DS SCIENCES PHYSIQUES MATHSPÉ

calculatrice: non autorisée

durée: 2 heures

Sujet

- · , · ·	
Orbitogramme de la Villette.	2
I.Cinématique.	2
II.Étude dynamique et énergétique.	
A.Analogie gravitation.	
B. Forces	
C. Energie	
D. Moment cinétique.	
E. Principe fondamental	
III.Discussion générale du mouvement.	
IV. Étude de quelques mouvements particuliers.	
Petit exercice	

Orbitogramme de la Villette

I. Cinématique

On considère un référentiel galiléen associé au repère orthonormé $(O, \vec{u_x}, \vec{u_y}, \vec{u_z})$, l'axe Oz est vertical ascendant. La position d'un point matériel M sera définie par ses coordonnées cylindriques, r avec (r>0), θ et z.

On notera respectivement $\vec{u_r}$ et $\vec{u_\theta}$ les vecteurs unitaires déduits de $\vec{u_x}$ et $\vec{u_y}$ par rotation d'angle θ autour de Oz.

- 1. Exprimer \overrightarrow{OM} dans la base cylindrique.
- 2. En déduire la vitesse $\vec{v}(M)$ dans cette même base.
- 3. En déduire l'accélération $\vec{a}(M)$ dans cette même base.
- 4. Montrer que $\vec{a} \cdot \vec{u_{\theta}}$ peut s'écrire aussi : $\vec{a} \cdot \vec{u_{\theta}} = \frac{1}{r} \frac{d}{dt} (r^2 \frac{d\theta}{dt})$.

II. Étude dynamique et énergétique

On étudie le mouvement d'une bille d'acier M, de masse m, assimilée à un point matériel sous l'action du champ de pesanteur \vec{g} , sur une surface de révolution. La surface sur laquelle roule la bille est engendrée par la révolution d'une portion d'hyperbole, $z=-\frac{k}{r}$, k>0.

A. Analogie gravitation

La bille se comporte sur cette surface comme un corps céleste soumis à une force de gravitation.

- 5. Rappeler l'expression de la force de gravitation exercée par un point M_1 de masse m_1 sur un point M_2 de masse m_2 . On notera $r = M_1 M_2$ la distance entre les points et $\vec{u} = \frac{\overline{M_1 M_2}}{r}$ le vecteur unitaire orienté de M_1 vers M_2 .
- 6. Montrer que cette force dérive d'une énergie potentielle dont on établira l'expression. On choisira l'origine de l'énergie potentielle lorsque $\,r\,$ tend vers l'infini.

On revient à l'étude de la bille.

B. Forces

On néglige les frottements. La réaction du support sur la bille est donc normale au support. Elle est notée : $\vec{R} = R_r \vec{u}_r + R_\theta \vec{u}_\theta + R_z \vec{u}_z$.

- 7. Justifier sans calcul que $R_{\theta} = 0$.
- 8. Faire un bilan des forces s'exerçant sur la bille.

C. Energie

- 9. Préciser si les forces dérivent d'une énergie potentielle. Dans l'affirmative, préciser l'expression de l'énergie potentielle associée en fonction de la variable $\,r\,$ uniquement . On choisira l'origine de l'énergie potentielle lorsque $\,r\,$ tend vers l'infini.
- 10.En déduire une intégrale première du mouvement.

D. Moment cinétique

- 11. Exprimer le moment cinétique en O, \vec{L}_o , dans la base cylindrique. En déduire sa projection sur l'axe. Oz
- 12.Rappeler le théorème du moment cinétique en un point fixe et donner la démonstration du théorème.
- 13. En déduire le théorème du moment cinétique en projection selon un axe fixe Oz donnant l'expression de la dérivée de L_{Oz} .
- 14. Déterminer \mathcal{M}_{o} , moment des forces en O puis en déduire \mathcal{M}_{oz} . Conclure.

