Reprodução de Áudio

Programação de Jogos

Introdução

- O que é áudio?
 - Áudio é o som reproduzido por meios eletrônicos
 - · Um som é produzido pela variação de pressão em um meio (como o ar)
 - · Eles são criados pela vibração do ar ao redor de um objeto que vibra

Membrana auricular

Introdução

As vibrações no ar se propagam como uma onda, chamada onda de som

Onda de som senoidal

Onda de som serrilhada

Introdução

- Uma onda de som é caracterizada por:
 - Amplitude: a força (ou altura) da onda
 - Comprimento: a distância entre dois pontos equivalentes
 - Frequência: número de vibrações por segundo

- ▶ Para a representação digital utiliza-se:
 - Amplitude: se traduz diretamente em volume, quanto maior a amplitude maior o volume do som
 - Frequência: o ouvido humano é capaz de distinguir sons com frequências que variam de 20Hz a 20000Hz

- Um arquivo de áudio guarda informações discretas sobre a onda de som:
 - Taxa de amostragem: quanto maior a taxa, mais fiel será a onda armazenada. Ex.: 11025, 22050, 44100, 48000, 96000, 192000 Hz

- Um arquivo de áudio guarda informações discretas sobre a onda de som:
 - Bits: quanto mais bits forem usados, mais fiel será a onda armazenada. Ex.: 8, 16, 24 bits

 A tabela abaixo mostra taxas de amostragem comumente utilizadas e suas aplicações

Amostragem	Uso
8000 Hz	Telefones (adequado para voz humana)
11025 Hz	Áudio de vídeos de baixa qualidade
22050 Hz	Efeitos sonoros em jogos
44100 Hz	Qualidade de CD
48000 Hz	Áudio de vídeos em formato DVD
96000 Hz	Áudio de Blue-Ray e HD DVD
192000 Hz	Áudio de Blue-Ray e HD DVD

Áudio em Jogos

- Músicas e efeitos sonoros são elementos fundamentais para colocar o jogador dentro de um universo virtual
 - Elementos sonoros são comumente usados:
 - Fornecer tempo
 Ex : urgência tranquilidade morte
 - Ex.: urgência, tranquilidade, morte iminente
 - Passar emoção

 Ex.: romantismo, perda, sofrimento, expectativa
 - Passar autenticidade
 - Ex.: efeitos sonoros (porta, passos, tiro, etc.)
 - Fornecer um retorno sonoro
 Ex.: click de ativação ou seleção, pneu derrapando

Áudio em Jogos

- O DirectX fornece várias soluções de áudio:
 - XAudio2: um motor para mixagem e processamento de áudio
 - XACT*: usada para criar conteúdo
 - X3DAudio*: usada para posicionar som 3D
 - XAPO*: usada para criar efeitos sonoros
 - * Utilizam XAudio2 para tarefas de baixo nível
- A biblioteca XAudio2
 - É a solução indicada para jogos
 - Funciona no Windows e Xbox

Xaudio2 é uma API mais moderna que veio para substituir DirectSound e Xaudio

Vamos usar diretamente a camada de mais baixo nível para construir nosso componente de áudio.

- Características da API XAudio 2
 - Transformações: aplica efeitos de Processamento Digital de Sinais (DSP) e filtragem no som
 - Mixagem: combina várias fontes diferentes de áudio em um único fluxo de som
 - Suporte a áudio comprimido: ADPCM (Windows), XMA (Xbox) e xWMA (Windows e Xbox)
 - Suporte a múltiplos canais e som surround
 - Modelo de API não bloqueante

- XAudio2 trabalha com dois conceitos:
 - Voices são os objetos usados para representar o áudio
 - Audio Graph é uma coleção de Voices
- Existem vários tipos de Voices:
 - Source Voices: representam os dados de áudio
 - Submix Voices: fazem manipulações no áudio
 - Mastering Voices: recebem os dados de Source Voices ou Submix Voices e os enviam para o hardware de áudio

 Audio Graph: o áudio inicia em uma Source Voice, opcionalmente passa por uma ou mais Submix Voices e é enviado para uma Mastering Voice

Inicializando XAudio2

Criar uma instância da engine XAudio2

```
IXAudio2 * audioEngine = nullptr;
XAudio2Create(&audioEngine, 0, XAUDIO2_DEFAULT_PROCESSOR);
```

Criar uma Mastering Voice:

Formato de Dados RIFF

- Resource Interchange File Format (RIFF) é um formato de arquivo usado para armazenar dados em blocos
 - É o formato usado pelos arquivos .wav
 - O primeiro bloco, chamado 'RIFF', contém o tipo do arquivo (WAVE para .wav) nos primeiros 4 bytes e os demais blocos no resto da sua seção de dados

Formato de Dados RIFF

- O tipo de dado armazenado em cada bloco é indicado por um código de 4 caracteres
 - 'fmt ': contém o cabeçalho do arquivo que deve ser carregado em um registro WAVEFORMATEXTENSIBLE (.wav)
 - 'data': contém os dados do áudio que devem ser carregados em um registro XAUDIO2_BUFFER e passados para uma Source Voice

Carregando Arquivo WAVE

Carregar o arquivo de áudio

Copiar as seções fmt e data do arquivo:

```
// localiza e copia o bloco 'fmt' para WAVEFORMATEXTENSIBLE
FindChunk(hFile, fourccFMT, dwChunkSize, dwChunkPosition);
ReadChunkData(hFile, &wfx, dwChunkSize, dwChunkPosition);

// localiza e copia o bloco 'data' para XAUDIO2 BUFFER
FindChunk(hFile, fourccDATA, dwChunkSize, dwChunkPosition);
BYTE * pDataBuffer = new BYTE[dwChunkSize];
ReadChunkData(hFile, pDataBuffer, dwChunkSize, dwChunkPosition);
```

Tocando Áudio

Inicializar o registro XAUDIO2_BUFFER

Criar Source Voice:

```
audioEngine->CreateSourceVoice(&sourceVoice, (WAVEFORMATEX*) &wfx);
sourceVoice->SubmitSourceBuffer(&buffer);
```

Tocar áudio:

```
sourceVoice->Start();
```

Resumo

- Música e efeitos sonoros são elementos importantes para fornecer autenticidade ao mundo virtual do jogo
- O DirectX fornece a biblioteca XAudio2
 - Ideal para desenvolvedores de jogos
 - Permite construir um sistema de áudio
 - Faz mixagem de diversas fontes
 - Pode ser usado tanto no Windows como no Xbox
 - Trabalha com os arquivos .wav