\vec{j}) و $(\mathscr{C}_{f^{-1}})$ ماذا تلاحظ

2.6 خاصات الدالة العكسة

نشاط

لتكن f دالة متصلة ورتيبة قطعًا على مجال I و f^{-1} دالتها العكسية :

- J = f(I) الدالة f^{-1} معرفة ومتصلة على
- و لما نفس منحى تغير الدالة f^{-1} رتيبة قطعًا على J=f(I) و لها نفس منحى تغير الدالة f
- y=x منحنى الدالة f بالنسبة للمستقيم ذو المعادلة f متماثل مع منحنى الدالة f بالنسبة للمستقيم ذو المعادلة y=x

n دالة الجذر من الرتبة 7

خاصية

 $f(x) = x^n \ n \in \mathbb{N}^*$: ب $I = [0, +\infty[$ على $] = [0, +\infty[$ بين أن $] = [0, +\infty[$ على مجال $] = [0, +\infty[$ بين أن $] = [0, +\infty[$ على مجال $] = [0, +\infty[$ بين أن $] = [0, +\infty[$ على مجال $] = [0, +\infty[$ بين أن $] = [0, +\infty[$ على مجال $] = [0, +\infty[$ بين أن $] = [0, +\infty[$ على مجال $] = [0, +\infty[$ بين أن $] = [0, +\infty[$ على مجال $] = [0, +\infty[$ بين أن $] = [0, +\infty[$ على مجال $] = [0, +\infty[]]$

J = f(I) = 1 معرفة على f^{-1} معرفة على الدالة f^{-1} معرفة على الدالة f^{-1} معرفة على f^{-1} معرفة على f^{-1} معرفة على الدالة $f(x) = x^n$ أن الدالة $f(x) = x^n$ معرفة على الدالة عكسية f^{-1} معرفة على f^{-1} معرفة على الدالة عكسية f^{-1} معرفة على الدالة عكسية الدالة على الدالة عكسية الدالة ال

خاصية و تعريف

•••

- n الدالة العكسية f^{-1} تسمى دالة الجذر من الرتبة f^{-1}
 - $f^{-1} = v$ بالدالة العكسية f^{-1} يرمن لها ب
- $f^{-1}(x) = \sqrt[n]{x} = x^{\frac{1}{n}}$ أو أيضا $f^{-1}(x) = \sqrt[n]{x}$ •

ملاحظة

• • •

- $f^{-1}(x) = \sqrt[1]{x} = x : n = 1$ also
- $\left(= \frac{1}{2} \right) f^{-1}(x) = \sqrt[1]{2} = \sqrt{x} = x^{\frac{1}{3}} : n = 2$ حالة = 2
 - (الجذر مكعب) $f^{-1}(x) = \sqrt[1]{3} = x^{\frac{1}{3}}$: n = 3

خاصية

• • •

- f(x)=في معلم متعامد ممنظم ($\mathscr{C}_{f^{-1}}$) منحنى الدالة و معلم متعامد ممنظم الدالة $f(x)=x^n$ بالنسبة للمنصف $\sqrt[n]{x}$
 - $((\Delta): y = x$ الأول (المستقيم

 $\sqrt[n]{1} = 1$ • $\sqrt[n]{0} = 0$ •

- $(\sqrt[n]{x})^n = x \quad \bullet \quad (\forall x \ge 0) \quad \sqrt[n]{x^n} = x \quad \bullet$
 - $\lim_{x \to +\infty} \sqrt[n]{x})^n = +\infty \quad \bullet$

...

 $(\forall a \in \mathbb{R}^+) \ (\forall b \in \mathbb{R}^+) : \sqrt[n]{a} \le \sqrt[n]{b} \Leftrightarrow a \le b \bullet$

 $(\forall a \in \mathbb{R}^+) \ (\forall b \in \mathbb{R}^+) : \sqrt[n]{a} = \sqrt[n]{b} \Leftrightarrow a = b \bullet$

 $\sqrt[5]{32} = \sqrt[5]{2^5} = 2$ 4 $\sqrt[3]{27} = \sqrt[3]{3^3} = 3$

نطبيقي تمرين

 $x^3=-8$; $x^4=81$; $x^6=-9$; $x^3=5$: المعادلات التالية : 3=-8

لیکن x و y عنصرین من \mathbb{R}^+ و m و m عنصرین من \mathbb{R}^+ لدینا :

$$\sqrt[n]{x} \times \sqrt[n]{y} = \sqrt[n]{xy}$$

$$(\sqrt[n]{x})^m = \sqrt[n]{x^m} \quad \bullet$$

$$(y \neq 0) : \sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}} \bullet$$

$$\sqrt[n]{\sqrt[m]{x}} = \sqrt[nm]{x}$$
 $\sqrt[n]{x} = \sqrt[nm]{x^m}$ •

تطبيقي تمرين

$$A = \frac{{}^{15}\sqrt{3^5} \times \sqrt[3]{9} \times \sqrt[3]{9^5}}{\sqrt[3]{3}}$$
 : حسب وبسط العدد A

1.7 القوة الجذرية لعدد حقيقي موجب

تعريف

$$(p,q)\in \mathbb{N}^{*2}$$
 $r=rac{p}{q}$ حيث x عدد حقيقي موجب قطعا و x عددا جذريا غير منعدم حيث $x^{rac{p}{q}}=\sqrt[p]{x^q}$: و المعرفة بمايلي $x^{rac{p}{q}}=\sqrt[p]{x^q}$ القوة الجذرية للعدد الحقيقي x ذات الأساس x هي العدد الحقيقي x^r

مثال

$$\sqrt[3]{x^2} = x^{\frac{2}{3}}$$
 $\sqrt[4]{x^5} = x^{\frac{5}{2}}$ $\sqrt[6]{x} = x^{\frac{1}{n}}$

خاصية

لیکن r و r عددین جذریین و a و b عددین حقیقیین موجبین قطعا لدینا :

$$a^r a^{r'} = a^{r+r'} \bullet \frac{a^r}{b^{r'}} = a^{r-r'} \bullet$$

$$= a^{r-r'} \bullet \qquad (a^r)^{r'} = a^{rr'} \bullet$$

$$\frac{a^r}{b^r} = \left(\frac{a}{b}\right)^r \quad \bullet \qquad \qquad \frac{1}{a^r} = a^{-r} \quad \bullet \qquad \qquad a^r b^r = (ab)^r \quad \bullet$$

تطبيقي تمرين

$$B = \frac{\sqrt[3]{7} \times 7^{\frac{2}{3}}}{7^{-\frac{1}{4}}}$$
 بسط العددين $A = \left(2^{-\frac{1}{3}}\right)^5 \times \left(4^{-\frac{1}{2}}\right) \times \left(8^{\frac{2}{3}}\right)$: بسط العددين