TP558 - Tópicos avançados em Machine Learning:

LoRA

Pedro Guerrato - 967 pedro.guerrato@Inatel.br, pguerrato@gmail.com

Neural Processing Language (NLP) sempre foi um desafio para a computação e Al.

Mesmo assim, no decorrer dos anos muitos avanços foram conquistados, por isso antes de entender o LoRA, vamos falar revisitar alguns pontos da historia do NLP

Symbolic

- Sistema baseado em regras
- Exemplo: Modelo ELIZA

Exemplo:

- Lista de Regras de pronomes:
 - Eu → Você
- Lista de Sentimentos:
 - Feliz
 - Triste
 - Alegre
 - Entediado
 - ...

Eu estou feliz hoje.

Por que você está feliz hoje?

1950

Mas ainda havia limitações:

Não funcionam se não houver as regras explícitas

Usuário: Nota baixa em TP558 me deixa triste.

ELIZA: Por que você está triste?

Statistical

- Baseado em distribuições de probabilidade
- Exemplo: Modelo N-Grams

Exemplo:

Eu gosto de aprender ______

Exemplo:

- a cozinhar (0.8);
- programação (0.7);
- novas línguas (0.68);

• ...

Mas ainda havia limitações:

- Não entendem contexto longo nem significado, somente estatística;
- O modelo desconhece o sujeito;
- Se a algo não está no treino, a sua probabilidade é zero;
- Semântica ausente;

Exemplo:

Esperado: Encerramos o ciclo 2 de TP558.

Saídas:

- Encerramos o ciclo 2 de ciclo 2;
- Encerramos a matéria de TP558;
- Encerramos o ciclo 2 de bicicletas.

Neural

- Baseadas em similaridade semântica
- Redes neurais introduziram representações de palavras distribuídas
- Introduziram as *embeddings*
- Exemplo: Word2Vec, Seq2Seq, LSTMs

Exemplo:

Rei - Homem + Mulher ≈ Rainha

[0.123,0.233, 0.452, 0.986]

Mas ainda havia limitações:

Termo: Barracuda

=

Attention

- Modelos que "focam" em partes relevantes das sequências de entrada
- Exemplo: Bahdanau, Luong e **Transformers**

Exemplo:

Tiramos nota máxima em TP558. Isso é incrível!

Tirar nota máxima

Mas ainda havia limitações:

- Mesmo resolvendo os problemas clássicos, introduziu problemas de performance
- Poucos dados para treinamento;
- Modelos em geral unidirecional

Transfer Learning

- Uso de pré-treinamento + fine-tunning context bidirecional
- Exemplo: BERT

Exemplo:

Roma é a [MASK] da Itália.

Capital

Mas ainda havia limitações:

- Não é generativo;
- Fine-tuning em datasets pequenos pode ser catastrófico;
- Original BERT suporta 512 tokens max;
- Não se adapta facilmente a vocabulários específicos (ex.: medicina, engenharia...)

LLMs

- Uso do massive autoregressive Transformers
- Exemplo: GPT-3

Mas ainda há limitações:

- Proibitivamente pesado em vários ambientes;
- Alto custo computacional e treinamento lento;
- Quando em domínios (vocabulários) específicos, ainda há muitos erros (alucinações);

Hoje

Usando *fine-tuning* aplicados ao LLM, é possível:

- Ajustar tons de resposta;
- Especializar o modelo para aplicações específicas (jurídico, médico, financeiro, técnico, etc.);
- Melhorar em tarefas específicas (refinado para classificação de texto, sumarização, geração de código, extração de entidades, tradução técnica, etc.);
- Redução de Alucinação.

Usando *fine-tuning* tradicional aplicados ao LLM, é possível:

- Ajustar tons de resposta;
- Especializar o modelo para aplicações específicas (jurídico, médico, financeiro, técnico, etc.);
- Melhorar em tarefas específicas (refinado para classificação de texto, sumarização, geração de código, extração de entidades, tradução técnica, etc.);
- Redução de Alucinação.

Só que...

Ainda há limitações!

No *fine-tuning* tradicional:

- É preciso atualizar quase todos esses parâmetros Requer **re-treinar todos os parâmetros** do modelo (milhões ou bilhões).
- Risco de Overfitting
 - Como todos os pesos mudam, o modelo pode perder parte do conhecimento geral aprendido no pré-treinamento (catastrophic forgetting).

No *fine-tuning* tradicional:

Baixa Reusabilidade

Se você fizer *fine-tuning* para jurídico e depois quiser um para saúde, precisa guardar dois modelos inteiros (vários GB cada) e **não dá para compartilhar só o** "ajuste", você precisa compartilhar tudo.

• Escalabilidade Ruim

Domínio jurídico \rightarrow 1 modelo completo.

Domínio médico → outro modelo completo.

Domínio financeiro → outro modelo completo.

Então Hu et al. propuseram uma nova abordagem de *fine-tuning* chamado Low-Rank (LoRA).

A partir do congelamento de modelos pré-treinados e injeção de *ranks* em cada camada da arquitetura *Transformer*.

