Neural Networks

Matt R

June 27, 2022

Contents

Ι	Nε	eural Networks and Deep Learning	2
1	Logistic Regression		3
	1.1	The Gradient	4
	1.2	The Gradient	5
	1.3	Implementation in Python via numpy	6
	1.4	Implementation in Python via sklearn	10
2	Neural Networks: A Single Hidden Layer		12
	2.1	Backward Propagation	14
	2.2	Activation Functions	18
		2.2.1 The Sigmoid Function	18
		2.2.2 The Hyperbolic Tangent Function	19
		2.2.3 The Rectified Linear Unit Function	19
		2.2.4 The Softmax Function	20
	2.3	Binary Classification - An Example	21
		2.3.1 Random Initialization	22
3	Deep Neural Networks		23
	3.1	Backward Propagation	23
	3.2	Implementation in Python via numpy	24
	3.3	Implementation in Python via tensorflow	29
	3.4	Better Backpropagation	30

Part I Neural Networks and Deep Learning

1 Logistic Regression

We begin with a review of binary classification and logistic regression. To this end, suppose we have we have training examples $x \in \mathbb{R}^{n \times N}$ with binary labels $y \in \{0,1\}^{1 \times N}$. We desire to train a model which yields an output a which represents

$$a = \mathbb{P}(y = 1|x).$$

To this end, let $\sigma: \mathbb{R} \to (0,1)$ denote the sigmoid function, i.e.,

$$\sigma(z) = \frac{1}{1 + e^{-z}},$$

and let $w \in \mathbb{R}^{1 \times n}$, $b \in \mathbb{R}$, and let

$$a = \sigma(wx + b).$$

To analyze the accuracy of model, we need a way to compare y and a, and ideally this functional comparison can be optimized with respect to (w, b) in such a way to minimize the error. To this end, we note that

$$\mathbb{P}(y|x) = a^y (1-a)^{1-y},$$

or rather

$$\mathbb{P}(y=1|x)=a, \qquad \mathbb{P}(y=0|x)=1-a,$$

so $\mathbb{P}(y|x)$ represents the corrected probability. Now since we want

$$a \approx 1$$
 when $y = 1$,

and

$$a \approx 0$$
 when $y = 0$.

and $0 \le a \le 1$, any error using differences won't be refined enough to analyze when tuning the model. Moreover, since introducing the sigmoid function, our usual mean-squared-error function won't be convex. This leads us to apply the log function, which when restricted to (0,1) is a bijective mapping of $(0,1) \to (-\infty,0)$. This leads us to define our log-loss function

$$L(a, y) = -\log(\mathbb{P}(y|x))$$

= $-\log(a^{y}(1-a)^{1-y})$
= $-[y\log(a) + (1-y)\log(1-a)],$

and finally, since we wish to analyze how our model performs on the entire training set, we need to average our log-loss functions to obtain our cost function $\mathbb J$ defined by

$$\mathbb{J}(w,b) = \frac{1}{n} \sum_{j=1}^{n} \mathbb{L}(a_j, y_j)
= -\frac{1}{n} \sum_{j=1}^{n} \left[y_j \log(a_j) + (1 - y_j) \log(1 - a_j) \right]
= -\frac{1}{n} \sum_{j=1}^{n} \left[y_j \log(\sigma(wx_j + b)) + (1 - y_j) \log(1 - \sigma(wx_j + b)) \right].$$

1.1 The Gradient

We wish to compute the gradient of our cost function \mathbb{J} with respect to our trainable parameters, $w \in \mathbb{R}^{1 \times n}$ and $b \in \mathbb{R}$. To this end, we define the functions

$$\phi: \mathbb{R}^{1 \times n} \times \mathbb{R}^n \to \mathbb{R}, \qquad \phi(w, x) = wx,$$

and

$$\psi: \mathbb{R} \times \mathbb{R} \to \mathbb{R}, \qquad \psi(b, u) = u + b.$$

Then our logistic regression model for a single example follows the following network layout:

$$\mathbb{R}^{1\times n} \qquad \mathbb{R} \qquad \{0,1\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

Let's now analyze our differentials for this type of composition.

$$\mathbb{R}^{1 \times n} \qquad \mathbb{R} \qquad \{0, 1\}$$

$$r_1 \uparrow \qquad \overline{r}_1 \uparrow \qquad \qquad \boxed{\sigma} \stackrel{a}{\longrightarrow} \mathbb{L} \longrightarrow \mathbb{R}$$

1.2 The Gradient

To compute the gradient of our cost function \mathbb{J} , we first write \mathbb{J} as a sum of compositions as follows: We have the log-loss function considered as a map $\mathbb{L}:(0,1)\times\mathbb{R}\to\mathbb{R}$,

$$\mathbb{L}(a, y) = -[y \log(a) + (1 - y) \log(1 - a)],$$

we have the sigmoid function $\sigma: \mathbb{R} \to (0,1)$ with $\sigma(z) = a$ and $\sigma'(z) = a(1-a)$, and we have the collection of affine-functionals $\phi_x: \mathbb{R}^{1\times m} \times \mathbb{R} \to \mathbb{R}$ given by

$$\phi_x(w,b) = wx + b,$$

for which we fix an arbitrary $x \in \mathbb{R}^m$ and write $\phi = \phi_x$, and set $z = \phi(w, b)$. Finally, we introduce the auxiliary function $\mathcal{L} : \mathbb{R}^{1 \times m} \times \mathbb{R} \to \mathbb{R}$ given by

$$\mathcal{L}(w,b) = \mathbb{L}(\sigma(\phi(w,b)), y).$$

Then by the chain rule, we have that

$$d\mathcal{L}_{(w,b)} = d_a \mathbb{L}_{(a,y)} \circ d\sigma_z \circ d\phi_{(w,b)}$$

$$= \left[-\frac{y}{a} + \frac{1-y}{1-a} \right] \cdot a(1-a) \cdot \begin{bmatrix} x^T & 1 \end{bmatrix}$$

$$= \left[-y(1-a) + a(1-y) \right] \cdot \begin{bmatrix} x^T & 1 \end{bmatrix}$$

$$= (a-y) \begin{bmatrix} x^T & 1 \end{bmatrix}$$

Moreover, for function $f: \mathbb{R}^N \to \mathbb{R}$ in Euclidean space, we have that $\nabla f = (df)^T$, and hence that

$$\nabla \mathcal{L}(w, b) = (a - y) \begin{bmatrix} x \\ 1 \end{bmatrix},$$

or rather

$$\partial_w \mathbb{L}(a, y) = (a - y)x, \qquad \partial_b \mathbb{L}(a, y) = a - y.$$

Finally, since our cost function $\mathbb J$ is the sum-log-loss, we have by linearity that

$$\partial_w \mathbb{J}(w, b) = \frac{1}{n} \sum_{j=1}^n (a_j - y_j) x_j$$
$$= \frac{1}{n} ((a - y) \cdot x^T)^T$$
$$= \frac{1}{n} x \cdot (a - y)^T$$