E. Principe fondamental

- 15. Écrire le principe fondamental de la dynamique et faire la projection dans la base cylindrique.
- 16. En déduire (deuxième intégrale première du mouvement) que la quantité $r^2 \frac{d\theta}{dt}$ est une constante notée C.

III. Discussion générale du mouvement

- 17. Déduire de ce qui précède une équation différentielle du premier ordre, à une seule inconnue, de la forme: $E_m = \frac{1}{2} m \left(\frac{dr}{dt}\right)^2 \alpha(r) + Ep_{eff}(r)$ où $\alpha(r)$ est positif et sans dimension et où $Ep_{eff}(r)$ est une énergie potentielle effective et E_m l'énergie mécanique totale. Expliciter $\alpha(r)$ et $Ep_{eff}(r)$
- 18.Tracer l'allure de la courbe $Ep_{\it eff}(r)$ pour C et k, m, g donnés. Indiquer les coordonnées des points particuliers. Montrer que $Ep_{\it eff}(r)$ passe par un minimum pour une valeur r_m de r que l'on exprimera en fonction des constantes.
- 19. En fonction de la valeur de l'énergie mécanique initiale E_0 du système, discuter le caractère lié ou libre du mouvement.

IV. Étude de quelques mouvements particuliers

- 20. Pour quelle valeur de r a-t-on un mouvement circulaire ?. On lance la bille d'une distance r_0 avec une vitesse \vec{v}_0 . Montrer que, quel que soit r_0 , on peut obtenir un mouvement circulaire horizontal. Préciser la direction et le module de \vec{v}_0 (en fonction de r_0 et des autres données du problème) pour obtenir le mouvement circulaire. Déterminer l'expression de la période du mouvement (en fonction de r_0 et des autres données du problème).
- 21. Une petite perturbation écarte légèrement la coordonnée r de r_0 alors que le mouvement était circulaire. La coordonnée r reste très proche de r_0 . Montrer, en partant d'un développement limité que $\varepsilon = r r_0$ oscille avec une période dont on déterminera l'expression.

Petit exercice

Deux points matériels M et M' (masses m et m') sont reliés par un fil inextensible susceptible de glisser sur une poulie fixe. Initialement le fil est tendu et le point M' repose sur un support, à une hauteur h du sol. A l'instant t=0, un opérateur enlève le support et le point M se met à glisser sur un plan horizontal avec un coefficient de frottement f.

L'accélération de la pesanteur est \vec{g} .

- 1. On considère la première phase du mouvement du point M, sur la distance h. Déterminer son accélération.
- 2. On considère la deuxième phase du mouvement du point M. Déterminer son accélération.
- 3. Quelle est la distance totale D parcourue par M depuis le début du mouvement jusqu'à l'arrêt.
- 4. En déduire f en fonction de m, m', h et D.

Réponses

Orbitogramme de La Villette

2)
$$\begin{array}{rcl}
& = \frac{\partial U}{\partial t} \\
& = \hat{\Gamma} \stackrel{?}{\mathsf{Mr}} + \Gamma \frac{\partial U}{\partial t} + \frac{\partial}{\partial t} \stackrel{?}{\mathsf{Mr}} + \frac{\partial}{\partial t} \frac{\partial U}{\partial t} \\
& = \hat{\Gamma} \stackrel{?}{\mathsf{Mr}} + \Gamma \frac{\partial U}{\partial t} + \frac{\partial}{\partial t} \frac{\partial U}{\partial t} + \frac{\partial}{\partial t} \frac{\partial U}{\partial t} \\
& = \hat{\Gamma} \stackrel{?}{\mathsf{Mr}} + \Gamma \frac{\partial U}{\partial t} + \frac{\partial}{\partial t} \frac{\partial U}{\partial t} + \frac{\partial}{\partial t} \frac{\partial U}{\partial t} \\
& = \hat{\Gamma} \stackrel{?}{\mathsf{Mr}} + \Gamma \frac{\partial U}{\partial t} + \frac{\partial}{\partial t} \frac{\partial U}{\partial t} + \frac{\partial}{\partial t} \frac{\partial U}{\partial t} \\
& = \hat{\Gamma} \stackrel{?}{\mathsf{Mr}} + \Gamma \frac{\partial U}{\partial t} + \frac{\partial}{\partial t} \frac{\partial U}{\partial t} + \frac{\partial}{\partial t} \frac{\partial U}{\partial t} + \frac{\partial}{\partial t} \frac{\partial U}{\partial t} \\
& = \hat{\Gamma} \stackrel{?}{\mathsf{Mr}} + \Gamma \frac{\partial U}{\partial t} + \frac{\partial}{\partial t} \frac{\partial U}{\partial t} + \frac{\partial}{$$