Fundamentação teórica

Fundamentação teórica

Então Hu et al. propuseram uma nova abordagem de *fine-tuning* chamado Low-Rank (LoRA).

A partir do congelamento de modelos pré-treinados e injeção de *ranks* em cada camada da arquitetura *Transformer*.

Arquitetura e funcionamento

$$\max_{\Theta} \sum_{(x,y)\in\mathcal{Z}} \sum_{t=1}^{|y|} log\left(p_{\Phi_0 + \Delta\Phi(\Theta)}(y_t \mid x, y_{< t})\right)$$

Arquitetura e funcionamento

Onde $\Delta\Phi$ é explicado por:

$$h = W_0 x + \Delta W x = W_0 x + BAx$$

Onde:

$$B \in \mathbb{R}^{d \times r} \mathbb{R}, A \in \mathbb{R}^{r \times k}$$

Toda matriz tem um "Rank" (r), que é a quantidade de colunas linearmente independentes que a matriz tem.

$$\Delta W = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 1 \\ 1 & 2 & 2 \end{bmatrix}, \in \mathbb{R}^{d \times k}$$

$$d = 3 e k = 3$$

$$\Delta W = \begin{bmatrix} 0_{x2} = & 0 & 0 \\ 1_{x2} = & 2 & 1 \\ 1_{x2} = & 2 & 2 \end{bmatrix}$$

Linearmente Dependente

$$\Delta W = \begin{bmatrix} 0_{x2} = & 0 & 0 \\ 1_{x2} = & 2 & 1 \\ 1_{x2} = & 2 & 2 \end{bmatrix}$$

Linearmente Dependente

Portanto r = 1

Dessa forma é possível reduzir a matriz usando **decomposição**

$$\Delta Wx = BA \mid B \in \mathbb{R}^{d \times r} \mathbb{R}, A \in \mathbb{R}^{r \times k}$$

$$\Delta Wx = BA = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \times \begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}$$

$$(d \times r)(r \times k) = (3 \times 1)(1x3)$$

Então se escolhido um rank muito baixo, reduz-se muito a dimensionalidade e se perde informação, pois implicitamente excluiuse colunas linearmente independe;

E, ao contrário, escolhendo muito alto, mantem-se muitos parâmetros que são linearmente dependentes, o que gasta-se recursos computacionais.

Por isso, inicializa-se A a partir de distribuição Gaussiana e B = 0. (p.4)

Vantagens e desvantagens

Vantagens

- Eficiência de Treinamento
- Economia de Armazenamento
- Melhor Generalização
- Reutilização do Modelo Base

Desvantagens

- Limitação de Ajuste Completo
- Em alguns casos pode ser mais complexo na integração;
- Se treinado em uma língua, pode não performer tão bem se usado em outra

Exemplo(s) de aplicação

- LoRA tuning PEFT
- SDD-LawLLM
- Medical QA T5 LoRA Model
- MedAlpaca
- Image classification using LoRA
- https://flux-ai.io/flux-dev-lora/