Composition turns into matrix multiplication in the tangent space. and

$$\partial_b \mathbb{J}(w,b) = \frac{1}{n} \sum_{j=1}^n (a_j - y_j).$$

1.3 Implementation in Python via numpy

Here we include the general method of coding a logistic regression model with L^2 -regularization via the classical numpy library.

```
1 #! python3
з import numpy as np
5 from mlLib.utils import apply_activation
  class LinearParameters():
      def __init__(self, dims, bias=True, seed=1):
          Parameters:
10
           -----
11
          dims : tuple(int, int)
12
           bias : Boolean
13
               Default : True
           seed : int
15
               Default : 1
17
          Returns:
           _____
19
          None
20
21
          np.random.seed(seed)
           self.dims = dims
23
           self.bias = bias
           self.w = np.random.randn(*dims) * 0.01
25
               self.b = np.zeros((dims[0], 1))
27
28
      def forward(self, x):
29
30
           Parameters:
31
           _____
32
           x : array_like
34
          Returns:
35
           _____
36
          z : array_like
```

```
,, ,, ,,
38
           z = np.einsum('ij,jk', self.w, x)
39
           if self.bias:
40
                z += self.b
41
42
           return z
43
44
       def backward(self, dz, x):
45
46
           Parameters:
47
           -----
48
           dz : array_like
49
           x : array_like
50
51
           Returns:
52
           -----
53
54
           None
           ,, ,, ,,
55
           if self.bias:
56
                self.db = np.sum(dz, axis=1, keepdims=True)
57
                assert (self.db.shape == self.b.shape)
58
59
           self.dw = np.einsum('ij,kj', dz, x)
60
           assert (self.dw.shape == self.w.shape)
61
62
       def update(self, learning_rate=0.01):
63
64
           Parameters:
65
66
           learning_rate : float
67
                Default: 0.01
68
69
           Returns:
70
           _____
71
           None
72
73
           w = self.w - learning_rate * self.dw
74
75
           self.w = w
76
           if self.bias:
77
                b = self.b - learning_rate * self.db
78
                self.b = b
79
80
81 class LogisticRegression():
       def __init__(self, lp_reg):
82
83
           Parameters:
```

```
lp_reg : int
85
                2 : L_2 Regularization is imposed
86
                1 : L_1 Regularization is imposed
87
                0 : No regulariation is imposed
88
89
            Returns:
90
            -----
91
            None
92
            11 11 11
93
            self.lp_reg = lp_reg
94
95
       def predict(self, params, x):
96
97
            Parameters:
98
            _____
99
            params : class[LinearParameters]
100
101
            x : array_like
102
            Returns:
103
104
            a : array_like
105
            dg : array_like
106
            11 11 11
107
            z = params.forward(x)
108
            a, dg = apply_activation(z, 'sigmoid')
109
            return a, dg
110
111
       def cost_function(self, params, x, y, lambda_=0.01, eps=1e-8):
112
113
            Parameters:
114
115
            params : class[LinearParameters]
116
            x : array_like
117
            y : array_like
118
            lambda_ : float
119
                Default: 0.01
120
            eps : float
121
                Default : 1e-8
122
123
            Returns:
124
125
            cost : float
126
127
            n = y.shape[1]
128
            R = np.sum(np.abs(params.w) ** self.lp_reg)
130
            R *= (lambda_ / (2 * n))
131
```

```
132
            a, _ = self.predict(params, x)
133
            a = np.clip(a, eps, 1 - eps)
134
135
            J = (-1 / n) * (np.sum(y * np.log(a) + (1 - y) * np.log(1 - a)))
136
137
            cost = float(np.squeeze(J + R))
139
140
            return cost
141
       def fit(self, x, y, learning_rate=0.1, lambda_=0.01, seed=1, num_iters=10000):
142
143
            Parameters:
144
145
            x : array_like
146
            y : array_like
147
            learning_rate : float
148
                Default : 0.1
149
            lambda_ : float
150
                Default: 0.0
151
            num_iters : int
152
                Default : 10000
154
            Returns:
155
            -----
156
            costs : List[floats]
157
            params : class[Parameters]
158
159
            dims = (y.shape[0], x.shape[0])
160
            n = x.shape[1]
161
            params = LinearParameters(dims, True, seed)
162
163
            if self.lp_reg == 0:
164
                lambda_{-} = 0.0
165
166
            costs = []
167
            for i in range(num_iters):
168
                a, _ = self.predict(params, x)
169
                cost = self.cost_function(params, x, y, lambda_)
170
                costs.append(cost)
171
                dz = (a - y) / n
172
                params.backward(dz, x)
173
                params.update(learning_rate)
174
175
                if i % 1000 == 0:
176
                     print(f'Cost_after_iteration_{i}:_{cost}')
177
178
```

```
return params
179
180
       def evaluate(self, params, x):
181
182
            Parameters:
183
184
            params : class[Parameters]
            x : array_like
186
187
            Returns:
188
            _____
189
            y_hat : array_like
190
191
            a, _ = self.predict(params, x)
192
            y_hat = (\sim(a < 0.5)).astype(int)
193
194
            return y_hat
195
196
       def accuracy(self, params, x, y):
197
198
            Parameters:
199
200
            params : class[Parameters]
201
            x : array_like
202
            y : array_like
203
204
            Returns:
205
206
            accuracy : float
207
208
            y_hat = self.evaluate(params, x)
209
210
            accuracy = np.sum(y_hat == y) / y.shape[1]
211
            return accuracy
213
```

1.4 Implementation in Python via sklearn

Here we include the general method of coding a logistic regression model via scikit-learn's modeling library.

```
1 #! python3
2
3 import pandas as pd
4 import numpy as np
5 from sklearn.model_selection import train_test_split
```

```
6 from sklearn.linear_model import LogisticRegression
8 def main(csv):
      df = pd.read_csv(csv)
      dataset = df.values
10
      x = dataset[:, :10]
11
      y = dataset[:, 10]
12
13
      x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
      mu = np.mean(x, axis=0, keepdims=True)
15
      var = np.var(x, axis=0, keepdims=True)
      x_train = (x_train - mu) / np.sqrt(var)
17
      x_{test} = (x_{test} - mu) / np.sqrt(var)
18
19
      log_reg = LogisticRegression()
20
      log_reg.fit(x_train, y_train)
21
      train_acc = log_reg.score(x_train, y_train)
      print(f'The_accuracy_on_the_training_set:_{train_acc}.')
23
      test_acc = log_reg.score(x_test, y_test)
      print(f'The_accuracy_on_the_test_set:_{test_acc}.')
```

2 Neural Networks: A Single Hidden Layer

Suppose we wish to consider the binary classification problem given the training set (x, y) with $x \in \mathbb{R}^{m_0 \times n}$ and $y \in \{0, 1\}^{1 \times n}$. Usually with logistic regression we have the following type of structure:

$$[x^1, ..., x^{m_0}] \xrightarrow{\varphi} [z] \xrightarrow{g} [a] \xrightarrow{=} \hat{y},$$

where

$$z = \varphi(x) = w^T x + b,$$

is our affine-linear transformation, and

$$a = g(z) = \sigma(z)$$

is our sigmoid function. Such a structure will be called a *network*, and the [a] is known as the *activation node*. Logistic regression can be too simplistic of a model for many situations, e.g., if the dataset isn't linearly separable (i.e., there doesn't exist some well-defined decision boundary built from a linear-surface), then logistic regression won't give a high-accuracy model. To modify this model to handle more complex situations, we introduce a new "hidden layer" of nodes with their own (possibly different) activation functions. That is, we consider a network of the following form:

$$\underbrace{\begin{bmatrix} x^1 \\ \vdots \\ x^{m_0} \end{bmatrix}}_{\text{Laver 0}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_1} \end{bmatrix}}_{\text{Laver 1}} \xrightarrow{g^{[1]}} \underbrace{\begin{bmatrix} a^{[1]1} \\ \vdots \\ a^{[1]m_1} \end{bmatrix}}_{\text{Laver 2}} \xrightarrow{\varphi^{[2]}} \underbrace{[z^{[2]}]}_{\text{Layer 2}} \xrightarrow{g^{[2]}} \hat{y},$$

where

$$\varphi^{[1]}: \mathbb{R}^{m_0} \to \mathbb{R}^{m_1}, \qquad \varphi^{[1]}(x) = W^{[1]}x + b^{[1]},
\varphi^{[2]}: \mathbb{R}^{m_1} \to \mathbb{R}, \qquad \varphi^{[2]}(x) = W^{[2]}x + b^{[2]},$$

and $W^{[1]} \in \mathbb{R}^{m_1 \times m_0}, W^{[2]} \in \mathbb{R}^{1 \times m_1}, b^{[1]} \in \mathbb{R}^{m_1}, b^{[2]} \in \mathbb{R}$, and $g^{[\ell]}$ is a broad-casted activator function (e.g., the sigmoid function $\sigma(z)$, or $\tanh(z)$, or $\operatorname{ReLU}(z)$). Such a network is called a 2-layer neural network where x is the input layer (called layer-0), $a^{[1]}$ is a hidden layer (called layer-1), and $a^{[2]}$ is the output layer (called layer-2).

