(1) Fruit drying

RÉPONSES INTÉGRÉES pénalité 0.10

A spherical fruit of diameter D, whose surface is wet, is dried by an airflow at temperature T_{∞} , relative humidity ψ , and velocity U_{∞} .

We want to compute the evaporation rate of the water film at the fruit surface.

You will use the following data

Diameter $D = 4.0 \,\mathrm{cm}$

Temperature T = 34.0 °C

Relative humidity $\psi = 35.\%$

Velocity $U_{\infty} = 9.2 \,\mathrm{m\,s^{-1}}$

Atmospheric pressure $p_{\text{atm}} = 101300$. Pa

Water saturation pressure at given temperature $p_{\rm sat}(T) = 5324.\,\mathrm{SI}$

Diffusion coefficient $D_{AV} = 2.65 \, 10^{-5} \, \mathrm{m}^2 \, \mathrm{s}^{-1}$

Kinematic viscosity of air $\nu = 1.63\,10^{-5}\,\mathrm{m^2\,s^{-1}}$

These data are personal

Compute the quantities below. The correlation used must involve the Schmidt number.

In your answers, use scientific notations if needed. $(6.3410^{-5} \text{ writes } 6.34\text{e-}5 \text{ and } 10^3 \text{ writes } 1\text{e}3)$.

Your answer is considered correct within a relative error of $5.0\,\%$

Indicative ranges are proposed in front of each answer. This are orders of magnitude to help you to check your results.

Reynolds number : Re =

Numérique noté sur 1

 $2.2519226199e + 04 \pm 1.1259613099e + 03$ \checkmark

 $(22510. \rightarrow 41650.)$

Schmidt number : Sc =noté sur 1 Numérique $6.1577028085e-01 \pm 3.0788514043e-02$ \checkmark $(6.13\,10^{-1} \rightarrow 6.16\,10^{-1})$ Sherwood number : Sh =Numérique noté sur 2 $9.0854257730e + 01 \pm 4.5427128865e + 00$ \checkmark $(90. \to 128.)$ Mass transfer coefficient : $k_m =$ noté sur 1 Numérique $6.0278290072e-02 \pm 3.0139145036e-03$ \checkmark $m s^{-1}$ $(4.52 \, 10^{-2} \rightarrow 6.03 \, 10^{-2})$ Vapor concentration at the fruit surface : $C_{V,\text{surface}} =$ Numérique noté sur 2 $2.0851412530e + 00 \pm 1.0425706265e - 01$ $mol \, m^{-3} \quad (2.08 \to 3.45)$ Incident vapor concentration : $C_{V,\infty} =$ Numérique noté sur 2 $7.2979943855e-01 \pm 3.6489971927e-02 \checkmark$ 1.14 mol m⁻³ (0.72 \rightarrow 1.14) Incident vapor concentration:

noté sur 2

 $mol m^{-3}$ (0.72 \rightarrow 1.14)

 $7.2979943855e-01 \pm 3.6489971927e-02$ \checkmark

Massic evaporation rate : $\dot{m}_V =$

Numérique noté sur 1

$7.3918325783e-06 \pm 3.6959162891e-07$ \checkmark

$$kg s^{-1}$$
 $(7.39 10^{-6} \rightarrow 3.79 10^{-5})$

The initial film thickness at the fruit surface is assumed to be $e = 1.0 \,\mathrm{mm}$

Compute the total evaporation time:

Numérique noté sur 2

$6.8001381153e + 02 \pm 3.4000690576e + 01$ \checkmark

s
$$(530. \rightarrow 680.)$$

(2) Fruit drying

RÉPONSES INTÉGRÉES pénalité 0.10

A spherical fruit of diameter D, whose surface is wet, is dried by an airflow at temperature T_{∞} , relative humidity ψ , and velocity U_{∞} .

We want to compute the evaporation rate of the water film at the fruit surface.

You will use the following data

Diameter $D = 8.0 \,\mathrm{cm}$

Temperature $T = 44.0 \,^{\circ}\text{C}$

Relative humidity $\psi = 33.\%$

Velocity $U_{\infty} = 9.0 \,\mathrm{m\,s^{-1}}$

Atmospheric pressure $p_{\rm atm}=101300.\,{\rm Pa}$

Water saturation pressure at given temperature $p_{\text{sat}}(T) = 9111.\,\text{SI}$

Diffusion coefficient $D_{AV} = 2.82 \, 10^{-5} \, \mathrm{m}^2 \, \mathrm{s}^{-1}$

Kinematic viscosity of air $\nu = 1.73 \, 10^{-5} \, \mathrm{m^2 \, s^{-1}}$

These data are personal

Compute the quantities below. The correlation used must involve the Schmidt number.

In your answers, use scientific notations if needed. $(6.3410^{-5} \text{ writes } 6.34\text{e-}5 \text{ and } 10^3 \text{ writes } 1\text{e3})$.

Your answer is considered correct within a relative error of $5.0\,\%$

Indicative ranges are proposed in front of each answer. This are orders of magnitude to help you to check your results.

Reynolds number : Re =

Numérique noté sur 1

$4.1654043359e + 04 \pm 2.0827021680e + 03$ \checkmark

 $(22510. \rightarrow 41650.)$

Schmidt number : Sc =

Numérique noté sur 1

$6.1330096894e-01 \pm 3.0665048447e-02$ \checkmark

 $(6.13\,10^{-1} \rightarrow 6.16\,10^{-1})$

Sherwood number : Sh =

Numérique noté sur 2

$1.2842785885e + 02 \pm 6.4213929423e + 00$ \checkmark

 $(90. \to 128.)$

Mass transfer coefficient : $k_m =$

Numérique noté sur 1

$4.5245035769e-02 \pm 2.2622517885e-03$ \checkmark

$$m \, s^{-1} \quad (4.52 \, 10^{-2} \, \to \, 6.03 \, 10^{-2})$$

Vapor concentration at the fruit surface : $C_{V,\text{surface}} =$

Numérique noté sur 2

$$3.4556189867e + 00 \pm 1.7278094934e - 01$$
 \checkmark

 $mol \, m^{-3} \quad (2.08 \to 3.45)$

Incident vapor concentration : $C_{V,\infty} =$

Numérique noté sur 2

$1.1403542656e + 00 \pm 5.7017713281e - 02$ \checkmark

 $mol \, m^{-3} \quad (0.72 \, \to \, 1.14)$

Incident vapor concentration:

Numérique

noté sur 2

$1.1403542656e + 00 \pm 5.7017713281e - 02$ \checkmark

 $mol \, m^{-3} \quad (0.72 \, \to \, 1.14)$

Massic evaporation rate : $\dot{m}_V =$

Numérique noté sur 1

 $3.7911759608e-05 \pm 1.8955879804e-06$ \checkmark

 $kg s^{-1}$ $(7.39 10^{-6} \rightarrow 3.79 10^{-5})$

The initial film thickness at the fruit surface is assumed to be $e = 1.0 \,\mathrm{mm}$

Compute the total evaporation time:

Numérique noté sur 2

 $5.3034185674e + 02 \pm 2.6517092837e + 01$ \checkmark

s $(530. \rightarrow 680.)$

Total des points : 28