donc
$$\frac{d\overrightarrow{ur}}{dt} = \overrightarrow{w} \wedge \overrightarrow{ur}$$

$$= \overrightarrow{0} \quad \overrightarrow{ug} \wedge \overrightarrow{ur}$$

$$= \overrightarrow{0} \quad \overrightarrow{ug}$$

$$= \overrightarrow{0} \quad \overrightarrow{ug}$$

$$d\overrightarrow{ur} = \overrightarrow{0}$$

$$\overrightarrow{au\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta}$$

$$= \frac{1}{r} (r^2 \ddot{\theta} + 2r\dot{r}\dot{\theta})$$

ഉ

6)

Ici

$$F(r) = -\frac{dE_{P}(r)}{dr}$$

donc;

$$dE_P = G m_1 m_2 \frac{dr}{r^2}$$

$$EP = -\frac{G m_1 m_2}{r} + cste$$

I En un pomt M, le plan (M, ur, uz) est un plan de symétrie (qui contient l'axe de révolution Oz de la surface)

R' en M apartient à ce plan de symétrie

$$R_{\theta} = c$$

& Les Leux forces agissant sur le point sont; $\overrightarrow{R} = R_r \overrightarrow{ur} + R_z \overrightarrow{uz}$

رو

 \overrightarrow{R} ne travaille per pursque l'on neighige les frottements $(\overrightarrow{R}, \overrightarrow{v} = 0)$

le poido est une force conservative mg = - grad Ep

$$-mg = -\frac{dEp}{d3}$$

$$Ep = mg3 + constante$$

$$= -\frac{mgk}{r} + constante$$

on fait :

Te même que pour la gravitation, on avait $EP = -\frac{Gm_1 m_2}{r} \quad (en - \frac{1}{r})$ Tai EP est de la même forme: $Ep = -\frac{mg \, K}{r} \quad (aussi en - \frac{1}{r})$

19) Les forces étant conservatives, il y a conservation de l'energie mecanique totale Em : (intégrale première)

$$E_{m} = \frac{1}{2}mv^{2} + E_{p}$$

$$E_{m} = \frac{1}{2}m(r^{2} + r^{2}\theta^{2} + s^{2}) - \frac{m_{g}k}{r}$$

 $\frac{11}{Lo} = r \wedge mv$ $r \qquad mr$ $o \qquad mr\theta$ $\frac{1}{W_{r},W_{\theta},W_{\theta}} \approx m\tilde{s}$

 $\overrightarrow{L_0} = -mrz\theta\overrightarrow{u_r} + m(zr-rz)\overrightarrow{u_0} + mr^2\theta\overrightarrow{u_z}$

Loz = mr20

13) La dérivée du moment cinétique en un point fixe 0, pour un

point material, est égal au moment des forces en O.

ofixe: $\frac{d L(0)}{d L} = \frac{m_{F}(0)}{m_{F}(0)}$

démonstration:

$$\vec{L}(0) = \vec{OM} \wedge \vec{m} \vec{v}$$

$$\frac{d\vec{L}(0)}{dt} = (\vec{v} - \vec{v}(0)) \wedge \vec{m} \vec{v} + \vec{OM} \wedge \vec{m} \vec{dt}$$

$$= \vec{v} \wedge \vec{m} \vec{v} + \vec{m}_{F}(0)$$
nul

13) OZ est un are fire (O est fixe, miz est constant)