Definition 2.1. Suppose $g : \mathbb{R} \to \mathbb{R}$ is any function. Then we say $G : \mathbb{R}^m \to \mathbb{R}^m$ is the **broadcast** of g from \mathbb{R} to \mathbb{R}^m if

$$G(v) = G(v^i e_i)$$
$$= g(v^i)e_i,$$

where $v \in \mathbb{R}^m$ and $\{e_i : 1 \le i \le m\}$ is the standard basis for \mathbb{R}^m . In practice, we will write g = G for a broadcasted function, and let the context determine the meaning of g.

castingDifferential

Lemma 2.2. Suppose $g: \mathbb{R} \to \mathbb{R}$ is any smooth function and $G: \mathbb{R}^m \to \mathbb{R}^m$ is the broadcasting of g from \mathbb{R} to \mathbb{R}^m . Then the differential $dG_z: T_z\mathbb{R}^m \to T_{G(z)}\mathbb{R}^m$ is given by

$$dG_z(v) = [g'(z^i)] \odot [v^i],$$

where \odot is the Hadamard product (also know as component-wise multiplication), and has matrix-representation in $\mathbb{R}^{m \times m}$ given by

$$[dG_z]_j^i = \delta_j^i g'(z^i).$$

Proof: We calculate

$$dG_z(v) = \frac{d}{dt}\Big|_{t=0} G(z+tv)$$

$$= \frac{d}{dt}\Big|_{t=0} (g(z^i+tv^i))$$

$$= (g'(z^i)v^i)$$

$$= [g'(z^i)] \odot [v^i],$$

and letting $e_1, ... e_m$ denote the usual basis for $T_z \mathbb{R}^m$ (identified with \mathbb{R}^m), we see that

$$dG_z(e_j) = [g'(z^i)] \odot e_j$$

= $g'(z^j)e_j$,

from which conclude that dG_z is diagonal with (j, j)-th entry $g'(z^j)$ as desired.

Returning to our network, let us lay out all of these functions explicitly (in the Smooth Category) as to facilitate our later computations for our cost function and our gradients. To this end:

$$\varphi^{[1]}: \mathbb{R}^{m_0} \to \mathbb{R}^{m_1}, \qquad d\varphi^{[1]}: T\mathbb{R}^{m_0} \to T\mathbb{R}^{m_1},
z^{[1]} = \varphi^{[1]}(x) = W^{[1]}x + b^{[1]}, \qquad d\varphi^{[1]}_x(v) = W^{[1]}v;$$

$$g^{[1]}: \mathbb{R}^{m_1} \to \mathbb{R}^{m_1}, \qquad dg^{[1]}: T\mathbb{R}^{m_1} \to T\mathbb{R}^{m_1},$$

$$a^{[1]} = g^{[1]}(z^{[1]}), \qquad \frac{\partial a^{[1]\mu}}{\partial z^{[1]\nu}} = \delta^{\mu}_{\nu} g^{[1]\prime}(z^{[1]\mu});$$

$$\varphi^{[2]}: \mathbb{R}^{m_1} \to \mathbb{R}^{m_2}, \qquad d\varphi^{[2]}: T\mathbb{R}^{m_1} \to T\mathbb{R}^{m_2},$$

$$z^{[2]} = \varphi^{[2]}(a^{[1]}) = W^{[2]}a^{[1]} + b^{[2]}, \qquad d\varphi^{[2]}: T\mathbb{R}^{m_2} \to T\mathbb{R}^{m_2},$$

$$g^{[2]}: \mathbb{R}^{m_2} \to \mathbb{R}^{m_2}, \qquad dg^{[2]}: T\mathbb{R}^{m_2} \to T\mathbb{R}^{m_2},$$

$$a^{[2]} = g^{[2]}(z^{[2]}), \qquad \frac{\partial a^{[2]\mu}}{\partial z^{[2]\nu}} = \delta^{\mu}_{\nu} g^{[2]\prime}(z^{[2]\mu}).$$

That is, given an input $x \in \mathbb{R}^{m_0}$, we get a predicted value $\hat{y} \in \mathbb{R}^{m_2}$ of the form

$$\hat{y} = g^{[2]} \circ \varphi^{[2]} \circ g^{[1]} \circ \varphi^{[1]}(x).$$

This compositional function is known as forward propagation.

2.1 Backward Propagation

Since we wish to optimize our model with respect to our parameter $W^{[\ell]}$ and $b^{[\ell]}$, we consider a generic loss function $\mathbb{L}: \mathbb{R}^{m_2} \times \mathbb{R}^{m_2} \to \mathbb{R}$, $\mathbb{L}(\hat{y}, y)$, and by acknowledging the potential abuse of notation, we assume y is fixed, and consider the aforementioned as a function of a single-variable

$$\mathbb{L}_y: \mathbb{R}^{m_2} \to \mathbb{R}, \qquad \mathbb{L}_y(\hat{y}) = \mathbb{L}(\hat{y}, y).$$

We also define the function

backPropDerivation

$$\Phi(A, u, \xi) = A\xi + u,$$

and note that we're suppressing a dependence on the layer ℓ which only affects our domain and range of Φ (and not the actual calculations involving the derivatives). Moreover, in coordinates we see that

$$\frac{\partial \Phi^{i}}{\partial A^{\mu}_{\nu}} = \frac{\partial}{\partial A^{\mu}_{\nu}} (A^{i}_{j} \xi^{j} + u^{i})$$
$$= (\delta^{i}_{\mu} \delta^{\nu}_{j} \xi^{j})$$
$$= \delta^{i}_{\mu} \xi^{\nu};$$

$$\frac{\partial \Phi^{i}}{\partial u^{\mu}} = \frac{\partial}{\partial u^{\mu}} (A_{j}^{i} \xi^{j} + u^{i})$$
$$= \delta_{\mu}^{i};$$

and

$$\frac{\partial \Phi^{i}}{\xi^{\mu}} = \frac{\partial}{\partial \xi^{\mu}} (A_{j}^{i} \xi^{j} + u^{i})$$
$$= A_{j}^{i} \delta_{\mu}^{j}$$
$$= A_{\mu}^{i}.$$

We now define the compositional function

$$F: \mathbb{R}^{m_2 \times m_1} \times \mathbb{R}^{m_2} \times \mathbb{R}^{m_1 \times m_0} \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_0} \to \mathbb{R}$$

given by

$$F(C, c, B, b, x) = \mathbb{L}_y \circ g^{[2]} \circ \Phi \circ (\mathbb{1}_{\mathbb{R}^{m_2 \times m_1}} \times \mathbb{1}_{\mathbb{R}^{m_2}} \times (g^{[1]} \circ \Phi))(C, c, B, b, x).$$

We first introduce an error term $\delta^{[2]} \in \mathbb{R}^{m_2}$ defined by

$$\delta^{[2]} := \nabla (\mathbb{L}_y \circ g^{[2]})(z^{[2]})$$
$$= (d\mathbb{L}_y \circ g^{[2]})_{z^{[2]}})^T.$$

Now we calculate the gradient $\frac{\partial F}{\partial C}$ in coordinates by

$$\frac{\partial F}{\partial C_{\nu}^{\mu}} = \frac{\partial}{\partial C_{\nu}^{\mu}} \left[\mathbb{L}_{y} \circ g^{[2]} \circ \Phi(C, c, a^{[1]}) \right]
= \sum_{j=1}^{m_{2}} \delta^{[2]j} \frac{\partial}{\partial C_{\nu}^{\mu}} (C_{i}^{j} a^{[1]i} + c^{j})
= \sum_{j=1}^{m_{2}} \delta^{[2]j} \delta_{\mu}^{j} a^{[1]\nu}
= \delta^{[2]}{}_{\mu} a^{[1]\nu}
= [a^{[1]} \delta^{[2]T}]_{\mu}^{\nu}$$

and hence that

$$\frac{\partial F}{\partial C} = \left[\frac{\partial F}{\partial C_{\nu}^{\mu}}\right]^{T}$$
$$= \left[\delta_{\mu}^{[2]} a^{[1]\nu}\right]^{T}$$
$$= \delta^{[2]} a^{[1]T}.$$

Moreover, we also calculate

$$\frac{\partial F}{\partial c^{\mu}} = \sum_{i=1}^{m_2} \delta^{[2]j} \delta^j_{\mu},$$

and hence that

$$\frac{\partial F}{\partial c} = \delta^{[2]}.$$

Next we introduce another error term $\delta^{[1]} \in \mathbb{R}^{m_1}$ defined by

$$\delta^{[1]} = [dg_{z^{[1]}}^{[1]}]^T C^T \delta^{[2]}$$

with coordinates

$$\begin{split} (\delta^{[1]\mu})^T &= \sum_{i=1}^{m_2} \sum_{j=1}^{m_1} \delta^{[2]i} C^i_j g^{[1]\prime}(z^{[1]j}) \delta^j_\mu \\ &= \sum_{i=1}^{m_2} \delta^{[2]i} C^i_\mu g^{[1]\prime}(z^{[1]\mu}) \end{split}$$