Comparação com outros algoritmos

Model & Method	# Trainable Parameters	l	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
RoB _{base} (Adpt ^D)*	0.3M	$87.1_{\pm .0}$	$94.2 \scriptstyle{\pm .1}$	$88.5{\scriptstyle\pm1.1}$	$60.8 \scriptstyle{\pm .4}$	$93.1 \scriptstyle{\pm .1}$	$90.2 \scriptstyle{\pm .0}$	$71.5{\scriptstyle\pm2.7}$	$89.7_{\pm.3}$	84.4
RoB _{base} (Adpt ^D)*	0.9M	$87.3_{\pm .1}$	$94.7 \scriptstyle{\pm .3}$	$\textbf{88.4}_{\pm.1}$	$62.6 \scriptstyle{\pm .9}$	$93.0_{\pm.2}$	$90.6 \scriptstyle{\pm .0}$	$75.9_{\pm 2.2}$	$90.3_{\pm.1}$	85.4
RoB _{base} (LoRA)	0.3M	$87.5_{\pm .3}$	$\textbf{95.1}_{\pm .2}$	$89.7_{\pm .7}$	$63.4_{\pm1.2}$	$\textbf{93.3}_{\pm .3}$	$90.8 \scriptstyle{\pm .1}$	$\pmb{86.6}_{\pm.7}$	$\textbf{91.5}_{\pm .2}$	87.2
RoB _{large} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92.2	86.6	92.4	88.9
RoB _{large} (LoRA)	0.8M	90.6 _{±.2}	$96.2_{\pm.5}$	$\textbf{90.9}_{\pm 1.2}$	$\textbf{68.2}_{\pm 1.9}$	$\textbf{94.9}_{\pm.3}$	$91.6 \scriptstyle{\pm .1}$	$\textbf{87.4}_{\pm 2.5}$	$\textbf{92.6}_{\pm .2}$	89.0
$RoB_{large} (Adpt^P)^{\dagger}$	3.0M	90.2 _{±.3}	96.1 _{±.3}	90.2 _{±.7}	68.3 _{±1.0}	94.8 _{±.2}	91.9 _{±.1}	83.8 _{±2.9}	92.1 _{±.7}	88.4
$RoB_{large} (Adpt^{P})^{\dagger}$	0.8M	90.5 ±.3	$\textbf{96.6}_{\pm.2}$	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	$\textbf{94.8}_{\pm.3}$	$91.7 \scriptstyle{\pm .2}$	$80.1_{\pm 2.9}$	$91.9_{\pm.4}$	87.9
$RoB_{large} (Adpt^{H})^{\dagger}$	6.0M	$89.9_{\pm .5}$	$96.2 \scriptstyle{\pm .3}$	$88.7_{\pm 2.9}$	$66.5_{\pm 4.4}$	$94.7 \scriptstyle{\pm .2}$	$92.1_{\pm.1}$	$83.4_{\pm 1.1}$	$91.0{\scriptstyle\pm1.7}$	87.8
$RoB_{large} (Adpt^{H})^{\dagger}$	0.8M	$90.3_{\pm .3}$	$96.3 \scriptstyle{\pm .5}$	$87.7_{\pm 1.7}$	$66.3_{\pm2.0}$	$94.7 \scriptstyle{\pm .2}$	$91.5 \scriptstyle{\pm .1}$	$72.9_{\pm 2.9}$	$91.5 \scriptstyle{\pm .5}$	86.4
RoB _{large} (LoRA)†		$90.6_{\pm .2}$	$96.2_{\pm.5}$	$\textbf{90.2}_{\pm 1.0}$	$68.2_{\pm 1.9}$	$\textbf{94.8}_{\pm.3}$	$91.6_{\pm.2}$	85.2 $_{\pm 1.1}$	92.3 $_{\pm .5}$	88.6
DeB _{XXL} (FT)*	1500.0M	91.8	97.2	92.0	72.0	96.0	92.7	93.9	92.9	91.1
DeB_{XXL} (LoRA)	4.7M	$91.9_{\pm .2}$	$96.9_{\pm.2}$	92.6 $_{\pm .6}$	72.4 $_{\pm 1.1}$	$\textbf{96.0}_{\pm.1}$	$\textbf{92.9}_{\pm.1}$	94.9 $_{\pm .4}$	$\textbf{93.0}_{\pm.2}$	91.3

Comparação com outros algoritmos

Model & Method	# Trainable	E2E NLG Challenge						
	Parameters	BLEU	NIST	MET	ROUGE-L	CIDEr		
GPT-2 M (FT)*	354.92M	68.2	8.62	46.2	71.0	2.47		
GPT-2 M (Adapter ^L)*	0.37M	66.3	8.41	45.0	69.8	2.40		
GPT-2 M (Adapter ^L)*	11.09M	68.9	8.71	46.1	71.3	2.47		
GPT-2 M (Adapter ^H)	11.09M	$67.3_{\pm .6}$	$8.50_{\pm.07}$	$46.0_{\pm.2}$	$70.7_{\pm.2}$	$2.44_{\pm .01}$		
GPT-2 M (FT ^{Top2})*	25.19M	68.1	8.59	46.0	70.8	2.41		
GPT-2 M (PreLayer)*	0.35M	69.7	8.81	46.1	71.4	2.49		
GPT-2 M (LoRA)	0.35M	$\textbf{70.4}_{\pm.1}$	$\pmb{8.85}_{\pm .02}$	$\textbf{46.8}_{\pm .2}$	$\textbf{71.8}_{\pm.1}$	$\pmb{2.53}_{\pm .02}$		
GPT-2 L (FT)*	774.03M	68.5	8.78	46.0	69.9	2.45		
GPT-2 L (Adapter ^L)	0.88M	$69.1_{\pm.1}$	$8.68_{\pm.03}$	$46.3_{\pm.0}$	$71.4_{\pm.2}$	$\textbf{2.49}_{\pm.0}$		
GPT-2 L (Adapter ^L)	23.00M	$68.9_{\pm .3}$	$8.70_{\pm.04}$	$46.1_{\pm.1}$	$71.3_{\pm .2}$	$2.45_{\pm.02}$		
GPT-2 L (PreLayer)*	0.77M	70.3	8.85	46.2	71.7	2.47		
GPT-2 L (LoRA)	0.77M	$\textbf{70.4}_{\pm.1}$	$\pmb{8.89}_{\pm .02}$	$\textbf{46.8}_{\pm \textbf{.2}}$	$\textbf{72.0}_{\pm \textbf{.2}}$	$2.47_{\pm .02}$		

Referências

- https://arxiv.org/pdf/2106.09685
- https://www.fishi-pedia.com/wpcontent/uploads/2019/06/baracuda.jpg
- https://di-uploadspod15.dealerinspire.com/capecoralchryslerdodgejeepram/uploads/2 024/02/Dodge-Barracuda.jpg
- https://www.youtube.com/watch?v=LPZh9BOjkQs
- https://www.youtube.com/watch?v=KEv-F5UkhxU
- https://huggingface.co/docs/peft/en/index

Obrigado!

Perguntas?