O fre done: $\frac{d\overrightarrow{L}(0)}{dt} = \overrightarrow{\mathcal{M}}_{F}(0)$

il aconstant : il dilio) = il mg (0)

the (Tiz (10) = Moz

 o_z fixe : $\frac{d}{dt} Lo_z = m_{o_z}$

14 Ici

$$\overrightarrow{\mathcal{D}}(o) = \overrightarrow{r} \wedge \overrightarrow{R} + \overrightarrow{r} \wedge \overrightarrow{mg}$$

$$\begin{vmatrix} r & | R_r & | r & | o \\ | o & | o & | o \\ | \mathcal{X} & | R_z & | \mathcal{X} & | -mg \end{vmatrix}$$

$$\overrightarrow{y}(0) = \left[z_{r} + r \left(m_{r} - R_{z} \right) \right] \xrightarrow{u_{\theta}}$$

non mul donc L(o) n'est pas constant

Moz = 0 (forces "axiales")

done:

 $L_{oz} = constante$ $mr^2 \dot{\theta} = constante$

$$R_{r} = ma$$

$$= m(\ddot{r} - r\dot{\theta}^{2})$$

$$= m \frac{1}{r} \frac{d}{dt} (r^{2} \dot{\theta})$$

$$R_{3} - m_{3} = m_{3}^{2}$$

$$r^2 \dot{\theta} = C$$

on avait déjà obtenu cette relation par conservation de Lozpour des forces axiales (cf 14))

1 En 10 , on avait

$$E_{m} = \frac{4}{2} m \left(\dot{\rho}^{2} + \rho^{2} \dot{\theta}^{2} + \ddot{z}^{2} \right) - \frac{mgk}{r}$$

En forction de r et i

$$\rightarrow \quad \dot{o} = \frac{c}{c^2}$$

$$\Rightarrow = -\frac{k}{r}$$

done:

$$E_{m} = \frac{4}{2}m(\dot{r}^{2} + \frac{C^{2}}{\dot{r}^{2}} + \frac{k^{2}}{\dot{r}^{4}}\dot{r}^{2}) - \frac{mgk}{\dot{r}}$$

$$E_{m} = \frac{1}{2} m \left(1 + \frac{\kappa^{2}}{r^{4}}\right) \dot{r}^{2} + m \left(\frac{1}{2} \frac{C^{2}}{r^{2}} - \frac{gk}{r}\right)$$

$$E_{perf}(r)$$

$$E_{P} = \frac{m}{eff(r)} \left(\frac{C^2}{2r} - gk \right)$$

. nul pour
$$r = \frac{C^2}{2gk}$$

On cherche l'extremum

$$\frac{dE_{peff}}{dr} = m\left(-\frac{C^2}{r^3} + \frac{gk}{r^2}\right)$$

nul sour

$$\frac{\Gamma_{m}}{g k} = \frac{C^{2}}{g k}$$

$$\frac{F_{eff}}{min} = -\frac{mg^{2}k^{2}}{2C^{2}}$$

19)

done

ಲ ಕು E0≥0

re[minimum + + 0]

m-1, ha.

moutement libre (ou de diffusion)

Le mouvement est circulaire s'il n'y a qu'une seule valeur possible pour r (avec $\overline{s} = -\frac{k}{r} = \cot k$ donc $\ln k$ trajectoire est horizontale) $r = r_m = \frac{C^2}{9k}$

- En fonction des conditions initiales :

- · 3=0 (la vitere initiale est luvigontale)
- vo = r, 0, mg
- · dono

en reportant dans l'expression de m

$$r_{o} = \frac{(r_{o} r_{o})^{2}}{g k}$$

$$\overrightarrow{v_{o}} = \sqrt{\frac{g k}{r_{o}}} \xrightarrow{\mu_{o}}$$

$$T_o = \frac{2\pi r_o}{v_o}$$

$$T_o^2 = \frac{4\pi^2 r_o^3}{ah}$$

la corré de la priode et proportionnel au cube du rayon (cf: analogie avec la gravitation) 21) On travaille par l'énorgie qu'il fant donc verire au vouvrage de ro.