 $d_{z^{[1]}}F$

and now calculate the gradient $\frac{\partial F}{\partial B}$ in coordinates by

$$\begin{split} \frac{\partial F}{\partial B^{\mu}_{\nu}} &= \frac{\partial}{B^{\mu}_{\nu}} \left[\mathbb{L}_{y} \circ g^{[2]} \circ \Phi(C, c, g^{[1]}(Bx + b)) \right] \\ &= \sum_{j=1}^{m_{2}} \delta^{[2]j} \sum_{\rho=1}^{m_{1}} \frac{\partial \Phi^{j}}{\partial \xi^{\rho}} \sum_{\lambda=1}^{m_{1}} \frac{\partial a^{[1]\rho}}{\partial z^{[1]\lambda}} \frac{\partial \Phi^{\lambda}}{\partial B^{\mu}_{\nu}} \\ &= \sum_{j=1}^{m_{2}} \delta^{[2]j} \sum_{\rho=1}^{m_{1}} \frac{\partial \Phi^{j}}{\partial \xi^{\rho}} \sum_{\lambda=1}^{m_{1}} \delta^{\rho}_{\lambda} g^{[1]'}(z^{[1]\rho}) \delta^{\lambda}_{\mu} x^{\nu} \\ &= \sum_{j=1}^{m_{2}} \delta^{[2]j} \sum_{\rho=1}^{m_{1}} \frac{\partial \Phi^{j}}{\partial \xi^{\rho}} \delta^{\rho}_{\mu} g^{[1]'}(z^{[1]\rho}) x^{\nu} \\ &= \sum_{j=1}^{m_{2}} \delta^{[2]j} \sum_{\rho=1}^{m_{1}} C^{j}_{\rho} \delta^{\rho}_{\mu} g^{[1]'}(z^{[1]\rho}) x^{\nu} \\ &= \sum_{j=1}^{m_{2}} \delta^{[2]j} C^{j}_{\mu} g^{[1]'}(z^{[1]\mu}) x^{\nu} \\ &= \delta^{[1]}_{\mu} x^{\nu} \\ &= \left[x \delta^{[1]T} \right]^{\nu}_{\mu}, \end{split}$$

and hence that

$$\frac{\partial F}{\partial B} = \left[\frac{\partial F}{\partial B^{\mu}_{\nu}}\right]^{T}$$
$$= \delta^{[2]} x^{T}.$$

Moreover, from the above calculation, we immediately see that

$$\frac{\partial F}{\partial b^{\mu}} = \delta^{[1]}.$$

In summary, we've computed the following gradients

$$\frac{\partial F}{\partial W^{[2]}} = \delta^{[2]} a^{[1]T}$$

$$\frac{\partial F}{\partial b^{[2]}} = \delta^{[2]}$$

$$\frac{\partial F}{\partial W^{[1]}} = \delta^{[1]} x^{T}$$

$$\frac{\partial F}{\partial b^{[1]}} = \delta^{[1]},$$

where

$$\begin{split} \delta^{[2]} &= [d(\mathbb{L}_y \circ g^{[2]})_{z^{[2]}}]^T \\ \delta^{[1]} &= [dg_{z^{[1]}}^{[1]}]^T C^T \delta^{[2]}. \end{split}$$

Finally, we recall that our cost function \mathbb{J} is the average sum of our loss function \mathbb{L} over our training set, we get that

$$\mathbb{J}(W^{[2]}, b^{[2]}, W^{[1]}, b^{[1]}) = \frac{1}{n} \sum_{i=1}^{n} F(W^{[2]}, b^{[2]}, W^{[1]}, b^{[1]}, x_j),$$

and hence that

$$\begin{split} &\frac{\partial \mathbb{J}}{\partial W^{[2]}} = \frac{1}{n} \sum_{j=1}^{n} \delta^{[2]}{}_{j} a^{[1]}{}_{j}{}^{T} = \frac{1}{n} \delta^{[2]} a^{[1]T} \\ &\frac{\partial \mathbb{J}}{\partial b^{[2]}} = \frac{1}{n} \sum_{j=1}^{n} \delta^{[2]}{}_{j} \\ &\frac{\partial \mathbb{J}}{\partial W^{[1]}} = \frac{1}{n} \sum_{j=1}^{n} \delta^{[1]}{}_{j} x_{j}^{T} = \frac{1}{n} \delta^{[1]} x^{T} \\ &\frac{\partial \mathbb{J}}{\partial b^{[1]}} = \frac{1}{n} \sum_{j=1}^{n} \delta^{[1]}{}_{j} \end{split}$$

2.2 Activation Functions

There are mainly only a handful of activating functions we consider for our non-linearity conditions.

2.2.1 The Sigmoid Function

We have the sigmoid function $\sigma(z)$ given by

$$\sigma : \mathbb{R} \to (0,1), \qquad \sigma(z) = \frac{1}{1 + e^{-z}}.$$

We note that since

$$1 - \sigma(z) = 1 - \frac{1}{1 + e^{-z}}$$
$$= \frac{e^{-z}}{1 + e^{-z}}$$

$$\sigma'(z) = \frac{e^{-z}}{(1 + e^{-z})^2}$$

$$= \frac{1}{1 + e^{-z}} \cdot \frac{e^{-z}}{1 + e^{-z}}$$

$$= \sigma(z)(1 - \sigma(z))$$

Moreover, suppose that $g: \mathbb{R}^m \to \mathbb{R}^m$ is the broadcasting of σ from \mathbb{R} to \mathbb{R}^m , then for $z = (z^1, ..., z^m) \in \mathbb{R}^m$, we have that

$$g(z) = (\sigma(z^i)),$$

and $dg_z: T_z\mathbb{R}^m \to T_{g(z)}\mathbb{R}^m$ given by

$$dg_z(v) = \frac{d}{dt} \Big|_{t=0} g(z + tv)$$

$$= \frac{d}{dt} \Big|_{t=0} (\sigma(z^i + tv^i))$$

$$= (\sigma'(z^i)v^i)$$

$$= (\sigma(z^i)(1 - \sigma(z^i))v^i)$$

$$= g(z) \odot (1 - g(z)) \odot v,$$

where \odot represents the Hadamard product (or component-wise multiplication); or rather, as as a matrix in $\mathbb{R}^{m \times m}$,

$$[dg_z]^{\mu}_{\nu} = \delta^{\mu}_{\nu} \sigma(z^{\mu}) (1 - \sigma(z^{\mu})).$$

2.2.2 The Hyperbolic Tangent Function

We have the hyperbolic tangent function tanh(z) given by

$$\tanh : \mathbb{R} \to (-1, 1), \qquad \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}.$$

We then calculate

$$\tanh'(z) = \frac{(e^z + e^{-z})(e^z + e^{-z}) - (e^z - e^{-z})(e^z - e^{-z})}{(e^z + e^{-z})^2}$$
$$= \frac{(e^z + e^{-z})^2}{(e^z + e^{-z})^2} - \frac{e^z - e^{-z})^2}{(e^z + e^{-z})^2}$$
$$= 1 - \tanh^2(z).$$

Suppose $g: \mathbb{R}^m \to \mathbb{R}^m$ is the broadcasting of tanh from \mathbb{R} to \mathbb{R}^m , then for $z = (z^1, ..., z^m) \in \mathbb{R}^m$, we have that

$$g(z) = (\tanh(z^i)),$$

and $dg_z: T_z\mathbb{R}^m \to T_{g(z)}\mathbb{R}^m$ given by

$$dg_z(v) = [\tanh'(z^i)] \odot [v^i]$$

= $[1 - \tanh^2(z^i)] \odot [v^i]$
= $\delta_i^i (1 - \tanh^2(z^i)) v^j$.

2.2.3 The Rectified Linear Unit Function

We have the leaky-ReLU function $ReLU(z; \beta)$ given by

$$ReLU : \mathbb{R} \to \mathbb{R}, \qquad ReLU(z; \beta) = \max\{\beta z, z\},\$$

for some $\beta > 0$ (typically chosen very small).

We have the rectified linear unit function ReLU(z) given by setting $\beta=0$ in the leaky-ReLu function, i.e.,

$$ReLU : \mathbb{R} \to [0, \infty), \qquad ReLU(z) = ReLU(z; \beta = 0) = \max\{0, z\}.$$

We then calculate

$$ReLU'(z;\beta) = \begin{cases} \beta & z < 0\\ 1 & z \ge 0 \end{cases}$$
$$= \beta \chi_{(-\infty,0)}(z) + \chi_{[0,\infty)}(z),$$

where

$$\chi_A(z) = \begin{cases} 1 & z \in A \\ 0 & z \notin A \end{cases},$$

is the indicator function.

Suppose $g: \mathbb{R}^m \to \mathbb{R}^m$ is the broadcasting of ReLU from \mathbb{R} to \mathbb{R}^m . Then for $z = (z^1, ..., z^m) \in \mathbb{R}^m$, we have that

$$g(z) = \text{ReLU}(z^i; \beta)$$

and $dg_z: T_z\mathbb{R}^m \to T_{g(z)}\mathbb{R}^m$ given by

$$dg_z(v) = [\text{ReLU}'(z^i; \beta)] \odot [v^i]$$

= $\delta_i^i(\beta \chi_{(-\infty,0)}(z^i) + \chi_{[0,\infty)}(z^i))v^j$.

2.2.4 The Softmax Function

We finally have the softmax function softmax(z) given by

softmax:
$$\mathbb{R}^m \to \mathbb{R}^m$$
, softmax $(z) = \frac{1}{\sum_{j=1}^m e^{z^j}} \begin{pmatrix} e^{z^1} \\ e^{z^2} \\ \vdots \\ e^{z^m} \end{pmatrix}$,

which we typically use on our outer-layer to obtain a probability distribution over our predicted labels. Let

$$S^i = x^i \circ \operatorname{softmax}(z),$$

denote the *i*-th component of softmax(z), and so we calculate

$$\begin{split} \frac{\partial S^i}{\partial z^j} &= \frac{\partial}{\partial z^j} \left[\left(\sum_{k=1}^m e^{z^k} \right)^{-1} e^{z^i} \right] \\ &= -\left(\sum_{k=1}^m e^{z^k} \right)^{-2} \left(\sum_{k=1}^m e^{z^k} \delta^k_j \right) e^{z^i} + \left(\sum_{k=1}^m e^{z^k} \right)^{-1} e^{z^i} \delta^i_j \\ &= -\left(\sum_{k=1}^m e^{z^k} \right)^{-2} e^{z^j} e^{z^i} + S^i \delta^i_j \\ &= -S^j S^i + S^i \delta^i_j \\ &= S^i (\delta^i_j - S^j). \end{split}$$

That is, as a map $dS_z: T_z\mathbb{R}^m \to T_{S(z)}\mathbb{R}^m$, we have that

$$dS_z = [S^i(\delta^i_j - S_j)]^i_j,$$

and we make note that dS_z is symmetric.

2.3 Binary Classification - An Example

We return the network given by

$$\underbrace{\begin{bmatrix} x^1 \\ \vdots \\ x^{m_0} \end{bmatrix}}_{\text{Layer 0}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_1} \end{bmatrix}}_{\text{Layer 1}} \xrightarrow{g^{[1]}} \underbrace{\begin{bmatrix} a^{[1]1} \\ \vdots \\ a^{[1]m_1} \end{bmatrix}}_{\text{Layer 2}} \xrightarrow{\varphi^{[2]}} \underbrace{[z^{[2]}]}_{\text{Layer 2}} \xrightarrow{g^{[2]}} \hat{y},$$

and show how such a model would be trained using python below. We assume layer-2 has the sigmoid function (since it's binary classification) as an activator and our hidden layer has the ReLU function as activators.

We note that $m_2 = 1$ since we're dealing with a single activator in this layer, and

$$a^{[2]} = q^{[2]}(z^{[2]}) = \sigma(z^{[2]}).$$

with

$$d(g^{[2]})_{z^{[2]}} = \sigma'(z^{[2]}) = \sigma(z^{[2]})(1 - \sigma(z^{[2]})) = a^{[2]}(1 - a^{[2]}).$$

In layer-1, we have that

$$a^{[1]} = g^{[1]}(z^{[1]}) = \text{ReLU}(z^{[1]}),$$

with

$$d(g^{[1]})_{z^{[1]}} = \left[\delta^{\mu}_{\nu} \chi_{[0,\infty)}(z^{[1]\mu})\right]^{\mu}_{\nu}.$$

Finally, we choose our loss function $\mathbb{L}(\hat{y}, y)$ to be the log-loss function (since we're using the sigmoid activator on the outer-layer), i.e.,

$$\mathbb{L}(\hat{y}, y) = -y \log(\hat{y}) - (1 - y) \log(1 - \hat{y}),$$

or rather

$$\mathbb{L}(x,y) = -y\log(a^{[2]}) - (1-y)\log(1-a^{[2]}).$$

We then have the cost function \mathbb{J} given by

$$\mathbb{J}(W^{[2]}, b^{[2]}, W^{[1]}, b^{[1]}) = \frac{-1}{n} \sum_{j=1}^{n} \left(y_j \log(a^{[2]}_j) + (1 - y_j) \log(1 - a^{[2]}_j) \right) \\
= \frac{-1}{n} \left(\left\langle y, \log(a^{[2]}) \right\rangle + \left\langle 1 - y, \log(1 - a^{[2]}) \right\rangle \right)$$

Moreover, when using backpropagation, we see that

$$\delta^{[2]_{j}^{T}} = d(\mathbb{L}_{y_{j}})_{a^{[2]}} \cdot d(g^{[2]})_{z^{[2]_{j}}}$$

$$= \left(-\frac{y_{j}}{a^{[2]_{j}}} + \frac{1 - y_{j}}{1 - a^{[2]_{j}}}\right) \cdot \left(a^{[2]_{j}}(1 - a^{[2]_{j}})\right)$$

$$= a^{[2]_{j}} - y_{j},$$

or rather

$$\delta^{[2]} = a^{[2]} - y.$$

Similarly, we compute

$$\begin{split} \delta^{[1]}{}_{j}^{T} &= \delta^{[2]}{}_{j}^{T} W^{[2]} [dg^{[1]}_{z^{[1]}{}_{j}}] \\ &= \delta^{[2]}{}_{j}^{T} W^{[2]} [\delta^{\mu}_{\nu} \cdot \chi_{[0,\infty)}(z^{[1]}{}_{j}^{\mu})] \end{split}$$

2.3.1 Random Initialization

In the section that follows, we see that to begin gradient descent for a shallow neural network, we initialize our parameters $b^{[\ell]}$ to be 0, but choose an arbitrarily small, but nonzero initialization for $W^{[\ell]}$. Let's see why we choose $W^{[\ell]}$ to be nonzero. Indeed, suppose we initialize with $b^{[\ell]} = 0$ and $W^{[\ell]} = 0$. Then we see that

$$\delta^{[1]T} = \delta^{[2]}W^{[2]}dg_{z^{[1]}}^{[1]} = 0,$$

and so

$$\frac{\partial \mathbb{J}}{\partial W^{[1]}} = \frac{1}{n} \delta^{[1]} x^T = 0.$$

Then we conclude that our parameter $W^{[1]}$ remains at 0 during every iteration which is enough reason to not initialize $W^{[2]}$ at 0. Similarly, since

$$a^{[1]} = \tanh(W^{[1]}x + b^{[1]}) = \tanh(0) = 0,$$

we reach a similar conclusion about $W^{[1]}$ and $W^{[2]}$, respectively.