$$E_{m} = \frac{1}{2} m \left(1 + \frac{k^{2}}{r^{4}} \right) \dot{r}^{2} + E_{Peff}(r)$$

-> au voisinage de ro, au deuxième ordre en E=(r-ro)

$$E_{\text{Peff}(r)} = E_{\text{eff}(r_0)} + \frac{r_{-r_0}}{4!} \left(\frac{dE_p}{dr^2}\right)_{r_0} + \frac{(r_{-r_0})^2}{2!} \left(\frac{d^2E_p}{dr^2}\right)_{r_0}$$

$$\frac{mgk}{C_0^3}$$

 \rightarrow pursque r^2 sot dégà un terme du deuxième ordre, dans $\alpha(r)$ on fait $r=r_0$

$$E_{m} = \frac{4}{2}m(1+\frac{k^{2}}{\Gamma_{0}^{4}})$$
 $r^{2} + E_{p}(\Gamma_{0}) + \frac{(\Gamma_{0}-\Gamma_{0})^{2}}{2} \frac{mgk}{\Gamma_{0}^{3}}$ de Γ_{0}

-> comme traditionnellement, on derive par rapport au temps:

$$0 = m(1 + \frac{k^2}{r_0^4}) \dot{r} \dot{r} + (r - r_0) \dot{n} \frac{mqk}{r_0^3}$$

r=0 est une solution paraite.

$$r + \frac{9k/r_0^3}{1+ \frac{k^2/r_0^4}{\omega^2}} (r-r_0) = 0$$

$$T = 2\pi \sqrt{\frac{c_0^3}{9k}} \sqrt{1 + \frac{k^2}{c_0^4}}$$

$$T_0$$

Coefficient de frottement

1) Première shase, fil tendu

o powr M

$$Mg^2 + Tuze + R^2 = M du^2 uze$$
 $uze = M du^2 uze$
 $uze = M du^2 dt$
 uze

finalement
$$T - fMg = M \frac{dv}{dt}$$

Rz = - + Mg.

• powr M'
$$M'g' - TW' = M' \frac{dw}{dt}W' = M' \frac{dw}{dt}$$

La somme des deux équations donne:

$$M'g - fMg = (M + M') \frac{dw}{dt}$$

$$\frac{dw}{dt} = \frac{(M' - fM)}{M + M'}g$$

2) Deuxieme place, fil non tendu

M' a touche'le sol M continue our sa lancée grâce à la viterse acquise. Il n'y a plus de tension donc:

$$-fMg = M \frac{dw}{dt}$$

$$\frac{dw}{dt} = -fg$$

La distance paramue par M pardant la permière phase est h

La vitasse \bar{a} la fin de la première phase est notée $\sqrt{0}$ $\frac{dv}{dt} = a \quad (cste)$ $\begin{cases} v = at \\ x = \frac{1}{2}at^2 \end{cases}$ $\sqrt{0} = \sqrt{2ax}$ $\sqrt{0} = \sqrt{2(M'-fM)}ah \quad (1)$

--- Pour la deuxierne place :

$$\frac{dv}{dt} = a' \quad \text{(ste)}$$

$$v = a't' + vo \quad (nul \text{ a la fin})$$

$$v = \frac{1}{2}a'(\frac{v_0}{a'})^2 + v_0(\frac{v_0}{a'}) + h$$

$$v = \frac{1}{2}a'(\frac{v_0}{a'})^2 + v_0(\frac{v_0}{a'}) + h$$

$$v = \frac{v_0^2}{2a'} + h$$

4 om en Ledwit

$$f = \frac{M'h}{D(M+M') - M'h}$$

(on pouvra remarquer que les relations (1) et (2) s'obtiennent rapidement par le théorème de l'énergie sans devour appliquer le P.F.D.)