3 Deep Neural Networks

In this section we discuss a general "deep" neural network, which consist of L layers. That is, we have a network of the form:

$$\underbrace{\begin{bmatrix} x^{1} \\ \vdots \\ x^{m_{0}} \end{bmatrix}}_{\text{Layer 0}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_{1}} \end{bmatrix}}_{\text{Layer 1}} \xrightarrow{\varphi^{[2]}} \underbrace{\begin{bmatrix} z^{[2]1} \\ \vdots \\ z^{[2]m_{2}} \end{bmatrix}}_{\text{Layer 2}} \xrightarrow{\varphi^{[3]}} \cdots$$

$$\underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[1]m_{1}} \end{bmatrix}}_{\text{Layer 1}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[2]m_{2}} \end{bmatrix}}_{\text{Layer 2}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[1]1} \\ \vdots \\ z^{[L]1} \end{bmatrix}}_{\text{Layer L}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} z^{[L]1} \\ \vdots \\ z^{[L]m_{L}} \end{bmatrix}}_{\text{Layer L}} \xrightarrow{\varphi^{[1]}} \underbrace{\begin{bmatrix} \hat{y}^{1} \\ \vdots \\ \hat{y}^{m_{L}} \end{bmatrix}}_{\text{Layer L}},$$

where

 $m_{\ell} := \text{ the number of nodes in layer-}\ell,$

$$\varphi^{[\ell]}: \mathbb{R}^{m_{\ell-1}} \to \mathbb{R}^{m_{\ell}}, \qquad \varphi^{[\ell]}(\xi) = W^{[\ell]}\xi + b^{[\ell]}, \qquad W^{[\ell]} \in \mathbb{R}^{m_{\ell} \times m_{\ell-1}}, b \in \mathbb{R}^{m_{\ell}},$$

and

$$g^{[\ell]}: \mathbb{R}^{m_\ell} \to \mathbb{R}^{m_\ell},$$

is a broadcasted activation function determined by the layer- ℓ .

As with a shallow network, our functional composition to obtain $a^{[L]}$ is known as forward propagation.

3.1 Backward Propagation

As the general derivation for backpropagation can be easily (if not tediously) generalized from Section 2.1 using induction, we give the general outline for computational purposes.

Let $\mathbb{L}: \mathbb{R}^{m_L} \times \mathbb{R}^{m_L} \to \mathbb{R}$ be a generic loss function, and suppose our cost function is given by the usual

$$\mathbb{J}(W,b) = \frac{1}{n} \sum_{j=1}^{n} \mathbb{L}(\hat{y}_j, y_j).$$

Then from previous computations, we have the following gradients for any

 $\ell \in \{1, 2, ..., L\}$, that

$$\begin{split} \frac{\partial \mathbb{J}}{\partial W^{[\ell]}} &= \frac{1}{n} \delta^{[\ell]} a^{[\ell-1]T} \\ \frac{\partial \mathbb{J}}{\partial b^{[\ell]}} &= \frac{1}{n} \sum_{j=1}^n \delta^{[\ell]}{}_j \end{split}$$

where we impose the notation of

$$a^{[0]} := x$$
.

So we need only give a full characterization of $\delta^{[\ell]}$.. To this end, we define recursively starting at layer-L by

$$\begin{split} \delta^{[L]T} &:= d(\mathbb{L}_y)_{a^{[L]}} \cdot dg_{z^{[L]}}^{[L]}, \\ \delta^{[L-1]T} &:= \delta^{[L]T} \cdot W^{[L]} \cdot dg_{z^{[L-1]}}^{[L-1]}, \\ & \vdots \\ \delta^{[\ell]T} &:= \delta^{[\ell+1]T} W^{[\ell+1]} dg_{z^{[\ell]}}^{[\ell]}, \\ & \vdots \\ \delta^{[1]T} &:= \delta^{[2]T} W^{[2]} dg_{z^{[1]}}^{[1]}, \end{split}$$

as desired.

3.2 Implementation in Python via numpy

We implement a neural network with an arbitrary number of layers and nodes, with the ReLU function as the activator on all hidden nodes and the sigmoid function on the output layer for binary classification with the log-loss function.

```
11
           config : Dict
12
               config['lp_reg'] = 0,1,2
13
               config['nodes'] = List[int]
14
               config['bias'] = List[Boolean]
               config['activators'] = List[str]
16
           Returns:
18
           -----
19
           None
20
           11 11 11
^{21}
           self.config = config
22
           self.lp_reg = config['lp_reg']
23
           self.nodes = config['nodes']
24
           self.bias = config['bias']
25
           self.activators = config['activators']
26
           self.L = len(config['nodes']) - 1
28
      def forward_propagation(self, params, x):
29
30
           Parameters:
31
32
           params : Dict[class[Parameters]]
33
               params[l].w = Weights
34
               params[1].bias = Boolean
35
               params[1].b = Bias
           x : array_like
37
           Returns:
39
           -----
40
           cache = Dict[array_like]
41
               cache['a'] = a
42
               cache['dg'] = dg
43
44
45
           # Initialize dictionaries
46
           a = \{\}
47
           dg = \{\}
48
49
           a[0], dg[0] = apply_activation(x, self.activators[0])
50
51
           for 1 in range(1, self.L + 1):
52
               z = params[1].forward(a[1 - 1])
53
               a[l], dg[l] = apply_activation(z, self.activators[l])
54
55
           cache = \{'a' : a, 'dg' : dg\}
56
           return cache
57
```

```
58
       def cost_function(self, params, a, y, lambda_=0.01, eps=1e-8):
59
60
           Parameters:
61
62
            params: class[Parameters]
63
           a: array_like
           y: array_like
65
            lambda_: float
66
                Default: 0.01
67
            eps: float
68
                Default: 1e-8
69
70
            Returns:
71
            -----
72
            cost: float
73
74
           n = y.shape[1]
75
            if self.lp_reg == 0:
76
                lambda_{-} = 0.0
77
78
            # Compute regularization term
79
           R = 0
80
            for param in params.values():
81
                R += np.sum(np.abs(param.w) ** self.lp_reg)
82
           R *= (lambda_ / (2 * n))
84
            # Compute unregularized cost
85
            a = np.clip(a, eps, 1 - eps)
                                               # Bound a for stability
86
            J = (-1 / n) * (np.sum(y * np.log(a) + (1 - y) * np.log(1 - a)))
87
88
            cost = float(np.squeeze(J + R))
89
90
            return cost
91
92
       def backward_propagation(self, params, cache, y):
93
            11 11 11
94
            Parameters:
95
            -----
96
            params : Dict[class[Parameters]]
97
                params[l].w = Weights
98
                params[1].bias = Boolean
99
                params[1].b = Bias
100
            cache : Dict[array_like]
101
                cache['a'] : array_like
102
                cache['dg'] : array_like
103
           y : array_like
104
```

```
105
            Returns:
106
            -----
107
            None
108
            11 11 11
109
110
            # Retrieve cache
111
            a = cache['a']
112
            dg = cache['dg']
113
114
            # Initialize differentials along the network
115
            delta = \{\}
116
            delta[self.L] = (a[self.L] - y) / y.shape[1]
117
118
            for l in reversed(range(1, self.L + 1)):
119
                delta[1 - 1] = dg[1 - 1] * params[1].backward(delta[1], a[1 - 1])
120
121
       def update_parameters(self, params, learning_rate=0.1):
122
123
            Parameters:
124
            _____
125
            params : Dict[class[Parameters]]
126
                params[1].w = Weights
127
                params[1].bias = Boolean
128
                params[1].b = Bias
129
            learning_rate : float
130
                Default: 0.01
131
132
            Returns:
133
            -----
134
            None
135
136
            for param in params.values():
137
                param.update(learning_rate)
138
139
       def fit(self, x, y, learning_rate=0.1, lambda_=0.01, num_iters=10000):
140
            11 11 11
141
142
            Parameters:
            -----
143
            x : array_like
144
            y : array_like
145
            learning_rate : float
146
                Default: 0.1
147
            lambda_ : float
148
                Default : 0.0
149
            num_iters : int
150
                Default : 10000
151
```

```
152
            Returns:
153
            _____
154
            costs : List[floats]
155
            params : class[Parameters]
156
157
            # Initialize parameters per layer
            params = \{\}
159
            for l in range(1, self.L + 1):
160
                params[l] = LinearParameters((self.nodes[l], self.nodes[l - 1]), self.b
161
162
            costs = []
163
            for i in range(num_iters):
164
                cache = self.forward_propagation(params, x)
165
                cost = self.cost_function(params, cache['a'][self.L], y, lambda_)
166
                costs.append(cost)
167
168
                self.backward_propagation(params, cache, y)
                self.update_parameters(params, learning_rate)
169
170
                if i % 1000 == 0:
171
                    print(f'Cost_after_iteration_{i}:_{cost}')
172
173
            return params
174
175
       def evaluate(self, params, x):
176
177
            Parameters:
178
179
            params : class[Parameters]
180
            x : array_like
181
182
           Returns:
183
            -----
184
            y_hat : array_like
185
186
            cache = self.forward_propagation(params, x)
187
            a = cache['a'][self.L]
188
            y_hat = (\sim(a < 0.5)).astype(int)
189
            return y_hat
190
191
       def accuracy(self, params, x, y):
192
193
194
            Parameters:
            -----
195
            params : class[Parameters]
196
           x : array_like
197
            y : array_like
198
```

3.3 Implementation in Python via tensorflow

We implement a neural network using tensorflow.keras.

```
1 #! python3
3 import pandas as pd
4 import numpy as np
5 from sklearn.model_selection import train_test_split
6 from tensorflow import keras
7 from keras import Model, Input
8 from keras.layers import Dense
  def keras_functional_nn(csv):
      df = pd.read_csv(csv)
11
      dataset = df.values
12
      x, y = dataset[:, :-1], dataset[:, -1].reshape(-1, 1)
13
      x_{train}, x_{test}, y_{train}, y_{test} = train_{test_{split}}(x, y, test_{size}=0.15)
14
      train = {'x' : x_train, 'y' : y_train}
      test = {'x' : x_test, 'y' : y_test}
16
      mu = np.mean(train['x'], axis=0, keepdims=True)
      var = np.var(train['x'], axis=0, keepdims=True)
18
      train['x'] = (train['x'] - mu) / np.sqrt(var)
      test['x'] = (test['x'] - mu) / np.sqrt(var)
20
      ## Define network structure
22
      input_layer = Input(shape=(10,))
      hidden_layer_1 = Dense(
24
25
           activation='relu',
26
           kernel_initializer='he_normal',
27
           bias_initializer='zeros'
      )(input_layer)
29
      hidden_layer_2 = Dense(
30
31
           activation='relu',
```

```
kernel_initializer='he_normal',
33
           bias_initializer='zeros'
34
      )(hidden_layer_1)
35
      output_layer = Dense(
36
37
           1,
           activation='sigmoid',
38
           kernel_initializer='he_normal',
           bias_initializer='zeros'
40
      )(hidden_layer_2)
41
42
      model = Model(inputs=input_layer, outputs=output_layer)
43
      model.summary()
44
45
      ## Compile desired model
46
      model.compile(
47
           loss='binary_crossentropy',
48
           optimizer='adam',
49
           metrics=['accuracy']
50
51
52
      ## Train the model
53
      hist = model.fit(
           train['x'],
55
           train['y'],
56
           batch_size=32,
57
           epochs = 150,
           validation_split=0.17
59
      )
60
61
      ## Evaluate the model
       test_scores = model.evaluate(test['x'], test['y'], verbose=2)
63
      print(f'Test_Loss:_{test_scores[0]}')
64
      print(f'Test_Accuracy:_{test_scores[1]}')
65
```

3.4 Better Backpropagation

We consider a neural network of the form

where we have the functions:

1.

$$G^{[\ell]}: \mathbb{R}^{n^{[\ell]}} \to \mathbb{R}^{n^{[\ell]}}$$

is the broadcasting of the activation unit $g^{[\ell]}: \mathbb{R} \to \mathbb{R}$.

2.

$$\phi^{[\ell]}: \mathbb{R}^{n^{[\ell]} \times n^{[\ell-1]}} \times \mathbb{R}^{n^{[\ell-1]}} \to \mathbb{R}^{n^{[\ell]}}$$

is given by

$$\phi^{[\ell]}(W, x) = Wx.$$

3.

$$\psi^{[\ell]}: \mathbb{R}^{n^{[\ell]}} \times \mathbb{R}^{n^{[\ell]}} \to \mathbb{R}^{n^{[\ell]}}$$

is given by

$$\psi^{[\ell]}(b, x) = x + b.$$

4.

$$\mathbb{L}: \mathbb{R}^{n^{[2]}} \times \mathbb{R}^{n^{[2]}} \to \mathbb{R}$$

is the given loss-function.

We now consider back-propagating through the neural network via "reverse exterior differentiation". We represent our various reverse derivatives via the following diagram:

First, we need to consider our individual derivatives:

1. Suppose $G: \mathbb{R}^n \to \mathbb{R}^n$ is the broadcasting of $g: \mathbb{R} \to \mathbb{R}$. Then for $(x, \xi) \in T\mathbb{R}^n$, we have that

$$dG_x(\xi) = G'(x) \odot \xi$$

= diag(G'(x)) \cdot \xi\$

and for any $\zeta \in T_{G(x)}\mathbb{R}^n$, the reverse derivative is given by

$$rG_x(\zeta) = G'(x) \odot \zeta$$

= diag $(G'(x)) \cdot \zeta$.

2. Suppose $\phi: \mathbb{R}^{m \times n} \times \mathbb{R}^n \to \mathbb{R}^m$ is given by

$$\phi(A, x) = Ax$$
.

Then we have two differentials to consider:

(a) For any $(A, x) \in \mathbb{R}^{m \times n} \times \mathbb{R}^n$ and any $\xi \in T_x \mathbb{R}^n$, we have that

$$d\phi_{(A,x)}(\xi) = A\xi$$
$$= L_A(\xi);$$

and for any $\zeta \in T_{\phi(A,x)}\mathbb{R}^m$, we have the reverse derivative

$$r\phi_{(A,x)}(\zeta) = A^T \zeta$$

= $L_{A^T}(\zeta)$;

where $L_A(B) = AB$, i.e., left-multiplication by A.

(b) For any $(A, x) \in \mathbb{R}^{m \times n} \times \mathbb{R}^n$ and any $Z \in T_A \mathbb{R}^{m \times n}$ we have that

$$d_1\phi_{(A,x)}(Z) = Zx$$

= $R_x(Z)$;

and for any $\zeta \in T_{\phi(A,x)}\mathbb{R}^m$, we have the reverse derivative

$$r_1 \phi_{(A,x)}(\zeta) = \zeta x^T$$

= $R_{x^T}(\zeta)$;

where $R_A(B) = BA$, i.e, right-multiplication by A.

3. Suppose $\psi: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is given by

$$\psi(b, x) = x + b.$$

Then we again have two (identical) differentials to consider:

(a) For any $(x, b) \in \mathbb{R}^n \times \mathbb{R}^n$ and any $\xi \in T_x \mathbb{R}^n$, we have that

$$d\psi_{(b,x)}(\xi) = \xi;$$

and for any $\zeta \in T_{\psi(b,x)}\mathbb{R}^n$, we have the reverse derivative

$$r\psi_{(b,x)}(\zeta) = \zeta.$$

(b) For any $(x, b) \in \mathbb{R}^n \times \mathbb{R}^n$ and any $\eta \in T_b \mathbb{R}^n$, we have that

$$d_1\psi_{(b,x)}(\eta) = \eta;$$

and for any $\zeta \in T_{(\psi(b,x)}\mathbb{R}^n$, we have the reverse derivative

$$\overline{r}_1 \psi_{(b,x)}(\zeta) = \zeta.$$

Proposition 3.1. Suppose we have the compositional diagram

$$\mathbb{R}^n \xrightarrow{f} \mathbb{R}^m \xrightarrow{g} \mathbb{R}^k \xrightarrow{h} \mathbb{R}^l$$

and we let $F = h \circ g \circ f : \mathbb{R}^n \to \mathbb{R}^l$. Then for any $x \in \mathbb{R}^n$ and any $\zeta \in T_{F(x)}\mathbb{R}^l$, the reverse derivative satisfies

$$rF_x(\zeta) = rf_x \circ rg_{f(x)} \circ rh_{g(f(x)}(\zeta).$$

Proof: For any $\xi \in T_x \mathbb{R}^n$ and any $\zeta \in T_{F(x)} \mathbb{R}^l$, we have by definition

$$\langle rF_{x}(\zeta), \xi \rangle_{\mathbb{R}^{n}} = \langle \zeta, dF_{x}(\xi) \rangle_{\mathbb{R}^{l}}$$

$$= \langle \zeta, dh_{g(f(x))} \circ dg_{f(x)} \circ df_{x}(\xi) \rangle_{\mathbb{R}^{l}}$$

$$= \langle rh_{g(f(x))}(\zeta), dg_{f(x)} \circ df_{x}(\xi) \rangle_{\mathbb{R}^{k}}$$

$$= \langle rg_{f(x)} \circ rh_{g(f(x))}(\zeta), df_{x}(\xi) \rangle_{\mathbb{R}^{m}}$$

$$= \langle rf_{x} \circ rg_{f(x)} \circ rh_{g(f(x))}(\zeta), \xi \rangle_{\mathbb{R}^{n}}$$

as desired.

Lemma 3.2. Suppose $f: \mathbb{R}^{n \times m} \to \mathbb{R}^k$, and for $P \in \mathbb{R}^{n \times m}$, let $R = rf_P$. Then $R \in \mathbb{R}^k_n{}^m$ is rank (1,2)-tensor written in coordinates as

$$R = R_i^{\mu}{}_{\nu} \frac{\partial}{\partial X_{\nu}^{\mu}} \otimes dx^i,$$

and the components is given by

$$R_i^{\ \mu}_{\ \nu} = \frac{\partial f^i}{\partial X_\mu^\nu}$$

Proof: Considering the basis vectors $\frac{\partial}{\partial X_{\mu}^{\nu}} \in T_{P}\mathbb{R}^{n \times m}$ and $\frac{\partial}{\partial x^{i}} \in T_{f(P)}\mathbb{R}^{k}$ we have that

$$\begin{split} R_{i}{}^{\mu}{}_{\nu} &= \left\langle R \left(\frac{\partial}{\partial x^{i}} \right), \frac{\partial}{\partial X_{\mu}^{\nu}} \right\rangle_{F} \\ &= \left\langle \frac{\partial}{\partial x^{i}}, df_{P} \left(\frac{\partial}{\partial X_{\mu}^{\nu}} \right) \right\rangle_{\mathbb{R}^{k}} \\ &= \left\langle \frac{\partial}{\partial x^{i}}, \frac{\partial f^{\alpha}}{\partial X_{\mu}^{\nu}} \frac{\partial}{\partial x^{\alpha}} \right\rangle_{\mathbb{R}^{k}} \\ &= \delta_{i\alpha} \frac{\partial f^{\alpha}}{\partial X_{\mu}^{\nu}}, \end{split}$$

as desired.

Returning to our neural network, for each point (x_j, y_j) in our training set, we first let

$$F_i := \mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]} \circ G^{[1]} \circ \psi^{[1]} \circ \phi^{[1]},$$

and we have our cost function

$$\mathbb{J} := \frac{1}{N} \sum_{j=1}^{N} F_j.$$

We use the following notation for our inputs and outputs of our respective functions:

/[P] /****[P]

$$\phi^{[\ell]}:(W^{[\ell]},a^{[\ell-1]}{}_j)\mapsto u^{[\ell]}{}_j,$$

•

$$\psi^{[\ell]}:(b^{[\ell]},u^{[\ell]}_{j})\mapsto v^{[\ell]}_{j},$$

•

$$G^{[\ell]}: v^{[\ell]}_{i} \mapsto a^{[\ell]}_{i}.$$

Let $p = (W^{[1]}, b^{[1]}, W^{[2]}, b^{[2]})$ is a point in our parameter space. Suppose we wish to apply gradient descent with learning rate $\alpha \in T_{\mathbb{J}(p)}\mathbb{R}$, we would define our parameter updates via

$$\begin{split} W^{[1]} &:= W^{[1]} - r_1 \mathbb{J}_p(\alpha) \\ b^{[1]} &:= b^{[1]} - \overline{r}_1 \mathbb{J}_p(\alpha) \\ W^{[2]} &:= W^{[2]} - r_2 \mathbb{J}_p(\alpha) \\ b^{[2]} &:= b^{[2]} - \overline{r}_2 \mathbb{J}_p(\alpha). \end{split}$$

Moreover, by linearity (and independence of our training data), we see that

$$r\mathbb{J}_p = \frac{1}{N} \sum_{j=1}^N r(F_j)_p,$$

so we need only calculate the various reverse derivatives of F_j .

To this end, we suppress the index j when we're working with the compositional function F. We calculate the reverse derivatives in the order traversed in our back-propagating path along the network.

1. $\overline{r}_2 \mathbb{J}_p$:

$$\begin{split} \overline{r}_2 F_p &= \overline{r}_2 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]})_p \\ &= \overline{r}_2 \psi_p^{[2]} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= \mathbb{1} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$\overline{r}_2 \mathbb{J}_p = \frac{1}{N} \sum_{i=1}^N r G_{v^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j}$$

 $2. r_2 \mathbb{J}_p$:

$$\begin{split} r_2 F_p &= r_2 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]})_p \\ &= r_2 \phi_p^{[2]} \circ r \psi_{u^{[2]}}^{[2]} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{a^{[1]T}} \circ \mathbb{1} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{a^{[1]T}} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$r_2 \mathbb{J}_p = \frac{1}{N} \sum_{j=1}^{N} R_{a^{[1]T_j}} \circ rG_{v^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j}.$$

Notice that this is not just a sum after matrix multiplication since we have composition with an operator, namely, $R_{a^{[1]T_j}}$. However, since the learning rate $\alpha \in T_{\mathbb{J}(p)}\mathbb{R} \cong \mathbb{R}$, which may pass through the aforementioned linear composition, we conclude that

$$\begin{split} r_2 \mathbb{J}_p &= \frac{1}{N} \sum_{j=1}^N R_{a^{[1]T}{}_j} \circ r G_{v^{[2]}{}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}{}_j} \\ &= \frac{1}{N} \sum_{j=1}^N r G_{v^{[2]}{}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}{}_j} a^{[1]T}{}_j. \end{split}$$

3. $\overline{r}_1 \mathbb{J}_p$:

$$\begin{split} \overline{r}_1 F_p &= \overline{r}_1 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]} \circ G^{[1]} \circ \psi^{[1]})_p \\ &= \overline{r}_1 \psi_p^{[1]} \circ r G_{v^{[1]}}^{[1]} \circ r \phi_{a^{[1]}}^{[2]} \circ r \psi_{u^{[2]}}^{[2]} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= \mathbbm{1} \circ r G_{v^{[1]}}^{[1]} \circ L_{W^{[2]T}} \circ \mathbbm{1} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= r G_{v^{[1]}}^{[1]} \circ L_{W^{[2]T}} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$\overline{r}_1 \mathbb{J}_p = \frac{1}{N} \sum_{i=1}^N r G_{v^{[1]}_j}^{[1]} \cdot W^{[2]T} \cdot r G_{v^{[2]}_j}^{[2]} \cdot r \mathbb{L}_{a^{[2]}_j}.$$

4. $r_1 \mathbb{J}_p$:

$$\begin{split} r_1 F_p &= r_1 (\mathbb{L} \circ G^{[2]} \circ \psi^{[2]} \circ \phi^{[2]} \circ G^{[1]} \circ \psi^{[1]} \circ \phi^{[1]})_p \\ &= r_1 \phi_p^{[1]} \circ r \psi_{u^{[1]}}^{[1]} \circ r G_{v^{[1]}}^{[1]} \circ r \phi_{a^{[1]}}^{[2]} \circ r \psi_{u^{[2]}}^{[2]} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{x^T} \circ \mathbb{1} \circ r G_{v^{[1]}}^{[1]} \circ L_{W^{[2]T}} \circ \mathbb{1} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}} \\ &= R_{x^T} \circ r G_{v^{[1]}}^{[1]} \circ L_{W^{[2]T}} \circ r G_{v^{[2]}}^{[2]} \circ r \mathbb{L}_{a^{[2]}}, \end{split}$$

and hence

$$r_{1} \mathbb{J}_{p} = \frac{1}{N} \sum_{j=1}^{N} R_{x^{T}} \circ rG_{v^{[1]}}^{[1]} \cdot W^{[2]T} \cdot rG_{v^{[2]}}^{[2]} \cdot r \mathbb{L}_{a^{[2]}}$$

$$= \frac{1}{N} \sum_{j=1}^{N} rG_{v^{[1]}}^{[1]} \cdot W^{[2]T} \cdot rG_{v^{[2]}}^{[2]} \cdot r \mathbb{L}_{a^{[2]}} \cdot x^{T}$$